TIMP2 is a Poor Prognostic Factor and Predicts Metastatic Biological Behavior in Gastric Cancer

Wei Wang1, Yifan Zhang1, Mingxing Liu1, Yang Wang1, Tao Yang1, Dongsheng Li2, Feng Ding3, Guang Bai1 & Qing Li2

To explore the prognostic related factors and mechanisms of gastric cancer (GC), we performed the systematic analysis with integrated bioinformatics tools based on multiple on-line datasets. With univariate COX analysis, we screened out 37 survival hazardous genes in GC. Further GO assays disclosed that the signatures related with extracellular matrix and structure, and the functions of “cell adhesion molecule binding” and “integrin binding” were the vital mechanisms of disease progression, and tissue inhibitor of metalloproteinase-2 (TIMP2) was the potential biomarker for prognosis. Based on GSEA, GSVA and GCN, TIMP2 was demonstrated to interact with multiple integrin pathways and involve in the regulation of EMT, cell adhesion, and angiogenesis of GC. The associations of TIMP2 expression with reduced OS and RFS of patients were declared by Kaplan-Meier analysis, and further confirmed by 1000 internal bootstrap replications and external KM plotter analysis. With multi-variate COX regression and time-dependent ROC analysis, we validated the prediction independency and capacity of TIMP2 for prognosis. The relationships of TIMP2 with clinicopathological characteristics were also uncovered. Taken together, our findings identify TIMP2 as the novel candidate biomarker for poorer outcome of GC patients, and revealed the underlying functions of TIMP2 and the potential mechanisms for GC progression.

Gastric cancer (GC) is one of the most fetal diseases worldwide, and accounts for the fourth most common cancer and the second leading cause of cancer death1. High rate of advanced-stage diagnosis, treatment resistance, and later recurrence and metastasis greatly contribute to the poor prognosis of patients2. However, neither the traditional extensively used clinicopathological systems nor the novel molecular signatures could well interpret the malignant behavior and characteristics of GC, based on their limited accuracy and availability for the prognosis prediction in patients3,4. Therefore, much of the underlying mechanisms for GC development are still unclear, and more prognosis biomarkers of GC are awaiting uncovered.

High throughput genomic studies based on big cohort could present treasurable clues for the discovery of cancer development mechanisms and novel prognostic factors4. The data from the Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and Sequence Read Archive (SRA) involve dozens of cancer types and hundreds of cases for each cancer type, and have become the important study resources based on the great superiority of more variety and objectivity5. Moreover, mutual validations with different datasets and computational methods could be performed to reduce the false negative rate of big data assays6. Previously, multiple survival assays using online genomic data have been performed in GC7,8. However, most studies were more focused on data mining in a single dataset; lack of systematic and overall evaluation of related data; and absence of pre-analysis case selection according to clinicopathological information, thus provided the results with limited applicability and reliability.

In the current study, we systematically evaluated the prognosis related signatures and biomarkers of GC by combining integrated bioinformatics tools and mutual confirmation method based on multiple genomic-profiling datasets from TCGA and GEO. Using the whole mRNA expression profiles from 872 patients, 37 genes were filtered out to be related with worse outcomes of GC patients by COX assays. Based on further genetic ontology (GO) analysis, the extracellular matrix- related genes with the molecular functions of "cell adhesion molecule

1Department of General Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China. 2Department of Internal Medicine, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China. Wei Wang and Yifan Zhang contributed equally to this work. Correspondence and requests for materials should be addressed to G.B. (email: Baiguang69255@163.com) or Q.L. (email: liqing610557@163.com)
binding” and “integrin binding” might be vital for patients’ prognosis, and tissue inhibitor of metalloproteinase-2 (TIMP2) were supposed to be the potential key biomarker for GC progression. Moreover, TIMP2 was proved to increase the prediction accuracy of traditional clinicopathological characteristics (CPPs) for GC prognosis. Subsequent Gene Set Enrichment Analysis (GSEA), gene set variation analysis (GSVA) and co-expression network (GCN) assays shed light on the underlying functions of TIMP2 in GC. The results might enrich our knowledge on the tumorigenesis and development of GC, and also present more evidences to clarify the paradoxical role of TIMP2 in cancers.

Results

Basic characteristics of patients. The analysis procedure of the current study was shown in Supplementary Fig. 1, and the GC patients with the available data for the sequential analysis were selected (Supplementary Table 1). Among the 300 patients in GSE62554, most have tumors at T2 (62.4%), N1 (43.7%),...
M0 (91.0%), and TNM III (31.7%) stage. In GSE15459, most of the 192 tumors were intestinal (51.6%) type and stage III (37.5%). Most of the 380 patients in TCGA dataset have tumors with stage T3 (45.5%), N0 (30.8%), M0 (89.7%), and III (43.9%). The deaths occurred in GSE62254, GSE15459, and TCGA cohorts were 135 (45%), 95 (49%), and 147 (40%), respectively.

Identification of survival related genes and the key signatures. According to the uni-variate COX and KM plotter analysis, the 3 datasets shared totally 38 survival-related genes, including 1 protective (hazard ratio (HR) < 1, E2F2) and 37 hazardous (HR > 1) genes (Supplementary Table 2). In the GO analyses using the 37 hazardous genes, totally 14 biological process (BP) terms were significantly enriched, with “extracellular structure (ECS) organization” and “extracellular matrix (ECM) organization” as the most prominent signatures (Fig. 1A and B). In the GO analysis for cellular component (CC), ECM related signatures were found to be enriched (Fig. 1C). Moreover, GO-molecular function (MF) analysis identified “cell adhesion molecule binding” and “integrin binding” as the important functional signatures (Fig. 1D). Several genes, including ECM2, TGFB2, and TIMP2, were consistently found to be associated with the above key signatures in all three GO analyses.

The relationship of TIMP2 with the integrin family. As integrin family have been reported to be important for ECS and ECM, and TIMP2 were currently found to be related with “integrin binding”, we further explored the relationship of TIMP2 with integrin-related signatures using GSVA, which allows to assess the underlying pathway activity variation via transforming the gene into a signature/gene set by sample matrix without the a priori knowledge of the experimental design. There were respective 9 and 5 integrin pathways associated with TIMP2 expression in GSE62254 (Fig. 2A) and GSE15459 (Fig. 2B). In GCN assays, TIMP2 was shown to
Table 1. Gene set enrichment analysis (GSEA) and leading-edge gene assays according to the levels of TIMP-2 in GSE62254 and GSE15459. EMT: EPITHELIAL_MESENCHYMAL_TRANSITION; IR: INFLAMMATORY_RESPONSE.

The survival prediction value of TIMP2 and the relationship with CPPs in GC. TIMP2 expression was demonstrated to predict shorter overall survival (OS) and recurrence free survival (RFS) of patients in the Kaplan-Meier (K-M) analysis (log-rank P = 0.001 and 0.006, respectively), and was further identified as the independent predictor for OS and RFS in the multi-variate COX analysis, respectively, using GSE62254 (Fig. 4A and C; Table 2) and GSE15459 (Supplementary Fig. 2A). The COX models based on the databases were both successfully validated by 1000 times bootstrapping (Table 2). Moreover, the inclusion of TIMP2 levels to the prognostic model using traditional CPPs slightly improved the prediction ability for OS and RFS (Fig. 4B and D, Supplementary Fig. 2B), as demonstrated by the increase of the resulting area under curve (AUC) values.

Discussion

With comprehensive bioinformatics analysis of 3 big GC datasets, we currently screened out 37 genes that could predict poorer outcome of patients, and further identified that TIMP2 might play a key role in the prognosis of GC through directly binding with integrin and working on cell adhesion, EMT, and angiogenesis of cancers.

TIMP2 is originally found to prohibit cell proliferation and migration in vitro via inhibiting the function of MMPs; but latterly disclosed indeed a factor full of puzzling paradox by multiple clinical studies. On one hand, TIMP2 was found to predict better prognosis in endometrial and pancreatic carcinomas, whereas indicate poorer outcome in neuroblastoma, and head and neck, hepatocellular, Canine mammary, laryngeal, renal, colorectal, oral or tong squamous cell cancers, and mesenchymal or immune cells, with the clinical role still ambiguous. For example, TIMP2 was shown to predict disease progression in some studies, while demonstrated to have no relationship with CPPs or survival in others.

In the current study, we found that TIMP2 overexpression could predict poorer survival in GC, which is believed to be credible due to the following reasons. First, the clinical role of TIMP2 in GC was explored based on all the 3 biggest available on-line omics datasets of clinical patients, and further confirmed by 1000 internal
bootstrap replications and external KM plotter analysis. Second, the independent prediction ability of TIMP2 for patients’ survival was constructed using COX regression model, and further validated by ROC analysis, which demonstrated that the addition of TIMP2 increased the prediction accuracy of the traditional prognostic model using CPPs. Third, the correlations of TIMP2 with Lauren type, and T, M, and TNM stage, were consistent with previous reports, in which TIMP2 was significantly related with the Lauren classification in GC, the distant metastasis in soft tissue sarcoma, as well as gastric cancer, colorectal cancer, breast cancer, and Canine mammary cancer, the local invasion in invasive prolactinomas, and gastric and thyroid papillary cancer, and the T or TNM stage in oral, bladder, and cervical cancer. Besides, our further Oncomine analysis revealed significant higher TIMP2 in GC than non-cancer tissues, which indicates the potential key role of TIMP2 in the oncogenesis and development of GC (data not shown). Moreover, our explorations for the mechanisms of GC progression and TIMP2 functions might present more certifications for the current novel findings.

Figure 3. GSEA and LEGA declare the most significant pathways and genes related with TIMP-2 based on GSE62254 and GSE15459. GSE62254 and GSE15459 share 4 gene sets (A) and 35 (B) leading-edge genes that are related with TIMP-2 expression. The correlation of TIMP2 levels with the 4 hallmark gene-sets, including “EPITHELIAL_MESENCHYMA_TRANSITION” (C), “ANGIOGENESIS” (D), “APICAL_JUNCTION” (E) and “UV_RESPONSE_DN” (F), are illustrated, and the overlapped leading-edge genes in GSE62254 are shown (G).
Consistent with previous reports, our analysis disclosed that TIMP2 involves in the regulation of EMT, cell adhesion, and angiogenesis, and interacts with cell adhesion molecular, and multiple integrin pathways and family members. Given the fact that TIMP2 was found to inhibit metastasis and angiogenesis in vitro on one hand, but on the other hand high TIMP2 correlates with malignant phenotype and unfavorable prognosis of cancer patients in lots of clinical assays44–47, our current study also encounters with the existing unsolved TIMP2 paradox and serves as another evidence for the paradoxical phenomenon. The potential explanations for the contradictions are as follows based on previous reports. First, the recorded concentrations of TIMP2 in tissues and biological fluids are much lower than the used concentrations in vitro44. Second, TIMP2 is demonstrated to control cell fates through a proteolytic and a non-proteolytic mechanism 44,48. In the non-proteolytic manner, TIMP2 was found to induce an intracellular ERK signaling cascade at the physiologically-relevant, low concentrations, and thus further disclosed to result in a burst in cancer cell migration48, as well as proliferation4. To solve the puzzling TIMP2 paradox, more in-vivo and high through-put data studies are expected.

Figure 4. High TIMP2 predicts poorer survival of GC patients in GSE62254. (A) K-M analysis identified the prognosis significance of TIMP2 for OS of patients in GC. (B) TIMP2 combining with CPPs increases the prediction accuracy of traditional CPPs for OS. (C) TIMP2 expression predicts reduced RFS of patients as demonstrated by K-M analysis. (D) The addition of TIMP2 to CPPs slightly improves the prediction capacity of CPPs for RFS.

Table 2. Multivariate COX analysis for the independent predictors of overall survival and recurrence free survival of GC patients in GSE62254. OS: overall survival; RFS: recurrence free survival.
The limitations of the current study are listed as follows. First, the role and the function of TIMP2 are conducted by bioinformatics methods based on on-line databases and need to be further validated by in-vitro and in-vivo experimental studies. Second, the ratios of MMPs/TIMP2 were considered meaningful markers for cancer studies but could not be evaluated currently. Third, our current study did not evaluate the prognostic role of TIMP2 on the following respects, such as its genetic variations like SNP and methylation, the expression locations including cancer and mesenchymal cells, and the detection samples like tissues and serum. Further studies are warranted for such topics.

In summary, we firstly uncover the significant prognostic role and the potential function of TIMP2 in GC with multiple datasets and integrated bioinformatics analysis-methods. TIMP2 is identified as a potential predictor for poorer outcome of patients, with the predictive accuracy and independency well demonstrated by both external and internal validations. Further GSEA, GSEA and GCN analysis declared the potential mechanisms for the progression of GC, such as cell adhesion; integrin networks, angiogenesis, and so on. Our findings present a novel candidate biomarker for patients' prognosis in GC, shed lights on the underlying function of TIMP2, and indicate novel interesting topics for future studies.

Materials and Methods

Data preprocessing and summarization.

The GC online datasets from Gene Expression Omnibus database (GEO, http://www.ncbi.nlm.nih.gov/geo/) were filtered according to the following criteria: 1) include more than 100 cases; 2) provide both clinicopathological and survival information (OS, and/or RFS); 3) use the universal high-throughput platform, such as affymetrix HGU133 plus2 (GPL570) or Illumina HiSeq 2000 instrument (GPL11154). The search strategy was as follows: (gastric cancer) AND ((GPL570) OR GPL11154) Filters: Series; DataSets, and totally 12 datasets were filtered out. After manual screening, two data sets including GSE62254 and GSE15459, were used in the current study. The raw data were preprocessed with Robust Multichip Average (RMA) methods in the default settings. The probe-level data were converted into the corresponding genetic symbols based on the annotation platform. As for a gene corresponding to a plurality of probes, average value was taken as the initial expression value. In addition, the TCGA RNASEQV2 data (level 3) of GC was downloaded from UCSC xena website (http://xena.ucsc.edu/), and cases with primary GC, no history of neo-adjuvant therapy, complete information of survival (OS and/or RFS) and mRNA profile, were included.

Variable	GSE62254	GSE15459				
	N (%)	TIMP-2 (median, IQR)	P	N (%)	TIMP-2 (median, IQR)	P
Age (median, IQR)	64 (55–70)	—	0.047	67 (57–73)	—	0.164
Sex	0.039	—	0.074	—	0.020	
Female	101 (33.9)	9.16 (8.62–9.80)	—	67 (34.9)	10.37 (9.78–10.87)	
Male	197 (66.1)	8.99 (8.46–9.54)	—	125 (65.1)	10.06 (9.26–10.75)	
Lauren's	—	—	0.020	—	—	
Intestinal	—	—	99 (51.6)	9.93 (9.22–10.70)		
Diffused	—	—	75 (39.1)	10.55 (10.00–10.93)		
Mixed	—	—	18 (9.4)	9.89 (9.25–10.66)		
T stage	<0.001	—	—	—	—	
T1	—	—	—	—	—	
T2	186 (62.4)	8.89 (8.38–9.28)	—	—	—	
T3	91 (30.5)	9.59 (8.89–9.96)	—	—	—	
T4	21 (7.0)	9.48 (8.66–9.83)	—	—	—	
N stage	0.090	—	—	—	—	
N0	38 (12.8)	8.79 (8.38–9.34)	—	—	—	
N1	130 (43.6)	9.04 (8.58–9.49)	—	—	—	
N2	79 (26.5)	9.07 (8.58–9.74)	—	—	—	
N3	51 (17.1)	9.16 (8.44–9.87)	—	—	—	
M stage	0.021	—	—	—	—	
M0	271 (90.9)	9.01 (8.48–9.61)	—	—	—	
M1	27 (9.1)	9.31 (8.86–10.09)	—	—	—	
TNM stage	<0.001	—	—	—	—	
I	30 (10.1)	8.75 (8.37–9.25)	31 (16.1)	9.46 (8.87–10.59)		
II	96 (32.2)	8.93 (8.46–9.29)	29 (15.1)	9.93 (9.32–10.58)		
III	95 (31.9)	9.19 (8.59–9.74)	72 (37.5)	10.30 (9.68–10.82)		
IV	77 (25.8)	9.31 (8.58–9.92)	60 (31.2)	10.56 (9.81–10.92)		

The relationship of TIMP2 expression with CPPs of GC patients in GSE62254 and GSE15459. IQR, interquartile range.
relationship with the corresponding clinicopathological data, such as gender, age at diagnosis, histological subtypes, TNM stage, OS and/or RFS. According to TCGA, 380 out of 580 samples were selected currently. A total of 20564 genes were taken for the analysis. For the cohort in GSE62254, GSE15459 and TCGA, the median follow-up time, as calculated by the reverse KM method, was respective 76.93, 74.33 and 23.07 months, and the median OS was respective 31.20 months, not reached, and 29.37 months. The CPPs of the 3 datasets were summarized in Supplementary Table 1.

Uni-variate COX, KM plotter and GO analysis. With each of the three selected datasets, including GSE62254, GSE15459, and TCGA, the prognostic value of each gene was calculated in the uni-variate COX analysis, and the genes with both $P < 0.05$ and $\beta_{OS} * \beta_{RFS} > 0$ were kept for further analysis. Genes were ranked based on the P values in the order from small to large, and the rank number based on P_{OS} and P_{RFS} was, respectively, defined as rank$_{OS}$ and rank$_{RFS}$. For each gene, the overall mean of rank$_{OS}$ and rank$_{RFS}$ was calculated and defined as rank$_{ave}$. The genes of the 3 datasets were, respectively, sorted based on the rank$_{ave}$ in the order from small to large, and the top 1000 genes of each dataset were considered as significant. Then the gene with hazard ratio (HR) > 1 across the 3 datasets was considered survival hazardous, and the gene with HR < 1 across the 3 datasets was considered survival protective. The prognostic significance of the selected genes in GC were further

Figure 5. High TIMP2 is related with multiple CPPs involved in GC progression in GSE62254 and GSE15459. TIMP2 expression is significantly correlated with age (A), sex (B), T- (C), M- (E), and TNM-stage (F), and marginal related with N-stage (D) in GC cohort of GSE62254. High TIMP2 has no relationship with age (G), whereas statistically correlates with Lauren type (H) and TNM-stage (I) of cancer in GSE15459.
confirmed using KM plotter. With the Bioconductor “clusterProfiler” package, GO-BP, -CC, and -MF were analyzed with the hazardous genes, using P- and FDR q-value < 0.05 as the standard for statistical significance.

GSVA and GCN construction. To infer specific activated pathways related with TIMP2 expression, we performed GSVA using the c2 curated signatures downloaded from the Molecular Signatures Database (MSigDB). The signatures whose name including ‘integrin’ were chosen and applied to the correlation tests for the relationship between TIMP2 levels and the activation scores of the integrin-related signatures in GSE62254 and GSE15459, respectively. The signatures with Pearson correlation coefficients (PCC) higher than 0.6 were considered significant.

With R/graph package and cytoscape V3.5.1, GCN was built on the correlation matrix of integrin family genes with TIMP2 in GSE62254 and GSE15459, respectively. PCC for every pair of genes were calculated, and the gene pairs with |PCC| > 0.4 and FDR q < 0.05 were retained.

GSEA, venn diagram and Leading-Edge Gene Analysis (LEGA). For GSEA, 50 available hallmark gene sets from MSigDB were used, and the expression levels of TIMP2 were set to annotate the phenotypes of samples. After performing 1,000 permutations, the first 20 signatures with FDR q < 0.1 and P < 0.005 were considered to be significantly enriched. The overlapped enriched hallmark signatures in GSE62254 and GSE15459 were illustrated by venn diagram, and further applied to LEGA.

Correlation tests, K-M log-rank test, multi-variate COX analysis with bootstrapping, and ROC curve. Based on GSE62254 and GSE15459, spearman correlation tests were, respectively, performed to analyze the correlation of TIMP2 and CPPs, including age, sex, Lauren type, T-stage, N-stage, M-stage, and TNM stage. In the survival assays using K-M method and log-rank test, expression level of TIMP2 was dichotomized as high and low with median as the cutoff value. Multi-variate Cox PH models were used to estimate HR and 95% confidence interval (CI). The final multivariate model was constructed based on the Akaika information criterion (AIC) value using both “backward” and “forward” stepwise selection methods, and further internally validated by coefficients and 95% CIs using bootstrapping (1000 replications). Based on the risk scores, the AUC (1) curve was plotted to illustrate time dependent sensitivity and specificity of corresponding time-dependent receiver-operating characteristics (ROC) at each observed event time.

References

1. Washington, K. 7th edition of the AJCC cancer staging manual: stomach. Ann Surg Oncol 17, 3077–3079, https://doi.org/10.1245/s10434-010-1362-z (2010).
2. Braicu, E. I. et al. Role of serum concentration of VEGFRI and TIMP2 on clinical outcome in primary cervical cancer: results of a companion protocol of the randomized, NOGGO-AGO phase III adjuvant trial of simultaneous cisplatin-based radiochemotherapy vs. carboplatin and paclitaxel containing sequential radiotherapy. Cytokine 61, 755–758, https://doi.org/10.1016/j.cyto.2013.01.013 (2013).
3. Shah, M. A. et al. Molecular classification of gastric cancer: a new paradigm. Clin Cancer Res 17, 2693–2701, https://doi.org/10.1158/1078-0432.CCR-10-2203 (2011).
4. Cristescu, R. et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med 21, 449–456, https://doi.org/10.1038/nm.3850 (2015).
5. Dinh, T. A. et al. Comprehensive analysis of The Cancer Genome Atlas reveals a unique gene and non-coding RNA signature of fibrolamellar carcinoma. Sci Rep 7, 44653, https://doi.org/10.1038/srep44653 (2017).
6. Ramasamy, A., Mondry, A., Holmes, C. C. & Altman, D. G. Key issues in conducting a meta-analysis of gene expression microarray studies. PLoS Med 5, e184, https://doi.org/10.1371/journal.pmed.0050184 (2008).
7. Hou, J. Y., Wang, Y. G., Ma, S. J., Yang, B. Y. & Li, Q. P. Identification of a prognostic 5-Gene expression signature for gastric cancer. J Cancer Res Clin Oncol 143, 619–629, https://doi.org/10.1007/s00432-016-2324-z (2017).
8. Park, C. et al. Host immune response index in gastric cancer identified by comprehensive analyses of tumor immunity. Oncoimmunology 6, e1356150, https://doi.org/10.1080/2162402X.2017.1356150 (2017).
9. Honkavuori-Toivola, M., Talvensaari-Mattila, A., Soini, Y., Turpeenniemi-Hujanen, T. & Santala, M. Immunoreactivity for TIMP-2 and TIMP-3 in human urothelium in situ. Cytokine 87, 6–11, https://doi.org/10.1016/j.cyto.2016.07.022 (2016).
10. Giannopoulos, G. et al. The expression of matrix metalloproteinases-2 and -9 and their tissue inhibitor in pancreatic ductal and ampullary carcinoma and their relation to angiogenesis and clinicopathological parameters. Anticancer Res 28, 1875–1881 (2008).
11. Ara, T. et al. Immunohistochemical expression of MMP-2, MMP-9, and TIMP-2 in neuroblastoma: association with tumor progression and clinical outcome. J Pediatr Surg 33, 1272–1278 (1998).
12. Pietruszewska, W., Bojanowska-Pozniak, K. & Kobos, J. Matrix metalloproteinases MMP1, MMP2, MMP9 and their tissue inhibitors TIMP1, TIMP2, TIMP3 in head and neck cancer: an immunohistochemical study: Otolaryngol Pol 70, 32–43, https://doi.org/10.5603/00306657.1202546 (2016).
13. Hsu, K. W. et al. Notch1 pathway-mediated microRNA-151-5p promotes gastric cancer progression. Oncotarget 7, 38036–38051, https://doi.org/10.18632/oncotarget.9342 (2016).
14. Santos, A. et al. Immunohistochemical evaluation of MMP-2 and TIMP-2 in canine mammary tumours: a survival study. Vet J 190, 396–402, https://doi.org/10.1016/j.tvjl.2010.12.003 (2011).
15. Pietruszewska, W., Kobos, J., Gryczynski, M., Durko, T. & Bojanowska-Pozniak, K. Analysis of TIMP-1, TIMP-2 and TIMP-3 expression as a prognostic factor of laryngeal cancer progression. Otolaryngol Pol 62, 380–387, https://doi.org/10.1016/S0030-6657(08)70276-2 (2008).
16. Kawata, N. et al. Significant relationship of matrix metalloproteinase 9 with nuclear grade and prognostic impact of tissue inhibitor of metalloproteinase 2 for incidental clear cell renal cell carcinoma. Urology 69, 1049–1053, https://doi.org/10.1016/j.urology.2007.02.044 (2007).
17. Oberg, A., Hoyhyya, M., Tavelin, B., Stenling, R. & Lindmark, G. Limited value of preoperative serum analyses of matrix metalloproteinases (MMP-2, MMP-9) and tissue inhibitors of matrix metalloproteinases (TIMP-1, TIMP-2) in colorectal cancer. Anticancer Res 20, 1085–1091 (2000).
18. Katayama, A. et al. Expressions of matrix metalloproteinases in early-stage oral squamous cell carcinoma as predictive indicators for tumor metastasis and prognosis. Clin Cancer Res 10, 634–640 (2004).
32. Mroczko, B., Lukaszewicz-Zajac, M., Gryko, M., Kedra, B. & Szmitkowski, M. Clinical significance of serum levels of matrix metalloproteinase-2 expression in prostate cancer patients. *J Histochim Cytochem* 60, 491–501, https://doi.org/10.1383/00221541246978 (2012).

33. Davidson, B. et al. The prognostic value of metalloproteinases and angiogenic factors in ovarian carcinoma. *Mal Cell Endocrinol* 187, 39–45 (2002).

34. Davison, B., et al. High levels of MMP-2, MMP-9, MT1-MMP and TIMP-2 mRNA correlate with poor survival in ovarian carcinoma. *Clin Exp Metastasis* 17, 779–808 (1999).

35. Yung, H. K., Jeong, K. C., Kim, Y. K. & Jung, S. T. Role of matrix metalloproteinase (MMP) 2 and MMP-9 in soft tissue sarcoma. *Adv Med Sci Folia Histochem Cytobiol* 58, 235–243, https://doi.org/10.2478/ams-2013-0018 (2013).

36. Mroczko, B., Lukaszewicz-Zajac, M., Gryko, M., Kedra, B. & Szmitkowski, M. Clinical significance of serum levels of matrix metalloproteinase-2 (MMP-2) and its tissue inhibitor (TIMP-2) in gastric cancer. *Folia Histochem Cytoiol* 49, 125–131 (2011).

37. Joo, Y. E. et al. Expression of tissue inhibitors of metalloproteinases (TIMPs) in gastric cancer. *Dig Dis Sci* 45, 114–121 (2000).

38. Alakus, H. et al. Clinical impact of MMP and TIMP gene polymorphisms in gastric cancer. *World J Surg* 34, 2853–2859, https://doi.org/10.1007/s00268-010-0761-4 (2010).

39. Yang, H. K., Jeong, K. C., Kim, Y. K. & Jung, S. T. Role of matrix metalloproteinase (MMP-2) and MMP-9 in soft tissue sarcoma. *Clin Orthop Surg* 6, 443–454, https://doi.org/10.4055/cios.2014.6.4.443 (2014).

40. Park, K., Kim, S., Kim, K. H. & Kim, J. C. Clinical characteristics of TIMP-2, MMP2, and MMP9 gene polymorphisms in colorectal cancer. *Gastroenterol Hepatol* 26, 391–397, https://doi.org/10.1111/j.1440-1746.2010.06504.x (2011).

41. Groblewska, M. et al. Serum levels and tissue expression of matrix metalloproteinase 2 (MMP-2) and tissue inhibitor of metalloproteinases 2 (TIMP-2) in colorectal cancer patients. *Tumour Biol* 35, 3793–3802, https://doi.org/10.1007/s13277-013-1502-8 (2014).

42. Ree, A. H. et al. High levels of messenger RNAs for tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) in primary breast carcinomas are associated with development of distant metastases. *Clin Cancer Res* 3, 1623–1628 (1997).

43. Gulbekin, G. D., Cabuk, B., Vural, C. & Ceylan, S. Matrix metalloproteinase-2 (TIMP-2) expression correlates with poor prognosis in cervical carcinoma. *Acta Obstet Gynecol Scand* 90, 380–384, https://doi.org/10.1080/0001634090355590 (2010).

44. Strongin, A. Y. Proteolytic and non-proteolytic roles of membrane type-1 matrix metalloproteinase in malignancy. *Biochim Biophys Acta* 1803, 133–141, https://doi.org/10.1016/j.bbamcr.2009.04.009 (2010).

45. Wang, C., Chen, Z., Li, Z. & Gen, J. The essential roles of matrix metalloproteinase-2, membrane type 1 metalloproteinase and tissue inhibitor of metalloproteinase-2 in the invasive capacity of acute monocytic leukemia SHI-1 cells. *Leuk Res* 34, 1083–1090, https://doi.org/10.1016/j.leukres.2010.01.016 (2010).

46. Maatta, M., Sainila, M., Soini, Y., Turpeenniemi-Hujanen, T. & Talvensaari-Mattila, A. Increased matrix metalloproteinase 2 and 9 and tissue inhibitor of matrix metalloproteinase 2 expression is associated with progression from vulvar intraepithelial neoplasia to invasive carcinoma. *Acta Obstet Gynecol Scand* 89, 380–384, https://doi.org/10.1080/0001634090355590 (2010).

47. Christopoulos, T. A. et al. Expression of metalloproteinases and their tissue inhibitors in squamous cell laryngeal carcinoma. *Onco Rep* 18, 855–860 (2007).

48. D'Alessio, S. et al. Tissue inhibitor of metalloproteinases-2 binding to membrane-type 1 matrix metalloproteinase induces MAPK activation and cell growth by a non-proteolytic mechanism. *J Biol Chem* 283, 87–99, https://doi.org/10.1074/jbc.M705492200 (2008).

49. Shrestha, B., Bajracharya, D., Byatmal, A. A. & Kanath, A. Radhakrishnan, R. May High MMP-2 and TIMP-2 Expressions Increase or Decrease the Aggressivity of Oral Cancer? *Pathol Oncol Res* 23, 197–206, https://doi.org/10.1007/s12553-016-0149-3 (2017).

50. Oxzen, E. et al. Expression of MMP-1, MMP-9 and TIMP-2 in prostate carcinoma and their influence on prognosis and survival. *J Cancer Res Clin Oncol* 139, 1373–1382, https://doi.org/10.1007/s00432-013-1453-6 (2013).

51. Thieffin, G. et al. Beneficial influence of microsatellite instability on gelatinase-tissue inhibitors of metalloproteinase balance in colorectal cancer. *Anticancer Res* 27, 583–588 (2007).

52. Furtado, Y. et al. TIMP-2 gene methylation in cervical precursor and invasive lesions. *Exp Mol Pathol* 98, 119–123, https://doi.org/10.1016/j.yexmp.2015.01.008 (2015).

53. Schepier, M. & Smith, T. L. A note on quantifying follow-up in studies of failure time. *Control Clin Trials* 17, 343–346 (1996).

Acknowledgements

This study was supported by grants from the Special Clinical Foundation of Wujieping Medical Foundation Society (No. 320.6750.1281) and the Foundation for President of Liaoning Medical University (No. xzj20130233).
Author Contributions
Wei Wang and YiFan Zhang were responsible for the acquisition of data, analysis and interpretation of data, drafting the article; Mingxing Liu, Yang Wang, Tao Yang, Dongsheng Li, and Feng Ding were responsible for the interpretation of data, revising the article; Qing Li and Guang Bai were responsible for the interpretation of data, conception and design of the study, critical revision.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-27897-x.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018