DERIVED CATEGORIES OF CUBIC AND V_{14} THREEFOLDS

ALEXANDER KUZNETSOV

In memory of Andrei Nikolaevich Tyurin

1. Introduction

This paper is devoted to the description of several aspects of a relation of the following two families of Fano threefolds. The first is the family of cubic threefolds, smooth hypersurfaces of degree 3 in \mathbb{P}^4. The second, is the family of V_{14} Fano threefolds. It is formed by isomorphism classes of all smooth complete intersections $\mathbb{P}^9 \cap \text{Gr}(2, 6) \subset \mathbb{P}^{14}$.

The fact that geometry of Fano threefolds from these two families is related was known for a long time. The history of the question goes back to Fano himself, who found a birational isomorphism from a V_{14} threefold to a cubic threefold [Fa, Is]. Another birational isomorphism was found by Tregub and Takeuchi [Tr, Ta].

The paper [IM] has brought a new character into the story, an instanton bundle on a cubic threefold. An instanton bundle on a cubic threefold Y is a rank 2 stable vector bundle E such that $c_1(E) = 0$ and $H^1(Y, E(-1)) = 0$. A topological charge of E is defined as the second Chern class, $c_2(E) \in H^4(Y, \mathbb{Z}) \cong \mathbb{Z}$. It was shown in [IM] that for any V_{14} threefold X there exists a unique cubic threefold Y birational to X and that for generic Y the set of X birational to Y is isomorphic to an open subset of the moduli space $M_0(Y)$ of instanton bundles on Y of topological charge 2.

The goal of the present paper is to show how the above relation is reflected on the level of the derived categories. We start however with a more accurate treatment of geometry. First of all, we remove some genericity conditions having been imposed in [IM] and show that the map $X \mapsto (Y, E)$ is actually an isomorphism of moduli stacks. Further, we show that if (Y, E) is the pair, corresponding to X, then we have the following diagram:

\[
\begin{array}{ccc}
\mathbb{P}_Y(E) & \overset{\theta}{\longrightarrow} & \mathbb{P}_X(U) \\
p_Y \downarrow & & \downarrow p_X \\
Y & \overset{\psi}{\longrightarrow} & Q \\
\phi \downarrow & & \phi \\
X & & \phi^{-1} \cdot \psi \\
\end{array}
\]

where U is the restriction of the tautological rank 2 bundle from the Grassmanian $\text{Gr}(2, 6)$ to $X \subset \text{Gr}(2, 6)$; p_Y and p_X are the projectivizations of bundles E and U over Y and X respectively; ψ and ϕ are small birational contractions onto a singular quartic hypersurface $Q \subset \mathbb{P}^5$; and $\theta = \phi^{-1} \cdot \psi$ is a flop. The bundle U on X is an exceptional bundle. Thus the above diagram says that the projectivization of the exceptional bundle on a V_{14} threefold after some natural flop turns into the projectivization of an instanton bundle on a cubic threefold.

A very similar picture was found in [K] in another situation. It was shown there that the projectivization of the exceptional bundle on a V_{22} Fano threefold after a very similar flop turns into the projectivization of an instanton bundle on the projective space \mathbb{P}^3. We guess that pictures of this sort should exist for a lot of another pairs of Fano manifolds and that they are of ultimate importance both for the geometry of involved manifolds, and for understanding of Fano manifolds in general.
In the second part of the paper we turn our attention to the derived categories of coherent sheaves on Y and X, $\mathcal{D}^b(Y)$ and $\mathcal{D}^b(X)$ respectively. We show that these categories have a similar structure. First of all, both $\mathcal{D}^b(Y)$ and $\mathcal{D}^b(X)$ contain an exceptional pair of vector bundles. Explicitly, the pair $(\mathcal{O}_Y, \mathcal{O}_Y(1))$ in $\mathcal{D}^b(Y)$, and the pair $(\mathcal{O}_X, \mathcal{U}^*)$ in $\mathcal{D}^b(X)$. As usually in such a situation we obtain semiorthogonal decompositions

$$\mathcal{D}^b(Y) = (\mathcal{O}_Y, \mathcal{O}_Y(1), \mathcal{A}_Y), \quad \mathcal{D}^b(X) = (\mathcal{O}_X, \mathcal{U}^*, \mathcal{A}_X),$$

where \mathcal{A}_Y (resp. \mathcal{A}_X) is the left orthogonal to the exceptional pair in $\mathcal{D}^b(Y)$ (resp. $\mathcal{D}^b(X)$). In fact, we use slightly another decomposition of $\mathcal{D}^b(Y)$, however this change affects only the embedding functor of \mathcal{A}_Y into $\mathcal{D}^b(Y)$ and doesn’t affect the intrinsic structure of \mathcal{A}_Y. Now assume that Y is the cubic threefold corresponding to a V_{14} threefold X as above. Then we prove that the categories \mathcal{A}_Y and \mathcal{A}_X are equivalent as triangulated categories. This is the main result of the paper. The functor, giving the equivalence is constructed explicitly (see 12), using diagram (\ast).

One of implications of the equivalence is the following. Since all V_{14} threefolds contained within a fixed birational class correspond to the same cubic threefold Y it follows that the categories \mathcal{A}_{X_1} and \mathcal{A}_{X_2} are equivalent if X_1 and X_2 are birational. Thus \mathcal{A}_X turns into a birational invariant of X. In fact, we conjecture that \mathcal{A}_X allows to distinguish the birational type of X, or equivalently, that \mathcal{A}_Y allows to distinguish the isomorphism class of Y. To give some evidence we construct a family of objects in \mathcal{A}_Y parameterized by the Fano surface of lines on Y. If one would be able to describe such a family in intrinsic terms of the category \mathcal{A}_Y (e.g. as a moduli space), then it would be possible to reconstruct the intermediate Jacobian of Y (as the Albanese variety of the Fano surface) from \mathcal{A}_Y, and hence, due to the Torelli theorem [CG, T], the isomorphism class of Y.

We would like to indicate that the above results can be considered as a first step to the construction of birational invariants of algebraic varieties from their derived categories. We hope this approach might prove useful when dealing with the problem of rationality of a cubic fourfold.

The paper is organised as follows. In section 2 we introduce a definition of the Pfaffian cubic Y and of the theta-bundle E, corresponding to a V_{14} threefold X and state a theorem on a reconstruction of X from Y and E, which is proved in Appendix A in a greater generality. After that we introduce instanton bundles on Y and show that E is a theta-bundle iff $E(-1)$ is an instanton of charge 2. After that we consider the projectivizations $\mathbb{P}_X(U)$ and $\mathbb{P}_Y(E^*)$, construct their cointractions $\phi : \mathbb{P}_X(U) \to Q \leftarrow \mathbb{P}_Y(E^*) : \psi$ onto a common (singular) quartic hypersurface $Q \subset \mathbb{P}^5$, and check that $\theta = \phi^{-1} \circ \psi$ is a flop. In conclusion we prove some technical results concerning the fiber product $W = \mathbb{P}_Y(E^*) \times_Q \mathbb{P}_X(U)$.

We start section 3 with reminding some definitions and important properties of semiorthogonal decompositions, mutations, kernel functors, etc. We state also a reformulation of a result of Bridgeland on flops, which we will need afterwards. The remaining part of the section is devoted to the proof of the main theorem, saying that the categories \mathcal{A}_X and \mathcal{A}_Y are equivalent.

In section 4 we discuss some properties of the category \mathcal{A}_Y. First of all, we show that the cube of the Serre functor of the category \mathcal{A}_Y is isomorphic to the shift functor, $\mathcal{S}_Y^{3} \cong [5]$. Moreover, we prove a generalization of this result for any Fano hypersurface in a projective space. Also we give examples of two types of objects in \mathcal{A}_Y. The first is provided by charge 2 instantons and their shifts, and the second is provided by curves on Y with a non-degenerate theta-characteristics. The particular case of lines on Y gives a family of objects in \mathcal{A}_Y, parameterized by the Fano surface of Y.

In Appendix A we give a general definition of a Pfaffian hypersurface and of a theta-bundle and describe some of their properties. In Appendix B we give a definition of instanton bundles on Fano threefolds of index 2 and compute several cohomology groups of their twists.
Notation. We assume the base field k to be an algebraically closed field of characteristic 0. We will use the following notation:

- $V = k^6$;
- $A = k^5$;
- $f \in \text{Hom}(A, \Lambda^2 V^*)$ is an A-net of skew-forms on V;
- $X = X_f = \mathbb{P}(f(A)) \cap \text{Gr}(2, V)$ is a smooth V_{14} Fano threefold;
- $Y = Y_f = \{ \text{Pic}(f(a)) = 0 \} \subset \mathbb{P}(A)$, the Pfaffian cubic threefold;
- $\alpha : Y \to \mathbb{P}(A)$ is the embedding;
- $E = E_f$ is the theta-bundle on Y;
- \mathcal{E} is an instanton of charge 2 on Y, $\mathcal{E} = E(-1)$;
- \mathcal{U} is a restriction of the tautological vector bundle from $\text{Gr}(2, V)$ to X;
- $p_X : \mathbb{P}_X(\mathcal{U}) \to X$ is the projectivization of \mathcal{U} on X;
- $p_Y : \mathbb{P}_Y(E^*) \to Y$ is the projectivization of E^* on Y;
- $\phi : \mathbb{P}_X(\mathcal{U}) \to \mathbb{P}(V)$ is the map, induced by embedding $\mathbb{P}_X(\mathcal{U}) \subset \text{Fl}(1, 2; V)$;
- $\psi : \mathbb{P}_Y(E^*) \to \mathbb{P}(V)$ is the map, induced by embedding $\mathbb{P}_Y(E^*) \subset \text{Fl}(1, 2; V)$;
- $Q = \phi(\mathbb{P}_X(\mathcal{U})) = \psi(\mathbb{P}_Y(E^*)) \subset \mathbb{P}(V)$ is a quartic hypersurface;
- $C = \text{sing}(Q)$ is a curve, $\text{deg} C = 25$, $p_a(C) = 26$;
- $S_X \subset \mathbb{P}_X(\mathcal{U})$ is a ruled surface, contracted by ϕ to C;
- $S_Y \subset \mathbb{P}_Y(E^*)$ is a ruled surface, contracted by ψ to C;
- $\theta : \mathbb{P}_Y(E^*) \to \mathbb{P}_X(\mathcal{U})$ is the flop in S_Y, $\theta = \phi^{-1} \circ \psi$;
- $W = \mathbb{P}_Y(E^*) \times_{\phi} \mathbb{P}_X(\mathcal{U})$ is the fiber product;
- $\eta : W \to \mathbb{P}_Y(E^*)$, $\xi : W \to \mathbb{P}_X(\mathcal{U})$ and $q : W \to Q$ are the projections;
- $i : W \to \mathbb{P}_Y(E^*) \times \mathbb{P}_X(\mathcal{U})$, $j : W \to Y \times X$ and $\lambda : W \to \mathbb{P}(A) \times \mathbb{P}_X(\mathcal{U})$ are the embeddings.

Acknowledgements. I am grateful to Dmitry Orlov and Alexei Bondal for useful discussions. I was partially supported by RFFI grants 02-01-00468 and 02-01-01041 and INTAS-OPEN-2000-269. The research described in this work was made possible in part by CRDF Award No. RM1-2406-MO-02. A part of this work was accomplished during my visit at the Universite Paul Sabatier (Toulouse) and Insitute de Mathematique de Luminy (Marseille), which was organised by the National Scientific Research Center of France and by the Independent University of Moscow via the “Jumelage Mathematique” program.

Finally, I would like to express my sincerest gratitude to Andrei Nikolaevich Tyurin whose ideas always were a source of inspiration and whose work was an object of admiration for me.

2. Geometry

Consider a five-dimensional vector space $A = k^5$, a six-dimensional vector space $V = k^6$, and a linear map $f : A \to \Lambda^2 V^*$. Such map is called an A-net of skew-forms on V.

Pfaffian cubic and theta-bundle. For any such f let $f(A) \subset \Lambda^2 V$ denote the annihilator of $f(A) \subset \Lambda^2 V^*$. Denote also $X = X_f = \mathbb{P}(f(A)) \cap \text{Gr}(2, V) \subset \mathbb{P}(\Lambda^2 V)$. When f is generic X is a smooth Fano threefold of index 1 with $\text{Pic} X = \mathbb{Z}$ and of genus 8. Such threefolds are known as V_{14} Fano threefolds [Is1, IP]. Moreover, any V_{14} threefold can be realized as X_f for some f [Mu].

An A-net f is called regular if $\text{rank} f(a) \geq 4$ for any $0 \neq a \in A$.

Lemma 2.1. If $X = X_f \subset \text{Gr}(2, V)$ is a smooth V_{14} threefold then the A-net f is regular.

Proof: Assume that the A-net $f : A \to \Lambda^2 V^*$ isn’t regular. Then the rank of a skew-form $f(a) \in \Lambda^2 V^*$ is less or equal than 2 for some $0 \neq a \in A$. Let $K_a = \text{Ker} f(a) \subset V$ be the kernel of this form. Then $\dim K_a \geq 4$ and the Grassmannian $\text{Gr}(2, K_a) \subset \text{Gr}(2, V)$ has nonempty
intersection with X, because $X \cap \text{Gr}(2, K_a)$ is a plane section of $\text{Gr}(2, K_a)$ of codimension ≤ 4, and $\dim \text{Gr}(2, K_a) \geq 4$. But it is easy to check that any point in $X \cap \text{Gr}(2, K_a)$ is singular in X (see the proof of proposition A.4).

Any A-net f can be considered as an element of $\text{Hom}(V \otimes \mathcal{O}_P(-1), V^* \otimes \mathcal{O}_P(-A))$, the space of homomorphisms of coherent sheaves on $P(A)$. If f is regular then this homomorphism is injective, and its cokernel $E = E_f$ is a sheaf supported on a cubic hypersurface $Y = Y_f \subset P(A)$ with equation $\text{Pf}(f(a)) = 0$ (where Pf stands for the Pfaffian of a skew-form), the Pfaffian cubic of f.

Thus we have an exact sequence of coherent sheaves on V:

$$0 \to V \otimes \mathcal{O}_{P(A)}(-1) \xrightarrow{f} V^* \otimes \mathcal{O}_{P(A)} \to \alpha_* E \to 0,$$

where $\alpha : Y \to P(A)$ is the embedding. We call E_f the theta-bundle of the A-net f (see Appendix A). The map $V^* \otimes \mathcal{O}_{P(A)} \to \alpha_* E$ induces an isomorphism $\gamma_f : V^* \to H^0(\mathbb{P}(A), V^* \otimes \mathcal{O}_{P(A)}) \to H^0(\mathbb{P}(A), \alpha_* E) = H^0(Y_f, E_f)$.

Theorem 2.2. Associating to an A-net f the triple (Y_f, E_f, γ_f) gives a $\text{GL}(A) \times \text{GL}(V)$-equivariant isomorphism between

- the subset of $\mathbb{P}(A^* \otimes \Lambda^2 V^*)$ formed by all regular A-nets of skew-forms on V, and
- the set of triples (Y, E, γ), where Y is a cubic hypersurface in $\mathbb{P}(A)$, E is a rank 2 locally free sheaf on Y, and γ is an isomorphism $V^* \to H^0(Y, E)$, such that

$$c_1(E) = 2[h], \quad c_2(E) = 5[l], \quad \text{and} \quad H^0(Y, E(t)) = 0 \quad \text{for} \quad -3 \leq t \leq -1,$$

where $[h] \in H^2(Y, \mathbb{Z})$ and $[l] \in H^4(Y, \mathbb{Z})$ are the classes of a hyperplane section and of a line respectively.

Further, the theta-bundle E_f of a regular A-net is generated by global sections, $H^0(Y_f, E_f) = V^*$, and induces an embedding $\kappa : Y_f \to \text{Gr}(2, V)$. Finally, $\text{sing}(X_f) = \text{sing}(Y_f) = X_f \cap Y_f \subset \text{Gr}(2, V)$. In particular, Y_f is smooth iff X_f is smooth.

The major part of this theorem is proved in [MT, IM, Beau, Dr] in more or less the same generality. Only the last statement seems to be new. We give a complete proof in Appendix A.

Remark 2.3. It is easy to check that $H^0(X_f, \mathcal{O}_{X_f}(1)) \cong \Lambda^2 V^*/f(A)$. It follows that the A-net f can be reconstructed from X_f up to the action of $\text{GL}(A) \times \text{GL}(V)$, the action of $\text{GL}(V)$ corresponds to a choice of embedding $X_f \to \text{Gr}(2, V)$, and the action of $\text{GL}(A)$ corresponds to a choice of isomorphism $A \to \text{Ker}(\Lambda^2 V^*/H^0(\text{Gr}(2, V), \mathcal{O}_{\text{Gr}(2, V)}(1)))$.

If X is a smooth V_{14} Fano threefold and f is an A-net of skew-forms on V, such that $X \cong X_f$, then by remark 2.3 and theorem 2.2, the pair (Y_f, E_f) is determined by X up to an isomorphism. We will say that Y_f is the Pfaffian cubic of X and E_f is the corresponding theta-bundle.

Instantons.

Definition 2.4. A sheaf E on a cubic threefold $Y \subset \mathbb{P}^4$ is an *instanton bundle* if E is locally free of rank 2, stable (with respect to $\mathcal{O}_Y(1)$) and $c_1(E) = 0$, $H^1(Y, E(-1)) = 0$. The topological charge of an instanton E is an integer k, such that $c_2(E) = k[l]$, where $[l] \in H^4(Y, \mathbb{Z})$ is the class of a line.

This definition is a straightforward generalization of the definition of (mathematical) instanton vector bundle on \mathbb{P}^3 [OSS] and admits further generalization to any Fano threefold of index 2. We introduce such definition and deduce simplest implications in Appendix B. It is shown, in particular, that the smallest possible charge for the instantons on Y is 2, and
Proposition 2.5. If \mathcal{E} is an instanton vector bundle of charge 2 on Y then

$$H^p(Y, \mathcal{E}(t)) = \begin{cases} k^p, & \text{for } (p, t) = (0, 1) \text{ and } (p, t) = (3, -3) \\ 0, & \text{for other } (p, t) \text{ with } -3 \leq t \leq 1 \end{cases}$$

Consider, following [MT] the Gieseker–Maruyama moduli space $M_Y(2; 0, 2)$ of semistable (with respect to $\mathcal{O}_Y(1)$) rank 2 torsion free sheaves on Y with Chern classes $c_1 = 0$ and $c_2 = 2[l]$ and its Zariski open subset

$$M_0(Y) = \{[\mathcal{E}] \in M_Y(2; 0, 2) \mid (i) \mathcal{E} \text{ is stable and locally free; (ii) } H^1(Y, \mathcal{E}(-1)) = H^1(Y, \mathcal{E}(1)) = H^2(Y, \mathcal{E}(1)) = H^2(Y, \mathcal{E} \otimes \mathcal{E}) = 0\}.$$ (3)

Proposition 2.6. The following conditions are equivalent:

(i) \mathcal{E} is an instanton bundle of charge 2;

(ii) $\mathcal{E}(1)$ satisfies conditions (2);

(iii) $\mathcal{E}(1)$ is a theta-bundle;

(iv) $[\mathcal{E}] \in M_0(Y)$.

Proof: The implication $(i) \Rightarrow (ii)$ easily follows from proposition 2.5. $(ii) \Rightarrow (iii)$ is given by theorem 2.2. $(iv) \Rightarrow (i)$ is trivial. Thus it remains to check the implication $(iii) \Rightarrow (iv)$.

Assume that E is a theta-bundle of f and denote $\mathcal{E} = E(-1)$. It follows from theorem 2.2 that it suffices to check that $H^2(Y, \mathcal{E} \otimes \mathcal{E}) = 0$. Restricting (1) to Y and taking into account isomorphism $L^1 \alpha^* \alpha_* E \cong E \otimes L^1 \alpha^* \alpha_* \mathcal{O}_Y \cong E \otimes \mathcal{O}_Y(-3)$ we get the following exact sequence

$$0 \to E(-3) \to V \otimes \mathcal{O}_Y(-1) \to V^* \otimes \mathcal{O}_Y \to E \to 0.$$ Applying $\text{Hom}(E, -)$ and taking into account isomorphisms

$$\begin{align*}
\text{Ext}^p(E, \mathcal{O}_Y) &\cong H^p(Y, E^*) \cong H^p(Y, E(-2)) = 0, \\
\text{Ext}^p(E, \mathcal{O}_Y(-1)) &\cong H^p(Y, E^*(-1)) \cong H^p(Y, E(-3)) = 0,
\end{align*}$$

we used here an isomorphism $\det E^* \cong \mathcal{O}_Y(-2)$ and properties (2)) we obtain isomorphisms

$$\text{Ext}^p(E, E) \cong \text{Ext}^{p+2}(E, E(-3)).$$ (4)

In particular, $\text{Ext}^2(E, E) = 0$, but $\text{Ext}^2(E, E) \cong H^2(Y, E^* \otimes E) \cong H^2(Y, \mathcal{E} \otimes \mathcal{E}).$
Further properties of theta-bundles.

Lemma 2.10. If E is a theta-bundle then $H^p(Y, S^2E(-1)) = \begin{cases} k, & \text{if } p = 1 \\ 0, & \text{otherwise} \end{cases}$

Proof: It follows from (4) that

$$\text{Hom}(E, E(-3)) = \text{Ext}^1(E, E(-3)) = 0 \quad \text{and} \quad \text{Ext}^2(E, E(-3)) = \text{Hom}(E, E) = k,$$

because E is stable. Applying the Riemann-Roch we deduce that $\text{Ext}^3(E, E(-3)) = k^5$. Further, taking into account an isomorphism $E^*(1) \cong E(-1)$ and applying the Serre duality on Y we obtain

$$H^p(Y, E \otimes E(-1)) \cong \text{Ext}^p(E^*(1), E) \cong \text{Ext}^p(E(-1), E) \cong \text{Ext}^{3-p}(E, E(-3))^* \cong \begin{cases} k^5, & \text{if } p = 0 \\ k, & \text{if } p = 1 \\ 0, & \text{otherwise} \end{cases}$$

But $E \otimes E(-1) \cong \Lambda^2E(-1) \oplus S^2E(-1) \cong \mathcal{O}_Y(1) \oplus S^2E(-1)$. So, it remains to note that $H^0(Y, \mathcal{O}_Y(1)) = H^0(\mathbb{P}^4, \mathcal{O}_{\mathbb{P}^4}(1)) \cong k^5$, $H^{>0}(Y, \mathcal{O}_Y(1)) = 0$, and lemma follows.

\mathbb{P}^1-bundle over X. Let $X \subset \text{Gr}(2, V)$ be a smooth V_{14} Fano threefold and let $f : A \to \Lambda^2V^*$ be the corresponding A-net. Let U denote the restriction to X of the tautological rank 2 subbundle on $\text{Gr}(2, V)$. Then the projectivization $p_X : \mathbb{P}_X(U) \to X$ is embedded into the partial flag variety $\text{Fl}(1, 2; V)$. Let $\phi : \mathbb{P}_X(U) \to \mathbb{P}(V)$ denote the restriction of the canonical projection $\text{Fl}(1, 2; V) \to \mathbb{P}(V)$.

Proposition 2.11. (i) The image $Q = \phi(\mathbb{P}_X(U)) \subset \mathbb{P}(V)$ is a quartic hypersurface, singular along a curve $C \subset Q$, $\deg C = 25$, $p_a(C) = 26$. (ii) The map $\phi : \mathbb{P}_X(U) - \phi^{-1}(C) \to Q - C$ is an isomorphism, while $\phi : \phi^{-1}(C) \to C$ is a \mathbb{P}^1-bundle. (iii) For any point $c \in C$ the curve $L_c = p_X(\phi^{-1}(c)) \subset X$ is a line on X. On the other hand, if L is a line on $X \subset \text{Gr}(2, V)$, then $p_X^{-1}(L)$ is a Hirzebruch surface F_1, and its exceptional section \tilde{L} coincides with $\phi^{-1}(c)$ for some $c \in C$.

Proof: (i) It is clear that the image $Q = \phi(\mathbb{P}_X(U)) \subset \mathbb{P}(V)$ is just the set of all points $v \in \mathbb{P}(V)$ which are contained in a 2-dimensional subspace $U \subset V$ isotropic with respect to all skew-forms in the A-net f. Thus $v \in Q$ if and only if the map

$$f_v : A \to V^*, \quad a \mapsto f(a)(v, -)$$

has image of codimension ≥ 2. In the other words, Q is the determinantal $\{ \text{rank}(f) \leq 4 \} \subset \mathbb{P}(V)$, where f is considered as a homomorphism of coherent sheaves on $\mathbb{P}(V)$

$$A \otimes \mathcal{O}_{\mathbb{P}(V)}(-1) \xrightarrow{f} V^* \otimes \mathcal{O}_{\mathbb{P}(V)}.$$

Note that since $f(a)$ is a skew-form we have $f(a)(v, v) = 0$ for all $a \in A$, hence the image of f lies in the annihilator $v^+ \subset V^*$. In the other words, the above homomorphism of sheaves factors as

$$A \otimes \mathcal{O}_{\mathbb{P}(V)}(-1) \xrightarrow{f'} \Omega_{\mathbb{P}(V)}(1) \subset V^* \otimes \mathcal{O}_{\mathbb{P}(V)}.$$

Note that $\text{rank}(A \otimes \mathcal{O}_{\mathbb{P}(V)}(-1)) = \text{rank}(\Omega_{\mathbb{P}(V)}(1)) = 5$, hence Q is the zero locus of

$$\det f' \in \text{Hom}(\det(A \otimes \mathcal{O}_{\mathbb{P}(V)}(-1)), \det(\Omega_{\mathbb{P}(V)}(1))) = \text{Hom}(\mathcal{O}_{\mathbb{P}(V)}(-5), \mathcal{O}_{\mathbb{P}(V)}(-1)).$$

Thus Q is a quartic hypersurface in $\mathbb{P}(V)$.

By the general properties of determinants the singular locus $C = \text{sing}(Q)$ is the determinantal $\{ \text{rank}(f') \leq 3 \} \subset \mathbb{P}(V)$. It will be shown in (iii) below that C parameterizes lines on X, hence
Corollary 2.16. Some

It is clear that the map ψ is a line on $\mathcal{X} \subset \text{Gr}(2, V)$ for any $c \in C$. On the other hand, if L is a line on $X \subset \text{Gr}(2, V)$, then $\mathcal{U}_L \cong \mathcal{O}_L \oplus \mathcal{O}_L(-1)$. Thus

$$p_X^{-1}(L) = \mathbb{P}(\mathcal{U}_L) = \mathbb{P}_L(\mathcal{O}_L \oplus \mathcal{O}_L(-1)) \cong F_1.$$

It is clear that the map ϕ contracts the exceptional section \tilde{L} of $p_X^{-1}(L)$, hence $\tilde{L} = \phi^{-1}(c)$ for some $c \in C$ and $L = L_c$. \hfill \square

Remark 2.12. It is clear that for any $0 \neq v \in V$ we have $\mathbb{P}(\text{Ker } f_v) \subset Y_f$. On the other hand, Y_f is a smooth cubic in $\mathbb{P}(A)$ by theorem 2.2, hence it cannot contain a \mathbb{P}^2. This means that $\dim \text{Ker } f_v \leq 2$ and $\text{rank } f_v \geq 3$ for any $0 \neq v \in V$.

Remark 2.13. Using description of C as a determinantal one can show that $\mathcal{O}_{\mathbb{P}(V)}(1)_{|C}$ is a degenerate even theta-characteristic on C with $\dim H^0(C, \mathcal{O}_{\mathbb{P}(V)}(1)_{|C}) = 6$.

Corollary 2.14. The curve C parameterizes lines on X.

\mathbb{P}^1-bundle over Y. Now let Y be the Pfaffian cubic of X and let E be the theta-bundle of X. By theorem 2.2 the bundle E induces an embedding $\kappa : Y \rightarrow \text{Gr}(2, V)$. Then we obtain an embedding of the projectivization $p_Y : \mathbb{P}_Y(E^*) \rightarrow Y$ into the partial flag variety $\text{Fl}(1, 2; V)$. Let $\psi : \mathbb{P}_Y(E^*) \rightarrow \mathbb{P}(V)$ denote the restriction of the canonical projection $\text{Fl}(1, 2; V) \rightarrow \mathbb{P}(V)$.

Proposition 2.15. (i) We have $\psi(\mathbb{P}_Y(E^*)) = Q$. (ii) The map $\psi : \mathbb{P}_Y(E^*) - \psi^{-1}(C) \rightarrow Q - C$ is an isomorphism, while $\psi : \psi^{-1}(C) \rightarrow C$ is a \mathbb{P}^1-bundle. (iii) For any point $c \in C$ the curve $M_c = p_Y(\psi^{-1}(c)) \subset Y$ is a line on Y such that $E^*_{|M_c} \cong \mathcal{O}_{M_c} \oplus \mathcal{O}_{M_c}(-2)$. On the other hand, if M is a line on Y such that $E^*_{|M} \cong \mathcal{O}_M \oplus \mathcal{O}_M(-2)$, then $p_Y^{-1}(M)$ is a Hirzebruch surface F_2, and its exceptional section \tilde{M} coincides with $\psi^{-1}(c)$ for some $c \in C$.

Proof: (i) The fiber of E^* over a point $a \in Y$ is the kernel of the skew-form $f(a) \in \Lambda^2 V^*$. Hence $v \in \psi(\mathbb{P}_Y(E^*))$ iff $f(a)(v, -) = 0$, that is iff $f_i(a) = 0$ for some $0 \neq a \in A$. Thus $\psi(\mathbb{P}_Y(E^*)) = Q$.

(ii) Note that the fiber of ψ over $v \in \mathbb{P}(V)$ coincides with $\mathbb{P}(\text{Ker } f_v) \subset \mathbb{P}(A)$. For $v \in Q - C$ we have $\text{rank } f_v = 4$, hence $\dim \text{Ker } f_v = 1$. Thus ψ is an isomorphism over $Q - C$. On the other hand, for $v \in C$ we have $\text{rank } f_v = 3$, hence $\dim \text{Ker } f_v = 2$ and $\psi^{-1}(v) \cong \mathbb{P}^1$.

(iii) The arguments in (ii) show that $M_c = p_Y(\psi^{-1}(c))$ is a line on the cubic $Y \subset \mathbb{P}(A)$. Note that $\det(E^*_{|M_c}) = \det(E^*_{|M_c}) \cong \mathcal{O}_Y(-2)_{|M_c} = \mathcal{O}_{C_e}(-2)$, and $c \in V$ gives a nonvanishing section of $E^*_{|M_c} \subset V \otimes \mathcal{O}_{M_c}$, hence $E^*_{|M_c} \cong \mathcal{O}_{M_c} \oplus \mathcal{O}_{M_c}(-2)$. On the other hand, if M is a line on Y such that $E^*_{|M} \cong \mathcal{O}_M \oplus \mathcal{O}_M(-2)$, then

$$p_Y^{-1}(M) = \mathbb{P}_{M_c}(E^*_{|M}) = \mathbb{P}_M(\mathcal{O}_M \oplus \mathcal{O}_M(-2)) \cong F_2.$$

It is clear that the map ψ contracts the exceptional section \tilde{M} of $p_Y^{-1}(M)$, hence $\tilde{M} = \psi^{-1}(c)$ for some $c \in C$ and $M = M_c$. \hfill \square

Corollary 2.16. The curve C parameterizes jumping lines of the instanton $E = E(-1)$ on Y.

7
Consider the fiber product $Y \times X$. The fiber product depends on C. It is proved in propositions 2.11 and 2.15 that ϕ contracts S_X onto C and ψ contracts S_Y onto C. Hence the rational map $\theta = \phi^{-1} \circ \psi : \mathbb{P}_X(E^*) \to \mathbb{P}_X(U)$ is a birational isomorphism.

Theorem 2.17. The map θ is a flop in the surface S_Y. The map θ^{-1} is a flop in the surface S_X.

Proof: Since ϕ and ψ are small contractions by propositions 2.11 and 2.15, it remains to check that the canonical classes of $\mathbb{P}_X(E^*)$ and $\mathbb{P}_X(U)$ are pull-backs from Q. But it is easy to see that the canonical classes equal $\psi^*\mathcal{O}_Q(-2)$ and $\phi^*\mathcal{O}_Q(-2)$ respectively. Indeed,

$$
\omega_{\mathbb{P}_X(E^*)} = p_Y^*\omega_Y \otimes \omega_{\mathbb{P}_X(E^*)|Y} = p_Y^*\mathcal{O}_Y(-2) \otimes (\psi^*\mathcal{O}_Q(-2) \otimes p_Y^* \det E) \cong \psi^*\mathcal{O}_Q(-2),
$$

$$
\omega_{\mathbb{P}_X(U)} = p_X^*\omega_X \otimes \omega_{\mathbb{P}_X(U)|X} = p_X^*\mathcal{O}_X(-1) \otimes (\phi^*\mathcal{O}_Q(-2) \otimes p_X^* \det U^*) \cong \phi^*\mathcal{O}_Q(-2).
$$

since $\psi^*\mathcal{O}_Q(1)$ and $\phi^*\mathcal{O}_Q(1)$ are the Grothendieck relatively ample line bundles on $\mathbb{P}_X(E^*)$ and $\mathbb{P}_X(U)$ respectively by definition of ψ and ϕ.

Summarizing, we get the following.

Theorem 2.18. Let X be a smooth V_{14} Fano threefold. Let Y be its Pfaffian cubic and let E be the theta-bundle of X on Y. Then we have the following diagram

$$
\begin{array}{c}
\mathbb{P}_X(U) \xrightarrow{p_X} X \\
\downarrow \phi \\
\mathbb{P}_Y(E^*) \xrightarrow{p_Y} Y
\end{array}
$$

$$
\begin{array}{c}
S_X \xleftarrow{\psi} C \\
\downarrow \phi \\
S_Y \xleftarrow{\psi} \mathbb{P}_Y(E^*)
\end{array}
$$

where

- Q is a quartic hypersurface in $\mathbb{P}(V)$, singular along a curve C;
- $S_X \subset \mathbb{P}_X(U)$ and $S_Y \subset \mathbb{P}_Y(E^*)$ are ruled surfaces over the curve C, ruled by exceptional sections over lines on X and by exceptional sections over jumping lines on Y respectively;
- ϕ and ψ contract ruled surfaces S_X and S_Y onto C and bijective elsewhere;
- $\theta = \phi^{-1} \cdot \psi$ is a flop in S_Y.

Remark 2.19 ([IM]). If H is a hyperplane in $\mathbb{P}(V)$ then it is easy to see that $p_X \circ \phi^{-1} : Q \cap H \to X$ and $p_Y \circ \psi^{-1} : Q \cap H \to Y$ are birational isomorphisms. In particular, the Pfaffian cubic Y of a smooth V_{14} Fano threefold X is birational to X. Moreover, the Torelli theorem [CG, T] implies that cubic threefolds Y_1 and Y_2 are birational if and only if they are isomorphic. It follows that the fibers of the map of the moduli stacks $\mathcal{M}_X \to \mathcal{M}_Y$ are birational classes of V_{14} threefolds.

The fiber product. Consider the fiber product $W = \mathbb{P}_Y(E^*) \times_Q \mathbb{P}_X(U)$ and denote the embedding $W \to \mathbb{P}_Y(E^*) \times \mathbb{P}_X(U)$ by i. Let $\xi : W \to \mathbb{P}_X(U)$, $\eta : W \to \mathbb{P}_Y(E^*)$, $q : W \to Q$ denote the projections. Put $j = (p_Y \times p_X) \cdot i : W \to Y \times X$ and $\lambda = (\alpha p_Y \times \text{id}) \cdot i : W \to \mathbb{P}(A) \times \mathbb{P}_X(U)$.

$$
\begin{array}{c}
\xymatrix{
W \ar[r]^(0.4){\xi} & \mathbb{P}_X(U) \\
\mathbb{P}_Y(E^*) \ar[u]^(0.6)\eta \ar[r]_(0.4)\psi & Q \\
W \ar[u]_(0.6)q \ar[r]_(0.4)\phi & \mathbb{P}_Y(E^*) \times \mathbb{P}_X(U) \\
Y \times X \ar[r]^(0.4)j & \mathbb{P}_Y(E^*) \times \mathbb{P}_X(U) \\
Y \times X \ar[u]_(0.6)\alpha p_Y \times \text{id} \ar[r]_(0.4)\lambda & \mathbb{P}(A) \times \mathbb{P}_X(U) \\
\}
\end{array}
$$
Proposition 2.20. (i) j is a closed embedding and we have the following exact sequence on $Y \times X$:

$$0 \to E^*(-1) \boxtimes \mathcal{O}_X \to \mathcal{O}_Y(-1) \boxtimes V/U \to \mathcal{O}_Y \boxtimes U^* \to j_*q^*\mathcal{O}_Q(1) \to 0,$$

(5)

(ii) λ is a closed embedding and we have the following exact sequence on $\mathbb{P}(A) \times \mathbb{P}_X(U)$:

$$0 \to \mathcal{O}_{\mathbb{P}(A)}(-4) \boxtimes \Lambda^4(\phi^*\mathcal{O}_Q(-1) \otimes p_X^*V/U) \to \mathcal{O}_{\mathbb{P}(A)}(-3) \boxtimes \Lambda^3(\phi^*\mathcal{O}_Q(-1) \otimes p_X^*V/U) \to$$

$$\to \mathcal{O}_{\mathbb{P}(A)}(-2) \boxtimes \Lambda^2(\phi^*\mathcal{O}_Q(-1) \otimes p_X^*V/U) \to \mathcal{O}_{\mathbb{P}(A)}(-1) \boxtimes \Lambda^1(\phi^*\mathcal{O}_Q(-1) \otimes p_X^*V/U) \to$$

$$\to \mathcal{O} \to \lambda_*\mathcal{O}_W \to 0.$$

(6)

Proof: (i) By definition of X the composition $U \to V \otimes \mathcal{O}_X \xrightarrow{f(a)} V^* \otimes \mathcal{O}_X \to U^*$ vanishes for any $a \in A$. Therefore, f induces a morphism of vector bundles $\mathcal{O}_Y(-1) \boxtimes V/U \xrightarrow{j} \mathcal{O}_Y \boxtimes U^*$. Moreover, in the following commutative diagram

$$\begin{array}{ccc}
\ker f(a) & \xrightarrow{f(a)} & V^* \otimes \mathcal{O}_X \\
\downarrow & & \downarrow \\
V/U & \xrightarrow{j_a} & U^* \\
\downarrow & & \downarrow \\
\text{Coker } f(a) & & \text{Coker } j_a
\end{array}$$

the upper row is a complex, hence the sequence

$$E^*(-1) \boxtimes \mathcal{O}_X \to \mathcal{O}_Y(-1) \boxtimes V/U \xrightarrow{j} \mathcal{O}_Y \boxtimes U^*,$$

(7)

in which the first morphism is the canonical embedding $E^*(-1) \boxtimes \mathcal{O}_X \to \mathcal{O}_Y(-1) \boxtimes V/U$ (corresponding to the diagonal arrow in the diagram, see remark 2.8), is a complex.

For any point $(a,U) \in Y \times X \subset \mathbb{P}(A) \times \text{Gr}(2,V)$ the composition $\ker f(a) \to V \to V/U$ is an embedding unless $\ker f(a) \cap U \neq 0$. Similarly, the map $V/U \xrightarrow{j_a} U^*$ is a surjection unless $\ker f(a) \cap U \neq 0$. Any $0 \neq v \in \ker f(a) \cap U$ specifies a point $(a,v) \in \mathbb{P}_Y(E^*) \subset \mathbb{P}(A) \times \mathbb{P}(V)$ and a point $(U,v) \in \mathbb{P}_X(U) \subset \text{Gr}(2,V) \times \mathbb{P}(V)$ such that $\psi(a,v) = v = \phi(U,v) \in \mathbb{P}(V)$. This means that the degeneration sets of both morphisms of (7) coincide with $j(W)$.

Let W' denote the degeneration subscheme of the morphism \tilde{f} on $Y \times X$. We already have shown that j is a set-theoretical bijection $W \to W'$. Let us show that j is a scheme-theoretical isomorphism.

Indeed, the pullback of the morphism \tilde{f} via j is $\eta^*p_Y^*\mathcal{O}_Y(-1) \otimes \xi^*p_X^*V/U \to \xi^*p_X^*U^*$. It is clear that its composition with the surjection $(\xi^*p_X^*U^* \to q^*\mathcal{O}_Q(1)) = \xi^*p_X^*U^* \to \phi^*\mathcal{O}_Q(1)$ vanishes, hence $j : W \to Y \times X$ factors through the subscheme $W' \subset Y \times X$.

On the other hand, the rank of \tilde{f} restricted to W' equals 1 identically (if $\tilde{f} = 0$ at a point (a,U) then $U \subset \ker f_a$, hence a is a singular point of Y, see proposition A.4). Hence, the cokernel of \tilde{f} is a line bundle on W', denote it by $\mathcal{L}_{W'}$. The composition of the canonical projection $V^* \otimes \mathcal{O}_{W'} \to (\mathcal{O}_Y \boxtimes U*)|_{W'}$ and of the cokernel morphism $(\mathcal{O}_Y \boxtimes U*)|_{W'} \to \mathcal{L}_{W'}$ specifies a map $W' \to Y \times X \times \mathbb{P}(V)$. Furthermore, since this morphism factors through $(\mathcal{O}_Y \boxtimes U*)|_{W'}$, the map factors through $Y \times \mathbb{P}_X(U)$. Similarly, it is easy to show that the morphism $V^* \otimes \mathcal{O}_{W'} \to \mathcal{L}_{W'}$, factors through $(E \boxtimes \mathcal{O}_X)|_{W'}$ (see the above diagram), hence the map $W' \to Y \times X \times \mathbb{P}(V)$ factors through $\mathbb{P}_Y(E^*) \times X$. Therefore, we obtain a pair of maps $W' \to \mathbb{P}_Y(E^*)$ and $W' \to \mathbb{P}_X(U)$, such that the compositions $W' \to \mathbb{P}_Y(E^*) \to Q \subset \mathbb{P}(V)$ and $W' \to \mathbb{P}_X(U) \to Q \subset \mathbb{P}(V)$ coincide. Thus we obtain a map $W' \to \mathbb{P}_Y(E^*) \times_Q \mathbb{P}_X(U) = W$. It is easy to see that this map is inverse to the map j above.

Thus we have proved that $j : W \to W'$ is a scheme-theoretical isomorphism. Moreover, the above arguments show that the cokernel of \tilde{f}, $\mathcal{L}_{W'}$, is isomorphic to $j_*q^*\mathcal{O}_Q(1)$. Therefore the sequence (5) is exact at least at the right two terms. Furthermore, the above arguments also prove
exactness at the left term. It remains to check that the embedding $E^*(-1) \boxtimes \mathcal{O}_X \to \text{Ker} \; \tilde{f}$ is an isomorphism. Indeed, this is true because both sheaves are reflexive of rank 2 and

$$\det \text{Ker} \; \tilde{f} \cong \det(\mathcal{O}_Y(-1) \boxtimes V/U) \otimes \det(\mathcal{O}_Y \boxtimes U^*)^{-1} \otimes \det j_*q^*\mathcal{O}_Q(1) \cong$$

$$\cong (\mathcal{O}_Y(-4) \boxtimes \mathcal{O}_X(1)) \otimes (\mathcal{O}_Y \boxtimes \mathcal{O}_X(1))^{-1} \cong \mathcal{O}_Y(-4) \boxtimes \mathcal{O}_X \cong \det(E^*(-1) \boxtimes \mathcal{O}_X).$$

Here $\det j_*q^*\mathcal{O}_Q(1) \cong \mathcal{O}_{Y \times X}$ because $\text{codim supp}(j_*q^*\mathcal{O}_Q(1)) = 2$.

(iii) Let \tilde{f} denote the composition of the following morphisms on $\mathbb{P}(A) \times \mathbb{P}_X(U)$:

$$\mathcal{O}_{\mathbb{P}(A)}(-1) \boxtimes p_X^*\mathcal{O}/U \to \mathcal{O}_{\mathbb{P}(A)} \boxtimes p_X^*U^* \to \mathcal{O}_{\mathbb{P}(A)} \boxtimes \phi^*\mathcal{O}_Q(1),$$

where the first morphism is defined similarly to the morphism \tilde{f} in (i), and the second morphism is the canonical projection. Let $W'' \subset \mathbb{P}(A) \times \mathbb{P}_X(U)$ denote the zero scheme of \tilde{f}. In the other words W'' is the zero scheme of a section of the vector bundle $\mathcal{O}_{\mathbb{P}(A)}(1) \boxtimes (\phi^*\mathcal{O}_Q(1) \otimes p_X^*(V/U^*))$, corresponding to \tilde{f}. We are going to prove that the map $\mathbb{P}(A) \times \mathbb{P}_X(U) \xrightarrow{\text{id} \times p_X} \mathbb{P}(A) \times X$ induces an isomorphism of $W'' \subset \mathbb{P}(A) \times \mathbb{P}_X(U)$ to $W' \subset Y \times X \subset \mathbb{P}(A) \times X$.

Indeed, the definition of \tilde{f} shows that the pullback under $\text{id} \times p_X$ of $(\alpha \times \text{id}_X)_*\tilde{f}$ degenerates on W'', hence $(\text{id} \times p_X)(W'') \subset W'$. Similarly, the map $(\mathcal{O}_Y \boxtimes U^*)_{|W'} \to q^*\mathcal{O}_Q(1)$ from (5) specifies an embedding $W' \to Y \times \mathbb{P}_X(U) \subset \mathbb{P}(A) \times \mathbb{P}_X(U)$, and it is clear that the pullback of \tilde{f} under this embedding vanishes. Thus we obtain the inverse map $W' \to W''$.

Further, it is easy to see that the composition of $j : W \to W'$, and of the above isomorphism $W' \to W''$ coincides with λ. Finally, $\text{codim} W'' = \text{rank}(\mathcal{O}_{\mathbb{P}(A)}(1) \boxtimes (\phi^*\mathcal{O}_Q(1) \otimes p_X^*(V/U^*)))$, hence the structure sheaf $\lambda_*\mathcal{O}_W$ admits a Koszul resolution (6).

3. Derived categories

Preliminaries. Let \mathcal{D} be a triangulated category [V, GM]. An important example of a triangulated category is $\mathcal{D}^b(M)$, the bounded derived category of coherent sheaves on a smooth projective variety M. We briefly remind some definitions and results from [BK, B, BO, Or] and [Br].

Definition 3.1 ([B]). An object $F \in \mathcal{D}$ is called exceptional if $\text{Hom}(F, F) = k$ and $\text{Ext}^p(F, F) = 0$ for $p \neq 0$. A collection of exceptional objects (F_1, \ldots, F_k) is called exceptional if $\text{Ext}^p(F_i, F_j) = 0$ for $i > j$ and all $p \in \mathbb{Z}$.

Definition 3.2 ([B]). A strictly full triangulated subcategory $\mathcal{A} \subset \mathcal{D}$ is admissible if the embedding functor $\mathcal{A} \to \mathcal{D}$ admits the left and the right adjoint functors $\mathcal{D} \to \mathcal{A}$.

Proposition 3.3 ([B]). Let (F_1, \ldots, F_k) be an exceptional collection in \mathcal{D}. The triangulated subcategory $\langle F_1, \ldots, F_k \rangle \subset \mathcal{D}$ generated by objects F_1, \ldots, F_k is admissible.

If \mathcal{A} is a full triangulated subcategory of \mathcal{D} then the right orthogonal to \mathcal{A} in \mathcal{D} is the full subcategory $\mathcal{A}^\perp \subset \mathcal{D}$ consisting of all objects $G \in \mathcal{D}$ such that $\text{Hom}(F, G) = 0$ for all $F \in \mathcal{A}$. Similarly, the left orthogonal to \mathcal{A} in \mathcal{D} is the full subcategory $^\perp \mathcal{A} \subset \mathcal{D}$ consisting of all objects $G \in \mathcal{D}$ such that $\text{Hom}(G, F) = 0$ for all $F \in \mathcal{A}$.

Definition 3.4 ([BO]). A sequence of admissible subcategories $(\mathcal{A}_1, \ldots, \mathcal{A}_n)$ in \mathcal{D} is semiorthogonal if $\mathcal{A}_j \subset \mathcal{A}_i^\perp$ for $i > j$. Triangulated subcategory of \mathcal{D} generated by subcategories $\mathcal{A}_1, \ldots, \mathcal{A}_n$ is denoted by $\langle \mathcal{A}_1, \ldots, \mathcal{A}_n \rangle$. A semiorthogonal collection $(\mathcal{A}_1, \ldots, \mathcal{A}_n)$ is full if $\langle \mathcal{A}_1, \ldots, \mathcal{A}_n \rangle = \mathcal{D}$. A full semiorthogonal collection in \mathcal{D} is called a semiorthogonal decomposition of \mathcal{D}.

10
Definition 3.5 ([BK]). A covariant additive functor $S_D : D \to D$ is a Serre functor if it is a category equivalence and for all objects $F, G \in D$ there are given bi-functorial isomorphisms $\varphi_{F,G} : \text{Hom}(F,G) \to \text{Hom}(G,S_D(F))^*$ such that the composition

$$(\varphi_{G,S_D(F)}^{-1})^* \circ \varphi_{F,G} : \text{Hom}(F,G) \to \text{Hom}(G,S_D(F))^* \to \text{Hom}(S_D(F),S_D(G))$$

coincides with the isomorphism induced by S_D.

Proposition 3.6 ([BK]). If a Serre functor exists then it is unique up to a canonical functorial isomorphism. If $D = D^b(M)$ then $S_D(F) := F \otimes \omega_M[\dim M]$ is a Serre functor.

Proposition 3.7 ([B]). If D admits a Serre functor and (A_1, \ldots, A_n) is a semiorthogonal sequence of admissible subcategories, then $D = \langle A_0, A_1, \ldots, A_n \rangle$ and $D = \langle A_1, \ldots, A_n, A_{n+1} \rangle$ are semiorthogonal decompositions, where $A_0 = \langle A_1, \ldots, A_n \rangle$ and $A_{n+1} = \langle A_1, \ldots, A_n \rangle$.

Proposition 3.8 ([B]). If D admits a Serre functor and $A \subset D$ is admissible then there exist exact functors $L_A : D \to A^\perp$ and $R_A : D \to A^\perp$ inducing equivalences $^\perp A \to A^\perp$, $A^\perp \to A^\perp$, such that $L_A(A) = 0$, $R_A(A) = 0$, $(L_A)^{1_A} = S_D \circ S_D^{-1}$, and $(R_A)^{1_A} = S_D^{-1} \circ S_D$. Moreover, such functors are unique up to a canonical functorial isomorphism.

Proposition 3.9 ([B, BO]). Let $D = \langle A_1, \ldots, A_n \rangle$ be a semiorthogonal decomposition. If D admits a Serre functor then for any $1 \leq k \leq n - 1$ we have semiorthogonal decompositions

$$D = \langle A_1, \ldots, A_{k-1}, A_{k+1}, A_k, A_{k+2}, \ldots, A_n \rangle,$$

and $R_{A_{k+1}} : A_k \to R_{A_{k+1}}A_k, L_{A_k} : A_{k+1} \to L_{A_k}A_{k+1}$ are equivalences. If additionally $A_{k+1} \subset A_k^\perp$ (i.e. A_k and A_{k+1} are completely orthogonal), then $L_{A_k}A_{k+1} = A_{k+1}, R_{A_{k+1}}A_k = A_k$.

We will call these operations on semiorthogonal decompositions the (right) mutation of A_k through A_{k+1} and the (left) mutation of A_{k+1} through A_k respectively. If $A = \langle F \rangle$ we will denote mutation functors, L_A and R_A, by L_F and R_F respectively.

Lemma 3.10. If Φ is an autoequivalence of D then we have canonical isomorphisms of functors $\Phi \circ L_A \cong L_{\Phi(A)} \circ \Phi, \Phi \circ R_A \cong R_{\Phi(A)} \circ \Phi$.

Proposition 3.11 ([B]). If A_k and A_{k+1} are generated by exceptional objects F_k and F_{k+1} respectively, then $L_{A_k}A_{k+1}$ and $R_{A_{k+1}}A_k$ are generated by exceptional objects $L_{F_k}F_{k+1}$ and $R_{F_{k+1}}F_k$ respectively, defined by the following exact triangles

$$\text{RHom}(F_k,F_{k+1}) \otimes F_k \overset{ev}{\to} F_{k+1} \to L_{F_k}F_{k+1}, \quad R_{F_{k+1}}F_k \to F_k \overset{ev^*}{\to} \text{RHom}(F_k,F_{k+1})^* \otimes F_{k+1},$$

where ev and ev^* denote the canonical evaluation and coevaluation homomorphisms.

Let M_1, M_2 be smooth projective varieties and let $p_i : M_1 \times M_2 \to M_i$ denote the projections. Take any $K \in D^b(M_1 \times M_2)$ and define $\Phi_K(F) := p_2_* (p_1^* F \otimes K)$. Then Φ_K is an exact functor $D^b(M_1) \to D^b(M_2)$, the kernel functor with kernel K. Kernel functors can be thought of as analogues of correspondences on categorical level.

Lemma 3.12. If $K \in D^b(M_2 \times M_3), F_1 \in D^b(M_1), F_2 \in D^b(M_2)$, then $\Phi_K \cdot \Phi_{F_1 \boxtimes F_2} \cong \Phi_{F_1 \boxtimes \Phi_K(F_2)}$.

Proposition 3.13. If M is a smooth projective variety, $D = D^b(M)$, and $F \in D$ is an exceptional object then the mutation functors L_F, R_F are kernel functors given by the kernels F_K and K_F on $M \times M$ defined by the following exact triangles

$$\text{RHom}(F,O_M) \otimes F \overset{ev}{\to} \Delta_* O_M \to F_K, \quad K_F \to \Delta_* O_M \overset{ev^*}{\to} \text{RHom}(F,\omega_M[\dim M]) \otimes F,$$
where \(\text{ev} \) and \(\text{ev}^* \) are the evaluation and coevaluation homomorphisms, and \(\Delta : M \to M \times M \) is the diagonal.

Let \(M \) be a smooth projective variety and let \(E \) be a rank \(r \) vector bundle on \(M \). Consider its projectivization \(\mathbb{P}_M(E) \) and denote by \(p : \mathbb{P}_M(E) \to M \) the projection and by \(L = \mathcal{O}_M(1) \) a Grothendieck relatively ample line bundle.

Proposition 3.14 ([Or]). If \(D^b(M) = \langle A_1, \ldots, A_n \rangle \) is a semiorthogonal decomposition then

\[
D^b(\mathbb{P}_M(E)) = \langle L^k \otimes p^*A_1, \ldots, L^k \otimes p^*A_n, \ldots, L^{k+r-1} \otimes p^*A_1, \ldots, L^{k+r-1} \otimes p^*A_n \rangle
\]

is a semiorthogonal decomposition for any \(k \in \mathbb{Z} \).

We also will need the following reformulation of results of Bridgeland.

Theorem 3.15 ([Br]). Let \(M \) be a smooth projective variety and let \(\psi : M \to M' \) be a crepant contraction of relative dimension 1. Let \(Z \subset M \) denote the exceptional locus of \(\psi \). Assume that \(\psi^+ : M^+ \to M' \) is a flop of \(\psi \) with \(M^+ \) smooth and let \(Z^+ \subset M^+ \) denote the exceptional locus of \(\psi^+ \), so that \(\psi^{-1} \circ \psi^+ : M^+ - Z^+ \to M - Z \) is an isomorphism. For any point \(s \in M^+ \) let \(j_s : M \to M \times M^+ \) denote the corresponding embedding. If \(K \in D^b(M \times M^+) \) is an object, such that for any point \(s \in M^+ \) we have either

1. \(Lj_s^*K \cong \mathcal{O}_{\psi^{-1} \circ \psi^+}(s) \), if \(s \in M^+ - Z^+ \);
2. we have an exact triangle \(Lj_s^*K \to \mathcal{O}_L \xrightarrow{\epsilon} \mathcal{O}_L(-1)[2] \) with \(\epsilon \neq 0 \), where \(L = \psi^{-1} \circ \psi^+ \).

Then the kernel functor \(\Phi_K : D^b(M) \to D^b(M^+) \) is an equivalence.

Derived categories of \(Y \) and \(X \). Let \(Y \subset \mathbb{P}(A) \) be a smooth cubic threefold and let \(X \) be a smooth \(V_{14} \) threefold. To avoid an abuse of notation, let us denote by \(\mathcal{O}(y) \) the sheaf \(\mathcal{O}_{\mathbb{P}(A)}(1) \) and its pullbacks to \(Y, \mathbb{P}_Y(E^*), W \) etc., by \(\mathcal{O}(x) \) the sheaf \(\mathcal{O}_{\text{Gr}(2,V)}(1) \) and its pullbacks to \(X, \mathbb{P}_X(U), W \) etc., and by \(\mathcal{O}(c) \) the sheaf \(\mathcal{O}_{\mathbb{P}(V)}(1) \) and its pullbacks to \(Q, \mathbb{P}_Y(E^*), \mathbb{P}_X(U), W \) etc.

Lemma 3.16. The pairs \((\mathcal{O}, \mathcal{O}(y)) \) in \(D^b(Y) \) and \((\mathcal{O}, \mathcal{U}^*) \) in \(D^b(X) \) are exceptional.

Proof: Straightforward computations using the Koszul resolutions of \(Y \) in \(\mathbb{P}(A) \) and of \(X \) in \(\text{Gr}(2,V) \) and Borel–Bott–Weil theorem.

The subcategories \(\langle \mathcal{O}, \mathcal{O}(y) \rangle \subset D^b(Y) \) and \(\langle \mathcal{O}, \mathcal{U}^* \rangle \subset D^b(X) \) are admissible by proposition 3.3, hence by proposition 3.7 we obtain semiorthogonal decompositions

\[
D^b(X) = \langle \mathcal{A}_X, \mathcal{A}_Y \rangle, \quad D^b(Y) = \langle \mathcal{A}_Y, \mathcal{O}, \mathcal{O}(y) \rangle,
\]

where \(\mathcal{A}_X = \perp \langle \mathcal{O}, \mathcal{U}^* \rangle \subset D^b(X) \) and \(\mathcal{A}_Y = \langle \mathcal{O}, \mathcal{O}(y) \rangle^\perp \subset D^b(Y) \).

Theorem 3.17. If \(Y \) is the Pfaffian cubic of \(X \) then categories \(\mathcal{A}_X \) and \(\mathcal{A}_Y \) are equivalent.

Corollary 3.18. If \(X \) and \(X' \) are birational then \(\mathcal{A}_X \) and \(\mathcal{A}_{X'} \) are equivalent.

Proof: If \(X \) and \(X' \) are birational then their Pfaffian cubics \(Y \) and \(Y' \) are isomorphic by remark 2.19, hence \(\mathcal{A}_X \cong \mathcal{A}_Y \cong \mathcal{A}_{Y'} \mathcal{A}_X \).

Note that a triangulated category generated by an exceptional object is equivalent to the derived category of \(k \)-vector spaces. Therefore we have

Corollary 3.19. If \(Y \) is the Pfaffian cubic of \(X \) then derived categories \(D^b(X) \) and \(D^b(Y) \) admit semiorthogonal decompositions with pairwise equivalent summands.
Step 2. First of all, we note that Lemma 3.20 will need the following.

\[Y \]

Step 1: First of all, we replace for convenience the decomposition (8) of \(\mathcal{D}^b(Y) \) by the decomposition \(\mathcal{D}^b(Y) = \langle \mathcal{O}(-y), \mathcal{A}_Y, \mathcal{O} \rangle \). This is done by mutating \(\mathcal{O}(y) \) to the left, since \(\omega_Y \cong \mathcal{O}(-2y) \). Further, we note that \(\mathcal{O}(e) \) is a Grothendieck relatively ample line bundle both for \(\mathbb{P}_Y(E^*) \to Y \) and for \(\mathbb{P}_X(U) \to X \). Hence by proposition 3.14 we obtain the following semiorthogonal decompositions

\[
\mathcal{D}^b(\mathbb{P}_X(U)) = \langle \mathcal{O}(-e), \mathcal{U}(e), \mathcal{O}_X(e) \rangle,
\]

\[
\mathcal{D}^b(\mathbb{P}_Y(E^*)) = \langle \mathcal{O}(-y), \mathcal{A}_Y, \mathcal{O}(e - y), \mathcal{A}_Y(e), \mathcal{O}(e) \rangle,
\]

where \(p_X^* \) and \(p_Y^* \) are omitted for brevity.

Step 2: We perform with the decomposition (10) a sequence of mutations (described below) and obtain the following semiorthogonal decomposition

\[
\mathcal{D}^b(\mathbb{P}_Y(E^*)) = \langle \mathcal{O}(-e), L_\mathcal{O}(2e - y), R_\mathcal{O}(2e - y)\mathcal{A}_Y(e), \mathcal{O}, L_\mathcal{O}(3e - y), R_\mathcal{O}(3e - y)\mathcal{A}_Y(2e) \rangle.
\]

Step 3: Let \(K = i_*\mathcal{O}_W \), where \(i: W = \mathbb{P}_Y(E^*) \times_Q \mathbb{P}_X(U) \to \mathbb{P}_Y(E^*) \times \mathbb{P}_X(U) \) is the embedding. We show that the kernel \(K \) satisfies the conditions of theorem 3.15. It follows that the kernel functor \(\Phi_K: \mathcal{D}^b(\mathbb{P}_Y(E^*)) \to \mathcal{D}^b(\mathbb{P}_X(U)) \) is an equivalence. We check also that \(\Phi_K \) commutes with tensoring by pullbacks of sheaves from \(Q \).

Step 4: We show that

\[
\Phi_K(\mathcal{O}) \cong \mathcal{O}, \quad \Phi_K(L_\mathcal{O}(2e - y)) \cong \mathcal{U}^*(-e), \quad \text{and} \quad p_X^*\Phi_K(R_\mathcal{O}(2e - y)\mathcal{A}_Y(e)) = 0.
\]

Lemma 3.10 implies that \(L_\mathcal{O}(3e - y) \cong (L_\mathcal{O}(2e - y)) \otimes \mathcal{O}(e) \). Since \(\Phi_K \) commutes with tensoring by \(\mathcal{O}(-e) \) it follows that

\[
\Phi_K(\mathcal{O}(-e)) \cong \mathcal{O}(-e), \quad \text{and} \quad \Phi_K(L_\mathcal{O}(3e - y)) \cong \mathcal{U}^*.
\]

These isomorphisms show that \(\Phi_K \) takes the first line of the collection (11) to the subcategory \(p_X^*\mathcal{D}^b(X) \otimes \mathcal{O}(-e) = \langle \mathcal{O}(-e), \mathcal{U}^*(-e), \mathcal{A}_X(-e) \rangle \subset \mathcal{D}^b(\mathbb{P}_X(U)) \). Lemma 3.10 implies that the second line of (11) is equal to the first line tensored by \(\mathcal{O}(e) \), therefore \(\Phi_K \) must induce an equivalence

\[
\langle \mathcal{O}, L_\mathcal{O}(3e - y), R_\mathcal{O}(3e - y)\mathcal{A}_Y(2e) \rangle \xrightarrow{\Phi_K} p_X^*\mathcal{D}^b(X) = \langle \mathcal{O}, \mathcal{U}^*, \mathcal{A}_X \rangle \subset \mathcal{D}^b(\mathbb{P}_X(U)).
\]

Finally, since \(\Phi_K(\mathcal{O}) \cong \mathcal{O} \) and \(\Phi_K(L_\mathcal{O}(3e - y)) \cong \mathcal{U}^* \) it follows that \(\Phi_K \) must induce an equivalence \(R_\mathcal{O}(3e - y)\mathcal{A}_Y(2e) \to \mathcal{A}_X \subset \mathcal{D}^b(\mathbb{P}_X(U)) \). Summarizing, we see that

\[
\Phi(A) = p_X^*(\Phi_K(R_\mathcal{O}(3e - y)p_Y^*(A \otimes \mathcal{O}(2e))))
\]

is an equivalence \(\mathcal{A}_Y \to \mathcal{A}_X \).

Now we start implementing above steps. Step 1 is already quite clear, so we can pass to Step 2.

Step 2. First of all, we note that \(\omega_{\mathbb{P}_Y(E^*)} \cong \mathcal{O}(-2e) \) (see the proof of theorem 2.17). Further, we will need the following

Lemma 3.20. In \(\mathcal{D}^b(\mathbb{P}_Y(E^*)) \) we have

(i) \(\text{Ext}^p(\mathcal{O}, \mathcal{O}(e - y)) = 0 \) for all \(p \in \mathbb{Z} \).

(ii) \(\text{Ext}^p(\mathcal{O}, \mathcal{O}(2e - y)) = \begin{cases} k, & \text{if } p = 1 \\ 0, & \text{if } p \neq 1 \end{cases} \)

(iii) \(\text{Ext}^p(\mathcal{O}(-e), R_\mathcal{O}(-e)F) = 0 \) for any \(p \in \mathbb{Z} \) and any \(F \in \mathcal{A}_Y \).
Proof: (i) $\mathrm{Ext}^i(\mathcal{O}, \mathcal{O}(e-y)) = H^i(\mathbb{P}_Y(E^*), \mathcal{O}(e-y)) = H^i(Y, p_{Y*}(\mathcal{O}(e-y))) = H^i(Y, E(-1)) = 0$ by theorem 2.2.

(ii) Similarly, we have $\mathrm{Ext}^i(\mathcal{O}, \mathcal{O}(2e-y)) = H^i(Y, p_{Y*}(\mathcal{O}(2e-y))) = H^i(Y, S^2E(-1))$ and it remains to apply lemma 2.10.

(iii) Using lemma 3.10 and theorem 3.21 we deduce that

$$\mathrm{Ext}^i(\mathcal{O}(-e), R_{\mathcal{O}(e-y)} F) \cong \mathrm{Ext}^i(\mathcal{O}, R_{\mathcal{O}(2e-y)} F(e)) \cong \mathrm{Ext}^i(\Phi_k(\mathcal{O}), \Phi_k(R_{\mathcal{O}(2e-y)} F(e))).$$

But $\Phi_k(\mathcal{O}) \cong \mathcal{O}$ by proposition 3.23, hence

$$\mathrm{Ext}^i(\mathcal{O}(-e), R_{\mathcal{O}(e-y)} F) \cong H^i(X, \mu_{\mathcal{X}}(\Phi_k(R_{\mathcal{O}(2e-y)} F(e))))$$

and it remains to note that $p_{\mathcal{X},*}\Phi_k(R_{\mathcal{O}(2e-y)} F(e)) = 0$ by proposition 3.24.

Now, we explain the sequence of transformations. We start with semiorthogonal decomposition $\mathcal{D}^b(\mathbb{P}_Y(E^*)) = \langle \mathcal{O}(-y), \mathcal{A}_Y, \mathcal{O}, \mathcal{O}(e-y), \mathcal{A}_Y(e), \mathcal{O}(e) \rangle$.

1. We mutate $\mathcal{O}(-y)$ to the right; it is get twisted by $\mathcal{O}(2e)$, the anticanonical class of $\mathbb{P}_Y(E^*)$:

$$\mathcal{D}^b(\mathbb{P}_Y(E^*)) = \langle \mathcal{A}_Y, \mathcal{O}, \mathcal{O}(e-y), \mathcal{A}_Y(e), \mathcal{O}(e), \mathcal{O}(2e-y) \rangle.$$

2. We mutate \mathcal{O} through $\mathcal{O}(e-y)$ and $\mathcal{O}(e)$ through $\mathcal{O}(2e-y)$; lemma 3.20 (i) and proposition 3.9 imply that $R_{\mathcal{O}(e-y)} \mathcal{O} = \mathcal{O}$, $R_{\mathcal{O}(2e-y)} \mathcal{O}(e) = \mathcal{O}(e)$, and we get

$$\mathcal{D}^b(\mathbb{P}_Y(E^*)) = \langle \mathcal{A}_Y, \mathcal{O}(e-y), \mathcal{O}, \mathcal{A}_Y(e), \mathcal{O}(2e-y), \mathcal{O}(e) \rangle.$$

3. We mutate \mathcal{A}_Y through $\mathcal{O}(e-y)$ and $\mathcal{A}_Y(e)$ through $\mathcal{O}(2e-y)$:

$$\mathcal{D}^b(\mathbb{P}_Y(E^*)) = \langle \mathcal{O}(e-y), R_{\mathcal{O}(e-y)} \mathcal{A}_Y, \mathcal{O}, \mathcal{O}(2e-y), R_{\mathcal{O}(2e-y)} \mathcal{A}_Y(e), \mathcal{O}(e) \rangle.$$

4. We mutate $\mathcal{O}(e-y)$ to the right; it is get twisted by $\mathcal{O}(2e)$:

$$\mathcal{D}^b(\mathbb{P}_Y(E^*)) = \langle R_{\mathcal{O}(e-y)} \mathcal{A}_Y, \mathcal{O}, \mathcal{O}(2e-y), R_{\mathcal{O}(2e-y)} \mathcal{A}_Y(e), \mathcal{O}(e), \mathcal{O}(3e-y) \rangle.$$

5. We mutate $\mathcal{O}(2e-y)$ through \mathcal{O} and $\mathcal{O}(3e-y)$ through $\mathcal{O}(e)$; lemma 3.20 (ii) and proposition 3.11 imply that $L_{\mathcal{O}} \mathcal{O}(2e-y)$ and $L_{\mathcal{O}(e)} \mathcal{O}(3e-y)$ are the unique nontrivial extensions

$$\begin{align*}
0 \rightarrow & \mathcal{O}(2e-y) \rightarrow L_{\mathcal{O}} \mathcal{O}(2e-y) \rightarrow \mathcal{O} \rightarrow 0, \\
0 \rightarrow & \mathcal{O}(3e-y) \rightarrow L_{\mathcal{O}(e)} \mathcal{O}(3e-y) \rightarrow \mathcal{O}(e) \rightarrow 0,
\end{align*}$$

and we get:

$$\mathcal{D}^b(\mathbb{P}_Y(E^*)) = \langle R_{\mathcal{O}(e-y)} \mathcal{A}_Y, L_{\mathcal{O}} \mathcal{O}(2e-y), \mathcal{O}, R_{\mathcal{O}(2e-y)} \mathcal{A}_Y(e), L_{\mathcal{O}(e)} \mathcal{O}(3e-y), \mathcal{O}(e) \rangle.$$

6. We mutate $\mathcal{O}(e)$ to the left; it is get twisted by $\mathcal{O}(-2e)$:

$$\mathcal{D}^b(\mathbb{P}_Y(E^*)) = \langle \mathcal{O}(-e), R_{\mathcal{O}(e-y)} \mathcal{A}_Y, L_{\mathcal{O}} \mathcal{O}(2e-y), \mathcal{O}, R_{\mathcal{O}(2e-y)} \mathcal{A}_Y(e), L_{\mathcal{O}(e)} \mathcal{O}(3e-y) \rangle.$$

7. We mutate $\mathcal{O}(-e)$ through $R_{\mathcal{O}(e-y)} \mathcal{A}_Y$ and \mathcal{O} through $R_{\mathcal{O}(2e-y)} \mathcal{A}_Y(e)$; lemma 3.20 (iii) and proposition 3.9 imply that the mutations coincide with transpositions:

$$\mathcal{D}^b(\mathbb{P}_Y(E^*)) = \langle R_{\mathcal{O}(e-y)} \mathcal{A}_Y, \mathcal{O}(-e), L_{\mathcal{O}} \mathcal{O}(2e-y), R_{\mathcal{O}(2e-y)} \mathcal{A}_Y(e), \mathcal{O}, L_{\mathcal{O}(e)} \mathcal{O}(3e-y) \rangle.$$

8. We mutate $R_{\mathcal{O}(e-y)} \mathcal{A}_Y$ to the right; it is get twisted by $\mathcal{O}(2e)$ and once again using lemma 3.10 we get the desired decomposition (11).

This completes Step 2.
Step 3. We adopt the notation of proposition 2.20 and of theorem 3.15.

Theorem 3.21. If \(K = i_\ast \mathcal{O}_W \) then the kernel functor \(\Phi_K : D^b(\mathbb{P}_Y(E^*)) \to D^b(\mathbb{P}_X(U)) \) is an equivalence. Moreover, \(\Phi_K \) commutes with tensoring by pullbacks of bundles from \(Q \).

Proof: We must check the conditions of theorem 3.15. Take an arbitrary point \(s \in \mathbb{P}_X(U) \). Then
\[
(\alpha p_Y \times \text{id})_* j_* j'_* K \cong (\alpha p_Y \times \text{id})_* j_* j'_* i_* \mathcal{O}_W \cong (\alpha p_Y \times \text{id})_* (i_* \mathcal{O}_W \otimes j_* j'_* \mathcal{O}_{\mathbb{P}_Y(E^*)}) \cong \\
\cong (\alpha p_Y \times \text{id})_* i_* i^* j_* j'_* \mathcal{O}_{\mathbb{P}_Y(E^*)} \cong \lambda_* \pi'_2 \mathcal{O}_s \cong \lambda_* \pi' \mathcal{O}_s \cong \pi'_2 \mathcal{O}_s \otimes \lambda_* \mathcal{O}_W.
\]

Here \(\pi_2 \) and \(\pi'_2 \) denote the projections of \(\mathbb{P}_Y(E^*) \times \mathbb{P}_X(U) \) and \(\mathbb{P}(A) \times \mathbb{P}_X(U) \) to \(\mathbb{P}_X(U) \) and \(p_Y \) is considered as a map \(\mathbb{P}_Y(E^*) \to \mathbb{P}(A) \):

\[
\begin{array}{ccc}
\mathbb{P}_Y(E^*) & \xrightarrow{j_*} & \mathbb{P}_Y(E^*) \times \mathbb{P}_X(U) \\
\xrightarrow{\alpha p_Y \times \text{id}} & & \xrightarrow{\pi_2} \mathbb{P}_X(U) \\
\xrightarrow{i} & & \mathbb{P}(A) \times \mathbb{P}_X(U) \\
\xrightarrow{\pi'_2} & & \\
\end{array}
\]

The RHS of the above chain of isomorphisms can be computed with a help of resolution (6). It follows, that for any point \(\theta^{-1}(s) \in \mathbb{P}(A) \), while for \(s \in S_X \subset \mathbb{P}_X(U) \) we get an exact triangle
\[
\pi'_2 \mathcal{O}_s \otimes \lambda_* \mathcal{O}_W \to \mathcal{O}_{M \times s} \to \mathcal{O}_{M \times s}(-1)[2],
\]
where \(M = p_Y(\psi^{-1}(\phi(s))) \subset \mathbb{P}(A) \). Since the object \(j'_* K \) is supported on \(\psi^{-1}(\phi(s)) \) and by proposition 2.20 (ii) the map \(p_Y : \psi^{-1}(\phi(s)) \to \mathbb{P}(A) \) is a closed embedding, it follows that we have an exact triangle
\[
j'_* K \to \mathcal{O}_{\widetilde{M}} \xrightarrow{\epsilon} \mathcal{O}_{\widetilde{M}}(-1)[2],
\]
where \(\widetilde{M} = \psi^{-1}(\phi(s)) \subset \mathbb{P}_Y(E^*) \). It remains to check that \(\epsilon \neq 0 \). Note that \(\epsilon = 0 \) would imply \(j'_* K \cong \mathcal{O}_{\widetilde{M}} \oplus \mathcal{O}_{\widetilde{M}}(-1)[1] \), hence \(\text{Hom}^1(j'_* K, \mathcal{O}_{\widetilde{M}}(-1)) \neq 0 \). Thus, it suffices to check that \(\text{Hom}^1(j'_* K, \mathcal{O}_{\widetilde{M}}(-1)) = 0 \). To this end we consider the following diagram

\[
\begin{array}{ccc}
\mathbb{P}_Y(E^*) & \xrightarrow{j_*} & \mathbb{P}_Y(E^*) \times \mathbb{P}_X(U) \\
\xrightarrow{\psi} & & \xrightarrow{q} Q \\
\xrightarrow{\psi \times \phi} & & \xrightarrow{\Delta} Q \\
Q & \xrightarrow{j_c} & Q \times Q \\
\end{array}
\]

where \(c = \phi(s) \in Q \), \(j_c(v) = (v, c) \in Q \times Q \) and \(\Delta \) is the diagonal. In this diagram the right square is Cartesian and \(\Delta \) is a closed embedding, hence lemma 3.22 implies that there is a functorial morphism \((\psi \times \phi)^* \Delta_\ast \to i_\ast q^* \ast \), and furthermore, for any \(F \in D^{\leq 0}(Q) \) the object \(F' \) in the exact triangle
\[
F' \to (\psi \times \phi)^* \Delta_\ast F \to i_\ast q^* F
\]
is contained in \(D^{\leq -1}(\mathbb{P}_Y(E^*) \times \mathbb{P}_X(U)) \). Applying \(j'_* \) and using \(j'_* (\psi \times \phi)^* = \psi^* j'_* \) we get an exact triangle
\[
F'' \to \psi^* j'_* \Delta_\ast F \to j'_* i_\ast q^* F,
\]
with \(F'' = j'_* F' \in D^{\leq -1}(\mathbb{P}_Y(E^*)) \) since \(j'_* \) is right exact. Substituting \(F = \mathcal{O}_Q \) and using isomorphisms \(q^* \mathcal{O}_Q \cong \mathcal{O}_W \), we obtain a triangle
\[
F'' \to \psi^* j'_* \Delta_\ast \mathcal{O}_Q \to j'_* K.
\]

Applying the functor \(\text{Hom}(\ast, \mathcal{O}_{\widetilde{M}}(-1)) \) and using
\[
\text{Hom}(\psi^* j'_* \Delta_\ast \mathcal{O}_Q, \mathcal{O}_{\widetilde{M}}(-1)) \cong \text{Hom}(j'_* \Delta_\ast \mathcal{O}_Q, \mathcal{O}_{\widetilde{M}}(-1)) = \text{Hom}(j'_* \Delta_\ast \mathcal{O}_Q, 0) = 0,
\]
we deduce that \(\text{Hom}^1(j_*K, \mathcal{O}_M(-1)) = \text{Hom}(F'', \mathcal{O}_M(-1)) = 0 \), since we have \(F'' \in \mathcal{D}^{\leq -1}((\mathbb{P}_Y(E^*)) \) and \(\mathcal{O}_M(-1) \in \mathcal{D}^{\geq 0}((\mathbb{P}_Y(E^*)) \).

Now theorem 3.15 implies that the functor \(\Phi_K : \mathcal{D}^b(\mathbb{P}_Y(E^*)) \to \mathcal{D}^b((\mathbb{P}_X(U)) \) is an equivalence.

Finally, let \(\mathcal{V} \) be an arbitrary vector bundle on \(Q \). Then the functor \(F \mapsto \Phi_K(F \otimes \psi^*\mathcal{V}) \) is a kernel functor with kernel \(\mathcal{K} \otimes \pi_1^*\psi^*\mathcal{V} = i_*\mathcal{O}_W \otimes \pi_1^*\psi^*\mathcal{V} = i_*i^*\pi_1^*\psi^*\mathcal{V} = i_*\mathcal{V} \), and the functor \(F \mapsto \Phi_K(F) \otimes \phi^*\mathcal{V} \) is a kernel functor with kernel \(\mathcal{K} \otimes \pi_2^*\phi^*\mathcal{V} = i_*\mathcal{O}_W \otimes \pi_2^*\phi^*\mathcal{V} = i_*i^*\pi_2^*\phi^*\mathcal{V} = i_*\mathcal{V} \), where \(\pi_1 \) and \(\pi_2 \) are projections of \(\mathbb{P}_Y(E^*) \times \mathbb{P}_X(U) \) to the factors. The kernels are isomorphic, hence the functors are isomorphic as well.

\[\square \]

Lemma 3.22 (cf. [Sw]). For any Carthesian square

\[
\begin{array}{ccc}
T & \xrightarrow{f} & T' \\
\downarrow{g} & & \downarrow{g'} \\
S & \xleftarrow{f} & S'
\end{array}
\]

there is a canonical morphism of functors \(g^*f_* \to f'_*g'^* \). Further, if \(f \) is affine then for any \(F \in \mathcal{D}^{\leq 0}(S') \) we have \(F' \in \mathcal{D}^{\leq -1}(T) \), where \(F' \) fits into the triangle \(F' \to g^*f_*F \to f'_*g'^*F \).

Proof: Using the adjunction morphisms for \(g \) and \(g' \), and an isomorphism \(f_*g_* \cong g_*f'_* \) we define the morphism of functors as the following composition

\[g^*f_* \to g^*f_*g_*g'^* \to g^*g_*f'_*g'^* \to f'_*g'^* . \]

Now, assume that \(f \) is affine and let us check that \(F' \in \mathcal{D}^{\leq -1}(T) \). The property is local, so we can assume that \(S \) and \(T \) are affine, say \(S = \text{Spec} A, T = \text{Spec} B \). Then \(S' = \text{Spec} A' \), \(T' = \text{Spec} B \otimes_A A' \), where \(A' \) is a finitely generated \(A \)-algebra. Note that

\[f'_*g'^*(A') \cong B \otimes_A A' \]

and \(g^*f_*(A') \in \mathcal{D}^{\leq 0}(T) \), \(H^0(g^*f_*A') \cong B \otimes_A A' \).

Taking a resolution of \(F \in \mathcal{D}^{\leq 0}(S') \) by free \(A' \)-modules we deduce the claim.

\[\square \]

Step 4.

Proposition 3.23. We have

(i) \(\Phi_K(\mathcal{O}) = \mathcal{O} \), \(\Phi_K(\mathcal{O}(-e)) = \mathcal{O}(-e) \);

(ii) \(\Phi_K(L\mathcal{O}(2e-y)) = U^*(-e) \), \(\Phi_K(L\mathcal{O}(e)\mathcal{O}(3e-y)) = U^* \).

Proof: First of all we note that for any \(F \in \mathcal{D}^b(\mathbb{P}(A)) \) we have

\[\Phi_K(p_Y^*\alpha^*F) = \pi_2^*(\pi_1^*p_Y^*\alpha^*F \otimes i_*\mathcal{O}_W) \cong \pi_2^*i_*i^*\pi_1^*p_Y^*\alpha^*F \cong \pi_2^*i_*i^*\pi_1^*\lambda^*F = \xi_\ast\pi_1^*\lambda^*F = \pi_2^*(\pi_1^*\alpha^*F \otimes \lambda_\ast\mathcal{O}_W) , \]

where \(\pi_1, \pi_2 \) are the projections of \(\mathbb{P}_Y(E^*) \times \mathbb{P}_X(U) \) to the factors, and \(\pi_1', \pi_2' \) are the projections of \(\mathbb{P}(A) \times \mathbb{P}(U) \) to the factors.

(i) Taking \(F = \mathcal{O}_{\mathbb{P}(A)} \) and applying (6) we get \(\Phi_K(\mathcal{O}) = \mathcal{O} \). Further, since \(\mathcal{O}(-e) \) is a pullback of a line bundle from \(Q \), it follows from theorem 3.21 that \(\Phi_K(\mathcal{O}(-e)) = \mathcal{O}(-e) \).

(ii) Taking \(F = \mathcal{O}_{\mathbb{P}(A)}(-1) \) and applying (6) we get \(\Phi_K(\mathcal{O}(-y)) = R^1\pi_2^*\lambda^4(V/U)(-4e-5y) = \mathcal{O}(x-4e) \).

Further, since \(\mathcal{O}(2e) \) is a pullback of a line bundle from \(Q \), it follows from theorem 3.21 that

\[\Phi_K(\mathcal{O}(2e-y)) \cong \mathcal{O}(x-2e) . \]

Since \(L\mathcal{O}(2e-y) \) is the unique nontrivial extension of \(\mathcal{O} \) by \(\mathcal{O}(2e-y) \) and since \(\Phi_K \) is an equivalence, it follows that \(\Phi_K(L\mathcal{O}(2e-y)) \) is the unique nontrivial extension of \(\mathcal{O} \) by \(\mathcal{O}(x-2e) \).
On the other hand, it is clear that \(U'(e) \) is such an extension. Hence \(\Phi_K(L_\mathcal{O}(2e-y)) \cong U'(e) \).

Finally, by lemma 3.10 we have \(L_\mathcal{O}(3e - y) \cong (L_\mathcal{O}(2e - y)) \otimes \mathcal{O}(e) \) hence by theorem 3.21 \(\Phi_K(L_\mathcal{O}(e)) \mathcal{O}(3e - y)) \cong U' \).

\(\square \)

Proposition 3.24. We have \(p_X \Phi_K(R_\mathcal{O}(2e-y)\mathcal{A}_Y(e)) = 0 \).

Proof: First of all, lemma 3.10 implies that

\[
\Phi_K(R_\mathcal{O}(2e-y)\mathcal{A}_Y(e)) = \Phi_K(R_\mathcal{O}(e-y)\mathcal{A}_Y) = (\Phi_K(\mathcal{O}) \cdot \Phi_F)(\mathcal{A}_Y),
\]

where \(F = K_\mathcal{O}(e-y) \in \mathcal{D}^b(\mathbb{P}_Y(E^*) \times \mathbb{P}_X(U)) \) is defined from the following exact triangle (cf. proposition 3.13)

\[
\{ F \to \Delta_* \mathcal{O}_{\mathbb{P}_Y(E^*)} \xrightarrow{\rho} RHom(\mathcal{O}(e-y), \mathcal{O}(-2e)[4]) \boxtimes \mathcal{O}(e-y) \} = \{ F \to \Delta_* \mathcal{O}_{\mathbb{P}_Y(E^*)} \xrightarrow{\rho} \mathcal{O}(y-3e) \boxtimes \mathcal{O}(e-y)[4] \}
\]

with \(\rho \neq 0 \). Since the kernel \(\Delta_* \mathcal{O}_{\mathbb{P}_Y(E^*)} \) gives the identity functor, it follows from lemma 3.12 that the functor \(\Phi_K(\cdot) \cdot \Phi_F \) is given by the kernel \(K' \in \mathcal{D}^b(\mathbb{P}_Y(E^*) \times \mathbb{P}_X(U)) \), defined from the exact triangle

\[
K' \to K(e) \xrightarrow{\rho} \mathcal{O}(y-3e) \boxtimes \Phi_K(\mathcal{O}(e-y))[4],
\]

where \(\rho' = \Phi_K(\mathcal{O})(\rho) \neq 0 \), since \(\Phi_K(\mathcal{O}) \) is an equivalence. Further, applying (14) we obtain \(\Phi_K(\mathcal{O}(e-y)) = \Phi_K(\mathcal{O}(2e-y)) = \mathcal{O}(x-2e) \), and it follows that we have the following exact triangle:

\[
K' \to K(e) \xrightarrow{\rho'} \mathcal{O}(y-3e) \boxtimes \mathcal{O}(x-2e)[4].
\]

It is clear that we have \(\Phi_K' \cdot p_Y^* = \Phi_{(p_Y \times \text{id})}(K') \). Applying \((p_Y \times \text{id})_* \) to the above triangle we see that the resulting functor is \(\Phi_K'' \) where \(K'' \in \mathcal{D}^b(Y \times \mathbb{P}_X(U)) \) is defined from the following exact triangle:

\[
K'' \to (p_Y \times \text{id})_* K(e) \xrightarrow{\rho''} p_Y_* \mathcal{O}(y-3e) \boxtimes \mathcal{O}(x-2e)[4].
\]

Since \(p_Y_* \mathcal{O}(y-3e) \cong E^*(-y)[-1] \), we have

\[
K'' \to (p_Y \times \text{id})_* K(e) \xrightarrow{\rho''} E^*(-y) \boxtimes \mathcal{O}(x-2e)[3].
\]

Let us check that \(\rho'' \neq 0 \). Indeed, if \(\rho'' = 0 \) then \(K'' \) would have \(E^*(-y) \boxtimes \mathcal{O}(x-2e)[2] \) as a direct summand, hence for any \(F \in \mathcal{A}_Y \), such that \(H^r(Y, E^*(-y) \boxtimes F) \neq 0 \) (e.g. \(F = E(-y) \)) the object \(\Phi_K''(F) \) would have a shift of \(\mathcal{O}(x-2e) \) as a direct summand, hence using (14) we would obtain

\[
0 \neq \text{Hom}(\Phi_K''(F), \mathcal{O}(x-2e)) = \text{Hom}(\Phi_K(R_\mathcal{O}(2e-y)F(e)), \mathcal{O}(x-2e)) = \text{Hom}(\Phi_K(R_\mathcal{O}(2e-y)F(e)), \Phi_K(\mathcal{O}(2e-y))) = \text{Hom}(R_\mathcal{O}(2e-y)F(e), \mathcal{O}(2e-y)),
\]

which would give a contradiction with proposition 3.8.

Thus \(\rho'' \neq 0 \). Further, it is clear that we have \(p_X^* \Phi_K'' = \Phi_{(\text{id} \times p_X)}(K'') \), and applying \((\text{id} \times p_X)_* \) to the above triangle we see that the resulting functor is \(\Phi_K''' \) where \(K''' \in \mathcal{D}^b(Y \times X) \) is defined from the following exact triangle:

\[
K''' \to (p_Y \times p_X)_* K(e) \xrightarrow{\rho'''} E^*(-y) \boxtimes p_X^*(\mathcal{O}(x-2e))[3].
\]

Since \(p_X^* \mathcal{O}(x-2e) \cong \mathcal{O}[-1] \), we have

\[
K''' \to (p_Y \times p_X)_* K(e) \xrightarrow{\rho'''} E^*(-y) \boxtimes \mathcal{O}[2].
\]
Note, that the map ρ''' is related to the map ρ'' above by the following functorial isomorphism
\[
\text{Hom}(-, E^*(-y) \boxtimes O(x-2e)[3]) = \text{Hom}(-, (id \times p_X)^! (E^*(-y) \boxtimes O[2])) = \\
= \text{Hom}((id \times p_X)_*(-), E^*(-y) \boxtimes O[2]),
\]
where $(id \times p_X)^!(F) = id \times p_X^*(F) \otimes O(x-2e)[1]$ is the right adjoint functor to $(id \times p_X)_*$. Therefore $\rho''' \neq 0$. Note that $(p_Y \times p_X) \cdot i = j$, and $K(e) \cong i_s O_W(e)$. Hence we have the following exact triangle
\[
\begin{align*}
K'''' & \to j_* O_W(e) \xrightarrow{\rho''''} E^*(-y) \boxtimes O[2].
\end{align*}
\]
with $\rho'''' \neq 0$, and the functor $F \mapsto p_{X*} \Phi_K (R\mathcal{O}(2e-y) F(e))$ is isomorphic to the kernel functor $\Phi_{K''''}$. Thus it remains to show that $\Phi_{K''''}(\mathcal{A}_Y) = 0$.

Using resolution (5) we deduce that $\text{Hom}(j_* O_W(e), E^*(-y) \boxtimes O[2]) \cong \text{Hom}(E^*(-1), E^*(-1)) = k$ because E is stable by proposition 2.6. Hence ρ'''' comes from the identity morphism $E^*(-1) \to E^*(-1)$, and K'''' is quasiisomorphic to the complex $\mathcal{O}(-y) \boxtimes V/U \to \mathcal{O} \boxtimes U^*$. It remains to note that $H^i(Y, F \otimes \mathcal{O}(-y)) = \text{Hom}(\mathcal{O}(y), F) = 0$, $H^i(Y, F \otimes \mathcal{O}) = \text{Hom}(\mathcal{O}, F) = 0$, for any $F \in \mathcal{A}_Y$ by (8), hence $\Phi_{\mathcal{O}(y) \boxtimes V/U}(\mathcal{A}_Y) = \Phi_{\mathcal{O} \boxtimes U^*}(\mathcal{A}_Y) = 0$, hence $\Phi_{K''''}(\mathcal{A}_Y) = 0$. \qed

4. Some properties of the category \mathcal{A}_Y

Serre functor. Take arbitrary $n, d \in \mathbb{Z}$ such that $n + 2 > d$. Let for a moment Y be a smooth n-dimensional hypersurface of degree d in \mathbb{P}^{n+1}. Then Y is a Fano manifold and it is easy to check that $(\mathcal{O}_Y, \ldots, \mathcal{O}_Y(n+1-d))$ is an exceptional collection in $\mathcal{D}^b(Y)$. Consider the category $\mathcal{A}_Y = \langle \mathcal{O}_Y, \ldots, \mathcal{O}_Y(n+1-d) \rangle^\perp \subset \mathcal{D}^b(Y)$, so that
\[
\mathcal{D}^b(Y) = \langle \mathcal{A}_Y, \mathcal{O}_Y, \ldots, \mathcal{O}_Y(n+1-d) \rangle
\]
is a semiorthogonal decomposition.

Consider the functor $\mathcal{O} : \mathcal{D}^b(Y) \to \mathcal{D}^b(Y)$ defined as follows:
\[
\mathcal{O}(F) = L\mathcal{O}(F \otimes \mathcal{O}_Y(1))[-1].
\]
Note that \mathcal{O} takes \mathcal{A}_Y to \mathcal{A}_Y.

Lemma 4.1. We have an isomorphism of functors $\mathcal{O}_{\mathcal{A}_Y}^{n+2-d} \cong S_{\mathcal{A}_Y}^{-1}[d-2]$.

Proof: Let $\Phi : \mathcal{D}^b(Y) \to \mathcal{D}^b(Y)$ denote the functor $F \mapsto F(1)$. Then using lemma 3.10, isomorphism $S_{\mathcal{D}^b(Y)} = \Phi^{d-2-n}[n]$ and proposition 3.8 we get
\[
\begin{align*}
\mathcal{O}_{\mathcal{A}_Y}^{n+2-d} &= (L\mathcal{O}_Y \circ \Phi[-1]) \circ (L\mathcal{O}_Y \circ \Phi[-1]) \circ \cdots \circ (L\mathcal{O}_Y \circ \Phi[-1]) \\
&\cong L\mathcal{O}_Y \circ L\mathcal{O}_Y(1) \circ \cdots \circ L\mathcal{O}_Y(n-2) \circ \Phi^{n+2-d}[d-2-n] \\
&\cong L_{\langle \mathcal{O}_Y, \ldots, \mathcal{O}_Y(n-2) \rangle} \circ S_{\mathcal{D}^b(Y)}^{-1}[d-2] \\
&\cong S_{\mathcal{A}_Y}^{-1}[d-2].
\end{align*}
\]
\qed

Lemma 4.2. We have an isomorphism of functors $\mathcal{O}_{\mathcal{A}_Y}^d \cong [2-d]$.

Proof: Note that $\mathcal{O} = \Phi_{K_1}$ with the kernel K_1 represented by the following complex
\[
\mathcal{O}_Y(1) \boxtimes \mathcal{O} \to \Delta_{\mathcal{A}_Y} \mathcal{O}_Y(1).
\]
Iterating, we find that $\mathcal{O}^d = \Phi_{K_d}$ with the kernel K_d represented by the following complex
\[
\mathcal{O}_Y(1) \boxtimes \Omega_{d-1}^d(1) \to \cdots \to \mathcal{O}_Y(d-1) \boxtimes \Omega_1^1(1) \to \mathcal{O}_Y(d) \boxtimes \mathcal{O}_Y \to \Delta_{\mathcal{A}_Y} \mathcal{O}_Y(d).
\]
18
On the other hand, restricting a resolution of the diagonal in $\mathbb{P}^{n+1} \times \mathbb{P}^{n+1}$ to $Y \times Y$ we see that the complex

$$0 \to \mathcal{O}_Y(d-1-n) \otimes \Omega^{n+1}(n+1)|_Y \to \cdots \to \mathcal{O}_Y \otimes \Omega^d|_Y \to$$

$$\to \mathcal{O}_Y(1) \otimes \Omega^{d-1}(d-1)|_Y \to \cdots \to \mathcal{O}_Y(d-1) \otimes \Omega^1(1)|_Y \to \mathcal{O}_Y(d) \otimes \mathcal{O}_Y \to \Delta_{\ast} \mathcal{O}_Y(d)$$

is quasiisomorphic to

$$L_1(\alpha \times \alpha)^{\ast} \Delta_{\ast} \mathcal{O}_{\mathbb{P}^{n+1}}(d) \cong \Delta_{\ast} \mathcal{O}_Y,$$

where $\alpha : Y \to \mathbb{P}^{n+1}$ is the embedding. Applying the natural morphism between these two complexes we deduce that $\Delta_{\ast} \mathcal{O}_Y[2-d]$ is quasiisomorphic to the complex

$$\mathcal{O}_Y(d-1-n) \otimes \Omega^{n+1}(n+1)|_Y \to \cdots \to \mathcal{O}_Y \otimes \Omega^d|_Y \to K_d.$$

It remains to note that

$$\Phi_{\mathcal{O}_Y(d-1-n) \otimes \Omega^{n+1}(n+1)|_Y}(\mathcal{A}_Y) = \cdots = \Phi_{\mathcal{O}_Y \otimes \Omega^d|_Y}(\mathcal{A}_Y) = 0,$$

hence $\Phi_{K_d|_{\mathcal{A}_Y}} \cong \Phi_{\Delta_{\ast} \mathcal{O}[2-d]|_{\mathcal{A}_Y}} \cong [2-d].$

\[\square\]

Corollary 4.3. If c is the greatest common divisor of d and $n+2$, then $S_{\mathcal{A}_Y}^{d/c} \cong [(d-2)(n+2)/c].$

Corollary 4.4. If Y is a cubic threefold then $S_{\mathcal{A}_Y} \cong [5]$. If Y is a cubic fourfold then $S_{\mathcal{A}_Y} \cong [2]$.

Objects. Let Y be a smooth cubic threefold. Simplest examples of objects in \mathcal{A}_Y are provided by instantons.

Lemma 4.5. If E is an instanton of charge 2 on Y then $E \in \mathcal{A}_Y$ and $E(-1) \in \mathcal{A}_Y$.

Proof: Follows from proposition 2.5. \[\square\]

Another examples of objects in \mathcal{A}_Y are provided by curves with theta-characteristics.

Lemma 4.6. Let M be a smooth curve and let L be a nondegenerate theta-characteristic on M. For any map $\mu : M \to Y$ the natural morphism $H^0(M, L \otimes \mu^\ast \mathcal{O}(1)) \otimes \mathcal{O}_Y \to (\mu_\ast L) \otimes \mathcal{O}(1)$ is surjective and its kernel $\mathcal{F}_{\mu, L} \in \mathcal{A}_Y$.

Proof: Evident. \[\square\]

Taking \mathbb{P}^1 as a curve, $\mathcal{O}_{\mathbb{P}^1}(-1)$ as a theta-characteristic, and considering only maps μ of degree 1, we obtain a family of objects \mathcal{F}_L in \mathcal{A}_Y, parameterized by the Fano surface of lines L on Y (in fact, \mathcal{F}_L is nothing but the sheaf of ideals of $L \subset Y$). It’s Albanese variety is well known to be isomorphic to the intermediate jacobian of Y.

So, if one would be able to define a notion of stability in \mathcal{A}_Y in such a way, that any stable object in \mathcal{A}_Y numerically equivalent to some \mathcal{F}_L would be isomorphic to some $\mathcal{F}_{L'}$, then the Fano surface would become a moduli space of stable objects in \mathcal{A}_Y, and it would be possible to reconstruct the intermediate jacobian of Y from \mathcal{A}_Y. Since Torelly theorem holds for cubic threefolds (see [CG, T]) it would prove that \mathcal{A}_Y and \mathcal{A}_Y are equivalent if and only if $Y \cong Y'$. It would follow also that \mathcal{A}_X and \mathcal{A}_X are equivalent if and only if X and X' are birational.

However, it is quite unclear how such stability notion can be defined.
Appendix A. The Pfaffian hypersurface of a net of skew-forms

Let \(A = k^n \) and \(V = k^{2m} \). An \(A \)-net of skew-forms on \(V \) is a linear embedding \(f : A \to \Lambda^2 V^* \).

Then \(F(a) = \text{Pf}(f(a)) \) is a homogeneous polynomial of degree \(m \) on \(A \). Let \(Y = Y_f \) be the corresponding hypersurface of degree \(m \) in \(\mathbb{P}(A) \). We call \(Y \) the Pfaffian hypersurface of the \(A \)-net \(f \).

The \(A \)-net \(f \) induces a morphism of coherent sheaves on \(\mathbb{P}(A) \)

\[
V \otimes \mathcal{O}_{\mathbb{P}(A)}(-1) \xrightarrow{f} V^* \otimes \mathcal{O}_{\mathbb{P}(A)}.
\]

This map is an isomorphism outside of \(Y \). Let \(E = E_f \) denote its cokernel. It is a coherent sheaf on \(\mathbb{P}(A) \) with support on \(Y \). We call \(E \) the theta-bundle of the \(A \)-net. This terminology is suggested by an analogy with the role of a theta-characteristic on a degeneration curve of a net of quadrics [T1].

Thus for any \(A \)-net \(f \) we have the following exact sequence

\[
0 \to V \otimes \mathcal{O}(-1) \to V^* \otimes \mathcal{O} \to \alpha_* E_f \to 0,
\]

where \(\alpha \) is the closed embedding \(Y \to \mathbb{P}(A) \). Second morphism in this sequence induces an isomorphism

\[
\gamma_f : V^* = H^0(\mathbb{P}(A), V^* \otimes \mathcal{O}_{\mathbb{P}(A)}) \to H^0(\mathbb{P}(A), E_f) = H^0(Y_f, E_f).
\]

Definition A.1. An \(A \)-net \(f \) is called regular if \(\text{rank}(a) \geq 2m - 2 \) for any \(0 \neq a \in A \).

Remark A.2. Dimension calculations imply that a regular \(A \)-net \(f \) may exist only for \(\dim A \leq 6 \).

Theorem A.3. Associating to an \(A \)-net \(f \) the triple \((Y_f, E_f, \gamma_f)\) gives a \(\text{GL}(A) \times \text{GL}(V) \)-equivariant isomorphism between

\vspace{1em}

- the subset of \(\mathbb{P}(A^* \otimes \Lambda^2 V^*) \) formed by all regular \(A \)-nets of skew-forms on \(V \), and

- the set of triples \((Y, E, \gamma)\), where \(Y \) is a hypersurface of degree \(m \) in \(\mathbb{P}(A) \), \(E \) is a rank 2 locally free sheaf on \(Y \), and \(\gamma \) is an isomorphism \(V^* \to H^0(Y, E) \), such that

\[
c_1(E) = (m - 1)[h], \quad c_2(E) = \frac{(m - 1)(2m - 1)}{6} h^2,
\]

\[
H(Y, E(t)) = 0 \quad \text{for } -(n - 2) \leq t \leq -1,
\]

where \([h] \in H^2(Y, \mathbb{Z})\) is the class of a hyperplane section.

Further, the theta-bundle \(E_f \) of a regular \(A \)-net is generated by global sections, \(H^0(Y_f, E_f) = V^* \), and induces an embedding \(\kappa : Y_f \to \text{Gr}(2, V) \).

Proof: First of all, we prove that for the theta-bundle of a regular \(A \)-net \(f \) conditions (16) are satisfied. This is done by a straightforward calculations, based on the exact sequence (15). This sequence also implies that \(E \) is generated by global sections. It remains to check that \(\kappa \) is an embedding. Note that \(Y \) parameterize degenerate skew-forms in the \(A \)-net, and \(\kappa \) takes a degenerate skew-form to its kernel. If two skew-forms have the same kernel, then a certain linear combination of these skew-forms has \(\text{rank} \leq 2m - 4 \), which contradicts the regularity of the \(A \)-net.

Now, assume that \((Y, E, \gamma)\) is a triple, satisfying (16). Then \(H(\mathbb{P}(A), \alpha_* E(t)) = H(Y, E(t)) \), hence it is zero for \(-(n - 2) \leq t \leq -1\). Now, let us compute \(H(\mathbb{P}(A), \alpha_* E(t)) \) for \(t = 0 \) and \(t = -(n - 1) \). To this end choose a line \(\mathbb{P}^1 \cong L \subset \mathbb{P}(A) \) not lying on \(Y \). Then \(L \cap Y \) is a 0-dimensional subscheme in \(Y \) of length \(\deg Y = m \). The line \(L \) is cut out in \(\mathbb{P}(A) \) by \((n - 2)\) hyperplanes, hence \(L \cap Y \) is cut out in \(Y \) by \((n - 2)\) hyperplanes. Therefore we have the Koszul resolution

\[
0 \to E(-(n - 2)) \to E(-(n - 3)) \oplus (n - 2) \to \cdots \to E(-1) \oplus (n - 2) \to E \to E|_{L \cap Y} \to 0.
\]
It follows from (16) that
\[H^p(\mathbb{P}(A), \alpha_* E) = H^p(Y, E) = H^p(L \cap Y, E_{L \cap Y}) = \begin{cases} k^{2m}, & \text{for } p = 0 \\ 0, & \text{for } p > 0 \end{cases} \]

Twisting the Koszul resolution by \(\mathcal{O}_{\mathbb{P}(A)}(-1) \) we see that
\[H^p(\mathbb{P}(A), \alpha_* E(-(n-1))) = H^p(Y, E(-(n-1))) = H^{p-(n-2)}(L \cap Y, E_{L \cap Y}) = \begin{cases} k^{2m}, & \text{for } p = n-2 \\ 0, & \text{for } p \neq n-2 \end{cases} \]

Let us denote \(V' = H^{n-2}(\mathbb{P}(A), \alpha_* E(-(n-1))) \) and recall that we have fixed an isomorphism \(\gamma : V^* \cong H^0(\mathbb{P}(A), \alpha_* E) \). Summarizing, we see that
\[H^p(\mathbb{P}(A), \alpha_* E(t)) = \begin{cases} V^*, & \text{for } p = 0, t = 0 \\ V', & \text{for } p = n-2, t = -(n-1) \\ 0, & \text{for other } (p, t) \text{ with } -(n-1) \leq t \leq 0 \end{cases} \] (17)

Now we can describe the sheaf \(\alpha_* E \) via the Beilinson spectral sequence on \(\mathbb{P}(A) \). It follows from (17) that the spectral sequence degenerates in the \((n+1) \)-th term and gives
\[0 \rightarrow V' \otimes \mathcal{O}_{\mathbb{P}(A)}(-1) \xrightarrow{f} V^* \otimes \mathcal{O}_{\mathbb{P}(A)} \rightarrow \alpha_* E \rightarrow 0. \]

Dualizing this sequence and twisting it by \(\mathcal{O}_{\mathbb{P}(A)}(-1) \) we get
\[0 \rightarrow V \otimes \mathcal{O}_{\mathbb{P}(A)}(-1) \xrightarrow{f^*} V'^* \otimes \mathcal{O}_{\mathbb{P}(A)} \rightarrow \mathcal{E}xt^1(\alpha_* E, \mathcal{O}_{\mathbb{P}(A)}(-1)) \rightarrow 0. \]

But since \(E \) is locally free on \(Y \) it follows that
\[\mathcal{E}xt^1(\alpha_* E, \mathcal{O}_{\mathbb{P}(A)}(-1)) \cong \alpha_* (E^* \otimes \mathcal{H}om(L^1\alpha^* \alpha_* \mathcal{O}_Y, \mathcal{O}_Y(-1))) \cong \alpha_* (E^* \otimes \mathcal{H}om(\mathcal{O}_Y(-m), \mathcal{O}_Y(-1))) \cong \alpha_* (E^*(m-1)). \]

Since \(\Lambda^2 E = \det E \cong \mathcal{O}_Y(m-1) \) by (16) it follows that there exists a skew-symmetric isomorphism \(\sigma : E \rightarrow E^*(m-1) \) and \(\alpha_* \sigma : \alpha_* E \rightarrow \alpha_*(E^*(m-1)) \). Since the Beilinson spectral sequence is functorial \(\alpha_* \sigma \) induces isomorphisms \(g : V' \rightarrow V \) and \(h : V^* \rightarrow V'^* \) such that the following diagram is commutative:
\[\begin{array}{ccc} 0 & \rightarrow & V' \otimes \mathcal{O}_{\mathbb{P}(A)}(-1) \xrightarrow{f} V^* \otimes \mathcal{O}_{\mathbb{P}(A)} \rightarrow \alpha_* E \rightarrow 0 \\
& \downarrow & \downarrow & \downarrow \\
0 & \rightarrow & V \otimes \mathcal{O}_{\mathbb{P}(A)}(-1) \xrightarrow{f^*} V'^* \otimes \mathcal{O}_{\mathbb{P}(A)} \rightarrow \alpha_*(E^*(m-1)) \rightarrow 0 \end{array} \]

Dualizing this diagram and twisting it by \(\mathcal{O}(-1) \) we get
\[\begin{array}{ccc} 0 & \rightarrow & V' \otimes \mathcal{O}_{\mathbb{P}(A)}(-1) \xrightarrow{f} V^* \otimes \mathcal{O}_{\mathbb{P}(A)} \rightarrow \alpha_* E \rightarrow 0 \\
& \downarrow & \downarrow & \downarrow \\
0 & \rightarrow & V \otimes \mathcal{O}_{\mathbb{P}(A)}(-1) \xrightarrow{f^*} V'^* \otimes \mathcal{O}_{\mathbb{P}(A)} \rightarrow \alpha_*(E^*(m-1)) \rightarrow 0 \end{array} \]

Now note, that due to skew-symmetry of \(\sigma \) we have \(\sigma^* = -\sigma \). It follows that \(h^* = -g \) and \(g^* = -h \). Identifying \(V' \) with \(V \) via \(g \) and using the commutativity of the second diagram we see that
\[(hf)^* = f^* h^* = g^* f = -hf, \]

hence \(hf \in \text{Hom}(V \otimes \mathcal{O}_{\mathbb{P}(A)}(-1), V^* \otimes \mathcal{O}_{\mathbb{P}(A)}) = V^* \otimes V^* \otimes A^* \) is skew-symmetric with respect to \(V \), therefore is given by an \(A \)-net of skew-forms \(f : A \rightarrow \Lambda^2 V^* \). Finally, it is easy to see that
the A-net f is regular (because E is locally free of rank 2), that Y is its Pfaffian hypersurface and that E is its theta-bundle.

For any A-net of skew-forms $f : A \to \Lambda^2 V^*$ let X_f denote the scheme-theoretic intersection of the Grassmannian $\text{Gr}(2, V) \subset \mathbb{P}^n$ with the codimension n linear subspace $\mathbb{P}(f(A)^{-1}) \subset \mathbb{P}^n$.

Proposition A.4. If f is a regular A-net then $\text{sing}(X_f) = \text{sing}(Y_f) = X_f \cap Y_f \subset \text{Gr}(2, V)$. In particular, Y_f is smooth iff X_f is smooth.

Proof: Let U be a 2-dimensional subspace of V. Then U lies on X_f iff U is isotropic with respect to all skew-forms from the A-net f. The tangent space to $\text{Gr}(2, V)$ at U is $\text{Hom}(U, V/U)$. The normal space of $\mathbb{P}(f(A)^{-1}) \subset \mathbb{P}(\Lambda^2 V)$ at $\Lambda^2 U$ is A^*. The map $\text{Hom}(U, V/U) \to A^*$ is dual to the map $A \otimes U \to (V/U)^*$, $(a, u) \mapsto f(a)(u, -)$. Therefore, U is a singular point of X_f iff U lies in the kernel of some skew-form from the A-net. Thus $\text{sing}(X_f) = X_f \cap Y_f$.

On the other hand, let $a \in \mathbb{P}(A)$. Then a lies on Y_f iff $f(a)$ is a degenerate skew-form. Since f is regular, $\text{rank} f(a) = 2m - 2$, hence its kernel U is 2-dimensional. The tangent space to $\mathbb{P}(A)$ at a is A/ka. The normal space of the locus of degenerate skew-forms in $\mathbb{P}(\Lambda^2 V)$ at $f(a)$ is $\Lambda^2 U^*$. The map $A/ka \to \Lambda^2 U^*$ is given by $a' \mapsto f(a')|U$. Therefore, a is a singular point of Y_f iff all skew-forms forms from the A-net f vanish on U. Thus, $\text{sing}(Y_f) = X_f \cap Y_f$.

\[\square \]

Appendix B. Instanton bundles on Fano threefolds of index 2

Let Y be a smooth Fano threefold of index 2, so that $\omega_Y = \mathcal{O}_Y(-2)$. Let $d = -c_1(\omega_Y)^3/8$ be the degree of Y.

Definition B.1. A sheaf \mathcal{E} on Y is called **instanton bundle** if \mathcal{E} is locally free of rank 2, stable and $c_1(\mathcal{E}) = 0$, $H^1(Y, \mathcal{E}(-1)) = 0$.

The **topological charge** of an instanton \mathcal{E} is an integer k, such that $c_2(\mathcal{E}) = k[l]$, where $[l] \in H^4(Y, \mathbb{Z})$ is the class of a line.

This definition is a straightforward analog of the definition of (mathematical) instanton vector bundle on \mathbb{P}^3, see [OSS].

Lemma B.2. If \mathcal{E} is an instanton vector bundle of charge k on a Fano threefold Y of index 2 then the dimensions of the cohomology spaces of twists of \mathcal{E} are given by the following table:

t	-3	-2	-1	0	1
$h^2(\mathcal{E}(t))$	$\leq 2d$	0	0	0	0
$h^1(\mathcal{E}(t))$	$\leq 2k - 4$	$k - 2$	0	0	0
$h^0(\mathcal{E}(t))$	0	0	$k - 2$	$\leq 2k - 4$	
$h^{-1}(\mathcal{E}(t))$	0	0	0	$\leq 2d$	

where $h^p(\mathcal{E}(t)) = \dim H^p(Y, \mathcal{E}(t))$, and d is the degree of Y. Moreover,

$h^3(\mathcal{E}(-3)) = h^0(\mathcal{E}(1))$, $h^2(\mathcal{E}(-3)) = h^1(\mathcal{E}(1))$, and $h^0(\mathcal{E}(1)) - h^1(\mathcal{E}(1)) = 2d - 2k + 4$.

Proof: Note, that $h^0(\mathcal{E}(t)) = 0$ for $t \leq 0$ by stability and that Serre duality gives

$h^p(\mathcal{E}(t)) = h^{3-p}(\mathcal{E}(-2 - t))$

Hence $h^3(\mathcal{E}(t)) = 0$ for $t \geq -2$ and $h^2(\mathcal{E}(-1)) = 0$. Choosing a generic codimension 3 plane section L of Y we get a Koszul resolution

$0 \to \mathcal{E}(-2) \to \mathcal{E}(-1)^{\oplus 3} \to \mathcal{E}^{\oplus 3} \to \mathcal{E}(1) \to \mathcal{E}(1)|_L \to 0.$
Since L is a 0-dimensional subscheme in Y we have

$$H^{>0}(Y, \mathcal{E}(1)|_L) = 0, \quad H^0(Y, \mathcal{E}(1)|_L) = r(\mathcal{E}) \cdot \deg Y = 2d.$$

Hence the hypercohomology spectral sequence of the Koszul resolution implies $h^1(\mathcal{E}(-2)) = 0$. Then $h^2(\mathcal{E}) = 0$ by Serre duality, hence $h^2(\mathcal{E}(1)) = 0$ by the spectral sequence. Further, we have $h^1(\mathcal{E}(-3)) = 0$ by Serre duality. And again from the spectral sequence we deduce $h^1(\mathcal{E}(1)) \leq 2h^1(\mathcal{E})$. Finally, using the Riemann-Roch we get

$$h^1(\mathcal{E}(1)) = -\chi(\mathcal{E}) = k - 2, \quad h^0(\mathcal{E}(1)) - h^1(\mathcal{E}(1)) = \chi(\mathcal{E})(1) = 2d - 2k + 4.$$

and lemma follows.

\begin{corollary}
The minimal possible charge for instantons on a smooth Fano threefold of index 2 is 2, and if \mathcal{E} is an instanton of charge 2 on Y then

$$H^p(Y, \mathcal{E}(t)) = \begin{cases}
 k^{2d}, & \text{for } (p, t) = (0, 1) \text{ and } (p, t) = (3, -3) \\
 0, & \text{for other } (p, t) \text{ with } -3 \leq t \leq 1
\end{cases}$$

Following the analogy with instanton bundles on \mathbb{P}^3 we introduce the following.

\begin{definition}
Let $L \subset Y$ be a line. We say that L is a jumping line for an instanton \mathcal{E} on Y if $\mathcal{E}|_L \cong \mathcal{O}_L(t) \oplus \mathcal{O}_L(-t)$ with $t > 0$.
\end{definition}

\begin{references}
\begin{thebibliography}{99}

[Beau] A. Beauville, Vector bundles on the cubic threefold, math.AG/0005017.
[B] A. Bondal, Representations of associative algebras and coherent sheaves, Math. USSR Izvestiya, 34 (1990), No. 1, 23–42.
[BK] A. Bondal, M. Kapranov, Representable functors, Serre functors and mutations, Math. USSR Izvestiya, 35 (1990), 519–541.
[BO] A. Bondal, D. Orlov, Semiorthogonal decompositions for algebraic varieties, preprint MPI 1995-15, math.AG/9506012.
[Br] T. Bridgeland, Flaps and derived categories, math.AG/0009053.
[Dr] S. Druel, Espace des modules des faisceaux semi-stables de rang 2 et de classes de Chern $c_1 = 0, c_2 = 2$ et $c_3 = 0$ sur une hypersurface cubique lisse de \mathbb{P}^4, math.AG/0002058.
[CG] H. Clemens, P. Griffiths, The intermediate Jacobian of the cubic threefold, Annals of Math., 95 (1972) 281–356.
[Fa] G. Fano, Sulle sezione spaziale della varietà grassmanniana delle rette spazio a cinque dimensioni, Rend. R. Accad. Lincei, 11 (1930) 329–335.
[GM] S. Gelfand, Yu. Manin, Homological algebra, Algebra V, 1–222, Encyclopaedia Math. Sci., 38, Springer, Berlin (1994).
[IM] A. Iliev, D. Markushevich, The Abel-Jacobi map for a cubic threefold and periods of Fano threefolds of degree 14, math.AG/9910058.
[Is] V. Iskovskikh, Birational automorphisms of three-dimensional algebraic varieties, J. Soviet Math. 13:6 (1980) 815–868.
[Is1] V. Iskovskikh, Fano threefolds. I, Izv. Acad. Nauk SSSR, Ser. Mar., 41 (1977) 516–562; II, Izv. Acad. Nauk SSSR, Ser. Mar., 42 (1978) 506–549.
[IP] V. Iskovskikh, Yu. Prokhorov, Fano varieties, Algebraic Geometry V, Encyclopaedia Math. Sci., 47, Springer, Berlin (1998).
[K] A. Kuznetsov, Fano threefolds V22, preprint MPI 1997-24.
[MT] D. Markushevich, A. Tikhomirov, The Abel-Jacobi map of a moduli component of vector bundles on the cubic threefold, math.AG/9809140.
[Mu] S. Mukai, Fano 3-folds, in: Complex projective geometry (Trieste, 1989/Bergen, 1989), 255–263, London Math. Soc. Lecture Notes Ser., 179, Cambridge Univ. Press, Cambridge, 1992.
[Or] D. Orlov Projective bundles, monoidal transformations and derived categories of coherent sheaves, Math. USSR Izvestiya, 38 (1993), 133–141.
\end{thebibliography}
\end{references}
C. Okonek, M. Schneider, H. Spindler, *Vector bundles on complex projective spaces*, Progress in Mathematics 3 Birkhauser, Boston (1980).

R. Swan, *Hochschild cohomology of quasiprojective schemes*, J. Pure Appl. Algebra 110 (1996) no. 1, 57–80.

K. Takeuchi, *Some birational maps of Fano 3-folds*, Composition Math. 71 (1989) 265–283.

S. Tregub, *Construction of a birational isomorphism of a cubic threefold and Fano variety of the first kind with g = 8, associated with a normal rational curve of degree 4*, Moscow Univ. Math. Bull. 40 (1985) 78–80.

A. Tyurin, *Geometry of the Fano surface of a nonsingular cubic F ⊂ \(\mathbb{P}^4 \) and Torelli theorems for Fano surfaces and cubics*, Izv. USSR Math. 35 (1971) 498–529.

A. Tyurin *On intersection of quadrics*, Russian Math. Surveys, 30:6 (1975) 51–105.

J.-L. Verdier, *Categories deriveses*, SGA 4\(\frac{1}{2} \), Lecture Notes in Math. 569, Springer–Verlag (1977) 262–311.

Algebra Section, Steklov Mathematical Institute, Russian Academy of Sciences, 8 Gubkin str., Moscow 119991, Russia

E-mail address: akuznet@mi.ras.ru, sasha@kuznetsov.mccme.ru