A GENERALIZATION OF A Baire Theorem Concerning Barely Continuous Functions

OLENA KARLOVA

Abstract. We prove that if \(X \) is a paracompact space, \(Y \) is a metric space and \(f : X \to Y \) is a functionally fragmented map, then (i) \(f \) is \(\sigma \)-discrete and functionally \(F_\sigma \)-measurable; (ii) \(f \) is a Baire-one function, if \(Y \) is weak adhesive and weak locally adhesive for \(X \); (iii) \(f \) is countably functionally fragmented, if \(X \) is Lindelöf.

This result generalizes one theorem of Rene Baire on classification of barely continuous functions.

1. Introduction

A map \(f : X \to Y \) between topological spaces \(X \) and \(Y \) is said to be

- Baire-one, if it is a pointwise limit of a sequence of continuous maps \(f_n : X \to Y \);

- (functionally) \(F_\sigma \)-measurable or of the first (functional) Borel class, if the preimage \(f^{-1}(V) \) of any open set \(V \subseteq Y \) is a union of a sequence of (functionally) closed sets in \(X \);

- barely continuous, if the restriction \(f\upharpoonright F \) of \(f \) to any non-empty closet set \(F \subseteq X \) has a point of continuity.

Let us observe that the term ”barely continuous” belongs to Stephens [16]. However, barely continuous functions are also mentioned in literature as functions with the ”point of continuity property” (see, for instance, [13, 15]).

Among many other characterizations of Baire-one functions, the following classical Baire’s theorem is well-known [2].

Theorem A. For a complete metric space \(X \) and a function \(f : X \to \mathbb{R} \) the following conditions are equivalent:

(1) \(f \) is Baire-one;

(2) \(f \) is \(F_\sigma \)-measurable;

(3) \(f \) is barely continuous.

Recall that a map \(f : X \to Y \) between topological space \(X \) and a metric space \(Y \) is said to be fragmented, if for all \(\varepsilon > 0 \) and nonempty closed set \(F \subseteq X \) there exists a relatively open set \(U \subseteq F \) such that \(\text{diam} f(U) < \varepsilon \). The above notion was supposed by Jayne and Rogers [6] in connection with Borel selectors of certain set-valued maps.

Evidently, every barely continuous map between a topological and a metric spaces is fragmented. Moreover, if \(X \) is a hereditarily Baire space, then every fragmented function is barely continuous. The property of baireness of \(X \) is essential: let us consider a function \(f : \mathbb{Q} \to \mathbb{R} \), \(f(r_n) = 1/n \), where \(\mathbb{Q} = \{r_n : n \in \mathbb{N} \} \) is the set of all rational numbers. Notice that \(f \) is fragmented and everywhere discontinuous.

The next generalization of Baire’s theorem follows from [5, Corollary 7] and [1, Theorem 2.1].

Theorem B. Let \(X \) be a hereditarily Baire paracompact perfect space, \(Y \) is a metric space and \(f : X \to Y \). The following conditions are equivalent:

2010 Mathematics Subject Classification. Primary 54C30, 26A21; Secondary 54C50.

Key words and phrases. fragmented function, Baire-one function, \(F_\sigma \)-measurable function, \(\sigma \)-discrete function.
(i) f is F_σ-measurable and σ-discrete;

(ii) f is fragmented.

Moreover, if Y is a convex subset of a Banach space, they are equivalent to:

(iii) f is Baire-one.

Let us observe that a similar result for $Y = \mathbb{R}$ was obtained by Mykhaylyuk [14]. The next theorem was recently proved in [10, Theorem 10].

Theorem C. If X is a paracompact perfect space, Y is a metric contractible locally path-connected space and $f : X \to Y$ is fragmented, then $f \in B_1(X,Y)$.

The aim of this note is to extend the above mentioned results on maps defined on paracompact spaces which are not necessarily perfect (recall that a topological space is perfect if every its open subset is F_σ).

The convenient tool of investigation of fragmented functions on non-perfect spaces is a concept of functional fragmentability introduced in [11]. We prove a technical auxiliary result (Lemma [2]) which connects regular families of functionally open sets in paracompact spaces with the notion of σ-discrete decomposability. As an application of this result we obtain (Theorem [3]) that for a paracompact space X, a metric space Y and a functionally fragmented map $f : X \to Y$ the following propositions hold: (i) f is σ-discrete and functionally F_σ-measurable; (ii) f is a Baire-one function, if Y is weak adhesive and weak locally adhesive for X; (iii) f is countably functionally fragmented, if X is Lindelöf.

2. Preliminaries

Let $\mathcal{U} = (U_\xi : \xi \in [0, \alpha])$ be a transfinite sequence of subsets of a topological space X. Then \mathcal{U} is regular in X, if

(a) each U_ξ is open in X;

(b) $U_0 = \emptyset$, $U_\alpha = X$ and $U_\xi \subseteq U_\eta$ for all $0 \leq \xi \leq \eta < \alpha$;

(c) $U_\gamma = \bigcup_{\xi < \gamma} U_\xi$ for every limit ordinal $\gamma \in [0, \alpha]$.

Proposition 1. [12, Proposition 1] Let X be a topological space, (Y,d) be a metric space and $\varepsilon > 0$. For a map $f : X \to Y$ the following conditions are equivalent:

(1) f is ε-fragmented;

(2) there exists a regular sequence $\mathcal{U} = (U_\xi : \xi \in [0, \alpha])$ in X such that $\text{diam}(f(U_{\xi+1} \setminus U_\xi)) < \varepsilon$ for all $\xi \in [0, \alpha]$.

If a sequence \mathcal{U} satisfies condition (2) of the previous proposition, then it is called ε-associated with f and is denoted by $\mathcal{U}_\varepsilon(f)$.

We say that an ε-fragmented map $f : X \to Y$ is functionally ε-fragmented if $\mathcal{U}_\varepsilon(f)$ can be chosen such that every set U_ξ is functionally open in X. Further, f is functionally fragmented, if it is functionally ε-fragmented for each $\varepsilon > 0$.

A map f is (functionally) countably fragmented, if f is (functionally) fragmented and every sequence \mathcal{U}_ε can be chosen to be countable.
3. A Lemma

Let \mathcal{A} be a family of subsets of a topological space X. Then \mathcal{A} is called

- discrete, if each point $x \in X$ has a neighborhood which intersects at most one set from \mathcal{A};
- strongly functionally discrete or, briefly, sfd-family, if there exists a discrete family $(U_A : A \in \mathcal{A})$ of functionally open subsets of X such that $\bigcup A \subseteq U_A$ for every $A \in \mathcal{A}$.

Let us observe that every discrete family is strongly functionally discrete in collectionwise normal space.

Lemma 2. (cf. [3, Theorem 2]) Let $\mathcal{U} = (U_\xi : \xi \in [0, \alpha])$ be a regular family of functionally open sets in a paracompact space X. Then there exists a sequence $(\mathcal{F}_n)_{n \in \omega}$ of families $\mathcal{F}_n = (F_{\xi,n} : \xi \in [0, \alpha])$ such that

1. $U_\xi \setminus \bigcup_{\eta < \xi} U_\eta = \bigcup_{n \in \omega} F_{\xi,n}$ for all $\xi \in [0, \alpha)$,
2. \mathcal{F}_n is an sfd-family in X for all $n \in \omega$,
3. $F_{\xi,n}$ is closed in X for all $n \in \omega$ and $\xi \in [0, \alpha)$.

Proof. For every $\xi \in [1, \alpha]$ we denote $P_\xi = U_\xi \setminus \bigcup_{\eta < \xi} U_\eta$. Since every P_ξ is functionally G_δ in X as a difference of two functionally open sets, we can choose a sequence $(G_{\xi,n})_{n \in \omega}$ of functionally open sets such that

$$P_\xi = \bigcap_{n \in \omega} G_{\xi,n} \quad \text{for all } \xi \in [1, \alpha) \quad \text{and} \quad G_{\xi,n} \subseteq U_\xi \quad \text{for all } \xi \in [1, \alpha), n \in \omega.$$

We put

$$I = \bigcup_{k \in \omega} \omega^k$$

and define by the induction on k sequences $(\mathcal{U}_i : i \in I)$ and $(\mathcal{V}_i : i \in I)$ of open coverings of X such that

(a) $\mathcal{U}_0 = \mathcal{U}$;
(b) \mathcal{V}_i is a locally finite barycentric refinement of \mathcal{U}_i for all $i \in \omega^k$;
(c) for all $i \in \omega^k$ and $n \in \omega$ we have $\mathcal{U}_{(i,n)} = (U_{\xi,(i,n)} : \xi \in [0, \alpha])$, where

$$C_{\xi,i} = \left\{ x \in X : \operatorname{St}(x, \mathcal{V}_i) \subseteq \bigcup_{\eta < \xi} U_\eta \right\} \quad \text{and} \quad U_{\xi,(i,n)} = G_{\xi,n} \setminus C_{\xi,i}$$

for all $k \in \omega$. Let us observe that the existence of families \mathcal{V}_i follows from the paracompactness of X (see [4, Theorem 5.1.12]).

Notice that

$$C_{\xi,i} \subseteq \bigcup_{\eta < \xi} U_\eta,$$

because \mathcal{V}_i is an open covering of X. Therefore, since $(P_\xi : \xi \in [0, \alpha])$ is a partition of X, $\mathcal{U}_{(i,n)}$ defined in (c) covers X for all $n \in \omega$.

For every $x \in X$ we put

$$\mu(x) = \min \{ \xi \in [0, \alpha) : x \in U_\xi \}$$
and show that

\[(3.1) \quad \forall x \in X \exists i \in I : \text{St}(x, \mathcal{Y}_i) \subseteq U_\mu(x).\]

Assume to the contrary that there exists \(x \in X\) such that (3.1) is not true. Since each family \(\mathcal{Y}_i\) is locally finite refinement of \(\mathcal{U}\), for every \(i \in I\) there is \(\xi_i\) such that \(\text{St}(x, \mathcal{Y}_i) \subseteq U_{\xi_i}\). Let \(\xi(x) = \min\{\xi_i : i \in I\}\). Then \(\xi(x) > \mu(x)\). Therefore, \(x \not\in P_{\xi(x)}\) and we can take \(j \in \omega\) such that \(x \not\in G_{\xi(x),j}\).

From the definition of the sequence \(\mathcal{U}(i,j)\) it follows that \(x \not\in U_{\xi(i,j)}\). Since \(\text{St}(x, \mathcal{Y}_i) \subseteq U_{\xi(x)}\), we have \(x \not\in U_{\xi(i,j)}\) for all \(\xi > \xi(x)\). Therefore,

\[(3.2) \quad x \not\in \bigcup_{\xi \geq \xi(x)} U_{\xi(i,j)}\]

By (b) there exists \(\beta \in [0, \alpha)\) such that \(\text{St}(x, \mathcal{Y}(i,j)) \subseteq U_{\beta(i,j)}\). It follows from (3.2) that \(\beta < \xi(x)\).

The inclusion \(U_{\beta(i,j)} \subseteq U_\beta\) contradicts to the choice of \(\xi(x)\).

Let \((\mathcal{Y}_i : i \in I) = (\mathcal{H}_n : n \in \omega)\). Now for all \(\xi \in [0, \alpha)\) and \(n \in \omega\) we put

\[D_{\xi,n} = \{x \in P_\xi : \text{St}(x, \mathcal{H}_n) \subseteq U_\xi\}\]

for all \(\xi \in [0, \alpha)\). Property (3.1) implies that \(P_\xi \subseteq \bigcup_{n \in \omega} F_{\xi,n}\). Now assume that \(x \in F_{\xi,n}\) for some \(\xi\) and \(n\). Put \(O = \text{St}(x, \mathcal{H}_n) \cap U_\mu(x)\). Then \(O \cap D_{\xi,n} \neq \emptyset\). Take any \(y \in O\). Since \(y \in U_\mu(x)\) and \(y \in P_\xi\), \(\mu(x) \geq \xi\). The inclusions \(\text{St}(y, \mathcal{H}_n) \subseteq U_\xi\) and \(y \in \text{St}(x, \mathcal{H}_n)\) imply that \(x \in U_\xi\). Hence, \(\mu(x) \leq \xi\).

Therefore, \(\mu(x) = \xi\). Then \(x \in P_\xi\). Moreover, it follows that the family \(\mathcal{F}_n = (F_{\xi,n} : \xi \in [0, \alpha))\) is discrete in \(X\).

Since \(X\) is paracompact, \(X\) is collectionwise normal, which implies that \(\mathcal{F}_n\) is strongly functionally discrete family for all \(n \in \omega\).

\[\square\]

4. AN APPLICATION OF LEMMA TO CLASSIFICATION OF FRAGMENTED FUNCTIONS

Let \(X\) be a topological space. Recall that a topological space \(Y\) is

- **an adhesive for \(X\)**, if for any disjoint functionally closed sets \(A\) and \(B\) in \(X\) and for any two continuous maps \(f, g : X \to Y\) there exists a continuous map \(h : X \to Y\) such that \(h|_A = f|_A\) and \(h|_B = g|_B\);

- **a weak adhesive for \(X\)**, if for any two points \(y, z \in Y\) and disjoint functionally closed sets \(A\) and \(B\) in \(X\) there exists a continuous map \(h : X \to Y\) such that \(h|_A = y\) and \(h|_B = z\);

- **a locally weak adhesive for \(X\)**, if for every \(y \in Y\) and every neighborhood \(V \subseteq Y\) of \(y\) there exists a neighborhood \(U\) of \(y\) such that \(U \subseteq V\) and for every \(z \in U\) there exists a continuous map \(h : X \to V\) with \(h|_A = y\) and \(h|_B = z\).

It was proved in [9] Theorem 2.7] that any topological space \(Y\) is an adhesive for every strongly zero dimensional space \(X\); a path-connected space \(Y\) is an adhesive for any compact space \(X\) each point of which has a base of neighborhoods with discrete boundaries; \(Y\) is an adhesive for any space \(X\) if and only if \(Y\) is contractible. Moreover, it is easy to see that every (locally) path-connected space is a (locally) weak adhesive for any \(X\).

A family \(\mathcal{B}\) of subsets of a topological space \(X\) is said to be a base for a map \(f : X \to Y\), if for every open set \(V \subseteq Y\) there exists a subfamily \(\mathcal{B}_V\) of \(\mathcal{B}\) such that \(f^{-1}(V) = \bigcup_{B \in \mathcal{B}_V} B\).

A map \(f : X \to Y\) is \(\sigma\)-discrete, if there is a sequence \((\mathcal{H}_n)_{n \in \omega}\) of discrete families of sets in \(X\) such that the family \(\bigcup_{n \in \omega} \mathcal{H}_n\) is a base for \(f\).
Theorem 3. Let X be a paracompact space, Y be a metric space and $f: X \to Y$ be a functionally fragmented map. Then

(1) f is σ-discrete and functionally F_σ-measurable;

(2) f is a Baire-one function, if Y is weak adhesive and weak locally adhesive for X;

(3) f is countably functionally fragmented, if X is Lindelöf.

Proof. 1) For every $n \in \mathbb{N}$ we choose a family $\mathcal{U}_{1/n}(f) = (U_{\xi,n} : \xi \in [0, \alpha_n])$ consisting of functionally open sets $U_{\xi,n}$. We claim that the family $\mathcal{P} = \bigcup_{n \in \mathbb{N}} \mathcal{P}_n$ is a base for f, where $\mathcal{P}_n = (U_{\xi,n} \setminus \bigcup_{\eta<\xi} U_{\eta,n} : \xi \in [0, \alpha_n])$, $n \in \mathbb{N}$. Indeed, fix an open set V in Y and take any $x \in f^{-1}(V)$. Find $n \in \mathbb{N}$ such that an open ball B with the center at $f(x)$ and radius $1/n$ contains in V. Since \mathcal{P}_n is a partition of X, there exists $\xi \in [0, \alpha_n]$ such that $x \in P_{\xi,n} = U_{\xi,n} \setminus \bigcup_{\eta<\xi} U_{\eta,n}$. Evidently, $f(P_{\xi,n}) \subseteq B \subseteq V$.

By Lemma 2 for every $n \in \mathbb{N}$ there exists a sequence $(\mathcal{F}_{n,k})_{k \in \omega}$ of families $\mathcal{F}_{n,k} = (F_{\xi,n,k} : \xi \in [0, \alpha_n])$ which satisfies conditions (1)–(3) of Lemma 2. Properties (1) and (2) imply that the family $\mathcal{B} = \bigcup_{k,n} \mathcal{F}_{n,k}$ is a σ-discrete base for f consisting of closed sets. It follows that f is F_σ-measurable and a σ-discrete map. Finally, [7, Proposition 2.6 (iv)] implies that f is functionally F_σ-measurable.

Property 2) follows from 1) and [8, Theorem 3.2].

3) It is enough to show that every regular sequence consisting of functionally open sets in a Lindelöf space X is countable.

Let $\mathcal{U} = (U_{\xi} : \xi \in [0, \alpha])$ be a regular covering of X by functionally open sets U_{ξ}. There exists a sequence $(\mathcal{F}_n)_{n \in \omega}$ of families in X such that conditions (1)–(3) of Lemma 2 are valid. Notice that every family \mathcal{F}_n is at most countable, since it is discrete and X is Lindelöf. We consider an enumeration $\{F_k : k \in \omega\}$ of the family $\bigcup_{n \in \omega} \mathcal{F}_n$. Let $\varphi : [0, \alpha) \to 2^\omega$ be a map,

$$\varphi(\xi) = \{k \in \omega : F_k \subseteq P_\xi\}.$$

Since $(\varphi(\xi) : \xi \in [0, \omega_1))$ is a family of mutually disjoint subsets of ω, it is at most countable. \hfill \Box

We do not know the answer to the following question.

Question 1. Is it true that every fragmented Baire-one real-valued function defined on a paracompact Hausdorff space is functionally fragmented?

References

[1] Angosto C., Cascales B., Namioka I. *Distances to spaces of Baire one functions*, Math. Z., 263 (1) (2009), 103–124.

[2] Baire R. *Sur les fonctions de variables reelles*, Ann. Mat. Pura Appl. 3 (3) (1899), 1-123.

[3] Chaber J., Zenor P. *On perfect subparacompactness and a metrization theorem for Moore spaces*, Top. Proc. 2 (1977), 401–407.

[4] Engelking R. *General Topology. Revised and completed edition*. Heldermann Verlag, Berlin (1989).

[5] Jayne J.E., Orihuela J., Pellarès A.J., Vera G. *σ-Fragmentability of multivalued maps and selection theorems*, J. Func. Anal. 117 (1993), 243–273.

[6] Jayne J.E., Rodgers C. A. *Borel selectors for upper semicontinuous set-valued maps*, Acta Math., 155 (1985), 41–79.

[7] Karlova O. *On Baire classification of mappings with values in connected spaces*, Eur. J. Math. 2 (2) (2016), 526 - 538.

[8] Karlova O. *Application of adhesives to the Baire classification of maps of one variable*, Proc. Int. Geom. Center, 9 (3-4) (2016), 17–36 (in Ukrainian, English summary).

[9] Karlova O., Mykhaylyuk V. *On stable Baire classes*, Acta Math. Hungar. 150 (1) (2016), 36–48.
[10] Karlova O., Mykhaylyuk V. On composition of Baire functions, Top. Appl. 216 (2017), 8-24.

[11] Karlova O., Mykhaylyuk V. Extension of fragmented Baire-one functions on Lindelöff spaces, Top. Appl. (2019) DOI:10.1016/j.topol.2018.12.002

[12] Karlova O., Mykhaylyuk V. Extending Baire-one functions on compact spaces, preprint, arXiv:1701.00075v1

[13] Koumoullis G. A generalization of functions of the first class, Top. Appl., 50 (1993), 217–239.

[14] Mykhaylyuk V. Baire classification of pointwise discontinuous functions, Nauk. visnyk Cherniv. un-tu. Matematyka. 76 (2000), 77–79 (in Ukrainian, English summary).

[15] Spurný J. Borel sets and functions in topological spaces, Acta Math. Hungar., 129 (2010), 47-69.

[16] Stephens R. On barely continuous functions, Int. J. Math. and Math. Sci. 11 (4) (1988), 695–700.