Layperson mouth-to-mask ventilation using a modified I-gel laryngeal mask after brief onsite instruction: a manikin-based feasibility trial

Gereon Schälte,1 Lilli-Theresa Bomhard,1 Rolf Rossaint,1 Mark Coburn,1 Christian Stoppe,1 Norbert Zoremba,2 Annette Rieg1

ABSTRACT

Objective: The intention of this manikin-based trial was to evaluate whether laypersons are able to operate an I-gel laryngeal mask (I-gel) modified for mouth-to-mask ventilation after receiving brief on-site instruction.

Setting: Entrance hall of a university hospital and the city campus of a public technical university, using a protected manikin scenario.

Methods: Laypersons were handed a labelled, mouthpiece-integrated I-gel laryngeal mask and a corresponding instruction chart and were asked to follow the printed instructions.

Outcome measures: The overall process was analysed and evaluated according to quality and duration.

Results: Data from 100 participants were analysed. Overall, 79% of participants were able to effectively ventilate the manikin, 90% placed the laryngeal mask with the correct turn and direction, 19% did not position the mask deep enough and 85% believed that their inhibition threshold for performing resuscitation was lowered. A significant reduction in reluctance before and after the trial was found (p<0.0001). A total of 35% of participants had concerns about applying first aid in an emergency. Former basic life support (BLS) training significantly reduced the time of insertion (19.6 s, 95% CI 17.8 to 21.5, p=0.0004) and increased overall success (p=0.0096).

Conclusions: Laypersons were able to manage mouth-to-mask ventilation in the manikin with a reasonable success rate after receiving brief chart-based on-site instructions using a labelled I-gel mask. Positioning the mask deep enough and identifying whether the manikin was successfully ventilated were the main problems observed. A significant reduction in reluctance towards initialising BLS by using a modified supraglottic airway device (SAD) may lead to better acceptance of bystander resuscitation in laypersons, supporting the introduction of SADs into BLS courses and the stocking of SADs in units with public automatic external defibrillators.

INTRODUCTION

Bag-valve mask ventilation (BVMV) and bag-valve ventilation connected to a supraglottic airway device (SAD) with an inflatable cuff, for example, Laryngeal Mask Classic and Supreme, have been found to be too complex for laypersons to use.1,2 This study addresses the idea of placing and using a modified I-gel laryngeal mask (I-gel) (a gel-like thermoplastic elastomer with a non-inflatable cuff)—a SAD with mouth-to-mask ventilation—on a manikin by laypersons using a newly designed instruction chart.

Laypersons, especially in domestic settings, are often confronted with circumstantial arrests before professional medical healthcare providers arrive.3 Moreover, the worldwide trend towards increasing urbanisation and rural depopulation is a challenge for first responders and ambulance services4 and may emphasise the role of laypersons’ responsibilities for providing prompt help in emergencies.

The probability of long-term survival after cardiac arrest is very much dependent on immediate resuscitation by laypersons or first
responders. According to the latest ERC guidelines, the ideal ratio between chest compressions and mouth-to-mouth ventilations is 30:2. Once the patient’s trachea is intubated or the airway is secured with a SAD, it is recommended to continue chest compression at a rate of 100/min without interruption while ventilating the lungs ~10 times/min. This combination enables a relevant higher median coronary perfusion pressure. It is well known that only performing chest compression resuscitation provides superior benefits compared with no cardiopulmonary resuscitation (CPR) and may be an option for lay responders with limited experience in mouth-to-mouth ventilation, acknowledging the consequences of no or incorrect ventilation. Nevertheless, managing the airway of patients in emergency situations, especially if professional help requires more than 5–10 min to arrive at the scene, is an essential step in first aid because it strongly impacts morbidity and mortality. However, in approximately two-third of all observed cardiac arrests, “first aiders” do not attempt resuscitation as a result of doubts and fears concerning infectious secretions and making mistakes in mouth-to-mouth resuscitation. Therefore, an easily applied and hygienic alternative, such as a SAD, that can minimise people’s concerns towards first aid ventilation is desirable. However, BVMV and bag-valve ventilation devices connected to a SAD with an inflatable cuff have been shown to be too complex for laypersons to use. Several studies have demonstrated that, at least in the hands of trained medical staff, the use of SADs during CPR reduces the "no-flow-time", increases the quantity of chest compressions and can ultimately improve outcomes.

Endotracheal intubation is still the gold standard for airway management. However, since intubation should only be applied by professional healthcare providers with sufficient technical training and experience, BVMV and SADs, for example, laryngeal masks (LMAs), are an acceptable alternative. Although LMAs might have a higher risk of aspiration during CPR than endotracheal intubation, only a few notable cases have been reported under these circumstances. Compared to the use of endotracheal tubes, SADs do not generally require an interruption of chest compression. Moreover, LMAs have advantages compared to the use of BVMV as they have been reported to be easier and more efficient in terms of their application and are less likely to cause regurgitation during CPR when used as a first line airway device. Among the SADs, the laryngeal mask has the highest proven success rates in individuals with limited clinical experience.

The goal of this study was to investigate the ability of laypersons to operate a modified I-gel labelled with different coloured marks to aid in recognising proper mask placement in mouth-to-mask ventilation on the scene using a manikin, with instructions provided by a newly designed manual. In this trial, we used the I-gel because its features may make insertion by casual users easier. Among the different models of LMAs, the I-gel is the fastest to insert and is the most popular airway device, with acceptable seal formation and closing pressures.

Information regarding the participants’ evaluation of this method was gathered, in addition to the specific main reasons for individuals being reluctant to perform first aid in general.

METHODS

In a manikin-based prospective feasibility trial, we investigated laypersons’ abilities to provide mouth-to-mask ventilation using a modified I-gel laryngeal mask after receiving brief on-site instruction. The institutional review board (Rhine-Westphalia University of Technology Aachen, Germany, Medical Faculty, Ethical Review Committee; Chairman: Professor G. Schmalzing) waived the requirement for written informed consent as no impact on individual health was anticipated. This manuscript is presented in accordance with the Strengthening the Reporting of Observational Studies in Epidemiology statement.

Recruitment of participants

Data were collected during March 2014 in the University Hospital of Aachen (Uniklinik Rheinisch Westfälische Technische Hochschule (RWTH) Aachen) entrance hall and the city campus of RWTH Aachen, Germany.

Inclusion criteria were that the participants had no prior medical education (ie, physicians, nurses, medical students, paramedics and medical technologists), with the exception of having attended ‘first aid’ or basic life support (BLS) courses in the past. Exclusion criteria were any type of formal medical education.

We randomly selected and individually approached each subject. Prior to the experiment, participants were asked for personal data regarding age, sex, profession, first aid training (if they had received any, how long ago and how often), resuscitation experience, and whether personal convictions prevented them from performing first aid and mouth-to-mouth ventilation. Participants agreed with the anonymous scientific analysis of their personal data.

Experimental setting

The I-gel is a gel-like transparent laryngeal mask that is made of a thermoplastic elastomer without an inflatable cuff. For this trial, it was labelled as follows: blue arrow for the direction, a red mark for the depth and a yellow mark with the label ‘nose’ on one side and ‘chin’ on the other side to indicate the orientation for insertion into the mouth of the manikin. To realise mouth-to-mask ventilation, a mouthpiece and hygienic filter were fixed to the ISO connector. The operation of the I-gel was displayed in four pictures on a separate instruction chart that was added to the package (figure 1).

The experimental setting consisted of a manikin (Laerdal Airway Management Trainer Adult, Laerdal...
Medical GmbH Puchheim, Germany) on the floor with
the non-transparent bagged ventilation package (instruc-
tion chart plus a previously labelled
mouthpiece-equipped laryngeal mask (I-gel Laryngeal
Mask, Intersurgical GmbH, Sankt Augustin, Germany))

Participants were not instructed nor were they pre-
pared prior to the experiment. They only knew about an
experiment related to ‘first aid’ and that they should
follow the directions given in the ‘aid package’ exactly.
Thereafter, participants were handed a non-transparent
package containing the modified I-gel and the ‘manual’.
The trial started the moment the individuals were asked
to open the package. During the experiment, partici-
pants were not given any verbal directions and nor were
any of their questions answered.

The experimental site was an area that was protected
and isolated from the view of an audience or other partici-
pants to avoid biases due to visual learning.

The primary (qualitative) outcome was the time from
opening the bag until the second ventilation. Secondary
qualitative and quantitative outcome parameters were
the success of ventilation, the position of the mask and
its direction, subjective judgements of success, the ease
and comfort of the procedure as perceived by the par-
ticipant and individuals’ concerns about proceeding in
case of an emergency. Moreover, we investigated the
influence of former ‘first aid’ or BLS classes and age on
individual performance.

Two questions followed each experiment:

▸ Would you attempt to apply the mask using the
 instruction chart in an emergency?
▸ Does the mask lower your inhibition threshold for
 performing ventilation?

Statistics
Statistical analysis was performed with GraphPad Prism
V.6.0 for Mac (GraphPad Software, La Jolla, California,
USA). A success rate of 90% was expected. The p<0.05 indicated statistical significance. To analyse the contingency, Fisher’s exact test was used. An unpaired t test with equal SDs was also used. Moreover, an ordinary one-way ANOVA (analysis of variance) was employed. The data are presented as the means±SD if not otherwise mentioned.

RESULTS

Data from 100 participants (67 men, 33 women) were analysed. On average, participants were 33.4±17.6 years old. The time elapsed since the last BLS course (n=92) was 8.2 ±8.1 years. Overall, individuals had completed 2.1±1.9 first aid courses. Two individuals (2%) had applied first aid skills in real life, and a total of 35% (n=35) had concerns about applying first aid in an emergency (table 1).

The average time from turning over the instruction chart until the second ventilation was 31.9 s (31.9±15.4 s, 95% CI 28.9 to 35). Ninety-four per cent (n=94) of participants believed that their ventilation was successful. Seventy-nine per cent (n=79, 0.79±0.4, 95% CI 0.71 to 0.87) of participants were able to effectively ventilate the manikin. Ninety per cent of participants managed to place the laryngeal mask with the right turn and direction, which suggests a basic understanding of the first part of the instruction chart. Nineteen per cent of participants did not position the mask at the proper depth (table 2). Nonetheless, five of the individuals were able to successfully ventilate the manikin, despite placing the mask too deep (n=2) or not deep enough (n=3).

In total, 92 individuals (92%) reported experience with former BLS training, and 8 participants (8%) had not experienced any formal first aid training. The insertion time and realisation of the second ventilation was significantly reduced by former BLS training (19.6 s, 95% CI 17.8 to 21.5, p=0.0004), and the time from turning over the instruction chart until the second ventilation was 30.3±1.4 and 50±8 s for those with and without prior BLS training, respectively (figure 2). We also found a significant correlation between BLS experience and success (p=0.0096) (table 3). Moreover, the number of BLS courses the participants had participated in significantly correlated with the success of ventilation (p=0.005). Furthermore, no significant difference in the success of ventilation initiation related to participants with previous first aid training within the past 5 years (n=43) compared to those with first aid training more than 5 years ago (n=49) could be detected (p=0.42). BLS training less than or more than 5 years ago did not influence the duration or success of the procedure (achieving a second ventilation) (p=0.58).

Focusing on the insertion time, a significant difference between participants aged >30 years (n=34, 41.1 ±3.4 s) compared with those aged ≤30 years (n=66, 27.2 ±1.2 s) was found (p=0.0001, 95% CI 8.03 to 19.7) (figure 3). There was no significant difference between the age groups (<30 years compared to >30 years) in relation to the success of the procedure (p=0.19 and p=0.14) (table 3). No sex-specific differences between the performances of male (n=67) and female (n=33) participants regarding insertion times (30.2±18 vs 35.3±2.9 s) (p=0.12) or success rates (p=0.80) were observed. Eighty-five per cent (n=85) of participants believed that their individual inhibition threshold for providing mouth-to-mouth ventilation during resuscitation was

Table 1 Demographic data and previous first aid knowledge

Features	
Age, years	33.4±17.6
Sex,(n)	
Male	67 (67%)
Female	33 (33%)
First aid education, n	
None	8 (8%)
<5 years	43 (43%)
>5 years	49 (49%)
Applied first aid in real life, n	2 (2%)

n, number.
The data are presented as the means±SD or as numbers (and percentage).

Table 2 Main errors in the placement of the I-gel laryngeal mask

Manner	
Not deep enough	19%
Overall	14%
Isolated	1%
And wrong direction	5%
And wrong turn	2%

The data are presented as percentages.

Figure 2 Previous basic life support (BLS) experience and insertion time. (BLS: n=92; No BLS: n=8). Time of insertion and realisation of the second ventilation was significantly reduced by previous BLS training (p=0.0004)*. The data are presented as the mean±SD.
lowered using this modified laryngeal mask airway. A significant reduction in their reluctance to perform ventilation after the placement of the laryngeal mask was found relative to their feelings before the trial \((p<0.0001)\) (figure 4).

DISCUSSION

In this pilot study, we showed that laypersons were able to successfully manage mouth-to-mask ventilation with a modified I-gel in a manikin using a simple instruction chart.

In the case of cardiac arrest, survival often depends on early resuscitation by laypersons.\(^5\)\(^-\)\(^7\) According to the latest ERC guidelines, ventilation is part of basic cardiac life support (BCLS), ideally with a 30:2 ratio between chest compressions and ventilations.\(^1\(^7\)\)

Unlike other projects and investigations, our study was not based on prior instruction or training. Moreover, we investigated the performance of laypersons without any professional medical background. A majority of prior studies included so-called laypersons such as paramedical personnel, nurses, firemen and medical students.\(^1\(^8\)\) For laypersons, SADs might be ‘an excellent or even superior’ alternative to ventilation,\(^1\(^6\)\) with less risk of aspiration.\(^1\(^3\)\) In addition, prior studies have proven the laryngeal mask in general to be a SAD with high success rates when used by individuals with limited clinical experience.\(^1\(^9\)\)

In comparison, cuff inflation is one of the major pitfalls in the application of SADs.\(^2\)\(^-\)\(^8\)\) For this reason, we chose the I-gel, a second generation SAD (which incorporates a gastric drainage channel) with an oval corpus providing more rotational stability. Compared to various other SADs, the I-gel is one of the fastest to insert and easiest to handle, with high success rates\(^2\(^0\)\) and lower gastric inflation.\(^2\(^1\)\) In addition, there is no need for the operator to inflate a cuffed seal. In particular, cuff inflation using a syringe was found to be a major issue for laypersons operating SADs, resulting in uncertainty and prolonging the time needed to install artificial ventilation.\(^2\)\(^1\)\(^8\)\(^-\)\(^2\(^2\)\)

A previous trial proved the process of connecting bag valve mask (BMVs) and SADs to be a source of error. Squeezing the BMV was a second major issue identified in this context; however, understanding the origin of faults and the difficulties of operating professional devices by laypersons and transferring this new information into action finally resulted in success.\(^2\(^2\)\) Owing to these previous complications, we decided to exclude the BMV in this study and chose a simple filter-protected mouthpiece placed at the ISO connection site of the I-gel to facilitate ventilation, which is similar to the BLS class favoured and mouth-to-mouth ventilation that is taught. Hence, none of our participants failed to initiate mouth-to-SAD ventilation.

Table 3 Age, previous BLS experience and success of ventilation

Age<30 years	Success	No success
Age>30 years	11	5
BLS	16	3
No BLS	3	11

*There was no significant difference between age (<30 years \((n=66)\), >30 years \((n=34)\)) and the success \((p=0.1944\) and \(p=0.1383\)) of ventilation. A significant difference in the rate of success between those with and without BLS experience (BLS: \(n=92\); No BLS: \(n=8\)) was found \((p=0.0096)\). The data are the total numbers.

Figure 3 Age and time of insertion. Relating to the time of insertion, a significant difference between participants >30 years \((n=34; 41.1\pm3.4\) s) compared to those <30 years \((n=66; 27.2\pm1.2\) s) was found \((p=0.0001*; 95\% CI 8.03\) to 19.7). The data are presented as the mean±SD.

Figure 4 Hindrance before and after the experiment. A significant difference in participant hindrance before and after the placement of the laryngeal mask was observed \((p<0.0001)*\). The data are the mean±SD.

Schälte G, et al. BMJ Open 2016;6:e010770. doi:10.1136/bmjopen-2015-010770

Open Access

BMJ Open: first published as 10.1136/bmjopen-2015-010770 on 12 May 2016. Downloaded from http://bmjopen.bmj.com/ on September 15, 2023 by guest. Protected by copyright.
Ideas for steps that could follow this study include a reassessment after a comparison of mouth-to-mouth ventilation to the use of BVMV and the I-gel laryngeal mask and a comparison of different ways for teaching their application through videos, charts or just verbal instructions.

Hence, the next logical step would be to test the modified I-gel laryngeal mask on humans under anaesthesia and in real-life situations.

Conclusion
In this study, 79 (79%) of the participating laypersons were able to place the labelled I-gel laryngeal mask and to successfully initiate mouth-to-laryngeal mask ventilation in the manikin by following a newly designed instruction chart. When transferring the instructions into action, placing the mask deep enough and identifying whether the manikin was successfully ventilated emerged as the main barriers to the use of this device. Extra bold type on the instruction chart, verbal support and better labelling2 of the I-gel laryngeal mask may have improved the performance of the participants. The significant reduction in the reluctance of laypersons towards the implementation of BLS by placing the I-gel laryngeal mask may support a better acceptance of bystander resuscitation in laypersons. The results of this study support the introduction of SADs in BLS courses.

Contributors GS, L-TB and AR conceived the study and drafted the manuscript. L-TB, NZ and CS performed the experiments and data acquisition. GS and L-TB analysed the data obtained together with AR. RR and MC supervised the statistical analysis and revised the manuscript. AR supervised the trial. All authors revised and approved the final version.

Funding The trial was funded by departmental funding.

Competing interests None declared.

Ethics approval RWTH Aachen University Ethical Board.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement No additional data are available.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

REFERENCES
1. Alexander R, Hodgson P, Lomax D, et al. A comparison of the laryngeal mask airway and Guedel airway, bag and facemask for manual ventilation following formal training. Anaesthesia 1993; 48:231-4.
2. Schälte G, Stoppe C, Rossaint R, et al. Does a 4 diagram manual enable laypersons to operate the Laryngeal Mask Supreme®? A pilot study in the manikin. Scand J Trauma Resusc Emerg Med 2012; 20:21.
3. Wiese CH, Wilke H, Bahr J, et al. ‘Obligatory first aid courses’. Notfall + Rettungsmedizin 2008; 11:482–6.
4. ‘International first aid and resuscitation guidelines 2011’ http://www.ifrc.org.
5. Baubin M. Bystander resuscitation without mouth-to-mouth ventilation? Anaesth Analg 2007; 56:897–8.
6. Hasselqvist-Ax I, Riva G, Herlitz J, et al. Early cardiopulmonary resuscitation in out-of-hospital cardiac arrest. N Engl J Med 2015;372:2307–15.
7. Herlitz J, Engdahl J, Svensson L, et al. Factors associated with an increased chance of survival among patients suffering from an out-of-hospital cardiac arrest in a national perspective in Sweden. Am Heart J 2005;149:61–6.
8. Deakin CD, Nolan JP, Soar J, et al. Erweiterte Reanimationsmaßnahmen für Erwachsene (“advanced life support”). Notfall+Rettungsmedizin 2010;13:559–620.
9. Wenzel V, Lindner KH, Prengel AW. Ventilation during cardiopulmonary resuscitation (CPR). A literature study and analysis of ventilation strategies. Anaesthesist 1997;46:133–41.
10. Piepho T, Thierbach A, Werner C. Supraglottic airway devices in emergency medicine. Notfall+Rettungsmedizin 2005;8:123–8.
11. Wiese CH, Semmel T, Müller JU, et al. The use of the laryngeal tube disposable (LT-D) by paramedics during out-of-hospital resuscitation—an observational study concerning ERC guidelines 2005. Resuscitation 2009;80:194–8.
12. Gatward JJ, Thomas MJC, Nolan JP, et al. Effect of chest compressions on the time taken to insert airway devices in a manikin. Br J Anaesth 2008;100:361–6.
13. Stone BJ, Chantler PJ, Baskett PJ. The incidence of regurgitation during cardiopulmonary resuscitation: a comparison between the bag valve mask and laryngeal mask airway. Resuscitation 1998;38:3–6.
14. Intersurgical Userguide: i-gel single use supraglottic airway, Adult and paediatric sizes, 2013. http://www.igel.com
15. Castle N, Owen R, Hann M, et al. Assessment of the speed and ease of insertion of three supraglottic airway devices by paramedics: a manikin study. Emerg Med J 2010;27:860–3.
16. Schälte G, Stoppe C, Aktas M, et al. Laypersons can successfully place supraglottic airways with 3 minutes of training. A comparison of four different devices in the manikin. Scand J Trauma Resusc Emerg Med 2011;19:60.
17. Koster RW, Baubin MA, Bossaert LL, et al. Basismaßnahmen zur Wiederbelebung Erwachser und Verwendung automatisierter externer Defibrillatoren. Notfall+Rettungsmedizin 2010;13:523–42.
18. Kurola J, Paakkonen H, Kettunen T, et al. Feasibility of written instructions in airway management training of laryngeal tube. Scand J Trauma Resusc Emerg Med 2011;19:56.
19. Timmermann A, Cremer S, Heuer J, et al. Laryngeal mask LMA Supreme. Application by medical personnel inexperienced in airway management. Anaesthesia 2008;57:970–5.
20. Jackson KM, Cook TM. Evaluation of four airway training manikins as patient simulators for the insertion of eight types of supraglottic airway devices. Anaesthesia 2007;62:388–93.
21. Fischer H, Hochbrugger E, Fast A, et al. Performance of supraglottic airway devices and 12 month skill retention: a randomized controlled study with manikins. Resuscitation 2011;82:302–31.
22. Schälte G. Following on-site instructions for operating laryngeal mask supreme™ and laryngeal tube™ as an alternative to mouth-to-mouth ventilation in layperson CPR: a randomized trial in the manikin. J Anaesthe Clinic Res 2012;3:1–7.
23. Ringh M, Rosenqvist M, Hollenberg J, et al. Mobile-phone dispatch of laypersons for CPR in out-of-hospital cardiac arrest. N Engl J Med 2015;372:2316–25.
24. Jokela J, Nurmi J, Genzwuerker HV, et al. Laryngeal tube and intubating laryngeal mask insertion in a manikin by first-responder trainees after a short video-clip demonstration. Prehosp Disaster Med 2009;24:63–6.
25. Beauchamp G, Phrampus P, Guyette FX. Simulated rescue airway use by laypersons with scripted telephonic instruction. Resuscitation 2009;80:925–9.
26. Howes BW, Wharton NM, Gibbison B, et al. Early cardiopulmonary resuscitation in out-of-hospital cardiac arrest. N Engl J Med 2011;365:326.
27. Cook TM, Howes B, Wharton N. Evaluation of airway equipment: man or manikin? Anaesthesia 2011;66:529.
28. Wiese CH, Bartels U, Bahr J, et al. Obligatory first aid courses. Notfall+Rettungsmedizin 2006;9:597–603.
Correction

Schälte G, Bomhard L, Rossaint R, et al. Layperson mouth-to-mask ventilation using a modified I-gel laryngeal mask after brief onsite instruction: a manikin-based feasibility trial. BMJ Open 2016;6:e010770. doi:10.1136/bmjopen-2015-010770

There is a mistake in the Contributors section. It should say:

Contributors GS initiated, supervised and conceived the study. L-TB drafted the manuscript and performed the experiments and data acquisition. NZ and CS assisted in data acquisition and the experimental site. NZ, AR and L-TB statistically analysed the data. RR approved the final manuscript. AR, GS and MC critically revised the manuscript. AR supervised the experiments and statistical analysis. All authors read and approved the final manuscript.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

BMJ Open 2017;7:e010770corr1. doi:10.1136/bmjopen-2015-010770corr1