Equivariant Singular Riemann-Roch Theorem

Bin Zhang

September 6, 2018

1 Introduction

The Riemann-Roch theorem [1], [2] has played such a key role in the study of algebraic geometry, algebraic topology or even number theory, that many attempts have been made to generalize it to the equivariant case (for example [3], [4]). Here we consider the case of the equivariant singular Riemann-Roch theorem, following the framework of P. Baum, W. Fulton and R. MacPherson.

2 Totaro’s approximation of EG

The purpose of this section is to describe a construction, due to Totaro [5], of an algebro-geometric substitute for the classifying space of topological group.

For topological group G, the spaces EG and BG are infinite dimensional, it is hard to control in general. What Totaro produces for a reductive algebraic group is a directed system of G-bundles $E_n \to B_n$ with the following property: for any algebraic principal G-bundle $E \to X$, there is a map $X' \to X$ with the fiber isomorphic to affine space \mathbb{A}^m, such that the pullback bundle $E' \to X'$ is pulled back from one of the bundles in the directed system by a map $X' \to B_n$.

For a complex linear reductive algebraic group G, Totaro constructs the directed system as follows:

Every object in the directed system is a pair (V, V'), such that V is a representation of G, V' is a non-empty open set of V, G acts freely on V', $V' \to V'/G$ is a principal G-bundle. $(V, V') < (W, W')$ if V is a subspace of W, $V' \subset W'$, $\text{codim}_V(V - V') < \text{codim}_W(W - W')$. The morphisms are just inclusions.
For some groups, there is a convenient choice of the directed system. For example, if \(G = T \) is a split torus of rank \(n \), then \(\{ (V^n, (V - \{0\})^n) | \dim V = l \} \) is the directed system.

3 Equivariant cohomology

In general [1], we define

\[H^*_G(X) = H^*(X \times^G EG), \]

Using the directed system above,

Lemma 3.1 For a complex Lie group \(G \) and for \(X \) a complex algebraic variety on which \(G \) operates algebraically, we have

\[H^*_G(X) = \lim_{\leftarrow} H^*(X \times^G V') \]

Proof. See [3] ■

For every \(G \)-vector bundle \(E \) over \(X \), \(E \times^G V' \rightarrow X \times^G V' \) and \(E \times^G EG \rightarrow X \times^G EG \) are all \(G \)-vector bundles, so we can define the Chern character \(ch^G(E) \in H^*_G(X) \) and \(ch^V(E) \in H^*(X \times^G V') \) by

\[ch^G(E) = ch(E \times^G EG) \]

and

\[ch^V(E) = ch(E \times^G V') \]

We know that under the map \(H^*_G(X) \rightarrow H^*(X \times^G V') \), \(ch^G(E) \) goes to \(ch^V(E) \).

When \(X \) is smooth, then for any \((V, V')\) in the directed system, \(X \times^G V' \) is smooth. So we can define the cohomological equivariant Todd class \(Td^G(X) \) to be the element in \(H^*_G(X) \) which maps to \(Td(X \times^G V') \) for every \((V, V')\) in the directed system.

4 Equivariant homology

Now for a complex linear reductive algebraic group \(G \), by using the constructed directed system, we can define the equivariant homology [5] for a \(G \)-variety \(X \), suppose \(\dim_{\mathbb{C}} X = n \).
\[H^G_i(X) = \lim_{\leftarrow (V, V')} H^{BM}_{i+2l-2g}(X \times^G V') \]

where \(l = \dim C_V, \, g = \dim C_G \).

Remark It is possible that \(H^G_i(X) \neq 0 \) for negative \(i \).

Proposition 4.1 \(H^G_*(X) \) is independent of \((V, V') \) if codim\(_V(V - V') \) big enough.

\(H^G_*(X) \) is a module over \(H^G_*(X) \). In other words there is a cap product:
\[
\cap : H^G_*(X) \otimes H^G_*(X) \rightarrow H^G_*(X) \text{ defined in the following way:}
\]

If \(\alpha \in H^G_*(X) \), then for any \((V, V') \), the image of \(\alpha \) under the map \(H^G_*(X) \rightarrow H^*(X \times^G V') \) defines a map by cap product: \(H^{BM}(X \times^G V') \rightarrow H^G_*(X) \). Go over to the direct limit, these maps induce a map from \(H^G_*(X) \) to \(H^G_*(X) \). This gives us the module structure.

For a non-singular variety \(X \), we can define the orientation class \([X]_G \in H^{2n}_{2n}(X)\) as follows:

For any object \((V, V') \) in the directed system, \(X \times^G V' \) is non-singular, so we have a class \([X \times^G V'] \in H^{BM}_{2n+2l-2g}(X \times^G V') \), \{\([X \times^G V']\)\} gives the orientation class \([X]_G \).

5 Equivariant Riemann-Roch Theorem

Now we can define the equivariant Todd class \(\tau^G \) as follows,

For any equivariant coherent \(G \)-sheaf \(\mathcal{F} \) over \(X \) (\(X \) is a complex algebraic variety), if \(p : X \times V' \rightarrow X \) is the projection, then the pullback sheaf \(p^* \mathcal{F} \) is a sheaf over \(X \times V' \), it descends to a coherent sheaf \(\mathcal{F}_V \) over \(X \times^G V' \). \(\tau(\mathcal{F}_V) \) is in \(H^{BM}(X \times^G V') \), so we get a map \(K^G_0(X) \rightarrow H^{BM}_*(X \times^G V') \). Obviously, it is compatible with the transition maps, so we get a map \(K^G_0(X) \rightarrow H^G_*(X) \), that is \(\tau^G \).

Theorem 5.1 (Equivariant Riemann-Roch Theorem) \(\tau^G \) is the unique natural transformation (with respect to \(G \)-equivariant proper maps) from \(K^G_0(X) \) to \(H^G_*(X) \), such that for any \(G \)-variety \(X \), we have the following commutative diagram:

\[
\begin{array}{ccc}
K^G_0(X) & \otimes & K^G_0(X) \\
\downarrow & \nearrow \otimes \tau^G & \downarrow \tau^G \\
H^G_*(X) & \otimes & H^G_*(X) \\
\end{array}
\]

\[
\begin{array}{ccc}
K^G_0(X) & \otimes & K^G_0(X) \\
\downarrow & \nearrow \otimes \tau^G & \downarrow \tau^G \\
H^G_*(X) & \otimes & H^G_*(X) \\
\end{array}
\]

\[
\begin{array}{ccc}
K^G_0(X) & \otimes & K^G_0(X) \\
\downarrow & \nearrow \otimes \tau^G & \downarrow \tau^G \\
H^G_*(X) & \otimes & H^G_*(X) \\
\end{array}
\]

\[
\begin{array}{ccc}
K^G_0(X) & \otimes & K^G_0(X) \\
\downarrow & \nearrow \otimes \tau^G & \downarrow \tau^G \\
H^G_*(X) & \otimes & H^G_*(X) \\
\end{array}
\]

\[
\begin{array}{ccc}
K^G_0(X) & \otimes & K^G_0(X) \\
\downarrow & \nearrow \otimes \tau^G & \downarrow \tau^G \\
H^G_*(X) & \otimes & H^G_*(X) \\
\end{array}
\]

\[
\begin{array}{ccc}
K^G_0(X) & \otimes & K^G_0(X) \\
\downarrow & \nearrow \otimes \tau^G & \downarrow \tau^G \\
H^G_*(X) & \otimes & H^G_*(X) \\
\end{array}
\]

\[
\begin{array}{ccc}
K^G_0(X) & \otimes & K^G_0(X) \\
\downarrow & \nearrow \otimes \tau^G & \downarrow \tau^G \\
H^G_*(X) & \otimes & H^G_*(X) \\
\end{array}
\]

\[
\begin{array}{ccc}
K^G_0(X) & \otimes & K^G_0(X) \\
\downarrow & \nearrow \otimes \tau^G & \downarrow \tau^G \\
H^G_*(X) & \otimes & H^G_*(X) \\
\end{array}
\]

\[
\begin{array}{ccc}
K^G_0(X) & \otimes & K^G_0(X) \\
\downarrow & \nearrow \otimes \tau^G & \downarrow \tau^G \\
H^G_*(X) & \otimes & H^G_*(X) \\
\end{array}
\]

\[
\begin{array}{ccc}
K^G_0(X) & \otimes & K^G_0(X) \\
\downarrow & \nearrow \otimes \tau^G & \downarrow \tau^G \\
H^G_*(X) & \otimes & H^G_*(X) \\
\end{array}
\]

\[
\begin{array}{ccc}
K^G_0(X) & \otimes & K^G_0(X) \\
\downarrow & \nearrow \otimes \tau^G & \downarrow \tau^G \\
H^G_*(X) & \otimes & H^G_*(X) \\
\end{array}
\]

\[
\begin{array}{ccc}
K^G_0(X) & \otimes & K^G_0(X) \\
\downarrow & \nearrow \otimes \tau^G & \downarrow \tau^G \\
H^G_*(X) & \otimes & H^G_*(X) \\
\end{array}
\]

\[
\begin{array}{ccc}
K^G_0(X) & \otimes & K^G_0(X) \\
\downarrow & \nearrow \otimes \tau^G & \downarrow \tau^G \\
H^G_*(X) & \otimes & H^G_*(X) \\
\end{array}
\]

\[
\begin{array}{ccc}
K^G_0(X) & \otimes & K^G_0(X) \\
\downarrow & \nearrow \otimes \tau^G & \downarrow \tau^G \\
H^G_*(X) & \otimes & H^G_*(X) \\
\end{array}
\]

\[
\begin{array}{ccc}
K^G_0(X) & \otimes & K^G_0(X) \\
\downarrow & \nearrow \otimes \tau^G & \downarrow \tau^G \\
H^G_*(X) & \otimes & H^G_*(X) \\
\end{array}
\]
and if \(f : X \rightarrow Y \) is a proper \(G \)-equivariant algebraic map, then

\[
\begin{array}{ccc}
K_0^G(X) & \xrightarrow{f_*} & K_0^G(Y) \\
\downarrow \tau^G & & \downarrow \tau^G \\
H_*^G(X) & \xrightarrow{f_*} & H_*^G(X)
\end{array}
\]

Furthermore, if \(X \) is non-singular, and \(\mathcal{O}_X \) is the structure sheaf, then

\[
\tau^G(\mathcal{O}_X) = Td^G(X) \cap [X]_G
\]

Proof. In fact, the proof is already encoded in the definition. ■

From the discussion, we have the following commutative diagram:

\[
\begin{array}{ccc}
K_0^G(X) & \xrightarrow{\tau^G} & H_*^G(X) \\
\downarrow & & \downarrow \\
K_0(X) & \xrightarrow{\tau} & H_*(X)
\end{array}
\]

where both downarrows are induced by forgetting functors.

6 Equivariant Riemann-Roch theorem with value in equivariant Chow group

For linear algebraic group \(G \), by using the same directed system, we can define \[\]

\[
A_i^G(X) = \lim_{\rightarrow} A_{i+2l-2g}^G(X \times^G V')
\]

where \(l = \dim_c V, \ g = \dim_c G \).

For the equivariant operational Chow group \(A_*^G(X) \), we define it as

\[
A_*^G(X) = \lim_{\leftarrow} A^i(X \times^G V')
\]

This definition concises with the definition in [6].

As in the previous section, we can define the Chern character, the Todd class and get a theorem similar to Theorem 5.1, except we use \(A_*^G(X) \otimes \mathbb{Q} \) and \(A_*^G(X) \otimes \mathbb{Q} \) to replace \(H^*_G(X) \) and \(H^*_*(X) \).
References

[1] M.F. Atiyah & R. Bott, The moment map and the equivariant cohomology, Topology, Vol. 23, No. 1, 1984, 1-28.

[2] P. Baum, W. Fulton & R. MacPherson, Riemann-Roch for singular varieties, Publ. Math. IHES (Paris) 45 (1975), 101-167.

[3] M. Brion, Equivariant cohomology and equivariant intersection theory. Notes by Alvaro Rittatore. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 514, Representation theories and algebraic geometry (Montreal, PQ, 1997), 1–37, Kluwer Acad. Publ., Dordrecht, 1998

[4] M. Brion & M. Vergne, An equivariant Riemann-Roch theorem for complete, simplicial toric varieties. J. Reine Angew. Math. 482 (1997), 67–92.

[5] D. Edidin & W. Graham, Characteristic classes in the Chow ring, J. Algebraic Geometry 6 (1997), 431-443

[6] D. Edidin & W. Graham, Equivariant intersection theory, preprint

[7] F. Hirzebruch, Topological methods in algebraic geometry, Die Grundlehren der Mathematischen Wissenschaften, Band 131 Springer-Verlag New York, Inc., New York 1966

[8] G. B. Segal, Equivariant K-Theory, Publ. Math. IHES (Paris) 34 (1968), 129-151.

[9] T. Kawasaki, The Riemann-Roch theorem for complex V-manifolds. Osaka J. Math. 16 (1979), no. 1, 151–159