Some Congruences from the Karlsson-Minton Summation Formula

Junhang Li, Yezhenyang Tang, and Chen Wang

Abstract. Let p be an odd prime. In this paper, by using the well-known Karlsson-Minton summation formula, we mainly prove two supercongruences as variants of a supercongruence of Deines-Fuselier-Long-Swisher-Tu, which confirm some recent conjectures of V.J.W. Guo.

Mathematics Subject Classification. Primary 33C20, Secondary 05A10, 11B65, 11A07, 33E50.

Keywords. Truncated hypergeometric series, supercongruences, Karlsson-Minton summation formula.

1. Introduction

For any $n \in \mathbb{N} = \{0, 1, 2, \ldots\}$, let $(x)_n = x(x + 1) \cdots (x + n - 1)$ denote the Pochhammer symbol. For $n, r \in \mathbb{N}$ and $a_0, \ldots, a_r, b_1, \ldots, b_r, z \in \mathbb{C}$ with $(b_1)_n, \ldots, (b_r)_n$ being nonzero, the truncated hypergeometric series $r+1 F_r$ are defined as

$$r+1 F_r \left[a_0, a_1, \ldots, a_r \mid b_1, \ldots, b_r \right]_n = \sum_{k=0}^{n} \frac{(a_0)_k \cdots (a_r)_k}{(b_1)_k \cdots (b_r)_k} \cdot z^k.$$

Clearly, they are partial sums of the classical hypergeometric series. Let p be an odd prime. For any integer $n \geq 1$, the p-adic Gamma function introduced by Morita (cf. [8, 12]) is defined as

$$\Gamma_p(n) = (-1)^n \prod_{\substack{1 \leq k < n \\ p \nmid k}} k.$$
Moreover, set $\Gamma_p(0) = 1$, and for any p-adic integer x set

$$\Gamma_p(x) = \lim_{n \to x} \Gamma_p(n),$$

where n runs through any sequence of positive integers p-adically approaching x.

Rodriguez-Villegas [13] investigated hypergeometric families of Calabi-Yau manifolds, and discovered (numerically) a number of possible supercongruences. Some of them have been proved in [9,10] where Mortenson, with the help of the Gross-Koblitz formula, determined $\frac{\binom{\alpha}{1} - \binom{1}{1}}{p-1}$ modulo p^2 for $\alpha \in \{1/2, 1/3, 1/4, 1/6\}$. For instance, he showed that

$$\frac{\binom{1}{2} - \binom{1}{1}}{p-1} \equiv (-1)^{(p-1)/2} \pmod{p^2}$$

for any prime $p \geq 5$. Using the Legendre relation of p-adic Gamma function (cf. [12, p. 370]), we may replace the right-hand side of (1.1) with $-\Gamma_p(1/2)^2$. Later, Sun [14] extended Mortenson’s result to the general p-adic integer α. Let \mathbb{Z}_p denote the ring of all p-adic integers and $\mathbb{Z}_p^\times := \{x \in \mathbb{Z}_p : p \nmid x\}$. Z.-H. Sun proved that for each odd prime p and $\alpha \in \mathbb{Z}_p^\times$,

$$\frac{\binom{\alpha}{1} - \binom{1}{1}}{p-1} \equiv (-1)^{(\langle \alpha \rangle_p)} \pmod{p^2},$$

for any prime $p \geq 5$. Using the Legendre relation of p-adic Gamma function (cf. [12, p. 370]), we may replace the right-hand side of (1.1) with $-\Gamma_p(1/2)^2$. Later, Sun [14] extended Mortenson’s result to the general p-adic integer α. Let \mathbb{Z}_p denote the ring of all p-adic integers and $\mathbb{Z}_p^\times := \{x \in \mathbb{Z}_p : p \nmid x\}$. Z.-H. Sun proved that for each odd prime p and $\alpha \in \mathbb{Z}_p^\times$,

$$\frac{\binom{\alpha}{1} - \binom{1}{1}}{p-1} \equiv (-1)^{(\langle \alpha \rangle_p)} \pmod{p^2},$$

where $\langle x \rangle_p$ is the least nonnegative residue of x modulo p, i.e., $0 \leq \langle x \rangle_p \leq p - 1$ and $x \equiv \langle x \rangle_p \pmod{p}$. On the other hand, Deines et al. [1] obtained the following generalization of (1.1): for any integer $d > 1$ and prime $p \equiv 1 \pmod{d}$,

$$\frac{\binom{1}{d} - \binom{1}{1}}{p-1} \equiv \Gamma_p \left(\frac{1}{d} \right)^d \pmod{p^2}.$$

(1.3)

In fact, Deines et al. also conjectured that for any integer $d \geq 3$ and prime $p \equiv 1 \pmod{d}$, the congruence (1.3) holds modulo p^3, and this conjecture was later confirmed by the third author and Pan [15].

In the past decade, many mathematicians studied q-analogues of (1.1) and its generalizations; among these q-congruences, the first one was obtained by Guo and Zeng [4]. Recently, via the so-called ‘creative microscoping’ method introduced by Guo and Zudilin [5], Guo [3] established a q-analogue of (1.3). Meanwhile, Guo obtained a variant of (1.3) as follows: for any integer $d > 1$ and prime $p \equiv 1 \pmod{d}$,

$$\sum_{k=0}^{p-1} k \left(\frac{d-1}{d} \right)^d \frac{k!}{k!} \equiv \frac{(d-1)\Gamma_p \left(\frac{1}{d} \right)}{2d} \pmod{p^2}.$$

(1.3)

The main purpose of this paper is to prove the following variants of (1.3) which confirm two conjectures of Guo [3, (5.4) and (5.5)].
Theorem 1.1. (i) Let $d \geq 4$ be an even integer. Then, for any prime $p \equiv -1 \pmod{d}$ with $p \geq 2d - 1$,

$$dF_{d-1} \left[\left\lfloor \frac{1}{d} - 1, 1 + \frac{1}{d}, 1 + \frac{1}{d}, \ldots, 1 + \frac{1}{d} \right\rfloor \right]_{p-1} \equiv \frac{d-1}{d^2} \Gamma_p \left(-\frac{1}{d} \right)^d \pmod{p^2}. \quad (1.4)$$

(ii) Let $d \geq 3$ be an odd integer. Then, for any prime $p \equiv -1 \pmod{d}$,

$$dF_{d-1} \left[\left\lfloor \frac{1}{d}, 1 + \frac{1}{d}, 1 + \frac{1}{d}, \ldots, 1 + \frac{1}{d} \right\rfloor \right]_{p-1} \equiv -\frac{1}{d^2} \Gamma_p \left(-\frac{1}{d} \right)^d \pmod{p^2}. \quad (1.5)$$

The second goal is to show another conjectural congruence [3, Conjecture 1.3].

Theorem 1.2. Let $p \equiv 1 \pmod{4}$ be a prime and $r \geq 1$. Then

$$\sum_{k=0}^{p^r-1} \left(k - \frac{p^{2r} - 1}{4} \right) \frac{1}{k!^2} \equiv 0 \pmod{p^{2r+1}}. \quad (1.6)$$

The rest of this paper is organized as follows. In the next section, we list some necessary lemmas which play key roles in the proof of Theorem 1.1. Section 3 is devoted to the proof of Theorem 1.1. In Sect. 4, we prove Theorem 1.2. In Sect. 5, we shall pose a conjecture for further research.

2. Some necessary lemmas

The first key ingredient of our proofs is the following Karlsson-Minton summation formula (cf. [2, p. 19]).

Lemma 2.1. Let m_1, m_2, \ldots, m_n be nonnegative integers. Then

$$n+1F_n \left[-\left(m_1 + \cdots + m_n \right), b_1 + m_1, \ldots, b_n + m_n, 1 \right] = (-1)^{m_1 + \cdots + m_n} \frac{(m_1 + \cdots + m_n)!}{(b_1)_{m_1} \cdots (b_n)_{m_n}}. \quad (2.1)$$

Our proofs also rely on some properties of the p-adic Gamma functions.

Lemma 2.2. [12, p. 369] Let p be an odd prime and $x \in \mathbb{Z}_p$. Then

$$\frac{\Gamma_p(x + 1)}{\Gamma_p(x)} = \begin{cases} -x, & \text{if } p \nmid x, \\ -1, & \text{if } p \mid x. \end{cases} \quad (2.2)$$

$$\Gamma_p(x)\Gamma_p(1-x) = (-1)^{\langle -x \rangle_p}p^{-1}. \quad (2.3)$$

Remark 2.1. (a) By (2.2), it is easy to see that for any positive integer $n \leq p$,

$$\Gamma_p(n) = (-1)^n \Gamma(n). \quad (2.4)$$
(b) The identity (2.3) is a p-adic analogue of the following Legendre relation of the classical Gamma function:

$$\Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin \pi x}.$$

The next lemma concerns a p-adic approximation to Γ_p-quotients.

Lemma 2.3 [7, Theorem 14]. For any prime $p \geq 5$ and $x \in \mathbb{Z}_p$, there exists $G_1(x) \in \mathbb{Z}_p$ such that for any $t \in \mathbb{Z}_p$,

$$\Gamma_p(x + tp) \equiv \Gamma_p(x)(1 + G_1(x)tp) \pmod{p^2}. \quad (2.5)$$

For the properties of $G_1(x)$, the reader may consult [11]. The following lemma lists two identities involving the derivatives of $(1 + \alpha + x)_k$, which can be verified directly.

Lemma 2.4. For any integer $k \geq 0$ and $\alpha, \beta \in \mathbb{R}$,

$$\frac{d}{dx} (1 + \alpha + x)_k = (1 + \alpha + x)_k \sum_{j=1}^{k} \frac{1}{j + \alpha + x},$$

$$\frac{d}{dx} \left(\frac{1}{(1 + \beta + x)_k} \right) = -\frac{1}{(1 + \beta + x)_k} \sum_{j=1}^{k} \frac{1}{j + \beta + x}.$$

3. **Proof of Theorem 1.1**

Throughout this section, we set $m = (p + 1)/d$. We first prove (1.4). To show (1.4), we need the following preliminary result.

Lemma 3.1. Under the assumptions of Theorem 1.1 (i), modulo p, we have

$$\sum_{k=0}^{p-1} \frac{(m - 1)_k(m + 1)_k^{d-1}}{(1)_k^d} \left(\sum_{j=0}^{k-1} \frac{1}{m - 1 + j} - \sum_{j=0}^{k-1} \frac{1}{m + 1 + j} \right) \equiv \frac{(p - 1)!}{(1)_{m-2}(1)_{m-1}} \left(\frac{1}{m} - \frac{1}{m - 1} \right).$$

Proof. For $x, y \in (-1, +\infty)$, set

$$\Psi(x, y) = d+1 F_d \left[\begin{array}{c} 1 - p, m - 1 + x, m + 1 + y, m + 1, \ldots, m + 1 \\ 1 + x, 1 + y, 1, \ldots, 1 \end{array} \right]_{p-1}.$$

Clearly, $\Psi(x, y)$ is smooth on $(-1, +\infty) \times (-1, +\infty)$. Since $(1 - p)_k = 0$ for all $k \geq p$, we have

$$\Psi(x, y) = d+1 F_d \left[\begin{array}{c} 1 - p, m - 1 + x, m + 1 + y, m + 1, \ldots, m + 1 \\ 1 + x, 1 + y, 1, \ldots, 1 \end{array} \right].$$
As
\[m - 2 + (d - 1)m = m - 2 + p + 1 - m = p - 1, \]
by Lemma 2.1,
\[\Psi(x, y) = \frac{(p - 1)!}{(1 + x)m - 2(1 + y)m(1)^{d-2}}. \tag{3.2} \]

Now we calculate \(\Psi_x(0, 0) - \Psi_y(0, 0) \) in two different ways, where \(\Psi_x(0, 0) \) and \(\Psi_y(0, 0) \) stand for the partial derivatives of \(\Psi \) at \((0, 0) \) with respect to \(x \) and \(y \). By (3.1) and Lemma 2.4, we obtain
\[\Psi_x(0, 0) = \sum_{k=0}^{p-1} \frac{(1 - p)_k(m - 1)_k(m + 1)^{d-1}_k}{(1)_k^{d+1}} \left(\frac{1}{\sum_{j=0}^{k-1} m - 1 + j} - \frac{1}{\sum_{j=0}^{k-1} m + 1 + j} \right), \]
\[\Psi_y(0, 0) = \sum_{k=0}^{p-1} \frac{(1 - p)_k(m - 1)_k(m + 1)^{d-1}_k}{(1)_k^{d+1}} \left(\frac{1}{\sum_{j=0}^{k-1} m - 1 + j} - \frac{1}{\sum_{j=0}^{k-1} m + 1 + j} \right), \]
where \(H_k = \sum_{j=1}^{k} 1/j \) denotes the harmonic number. Therefore,
\[\Psi_x(0, 0) - \Psi_y(0, 0) = \sum_{k=0}^{p-1} \frac{(1 - p)_k(m - 1)_k(m + 1)^{d-1}_k}{(1)_k^{d+1}} \left(\frac{1}{\sum_{j=0}^{k-1} m - 1 + j} - \frac{1}{\sum_{j=0}^{k-1} m + 1 + j} \right). \tag{3.3} \]

On the other hand, by (3.2) and Lemma 2.4,
\[\Psi_x(0, 0) - \Psi_y(0, 0) = \frac{(p - 1)!}{(1)_m - 2(1)_m^{d-1}} \left(\frac{1}{m} + \frac{1}{m - 1} \right). \tag{3.4} \]

Note that for \(k \) among 0, 1, \ldots, \(p - 1 \), \((1 - p)_k \equiv (1)_k \) (mod \(p \)) and
\[\frac{(m - 1)_k(m + 1)^{d-1}_k}{(1)_k^{d+1}} \left(\sum_{j=0}^{k-1} m - 1 + j - \sum_{j=0}^{k-1} m + 1 + j \right) \in \mathbb{Z}_p. \]

This, together with (3.3) and (3.4), gives the desired result. \(\square \)

Proof of (1.4). For any \(x, y \in \mathbb{Z}_p \), let
\[\Phi(x, y) = a F_{d-1} \left[\begin{array}{c} m - 1 + x, m + 1 + y, \ldots, m + 1 + y \\ 1, \ldots, 1 \end{array} \right]_{p-1}. \]

Obviously, for any \(s, t \in \mathbb{Z}_p \),
\[\Phi(sp, tp) \equiv \Phi(0, 0) + sp \Phi_x(0, 0) + tp \Phi_y(0, 0) \pmod{p^2}. \tag{3.5} \]
In particular,
\[\Phi(-p, 0) \equiv \Phi(0, 0) - p \Phi_x(0, 0) \pmod{p^2}. \tag{3.6} \]
Substituting (3.6) into (3.5), we get

$$\Phi(sp,tp) \equiv \Phi(-p,0) + (s+1)p\Phi_x(0,0) + tp\Phi_y(0,0) \pmod{p^2}.$$

Taking \(s = t = -1/d\), in view of Lemmas 2.4 and 3.1, \(\Phi(−p, 0)\) is

$$\Phi\left(-\frac{p}{d} - \frac{p}{d}\right) = \sum_{k=0}^{p-1} \frac{(m-1)k(m+1)d-1}{1} \times \frac{1}{(1)^k} \times \frac{1}{m+1+j} \times \frac{1}{m-1+j} \equiv \Phi(-p,0) \pmod{p^2}.$$

Now we evaluate \(\Phi(-p,0)\) modulo \(p^2\). Since \(m(d-1) = p + 1 - m\), by Lemma 2.1,

$$\Phi(-p,0) = (-1)^m \frac{(p + 1 - m)!}{(1)^d m}.$$

With the help of (2.2), we obtain

$$\Phi(-p,0) = (-1)^m \frac{\Gamma(p - m + 2)}{\Gamma(m + 1)d-1} = (-1)^{p+2-(m+1)(d-1)} \frac{\Gamma_p(p - m + 2)}{\Gamma_p(m + 1)d-1} \times \frac{\Gamma(p - m)}{\Gamma_p(m + 1)d-1} \times \frac{\Gamma_p(p - m)}{\Gamma_p(m + 1)d-1} \times \frac{\Gamma_p(p - m)}{\Gamma_p(m + 1)d-1},$$

(3.9)
where in the last step we have used the fact that \(d \) is even. In light of (2.3) and Lemma 2.3,

\[
\frac{\Gamma_p(p - m)}{\Gamma_p(m + 1)^{d - 1}} = (-1)^{m-1}(d-1)\Gamma_p(p - m)\Gamma_p(-m)^{d-1} \\
\equiv (-1)^{m-1}\Gamma_p\left(-\frac{1}{d}\right)^d\left(1 + \left(1 - \frac{1}{d}\right)pG\left(-\frac{1}{d}\right)\right) \\
\left(1 - \frac{p}{d}G\left(-\frac{1}{d}\right)\right)^{d-1} \\
\equiv (-1)^{m-1}\Gamma_p\left(-\frac{1}{d}\right)^d \pmod{p^2}. \tag{3.10}
\]

Moreover,

\[
(p - m)(p - m + 1) = \left(-\frac{1}{d} + \left(1 - \frac{1}{d}\right)p\right)\left(1 - \frac{1}{d} + \left(1 - \frac{1}{d}\right)p\right) \\
\equiv \frac{1 - d}{d^2} + \frac{(d - 1)(d - 2)p}{d^2} \pmod{p^2}.
\]

Combining this with (3.9) and (3.10), we obtain

\[
\Phi(-p, 0) \equiv \left(d - \frac{1}{d^2} - \frac{(d - 1)(d - 2)p}{d^2}\right)\Gamma_p\left(-\frac{1}{d}\right)^d \pmod{p^2}. \tag{3.11}
\]

Similarly, it is routine to verify that

\[
\left(1 - \frac{1}{d}\right)p \cdot \frac{(p - 1)!}{(1)m-2(1)^{d-1}} \left(\frac{1}{m} + \frac{1}{m - 1}\right) \\
\equiv \frac{(d - 1)(d - 2)p}{d^2}\Gamma_p\left(-\frac{1}{d}\right)^d \pmod{p^2}. \tag{3.12}
\]

Substituting (3.11) and (3.12) into (3.7), we immediately get (1.4). \(\square\)

In order to show (1.5), we also need an auxiliary lemma.

Lemma 3.2. Under the assumptions of Theorem 1.1 (ii), we have

\[
\sum_{k=0}^{p-1} (m)_k^2 (m + 1)^{d-2} \left(\frac{1}{m} - \sum_{j=0}^{k-1} \frac{1}{m + j}\right) \\
\equiv \frac{(p - 1)!}{(1)(m-1)(1)^{d-1}} \pmod{p}.
\]

Proof. For \(x, y \in (-1, +\infty) \), set

\[
\Upsilon(x, y) = \left[\begin{array}{c}
1 & 1 & 1 & \ldots & 1 \\
1 + x & 1 & 1 + y & \ldots & 1
\end{array}\right]_{p-1}.
\]

Similarly as in the proof of Lemma 3.1, we are led to the desired result by considering \(\Upsilon_x(0, 0) - \Upsilon_y(0, 0) \). \(\square\)
Proof of (1.5). For any \(x, y \in \mathbb{Z}_p \), set
\[
\Omega(x, y) = dF_{d-1} \left[\frac{m + x, m + y, m + 1 + y, \ldots, m + 1 + y}{1, 1, \ldots, 1} \right]_{p-1}.
\]
Similarly as before, by Lemmas 2.1, 2.4 and 3.2,
\[
\Omega \left(-\frac{p}{d}, -\frac{p}{d} \right) = dF_{d-1} \left[\frac{1, 1, 1 + \frac{1}{d}, 1 + \frac{1}{d}, \ldots, 1 + \frac{1}{d}}{1, 1, \ldots, 1} \right]_{p-1}
\]
\[
\equiv \Omega(-p, 0) + (1 - \frac{1}{d}) p\Omega_x(0, 0) - \frac{p}{d} \Omega_y(0, 0)
\]
\[
\equiv \Omega(-p, 0) + \left(1 - \frac{2}{d} \right) p \sum_{k=0}^{p-1} \frac{(m)_k^2 (m + 1)_k^{d-2}}{(1)_k^{d}} \left(\sum_{j=0}^{k-1} \frac{1}{m + j} - \sum_{j=0}^{k-1} \frac{1}{m + 1 + j} \right)
\]
\[
\equiv \Omega(-p, 0) + \left(1 - \frac{2}{d} \right) p \cdot \frac{\Gamma_p \left(-\frac{1}{d} \right)^d}{\Gamma_p \left(-\frac{1}{d} \right)^{d-1}} (\mod p^2).
\]
Then, in view of Lemmas 2.1–2.3, we have
\[
\Omega(-p, 0) \equiv \left(-\frac{1}{d^2} + \frac{(d - 2)p}{d^2} \right) \Gamma_p \left(-\frac{1}{d} \right)^d (\mod p^2)
\]
and
\[
\left(1 - \frac{2}{d} \right) p \cdot \frac{(p - 1)!}{(1)_{m-1}(1)_{d-1}^{d-1}} \equiv \frac{(2 - d)p}{d^2} \cdot \Gamma_p \left(-\frac{1}{d} \right)^d (\mod p^2).
\]
The proof of (1.5) follows by combining the above. \(\square \)

4. Proof of Theorem 1.2

We need the following identity which can be verified by induction on \(n \).

Lemma 4.1. For any positive integer \(n \), we have
\[
\sum_{k=0}^{n-1} \frac{(4k + 1)}{k!^2} \left(\frac{1}{2} \right)^2 = \frac{n^2}{4} \left(\frac{2n}{n} \right)^2.
\]

Assuming \(p \equiv 1 (\mod 4) \) and putting \(x = 1/2 \) in [6, Corollary 1.4], we have the following result.

Lemma 4.2. Let \(p \equiv 1 (\mod 4) \) be a prime and \(r \) a positive integer. Then
\[
\sum_{k=0}^{p^r-1} \frac{(1/2)_k^2}{k!^2} \equiv 1 (\mod p^2).
\]
Proof of Theorem 1.2. Equivalently, we only need to show
\[\sum_{k=0}^{p^r-1} (4k + 1) \left(\frac{1}{2} \right)_k \equiv \sum_{k=0}^{p^r-1} \left(\frac{2^r}{k!^2} \right) \pmod{p^{2r+1}}. \quad (4.1) \]
Putting \(n = p^{2r} \) in Lemma 4.1, we obtain
\[\sum_{k=0}^{p^r-1} (4k + 1) \left(\frac{1}{2} \right)_k = \frac{p^{2r}}{4^{2p-1}} \left(\frac{2^r}{p} \right)^2. \quad (4.2) \]
By Fermat’s little theorem,
\[4^{2p-1} = 4 \times 16^{p-1} = 4 \times (16^{p-1})^{\frac{p-1}{2}} \equiv 4 \pmod{p}. \quad (4.3) \]
Using Lucas’s theorem, we have
\[\left(\frac{2^{p^r}}{p^r} \right) \equiv \left(\frac{2^{p-1}}{p-1} \right) \equiv \cdots \equiv \left(\frac{2}{1} \right) = 2 \pmod{p}. \quad (4.4) \]
Substituting (4.3) and (4.4) into (4.2), the left-hand side of (4.1) becomes \(p^{2r} \) modulo \(p^{2r+1} \). In view of Lemma 4.2, we arrive at Theorem 1.2 at once. □

5. Concluding Remarks

It is routine to check that
\[dF_{d-1} \left[\frac{1}{d} - 1, 1 + \frac{1}{d}, \ldots, 1 + \frac{1}{d} \left| \begin{array}{l} 1 \end{array} \right. \right]_{p-1} \]
\[+ (d-1)dF_{d-1} \left[\frac{1}{d}, \frac{1}{d}, 1 + \frac{1}{d}, \ldots, 1 + \frac{1}{d} \left| \begin{array}{l} 1 \end{array} \right. \right]_{p-1} \]
\[= d \cdot dF_{d-1} \left[\frac{1}{d} - 1, \frac{1}{d}, 1 + \frac{1}{d}, 1 + \frac{1}{d}, \ldots, 1 + \frac{1}{d} \left| \begin{array}{l} 1 \end{array} \right. \right]_{p-1}. \quad (5.1) \]
Note that Guo [3, Corollaries 4.2 and 4.4] proved that (1.4) and (1.5) also hold for odd integers \(d \geq 3 \) and even integers \(d \geq 4 \), respectively. This, together with (1.4), (1.5) and (5.1), gives that
\[dF_{d-1} \left[\frac{1}{d} - 1, \frac{1}{d}, 1 + \frac{1}{d}, 1 + \frac{1}{d}, \ldots, 1 + \frac{1}{d} \left| \begin{array}{l} 1 \end{array} \right. \right]_{p-1} \equiv 0 \pmod{p^2} \quad (5.2) \]
for any integer \(d \geq 3 \) and prime \(p \equiv -1 \pmod{d} \) with \(p \neq d-1 \). In fact, (5.2) can also be proved independently by using the method we used to prove Theorem 1.1 and the following Karlsson-Minton summation formula:
\[n+1F_n \left[a, b_1 + m_1, \ldots, b_n + m_n \left| \begin{array}{l} b_1, \ldots, b_n \end{array} \right. \right] = 0 \]
provided that \(m_1, \ldots, m_n \) are nonnegative integers and \(\Re(-a) > m_1 + \cdots + m_n \).
Motivated by (5.2) and based on some numerical calculations, we made the following conjecture for further study.
Conjecture 5.1. Let $d \geq 2$ be an integer. Let n be a positive integer with $n \equiv -1 \pmod{d}$ and $n > d - 1$. Then

$$\left(\frac{n - 1}{n^2}\right)! d^{dn-d} \cdot d^{F_{d-1}} \left[\frac{1}{d-1}, 1, 1 + \frac{1}{d}, 1 + \frac{1}{d}, \ldots, 1 + \frac{1}{d} \right]_{n-1} \in \mathbb{Z}. \quad (5.3)$$

We think it is possible that the ‘creative microscoping’ could be used to prove Conjecture 5.1. We hope that an interested reader will make some progress on it.

Acknowledgements

We are very grateful to the anonymous referee for his/her valuable suggestions. This work is supported by the National Natural Science Foundation of China (grant no. 12201301) and the Jiangsu Province Student Innovation Training Program (grant no. 202210298128Y).

Funding National Natural Science Foundation of China (12201301)

Data Availability Statement No availability of data and material.

Declarations

Conflict of interest No potential conflict of interest was reported by the author.

Code availability No code availability.

References

[1] Deines, A., Fuselier, J.G., Long, L., Swisher, H., Tu, F.-T.: Hypergeometric series, truncated hypergeometric series, and Gaussian hypergeometric functions. In: Directions in number theory, 125–159, Assoc. Women Math. Ser. 3, Springer, (2016)

[2] Gasper, G., Rahman, M.: Basic Hypergeometric Series. Cambridge University Press, Cambridge (2004)

[3] Guo, V.J.W.: Some q-supercongruences from Gasper’s Karlsson-Minton type summation. Ramanujan J. 60, 825–835 (2023)

[4] Guo, V.J.W., Zeng, J.: Some q-analogues of supercongruences of Rodriguez-Villegas. J. Number Theory 145, 301–316 (2014)

[5] Guo, V.J.W., Zudilin, W.: A q-microscope for supercongruences. Adv. Math. 346, 329–358 (2019)

[6] Liu, J.-C.: Congruences for truncated hypergeometric series $2F_1$. Bull. Aust. Math. Soc. 96, 14–23 (2017)
[7] Long, L., Ramakrishna, R.: Some supercongruences occurring in truncated hypergeometric series. Adv. Math. 290, 773–808 (2016)

[8] Morita, Y.: A p-adic analogue of the Γ-function. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22, 255–266 (1975)

[9] Mortenson, E.: A supercongruence conjecture of Rodriguez-Villegas for a certain truncated hypergeometric function. J. Number Theory 99, 139–147 (2003)

[10] Mortenson, E.: Supercongruences between truncated 2F1 hypergeometric functions and their Gaussian analogs. Trans. Amer. Math. Soc. 355, 987–1007 (2003)

[11] Pan, H., Tauraso, R., Wang, C.: A local-global theorem for p-adic supercongruences. J. Reine Angew. Math. 790, 53–83 (2022)

[12] Robert, A.M.: A Course in p-Adic Analysis. Springer, New York (2000)

[13] Rodriguez-Villegas, F.: Hypergeometric families of Calabi-Yau manifolds, In: Calabi-Yau Varieties and Mirror Symmetry (Toronto, ON, 2001), Fields Inst. Commun., 38, Amer. Math. Soc., Providence, RI, pp. 223–231 (2003)

[14] Sun, Z.-H.: Generalized Legendre polynomials and related supercongruences. J. Number Theory 143, 293–319 (2014)

[15] Wang, C., Pan, H.: Supercongruences concerning truncated hypergeometric series. Math. Z 300, 161–177 (2022)

Junhang Li, Yezhenyang Tang and Chen Wang
Department of Applied Mathematics
Nanjing Forestry University
Nanjing 210037
People’s Republic of China
e-mail: 745679122@qq.com;
2742425229@qq.com; cwang@smai.nju.edu.cn

Received: January 5, 2023.
Accepted: April 9, 2023.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.