Polymorphic genes of detoxification and mitochondrial enzymes and risk for progressive supranuclear palsy: a case control study

Lisa F Potts1, Alex C Cambon2, Owen A Ross3, Rosa Rademakers3, Dennis W Dickson3, Ryan J Uitti4, Zbigniew K Wszolek4, Shesh N Rai2,5, Matthew J Farrer3,6, David W Hein5,7 and Irene Litvan1,8,9*

Abstract

Background: There are no known causes for progressive supranuclear palsy (PSP). The microtubule associated protein tau (MAPT) H1 haplotype is the major genetic factor associated with risk of PSP, with both oxidative stress and mitochondrial dysfunction also implicated. We investigated whether specific single nucleotide polymorphisms (SNPs) in genes encoding enzymes of xenobiotic detoxification, mitochondrial functioning, or oxidative stress response, including debrisoquine 4-hydroxylase, paraoxonase 1 and 2, N-acetyltransferase 1 and 2 (NAT2), superoxide dismutase 1 and 2, and PTEN-induced putative kinase are associated with PSP.

Methods: DNA from 553 autopsy-confirmed Caucasian PSP cases (266 females, 279 males; age at onset 68 ± 8 years; age at death 75 ± 8) from the Society for PSP Brain Bank and 425 clinical control samples (197 females, 226 males; age at draw 72 ± 11 years) from healthy volunteers were genotyped using Taqman PCR and the Sequenom iPLEX Gold assay.

Results: The proportion of NAT2 rapid acetylators compared to intermediate and slow acetylators was larger in cases than in controls (OR = 1.82, p < 0.05). There were no allelic or genotypic associations with PSP for any other SNPs tested with the exception of MAPT (p < 0.001).

Conclusions: Our results show that NAT2 rapid acetylator phenotype is associated with PSP, suggesting that NAT2 may be responsible for activation of a xenobiotic whose metabolite is neurotoxic. Although our results need to be further confirmed in an independent sample, NAT2 acetylation status should be considered in future genetic and epidemiological studies of PSP.

Keywords: Progressive supranuclear palsy (PSP), N-acetyltransferase 2 (NAT2), Tauopathy, Single nucleotide polymorphisms (SNPs), Parkinson’s disease (PD)

Background

Progressive supranuclear palsy (PSP) is the most common atypical parkinsonian disorder. Classically, patients present with progressive postural instability and falls followed by slow and hypometric vertical saccades and eventually vertical supranuclear gaze palsy.

Neuropathologically, PSP is characterized by deposits of four-repeat microtubule associated protein tau (encoded by the MAPT gene) aggregates in neurons and glia of the basal ganglia and brain-stem [1]. Additionally, there is mitochondrial dysfunction, decreased ATP levels and inflammation in the brains of PSP patients [2-4]. The MAPT H1 haplotype has been consistently reported to be associated with PSP; however, it is also common in the general population, suggesting that gene-gene or gene-environment interactions are likely required for the development of this disease [5,6]. Recently, MAPT H1 was also associated with risk of Parkinson’s disease (PD) suggesting shared pathways of disease [7]. Early-onset PD and PSP can present with a similar phenotype and be misdiagnosed, supporting common links between the two disorders. The product of PTEN-induced putative kinase
putative kinase (PINK1, PARK6), associated with early-onset PD, is involved in mitochondrial respiration and protection from oxidative damage, which are pathways that have also been linked to risk of PSP [8-13]. PINK1 polymorphisms are also associated with PD and it acts in conjunction with parkin to regulate mitochondrial functioning. Although the mechanisms by which PINK1 acts are not fully understood; research suggests that it is crucial for healthy mitochondrial respiration and ATP production [8]. Considering the role of PINK1 in mitochondrial functioning along with its previous links to PD, specific PINK1 SNPs were included in this study to determine if there is also an association with PSP.

Consumption of annaceous fruit and teas, which contain mitochondrial inhibitors, has been associated with an atypical parkinsonian disorder similar to PSP in the French West Indies [14,15]. Considering that mitochondrial impairment is observed in PSP brains, mitochondrial complex-1 inhibitors and other chemical neurotoxins, such as organophosphates, are hypothesized as risk factors for PSP [16-18]. These and other potentially toxic compounds are metabolized by the products of several genes: debrisoquine 4-hydroxylase (CYP2D6), paraoxonase (PON) 1 and 2, N-acetyltransferase (NAT) 1 and 2, and superoxide dismutase (SOD) 1 and 2 [10-13,19-22]. CYP2D6 is found in the brain and is involved in metabolism of MPTP, herbicides (paraquat) and organophosphate pesticides [11,12]. Reduced in 5-10% of Caucasians, genetic polymorphisms of this enzyme have been widely studied in PD and results suggest that there is an association of the poor metabolizer phenotype with disease development [23,24]. Moreover, the combination of pesticide exposure and CYP2D6 poor metabolizer phenotype doubles PD risk [11,20]. PON1 hydrolyzes phosphoric acid esters, organophosphates and aromatic carboxylic acid esters and blocks the formation of free radicals. With low PON1 activity, these pesticides are not metabolized and the cell is subject to increased oxidative stress [19]. The PON 1 M allele, which is correlated with decreased protein levels, has been shown to be associated with PD [25,26] and the M/M genotype was recently reported to be associated with early onset PD [27]. Additionally, decreased PON1 activity was over represented in PD patients from agriculturally exposed areas [19]. NAT1 and NAT2 are involved in the biotransformation of drugs and environmental toxins (xenobiotics) [28]. These enzymes transfer the acetyl group from acetyl-coenzyme A (acetyl CoA) to an amino group on aromatic amines and hydrazine compounds. In addition, following N-hydroxylation, they can further activate xenobiotics via O-acetylation [29]. There are a number of SNPs reported in NAT1 and NAT2, which lead to slow and rapid acetylator phenotypes. The acetylation status of an individual might determine how they respond to xenobiotic exposures, therefore presenting the NAT genes as candidates for gene-environment interaction studies. The slow acetylator phenotype is reported to be associated with PD, but inconsistent results warrant further investigation [30-34]. SOD is an important antioxidant enzyme, which converts superoxide anions (O2-) to hydrogen peroxide (H2O2). Considering the antioxidant properties of the enzyme, polymorphisms resulting in decreased SOD activity would be expected to have detrimental effects on the cell; however, recent studies suggest the opposite is true [35-37]. The mechanism behind this gain of function toxicity remains unknown, but it is proposed to be a result of either 1) disrupting the balance of O2- and H2O2, or 2) self-aggregation. Numerous SOD polymorphisms have been found to be associated with amyotrophic lateral sclerosis (ALS) [38], and may play a role in PD and AD pathogenesis [39].

To determine if genetic polymorphisms in toxicant metabolism increases risk for developing PSP, we investigated associations between PSP and specific single nucleotide polymorphisms (SNPs) in the aforementioned genes.

Methods
Sample
DNA samples from 545 autopsy-confirmed PSP cases collected between 1993 and 2008 at the PSP Society Brain Bank were included [40]. All cases were from the US and Canada. Control DNA samples (n = 426) were randomly selected from an existing repository of control samples at the Mayo Clinic, Jacksonville. All controls were healthy spouses or caregivers of patients at the Mayo Clinic in Jacksonville, FL and free from neurological disorders. All samples were from adults over the age of 33 (see Table 1 for demographic information). Institutional review board (IRB)-approved protocols, including informed consent, were followed to obtain all DNA samples.

Genotyping
Within 48 hours of collection, DNA was extracted by standard protocols and stored at -80°C until used. NAT1 (rs4987076, rs5030839, rs4986782, rs1057123, and rs15561) and NAT2 (rs1208, rs1801279, rs1801280, rs1799929, rs1799930, rs1799931, and rs1041983) genotyping was performed using Taqman PCR methodology on an ABI Prism 7700 sequence detection system as previously published [41,42]. All other genotyping was performed on a Sequenom Mass Array iPLEX platform using the Gold Assay (San Diego, CA) as described previously [43] (see Table 2 for rs numbers). Primer sequences are available upon request. The rs numbers tested here also included in the recent GWAS on PSP are rs1043424, rs662, rs7493, rs1801280, rs1799930, rs1799931, rs1799929, and rs1041983 [44].
Statistical analyses were performed using R software (R Development Core Team 2009). Chi-squared, Fisher’s exact, student t-test, or Wilcoxon rank sum analyses were used to test for differences in demographic variables between cases and controls. For each iPLEX SNP variable, the Cochran-Armitage and chi-squared tests were used to test additive, dominant, and recessive genetic models. In addition, logistic regression was used to test these same genetic models while adjusting for significant demographic variables (i.e. age). Logistic regression models were also used to determine whether specific NAT1 or NAT2 genotypes or NAT2 phenotypes were associated with PSP. NAT2 phenotypes may be accurately assigned according to genotype [22]; therefore, NAT2 analysis was initially restricted to phenotypic evaluation, which was followed by genotypic analysis. Overall significance of the associations was determined using the omnibus chi-squared test for the model. If the omnibus chi-squared test was not significant, then individual genotypes were not considered significant even if the associated p-value (p) was < 0.05. Odds ratios (OR), 95% confidence intervals (CI) and p-values were determined for each variable. Associations with p < 0.05 were considered significant. Based on the outcome of the primary analysis, t-test or Wilcoxon rank sum test was applied to determine whether means/medians were different between NAT2 phenotypes for age at onset, age at death or disease duration in cases. NAT2 genotype, NAT1 genotype and iPLEX SNP associations were all tested independently each with either a large number of groups or a low number of tests; nevertheless, when p-values were less than 0.05, adjustments were made for multiple testing using the Holm correction [45]. NAT2 phenotype tests were modeled independently from SNP analyses. Furthermore, while multiple SNPs were determined to input the phenotypes, only two phenotypes were compared (i.e. rapid versus slow/intermediate), therefore no multiple testing correction was needed as previously described for testing the NAT2 phenotype association with colorectal cancer [46].

Results
On average, cases were older than controls at sample collection time (Table 1, p < 0.001), with age at collection time for PSP cases being age at death. Trend analysis of the iPLEX SNPs showed no between-group differences in genotypes (Table 2), with the exception of rs1052553 (MAPT H1 OR = 4.35, CI = 3.08-6.25, p < 0.001), which is a known association [47]. Each marker was confirmed to be in Hardy-Weinberg equilibrium in controls. Minor allele frequencies (MAFs) for rs numbers 4880 and 1052553 only the PSP sample differed from the general population (Table 3). There were no between-group differences for NAT1 genotypes (Table 4). NAT2 slow and intermediate phenotypes did not
differ between groups (p = 0.96), thus these groups were combined and compared against the rapid phenotype for further analyses. Phenotypic analysis showed cases had a significantly higher proportion of NAT2 rapid acetylators (OR = 1.82, CI = 1.05-3.28, p = 0.037) compared to intermediate and slow (Table 5). The omnibus chi-squared test for NAT2 genotypes was not significant (Table 6). Since NAT2 rapid phenotype was associated

Table 2 Case-control comparison of SNP genotypes

SNP rs marker (gene name)	Total n	Total n	n-controls	n-cases	0	1	2	0	1	2	OR	CI	trend	recess.	dom.	Holm
rs1135840 (CYP2D6)	395	500	133	183	79	145	240	115	1.14	0.94-1.37	0.174	0.367	0.188	1		
rs3738136 (PIN5-K1)	412	521	375	36	6	48	111	48	1.11	0.73-1.7	0.625	0.338	0.78	1		
rs1043424 (PIN5-K1)	414	520	217	165	32	281	408	31	0.89	0.72-1.1	0.27	0.19	0.478	1		
rs2234694 (SOD1)	412	521	372	38	2	478	41	2	0.84	0.54-1.28	0.411	0.813	0.408	1		
rs4880 (SOD2)	413	523	107	206	116	143	264	143	1.14	0.95-1.38	0.157	0.22	0.279	1		
rs662 (PON1)	414	521	211	160	43	256	41	2	0.84	0.54-1.28	0.411	0.813	0.408	1		
rs854560 (PON1)	412	521	181	176	5	213	42	6	0.98	0.79-1.21	0.845	0.355	0.831	1		
rs705381 (PON1)	409	523	231	148	30	293	201	29	0.98	0.79-1.21	0.845	0.355	0.831	1		
rs7493 (PON2)	413	523	237	148	28	315	181	27	0.9	0.73-1.12	0.349	0.265	0.535	1		
rs12026 (PON2)	412	523	237	148	28	315	181	27	0.9	0.73-1.12	0.364	0.267	0.558	1		
rs1052553 (MAPT)	406	524	231	148	27	281	180	27	0.9	0.73-1.12	0.349	0.265	0.535	1		

Logistic regression trend test comparing genotype differences between cases and controls, adjusted for age (age at death for cases, age at draw for controls).

aFrequency = number of samples in a particular variable category (i.e. “cases” or “0, 1, 2”) divided by the total n for that variable (i.e. “cases + controls” or “0+1+2”). “0” represents common allele homozygous genotype for SNP tested, 1 = heterozygote, 2 = minor allele homozygous. OR = odds ratios for increase in the number of alleles (i.e. from 0 to 1 or 1 to 2); CI = 95% confidence intervals for ORs; p = p-values reported for trend test as well as for recessive (recess.) and dominant (dom.) models; q = q-values for multiple testing adjustment using Holm’s method.

Table 3 Allele Frequencies of SNPs vs. General Population

Marker	Allele Mn/Mj	MAF pop	MAF Controls	Cl	p	q Holm	MAF Cases	Cl	p	q
rs1135840	G/C	0.43	0.432	0.40-0.47	0.954	0.047	0.01	0.012	0.081	
rs3738136	A/G	0.06	0.046	0.03-0.06	0.109	0.543	0.054	0.04-0.07	0.432	1.000
rs1043424	C/G	0.34	0.277	0.25-0.31	< 0.001	0.001	0.26	0.23-0.29	< 0.001	< 0.001
rs2234694	C/A	0.042	0.051	0.04-0.07	0.231	0.925	0.043	0.03-0.06	0.91	1.000
rs4880	C/T	0.45	0.492	0.46-0.53	0.018	0.145	0.526	0.50-0.56	< 0.001	< 0.001
rs662	G/A	0.33	0.297	0.27-0.33	0.048	0.337	0.3	0.27-0.33	0.046	0.273
rs854560	T/A	0.38	0.347	0.31-0.38	0.056	0.337	0.359	0.33-0.39	0.171	0.854
rs705381	T/C	0.18	0.254	0.23-0.29	< 0.001	0.001	0.248	0.22-0.28	< 0.001	< 0.001
rs7493	G/C	0.24	0.247	0.22-0.28	0.668	1	0.225	0.20-0.25	0.261	1.000
rs12026	G/C	0.24	0.246	0.22-0.28	0.699	1	0.225	0.20-0.25	0.258	1.000
rs1052553	G/A	0.21	0.249	0.22-0.28	0.088	0.068	0.071	0.05-0.09	< 0.001	< 0.001

MAFs of studied population (control/case) compared with the general population (MAF pop) using test of proportions. *Minor allele frequencies listed on NCBI from CEU data (CEU = Utah residents with north and western European ancestry). Note G = H2, A = H1. Mn/Mj - Minor Allele/Major Allele; MAF = Minor Allele Frequency; CI = 95% confidence intervals for determined MAF for noted population (i.e. control or case); p = p-value (Chi-squared); q = q-values for multiple testing adjustment using Holm’s method.
with PSP, rank sum analyses were used to determine whether NAT2 acetylation status predicted either age at onset or disease duration. NAT2 phenotype was not associated with age at onset or age at death. For disease duration the overall test was also not significant; however, individual pairwise comparisons for disease duration using a t-test (unequal variances, Table 7) corroborated results for association of NAT2 rapid phenotype with disease (Table 5). For example, mean disease duration was shorter for rapid NAT2 phenotype (6.6 yrs.) compared to slow (7.5 yrs. $p = 0.025$).

Discussion

Our primary analysis revealed that none of the iPLEX SNPs was proportionally different between cases and controls except for $MAPT$ rs1052553, which is a known association. On the other hand, significant differences were detected when comparing MAFs of cases with reported MAFs for the general population. There were no differences in $NAT1$ or $NAT2$ genotypes between cases and controls. NAT2 rapid acetylator phenotype was more frequent in PSP cases than controls while intermediate and slow acetylator phenotypes were less frequent in cases.

Although trend analysis did not show differences between cases and controls for the iPLEX SNPs (i.e. except for rs1052553), cases did differ from the general population (CEU) in some MAFs. Of particular interest is $SOD2$ rs4880, which differed from the general population in cases, but not controls. Though not conclusive, this suggests a possible association of rs4880 with PSP. The $MAPT$ $H1$ allele is known to be associated with PSP; however, it is the major allele. Consistent with previous studies, we found that $MAPT$ genotype and MAFs differed between PSP cases, with the $H1$ allele conferring risk [6,44]. Furthermore, MAF comparisons indicate the $H2$ allele is protective, as it had a lower frequency in our cases compared to the general population (Table 3). Our results also suggest that NAT2 rapid acetylator status might increase risk for developing PSP. This is consistent with NAT2-catalyzed toxicant activation (perhaps via O-acetylation). Therefore, a higher rate of acetylation

Table 4 Case-control comparison of NAT1 genotypes

NAT1 Genotype	Controls (N = 426)	Cases (N = 545)	OR	CI	p
$NAT1^*10/*11A$	4 1.0	5 0.9	1.03	0.26-4.35	0.967
$NAT1^*10/*10$	14 3.4	22 4.1	1.22	0.61-2.52	0.583
$NAT1^*10/*3$	13 3.1	23 4.3	1.50	0.74-3.14	0.271
$NAT1^*10/*14A$ or $*10/*14B$	13 3.1	19 3.5	1.25	0.60-2.66	0.552
$NAT1^*10/*14A$	4 1.0	6 1.1	1.12	0.31-4.45	0.863
$NAT1^*10/*10$	138 33.3	165 30.6	0.94	0.70-1.26	0.677
$NAT1^*10/*11A$ or $*3/*11B$	13 3.1	21 3.9	1.21	0.59-2.55	0.607
$NAT1^*10/*15$	0 0.0	1 0.2	–	–	–
$NAT1^*11A/*14A$	0 0.0	1 0.2	–	–	–
$NAT1^*10$	2 0.5	4 0.7	1.65	0.32-12.10	0.567
$NAT1^*10$	0 0.0	1 0.2	–	–	–
$NAT1^*11B$	0 0.0	1 0.2	–	–	–
$NAT1^*15$	3 0.7	2 0.4	0.37	0.05-2.39	0.298
Missing	11 6	–	–	–	–

Logistic regression analysis of individual NAT1 genotypes, adjusted for age. $NAT1^*14/*4$ used as reference. Overall chi-squared $p = 0.99$ (likelihood ratio test). Genotypes with 10 or less counts in either group (case or control) were not included in overall test of significance. OR = odds ratio, CI = 95% confidence intervals for ORs, $p = p$-value.

Table 5 Comparisons Between NAT2 Phenotypes

NAT2 Phenotype	Controls (N = 426)	Cases (N = 545)	OR	CI	p
Slow	241 56.6	299 54.9	1	–	–
Intermediate	161 37.8	198 36.4	0.993	0.76-1.31	0.959
Rapid	19 4.5	42 7.7	1.82	1.04-3.30	0.042a

Logistic regression analysis of individual NAT2 phenotypes, adjusted for age OR = odds ratio, CI = 95% confidence intervals for ORs, $p = p$-value, $q = q$-values for multiple testing adjustment using Holm's method. When intermediate and slow phenotypes are combined (due to $p = 0.96$) and used as reference, the p-value for rapid is 0.037, and no multiple testing correction is needed since it is a single hypothesis.
would result in a higher concentration of toxic metabolite in the system. NAT2 catalyzes the O-acetylation of N-arylhydroxylamines resulting in bioactivation [48].

This is an observational study, therefore more emphasis should be placed on the estimated odds ratio and precision of the confidence intervals rather than on p-values [49]. Nevertheless, these trends must be confirmed by additional studies. Our results did not provide statistical evidence for an effect of NAT2 phenotype on onset age, age at death or disease duration. In accord with our finding that NAT2 rapid phenotype is more frequent in cases than controls, pairwise comparisons did show a trend supporting a potential link between rapid phenotype and shorter disease duration (Table 7). It is important to note that this particular analysis may have been underpowered for detecting differences in the outcome parameters since the lack of disease onset and duration information for many cases substantially decreased the sample size.

Our findings are noteworthy as NAT2*4, which confers the rapid phenotype, was designated originally as the "wild-type" allele http://louisville.edu/medschool/pharmacology/nat/ since it is common among many ethnic groups other than Europeans or Caucasians [29]. Although the frequency of NAT2*4 is not as common among Caucasians (which is the group analyzed in our study), this association may still be similar to the MAPT H1 haplotype association with PSP (i.e. MAPT H1 is associated with increased PSP risk, but is also very common in the general population with a frequency of 0.78) [6]. Therefore, even though our results suggest the rapid acetylator phenotype increases risk for PSP, this is only one of potentially numerous factors that converge to determine individual risk for disease. On the other hand, our finding is contrary to recent findings that NAT2 rapid acetylator genes enhance the protective effect of smoking in PD (De Palma et al. 2010) and reports suggesting that the NAT2 slow acetylator phenotype increases risk for PD [50-52]. PSP is a tauopathy and PD is a synucleinopathy, thus, these are two distinct diseases that may have distinct pathogenic mechanisms and risk factors [53]. There are varying reports of NAT2 polymorphisms associating with PD, PSP, and AD. While many suggest that slow alleles or phenotypes increase disease risk [31,32,50-52], others indicate increased risk with rapid or intermediate conferring genotypes and protection by slow alleles or genotypes [13,54]. Still others suggest there are no links between

Table 6 Case-control comparison of NAT2 genotypes

NAT2 Genotype (phenotype)	Controls (N = 426)	Cases (N = 545)	OR	CI	p	q
NAT2*4/*4 (rapid)	19 4.5	42 7.7	1			
NAT2*4/*5 (intermediate)	108 25.4	116 21.3	0.49	0.26-0.88	0.021	0.168
NAT2*4/*6 (intermediate)	49 11.5	69 12.7	0.6	0.30-1.16	0.133	0.532
NAT2*4/*7 (intermediate)	4 0.9	13 2.4	1.43	0.43-5.65	0.576	1
NAT2*5/*6 (slow)	106 24.9	130 23.9	0.55	0.29-0.99	0.053	0.318
NAT2*5/*7 (slow)	5 1.2	10 1.8	0.86	0.26-3.10	0.809	1
NAT2*6/*6 (slow)	42 9.9	47 8.6	0.46	0.23-0.92	0.029	0.203
NAT2*6/*7 (slow)	5 1.2	7 1.3	0.56	0.15-2.21	0.394	1
NAT2*5/*5 (slow)	82 19.2	104 19.1	0.58	0.31-1.07	0.086	0.430
NAT2*5/*14 (slow)	1 0.2	0 0	–	–	–	–
NAT2*6/*14 (slow)	0 0.2	1 0.2	–	–	–	–
Missing	5 6		–	–	–	–

Logistic regression analysis of individual NAT2 genotypes, adjusted for age. NAT2*4/*4 used as reference. OR = odds ratio; CI = 95% confidence intervals for ORs; p = p-value; q = q-values for multiple testing adjustment using Holm’s method. Overall chi-squared p = 0.25 (likelihood ratio test). Genotypes with 10 or less counts in either group (case or control) were not included in overall test of significance.

Table 7 Survival of PSP cases by NAT2 phenotype

NAT2 Phenotype	Median (Min, Max)	Mean (SD)	p-values
Age at Onset			
Rapid	68.5 (51.85)	68.5 (8.5)	> 0.05
Intermediate	68.4 (1.89)	68.1 (8.6)	> 0.05
Slow	68.0 (7.50)	67.9 (8.1)	–
Age at Death			
Rapid	75.5 (58.89)	75.3 (7.9)	> 0.05
Intermediate	76.4 (4.98)	75.3 (8.3)	> 0.05
Slow	76.5 (3.95)	75.4 (7.9)	–
Disease Duration (yrs.)			
Rapid*	62 (12)	6.0 (2.2)	0.025, 0.078, 0.028
Intermediate*	7 (2.31)	7.4 (3.6)	0.675
Slow	7 (0.27)	7.3 (3.3)	–

Pairwise comparisons of age at onset, age at death, and disease duration by NAT2 phenotype (t-test with unequal variances). *p-values = rapid vs. slow, rapid vs. intermediate, rapid vs. slow + intermediate, respectively. **p-value = slow vs. intermediate. Overall p-values from Wilcoxon rank sum tests were all > 0.1.
these diseases and NAT polymorphisms [18,30,33,55,56]. In view of these conflicting reports on the role of NAT genetic polymorphisms in neurodegeneration together with our results, additional studies are needed to determine whether NAT alleles or genotypes conferring rapid acetylation increase risk for neurodegenerative diseases or if the slow alleles/genotypes are protective or vice versa.

Conclusions
The control series we used was more geographically confined than our PSP population and the CEU population from which the general population MAFs were derived. Interestingly, for some of the MAFs our control population differed from the general population. This could explain why our genotype comparisons between cases and controls were not significant. Therefore, MAF comparisons between our PSP Sample and the general/CEU population augment our case-control analyses. The main strength of this study was the large sample of pathologically well-characterized PSP cases from a single center. On the other hand, the clinical information was not collected in a systematic or standardized manner and controls were clinical, not pathological controls. Considering that PSP is a relatively rare disease, a still larger sample size may be necessary to detect smaller, yet biologically significant differences and investigate interaction effects. Likewise, as 514 of the PSP cases analyzed here were also included in the GWAS, this finding should be confirmed in an independent cohort. Although these findings need to be replicated, this data provides useful information to guide future genetic studies on PSP as it indicates that NAT2 rapid acetylator status should be considered as a potential risk factor for PSP in studies investigating gene-gene and gene-environment interactions. Furthermore, our results are consistent with the recent genome-wide association study (GWAS) on PSP that did not find any associations with SNPs rs1043424, rs662, rs7493 or any individual NAT2 SNPs [44]. The NAT2rs numbers tested here and included in the recent GWAS on PSP are rs1801280, rs1799930, rs1799931, rs1799929, and rs1041983 [44]. Though we did not find an association with any individual NAT2 SNPs, when we used the SNPs to input NAT2 phenotype we observed a significant association between imputed rapid NAT2 acetylator phenotype and PSP. This result is important since this method of testing NAT2 phenotype association with disease has been shown to be more useful than looking at individual SNPs [57,58]. Thus, our study is quite different from the GWAS, and with respect to NAT2, much more powerful in terms of biological plausibility. Additionally, this study reveals the odds ratios and confidence intervals for a number of biologically relevant SNPs that have not been previously investigated in association studies on PSP. Our results provide support for the multiple-hit hypothesis and demonstrate the multifaceted nature of identifying risk factors for neurodegenerative diseases such as PSP.

Acknowledgements
We thank the patients and their families as well as those individuals who donated samples to the bio-repository. Thanks to research coordinators Jennifer Lash, Jill Seary, and Audrey Strongosky from Mayo Clinic Jacksonville for assistance with sample collection and to Mark Doll, Alexandra Soto-Orotola and Jennifer Adamson for technical assistance. The Society for Progressive Supranuclear Palsy brain bank is supported by a grant to Dr. Dickson from CurePSP, Inc. This research was supported by the University of Louisville Center for Environmental Genomics and Integrative Biology award number P30ES014443. Dr. Litvan is partially supported by NIH R01: PA5-03-092, National Parkinson Foundation, Parkinson Support Center of Kentuckiana. Dr. Litvan is founder and CEO of the Litvan Neurological Research Foundation, whose mission is to increase awareness, determine the cause/s and search for a cure for neurodegenerative disorders presenting with either parkinsonian or dementia symptoms (S01c3). Dr. Rai is supported by the Wendell Cherry Chair endowment for clinical trial research and the JG Brown Cancer Center. Dr. Hein was supported by NIH R01-CA04627. Dr. Wiznolek is partially supported by the NIH 1R01-N0507276, P01-N0507567, Mayo Clinic Florida (MCF) Research Committee CR programs (MCF #90052030 and MCF #90052030). Dr. Uitti is partially supported by the NIH P01- N0507567, Mayo Clinic Florida (MCF) Research Committee CR programs (MCF #90052030 and MCF #90052030). Drs. Dickson, Uitti, Wiznolek, Ross and Radmakers are supported by NIH P50-N05072187, NIH P50-N05072187-01S2, and NIH P50-AG16574.

Author details
1Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA. 2Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, KY, USA. 3Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA. 4Department of Neurology, Mayo Clinic Jacksonville, Jacksonville, FL, USA. 5J.G. Brown Cancer Center, University of Louisville, Louisville, KY, USA. 6Department of Medical Genetics, Centre of Applied Neurogenetics, Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada. 6Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, USA. 7Department of Neurology, University of Louisville, Louisville, KY, USA. 8Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.

Authors’ contributions
LFP participated in study conception and design, carried out NAT genotyping, assisted in data analysis and was primarily responsible for drafting the manuscript. ACC performed statistical analysis and assisted in data interpretation and manuscript preparation. OAR provided samples and were involved in manuscript review and critique. SNR assisted in statistical analysis and data interpretation. MUF participated in study design and iPLEX genotyping and manuscript critique. RR helped with study design and DNA preparation. DWD, RIU and ZWK provided samples and were involved in manuscript review and critique. SNR assisted in statistical analysis and data interpretation. MUF participated in study design and manuscript critique. DWH participated in study design, data analysis, and manuscript critique. IL was responsible for study conception, design and manuscript review and critique.

Competing interests
The authors declare that they have no competing interests. This research was conducted in accordance with institutional review board approved procedures.

Received: 16 September 2011 Accepted: 17 March 2012
Published: 17 March 2012

References
1. Hauw JJ, Daniel SE, Dickson D, Horoupian DS, Jellinger K, Lantos PL, McKe A, Tabaton M, Litvan I: Preliminary NINDS neuropathologic criteria for Steele-Richardson-Olszewski syndrome (progressive supranuclear palsy), Neurology 1994, 44(11):2015-2019.
2. Albers DS, Beal MF: Mitochondrial dysfunction in progressive supranuclear palsy. Neurochem Res 2002, 37(8):559-564.

3. Stamelou M, Plautis U, Reuss A, Magerkurth J, Eggert KM, Knake S, Ruberg M, Schadette-Bittinger C, Dettl WF, Hoglinger GU: In vivo evidence for cerebral depletion in high-energy phosphates in progressive supranuclear palsy. J Cereb Blood Flow Metab 2009, 29(4):861-870.

4. Ishizuka K, Dickson DW: Micoglial activation parallels system degeneration in progressive supranuclear palsy and corticosubcortical degeneration. J Neuropathol Exp Neurol 2001, 60(6):647-657.

5. Bonifati V, Joosse M, Nicholl DJ, Vanacore N, Bennett P, Rizzu P, Fabbriini G, Marconi R, Colosimo C, Locuratolo N, et al: The tau gene in progressive supranuclear palsy: exclusion of mutations in coding exons and exon 10 splice sites, and identification of a new intronic variant of the disease-associated HTT haplotype in Italian cases. Neurosci Lett 1999, 274(1):61-65.

6. Baker M, Litvan I, Houlden H, Adamson J, Dickson D, Perez-Tur J, Hardy J, Lynch T, Bigio E, Hutton M: Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum Mol Genet 1999, 8(4):711-715.

7. Elbaz A, Ross OA, Ioannidis JP, Soto-Ortolaza AI, Moisan F, Aasly J, Annesi G, CYP450, genetics and Parkinson disease. Acta Neurol Taiwan 2011, 20(1):25-30.

8. Mellick GD: Parkinson’s disease. J Cereb Blood Flow Metab 2009, 29(3):507-539.

9. Elbaz A, Ross OA, Ioannidis JP, Soto-Ortolaza AI, Moisan F, Aasly J, Annesi G, CYP450, genetics and Parkinson disease: role of genetic factors in the pathogenesis of Parkinson’s disease. Acta Neurol Taiwan 2006, 15(4):714-719.

10. Fong CS, Cheng CW, Wu RM: Pesticides and genetic polymorphism of paraoxonase in the susceptibility of Parkinson’s disease. Acta Neurol Taiwan 2007, 16(4):133-137.

11. Kim Y, Park J, Kim S, Song S, Kwon SK, Lee SH, Ritada T, Kim JM, Chung J: PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem Biophys Res Commun 2008, 373(1):975-980.

12. Fong CS, Cheng CW, Wu RM: Pesticides and genetic polymorphism of paraoxonase in the susceptibility of Parkinson’s disease. Acta Neurol Taiwan 2007, 16(4):133-137.

13. Rocha L, Garcia C, de Mendonca A, Gil JP, Bishop DT, Lechner MC: Polymorphisms in PON gene cluster are associated with Alzheimer disease. Hum Mol Genet 2005, 14(Suppl 3):S109-S116.

14. Champy P, Hoglinger GU, Feger J, Gleye C, Hocquemiller R, Laurens A, Ruberg M, Schade-Brittinger C, Oertel WH, Hoglinger GU: The association between paraoxonase 1 (PON1) Met-54 allele with Alzheimer disease. Hum Mol Genet 2006, 15(1):77-85.

15. Bourkouvala S, Fakis G: Anilamine N-acetyltransferases: what we learn from genes and genomes. Drug metabolism reviews 2005, 37(3):511-564.

16. Maraganore DM, Farrer MJ, Hardy J, McDonald SK, Schaid DJ, Rocca WA: Strong association of the paraoxonase 4-hydroxylase, N-acetyltransferase 2, and apolipoprotein E gene polymorphisms in Parkinson’s disease. Mov Disord 2000, 15(4):714-719.

17. Potts et al. BMC Medical Genetics 2012, 13:16

http://www.biomedcentral.com/1471-2350/13/16

Page 8 of 9

22. Hein DW: N-acetyltransferase 2 genetic polymorphism: effects of carcinogen and haplotype on urinary bladder cancer risk. Oncogene 2004, 23(11):1649-1658.

23. McCann SJ, Pond SM, James KM, LeCouteur DG: The association between polymorphism in the cytochrome P-450 2D6 gene and Parkinson’s disease: a case-control study and meta-analysis. J NeuroSci 1997, 17(1):53-53.

24. Singh M, Khanna VK, Shukla R, Parram D: Association of polymorphism in cytochrome P450 2D6 and N-acetyltransferase-2 with Parkinson’s disease. Dis Markers 2010, 28(2):87-93.

25. Kelada SN, Costa-Mallenn P, Checkoway H, Vlemes HA, Farin FM, Smith-Weller T, Franklin GM, Costa LG, Longstreth WT Jr, Furlong CE, et al: Paraoxonase 1 promoter and coding region polymorphisms in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2005, 74(4):546-547.

26. Basile D, Auerbach N, Gwinn-Klein M, Brouillet K, Beliczynski L, Selkoe DJ, Green R, Smith DW: Oxidative stress in the cerebrospinal fluid of Parkinson’s disease patients with abnormal E2 genotype. Mov Disord 1999, 14(1):25-30.

27. Duric G, Svetel M, Nikolaevic SI, Gavrilovic J, Kostic VS: Polymorphisms in the genes of cytochrome oxidase P450 2D6 (CYP2D6), paraoxonase 1 (PON1) and apolipoprotein E (APOE) as risk factors for Parkinson’s disease. J Neurol Sci 2002, 203(1):60-68.

28. Ferru S, Nuss H, Bowlby A, Huttley F, Green R, Smith DW, Smith DW: A review of the role of oxidative stress in the pathogenesis of Parkinson’s disease. Neurobiol Aging 2003, 24(6):63-69.

29. Elbaz A, Ross OA, Ioannidis JP, Soto-Ortolaza AI, Moisan F, Aasly J, Annesi G, CYP450, genetics and Parkinson disease: role of genetic factors in the pathogenesis of Parkinson’s disease. Acta Neurol Taiwan 2006, 15(4):714-719.
41. Doll MA, Hein DW. Comprehensive human NAT2 genotype method using single nucleotide polymorphism-specific polymerase chain reaction primers and fluorogenic probes. *Anal Biochem* 2001, 288(1):106-108.
42. Doll MA, Hein DW. Rapid genotype method to distinguish frequent and/or functional polymorphisms in human N-acetyltransferase-1. *Anal Biochem* 2002, 301(2):328-332.
43. Thomas RK, Baker AC, Debiassi RM, Wincler W, Lathamboise T, Lin WM, Wang M, Feng W, Zander T, MacConeal L, et al. High-throughput oncogene mutation profiling in human cancer. *Nat Genet* 2007, 39(3):347-351.
44. Hoglinger GU, Gilhjem NM, Dickson DW, Leibman PM, Wang LS, Klein L, Rademakers R, de Silva R, Litvan I, Riley DE, et al. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. *Nat Genet* 2011, 43(7):699-705.
45. Holm S. A Simple Sequentially Reflective Multiple Test Procedure. *Scandinavian Journal of Statistics* 1979, 6:65-70.
46. Le Marchand L, Hankin JH, Wilkens LR, Lynch T, Uitti RJ, Nelson DL, Ziegler RG, Li H, Spitz MR, Stelljes D, et al. Combined effects of well-done red meat, smoking, and rapid N-acetyltransferase 2 and CYP1A2 phenotypes in increasing colorectal cancer risk. *Cancer Epidemiol Biomarkers Prev* 2001, 10(12):1259-1266.
47. Russ C, Powell JF, Zhao J, Baker AC, Debiasi R, Winckler W, Laframboise T, Lin WM, Cruts M, Lovestone S. The microtubule associated protein Tau gene and Alzheimer’s disease: an association study and meta-analysis. *Neurobiol Aging* 2001, 314(1-2):92-96.
48. Liu L, Von Vett A, Zhang N, Walters KJ, Wagner CR, Hanne PE. Arylamine N-acetyltransferases: characterization of the substrate specificities and molecular interactions of environmental arylamines with human NAT1 and NAT2. *Chem Res Toxicol* 2007, 20(9):1300-1308.
49. Anderson DR, Link WA, Johnson DH, Burnham KP. Suggestions for presenting the results of data analyses. *Journal of Wildlife Management* 2001, 65(3):373-378.
50. De Palma G, Dick FD, Calzetti S, Scott NW, Prescot CG, Osborne A, Haines N, Mozzoni P, Negrotti A, Scaglioni A, et al. A case-control study of Parkinson’s disease and tobacco use: gene-tobacco interactions. *Mov Disord* 25(7):912-919.
51. Bandmann O, Vaughan J, Holmens PA, Marsden CD, Wood NW. Toxins, genetics, and Parkinson’s disease: the role of N-acetyltransferase 2. *Adv Neurol* 1999, 80:199-204.
52. Grundmann M, Earl CD, Sautter J, Herzog AC, Oertel WH, Bandmann O. Slow N-acetyltransferase 2 status leads to enhanced striatal dopamine depletion in 6-hydroxydopamine-lesioned rats. *Exp Neurol* 2004, 187(1):199-202.
53. Wider C, Vlario-Guell C, Jasinska-Myba B, Beckman MG, Soto-Orozlaza AI, Cobb SA, Aasly JG, Gibson JM, Lynch T, Uitti RJ, et al. Association of the MAPT locus with Parkinson’s disease. *Eur J Neurol* 17(1):483-488.
54. Guo WC, Lin GF, Zha YL, Lou KJ, Ma QW, Shen JH. N-Acetyltransferase 2 gene polymorphism in a group of senile dementia patients in Shanghai suburb. *Acta Pharmacol Sin* 2004, 25(9):1112-1117.
55. Johnson N, Bell P, Jonoviska V, Budge M, Sim E. NAT gene polymorphisms and susceptibility to Alzheimer’s disease: identification of a novel NAT1 allelic variant. *BMC Med Genet* 2004, 5:6.
56. Golab-Janowska M, Honczarenko K, Gawroniska-Szlacz B, Potemkowski A. The role of NAT2 gene polymorphisms in etiology of the most frequent neurodegenerative diseases with dementia. *Neurologia i neurochirurgia polska* 2007, 41(5):388-394.
57. Hein DW, Doll MA. Accuracy of various human NAT2 SNP genotyping panels to infer rapid, intermediate and slow acetylator phenotypes. *Pharmacogenomics* 2012, 13(1):31-41.
58. Deitz AC, Rothman N, Rebeck TR, Hayes RB, Chow WH, Zheng W, Hein DW, Garcia-Closas M. Impact of misclassification in genotype-exposure interaction studies: example of N-acetyltransferase 2 (NAT2), smoking, and bladder cancer. *Cancer Epidemiol Biomarkers Prev* 2004, 13(9):1543-1546.

Pre-publication history
The pre-publication history for this paper can be accessed here:
http://www.biomedcentral.com/1471-2350/13/16/prepub

doI:10.1186/1471-2350-13-16
Cite this article as: Potts et al. Polymorphic genes of detoxification and mitochondrial enzymes and risk for progressive supranuclear palsy: a case control study. *BMC Medical Genetics* 2012 13:16.