Bioactivity of Six Plant Extracts on Adults of *Demotispa neivai* (Coleoptera: Chrysomelidae)

Luis C. Martínez, Angelica Plata-Rueda, José C. Zanuncio, and José E. Serrão

1Departamento de Entomologia, Universidade Federal de Viçosa, 36570-000, Viçosa, Minas Gerais, Brasil
2Departamento de Fitotecnia, Universidade Federal de Viçosa, 36570-000, Viçosa, Minas Gerais, Brasil
3Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000, Viçosa, Minas Gerais, Brasil
4Corresponding author, e-mail: jeseraco@ufv.br

Subject Editor: Henry Hagedorn

J. Insect Sci. 15(34): 2015; DOI: 10.1093/jisesa/iev021

Abstract. *Demotispa neivai* Bondar (Coleoptera: Chrysomelidae) damage oil palm fruits, which makes it necessary to develop products to control this insect. The mortality, repellency, and antifeeding effects on adults of *D. neivai* of six plant extracts of *Azadirachta indica* A. Juss. (Sapindales: Meliaceae), *Ricinus communis* (L.) (Malpighiales: Euphorbiaceae), *Citrus sinensis* Osbeck (Sapindales: Rutaceae), *Nicotiana tabacum* (L.) (Solanales: Solanaceae), *Capsicum annuum* (L.) (Solanales: Solanaceae), and *Artemisia absinthium* (L.) (Asterales: Asteraceae) were determined: 1) the lethal concentration LC₅₀₋₉₀, lethal time of *D. neivai* was evaluated after spraying the fruits of oil palm; 2) repellent effects of each ingredient were evaluated by calculating the index of repellency; 3) antifeeding effects with the rate of inhibition calculated between doses of 20 and 24 g/liter. The mortality of *D. neivai* was higher with the extracts *Ci. sinensis*, *R. communis*, *N. tabacum*, and *Ca. annuum*. The mortality of *D. neivai* increased in the first 72 hr in all treatments. The extracts of *N. tabacum*, *Ca. annuum*, and *A. indica* were more repellent to *D. neivai* that those of *Ci. sinensis*, *Ar. Absinthium*, and *R. communis*. Antifeeding effect was higher with *Ci. sinensis* and *R. communis*. The increased mortality of *D. neivai* by *Ci. sinensis* can be explained by the effect of this compound on the respiratory system of insects. Extracts of *Ci. sinensis*, *R. communis*, *N. tabacum*, and *Ca. annuum* repelled and caused mortality of *D. neivai* and, thus, can be used in integrate pest management programs of this pest in oil palm plantations.

Key Words: antifeeding effect, Coleoptera, insect pest management, mortality, repellency

Among the factors that can limit production of oil palm *Elaeis guineensis* (Jacquin) (Arecales: Arecaceae), there is *Demotispa neivai* (Bondar) (Coleoptera: Chrysomelidae), a pest in Brazil, Colombia, Ecuador, Panama, Suriname, and Venezuela (Genty et al. 1978, Martínez et al. 2013). This insect damages the exocarp of oil palm fruits that become tenement and with ash color drying and tissue from the first week of formation (Aldana et al. 2004, Martínez et al. 2013). *D. neivai* was also reported on *Bactris gasipaes* Kunth (Arecales: Arecaceae), *Cocos botryophora* Mart. (Arecales: Arecaceae), *Cocos nucifera* (Arecales: Arecaceae), and *Desmoncus polycanthus* Mart. (Arecales: Arecaceae) (Staines 1996, 2002). Furthermore, damage by *D. neivai* prevents the maturity of the palm with losses estimated in 7% of extraction oil from *E. guineensis* (Genty et al. 1978, Martínez et al. 2008).

Pesticides such as acephate, methamidophos, and monocrotophos are used in oil palm plantations by the control of *Demotispa neivai*. However, recent studies demonstrated the presence of pesticide residues in crude palm oil (Yeoh et al. 2006). Conventional insecticides are expensive and can cause collateral effects such as pest resistance, environmental pollution, toxic waste, emergence of new pests, and reducing insect fauna (Simmonds et al. 2002, Haouas et al. 2011).

In this sense, plant extracts represent an alternative for pest control as repellents, deterrents of oviposition and feeding, growth regulators, and toxicity to larvae and adults with low pollution and quick degradation in the environment (Bourguet et al. 2000, Tavares et al. 2009, Chermenskaya et al. 2010). Plant secondary metabolites such as lignans, neolignans, alkaloids, chalcones, kawapirones, flavones, essential oils, and amides are important in plant–insect relationships (Parmar et al. 1997, Abou-Fakhr et al. 2001, Martin et al. 2011). Repellent from plants are obtained from compounds with unpleasant odors or irritants (Parmar et al. 1997, Bourguet et al. 2000, Abou-Fakhr et al. 2001) and with phagoinhibiting and is biocide activity (Akhtar and Isman 2004, Abbasy et al. 2007). Preliminary studies showed lethal and sublethal effects of aqueous plant extracts on oil palm pests, especially on *Rynchophorus palmarum* (L.) larvae (Coleoptera: Curculionidae) and *D. neivai* adults (Pérez and Iannacone 2006, Martínez et al. 2008).

There are a variety of plants that have insecticidal properties, deter- rents, and repellents used in agriculture for pest control; however, these plants could be an alternative in the control of oil palm pest. This study evaluated the lethal concentration LC₅₀₋₉₀ lethal time, and sublethal effects of six plant extracts on *D. neivai* adults in the laboratory and semi-controlled field experiments, in order to contribute for the development of new strategies for controlling this insect pest affecting an important source of food.

Materials and Methods

Insects. Adults of *D. neivai* were collected in commercial plantations of oil palm with 10 years old in the Municipality of Puerto Wilches, Santander, Colombia (07° 20’ N, 73° 54’ W) with 28.46°C mean temperature, 76–92% relative humidity, 145–225 h of sunshine per year, and 2,168 mm annual rainfall. Insects were daily collected by hand and transferred to the laboratory of the Entomology of the Research Center in Oil Palm (Cenipalma) in Barrancabermeja, Santander, Colombia, in plastic containers (25 by 40 cm), with perforated lid to allow air flow and fed on palm exocarp. Healthy males and females without amputations or apparent malformations were used in the bioassays.

Plant Extracts. Six species of plants were used as sources of natural products in this study (Table 1). *Azadirachta indica* A Juss (Sapindales: Meliaceae) is a herb native to Asia and introduced in America, *Ricinus communis* (L.) (Malpighiales: Euphorbiaceae) also from India, *Citrus sinensis* Osbeck (Sapindales: Rutaceae) of Central Asia and distributed throughout the Americas, *Nicotiana tabacum* (L.) (Solanales: Solanaceae) native to tropical America, *Capsicum annuum* (L.)...
Six concentrations besides the control (solvent control/liter distilled water) were used per plant extracts: 4, 8, 12, 16, 20, and 24 g/liter. Concentrations of the extracts were applied in 5 μl of topical solution in the body of each individual of *D. neivai*. One hundred and twenty insects were used per dose in polystyrene containers (10 by 10 cm) and fed on exocarp palm. Mortality was recorded every 72 h and twenty insects were used per dose in polystyrene containers (10 by 10 cm) and fed on exocarp palm. Mortality was recorded every 72 h and twenty insects were used per dose. Preparations of extracts were made with 10 g of a sample from each plant in an Erlenmeyer flask of 100 ml with 50 ml of methanol. Flasks were covered with aluminum foil and placed in agitation at 100 oscillations per minute during 24 h (OS-300 Allsheng, China). Suspensions were obtained, filtered through meshes of tissue and transferred to a flask of 250 ml for evaporation in a rotary evaporator (Büchi R-114 AG, Switzerland) at 30 ± 2 °C. The resulting residue was weighed and dissolved in acetone to produce the primary solution of 400 g per plant. The primary solution per plant extract was diluted with distilled water to obtain concentrations of six series adjusted to 4, 8, 12, 16, 20, and 24 g/liter.

Determination of LC₅₀ and Semi-Controlled Conditions Test. Six concentrations besides the control (solvent control/liter distilled water) were used per plant extracts: 4, 8, 12, 16, 20, and 24 g/liter of distilled water. Concentrations of the extracts were applied in 5 μl of topical solution in the body of each individual of *D. neivai*. One hundred and twenty insects were used per dose in polystyrene containers (10 by 10 cm) and fed on exocarp palm. Mortality was recorded every 72 h during 15 days. In the field controlled test, 50 insects were caged in bags wrapping a racim of palm oil. Treatments consisted of plant extract with five replications per treatment. The lethal concentration LC₅₀ was applied directly on each racim of fruits and the control had distilled water applied with manual pump spray Royal Condor at 40 psi pressure and a volume of 200 cc. Mortality was corrected in the laboratory and semi-controlled field bioassays (Abbott 1925).

Repellency Test. Four Petri dishes were used as an arena, connected to a central board with plastic pipes and diagonally at an angle of 45°. The others dishes were distributed around them in equidistant distances and two plates were put together symmetrically opposed. Fifty adults of *D. neivai* were released into the central board and the control group received exocarp palm. The LC₀ was applied in the two opposite plates and non-exposed ones represented the control. Four replications per concentration of extract and a control were evaluated by the number of individuals per plate after 24 hr and calculating the repellency index RI: \(RI = \frac{G}{G + P} \), where \(G \) is the percentage of insects in the treatment and \(P \) is the percentage of insects in control. The extract was classified as neutral if the index was equal to one (1); attractive, higher than one (1), and repellent; lower than one (1).

Antifeeding Effect. The area of exocarp of oil palm consumed by *D. neivai* was calculated with a millimeter mesh per fruits during 24 hr according to LC₅₀-zero extract. After every 24 hr, the percentage of area consumed (estimated visually with the mesh) was achieved by obtaining food and inhibition index FII: \(FII = [(1 - T/C) \times 100] \), where \(T \) is the food consumption per extract and \(C \) is the control.

Statistical Analysis. The parameters LC₅₀ and its confidence limits were determined by logistic regression based on the concentration probit-mortality with the program XLSTAT-PRO v.7.5 for Windows (XLSTAT 2004). Mortality was evaluated under the semi-controlled conditions and repellency by ANOVA with the test HSD with a significance level \(P \leq 0.05 \) (Tukey 1949). The antifeeding effect was evaluated using the paired t test or Wilcoxon. Data from the bioassay mortality, repellency, and antifeeding effect on *D. neivai* in semi-controlled conditions were analyzed with SAS User v. 9.0 for Windows (SAS 2002).

Results

Mortality. The homogeneous pattern of response to higher concentrations indicated that the *Ci. sinensis, R. communis, N. tabacum*, and Ca. *annuum* caused higher mortality of *D. neivai* and lethal effect on this insect with variable values as estimated by the regression model (Table 1). The best results were obtained with concentrations of 20 and 24 g/liter of aforementioned extracts. The mortality of this insect between concentrations of the each extract showed adjustment by Probit \((X^2, P < 0.001) \). This value was lower with *A. indica \((X^2 = 11.92, P < 0.0006) \) and *A. absinthium \((X^2 = 81.77, P < 0.001) \). The mortality of *D. neivai* with the concentrations of *Ci. sinensis, R. communis, N. tabacum*, and Ca. *annuum* was lower compared with that of *A. indica* and *A. absinthium*. The mortality of *D. neivai* was higher and increased up to 3 days between the concentration tested with \(\sim 90\% \) from 72 to 144 h of exposure to the plant extracts *Ci. sinensis, R. communis, N. tabacum*, and Ca. *annuum* and 50% for *A. absinthium* and *A. indica* (Fig. 1).

The mortality of *D. neivai* was similar in semi-controlled conditions in the field with the estimated concentration for the LC₉₀ \((F_{1.28} = 4.85, P < 0.05) \) by Tukey test. The *Ci. sinensis* and *R. communis* showed lethal effects on this insect with 95.5 and 89.9% mortality, respectively, followed by *N. tabacum, Ca. annuum*, and *A. indica*, 74.4, 64.4, and 62.6%. The mortality rate was lower with *A. absinthium*, 46.6% (Fig. 2).

Repellent Effect. The repellency index was higher with *N. tabacum* (RI = 0.22), *Ca. annuum* (RI = 0.37), and *A. indica* (RI = 0.62). *Ci. sinensis* (RI = 0.9), *A. absinthium* (RI = 1), and *R. communis* (RI = 1.05) with values varying between treatments \((F_{1.28} = 8.65, P < 0.05) \) and forming different groups by Tukey test (Fig. 3).

Antifeeding Effect. The plant extracts showed high antifeeding activity for *D. neivai* (Table 2) with the amount of food consumed by adults of this insect differing according to the concentration. The consumption of exocarp of oil palm was lower with the estimated lethal concentration LC₅₀ and higher with the LC₀ with variations up to 95% FII. The FII of *R. communis* and *N. tabacum* was higher than with *A. absinthium*. Adults of *D. neivai* had significant response \((F_{1.28} = 8.65, P < 0.05) \) with *Ca. annuum, Ci. Sinensis*, and *A. indica* with moderate ingestion of these compounds (Table 3).

Discussion

Plant extracts have potential for integrated management of phytophagous insects in oil palm (Pérez and Iannacone 2006, 2008). The insecticidal activity of six plant extracts was evaluated against *D. neivai*, the lethal and sublethal effects were observed in the bioassays. The extracts *Ci. sinensis, R. communis, Ca. annuum*, and *N. tabacum* showed significant effect on adults of *D. neivai* with lethal effects in insects just after the exposure raising 100% mortality at 72 and 144 h. The dose–response bioassays showed increased toxicity of *D. neivai* with increasing concentrations and differing between *A. absinthium* and *A. indica*. Similar results were reported for beetles with increased concentration of plant extracts (Kim et al. 2003, Cerna-Chávez et al. 2010). *Ci. sinensis* was toxic to *Callosobruchus chinensis* (L.) and *Sitophilus oryzae* (L.) (Coleoptera: Curculionidae), *R. communis* to *Sitophilus zeamais* Motsch (Coleoptera: Curculionidae), *Ca. annuum*, and *N. tabacum* to larvae of *Lepidoptera* (Park et al. 2003, Vandenborre et al. 2010, Ahn et al. 2011). *A. indica* and *A. absinthium* extracts were not as active on *D. neivai*, but were lethal to many insect pests (Ahn et al. 1998, Scott et al. 2003, Kessler et al. 2006).

Table 1. Plant material used to prepare extracts for studies of their bioactivity against adults of *D. neivai* (Coleoptera: Chrysomelidae)

Family name	Scientific name	Tissue used	Date of collection
Asteraceae	*Ar. absinthium*	Leaves	Jan./2010
Euphorbiaceae	*R. communis*	Leaves	Jan./2010
Meliaceae	*A. indica*	Seeds	Jan./2010
Rutaceae	*C. sinensis*	Fruits	Feb./2010
Solanaceae	*C. annuum*	Fruits	Feb./2010
Solanaceae	*N. tabacum*	Leaves	Feb./2010
The plant extracts have repellent and attractive effects on *D. neivai*. *N. tabacum* and *C. annuum* showed repellent effect on *D. neivai*, while *C. sinensis*, *Ar. Absinthium*, and *R. communis* altered the behavior of this insect. The repellents compounds obtained of *N. tabacum* and *C. annuum* altered mating behavior, oviposition, and food preference of insects (Feeny et al. 1989, Jaenson et al. 2005, Delphia et al. 2007). The response to volatile plants can vary among arthropods. For example, volatile compounds found in orange fruit *Citrus aurantium* (L.) (Sapindales: Rutaceae) were attractive to *Anastrepha ludens* (Loew) (Diptera: Tephritidae) and repellent for *Culex pipiens* (Coquillett) (Diptera: Culicidae) (Won-Sik et al. 2002, Rasgado et al. 2009). In eucalpts leaves, the 1,8-cineol was not repellent to most insects (Pavela 2011). On the other hand, 1,8-cineol was attractive to orchid bees of the *Euglossina* genus (Williams and Whitten 1983). In our study, the repellent effect caused by *N. tabacum* and *Ca. annuum* can help disperse the populations of *D. neivai* and reduce damage on oil palm fruits. Different plants have been used as repellent against insect vectors of diseases, the use of *N. tabacum* is a powerful repellent against mosquito that causes malaria in humans while *Ca. annuum* is used to disperse weevil pest on stored products (Lale 1992, Karunamoorthi et al. 2009, Söukand et al. 2010).

The extracts of *N. tabacum*, *R. communis*, and *Ca. annuum* had high antifeeding effect ($P < 0.05$). Lethal concentration LC$_{90}$ caused greater inhibition on *D. neivai*. Secondary metabolites of feeding deterrents are chemicals that inhibit food behavior of insects (Schoonhoven et al. 2005). Compounds such as alkaloids, terpenoids, and phenolic compounds found in nature can inhibit the absorption of food by insects (Wei et al. 2000, Koul 2008). Feeding reduction or inhibition by

Fig. 1. Mortality of *D. neivai* (Coleoptera: Chrysomelidae) adults by concentration of *Ar. absinthium* (A), *A. indica* (B), *C. annuum* (C), *C. sinensis* (D), *N. tabacum* (E), and *R. communis* (F) during 15 days to calculate the LC$_{90-95}$ ($P < 0.0001$).
organic extracts or plant allelochemicals have been demonstrated for several insect orders. Aqueous extracts of R. communis leaves were active against C. chinensis (Upasani et al. 2003) and Spodoptera littoralis (Boisdouval) (Lepidoptera: Noctuidae) (Pavela et al. 2010). R. communis mixed with fatty acids had an indirect antifeeding effect on Atta sexdens (Hymenoptera: Formicidae) in symbiosis with the fungus Leucoagaricus gongylophorus (A, Moller) (Agaricales: Agarocaceae) (Biki et al. 2004). N. tabacum did not affect C. chinensis and C. maculatus (Khaliquezaman and Osman-Goni 2009), while the strongest effects were found on Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) (Musser et al. 2005). Antifeeding effect was found on Spodoptera frugipera (Smith), Helicoverpa zea (Boddie), Heliothis virescens (F.), and Heliothis subflexa (Gueneé) (Lepidoptera: Noctuidae) using Ca. annuum extracts (Ahn et al. 2011).

The selectivity of C. sinensis, R. communis, N. tabacum, and Ca. annuum may allow controlling one or more insect species or plants when applied simultaneously. The insecticide action of these plants can be due to synergism of compounds and its ability to penetrate the insect body through respiratory system. In addition, this too produced an enzymatic phagous-inhibition during digestion and as allelochemicals by interfering in chemical communication. C. sinensis, R. communis, N. tabacum, and Ca. annuum extracts have lethal and sublethal effects on D. neivai and with potential to manage populations of this insect.

Acknowledgments

We thank to Colombian Oil Palm Research Center (CENIPALMA), Oleaginosas Las Brisas (Colombia), Consejo Nacional de Desarrollo Cientifico e Tecnologico (Brasil), Coordenaçao de Aperfeiçamento de Pessoal de Nivel Superior (Brasil), and Fundação de Amparo a Pesquisa do Estado de Minas Gerais (Brasil).

References Cited

Abassy, M. A., S. A. M. Abdelgaleil, A. S. H. Belal, and A. A. Abdel Rasoul. 2007. Insecticidal, antifeedant and antifungal activities of two glucosides isolated from the seeds of Simmondsia chinensis. Ind. Crop. Prod. 26: 345–350.

Abbott, W. S. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18: 265–266.

Abou-Fakhr, H., E. M. H. Zournajian, and S. Talhouk. 2001. Efficacy of extracts of Melia azedarach L. callus, leaves and fruits against adults of the sweet potato whitefly Bemisia tabaci. J. Appl. Entomol. 125: 483–488.

Ahn, Y. J., S. B. Lee, H. S. Lee, and G. H. Kim. 1998. Insecticidal and acaricidal activity of carvacrol and b-thujaplicine derived from Thuyopsis dolabrata var. hondai sawdust. J. Chem. Ecol. 24: 81–90.

Ahn, S. J., F. R. Badenes-Pérez, and D. G. Heckel. 2011. A host–plant specialist, Helicoverpa armigera, is more tolerant to capsaicin from Capsicum annuum than other noctuid species. J. Insect Physiol. 57: 1212–1219.
Akhtar, Y., and M. Isman. 2004. Feeding responses of specialist herbivores to plant extracts and pure allelochemicals: effects of prolonged exposure. Entomologia Experimentalis et Applicata 111: 201–208.

Aldana, J. A., H. Calvache, J. E. Catáño, and J. Hernández. 2004. Aspectos biológicos y alternativas de control de *Attas sexdens* rubrofusus (Hymenoptera: Formicidae) y el symbiotic fungus *Leucoagaricus ggyrophorus*. Pest Manage. Sci. 60: 933–938.

Bourguet, D., A. Genissel, and M. Raymond. 2000. Insecticide resistance and dominance levels. *J. Econ. Entomol.* 93: 1588–1595.

Cerna-Chávez, E., L. Guevara, J. Landeros, M. H. Badii, Y. M. Ochoa, and V. Olalde. 2010. Evaluación de aceites y extractos vegetales para el control de *Sitophilus zeamais* x x en su efecto en la calidad de semilla de maíz. Revista de la Facultad de Ciencias Agrarias 42: 135–145.

Cheremenskaya, T. D., E. A. Stepanycheva, A. V. Shchenikova, and A. S. Chakaeva. 2010. Insectocarcidical and deterrent activities of extracts of Kyrgyzstan plants against three agricultural pests. Ind. Crop. Prod. 32: 157–163.

Delphía, C. M., C. M. Mescher, and C. M. D. Moraes. 2007. Induction of plant volatile emissions by herbivores with different feeding habits and the effects of induced defenses on host-plant selection by thrips. *J. Chem. Ecol.* 33: 997–1012.

Feeny, P., E. Stadler, I. Ahman, and M. Carter. 1989. Effects of plant odor on oviposition by the black swallowtail butterfly, *Papilio polyxenes* (Lepidoptera, Papilionidae). *J. Insect Behav.* 2: 803–827.

Genty, P. R., Desmier De Chenon, and J. Morin. 1978. Les ravages du palmer a huile en América Latina. *Élaguèens* 33: 326–420.

Haouas, D., F. Guido, B. H. K. Monia, and B. H. M. Habib. 2011. Efecto letal y subletal de las plantas sobre la mortalidad y repelencia de larvas de *Rhyynchopus palmarum* L., insecto plaga del pimiento *Bacillus gasipes* Kunth en la Amazonía del Perú. *Agricultura Técnica* 343: 66: 21–30.

Pérez, D., and J. Iannacone. 2008. Mortalidad y repelencia en *Eupalamides cyprassis* (Lepidoptera: Castniidae), plaga de la palma aceitera *Elaeis guineensis*, por efecto de diez extractos botánicos. Revista de la Sociedad Entomológica Argentina 67: 41–48.

Rasgado, M. A., E. A. Malo, L. Cruz-López, J. C. Rojas, and J. Toledo. 2009. Olfactory response of the Mexican fruit fly (Diptera: Tephritidae) to *Citrus aurantium* volatiles. *J. Econ. Entomol.* 102: 585–594.

SAS. 2002. The SAS system for windows, release 9.0. SAS Institute Inc. Cary, NC.

Schoonhoven, L. M., J. J. A. Van Loo, and M. Dicke. 2005. Insect–plant interactions, 2nd ed. Oxford University Press, Oxford.

Scott, I. M., H. Jensen, J. G. Scott, M. B. Isman, J. T. Arnason, and B. J. R. Philogene. 2003. Botanical insecticides for controlling agricultural pests: Piperamides and the Colorado potato beetle *Leptinotarsa decemlineata* Say (Coleoptera: Chrysomelidae). Arch. Insect Biochem. Physiol. 54: 212–225.

Simmonds, M. S. J., J. D. Manlove, and B. P. S. Khambay. 2002. Effects of selected botanical insecticides on the behavior and mortality of the glasshouse whitefly *Trialeurodes vaporariorum* and the parasitoid *Encarsia formosa*. Entomologia Experimentalis et Applicata 102: 39–47.

Söukand, R., R. Kalle, and I. Svanberg. 2010. Uninvited guests: traditional insect repellents in Estonia used against the clothes moth *Tinea bisselliella*, human flea *Pulex irritans* and bedbug *Cimex lectularius*. *J. Insect Sci.* 10: 150.

Staines, C. L. 1996. The Hispinae (Coleoptera: Chrysomelidae) of Nicaragua. Revista Nicaraguense de Entomología 37: 1–65.

Staines, C. L. 2002. The New World tribes and genera of hispines (Coleoptera: Chrysomelidae: Cassidinae). Proc. Entomol. Soc. Wash. 104: 721–784.

Tavares, W. S., T. Cruz, F. Petacci, S. L. Assis Júnior, S. Freitas, J. C. Zanuncio, and J. E. Serrão. 2009. Potential use of Asteraceae extracts to control *Spodoptera frugiperda* (Lepidoptera: Noctuidae) and selectivity to their parasitoids *Trichogramma pretiosum* (Hymenoptera: Trichogrammatidae) and *Telenomus remus* (Hymenoptera: Scelionidae). Ind. Crop. Prod. 30: 384–388.

Tukey, J. W. 1949. Comparing individual means in the analysis of variance. *Biometrics* 5: 99–114.

Upasani, S. M., H. M. Kotkar, P. S. Mendki, and V. L. Maheshwari. 2003. Partial characterization and insecticidal properties of *Ricinus communis* L. foliage flavonoids. Pest Manage. Sci. 59: 1349–1354.

Vandenborre, G., K. Groten, G. Smagghe, N. Lannoo, I. T. Baldwin, and E. M. Van Damme. 2010. *Nicotiana tabacum* as a model for the behavior of the house fly *Musca domestica*. *Phytochemistry* 71: 1222–1229.

Williams, N. H., and W. M. Whitten. 1983. Orchid floral fragrances and male euglossine bees: methods and advances in the last sesquidecade. *Biol. Bull. 164: 355–395.*

Wong-Sil, C., B. S. Park, S. K. Ku, and S. E. Lee. 2002. Repellent activities of essential oils and monoterpenes against *Culex pipiens* pallens. *J. Am. Mosquito Control Assoc.* 18: 348–351.

Williams, N. H., and W. M. Whitten. 1983. Orchid floral fragrances and male euglossine bees: methods and advances in the last sesquidecade. *Biol. Bull. 164: 355–395.*

Yeo, C. B., A. Kuntom, S. Dorasamy, M. R. Omar, M. Y. M. Nor, and M. R. M. Noh. 2006. Determination of acephate, methamidophos and monorchotrophs in crude palm oil. *Eur. J. Lipid Sci. Technol. 108: 960–964.*

Received 17 September 2012; accepted 2 March 2015.

5 MARTÍNEZ ET AL.: BIOACTIVITY OF PLANT EXTRACTS ON D. NEIVAI