血流から見た急性腎炎の初期病態：Perfusion CT による検討

辻 喜久 児玉 裕三1) 吉田 司2) 千葉 勉3)

要 旨：1993年のアトランタ基準では“重症急性腎炎”は、腎障害か多臓器不全をきたした場合と定義された。一方、近年、欧米のガイドラインが改訂され、腎障害合併腎炎は中等度重症、腎障害の合併にかかわらず48時間以上継続する臓器不全を有した場合を重症急性腎炎とした。発症早期の腎障害は、多臓器不全を予測するための予後因子の一つという

こうした観点から、本稿では、重症急性腎炎における初期病態、とくに発症早期の腎障害の形成と、その背景としての循環不全・血管内皮障害の関係について、新しいModalityであるPerfusion CTで得られた知見を交えながら概説する。

索引用語：腎障害 重症急性腎炎 Perfusion CT 多臓器不全

最初に

急性腎炎は重症化し、“重症急性腎炎”になると

つまり、現在の欧米の潮流にのれば、重症急性

腎炎の診断には48時間が必要となり、来院直後に

腎障害の診断はできない。また、発症

早期の腎障害は、こうした多臓器不全を予測する

ための予後予測因子の一つということになる。

個人的には、実際に腎障害合併例の予後は悪く、そ

ういったリスクのある患者さんをModerateと呼

ぶことに違和感があるが、いずれにせよ、腎障害

合併患者の場合、POFを合併する可能性が高いと

いう点では本邦も欧米も意見は一致すると思われ

るし、初療時に腎機能予測を行うことが重要

性は決して損なわれてはいない。

こうした観点から、本稿では、重症急性腎炎に

初期病態、とくに発症早期の腎障害の形成と、その背景としての循環不全・血管内皮障害の関係について、新しいModalityであるPerfusion

CTで得られた知見を交えながら概説する。

Perfusion CT とは

Perfusion CTはDynamic CTの一種で、造影剤

動態を解析することで得られる7)。Perfusion Image

を得るためには、造影剤の急速静脈投与（4

ml/秒、10秒間）を行い、同時に30〜60秒間にお

わたって同一断面における各ピクセルのCT値の変

化を観察する。ついてこの1ピクセルごとのCT

値の変化を関数化し解析することでPerfusion関

連の各因子（実質血流速度、間質量、血管密度

など）を算出、カラーマップで表示する（Fig. 1、

2）。1〜3秒毎に1枚、30〜60秒間（約30〜60秒

像）の観察に基づいて解析を行うので、急性腎炎

に伴う動脈相や腎実質相が変異することにも対

できる。Perfusion CTの利点は造影剤量が通常の

造影CTと比べ40mlと半分以下である。また、体

の小さい日本人を対象としたStudyでは、被ばく

1) 京都大学医学部附属病院消化器内科

2) 倉敷中央病院消化器内科
血流から見た急性壊死の初期病態：Perfusion CTによる検討

線量も通常のDynamic CTと比べ大きく変わるものではなかった9)。

膿壊死の形成と自然史

重症急性膵炎における膿壊死の初期像は膿虚血11)である。膿虚血の診断は、発症3日以内の場合、通常のDynamic CTでは容易ではない。一方、筆者らは、Perfusion CTにより膿組織血流速度、Pancreatic Blood Flow(PBF)を測定し、膿血流低下領域を診断する。発症早期の急性膵炎患者における膿虚血診断・予測が可能であることを明らかにした(検出100%、特異度95.3%)12) (Fig.1,2)。この膿虚血が継続すると、膿血部位は徐々に膿壊死化する13,14)、さらに同部は3-4週間ほどかけて周囲の組織から隔絶され、固形の膿壊死組織と液体成分が混ざった状態となる(Walled-off necrosis)13,14)。

一方、急性膵炎における炎症の影響で腹腔内に液体成分(Acute peripancreatic fluid collection)が広がる場合がある。このような液体成分は吸収されることが多いが、時間の経過とともに周囲に液化が形成され“のう胞化”することもある。こうした場合のみを新しい国際ガイドラインなどでは“膿偽性のう胞”と呼ぶ9)。

膿虚血・膿壊死のPathology

Klöppelによると、急性膵炎における膿障害の病理学的分類はType1-3に分けられる15)。
Type1は、アルコール性膵炎や胆石膵炎などで認められる最も一般的なもので、膵周囲の脂肪や、小腸間および小腸周囲の壊死を含む、Autodigestive fat necrosis due to enzyme effusion and activationと表現されている。Type2は、ショックなど循環障害に起因するもので、Ductal and periductal necrosisを主とする。Type3は、感染などに起因した稀なもので、Disseminated acinar necrosisである。特にType1については、トリプシノーゲンの活性化によりAutodigestionが生じ
と考えられているが、その最初のトリガーとしてトリプシノーゲン経路によらない自然免疫系経路が注目されている。

こうした局所での炎症から続発して血管内皮障害が誘導されると考えられているが、その間をつなぐKeyとなる炎症性Mediatorは未だに経路は不明。最近では、Angiopoietin-2[17-19]やVEGF[20-22]、凝固関連因子であるADAMTS13[23]などが重症急性肝炎における血管内皮障害に関与するという報告がある。腎を栄養する動脈が障害された場合は腎虚血と、全身を循環する血管が障害された場合は血管透過性の亢進から循環不全が生じると考えられる。また、最近の基礎的検討では、こうした血管内皮障害は腸管虚血などを誘導して、Bacterial Translocationや、Damage-associated molecular pattern molecules（DAMPS）の血中への移行から自然免疫の活性化など負の連鎖を引き起こし、脾炎をより重症にしていくと考えられる（Fig.3）。

このようにして生じた脾虚血症例では、脾内血管は狭小化し、下流の脾臓実質のPerfusionが低下する[24]。こうした脾虚血は、挙動といわれるよりも血管周囲の浮腫・出血などに起因した圧排による脾内血管の狭小化が主であり、血管拡張剤などの効果は限定的と考えられる。こうした虚血による障害は、Klöppelが言うところのType2型の組織障害を引き起こし、より重篤な障害を脾臓にともなうと考えられる。

興味深いことに、Perfusion CTによる観察では、総発症12時間以内に生じた脾虚血は必ずしも壊死するわけではない。一方、発症12時間をすぎるとPerfusion CTに異常を示す脾虚血域は高率に壊死するようになる[25]。その原因として、発症12時間以内の脾虚血は完成しておらず、何らかの介入により壊死に至らなかった可能性がある。以上の観点から、発症早期に来院した症例や、ERCP脾炎など発症からの時間がはっきりしている症例では、発症12時間のタイミングで丁寧に病
血流から見た急性膵炎の初期病態：Perfusion CTによる検討

筆者らは、行動医学により発症早期の治療法のStrategyが存在しないので発症早期の療養、治療を行うべきで、発症早期の領域において効果的に治療を行うため必要である。今後のさらなる知見の集積が望まれる。

文献
1) Petrov MS, Shanbhag S, Chakraborty M, et al. Organ failure and infection of pancreatic necrosis as determinants of mortality in patients with acute pancreatitis. Gastroenterology 2010; 139: 813-20.
2) Bradley EL 3rd. A clinically based classification system for acute pancreatitis. Summary of the International Symposium on Acute Pancreatitis, Atlanta, Ga, September 11 through 13, 1992. Arch Surg 1993; 128: 586-90.
3) Sarr MG, Banks PA, Bollen TL, et al. The new revised classification of acute pancreatitis 2012. Surg Clin North Am 2013; 93: 549-62.
4) Banks PA, Bollen TL, Dervenis C, et al. Classification of acute pancreatitis—2012: revision of the Atlanta classification and definitions by international consensus. Gut 2013; 62: 102-11.
5) Tenner S, Baillie J, DeWitt J, et al. American College of Gastroenterology guideline: management of acute pancreatitis. Am J Gastroenterol 2013; 108: 1400-15.
6) Johnson CD, Abu-Hilal M. Persistent organ failure during the first week as a marker of fatal outcome in acute pancreatitis. Gut 2004; 53: 1340-4.
7) Miles KA, Griffiths MR. Perfusion CT: a worthwhile enhancement? Br J Radiol 2003; 76: 220-31.
8) Tsuji Y, Takahashi N, Tsutou M, et al. Pancreatic Perfusion CT in Early Stage of Severe Acute Pancreatitis. Int J Inflam 2012; 2012: 497386.
9) Tsuji Y, Koizumi K, Isoda H, et al. The radiological exposure of pancreatic perfusion computed tomography. Pancreas 2010; 39: 541; author reply 541-3.
10) Takeda K, Mikami Y, Fukuyama S, et al. Pancreatic ischemia associated with vasospasm in the early phase of human acute necrotizing pancreatitis. Pancreas 2005; 30: 40-9.
11) Inoue K, Hirota M, Beppu T, et al. Angiographic features in acute pancreatitis: the severity of abdominal vessel ischemic change reflects the severity of acute pancreatitis. JOP 2003; 4: 207-13.
12) Tsuji Y, Yamamoto H, Yasumi S, et al. Perfusion computed tomography can predict pancreatic necrosis in early stages of severe acute pancreatitis. Clin Gastroenterol Hepatol 2007; 5: 1484-92.
13) Papachristou GI, Takahashi N, Chahal P, et al. Peroral endoscopic drainage/debridement of walled-off pancreatic necrosis. Ann Surg 2007; 245: 943-51.
14) Takahashi N, Papachristou GI, Schmit GD, et al. CT findings of walled-off pancreatic necrosis (WOPN): differentiation from pseudocyst and prediction of outcome after endoscopic therapy. Eur Radiol 2008; 18: 2522-9.
15) Beger HG, Warshaw AL, Büchler MW, et al. The pancreas: an integrated textbook of basic science, medicine, and surgery. 2nd ed. Blackwell Publishing, 2009.
16) Tsuji Y, Watanabe T, Kudo M, et al. Sensing of commensal organisms by the intracellular sensor NOD1 mediates experimental pancreatitis. Immunity 2012; 37: 326-38.
17) Buddingh KT, Koudstaal LG, van Santvoort HC, et al. Early angiopoietin-2 levels after onset predict the ad-
vent of severe pancreatitis, multiple organ failure, and infectious complications in patients with acute pancreatitis. J Am Coll Surg 2014; 218: 26–32.

18) Watanabe T, Tsui Y, Kodama Y, et al. Relationship between serum angiopoietin-2 level and perfusion CT parameters in severe acute pancreatitis. Am J Gastroenterol 2011; 106: 1859–61.

19) Whitcomb DC, Muddana V, Langmead CJ, et al. Angiopoietin-2, a regulator of vascular permeability in inflammation, is associated with persistent organ failure in patients with acute pancreatitis from the United States and Germany. Am J Gastroenterol 2010; 105: 2287–92.

20) Li S, Chen X, Wu T, et al. Role of heparin on serum VEGF levels and local VEGF contents in reducing the severity of experimental severe acute pancreatitis in rats. Scand J Gastroenterol 2012; 47: 237–44.

21) Talar–Wojnarowska R, Gasiorowska A, Olakowski M, et al. Vascular endothelial growth factor (VEGF) genotype and serum concentration in patients with pancreatic adenocarcinoma and chronic pancreatitis. J Physiol Pharmacol 2010; 61: 711–6.

22) Warzecha Z, Dembinski A, Ceranowicz P, et al. Immunohistochemical expression of FGF – 2, PDGF – A, VEGF and TGF beta RII in the pancreas in the course of ischemia/reperfusion–induced acute pancreatitis. J Physiol Pharmacol 2004; 55: 791–810.

23) Ueda T, Takeyama Y, Yasuda T, et al. Vascular endothelial growth factor increases in serum and protects against the organ injuries in severe acute pancreatitis. J Surg Res 2006; 134: 223–30.

24) Morioka C, Uemura M, Matsuyama T, et al. Plasma ADAMTS13 activity parallels the APACHE II score, reflecting an early prognostic indicator for patients with severe acute pancreatitis. Scand J Gastroenterol 2008; 43: 1387–96.

25) Yoshida T, Tsui Y, Ohara Y, et al. Accuracy of perfusion computed tomography for predicting pancreatic necrosis in severe acute pancreatitis patients in extremely early stage. DDW, Orland, 2013.

26) Watanabe T, Tsui Y, Takahashi N, et al. Relationship between pancreatic perfusion parameters and clinical complications of severe acute pancreatitis. Pancreas 2013; 42: 180–2.

Pancreatic perfusion CT in the early stage of severe acute pancreatitis

Yoshishia TSUJI, Yuzo KODAMA1, Tsukasa YOSHIDA2, and Tsutomu CHIBA1

Key words: Pancreatic necrosis, Severe acute pancreatitis, Perfusion CT, Multiple organ failure

Initial criteria of severe acute pancreatitis are defined as the presence of systemic complications (organ failure) or local complications (pancreatic necrosis and pseudocyst). In the latest definition of severity of acute pancreatitis, the patient is categorized into three groups according to pancreatic necrosis and/or persistent organ failure (POF); patient with POF into severe acute pancreatitis, patient with pancreatic necrosis and without POF into moderate severe, and patient without pancreatic necrosis and POF into mild. Therefore, to accurately evaluate severity, it is very important to diagnose pancreatic necrosis. In this paper, from a literary perspective, we reviewed the roles of pancreatic necrosis, organ failure, and systemic circulation failure in the early stage of severe acute pancreatitis.

1) Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine (Kyoto)
2) Department of Gastroenterology and Hepatology, Kurashiki Central Hospital (Okayama)