A High Quality Genome for *Mus spicilegus*, a Close Relative of House Mice with Unique Social and Ecological Adaptations

Matthew B. Couger,* Lena Arévalo,† and Polly Campbell†,*
*High Performance Computing Center, and †Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078
ORCID IDs: 0000-0002-0681-0392 (L.A.); 0000-0001-7660-9814 (P.C.)

ABSTRACT Genomic data for the closest relatives of house mice (*Mus musculus* species complex) are surprisingly limited. Here, we present the first complete genome for a behaviorally and ecologically unique member of the sister clade to house mice, the mound-building mouse, *Mus spicilegus*. Using read cloud sequencing and de novo assembly we produced a 2.50 Gbp genome with a scaffold N50 of 2.27 Mbp. We constructed >25,000 gene models, of which the majority had high homology to other *Mus* species. To evaluate the utility of the *M. spicilegus* genome for behavioral and ecological genomics, we extracted 196 vomeronasal receptor (VR) sequences from our genome and analyzed phylogenetic relationships between *M. spicilegus* VRs and orthologs from *M. musculus* and the Algerian mouse, *M. spretus*. While most *M. spicilegus* VRs clustered with orthologs in *M. musculus* and *M. spretus*, 10 VRs with evidence of rapid divergence in *M. spicilegus* are strong candidate modulators of species-specific chemical communication. A high quality assembly and genome for *M. spicilegus* will help to resolve discordant ancestry patterns in house mouse genomes, and will provide an essential foundation for genetic dissection of phenotypes that distinguish commensal from non-commensal species, and the social and ecological characteristics that make *M. spicilegus* unique.

As the premier mammalian model system in biomedical, evolutionary, and quantitative genetics, the genomic and bioinformatic resources for house mice (*Mus musculus* species complex) are unparalleled in mammals (Mouse Genome Sequencing Consortium et al. 2002; Valdar et al. 2006; Keane et al. 2011; Nicod et al. 2016; Morgan et al. 2016; Eppig et al. 2017). In contrast, genomic resources for the closest relatives of house mice (*Mus musculus* species complex) are unparalleled in mammals (Mouse Genome Sequencing Consortium et al. 2002; Valdar et al. 2006; Keane et al. 2011; Nicod et al. 2016; Morgan et al. 2016; Eppig et al. 2017). In contrast, genomic resources for the closest relatives of house mice (*Mus musculus* species complex) are unparalleled in mammals (Mouse Genome Sequencing Consortium et al. 2002; Valdar et al. 2006; Keane et al. 2011; Nicod et al. 2016; Morgan et al. 2016; Eppig et al. 2017).

Copyright © 2018 Couger et al.
doi: https://doi.org/10.1534/g3.118.200318
Manuscript received April 12, 2018; accepted for publication May 9, 2018; published Early Online May 24, 2018.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Supplemental material available at Figshare: https://doi.org/10.25387/g3.6137465.
†Corresponding author: 501 Life Sciences West, Stillwater, OK 74078; E-mail: polly.campbell@okstate.edu

KEYWORDS de novo genome assembly mound-building mouse *Mus spicilegus* read cloud vomeronasal receptors

includes *M. spicilegus*, *M. macedonicus*, and *M. cypriacus* (Suzuki et al. 2004; 2013; Macholán et al. 2012). Whereas phylogenies based on a small number of loci have placed the Algerian mouse, *M. spretus*, as basal to both clades (Macholán et al. 2012; Suzuki et al. 2013), recent analysis using whole exome sequences place *M. spretus* as the basal member of the clade containing *M. spicilegus* (Sarver et al. 2017).

The availability of a medium coverage (20x) genome for *M. spretus* (Keane et al. 2011) has provided key insight into genome structure and molecular evolution in house mice (e.g., Nelläker et al. 2012; Wynn et al. 2012; Baker et al. 2015). However, *M. spretus* has a history of introgression with house mouse subspecies, *M. m. domesticus* (Song et al. 2011; Liu et al. 2015), and ~12% of loci in *M. musculus* subspecies genomes place *M. spretus* within the house mouse clade (Keane et al. 2011). Both of these factors may complicate analyses using only *M. spretus* as a close outgroup to house mice. Moreover, complete genome sequences for additional Eurasian *Mus* species will enable genetic dissection of the ecological and behavioral adaptations that differentiate aboriginal from commensal species. The power of genomic data for a suite of ecologically diverse congeners is illustrated by the Drosophila...
12 genomes project (Drosophila 12 Genomes Consortium et al. 2007), and the wide applications of these resources (e.g., Haerty et al. 2007; Croset et al. 2010; Nourmohammad et al. 2017).

Here, we present the first complete genome sequence for the mound-building mouse, *M. spicilegus*. This Eastern European species occurs from the Austro-Hungarian border, east to the Ukraine and south to the Black Sea, with a disjunct distribution in Montenegro, Albania, and Greece (Coroiu et al. 2016) (Figure 1). We chose *M. spicilegus* for three main reasons. First, given historic introgression and moderate phylogenetic discordance between *M. musculus* lineages and *M. spreitus*, the inclusion of another close relative of house mice is desirable for resolution of ancestry patterns across house mouse genomes (e.g., Keane et al. 2011). Second, both *M. spicilegus* and *M. spreitus* exhibit behaviors consistent with social monogamy, including paternal care (Patris and Baudoin 2000; Cassaing et al. 2010). Yet male reproductive phenotypes suggest that the opportunity for sperm competition in both species is significantly higher than in house mice (Gómez Montoto et al. 2011), in which female multiple mating is common (Dean et al. 2006; Thonhauser et al. 2010). Complete genome sequences for both *M. spicilegus* and *M. spreitus* will facilitate work on the genetic basis of these intriguing observations. Third, behaviors and life-history traits associated with over-winter survival in *M. spicilegus* are unique among Eurasian *Mus* and completely unstudied at the genetic level.

As the species’ common name suggests, *M. spicilegus* builds large mounds of soil and vegetation that serve a thermoregulatory function (Szenczi et al. 2011; 2012). Mounds, and the complex burrow systems they protect, are constructed in the autumn by young of the year that spend the winter underground and delay reproduction until the following spring (Garza et al. 1997; Poteaux et al. 2008; Szenczi et al. 2011). Mound and burrow construction takes several days to weeks and is thought to involve division of labor (Hurtado et al. 2013), a key feature of cooperative behaviors (Beschers and Fewell 2001). Higher within vs. between mound relatedness based on eight microsatellites suggest that cooperative mound construction is favored by kin selection (Garza et al. 1997). The availability of a genome for *M. spicilegus* will facilitate larger scale analyses of relatedness and population structure, and exploration of the genetic basis of behaviors unique to this species.

Materials and Methods

Strain selection, library creation and sequencing

We sequenced the genome of a male *M. spicilegus* from the wild-derived strain, ZRU. The strain was developed at the Wild Mouse Genetic Repository (Montpellier, France) using wild-caught founders from Kalomoyevka, Ukraine, captured in 1982. Very high molecular weight DNA was isolated from liver tissue using pulse field electrophoresis for 10x Genomics high throughput linked read sequencing. Libraries were prepared using the Chromium Genome v2 Library Kit and were barcode for linking using the 10x Chromium microfluidic platform. Chromium linked libraries (Spies et al. 2017) were sequenced on the Illumina HiSeq 2500 platform with 150 paired end chemistry. Sequencing generated a total of 713.5 million reads (107 Gbp).

To obtain maximal coverage of expressed genes for transcriptome assembly we collected liver, heart, lung, brain, gonad and salivary gland from the same male and from one female *M. spicilegus*. Tissue was homogenized in Qiazol reagent (Qiagen) with a hand held rotor, and total RNA was extracted using the RNeasy Universal Kit (Qiagen) according to the manufacturer’s instructions. RNA was stored at -80° until processing for Illumina sequencing.

All RNA sequencing libraries were prepared with the Illumina NEBNext Ultra RNA Library Prep Kit according to the manufacturer’s protocol. Libraries were sequenced on the Illumina HiSeq 4000 platform with 150 paired end chemistry. All Illumina generated data for both the genome and transcriptome were quality filtered using standard Illumina recommended quality settings.

Genome assembly, RNA-seq, genome annotation, and comparative genomics

Genomic linked chromosome reads were assembled using the Supernova assembly software version 1.1.5 (Weisenfeld et al. 2017). FASTQ linked reads were deconvoluted using the Long Ranger program (10x Genomics) and Illumina’s bcl2fastq software. Supernova was used to assemble the barcoded reads into phased scaffolds. Final scaffolds were produced using Supernova mkoutput pseudohap option. The resulting phased assembly had a size of 2.50 Gbp and was used for all downstream gene calling and subsequent analysis. All generated RNA-seq reads were de novo assembled using the RNA assembly program Trinity (Grabherr et al. 2011). Run time settings included a minimum contig length of 200bp, 50x coverage read depth normalization, and no use of jaccard clip. All genomic and transcriptome assemblies were conducted on the XSEDE (Towns et al. 2014) supercomputer Bridges, operated by the Pittsburgh Supercomputing Center.

Peptide sequences were called from the Trinity assembly using the reading frame prediction program Transdecoder (Haas et al. 2013). A minimum peptide length of 100 amino acids was used as a length cutoff. Transcript construction, both for final gene model creation and for the training of ab initio gene calling, was accomplished by aligning the assembled Trinity transcripts onto the genome using the transcript alignment program PASA2 (Haas et al. 2003), which leverages the EST alignment program GMAP (Wu and Watanabe 2005). PASA alignment was conducted using the gmap alignment software with an average alignment identity of >95% and minimum percent alignment of >75%. Cufflinks (Trapnell et al. 2010) based gene models, which were integrated with PASA2, were produced using the standard Cufflinks protocol with a maximum bundle length of 6,500,000. High quality PASA2 transcript models were used to train the gene calling program Augustus (Stanke et al. 2006) for exon/intron boundary calling for ab initio predictions. Ab initio models were generated using the trained Augustus species parameters (Hoff and Stanke 2013) with hints provided by Blat transcript

![Figure 1](image-url)
Figure 1 The geographic distribution of the mound-building mouse, *Mus spicilegus*. Inset: Mound-building mice are highly social and exhibit natural burrowing behavior under laboratory conditions. Au, Austria; Hu, Hungary; Se, Serbia; Bu, Bulgaria; M, Moldova; A, Albania; G, Greece. Distribution based on Coroiu et al. (2016). Photo, AG Ophir.
alignments (Kent 2002). Blat alignment hints were produced with the following runtime settings: -stepSize = 5 -repMatch = 2253 -minScore = 0 -minIdentity = 0. Protein to genome alignments were created using MouseGRCM38.p5 proteins and NCBI Blast+ (Camacho et al. 2009) with the assembled genome. All PASA2 transcript assemblies, protein to genome alignments, and ab initio gene models were combined and consolidated into a single representative model for each gene, using the gene calling program EVidenceModeler (EVM) (Haas et al. 2008). Weighted Criteria for gene model construction prioritized transcript to genome alignments (weight = 10) and protein to genome alignments (weight = 10) over ab initio predictions (weight = 5) for the consensus assembly.

All final gene models and predicted transcript peptides were annotated using the Trinotate platform (Bryant et al. 2017) with a combination of homology-based search using Blast+, domain identification using hmmscan (Finn et al. 2015) and the pfam 30.0 database (Finn et al. 2016), and cellular localization with signal P 4.0 (Petersen et al. 2011; Hoff and Stanke 2013). In addition, the C-It-Loci (Weirick et al. 2015) and Uniprot (Uniprot Consortium 2017) databases were used for functional annotation. Comparative genomic analysis was conducted using a custom Blast database of the predicted proteomes for five Mus genomes from the EMBL database (Kulikova et al. 2004). E values of 1e-10 or less were considered evidence of homology and were included in a top-hit species based analysis.

Given that the M. spicilegus ZRU strain was developed at a facility that also housed wild-derived house mouse strains, we checked for evidence of contamination by searching for chromosomal intervals with few or no SNPs relative to the mouse reference genome. SNP analysis was conducted using bowtie2 (Langmead and Salzberg 2012) alignments against the mouse genome (GRCM38.p5). Quality filters were a minimum quality score of 30 and 25x coverage. Plink (Purcell et al. 2007) was used to create a 1MB sliding window with 200kb step intervals.

Identification and analysis of vomeronasal receptors

We extracted all vomeronasal receptor (VR) sequences from our M. spicilegus gene model and transcriptome database and searched for additional VRs in the M. spicilegus genome assembly by running a BLASTn homology search against a published dataset comprising VR gene models derived from M. musculus vomeronasal transcripts (Dataset S5 from Ibarra-Soria et al. 2014). We used the same dataset to annotate VRs in M. spicilegus. For M. spicilegus sequences with equally high scoring top hits to two or more VRs in the M. musculus transcript dataset (e.g., e = 0, % identity within 2%), we ran another BLASTn homology search against the mouse genome. Twenty-six M. spicilegus VRs could not be resolved with either approach and are identified by two or more receptor numbers (e.g., Vrnm2r77/78/79).

Annotated M. spretus VR sequences, together with sequences with high homology to a specific VR in the mouse genome, were downloaded using Biomart (Ensembl release 90). All sequences were aligned with MAFFT, implemented in Geneious 10.1.3, and columns with >80% gaps were stripped from the alignment. Inclusion of all known transcript variants from the mouse genome resolved alignment problems caused by incomplete coding sequence for some receptors from M. spicilegus. Phylogenetic relationships were inferred using RAxML (Stamatakis 2014) with 100 replicates of rapid bootstrapping. Trees were visualized with the Bioconductor R package ggtree (Yu et al. 2017).

Data availability

Raw data are deposited in the NCBI Sequence Read Archive (Bioproject PRJNA421365; Biosample SAMN08141584; SRA SRP126293). The genome assembly is deposited at DDBJ/ENA/GenBank (accession QGOO000000000), the assembly with original graph information, gene models and transcriptpeptides are available for download at Figshare https://doi.org/10.25387/g3.6137465. Vomeronasal receptor sequences and phylogenograms are available at Figshare as File S1 and Figure S1 (V1Rs), and File S2 and Figure S2 (V2Rs). Supplemental material available at Figshare: https://doi.org/10.25387/g3.6137465.

RESULTS

Overview of read cloud sequencing and genome assembly

The genome of M. spicilegus was sequenced using 10x Genomics linked read sequencing (Spies et al. 2017). For gene calling and genome annotation we sequenced pooled RNA from multiple tissue types and generated high quality transcripts suitable for gene construction and annotation. Totals of 116 Gbp of genomic read data (56.6x coverage) and 59.6 Gbp of transcriptome data were generated (Table 1).

We produced a high quality genome of 2.50 Gbp with a scaffold N50 of 2.27 Mbp. Comprehensive summary statistics are provided in Table 2. Almost all scaffold and contig data were non-ambiguous nucleotides (95.76%). The assembly was highly continuous: more than 90% of the scaffolds were larger than 235 kb. Gene models were created with a combination of Trinity (Grabherr et al. 2011) transcript alignments, ab initio trained Augustus models (Stanke et al. 2006; Hoff and Stanke 2013), and protein to genome alignments. Combining these sources of evidence produced a total of 28 624 raw gene models (Table 2). Genome completeness was calculated at 99.57%, based on the presence of complete or partial homologs for 232 of 233 conserved single copy genes found using the gVolante (Nishimura et al. 2017) webserver with the Busco v3 algorithm (Simão et al. 2015). Because our transcriptome data comprised pooled tissues from both sexes, Y-linked genes were not well represented and only one was among our high confidence gene models (Rbmy, 98% amino acid identity to mouse NCBI reference). However, cursory Blast searches against our genome with Y gene sequences from the mouse reference genome identified ~180 kb that included sequences from several single copy genes from the short arm of the mouse Y chromosome (e.g., Kdm5d, Ube1y, Uty, Zfy2). Taken together these results support the use of read cloud sequencing to produce very high quality mammalian genomes.

Gene model comparisons to congeners

To determine homology between our M. spicilegus gene models and previously sequenced genomes, we compared our final protein gene models to all the proteins present in the Uniprot Trembl database (Uniprot Consortium 2017) using BLASTp. To reduce redundancy of isoforms we clustered our protein set at 98% similarity using CD-HIT (Huang et al. 2010). Using an e-value cutoff of 1e-10 or less, 25 557 of these non-redundant proteins returned a positive hit in the Uniprot Trembl database (Table 3). To evaluate homology relative to other Mus species, we ran one to one comparisons between the 25 557 M. spicilegus proteins and the genomes of wild-derived strains that represent the closest relatives of M. spicilegus: M. spretus, the three house mouse subspecies and M. caroli, a species that is outside the

Table 1 Mus spicilegus genome and transcriptome raw read and base counts

Value	10x Genome	Transcriptome
Read Pairs	1 550 168 820	19 878 467
Total Bases	116 262 661 500	59 63 540 100
The molecular diversity of vomeronasal receptors (VRs) in *M. spicilegus*. In mice, these chemoreceptors are narrowly tuned to chemical cues in urine, tears, and other excretions, and are critical modulators of social and reproductive behaviors (Del Punta et al. 2002; Stowers et al. 2002; Haga et al. 2010; Doyle et al. 2016). VRs comprise three gene families, the numerically diverse V1Rs and V2Rs, and eight formyl peptide receptors (FPRs). Of the >500 VRs annotated in the lab mouse genome, more than 400 are expressed (Ibarra-Soria et al. 2014). Currently, only 80 VRs are annotated in the *M. spretus* genome (ensembl.org/Mus_spretus/ accessed November 16, 2017). However, targeted analysis of VR receptors in a suite of house mouse genomes determined that >80% of VRs in house mice have one to one orthologs in *M. spretus*, with an additional six having evidence of independent duplication in *M. spretus* (Wynn et al. 2012). This suggests that the diversity of VRs in house mice should be comparable in aboriginal close relatives, including *M. spicilegus*.

Vomeronasal receptors in *M. spicilegus* were identified and annotated using homology searches against a published VR transcript gene model dataset (Ibarra-Soria et al. 2014) and against the mouse reference genome (*M. musculus*; GRCh38.p5). After removing duplicates and VRs annotated as pseudogenes, these approaches recovered a total of 196 high confidence VRs, of which 120 belong to the single exon V1R family (File S1), and 76 belong to the multi-exon V2R family (File S2). We extracted exonic sequences for each family, aligned these to orthologs in the mouse genome, together with available orthologs from the *M. spretus* genome, and estimated phylogenetic relationships using maximum likelihood criteria.

In the majority of cases, each *M. spicilegus* VR was sister to either the *M. musculus* or the *M. spretus* ortholog, or directly basal to both (Figure 2; Figures S1 and S2). For the 60 V1Rs with sequences for all three species, we inferred sister relationships between *M. spicilegus* and *M. musculus*, *M. spicilegus* and *M. spretus*, and *M. musculus* and *M. spretus* for 24, 15 and 21 receptors, respectively (Figure 2a; Figure S1). These values were not significantly different from random expectations (Chi-square = 3.15, \(P = 0.2 \)) . The distribution of sister relationships was similarly random for the 12 V2Rs represented by all three species (Figure 2b; Figure S2; *M. spicilegus* + *M. musculus* \(n = 7 \), *M. spicilegus* + *M. spretus* \(n = 2 \), *M. musculus* + *M. spretus* \(n = 3 \); Chi-square = 5.25, \(P = 0.07 \)). More notably, four V2R (Vmn2r14, Vmn2r28, Vmn2r37, Vmn2r43) and six V1R (Vmn1r17, Vmn1r8, Vmn1r20, Vmn1r27, Vmn1r168, Vmn1r177) sequences from *M. spicilegus* were more closely related to each other, or to different VRs in *M. musculus*, than they were to the orthologous VRs in *M. musculus* (arrow heads in Figure 2). These receptors are strong candidates for species-specific response to socially relevant chemosignals in *M. spicilegus*.

DISCUSSION

Using read cloud sequencing, we produced a high quality reference assembly for *Mus spicilegus*, a close relative of house mice that is molecularly equivalent (Table 2). The transcriptome assembly included 169,733 transcripts, 229,968 genes, and 55,149 predicted proteins. The assembly contained 10,666,600,000 bases, with an average cDNA length of 2476.2 base pairs. The assembly also included 10,006 scaffolds, with an average size of 2,752,380 base pairs, and an N50 of 2,265,242 base pairs. The assembly was assessed using maximum likelihood criteria, and a high percentage of positive hits for all comparisons (range, 97.8–96.8%, Table 3).

We extracted exonic sequences for each family, aligned these to orthologs in the mouse genome, and estimated phylogenetic relationships using maximum likelihood criteria. In the majority of cases, each *M. spicilegus* VR was sister to either the *M. musculus* or the *M. spretus* ortholog, or directly basal to both (Figure 2; Figures S1 and S2). For the 60 V1Rs with sequences for all three species, we inferred sister relationships between *M. spicilegus* and *M. musculus*, *M. spicilegus* and *M. spretus*, and *M. musculus* and *M. spretus* for 24, 15 and 21 receptors, respectively (Figure 2a; Figure S1). These values were not significantly different from random expectations (Chi-square = 3.15, \(P = 0.2 \)). The distribution of sister relationships was similarly random for the 12 V2Rs represented by all three species (Figure 2b; Figure S2; *M. spicilegus* + *M. musculus* \(n = 7 \), *M. spicilegus* + *M. spretus* \(n = 2 \), *M. musculus* + *M. spretus* \(n = 3 \); Chi-square = 5.25, \(P = 0.07 \)). More notably, four V2R (Vmn2r14, Vmn2r28, Vmn2r37, Vmn2r43) and six V1R (Vmn1r17, Vmn1r8, Vmn1r20, Vmn1r27, Vmn1r168, Vmn1r177) sequences from *M. spicilegus* were more closely related to each other, or to different VRs in *M. musculus*, than they were to the orthologous VRs in *M. musculus* (arrow heads in Figure 2). These receptors are strong candidates for species-specific response to socially relevant chemosignals in *M. spicilegus*.

Vomeronasal receptors in *M. spicilegus*

To evaluate the utility of this genome for identification and comparative analysis of ecologically important genes, we explored the numerical and molecular diversity of vomeronasal receptors (VRs) in *M. spicilegus*. In mice, these chemoreceptors are narrowly tuned to chemical cues in urine, tears, and other excretions, and are critical modulators of social and reproductive behaviors (Del Punta et al. 2002; Stowers et al. 2002; Haga et al. 2010; Doyle et al. 2016). VRs comprise three gene families, the numerically diverse V1Rs and V2Rs, and eight formyl peptide receptors (FPRs). Of the >500 VRs annotated in the lab mouse genome, more than 400 are expressed (Ibarra-Soria et al. 2014). Currently, only 80 VRs are annotated in the *M. spretus* genome (ensembl.org/Mus_spretus/ accessed November 16, 2017). However, targeted analysis of VR receptors in a suite of house mouse genomes determined that >80% of VRs in house mice have one to one orthologs in *M. spretus*, with an additional six having evidence of independent duplication in *M. spretus* (Wynn et al. 2012). This suggests that the diversity of VRs in house mice should be comparable in aboriginal close relatives, including *M. spicilegus*.

Vomeronasal receptors in *M. spicilegus* were identified and annotated using homology searches against a published VR transcript gene model dataset (Ibarra-Soria et al. 2014) and against the mouse reference genome (*M. musculus*; GRCh38.p5). After removing duplicates and VRs annotated as pseudogenes, these approaches recovered a total of 196 high confidence VRs, of which 120 belong to the single exon V1R family (File S1), and 76 belong to the multi-exon V2R family (File S2). We extracted exonic sequences for each family, aligned these to orthologs in the mouse genome, together with available orthologs from the *M. spretus* genome, and estimated phylogenetic relationships using maximum likelihood criteria.

In the majority of cases, each *M. spicilegus* VR was sister to either the *M. musculus* or the *M. spretus* ortholog, or directly basal to both (Figure 2; Figures S1 and S2). For the 60 V1Rs with sequences for all three species, we inferred sister relationships between *M. spicilegus* and *M. musculus*, *M. spicilegus* and *M. spretus*, and *M. musculus* and *M. spretus* for 24, 15 and 21 receptors, respectively (Figure 2a; Figure S1). These values were not significantly different from random expectations (Chi-square = 3.15, \(P = 0.2 \)). The distribution of sister relationships was similarly random for the 12 V2Rs represented by all three species (Figure 2b; Figure S2; *M. spicilegus* + *M. musculus* \(n = 7 \), *M. spicilegus* + *M. spretus* \(n = 2 \), *M. musculus* + *M. spretus* \(n = 3 \); Chi-square = 5.25, \(P = 0.07 \)). More notably, four V2R (Vmn2r14, Vmn2r28, Vmn2r37, Vmn2r43) and six V1R (Vmn1r17, Vmn1r8, Vmn1r20, Vmn1r27, Vmn1r168, Vmn1r177) sequences from *M. spicilegus* were more closely related to each other, or to different VRs in *M. musculus*, than they were to the orthologous VRs in *M. musculus* (arrow heads in Figure 2). These receptors are strong candidates for species-specific response to socially relevant chemosignals in *M. spicilegus*.
M. m. domesticus
M. spicilegus
protein gene models suggest a slightly closer relationship between
or population genomics. Preliminary comparative analyses of 25,557
production of a large number of genome assemblies for comparative
generating assembly data for mammalian species, and facilitates the
high quality assembly represents a cost and labor efficient method for
generating assembly data for mammalian species, and facilitates the
molecular and functional diversity of genes that modulate social and
reproductive behavior in mice. Indeed, phylogenetic relationships
between VR orthologs in M. spicilegus, M. spretus and M. musculus sug-
gest an intriguing pattern of lineage-specific evolution for small subsets
of receptors. More generally, these data illustrate the usefulness of this
genome for identification of candidate genes underlying species differ-
ences in ecology and behavior.

Exploratory characterization of the vomeronasal receptor repertoire
in M. spicilegus provides a foundation for comparative analysis of the
molecular and functional diversity of genes that modulate social and
reproductive behavior in mice. Indeed, phylogenetic relationships
between VR orthologs in M. spicilegus, M. spretus and M. musculus sug-
gest an intriguing pattern of lineage-specific evolution for small subsets
of receptors. More generally, these data illustrate the usefulness of this
genome for identification of candidate genes underlying species differ-
ences in ecology and behavior.

Finally, house mouse subspecies, M. m. domesticus and M. m. musculus,
hybridize in nature (Payseur et al. 2004; Janousek et al. 2012) and historic
introgression is documented between M. m. domesticus and sympatric
congener, M. spretus (Song et al. 2011; Liu et al. 2015). However, the
possibility of introgression between M. m. musculus and M. spicilegus is
untested. The two species are sympatric throughout the eastern European
and Ukrainian range of M. spicilegus, and are syntopic in crop fields during
the spring and summer breeding season (Muntyanu 1990; Poteaux et al.
2008). Fertile F1 females were produced from an experimental cross

Table 4 Blastp homology table for M. spicilegus top hits to Mus
species database

Species	Number of Hits
M. spretus	11,800
M. musculus combined	11,029
M. m. domesticus	5,581
M. m. castaneus	2,606
M. m. musculus	2,842
M. caroli	2,147
Total	24,976

As expected, M. m. castaneus (CAST/EiJ) and M. m. musculus (PWK/PhJ) have low
levels of contamination from M. m. domesticus-derived classical inbred strains (8% in CAST/EiJ, 6% in PWK/PhJ; Yang et al. 2011). This would
not, however, bias our inference that M. spicilegus peptide sequences share higher homology with M. m. domesticus relative to the two other
house mouse subspecies. Second, use of the largely M. m. domesticus-
derived lab mouse genome as a reference for the wild-derived subspecies’
genomes (Kolmogorov et al. 2016) might upwardly bias the probability of
detecting higher homology to M. m. domesticus (i.e., WSB/EiJ) relative to
the other two subspecies. We anticipate that the M. spicilegus genome will
promote additional phylogenetic hypothesis testing that will help to re-
solve evolutionary relationships between house mice and related species.

Figure 2 Phylogenetic relationships among the two major vomeronasal receptor subfamilies, V1Rs (A) and V2Rs (B) in M. spicilegus (MUSP, red
branches and gene names), M. musculus (MUMU, black branches and gene names), and M. spretus (SPRET, green branches and gene names).
Trees are unrooted cladograms, open circles on nodes indicate bootstrap support >90. Red arrowheads indicate M. spicilegus receptors that are
not sister to orthologs with the same name in either M. musculus or M. spretus. Gene names with an underscore and number appended are
transcript variants in M. musculus. Gene names with “like” appended are unannotated putative VRs in the M. spretus genome. M. spicilegus VR
sequences are provided in Supplemental Material (V1Rs: File S1, V2Rs: File S2).
between *M. spicilegus* and a *M. m. domesticus*-derived lab mouse (Zechner et al. 1996). Thus, gene flow between mound-building mice and house mice is a feasible possibility that is worthy of future study. A high quality genome for *M. spicilegus* will facilitate robust assignment of ancestry patterns in natural populations.

ACKNOWLEDGMENTS

This article was improved by the thoughtful comments of two anonymous reviewers. The *M. spicilegus* ZRU strain was developed and maintained by François Bonhomme and Annie Orth (Wild Mouse Genetic Repository, University of Montpellier). We are very grateful to these individuals for facilitating the transfer of mice to the Campbell lab, and for making this and other wild-derived strains available to the mouse genetics community. We thank Phil Blood at the Pittsburg Supercomputing Center for helping with software installation and optimization. We used the Extreme Science and Engineering Discovery Environment (XSEDE; allocation ID MCB140031 using the HPC Bridges housed at PSC), which is supported by National Science Foundation grant number ACI-1548562. This work was funded by NSF IOS 1558109 to P.C.

LITERATURE CITED

Baker, C. L., S. Kajita, M. Walker, R. L. Saxl, N. Raghupathy et al., 2015 PRDM9 drives evolutionary erosion of hotspots in *Mus musculus* through haplotype-specific initiation of meiotic recombination. PLoS Genet. 11: e1004916. https://doi.org/10.1371/journal.pgen.1004916

Beshers, S. N., and J. H. Fewell, 2001 Models of division of labor. Annu. Rev. Entomol. 46: 413–440. https://doi.org/10.1146/annurev.ento.46.1.413

Bryant, D. M., K. Johnson, T. DiTommaso, T. Tickle, M. B. Couger et al., 2017 A Tissue- Mapped Axolotl De Novo Transcriptome Enables analysis with microsatellites. Mol. Ecol. 6: 1009–1017. https://doi.org/10.1111/rep-11023

Grabherr, M. G., B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson et al., 2011 Full-length transcriptome assembly from RNA Seq data without a reference genome. Nat. Biotechnol. 29: 644–652. https://doi.org/10.1038/nbt.1883

Haas, B. J., A. L. Delcher, S. M. Mount, J. R. Worton, R. K. Smith et al., 2003 Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31: 5654–5666. https://doi.org/10.1093/nar/gkg770

Haas, B. J., S. L. Salzberg, W. Zhu, M. Pertea, J. E. Allen et al., 2008 Automated eukaryotic gene structure annotation using EvidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 9: R7. https://doi.org/10.1186/gb-2008-9-1-r7

Hagá, S., T. Hattori, T. Sato, K. Sato, S. Matsuda et al., 2010 The male mouse pheromone ESP1 enhances female sexual receptive behaviour through a specific vomeronasal receptor. Nature 466: 118–122. https://doi.org/10.1038/nature09142

Hoff, K. J., and M. Stanke, 2013 WebAUGUSTUS– a web service for training AUGUSTUS and predicting genes in eukaryotes. Nucleic Acids Res. 41: W123–W128. https://doi.org/10.1093/nar/gkt418

Huang, Y., B. Niu, Y. Gao, L. Fu, and W. Li, 2010 CD-HIT Suite: a web service for clustering and comparing biological sequences. Bioinformatics 26: 680–682. https://doi.org/10.1093/bioinformatics/btp003

Hurtado, M. J., R. Fénérion, and P. Gouat, 2013 Specialization in building tasks in the mound-building mouse, *Mus spicilegus*. Anim. Behav. 85: 1153–1160. https://doi.org/10.1016/j.anbehav.2013.03.020

Ibarra-Soria, X., M. O. Levitin, L. R. Saraiva, and D. W. Logan, 2014 The olfactory transcriptomes of mice. PLoS Genet. 10: e1004593. https://doi.org/10.1371/journal.pgen.1004593

Janoušek, V., L. Wang, K. Luzynski, P. Duňková, M. M. Vyskočilová et al., 2012 Genome-wide architecture of reproductive isolation in a naturally occurring hybrid zone between *Mus musculus musculus* and *M. m. domesticus*. Mol. Ecol. 21: 3032–3047. https://doi.org/10.1111/j.1365-294X.2012.05583.x

Keane, T. M., L. Goodstadt, P. Danecek, M. A. White, K. Wong et al., 2011 Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477: 289–294. https://doi.org/10.1038/nature10413

Kent, W. J., 2002 BLAT—the BLAST-like alignment tool. Genome Res. 12: 656–664. https://doi.org/10.1101/gr.229202

Kolmogorov, M., J. Armstrong, B. J. Raney, I. Streyer, M. Dunn et al., 2016 Chromosome assembly of large and complex genomes using multiple references. bioRxiv. https://doi.org/10.1101/088435
Wu, T. D., and C. K. Watanabe, 2005 GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21: 1859–1875. https://doi.org/10.1093/bioinformatics/bti310

Wynn, E. H., G. Sánchez-Andrade, K. J. Carss, and D. W. Logan, 2012 Genomic variation in the vomeronasal receptor gene repertoires of inbred mice. BMC Genomics 13: 415. https://doi.org/10.1186/1471-2164-13-415

Yang, H., J. R. Wang, J. P. Didion, R. J. Buus, T. A. Bell et al., 2011 Subspecific origin and haplotype diversity in the laboratory mouse. Nat. Genet. 43: 648–655. https://doi.org/10.1038/ng.847

Yu, G., D. Smith, H. Zhu, Y. Guan, and T. Tsan-Yuk Lam, 2017 ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8: 28–36. https://doi.org/10.1111/2041-210X.12628

Zechner, U., M. Reule, A. Orth, F. Bonhomme, B. Strack et al., 1996 An X-chromosome linked locus contributes to abnormal placental development in mouse interspecific hybrids. Nat. Genet. 12: 398–403. https://doi.org/10.1038/ng0496-398

Communicating editor: F. Pardo-Manuel de Villena