Aim: To elucidate the role of pentraxin-3 (PTX3) in atherosclerosis, we evaluated lipid and cardiovascular risk profiles according to the plasma PTX3 levels in subjects from the general population.

Methods: A sub-cohort of 2,000 subjects was randomly sampled from a Korean community-based cohort study. After excluding those with a medication history for dyslipidemia, 1,747 subjects (902 men and 845 women) were included in the final analyses. Linear and logistic regressions with adjustment for appropriate variables were performed.

Results: The PTX3 level was positively associated with the high-density lipoprotein cholesterol (HDL-C) level and negatively associated with the log-transformed triglyceride (TG) level, total cholesterol/HDL-C ratio, and low-density lipoprotein cholesterol (LDL-C)/HDL-C ratio (p<0.05). Subjects with the highest PTX3 levels (≥1.17 ng/dl) exhibited a lower risk of metabolic syndrome (odds ratio [OR] 0.73, 95% confidence interval [CI] 0.57–0.94), overweight/obesity (OR 0.65, 95% CI 0.50–0.83), increased TG level (OR 0.66, 95% CI 0.51–0.86), and increased HDL-C level (OR 0.67, 95% CI 0.51–0.88) compared to those with the lowest PTX3 level (<0.7 ng/dl).

Conclusion: The circulating PTX3 level was inversely associated with metabolic syndrome, overweight/obesity, and parameters of dyslipidemia, suggesting a cardioprotective role of PTX3 in atherosclerosis.

Key words: Pentraxin 3, Lipid, Atherosclerosis, Cardiovascular risk factor

Introduction
Cardiovascular disease (CVD) is the leading cause of mortality worldwide. According to the 2013 Global Burden of Disease study, 25.5% of all deaths from 1990 to 2013 were attributable to CVD. World Health Organization speculated that approximately 20 million deaths from CVD occurred in 2015, which represents approximately 30% of the total number of deaths. Atherosclerosis is the most important underlying cause of CVD, and its pathophysiology is closely linked to chronic or low-grade...
inflammation. Identifying an inflammatory marker of atherosclerosis or predictor of CVD is a focus of research in medicine and public health. C-reactive protein (CRP) is a circulating, acute-phase reactant that reflects active systemic inflammation and is a marker of CVD. Pentraxin-3 (PTX3) is structurally and functionally similar to CRP, is an essential component of innate immunity, and is correlated with various atherosclerosis surrogate markers. However, CRP and PTX3 reportedly play different roles in atherosclerosis and vascular function. PTX3 is produced primarily by hepatocytes, while PTX3 is produced at inflammation sites by various cell types, including macrophages, smooth muscle cells, adipocytes, and endothelial cells, following stimulation by interleukin-1 or tumor necrosis factor-α. Therefore, PTX3 is a more sensitive biomarker of vascular inflammation than CRP. PTX3 has been investigated as a potential predictor of several CVDs, including unstable angina pectoris, myocardial infarction (MI), and heart failure in stable coronary heart disease. Prospective studies have shown that PTX3 is positively associated with the risk and prognosis of, and mortality due to, CVD. However, studies of the role of PTX3 in atherosclerosis have reported conflicting results. In particular, the association between the level of PTX3 and dyslipidemia is unclear. PTX3 levels are reportedly higher in subjects with low high-density lipoprotein cholesterol (HDL-C) level and are positively associated with triglyceride (TG) levels in patients with metabolic syndrome (MS). Moreover, the PTX3 level is positively correlated with familial hypercholesterolemia. In vivo, an elevated HDL-C level is associated with increased PTX3 expression in vascular endothelial cells. However, in a multi-ethnic sub-cohort study, the PTX3 level was not associated with that of lipoproteins.

In this study, we evaluated the association of the plasma PTX3 level with lipid profiles and CVD risk factors to compare the association with CRP among Korean participants in a community-based cohort study.

Methods

Subjects

The prospective Dong-gu Study evaluated the prevalence, incidence, and risk factors of chronic disease in urban area residents in Korea. A total of 9,260 urban residents participated in the baseline examination from 2007 to 2010. Among them, 2,000 subjects were randomly selected for inclusion in this study. After excluding 253 subjects (12.6%) who were consuming lipid-lowering medications at baseline or had a history of consuming lipid-lowering medication or had missing variables, 1,747 subjects (902 men and 845 women) were included in the analyses. All participants provided written informed consent. The study protocol conforms to the ethical guidelines of the 1975 Declaration of Helsinki and has been approved by the Institutional Review Board of Chonnam National University Hospital (no: I-008-05-05).

PTX3 Assay

The plasma PTX3 level was determined using a quantitative sandwich enzyme-linked immunosorbent assay kit (Quantikine R&D International, MN, USA) according to the manufacturer’s instructions. A streptavidin-coated plate was incubated with a biotinylated monoclonal antibody specific for human PTX3. The wells were washed, and pretreated standards and samples were added. After washing away any unbound substances, an enzyme-linked conjugate specific for human PTX3 was added. Subsequently, a substrate solution was added to induce color development, and the color intensity was measured. The PTX3 level (ng/mL) was determined using a standard curve. The minimum detectable dose (MDD) of PTX3 ranged from 0.007–0.116 ng/mL and the mean MDD was 0.025 ng/mL. The intra-assay coefficient of variation (CV) was 3.93% and the inter-assay CV was 5.06% according to the protocol. Reagents of the same lot numbers were used for all determinations to minimize the measurement variability. The assay was performed using plasma that had been stored at −70°C.

Measurements of Variables

Demographic factors and health habits (smoking, alcohol drinking, and regular exercise) were assessed using a questionnaire survey. Details of the anthropometric measurements, including height, weight, and waist and hip circumferences are provided elsewhere. Lipid profiles, including total cholesterol (TC), TG, HDL-C, and low-density lipoprotein cholesterol (LDL-C) were analyzed by enzymatic assay using an automatic analyzer (Hitachi-7600; Hitachi, Japan). Dyslipidemia was defined as a TC level ≥190 mg/dL, TG level ≥150 mg/dL, LDL-C level ≥130 mg/dL, and HDL-C level <40 mg/dL in men or <50 mg/dL in women. The high-sensitivity CRP level was measured by latex-enhanced nephelometry using a high-sensitivity assay analyzer (Behring Nephelometer II; Dade-Behring Diagnostics, Marburg, Germany). White blood cells (WBCs) were enumerated using fresh ethylenediaminetetraacetic acid samples and a hematology analyzer (Micros 60; ABX, Montpellier, France) within 30 min of blood collection. The intima-media thickness of the carotid arterial wall
(C-IMT) was measured by trained physicians using a B-mode ultrasound scanner. The status of plaque in the carotid arteries—including the common carotid artery, carotid bulb, and internal carotid artery—was determined based on the Mannheim IMT Consensus guidelines. Carotid plaque was defined as a focal structure that encroached into the lumen by at least 100% of the surrounding C-IMT value. Images were analyzed by one investigator using SigmaScan Pro software (SPSS, IL, USA). Peripheral arterial disease (PAD) was defined as an ankle-brachial index (ABI) <0.9 assessed using a noninvasive, automatic oscillometric device (VP-1000, Colin, Tokyo, Japan) after 5 min of rest in the supine position. The brachial ankle pulse wave velocity (baPWV) also measured to evaluate the arterial stiffness using the same device, VP-1000. MS was defined according to the National Cholesterol Education Program, Adult Treatment Panel III. The estimated glomerular filtration rate (eGFR) was evaluated using the Modification of Diet in Renal Disease equation, as follows: 186 × (creatinine ÷ 88.4) – 1.154 × (age) – 0.203 × (0.742 if female) × (1.210 if black). The APOE genotype was categorized as E2 (E2E2 and E2E3), E3 (E3E3), or E4 (E3E4 and E4E4) for allele-based analysis.

Statistical Analysis

The participants were classified into PTX3 and CRP level tertiles as follows: PTX3 low T, <0.69 ng/mL; middle T, 0.70–1.16 ng/mL; and high T, 1.17–19.93 ng/mL. The chi-squared test and analysis of variance (ANOVA) were used to evaluate differences in demographic and clinical characteristics, respectively, according to PTX3 tertile. Association of the PTX3 level with the lipid profile was evaluated by linear regression. Variables significantly associated with the PTX3 level in chi-square test or ANOVA were included in the regression models as covariates. Demographic variables, including age, body mass index (BMI), waist-hip ratio (WHR), and regular exercise were included in Model I. Model II comprised the Model I variables plus significant serological variables, including WBC, serum CRP concentrations, cortisol, albumin, urine creatinine level, and eGFR. Model III comprised the Model II variables plus clinical parameters of atherosclerotic change (maximal C-IMT, mean baPWV, and mean ABI) and genetic variable of APOE alleles (E2, E3, and E4). A multiple logistic regression was performed to evaluate the association between PTX3 and intermediate atherosclerosis phenotypes (MS, high BMI [≥ 25 kg/m²], thickened C-IMT [>1 mm], presence of carotid plaque, elevated TG level [≥ 150 mg/dL], and reduced HDL-C level [<40 mg/dL in men or <50 mg/dL in women]). Covariates, including age, sex, alcohol drinking, smoking, albumin, WBC, CRP, cortisol, urine creatinine, eGFR, and APOE genotype were inserted in the model. Log-transformed TG level values were used to reduce variance.

Results

The demographic and clinical characteristics of the subjects according to PTX3 level tertile are shown in Table 1. Those with a high PTX3 level were more likely to be older, exercise less frequently, and have a lower BMI and WHR. The PTX3 level did not differ according to sex, smoking, alcohol drinking, or history of consuming medication for hypertension or diabetes. Regarding clinical features, WBC count, serum levels of CRP, cortisol, albumin, maximal C-IMT, mean baPWV, mean ABI, urine creatinine concentration, and eGFR were associated with the PTX3 level. However, the systolic blood pressure and HbA1c level did not differ according to the PTX3 level. The PTX3 level was positively associated with the HDL-C level and negatively associated with the TG level, TC/HDL-C ratio, and LDL/HDL-C ratio (Table 1).

Table 2 shows the association between the PTX3 level and the lipid profile. After adjustment for all variables, the PTX3 level was positively associated with the HDL-C level and negatively associated with the log-transformed TG level, TC/HDL-C ratio, and LDL/HDL-C ratio. However, the PTX3 level was not significantly associated with the TC level, LDL-C level, maximal C-IMT, mean ABI, or mean baPWV (data not shown) (Table 2).

Table 3 shows the associations of the PTX3 level with the risk of MS, overweight/obesity, the intermediate phenotypes of atherosclerosis (thick C-IMT, PAD, arterial stiffness, and presence of carotid plaques), and dyslipidemia. We also compared the association of cardiovascular risk factors with PTX3 versus CRP. A high PTX3 level was associated with a decreased risk of MS, overweight/obesity, the intermediate phenotypes of atherosclerosis, and dyslipidemia. However, the association of PTX3 with the CVD risk factors seems to be less than CRP (Table 3).

Discussion

Whether an increased circulating PTX3 level is atheroprotective or indicates the inflammation involved in advanced atherosclerosis is still unclear. To evaluate its role in atherosclerosis, and to reveal the
Table 1. Baseline characteristics of subjects by plasma PTX3 levels

PTX3 tertile	Low (n=582)	Middle (n=583)	High (n=582)	p-value
Ranges of PTX3, ng/dl	0.12–0.69	0.70–1.16	1.17–19.93	
Men	300 (51.5)	300 (51.5)	302 (51.9)	0.988
Regular exercise	190 (32.9)	217 (37.5)	168 (29.1)	0.010
Alcohol drinking	364 (63.0)	358 (61.6)	329 (56.8)	0.080
Ever smoking	229 (39.6)	228 (39.2)	233 (40.2)	0.947
HTN medication	188 (32.7)	178 (30.8)	194 (33.6)	0.578
DM medication	64 (11.1)	66 (11.4)	80 (13.9)	0.289
Metabolic syndrome	328 (56.6)	312 (53.6)	299 (51.8)	0.264
APOE E4 allele	84 (14.6)	110 (19.2)	94 (16.3)	0.109
Age (years)	64.1 ± 7.9	65.5 ± 8.3	66.4 ± 8.3	<0.001
WBC, (× 10³/µL)	5.72 ± 1.46	5.87 ± 1.58	6.05 ± 2.01	0.005
BMI (kg/m²)	24.5 ± 2.7	24.1 ± 2.7	23.8 ± 2.9	0.001
WHR	0.94 ± 0.05	0.94 ± 0.06	0.95 ± 0.06	0.018
hsCRP (mg/dl)	0.13 ± 0.32	0.15 ± 0.45	0.21 ± 0.65	0.014
Cortisol (µg/dL)	9.18 ± 3.34	9.24 ± 3.21	8.77 ± 3.62	0.038
baPWV (cm/sec)	1601±339	1644±390	1657±392	0.028
Maximal IMT (mm)	0.92±0.17	0.90±0.19	0.94±0.18	0.001
Mean ABI	1.12±0.08	1.12±0.09	1.12±0.09	0.101
Urine creatinine	112.7±63.2	122.6±72.7	135.1±79.6	<0.001
eGFR	66.8±11.7	66.0±11.6	64.9±12.4	0.026
Albumin	4.49±0.30	4.45±0.25	4.45±0.30	0.019
Systolic BP (mmHg)	124.4±17.4	124.0±16.9	123.2±17.1	0.524
HbA1c (%)	5.82±0.87	5.80±0.89	5.79±0.95	0.894
TC (mg/dL)	201.5±36.6	197.9±38.4	197.7±40.3	0.160
TG (mg/dL)	151.3±103.8	135.2±83.6	133.6±136.3	0.010
HDL-C (mg/dL)	50.6±11.5	50.7±11.2	53.0±13.4	0.001
LDL-C (mg/dL)	120.7±35.0	120.1±34.4	117.9±39.1	0.402
TC/HDL-C ratio	4.14±0.13	4.04±0.99	3.90±1.04	<0.001
LDL/HDL-C ratio	2.48±0.86	2.46±0.81	2.32±0.89	0.003

Values are given as count (%) or mean ± standard deviation; P-values by chi-square test or analysis of variance test; HTN, hypertension; DM, diabetes; APOE genotype E3E4 and E4E4 were categorized into E4; WBC, white blood cell count; BMI, body mass index; WHR, waist-hip ratio; hsCRP, high-sensitivity C-reactive protein; baPWV, brachial-ankle pulse wave velocity; IMT, intima-media thickness; eGFR, estimated glomerular filtration rate; BP, blood pressure; HbA1c, hemoglobin A1c; TC, total cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC/HDL-C ratio, total cholesterol versus high-density lipoprotein cholesterol ratio; LDL/HDL-C ratio, low-density lipoprotein cholesterol versus low-density lipoprotein cholesterol ratio

Table 2. Relationship between PTX3 and lipid profiles among middle-aged and elderly Koreans with no lipid-lowering medication history

	Model I	Model II	Model III			
	β	p-value	β	p-value	β	p-value
Total cholesterol	0.005	0.846	-0.005	0.844	-0.003	0.910
Log TG	-0.077	0.002	-0.080	0.001	-0.088	<0.001
LDL-C (mg/dL)	-0.004	0.862	-0.021	0.379	-0.015	0.532
HDL-C (mg/dL)	0.100	<0.001	0.113	<0.001	0.110	<0.001
TC/HDL-C ratio	-0.063	0.009	-0.080	0.001	-0.076	0.002
LDL/HDL-C ratio	-0.049	0.040	-0.072	0.003	-0.065	0.008

Values are given as coefficients and P-value by linear regression; Model I, adjusted for age; BMI, WHR and regular exercise; Model II, additionally adjusted for WBC, hsCRP, cortisol, urine creatinine, albumin, and eGFR; Model III, additionally adjusted maximal C-IMT, mean ABI, mean baPWV and APOE genotype; Log TG, log-transformed triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC/HDL-C ratio, total cholesterol versus high-density lipoprotein cholesterol ratio; LDL/HDL-C ratio, low-density lipoprotein cholesterol versus high-density lipoprotein cholesterol ratio
possible mechanism, we compared lipid profiles and cardiovascular risk factors according to the circulating PTX3 level in healthy subjects.

In this study, the PTX3 level was significantly positively associated with the HDL-C level and negatively associated with the TG level, TC/HDL ratio, and LDL/HDL ratio among the Korean subjects with no history of lipid-lowering medication. Moreover, the risk of MS and obesity were significantly lower in the highest PTX3 tertile compared to the lowest group. However, no association with hypertension, diabetes, intermediate atherosclerosis phenotypes in carotid and peripheral arteries, and lifestyle factors was found in this study. Thus, PTX3 is negatively associated with the cardiovascular risk factors of atherosclerosis, contrary to CRP, and this association is likely to involve lipid metabolism. Therefore, an increased circulating PTX3 level may be a protective response and may exert an anti-inflammatory effect in atherosclerosis. To our knowledge, no previous epidemiological study has reported an association of the circulating PTX3 level with lipid parameters and the risk of MS in subjects with no history of lipid-lowering medication.

PTX3, the prototype protein of the long pentraxin group, is an essential component of innate immunity. It is produced by immune cells and vascular cells in response to proinflammatory signals, such as cytokines, microbial components, and HDL-C and oxidized LDL-C. PTX3 production is rapidly induced in inflamed tissue and is released into plasma at the sites of atherosclerosis, vascular damage, or inflammation. Therefore, a persistently elevated PTX3 level may be associated with morbidity due to, or the severity of, CVDs, including unstable angina pectoris, MI, and renal damage. In addition, the circulating PTX3 level is positively associated with risk factors for CVDs, including obesity, low-HDL-C and high fibrinogen, C-IMT and coronary artery calcification, arterial stiffness, and a reduced eGFR. The PTX3 level is elevated in patients with MS and those with familial hypercholesterolemia; it indicates advanced atherosclerosis in patients with subclinical coronary stenosis. The PTX3 level in aortic wall tissue is correlated with the severity of coronary artery disease as well as various risk factors for atherosclerosis among patients who underwent coronary artery bypass graft surgery. These findings suggest that PTX3 may be a useful biomarker of inflammatory or atherosclerotic CVD.

PTX3 reportedly delays atherosclerosis progression. In vivo, plasma PTX3 levels were significantly increased in mice injected with HDL. Moreover, HDL modulated the mRNA level of PTX3 and protein secretion by human umbilical vein endothelial cells and human aortic endothelial cells in a dose-dependent manner. However, it did not alter the expression of the short pentraxin CRP and serum amyloid P component. Prior reports indicate its deficiency is associated with vascular inflammation, neointimal hyperplasia after vascular injury, and MI, which supports the cardiovascular protective role of PTX3. In human studies, the plasma PTX3 level was negatively associated with BMI, TG, and fat body mass, and positively associated with the adiponectin level and glucose-stimulated insulin secretion. In longitudinal studies, decreased BMI and fat mass were associated with an increased serum PTX3 level. In addition, the plasma PTX3 level is an independent predictor of left-ventricle dys-

Table 3. Comparison of the associations with cardiovascular risk profiles of PTX3 versus CRP
PTX3
Low
(n = 582)
Metabolic syndrome
BMI ≥ 25 kg/m²
C-IMT > 1.1 mm
Carotid plaque
ABI ≤ 0.9
Raised TG
Reduced HDL-C
Raised LDL-C
CRP
Low
(n = 599)
Metabolic syndrome
BMI ≥ 25 kg/m²
C-IMT > 1.1 mm
Carotid plaque
ABI ≤ 0.9
Raised TG
Reduced HDL-C
Raised LDL-C

Multiple logistic regression adjusting for age, sex, alcohol drinking, smoking, albumin, WBC, CRP (or PTX3), cortisol, urine creatinine, eGFR and APOE genotype; raised TG defined as ≥ 150 mg/dl; reduced HDL defined as < 40 mg/dl in men or < 50 mg/dl in women; raised LDL-C defined as ≥ 130 mg/dl; C-IMT, carotid intima-media thickness; ABI, ankle-brachial index; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol.
function and mortality in MI patients with ST elevation47). The discrepancies among the study findings may be due to their analysis of relatively few subjects and/or selection bias caused by including disease-specific populations42). Therefore, we analyzed a large number of subjects in a community-based cohort study and excluded users of lipid-lowering drugs to enhance the generalizability of the results. In our study, the PTX3 level was negatively associated with an elevated TG level as well as a reduced HDL-C level, TC/HDL-C ratio, LDL/HDL-C ratio, and risk of MS. Therefore, PTX3 is negatively associated with the cardiovascular risk factors of atherosclerosis and, thus, may play a protective role in CVD development.

PTX3 has complex effects in the vasculature and is involved in multiple pathways. It has similar properties to the anti-inflammatory and antidiabetic adipokine, adiponectin. Circulating PTX3 and adiponectin may dampen or enhance inflammation by similar modes of action42). Oxidative stress may affect PTX3 production by adipocytes in obese individuals, and in MI patients, the level of PTX3 is correlated with several markers of oxidative stress47). PTX3 inhibits the classical complement pathway by blocking the interaction of C1q with immunoglobulins48), thereby reducing tissue injury. Expression of PTX3 is regulated by HDL-C20) and a decrease in the HDL-C level may explain the lower PTX3 level in obese individuals44). HDL-induced PTX3 expression in the endothelium, which is dependent on the PI3K/Akt pathway, may explain the vascular-protective effect of PTX320, 49). PTX3 has several advantages compared to CRP as a biomarker of CVDs risk. Circulating PTX3 is a faster responding biomarker in cardiovascular pathologies50) and a better predictor of CVD risk than CRP36). Plasma concentration of PTX3 peaked earlier than that of CRP among patients with acute MI (AMI). Maximal PTX3 concentration was reached within 6 hours, and CRP was reached 48 hours after onset of chest pain29). In our results, PTX3 showed lower performance than CRP, so the combination of PTX3 and CRP can provide a better tool for CVDs risk prediction.

The main strength of the present study was the relatively large sample size and inclusion in the analysis of numerous clinical variables. The subjects were a general population sampled from a community-based cohort, and those with dyslipidemia were excluded from the analysis to enhance the results generalizability. This study also had limitations. First, because of the cross-sectional design, we could not determine the causality of the relationships of the circulating PTX3 level with the lipid profile or the risk of CVD. Second, the biologic and functional relevance of the above-mentioned relationships were not evaluated. Finally, although the association between PTX3 and lipid profiles is statistically significant, the beta values seem to be small, indicating that the contribution of PTX3 for predicting these lipid levels is relatively small.

In conclusion, the plasma PTX3 level was positively associated with the HDL-C level and negatively associated with the TG level, risk of MS, overweight/obesity, and dyslipidemia. Our study provides additional evidence, especially from community-based study, that PTX3 plays an atheroprotective role and may be a simple biomarker of CVD risk. Further studies are required to elucidate the mechanism by which PTX3 influences the cardiovascular system.

Conflict of Interests

The authors declare that they have no conflict of interest.

Author Contributions

Kweon SS, conceptualization and data analysis; Lee R, manuscript writing; Ahn HR, laboratory work and financial support; Kim HN, laboratory work support; Shin MH, Choi SW and Lee YH, cohort data collection; and all authors approved the final manuscript.

Acknowledgments

This research was supported by National Research Foundation of Korea (NRF) funded by the Ministry of Science (grant number: 2017R1C1B5016174).

References

1) Mortality GBD and Causes of Death C: Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 2015; 385: 117-171
2) In: Promoting Cardiovascular Health in the Developing World: A Critical Challenge to Achieve Global Health, ed by Fuster V and Kelly BB, Washington (DC), 2010
3) Frostegard J: Immunity, atherosclerosis and cardiovascular disease. BMC Med, 2013; 11: 117
4) Montagnana M, Lippi G, Salvagno GL, Franchini M, Targher G and Guidi GC: [Role of biochemical risk factors and markers for the risk of atherosclerosis]. Recenti progressi in medicina, 2008; 99: 215-222
5) Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO, 3rd, Criqui M, Fadl YY, Fortmann SP, Hong Y, Myers GL, Rifai N, Smith SC, Jr., Taubert K,
16) Shiraki A, Kotooka N, Komoda H, Hirase T, Oyama JI

15) Norata GD, Garlanda C and Catapano AL: The long pentraxin PTX3: a modulator of the immunoinflammatory response in atherosclerosis and cardiovascular diseases. Trends in cardiovascular medicine, 2010; 20: 35-40

14) Dubin R, Li Y, Ix JH, Shlipak MG, Whooley M and Per-ulta CA: Associations of pentraxin-3 with cardiovascular events, incident heart failure, and mortality among persons with coronary heart disease: data from the Heart and Soul Study. Am Heart J, 2012; 163: 274-279

13) Latini R, Maggioni AP, Gori G, Corti G, Lattanti C, Bombelli S, Mencarelli P, Pirillo A, Uboldi P, Chiesa G, Corradi D, Tarli L, Schweiger C, Fresco C, Cecere R, Tognoni G, Mocarelli P, Vago L, Pasqualini F, Signorini S, Soldateschi B, Tognoni G, Mantovani A and Lipid Assessment T rial Italian Network (2004-2006). An update on behalf of the Advisory Board and 15th European Stroke Conferences, Mannheim, Germany, 2004, and Brussels, Belgium, 2006. Cerebrovasc Dis, 2007; 23: 75-80

12) Altay S, Cakmak HA, Kemaloglu Oz T, Ozpamuk Karadenz, T, Tutur A, Erer HB, Kilic GF, Keske I, Can G and Eren M: Long-term prognostic significance of pentraxin-3 in patients with acute myocardial infarction: 5-year prospective cohort study. Anatol J Cardiol, 2017; 17: 202-209

11) Jenny NS, Blumenthal RS, Kronmal RA, Rotter JI, Sisco-vick DS and Psaty BM: Associations of pentraxin 3 with cardiovascular disease: the Multi-Ethnic Study of Atherosclerosis. J Thromb Haemost, 2014; 12: 999-1005

10) Tazaki R, Tanigawa J, Fujisaka T, Kakeda T, Ishihara T, Hoshiga M, Hanafusa T and Ishizaka N: Plasma Pentraxin3 Level Is Associated With Plaque Vulnerability Assessed by Optical Coherence Tomography in Patients With Coronary Artery Disease. Int Heart J, 2016; 57: 18-24

9) Peri G, Introna M, Corradi D, Lacuigit G, Signorini S, Avanzini F, Pizziotti F, Maggioni AP, Moccutt T, Metra M, Cas LD, Ghezzi P, Siper JD, Re G, Olivetti G, Mantovani A and Latini R: PTX3, A prototypical long pentraxin, is an early indicator of acute myocardial infarction in humans. Circulation, 2000; 102: 636-641

8) Inoue K, Sugiyama A, Reid PC, Ito Y, Miyauchi K, Mukai N, Tazaki R, Tanigawa J, Fujisaka T, Shibata K, Takeda Y, Miyamoto T, Rashid Qureshi A, Heimburger O, Barany P, Soro JJ: Inverse relationship between the inflammatory marker pentraxin-3, fat body mass, and abdominal obesity in end-stage renal disease. Clin J Am Soc Nephrol, 2011; 6: 2785-2791

7) Miyamoto T, Rashid Qureshi A, Heimburger O, Barany P, Carrero K, Sjoberg B, Lindholm B, Stenvinkel P and Carrero JJ: Inverse relationship between the inflammatory marker pentraxin-3, fat body mass, and abdominal obesity in end-stage renal disease. Clin J Am Soc Nephrol, 2011; 6: 2785-2791

6) Vilahur G and Badimon L: Biological actions of pentra-xins. Vascul Pharmacol, 2015; 73: 38-44

5) Miyamoto T, Rashid Qureshi A, Heimburger O, Barany P, Carrero K, Sjoberg B, Lindholm B, Stenvinkel P and Carrero JJ: Inverse relationship between the inflammatory marker pentraxin-3, fat body mass, and abdominal obesity in end-stage renal disease. Clin J Am Soc Nephrol, 2011; 6: 2785-2791

4) Dubin R, Li Y, Ix JH, Shlipak MG, Whooley M and Per-ulta CA: Associations of pentraxin-3 with cardiovascular events, incident heart failure, and mortality among persons with coronary heart disease: data from the Heart and Soul Study. Am Heart J, 2012; 163: 274-279

3) Norata GD, Garlanda C and Catapano AL: The long pentraxin PTX3: a modulator of the immunoinflammatory response in atherosclerosis and cardiovascular diseases. Trends in cardiovascular medicine, 2010; 20: 35-40

2) Shiraki A, Kotooka N, Komoda H, Hirase T, Oyama JI and Node K: Pentraxin-3 regulates the inflammatory activity of macrophages. Biochem Biophys Rep, 2016; 5: 290-295

1) Klouche M, Peri G, Knabbe C, Eckstein HH, Schmid FX, Schmitz G and Mantovani A: Modified atherogenic lipoproteins induce expression of pentraxin-3 by human vascular smooth muscle cells. Atherosclerosis, 2004; 175: 221-228

Lee et al.
27) Grundy SM, Brewer HB, Jr., Cleeman JJ, Smith SC, Jr., Lenfant C, National Heart L, Blood I and American Heart A: Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Arterioscler Thromb Vasc Biol, 2004; 24: e13-18
28) Levey AS, Coresh J, Balk E, Kausz AT, Levin A, Steffes MW, Hogg RJ, Perrone RD, Lau J, Eknoyan G and National Kidney F: National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med, 2003; 139: 137-147
29) Magrini E, Mantovani A and Garlanda C: The Dual Complexity of PTX3 in Health and Disease: A Balancing Act? Trends Mol Med, 2016; 22: 497-510
30) Sun H, Tian J, Xian W, Xie T and Yang X: Pentraxin-3 Attenuates Renal Damage in Diabetic Nephropathy by Promoting M2 Macrophage Differentiation. Inflammation, 2015; 38: 1739-1747
31) Miyaki A, Maeda S, Yoshizawa M, Misono M, Sasai H, Shimojo N, Tanaka K and Ajsaka R: Is pentraxin 3 involved in obesity-induced decrease in arterial distensibility? J Atheroscler Thromb, 2010; 17: 278-284
32) Alberti L, Gilardini L, Zulian A, Micheletto G, Peri G, Doni A, Mantovani A and Invitti C: Expression of long pentraxin PTX3 in human adipose tissue and its relation with cardiovascular risk factors. Atherosclerosis, 2009; 202: 455-460
33) Kasai T, Inoue K, Kurimura M, Sagara M, Ishiwata S, Ohno M, Yamaguchi T, Momomura S and Narui K: Plasma pentraxin3 and arterial stiffness in men with obstructive sleep apnea. Am J Hypertens, 2011; 24: 401-407
34) Dubin R, Shlipak M, Li Y, Ix J, de Boer IH, Jenny N and Peralta CA: Racial differences in the association of pentraxin-3 with kidney dysfunction: the Multi-Ethnic Study of Atherosclerosis. Nephrol Dial Transplant, 2011; 26: 1903-1908
35) Kardas F, Akin L, Kurtoglu S, Kendirci M and Kardas Z: Plasma Pentraxin 3 as a biomarker of metabolic syndrome. Indian J Pediatr, 2015; 82: 35-38
36) Vukovic-Dejanovic V, Bogavac-Stanojevic N, Spasic S, Spasojevic-Kalimanovska V, Kalimanovska-Ostric D, Topalovic M and Jelic-Ivanovic Z: Association of Serum Pentraxin-3 and High-Sensitivity C-Reactive Protein with the Extent of Coronary Stenosis in Patients Undergoing Coronary Angiography. J Med Biochem, 2015; 34: 440-449
37) Inoue K, Kodama T and Daida H: Pentraxin 3: a novel biomarker for inflammatory cardiovascular disease. Int J Vasc Med, 2012; 2012: 657025
38) Norata GD, Marchesi P, Pulakazhi Venu VK, Pasqualini F, Anselmo A, Moalli F, Pizzitola I, Garlanda C, Mantovani A and Catapano AL: Deficiency of the long pentraxin PTX3 promotes vascular inflammation and atherosclerosis. Circulation, 2009; 120: 699-708
39) Inoue K: The cardioprotective role of pentraxin 3. J Atheroscler Thromb, 2015; 22: 335-337
40) Ishino M, Shishido T, Suzuki S, Katoh S, Sasaki T, Funayama A, Natsu S, Hasegawa H, Honda S, Takahashi H, Arimoto T, Miyashita T, Miyamoto T, Watanabe T, Takeishi Y and Kubota I: Deficiency of Long Pentraxin PTX3 Promoted Neointimal Hyperplasia after Vascular Injury. J Atheroscler Thromb, 2015; 22: 372-378
41) Salio M, Chimenti S, De Angelis N, Molla F, Maina V, Nebuloni M, Pasqualini F, Latini R, Garlanda C and Mantovani A: Cardioprotective function of the long pentraxin PTX3 in acute myocardial infarction. Circulation, 2008; 117: 1055-1064
42) Wittas A, Carrero JJ, Michaelsson K, Ahlstrom H, Kullberg J, Adamsson V, Riserus U, Larsson A, Helmersson-Karlqvist J, Lind L, Stenvinkel P and Arnlov J: Inflammatory biomarker pentraxin 3 (PTX3) in relation to obesity, body fat deposits and weight loss. Obesity (Silver Spring), 2014; 22: 1373-1379
43) Yamaseki K, Kurimura M, Kasai T, Sagara M, Kodama T and Inoue K: Determination of physiological plasma pentraxin 3 (PTX3) levels in healthy populations. Clinical chemistry and laboratory medicine, 2009; 47: 471-477
44) Ogawa T, Kawano Y, Imamura T, Kawakita K, Sagara M, Matsu T, Kakikubata Y, Ishikawa T, Kitamura K, Hatakeyama K, Asada Y and Kodama T: Reciprocal contribution of pentraxin 3 and C-reactive protein to obesity and metabolic syndrome. Obesity (Silver Spring), 2010; 18: 1871-1874
45) Osorio-Cones O, Guitart M, Chacon MR, Maymo-Masip E, Moreno-Navarrete JM, Montori-Grau M, Naf S, Fernandez-Real JM, Vendrell J and Gomez-Foix AM: Plasma PTX3 protein levels inversely correlate with insulin secretion and obesity, whereas visceral adipose tissue PTX3 gene expression is increased in obesity. Am J Physiol Endocrinol Metab, 2011; 301: E1254-1261
46) Bosutti A, Malaponte G, Zanetti M, Castellino P, Heer M, Guarneri G and Biolo G: Calorie restriction modulates inactivity-induced changes in the inflammatory markers C-reactive protein and pentraxin-3. J Clin Endocrinol Metab, 2008; 93: 3226-3229
47) Tomandlova M, Jarkovsky J, Tomandl J, Kubkova L, Kala P, Littnerova S, Gottwaldova J, Kubena P, Gavoska E, Poloczek M, Spinar J, Mueller C, Mebazaa A, Pavkova Goldbergova M and Parenica J: Prognostic value of pentraxin-3 level in patients with STEMI and its relationship with heart failure and markers of oxidative stress. Dis Markers, 2015; 2015: 159051
48) Nauta AJ, Bottazzi B, Mantovani A, Salvatori G, Kishore U, Schwaebel WJ, Gingras AR, Tzima S, Vivanco F, Egido J, Tijssma O, Hack EC, Daha MR and Roos A: Biochemical and functional characterization of the interaction between pentraxin 3 and C1q. Eur J Immunol, 2003; 33: 465-473
49) Norata GD, Callegari E, Marchesi M, Chiesa G, Eriksson P and Catapano AL: High-density lipoproteins induce transforming growth factor-beta2 expression in endothelial cells. Circulation, 2005; 111: 2805-2811
50) Soek T, Niki T, Kusunose K, Bando S, Hirata Y, Tomita N, Yamaguchi K, Koshiba K, Yagi S, Takekata Y, Iwase T, Yamada H, Wakatsuki T, Akaike M and Sata M: Elevated concentrations of pentraxin 3 are associated with coronary plaque vulnerability. J Cardiol, 2011; 58: 151-157