Erdös-Gallai-type results for conflict-free connection of graphs*

Meng Ji¹, Xueliang Li¹,²
¹Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China
jimengecho@163.com, lxl@nankai.edu.cn
²School of Mathematics and Statistics, Qinghai Normal University
Xining, Qinghai 810008, China

Abstract

A path in an edge-colored graph is called a conflict-free path if there exists a color used on only one of its edges. An edge-colored graph is called conflict-free connected if there is a conflict-free path between each pair of distinct vertices. The conflict-free connection number of a connected graph G, denoted by \(cfc(G) \), is defined as the smallest number of colors that are required to make G conflict-free connected. In this paper, we obtain Erdös-Gallai-type results for the conflict-free connection numbers of graphs.

Keywords: conflict-free connection coloring; conflict-free connection number; Erdös-Gallai-type result.

AMS subject classification 2010: 05C15, 05C40, 05C35.

1 Introduction

All graphs mentioned in this paper are simple, undirected and finite. We follow book [1] for undefined notation and terminology. Let \(P_1 = v_1v_2 \cdots v_s \) and \(P_2 = v_sv_{s+1} \cdots v_{s+t} \) be two paths. We denote \(P = v_1v_2 \cdots v_sv_{s+1} \cdots v_{s+t} \) by \(P_1 \odot P_2 \). Coloring problems are important subjects in graph theory. The hypergraph version of

*Supported by NSFC No.11871034, 11531011 and NSFQH No.2017-ZJ-790.
conflict-free coloring was first introduced by Even et al. in [7]. A hypergraph H is a pair $H = (X, E)$ where X is the set of vertices, and E is the set of nonempty subsets of X, called hyper-edges. The conflict-free coloring of hypergraphs was motivated to solve the problem of assigning frequencies to different base stations in cellular networks, which is defined as a vertex coloring of H such that every hyper-edge contains a vertex with a unique color.

Later on, Czap et al. in [6] introduced the concept of conflict-free connection colorings of graphs motivated by the conflict-free colorings of hypergraphs. A path in an edge-colored graph G is called a conflict-free path if there is a color appearing only once on the path. The graph G is called conflict-free connected if there is a conflict-free path between each pair of distinct vertices of G. The minimum number of colors required to make a connected graph G conflict-free connected is called the conflict-free connection number of G, denoted by $cfc(G)$. If one wants to see more results, the reader can refer to [3, 4, 5, 6]. For a general connected graph G of order n, the conflict-free connection number of G has the bounds $1 \leq cfc(G) \leq n - 1$. When equality holds, $cfc(G) = 1$ if and only if $G = K_n$ and $cfc(G) = n - 1$ if and only if $cfc(G) = K_{1, n-1}$.

The Erdős-Gallai-type problem is an interesting problem in extremal graph theory, which was studied in [9, 10, 11, 12] for rainbow connection number $rc(G)$; in [8] for proper connection number $pc(G)$; in [2] for monochromatic connection number $mc(G)$. We will study the Erdős-Gallai-type problem for the conflict-free number $cfc(G)$ in this paper.

2 Auxiliary results

At first, we need some preliminary results.

Lemma 2.1 [6] Let u, v be distinct vertices and let $e = xy$ be an edge of a 2-connected graph. Then there is a $u - v$ path in G containing the edge e.

For a 2-edge connected graph, the authors [5] presented the following result:

Theorem 2.2 [5] If G is a 2–edge connected graph, then $cfc(G) = 2$.

For a tree T, there is a sharp lower bound:

Theorem 2.3 [4] Let T be a tree of order n. Then $cfc(T) \geq cfc(P_n) = \lceil \log_2 n \rceil$.
Lemma 2.4 Let G be a connected graph and $H = G - B$, where B denotes the set of the cut-edges of G. Then $cfc(G) \leq \max\{2, |B|\}$.

Proof. If $B = \emptyset$, then by Theorem 2.2, $cfc(G) = 2$. If $|B| \geq 1$, then all the blocks are non-trivial in each component of $G - B$. Now we give G a conflict-free coloring: assign one edge with color 1 and the remaining edges with color 2 in each block of each component of $G - B$; for the edges $e \in B$, we assign each edge with a distinct color from $\{1, 2, \ldots, |B|\}$.

Now we check every pair of vertices. Let u and v be arbitrary two vertices. Consider first the case that u and v are in the same component of $G - B$. If u and v are in the same block, by Lemma 2.1 there is a conflict-free $u - v$ path. If u, v are in different blocks, let $P = P_1 \odot P_2 \odot \cdots \odot P_r$ be a $u - v$ path, where P_i ($i \in [r]$) is the path in each block of the component. Then we can choose a conflict-free path in one block, say P_1, and choose a monochromatic path with color 2 in each block of the remaining blocks, say P_i ($2 \leq i \leq r - 1$), clearly, P is a conflict-free $u - v$ path. Now consider the case that u and v are in distinct components of $G - B$. If there exists one cut-edge e with color $c \not\in \{1, 2\}$, then there is a conflict-free $u - v$ path since the color used on e is unique. If there does not exist cut-edge with color $c \not\in \{1, 2\}$, then suppose that there is only one cut-edge $e = xy$ colored by 1, without loss of generality, let u, x be in a same component and v, y be in a same component. We choose a monochromatic $u - x$ path P_1 with color 2 and choose a monochromatic $v - y$ path P_2 with 2, then $P = P_1 xyP_2$ is a conflict-free $u - v$ path. If there is only one cut-edge $e = st$ colored by 2, without loss of generality, then we say u, s are in the same component and t, v in a same component, we choose a monochromatic $u - s$ path P_1 and a conflict-free $t - v$ path P_2 in each component. Then $P = P_1 stP_2$ is a conflict-free $u - v$ path. If there are exactly two cut-edges $e_1 = st$ and $e_2 = xy$ colored by 1 and 2, respectively, without loss of generality, we say that u, s are in a same component, t, x are in a same component and y, v are in a same component. Then we choose a monochromatic u, s path P_1, t, x path P_2 and y, v path P_3 in the three components, respectively, with color 2. Hence, $P = P_1 stP_2 xyP_3$ is a conflict-free $u - v$ path. So, we have $cfc(G) \leq \max\{2, |B|\}$. \qed

Lemma 2.5 Let G be a connected graph of order n with k cut-edges. Then

$$|E(G)| \leq \binom{n}{2} + k$$
Proof. Clearly, it holds for \(k = 0 \). Assuming that \(k \geq 1 \). Let \(G \) be a maximal graphs with \(k \) cut-edges. Let \(B \) be the set of all the bridges. And let \(G - B \) be the graph by deleting all the cut-edges. Let \(C_1, C_2, \ldots, C_{k+1} \) be the components of \(G - B \) and \(n_i \) be the orders of \(C_i \). Then \(E(G) = \sum_{i=1}^{k+1} \binom{n_i}{2} + k. \) Let \(C_i \) and \(C_j \) be two components of \(G - B \) with \(1 < n_i \leq n_j \). Now we construct a graph \(G' \) by moving a vertex \(v \) from \(C_i \) to \(C_j \), replace \(v \) with an arbitrary vertex in \(V(C_k) \setminus v \) for the cut-edges incident with \(v \), add the edges between \(v \) and the vertices in \(C_j \), and delete the edges between \(v \) and the vertices in \(C_i \), where \(v \) is not adjacent to the vertices of \(C_i \). Now we have \(|E(G')| = \sum_{s=1}^{k+1} \binom{n_i}{2} + \binom{n_j}{2} + k = \sum_{s=1}^{k+1} \binom{n_i}{2} + \binom{n_j}{2} - n_i - 1 + \binom{n_j}{2} + n_j + k = |E(G)| + n_j - n_i + 1 > |E(G)|. \) When we do repetitively the operation, we have \(|E(G)| \leq \left(\begin{array}{c} n \\ k \end{array} \right) + k. \) \(\square \)

3 Main results

Now we consider the Erdős-Gallai-type problems for \(cfc(G) \). There are two types, see below.

Problem 3.1 For each integer \(k \) with \(2 \leq k \leq n - 1 \), compute and minimize the function \(f(n, k) \) with the following property: for each connected graph \(G \) of order \(n \), if \(|E(G)| \geq f(n, k) \), then \(cfc(G) \leq k \).

Problem 3.2 For each integer \(k \) with \(2 \leq k \leq n - 1 \), compute and maximize the function \(g(n, k) \) with the following property: for each connected graph \(G \) of order \(n \), if \(|E(G)| \leq g(n, k) \), then \(cfc(G) \geq k \).

Clearly, there are two parameters which are equivalent to \(f(n, k) \) and \(g(n, k) \) respectively. For each integer \(k \) with \(2 \leq k \leq n - 1 \), let \(s(n, k) = \max\{|E(G)| : |V(G)| = n, cfc \geq k \} \) and \(t(n, k) = \min\{|E(G)| : |V(G)| = n, cfc \leq k \} \). By the definitions, we have \(g(n, k) = t(n, k - 1) - 1 \) and \(f(n, k) = s(n, k + 1) + 1. \)

Using Lemma 2.3, we first solve Problem 3.1

Theorem 3.3 \(f(n, k) = \binom{n-k-1}{2} + k + 2 \) for \(2 \leq k \leq n - 1 \).

Proof. At first, we show the following claims.

Claim 1: For \(k \geq 2 \), \(f(n, k) \leq \binom{n-k-1}{2} + k + 2. \)

Proof of Claim 1: We need to prove that for any connected graph \(G \), if \(E(G) \geq \binom{n-k-1}{2} + k + 2 \), then \(cfc(G) \leq k \). Suppose to the contrary that \(cfc(G) \geq k + 1 \). By Lemma 2.3, we have \(|B| \geq k + 1 \). By Lemma 2.5, \(E(G) \leq \binom{n-k-1}{2} + k + 1 \), which is a contradiction.
Claim 2: For \(k \geq 2 \), \(f(n, k) \geq \binom{n-k-1}{2} + k + 2 \).

Proof of Claim 2: We construct a graph \(G_k \) by identifying the center vertex of a star \(S_{k+2} \) with an arbitrary vertex of \(K_{n-k-1} \). Clearly, \(E(G_k) = \binom{n-k-1}{2} + k + 1 \). Since \(cfc(S_{k+2}) = k + 1 \), then \(cfc(G_k) \geq k + 1 \). It is easy to see that \(cfc(G_k) = k + 1 \). Hence, \(f(n, k) \geq \binom{n-k-1}{2} + k + 2 \).

The conclusion holds from Claims 1 and 2. \(\square \)

Now we come to the solution for Problem 3.2, which is divided as three cases.

Lemma 3.4 For \(k = 2 \), \(g(n, 2) = \binom{n}{2} - 1 \).

Proof. Let \(G \) be a complete graph of order \(n \). The number of edges in \(G \) is \(\binom{n}{2} \), i.e., \(E(G) = \binom{n}{2} \). Clearly, when \(g(n, 2) = \binom{n}{2} - 1 \) for every \(G \), \(cfc(G) \geq 2 \). \(\square \)

Lemma 3.5 For every integer \(k \) with \(3 \leq k < \lceil \log_2 n \rceil \), \(g(n, k) = n - 1 \).

Proof. We first give an upper bound of \(t(n, k) \). Let \(C_n \) be a cycle. Then \(t(n, k) \leq n \) since \(cfc(C_n) = 2 \leq k \). And then, we prove that \(t(n, k) = n \). Suppose \(t(n, k) \leq n - 1 \). Let \(P_n \) be a path with size \(n - 1 \). Since \(cfc(P_n) = \lceil \log_2 n \rceil \) by Theorem 2.3, it contradicts the condition the \(k < \lceil \log_2 n \rceil \). So \(t(n, k) = n \). By the relation that \(g(n, k) = t(n, k - 1) - 1 \), we have \(g(n, k) = n - 1 \). \(\square \)

Lemma 3.6 For \(k \geq \lceil \log_2 n \rceil \), \(g(n, k) \) does not exist.

Proof. Let \(P_n \) be a path. Then we have \(t(n, k) \leq n - 1 \) since \(cfc(P_n) = \lceil \log_2 n \rceil \). And since \(t(n, k) \geq n - 1 \), it is clear that \(t(n, k) = n - 1 \). Since every graph \(G \) is connected, \(g(n, k) \geq n - 1 \). By the relation that \(g(n, k) = t(n, k - 1) - 1 \), we have \(g(n, k) = n - 2 \) for \(k \geq \lceil \log_2 n \rceil \), which contradicts the connectivity of graphs. \(\square \)

Combining Lemmas 3.4, 3.5 and 3.6 we get the solution for Problem 3.2.

Theorem 3.7 For \(k \) with \(2 \leq k \leq n - 1 \),

\[
g(n, k) = \begin{cases}
\binom{n}{2} - 1, & k = 2 \\
 n - 1, & 3 \leq k < \lceil \log_2 n \rceil \\
does\ not\ exist, & \lceil \log_2 n \rceil \leq k \leq n - 1.
\end{cases}
\]
References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.

[2] Q. Cai, X. Li, D. Wu, Erdös-Gallai-type results for colorful monochromatic connectivity of a graph, J. Comb. Optim. 33(1)(2017), 123-131.

[3] H. Chang, T.D. Doan, Z. Huang, S. Jendrol’, I. Schiermeyer, Graphs with conflict-free connection number two, Graphs & Combin., in press.

[4] H. Chang, M. Ji, X. Li, J. Zhang, Conflict-free connection of trees, J. Comb. Optim., in press.

[5] H. Chang, Z. Huang, X. Li, Y. Mao, H. Zhao, On conflict-free connection of graphs, Discrete Appl. Math., in press.

[6] J. Czap, S. Jendrol’, J. Valiska, Conflict-free connection of graphs, Discuss. Math. Graph Theory 38(2018), 911–920.

[7] G. Even, Z. Lotker, D. Ron, S. Smorodinsky, Conflict-free coloring of simple geometric regions with applications to frequency assignment in cellular networks, SIAM J. Comput. 33(2003), 94–136.

[8] F. Huang, X. Li, S. Wang, Upper bounds of proper connection number of graphs, J. Comb. Optim. 34(1)(2017), 165–173.

[9] H. Li, X. Li, Y. Sun, Y Zhao, Note on minimally d-rainbow connected graphs, Graphs & Combin. 30(4)(2014), 949–955.

[10] X. Li, M. Liu, Schiermeyer, Rainbow connection number of dense graphs, Discus Math Graph Theory 33(3)(2013), 603–611.

[11] X. Li, Y. Shi, Rainbow connection in 3-connected graphs, Graphs & Combin. 29(5)(2013), 1471–1475.

[12] A. Lo, A note on the minimum size of k-rainbow-connected graphs, Discrete Math. 331(2015), 20–21.