Fuzzy modeling of dependability optimization for supporting the production-quality strategies - case study in technical field

A Vilcu, I Verzea, M Pislaruand I Herghiligiu
“Gheorghe Asachi” Technical University of Iasi, Department of Engineering and Management, D. Mangeron 63, Iasi, Romania

Email: avilcu@tuiasi.ro

Abstract: this work treats dependability from a functional (systemic) standpoint, which implies meeting a function required within an input/output system. This approach is demanded and necessary within technical equipment design stages, and is an integrant part of systems integrity design methodology. Designing the system integrity includes design criteria for reliability, availability, maintainability and safety of any system and equipment. The combination of these four concepts leads to the necessity of a comparative and integrative methodology that should ensure a good systems design, with required integrity values that can be computed easily, analyzed the most complete possible, and with the possibility to be modified accordingly. During the recent years, artificial intelligence techniques have been developed for dependability, that make use of: statistic methods (necessary for the realization of an operation history), deterministic mathematic algorithms (to determine the exact solutions when these can be determined and are required and the time resource is not critical), heuristic artificial intelligence methods (that can provide good quality solutions when time is a critical resource) - neuronal networks, genetic algorithms (to determine predicted or extreme values for system variables), as well as fuzzy methods for systems in which the system variables change within certain values intervals. All these techniques offer a global image of the artificial intelligence modelling (AIM) in designing the reliability, availability, maintainability and safety, in order to offer a continuous design feedback mean during the entire engineering design process. In this work, we shall develop a fuzzy model for a technical process and will compare our results with the results supplied by mathematical, neuronal and genetic models applied to the same system. The qualitative comparison of models will be completed with their quantitative comparison, by analyzing the complexity of algorithms and execution time. The utility of this work consists in the implementation of an interdisciplinary tool easy to apply to technical systems with measurable dependability variables that can provide during the flow sheet, the values requested from technical and economic standpoint.

1. Introduction
The mathematical theory of fuzzy logic is present in all the engineering fields, due to the similitude with human reasoning and to the fact that it can be applied on operational management systems with few input- output information or with combined quantitative- qualitative information [1-3]. On the other side, coming into prominence of this modelling technique, alongside with other mathematic [4], statistic or heuristic modelling techniques occurred also due to the fact that this type of method can reason with imprecise information using its own construction rules in a simple implementation. The uncertainty character of this method can be annulled by comparing its results with those obtained by
other algorithms [5, 6]. The difficulty in implementation of a fuzzy system for modeling derives from
the fact that there is no clear mathematical methodology for building up the membership functions and
adjustment of the rules that connects the input and the output data, this stage being the prerogative of
those proficient in the specific of the problems to be solved [7].

Modelling based on fuzzy rules of “if-then” type, mainly adequate for the implementation of
discrete qualitative models constitute a strong instrument in mixed modelling systems (neuronal
modelling + fuzzy modelling). This type of neuro-fuzzy modelling combines the “learning”,
“generalization” and “prediction” characteristics of neuronal networks with the synthesis of
knowledge in the development of fuzzy rules, less sensitive to the variations of the dynamic system
parameters to be modelled.

2. Method and problem

2.1. The optimization method based on fuzzy logic

L. Zadeh created the foundation of the fuzzy logic by extending the set theory, a theory that fixes
exclusively an element from a set or outside it [8]. The fuzzy logic describes a set \(A \) through a
membership function \(m_A(x) \) defined on a “universe of discourse” that takes values within the interval
\([0, \alpha]\), the function value indicating the degree of membership of the \(x \) value in the \(A \) set. For
consistency, the range of \(A \) set values is scaled within the interval \([0, 1]\); the value 1 indicates that the
element \(x \) is a member of the set \(A \); value 0 indicates that \(x \) is not a member of the set \(A \), and an
intermediate value characterizes the membership degree of \(x \) within the set \(A \). These intermediate
values represent the difference between the fuzzy set and the classical set from set theory. The choice
of this membership set is subjective, as everybody can axiomatically fix a membership function and
modify it in terms of the characteristics of the modelled system. This characteristic of the fuzzy
modelling represents an advantage within the class of approximate methods of technical systems
modelling [9, 10].

Due to the normalization of the membership function values within the interval \([0,1]\), confusion
appears between these and the values of a probability function. Yet, between the two notions (fuzzy
number and probability), there are two differences. The first difference is that the values given by a
fuzzy membership function cannot be denied, unlike the probability \(p \) attached to an event \((1 - p = probability of the denied event) \) and the second difference is that, once an occurred, the
probability notion no longer exists, while the membership function supplies a membership value [11,
12].

The fuzzy logic includes other two new notions, as compared to classical set theory: the linguistic
variable and the linguistic value. The first notion represents a characteristic, property or attribute
attached to an object, and the second notion represents an adjective or an adverb that is associated with
the linguistic variable [13].

The graphics of the membership functions can intersect each other, such that a value on the field of
definition can take \(n \) specific values, corresponding to \(n \) membership functions, thus falling into \(n \)
classes of values (figure 1). In a fuzzy system, the following relation (equation (1)) is satisfied [14]:

\[
\forall x \in X, \sum_{i=1}^{n} m_A(x) = 1
\]

Where \(X \) is the field of definition (the universe of discussion), and \(n \) is the number of values
classes.

Namely, in a modelling system based on fuzzy logic, there are three stages (figure 1) [15,16]:
- Fuzzification stage in which one associates to the exact values of the input parameters, the values
supplied by the membership functions.
- Inference stage, in which, based on linguistic rules, the input variables are linked to the output
variables (qualitative connections are realized between combinations of input and output parameters at
the set level).
Defuzzification stage, in which the fuzzy values are converted into exact values for the parameters of the modeled system.

Respecting the general structure of a fuzzy system, in this paper we will use a Mamdani structure (figure 1).

Knowledge base comprises [17]:

- Fuzzy sets that codify the fuzzy sets of quantitative or qualitative values of the input parameters.
- Fuzzy sets that codify the fuzzy sets of qualitative or qualitative values of the output parameters.
- Fuzzy rules base that realizes the inference of fuzzy values of the output variables from the fuzzy values of the input variables.

![Figure 1. Structure of a Mamdani fuzzy logic system.](image)

2.2. Introduction of optimization problem – technical system - honing machine

The works [18, 19] realize an optimization of the reliability (parameter characterized by mean time between failure - MTBF) and maintenance (parameter estimated through the mean time to repair - MTTR) parameters in terms of production and quality strategies. This work realizes a fuzzy modelling to determine the production and quality parameters (dependent parameters) in terms of reliability and maintainability parameters (independent parameters).

The target problem consists in the determination of the best production and quality values when one knows the values of technical systems reliability and maintainability.

This complementary problem has been analyzed from the standpoint of its importance in the works [20, 21], the modelling approaches being those specific to artificial intelligence (neuronal networks and genetic algorithms).

These approaches will be analyzed from two standpoints:

- From the standpoint of results, these will be compared with the results of fuzzy model.
- Modelings specific to mathematic and artificial intelligence fields will supply additional information for the determination of fuzzy rules.

The optimization problem is given by the relation \((P, Q) = f(M, F)\) [22, 23]. It is worth noticing that fuzzy modelling does not supply a multivariable polynomial function and values for production and quality for known values of maintenance and reliability.

2.3. Quantitative data for modeling

The data are obtained by summarizing the information obtained from honing machine computer, recorded for 6 months, and are synthesized in the following values: MTBF- mean team between failure, MTTR- mean time to repair, P - production and Q - quality (see table 1).

The honing process represents a fine chip removing processing of rotary swivel channels for car injection pumps. The Op 150C machine is supplied by the operator with coarse parts from the previous washing operation. The supply is executed by the operator on machine feed bend. Once in the station, the robot from this machine takes the parts over and set them on supports in honing stations. After the part is processed in the six honing stations, it is taken over at the discharge point by the robot, which carries it to leak test station. The role of this station is to test for contingent leaks in the case that the honing operation went wrong. In this way, we can make the difference between the “ok parts” and “nok parts”. After the Leak test station responds if the part is ok, the robot takes over the
part and put it on the evacuation band, whence the operator will take it over and place it in special boxes. In case that the part is considered nok by the Leak test station, the robot will carry it to the scrap box. According to the production plan, the maximum production volume that can be processed in this station is of 120 pieces/hour (960 pieces/8 hours) if the machine has down-times [5, 7].

Table 1. Determination of quantitative indices concerning the system reliability.

No. of week	Stops	Shutdown time (min)	Operational time (min)	Pieces/h	Pieces/week	Ra (microM)	MTBF (min)	MTTR (min)
1	5	76	10004	65	10838	0.011	2001	15.2
2	3	401	9679	75	12099	0.123	3226	133.7
3	1	125	9955	105	17421	0.234	9955	125.0
4	2	37	10043	88	14730	0.055	5022	18.5
5	2	155	9925	85	14060	0.163	4963	77.5
6	1	45	10035	108	18063	0.024	10035	45.0
7	5	78	10002	67	11169	0.013	2000	15.6
8	1	35	10045	105	17579	0.231	10045	35.0
9	0	0	10080	114	19152	0.010	10080	0.0
10	2	625	9455	108	17019	0.212	4728	312.5

The novelty consists in supervised determination of the rules and membership functions. This technique is taken over from the stage of neuronal networks training stage and can become a methodology to create the rule base and defuzzification procedure. Namely, the technique permits to choose functions number, to adjust them and to refine the inference rules, such that the values of output parameters modelled by the fuzzy system to coincide with the measured outputs of the modelled system, at the application of the input patterns.

The methodology of fuzzy system training consists in adjustment of the values supplied through the determination of the number of membership functions on inputs and outputs, and of the knowledge base. Fine adjustment of these values by modifying the functions graphics and adding other input parameters.

3. Method implementation and application
One determines for each measured parameter, the minimum and maximum values, and the values ranges are fragmentized in three proportional intervals, according to table 2.

Table 2. Measured values for the technical system.

Production	Roughness	Reliability (MTBF)	Maintenance (MTTR)
min	10834	0.011	1642
max	19152	0.321	10080

Variation	Values	Values	Variation	Values	Variation	Values	
Small	13607	N3	0.114	Small	4455	Small	104
Normal	16379	N4	0.218	Normal	7267	Normal	208
High	19152	N5	0.321	High	10080	High	313

The knowledge base includes 9 rules and is presented in table 3. The rules were constructed by considering variables interdependences; an increased maintenance determines an increased roughness (high quality) and a relatively low production, while an increased reliability determines a high production and a normal or small (N3) roughness [5, 7].
Table 3. The rules set.

Reliability	and	Maintenance	=>	Production	Roughness
Small	Small	Small	N5		
Normal	Small	Normal	N4		
High	Small	Normal	N3		
Normal	Normal	Normal	N5		
High	Normal	Normal	N4		
High	Normal	High	N3		
High	Small	High	N5		
High	Normal	High	N4		
High	High	High	N3		

The structure modelling technique based on fuzzy system is shown in figure 2.

![Figure 2](image)

Figure 2. The structure of modelling technique.

Membership functions are presented in figure 3.

![Figure 3](image)

Figure 3. Membership functions.
By applying the input patterns on the fuzzy system, one can determine modelling errors for the output parameters (table 4).

Table 4. Computed values and error determination before fuzzy system training.

Production (No. pcs/week)	Quality (Ra, roughness classes)	Measured	Modelled	Relative error	Measured	Modelled class	Class error
Measured X1000							
10838	1.19	9.80			0.011	N3	N5 Error
12099	1.2	0.82			0.123	N4	N4 Ok
17421	1.87	7.34			0.234	N5	N5 Ok
14730	1.46	0.88			0.055	N3	N5 Error
14060	1.42	1.00			0.163	N4	N4 Ok
18063	1.86	2.97			0.024	N3	N5 Error
11169	1.19	6.54			0.013	N3	N5 Error
17579	1.87	6.38			0.231	N5	N5 Ok
19152	1.88	1.84			0.010	N3	N5 Error
17019	1.63	4.22			0.212	N4	N3 Error

When modelling the production parameter, the relative errors between the measured and modelled values are smaller than 10%, which leads to the fact that the number of membership functions, their definition intervals, their shape and the fuzzy rule set were well inspired chosen [24].

In the case of the quality parameter, (Ra), important errors appeared in the classification of modelled values, compared with computed values. These errors appear especially at high quality class (N_3 = Ra small), which leads to modifications of membership functions for the quality parameter. The errors appeared at the modelling of roughness class N3 are due to the fact that machine downtimes were used for simple (non-invasive) interventions, such as “robot restart”, 230 V fuse - burnt” or “ip setting and subnet network plate”. These interventions do not correct the functionally right behaviour of the machine.

In order to correct the “fuzzy system behaviour” on this segment of the quality parameter, a new input parameter – “intervention time”- was introduced, with the limits [0...300], with two membership functions (figure 4).

![Figure 4. Intervention time membership function.](image)
Table 5. Set of additional rules.

Reliability	Maintenance and	Intervention time	=>	Production	Quality
Small	Small	Small		Small	N3
Normal	Small	Small		Small	N3
High	Small	Small		Normal	N3
Normal	Small	Normal		Normal	N3
High	Small	High		N3	
Normal	Small	High		High	N3
High	Small	High		High	N3

Table 6. Computed values and error determination after fuzzy system training.

Production (No. pcs/week)	Quality (Ra, roughness classes)					
Measured Values	Modelled X1000	Relative error	Modeled Values	Measured Class	Modeled Class	Class error
10838	1.19	9.80	0.056	N3	N3	Ok
12099	1.20	0.82	0.132	N4	N4	Ok
17421	1.87	7.34	0.242	N5	N5	Ok
14730	1.46	0.88	0.057	N3	N3	Ok
14060	1.42	1.00	0.201	N4	N4	Ok
18063	1.86	2.97	0.056	N3	N3	Ok
11169	1.19	6.54	0.057	N3	N3	Ok
17579	1.87	6.38	0.255	N5	N5	Ok
19152	1.88	1.84	0.056	N3	N3	OK
17019	1.63	4.22	0.207	N4	N4	Ok

4. Fuzzy modelling analysis and results comparison

Fuzzy modelling is compared with the results supplied by other two types of modelling [25, 26]: the mathematical one and the evolutional one based on genetic algorithms (table 7, table 8).

Sum values in the last line of table 7 and table 8 show a better modelling of fuzzy implementation than other modelling (mathematical and genetic).

We took into account 4 indicators: complexity of modelling structures and easiness in designing them, easiness in model utilization, results quality and modelling generality.

From the standpoint of structure complexity, fuzzy modelling implies to create a much more complex system, through an “inspired” selection, validated then in the stage of training the number, type and shape of membership functions and of the set of rules respectively. The increased complexity of the fuzzy system also derives from the fact that it supplies simultaneously values for output parameters in terms of the input vectors \((P, Q) = f(M, R) \), while the mathematical modelling supplies one statistic polynomial multi-variable function (whose coefficients are determined using the **least-squares method**) for each of the output parameters. The evolutionary modelling, performed by means of the Solver tool from the MS Excel package, is situated, from complexity standpoint, between the mathematical and the fuzzy modelling. This determines, through an evolutional (iterative) algorithm,
solutions for the coefficients of the regression functions of the parameters P, Q in terms of independent parameters M, R.

Table 7. Measured, computed values and modelling differences for production.

MTBF (min)	MTTR (min)	Production measured	Evolutionary modelling	Mathematical modelling	Fuzzy modelling						
		Prod. modelled	Absolute diff.	Ampl (%)	Prod. modelled	Absolute diff.	Ampl (%)	Prod. modelled	Absolute diff.	Ampl (%)	
2001	15.2	10838	8780	2058	19.0	4560	6278	57.9	1.19	1062	9.8
3226	133.7	12099	11345	754	6.2	5400	6699	55.4	1.2	99	0.8
9955	125	17421	14567	2854	16.4	17288	133	0.8	1.87	1279	7.3
5022	18.5	14730	9027	5703	38.7	14748	18	0.1	1.46	130	0.9
4963	77.5	14060	12356	1704	12.1	14040	20	0.1	1.42	140	1.0
10035	45	18063	14325	3738	20.7	17970	93	0.5	1.86	537	3.0
2000	15.6	11169	5700	5469	49.0	11009	160	1.4	1.19	731	6.5
10045	35	17579	17694	115	0.7	18131	552	3.1	1.87	1121	6.4
10080	0.1	19152	12236	6916	36.1	18825	327	1.7	1.88	352	1.8
4728	312.5	17019	14543	2476	14.5	17043	24	0.1	1.63	719	4.2
Sum		31787	14304	6170							

Table 8. Measured, computed values and modelling differences for quality.

MTBF (min)	MTTR (min)	Quality measured	Evolutionary modelling	Mathematical modelling	Fuzzy modelling						
		Quality modelled	Absolute diff.	Ampl (%)	Quality modelled	Absolute diff.	Ampl (%)	Quality modelled	Absolute diff.	Ampl (%)	
2001	15.2	0.011	0.010	0.001	9.1	0.01	0.002	20.0	0.012	0.001	9.091
3226	133.7	0.123	0.090	0.033	26.8	0.14	0.013	10.5	0.132	0.009	7.317
9955	125	0.234	0.160	0.074	31.5	0.24	0.005	2.3	0.242	0.008	3.419
5022	18.5	0.055	0.043	0.012	22.1	0.07	0.018	32.0	0.057	0.002	3.636
4963	77.5	0.163	0.154	0.009	5.5	0.14	0.023	14.1	0.201	0.038	23.313
10035	45	0.024	0.032	0.008	33.3	0.03	0.010	41.7	0.020	0.004	16.667
2000	15.6	0.013	0.015	0.002	15.4	0.01	0.004	29.3	0.016	0.003	23.077
10045	35	0.231	0.240	0.009	3.9	0.10	0.128	55.5	0.255	0.024	10.390
10080	0.1	0.01	0.012	0.002	20.0	0.01	0.005	50.0	0.011	0.001	10.000
4728	312.5	0.212	0.212	0.000	0.0	0.21	0.002	1.1	0.207	0.005	2.358
Sum		0.1499	0.21	0.10							

The 2nd assessment criterion: in terms of setting and adjusting of the modelling structures, the fuzzy modelling proves to be of a remarkable simplicity in its utilization and in supplying the output values with evolutilional mathematical modelling. This fact is also the result of immediate supply of the results, as compared to the delay of evolutilional modelling (one runs through a number of stages until the sequence convergence or until the stop condition is satisfied).

The 3rd criterion: the fuzzy system is superior to other modelling at this criterion too, as it supplies qualitative solutions (as one can see in table 7 and table 8) that reveals the errors in approximating the output parameters. This is not surprising, since a fuzzy system, well-built and trained within the entire output parameters definition interval will supply clear, good quality values of the output parameters.
for any input pattern. One must also specify that in mathematical modelling based on the least squares method, errors can appear due to singularity of the matrix of the target system.

From the standpoint of the 4th criterion, the fuzzy system has adaptive characteristic superior to the other modelling types, by its easiness in modifying the limits of system parameter definition. This characteristic makes the fuzzy modelling a flexible tool, applicable in various types of problems from different technical fields, applied on systems whose parameters change their variation limits.

5. Conclusions
Fuzzy modelling system proves to be a flexible tool, with an important characteristic of generalization of the application on different technical systems, with easiness in the process of internal structure modification to correct the outputs, which represents a high adaptability level. Moreover, this adaptability characteristic supports an automatic adjustment, by combining the fuzzy system with self-adaptive artificial intelligence systems (neuronal networks).

Thus, the neuro-fuzzy modelling annuls the only negative element of the fuzzy modelling – the determination of fuzzy system internal structure and its adjustment, by automating this process. This type of modelling will be implemented and applied on technical system from 9 mechanic field, and the results of this modelling type will be analyzed.

6. References
[1] Chengyuan C and Qiang S 2017 Transformation-Based Fuzzy Rule Interpolation Using Interval Type-2 Fuzzy Sets Algorithms 10 91
[2] Desh R, Aditya G, Bhuvnesh G, Kenil T and Rhee F C 2018 Analysis of Data Generated From Multidimensional Type-1 and Type-2 Fuzzy Membership Functions Fuzzy Systems IEEE Transactions 26(2) 681-693
[3] Taskin A and Kumbasar T 2015 An Open Source Matlab/Simulink Toolbox for Interval Type-2 Fuzzy Logic Systems Computational Intelligence 2015 IEEE Symposium Series 1561-1568
[4] Vilcu A, Verzea I and Chaib R 2016 Dependability breakeven point mathematical model for production - quality strategy support IOP Conference Series: Materials Science and Engineering 145(2) 022001
[5] Vilcu A, Pislaru M and Verzea I 2018 Mathematical and neural approaches in dependability engineering: study case for a technical system eLearning challenges and new horizons 3 222-229
[6] Vilcu A, Verzea I and Vilcu C 2017 Software application for the analysis of the reliability of a textile equipment 13th International Scientific Conference eLearning and Software for Education Bucharest April 27-28 Could technology support learning efficiency? 3 475-480
[7] Vilcu A, Verzea I, Pislaru M and Herghiligu I 2018 New modelling techniques for dependability. Case study for a mechanical process IOP Conference Series: Materials Science and Engineering 400(2) 022060
[8] Ashraf A Z, Muhuri P K, Lohani Q M D and Nath R 2014 Fuzzy multi-objective reliability-redundancy allocation problem Fuzzy Systems (FUZZ-IEEE) 2014 IEEE International Conference 2580-2587
[9] Khanesar M A and Mendel J M 2016 Maclaurin series expansion complexity-reduced center of sets type-reduction + defuzzification for interval type-2 fuzzy systems Fuzzy Systems (FUZZ-IEEE) 2016 IEEE International Conference 1224-1231
[10] Kumar S, Shukla A K, Muhuri P K and Lohani Q M D 2016 Atanassov Intuitionistic Fuzzy Domain Adaptation to contain negative transfer learning Fuzzy Systems (FUZZ-IEEE) 2016 IEEE International Conference 2295-2301
[11] Sarabakha A Fu C and Kayacan E 2017 Double-input interval type-2 fuzzy logic controllers: Analysis and design Fuzzy Systems (FUZZ-IEEE) 2017 IEEE International Conference on p 1-6
[12] Das A K, Subramanian K and Sundaram S 2015 An Evolving Interval Type-2 Neurofuzzy Inference System and Its Metacognitive Sequential Learning Algorithm Fuzzy Systems IEEE Transactions 23(6) 2080-2093
[13] Mendel J M 2015 Type-2 Fuzzy Sets and Systems: A Retrospective Informatik–Spektrum 523
[14] Hernandez M A, Melin P, Mendez G M, Castillo O and Lopez-Juarez I 2015 A hybrid learning method composed by the orthogonal least-squares and the back-propagation learning algorithms for interval A2-C1 type-1 non-singleton type-2 TSK fuzzy logic systems Soft Computing 661
[15] Pislaru M, Herghiligiu I V, Alexa E L and Lazarescu R P 2017 Fuzzy logic - a practical tool for monitoring urban areas environmental performance Conference Proceedings Ecology Economics Education and Legislation 17(52) Bulgaria p 387-394
[16] Pislaru M, Herghiligiu I V, Alexa E L and Lazarescu R P 2017 Fuzzy designed system for corporate environmental impact assessment Conference Proceedings Ecology Economics Education and Legislation 17(52) 395-402
[17] Mendel J M and Liu X 2013 Simplified interval Type-2 fuzzy logic systems IEEE Trans. Fuzzy Syst. 21(6) 1056–1069
[18] Vilcu A, Verzea I, Herghiligiu I V and Pislaru M 2018 Statistic correlation algorithm for reliability in operation: case study for a textile process eLearning challenges and new horizons 3 214-221
[19] Herghiligiu I V, Pislaru M and Vilcu A 2018 E-learning structural framework on organizational environmental practices eLearning challenges and new horizons 3 162-167
[20] Verzea I and Luca G P 2009 Metode de management al productiei si mentenantei (Iasi: Tehnopress Publishing House)
[21] Verzea I and Luca G P 2003 Une nouvelle approche de la maintenance: le seuill de maintenabilité TMCR 2003 4 (Chisinau)
[22] Chaib R, Bellaouar A, Benidir M and Verzea I 2010 For better control of the availability of the industrial equipments Recent 11(1) 7-10
[23] Sivanandam S N and Sumathi Sand Deepa S N 2007 Introduction to Fuzzy Logic using MATLAB (Berlin, Heidelberg: Springer-Verlag)
[24] Khosla A, Kumar S, Aggarwal K and Kand Singh J 2006 A Matlab Implementation of Swarm Intelligence based Methodology for Identification of Optimized Fuzzy Models (Berlin, Heidelberg: Springer-Verlag)
[25] Catana I, Safta C A and Panduru V 2004 Modelarea si conducerea proceselor prin tehnici de inteligenta artificiala (Bucharest: Printech Publishing House) vol.1
[26] Norgaard M 2000 Neural network for modeling and control of dynamic system (London: Springer–Verlag)

Acknowledgement
This work was supported by a National Research Grants of the “Gheorghe Asachi” Technical University of Iasi, Romania, project number GnaC2018_119.