Research Paper

Plasma metabolite score correlates with Hypoxia time in a newly born piglet model for asphyxia

Julia Kuligowskia,1, Rønnaug Solbergb,c,1, Ángel Sánchez-Illana, Leonid Pankratovb, Anna Parra-Llorca, Guillermo Quintásd, Ola Didrik Saugstadb, Máximo Ventoa,f

a Neonatal Research Group, Health Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, Valencia, Spain
b Department of Pediatric Research, Institute for Surgical Research, University of Oslo, Oslo University Hospital - Rikshospitalet, Oslo, Norway
c Department of Pediatrics, Vestfold Hospital Trust, Tønsberg, Norway
d Human & Environmental Health & Safety (HEHS), Leitat Technological Center, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
Unidad Analítica, Health Research Institute Hospital La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
f Division of Neonatology, University & Polytechnic Hospital La Fe, Avenida Fernando Abril Martorell 106, Valencia, Spain

ARTICLE INFO

Keywords:
Hypoxia
Perinatal asphyxia
Newborn
Metabolic biomarker
Neonatal piglet model
Liquid Chromatography – Time-of-Flight Mass Spectrometry (LC-TOF-MS)

ABSTRACT

Hypoxic-ischemic encephalopathy (HIE) secondary to perinatal asphyxia is a leading cause of mortality and acquired long-term neurologic co-morbidities in the neonate. The most successful intervention for the treatment of moderate to severe HIE is moderate whole body hypothermia initiated within 6 h from birth. The objective and prompt identification of infants who are at risk of developing moderate to severe HIE in the critical first hours still remains a challenge. This work proposes a metabolite score calculated based on the relative intensities of three metabolites (choline, 6,8-dihydroxypurine and hypoxanthine) that showed maximum correlation with hypoxia time in a consolidated piglet model for neonatal hypoxic-ischemia. The metabolite score’s performance as a biomarker for perinatal hypoxia and its usefulness for clinical grading and decision making have been assessed and compared to the performance of lactate which is currently considered the gold standard. For plasma samples withdrawn before and directly after a hypoxic insult, the metabolite score performed similar to lactate. However, it provided an enhanced predictive capacity at 2 h after resuscitation. The present study evidences the usefulness of the metabolite score for improving the early assessment of the severity of the hypoxic insult based on serial determinations in a minimally invasive biofluid. The applicability of the metabolite score for clinical diagnosis and patient stratification for hypothermia treatment has to be confirmed in multicenter trials involving newborns suffering from HIE.

1. Introduction

Perinatal asphyxia is characterized by intermittent periods of hypoxia ischemia that, if prolonged and intense enough, may cause irreversible damage to oxy-regulatory tissues such as brain [1]. The resulting hypoxic-ischemic injury evolves over time. Hence, the primary phase corresponding to tissue hypoxia is followed by a partial recovery upon reoxygenation/reperfusion (secondary phase). Along both these periods a precise sequence of pathophysiologic events leading to specific injuries is set in motion [2,3]. Hypoxic-ischemic encephalopathy (HIE) secondary to perinatal asphyxia is a leading cause of mortality and acquired long-term neurologic co-morbidities in both, the late preterm and term neonate with its overall incidence varying notably [4].

Clinical management of HIE patients is strongly affected by the perceived prognosis. To date, moderate whole body hypothermia is, together with air resuscitation, the most successful intervention for the treatment of moderate to severe HIE. Yet, the therapeutic window for initiating treatment is limited to 6 h from birth [4]. To make matters worse, the clinical severity of HIE varies over time after the insult, hampering an accurate assessment for diagnosis especially in the first hours after birth [1]. Currently, the diagnosis of an asphyctic process that evolves to HIE relies on prenatal clinical information (sentinel events), postnatal clinical evaluation including serial Apgar scores and neurological assessment, and cord blood gas analysis reflecting increased lactate levels and metabolic acidosis [5]. At a later time point amplitude-integrated (aEEG) or multichannel electroencephalography (mchEEG) and brain magnetic resonance imaging (MRI) further

http://dx.doi.org/10.1016/j.redox.2017.02.002
Received 13 January 2017; Received in revised form 1 February 2017; Accepted 4 February 2017
Available online 07 February 2017
2213-2317 © 2017 Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
confirm the diagnosis and the degree of severity [1,2].

Metabolomic analysis of biofluids and tissues is becoming an increasingly popular field of research in neonatal medicine [6]. To date, literature reports a very limited number of studies on HIE involving human subjects. In a targeted LC-MS approach Walsh et al. [7] found changes in umbilical cord serum levels of acylcarnitines, glycerophospholipids and aminoacids in newborns with HIE. Reinke et al. studied umbilical cord serum from newborns suffering from asphyxia and HIE employing NMR [8] and established a correlation of their findings with clinical outcomes at 3 years of life in the same cohort [9].

Animal studies seeking for novel biomarkers capable of providing improved diagnostic power have been carried out [10,11]. Changes in retina and choroid tissues of piglets during hypoxia were studied [12,13]. With the aim of discovering early biomarkers, Solberg et al. [13] performed an untargeted metabolomic study in retinal tissue samples from a piglet model of perinatal asphyxia. After the hypoxic insult, elevated levels of the limiting intermediate compound in the major pathway of phosphatidyl-choline biosynthesis [14] (i.e. CDP-choline) were found with its concentrations correlating with the duration of retinal hypoxia. Supported by the observations in neuronal tissue, follow-up studies in minimally-infected biofluids were carried out revealing a set of 21 metabolites which showed significant changes in a liquid chromatography-time-of-flight-mass spectrometry (LC-TOF-MS) untargeted metabolomics study on plasma samples from piglets subjected to hypoxia and reoxygenation in comparison to a non-asphyxiated control group [15].

In this context, the present work proposes a metabolite score as an estimate of the duration and intensity of hypoxia based on LC-TOF-MS data from an untargeted metabolomics study on plasma samples from piglets subjected to hypoxia and reoxygenation conducted previously [15]. The metabolite score involves plasma metabolites that showed maximum correlation with the duration of hypoxia in a piglet model. With the introduction of the metabolite score we strive after a tool for a user-independent, accurate grading thereby aiding to stratify newborns suffering from HIE who are most likely to benefit from early, moderate therapeutic hypothermia and/or predicting outcomes.

2. Material and methods

2.1. Piglet model for neonatal hypoxia-ischemia

The animal study was carried out at Oslo University Hospital (Norway) and the Norwegian Council for Animal Research approved the experimental protocol (approval number 3399). Animals were cared for and handled in accordance with the European Guidelines for Use of Experimental Animals by scientists certified by the Federation of European Laboratory Animals Science Association.

Fig. 1 illustrates the experimental study design. For details on the animal experiment, the reader is referred to Solberg et al. [15]. In short, 32 newborn Noroc (1xLD) pigs aged between 12 h and 36 h, with hemoglobin (Hb) levels > 5 g/dL and in good general conditions were included in the study. Piglets were orally anesthetized, intubated, ventilated and surgically prepared [16]. After 60 min of stabilization, the piglets were randomized either to the intervention group (n=26) or the control group (n=6). Hypoxemia and subsequently hypoxia-ischemia were achieved by ventilation with a gas mixture of 8% O2 in N2 until either the mean arterial blood pressure (MABP) decreased to < 20 mm Hg or the base excess (BE) reached −20 mM L−1. CO2 was added during hypoxemia aiming at a PaCO2 of 8.0–9.5 kPa (60–71.3 mmHg) in order to imitate perinatal asphyxia. After 30 min of reoxygenation, all animals were observed for 9 h receiving room air with continuous surveillance of blood pressure, saturation, pulse, temperature, blood gas measurements and lactate in whole blood samples taken directly from the arterial line and automatically drawn into an ABL 800 FLEX (Radiometer, Copenhagen, Denmark). At the end of the observation time, the animals were given an overdose of pentobarbital (150 mg/kg IV). The control group underwent the same procedures (i.e. anesthesia, surgery, ventilation and sample collection) and observation times, but was not exposed to hypoxia and reoxygenation.

2.2. Plasma sample collection, preparation and LC-TOFMS analysis

Blood samples were taken in ethylene-diamine-tetraacetic acid Vacutainer blood collection tubes before start of hypoxia (t0), at the end of hypoxia (t1) and 120 min after end of hypoxia (t2) and at the corresponding time points for the control group (see Fig. 1). Plasma was obtained immediately after sampling by centrifugation of the whole blood samples at 2000g for 10 min at 4 °C. Plasma samples were stored at −80 °C until analysis.

After thawing plasma samples on ice, 150 µL of cold (4 °C) acetonitrile were added to 50 µL of plasma, followed by homogenizing on a Vortex mixer. Samples were centrifuged at a speed of 10000g at 4 °C during 10 min 25 µL of supernatant were added to 100 µL of IS solution (5 µM Phe-D5 and 10 µM Meth-D3 in H2O, 0.1% v/v formic acid). 100 µL aliquots of sample extracts were transferred into 200 µL capped glass vials and placed in the refrigerated auto-sampler compartment.

Metabolomic profiling of the plasma extracts was performed on a 1200 RRLC Series Agilent chromatograph (Palo Alto, CA., USA) using a Zorbax SB-C8 (3×150 mm, 3.5 µm, Agilent) column coupled to a 5600-TripleTOF MS spectrometer (ABSciex, Framingham, MA, USA) operating in the positive ionization mode (ESI+). Peak tables were generated employing the XCMS software [17]. Detailed information on the LC-TOFMS metabolic profiling can be found elsewhere [15].

2.3. Data analysis

Data analysis was carried out in Matlab 2015a (The Mathworks, Natick, MA, USA) using built-in as well as in-house written functions and the PLS Toolbox 8.0 from Eigenvector Research Inc. (Wenatchee, WA, USA). Data for Partial Least Squares regression (PLS) models were autoscaled and venetian blinds cross validation (CV) with 5 data splits was employed. Receiver Operating Characteristic (ROC) curves were calculated using the Biomarker Analysis module available on the MetaboAnalyst platform [18]. Missing values were estimated using the k-nearest neighbors algorithm. Data were used without further normalization, transformation or scaling.

Fig. 1. Overview of the study design.
The performance of both, the PLS-based metabolite score and lactate levels for classification of piglets that had suffered from hypoxia-ischemia was assessed using ROC curve analysis. The constructed ROC curves were used to select the optimal cut-off level for the classification of samples included in the external validation data set. Under the tested experimental conditions, the metabolite score and the lactate concentration provided sensitivity and specificity values equal to 1 for the calibration data, with cut-off values of 15.8 min for the metabolite score and 9 mM for the lactate concentration. Besides, both variables correctly classified t0 and t1 as well as control samples included in the validation set, with the exception of one sample. However, lactate levels misclassified samples collected at t2 from asphyxiated piglets and they were assigned to the non-asphyxiated class. In case of the metabolite score, 56.3% of the asphyxiated samples were correctly classified. These results are represented in Fig. 4.

4. Discussion

The prompt identification of infants who are at higher risk of developing moderate to severe HIE in the first critical hours is essential. Tools are needed for helping to guide clinical decision-
Fig. 2. Plasma metabolite levels of choline, hypoxanthine, 6,8-dihydroxypurine and lactate. Note: circles represent median concentrations and error bars depict interquartile ranges (IQRs); red: calibration data set; blue: validation data set; black: controls; no lactate values were available for the control group at t1; *= p-value < 0.05 (Wilcoxon rank sum) for comparing t1 or t2 to the corresponding data points at t0; **= p-value < 0.01 (Wilcoxon rank sum) for comparing t1 or t2 to the corresponding data points at t0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).

Fig. 3. PLS predicted vs. measured hypoxia time (top) and lactate vs. measured hypoxia time (bottom). Note: circles=intervention group; squares=control group; blue=t0; red=t1; magenta=t2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
making and establish a prognosis. A clear association between parameters such as umbilical cord blood pH and neonatal outcomes have been reported [19]. However, Table 1 evidences that the typically meters such as umbilical cord blood pH and neonatal outcomes have shown in pilot studies and none has entered routine clinical use. Furthermore, studies on the correlation of the reported metabolites with the time of hypoxia was investigated. This is of practical importance as the duration and intensity of hypoxia was found to be directly related to the degree of brain damage in perinatal asphyxia. In this study, results obtained using the metabolite score involving the determination of choline, 6,8-dihydroxyprurine and hypoxanthine are compared to those obtained using lactate levels, which are currently considered the gold standard for assessing asphyxia in the clinics. Strong correlations with the measured hypoxia time were found for both lactate (R²=0.8) and the established metabolite score (R²=0.9), in both calibration and external validation data sets (see Fig. 3). The metabolite score accurately predicted hypoxia times for control samples with a RMSEP of 2.3 min, whereas this parameter was more than quadruplicated when using lactate. Although lactate slightly outperformed the metabolite score in terms of prediction error at t₁ with RMSEPs of 14.2 and 19.1 min, respectively, at t₂ lactate values had almost returned to initial levels observed before hypoxia (t₀) precluding the accurate prediction of hypoxia time in samples withdrawn two hours after resuscitation.

In view of the clinical applicability as valuable biomarkers of these after oxygen-glucose deprivation has been reported in an ex vivo rat model comparing hypothermia and normothermia groups [27]. On the other hand, choline’s function as a part of the neurotransmitter acetylcholine is widely known [28,29]. However, in preceding studies elevated CDP-choline levels in retinal tissue were observed supporting the alteration of the Kennedy pathway rather than the formation of acetylcholine as acetylcholine levels remained unaffected during hypoxia-reoxygenation in the studied neuronal tissue [13]. Recently it was shown that the combination of lactate with choline levels and related metabolites in plasma provided improved class prediction performance for the differentiation between a control and a hypoxia exposed group as well as improved prediction of the duration of hypoxia in an animal model of perinatal asphyxia-reoxygenation [30]. Hence, the evolution of the plasmatic profiles of choline could potentially be related with the alteration of the metabolic pathways (e.g. Kennedy pathway) together with the disturbance of the function of the blood brain barrier (BBB), which has been reported during HI insults in neonates [31]. This is also supported by a recent study on neonatal mouse brain, which revealed the transient opening of the BBB within early hours after the insult [32]. Hypoxanthine has been widely acknowledged as a hallmark for hypoxia. Hypoxanthine is a breakdown product of ATP and oxygen is needed for a further conversion into uric acid via xanthine. It has furthermore been described to be a free radical generator and hence it plays a key role in oxidative stress-associated diseases of the newborn [23,33]. The diagnostic value of hypoxanthine has been discovered decades ago and tested in animal and clinical studies ever since. Yet, it still has not replaced lactate as the gold standard of biochemical biomarkers for hypoxia. Big-scale multicenter clinical studies corroborating it usefulness in the clinical practice are still lacking [34].

In view of the clinical applicability as valuable biomarkers of these...
metabolites, the time course is of great interest (see Fig. 2). The selection of the most appropriate therapeutic strategy for newborns with HIE is limited by the window of six hours from birth for initiating therapeutic hypothermia. Here, the metabolite score based on the relative intensities of choline, 6,8-dihydroxypurine and hypoxanthine in plasma samples was tested for its diagnostic capacity and compared to the performance of lactate as a biomarker in terms of patient stratification into HIE or control groups. Both lactate and the metabolite score performed as ideal biomarkers in this experimental study with extreme conditions when considering samples withdrawn before (t₀) and directly after hypoxia (t₁). Also for control animals, both approaches provided correct class assignments. However, it has to be remarked that the proposed metabolite score allowed covering a longer time period after the hypoxic insult. Results obtained showed that in 56.3% of the samples collected 2 h after reoxygenation (t₂), a clear alteration in the levels of the three selected metabolites persisted, whereas lactate levels provided no discrimination among samples withdrawn before (t₀) and 2 h after hypoxia (t₂). This indicates that the proposed metabolite score could potentially be applied to carry out determinations in a serial fashion covering the first hours of life, thereby aiding clinical decision-making together with routinely employed diagnostic tools in the delivery room. This is illustrated by the results presented in Fig. 5, where it can clearly be seen that at t₁ both lactate and the metabolite score show a marked change as compared to t₀. Instead, at t₂ lactate determinations are not useful to guide clinical decisions anymore whereas the metabolite score remains elevated as compared to t₀.

The preliminary results indicate that the metabolite score might be potentially extrapolated to the stratification of newborn infants with HIE within the first six hours of life for receiving therapeutic hypothermia and/or predicting outcomes. Future animal studies including hypothermia treatment will focus on the application of the metabolite score for an early assessment of the risk of brain injury and for the identification of cases with a good prognosis of benefiting from therapeutic hypothermia. Although the exact hypoxia time is not a measureable variable in the clinic, the metabolite score based on the measurement of choline, hypoxanthine and 6,8-dihydroxypurine in plasma might potentially correlate with the duration and/or intensity of hypoxia. Findings described in the present work will have to be validated in clinical studies involving the analysis of plasma samples from newborns suffering from HIE. Although in this study metabolite levels were determined employing sophisticated analytical platforms it is realistic to count on the development of point-of-care devices for the determination of metabolic markers, once established their effectiveness, similar to other portable devices used in the clinic on a daily basis for glucose, pH and lactate measurements.

5. Conclusions

To summarize, the present study showed the potential of a plasmatic metabolite score involving the determination of choline, 6,8-dihydroxypurine and hypoxanthine for estimating the duration of hypoxia. The metabolite score performed similar to lactate for samples withdrawn before (t₀) and directly after a hypoxic insult (t₁) and provided an enhanced predictive capacity at 2 h after resuscitation (t₂). Consequently, at the later time point (t₂) the metabolite score was able to improve the diagnostic capacity as compared to lactate. The applicability of the metabolite score for clinical diagnosis and patient stratification for hypothermia treatment has to be confirmed in multicenter trials involving the analysis of plasma samples from newborns suffering from HIE. These studies will also assess the correlation with long-term neurodevelopmental outcomes.

Acknowledgements

We would like to thank the Servicio de Soporte a la Investigación Experimental (SCSIE) of the University of Valencia (Spain). MV acknowledges the FISPI14/0433 grant (Instituto Carlos III; Ministry of Economy and Competitiveness) and EC11-246 (Spanish Ministry of Health, Social Services and Equality). JK acknowledges her personal Miguel Servet grant (CP16/00034, Instituto Carlos III, Ministry of Economy and Competitiveness, Spain) and the financial support received for carrying out this project (GV/2016/062, Consellería de Educación, Investigación, Cultura y Deporte, Generalitat Valenciana). ASI and APL acknowledge their personal PFIS grant F116/00380 (Instituto Carlos III, Ministry of Economy and Competitiveness, Spain) and Post Residency Training Grant 2015/0371 (Health Research Institute La Fe, Valencia). This project was carried out with
