Research Article

Inhibitory Effects of Chrysanthemum boreale Essential Oil on Biofilm Formation and Virulence Factor Expression of Streptococcus mutans

Beom-Su Kim,1 Sun-Ju Park,2 Myung-Kon Kim,3 Young-Hoi Kim,3 Sang-Bong Lee,4 Kwang-Hee Lee,4 Na-Young Choi,5 Young-Rae Lee,2 Young-Eun Lee,6,7 and Yong-Ouk You2,7

1 Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan 570-749, Republic of Korea
2 Department of Oral Biochemistry, School of Dentistry, Wonkwang University, Iksan 570-749, Republic of Korea
3 Department of Food Science & Technology, College of Agriculture & Life Sciences, Chonbuk National University, Jeonju 561-756, Republic of Korea
4 Department of Pediatric Dentistry, School of Dentistry, Wonkwang University, Iksan 570-749, Republic of Korea
5 College of Education, Wonkwang University, Iksan 570-749, Republic of Korea
6 Department of Food and Nutrition, Wonkwang University, Iksan 570-749, Republic of Korea
7 Wonkwang Research Institute for Food Industry, Iksan 570-749, Republic of Korea

Correspondence should be addressed to Yong-Ouk You; hope7788@wku.ac.kr

Received 2 December 2014; Revised 27 December 2014; Accepted 27 December 2014

Academic Editor: Wagner Vilegas

Copyright © 2015 Beom-Su Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The aim of the study was to evaluate the antibacterial activity of essential oil extracted from Chrysanthemum boreale (C. boreale) on Streptococcus mutans (S. mutans). To investigate anticariogenic properties, and bacterial growth, acid production, biofilm formation, bacterial adherence of S. mutans were evaluated. Then gene expression of several virulence factors was also evaluated. C. boreale essential oil exhibited significant inhibition of bacterial growth, adherence capacity, and acid production of S. mutans at concentrations 0.1–0.5 mg/mL and 0.25–0.5 mg/mL, respectively. The safranin staining and scanning electron microscopy results showed that the biofilm formation was also inhibited. The result of live/dead staining showed the bactericidal effect. Furthermore, real-time PCR analysis showed that the gene expression of some virulence factors such as gtfB, gtfC, gtfD, gbpB, spaP, brpA, relA, and vicR of S. mutans was significantly decreased in a dose dependent manner. In GC and GC-MS analysis, seventy-two compounds were identified in the oil, representing 85.42% of the total oil. The major components were camphor (20.89%), β-caryophyllene (5.71%), α-thujone (5.46%), piperitone (5.27%), epi-sesquiphellandrene (5.16%), α-pinene (4.97%), 1,8-cineole (4.52%), β-pinene (4.45%), and camphene (4.19%). These results suggest that C. boreale essential oil may inhibit growth, adhesion, acid tolerance, and biofilm formation of S. mutans through the partial inhibition of several of these virulence factors.

1. Introduction

Dental caries, known as tooth decay or a cavity, is a plaque-related disease of teeth and slowly progressive infectious disease in the dental area [1, 2]. The dental caries disease is caused by specific types of acid-producing bacteria that cause demineralization and destruction of the teeth [3].

S. mutans are generally regarded as one of the primary pathogenic bacteria in dental caries [4]. The S. mutans adhere to the colonizer and accumulate on the tooth enamel surface by generation of extracellular polysaccharide from fermentable carbohydrates such as sucrose, by action of glucosyltransferases (GTFase) [1, 5]. The carbohydrate metabolism promotes bacteria aggregation to the tooth surface and acid production [1]. The produced acids initiate dissolution of the enamel surface of teeth subsequently leading to localized decalcification [6].
Therefore, inhibition of the growth and biofilm formation of the *S. mutans* is one of the strategies for prevention of dental caries. Although several antiplaque agents have been used, the attempt to search for an effective agent still continued [7, 8]. For example, some studies reported that several natural products derived herb, such as *Mentha longifolia* L., *Aralia continentalis*, and *Curcuma longa* L., showed the inhibitory effect of dental plaque [9–11].

C. boreale is a perennial herb with yellow flowers and belongs to the Asteraceae family. It is widely distributed in wild fields and mountains of East Asia. It is also usually belongs to the Asteraceae family. It is widely distributed in ral, and antibacterial [12–14]. In previous study [15], the mum species herb has been reported as having potential about effect of essential oil from *C. boreale* on *S. mutans* causing dental plaque formation. Therefore, in this study, we examined influence of essential oil of extracted from *C. boreale* on *S. mutans* causing dental plaque formation. Therefore, in this study, we examined influence of essential oil of extracted from *C. boreale* on the growth, acid-production, bacterial attachment, and biofilm formation of *S. mutans*. Furthermore, several virulence factors of *S. mutans*, associated with dental plaque and caries formation, were assessed, and the detailed chemical constituents of *C. boreale* essential oil were also analyzed by GC and GC-MS.

2. Materials and Methods

2.1. Plant Material and Essential Oil.

C. boreale was collected in October, 2013, at the full flowering stage from plants grown wild in Ikisan district in Korea and the aerial parts were used to isolate essential oil. The identity was confirmed by Young-Hoi Kim at the College of Environmental & Bioresource Sciences, Chonbuk National University. Voucher specimen (number: 10-24-13) has been deposited at the Herbarium of College of Environmental & Bioresource Sciences, Chonbuk National University. The aerial parts (leaves, stems, and flowers) of *C. boreale* (1 kg) were finely chopped. The chopped plant materials of *C. boreale* were placed in 5 L round-bottom flask and distilled water was added (3 L). Hydrodistillation was carried out in a Clevenger-type apparatus for 3 hours. The yield of the essential oil of *C. boreale* was 0.84%, based on fresh weight of the plant. The essential oil was stored in a deep freezer (−70°C) to minimize the escape of volatile compounds.

2.2. Inhibition of Bacterial Growth.

S. mutans (ATCC 25175) was purchased from the American Type Culture Collection (ATCC; Rockville, MD, USA) and cultured in brain heart infusion (BHI; Difco, Detroit, MI) broth under aerobic condition at 37°C. To determine inhibitory effect of *C. boreale* on bacterial growth, *S. mutans* was cultured at 37°C in 0.95 mL of BHI broth containing 1% glucose and various concentrations of the essential oil of *C. boreale*. These tubes were inoculated with 0.05 mL of an overnight culture grown in BHI broth (final: 5 × 10⁵ colony-forming units (CFU)/mL), and incubated for 24 h. Also, 0.1% of sodium fluoride (NaF) was used as a positive control. The optical density (OD) of cells was measured at 550 nm using a spectrophotometer. Three replicates were made for each concentration of the test extracts.

2.3. Acid Production.

Acid production by *S. mutans* was examined to evaluate the effect of the essential oil of *C. boreale*, as described by a previous study [16]. Briefly, the *C. boreale* essential oil was filtered to sterilization using membrane filter with 0.2 μm pore size and added to 0.95 mL of the phenol red broth containing 1% glucose, which was then inoculated with 0.05 mL of the seed culture of *S. mutans*. After 24 h of cultivation, the pH was directly determined in the bacterial growth media using a pH meter (Corning Inc, Corning, NY, USA). The initial pH of BHI with various concentrations of *C. boreale* essential oil was also determined before inoculation of *S. mutans*. Each concentration of the extract was tested in triplicate.

2.4. Bacterial Adherence.

The effect of *C. boreale* essential oil on bacterial adherence was determined using hydroxyapatite beads (diameter of 80 μm; Bio-Rad, Hercules, CA, USA) in a previously described method [17]. Briefly, hydroxyapatite beads were coated with clarified human saliva and the saliva-coated hydroxyapatite beads (S-HAs) were immersed in bacterial suspension (1 × 10⁵ CFU/mL) with various concentrations of *C. boreale* essential oil. To allow bacteria to be adherent, the mixture was gently agitated for 90 min at 37°C. Following this, S-HAs was rinsed to remove nonadherent bacteria and was transferred to a new tube that contained potassium phosphate buffer. The adherent *S. mutans* onto the S-HAs were dispersed using a sonicator (Fisher Scientific, Springfield, NJ, USA) at 50 W for 30 sec and the supernatants were spread on bacitracin (3.2 mg/mL) contained MSA plate. After 48 h of cultivation, the numbers of colonies were counted.

2.5. Biofilm Formation Assay.

Biofilm formation was measured by staining with safranin [18] and observation was done by scanning electron microscopy (SEM). Briefly, various concentrations of *C. boreale* essential oil were added to 0.1% sucrose containing BHI broth in 35 mm polystyrene dish or 24-well plate that contained resin teeth (Endura, Shofu Inc., Kyoto, Japan). Then, the culture was created in the allotted broths by inoculating them with seed cultures of *S. mutans* (5 × 10⁵ CFU/mL) and incubated for 24 h. After incubation, the supernatants were removed and the culture dish or resin teeth were rinsed with distilled water. Biofilm formation was stained with 0.1% safranin and photographed. In addition, to observe the biofilm formation using a SEM, the biofilms formed polystyrene dishes were rinsed with distilled water, fixed with 2.5% glutaraldehyde solution, and dehydrated in ethanol gradient series. Then, the samples were sputter-coated with gold and observed by SEM (JOM-6360, JEOL, Tokyo, Japan).
2.6. Confocal Laser Scanning Microscopy. To determine the bactericidal effect of *C. boreale* essential oil on *S. mutans* live and dead staining were performed. Briefly, approximately 1 × 10^7 CFU/mL of *S. mutans* was treated with various concentrations of *C. boreale* essential oil for 24 h at 37°C under aerobic conditions. Then the bacteria were washed with PBS and stained with LIVE/DEAD BacLight Bacterial Viability Kit (Molecular Probes, Eugene, OR, USA) according to the manufacturer’s protocol. After 15 min of staining, the bacteria were observed using a confocal laser scanning microscopy (LSM 510, Zeiss, Germany).

2.7. Real-Time Polymerase Chain Reaction (PCR) Analysis. A real-time PCR was performed to evaluate the effect of *C. boreale* essential oil on gene expression of *S. mutans*. The subminimal inhibitory concentration (0.5–0.25 mg/mL) of the essential oil was treated. After 24 h of culture, total RNA was isolated from *S. mutans* using a Trizol reagent (Bibco-BRL) and cDNA was synthesized. The amplification was performed using a StepOnePlus Real-Time PCR system with QPCR SYBR Green Mixes (Applied Bio system, Foster City, CA, USA). 16S rRNA was used as an internal control. The primer pairs were described by previous report [19] and are listed in Table 1.

2.8. GC and GC-MS Analysis. GC analysis was performed on Hewlett-Packard (HP) model 6890 series gas chromatograph, with a flame ionization detector (FID), a split ratio of 30:1 using two different fused silica capillary columns, Supelcowax 10 (30 m × 0.32 mm, i.d., 0.25 μm film thickness) and SPB-1 (30 m × 0.32 mm, i.d., 0.25 μm film thickness). The temperature of the column was programmed from 50°C to 230°C at 2°C/min and then kept constant at 230°C for 30 min for Supelcowax 10 column and SPB-1 column was programmed from 40°C to 230°C at 2°C/min and then kept constant at 230°C for 20 min. The injector and detector temperatures for both analyses were 250°C, respectively. The gas carrier was nitrogen at a flow rate of 1.50 mL/min for Supelcowax 10 column and nitrogen at a flow rate of 1.20 mL/min for SPB-1 column. Peak areas were measured by electronic integration. The relative amounts of the individual components are based on the peak areas. The GC-MS was carried out on Agilent 7890A GC and Agilent 5975C mass selective detector (MSD) operating in EI mode at 70 eV, fitted a DB-Wax column (30 m × 0.25 mm, i.d., 0.25 μm film thickness) and SPB-1 column (30 m × 0.25 mm, i.d., 0.25 μm film thickness). The temperature of the column were programmed from 40°C to 230°C at 2°C/min and then kept constant at 230°C for 30 min for both analyses. The injector and interface temperatures were 250°C, respectively. The gas carrier was helium at a flow rate of 1.50 mL/min for both analyses. The identification of the chemical constituents was based on comparison of their mass spectral spectra with those of Wiley7n/NIST05 mass spectra libraries, and then the compounds of MS matching similarity ≥ 90% were selected as results. Linear retention indices were calculated for each component with the retention time of n-alkane series (C_6–C_26) [20] under same GC operating conditions with the sample. They were compared with their retention indices available in the literatures [21, 22] or NIST gas chromatographic retention data webpage (http://webbook.nist.gov/chemistry/) database.

2.9. Statistical Analysis. All experiments were performed in triplicate. Data were analyzed using the statistical package for social sciences (SPSS, Chicago, IL, USA). The data were expressed as the mean ± standard deviation (SD) values. The statistical analysis was evaluated by one-way ANOVA. Values of *P* < 0.05 were considered as statistically significant.

Table 1: Oligonucleotide primers that were used in this study.

Gene*	Gene description	Primer sequences (5’-3’)
gtfB	Glucosyltransferase-I	Forward: AGCAATGCAAGGCAAATCTACAAT
Reverse: ACGAATTGTTGGCTTATGGTCA		
gtfC	Glucosyltransferase-SI	Forward: GGTATTAAGCATAATTAGCTATATTAGC
Reverse: CTCACCACGAGCGCATGTT		
gtfD	Glucosyltransferase-S	Forward: ACGAGACAGACGAAGCTCAAGA
Reverse: ATGATGTTGGCTTAGTTG		
brpA	Biofilm regulatory protein A	Forward: GAGGGAGCTGTCATCAGTTTC
Reverse: AACTTCAGACATCCAGCAA		
spaP	Cell surface antigen SpaP	Forward: GCTTTGGAATGGTTAGCAGTCA
Reverse: TTGGATACCGGATCAAGTG		
gbpB	Secreted antigen GbpB/SagA	Forward: ATGGCGGTTATGGGAGCTT
Reverse: TATGGGACACCTGAACACCT		
relA	GTP pyrophosphokinase	Forward: AAAAAAGGGTATCTGCGTACAT
Reverse: ATACAGCGCTTGTTGCGATAAT		
vicR	Response regulator	Forward: TGACAGATTACAGCCTTTGATG
Reverse: CGTTCATGTTCCGTCGTTATAGTC		
16S rRNA	16S rRNA	Forward: CCTACGGGAGGAGCAGTAG
Reverse: CAACAGAGCGTTAGATCCGAAA |

* Based on the NCBI *S. mutans* genome database.
3. Results

3.1. Bacterial Growth Inhibition by C. boreale. In the study, we firstly investigated the antibacterial activity of the essential oil of C. boreale against S. mutans. The bacteria were treated with 0.05, 0.1, 0.25, and 0.5 mg/mL of C. boreale essential oil. When treated with 0.1% NaF, as a positive control, the manifested significant inhibition was shown. When treated with 0.1 mg/mL of the essential oil, the bacterial growth was significantly inhibited. In addition, significant inhibition was shown at concentrations 0.25 mg/mL and 0.5 mg/mL of essential oil in comparison to the control group (Figure 1) (P < 0.05).

Furthermore, the manifested significant inhibition was shown at concentrations higher than 0.25 mg/mL and 0.5 mg/mL in comparison to the control group.

3.2. Inhibition of Acid Production. To determine whether the C. boreale essential oil inhibits the acid production in S. mutans, the bacteria were cultured in the presence of various concentrations (0.05–0.5 mg/mL) of the essential oil and the pH change was measured. As shown in Table 2, the pH was significantly decreased at control group (pH 5.47 ± 0.05). However, the pH decrease was significantly inhibited at positive group (0.1% NaF, pH 7.37 ± 0.05). Although the pH decrease was not inhibited at 0.05–0.1 mg/mL of C. boreale essential oil, when treated with 0.25 mg/mL and 0.5 mg/mL of C. boreale essential oil, the pH decrease was also significantly inhibited and the inhibition levels was similar to the positive group. These results indicate that the C. boreale essential oil may inhibit the organic acid production by S. mutans.

3.3. Inhibitory Effect of C. boreale Essential Oil on S. mutans Adherence. We tested the inhibitory effect of C. boreale essential oil on the ability of S. mutans to adhere to S-HAs. When treated with C. boreale essential oil, the S. mutans was significantly inhibited in a dose dependent manner.

3.4. Bactericidal Effect of C. boreale Essential Oil on S. mutans. To evaluate bactericidal effect of C. boreale essential oil, S. mutans were cultured in presence of various concentrations (0.05–0.5 mg/mL) of the essential oil and stained with LIVE/DEAD BacLight Bacterial Viability Kit and they were observed using confocal laser scanning microscopy. Treatment with C. boreale essential oil decreases living bacteria (green fluorescence labeled cell stained by SYTO 9) and increases dead bacteria (red fluorescence labeled cell stained by PI) in a dose dependent manner (Figure 3). This result suggests that C. boreale essential oil has bactericidal effect on S. mutans.

3.5. Inhibitory Effect of C. boreale Essential Oil on Biofilm Formation. To determine whether C. boreale essential oil inhibits biofilm formation by S. mutans, the bacteria had been cultured in the presence of various concentrations of...
Figure 3: Bactericidal effect of *Chrysanthemum boreale* (*C. boreale*) essential oil. Cultured *Streptococcus mutans* (*S. mutans*) were treated with *C. boreale* essential oil and stained with LIVE/DEAD BacLight Bacterial Viability Kit. Treatment with *C. boreale* essential oil showed bactericidal effect on *S. mutans* in a dose dependent manner. Living bacteria was stained by SYTO 9 as green color and dead bacteria was stained by PI as a red color. Scale Bar = 100 μm.

Figure 4: Effect of *Chrysanthemum boreale* (*C. boreale*) essential oil on biofilm formation on polystyrene dishes by *Streptococcus mutans* (*S. mutans*). *S. mutans* was inoculated into BHI broth with various concentrations of *C. boreale* essential oil and cultured for 48 h. The biofilm that formed on the polystyrene dish surface was measured by staining with 0.1% safranin. Biofilm formation was also significantly inhibited at 0.1 mg/mL and 0.5 mg/mL of the *C. boreale* essential oil. 0.1% of sodium fluoride (NaF) was used as a positive control.

C. boreale essential oil in polystyrene dishes. As a result of safranin staining, the biofilm formation by *S. mutans* was significantly inhibited by treatment with *C. boreale* essential oil in a dose dependent manner. When treated with 0.1% NaF (positive control), complete inhibition was shown. In addition, the biofilm formation was also significantly inhibited at 0.1 mg/mL and 0.5 mg/mL of the essential oil (Figure 4). Also, we observed biofilm formation on the surface of resin teeth by safranin staining and SEM observation. Treatment with 0.05 mg/mL of *C. boreale* essential oil slightly inhibited biofilm formation by *S. mutans* and significantly inhibited at concentration 0.1–0.5 mg/mL of *C. boreale* essential oil (Figure 5(a)). Also the SEM image showed consistent result with safranin staining of resin teeth (Figure 5(b)).

3.6. Inhibitory Effect of *C. boreale* Essential Oil on Expression of Virulence Factor. To assess the effect of *C. boreale* essential oil on the gene expression of virulence factors, *S. mutans* was cultured in presence of 0.05–0.25 mg/mL of *C. boreale* essential oil and the gene expressions of virulence factors...
Figure 5: Effect of *Chrysanthemum boreale* (*C. boreale*) essential oil on biofilm formation on resin teeth surface. *Streptococcus mutans* (*S. mutans*) biofilm on resin tooth surface were incubated in various concentration of *C. boreale* essential oil (a). Biofilm formation was significantly inhibited at 0.05–0.25 mg/mL of *C. boreale* essential oil. Also biofilm formation was completely inhibited at 0.5 mg/mL of *C. boreale* essential oil. Scanning electron microscopy image of *S. mutans* biofilm formation on resin tooth surface (b). 0.1% of sodium fluoride (NaF) was used as a positive control. Scale bar represents 25 μm.

were evaluated by real-time PCR (Figure 6). After treatment with *C. boreale* essential oil, firstly genetic expression of *gtf* B, *gtf* C, and *gtf* D, which encode GTFase B, C, and D proteins, respectively, was evaluated. The expression of *gtf* B was significantly decreased when *S. mutans* was treated with 0.1 mg/mL and 0.25 mg of *C. boreale* essential oil and *gtf* C was significantly decreased at 0.25 mg/mL of *C. boreale* essential oil. However, the expression of *gtf* D was significantly decreased by *C. boreale* essential oil at concentration of 0.05–0.25 mg/mL. The expression of *Spa* and *gbp* B, which contribute to bacterial adherence, was also decreased at 0.25 mg/mL and 0.05–0.25 mg/mL of *C. boreale* essential oil, respectively. The expression of *brp* A and *rel* A, which are related with acid tolerance and *vic* R, which is associated with regulating the expression of *gbp* B, *gtf* B, *gtf* C, and *gtf* D, was also decreased by *C. boreale* essential oil treatment at the concentration of 0.05–0.25 mg/mL.

4. Discussion

C. boreale are frequently used as a tea or wine in oriental medicine and their medicinal effects such as anti-inflammatory, ant-viral, and antibacterial have been reported [12–14]. Previously, we reported that the *C. boreale* essential oils were extracted and it was identified that the essential oils were composed of eighty-seven constituents where major components were camphor, α-thujone, cis-chrysanthenol, 1,8-cineole, α-pinen, and β-caryophyllene. Furthermore, the essential oil exhibited the inhibitory effect on growth of several bacteria including *S. mutans* [15]. However, there is no report on its potential effect on the cariogenic properties such as bacterial growth, adherence, biofilm formation, and acid production.

To evaluate anticariogenic properties of *C. boreale* essential oil, *S. mutans* was used because the bacteria is considered as a major bacterium for the formation of dental caries [5, 23]. Our results showed that growth of *S. mutans* was suppressed by treatment with *C. boreale* essential oil. Furthermore, the live/dead staining results also showed that *C. boreale* essential oil has an antibacterial effect against *S. mutans*. These results suggested that *C. boreale* essential oil has a potential for anticariogenic effect because the inhibition of the growth of *S. mutans* is one of the strategies for prevention of dental caries.

In dental plaque formation, pH is one of the major causes because low pH leads to demineralized tooth enamel and favors the occurrence of the dental caries. *S. mutans* can metabolize dietary sugars and produce organic acid and
Figure 6: Real-time PCR analysis of mRNA expressions of several virulence factor genes. *Streptococcus mutans* (*S. mutans*) was cultured and treated with various concentrations of *Chrysanthemum boreale* (*C. boreale*) essential oil and real-time PCR analysis was performed as described in the Materials and Methods. *gfb*, *gtfC*, and *gtfD* were significantly inhibited at 0.1–0.25 mg/mL, 0.25 mg/mL, and 0.05–0.25 mg/mL of *C. boreale* essential oil, respectively. In addition, *gbp*, *brpA*, *relA*, and *vicR* expressions were significantly inhibited at 0.05–0.25 mg/mL. The expression of *spaP* was significantly inhibited at 0.25 mg/mL of *C. boreale* essential oil. Each value is expressed as a mean ± standard deviation. Significance was determined at $^*P < 0.05$ when compared with the control.

the produced acids and it is induced by acidic environment in the mouth [24]. Therefore, the alternation of pH is used as an indicator to determine the effect of anticariogenic agents. In this study, *C. boreale* essential oil inhibited the decrease of pH induced by *S. mutans* and the result suggests that *C. boreale* essential oil may be inhibiting dental caries through inhibition of acid production by *S. mutans*.

Furthermore, in the creation of dental plaque process, synthesized extracellular glucan by *S. mutans* is generally regarded as being a major factor [25]. Glucans induce bacterial adherence and result in the formation of dental biofilm [26]. Herein, we examined whether *C. boreale* essential oil can inhibit the ability of *S. mutans* to adhere to S-HAs. Our result showed that *C. boreale* essential oil significantly inhibited bacterial adhesion. In addition, biofilm formation by *S. mutans* was also inhibited by treatment with *C. boreale* essential oil cultured both on polystyrene dishes and on surface of resin teeth. These results suggested that *C. boreale* essential oil directly inhibits the attachment and biofilm formation by *S. mutans*.

Several virulence factors of *S. mutans* are associated with cariogenicity such as bacterial adhesion [27], biofilm formation [28], and acid tolerance [29]. In this study, to evaluate correlation between inhibitory effect by *C. boreale* essential oil and virulence factors expression, we determined the mRNA expression level of several virulence factors such as *gfb*, *gtfC*, *gtfD*, *gbp*, *brpA*, *relA*, and *vicR*, using a real-time PCR analysis. Firstly we evaluated the gene expression level of *gfb*, *gtfC*, and *gtfD*, which encode the glucosyltransferases (GTase) B, C, and D. GTase are recognized as essential virulence factor because these enzymes synthesize glucan from sucrose; the synthesized glucans provide binding site
Table 3: GC and GC-MS analysis of the essential oil isolated from *C. boreale*.

Peak no.	Components	Retention index	Peak area (%)^d	
		Polar^b	Apolar^c	
1	Tricyclene	1009	920	0.18
2	α-Pinene	1027	933	4.97
3	α-Thujene	1030	925	0.23
4	Camphene	1070	945	4.19
5	β-Pinene	1110	970	4.45
6	Sabinene	1123	966	0.61
10	Myrcene	1167	984	0.92
11	α-Terpine	1181	1007	0.48
13	Limonene	1199	1020	0.65
16	cis-β-Ocimene	1239	1029	0.87
17	γ-Terpine	1249	1050	0.47
18	p-Cymene	1276	1022	1.34
19	Terpinolene	1286	1078	0.30
12	2,3-Dehydro-1,8-cineole	1191	976	0.05
14	1,8-Cineole	1212	1020	4.52
22	α-Thujone	1427	1090	5.46
23	β-Thujone	1441	1096	1.04
28	Camphor	1518	1124	20.89
30	Linalool	1537	1101	0.10
31	*trans*-Sabinene hydrate	1562	1051	0.40
32	*trans*-Chrysanthenyl acetate	1569	1186	0.46
33	Bornyl acetate	1576	1268	0.69
35	Terpinen-4-ol	1599	1165	0.72
36	Lavandulyl acetate	1608	—	0.08
37	Myrtenal	1621	1167	0.15
38	Umbellulone	1639	1149	0.28
39	Pinocarveol	1651	1124	0.29
40	*p*-Mentha-1,5-dien-8-ol	1662	1169	0.60
43	α-Terpineol	1697	1174	0.38
44	Borneol	1701	1146	1.94
48	Piperitone	1725	1224	5.27
49	Carvone	1731	1212	1.14
50	*cis*-Chrysantheneol	1761	1157	2.07
53	Myrtenol	1795	1179	0.32
54	*trans*-Carveol	1833	1181	0.09
55	Geraniol	1852	—	0.07
56	Geranyl acetone	1854	—	0.08
57	*cis*-Carveol	1860	1196	0.14
25	α-Guaiene	1470	—	0.09
27	α-Copaene	1493	1370	0.32
29	Berkheyaradulen	1527	1377	0.19
34	β-Caryophyllene	1590	1412	5.71
41	*cis*-β-Farnesene	1671	—	0.38
42	β-Selinene	1676	1488	0.15
45	*epi*-Sesquiphellandrene	1707	—	5.16
46	Widdrene	1710	—	0.09
47	Zingiberene	1714	1496	0.42
51	ar-Curcumene	1780	1484	0.28
Table 3: Continued.

Peak no.	Components	Retention index	Peak area (%)^d	
		Polar^b	Apolar^c	(4.44)
Oxygenated Sesquiterpenes				
58	Caryophyllene oxide	1975	1561	2.08
59	Viridiflorol	2042	1569	0.10
60	Nerolidol	2049	1555	0.38
61	Elemol	2072	—	0.40
62	Spathulenol	2118	1563	0.42
64	Torreyol	2167	1606	0.15
67	epiglobulol	2217	1589	0.44
68	Farnesol (isomer)	2353	1704	0.08
Others				
5	n-Hexanal	1087	835	0.07
8	Butyl benzene	1126	938	0.11
9	2-Methylpropylbenzene	1133	1050	0.14
15	2-Pentyl furan	1236	981	0.04
20	6-Methyl-5-hepten-2-one	1341	—	0.06
21	n-Hexanol	1356	882	0.10
24	1-Octen-3-ol	1454	966	0.21
26	2,2,4-Trimethyl-2-cyclohexene carbaldehyde	1474	1040	0.04
52	Methyl salicylate	1789	1169	0.07
63	Eugenol	2164	1327	0.29
65	Thymol	2185	1275	0.34
66	Carvacrol	2212	1275	0.05
69	Decanoic acid	2263	—	0.06
Total identified			(85.42)	

^a Numbering refers to the elution order on Supelcowax 10 column.
^b Retention index on polar Supelcowax 10 column.
^c Retention index on apolar SPB-1 column.
^d Peak area percentage is based on polar Supelcowax 10 column, and values represent averages of three determinations.

for bacterial adhesion [27]. Besides GTFase virulence factors, gbpB, which encodes surface-associated glucan binding protein (GBP), are also a required factor for bacterial adhesion because the protein mediates interaction between cell surface and glucan [30]. Furthermore, S. mutans expressed spaP gene which encodes SpaP protein and the protein contributes adhesion of S. mutans [31, 32]. In this study, C. boreale essential oil significantly inhibited the transcription level of gtfB, gtfC, gtfD, gbpB, and spaP. In biofilm formation process by S. mutans, brpA and relA gene play critical roles. brpA is associated with biofilm regulation [28] and relA gene plays a major role in several processes including biofilm formation, glucose uptake, and acid tolerance [33, 34]. Also vicR gene is reported as a regulatory gene of other virulence factors such as gbpB, gtfB, gtfC, and gtfD [19]. Based on our results of real-time PCR, the expression of brpA, relA, and vicR was also repressed when treated with C. boreale essential oil. The chemical constituents of C. boreale were analyzed with GC and GC-MS. Seventy-two compounds were identified in the oil, representing 85.42% of the total oil. All unidentified compounds were minor components. The major components were camphor (20.89%), β-caryophyllene (5.71%), α-thujone (5.46%), piperitone (5.27%), epi-sesquiphellandrene (5.16%), α-pinene (4.97%), 1,8-cineole (4.52%), β-pinene (4.45%), and camphene (4.19%). Some previous results reported that the essential oils from C. coronarium and C. indicum contain monoterpene hydrocarbons and oxygenated monoterpenes such as α-pinene, β-pinene, camphene, 1,8-cineole, α-thujone, camphor, and sesquiterpene hydrocarbon β-caryophyllene as major components and these components contribute to antimicrobial and antifungal properties of the oil [35,36].

5. Conclusion

This study has proved that C. boreale essential oil exhibited significant inhibition of bacterial growth, adherence capacity, and acid production of S. mutans. Furthermore, C. boreale essential oil also inhibited the transcription level of several virulence factors such as gtfB, gtfC, gtfD, gbpB, spaP, brpA,
relA, and vicR of S. mutans. In GC and GC-MS analysis, the major components were camphor, β-caryophyllene, α-thujone, piperitone, epi-sesquiphellandrene, α-pinene, 1,8-cineole, β-pinene, and camphene. Therefore, C. boreale essential oil appears to be a promising new agent that may prevent dental caries.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (no. 2013R1A1A4A03011203).

References

[1] S. Hamada and M. Torii, “Interaction of glucosyltransferase from Streptococcus mutans with various glucans,” *Journal of General Microbiology*, vol. 116, no. 1, pp. 51–59, 1980.

[2] X.-Y. Wang, Q. Zhang, and Z. Chen, “A possible role of LIM mineralization protein 1 in tertiary dentinogenesis of dental caries treatment,” *Medical Hypotheses*, vol. 69, no. 3, pp. 584–586, 2007.

[3] E. M. Oong, S. O. Griffin, W. G. Kohn, B. F. Gooch, and P. W. Caufield, “The effect of dental sealants on bacteria levels in caries lesions: a review of the evidence,” *Journal of the American Dental Association*, vol. 139, no. 3, pp. 271–278, 2008.

[4] W. J. Loesche, “Role of Streptococcus mutans in human dental decay,” *Microbiological Reviews*, vol. 50, no. 4, pp. 353–380, 1986.

[5] A. Wiater, A. Choma, and J. Szczodrak, “Insoluble glucans synthesized by cariogenic streptococci: a structural study,” *Journal of Basic Microbiology*, vol. 39, no. 4, pp. 265–273, 1999.

[6] J. M. Hardie, “Oral microbiology: current concepts in the microbiology of dental caries and periodontal disease,” *British Dental Journal*, vol. 172, no. 7, pp. 271–278, 1992.

[7] G. Pasquantonio, C. Greco, M. Prenna et al., “Antibacterial activity and anti-biofilm effect of chitosan against strains of Streptococcus mutans isolated in dental plaque,” *International Journal of Immunopathology and Pharmacology*, vol. 21, no. 4, pp. 993–997, 2008.

[8] P. H. Pan, M. B. Finnegan, L. Sturdivant, and M. L. Barnett, “Comparative antimicrobial activity of an essential oil and an amine fluoride/stannous fluoride mouthrinse in vitro,” *Journal of Clinical Periodontology*, vol. 26, no. 7, pp. 474–476, 1999.

[9] F. A. Al-Bayati, “Isolation and identification of antimicrobial compound from Mentha longifolia L. leaves grown wild in Iraq,” *Annals of Clinical Microbiology and Antimicrobials*, vol. 8, no. 6, pp. 04, 2009.

[10] K.-H. Lee, B.-S. Kim, K.-S. Keum et al., “Essential oil of Curcuma longa inhibits Streptococcus mutans biofilm formation,” *Journal of Food Science*, vol. 76, no. 9, pp. H226–H230, 2011.

[11] D.-H. Lee, B.-R. Seo, H.-Y. Kim et al., “Inhibitory effect of Aralia continentalis on the cariogenic properties of Streptococcus mutans,” *Journal of Ethnopharmacology*, vol. 137, no. 2, pp. 979–984, 2011.

[12] D. Y. Lee, G. Choi, T. Yoon, M. S. Cheon, B. K. Choo, and H. K. Kim, “Anti-inflammatory activity of Chrysanthemum indicum extract in acute and chronic cutaneous inflammation,” *Journal of Ethnopharmacology*, vol. 123, no. 1, pp. 149–154, 2009.

[13] C.-Q. Hu, K. E. Chen, Q. Shi, R. E. Kilkuskie, Y.-C. Cheng, and K.-H. Lee, “Anti-aids agents, 10. Acacetin-7-O-β-D-galactopyranoside, an anti-HIV principle from Chrysanthemum morifolium and a structure-activity correlation with some related flavonoids,” *Journal of Natural Products*, vol. 57, no. 1, pp. 42–51, 1994.

[14] A. Shafaghat, H. Sadeghi, and K. Oji, “Composition and antibacterial activity of essential oils from leaf, stem and root of Chrysanthemum parthenium (L.) Bernh. from Iran,” *Natural Product Communications*, vol. 4, no. 6, pp. 859–860, 2009.

[15] K. J. Kim, Y. H. Kim, H. H. Yu et al., “Antibacterial activity and chemical composition of essential oil of Chrysanthemum boreale,” *Planta Medica*, vol. 69, no. 3, pp. 274–277, 2003.

[16] K. Nakahara, S. Kawabata, H. Ono et al., “Inhibitory effect of oolong tea polyphenols on glucosyltransferases of mutants Streptococci,” *Applied and Environmental Microbiology*, vol. 59, no. 4, pp. 968–973, 1993.

[17] T.-H. Kim, G.-S. Bae, H.-J. Oh et al., “2’,4’,6’-tris(methoxy methoxy) chalcone (TMMC) attenuates the severity of cerulein-induced acute pancreatitis and associated lung injury,” *American Journal of Physiology: Gastrointestinal and Liver Physiology*, vol. 301, no. 4, pp. G694–G706, 2011.

[18] S.-I. Jeong, B.-S. Kim, K.-S. Keum et al., “Kaurenoic acid from Aralia continentalis inhibits biofilm formation of Streptococcus mutans,” *Evidence-Based Complementary and Alternative Medicine*, vol. 2013, Article ID 160592, 9 pages, 2013.

[19] M. Shemesh, A. Tam, and D. Steinberg, “Expression of biofilm-associated genes of Streptococcus mutans in response to glucose and sucrose,” *Journal of Medical Microbiology*, vol. 56, no. 11, pp. 1528–1535, 2007.

[20] H. van den Dool and P. D. Kratz, “A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography,” *Journal of Chromatography A*, vol. 11, no. 2, pp. 463–471, 1963.

[21] W. Jennings and T. Shibamoto, Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography, Academic Press, New York, NY, USA, 1981.

[22] V. I. Babushok, P. J. Linstrom, and I. G. Zenkevich, “Retention indices for frequently reported compounds of plant essential oils,” *Journal of Physical and Chemical Reference Data*, vol. 40, no. 4, Article ID 043101, 2011.

[23] M. A. Salam, N. Matsumoto, K. Matin et al., “Establishment of an animal model using recombinant NOD.B10.D2 mice to study initial adhesion of oral streptococci,” *Clinical and Diagnostic Laboratory Immunology*, vol. 11, no. 2, pp. 379–386, 2004.

[24] B. Köhler, D. Birkhed, and S. Olsson, “Acid production by human strains of Streptococcus mutans and Streptococcus sobrinus,” *Caries Research*, vol. 29, no. 5, pp. 402–406, 1995.

[25] R. J. Gibbons and J. V. Houte, “Bacterial adherence in oral microbial ecology,” *Annual Review of Microbiology*, vol. 39, no. 1, pp. 19–44, 1975.

[26] P. D. Marsh and D. J. Bradshaw, “Dental plaque as a biofilm,” *Journal of Medical Microbiology*, vol. 15, no. 3, pp. 169–175, 1995.

[27] H. Aoki, T. Shiroza, H. Hayakawa, S. Sato, and H. K. Kuramitsu, “Cloning of a Streptococcus mutans glucosyltransferase gene coding for insoluble glucan synthesis,” *Infection and Immunity*, vol. 53, no. 3, pp. 587–594, 1986.
[28] D. Steinberg, D. Moreinos, J. Featherstone, M. Shemesh, and O. Feuerstein, “Genetic and physiological effects of noncoherent visible light combined with hydrogen peroxide on *Streptococcus mutans* in biofilm,” *Antimicrobial Agents and Chemotherapy*, vol. 52, no. 7, pp. 2626–2631, 2008.

[29] I. R. Hamilton and N. D. Buckley, “Adaptation by *Streptococcus mutans* to acid tolerance,” *Oral microbiology and immunology*, vol. 6, no. 2, pp. 65–71, 1991.

[30] J. A. Banas, “Virulence properties of *Streptococcus mutans*,” *Frontiers in Bioscience*, vol. 9, pp. 1267–1277, 2004.

[31] H. F. Jenkinson and R. J. Lamont, “Streptococcal adhesion and colonization,” *Critical Reviews in Oral Biology and Medicine*, vol. 8, no. 2, pp. 175–200, 1997.

[32] M. H. Napimoga, J. F. H ¨ofling, M. I. Klein, R. U. Kamiya, and R. B. Gonçalves, “Transmission, diversity and virulence factors of *Streptococcus mutans* genotypes,” *Journal of oral science*, vol. 47, no. 2, pp. 59–64, 2005.

[33] X. Xu, X. D. Zhou, and C. D. Wu, “The tea catechin epigallocatechin gallate suppresses cariogenic virulence factors of *Streptococcus mutans*,” *Antimicrobial Agents and Chemotherapy*, vol. 55, no. 3, pp. 1229–1236, 2011.

[34] J. A. C. Lemos, T. A. Brown Jr., and R. A. Burne, “Effects of RelA on key virulence properties of planktonic and biofilm populations of *Streptococcus mutans*,” *Infection and Immunity*, vol. 72, no. 3, pp. 1431–1440, 2004.

[35] P. P. Alvarez-Castellanos, C. D. Bishop, and M. J. Pascual-Villalobos, “Antifungal activity of the essential oil of flower-heads of garland chrysanthemum (*Chrysanthemum coronarium*) against agricultural pathogens,” *Phytochemistry*, vol. 57, no. 1, pp. 99–102, 2001.

[36] E.-K. Jung, “Chemical composition and antimicrobial activity of the essential oil of *Chrysanthemum indicum* against oral bacteria,” *Journal of Bacteriology and Virology*, vol. 39, no. 2, pp. 61–69, 2009.