Razieh Behzadmehr, Mahboobe Doostkami, Zohreh Sarchahi, Leila Dinparast Saleh* and Rezvaneh Behzadmehr

Radiation protection among health care workers: knowledge, attitude, practice, and clinical recommendations: a systematic review

https://doi.org/10.1515/reveh-2020-0063
Received June 13, 2020; accepted August 4, 2020; published online September 7, 2020

Abstract

Objectives: This study was performed to determine the knowledge, attitude, and practice (KAP) of health care workers (HCWs) towards radiation protection.

Methods: In this systematic review study, three international databases (Web of Science, PubMed, Scopus) were searched for related published articles in the English language from 1 January 2000 to 1 February 2020. The quality of the included studies was evaluated using the Hoy et al. tool.

Results: Out of the 1,848 studies examined, 41 studies that were performed on 11,050 HCWs were included in the final stage. The results indicated that in most studies, more than half (50%) of the participants had average knowledge. Furthermore, 60% of the participants had a positive attitude, but in most studies, they had average practice regarding radiation protection. The most important recommendation for improving KAP among the participants was incorporating radiation protection standards in the student curriculum.

Conclusion: Considering the results of the study, further attention should be paid to proper education regarding radiation protection standards and improvement of HCW performance.

Keywords: health care workers; knowledge; radiation protection; systematic review.

Introduction

Daily, healthcare workers (HCWs) are exposed to occupational contacts with various diagnostic and therapeutic radiology interventions [1]. The HCWs’ exposure to various radiology waves results in acute complications (dermatitis, mucositis, and hair loss) as well as long-term complications (cataracts, skin problems, genetic problems, and cancer) through impairment in the normal DNA functioning [2–6].

Specifically, the HCWs exposed to radiation develop cancer by approximately more than 40% compared to patients and other groups [7]. To prevent the side effects of radiation, the International Radiation Protection Association (IRPA) has designed some guidelines to limit the dose received by the HCWs, and it is periodically reviewed [8, 9]. The most important method of proper radiation protection principle implementation is education [10]. Today, with the increase in the number of radiology procedures, all healthcare workers exposed to radiology waves should know how these procedures are performed and how they can better protect themselves [11, 12]. The extent of awareness of the healthcare workforce about radiation protection has a considerable impact on the proper attitude and performance regarding protection against radiology waves [13].

Current evidence suggests different results about the level of awareness, attitude, and performance of healthcare workers about radiation protection across different countries [14–16]. Further, many studies have shown that HCWs with good knowledge may lack a good attitude about radiation protection [17–19]. Also, many individual studies have found poor knowledge about radiation protection [14, 20, 21]. Precise determination of awareness, attitude, and performance of HCWs about radiation
protection across different fields can help healthcare policymakers in the better management and improvement of awareness, attitude modification, and their performance. To the best of our knowledge, so far, no study has been performed in this regard and with this scope. Accordingly, this systematic review study was conducted to determine the knowledge, attitude, and practice (KAP) of healthcare workers towards radiation protection.

Materials and Methods

Design

This systematic review study was performed based on the Cochrane book and reported using preferred reporting items for systematic reviews and meta-analyses (PRISMA) checklist [22]. A prepared protocol was used to conducting the study but was not published in English. Protocol registration was not conducted. In this study, cross-sectional studies conducted to investigate the knowledge, attitude, or practice of healthcare workers about radiation protection published in the English language was included. Review studies, letter to the editor, qualitative, and poor quality studies performed before 2000 published in non-English language were excluded. The health care workers based on included studies were included: radiologists, dentists, radiographers, medical students, surgeons, nurses, cardiologists, and anesthesiologists.

Search strategy

In this study, three international databases (Web of Science, Scopus, and PubMed) were searched from 1 January 2000 until 1 February 2020. The PubMed search strategy used for search in other databases. To develop a search strategy, a librarian specialist with an experience of working in systematic review studies was employed. The keywords were determined based on Boolean operators (AND, OR, and NOT), Medical Subject Headings (MeSH), EMTREE, and keywords in relevant studies. The keywords were: “Radiation protection”, “health care workers”, “knowledge”, “attitude”, “practice”, and “KAP”.

Selection of studies and data extraction

The search results across the databases were entered into Endnote. Next, the included studies were screened, and duplicate articles were removed. The title of the remaining studies was evaluated, and irrelevant cases were excluded. According to the inclusion criteria, the abstract of the studies was evaluated, and the relevant studies proceeded to the next stage. In the last stage, the full texts of the remaining studies were examined. Screening and selection of the studies were performed by two persons. Any disagreement between the authors was resolved by a third person. In some papers where the information was incomplete, their authors were contacted to acquire the necessary information. Extracted data items included: first author, year, country, sample size, participants, target population, age, gender, sampling method, method of data collection and risk of bias, outcome measures, knowledge, attitude, practice, and improvement recommendations.

Quality assessment

The quality studies were evaluated by Hoy et al. scale [23]. This scale included 10 items which checked the external and internal validity of studies. The quality of included studies was assessed by two researchers separately. The disagreement between researchers was resolved by the third researcher.

Results

Study selection

A total of 1,848 articles from initial searches were retrieved in three databases. Out of 1,471 non-duplicated studies in the title and abstract screening process, 1,406 studies were excluded. Out of 65 studies, 41 had eligibility criteria. Out of 24 excluded studies, four studies were reviews, six studies had no full text, seven studies were published in a non-English language, and three studies did not meet the minimum quality requirements for inclusion in the study, and four studies were qualitative (Figure 1).

Study characteristics

Forty-one studies conducted on 11050 HCWs were included, which had been performed from 2002 to 2019. All of the studies were cross-sectional. The most common method of sampling was convenience sampling (n=19). In more than 98% of studies (n=40), the instrument was a researcher-made tool. In all of the studies, the information had been collected as a self-report. Most studies had a low risk of bias (n=36). The mean age of the participants had been mentioned only in 11 studies. The age range of the participants was 29.4–45 years. The studies had been conducted in 22 countries. Most of the studies had been performed in the US (n=5) and Italy (n=4) (Table 1).

Main results

Instruments

In most studies (n=40), the researcher-made instrument had been used for data collection. Only one study had used a standard tool. In five studies, the number of questionnaire items used was not clear. The number of items in different questionnaires ranged from 5 to 63. The content of items was different from study to study. Nevertheless, overall they examined the KAP of HCWS regarding radiation protection.
Knowledge of HCWs towards radiation protection

Out of the 41 studies, most of them (n=33, 80.4%) had examined knowledge of HCWs about radiation protection. Knowledge in different studies had been measured with various numbers of items and about different protection tools. Moreover, knowledge had been classified as poor, average, and sufficient in most studies. In the present study, the level of sufficient knowledge in the included studies was reported. The minimum level of knowledge was 2%, while the maximum was 95%. More than 50% of the participants in most studies (18 out of 33) had sufficient knowledge of radiation protection. In some studies (n=6), the level of knowledge had been mentioned as average (5.6–12.1). The level of knowledge of radiation protection among the dentists was 39.1–75.98%. For the radiologists, it was 59–95%, and among the medical students was 10–94%.

Attitude, practice, and clinical recommendations of HCWs about radiation protection

Out of the 41 studies included, six studies had examined the attitude of HCWs about radiation protection. In four studies, the level of awareness had been classified as negative and positive. The minimum level of positive attitude was 61.2%, while the maximum was 88%. The results indicated that more than 60% of the HCWs had a positive attitude about adhering to radiation protection precautions. In two studies, awareness had been reported as average (6–8.6). Out of 41 studies, 15 studies had examined the practice of HCWs about radiation protection. In 13 studies, the level of proper practice of HCWs had been mentioned. The practice in the studies had been classified as poor, average, and good, and is defined as the extent of applying protective equipment for radiation protection. The level of high practice across different studies was 14.3–99%. In most studies (n=7), HCWs had an average practice of radiation protection. In some studies, the mean score was 3.2–13.1. The most important recommendations in the included studies to enhance the KAP of HCWs regarding radiation protection were: including radiation protection topics in curricula (n=13), implementing periodic practical training course in hospitals (n=12), providing continuing education programs (n=11), and providing sufficient radiation protective devices (n=8) (Table 2).
ID	Author (year)	Country	Study characteristics	Participants	Data collection	Results
			1. Sampling method	1. Sample (sample/RR/final sample) 2. Age (mean SD) 3. Gender (male/female) 4. Target population	1. Instrument (type, items) 2. Method of data collection	1. Knowledge 2. Attitude 3. Practice (N/%) or Means + SD
1	Abdelrahman (2018) [30]	Jordan	1. Convenience sampling 2. Practice 3. Low	1. 84/74%/62 2. 32.7 (5.8) 3. m 68/f 14 4. Radiologists	1. The researcher made, eight items 2. Self-report	1. NR 2. NR 3. 61 (98.4%)
2	Absi (2011) [31]	UK	1. Census 2. Knowledge 3. Moderate	1. 285/38.2%/109 2. NR 3. NR 4. Dentists	1. The researcher made, 16 items 2. Self-report	1. 42 (39.1%) 2. NR 3. NR
3	Adejumo (2012) [32]	Nigeria	1. Simple random 2. Knowledge 3. Low	1. 100/100%/100 2. NR 3. NR 4. Radiographers	1. The researcher made, 16 items 2. Self-report	1. 95 (95%) 2. NR 3. NR
4	Alahmari (2016) [33]	Australia, Saudi Arabia	1. Convenience sampling 2. Attitude 3. Low	1. 110/100%/257 2. NR 3. NR 4. HCWs	1. The researcher made, eight items 2. Self-report	1. NR 2. 97 (88%) 90 (61.2%) 88% 3. NR
5	Alavi (2016) [34]	Iran	1. Census 2. Knowledge, attitude, Practice 3. Low	1. 670/61.7%/413 2. NR 3. NR 4. HCWs	1. The researcher made, 32 items 2. Self-report	1. 7.20 + 3.4 2. 8.6 + 2.7 3. 13.1 + 3.3
6	Alobaysi (2019) [35]	Saudi Arabia	1. Simple Random 2. Knowledge 3. Moderate	1. 203/100%/203 2. NR 3. M 96 F107 4. Students	1. The researcher made, 19 items 2. Self-report	1. 124 (61%) 2. NR 3. NR
7	An (2018) [36]	South Korea	1. Simple random 2. Knowledge, Attitude 3. Moderate	1. 207/100%/207 2. NR 3. NR 4. Dentists	1. The researcher made, 19 items 2. Self-report	1. 127 (61%) 2. 171 (83%) 3. NR
8	Awosan (2016) [37]	Nigeria	1. Convenience sampling 2. Knowledge 3. Low	1. 110/100%/110 2. 34.04 (8.83) 3. M 74/ F 36 4. HCWs	1. The researcher made, NR items 2. Self-report	1. 65 (59.1) 2. NR 3. NR
9	Babalou (2018) [38]	Iran	1. Convenience sampling 2. Knowledge 3. Low	1. 85/97.6%/83 2. NR 3. M 24/F 59 4. Nurses	1. The researcher made, 22 items 2. Self-report	1. 12 + 2.77 2. NR 3. NR
10	Badawy (2016) [39]	Australia	1. Convenience sampling 2. Knowledge 3. Moderate	1. 200/73.5%/147 2. NR 3. NR 4. Nurses	1. The researcher made, 10 items 2. Self-report	1. 62 (42%) 2. NR 3. NR
11	Batista (2019) [40]	Brazil	1. Census 2. Knowledge, attitude 3. Low	1. 59/100%/59 2. 33.0 (7.2) 3. M 14/F 45 4. HCWs	1. The researcher made, 28 items 2. Self-report	1. 50 (85) 2. NR 3. 36 (60%)
12	Brun (2018) [41]	France	1. Census 2. Practices and knowledge 3. Low	1. 103/87.3%/90 2. 43.8 (11.7) 3. M 51 F 39 4. HCWs	1. The researcher made, 23 items 2. Self-report	1. 5.6 + 16 2. NR 3. 3.2 + 7
Table 1: (continued)

ID	Author (year)	Country	Study characteristics	Participants	Data collection	Results
13	Campanella (2017) [42]	Italy	1. Census 2. Knowledge 3. Low	1. 419/100%/419 2. 44.76 (12.33) 3. M 210/F 209 4. GP	1. The researcher made, 26 items 2. Self-report	1. 129 (62.2) 2. NR 3. NR
14	Carpeggiani (2012) [43]	Italy	1. Census 2. Knowledge 3. Low	1. 403/100%/403 2. 45 (6) 3. M 182/F 221 4. HCWs	1. The researcher made, 10 items 2. Self-report	1. 209 (52%)/31.5 ± 3.7 2. NR 3. NR
15	Erkan (2019) [44]	Turkey	1. Convenience sampling 2. Knowledge 3. Moderate 4. HCWs	1. 101/100%/101 2. NR 3. M 42/ F 59 4. HCWs	1. Researcher made, 20 items 2. Self-report	1. 26 (25.7%) 2. NR 3. NR
16	Faggioni (2017) [45]	Italy	1. Convenience sampling 2. Knowledge 3. Low 4. Students	1. 159/100%/159 2. 29.4 3. M 71/F 88 4. Students	1. The researcher made, 16 items 2. Self-report	1. 100 (62.8%) 2. NR 3. NR
17	Famurewa (2014) [46]	Nigeria	1. Convenience sampling 2. Knowledge 3. Low	1. 250/64.8%/162 2. NR 3. NR 4. HCWs	1. The researcher made, 10 items 2. Self-report	1. 115 (71.2%) 2. NR 3. NR
18	Fan (2017) [47]	China	1. Convenience sampling 2. Knowledge 3. Low 4. Surgeon	1. 266/100%/266 2. 36/8 3. NR 4. Surgeon	1. The researcher made, 5 items 2. Self-report	1. 115 (43.2%) 2. NR 3. NR
19	Garg (2018) [48]	Nepal	1. Census 2. Knowledge 3. Low 4. Students	1. 100/100%/100 2. NR 3. NR 4. Students	1. The researcher made, 20 items 2. Self-report	1. 85 (85%) 2. NR 3. NR
20	Haverkamp (2013) [49]	Germany	1. Census 2. Knowledge 3. Low	1. 1361/100%/1361 2. NR 3. NR 4. HCWs	1. The researcher made, nine items 2. Self-report	1. 721 (53%) 2. NR 3. NR
21	Hirvonen (2019) [50]	Finland	1. Stratified random sampling 2. Knowledge 3. Low 4. Nurses	1. 252/100%/252 2. M 37 /F 215 3. NR 4. Nurses	1. The researcher made, 33 items 2. Self-report	1. 6.46 + 2.4 2. NR 3. NR
22	Ihle (2019) [18]	Australia	1. Convenience sampling 2. Knowledge, A, P 3. Low	1. 154/40.9%/63 2. NR 3. M 44/F 19 4. Dentists	1. The researcher made, 32 items 2. Self-report	1. 58.7–75.8% 2. NR 3. NR
23	Jentzsch (2015) [51]	Switzerland	1. Convenience sampling 2. Knowledge 3. Low	1. 83/100%/83 2. NR 3. NR 2. Operating room personnel	1. The researcher made, NR items 2. Self-report	1. 54 (65%) 2. NR 3. 45 (54%)
24	Jeong (2016) [52]	South Korea	1. Census 2. Knowledge 3. Low	1. 200/100%/200 2. NR 3. NR 4. Nurses	1. Standard, NR items 2. Self-report	1. 8.68 + 2.65 2. NR 3. 3.16 + 0.67
ID	Author (year)	Country	Study characteristics	Participants	Data collection	Results
----	---------------	------------------	-----------------------	--------------	----------------------------------	-----------------------------
25	Kurtul (2018)	Turkey	1. Census 2. Knowledge 3. Low	1. 443/99.5%/441	1. The researcher made, 23 items 2. Self-report	1. 67.7-93.2% 2. NR 3. NR
26	Lee (2017)	Ireland	1. Convenience sampling 2. Knowledge 3. Low	1. 683/100%/683	1. The researcher made, 13 items 2. Self-report	1. 22–94% 2. NR 3. NR
27	Livingstone	India	1. Convenience sampling 2. Practice 3. Low	1. 91/100%/91	1. The researcher made, NR items 2. Self-report	1. NR 2. NR 3. 13 (14.3%)
28	Lynskey lli	USA	1. Convenience sampling 2. Practice 3. Low	1. 3158/15.9%/504	1. The researcher made, eight items 2. Self-report	1. NR 2. NR 3. 94–99%
29	Macia-Suarez	Spain	1. Convenience sampling 2. Knowledge 3. Low	1. 63/100%/63	1. The researcher made, 14 items 2. Self-report	1. 1 (2%) 2. NR 3. NR
30	Masouni (2018)	Iran	1. Census 2. Knowledge, attitudes, and practice 3. Low	1. 553/100%/553	1. The researcher made, 63 items 2. Self-report	1. 326 (59%) 2. 428 (77.5) 3. 254 (46%)
31	Mutyabule (2002)	Uganda	1. Census 2. Knowledge, practice 3. Low	1. 74/100%/62	1. The researcher made, 33 items 2. Self-report	1. 25 (40%) 2. NR 3. 45 (74%)
32	Paolicchi (2016)	Italy	1. Census 2. Knowledge 3. Low	1. 780/100%/780	1. The researcher made, 22 items 2. Self-report	1. 741 (95%) 2. NR 3. NR
33	Rahman (2018)	India	1. Census 2. Knowledge, attitude, and practice 3. Low	1. 200/100%/200	1. The researcher made, 12 items 2. Self-report	1. 168 (84%) 2. NR 3. 52 (26%)
34	Rahman (2008)	Pakistan	1. Census 2. Knowledge and practice 3. Low	1. 36/82.3%/28	1. The researcher made, NR items 2. Self-report	1. 22 (79%) 2. NR 3. 25 (92)
35	Sadigh (2014)	USA	1. Census 2. Knowledge 3. Low	1. 532/32.5%/173	1. The researcher made, NR items 2. Self-report	1. 17 (10%) 2. NR 3. NR
36	Sethi (2019)	USA	1. Census 2. Practices 3. Low	1. 214/74.2%/159	1. The researcher made, 19 items 2. Self-report	1. NR 2. NR 3. 155 (98.1%)
37	Shin (2013)	South Korea	1. Convenience sampling 2. Practice 3. Low	1. 78/100%/78	1. The researcher made, 42 items 2. Self-report	1. NR 2. NR 3. 48 (61.9%)
Table 1: (continued)

ID	Author (year)	Country	Study characteristics	Participants	Data collection	Results
38	Vidovich (2015) [65]	USA	1. Sampling method 2. Outcome 3. Risk of bias	1. 5432/19.9%/1084 2. NR 3. NR 4. Cardiologists	1. The researcher made, 38 items 2. Self-report	1. NR 2. Mean + SD (6 + 3) 3. NR
39	Whitney (2019) [66]	USA	1. Convenience sampling 2. Practices 3. Low	1. 623/100%/623 2. NR 3. M 323/F 300 4. Anaesthesiologists	1. The researcher made, NR items 2. Self-report	1. NR 2. NS 3. 3.299 (48%)
40	Yunus (2014) [67]	Malaysia	1. Convenience sampling 2. Knowledge 3. Low	1. 27100%/27 2. NR 3. NR 4. Nurses	1. The researcher made, 16 items 2. Self-report	1. Mean (7.26) 2. NR 3. NR
41	Yurt (2014) [68]	Turkey	1. Convenience sampling 2. Knowledge 3. Low	1. 92100%/92 2. NR 3. M 46/F 46 4. HCWs	1. The researcher made, 42 items 2. Self-report	1. 20 (21.6%) 2. NR 3. NR

Discussion

The present study was performed to investigate the KAP as well as clinical recommendations of HCWs regarding radiation protection. A total of 41 studies performed on 11,050 individuals were entered into the final stage. The instrument utilized in most studies was researcher-made. The HCWs are the most relevant people dealing with daily exposure to radiology procedures. Thus, following safety rules and protection against radiation are crucial in HCWs. Regarding the knowledge, the study results showed that generally, the participants had average knowledge about radiation protection. The level of knowledge was 2–95%. Among the HCWs, radiologists had greater knowledge about standard precautions, which can be due to greater familiarity has given that they receive more education due to the nature of their profession, experience of the type of studied population, sample size as well as previous knowledge among radiologists who have more awareness in this regard. No previous study was found examining the KAP of HCWs about radiation protection using a systematic review. Nevertheless, individual studies on the general population have shown that only 24.7% of the participants had adequate knowledge about radiation protection [24], which was in contrast to the present study. This can be due to the differences in the target population, studied sample size, and examined country. Having proper knowledge about radiation protection is vital given its short-term and long-term complications [25]. The essential principles in proper knowledge are knowing the duration, distance, and use of suitable personal equipment [26, 27].

Regarding attitude, the study results showed that in most studies, more than 60% of participants had a positive attitude to radiation protection. Positive attitude Development about radiation protection leads to motivation for enhancing the knowledge; hence, more proper practice. Developing a positive attitude is time-consuming, and mostly occurs over the long run and based on experience [18]. Regarding performance, most studies revealed an average performance of HCWs concerning radiation protection. The average practice can be due to differences in the methodology, sample size, type of the target population studied, and the country where the studies had been performed. Indeed, a different approach may exist in any country for training HCWs regarding radiation protection. Further, the content of educational courses held in different countries can have a different impact on their performance. The basis for creating a proper knowledge, positive attitude, and thus, the right practice is the use of the same approach with a standard content regarding radiation protection among HCWs. Clinical guidelines prepared by the IRPA [28], and the International Society of Radiology (ISR) [29] are the best sources. Besides, the study
Table 2: Practical recommendations to improve nurses’ knowledge, attitude and practice towards radiation protection among health care workers (HCWs).

Study (year)	Clinical recommendations	Absi (2011)	Alahmari (2016)	Alavi (2016)	Alobaysi (2019)	An (2018)	Awosan (2016)	Babaloui (2018)	Badawy (2016)	Batista (2019)	Brun (2018)	Campanella (2017)	Carpeggiani (2012)	Erkan (2014)	Famurewa (2014)	Fan (2017)	
Providing educational materials for HCWs in the clinical setting	✓																
Including radiation protection topics in curricula	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Implementation of periodic practical training courses in hospitals	1 ✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Providing continuing education programs	1 ✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Providing sufficient radiation protection devices	8 ✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	
Regular monitoring of occupationally exposed health workers	✓																
Improve training strategies to promote awareness	✓																
Use of web-based tools as decisional support for doctors in requesting radiological procedures	✓																
Enhance the knowledge with more research activities	✓																

230 Behzadmehr et al.: Radiation protection among health care workers
Study (year)	Clinical recommendations
	Alahmari (2016) [33]
	Garg (2018) [48]
	Haverkamp (2013) [49]
	Hirvonen (2019) [50]
	Ihle (2019) [18]
	Jentzsch (2015) [51]
	Kurtul (2018) [53]
	Lee (2017) [54]
	Macia-Suarez (2018) [57]
	Masoumi (2018) [58]
	Paolicchi (2016) [60]
	Rahman (2018) [61]
	Rahman (2008) [21]
	Sethi (2019) [63]
	Shin (2013) [64]

Providing educational materials for HCWs in the clinical setting

Including radiation protection topics in curricula

Implementation of periodic practical training courses in hospitals

Providing continuing education programs

Providing sufficient radiation protection devices

Regular monitoring of occupationally exposed health workers

Improve training strategies to promote awareness

Use of web-based tools as decisional support for doctors in requesting radiological procedures

Enhance the knowledge with more research activities
showed that the best methods for increasing awareness, attitude, and performance of HCWs about radiology protection were as follows: including radiation protection topics in curricula (n=13), implementing periodic practical training courses in hospitals (n=12), and providing continuing education programs (n=11).

These recommendations highlight the importance of systematic and step-by-step attention to enhance HCWs awareness from the studentship period. The creation of a standard curriculum based on international standards, which is also regularly updated, is essential for the students’ curriculum. Also, after the studentship period, at the beginning of working in hospitals, again internship and practical as well as theoretical courses as in-service training are necessary to establish a proper performance atmosphere for them. It is because improper performance leads to many complications for HCWs and patients as well as increased costs incurred to the healthcare system.

Limitations and strengths

The most important limitations were as follows. All included studies were cross-sectional; thus, special limitations of these studies when interpreting the results should be considered. Also, the instruments in different studies examined special parts of precautions; thus, it was not possible to examine their awareness, attitude, and performance given the type of precaution adopted. As well as instruments had been researcher-made. Hence, it was not possible to do a meta-analysis. In some studies, the KAP had been stated in a general form. Consequently, it was not possible to examine them in terms of occupation, and only English published studies were included.

Despite the above limitations, this study had some strength as well. To the best of the authors’ knowledge, this is the first study performed in this area. Also, the standard systematic review approach and Cochrane guidelines have been used for conducting and reporting of the study. In this study, in addition to awareness, attitude, and performance of HCWs, clinical recommendations were also examined to improve KAP.

Conclusion

This systematic review indicted that HCWs have average knowledge, positive attitude, and average awareness towards radiation protection, respectively. This study suggests the importance of using standard clinical guidelines and approaches to prepare educational curriculum, internship education in hospitals, and educational courses in hospitals. The findings of this study can be used as a suitable guideline for HCWs especially radiology staff and healthcare policymakers.

Research funding: No funding received.
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
Informed consent: Not applicable.
Ethical approval: Not applicable.
Competing interests: Authors state no conflict of interest.

References

1. Ilyas F, Burbridge B, Babyn P. Health care–associated infections and the radiology department. J Med Imag Radiat Sci 2019;50: 596–606.
2. Alqahtani SJ, Welbourn R, Meakin JR, Palfrey RM, Rimes SJ, Thomson K, et al. Increased radiation dose and projected radiation-related lifetime cancer risk in patients with obesity due to projection radiography. J Radiol Prot 2018;39:38.
3. Barnett GC, West CM, Dunning AM, Elliott RM, Coles CE, Pharaoh PD, et al. Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat Rev Cancer 2009;9:134–42.
4. Parikh JR, Geise RA, Bluth EJ, Bender CE, Sze G, Jones AK, et al. Potential radiation-related effects on radiologists. Am J Roentgenol 2017;208:595–602.
5. Shakeri A, Shakeri M, Behrooz MO, Behzadmehr R, Ostadi Z, Fouladi DF. Infrarenal aortic diameter, aortoiliac bifurcation level and lumbar disc degenerative changes: a cross-sectional MR study. Eur Spine J 2018;27:1096–104.
6. Daghighi MH, Pourreisa M, Safarpour M, Behzadmehr R, Fouladi DF, Meshkini A, et al. Diffusion-weighted magnetic resonance imaging in differentiating acute infectious spondylitis from degenerative Modic type 1 change; the role of b-value, apparent diffusion coefficient, claw sign and amorphous increased signal. Br J Radiol 2016;89:20150152.
7. Pukkala E, Marttinen JI, Lynge E, Gunnarsdottir HK, Sparén P, Tryggyvadottir L, et al. Occupation and cancer–follow-up of 15 million people in five Nordic countries. Acta Oncol 2009;48: 646–790.
8. Seidenbusch M, Rösenberger V, Schneider K. Radiation risk and radiation protection in paediatric radiology. Imaging practice and radiation protection in paediatric radiology. Berlin, Germany: Springer; 2019. 3–8 pp.
9. Calmet D, Ameon R, Bombard A, Brun S, Byrne F, Chen J, et al. International standards on food and environmental radioactivity measurement for radiological protection: status and perspectives. Radiat Prot Dosim 2017;173:55–62.
10. Tajmir SH, Alkasab TK. Toward augmented radiologists: changes in radiology education in the era of machine learning and artificial intelligence. Acad Radiol 2018;25:747–50.
11. NG SE, SA F. Assessment of awareness and practice of ionizing radiation protection procedures among exposed health care workers. Egypt J Occup Med 2020;44:529–44.

12. Seifi D, Hasanazadeh H, Bitarafan-Rajabi A, Emadi A, Bokharaeein M, Shabani F, et al. Knowledge, attitude and practice of nuclear medicine staff towards radiation protection. Iran J Nucl Med 2019;27:39–46. Available from: http://ijnm.tums.ac.ir/article_33700.html.

13. Khanttiukrua C, Suksompong S. Awareness about radiation hazards and knowledge about radiation protection among healthcare personnel: a quaternary care academic center–based study. SAGE Open Med 2020;8. 2050312120901733. https://doi.org/10.1177/2050312120901733.

14. Alavi SS, Dabbagh ST, Abbasi M, Mehrdad R. Medical radiation workers’ knowledge, attitude, and practice to protect themselves against ionizing radiation in Tehran Province, Iran. J Educ Health Promot 2017;6:58.

15. Alzubaidi MA, Mutairi HHA, Alakel SM, Al Abdullah HAS, Albakri IA, Alqahtani SFA. Assessment of knowledge and attitude of nurses toward ionizing radiation during radiography in Jeddah city, Egypt. J Hosp Med 2017;69:2906–9.

16. Shabani F, Hasanazadeh H, Emadi A, Mirmohammadkhan M, Bitarafan-Rajabi A, Abadehali A, et al. Radiation protection knowledge, attitude, and practice (KAP) in interventional radiology. Oman Med J 2018;33:141.

17. Söylemez H, Sancaktutar AA, Silay MS, Penbegul N, Bozkurt Y, Atar M, et al. Knowledge and attitude of European urology residents about ionizing radiation. Urol Int 2013;81:30–6.

18. Ihle IR, Neibling E, Albrecht K, Treston H, Sholapurkar A. Investigation of radiation-protection knowledge, attitudes, and practices of North Queensland dentists. J Invest Clin Dent 2019;10:e12374.

19. Basheer B, Albawardi K, Alsansie S, Alothaiib B, Alaanazi M, Alfaifi H, et al. Knowledge, attitudes and perception toward radiation hazards and protection among dental professionals in Riyadh, Kingdom of Saudi Arabia. Int J Med Health Sci 2019;11(1):75–81.

20. Briggs-Kamara MA, Okoye PC, Omuobo-Peppe VB. Radiation safety awareness among patients and radiographers in three hospitals in Port Harcourt. Am J Sci Ind Res 2013;4:83–8.

21. Rahman N, Dhakam S, Shafqut A, Qadir S, Tipoo FA. Knowledge and practice of radiation safety among invasive cardiologists. J Pakistan Med Assoc 2008;58:119–22.

22. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 2009;62:1006–12.

23. Hoy D, Brooks P, Wooff A, Blyth F, March L, Bain C, et al. Assessing risk of bias in prevalence studies: modification of an existing tool and evidence of interrater agreement. J Clin Epidemiol 2012;65:934–9.

24. Sharma SR, Karjodkar FR, Sansare KP, Saalim M, Mishra ID, Johaley S, et al. Attitude and awareness of general population towards radiation hazards and safety: an institutional study. Indian J Dent Res 2019;30:27.

25. Seibold P, Auvinen A, Averbeck D, Bourguignon M, Hartikainen JM, Hoeschen C, et al. Clinical and epidemiological observations on individual radiation sensitivity and susceptibility. Int J Radiat Biol 2020;96:324–39.

26. Strzelczyk JJ. Radiation safety. Clinical engineering handbook. Amsterdam, Netherlands: Elsevier; 2020. 677–81 pp.

27. Binjola A. Radiation protection practical aspects. Practical radiation oncology. Berlin, Germany: Springer; 2020. 31–9 pp.

28. Ansari A. The role of radiation protection professionals in the landscape of low dose radiation. J Radiol Prot 2019;39:1117.

29. Hirata Y, Fujibuchi T, Fujita K, Igarashi T, Nishimaru E, Horita S, et al. Angular dependence of shielding effect of radiation protective eyewear for radiation protection of crystalline lens. Radiol Phys Technol 2019;12:401–8.

30. Abdelrahman MA, Abu Alfwaeres A, Alewaidat H, Alhasan M, Rawashdeh MA, Al Mousa DS. Compliance with radiation protection practices among radiologists. Health Phys 2018;115:338–43.

31. Absi EG, Drage NA, Thomas HS, Newcombe RG, Cowpe J. Continuing dental education in radiation protection: knowledge retention following a postgraduate course. Eur J Dent Educ 2011;15:189–92.

32. Adejumo IB, Iruhe NA, Okolowoeye OA, Ibitoye AZ, Omiyi OD. Evaluation of compliance to radiation safety standard amongst radiographers in radiodiagnostic centres in South West, Nigeria. World J Med Sci 2012;7:194–6.

33. Alahmari MAS, Sun Z, Bartlett A. Radiation protection in an interventional laboratory: a comparative study of Australian and Saudi Arabian hospitals. Radiat Prot Dosim 2016;172:453–65.

34. Alavi SS, Taghzadeh Dabbagh S, Abbasi M, Mehrdad R. Radiation protection knowledge, attitude and practice (RP-KAP) as predictors of job stress among radiation workers in Tehran Province, Iran. Iran Red Crescent Med J 2016;18:e29394.

35. Alobaysi AI, Venkataseh, Singh TR. Knowledge, attitude and practice of the dental students and interns towards radiation protection and safety in Qassem Province. Ind Med Pharm J 2019;6:8361–72.

36. An SY, Lee KM, Lee J. Korean dentists’ perceptions and attitudes regarding radiation safety and protection. Dentomaxillofac Radiol 2018;47:2017028.

37. Awosan KJ, Ibrahim MTO, Saidu SA, Ma’a’ji SM, Danfulani M, Yunusa EU, et al. Knowledge of radiation hazards, radiation protection practices and clinical profile of health workers in a teaching hospital in northern Nigeria. J Clin Diagn Res 2016;10:LC7–12.

38. Babalouei S, Parwaie W, Refahi S, Abrazeh M, Akhmani Ardekan M. Awareness assessment of nurses in the OR, ICU, CCU, and PICU about radiation protection principles of portable radiography in hospitals of Bandar Abbas, Iran. J Radiol Nurs 2018;37:126–9.

39. Badawy MK, Mong KS, UP L, Deb P. An assessment of nursing staffs’ knowledge of radiation protection and practice. J Radiol Prot 2016;36:178–83.

40. Batista VMD, Bernardo MO, Morgado F, Almeida FA. Radiological protection in the perspective of health professionals exposed to radiation. Rev Bras Enferm 2019;72:9–16.

41. Brun A, Mor RA, Bourrelly M, Dalivoust G, Gazazian G, Boufercha R, et al. Radiation protection for surgeons and anesthetists: practices and knowledge before and after training. J Radiol Prot 2018;38:175–88.

42. Campanella F, Rossi L, Giroletti E, Michelelli P, Buzzi F, Villani S. Are physicians aware enough of patient radiation protection? Results from a survey among physicians of Pavia District – Italy. BMC Health Serv Res 2017;17:406.
43. Carpeggiani C, Kraft G, Caramella D, Semelka R, Picano E. Radioprotection (un)awareness in cardiologists, and how to improve it. Int J Cardiovasc Imag 2012;28:1369–74.

44. Erkan I, Yarenoglu A, Yukseloglu EH, Ulutin HC. The investigation of radiation safety awareness among healthcare workers in an education and research hospital. Int J Radiat Res 2019;17:447–53. Available from: http://ijrr.com/article-1-2602-en.html.

45. Faggioni L, Paolicchi F, Bastiani L, Guido D, Caramella D. Awareness of radiation protection and dose levels of imaging procedures among medical students, radiography students, and radiology residents at an academic hospital: results of a comprehensive survey. Eur J Radiol 2017;86:135–42.

46. Famurewa OC, Obiajunwa PO, Elusiyan JB, Ibitoye BO. Radiation dose and radiation protection principle awareness: a survey among Nigerian paediatricians. Niger Postgrad Med J 2014;21:28–33.

47. Fan G, Wang Y, Guo C, Lei X, He S. Knowledge deficiency of work-related radiation hazards associated with psychological distress among orthopedic surgeons: a cross-sectional study. Medicine (Baltim) 2017;96:e6682.

48. Garg D, Kapoor D. Awareness level of radiation protection among dental students. JNMA J Nepal Med Assoc 2018;56:800–3.

49. Haverkamp UF, Pruemer BA, Fahrmer A. Initial knowledge at radiation protection courses from 2005-2013 (3): tendencies and conclusions. Röfo 2013;185:1070–3.

50. Hirvonen L, Schroderus-Salo T, Henner A, Ahonen S, Kaarainen M, Miettunen J, et al. Nurses' knowledge of radiation protection: a cross-sectional study. Radiography (Lond) 2019;25:e108–e12.

51. Jentzsch T, Pietsch CM, Stigler B, Rasmeyer LE, Seifert B, Werner CM. The compliance with and knowledge about radiation protection in operating room personnel: a cross-sectional study with a questionnaire. Arch Orthop Trauma Surg 2015;135:1233–40.

52. Jeong KW, Jang HJ. Correlation between knowledge and performance of radiation protection among operating room nurses. Int J Bio-Sci Bio-Technol 2016;8:275–84.

53. Kurtul S, Kurtul N. The level of knowledge about radiation safety and the frequency of the use of protective equipment among healthcare workers exposed to radiation in different units. Turk Onkol Derg 2018;33:102–7.

54. Lee AM, Lee MJ. Radiation safety awareness among medical interns: are EU guidelines being implemented? Ir J Med Sci 2017;186:547–53.

55. Livingstone R, Varghese A, Keshava S. A study on the use of radiation-protective apron among interventionists in radiology. J Clin Imaging Sci 2018;8:34.

56. Lynskey GE, Powell DK, Dixon RG, Silberzweig JE. Radiation protection in interventional radiology: survey results of attitudes and use. J Vasc Interv Radiol 2013;24:1547–51. e3.

57. Macia-Suarez D, Sanchez-Rodriguez E. Radiation protection knowledge among radiologists in northwest Spain. Radiologia 2018;60:320–5.

58. Masoumi H, Hasanzadeh H, Jadidi M, Mirmohammadikhani M. Bitarafan-Rajabi A, Abedelahi A, et al. A survey on the radiation protection status among radiology staff. Iran J Med Phys 2018;15:376–81.

59. Mutyabule TK, Whaites EJ. Survey of radiography and radiation protection in general dental practice in Uganda. Dentomaxillofac Radiol 2002;31:164–9.

60. Paolicchi F, Miniati F, Bastiani L, Faggioni L, Ciaramella A, Creonti I, et al. Assessment of radiation protection awareness and knowledge about radiological examination doses among Italian radiographers. Insights Imaging 2016;7:233–42.

61. Rahman FBA, Gurunathan D, Vasantharajan MS. Knowledge, attitude and practice of radiation exposure protection for pediatric patients among undergraduate dental students. Biomed Pharmacol J 2018;11:1143–51.

62. Sadigh G, Khan R, Kassin MT, Applegate KE. Radiation safety knowledge and perceptions among residents: a potential improvement opportunity for graduate medical education in the United States. Acad Radiol 2014;21:869–78.

63. Sethi S, Barakat MT, Friedland S, Banerjee S. Radiation training, radiation protection, and fluoroscopy utilization practices among US therapeutic endoscopists. Dig Dis Sci 2019;64:2455–66.

64. Shin JM, Lee TH, Park SH, Kang SG, Lee YS, Park SJ, et al. A survey of the radiation exposure protection of health care providers during endoscopic retrograde cholangiopancreatography in Korea. Gut Liver 2013;7:100–5.

65. Vidovich MI, Khan AA, Xie H, Shroff AR. Radiation safety and vascular access: attitudes among cardiologists worldwide. Cardiovasc Revasc Med 2015;16:109–15.

66. Whitney GM, Thomas JJ, Austin TM, Fanfan J, Yaster M. Radiation safety perceptions and practices among pediatric anesthesiologists: a survey of the physician membership of the society for pediatric anesthesia. Anesth Analg 2019;128:1242–8.

67. Yunus NA, Abdullah MHRO, Said MA, Ch’ng PE, editors. Assessment of radiation safety awareness among nuclear medicine nurses: a pilot study. Bristol, UK: Institute of Physics Publishing; 2014.

68. Yurt A, Cuvasoglu B, Gunay T. Evaluation of awareness on radiation protection and knowledge about radiological examinations in healthcare professionals who use ionized radiation at work. Mol Imaging Radionucl Ther 2014;23:48–53.

Supplementary material: The online version of this article offers supplementary material (https://doi.org/10.3515/reveh-2020-0063).