SHORT COMMUNICATION

Spontaneous production of interleukin 6 by adult T-cell leukaemia cells

T. Sawada, H. Tsuda & K. Takatsuki

The Second Department of Internal Medicine, Kumamoto University Medical School, Honjo 1-1-1, Kumamoto 860, Japan.

Interleukin-6 (IL-6) is a cytokine that has a wide variety of biological activities involved in the immune response, acute inflammation and haematopoiesis (Kishimoto, 1989). The cell types producing IL-6 are systemically distributed: T-cells, B-cells, monocytes, fibroblasts, keratinocytes, endothelial cells, and several tumour cells (Ray et al., 1989). IL-6 production in T-cells is induced by T-cell mitogens such as phorbolesters or concanavalin A and antigenic stimulation on direct contact with macrophages (Hori et al., 1988). Several T-cell lines, however, transformed by human T-cell lymphotropic virus type I (HTLV-I) express IL-6 mRNA without stimulation (Hirano et al., 1986; Noma et al., 1989). Adult T-cell leukaemia (ATL) is causally associated with HTLV-I infection and some ATL-cells produce or respond to lymphokines such as IL-1 (Kodaka et al., 1989), IL-2 (Tsuda & Takatsuki, 1983; Anma et al., 1987), and IL-4 (Uchiyama et al., 1988).

In this study, we attempted to elucidate whether ATL-cells secrete IL-6 or proliferate in response to this factor.

Blood samples were obtained from healthy volunteers and patients with ATL admitted to Kumamoto University Hospital between April 1988 and November 1989. The sera were cryopreserved at −80°C until IL-6 measurement. The mononuclear cells were separated from heparinised peripheral blood of six acute ATL (designated as ATL 1–6) and four normal controls and a cervical lymph node of one lymphoma type ATL (ATL 7) by gradient centrifugation on Ficoll-Hypaque. Surface phenotypes of the mononuclear cells as analysed by flow cytometry are shown in Table I. Furthermore, T-cell enriched preparations were obtained by a sheep red blood cell rosetting technique (Tsuda & Takatsuki, 1984). Purity of T-cells as evaluated by flow cytometry of FITC-conjugated anti-CD2-stained cells was 99% for ATL-cells and 90% for normal controls. T-cells were cultured in 96-well culture plates (200 µl per well) at a concentration of 1 x 10⁶ cells ml⁻¹ in RPMI 1640 containing 10% fetal calf serum in the absence of additional factors. Recombinant human IL-6 (1–2 x 10⁻¹⁵ m⁻²g) and polyclonal anti-human IL-6 antibody were obtained from Amersham (Arlington Heights, IL, USA) and R & D Systems (Minneapolis, MN, USA), respectively. An ELISA kit (Inter-Test 6, Genzyme Corporation, Boston, MA, USA) was used for the measurement of IL-6 in sera and conditioned media (CMs).

First, the sera of both healthy volunteers (n = 6) and ATL patients of different types or phases of disease (Kawano et al., 1985); acute (n = 9), chronic (n = 10), smouldering (n = 7), and lymphoma (n = 1) type, were tested for IL-6 levels. In the case of ATL, the patients with sepsis or endotoxaemia were omitted because serum IL-6 levels are known to be enhanced in such conditions (Hack et al., 1989). Results showed that not only control sera but also ATL sera from all four categories of ATL patient did not have detectable levels of IL-6 (data not shown) (limit of sensitivity is 0.163 ng ml⁻¹ or 0.815 u ml⁻¹).

Next, in order to clarify whether ATL-cells do secrete IL-6 in vitro, CMs sampled at 2, 4, 8, 24 and 24 h following culture were tested for IL-6 concentrations. As shown in Figure 1, two cases of ATL-CMs (ATL 1 and 2) showed obvious high levels of IL-6 as compared with CMs of normal T-cells at 8 and 24 h, and the case secreting the largest amount of IL-6 (ATL 1) was positive by 4 h. Another two cases (ATL 3 and 4) showed slightly higher IL-6 levels than controls at 8 and 24 h, but the last two cases (ATL 5 and 7) did not show detectable levels of IL-6 even at 24 h. It is known that IL-6 mRNA is induced in monocytes and T-cells within 5 h and 24–48 h after culture initiation, respectively (Kishimoto, 1989). Considering the high purity of ATL cells used in the study (Table I) and early detection of IL-6 at 4 or 8 h of culture, the large amount of IL-6 detected in ATL-CMs seemed to be secreted by ATL cells themselves. However, normal T cells contaminated in the T cell preparations, if activated, could have contributed some of the IL-6 that was secreted into their cultures.

IL-6 promotes the growth of PHA-stimulated thymocytes and peripheral T-cells (Kishimoto, 1989). To examine whether the IL-6 enhances proliferation of ATL-cells, ATL from patients 1, 2, 5, 6 and 7 were incubated in the presence of IL-6 (20 ng ml⁻¹) or anti-IL-6 antibody (200 u ml⁻¹) for 72 h; proliferation was measured by ³H-thymidine (³H-TdR) incorporation in the last 16 h of culture. The ³H-TdR uptake into ATL-cells was not influenced by either IL-6 or anti-IL-6 antibody (Table II).

Thus, we have demonstrated that ATL cells from four out of six patients secreted IL-6 spontaneously in vitro and that IL-6 was not detected in the sera of ATL patients in different phases of the disease. HTLV-I infection activates genes for

Correspondence: H. Tsuda.
Received 1 March 1990; and in revised form 3 August 1990.
Table I Surface phenotypes of the mononuclear cells from ATL patients

Patients	CD2	CD3	CD4	CD8	CD16	CD20	CD25
ATL 1	NTb	42.3	85.6	5.7	NT	NT	20.4
2	99.9	99.2	99.6	7.7	0.7	0.0	78.1
3	99.6	96.4	91.9	6.4	4.1	0.2	88.6
4	98.1	55	96.4	1.9	NT	1.3	94.1
5	89.1	63	71.1	9.2	NT	9.4	45.2
6	97.7	74.6	88.5	6.3	2.7	0.4	73.7
7	99.0	29.7	98.6	8.0	0.9	0.8	76.4

The cells were stained by the direct or indirect immunofluorescence technique using monoclonal antibodies; OKT1, OKT3, OKT4, OKT8, OKNK1, B1 or anti-OKT1, OKT3, OKT4 monoclonal antibodies, respectively.

Table II Effect of IL-6 and anti-IL-6 antibody on proliferation of ATL-cells

Patients	IL-6 (20 ng ml⁻¹)	Anti-IL-6 (200 μg ml⁻¹)
None		
ATL 1	369 ± 24	361 ± 37
2	401 ± 6	434 ± 41
5	1880 ± 167	1653 ± 47
6	1231 ± 176	1291 ± 203
7	1559 ± 118	1485 ± 77
normal control	1431 ± 126	1383 ± 123

The values are mean ± S.D.

Reference

ARIMA, N., DAITOYU, Y., YAMamoto, Y. & 7 others (1987). Regulation of B-lymphocyte proliferation by adult T-cell leukemia cells. J. Immunol., 138, 3069.

CASSELL, J.V., GOMEZ-LECHON, M.J., DAVID, M. & 3 others (1988). Recombinant human interleukin-6 (IL-6) in the production of human hepatocytes. FEBS Lett., 232, 347.

GARMAN, R.D., JACobs, K., CLARK, S.C. & RAULET, D.H. (1987). B-cell-stimulatory factor 2 (B2-interferon) functions as a second signal for interleukin-2 production by mature murine T-cells. Proc. Natl Acad. Sci. USA, 84, 7629.

HACK, C.E., GROOT, E.D., FELT-BERMA, R.F. & 5 others (1989). Increased plasma levels of interleukin-6 in sepsis. Blood, 74, 1704.

HIRANO, T., YASUKAWA, K., HARAHA, H. & 4 others (1986). Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature, 324, 73.

HORII, Y., MURAGUCHI, A., SUEMATSU, S. & 4 others (1988). Regulation of BSF-2/IL-6 production by human mononuclear cells: macrophage-dependant synthesis of BSF-2/IL-6 by T-cells. J. Immunol., 141, 1529.

KAWANO, F., YAMAGUCHI, K., NISHIMURA, H., TSUDA, H. & TAKATsukI, K. (1985). Variation in the clinical courses of adult T-cell leukemia. Cancer, 55, 851.

KISHIMOTO, T. (1989). The biology of interleukin-6. Blood, 74, 1.

KODAKA, T., UCHIYAMA, T., UMADOMe, T.M. & UCHINO, H. (1989). Expression of cytokine mRNA in leukemia cells from adult T-cell leukemia patients. Jpn. J. Cancer Res., 80, 50.

LOTEm, J., SHABO, Y. & SACHS, L. (1989). Regulation of megakaryocyte development by interleukin-6. Blood, 74, 1545.

NOMA, T., MIZUTA, T., ROsEN, A., HIRANO, T., KISHIMOTO, T. & HONJO, T. (1987). Enhancement of the interleukin-2 receptor expression on T-cells by multiple B-lymphotropic lymphokines. Immunol. Lett., 15, 249.

NOMA, T., NAKAKUBO, H., SUGITA, M. & 4 others (1989). Expression of different combinations of interleukins by human T-cell leukemia cell lines that are clonally related. J. Exp. Med., 169, 1853.

RAY, A., TATTER, S.B., SANTHANAM, U.M., HELFGOTT, D.C., MAY, L.G. & SEHgAL, P.B. (1989). Regulation of expression of interleukin-6. In Regulation of the Acute Phase and Immune Responses: Interleukin-6, Sehgal, P.B., Griender, G. and Tosato, G. (eds) p. 353. New York Academy of Sciences: New York.

SEHgAL, P.B., ZILBERSTEIN, A., RUGGIERI, T. & 5 others (1986). Human chromosome 7 carries the B2 interferon gene. Proc. Natl Acad. Sci. USA, 83, 5219.

TOSATO, G. & PIKE, S.E. (1988). Interleukin-2/interleukin-6 is a co-stimulant for human T lymphocytes. J. Immunol., 141, 1556.

TSUDA, H. & TAKATsukI, K. (1983). Correlation of aberrant proliferation with T-cell growth factor in adult T-cell leukemia cells. Haematologica, Oncol., 1, 177.

TSUDA, H. & TAKATsukI, K. (1984). Specific decrease in T antigen density in adult T-cell leukemia cells I. Flow microfluorimetric analysis. Br. J. Cancer, 50, 843.

UCHIYAMA, T., HORI, T., TSUDA, M. & 7 others (1985). Interleukin-2 receptor (Tac antigen) expressed on adult T-cell leukemia cells. J. Clin. Invest., 76, 446.

UCHIYAMA, T., KAMIO, M., KODAKA, T. & 5 others (1988). Leukemic cells from some adult T-cell leukemia patients proliferate in response to interleukin-4. Blood, 72, 1182.

UCHIYAMA, T., KAMIO, M., KODAKA, T. & 5 others (1988). Leukemic cells from some adult T-cell leukemia patients proliferate in response to interleukin-4. Blood, 72, 1182.

UCHIYAMA, T., KAMIO, M., KODAKA, T. & 5 others (1988). Leukemic cells from some adult T-cell leukemia patients proliferate in response to interleukin-4. Blood, 72, 1182.

UCHIYAMA, T., KAMIO, M., KODAKA, T. & 5 others (1988). Leukemic cells from some adult T-cell leukemia patients proliferate in response to interleukin-4. Blood, 72, 1182.

UCHIYAMA, T., KAMIO, M., KODAKA, T. & 5 others (1988). Leukemic cells from some adult T-cell leukemia patients proliferate in response to interleukin-4. Blood, 72, 1182.