Calculation of the propagator of Schrödinger’s equation on $(0, \infty)$ with the potential $kx^{2} + \omega^{2}x^{2}$ by Lie symmetry group method

F. Güngör
Department of Mathematics, Faculty of Science and Letters,
Istanbul Technical University, 34469 Istanbul, Turkey

Abstract
The propagators (fundamental solutions) of the heat and Schrödinger’s equations on the half-line with a combined harmonic oscillator and inverse-square potential calculated in the recent paper [J. Math. Phys. 59, 051507 (2018)] using Laplace’s method are demonstrated to be obtainable alternatively within the framework of symmetry group methods discussed in a series of two papers in the same journal.

Keywords: Green function, linear Schrödinger equation with potential, symmetry group

1 Introduction
Very recently, in Ref. [1], Green function of the operator

$$
P(\partial) = \partial_{t} + \frac{1}{2}(-\partial_{x}^{2} + V(x)) = \partial_{t} - \frac{1}{2}\partial_{x}^{2} + \frac{k}{2}x^{-2} + \frac{1}{2}\omega^{2}x^{2}, \quad k \geq -\frac{1}{4}, \quad \omega \geq 0 \quad (1.1)$$

has been calculated in the half-space $x > 0$ and hence from it that of Schrödinger’s equation with the potential

$$
V(x) = \frac{1}{2}\partial_{x}^{2} + \frac{k}{2}x^{-2} + \frac{1}{2}\omega^{2}x^{2}, \quad k \geq \frac{3}{4}
$$

is deduced using Laplace’s method.
In another recent paper [2] with a reliance on the results of [3], we studied calculation of fundamental solutions of variable coefficient linear parabolic equations allowing sufficiently enough symmetry groups.

The purpose of this paper is to make use of methods from [2, 3] as an alternative natural approach to the one pursued in [1] to derive fundamental solutions for the parabolic operator (1.1) and its Schrödinger variant.

*e-mail: gungorf@itu.edu.tr
Two equivalent definitions of fundamental solution

Fundamental solution (the names Green function, source solution, propagator, heat kernel are also used interchangeably) for the initial value problem $u_t - Lu = 0, \ t > 0, \ u(x,0) = f(x), \ x \in \mathbb{R}^n$, where $L = \sum_{|\alpha| \leq m} a_\alpha(x) D^\alpha$, $\alpha \in \mathbb{N}^n$ with the property $a_\alpha \in C^{|\alpha|}(\mathbb{R}^n)$ is a linear differential operator of order m, can be defined in two ways.

One way is to define a distribution function $E_\xi(t, x) \in D'(\mathbb{R}^n)$, $t \geq 0$ which solves the following initial value problem

$$(\partial_t - L)E_\xi(t, x) = 0, \ E_\xi(0, x) = \delta(x - \xi), \ x, \xi \in \mathbb{R}^n$$ (2.1)

This is the definition used in Ref. [2].

Another definition is the free space (also called the causal) fundamental solution, which satisfies

$$(\partial_t - L)\tilde{E}_\xi(t, x) = \delta(t)\delta(x - \xi), \ \text{in} \ D'(\mathbb{R}^{n+1}).$$ (2.2)

This definition is used in Ref. [1]. It can be proved that the fundamental solution $E_\xi(t, x)$ as defined in (2.1) coincides with the free-space one when one extends $E_\xi(t, x)$ by zero to $t \leq 0$

$$E_\xi'(t, x) = H(t)E_\xi(t, x) = \begin{cases} E_\xi(t, x), & \text{for} \ t > 0 \\ 0, & \text{for} \ t < 0. \end{cases}$$ (2.3)

The proof that for distributions $E_0(t, x)$ satisfies $(\partial_t - L)E_0'(t, x) = \delta(t, x) = \delta(t)\delta(x)$ can be found in the book [3] for the heat operator, i.e. when $L = \Delta$ is the Laplace operator.

Consequently, all the fundamental solutions constructed here can be easily made to agree with those of Ref. [3] by their extension by zero to $t \leq 0$ just by multiplying them by the Heaviside function $H(t)$ (or $Y(t)$ by the notation of [1]).

3 Calculation of fundamental solution (Green function)

We first consider the operator

$$L = P(\partial) = \partial_t + \frac{1}{2}(-\partial_x^2 + V(x)) = \partial_t - \frac{1}{2}\partial_x^2 + \frac{k}{2}x^{-2} + \frac{1}{2}\omega^2x^2, \ \ k \geq -\frac{1}{4}, \ \ \omega \geq 0$$ (3.1)

and construct the Green function $E_\xi(t, x) \in D'(\mathbb{R}^+)$, $\xi > 0$ in the half-line in the sense of first definition (2.1) for the heat equation with the potential $V(x)$

$$Lu = P(\partial)u = u_t - \frac{1}{2}u_{xx} + \left(\frac{k}{2}x^{-2} + \frac{1}{2}\omega^2x^2\right)u = 0. \quad (3.2)$$
We can get rid of the factors of 1/2 by scaling \(t, t \rightarrow \frac{t}{2} \). We hence consider

\[u_t = u_{xx} - (kx^{-2} + \omega^2 x^2)u. \]

(3.3)

A brief summary of the symmetry approach is as follows. We look for a transformation that leaves invariant the initial value problem (2.1) on the half-line \(x > 0 \). Such transformation is realized as a symmetry group of the Lie algebra spanned by the vector fields of the form

\[\mathbf{v} = \tau(t)\partial_t + \chi(t, x)\partial_x + \phi(t, x)u\partial_u, \]

(3.4)

satisfying the conditions

\[\tau(0) = 0, \quad \chi(0, \xi) = 0, \quad \phi(0, \xi) + \chi_x(0, \xi) = 0. \]

(3.5)

Fundamental solutions then arise as solutions invariant under this symmetry group. For more details of this and another related method the reader is directed to Ref. [2].

We know from the results of [3] that this equation admits a four-dimensional Lie point symmetry algebra \(\mathfrak{g} \), excluding the obvious infinite-dimensional one, because \(k \neq 0 \) (otherwise 6-dimensional). From the formula (3.28) of Ref. [3] (correcting sign errors in the vector field \(\mathbf{v}_3 \); all signs appearing in the exponentials should be negative) with \(a = 1, b = 0, c = -V(x), I(x) = x, J(x) = 0, c_2 = -\omega^2, c_0 = 0 \) we find the following basis of the symmetry algebra

\[\mathbf{v}_1 = \partial_t, \]
\[\mathbf{v}_2 = \cosh(4\omega t)\partial_t + 2\omega \sinh(4\omega t)x\partial_x - [\omega \sinh(4\omega t) + 2\omega^2 \cosh(4\omega t)x^2]u\partial_u, \]
\[\mathbf{v}_3 = \sinh(4\omega t)\partial_t + 2\omega \cosh(4\omega t)x\partial_x - [\omega \cosh(4\omega t) + 2\omega^2 \sinh(4\omega t)x^2]u\partial_u, \]
\[\mathbf{v}_4 = u\partial_u \]

(3.6)

with non-zero commutation relations

\[[\mathbf{v}_1, \mathbf{v}_2] = 4\omega \mathbf{v}_3, \quad [\mathbf{v}_1, \mathbf{v}_3] = 4\omega \mathbf{v}_2, \quad [\mathbf{v}_2, \mathbf{v}_3] = 4\omega \mathbf{v}_1. \]

The general symmetry vector field \(\mathbf{v} = \sum_{i=1}^4 k_i \mathbf{v}_i \) satisfying the initial-boundary conditions \([3, 5]\) is given by

\[\mathbf{v} = \sinh^2(2\omega t)\partial_t + 2\omega \sinh(4\omega t)x\partial_x + \omega [2\omega x^2 - 2\omega \cosh(4\omega t)x^2 - \sinh(4\omega t)]u\partial_u. \]

(3.7)

We find the invariants of \(\mathbf{v} \) by solving the equation \(\mathbf{v}(\varphi) = 0 \) by the method of characteristics as

\[\eta = \frac{x}{\sinh(2\omega t)}, \quad \zeta = u^{-1}\sinh(2\omega t)^{-1/2} \exp \left[-\frac{\omega(x^2 + \xi^2)}{2 \tanh(2\omega t)} \right]. \]

(3.8)

Fundamental solution will be sought as a group-invariant solution in the form

\[u = \sinh(2\omega t)^{-1/2} \exp \left[-\frac{\omega(x^2 + \xi^2)}{2 \tanh(2\omega t)} \right] F(\eta). \]

(3.9)
Substitution of (3.9) into (3.3) provides the second order ordinary differential equation (ODE)

\[\eta^2 F''(\eta) - (\omega^2 \xi^2 \eta^2 + k)F = 0. \]

(3.10)

The modified Bessel equation of with index \(\nu \) in normal form is

\[\eta^2 F''(\eta) - (\omega^2 \xi^2 \eta^2 - \frac{1}{4} + \nu^2)F = 0. \]

Hence, the solution of (3.10) bounded near zero can be written as

\[F = \sqrt{\eta} I_\nu(\omega \xi \eta), \quad \nu = \sqrt{k + \frac{1}{4}} \geq 0, \]

where \(I_\nu \) is the modified Bessel function of the first kind with index \(\nu \). Finally, the fundamental solution \(E_\xi(t, x) \) of (3.2) is determined up to a multiplicative constant \(c_0 \) (after the replacement \(t \to t/2 \))

\[E_\xi(t, x) = c_0 \frac{\sqrt{x}}{\sinh \omega t} \exp \left[-\frac{\omega(x^2 + \xi^2)}{2 \tanh(\omega t)} \right] I_\nu \left(\frac{\omega \xi x}{\sinh \omega t} \right). \]

(3.11)

The constant \(c_0 \) should be found from the normalization condition

\[\lim_{t \to 0^+} \int_0^\infty E_\xi(t, x) dx = 1. \]

Green function for the special potential when \(\omega = 0 \) has already be obtained in Ref. [2] (page 6) using methods within the symmetry context (with \(k = -\mu \) in notation of [2]). We reproduce it here for the purpose of reference (the replacement \(t \to t/2 \) is done)

\[E_\xi(t, x) = \frac{\sqrt{\xi x}}{t} \exp \left[-\frac{x^2 + y^2}{2t} \right] I_\nu \left(\frac{xy}{t} \right), \quad \nu = \sqrt{\frac{1}{4} + k}. \]

We now turn our attention to the construction of Green function for the one-dimensional Schrödinger equation with potential \(V(x) \)

\[iu_t + u_{xx} = (kx^{-2} + \omega^2 x^2)u, \]

(3.12)

where \(u : \mathbb{R}_+^2 = \{(t, x) \in \mathbb{R}^2 : x > 0\} \to \mathbb{C} \) is a complex-valued function. From [3], we recall that the symmetry algebra for an arbitrary potential \(V(t, x) \) (with some sign corrections) is represented by

\[\mathbf{v} = \tau(t) \partial_t + \chi(t, x) \partial_x + i \phi(t, x) u \partial_u, \]

where

\[\chi(t, x) = \frac{1}{2} \dot{\tau} x + \rho(t), \quad \phi(t, x) = \frac{7}{8} x^2 + \frac{\dot{\rho}}{2} x + \sigma(t) + i \left(\frac{\dot{\tau}}{4} + b \right) \]
and V satisfies the determining equation
\[\tau V_t + \chi V_x + \dot{\tau} V + \frac{\dot{\tau}}{8} x^2 + \frac{\dot{\rho}}{2} x + \dot{\sigma}(t) = 0. \] (3.13)

Here b is a constant, $\tau(t)$, $\rho(t)$ and $\sigma(t)$ are arbitrary real functions. For the given potential $V = V(x) = kx^{-2} + \omega^2 x^2$, Eq. (3.13) is easily solved for these functions, and it turns out that equation (3.12) admits a five-dimensional symmetry algebra. A basis for its elements is given by
\[
\begin{align*}
\mathbf{v}_1 &= \partial_t, \\
\mathbf{v}_2 &= -\frac{\cos 4\omega t}{4\omega} \partial_t + \frac{\cos 4\omega t}{2} x \partial_x + \frac{1}{4} \left[2i\omega \cos(4\omega t)x^2 - \sin 4\omega t \right] u \partial_u, \\
\mathbf{v}_3 &= \frac{\sin 4\omega t}{4\omega} \partial_t + \frac{\sin 4\omega t}{2} x \partial_x - \frac{1}{4} \left[2i\omega \sin(4\omega t)x^2 + \cos 4\omega t \right] u \partial_u, \\
\mathbf{v}_4 &= u \partial_u + u^* \partial_{u^*}, \\
\mathbf{v}_5 &= i(u \partial_u - u^* \partial_{u^*}),
\end{align*}
\] (3.14)

where * denotes the complex conjugation and in \mathbf{v}_2 and \mathbf{v}_3 complex conjugated coefficients of u-component are omitted. Again, the most general symmetry element leaving the initial condition $\lim_{t \to 0} E_\xi(t, x) = \delta(x - \xi)$ invariant has the form
\[
\mathbf{v} = 2 \sin^2(2\omega t) \partial_t + 2\omega \sin(4\omega t)x \partial_x + i\omega \left[-2\omega \xi^2 + 2\omega \cos(4\omega t)x^2 + i\sin(4\omega t) \right] u \partial_u.
\] (3.15)

Invariants are $\eta = x / \sin(2\omega t)$ and $\zeta = u^{-1}(\sin 2\omega t)^{-1/2} \exp[2^{-1}i\omega(x^2 + \omega^2) \cot(2\omega t)]$. Green function will be of the form
\[
u = (\sin 2\omega t)^{-1/2} \exp \left[\frac{i\omega(x^2 + \omega^2)}{2 \tan(2\omega t)} \right] F(\eta).
\] (3.16)

When substituted into (3.12) we find that F should satisfy the ODE
\[
\eta^2 F''(\eta) + (\omega^2 \xi^2 \eta^2 - k) F(\eta) = 0.
\] (3.17)

which is the normal form of the Bessel equation with index $\nu = \sqrt{\frac{1}{4} + k}$. Therefore, the Green function of Eq. (3.12), up to a nonzero normalization constant, is given by
\[
E_\xi(t, x) = c_0 \sqrt{x / \sin \omega t} \exp \left[\frac{i\omega(x^2 + \xi^2)}{2 \tan(\omega t)} \right] J_\nu \left(\frac{\omega \xi x}{\sin \omega t} \right).
\] (3.18)

The calculation of the Green function of (3.12) for $\omega = 0$ is slightly different in which the relevant symmetry vector field now becomes a projective type
\[
\mathbf{v} = t^2 \partial_t + x t \partial_x + \frac{1}{4} \left[i(x^2 - \xi^2) - 2t \right] u \partial_u.
\] (3.19)

In this situation, solution ansatz (using invariants of \mathbf{v}) will be in the form
\[
u = \frac{1}{\sqrt{t}} \exp \left[\frac{i(x^2 + \xi^2)}{4t} \right] F(\eta), \quad \eta = \frac{x}{t},
\] (3.20)
where the function F satisfies

$$\eta^2 F''(\eta) + \left(\frac{\xi^2}{4} \eta^2 - k \right) F(\eta) = 0 \quad (3.21)$$

with the appropriate solution $F = \sqrt{\eta} J_\nu(\frac{\xi \eta}{2}), \nu = \sqrt{\frac{1}{4} + k}$. Finally, the Green function (up to a normalization constant) is given by

$$E_\xi(t, x) = c_0 \sqrt{\frac{x}{t}} \exp\left[\frac{i(x^2 + \xi^2)}{4t} \right] J_\nu(\frac{\xi x}{t}). \quad (3.22)$$

$E_\xi(t, x)$ given in (3.18) and (3.22) is smooth if $x \neq 0$, $(t, x) \neq (0, \xi)$, namely of class $C^\infty(\mathbb{R} \times \mathbb{R}^n \setminus (0, \xi))$ (See [1] for their remarkable properties).

References

[1] N. Ortner and P. Wagner. Calculation of the propagator of Schrödinger’s equation on $(0, \infty)$ with the potential $kx^{-2} + \omega^2 x^2$ by Laplace’s method. Journal of Mathematical Physics, 59(7):071509, 2018.

[2] F. Güngör. Equivalence and symmetries for variable coefficient linear heat type equations. II. Fundamental solutions. Journal of Mathematical Physics, 59(6):061507, 2018.

[3] F. Güngör. Equivalence and symmetries for variable coefficient linear heat type equations. I. Journal of Mathematical Physics, 59(5):051507, 2018.

[4] R. McOwen. Partial Differential Equations Methods and Applications. Prentice-Hall, 1996.