ON REGULARITY OF THE BEREZIN TRANSFORM ON
SMOOTH PSEUDOCONVEX DOMAINS

AKAKI TIKARADZE

ABSTRACT. In this short note we improve some of recent results of Čučković
and Şahutoğlu [1] concerning regularity of the Berezin transform for a class of
smooth pseudoconvex domains.

Let $\Omega \subset \mathbb{C}^n$ be a bounded pseudoconvex domain. As usual $A^2(\Omega)$ denotes
the Bergman space of square integrable holomorphic functions on Ω. Let $k_w, w \in \Omega$ denote
the normalized Bergman reproducing kernel. Then given a bounded
operator $S : A^2(\Omega) \to A^2(\Omega)$ its Berezin transform is defined as $B(S)(z) = \langle S(k_z), k_z \rangle$. The Berezin transform has been an important tool in the study of
Toeplitz operators. Recall that given $f \in L^\infty(\Omega)$, its Toeplitz operator $T_f : A^2(\Omega) \to A^2(\Omega)$ is defined as the composition of the multiplication by f followed
by the orthogonal projection $L^2(\Omega) \to A^2(\Omega)$. We need also Hankel operators $H_f = mf - T_f : A^2(\Omega) \to A^2(\Omega)_\perp$, where mf is the multiplication by f. One
defines the Berezin transform of a function f as $B(T_f)$.

Hereafter, $T(\Omega)$ denotes the algebra generated by all Toeplitz operators with
symbols continuous on $\overline{\Omega}$, and $K(\Omega) \subset T(\Omega)$ denotes the ideal of compact oper-
ators.

In a recent paper [1], Čučković and Şahutoğlu introduces and studied the notion
of a BC-regular domain: A domain $\Omega \subset \mathbb{C}^n$ is called BC-regular if for any
$S \in T(\Omega)$, its Berezin transform $B(S)$ can be continuously extended on $\overline{\Omega}$. The
authors went to prove that (among other results) a bounded smooth convex
domain with no analytic discs in the boundary is a BC-domain.

To state our results we recall a well-known fact that if $\partial \Omega$ is smooth, then for
any $w \in \partial \Omega, k_z \to 0$ weakly as $z \to w$. Therefore, if S is a compact operator then
$B(S)$ vanishes on the boundary of Ω.

It will be convenient to use the following definition.

Condition. Let Ω be a smooth bounded pseudoconvex domain. Then $B_\Omega \subset \partial \Omega$
is defined as the set of all $w \in \partial \Omega$ such that for any $f \in C(\overline{\Omega})$ we have

$$\lim_{z \to w} B(H_f^*H_f)(z) = 0.$$

It is well-known that all strongly pseudoconvex points belong to B_Ω. It is immediate that if H_f is compact for all $f \in C(\overline{\Omega})$, then $B_\Omega = \partial \Omega$. Recall that if
the $\bar{\partial}$-Neumann operator is compact, then all H_f are compact operators for any $f \in C(\overline{\Omega})$ and hence $B_\Omega = \partial \Omega$.

Next we need to recall the following result of Salinas, Sheu and Upmeier about the maximal commutative quotient of $T(\Omega)$.

Theorem 0.1 ([2], Theorem 1.4). Let I denote the commutator ideal in $T(\Omega)$. Assume that $\partial(\overline{\Omega}) = \partial \Omega$. Then there is an isometry of C^* algebras $\eta : T(\Omega)/I \cong C(X)$, where $X \subset \partial \Omega$ is a closed subset. If in addition H_f is compact for all $f \in C(\overline{\Omega})$, then $K = I$ and $X = \partial(\Omega)$.

It follows from the proof that the surjective homomorphism $\eta : T(\Omega) \rightarrow C(X)$ is uniquely determined by the restriction property $\eta(T_f) = f|_X$.

We show the following result.

Theorem 0.2. Let $\Omega \subset \mathbb{C}^n$ be a smooth bounded pseudoconvex domain. Then for any $S \in T(\Omega)$, its Berezin transform $B(S)$ can be continuously extended to $\Omega \cup B_\Omega$ and the Berezin transform induces a surjective homomorphism on Banach algebras $B : T(\Omega)/K \rightarrow C(B_\Omega)$ so that $B(T_f) = f|_{B_\Omega}$. If moreover, H_f is compact for all $f \in C(\overline{\Omega})$, then the above homomorphism is an isometry of C^*-algebras.

Proof. At first, recall the following relation between semi-commutators of Toeplitz operators and Hankel operators

$$T_{fg} - T_f T_g = H_f^* H_g, \quad f, g \in C(\overline{\Omega}).$$

Hence, it follows from our assumptions that

$$B(T_{fg})|_{B_\Omega} = B(T_f^* H_g)|_{B_\Omega}.$$

Let $f, g \in \mathbb{C}[z]$, then $B(T_{fg}) = f \bar{g}$. Therefore, for any $\phi \in \mathbb{C}[z, \bar{z}]$ we have $B(T_\phi)|_{B_\Omega} = \phi|_{B_\omega}$. Hence, using the Stone-Weierstass theorem we get

$$B(T_\psi)|_{B_\Omega} = \psi|_{B_\Omega}, \quad \psi \in C(\overline{\Omega}).$$

Combining this with the above formulas, we conclude that for any $\phi_1, \ldots, \phi_m \in C(\overline{\Omega})$, we have

$$B(T_{\phi_1} \cdots T_{\phi_m})|_{B_\omega} = (\phi_1 \cdots \phi_m)|_{B_\Omega}.$$

Thus, we have a continuous algebra homomorphism

$$B : T(\Omega)/K \rightarrow C(B_\Omega)$$

such that $B(T_f) = f|_{B_\Omega}$.

If H_f is compact for all $f \in C(\overline{\Omega})$, then $B_\Omega = \partial \Omega$ and our homomorphisms coincides with the one from Theorem [1,1]. In particular, it is an isometry of C^*-algebras.

Corollary 0.1. Let $\Omega \subset \mathbb{C}^n$ a smooth bounded pseudoconvex domain such that H_f is compact for all $f \in C(\overline{\Omega})$. Then Ω is BC-regular and the essential norm of any $S \in T(\Omega)$ equals to $L^\infty(\partial \Omega)$ norm of $B(S)|_{\partial \Omega}$.

The above corollary generalizes theorems 1, 4, and part of theorem 5 from [1].

As shown in [1, Theorem 3] if \(\Omega \) is a convex domain with a disc in the boundary and dense strongly pseudoconcex points, then \(\Omega \) is not BC-regular. The following simple result shows a dichotomy for domains with dense strongly pseudoconvex points.

Proposition 0.1. Let \(\Omega \) be a smooth pseudoconvex domain. Then \(B_\Omega = \partial \Omega \) if and only if \(\Omega \) is BC-regular and the map \(S \to B(S)|_{\partial \Omega}, S \in T \) is multiplicative.

Suppose that \(B_\Omega \) is dense in \(\partial \Omega \) (in particular this is the case if strongly pseudoconvex points are dense in \(\partial \Omega \).) Then \(\Omega \) is BC-regular if and only if \(B_\Omega = \partial \Omega \).

Proof. Suppose that \(B : T(\Omega)/K \to C(\partial \Omega) \) is multiplicative. Then \(B([T_f, T_f]) = 0 \) for a holomorphic \(f \). Which implies that \(B(H_f^* H_f) = 0 \). So, \(B_\Omega = \partial \Omega \) as desired.

If \(B_\Omega = \partial \Omega \) then Theorem 0.2 implies that \(\Omega \) is BC-regular.

Now, suppose that \(\Omega \) is BC-regular and \(B_\Omega \) is dense in \(\partial \Omega \). Then for any \(f \in C(\Omega) \) we have that \(B(f)|_{B_\Omega} = f|_{B_\Omega} \). Since by the assumption \(B(f) \) is continuous up to the boundary, we get that \(B(f) = f \). Now it follows that

\[
B(H_f^* H_f) = B(|f|^2) - |f|^2
\]

vanishes on the boundary for all anti-holomorphic \(f \). Hence \(\partial \Omega = B_\Omega \).

In view of the above result, it would be interesting to know an example of a smooth BC-regular domain \(\Omega \) for which the \(\partial \)-Neumann operator is not compact. If the smoothness assumption is dropped, then a polydisc is an example of such a domain [1, Corollary 1].

Acknowledgements. I am grateful to S. Şahutoğlu for explaining results in [1] and providing helpful comments. Essentially all results (with their proofs) in this note were suggested by T. Le.

References

[1] Z. Ćučković, S. Şahutoğlu, Berezin regularity of domains in \(\mathbb{C}^n \) and the essential norms of Toeplitz operators, to appear in Trans. of AMS (2020) arXiv:1909.09221.

[2] N. Salinas, A. Sheu, H. Upmeier, Toeplitz operators on pseudoconvex domains and foliations of \(C^* \)-algebras, Annals of Math. (1989) 531–565.

E-mail address: tikar06@gmail.com

University of Toledo, Department of Mathematics & Statistics, Toledo, OH 43606, USA