Pollen morphology of 15 species in Commelinaceae (Commelinids: Angiosperms) from Andhra Pradesh, India

Sugali Salamma¹, Jangam Ganga Kaillas², Mudavath Chennakesavulu Naik¹, Boyina Ravi Prasad Rao³ and Hari Ramakrishna Hari²

Biodiversity Conservation Division, Department of Botany, Sri Krishnadevaraya University, Ananthapuramu-515 003, Andhra Pradesh, India.

Received: 01-09-2018 Accepted: 18-01-2019 DOI: 10.18805/IJARe.A-5119

ABSTRACT

The present study deals with pollen morphology of fifteen species of Commelinaceae belonging to three genera: Commelina (6 species), Cyanotis (7 species) and Murdannia (2 species), collected from different localities in Andhra Pradesh, India. Species have shown diversity in size, shape and ornamentation, but all share a common feature; heteropolar and monosulcate apertural nature. While all the six species of Commelina have echinate ornamentation, four of them with prolate shape and two others have spheroidal shape. Seven species of Cyanotis have granular ornamentation and prolate in shape, except Cyanotis axillaris which is perprolate. Both the species of Murdannia have granular ornamentation; but differ in shape: prolate in M. nodiflora and perprolate in M. nimmoniana. These observations are of immense value in taxonomical, melissopalynological and aeropalynological studies.

Key words: Commelinaceae, Monosulcate, Pollen morphology.

INTRODUCTION

Pollen morphology is now recognised as an important tool in taxonomic studies. Diversity in pollen size, shape, polarity, symmetry, apertural structure, ornamentation and other characters can be used to highlight otherwise cryptic taxonomic relationships (Bhattacharya et al. 2009, Ganga Kailas et al. 2014a, b, 2015a and 2016a, 2016b). Besides identification of plant taxa, pollen morphology data is helpful in investigations of allergies and melissopalynology (Ganga Kailas et al. 2015b, Seetharam et al. 2015, Ponnuchamy et al., 2014; Devender et al. 2016) and palaeovegetation and palaeoclimatical studies (Shilpa Singh et al. 2010). Recently, pollen morphology is considered as an important tool to resolve the place and sometimes the season of the year of a fact in forensic investigation (Passarelli and Cortes, 2017).

Pollen morphological studies on members of Commelinaceae are deficient. Earlier works on pollen morphology of Commelinaceae include Dahl (1946), Brenan (1952, 1964 and 1966), Rowley (1959), Rowley and Dahl (1962), Chikkannaiah (1962) and Handlos (1975). Poole and Hunt (1980) is the only comprehensive work on the palynology of Commelinaceae who studied 24, mostly American genera and about 100 species. Except with stray reports, there is a dearth of literature on pollen characters of the members of Commelinaceae. Of the 15 species of our study, only Commelina benghalensis was studied by Poole and Hunt (1980), Chennakesavulu Naik et al. (2015); Murdannia nodiflora by Vrinda (1999). Sharma (1968) studied pollen morphology of Indian monocotyledons including Commelina and Cyanotis. Pertaining to Andhra Pradesh and Telangana States, Ramakrishna and Bhushan (2004, 2006) studied pollen from honey samples from Nizamabad district; Ramakrishna and Swathi (2013) on the pollen diversity of honey from Adilabad district; Devender et al. (2013) studied pollen morphology of selected medicinal plants of ArakuValley, Visakhapatnam district.

The present work is intended to provide paly- nological data for 15 species of the family Commelinaceae of Andhra Pradesh.

MATERIALS AND METHODS

Andhra Pradesh state (12°41’ and 22°NL; 77° and 84°40’EL) is with a total geographical area of 1,60,200 Km² is located in southern peninsular India. There are 13 districts in the state; nine in the coastal region and four in Rayalaseema region. Most of the area of the state falls in altitude of 0-600m. The total forest area is 20.55% to the geographical area and most of the forest area is part of Eastern Ghats. Andhra Pradesh is floristically rich and diversified representing over 3,000 species of vascular plants and 5,757 species of animals (Joseph et al., 2016). During our explorations in 2016-17, in different seasons from various localities of Andhra Pradesh (Fig 1).

*Corresponding author’s e-mail: biodersityravi@gmail.com
¹Biodiversity Conservation Division, Department of Botany, Sri Krishnadevaraya University, Ananthapuramu-515 003, Andhra Pradesh, India.
²Palaeobotany and Palynology Research Lab., Department of Botany, University College of Science, Osmania University, Hyderabad-500 007 Telangana, India.
The material is fixed in glacial acetic acid and was processed slides were prepared following Erdtman’s acetolysis technique (Erdtman, 1960). The pollen grains were acetolysed using acetolysis mixture, i.e. acetic anhydride and concentrated sulphuric acid in the ratio of 9:1. Finally, the pollen samples were mounted in glycerin jelly on glass slides for microscopic examination (Light microscopy (LM). Photo documentation of palynomorphs was made by using a trinocular research microscope (Olympus microscope CH20i). Measurement of pollen size P/E × 100 the length of the polar axis (P) and the equatorial diameter axis (E) were measured from 9 pollen grains per representative species. The terminology used in the description of pollen is in accordance with Punt et al., (2007). These permanent pollen slides were deposited in Palaeobotany-Palynology Research lab, Department of Botany, University College of Science, Saifabad, Osmania University, Hyderabad, India.

RESULTS AND DISCUSSION
Systematic Enumeration: All the species are systematically enumerated in alphabetical order and nomenclature is updated following “The Plant List” (2013). Voucher specimens of all the species were deposited in Sri Krishnadevaraya University Herbarium (SKU), Anantapuramu, Andhra Pradesh. Pollen descriptions are provided here under species-wise.

Commelina attenuata K.D.Koenig ex Vahl (Plate: 1, Fig 1, 2)
Pollen grains prolate, P.A 45-46.5 µm × E.A 30.32 µm, polar outline more or less circular, equatorial outline elliptic. Heteropolar, bilaterally symmetric. Aperture monosulcate. Ornamentation echinate, echine 2.25 µm height, 1.5 µm at base.

Commelina benghalensis L. (Plate: 1, Fig 3, 4)
Pollen grains Prolate, P.A 24-26 µm ×E.A 13.5µm-17 µm, polar outline more or less circular, equatorial outline elliptic. Heteropolar, bilaterally symmetric. Aperture monosulcate, sulcus 21-22 µm long, 3-4.5 µm wide. Exine 1.75-2 µm thick, sexine thicker than nexine. Ornamentation microechinate.

Commelina clavata C.B. Clarke (Plate: 1, Fig 5, 6)
Pollen grains spheroidal, P.A 52.5-54 µm × E.A 52.5-54 µm, polar outline ± circular, equatorial outline circular. Heteropolar, radially symmetric. Aperture monosulcate. Exine 2-2.5 µm thick, sexine thicker than nexine. Ornamentation echinate, echine 4.5 µm height, 3 µm at base.

Plate 1: 1, 2. Commelina attenuata, 3, 4. Commelina benghalensis, 5, 6. Commelina clavata, 7, 8. Commelina forskalaei, 9, 10. Commelina kurzii, 11, 12. Commelina subulata, 13. Cyanotis arachnoidea, 14, 15. Cyanotis axillaris. Scale bars= 5 µm.
Commelina forskalaei Vahl (Plate: 1, Fig 7, 8)
Pollen grains prolate, P.A 22.5-24.5 µm × E.A 13.5-15 µm, polar outline and equatorial outline elliptic. Heteropolar, bilaterally symmetric. Aperture monosulcate. Exine 1.5 µm thick, sexine as thick as nexine. Ornamentation microechinate.

Commelina kurzii C. B. Clarke (Plate: 1, Fig 9, 10)
Pollen grains spheroidal, P.A 52.5-54 µm × E.A 52.5-54 µm, polar outline circular, equatorial outline circular. Heteropolar, radially symmetric. Aperture monosulcate. Exine 1.5-2 µm thick, sexine thicker than nexine. Ornamentation echinate, echinule 2.5 µm height, 4 µm at base.

Commelina subulata Roth (Plate: 1, Fig 11, 12)
Pollen grains prolate, P.A 46.5-48 µm × E.A 34.5-36 µm, polar outline circular, equatorial outline elliptic. Heteropolar, bilaterally symmetric. Aperture monosulcate. Exine 2.5-3 µm thick, sexine thicker than nexine. Ornamentation echinate, echinule 2.5 µm height, 3.5 µm at base.

Cyanotis arachnoidea C. B. Clarke (Plate: 1, Fig 13)
Pollen grains prolate, P.A 24-26 µm × E.A 16.5-17 µm, polar outline more or less circular, equatorial outline elliptic. Heteropolar, bilaterally symmetric. Aperture monosulcate, sulcus 20 µm long, 1.5 µm wide. Exine 2-2.5 µm thick, sexine thicker than nexine. Ornamentation granular.

Cyanotis cristata (L.) D. Don (Plate: 2, Fig 18, 19)
Pollen grains prolate, P.A 22.5-24 µm × E.A 13.5-14 µm, polar outline elliptic, equatorial outline elliptic. Heteropolar, bilaterally symmetric. Aperture monosulcate. Exine 1.5-2 µm thick, sexine as thick as nexine. Ornamentation granular.

Cyanotis fasciculata (B. Heyne ex Roth) Schult. and Schult.f. (Plate: 2, Fig 20, 21)
Pollen grains prolate, P.A 24-26 µm × E.A 15-16 µm, polar outline elliptic, equatorial outline elliptic. Heteropolar, bilaterally symmetric. Aperture monosulcate. Exine 1.5-2 µm thick, sexine thicker than nexine. Ornamentation granular.

Cyanotis vaga (Lour.) Schult. and Schult.f. (Plate: 2, Fig 22, 23)
Pollen grains prolate, P.A 30-32 µm × E.A 16.5-17.5 µm, polar outline elliptic, equatorial outline elliptic. Heteropolar, bilaterally symmetric. Aperture monosulcate, sulcus 25 µm × 2 µm. Exine 2-2.5 µm thick, sexine thicker than nexine. Ornamentation granular.

Cyanotis villosa (Spreng.) Schult. and Schult.f. (Plate: 2, Fig 24, 25)
Pollen grains prolate, P.A 23.5-25 µm × E.A 14.5-16 µm, polar outline elliptic, equatorial outline elliptic. Heteropolar, bilaterally symmetric. Aperture monosulcate. Exine 2-2.5 µm thick, sexine thicker than nexine. Ornamentation granular.

Murdannia nimmoniana (J. Graham) S.M. Almeida (Plate: 2, Fig 26, 27)
Pollen grains perprolate, P.A 31.5-32 µm × E.A 15-16 µm, polar outline elliptic, equatorial outline elliptic. Heteropolar, bilaterally symmetric. Aperture monosulcate. Exine 1.5 µm thick, sexine thicker than nexine. Ornamentation granular.

Murdannia nudiflora (L.) Brenan (Plate: 2, Fig 28, 29, 30)
Pollen grains perprolate, P.A 33-34 µm × E.A 16.5-17 µm, polar outline elliptic, equatorial outline elliptic. Heteropolar, bilaterally symmetric. Aperture monosulcate. Exine 2-2.5 µm thick, sexine thicker than nexine. Ornamentation granular.
Among the 15 species studied for pollen morphology, *Commelina* is represented by six species; *Cyanotis*, 7 species and *Murdannia*, 2 species. All the 15 species pollen has shown monosulcate apertural pattern and heteropolarity (Table 1). Poole and Hunt (1980) stated that all the species of Commelinaceae are monosulcate, except of one species of *Tinantia*. Monosulcate aperture was already observed in three species of *Murdannia* by Vrinda (1999), viz., *M. loriformis, M. nudiflora* and *M. semiteres*. Nandikar and Gurav (2010) inferred that the pollen of *Murdannia lanuginosa* is monosulcate. The present investigation supports all the findings stated above. Five species in the present study have shown conspicuous measurable sulcus, viz., *Commelina benghalensis*, (21-22 µm × 3-4.5µm), *Cyanotis arachnoidea* (20µm × 1.5µm), *Cyanotis burmanniana* (15µm × 3µm), *Cyanotis vaga* (25µm × 2µm) *Murdannia nudiflora* (13.5µm × 6µm).

In the present study, *Commelina* species showed diversity in ornamentation: echinate in *C. clavata, C. kurzii* and *C. subulata*; microechinate in *C. attenuata* and *C. benghalensis* and granular *C. forskalaei*. In *C. attenuata*, echine is 2.25 µm × 1.5 µm, in *C. clavata* echine is 5µm × 3µm, in *C. kurzii* echine is 2.5µm × 4 µm. In genus *Cyanotis*, except *C. burmanniana* with microreticulate ornamentation, all other species have shown granular ornamentation. Both species of genus *Murdannia* have shown granular ornamentation.

In the genus *Commelina, C. clavata* and *C. kurzii* have shown spheroidal shape with 100 P/E value having same polar axis and equatorial axis (P: 52.5-54, E: 52.5-54) values. Shape is prolate in remaining four species of the genus. Polar axis, equatorial axis values has been presented in Table 1 for all the four species. In genus *Cyanotis, C. burmanniana* has shown suboblate shape with 86 P/E value. All other 5
Table 1: Pollen morphology of selected species of Commelinaceae (Polar axis (P) and equatorial diameter (E) measurements (in µm) and shape of pollen grains).

Name of the plant	P	E	P/E	Shape	Aperture	Ornamentation
Commelina attenuata	45-46.5	30-32	150	Prolate	Monosulcate	Microechinate
Commelina benghalensis	24-26	13.5-17	177	Prolate	Monosulcate	Microechinate
Commelina clavata	52.5-54	52.5-54	100	Spheroidal	Monosulcate	Echiniate
Commelina forskalaei	22.5-24.5	13.5-15	166	Prolate	Monosulcate	Granular
Commelina kurzii	52.5-54	52.5-54	100	Spheroidal	Monosulcate	Echiniate
Commelina subulata	46.5-48	34.5-36	134	Prolate	Monosulcate	Echiniate
Cyanotis arachnoidea	24-26	16.5-17	145	Prolate	Monosulcate	Granular
Cyanotis australis	31.5-32	15-16	210	Perprolate	Monosulcate	Granular
Cyanotis burmanniana	28.5-29	33-34	86	Suboblate	Monosulcate	Microreticulate
Cyanotis cristata	22.5-24	13.5-14	166	Prolate	Monosulcate	Granular
Cyanotis fasciculata	24-26	15-16	160	Prolate	Monosulcate	Granular
Cyanotis vagia	30-32	16.5-17.5	181	Prolate	Monosulcate	Granular
Cyanotis villosa	23.5-25	14.5-16	167	Prolate	Monosulcate	Granular
Murdannia nimmoniana	33-34	16.5-17	200	Perprolate	Monosulcate	Granular
Murdannia nudiflora	24-26	18-20	133	Prolate	Monosulcate	Granular

Species has shown prolate shape except perprolate shape in *C. axillaris*. In *Murdannia nodiflora* the shape is prolate with P/E value 133µm and in *M. nimmoniana* it is perprolate with 200 P/E value.

Pollen morphology of certain species of *Cyanotis* has been recorded by Poole and Hunt (1980). Accordingly, the pollen is highly variable in tribe Tradescantieae and pollen variation is can be seen to a limited extent within the genera. The present study also registered differences among the *Cyanotis* species. The results observed in the present study supports the findings of Seema et al., (1994) who worked on 25 monocotyledonous species and reported members of Commelinaceae have uniform pollen types.

CONCLUSION

The pollen morphology of recorded 15 species of 3 genera collected from Andhra Pradesh was studied and identified stenopalynous condition of monosulcate and heteropolar as common character. These pollen have prolate has predominant condition and followed by perprolate, spheroidal and Suboblate. These data is useful for further authentic identification of pollen taxa belong to Commelinaceae family.

ACKNOWLEDGEMENT

The first author thanks University Grants Commission (UGC), New Delhi for Post Doctoral Fellowship (PDFSS-2014-15-ST-AND-9507). Prof. Rao thanks UGC for awarding One Time Grant Project (2016-2018). Senior author thank Principal, University College of Science, Osmania University, Saifabad, Hyderabad, for providing lab facilities. The second author renders special thanks to UGC-RGNF (201415-RGNF-2014-15-SC-TEL-87593) for providing financial assistance.

APPENDIX-1

1. *Commelina attenuata* K.D. Koenig ex Vahl-S. K. University campus, B. Ravi Prasad Rao and S. Salamma, 51291, 20 August 2016 (SKU).
2. *Commelina benghalensis* L.-Samathamagram, B. Ravi Prasad Rao and M Anil Kumar, 48317, 13 September 2014 (SKU).
3. *Commelina clavata* C.B. Clarke-Forest near RJUKT, Vempally, S. Salamma and M Chennakesavulu Naik, 47414, 12 November 2013 (SKU).
4. *Commelina forskalaei* Vahl-S. K. University campus, B. Ravi Prasad Rao and S. Salamma, 51292, 20 August 2016 (SKU).
5. *Commelina kurzii* C. B. Clarke-Horsley Hills, Chittoor (AP)- B. Ravi Prasad Rao and S. Salamma, 52082, 25 September 2016 (SKU).
6. *Commelina subulata* Roth-Horsley hills, Chittoor (AP) - B. Ravi Prasad Rao and S. Salamma, 52072, 25 September 2016 (SKU).
7. *Cyanotis arachnoidea* C. B. Clarke- Horsley hills, Chittoor (AP), B. Ravi Prasad Rao and S. Salamma, 52081, 25 September 2016 (SKU).
8. *Cyanotis axillaris* (L.) D. Don ex Sweet, Samathamagram- B. Ravi Prasad Raoand S. Salamma, 52085, 25 September 2016 (SKU).
9. *Cyanotis burmanniana* Wight-Tyda forest, B. Ravi Prasad Rao and P. Anjineyulu, 52527, 29 November 2016 (SKU).
10. *Cyanotis cristata* (L.) D. Don-Horsley hills, Chittoor (AP)- B. Ravi Prasad Rao and M. Chennakesavulu Naik, 51342, 21 August 2016 (SKU).
11. *Cyanotis fasiculata* (B. Heyne ex Roth) Schult. and Schult.f.-Horsley hills, Chittoor (AP)- B. Ravi Prasad Rao and S. Salamma, 52083, 25 September 2016 (SKU).
12. *Cyanotis vaga* (Loureiro) Schult. and Schult.f. Horsley hills, Chittoor (AP)- B. Ravi Prasad Rao and S. Salamma, 52073, 25 September 2016 (SKU).
13. *Cyanotis villosa* (Spreng.) Schult. and Schult.f.- Horsley hills, Chittoor (AP)- B. Ravi Prasad Raoand S. Salamma, 52074, 25 September 2016 (SKU).
14. *Murdannia nimmoniana* (J. Graham) S.M. Almeida-Horsley hills, Chittoor (AP)-B. Ravi Prasad Rao and S. Salamma, 52080, 25 September 2016 (SKU).
15. *Murdannia nudiflora* (L.) Brenan- Horsley hills, Chittoor (AP)-B. Ravi Prasad Rao and S. Salamma, 52076, 25 September 2016 (SKU).
REFERENCES

Bhattacharya K, Majumdar MR, Gupta Bhattacharya S. (2009). A Text Book of Palynology. New Central Book Agency (P) Ltd. Kolkata: ISBN-81-7381-500-3, Chapter 4, Pollen Morphology: p. 51-74.

Brenan JPM. (1952). Notes on African Commelinaceae. Kew Bulletin 7: 179-208.

Brenan JPM. (1964). Notes on African Commelinaceae IV. Ballya, a new genus from East Africa. Kew Bulletin 19(1): 63-68.

Brenan JPM. (1966). The classification of Commelinaceae. Botanical Journal of the Linnaean Society 59: 349-370.

Chennakesavulu Naik M, Ganga Kailas J, Salamama S, Devender R, Ramakrishna H, Ravi Prasad Rao B. (2016). The non arbooreal diversity of the Andaman Islands, India based on pollen analysis.Palynology. http://dx.doi.org/10.1080/01916122.2016.1257517.

Chikkannaiah PS. (1962). Morphological and embryological studies in Commelinaceae. Plant Embryology - A Symposium. CSIR, New Delhi. 23-26.

Dahl AO. (1946). Pollen morphology in the Commelinaceae Reichenb. American Journal of Botany, 33: 218.

Devender R, Ganga Kailas J, Ramakrishna H. (2016). Microscopinal analysis of Apis dorsata and Apis cerana Honeyes from South Telangana State. Advances in Plant Sciences, 29: 27-33.

Devender R, Ramakrishna H, Prabhakar R, Padal SB. (2013). Pollen diversity of some medicinal plants from Araku Valley, Visakhapatnam District, Andhra Pradesh. Advances in Plant Sciences, 26: 457-462.

Erdtman G. (1960). The acetylation method a revised description. Svensk Botanisk Tidskrift, 54: 561-564.

Ganga Kailas J, Chennakesavulu Naik M, Bheemalingappa M, Ramakrishna H and Ravi Prasad Rao B. (2016a). Arboreal diversity in the Andaman Islands, India based on pollen. Palynology. http://dx.doi.org.10.1080/01916122.2016.1209592

Ganga Kailas J, Ramakrishna H and Prabhakar R. (2014b). Palynodiversity of Arborescent plants of Caesalpiniaeae family of Karimnagar district, Telangana state. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5(6): 349.

Ganga Kailas J, Ramakrishna H and Prabhaker R. (2015a). Inaperturate pollen diversity in the arborescent taxa of Karimnagar district, Telangana State, India. Indian Journal of Agricultural research, 50 (4): 374-377.

Ganga Kailas J, Ramakrishna H, Prabhakar R. (2014a). Palynodiversity of Polyad Pollen (Mimosaceae) of Karimnagar district, Telangana State, India. Advances in plant sciences, 27 (2): 505-509.

Ganga Kailas J, Ramakrishna H, Seetharam D.S and Devender R. (2015b). Aeropapylosynological study of Rangaraopet village, karimnagar district, Telangana state, India. Ecology Environmental and Conservation, 22 (3): 181-185.

Ganga Kailas J, Ramakrishna H Seetharam D.S (2016b). Diversity in syncopulate pollen taxa of Karimnagar district Telangana state India. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7(3): 771.

Handlos WL. (1975). The Taxonomy of Tripgandara (Commeliniaeae). Rhodora, 77: 213-319.

Hunt DR. (1978). Three new genera in Commelinaceae.American Commelinaceae VI. Kew Bulletin, 33(2): 331-334.

Joseph, AV, Chandra Mohan Reddy N, Farida Tampal and Ravi Prasad Rao B. (2016). Andhra Pradesh Biodiversity Field Guide. Andhra Pradesh Biodiversity Board 978-194478763-9.

Nandikar MD, Gurav RV. (2010). Critical studies on systematics of Murdannia lanuginosa (Wall.ExC.B.Clare) Brueck (Commelinaceae). Nature Proceedings. doi.org/10.1038/npre.2010.4619.2.

Pasarelli ML, Cortes M. (2017). Pollen as a Forensic tool in a zone of wetlands from Buenos Aires, Argentina. Journal of Forensic Research 8: 366. doi.org/10.4172/2157-7145.1000366.

Ponnuchamy R, Bonhomme V, Prasad S, Das L, Patel P, Guchere C, et al. (2014). Honey Pollen: Using Melissopalynology to Understand Foraging Preferences of Bees in Tropical South India. PLoS ONE, 9(7): e101618. doi.org/10.1371/journal.pone.0101618.

Poole MM, Hunt DR. (1980). Pollen Morphology and the Taxonomy of the Commelinaceae: An Exploratory Survey: American Commelinaceae: VIII. Kew Bulletin, 34(4): 639-660.

Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A. (2007). Glossary of pollen and spore terminology. Review of Palaeobotany Palynology 143:1-81.

Ramakrishna H and Bhushan M. (2004). Diversity in pollen characterization of squuezed honey samples from Nizamabad district, Andhra Pradesh. Geophytology, 34 (1 and 2): 23-31.

Ramakrishna H and Bhushan M. (2006). Nector and pollen supply of rock bees (Apis dorsata) from Sadashivanagar mandal of Nizamabad district, Andhra Pradesh. Geophytology, 36 (1and2): 53-59.

Ramakrishna H and Swathi S. (2013). Pollen diversity in Some Apisfloreahoney from Adilabad District, Andhra Pradesh, India. Geophytology, 42(1): 11-20.

Rowley JR and Dahl A. (1962). The aperture of the pollen grain in Commelinaceae. Pollen et Spores, 4(2): 221-232.

Rowley JR. (1959). The fine Structure of The pollen Wall in The Commelinaceae. Grana Palynologica, 2: 3-31.

Salamama S, Naik MC, Anil Kumar M, Sreenath A,Rao BRP. (2017). Four species of Commelinaceae, as additions to Andhra Pradesh, India. Journal of Threatened Taxa, 9(6): 10340-10344; doi.org/10.11609/jot.3342.9.6.10340-10344

Seema sultan, Anjum Pereen, Qaiser M. (1994). Palynological study of Monocots from Karachi (excludinggraminaceae). Pakistan Journal of Botany, 26 (1): 21-34.

Seetharam D. S, Ramakrishna H, Ganga kailash J Prabhakar R. (2015). Allergic aerospora from the spider webs of Sanjeevaijah Park in Hyderabad City, Telangana State, Pollution Research Journal, 34 (4): 759-769.

Sharma M. (1968). Pollen morphology of Indian monocotyledons. Journal of Palynology,1-96.

Shilpa Singh, Ratanak, Khandelwal Asha. (2010). Impact of modern pollen rain studies from south and little Andaman Islands, India to interpret present and past vegetation. Current Science, 99(9): 1251-1256.

Vrinda SL. (1999). Biosystematic studies on a few genera of the Commelinaceae of South India. Ph. D. Thesis: Calicut University, India.