Tuning the phase transition dynamics by variation of cooling field and metastable phase fraction in Al doped Pr$_{0.5}$Ca$_{0.5}$MnO$_3$

Devendra Kumar, Kranti Kumar, A Banerjee and P Chaddah

UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore-452001, India

E-mail: deven@csr.res.in

Received 23 May 2012, in final form 1 August 2012
Published 24 August 2012
Online at stacks.iop.org/JPhysCM/24/386001

Abstract

We report the effect of field, temperature and thermal history on the time dependence in resistivity and magnetization in the phase separated state of Al doped Pr$_{0.5}$Ca$_{0.5}$MnO$_3$. The rate of time dependence in resistivity is much higher than that of magnetization and it exhibits a different cooling field dependence due to percolation effects. Our analysis shows that the time dependence in physical properties depends on the phase transition dynamics, which can be effectively tuned by variation of temperature, cooling field and metastable phase fraction. The phase transition dynamics can be broadly divided into the arrested and unarrested regimes, and in the arrested regime this dynamics is mainly determined by time taken in the growth of critical nuclei. An increase in cooling field and/or temperature shifts this dynamics from the arrested to unarrested regime, and in this regime, this dynamics is determined by the thermodynamically allowed rate of formation of critical nuclei, which in turn depends on the cooling field and available metastable phase fraction. At a given temperature, a decrease in metastable phase fraction shifts the crossover from arrested to unarrested regimes towards lower cooling field. It is rather significant that in spite of the metastable phase fraction calculated from resistivity being somewhat off that of magnetization, their cooling field dependence exhibits a striking similarity, which indicates that the dynamics in arrested and unarrested regimes are so different that it comes out vividly provided that the measurements are performed around the percolation threshold.

(Some figures may appear in colour only in the online journal)

1. Introduction

The study of the broad first-order phase transition and the associated phase separated (PS) state in the transition metal oxides has drawn significant attention in the past few decades [1]. The PS state consists of coexisting metastable and stable phases with distinct free energies, and in this state the physical properties of the system can be varied dramatically on changing fields such as the magnetic field, pressure, electric field etc [2–4]. These interesting manifestations of the phase coexistence are mainly attributed to a field-induced variation in the phase fraction of the coexisting phases [5]. A large number of such PS systems exhibit dynamical effects, such as, time dependence in physical properties [6–15], cooling and heating rate dependence [7, 12, 16], 1/f noise [17], and aging and rejuvenation effects [7, 12]. The existence of these dynamical effects in the PS state has been attributed to the transformation of the metastable phases, each having a distinct temperature of metastability, to a stable state [11–14]. This transformation is a two step process, the first step is the formation of critical nuclei, where the rate as well as size of formation is decided.
by the difference in free energy of the metastable and stable state, while the second step is the growth of these critical nuclei to complete the phase transformation with a rate of growth depending on the temperature of the measurement [18, 19].

The growth of stable phase critical nuclei in the metastable phase happens through the motion of a stable–metastable phase interface, which in turn depends on the kinetics of the constituent atoms, and recent resonant ultrasound spectroscopy measurements on $\text{La}_{0.215}\text{Pr}_{0.41}\text{Ca}_{0.58}\text{Mn}_3\text{O}_3$ suggest that the time constant associated with this interface motion (or growth of critical nuclei) is of the order of microseconds [20]. On lowering the temperature the atomic motion slows down, thus, some of the metastable phases may approach their respective temperature of kinetic arrest (T_g). Below T_g, the dynamics of stable–metastable phase interface motion freezes, which blocks the growth of critical nuclei [20]. The freezing of interface motion hinders the metastable to ground state transformation at the experimental timescale, or in other words the kinetics of the first-order transformation is arrested below T_g [21]. For a magnetic transition, experiments performed on a wide range of materials show that the temperature of kinetic arrest T_g depends on the applied field, and for the ferromagnetic ground state T_g decreases on increasing the field while for the antiferromagnetic ground state T_g increases on increasing the field [10, 15, 22]. This result has been argued on heuristic grounds and is found to be consistent with Le Chatelier’s principle [5, 23]. In these systems, the kinetics of a phase can change from the arrested to unarrested regime on varying the magnetic field and temperature. To understand the dynamical effects observed in the phase separated state it would be quite intriguing to investigate how the nucleation and growth process are affected by the magnetic field and temperature and how their field and temperature dependence affect the dynamical properties.

To address these issues we have performed detailed field-, temperature- and thermal-history-dependent time decay measurements on 2.5% Al doped $\text{Pr}_{0.5}\text{Ca}_{0.5}\text{Mn}_3\text{O}_3$ (PCMAO). Most of the functional applications of such perovskite oxides use their magneto-resistive properties in the phase separated state [24]. This is because the metallic and insulating phases of these systems have a wide difference in resistivity and, in the percolation regime, a small change in phase fraction on varying the field or temperature manifests in a huge change in resistivity. Therefore in the percolative regime of the phase separation, the resistivity is very sensitive to the change in phase fraction, and accordingly we have carried out time-dependent resistive measurements in the percolative regime to observe the optimum effect of phase transition dynamics. The conclusions drawn from the resistivity measurements are also corroborated by magnetization measurements. PCMAO is an antiferromagnetic insulator (AF-I) at higher temperature and has a ferromagnetic metallic (FM-M) ground state, but on zero-field cooling the kinetics of the AF-I to FM-M transition gets arrested and therefore PCMAO remains in the AF-I state even at low temperatures [10]. On increasing the cooling field, the kinetics of a fraction of AF-I phases does not arrest during cooling, and the transformation of these unarrested AF-I phases to the FM-M state enhances the FM-M phase fraction at low temperatures [23, 25].

In this work we have performed detailed temperature-, time- and cooling-field-dependent resistivity and magnetization measurements on PCMAO to understand the effect of various dynamic mechanisms on the rate of phase transition and the associated dynamical effects. Our results show that the time-dependent effects observed in the physical properties of PCMAO depend on the cooling field, temperature of measurement, and thermal cycling. At a fixed temperature, an increase in cooling field shifts the kinetics of the metastable AF-I phases from the arrested to unarrested regime. Further, this crossover from arrested to unarrested dynamics happens at a lower cooling field on reducing the non-equilibrium phase fraction by thermal cycling (heating run). A detailed analysis of the experimental results show that in the unarrested regime, the observed rate of transformation from metastable AF-I to FM-M state is determined by the thermal energy, energy of nucleation, and volume fraction of metastable AF-I phases. At constant temperature, an increase in magnetic field reduces the energy of nucleation and the volume fraction of metastable AF-I phases, and so the field dependence of the observed rate of transformation is decided by the competition between the field dependence of these two factors.

2. Experimental details

The $\text{Pr}_{0.5}\text{Ca}_{0.5}\text{Mn}_{0.975}\text{Al}_{0.025}\text{O}_3$ (PCMAO) sample used in this study is the same as used in [10, 23, 25, 26]. The polycrystalline samples of PCMAO are prepared by standard solid state reaction technique using 99.99% pure Pr_6O_{11}, CaCO_3, MnO_2, and Al_2O_3 in stoichiometric ratio. The details of sample preparation and characterization are given elsewhere [27]. The resistivity and magnetization measurements were performed on a Quantum Design 14 T physical properties measurement system-vibrating sample magnetometer system. The magnetic field is changed only at room temperature and the superconducting magnet was kept in persistent mode during cooling, heating, and the time decay measurements. A cooling and heating rate of 1.5 K min$^{-1}$ is used throughout the experiments.

3. Results and discussion

Figure 1 shows the resistivity of PCMAO in the cooling run in various magnetic fields. We can see that PCMAO, which remains an insulator in the absence of a field, exhibits a broad insulator to metal transition at low temperatures on cooling in the presence of 2 T or higher field. The inset of figure 1 displays the magnetization of PCMAO at 3 T field. The magnetization also exhibits a concurrent antiferromagnetic (AF) to ferromagnetic (FM) transition with a thermal irreversibility in the cooling and heating cycle, which confirms that the transition from antiferromagnetic insulating (AF-I) to ferromagnetic metallic (FM-M) state is a disordered broadened first-order transition. The resistivity curves show that on increasing the cooling field, the AF-I
to FM-M transition shifts towards higher temperature, with a simultaneous drop of the low-temperature resistivity. The relative drop in low-temperature resistivity is huge at lower cooling fields (~2 T) and it decreases on increasing the cooling field (see figure 1). This drop in low-temperature resistivity is due to field-induced variation of the phase fraction of coexisting FM-M and AF-I phases which determine the resistivity in association with percolation effects. Our earlier work on PCMAO has established that the PCMAO has an FM-M ground state and the fraction of AF-I phase present is the outcome of the glass-like arrest of the kinetics of the first-order AF-I to FM-M phase transition. The fraction of arrested AF-I phases can be tuned by choosing different paths in H–T space [10, 23, 25]. In the cooling process, resistivity deviates from the insulating curve when the FM-M phase starts appearing, and on further lowering the temperature the FM-M phase fraction increases and the resistivity changes sign in its slope. Cooling below this temperature, the FM-M phase fraction further increases, causing a further drop in resistivity, then, at around 28 K, the slope of the resistivity becomes nearly constant, indicating the slowing down of the kinetics of AF-I to FM-M phase transformation. This change in the slope of resistivity around 28 K is steep at low fields and becomes gradual on increasing the field.

To understand the dynamics of transformation of the non-equilibrium AF-I phase into the equilibrium FM-M state, particularly to study the effect of control parameters such as field, temperature, and path in H–T space on the approach towards equilibrium, we have performed time dependence measurements at 28, 25 and 24 K using different paths in H–T space. In the cooling cycle measurements, we cool the sample from room temperature to the temperature of interest in the presence of the field and then resistivity is recorded as a function of time, keeping field constant. Figure 2 shows the time-dependent resistivity data at 28 K in the cooling run for various cooling fields. The data is presented as \(\rho(t)/\rho(0) \) (where \(\rho(0) \) is the resistivity at \(t = 0 \)) so that the different field values are normalized for easy comparison. We note that the resistivity decreases with time, which indicates that the AF-I phases, which are in their supercooled metastable state, slowly transform to the FM-M ground state. The inset of figure 2 shows the magnetization versus temperature cycle at the measuring field of 3 T.

The abrupt enhancement in \(\Delta\rho/\rho(0) \) of about 10 cm [25] and, on decreasing the cooling field, the \(\rho(0) \) increases to around \(10^6 \Omega \text{ cm} \) (at 2 T), indicating that the percolation threshold is somewhere in between. The large \(\rho(0) \) values of the low-field cooled curves clearly indicate that metallic regions have formed in patches but are below the percolation limit. The system crosses the percolation threshold only on increasing the cooling field. The cooling field dependence of \(\rho(0) \) shows a change in slope around 2.9 T, which indicates a possible change in predominant transport mechanism and therefore the possibility of a percolation threshold around 2.9 T. \(\Delta\rho/\rho(0) \) gives the rate of resistivity decay; it decreases on increasing the cooling field, exhibits a sudden jump around 2.9 T and thereafter decreases on further increasing the cooling field. The abrupt enhancement in \(\Delta\rho/\rho(0) \) around 2.9 T indicates that the percolation threshold is approached during the aging process, and therefore it confirms our earlier observation that the percolation threshold occurs around 2.9 T cooling field.

To understand the resistivity measurements, we have also performed time-dependent magnetization measurements at 28 K. In these measurements we cool the system from room temperature to the temperature of interest in the presence of the field, wait for temperature stabilization and then record magnetization as a function of time, keeping the field constant. The time dependence of magnetization at 28 K for different cooling fields is shown in figure 3. The data is presented as \(M(t)/M(0) \), so that different field data is normalized for easy comparison. The magnetization increases with time, which shows that the FM-M phase fraction increases at the expense of the AF-I phase. The inset of figure 3 shows the variation of \(M(0) \) (the magnetization at \(t = 0 \) for different fields) and \(\Delta M/M(0) \) (change in magnetization in 2 h normalized...
with $M(0)$. The $\Delta M/M(0)$ represents the growth rate of magnetization; it increases on increasing the field, attains a maximum at 3.15 T, and thereafter decreases on further increasing the field.

The time dependence in resistivity and magnetization are due to the same physical mechanism, namely, the transformation of AF-I metastable phases to the FM-M stable state; thus, the rate of change of $\Delta \rho/\rho(0)$ and $\Delta M/M(0)$ should exhibit a similar field dependence. But from the inset of figures 2 and 3 we can see that $\Delta \rho/\rho(0)$ is around an order of magnitude larger than $\Delta M/M(0)$ and it exhibits a different field dependence from that of $\Delta M/M(0)$. While $\Delta \rho/\rho(0)$ and $\Delta M/M(0)$ both exhibit a peak around 3.15 T, the $\Delta \rho/\rho(0)$ show an extra minimum around 2.75 T which is absent in $\Delta M/M(0)$. Since magnetization is a more direct probe of phase fractions, the larger magnitude of $\Delta \rho/\rho(0)$ and the presence of an extra minimum in the $\Delta \rho/\rho(0)$ versus H curve suggest that possibly these extra features in resistivity are coming from percolation effects.

To investigate it further we note that the resistivity of PCMAO is coupled to the AF-I and FM-M phase fraction through percolation effects, thus, the decay rate of resistivity does not exactly represent the time variation of the phase fractions. To get an idea of the time dependence of the phase fractions, we have converted the time-dependent resistivity data into the phase fraction using the McClachlan formula, which is based on a general effective medium (GEM) theory [28]. If σ_c is the effective electrical conductivity of a binary MI mixture, the GEM equation says

$$ (1 - f) \left(\frac{\sigma_1^{1/\gamma} - \sigma_c^{1/\gamma}}{\sigma_1^{1/\gamma} + A\sigma_c^{1/\gamma}} \right) + f \left(\frac{\sigma_M^{1/\gamma} - \sigma_c^{1/\gamma}}{\sigma_M^{1/\gamma} + A\sigma_c^{1/\gamma}} \right) = 0 \quad (1) $$

where f is the volume fraction of the metallic phases, $A = (1 - f_c)/f_c$. f_c is the volume fraction of metallic phases at the percolation threshold, and γ is a critical exponent, which is close to 2 in three dimensions [29, 30]. The constant f_c depends on the lattice dimensionality, and for 3D its value is 0.16 [31]. The GEM equation has been successfully applied to a wide variety of isotropic, binary, macroscopic mixtures and its applicability has been also tested on phase separated manganite La$_{5-y}$Pr$_y$Ca$_3$MnO$_5$, where it gives satisfactory results with standard t, but at very low temperatures $t = 4$ gives better results [32]. In order to calculate the volume fraction of AF-I and FM-M phases, we need the resistivity of the AF-I and FM-M metallic phases. Since below 28 K the change in resistivity on going from 8 to 10 T is quite small, we can assume that at 10 T cooling field the system is almost in the FM-M state. With this assumption, at 28 K or below, the FM-M phase resistivity can be obtained from 10 T cooled resistivity data. The AF-I phase resistivity is calculated by extrapolating the resistivity curves above the transition to low temperatures. Using these values, we have converted the time-dependent resistivity data into the time-dependent AF-I (non-equilibrium) phase fraction ν_{neq}. A subset of time-dependent resistivity data converted to the non-equilibrium phase fraction is shown in figure 4. The time decay of the non-equilibrium phase fraction fits best with the stretched exponential relaxation function

$$ f_{neq}(t) = f_{neq}(0)(1 - D(1 - e^{-t/t})^\gamma) \quad (2) $$

where $f_{neq}(0)$ is the phase fraction of the non-equilibrium phase at $t = 0$; D, t, and γ are fit parameters. The parameter D is a rate constant that determines how fast conversion from the AF-I to FM-M phase will occur and what fraction of volume will finally convert. In figure 5 we have plotted the cooling field dependence of $f_{neq}(0)$ and D and we can see that the extra minimum that is present in the decay rate of resistivity disappears when the decay rate of resistivity is converted to the decay rate of non-equilibrium phase fraction.
behaves as FM and this portion of M completely FM-M phases. On reducing the field, the system phase converts to the FM-M phase and at 14 T we have AF-I phase at any field. On increasing the field, the AF-I of this AF and the initial M phase fraction the contribution from constituent phases and their respective field. The extrapolation of the non-equilibrium phase fraction deduced from the time-dependent magnetization data is fitted with the stretched exponential function of equation (2), which gives the \(f_{\text{neq}}(0) \) and decay rate \((D) \) for various cooling fields. This cooling field dependence of \(f_{\text{neq}}(0) \) and \(D \) is compared with that of resistivity in figure 5.

The \(f_{\text{neq}}(0) \) calculated from the time-dependent resistivity data at 28 K is somewhat off that of magnetization measurements, which suggests that our resistivity to volume conversion is adding some error in the value of \(f_{\text{neq}}(0) \). But the similar cooling field dependence of \(f_{\text{neq}}(0) \) and \(D \) of the resistivity and magnetization indicates that the error added in the calculation of \(f_{\text{neq}}(0) \) does not change their cooling field dependence. The similarity in the field dependence of \(f_{\text{neq}}(0) \) and \(D \) obtained from resistivity and magnetization measurements, even when they have different absolute values, is quite surprising. However, this brings out an important aspect that the dynamics in the supercooled (unarrested) and kinetically arrested regimes are so different that it will show even if the details of the percolating network are not accurately modeled (as it is not taken care of in equation (1)), as long as the resistivity is measured around the percolation threshold, which is evident from figure 5(a). In this study, the resistivity around the percolation threshold is chosen by tuning the metallic (FM-M) phase fraction accrued while cooling in a different chosen magnetic field range. Therefore even if shifted, the \(f_{\text{neq}}(0) \) and \(D \) values calculated from resistivity give the proper field dependence and are good enough to be used in qualitative analysis.

To study the effect of temperature and non-equilibrium phase fraction on the dynamics of the phase transformation, we have also performed time-dependent resistivity measurements at 25 K in the cooling run, and at 24 K and 28 K in the heating run. In the heating run, the system was cooled from room temperature to 5 K in the presence of the field and then heated back to the temperature of interest, then, after temperature stabilization, the resistivity was recorded as a function of time keeping the field constant. These time-dependent resistivity results are also converted to volume fraction and fitted to equation (2) to get the characteristic parameters \(D \) and \(f_{\text{neq}}(0) \). In figure 5 we have compared the \(H-T \) path dependence of \(D \) and \(f_{\text{neq}}(0) \).

The field variation of \(f_{\text{neq}}(0) \) is quite small up to 2.9 T, and thereafter \(f_{\text{neq}}(0) \) decays rapidly on increasing the field. This suggests that in approaching the set temperature, depending on the cooling field, two entirely different dynamical mechanisms determine the initial AF-I phase fraction. Below 2.6 T cooling field, \(f_{\text{neq}}(0) \) does not exhibit any significant temperature or thermal history dependence, this suggests that the phase fraction of AF-I and FM-M phases does not change on varying the temperature from 28 to 25 K, 25 to 5 K, and heating back to 24 K and then to 28 K. The

\[
M = M_{\text{AF}} f_{\text{neq}} + M_{\text{F}} (1 - f_{\text{neq}}). \tag{3}
\]

\(^2\) We have used the 30 K M–H loop in calculating the magnetization of the FM-M and AF-I phases. This gives a 4% lower magnetization value for the FM-M phase at 2 T, this error decreases on increasing the field and at 4 T it is 1%. The error in the value of the AF-I phase magnetization is negligible.

Figure 5. (a) \(f_{\text{neq}}(0) \) and (b) \(D \) versus cooling field at different temperatures and thermal cycle. The symbols in (a) and (b) are the same for a particular temperature and run.

This confirms that it was originating from the percolation effects.

For a proper comparison of the magnetization results with that of resistivity, the magnetization data is also converted to phase fractions. We have used the zero-field cooled \(M-H \) curve at 30 K to perform this conversion\(^2\).

The zero-field cooled state is the fully arrested AF-I phase and the initial \(M-H \) curve behaves like AF. The extrapolation of this AF \(M-H \) curve can give the magnetization of the AF-I phase at any field. On increasing the field, the AF-I phase converts to the FM-M phase and at 14 T we have completely FM-M phases. On reducing the field, the system behaves as FM and this portion of \(M-H \) curve can be used to obtain the magnetization of the FM-M phase at any given field. Now the magnetization \((M) \) can be expressed in terms of the contribution from constituent phases and their respective phase fraction

\[
M = M_{\text{AF}} f_{\text{neq}} + M_{\text{F}} (1 - f_{\text{neq}}). \tag{3}
\]
temperature and thermal history (the difference in cooling and heating cycle) dependence of $f(0)_{\text{neq}}$ increases on increasing the field and this difference in $f(0)_{\text{neq}}$ between the cooling and heating cycle becomes nearly constant above 2.9 T cooling field. This implies that a crossover from one dynamic regime to the other happens around 2.9 T.

Now to understand the dynamical mechanisms mentioned in the above paragraph we recall that in a broad first-order transition system, the temperatures related to thermodynamic transition (T_c), limit of supercooling (T^*), limit of superheating (T^{**}), and kinetic arrest (T_g) are distributed over a range arising from different regions of the sample. Below the transition temperature, PCMAO has an FM-M ground state but the AF-I phases may exist in their metastable state. The AF-I phases present in their metastable state can transform to the FM-M ground state and the rate of transformation is determined by two different dynamical process having different time constants. Of these, the first process is thermodynamic, which gives the time constant of formation of FM-M phase critical nuclei in the metastable AF-I phase (τ_1), with time constant (and so the thermodynamically allowed rate of transformation) being completely determined by the energy of nucleation. The second process is the growth of FM-M phase critical nuclei to complete the thermodynamically allowed transformation. This process depends on the kinetics of the constituent atoms and it slows down exponentially on approaching the temperature field (T_g-H_g) of kinetic arrest. Far above T_g-H_g (unarrested regime) the time taken in the growth of critical nuclei (τ_2) is small [20] and so the rate of transformation is primarily determined by the energy of nucleation. On approaching T_g-H_g, the time taken in the growth of critical nuclei progressively increases and at some temperature crosses over the time in which the transformation is thermodynamically allowed. Below this temperature–field value (arrested regime) the rate of transformation is mainly determined by the time taken in the growth of the critical nuclei.

In figure 5(a), the change in cooling field dependence of $f(0)_{\text{neq}}$ on lowering the field below 2.9 T suggests a crossover from unarrested to arrested dynamics. Around 2.9 T, τ_1 and τ_2 are comparable and τ_2 increases exponentially on decreasing the cooling field. Below 2.6 T, $f(0)_{\text{neq}}$ has negligible field, temperature and thermal history dependence. This indicates that in this field region τ_2 is huge in comparison to τ_1 and so the system is in the arrested regime. Above 2.9 T, the system moves outside the region of kinetic arrest and in this field region the rate of transformation is mainly determined by the energy of nucleation. In this unarrested regime, a fraction of AF-I phases transforms to the FM-M state during thermal cycling (28 K–5 K–28 K) and this transformation gives a thermal history dependence in $f(0)_{\text{neq}}$. We also note that in the 28 K heating run, the change in cooling field dependence of $f(0)_{\text{neq}}$ happens at a lower field in comparison to the cooling run. At the same temperature, the heating run $f(0)_{\text{neq}}$ is small compared to that of the cooling run and this suggests that on lowering $f(0)_{\text{neq}}$ the crossover from unarrested to arrested dynamics happens at a lower field.

Figure 5(b) shows the variation of decay rate (D) with cooling field at different temperatures and also with thermal history. At 28 K, the cooling field dependences of decay rates obtained from resistivity and magnetization measurements are qualitatively similar. The decay rate is quite small at low cooling fields. This is because at low cooling field we are in the region of kinetic arrest and so the time taken in the growth of critical nuclei (τ_2, which is huge) dominates the transformation rate and this results in a smaller decay rate. On increasing the field, AF-I phases start moving away from the region of kinetic arrest and this reduces the τ_2, which results in a weak growth in the decay rate. Above 2.9 T cooling field, the decay rate exhibits a faster growth on increasing the cooling field. This is because above 2.9 T, the system is away from the region of kinetic arrest and now the rate of transformation is decided by the energy of nucleation. The energy of nucleation depends on the difference in the free energies of the supercooled metastable and the ground state and it decreases as this difference increases [19]. In PCMAO the metastable state is AF-I and the ground state is FM-M; the increase in field decreases the free energy of the FM-M state, which in turn enhances the free energy difference and reduces the energy of nucleation. Therefore the decay rate show a faster growth rate on increasing the field above 2.9 T. A comparison of the 28 K cooling and heating cycle decay rate suggests that the de-arrest happens at a lower field range on decreasing $f(0)_{\text{neq}}$. This is in agreement with the observation made in the previous paragraph.

In the 28 K cooling run, on increasing the cooling field above 3.25 T, the decay rate slowly decreases on increasing the field. The increase in cooling field lowers the nucleation energy. This lowering of nucleation energy enhances the allowed rate of transformation but it will increase the decay rate of AF-I phase fraction only until there are a certain number of supercooled metastable AF-I phases left. This is because the amount of volume transferred from the AF-I to FM-M state in a certain time period depends on the allowed rate of transformation and on the number of available metastable AF-I phases that can transform. In this case, as the field is increased above 3.25 T, $f(0)_{\text{neq}}$ decreases below 0.78 (of resistivity) and this decrease in available metastable AF-I phase fraction starts slowing down the decay rate D. When the temperature is lowered below 28 K the phase fraction of initial FM-M phase $(1-f(0)_{\text{neq}})$ increases. The enhancement in the number of FM-M phases increases the nucleation centers, which in turn decreases the energy of nucleation. Because of this, far from the kinetic arrest region, the decay rate of 28 K heating is higher than the decay rate of 28 K cooling. Similar is the case of 24 K heating and 25 K cooling. In a particular run (cooling or heating), the decay rate decreases on decreasing the temperature of measurement. This indicates that on temperature lowering the decay in nucleation energy is slower than the decay in thermal energy. At all temperatures, the decay rates start decreasing as the initial AF-I phase fraction goes below around 0.78 (of resistivity).
4. Conclusion

In conclusion, our results and discussion on PCMAO show that the dynamical effects observed in the phase separated state can be effectively controlled by the cooling field, temperature of measurement, and phase fraction of metastable AF-I phases. These dynamical effects originate from the transformation of metastable AF-I phases to the FM-M ground state and the observed rate of transformation depends on two competing and drastically different dynamic mechanisms, the first being the formation of FM-M critical nuclei in the AF-I metastable phase and the second being the growth of these critical nuclei to complete the phase transformation, with different time constants. The observed rate of transformation exhibits two distinct dynamics regimes, the arrested regime, where the time taken in growth of critical nuclei is huge compared to the time taken in formation of critical nuclei, and the unarrested regime, where the time taken in growth of critical nuclei is negligible compared to the time taken in the formation of critical nuclei. The dynamics of the phase transformation traverse from the arrested to the unarrested regime on increasing the temperature and cooling field and at a given temperature the crossover from arrested to unarrested dynamics happens at a lower field on decreasing the metastable phase fraction. In the unarrested regime the rate of the AF-I to FM-M transformation depends on the energy of nucleation and the available phase fraction of metastable AF-I phases.

References

[1] Dagotto E 2002 Nanoscale Phase Separation and Colossal Magnetoresistance (Berlin: Springer)
[2] Kuwahara H, Tomioka Y, Asamitsu A, Moritomo Y and Tokura Y 1995 Science 270 961
[3] Moritomo Y, Kuwahara H, Tomioka Y and Tokura Y 1997 Phys. Rev. B 55 7549
[4] Asamitsu A, Tomioka Y, Kuwahara H and Tokura Y 1997 Nature 388 50
[5] Banerjee A, Pramanik A K, Kumar K and Chaddah P 2006 J. Phys.: Condens. Matter 18 605
[6] Granados X, Fontcuberta J, Obradors X and Torrance J B 1992 Phys. Rev. B 46 15683
[7] Levy P, Parisi F, Granja L, Indelicato E and Polla G 2002 Phys. Rev. Lett. 89 137001
[8] Chen X J, Habermeier H-U and Almasan C C 2003 Phys. Rev. B 68 132407
[9] Ghivelder L and Parisi F 2005 Phys. Rev. B 71 184425
[10] Banerjee A, Mukherjee K, Kumar K and Chaddah P 2006 Phys. Rev. B 74 224445
[11] Chaddah P, Kumar K and Banerjee A 2008 Phys. Rev. B 77 100402
[12] Kumar D, Rajeev K P, Alonso J A and Martínez-Lope M J 2009 J. Phys.: Condens. Matter 21 185402
[13] Kumar D, Rajeev K P, Alonso J A and Martínez-Lope M J 2009 J. Phys.: Condens. Matter 21 485402
[14] Kumar D, Rajeev K P, Kushwaha A K and Budhani R C 2010 J. Appl. Phys. 108 063503
[15] Banerjee A, Chaddah P, Dash S, Kumar K, Lakhani A, Chen X and Ramanujan R V 2011 Phys. Rev. B 84 214420
[16] Uehara M and Cheong S-W 2000 Europhys. Lett. 52 674
[17] Podzorov V, Uehara M, Gershenson M E, Koo T Y and Cheong S-W 2000 Phys. Rev. B 61 3784
[18] Lifshitz E M and Pitaevski L P 1981 Landau and Lifshitz: Course of Theoretical Physics (Physical Kinetics vol 10) (Oxford: Pergamon) chapter 12
[19] Callister W D and Rethwisch D G 2007 Fundamentals of Materials Science and Engineering: An Integrated Approach (New York: Wiley) chapter 11
[20] Sharma P A, El-Khatib S, Mihut I, Betts J B, Migliori A, Kim S B, Guha S and Cheong S-W 2008 Phys. Rev. B 78 134205
[21] Debenedetti P G and Stillinger F H 2001 Nature 410 259
[22] Kumar K, Pramanik A K, Banerjee A, Chaddah P, Roy S B, Park S, Zhang C L and Cheong S-W 2006 Phys. Rev. B 73 184435
[23] Lakhani A, Kushwaha P, Rawat R, Kumar K, Banerjee A and Chaddah P 2010 J. Phys.: Condens. Matter 22 032101
[24] Uehara M, Mori S, Chen C H and Cheong S-W 1999 Nature 399 560
[25] Banerjee A, Kumar K and Chaddah P 2009 J. Phys.: Condens. Matter 21 026002
[26] Nair S and Banerjee A 2004 Phys. Rev. Lett. 93 117204
[27] Nair S and Banerjee A 2004 J. Phys.: Condens. Matter 16 8335
[28] McLachlan D S 1987 J. Phys. C: Solid State Phys. 20 865
[29] Hurvits G, Rosenbaum R and McLachlan D S 1993 J. Appl. Phys. 73 7441
[30] Herrmann H J, Derrida B and Vannimenus P 1984 Phys. Rev. B 30 4080
[31] Efros A L 1986 Physics and Geometry of Disorder Percolation Theory (Moscow: Mir) chapter 6
[32] Kim K H, Uehara M, Hess C, Sharma P A and Cheong S-W 2000 Phys. Rev. Lett. 84 2961