Estimating the return to scale of an integer-valued data envelopment analysis model: efficiency assessment of a higher education institution

Mushtaq Taleb, Ruzelan Khalid, and Razamin Ramli

1. Introduction

Data envelopment analysis (DEA) was first proposed by Charnes, Cooper, and Rhodes (1978) based on the seminal work of Farrell (1957). Since then, DEA has been applied in many government organizations for assessing the relative efficiency of a homogeneous set of decision making units (DMUs) (Abbott & Doucouliagos, 2003; Amirteimoori, Emrouznejad, & Khoshandam, 2013; Johnes, 2006). To enhance the evaluation power of DEA, many efficiency studies have been conducted (e.g. Amirteimoo et al., 2013; Avkiran, 2001; Chen, Deng, & Gingras, 2011; Cook & Seiford, 2009; Lu, 2012). There are two types of DEA efficiency frontier depending upon model orientation (Yang, Li, Chen, & Liang, 2014). First, the CCR model proposed by Charnes, Cooper and Rhodes (1978) assuming that return to scale (RTS) is constant (CRS). Secondly, the BCC model proposed by Banker, Charnes and Cooper (1984) assuming that RTS for inputs-outputs is variable (VRS). The main difference between the two models is that the BCC model imposes a convexity constraint to estimate the RTS. As an importance efficiency measure, the technique of RTS is used to classify the operating region of a DMU under assessment whether it is operating within the decreasing, increasing or constant RTS region (Banker, Cooper, Seiford, Thrall, & Zhu, 2004; Golany & Yu, 1997).

All values of inputs and outputs in classical DEA models have however been assumed as non-integer (i.e. real-valued data). The real-valued data of inputs-outputs obviously conflict with many real life applications affecting the accuracy of the efficiency scores. To obtain the accurate efficiency scores, the requirements of mixed integer linear programming (MILP) have been integrated into the CCR-DEA model by Lozano and Villa (2006). The model was then enhanced by Lozano and Villa (2007) to involve the technology of VRS. However, these two models violated the convexity constraint since they dealt with all inputs-outputs as integer values. To rectify this issue, a hybrid integer CCR model classifying a dataset into subsets of integer and real values was introduced by Kuosmanen and Matin (2009). The drawback of Kuosmanen and Matin’s (2009) model is that it cannot calculate the nature of RTS. The concept of RTS of the input-oriented model was then considered by Matin and Kuosmanen (2009). Matin...
and Kuosmanen’s (2009) model in terms of output-oriented and VRS was extended by Du, Chen, Chen, Cook, and Zhu (2012). However, the Du et al. (2012) model only considered outputs as hybrid integer values, with inputs as real values. In addition, all the integer DEA studies did not consider the two technologies of VRS and CRS to estimate the nature of RTS (increasing, decreasing, or constant) in terms of an output-oriented integer-valued DEA model. This paper thus considers overcoming these two shortcomings of the existing model.

Integer-valued DEA models offer many empirical applications. This paper thus modifies the Du et al. (2012) model by improving its objective function and constraints to deal with mixed integer values of inputs and outputs. It also estimates the nature of RTS for the modified model by calculating its efficiency scores under the VRS and CRS, and then identifies the region of RTS (i.e. increasing, decreasing, or constant RTS). To the best of our knowledge, there have been no studies considering RTS of the output-oriented model in terms of integer values of inputs and outputs. The modified model has two salient advantages: 1) it estimates the nature of RTS when some inputs and/or outputs are integer values, and 2) it identifies the real and integer values of inputs-outputs slacks. We illustrated the usefulness of our modified model through an empirical study measuring the operational efficiency of public universities in Malaysia.

The rest of this paper is organized as follows. Section 2 reviews some previous studies on the mixed integer radial DEA model. Section 3 estimates the RTS of the output-oriented integer-valued DEA model whose development depends on the previous models. Its illustrative application involving 20 public universities in Malaysia is discussed in Section 4. Finally, Section 5 provides some concluding remarks.

2. Previous studies

Suppose that there are \(n \) sets of DMUs which need to be assessed. Each DMU uses a set of inputs \(m \), \(x_j : i = 1, \ldots, m \) to produce a set of outputs \(s \), \(y_j : r = 1, \ldots, s \). Unit \(j \) denotes a DMU under evaluation, \((\text{DMU}_j; \text{DMU}_1, \ldots, \text{DMU}_n)\). Suppose \(x_{ij} \) denotes the amount of the \(i \)th input consumed by the \(j \)th DMU, while \(y_{ij} \) denotes the amount of the \(r \)th output yielded by the \(j \)th DMU. All the values of inputs-outputs are non-negative, i.e. \(x_{ij}, y_{ij} > 0 \) for all possible values of inputs-outputs. The non-negative weight of an efficient \(\text{DMU}_o \) is represented by \(\lambda_j \); i.e. the efficient unit occupying a part on the efficiency frontier constructed by all efficient units. The procedure of the existing output-oriented model for evaluating the efficiency of a \(\text{DMU}_o \) under the technology of CRS can be presented as follows (Cooper, Seiford, & Tone, 2006):

\[
\max \delta_o + \varepsilon \left(\sum_{i=1}^{m} s_{io} + \sum_{r=1}^{s} s_{r0} \right) \tag{1}
\]

s.t:

\[
\sum_{j=1}^{n} \lambda_j x_{ij} = x_{io} - s_{io} \quad i = 1, \ldots, m
\]

\[
\sum_{j=1}^{n} \lambda_j y_{ij} = \delta_o y_{io} + s_{r0}^+ \quad r = 1, \ldots, s
\]

\[
\lambda_j \geq 0 \quad j = 1, \ldots, n
\]

\[
\delta_o, s_{io}, s_{r0}^+ \geq 0
\]

where \(\varepsilon \) is a non-Archimedean infinitesimal. Based on form (1), each efficient \(\text{DMU}_o \) which has a place on the efficient frontier obtains a unity score and all its input and output slacks are equal to zero (i.e., \(\delta_o = 1, s_{io} = 0, s_{r0}^+ = 0 \)). Otherwise, the \(\text{DMU}_o \) is inefficient. Output-oriented model (1) provides suggestions on how to improve inefficient \(\text{DMU}_o \) using the current level of inputs under the technology of CRS since it does not impose a convexity constraint (i.e., \(\sum_{j=1}^{n} \lambda_j = 1 \)). The convexity constraint was imposed onto form (1) by Banker et al. (1984) to evaluate the efficiency of the \(\text{DMU}_o \) under the technology of VRS. However, the Banker et al. (1984) model assumes that all values of inputs and outputs are real under the two technologies of VRS and CRS.

To make the model more appropriate in dealing with real life situations, Kuosmanen and Matin (2009) constructed a hybrid integer-valued DEA model by classifying a dataset of inputs-outputs into a subset of real and integer values (i.e. hybrid integer-valued data). Their model classifies the real and integer values of inputs and outputs as \(I^0, I, O^I, \) and \(O^l \), respectively. Clearly, the real and integer valued-data are mutually disjoint and satisfy \(I^0 \cup I \) and \(O^I \cup O^l \) where \(I = \{1, \ldots, n\} \), \(O = \{1, \ldots, s\} \) (Hussain, Ramli, & Khalid, 2015). Kuosmanen and Matin’s (2009) model was extended later by Du et al. (2012) to introduce the output-oriented VRS model in hybrid integer-valued data, which can be presented as follows:

\[
\max \delta_o + \varepsilon \left(\sum_{i\in I} s_{io} + \sum_{r\in O^l} s_{r0}^+ + \sum_{r\in O^I} s_{r0}^+ \right) \tag{2}
\]

s.t:

\[
\sum_{j=1}^{n} x_{ij} \lambda_j = x_{io} - s_{io} \quad i \in I
\]

\[
\sum_{j=1}^{n} y_{ij} \lambda_j = \delta_o y_{io} + s_{r0}^+ \quad r \in O^I
\]

\[
\sum_{j=1}^{n} y_{ij} \lambda_j \geq \delta_o y_{io} + s_{r0}^+ \quad n \in O^l
\]
\[
\sum_{j=1}^{n} \lambda_j = 1 \\
\lambda_j \geq 0 \quad j = 1, \ldots, n \\
\delta_o \geq 0, s_{\alpha o}^+ \geq 0, s_{\alpha o}^- \in \mathbb{Z}_+^n.
\]

The symbols \(s_{\alpha o}, s_{\alpha o}^+, s_{\alpha o}^-\) reflect the non-radial slacks in terms of a real input and hybrid integer outputs, respectively. Note that form (2) discriminates between two types of input and output slacks. The first type of these slacks is represented by \(s_{\alpha o}^-\) which reflects the absolute difference between the reference set of inputs \(\sum_{j=1}^{n} x_{\alpha o} \lambda_j\) and their inputs of DMUs under evaluation. The second type is represented by \(s_{\alpha o}^+ \) and \(s_{\alpha o}^-\) which reflect the absolute difference between the reference set of integers, \(\sum_{j=1}^{n} x_{\alpha o} \lambda_j\) and real outputs, \(\sum_{j=1}^{n} y_{\alpha o} \lambda_j\) and their projections of integer, \(\delta_o y_{\alpha o}\) and real outputs, \(\delta_o y_{\alpha o}\). Since the input or output slack measures the absolute distance between the reference set and the projection point of the related input or output, respectively, the reference set of an integer DEA model is free from the integer restriction (Du et al., 2012). The efficiency score of form (2) is revealed by \(\delta_o\) whose value is equal to one for an efficient DMU and less than one for an inefficient unit.

Moreover, DEA includes two types of efficiency measures which are technical and scale efficiencies. Each type has its own perspective of inputs-outputs to calculate the aggregate efficiency of a DMU (Fried, Lovell, Schmidt, & Schmidt, 2008). The DMU is technically efficient (TE) if it is unable to produce more outputs from its current level of inputs (Jahanshahloo & Khodabakhshi, 2004). The aim of technical efficiency is to evaluate how available resources can be used to produce the maximum amounts of outputs in an effective manner. A DMU may be technically efficient but it preserves too many or produces too few outputs. This information is derived from scale efficiency (Abbott & Doucouliagos, 2003). Scale efficiency is a measure discriminating between the efficiency score obtained from the technologies of VRS and CRS (Wu & Zhou, 2015).

3. Methodology of RTS

This paper aims to achieve two contributions to the literature of DEA. First, the proposal of an output-oriented integer-valued DEA model dealing with real and integer values of inputs and outputs by modifying the objective function and input-output constraints of Du et al.’s (2012) model. Second, the RTS estimation of the proposed model. The RTS of a DEA model depends on the two technologies of CRS and VRS. Therefore, the technical efficiency of the modified DEA model in terms of CRS and VRS is calculated. Hence, form (2) can be reformulated by dealing with a two-stage output-oriented integer-valued DEA model as follows:

Stage-I

\[
\max \delta_o \\
\text{ s.t: } \\
\sum_{j=1}^{n} x_{\alpha o} \lambda_j \leq x_{\alpha o} \quad \lambda_j \in I^I \\
\sum_{j=1}^{n} x_{\alpha o} \lambda_j = x_{\alpha o} \quad \lambda_j \in I^I \\
\sum_{j=1}^{n} y_{\alpha o} \lambda_j \geq \delta_o y_{\alpha o} \quad \lambda_j \in O^I \\
\sum_{j=1}^{n} y_{\alpha o} \lambda_j = \delta_o y_{\alpha o} + s_{\alpha o}^+ \quad \lambda_j \in O^I \\
\sum_{j=1}^{n} \lambda_j = 1 \\
\delta_o \geq 0 \quad \lambda_j \geq 0 \quad j = 1, \ldots, n \\
\delta_o \geq 0, s_{\alpha o}^+ \geq 0, s_{\alpha o}^- \in \mathbb{Z}_+^n, s_{\alpha o}^+ \in \mathbb{Z}_+ \\
\varepsilon^1 \text{ is a too small non-negative number}
\]

Proposition 1. The efficiency score resulting from the modified output-oriented in integer-valued DEA model is always greater than or equal to the efficiency score obtained from the conventional output-oriented integer-valued DEA model under both CRS and VRS technologies, i.e., \(\delta_{\text{TE}}^\text{CRS} \geq \delta_{\text{TE}}^\text{VRS} \geq \delta_{\text{TE}}^\text{VRS}^*\) for all DMUs (see Kuosmanen & Matin, 2009; Lozano & Villa, 2006).

The methodology of this paper is illustrated graphically in Fig. 1. It presents a schematic view of...
estimating RTS of the modified output-oriented integer-valued DEA model.\footnote{In this paper, \(e = 0.00001 \).}

Forms (3) and (4) of our modified model compute the efficiency measures (i.e. the efficiency scores and slacks of inputs and outputs) under VRS. In the same context, to compute the efficiency measures under CRS of the same model, the convexity constraint should be ignored. The main aim of calculating the efficiency scores under CRS and VRS is to estimate the nature of RTS of the output oriented integer-valued DEA model. To achieve this, the paper employs the three conditions proposed by Zhu and Shen (1995). These conditions depend on the values of the intensity factor \(\lambda_j \) corresponding to the efficiency scores of the CRS technology (Saranga, 2009). The three conditions are presented as follows:

i. If technical efficiency score of the CRS technique \(\neq \) the efficiency score of the VRS technique and \(\sum_{j=1}^{n} \lambda_j > 1 \), then RTS is decreasing (DRS).

ii. If technical efficiency score of the CRS technique \(\neq \) the efficiency score of the VRS technique and \(\sum_{j=1}^{n} \lambda_j < 1 \), then RTS is increasing (IRS).

iii. If technical efficiency score of the CRS technique \(\neq \) the efficiency score of the VRS technique and \(\sum_{j=1}^{n} \lambda_j = 1 \), then RTS is CRS.

Note that the technique of RTS provides an unambiguous meaning if a DMU under assessment is projected onto the efficient frontier in terms of VRS. For efficient DMUs, CRS reflects that any adjustments of their inputs cannot increase their efficiencies since the model assumes that the relationship between the scale of operations and the efficiency is not significant. IRS reflects that an increase in all inputs will cause a high increase in the outputs. DRS meanwhile reflects that an increase in all inputs will only cause a small increase in the outputs. Banker, Saranga, 2009. The classification of RTS for an inefficient DMU can be estimated if the inefficient DMU can be projected onto the efficient frontier (Seiford & Zhu, 1999). Since all inefficient DMUs are not operating at the optimum scale efficiency, the main justification of calculating RTS is to classify the region of an inefficient DMU whether it is operating in IRS or DRS regions. To clearly illustrate the concept of RTS, this paper estimates the RTS of public universities in the context of integer restrictions.

4. Estimating RTS of public universities in Malaysia

4.1. Dataset

The sample used in this paper covered 20 public universities in Malaysia during the year 2011. Each university can be represented as an independent decision making unit (DMU). The dataset was collected through two sources, i.e. 1) the statistical report of the Ministry of Education (MoE) published online (Ministry of Education, 2012), and 2) some inputs and outputs were retrieved from a study carried out by Irliana et al. (2014). The inputs and outputs used in this paper were classified into three inputs and three outputs. The inputs are: 1) the number of postgraduate enrollment \((x_1) \), 2) the number of undergraduate enrollment \((x_2) \) (Katharaki & Katharakis, 2010; Kuah & Wong, 2011), and 3) the number of academic staff \((x_3) \) (Hussain, Ramli, & Khalid, 2016; Taleb, Ramli, & Khalid, 2018). The three outputs are: 1) the number of graduated postgraduate students \((y_1) \) (Daraio, Bonaccorsi, & Simar, 2015), 2) the number of graduated undergraduate students \((y_2) \) (Daraio et al., 2015), and 3) the number of graduates who furthered their studies \((y_3) \) (Cordero-Ferrera, Pedraja-Chaparro, & Salinas-Jiménez, 2008; Taleb et al., 2018). The statistical descriptive of inputs and outputs is reported in Table 1.
4.2. Emperical testing and discussion

Based on the three inputs and three outputs in the output-oriented integer-valued DEA model, the efficiency measures of the model under the CRS and VRS technologies are presented in Table 2.

Table 2 reports the technical efficiency scores of the 20 public universities in Malaysia for year 2011 under the CRS and VRS technologies. We can observe that there are 10 universities achieving full efficiency under CRS, while there are 11 universities achieving the full-efficiency status under VRS. Table 2 also reports the RTS classification for all the 20 DMUs. Based on the three conditions of Zhu and Shen (1995) considered in Section 3, the RTS of 10 out of 20 DMUs are CRS since each efficient DMU under the two technologies is at the efficiency frontier (i.e. the efficiency score of the efficient DMU is equal to one). Therefore, these DMUs can have more external and internal development opportunities for students and their staff (Chen & Chen, 2011). The remaining 10 DMUs are functioning in the regions of IRS and DRS since they are inefficient units. An inefficient DMU can be projected to be an efficient DMU using the approach illustrated in Section 4.3.

The results show that there are five inefficient DMUs which can be classified in the region of IRS and DRS, while the remaining five inefficient DMUs are classified in the region of IRS. Therefore, half of the inefficient DMUs are operating in the region of DRS. This implies that the scale efficiency (i.e. the ratio between technical efficiency scores resulting from CRS and VRS technologies) presented in the seventh column of Table 2 is not at the optimum level. Thus, any additional inputs to the educational process will lead to lower return of the DRS universities. The universities operating in the region of IRS have excess capacity and every additional input will produce higher returns (Banker et al., 2004). These IRS universities are good at attracting students. For this, they need to focus on their inputs in order to increase their educational outcomes and achieve the most productive size scale (Banker, 1984; Seiford & Zhu, 1999). Since all the inefficient universities are functioning in the regions of DRS and IRS and half of them are scale inefficient, the VRS technology is preferred to calculate the slacks of inputs and outputs, which can improve the inefficient universities (Ahn, Charnes, & Cooper, 1988).

Table 2. Efficiency measures and RTS for 20 public universities in Malaysia.

DMU	University name	CRS-TE	VRS-TE	\(\sum_j \)	RTS	Scale efficiency
1	Universiti Malaya UM	1	1	1	CRS	1
2	Universiti Kebangsaan Malaysia UKM	1	1	1	CRS	1
3	Universiti Sains Malaysia USM	0.72209	0.78008	1.05331	DRS	0.92566
4	Universiti Teknologi Malaysia UTM	0.77259	0.78409	0.77761	IRS	0.98533
5	Universiti Putra Malaysia UPM	1	1	1	CRS	1
6	Universiti Utara Malaysia UUM	1	1	1	CRS	1
7	Universiti Perguruan Sultan Idri IPSI	1	1	1	CRS	1
8	Universiti Islam Antarabangsa Malaysia UIAM	0.80475	0.80544	1.03642	DRS	0.99913
9	Universiti Malaysia Sabah UMS	1	1	1	CRS	1
10	Universiti Malaysia Sarawak UNIMAS	0.68363	0.68563	1.75048	DRS	0.99708
11	Universiti Malaysia Terengganu UTM	1	1	1	CRS	1
12	Universiti Technologi MARA UITM	1	1	1	CRS	1
13	Universiti Sains Islam Malaysia USIM	0.62228	0.79842	0.92460	IRS	0.77938
14	Universiti Sultan Zainal Abidin UNISZA	1	1	1	CRS	1
15	Universiti Malaysia Kelantan UMK	0.42336	1	0.32383	IRS	0.42336
16	Universiti Tun Hussein Onn Malaysia UTM	0.69106	0.69805	0.38269	IRS	0.99898
17	Universiti Malaysia Perlis UNIMAP	0.90518	0.90666	1.02657	DRS	0.99936
18	Universiti Pertahanan Nasional Malaysia UPNM	1	1	1	CRS	1
19	Universiti Malaysia Pahang UMP	0.58085	0.75211	1.05643	DRS	0.77182
20	Universiti Teknikal Melaka UTEM	0.569283	0.77065	0.58666	IRS	0.73870

4.3. Further analysis

Section 4.2 calculates the TE scores for efficient and inefficient universities under VRS and CRS and estimates the region of RTS and the scale efficiency for the universities in the sample. There are 11 universities achieving the full-efficient status under VRS. For the inefficient universities, there is still room to improve their efficiencies by determining their integer slacks of inputs and outputs as presented in Table 3.

In Table 3, we can see that all inefficient universities owe their problems to input slacks (input excesses) and some of the output slacks (output shortfalls) of graduated postgraduate students and graduated undergraduate students. For instance, DMU 4 has excess in all its inputs and some output shortfalls of graduated students of postgraduate and undergraduate students. Thus, to improve the efficiency of DMU 4, all of its inputs should be
Table 3. The integer input and output slacks for inefficient universities.

DMU	University name	Integer input excess	Integer output shortfall
3	Universiti Sains Malaysia USM	1082	7
4	Universiti Technologi Malaysia UTM	2244	0
8	Universiti Islam Antarabangsa Malaysia UIAM	353	16
10	Universiti Malaysia Sarawak UNIMAS	93	0
13	Universiti Sains Islam Malaysia USIM	29	0
16	Universiti Tun Hussein Onn Malaysia UTHM	524	51
17	Universiti Malaysia Perlis UNIMAP	0	0
19	Universiti Malaysia Pahang UMP	38	0
20	Universiti Teknikal Melaka UTEM	175	4

Table 4. Efficiency measures of the modified model and the existing model.

DMU	Efficiency scores of the existing model	Efficiency scores of our modified integer model		
	CRS model	VRS model	CRS model	VRS model
1	1	1	1	1
2	1	1	1	1
3	0.72209	0.73245	0.72209	0.78008
4	0.77259	0.78179	0.77259	0.78409
5	1	1	1	1
6	1	1	1	1
7	1	1	1	1
8	0.76140	0.76234	0.80475	0.80544
9	1	1	1	1
10	0.64273	0.64809	0.68363	0.68483
11	1	1	1	1
12	1	1	1	1
13	0.60036	0.60092	0.62228	0.79842
14	1	1	1	1
15	0.29066	1	0.42336	1
16	0.65332	0.66368	0.69106	0.69805
17	0.73788	0.73966	0.90518	0.90666
18	1	1	1	1
19	0.55880	0.56911	0.58050	0.75211
20	0.54335	0.54675	0.56928	0.77065

4.4. Comparison of the results between the modified model and the existing model

To show the difference in terms of efficiency scores and input and output slacks between our modified output-oriented integer-valued DEA model and the existing output-oriented model, both models were run under the technologies of CRS and VRS. The results are reported in Table 4.

Table 4 demonstrates that the efficiency scores resulting from the existing model (1) are never greater than the results from our modified model (3) (see proposition 1). This means that efficiency scores increase when the performance of DMUs is evaluated in terms of integer requirements. In addition, all the efficiency scores under the CRS technology are less than or equal to the efficiency scores under the VRS technology for both models (1) and (3). For example, the efficiency scores of DMU10 resulting from existing model (1) and modified model (3) under CRS and VRS are 0.64273, 0.64809, 0.68363 and 0.68563, respectively. Additionally, the number of efficient and inefficient DMUs resulting from modified model (3) are the same as that obtained from existing model (1) under the CRS and VRS; i.e. ten efficient DMUs and 11 efficient DMUs. We can also observe that the average of the efficiency scores of all the inefficient DMUs resulting from the existing model under CRS and VRS, i.e. 0.628318 and 0.704479, respectively, are less than the efficiency scores resulting from the modified model, i.e. 0.777472 and 0.798113. For all inefficient DMUs, their input and output slacks resulting from existing model (2) and modified model (4) are shown in Table 5.

The input and output slacks of the inefficient DMUs were obtained from stage-II of existing model (2) and modified model (4). All the input and output slacks were calculated under the VRS technology. Under the VRS technology, any increases in inputs will cause a disproportional increase in outputs. VRS is preferred if the relationship between the efficiency and scale of operations is significant (Avkiran, 2001). This paper thus relies on VRS for calculating the input and output slacks for both models as shown in Table 5. In Table 5, we can see that the input and output slacks obtained from both models are different. For example, the three input excesses and three output shortfalls of DMU8 obtained from existing model (2) are 354.00290, 2278.96400, 1662.71500, 15.22032, 0 and 0, respectively. Meanwhile, the input and output slacks with integer restriction resulting decreased by 2244, 1556 and 1063, respectively, while its outputs related to graduated postgraduates and undergraduates should be increased by 1 and 563, respectively. These slacks are important for calculating the projection (forecasting) of inputs and outputs to improve the performance of the inefficient universities. This process is known as the projection of inputs and outputs (see Cooper et al., 2006, p.48; Taleb, Ramli, & Khalid, 2019), which can be applied to the inefficient universities to improve their efficiencies. Note that the slack of output shortfall of graduates pursuing their studies for all the inefficient universities is equal to zero as presented in the last column of Table 3. This result reflects that the inefficient universities are operating effectively under this output. The results also reflect that all of the universities in the examined year supported and encouraged their students to further studies.
The main inefficiency sources are undergraduate enrollment (x_2), academic staff (x_3) and postgraduate enrollment (x_1). These three inputs should thus be focused by the decision makers of the inefficient universities by removing the amounts of their excesses to achieve efficient status. This result is consistent with that considered in Section 4.2 stating that the inefficient universities classified in the region of increasing RTS have excesses in their inputs. In contrast, the graduates pursuing their studies (y_3) do not create the inefficiency status since all its slacks are zero. For this, the universities operated effectively under this output in year 2011. The outputs of graduated undergraduates (y_2) and postgraduates (y_1) do not significantly cause the inefficiency status.

In general, simply rounding input and output slacks to their nearest integer values could cause the values to be located at the outside of a production possibility set. This issue has been catered for by our output-oriented integer-valued DEA model to provide decision makers with more accurate efficiency measures and targets. Additionally, the integer restrictions considered in our modified model can also calculate the benchmarking of each inefficient DMU more precisely. Thus, the model can effectively be used to evaluate the performance of institutions whose inputs and outputs are to be integer values.

5. Conclusions

Integer-valued DEA models have been used in many real situations whose inputs and/or outputs are integer values; e.g. the number of enrollment students, academic staff, graduates and academic papers published by a higher education institution. However, there have not been any studies addressing the RTS of an output-oriented integer DEA model. This paper contributes to the literature in terms of estimating RTS of the output-oriented integer-valued DEA model. To show its applicability, the model was used to measure the efficiency of public universities in Malaysia. The scores of technical efficiency under the CRS and VRS technologies, the scale efficiency and the region of the RTS were calculated and reported. Based on the empirical results, 50% and 55% of the universities were efficient under CRS and VRS, respectively.

The results of technical and scale efficiency suggest that the public universities in Malaysia are operating at a fairly high level of relative efficiency compared to each other. In spite of this fact, some universities still have room for efficiency improvement. The findings from both output-oriented integer DEA models (i.e. CRS and VRS) reveal that 50% of the universities are operating under CRS and each 25% of them is operating under IRS and DRS. CRS reflects that the efficient universities cannot increase

Table 5. The input and output slacks of the existing model and the modified model.

DMU	δ_1	δ_2	δ_3	δ_4	δ_5	δ_6	δ_7	δ_8	δ_9	δ_{10}	δ_{11}	δ_{12}	δ_{13}	δ_{14}	δ_{15}	δ_{16}	δ_{17}	δ_{18}	δ_{19}	δ_{20}
3	1082.20700	1843.89700	1140.49700	0	697.0693	0	1844	1140	0	697	0	1844	1140	0	697	0	1844	1140	0	697
4	2243.58800	1559.14500	1063.86000	0	559.2349	0	1556	1063	1	563	0	1556	1063	1	563	0	1556	1063	1	563
8	354.002900	2276.96400	1662.71500	0	135.4283	0	1339	1662	0	135	0	1339	1662	0	135	0	1339	1662	0	135
10	93.20857	3226.36900	2597.80800	50.9791	0	0	93	3226	2598	51	0	93	3226	2598	51	0	93	3226	2598	51
13	29.52095	1245.61200	424.33890	0	697.0693	0	1245	424	1	697	0	1245	424	1	697	0	1245	424	1	
16	525.14860	2597.80800	264.15790	36.98999	0	0	524	2598	264	37	0	524	2598	264	37	0	524	2598	264	
17	0	1245.61200	424.33890	1.19137	0	0	1245	424	1	125	0	1245	424	1	125	0	1245	424	1	
19	38.36965	1339.24500	317.99940	0	135.4283	0	1339	318	0	135	0	1339	318	0	135	0	1339	318	0	
20	179.53000	1567.04100	335.82480	0	157.34500	0	1554	333	4	173	0	1554	333	4	173	0	1554	333	4	
their efficiencies by adjusting their inputs. DRS reflects that any increases in inputs will only cause a small increase in outputs. IRS meanwhile reveals that any increases in inputs will produce a high increase in outputs.

To illustrate the importance of combining integer restrictions of inputs and outputs into the standard output-oriented DEA model to obtain more accurate efficiency measures, a comparison between the efficiency scores resulting from the existing model and our modified output-oriented integer-valued DEA model under CRS and VRS was performed. The efficiency scores obtained from the existing model are never greater than those obtained from our model under both CRS and VRS technologies. The input excesses and output shortfalls of the inefficient universities were also calculated using both models. This information can provide the decision makers of the universities with more precise measures and targets to improve their performance using the projection of inputs and outputs.

This study has two limitations. First, the efficiency measures would be more accurate if the data consisted of other important factors. e.g. the number of international faculty members, papers published in conference proceedings or reputable scientific journals and registered research patents. Secondly, the analysis was only based on one-year data which did not fully reflect the universities’ performance. For future work, a more dynamic nature of the public universities in Malaysia can be captured using panel data.

ORCID

Mushtaq Taleb http://orcid.org/0000-0002-5012-6475
Ruzelan Khalid http://orcid.org/0000-0002-4283-0737

References

Abbott, M., & Doucouliagos, C. (2003). The efficiency of Australian universities: A data envelopment analysis. *Economics of Education Review*, 22(1), 89–97. doi: 10.1016/S0272-7757(01)00068-1

Ahn, T., Charnes, A., & Cooper, W. W. (1988). Some statistical and DEA evaluations of relative efficiencies of public and private institutions of higher learning. *Socio-Economic Planning Sciences*, 22(6), 259–269. doi: 10.1016/0038-0121(88)90008-0

Amirteimoori, A., Emrouznejad, A., & Khoshandam, L. (2013). Classifying flexible measures in data envelopment analysis: A slack-based measure. *Measurement: Journal of the International Measurement Confederation*, 46(10), 4100–4107. doi: 10.1016/j.measurement.2013.08.019

Avkiran, N. K. (2001). Investigating technical and scale efficiencies of Australian Universities through data envelopment analysis. *Socio-Economic Planning Sciences*, 35(1), 57–80. doi: 10.1016/S0038-0121(00)00010-0

Banker, R. D. (1984). Estimating most productive scale size using data envelopment analysis. *European Journal of Operational Research*, 17(1), 35–44. doi:10.1016/0377-2217(84)90006-7

Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. *Management Science*, 30(9), 1078–1092. doi:10.1287/mnsc.30.9.1078

Banker, R. D., Cooper, W. W., Seiford, L. M., Thrall, R. M., & Zhu, J. (2004). Returns to scale in different DEA models. *European Journal of Operational Research*, 154(2), 345–362. doi:10.1016/j.ejor.2003.03.001

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. *European Journal of Operational Research*, 2(6), 429–444. doi:10.1016/0079-6685(78)90138-8

Chen, J. K., & Chen, I. S. (2011). Inno-Qual efficiency of higher education: Empirical testing using data envelopment analysis. *Expert Systems with Applications*, 38(3), 1823–1834. doi:10.1016/j.eswa.2010.07.111

Chen, J. X., Deng, M., & Gngiras, S. (2011). A modified super-efficiency measure based on simultaneous input–output projection in data envelopment analysis. *Computers & Operations Research*, 38(2), 496–504. doi: 10.1016/j.cor.2010.07.008

Cook, W. D., & Seiford, L. M. (2009). Data envelopment analysis (DEA)—Thirty years on. *European Journal of Operational Research*, 192(1), 1–17. doi:10.1016/j.ejor.2008.01.032

Cooper, W. W., Seiford, L. M., & Tone, K. (2006). *Introduction to data envelopment analysis and its uses: with DEA-solver software and references*. New York: Springer Science & Business Media.

Cordero-Ferrera, J. M., Pedraja-Chaparro, F., & Salinas-Jiménez, J. (2008). Measuring efficiency in education: an analysis of different approaches for incorporating non-discretionary inputs. *Applied Economics*, 40(10), 1323–1339. doi:10.1080/00036840600771346

Daraio, C., Bonaccorsi, A., & Simar, L. (2015). Rankings and university performance: A conditional multidimensional approach. *European Journal of Operational Research*, 244(3), 918–930. doi:10.1016/j.ejor.2015.02.005

Du, J., Chen, C., Chen, Y., Cook, W. D., & Zhu, J. (2012). Additive super-efficiency in integer-valued data envelopment analysis. *European Journal of Operational Research*, 218(1), 186–192. doi:10.1016/j.ejor.2011.10.023

Farrell, M. J. (1957). The measurement of productive efficiency. *Journal of the Royal Statistical Society. Series A (General)*, 120(3), 253–290. doi:10.2307/2983100

Fried, H. O., Lovell, C. K., Schmidt, S. S., & Schmidt, S. S. (Eds.). (2008). *The measurement of productive efficiency and productivity growth*. Oxford University Press.

Golany, B., & Yu, G. (1997). Estimating returns to scale in DEA. *European Journal of Operational Research*, 103(1), 28–37. doi:10.1016/S0377-2217(96)00025-7

Hussain, M. T., Ramli, R., & Khalid, R. (2016). Investigating data envelopment analysis model with potential improvement for integer output values. In *AIP Conference Proceedings* (Vol. 1691, p. 30010). New York: AIP Publishing.

Hussain, M. T., Ramli, R., & Khalid, R. (2015). A hybrid integer data envelopment analysis based on an alternative approach of super slack based measure for measuring super efficiency and inefficiency of decision making units. *Far East Journal of Mathematical Sciences (Fjms)*, 100(1), 147–170. doi:10.17564/MS10010147
Irliana, I., Econ, S. J., Manag, B., Ismail, I., Ramalingam, S., Azahan, A. H., & Khezrimotlagh, D. (2014). Relative Efficiency of Public Universities in Malaysia. Scholars Journal of Economics, Business and Management, 1(11), 606–612.

Jahanshahloo, G. R., & Khodabakhshi, M. (2004). Suitable combination of inputs for improving outputs in DEA with determining input congestion: Considering textile industry of China. Applied Mathematics and Computation, 151(1), 263–273. doi: 10.1016/S0096-3003(03)00337-0

Johnes, J. (2006). Measuring teaching efficiency in higher education: An application of data envelopment analysis to economics graduates from UK Universities 1993. European Journal of Operational Research, 174(1), 443–456. doi:10.1016/j.ejor.2005.02.044

Matin, R., & Kuosmanen, T. (2009). Theory of integer-valued data envelopment analysis under alternative returns to scale axioms. Omega, 37(5), 988–995. doi:10.1016/j.omega.2008.11.002

Katharakis, M., & Katharakis, G. (2010). A comparative assessment of Greek universities’ efficiency using quantitative analysis. International Journal of Educational Research, 49(4–5), 115–128.

Kuah, C. T., & Wong, K. Y. (2011). Efficiency assessment of universities through data envelopment analysis. Procedia Computer Science, 3, 499–506. doi:10.1016/j.procs.2010.12.084

Kuosmanen, T., & Matin, R. K. (2009). Theory of integer-valued data envelopment analysis. European Journal of Operational Research, 192(2), 658–667. doi:10.1016/j.ejor.2007.09.040

Lozano, S., & Villa, G. (2006). Data envelopment analysis of integer-valued inputs and outputs. Computers & Operations Research, 33(10), 3004–3014.

Lozano, S., & Villa, G. (2007). Integer DEA models. In Modeling data irregularities and structural complexities in data envelopment analysis (pp. 271–289). Springer, Boston, MA.

Lu, W. M. (2012). Intellectual capital and university performance in Taiwan. Economic Modelling, 29(4), 1081–1089.

Saranga, H. (2009). The Indian auto component industry–Estimation of operational efficiency and its determinants using DEA. European Journal of Operational Research, 196(2), 707–718. doi:10.1016/j.ejor.2008.03.045

Seiford, L. M., & Zhu, J. (1999). An investigation of returns to scale in data envelopment analysis. Omega, 27(1), 1–11. doi:10.1016/S0305-0483(98)00025-5

Taleb, M., Ramli, R., & Khalid, R. (2018). Developing a two-stage approach of super efficiency slack-based measure in the presence of non-discretionary factors and mixed integer-valued data envelopment analysis. Expert Systems with Applications, 103, 14–24. doi:10.1016/j.eswa.2018.02.037

Taleb, M., Ramli, R., & Khalid, R. (2019). Measuring the efficiency of community colleges using super efficiency approach for the case of non-discretionary factors in data envelopment analysis with sensitivity analysis. International Journal of Process Management and Benchmarking (in Press). doi:10.1504/IJPMB.2019.10007605

Tyagi, P., Yadav, S. P., & Singh, S. P. (2009). Relative performance of academic departments using DEA with sensitivity analysis. Evaluation and Program Planning, 32(2), 168–177.

Wu, J., & Zhou, Z. (2015). A mixed-objective integer DEA model. Annals of Operations Research, 228(1), 81–95.

Yang, M., Li, Y., Chen, Y., & Liang, L. (2014). An equilibrium efficiency frontier data envelopment analysis approach for evaluating decision-making units with fixed-sum outputs. European Journal of Operational Research, 239(2), 479–489. doi:10.1016/j.ejor.2014.05.013

Zhu, J., & Shen, Z. H. (1995). A discussion of testing DMUs’ returns to scale. European Journal of Operational Research, 81(3), 590–596.