Observable Neutron-Anti-Neutron Oscillation, Baryogenesis and High Scale Seesaw

R. N. Mohapatra*

Department of Physics and Center for String and Particle Theory,
University of Maryland, College Park, MD 20742, USA

(Dated: May, 2006)

Abstract

Seesaw mechanism has been a dominant paradigm in the discussion of neutrino masses. I discuss how this idea can be tested via a baryon number violating process such as $N - \bar{N}$ oscillation. Since the expected seesaw scale is high and the $N - \bar{N}$ amplitude goes like M_R^{-5}, one might think that this process is not observable in realistic seesaw models for neutrino masses. In this talk I show that in supersymmetric models, the above conclusion is circumvented leading to an enhanced and observable rate for $N - \bar{N}$ oscillation. I also discuss a new mechanism for baryogenesis in generic models for neutron-anti-neutron oscillation and show how the requirement of adequate baryogenesis can put an upper limit on the neutron-anti-neutron oscillation time.

* Invited plenary talk presented at the WHEPP9 symposium in Bhubaneswar, India in January, 2006.
I. INTRODUCTION

There are various reasons to suspect that baryon number is not a good symmetry of nature: (i) first is that nonperturbative effects of the standard model lead to $\Delta B \neq 0$, while keeping $\Delta (B - L) = 0$; (ii) second has to do with an understanding of the origin of matter in the universe requires $\Delta B \neq 0$ interactions and (iii) many theories beyond the standard model lead to interactions that violate baryon number.

If indeed such interactions are there, an important question is: can we observe them in experiments? Two interesting baryon nonconserving processes of experimental interest are:

(a) proton decay e.g. $p \rightarrow e^+ + \pi^0, \nu + K^0$ etc and (b) $N \leftrightarrow \bar{N}$ oscillation. These two classes of processes probe two different selection rules for baryon nonconservation: $\Delta (B - L) = 0$ for proton decay and $\Delta (B - L) = 2$ for $N \leftrightarrow \bar{N}$ oscillation. They are signatures of two totally different directions for unification beyond the standard model. For example, observation of proton decay will point strongly towards a grand desert till about the scale of 10^{16} GeV whereas $N \leftrightarrow \bar{N}$ oscillation will require new physics at an intermediate scale at or above the TeV scale but much below the GUT scale. Further experimental search for both these processes can therefore provide key insight into the nature of unification beyond the standard model with or without supersymmetry.

While proton decay goes very naturally with the idea of eventual grand unification of forces and matter, recent discoveries of neutrino oscillations have made $N \leftrightarrow \bar{N}$ oscillation to be quite plausible theoretically if small neutrino masses are to be understood as a consequence of the seesaw mechanism. This can be seen as follows: seesaw mechanism implies Majorana neutrinos implying the existence of $\Delta (B - L) = 2$ interactions. In the domain of baryons, it implies the existence of $N \leftrightarrow \bar{N}$ oscillation as noted many years ago. In fact an explicit model for $N \leftrightarrow \bar{N}$ oscillation was constructed in by implementing the seesaw mechanism within the framework of the Pati-Salam $SU(2)_L \times SU(2)_R \times SU(4)_c$ model, where quarks and leptons are unified. It was shown that this process is mediated by the exchange of diquark Higgs bosons giving an amplitude (see Fig. 1) $(G_{N \leftrightarrow \bar{N}})$ which scales like M_{qq}^{-5}. In the nonsupersymmetric version without fine tuning, one expects $M_{qq} \propto v_{BL}$ leading to $G_{N \leftrightarrow \bar{N}} \simeq v_{BL}^{-5}$. So only if $M_{qq} \sim v_{BL} \sim 10 - 100$ TeV, the $\tau_{N \leftrightarrow \bar{N}}$ is in the range of $10^6 - 10^8$ sec and is accessible to experiments. On the other hand, in generic seesaw models for neutrinos, one expects $v_{BL} \sim 10^{11} - 10^{14}$ GeV depending on the range of the
third generation Dirac mass for the neutrino of 1-100 GeV. An important question therefore is whether in realistic seesaw models, \(N \leftrightarrow \bar{N} \) oscillation is at all observable. Another objection to the above nonsupersymmetric model for \(N \leftrightarrow \bar{N} \) that was raised in the 80’s was that such interactions will erase any baryon asymmetry created at high scales. It is therefore important to overcome this objection.

Several years ago, a high scale seesaw model with observable \(N \leftrightarrow \bar{N} \) oscillation was presented using R-parity violating interactions\cite{10}. Such models in general lead to difficulties in understanding the origin of matter and also do not have a naturally stable supersymmetric dark matter.

In this talk, I first discuss a recent paper\cite{11} where it is shown that in a class of supersymmetric \(SU(2)_L \times SU(2)_R \times SU(4)_c \) models (called SUSY \(G_{224} \)), an interesting combination of circumstances improves the \(v_{BL} \) dependence of the \(G_{\Delta B=2} \) to \(v_{BL}^{-2}v_{wk}^{3} \) instead of \(v_{BL}^{-5} \) making \(N \leftrightarrow \bar{N} \) oscillation observable. This does not require the existence of R-parity violation and in fact in these models R-parity is naturally conserved giving rise to a stable dark matter.

I then discuss a new mechanism for post-sphaleron baryogenesis where an upper limit on \(N \leftrightarrow \bar{N} \) oscillation time is required to generate the desired baryon to photon ratio of the Universe.

The basic ingredients of such a theory was presented in \cite{12} where it was shown that in the minimal supersymmetric \(SU(2)_L \times SU(2)_R \times SU(4)_c \) model, there exist accidental symmetries that imply that some of the \(M_{qq} \)’s which mediate \(N \leftrightarrow \bar{N} \) oscillation are in the TeV range even though \(v_{BL} \simeq 10^{11} - 10^{12} \) GeV. The present work\cite{11} points out that there exist a new class of Feynman diagrams which enhance the \(N \leftrightarrow \bar{N} \) oscillation amplitude in generic supersymmetric models of this type making it observable. I then discuss the new mechanism for baryogenesis in models where the baryon number violation is mediated by a higher dimensional operator such as in the case of \(N \leftrightarrow \bar{N} \) oscillation\cite{13}.

At present, the best lower bound on \(\tau_{N \leftrightarrow \bar{N}} \) comes from ILL reactor experiment\cite{15} and is \(10^8 \) sec. There are also comparable bounds from nucleon decay search experiments\cite{16}. There are proposals to improve the precision of this search by at least two orders of magnitude\cite{17}. We feel that the results of this paper\cite{11,13} should give new impetus to a search for neutron-antineutron oscillation.
II. \textit{SU}(2)_L \times \textit{SU}(2)_R \times \textit{SU}(4)_c \text{ MODEL WITH LIGHT DIQUARKS}

The quarks and leptons in this model are unified and transform as \(\psi : (2, 1, 4) \oplus \psi^c : (1, 2, 4) \) representations of \(\text{SU}(2)_L \times \text{SU}(2)_R \times \text{SU}(4)_c \). For the Higgs sector, we choose, \(\phi_1 : (2, 2, 1) \) and \(\phi_{15} : (2, 2, 15) \) to give mass to the fermions. The \(\Delta^c : (1, 3, 10) \oplus \bar{\Delta}^c : (1, 3, \bar{10}) \) to break the \(B - L \) symmetry. The diquarks mentioned above which lead to \(\Delta(B - L) = 2 \) processes are contained in the \(\Delta^c : (1, 3, 10) \) multiplet. We also add a \(B - L \) neutral triplet \(\Omega : (1, 3, 1) \) which helps to reduce the number of light diquark states. The superpotential of this model is given by:

\[W = W_Y + W_{H1} + W_{H2} + W_{H3} \]

where

\[W_{H1} = \lambda_1S(\Delta^c\bar{\Delta}^c - M^2) + \lambda_C\Delta^c\bar{\Delta}^c\Omega + \mu_i\text{Tr}(\phi_i\phi_i) \]

\[W_{H2} = \lambda_A\frac{(\Delta^c\bar{\Delta}^c)^2}{M_{Pl}} + \lambda_B\frac{(\Delta^c\Delta^c)(\bar{\Delta}^c\bar{\Delta}^c)}{M_{Pl}} \]

\[W_{H3} = \lambda_D\text{Tr}(\phi_1\Delta^c\bar{\Delta}^c\phi_{15}) \]

\[W_Y = h_1\psi\phi_1\psi^c + h_{15}\psi\phi_{15}\psi^c + f\psi^c\Delta^c\psi^c. \]

Note that since we do not have parity symmetry in the model, the Yukawa couplings \(h_1 \) and \(h_{15} \) are not symmetric matrices. When \(\lambda_B = 0 \), this superpotential has an accidental global symmetry much larger than the gauge group \([12]\); as a result, vacuum breaking of the \(B - L \) symmetry leads to the existence of light diquark states that mediate \(n \leftrightarrow \bar{n} \) oscillation and enhance the amplitude. In fact it was shown that for \(\langle \Delta^c \rangle \sim \langle \bar{\Delta}^c \rangle \neq 0 \) and \(\langle \Omega \rangle \neq 0 \) and all VEVs in the range of \(10^{11} - 10^{12} \) GeV, the light states are those with quantum numbers: \(\Delta^c_{u\bar{u}c} \). The symmetry argument behind is that \([12]\) for \(\lambda_B = 0 \), the above superpotential is invariant under \(U(10, c) \times SU(2, c) \) symmetry which breaks down to \(U(9, c) \times U(1) \) when \(\langle \Delta^c_{\varphi_{15}} \rangle = v_{BL} \neq 0 \). This results in 21 complex massless states; on the other hand these vevs also breaks the gauge symmetry down from \(SU(2)_R \times SU(4)_c \) to \(SU(3)_c \times U(1)_Y \). This allows nine of the above states to pick up masses of order \(gv_{BL} \) leaving 12 massless complex states which are the six \(\Delta^c_{u\bar{u}c} \) plus six \(\bar{\Delta}_u^c \) states. Once \(\lambda_B \neq 0 \) and is of order \(10^{-2} - 10^{-3} \), they pick up mass (call \(M_{u\bar{u}c} \)) of order of the electroweak scale.
III. N ↔ N Oscillation - A New Diagram

To discuss N ↔ N oscillation, we introduce a new term in the superpotential of the form:

\[W_{\Delta B=2} = \frac{1}{M_*} \epsilon^{\mu'\nu'\lambda'\sigma'} \epsilon_{\mu\nu\lambda\sigma} \Delta^c_{\mu\nu} \Delta^c_{\nu\lambda} \Delta^c_{\lambda\sigma} \Delta^c_{\sigma\sigma'}, \quad (7) \]

where the \(\mu, \nu \) etc stand for \(SU(4) \) indices and we have suppressed the \(SU(2)_R \) indices.

Apriori \(M_* \) could be of order \(M_{Pl} \); however the terms in Eq. (2) are different from those in Eq. (4); so they could arise from different a high scale theory. The mass \(M_* \) is therefore a free parameter that we choose to be much less than the \(M_{Pl} \). This term does not affect the masses of the Higgs fields. When \(\Delta^c_{\nu_{\mu c}} \) acquires a VEV, \(\Delta B = 2 \) interaction are induced from this superpotential, and \(N \leftrightarrow \bar{N} \) oscillation are generated by two diagrams given in Fig. 1 and 2. The first diagram (Fig. 1) in which only diquark Higgs fields are involved was already discussed in [8] and goes like \(G_{N\leftrightarrow\bar{N}} \approx \frac{f^3_{1} v_{BL} M_{\Delta}}{M_{u^c u^c} M_{d^c d^c} M_*} \). Taking \(M_{u^c u^c} \sim 350 \text{ GeV} \), \(M_{d^c d^c} \sim \lambda v_{BL} \) and \(M_{\Delta} \sim v_{BL} \) as in the argument [12], we see that this diagram scales like \(v_{BL}^{-2} v_{wk}^{-3} \).

In ref. [11] a new diagram (Fig. 2) was pointed out which owes its origin to supersymmetry. We get for its contribution to \(G_{\Delta B=2} \):

\[G_{N\leftrightarrow\bar{N}} \approx \frac{g_3^2}{16 \pi^2} \frac{f^3_{1} v_{BL}}{M_{u^c u^c} M_{d^c d^c} M_{\text{SUSY}} M_*}. \quad (8) \]

Using the same arguments as above, we find that this diagram scales like \(v_{BL}^{-2} v_{wk}^{-3} \) which is therefore a significant enhancement over diagram in Fig. 1.

In order to estimate the rate for \(N \leftrightarrow \bar{N} \) oscillation, we need not only the different mass values for which we now have an order of magnitude, we also need the Yukawa coupling \(f_{11} \). Now \(f_{11} \) is a small number since its value is associated with the lightest right-handed neutrino mass. However, in the calculation we need its value in the basis where quark masses are diagonal. We note that the \(N - \bar{N} \) diagrams involve only the right-handed quarks, the rotation matrix need not be the CKM matrix. The right-handed rotations need to be large e.g. in order to involve \(f_{33} \) (which is \(O(1) \)), we need \((V_{R}^{(u,d)})_{31} \) to be large, where \(V_{L}^{(u,d)} Y_{u,d} V_{R}^{(u,d)} = Y_{u,d}^{\text{diag}} \). The left-handed rotation matrices \(V_{L}^{(u,d)} \) contribute to the CKM matrix, but right-handed rotation matrices \(V_{R}^{(u,d)} \) are unphysical in the standard model. In this model, however, we get to see its contribution since we have a left-right gauge symmetry.
Let us now estimate the time of oscillation. When we start with a f-diagonal basis (call the diagonal matrix \hat{f}), the Majorana coupling f_{11} in the diagonal basis of up- and down-type quark matrices can be written as $(V_R^T f V_R)_{11} \sim (V_{31}^R)^2 \hat{f}_{33}$. Now \hat{f}_{33} is $O(1)$ and V_{31}^R can be ~ 0.6, so f_{11} is about 0.4 in the diagonal basis of the quark matrices. We use M_{SUSY}, $M_{u^c u^c} \sim 350$ GeV and $v_{BL} \sim 10^{12}$ GeV. The mass of $\tilde{\Delta}_{d^c d^c}$ i.e. $M_{d^c d^c}$ is 10^9 GeV which is obtained from the VEV of $\Omega : (1, 3, 1)$. We choose $M_* \sim 10^{13}$ GeV. Putting all the above the numbers together, we get

$$G_{N\leftrightarrow \bar{N}} \simeq 1 \cdot 10^{-30} \text{ GeV}^{-5}.$$ \tag{9}

Along with the hadronic matrix element $[18]$, the $N - \bar{N}$ oscillation time is found to be about 2.5×10^{10} sec which is within the reach of possible next generation measurements. If we chose, $M_* \simeq M_{Pl}$, we will get for $\tau_{N - \bar{N}} \sim 10^{15}$ sec. unless we choose the $M_{d^c d^c}$ to be lower (say 10^7 GeV). This is a considerable enhancement over the nonsupersymmetric model of $[8]$ with seesaw scale of 10^{12} GeV.

We also note that as noted in $[8]$ the model is invariant under the hidden discrete symmetry under which a field $X \rightarrow e^{i\pi B_X} X$, where B_X is the baryon number of the field X. As a
FIG. 2: The new Feynman diagram for $N - \bar{N}$ oscillation.

result, proton is absolutely stable in the model. Furthermore, since R-parity is an automatic symmetry of MSSM, this model has a naturally stable dark matter.

IV. BARYOGENESIS AND $N - \bar{N}$ OSCILLATION

In the early 1980’s when the idea of neutron-anti-neutron oscillation was first proposed in the context of unified gauge theories, it was thought that the high dimensionality of the $\Delta B \neq 0$ operator would pose major difficulty in understanding the origin of matter. The main reason for this is that the higher dimensional operators remain in thermal equilibrium
until late in the evolution of the universe since the thermal decoupling temperature T^* for such interactions goes roughly like $v_{BL} \left(\frac{\nu_{BL}}{M_{P}} \right)^{1/9}$ which is in the range of temperatures where $B+L$ violating sphaleron transitions are full thermal equilibrium. They will therefore erase any baryon asymmetry generated in the very early moments of the universe (say close to the GUT time of 10^{-30} sec. or so) in prevalent baryogenesis models. In models with observable $N - \bar{N}$ oscillation therefore, one has to search for new mechanisms for generating baryons below the weak scale. In this section, we discuss such a possibility discussed in a recent unpublished work with K. S. Babu and S. Nasri.

As an illustration of the way the new mechanism operates, let us assume that there is a scalar field that couples to the $\Delta B = 2$ operator i.e. $L_I = Su^c d^c d^c d^c/M^6$, where the scalar boson has mass of order of the weak scale and $B = 2$. This leads to baryon number violation if $\langle S \rangle \neq 0$ and observable $N - \bar{N}$ transition if M is in the few hundred to 1000 GeV range. The direct decay of S in these models can lead to an adequate mechanism for baryogenesis.

To discuss how this comes about, let us first note that the high dimension of L_I allows the scalar $\Delta B \neq 0$ decay to go out of equilibrium at weak scale temperatures. This clearly satisfies the out of equilibrium condition given by Sakharov conditions for origin of matter. This is the reason we require a higher dimensional operator. For direct proton decay operators such as $QQQL$, the decoupling temperature is much higher and our mechanism will not apply.

To outline the rest of the details of this mechanism, we consider an effective sub-TeV scale model that gives rise to the higher dimensional operator for $N \leftrightarrow \bar{N}$ oscillation. It consists of the following color sextet, $SU(2)_L$ singlet scalar bosons (X, Y, Z) with hypercharge $\frac{-4}{3}, \frac{2}{3}, \frac{8}{3}$ respectively that couple to quarks. These states could emerge from the supersymmetric model described in the previous section if $\langle \Omega \rangle = 0$. We add to it a scalar field with mass in the 100 GeV range. One can now write down the following standard model invariant interaction Lagrangian:

$$L_I = h_{ij} X \bar{d}_i \bar{d}_j + f_{ij} Y u^c_i u^c_j + g_{ij} Z (u^c_i \bar{d}_j + u^c_j \bar{d}_i) + \lambda_1 S X^2 Y + \lambda_2 S X Z^2$$

The scalar field S is assumed to have $B = 2$. To see the constraints on the parameters of the theory, we note that the present limits on $\tau_{N - \bar{N}} \geq 10^8$ sec. implies that the strength
$G_{N-\bar{N}}$ of the $\Delta B = 2$ transition is $\leq 10^{-28}$ GeV$^{-5}$. From Fig. 3, we conclude that

$$G_{N-\bar{N}} \simeq \frac{\lambda_1 M_1 h_1^2 f_{11}}{M_X^2 M_X^4} + \frac{\lambda_2 M_1^2 h_{11}^2 f_{11}^2}{M_X^2 M_Z^2} \leq 10^{-28} \text{GeV}^{-5}. \quad (11)$$

For $\lambda_{1,2} \sim h \sim f \sim g \sim 10^{-3}$, we have $M_1 \sim M_{X,Y,Z} \simeq 1$ TeV. In our discussion, we will stay close to this range of parameters and see how one can understand the baryon asymmetry of the universe. The singlet field will play a key role in the generation of baryon asymmetry. We assume that $<S> \sim M_X$ but $M_S \simeq 100$ GeV, where S is the real part of the S field after its vev is subtracted. It can then decay into final states with $B = \pm 2$.

On the way to calculating the baryon asymmetry, let us first discuss the out of equilibrium condition. As the temperature of the universe falls below the masses of the X, Y, Z particles, the annihilation processes $X\bar{X} \rightarrow d^c \bar{d}^c$ (and analogous processes for Y and Z) remain in equilibrium. As a result, the number density of X, Y, Z particles gets depleted and only the S particle survives along with the usual standard model particles. One of the primary generic decay modes of S is $S \rightarrow u^c d^c u d$. There could be other decay modes which depend on the details of the model. Those can be made negligible by choice of parameters which do not enter our discussion of $N - \bar{N}$ and baryogenesis. For $T \geq M_S$, the decay rate of S is given by $\Gamma_S \sim \frac{T^{13}}{16\pi^2 M_X^2}$ where we have set the masses of X, Y and Z particle to be of same order for simplicity. This decay goes out of equilibrium around $T_* \simeq M_X \left(\frac{160n^0 M_X}{M_{Pl}}\right)^{1/11}$. Here we have assumed that the coupling of the X, Y, Z particles to second and third generation quarks are of order 0.1-1. This gives $T_* \sim 0.1 - 0.2 M_X$ or in the sub-TeV range. Below this temperature the decay rate of S falls very rapidly as the temperature cools. However as soon as $T \leq M_S$, the decay rate becomes a constant whereas the expansion rate of the universe is slowing down. So at a temperature T_d, S will start to decay at

$$T_d \simeq \left(\frac{M_{Pl} M_{S}^{13}}{(2\pi)^9 M_X^{12}}\right)^{1/2} \quad (12)$$

Since the corresponding epoch must be above that of big bang nucleosynthesis, this puts a constraint on the parameters of the model. For instance, for $M_S \sim 200$ GeV and $M_X \sim 3$ TeV, we get $T_d \sim$ GeV. Also this implies that the X, Y, Z masses cannot be arbitrarily high, since the heavier these particles are, the lower T_d will be. We expect this upper limit to be in the TeV range at most.

It is well known that baryon asymmetry can arise only via the interference of a tree diagram with a one loop diagram. The tree diagram is clearly the one where $S \rightarrow 6q$.

9
There are however two classes of loop diagrams that can contribute: one where the loop involves the same fields X, Y and Z. A second one involves W-exchange, which involves only standard model physics at this scale (Fig. 3). We find that the second contribution can actually dominate. It also has the advantage that it involves less number of arbitrary parameters. The baryon asymmetry is defined as follows

$$\epsilon_B \simeq \frac{n_S \Gamma(S \rightarrow 6q) - \Gamma(S \rightarrow 6\bar{q})}{n_\gamma \Gamma(S)} \quad (13)$$

FIG. 3: One loop diagram for S decays.

We find that

$$\epsilon_B \simeq \begin{cases}
2\alpha_2 Im(V_{tb}V_{cb}^*h_{33}h_{23}^*) \frac{m_c m_t}{M_W^2 M_S^2} ; & M_S < m_t \\
2\alpha_2 \frac{m_c m_t^2}{M_W^2 M_S^2} Im[(h_{33}h_{23}^*)(V_{tb}V_{cb})] ; & M_S > m_t
\end{cases} \quad (14)$$

Note that the trace in the above equation has an imaginary part and therefore leads to nonzero asymmetry. The magnitude of the asymmetry depends on T_d/M_S as well as the detailed profile of the various coupling matrices h, g, f and we can easily get the desired value of the baryon asymmetry by appropriately choosing them. We have checked that there is no conflict between the desired magnitude of baryon asymmetry and the present lower bound on the $N - \bar{N}$ transition time of 10^8 sec.

An important point about our baryogenesis mechanism, is that as the masses of the X, Y, Z particles get larger, the amount of baryon asymmetry goes down for given M_S (due to the dilution factor T_d/M_S discussed below) as does the strength of the $\Delta B = 2$ transition giving interesting correlation between the $N - \bar{N}$ process and baryon asymmetry. In fact an adequate baryogenesis puts an upper limit on $\tau_{N-\bar{N}}$ as discussed below.
Using $m_c(m_c) = 1.27$ GeV, $m_b(m_b) = 4.25$ GeV, $m_t = 174$ GeV, $V_{cb} \simeq 0.04$, $M_S = 200$ GeV and $|h_{33}| \simeq |h_{23}|$ we find $\epsilon_B \sim 10^{-8}$.

There is a further dilution of the baryon asymmetry arising from the fact that $T_d \ll M_S$ since the decay of S also releases entropy into the universe. In this case the baryon asymmetry reads

$$
\eta_B \simeq \epsilon_B \frac{T_d}{M_S}
$$

In order that this dilution effect is not excessive, there must be a lower limit on the ratio T_d/M_S.

From our estimate above we require that $T_d/M_S \geq 0.01$. Since the decay rate of the S boson depends inversely as a high power of $M_{X,Y}$, higher X,Y bosons would imply that $\Gamma_S \sim H$ is satisfied at a lower temperature and hence give a lower T_d/M_S. In figure 3 we plotted $M_{X,Y}$ vs M_S using $T_d \geq M_S/100$, and the constraint $G_{N\bar{N}} \leq 10^{-28}$ GeV$^{-5}$. The coupling $\bar{\lambda}^4 \equiv \lambda_1 h_{11}^2 f_{11} \sim \lambda_2 h g_{11}^2$. This in turn implies that the $\tau_{N-\bar{N}}$ must have an upper limit. For instance, for choice of the coupling parameters $\lambda \sim f \sim h \sim g \sim 10^{-3}$, and $M_S \simeq 200$ GeV we find $\tau_{N-\bar{N}} \leq 10^{10}$ sec.

\section{V. CONCLUSION}

In conclusion, we have presented a realistic quark-lepton unified model where despite the high seesaw (v_{BL}) scale (in the range of $\sim 10^{12}$ GeV), the $N - \bar{N}$ oscillation time can be around 10^{10} sec. due to the presence of a new supersymmetric graph and accidental symmetries of the Higgs potential (also connected to supersymmetry). This oscillation time is within the reach of possible future experiments. We have also found a new way to generate the baryon asymmetry of the universe for the case when $N - \bar{N}$ oscillation is observable. These results should provide a motivation to conduct a new round of search for $N - \bar{N}$ oscillation.

I would like to thank K. S. Babu, B. Dutta, Y. Mimura and S. Nasri for collaborations that led to the results reported in this talk. I like to thank Y. Kamyskho for many discussions on the experimental prospects for $N - \bar{N}$ oscillation. I would also like to thank colleagues at the Institute of Physics, Bhubaneswar for kind hospitality during the WHEPP9 symposium.

This work of R. N. M. is supported by the National Science Foundation grant no. Phy-
0354401.

[1] G. 't Hooft, Phys. Rev. Lett. 37, 8 (1976).
[2] A. D. Sakharov, JETP Lett. 5, 24 (1967).
[3] J. C. Pati and A. Salam, Phys. Rev. D 10, 275 (1974).
[4] H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32, 438 (1974).
[5] S. Dimopoulos, S. Raby and F. Wilczek, Phys. Lett. B 112, 133 (1982).
[6] V. A. Kuzmin, JETP Lett. 12, 228 (1970).
[7] S. L. Glashow, Cargese Lectures (1979).
[8] R. N. Mohapatra and R. E. Marshak, Phys. Rev. Lett. 44, 1316 (1980).
[9] P. Minkowski, Phys. lett. B 67, 421 (1977); M. Gell-Mann, P. Ramond, and R. Slansky, Supergravity (P. van Nieuwenhuizen et al. eds.), North Holland, Amsterdam, 1979, p. 315; T. Yanagida, in Proceedings of the Workshop on the Unified Theory and the Baryon Number in the Universe (O. Sawada and A. Sugamoto, eds.), KEK, Tsukuba, Japan, 1979, p. 95; S. L. Glashow, The future of elementary particle physics, in Proceedings of the 1979 Cargèse Summer Institute on Quarks and Leptons (M. Lévy et al. eds.), Plenum Press, New York, 1980, p. 687; R. N. Mohapatra and G. Senjanović, Phys. Rev. Lett. 44, 912 (1980).
[10] For a high scale seesaw model where $N - \bar{N}$ oscillation is observable, see K. S. Babu and R. N. Mohapatra, Phys. Lett. B 518, 269 (2001); in this model however, the lightest SUSY particle, the neutralino is unstable and cannot be a dark matter candidate. Also leptogenesis cannot explain the origin of matter, since fast $\Delta B = 2$ interactions erase any baryons generated via this mechanism.
[11] B. Dutta, Y. Mimura and R. N. Mohapatra, Phys. Rev. Lett. 96, 061801 (2006).
[12] Z. Chacko and R. N. Mohapatra, Phys. Rev. D 59, 055004 (1999) [hep-ph/9802388].
[13] K. S. Babu, R. N. Mohapatra and S. Nasri, to appear; see also talk by K. S. Babu, at this symposium.
[14] M. Fukugita and T. Yanagida, Phys. Lett. B 174, 45 (1986); V. A. Kuzmin, V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 155, 36 (1985).
[15] M. Baldo-Ceolin et al., Z. Phys. C 63, 409 (1994).
[16] M. Takita et al. [KAMIOKANDE Collaboration], Phys. Rev. D 34, 902 (1986); J. Chung et
al., Phys. Rev. D 66, 032004 (2002) [hep-ex/0205093].

[17] Y. A. Kamysklov, hep-ex/0211006.

[18] S. Rao and R. Shrock, Phys. Lett. B 116, 238 (1982); J. Pasupathy, Phys. Lett. B 114, 172 (1982); Riazuddin, Phys. Rev. D 25, 885 (1982); S. P. Misra and U. Sarkar, Phys. Rev. D 28, 249 (1983).