徳島における福島第一原子力発電所事故に伴う大気中人工放射性核種の測定

坂口由貴子 1)・阪間稔 2)・伏見賢一 1)・中山信太郎 1)*

1) 徳島大学大学院ソシオ・アーツ・アンド・サイエンス研究部, 〒770-8502 徳島市南常三島町 1-1
2) 徳島大学大学院ヘルスバイオサイエンス研究部, 〒770-8503 徳島市蕨本町 3-18-15

E-mail: nakayama@ias.tokushima-u.ac.jp

Measurement of airborne radioactivity from the Fukushima reactor accident in Tokushima, Japan

Yukiko Sakaguchi 1), Minoru Sakama 2), Ken-ichi Fushimi 1), Shintaro Nakayama 1)*

1) Institute of Socio-Arts and Sciences, The University of Tokushima 770-8502, Japan
2) Institute of Health Biosciences, The University of Tokushima 770-8503, Japan
*Correspondence: nakayama@ias.tokushima-u.ac.jp

Abstract

The airborne radioactive isotopes from the Fukushima Daiichi nuclear plant was measured in Tokushima, western Japan. The continuous monitoring has been carried out in Tokushima, Japan. From March 23, 2011 the fission product 131I was observed. The radioisotopes 134Cs and 137Cs were also observed in the beginning of April. However the densities were extremely smaller than the Japanese regulation of radioisotopes.

Keywords: Airborne radioactivity, Fukushima Reactor

1. はじめに

3月11日に東日本大震災がおき、この震災により非常に広範囲において被害があった。その中でも、東京電力福島第一原子力発電所における事故[1]による環境被爆は、今でも収束しない状況にある。この事故は、原子炉建屋の爆発やそれに伴う放射性物質の漏えい、農作物や飲料水の放射能汚染、さらには発電所作業員の方の被ばくときわめて深刻な問題となっている。

本研究では、原発事故により人工放射性核種が大気中へ放出され、徳島の大気中にどれだけの影響があったかを調べた。3月19日から6月10日まで每日徳島大学常三島キャンパス・蕨本キャンパスの二ヶ所にて大気をサンプリングして、ガンマ線スペクトロメトリーを行ったので報告する。

2. 原子炉で生成される人工放射性核種

2-1 東京電力福島第一原発の核燃料と核分裂生成核種

東京電力福島第一原発では主に核分裂反応物質（核燃料）としてウラン-235を用いている。3号機ではプルトニウムを含むMOX燃料が一部使用されているが、ここではウラン-235を燃料にした核分裂生成核種に注目する。

（1）放射性ヨウ素 I-131, 半減期 8.02 日
半減期が短いため、人体に対する影響評価としては10半減期経過時（モニタリングポストのデータ）により原発敷地内からの大気中放射能が出したと推定される期間経過の3月16日を起算日として80日目となる6月3日頃）までは約年層の甲状腺への影響を考慮して適切に評価する必要がある。
放射性セシウム Cs-137, 半減期 30.0 年放射性セシウム Cs-137, 半減期 2.06 年長期の塩によって生成される放射線被曝を引き起こす人間を対象とする。また、鉛板・野菜などの作物生産による農作物への放射線からの移動、家畜への微生物汚染などを通じて人体に取り込まれる可能性の強い核種である。周期律表では、物質の必要元素であるナトリウムやカリウムなどと同じ 1 族に属して、化学的挙動が類似するため、筋肉組織などを濃集する可能性がある。

放射性ストロンチウム Sr-90, 半減期 29.12 年放射性ストロンチウムはベータ線を出しで崩壊する核種であるが、通常のガマ線検出器を装備するモニタリング装置などで検出され、ガマ線検出器を使用するガマ線検出システムによって迅速・容易に検出、診断をすることができない。さらに放射線曝露の差異は明らかにされている。周期律表ではカリウムと同様 1 族に属し、化学的挙動がアルカリ金属と類似するため、骨などに蓄積する可能性があるので、検証が必要とする核種である。

2-2 放射線量と放射線核種の濃度の測定方法
放射線は核種の崩壊の仕方によって、アルファ線・ベータ線・ガンマ線・中性子線などに発生する。中性子線は核分裂反応が連続的に起こっている場合にしか発生せず、アルファ線はアルファ線に伴って発生する。原子炉から放出した核種のアルファ線は核燃料が中性子捕獲反応で生成された核種である。なお、これらの事項は 20 世紀の核物理学の研究により、確立された事実である。従って、測定対象となるのはガンマ線とベータ線とアルファ線である。

ウランなどの中性子捕獲反応で生成されたプロトン線などはアルファ線を検出する必要がある。また、核分裂生成物である放射性ストロンチウム Sr-90 は、ベータ崩壊核種でありベータ線測定装置で測定する必要がある。アルファ線とベータ線は污染源から紙一枚であると遮蔽されて検出器に入らないので、Sr-90 の測定に当たっては、試料を分解・分離精製する化学操作を必要とする。日本分析センター「放射線測定法シリーズ」No.2「放射性ストロンチウム測定法」に準じる操作を行い、ベータ線測定装置で測定して定量する。

事故発生発生以来、各地のモニタリング装置などで実施されている放射線量測定方法である放射線測定法はガマ線を検出する方法である。放射線量の測定においては、一般の線量計による計測ができるので、この方法でガマ線スペクトロメーターとして高純度 Ge 半導体検出器を用いた測定結果を報告する。

放射性核種の濃度を明らかにするためには、核種濃度を測定する必要があるが、これは核種が固有のエネルギーやガンマ線を放出することから、ガンマ線スペクトロメータを使用する。本法で測定可能な核種は、放射性ヨウ素 I-131 と放射性セシウム Cs-137・Cs-134 であるが、その他のガンマ線放射核種も同時に計測される。測定は、試料を検れた容器に密閉してガンマ線スペクトロメータで放出されるガンマ線を計測し、ビーグ解析を行って定量化する。

3. 測定装置およびサンプリング方法
3-1 試料作製およびサンプリング装置
放射性核種が付着したエアロゾルを、ハイボリウム・エアーサンプラーを用いてガラス繊維濾紙（フィルター）に捕集する。
常三島キャンパスでは、徳島大学総合科学部 3 号館内にて 24 時間サンプルをおこなった。サンプリング終了後、フィルターを約 1 cm 幅切り、ボリュームバネ製容器に入れる。
フィルターは、quantity ハイボリウム・エアーサンプラーとガラス繊維濾紙についてまとめる。

表 1 ハイボリウム・エアーサンプラー

記載濃度	常三島	蕾本
社名	柴田科学機器工業株式会社	
型番	HVC-1000N	
流量	500[L/min]	
流量検出方法	熱線方式	
吸引方法	2000[mL/H]以上	
吸引ポンプ	製品モーターダブルブロー	

表 2 ガラス繊維濾紙（フィルター）

記載濃度	常三島	蕾本
社名	アドバンテック東洋株式会社	
型番	GB-100R	
大きさ	203×254 [mm]	
厚さ	0.40 [mm]	
保持粒子径	0.6 [μm]	
压力損失	30 [mL/H]	
捕集効率	99,99 [3 μ mDOP]	

*1: JIS-P 3801[濾紙 (化学分析用)]で規定された酸標化学用んザルを自然通過させたときの粒子径が 15 に求める。
*2: 1 mL/H で 15 に求める。
*3: 通気速度 5 [cm/s] のときの値
*4: JIS Z 8901（試験用粉体および試験用粒子）に準ずる、0.3 [μm] 粒子を分散した大気を 5 [cm/s] の通気速度で通過させたときの捕集効率

-40-
3-2 高純度 Ge 半導体検出器

測定には高純度 Ge 半導体検出器を用いた。γ線を検出する場合、検出媒体に吸収効率の大きい物質を使用するのが有利である。Ge は原子番号が 32 と半導体検出器の中では大きく、特にエネルギー分解能が優れているため、γ線検出器として優れていている。

半導体の結晶中では、電子が自由に個体内を動くことのできる「伝導帯」と自由に動くことのできない「価電子帯」のバンドという二つのエネルギー帯があり、この二つの帯の間には電子が存在できない領域の「エネルギーギャップ」がある。通常の電子は価電子帯に存在しているが、価電子帯にある電子にエネルギーを与えることによってエネルギーギャップを超えて伝導帯へ押し上げられて自由電子となる。さらに価電子帯には正孔ができる。結晶中にγ線が入射すると相互作用を起こし、自由電子と正孔が生じる。結晶に加えられた電場によって自由電子は正の電荷に、正孔は負の電荷に移動することにより電流電流が発生し、電流バランスとして電気信号が得られる。

Ge 半導体検出器は半導体検出部・クライオスタット部・デッターチャンネルや高電圧フィルターなどの電子回路から構成される。クライオスタット部及びデッターチャンネルは液体窒素を近い温度で、検出器を高真空に保つための装置である。Ge はエネルギーギャップが 0.7eV と小さく、室温でも伝導帯へ電子が押し上げられてしまうので、室温では検出器としての役割をなさない。そのため、液体窒素で冷却し、温度を 77K に保っている。

今回の測定では、常三島キャンパスではセイコーEGG 社製の GEM-2010 クローズエンド同軸型 HP (高純度)Ge 検出器、蔵本キャンパスではキャンペコ社製 HPGe 検出器を用いた。表 4 にそれぞれの Ge 検出器の性能についてまとめる。

表 4 Ge 半導体検出器の性能

検出器	常三島	蔵本
電圧（kV）	+2.5	+2.5
分解能（1332kV）	2.2	2.1
Ge 結晶の大きさ	直径 52mm, 高さ 60mm	直径 48mm, 高さ 29mm

環境中には環境放射能が存在するため、すべての放射線計検出器は環境放射能から信号を受けている。これは測定しようとする信号の妨げとなり、一般にバックグラウンドと呼ばれている。バックグラウンドの信号の頻度は Ge 検出器が検出可能な最小の放射線レベルを決定するので、測定放射能における測定を行う場合においてバックグラウンドの信号を少なくする必要がある。このため、γ線の遮蔽として鉛ブロックを厚さ 10cm にすることが求められている。
図5 大気サンプル試料のエネルギースペクトル

常三島キャンパスで4月7日に出撃した試料をGe半導体検出器で測定した。*で示したピークは環境放射能であり普段から見られるピークである。矢印で示されたピークは普段見られない。原発由来の人工放射性核種のピークである

4. 測定方法及び解析方法

4-1 Ge半導体検出器を用いたγ線測定

サンプリング終了後、フィルターを入れたポリカーボネート製容器をGe半導体検出器でγ線測定した。γ線測定は24時間おこなった。これは、今回注目した人工放射性核種の半減期が長いので、長時間測定をおこなうことでカウント数を増やして統計誤差を少なくするためである。また、解析をおこなう時には測定終了前8時間分を用いた。これは、サンプリング終了直後は注目している核種のピークがバックグラウンドに埋もれてしまうためである。

図5に、4月7日の測定で得られたエネルギースペクトルを示す。*で示す日常見られる放射性核種のほかに、矢印で示す核種が見られた。矢印で示した核種によるピークは今回の測定ではじめて観測されたものである。

4-2 データ解析

4-2-1 放射能の算出

測定時の放射能値は次式で求める。

\[A_s = \frac{C}{\text{検出効率} \times \text{放出比} \times \text{測定時間(sec)}} \]

\(C \) はそれぞれのピークのカウント数、なお、バックグラウンドのカウント数を引いたものである。

ここで、計数された数と検出器に入射したγ線の関係を検出効率という。γ線測定の場合、γ線は検出器と相互作用せずに検出器中に飛行したり、検出器に入ったとしても出力信号が小さいため信号として計数されないことがあるため、検出器の効率に影響が生じる。

ある一つのエネルギーのγ線を放出する割合を放出比という。γ線を放出する核種は一つのエネルギーのγ線だけを放出するわけではない、さまざまなエネルギーのγ線を放出する。

上式で測定時の放射能値を求めることができが、今回得るべき放射能値はサンプリング終了時の放射能値である。したがって補正をおこなわなければならない。

4-2-2 放射能の変化

サンプリング開始からのフィルターに捕集された放射性核種の放射能値は次のように変化していく。

i. サンプリング開始後、核種はフィルターに蓄積し、それに伴って放射能も増えていく。

ii. 核種はそれぞれ半減期があるので、蓄積されるつつ減衰していく。

iii. サンプリング終了後、フィルターに核種が蓄積することはないので、半減期にともなって減衰する。

放射能値の変化の様子を図6に示す。

4-2-3 真の放射能密度を求めるための補正

4-2-2 より、今回得るべきサンプリング終了時の放射能値を求めるためには、次に示す補正をおこなわなければならない。

・サンプリング中に蓄積された核種の変変
・サンプリング終了から測定開始までの変変
・測定中の変変

まず、サンプリング終了時の放射能値については、サンプリング終了時から測定終了までの時間を \(\Delta t = t_s + t_v/2 \) とすると

\[A_2 = \frac{A_0}{\exp(-\lambda \times \Delta t)} \]
と表わされる。ここで、\(\lambda \) は崩壊定数とよばれ、
\(\lambda = \ln 2 / \text{半減期} \) という関係式がある。
次に、サンプリング終了時の真の放射能値は、
サンプリング時間を \(t \) とすると、
\[
A_s = \frac{\lambda t}{1 - \exp(-\lambda t)} A_2
\]
と表わすことができる。
以上により、大気中の放射能濃度値は、\(A_1 \) をサ
ンプリング中のエアーサンプラーブの総流量 (m³)
で割ることにより求めることができる。

図 6 サンプリング開始から測定終了までのフィルターに蓄積された放射能値の変化

5. 測定結果および考察

5-1 常三島キャンパスでの結果

図 7 に常三島キャンパスで測定した放射能濃度の日変化を示す。3月24日にI-131が初めて検出された。そしてその後増加する傾向があり、4月7日に放射能濃度が最大になった。濃度値を表 5 に示す。

核種	放射能濃度値 (mBq/m³)
I-131 (364KEV)	2.45 ± 0.05
Cs-134 (605KEV)	2.78 ± 0.06
Cs-137 (662KEV)	2.45 ± 0.06

その後徐々に減少する傾向になり、5月中旬以降は検出されなくなった。

5-2 萩本キャンパスでの結果

図 8 に萩本キャンパスで測定した放射能濃度値の日変化を示す。こちらでも同様に、4月7日に濃度値が最大になった。それぞれの濃度値を表 6 に示す。

核種	放射能濃度値 (mBq/m³)
Te-132 (228KEV)	0.17 ± 0.03
I-131 (364KEV)	2.54 ± 0.06
Cs-134 (605KEV)	3.24 ± 0.07
Cs-137 (662KEV)	3.35 ± 0.08

図 7 常三島キャンパスでの測定結果
3月19日以降のI-131、Cs-134、Cs-137の放射能濃度変化を示しています。

図 8 萩本キャンパスでの測定結果
3月17日以降のI-131、Cs-134、Cs-137、Te-132の放射能濃度変化を示しています。

5-3 世界各地での放射能の検出

放射性核種が検出されたのは日本だけでなく、
シアトル (USA)、フランス [3]、スペイン [4]、ギリシャでも原発事故由来の放射性ヨウ素や放射性セシウムが検出された。図 9A より、シアトル (USA) で検出されたヨウ素の放射能濃度が一番高く、その次にスペインとフランスが続き、常三島で検出された放射能濃度は他国に比べて低い結果となっている。

図 9B では、3月1日を1とした日付と、福島第一原発を0度とした世界各地の経度の関係を示している。実線は日付と経度は比例関係を持っていることを示しており、放射能が放出されたのは実線のグラフより3日、つまり事故が起こった日と一致している。
また図 10A では、放射能の移動のシミュレーション結果を示している。図 10B には世界各地
で検出されたヨウ素 131 の放射能濃度値と日付の関係を示している。シアトル(USA)が最も高く、次いでスペインとフランス、検出された日付をみても徳島は一番遅くに到達していることがわかる。なお、図 10Bの実線はヨウ素 131 の半減期 8.02 日で推定した濃度変化を示している。ここでの、シアトル(USA)での濃度に規格化している。

スペイン・フランス・ギリシャ・徳島で検出されたヨウ素 131 の放射能濃度値は、実線の値よりも低めが、これは大気中を漂う際に広がりつつ移動しているから低い値になったと考えられる。

図 9 世界各地での放射能の検出
A: 経度と放射能値の関係。福島第一原発を 0 度としたグラフ。シアトル(USA)、スペインとフランス、ギリシャ、徳島と放射能値が減少している。
B: 各地の到達日。縦軸に A) 同様に福島県を 0 度とした経度と、横軸に 3 月 1 日を 1 とした日付であらわしたグラフである。シアトルが最初に検出され、その後スペイン、フランス、ギリシャ、徳島の順に到達していることがわかる。

図 10 大気シミュレーションと放射能到達日
A: 大気シミュレーション[5]。★は福島第一原発の所在地を示し、●は図 9 で示した世界各地での放射能検出地である。
B: ヨウ素 131 の放射能濃度と到着日。世界各地で検出されたヨウ素 131 の放射能濃度を●で示す。図中の実線はヨウ素 131 の半減期 8.02 日で推定した濃度変化を示す。ここでシアトル(USA)での濃度値に規格化してある。
6. 結論

本研究において、福島第一原子力発電所事故に伴う徳島の大気中への放射能の影響について高純度 Ge 半導体型検出器を用いて調べた。3月24日に初めて人工放射性物質が検出され、4月7日に放射能濃度値のピークをむかえた。その後は徐々に減少する傾向になり、5月の中途からは検出されなくなった。

放射能の影響は日本だけに止まらず世界各地にも広がった。原発事故が起きてから、最初に検出されたのはアメリカで、その後スペイン、フランスへと漂流し、最も速く到達したのは徳島である。したがって、福島第一原発から放出された人工放射性核種は世界を一周して徳島に到達したという結論に至った。

参考文献

[1] 文部科学省 東日本大震災関連情報 http://www.mext.go.jp/a_menu/saigaijohou/index.htm

[2] 日本分析センター「放射能測定法シリーズ」

[3] フランスの測定結果 http://www.irsn.fr/FR/Documents/home.htm

[4] スペインの測定結果 R.L. Lozano, et al., Environmental International (2011) in press

[5] シミュレーション結果 R.L. Lozano et al., Environmental International (2011) in press

論文受付 2011年9月30日
改訂論文受付 2011年10月7日
論文受理 2011年10月11日