Bost-Connes-Marcolli systems for Shimura varieties.
I. Definitions and formal analytic properties.

Eugene Ha and Frédéric Paugam
July, 2005

Abstract

We construct a Quantum Statistical Mechanical system \((A, \sigma_t)\) analogous to the Bost-Connes-Marcolli system of \([CM04]\) in the case of Shimura varieties. Along the way, we define a new Bost-Connes system for number fields which has the “correct” symmetries and the “correct” partition function. We give a formalism that applies to general Shimura data \((G, X)\). The object of this series of papers is to show that these systems have phase transitions and spontaneous symmetry breaking, and to classify their KMS states, at least for low temperature.
Contents

1 Introduction 3

2 Another take on the Bost-Connes system 5
 2.1 The classical system 5
 2.2 The same system in adelic terms 6

3 Background material 7
 3.1 Shimura varieties 7
 3.2 C*-algebras and quantum statistical mechanics 10

4 Abstract Bost-Connes-Marcolli systems 11
 4.1 BCM data 11
 4.2 The BCM groupoid
 4.2.1 Definition 13
 4.2.3 The commensurability class map 14
 4.3 Defining BCM algebras
 4.3.1 Functions on BCM stacks 16
 4.3.2 BCM algebras 16
 4.4 Time evolution, Hamiltonian and partition function 17
 4.5 Symmetries 19

5 Comparison with the original Bost-Connes-Marcolli systems 20
 5.1 Principal BCM systems 21
 5.2 The Bost-Connes system 22
 5.3 The Connes-Marcolli system 23

6 Operator theoretic results on BCM algebras 23
 6.1 The C*-algebra associated to a BCM datum 23
 6.2 Construction of extreme KMS states at small temperature 24

7 A Bost-Connes system for number fields 26
 7.1 Reminder of Dedekind zeta functions 26
 7.2 The adelic Bost-Connes algebra 26
 7.3 Partition function and symmetries 26

8 A Bost-Connes system for Dirichlet characters 28
 8.1 Reminder of zeta functions of Dirichlet characters 28
 8.2 A Bost-Connes algebra for Dirichlet characters 28

9 The Hilbert modular BCM system 29
 9.1 Construction 29
 9.2 Symmetries 30

A Stack groupoids 30
 A.1 Topological stacks and stack groupoids 30
 A.2 Groupoids in the category of spaces with group operations 31
 A.3 Toen's Segal groupoid stacks 32

B Enveloping semigroups 34
 B.1 Drinfeld's classification 34
 B.2 Ramachandran's construction of Chevalley semigroups 35
1 Introduction

A few years ago, Bost and Connes \[BC95\] discovered a surprising relationship between the class field theory of \(\mathbb{Q} \) and quantum statistical mechanics.

Mathematically, a quantum statistical mechanical system consists of a pair \((\mathcal{A}, \sigma_t)\), where \(\mathcal{A}\) is a C*-algebra and \(\sigma_t\) is a one-parameter group of automorphisms of \(\mathcal{A}\); physically, \(\mathcal{A}\) is the algebra of observables and \(\sigma_t\) is the time evolution of the physical system. The physical states of the system are given by certain linear functionals on \(\mathcal{A}\).

The analogy between classical and quantum statistical mechanics can be described by the following array:

Classical	Quantum	
Observables	\(a \in C^\infty(X)\)	\(a \in \mathcal{A}\) C*-algebra, \(a=a^*\)
(X, \(\omega\)) 2n-dim symplectic manifold		
Bracket	Poisson bracket	Commutator
\(\{a_1, a_2\} = \omega(\xi_{a_1}, \xi_{a_2})\)	\([a_1, a_2]\)	
Hamiltonian	\(H: X \to \mathbb{R}\)	\(H\) unbounded selfadjoint on \(\mathcal{H}\)
Time evolution	\(\{H, a\}(x) = (\frac{d}{dt})_{t=0} a(\sigma_t(x))\)	\(\sigma: \mathbb{R} \to \text{Aut}(\mathcal{A})\)
States	Probability measure \(\mu\) on \(X\)	Linear functional of norm 1
Partition function	\(\zeta(\beta) = \int_X e^{-\beta H} d\Omega\) with \(\Omega = \omega^\wedge n\) the volume form	\(\zeta(\beta) = \text{Tr}(e^{-\beta H})\)
Equilibrium States	Canonical ensemble	KMS condition:
	\(d\mu = e^{-\beta H} d\Omega\)	\(\Phi(ab) = \Phi(\sigma(\beta)(b)a)\)
	example: \(\Phi(a) = \frac{\text{Tr}(\mathcal{A}_Q \omega_{1/2})}{\zeta(\beta)}\)	

The statistical content means that one singles out the equilibrium states at a given temperature \(T = 1/\beta\) on \(\mathcal{A}\), and these are characterized by the so-called KMS\(\beta\) condition. The set of these equilibrium states may have symmetries. Changing the temperature of a system can produce a phase transition phenomenon with spontaneous symmetry breaking, meaning that the symmetry changes radically with an arbitrary small change of temperature. For example, the formation at zero temperature of a snowflake from water is a phase transition, for which we can observe a symmetry breaking phenomenon: a snowflake has much more symmetry (it has crystal structure) than a drop of water (which consists of a random collection of molecules).

The Bost-Connes system \((\mathcal{A}, \sigma_t)\) also exhibits a phase transition phenomenon with symmetry breaking at \(\beta = 1\). For \(\beta < 1\), i.e., at high temperature, there is enough disorder so that the symmetry is trivial. For \(\beta > 1\), the set of equilibrium states “freezes” and has as symmetry the Galois group of the maximal abelian extension of \(\mathbb{Q}\). Bost and Connes also defined explicitly a rational subalgebra of \(\mathcal{A}_Q \subset \mathcal{A}\) such that the evaluation of KMS states on \(\mathcal{A}_Q\), at small temperature, generate \(\mathbb{Q}^\text{ab}\). This system is related to \(\text{GL}_1\mathbb{Q}\).

Much more recently, Connes and Marcolli \[CM01\] defined an analogous system for \(\text{GL}_2\mathbb{Q}\), and overcame extreme technicalities to give in this case a meaning to all prominent features of the Bost-Connes system (symmetries, rational subalgebra, zeta function as partition function, relation to the Galois group of the modular field and its modular reciprocity law). One of the key points in their new approach is that their system is related to the study of the “noncommutative space” of \(\mathbb{Q}\)-lattices up.
to commensurability:

$$\text{GL}_2(\mathbb{Q})\backslash M_2(\mathbb{A}_f) \times \mathbb{H}^\pm;$$

and that the set of KMS$_\beta$ states at small temperature is in natural bijection with the Shimura variety

$$\text{Sh}(\text{GL}_2, \mathbb{H}^\pm) = \text{GL}_2(\mathbb{Q})\backslash \text{GL}_2(\mathbb{A}_f) \times \mathbb{H}^\pm.$$

The C*-algebra corresponding to the “noncommutative space” of \mathbb{Q}-lattices up to commensurability is a groupoid C*-algebra. This also gives a nice explanation for the origin of the Bost-Connes system.

We choose one direction of generalizing this work of Connes and Marcolli by replacing their basic Shimura datum $(\text{GL}_2, \mathbb{H}^\pm)$ by a general Shimura datum (G, X). In order to deal with the technical issue of defining the partition function, the construction of the Connes-Marcolli system involves a groupoid \mathcal{U}, corresponding to the commensurability relation on \mathbb{Q}-lattices, and the quotient of \mathcal{U} by the arithmetic subgroup $\text{SL}_2(\mathbb{Z}) \subset \text{GL}_2(\mathbb{Q})$. We start by defining an algebra in more adelic terms, meaning that we use a quotient by the compact open subgroup $\text{SL}_2(\mathbb{Z}) \subset \text{GL}_2(\mathbb{A}_f)$. The motivation for this construction comes from the fact that for number fields, one wants the partition function to be the Dedekind zeta function, and this is easier to obtain in the adelic language (as pointed out by Paula Cohen [Coh99]).

The Connes-Marcolli algebra is not exactly a groupoid algebra, because the quotient of the groupoid \mathcal{U} by $\text{SL}_2(\mathbb{Z})$ is no longer a groupoid, since $\text{SL}_2(\mathbb{Z})$ does not act freely on \mathbb{H}. In fact, if we use the stacky quotient, then this is a groupoid, but one cannot define an associated convolution C*-algebra because there is no good notion of functions on stacks. There are two solutions to this problem, corresponding to two resolutions of the stack’s singularities. The first is to choose a smaller $\Gamma \subset \text{SL}_2(\mathbb{Z})$ that acts freely on \mathbb{H}. This gives a finite resolution of the stack singularities. However, this first method works only for classical Shimura varieties, which does not include the case of a general number field. The second solution is to identify functions on $\text{SL}_2(\mathbb{Z}) \backslash \mathbb{H} = \text{GL}_2(\mathbb{Z})\backslash \text{GL}_2(\mathbb{R})/\mathbb{C}^\times$ to functions on $\text{GL}_2(\mathbb{Z})\backslash \text{GL}_2(\mathbb{R})$ (which is another infinite resolution of stack singularities) which are invariant for the scaling action of \mathbb{C}^\times. This allows one to define a convolution algebra. This second method was the one chosen by Connes and Marcolli.

The role of $M_2(\mathbb{Q})$ in the $\text{GL}_2(\mathbb{Q})$ case is, in the case of general Shimura data (G, X), played by a multiplicative semigroup M such that $M^\times = G$. We learned a lot about such semigroups from N. Ramachandran and L. Lafforgue. Their main properties are given in the appendix.

This article describes the first steps in our work on these Bost-Connes-Marcolli systems for general Shimura data.

We solve along the way the problem of defining a Bost-Connes system for general number fields, which has the Dedekind zeta function as partition function and the group of connected components of the idele class group as symmetry group. For imaginary quadratic fields, this problem was very recently solved by Connes-Marcolli-Ramachandran [CMR05]. Previous works were either restricted to class number one, or did not have the right symmetry, or did not have the right partition function. All these interesting works however gradually improved and simplified the techniques involved in the study of Bost-Connes systems, and we also use methods from this litterature to prove some of our results. A generalization of the work [BC95] to the case of arbitrary global fields was proposed by Harari and Leichtnam [HL97]. A Hecke algebra construction using semi-group crossed products was proposed in the number field case by Arledge-Laca-Raeburn [ALR97], see also [LR99] and [Lac98]. Van Frankenhuysen and Laca [LvF04] defined a system with Galois group as symmetry group for totally imaginary fields of class number one. P. Cohen [Coh99] constructed

4
adelically a system with the right partition function in the number field case. For a nice and more complete survey of known results, see [CM04], Section 1.4.

We also study the explicit example of the Hilbert-Blumenthal modular varieties.

Acknowledgments

The authors would like to thank the following persons for useful discussions in the preparation of this paper: A. Connes, G. Harder, C. Kaiser, M. Laca, L. Lafforgue, V. Lafforgue, B. Noohi, D. Panov, N. Ramachandran, B. Toen, D. Zagier. In particular, N. Ramachandran and L. Lafforgue gave us references and methods to construct enveloping semigroups, that are key objects in our formalism. B. Toen gave us a simplicial definition of stack groupoids.

After writing this paper, we learned from V. Lafforgue another construction of the Bost-Connes algebra for number fields that will certainly be useful to study finer aspects of those systems in dimension 1.

We thank the Max-Planck-Institut of Bonn for its hospitality and excellent working conditions during the preparation of this article. We also thank the Institut des Hautes Études Scientifiques for hospitality during the finalization of this article.

We especially thank Matilde Marcolli for suggesting us to work on the Connes-Marcolli system in the Hilbert modular case, for answering all our questions about the article [CM04], and for freely sharing with us her insights.

2 Another take on the Bost-Connes system

Before describing the general setting, we would like to present the illustrating example of the Bost-Connes system, which illuminates our general constructions.

2.1 The classical system

The Bost-Connes groupoid is given by the partially defined action of \(\mathbb{Q}_+^\times \) on \(\hat{\mathbb{Z}} \). More precisely, it is given by

\[
Z_{BC} = \{(g, \rho) \in \mathbb{Q}_+^\times \times \hat{\mathbb{Z}} | g\rho \in \hat{\mathbb{Z}}\}.
\]

The unit space is \(\hat{\mathbb{Z}} \), and the source and target maps are given by \(s(g, \rho) = \rho \) and \(t(g, \rho) = g\rho \). Composition is given by \((g_2, \rho_2) \circ (g_1, \rho_1) = (g_2g_1, \rho_1) \) if \(g_1\rho_1 = \rho_2 \).

The Bost-Connes Hecke algebra is simply \(\mathcal{H} := C_c(Z_{BC}) \), equipped with the convolution product

\[
(f_1 * f_2)(g, \rho) = \sum_{h \in \mathbb{Q}_+^\times, h\rho \in \hat{\mathbb{Z}}} f_1(gh^{-1}, h\rho)f_2(h, \rho).
\]

The time evolution on this algebra is given by

\[
\sigma_t(f)(g, \rho) = g^{it} f(g, \rho). \quad (2.1)
\]

For each \(\rho_0 \in \hat{\mathbb{Z}}^\times \), we define a representation \(\pi_0 : \mathcal{H} \rightarrow \mathcal{B}(\ell^2(\mathbb{N}^\times)) \) by

\[
(\pi_0(f)(\xi))(n) = \sum_{h \in \mathbb{N}^\times} f(nh^{-1}, h\rho_0)\xi(h).
\]

To finish, the Hamiltonian of this system is given by

\[
H : \ell^2(\mathbb{N}^\times) \rightarrow \ell^2(\mathbb{N}^\times), f(n) \mapsto \log(n) f(n).
\]
By definition, the partition function
\[\zeta_{BC}(s) = \text{Tr}(e^{-sH}) = \sum_{n \in \mathbb{N} \times n^{-s} = \zeta(s)} \]
is exactly Riemann’s zeta function.

2.2 The same system in adelic terms

We will now give a more complicated description of the Bost-Connes groupoid, that has the advantage of admitting a direct generalization to other number fields, whose partition function is the Dedekind zeta function. This is the first step to be carried out in constructing Bost-Connes systems for number fields. Moreover, the advantage of this adelic formulation is that it also makes sense for general Shimura varieties.

We first remark that the quotient of \(\hat{\mathbb{Z}} \) by the partially defined action of \(\mathbb{Q} \times + \) is the same as the quotient of \(\hat{\mathbb{Z}} \times \{ \pm 1 \} \) by the partially defined action of \(\mathbb{Q}^\times \). In fact, this equality of quotient spaces can be described at the level of groupoids.

Let \(U^{\text{princ}} \subset \mathbb{Q}^\times \times \hat{\mathbb{Z}} \times \{ \pm 1 \} \) be the groupoid of elements \((g, \rho, z)\) such that \(g \rho \in \hat{\mathbb{Z}} \). This groupoid encodes the partially defined action of \(\mathbb{Q}^\times \) on \(\hat{\mathbb{Z}} \times \{ \pm 1 \} \).

Now consider the quotient \(Z \) of \(U^{\text{princ}} \) by the action of \((\mathbb{Z}^\times)^2 = \{ \pm 1 \}^2 \) given by
\[(\gamma_1, \gamma_2). (g, \rho, z) := (\gamma_1 g \gamma_2^{-1}, \gamma_2 \rho, \gamma_2 z). \]
This is also a groupoid.

There is a natural morphism of groupoids \(Z_{BC} \rightarrow Z^{\text{princ}} \) given by \((r, \rho) \mapsto (r, \rho, 1)\), which is in fact an isomorphism (cf. 5.1.2).

This new description of the Bost-Connes groupoid is nicer because it clearly relates the Bost-Connes system with the pair \((\mathbb{G}_m, \{ \pm 1 \})\), which is called the multiplicative Shimura datum.

To make this connexion clearer, it is natural to seek a fully adelic description of the Bost-Connes groupoid. This is because Shimura varieties are defined adelically. The adelic framework also facilitates the definition of Bost-Connes systems for number fields with Dedekind zeta function as partition function.

Recall that \(A_f := \hat{\mathbb{Z}} \otimes_\mathbb{Q} \mathbb{Q} \). The strong approximation property for the multiplicative group \(\mathbb{G}_m \) (which in this case is simply the chinese reminder theorem) tells us that
\[A_f^\times = \mathbb{Q}^\times \times \hat{\mathbb{Z}}^\times = \hat{\mathbb{Z}}^\times . \mathbb{Q}^\times. \]
We will now denote
\[\text{Sh}(\mathbb{G}_m, \{ \pm 1 \}) := \mathbb{Q}^\times \backslash \{ \pm 1 \} \times A_f^\times \]
and
\[Y := \hat{\mathbb{Z}} \times \text{Sh}(\mathbb{G}_m, \{ \pm 1 \}). \]
Consider the partially defined action of \(A_f^\times \) on \(Y \) given by
\[g.(\rho, [z, l]) := (g \rho, [z, lg^{-1}]) \]
and let
\[U \subset A_f^\times \times Y \]
be the corresponding groupoid of elements \((g, y)\) such that \(gy \in Y \).

Now consider the quotient \(Z \) of \(U \) by the action of \((\hat{\mathbb{Z}}^\times)^2 \) given by
\[(\gamma_1, \gamma_2). (g, y) := (\gamma_1 g \gamma_2^{-1}, \gamma_2 y). \]
The strong approximation theorem for G_m implies that the natural map
\[
\mathbb{Q}^\times \times \hat{\mathbb{Z}} \times \{\pm 1\} \rightarrow \mathbb{A}^\times \times \hat{\mathbb{Z}} \times \text{Sh}(G_m, \{\pm 1\})
\]
induces an isomorphism of groupoids $\mathbb{Z}^\text{princ} \rightarrow \mathbb{Z}$ (cf. 5.1.3).

The Bost-Connes algebra can thus be described as the algebra $\mathcal{H} = C_c(\mathbb{Z})$ with the convolution product
\[
(f_1 * f_2)(g, y) = \sum_{h \in \hat{\mathbb{Z}} \times \mathbb{A}^\times} f_1(gh^{-1}, hy) f_2(h, y).
\]
Using the isomorphism $d : \hat{\mathbb{Z}} \times \mathbb{A}^\times \rightarrow \mathbb{Q}^\times$, we can define the time evolution by
\[
\sigma_t(f)(g, y) = d(g)^{it} f(g, y).
\]
This is exactly the time evolution we defined in 2.1.

Let $\hat{\mathbb{Z}}^\times := \mathbb{A}^\times \cap \hat{\mathbb{Z}}$ and $\mathbb{Z}^\times := \mathbb{Z} - \{0\}$. The strong approximation theorem gives us that
\[
\hat{\mathbb{Z}}^\times \setminus \mathbb{A}^\times \cong \mathbb{Z}^\times \setminus \mathbb{Z} \cong \mathbb{N}^\times.
\]
Let $\mathcal{H}_0 := \ell^2(\hat{\mathbb{Z}}^\times \setminus \mathbb{A}^\times) \cong \ell^2(\mathbb{N}^\times)$. For each $\rho_0 \in \hat{\mathbb{Z}}^\times$, we define a representation $\pi_0 : \mathcal{H} \rightarrow \mathcal{B}(\mathcal{H}_0)$ by
\[
(\pi_0(f)(\xi))(n) = \sum_{h \in \mathbb{N}^\times} f(nh^{-1}, h\rho_0)\xi(h).
\]
To finish, the Hamiltonian of this system is given by
\[
H : \mathcal{H}_0 \rightarrow \mathcal{H}_0, f(n) \mapsto \log(d(n)) f(n).
\]
This adelic system is perfectly identical to the original Bost-Connes system. We will however see in the sequel that essentially the same definitions of algebra, time evolution, representations and Hamiltonian now work for general Shimura data.

3 Background material

In this paper we draw upon the theory of Shimura varieties and operator algebras. Since these fields have traditionally had little to do with each other, we review for the convenience of the reader some of the basic (well-known) results that we shall need. This also allows us to establish notation. We stress that our definition of a Shimura variety is a slight variation on the usual one given by Deligne [Del79], 2.1.

3.1 Shimura varieties

If G is a reductive group over \mathbb{Q}, $G(\mathbb{R})^+$ will denote the connected component of identity in the real Lie groups of its real points and $G(\mathbb{Q})^+ := G(\mathbb{Q}) \cap G(\mathbb{R})^+$. First recall briefly the definition of Shimura data. We will use a mix of Deligne’s definition (see [Del72], 2.1) and Pink’s definition (see [Pin90], 2.1). Let $S := \text{Res}_{\mathbb{C}/\mathbb{R}} G_m$.

Definition 3.1.1. A **Shimura datum** is a triple (G, X, h), with G a connected reductive group over \mathbb{Q}, X a left homogeneous space under $G(\mathbb{R})$ and $h : X \rightarrow \text{Hom}(S, G_\mathbb{R})$ a $G(\mathbb{R})$-equivariant map \footnote{for the natural conjugation action of $G(\mathbb{R})$ on $\text{Hom}(S, G_\mathbb{R})$} with finite fibres such that:
A Shimura datum is called *classical* if it moreover fulfills the axiom

4. Let $Z_0(G)$ be the maximal split subtorus of the center of G; then $\text{int} h_x(i)$ is a Cartan involution of $G/Z_0(G)$.

Example 3.1.2. Let F be a number field, $T = \text{Res}_{F/\mathbb{Q}} \mathbb{G}_{m,F}$ and $X_F = T(\mathbb{R})/T(\mathbb{R})^+$. We have $F \otimes_{\mathbb{Q}} \mathbb{R} \cong \mathbb{C}^i \times \mathbb{R}^j$. We put on $F \otimes_{\mathbb{Q}} \mathbb{R}$ the Hodge structure that is trivial on \mathbb{R}^j and given by the choice of a complex structure on \mathbb{C}^i (among the 2^i possibilities). This gives a morphism $h_1 : S \to T_{\mathbb{R}}$. The triple $(\text{Res}_{F/\mathbb{Q}} \mathbb{G}_{m,F}, X_F, h_1)$ is called the *multiplicative Shimura datum of the field F*. This Shimura datum is classical if and only if $F = \mathbb{Q}$ of F is imaginary quadratic.

We will often denote a Shimura data just by a couple (G, X) when the morphism h is clear from the situation.

Example 3.1.3. Let $h : S \to \text{GL}_m(\mathbb{R})$ be the morphism given by $h(a + ib) = \left(\begin{array}{cc} a & b \\ -b & a \end{array} \right)$. Let \mathbb{H}^{\pm} be the $\text{GL}_2(\mathbb{R})$-conjugacy class of h. It identifies with the Poincaré double half plane with action of $\text{GL}_2(\mathbb{R})$ by homographies. Then $(\text{GL}_2, \mathbb{H}^{\pm})$ is called the *modular Shimura datum*.

Definition 3.1.4. Let (G, X) be a Shimura datum. Let $K \subset G(\mathbb{A}_f)$ be a compact open subgroup. The *level K Shimura variety* is

$$\text{Sh}_K(G, X) := G(\mathbb{Q}) \backslash X \times G(\mathbb{A}_f)/K$$

and the *Shimura variety* is the projective limit

$$\text{Sh}(G, X) := \lim_{\leftarrow K} \text{Sh}_K(G, X)$$

over all compact open subgroups $K \subset G(\mathbb{A}_f)$.

A *topological stack* will be for us a stack on the site (Top) of topological spaces with usual open coverings, i.e., a category fibered in groupoids fulfilling some descent condition. See appendix A for more details.

We first remark that, from the modular viewpoint, it is more natural to study the *level K Shimura stack*, given by the topological stacky quotient

$$\mathcal{G}\text{Sh}_K(G, X) := [G(\mathbb{Q}) \backslash X \times G(\mathbb{A}_f)/K],$$

and the *Shimura stack*, given by the 2-projective limit

$$\mathcal{G}\text{Sh}(G, X) := \lim_{\leftarrow K} \mathcal{G}\text{Sh}_K(G, X).$$

In the case of the multiplicative Shimura datum of a number field, i.e., $G = \text{Res}_{F/\mathbb{Q}} \mathbb{G}_{m,F}$, the level K Shimura stack can have infinite isotropy groups given by $G(\mathbb{Q})^+ \cap K$. These isotropy groups are given by generalized congruence relations on the group of units $G_{F^+}^\mathbb{Z}$. We will have to keep track of (some of) these isotropy groups in the case of non-classical Shimura data.

There is a natural right action of $G(\mathbb{A}_f)$ on $\text{Sh}(G, X)$ given, for each $g \in G(\mathbb{A}_f)$ and $K \subset G(\mathbb{A}_f)$ compact open, by an isomorphism

$$(.g) : \mathcal{G}\text{Sh}_K(G, X) \to \mathcal{G}\text{Sh}_{g^{-1}Kg}(G, X)$$

$$[x, I] \mapsto [x, Ig].$$
Under the hypothesis that \((G, X)\) is classical (see also [Del79], 2.1.1.4, 2.1.1.5), there is an easier description of the Shimura variety (see [Del79], Corollaire 2.1.11):

\[
\text{Sh}(G, X) \cong G(\mathbb{Q}) \backslash X \times G(\mathbb{A}_f)
\]

and the Shimura stacks \(\mathcal{S}h_K(G, X)\) are in fact algebraic stacks over \(\mathbb{C}\).

Unfortunately, these hypothesis are not always fulfilled in the case of the multiplicative Shimura datum of a general number field \(F\). In fact, the quotient \(G(\mathbb{Q}) \backslash X \times G(\mathbb{A}_f)\) is not always Hausdorff in this case.

For example, if \(F = \mathbb{Q}(\sqrt{2})\),

\[
\text{Sh}(\text{Res}_{F/\mathbb{Q}} \mathbb{G}_{m,F}, X_F) \ncong F^\times \backslash X_F \times \mathbb{A}_{f,F}^\times
\]

(this is essentially due to the fact that the group of units \(\mathcal{O}_F^\times\) is infinite).

Points in a Shimura variety will be denoted by pairs \([z, l]\). If the Shimura datum is classical, this means that \(z \in X\) and \(l \in G(\mathbb{A}_f)\). Otherwise, \([z, l] = [z_K, l_K]_{K \subset G(\mathbb{A}_f)}\) is a family of points in \(\text{Sh}_K(G, X)\) indexed by the set of compact open subgroups in \(G(\mathbb{A}_f)\).

Definition 3.1.5. Let \((G, X)\) be a Shimura datum. A compact open subgroup \(K \subset G(\mathbb{A}_f)\) is called neat if it acts freely on \(G(\mathbb{Q}) \backslash X \times G(\mathbb{A}_f)\).

We would like to be able to define natural algebras of continuous “functions” on the finite Shimura varieties in play. In order to do that, we have to resolve their stack singularities.

We remark that if \(K\) is neat, then the quotient analytic stack

\[
\mathcal{S}h_K(G, X) = [G(\mathbb{Q}) \backslash X \times G(\mathbb{A}_f)/K]
\]

is a usual analytic space, but otherwise it is worthwhile from the moduli viewpoint to keep track of the nontrivial stack structure. For classical Shimura data, one can resolve the stack singularities by choosing a smaller compact open subgroup \(K' \subset G(\mathbb{A}_f)\) that acts freely. This is what we will usually do in order to be able to define continuous “functions” on the stack \(\mathcal{S}h_K(G, X)\).

However, this finite resolution of the stack singularities is usually not possible for nonclassical Shimura data, as we can see on the following example. Let \(F = \mathbb{Q}(\sqrt{2})\) and \((\text{Res}_{F/\mathbb{Q}} \mathbb{G}_{m,F}, X_F)\) be the corresponding Shimura datum (here \(X_F \cong \{ \pm 1 \}^2\)).

Let \(K = \mathcal{O}_F^\times\) and consider the stack \(\mathcal{S}h_K(\text{Res}_{F/\mathbb{Q}} \mathbb{G}_{m,F}, X_F)\). Its coarse quotient is the ideal class group of \(F\), i.e., the trivial group \(\{1\}\). Since \(F\) has class number one, this coarse quotient can also be described as \(\mathcal{O}_F^\times / X_F\). In this case, \(\mathcal{O}_F^\times\) is infinite, so that we can not choose a smaller \(K' \subset K\) that acts freely on \(F^\times \backslash X_F \times \mathbb{A}_{f,F}^\times\). In fact, the unit group is finite if and only if \(F = \mathbb{Q}\) or \(F\) is imaginary quadratic, i.e., if and only if \((\text{Res}_{F/\mathbb{Q}} \mathbb{G}_{m,F}, X_F)\) is classical in our language.

If we want to resolve the stack singularities, we can use the quotient map

\[
F^\times \backslash \mathbb{A}_F^\times / K \to \mathcal{S}h_K(\text{Res}_{F/\mathbb{Q}} \mathbb{G}_{m,F}, X_F)
\]

for the scaling action of the connected component of identity \(D_F\) in the full idele class group \(C_F := F^\times \backslash \mathbb{A}_F^\times\).

Remark 3.1.6. From the viewpoint of moduli spaces, it is important that the coarse space \(\text{Sh}_K(\text{Res}_{F/\mathbb{Q}} \mathbb{G}_{m,F}, X_F)\), i.e., the big ideal class group, be replaced by the corresponding group stack with infinite stabilizers (given by groups of units with congruence conditions):

\[
\mathcal{S}h_K(\text{Res}_{F/\mathbb{Q}} \mathbb{G}_{m,F}, X_F).
\]

This “equivariant viewpoint” of the finite level Shimura variety could also be important to understand geometrically the definition of Stark’s zeta functions, and also for the understanding of Manin’s real multiplication program [Man].
3.2 C*-algebras and quantum statistical mechanics

We review here basic definitions from the theory of C*-algebras, emphasising those parts relevant to quantum statistical mechanics. Good references for the material in this section are [BR87] and [BR97]. For an overview of the grand physical picture, see [Haa96].

Definition 3.2.1. A C*-algebra is a (not necessarily unital) complex algebra A endowed with a conjugate-linear involutive anti-automorphism *: $A \to A$, and a norm $\| \cdot \|$, satisfying the following conditions: For every $a, b \in A$ we have

1. A is complete with respect to the norm, and $\|ab\| \leq \|a\|\|b\|$ (i.e., A is a Banach algebra); and
2. $\|a^*a\| = \|a\|^2$, the crucial C*-condition.

Actually a C*-algebra is not as abstract as it may seem, because every C*-algebra can be realized as a norm-closed sub*-algebra of the algebra of bounded operators on a Hilbert space (Theorem of Gelfand-Naimark [BR87], Theorem 2.1.10), and every such subalgebra is a C*-algebra.

The operator algebraic formulation of quantum statistical mechanics (see the introduction to [BR87]) consists of a C*-algebra A together with a 1-parameter group of automorphism $\sigma^t: A \to A$, which is continuous in the sense that $t \mapsto \sigma^t(a)$ is continuous for every $a \in A$. The algebra A is then the algebra of quantum observables, while σ^t is the time evolution. The pair (A, σ^t) is an example of a C*-dynamical system. The states of the C*-algebra A are the continuous complex-linear functionals Φ of norm 1 which are positive, i.e., $\Phi(a^*a) \geq 0$ for every $a \in A$. The number $\Phi(a)$ is then the expectation value of the observable a in the physical state Φ.

To regard the pair (A, σ^t) as a statistical mechanical system we need an appropriate notion of an “equilibrium state” at temperature $T = 1/\beta$. This is provided by the KMS condition.

Definition 3.2.2. The KMS-β condition $(0 < \beta < \infty)$ for a state Φ is the condition: For every pair of elements $a, b \in A$, there is a complex-valued function F on the closed strip $\Omega = \{ z \in \mathbb{C} \mid 0 \leq \text{Im}z \leq \beta \}$ such that

$$F(t) = \Phi(a\sigma^t(b)), \quad F(t + i\beta) = \Phi(\sigma^t(b)a);$$

furthermore, the function F is required to be bounded and continuous on Ω, and analytic on its interior.

This is the definition one often sees in the literature, although in practice it is easier to use the following equivalent characterization.

Proposition 3.2.3. Let (A, σ^t) be a C*-dynamical system, and let Φ be a state of A.

1. ([BR87], Corollary 2.5.23) There is a norm-dense *-subalgebra A^a of A such that for every $a \in A^a$, the function $t \mapsto \sigma^t(a)$ can be analytically continued to an entire function.

2. ([BR87], Definition 5.3.1 and Corollary 5.3.7) The state Φ is a KMS-β state if and only if

$$\Phi(a\sigma^i(b)) = \Phi(ba)$$

for all a, b in a norm-dense σ^t-invariant *-subalgebra of A^a.

We now proceed to a description of the structure of the set of KMS-β states. But before doing so, we need to explain the GNS construction, which is a method of getting representations of a C*-algebra from its states; it is a basic, widely used result in the
theory of operator algebras. We also need to define the notion of a factor state. We
shall use standard notation: given a Hilbert space \mathcal{H}, we denote the C^*-algebra of all
bounded operators on \mathcal{H} by $B(\mathcal{H})$, and the inner product on \mathcal{H} by $\langle \cdot , \cdot \rangle$.

Proposition 3.2.4 (GNS construction; [BR87], 2.3.16). Let Φ be a state of a C^*-algebra A. Then there is a triple $(\mathcal{H}_\Phi, \pi_\Phi, \xi_\Phi)$ consisting of a representation π_Φ of A on a Hilbert space \mathcal{H}_Φ and a unit vector $\xi_\Phi \in \mathcal{H}_\Phi$ such that:
1. $\Phi(a) = \langle \pi_\Phi(a) \xi_\Phi, \xi_\Phi \rangle$ for all $a \in A$; and
2. The orbit $\pi_\Phi(A) \xi_\Phi$ is norm-dense in $B(\mathcal{H}_\Phi)$.

The triple $(\mathcal{H}_\Phi, \pi_\Phi, \xi_\Phi)$ is unique up to unitary equivalence.

The states of particular relevance to the KMS theory are the factor states. These
are the states Φ for which the corresponding GNS representation π_Φ generates a
factor, which is to say that the weak closure of $\pi_\Phi(A)$ in $B(\mathcal{H}_\Phi)$ has centre consisting of the
scalar operators. (This weak closure is an example of a Von Neumann algebra.)

We can now state the main structure theorem for the set of KMS-β states.

Proposition 3.2.5 (Structure of KMS states; [BR97], Theorem 5.3.30). The
set E_β of KMS-β states is a convex, weak*-compact simplex. The extreme points of E_β are precisely those KMS-β states that are factor states.

4 Abstract Bost-Connes-Marcolli systems

The aim of this section is to define Bost-Connes-Marcolli systems for general Shimura
data (G, X) and study their basic formal properties. A better understanding of the
general setup might be gained by looking at section 7 where we specialise to the case
of multiplicative Shimura datum (the case relevant for number fields).

4.1 BCM data

In order to define a generalization of the Connes-Marcolli algebra to general Shimura
data, we want to make clear the separation between algebraic and level structure data,
which is already implicit in the construction of Connes and Marcolli.

Algebraic data. We first need to consider a semigroup M which plays the role for a
general reductive group G that $M_{2, \mathbb{Q}}$ plays for $GL_{2, \mathbb{Q}}$.

Definition 4.1.1. Let G be reductive group over a field. An enveloping semigroup
for G is a multiplicative semigroup M which is irreducible and normal, and such that
$M^\times = G$.

Definition 4.1.2. A BCM datum is a tuple $D = (G, X, V, M)$ with (G, X) a Shimura
datum, V a faithful representation of G and M an enveloping semigroup for G con-
tained in $End(V)$.

The faithful representation will often be denoted $\phi : G \to GL(V)$.

Level structure data. Every Shimura datum (G, X) comes implicitly with a family of
level structures given by the family of compact open subgroups $K \subset G(\mathbb{A}_f)$. Connes
and Marcolli fixed the full level structure $GL_{2, \mathbb{Z}}(\mathbb{Z}) \subset GL_{2, \mathbb{A}_f}$ as starting datum for
their construction. To avoid the problem they had with stack singularities of their
groupoid, we will fix a neat level structure as part of the datum.

The level structure also plays a role in defining the partition function of our sys-
tem. Consideration of maximal level structures then yields standard zeta functions
as partition functions, for example, the Dedekind zeta function of a number field. A
technical requirement in the definition of the partition function is the choice of a lattice in the representation of G, which enables us to define a rational determinant for the adelic matrices in play.

Definition 4.1.3. Let $\mathcal{D} = (G, X, V, M)$ be a BCM datum. A level structure on \mathcal{D} is a triple $\mathcal{L} = (L, K, K_M)$, with $L \subset V$ a lattice, $K \subset G(\mathbb{A}_f)$ a compact open subgroup, and $K_M \subset M(\mathbb{A}_f)$ a compact open subsemigroup, such that

- K_M stabilizes $L \otimes \mathbb{Z} \hat{\mathbb{Z}}$,
- $\phi(K)$ is contained in K_M.

The pair $(\mathcal{D}, \mathcal{L})$ will be called a BCM pair.

We can summarize the relation between L, K and K_M by the following diagram:

$$
\begin{array}{ccc}
K & \xrightarrow{\phi} & K_M \\
\downarrow & & \downarrow \\
G(\mathbb{A}_f) & \xrightarrow{\phi} & M(\mathbb{A}_f) \\
\downarrow & & \downarrow \\
\text{End}(L)(\hat{\mathbb{Z}}) & \xrightarrow{\cdot} & \text{End}(V)(\mathbb{A}_f)
\end{array}
$$

Definition 4.1.4. The maximal level structure $\mathcal{L}_0 = (L, K_0, K_{M,0})$ associated with a datum $\mathcal{D} = (G, X, V, M)$ and a lattice $L \subset V$ is defined by setting

$$
K_{M,0} := M(\mathbb{A}_f) \cap \text{End}(L \otimes \mathbb{Z} \hat{\mathbb{Z}}),
K_0 := \phi^{-1}(K_{M,0}^\times).
$$

Definition 4.1.5. The level structure \mathcal{L} on \mathcal{D} is called fine if K acts freely on $G(\mathbb{Q}) \backslash X \times G(\mathbb{A}_f)$.

The maximal level structure is usually not neat enough to avoid stack singularity problems in the generalization of the Connes-Marcolli algebra. This is why we introduce the additional data of a compact open subgroup $K \subset K_M$. For example, for the Connes-Marcolli case, one takes $K = \text{GL}_2(\mathbb{Z})$, $K_M = M_2(\mathbb{Z})$, but the fact that this choice of K is not neat implies that the groupoid we introduce in the next section has stack singularities. Thus we instead choose a smaller $K = K(N) \subset \text{GL}_2(\mathbb{Z})$ given by the kernel of the mod N reduction of matrices.

Symmetries and zeta function. The symmetries of the Connes-Marcolli system play an important role in its relations with arithmetic. The analogous symmetry in our generalization is the following (which will be justified in Subsection 4.5).

Definition 4.1.6. The semigroup $\text{Sym}_f(\mathcal{D}, \mathcal{L}) := \phi^{-1}(K_M)$ is called the finite symmetry semigroup of the BCM pair $(\mathcal{D}, \mathcal{L})$. We will denote by $\text{Sym}^\times_f(\mathcal{D}, \mathcal{L})$ the group of invertible elements in $\text{Sym}_f(\mathcal{D}, \mathcal{L})$.

We included in \mathcal{L} the datum of a lattice in the representation ϕ in order to define a determinant map.

Lemma 4.1.7. The determinant $\text{det} : \text{GL}(L) \to \mathbb{G}_m$ induces a natural map,

$$
(\text{det} \circ \phi) : K \backslash G(\mathbb{A}_f)/K \to \mathbb{Q}_+^\times.
$$

The image of $\text{Sym}_f(\mathcal{D}, \mathcal{L})$ under this map is contained in \mathbb{N}^\times.

12
Proof. Since $\phi(K) \subset K^\times_M \subset \text{GL}(L)(\mathbb{Z})$, the representation $\phi: G \to \text{GL}(L \otimes_{\mathbb{Z}} \mathbb{Q})$ induces a map

$$\phi : K \backslash G(\mathbb{A}_f)/K \to \text{GL}(L)(\mathbb{Z}) \backslash \text{GL}(L)(\mathbb{A}_f)/\text{GL}(L)(\mathbb{Z}).$$

The determinant map $\text{GL}(L) \to \mathbb{G}_m$ induces a natural map

$$\det : \text{GL}(L)(\mathbb{Z}) \backslash \text{GL}(L)(\mathbb{A}_f)/\text{GL}(L)(\mathbb{Z}) \to \hat{\mathbb{Z}}^\times / \mathbb{A}_f^\times \cong \hat{\mathbb{Z}}^\times / \mathbb{Q}^\times \cong \mathbb{Q}^\times.$$

The composition $\det \circ \phi$ gives us the desired map. The image of Sym_f under this map is contained in the image of $\text{GL}(L)(\mathbb{A}_f) \cap \text{End}(L)(\mathbb{Z})$ under the determinant map, which is exactly $\hat{\mathbb{Z}}^2 := \mathbb{A}_f^\times \cap \hat{\mathbb{Z}}$. The quotient $\hat{\mathbb{Z}}^\times / \hat{\mathbb{Z}}^2$ is identified with $\mathbb{Z}^\times / \mathbb{Z} \cong \mathbb{N}^\times \subset \mathbb{Q}^\times$. □

Definition 4.1.8. The zeta function of the BCM pair $(\mathcal{D}, \mathcal{L})$ is the complex valued series

$$\zeta_{\mathcal{D}, \mathcal{L}}(\beta) := \sum_{g \in \text{Sym}_f^\gamma \backslash \text{Sym}_f} \det(\phi(g))^{-\beta}.$$

The BCM pair $(\mathcal{D}, \mathcal{L})$ is called summable if there exists $\beta_0 \in \mathbb{R}$ such that $\zeta_{\mathcal{D}, \mathcal{L}}(\beta)$ converges in the right plane $\{ \beta \in \mathbb{C} \mid \text{Re}(\beta) > \beta_0 \}$ and extends to a meromorphic function on the full complex plane.

4.2 The BCM groupoid

Let $(\mathcal{D}, \mathcal{L}) = (\langle G, X, V, M \rangle, (L, K, K_M))$ be a BCM pair. There are left and right actions of $G(\mathbb{A}_f)$ on $M(\mathbb{A}_f)$.

4.2.1 Definition

Connes and Marcolli remarked in [CM04] that, if we want to take a quotient of a groupoid by a group action, it is essential that the action is free on the unit space of the groupoid. If we take the usual quotient set of a groupoid by an action that is not free on the unit space, this will not give a groupoid. We are thus obliged to use unit spaces that are in fact stacks. Some of them have nice singularities (i.e., those with finite stabilizers). Others don’t, but the language of stacks allows one to work in full generality without bothering about the freeness of actions in play.

We will denote the stacks by german letters; the corresponding coarse spaces will be denoted by right letters.

Let

$$Y_{\mathcal{D}, \mathcal{L}} = K_M \times \text{Sh}(G, X).$$

We denote points of $Y_{\mathcal{D}, \mathcal{L}}$ by triples $y = (\rho, [z, l])$ with $\rho \in K_M$, $[z, l] \in \text{Sh}(G, X)$.

We want to study the equivalence relation on $Y_{\mathcal{D}, \mathcal{L}}$ given by the following partially defined action of $G(\mathbb{A}_f)$:

$$g.y = (g\rho, [zl^{-1}]), \quad \text{where } y = (\rho, [z, l]).$$

This equivalence relation will be called the commensurability relation. This terminology is derived from the notion of commensurability for \mathbb{Q}-lattices, cf. [CM04].

Consider the subspace

$$U_{\mathcal{D}, \mathcal{L}} \subset G(\mathbb{A}_f) \times Y_{\mathcal{D}, \mathcal{L}}$$

of pairs (g, y) such that $gy \in Y_{\mathcal{D}, \mathcal{L}}$, i.e. $g\rho \in K_M$.

The space $U_{\mathcal{D}, \mathcal{L}}$ is a groupoid with unit space $Y_{\mathcal{D}, \mathcal{L}}$. The source and target maps $s : U_{\mathcal{D}, \mathcal{L}} \to Y_{\mathcal{D}, \mathcal{L}}$ and $t : U_{\mathcal{D}, \mathcal{L}} \to Y_{\mathcal{D}, \mathcal{L}}$ are given by $s(g, y) = y$ and $t(g, y) = gy$. The composition is given, for $y_1 = y_2 y_2$, by $(g_1, y_1) \circ (g_2, y_2) = (g_1 g_2, y_2)$. Notice that
the groupoid obtained by restricting this groupoid to the \((g, (\rho, [z, l]))\) such that \(\rho\) is invertible is free, i.e., the equality \(t(g, y) = s(g, y)\) implies \(g = 1\).

There is a natural action of \(K^2\) on the groupoid \(U_{D, L}\), given by

\[
(g, y) \mapsto (\gamma_1 g \gamma_2^{-1}, \gamma_2 y),
\]

and the induced action on \(Y_{D, L}\) is given by

\[y \mapsto \gamma_2 y.\]

There are two motivations for quotienting \(U_{D, L}\) by this action. The first one is physical: it is necessary to obtain a reasonable partition function for our system. The second is moduli theoretic: \(U_{D, L}\) is only a pro-analytic groupoid and the quotient by \(K^2\) is fibered over the Shimura variety \(\mathcal{S}_{K}(G, X)\) which is an algebraic moduli stack of finite type whose definition could be made over \(\mathbb{Q}\), at least when \((G, X)\) is classical and the Shimura variety has a canonical model.

Let \(\mathcal{Z}_{D, L}\) be the quotient stack \([K^2\backslash U_{D, L}]\) and \(\mathcal{S}_{D, L}\) be the quotient stack \([K\backslash Y_{D, L}]\).

The natural maps

\[s, t : \mathcal{Z}_{D, L} \to \mathcal{S}_{D, L}\]

define a stack-groupoid structure (see appendix A) on \(\mathcal{Z}_{D, L}\) with unit stack \(\mathcal{S}_{D, L}\).

Definition 4.2.2. The stack-groupoid \(\mathcal{Z}_{D, L}\) is called the *Bost-Connes-Marcolli*\(^2\) groupoid.

Let \(Z_{D, L} := K^2\backslash U_{D, L}\) be the (classical, i.e., coarse) quotient of \(U_{D, L}\) by the action of \(K^2\). If \(K\) is small enough, i.e., if \(K\) acts freely on \(G(\mathbb{Q}) \backslash X \times G(\mathbb{A}_f)\), then \(Z_{D, L}\) is equal to the classical quotient \(Z_{D, L}\), which is a groupoid in the usual sense, with units \(S = K\backslash Y_{D, L}\). Otherwise, suppose that there exists a compact open subgroup \(K' \subset K\) that acts freely on \(G(\mathbb{Q}) \backslash X \times G(\mathbb{A}_f)\) and choose on \(D\) the level structure \(\mathcal{L}' = (L, K', M_L)\). The stack \(\mathcal{Z}_{D, L'}\) is a usual topological space that is a finite covering of the coarse space \(Z_{D, L}\) and such that the stack \(\mathcal{Z}_{D, L'}\) is the stacky quotient of \(Z_{D, L}\) by the projection equivalence relation to \(Z_{D, L}\).

The reader who prefers to work with usual analytic spaces will thus suppose that \(K\) is small enough, but as we remarked before, our basic examples (number fields) do not fulfill this hypothesis. We have also to recall that for nonclassical Shimura data \((G, X)\) in the sense of definition 3.1.1 there exists no such small enough \(K \subset G(\mathbb{A}_f)\). This is essentially due to the fact that the “unit group” \(C(\mathbb{Q}) \cap K\) (where \(C\) denotes the center of \(G\)) can be infinite.

4.2.3 The commensurability class map

Recall that \(\phi\) is the representation of \(G\), which we view as the natural inclusion \(G \to M\).

For classical Shimura data. We want to give an explicit description of the quotient of \(Y_{D, L}\) by the commensurability equivalence relation, in the case where \((G, X)\) is classical, i.e., when

\[
\mathcal{S}_{K}(G, X) = G(\mathbb{Q}) \backslash X \times G(\mathbb{A}_f).
\]

Let \(K^M_\phi = \phi(G)(\mathbb{A}_f).K_M \subset M(\mathbb{A}_f)\). There is a natural surjective map of sets

\[
\pi : Y_{D, L} \to G(\mathbb{Q}) \backslash X \times K^M_\phi
\]

given by \(\pi(\rho, [z, l]) = [z, l\rho]\).

\(^2\)We will often call it the BCM groupoid, for short.
Let $Y_{D,L}^\times = K_M^\times \times (G(\mathbb{Q})\backslash X \times G(\mathbb{A}_f))$ be the invertible part of $Y_{D,L}$ and let $Z_{D,L}^\times \subset 3_{D,L}$ be the corresponding subspace (which is a groupoid in the usual sense because K acts freely on K_M^\times); that is, $Z_{D,L}^\times$ is defined just as $3_{D,L}$ is, but with $Y_{D,L}^\times$ in place of $Y_{D,L}$. Let $S_{D,L}^\times := K\backslash Y_{D,L}^\times$ be the unit space of $Z_{D,L}^\times$. Since $K_M^\times \subset M^\times(\mathbb{A}_f) = \phi(G(\mathbb{A}_f))$, the map π induces a natural map

$$\pi^\times : Y_{D,L}^\times \to G(\mathbb{Q})\backslash X \times G(\mathbb{A}_f)$$

$$(\rho, [z,l]) \mapsto [z, l\phi^{-1}(\rho)],$$

which is complex analytic (for the natural analytic structures induced by the complex structure on X) and surjective. Both π and π^\times factor through the quotient of their sources by the left action of K. We will continue to denote this factorisation by π and π^\times.

Definition 4.2.4. The maps π and π^\times are called the commensurability class maps.

The last definition is justified by the following lemma. The notion of coarse quotient can be found in Definition A.1.1

Lemma 4.2.5. The maps π and π^\times are in fact the coarse quotient maps for the groupoids $3_{D,L}$ and $Z_{D,L}^\times$ acting on their unit spaces $\mathcal{S}_{D,L}$ and $S_{D,L}^\times$.

Proof. If $(\rho, [z,l]) \in U_{D,L}$, then $\pi(g\rho, [z,lg^{-1}]) = [z, l\rho] = \pi(\rho, [z,l])$ which proves that π factors through

$$|\mathcal{S}_{D,L}/3_{D,L}| \to G(\mathbb{Q})\backslash X \times K_M^\times.$$

This surjective map is in fact an isomorphism. Indeed, if $(\rho, [z,l]), (\rho', [z',l']) \in Y_{D,L}^\times$ have same image under π, then there exists $g \in G(\mathbb{Q})$ such that $g\rho = l'\rho'$ and $gz = z'$. We then know that in the quotient space $|\mathcal{S}_{D,L}/3_{D,L}|$, $$(\rho, [z,l]) = (l^{-1}g^{-1}g\rho, [z,l]) = (l^{-1}g^{-1}l'\rho', [z,l]) \sim (l'^{-1}gl^{-1}g^{-1}l'\rho', [z, l'^{-1}g^{-1}l']) = (\rho', [z, g^{-1}l']) = (\rho', [g, z, l']) = (\rho', [z', l']).$$

This proves injectivity of π and surjectivity was already known. The argument for π^\times is similar. \hfill \square

For commutative Shimura data. Commutative Shimura data form another family of examples for which we can construct the commensurability class map in simple terms. The multiplicative datum of a number field is in this family. Thus we now suppose that $\mathcal{D} = (G, X, V, M)$ is a BCM datum such that G and M are commutative, and we let L be a level structure on \mathcal{D}. For each $K', K \subset G(\mathbb{A}_f)$ compact open, there is a natural map

$$\Psi_{K'} := K_M \times \mathcal{S}_{K'}(G, X) \to [G(\mathbb{Q})\backslash X \times M(\mathbb{A}_f)/K']$$

given by $(\rho, [z,l]) \mapsto [z, l\rho]$. This map is K-equivariant for the trivial action of K on the range because the image of $k.(\rho, [z,l]) = (k\rho, [zk^{-1}])$ is equal to the image of $(\rho, [z,l])$. Recall that $\mathcal{S}_{D,L} := [K\backslash Y_{D,L}]$ and $S_{D,L}^\times = K\backslash Y_{D,L}^\times$. If we pass to the limit on $K' \subset G(\mathbb{A}_f)$, and then to the quotient by K', we obtain natural maps

$$\pi : \mathcal{S}_{D,L} \to \lim_{K' \rightarrow K} [G(\mathbb{Q})\backslash X \times M(\mathbb{A}_f)/K'].$$
and
\[\pi^\times : S_{D,L}^\times \to \text{Sh}(G,X) \]
that will be called as before the \emph{commensurability class maps}.

The image of the map \(\pi \) is as before the coarse quotient for the action of the groupoid \(\mathcal{S} \) on its unit space \(\mathcal{S} \).

Denote \(S_{K'} := K \setminus (K_M \times \text{Sh}_{K'}(G,X)) \). We should remark here that in this commutative case, the space \(\mathcal{S}_{K'} \) is the unit space of a well defined groupoid \(G_{K'} \), because the \(G(\mathbb{A}_f) \) action on \(\text{Sh}_{K'}(G,X) \) is well defined. This shows that
\[\mathcal{S} = \lim_{\leftarrow K} \mathcal{S}_{K'}, \tag{4.1} \]
which will be useful for the description of the symmetries of Bost-Connes systems for number fields.

4.3 Defining BCM algebras

4.3.1 Functions on BCM stacks?

Let \(D = (G,X,V,M) \) be a BCM datum, \(V \) be a representation of \(G \), and let \(L_0 \) be the associated maximal level structure (Def. 4.1.4). We would like to define the BCM algebra of \((D,L_0) \) as a groupoid algebra. Unfortunately, the corresponding groupoid is usually only a stack and there is no canonical notion of continuous functions on such a space. More precisely, if a Stack has some nontrivial isotropy group, Connes' philosophy of noncommutative geometry tells us that the “algebra of functions” on it should include this isotropy information in a nontrivial way, and this algebra depends on a presentation of the stack.

If \((G,X) \) is classical, there is a very natural way to resolve the stack singularities of \(\mathcal{S}_{D,L_0} \) by choosing a neat level structure \(L \), for which the projection map
\[Z_{D,L} \to Z_{D,L_0} \]
is such a resolution. The corresponding convolution algebra of the groupoid \(Z_{D,L} \) is a completely natural replacement for the groupoid algebra of the stack-groupoid \(Z_{D,L_0} \).

If \((G,X) \) is nonclassical, there is no nice resolution of the stack singularities of \(\mathcal{S}_{D,L_0} \). We will thus work with the algebra of functions on the coarse quotient \(Z_{D,L_0} \). However \(Z_{D,L_0} \) is not a groupoid, and so to define a convolution algebra from the function algebra \(C_c(Z_{D,L_0}) \), we use the trick used by Connes and Marcolli in [CM04], 1.83, which consists in introducing \(C_c(\mathbb{R}) \). Namely, we introduce the groupoid
\[\mathcal{R}_{D,L_0} \subset K \setminus G(\mathbb{A}_f) \times_K \lim_{\leftarrow K'} G(\mathbb{Q}) \setminus G(\mathbb{A})/K' \]
where \(K' \) runs over compact open subgroups of \(G(\mathbb{A}_f) \); and identify \(C_c(Z_{D,L_0}) \) with the subalgebra of \(C_c(\mathcal{R}_{D,L}) \) obtained by composing by the projection map \(\mathcal{R}_{D,L} \to Z_{D,L_0} \). Since \(\mathcal{R}_{D,L_0} \) is a groupoid, convolution can be defined on \(C_c(Z_{D,L}) \).

Remark that this solution, even if not completely satisfactory from the geometrical viewpoint (because we work on coarse quotients), suffices (and seems to be necessary) for the physical interpretation, i.e., analysis of KMS states.

4.3.2 BCM algebras

Now we give the precise definition of the algebra alluded to in the previous paragraph. Let \((D,L) = ((G,X,V,M),(L_0,K,M)) \) be a BCM pair.

Let
\[\mathcal{H}(D,L) := C_c(Z_{D,L}) \]
be the algebra of compactly supported continuous functions on $Z_{D,L}$. As in [CM04], p44, in order to define the convolution of two functions, we consider functions on $Z_{D,L}$ as functions on $U_{D,L}$ satisfying the following properties:

$$f(\gamma g, y) = f(g, y), \quad f(g\gamma, y) = f(g, \gamma y), \quad \forall \gamma \in K, \quad g \in G(\mathbb{A}_f), \quad y \in Y_{D,L}.$$

The convolution product on $H(D,L)$ is then defined by the expression

$$(f_1 * f_2)(g, y) := \sum_{h \in K \setminus G(\mathbb{A}_f), h y \in Y_{D,L}} f_1(gh^{-1}, hy) f_2(h, y),$$

and the adjoint by

$$f^*(g, y) := \overline{f(g^{-1}, gy)}.$$

The fact that we consider functions with compact support implies that the sum defining the convolution product is finite.

Definition 4.3.3. The algebra $H(D,L)$ (under the convolution product) is called the Bost-Connes-Marcolli algebra of the pair (D,L).

Remark 4.3.4. We proved in Lemma 4.2.5 that, if (G,X) is classical, the quotient of $Y_{D,L}$ by the commensurability equivalence relation (encoded by the action of the groupoid $Z_{D,L}$) does not depend on the choice of K. This implies that in the classical case, the Morita equivalence class of $H(D,L)$ is independent of the choice of neat level structure K. More precisely, all these algebras are in fact Morita equivalent to the algebra corresponding to the “noncommutative quotient”

$$G(\mathbb{Q})\backslash X \times K^M_k, \quad \text{where } K^M_k = G(\mathbb{A}_f)K_M.$$

4.4 Time evolution, Hamiltonian and partition function

Let $(D,L) = ((G,X,V,M), (L,K,K_M))$ be a BCM pair with neat level.

Definition 4.4.1. The time evolution on $H(D,L)$ is defined by

$$\sigma_t(f)(g, y) = \det(\phi(g))^{it} f(g, y). \quad (4.2)$$

Let $y = (\rho, [z,l])$ be in $Y_{D,L}$ and let $G_y = \{g \in G(\mathbb{A}_f) \mid g \rho \in K_M\}$. Let H_y be the Hilbert space $L^2(K \setminus G_y)$.

Definition 4.4.2. The representation $\pi_y : H(D,L) \to B(H_y)$ of the Hecke algebra on H_y is defined by

$$(\pi_y(f)\xi)(g) := \sum_{h \in K \setminus G_y} f(gh^{-1}, hy) \xi(h), \quad \forall g \in G_y,$$

for $f \in H(D,L)$ and $\xi \in H_y$.

Lemma 4.4.3. The representation π_y is well defined, i.e., $\pi_y(f)$ is bounded for each $f \in H(D,L)$.

Proof. For $f \in H(D,L)$, We want to prove that the norm

$$\|\pi_y(f)\| := \sup_{\|\xi\|=1} \|\pi_y(f)\xi\|_2$$

is bounded. This follows from the fact that the functions we consider are with compact support. More precisely, denote $Z := Z_{D,L}$. Given $f \in H(D,L) = C_c(Z)$, we need
to show that there is a bound $C > 0$ such that for every pair of vectors $\xi, \eta \in \mathcal{H}_y$ we have
\[
|\langle \pi_y(f)\xi, \eta \rangle| \leq C\|\xi\|\|\eta\|.
\]
To this end, we introduce the following notation. We set
\[
S_y = \{ [gh^{-1}, hy] \in Z \mid g, h \in K \backslash G_y \},
\]
and for each $\gamma \in S_y$ we set
\[
R_y(\gamma) = \{ \gamma' \in Z_y \mid s(\gamma') = t(\gamma) \}.
\]
These are discrete sets. Here we use the usual notation for groupoids, namely $Z_y = t^{-1}\{y\}$, which we shall identify with $K \backslash G_y$.

Using the Cauchy-Schwarz inequality, we now get a bound on $|\langle \pi_y(f)\xi, \eta \rangle|$ as follows:
\[
|\langle \pi_y(f)\xi, \eta \rangle| \leq \sum_{\gamma_1 \in Z_y} |\langle \pi_y(f)\xi_1 \eta_1 \rangle|
\leq \sum_{\gamma_1, \gamma_2 \in Z_y} |f(\gamma_1 \gamma_2^{-1})\xi_1 \eta_1 |
= \sum_{\gamma \in S_y} |f(\gamma)| \sum_{\gamma' \in R_y(\gamma)} \|\xi(\gamma')\eta(\gamma')\|
\leq \sum_{\gamma \in S_y} |f(\gamma)| \left(\sum_{\gamma' \in R_y(\gamma)} \|\xi(\gamma')\|^2 \right)^{1/2} \left(\sum_{\gamma' \in R_y(\gamma)} \|\eta(\gamma')\|^2 \right)^{1/2}
\leq \|\xi\|\|\eta\| \sum_{\gamma \in S_y} |f(\gamma)|.
\]
Because f has compact support, the sum $\sum_{\gamma \in S_y} |f(\gamma)|$ is finite, and we thereby get the desired bound.

Let $K_0 = \phi^{-1}(K_M^\times)$. We view the Hamiltonian as a virtual operator on $\ell^2(K_0 \backslash G_y)$. By this we mean that the Hamiltonian does not depend on the choice of K and there is a minimal space on which it is defined: the space $\ell^2(K_0 \backslash G_y)$. Consequently, its trace must be computed as a virtual (i.e., equivariant) trace, i.e., must be divided by $\text{card}(K \backslash K_0)$. These considerations are related to the fact that, if (G, X) is classical, we prefer to define BCM algebras using neat level structures to resolve the stack singularities of \mathcal{D}_L.

Proposition 4.4.4. The operator on \mathcal{H}_y given by
\[
(H_y\xi)(g) = \log \det(\phi(g)) \cdot \xi(g)
\]
is the Hamiltonian, i.e., the infinitesimal generator of the time evolution, meaning that we have the equality
\[
\pi_y(\sigma_t(f)) = e^{itH_y} \pi_y(f) e^{-itH_y}
\]
for all $f \in \mathcal{H}(\mathcal{D}, \mathcal{L})$.

Proof. This is just a matter of unwinding the definitions. Let $\xi \in \mathcal{H}_y$, and let $g \in G_y$. On the one hand we have
\[
(\pi_y(\sigma_t f)\xi)(g) = \sum_{h \in K \backslash G_y} (\sigma_t f)(gh^{-1}, hy)\xi(h)
= \sum_{h \in K \backslash G_y} \det(\phi(g))^t \det(\phi(h))^{-t} f(gh^{-1}, hy)\xi(h),
\]
and...
while on the other hand we have
\[
(e^{itH_y}(\pi_y f)e^{-itH_y}\xi)(g) = \det(\phi(g))^t((\pi_y f)e^{-itH_y}\xi)(g) = \det(\phi(g))^t \sum_{h \in K \setminus G_y} f(gh^{-1},hy)(e^{-itH_y}\xi)(h)
\]
\[
= \det(\phi(g))^t \sum_{h \in K \setminus G_y} f(gh^{-1},hy)\det(\phi(h))^{-it}\xi(h).
\]
We thereby obtain the desired equality.

Definition 4.4.5. Let $y \in Y_{D,L}$ and $\beta > 0$. The partition function of the system $(\mathcal{H}(D,L),\sigma_t,H_y,H_y)$, is
\[
\zeta_y(\beta) := \frac{1}{\text{card}(K \setminus K_0)} \text{Trace}(e^{-\beta H_y}).
\]

Let $Y^\times_{D,L} \subset Y_{D,L}$ be the set of invertible $y = (\rho,[z,l])$, i.e., $\rho \in K_M^\times$.

Proposition 4.4.6. Suppose that $y \in Y^\times_{D,L}$. Then $G_y = \text{Sym}_f := \phi^{-1}(K_M)$. The partition function of the system $(\mathcal{H}(D,L),\sigma_t,H_y,H_y)$, coincides with the zeta function $\zeta_{D,L}(\beta)$ of (D,L) (see Definition 4.1.8).

Moreover, it follows from (4.1.7) that the Hamiltonian has positive energy in the representation π_y.

4.5 Symmetries

Let $(D,L) = ((G,X,V,M),(L,K,K_M))$ be a BCM pair with neat level. We will denote the center of G by C.

Recall that Sym_f is the semigroup $\phi^{-1}(K_M)$. For $m \in \text{Sym}_f$ and $c \in C(\mathbb{R})$, we define
\[
\theta_{(m,c)}(f)(g,\rho,[z,l]) := f(g,\rho \phi(m),[cz,l]).
\]

Lemma 4.5.1. This gives a well defined right action of
\[
\text{Sym}(D,L) := \text{Sym}_f(D,L) \times C(\mathbb{R})
\]
on $\mathcal{H}(D,L)$ which moreover commutes with the time evolution.

Proof. The action is well-defined because K acts on $Y_{D,L}$ on the left, while Sym acts on the right. Recalling that the time evolution is given by the formula $(\sigma_t f)(g,y) = (\det(\phi(g))^t \sigma_t f(g,y))$, it is clear that the action of Sym commutes with σ_t.

Let CK_M be the center of K_M.

Definition 4.5.2. Let $\text{Inn}(D,L)$ be the subsemigroup of Sym defined by
\[
\text{Inn}(D,L) := C(\mathbb{Q}) \cap \phi^{-1}(CK_M).
\]

Remark 4.5.3. There is a (diagonal) inclusions of semigroups
\[
\text{Inn}(D,L) \subset \text{Sym}(D,L).
\]

This gives a natural action of $\text{Inn}(D,L)$ on $\mathcal{H}(D,L)$.

Definition 4.5.4. The semigroup $\text{Out}(D,L) := \text{Inn}(D,L) \setminus \text{Sym}(D,L)$ is called the outer symmetry semigroup of the BCM system $(\mathcal{H}(D,L),\sigma_t)$.
In practical situations, the following hypotheses will often be fulfilled (see Propositions 7.3.3 and 9.2.1).

Definition 4.5.5. The level structure \(\mathcal{L} = (L, K, K_M) \) is called **faithful** if the image \(\phi(C(Q)) \) of the center of \(G \) commutes with \(K_M \), i.e., \(\phi(C(Q)) \subset CK_M \). The level structure \(\mathcal{L} \) is called **full** if the natural morphism \(\text{Out} \to C(Q) \backslash G(\mathbb{A}) \) is surjective; if this morphism is an isomorphism, the \(\mathcal{L} \) is called **fully faithful**.

These symmetries are symmetries up to inner automorphisms.

Proposition 4.5.6. There is a morphism

\[
\text{Out}(\mathcal{D}, \mathcal{L}) \to \text{Out}(\mathcal{H}(\mathcal{D}, \mathcal{L}), \sigma_t)
\]

to the quotient of the automorphism group of the BCM system by inner automorphisms of the algebra.

Proof. We have to prove that \(\text{Inn} \) acts by inner automorphisms. For \(n \in \text{Inn} \), we let \(\mu_n \) be

\[
\mu_n(g, y) = 1 \text{ if } g \in K.n^{-1}, \mu_n(g, y) = 0 \text{ if } g \notin K.n^{-1}.
\]

We will show that

\[
\theta(n,n)(f) = \mu_n f \mu_n^*,
\]

i.e., the action of \(\theta(n,n) \) is given by the inner automorphism corresponding to \(\mu_n \).

We have, for all \(y \in Y_{\mathcal{D}, \mathcal{L}} \),

\[
(\mu_n f \mu_n^*)(g, y) = \sum_{h \in K \backslash G(\mathbb{A_f}), hy \in Y} \mu_n(gh^{-1}, hy)(f \mu_n^*)(h, y),
\]

\[
= \sum_{h \in K \backslash G(\mathbb{A_f}), hy \in Y} \mu_n(gh^{-1}, hy) \sum_{k \in K \backslash G(\mathbb{A_f}), ky \in Y} f(hk^{-1}, ky)\mu_n^*(k, y),
\]

\[
= \sum_{h, k \in K \backslash G(\mathbb{A_f}), hy, ky \in Y} \mu_n(gh^{-1}, hy) f(hk^{-1}, ky)\mu_n(k^{-1}, ky).
\]

Now, by definition of \(\mu_n \), the only nontrivial term of this sum is obtained when \(k^{-1} = n^{-1} \) and \(gh^{-1} = n^{-1} \), i.e., \(k = n \) and \(h = ng \). Since \(n \) is central,

\[
(\mu_n f \mu_n^*)(g, y) = f(ngn^{-1}, ny),
\]

\[
= f(g, n\rho, [z, ln^{-1}]),
\]

\[
= f(g, \rho_n, [nz, l]),
\]

\[
= \theta(n,n)(f)(g, y).
\]

\(\square \)

5 Comparison with the original Bost-Connes-Marcolli systems

We want to understand how our systems are related with the usual Bost-Connes-Marcolli systems in the class number one case. These class number one systems are called principal BCM systems. They are directly related to Connes-Marcolli systems defined in [CM04].
5.1 Principal BCM systems

Let \((D, L) = ((G, X, V, M), (L, K, K_M))\) be a BCM pair with \((G, X)\) classical.

Let \(\Gamma := G(Q) \cap K\) and

\[U^{\text{princ}} := \{(g, \rho, z) \in G(Q) \times K_M \times X \mid g\rho \in K_M\}. \]

Let \(X^+\) be a connected component of \(X\), \(G(Q)^+\) be \(G(Q) \cap G(\mathbb{R})^+\) (where \(G(\mathbb{R})^+\) is the identity component of \(G(\mathbb{R})\)) and \(\Gamma^+ := G(Q)^+ \cap K\). Let

\[U^+ := \{(g, \rho, z) \in G(Q)^+ \times K_M \times X^+ \mid g\rho \in K_M\}. \]

We have a natural action of \(\Gamma^2\) (resp. \(\Gamma^2_\chi\)) on \(U^{\text{princ}}\) (resp. \(U^+\)) given by \((g, \rho, z) \mapsto (\gamma_1 g\gamma_2^{-1}, \gamma_2 \rho, \gamma_2 z)\). Let \(\mathcal{Z}_{princ}^D (\text{resp. } \mathcal{Z}^D_\chi)\) be the stacky quotient of \(U^{\text{princ}}\) (resp. \(U^+\)) by \(\Gamma^2\) (resp. \(\Gamma^2_\chi\)).

Definition 5.1.1. The stack groupoid \(\mathcal{Z}_{princ}^D\) is called the principal BCM groupoid for the pair \((D, L)\).

Proposition 5.1.2. Suppose that the natural map \(\Gamma \to G(Q)/G(Q)^+\) is surjective. Then the natural map

\[\mathcal{Z}^D \to \mathcal{Z}_{princ}^D \]

is an isomorphism.

Proof. **Surjectivity:** Let \(u = (g, \rho, z) \in U^{princ}\). We want to show that there exists \(\gamma_1, \gamma_2 \in \Gamma\) such that \((\gamma_1, \gamma_2).u = (\gamma_1 g\gamma_2^{-1}, \rho, \gamma_2 z) \in U^+\). There exists \(\gamma_2 \in \Gamma\) with \(\gamma_2 z \in X^+\) because: 1) the definition of a Shimura datum implies that \(\pi_0(X)\) is a \(\pi_0(G(\mathbb{R}))\)-homogeneous space; and 2) from our hypothesis and the theorem of real approximation, we get a surjection \(\Gamma \to G(Q)/G(Q)^+ \cong G(\mathbb{R})/G(\mathbb{R})^+\). Our hypothesis now implies that there exists \(\gamma_1 \in \Gamma\) such that \(\gamma_1 g\gamma_2^{-1} \in G(Q)^+\). This proves surjectivity.

Injectivity: Now suppose that two points \((g_1, \rho_1, z_1)\) and \((g_2, \rho_2, z_2)\) have the same image in the quotient. Then there exists \(\gamma_1, \gamma_2 \in \Gamma\) such that \((g_1, \rho_1, z_1) = (\gamma_1 g_2 \gamma_2^{-1}, \gamma_2 \rho_2, \gamma_2 z_2)\). Since \(\gamma_2\) stabilizes \(X^+\), it is in \(G(\mathbb{R})^+\), and therefore also in \(\Gamma^+\). This implies that \(\gamma_1\) is in \(\Gamma^+\). This proves injectivity.

We denote by \(h(G, K)\) the cardinality of the finite set \(G(Q)\backslash G(A_f)/K\).

Proposition 5.1.3. If \(h(G, K) = 1\) then the principal and the full BCM groupoids are the same, i.e., the natural map

\[\mathcal{Z}_{princ}^D \to \mathcal{Z}^D \]

is an isomorphism.

Proof. There is a natural map

\[\psi : (G(Q) \backslash G(Q) \times K_M \times X) \overset{\sim}{\to} (G(A_f) \backslash G(A_f) \times L \times G(Q) \backslash X \times G(A_f)) \]

\[(g, \rho, z) \mapsto (g, \rho, [z, 1]) \]

The action of \(\gamma_2 \in \Gamma\) on the source is given by \((g, \rho, z) \mapsto (g\gamma_2^{-1}, \gamma_2 \rho, \gamma_2 z)\) and on the range by \((g, \rho, [z, l]) \mapsto (g\gamma_2^{-1}, \gamma_2 \rho, [z, l\gamma_2^{-1}])\). Since \(\Gamma = K \cap G(Q)\), we have

\[\psi(\gamma_2 \cdot (g, \rho, z)) = (g\gamma_2^{-1}, \gamma_2 \rho, [\gamma_2 z, 1]), \]

\[= (g\gamma_2^{-1}, \gamma_2 \rho, [z, \gamma_2^{-1}]), \]

\[= \gamma_2 \cdot \psi(g, \rho, z). \]
This proves that ψ, being Γ-equivariant, induces a well defined map
\[
\overline{\psi}: (\Gamma \backslash (G(\mathbb{Q})) \times [K_M \times X] \rightarrow (K \backslash G(A_f)) \times [K_M \times G(\mathbb{R})/(X \times G(A_f))].
\]

Let us prove that $\overline{\psi}$ is surjective. This will essentially follow from the equalities
\[G(\mathbb{A}_f) = K.G(\mathbb{Q}) = G(\mathbb{Q}).K\] (the class number one hypothesis $h(G, K) = 1$).

For $(g, \rho, [z, l]) \in (K \backslash G(\mathbb{A}_f)) \times [K_M \times G(\mathbb{Q})/(X \times G(\mathbb{A}_f))]$, there exists $\gamma_2 \in K$ and $l_2 \in G(\mathbb{Q})$ such that $l = l_2\gamma_2$. Then, we have the equalities in our quotient space
\[(g, \rho, [z, l]) = \overline{\psi}(g_2, \rho_2, z_2).
\]

Thus $\overline{\psi}$ is surjective.

Now we prove that $\overline{\psi}$ is injective. Suppose that
\[\overline{\psi}(g_1, \rho_1, z_1) = \overline{\psi}(g_2, \rho_2, z_2).
\]

Then there exists $\gamma_1 \in K$, $\gamma_2 \in K$, $\gamma_3 \in G(\mathbb{Q})$ such that
\[(\gamma_1g_1\gamma_2^{-1}, \gamma_2\rho_1, [\gamma_3z_1, \gamma_3\gamma_2^{-1}]) = (g_2, \rho_2, [z_2, 1]).
\]

This implies $\gamma_3 = \gamma_2$ and then $\gamma_2 \in K \cap G(\mathbb{Q}) = \Gamma$. But we also have $\gamma_1 = g_2\gamma_2g_1^{-1} \in G(\mathbb{Q}) \cap K = \Gamma$. This shows that
\[(g_2, \rho_2, z_2) = (\gamma_1g_1\gamma_2^{-1}, \gamma_2\rho_1, \gamma_2z_1)
\]
with $\gamma_1, \gamma_2 \in \Gamma$, i.e., (g_2, ρ_2, z_2) and (g_1, ρ_1, z_1) are the same in $(\Gamma \backslash (G(\mathbb{Q})) \times [K_M \times X]$. This proves injectivity.

To finish, we prove that the bijection $\overline{\psi} : Z_{D, L}^{\text{princ}} \rightarrow 3_{D, L}$ is compatible with the groupoid structures. Let $Y^{\text{princ}} = K_M \times X$, and $Y = K_M \times \text{Sh}(G, X)$. If $(g, \rho, z) \in 3^{\text{princ}}$, the image of $(\rho, z) \in Y^{\text{princ}}$ under $g \in G(\mathbb{Q})$ is given by $(gp, g\rho) \in Y^{\text{princ}}$. The image of $(\rho, [z, 1]) \in Y$ under g is given by $(gp, [z, g^{-1}]) \in Y$, which is equal to $(gp, [g, z, 1])$. This finishes the proof.

Definition 5.1.4. Let (D, L) be a BCM pair with neat level. The algebra $\mathcal{H}_{\text{princ}}(D, L) = C_c(3_{D, L}^{\text{princ}})$ is called the principal BCM algebra for (D, L).

5.2 The Bost-Connes system

Let F/\mathbb{Q} be a number field. Let $G = \text{Res}_{F/\mathbb{Q}}\mathbb{G}_{m, F}, X_F = G(\mathbb{R})/G(\mathbb{Q})^+ \cong \{ \pm 1 \}^{\text{Hom}(F, \mathbb{R})}$,
\[V = F\text{ and } M = \text{Res}_{F/\mathbb{Q}}M_1.F\].

Let $K = \hat{O}_F^X$, $L = \mathcal{O}_F$, and $K_M = \hat{O}_F = M_1(\hat{O}_F)$.

Definition 5.2.1. The pair
\[\mathcal{P}(\text{Res}_{F/\mathbb{Q}}\mathbb{G}_{m, F}, X_F) = (\mathbb{G}_{m, F}, X_F, F, \text{Res}_{F/\mathbb{Q}}M_1.F, (\mathcal{O}_F, \hat{O}_F, \hat{O}_F))\]
is called the Bost-Connes pair for F. The corresponding algebra $\mathcal{H}(\text{Res}_{F/\mathbb{Q}}\mathbb{G}_{m, F}, X_F)$ is called the Bost-Connes algebra for F.

22
Proposition 5.2.2. In the case $F = \mathbb{Q}$, $\mathcal{H}(\mathbb{G}_{m,\mathbb{Q}}, \{\pm 1\})$ is the original Bost-Connes algebra.

Proof. Recall from Section 2.1 that the Bost-Connes algebra is the convolution algebra of the groupoid $Z_{BC} \subset \mathbb{Q}^x_+ \times \mathbb{Z}$ of pair (g, ρ) with $g\rho \in \mathbb{Z}$; thus we need only to show that Z_{BC} coincides with the BCM groupoid Z of the Bost-Connes pair. Indeed, in the notation of Section 5.1, we have

$$U^+ = \{(g, \rho, 1) \in \mathbb{Q}^x_+ \times \mathbb{Z} \times \{1\} \mid g\rho \in \mathbb{Z}\}, \quad \Gamma = \{\pm 1\}, \text{ and } \Gamma^+ = 1.$$

Therefore $Z^+ := \Gamma^+ \setminus U^+ = Z_{BC}$; the map $\Gamma \to G(\mathbb{Q})/G(\mathbb{Q})^+$ is an isomorphism of $\{\pm 1\}$; and $h(\mathbb{G}_{m,\mathbb{Q}}, \mathbb{Z}^x) = 1$, since it is the usual class number of \mathbb{Q}. The proposition follows from Propositions 5.1.2 and 5.1.3.

5.3 The Connes-Marcolli system

We now show that in the GL_2, \mathbb{Q} case, we obtain exactly the same groupoid as Connes and Marcolli [CM04]. This groupoid is only a stack-groupoid, not a usual groupoid. This restriction was circumvented by Connes and Marcolli using functions of weight 0 for the scaling action (see [CM04], remark shortly preceding 1.83). Such a scaling action is not canonically defined in the general case we consider. As explained before, we deliberately chose to view this groupoid as a stack-groupoid in order to define a natural groupoid algebra for it that depends on the resolution of stack singularities given by the choice of K.

Consider the Shimura datum $(GL_2, \mathbb{Q}, H_{\pm}, V = \mathbb{Q}^2, M = M_2, \mathbb{Q})$. Let $L = \mathbb{Z}^2, K = GL_2(\mathbb{Z})$, and $K_M = M_2(\mathbb{Z})$.

Definition 5.3.1. The pair

$$\mathcal{P}(GL_2, \mathbb{H}^\pm) := ((GL_2, \mathbb{H}^\pm, \mathbb{Q}^2, M_2, \mathbb{Q}),(\mathbb{Z}^2, GL_2(\mathbb{Z}), M_2(\mathbb{Z})))$$

is called the modular BCM pair. The corresponding BCM stack-groupoid is denoted by $\mathcal{Z}_R^{GL_2, \mathbb{H}^\pm}$.

The stack-groupoid $Z_+^{GL_2, \mathbb{H}^\pm}$ is defined as in Section 5.1. This is exactly the groupoid studied by Connes and Marcolli in [CM04].

Lemma 5.3.2. Our BCM stack-groupoid is the same as Connes and Marcolli’s one. In other words, the natural map

$$Z_+^{GL_2, \mathbb{H}^\pm} \to \mathcal{Z}_R^{GL_2, \mathbb{H}^\pm}$$

is an isomorphism.

Proof. We have in this case $h(G, K) = 1$ so by Proposition 5.1.3 we have $[Z_{GL_2, \mathbb{H}^\pm}] \cong [Z_{GL_2, \mathbb{H}^\pm}]$. The map $GL_2(\mathbb{Z}) \to GL_2(\mathbb{R})/GL_2(\mathbb{R})^+$ is surjective, so that we can apply proposition 5.1.2 which tells us that $Z_+^{GL_2, \mathbb{H}^\pm} \cong Z_{GL_2, \mathbb{H}^\pm}$.

6 Operator theoretic results on BCM algebras

6.1 The C*-algebra associated to a BCM datum

Let $(D, \mathcal{L}) = ((G, X, V, M), (L, K, K_M))$ be a BCM pair with neat level. On the algebra $\mathcal{H}(D, \mathcal{L})$, we put the following norm: for every $f \in \mathcal{H}(D, \mathcal{L})$,

$$\|f\| = \sup_{y \in V_{D, \mathcal{L}}} \|\pi_y(f)\|.$$
Lemma 6.1.1. This defines a C^*-norm on $\mathcal{H}(D, L)$, i.e., $\|f^*f\| = \|f\|^2$.

Proof. Indeed, it is easy to check that this is a seminorm satisfying the C^*-condition (Definition 3.2.1): observe that for arbitrarily small $\epsilon > 0$ there is a y such that $\|f\|^2 - \epsilon = \|\pi_y(f)\|^2$. We then have

$$\|f^*f\| \geq \|\pi_y(f^*f)\| = \|\pi_y(f)\|^2 = \|f\|^2 - \epsilon,$$

which of course means that $\|f^*f\| \geq \|f\|^2$. This inequality is easily shown to imply the C^*-condition.

That we get a norm (i.e., $\|f\| = 0$ only when $f = 0$), and not just a seminorm, follows from the fact that $\phi(g, y) \neq 0$ implies that $\pi_y(f) \neq 0$:

$$\langle \pi_y(f)\epsilon_g, \epsilon_g \rangle = \phi(1, gy) = \phi(g, y) \neq 0.$$

Here $\epsilon_g \in H_y$ is the unit vector which takes value 1 at g, and 0 elsewhere. □

Definition 6.1.2. The completion of $\mathcal{H}(D, L)$ under the norm $\|\cdot\|$ is denoted $\mathcal{A}(D, L)$ and called the BCM C^*-algebra.

6.2 Construction of extreme KMS states at small temperature

Let $(D, L) = ((G, X, V, M), (L, K, K_M))$ be a summable BCM pair. Recall that $Y^\infty_{D, L} = \{(g, \rho, [z, l]) \in Y_{D, L} \mid \rho \text{ invertible}\}$.

Lemma 6.2.1. Let $y \in Y^\infty_{D, L}$. Let β be such that the zeta function $\zeta_{D, L}(\beta)$ converges. The state

$$\Phi_{\beta, y}(f) := \frac{\text{Trace}(\pi_y(f)e^{-\beta \mathcal{H}_y})}{\zeta_{D, L}(\beta)}$$

is a KMS$_\beta$ state for the system $(\mathcal{A}(D, L), \sigma_t)$ (by Lemma 4.1.7 $\zeta_{D, L}(\beta) \neq 0$).

Proof. By construction, the algebra $\mathcal{H}(D, L)$ is a norm-dense subalgebra of $\mathcal{A}(D, L)$, which is also σ_t-invariant. Thus, to verify the KMS$_\beta$ condition, it is enough to show that

$$\Phi_{\beta, y}(f_1 \sigma_i \beta(f_2)) = \Phi_{\beta, y}(f_2 f_1)$$

for every pair of functions $f_1, f_2 \in \mathcal{H}(D, L)$; see Proposition 4.2.3. The convergence of the zeta function implies that the operator $e^{-\beta \mathcal{H}_y}$ is trace class. The invariance of the trace under cyclic permutations implies that

$$\zeta_{D, L}(\beta) \Phi_{\beta, y}(f_1 \sigma_i \beta(f_2)) = \text{Trace}(f_1 e^{-\beta \mathcal{H}_y} f_2 e^{\beta \mathcal{H}_y} e^{-\beta \mathcal{H}_y}),$$

$$\Phi_{\beta, y}(f_1 \sigma_i \beta(f_2)) = \text{Trace}(f_1 e^{-\beta \mathcal{H}_y} f_2),$$

$$\Phi_{\beta, y}(f_1 \sigma_i \beta(f_2)) = \text{Trace}(f_2 f_1 e^{-\beta \mathcal{H}_y})$$

which finishes the proof of the KMS condition. □

The commutant of a subset $S \subset \mathcal{B}(H_y)$ is by definition $S' = \{a \in \mathcal{B}(H_y) \mid as = sa, \forall s \in S\}$.

Lemma 6.2.2. If $y \in Y^\infty_{D, L}$, then the commutant $\pi_y(\mathcal{A}(D, L))'$ consists only of scalar operators.

Proof. In general, if $y \in Y_{D, L}$, then the Von Neumann algebra $\pi_y(\mathcal{A})'$ is generated by the right regular representation of the isotropy group $Z_{y,y} := \{[g, y] \in Z \mid s[g, y] = [y] = [gy] = t[g, y]\}$ (cf. Contd Proposition VII.5). If y is now in $Y^\infty_{D, L}$, then the isotropy group $Z_{y,y}$ is trivial. Therefore, the commutant $\pi_y(\mathcal{A})'$ consists only of scalar operators. □
Recall that the set of KMS\(_{\beta}\) states is a convex simplex (see Proposition 5.2.3), whose extreme points are called extreme KMS\(_{\beta}\) states.

Proposition 6.2.3. Let \(y \in Y_{D,L}^\times\) be an invertible element of \(Y_{D,L}\). Let \(\beta\) be such that the zeta function \(\zeta_{D,L}(\beta)\) converges. The KMS\(_{\beta}\) state

\[
\Phi_{\beta,y}(f) := \frac{\text{Trace}(\pi_y(f)e^{-\beta H_y})}{\zeta_{D,L}(\beta)}
\]

is extremal of type I\(_{\infty}\).

Proof. By Proposition 3.2.5, the property, for \(\Phi_{\beta,y}\), of being extreme is equivalent to the property of being a factor state, i.e., the algebra \(A(D,L)\) generates a factor in the GNS representation of \(\Phi_{\beta,y}\). Following Harari-Leichtnam, [HL97], proof of Theorem 5.3.1, the GNS representation is (up to unitary equivalence)

\[
\tilde{\pi}_y = \pi_y \otimes \text{id}_{\mathcal{H}_y} : A(D,L) \to B(\mathcal{H}_y \otimes \mathcal{H}_y),
\]

and the associated cyclic vector is

\[
\Omega_{\beta,y} = \zeta_{D,L}(\beta)^{-1/2} \sum_{h \in K \setminus G_y} \det(\phi(h))^{-1/2} \epsilon_h \otimes \epsilon_h,
\]

where \(\epsilon_h\) is the basis vector of \(\mathcal{H}_y\) that takes values 1 at \(h\), and 0 elsewhere.

The properties that characterize the triple \((\mathcal{H}_y \otimes \mathcal{H}_y, \tilde{\pi}_y, \Omega_{\beta,y})\) as the GNS representation of \(\Phi_{\beta,y}\) are precisely:

1. \(\Phi_{\beta,y}(f) = \langle \tilde{\pi}_y(f) \Omega_{\beta,y}, \Omega_{\beta,y} \rangle\), for every \(f \in A(D,L)\); and
2. The orbit \(\tilde{\pi}_y(A(D,L))\Omega_{\beta,y}\) is dense in the Hilbert space \(\mathcal{H}_y \otimes \mathcal{H}_y\).

These two properties are verified by direct calculation. For example, to verify the
dsecond condition first observe that

\[
\pi_y(f)\epsilon_h = \sum_{g \in K \setminus G_y} f(gh^{-1},hy) \epsilon_g,
\]

and so

\[
\tilde{\pi}_y(f)\Omega_{\beta,y} = \zeta_{D,L}(\beta)^{-1/2} \sum_{g, h \in K \setminus G_y} \det(\phi(h))^{-1/2} f(gh^{-1},hy) \epsilon_g \otimes \epsilon_h.
\]

But since \(G_y = \text{Sym}_f\), every \(\det(\phi(h))\) is positive, and we can choose \(f\) to have
sufficiently small support about \((gh^{-1},hy)\) to see that the basis vector \(\epsilon_y \otimes \epsilon_y\) lies in
the closure of \(\tilde{\pi}_y(A(D,L))\xi_{\beta,y}\).

By Lemma 6.2.2, we know that the commutant \(\pi_y(A(D,L))'\) consists of scalar operators. It is then clear that \(\tilde{\pi}_y(A(D,L))' = \pi_y(A(D,L))' \otimes B(\mathcal{H}_y) = \mathbb{C} \otimes B(\mathcal{H}_y)\), and so

\[
\tilde{\pi}_y(A(D,L))'' = B(\mathcal{H}_y) \otimes \text{Cid}_{\mathcal{H}_y} \cong B(\mathcal{H}_y).
\]

This proves that \(\Phi_{\beta,y}\) is a Type I\(_{\infty}\) factor state.

Question 6.2.4. Let \((D,L) = ((G,X,V,M),(L,K,K_M))\) be a BCM pair. Is it true
that for \(\beta \gg 0\), the map \(y \mapsto \Phi_{\beta,y}\) induces a bijection from the Shimura variety \(\text{Sh}(G,X)\) to the space \(\mathcal{E}_\beta\) of extremal KMS\(_{\beta}\) states on \((\mathcal{H}(D,L),\sigma_t)\)?
7 A Bost-Connes system for number fields

7.1 Reminder of Dedekind zeta functions

A first step in understanding what a good analogue of the Bost-Connes algebra may be is to find a nice description of the partition functions. This was done first by Harari and Leichtnam in [HL97] in the class number one case and by Paula Cohen in [Coh99] for general number fields, where she used an adelic description of the Dedekind zeta function.

Let \(F \) be a number field. There is a multiplicative semigroup injection \(\hat{O}_F \times F \to \hat{O}_F \). Let \(\hat{O}_F^{\times} := \hat{O}_F \cap \mathbb{A}_F \times F \) and \(\hat{Z}^{\times} := \hat{Z} \cap \mathbb{A}_F \times F \). Then the space \(\hat{O}_F^{\times} \backslash \hat{O}_F \) is identified with the multiplicative semigroup \(I_F \) of integral ideals in \(F \). The norm map induces a natural map

\[
Nm : \hat{O}_F^{\times} \backslash \hat{O}_F \to \hat{Z}^{\times} \backslash \hat{Z} \cong \mathbb{Z}^{\times} \setminus \{0\} \cong \mathbb{N}^{\times}.
\]

This is the usual norm on ideal classes.

Now the Dedekind zeta function of \(F \) can be expressed as

\[
\zeta_F(s) = \sum_{n \in \hat{O}_F^{\times} \backslash \hat{O}_F} \frac{1}{Nm(n)^s}.
\]

7.2 The adelic Bost-Connes algebra

We recall from Subsection 5.2 the definition of the Bost-Connes datum for number fields. Let \(F/\mathbb{Q} \) be a number field. Let \(G = \text{Res}_{F/\mathbb{Q}} \mathbb{G}_m,F \) and \(X_F = \mathbb{G}(\mathbb{R})/\mathbb{G}(\mathbb{R})^+ \cong \{\pm1\}^\text{Hom}(F,\mathbb{R}) \).

Following Definition 5.2.1, the Bost-Connes pair for \(F \) is

\[
P_F := \mathcal{P}(\text{Res}_{F/\mathbb{Q}} \mathbb{G}_m,F, X_F) = \langle (\text{Res}_{F/\mathbb{Q}} \mathbb{G}_m,F, X_F, F = \text{End}_F(F)), (\hat{O}_F, \hat{O}_F^{\times}, \hat{O}_F) \rangle.
\]

Remark that in this case, we have

\[
\text{Sh}(\text{Res}_{F/\mathbb{Q}} \mathbb{G}_m,F, X_F) \cong \pi_0(C_F),
\]

where \(C_F \) is the idele class group of \(F \).

Then \(Y_F = \hat{O}_F \times \text{Sh}(\text{Res}_{F/\mathbb{Q}} \mathbb{G}_m,F, X_F) \) and

\[
U_F \subset \mathbb{A}_F^{\times} \times Y_F
\]

is the subspace of tuples \((g, \rho, [z, l])\) such that \(g \rho \in \hat{O}_F \). We let \(\gamma_1, \gamma_2 \in \hat{O}_F^{\times} \times \hat{O}_F^{\times} \) act on \((g, y = (\rho, [z, l])) \in U_F\) by

\[
(g, \rho, [z, l]) \mapsto (\gamma_1 g \gamma_2^{-1}, \gamma_2 \rho, [z, l \gamma_2^{-1}]).
\]

Let \(Z_F := (\hat{O}_F^{\times} \times \hat{O}_F^{\times}) U_F \) and let \(\mathcal{H}_F = \mathcal{H}(\text{Res}_{F/\mathbb{Q}} \mathbb{G}_m,F, X_F) := C_c(Z_F) \) be the corresponding Bost-Connes algebra for \(F \).

7.3 Partition function and symmetries

Lemma 7.3.1. Let \(y \in Y_F \) and \(H_y = \ell^2(K \setminus G_y) \). The time evolution on \(\mathcal{H}_F \) is given by

\[
\sigma_t(f)(g, y) = Nm(g)^{it} f(g, y).
\]

The Hamiltonian \(H_y \) in \(\mathcal{H}_y \) is given by

\[
(H_y \xi)(g) = \log(Nm(g)) \cdot \xi(g).
\]
Proof. Notice that for $a \in F$, the determinant of the \mathbb{Q}-linear map $x \mapsto a \cdot x$ on F is the norm $Nm(a)$. The lemma then follows from Definitions 4.4.1 and 4.4.2.

Lemma 7.3.2. The finite symmetry semigroup $\text{Sym}_f(\text{Res}_{F/Q}\mathbb{G}_{m,F}, X_F)$ of \mathcal{P}_F is $\hat{\mathcal{O}}_F^\times$. Its zeta function $\zeta_{\mathcal{P}_F}$ is the Dedekind zeta function ζ_F of F.

Proof. The description of the symmetry semigroup follows from its Definition 4.1.6. The description of the zeta function follows from Definition 4.1.8 and Subsection 7.1.

We now identify the action of the full symmetry semigroup $\text{Sym}(\text{Res}_{F/Q}\mathbb{G}_{m,F}, X_F) = \hat{\mathcal{O}}_F^\times \times \text{Res}_{F/Q}\mathbb{G}_{m,F}(\mathbb{R})$, which contains archimedean information.

Proposition 7.3.3. We have $\text{Inn}(\text{Res}_{F/Q}\mathbb{G}_{m,F}, X_F) = \mathcal{O}_F^\times := \mathcal{O}_F - \{0\}$ and the outer symmetry semigroup $\text{Out}(\text{Res}_{F/Q}\mathbb{G}_{m,F}, X_F)$ acts on the BCM algebra \mathcal{H}_F through $\pi_0(F^\times \backslash \mathbb{A}_F^\times)$.

Proof. Recall from Eq. 4.1 that \mathcal{Z}_F can be written as a projective limit of groupoids $\mathcal{Z}_{K'}$ for $K' \subset G(\mathbb{A}_F)$ compact open. The Sym-action can thus be enhanced to an action of the projective limit semigroup $\varprojlim_{K'} \text{Sym}/K'$ over all compact open $K' \subset G(\mathbb{A}_F)$.

We know from [Del79] 2.2.3, that $\varprojlim_{K'} F^\times \backslash (\mathbb{A}_F^\times / K') \times \pi_0(\text{Res}_{F/Q}\mathbb{G}_{m,F}(\mathbb{R})) := \text{Sh}(\text{Res}_{F/Q}\mathbb{G}_{m,F}, X_F) \cong \pi_0(F^\times \backslash \mathbb{A}_F^\times)$.

It thus remains to prove that the natural map

$$\hat{\mathcal{O}}_F^\times \backslash (\hat{\mathcal{O}}_F^\times \times \pi_0(\text{Res}_{F/Q}\mathbb{G}_{m,F}(\mathbb{R}))) \to F^\times \backslash (\mathbb{A}_F^\times \times \pi_0(\text{Res}_{F/Q}\mathbb{G}_{m,F}(\mathbb{R})))$$

is an isomorphism. The injectivity of this map is clear because $\mathcal{O}_F^\times := \mathcal{O}_F - \{0\} = \hat{\mathcal{O}}_F^\times \cap F^\times$. Since F^\times acts transitively on $\pi_0(\text{Res}_{F/Q}\mathbb{G}_{m,F}(\mathbb{R}))$, to prove surjectivity it suffices to prove surjectivity of the upper map of the following diagram:

$$\begin{array}{ccc}
\hat{\mathcal{O}}_F^\times & \longrightarrow & F^\times \backslash \mathbb{A}_F^\times \\
\downarrow & & \downarrow \\
\mathcal{O}_F^\times \backslash \hat{\mathcal{O}}_F^\times & \sim & F^\times \backslash \mathbb{A}_F^\times / \hat{\mathcal{O}}_F^\times
\end{array}$$

The lower arrow is an isomorphism because these two groups are equal to the ideal class group of F. Let $g \in \mathbb{A}_F^\times$ be a finite idele. Then its image by the vertical projection gives an ideal class, which is the image of some $m \in \hat{\mathcal{O}}_F^\times$. We have $[m] = [g]$ in the right quotient so that there exists $k \in \hat{\mathcal{O}}_F^\times$ such that $g = mk \mod F^\times$. Then $mk \in \hat{\mathcal{O}}_F^\times$ is in the preimage of the upper arrow of the diagram, which proves surjectivity.

Remark 7.3.4. Analogous results were already obtained for F imaginary quadratic by Connes-Marcolli-Ramachandran (see [CMR05]). In this case, the datum $(\text{Res}_{F/Q}\mathbb{G}_{m,F}, X_F)$ is classical so that the system is simpler.
8 A Bost-Connes system for Dirichlet characters

8.1 Reminder of zeta functions of Dirichlet characters

We here recall from Neukirch’s book [Neu92], p. 501, some facts about characters.

Definition 8.1.1. A Hecke character is a character of the idele class group $C_F := \mathbb{A}_F^\times / F^\times$, i.e., a continuous homomorphism $\chi : C_F \to S^1$ to the group S^1 of complex numbers of norm 1. A Dirichlet character is a Hecke character that factors through the quotient group $(F_\mathbb{A})_+^\times \backslash \mathbb{A}_F^\times / F^\times$ where $+$ denotes the connected component for the real topology.

Let $m = \prod_p p^n$ be a full ideal of \mathcal{O}_F and let $K(m)$ be the kernel of the natural map

$$\hat{\mathcal{O}}_F^\times \to (\hat{\mathcal{O}}_F / m)^\times.$$

We say that m is a module of definition for the Dirichlet character χ if $\chi(K(m)) = 1$.

Each Dirichlet character has a module of definition and for such an m, we have a factorisation $\chi : C(m) \to S^1$, where $C(m) = ((F_\mathbb{A})_+^\times \times K(m)) \backslash \mathbb{A}_F^\times / F^\times$ is the big ray class group modulo m. Such an m that is moreover minimal (among the modules of definition) is called the conductor of the Dirichlet character.

Recall that $\hat{\mathcal{O}}_F^\times = \mathbb{A}_F^\times \cap \hat{\mathcal{O}}_F$. If $\chi : \mathbb{A}_F^\times \to S^1$ is a Dirichlet character, we factor it through $(F_\mathbb{A})_+^\times \backslash \mathbb{A}_F^\times$, and thus restrict it to $\pi_0(F_\mathbb{A})^\times \times \hat{\mathcal{O}}_F^\times$. Let $K(m) \subset \hat{\mathcal{O}}_F^\times$ be a primitive subgroup of definition for χ and let $K^\times(m) := \{n \in \hat{\mathcal{O}}_F^\times | \bar{n} = 1 \in \hat{\mathcal{O}}_F / m\}$.

There is an injective map $K(m) \backslash K^\times(m) \to \hat{\mathcal{O}}_F^\times \backslash \hat{\mathcal{O}}_F^\times$ whose image is the semigroup of all ideals of F prime to m.

At least if χ is trivial at infinity, it induces $\chi : (K(m) \backslash K^\times(m)) \to S^1$. Now, we can define the L-function of our Dirichlet character χ as

$$L_F(s, \chi) = \sum_{n \in K(m) \backslash K^\times(m)} \frac{\chi(n)}{Nm(n)^s},$$

where Nm was defined in section 7.1. In the particular case of a class character, we have

$$L_F(s, \chi) = \sum_{n \in \hat{\mathcal{O}}_F^\times \backslash \hat{\mathcal{O}}_F^\times} \frac{\chi(n)}{Nm(n)^s}.$$

8.2 A Bost-Connes algebra for Dirichlet characters

Let $\chi : \mathbb{A}_F \to S^1$ be a Dirichlet character that is supposed to be trivial at infinity. Let $G = \text{Res}_{\mathbb{R}/\mathbb{Q}} \mathbb{G}_m, F$ and $X := G(\mathbb{R}) / G(\mathbb{R})^\times \cong \{\pm 1\}^{\text{Hom}(F, \mathbb{R})}$. Let m be the conductor of χ and $K_M(m) \subset \hat{\mathcal{O}}_F^\times$ be the multiplicative semigroup defined by

$$K_M(m) = \text{Ker}_{\text{mult}}(\hat{\mathcal{O}}_F^\times \to \hat{\mathcal{O}}_F / m) := \{n \in \hat{\mathcal{O}}_F | \bar{n} = 1 \in \hat{\mathcal{O}}_F / m\}.$$

Recall that we denoted $K(m) \subset \hat{\mathcal{O}}_F^\times$ the subgroup $K(m) = \text{Ker}(\hat{\mathcal{O}}_F^\times \to (\hat{\mathcal{O}}_F / m)^\times)$. Let $L = \mathcal{O}_F$ and $\phi : G \to \text{GL}_{\mathbb{Q}}(F)$ be the regular representation.

Definition 8.2.1. The tuple $D_{F, m} := ((\text{Res}_{\mathbb{R}/\mathbb{Q}} \mathbb{G}_m, F), (K_M(m), \phi, L))$ is called the Bost-Connes datum of conductor m.

The time evolution and Hamiltonian are the same as in the Bost-Connes case studied in Subsection 7.3. Let a_χ be the operator on \mathcal{H}_g defined by

$$(a_\chi \xi)(g) = \chi(g) \xi(g).$$
Definition 8.2.2. The χ-twisted trace Trace_χ on $\mathcal{B}(\mathcal{H}_y)$ is defined by

$$\text{Trace}_\chi(D) = \text{Trace}(a_\chi \cdot D).$$

Definition 8.2.3. The χ-twisted partition function of $\mathcal{D}_{F,m}$ is defined as

$$\zeta_{\mathcal{D}_{F,m},\chi}(s) = \text{Trace}_\chi(e^{-\beta \mathcal{H}_y}).$$

Lemma 8.2.4. The χ-twisted partition function of $\mathcal{D}_{F,m}$ is equal to the Dirichlet L-function $L_F(s,\chi)$.

Proof. This follows from the definition and Subsection 8.1.

Remark 8.2.5. If we want to treat Dirichlet characters with nontrivial infinite component, it could be useful to construct the groupoid given by the partial action of $A \times F$ on the space $A_F \times \pi_0(C_F)$ where $C_F := F^\times \setminus A_F^\times$. If we do the construction as before, using a quotient by $(\hat{\mathcal{O}}_F^\times)^2$, the partition function will not be reasonable. It could be interesting to use Tate’s thesis [Tat67], that expresses the Dedekind zeta function as an integral, to deal with this problem. It is not clear to us if a meaningful physical system can be constructed this way.

9 The Hilbert modular BCM system

We now specialize the general formalism of Section 4 to the case of Hilbert modular Shimura data. This is a good training ground for the case of a general Shimura datum.

9.1 Construction

Let F be a totally real number field. Let $G := \text{Res}_{F/\mathbb{Q}} \text{GL}_2$, $X := (\mathbb{H}^\pm)^{\text{Hom}(F,\mathbb{R})}$. The Shimura datum (G, X) is the Hilbert modular Shimura datum. Let V be the \mathbb{Q}-vector space F^2 with the natural action ϕ of G. Let $M := \text{Res}_{F/\mathbb{Q}} M_2, F$. Let $L \subset V$ be \mathcal{O}_F^\times. Let $K_0 = \text{GL}_2(\hat{\mathcal{O}}_F) \subset G(\mathbb{A}_f)$ and $K_M = M_2(\hat{\mathcal{O}}_F) \subset M_2(\mathbb{A}_f, F)$. Choose a neat subgroup $K \subset K_0$.

Definition 9.1.1. The pair $\mathcal{P}(G, X, K) := ((G, X, V, M), (L, K, K_M))$ is called a Hilbert modular BCM pair for F. The BCM algebra $\mathcal{H}(\mathcal{P})$ is called a Hilbert modular BCM algebra.

Lemma 9.1.2. If we suppose that F has class number one, then the natural morphism

$$\mathcal{H}(\text{GL}_2, F, X, K) \rightarrow \mathcal{H}_{\text{princ}}(\text{GL}_2, F, X, K)$$

from the principal to the full Bost-Connes-Marcolli algebra is an isomorphism.

Proof. The hypothesis implies (in fact is equivalent to) $h(G, K) = 1$. The result then follows from proposition 5.1.3.

We now describe more explicitly the time evolution whose construction was made in Subsection 4.4.

Let $C := \text{Res}_{F/\mathbb{Q}} \mathbb{G}_m$, which is the center of $G = \text{Res}_{F/\mathbb{Q}} \text{GL}_2$. The natural determinant map $\det : G \rightarrow C$ induces $\det : K \setminus G(\mathbb{A}_f) \rightarrow C(\hat{\mathbb{Z}}) \setminus C(\mathbb{A}_f)$. The norm map $\text{Nm} : C \rightarrow \mathbb{G}_m, \mathbb{Q}$ induces

$$\text{Nm} : C(\hat{\mathbb{Z}}) \setminus C(\mathbb{A}_f) \rightarrow \hat{\mathbb{Z}}^\times \setminus \mathbb{A}_f^\times \cong \mathbb{Z}^\times \setminus \mathbb{Q}_+^\times \subset \mathbb{R}_+^\times.$$
Lemma 9.1.3. The time evolution on the Hilbert modular BCM algebra $\mathcal{H}(G, X, K)$ is equal to
\[\sigma_t(f)(g, y) = \text{Nm}(\det(g))^{it} f(g, y). \]

9.2 Symmetries

We apply the general definitions of Subsection 4.5 to this case. We see that
\[\text{Sym}_f = M_2(\hat{O}_F)^\natural := GL_2(\mathcal{A}_{f, F}) \cap M_2(\hat{O}_F). \]

The center of $G = \text{Res}_{F/\mathbb{Q}} GL_2, F$ is $C = \text{Res}_{F/\mathbb{Q}} \mathbb{G}_m$ and the center of $M_2(\hat{O}_F)$ is \hat{O}_F as a diagonal subsemigroup. We also have $\text{Inn} = \mathcal{O}_F^\natural := \mathcal{O}_F \cap F^\times$ and an inclusion of semigroups $\mathcal{O}_F^\natural \subset M_2(\hat{O}_F)^\natural$.

The following lemma explains what the symmetries are in the case of Hilbert modular BCM systems.

Proposition 9.2.1. The outer symmetry semigroup Out of the Hilbert modular BCM system is isomorphic to $F^\times \backslash GL_2(\mathcal{A}_{f, F}) \times \text{Res}_{F/\mathbb{Q}} \mathbb{G}_m, F(\mathbb{R})$, more precisely, the natural map
\[\text{Sym}_f := \mathcal{O}_F^\natural \backslash M_2(\hat{O}_F)^\natural \rightarrow F^\times \backslash GL_2(\mathcal{A}_{f, F}) \]
is an isomorphism.

Proof. The injectivity of this map is clear because,
\[\mathcal{O}_F^\natural = F^\times \cap M_2(\hat{O}_F)^\natural. \]

Let $(M_2(\hat{O}_F)^\natural)^{-1} = \{ m \in G(\mathcal{A}_f) \mid m^{-1} \in M_2(\hat{O}_F) \}$ be the semigroup of inverses of elements in $M_2(\hat{O}_F)^\natural$. We then have
\[M_2(\hat{O}_F)^\natural. (M_2(\hat{O}_F)^\natural)^{-1} = GL_2(\mathcal{A}_{f, F}). \]

Let $m \in \mathcal{O}_F^\natural \backslash M_2(\hat{O}_F)^\natural$. We only need to prove that $m^{-1} \in \mathcal{O}_F^\natural \backslash M_2(\hat{O}_F)^\natural$. Moreover, to invert a matrix it is enough to prove that its determinant is invertible. We have $\det(m) \in \mathcal{O}_F^\natural \backslash \hat{O}_F^\natural$. The nonarchimedean part of Proposition 7.3.3 gives $\mathcal{O}_F^\natural \backslash \hat{O}_F^\natural \cong F^\times \backslash \mathcal{A}_{f, F}$, which implies that $\det(m)^{-1} \in \mathcal{O}_F^\natural \backslash \hat{O}_F^\natural \subset \mathcal{O}_F^\natural \backslash M_2(\hat{O}_F)^\natural$. This finishes the proof.

A Stack groupoids

A.1 Topological stacks and stack groupoids

We refer to [LMB00] for the theory of stacks and to [Noo05] for the theory of topological stacks.

A topological stack will be for us a stack on the site (Top) of topological spaces with usual open coverings, i.e., a category fibered in groupoids fulfilling some descent condition (which is precisely described in [LMB00, Définition 3.1]):

- isomorphisms between two given objects form a sheaf,
- every descent condition with respect to an open covering is effective.

We remark that B. Noohi gave in [Noo05] a more restrictive condition (saying that the stack admits a covering by a topological space that is some kind of local fibration), but since we do not use fine stacky geometry, we will ignore this.
Now we would like to define a stack groupoid. Since both groupoids and stacks are categories, one needs the language of 2-categories to describe stack groupoids. We could do this in a way analogous to the spaces in groupoids (“espaces en groupo¨ides”) of LMB00, 2.4.3. The theory of Picard stacks, exposed in SGA73, EXP. XVIII, 1.4 and in LMB00, 14.4, is also an inspiring reference. Our references for the definition of a weak 2-category are Kapranov-Voevodsky [KV94], Tamasmäi’s thesis [Tam95], 1.4, and Simpson [Sim97].

Roughly speaking, a stack groupoid is a groupoid in the category of topological stacks, i.e., the datum of a tuple \((X_1, X_0, s, t, \epsilon, m)\) composed of two stacks \(X_1\) and \(X_0\), equipped with 1-morphisms source \(s : X_1 \to X_0\), target \(t : X_1 \to X_0\), unit \(\epsilon : X_0 \to X_1\), and composition \(m : X_1 \times_{s,t} X_1 \to X_1\):

\[
\begin{array}{ccc}
X_1 & \xrightarrow{s} & X_0 \\
\downarrow & \searrow \epsilon & \\
X_1 \times_{s,t} X_1 & \xrightarrow{m} & X_1
\end{array}
\]

The 1-morphism

\[
(Id_{X_1} \times m) : X_1 \times_{X_0} X_1 \to X_1 \times_{X_0} X_1,
\]

that sends morally a pair \((a, b)\) of composable morphisms to the pair \((a, ab)\), is supposed to be an equivalence (which implies the existence of an inverse for the composition law). This tuple should be equipped with the additional data of an associator

\[
\Phi : m \circ (m \times Id_{X_1}) \Rightarrow m \circ (Id_{X_1} \times m),
\]

and two unity constraints

\[
U : m \circ (Id_{X_1} \times \epsilon) \Rightarrow Id_{X_1}, \quad \text{and} \quad V : m \circ (\epsilon \times Id_{X_1}) \Rightarrow Id_{X_1}.
\]

Rather than writing explicitly the coherence conditions, we prefer to use Toen’s viewpoint of Segal groupoid stacks, which allows one to forget these conditions by including them in the choice of inverses for some equivalences in a simplicial diagram.

Definition A.1.1. Let \((X_1, X_0, s, t, \epsilon, m)\) be a tuple as before. Its coarse quotient is by definition the quotient of the coarse moduli space \(\vert X_0\vert\) (space of isomorphism classes of objects in \(X_0\)) by the equivalence relation generated by

\[
x_0 \sim x'_0 \iff \exists x_1 \in \vert X_1\vert \text{ such that } s(x_1) = x_0 \text{ and } t(x_1) = x'_0.
\]

A.2 Groupoids in the category of spaces with group operations

Let \((\text{OSPACE})\) be the category of “spaces with group operation”, i.e., pairs \((G, X)\) composed of a topological space \(X\) and a group \(G\) that acts on \(X\). A morphism \(\phi = (\phi_1, \phi_2) : (G_1, X_1) \to (G_2, X_2)\) between two such pairs is a pair composed of a group morphism \(\phi_1 : G_1 \to G_2\) and a space morphism \(\phi_2 : X_1 \to X_2\) such that

\[
\phi_2(g_1.x_1) = \phi_1(g_1).\phi_2(x_1), \quad \forall (g_1, x_1) \in G_1 \times X_1.
\]

One can define the notion of groupoid in the category \((\text{OSPACE})\). This is the datum of a tuple \(((G_1, X_1), (G_0, X_0), s, t, \epsilon, m)\) fulfilling some natural conditions that we will not write explicitly here, because we prefer the geometrical language of stacks. There is a relation between these two languages, which is given by a natural functor called “stacky quotient”. Thus one can naturally associate to a groupoid in \((\text{OSPACE})\) a stack groupoid.

The reason for introducing the category \((\text{OSPACE})\) is to provide an economical description of the notion of quotient of a groupoid by a group action as a stack groupoid.

31
Example A.2.1. Let \((\mathcal{D}, \mathcal{L})\) be a BCM pair and let \((U_{\mathcal{D}, \mathcal{L}}, s, t, \epsilon, m)\) be the groupoid defined in Subsection 4.2. There is a natural action of \(K^2\) on the groupoid \(U_{\mathcal{D}, \mathcal{L}}\), given by
\[
(g, y) \mapsto (\gamma_1 g \gamma_2^{-1}, \gamma_2 y).
\]
There is also a natural action of \(K\) on \(Y_{\mathcal{D}, \mathcal{L}}\) given by
\[
y \mapsto \gamma y.
\]
Let \(s_K : K^2 \to K, (\gamma_1, \gamma_2) \mapsto \gamma_2\) and \(t_K : K^2 \to K, (\gamma_1, \gamma_2) \mapsto \gamma_1\) be the two projections. Then the morphisms in (OSpace) given by \((s, s_K), (K, Y_{\mathcal{D}, \mathcal{L}})\) are called the equivariant source and target respectively. The fiber product
\[
(K^2, U_{\mathcal{D}, \mathcal{L}}) \times \cdots
\]

is naturally isomorphic to the OSpace
\[
(K^2 \times_{K^2, s_K, t_K} K^2, U_{\mathcal{D}, \mathcal{L}} \times_{s, t, s_K, t_K} Y_{\mathcal{D}, \mathcal{L}}).
\]
It means that \(m\) induces a natural multiplication map
\[
m_e = (m_K, m) : (K^2, U_{\mathcal{D}, \mathcal{L}}) \times (K^2, U_{\mathcal{D}, \mathcal{L}}) \to (K^2, U_{\mathcal{D}, \mathcal{L}})
\]
in this equivariant setting. The map
\[
m_K : K^2 \times_{s_K, t_K} K^2 \to K^2
\]
is given by \(m(\gamma_1, \gamma_2, \gamma_3) = (\gamma_1, \gamma_3)\).

Passing to the stacky quotient, we obtain the multiplication map
\[
m : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}
\]
on the stack groupoid of Subsection 4.2. Remark that if the action of \(K\) on \(Y_{\mathcal{D}, \mathcal{L}}\) is free, then we obtain a standard groupoid.

A.3 Toen’s Segal groupoid stacks

Following the referee’s suggestion, we give the general definition of a stack groupoid. B. Toen proposed us an elegant definition of the 1-category of stack groupoids which has the advantage of being very concise. It is based on the simplicial point of view of 2-categories as explained in Tamsamani’s thesis [Tam95] and Simpson [Sim97]. Analogous constructions can also be found in [TV], 1.3.4 and [Lei00].

Recall that \(\Delta\) is the category whose objects are totally ordered sets \([n] = \{0, \ldots, n\}\) and whose morphisms are increasing maps.

The category of topological stacks can be seen as a 1-category \((\text{STACKS})\) with a notion of equivalences.

Definition A.3.1. A Segal stack category is a simplicial stack \(\mathcal{X} : \Delta^{op} \to (\text{STACKS})\) such that the Segal morphisms
\[
\mathcal{X}_n \to \mathcal{X}_1 \times \cdots \times \mathcal{X}_1
\]
(given by the \(n\) morphisms in \(\Delta, [1] \to [n]\) that send 0 to \(i\) and 1 to \(i + 1\)) are stack equivalences. A Segal stack category is a Segal stack groupoid if the right multiplication morphism
\[
\mathcal{X}_2 \to \mathcal{X}_1 \times \mathcal{X}_1
\]
given by the two morphisms in \(\Delta\).
• \([1] \to [2]\) such that 0 ↦ 0, 1 ↦ 1 and
• \([1] \to [2]\) such that 0 ↦ 0, 1 ↦ 2,

is a stack equivalence.

Remark that if we replace the category (Stacks) by the category of sets, we find back the usual notions of category and groupoid.

The stacks \(X_n\) can be thought as families of \(n\) composable morphisms and the groupoid condition is that the map \((a, b) \mapsto (a, a \circ b)\) is an equivalence, which implies that each \(a\) is an isomorphism.

The source and target maps \(s, t : X_1 \to X_0\) are induced by the morphisms \(s = [0] \to [1] : 0 \mapsto 0\) and \(t = [0] \to [1] : 0 \mapsto 1\).

The choice of an inverse \(\phi\) for the Segal morphism \(X_2 \to X_1 \times X_1 X_1\) allows one to define a composition \(\mu : X_1 \times_{s, X_1, t} X_1 \to X_1\) given by composing \(\phi\) with the morphism induced by \([1] \to [2] : 0 \mapsto 0, 1 \mapsto 2\).

The source and target maps \(s, t : X_1 \to X_0\) are induced by the morphisms \(s = [0] \to [1] : 0 \mapsto 0\) and \(t = [0] \to [1] : 0 \mapsto 1\).

The increasing map \([1] \to [0] : 0 \mapsto 0, 1 \mapsto 0\) induces a map \(\epsilon : X_0 \to X_1\) called the unit map.

Now, choose an inverse \(\psi\) to the right multiplication morphism

\[
X_2 \to X_1 \times_{X_0} X_1,
\]

and compose it with

\[
\text{Id}_{X_1 \times X_0} \epsilon : X_1 \to X_1 \times_{X_0} X_1 \quad \text{and} \quad d_2 : X_2 \to X_1,
\]

where \(d_2\) is induced by the map \([1] \to [2] : 0 \mapsto 1, 1 \mapsto 2\). Morally, these successive maps send an arrow \(a \in X_1\) to the pair \((a, 1)\), then to \((a, a^{-1})\) and finally to \(a^{-1}\). Let \(i : X_1 \to X_1\) be this composition.

To conclude, up to the two additional choices of \(\phi\) and \(\psi\), we have obtained a tuple \((X_1, X_0, s, t, \epsilon, i, m)\) giving a diagram

\[
i \quad \text{and} \quad \mu : X_1 \times_{X_0} X_1 \to X_1,
\]

which is the basic datum necessary to define any notion of stack groupoid. The problem is now to define an associativity 2-isomorphism and some other 2-conditions, and to find the right notion of coherence conditions for them. The point of Toen’s construction is that these coherence conditions are already encoded in the simplicial structure. Let’s be more explicit.

First remark that since we work in a 2-category, the inverse of a 1-isomorphism is supposed to be defined up to a unique 2-isomorphism. This implies that the multiplication

\[
m : X_1 \times_{X_0} X_1 \to X_1
\]

is well-defined up to a unique 2-isomorphism.

To define the associator, we use the following strictly commutative diagrams (prod-
ucts are done over X_0)

\[
\begin{array}{ccc}
X_3 & \rightarrow & X_2 \\
| & | & | \\
X_2 \times X_1 & \rightarrow & X_1 \times X_1 \\
| & | & | \\
(X_1 \times X_1) \times X_1 & \rightarrow & X_1 \\
\end{array}
\]

and

\[
\begin{array}{ccc}
X_3 & \rightarrow & X_2 \\
| & | & | \\
X_1 \times X_2 & \rightarrow & X_1 \times X_1 \\
| & | & | \\
X_1 \times (X_1 \times X_1) & \rightarrow & X_1 \\
\end{array}
\]

whose vertical arrows are equivalences.

The uniqueness of inverses of equivalences up to unique 2-isomorphisms gives natural 2-isomorphisms between the multiplication maps

\[(X_1 \times X_1) \times X_1 \rightarrow X_1\]

and

\[X_1 \times (X_1 \times X_1) \rightarrow X_1\]

and the morphism obtained by choosing an inverse of the equivalence

\[X_3 \rightarrow X_1 \times X_1 \times X_1.\]

This gives the associator 2-isomorphism. To check that the associator fulfills the desired 2-cocycle condition (pentagon), it is necessary to use the simplicial diagram up to X_4. An explanation of the argument is given in [Lei00].

B Enveloping semigroups

In this appendix, we explain what enveloping semigroups are, as they are a key ingredient in our formalism (cf. [11]).

B.1 Drinfeld's classification

All groups will be over a field of characteristic 0. Recall from Subsection 4.1 the following definition.

Definition B.1.1. Let G be reductive group over a field. An *enveloping semigroup* for G is a multiplicative semigroup M such that $M^\times = G$, M is irreducible and normal.

Such semigroups were classified by V. Drinfeld in private notes [Dri] that were kindly given to us by L. Lafforgue. Suppose that the base field is algebraically closed. Choose a maximal torus $T \subset G$ and a Borel subgroup $B \supset T$. Let W denote the Weyl group for (G, B, T), and let $X = \text{Hom}(T, G_m)$.

Theorem B.1.2 (Drinfeld). There exists a bijection between
1. the set of normal affine irreducible semigroups M containing G as their group of units, and

2. the set of W-invariant rational polyhedral convex cones $K \subset X \otimes \mathbb{Z} \mathbb{R}$ which contain zero and are non-degenerate, i.e., not contained in a hyperplane.

This classification implies that a semisimple group G has only one enveloping semigroup, namely G itself. This case is for us not very interesting (because a BCM system with such an enveloping semigroup has a trivial zeta function) and we would like to construct more interesting semigroups, in particular, we would like to construct cartesian diagrams

$$
\begin{array}{c}
G \\
\phi \\
\downarrow \\
M \\
\downarrow \\
\End(V)
\end{array}
$$

for some fixed representation $\phi : G \to \GL(V)$.

For example, for an adjoint Shimura datum (G, X) (i.e., $ZG = \{1\}$), the triviality of the enveloping semigroup implies that the BCM systems we construct have a trivial partition function. It is then interesting to construct another Shimura datum with adjoint datum (G, X) and such that the enveloping semigroup is no longer trivial.

There is a natural method due to Vinberg to “enlarge the center” of a given semisimple simply connected group G in order to have an enveloping semigroup that is universal in a certain sense. For the sake of brevity, we do not discuss this construction here.

B.2 Ramachandran’s construction of Chevalley semigroups

There is another way to construct enveloping semigroups quite explicitly, which was communicated to us by N. Ramachandran. The construction of N. Ramachandran uses the following theorem of Chevalley (see [Spr98], 5.1).

Theorem B.2.1 (Chevalley). Let G be an algebraic group over \mathbb{Q}, and let $\phi : G \to \GL(V)$ be a faithful representation of G. There is a tensor construction $T^{\otimes j} := V^{\otimes i} \otimes V^{\vee, \otimes j}$ and a line $D \subset T^{\otimes j}$ such that $\phi(G) \subset \GL(V)$ is the stabilizer of this line.

Definition B.2.2. Let G be an algebraic group over \mathbb{Q}, $\phi : G \to \GL(V)$ be a faithful representation of G. Let T and D be as in Chevalley’s theorem. Suppose that $T = V^{\otimes i}$ (resp. $T = V^{\vee, \otimes j}$) contains no (resp. only) dual tensor factors. The multiplicative semigroup

$$
M(G, V, T, D) := \{ m \in \End(V) \mid m.D \subset D \}
$$

(resp. $M(G, V, T, D) := \{ m \in \End(V) \mid^t m.D \subset D \}$)

is called a *Chevalley enveloping semigroup* for G in $\End(V)$.

Example B.2.3. If $G = \GL_2$ and V is the standard representation, then $D = \Lambda^2 V \subset V^{\otimes 2}$ is a line as in Chevalley’s theorem, and M_2 is the corresponding Chevalley enveloping semigroup.

Example B.2.4. Let (V, ψ) be a $2g$-dimensional \mathbb{Q}-vector space equipped with an alternating form $\psi \in \Lambda^2(V^\vee)$. Then the line $D = \mathbb{Q}(\psi) \subset V^{\vee, \otimes 2}$ is a line as in Chevalley’s theorem for the group GSp_{2g} with its standard representation, and the points of the corresponding semigroup in a commutative \mathbb{Q}-algebra A are given by

$$
\text{MSp}_{2g}(A) := \{ m \in \End(V)(A) \mid \exists \mu(m) \in A, \psi(m.x, m.y) = \mu(m)\psi(x, y), \forall x, y \in V_A \}.
$$
References

[ALR97] Jane Arledge, Marcelo Laca, and Iain Raeburn. Semigroup crossed products and Hecke algebras arising from number fields. Doc. Math., 2:115–138 (electronic), 1997.

[BC95] J.-B. Bost and A. Connes. Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory. Selecta Math. (N.S.), 1(3):411–457, 1995.

[BR87] Ola Bratteli and Derek W. Robinson. Operator algebras and quantum statistical mechanics. 1. Texts and Monographs in Physics. Springer-Verlag, New York, second edition, 1987. C*- and W*-algebras, symmetry groups, decomposition of states.

[BR97] Ola Bratteli and Derek W. Robinson. Operator algebras and quantum statistical mechanics. 2. Texts and Monographs in Physics. Springer-Verlag, Berlin, second edition, 1997. Equilibrium states. Models in quantum statistical mechanics.

[CM04] Alain Connes and Matilde Marcolli. From Physics to Number Theory via Noncommutative Geometry. Part I: Quantum Statistical Mechanics of Q-lattices. arXiv, (math.NT/0404128), 2004.

[CMR05] Alain Connes, Matilde Marcolli, and Niranjan Ramachandran. KMS states and complex multiplication. arXiv, (math.OA/0501424), 2005.

[Coh99] Paula B. Cohen. A C*-dynamical system with Dedekind zeta partition function and spontaneous symmetry breaking. J. Théor. Nombres Bordeaux, 11(1):15–30, 1999. Les XXèmes Journées Arithmétiques (Limoges, 1997).

[Con79] Alain Connes. Sur la théorie non commutative de l’intégration. In Algèbres d’opérateurs (Sém., Les Plans-sur-Bex, 1978), volume 725 of Lecture Notes in Math., pages 19–143. Springer, Berlin, 1979.

[Del79] Pierre Deligne. Variétés de Shimura: interprétation modulaire, et techniques de construction de modèles canoniques. In Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, pages 247–289. Amer. Math. Soc., Providence, R.I., 1979.

[Dri] Vladimir Drinfeld. Notes on Algebraic Semigroups. private notes.

[Haa96] Rudolf Haag. Local quantum physics. Texts and Monographs in Physics. Springer-Verlag, Berlin, second edition, 1996. Fields, particles, algebras.

[HL97] David Harari and Eric Leichtnam. Extension du phénomène de brisure spontanée de symétrie de Bost-Connes au cas des corps globaux quelconques. Selecta Math. (N.S.), 3(2):205–243, 1997.

[KV94] M. M. Kapranov and V. A. Voevodsky. 2-categories and Zamolodchikov tetrahedra equations. In Algebraic groups and their generalizations: quantum and infinite-dimensional methods (University Park, PA, 1991), volume 56 of Proc. Sympos. Pure Math., pages 177–259. Amer. Math. Soc., Providence, RI, 1994.

[Lac98] Marcelo Laca. Semigroups of *-endomorphisms, Dirichlet series, and phase transitions. J. Funct. Anal., 152(2):330–378, 1998.

[Lei00] Tom Leinster. Up-to-Homotopy Monoids. arXiv, (math.QA/9912084), 2000.
[LMB00] Gérard Laumon and Laurent Moret-Bailly. *Champs algébriques*, volume 39 of *Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]*. Springer-Verlag, Berlin, 2000.

[LR99] Marcelo Laca and Iain Raeburn. A semigroup crossed product arising in number theory. *J. London Math. Soc. (2)*, 59(1):330–344, 1999.

[LvF04] Marcelo Laca and Machiel van Frankenhuijsen. Phase transitions on Hecke C*-algebras and class-field theory over Q. *arXiv*, (math.OA/0410305), 2004.

[Man] Yuri I. Manin. Real Multiplication and noncommutative geometry.

[Neu92] Jürgen Neukirch. *Algebraische Zahlentheorie*. Springer-Verlag, Berlin, 1992.

[Noo05] Behrang Noohi. Foundations of Topological Stacks I. *arXiv*, (math.AG/0503247), 2005.

[Pin90] Richard Pink. *Arithmetical compactification of mixed Shimura varieties*, volume 209 of *Bonn Mathematische Schriften [Bonn Mathematical Publications]*. Universitét Bonn Mathematisches Institut, Bonn, 1990. Dissertation, Rheinische Friedrich-Wilhelms-Universitét Bonn, Bonn, 1989.

[SAG73] *Théorie des topos et cohomologie étale des schémas. Tome 3*. Springer-Verlag, Berlin, 1973. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4). Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B. Saint-Donat, Lecture Notes in Mathematics, Vol. 305.

[Sim97] Carlos Simpson. A closed model structure for n-categories, internal Hom, n-stacks and generalized Seifert-Van Kampen. *arXiv*, (math.AG/9704006), 1997.

[Spr98] T. A. Springer. *Linear algebraic groups*, volume 9 of *Progress in Mathematics*. Birkhäuser Boston Inc., Boston, MA, second edition, 1998.

[Tam95] Zouhair Tamsamani. On non-strict notions of n-category and n-groupoid via multisimplicial sets. *arXiv*, (math.AG/9512006), 1995.

[Tat67] J. T. Tate. Fourier analysis in number fields, and Hecke’s zeta-functions. In *Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965)*, pages 305–347. Thompson, Washington, D.C., 1967.

[TV] Bertrand Toen and Gabriele Vezzosi. Homotopical Algebraic Geometry II: geometric stacks and applications.