The use of lentil proteins in the technology of production of raw smoked sausages

Yu A Ovchinikova1, A A Nesterenko*, S A Konovalov2, T V Rybchenko2 and M S Yashukova3

1 Kuban State Agrarian University named after I.T. Trubilin, 13 Kalinina St., Krasnodar, 350044, Russian Federation
2 P. A. Stolypin Omsk State Agrarian University, 1 Institutskaya sq., Omsk, Russian Federation
3 K G Razumovsky Moscow State University of technologies and management (the First Cossack University), 73 Zemlyanoy Val, Moscow, 109004, Russian Federation

*E-mail: nesterenko-aa@mail.ru

Abstract. On the basis of the obtained research results, it was concluded that it is advisable to use lentil proteins in the technology for the production of raw smoked sausages. A model minced meat has been developed and the effect of lentil proteins on the functional, technological, physicochemical properties of the model minced meat has been studied. When lentil proteins are added, a decrease in moisture-binding and water-retaining capacities is noticeable, which is a positive side in the technology for the production of raw smoked sausages. A more active development of the starting microflora is observed as compared to the control as a result of the appearance of an additional nutrient medium in the form of plant polysaccharides. As a consequence, a rapid and uniform decrease in the pH of minced meat can lead to a decrease in the amount of "wild microflora" as a result of an intensive accumulation of lactic acid. Lowering the pH to the isoelectric point of the protein will allow the sausages to dry quickly.

1. Introduction

Analysis of the food market indicates an increase in demand for food products of animal origin, including sausages [1-3]. As a rule, the demand and the level of "buyability" of sausages exceeds the production of raw meat. The lack of meat raw materials forces manufacturers to introduce modern technologies [4-10], including the partial replacement of meat raw materials with vegetable ones. When developing new products, it is necessary to take into account the requirements of nutritionology and the food safety management system [11-23].

The use of vegetable proteins in the production of sausages has become widespread due to the stability of the technological process, which helps to prevent the occurrence of broth-fat edema and other technological types of marriage. Legumes are of particular interest, since they contain the largest mass fraction of protein in comparison with other plant crops. Among other things, legumes are the most readily available in comparison with others grown in Russia [24].

The use of vegetable proteins makes the product the most easily digestible, forms good organoleptic characteristics and reduces the cost of the finished product, which, perhaps, is one of the factors in the
formation of high consumer demand. The use of vegetable protein components improves the quality of finished products by reducing the content of cholesterol and fatty acids.

The most famous plant proteins are soy proteins [24]. They are most common in the production of sausages due to technological features and low cost. However, a consumer survey found that soy protein in food products is of concern lately, one of the reasons for which is its frequent production through the use of gene modification. Therefore, it becomes necessary to search for an alternative source of soy protein replacement. As a promising source, it is advisable to use lentil protein, which also has a rich amino acid composition and good organoleptic, functional and technological properties [25, 26].

The introduction of starter cultures into the recipe for raw smoked sausages accelerates the maturation process of sausages. In the process of biomodification of raw meat raw smoked sausages acquire certain organoleptic and physicochemical properties [27-32]. During the ripening process, a certain color, taste and structure of raw smoked sausages are formed [33]. However, the biomodification of plant materials is still poorly understood.

The aim of the work is to study the possibility of using vegetable lentil proteins in the technology of production of raw smoked sausages.

The article is a scientific research conducted in the framework of the master's work by Yu.A. Ovchinnikova. on the topic: "Improving the recipe and technology of raw smoked sausages using vegetable components" 2020 with scientific advice to the authors of the work.

2. Materials and methods
To prepare the model minced meat, beef and pork were taken in equal proportions. Raw meat was ground in a meat grinder with a lattice hole diameter d = 3 mm. Starter cultures were added to the model minced meat according to the manufacturer's recommendations.

For the experiment, the starting culture Bessastrat of the Mongucia company was chosen. The culture includes microorganisms of the species P. pentosaceus and Staphillococcus xylosus, Staphilococcus carnosus. The determination of pH was carried out on a potentiometer pH-340 in accordance with GOST R 51478. The number of mesophilic aerobic and facultative anaerobic microorganisms was determined in accordance with GOST 10444.15.

Moisture binding capacity by the Grau-Hamm method. Mass changes were determined by weighing on a balance and in the ratio in% to the weight of the feedstock. The water retention capacity of minced meat was determined as the difference between the mass fraction of moisture in the minced meat and the amount of moisture separated during heat treatment. Stickiness was determined by the Sokolov-Bolshakov method. The fractional composition of proteins was determined based on their solubility.

Amino acid analysis was carried out by the method of ion exchange chromatography on the basis of the State Scientific Research Institute of Research and Development of the Russian Agricultural Academy at the ARGUS Testing Center. The method for the quantitative determination of lactic acid with para-oxydiphenyl is based on measuring the color intensity of the compound formed during the reaction of acetaldehyde with n-oxydiphenyl in the presence of sulfuric acid.

Proteins are removed by precipitation with trichloroacetic acid, and carbohydrates by precipitation with calcium hydroxide in the presence of copper sulfate; acetaldehyde, which is formed from lactic acid when heated with sulfuric acid, gives a color reaction with para-hydroxydiphenyl (purple color).

Acetaldehyde is formed when lactic acid is heated with mineral acids. When it interacts with two molecules of n-oxydiphenyl, dioxydiphenylethane is formed, which in the presence of H₂SO₄ is oxidized to a violet product with an absorption maximum at 574 nm. The method allows you to determine lactic acid in quantities from 0.03 to 0.2 μmol in the sample.

3. Results and discussions
To study the effect of vegetable proteins on the functional and technological properties of minced meat, soy protein and lentil protein were taken as a basis.

Comparative analysis of the amino acid composition of the proteins under study, mg per 100 g of the edible portion is shown in table 1.
Table 1. Amino acid composition of the studied plant proteins.

Amino acid name (AA)	Content, mg per 100 g of edible part	in the egg	in soy	in lentils
Isoleucine		597	1810	1020
Valine		772	2090	1270
Leucine		1081	2670	1890
Lysine		903	2090	1720
Phenylalanine + Tyrosine		652+476	1610+1060	1250+780
Methionine + cystine		424+293	560+620	290+220
Threonine		610	1390	960
Tryptophan		204	450	220
Amount AA		6012	14350	9620

At the first stage of the research, the growth rate of starter cultures was analyzed with different amounts of substitution of meat raw materials for vegetable proteins. The replacement of raw meat was made from 10 to 40%. The result is shown in table 2.

Table 2. Analysis of the growth rate of crops on model minced meat.

Quantity, g/100 kg of minced meat	Duration of the experiment, h	Number of cells, CFU/g			
	0	3	6	9	12
Control	4,6×10⁵	5×10³	6,5×10³	8,5×10³	1,0×10⁶
10 %	4,4×10⁵	4,9×10⁵	7,4×10⁵	9,6×10⁵	3,1×10⁶
20 %	4,7×10⁵	5,2×10⁵	6,4×10⁵	9,4×10⁵	2,9×10⁶
30 %	4,6×10⁵	5,1×10⁵	5,9×10⁵	6,7×10⁵	7,3×10⁵
40 %	4,6×10⁵	5,0×10⁵	5,8×10⁵	6,1×10⁵	6,8×10⁵

The best moisture-binding capacity (WCC) is possessed by raw meat in comparison with vegetable raw materials. For the study of VSS, model minced meat with starter cultures was kept for 12 hours at a temperature of 3±1 °C. The result of the study of the moisture-binding capacity of the model minced meat samples is shown in figure 1.

Figure 1. Moisture binding capacity of model minced meat.
The higher the water-holding capacity of the model minced meat, the longer the drying process takes. The result of the study of the water-holding capacity is shown in figure 2.

![Figure 2. The water-holding capacity of the model minced meat.](image)

The activity of starter cultures is directly related to protein hydrolysis, during which the protein breaks down into easily digestible amino acids. Table 3 shows data on the amino acid composition of model minced meat before and after biomodification.

AA name	Control sample Content, mg/100 g of product	Prototype Content, mg/100 g of product		
	Before	After	Before	After
Isoleucine	10.0	10.4	10.7	11.2
Valine	13.2	13.7	13.8	14.2
Leucine	20.2	21.0	20.9	21.4
Lysine	14.6	15.2	15.1	15.7
Phenylalanine+Tyrosine	11.0+10.2	11.2+10.6	11.4+10.7	11.8+11.2
Methionine + cystine	5.0+2.0	5.1+1.5	5.5+2.7	5.9+2.3
Threonine	10.6	11.1	11.2	11.7

The results of studying the dynamics of changes in the pH of the model minced meat are presented in figure 3.

![Figure 3. Change in pH in the model minced meat.](image)
The dynamics of changes in the content of lactic acid in the model minced meat is shown in figure 4.

![Figure 4. Change in lactic acid content in model minced meat.](image)

The use of vegetable proteins in technology allows not only to increase the output of finished products, but also to reduce the cost;

The most commonly found vegetable proteins in the meat industry are soy proteins. They are used as concentrates, isolates and flour. Soy proteins are distinguished by a wide range of essential and essential amino acids.

However, the oversaturation of the market for meat products containing soy proteins has led to a decrease in demand. From the data of the sociological survey, it can be concluded that consumers began to pay the most attention to the composition of the product. When buying, preference is given to products that do not contain soy.

Analysis of table 1 indicates an increase in the amount of vegetable proteins is higher compared to egg proteins. It is worth noting the advantage of soy protein in terms of the number of amino acids compared to lentils. The presence of a large amount of lipids in soy can affect the quality of the finished product. Additional oxidation of soy lipids can lead to a deterioration in the aroma and taste of the product. Unlike soy, lentils contain negligible amounts of lipids.

The data in table 2 indicate that there is an increase in all samples of the model minced meat. However, the most optimal development of microflora is observed when lentil isolate is applied at a rate of 10–20%. With the introduction of 30–40%, a slower growth of the starting microflora is observed. In addition, this ratio of raw materials can lead to a deterioration in the organoleptic characteristics of the finished product. The optimal replacement rate is 20%. Further research will be carried out when replacing raw meat in 20%.

In the production of raw smoked sausages, moisture binding and water retention capacity is of great importance.

Moisture binding ability. For the technological process of making raw smoked sausages, the presence of weakly bound moisture is most preferable, and not tightly bound. In the presence of weakly bound moisture, the drying process proceeds better, since this type of moisture is well removed from the product. The lower the grade of trimmed meat, the lower its BCC [12].

The data in figure 1 shows that the control sample is superior to the sample in which the lentils are applied in terms of moisture binding capacity. The moisture binding capacity of the experimental model minced meat was 75.8%, which is 1.8% less than the control. The introduction of vegetable protein into the composition helps to reduce the moisture binding capacity (WCC), which is more optimal for the drying process of raw smoked sausages.
The data in figure 2 prove a noticeable decrease in the water-holding capacity of the test sample, compared to the control. The water-holding capacity of the prototype of the model minced meat was 70.5%, which is 2.7% less than in the control.

The data in table 3 indicate a more intense protein breakdown in the experimental sample, which indicates a more intensive development of starter cultures.

One of the main physicochemical indicators affecting the model minced meat is pH. It not only affects the growth and development of the starting microflora, but also the correctness of the technological process.

Lactic acid bacteria, which are part of the starter cultures, process carbohydrates in the course of their life, and lactic acid is formed. Due to this, the pH shifts towards an acidic environment, and a more intense accumulation of lactic acid can lead to souring of sausages. Such products are already considered a defect.

The rapid growth of beneficial microflora and the accumulation of lactic acid helps to inhibit the development of unwanted microflora, the development of organoleptic characteristics of the finished product. Lactic acid bacteria, which are part of the starter cultures, process carbohydrates in the course of their life, and lactic acid is formed. Due to this, the pH shifts towards an acidic environment, and a more intense accumulation of lactic acid can lead to souring of sausages. Such products are already considered a defect.

In the experimental sample of model minced meat (figure 3), a more intense decrease in pH is observed. The protein's isoelectric point is reached after 48 hours. A rapid decrease in pH in the experiment occurs as a result of a faster increase in the number of starter cultures. An intensive decrease in pH helps to preserve the color and quickly compact the sausage loaves.

In the experimental sample (figure 4) of the model minced meat, a more intense accumulation of lactic acid is observed. The rapid accumulation of lactic acid in the experiment occurs as a result of the intensive growth of the number of bacteria that make up the starter cultures. Intense accumulation of lactic acid can lead to souring of sausages.

4. Conclusion
A model minced meat has been created and the effect of lentil proteins on the functional, technological, physicochemical properties of the model minced meat has been studied. When lentil proteins are added, a decrease in moisture-binding and water-holding capacities is noticeable. What is the positive side of the technology for the production of raw smoked sausages.

A more active development of the starting microflora is observed as compared to the control as a result of the appearance of an additional nutrient medium in the form of plant polysaccharides. As a consequence, a rapid and uniform decrease in the pH of minced meat can lead to a decrease in the amount of "wild microflora" as a result of an intensive accumulation of lactic acid. Lowering the pH to the isoelectric point of the protein will allow the sausages to dry quickly.

References
[1] Rebezov M, Naumova N, Lukin A, Alkhamova G and Khayrullin M 2011 Food behavior of consumers (for example, Chelyabinsk) Voprosy Pitaniia 80(6) 23-6
[2] Wang X H, Zhang Y L, Ren H Y and Zhan Y 2018 Comparison of bacterial diversity profiles and microbial safety assessment of salami Chinese dry-cured sausage and Chinese smoked-cured sausage by high-throughput Lwt-food science and technology 90 108-15
[3] Okuskhanova E, Rebezov Y, Khayrullin M, Nesterenko A, Mironova I, Gazeev I, Nigmatyanov A and Goncharov A 2019 Low-calorie meat food for obesity prevention International Journal of Pharmaceutical Research 11(1) 11589-92
[4] Nesterenko A, Goushchin V, Koshchaev A, Kenijz N, Rebezov M and Khayrullin M 2020 Electromagnetic treatment of fresh sausage meat and starter cultures in summer sausage production International Journal of Advanced Science and Technology 29(9S) 1173
[5] Nesterenko A, Kenijz N, Rebezov M, Omarov R and Shlykov S 2020 Production technology for
smoked sausages using protein-fat emulsion International Transaction Journal of Engineering Management & Applied Sciences & Technologies 11(12) 11A12A 1-8 doi:10.14456/ITJEMAST.2020.226

[6] Du S, Cheng H, Ma J K, Li Z J, Wang C H and Wang Y L 2019 Effect of starter culture on microbiological, physiochemical and nutrition quality of Xiangxi sausage Journal of Food Science and Technology 56(2) 811-23

[7] Okuskhanova E, Rebezov M, Yessimbekov Zh, Suychinov A, Semenova N, Rebezov Y, Gorelik O and Zinina O 2017 Study of water binding capacity, ph, chemical composition and microstructure of livestock meat and poultry Annual Research & Review in Biology 14(3) 1-7 doi: 10.9734/ARRB/2017/34413

[8] Assenova B et al. 2020 Effect of germinated wheat (triticum aestivum) on chemical, amino acid and organoleptic properties of meat pate Plovvinarstvo 14 503-9 doi:10.5219/1273

[9] Kabulov B, Kassymov S, Moldabayeva Zh, Rebezov M, Zinina O, Chernyshenko Yu, Arduvanova F, Peshcherov G, Makarov S and Vasyukova A 2020 Developing the formulation and method of production of meat frankfurters with protein supplement from meat by-products EurAsian Journal of BioSciences 14(1) 213-8 doi:10.31838/jcr.07.02.30

[10] Kamborova A et al. 2020 Improvement of quality characteristics of turkey pâté through optimization of a protein rich ingredient: physicochemical analysis and sensory evaluation Food Sci. Technol Retrieved from: <http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0101-20612020005022201&lng=en&nrm=iso>. Epub Sep 28, 2020 doi:10.1590/fst.00720

[11] Kabulov B, Kuderinova N, Kassymov S, Mustafayeva A, Khayrullin M, Kuzmina A, Vorobeva A, Pavlov A and Ermolaev V 2019 Effect of mechanical processing of minced meat on the change of yield stress International Journal of Mechanical and Production Engineering Research and Development 9(5) 333-42

[12] Akhmetova S, Suleimenova M and Rebezov M 2019 Mechanism of an improvement of business processes management system for food production: case of meat products enterprise Entrepreneurship and sustainability issues 7(2) 1015-35 doi:10.9770/jesi.2019.7.2(16)

[13] Kuramshina N, Rebezov M, Kuramshin E, Tretyak L, Topuria G, Kulikov D, Evtushenko A, Harlap S and Okuskhanova E 2019 Heavy metals content in meat and milk of Orenburg region of Russia International Journal of Pharmaceutical Research 11(1) 1301-5 doi:10.21668/health.risk/2019.2.04.eng

[14] Duysssembaev S, Serikova A, Okuskanova E, Ibragimov N, Bekturova N, Ikinbayeva N, Rebezov Y, Gorelik O and Baybitalina M 2017 Determination of Cs-137 Concentration in Some Environmental Samples around the Semipalatinsk Nuclear Test Site in the Republic of Kazakhstan Annual Research & Review in Biology 15(4) 1-8 doi:10.9734/ARRB/2017/35239

[15] Kassymov S, Rebezov M, Ikonnikova A, Fedin I, Rodionov I, Rukhadze S and Bokuchava O 2020 Using of pumpkin and carrot powder in production of meat cutlets: effect on chemical and sensory properties International Journal of Psychosocial Rehabilitation 24(4) 1663-70 doi:10.37200/IJPR/V24I/PR201274

[16] Omarov R, Shlykov S, Rebezov M, Sorokin A and Khlopova Y 2020 Technology Development of Whipped Drink based on Biomodified Blood Plasma International Transaction Journal of Engineering Management & Applied Sciences & Technologies 11(14)11A14R 1-9 doi:10.14456/ITJEMAST.2020.285

[17] Rebezov M et al 2020 Improvement of Laboratory Services When using Sample Preparation in Microwave System International Journal of Current Research and Review 12(16) 29-33 doi:10.31782/IJCRR.2020.12167

[18] Okuskanova E, Smolnikova F, Kassymov S, Zinina O, Mustafayeva A, Rebezov M, Rebezov Y, Tazeddinova D, Galieva Z and Maksimiuk N 2017 Development of minced meat ball composition for population from the unfavorable ecological regions Annual Research & Review in Biology 13(3) 1-9 doi:10.9734/ARRB/2017/33337
[19] Assenova B, Okuskhanova E, Rebezov M, Korzhikenova N, Yessimbekov Zh and Dragoev S 2016 Trace and toxic elements in meat of maral (red deer) grazing in Kazakhstan Research Journal of Pharmaceutical, Biological and Chemical Sciences 7(1) 1425-33

[20] Okuskhanova E, Assenova B, Rebezov M, Yessimbekov Zh, Kulushhtayeva B, Zinina O and Stuart M 2016 Mineral composition of deer meat pâté Pakistan Journal of Nutrition 15(3) 217-22 doi:10.3923/pjn.2016.217.222

[21] Abilmazhinova B, Rebezov M, Fedoseeva N, Belookov A, Belookova O, Mironova I, Nigmatyanov A and Gizatova N 2020 Study chemical and vitamin composition of horsemeat cutlets with addition of pumpkin International Journal of Psychosocial Rehabilitation 24(8) 7614-21 doi:10.37200/IJPR/V24I8/PR280773

[22] Igenbayev A, Okuskhanova E, Nurgazezova A, Rebezov Ya, Kassymov S, Nurymkhan G, Tazeddinova D, Mironova I, Rebezov M 2019 Fatty Acid Composition of Female Turkey Muscles in Kazakhstan Journal of World’s Poultry Research 9(2) 78-81 doi:10.36380/jwpr.2019.9

[23] Zinina O et al. 2020 Sensory, physical and chemical characteristics of fermented minced meat IOP Conf. Ser.: Earth Environ. Sci. 548 082012 doi:10.1088/1755-1315/548/8/082012

[24] Slozhenkina M I et al. 2015 Feasibility of using vegetable protein texturates in the production of ham products Izvestiya Nizhnevolzhsky agro-university complex: Science and higher professional education 1(37) 161-4

[25] Li X, Chen W, Jiang J, Feng Y, Yin Y and Liu Y 2020 Functionality of dairy pro-teins and vegetable proteins in nutritional supplement powders: a review International food research journal 26(6) 1651-64

[26] Zhumanova G, Rebezov M, Assenova B and Okuskhanova E 2018 Prospects of using Poultry by-Products in the technology of chopped semi-finished products International Journal of Engineering and Technology (UAE) 7(3.34) 495-8 doi:10.14419/ijet.v7i3.34.19367

[27] Nesterenko A, Koshchaev A, Kenijz N, Akopyan K, Rebezov M and Okuskhanova E 2018 Biomodification Of Meat For Improving Functional-Technological Properties Of Minced Meat Research Journal of Pharmaceutical, Biological and Chemical Sciences 9(6) 95-105 WOS:000449630700013

[28] Sydykova M, Nurykmhan G, Gaptar S, Rebezov Y, Khayrullin M, Nesterenko A and Gazeev I 2019 Using of lactic-acid bacteria in the production of sausage products: modern conditions and perspectives International Journal of Pharmaceutical Research 11(1) 1073-83

[29] Ammor M S and Mayo B 2007 Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: an update Meat Science 76(1) 138-46

[30] Wójciak K M, Dolatowski Z J, Kołożyn-Krajewska D and Trząskowska M 2012 The effect of the Lactobacillus casei LOCK 7177 probiotic strain on the quality of dryfermented sausage during chilling storage Journal of Food Quality 35(5) 353-65

[31] Vladimirovna Z O and Borisovich R M 2016 A Biotechnological Processing of Collagen Containing By-products of Bovine Animals Research Journal of Pharmaceutical Biological and Chemical Sciences 7(1) 1530-4

[32] Zinina O, Rebezov M, Khayrullin M, Neverova O and Bychkova T 2020 Functional and technological indicators of fermented minced meat IOP Conf. Ser.: Earth Environ. Sci. 548 082010 doi:10.1088/1755-1315/548/8/082010

[33] Solovieva A A and Zinina O V 2016 Effect of Biotechnological Processing on the Micro-structure of Smoked Poultry Sausages Bulletin of the South Ural State University Ser. Food and Biotechnology 4(4) 45-53 DOI: 10.14529/food160405