Abstract: Inspired by recent work of Carlson, Friedlander and Pevtsova concerning modules for p-elementary abelian groups E_r of rank r over a field of characteristic $p > 0$, we introduce the notions of modules with constant d-radical rank and modules with constant d-socle rank for the generalized Kronecker algebra $K_r = \Gamma_r$ with $r \geq 2$ arrows and $1 \leq d \leq r - 1$. We study subcategories given by modules with the equal d-radical property and the equal d-socle property. Utilizing the simplification method due to Ringel, we prove that these subcategories in $\text{mod} \ K_r$ are of wild type. Then we use a natural functor $\mathcal{S}: \text{mod} \ K_r \to \text{mod} \ kE_r$ to transfer our results to $\text{mod} \ kE_r$.

Keywords: Kronecker algebra, Auslander–Reiten theory, constant socle rank, wild representation type

MSC 2010: 16G20, 16G60, 16G70

Introduction

Let $r \geq 2$. Let k be an algebraically closed field of characteristic $p > 0$, and let E_r be a p-elementary abelian group of rank r. It is well-known that the category of finite-dimensional kE_r-modules $\text{mod} \ kE_r$ is of wild type, whenever $p \geq 3$ or $p = 2$ and $r > 2$. Therefore, subclasses with more restrictive properties have been studied; in [5], the subclass of modules of constant rank $\text{CR}(E_r)$ and modules with even more restrictive properties, called equal images property and equal kernels property, were introduced. Let $\langle x_1, \ldots, x_r \rangle_k$ be a complement of $\text{Rad}^2(kE_r) = \text{Rad}(kE_r)$, and set $x_\alpha := \sum_{i=1}^r a_i x_i$ for $\alpha \in k^r$. We say that $M \in \text{mod} \ kE_r$ has constant Jordan type if the Jordan canonical form of the nilpotent operator $x_\alpha^{[M]}: M \to M$, $m \mapsto x_\alpha \cdot m$ is independent of $\alpha \in k^r \setminus \{0\}$. If the image (kernel) of $x_\alpha^{[M]}$ does not depend on α, we say that M has the equal images (kernels) property.

In [21], the author defined analogous categories CR, EIP and EKP in the context of the generalized Kronecker algebra \mathcal{K}_r, and in more generality for the generalized Beilinson algebra $\mathcal{B}(n, r)$. Using a natural functor $\mathcal{S}: \text{mod} \ \mathcal{K}_r \to \text{mod} \ kE_r$ with nice properties, she gave new insights into the categories of equal images and equal kernels modules for mod kE_r of Loewy length ≤ 2. A crucial step is the description of CR, EIP and EKP in homological terms, involving a family \mathcal{P}^{r-1}-family of regular “test”-modules.

Building on this approach, we show that the recently introduced modules [6] of constant socle rank and constant radical rank can be described in the same fashion. For $1 \leq d < r$, we introduce modules of constant d-radical rank CRR_d and constant d-socle rank CSR_d in mod \mathcal{K}_r. More restrictive — and also easier to handle — are modules with the equal d-radical property ERP_d and the equal d-socle property ESP_d. For $d = 1$, we have $\text{ESP}_1 = \text{EKP}$, $\text{ERP}_1 = \text{EIP}$ and $\text{CSR}_1 = \text{CR} = \text{CRR}_1$. Studying these classes in the hereditary module category mod \mathcal{K}_r allows us to use tools not available in mod kE_r.

*Corresponding author: Daniel Bissinger, Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Ludewig-Meyn-Str. 4, 24098 Kiel, Germany, e-mail: bissinger@math.uni-kiel.de
As a first step, we establish a homological characterization of CSR$_d$, CRR$_d$, ESP$_d$ and ERP$_d$. We denote by Gr$_d$, the Grassmanian of d-dimensional subspaces of k'. In generalization of [21], we define a Gr$_d$-family of “test”-modules $(X_U)_{U \in \text{Gr}_d}$, and show that the modules in this family can be described in purely combinatorial terms by being indecomposable of dimension vector $(1, r - d)$. This allows us to construct many examples of modules of equal socle rank in mod\mathcal{K}_s for $s \geq 3$ by considering pullbacks along natural embeddings $\mathcal{K}_r \rightarrow \mathcal{K}_s$.

Since \mathcal{K}_r is a wild algebra for $r > 2$ and every regular component in the Auslander–Reiten quiver of \mathcal{K}_r is of type ZA_∞, it is desirable to find invariants that give more specific information about the regular components. It is shown in [21] that there are uniquely determined quasi-simple modules $M_\mathfrak{c}$ and $W_\mathfrak{c}$ in \mathfrak{c} such that the cone $(M_\mathfrak{c} \rightarrow) \subseteq \mathfrak{c}$ consisting of all modules lying on an oriented path starting in $M_\mathfrak{c}$ satisfies $(M_\mathfrak{c} \rightarrow) = \text{EKP} \cap \mathfrak{c}$, and the cone $(\rightarrow W_\mathfrak{c})$ consisting of all modules lying on an oriented path ending in $W_\mathfrak{c}$ satisfies $(\rightarrow W_\mathfrak{c}) = \text{EIP} \cap \mathfrak{c}$. Using results on elementary modules, we generalize this statement for ESP$_d$ and ERP$_d$. Our main results may be summarized as follows.

Theorem. Let $r \geq 3$ and \mathfrak{c} be a regular component of the Auslander–Reiten quiver of \mathcal{K}_r.

(a) For each $1 \leq i < r$, the category $\Delta_i := \text{ESP}_i \setminus \text{ESP}_{i-1}$ is wild, where $\text{ESP}_0 := \emptyset$.

(b) For each $1 \leq i < r$, there exists a unique quasi-simple module M_i in \mathfrak{c} such that $\text{ESP}_i \cap \mathfrak{c} = (M_i \rightarrow)$.

(c) There exists at most one number $1 < m(\mathfrak{c}) < r$ such that $\Delta_{m(\mathfrak{c})} \cap \mathfrak{c}$ is non-empty. If such a number exists, $\Delta_{m(\mathfrak{c})} \cap \mathfrak{c}$ is the ray starting in $M_{m(\mathfrak{c})}$.

If there is no such number as in (c), we set $m(\mathfrak{c}) = 1$. An immediate consequence of (b) and (c) is that, for $1 \leq i \leq j < r$, we have $M_i = M_j$ or $\tau M_i = M_j$. Moreover, statement (a) shows the existence of a lot of AR-components such that $\Delta_i \cap \mathfrak{c}$ is a ray, and for every such component, we have $m(\mathfrak{c}) = i$. With the dual result for ERP, we assign a number $1 \leq w(\mathfrak{c}) < r$ to each regular component \mathfrak{c}, giving us the possibility to distinguish $(r - 1)^2$ different types of regular components.

To prove statement (a), we exploit the fact that every regular module M in mod\mathcal{K}_r has self-extensions with $\dim_k \text{Ext}(M, M) \geq 2$, by applying the process of simplification. This method was introduced in [17] and produces extension closed subcategories, whose objects may be filtered by pairwise orthogonal bricks. For a p-elementary abelian group E, of rank r over an algebraically closed field of characteristic $p > 0$, mod kE, is the only such subcategory. We therefore use the functor $\mathfrak{x} : \text{mod} \mathcal{K}_r \rightarrow \text{mod} kE$, whose essential image (the full subcategory of mod kE formed by all modules isomorphic to modules of the form $\mathfrak{x}(M)$) consists of all modules of Loewy length ≤ 2, to transfer our results to mod kE. We denote by ESP$_{2, d}(E_r)$ the category of modules in mod kE_r of Loewy length ≤ 2 with the equal d-socle property and arrive at the following result.

Corollary. Let $\text{char}(k) > 0$, $r \geq 3$ and $1 \leq d < r$. Then ESP$_{2, d}(E_r) \setminus \text{ESP}_{2, d-1}(E_r)$ has wild representation type, where ESP$_{2, 0}(E_r) := \emptyset$.
For $r = 2$, we consider the Beilinson algebra $B(3, 2)$. The fact that $B(3, 2)$ is a concealed algebra of type $Q = 1 \rightarrow 2 \Rightarrow 3$ allows us to apply the simplification process in mod kQ. We find a wild subcategory in the category of all modules in mod $B(3, 2)$ with the equal kernels property and conclude the following.

Corollary. Assume that char$(k) = p > 2$; then the full subcategory of modules with the equal kernels property in mod kE_2 and Loewy length ≤ 3 has wild representation type.

In particular, we generalize results by Benson [3] and Bondarenko and Lytvynchuk [4] concerning the wildness of various subcategories of kE_r-modules. We also construct examples of regular components \mathcal{C} such that each module in \mathcal{C} has constant d-socle rank, but no module in \mathcal{C} is GL_d-stable in the sense of [6].

1 Preliminaries

Throughout this article, let k be an algebraically closed field and $r \geq 2$. If not stated otherwise, k is of arbitrary characteristic. We denote by $Q = (Q_0, Q_1)$ a finite and connected quiver without oriented cycles. For an arrow $a: x \rightarrow y \in Q_1$, we define $s(a) = x$ and $t(a) = y$. We say that a starts in $s(a)$ and ends in $t(a)$. A (finite-dimensional) representation $M = ((M_x)_{x \in Q_0}, (M(a))_{a \in Q_1})$ over Q consists of vector spaces M_x and linear maps $M(a): M_{s(a)} \rightarrow M_{t(a)}$ such that $\dim_k M := \sum_{x \in Q_0} \dim_k M_x$ is finite. A morphism $f: M \rightarrow N$ between representations is a collection of linear maps $(f_x)_{x \in Q_0}$ such that, for each arrow $a: x \rightarrow y$, there is a commutative diagram

$$
\begin{array}{ccc}
M_x & \xrightarrow{M(a)} & M_y \\
\downarrow f_x & & \downarrow f_y \\
N_x & \xrightarrow{N(a)} & N_y
\end{array}
$$

The category of finite-dimensional representations over Q is denoted by $\text{rep}(Q)$, and kQ is the path algebra of Q with idempotents $e_x, x \in Q_0$. The k-algebra kQ is a finite-dimensional, associative, basic and connected k-algebra. Let mod kQ be the class of finite-dimensional kQ left modules. Given $M \in \text{mod} kQ$, we set $M_x := e_x M$. The categories mod kQ and $\text{rep}(Q)$ are equivalent (see for example [1, Theorem III 1.6]). We will therefore switch freely between representations of Q and modules of kQ if one of the approaches seems more convenient for us. We assume that the reader is familiar with Auslander–Reiten theory and basic results on wild hereditary algebras. For a well written survey on the subjects, we refer to [1, 13, 14].

Definition. Recall the definition of the *dimension function*

$$\dim: \text{mod} kQ \rightarrow \mathbb{Z}^{Q_0}, \quad M \mapsto (\dim_k M_x)_{x \in Q_0}.$$

If $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is an exact sequence, then $\dim A + \dim C = \dim B$. The quiver Q defines a (non-symmetric) bilinear form

$$\langle -,- \rangle: \mathbb{Z}^{Q_0} \times \mathbb{Z}^{Q_0} \rightarrow \mathbb{Z},$$

given by $(x_i, (y_j)) \mapsto \sum_{i \in Q_0} x_i y_i - \sum_{a \in Q_1} x_{s(a)} y_{t(a)}$. For the case that x, y are given by dimension vectors of quiver representations, there is another description of $\langle -,- \rangle$ known as the Euler–Ringel form [17]

$$\langle \dim M, \dim N \rangle = \dim_k \text{Hom}(M, N) - \dim_k \text{Ext}(M, N).$$

We denote by $q = q_Q: \mathbb{Z}^{Q_0} \rightarrow \mathbb{Z}$ the corresponding quadratic form. A vector $d \in \mathbb{Z}^{Q_0}$ is called a real root if $q(d) = 1$ and an imaginary root if $q(d) \leq 0$.

Denote by Γ, the r-Kronecker quiver, which is given by two vertices $1, 2$ and arrows y_1, \ldots, y_r: $1 \rightarrow 2$.

We set $\mathcal{K}_r := k\Gamma$, and $P_1 := \mathcal{K}_r e_2$, $P_2 := \mathcal{K}_r e_1$. P_1 and P_2 are the indecomposable projective modules of mod \mathcal{K}_r, $\dim_k \text{Hom}(P_1, P_2) = r$ and $\dim_k \text{Hom}(P_2, P_1) = 0$. As Figure 2 suggests, we write

$$\dim M = (\dim_k M_1, \dim_k M_2).$$
For example, \(\dim P_1 = (0, 1) \) and \(\dim P_2 = (1, r) \). The Coxeter matrix \(\Phi \) and its inverse \(\Phi^{-1} \) are

\[
\Phi = \begin{pmatrix} r^2 - 1 & 0 \\ 1 & -1 \end{pmatrix}, \quad \Phi^{-1} = \begin{pmatrix} -1 & r \\ -r & 1 \end{pmatrix}.
\]

For \(M \) indecomposable, \(\dim \tau M = \Phi(\dim M) \) holds if \(M \) is not projective and \(\dim \tau^{-1} M = \Phi^{-1}(\dim M) \) if \(M \) is not injective. The quadratic form \(q \) is given by \(q(x, y) = x^2 + y^2 - ry \).

Figure 3 shows the notation we use for the components \(\mathcal{P}, \mathcal{J} \) in the Auslander–Reiten quiver of \(\mathcal{K}_{\tau} \) which contain the indecomposable projective modules \(P_1, P_2 \) and indecomposable injective modules \(I_1, I_2 \). The set of all other components is denoted by \(\mathcal{R} \).

Ringel has proven [18, Theorem 2.3] that every component in \(\mathcal{R} \) is of type \(Z\text{A}_{\infty} \) if \(r \geq 3 \) or a homogeneous tube \(Z\text{A}_{\infty}/(r) \) if \(r = 2 \). A module in such a component is called regular. An irreducible morphism in a regular component is injective if the corresponding arrow is uprising (see Figure 1 for \(r \geq 3 \) and surjective otherwise. A regular module \(M \) is called quasi-simple if the AR-sequence terminating in \(M \) has an indecomposable middle term. If \(M \) is quasi-simple in a regular component \(\mathcal{C} \), there is an infinite chain (a ray) of irreducible monomorphisms

\[
M = M[1] \rightarrow M[2] \rightarrow M[3] \rightarrow \cdots \rightarrow M[l] \rightarrow \cdots
\]

and an infinite chain (a coray) of irreducible epimorphisms

\[
\cdots \rightarrow (l)M \rightarrow \cdots \rightarrow (3)M \rightarrow (2)M \rightarrow (1)M = M,
\]

and for each regular module \(X \), there are unique quasi-simple modules \(N, M \) and \(l \in \mathbb{N} \) with \((l)M = X = N[l] \). The number \(l \) is called the quasi-length of \(X \). We fix the orientation of each regular component in such a way that the quasi-simple modules form the bottom layer of the component (see Figure 1).

The indecomposable modules in \(\mathcal{P} \) are called preprojective modules and the modules in \(\mathcal{J} \) are called preinjective modules. Moreover, we call an arbitrary module preprojective (resp. preinjective, regular) if all its indecomposable direct summands are preprojective (resp. preinjective, regular). It is \(P \) in \(\mathcal{P} \) (in \(\mathcal{J} \)) if and only if there is \(l \in \mathbb{N}_0 \) with \(r^l P = P_i \) \((r^{-1}I = I_i)\) for \(i \in \{1, 2\} \). Recall that there are no homomorphisms from right to left [1, Corollary VIII.2.13]. To emphasize this result later on, we just write

\[
\text{Hom}(\mathcal{J}, \mathcal{P}) = 0 = \text{Hom}(\mathcal{J}, \mathcal{R}) = 0 = \text{Hom}(\mathcal{R}, \mathcal{P})
\]

Using the canonical equivalence ([1, Theorem III.1.6]) of categories \(\text{mod } \mathcal{K}_{\tau} \cong \text{rep}(\Gamma_{\tau}) \), we introduce the duality \(\delta : \text{mod } \mathcal{K}_{\tau} \rightarrow \text{mod } \mathcal{K}_{\tau} \) by setting \((\delta M)_x := (M_{\psi(x)})^* \) and \((\delta M(y)) := (M(y))^* \) for each \(M \in \text{rep}(\Gamma_{\tau}) \), where \(\psi : \{1, 2\} \rightarrow \{1, 2\} \) is the permutation of order 2. Note that \(\delta(P_i) = I_i \) for all \(i \in \mathbb{N} \). We state a simplified version of Kac’s theorem [12, Theorem 1.10] for the Kronecker algebra in combination with results on the quadratic form proven in [17, Lemma 2.3].
Theorem 1.1. Let \(r \geq 2 \) and \(d \in \mathbb{N}_0^2 \).

(a) If \(d = \dim M \) for some indecomposable module \(M \), then \(q(d) \leq 1 \).

(b) If \(q(d) = 1 \), then there exists a unique indecomposable module \(X \) with \(\dim X = d \). In this case, \(X \) is preprojective or preinjective, and \(X \) is preprojective if and only if \(\dim_k X_1 < \dim_k X_2 \).

(c) If \(q(d) \leq 0 \), then there exist infinitely many indecomposable modules \(Y \) with \(\dim Y = d \) and each \(Y \) is regular.

Since there is no pair \((a, b) \in \mathbb{N}_0^2 \setminus \{(0, 0)\} \) satisfying \(a^2 + b^2 - rab = q(a, b) = 0 \) for \(r \geq 3 \), we conclude together with [1, Lemma VIII.2.7] the following.

Corollary 1.2. Let \(M \) be an indecomposable \(\mathcal{K}_r \)-module. Then \(\Ext(M, M) = 0 \) if and only if \(M \) is preprojective or preinjective. If \(r \geq 3 \) and \(M \) is regular, then \(\dim_k \Ext(M, M) \geq 2 \).

Let \(\text{mod}_{\rho} \mathcal{K}_r \) be the subcategory of all modules without non-zero projective direct summands and \(\text{mod}_{\tau} \mathcal{K}_r \) the subcategory of all modules without non-zero injective summands. Since \(\mathcal{K}_r \) is a hereditary algebra, the Auslander–Reiten translation \(\tau : \text{mod} \mathcal{K}_r \to \text{mod} \mathcal{K}_r \) induces an equivalence from \(\text{mod}_{\rho} \mathcal{K}_r \) to \(\text{mod}_{\tau} \mathcal{K}_r \). In particular, if \(M \) and \(N \) are indecomposable with \(M, N \) not projective, we get \(\Hom(M, N) \cong \Hom(\tau M, \tau N) \). The Auslander–Reiten formula [1, Theorem II.2.13] simplifies to the following.

Theorem 1.3 ([13, Theorem 2.3]). For \(X, Y \) in mod \(\mathcal{K}_r \), there a functorial isomorphisms

\[
\Ext(X, Y) \cong \Hom(Y, \tau X)^* \cong \Hom(\tau^{-1} Y, X)^*.
\]

2 Modules of constant radical and socle rank

2.1 Elementary modules of small dimension

Let \(r \geq 3 \). The homological characterization in [21] uses an algebraic family of modules of projective dimension 1 for the Beilinson algebra \(B(n, r) \) on \(n \) vertices. For \(n = 2 \), we have \(B(2, r) = \mathcal{K}_r \), and \(\text{mod} \mathcal{K}_r \) is a hereditary category. Hence every non-projective module is of projective dimension 1. In the following, we study the module family \((X_a)_{a \in \mathbb{N}_0^2 \setminus \{0\}} \) for \(n = 2 \). We will see later on that each non-zero proper submodule of \(X_a \) is isomorphic to a finite number of copies of \(P_1 \), and \(X_a \) itself is regular. In particular, we do not find a short exact sequence \(0 \to A \to X_a \to B \to 0 \) such that \(A \) and \(B \) are regular and non-zero. In the language of wild hereditary algebras, we therefore deal with elementary modules.

Definition ([16, Definition 1]). A non-zero regular module \(E \) is called elementary if there is no short exact sequence \(0 \to A \to E \to B \to 0 \) with \(A \) and \(B \) regular non-zero. In particular, elementary modules are indecomposable and quasi-simple.

Elementary modules are analogues of quasi-simple modules in the tame hereditary case \((r = 2) \). If \(X \) is a regular module, then \(X \) has a filtration \(0 = X_0 \subset X_1 \subset \cdots \subset X_r = X \) such that \(X_i/X_{i-1} \) is elementary for all \(1 \leq i \leq r \) and the elementary modules are the smallest class with that property. For basic results on elementary modules, used in this section, we refer to [16].

We are grateful to Otto Kern for pointing out the following helpful lemma.

Lemma 2.1.1. Let \(E \) be an elementary module and \(X, Y \) regular with non-zero morphisms \(f : X \to E \) and \(g : E \to Y \). Then \(g \circ f \neq 0 \). In particular, \(\End(E) = k \).

Proof. Since \(f \) is non-zero and \(\Hom(\mathcal{R}, \mathcal{R}) = 0 = \Hom(\mathcal{I}, \mathcal{R}) \), \(\text{im} f \) is a regular non-zero submodule of \(E \). Consequently, since \(E \) is elementary, \(\text{coker} f \) is preinjective by [16, Proposition 1.3]; hence \(g \) cannot factor through \(\text{coker} f \).

We use the theory on elementary modules to generalize [21, Corollary 2.7] in the hereditary case.

Proposition 2.1.2. Let \(\mathcal{E} \) be a non-empty family of elementary modules of bounded dimension, and put

\[
\mathcal{T}(\mathcal{E}) := \ker \Ext(\mathcal{E}, -) = \{ M \in \text{mod} \mathcal{K}_r \mid \Ext(E, M) = 0 \text{ for all } E \in \mathcal{E} \}.
\]
Then the following statements hold.

(1) \(\mathcal{T}(\mathcal{E}) \) is closed under extensions, images and \(\tau \).

(2) \(\mathcal{T}(\mathcal{E}) \) contains all preinjective modules.

(3) For each regular component \(\mathcal{C} \), the set \(\mathcal{T}(\mathcal{E}) \cap \mathcal{C} \) forms a non-empty cone in \(\mathcal{C} \), which consists of the predecessors of a uniquely determined quasi-simple module in \(\mathcal{C} \), i.e. there is \(W \in \mathcal{C} \) quasi-simple such that \(\mathcal{T}(\mathcal{E}) \cap \mathcal{C} = (- \rightarrow W) := \{ t^iW \mid i, l \in \mathbb{N}_0 \} \).

Proof. (1) Since \(\text{Ext}^2 = 0 \), the category is closed under images and extensions. Let \(M \in \mathcal{T}(\mathcal{E}) \); then the Auslander–Reiten formula yields \(0 = \dim_k \text{Hom}(M, \tau M) \) for all \(E \in \mathcal{E} \). We first show that \(M \) is not preprojective. Assume to the contrary that \(P = M \) is preinjective. Let \(l \in \mathbb{N}_0 \) such that \(t^lP \) is projective; then \(t^lP = P_i \) for an \(i \in \{ 1, 2 \} \) and

\[
0 = \dim_k \text{Hom}(P, \tau E) = \dim_k \text{Hom}(t^lP, t^{l+1}E) = (\dim(t^{l+1}E))_{3-l}.
\]

This is a contradiction since every non-sincere \(\mathcal{X}_i \)-module is semi-simple. Hence \(M \) is regular or preinjective.

Now we show \(\tau M \in \mathcal{T}(\mathcal{E}) \). In view of the Auslander–Reiten formula, we get

\[
\dim_k \text{Ext}(E, \tau M) = \dim_k \text{Hom}(M, E).
\]

Let \(f : M \rightarrow E \) be a morphism, and assume that \(f \neq 0 \). Since \(0 = \text{Hom}(\mathcal{T}, \mathcal{R}) \), the module \(M \) is not preinjective and therefore regular. As a regular module \(E \) has self-extensions (see Corollary 1.2), and therefore \(E \not\in \mathcal{T}(\mathcal{E}) \).

Hence \(0 \neq \dim_k \text{Ext}(E, E) = \dim_k \text{Hom}(E, \tau E) \), and we find \(0 \neq g \in \text{Hom}(E, \tau E) \). Lemma 2.1.1 provides a non-zero morphism

\[
M \xrightarrow{f} E \xrightarrow{g} \tau E.
\]

We conclude \(0 \neq \dim_k \text{Hom}(M, \tau E) = \dim_k \text{Ext}(E, M) = 0 \), a contradiction. Hence

\[
0 = \dim_k \text{Hom}(M, \tau E) = \dim_k \text{Ext}(E, \tau M) \quad \text{for all } E \in \mathcal{E} \text{ and } \tau M \in \mathcal{T}(\mathcal{E}).
\]

(2) The injective modules \(I_1, I_2 \) are contained in \(\mathcal{T}(\mathcal{E}) \). Now apply (1).

(3) The existence of the cones can be shown as in [21, Theorem 3.3]. We sketch the proof. Let \(X \in \mathcal{C} \) be a quasi-simple module, and denote the upper bound by \(L \). By [13, Lemma 4.6, Proposition 10.5], we find \(n_0 \in \mathbb{N} \) such that \(\text{Ext}(Y, t^lX) = 0 \) for all \(l \geq n_0 \) and each regular representation \(Y \) with \(\dim_k Y \leq L \) and \(\text{Ext}(E, t^{-l}X) \neq 0 \) for some \(E \in \mathcal{E} \). In particular, we have \(t^{-l}X \in \mathcal{T}(\mathcal{E}) \) and \(t^{-l}X \not\in \mathcal{T}(\mathcal{E}) \). Now (1) shows that \(\mathcal{T}(\mathcal{E}) \cap \mathcal{C} = (- \rightarrow M) \) for the uniquely determined quasi-simple module \(M \in \mathcal{C} \) with \(M \in \mathcal{T}(\mathcal{E}) \) and \(t^{-l} \not\in \mathcal{T}(\mathcal{E}) \).

The next result follows by the Auslander–Reiten formula and duality since \(\delta(\mathcal{E}) \) is elementary if and only if \(E \) is elementary.

Proposition 2.1.3. Let \(\mathcal{E} \) be a family of elementary modules of bounded dimension, and put

\[
\mathcal{T}(\mathcal{E}) := \{ M \in \text{mod} \mathcal{X}_r \mid \text{Hom}(E, M) = 0 \text{ for all } E \in \mathcal{E} \}.
\]

Then the following statements hold.

(1) \(\mathcal{T}(\mathcal{E}) \) is closed under extensions, submodules and \(\tau^{-1} \).

(2) \(\mathcal{T}(\mathcal{E}) \) contains all preprojective modules.

(3) For each regular component \(\mathcal{C} \), the set \(\mathcal{T}(\mathcal{E}) \cap \mathcal{C} \) forms a non-empty cone in \(\mathcal{C} \), which consists of the successors of a uniquely determined quasi-simple module in \(\mathcal{C} \).

Note that \(\mathcal{T}(\mathcal{E}) \) is a torsion-free class of some torsion pair \((\mathcal{T}, \mathcal{T}(\mathcal{E})) \) and \(\mathcal{T}(\mathcal{E}) \) is the torsion class of some torsion pair \((\mathcal{T}(\mathcal{E}), \mathcal{T}) \) (see for example [1, Proposition VI.1.4]).

Lemma 2.1.4. Let \(M, N \) be indecomposable modules with \(\dim M = (c, 1), \dim N = (1, c), 1 \leq c < r \). Then the following statements hold.

(a) \(\tau^z M \) and \(\tau^z N \) are elementary for all \(z \in \mathbb{Z} \). Moreover, every proper factor of \(M \) is injective, and every proper submodule of \(N \) is projective.

(b) Every proper factor module of \(\tau^z M \) is preinjective, and every proper submodule of \(\tau^{-1} N \) is preprojective for \(l \in \mathbb{N}_0 \).
Proof. We will give the proofs for M. The statements for N follow by duality.

(a) By [16, Lemma 1.1], M is elementary if and only if all elements in its r-orbit are elementary. Since $(c, 1)$ is an imaginary root of the quadratic form, M is regular. Now let $0 < X \subset M$ be a proper submodule with dimension vector \(\dim X = (a, b) \). Then $b = 1$ since $\text{Hom}(\mathcal{J}, X) = 0$. Hence $\dim M/X = (c - a, 0)$, and M/X is injective.

(b) Let $l \geq 1$ and $0 \to \ker f \to \tau^l M \to X \to 0$ be exact with X regular and non-zero. We have to show that $\tau^l M \cong X$. We assume that $\ker f \neq 0$. Since $\text{Hom}(\mathcal{J}, X) = 0$, we conclude that $\ker f$ has no indecomposable preinjective direct summand. Since τ^{-1} is right exact [1, Corollary VII.1.9], we get an exact sequence $\tau^{-1} \ker f \to M \to \tau^{-1} X \to 0$. We conclude with (a) that $\tau^{-1} X \cong M$; hence $X \cong \tau^{-1} M$. \qed

2.2 An algebraic family of test-modules

Let $r \geq 2$. Now we take a closer look at the modules $\langle X_a \rangle_{a \in k^r \setminus \{0\}}$. Let us start this section by recalling some definitions from [21] and the construction of the module family. We use a slightly different notation since we are only interested in the case $B(2, r) = \mathcal{K}_r$

For $a \in k^r$ and $M \in \mathcal{M}$, we define $x_a := a_1 y_1 + \cdots + a_r y_r$ and denote by $x_a^M : M \to M$ the linear operator associated to x_a.

Definition. For $a \in k^r \setminus \{0\}$, the map $\overline{a} : (e_j)_k = P_1 \to P_2$, $e_2 \mapsto a_1 y_1 + \cdots + a_r y_r = x_a$ defines an embedding of \mathcal{K}_r-modules and is just the left multiplication by x_a. We now set $X_a := \text{coker } \overline{a}$.

These modules are the “test”-modules introduced in [21]. In fact, $\text{im } \overline{a}$ is a 1-dimensional submodule of P_2 contained inside the radical $\text{rad}(P_2)$ of the local module P_2. From the definition, we get an exact sequence $0 \to P_1 \to P_2 \to X_a \to 0$ and $\dim X_a = (1, r - (0, 1))$. Since P_2 is local with semi-simple radical $\text{rad}(P_2) = P_1^r$, it now seems natural to study embeddings $P_1^d \to P_2$ for $1 \leq d < r$ and the corresponding cokernels. This motivates the next definition. We restrict ourselves to $d < r$ since otherwise the cokernel is the simple injective module.

Definition. Let and $1 \leq d < r$. For $T = (u_1, \ldots, u_d) \in (k^r)^d$, we define $\overline{T} : (P_1)^d \to P_2$ as the \mathcal{K}_r-linear map

$$
\overline{T}(x) = \sum_{i=1}^d \overline{u}_i \circ \pi_i(x),
$$

where $\pi_i : (P_1)^d \to P_1$ denotes the projection onto the i-th coordinate.

The map \overline{T} is injective if and only if T is linearly independent; then we have

$$
\dim \text{coker } \overline{T} = \dim P_2 - d \dim P_1 = (1, r - d),
$$

and $\text{coker } \overline{T}$ is indecomposable because P_2 is local. Moreover, $(1, r - d)$ is an imaginary root of S, and therefore coker \overline{T} is regular indecomposable and by Lemma 2.1.4 elementary. We define $\langle T \rangle := \langle u_1, \ldots, u_d \rangle_k$.

Lemma 2.2.1. Let $T, S \in (k^r)^d$ such that $\dim_k \langle T \rangle = d = \dim_k \langle S \rangle$; then $\text{coker } \overline{T} \cong \text{coker } \overline{S}$ if and only if $\langle T \rangle = \langle S \rangle$.

Proof. If $\langle T \rangle = \langle S \rangle$, then the definition of \overline{T} and \overline{S} implies $\text{im } \overline{T} = \text{im } \overline{S}$. Hence coker $\overline{T} = P_2/\text{im } \overline{T} = \text{coker } \overline{S}$.

Now let $\langle S \rangle \neq \langle T \rangle$, and assume that $0 \neq \varphi : \text{coker } \overline{T} \to \text{coker } \overline{S}$ is \mathcal{K}_r-linear. Since coker \overline{S} is local with radical P_1^r and $\text{Hom}(\mathcal{R}, P) = 0$, the map φ is surjective and therefore injective. Recall that P_2 has $\{e_1, y_1, \ldots, y_r\}$ as a basis. Let $x \in P_2$ such that $\varphi(e_1 + \text{im } \overline{T}) = x + \text{im } \overline{S}$. Since φ is \mathcal{K}_r-linear, we get

$$
x + \text{im } \overline{S} = e_1 \varphi(e_1 + \text{im } \overline{T}) = e_1 x + \text{im } \overline{S}
$$

and hence $x - e_1 x \in \text{im } \overline{S}$. Write $x = \mu e_1 + \sum_{i=1}^r \mu_i y_i$; then

$$
x - \mu e_1 = \sum_{i=1}^r \mu_i y_i = x - e_1 x \in \text{im } \overline{S}
$$

and $x + \text{im } \overline{S} = \mu e_1 + \text{im } \overline{S}$. \qed
The assumption \(\langle S \rangle \neq \langle T \rangle \) yields \(y \in \text{im} \bar{S} \setminus \text{im} \bar{T} \subset \langle y_1, \ldots, y_i \rangle_k \). Then \(y + \text{im} \bar{T} \neq 0 \) and

\[
\varphi(y + \text{im} \bar{T}) = y\varphi(e_1 + \text{im} \bar{T}) = \mu y(e_1 + \text{im} \bar{S}) = \mu y + \text{im} \bar{S} = \text{im} \bar{S},
\]

a contradiction to the injectivity of \(\varphi \). Hence \(\text{Hom}(\text{coker} \bar{T}, \text{coker} \bar{S}) = 0 \) and \(\text{coker} \bar{T} \neq \text{coker} \bar{S} \). \(\square \)

Definition. Let \(r \geq 2 \) and \(U \in \text{Gr}_{d,r} \) with basis \(T = (u_1, \ldots, u_d) \). We define \(X_U := \text{coker} \bar{T} \).

Remark. \(X_U \) is well defined (up to isomorphism) with dimension vector \(\dim X_U = (1, r - d) \), and \(X_U \) is elementary for \(r \geq 3 \) and quasi-simple for \(r = 2 \).

For a module \(X \), we define add \(X \) as the category of summands of finite direct sums of \(X \), and \(Q^d \) denotes the set of isomorphism classes \([M] \) of indecomposable modules \(M \) with dimension vector \((1, r - d) \) for \(1 \leq d < r \).

Proposition 2.2.2. Let \(M \) be indecomposable.

(a) If \([M] \in Q^d \), then there exists \(U \in \text{Gr}_{d,r} \) with \(M \cong X_U \).

(b) The map \(\varphi : \text{Gr}_{d,r} \to Q^d \), \(U \mapsto [X_U] \) is bijective.

(c) Let \(1 \leq c \leq d \) and \([M] \in Q^d \). There is \([N] \in Q^c \) and an epimorphism \(\pi : N \to M \).

Proof. (a) Let \(0 \subseteq X \subseteq M \) be a submodule of \(M \). Then \(X \subseteq \text{rad}(M) = P_1^{r - d} \), and \(X \) is in add \(P_1 \). It is

\[
1 = \dim_k M = \dim_k \text{Hom}(X,e_1,M) = \dim_k \text{Hom}(P_2,M),
\]

so we find a non-zero map \(\pi : P_2 \to M \). Since every proper submodule of \(M \) is in add \(P_1 \) and \(\text{Hom}(P_2,P_1) = 0 \), the map \(\pi : P_2 \to M \) is surjective and yields an exact sequence \(0 \to P_1^{r - d} \to P_2 \xrightarrow{\pi} M \to 0 \). For \(1 \leq i \leq d \), there exist uniquely determined elements \(\beta_i, a_i, \ldots, a_i' \in k \) such that

\[
g_i(e_2) = \beta_i e_1 + a_i' y_1 + \cdots + a_i' y_r \in P_2 = \langle y_1, e_1 \mid 1 \leq i \leq r \rangle_k,
\]

where \(g_i : P_1 \to P_1^d \) denotes the embedding into the \(i \)-th coordinate. Since \(e_2 \) is an idempotent with \(e_2 y_j = y_j \) \((1 \leq j \leq r) \) and \(e_2 e_1 = 0 \), we get

\[
a_i' y_1 + \cdots + a_i' y_r = e_2 (t \circ g_i (e_2)) = (t \circ g_i) (e_2 \cdot e_2) = (t \circ g_i)(e_2) = \beta_i e_1 + a_i' y_1 + \cdots + a_i' y_r.
\]

Hence \(\beta_i = 0 \). Now define \(a_i := (a_i', \ldots, a_i') \), \(T := (a_1, \ldots, a_d) \) and \(U := \langle T \rangle \). It is \(t = \overline{T} \), and by the injectivity of \(t \), we conclude that \(T \) is linearly independent, and therefore \(U \in \text{Gr}_{d,r} \). Now we conclude

\[
X_U = \text{coker} \bar{T} = \text{coker} t = M.
\]

(b) This is an immediate consequence of (a) and Lemma 2.2.1.

(c) By (a), we find \(U \) in \(\text{Gr}_{d,r} \) with basis \(T = (u_1, \ldots, u_d) \) such that \(X_U \cong M \). Let \(V \) be the subspace with basis \(S = (u_1, \ldots, u_c) \). Then \(X \subseteq \text{im} \bar{T} \), and we get an epimorphism \(\pi : X_U = P_2 / \text{im} \bar{S} \to P_2 / \text{im} \bar{T} = X_U, x + \bar{S} \to x + \bar{T} \) with \(\dim X_U = (1, r - c) \). \(\square \)

As a generalization of \(\chi^M_T : M \to M \), we introduce maps \(x_M^T : M \to M^d \) and \(y_M^T : M^d \to M \) for \(1 \leq d < r \) and \(T \in (k^r)^d \). Note that \(x_M^T = y_M^T \) if and only if \(d = 1 \).

Definition. Let \(1 \leq d < r \) and \(T = (a_1, \ldots, a_d) \in (k^r)^d \). We denote by \(x_M^T \) and \(y_M^T \) the operators

\[
x_M^T : M \to M^d, \quad m \mapsto (x_{a_1}^M(m), \ldots, x_{a_d}^M(m)),
\]

\[
y_M^T : M^d \to M, \quad (m_1, \ldots, m_d) \mapsto x_{a_1}^M(m_1) + \cdots + x_{a_d}^M(m_d).
\]

It is \(\text{im} x_M^T \subseteq M_2 \oplus \cdots \oplus M_2, M_2 \oplus \cdots \oplus M_2 \subseteq \ker y_M^T \) and \((x_M^T)^* = y_M^T \) since, for \(f = (f_1, \ldots, f_d) \in (\delta M)^d \) and \(m \in M \), we have

\[
(x_M^T)^* (f)(m) = (x_{a_1}^M)^*(f_1, \ldots, f_d)(m) = \sum_{i=1}^d (f_i \circ x_{a_i}^M)(m)
\]

\[
= \sum_{i=1}^d f_i(x_{a_i}, m) = \sum_{i=1}^d (x_{a_i}, f_i)(m)
\]

\[
y_M^T (f_1, \ldots, f_d)(m) = y_M^T (f)(m).
\]
Lemma 2.2.3. Let $1 \leq d < r$ and $U \in \text{Gr}_{d,r}$. Every non-zero quotient Q of X_U is indecomposable. Q is preinjective (injective) if $\dim Q = (1, 0)$ and regular otherwise.

Proof. Since X_U is regular, we conclude with $\text{Hom}(R, P) = 0$ that every indecomposable non-zero quotient of X_U is preinjective or regular. Let Q be such a quotient with $\dim Q = (a, b)$ and $Q \neq X_U$. Since X_U is local with radical P_1 and $\dim (1, r-d)$, it follows $(1, r-d) = (a, b) + (0, c)$ for some $c > 0$. Hence $a = 1$, and Q is an injective module if $b = 0$. Otherwise, Q is also indecomposable since $b > 0$ and $Q = A \oplus B$ with $A, B \neq 0$ imply w.l.o.g. $(\dim B) = 1$. Hence $B \in \text{add} P_1$, which is a contradiction to $\text{Hom}(R, P) = 0$. \hfill \Box

2.3 Modules for the generalized Kronecker algebra

In the following, we will give the definition of \mathcal{K}_r-modules ($r \geq 2$) with constant radical rank and constant socle rank.

Definition. Let M be in $\text{mod} \mathcal{K}_r$ and $1 \leq d < r$.
(a) M has constant d-radical rank if the dimension of
\[
\text{Rad}_U(M) := \sum_{u \in U} x^M_u(M) \subseteq M_2
\]
is independent of the choice of $U \in \text{Gr}_{d,r}$.
(b) M has constant d-socle rank if the dimension of
\[
\text{Soc}_U(M) := \{m \in M \mid x^M_u(M) = 0 \text{ for all } u \in U\}
= \bigcap_{u \in U} \ker(x^M_u) = M_2
\]
is independent of the choice of $U \in \text{Gr}_{d,r}$.
(c) M has the equal d-radical property if $\text{Rad}_U(M)$ is independent of the choice of $U \in \text{Gr}_{d,r}$.
(d) M has the equal d-socle property if $\text{Soc}_U(M)$ is independent of the choice of $U \in \text{Gr}_{d,r}$.

Definition. Let $1 \leq d < r$. We define
(a) $\text{ESP}_d := \{M \in \text{mod} \mathcal{K}_r \mid M_2 = \text{Soc}_U(M) \text{ for all } U \in \text{Gr}_{d,r}\}$,
(b) $\text{ERP}_d := \{M \in \text{mod} \mathcal{K}_r \mid M_2 = \text{Rad}_U(M) \text{ for all } U \in \text{Gr}_{d,r}\}$,
(c) $\text{CSR}_d := \{M \in \text{mod} \mathcal{K}_r \mid \text{there exists } c \in \mathbb{N}_0 \text{ such that } \text{dim}_k \text{Soc}_U(M) = c \text{ for all } U \in \text{Gr}_{d,r}\}$,
(d) $\text{CRR}_d := \{M \in \text{mod} \mathcal{K}_r \mid \text{there exists } c \in \mathbb{N}_0 \text{ such that } \text{dim}_k \text{Rad}_U(M) = c \text{ for all } U \in \text{Gr}_{d,r}\}$.

Lemma 2.3.1. Let M be indecomposable and not simple.
(a) M has the equal d-socle property if and only if $M \in \text{ESP}_d$.
(b) M has the equal d-radical property if and only if $M \in \text{ERP}_d$.

Proof. (a) Assume that M is in ESP_d, and let $W := \text{Soc}_U(M)$ for $U \in \text{Gr}_{d,r}$. Denote by $e_1, \ldots, e_r \in k'$ the canonical basis vectors. We find a k'-complement of $\bigcap_{i=1}^r \ker(x^M_{e_i}) \cap M_1$ in M_1, say $K \subseteq M_1$. Then M decomposes into submodules $M = (K + M_2) \oplus \bigcap_{i=1}^r \ker(x^M_{e_i}) \cap M_1$. Since M is not simple, we have $0 \neq M_2$ and conclude $0 = \bigcap_{i=1}^r \ker(x^M_{e_i}) \cap M_1$, i.e. $\bigcap_{i=1}^r \ker(x^M_{e_i}) = M_2$ (see also [10, Lemma 5.1.1]). Denote by $S(d)$ the set of all subsets of $\{1, \ldots, r\}$ of cardinality d. Then
\[
\bigcap_{S \in S(d)} \bigcap_{j \in S} \ker(x^M_{e_j}) = \bigcap_{i=1}^r \ker(x^M_{e_i}) = M_2.
\]
Since $\langle e_j \mid j \in S \rangle \subseteq \text{Gr}_{d,r}$ and $M \in \text{ESP}_d$, we get $\bigcap_{S \in S(d)} \ker(x^M_{e_j}) = W$ and hence $M_2 = \bigcap_{S \in S(d)} W = W = \text{Soc}_U(M)$.

(b) Let $M \in \text{ERP}_d$, $U \in \text{Gr}_{d,r}$ and $W := \text{Rad}_U(M)$. Since M is not simple, it is [10, Lemma 5.1.1] $\sum_{i=1}^r x^M_{e_i} = M_2$ and hence
\[
W = \sum_{S \in S(d)} \sum_{j \in S} x^M_{e_j}(M) = \sum_{i=1}^r x^M_{e_i}(M) = M_2.
\] \hfill \Box
Remark. For the benefit of the reader, we recall the definitions of the classes CR, EKP and EIP given in [21].

\[
\text{EKP} := \{ M \in \text{mod} \mathcal{K}_r | M_2 = \text{ker}(x^M_{\alpha}) \text{ for all } \alpha \in k' \setminus \{0\} \},
\]

\[
\text{EIP} := \{ M \in \text{mod} \mathcal{K}_r | M_2 = \text{im}(x^M_\alpha) \text{ for all } \alpha \in k' \setminus \{0\} \},
\]

\[
\text{CR} := \{ M \in \text{mod} \mathcal{K}_r | \text{there exists } c \in \mathbb{N}_0 \text{ such that } c = \dim_k \text{ker}(x^M_{\alpha}) \text{ for all } \alpha \in k' \setminus \{0\} \}.
\]

Note that \(\text{CR}_r = \text{CR} = \text{CSR}_1, \text{ERP}_1 = \text{EIP}, \text{ESP}_1 = \text{EKP} \), and for \(U \in \text{Gr}_{d,r} \) with basis \((u_1, \ldots, u_d)\), we have \(\text{Rad}_U(M) = \sum_{i=1}^{d} x^M_{\alpha_i} = \text{im} x^M_{\alpha_i} \) and \(\text{Soc}_U(M) = \bigcap_{i=1}^{d} \ker(x^M_{\alpha_i}) = \ker(x^M_{\alpha_1, \ldots, \alpha_d}) \). We restrict the definition to \(d < r \) since \(\text{Gr}_{r,r} = \{ k' \} \), and therefore every module in \(\text{mod} \mathcal{K}_r \) is of constant \(r \)-socle and \(r \)-radical rank.

Lemma 2.3.2. Let \(M \in \text{mod} \mathcal{K}_r \) and \(1 \leq d < r \).

(a) \(M \in \text{CSR}_d \) if and only if \(\delta M \in \text{CRR}_d \).

(b) \(M \in \text{ESP}_d \) if and only if \(\delta M \in \text{ERP}_d \).

Proof. Note that \(\text{Rad}_U(\delta M) = \text{im}(x^\delta M) = \text{im}(x^M)^* \equiv (\text{im}(x^M)^* \) and hence

\[
M - \dim_k \text{Soc}_U(M) = \dim_k M - \dim_k \ker x^M_T = \dim_k \text{im} x^M_T
\]

\[
= \dim_k (\text{im} x^M_T)^* = \dim_k \text{Rad}_U(\delta M).
\]

Hence \(M \in \text{CSR}_d \) if and only if \(\delta M \in \text{CRR}_d \). Moreover, \(M \in \text{ESP}_d \) if and only if \(\delta M = M_2 \), and hence \(\dim_k \text{Rad}_U(\delta M) = \dim_k M_1 = \dim_k(\delta M)_2 \).

For the proof of the following proposition, we use the same methods as in [21, Theorem 2.5].

Proposition 2.3.3. Let \(1 \leq d < r \in \mathbb{N} \). Then

\[
\text{ESP}_d = \{ M \in \text{mod} \mathcal{K}_r | \text{Hom}(X_U, M) = 0 \text{ for all } U \in \text{Gr}_{d,r} \},
\]

\[
\text{CSR}_d = \{ M \in \text{mod} \mathcal{K}_r | \text{there exists } c \in \mathbb{N}_0 \text{ such that } \dim_k \text{Hom}(X_U, M) = c \text{ for all } U \in \text{Gr}_{d,r} \}.
\]

Proof. Let \(U \in \text{Gr}_{d,r} \) with basis \(T = (\alpha_1, \ldots, \alpha_d) \). Consider the short exact sequence

\[
0 \to (P_1)^d \to P_2 \to X_U \to 0.
\]

Application of \(\text{Hom}(\cdot, M) \) yields

\[
0 \to \text{Hom}(X_U, M) \to \text{Hom}(P_2, M) \xrightarrow{\text{Hom}(T)} \text{Hom}(P_1^d, M) \to \text{Ext}(X_U, M) \to 0.
\]

Moreover, let

\[
f : \text{Hom}(P_2, M) \to M_1, \quad g : \text{Hom}(P_1^d, M) \to M_2
\]

be the natural isomorphisms, where \(t : P_1 \to P_1^d \) denotes the embedding into the \(i \)-th coordinate. Let \(\pi_M : M^d \to M^d_1 \) be the natural projection. The equality \(g \circ T = \pi_M \circ x^M_{T^1} \circ f \) holds since both maps are applied to a homomorphism. Hence \(\dim_k \ker(\pi_M) = \dim_k \ker(T) = \dim_k \text{Hom}(X_U, M) \).

Now let \(c \in \mathbb{N}_0 \). We conclude

\[
\dim_k \text{Hom}(X_U, M) = c \iff \dim_k \ker(\pi_M) = c \iff \dim_k \ker(x^M_{T^1}) = c
\]

\[
\dim_k \ker(x^M_{T^1}) = c + \dim_k M_2
\]

\[
\dim_k \text{Soc}_U(M) = c + \dim_k M_2.
\]

This finishes the proof for \(\text{CSR}_d \). Moreover, note that \(c = 0 \) together with Lemma 2.3.1 yields

\[
M \in \text{ESP}_d \iff \text{there exists } W \leq M \text{ such that } \text{Soc}_U(M) = W \text{ for all } U \in \text{Gr}_{d,r}
\]

\[
\iff \text{Soc}_U(M) = M_2 \text{ for all } U \in \text{Gr}_{d,r} \iff \dim_k \text{Soc}_U(M) = 0 + \dim_k M_2 \text{ for all } U \in \text{Gr}_{d,r}
\]

\[
\iff \text{Hom}(X_U, M) = 0 \text{ for all } U \in \text{Gr}_{d,r}.
\]

\[\square \]
Since $\tau \circ \delta = \delta \circ \tau^{-1}$, the next result follows from the Auslander–Reiten formula and Lemma 2.3.2.

Proposition 2.3.4. Let $1 \leq d < r \in \mathbb{N}$. Then

\[
\text{ERP}_d = \{ M \in \text{mod} \mathcal{K}_r \mid \text{Ext}(\delta \tau X_U, M) = 0 \text{ for all } U \in \text{Gr}_d \},
\]

\[
\text{CRR}_d = \{ M \in \text{mod} \mathcal{K}_r \mid \text{there exists } c \in \mathbb{N}_0 \text{ such that } \dim_k \text{Ext}(\delta \tau X_U, M) = c \text{ for all } U \in \text{Gr}_d \}.
\]

Remark. For $d = 1$, we have $U = (\alpha)_k$ with $\alpha \in k^* \setminus \{0\}$, $X_U \cong X_{\alpha}$, and [21, Proposition 3.1] yields $\delta \tau X_U \cong X_U$. However, this identity holds if and only if $d = 1$. From Proposition 2.3.3 and Lemma 2.1.4, it follows immediately that, for $1 \leq d < r - 1$ and $V \in \text{Gr}_d$, the module X_V is in $\text{CSR}_{d+1} \setminus \text{CSR}_d$. If not stated otherwise, we assume from now on that $r \geq 3$.

In view of Proposition 2.1.3, Lemma 2.1.4 and the definitions of ESP$_d$ and ERP$_d$, we immediately get the following proposition.

Proposition 2.3.5. Let $1 \leq d < r$ and C a regular component of \mathcal{K}_r.

(a) ESP$_1 \subseteq$ ESP$_2 \subseteq \cdots \subseteq$ ESP$_{r-1}$ and ERP$_1 \subseteq$ ERP$_2 \subseteq \cdots \subseteq$ ERP$_{r-1}$.

(b) ESP$_d$ is closed under extensions, submodules and τ^{-1}. Moreover, ESP$_d$ contains all preprojective modules, and ESP$_d \cap C$ forms a non-empty cone in C, i.e. there is a quasi-simple module $M_d \in C$ such that

\[
\text{ESP}_d \cap C = (M_d \rightarrow) := \{ \tau^{-1}M_d[i+1] \mid i, l \in \mathbb{N}_0 \}.
\]

(c) ERP$_d$ is closed under extensions, images and τ. Moreover, ERP$_d$ contains all preinjective modules, and ERP$_d \cap C$ forms a non-empty cone in C, i.e. there is a quasi-simple module $W_d \in C$ such that

\[
\text{ERP}_d \cap C = (\leftarrow W_d) := \{ (i+1)\tau^lW_d \mid i, l \in \mathbb{N}_0 \}.
\]

Definition. For $1 \leq i < r$, we set $\Delta_i := \text{ESP}_i \setminus \text{ESP}_{i-1}$ and $\forall_i := \text{ERP}_i \setminus \text{ESP}_{i-1}$, where ESP$_0 = \emptyset = \text{ERP}_0$.

The next result suggests that, for each regular component C and $1 < i < r$, only a small part of vertices in C corresponds to modules in Δ_i. Nonetheless, we will see in Section 4 that, for $1 \leq i < r$, the categories Δ_i and \forall_i are of wild type.

Proposition 2.3.6. Let C be a regular component and $M_1, W_i (1 \leq i \leq r)$ in C the uniquely determined quasi-simple modules such that ESP$_1 \cap C = (M_1 \rightarrow)$ and ERP$_1 \cap C = (\leftarrow W_i)$. Then

(a) There exists at most one number $1 < m(\mathcal{C}) < r$ such that $\Delta_{m(\mathcal{C})} \cap C$ is non-empty. If such a number exists, then $\Delta_{m(\mathcal{C})} \cap C = \{ M_{m(\mathcal{C})}[l] \mid l \geq 1 \}$.

(b) There exists at most one number $1 < w(\mathcal{C}) < r$ such that $\forall_{w(\mathcal{C})} \cap C$ is non-empty. If such a number exists, then $\forall_{w(\mathcal{C})} \cap C = \{ (l)W_{w(\mathcal{C})} \mid l \geq 1 \}$.

Proof. (a) By Proposition 2.3.5, there are $n_1, \ldots, n_{r-1} \in \mathbb{N}_0$ such that

\[
0 = n_1 \leq n_2 \leq \cdots \leq n_{r-1} \quad \text{and} \quad M_i = \tau^{n_i}M_1 \quad \text{for all } i \in \{ 1, \ldots, r-1 \}.
\]

We will show that either $0 = n_1 = \cdots = n_{r-1}$ or that there exists a uniquely determined $1 < i < r$ such that $n_i > n_{i-1}$.

Let M be in C, and assume $M \notin \text{ESP}_1$. In the following, we show that $\tau M \notin \text{ESP}_{r-1}$. There exists $\alpha \in k^* \setminus \{0\}$ with $\text{Hom}(X_U, M) \neq 0$ for $U = (\alpha)_k$. Hence we find a non-zero map $f : \tau X_U \rightarrow \tau M$. Consider an exact sequence $0 \rightarrow P_{1}^{2} \rightarrow X_U \rightarrow N \rightarrow 0$. Then $\dim N = (1, 1)$, and by Lemma 2.2.3, N is indecomposable. By Proposition 2.2.2, there exists $V \in \text{Gr}_{r-1}$, with $X_V \cong \delta N$. Since $\delta X_U = \tau X_U$ (see [21, Proposition 3.1]), we get a non-zero morphism $g : X_V \rightarrow \tau X_U$ and by Lemma 2.1.1 a non-zero morphism

\[
X_V \xrightarrow{g} X_U \xrightarrow{f} \tau M.
\]

Therefore, $\tau M \notin \text{ESP}_{r-1}$ by Proposition 2.3.3.

Now assume that $n_i \neq n_j$ for some i and j. Then, in particular, $M_1 \neq M_{r-1}$. Hence $n_{r-1} \geq 1$. By definition, we have $M := \tau M_1 \notin \text{ESP}_1$, and the above considerations yield $\tau (\tau M_1) = \tau M \notin \text{ESP}_{r-1}$. Therefore,
In [17, Theorem 1.2], the author shows that \(1 \leq n_{r-1} < 2 \) since \(\text{ESP}_{r-1} \cap C \) is closed under \(r^{-1} \). Therefore, \(n_{r-1} = 1 \) and \(M_{r-1} = \tau M_1 \). We conclude that there is a uniquely determined \(1 < i < r \) such that \(n_i > n_{i-1} \), and in this case, \(n_i = n_{i-1} + 1 \). Now we set \(m(C) := i \).

(b) This follows by duality.

We state two more results that follow from Proposition 2.3.3 and will be needed later on. The first one is a generalization of [21, Lemma 3.5] and follows with the same arguments.

Lemma 2.3.7. Let \(0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0 \) be an almost split sequence such that two modules of the sequence are of constant \(d \)-socle rank. Then the third module also has constant \(d \)-socle rank.

Definition. Let \(r \geq 2 \) and \(1 \leq d < r \), and let \(X_{d,r} := \{X_U \mid U \in \text{Gr}_{d,r}\} \). Let \(X_{d,r}^+ \) be the right orthogonal category \(X_{d,r}^+ = \{M \in \text{mod} X_r \mid \text{Hom}(X_U, M) = 0 \text{ for all } U \in \text{Gr}_{d,r}\} \), and let \(X_{d,r}^- \) be the left orthogonal category \(X_{d,r}^- := \{M \in \text{mod} X_r \mid \text{Hom}(M, X_U) = 0 \text{ for all } U \in \text{Gr}_{d,r}\} \). Then we set \(X_{d,r} := X_{d,r}^+ \cap X_{d,r}^- \).

Note that every module in \(X_{d,r} \) is regular by Proposition 2.3.5.

Lemma 2.3.8. Let \(r \geq 3 \) and \(1 \leq d < r \), and let \(M \) be quasi-simple regular in a component \(C \) such that \(M \in X_{d,r} \). Then every module in \(C \) has constant \(d \)-socle rank.

Proof. Let \(V \in \text{Gr}_{d,r} \). We have shown in Proposition 2.3.5 that the set

\[
\{N \mid \text{Hom}(X_V, N) = 0\} \cap C \quad \text{(resp. } \{N \mid \text{Ext}(X_V, N) = 0\} \cap C)\]

is closed under \(r^{-1} \) (resp. \(r \)). Since \(0 = \dim_k \text{Hom}(M, X_V) = \dim_k \text{Ext}(X_V, \tau M) \), we have \(\text{Ext}(X_V, \tau^q M) = 0 \) for \(l \geq 1 \). The Euler–Ringel form yields

\[
0 = \dim_k \text{Ext}(X_V, \tau^q M) = \langle \dim X_V, \dim \tau^q M \rangle + \dim \text{Hom}(X_V, \tau^q M).
\]

Since \(\langle \dim X_V, \dim \tau^q M \rangle = \langle (1, r - d), \dim M \rangle \) is independent of \(V \), \(\tau^q M \) has constant \(d \)-socle rank. On the other hand, \(\text{Hom}(X_V, M) = 0 \) implies that \(\tau^{-q} M \) has constant \(d \)-socle rank for all \(q \geq 0 \). It follows that each quasi-simple module in \(C \) has constant \(d \)-socle rank. Now apply Lemma 2.3.7. \(\square \)

3 Process of simplification and applications

3.1 Representation type

Denote by \(\Lambda := kQ \) the path algebra of a connected, wild quiver \(Q \). We use the notation introduced in [14]. Recall that a module \(M \) is called brick if \(\text{End}(M) = k \), and two modules \(M, N \) are called orthogonal if we have \(\text{Hom}(M, N) = 0 = \text{Hom}(N, M) \).

Definition. Let \(\mathcal{X} \) be a non-empty class of pairwise orthogonal bricks in \(\text{mod} \, \Lambda \). The full subcategory \(\mathcal{E}(\mathcal{X}) \) is by definition the class of all modules \(Y \) in \(\text{mod} \, \Lambda \) with an \(\mathcal{X} \)-filtration, that is, a chain

\[
0 = Y_0 \subset Y_1 \subset \cdots \subset Y_{n-1} \subset Y_n = Y
\]

with \(Y_i/Y_{i-1} \in \mathcal{X} \) for all \(1 \leq i \leq n \).

In [17, Theorem 1.2], the author shows that \(\mathcal{E}(\mathcal{X}) \) is an exact abelian subcategory of \(\text{mod} \, \Lambda \), closed under extensions, and \(\mathcal{X} \) is the class of all simple modules in \(\mathcal{E}(\mathcal{X}) \). In particular, a module \(M \) in \(\mathcal{E}(\mathcal{X}) \) is indecomposable if and only if it is indecomposable in \(\text{mod} \, kQ \).

Proposition 3.1.1. Let \(r \geq 3 \), and let \(\mathcal{X} \subset \text{mod} \, \mathcal{X}_r \) be a non-empty class of pairwise orthogonal bricks with self-extensions (and therefore regular).

(a) Every module in \(\mathcal{E}(\mathcal{X}) \) is regular.

(b) Every regular component \(C \) contains at most one module of \(\mathcal{E}(\mathcal{X}) \).

(c) Every indecomposable module \(N \in \mathcal{E}(\mathcal{X}) \) is quasi-simple in \(\text{mod} \, \mathcal{X}_r \).

(d) \(\mathcal{E}(\mathcal{X}) \) is a wild subcategory of \(\text{mod} \, \mathcal{X}_r \).
Hence, Lemma 3.2.1 follows by [15, Proposition 1.4] and the fact that every regular brick in mod \mathcal{K} is quasi-simple [13, Proposition 9.2]. Let $M \in \mathcal{X}$. Then we have $t := \dim_0 \text{Ext}(M, M) \geq 2$ by Corollary 1.2. Due to [11, Section 7] and [15, Remark 1.4], the category $E((M)) \subseteq E(\mathcal{X})$ is equivalent to the category of finite-dimensional modules over the power-series ring $k\langle X_1, \ldots, X_t \rangle$ in non-commuting variables X_1, \ldots, X_t. Since $t \geq 2$, the category $E((M)) \subseteq E(\mathcal{X})$ is wild, and also $E(\mathcal{X})$.

We will use the above result to prove the existence of numerous components such that all of its vertices correspond to modules of constant d-rank. By duality, all results also follow for constant radical rank. As a by-product, we verify the wildness of $EKP = ESP_1$ and $EIP = ERP_1$. Using the functor $\bar{\gamma} : \text{mod } \mathcal{X}_r \to \text{mod } kE_r$, we show the wildness of the corresponding full subcategories in $\text{mod}_2 kE_r$ of E_r-modules of Loewy length ≤ 2.

3.2 Passage between \mathcal{K}_r and \mathcal{K}_s

Let $2 \leq r < s \in \mathbb{N}$. Denote by $\inf^r_2 : \text{mod } \mathcal{K}_r \to \text{mod } \mathcal{K}_s$ the functor that assigns to a \mathcal{K}_r-module M the module $\inf^r_2(M)$ with the same underlying vector space so that the action of $e_1, e_2, y_1, \ldots, y_r$ on $\inf^r_2(M)$ unchanged and all other arrows act trivially on $\inf^r_2(M)$. Moreover, let $i : \mathcal{K}_r \to \mathcal{K}_s$ be the natural k-algebra monomorphism given by $i(e_i) = e_i$ for $i \in \{1, 2\}$ and $i(y_i) = y_i$. Then each \mathcal{K}_s-module N becomes a \mathcal{K}_r-module N^* via pullback along i. Denote the corresponding functor by $\text{res}^r_2 : \text{mod } \mathcal{K}_s \to \text{mod } \mathcal{K}_r$. In the following, r, s will be fixed, so we suppress the index and write just \inf and res.

Lemma 3.2.1. Let $2 \leq r < s \in \mathbb{N}$. The functor $\inf : \text{mod } \mathcal{K}_r \to \text{mod } \mathcal{K}_s$ is fully faithful and exact. The essential image of \inf is a subcategory of $\text{mod } \mathcal{K}_s$ closed under factors and submodules. Moreover, $\inf(M)$ is indecomposable if and only if M is indecomposable in $\text{mod } \mathcal{K}_r$.

Proof. Clearly, \inf is fully faithful and exact. Now let $M \in \text{mod } \mathcal{K}_r$, and let $U \subseteq \inf(M)$ be a submodule. Then y_i ($i > r$) acts trivially on U, and hence the pullback $\text{res}(U) = U^*$ is a \mathcal{K}_r-module with $\inf(U^*) = \inf \circ \text{res}(U) = U$. Now let $V \in \text{mod } \mathcal{K}_s$, and let $f \in \text{Hom}_{\mathcal{K}_s}(\inf(M), V)$ be an epimorphism. Let $v \in V$ and $m \in M$ such that $f(m) = v$. It follows $y_i(v) = y_i(f(m)) = f(y_i(m)) = 0$ for all $i > r$. This shows that $f(V^*) = \inf \circ \text{res}(V) = V$.

Since \inf is fully faithful, we have $\text{End}_{\mathcal{K}_s}(\inf(M)) \cong \text{End}_{\mathcal{K}_r}(M)$. Hence $\text{End}_{\mathcal{K}_s}(\inf(M))$ is local if and only if $\text{End}_{\mathcal{K}_r}(M)$ is local.

Statement (a) of the following lemma is stated in [7, Proposition 3.1] without proof.

Lemma 3.2.2. Let $2 \leq r < s$, and let M be an indecomposable \mathcal{K}_r-module that is not simple. The following statements hold.

(a) $\inf(M)$ is regular and quasi-simple.
(b) $\inf(M) \in \text{CSR}_m$ for all $m \in \{1, \ldots, s-r\}$.

Proof. (a) Write $\dim M = (a, b) \in \mathbb{N}_0 \times \mathbb{N}_0$. Since M is not simple, $ab \neq 0$ and $q(\dim M) = a^2 + b^2 - rab \leq 1$. It follows

$$q(\dim \inf(M)) = a^2 + b^2 - sab = a^2 + b^2 - rab - (s-r)ab \leq 1 - (s-r)ab < 1.$$

Hence $q(\dim \inf(M)) \leq 0$, and $\inf(M)$ is regular.

Assume that $\inf(M)$ is not quasi-simple; then $\inf(M) = U[i]$ for U quasi-simple with $i \geq 2$. By Lemma 3.2.1, we have $U[-1] = \inf(A)$ and $\tau^{-1}U[i-1] = \inf(B)$ for some A, B indecomposable in $\text{mod } \mathcal{K}_r$. Fix an irreducible monomorphism $f : \inf(A) \to \inf(M)$. Since \inf is full, we find $g : A \to M$ with $\inf(g) = f$. The faithfulness of \inf implies that g is an irreducible monomorphism $g : A \to M$. By the same token, there exists an irreducible epimorphism $M \to B$. As all irreducible morphisms in \mathcal{P} are injective and all irreducible morphisms in \mathcal{J} are surjective, M is located in a $\mathbb{Z}\mathcal{A}_\infty$ component. It follows that $\tau B = A$ in $\text{mod } \mathcal{X}_r$. Let $\dim B = (c, d)$; then the Coxeter matrices for \mathcal{K}_r and \mathcal{K}_s yield

$$((r^2-1)c-rd, rc-d) = \dim \tau B = \dim A = \dim \inf(A) = \dim \tau \inf(B) = ((s^2-1)c-sd, sc-d).$$

This is a contradiction since $s \neq r$.

(b) Denote by \(\{e_1, \ldots, e_d\} \) the canonical basis of \(k^d \). Let \(1 \leq m \leq s - r \), and set \(U := \langle e_{r+1}, \ldots, e_{r+m} \rangle_k \). Then \(\text{Soc}(M) = \bigcap_{i=1}^m \ker(\gamma_i M) = M \). Let \(j \in \{1, \ldots, r\} \) such that \(y_j \) acts non-trivially on \(M \). Let \(V \in \text{Gr}_{m,s} \) such that \(e_j \in V \). Then \(\text{Soc}(\text{im}(M)) \neq M \), and \(M \) does not have constant \(m \)-socle rank.

Proposition 3.2.3. Let \(2 \leq r < s \in \mathbb{N} \) and \(1 \leq d < r \), and let \(M \) be an indecomposable and non-simple \(\mathcal{X}_r \)-module. Then the following statements hold.

(a) If \(M \in \mathcal{X}_{d,r} \), then \(\text{im}(M) \in \mathcal{X}_{d+s-r,s} \).

(b) If \(M \in \mathcal{X}_{d,r}^\perp \), then \(\text{im}(M) \in \mathcal{X}_{d+s-r,s}^\perp \).

(c) If \(M \in \mathcal{X}_{d,r} \), then \(\text{im}(M) \) is contained in a regular component \(\mathcal{C} \) with \(\mathcal{C} \subseteq \text{CSR}_{d+s-r} \).

Proof. By definition, it is \(1 \leq d + s - r < s \). Now fix \(V \in \text{Gr}_{d+s-r,s} \), and note that

\[
\dim X_V = (1, s - (d + s - r)) = (1, r - d),
\]

which is the dimension vector of every \(\mathcal{X}_r \)-module \(X_U \) for \(U \in \text{Gr}_{d,r} \).

(a) Assume that \(\text{Hom}(\text{im}(M), X_U) \neq 0 \), and let \(0 \neq f : \text{im}(M) \to X_U \). By Lemmata 3.2.1 and 2.1.4, the \(\mathcal{X}_s \)-module \(\text{im}(M) \) is regular and every proper submodule of \(X_U \) is preprojective. Hence \(f \) is surjective onto \(X_V \). Again, Lemma 3.2.1 yields \(Z \in \text{mod} \mathcal{X}_r \) indecomposable with \(\dim Z = (1, r - d) = \dim X_V \) such that \(X_V = \text{im}(Z) \). By Proposition 2.2.2, there exists \(U \in \text{Gr}_{d,r} \) with \(Z = X_U \). Since \(\text{im} \) is fully faithful, it follows \(0 = \text{Hom}(M, X_U) = \text{Hom}(\text{im}(M), X(U)) = \text{Hom}(\text{im}(M), X_V) \neq 0 \), a contradiction.

(b) Assume that \(\text{Hom}(X_V, \text{im}(M)) \neq 0 \), and let \(f : X_V \to \text{im}(M) \) be non-zero. Since \(\text{im}(M) \) is regular indecomposable, the module \(\text{im} \subseteq \text{im}(M) \) is not injective, and Lemma 2.2.3 yields that \(\text{im} \) is indecomposable and regular. As \(\text{im} \) is a submodule of \(\text{im}(M) \), there exists an indecomposable module \(Z \in \text{mod} \mathcal{X}_r \) with \(\text{im}(Z) \supseteq \text{im}(\text{im}(M)) \). Since \(\text{im}(M) \) is not composite and \(\text{im}(M) \) is not regular, we have \(\dim \text{im}(M) = (1, r - c) \) for \(1 \leq r - c \leq r - d \). Hence \(Z = X_U \) for \(U \in \text{Gr}_{d,r} \), and by Proposition 2.2.2(d), there exists \(W \in \text{Gr}_{d,r} \) and an epimorphism \(\pi : X_W \to X_U \). We conclude with \(0 \neq \text{Hom}(\text{im} f, \text{im}(M)) = \text{Hom}(\text{im}(X_W), \text{im}(M)) = \text{Hom}(X_W, M) \) and the surjectivity of \(\pi : X_W \to X_U \) that \(\text{Hom}(X_W, M) \neq 0 \), a contradiction to the assumption.

(c) By Lemma 3.2.2, the module \(\text{im}(M) \) is quasi-simple in a regular component and satisfies the conditions of Lemma 2.3.8 for \(q := d + s - r \) by (a) and (b).

Examples. The following two examples will be helpful later on.

1. Let \(r = 3 \). Ringel has shown that the representation \(F = (k^2, k^2, F(y_1), F(y_2), F(y_3)) \) with the linear maps \(F(y_1) = 1d_{k^2}, F(y_2)(a, b) = (b, 0) \) and \(F(y_3)(a, b) = (0, a) \) is elementary. Let \(E \) be the corresponding \(\mathcal{X}_3 \)-module. Then \(\dim E = (2, 2) \), and it is easy to see that every indecomposable submodule of \(E \) has dimension vector \((0, 1) \) or \((1, 2) \). In particular, \(\text{Hom}(W, E) = 0 \) for each indecomposable module with dimension vector \(\dim W = (1, 1) \). Assume now that \(f : E \to W \) is non-zero; then \(f \) is surjective since every proper submodule of \(W \) is projective. Since \(E \) is elementary, \(f \) is a preprojective module with dimension vector \((1, 1) \), a contradiction. Hence \(E \in \mathcal{X}_{3,3} \).

2. Recall that \(\text{ESP}_1 = \text{EKP} \) and \(\text{ERP}_1 = \text{EIP} \). Given a regular component \(\mathcal{C} \), there are unique quasi-simple modules \(M_\mathcal{C} \) and \(W_\mathcal{C} \) in \(\mathcal{C} \) such that \(\text{EIP} \cap \mathcal{C} = (\to W_\mathcal{C}) \) and \(\text{EKP} \cap \mathcal{C} = (M_\mathcal{C} \to) \). The width \(\nu(\mathcal{C}) \in \mathbb{Z} \) is defined as the unique integer satisfying \(\tau^{\nu(\mathcal{C})} M_\mathcal{C} = W_\mathcal{C} \). In fact, it is shown that \(\nu(\mathcal{C}) \in \mathbb{N}_0 \), and an example of a regular component \(\mathcal{C} \) with \(\nu(\mathcal{C}) = 0 \) and \(\text{End}(M_\mathcal{C}) = k \) is given. Since \(X_U \cong \delta X_U \) for \(U \in \text{Gr}_{1,r} \) (see [21, Theorem 3.1]), we conclude for an arbitrary regular component \(\mathcal{C} \) that

\[
\nu(\mathcal{C}) = 0 \iff \tau M_\mathcal{C} = W_\mathcal{C},
\]

\[
M_\mathcal{C} \in \text{EKP} \text{ and } \tau M_\mathcal{C} \in \text{EIP},
\]

\[
\iff \text{Hom}(X_U, M_\mathcal{C}) = 0 = \text{Ext}(X_U, \tau M_\mathcal{C}) \text{ for all } U \in \text{Gr}_{1,r},
\]

\[
\iff \text{Hom}(X_U, M_\mathcal{C}) = 0 = \text{Hom}(M_\mathcal{C}, X_U) \text{ for all } U \in \text{Gr}_{1,r},
\]

\[
\iff M_\mathcal{C} \in \mathcal{X}_{1,1},
\]

Lemma 3.2.4. Let \(s \geq 3 \) and \(2 \leq \delta < s \). Then there exists a regular module \(E_\delta \) with the following properties.

(a) \(E_\delta \) is a (quasi-simple) brick in mod \(\mathcal{X}_s \).

(b) \(E_\delta \in \mathcal{X}_{d,s} \).

(c) There exist \(V, W \in \text{Gr}_{1,s} \) with \(\text{Hom}(X_V, E_\delta) = 0 \neq \text{Hom}(X_W, E_\delta) \).
Proof. We start by considering $s = 3$ and $d = 2$. Pick the elementary module $E_d := E$ from the preceding example. E is a brick, and $E \in \overline{X}_{d,s}$. Set $a := (1, 0, 0), \beta := (0, 1, 0) \in k^3$ and $V := \langle a \rangle, W := \langle \beta \rangle$. By the definition of E, we have

$$\dim_k \ker x_\alpha^E = 2 \neq 3 = \dim_k \ker x_\beta^E,$$

and therefore

$$\dim_k \Hom(X_V, E_d) = 0 \neq 1 = \dim_k \Hom(X_W, E_d).$$

Now let $s > 3$. If $d = s - 1$, consider $E_d := \inf_2^d(E)$. In view of Proposition 3.2.3, we have $E_d \in \overline{X}_{2s-3,s} = \overline{X}_{d,s}$.

Moreover, $\inf(E)$ is a brick in mod \mathcal{K}_s and for the canonical basis vectors $e_1, e_2 \in k^3$ and $V = \langle e_1 \rangle, W := \langle e_2 \rangle$ we get as before

$$\dim_k \Hom(X_V, \inf(E)) = 0 \neq 1 = \Hom(X_W, \inf(E)).$$

Now let $1 < d < s - 1$. Set $r := 1 + s - d \geq 3$, consider a regular component for \mathcal{K}_r with $\mathcal{W}(\mathcal{E}) = 0$ such that $M_\mathcal{E}$ is a brick and set $M := M_\mathcal{E}$. Then $M \in \overline{X}_{1,r}$, and Proposition 3.2.3 yields $E_d := \inf(M) \in \overline{Y}_{1s-(1+s-d),s} \subseteq \overline{X}_{d,s}$.

Since M is a brick, $\inf(M)$ is a brick in mod \mathcal{K}_s. Recall that $\Hom(X_V, M) = 0$ for all $U \in \text{Gr}_{d,r}$ implies that, viewing M as a representation, the linear map $M(y_1) : M_1 \rightarrow M_2$ corresponding to y_1 is injective. Since the map is not affected by \inf, $\inf(M)(y_1) : M_1 \rightarrow M_2$ is also injective. Therefore, we conclude for the first basis vector $e_1 \in k^3$ and $V = \langle e_1 \rangle$ that $0 = \Hom(X_V, \inf(M))$. By Lemma 3.2.2, we find $W \in \text{Gr}_{1,s}$ with $0 \neq \Hom(X_W, \inf(M))$. □

3.3 Numerous components lying in CSR$_d$

In this section, we use the simplification method to construct a family of regular components such that every vertex in such a regular component corresponds to a module in CSR$_d$. By the next result, it follows that $\mathcal{X} \subseteq \overline{X}_{d,r}$ implies $\mathcal{E}(\mathcal{X}) \subseteq \overline{X}_{d,r}$.

Lemma 3.3.1 ([13, Lemma 1.9]). Let X, Y be modules with $\Hom(X, Y)$ non-zero. If X and Y have filtrations

$$X = X_0 \supset X_1 \supset \cdots \supset X_r \supset X_{r+1} = 0, \quad Y = Y_0 \supset Y_1 \supset \cdots \supset Y_s \supset Y_{s+1} = 0,$$

then there are i, j with $\Hom(X_i/X_{i+1}, Y_j/Y_{j+1}) \neq 0$.

For a regular module $M \in \mathcal{K}_r$, denote by \mathcal{E}_M the regular component that contains M.

Proposition 3.3.2. Let $1 \leq d < r$, and let \mathcal{X} be a family of pairwise orthogonal bricks in $\overline{X}_{d,r}$. Then

$$\varphi : \text{ind} \mathcal{E}(\mathcal{X}) \rightarrow \mathcal{X}, \quad M \mapsto \mathcal{E}_M$$

is an injective map such that, for each component \mathcal{E} in im φ, we have $\mathcal{E} \subseteq \text{CSR}_d$. Here $\text{ind} \mathcal{E}(\mathcal{X})$ denotes the category of a chosen set of representatives of non-isomorphic indecomposable objects of mod \mathcal{X}_r in \mathcal{E}.

Proof. Since each module in $\overline{X}_{d,r}$ is regular, Proposition 3.1.1 implies that every module $N \in \text{ind} \mathcal{E}(\mathcal{X})$ is contained in a regular component \mathcal{E}_N and is quasi-simple. By Lemma 3.3.1, the module N satisfies $\Hom(X_U, N) = 0 = \Hom(N, X_U)$ for all $U \in \text{Gr}_{d,r}$. But now Lemma 2.3.8 implies that every module in \mathcal{E}_M has constant d-socle rank. The injectivity of φ follows immediately from Proposition 3.1.1. □

Corollary 3.3.3. There exists an infinite set Ω of regular components such that, for all $\mathcal{E} \in \Omega$,

(a) $\mathcal{W}(\mathcal{E}) = 0$, in particular, every module in \mathcal{E} has constant rank,

(b) \mathcal{E} does not contain any bricks.

Proof. Let \mathcal{E} be a regular component that contains a brick and $\mathcal{W}(\mathcal{E}) = 0$ (such a component exists by the example above). Let $M := M_\mathcal{E}$; then $M \in \overline{X}_{1,r}$. Apply Proposition 3.3.2 with $\mathcal{X} = \{M\}$, and set $\Omega := \text{im} \varphi \setminus \mathcal{E}_M$. Let $N \in \mathcal{E}(\mathcal{X}) \setminus \{M\}$ be indecomposable. N is quasi-simple in \mathcal{E}_N and has a $\{M\}$-filtration $0 = N_0 \subset \cdots \subset N_l = N$ with $l \geq 2$ and $N_1 = M = N_l/N_{l-1}$. Hence $N \rightarrow N_i/N_{i-1} \rightarrow N_1 \rightarrow N$ is a non-zero homomorphism that is not injective. Therefore, N is not a brick. This finishes the proof since every regular brick in mod \mathcal{K}_r is quasi-simple [13, Proposition 9.2] and $\End(r^tN) \cong \End(N) \neq k$ for all $l \in \mathbb{Z}$. □
Now we apply our results on the simplification method to modules E_d constructed in Lemma 3.2.4.

Definition ([6, Proposition 3.6]). Denote with GL_r the group of invertible $r \times r$-matrices which acts on $\bigoplus_{i=1}^{r} k y_i$ via $g \cdot y_i = \sum_{j=1}^{r} g_{ij} y_j$ for $1 \leq j \leq r$, $g \in \text{GL}_r$. For $g \in \text{GL}_r$, let $\varphi_g : \mathcal{X}_r \to \mathcal{X}_r$ be the algebra homomorphism with $\varphi_g(e_1) = e_1$, $\varphi_g(e_2) = e_2$ and $\varphi_g(y_i) = g y_i$, $1 \leq i \leq r$. For a \mathcal{X}_r-module M, denote the pullback of M along φ_g by $M^{[g]}$. The module M is called GL_r-stable if $M^{[g]} \cong M$ for all $g \in \text{GL}_r$.

Theorem 3.3.4. Let $2 \leq d < r$; then there exists a wild full subcategory $\mathcal{E} \subseteq \text{mod} \mathcal{X}_r$ and an injection

$$\varphi_d : \text{ind} \mathcal{E} \to \mathcal{R}, \quad M \mapsto \mathcal{C}_M,$$

such that, for each component \mathcal{C} in $\text{im} \varphi_d$, we have $\mathcal{C} \subseteq \text{CSR}_d$ and no module in \mathcal{C} is GL_r-stable.

Proof. Fix $2 \leq d < r$, and let E_d be as in Lemma 3.2.4 with $V, W \in \text{Gr}_1, r$ and $\text{Hom}(X_V, E_d) = 0 \neq \text{Hom}(X_U, E_d)$. Set $\mathcal{X} := \{E_d\}$, and let $M \in \mathcal{E}(\mathcal{X})$. By Proposition 3.3.2, we get an injective map

$$\varphi_d : \text{ind} \mathcal{E}(\mathcal{X}) \to \mathcal{R}, \quad M \mapsto \mathcal{C}_M$$

such that each component \mathcal{C} in $\text{im} \varphi_d$ satisfies $\mathcal{C} \subseteq \text{CSR}_d$.

Moreover, $\mathcal{E}(\mathcal{X})$ is a wild full subcategory of $\text{mod} \mathcal{X}_r$ by Proposition 3.1.1. Let $M \in \mathcal{E}(\mathcal{X})$ be indecomposable. Then M has a filtration $0 = Y_0 \subseteq Y_1 \cdots \subseteq Y_m$ with $Y_i/Y_{i-1} = E_d$ for all $1 \leq i \leq m$. By Lemma 3.3.1, we have $0 = \text{Hom}(X_U, M)$, and since $E_d = Y_1 \subseteq M$, we conclude $0 \neq \text{Hom}(X_U, M)$. This proves that M does not have constant 1-socle rank. Therefore, \mathcal{C}_M contains a module that is not of constant 1-socle rank. By [6, Proposition 3.6], the module M is not GL_r-stable. Assume that \mathcal{C}_M contains an GL_r-stable module N. Since $g \in G$ acts as an auto-equivalence on $\text{mod} \mathcal{X}_r$ (see also [9, Lemma 2.2]), we conclude that g sends the Auslander–Reiten sequence $0 \to X \to E \to N \to 0$ to the Auslander–Reiten sequence $0 \to X^g \to E^g \to N \to 0$. Hence $X^g = X$ and $E^g = E$ for all $g \in \text{GL}_r$, and therefore X and E are GL_r-stable. If E is not indecomposable, we write $E = E_1 \oplus E_2$ with E_1, E_2 indecomposable such that the quasi-lengths $q_l(E_1)$, $q_l(E_2)$ satisfy $q_l(E_1) = q_l(E_2) - 2$. We get $\text{dim}_k E_2 > \text{dim}_k E_1$ and therefore $(E_1)^g \equiv E_2$ and $(E_1)^g \equiv E_1$. Hence every direct summand in the Auslander–Reiten sequence is GL_r-stable. Now one can easily conclude that every module in \mathcal{C}_M is GL_r-stable, a contradiction since M is not GL_r-stable.

\[\square \]

3.4 Components lying almost completely in CSR\(_d\)

The following definition and two lemmata are a generalization of [22, Definition 4.7, Proposition 4.13] and [21, Proposition 3.7]. We sketch the proof of Lemma 3.4.1.

Definition. Let M be an indecomposable \mathcal{X}_r-module, $1 \leq d < r$ and $U \in \text{Gr}_d, r$. M is called U-trivial if

$$\text{dim}_k \text{Hom}(X_U, M) \neq \text{dim}_k M_1.$$

Note that the sequence $0 \to P_1^{-d} \to P_2 \to X_U \to 0$ and left-exactness of $\text{Hom}(\cdot, M)$ imply that

$$\text{dim}_k \text{Hom}(X_U, M) \leq \text{dim}_k M_1.$$

Lemma 3.4.1. Let M be a regular U-trivial module. If M is not elementary, then

$$\text{Ext}(X_U, \tau M) = 0 = \text{Hom}(X_U, \tau^{-1} M)$$

for all $V \in \text{Gr}_d, r$.

Proof. Assume that $\text{Ext}(X_U, \tau M) \neq 0$; then we find an epimorphism $f : M \to X_U$ and an exact sequence $0 \to \text{ker} f \to M \to X_U \to 0$. Note that $\text{dim}_k \text{Hom}(X_U, \text{ker} f) \leq \text{dim}_k (\text{ker} f)_1 < \text{dim}_k M_1 = \text{Hom}(X_U, M)$. We apply $\text{Hom}(X_U, -)$ and conclude that $f : \text{Hom}(X_U, M) \to \text{Hom}(X_U, X_U), g \mapsto f \circ g$ is non-zero. In particular, we have $0 \neq \text{Hom}(X_U, X_U)$ and therefore $U = V$. Let $h \in \text{Hom}(X_U, M)$ such that $f \circ h \neq 0$. Since X_U is a brick, we conclude that f is an isomorphism and $M \cong X_U$ is elementary.

Assume that $\tau^{-1} M \notin \text{ESP}_d \subseteq \text{ESP}_1$. Consider $\langle \alpha \rangle_k = W \in \text{Gr}_1, r$ together with an epimorphism $p : X_W \to X_U$ (see Proposition 2.2.2). We conclude with $\text{dim}_k M_1 \geq \text{dim}_k \text{Hom}(X_W, M) \geq \text{dim}_k \text{Hom}(X_U, M) = \text{dim}_k M_1$ that
Let M be regular quasi-simple in a regular component \mathcal{C} such that
\[
\text{Ext}(X_U, \tau M) = 0 = \text{Hom}(X_U, \tau^{-1} M) \quad \text{for all } U \in \text{Gr}_{d, r}.
\]
If M does not have constant d-socle rank, then a module X in \mathcal{C} has constant d-socle rank if and only if X is in $(\tau M) \cup (\tau^{-1} M)$.

Corollary 3.4.3. Let $3 \leq r < s$ and $1 \leq d < r$, and let $b := d + s - r$ and $1 \leq l \leq s - r$. Let M be an indecomposable \mathcal{K}_r-module in $\mathcal{X}_{d, r}$ that is not elementary. Denote by \mathcal{C} the regular component that contains $\text{inf}(M)$.

(a) Every module in \mathcal{C} has constant b-socle rank.

(b) $N \in \mathcal{C}$ has constant l-socle rank if and only if $N \in (\tau \text{inf}(M)) \cup (\tau^{-1} \text{inf}(M) \to)$.

Proof. (a) is an immediate consequence of Proposition 3.2.3.

(b) Consider the indecomposable projective module $P_2 = \mathcal{K}_r e_1$ in mod \mathcal{K}_r. We get
\[
\text{Hom}(\text{inf}(P_2), \text{inf}(M)) \cong \text{Hom}(P_2, M) = M_1 = \text{inf}(M)_1.
\]
Since
\[
\dim \text{inf}(P_2) = (1, r) = (s - (s - r)),
\]
we find $W \in \text{Gr}_{s-r, s}$ with $\text{inf}(P_2) = X_W$. Now let $1 \leq l \leq s - r$. By Proposition 2.2.2, there is $U \in \text{Gr}_{l, s}$ and an epimorphism $\pi : X_U \to X_W$. Let $\{f_1, \ldots, f_q\}$ be a basis of $\text{Hom}(\text{inf}(P_2), \text{inf}(M))$. Since π is surjective, the set $\{f_1 \pi, \ldots, f_q \pi\} \subseteq \text{Hom}(X_U, \text{inf}(M))$ is linearly independent. Hence
\[
q \leq \dim_k \text{Hom}(X_U, \text{inf}(M)) \leq \dim_k \text{inf}(M)_1 = q
\]
holds, and $\text{inf}(M)$ is U-trivial.

Since M is not elementary, $\text{inf}(M)$ is not elementary, and therefore Lemma 3.4.1 yields that
\[
\text{Ext}(X_W, \tau \text{inf}(M)) = 0 = \text{Hom}(X_W, \tau^{-1} \text{inf}(M)) \quad \text{for all } W \in \text{Gr}_{l, s}.
\]
By Lemma 3.2.2, the module $\text{inf}(M)$ does not have the constant l-socle rank for $1 \leq l \leq s - r$. Note that M is regular, and therefore $\text{inf}(M)$ is a quasi-simple module. Now apply Lemma 3.4.2. □

Example. Let $r \geq 3$, and let \mathcal{C} be a regular component with $\forall(\mathcal{C}) = 0$ such that M_0 is not a brick (see Corollary 3.3.3) and in particular not elementary. Then $M_0 \in \mathcal{X}_{1, r}$, and we can apply Corollary 3.4.3. Figure 4 shows the regular component \mathcal{D} of \mathcal{K}_s containing $\text{inf}(M_0)$. Every module in \mathcal{D} has constant $b := 1 + s - r$ socle rank. But for $1 \leq q \leq s - r$, a module in this component has constant q-socle rank if and only if it lies in the shaded region.

![Figure 4: Regular component containing $\text{inf}(M_0)$](image-url)
4 Wild representation type

4.1 Wildness of strata

As another application of the simplification method and the inflation functor \(\text{inf}_s : \text{mod} \mathcal{K}_r \rightarrow \text{mod} \mathcal{K}_s \), we get the following result.

Theorem 4.1.1. Let \(s \geq 3 \) and \(1 \leq d \leq s - 1 \). Then \(\Delta_d = \text{ESP}_d \setminus \text{ESP}_{d-1} \subseteq \text{mod} \mathcal{K}_s \) is a wild subcategory, where \(\text{ESP}_0 := \emptyset \).

Proof. For \(d = 1 \), consider a regular component \(\mathcal{C} \) for \(\mathcal{K}_s \) that contains a brick \(F \). By Proposition 2.3.5, we find a module \(E \) in the \(r \)-orbit of \(F \) that is in \(\text{ESP}_1 \) and set \(X := \{E\} \). Then \(E \) is brick since \(\text{Hom}(E,E) \cong \text{Hom}(F,F) = k \) and \(\dim_k \text{Ext}(E,E) \geq 2 \) by Corollary 1.2. Therefore, \(\mathcal{E}(X) \) is wild category (see Proposition 3.1.1). As \(\text{ESP}_1 \) is closed under extensions, it follows \(\mathcal{E}(X) \subseteq \text{ESP}_1 \). Note that this case does only require the application of Proposition 3.1.1.

Now let \(d > 1 \) and \(r := s - d + 1 \geq 2 \). Consider the projective indecomposable \(\mathcal{K}_r \)-module \(P := P_2 \) with \(\dim P = (1, r) \). By Lemma 3.2.2, \(\text{inf}(P) \) is a regular quasi-simple module in \(\text{mod} \mathcal{K}_s \) with

\[
\dim_k \text{Ext}(\text{inf}(P), \text{inf}(P)) \geq 2.
\]

Since \(P \) is in \(\text{ESP}_1 \), we have \(0 = \text{Hom}(X_U, P) \) for all \(U \in \text{Gr}_{1,r} \). Hence Proposition 3.2.3 implies

\[
0 = \text{Hom}(X_U, \text{inf}(P)) \quad \text{for all } U \in \text{Gr}_{1+s-r} \text{, and } 0 \neq \text{End}(\text{inf}(P)) = \text{Hom}(X_U, \text{inf}(P)).
\]

That means \(\text{inf}(P) \notin \text{ESP}_{d-1} \). Since \(\text{ESP}_{d-1} \) is closed under submodules, we have \(\mathcal{E}(X) \cap \text{ESP}_{d-1} = \emptyset \). Hence \(\mathcal{E}(X) \subseteq \text{ESP}_d \setminus \text{ESP}_{d-1} \).

Remarks. Let us collect the following observations.

(i) Note that all indecomposable modules in the wild category \(\mathcal{E}(X) \) are quasi-simple in \(\text{mod} \mathcal{K}_s \) and \(\mathcal{E}(X) \subseteq \text{ESP}_d \setminus \text{ESP}_{d-1} \).

(ii) For \(1 \leq d \leq r \), we define \(\text{EK}_d := \{M \in \text{mod} \mathcal{K}_r \mid \text{Hom}(\delta T X_U, M) = 0 \text{ for all } U \in \text{Gr}_{d,r}\} \). One can show that \(M \in \text{EK}_d \) if and only if \(y_T^M M_1^{d} \rightarrow M \) is injective for all linearly independent tuples \(T \) in \((k^d)^d \). From the definitions, we get a chain of proper inclusions \(\text{ESP}_{r-1} \supset \text{ESP}_{r-2} \supset \cdots \supset \text{ESP}_1 = \text{EK}_1 \supset \text{EK}_2 \supset \cdots \supset \text{EK}_{r-1} \). By adapting the preceding proof, it follows that \(\text{EK}_{r-1} \) is wild. Moreover, it can be shown that, for each regular component \(\mathcal{C} \), the set \(\text{EK}_1 \setminus \text{EK}_{r-1} \cap \mathcal{C} \) is empty or forms a ray.

We will use the following result later on to prove the wildness of the subcategory in \(\text{mod} k E_2 \) consisting of modules of Loewy length 3 and the equal kernels property. We denote by \(B(3, 2) \) the Beilinson algebra with 3 vertices and 2 arrows.

Proposition 4.1.2. Let \(\text{EK}(3, 2) \) be the full subcategory of modules in \(\text{mod} B(3, 2) \) with the equal kernels property (see [21, Definition 2.1, Theorem 2.5]). The category \(\text{EK}(3, 2) \) is of wild representation type.

Proof. Consider the path algebra \(A \) of the extended Kronecker quiver \(Q = 1 \rightarrow 2 \rightarrow 3 \). Since the underlying graph of \(Q \) is not a Dynkin or Euclidean diagram, the algebra \(A \) is of wild representation type by [8]. It is known that there exists a preprojective tilting module \(T \) in \(\text{mod} A \) with \(\text{End}(T) = B(3, 2) \); see for example [20] or [23, Section 4]. We sketch the construction. The start of the preprojective component of \(A \) is illustrated in Figure 5, and the direct summands of \(T \) are marked with a dot.

One can check that \(T = P(1) \oplus \tau^{-2} P(1) \oplus \tau^{-1} P(3) \) is a tilting module. Since preprojective components are standard [19, Proposition 2.4.11], one can show that \(\text{End}(T) \) is given by the quiver in Figure 6, bound by the relation \(\alpha_2 \alpha_1 + \beta_2 \beta_1 \). Moreover, it follows from the description as a quiver with relations that \(\text{End}(T) = B(3, 2) \).
Since A is hereditary, it follows that the algebra $B(3, 2)$ is a concealed algebra [1, Definition 4.6]. By [2, Theorem XVIII.5.1], the functor $\text{Hom}(T, -): \mod A \to \mod B(3, 2)$ induces an equivalence G between the regular categories add $\mathcal{R}(A)$ and add $\mathcal{R}(B(3, 2))$, and we have an isomorphism between the two Grothendieck groups $f: K_0(A) \to K_0(B(3, 2))$ with $\dim G(M) = \dim \text{Hom}(T, M) = f(\dim M)$ for all $M \in \mod A$. Now we make use of a homological characterization of the class $\text{EKP}(3, 2)$ given in [21, Theorem 2.5]: for each $\alpha \in k^2 \setminus \{0\}$, there exist certain indecomposable $B(3, 2)$-modules $X^0_{\alpha}, X^1_{\alpha}$ such that

$$\text{EKP}(3, 2) = \{ M \in \mod B(3, 2) \mid \text{Hom}(X^0_{\alpha}, X^1_{\alpha}, M) = 0 \text{ for all } \alpha \in k^2 \setminus \{0\}\}. $$

The modules $X^0_{\alpha}, X^1_{\alpha}$ arise as cokernels of embeddings similar to the embeddings studied in Section 2.2. We do not need the exact definition of X^i_{α}. Let us show that each X^1_{α} is regular. Clearly, $0 \neq \text{Hom}_B(X^1_{\alpha}, Z)$ for $Z \in \{X^0_{\alpha}, X^1_{\alpha}\}$, so Z is not in $\text{EKP}(3, 2)$. Moreover, the equality (see [22, Proposition 3.14])

$$\tau_{B(3, 2)} X^1_{\alpha} = DX^3_{\alpha} \cong DX^0_{\alpha}$$

holds (D denotes a certain duality on $\mod B(3, 2)$). Since X^0_{α} is not in $\text{EKP}(3, 2)$, we conclude that $\tau_{B(3, 2)} X^1_{\alpha}$ is not in $\text{EKP}(3, 2)$. Since $\text{EIP}(3, 2)$ is closed under $\tau_{B(3, 2)}$, we conclude that X^1_{α} is not in $\text{EIP}(3, 2)$. The assumption X^0_{α} is in $\text{EIP}(3, 2)$ yields that $\tau_{B(3, 2)} X^1_{\alpha}$ is in $\text{EIP}(3, 2)$. Since $\text{EKP}(3, 2)$ is closed under $\tau_{B(3, 2)}$, we get that X^1_{α} is in $\text{EKP}(3, 2)$, a contradiction. Therefore, $X^0_{\alpha}, X^1_{\alpha}$ are not in $\text{EIP}(3, 2) \cup \text{EKP}(3, 2)$ and by [21, Corollary 2.7] regular, so X^1_{α} is a regular module as well.

Moreover, $\dim X^1_{\alpha}$ is independent of α. Hence we find for each $\beta \in k^2 \setminus \{0\}$ a regular indecomposable module U_{β} in $\mod A$ with $G(U_{\beta}) = X^1_{\beta}$ and $\dim U_{\beta} = \dim U_{\alpha}$ for all $\alpha \in k^2 \setminus \{0\}$. Now let M be in $\mod A$ a regular brick with $\dim M \geq 2$ (see [15, Proposition 5.1]). By the dual version of [13, Lemma 4.6], we find $l \in \mathbb{N}$ with $\text{Hom}(U_{\alpha}, M^l) = 0$ for all $\alpha \in k^2 \setminus \{0\}$. Set $N := \tau^{-l}M$ and $\mathcal{E} := \{N\}$. N is a regular brick with $\dim N \geq 2$, and therefore \mathcal{E} is a wild category in add $\mathcal{R}(A)$ (see [15, Proposition 1.4]). By Lemma 3.3.1, we have $\text{Hom}(U_{\alpha}, L) = 0$ for all $\alpha \in k^2 \setminus \{0\}$ and $l \in \mathcal{E}(\mathcal{X})$ and all $\alpha \in k^2 \setminus \{0\}$. Hence $0 = \text{Hom}(U_{\alpha}, L) = \text{Hom}(G(U_{\alpha}), G(L)) = \text{Hom}(X^1_{\alpha}, L)$ for all $\alpha \in k^2 \setminus \{0\}$. This shows that the essential image of \mathcal{E} under G is a wild subcategory contained in $\text{EKP}(3, 2)$.

\[\square\]

4.2 The module category of E_r

Throughout this section, we assume that $\text{char}(k) = p > 0$ and $r \geq 2$. Moreover, let E_r be a p-elementary abelian group of rank r with generating set $\{g_1, \ldots, g_r\}$. For $x_i := g_i - 1$, we get an isomorphism

$$kE_r \cong k[X_1, \ldots, X_r] / (X^p_1, \ldots, X^p_r)$$

of k-algebras by sending X_i to x_i for all i. We recall the definition of the functor $\mathfrak{S}: \mod \mathcal{X} \to \mod kE_r$ introduced in [21]. Given a module M, $\mathfrak{S}(M)$ is by definition the vector space M and

$$x_i \cdot m := y_i \cdot m = y_i \cdot m_1 + y_i \cdot m_2 = y_i \cdot m_1,$$
where $m_i = e_i \cdot m$. Moreover, $\overline{\alpha}$ is the identity map on morphisms, that is, $\overline{\alpha}(f) : \overline{\alpha}(M) \to \overline{\alpha}(N)$, $\overline{\alpha}(f)(m) = f(m)$ for all $f : M \to N$.

Definition ([6, Definition 2.1]). Let $V := \langle x_1, \ldots, x_r \rangle_k \leq \ker(kE_r)$. For U in $Gr_{d,V}$ with basis u_1, \ldots, u_d and a kE_r-module M, we set

$$\text{Rad}_U(M) := \sum_{u \in U} u \cdot M = \sum_{i=1}^d u_i \cdot M,$$

$$\text{Soc}_U(M) := \{m \in M \mid u \cdot m = 0 \text{ for all } u \in U\} = \bigcap_{i=1}^d \{m \in M \mid u_i \cdot m = 0\}.$$

Definition ([6, Definition 3.1]). Let $M \in \text{mod } kE_r$ and $1 \leq d < r$.

(a) M has the **constant d-Rad rank** (d-Soc rank), respectively if the dimension of $\text{Rad}_U(M)$ ($\text{Soc}_U(M)$, respectively) is independent of the choice of $U \in Gr_{d,V}$.

(b) M has the **equal d-Rad property** (d-Soc property, respectively) if $\text{Rad}_U(M)$ ($\text{Soc}_U(M)$, respectively) is independent of the choice of $U \in Gr_{d,V}$.

Proposition 4.2.1. Let M be a non-simple indecomposable \mathcal{K}_r-module, and let $1 \leq d < r$.

(a) M is in CSR$_d$ if and only if $\overline{\alpha}(M)$ has constant d-Soc rank.

(b) M is in ESR$_d$ if and only if $\overline{\alpha}(M)$ has the equal d-Soc property.

Proof. We fix $V := \langle x_1, \ldots, x_r \rangle_k \leq \ker(kE_r)$. In the following, we denote for $u \in \ker(kE_r)$, with the induced linear map on M. Let $U \in Gr_{d,V}$ with basis $\{u_1, \ldots, u_d\}$, write $u \cdot m = \sum_{i=1}^r a_i x_i$, for all $1 \leq j \leq d$, and set $a_i = (a_i^1, \ldots, a_i^r)$. Then $T := (a_1, \ldots, a_d)$ is linearly independent, and

$$\ker(l(u_j)) = \ker\left(\sum_{i=1}^r a_i^j l(x_i)\right) = \ker\left(\sum_{i=1}^r a_i^j x_i\right) = \ker(x_i^M_{a_i^j}).$$

It follows

$$\text{Soc}_U(\overline{\alpha}(M)) = \bigcap_{i=1}^d \ker(l(u_i)) = \bigcap_{i=1}^d \ker(x_i^M_{a_i^j}) = \text{Soc}_T(M).$$

Hence $M \in CSR_d$ implies that $\overline{\alpha}(M)$ has constant d-Soc rank.

Now assume that $T := (a_1, \ldots, a_d)$ is linearly independent, and set $u_i := \sum_{j=1}^r a_i^j x_i$. Then

$$U := \langle u_1, \ldots, u_d \rangle \in Gr_{d,V} \text{ and } \text{Soc}_T(M) = \text{Soc}_U(\overline{\alpha}(M)).$$

We have shown that M is in CSR$_d$ if and only if $\overline{\alpha}(M)$ has constant d-Soc rank. The other equivalence follows in the same fashion.

For $1 < d < r$, we denote by $\text{ESP}_{2,d}(E_r)$ the category of modules in mod kE_r of Loewy length ≤ 2 with the equal d-Soc property. As an application of Section 4.1, we get a generalization of [3, Theorem 5.6.12] and [4, Theorem 1].

Corollary 4.2.2. Let $\text{char}(k) > 0, r \geq 3$ and $1 \leq d \leq r - 1$. Then $\text{ESP}_{2,d}(E_r) \setminus \text{ESP}_{2,d-1}(E_r)$ has wild representation type.

Proof. Let $1 \leq c < r$. By [21, Proposition 2.3] and Proposition 4.2.1, a restriction of $\overline{\alpha}$ to ESP$_c$ induces a faithful exact functor

$$\overline{\alpha}_c : \text{ESP}_c \to \text{mod } kE_r$$

that reflects isomorphisms and with essential image $\text{ESP}_{2,c}(E_r)$. Let $\mathcal{E} \subseteq \text{ESP}_d \setminus \text{ESP}_{d-1}$ be a wild subcategory. Since $\overline{\alpha}_{d-1}$ and $\overline{\alpha}_d$ reflect isomorphisms, we have $\overline{\alpha}(E) \in \text{ESP}_{2,d}(E_r) \setminus \text{ESP}_{2,d-1}(E_r)$ for all $E \in \mathcal{E}$. Hence the essential image of $\overline{\alpha}$ under $\overline{\alpha}$ is a wild category.

Corollary 4.2.3. Assume that $\text{char}(k) = p > 2$; then the full subcategory of modules with the equal kernels property in mod kE_r and Loewy length ≤ 3 is of wild representation type.

Proof. By [21, Proposition 2.3] $(n = 3 \leq p, r = 2)$, the functor $\overline{\alpha}_{\text{EKP}(3,2)} : \text{mod } B(3,2) \to \text{mod } kE_2$ is a representation embedding with essential image in EKP(E_2).
Acknowledgment: The results of this article are part of my doctoral thesis, which I have written at the University of Kiel. I would like to thank my advisor Rolf Farnsteiner for fruitful discussions, his continuous support and helpful comments on an earlier version of this paper. I also would like to thank the whole research team for the very pleasant working atmosphere and the encouragement throughout my studies. Furthermore, I thank Otto Kerner for answering my questions on hereditary algebras and giving helpful comments, and Claus Michael Ringel for sharing his insights on elementary modules for the Kronecker algebra. I would like to thank the anonymous referee for the detailed comments.

Funding: Partly supported by the DFG priority program SPP 1388 “Darstellungstheorie”.

References

[1] I. Assem, D. Simson and A. Skowroński, *Elements of the Representation Theory of Associative Algebras. I*, London Math. Soc. Stud. Texts 72, Cambridge University Press, Cambridge, 2006.
[2] I. Assem, D. Simson and A. Skowroński, *Elements of the Representation Theory of Associative Algebras. III*, London Math. Soc. Stud. Texts 72, Cambridge University Press, Cambridge, 2007.
[3] D. J. Benson, *Representations of Elementary Abelian p-groups and Vector Bundles*, Cambridge Tracts in Math. 208, Cambridge University, Cambridge, 2017.
[4] V. M. Bondarenko and I. V. Lytvynchuk, The representation type of elementary abelian p-groups with respect to the modules of constant Jordan type, *Algebra Discrete Math.* 14 (2012), no. 1, 29–36.
[5] J. F. Carlson, E. M. Friedlander and J. Pevtsova, Modules of constant Jordan type, *J. Reine Angew. Math.* 614 (2008), 191–234.
[6] J. F. Carlson, E. M. Friedlander and J. Pevtsova, Representations of elementary abelian p-groups and bundles on Grassmannians, *Adv. Math.* 229 (2012), no. 5, 2985–3051.
[7] B. Chen, Dimension vectors in regular components over wild Kronecker quivers, *Bull. Sci. Math.* 137 (2013), 730–745.
[8] P. Donovan and M. R. Freislich, *The Representation Theory of Finite Graphs and Associated Algebras*, Carleton Math. Lecture Notes 5, Carleton University, Ottawa, 1973.
[9] R. Farnsteiner, Categories of modules given by varieties of p-nilpotent operators, preprint (2011), https://arxiv.org/abs/1110.2706.
[10] R. Farnsteiner, Nilpotent operators, categories of modules, and auslander-reiten theory, Lectures notes (2012), http://www.math.uni-kiel.de/algebra/de/farnsteiner/material/Shanghai-2012-Lectures.pdf.
[11] P. Gabriel, Indecomposable representations. II, in: *Symposia Mathematica Vol. XI* (Rome 1971), Academic Press, London (1973), 81–104.
[12] V. G. Kac, Root systems, representations of quivers and invariant theory, in: *Invariant Theory* (Montecatini 1982), Lecture Notes in Math. 996, Springer, Berlin (1983), 74–108.
[13] O. Kerner, Representations of wild quivers, in: *Representation Theory of Algebras and Related Topics* (Mexico City 1994), CMS Conf. Proc. 19, American Mathematical Society, Providence (1996), 65–107.
[14] O. Kerner, More representations of wild quivers, in: *Expository Lectures on Representation Theory*, Contemp. Math. 607, American Mathematical Society, Providence (2014), 35–55.
[15] O. Kerner and F. Lukas, Regular modules over wild hereditary algebras, in: *Representations of Finite-dimensional Algebras* (Tsukuba 1990), CMS Conf. Proc. 11, American Mathematical Society, Providence (1991), 191–208.
[16] O. Kerner and F. Lukas, Elementary modules, *Math. Z.* 223 (1996), no. 3, 421–434.
[17] C. M. Ringel, Representations of K-species and bimodules, *J. Algebra* 41 (1976), no. 2, 269–302.
[18] C. M. Ringel, Finite dimensional hereditary algebras of wild representation type, *Math. Z.* 161 (1978), no. 3, 235–255.
[19] C. M. Ringel, *Tame Algebras and Integral Quadratic Forms*, Lecture Notes in Math. 1099, Springer, Berlin, 1984.
[20] L. Unger, The concealed algebras of the minimal wild, hereditary algebras, *Bayreuth. Math. Schr.* (1990), no. 31, 145–154.
[21] J. Worch, Categories of modules for elementary abelian p-groups and generalized Bellinson algebras, *J. Lond. Math. Soc. (2) 88* (2013), no. 3, 649–668.
[22] J. Worch, *Module categories and Auslander-Reiten theory for generalized Bellinson algebras*, PhD thesis, Christian-Albrechts-Universität zu Kiel, 2013.
[23] J. Worch, AR-components for generalized Bellinson algebras, *Proc. Amer. Math. Soc.* 143 (2015), no. 10, 4271–4281.