Spiders (Araneae) from Swiss hothouses, with records of four species new for Switzerland

Authors: Hänggi, Ambros, Bobbitt, Ian, Kranz-Baltensperger, Yvonne, Bolzern, Angelo, and Gilgado, José D.

Source: Arachnologische Mitteilungen: Arachnology Letters, 62(1) : 67-74

Published By: Arachnologische Gesellschaft e.V.

URL: https://doi.org/10.30963/aramit6207
Spiders (Araneae) from Swiss hothouses, with records of four species new for Switzerland

Ambros Hänggi, Ian Bobbitt, Yvonne Kranz-Baltensperger, Angelo Bolzern & José D. Gilgado

Abstract. Investigations of invertebrates in nine hothouses (tropical gardens) in Switzerland provided some spiders as by-catch. In total, we collected 136 spiders, of which 65 specimens represent 14 species from six families (the rest of the collection consisted of unidentifiable juveniles). Nine species are alien for Europe, one originates from the Mediterranean and four species are native to Central Europe. Four species represent first records for the Swiss fauna: Nesticidae: Nesticella mogera (Yaginuma, 1972), Oonopidae: Diblemma donisthorpei O. Pickard-Cambridge, 1909, Ischnothyreus pettifer (Simon, 1892) and Prida sechellensis (Benoit, 1979). These four species are discussed briefly and documented with photos.

Keywords: alien species, Nesticidae, Oonopidae, tropical greenhouses

In temperate regions, tropical greenhouses provide a set of conditions that are quite different from the ones outdoors. This, among others, includes higher and more constant temperature, high humidity and the presence of non-native plants. Although these plants are often obtained from other greenhouses in temperate regions, at some point in the past these species were imported from their countries of origin. The anthropogenic transport of exotic plants and potting soil has promoted the introduction of alien species into greenhouses of different European countries, including Switzerland (Wittenberg 2006). In some cases, species that were supposed to be confined to greenhouses are nowadays also established outdoors (Kozar et al. 1994, Wittenberg 2006). Although an old tradition of searching for exotic invertebrate animals in greenhouses exists (Simon 1896, Boettger 1929, Holzapfel 1932, Knoflach 1999), the knowledge and status of these species today in most countries is still incomplete and strongly discussed. For instance, Wilson (2012) provided a list of non-native spider species for the United Kingdom with 52 species originating from other continents (alien species) or mainland Europe while in 2021 he only listed 33 alien species (Wilson 2021).

Regarding spiders, there was a revival concerning the search for alien species in greenhouses, nurseries and storage buildings because these could be part of the pathways for the introduction of alien species (Ségers 1986, Kiellhorn 2008, 2009, Kobelt & Nentwig 2008, Kiellhorn & Rödel 2011, Reiser 2013, Nentwig 2015, Hänggi & Straub 2016). An overview was given by Reiser (2013). A large part of these alien species in greenhouses seem to be imported with plants from overseas, from nurseries, or from other greenhouses. In most cases they remain restricted to heated greenhouses (hot-houses) due to their ecological demands, especially concerning temperature. However, very little is known whether some species are able to escape the greenhouses and spread outside. In Switzerland, the knowledge about spiders in greenhouses is scarce and poorly documented (Holzapfel 1932, Knoflach 1999, Blick et al. 2006, Hänggi & Straub 2016, Rembold et al. 2020). Therefore, the aim of our project was to update the current knowledge about these communities, including the detection of potentially invasive species.

Material and methods

We searched for as many different greenhouses as possible across Switzerland and obtained permission to sample invertebrates in nine of them (Fig. 1, Tab. 1). We sampled invertebrates only in the heated greenhouses. These hothouses differed in some characteristics (such as size, density of plants or amount of fallen leaves on the ground) (Fig. 2), but they all had a relatively stable (higher than outdoors) temperature, with only a couple of cases having noticeable seasonal variations.

The methodology followed in each greenhouse included active search and pitfall trapping. When we obtained permission to sample in more than one hothouse at a certain location (Porrentruy, Geneva, Zurich and Fribourg), we selected the one with the highest temperature and humidity ("more tropical"), but an additional sampling (only visual search, without pitfall trapping) was conducted in the remaining hothouses. The active search targeted mainly invertebrates on and in the soil, as leaf litter, and under stones and deadwood, but we also searched among plants. The search was conducted by two people during a 30 min attendance in each greenhouse. Invertebrates were captured with forceps and directly transferred to vials with 70% ethanol. Eight pitfall traps were distributed throughout...
the area of each greenhouse, following the recommendations of the gardeners to avoid damage to some plants, and as hidden as possible from the visitor’s sight. They were emptied after seven days. The traps consisted of plastic cups (5.8 cm in diameter) filled with propylene glycol, buried at ground level and covered by a plastic roof at approximately 2 cm above the ground to prevent water or leaves falling in. The samples were sorted in the lab and the specimens from the traps were transferred to 70% ethanol. Species identification is based on Nentwig et al. (2021), followed by using the original literature (cited only if used in the text below). Male palps were detached and female epigynes were dissected and examined in clove oil if necessary. Photos were taken using a KEYENCE VHX-6000 with autostacking. Nomenclature follows the World Spider Catalog (2021). A reference collection is deposited at the Natural History Museum Basel (NMB).

Tab. 1: Date of sampling and setting of the pitfall taps, geographical positions of the investigated hothouses in Switzerland. In brackets abbreviations as used in Tab. 2

Locality	Date	Lat’	Long’	m a.s.l.
Basel, Botanical Garden, Tropenhau (Basel BOGA)	26. Oct. 2019	47.55862°N	7.58176°E	270
Basel, Zoo, Vogelhau (Basel ZOO)	3. Oct. 2019	47.54821°N	7.57864°E	270
Zürich, Botanical Garden of the University of Zurich (Zürich BOGA)	4. Dec. 2019	47.35790°N	8.56183°E	440
St. Gallen, Botanical Garden (St.Gall. BOGA)	2. Oct. 2019	47.44024°N	9.40712°E	660
Porrentruy, Jurassica (Porr. BOGA)	7. Nov. 2019	47.41371°N	7.07690°E	440
Kerzers, Papiliorama Tropical Garden (Kerz. TROGA)	12. Sep. 2019	46.99001°N	7.20115°E	380
Bern, Botanical Garden of the University of Bern (Bern BOGA)	4. Dec. 2019	46.95249°N	7.44562°E	530
Fribourg, Botanical Garden of the University of Fribourg (Frib. BOGA)	23. Oct. 2019	46.79315°N	7.15530°E	530
Geneva, Conservatory and Botanical Garden (Geneva BOGA)	15. Oct. 2019	46.22835°N	6.14854°E	380

Fig. 1: Location of the sampled greenhouses in Switzerland. a. “Tropenhaus”, Botanical Garden of the University of Basel; b. “Vogelhaus”, Basel Zoo; c. Botanical Garden of the University of Zurich; d. Botanical Garden of St. Gallen; e. Jurassica Botanical Garden (Porrentruy); f. Papiliorama Tropical Garden (Kerzers); g. Botanical Garden of the University of Bern; h. Botanical Garden of the University of Fribourg; i. Conservatory and Botanical Garden, Geneva

Results The total catch included 136 spiders, 6 ♂♂, 44 ♀♀ and 86 juveniles. Only 65 individuals could be identified to species level, resulting in 14 species from six families (Tab. 2). Juveniles were only identified to species level when adults were present and when there was no doubt about their identity. Only nine specimens out of the 65 identified spiders (13.8%) belong to native species (four of the 14 identified species, 28.6%: Amaurobius ferox, Erigone dentipalpis, Parasteatoda simulans and Tenuiphantes tenuis). The remaining 56 individuals (86.2% of the identified spiders) belong to ten non-native species (71.4% of the species) (Tab. 2).

Three species are typical outdoor species, five are widely distributed in European indoor localities or in caves. Two species are recorded here only for the second time in Switzerland and four species, one from Nesticidae and three from Oonopidae, represent first records for the Swiss fauna and are discussed below.

First records for the Swiss fauna

NESTICIDAE

Nesticia mogera (Yaginuma, 1972) (Fig. 3a-c)

Material. SWITZERLAND, Zürich, Botanischer Garten, 47.35790°N, 8.56183°E, active search, 1 ♂, 4. Dec. 2019, NMB-ARAN-29483.

Identification. Liu & Li (2013), Bielak-Bielecki & Rozwalka (2011), Marusik & Guseinov (2003).

Remarks. The first European record of this species of Asian origin (Caucasus to East Asia) was made by Snazell & Smithers (2007) from a humid tropical greenhouse of the Eden Project in Cornwall, England, in which numerous other species were also recorded (Smithers et al. 2004). The first record for the European Mainland was published by Kielhorn (2009), collected in the Zoo-Aquarium, Berlin, Germany. Meanwhile some further records for Europe were published (Bielak-Bielecki & Rozwalka 2011, Pfliegler 2014). For a summary see Bloem & Noordijk (2021). While all these records are connected to synanthropic indoor conditions, the record from Calabria, Italy, comes from an outdoor locality (Pantini et al. 2020). Another record from Switzerland comes from Papiliorama in Kerzers and does not originate from our survey. The specimen with uncertain identification was collected earlier (15. Jun. 2013, 1 ♂; leg. G. Ackermann), revised by us, and turned out to be N. mogera as well. In summary, this species is currently known in Switzerland from two localities.

OONOPIDAE

Diblemma donisthorpei O. Pickard-Cambridge, 1909 (Fig. 4a-d)

Material. SWITZERLAND, Kerzers, Papiliorama, 46.99001°N, 7.20115°E, active search, 1 ♂, 12. Sep. 2019, NMB-ARAN-29494.

Identification. Locket & Millidge (1951), Saaristo (2001, 2010).
Spiders from Swiss hothouses

Remarks. This species was originally described from the Royal Gardens at Kew, England (Pickard-Cambridge 1909) and, already at that point, it was questioned whether it was of British origin. Today the species is thought to come from the Seychelles, the only place where it is known from outdoor habitats (Saaristo 2010). The record in the Papiliorama is the first for Mainland Europe. It would be of interest to know if this species was transported to Switzerland from other European greenhouses, or from its native range.

Ischnothyreus peltifer (Simon, 1892) (Fig. 5a–c)

Material. SWITZERLAND, Kerzers, Papiliorama, 46.99001°N, 7.20115°E, active search, 1 ♂, 12. Sep. 2019, NMB-ARAN-29495.

Identification. Saaristo (2001), Platnick et al. (2012).

Remarks. According to Nentwig et al. (2021) this species is of Asian origin and is known in Europe only from Great Britain but is not listed in the current checklist of the spiders of Great Britain (Lavery 2019). The record in Nentwig...
Tab. 2: Species list of spiders collected in nine hothouses in Switzerland. Indicated are the numbers of males (♂), females (♀) and juveniles (j), the origin of the species according to the World Spider Catalog (2021) and the actual occurrence of the species outdoors in Europe. First records for Switzerland are marked with * after the name. Abbreviations of the localities according to Tab. 1.

Taxon	Origin	Outdoors in Europe	Basel	Basel	Bern	Frib.	Geneva	Kers.	Zürich	St.Gall.	Total
Amaurobiidae											
Amaurobius ferox	Native	yes	♂/♀/j	1/1/1							
Linyphiidae											
Ereigone dentipalpis	Native	yes	♂/♀/j	2/2/2							
Mermessus trilobatus	Nearctic	yes	♂/♀/j	1/1/1							
Tenuiphantes tenuis	Native	yes	♂/♀/j	-/1/-							
Nesticidae											
Nesticella mogera	Asian	no	♂/♀/j	-/1/-							
Oonopidae											
Diklemma donithorpei	Seychelles	no	♂/♀/j	-/1/-							
Ischnothyreus peltifer	Asian	no	♂/♀/j	-/1/-							
Prida sechellensis	Seychelles	no	♂/♀/j	-/12/-							
Triaeis stenaspis	African	no	♂/♀/j	-/2/-							
Pholcidae											
Pholcus phalangioides	Asian	yes	♂/♀/j	-/1/-							
Psilochorus simoni	Nearctic	yes	♂/♀/j	-/2/-							
Theridiidae											
Coleosoma floridanum	Americas	no	♂/♀/j	-/1/-							
Parasteatoda simulans	Native	yes	♂/♀/j	-/1/-							
Steatoda triangulosa	Mediterranean	yes	♂/♀/j	-/2/-							
Fam. gen. spec. (juveniles)											
Sum			1/2/3	1/2/3	1/2/3	1/2/3	1/2/3	1/2/3	1/2/3	1/2/3	6/44/86

et al. (2021) goes back to Locket & Millidge (1951, sub Ischnothyreus velox Jackson, 1908, only fig. 38E) and Saaristo (2010: 120) who mentioned its presence in hothouses in Kew Gardens in London. All later checklists for Great Britain did not include this species, although other species established only in "artificial biomes" are listed in Lavery (2019).

Prida sechellensis (Benoit, 1979) (Fig. 6a-d)

Material: SWITZERLAND, Geneva, Botanical Garden, 46.2238°N, 6.1485°E, 15.–22. Oct. 2019, pitfall traps, 12 ♀♀, NMB-ARAN-29486-29490, one sample NMB-ARAN-29489 with five specimens is deposited at the Natural History Museum Bern.

Identification: Benoit (1979), Saaristo (2001, 2010).

Remarks. Twelve specimens were captured in four different traps. Some further juveniles were also recorded, but their identity remains questionable. This is the first record for Europe of this endemic species from the Seychelles (Saaristo 2010, World Spider Catalog 2021). To date, only females of this species were recorded and it is supposed that the species is parthenogenetic (Saaristo 2010). A further monitoring of this species in the botanical garden of Geneva could be of special interest.

Discussion

The number of spiders captured in the greenhouses (136 individuals) is low, which is a consequence of a fairly low sampling effort (1 hour of active search and eight pitfall traps working during a week per greenhouse). The aim of the survey was to capture all kind of ground-dwelling invertebrates, especially soil-dwelling arthropods, so most likely, a survey specifically designed for spiders would increase these numbers significantly. Seasonal effects could also be of importance, even if one would assume that seasonality is less important in heated greenhouses. For instance, Nesticella mogera is found more often in April and May (Nentwig et al. 2021), while we caught it in December.
Spiders from Swiss hothouses

Fig. 4: Diblemma donisthorpei, female, Kerzers, Papillorama. **a.** habitus, lateral view; **b.** habitus, dorsal view; **c.** habitus, ventral view; **d.** opisthosoma, ventral view

Fig. 5: Ischnothyreus peltifer, female, Kerzers, Papillorama. **a.** habitus, lateral view; **b.** habitus, dorsal view; **c.** prosoma, lateral view; **d.** prosoma, dorso-frontal view; **e.** epigyne, ventral view
Three species of the family Linyphiidae (*Erigone dentipalpis*, *Mermessus trilobatus* and *Tenuiphantes tenuis*) are widely distributed outdoors. All three are well known to disperse by ballooning and easily colonise new open habitats. One of them, *Mermessus trilobatus*, is an alien Nearctic species that was captured for the first time in Europe only in 1981 in Germany (Dumfert & Platen 1985) and then quickly spread all over Europe (overview in Hirna 2017). Four species are widely distributed in European indoor localities or caves: *Amaurobiidae*: *Amaurobius ferox*; *Theridiidae*: *Steatoda triangulosa*; *Pholcidae*: *Pholcus phalangioides* and *Psilochorus simoni*. The first two species are of Central European origin. *Steatoda triangulosa* is of Mediterranean origin and has been spreading northwards during the last decades (Nentwig et al. 2021). *Psilochorus simoni*, first recorded for Switzerland by Comellini (1954), is of Nearctic origin but is known in Europe since 1911 and, during the last century, has established itself widely within synanthropic habitats across Europe (Fürst & Blandenier 2003). The same is true for *Pholcus phalangioides*, except for having an Asian origin instead (Nentwig et al. 2021). Two species, *Coleosoma floridanum* (Theridiidae) and *Triaeris stenaspis* (Oonopidae), are recorded for the second time in Switzerland. The first finding of *Coleosoma floridanum* took place in the Tropenhaus of the Botanical Garden Basel in 1999 (Knoflach 1999). Only two years ago, *Triaeris stenaspis* was found in the tropical fern house of the Botanical Garden Bern for the first time in Switzerland (Rembold et al. 2020) and is now known from six of the nine investigated localities. *Triaeris stenaspis* is another species that is long known from tropical hothouses of Botanical gardens (Simon 1896, Kielhorn 2008).

The geographical origin of the non-native species includes different regions of the world, with three American species, three Asian, three African (incl. Seychelles) and one Mediterranean (nine specimens, four species, Tab. 2). Altogether, these numbers indicate that greenhouses in this study harbour many more non-native spider species and individuals than native ones, and that they originate from almost every continent. Most likely, this bias towards non-native species is promoted by the temperature and humidity conditions inside the greenhouses, although other factors such as the filters for colonization (different treatments of plants or soil), or availability of prey could also play a role.

The four new records for Switzerland (*Diblemma donisthorpei*, *Ischnothyreus peltifer*, *Nesticella mogera* and *Prida sechellensis*) and the further records of *Triaeris stenaspis* and *Coleosoma floridanum* underline the fact that the knowledge of the spider fauna of the heated greenhouses of Switzerland is still extremely poor. The other studied invertebrates from this project seem to be showing a similar pattern (in prep.). These non-native species must have arrived at European greenhouses via import of plants and potting soil, and the dispersal
among greenhouses within Europe probably happens through the frequent exchange of plant material between institutions.

As expected, we detected several non-native species, nine from other continents, and only one from the Mediterranean region. While most of the tropical non-native species in European greenhouses pose little to no potential to establish populations outdoors, or even to become invasive, there is evidence that some greenhouse insect pest species have naturalized and become invasive (Wittenberg 2006). Moreover, in the context of climate change, some species may eventually be able to become invasive as temperatures rise in Europe (Gligo 2020). Gardeners and managers of greenhouses should do their best to minimize the settlement and dispersal of non-native species as much as possible. A further important step would be to promote a monitoring of the arthropod fauna in their greenhouses and implement control measures.

Acknowledgements

We are very thankful to all the managers that granted us access and allowed us to sample in their greenhouses, as well as to all the gardeners that kindly assisted us in the fieldwork. We would like to specially thank Bruno Emry, David Meierhofer and Inayat Olmedo (Botanical Garden of Basel); Michael Kessler, Peter Erz, Rene Stalder and Manfred Knabe (Botanical Garden of Zurich); Damien Becker and Alain Mertz (Jurassic); Chantal Derungs and Nadja Fischer (Papiliorama); Hanspeter Schumacher (Botanical Garden of St. Gallen); Didier Roguet, Nicolas Freyre and Vincent Goldschmidt (Botanical Garden of Geneva); Alain Mueller and Christine Jakob (Botanical Garden of Fribourg); Markus Fischer and Bill Juerg (Bern); and Friederike von Houwald (Basel Zoo). We are thankful to Professor Bruno Baur for providing us with the contacts of several of these managers, and for his advice when we prepared the sampling design. We are also thankful to the University of Basel for proving the funding for this research. Best thanks go to Barbara Thaler-Knoflach for her help with the determination of Neostictella mogera and to Theo Blick for useful comments on an early draft of the manuscript. Our thanks also go to the two reviewers, Anna Sestakova and Karl-Hinrich Kielhorn and the editors of the journal, Tobias Bauer, Theo Blick, Petr Dolejší and Konrad Witsizewski for their useful comments on the manuscript.

References

Benito PLG 1979 Contributions à l’étude de la faune terrestre des îles granitiques de l’archipel des Sélèches (Mission P. L. G. Benito – J. J. Van Mol 1972). Oonopidae (Araneae). – Revue Zoologique Africaine 93: 185–222
Bielak-Bielecki P & Rozwałka R 2011 Neostictella mogera (Yaginuma, 1972) (Araneae: Nesticidae) in Poland. – Zeszyty Naukowe Uniwersytetu Szczecińskiego, Acta Biologica 676 18: 137–141
Blick T, Hänggi A & Wittenberg R 2006 Spiders and allies – Arachnida. In: Wittenberg R (ed.) 2006 An inventory of alien species and pests of economic importance. – Schweizerische Gesellschaft für die Erforschung der Lebensräume der Länder am Mittelmeerraum, Bern. pp. 402–424
Boettger CR 1929 Eingeschleppte Tiere in Berliner Gewächshäuser. – Zeitschrift für Morphologie und Ökologie der Tiere 15: 675–704 – doi: 10.1007/BF00407387
Comellini A 1954 Une araignée nouvelle pour la Suisse: Phytoseiulus simoni Berland (Pholcidae). – Mitteilungen der Schweizerischen Entomologischen Gesellschaft 27: 22 – doi: 10.5169/seals-401199
Dumpert K & Platen R 1985 Zur Biologie eines Buchenwaldbodens. 4. Die Spinnenfauna. – Karlsruhe 42: 75–106
Fürst PA & Blandenier G 1993 Philochorus simoni (Berland, 1911) (Araneae, Pholcidae): Découvres de nouvelles stations suisses et discussions sur son écologie. – Bulletin de la Société Neuchâteloise des Sciences Naturelles 116: 75–85 – doi: 10.5169/seals-883969
Gligo JD 2020 Hidden in plain sight: six millipede species (Myriapoda: Diplopoda) new for the fauna of Switzerland. – Revue suisse de Zoologie 127: 249–259 – doi: 10.35929/RSZ.0019
Hänggi A & Straub S 2016 Storage buildings and greenhouses as stepping stones for non-native potentially invasive spiders (Araneae) – a baseline study in Basel, Switzerland. – Arachnologische Mitteilungen 51: 1–8 – doi: 10.5431/arami1501
Hirna A 2017 First record of the alien spider species Mermessus trilobatus (Araneae: Linyphiidae) in Ukraine. – Arachnologische Mitteilungen 54: 41–43 – doi: 10.5431/arami1540
Holzapfel M 1932 Die Gewächshausfauna des Berner Botanischen Gartens. – Revue suisse de Zoologie 39: 325–374 – doi: 10.5962/bhl.part.118946
Kielhorn KH 2008 A glimpse of the tropics – spiders (Araneae) in the greenhouses of the Botanical Garden Berlin-Dahlem. – Arachnologische Mitteilungen 36: 26–34 – doi: 10.5431/arami3605
Kielhorn KH 2009 First records of Spermophora kerinci, Nesticella mogera and Pseudanapis aloha on the European Mainland (Araneae: Pholcidae, Nesticidae, Anapidae). – Arachnologische Mitteilungen 37: 31–34 – doi: 10.5431/arami3706
Kielhorn KH & Rödel I 2011 Badamuna longinqua nach Europa eingeschleppt (Araneae: Desidae). – Arachnologische Mitteilungen 42: 1–4 – doi: 10.5431/arami4201
Knoffach B 1999 The comb-footed spider genera Neottiura and Coelosoma in Europe (Araneae, Theridiidae). – Mitteilungen der Schweizerischen Entomologischen Gesellschaft 72: 341–371 – doi: 10.5169/seals-402764
Kobelt M & Nentwig W 2008 Alien spider introductions to Europe supported by global trade. – Diversity and Distributions 14: 273–280 – doi: 10.1111/j.1472-4642.2007.00426.x
Kozar F, Guignard E, Bachmann F, Mani E & Hipp C 1994 The scale insect and whitfly species of Switzerland (Homoptera: Coccoidea and Aleyroidea). – Mitteilungen der Schweizerischen Entomologischen Gesellschaft 67: 151–161 – doi: 10.5169/seals-402550
Lavery A 2019 A revised checklist of the spiders of Great Britain and Ireland. – Arachnology 18: 196–212. – doi: 10.13156/arac.2019.18.3.196
Liu J & Li SQ 2013 New cave-dwelling spiders of the family Nesticidae (Araneae, Anaspidae) from China. – Zootaxa 3613: 501–547 – doi: 10.11646/zootaxa.3613.6.1
Lockett GH & Millidge AF 1951 British spiders. Vol. I. Ray Society, London, 310 pp.
Marusik YM & Guseinov EF 2003 Spiders (Arachnida: Araneae) of Azerbaijan. 1. New family and genus records. – Arthropoda Selecta 12: 29–46
Nentwig W 2015 Introduction, establishment rate, pathways and impact of spiders alien to Europe. – Biological Invasions 17: 2757–2778 – doi: 10.1007/s10530-015-0912-5
Nentwig W, Blick T, Bosmans R, Gloor D, Hänggi A & Kropf C 2021 araneae – Spiders of Europe. Version 01.2021. – Internet: http://www.araneae.net/mbc (20 Jan. 2021) – doi: 10.24436/1
Pantini P, Bonelli D & Bonacci T 2020 I ragni epigetici (Arachnida, Araneae) di un ambiente litoreale della Calabria. – Rivista del Museo Civico di Scienze Naturali “E. Caffi”, Bergamo 32: 25–26
Pfliegler WP 2014 Records of some rare and interesting spider (Araneae: Linyphiidae) in Ukraine. – Arachnologische Mitteilungen 73: 26–34 – doi: 10.5431/arami63
Pickard-Cambridge O 1909 On new and rare British Arachnida, noted and observed in 1907. – Proceedings of the Dorset Natural History and Antiquarian Field Club 29 (1908): 161–194, pl. A Platnick NI, Berniker L & Kranz-Baltensperger Y 2012 The goblin spider genus Ischnothyreus (Araneae, Oonopidae) in the New World. – American Museum Novitates 3759: 1–32 – doi: 10.1206/3759.2

Downloaded From: https://bioone.org/journals/Arachnologische-Mitteilungen--Arachnology-Letters on 26 Oct 2021
Terms of Use: https://bioone.org/terms-of-use
Reiser N 2013 Einschleppung und Einwanderung von Spinnentieren (Araneae; Opiliones) in Deutschland. Bachelor thesis, Hochschule Neubrandenburg. 83 pp.

Rembold K, Junge A-L, Amiet F, Balzari CA, Bergamini A, Blaser S, Boch S, Bürki M, Eggenberg S, Eicher C, Ensslin A, Etter L, Friedli C, Gattlen A, Germann C, Gygax A, Hänggi A, Hertwig ST, von Hirschheydt G, Hoess R, Wisler Hofer C, Inäbnit T, Keller C, Kneubühler J, Küchler H, Mohl A, Moser T, Neubert E, Pfäerrer B, Schäfer D, Schmyder N, Spasojević T, Stöfer S, Senn-Irlet B, van der Es R & Fischer M 2020 Vielfalt bedingt Vielfalt – wildlebende Arten im Botanischen Garten der Universität Bern. – Mitteilungen der Naturforschenden Gesellschaft in Bern 77: 24-68

Saaristo MI 2001 Dwarf hunting spiders or Oonopidae (Arachnida, Araneae) of the Seychelles. – Insect Systematics & Evolution 32: 307-358 – doi: 10.1163/187631201X00236

Saaristo MI 2010 Araneae. In: Gerlach J & Marusik YM (eds) Arachnida and Myriapoda of the Seychelles Islands. Siri Scientific Press, Manchester UK, pp. 8-306

Segers H 1986 *Uloborus plumipes* Lucas, nieuw voor de Belgische fauna. – Nieuwsbrief van de Belgische Arachnologische Vereniging 1: 18-20

Simon E 1896 Recherches zoologiques dans les serres du Muséum de Paris. II. Arachnides. – La Feuille des Jeunes Naturalistes 26: 92-93

Smithers P, Trodd K & Lane E 2004 A collection of spiders from the humid tropic biome at the Eden Project, Cornwall. – Newsletter of the British Arachnological Society 101: 1-2

Snazell R & Smithers P 2007 *Pseudanapis aloha* Forster (Araneae, Anapidae) from the Eden Project in Cornwall, England. – Bulletin of the British Arachnological Society 14: 74-76 – doi: 10.13156/arac.2007.14.2.74

Wilson R 2012 An American jumper in Leeds, west Yorkshire and an update on non-native taxa recorded in the UK. – Newsletter of the British Arachnological Society 123: 10-15

Wilson R 2021 Non-native British spiders. In: Spider and Harvestman Recording Scheme Website. – Internet: http://srs.britishspiders.org.uk/portal.php/p/Non-Native+British+Spiders (17. Jul. 2021)

Wittenberg R (ed.) 2006 An inventory of alien species and their threat to biodiversity and economy in Switzerland. – CABI Bioscience Switzerland Centre report to the Swiss Agency for Environment, Forests and Landscape. The environment in practice no. 0629. Federal Office for the Environment, Bern. 417 pp.

World Spider Catalog 2021 World spider catalog. Version 22.0. Natural History Museum Bern. – Internet: http://wsc.nmbe.ch (15. Mar. 2021)