Concern about addiction is associated with lower quality of life in patients with osteoarthritis: an exploratory, real-world data analysis

Louis P. Garrison1 · Patricia Schepman2 · Andrew G. Bushmakin2 · Rebecca L. Robinson3 · Leslie Tive2 · Jerry Hall3 · Mendwas Dzingina2 · James Jackson4 · Mia Berry4 · Joseph C. Cappelleri2 · Stuart Silverman5

Accepted: 5 June 2021 / Published online: 5 July 2021
© The Author(s) 2021

Abstract
Purpose To evaluate the relationship between self-reported concerns about becoming addicted to a medication and health-related quality of life (HRQoL) in patients with osteoarthritis (OA).
Methods This real-world study used patient-level cross-sectional survey data collected from the US Adelphi Disease Specific Programme (DSP). The DSP for OA selected 153 physicians who collected de-identified data on their next nine adult patients with OA. Each patient completed a disease-relevant survey, which included the Likert-scale question, “I am concerned about becoming addicted to my medicine,” (CAA) with responses ranging from “completely disagree” [1] to “completely agree” [5]. HRQoL was measured by the EQ-5D-5L index value and the EQ Visual Analogue Scale (VAS). A set of ordinary least squares regressions using HRQoL measures as outcomes and CAA as a continuous predictor were estimated. Standardized effect size (ES) was used to gauge the magnitude of effects.
Results A total of 866 patients with OA completed the survey (female, 61.2%; White, 77.7%; mean age, 64.2 years). Of the 775 patients who completed the CAA question, almost one-third responded that they “agree” (18%) or “completely agree” (11%), while 27% responded “completely disagree” and 20% “disagree.” Regression analyses found that patients who have concerns about medication addiction have significantly different EQ-5D-5L index values and EQ VAS scores compared with patients who do not have this concern (p < 0.0001).
Conclusion Our findings suggest that concern about medication addiction in patients with OA may have an impact on patient HRQoL, with more concerned patients reporting poorer HRQoL outcomes.

Keywords Opioids · Addiction · Quality of life · Osteoarthritis

Introduction

Osteoarthritis (OA) is a leading cause of pain and disability among older adults, and is estimated to affect over 27 million individuals in the United States, with further increases in prevalence expected due to an aging population and rising obesity rates [1–4]. OA joint pain, and the related functional limitations and reduced quality of life, account for substantial socioeconomic burden. Total aggregate healthcare expenditures for OA have been estimated at $185.5 billion annually in the United States and are expected to rise [5].

Effective treatment for the symptoms of OA is limited, but recent clinical guidelines recommend a multimodal approach to treat OA optimally, combining physical therapies with pharmacological interventions, such as acetaminophen, nonsteroidal anti-inflammatory drugs (NSAIDs), weak opioids, and other medicines [6–8]. The Osteoarthritis Research
Society International (OARSI) recently issued guidance strongly recommending against opioid use for OA-related pain [9], largely over concerns related to opioid addiction or dependency, and the most recent guidelines from the American College of Rheumatology/Arthritis Foundation additionally recommended their use only after other options had been exhausted [8]. Although controversial, opioids continue to be prescribed for the treatment of pain associated with OA, especially as pain intensity increases [10, 11].

In a previous US treatment preference study of a hypothetical, disease-modifying, pharmacological treatment for OA, patients with OA were willing to accept some degree of risk for adverse events to prevent worsening of OA [12]. However, perhaps due to growing awareness of the “opioid epidemic,” concern about possible addiction is becoming one of the key drivers of patient preferences [13]. In a recent US study of OA patient preferences, control of OA pain and symptoms and reduced treatment-related risk of physical dependency were the two most important attributes of a prospective new medicine for adult patients with moderate to severe OA and inadequate response to pain treatment [14].

Prominent health technology assessment organizations such as the public National Institute for Health and Care Excellence in the UK and the private Institute for Clinical and Economic Review in the US recommend the EQ-5D as the preferred measure for HRQoL effects in economic evaluation [15, 16]. In this analysis, we aim to evaluate the relationship between self-reported concerns about becoming addicted to a medicine and individual patient health-related quality of life (HRQoL) measured by (a) the EQ-5D-5L index value and (b) the EQ Visual Analogue Scale (EQ VAS) in patients with OA.

Methods

This real-world study used patient-level cross-sectional survey data collected between February 01, 2017 and May 31, 2017 from the US Adelphi Disease Specific Programme (DSP)™. The Adelphi DSP is a large, multinational platform designed to gather descriptive real-world data on the management of chronic diseases in routine clinical practice, based on physician and patient perspectives [17]. The Adelphi DSP methodology was granted exceptions from requiring ethics approval centrally by the Western Institutional Review Board as it was considered to pose minimal risk to patients and physicians.

Selected physicians (practicing in primary care, rheumatology, or orthopedic surgery and making treatment decisions for at least 10 patients with OA in a typical month) were identified from publicly available lists of healthcare professionals and asked to enroll up to nine consecutive patients and complete corresponding electronic patient record forms with de-identified data. Patients were eligible for inclusion if they had a confirmed diagnosis of OA, were aged 18 years or older, and had provided written informed consent. Patients were not required to be taking a prescription opioid. These participants then completed a patient self-completion survey relevant to OA, in which the patients could respond on a Likert scale of 1–5 to several questions.

For the purposes of this analysis, the question of interest was the item termed “Concern about addiction” (CAA) that was assessed by the patient’s response to the question “I am concerned about becoming addicted to my medicine.” The patient’s response to this question could range from 1 (“completely disagree”) to 5 (“completely agree”). Patients were also required to complete the EQ-5D-5L, a generic, patient-reported measure of health status [18]. The EQ-5D-5L instrument comprises (a) a short descriptive system questionnaire with five dimensions (mobility, self-care, usual activities, pain/discomfort, and anxiety/depression), with five levels of impairment responses, and (b) a health state VAS (0 = worst imaginable health state, 100 = best imaginable health state). Patient responses were linked to a “value set” from the general US population on the five dimensions to generate a utility index value that represents an individual’s health state with anchors at 0 (a state as bad as being dead) to 1 (full health). This index also allows for negative utility values, which theoretically correspond to health states worse than death based on population-assigned weights [19]: states worse than death in patients with OA have been previously reported to be associated with high disability, greater pain severity, and mental distress, as well as some clinical measures such as swollen joint counts [20].

The EQ VAS provides an alternative way for an individual to rate their overall current health.

Statistical analyses

A set of ordinary least squares (OLS) regressions using HRQoL measures (EQ-5D-5L index value and EQ VAS) as outcomes and CAA as a continuous predictor were developed to estimate the relationship between these measures [21]. The relationship between EQ-5D-5L index value as a predictor and EQ VAS as the outcome was also studied. Finally, with consideration of the EQ VAS as an alternative, patient-specific, and perhaps more general indicator of HRQoL, an OLS regression with the EQ VAS as an outcome and with the EQ-5D-5L index value and the CAA as two independent continuous predictors was estimated in this sample. As a sensitivity analysis, the relationship between CAA and EQ-5D-5L index/EQ VAS was also assessed using a model with CAA as a categorical predictor to explore the linearity assumption.

We used standardized effect size (ES) to gauge the magnitude of effects with 0.2 standard deviation (SD) units...
considered “small,” 0.5 “medium,” and 0.8 “large” [22]. ESs were calculated as the difference of means of the outcome scores (EQ-5D-5L index value or EQ VAS) from the regression model corresponding to a one category difference on CAA and also as the difference between lowest and highest CAA category, divided by the SD of the corresponding outcome variable.

Results

A total of 866 patients completed the survey with the majority being female ($n=530, 61.2\%$), Caucasian/White ($n=673, 77.7\%$), and with a mean age of 64.2 years (SD: 11.7). The patient responses to the survey question “I am concerned about becoming addicted to my medicine” were well distributed across categories. Of the 775 who provided a response to this survey question, almost half either disagreed (20.3\%) or completely disagreed (27.5\%); however, almost three in ten patients either agreed (18.2\%) or completely agreed (10.7\%) with the statement (the remaining patients neither disagreed or agreed [23.4\%]).

When assessing the relationship between CAA and EQ-5D-5L index value using CAA as a continuous predictor variable, OLS regression demonstrated a significant relationship ($n=762$; R-squared: 0.0359; intercept: 0.82; slope: -0.029; $p<0.0001$ for both) between variables (Fig. 1). Each category increase in the CAA response was associated with a reduction of 0.029 in EQ-5D-5L index value, equivalent to a standardized ES of 0.14, which can be interpreted as a “trivial-to-small” effect. The difference in means of 0.11 ($p<0.0001$) in the EQ-5D-5L index value linked to the difference between the lowest (“Completely disagree”) and the highest (“Completely agree”) CAA category corresponds to the ES of 0.57 (considered a medium effect). Using CAA as a categorical predictor indicated that a linear approximation is appropriate (Fig. 1). A significant correlation of 0.19 ($p<0.0001$) was observed between CAA and EQ-5D-5L index value.

When assessing the relationship between CAA and EQ VAS using CAA as a continuous predictor variable, OLS regression demonstrated a significant relationship ($n=761$; R-squared: 0.0392; intercept: 81.3; slope: -2.6; $p<0.0001$ for both) between variables (Fig. 2). Each category increase in CAA response category was associated with a reduction of 2.6 points in EQ VAS (ES: 0.15). The difference in EQ VAS means linked to the difference between lowest and highest CAA category was 10.5 ($p<0.0001$), representing an ES of 0.59. Using CAA as a categorical predictor indicated that a linear approximation is appropriate (Fig. 2). A significant correlation of 0.20 ($p<0.0001$) was observed between CAA and EQ VAS (Fig. 2).

A significant and robust relationship between EQ VAS as an outcome and EQ-5D-5L index value as a predictor was observed ($n=835$; R-squared: 0.4695; intercept: 29.1; slope: 60.7; $p<0.0001$ for both), with a significant correlation between the two measures (0.69; $p<0.0001$) (Fig. 3). Using EQ-5D-5L index value as a categorical predictor indicated that a linear approximation is appropriate.

When EQ-5D-5L index value and CAA scores were used simultaneously as predictors of EQ VAS, the effect of CAA (after adjusting for EQ-5D-5L index) remained significant ($n=754$; R-squared: 0.4676; slope: -0.97; $p=0.0071$) (Table 1). In this case, the difference in EQ VAS means corresponding to the difference between lowest and highest CAA category was 3.89, with an associated
ES of 0.22, which would be regarded as “small.” This is, however, equivalent to −0.039 on a utility scale of 0–1.0 (and that allows for negative utility values, which theoretically correspond to health states worse than death based on population-assigned weights [19]), which would be regarded as significant in utility and economic terms. Lastly, after adjustment in this model for age, gender, and ethnicity, the effect of CAA was still statistically significant ($p = 0.0129$) and very similar in magnitude (slope: −0.92).

Fig. 2 Relationship between EQ VAS and CAA score. CAA, “concern about addiction” survey item; VAS, visual analogue scale

Fig. 3 Relationship between EQ VAS vs EQ-5D-5L index value. VAS, visual analogue scale
system as core and select additional dimensions to improve
could enable researchers to retain the EQ-5D descriptive
The development of these bolt-on item(s) to the EQ-5D
"bolt-on" to existing generic preference-based measures.
preference data is the development of new dimensions to
important aspects of health for some conditions [24, 25].
impact of new interventions in these patients [23]. EQ-5D
specifically aimed (after appropriate psychometric valida-
tion). One potential solution for this would be to introduce
products that reduce concerns about addiction/depend-
currently rely on the EQ-5D-5L may underestimate the value
health technology assessment authorities who
implied improved patient HRQoL and a utility gain, resulting
(CAA) and one of their main fears [30]. Likewise, primary care physi-
patients was required to reduce this bias. Key data related
to patient concern over medication addiction was based on
studies have shown consistent statistical rela-
tionships between the two with demonstrated goodness of fit
[28]. It would be worthwhile to explore the robustness of this
CAA effect with other measurement instruments.

Discussion

This analysis used patient-completed questionnaire data
consisting of a Likert survey question about CAA and one
of the well-established generic HRQoL measures, the
EQ-5D-5L. In doing so, we found that patients with a diag-
osis of OA who have concerns about medication addiction
(as indicated by self-reported CAA) have significantly dif-
ferent EQ-5D-5L index and EQ VAS scores compared with
patients who do not express such concerns. Furthermore,
when EQ-5D-5L index and CAA measures were used simultane-
ously to predict EQ VAS, CAA had a small, incremental
predictive effect beyond that observed for EQ-5D-5L index.
This suggests that CAA may have an additional negative
impact, which might not be reflected in EQ-5D-5L index
values. Such a finding could be of clinical and economic
importance.

Based on these results, it could be hypothesized that an
alternative, effective, non-opioid, or otherwise non-addic-
tive, pain relief therapy would be accompanied by improved
CAA Likert scores of patients receiving or considering such
a therapy (i.e. concern about addiction and consequent CAA
scores would presumably be alleviated by availability of an
equally efficacious non-addictive therapy): this would
imply improved patient HRQoL and a utility gain, resulting
in greater quality-adjusted life years gained in an economic
"cost-utility analysis." Based on this, it may be reasonable
to assume that health technology assessment authorities who
currently rely on the EQ-5D-5L may underestimate the value
of products that reduce concerns about addiction/depend-
ency. One potential solution for this would be to introduce
a "bolt-on" question to the EQ-5D-5L for patients with OA,
specifically aimed (after appropriate psychometric valida-
tion) at addressing these concerns in assessments of the
impact of new interventions in these patients [23]. EQ-5D
has been criticized for being insensitive or failing to capture
important aspects of health for some conditions [24, 25].
One possible solution on how best to obtain health state
preference data is the development of new dimensions to
"bolt-on" to existing generic preference-based measures.
The development of these bolt-on item(s) to the EQ-5D
could enable researchers to retain the EQ-5D descriptive
system as core and select additional dimensions to improve
the content validity of the instrument for a particular condi-
tion. Several studies have investigated the inclusion of
additional dimensions to the EQ-5D, including a cognitive
dimension [26] and a sleep dimension [27], demonstrating
a significant impact on health state values of EQ-5D in the
case of the cognitive dimension study. Alternatively, given
the distribution of CAA in a target population, the estimates
here could be used to approximate the value of a shift to no
concern about addiction.

To our knowledge, this study is the first to use rigorous
methodologies to estimate the “disutility” (i.e. negative
impact on patient HRQoL) of concern about medication
addiction in OA. Of note, several different measurement
instruments are available in weighing the impact of CAA on
patient HRQoL. One of the most widely used disease-spe-
cific measures of OA symptoms is the Western Ontario and
McMaster Universities Osteoarthritis Index (WOMAC)².
While the WOMAC is commonly used in clinical studies, it
is not suitable for direct use in conventional economic evalu-
ation because WOMAC scores provide neither a cardinal nor
a preference-based index scale. Therefore, economic evalua-
tions sometimes rely on mapping from WOMAC to predict
EQ-5D-5L and studies have shown consistent statistical rela-
thionships between the two with demonstrated goodness of fit
[28]. It would be worthwhile to explore the robustness of this
CAA effect with other measurement instruments.

There is growing awareness of the importance of includ-
ing the patient perspective when assessing clinical outcomes
and informing drug development decisions [29]. In this
study, nearly one-third of patients with OA were concerned
about addiction to medication. Although the concern may
not be limited to opioids, patients being treated for chronic
pain have reported drug addiction associated with opioids as
one of their main fears [30]. Likewise, primary care physi-
cians report concerns of drug addiction when prescribing
opioids for chronic pain [31]. These concerns, along with the
potential negative impact on patient HRQoL, highlight the
importance of developing new efficacious and safe medica-
tions without addictive properties for the treatment of OA.

This exploratory analysis has certain limitations. Patients
were drawn from a small number of US physicians and spe-
cialties, and may not be representative of all physicians in
the US who treat OA. In turn, this may have resulted in
patient selection bias, although the selection of consecutive
patients was required to reduce this bias. Key data related
to patient concern over medication addiction was based on
a response from one Likert survey question. Furthermore,
patient concerns about addiction or dependence may extend
beyond opioids to other agents used to treat pain, such as

| Table 1 Predicting EQ VAS with EQ-5D-5L index value and CAA |
|-----------------|-----------------|-----------------|
| Effect | Estimate | Standard error | p value |
| Intercept | 33.56 | 2.20 | < 0.0001 |
| EQ-5D-5L | 58.41 | 2.38 | < 0.0001 |
| CAA | – 0.97 | 0.36 | 0.0071 |

CAA “concern about addiction” survey item
VAS visual analogue scale

1 © 1996 Nicholas Bellamy. WOMAC® is a registered trademark of Nicholas Bellamy (CDN, EU, USA).

2 Springer
benzodiazepines or antidepressants. In the case of antidepressants, the management of withdrawal symptoms upon discontinuation can be difficult [32, 33]. Lastly, although a significant relationship was demonstrated between CAA and HRQoL, this does not confirm causality or specifically that HRQoL genuinely differs as a result of the level of one’s CAA. For example, individuals with poorer HRQoL may be more likely to express CAA. In such cases, it is not necessarily that CAA impacts HRQoL per se, but that poorer HRQoL is linked to greater CAA.

In conclusion, our findings suggest that concern about medication addiction in patients with OA may have an impact on patient HRQoL, with patients more concerned with addiction possibilities reporting poorer HRQoL outcomes. Additionally, it may be the case that some aspects of CAA in these patients are not reflected by the standard EQ-5D-5L index, which is often used in economic evaluations presented to health technology assessment authorities.

Acknowledgements The results of this study were presented in part at the PAINWeek Live Virtual Conference, September 11–13, 2020.

Author Contributions Study design: AGB, JCC, LPG, PS, RLR. Data acquisition: AGB, JCC, MB, JJ. Data analysis: AGB, JCC, LPG, PS. Data interpretation: AGB, JCC, MD, LPG, JH, RLR, PS, SS, LT. Drafting and revising the manuscript: all. Approval of the final version to be submitted: all.

Funding This study was sponsored by Pfizer and Eli Lilly and Company. Medical writing support was provided by Diane Hoffman, PhD, of Engage Scientific Solutions, and was funded by Pfizer and Eli Lilly and Company.

Data availability Upon request, and subject to certain criteria, conditions, and exceptions (see https://www.pfizer.com/science/clinical-trials/trial-data-and-results for more information), Pfizer will provide access to individual de-identified participant data from Pfizer-sponsored global interventional clinical studies conducted for medicines, vaccines, and medical devices (1) for indications that have been approved in the US and/or EU or (2) in programs that have been terminated (i.e. development for all indications has been discontinued). Pfizer will also consider requests for the protocol, data dictionary, and statistical analysis plan. Data may be requested from Pfizer trials 24 months after study completion. The de-identified participant data will be made available to researchers whose proposals meet the research criteria and other conditions, and for which an exception does not apply, via a secure portal. To gain access, data requestors must enter into a data access agreement with Pfizer.

Declarations

Conflict of interest Louis P. Garrison and Stuart Silverman received consulting fees associated with this study from Pfizer and Eli Lilly and Company. Patricia Schepman, Andrew G. Bushmakin, Leslie Tive, Mendwas Drzingina, and Joseph C. Cappelleri are employees and stockholders of Pfizer Inc. Rebecca L. Robinson and Jerry Hall are employees and stockholders of Eli Lilly and Company. James Jackson and Mia Berry are employees of Adelphi Real World, who were paid consultants to Pfizer and Eli Lilly and Company with respect to this study.

Ethical approval The OA DSP received a waiver by the Western Institutional Review Board.

Informed consent All participants (physicians and patients) provided informed consent. All authors approved the final version of the manuscript to be published.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Cisternas, M. G., Murphy, L., Sacks, J. J., Solomon, D. H., Pasta, D. J., & Helmick, C. G. (2016). Alternative methods for defining osteoarthritis and the impact on estimating prevalence in a US population-based survey. Arthritis Care and Research (Hoboken), 68(5), 574–580.

2. Lawrence, R. C., Felson, D. T., Helmick, C. G., Arnold, L. M., Choi, H., Deyo, R. A., & Gabriel, S. (2008). Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheumatism, 58(1), 26–35.

3. Neogi, T., & Zhang, Y. (2013). Epidemiology of osteoarthritis. Rheumatic Diseases Clinics of North America, 39(1), 1–19.

4. O’Neill, T. W., McCabe, P. S., & McBeth, J. (2018). Update on the epidemiology, risk factors and disease outcomes of osteoarthritis. Best Practice & Research Clinical Rheumatology, 32(2), 312–326.

5. Kotlarz, H., Gunnarsson, C. L., Fang, H., & Rizzo, J. A. (2009). Insurer and out-of-pocket costs of osteoarthritis in the US: Evidence from national survey data. Arthritis and Rheumatism, 60(12), 3546–3553.

6. Kloppenburg, M., Kroon, F. P. B., Blanco, F. J., Doherty, M., Dziedzic, K. S., Greibrok, E., Haugen, I. K., Herrero-Beaumont, G., Jonsson, H., Kjekshus, I., Maheu, E., Ramonda, R., Ritt, M. J. P., Smeets, W., Smolen, J. S., Stamm, T. A., Szekanecz, Z., Wittoek, R., & Carmona, L. (2019). 2018 update of the EULAR recommendation for the management of hand osteoarthritis. Annals of the Rheumatic Diseases, 78(1), 16–24.

7. Bruyère, O., Cooper, C., Pelletier, J., Branco, J., Brandi, M. L., Guillemin, F., Hochberg, M. C., Kanis, J. A., Kvien, T. K., Martel-Pelletier, J., Rizzoli, R., Silverman, S., & Reginster, J. (2014). An algorithm recommendation for the management of knee osteoarthritis in Europe and internationally: A report from a task force of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Seminars in Arthritis and Rheumatism, 44(3), 253–263.

8. Kolaisinski, S. L., Neogi, T., Hochberg, M. C., Oatis, C., Guyatt, G., Block, J., Callahan, L., Copenhaever, C., Dodge, C., Felson, D., Gellar, K., Harvey, W. F., Hawker, G., Herzig, E., Kwoh, C. K., Nelson, A. E., Samuels, J., Scanzello, C., White, D., … Roston, J. (2020). 2019 American College of Rheumatology/Arthritis Foundation guideline for the management of osteoarthritis of the
19. Pickard, A. S., Law, E. H., Jiang, R., Pullenayegum, E., Shaw, J. S., Abbott, J. H., Bhandari, M., Blanco, F. J., Espinosa, R., Haugen, I. K., Lin, J., Mandl, L. A., Moilanen, E., Nakamura, N., Snyder-Mackler, L., Trojan, T., Al-Kindi, S., Angus, M., Aljabbar, S., Almeida, S., J., & Al-Kindi, S. (2019). OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthritis and Cartilage, 27(11), 1578–1589.

20. Nalamachu, S. R., Robinson, R. L., Viktrup, L., Cappelleri, J. C., Bushmakin, A. G., Tive, L., Mellor, J., Hatchell, N., & Jackson, J. (2020). Multimodal treatment patterns for osteoarthritis and their relationship to patient-reported pain severity: A cross-sectional survey in the United States. Journal of Pain Research, 13, 3415–3425.

21. Huizinga, J., Stanley, E., Song, S., Sullivan, J., Katz, J., & Losina, E. (2019). Direct medical and societal cost of opioid use in symptomatic knee osteoarthritis patients in the United States [abstract]. Arthritis Care & Research, 71(Suppl 10) https://acrabstracts.org/abstract/direct-medical-and-societal-cost-of-opioid-use-in-symptomatic-knee-osteoarthritis-patients-in-the-united-states/. Accessed 30 Nov 2020.

22. Fraenkel, L., Suter, L., Cunningham, C. E., & Hawker, G. (2014). Understanding preferences for disease-modifying drugs in osteoarthritis. Arthritis Care & Research (Hoboken), 66(8), 1186–1192.

23. Mulhacher, A. C., Junker, U., Juhnke, C., Stemmler, E., Kohlmann, T., Leverkus, F., & Nißling, M. (2015). Chronic pain patients’ treatment preferences: A discrete-choice experiment. The European Journal of Health Economics, 16(6), 613–628.

24. Turk, D., Boeri, M., Abraham, L., Atkinson, J., Bushmakin, A. G., Cappelleri, J. C., Hauber, B., Klein, K., Russo, L., Viktrup, L., & Walsh, D. (2020). Patient preferences for osteoarthritis pain and chronic low back pain treatments in the United States: A discrete-choice experiment. Osteoarthritis and Cartilage, 28(9), 1202–1213.

25. Institute for Clinical and Economic Review. 2020–2023 Value Assessment Framework, January 31, 2020. https://icer-review.org/wp-content/uploads/2020/10/ICER_2020_2023VALUEASSESSMENTF2020.pdf Accessed 30 Nov 2020.

26. National Institute for Health and Care Excellence. Guide to the Methods of Technology Appraisal, April 4, 2013. https://www.nice.org.uk/process/pmg9/resources/guide-to-the-methods-of-technology-appraisal-2013-pdf-207975843781 Accessed 30 Nov 2020.

27. Anderson, P., Benford, M., Harris, N., Karavati, M., & Piercy, J. (2008). Real-world physician and patient behaviour across countries: Disease-specific programmes—a means to understand. Current Medical Research and Opinion, 24(11), 3063–3072.

28. EuroQol Research Foundation. EQ-5D-5L User Guide, 2019. https://euroqol.org/publications/user-guides. Accessed 25 Oct 2020.

29. Pickard, A. S., Law, E. H., Jiang, R., Pullenayegum, E., Shaw, J. W., Xie, F., Oppe, M., Boye, K. S., Chapman, R. H., Gong, C. L., Balch, A., & Busschbach, J. J. V. (2019). United States valuation of EQ-5D-5L health states using an international protocol. Value in Health, 22(8), 931–941.

30. Gaujoux-Viala, C., Fautrel, B., Guillemin, F., Filipo, R. M., Bourgeois, P., & Rat, A. C. (2013). Who are the patients with early arthritis with worse than death scores on the EQ-SD? Results from the ESPOIR cohort. Rheumatology (Oxford), 52(5), 832–838.

31. Kleinbaum, D. G., Kupper, L. L., Nizam, A., & Rosenberg, E. S. (2013). Applied regression analysis and other multivariable methods (5th ed.). Cengage Learning.

32. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.

33. Longworth, L., Yang, Y., Young, T., Mulher, B., Hernández-Alava, M., Mukuria, C., Rowen, D., Tosh, J., Tsuchiya, A., Evans, P., Deviance Keetharuth, A., & Brazier, J. (2014). Use of generic and condition-specific measures of health-related quality of life in NICE decision-making: A systematic review, statistical modelling and survey. Health Technology Assessment, 18(9), 1–224.

34. Bannuru, R. R., Osani, M. C., Vaysbrot, E. E., Arden, N. K., Ben¬nell, K., Bierma-Zeinstra, S. M. A., Kraus, V. B., Lohmander, L. S., Abbott, J. H., Bhandari, M., Blanco, F. J., Espinosa, R., Haugen, I. K., Lin, J., Mandl, L. A., Moilanen, E., Nakamura, N., Snyder-Mackler, L., Trojan, T., … McAlindon, T. E. (2019). OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthritis and Cartilage, 27(11), 1578–1589.

35. Kleinbaum, D. G., Kupper, L. L., Nizam, A., & Rosenberg, E. S. (2013). Applied regression analysis and other multivariable methods (5th ed.). Cengage Learning.

36. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.

37. Longworth, L., Yang, Y., Young, T., Mulher, B., Hernández-Alava, M., Mukuria, C., Rowen, D., Tosh, J., Tsuchiya, A., Evans, P., Deviance Keetharuth, A., & Brazier, J. (2014). Use of generic and condition-specific measures of health-related quality of life in NICE decision-making: A systematic review, statistical modelling and survey. Health Technology Assessment, 18(9), 1–224.

38. Bannuru, R. R., Osani, M. C., Vaysbrot, E. E., Arden, N. K., Ben¬nell, K., Bierma-Zeinstra, S. M. A., Kraus, V. B., Lohmander, L. S., Abbott, J. H., Bhandari, M., Blanco, F. J., Espinosa, R., Haugen, I. K., Lin, J., Mandl, L. A., Moilanen, E., Nakamura, N., Snyder-Mackler, L., Trojan, T., … McAlindon, T. E. (2019). OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthritis and Cartilage, 27(11), 1578–1589.

39. Kleinbaum, D. G., Kupper, L. L., Nizam, A., & Rosenberg, E. S. (2013). Applied regression analysis and other multivariable methods (5th ed.). Cengage Learning.

40. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates.

41. Longworth, L., Yang, Y., Young, T., Mulher, B., Hernández-Alava, M., Mukuria, C., Rowen, D., Tosh, J., Tsuchiya, A., Evans, P., Deviance Keetharuth, A., & Brazier, J. (2014). Use of generic and condition-specific measures of health-related quality of life in NICE decision-making: A systematic review, statistical modelling and survey. Health Technology Assessment, 18(9), 1–224.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.