INTRODUCTION

With the improvement of living standards and aging population growth, the incidence of atherosclerosis keeps increasing year by year.\(^1\)\(^2\) The incidence of cardiovascular disease in middle-aged women is lower than middle-aged men, but the morbidity of postmenopausal women has gradually increased, and the incidence of 65 to 70 years old female is equal to male.\(^3\) Because estrogen can protect the vascular endothelial cells,\(^4\) inhibit the proliferation of vascular smooth muscle cells proliferation,\(^5\) reduce blood fat,\(^6\)\(^7\) and help prevent clotting.\(^8\) The decline of estrogen is one of the important reasons which leads to coronary heart disease in postmenopausal women. Blood lipids, inflammation, and coagulation are closely related with coronary artery disease.\(^9\) Thereby, the relationship of estrogen and coronary heart disease have become a focus of study recently.\(^10\) The levels of estrogen and hormones are used to predict the occurrence and recurrence of coronary heart disease.\(^11\) The relationship between serum estrogen level and traditional coronary heart disease risk factors has been detected.\(^12\) The relationship between coronary heart disease and other risk factors in women has been detected,\(^13\) but the reports on the relationship between estrogen and coronary heart disease are rare.

Therefore, the levels of estrogen were determined in postmenopausal women with coronary heart disease. The objective of this study was to investigate the correlation between serum estrogen levels and blood stasis syndrome in postmenopausal women with coronary heart disease.
stasis syndrome (BSS) is the important pathological procedure of occurrence and development of cardiovascular disease. In this study, we took postmenopausal women with coronary heart disease as research subjects and explored the relevance between blood stasis and estrogen levels to provide a new target and ideas for the prevention and treatment of cardiovascular disease in postmenopausal women.

METHODS

Reagents: Electrochemiluminescence assay kit of estrogen was from Roche Diagnostics GmbH, Germany (batch NO. 167224-01), and Enzyme-linked immune sorbent assay (ELISA) kit of soluble intercellular adhesion molecule 1 (sICAM-1) was from R&D, USA (batch NO. 10-31-421).

Diagnostic Standard: All the patients were diagnosed as having coronary heart disease (CHD) according to diagnostic criteria established by AHA and ACC (1999 version). The BSS cases had to conform to the 1986 revised diagnostic criteria.

Inclusion Criteria: The selected patients were the postmenopausal women who were 45 to 75 years old, natural menopause more than one year, and on their first visit a doctor for CHD.

Exclusion Criteria: Excluded were patients with serious infections, autoimmune diseases, severe ventricular dysfunction (EF <35%), grade III uncontrolled hypertension, severe vascular heart disease, diabetes, those with severe diseases of liver, kidney, hematopoietic system, primary nervous system or mental illness or cancer, women having medical history of major reproductive system disease. Especially the patients who had previous long-term use of lipid-lowering drugs, antiplatelet drugs for secondary prevention and therapy of coronary heart disease should be excluded. Those who were taking estrogen or had taken estrogen and were not in the washout period were also excluded.

General Data and Grouping: In total, 43 patients with CHD were enrolled from Beijing Anzhen Hospital during April 2012 to January 2013, aged 45 to 75 (64.01±6.60 years), who were divided into two groups: the BSS group (23 patients with BSS) and the NBBS group (20 patients with non-blood stasis syndrome). Meanwhile a normal control group consisted of 25 healthy postmenopausal women randomly selected from the health checking of Xiyuan Hospital, aged 45 to 75 (62.30±5.11 years), without any diseases in the heart, brain, liver, kidney, thyroid gland, without hypertension, hyperlipidemia and diabetes mellitus (this was made sure with physical examination, blood routine test, laboratory examination on biological indexes, B-ultrasonic examination and X-ray chest film and electrocardiogram). All the subjects enrolled in this study gave informed consent. This study was approved by the Hospital Ethics Committee.

Data Collection and Indicator detection: The data included age, weight, height, smoking history, menopausal time, history of hypertension, diabetes mellitus, hyperlipidemia. All the patients were taken fasting venous blood for inspection at 8:00 the next morning after admission. The routine indicator was detected by Beijing Anzhen Hospital’s laboratory. The serum was separated for the testing of estradiol and sICAM-1 and stored at -80°C. The estradiol was analyzed with electrochemiluminescence assay by Xiyuan Hospital’s laboratory and the level of sICAM-1 was analyzed with ELISA. Operation tests were all carried out according to the kit instructions strictly.

Statistical Analysis: Measurement data which conformed the normal distribution were expressed as the mean±standard deviation (mean±SD), the one which didn’t conform the normal distribution were expressed as median (maximum, minimum). The non-normal distribution was converted into normal distribution by using Ln logarithmic conversion. Differences between two groups were tested using the two independent samples t-test. Differences among groups were tested using One-way ANOVA, followed by multiple comparisons by LSD test. The correlations between the indicators were analyzed by Pearson correlation analysis. All calculations were performed with SPSS version 17.0 software, and P values less than 0.05 were considered statistically significant.

RESULTS

Comparison of Baseline Data between Groups: There was no significant difference among the healthy control group (Control), the blood stasis syndrome group (BSS), and the non-blood stasis syndrome group (NBSS) in age, body mass index (BMI), menopausal time, and smoking history ($P>0.05$). There was no significant difference between the BSS group and NBBS group as regards hypertension, dyslipidemia, type 2 diabetes ($P>0.05$). (Table-I)

Comparison of E_2, TC, TG, sICAM-1 between the control group and CHD group: Compared with the healthy control group, the levels of TG and TC in CHD group was significantly increased ($P<0.01$),
the level of E₂ in CHD group was significantly decreased ($P < 0.05$), the level of sICAM-1 in CHD group tend to increase ($P > 0.05$). (Table-II)

Comparison of E₂, TC, TG, sICAM-1 between the BSS Group and NBSS Group: Compared with the healthy control group, the levels of TC and TG in BSS group and NBSS group were significantly increased ($P < 0.01$ or $P < 0.05$), but there was no difference between the two groups ($P > 0.05$). Compared with the healthy control group, the levels of E₂ in BSS and NBSS group were significantly decreased ($P < 0.05$), the level of E₂ in BSS tend to be lower than the one in NBSS group ($P > 0.05$).

Compared with the healthy control group, the level of sICAM-1 in BSS was significantly increased ($P < 0.05$), but there was no significant difference between the healthy control group and the BSS group. There was no difference between the BSS group and the NBSS group ($P > 0.05$). (Table-III)

Correlation Analysis: Pearson correlation analysis showed that there were negative correlations between serum E₂ levels and TC, sICAM-1 levels in postmenopausal women with coronary heart disease ($r = -0.585$, $r = -0.796$, $P < 0.01$). (Fig.1) Among them, there were negative correlations between serum E₂ levels and TC, sICAM-1 levels in BSS group ($r = -0.621$, $r = -0.789$, $P < 0.01$), and there were negative correlations between serum E₂ levels and TC, sICAM-1 levels in NBSS group ($r = -0.621$, $r = -0.789$, $P < 0.01$), and there were negative correlations between serum E₂ levels and TC, sICAM-1 levels in NBSS group ($r = -0.621$, $r = -0.789$, $P < 0.01$).

Table II: Comparison of baseline data between groups (mean±SD or case)

Group	n	Age(y)	BMI	The Menopausal Time(y)	Smoking (case)	Hypertension (case)	Dyslipidemia (case)	Type 2 Diabetes (case)
Control	25	62.30±5.11	24.89±2.24	10.97±6.27	0	–	–	–
BSS	23	63.83±6.74	25.54±2.98	13.97±8.07	1	19	20	15
NBSS	20	64.19±6.45	24.93±3.01	11.72±5.99	1	17	20	13

Table III: Comparison of E₂, TC, TG, sICAM-1 between the BSS Group and NBSS Group (mean±SD or median (max, min)).

Group	n	TG/(mmol/L)	TC/(mmol/L)	E₂(ng/L)	sICAM-1(ng/L)
Control	25	1.04 (0.64, 2.20)	4.09±0.12	56.18±17.11	306.93±20.05
CHD	43	1.68 (0.44, 3.85)▲▲	4.83±0.16▲▲	39.37±11.63▲	321.68±23.58

Note: ▲ $P<0.05$, ▲▲ $P<0.01$, compared with the healthy control group.

Fig.1: Correlations between Serum E₂ Levels & TC, sICAM-1 Levels in Postmenopausal Women with Coronary Heart Disease.
levels and TC, sICAM-1 levels in NBSS group (r = -0.604, r = -0.810, P < 0.01). (Fig. 2 and 3) Spearman correlation analysis showed that there were no correlation between E₂ and TG in postmenopausal women with coronary heart disease (r = -0.131, P > 0.05).

DISCUSSION

Studies have showed that postmenopausal women with coronary heart disease can benefit from estrogen replacement therapy.⁹ In early menopause, estrogen replacement therapy or estrogen-progestin combination therapy on postmenopausal women with CHD could reduce the level of LDL-C and increase the level of HDL-C.¹⁰ This effect of estrogen may act directly on the vessel wall by combining with the estrogen receptor to affect the deposition of lipids in the vessel wall. Estrogen combines with the receptor on the liver cells, which activates the enzymes affecting the lipid metabolism, accelerates the clear of remnant chylomicrons, promotes the uptake of remnant VLDL and LDL, facilitates bile acid secretion, removes cholesterol, increases apoA synthesis, and elevates plasma HDL-C.¹¹

Compared with the healthy postmenopausal women, the level of E₂ in postmenopausal women with coronary heart disease was decreased, but the levels of TC and TG were increased.¹² The blood stasis syndrome is the main type of TCM types for CHD.¹³ Previous study had showed that compared with the healthy control group, the levels of TC, TG, and LDL in patients with CHD were all increased, and the HDL level was decreased; the lipid metabolism disorder in patients with phlegm turbidity syndrome was serious than the patients with BSS.¹⁴ The level of Lp(a) in CHD patients with BSS was significantly higher than the patients with non-blood stasis syndrome, which elucidated there might be relationship between the BSS and Lp(a).¹⁵ In all types of CHD, the level of TG in patients with BSS was higher than the patients with phlegm
Intercellular adhesion molecule-1 (ICAM-1) belongs to the immunoglobulin super family. A variety of cells, such as vascular endothelial cells, leukocytes, epithelial cells can express ICAM-1, and vascular endothelial cells have the strongest expression. It is the expression of the ICAM-1 in fingerprints and fibrous plaques of patients with AS that is the early pathological changes of AS and the potential mechanism of Plaque development, which is correlated with the severity of AS. Expressed ICAM-1 on the cell surface sheds into the blood to become sICAM-1. The amount of sICAM-1 is proportional to the number of cell surface molecules, and the concentration of sICAM-1 was indirectly reflecting the expression of ICAM-1 on endothelial cells and antigen-presenting cell surface. A large amount of ICAM-1 expresses on the surface of endothelial cells, and binds with ligand on the inflammatory cell surface, which helps the inflammatory cells attach to the endometrial cells to provide the conditions for further infiltration. The expression of ICAM-1 in the plaque of patients with CHD is significantly increased. Oral estrogen can reduce serum sICAM-1 to prevent the early process of atherosclerotic. A number of studies have confirmed that compared with the non-blood stasis syndrome group and healthy control group, the levels of hs-CRP, sICAM-1, sVCAM-1 in coronary blood stasis syndrome group are significantly increased.

On the basis of the above, this study chose postmenopausal women with coronary heart disease as the research object and found that compared with the healthy postmenopausal women, the serum sICAM-1 tended to increase in postmenopausal women with coronary heart disease, and E2 and sICAM-1 levels were negatively correlated in CHD group. Further subgroup analysis found that serum sICAM-1 levels were incremental increased in the healthy control group, non-BSS group and BSS group, and sICAM-1 level in BSS group was significantly higher than the other two groups, which indicated that during the pathological process of atherosclerosis, patients with coronary blood stasis syndrome were subjected to more severe chronic inflammatory reactions than the patients with non-blood stasis syndrome, and E2 levels and sICAM-1 were negatively correlated. The study showed that estrogen may improve lesion of atherosclerosis by regulating endothelial function, reducing the adhesion between white blood cells, platelets and endothelial cells.

In conclusion, the level of E2 in postmenopausal women with CHD was lower than the level in the healthy postmenopausal women, and the CHD patients with BSS had a lower E2 level further, which could infer that the postmenopausal women who had a lower E2 level were susceptible to cardiovascular disease. When endothelial cells are damaged and activated, they increasingly secret adhesion molecules, which has close relationship with BSS. There are correlation between adhesion molecules and BSS. Estrogen could lower blood lipid and plasma sICAM-1 to regulate the vascular endothelial function and the adhesion between platelets, leukocytes and endothelial cell. However, the mechanism of vascular protective effects needs further study.
Note: Supported by National Natural Science Foundation of China (No. 81173584) and Beijing Natural Science Foundation (No.7122157).

REFERENCES
1. Pipe A. Cardiovascular disease prevention: talking occurs at all levels—does understanding? Can J Cardiol. 1995;11(Supp1 A:2A-3A).
2. Mendis S1, Chestnov O, et al. The global burden of cardiovascular diseases: a challenge to improve. Curr Cardiol Rep. 2014;16(5):486. doi:10.1007/s11886-014-0486-3.
3. Rosano GM, Vitale C, Silvestri A, et al. Hormone replacement therapy and cardio protection: the end of the tale? J Am N Y Acad Sci. 2003;997:351-357.
4. Liao Q, Li X, Zhou S, et al. Estrogen treatment inhibits vascular endothelial senescence and asymmetrical dimethylarginine in ovariectomized rabbits. J Cardiovasc Pharmacol. 2011;57(2):174-82. doi:10.1097/FJC.0b013e31820270bb.
5. Ueda K, Lu Q, Baur W, et al. Rapid estrogen receptor signaling mediates estrogen-induced inhibition of vascular smooth muscle cell proliferation. Arterioscler Thromb Vasc Biol. 2013;33(8):1837-43. doi:10.1161/ATVBAHA.112.300752.
6. Crook D, Montgomery JC, Godsland IF, Devenport M, Marenah CB, Studd JW, et al. Lipid and carbohydrate metabolism in premenopausal women given subdermal estradiol implants. Horm Metab Res. 1991;23(4):174-177. DOI: 10.1055/s-2007-1003645.
7. Rifci VA, Khachadurian AK. The inhibition of low-density lipoprotein oxidation by 17-beta estradiol. Metabolism. 1992;41(10):1110-4.
8. Rackley CE. Hormones and coronary atherosclerosis in women. Endocrine. 2004;24(3):245-50.
9. Samaan SA, Crawford MH. Estrogen and cardiovascular function after menopause. J Am Coll Cardiol. 1995;26(6):1403-10.
10. Egeland GM, Kuller LH, Matthews KA, et al. Hormone replacement therapy and lipoprotein changes during early menopause. Obstet Gynecol. 1990;76(1):776-82.
11. Knopp RH, Zhu X, Bonet R. Effects of estrogens on lipoprotein metabolism and cardiovascular disease in women. Atherosclerosis. 1994;110:83-91.
12. Jiang J, Lv BJ, Lu QF. Effect of estrogen on the lipid metabolism and coagulation system in patients with CHD. Chinese J Postgrad Med. 2003;9(269):17-18.
13. Zhang JC, Chen KJ. The theory thinking on the relationship between stasis toxic pathogenesis and vulnerable plaques of atherosclerosis. Chin J Integr Med. 2008;28(4):366-368.
14. Cai SM, Huang FS. Relationship between TCM syndrome and blood lipids in patients with coronary heart disease. Fujian J TCM. 1999;30(6):12.
15. Jin ZG, Zhou D, Gu RY, et al. Research of blood stasis syndrome of coronary heart disease and serum Lp(a). J Henan College of TCM. 1995;10(3):28229.
16. Wei Z, Fu R. Comparison of carotid ultrasonography in blood stasis syndrome, phlegm turbidity syndrome, and other syndrome of coronary heart disease. Chin J Integr Med Cardio/Cerebrovasc Dis (Chin). 2008;8(6):899-900.
17. Vanhoutte PM. Endothelial dysfunction and atherosclerosis. Eur Heart J. 1997;18(Suppl E):E19-29.
18. Tenaglia AN, Buda AJ, Wilkins RG, et al. Levels of expression of P-selectin, E-selectin, and intercellular adhesion molecule-1 in coronary atherectomy specimens from patients with stable and unstable angina pectoris. Am J Cardiol. 1997;79(6):7-12.
19. Scarabin PY, Alhenc-Gelas M, Oger E, et al. Hormone replacement therapy and circulating ICAM-1 in postmenopausal women—a randomized controlled trial. Thromb Haemost. 1999;81(3):673-5.
20. Mao YL, Tan GB, Yuan ZK, et al. Correlation between CRP, sICAM-1 and blood stasis syndrome of coronary heart disease. Journal of New Chinese Medicine. 2007;39(3):25-26.
21. Zhu QX. Correlativity between Plasma soluble intercellular adhesion molecule and types of TCM syndromes in patients with coronary heart diseases. Chinese J Basic Med TCM. 2007;13(11):842-843.
22. Yuan ZK, Huang XP, Tan GB, et al. Analysis of the function of vascular endothelial cells in coronary heart disease patients of blood-stasis syndrome. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2006;26(5):407-410.
23. Li Y, Liu WX. Correlation between plasma sICAM-1, sVCAM-1 levels and coronary heart disease QDBS. Journal of Shan dong university of TCM. 2012;36(6):487-488.
24. Lin GY, Wang ZJ. The relationship between coronary heart disease and dysfunction of the endothelial cell. Chin J Integr Med Cardio/Cerebrovasc Dis (Chin). 2005;3(10):856-858.

Authors Contribution:
Xin Liu conceived, designed and did statistical analysis and manuscript writing.
Chunyu Guo, did data collection and editing of the manuscript.
Xiaojuan Ma, Rui Tian, Ying Zhang, did data collection.
Huijun Yin, did review and final approval of manuscript.
Xin Liu takes the responsibility and is accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.