SUBSPACES DISCERNING NULLCONTINUITY

MARCO THILL

Abstract. Given positive linear functional \(\ell \) on a vector lattice \(\mathcal{L} \) of real functions, and a vector subspace \(M \) of \(\mathcal{L} \), we construct a vector subspace \(P(M) \) of \(M \) in such a way that 1) \(\ell \) is nullcontinuous on \(P(M) \), and 2) if \(\ell \) is nullcontinuous on \(M \) then \(P(M) \) is all of \(M \). We mention here that this result continues to hold for quite general modes of convergence, including \(\tau \)-continuity. Our construction uses a new method involving the “kernel” of a seminorm.

1. Basic notation and terminology

We consider a fixed structure \((X, \mathcal{L}, \ell, \rho)\) consisting of a non-empty set \(X \), a vector sublattice \(\mathcal{L} \) of \(\mathbb{R}^X \), a positive linear functional \(\ell \) on \(\mathcal{L} \), and a set \(\rho \) of non-empty downward directed subsets \(I \) of \(\mathcal{L}_+ \) with \(\bigwedge I = 0 \) in \(\mathbb{R}^X \).

The symbols \(M, M_1, M_2 \) shall henceforth denote variable vector subspaces of \(\mathcal{L} \).

Definition 1. We shall say that \(\ell \) is \(\rho \)-continuous on \(M \), if

\[
\bigwedge_{f \in I} \ell(f) = 0 \text{ for all } I \in \rho \text{ with } I \subset M.
\]

If \(\rho = \{ \{ f_n \} \subset \mathcal{L}_+ : f_n \downarrow 0 \text{ in } \mathbb{R}^X \} \) then \(\rho \)-continuity is the same as nullcontinuity. If \(\rho \) is the set of all non-empty downward directed subsets \(I \) of \(\mathcal{L}_+ \) with \(\bigwedge I = 0 \) in \(\mathbb{R}^X \), then \(\rho \)-continuity is also known as \(\tau \)-continuity.

2. Review of terminology concerning vector lattices

The vector space \(M \) is called solid in \(\mathcal{L} \), if the conditions \(f \in \mathcal{L}, g \in M, \) and \(|f| \leq |g| \) together imply that \(f \) belongs to \(M \), cf. e.g. [1, 1.3.9]. In this case \(M \) is a vector sublattice of \(\mathcal{L} \), because then \(|f| \in M \) whenever \(f \in M \).

A seminorm \(q \) on \(\mathcal{L} \) is called a lattice seminorm, if for all \(f, g \in \mathcal{L} \) with \(|f| \leq |g| \) one has \(q(f) \leq q(g) \), cf. [1, 1.10.1]. (An equivalent requirement is that \(q(f) = q(|f|) \) for all \(f \in \mathcal{L} \).) In the affirmative
case, the “kernel” \(\{ f \in \mathcal{L} : q(f) = 0 \} \) of the lattice seminorm \(q \) is a solid subspace of \(\mathcal{L} \), and thereby a solid vector sublattice of \(\mathcal{L} \).

The vector lattice \(\mathcal{L} \) is called Stonean, if it contains with each function \(f \) the function \(f \wedge 1_X \), cf. e.g. [1, 2.5.14]. This property is inherited to all solid vector subspaces.

3. The notion of \(\rho \)-regularity: definition and simple properties

Definition 2. Denote by \(T \) the set of functions \(g : X \to [0, 1] \), such that \(gf \in \mathcal{L}_+ \) for all \(f \in \mathcal{L}_+ \). (The plus signs are a matter of convenience.)

One checks that \(T \) is a convex sublattice of \([0, 1]^X\). Clearly \(0, 1_X \in T \). If \(g \in T \), so is \(1_X - g \), and both \(g \) and \(1_X - g \) are positive, so multiplication by them maps \(\mathcal{L}_+ \) to itself in an order preserving way.

Definition 3. We put

\[S(M) := \{ g \in T : \bigwedge_{f \in I} \ell(gf) = 0 \text{ for all } I \in \rho \text{ with } I \subset M \}. \]

This is a convex sublattice of \([0, 1]^X\). If \(M_1 \subset M_2 \), then \(S(M_2) \subset S(M_1) \).

Proof. We note first that the “\(\bigwedge \)” in the defining relation for \(S(M) \) actually is a limit since each \(I \in \rho \) is downward directed. This implies that \(S(M) \) is convex and thence a sublattice of \([0, 1]^X\). \(\square \)

Definition 4. We shall say that \(\ell \) is \(\rho \)-regular on \(M \), if for every \(h \in M \) one has

\[\ell(|h|) = \bigvee_{g \in S(M)} \ell(g|h|). \]

(This can be put in terms of \(h \in M_+ \) in case \(M \) is a vector sublattice of \(\mathcal{L} \).) We shall reformulate this condition in the next two items.

Definition 5. A lattice seminorm \(q_M \) is defined on \(\mathcal{L} \) by putting

\[q_M(h) := \bigwedge_{g \in S(M)} \ell((1_X - g)|h|) \]

for every \(h \in \mathcal{L} \). If \(M_1 \subset M_2 \), then \(q_{M_1} \leq q_{M_2} \).

Proof. The “\(\bigwedge \)” is a limit as \(S(M) \) is upward directed, so \(q_M \) is a seminorm. The last part follows from the last part of definition. \(\square \)

Theorem 6. The functional \(\ell \) is \(\rho \)-regular on \(M \) if and only if \(q_M \) vanishes identically on \(M \).
Proof. Let \(h \in \mathcal{M} \). Using that \(S(\mathcal{M}) \) is upward directed, one finds
\[
q_{\mathcal{M}}(h) = \bigwedge_{g \in S(\mathcal{M})} \ell((1_X - g)|h|)
= \lim_{g \in S(\mathcal{M})} \ell((1_X - g)|h|)
= \ell(|h|) - \lim_{g \in S(\mathcal{M})} \ell(g|h|)
= \ell(|h|) - \bigvee_{g \in S(\mathcal{M})} \ell(g|h|).
\]
It follows that \(q_{\mathcal{M}}(h) = 0 \) if and only if
\[
\ell(|h|) = \bigvee_{g \in S(\mathcal{M})} \ell(g|h|),
\]
whence the statement. \(\square \)

4. EQUIVALENCE OF \(\rho \)-CONTINUITY AND \(\rho \)-REGULARITY

Proposition 7. The functional \(\ell \) is \(\rho \)-continuous on \(\mathcal{M} \) if and only if \(S(\mathcal{M}) \) contains \(1_X \).

Corollary 8. If \(\ell \) is \(\rho \)-continuous on \(\mathcal{M} \), then \(\ell \) is \(\rho \)-regular on \(\mathcal{M} \).

Proof. If \(\ell \) is \(\rho \)-continuous on \(\mathcal{M} \), then \(S(\mathcal{M}) \) contains \(1_X \) by the preceding proposition. Then \(q_{\mathcal{M}} \) vanishes identically on \(\mathcal{M} \), from which \(\ell \) is \(\rho \)-regular on \(\mathcal{M} \) by virtue of theorem 6. \(\square \)

Proposition 9. For each \(I \in \rho \) with \(I \subset \mathcal{M} \), one has
\[
\bigwedge_{f \in I} \ell(f) = \bigwedge_{f \in I} q_{\mathcal{M}}(f).
\]

Proof. Let \(g \in S(\mathcal{M}) \) be arbitrary. Since \(I \) is downward directed, one finds
\[
\bigwedge_{f \in I} \ell(f) = \lim_{f \in I} \ell(f) - \lim_{f \in I} \ell(gf)
= \lim_{f \in I} \ell((1_X - g)f)
= \bigwedge_{f \in I} \ell((1_X - g)f).
\]
Since \(g \in S(\mathcal{M}) \) is arbitrary, one also has
\[
\bigwedge_{f \in I} \ell(f) = \bigwedge_{g \in S(\mathcal{M})} \bigwedge_{f \in I} \ell((1_X - g)f)
= \bigwedge_{f \in I} q_{\mathcal{M}}(f).
\]
This allows us to reformulate definition \ref{def:rho-continuous} in the following way.

Theorem 10. The functional ℓ is ρ-continuous on \mathcal{M} if and only if
\[
\bigwedge_{f \in I} q_{\mathcal{M}}(f) = 0 \text{ for all } I \in \rho \text{ with } I \subset \mathcal{M}.
\]

Corollary 11. If ℓ is ρ-regular on \mathcal{M}, then ℓ is ρ-continuous on \mathcal{M}.

Proof. If ℓ is ρ-regular on \mathcal{M}, then $q_{\mathcal{M}}$ vanishes identically on \mathcal{M} by theorem \ref{thm:rho-regular}. Theorem \ref{thm:rho-continuous} implies that ℓ is ρ-continuous on \mathcal{M}. \square

Theorem 12. The functional ℓ is ρ-continuous on \mathcal{M} if and only if it is ρ-regular on \mathcal{M}.

In the light of theorems \ref{thm:rho-continuous} and \ref{thm:rho-regular}, we can now see that theorem \ref{thm:rho-continuous} is a vast improvement on definition \ref{def:rho-continuous}.

5. The main result

Definition 13. We denote the “kernel” of the lattice seminorm $q_{\mathcal{M}}$ by
\[
\mathcal{K}(\mathcal{M}) := \{ h \in \mathcal{L} : q_{\mathcal{M}}(h) = 0 \}.
\]

This is a solid vector subspace of \mathcal{L}, and thus a vector sublattice of \mathcal{L}. Also, if $\mathcal{M}_1 \subset \mathcal{M}_2$ then $\mathcal{K}(\mathcal{M}_2) \subset \mathcal{K}(\mathcal{M}_1)$.

Proof. This follows from the statements in definition \ref{def:rho-continuous}. \square

Theorem 14. The functional ℓ is ρ-regular on \mathcal{M} if and only if $\mathcal{M} \subset \mathcal{K}(\mathcal{M})$.

Proof. Theorem \ref{thm:rho-regular} and definition \ref{def:rho-continuous}. \square

Definition 15. Let $\mathcal{P}(\mathcal{M}) := \mathcal{M} \cap \mathcal{K}(\mathcal{M})$. This is a vector subspace of \mathcal{M}.

Theorem 16. The functional ℓ is ρ-regular on $\mathcal{P}(\mathcal{M})$.

Proof. Put $\mathcal{N} := \mathcal{P}(\mathcal{M}) = \mathcal{M} \cap \mathcal{K}(\mathcal{M})$, and let $f \in \mathcal{N}$. By theorem \ref{thm:rho-regular} we have to prove that $q_{\mathcal{N}}(f) = 0$. One one hand, one has $\mathcal{N} \subset \mathcal{M}$, and so $q_{\mathcal{N}} \leq q_{\mathcal{M}}$ by definition \ref{def:rho-continuous}. On the other hand, $f \in \mathcal{K}(\mathcal{M})$, so that $q_{\mathcal{M}}(f) = 0$ by definition \ref{def:rho-continuous}. It follows that $q_{\mathcal{N}}(f) \leq q_{\mathcal{M}}(f) = 0$. \square

Theorem 17. The functional ℓ is ρ-regular on \mathcal{M} precisely when $\mathcal{P}(\mathcal{M}) = \mathcal{M}$.

Proof. If ℓ is ρ-regular on \mathcal{M}, then $\mathcal{M} \subset \mathcal{K}(\mathcal{M})$ by theorem \ref{thm:rho-regular}. It follows that $\mathcal{P}(\mathcal{M}) = \mathcal{M}$ by definition \ref{def:rho-continuous}. Conversely, if $\mathcal{P}(\mathcal{M}) = \mathcal{M}$, then ℓ is ρ-regular on \mathcal{M} by the preceding theorem \ref{thm:rho-continuous}. \square

Theorem 18. The vector subspace $\mathcal{P}(\mathcal{M})$ has the following properties:

(i) ℓ is ρ-continuous on $\mathcal{P}(\mathcal{M})$,
(ii) ℓ is ρ-continuous on \mathcal{M} if and only if $\mathcal{P}(\mathcal{M})$ is all of \mathcal{M}.

Proof. Theorems \ref{thm:rho-continuous} \ref{thm:rho-regular} and \ref{thm:rho-regular}. \square
The preceding theorem is our main result. It suggests that the subspace \(P(\mathcal{M}) \) of \(\mathcal{M} \) is a “large” subspace of \(\rho \)-continuity.

(A largest subspace of \(\rho \)-continuity need not exist in the present generality, as is shown by an argument communicated to me by Torben Maack Bisgaard.)

6. Properties of the map \(\mathcal{M} \mapsto P(\mathcal{M}) \)

Theorem 19. One has \(P(P(\mathcal{M})) = P(\mathcal{M}) \).

Proof. This follows from theorem by replacing \(\mathcal{M} \) with \(P(\mathcal{M}) \). □

We shall denote by \(\| \cdot \| \) the usual lattice seminorm on \(\mathcal{L} \) given by \(\| f \| = \ell(|f|) \) for all \(f \in \mathcal{L} \).

Proposition 20. The seminorm \(q_\mathcal{M} \) is dominated by \(\| \cdot \| \), and thereby is continuous on \((\mathcal{L}, \| \cdot \|) \). It follows that \(\mathcal{K}(\mathcal{M}) \) is a closed subspace of \((\mathcal{L}, \| \cdot \|) \).

Corollary 21. The set \(\mathcal{K}(\mathcal{M}) \) is a closed solid vector sublattice of \((\mathcal{L}, \| \cdot \|) \).

Theorem 22. The following inheritance properties hold.
If \(\mathcal{M} \) is a vector sublattice of \(\mathcal{L} \), so is \(P(\mathcal{M}) \).
If \(\mathcal{M} \) furthermore is Stonean, so is \(P(\mathcal{M}) \).
If \(\mathcal{M} \) is solid in \(\mathcal{L} \), so is \(P(\mathcal{M}) \).
If \(\mathcal{M} \) is closed in \((\mathcal{L}, \| \cdot \|) \), so is \(P(\mathcal{M}) \).

Proof. Definition 15 and the preceding corollary □

Corollary 23. The vector space \(P(\mathcal{L}) = \mathcal{K}(\mathcal{L}) \) is the “kernel” of the lattice seminorm \(q_\mathcal{L} \). It is a closed solid vector sublattice of \((\mathcal{L}, \| \cdot \|) \).

If \(\mathcal{L} \) is Stonean, so is \(P(\mathcal{L}) \).

Proof. Definitions 15 and 13, corollary 21 and theorem 22 □

Theorem 24. If \(\mathcal{M}_1 \subset \mathcal{M}_2 \), then \(P(\mathcal{M}_2) \cap \mathcal{M}_1 \subset P(\mathcal{M}_1) \).

Proof. One has \(P(\mathcal{M}_2) \cap \mathcal{M}_1 \subset \mathcal{K}(\mathcal{M}_2) \cap \mathcal{M}_1 \subset \mathcal{K}(\mathcal{M}_1) \cap \mathcal{M}_1 = P(\mathcal{M}_1) \) by definition 15 and the last statement in definition 13 □

Whence, as special cases, the following three corollaries:

Corollary 25. One has \(P(\mathcal{L}) \cap \mathcal{M} \subset P(\mathcal{M}) \).

Corollary 26. If \(\mathcal{M}_1 \) is a subspace between \(P(\mathcal{M}_2) \) and \(\mathcal{M}_2 \), that is, if \(P(\mathcal{M}_2) \subset \mathcal{M}_1 \subset \mathcal{M}_2 \), then \(P(\mathcal{M}_2) \subset P(\mathcal{M}_1) \subset \mathcal{M}_1 \subset \mathcal{M}_2 \).

Corollary 27. If \(P(\mathcal{L}) \subset \mathcal{M} \), then \(P(\mathcal{L}) \subset P(\mathcal{M}) \subset \mathcal{M} \).

References

[1] C. Constantinescu, W. Filter, K. Weber, *Advanced Integration Theory*, Kluwer Academic Publishers, 1998.

BD G.-D. Charlotte 53, L - 1331 Luxembourg - City, Europe

E-mail address: math@pt.lu