Efficient Hopfield pattern recognition on a scale-free neural network

Dietrich Stauffer¹,²,⁴, Amnon Aharony¹, Luciano da Fontoura Costa ³ and Joan Adler ⁴

¹ School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
² Institute for Theoretical Physics, Cologne University, D-50923 Köln, Euroland
³ Cybernetic Vision Research Group, IFSC-USP, Caixa Postal 369, 13560-970 São Carlos, SP, Brazil
⁴ Department of Physics, Technion-IIT, Haifa 32000, Israel

E-mail: aharony@post.tau.ac.il, stauffer@thp.uni-koeln.de, luciano@if.sc.usp.br, phr76ja@technix.technion.ac.il

Neural networks are supposed to recognise blurred images (or patterns) of \(N \) pixels (bits) each. Application of the network to an initial blurred version of one of \(P \) pre-assigned patterns should converge to the correct pattern. In the “standard” Hopfield model, the \(N \) “neurons” are connected to each other via \(N^2 \) bonds which contain the information on the stored patterns. Thus computer time and memory in general grow with \(N^2 \). The Hebb rule assigns synaptic coupling strengths proportional to the overlap of the stored patterns at the two coupled neurons. Here we simulate the Hopfield model on the Barabási-Albert scale-free network, in which each newly added neuron is connected to only \(m \) other neurons, and at the end the number of neurons with \(q \) neighbours decays as \(1/q^3 \). Although the quality of retrieval decreases for small \(m \), we find good associative memory for \(1 \ll m \ll N \). Hence, these networks gain a factor \(N/m \gg 1 \) in the computer memory and time.

PACS: 05.40-a, 05.50+q, 87.18.Sn

Traditional neural network models have nodes \(i \) (“neurons”) coupled to all other nodes \(k \) with some coupling constant \(J_{ik} \) (“synaptic strength”), similar to Sherrington-Kirkpatrick infinite-range spin glasses [1]. Here we consider one of the simplest neural network models, due to Hopfield [2]. This model was mostly applied to infinite range and was only rarely put onto a square lattice with short-range interactions [3][4]. Real neural networks seem to have neither infinite nor only nearest-neighbour connections. The spatial structures of neural networks were investigated [5] and compared with small-world and scale-free networks [6][7][8][9][10]. Now we present computer simulations of the Hopfield model [2] with Hebb couplings between neighbours restricted to a Barabási-Albert (BA) scale-free network [6].

In the Hopfield model, each of \(N \) neurons or sites can be firing \((S_i = +1) \) or not firing \((S_i = -1) \). Neurons are coupled through \(J_{ik} \), and are sequentially updated according to

\[
S_i \rightarrow \text{sign}(\sum_{k} J_{ik} S_k) \quad .
\]
(We mostly ignore the diagonal terms $i = k$ in our sums.) This rule corresponds to a low-
temperature Monte Carlo simulation of a spin glass. The model has stored P different patterns
ξ^μ_i ($\mu = 1, 2, \ldots, P$), which we take as random strings of ±1. The couplings are given by the
Hebb rule:

$$J_{ik} = \sum_\mu \xi^\mu_i \xi^\mu_k .$$ (2)

The first of these patterns is presented to the network in a corrupted form S_i, with ten percent
of the S_i reversed in comparison to the correct ξ^1_i. The question is whether the iteration through
Eq. (1) transforms the erroneous S_i into the correct ξ^1_i. The quality of this pattern recognition
is given by the overlap

$$\Psi = \sum_i S_i \xi^1_i / N .$$ (3)

which is related to the Hamming distance and equals 1 for complete recognition and $\sim \pm 1/\sqrt{N}$
for only accidental agreement at random sites; it is ~ 0.8 at the beginning of the pattern
recognition process, due to the ten percent reversal.

Now we restrict the synaptic connections J_{ik} to neurons which are neighbours in the BA
network, but we still use Eqs. (1-3). In these networks, we start from a small core of m sites,
all connected with each other. Then $N \gg m$ nodes are added, one after the other. Each new
site i selects exactly m sites from the already existing network sites as its neighbours k, with
a probability proportional to the number of neighbours which the existing site k has already:
The rich get richer. When the network has added N sites with a total of $N + m$ sites, its
growth is stopped and the neural process of Eqs. (1-3) starts. Synaptic connections J_{ik} exist
only between sites i and k which are neighbours.

Since no longer every neuron is connected to all other neurons, the memory-saving trick of
Penna and Oliveira [11] to avoid storing the J_{ik} no longer applies. 400 Megabyte were needed
for $N = 10,000$ nodes and $P = 20,000$ patterns. To save computer time, the J_{ik} should be
determined after and not before the construction of the BA network.

When only one pattern is stored, it is recognised completely after two iterations. With
$P > 1$, however, no complete recognition takes place, the overlap Ψ is usually at the final fixed
point (reached after about five iterations) lower than at the beginning, as shown in Fig. 1a .
However, the model can still recognise the first pattern as the one presented to it, since the
overlap $\Psi \sim 0.19$ for $P = N = 10^4$ is still appreciably larger than the overlap $|\Psi| < 500$ with
the other $(P - 1)$ patterns.

Rather similar results are obtained if we work on a nearest-neighbour hypercubic lattice
with $N = L^d$ sites, similar to the studies made in [3, 4] in two dimensions. Fig.1b shows that
only for small numbers P of patterns an increased d means an increased final overlap. For
$d = 7$, 10 and 15 the overlaps with up to 20 patterns did not differ appreciably from $d = 5$. No
significant size effects were seen for $4 \leq L \leq 20$ in five and $4 \leq L \leq 13$ in seven dimensions.
Fig. 1 is based on one sample only for each point; using instead 100 samples at $m = 3$ and $N = 10,000$, we see in Fig. 2 that the overlap varies roughly as $\Psi(P) \sim 0.19 \propto P^{-0.6}$, except for very small m. A similar power law $P^{-0.6}$ is also found for hypercubic lattices (not shown.) It would be interesting to understand this power law from some analytical analysis.

A much better recovery of the corrupted pattern is obtained if we take a larger inner core of the BA network, that means if m is no longer small. (The first m network sites are all mutually connected, as in the traditional Hopfield model.) Using 100 patterns, Fig. 3a shows the overlap Ψ for $N + m = 10^4$ total sites as a function of m. Already at $m = 200$, $N = 9800$ the final overlap is 88 percent; at $m = 2000$, $N = 8000$ we have complete recovery. For $1 \ll m \ll N$ the number of connections (counting each bond twice) is mN in our case and N^2 in the fully connected case; thus we saved connections by a factor m/N. If we include the diagonal terms $J(i,i) = P$ in Eq. (1), we prevent the overlap from becoming worse than the initial overlap 0.8 for small m and still get overlap near unity for large m, Fig. 3b.

Of course, with a large m the network is no longer scale free, as shown in Fig. 4: The simple power law $\propto 1/q^3$ for the number of sites with q neighbours each [6] persists for $10^2 < q < 10^3$, but a Gaussian peak is added for large q. However, the additional bump concerns only a relatively small number of sites, and is probably negligible for any practical purposes.

For infinite range, $m = N$, the usual Hopfield model [12] gives an overlap Ψ close to 1 for $P/N < 0.14$ and a relatively small overlap $\Psi \sim 0.2$ for $P/N > 0.14$, with a sharp jump at $P/N = 0.14$. Our simulations, in contrast, show a gradual deterioration as soon as more than one pattern is stored, but the value of Ψ is still of order 0.2 and distinctly larger than for the other ($P-1$) patterns. Using a medium-sized fully connected core, like $m \sim 10^3$ at $P \sim 10^2$, surrounded by a larger BA network with $N \sim 10^4$ sites, gives a good compromise between good recovery and not too many connections.

So far it is not clear if the efficient recovery simply results from the relatively large average coordination number m, or by some additional ingredients in the problem. It would also be interesting if Nature takes advantage of a similar efficiency. If it does, do natural neural networks share some geometrical features with the large-m (but finite) scale-free networks [6]?

We thank D. Horn for a discussion and the German-Israeli Foundation for supporting our collaboration.

References

[1] D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35, 1792 (1975).
[2] J.J. Hopfield, Proc. Natl. Acad. Sci. USA 79, 2554 (1982).
[3] B.M. Forrest, J. Physique 50, 2003 (1989).
[4] K.E. Kürten, J. Physique 51, 1585 (1990).

[5] L. da F. Costa and E. T. M. Manoel, Neuroinformatics 1, 66 (2002); http://www.neuroinformaticsonline.com/

[6] A.L. Barabási and R. Albert, Science 286, 509 (1999); R. Albert and A.L. Barabási, Rev. Mod. Phys. 74, 47 (2002); S.N. Dorogovtsev and J.F.F. Mendes, Adv. Phys. 51, 1079 (2002).

[7] D.J. Watts and S.H. Strogatz, Nature 393, 440 (1998).

[8] O. Shefi et al., Phys, Rev. E 66, 021905 (2002).

[9] S. Morita et al., Physica A 298, 553 (2001).

[10] J. Karbowski, Phys. Rev. Lett. 86, 3674 (2001).

[11] T.J.P. Penna and P.M.C. de Oliveira, J. Phys. A 22, 2719 (1989).

[12] D. Volk, Int. J. Mod. Phys. C 9, 693 (1998) with earlier literature.
Figure 1: Final overlap Ψ as a function of the number P of patterns, for $N \sim 10^4$ neurons. Each point is based on one sample only. Part a: BA network with $m = 2$, 3 and 5 from bottom to top. Part b: Nearest-neighbour hypercubic lattice in one to five dimensions as shown in headline.
Figure 2: Approximate power law variation of final overlap difference ($\Psi - 0.19$) with the number of patterns P, averaged over 100 samples, with $N = 10^4$ at $m = 3$. The straight line has a slope -0.6.
Figure 3: Variation of final overlap (not normalized) with the size m of the fully connected core, surrounded by $N = 10^4 - m$ BA sites having m neighbours each, at $P = 10, 100$ and 1000 (from left to right). Already for $P \ll m \ll N$ the corrupted pattern is restored well. The lowest data points refer to $P = 100$, $N = 3000 - m$. Part a ignores the diagonal term in the sum (1), while part b includes it.
Number of sites having the given number of neighbours, $m = 2$ (left) and 100 (right)

Figure 4: Number of sites having q neighbours for $N = 10^4$, summed over 100,000 simulations, at $m = 100$ (right data). We no longer get the simple power law const/q^3, shown here for comparison at $m = 2$ (left data).