Impact of Quercetin on Sperm Parameters, Testicular Tissue and Sex Hormone: a Systematic Review

Fahimeh Hosseinabadi1, Tayebeh Faraji1, Mahdi Malmir1,2*

1. Academic Center for Education, Culture and Research, Arak, Iran
2. Department of Midwifery, Tuyserkan Branch, Islamic Azad University, Tuyserkan, Iran

Article Type: Review Article

Article History:
Received: 16 Sep 2021
Revised: 10 Nov 2021
Accepted: 15 Nov 2021

*Correspondence:
Mahdi Malmir,
Department of Midwifery, Tuyserkan Branch, Islamic Azad University, Tuyserkan, Iran
m.malmir66@hotmail.com

DOI: 10.29252/jorjanibiomedj.9.4.33

Abstract

Background and Objective: Quercetin is a polyphenolic flavonoid compound with a potent antioxidant impact, proposed to make a drastic contribution in treating male infertility. The current systematic review aimed to provide an overview of previous studies about quercetin’s impact on male infertility.

Material and Methods: Electronic search with MeSH words including Quercetin, Infertility, Sperm, Testicular tissue, and Sex hormones was accomplished in databases Web of Science, Scopus, Science Direct, Wiley, NCBI, and Google Scholar. Finally, 296 articles were recognized during the primary search. A total of 144 papers, passing the analysis stage containing Identification, Screening, and Eligibility were selected for assessment.

Results: Quercetin prevents damage to the testicular germinal epithelium and facilitates the spermatogenesis process by strengthening the antioxidant system, reducing lipid peroxidation and oxidative stress, preventing the expression of pro-apoptotic genes, increasing testosterone and gonadotropins.

Conclusion: In conclusion, the present review showed that quercetin by its antioxidant impacts, can counteract various toxins that induce oxidative stress in the male reproductive system.

Keywords: Quercetin[MeSH]; Fertility[MeSH]; Spermatogenesis[MeSH]; Testosterone [MeSH]
Introduction

Quercetin as an antioxidant has an anti-cancer and anti-tumor role, also it contributes to the treatment of cardiovascular diseases and male infertility (1-6). Quercetin is a plant molecule that is classified as a flavonol category (polyphenolic flavonoid compound), which it has 2-(3,4-dihydroxy phenyl)-3,5,7-trihydroxychromen-4-one, and C15H10O7 chemical structure (fig. 1). Quercetin is a yellow crystalline powder with 302.236 g/mole molar mass that can be found in tea, red wine, onions, potato, and so on (1, 7, 8, 9).

Quercetin reduces oxidative stress through various mechanisms, which are briefly mentioned. Vitamins, non-enzymatic antioxidants including glutathione (GSH), and enzymatic defense systems including glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase naturally in cells occupy an axial role to remove excess ROS (CAT, 10). Researchers have shown that quercetin by increasing levels of SOD, CAT, GSH, and GPx can prevent oxidative stress (6, 11-18).

![Figure 1. Chemical structure depiction of Quercetin](image)

Extensive studies have been done on quercetin's role in male infertility, but according to our knowledge, a complete, comprehensive, and specialized review is not reported so far (1, 2). Andres (2018) and Seddiki (2017) in some paragraphs have mentioned this matter (7, 8), Although, in male infertility treatment, these studies are very limited and non-specialized. Based on the above mention, a vast majority of researchers agree on the affirmative role of quercetin rooted in its antioxidant feature.

One of the important factors in infertility is the oxidative stress induction in the male reproductive system, especially sperm. Also, the most common way to deal with oxidative stress is to use antioxidants today. Hence, the present review intended to contribute a summary of prior researches regarding quercetin antioxidant role upon male reproduction disorder carried out.

Materials and Methods

In the present review, multifold electronic searches were accomplished in databases of Science Direct, Web of Science, Scopus, Wiley, NCBI, and Google Scholar. The inclusion criteria...
of this study were contained andrological studies (spermatogenesis, spermiogenesis, and sperm parameters), histological and morphometrical studies (testicular tissue), and endocrinological studies (Gonadal Steroid Hormones) in quercetin users such as human and laboratory animals (1979 to 2020). Firstly, the MeSH words including Quercetin, Infertility, Sperm, Testicular tissue, Oxidative stress, and Sex hormones were applied. In total, 296 articles were found in the primary search. These articles were dwindled to 144 after passing the analysis stage containing Identification, Screening, and Eligibility. This study was performed for 6 months and 23 months. As seen in Figure 2, invalid articles were denied and considered exclusion criteria. They were involved in short comments, duplication, unreliable journals, and no access to full-text (due to global sanctions on Iran for accessing and purchasing some publications; fig. 2). Besides, three researchers independently participated in data extracting and evaluation. Finally, if there was a difference in the special case, it would be referred to the fourth researcher.

Figure 2. PRISMA diagram

Results

The results of 66 studies in table 1 present that various toxins can reduce sperm parameters such as motility, viability, count, chromatin quality, morphology, antioxidant enzymes capacity, membrane integrity, fertility rates, and mitochondrial activity. Besides, they can increase oxidative stress and MDA level. Although, quercetin in different doses and treatment time compensate for mentioned disorders and upregulate sperm parameters (Table 1).
The results of 53 studies in table 2 present that various toxins can degenerate seminiferous tubules and reduce antioxidant enzymes capacity, Bcl-XL, StAR, and NF-κB expression, 3β-HSD, 17β-HSD, and NR5A1 mRNA transcripts, MSTD, MTBS, PCNA, testes and epididymis weight, the thickness of the tunica albuginea, tubular diameter, and epithelial height, number of spermatogonia, spermatocytes, and spermatids, spermatogenesis, and also tissue testosterone level. Besides, they can increase Bax, caspase-3, FasL, and HSP expression, MDA levels, necrosis in germinal cells, interstitial edema and congestion, apoptotic index, vacuolization and detachment, DNA fragmentation, the percentages of chromosomal aberrations in primary spermatocytes. Although, quercetin in different doses and treatment time compensate for mentioned disorders and upregulate spermatogenesis (Table 2).

The results of 23 studies in table 3 present that various toxins can reduce levels of testosterone, LH, FSH, estradiol, glutathione peroxidase, and total antioxidant capacity in the blood. Besides, they can increase lipid peroxidation and oxidative stress. Although, quercetin in different doses and treatment time compensate for mentioned disorders in the blood and upregulate gonadotropins (Table 3).

Species	Type of response	Dose of QE & Duration of treatment	Mot	Abn	Cou	Vi	Other Parameters	T & D	Reference
Ram		0.1 mM - 5 hours	↑				↓ LPO		(40)
Human		100, 500 µM – 1 hour					↓ DNA damage		(111)
Chicken		0.01, 0.1 and 1 µg/ml - 48 hours					↓ LDH, ↑ TBARS, ↑ SOD, ↑ GSH, ↑ spermatogonial cell number		(11)
Stallion		0.05, 0.1, 0.2 and 0.3 mM – 3, 5 and 21 hours					↓ LPO		(112)
Chicken		0.01-1 µg/ml - 48 hours	↑				↑ SOD, ↑ GSH, ↑ spermatogonial cell number, ↓ MDA, ↓ LDH		(12)
Sprague-Dawley rat		30, 90, or 270 mg/kg - 3, 7 and 14 days					↑ Weights of testes, epididymis and vas deferens		(113)
Wistar Albino rat		15 mg/kg - 4 weeks							(41)
Wistar rat		100 µM and 200 µM - 3 hours	↑	↓	↑		↑ SOD, ↑ CAT, ↑ GPx, ↓ MDA		(66)
Wistar albino rat		20 mg kg⁻¹ - 60 days	↑	↓	↑				(73)
Wistar rat		10 mg/kg⁻¹ - 5 days	↑	↓	↑		↑ MDA, ↓ H₂O₂, ↑ SOD, ↑ CAT, ↑ GPx, ↑ sperm concentration, sperm viability, sperm number and DSP were not significantly different		(100)
Human		30 µM – 1 hours					↓ LPO, preserving sperm membranes and chromatin texture		(19)
Human		50 µM					↑ DNA fragmentation and oxidation, no effects on caspase 3 activation		(33)
Wistar albino rat		10 mg/kg – 8 weeks	↑	↓	↑		↑ CAT, ↑ ascorbic acid, ↓ MDA, ↑ DSP		(100)
Wistar rat		50 mg/kg - 28	↑	↓	↑				(114)

Table 1. Evaluation of the effect of quercetin on men and different species of animals (Spermatogenesis)
Treatment	Time Duration	Effect	Impact	Reference	
Wistar albino rats	150 mg/kg – 10 weeks	↓	↑ Sperm motility and epididymal sperm concentration (nonsignificant)	Carbon tetrachloride (68)	
Wistar albino rats	50 mg/kg – 10 days	↑ ↓	↑ Sperm count (nonsignificant), ↑ thickness of the germinal cell layer	Cisplatin (102)	
Pony stallion	0.15 mM	↑	↓ DNA damage, ↑ zona binding ability	Sex-sorting and cryopreservation (34)	
Bull	1, 5, 10, 50, 100 and 200 μmol/l – 2, 6, 12 and 24 hours	↑ ↑	↑ Superoxide production		
Boar	1, 50 and 100 μM – 3 and 6 hours	↑ ↑	↑ Motility (nonsignificant), ↑ membrane integrity, ↑ IVF embryo development		
Rabbit	0, 25, 50 and 200 μM – 48, 72 and 95 hours	↓ LPO, ↓ H2O2			
Wistar albino rats	20 mg/kg – 21 days	↑ ↓	↑ Sperm concentration, amelioration in the histological alterations in the seminiferous tubules, germ cells and Leydig cells (not significant)	Docetaxel (42)	
Wistar rat	10 mg/kg – 6 weeks	↑ ↓ ↑ ↑	↑ GSH, ↑ SOD, ↑ CAT, ↑ GST, ↓ LPO, ↓ XO	BLCO (15)	
Wistar rat	5, 10, 15 and 20 mg/kg – 2 weeks	↑ ↑			
Wistar rat	25 mg/kg – 3 weeks	↑ ↑	↑ Sialic acid	Cadmium (75)	
Albino rat	100 mg/kg – 12 weeks	↑ ↓ ↑ ↑		ZnONPs (76)	
Sprague-Dawley rat	50 mg/kg – 70 days	↑ ↓ ↑		Fenitrothion (84)	
Wistar rat	10 mg/kg – 16 days	↑ ↓ ↑ ↑	↑ DSP	Atrazine (103)	
Wistar rat	90 mg/kg – 15 days (pretreatment)	↑ ↑		DEHP (117)	
Sprague-Dawley rat	50 mg/kg – 49 days	↑ DSP, ↓ DNA damage, ↑ diameter of epididymis			
Human	30 mM – 60 and 180 min	↑	improvement in the number of intact acrosomes, ↓ ROS (not significant)	Cotinine (43)	
Bovine	7.5, 25, 50 and 100 μmol/l – 2 and 6 hours	↑	↑ ROS & superoxide Concentration, ↑ SOD, ↑ GSH, ↑ CAT, ↑ GPs, ↓ MDA, ↓ LPO	Ferrous ascorbate (16)	
Stallion	0.1, 0.2, and 0.3 mM	↑	At 0.1 mM did not have any significant effect on sperm viability, abnormality, or MDA. This parameters were adversely affected by higher concentrations	Cryopreservation (55)	
Human	30, 50 and 100 μM – 1 hour	↓ LPO, ↓ acrosome reacted sperm and broken plasma membrane		TBHP (56)	
NMRI mice	75 mg/kg – 42 days	↑ ↓ ↑		NITiO2 (118)	
Wistar rat	10 and 20 mg/kg – 52 days	↑ ↓ ↑		Manganese (92)	
Wistar albino rats	25 and 50 mg/kg – 5 weeks	↑ ↑ ↑		Streptozotocin (99)	
Wistar albino rats	20 mg/kg – 4 weeks	↑ ↓ ↑ ↑	↑ RPFM	Cadmium chloride (81)	
Species	Concentration	Duration	Parameters	Treatments	
---------	---------------	----------	------------	------------	
Equine	0.25, 0.5, 0.75 and 1 mM		Did not affect the seminal parameters analyzed (Mot, Via, DFI, …)	Cryopreservation [119]	
Albino rat	50 mg/kg – 4 weeks	↑ ↓ ↑	↑ Spermatogenesis	Lead acetate [44]	
Ram	5 μg/ml	↑ ↑	↓ MDA (not significant)	Cryopreservation [120]	
Goat	10 and 20 μM	↑ ↑	↓ MDA, ↑ progressive motility	Cryopreservation [36]	
Mice	10, 50 and 100 μg/ml	↑	↑ Fertilization rates, ↑ mitochondrial Activity, ↑ Protein tyrosine phosphorylation, birth rates were similar with fresh sperm	Cryopreservation [21]	
Mice	10 mg/kg – 6 weeks	↑ ↓ ↑ ↑		BPA [106]	
Wistar albino rat	80 mg/kg - 2 weeks	↑ ↓	↑	Doxorubicin [121]	
Albino rat	10 and 50 mg/kg - 21 days	↓	↑ Live –Dead ratio	Atrazine [96]	
Wistar rat	100 mg/kg – 45 days	↑ ↓ ↑		Cypermethrin and Deltamethrin [64]	
Wistar rat	20 mg/kg – 14 days		↑ Motility (not significant), ↑ acrosome reaction, ↑ GST, ↑ GPX, ↑ GSH, ↓ MDA, ↑ SOD	Sulphasafazine [17]	
Rabbit	30 mg/kg - 8 weeks	↑ ↓	↑ Progressive motility, ↑ VCL, VSL, and VAP ↑ Via (not significant), ↑ sperm concentration, ↑ sperm mitochondrial Potential, ↓ MDA	Heat stress [2]	
Goat	10 μM – 4, 8 and 12 hours	↑	↑ ↓ MDA, ↑ ROS, ↑ membrane integrity, ↑ mitochondria activity	Cadmium chloride [3]	
NMRI mice	50 mg/kg – 7 days	↑ ↓ ↑	↑ DSP	Dexamethasone [97]	
Albino rat	50 mg/kg – 4 weeks	↑ ↓ ↑		Cadmium chloride [101]	
Wistar albino rat	50 mg/Kg - 4 weeks	↑	↑ Progressive motility	L-NAME [91]	
Rooster	20, 40 and 80 μM – 48 hours	↑	↑ ↓ MDA, ↑ SOD, ↓ NO, ↓ HPO, ↑ plasma membrane integrity	H2O2 [18]	
Buffalo bull	50, 100, 150 and 200 μM	↓	↑ Progressive motility, ↑ plasma membrane integrity, ↑ supra vital plasma membrane integrity, ↑ acrosome integrity, ↑ DNA integrity, ↑ in vivo fertility	Cryopreservation [39]	
Sprague-Dawley rat	10, 25 and 50 mg/kg – 28 days	↑ ↓ ↑	↑ HOS tail coiled sperm percentage, ↓ DFI, ↑ SOD, ↑ CAT, ↑ GPX, ↓ NF-κβ and TNF-α	STZ-nicotinamide [4]	
Human	10 μmol – 2 hours		↑ Progressive motility, ↓ H2O2, ↓ sperm mtDNA damage, ↑ cytochrome B, ↑ NADH 5, up regulate hyperactivation and acrosome reaction	Leukocytospermia [109]	
Rabbit	30 mg/kg – 60 days	↑	↑ ↑ Progressive motility ↑ concentration, ↑ VCL , ↑ VSL, ↑ VAP, ↑ mitochondrial potential, ↑ acrosome integrity	Heat stress [22]	
Boar	5, 10, 25 and 50 μM – 24, 48 and 72 hours	↑			
Table 2. Evaluation of the effect of quercetin on men and different species of animals (testicular tissue)

Species	Dose of QE & Duration of treatment	Type of Response	T & D	Oxidative stress & Apoptosis	Histology, Testicular biochemistry & PCR	Reference
ICR mice	75 mg/kg - 2 weeks	Cadmium	↓ AP, ↓ OS	↓ MDA, ↓ H2O2, ↑ SOD, ↑ GPx, ↑ GSH, downregulated of Bax expression, decreased expression of caspase-3 and upregulated Bcl-XL expression	(72)	
Albino rat	90 mg/kg - 8 weeks	BPA	↓ OS	↑ Glutathione reductase, ↑ sperm concentration, ↑ percentage of normal sperm forms, ↑ serum testosterone	(105)	
Mice	75 mg/kg – 3 days	PNMC	↓ AP, ↓ OS	↓ H2O2, ↓ OH, ↓ MDA, ↑ GSH, ↑ SOD, ↑ GHSPx, ↓ Bax, ↑ Bcl-XL, ↓ caspase-3 activity, ↓ damage to the seminiferous tubules, ↓ atrophy	(71)	
ICR mice	75 mg/kg – 6 weeks	PNP	↓ AP, ↓ OS	↓ MDA, ↓ hydroxyl radical, ↑ SOD, ↑ GHSPx, ↓ caspase-3 activity, ↓ Bax, ↑ Bcl-xl	(79)	
Wistar albino rats	150 mg/kg - 10 weeks	Carbon tetrachloride	↓ AP, ↓ OS	↑ Tests weight, ↓ MDA, ↑ GHSPx and CAT (nonsignificant), ↑ diameter of seminiferous tubules, ↓ atrophy in seminiferous tubules, ↓ necrosis in germinal cells, ↓ interstitial oedema and congestion, ↓ spermatogenic arrest	(68)	
Wistar rat	50 mg/kg - 28 days	LTC	↓ OS	↑ Tests weight (nonsignificant), ↓ MDA, ↑ GSH, ↑ SOD, ↑ GPX, ↑ CAT, ↑ GST, ↓ interstitial oedema and congestion	(114)	
Albino rat	50 mg/kg – 10 days	Letrozole	↓ OS	↑ Body weight, ↑ testicular weight, ↑ NO, ↑ GHSPx, ↓ MDA, ↓ normal appearance of testicular tissue	(124)	
Wistar albino rat	270 mg/kg - 1 - 8 weeks	Ethanol	↓ OS	↑ SOD, ↑ GHSPx, ↑ CAT, ↓ NO, ↓ MDA	(125)	
Albino rat	15 mg/kg – 30	Estradiol-3-	↓ AP, ↓	↑ Tests weight, ↑ spermatoocyte, ↑ round spermatid	(126)	
Impact of Quercetin on Sperm parameters, Testicular Tissue and Sex Hormone

Treatment Group	Days	Compound	Effect on Sperm parameters	Effect on Testicular Tissue	Effect on Sex Hormone
Wistar albino rats	20 mg/kg - 21 days	Docetaxel	↓ LPO, ↑ TBARS, ↑ SOD, ↑ CAT, ↑ GPX, ↑ GSH, ↑ testes weight and epididymis	↑ Thickness of the tunica albuginea, ↓ interstitial space, ↑ number of spermatogonia, spermatocytes, and spermatids, ↑ CAT, ↑ SOD & POD, ↑ GSR, ↓ TBARS, ↓ plasma and intra-testicular testosterone	↑ Testis weight (nonsignificant), ↑ number of primary spermatocytes, spermatids and Spermatozoa
Sprague-Dawley rats	50 mg/kg - 49 days	Sodium arsenite	↓ OS	↑ Spermatogenesis, thickness, ↑ seminiferous epithelium, ↑ thickness of the tunica albuginea, ↓ interstitial space, ↑ number of spermatogonia, spermatocytes, and spermatids, ↑ CAT, ↓ TBARS	↑ Testis weight (nonsignificant), ↑ number of primary spermatocytes, spermatids and Spermatozoa
Albino rats	50 mg/kg - 21 days (pre-treatment)	Lead nitrate	↓ OS	↑ Numbers of spermatozoa, partial recovery in the germinal epithelium, improvement early spermatid with acrosomal formation, well developed Golgi apparatus and peripheral arrangement of mitochondria	↑ Testis weight (nonsignificant), ↑ number of primary spermatocytes, spermatids and Spermatozoa
Wistar rats	5, 10, 15 and 20 mg/kg - 2 weeks	BLCO	↓ caspase 3, ↓ FasL, ↓ HSP, ↑ STAR, ↑ NF-κB and ↓ Clusterin (to near control level)	↑ Numbers of spermatozoa, partial recovery in the germinal epithelium, improvement early spermatid with acrosomal formation, well developed Golgi apparatus and peripheral arrangement of mitochondria	↑ Testis weight (nonsignificant), ↑ number of primary spermatocytes, spermatids and Spermatozoa
Wistar rats	25 mg/kg - 3 weeks (pre-treatment)	Cadmium	↓ OS	↑ GSH, ↑ GPx, ↑ GST, ↑ CAT, ↑ SOD, ↑ cholesterol	↑ Numbers of spermatozoa, partial recovery in the germinal epithelium, improvement early spermatid with acrosomal formation, well developed Golgi apparatus and peripheral arrangement of mitochondria
Albino rats	100 mg/kg - 12 weeks	ZnONPs	↓ OS	↑ GSH, ↑ GPx, ↑ CAT, ↑ SOD, ↓ MDA, ↑ CAT and SOD mRNA transcripts, ↑ serum testosterone, ↑ 3β-HSD, 17β-HSD and NR5A1 mRNA transcripts, ↑ intact seminiferous tubules and regular basement membrane and normal spermatocytes and spermatids	↑ Numbers of spermatozoa, partial recovery in the germinal epithelium, improvement early spermatid with acrosomal formation, well developed Golgi apparatus and peripheral arrangement of mitochondria
Sprague-Dawley rats	50 mg/kg - 70 days	Fenitrothion	↓ OS	↑ Steroidogenic genes (3β-HSD6, 17β-HSD3 and Nr5A1), ↑ CAT and SOD mRNA levels, ↓ edema in the interstitial tissue	↑ Numbers of spermatozoa, partial recovery in the germinal epithelium, improvement early spermatid with acrosomal formation, well developed Golgi apparatus and peripheral arrangement of mitochondria
Wistar rats	10 mg/kg - 16 days	Atrazine	↓ OS	↓ MDA, ↑ SOD, ↓ LDH, ↑ 3 β-HSD and 17 β-HSD	↑ Numbers of spermatozoa, partial recovery in the germinal epithelium, improvement early spermatid with acrosomal formation, well developed Golgi apparatus and peripheral arrangement of mitochondria
Wistar rats	90 mg/kg - 15 days (Pre-treatment)	DEHP	↓ OS	↑ Relative testes Weight, ↑ DSP, ↑ LPO, ↑ SOD, ↑ GSH, ↑ CAT, amelioration of LDH-X activity	↑ Numbers of spermatozoa, partial recovery in the germinal epithelium, improvement early spermatid with acrosomal formation, well developed Golgi apparatus and peripheral arrangement of mitochondria
Sprague-Dawley rats	50 mg/kg - 52 days	BPA	↓ Vacuolation and cellular lesion, ↑ spermatozoa differentiation, ↑ tunica albuginea thickness, ↑ tubular diameter and epithelial height, ↓ interstitial space, ↑ secondary spermatocyte & spermatid	↑ Numbers of spermatozoa, partial recovery in the germinal epithelium, improvement early spermatid with acrosomal formation, well developed Golgi apparatus and peripheral arrangement of mitochondria	↑ Numbers of spermatozoa, partial recovery in the germinal epithelium, improvement early spermatid with acrosomal formation, well developed Golgi apparatus and peripheral arrangement of mitochondria
Sprague-Dawley rats	50 mg/kg - 15 days	Arsenic	↓ AP, ↓ OS	↑ MSTD, ↑ MTBS, ↓ apoptotic index, ↑ PCNA index, ↑ SOD, ↑ CAT, ↑ GSH-Px, ↑ serum testosterone (nonsignificant)	↑ Numbers of spermatozoa, partial recovery in the germinal epithelium, improvement early spermatid with acrosomal formation, well developed Golgi apparatus and peripheral arrangement of mitochondria
Wistar albino rats	20 mg/kg - 30 min before detorsion	I/R	↓ MDA, ↓ NO, ↑ TAC, ↓ TOC, ↓ abnormal germinal cells, ↓ vacuolization, ↓ tissue lesions	↑ Numbers of spermatozoa, partial recovery in the germinal epithelium, improvement early spermatid with acrosomal formation, well developed Golgi apparatus and peripheral arrangement of mitochondria	↑ Numbers of spermatozoa, partial recovery in the germinal epithelium, improvement early spermatid with acrosomal formation, well developed Golgi apparatus and peripheral arrangement of mitochondria
Wistar rats	10 and 20 mg/kg - 52 days	Manganese	↓ AP, ↓ OS	↑ SOD, ↑ CAT, ↑ GSH, ↓ H2O2, ↓ MPO, ↓ NO, ↑ TNFα, ↑ LPO, ↓ caspase-3 activity, ↑ ACP, ↑ ALP, ↑ LDH	↑ Numbers of spermatozoa, partial recovery in the germinal epithelium, improvement early spermatid with acrosomal formation, well developed Golgi apparatus and peripheral arrangement of mitochondria
NMRI mice	75 mg/kg - 42 days	NTiO2	↑ Serum and tissue testosterone, ↑ testicular weights, ↑ vacuolization & detachment, ↑ SOD, ↑ CAT, ↓ MDA	↑ Numbers of spermatozoa, partial recovery in the germinal epithelium, improvement early spermatid with acrosomal formation, well developed Golgi apparatus and peripheral arrangement of mitochondria	↑ Numbers of spermatozoa, partial recovery in the germinal epithelium, improvement early spermatid with acrosomal formation, well developed Golgi apparatus and peripheral arrangement of mitochondria
Wistar albino rats	20 mg/kg - 4 weeks	Cadmium chloride	↑ AP, ↓ OS	↑ Body weight, ↑ testes and epididymis weights, ↓ LDH, ↓ Lactate, ↓ glucose, ↑ SOD, ↑ CAT, ↑ GPx, ↑ GSH, ↑ Vitamin C, ↑ Vitamin E, ↑ TAC, ↓ MDA, ↓ H2O2, ↓ Bax, ↓ BCL-2, ↑ Cleaved caspase-3 activity	↑ Numbers of spermatozoa, partial recovery in the germinal epithelium, improvement early spermatid with acrosomal formation, well developed Golgi apparatus and peripheral arrangement of mitochondria
Mice	75 mg/kg - 21 days	PFOA	↑ AP, ↓ OS	↑ Testes weights, ↓ atrophy of seminiferous tubules, ↑ epididymal sperm count ↑ expression of NRF2, HO-1, SOD and CAT, ↓ MDA, ↓ BCL-2, ↓ p53, ↓ Bax	↑ Numbers of spermatozoa, partial recovery in the germinal epithelium, improvement early spermatid with acrosomal formation, well developed Golgi apparatus and peripheral arrangement of mitochondria
Wistar rats	20 mg/kg - 4 weeks	Cadmium chloride	↑ AP, ↓ OS	↑ 3 β-HSD and 17 β-HSD, ↓ cholesterol (but was significantly high compared to the control)	↑ Numbers of spermatozoa, partial recovery in the germinal epithelium, improvement early spermatid with acrosomal formation, well developed Golgi apparatus and peripheral arrangement of mitochondria
Wistar albino rats	25 mg/kg - 30 days	I/R	↓ AP, ↓ OS	↓ MDA, ↓ NO, ↓ GSH, ↑ TAC, ↑ TOC, ↑ JTBS	↑ Numbers of spermatozoa, partial recovery in the germinal epithelium, improvement early spermatid with acrosomal formation, well developed Golgi apparatus and peripheral arrangement of mitochondria
animal	treatment	OS	effects of quercetin in different species of animals		
--------------	----------------------------	-------------------------------------	---		
Mice	10 mg/kg – 6 weeks BPA	↓ AP, ↓ OS	↓ MDA, ↑ CAT, ↑ TAA, ↑ BCL-2, ↓ caspase-3, ↑ serum		
			testosterone, ↓ the percentages of chromosomal		
			aberrations in primary spermatocytes, ↑ relative		
			testis weights, ↓ DNA fragmentation, ↓ vacuolization		
Albino rat	10 and 50 mg/kg - 21 days	Atrazine	↑ Body weights, ↓ DNA fragmentation, ↑ expression		
			level of CYP17A1 mRNA, ↓ vacuolization and edema		
			in the interstitial regions, ↑ spermatogenesis, ↓		
			sperm abnormalities		
Wistar albino rat	50 mg/kg - 15 days Di-Butyl Phtalate	↓ OS	↑ Tubular diameter & epithelial height, ↑ germinal epithelial		
			cell number, ↓ MDA, ↓ SOD (nonsignificant), ↓ CAT		
Wistar rat	100 mg/kg – 45 days	Cypermethri n and Deltamethri n	↑ Tests and epididymis weights (nonsignificant), ↑		
			α- and β-HSD and 17 β-HSD, ↓ LPO, ↑ GSH, ↑ SOD, ↑		
			CAT, ↑ GPs, ↑ GR, ↑ GST, ↓ necrosis, ↓ vacuolization		
Wistar rat	20 mg/kg – 14 days	Sulphasalazine ne	↑ 3 β-HSD and 17 β-HSD, ↑ cholesterol (nonsignificant),		
			↑ JTBS, ↓ atrophied tubules, ↓ germ cell degeneration,		
			↓ interstitial edema and congestion		
Albino rat	50 mg/kg – 4 weeks	Cadmium chloride	↓ Degenerative and apoptotic spermatogenic cells, ↑		
			regeneration in most seminiferous tubular germinal		
Wistar rat	80 mg/kg – 21 days	Doxorubicin	↓ AP		
			↓ Tubular diameter, ↓ epithelial height, ↓ germinal		
			epithelial cell number, ↓ MDA, ↓ SOD (nonsignificant),		
			↓ CAT		
Wistar albino rat	50 mg/Kg - 4 weeks L-NAME	↓ OS	↑ NO, ↑ T-SHs, ↑ GSH, ↓ MDA, ↓ ROS, improvement of		
			the seminiferous tubular structure, ↓ the interstitial		
NMRI mice	50 mg/kg – 7 days	Dexamethas one	↑ Volume and diameter of the seminiferous tubules, ↑		
			volume of interstitial tissue, ↑ germinal epithelium		
			height, ↑ spermatogenesis		
Rabbit	30 mg/kg – 60 days	Heat stress	↑ Epididymis weight, ↑ testicular length, ↑ apoptotic		
			germ cell, improvement in testicular architecture		
Wistar albino rat	50 mg/kg -65 days Vanadium pentoxide	↓ OS	↑ Acid phosphatase, ↑ glutathione, ↑ CAT, ↓ MDA, ↓		
			vacuolization, ↑ spermocytes, ↓ atrophy		
NMRI mice	75 mg/kg - 34.5 days	Lead acetate	↑ Number of round spermatids and long spermatids, ↑		
			↓ interstitial spaces, ↑ BCL-2, ↑ caspase-3, 3 β-		
Wistar rat	0, 100 µm/L - 24 hours	↑ AP	↑ Number of round spermatids and long spermatids, ↑		
			↑ MDA, ↓ ROS, ↓ protein carbonyl		
Sprague-Dawley rat	50 mg/kg – 4 weeks Cadmium	↓ OS	↑ Body weight, ↑ relative testicular weight, ↓ MDA, ↑		
			↑ GSH, ↑ SOD, ↑ CAT, ↑ GPs, ↓ P62 and LC3B expression, ↑		
			↑ atrophy and degeneration, ↑ number of sperm		
Wistar rat	5, 10 and 20 mg/kg – 3 days	Rotenone	↑ SOD, ↑ GST, ↑ GSH, ↑ FRAP, ↓ PC, ↓ MDA, ↓ XO, ↓		
			MPO, ↓ LDH		

QE: Quercetin; NMRI: Naval Medical Research Institute; Ap: Apoptosis; OS: Oxidative Stress; TTC: α cyhalothrin; GSH: Glutathione; CAT: Catalase; SOD: Superoxide dismutase; PNP: 4-nitrophenol; JTBS: Johnsen’s Tubular Biopsy Score; BLC: Bladder; PNM: 4-nitro-m-cresol; I/R: Ischemia/Reperfusion; NaF: Sodium fluoride; BPA: Bisphenol A; NITO2: Titanium dioxide nanoparticle; DEHP: di-(2-ethylhexyl) phthalate; HSP: Heat shock protein; TCD: 2,3,7,8-tetrachlorodibenzo-p-dioxin; PFOA: Perfluorooctane acid; LDH: Lactate dehydrogenase; MPO: Myeloperoxidase; ZnONPs: Zinc oxide nanoparticles; XO: xanthine oxidase; PC: Protein carbonyl; PCNA: Proliferating cell nuclear antigen; LPO: Lipid peroxidation; HO-1: Heme oxygenase-1; POD: peroxidase; T-SHS: Glutathione-S-transferase; GSR: Glutathione Reductase; TOC: Total antioxidant capacity; TAC: Total antioxidant capacity; GRx: Glutathione reductase; GSH-Px: Glutathione peroxidase; NO: Nitric oxide; TAA: total antioxidant activity; MDA: Malondialdehyde; GST: Glutathione S Transferase; FRAP: Ferric-reducing antioxidant power; ROS: Reactive oxygen species; T & D: Against Toxin & Diseases; MTBS: mean testicular biopsy score; MSTD: Mean seminiferous tubule diameter; ALP: alkaline phosphatase; ALT: alanine aminotransferase; AST: aspartate aminotransferase; TBARS: Thiobarbituric Acid Reactive Substances; eNOS: endothelial nitric oxide synthase; H2O2: Hydrogen peroxide; HSD: 17β hydroxysteroid dehydrogenase; L-NAME: N-nitro-l-arginine methyl ester; Gps: Glutathione peroxidase; ↑: Increase or Improve; ↓: Decrease. (Comparison in the toxin/disease group with quercetin + toxin/disease group).

Table 3. Evaluation of the effect of quercetin on men and different species of animals (Endocrinology and Blood biochemistry)

41| *Jorjani Biomedicine Journal*. 2021; 9(4): P 33-54.
Discussion

Quercetin as an antioxidant can protect the male reproductive system from damage by various factors. The table below summarizes the effects of quercetin on different species and conditions, highlighting its protective role on sperm parameters, testicular tissue, and sex hormone levels.

Species	Dose of QE & Duration of treatment	Type of Response	T & D	Reference
Wistar albino rat	15 mg/kg - 4 weeks	↑ T	↑ MDA, ↑ TAC, ↓ ox-LDL, ↓ glucose	Streptozotocin (95)
Wistar rat	10 mg/kg - 5 Days	↑ T, ↑ LH, ↑ FSH	Cadmium (100)	
Albino rat	50 mg/kg – 10 days	↑ T, ↑ LH, ↑ FSH, ↑ estradiol	Letrozole (124)	
Wistar rat	5, 10, 15 and 20 mg/kg – 2 weeks	↑ LH & ↑ FSH (nonsignificant), ↑ T	(62)	
Wistar rat	10 mg/kg – 6 weeks	↑ T, ↑ LH	BLCO (15)	
Wistar rat	25 mg/kg – 3 weeks	↑ FSH & T (nonsignificant), ↑ LH	Cadmium (75)	
Sprague-Dawley rat	50 mg/kg – 70 days	↑ T, ↑ LH	Fenitrothion (84)	
Wistar rat	90 mg/kg – 15 days (pretreatment)	↑ T	DEHP (116)	
Sprague-Dawley rat	50 mg/kg – 52 days	↑ T	BPA (63)	
Wistar rat	10 and 20 mg/kg - 52 days	↑ T, ↑ LH, ↑ FSH	Manganese (92)	
Wistar albino rats	25 and 50 mg/kg – 5 weeks	↑ T	Streptozotocin (99)	
Wistar albino rat	20 mg/kg – 4 weeks	↑ T, ↑ LH, ↑ FSH	Cadmium chloride (81)	
Wistar rat	20 mg/kg - 4 weeks	↑ T	Cadmium chloride (83)	
Albino rat	50 mg/kg – 4 weeks	↑ T, ↑ LH, ↑ FSH	Lead acetate (44)	
Albino rat	10 and 50 mg/kg - 21 days	↑ T	Atrazine (96)	
Wistar rat	100 mg/kg – 45 days	↑ T, ↑ LH	Cypermethrin and deltamethrin (64)	
Wistar rat	20 mg/kg – 14 days	↑ T	Sulphasalazine (17)	
NMRI mice	50 mg/kg – 7 days	↑ T	Dexamethasone (97)	
Albino rat	50 mg/kg – 4 weeks	↑ T, ↑ LH, ↑ FSH	Cadmium chloride (101)	
Wistar rat	80 mg/kg – 21 days	↑ T, ↑ LH (nonsignificant)	Doxorubicin (93)	
Wistar albino rat	50 mg/Kg - 4 weeks	↑ T, ↑ LH	L-NAME (91)	
Rabbit	30 mg/kg – 60 days	↓ MDA	Heat stress (22)	
Wistar albino rat	50 mg/kg - 65 days	↑ T, ↑ LH	Vanadium pentoxide (94)	

QE: Quercetin; NMRI: Naval Medical Research Institute; T: Testosterone; NO: Nitric Oxide; MDA: Malondialdehyde; GSH-Px: Gluthathione peroxidase; TAC: Total antioxidant capacity; LH: Luteinizing hormone; GnRH: Gonadotropin-releasing hormone; FSH: Follicle-stimulating hormone; TACP: total acid phosphatase; PACP: prostatic acid phosphatase; DEHP: di-(2-ethylhexyl) phthalate; L-NAME: N-nitro-l-arginine methyl ester; BLCO: Nigerian Bonny Light crude oil; BPA: Bisphenol A; ↑: Increase or Improve; ↓: Decrease; T&D: Against Toxin & Diseases, (Comparison in the toxin/disease group with quercetin + toxin/disease group).
toxins. Toxins mainly disrupt the testicular tissue and spermatogenesis process by causing oxidative stress, so the use of this antioxidant by boosting antioxidant enzymes and by scavenging free radicals can prevent their toxicity. Spermatogenesis is an arduous and high organized process. Germinal cells are affected by three evolutionary phases: mitosis (spermatogonia evolution), meiosis (recombination, reduction, and division of DNA), and spermiogenesis (spermatid differentiation), which leads to the conversion of undifferentiated spermatogonia into specialized spermatozoa (27, 135).

 Plenty of conditions can disrupt spermatogenesis and reduce sperm quantity and quality (28). Moreover, germinal cells are also vulnerable to high ROS levels owing to their unique structure, an abundance of substrate for oxidation, and limited intracellular antioxidant defense (29, 136). ROS such as hydroxyl, superoxide, nitric oxide, and hydrogen peroxide interacts with the plasma membrane of sperm and lead to lipid peroxidation (LPO, 30). Yet, MDA is an important product of the unsaturated fatty acids peroxidation that is often applied as an indicator of oxidative stress damage (31). On the other hand, many studies have shown that quercetin can reduce MDA levels (2-6, 12, 14, 32-38).

 Oxidative stress is an imbalance between ROS and antioxidant defense mechanisms that can damage sperm structure and function such as motility, the integrity of the membrane, and acrosome. Also, it can harm mitochondrial function, DNA integrity, and the metabolism of sperm (39, 40). On the other hand, numerous studies have shown that the volume, count, motility, viability, and morphology of sperm are improved by quercetin supplementation (3, 24, 33, 34, 38, 40-46). Some studies have illustrated that in sperm freezing, quercetin supplementation can increase progressive motility, membrane and acrosome integrity, mitochondrial activity, and fertilization rate, it can prevent lipid peroxidation and DNA fragmentation (21, 24, 40, 47, 48).

 There is some truth in the argument that quercetin cannot positive role in male reproduction, but it is no denying the fact that the advantages of the ameliorative effect of quercetin outweigh its disadvantages (49-57). Besides, Ranawat attributed the paradoxical biologic effects of quercetin to the prescribed dose and cell redox position (58). Also, spermatogenesis is a highly active proliferative process that is capable of producing approximately 1000 sperm per second in seminiferous tubules. The high rate of intrinsic cell division of this process indicates the high rate of mitochondrial oxygen consumption by the germinal epithelium (59). The germinal epithelium in each seminiferous tubule contains two main cell types, which include Sertoli and Spermatogenic cells. Yet, Sertoli cells monitor spermatogenesis as physical and metabolic supporters for germ cells (60, 61). In some studies, quercetin has shown an increase in the population of spermatogonia, spermatocyte, spermatid, and sperm cells as well as testis weight (62-66). Besides, it can improve the seminiferous tubule structure by a reduction in vacuolation and interstitial space (62-69).

 ROS has a remarkable effect on spermatogenesis and sperm function. Also, oxidative stress occurs when the production of oxygen radicals be more than the antioxidant capacity in tissue (70). Inducers of oxidative stress are one of the important factors in male infertility. Yet, the testes contain a set of antioxidant enzymes and free radical scavengers so that the spermatogenic and steroidogenic functions of this organ not be affected by oxidative stress (59). Moreover, exposure to environmental toxins, X-rays, cryopreservation, varicocele, and cryptorchidism increase testicular oxidative stress which, leads to increased germinal cell apoptosis and hypospermatogenesis (71). Besides, many studies firmly maintain that quercetin increases total antioxidant capacity versus it can decrease MDA and DNA fragmentation (15, 33, 43, 50, 72-78). Quercetin can also reduce apoptosis in testicular tissue by reducing the expression of the proapoptotic genes including caspase-3 and Bax and increasing the expression of the anti-apoptotic genes including Bcl-xl and BCL-2 (71, 72, 79-82). On the other hand, cholesterol is a major
substrate for testosterone biosynthesis, which requires the presence of 3β-HSD and 17β-HSD enzymes (83). Research has shown that quercetin increases the expression of steroidogenic genes 3β-HSD and 17β-HSD in testicular tissue, which preserves it (64, 83, 84). Moreover, nowadays it is proven that one of the major reasons for infertility in men can be a disorder in the sex hormones levels, especially, LH is an important factor for spermatogenesis (85), which play as the main regulator for androgenic enzyme activity in the testis also it is responsible for maintaining testosterone levels (86). Moreover, testosterone and FSH also are essential for normal spermatogenesis as far as reducing their levels leads to fertility defects (87, 88). Many studies have shown that quercetin increases sex hormones such as LH, FSH, GnRH, and testosterone (44, 62, 64, 81, 89-91). On the other hand, alkaline phosphatase is an anti-inflammatory mediator that can prevent tissue damage. Also, lactate dehydrogenase is important for spermatogenesis and testicular metabolism. Therefore, disruption of the levels of these enzymes may cause testicular damage and quercetin can bring the levels of these two enzymes to near normalized (92, 93, 94). Also, there is no denying the fact that quercetin contributes to increasing total antioxidant capacity and reducing malondialdehyde (22, 95, 96, 97, 98). Researchers are of the same positive opinion about the quercetin effect that it serves as a remedy for various toxins such as streptozotocin (95, 99), 2, 4-dichlorophenoxyacetic (12), Aroclor (11), H2O2 (14, 18), cadmium (75, 81, 100, 101), quinine sulfate (100), cisplatin (102), docetaxel (42), atrazine (96, 103), cotinine (43), lead acetate (44, 104), bisphenol A (63, 105, 106), ethanol (107), sodium arsenite (61), acrylamide (108) on sperm parameters, testicular tissue, and sex hormones.

Quercetin may neutralize the adverse effects of these toxins by increasing total antioxidant capacity versus a decline in lipid peroxidation and DNA fragmentation. It also exerts similar beneficial effects on the side effects of diseases such as diabetes and leukocytospermia (41, 99, 109). In 2017, Ning evaluated the effect of varicocelectomy plus quercetin on varicocele in rats and concluded that they show quercetin could reduce apoptosis, but it reduced the protective effects of varicocelectomy (110). Finally, the findings have been illustrating that the advantage of quercetin strangely outweighs its poor disadvantages (Table 1, 2, and 3).

Conclusion

There is no denying that free radicals play a major role in the extension of male infertility due to the faint of antioxidant capacity on male reproductive disorders and spermatogenesis. Quercetin manages to act as an antioxidant by scavenging free radicals as well as chelating metal ions, thus it can increase total antioxidant capacity versus reducing lipid peroxidation. So far, studies have reported the positive effects of quercetin on reproductive system disorders. Therefore, the administration of quercetin as an antioxidant nutraceutical paves the way to boosting male reproductive health, and also it can protect of spermatogenesis process against various toxins.

Conflict of interest and Fund

There is not any conflict of interest in each other of authors and this paper is carried out by self-funding.

Acknowledgments

The authors of this article consider it necessary to appreciate the efforts of Hamideh Khodabandeh Lou and Razieh Bayat.

References

1. Xu, D., Hu, M. J., Wang, Y. Q., & Cui, Y. L. Antioxidant activities of quercetin and its complexes for medicinal application. Molecules. 2019; 24(6), 1123. [view at publisher] [DOI] [PMID] [PMCID] [Google Scholar]

2. Naseer, Z., Ahmad, E., Şahiner, H. S., Epikmen, E. T., Fiaz, M., Yousuf, M. R., ... & Aksoy, M. Dietary quercetin maintains the semen quality in rabbits under summer heat stress.
Impact of Quercetin on Sperm parameters, Testicular Tissue and Sex Hormone

Hosseiniabadi F. et al.

3. Mao, T., Han, C., Wei, B., Zhao, L., Zhang, Q., Deng, R., & Zhang, Y. Protective effects of quercetin against cadmium chloride-induced oxidative injury in goat sperm and zygotes. Biological trace element research. 2018; 185(2), 344-355. [view at publisher] [DOI] [PMID] [Google Scholar]

4. Yelumalai, S., Giribabu, N., Kamarulzaman Karim, S. Z. O., & Salleh, N. B. In vivo administration of quercetin ameliorates sperm oxidative stress, inflammation, preserves sperm morphology and functions in streptozotocin-nicotinamide induced adult male diabetic rats. Archives of Medical Science: AMS. 2019; 15(1), 240. [DOI] [PMID] [PMCID] [Google Scholar]

5. Tvrďá E, Debacker M, Ďuračka M, Kováč J, Bučko O. Quercetin and Naringenin Provide Functional and Antioxidant Protection to Stored Boar Semen. Animals. 2020 Oct;10(10):1930. 0 [view at publisher] [DOI] [PMID] [PMCID] [Google Scholar]

6. Appiah, M. O., Li, W., Zhao, J., Liu, H., Dong, Y., Xiang, J., ... & Lu, W. Quercetin supplemented casein-based extender improves the post-thaw quality of rooster semen. Cryobiology. 2020. [view at publisher] [DOI] [PMID] [Google Scholar]

7. Andres, S., Pevny, S., Ziegenhagen, R., Bakhya, N., Schäfer, B., Hirsch-Ernst, K. I., & Lampen, A. Safety aspects of the use of quercetin as a dietary supplement. Molecular Nutrition & Food Research. 2018; 62(1), 1700447. [DOI] [PMID] [Google Scholar]

8. Seddiki, Y., da Silva, F. M., & da Silva, F. M. Antioxidant properties of polyphenols and their potential use in improvement of male fertility: a review. Biomed J Sci Tech Res. 2017; 1(3), 612-617. [DOI] [Google Scholar]

9. Batiha, G. E. S., Beshbishy, A. M., Mulla, Z. S., Ikram, M., El-Hack, M. E. A., Taha, A. E., ... & Elewa, Y. H. A. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin. Foods. 2020; 9(3), 374. [view at publisher] [DOI] [PMID] [PMCID] [Google Scholar]

10. Lopes, A. S., Lane, M., & Thompson, J. G. Oxygen consumption and ROS production are increased at the time of fertilization and cell cleavage in bovine zygotes. Human reproduction. 2010; 25(11), 2762-2773. [view at publisher] [DOI] [PMID] [Google Scholar]

11. Zhang, Y. M. C. Protective effect of quercetin on Aroclor 1254-induced oxidative damage in cultured chicken spermatogonial cells. Toxicological Sciences. 2005; 88(2), 545-550. [view at publisher] [DOI] [PMID] [Google Scholar]

12. Mi, Y., Zhang, C., & Taya, K. Quercetin protects spermatogonial cells from 2, 4-d-induced oxidative damage in embryonic chickens. Journal of Reproduction and Development. 2007; 0703260066-0703260066. [view at publisher] [DOI] [PMID] [Google Scholar]

13. Mi Y, Zhang C, Li C, Taneda S, Watanabe G, Suzuki AK, Taya K. Quercetin protects embryonic chicken spermatogonial cells from oxidative damage intoxicated with 3-methyl-4-nitrophenol in primary culture. Toxicology letters. 2009 Oct 8;190(1):61-5. [view at publisher] [DOI] [PMID] [Google Scholar]

14. Abdalllah, Zribi, Ammar-Keskes, Kováčík, A., Paál, D., Libová, L., & Lukáč, N. Protective effects of quercetin on selected oxidative biomarkers in bovine spermatozoa subjected to ferrous ascorbate. Reproduction in Domestic Animals. 2011; 51(4), 524-537. [view at publisher] [DOI] [PMID] [Google Scholar]

15. Ebokaiwe AP, Farombi EO. Influence of vitamin E and quercetin on Nigerian Bonny Light crude oil-induced neuronal and testicular toxicity in Wistar rats. Journal of basic and clinical physiology and pharmacology. 2015 May 1;26(3):223-31. [DOI] [Google Scholar]

16. Tvrďá, E., Tušimová, E., Kováčík, A., Paál, D., Libová, L., & Lukáč, N. Protective effects of quercetin on selected oxidative biomarkers in bovine spermatozoa subjected to ferrous
ascorrate. Reproduction in Domestic Animals. 2016; 51(4), 524-537. [view at publisher] [DOI] [PMID] [Google Scholar]

17. Osawe, S. O., & Farombi, E. O. Quercetin and rutin ameliorates sulphosalazineduced sperm motility, alterations in reproductive hormones and steroidogenic enzyme imbalance in rats. Andrologia. 2018; 50(5), e12981. [view at publisher] [DOI] [PMID] [Google Scholar]

18. Ghaniei, A., Eslami, M., Zadeh Hashem, E., Rezapour, R., & Talebi, A. Quercetin attenuates H2O2-induced toxicity of rooster semen during liquid storage at 4° C. Journal of animal physiology and animal nutrition. 2019; 103(3), 713-722. [view at publisher] [DOI] [PMID] [Google Scholar]

19. Moretti, E., Mazzi, L., Terzuoli, G., Bonechi, C., Iacoponi, F., Martini, S., ... & Collodel, G. Effect of quercetin, rutin, naringenin and epicatechin on lipid peroxidation induced in human sperm. Reproductive Toxicology. 2012; 34(4), 651-657. [view at publisher] [DOI] [PMID] [Google Scholar]

20. Fernández-Checa, J. C., Kaplowitz, N., Colell, A., & García-Ruiz, C. Oxidative stress and alcoholic liver disease. Alcohol health and research world.1997; 21(4), 321. [PMID] [Google Scholar]

21. Yoshimoto, H., Takeo, T., & Nakagata, N. Dimethyl sulfoxide and quercetin prolong the survival, motility, and fertility of cold-stored mouse sperm for 10 days. Biology of reproduction. 2017; 97(6), 883-891. [view at publisher] [DOI] [PMID] [PMCID] [Google Scholar]

22. Naseer, Z., Ahmad, E., Aksoy, M., & Epikmen, E. T. Impact of quercetin supplementation on testicular functions in summer heat-stressed rabbits. World Rabbit Science. 2020; 28(1), 19-27. [view at publisher] [DOI] [Google Scholar]

23. Tvrdá, E., Lukáč, N., Lukáčová, J., Jambor, T., Hashim, F., & Massányi, P. Dose-and time-dependent in vitro effects of quercetin on bovine spermatozoa activity and superoxide production. Folia Veterinaria. 2014; 58(4), 224-23 [Google Scholar]

24. Rakha, B. A., Qurrat-ul-Ain, Ansari, M. S., Akhter, S., Akhter, A., Awan, M. A., & Santiago-Moreno, J. Effect of Quercetin on Oxidative Stress, Mitochondrial Activity, and Quality of Indian Red Jungle Fowl (Gallus gallus murghi) Sperm. Biopreservation and Biobanking. 2020. [view at publisher] [DOI] [Google Scholar]

25. Wijerathne, T. D., Kim, J. H., Kim, M. J., Kim, C. Y., Chae, M. R., Lee, S. W., & Lee, K. P. Onion peel extract and its constituent, quercetin inhibits human Slo3 in a pH and calcium dependent manner. The Korean Journal of Physiology & Pharmacology. 2019; 23(5), 381-392. [view at publisher] [DOI] [PMID] [PMCID] [Google Scholar]

26. Fraser, L. R., Abeydeera, L. R., & Niwa, K. (1995). Ca2+-regulating mechanisms that modulate bull sperm capacitation and acrosomal exocytosis as determined by chlortetracycline analysis. Molecular reproduction and development, 40(2), 233-241. [view at publisher] [DOI] [PMID] [Google Scholar]

27. Hess, R. A., & De Franca, L. R. Spermatogenesis and cycle of the seminiferous epithelium. In Molecular mechanisms in spermatogenesis (pp. 1-15). Springer, New York, NY. 2009. [view at publisher] [DOI] [PMID] [Google Scholar]

28. Khojasteh, S. M. B., Khameneh, R. J., Houresfsnd, M., & Yaldagard, E. A review on medicinal plants used for improvement of spermatogenesis. Biology and Medicine. 2016; 8(4), 1. [Google Scholar]

29. Nowicka-Bauer, K., & Nixon, B. Molecular Changes Induced by Oxidative Stress that Impair Human Sperm Motility. Antioxidants. 2020; 9(2), 30. Storey, B. T. Biochemistry of the induction and prevention of lipoperoxidative damage in human spermatozoa. Molecular human reproduction. 1997; 3(3), 203-213. [view at publisher] [DOI] [PMID] [Google Scholar]
Impact of Quercetin on Sperm parameters, Testicular Tissue and Sex Hormone
Hosseinabadi F. et al.

31. Gawel, S., Wardas, M., Niedworok, E., & Wardas, P. Malondialdehyde (MDA) as a lipid peroxidation marker. Wiadomosci lekarskie (Warsaw, Poland: 1960). 2004; 57(9-10), 453. [view at publisher] [Google Scholar]

32. Cemeli E, Schmid TE, Anderson D. Modulation by flavonoids of DNA damage induced by estrogen-like compounds. Environmental and molecular mutagenesis. 2004;44(5):420-6. [view at publisher] [DOI] [PMID] [Google Scholar]

33. Zribi, N., Chakroun, N. F., Abdallah, F. B., Elleuch, H., Sellami, A., Gargouri, J., … & Keskes, L. A. Effect of freezing-thawing process and quercetin on human sperm survival and DNA integrity. Cryobiology. 2012; 65(3), 326-331. [view at publisher] [DOI] [PMID] [Google Scholar]

34. Gibb, Z., Butler, T. J., Morris, L. H. A., Maxwell, W. M. C., & Grupen, C. G. Quercetin improves the postthaw characteristics of cryopreserved sex-sorted and nonsorted stallion sperm. Theriogenology. 2013; 79(6), 1001-1009. [view at publisher] [DOI] [PMID] [Google Scholar]

35. Jahan, S., Rehman, S., Ullah, H., Munawar, A., Ain, Q. U., & Iqbal, T. Ameliorative effect of quercetin against arsenic-induced sperm DNA damage and daily sperm production in adult male rats. Drug and Chemical Toxicology. 2016; 39(3), 290-296. [view at publisher] [DOI] [PMID] [Google Scholar]

36. Seifi-Jamadi, A., Ahmad, E., Ansari, M., & Kohram, H. Antioxidant effect of quercetin in an extender containing DMA or glycerol on freezing capacity of goat semen. Cryobiology. 2017; 75, 15-20. [view at publisher] [DOI] [PMID] [Google Scholar]

37. Azadi, L., Tavalaee, M., Deemeh, M. R., Arbabian, M., & Nasr-Esfahani, M. H. Effects of tempol and quercetin on human sperm function after cryopreservation. CryoLetters. 2017; 38(1), 29-36. [view at publisher] [Google Scholar]

38. Fanaei, H., Azizi, Y., & Khayat, S. A review: role of oxidative stress in male infertility. Journal of Fasa University of Medical Sciences. 2013; 3(2), 93-103. [view at publisher] [Google Scholar]

39. Ahmed, H., Jahan, S., Salman, M. M., & Ullah, F. Stimulating effects of Quercetin (QUE) in tris citric acid extender on post thaw quality and in vivo fertility of buffalo (Bubalus bubalis) bull spermatozoa. Theriogenology. 2019; 134, 18-23. [view at publisher] [DOI] [PMID] [Google Scholar]

40. Nass-Arden, L., & Breitbart, H. Modulation of mammalian sperm motility by quercetin. Molecular reproduction and development.1990; 25(4), 369-373. [view at publisher] [DOI] [PMID] [Google Scholar]

41. Khaki, A. R. A. S. H., Nouri, M., Fathiazad, F., Ahmadi-Ashtiani, H. R., Rastgar, H. O. S. S. E. I. N., & Rezazadeh, S. Protective effects of quercetin on spermatogenesis in streptozotocin-induced diabetic rat. Journal of Medicinal Plants. 2009; 1(29), 57-64. [view at publisher] [Google Scholar]

42. Altintas, R., Ciftci, O., Aydin, M., Akpolat, N., Oguz, F., & Beytur, A. Quercetin prevents docetaxel-induced testicular damage in rats. Andrologia. 2015; 47(3), 248-256. [view at publisher] [DOI] [PMID] [Google Scholar]

43. Goss, D., Oeyyipo, I. P., Skosana, B. T., Ayad, B. M., & Du Plessis, S. S. Ameliorative potentials of quercetin against cotinine-induced toxic effects on human spermatozoa. Asian Pacific Journal of Reproduction.2015; 5(3), 193-197. [view at publisher] [DOI] [Google Scholar]

44. Al-Omair, M. A., Sedky, A., Ali, A., & Elsawy, H. Ameliorative potentials of quercetin against lead-induced hematological and testicular alterations in Albino rats. Chin J Physiol. 2017; 60(1), 54-61. [DOI] [PMID] [Google Scholar]

45. Chae, M. R., Kang, S. J., Lee, K. P., Choi, B. R., Kim, H. K., Park, J. K., … & Lee, S. W. Onion (Allium cepa L.) peel extract (OPE) regulates human sperm motility via protein kinase C-mediated activation of the human voltage-gated proton channel. Andrology. 2017; 5(5), 979-989. [view at publisher] [DOI] [PMID] [Google Scholar]
46. Shi, X., Hu, H., Ji, G., Zhang, J., Liu, R., Zhang, H., & Li, M. Protective effect of sucrose and antioxidants on cryopreservation of sperm motility and DNA integrity in C57BL/6 mice. Biopreservation and biobanking. 2018; 16(6), 444-450. [view at publisher] [DOI] [PMID] [Google Scholar]

47. Kawasaki, Y., Sakurai, D., Yoshihara, T., Tsuchida, M., Harakawa, S., & Suzuki, H. Effect of quercetin on the motility of cryopreserved canine spermatozoa. Cryobiology. 2020; 96, 50-54. [view at publisher] [DOI] [PMID] [Google Scholar]

48. Rastogi, P. B., & Levin, R. E. Induction of sperm abnormalities in mice by quercetin. Environmental mutagenesis. 1897; 9(1), 79-86. [DOI] [PMID]

49. Li, M. W., Yudin, A. I., VandeVoort, C. A., Sabour, K., Primakoff, P., & Overstreet, J. W. Inhibition of monkey sperm hyaluronidase activity and heterologous cumulus penetration by flavonoids. Biology of reproduction. 1997; 56(6), 1383-1389. [view at publisher] [DOI] [PMID] [Google Scholar]

50. Vichas, L., Tsakmakidis IA, Vafiadis, D., Tsousis G., Malama E., Boscos CM. The effect of antioxidant agents’ addition and freezing method on quality parameters of frozen thawed ram semen. Cell and tissue banking. 2018; 19(1):113-21. [view at publisher] [Google Scholar]

51. Breithart, H., Rubinstein, S., & Nass-Arden, L. The role of calcium and Ca2+-ATPase in maintaining motility in ram spermatozoa. Journal of Biological Chemistry. 1985; 260(21), 11548-11553. [view at publisher] [DOI] [Google Scholar]

52. Khanduja, K. L., Verma, A., & Bhardwaj, A. Impairment of human sperm motility and viability by quercetin is independent of lipid peroxidation. Andrologia. 2001; 33(5), 277-281. [view at publisher] [DOI] [PMID] [Google Scholar]

53. Williams, K. M., & Ford, W. C. L. Effects of Ca-ATPase inhibitors on the intracellular calcium activity and motility of human spermatozoa. International journal of andrology. 2003; 26(6), 366-375. [view at publisher] [DOI] [PMID] [Google Scholar]

54. Farombi, E. O., Abarikwu, S. O., Adesiyan, A. C., & Oyejola, T. O. Quercetin exacerbates the effects of subacute treatment of atrazine on reproductive tissue antioxidant defence system, lipid peroxidation and sperm quality in rats. Andrologia. 2013; 45(4), 256-265. [view at publisher] [DOI] [PMID] [Google Scholar]

55. Seifi-Jamadi, A., Kohram, H., Shahneh, A. Z., Ansari, M., & Macías-García, B. Quercetin ameliorate motility in frozen-thawed Turkmen stallions' sperm. Journal of Equine Veterinary Science. 2016; 45, 73-77. [view at publisher] [DOI] [Google Scholar]

56. Torres MA, Ravagnani GM, Leal DF, Martins SM, Muro BB, Meirelles FV, Papa FO, Dell'acqua JA, Alvarenga MA, Moretti AS, De Andrade AF. Seminal plasma arising from the whole boar sperm-rich fraction increases the stability of sperm membrane after thawing. Journal of animal science. 2016; 94(5):1906-12. [Google Scholar]

57. Ranawat, P., Pathak, C. M., & Khanduja, K. L. A new perspective on the quercetin paradox in male reproductive dysfunction. Phytotherapy Research. 2013; 27(6), 802-810. [view at publisher] [DOI] [PMID] [Google Scholar]

58. Aitken, R. J., & Roman, S. D. Antioxidant systems and oxidative stress in the testes. In Molecular mechanisms in spermatogenesis (pp. 154-171). Springer, New York, NY. 2009. [view at publisher] [DOI] [PMID] [Google Scholar]

59. Asadi, N., Bahmani, M., Kheradmand, A., & Rafieian-Kopaei, M. The impact of oxidative stress on testicular function and the role of antioxidants in improving it: a review. Journal of clinical and diagnostic research: JCDR. 2017; 11(5), IE01. [DOI] [PMID] [PMCID] [Google Scholar]

60. Boekelheide, K. Fleming SL, Johnson KJ, Patle SR, Schoenfeld HA. Role of Sertoli cells in injury-associated testicular germ cell apoptosis. Proc Soc Exp Biol Med. 2000; 225, 105-115. [view at publisher] [DOI] [PMID] [Google Scholar]
61. Jahan, S., Ifikhar, N., Ullah, H., Rukh, G., & Hussain, I. Alleviative effect of quercetin on rat testis against arsenic: a histological and biochemical study. Systems Biology in Reproductive Medicine. 2015; 61(2), 89-95. [view at publisher] [DOI] [PMID] [Google Scholar]

62. Zohre, F., Nasri, S., & Kerishchi, P. The effect of Quercetin on pituitary-gonadal axis, sperm parameters and testis tissue in male rats. Quarterly Journal of Sabzevar University of Medical Sciences. 2015; 22(3), 18-25. [view at publisher] [Google Scholar]

63. Jahan, S., Ain, Q. U., & Ullah, H. Therapeutic effects of quercetin against bisphenol A induced testicular damage in male Sprague Dawley rats. Systems biology in reproductive medicine. 2016; 62(2), 114-124. [view at publisher] [DOI] [PMID] [Google Scholar]

64. Sharma, P., Khan, I. A., & Singh, R. Curcumin and quercetin ameliorated cypermethrin and de Itamethrin-induced reproductive system impairment in male wistar rats by upregulating the activity of pituitary-gonadal hormones and steroidogenic enzymes. International journal of fertility & sterility. 2018; 12(1), 72 [PMID] [Google Scholar]

65. Wang, J., Zhu, H., Wang, K., Yang, Z., & Liu, Z. Protective effect of quercetin on rat testes against cadmium toxicity by alleviating oxidative stress and autophagy. Environmental Science and Pollution Research. 2020; 1-9. [view at publisher] [DOI] [PMID] [Google Scholar]

66. Ben Abdallah, F., Zibri, N., & Ammar-Keskes, L. Antioxidative potential of Quercetin against hydrogen peroxide induced oxidative stress in spermatozoa in vitro. Andrologia. 2011; 43(4), 261-265. [DOI] [PMID] [Google Scholar]

67. Kanter, M., Aktas, C., & Erboga, M. Protective effects of quercetin against apoptosis and oxidative stress in streptozotocin-induced diabetic rat testis. Food and chemical toxicology. 2012; 50(3-4), 719-725. [view at publisher] [DOI] [PMID] [Google Scholar]

68. Sönmez M, Türk G, Çeribaşı S, Çiftçi M, Yüce A, Güvenç M, Özer Kaya Ş, Çay M, Aksakal M. Quercetin attenuates carbon tetrachloride-induced testicular damage in rats. Andrologia. 2014 Oct;46(8):848-58. [view at publisher] [DOI] [PMID] [Google Scholar]
on cadmium-induced changes in sperm characteristics and testicular oxidative damage in rats. Andrologia. 2016; 48(2), 152-163. [view at publisher] [DOI] [PMID] [Google Scholar]

76. Hussein, M. M., Ali, H. A., Saadeldin, I. M., & Ahmed, M. Quercetin alleviates zinc oxide nanoparticles toxicity in male albino rats. Journal of Biochemical and Molecular Toxicology. 2016; 30(10), 489-496. [view at publisher] [DOI] [PMID] [Google Scholar]

77. Chi, K. K., Zhang, W. H., Wang, G. C., Chen, Z., He, W., Wang, S. G., ... & Chen, H. Comparison of intraperitoneal and intraepididymal quercetin for the prevention of testicular torsion/detorsion-induced injury. Urology. 2017; 99, 106-111. [view at publisher] [DOI] [PMID] [Google Scholar]

78. Benko, F., Hrnčiar, P., Lukáč, N., Kirchner, R., & Tvrdá, E. The in vitro Effect of Quercetin on the Oxidative Properties of Rat Testicular Tissue. Scientific Papers: Animal Science & Biotechnologies/Lucrări Stiintifice: Zootehnie si Biotehnologii. 2020; 53(2). [view at publisher] [Google Scholar]

79. Mi, Y., Tu, L., Wang, H., Zeng, W., & Zhang, C. Supplementation with quercetin attenuates 4-nitrophenol-induced testicular toxicity in adult male mice. The Anatomical Record. 2013; 296(10), 1650-1657. [view at publisher] [DOI] [PMID] [Google Scholar]

80. Hu, J., Yu, Q., Zhao, F., Ji, J., Jiang, Z., Chen, X., ... & Yan, M. Protection of Quercetin against Triptolide-induced apoptosis by suppressing oxidative stress in rat Leydig cells. Chemico-Biological Interactions. 2015; 240, 38-46. [view at publisher] [DOI] [PMID] [Google Scholar]

81. Nna, V. U., Ujah, G. A., Mohamed, M., Etim, K. B., Igba, B. O., Augustine, E. R., & Osim, E. E. Cadmium chloride-induced testicular toxicity in male Wistar rats; prophylactic effect of quercetin, and assessment of testicular recovery following cadmium chloride withdrawal. Biomedicine & Pharmacotherapy. 2017; 94, 109-123. [view at publisher] [DOI] [PMID] [Google Scholar]

82. Yuan, Y., Ge, S., Lv, Z., Wu, M., Kuang, H., Yang, B., ... & Zhang, D. Attenuation of perfluorooctanoic acid-induced testicular oxidative stress and apoptosis by quercetin in mice. RSC advances. 2017; 7(71), 45045-45052. [view at publisher] [DOI] [Google Scholar]

83. Ujah, G. A., Nna, V. U., Agah, M. I., Omue, L. O., Leku, C. B., & Osim, E. E. Effect of quercetin on cadmium chloride-induced impairments in sexual behaviour and steroidogenesis in male Wistar rats. Andrologia. 2018; 50(2), e12866. [view at publisher] [DOI] [PMID] [Google Scholar]

84. Saber, T. M., Abd El-Aziz, R. M., & Ali, H. A. Quercetin mitigates fenitrothion-induced testicular toxicity in rats. Andrologia. 2016; 48(5), 491-500. [view at publisher] [DOI] [PMID] [Google Scholar]

85. Russell, L. D., Alger, L. E., & Nequin, L. G. Hormonal control of pubertal spermatogenesis. Endocrinology. 1987; 120(4), 1615-1632. [view at publisher] [DOI] [PMID] [Google Scholar]

86. Shaw, M. J., Georgapoulos, L. E., & Payne, A. H. Synergistic effect of FSH and LH and testicular Δ 5, 3β-hydroxysteroid dehydrogenase isomerase. Application of a new method for the separation of testicular compartments. Endocrinology. 1979; 104, 912-918. [view at publisher] [DOI] [PMID] [Google Scholar]

87. McBride, J. A., & Coward, R. M. Recovery of spermatogenesis following testosterone replacement therapy or anabolic-androgenic steroid use. Asian journal of andrology. 2016; 18(3), 373. [DOI] [PMID] [PMCID] [Google Scholar]

88. McLachlan, R. I., Wreford, N. G., Robertson, D. M., & De Kretser, D. M. Hormonal control of spermatogenesis. Trends in Endocrinology & Metabolism. 1995; 6(3), 95-101. [view at publisher] [DOI] [Google Scholar]

89. Cormier, M., Ghouili, F., Roumaud, P., Martin, L. J., & Touaibia, M. Influence of flavonols and quercetin derivative compounds on MA-10 Leydig cells steroidogenic genes expressions. Toxicology in Vitro. 2017; 44, 111-
90. Samova, S., Patel, C. N., Doctor, H., Pandya, H. A., & Verma, R. J. The effect of bisphenol A on testicular steroidogenesis and its amelioration by quercetin: an in vivo and in silico approach. Toxicology research. 2018; 7(1), 22-31. [view at publisher] [DOI] [PMID] [Google Scholar]

91. ABD AL-FATTAH, A. A., & ABD EL-RAOUF, Y. M. Dietary Supplementation of Quercetin and the Reproductive Functions in Hypertensive Male Rats. 2019. [DOI] [Google Scholar]

92. Adedara, I. A., Subair, T. I., Ego, V. C., Oyediran, O., & Farombi, E. O. Chemoprotective role of quercetin in manganese-induced toxicity along the brain-pituitary-testicular axis in rats. Chemico-biological interactions. 2017; 263, 88-98. [view at publisher] [DOI] [PMID] [Google Scholar]

93. Ahmed, Z. A., Abtar, A. N., Othman, H. H., & Aziz, T. A. Effects of quercetin, sitagliptin alone or in combination in testicular toxicity induced by doxorubicin in rats. Drug Design, Development and Therapy. 2019; 13, 3321. [DOI] [PMID] [PMCID] [Google Scholar]

94. Imam, T. S. M Elhady W, Alam RTM, Mohammed HA. Quercetin mitigates vanadium-pentoxide-induced oxidative stress and reproductive-hormone disruption in male rats. Adv. Anim. Vet. Sci. 2020; 8(5), 490-498. [DOI] [Google Scholar]

95. Khaki, A., Fathiazad, F., Nouri, M., Khaki, A., Maleki, N. A., Khamnei, H. J., & Ahmadi, P. Beneficial effects of quercetin on sperm parameters in streptozotocin-induced diabetic male rats. Phytotherapy Research. 2010; 24(9), 1285-1291. [view at publisher] [DOI] [PMID] [Google Scholar]

96. Aziz, R. L. A., Abdel-Wahab, A., El-Ela, F. I. A., Hassan, N. E. H. Y., El-Nahass, E. S., Ibrahim, M. A., & Khalil, A. T. A. Dose-dependent ameliorative effects of quercetin and L-Carnitine against atrazine-induced reproductive toxicity in adult male Albino rats. Biomedicine & Pharmacotherapy. 2018; 102, 855-864. [view at publisher] [DOI] [PMID] [Google Scholar]

97. Soleimani, M. M., & Mohammadi, S. M. Study the protective effect of quercetin on testis histological changes and spermatogenesis indexes in adult mice following treatment with dexamethasone. 2019. [view at publisher] [Google Scholar]

98. Mima, M., Greenwald, D., & Ohlander, S. Environmental toxins and male fertility. Current urology reports. 2018; 19(7), 50. [view at publisher] [DOI] [PMID] [Google Scholar]

99. Al-Roujyee, A. Improvement of sexual behavior, sperm quantity and quality by Quercetin in streptozotocin-induced diabetic erectile dysfunction. Asian Pacific Journal of Reproduction. 2017; 6(1), 6. [view at publisher] [DOI] [PMID] [Google Scholar]

100. Farombi, E. O., Ekor, M., Adedara, I. A., Tonwe, K. E., Ojuoh, T. O., & Oyeyemi, M. O. (2012). Quercetin protects against testicular toxicity induced by chronic administration of therapeutic dose of quinine sulfate in rats. Journal of basic and clinical physiology and pharmacology, 23(1), 39-44. [view at publisher] [DOI] [PMID] [Google Scholar]

101. Badr, G. M., Elsawy, H., Sedky, A., Eid, R., Ali, A., Abdallah, B. M., ... & Abdel-Moneim, A. M. Protective effects of quercetin supplementation against short-term toxicity of cadmium-induced hematological impairment, hypothyroidism, and testicular disturbances in albino rats. Environmental Science and Pollution Research. 2019; 26(8), 8202-8211. [view at publisher] [DOI] [PMID] [Google Scholar]

102. Aldemir, M., Okulu, E. M. R. A. H., Kösemehmetoğlu, K. E. M. A. L., Ener, K., Topal, F., Evirgen, O., ... & Avci, A. Evaluation of the protective effect of quercetin against cisplatin-induced renal and testis tissue damage and sperm parameters in rats. Andrologia. 2014; 46(10), 1089-1097. [view at publisher] [DOI] [PMID] [Google Scholar]
103. Abarakwu, S. O., & Farombi, E. O. Quercetin ameliorates atrazine-induced changes in the testicular function of rats. Toxicology and Industrial Health. 2016; 32(7), 1278-1285. [view at publisher] [DOI] [PMID] [Google Scholar]

104. Khodabandeh, Z., Dolati, P., Zamiri, M. J., Mehrabani, D., Bordbar, H., Alaee, S., ... & Azarpira, N. Protective Effect of Quercetin on Testis Structure and Apoptosis Against Lead Acetate Toxicity: A Stereological Study. Biological Trace Element Research. 2020; 1-11. [view at publisher] [DOI] [PMID] [Google Scholar]

105. Mazroa, S. A. Effect of bisphenol A on the cauda epididymis of adult male albino rats and the possible protective role of quercetin: a histological and immunohistochemical study. Egyptian Journal of Histology. 2011; 34(2), 377-390. [view at publisher] [DOI] [Google Scholar]

106. Elwakeel, S. H., & Abd El-Monem, D. D. Ameliorative Effect of Melatonin and Quercetin Against Bisphenol a Induced Reproductive Toxicity in Male Albino Mice. 2018. [Google Scholar]

107. Uygur, R., Yagmurca, M., Alkoc OA, Genc A, Songur A, Ucok K, Ozen OA. Effects of quercetin and fish n-3 fatty acids on testicular injury induced by ethanol in rats. Andrologia. 2014; 46(4):356-69. [Google Scholar]

108. El-Beltagi, H. S., & Ahmed, M. M. Assessment the protective role of quercetin on acrylamide-induced oxidative stress in rats. Journal of food biochemistry. 2016; 40(6), 715-723. [view at publisher] [DOI] [Google Scholar]

109. Diao, R., Gan, H., Tian, F., Cai, X., Zhen, W., Song, X., & Duan, Y. G. In vitro antioxidation effect of Quercetin on sperm function from the infertile patients with leukocytospermia. American Journal of Reproductive Immunology. 2019; 82(3), e13155. [view at publisher] [DOI] [PMID] [Google Scholar]

110. Ning, J. Z., Rao, T., Cheng, F., Yu, W. M., Ruan, Y., Yuan, R., ... & Xiao, C. C. Effect of varicocelectomy treatment on spermatogenesis and apoptosis via the induction of heat shock protein 70 in varicocele induced rats. Molecular Medicine Reports. 2017; 16(4), 5406-5412. [view at publisher] [DOI] [PMID] [Google Scholar]

111. Dobrzyńska, M. M., Baumgartner, A., & Anderson, D. Antioxidants modulate thyroid hormone-and noradrenaline-induced DNA damage in human sperm. Mutagenesis. 2004; 19(4), 325-330. [view at publisher] [DOI] [PMID] [Google Scholar]

112. McNiven, M. A., & Richardson, G. F. Effect of quercetin on capacitation status and lipid peroxidation of stallion spermatozoa. Cell Preservation Technology. 2006; 4(3), 169-177. [view at publisher] [DOI] [Google Scholar]

113. Taepongsorat, L., Tangpraprutgul, P., Kitana, N., & Malaiwijitnond, S. Stimulating effects of quercetin on sperm quality and reproductive organs in adult male rats. Asian journal of andrology. 2008; 10(2), 249-258. [view at publisher] [DOI] [Google Scholar]

114. Ben Abdallah, F., Fetoui, H., Zribi, N., Fakhfakh, F., & Keskes, L. Quercetin attenuates lambda cyhalothrin-induced reproductive toxicity in male rats. Environmental toxicology. 2013; 28(12), 673-680. [view at publisher] [DOI] [PMID] [Google Scholar]

115. Kim, T. H., Yuh, I. S., Park, I. C., Cheong, H. T., Kim, J. T., Park, C. K., & Yang, B. K. Effects of quercetin and genistein on boar sperm characteristics and porcine IVF embryo developments. Journal of Embryo Transfer. 2014; 29(2), 141-148. [view at publisher] [DOI] [Google Scholar]

116. Johinke, D., De Gruaf, S. P., & Bathgate, R. Quercetin reduces the in vitro production of H2O2 during chilled storage of rabbit spermatozoa. Animal reproduction science. 2014; 151(3-4), 208-219. [view at publisher] [DOI] [PMID] [Google Scholar]

117. Abd-Ellah, M. F., Aly, H. A. A., Mokhlis, H. A. M., & Abdel-Aziz, A. H. Quercetin attenuates di-(2-ethylhexyl) phthalate-induced testicular toxicity in adult rats. Human & experimental
118. Khorsandi L, Orazizadeh M, Moradi-Gharibvand N, Hemadi M, Mansouri E. Beneficial effects of quercetin on titanium dioxide nanoparticles induced spermatogenesis defects in mice. Environmental Science and Pollution Research. 2017 Feb;24(6):5595-606. [view at publisher] [DOI] [PMID] [Google Scholar]

119. Filho, J. S., Corcini, C. D., & Santos, F. C. C. Quercetin in equine frozen semen. CryoLetters. 2017; 38(4), 299-304. [view at publisher] [Google Scholar]

120. Banday, M. N., Lone, F. A., Rasool, F., Rashid, M., & Shikari, A. Use of antioxidants reduce lipid peroxidation and improve quality of crossbred ram sperm during its cryopreservation. Cryobiology. 2017; 74, 25-30. [view at publisher] [DOI] [PMID] [Google Scholar]

121. Divya, S., Madhuri, D., Lakshman, M., & Reddy, A. G. Epididymal semen analysis in testicular toxicity of doxorubicin in male albino wistar rats and its amelioration with quercetin. 2018. [Google Scholar]

122. Karabulut, S., Korkmaz, O., Altun, C. E., Zergeroğlu, A. D., & Keskin, İ. Quercetin Enhances Human Sperm Motility in a Dose and Time Dependent Manner. ACTA Pharmaceutica Sciencia.2019; 58(2). [view at publisher] [DOI] [Google Scholar]

123. Winn, E., & Whitaker, B. D. Quercetin supplementation to the thawing and incubation media of boar sperm improves post-thaw sperm characteristics and the in vitro production of pig embryos. Reproductive Biology. 2020; 20(3), 315-320. [view at publisher] [DOI] [PMID] [Google Scholar]

124. Selim, M. E., Aleisa, N. A., & Daghestani, M. H. Evaluation of the possible protective role of quercetin on letrozole-induced testicular injury in male albino rats. Ultrastructural Pathology. 2013; 37(3), 204-217. [view at publisher] [DOI] [PMID] [Google Scholar]

125. Uygur, R., Yagmurca, M., Alkoc, O. A., Genc, A., Songur, A., Ucok, K., & Ozen, O. A. Effects of quercetin and fish n-3 fatty acids on testicular injury induced by ethanol in rats. Andrologia. 2014; 46(4), 356-369. [view at publisher] [DOI] [PMID] [Google Scholar]

126. Bharti, S., Misco, M. M., & Rai, U. Quercetin supplementation restores testicular function and augments germ cell survival in the estrogenized rats. Molecular and Cellular Endocrinology. 2014; 383(1-2), 10-20. [view at publisher] [DOI] [PMID] [Google Scholar]

127. Hamza, R. Z., El-Shenawy, N. S., & Ismail, H. A. Protective effects of blackberry and quercetin on sodium fluoride-induced oxidative stress and histological changes in the hepatic, renal, testis and brain tissue of male rat. Journal of Basic and Clinical Physiology and Pharmacology. 2015; 26(3), 237-251. [view at publisher] [Google Scholar]

128. Abd El-Latif, H. M. Protective effect of quercetin and or zinc against lead toxicity on rat testes. Global J Pharmacol. 2015; 9(4), 366-376. [Google Scholar]

129. Ebokaíwe, Azubuike P., Premendu P. Mathur, and Ebenezer O. Farombi. "Quercetin and vitamin E attenuate Bonny Light crude oil-induced alterations in testicular apoptosis, stress proteins and steroidogenic acute regulatory protein in Wistar rats." Drug and chemical toxicology 39.4 (2016): 424-431. [view at publisher] [DOI] [PMID] [Google Scholar]

130. Baltaci, B. B., Uygur, R., Caglar, V., Aktas, C., Aydin, M., & Ozen, O. A. Protective effects of quercetin against arsenic-induced testicular damage in rats. Andrologia. 2016; 48(10), 1202-1213. [view at publisher] [DOI] [PMID] [Google Scholar]

131. Chi, K. K., Zhang, W. H., Chen, Z., Cui, Y., He, W., Wang, S. G., ... & Wang, G. C. Comparison of quercetin and resveratrol in the prevention of injury due to testicular torsion/detorsion in rats. Asian journal of andrology. 2016; 18(6), 908. [PMID] [Google Scholar]
132. Suzen, A., Tekin, L., Erdemli, M. E., Erturk, N., Aksungur, Z., & Aktas, S. Protective effects of Hypericum perforatum and quercetin in a rat model of ischemia/reperfusion injury of testes. European Journal of Pediatric Surgery. 2018; 28(01), 096-100. [view at publisher] [DOI] [PMID] [Google Scholar]

133. Abarikwu, S. O., Simple, G., & Onuoha, C. S. Morphometric Evaluation of the Seminiferous Tubules and the Antioxidant Protective Effects of Gallic Acid and Quercetin in the Testis and Liver of Butyl Phthalate Treated Rats. Indian Journal of Clinical Biochemistry. 2018; 1-12. [view at publisher] [DOI] [PMID] [PMCID] [Google Scholar]

134. Akinmoladun, A. C., Olaniyan, O. O., Famusiwa, C. D., Josiah, S. S., & Olaleye, M. T. Ameliorative effect of quercetin, catechin, and taxifolin on rotenone-induced testicular and splenic weight gain and oxidative stress in rats. Journal of Basic and Clinical Physiology and Pharmacology. 2020; 1(ahead-of-print). [view at publisher] [DOI] [PMID] [Google Scholar]

135. Najafi A, Kia HD, Mehdipour M, Hamishehkar H, Álvarez-Rodríguez M. Effect of quercetin loaded liposomes or nanostructured lipid carrier (NLC) on post-thawed sperm quality and fertility of rooster sperm. Theriogenology. 2020 Aug 1;152:122-8. [DOI]

136. Nowicka-Bauer K, Nixon B. Molecular changes induced by oxidative stress that impair human sperm motility. Antioxidants. 2020 Feb;9(2):134. [DOI]

How to cite:
Hosseinabadi F, Faraji F, Malmir M. Impact of Quercetin on Sperm parameters, Testicular Tissue and Sex Hormone: a Systematic Review; Jorjani Biomedicine Journal. 2021; 9(4):33-54.