Lighthouse Principle for Diffusion in Social Networks

Sanaz Azimipour Pavel Naumov
January 19, 2016

Abstract

The article investigates influence relation between two sets of agents in a social network. It proposes a logical system that captures propositional properties of this relation valid in all threshold models of social networks with the same topological structure. The logical system consists of Armstrong axioms for functional dependence and an additional Lighthouse axiom. The main results are soundness, completeness, and decidability theorems for this logical system.

1 Introduction

In this article we study influence in social networks. When a new product is introduced to the market, it is usually first adopted by a few users that are called “early adopters”. These users might adopt the product because they are fans of the company introducing the product, as a result of the marketing campaign conducted by the company, or because they have a genuine need for this type of product. Once the early adopters start using the product, they put peer pressure on their friends and acquaintances in the social network, who might eventually follow them in adopting the product. The friends of the early adopters might eventually influence their own friends and so on, until the product is potentially adopted by a significant part of the network.

A similar phenomenon could be observed with diffusion of certain behaviours, like smoking, adoption of new words and technical innovations, and propagation of beliefs.

There are two most widely used models that formally capture diffusion process in social networks. One of them is the cascading model \[17, 11\]. This model distinguishes active and inactive vertices of the network. Once a vertex \(v\) becomes active, it gets a single chance to activate each neighbour \(u\) with a given probability \(p_{v,u}\). This process continues until no more activations can happen.

In this article we focus on the second model, called threshold model \[23, 13, 10, 1\], originally introduced by Granovetter \[7\] and Schelling \[18\]. In this model each agent has a non-negative threshold value representing the agent’s resistance to adoption of a given product. If the pressure from those peers of the agent who already adopted the product reaches the threshold value, then the agent also adopts the product. We assume that each of the other agents has a non-negative, but possibly zero, influence on the given agent. The peer pressure on an agent to adopt a product is the sum of influences...
on the agent of all agents who have already adopted the product. It is assumed in this model that, once the product is adopted, the agent keeps using the product and putting pressure on her peers indefinitely.

Consider, for example, social network N_1 depicted in Figure 1. This network consists of three agents: p, q, and r that have threshold values 7, 1, and 2 respectively. The influence of one agent on another is shown in this figure by the label on the directed edge connecting the two agents. For instance, the influence of agent r on agent p is 5. If an agent has zero influence on another agent, then appropriate directed edge is not shown at all. Thus, influence of agent p on agent r is zero.

Suppose that a marketing company gives agent p a free sample of the product and the agent starts using it. Since agent p has influence 2 on agent q and threshold value of agent q is only 1, she will eventually also adopt the product. In turn, adoption of the product by agent q will eventually lead to adoption of the product by agent r because threshold value of agent r is only 2 and the influence of agent q on agent r is 3. Thus, adoption of the product by agent p eventually leads to adoption of this product by agent r. We denote this fact by $N_1 \models p \triangleright r$.

In this article we study relation $A \triangleright B$ between group of agents A and B that could be informally described as “if all agents in set A are given free samples of the product and they all start using it, then all agents in set B will eventually adopt the product". For example, for the discussed above social network N_1, we have $N_1 \models \{p\} \triangleright \{q, r\}$, which we usually write as just $N_1 \models p \triangleright q, r$.

At the same time, if a free sample of the product is given to agent r, then agent q will eventually adopt it because she has threshold value 1 and the influence of agent r on her is 4. Once agent q adopts the product, however, the product diffusion stops and the product will never be adopted by agent p because her threshold value is 7. Thus, agent p eventually will adopt the product. In other words, $N_1 \not\models (r \triangleright p)$.

The properties of relation $A \triangleright B$ that we have discussed so far were specific to social network N_1. Let us now consider social network N_2 depicted in Figure 2. If a free sample of the product is given in network N_2 to agent r and she starts using it, then, like it was for the network N_1, agent q will eventually adopt the product because her threshold value is only 1 and influence of agent r on agent q is 4. Unlike network N_1, however, the product diffusion does not stop at this point because now total peer pressure of agents q and r on p will be only $1 + 5 = 6$. Therefore, for example, $N_2 \models r \triangleright p$.

We formally specify this relation in Definition 7.

1 We formally specify this relation in Definition 7.
An interesting property of network N_2 is that agent r has threshold value 0. Thus, she will eventually adopt the product even if no free product samples are given to any of the agents: $N_2 \models \emptyset \triangleright r$.

Note that social networks N_1 and N_2 are different only by the threshold values that the agents have. The agents in both networks have the same influence on each other. We will express this by saying that social networks N_1 and N_2 have the same sociogram. This common sociogram S_1 for networks N_1 and N_2 is depicted in Figure 3.

To some degree, the threshold values characterize the relation that exists between the product and the individual agents and the sociogram describes the influence relation between the agents. The term sociogram has been first introduced by psychosociologist Jacob Levy Moreno [15]. The sociograms, as defined in this article, are directed weighted graphs. The original Moreno's sociograms were neither directed nor weighted. We briefly discuss the unweighted sociograms in the conclusion.

In this article we study not the individual properties of specific social networks, but the common properties of all social networks with the same sociogram. We write $S \models \phi$ if property ϕ is true for all social networks with sociogram S. For example, as we show in Proposition 1,

\[S_1 \models p \triangleright r \rightarrow q \triangleright r. \]

In other words, under any assignment of threshold values on sociogram S_1, if giving a free sample of the product to agent p will eventually lead to agent r adopting the product, then giving a free sample of the product to agent q would have the same effect.

The main result of this article is a complete axiomatization of propositional properties of relation $A \triangleright B$ for any given sociogram. Such axiomatization consists of three axioms common to all sociograms and a sociogram-specific fourth axiom. The first three axioms are

1. Reflexivity: $A \triangleright B$ if $B \subseteq A$,
2. Transitivity: $A \triangleright B \rightarrow (B \triangleright C \rightarrow A \triangleright C)$,
3. Augmentation: $A \triangleright B \rightarrow (A, C \triangleright B, C)$,

where A, B denotes the union of sets A and B. These axioms were originally proposed by Armstrong [2] to describe functional dependence relation in database theory. They became known in database literature as Armstrong’s axioms [6, p. 81]. Väänänen proposed a first order version of these principles [21] and their generalization for reasoning about approximate dependency [22]. Beeri, Fagin, and Howard [3] suggested a variation of Armstrong’s axioms that describes properties of multi-valued dependence. Naumov and Nicholls [16] proposed another variation of these axioms that describes rationally functional dependence.

The sociogram-dependent fourth axiom captures the fact that in every group of agents in which at least one agent eventually adopts the product there is always an agent (or a subgroup of agents) who adopts the product first. In marketing such agents are sometimes called lighthouse customers. In any given group of agents, the distinctive property of lighthouse customers is that they adopt the product without any peer pressure coming from other agents in this group. The lighthouse customers adopt the product as a result of the peer pressure from the outside of the group. Our fourth axiom postulates existence of lighthouse customers in any group of agents in which at least one agent eventually will adopt the product. Thus, we call this postulate Lighthouse axiom.

One possible way to state Lighthouse axiom is to say that if all agents in network N are partitioned into disjoint sets A and B, see Figure 4, and there is an agent $a \in A$ such that $N \models B \triangleright a$, then there must exist a “lighthouse” agent $\ell \in A$ such that the total peer pressure of all agents in set B on agent ℓ is no less than the threshold value of agent ℓ:

$$\theta \leq w_1 + w_2 + \cdots + w_k.$$

Unfortunately, when stated this way, Lighthouse axiom refers to threshold value θ of agent ℓ. Thus, in this form, it is a property of the social network, rather than the corresponding sociogram.

It turns out, however, that there is a way to re-word the axiom so that it does not refer to threshold values. Namely, let us assume that for every agent $a \in A$ we choose a set of agents $C_a \subseteq A \cup B$ such that peer pressure of set C_a on agent a is no less than peer pressure of set B on agent a. The new form of Lighthouse axiom states that, under the above condition, if $N \models B \triangleright a$, then there exists a “lighthouse” agent $\ell \in A$ such
that $N \models C \triangleright \ell$. The main result of this article is the completeness theorem for logical system consisting of this form of Lighthouse axiom and the three Armstrong axioms.

Several logical frameworks for reasoning about diffusion in social networks have been studied before. Seligman, Liu, and Girard [19] proposed Facebook Logic for capturing properties of epistemic social networks in modal language, but did not give any axiomatization for this logic. They further developed this approach in papers [20, 12]. In particular, they introduced dynamic friendship relations. Christoff and Hansen [4] simplified Seligman, Liu, and Girard setting and gave a complete axiomatization of the logical system for this new setting. Christoff and Rendsvig proposed Minimal Threshold Influence Logic [5] that uses modal language to capture dynamic of diffusion in a threshold model and gave complete axiomatization of this logic. The languages of the described above systems are significantly different from ours and, as a result, neither of these systems contains principles similar to our Lighthouse axiom.

Diffusion in social networks is a special case of information flow on graphs. Logical systems for reasoning about various types of graph information flow has been studied before. Lighthouse axiom has certain resemblance with Gateway axiom for functional dependence on hypergraphs of secrets [14], Contiguity axiom [8] for graphical games, and Shield Wall axiom for fault tolerance in belief formation networks [9].

This article is organized as following. In Section 2 we introduce formal syntax and semantics of our logical system. Section 3 list the four axioms of the system. In Section 4 we give several examples of formal proofs in our system. In Section 5 we show some auxiliary results that are used later. Section 6 and Section 7 prove soundness and completeness theorems respectively. Section 9 concludes with a discussion of logical properties of unweighted sociograms.

2 Syntax and Semantics

In this section we formally define social network, sociogram, and influence relation.

Definition 1. For any finite set \mathcal{A}, let $\Phi(\mathcal{A})$ be the minimal set of formulas such that

1. $\bot \in \Phi(\mathcal{A})$,
2. $\mathcal{A} \triangleright \mathcal{B} \in \Phi(\mathcal{A})$, for each subsets $\mathcal{A}, \mathcal{B} \subseteq \mathcal{A}$,
3. $\phi \rightarrow \psi \in \Phi(\mathcal{A})$ for each $\phi, \psi \in \Phi(\mathcal{A})$.

We assume that disjunction \vee is defined through implication \rightarrow and false constant \bot in the standard way.

Definition 2. A social network is triple (\mathcal{A}, w, θ), where

1. \mathcal{A} is an arbitrary finite set (of agents),
2. w is a function that maps \mathcal{A}^2 into non-negative real numbers. Value $w(a, b)$ represents influence of agent a on agent b.
3. θ is a function that maps \mathcal{A} into non-negative real numbers. Value $\theta(a)$ represents threshold value of agent $a \in \mathcal{A}$.
Definition 3. A sociogram is pair \((\mathcal{A},w)\), where set \(\mathcal{A}\) and function \(w\) satisfy the first two conditions of Definition 2.

We say that social network \((\mathcal{A},w,\theta)\) is based on sociogram \((\mathcal{A},w)\). We now proceed to define peer pressure on an agent by a group of agents in a given sociogram.

Definition 4. For any sociogram \((\mathcal{A},w)\) and any subset of agents \(A \subseteq \mathcal{A}\), let \(\|A\|_b = \sum_{a \in A} w(a,b)\).

In the introduction we said that if, at some moment in time, an agent experiences peer pressure higher than her threshold value, then at some point in the future she will adopt the product. For the sake of simplicity, in our formal model we assume that time is discrete and that if at moment \(k\) an agent experiences sufficient peer pressure, then she adopts the product at moment \(k+1\). Although this assumption, generally speaking, affects the “time dynamics” of product diffusion, it does not affect the final outcome of diffusion. Thus, this assumption, while simplifying the formal setting, does not change the properties of influence relation \(\mathcal{A} \triangleright B\). Given this assumption, if free samples of the product are given to all agents in set \(A\) at moment 0, then by \(A^k\) we mean the set of all agents who will adopt the product by moment \(k\). The formal definition of \(A^k\) is below.

Definition 5. For any \(A \subseteq \mathcal{A}\) and any \(k \in \mathbb{N}\), let subset \(A^k \subseteq \mathcal{A}\) be defined recursively as follows:

1. \(A^0 = A\),

2. \(A^{k+1} = A^k \cup \{x \in \mathcal{A} \mid \|A^k\|_x \geq \theta(x)\}\).

Corollary 1. \((A^n)^k = A^{n+k}\).

If free samples of the product are given to all agents in set \(A\), then by \(A^*\) we mean the set of all agents who will eventually adopt the product. The formal definition of \(A^*\) is below.

Definition 6.

\[A^* = \bigcup_{k \geq 0} A^k.\]

The next definition specifies the formal semantics of our logical system. In particular, item 2 in this definition specifies the formal meaning of the influence relation.

Definition 7. For any social network \(N = (\mathcal{A},w,\theta)\) and any \(\phi \in \Phi(\mathcal{A})\), let satisfiability relation \(N \models \phi\) be defined as follows

1. \(N \not\models \bot\),

2. \(N \models A \triangleright B\) if \(B \subseteq A^*\),

3. \(N \models \psi \rightarrow \chi\) if \(N \not\models \psi\) or \(N \models \chi\).
3 Axioms

Our logical system for an arbitrary sociogram $S = (\mathcal{A}, w)$ consists of propositional tautologies in language $\Phi(\mathcal{A})$ and the following additional axioms:

1. Reflexivity: $A \triangleright B$ if $B \subseteq A$.
2. Transitivity: $A \triangleright B \rightarrow (B \triangleright C \rightarrow A \triangleright C)$.
3. Augmentation: $A \triangleright B \rightarrow (A, C \triangleright B, C)$.
4. Lighthouse: if $A \sqcup B$ is a partition of the set of all agents \mathcal{A} and $\{C_a\}_{a \in A}$ is a family of sets of agents such that $\|B\|_a \leq \|C_a\|_a$ for each $a \in A$, then
 \[
 \bigvee_{a \in A} B \triangleright a \rightarrow \bigvee_{a \in A} C_a \triangleright a.
 \]

We write $\vdash_S \phi$ if formula ϕ can be derived in our system using Modus Ponens inference rule. We sometimes write just $\vdash \phi$ if the value of subscript S is clear from the context. We also write $X \vdash_S \phi$ if formula ϕ could be derived in our system extended by the set of additional axioms X.

4 Examples

In this section we give three examples of formal proofs in our logical system. Soundness of this system is shown in Section 6. We start by proving statement (1) from the introduction.

Proposition 1. $\vdash_{S_1} p \triangleright r \rightarrow q \triangleright r$, where S_1 is the sociogram depicted in Figure 3.

Proof. Let $A = \{r\}$, $B = \{p, q\}$, and $C_r = \{q\}$, see Figure 3. Note that
\[
\|B\|_r = w(p, r) + w(q, r) = 0 + 3 = 3 = w(q, r) = \|C_r\|_r.
\]

Hence, by Lighthouse axiom,
\[
\vdash p, q \triangleright r \rightarrow q \triangleright r.
\]
At the same time, by Transitivity axiom,
\[\vdash p, q \triangleright p \rightarrow (p \triangleright r \rightarrow p, q \triangleright r). \]

By Reflexivity axiom, \(\vdash p, q \triangleright p \). Thus, by Modus Ponens inference rule,
\[\vdash p \triangleright r \rightarrow p, q \triangleright r. \]

Therefore, \(\vdash p \triangleright r \rightarrow q \triangleright r \) using statement (2) and propositional logic reasoning.

Let us now consider sociogram \(S_2 \) depicted on Figure 6. Since on this sociogram agent \(r \) has higher influence on agent \(q \) than agent \(p \) has, one might expect the following statement to be true for all social networks over sociogram \(S_2 \):

\[p \triangleright q \rightarrow r \triangleright q. \] (3)

Surprisingly, this is false. Namely, this statement is false for the social network depicted in Figure 7. This happens because agent \(r \) in this social network has threshold value 0. In other words, agent \(r \) is an “early adopter” who does not need any external peer pressure in order to buy the product. As a result, see Figure 8 we have \(\{ p \}^1 = \{ p, r \} \). Once agent \(r \) adopts the product, the total peer pressure on agent \(q \) becomes \(2 + 3 = 5 \) and she will adopt the product as well. On the other hand, if the free sample is given to agent \(r \), then neither agent \(p \) nor agent \(q \) ever adopt the product.

Although statement (3) holds not for all social networks over sociogram \(S_2 \), in the next proposition we show that a slightly modified version of this statement does hold for all such networks.

Proposition 2. \(\vdash_{S_2} p \triangleright q \rightarrow (r \triangleright q \vee \varnothing \triangleright r) \), where \(S_2 \) is the sociogram depicted in Figure 6.

Proof. Let \(A = \{ q, r \} \), \(B = \{ p \} \), \(C_q = \{ r \} \), and \(C_r = \varnothing \), see Figure 9. Note that
\[\|B\|_q = w(p, q) = 2 < 3 = w(r, q) = \|C_q\|_q \]
and

\[\|B\|_r = w(p, r) = 0 = \|\emptyset\|_r = \|C_r\|_r. \]

Thus, by Lighthouse axiom,

\[\vdash p \triangleright q \lor p \triangleright r \rightarrow r \triangleright q \lor \emptyset \triangleright r. \]

Therefore, \(\vdash p \triangleright r \rightarrow r \triangleright q \lor \emptyset \triangleright r. \)

\[\square \]

\textbf{Proposition 3.} \(\vdash_{S_3} q \triangleright p \lor q \triangleright r \rightarrow p \triangleright r \lor r \triangleright p, \) where \(S_3 \) is the sociogram depicted in Figure 10.
Proof. Let $A = \{p, r\}$, $B = \{q\}$, $C_p = \{r\}$, and $C_r = \{p\}$, see Figure 11. Note that
\[
\|B\|_p = w(q, p) = 1 < 2 = w(r, p) = \|C_p\|_p
\]
and
\[
\|B\|_r = w(q, r) = 3 < 4 = w(p, r) = \|C_r\|_r.
\]
Therefore, by Lighthouse axiom,
\[
\vdash q \triangleright p \lor q \triangleright r \rightarrow p \triangleright r \lor r \triangleright p.
\]

5 Properties of Star Closure

In this section we prove several technical properties of A^* that are used later in the proofs of soundness and completeness.

Lemma 1. If $A^1 = A$, then $A^k = A$ for each $k \geq 0$.

Proof. We prove this lemma by induction on k. If $k = 0$, then $A^0 = A$ by Definition 5. If $k > 0$, then by Corollary 1 assumption $A^1 = A$, and the induction hypothesis,
\[
A^k = (A^1)^{k-1} = A^{k-1} = A.
\]

Lemma 2. $A^* = A^k$ for some $k \geq 0$.

Proof. The statement of the lemma follows from the assumption in Definition 5 that set \mathcal{A} is finite.

Lemma 3. If $x \notin A^*$, then $\Theta(x) > \|A^*\|_x$ for each subset $A \subseteq \mathcal{A}$ and each agent $x \in \mathcal{A}$.

Proof. By Lemma 2 there is $k \geq 0$ such that $A^* = A^k$. Suppose that $\|A^*\|_x \geq \Theta(x)$. Thus, $\|A^k\|_x \geq \Theta(x)$. Hence, $x \in A^{k+1}$, by Definition 5. Thus, $x \in A^*$ by Definition 6, which is a contradiction to the assumption of the lemma.
Lemma 4. $A \subseteq A^*$.

Proof. By Definition 5 and Definition 6,
\[A = A^0 \subseteq \bigcup_{k \geq 0} A^k = A^*. \]

\[\square \]

Lemma 5. $(A^*)^* \subseteq A^*$.

Proof. By Lemma 2 there are $n, k \geq 0$ such that $A^* = A^n$ and $(A^*)^* = (A^*)^k$. Thus, by Corollary 1 and Definition 6,
\[(A^*)^* = (A^*)^k = A^n \subseteq \bigcup_{m \geq 0} A^m = A^*. \]

\[\square \]

Lemma 6. If $A \subseteq B$, then $A^k \subseteq B^k$, for each $k \geq 0$.

Proof. We prove the statement of the lemma by induction on k. If $k = 0$, then $A^0 = A \subseteq B = B^0$ by Definition 5.

Suppose that $A^k \subseteq B^k$. Let $x \in A^{k+1}$. It suffices to show that $x \in B^{k+1}$. Indeed, by Definition 5 assumption $x \in A^{k+1}$ implies that either $x \in A^k$ or $||A^k||_x \geq \theta(x)$. In the first case, by the induction hypothesis, $x \in A^k \subseteq B^k$. Thus, $x \in B^k$. Therefore, $x \in B^{k+1}$ by Definition 5.

In the second case, by Definition 4 and assumption $A^k \subseteq B^k$,
\[||B^k||_x = \sum_{b \in B^k} w(b, x) \geq \sum_{a \in A^k} w(a, x) = ||A^k||_x \geq \theta(x). \]

Therefore, $x \in B^{k+1}$ by Definition 5.

\[\square \]

Corollary 2. If $A \subseteq B$, then $A^* \subseteq B^*$.

Lemma 7. $A^* \cup B^* \subseteq (A \cup B)^*$.

Proof. Note that $A \subseteq A \cup B$ and $B \subseteq A \cup B$. Thus, $A^* \subseteq (A \cup B)^*$ and $B^* \subseteq (A \cup B)^*$ by Corollary 2. Therefore, $A^* \cup B^* \subseteq (A \cup B)^*$.

\[\square \]

6 Soundness

In this section we prove the soundness of our logical system with respect to the semantics given in Definition 7. The soundness of propositional tautologies and Modus Ponens inference rule is straightforward. Below we show the soundness of each of the remaining four axioms as separate lemmas. In the lemmas that follow we assume that $S = (\mathcal{A}, w, \theta)$ is a social network and $A, B,$ and C are subsets of \mathcal{A}.

Lemma 8. If $B \subseteq A$, then $S \not\models A \supset B$.

\[\square \]
Proof. By Lemma 4, \(A \subseteq A^* \). Thus, \(B \subseteq A^* \) by the assumption of the lemma. Therefore, \(S \models A \propto B \), by Definition 7.

Lemma 9. If \(S \models A \propto B \) and \(S \models B \propto C \), then \(S \models A \propto C \).

Proof. By Definition 7, assumption \(S \models A \propto B \) implies that \(B \subseteq A^* \). Hence, \(B^* \subseteq (A^*)^* \) by Corollary 2. Thus, \(B^* \subseteq A^* \) by Lemma 5. At the same time, \(C \subseteq B^* \) by assumption \(S \models B \propto C \) and Definition 7. Thus, \(C \subseteq A^* \). Therefore, \(S \models A \propto C \) by Definition 7.

Lemma 10. If \(S \models A \propto B \), then \(S \models A \cup C \propto B \cup C \).

Proof. Suppose that \(S \models A \propto B \). Thus, \(B \subseteq A^* \) by Definition 7. Note that \(C \subseteq C^* \) by Lemma 4. Thus, \(B \cup C \subseteq A^* \cup C^* \subseteq (A \cup C)^* \), by Lemma 7. Therefore, \(S \models A \cup C \propto B \cup C \), by Definition 7.

Lemma 11. If \(S \models B \propto a_0 \) for some \(a_0 \in A \), then there is \(\ell \in A \) such that \(S \models C_\ell \propto \ell \), where \(A \uplus B \) is a partition of the set of all agents \(\mathcal{A} \) and \(\{ C_a \}_{a \in A} \) is a family of sets of agents such that \(\| B \|_a \leq \| C_a \|_a \) for each \(a \in A \).

Proof. Note that assumption \(S \models B \propto a_0 \) by Definition 7 implies that \(a_0 \in B^* \). On the other hand, assumption \(a_0 \in A \) implies that \(a_0 \notin B \) because \(A \uplus B \) is a partition of set \(\mathcal{A} \). Thus, \(B^* \neq B \). Hence, by Definition 6 there must exist \(k \) such that \(B^k \neq B \). Then, \(B^1 \neq B \) by Lemma 7. Thus, there must exist \(\ell \in B^1 \setminus B \). Hence, \(\| B \|_\ell \geq \theta(\ell) \) by Definition 5. Then, by the assumption of the lemma, \(\| C_\ell \|_\ell \geq \| B \|_\ell \geq \theta(\ell) \). Thus, \(\ell \in C_\ell \), by Definition 5. Hence, \(\ell \in C^*_\ell \) by Definition 6. Therefore, \(S \models C_\ell \propto \ell \) by Definition 7. Finally, note that \(\ell \in A \) because \(\ell \in B^1 \setminus B \) and \(A \uplus B \) is a partition of the set \(\mathcal{A} \).

This concludes the proof of the soundness of our logical system.

7 Completeness

In this section we proof the completeness of our logical system with respect to the semantics given in Definition 7. This result is formally stated as Theorem 1 in the end of this section. The proof of completeness theorem consists in the construction of a “canonical” social network. We start, however, we a few technical lemmas and definitions.

7.1 Preliminaries

Let us first prove a useful property of real numbers.

Lemma 12. If \(\varepsilon > 0 \) is a real number and \(x \) and \(y \) are any real numbers such that either \(x = y \) or \(|x - y| > \varepsilon \). Then, \(x + \varepsilon > y \) implies \(x \geq y \).

Proof. Suppose \(y > x \). Hence, \(x \neq y \). Thus, \(|x - y| > \varepsilon \), by the assumption of the lemma. Then, \(y - x > \varepsilon \), because \(y > x \). Therefore, \(x + \varepsilon < y \).
We now assume a fixed sociogram \((\mathcal{A}, \omega)\) and a fixed maximal consistent subset \(X\) of \(\Phi(\mathcal{A})\).

Definition 8. \(\hat{A} = \{a \in \mathcal{A} \mid X \vdash A \triangleright a\}\) for each subset \(A \subseteq \mathcal{A}\).

Choose \(\varepsilon\) to be any positive real number such that \(\varepsilon < \|A\|_a - \|B\|_a\) for each agent \(a \in \mathcal{A}\) and each subsets \(A, B \subseteq \mathcal{A}\), such that \(\|A\|_a > \|B\|_a\). This could be achieved because set \(\mathcal{A}\) is finite.

Lemma 13. For any subsets \(A, B \subseteq \mathcal{A}\) and any agent \(a \in \mathcal{A}\) if \(\|A\|_a + \varepsilon > \|B\|_a\), then \(\|A\|_a \geq \|B\|_a\).

Proof. By the choice of \(\varepsilon\), we have either \(\|A\|_a = \|B\|_a\) or \(\|A\|_a - \|B\|_a > \varepsilon\). Thus, \(\|A\|_a \geq \|B\|_a\) by Lemma 12.

Lemma 14. \(A \subseteq \hat{A}\) for each subset \(A \subseteq \mathcal{A}\).

Proof. Suppose that \(a \in A\). Thus, \(\vdash A \triangleright a\) by Reflexivity axiom. Therefore, \(a \in \hat{A}\) by Definition 8.

Lemma 15. \(X \vdash A \triangleright \hat{A}\), for each subset \(A \subseteq \mathcal{A}\).

Proof. Let \(\hat{A} = \{a_1, \ldots, a_n\}\). By the definition of \(\hat{A}\), \(X \vdash A \triangleright a_i\), for any \(i \leq n\). We prove, by induction on \(k\), that \(X \vdash A \triangleright a_1, \ldots, a_k\) for each \(0 \leq k \leq n\).

Base Case: \(X \vdash A \triangleright \varnothing\) by Reflexivity axiom.

Induction Step: Assume that \(X \vdash A \triangleright a_1, \ldots, a_k\). By Augmentation axiom,

\[
X \vdash A, a_{k+1} \triangleright a_1, \ldots, a_k, a_{k+1}.
\]

(4)

Recall that \(X \vdash A \triangleright a_{k+1}\). Again by Augmentation axiom, \(X \vdash A \triangleright A, a_{k+1}\). Hence, \(X \vdash A \triangleright a_1, \ldots, a_k, a_{k+1}\), by (4) and Transitivity axiom.

7.2 Canonical Social Network

Next, based on the sociogram \((\mathcal{A}, \omega)\) and the maximal consistent set \(X\), we define “canonical” social network \(N_X = (\mathcal{A}, \omega, \theta)\). We then proceed to prove the core properties of this network.

Definition 9.

\[
\theta(a) = \begin{cases}
0, & \text{if } X \vdash \varnothing \triangleright a, \\
\max_{a \notin \hat{B}} \|\hat{B}\|_a + \varepsilon, & \text{otherwise.}
\end{cases}
\]

The maximum in the above definition is taken over all subsets \(B\) of \(\mathcal{A}\) such that \(\hat{B}\) does not contain agent \(a\).

Lemma 16. Function \(\theta(a)\) is well-defined for each \(a \in \mathcal{A}\).

Proof. We need to show that if \(X \not\vdash \varnothing \triangleright a\), then there is at least one subset \(B \subseteq \mathcal{A}\) such that \(a \notin \hat{B}\). It suffices to show that \(a \notin \varnothing\), which is true due to assumption \(X \not\vdash \varnothing \triangleright a\) and Definition 8.
Lemma 17. For any subset $B \subseteq \mathcal{A}$, if $a \in \mathcal{A} \setminus B^*$, then there is $C \subseteq \mathcal{A}$ such that $a \notin \hat{C}$ and $\theta(a) = \|\hat{C}\|_a + \epsilon$.

Proof. If $\theta(a) = 0$, then $a \in B^1$ due to Definition 5. Thus, $a \in B^*$ by Definition 6, which is a contradiction to the assumption $a \in \mathcal{A} \setminus B^*$.

Suppose now that $\theta(a) > 0$, thus, by Definition 9, there is at least one $C \subseteq \mathcal{A}$ such that $a \notin \hat{C}$ and $\theta(a) = \|\hat{C}\|_a + \epsilon$. □

Lemma 18. If $B \subseteq \mathcal{A}$ and $a \in \mathcal{A} \setminus \hat{B}$, then $\theta(a) > \|\hat{B}\|_a$.

Proof. Case I: $X \not\vdash \emptyset \triangleright a$. Note that $X \vdash B \triangleright \emptyset$ by Reflexivity axiom. Thus, $X \vdash B \triangleright a$ by Transitivity axiom. Hence, $a \in \hat{B}$ by Definition 8, which is a contradiction to the assumption of the lemma.

Case II: if $X \not\vdash \emptyset \triangleright a$, then $\theta(a) > \|\hat{B}\|_a$ by Definition 9. □

Lemma 19. $(\hat{B})^k = \hat{B}$ for each $B \subseteq \mathcal{A}$ and each $k \geq 0$.

Proof. We prove this statement by induction on k. If $k = 0$, then $(\hat{B})^k = \hat{B}$, by Definition 5. Note next that by Definition 5, the induction hypothesis, and Lemma 18

$$(\hat{B})^{k+1} = (\hat{B})^k \cup \{a \in \mathcal{A} \mid \|(\hat{B})^k\|_a \geq \theta(a)\}$$

$$= B \cup \{a \in \mathcal{A} \mid \|\hat{B}\|_a \geq \theta(a)\}$$

$$= \hat{B} \cup \{a \in \mathcal{A} \setminus \hat{B} \mid \|\hat{B}\|_a \geq \theta(a)\} = \hat{B} \cup \emptyset = \hat{B}.$$ □

Lemma 20. $(\hat{B})^* = \hat{B}$ for each $B \subseteq \mathcal{A}$.

Proof. By Definition 6 and Lemma 19

$$(\hat{B})^* = \bigcup_{k \geq 0} (\hat{B})^k = \bigcup_{k \geq 0} \hat{B} = \hat{B}.$$ □

Lemma 21. For each $B \subseteq \mathcal{A}$, if $a \in B^*$, then $X \vdash B \triangleright a$.

Proof. Suppose $a \in B^*$. By Lemma 14, $B \subseteq \hat{B}$. Then, $B^* \subseteq (\hat{B})^*$ Corollary 3. Thus, $a \in (\hat{B})^*$. Hence, $a \in \hat{B}$ by Lemma 20. Therefore, $X \vdash B \triangleright a$ by Definition 8. □

Lemma 22. For each $B \subseteq \mathcal{A}$ and each $a \in \mathcal{A}$, if $X \vdash B \triangleright a$, then $a \in B^*$.

Proof. By Lemma 5, $\theta(x) > \|B^*\|_x$ for each $x \in \mathcal{A} \setminus B^*$. At the same time, by Lemma 17, for each $x \in \mathcal{A} \setminus B^*$ there is C_x such that $x \notin \hat{C_x}$ and $\theta(x) = \|\hat{C_x}\|_x + \epsilon$. Hence, $\|\hat{C_x}\|_x + \epsilon > \|B^*\|_x$ for each $x \in \mathcal{A} \setminus B^*$. Thus, by Lemma 13, $\|\hat{C_x}\|_x \geq \|B^*\|_x$ for each $x \in \mathcal{A} \setminus B^*$.

Consider partition $(\mathcal{A} \setminus B^*) \cup B^*$ of \mathcal{A}. By Lighthouse axiom,

$$\vdash \bigvee_{x \in \mathcal{A} \setminus B^*} B^* \triangleright x \rightarrow \bigvee_{x \in \mathcal{A} \setminus B^*} \hat{C_x} \triangleright x.$$ (5)
Suppose that \(a \notin B^* \). Lemma 4 and Reflexivity axiom imply that \(\vdash B^* \triangleright B \). Thus, by assumption \(X \vdash B \triangleright a \) and Transitivity axiom, \(X \vdash B^* \triangleright a \). Hence, statement (5) implies that

\[
X \vdash \bigvee_{x \in A \setminus B^*} \hat{C}_x \triangleright x.
\]

Then, due to the maximality of set \(X \), there must exist \(x_0 \in A \setminus B^* \) such that \(X \vdash \hat{C}_{x_0} \triangleright x_0 \). Thus, \(X \vdash C_{x_0} \triangleright x_0 \), due to Lemma 15 and Transitivity axiom:

\[
\vdash C_{x_0} \triangleright \hat{C}_{x_0} \rightarrow (\hat{C}_{x_0} \triangleright x_0 \rightarrow C_{x_0} \triangleright x_0).
\]

Hence, \(x_0 \in C_{x_0} \) by Definition 8, which is a contradiction with the choice of \(C \).

Lemma 23. \(N_X \models \phi \) if and only if \(\phi \in X \), for each formula \(\phi \in \Phi(\mathcal{A}) \).

Proof. We prove this lemma by induction on structural complexity of formula \(\phi \). Cases when formula \(\phi \) is \(\bot \) or has form \(\psi_1 \rightarrow \psi_2 \) follow in the standard way from Definition 7 and the assumptions of maximality and consistency of set \(X \). Suppose that \(\phi \) has form \(A \triangleright B \).

(\(\Rightarrow \) : Suppose that \(N_X \models A \triangleright B \). Then \(B \subseteq A^* \) by Definition 7. Hence, \(b \in A^* \) for each \(b \in B \). Thus, \(X \vdash A \triangleright b \) for each \(b \in B \). Hence, \(b \in A \) for each \(b \in B \) by Definition 8. In other words, \(B \subseteq A \). Thus, by Reflexivity axiom, \(\vdash A \triangleright A \). On the other hand, \(X \vdash A \triangleright A \) by Lemma 15. Therefore, \(X \vdash A \triangleright B \) by Transitivity axiom.

(\(\Leftarrow \) : Assume \(X \vdash A \triangleright B \). By Reflexivity axiom, \(\vdash B \triangleright b \) for every \(b \in B \). Hence, \(X \vdash A \triangleright b \) for each \(b \in B \) by Transitivity axiom. Thus, \(b \in A^* \) for each \(b \in B \), by Lemma 22. In other words, \(B \subseteq A^* \). Therefore, \(N_X \models A \triangleright B \) by Definition 7.

7.3 Main Result

We are now ready to state and prove the completeness theorem for our logical system with respect to the semantics given in Definition 7.

Theorem 1. For any sociogram \((\mathcal{A}, w)\) and any formula \(\phi \in \Phi(\mathcal{A}) \), if \(N \models \phi \) for each social network \(N \) based on sociogram \((\mathcal{A}, w)\), then \(\vdash \phi \).

Proof. Suppose that \(\not\models \phi \). Let \(X \) be a maximal consistent subset of \(\Phi(\mathcal{A}) \) such that \(\phi \notin X \). By Lemma 23, \(N_X \not\models \phi \).

8 Decidability

In this section we discuss decidability of our logical system for any fixed sociogram \((\mathcal{A}, w)\). Note that we allow arbitrary real numbers as subscripts in formula \(A \triangleright_{\epsilon} B \). Thus, the set of all formulas \(\Phi(\mathcal{A}) \) is uncountable and its elements can not be used as inputs of a Turing machine. In order to avoid this issue, in this section we modify Definition 1, Definition 2, and Definition 3 by assuming that only rational numbers could be used as subscripts in our atomic formulas \(A \triangleright_{\epsilon} B \), as influence values, and as threshold values. It is easy to see that the above proof of completeness is still valid.
From this change point of view, the only non-trivial place is the choice of \(\varepsilon \) for the given sociogram \((\mathcal{A}, w)\) that we have made right after Definition 8. Note, however, that the required \(\varepsilon \) could always be choose to be a rational number because 0 is a limit point of the set of positive rational numbers.

Theorem 2. For any given sociogram \(S = (\mathcal{A}, w) \), set \(\{ \phi \in \Phi(\mathcal{A}) \mid \vDash S \phi \} \) is decidable.

Proof. According to Theorem 1, \(\vDash S \phi \) if and only if formula \(\phi \) is true for each social network \((\mathcal{A}, w, \theta)\) based on sociogram \(S \). This, of course, does not imply the decidability because there are infinitely many social networks based on sociogram \(S \). However, it turns out that the proof of Theorem 1 that we gave above actually shows a stronger result: \(\vDash S \phi \) if and only if formula \(\phi \) is true for each social network from a specific finite class \(C(S) \) of networks based on sociogram \(S \).

Once existence of such finite class of social networks \(C(S) \) is establish, we should be able to claim the decidability result because one can always verify if a formula \(\phi \) is true for each out of finitely many given networks.

We are now ready to describe finite class of social networks \(C(S) \). The social network over sociogram \(S \) is completely defined by specifying threshold function \(\theta \). In the proof of Theorem 1, this is done in Definition 9. This definition depends on \(\varepsilon \) and maximal consistent set of formulas \(X \). Note however that the choice of \(\varepsilon \) does not depend on \(X \) and could be made based on sociogram \(S \) alone. Once \(\varepsilon \) is fixed, the set of all values of function \(\theta \), as specified in Definition 9, belongs to finite set

\[
\{0\} \cup \{ \|A\|_a + \varepsilon \mid a \in \mathcal{A}, A \subseteq \mathcal{A} \}
\]

The set of all social networks over sociogram \(S \) whose threshold functions use only values from the above set is the desired finite class of social networks \(C(S) \).

9 Conclusion

In this article we have studied properties of influence common to all social networks with the same weighted sociogram. We described all such properties in the propositional language by introducing a logical system for reasoning about these properties and proving soundness and completeness of this system. We have established that the logical system is decidable if its syntax and semantics are restricted to rational numbers.

A natural extension of this work is to consider common influence properties of social network with the same unweighted sociogram, in which presence of a directed edge between two agents means that one agent might have non-zero influence on the other agent. Absence of a directed edge means that the influence of one agent on the other is zero.

Although an unweighted sociogram is a simpler structure than weighted sociogram, there are some very non-trivial properties of influence relation common to all social networks with the same unweighted sociogram.

Consider, for example, unweighted sociogram \(U_1 \) depicted in Figure 12. Let \(N = (\mathcal{A}, w, \theta) \) be a social network based on \(U_1 \). Furthermore, assume that in social network
Figure 12: Unweighted Sociogram U_1

N (i) neither of the agents p_1, p_2, q_1, q_2 is an early adopter, (ii) $N \vDash p_1, p_2 \triangleright r$, and (iii) $N \vDash q_1, q_2 \triangleright r$. Thus, $w(p_1, r) + w(p_2, r) \geq \theta(r)$ and $w(q_1, r) + w(q_2, r) \geq \theta(r)$. The first inequality implies that at least one out of $w(p_1, r)$ and $w(p_2, r)$ is greater or equal than $\theta(r)/2$. In other words, there is $i \in \{1, 2\}$ such that $w(p_i, r) \geq \theta/2$. Similarly, the second inequality implies that there is $j \in \{1, 2\}$ such that $w(q_j, r) \geq \theta/2$. Thus, $\parallel \{p_i, q_j\} \parallel_r = w(p_i, r) + w(q_j, r) \geq \theta/2 + \theta/2 = \theta$.

Hence, $r \in \{p_i, q_j\}^1 \subseteq \{p_i, q_j\}^*$. Then, $N \vDash p_i, q_j \triangleright r$. So, we have shown that for any social network N based on unweighted sociogram U_1 and satisfying the conditions (i), (ii), (iii), there are $i, j \in \{1, 2\}$ such that $N \vDash p_i, q_j \triangleright r$. This could be formally stated as $U_2 \models p_1, p_2 \triangleright r \land q_1, q_2 \triangleright r \rightarrow \bigvee_{i=1}^2 \bigvee_{j=1}^2 p_i, q_j \triangleright r \lor \bigvee_{x \in \{p_1, p_2, q_1, q_2\}} \emptyset \triangleright x$,

where disjunction $\bigvee_{x \in \{p_1, p_2, q_1, q_2\}} \emptyset \triangleright x$ captures the statement that one of agents p_1, p_2, q_1, q_2 is an early adopter. The above principle is just an example of a non-trivial property of diffusion common to all social networks with the same unweighted sociogram. This example can be stated in a more general form as $U_2 \models \bigwedge_{i=1}^n p_{i1}, p_{i2}, \ldots, p_{in} \triangleright q \rightarrow \bigvee_{j_1=1}^n \bigvee_{j_2=1}^n \ldots \bigvee_{j_n=1}^n p_{1j_1}, p_{2j_2}, \ldots, p_{nj_n} \triangleright q \lor \bigvee_{i=1}^n \bigvee_{j=1}^n \emptyset \triangleright p_{ij}$,

where U_2 is unweighted sociogram depicted in Figure 13. Complete axiomatization of properties of influence common to all social networks with a given unweighted sociogram remains an open problem.

References

[1] Krzysztof R Apt and Evangelos Markakis. Social networks with competing products. *Fundamenta Informaticae*, 129(3):225–250, 2014.
Figure 13: Unweighted Sociogram U_2

[2] W. W. Armstrong. Dependency structures of data base relationships. In Information processing 74 (Proc. IFIP Congress, Stockholm, 1974), pages 580–583. North-Holland, Amsterdam, 1974.

[3] Catriel Beeri, Ronald Fagin, and John H. Howard. A complete axiomatization for functional and multivalued dependencies in database relations. In SIGMOD ’77: Proceedings of the 1977 ACM SIGMOD international conference on Management of data, pages 47–61, New York, NY, USA, 1977. ACM.

[4] Zoé Christoff and Jens Ulrik Hansen. A logic for diffusion in social networks. Journal of Applied Logic, 13(1):48 – 77, 2015.

[5] Zoé Christoff and Rasmus K. Rendsvig. Dynamic logics for threshold models and their epistemic extension. In Epistemic Logic for Individual, Social, and Interactive Epistemology workshop, 2014.

[6] Hector Garcia-Molina, Jeffrey Ullman, and Jennifer Widom. Database Systems: The Complete Book. Prentice-Hall, second edition, 2009.

[7] Mark Granovetter. Threshold models of collective behavior. American journal of sociology, pages 1420–1443, 1978.

[8] Kristine Harjes and Pavel Naumov. Functional dependence in strategic games. In 1st International Workshop on Strategic Reasoning, March 2013, Rome, Italy, Electronic Proceedings in Theoretical Computer Science 112, pages 9–15, 2013. Full version to appear in Notre Dame Journal of Formal Logic.

[9] Sarah Holbrook and Pavel Naumov. Fault tolerance in belief formation networks. In Luis Fariñas del Cerro, Andreas Herzig, and Jérôme Mengin, editors, JELIA, volume 7519 of Lecture Notes in Computer Science, pages 267–280. Springer, 2012.

[10] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 137–146. ACM, 2003.
[11] David Kempe, Jon Kleinberg, and Éva Tardos. Influential nodes in a diffusion model for social networks. In Automata, languages and programming, pages 1127–1138. Springer, 2005.

[12] Fenrong Liu, Jeremy Seligman, and Patrick Girard. Logical dynamics of belief change in the community. Synthese, 191(11):2403–2431, 2014.

[13] Michael W Macy. Chains of cooperation: Threshold effects in collective action. American Sociological Review, pages 730–747, 1991.

[14] Sara Miner More and Pavel Naumov. The functional dependence relation on hypergraphs of secrets. In João Leite, Paolo Torroni, Thomas Agotnes, Guido Boella, and Leon van der Torre, editors, CLIMA, volume 6814 of Lecture Notes in Computer Science, pages 29–40. Springer, 2011.

[15] Jacob Levy Moreno. Who shall survive?: A new approach to the problem of human interrelations. Nervous and Mental Disease Publishing Co, 1934.

[16] Pavel Naumov and Brittany Nicholls. Rationally functional dependence. Journal of Philosophical Logic, 43(2-3):603–616, 2014.

[17] Kazumi Saito, Ryohi Nakano, and Masahiro Kimura. Prediction of information diffusion probabilities for independent cascade model. In Ignac Lovrek, Robert J. Howlett, and Lakhmi C. Jain, editors, Knowledge-Based Intelligent Information and Engineering Systems, volume 5179 of Lecture Notes in Computer Science, pages 67–75. Springer Berlin Heidelberg, 2008.

[18] Thomas Schelling. Micromotives and Macrobehavior. Norton, 1978.

[19] Jeremy Seligman, Fenrong Liu, and Patrick Girard. Logic in the community. In Logic and Its Applications, pages 178–188. Springer, 2011.

[20] Jeremy Seligman, Fenrong Liu, and Patrick Girard. Facebook and the epistemic logic of friendship. In 14th conference on Theoretical Aspects of Rationality and Knowledge (TARK ‘13), January 2013, Chennai, India, pages 229–238, 2013.

[21] Jouko Väänänen. Dependence logic: A new approach to independence friendly logic, volume 70. Cambridge University Press, 2007.

[22] Jouko Väänänen. The logic of approximate dependence. arXiv preprint arXiv:1408.4437, 2014.

[23] Thomas W Valente. Social network thresholds in the diffusion of innovations. Social networks, 18(1):69–89, 1996.