Advanced materials and technologies for supercapacitors used in energy conversion and storage: a review

M. I. A. Abdel Maksoud1 · Ramy Amer Fahim2 · Ahmed Esmail Shalan3,4 · M. Abd Elkodous5,6 · S. O. Olojede7 · Ahmed I. Osman8 · Charlie Farrell9,10 · Ala’a H. Al-Muhtaseb11 · A. S. Awed12 · A. H. Ashour1 · David W. Rooney8

Received: 23 July 2020 / Accepted: 6 August 2020 / Published online: 28 August 2020
© The Author(s) 2020

Abstract
Supercapacitors are increasingly used for energy conversion and storage systems in sustainable nanotechnologies. Graphite is a conventional electrode utilized in Li-ion-based batteries, yet its specific capacitance of 372 mA h g⁻¹ is not adequate for supercapacitor applications. Interest in supercapacitors is due to their high-energy capacity, storage for a shorter period and longer lifetime. This review compares the following materials used to fabricate supercapacitors: spinel ferrites, e.g., MFe₂O₄, MMoO₄ and MCo₂O₄ where M denotes a transition metal ion; perovskite oxides; transition metals sulfides; carbon materials; and conducting polymers. The application window of perovskite can be controlled by cations in sublattice sites. Cations increase the specific capacitance because cations possess large orbital valence electrons which grow the oxygen vacancies. Electrodes made of transition metal sulfides, e.g., ZnCo₂S₄, display a high specific capacitance of 1269 F g⁻¹, which is four times higher than those of transition metals oxides, e.g., Zn–Co ferrite, of 296 F g⁻¹. This is explained by the low charge-transfer resistance and the high ion diffusion rate of transition metals sulfides. Composites made of magnetic oxides or transition metal sulfides with conducting polymers or carbon materials have the highest capacitance activity and cyclic stability. This is attributed to oxygen and sulfur active sites which foster electrolyte penetration during cycling, and, in turn, create new active sites.

Keywords Supercapacitor · Magnetic oxides · Transition metals sulfides · Carbon materials · Conducting polymer materials

1 Materials Science Lab, Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
2 Radiation Protection and Dosimetry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
3 Central Metallurgical Research and Development Institute (CMRDI), P.O. Box 87, Helwan, Cairo 11421, Egypt
4 BCMaterials-Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park, Barrio Sarriena s/n, Leioa 48940, Spain
5 Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
6 Center for Nanotechnology (CNT), School of Engineering and Applied Sciences, Nile University, Sheikh Zayed, Giza 16453, Egypt
7 Nanotechnology Platforms, University of KwaZulu-Natal, Durban, South Africa
8 School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast, Northern Ireland BT9 5AG, UK
9 South West College, Cookstown, Co., Tyrone, Northern Ireland BT80 8DN, UK
10 School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast, Northern Ireland BT9 5AH, UK
11 Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman
12 Higher Institute of Engineering and Technology, Manzala, Egypt
Introduction

Rising global population and the global energy crisis has led to concerns regarding electrical energy generation and consumption. There is therefore a need for an alternative energy storage device that has a higher capacity than the current technologies. Prior to now, the storage of electrical energy has been exclusively based on batteries and capacitors. Batteries have been the most utilized and preferred candidate, owing to high energy capacity coupled with substantial power evolved. However, when substantial energy is required at high power, capacitors remain the suitable device to date. Despite their benefits, both batteries and capacitors are inadequate for storing high energy and power density required for effective consumption and performance of renewable energy systems (Najib and Erdem 2019). Inventors and innovators in the field have been encountering bottlenecks with current solutions such as short lifecycles and shelf lives associated with batteries. This was only the case until revolutionary trends brought about applications of nanotechnology in the manufacturing of electrical appliances and large storage capacity devices (Burke and Zhao 2015). Nanotechnology is an advancement in the field of technology that deals with manipulation and regulation of substances on a nanoscale measurement, employing scientific skills from a diverse biomedical and industrial approach (Soares et al. 2018). Nanoparticles, a nano-size object that has three external nanoscale dimensions is the fundamental constituent of nanotechnology, while nanomaterials are materials with interior or exterior structures on the nanoscale dimension (Anu and Saravanakumar 2017; Jeevanandam et al. 2018). Nanomaterials possess unique chemical and physical characteristics that offer advantages and promotes them as an appropriate candidate for extensive utilization in fields such as electronics (Kang et al. 2015) and supercapacitors, where the storage of energy is required (Saha et al. 2018). It is now evident that the energy storage system is an important way to offer a solution to the rising demand in world energy generation and consumption (Nocera 2009).

Supercapacitors are electrochemical energy storage devices possessing both great power density and energy density with long lifecycle and high charging/discharging (Sun et al. 2018a). These properties are the reason for high-energy storage ability exhibited by supercapacitors for technological advancement (Chen and Dai 2013). SCs have been described as a capacitor that offers high storage space, larger than other capacitors with low internal resistance, which viaducts the gap between rechargeable cells and the conventional capacitors. In addition to high power capacity and longevity, low weight, large heat range of −40 °C to 70 °C, ease to package and affordable maintenance are the main advantages supercapacitors have over other devices that stores energy (Wang et al. 2009). The components of supercapacitors are an electrolyte, two electrodes and a separator which electrically isolate the two electrodes. These electrodes represent the most essential and fundamental constituent of supercapacitors (Pope et al. 2013; Iro et al. 2016); hence, the performance of the supercapacitors largely depends on the electrochemical properties of electrodes, the voltage range and the electrolyte. Iro et al. (2016) reported that applications of supercapacitors such as the ability to compliment the power of battery usage during emergency power supplies and in electric vehicle power systems are largely dependent on its useful attributes. Wide usefulness of supercapacitors has been described in fuel cell vehicles, low-emission hybrid vehicles, electric vehicles, forklifts, power quality upgrading and load cranes (Miller and Simon 2008; Cai et al. 2016). Fabrication of supercapacitors using printing technology has utilized diverse nanomaterials such as conductive polymers, electrolytes, transition metal carbides, transition metal dichalcogenides, nitrides and hydroxides (Sun et al. 2018a).

Magnetic metal oxide nanoparticles represent an attractive type of materials among inorganic solids because they are cheap and easy to prepare in large quantities (Masala and Seshadri 2004). Among different magnetic materials, spinel ferrites and inorganic perovskite oxides have superior performance as an electrode in supercapacitor applications. The emerging evidence has revealed that spinel ferrites of different elements are currently applicable in the design of supercapacitor energy storage devices. Spinel ferrite nanomaterials possess a high energy density, durability and good capacitance retention, high power and effective long-term stability (Elkholy et al. 2017; Liang et al. 2020). Recently, manganese zinc ferrite (MnZnFe2O4) nanoneedles were successfully synthesized, with higher specific capacitance than that of MnFe2O4 and ZnFe2O4. More so, the nanoneedles fabricated were found to exhibit a high surface area, powerful long-term stability and very high colomic effective-ness, which makes it suitable for supercapacitors application (Ismail et al. 2018). Perovskite oxides are functional nanomaterials that have received great attention to potential applications, and it has been widely employed in the fabrication of anion-intercalation supercapacitors. These nanomaterials are greatly influenced by valence state of B-site element, surface area and internal resistance. More importantly, research on energy and power densities of perovskite oxides are scanty (Nan et al. 2019; Ding et al. 2017). Design of La-based perovskite with high density, wide voltage window and high energy capacity for a flexible supercapacitor application was reported in the literature (Ma et al. 2019a). Although, the transition metal oxides have relatively poor conductivity and thus poor capacitance. Therefore, an oxygen replacement with sulfur was recently performed which led to transition metal sulfides. They have been viewed as materials capable of application in the
fabrication of supercapacitors owing to their characteristics such as good electrical conductivity, high specific capacitance, electrochemical redox sites and minimal electronegativity, which led to the synthesis of ternary nanostructures like CoO$_{0.33}$Fe$_{0.67}$S$_2$ in supercapacitors application (Liu et al. 2018a). In addition, the highly flexible, lightweight asymmetric supercapacitor “graphene fibers/NiCo$_2$S$_4$” was fabricated with an extremely high value of both energy density and volumetric capacity (Cai et al. 2016). This was in search for a more durable and efficient energy storage device with high volumetric capacity, high energy density and wide voltage window. The partially substituting Co by the transition metals (i.e., Zn, Mn, Ni, and Cu) in the Co$_3$O$_4$ lattice leads to produce an inverse spinel structure, in which the external cation occupies the B-sites, while cobalt occupies both the A- and B-sites (Kim et al. 2014). This presents effective channels for ion diffusion enrichment toward charge carriers (electrons or holes) that jump into the A-site and B-site for high electrical conduction (Liu et al. 2018b). ZnCo$_2$O$_4$ nanoparticles show the specific capacitance values of 202, 668 and 843, 432 F g$^{-1}$ (Bhagwan et al. 2020). The electrochemical characteristics of transition metal sulfides are much better than the electrochemical properties of transmission metal oxides. This can be explained by the presence of sulfur atoms instead of oxygen atoms. Hence, the lower electronegativity of sulfur than that of oxygen facilitates electron transfer in the metal sulfide structure easier than that in the metal oxide form. Thus, replacing oxygen with sulfur, providing more flexibility for nanomaterials synthesis and fabrication (Jiang et al. 2016). Li et al. (2019a) have found that the ZnCo$_2$S$_4$ electrode displays an extraordinary specific capacitance ~1269 F g$^{-1}$, which is 4 multiplies of those for Zn–Co ferrite electrode (~296 F g$^{-1}$), due to the ZnCo$_2$S$_4$ electrode having low charge-transfer resistance, and likewise, exceptional ion diffusion rate compared with achieved from the ZnCo$_3$O$_4$ electrode.

Furthermore, graphene and carbon nanotubes are carbon-derived nanomaterials that have received great attention in their potential application as efficient electrode materials in the design of supercapacitors owing to their high mechanical properties with great specific surface area and most importantly competent electrical properties (Chen and Dai 2013). Further, other forms of carbon-nanomaterials like carbon derivatives, xerogel, carbon fiber, activated carbon and template carbon likewise been applied in the design of supercapacitors and they also serve as the supercapacitor’s electrodes. These materials possess powerful lifecycles, durable power density, lasting cycle durability and desirable columbic reliability (Yin et al. 2014). Carbon-based nanomaterials are relatively cheap, readily accessible and very common with characteristic permeability which enables easy penetration of electrolytes into the electrodes, to boost the capacitance of the supercapacitors. Besides, its huge surface area and effective conductance of electricity make them applicable in electric supercapacitors with double layer (Yang et al. 2019a; Cheng et al. 2020a). In the same context, the extraordinary specific surface area and conductivity are demanded to secure excellent capacity achievement for the electrodes. Therefore, mineral oxide, two-dimensional carbon composites and polymer composites that possess high conductivity are normally utilized in electric devices with a high display. Especially, two-dimensional carbon composites improve capacity achievement via enhancing their surface area, porosity and electric conducting. Notwithstanding this level of concern, ZnCo$_2$O$_4$ efficiency needs more promotion by morphological and chemical modifications (Kathalingam et al. 2020). Hence, the incorporation of nitrogen-doped graphene oxide and polyaniline with the ZnCo$_2$O$_4$ affects on electrochemical performance. The prepared electrode exhibited a high capacity of about 720 F g$^{-1}$ and retained ~96% from its original capacitance over 10 × 103 cycles (Kathalingam et al. 2020). Also, the fabricated ZnCo$_2$S$_4$@hydrothermal carbon spheres/Fe$_2$O$_3$@pyrolyzed polyaniline nanotubes unveiled a high capacitance about ~ 150 mA h g$^{-1}$ and retained 82% from its original capacity after 6x103 cycles and confirming huge energy density (~ 85 W h kg$^{-1}$) at a moderate power density of 460 W kg$^{-1}$ (Hekmat et al. 2020).

The conducting polymer materials are pseudo-capacitance materials with poor lifecycles when compared with carbon-based materials (Snook et al. 2010). Numerous good properties of conducting polymer materials like flexibility, conductivity, ease of synthesis, financial viability and high pseudo-capacitance conducting polymer materials such as polypyrrole, polypyrrole and polyaniline have received great attention in the potential supercapacitor application. Despite these good properties, pure conducting polymer materials exhibit poor cycling stability and lower power and energy densities (Huang et al. 2017a).

This review focuses on spinel ferrites MFe$_2$O$_4$, MMoO$_4$ and MCo$_2$O$_4$, where M denotes a transition metal ion. Additional focus areas include perovskite oxides, transition metals sulfides, carbon materials and conducting polymer materials, as materials that have been extensively and widely employed in the fabrication of supercapacitors to establish loopholes in some of these nanomaterials. This would ultimately offer guidelines on how to design better energy storage devices with a higher power, density and sufficient storage ability.

Supercapacitor-based on spinel ferrites

Spinel ferrites constitute metal oxide compounds of minute classes of transition metals that are originally obtained from magnetite (Fe$_3$O$_4$). The spinel ferrites exhibit good magnetic and electrical characteristics, which has brought about its
broad applications in high-density data storage, water remediation, drug delivery, sensors, spintronics, immunoassays using magnetic labeling, hyperthermia of cancer cells, optical limiting, magnetocaloric refrigeration and magnetic resonance imaging (Farid et al. 2017; Dar and Varshney 2017; Amirabadizadeh et al. 2017; Pour et al. 2017; Alcalá et al. 2017; Yan and Luo 2017; Sharma et al. 2017; Winder 2016; Samoila et al. 2017; Niu et al. 2017; Anupama et al. 2017; El Moussaoui et al. 2016; Patil et al. 2016; Ghafoor et al. 2016; Ashour et al. 2018; Amiri and Shokrollahi 2013; Ouaisss et al. 2015; Houshiar et al. 2014; Maksoud et al. 2020a, b; Abdel Maksoud et al. 2020a; Hassan et al. 2019; Patil et al. 2018; Žalnėravičius et al. 2018; Thiesen and Jordan 2008; Koneracká et al. 1999; Arruebo et al. 2007; Basuki et al. 2013; Gupta and Gupta 2005a, b; Jain et al. 2008; Liu et al. 2005; Abdel Maksoud et al. 2020b). Besides these applications, raising attention in energy storage research via dissemination is due to the fast-growing demand for electronic devices that are manufactured to be smaller, lighter and relatively cheaper. Therefore, an all-in-one device demands effective energy storage components which will fit into such design criteria with enhanced energy performance (Reddy et al. 2013; Zhu et al. 2015; Hao et al. 2015). The crystal structure of some oxides such as ionic oxides, specifically oxides of Fe, permits visibility of complex composition of magnetic ordering. The type of such magnetic ordering is known as ferrimagnetism. The structure of these materials has two spins (up and down), and also, the net magnetic moment of all the directions is not zero (Reitz et al. 2008). For the various neighboring sublattices, the atoms’ magnetic moments are opposed to each other, nevertheless, the opposing moments are unbalanced (O’handley 2000; Cullity and Graham 2011).

Spinel ferrites are distinguished via the nominal composition MFe$_2$O$_4$, where M denotes divalent cations possessing an ionic radius within 0.6 and 1 Å, such examples are magnesium, copper, nickel, manganese, zinc, cobalt, etc. Also, M can be substituted by any different metal ions. The ferric ions can be substituted via extra trivalent cations such as aluminum, chromium, etc. The spinel structure originates from the MgAl$_2$O$_4$ which owns a cubic structure. This crystal was first discovered by Bragg and by Nishikawa (Ashour et al. 2014).

In the spinel lattice, each cell has a cubic arrangement and comprises eight MeFe$_2$O$_4$ molecules. The large O$^{2-}$ ions produce a face-centered cubic lattice. The cubic cell has two types of interstitial sites: (1) tetrahedral sites enclosed via 4 oxygen anions (A-site), (2) octahedral sites enclosed by 6 oxygen anions (B-site) (Shah et al. 2018; Yadav et al. 2018; Kefeni et al. 2020). Figure 1 shows the tetrahedral and octahedral positions in the FCC lattice (Cullity and Graham 2011; AJMAL 2009; Vijayanand 2010; Bhave 2007; Sachdev 2006).

On the basis of the cation distribution, ferrites can be subdivided into three classes: The possible distribution of the metal ions can be represented by the general formula (Cullity and Graham 2011):

$$\left(M^{2+}_s Fe^{3+}_{1-s}\right)\left[M^{2+}_{1-s} Fe^{3+}_{s}\right]O_4$$

where δ is the degree of inversion. The ions inside the brackets () are located in tetrahedral sites, while those inside the brackets [] occupy the octahedral sites. According to this distribution, there are three categories of spinel ferrites:

1. **Normal spinel ($\delta = 1$)** the formula becomes (M$^{2+}$)[Fe$_2$]O$_4$ and the divalent metal ions are in tetrahedral sites. ZnFe$_2$O$_4$ and CdFe$_2$O$_4$ are examples for normal spinel ferrites.
2. **Inverse spinel ferrite ($\delta = 0$)** the formula becomes (Fe$^{3+}$)[M$^{2+}$Fe$_{3+}$]O$_4$. In this case, the divalent metal ions completely occupy the octahedral sites while the iron is equally divided between the tetrahedral and octahedral sites. NiFe$_2$O$_4$ and CoFe$_2$O$_4$ are examples of inverse spinel ferrites.
3. **Intermediate ferrite** (0 < δ < 1) in which the M and Fe$^{3+}$ ions are distributed uniformly over the tetrahedral and octahedral sites. MnFe$_2$O$_4$ is an example of the intermediate ferrites (Cullity and Graham 2011).

For anode materials, three varieties of available charge-storage mechanisms are considered: alloying–de-alloying, intercalation–deintercalation and conversion reactions (Park et al. 2010; Zhang 2011; Kumar et al. 2004).
conversion-reaction mechanism applies to spinel ferrites as one of the oxides of transition elements. In spinel ferrites and through the initial discharging process, the crystal structure is destructed into different mineral particles, following with the production of the Li₂O form. As mineral particles promote the electrochemical action using the production/destruction of Li₂O that supplies the route for the conversion reaction mechanism (Jiang et al. 2013; Yuvaraj et al. 2016). To obtain an extraordinary power and excellent energy density Li-ion batteries, suitable electrode materials with remarkable specific capacities, cell voltages and Li-dispersion coefficients are necessary. After the effort of Poizot et al. (2000), transition metal-oxide nanoparticles have been examined as a possible electrode for Li-ion batteries. They are extraordinary electrochemical characteristics reaching 700 mA h g⁻¹ with no loss of their initial capacitance over 100 lifecycles at special rates of charging. This superior electrochemical reactivity of spinel ferrites confirmed that they attend to the developed satisfaction of such batteries.

Spinel MFe₂O₄ where M is Co, Zn and Mn

In the past few years, attention has shifted toward the application of spinel ferrite and their derivative composites (Shin et al. 2018; Reddy and Yun 2016). The spinel ferrite which has nominal composition MFe₂O₄, where M is magnesium, zinc, copper, manganese, nickel and cobalt, present notable discharging of capacitance up to 1000 mA h g⁻¹, which is about three orders of magnitude higher than commercial anodes made from graphite (Yuvaraj et al. 2016; Yin et al. 2013).

Cobalt ferrite CoFe₂O₄ nanoparticles

The nanoparticles of cobalt ferrite CoFe₂O₄ are a common ferromagnetic substance. The CoFe₂O₄ has an inverse spinel structure where Co²⁺ ion species are located at the B-site and the Fe³⁺ ion species are found at both the A and B sites as in the formula (Fe³⁺) [Co²⁺Fe³⁺] O₄. Interestingly, the ferrite materials are an interlacing structure of metal ions with positive charges and divalent oxygen ions with their negative charge. CoFe₂O₄ is a likely suitable for sensing devices as well as active and passive microwave devices due to its remanence, coercivity and high resistance (Sharifi et al. 2012; Yin et al. 2006). Also, CoFe₂O₄ is cubic in structure belonging to the Fd3m space group. Further, it is an insulator (ρ ≈ 10⁵ Ωm) with saturation magnetization = 90 A m² kg⁻¹ and magnetic moment (μ = 3.7 μB). In this circumstance, millimetre-sized single crystals of CoFe₂O₄ show almost an insignificant coercive field. Moreover, at 300 K, the crystallites CoFe₂O₄ samples sized 120 and 40 nm exhibit coercive fields of about 453 and 465 Oe, respectively (Amiri and Shokrollahi 2013; Ouaissa et al. 2015; Houshiar et al. 2014). Also, CoFe₂O₄ stores Li-ions via a conversion reaction, and it theoretically possesses a unique specific capacitance (> 900 mA h g⁻¹). However, it has critical disadvantages like high volume change that affects the trituration and accumulation of the active material and high resistivity that leads to reduced cycling stability and a lowering rate capability of the CoFe₂O₄ (Lavela et al. 2009; Kumar et al. 2014). Lately, Hennous et al. (2019) have studied the ⁵⁷Fe Mossbauer spectra of CoFe₂O₄ as a function of temperature (Fig. 2). Every spectrum produces a splitting owns magnetic nature (almost 6-line) including a broadening line attributed to the aligned Fe ions via a magnetic field locating various dissimilar sites. The reverse sextets arise due to the diverse number of cobalt and iron neighbors in tetrahedral and octahedral sites. At low temperatures, the tetrahedral site has a magnetically hyperfine field (50 Tesla) and declines regularly with rising its temperature (to 40 Tesla in 227 C. While, the octahedral site has a magnetic hyperfine field bigger than its value in the other site (tetrahedral site), which declined also with arising temperature. The nanoparticles of CoFe₂O₄ can enhance the capacitance of the composite electrode and have an immeasurable electrochemical activity, which leads to the improvement in energy and power densities of a supercapacitor.

Recently, Elsman et al. (2020) have established a facile one-step pathway to synthesize CoFe₂O₄/carbon spheres nanocomposite as a novel electrode. The glucose (as a source for carbon spheres) was directly combined with CoFe₂O₄ via the solvothermal approach at specific conditions. The electrode has significantly increased the electrochemical capacitance of 600 F g⁻¹, with loss of 5.9% of its initial capacitance over 5 × 10⁴ exhibiting an energy density of 27.08 W h kg⁻¹ and a power density 750 W kg⁻¹. This can be attributed to its structure which is hierarchical shaped allowing great electrical conductance. These results showed that the prepared composite electrode has much high specific capacity with maximum retention ability. Finally, the results affirmed that the electrode is very attractive applicants for supercapacitor materials. Also, Reddy et al. (2018a) have used ZnO to increase the electrochemical properties of CoFe₂O₄. The electrochemical analyses showed that the ZnO@CoFe₂O₄ nanocomposite electrode in a 3 M KOH aqueous solution performed a large specific capacitance (4050 F g⁻¹), with an excellent energy density about 77 W h kg⁻¹. This electrode presented excellent cycling stability and retained about 91% of its specific capacitance after 1000 cycles. Besides, the electrode exhibited a specific capacitance (~ 3500 F g⁻¹) and cycling stability (~ 50%) lower than the ZnO@CFO nanocomposite electrode. These outcomes of the nanocomposite were confirmed as electrodes for subsequent generation supercapacitor.
Zinc ferrite ZnFe_2O_4

Zn ferrite is the common material for electrochemical applications due to its eco-friendly nature, sufficient resources, cost-effectiveness, strong redox process and extraordinary theoretical capacity of 2600 F g$^{-1}$ (Vadiyar et al. 2015, 2016a; Raut and Sankapal 2016; Zhang et al. 2018a). However, its lower conductivity, volume fluctuations during charge and discharge rhythm and low cycling stability cycles make it unsuitable for efficient supercapacitors. To defeat those disadvantages, the conducting polymers or conducting materials were added to the Zn ferrite to enhance the electronic conductivity and to improve the cycling stability (Yang et al. 2018; Qiao et al. 2018). Israr et al. (2020) have synthesized a nanocomposite series of Zn ferrite/nano-platelets of graphene. The cyclic voltammetry curves for the as-synthesized electrode are displayed in Fig. 3. The figure shows that the curve shape is kept fixed for electrode even at higher scan rates, meaning its higher rate ability. It is worth to mention that the conducting network of graphene created within the formation of the nanocomposite is the main reason for this higher specific capacity and great rate ability. The high conductance of nanoplatelets of graphene within the nanocomposite structure makes efficient transport of charge as well as develops the electrode’s capability rate. The synthesized nanocomposites can be applied as electrochemical capacitors with an excellent capacitance of 314 F g$^{-1}$, great performance rate and lost about 22.6% of its initial capacitance.

In the same context, Yao et al. (2017) have successfully synthesized carbon-coated Zn ferrite/graphene composite by a general multistep strategy. During the anodic process, one broad peak rises at ~1.50–2.10 V, representing the oxidation of the base zinc ions (Zn0 to Zn$^{2+}$) and iron ions, i.e., Fe0 to Fe$^{3+}$. The electrochemical analyses confirm that electrode offers a discharge capacity (initial) with a value of 1235 mA h g$^{-1}$ and loss about 465 mA h g$^{-1}$ over 150 cycles with a high value of capacity and good cycling performance. The microstructural stability and the very low accumulation of hierarchical spheres of electrode are the most common reasons for allowing appropriate transportation of the ion/electrons leading to this enhanced electrochemical achievement. The electrochemical results are influenced by carbon layer novel architectures (~3–6 nm) and graphene nanosheets with ultrathin thickness. The studied electrode can be applied in Li-ion batteries as a high-performance alternative anode.
Manganese ferrite MnFe_2O_4

Spinel MnFe_2O_4 is characterized by rapid valence-state response-ability, high electrochemical activity along with it is a cheap, readily available and eco-friendly material. Therefore, spinel Mn ferrite NPs has been lately examined as proper electrodes for batteries based on lithium and sodium ions, batteries of metal-air and SCs (Xiao et al. 2013; Sankar and Selvan 2014, 2015; Lin and Wu 2011). But, the Mn ferrite has reduced both rate capability and cycling stability due to the inferior electrical conductivity and the serious effect of ion insertion/deinsertion performance during the charging/discharging process (Cheng et al. 2011; Guan et al. 2015; Wang et al. 2014a). Because of the integrated advantages of the quantum dot, it can be assumed that when the size of spinel Mn ferrite decreased into the quantum scale, the available surface area and the electrochemically active sites will greatly be developed in addition to rapid surface-controlled pseudo-capacitance behavior with reduction in the ion carrying route (Su et al. 2018). Besides, the electrode has an excellent performance rate owing to the integration between the great capacitance and extraordinary cycling stability. Su et al. (2018) have demonstrated the successful preparation of Mn ferrite@Nitrogen-doped graphene via the solvothermal method. The prepared electrode displays an extraordinary capacity of about $\sim 517 \text{ F g}^{-1}$. Furthermore, carbon encapsulation is promising for the development for rate and cycling achievement, providing a satisfying capacitance ($\sim 150 \text{ F g}^{-1}$) as well as an excellent lifecycle up to 65×10^3 cycles. These conclusions make the prepared materials are proper electrodes for energy storage applications.

The influence of electrolyte types on the electrochemical performance of Mn ferrite was evaluated. Vignesh et al. (2018) have documented a facile synthesis of Mn ferrite by co-precipitation technique. The electrochemical analysis of Mn ferrite was examined with various types of electrolytes, such as potassium hydroxide, lithium phosphate and lithium nitrate (Fig. 4). The highest capacity of 173 F g^{-1} via using potassium hydroxide, 31 F g^{-1} via using lithium nitrate and 430 F g^{-1} via using lithium phosphate were achieved.

Between these electrolytes, the potassium hydroxide electrolyte showed loss about 40% from its original capacitance with highest performance rate due to high accessibility of surface, synergistic activities and improved

![Fig. 3](ZFO)_{1-x}(\text{GNPs})_x$\text{ electrodes CV curves, where ZFO is refer to Zn ferrite and GNPs refer to nanoplatelets of graphene. Adapted with permission from Israr et al. (2020), Copyright 2020, Elsevier}
electronic conductivity of Mn-ferrite. Besides, the synthesis of symmetric cells via Mn-ferrite as an electrode material with potassium hydroxide as an electrolyte, respectively. It is illustrated that the results achieved a high capacity of 173 F g⁻¹ via using potassium hydroxide, 31 F g⁻¹ via using lithium nitrate and 430 F g⁻¹ via using lithium phosphate. Adapted with permission from Vignesh et al. (2018), Copyright 2018, Elsevier

Fig. 4 Cyclic voltammetry profile and specific capacitance as a function of the current density of MnFe₂O₄ electrode materials in aqueous KOH (a–c), lithium nitrate (d–f), lithium phosphate (g–i) as electrolytes, respectively. It is illustrated that the results achieved a high capacity of 173 F g⁻¹ via using potassium hydroxide, 31 F g⁻¹ via using lithium nitrate and 430 F g⁻¹ via using lithium phosphate. Adapted with permission from Vignesh et al. (2018), Copyright 2018, Elsevier

Spinel metal molybdates

The binary metal molybdates (NiMoO₄, CoMoO₄, FeMoO₄, etc.) have gained significant interest in the energy-related research area (compared to metal oxides, hydroxides and sulfides). This is due to their low cost, environmental friendliness, abundant resources, suitable electrical, electrochemical and mechanical properties for high capacity supercapacitors (Zhang et al. 2019a; Huang et al. 2016a). Lately, researchers have focused on the improvement in metal molybdates as electrode materials for supercapacitor applications.

Nickel molybdate NiMoO₄

The nickel molybdate NiMoO₄ has gained significant attention in recent years as a proper electrode material for supercapacitor, due to its inexpensive cost, unlimited sources,
great redox activity, well-defined redox performance and eco-friendly compatibility (Guo et al. 2014; Yin et al. 2015a). The nickel molybdate has many crystals’ shapes, and this depends upon the synthesizing technique and temperature of the annealing process as illustrated in Fig. 5 (Kumar et al. 2020; Liu et al. 2013a; Chen et al. 2015; Hussain et al. 2020).

The specific capacitance and better cycling stability of nickel molybdate are dependent on the crystals’ shapes. Ajay et al. (2015) observed that the two-dimensional nickel molybdate like-nanoflakes synthesized via rapid microwave-assisted achieved 1739 F g⁻¹ of specific capacitance at 1 mV s⁻¹ of scan rates. While, Huang et al. (2015a) found that three-dimensional form interconnected nickel molybdate like-nanoplate arrays show a specific capacitance as high as 2138 F g⁻¹ at a current density of 2 mA cm⁻², and an outstanding cyclability where lost 13% of its original capacity over 3 x 10³ cycles. Also, Cai et al. (2013), have synthesized nickel molybdate nanospheres and nanorods via simple hydrothermal techniques. The nickel molybdate nanospheres displayed a higher value of specific capacitance and good both stability of its lifecycle and rate capability than nickel molybdate nanorods. This behavior may be due to their massive surface area and good electrical conductivity. Nickel molybdate nanospheres displayed ~ 974 F g⁻¹ of specific capacitances while it was ~ 945 F g⁻¹ for nanoparticles. In another study, Cai et al. (2014a) observed that the mesoporous nickel molybdate like-nanosheets displayed a higher specific capacitance and cycling stability than nickel molybdate like-nanowires.

Notwithstanding these benefits, nickel molybdate as metal oxides materials undergoes lower cyclic stability attributed

Fig. 5 Nickel molybdate has many crystals’ shapes, and this depends upon the synthesizing technique and temperature of the annealing process. a–d SEM images of a nanoflower, adapted with permission from Kumar et al. (2020). Copyright 2020, Royal Society of Chemistry, b nanorods, adapted with permission from Liu et al. (2013a), Copyright 2013, Royal Society of Chemistry, c nanowire, adapted with permission from Chen et al. (2015), Copyright 2015, Elsevier, d nanogravel, adapted with permission from Hussain et al. (2020), Copyright 2020, Elsevier; e the crystal structure, adapted with permission from Huang et al. (2018a), Copyright 2018, Royal Society of Chemistry; f, g EDX spectra and elemental mapping images, adapted along with permission from Kumar et al. (2020) Copyright in 2020, Royal Society of Chemistry, for nickel molybdate ferrite.
to structural degradation induced via the hard-redox reactions. Furthermore, the breakdown of the nanostructure produced via the high volume change, particle agglomeration and variable solid electrolyte interface creates an extreme reduction in capacity (Budhiraju et al. 2017). To defeat the above-mentioned defects, the synthesizing of electrode materials via coating very conductive materials onto active materials has shown to be sufficient (Wang et al. 2017a). To date, conductive polymers, owing to their excellent electrical conductivity, plasticity and simple fabrication display effective properties when working as electrode materials (Huang et al. 2016b). Yi et al. (2020) reported a rational study and the structure of Ni-oxide@nickel molybdate like-porous sphere coated with polypyrrole. The outcomes reveal that the shell of nickel molybdate and polypyrrole with high electronic conductivity reduces the charge-transfer reaction resistance of Ni-oxide and then increases the electrochemical kinetics of Ni-oxide. The initial capacitance of Ni-oxide/nickel molybdate/polypyrrole is 941.6 F g^{-1} at 20 A g^{-1}. Particularly, the electrode holds capacitance of 850.2 F g^{-1} and remains 655.2 F g^{-1} with high retention of 77.1% at 30 A g^{-1} even after 30,000 cycles.

Cobalt molybdate CoMoO$_4$ nanoparticles

Cobalt molybdate CoMoO$_4$ has many advantages like nickel molybdate, such as cost-effectiveness, eco-friendliness and high electrochemical performance (Mai et al. 2011a). The considerable stability of one-dimensional form CoMoO$_4$ like-nanorods structure exhibited exceptional stability with high specific capacitance (Liu et al. 2013b). The synthesized CoMoO$_4$ by a simple sonochemical technique gave electrochemical performance and capacity of ≈ 133 F g^{-1} at 1 mA cm$^{-2}$ of current density (Veerasubramani et al. 2014). Furthermore, the CoMoO$_4$ like-nanoplate arrays produced a maximum capacity of 227 $\mu\text{A h cm}^{-2}$ at 2.5 mA cm$^{-2}$ and showed superior cyclic stability and energy density in the operating voltage window of 1.5 V (Veerasubramani et al. 2016). Nevertheless, metal oxides nature has a short diffusion distance of electrolytes that resulted in lower electrical conductivity and restricted their application as electrodes for pseudocapacitors. High surface area and electrical conductivity of graphene material enable it to be used as an electrode for supercapacitor (Sun et al. 2011). Nevertheless, graphene supercapacitors have low energy density and restrict its usage in several significant applications. The obtained CoMoO$_4$@graphene composites possessed high electroactive areas which could promote accessible accession of OH$^-$ ions and quick charge carriers (Xia et al. 2013). Jinlong et al. (2017) have reported the synthesizing of CoMoO$_4$@reduced graphene-oxide nanocomposites via the hydrothermal method. The electrode nanocomposites electrode showed a remarkable capacity about of ≈ 856 F g^{-1} at 1 A g$^{-1}$ and retain about 94.5% of its original capacitance over 2000 cycles. The electrode nanocomposites presented high electrochemical conductivity compared to pristine CoMoO$_4$. This improvement is attributed to the obtained composites that had a greater specific surface area and average pore size than the pristine for nanoparticles of CoMoO$_4$. The CoMoO$_4$ like-nanoflake promoted electrolyte transport through the charging/discharging process and presented numerous active sites available for electrochemical reactions. The synergetic effect between reduced graphene-oxide and CoMoO$_4$ also increased the performance of the supercapacitor.

Iron(II) molybdate FeMoO$_4$

Iron(II) molybdate FeMoO$_4$ is a part of the several notable mineral molybdates and assumed to give higher redox chemistry attributed to the mixed combinations of both Fe and Mo cations. To the day, Iron(II) molybdate widely utilized as promising electrode toward Li-ion batteries (Wang et al. 2014b). Wang et al. (2014b) have reported the doping of Iron(II) molybdate with graphene via a simple hydrothermal. The results confirmed that the Iron(II) molybdate/reduced graphene-oxide composite possesses specific capacitance 135 F g^{-1} at 1 A g$^{-1}$ larger than those obtained of Iron(II) molybdate 96 F g^{-1} or reduced graphene-oxide 66 F g^{-1}. Furthermore, the capacitance of the composite decayed gradually and reached 29.6% loss after 500 cycles. Recently, Nam et al. (2020) have successfully synthesized FMO nanosheet via the chemical bath deposition procedure. The outcomes demonstrate that the FMO electrode is highly proper in the supercapacitor application. The Iron(II) molybdate electrode shows excellent electrochemical achievements with specific capacity of about 158 mA h g^{-1} at 2 A g$^{-1}$, and 9% loss of its original capacitance over 4×10^3 cycle.

Sphene cobaltites

Until now, significant research has been conducted and led to the promotion of sphene cobalt oxide Co$_3$O$_4$ because of its cost-effective components, original plenty, excellent redox ability and extraordinary theoretical specific capacitance (Zhai et al. 2017). Nevertheless, due to the high electrical resistivity as a result of its semiconducting nature, the electrochemical achievements of most published Co$_3$O$_4$ electrodes are still far from expectations, with restricted specific capacitances and moderate power densities (Lu et al. 2017; Zhang et al. 2015a). Hence, considerable effort is being focused on offering more eco-friendly and moderately affordable alternative metals to partially substitute Co for making ternary sphene cobaltites, to collaboratively give excellent reversible capacities, preferred electrical conductivity and interesting redox chemistry (Liu et al. 2016a; Hui...
et al. 2016). Intrinsically, \(\text{Co}_2\text{O}_4 \) is characterized as a normal spinel structure, in which the Co\(^{2+}\) and Co\(^{3+}\) ions occupy the A-site and B-site, respectively (Gao et al. 2016a). The partially substituting Co by the transition metals (i.e., Zn, Mn, Ni, and Cu) in the \(\text{Co}_2\text{O}_4 \) lattice leads to produce an inverse spinel structure, in which the external cation occupies the B-sites, while Co occupies both the A- and B-sites (Kim et al. 2014). This presents effective channels for ion diffusion enrichment toward charge carriers (electrons or holes) that jump into the A-site and B-site for high electrical conduction (Liu et al. 2018b).

Nickel cobaltite (\(\text{NiCo}_2\text{O}_4 \))

\(\text{NiCo}_2\text{O}_4 \) as a mineral oxide represents a proper candidate used in the energy storage area owing to a high special capacity, extraordinary electric conduction and excellent stability (Xu et al. 2018a; Yuan et al. 2020). The nanoparticles of nickel-cobaltite were initially published as an exceptional display electrode candidate for electrochemical capacitors (Wei et al. 2010). Consequently, several nickel-cobaltite structures with various morphologies exhibited increased capacitive achievements as opposed to the bulk structure. Searches on Web of Science have revealed that about 1000 articles related to the application of nickel-cobaltite materials for electrochemical capacitors have been published to date. The composites of the nanoparticles of nickel-cobaltite originated on a substrate owns conduction nature is utilized in capacitors applications. Current research has confirmed that the incorporation of different elements upon the nanoparticles of nickel-cobaltite leading to achieving the excellent capacity and durability of the nanoparticles of nickel-cobaltite (Lin and Lin 2017). This performance-enhanced electrochemical property of the nanoparticles of nickel-cobaltite because attributing to production more transportation channels to easy charges motion leading to improve its electric conduction (Cheng et al. 2020b).

The nanoparticles of the spinel nickel-cobaltite own inverse structure where Ni\(^{2+}\) cations settle the B-sites and Co\(^{2+}\) ions settle the B- and A-sites equally. The nanoparticles of spinel nickel-cobaltite, a semiconductor (p-type) owns narrow bandgap (~ 2.1 eV) with suitable electric conduction. Spinel nickel-cobaltite has excited many researchers due to its promising cost-effectiveness and eco-friendliness properties compared with other metals oxides materials. The basic reactions can be displayed as the next equations (Cheng et al. 2020b):

\[
\begin{align*}
\text{NiCo}_2\text{O}_4 + \text{OH}^- + \text{H}_2\text{O} & \rightleftharpoons \text{NiOOH} + 2\text{CoOOH} + e^- \\
2\text{CoOOH} + \text{OH}^- & \rightleftharpoons \text{Co}_2\text{O}_3 + \text{H}_2\text{O} + e^-
\end{align*}
\]

Through the charge–discharge cycle, the redox reactions only appear on the surface of the electrode materials. It was observed that the specific capacitance of the spinel nickel-cobaltite improved after many hundreds of cycles to a limit range, owing to its exceptional morphologies and the activation process of the electrode (Cheng et al. 2020b).

Yang et al. (2019b) have synthesized the nanoparticles of spinel nickel-cobaltite with nanoneedle morphology via the hydrothermal technique. The nanoneedle of spinel nickel-cobaltite changed to nanoflake morphology via a template on the surface of a self-assembly graphene oxide/multiwall carbon nanotube. The template/substrate worked as a seed layer to promote the production of nucleation sites to facilitate the nanoparticles of spinel nickel-cobaltite to build on the surface of the template/substrate, through promoting the nanoneedle-like array morphology. The electrode composite showed extraordinary specific capacitance of 1525 \(\text{F g}^{-1} \) at 1 \(\text{A g}^{-1} \) and 1081 \(\text{F g}^{-1} \) at 100 \(\text{A g}^{-1} \), respectively. The prepared composite electrodes were utilized as both the anode and cathode, the supercapacitor showed the highest power density and maximum energy density of 5151 \(\text{W kg}^{-1} \) and 25.2 \(\text{W h kg}^{-1} \), respectively. Besides, is displayed superior cycling stability, where lost 0.4% only of the primary capacitance over \(7 \times 10^3 \) cycle thus affirming its suite for supercapacitor applications.

Both the nanoparticles of spinel nickel-cobaltite and Mn\(_2\)O\(_4\) have an edge owing to their characteristic abundance in nature, high theoretical capacitance and cost-effectiveness (Yuan et al. 2017). Xu et al. (2018a) first published that the hierarchical nanoparticles of spinel nickel-cobaltite@manganese dioxide core–shell nanowire arrays showed exceptional characteristics for electrochemical capacitors. The excellent performance was associated with the significant core–shell form and the synergistic impacts of the mixed enrichment from the porous nanoparticles of spinel nickel-cobaltite core and the thin manganese dioxide shell. Also, Zhang et al. (2016a) utilized galvanostatic electrodeposition to attach manganese dioxide nanoflakes on a two-dimensional form of the nanoparticles of spinel nickel-cobaltite structures on the steel mesh outside. The studied electrode offers a specific capacitance with a value of 914 \(\text{F g}^{-1} \) at 0.5 \(\text{A g}^{-1} \) along with after 3000 cycles has a loss of 12.9%.

Zinc cobaltite \(\text{ZnCo}_2\text{O}_4 \)

Spinel-type \(\text{ZnCo}_2\text{O}_4 \) is one of the spinel transition oxide group and characteristic cobaltite with Zn\(^{2+}\) ions locating the A-sites of spinel \(\text{Co}_2\text{O}_4 \) (Wu et al. 2015a). The eco-friendly, low-priced and abundant Zn, Co atoms show the high electrochemical activities; therefore, it is strongly applied in energy storage applications. Zhou et al. reported one-dimensional from the spinel-type \(\text{ZnCo}_2\text{O}_4 \) porous nanotubes which exhibit an extraordinary specific capacitance of 770 \(\text{F g}^{-1} \) at 10 \(\text{A g}^{-1} \) (Zhou et al. 2014). Also, Venkatachalam et al. (2017) used a hydrothermal technique to
prepare the spinel-type ZnCo$_2$O$_4$ like-hexagonal nanostructured, showing 845.7 F g$^{-1}$ at a current density of 1 A g$^{-1}$. Finally, Kathalingam et al. (2020) prepared the spinel-type ZnCo$_2$O$_4$@Nitrogen-doped-graphene oxide/polyaniline hybrid nanocomposite via a hydrothermal approach. The highest specific capacitance was 720 F g$^{-1}$ at 10 mV s$^{-1}$ and 96.4% capacity retention after 10^4 cycles were achieved. This enhanced performance for the composite electrode was ascribed to the improvements from reinforced material porosity characteristics.

The underlying mechanism of this action influenced by various cation substitutions (Mn, Ni, and Cu) has been discussed (Fig. 6). Liu et al. (2018b) presented a systematic examination to clarify the impact of metals replacement on the pseudocapacitive performance of spinel Co$_3$O$_4$. The replacement of Co by transition metals in the Co$_3$O$_4$ lattice can concurrently increase charge transference and ion dispersion, that way showing improved electrochemical properties. The MnCo$_2$O$_4$ gives magnificent specific capacitance about (\sim 2145 F g$^{-1}$) at 1 A g$^{-1}$. Also, more than 92% of its primary capacitance is kept after 5×10^3 cycles. Besides, the MnCo$_2$O$_4$/activated carbon electrode produces an exceptional energy density (\sim56 W h kg$^{-1}$) at a power density of about 800 W kg$^{-1}$.

Inorganic perovskite-type oxides

The inorganic perovskite-type oxides show special physicochemical characteristics in ferroelectricity (Pontes et al. 2017; Rana et al. 2020; Cao et al. 2017), piezoelectricity (Perumal et al. 2019; Vu et al. 2015; Xie et al. 2019), dielectric (Arshad et al. 2020; Zhou et al. 2019; Boudad et al. 2019), ferromagnetism (Yakout et al. 2019; Ravi and

![Fig. 6](https://example.com/fig6.jpg) This figure exhibits that the MCo$_2$O$_4$ nanowires are completely segregated with the symmetrical arrangement, which could be useful to the ions transport to redox-active positions, then probably enhancing the electrochemical features. The images of the field-emission scanning electron microscopy (FESEM) of a, d, g MnCo$_2$O$_4$, b, e, h NiCo$_2$O$_4$, and c, f, i CuCo$_2$O$_4$ nanowires at different magnifications. Adapted with permission from Liu et al. (2018b). Copyright 2018, Royal Society of chemistry
and A is larger. It was assumed that the unit cell of CaTiO₃ could be interpreted by Ca²⁺ ions at the corners of a cube, with Ti⁴⁺ ions at the body center and O²⁻ ions at the center of the faces (Schaak and Mallouk 2002).

To illustrate the correlation between the A, B, and O ions, the typical ABO₃ perovskite possesses a cubic crystal structure with tolerance factor (\(\tau \)) = 1, which is represented as
\[
\tau = (r_A + r_O) / \sqrt{2} (r_B + r_O),
\]
where \(r_A \), \(r_B \) and \(r_O \) are the ionic radii of A, B and oxygen elements, respectively. Goldschmidt has revealed that the cubic perovskite structure is stable only in tolerance factor a close range of 0.8 < \(\tau \) < 0.9, and a slightly larger range for distorted perovskite structures with orthorhombic or rhombohedral symmetry. The replacement of multiple cations into the A- or B-sites can change the symmetry of the pristine structure and, consequently, the physical and chemical properties (Zhang et al. 2016c). These changes in symmetry can be fulfilled over relatively little disfigurement in the crystal structure. This is evident in compounds that have smaller and larger values, leading to tilting of the BO₆ octahedral to permeate space. For orthorhombic structures, the tilting is about the b and c axes and for rhombohedral structures, the tilting is about each axis. This tilting brings the decrease in coordination number for A, B or both ions. In addition to tilting, displacement of cations can also lead to structural distortion.

The structure of rare-earth manganites RMnO₃ perovskite (R = rare earth element) is widely affected via the internal structural distortions existing in the compound (Chen et al. 2007; Dabrowski et al. 2005). The structure is formed by inter-connected MnO₆ octahedra in rare-earth. Usually, the lattice of perovskite lattice has distorted due to (1) octahedral tilting and/or (2) Jahn–Teller deformation (Siwach et al. 2008). Nandy et al. (2017) reported the influence of Na⁺ substituting on internal lattice deformation of EuMnO₃. The common atomic order of Euₓ₋ₓNaₓMnO₃ samples is presented in Fig. 7. It is obvious that 6 atoms of oxygen settle in face-centered of the cubic and 1 manganese atom settle body-centered of the cubic outlines the MnO₆ octahedra; finally, the corners were occupied via both of europium and sodium atoms. The lattice is exposed to deformations via the octahedra MnO₆ tilting and Jahn–Teller effect. The possibility for various replacements at the site of the cations is the principal feature of perovskites, which results in the appearance of great groups of compounds with different cations in B site (AB₁₋ₓO₃); with various cations in A site (Aₓ₁₋ₓBO₃); and with replacements in both cation position (Aₓ₁₋ₓBₓ₂₋ₓO₃) (Assirey 2019).

The phases of perovskite oxides have been classified into 2 categories (Assirey 2019):

I. The ternary perovskite-type oxides are divided into A¹⁺B⁵⁺O₃, A²⁺B⁴⁺O₃, A³⁺B³⁺O₃ types and oxygen- and cation-deficient phases. The oxygen and cation-deficient phases will be regarded as those which include large vacancies and not phases which are only slightly non-stoichiometric. Several of these hold B ions of one element in two valence states and should not be confused with the complex perovskite compounds which contain different elements in various valence states (Assirey 2019; Pan and Zhu 2016; Galasso 2013).

II. The complex perovskite-type compounds \(A(B'B''_y)_3 \) will be classified into four compounds which contain (Galasso 2013; Modeshia and Walton 2010):

(a) Compounds possess twice as much lower valence state elements as higher valence state elements, \(A(B'_{0.67}B''_{0.33})O_3 \).
(b) Compounds possess twice as much higher valence state elements as lower valence state elements, \(A(B'_{0.33}B''_{0.67})O_3 \).
Fig. 7 a, b MnO₆ tilting arrangement of atoms and combining e angles between asymmetrical bond Eu₁−O−Na₂MnO₃ samples, it is obvious that 6 atoms of oxygen settle in face-centered of the cubic and 1 manganese atom settle body-centered of the cubic outlines the MnO₆ octahedra, finally the corners were occupied via both of europium and sodium atoms. Adapted with permission from Nandy et al. (2017). Copyright 2017, Elsevier

(c) Compounds possess equal proportions of the two B elements, A(B′₅₅B″₅₃)O₆.
(d) Compounds with oxygen-deficient phases, A(B′B₅)O₆−v.

Potassium niobate (KNbO₃) presents various crystal arrangements depending on temperature, as compiled in Fig. 8. Above its curie temperature T_C = 708 K, it loses its ferroelectric properties and becomes cubic. While, below its curie temperature, it exhibits tetragonal, orthorhombic and then rhombohedral lattice with a reduction in temperature (Grabowska 2016; Zhang et al. 2013a, 2016c; Hirel et al. 2015).

KNbO₃ in orthorhombic phase has lattice parameters: a = 3.973, b = 5.693, and c = 5.721 Å belongs space group Amm2, cubic phase KNbO₃ has lattice parameter of a = 4.022 Å with space group (Pm3m), while KNbO₃ tetragonal phase belongs to space group (P4mm) (Magrez et al. 2006).

As a promising and crucial device for energy storage/conversion, supercapacitors have gained interest and wide appeal owing to its fast charge and discharge cycle, long-lasting lifecycle, high power density and safe operation (Lang et al. 2017). Investigating unique electrode materials, particularly coating electrodes with conductive matter is one of the most impactful ideas to enhance conductivity. It was not until 2014 before studies on perovskites as anodes for supercapacitors emanated when Mefford et al. (2014) examined the electrochemical properties LaMnO₃ for the impact of cation substitution on perovskite supercapacitors was insufficient. Thus, in the next section, the impact of cation substitution on perovskite supercapacitors, and consequently, the changes in their electrochemical performance was reviewed.

Influence of cation substitution in A-site of perovskite oxides

Ma et al. (2020) have examined the influence of A-site substitution of LaMnO₃ perovskite via calcium ions (Ca²⁺) or strontium (Sr²⁺). The La₀.₈₅Ca₀.₁₅MnO₃ and La₀.₈₅Sr₀.₁₅MnO₃ samples are synthesized via the sol–gel method. Schematic diagrams of the oxygen intercalation process in the phases of the crystal structure (orthorhombic/rhombohedral) of the studies samples are offered in Fig. 9. The relation between the oxygen octahedron deformation and Jahn–Teller impact as illustrated above as Mefford detailed, R1 has illustrated the oxidation pathway of (Mn²⁺) to (Mn³⁺). One of O_vacancy is fulfilled by O²⁻ intercalation, collectively with 2 ions of Mn²⁺ oxidized to Mn³⁺ as shown in the following equation:

$$\text{La}_{0.₈₅}\text{A}_{0.₁₅}\left[\text{Mn}_{2.₃}^{²⁺}\text{Mn}_{0.₇}^{³⁺}\right]\text{O}_{2.₉₂₅+δ} ± 2δ\text{O}²⁻ + 2δ\text{H}²⁺ \leftrightarrow \text{La}_{0.₈₅}\text{A}_{0.₁₅}\text{Mn}^{³⁺}\text{O}_{2.₉₂₅} + 2δ\text{e}⁻ + δ\text{H}_₂\text{O}$$ (1)

Nevertheless, the variation is that the La₀.₈₅A₀.₁₅Mn³⁺O₂.₉₂₅ is yet shown as an oxygen-deficient when every of the Mn²⁺ are oxidized to Mn³⁺. Therefore, the following step which expects the oxidation process of Mn³⁺ to Mn⁴⁺ as shown in the next equation:

$$\text{La}_{0.₈₅}\text{A}_{0.₁₅}\text{Mn}^{³⁺}\text{O}_{2.₉₂₅} + 2δ\text{H}²⁺ \leftrightarrow \text{La}_{0.₈₅}\text{A}_{0.₁₅}\left[\text{Mn}_{2.₃}^{²⁺}\text{Mn}_{1.₇}^{³⁺}\right]\text{O}_{2.₉₂₅+δ} + 2δ\text{e}⁻ + δ\text{H}_₂\text{O}$$ (2)

Ma et al. (2020) have examined the influence of A-site substitution of LaMnO₃ perovskite via calcium ions (Ca²⁺) or strontium (Sr²⁺). The La₀.₈₅Ca₀.₁₅MnO₃ and La₀.₈₅Sr₀.₁₅MnO₃ samples are synthesized via the sol–gel method. Schematic diagrams of the oxygen intercalation process in the phases of the crystal structure (orthorhombic/rhombohedral) of the studies samples are offered in Fig. 9. The relation between the oxygen octahedron deformation and Jahn–Teller impact as illustrated above as Mefford detailed, R1 has illustrated the oxidation pathway of (Mn²⁺) to (Mn³⁺). One of O_vacancy is fulfilled by O²⁻ intercalation, collectively with 2 ions of Mn²⁺ oxidized to Mn³⁺ as shown in the following equation:
The last step is classified into 2 steps. At $\delta = 0.075$, it occurs through O^{2-} that continuously arrested to fulfill the residual O_{vacancy} and the ions of Mn^{3+} are transformed into ions of Mn^{4+} (R2-1 in Fig. 9). The O_{vacancy} completely diffuses to the surface of the material, $La_{0.85}A_{0.15}Mn_{3+}^{4+}Mn_{0.85}^{3+}$ is formed. Then, the second step occurs, the Mn^{3+} ions are more transformed to Mn^{4+}, appearing in the oxygen over abundance $La_{0.85}A_{0.15}[Mn_{2.925+\delta}^{4+}Mn_{1-2.925+\delta}^{3+}]O_{2.925+\delta}$ product (R2-2 in Fig. 9).

Therefore, $La_{0.85}Ca_{0.15}MnO_3$ and $La_{0.85}Sr_{0.15}MnO_3$ samples with higher essential O_{vacancy} display excellent capacitance features than $LaMnO_3$ and store more energy by the O_{vacancy} tailored redox pseudocapacitance. The capacitances achieved are ~33.0 mF cm$^{-2}$, 129.0 mF cm$^{-2}$, and 140.5 mF cm$^{-2}$ for $LaMnO_3$, $La_{0.85}Sr_{0.15}MnO_3$, and $La_{0.85}Ca_{0.15}MnO_3$, respectively. The $La_{0.85}Ca_{0.15}MnO_3$ electrode produces the most exceptional capacitance behavior due to the lower value of ion dispersion impedance, the most distinguished concentricity of O_{vacancy} and the sufficient exploitation of the perovskite bulk structure.

Fig. 8 Crystal structures of cubic, orthorhombic and tetragonal and rhombohedral $KNbO_3$. Green spheres represent Nb, red spheres represent oxygen and purple spheres represent K. Adapted with permission from Hirel et al. (2015)

Fig. 9 a $La_{0.85}Ca_{0.15}MnO_3$; b $La_{0.85}Sr_{0.15}MnO_3$ compositions: the structures of crystal and the oxygen intercalation pathways of A-site replacement, the $La_{0.85}Ca_{0.15}MnO_3$ and $La_{0.85}Sr_{0.15}MnO_3$ samples with higher essential O_{vacancy} display excellent capacitance features than $LaMnO_3$ and store more energy by the O_{vacancy}. Adapted with permission from Ma et al. (2020). Copyright 2020, Elsevier
Also, Mo et al. (2018) have prepared Ca-doped perovskite lanthanum manganite via the sol–gel technique. Between fabricated samples, $La_{0.7}Ca_{0.3}MnO_3$ exhibited low essential resistance of 2.13 Ω cm2 and an extraordinary specific surface area of 23.0 m2 g$^{-1}$. The highest specific capacitance achieved was 170 F g$^{-1}$ at 1 A g$^{-1}$. Nevertheless, $La_{1-x}Ca_{x}MnO_3$ met serious elements leaching, resulting in small cycling stabilities and thereby restricting their applications as electrode materials of supercapacitors. Therefore, Ca-doped lanthanum manganite samples were not attractive applicants for supercapacitor applications. Overall, developments in electrochemical performances of manganite electrodes need different effective techniques to prevent cations leaching in Ca-doped perovskite lanthanum manganite. Wang et al. (2019b) have fabricated nanofibers of $La_{0.7}Sr_{0.3}FeO_3$ oxides via combining electrospinning. As an outcome, they produced $La_{0.7}Sr_{0.3}FeO_3$ nanofibers exhibiting outstanding performance as an electrode for supercapacitor purposes including increased specific surface area of 28.0 m2 g$^{-1}$ and efficient unique of the huge porosity. The $La_{0.7}Sr_{0.3}FeO_3$ (x = 0.3) exhibited an extraordinary capacitance around 520 F g$^{-1}$, which is still more than other samples. Additionally, over 5×10^5 cycles and at 20 A g$^{-1}$, the $La_{0.7}Sr_{0.3}FeO_3$ (x = 0.3) owns superior rate strength and stability over cycling (~84%) of its primary capacitance. Also, Cao et al. (Cao et al. 2015a) have synthesized nanofibers of the nanoparticles of $La_{1-x}Sr_{x}Co_0.9Mn_0.1O_3−\delta$ via electrospinning technique. The authors examined the impact of Sr cation substitution in A-site. They found that strontium substitutes the site of La ions; therefore, the morphology of $La_{1-x}Sr_{x}Co_0.9Mn_0.1O_3−\delta$ nanofibers is affected. Where, as the rise in Sr$^{2+}$ content, their coarseness and diameters suffer from reduction. But in contrast, with enhancing the Sr$^{2+}$ content, the area of surface for the studied sample and also, their grain size significantly increased. Moreover, both bond angles and length between manganese and oxygen ions are significant parameters that possess an outstanding effect in the double exchange of electrons and enhancing the electric conduction leading the improving electrochemical display of perovskites. The electrochemical activities of $La_{1-x}Sr_{x}Co_0.9Mn_0.1O_3−\delta$ nanofibers are significantly enhanced when the length is considerably reduced, and the angle is about 180°. The influence of cations substituting on A-site was further investigated by Wang et al. (2020a). The electrospinning and calcination techniques were used to fabricate porosity nanofibers of gadolinium Gd-substituted $SrNiO_3$ (Fig. 10). Some deffraction peaks of gadolinium substituted $SrNiO_3$ (at x = 0.5, and 0.7) are insignificantly increased and passivate owing to the lattice structure deformation from Sr-substituting. The octahedron of Ni$^{2+}$ and the bond angle between Ni and oxygen are deformed via the occupancy ratio in tetrahedral site elements, which are generated through the various radii between Gd$^{3+}$ and Sr$^{2+}$ ions. Jahn–Teller effect appears as a result of the dissimilar balance in A-site cations, causing stretching and distorting for the standard cubic crystal system on the c-axis, furthermore, lead to weaken the crystallinity of the crystal lattice. Hence, Gadolinium(III) ions with a shorter ion radius than Lanthanum are occupied as A-site ions, and then Strontium(II) ions with a larger ion radius are preferred to locate in the tetrahedral site.

The synthesized $Gd_{1-x}Sr_{x}NiO_3$ perovskite has more $O_{\text{vacancies}}$ and ion defects. It’s meriting remarking that the $O_{\text{vacancies}}$ of $Gd_{1-x}Sr_{x}NiO_3$ is simple to achieve and transferred by weak the bond between cation in octahedral site and oxygen and smaller energy, which can promote the transport of electric charge and perform with an outstanding performance in electrochemical energy storage. The product gadolinium-substituted $SrNiO_3$ at $x = 0.7$ owns the outstanding activities when utilized as an electrode for supercapacitors, which is strongly affected by the supreme surface area of approximately 16 m2 g$^{-1}$ and rational radius of pores reached 3.7 nm. The gadolinium-substituted $SrNiO_3$ at $x = 0.7$ exhibits a significant voltage window and outstanding capacitance, where gadolinium-substituted $SrNiO_3$ at $x = 0.7$ possesses specific capacitance of 929 F g$^{-1}$ in 1 Molar of sodium sulfate and 764 F g$^{-1}$ in 1 Molar of potassium hydroxide. Besides, the gadolinium-substituted $SrNiO_3$ at $x = 0.7$, the device exhibits an excellent energy density about 54 W h kg$^{-1}$ and the power density of 1 kW kg$^{-1}$ at 1 A g$^{-1}$. Furthermore at 20 A g$^{-1}$, the sample shows 20 kW kg$^{-1}$ as a remarkable power density and 19W h kg$^{-1}$ as a unique energy density.

In summary, cations substituting in the tetrahedral site of the perovskite has a prominent role in the extent of control or change grain size then obtaining a huge surface area. Moreover, it will affect on bowing the angle between the metal and O_2^-, and consequently, the variation in the bond length between the metal and O_2^-. Hence, this pathway leading the electric conduction and O_2^- dispersion rate of perovskites will likewise be improved because of O_{vacancy}. A suited amount of cations substituting in the tetrahedral site could achieve perovskites with enhancing the perovskites capacity display (Nan et al. 2019).

Influence of cation substitution in the octahedral site of perovskite oxides

Various research concerning anion-intercalation supercapacitors has considered that the suitable choice of the octahedral site cation intends to enhance the O_{vacancy} or decrease the inherent resistivity (Elsiddig et al. 2017; Zhu et al. 2016; Li et al. 2017a). Besides, the electrochemical display is based on the octahedral site elements. Liu et al. (2020) investigated the stability window of $Sr_{2}CoMnO_6−\delta$ affected by B-site cations substituting. The successful
substituting of Ni^{2+} into the $\text{Sr}_2\text{CoMoO}_6^{\delta-}$ lattice with various content, i.e., $\text{Sr}_2\text{CoMo}_{1-x}\text{Ni}_x\text{O}_6^{\delta-}$ was affirmed via XRD. A small increment in lattice constants was seen with substituting the Ni atom at the expense of the molybdenum ratio. This is explained by viewing the ionic radius of Ni^{2+} (0.69 Å), which is larger than the ionic radius of Mo^{6+} (0.59 Å) through the octahedral site. The cyclic voltammetry curves of the Ni^{2+} substituted the $\text{Sr}_2\text{CoMoO}_6$ electrode confirm that the predominant mechanism for store the carriers is intercalation pseudocapacitive. Nickel

Fig. 10 a The preparation schematic for nanofibers of $\text{Gd}_x\text{Sr}_{1-x}\text{NiO}_3$, b GSN CV curves, c GSN GCD curves, d capacitance of GSN Vs. scan rate, e capacitance of GSN Vs. the current density, where GSN is refer to $\text{Gd}_x\text{Sr}_{1-x}\text{NiO}_3$. Adapted with permission from Wang et al. (2020a). Copyright 2020, Elsevier
substituted the Sr$_2$CoMoO$_6$ samples showed NiO and Co$_3$O$_4$ NPs and perovskite oxide phases which provide the entire capacity. The resulting the O$_{\text{vacancy}}$ energy of the studied perovskite due to nickel and cobalt cations incorporation was also explained by density-functional theory estimation. The generation of oxygen vacancies was promoted once the B-site cations were accelerated from the oxide lattice within the perovskite. With increasing the scan rates, the oxidation peaks moved positively, while reduction peaks moved on the opposite way, implying fast redox reactions and excellent reversibility occurring in the electrodes. Tomar et al. (2018) have enhanced the oxygen vacancies strontium cobaltite SrCoO$_3$ via Mo-doping i.e. SrCo$_{0.9}$Mo$_{0.1}$O$_{3-\delta}$. The sol–gel method was utilized to synthesize SrCoO$_3$ and SrCo$_{0.9}$Mo$_{0.1}$O$_{3-\delta}$ as an oxygen anion-intercalated charge-storage substances. An extremely high value of diffusion coefficient is characteristic of the efficient accessibility of OH$^-$ ions inside the SrCo$_{0.9}$Mo$_{0.1}$O$_{3-\delta}$ electrode. At 1 A g$^{-1}$, the specific capacitance of SrCo$_{0.9}$Mo$_{0.1}$O$_{3-\delta}$ is around 1220.0 F g$^{-1}$. SrCo$_{0.9}$Mo$_{0.1}$O$_{3-\delta}$ exhibits extremely excellent capacitance retention at high current density. Also at 10 A g$^{-1}$, the SrCo$_{0.9}$Mo$_{0.1}$O$_{3-\delta}$ electrode exhibited excellent cycling stability and columbic efficiency (6.48% only loss from its original capacitance over five thousand cycles). Furthermore, SrCo$_{0.9}$Mo$_{0.1}$O$_{3-\delta}$ exhibits better performance than SrCoO$_3$, which is ascribed to higher oxygen vacancies and structural stability. From the above outcomes, we deduce that the substituting of cations inside the B-site enhances the O$_{\text{vacancies}}$ and improves the capacitance.

In the conclusion of the above review, the potential window of perovskite can be controlled via the cations substituting over the octahedral site. Moreover, as substituent cations possess large orbital valence electrons, the O$_{\text{vacancies}}$ grew, and then the specific capacity or specific capacitance multiplied (Nan et al. 2019). Furthermore, Table 1 reviews the electrochemical characteristics of some of the latest reported supercapacitors based on the magmatic oxides and their composites.

Transition metals sulfide based on nanocomposite electrode for supercapacitor applications

Transition metal sulfides, like MoS$_2$, CoS, NiS, MnS, FeS etc., represent potential materials for energy storage applications owing to the excellent electrochemical characteristics they exhibit (Zhang et al. 2020b). The electrochemical characteristic of transition metal sulfides is much better than the electrochemical properties of transmission metal oxides. This can be explained by the presence of sulfur atoms instead of oxygen atoms. Hence, the lower electronegativity of sulfur than that of oxygen facilitates electron transfer in the metal sulfide structure easier than that in the metal oxide form. Thus, replacing oxygen with sulfur provides more flexibility for nanomaterials synthesis and fabrication (Jiang et al. 2016).

Transition metal sulfides have attracted interest in many fields of research including, supercapacitors, solar cells and lithium-ion batteries because of their distinctive optical and electrical characteristics, especially when mixed with other materials to prepare nanocomposite structures (Rao 2020).

The main advantages of using nanostructured transition metal sulfides as improved materials that can be utilized as an electrode in electrochemical supercapacitors are because of their excellent electrochemical behavior. Such properties are distinctive structures of their crystal lattice, ultra-high specific capacitance, excellent conductivity of electric current, great redox activity, and small value of their electronegativity (Geng et al. 2018; Yu and David Lou 2018). These superior electrical characteristics of transition metal sulfides are mainly related to their specific forms and structures with extraordinary morphology of their surfaces, in terms of having unique shapes (nano-flowers, nano-rods, kelp-like, nanowires, flaky, hierarchical, the nano-honeycomb-like, etc.) (Li et al. 2020).

Nickel sulfide

Nickel sulfide (NiS) is a semiconductor and can be present in many various compositions. It can also be incorporated in a lot of interesting applications including supercapacitors, dye-sensitized solar cells and quantum-dots. Many electrode materials based on NiS have been studied to investigate their capability of being used as a supercapacitor. NiS nanocomposites have exceptional physicochemical properties with excellent transportation of ions over the electrode surface (Rao 2020). Besides, NiS nanocomposites possess high electrochemical functioning and performance for them to be widely applied as catalysts, as pseudo-capacitors and in dye-sensitized solar cells (Kim et al. 2016). Despite all of these interesting properties and characteristics of NiS nanocomposites, they still have some drawbacks such as limited stability of their questionable lifecycle (Ikkurthi et al. 2018).

For example, Xu et al. (2017) synthesized a nanocomposite electrode based on NiS and NiCo$_2$S$_4$ hydrothermally, the synthesis process is presented as a schematic diagram in Fig. 11. They used activated carbon as a negative electrode and NiCo$_2$S$_4$/NiS as a positive one. They used a supercapacitor of nickel cobaltite sulfide/nickel sulfide, which had a large active surface area with enhanced electrochemical characteristics such as, at 160 W kg$^{-1}$ of power density, it exhibits an energy density value of 43.7 W h kg$^{-1}$ and at
No.	Materials	Electrolyte	Specific capacitance	Energy density and power density	Cyclic stability	References
1	MnFe$_2$O$_4$	2 M KOH	282.4 F g$^{-1}$	No data	85.8% retention after 2000 cycles	Kwon et al. (2017)
2	MnFe$_2$O$_4$	2 M KOH	25.21 F g$^{-1}$	12.6 W h kg$^{-1}$	No data	Singh and Chandra (2018)
3	MnFe$_2$O$_4$	2 M KOH	88.4 F g$^{-1}$	No data	69.2% retention after 2000 cycles	Guo et al. (2017)
4	MnFe$_2$O$_4$/rGO	6 M KOH	271 F g$^{-1}$	15.9 W h kg$^{-1}$	104% retention after 5000 cycles	Tabrizi et al. (2017)
5	MnFe$_2$O$_4$/carbon black/PANI	0.5 M H$_2$SO$_4$	206 F g$^{-1}$	16 W h kg$^{-1}$	75% retention after 100,000 cycle	Zha et al. (2015)
6	Polyaniline/acetylene black/CuFe$_2$O$_4$	1 M KOH	732.35 F g$^{-1}$ F g$^{-1}$	26.757 W h kg$^{-1}$	78% retention after 5000 cycles	Das and Verma (2019)
7	Ni$_{1-x}$Mg$_x$Fe$_2$O$_4$	6 M KOH	259.89 F g$^{-1}$	11.96 W h kg$^{-1}$	88.79% retention after 1000 cycles	Guo et al. (2017)
8	NiAl$_{0.1}$Fe$_{1.9}$O$_4$	3 M KOH	271 F g$^{-1}$	15.9 W h kg$^{-1}$	104% retention after 5000 cycles	Tabrizi et al. (2017)
9	Ni$_{1-x}$Mg$_x$Fe$_2$O$_4$	1 M KOH	732.35 F g$^{-1}$	11.96 W h kg$^{-1}$	88.79% retention after 1000 cycles	Tabrizi et al. (2017)
10	Mn$_{1-x}$Ni$_{x}$Fe$_2$O$_4$	2 M KOH	250.9 F g$^{-1}$	No data	98.7% retention after 1000 cycles	Ramadevi et al. (2020)
11	rGO–NiFe$_2$O$_4$	1 M KOH	210.9 F g$^{-1}$	23.7 W h kg$^{-1}$	93% retention after 2000 cycles	Cai et al. (2019)
12	CoMnFeO$_4$	3 M KOH	770 F g$^{-1}$	–	98% retention after 8000 cycles	Saleh Ghadimi et al. (2019)
13	ZnMoO$_4$	3 M KOH	1123 F g$^{-1}$	240 W h kg$^{-1}$	98.2% retention after 2000 cycles	Vadiyar et al. (2016b)
14	PANI/MnFe$_2$O$_4$	1 M H$_2$SO$_4$	371 F g$^{-1}$	2680 W kg$^{-1}$	86.7% retention after 100 cycles	Arsalani et al. (2018)
15	Carbon fiber cloth/CoMoO$_4$	3 M KOH	237.8 F g$^{-1}$	84.6 W h kg$^{-1}$	–	Song et al. (2019)
16	CuFe$_2$O$_4$/RGO	3 M KOH	797 F g$^{-1}$	11 W h kg$^{-1}$	92% retention after 2000 cycles	Chandel et al. (2018)
17	ZnFe$_2$O$_4$	6 M KOH	118 F g$^{-1}$	42 W h kg$^{-1}$	83% retention after 8000 cycles	Vadiyar et al. (2016b)
18	CoFe$_2$O$_4$/graphene/PANI	6 M KOH	1123 F g$^{-1}$	240 W h kg$^{-1}$	98.2% retention after 2000 cycles	Mousa et al. (2017)
19	NiMoO$_4$/MoO$_3$	3 M KOH	184 F g$^{-1}$	37.5 W h kg$^{-1}$	100% retention after 75,000 cycles	Zhang et al. (2018b)
20	MoS$_2$/NiCo$_2$O$_4$	3 M KOH	51.7 F g$^{-1}$	18.4 W h kg$^{-1}$	98.2% retention after 8000 cycles	Wen et al. (2018)
21	ZnCo$_2$O$_4$@NiMoO$_4$·H$_2$O	1 M KOH	3.5 F cm$^{-2}$	2.55 mWh cm$^{-3}$	88% retention after 5000 cycles	Chen et al. (2019a)
Table 1 (continued)

No.	Materials	Electrolyte	Specific capacitance	Energy density and power density	Cyclic stability	References
28	CoMoO₄–NiMoO₄	2 M KOH	1079 F g⁻¹	33 W h kg⁻¹, 375 W kg⁻¹	98.4% retention after 1000 cycles	Yin et al. (2015b)
29	NiMoO₄@CoMoO₄	1 M KOH	1601 F g⁻¹	–	83% retention after 2000 cycles	Zhang et al. (2015b)
30	CoMoO₄/Co₃O₄	3 M KOH	1062.5 F g⁻¹	31.64 W h kg⁻¹, 7270 W kg⁻¹	90.38% retention after 2000 cycles	Zhou et al. (2015)
31	NiMoO₄@NiWO₄	3 M KOH	1290 F g⁻¹	–	93.1% retention after 3000 cycles	Reddy et al. (2018b)
32	α-ZnMoO₄	2 M KOH	234.75 F g⁻¹	20.808 W h kg⁻¹, 199.44 W kg⁻¹	82% retention after 1600 cycles	Reddy et al. (2019)
33	NiMoO₄/graphene nanosheets	2 M LiOH	3868 F g⁻¹	54 W h kg⁻¹, 19478 W kg⁻¹	98% retention after 4000 cycles	Kazemi et al. (2016)
34	Mn₀.₃₃Ni₀.₃₃Co₀.₃₃MoO₄	2 M NaOH	124 F g⁻¹	82 W h kg⁻¹, 1650 W kg⁻¹	80% retention after 2000 cycles	Minakshi et al. (2017)
35	MnCo₂O₄@NiMoO₄	2 M KOH	1244 F g⁻¹	42 W h kg⁻¹, 852.3 W kg⁻¹	93% retention after 8000 cycles	Mehrez et al. (2019)
36	FeCo₂O₄	3 M KOH	960.0 F g⁻¹	34.5 W h kg⁻¹, 6391.7 W kg⁻¹	94% retention after 10,000 cycles	Lalwani et al. (2019)
37	NiCo₂O₄/graphene	2 M KOH	845 F g⁻¹ F g⁻¹	52.2 W h kg⁻¹, 187 W kg⁻¹	97.3% retention after 10,000 cycles	Lv et al. (2017)
38	ZnCo₂O₄	2 M KOH	812 F g⁻¹	–	88% retention after 5100 cycles	Ramachandran and Hamed (2018)
39	Polyaniline–CuCo₂O₄	1 M KOH	403 C g⁻¹	76 W h kg⁻¹, 599 W kg⁻¹	94% retention after 3000 cycles	Omar et al. (2017)
40	Carbon black/ NiCo₂O₄	1 M KOH	604.4 C g⁻¹	33.7 W h kg⁻¹, 12.2 kW kg⁻¹	~90% retention after 50,000 cycles	Zha et al. (2017)
41	Carbon fiber paper@ NiCo₂O₄/graphene foam	2 M KOH	254 F g⁻¹	34.5 W h kg⁻¹, 547 W kg⁻¹	92.2% retention after 10,000 cycles	Tang et al. (2015a)
42	NiCo₂O₄-reduced graphene oxide	2 M KOH	870 F g⁻¹	–	90% retention after 5000 cycles	Umeshbabu et al. (2015)
43	NiCo₂O₄@MnO₂	1 M NaOH	112 F g⁻¹	35 W h kg⁻¹	~113.6% retention after 8000 cycles	Xu et al. (2014)
44	Carbon nanotube@ NiCo₂O₄	6 M KOH	1038 F g⁻¹	19.7 W h kg⁻¹, 62.5 W kg⁻¹	100% retention after 1000 cycles	Cai et al. (2014b)
45	FeCo₂O₄	3 M KOH	407 F g⁻¹ F g⁻¹	3 W h kg⁻¹, 3780 W kg⁻¹	142% retention after 2000 cycles	Pendashteh et al. (2015)
46	NiCo₂O₄@poly(3,4-ethylenedioxyypyrrrole) NiCo₂O₄	1775 F g⁻¹	898 W h kg⁻¹, 1.25 kW kg⁻¹	~95% retention after 5000 cycles	Deshagani et al. (2019)	
47	MnCo₂O₄@graphene	1 M KOH	406.50 F g⁻¹ F g⁻¹	20.32 W h kg⁻¹, 300 kW kg⁻¹	95% retention after 5000 cycles	Saren et al. (2019)
48	CoO/NiCo₂O₄	2 M KOH	908 F g⁻¹	–	75% retention after 3000 cycles	Jang et al. (2015)
49	LaMnO₃	0.5 M Na₂SO₄	520 F g⁻¹	52.5 W h kg⁻¹, 1000 W kg⁻¹	117% retention after 7500 cycles	Shafi et al. (2018)
50	La₀.₉₅Sr₀.₁₅MnO₃	1 M KOH	198 F g⁻¹	–	78% retention after 1000 cycles	Wang et al. (2016b)
51	(La₀.₇₅Sr₀.₂₅)₀.₉₅MnO₃	1 M Na₂SO₄	56 F g⁻¹ F g⁻¹	–	98% retention after 1000 cycles	Lü et al. (2015)
52	SrRuO₃	1 M KOH	52.4 F g⁻¹	–	77.8% retention after 1000 cycles	Galal et al. (2018)
53	La₀.₉₅Sr₀.₁₅NiO₃−δ	1 M Na₂SO₄	719 F g⁻¹	81.4 W h kg⁻¹, 500 W kg⁻¹	90% retention after 2000 cycles	Cao et al. (2015b)
a current density of 1 mA cm$^{-2}$ the specific capacitance reached its maximum value of 123 F g$^{-1}$.

Cobalt sulfide

Cobalt sulfide CoS$_2$ has many advantages in the field of supercapacitors as it is readily available raw materials, easy to synthesize and environment-friendly material, in addition to its high electrical conductance with plenty of sites available for redox reactions to occur (Li et al. 2016a). Several nanostructured electrode materials based on CoS have been prepared for utilization in the area of energy storage and supercapacitors. Recently, Govindasamy et al. (2019b) used the hydrothermal method to spread nanostructured nickel cobaltite sulfide/cobalt sulfide on a piece of carbon cloth in a two-step process as shown in Fig. 12. The prepared nickel cobaltite sulfide/cobalt sulfide exhibits a good specific capacitance of 1565 F g$^{-1}$ at a current density 1 A g$^{-1}$ and retained 91% of its initial SC after a number of 8000 cycles at a current density 1 A g$^{-1}$. At a power density value of 242.8 W kg$^{-1}$, the energy density value was 17 W h kg$^{-1}$.

Iron sulfide

Being reasonably priced, exhibiting very good electrical conductivity and possession of an excess of active sites; Iron sulfide (FeS$_2$) has attracted the interest of many researchers for its potential use in energy storage applications (Zhao et al. 2017a; Pham et al. 2018; Yu et al. 2018). A huge number of supercapacitors based on nanocomposites of FeS$_2$ as an electrode material has been prepared with a variety of interesting morphologies and structures. For example,
Balakrishnan et al. (2019) fabricated a hybrid supercapacitor based on FeS$_2$ and reduced graphene oxide hydrothermally. The prepared hybrid supercapacitor has a much greater value of specific capacitance than pure iron sulfide (i.e. the difference was 21.28 mF cm$^{-2}$ under the same conditions). Moreover, at a current density of 0.3 mA cm$^{-2}$, it retained 90% of its initial SC after 10,000 cycles. Figure 13 shows the Scanning electron microscopy images for the preparation of the hybrid supercapacitor.

Molybdenum disulfide

Molybdenum disulfide (MoS$_2$) is cheap, simply prepared in nanosheet form, with very high surface area and excellent conductivity (Liu et al. 2016c; Palsaniya et al. 2018). Owing to these excellent properties, MoS$_2$ and its based nanocomposites have been extensively studied in many fields and applications like catalysis, energy storage, supercapacitors, and Li-ion batteries (Osman et al. 2018).

As an example, Yang et al. (2017) used the hydrothermal reaction pathway with glucose assistance to manufacturing an asymmetric supercapacitor in the form of hierarchical arrays of NiS based on MoS$_2$ nanosheets on a backbone of carbon nanotubes as shown in Fig. 14. The prepared electrode demonstrated a specific capacitance of 676.4 F g$^{-1}$ at 1 A g$^{-1}$, and the retained capacitance percentage was 100% at a current density of 5 A g$^{-1}$ after 2000 cycles.

Another example is the hydrothermal synthesis of a novel nanocomposite based supercapacitor of molybdenum disulfide and graphitic carbon nitrides (g-C$_3$N$_4$/MoS$_2$) in a flower-like shape by Xu et al. (2019b). The specific capacitance of this supercapacitor was 532.7 F g$^{-1}$ at 1 A g$^{-1}$ and
retained 88.6% of its initial capacitance after 1000 lifecycles. These superior electrochemical characteristics may be attributed to the synergetic action between flowery MoS$_2$, and the nanosheets of graphitic carbon nitrides (see Fig. 15) which facilitates the charge-transfer process.

Recently, Manuraj et al. have synthesized a nanocomposite hetero-structured solid substance comprising of molybdenum sulfide, MoS$_2$, nanowires and RuO$_2$ nanoparticles via hydrothermal and chemical reduction procedures. In a three-electrode configuration, the MoS$_2$–RuO$_2$ hybrid electrode shows specific capacitance reached 972 F g$^{-1}$ at 1 A g$^{-1}$, while, in the two-electrode configuration, its presented 719 F g$^{-1}$ as presented in Fig. 16. Furthermore, the symmetric supercapacitor based on the composite electrodes shows high cycling stability which retained about 100% from its initial capacitance after 10×10^3 cycles. Also, MoS$_2$–RuO$_2$ hybrid electrode shows a high energy density value of 35.92 Wh kg$^{-1}$ at power density 0.6 kW kg$^{-1}$.

Tin sulfides

Many studies have been performed to enhance the electrochemical activities of tin sulfides (SnS and SnS$_2$), using numerous approaches. These include doping with metal or non-metal ions, use of a carbon matrix and material engineering into nanostructured forms of tin sulfides and their nanocomposites to apply them as electrochemical capacitors (Mishra et al. 2017; Wang et al. 2015b). Recently, Parveen et al. (2018) synthesized SnS$_2$ in different shapes of nanostructures like; ellipsoid tin sulfide (EL-SnS$_2$), flower-like (FL-SnS$_2$), and sheet-like (SL-SnS$_2$). The flower-like tin sulfide was the most promising one with small pore size and larger surface area exhibiting 432 F g$^{-1}$ of specific capacitance at 1 A g$^{-1}$.

Manganese sulfide

Manganese sulfide (MnS) is also a cheap, naturally abundant, environmentally friendly compound and theoretically, it possesses a high supercapacitance and electrical conductivity due to its various oxidation states ranging from +2 to +7 (Palaniyandy et al. 2019). Moreover, MnS is present in three polymorphic states: α (cubic), β (cubic), and γ (hexagonal) (Yu et al. 2016). A summary of some of the most recent work on MnS is shown in Table 2.
Tungsten sulfide

Tungsten sulfide (WS₂) is again abundant in nature and is found as hexagonal crystals belonging to the space group P63/mmc (Eftekhari 2017). WS₂ crystals are forming relatively brittle, restacked nanosheets with slight electrical conductivity, restricting its application as a supercapacitor (Xia et al. 2018). Hence, many approaches have been followed to enhance its electrochemical performance, such as doping with binary metals, non-metals, carbon materials and conducting polymers (Xia et al. 2018).

Choudhary et al. (Choudhary et al. 2016) prepared a nanowire of tungsten(VI) oxide (WO₃) and comprised it with a tungsten sulfide (WO₃/WS₂) core/shell structure. They used a foil of W and applied KOH on its surface to promote its oxidation at 650 °C, forming a hexagonal single crystal of WO₃ (h-WO₃), followed by a sulfurization process to finally form h-WO₃/WS₂ nanowires as illustrated in Fig. 17. The synthesized hybrid supercapacitor demonstrated superior electrochemical characteristics and losses a negligible percentage of its primary capacity after 30,000 lifecycles.

Carbon materials for supercapacitors applications

Carbon-derived materials hold numerous benefits such as great quantity in raw materials (abundance), thermal stability, value-added chemicals, ease of processing and modification. Consequently, they have displayed countless attention and high potential in different energy-related applications (Wang et al. 2008, 2018a; Meng et al. 2014; Li et al. 2016c; Jiang et al. 2012; Osman et al. 2019a, b, 2020a, b; Osman 2020; Chen et al. 2019b). Mesoporous carbon materials consider as promising targets for advanced applications due to
their exceptional features, which enables them to engross universal apprehension over the last few decades (Qiang et al. 2017; Zhang et al. 2017c; Sevilla et al. 2017; Wang et al. 2006; Hooch Antink et al. 2018). There are several physical arrangements for mesoporous carbons, containing nanoparticles (Górka and Jaroniec 2010; Lee et al. 2011), nanosheets (Wang et al. 2018a; Li et al. 2017b; Ding et al. 2013), nanotubes (Osman et al. 2019a, 2020a, b; Guo et al. 2011), nanofibers (Wu et al. 2015b), etc., which can adapt with several categories of industrial applications. Additionally, there are different pore size in the nanostructures of mesoporous carbons, including micropores, mesopores and macropores, which is of noteworthy prominence for their supercapacitor application.

Several preparation pathways, including nanocasting direct synthesis strategies, were studied to obtain mesoporous carbon materials with different particle structures via several reaction pathways (Fig. 18), which all have separate advantages and disadvantages (Li et al. 2016d).

Nanocasting method showed the best ability, compared to direct synthesis methods, to prepare unvarying dispersed mesopores in carbon materials with attracting features to produce highly symmetric mesoporous inorganic solid substances as appropriate templates in the energy storage application. Interestingly, mesoporous inorganic substances can reproduce their internal structures in nanoporous carbon construction with promising distributed mesoporosity. The nanocasting techniques for creating mesoporous carbons involved two advanced procedures, the hard and soft templating approaches. Commonly, the nanocasting technique is a relatively predictable templating progression. Notwithstanding that the synthesized mesoporous carbons have

Fig. 15 Morphology of a graphitic carbon nitrides g-C₃N₄/MoS₂ nanocomposite. a SEM image, b TEM, c HR-TEM, d sketch of the graphitic carbon nitrides/MoS₂ nanocomposite structure. As observed in the figure, a more uniform and smooth molybdenum disulfide structure performed without aggregation. TEM confirms that most of the molybdenum disulfide are grown on the surface of the graphitic carbon nitrides, which means that the graphitic carbon nitrides sheets give beneficial sites for the extension of the molybdenum disulfide. SEM: scanning electron microscopy, TEM: transmission electron microscopy, HR: high resolution. Adapted with permission from Xu et al. (2019b). Copyright (2019) Elsevier
inimitable physical and chemical features, the large-scale production has quite a few drawbacks.

High-performance supercapacitor electrode material via 3D carbon nanosheet

Due to the high cost of graphene and its derivatives, three-dimensional porous carbon nanosheets, synthesized via facile methods, have received attention for large scale applications because of their largely opened layer, excellent electronic transportation ability and high specific surface area. The obtained results for the prepared bark-based carbon demonstrates specific features toward a remarkable function in energy storage. The as-fabricated bark-based carbon-700°C-based supercapacitors exhibit an enchanting capacitance, exceptional capacitance retention and attractive energy density for supercapacitor application systems. The universal method of preparing a carbon nanosheet from bark, which exists in a tree’s construction is considered as environmentally friendly (as schematically shown in Fig. 19) (Li et al. 2019e), can be very succinct, as the bark contains the periderm as well as the lignin that oriented hollow tube cellulose fibers (Keränen et al. 2013; Sun et al. 2018b; Chen et al. 2018b).

Additionally, Fig. 20a illustrates the main structure of untreated bark that confirms the distribution of both abundant pores as well as different sizes in the raw materials, The pollen can be activated and the spherical porous structure of the materials kept as it is while using copper salts in the preparation pathway to synthesize the carbon nanosheet (Liu et al. 2018g). The SEM images of bark-based carbon 700 °C are demonstrated in Fig. 20b, c, which confirm the formation of a typical flower-like carbon structure with outstanding three-dimensional vertical carbon structure through the carbon nanosheet. As well, the TEM image (Fig. 20d) was used for the confirmation of the texture for the obtained bark-based carbon samples, in which the thin nanosheet structure of the as-prepared material was undeniably discovered. In addition, the N$_2$ adsorption–desorption measurements, through curves in Fig. 20e, were used to detect the obtained samples microstructures. The hysteresis loops located at 0.4–0.9 P/P_0 disclose the existence of the mesoporous (Chen et al. 2019c). The pore size distribution curves premeditated from density-functional theory are represented in Fig. 20f,
Table 2 Electrochemical characteristics of transition metals sulfide-based nanocomposite electrodes for supercapacitor applications

Electrode composition	Electrolyte	Current density (A g⁻¹)	Capacitance (F g⁻¹)	Percent of retained specific capacitance %/no. of cycles	Energy density (W h kg⁻¹)/power density (kW kg⁻¹)	References
MoS₂–graphene	1 M Na₂SO₄	1	243	92.3/1000	73.5/19.8	Huang et al. (2013a)
MoS₂/carbon aerogel	1 M Na₂SO₄	1	260	96/500		Huang et al. (2015b)
3D-MoS₂/chemically modified graphene	1 M Na₂SO₄	1	257	93/1000		Yang et al. (2015)
s-MoS₂/carbon nanotube	1 M Na₂SO₄	0.1	108	7.4/3.7		Khatuwala et al. (2016)
MoS₂/graphene foam//activated carbon prepared via expanded graphite	1 M Na₂SO₄	1	59	95/2000	16/0.758	Masikhwa et al. (2017)
MoS₂/graphene nanofiber	1 M H₂SO₄	10	145	98/3000		Weng et al. (2015)
Reduced graphene oxide/MoS₂	10 mV s⁻¹	298.81				Murugan et al. (2017)
MoS₂/carbon	1.6	182.9	94.1/1000			Fan et al. (2015)
Carbon nanotube@MoS₂	1 M Na₂SO₄	1	350.6	85/10,000		Sun et al. (2017)
G wrapped carbon nanotube@MoS₂	5	350	94.3/10,000			Sun et al. (2017)
MoS₂/mesoporous carbon spheres	1 M Na₂SO₄	1	411	93.2/1000		Zhang et al. (2017a)
Carbon fiber tow/MoS₂	10	272	3.67 mW h g⁻¹/33.21 m W g⁻¹			Gao et al. (2016b)
Carbon nanotube/MoS₂ nanosheet	5 mV s⁻¹	135 F cm⁻³	95/1000			Luo et al. (2015)
MoS₂/reclaimed carbon fiber	1 M Na₂SO₄	4	112	78.6/2000		Zhao et al. (2018)
MoS₂/reduced graphene oxide membrane on Ti Mesh 5:1	10 mV s⁻¹	17.6 mF s⁻¹				Lambertii (2018)
MoS₂/three-dimensional graphene	20 Α cm⁻²	2080 F cm⁻²	116.83/5000			Han et al. (2018)
MoS₂@N-doped carbon	1 M Na₂SO₄	1	276	90.59/6000		Cui et al. (2017)
Electrospun MoS₂@C nanofiber	6 M KOH	5 mV s⁻¹	355.6	93/2000		Kamuthini et al. (2017)
MoS₂-coated three-dimensional graphene network	3 M KOH	10	1825.24	110.57/4000		Zhou et al. (2017)
MoS₂/graphene nanobelts	2	278.07	96.75/1000			Jia et al. (2017)
MoS₂/C	2	290	132.4/5000			Lee et al. (2017)
MoS₂/reduced graphene oxide	2 M KOH	10 mV s⁻¹	314.5	80.02/1000		Awasthi et al. (2018)
MoS₂-hollow carbon sphere	0.5 M H₂SO₄	1	334	87/500		Liu et al. (2018d)
Carbon–MoS₂ nano-sphere	3 M KOH	10	760	96/2000		Luo et al. (2018)
MoS₂/nanospheres/reduced graphene oxide	1 M H₂SO₄	100 mV s⁻¹	1.501 mF cm⁻²	95/1000	5.71 mW h cm⁻²/54.1 mW cm⁻²	Dutta and De (2018)
Polyaniline/MoS₂	1 M H₂SO₄	1	575	98/500	265/18	Huang et al. (2013b)
Polyaniline/A-MoS₂	1 M H₂SO₄	10	405	88.6/1000	33.33/8	Zha et al. (2017)
Polyaniline/C-MoS₂	10	367	75.1/1000	27.11/8		Zha et al. (2017)
MoS₂/polyimide	5	157	96.47/1000			Chang et al. (2017)
M-MoS₂/polyaniline	10	337	80/2500			Ansari et al. (2017)
C-MoS₂/polyaniline	1	225.15	80/2500			Ansari et al. (2017)
C-MoS₂/polyaniline-20% MoS₂	1 M H₂SO₄	8	480	90/900		Wang et al. (2017b)
MoS₂/polyimide nanowire	3	350	82/2000	25.5/266.3		Chen et al. (2017a)
MoS₂/polypyrrole-nanowire	2 M HCl	5 mV s⁻¹	452			Alamro and Ram (2017)
MoS₂-polystyrene/di-imide-thiophene three configuation cells	2 M HCl	5 mV s⁻¹	360			Alamro and Ram (2017)
Electrode composition	Electrolyte	Current density (A g⁻¹)	Capacitance (F g⁻¹)	Percent of retained specific capacitance %/no. of cycles	Energy density (W h kg⁻¹)/power density (kW kg⁻¹)	References
---	----------------------------	-------------------------	---------------------	--	---	---------------------------
MoS₂/polyaniline@C		1	668	80/10,000		Yang et al. (2016)
MoS₂/polyphenyl	10 mV s⁻¹	720	85/4000	3.77/252.8		Tang et al. (2015b)
IT-MoS₂/polyaniline-62	0.5 M H₂SO₄	10	340	91/2000		Zhao et al. (2017b)
Macroporous-polyaniline nanorods@MoS₂		10	433	86.7/2000	43.3/6	Wang et al. (2017c)
Polyphenyl/MoS₂	1	895.6	98/10,000	3.77/252.8		Liu et al. (2017)
Polyamiline-few-layer MoS₂	10	720	85/4000	3.77/252.8		Tang et al. (2015b)
Ni₃S₂-MoS₂	8	791.2	91/2000	128/0.494		Wang et al. (2017c)
Ni₃S₂-MoS₂	10	733	78/20,000	128/0.494		Luo et al. (2017)
Co₃S₄-MoS₂	10	754	82/20,000	128/0.494		Luo et al. (2017)
Ni₃S₂–MoS₂//AC	100	60	86.2/10,000	18.75/7.5		Luo et al. (2017)
Bi₂S₃/MoS₂	10 mA cm⁻²	1.48 F cm⁻²	96.5/1000	3.77/252.8		Ma et al. (2017)
MoS₂/MnO	1	172	69.3/2000	3.77/252.8		Wang et al. (2016c)
MoS₂–NiO	2	1030	101.9/9000	3.77/252.8		Wang et al. (2017d)
MoS₂–Co₃O₄	1	1088.5	93/6000	3.77/252.8		Wang et al. (2017d)
MoS₂–WO₃	1 M Na₂SO₄	2	468	95/5000		Gong et al. (2018)
NiFe₂O₄/MoS₂	5	300	90.7/3000	3.77/252.8		Zhao et al. (2017c)
Bi₂S₃ nanorod/MoS₂ nanosheet	10	1553	92.65/5000	3.77/252.8		Fang et al. (2017)
MoS₂@3D-Ni-foam	3 mA cm⁻²	3400 mF cm⁻²	82/4500	3.77/252.8		Nandi et al. (2017)
Ag@MoS₂	2 M KOH	1	980	97/5000		Wu et al. (2017)
MoS₂/CoS₂ nanotube arrays	1 mA cm⁻²	142.5 mF cm⁻²	92.7/1000	13.25/0.05		Wang et al. (2017c)
MoS₂ nanosheet arrays@Ti plate	1 M KCl	1	133	93/1000	11.11/0.53	Wang et al. (2017f)
MoS₂ nanospheres (SiO₂@MoS₂)	2 M KOH	1	683	85.1/10,000		Gao et al. (2018b)
CoS₂@MoS₂	5	885	84.76/10,000	3.77/252.8		Huang et al. (2018b)
MoS₂–Co₃O₄	20	896	91.3/5000	3.77/252.8		Fang et al. (2018)
Ag nano-wires-MoS₂	0.05 V⁻¹	18 mF cm⁻²	96.3/20,000	3.77/252.8		Li et al. (2019c)
Ni₃S₂@MoS₂ (0.75 mM sodium molybdate)	6 M KOH	5	836.4	75.8/1250		Huang et al. (2017b)
MoS₂–rGO/multiwall carbon nanotube (MoS₂ 6.3%)	1 M H₂SO₄	0.5 A cm⁻³	4.8 F cm⁻³	100/7000		Sun et al. (2015)
MoS₂/polyamline/graphene	20	476	96/2000	3.77/252.8		Sha et al. (2016)
Polyamylene/carbon nanotube/MoS₂, MoS₂ 5%	10	289	68/2000	3.77/252.8		Thakur et al. (2017)
C@Ni₃S₂@MoS₂	10	1388	71.4/10,000	3.77/252.8		Li et al. (2016b)
Ni₃S₂@MoS₂	5	833	96.2/5000	3.77/252.8		Huang et al. (2017a)
MoS₂/Fe₃O₄/physical exfoliated graphite	1 M H₂SO₄	6	665	90/2200		Sarno and Troisi (2017)
Polyindole/carbon black/MoS₂	1	442	92.3/5000	2.11/0.135		Majumder et al. (2017)
MoS₂@carbon nanotube/reduced graphene oxide	1 M H₂SO₄	10 mA cm⁻²	96 mF cm⁻²	96.6/10,000		Wang et al. (2017g)
MoS₂ nanowires/NiCo₂O₄/active carbon		6	21	98.2/8000	18.4/12.002	Wen et al. (2018)
NiCo₂S₄–C–MoS₂	6 M KOH	0.5	1601	75/2000	27.70/400	Zhang et al. (2018a)
MoS₂/MoO₃@activated carbon cloth	5 mV s⁻¹	230	128/1500	3.77/252.8		Sari and Ting (2018)
C@MoS₂/Ni₃S₂	2 M KOH	20	468.6	136.7/10,000		Qin et al. (2018)
Multwall carbon nanotube/polyamline/MoS₂	1 M H₂SO₄	1	490	73.71/3000		Zhang et al. (2018c)
Reduced graphene oxide–MOS₂–WS₂	1	365	70/3000	15/0.373		Lin et al. (2018)
Table 2 (continued)

Electrode composition	Electrolyte	Current density (A g\(^{-1}\))	Capacitance (F g\(^{-1}\))	Percent of retained specific capacitance %/no. of cycles	Energy density (W h kg\(^{-1}\))/power density (kW kg\(^{-1}\))	References
Co\(_9\)S\(_8@N–C@MoS\(_2\) Nanocubes	3 M KOH	10	410	101.7/20,000		Hou et al. (2018)
Mo\(_2\)S\(_4@polyamine/reduced graphene oxide hierarchical nanosheets	1 M KOH	5	626.1	Zhang et al. (2014)		
Ni\(_2\)S\(_2\)	1 M NaOH	50	1000	Chen et al. (2017)		
NiCoS	1 M KCl	5	1513	Sami et al. (2017)		
Carbon nanofibers-NSS	2 M KOH	1	177.1 mA h g\(^{-1}\)	Xu et al. (2018b)		
NiCo\(_2\)S\(_2\)	1 M KOH	10 mA cm\(^{-2}\)	1155	Kim et al. (2017)		
NiCo\(_2\)S\(_2@NiO\)	3 M KOH	1 mA cm\(^{-2}\)	12.2 F cm\(^{-2}\)	Huang et al. (2016c)		
Quadruple-shelled CoS\(_2\)	2 M KOH	1	375.2	Jia et al. (2019)		
Hollow CoS\(_2\)	2 M KOH	1	936	Ren et al. (2019)		
Hierarchical CoS\(_2\)	2 M KOH	1	718.7	Xing et al. (2014a)		
Octahedron-shaped CoS\(_2\)	2 M KOH	1	236.5	Xing et al. (2014b)		
3D hollow CoS\(_2\)	6 M KOH	0.5	499	Zeng et al. (2017)		
Co\(_2\)S\(_2\) nanodendrites	2 M KOH	1	311.06	Zhang et al. (2016d)		
CoS\(_2\)-multimwall carbon nanotube	1 M NaOH	1	1486	Sarkar et al. (2018)		
Pyrite FeS\(_2\)	1 M Na\(_2\)SO\(_4\)	3	317.8	Chen et al. (2016b)		
FeS\(_2\)-carbon fiber	30 wt% KOH	1	406	Sridhar and Park (2018)		
FeS\(_2\)	2 M KOH	1	515 C g\(^{-1}\)	Sun et al. (2019a)		
Co\(_{0.5}\)Fe\(_{1.5}\)S\(_2\)	3 M KOH	2 mV s\(^{-1}\)	310.2 C g\(^{-1}\)	Liu et al. (2018a)		
FeS\(_2@Fe_2O_3\)	1 M Li\(_2\)SO\(_4\)	1	255	Gao et al. (2016a)		
Reduced graphene oxide/FeS	2 M KOH	3.3	300	Zhao et al. (2017d)		
MoS\(_2@carbon nanotubes/ Ni	1 M Na\(_2\)SO\(_4\)	1	512	Sun et al. (2019b)		
MoS\(_2@carbon nanotubes-MoO\(_2\)	1 M Na\(_2\)SO\(_4\)	0.8	365.6	Zhang et al. (2019b)		
MoS\(_2@carbon nanotubes-MoO\(_2\)	1 M Na\(_2\)SO\(_4\)	1	402	Chen et al. (2018a)		
MoS\(_2@carbon nanotubes-MoO\(_2\)	1 M Na\(_2\)SO\(_4\)	1	340.0	Liu et al. (2019)		
NiS@MoS\(_2@N\)-reduced graphene oxide	6 M KOH	1	2225	Xu et al. (2019c)		
MoS\(_2@reduced graphene oxide@polypryrolylene nanotubes	1 M KCl	1	1561.25	Sarmah and Kumar (2018)		
MoS\(_2@poly(ethyleneimine–graphene oxide	6 M KOH	1	153.9	Liu et al. (2018e)		
Mo\(_2\)O\(_2@MoS\(_2\)	1 M Na\(_2\)SO\(_4\)	1	383.5	Zhang et al. (2016c)		
Mo\(_2\)S\(_4@3D-Ni foam	Na\(_2\)SO\(_4/PVA solid	1.3	34.1	Mishra et al. (2019)		
Co\(_{0.5}@MnS\(_2@N–C@MoS\(_2\)	2 M KOH	1	1938	Kandula et al. (2018)		
Carbon black-SnS	1 M KOH	0.1	201	Barik et al. (2019)		
SnS\(_2@reduced graphene oxide	2 M Na\(_2\)SO\(_4\)	0.5	500	Chauhan et al. (2017)		
SnS\(_2@doped graphene hybrid nanosheets	6 M KOH	1	642	Liu et al. (2017b)		
Mo–SnS\(_2\)	3.5 M KOH	1	213	Ma et al. (2015)		
Mn–SnS\(_2@graphene aerogels	6 M KOH	5 mA cm\(^{-2}\)	523	Chu et al. (2018)		
SnS\(_2@Cu_2O@reduced graphene oxide	1 M KOH	0.6	1800	Hatui et al. (2017)		
SnS\(_2@SnO_2\)	0.5 M Na\(_2\)SO\(_4\)	2	149	Asen et al. (2019)		
which demonstrated the same pore structure with pores sizes principally determined at 0.8 and 1.2 nm. Reasonably, the current study can conclude that both treatment temperatures, as well as the hard template, are indispensable factors toward obtaining porous carbon nanosheets via biomass.

The performance of the as-prepared carbon nanosheet can be obtained via the electrochemical activity measurements by applying these materials in the supercapacitor. Figure 21a confirmed the obtained capacity ability curves of bark-based carbon at 700 °C, which proposes remaining capacitor activities of the bark-based carbon at 700 °C. Moreover, the galvanostatic charge/discharge, as well as specific capacitances results, are developed to consider the capacity implemented as an electrode material (Fig. 21b, c). The results indicated that bark-based carbon at 700 °C displays an exceptional capacitance around ~340.0 F g\(^{-1}\), comparing to that of bark-based carbon at 600 °C around ~290 F g\(^{-1}\) and finally bark-based carbon at 800 °C displays capacity 309 F g\(^{-1}\). Likewise, Fig. 21d illustrates the electrochemical impedance spectroscopy analysis of bark-based carbon samples, which indicates related plot profiles that contain a semicircle and around vertical lines in low and high frequencies, respectively, to result in significantly better supercapacitor behavior. Thus, it can be established that bark-based carbon at 700 °C owns the lower values of resistance about 0.26 Ω, indicating the exceptional electrochemical performance of the 3D porous carbon nanosheet.

Graphene-based nanocomposites for supercapacitor applications

Graphene which exists in hexagonal assembly can be defined as a two-dimensional single layer of \(sp^2\) hybridized carbonaceous atoms. The number and arrangement of graphene layers determine the electronic characteristics of graphene. Additionally, interlayer ordering and the layer number with a different thickness could affect the chemical and physical characteristics of graphene.

Table 2 (continued)

Electrode composition	Electrolyte	Current density (A g\(^{-1}\))	Capacitance (F g\(^{-1}\))	Percent of retained specific capacitance %/no. of cycles	Energy density (W h kg\(^{-1}\))/power density (kW kg\(^{-1}\))	References
SnNi\(_2\)S\(_4\)	1 M KOH	2	1484			Chandrasekaran et al. (2018)
MnS/GO-NH\(_3\)	2 M KOH	0.25	391			Tang et al. (2015c)
Graphene nanosheets—manganese sulfide	3.5 M KOH	2	792			Vignesh et al. (2019)
MnS@reduced graphene oxide/Ni	3 M KOH	0.5	2220			Naveen Kumar and Paruthimal Kalaigajan (2018)
y-MnS/reduced graphene oxide	1 MKOH, 0.5 MnS, S/NaH\(_2\)O/0.5 M Sulfur powders	5	802			Li et al. (2015)
y-MnS/reduced graphene oxide	2 M KOH	1	548			Zhang et al. (2017b)
y-MnS/reduced graphene oxide	6 M KOH	1	1009			Ranganatha and Muthuramalingam (2018)
y-MnS	0.5 M Na\(_2\)SO\(_4\)	0.2	378			Li et al. (2019d)
α-MnS/3-reduced graphene oxide	3 M KOH	1	934			Quan et al. (2016)
ZnS/MnS	3 M KCl	2 (mV s\(^{-1}\))	884			Arul et al. (2018)
CuS/MnS	3 M KOH	1	1144			Liu et al. (2018f)
WS\(_2\)	1 M H\(_2\)SO\(_4\)	40 mV s\(^{-1}\)	86 mF cm\(^{-2}\)			Liang et al. (2018)
WS\(_2\)/reduced graphene oxide	1 MKOH, 0.5 MKCl	1 mV s\(^{-1}\)	2508			Tu et al. (2016)
WS\(_2\)-multiwall carbon nanotubes	1 M H\(_2\)SO\(_4\)	1	760			Gao et al. (2018c)
WS\(_2\)/N,S-reduced graphene oxide	6 MKOH	1	1562			Xu et al. (2019d)
ZnWO\(_4\)/WS\(_2\)	3 MKOH	3	1281			Anitha et al. (2019)
CuWS/Ni	1 M Li\(_2\)SO\(_4\)	10 mA	2667			Parshamalai et al. (2019)
Graphene has received great research attention owing to its extraordinary features. For instance, its powerful mechanical strength, porosity, large specific area, improved conductivity, and electrochemically active nature. Different physical and chemical pathways can be used to attain graphene as well as several composite materials between graphene and other compounds that make graphene appropriate to improve the electrochemical activity of different materials for numerous applications like lithium-ion batteries and supercapacitors. Graphene-derived materials possess a monumental potential for applications in broad areas such as conversion, electronics, energy storage and catalysis (Sun et al. 2011; Chen and Hsu 2011; Liu et al. 2012; Yu et al. 2012; Shih et al. 2013; Zhang et al. 2012; Hou et al. 2013; Wang et al. 2013a; Girishkumar et al. 2010; Jin et al. 2013; Hassoun et al. 2012; Pan et al. 2013; Yang et al. 2013; Gao et al. 2012; Wang et al. 2013b; Zhang et al. 2013b; Zhu et al. 2012; Luo et al. 2012; Xu et al. 2013; Lin et al. 2013; Huang et al. 2012; Wang et al. 2011). Scheme 1 described the information on characteristics of graphene that enables its wide range of applications, and the features of graphene for different applications.

Graphene and their composites were widely employed for progress in supercapacitors. Where it has got significant attention, attributed to its exceptionally surface area achieved ~2542.0 m² g⁻¹ and its unique electrical conduction characteristic. Also, one layer of G performs extraordinary capacitance around ~20.0 μF cm⁻¹ which is larger than other composites based on C materials. The highest energy density of the supercapacitors depends on various parameters namely; electrode nature, current collectors, separators, type, and density of electrolyte, working voltage window of the cell, and the retention performance (El-Kady et al. 2016). Graphene, as an electrode material, has a large enrichment to the performance of the supercapacitor. It owns numerous obvious shapes in all four dimensions as quantum dots, wires (one dimensional), films (two dimensional), and monoliths (three dimensional). Further to the four-dimensional self-healing structure (Yadav and Devi 2020).

Graphene oxide material along with the reduced graphene oxide species are examined as possible electrode materials for supercapacitors because of their remarkably great specific surface area, superior electrical conductivity, and exceptional mechanical properties (Wang et al. 2009; Ke and Wang 2016). Michael et al. have synthesized an asymmetrical supercapacitor device based on graphene oxide via a simple screen-printing method. The capacitance was increased from 0.82 to 423 F g⁻¹, after graphene oxide incorporation. The device exhibited a power density of about 13.9 kW kg⁻¹ at the energy density up to 11.6 W h kg⁻¹. Also, Zhang et al. (2016f) have successfully synthesized a reduced graphene oxide/nickel foam electrode via flame-induced reduction of dry graphene oxide onto nickel foam. The produced composite material offers a specific capacitance that reaches 228.6 F g⁻¹ at 1 A g⁻¹ and retained high cycling stability up to 94.7% after 10,000 cycles. The excellent performance is ascribed to the cross-linking disordered network along with the random distribution of the resulted pores that allows fast transport of ions to the active sites (Zhang et al. 2016f). Recently, Sahoo et al. (2016) have synthesized a novel
porous ternary nanohybrid based on NiMn$_2$O$_4$, reduced Graphene oxide, and Polyaniline as an excellent supercapacitor electrode material. The NiMn$_2$O$_4$/reduced graphene oxide/polyaniline shows a specific capacitance of 757 F g$^{-1}$ at 1 A g$^{-1}$. Further, the electrode presented the highest energy density of (70 W h kg$^{-1}$) with retained about 93% after 2000 cycles (Fig. 22).

Mariappan et al. (2019) have synthesized ternary nanocomposites with varying weight portions of reduced graphene oxide/polypyrrole/Co ferrite and reduced graphene oxide/polypyrrole/Fe$_3$O$_4$ by a hydrothermal procedure (Fig. 23). The specific capacitance for 37 wt% reduced graphene oxide/58 wt% Polypyrrole/5 wt%Fe$_3$O$_4$ (FO5). 32 wt% reduced
graphene oxide/54 wt% polypyrrole/14 wt% Fe₃O₄ (FO14), 37 wt%rGO/58 wt% polypyrrole/5 wt% Co ferrite (CFO5), and 32 wt%rGO/54 wt% polypyrrole/14 wt%Co fer-
rite (CFO14) is reached to 261, 141, 108 and 68 F g⁻¹ at
1 A g⁻¹, respectively. Between the studied samples, FO5
presents high specific capacitance with excellent rate
ability and excellent cycling performances. The energy
density is observed to range between 18–4.2 W h kg⁻¹ at
a power density between 0.3–10.5 kW kg⁻¹, respectively.

Also, the doping graphene with nitrogen is an efficient
route to enhance its properties and therefore, it has been
used in lithium-ion batteries and supercapacitors. During a
nitrogen atom is doped into graphene, three public bonding
arrangements within the carbon lattice, namely pyridinic N,
pyrrolic N, and graphitic N (quaternary N) are seen (Fig. 24)
(Wang et al. 2012; Yadav and Dixit 2017).

For the illustration of pyridinic N, one Nitrogen atom
are replaced carbon matrix and then make chemical bonds
with 2 Carbon atoms at the graphene edges gives a one-
electron (p) to the π system. The reason for naming Pyrr-
olic N attributes to that the nitrogen atoms give 2 electrons
(p) to the π system and then create chemical bonds in the
ring with the 5 neighbors of C atoms. Finally, quaternary
nitrogen atoms that replace C atoms in the hexagonal ring.
Among these N-types, pyrrolic N appears a sp³ hybridized
while the other two types appear sp² hybridized (Yadav and
Devi 2020). The N-graphene displays various properties
compared with pure graphene. For example, the spin den-
sity and charge arrangement of C atoms will be effected
via the neighbor nitrogen substituents, which produces
the activation region on the graphene surface (Wang et al.
2012). Chen et al. (2013) have synthesized N-doped gra-
phene hydrogel via the hydrothermal approach. The fabri-
cated electrode exhibited extraordinary power density of
205 kW kg⁻¹ and retained about 92.5% capacitance after
4000 cycles at100 A g⁻¹. Recently, Rezanezhad et al. (2020)
have synthesized the Mn–Nd co-doped LaFeO₃ perovskite
NPs via the hydrothermal technique (Fig. 25). Subsequently,
the system was incorporated with N-Graphene oxide nano-
sheets. The La₀.₈Nd₀.₂Fe₀.₈Mn₀.₂O₃ sample shows a higher
specific capacitance of 158 F g⁻¹. Also, it was observed that
the incorporation of N-Graphene oxide mainly improves the
specific capacitance of the nanocomposite to increase up to
1060 F g⁻¹. Additionally, the composite exhibited excep-
tional capacity retention as 92.4% after 10,000 cycles which
higher than of those for the La₀.₈Nd₀.₂Fe₀.₈Mn₀.₂O₃ sample
(85.37%).

Xu et al. (2019c) have synthesized a NiS/MoS₂@N-
reduced graphene oxide composite through the hydrother-
al approach. The NiS/MoS₂@N-reduced graphene oxide
hybrid is employed as an electrode exhibiting an extraor-
dinary specific capacity (2225 F g⁻¹; at 1 A g⁻¹), and a high
rate of 1347.3 F g⁻¹ at 10 A g⁻¹. Also, the NiS/MoS₂@N-
reduced graphene oxide demonstrates unique capacitive
property reached 1028 F g⁻¹ at 1 A g⁻¹. Further, it gives
high energy density up to 35.69 W h kg⁻¹ at good power

Fig. 19 Preparation of 3D porous carbon nanosheet. The universal
method of preparing a carbon nanosheet from bark, which exists in a
tree’s construction is considered as environmentally friendly. Adapted
with permission from Li et al. (2019e) Copyright © 2019, American
Chemical Society
601.8 W kg\(^{-1}\). Besides, it possesses excellent cycle stability where it retained about 94.5% from its original capacitance 50,000 cycles (Fig. 26).

Conducting polymers

Conducting polymer hydrogels have been extensively-utilized in the field of energy storage as supercapacitors owing to many promising and useful attributes like wonderful electrochemical activities, good electrical conductivity, distinctive solid–liquid interface, high stretchability, unique elastic resilience and good energy and power densities (Li et al. 2018; Xu et al. 2020; Ma et al. 2019b; Qin et al. 2017; Wang 2019e).
et al. 2018b, 2019c). In this regard, the rationale of supercapacitors based on conducting polymer hydrogels, current challenges and future directions were explained in light of many recent research reports.

Stretchable supercapacitors with good mechanical properties are seen as very promising power supplies for electronic devices (Wang et al. 2019c). Zhaokun Yang et al. used a phytic acid-assisted molecular bridge to fabricate supercapacitors with high electrochemical activity and good mechanical properties through combining two kinds of conducting polymers, the poly(3,4-ethylene dioxythiophene) and polyaniline (Yang et al. 2019c). Phytic acid allowed the benzoic to quinoid structure’s transition. The obtained hydrogel possessed largely-improved mechanical characteristics compared to poly(3,4-ethylene dioxythiophene), thanks to the molecular interaction between poly(3,4-ethylene dioxythiophene) and polyaniline. The recorded energy density was about 0.25 Mw h cm$^{-3}$ at 107.14 mW cm$^{-3}$ power density. This good activity was attributed to many factors including, the partial removal of polystyrene sulfonate from poly(3,4-ethylene dioxythiophene) and its conversion from benzoic to quinoid structure and the interaction between the employed polymers which allowed sustained electron and ion transfer and provided quick and reversible redox reactions. Another asymmetrical supercapacitor based on manganese oxide nanoflakes-loaded on polypyrrole nanowires was reported by Weidong He et al. via a simple and eco-friendly method (He et al. 2017). The prepared core–shell structure had a large surface area and permitted an efficient ion transfer due to the decreased distance of ion transmission. The synergistic impact of both MnO$_2$ and polypyrrole led to a relatively-high specific capacitance of 276 F g$^{-1}$ at 2 A g$^{-1}$. In addition, capacitance retained ratio of about 72.5% was recorded at harsh charge/discharge circumstances of 200 F g$^{-1}$ at 20 A g$^{-1}$. Moreover, good flexibility and mechanical stability indicated by minimal
capacitance reduction, high energy density (25.8 W h kg$^{-1}$ at 901.7 W kg$^{-1}$ power density), unique cycling stability of 90.3% at 3 A g$^{-1}$ after 6000 cycles and a high voltage window of 1.8–2 V were obtained. The electrochemical characteristics of the prepared MnO$_2$@polypyrrole flexible supercapacitor, were collected and are shown in Fig. 27.

To achieve further flexibility, Panpan Li et al. reported a macromolecular self-assembly-based method to develop a 3D Polyaniline/graphene hydrogel. The fabricated 3D Hybrid exhibited powerful interconnectivity and improved mechanical properties (Li et al. 2018). The suggested device showed high strain (around 40%) and achieved considerable energy density of 8.80 mW h cm$^{-3}$ at 30.77 mW cm$^{-3}$ power density. In addition to that, the proposed supercapacitor could avoid short-circuiting and effectively defeat large structural deformation.

Another comparative study to understand the role of conducting polymers in supercapacitors was carried out by Zichen Xu et al. where four different polymers including Polyaniline, polypyrrole, poly(3,4-ethylene dioxythiophene) and polythiophene were loaded on a composite of Zn sulfide and reduced graphene oxide as shown in Fig. 28 (Xu et al. 2020). The investigated samples were fabricated via polymerization of the conducting polymers on ZnS/reduced graphene oxide composite which was prepared by a hydrothermal route. All employed conducting polymers increased the specific capacitance and cyclic stability of the prepared composite. However, their result showed that the ZnS/reduced graphene oxide/polyaniline composite possessed the highest capacitance activity and cyclic stability. In the two-electrode configuration, the recorded stability and specific capacitances were 76.1% and 722 F g$^{-1}$ at 1 A g$^{-1}$, respectively after 1000 cycles. While, in the three-electrode system, the obtained specific capacitance and stability were 1045.3 F g$^{-1}$ and 160% at the same conditions. In addition, the maximum power and energy densities were 18 kW kg$^{-1}$ and 349.7 W h kg$^{-1}$. This superior characteristic of the ZnS/reduced graphene oxide/polyaniline composite was attributed to N and S active sites of this composite which fostered electrolyte penetration during cycling and allowed further active sites.

Fig. 22 Preparation of NiMn$_2$O$_4$/reduced graphene oxide/polyaniline displays the synthesis mechanism of the ternary nanocomposite. Originally, the hydrothermal conditions induced the formation of NiMn$_2$O$_4$ on the surface of graphene. Lastly, an in situ polymerization method was conducted to fabricate Polyaniline on the binary composite. Adapted with permission from Sahoo et al. (2016), Copyright (2016) Elsevier.
Fig. 23 Capacitive and diffusion measured capacitance parts for synthesized ternary hybrid nanocomposites with varying weight portions of reduced graphene oxide/polypyrrole/Co ferrite and reduced graphene oxide/polypyrrole/Fe$_3$O$_4$ a FO5, b FO14, c CFO5, and d CFO14. e, f Trasatti plot for evaluation the specific capacitance contribution of the external surface of the electrode for all nanocomposites. Adapted with permission from Mariappan et al. (2019), Copyright (2019) Elsevier
Highly-flexible, conducting polymer-based supercapacitors were fabricated by Qingqing Qin et al. by employing polybenzimidazole of 100 megapascals tensile strength (Qin et al. 2017). In their study, graphite paper-coated activated carbon was integrated with the polybenzimidazole conducting polymer. The obtained device showed low series resistance and very high capacitance retention stability more than 90% after 10,000 cycles. Besides, the electrochemical performance of the tested supercapacitors remained stable after twisting, bending and rolling; indicating their unique flexibility and mechanical damage-resistant reliability.

Stretchable electrodes are the basis of stretchable supercapacitors. Xi Wang et al. reported the fabrication of stretchable electrodes based on polyaniline or poly(1,5-diaminoanthraquinone) polymers supporting acrylate rubber/multi-wall carbon nanotubes composite (Wang et al. 2018b). The prepared acrylate rubber/multi-wall carbon nanotubes loaded on poly(1,5-diaminoanthraquinone) and acrylate rubber/multi-wall carbon nanotubes loaded on Polyaniline exhibited a large volumetric capacitance at 1 mA cm$^{-2}$ of about 20.2 F cm$^{-3}$ and 17.2 F cm$^{-3}$, respectively, as shown in Fig. 29. The unique energy density of about 2.14 mW h cm$^{-3}$ was obtained after assembling asymmetrical supercapacitor by employing poly(1,5-diaminoanthraquinone)-loaded acrylate rubber/multi-wall carbon nanotubes as the anode and polyaniline-loaded acrylate rubber/multi-wall carbon nanotubes as the cathode. Moreover, capacitance retention of 86% at 30 mA cm$^{-2}$ and good cycling stability after harsh strain conditions were achieved.

Carbon nanotubes have allowed the uniform distribution of conducting polymers without any need of binding compounds or linkers. Besides, they possess excellent conducting and mechanical properties. Frackowiak et al. (2006), reported the fabrication of three different composites made of multiwall carbon nanotubes, polyaniline, polypyrrole and poly(3,4-ethylene dioxythiophene) conducting polymers. The prepared composites exhibited both pseudo-capacitance and electrostatic attraction. The employed multiwall carbon nanotubes allowed good mechanical properties and preserved the active materials of the tested conducting polymers from mechanical deformation during long cycling measurements. A range of capacitance values from 100 to 330 F g$^{-1}$ was obtained at capacitance voltage 0.6–1.8 V using various asymmetric configurations. This unique performance was attributed to the presence of multiwall carbon nanotubes which allowed high charge/discharge rates through an enhanced charge transfer.

A similar study was conducted by employing reduced graphene oxide sheets. Jintao Zhang et al. reported the in situ polymerization of poly(3,4-ethylene dioxythiophene), polyaniline, and polypyrrole on the surface of reduced graphene oxide (Zhang and Zhao 2012). Due to the synergic effect of conducting polymers and reduced graphene oxide sheets. The prepared nanocomposites displaced above 80% retained capacitance after 1000 cycles. In addition, reduced graphene oxide@polyaniline composite showed 361 F g$^{-1}$ specific capacitance at 0.3 A g$^{-1}$ current density. While specific capacitances of 248 F g$^{-1}$ and 108 F g$^{-1}$ were recorded for reduced graphene oxide–polypyrrole and reduced graphene oxide@poly(3,4-ethylene dioxythiophene) composites, respectively, as shown in Fig. 30.

Based on the electrostatic attraction between surfactants of positive charge and negatively-charged graphene oxide sheets, Zhang et al. reported a simple and cost-effective method for the preparation of graphene oxide@polypyrrole sandwich structure (Zhang et al. 2010). The prepared composite showed a unique performance with a capacitance of 500 F g$^{-1}$. High cyclic stability was also achieved. The reported properties were attributed to many factors including, exfoliated graphene oxide which enabled many active sites for both sides’ conjugation of polypyrrole, the prepared 3D structure enabled cyclic stability, resistance reduction by graphene oxide and polypyrrole which effectively-contributed to the overall capacitance.

Similarly, Wang et al. (2005) used the electrochemical route for synthesizing carbon nanotubes@polypyrrole composite. The composite was prepared via polypyrrole plating into the host membrane’s pores. High conductivity (I–V relation) and stability were obtained as shown in Fig. 31. Another configuration based on poly(N-phenylglycine) conducting polymer was reported by Vedi Kuyil et al. which was synthesized via in situ polymerization and N-phenylglycine’s electrodeposition on exfoliated graphite sheets (Muniraj et al. 2020). The electrochemical performance of the investigated device showed a unique specific capacitance.
at 10 mV s\(^{-1}\) of 367 mF cm\(^{-2}\). Interestingly, an outstanding 8.36 µW h cm\(^{-2}\) energy was recorded at 1.65 mW cm\(^{-2}\) power density using 1.1 V potential window.

Dirican et al. (2020) reported electrodeposition and electrospinning-based method for the fabrication of Polyaniline@MnO\(_2\)@porous carbon nanofibers for supercapacitors.
The proposed device combined the advantages of porous carbon nanofibers' good cyclic stability, large conductivity of Polyaniline and MnO₂ nanoparticles' high pseudocapacitance. As a result, the prepared device exhibited high capacitance of about 289 F g⁻¹ and large retained capacitance of 91% after 1000 cycles as shown in Fig. 32. Besides, the configuration of the asymmetrical cell showed an enhanced energy density of 119 Wh kg⁻¹ and 322 W kg⁻¹ power density.

Recent studies on polymer-based supercapacitors are summarized in Table 3.

Bibliometric analysis

Prior to the bibliometric analysis, preliminary Web of Science results showed there were only two publications in the last three years using the search criteria of TOPIC: (“supercapacitor”) AND TOPIC: (“transition metal”) AND TOPIC: (spinel ferrites) Timespan: Last 5 years. Indexes: SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, ESCI. Additionally, the document types are research articles, this indicates that there is a significant gap in the literature regarding spinel ferrites and transition metal ions (oxide or sulfide). On the other hand, using the search criteria (TOPIC: (“supercapacitor”) AND TOPIC: (“conducting polymer”) over a similar time frame indicated 364 results for the conducting polymers, this clearly shows there is an...
abundant amount of research regarding conducting polymers as supercapacitors. Among the results, there are 323 research articles along with 28 review articles.

The bibliometric mapping of supercapacitors over the last 5 years showed 964 results using the search criteria (from Web of Science Core Collection) “TOPIC: (supercapacitor transition metal) OR “supercapacitor” over the last 5 years. Again, as seen in Fig. 33 most of the research outputs are conducting polymers and graphene in the energy storage field. Another identified cluster (shown in green) is the growing field of composite materials used as supercapacitors. As seen in the density visualization map (Fig. 34), derived from bibliometric results, there are prominent keywords that dominate the existing research. These include but not limited to graphene, nanostructure and Ni foam. Interestingly, composites fall slightly outside the dense region.

Conclusion

Supercapacitors were employed for normal applications like memory protection and internal battery backup. However, in recent years, the application area has widened significantly toward hybrid carriers, smartphones, and energy collection. The latest technologies on the horizon encourage making and placing supercapacitors into direct competition with rechargeable batteries.

In this review, we selected various electrode materials such as spinel ferrites, perovskite oxides, transition metals sulfides, carbon materials, and conducting polymer materials and evaluated their performance and outlined their advantages and disadvantages in the application of supercapacitors. The current review highlights the available literature documented on the electrochemical activities of nanostructured of selected materials, their composites, and possible approaches to implementing these materials in Li-ion batteries in the soon future.

The spinel ferrite and perovskite oxides based materials present notable discharge capacities of 1000 mA h g⁻¹, which is two to three times higher than that those obtained via graphite anodes (Yuvaraj et al. 2016; Yin et al. 2013). In magnetic oxides and through the initial discharging cycle, the crystal structure is destructed into different mineral particles following with the production of the Li₂O form. As performed mineral particles promote the electrochemical action using the production/destruction of Li₂O that supplies...
the route for the conversion reaction mechanism. The magnetic oxides have many crystals whose shapes depend upon, the synthesizing technique, and temperature of the annealing process. Besides, their specific capacitance and better cycling stability are dependent on the crystals’ shape (Ajay et al. 2015). Also, the replacement of multiple cations into the A- or B-sites can change the symmetry of the pristine structure and consequently, the physical and chemical properties (Zhang et al. 2016c). The magnetic oxides (spinel ferrites and perovskite oxides) as anodes holds an edge for supercapacitors and hybrid supercapacitors (Liu et al. 2018c). Hence, the immense content of oxygen vacancies (O\text{vacancy}), and remarkable conductivity allow their extraordinary energy densities. Also, the perovskites store charge by oxygen intercalation and the excellent diffusion pathways along crystal domain boundaries leading the promotion of the dispersion rate (Nan et al. 2019). However, the transition metal sulfides are promising materials for energy storage applications because of their excellent electrochemical characteristics. The electrochemical characteristics of transition metal sulfides are much better than that of transition metal oxides; this is can be explained by the presence of sulfur atoms instead of oxygen atoms. Hence, the lower electron-egativity of sulfur than that of oxygen facilitates electron transfer in the metal sulfide structure easier than that in the metal oxide form. Thus, replacing oxygen with sulfur, provides more flexibility for nanomaterials synthesis and fabrication (Jiang et al. 2016).

However, the lower conductivity, low cycling stability and volume change during charge/discharge cycles of metals oxides and transition metal sulfides make them insufficient materials for performing supercapacitors. To defeat those disadvantages, the conducting polymers or conducting materials were added to the magnetic oxides or transition
metal sulfides to amplify the electronic conductivity and to enhance the cycling stability (Yang et al. 2018; Qiao et al. 2018). Conducting polymer hydrogels have been extensively used in the field of energy storage for supercapacitors production owing to many promising and outstanding properties like powerful electrochemical activities, improved electrical conductivity, distinctive solid–liquid interface, high stretchability, unique elastic resilience and good power and energy densities (Li et al. 2018; Xu et al. 2020; Ma et al. 2019b; Qin et al. 2017; Wang et al. 2018b, 2019c). Also, graphene has received great attention in research owing to its extraordinary features, such as high conductivity, powerful mechanical strength, large specific area, porosity, and electrochemically active nature. The result showed that the composites that comprise of magnetic oxides or transition metal sulfides with conducting polymers or conducting materials possessed the highest capacitance activity and cyclic stability. These superior characteristics of these composites were attributed to oxygen and S active sites of this composite which fostered electrolyte penetration during cycling and allowed further active sites (Xu et al. 2020).

In brief, it is deduced that the electrochemical achievement of the magnetic oxides or transition metal sulfides is improved in the following techniques: designed magnetic oxides or transition metal sulfides that have considerable surface areas, possess a huge porosity, composites with carbonaceous materials (core–shells and graphene), and/or conducting polymers, that decrease the irreversible capacity loss and the production of stable supercapacitors. Hence, mixed-magnetic oxides or transition metal sulfides and their composites are the ideal prospective materials for the next generation of energy-storage applications.

Fig. 29 a Cyclic voltammetry curves measured at 10 mV s⁻¹, b the galvanostatic charge/discharge curves, c capacitance vs current density and d capacitance versus cycle number of the fabricated acrylate rubber/multi-wall carbon nanotubes/poly (1,5-diaminoanthraquinone). Adapted with permission from Ref. Wang et al. (2018b), Copyright 2018, Royal Society of chemistry
Fig. 30 Cyclic voltammograms of a reduced graphene oxide@poly(3,4-ethylene dioxythiophene) composite, b reduced graphene oxide@polypyrrole composite and c reduced graphene oxide@polyaniline composite, d charge/discharge pattern of reduced graphene oxide@poly(3,4-ethylene dioxythiophene) composite, e reduced graphene oxide@polypyrrole composite and f reduced graphene oxide@polyaniline composite. Adapted with permission from Ref. Zhang and Zhao (2012), Copyright 2012, American Chemical Society.

Fig. 31 Cyclic voltammetry curves of a carbon nanotubes and Cl−-doped polypyrrole nanowires b polypyrrole films. Adapted with permission from Ref. Wang et al. (2005), Copyright 2004, American Chemical Society.
Fig. 32

(a) Galvanostatic charge/discharge patterns of polyaniline@MnO$_2$@porous carbon nanofibers, MnO$_2$@porous carbon nanofibers and porous carbon nanofibers, MnO$_2$@PCNFs and Polyamine@MnO$_2$@porous carbon nanofibers and (c) retained capacitance of Polyamine@MnO$_2$@porous carbon nanofibers, MnO$_2$@porous carbon nanofibers and porous carbon nanofibers. The prepared device exhibited high capacitance (289 F g$^{-1}$) and largely retained capacitance. Adapted with permission from Dirican et al. (2020), Copyright 2020, Elsevier
Electrode material	Electrolyte	Current density (A g⁻¹)	Specific capacitance (F g⁻¹)/areal capacitance (mF cm⁻²)	Stability %/no. of cycles	Retained specific capacitance %	Energy density (W h kg⁻¹)/power density (kW kg⁻¹)	References
NaₓMnO₂@carbon nanotubes	potassium poly(acrylate)@water-born polyurethane in 1 M Na₂SO₄	1	36.8	97/10,000	93.4	16.38/1.04	Wang et al. (2020b)
S-doped polyaniline nanotubes@Ni(OH)₂ nanosponge	Poly(vinyl alcohol) in 3 M KOH	2	622	10,000	97	70/136	Bhaumik et al. (2020)
Phosphomolybdic acid/polypyrrole	Poly(vinyl alcohol)-H₂SO₄	0.5	162.1	1000	80	50.66/750	Wang et al. (2020c)
Reduced graphene oxide/molybdenum disulfide/poly (3,4-ethylenedioxythiophene)	1 M H₂SO₄	0.5 mA cm⁻²	241.81 mF cm⁻²	5000	93.7	1.44 μW h cm⁻²/0.058 mW cm⁻²	Chen et al. (2020)
Nitrogen-doped graphene/polypyrrole	1 M H₂SO₄	0.5	620	5000	87.4	31.14/800	Ge et al. (2020)
Binary MXenes Ti₃C₂/polyprrole	2 M H₂SO₄	1.05 mA cm⁻²	109.4 mF cm⁻²	10,000	96	3.398 μW h cm⁻²/0.0845 Mw cm⁻²	Zhang et al. (2020c)
Na-poly(vinyl alcohol)	Poly(vinyl alcohol)	313 mA g⁻¹	103.7 mF cm⁻²	1000 ~ 100	~	6.5/161.4	Wang et al. (2020d)
Cyclodextrin polymer@polyaniline/carbon nanotube	1 M H₂SO₄	1	107.4	5000	97	–	Zhang et al. (2020d)
Multi-channel carbon nanofibers@SnO₂	6 M KOH	0.5	406	10,000	95	11.5/451	Cao et al. (2020)
Electrode material	Electrolyte	Current density (A g⁻¹)	Specific capacitance (F g⁻¹)/areal capacitance (mF cm⁻²)	Stability %/no. of cycles	Retained specific capacitance %	Energy density (W h kg⁻¹)/power density (kW kg⁻¹)	References
--	--------------------------------------	-------------------------	--	---------------------------	---------------------------------	---	---
Poly(3,4-ethylenedioxythiophene-co-methylpyrrole)	0.5 M LiClO₄	0.5	69.2	5000	65.4	–	Lacerda et al. (2020)
Polyester (PET)/metal organic frameworks/reduced graphene oxide	Poly(vinyl alcohol) + H₂SO₄	0.05 mA cm⁻²	510 mF cm⁻²	1000	85	64 μW h cm⁻³/0.6 mW cm⁻³	Barakzehi et al. (2020)
Polypyrrole	1 M NaCl	0.25 mA cm⁻²	120	1000	88	1.16 μW h cm⁻³/35 μW cm⁻²	Zhao et al. (2020)
Poly(N-methylpyrrole)@activated carbon/poly(N-methylpyrrole)@nickel telluride doped with selenide (NiTe:Se)	6 M KOH	5	127 mF cm⁻²	1600	99.95	34/807	Deshagani et al. (2020)
Polyaniline/multiwall carbon nanotubes 2 wt%	1 M H₂SO₄	1	1183	1000	87	183.18	Awata et al. (2020)
Nickel–cobalt hydroxide hybrid reduced graphene-based fiber	PVA/KOH	0.7	763	10,000	87	50.7/1642.1	Zhou et al. (2020)
Fig. 33 Bibliometric network mapping of the supercapacitors research field in the last 5 years
Acknowledgements The authors acknowledge the Materials Science Unit, National Center for Radiation Research and Technology, Egypt, for supporting this study under the project “Synthesizing and Characterizations of Nanostructured Magnetic Materials for Energy storage applications”. Also, the author, M. Abd Elkodous shows his deep gratitude to Nile University’s vice president for research, Prof. Dr. Ahmed Radwan for his continued support. Furthermore, AES thanks the National Research grants from MINECO “Juan de la Cierva” [FJCI-2018-037717]. The author would like to acknowledge the support given by the EPSRC project (ACCEPT Transitions, EP/S025545/1).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abbas YM et al (2019) Investigation of structural and magnetic properties of multiferroic La1−xYxFeO3 Perovskites, prepared by citrate auto-combustion technique. J Magn Magn Mater 482:66–74. https://doi.org/10.1016/j.jmmm.2019.03.056

Abdel Maksoud MIA et al (2020a) Insight on water remediation application using magnetic nanomaterials and biosorbents. Coord Chem Rev 403:213096. https://doi.org/10.1016/j.ccr.2019.213096

Abdel Maksoud MIA et al (2020b) MANanostructured Mg substituted Mn–Zn ferrites: a magnetic recyclable catalyst for outstanding photocatalytic and antimicrobial potentials. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.123000

Abirami R et al (2020) Synthesis and characterization of ZnTiO3 and Ag doped ZnTiO3 perovskite nanoparticles and their enhanced photocatalytic and antibacterial activity. J Solid State Chem 281:121019. https://doi.org/10.1016/j.jssc.2019.121019

Acharya J et al (2020) Facile one pot sonochemical synthesis of CoFe3O4/MWCNTs hybrids with well-dispersed MWCNTs for asymmetric hybrid supercapacitor applications. Int J Hydrog Energy 45:3073–3085. https://doi.org/10.1016/j.ijhydene.2019.11.169
Ajay A et al (2015) 2 D amorphous frameworks of NiMoO4 for supercapacitors: defining the role of surface and bulk controlled diffusion processes. Appl Surf Sci 326:39–47. https://doi.org/10.1016/j.apsusc.2014.11.016

Ajmal M (2009) Fabrication and physical characterization of Ni1-xZnxFe2O4 and Cu1-xZnxFe2O4 ferrites. Quaid-i-Azam University, Islamabad

Alamro T, Ram MK (2017) Polyethylenedioxythiophene and molybdenum disulfide nanocomposite electrodes for supercapacitor applications. Electrochim Acta 235:623–631. https://doi.org/10.1016/j.electacta.2017.03.102

Alcalá O et al (2017) Toroidal cores of Mn_xCo1−xFe2O4/PAA nanocomposites with potential applications in antennas. Mater Chem Phys 192:17–21. https://doi.org/10.1016/j.matchemphys.2017.01.035

Alvarez G et al (2016) About room temperature ferromagnetic behavior in BaTiO3 perovskite. J Magn Magn Mater 401:196–199. https://doi.org/10.1016/j.jmmm.2015.10.031

Amirabadizadeh A et al (2017) Synthesis of ferrofluids based on cobalt ferrite nanoparticles: Influence of reaction time on structural, morphological and magnetic properties. J Magn Magn Mater 434:78–85. https://doi.org/10.1016/j.jmmm.2017.03.023

Amiri S, Shokrollahi H (2013) The role of cobalt ferrite magnetic nanoparticles in medical science. Mater Sci Eng, C 33:1–8. https://doi.org/10.1016/j.msec.2012.09.003

Anitha T et al (2019) Facile synthesis of ZnWO4@WS2 cauliflower-like structures for supercapacitors with enhanced electrochemical performance. J Electroanal Chem 841:86–93. https://doi.org/10.1016/j.matchemphys.2019.04.034

Ansari SA et al (2017) Mechanically exfoliated MoS2 sheet coupled with conductive polyaniline as a superior supercapacitor electrode material. J Colloid Interface Sci 504:276–282. https://doi.org/10.1016/j.jcis.2017.05.064

Anu M, Saravankumar M (2017) A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/263/3/032019

Anupama M et al (2017) Investigation on impedance response and dielectric relaxation of Ni-Zn ferrites prepared by self-combustion technique. J Alloys Compd 706:554–561. https://doi.org/10.1016/j.jallcom.2017.02.241

Arruebo M et al (2007) Magnetic nanoparticles for drug delivery. Nano Today 2:22–32. https://doi.org/10.1016/S1748-0132(07)70084-1

Arsalani N et al (2018) Novel PANI/MnFe2O4 nanocomposite for low-cost supercapacitors with high rate capability. J Mater Sci: Mater Electron 29:6077–6085. https://doi.org/10.1007/s10854-018-8582-6

Arshad M et al (2020) Fabrication, structure, and frequency-dependent electrical and dielectric properties of Sr-doped BaTiO3 ceramics. Ceram Int 46:2238–2246. https://doi.org/10.1016/j.ceramint.2019.09.208

Arul NS et al (2018) Facile synthesis of ZnS/MnS nanocomposites for supercapacitor applications. J Solid State Electrochem 22:303–313. https://doi.org/10.1007/s10008-017-3782-1

Asen P et al (2019) One step synthesis of SnS2–SnO2 nano-heterostructured as an electrode material for supercapacitor applications. J Alloys Compd 782:38–50. https://doi.org/10.1016/j.jallcom.2018.12.176

Ashour A et al (2014) Electrical and thermal behavior of PS/ferrite composite. J Magn Magn Mater 369:260–267. https://doi.org/10.1016/j.jmmm.2014.06.005

Ashour A et al (2018) Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology 40:141–151. https://doi.org/10.1016/j.partic.2017.12.001

Assirey EAR (2019) Perovskite synthesis, properties and their related biochemical and industrial application. Saudi Pharm J 27:817–829. https://doi.org/10.1016/j.jsps.2019.05.003

Atta NF et al (2019) Effect of B-site doping on Sr2PdO4 perovskite catalyst activity for non-enzymatic determination of glucose in biological fluids. J Electroanal Chem 852:113523. https://doi.org/10.1016/j.jelechem.2019.113523

Awasthi GP et al (2018) Layer—structured partially reduced graphene oxide sheathed mesoporous MoS2 particles for energy storage applications. J Colloid Interface Sci 518:234–241. https://doi.org/10.1016/j.jcis.2018.02.043

Awata R et al (2020) High performance supercapacitor based on camphor sulfonic acid doped polyaniline/multiwall carbon nanotubes nanocomposite. Electrochim Acta 347:136229. https://doi.org/10.1016/j.electacta.2020.136229

Baharuddin NA et al (2019) Structural, morphological, and electrochemical behavior of titanium-doped SrFe1−xTiO3−δ (x = 0.1–0.5) perovskite as a cobalt-free solid oxide fuel cell cathode. Ceram Int 45:12903–12909. https://doi.org/10.1016/j.ceramint.2019.03.216

Balakrishnan B et al (2019) Facile synthesis of pristine FeS2 microflowers and hybrid rGO-FeS2 microsphere electrode materials for high performance symmetric capacitors. J Ind Eng Chem 71:191–200. https://doi.org/10.1016/j.jiec.2018.11.022

Bandyopadhyay P et al (2020) Zinc–nickel–cobalt oxide@NiMoO4 core–shell nanowire/nanosheet arrays for solid state asymmetric supercapacitors. Chem Eng J 384:123357. https://doi.org/10.1016/j.cej.2019.123357

Barakzehi M et al (2020) MOF-modified polyester fabric coated with reduced graphene oxide/polypyrrole as electrode for flexible supercapacitors. Electrochim Acta 336:135743. https://doi.org/10.1016/j.electacta.2020.135743

Barik R et al (2019) Stannous sulfide nanoparticles for supercapacitor application. Appl Surf Sci 472:112–117. https://doi.org/10.1016/j.apsusc.2018.03.172

Basuki JS et al (2013) Using fluorescence lifetime imaging microscopy to monitor theranostic nanoparticle uptake and intracellular doxorubicin release. ACS Nano 7:10175–10189. https://doi.org/10.1021/nn404407g

Bhagwan J et al (2020) Aqueous asymmetric supercapacitors based on ZnCo2O4 nanoparticles via facile combustion method. J Alloys Compd 815:152456. https://doi.org/10.1016/j.jallcom.2019.152456

Bhame SD (2007) Structural, magnetic, and magnetostrictive properties of substituted lanthanum manganites and spinel ferrites. CSIR-National Chemical Laboratory, Pune. http://dispace.ncl.res.in:8080/xmlui/handle/20.500.12252/2592/TH1590.pdf?sequence=1. Accessed 23/07/2020

Bhauink M et al (2020) High-performance supercapacitors based on S-doped polyaniline nanotubes decorated with Ni(OH)2 nanosponge and onion-like carbons derived from used car tyres. Electrochim Acta 342:136111. https://doi.org/10.1016/j.electacta.2020.136111

Boudad L et al (2019) Structural, morphological, spectroscopic, and dielectric properties of SmFeO3−δ/SmO3. Mater Today Proc 13:646–653. https://doi.org/10.1016/j.matpr.2019.04.024

Budhiraju VS et al (2017) Structurally stable hollow mesoporous graphitized carbon nanofibers embedded with NiMoO4 nanoparticles for high performance asymmetric supercapacitors. Electrochem Acta 238:337–348. https://doi.org/10.1016/j.electacta.2017.04.039

Burke A, Zhao H (2015) Applications of supercapacitors in electric and hybrid vehicles. In: ITS

Cai D et al (2013) Comparison of the electrochemical performance of NiMoO4 nanorods and hierarchical nanospheres
for supercapacitor applications. ACS Appl Mater Interfaces 5:12905–12910. https://doi.org/10.1021/ami403444v

Cai D et al (2014a) Enhanced performance of supercapacitors with ultrathin mesoporous NiMoO4 nanosheets. Electrochim Acta 125:294–301. https://doi.org/10.1016/j.electacta.2014.01.049

Cai F et al (2014b) Hierarchical CNT@NiCo2O4 core–shell hybrid nanostructure for high-performance supercapacitors. J Mater Chem A 2:11509–11515. https://doi.org/10.1039/C4TA0235F

Cai W et al (2016) Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density. Sci Rep 6:26890. https://doi.org/10.1038/srep26890

Cai Y-Z et al (2019) Tailoring rGO-NiFe2O4 hybrids to tune transport of electrons and ions for supercapacitor electrodes. J Alloys Compd 811:152011. https://doi.org/10.1016/j.jallcom.2019.152011

Cao Y et al (2015a) Structure, morphology and electrochemical properties of LaSr1-xCoxMnO4 perovskite nanofibers prepared by electrospinning method. J Alloys Compd 624:31–39. https://doi.org/10.1016/j.jallcom.2014.10.178

Cao Y et al (2015b) Sr-doped lanthanum nickelate nanofibers for high energy density supercapacitors. Electrochim Acta 174:41–50. https://doi.org/10.1016/j.electacta.2015.05.131

Cao X et al (2017) Structural, optical and ferroelectric properties of KNb1−xZrxO3 single crystals. J Solid State Chem 256:234–238. https://doi.org/10.1016/j.jssc.2017.08.032

Cao M et al (2020) Lignin-based multi-channels carbon nanofibers@SnO2 nanocomposites for high-performance supercapacitors. Electrochim Acta 345:136172. https://doi.org/10.1016/j.electacta.2020.136172

Chandel M et al (2018) Synthesis of multifunctional CuFe2O4-reduced graphene oxide nanocomposite: an efficient magnetically separable catalyst as well as high performance supercapacitor and first-principles calculations of its electronic structures. RSC Adv 8:27725–27739. https://doi.org/10.1039/C8RA05939F

Chandrasekaran NI et al (2018) High-performance asymmetric supercapacitors. Electrochim Acta 270:387–394. https://doi.org/10.1016/j.electacta.2018.03.072

Chang C et al (2017) Layered MoS2/PPy nanotube composites with enhanced performance for supercapacitors. J Mater Sci: Mater Electron 28:1777–1784. https://doi.org/10.1007/s10854-016-5725-5

Chao J et al (2018) Sandwiched MoS2/polyaniline nanosheets array vertically aligned on reduced graphene oxide for high performance supercapacitors. Electrochim Acta 270:387–394. https://doi.org/10.1016/j.electacta.2018.03.072

Chauhan H et al (2017) Development of SnSx/RGO nanosheet composite for cost-effective aqueous hybrid supercapacitors. Nanotechnology 28:025401. https://doi.org/10.1088/1361-6528/28/2/025401

Chen T, Dai L (2013) Carbon nanomaterials for high-performance supercapacitors. Mater Today 16:272–280. https://doi.org/10.1016/j.mattod.2013.07.002

Chen J-T, Hsu C-S (2011) Conjugated polymer nanostructures for organic solar cell applications. Polym Chem 2:2707–2722. https://doi.org/10.1039/C1PY00275A

Chen Y et al (2007) Crystal growth and magnetic property of orthorhombic RMnO3 (R = Sm–Ho) perovskites by mild hydrothermal synthesis. J Cryst Growth 305:242–248. https://doi.org/10.1016/j.jcrysgro.2007.03.052

Chen P et al (2013) Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy 2:249–256. https://doi.org/10.1016/j.nanoen.2012.09.003

Chen Y et al (2015) Flexible all-solid-state asymmetric supercapacitor assembled using coxial NiMoO4 nanowire arrays with chemically integrated conductive coating. Electrochim Acta 178:429–438. https://doi.org/10.1016/j.electacta.2015.08.040

Chen JH et al (2016a) Mixed-phase Ni–Al as barrier layer against perovskite oxides to react with Cu for ferroelectric memory with Cu metallization. J Alloys Compd 666:197–203. https://doi.org/10.1016/j.jallcom.2016.01.100

Chen J et al (2016b) Pyrite FeS2 nanobelts as high-performance anode material for aqueous pseudocapacitor. Electrochim Acta 222:172–176. https://doi.org/10.1016/j.electacta.2016.10.181

Chen Y et al (2017a) In situ growth of polypryrolyte onto three-dimensional tubular MoS2 as an advanced negative electrode material for supercapacitor. Electrochim Acta 246:615–624. https://doi.org/10.1016/j.electacta.2017.06.102

Chen JS et al (2017b) Rational design of self-supported Ni3S2 nanosheets array for advanced asymmetric supercapacitor with a superior energy density. ACS Appl Mater Interfaces 9:496–504. https://doi.org/10.1021/acsami.6b14746

Chen X et al (2018a) Preparation of a MoS2/carbon nanotube composite as an electrode material for high-performance supercapacitors. RSC Adv 8:29488–29494. https://doi.org/10.1039/c8ra05158e

Chen L et al (2018b) Two-dimensional porous carbon nanosheets from exfoliated nanopaper-like biomass. Mater Lett 232:187–190. https://doi.org/10.1016/j.matlet.2018.08.111

Chen C et al (2019a) Reduced ZnCo2O4@NiMoO4H2O heterostructure electrodes with modulating oxygen vacancies for enhanced aqueous asymmetric supercapacitors. J Power Sources 409:112–122. https://doi.org/10.1016/j.jpowsour.2018.10.066

Chen H et al (2019b) Upcycling food waste digestate for energy and heavy metal remediation applications. Resour Conserv Recycl X 3:100015. https://doi.org/10.1016/j.recxr.2019.100015

Chen X et al (2019c) Natural plant template-derived cellular framework porous carbon as a high-rate and long-life electrode material for energy storage. ACS Sustain Chem Eng 7:5845–5855. https://doi.org/10.1021/acssuschemeng.8b05777

Chen Y et al (2020) Excellent performance of flexible supercapacitor based on the ternary composites of reduced graphene oxide/molybdenum disulfide/poly(3,4-ethylenedioxythiophene). Electrochim Acta 330:153205. https://doi.org/10.1016/j.electacta.2019.153205

Cheng Q et al (2011) Graphene and nanostructured MnO2 composite electrodes for supercapacitors. Carbon 49:2917–2925. https://doi.org/10.1016/j.carbon.2011.02.068

Cheng F et al (2020a) Boosting the supercapacitor performances of activated carbon with carbon nanomaterials. J Power Sources 450:227678. https://doi.org/10.1016/j.jpowsour.2019.227678

Cheng JP et al (2020b) Recent research of core–shell structured composites with NiCo2O4 as scaffolds for electrochemical capacitors. Chem Eng J 393:124747. https://doi.org/10.1016/j.cej.2020.124747

Choudhary N et al (2016) High-performance one-body core/shell nanowire supercapacitor enabled by conformal growth of capacitive 2D WS2 layers. ACS Nano 10:10726–10735. https://doi.org/10.1021/acsnano.6b06111

Choudhary N et al (2020) Correlation between magnetic and transport properties of rare earth doped perovskite manganites La0.5Rh0.5Ca0.5MnO3 (R = La, Nd, Sm, Gd, and Dy) synthesized by Pechini process. Mater Chem Phys 242:122482. https://doi.org/10.1016/j.matchemphys.2019.122482

Chu H et al (2018) Ni, Co and Mn doped SnS2-graphene aerogels for supercapacitors. J Alloys Compd 767:583–591. https://doi.org/10.1016/j.jallcom.2018.07.126

Cui X et al (2017) Dopamine adsorption precursor enables N-doped carbon sheathing of MoS2 nanoflowers for all-around enhancement of supercapacitor performance. J Alloys Compd 69:3:955–963. https://doi.org/10.1016/j.jaromat.2016.09.173
Huang Y et al (2016b) Nanostructured polypyrrole as a flexible electrode material of supercapacitor. Nano Energy 22:422–438. https://doi.org/10.1016/j.nanoen.2016.02.047

Huang Y et al (2016c) Enhanced cycling stability of NiCo2S4@NiO core–shell nanowire arrays for all-solid-state asymmetric supercapacitors. Sci Rep 6:1–10. https://doi.org/10.1038/srep38620

Huang F et al (2017a) One-step hydrothermal synthesis of Ni3S2@CoS2@Ni3S2 hybrid structure through annealing treatment. Appl Surf Sci 425:879–888. https://doi.org/10.1016/j.apsusc.2017.06.334

Huang Y et al (2018a) NiMoO4 nanorod deposited carbon sponges with ant-nest-like interior channels for high-performance pseudocapacitors. Inorg Chem Front 5:1594–1601. https://doi.org/10.1039/C8QI00247A

Huang F et al (2018b) One-step hydrothermal synthesis of a CoS2@MoS2 nanocomposite for high-performance supercapacitors. J Alloys Compd 742:844–851. https://doi.org/10.1016/j.jallcom.2018.01.324

Hui KN et al (2016) Hierarchical chestnut-like MnCo2O4 nanoneedles grown on nickel foam as binder-free electrode for high energy density asymmetric supercapacitors. J Power Sources 330:195–203. https://doi.org/10.1016/j.jpowsour.2016.08.116

Hussain S et al (2020) Novel gravel-like NiMoO4 nanoparticles on carbon cloth for outstanding supercapacitor applications. Ceram Int 46:6406–6412. https://doi.org/10.1016/j.ceramint.2019.11.118

Hwang J et al (2019) Tuning perovskite oxides by strain: electronic structure, properties, and functions in (electro)catalysis and ferroelectrics. Mater Today. https://doi.org/10.1016/j.mattod.2019.03.014

Ikkurthi KD et al (2018) Synthesis of nanostructured metal sulfitides via a hydrothermal method and their use as an electrode material for supercapacitors. New J Chem 42:19183–19192. https://doi.org/10.1039/C8NJ04358B

Iro ZS et al (2016) A brief review on electrode materials for supercapacitor. Int J Electrochem Sci 11:10628–10643. https://doi.org/10.20964/2016.12.50

Ismail FM et al (2018) Mesoporous spinel manganese zinc ferrite for high-performance supercapacitors. J Electrochem. https://doi.org/10.1016/j.jelechem.2018.04.002

Israr M et al (2020) A unique ZnFe2O4/graphene nanoplatelet nano-composite for electrical energy storage and efficient visible light driven catalysis for the degradation of organic noxius in wastewater. J Phys Chem Solids 140:10933. https://doi.org/10.1016/j.jpcs.2020.109333

Jain TK et al (2008) Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials 29:4012–4021. https://doi.org/10.1016/j.biomaterials.2008.07.004

Jang K et al (2015) Intense pulsed light-assisted facile and agile fabrication of cobalt oxide/nickel cobaltite nanoflakes on nickel foam for high performance supercapacitor applications. J Alloys Compd 618:227–232. https://doi.org/10.1016/j.jallcom.2014.08.166

Jeevanandam J et al (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Bethstein J Nanotechnol 9:1050–1074. https://doi.org/10.3762/bjnano.2018.9.98

Jia Y et al (2017) Hierarchical nanosheet-based MoS2/graphene nanobelts with high electrochemical energy storage performance. J Power Sources 354:1–9. https://doi.org/10.1016/j.jpowsour.2017.04.031

Jia H et al (2019) Controlled synthesis of MOF-derived quadruple-shelled CoS2 hollow dodecahedrons as enhanced electrodes for supercapacitors. Electrochim Acta 312:54–61. https://doi.org/10.1016/j.electacta.2019.04.192

Jiang SP (2019) Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells—a review. Int J Hydrog Energy 44:7448–7493. https://doi.org/10.1016/j.ijhydene.2019.01.212

Jiang H et al (2012) Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes. Adv Mater 24:4197–4202. https://doi.org/10.1002/adma.201104942

Jiang J et al (2013) Diffusion-controlled evolution of core–shell nanowire arrays into integrated hybrid nanotube arrays for Li-ion batteries. Nanoscale 5:8105–8113. https://doi.org/10.1039/C3NR01786A

Jiang Y et al (2016) Nickel silicotungstate-decorated Pt photocathode as an efficient catalyst for triiodide reduction in dye-sensitized solar cells. Dalton Trans 45:16859–16868. https://doi.org/10.1039/C6DT03190K

Jin J et al (2013) Flexible self-supporting graphene–sulfur paper for lithium sulfur batteries. RSC Adv 3:2558–2560. https://doi.org/10.1039/C2RA22808D

Jinlong L et al (2017) Synthesis of CoMnO4@RGO nanocomposites as high-performance supercapacitor electrodes. Microporous Mesoporous Mater 242:264–270. https://doi.org/10.1016/j.micros.2017.01.034

Kandula S et al (2018) Fabrication of a 3D hierarchical sandwich CoS2@ZrC@MoS2 nanowire architectures as advanced electrode material for high performance hybrid supercapacitors. Small 14:1800291. https://doi.org/10.1002/smll.201800291

Kang C et al (2015) Three-dimensional carbon nanotubes for high capacity lithium-ion batteries. J Power Sources 299:465–471. https://doi.org/10.1016/j.jpowsour.2015.08.103

Kathalingam A et al (2020) Nanosheet-like ZnCo2O4@nitrogen doped graphene oxide/polyaniline composite for supercapacitor application: effect of polyaniline incorporation. J Alloys Compd 830:154734. https://doi.org/10.1016/j.jalcom.2020.154734

Kaur P, Singh K (2019) Review of perovskite-structure related cathode materials for solid oxide fuel cells. Ceram Int. https://doi.org/10.1016/j.cerami.2019.11.066

Kazemi SH et al (2016) Binder-free electrodes of NiMoO4/graphene oxide nanosheets: synthesis, characterization and supercapacitive behavior. RSC Adv 6:111170–111181. https://doi.org/10.1039/C6RA23076H

Ke Q, Wang J (2016) Graphene-based materials for supercapacitor electrodes—a review. J Materiomics 2:37–54. https://doi.org/10.1016/j.jmatol.2016.01.001

Kefeni KK et al (2020) Spinel ferrite nanoparticles and nanocomposites for biomedical applications and their toxicity. Mater Sci Eng, C. 830:154734. https://doi.org/10.1016/j.msec.2019.110314

Kim TW et al (2014) Electrochemical synthesis of spinel type ZnCo2O4 electrodes for use as oxygen evolution reaction catalysts. J Phys Chem Lett 5:2370–2374. https://doi.org/10.1021/jz501077u

Kim TW et al (2014) Electrochemical synthesis of spinel type ZnCo2O4 electrodes for use as oxygen evolution reaction catalysts. J Phys Chem Lett 5:2370–2374. https://doi.org/10.1021/jz501077u

Kim HJ et al (2016) Densely packed zinc sulfide nanoparticles on TiO2 for hindering electron recombination in dye-sensitized solar cells. New J Chem 40:9176–9186. https://doi.org/10.1039/C6NJ02493A
Kim DY et al (2017) Chemical synthesis of hierarchical NiCo$_2$S$_4$ nanosheets on flexible foil for a high-performance supercapacitor. Sci Rep 7:1–10. https://doi.org/10.1038/s41598-017-10218-z

Koneracká M et al (1999) Immobilization of proteins and enzymes to fine magnetic particles. J Magn Magn Mater 201:427–430. https://doi.org/10.1016/S0304-8853(99)00005-0

Kumar TP et al (2004) Tin-filled carbon nanotubes as insertion anode materials for lithium-ion batteries. Electrochem Commun 6:520–525. https://doi.org/10.1016/j.elecom.2004.03.009

Kumar PR et al (2014) Enhanced properties of porous CoFe$_2$O$_4$-reduced graphene oxide composites with alginate binders for Li-ion battery applications. New J Chem 38:3654–3661. https://doi.org/10.1039/C4NJ00419A

Kumar YA et al (2020) A MoNiO$_2$ flow-like electrode material for enhanced electrochemical properties via a facile chemical bath deposition method for supercapacitor applications. New J Chem 44:522–529. https://doi.org/10.1039/C9NJ05529K

Kumuthini R et al (2017) Electrochemical properties of electropun MoS$_2$/C nanofiber as electrode material for high-performance supercapacitor application. J Alloys Compd 705:624–630. https://doi.org/10.1016/j.jallcom.2017.02.163

Kwon J et al (2017) Facile hydrothermal synthesis of cubic spinel AB$_2$O$_4$ type MnFe$_2$O$_4$ nanocrystallites and their electrochemical performance. Appl Surf Sci 413:83–91. https://doi.org/10.1016/j.apsusc.2017.04.022

Lacerda GRBS et al (2020) Development of nanohybrids based on carbon nanotubes/PEDOT-co-MPs and PEDOT-co-PyMP copolymers as electrode materials for aqueous supercapacitors. Electrochim Acta 335:135637. https://doi.org/10.1016/j.electacta.2020.135637

Lalwani S et al (2019) Layered nanobalades of iron cobaltite for high performance asymmetric supercapacitors. Appl Surf Sci 476:1025–1034. https://doi.org/10.1016/j.apsusc.2019.01.184

Lamberti A (2018) Flexible supercapacitor electrodes based on MoS$_2$-intercalated rGO membranes on Ti mesh. Mater Sci Semicond Process 73:106–110. https://doi.org/10.1016/j.mssp.2017.06.046

Lang X et al (2017) Supercapacitor performance of perovskite La$_{0.85}$Sr$_{0.15}$MnO$_3$. Dalton Trans 46:13720–13730. https://doi.org/10.1039/C7DT03134C

Lang X et al (2019) Ag nanoparticles decorated perovskite La$_{0.95}$Sr$_{0.05}$MnO$_3$ as electrode materials for supercapacitors. Mater Lett 243:34–37. https://doi.org/10.1016/j.matlet.2019.02.002

Lavela P et al (2009) 57Fe Mossbauer spectroscopy study of the electrochemical reaction with lithium of MFe$_2$O$_4$ (M = Co and Cu) electrodes. J Phys Chem C 113:20081–20087. https://doi.org/10.1021/jp8095636

Lee HI et al (2011) Spontaneous phase separation mediated synthesis of 3D mesoporous carbon with controllable cage and window size. Adv Mater 23:2357–2361. https://doi.org/10.1002/adma.201003599

Lee H et al (2017) Yolk–shell polystyrene@microporous organic network: a smart template with thermally disassemblable yolk to engineer hollow MoS$_2$/C composites for high-performance supercapacitors. ACS Omega 2:7658–7665. https://doi.org/10.1021/acsomega.7b01426

Li X et al (2015) Fabrication of γ-MnS/GO composite by facile one-pot solvothermal approach for supercapacitor applications. J Power Sources 282:194–201. https://doi.org/10.1016/j.jpowsour.2015.02.057

Li Z et al (2016a) Flaky Co$_3$S$_4$ and graphene nanocomposite anode materials for sodium-ion batteries with improved performance. RSC Adv 6:70632–70637. https://doi.org/10.1039/C6RA12563H

Li L et al (2016b) Hierarchical carbon@Ni$_3$S$_2$@MoS$_2$ double core–shell nanorods for high-performance supercapacitors. J Mater Chem A 4:1319–1325. https://doi.org/10.1039/c5ta08714g

Li M et al (2016c) Ultrafine jagged platinum nanowires enable ultra-high mass activity for the oxygen reduction reaction. Science 354:1414–1419. https://doi.org/10.1126/science.aaq9050

Li W et al (2016d) Mesoporous materials for energy conversion and storage devices. Nat Rev Mater 1:1–17. https://doi.org/10.1038/natrevmats.2016.23

Li Z et al (2017a) Controlled synthesis of perovskite lanthanum ferrite nanotubes with excellent electrochemical properties. RSC Adv 7:12931–12937. https://doi.org/10.1039/C6RA27423D

Li X et al (2017b) Supercapacitor electrode materials with hierarchically structured pores from carbonization of MWCNTs and ZIP-f composites. Nanoscale 9:2178–2187. https://doi.org/10.1039/C6NR08987A

Li P et al (2018) Stretchable all-gel-state fiber-shaped supercapacitors enabled by macromolecularly interconnected 3D graphene/nanocostructed conducting polymer hydrogels. Adv Mater 30:1800124. https://doi.org/10.1002/adma.201800124

Li H et al (2019a) Zinc cobalt sulfide nanoparticles as high performance electrode material for asymmetric supercapacitor. Electrochim Acta 319:716–726. https://doi.org/10.1016/j.electacta.2019.07.033

Li J et al (2019b) Dielectric, multiferroic and magnetoelectric properties of (1 − x)BaTiO$_3$–xSr$_2$CoMoO$_6$ solid solution. Ceram Int 45:16353–16360. https://doi.org/10.1016/j.ceramint.2019.05.163

Li J et al (2019c) Cladding nanostructured AgNWs–MoS$_2$ electrode material for high-rate and long-life transparent in-plane microsupercapacitor. Energy Storage Mater 16:212–219. https://doi.org/10.1016/j.ensmat.2018.05.013

Li D et al (2019d) A general self-template-etched solution route for the synthesis of 2D γ-manganese sulfide nanoflakes and their enhanced supercapacitive performance. New J Chem 43:4674–4680. https://doi.org/10.1039/c8nj06143b

Li Y et al (2019e) Bark-based 3D porous carbon nanosheet with ultra-high surface area for high performance supercapacitor electrode material. ACS Sustain Chem Eng 7:13827–13835. https://doi.org/10.1021/acs.suschemeng.9b01779

Li T et al (2020) Advances in transition-metal (Zn, Mn, Cu)-based MOFs and their derivatives for anode of lithium-ion batteries. Coord Chem Rev 410:213221. https://doi.org/10.1016/j.chemr.2020.213221

Lian M et al (2017) Hydrothermal synthesis of polypryrolo/MoS$_2$ intercalation composites for supercapacitor electrodes. Ceram Int 43:9877–9883. https://doi.org/10.1016/j.ceramint.2017.04.171

Liang A et al (2018) Robust flexible WS$_x$/PEDOT:PPS film for use in high-performance miniature supercapacitors. J Electroanal Chem 824:136–146. https://doi.org/10.1016/j.jelechem.2018.07.040

Liang G et al (2020) Developing high-voltage spinel LiNi$_0.5$Mn$_1.5$O$_4$ cathodes for high-energy-density lithium-ion batteries: current achievements and future prospects. J Mater Chem. https://doi.org/10.1039/DOTA02812F

Lin L-Y, Lin L-Y (2017) Material effects on the electrocapacitive performance for the energy-storage electrode with nickel cobalt oxide core/shell nanostuctures. Electrochim Acta 250:335–347. https://doi.org/10.1016/j.electacta.2017.08.074

Lin Y-P, Wu N-L (2011) Characterization of MnFe$_2$O$_4$/LiMn$_2$O$_4$ aqueous asymmetric supercapacitor. J Power Sources 196:851–854. https://doi.org/10.1016/j.jpowsour.2010.07.066

Lin Y et al (2013) Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function. Energy Environ Sci 6:108–115. https://doi.org/10.1039/C2EE3538B

Lin T-W et al (2018) Ternary composite nanosheets with MoS$_2$/WS$_x$/graphene heterostructures as high-performance cathode materials...
Reddy AE et al (2018b) NiMoO$_4$@NiWO$_4$ honeycombs as a high performance electrode material for supercapacitor applications. Dalton Trans 47:9057–9063. https://doi.org/10.1039/C8DT01245H

Reddy BJ et al (2019) A facile synthesis of novel α-ZnMoO$_4$ microspheres as electrode material for supercapacitor applications. Bull Mater Sci 42:52. https://doi.org/10.1007/s12034-019-1749-9

Reitz JR et al (2008) Foundations of electromagnetic theory. Addison-Wesley Publishing Company, Boston

Ren J et al (2019) Co$_3$S$_2$ hollow nanocubes derived from Co–Co Prussian blue analogue: high-performance electrode materials for supercapacitors. J Electroanal Chem 836:30–37. https://doi.org/10.1016/j.jelechem.2019.01.049

Rendón-Angeles JC et al (2016) Synthesis of perovskite oxides by hydrothermal processing—from thermodynamic modelling to practical processing approaches. In: Perovskite materials: synthesis, characterisation, properties, and applications, p 27. https://doi.org/10.5772/61568

Rezanezhad A et al (2020) Outstanding supercapacitor performance of Nd–Mn co-doped perovskite LaFe$_3$O$_4$–nitrogen-doped graphene oxide nanocomposites. Electrochim Acta 335:135699. https://doi.org/10.1016/j.electacta.2020.135699

Rosa Silva E et al (2019) Carbon-based electrode loaded with Y-doped SrTiO$_3$ perovskite as support for enzyme immobilization in biosensors. Ceram Int. https://doi.org/10.1016/j.ceramint.2019.10.077

Sachdev S (2006) Handbook of magnetism and advanced magnetic materials. https://doi.org/10.1029/2004J003214

Saha S et al (2018) A review on the heterostructure nanomaterials for supercapacitor application. J Energy Storage 17:181–202. https://doi.org/10.1016/j.est.2018.03.006

Sahoo S et al (2016) Porous ternary high performance supercapacitor electrode based on reduced graphene oxide. NiMn$_2$O$_4$, and polyaniline. Electrochem Acta 216:386–396. https://doi.org/10.1016/j.electacta.2016.09.030

Saleh Ghadimi L et al (2019) Effect of synthesis route on the electrochemical performance of CoMnFeO$_4$ nanoparticles as a novel supercapacitor electrode material. Appl Surf Sci 494:440–451. https://doi.org/10.1016/j.apsusc.2019.07.183

Salguero Salas MA et al (2019) Synthesis and characterization of alumina-embedded SrCo$_{0.95}$V$_{0.05}$O$_3$ nanostuctured perovskite: an attractive material for supercapacitor devices. Microporous Mesoporous Mater. https://doi.org/10.1016/j.microres.2019.109797

Samir K et al (2017) Electrodeposited nickel–cobalt sulphide nanosheet on polycrylonitrile nanofibers: a binder-free electrode for flexible supercapacitors. Mater Res Express 4:116309. https://doi.org/10.1088/2053-1591/aa985b

Samoila P et al (2017) Remarkable catalytic properties of rare-earth doped nickel ferrites synthesized by sol–gel auto-combustion with maleic acid as fuel for CWPO of dyes. Appl Catal B 202:21–32. https://doi.org/10.1016/j.apcatb.2016.09.012

Sankar KV, Selvan RK (2014) The preparation of MnFe$_2$O$_4$ decorated flexible graphene wrapped with PANI and its electrochemical performances for hybrid supercapacitors. RSC Adv 4:17555–17566. https://doi.org/10.1039/C4RA04761B

Sankar KV, Selvan RK (2015) The ternary MnFe$_2$O$_4$/graphene/polyaniline hybrid composite as a negative electrode for supercapacitors. J Power Sources 275:399–407. https://doi.org/10.1016/j.jpowsour.2014.10.183

Sareen P et al (2019) Self-assembled GNS wrapped flower-like MnO$_2$–C nanostructures for supercapacitor application. J Solid State Chem 271:282–291. https://doi.org/10.1016/j.jssc.2018.11.016

Sari FNI, Ting J-M (2018) MoS$_2$/MoO$_3$-nanostructure-decorated activated carbon for enhanced supercapacitor performance. ChemSusChem 11:897–906. https://doi.org/10.1002/cssc.201702295

Sarkar A et al (2018) Novel hydrothermal synthesis of CoS$_2$/MWCNT nanohybrid electrode for supercapacitor: a systematic investigation on the influence of MWCNT. J Phys Chem C 122:18237–18246. https://doi.org/10.1021/acs.jpcc.8b04137

Sarmah D, Kumar A (2018) Layer-by-layer self-assembly of ternary MoS$_2$–rGO/PPyNTs nanocomposites for high performance supercapacitor electrode. Synth Met 243:75–89. https://doi.org/10.1016/j.synthmet.2018.06.001

Sarno M, Troisi A (2017) Supercapacitors based on high surface area MoS$_2$ and MoS$_2$–Fe$_3$O$_4$ nanostructures supported on physical exfoliated graphite. J Nanosci Nanotechnol 17:3735–3743. https://doi.org/10.1021/acs.jnnanomater.7b01089

Schaa RE, Mallouk TE (2002) Perovskites by design: a toolbox of solid-state reactions. Chem Mater 14:1455–1471. https://doi.org/10.1021/cm010689m

Selvarajan R et al (2020) Facile synthesis of perovskite type BiYO$_3$ embedded reduced graphene oxide (RGO) composite for supercapacitor applications. Ceram Int 46:3471–3478. https://doi.org/10.1016/j.ceramint.2019.10.060

Sevilla M et al (2017) Beyond KOH activation for the synthesis of superactivated carbons from hydrochar. Carbon 114:50–58. https://doi.org/10.1016/j.carbon.2016.12.010

Sha C et al (2016) 3D ternary nanocomposites of molybdenum disulphide/polyaniline/reduced graphene oxide aerogel for high performance supercapacitors. Carbon 99:26–34. https://doi.org/10.1016/j.carbon.2015.11.066

Shafi PM et al (2018) Enhanced electrochemical performances of agglomeration-free LaMnO$_3$ perovskite nanoparticles and achieving high energy and power densities with symmetric supercapacitor design. Chem Eng J 338:147–156. https://doi.org/10.1016/j.cej.2018.01.022

Sha MS et al (2018) Structural and magnetic properties of praseodymium substituted barium-based spinel ferrites. Mater Res Bull 98:77–82. https://doi.org/10.1016/j.materresbull.2017.09.063

Shamugavani A, Selvan RK (2014) Synthesis of ZnFe$_2$O$_4$ nanoparticles and their asymmetric configuration with Ni(OH)$_2$ for a pseudocapacitor. RSC Adv 4:27022–27029. https://doi.org/10.1039/C4RA01793E

Sharifi I et al (2012) Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater 324:903–915. https://doi.org/10.1016/j.jmmm.2011.10.017

Sharifi S et al (2020) Effect of Co$^{2+}$ content on supercapacitance properties of hydrothermally synthesized Ni$_{x}$Co$_{(3-x)}$Fe$_2$O$_4$ nanoparticles. Mater Sci Semicond Process 108:104902. https://doi.org/10.1016/j.mssp.2019.10.04902

Sharma R et al (2017) Ferrimagnetic Ni$^{2+}$ doped Mg–Zn spinel ferrite nanospheres for high density information storage. J Alloys Compd 704:7–17. https://doi.org/10.1016/j.jallcom.2017.02.021

Shih Z-Y et al (2013) Synthesis and catalysis of copper sulphide/carbon nanodots for oxygen reduction in direct methanol fuel cells. Appl Catal B 132:363–369. https://doi.org/10.1016/j.apcatb.2012.12.004

Shin J et al (2018) An accurate and stable humidity sensing characteristic of Si FET-type humidity sensor with MoS$_2$ as a sensing layer by pulse measurement. Sens Actuators B Chem 258:574–579. https://doi.org/10.1016/j.snb.2017.11.132

Singh G, Chandra S (2018) Electrochemical performance of MnFe$_2$O$_4$ nano-ferrites synthesized using thermal decomposition method. Int J Hydrog Energy 43:4058–4066. https://doi.org/10.1016/j.ijhydene.2017.08.181

Siwach PK et al (2008) Low field magnetotransport in manganites. J Phys: Condens Matter 20:273201. https://doi.org/10.1088/0953-8984/20/27/273201
Snook et al (2010) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources. https://doi.org/10.1016/j.jpowsour.2010.06.084

Soares S et al (2018) Nanomedicine: principles, properties, and regulatory issues. Front Chem 6:360. https://doi.org/10.3389/fchem.2018.00360

Song K et al (2019) Hierarchical structure of CoFe2O4 core-shell microsphere coating on carbon fiber cloth for high-performance asymmetric flexible supercapacitor applications. Ionics 25:4905–4914. https://doi.org/10.1007/s11581-019-03030-4

Song Y-L et al (2020) Molten salt synthesis and supercapacitor properties of oxygen-vacancy LaMnO3-δ. J Energy Chem 43:173–181. https://doi.org/10.1016/j.jenechem.2019.09.007

Sridhar V, Park H (2018) Carbon nanofiber linked FeS2 mesoporous nano-alloys as high capacity anodes for lithium-ion batteries and supercapacitors. J Alloys Compd 732:799–805. https://doi.org/10.1016/j.jallcom.2017.10.252

Su L et al (2018) Sprinkling MnFe2O4 quantum dots on nitrogen-doped graphene sheets: the formation mechanism and application for high-performance supercapacitor electrodes. J Mater Chem A 6:9997–10007. https://doi.org/10.1039/C8TA02982B

Sun Y et al (2011) Graphene based new energy materials. Energy Int Ed 54:4651–4656. https://doi.org/10.1016/j.ijhydene.2014.01.069

Sunarso J et al (2017) Perovskite oxides applications in high temperature oxygen separation, solid oxide fuel cell and membrane reactor applications. Inorg Chem Front 6:659–670. https://doi.org/10.1039/C5IA01230J

Sun Z et al (2019a) Bifunctional iron disulfide nanoellipsoids for high-performance supercapacitors. J Mater Chem A 7:1117–1123. https://doi.org/10.1039/C8TA02982B

Sun Z et al (2019b) From biomass wastes to vertically aligned graphene nanosheet arrays: a catalyst-free synthetic strategy towards high-performance supercapacitors. J Power Sources 426:223–232. https://doi.org/10.1016/j.jpowsour.2019.04.049

Tu CC et al (2016) Highly efficient supercapacitor electrode with two-dimensional tungsten disulfide and reduced graphene oxide hybrid nanosheets. J Power Sources 320:78–85. https://doi.org/10.1016/j.jpowsour.2016.04.083

Uke SJ et al (2020) Sol–gel citrate synthesized Zn doped MgFe2O4 nanocrystals: a promising supercapacitor electrode material. Mater Sci Energy Technol 3:446–455. https://doi.org/10.1016/j.mset.2020.02.009

Umeshabu E et al (2015) Synthesis of mesoporous NiCo2O4–rGO by a solvothermal method for charge storage applications. RSC Adv 5:66657–66666. https://doi.org/10.1039/C5RA11239G

Vadiyar MM et al (2015) Mechanochemical growth of a porous ZnFe2O4 nano-flake thin film as an electrode for supercapacitor application. RSC Adv 5:45935–45942. https://doi.org/10.1039/C5RA07588B

Vadiyar MM et al (2016a) Reflux condensation mediated deposition of CoO4 nanostructures and ZnFe2O4 nanoflakes electrodes for flexible asymmetric supercapacitor. Electrochim Acta 222:1604–1615. https://doi.org/10.1016/j.electacta.2016.11.146

Vadiyar MM et al (2016b) Low cost flexible 3-D aligned and cross-linked efficient ZnFe2O4 nano-flakes electrode on stainless steel mesh for asymmetric supercapacitors. J Mater Chem A 4:3504–3512. https://doi.org/10.1039/C5TA09022A

Veerasubramani GK et al (2014) Synthesis, characterization, and electrochemical properties of CoMoO4 nanostructures. Int J Hydrog Energy 39:5186–5193. https://doi.org/10.1016/j.ijhydene.2014.01.069

Veerasubramani GK et al (2016) Improved electrochemical performances of binder-free CoMoO4 nanoplate arrays@Ni foam electrode using redox additive electrolyte. J Power Sources 306:378–386. https://doi.org/10.1016/j.jpowsour.2015.12.034

Venkatachalam V et al (2017) Double hydroxide mediated synthesis of nanostructured ZnCo2O4 as high performance electrode material for supercapacitor applications. Chem Eng J 321:474–483. https://doi.org/10.1016/j.cej.2017.03.148

Vignesh V et al (2018) Electrochemical investigation of manganese ferrites prepared via a facile synthesis route for supercapacitor applications. Colloids Surf A Physicochem Eng Asp 538:668–677. https://doi.org/10.1016/j.colsurfa.2017.11.045

Vignesh V et al (2019) Synthesis of GNS–MnS hybrid nanocomposite for enhanced electrochemical energy storage applications. Mater Chem Phys 230:249–257. https://doi.org/10.1016/j.matchemphys.2019.03.070

Vijayanand S (2010) Synthesis and characterization of spinel type magnetic and non-magnetic oxide nanomaterials. CSIR-National Chemical Laboratory, Pune. https://shodhganga.inflibnet.ac.in/bitstream/10603/102638/1/01_title.pdf. Accessed 23/07/2020
Vinuth Raj TN et al (2020) Facile synthesis of perovskite lanthanaum aluminate and its green reduced graphene oxide composite for high performance supercapacitors. J Electroanal Chem 858:113830. https://doi.org/10.1016/j.jelechem.2020.113830
Vu HT et al (2015) Ferroelectric and piezoelectric responses of (110) and (001)-oriented epitaxial PbZr0.52Ti0.48O3 thin films on all-oxide layers buffered silicon. Mater Res Bull 72:160–167. https://doi.org/10.1016/j.materresbull.2015.07.043
Wang J et al (2005) Carbon nanotube – conducting-polymer composite nanowires. Langmuir 21:9–12. https://doi.org/10.1021/la040797f
Wang YG et al (2006) Ordered whiskerlike polyaniline grown on the surface of mesoporous carbon and its electrochemical capacitance performance. Adv Mater 18:2619–2623. https://doi.org/10.1002/adma.200600445
Wang DW et al (2008) 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew Chem Int Ed 47:373–376. https://doi.org/10.1002/anie.200702721
Wang Y et al (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113:13103–13107. https://doi.org/10.1021/jp902214f
Wang C et al (2011) The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl Phys Lett 98:072906. https://doi.org/10.1063/1.3555436
Wang H et al (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2:781–794. https://doi.org/10.1021/cs200652y
Wang D-W et al (2013a) Carbon–sulfur composites for Li–S batteries: status and prospects. J Mater Chem A 1:9382–9394. https://doi.org/10.1039/C3TA11045A
Wang B et al (2013b) Contact-engineered and void-involved silicon/carbon nanohybrids as lithium-ion-battery anodes. Adv Mater 25:3560–3565. https://doi.org/10.1002/adma.201300844
Wang K et al (2014a) Conducting polymer nanowire arrays for high performance supercapacitors. Small 10:14–31. https://doi.org/10.1002/smll.201301991
Wang Y et al (2014b) Novel FeMoO4/graphene composite based electrode materials for supercapacitors. Compos Sci Technol 103:16–21. https://doi.org/10.1016/j.compscitech.2014.08.009
Wang J et al (2014c) Ni,S2@MoS2 core/shell nanorod arrays on Ni foam for high-performance electrochemical energy storage. Nano Energy 7:151–160. https://doi.org/10.1016/j.nanoen.2014.04.019
Wang J-F et al (2015a) Enhanced low-field magnetoresistance in organic/inorganic glycerin/Sr2FeMoO6 composites. J Phys Chem C 113:13103–13107. https://doi.org/10.1021/jp511045a
Wang W et al (2015b) One-pot synthesis of 3D flower-like heterostructure SnS2/MoS2 for enhanced supercapacitor behavior. RSC Adv 5:89069–89075. https://doi.org/10.1039/C5RA16300E
Wang L et al (2016a) Microstructure and mechanical properties of Ba0.6Sr0.4SnO3–CO2Fe2O4–δ perovskite-structured oxides doped with different contents of Ni. Mater Sci Eng, A 658:280–288. https://doi.org/10.1016/j.msea.2016.02.008
Wang XW et al (2016b) Structural and electrochemical properties of La0.95Sn1.5MnO3 powder as an electrode material for supercapacitor. J Alloys Compd 675:195–200. https://doi.org/10.1016/j.jallcom.2016.03.048
Wang M et al (2016c) Hierarchically layered MoS2/Mn2O3 hybrid architectures for electrochemical supercapacitors with enhanced performance. Electrochem Acta 209:389–398. https://doi.org/10.1016/j.electacta.2016.05.078
Wang Z et al (2017a) Ni foam-supported carbon-sheathed NiMoO4 nanowires as integrated electrode for high-performance hybrid supercapacitors. ACS Sustain Chem Eng 5:5964–5971. https://doi.org/10.1021/acssuschemeng.7b00758
Wang J et al (2017b) High-performance supercapacitor electrode based on a nanocomposite of polyaniline and chemically exfoliated MoS2 nanosheets. J Solid State Electrochem 21:2071–2077. https://doi.org/10.1007/s10008-017-3536-0
Wang H et al (2017c) Design and fabrication of macroporous polyaniline nanorods@graphene-like MoS2 nanocomposite with high electrochemical performance for supercapacitors. J Alloys Compd 699:176–182. https://doi.org/10.1016/j.jallcom.2016.12.344
Wang K et al (2017d) General solution-processed formation of porous transition-metal oxides on exfoliated molybdenum disulfides for high-performance asymmetric supercapacitors. J Mater Chem A 5:11236–11245. https://doi.org/10.1039/c7ta01457k
Wang L et al (2017e) Supercapacitor performances of the MoS2/Co3S2 nanotube arrays in situ grown on Ti plate. J Phys Chem C 121:9089–9095. https://doi.org/10.1021/acs.jpcc.6b13026
Wang L et al (2017f) Titanium plate supported MoS2 nanosheet arrays for supercapacitor application. Appl Surf Sci 396:1466–1471. https://doi.org/10.1016/j.apsusc.2016.11.193
Wang S et al (2017g) Three-dimensional MoS2@CNT/RGO network composites for high-performance flexible supercapacitors. Chem Eur J 23:3438–3446. https://doi.org/10.1002/chem.201605465
Wang J et al (2018a) Confined self-assembly in two-dimensional interlayer space: monolayered mesoporous carbon nanosheets with in-plane orderly arranged mesopores and a highly graphitized framework. Angew Chem Int Ed 57:2894–2898. https://doi.org/10.1002/anie.201712959
Wang X et al (2018b) High-performance stretchable supercapacitors based on intrinsically stretchable acrylate rubber/MWCNTs@conducting polymer composite electrodes. J Mater Chem A 6:4432–4442. https://doi.org/10.1039/C7TA11173H
Wang Z et al (2019a) Non-volatile resistance switching properties of PbTiO3 based metal-ferroelectric-semiconductor structures. Thin Solid Films 671:59–63. https://doi.org/10.1016/j.tsf.2018.12.031
Wang W et al (2019b) Synthesis, morphology and electrochemical performances of perovskite-type oxide La2Sr1−xFeO3 nanofibers prepared by electrospinning. J Phys Chem Solids 124:144–150. https://doi.org/10.1016/j.jpcs.2018.09.011
Wang Y et al (2019c) Conductive polymers for stretchable supercapacitors. Nano Res 12:1989–1993. https://doi.org/10.1007/s12274-019-2296-9
Wang W et al (2020a) High-performance GdxSr1−xNiO3 porous nanofibers prepared by electrospinning. J Phys Chem Solids 140:109361. https://doi.org/10.1016/j.jpcs.2020.109361
Wang J-A et al (2020b) Constructing a high-performance quasi-solid-state asymmetric supercapacitor: Na2MnO2@CNT/WPU-PAAK-Na2SO4/AC-CNT. Electrochem Acta 334:135576. https://doi.org/10.1016/j.electacta.2019.135576
Wang M et al (2020c) Development of polyoxometalate-anchored 3D hybrid hydrogel for high-performance flexible pseudo-solid-state supercapacitor. Electrochem Acta 329:135181. https://doi.org/10.1016/j.electacta.2019.135181
Wang J et al (2020d) Na-ion conducting gel polymer membrane for flexible supercapacitor application. Electrochem Acta 330:135322. https://doi.org/10.1016/j.electacta.2019.135322
Wei T Y et al (2010) A cost-effective supercapacitor material of ultra-high specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol–gel process. Adv Mater 22:347–351. https://doi.org/10.1002/adma.200902175
Wei M et al (2019) Ruddlesden–Popper type LaNiO3+δ oxide coated by Ag nanoparticles as an outstanding anion intercalation cathode for hybrid supercapacitors. Appl Surf Sci 484:551–559. https://doi.org/10.1016/j.apsusc.2019.04.015
