Predictive Value of Adiponectin in Patients with Multivessel Coronary Atherosclerosis Detected on Computed Tomography Angiography

Morihiro Matsuda¹, ², ³, Ritsu Tamura¹, Naoko Kishida³, Takatsugu Segawa¹, Kotaro Kanno¹, Orie Nishimoto¹, Kei Nakamoto¹, Hirohiko Nishiyama¹ and Toshiharu Kawamoto¹

¹Department of Cardiology, National Hospital Organization, Kure Medical Center Chugoku Cancer Center, Hiroshima, Japan
²Department of Internal Medicine, National Hospital Organization, Kure Medical Center Chugoku Cancer Center, Hiroshima, Japan
³Institute of Clinical Research, National Hospital Organization, Kure Medical Center Chugoku Cancer Center, Hiroshima, Japan

Aim: Multislice computed tomography coronary angiography (CTCA) can be used to detect coronary plaques that predict the risk of cardiovascular events. This study aimed to identify the risk factors associated with the extent of coronary plaques detected using CTCA and to determine the value of adiponectin measurement for identifying high-risk patients with multivessel coronary atherosclerosis.

Methods: The study included 298 patients who underwent CTCA for coronary artery disease (CAD) screening between July 2008 and October 2011. We investigated the relationship between the extent of coronary atherosclerosis in terms of the number of diseased vessels and various risk factors, including the serum adiponectin level.

Results: The adiponectin level was found to be significantly associated with multivessel coronary atherosclerosis in a univariate analysis \((p=0.001) \). A multivariate analysis revealed the adiponectin level to also be significantly associated with multivessel coronary atherosclerosis \((p=0.01) \), independent of other significant risk factors, including an advanced age, male gender, diabetes mellitus (DM) and hypertension (HT). A receiver operating characteristic curve analysis revealed that a combination of these factors significantly predicted multivessel coronary atherosclerosis (area under the curve, 0.73; 95% confidence interval, 0.67-0.78). As the number of these factors increased, the proportion of patients with multivessel coronary atherosclerosis increased, while the proportion of patients with normal coronary arteries decreased \((p<0.0001) \).

Conclusions: A low adiponectin level combined with an advanced age, male gender, DM, and HT is independently and incrementally associated with multivessel coronary atherosclerosis. The number of factors may predict the extent of coronary atherosclerosis in patients without documented CAD.

J Atheroscler Thromb, 2013; 20:767-776.

Key words: Adiponectin, Coronary artery atherosclerosis, Computed tomography coronary angiography
suggests that the aggressive use of this therapy in addition to improvements in the selection of high-risk patients may further reduce the incidence of fatal coronary events.

Multislice computed tomography coronary angiography (CTCA) enables the direct, noninvasive anatomic assessment of the coronary arteries, including the extent, severity and composition of plaques. Therefore, CTCA is more effective at detecting early-stage CAD than functional imaging techniques that assess myocardial perfusion and wall motion\(^{10}\). Identifying coronary plaques using CTCA has prognostic value; several studies have demonstrated that the extent of coronary plaques, as determined on CTCA, can predict all-cause mortality and the occurrence of major adverse cardiac events, including cardiac death, myocardial infarction and unstable angina pectoris requiring coronary revascularization\(^{11-16}\). These findings suggest that conducting risk assessments using CTCA are beneficial for improving the selection of patients who receive aggressive OMT, although it is important to carefully weigh the risk of contrast-induced nephropathy and radiation exposure. If the selection of patients for CTCA can be improved, then identifying coronary plaques using CTCA before the development of fatal CAD may allow for the more vigorous application of OMT and thereby reduce the risk of adverse cardiovascular events. However, the precise selection criteria for patients requiring CTCA remain unclear.

Adiponectin, a circulating protein derived from adipose tissue, protects vascular walls from atherosclerosis\(^{17}\). Studies of vascular injury models have shown that genetic ablation of adiponectin enhances vascular stenosis via neointimal thickening\(^{18}\) and that supplementation with adiponectin leads to a decrease in the concentration of lipid-rich plaques in the aortas of mice deficient in apolipoprotein E\(^{19}\). Furthermore, the circulating levels of adiponectin are decreased in patients with abdominal obesity and type 2 diabetes mellitus (DM)\(^{20, 21}\); this may partially explain why such patients are susceptible to atherosclerotic cardiovascular diseases.

Several studies have reported that, in humans, a low serum adiponectin level is associated with the presence of lipid-rich plaques and noncalcified plaques in coronary arteries assessed using intravascular ultrasound and CTCA, respectively\(^{22-25}\). These findings suggest the potential value of measuring the adiponectin level in order to select patients who require CTCA for further risk assessment. However, the clinical use of adiponectin as a biomarker in combination with conventional risk factors has not been fully evaluated. Therefore, in this study, we investigated significant risk factors associated with the extent of coronary plaques detected using CTCA and evaluated the usefulness of measuring the adiponectin concentration for identifying patients with a high risk of multivessel coronary atherosclerosis. Identifying significant risk factors for the development of multivessel coronary plaques, including the adiponectin level, should help to establish a noninvasive method for selecting patients who require CTCA in order to determine the appropriate treatment.

Aim

The aim of this study was to identify significant risk factors associated with the extent of coronary plaques detected using CTCA and to determine the value of measuring the adiponectin level for identifying patients at high risk of multivessel coronary atherosclerosis.

Methods

Subjects

We conducted a cross-sectional observational study of 298 consecutive patients with suspected CAD based on abnormal findings on electrocardiography and/or chest symptoms (such as chest pain, palpitations, dyspnea and/or chest discomfort) with at least one cardiac risk factor (DM, hypertension [HT], dyslipidemia and/or abdominal obesity). All patients underwent CTCA between July 2008 and October 2011 to detect CAD. Patients with extremely calcified coronary arteries that could not be assessed using CTCA and those treated with thiazolidinedione were excluded. Informed consent was obtained from all subjects, and the study protocol was approved by the Ethics Committee of Kure Medical Center.

Laboratory Measurements

Venous blood was drawn from all subjects after an overnight fast. The serum samples were either immediately analyzed or frozen at \(-80^\circ\text{C}\) for later measurement of the adiponectin concentration. The laboratory measurements included the serum concentrations of total cholesterol, triglycerides, high-density lipoprotein (HDL) cholesterol and hemoglobin A1c (HbA1c). The concentrations of total cholesterol, triglycerides and HDL cholesterol were determined according to enzymatic methods using commercially available kits (Seikisui Medical Co., Tokyo). The level of HbA1c was estimated as the National Glycohemoglobin Standardization Program (NGSP)-equivalent percentage calculated using the following formula: \(\text{HbA1c (\%)} = 1.02 \times \text{NGSP-HbA1c - 0.03}\)
Assessment of Coronary Artery Atherosclerosis

We used a 64-slice multidetector-row computed tomography scanner (Somatom Definition AS; Siemens AG, Munich, Germany) with a workstation (Synapse Vincent; Fujifilm Co., Ltd, Tokyo, Japan) to reconstruct the CT images. CTCAs was performed using retrospective electrocardiography gating with the following parameters: rotation time, 300 ms/rotation; collimation, 128×0.6 mm; tube voltage, 120 kV; and tube current, 350 mAs. A bolus of 1 mL/kg of iopamidol (Iopamiron 370; Bayer, Japan) was injected intravenously followed by a 20-mL saline chaser. The images were initially reconstructed at the optimal phase of the cardiac cycle and assessed for coronary atherosclerosis. The extent of coronary artery atherosclerosis, defined as the number of coronary arteries with atherosclerotic plaque, either calcified or noncalcified, on the CTCAs images, was measured by two blinded cardiologists. Before the CTCAs examinations, a nonenhanced scan was performed to measure the coronary artery calcification score (CACS) and pericardial fat volume using a 120-kV tube voltage, 100-mA tube current and 2-mm section thickness. The CACS was calculated based on the Agatston score using a calcification threshold of >130 Hounsfield units (HU)\(^{27}\). Pericardial fat was defined as the presence of pixels within a window of -195 to -45 HU and was measured semi-automatically.

Definitions of DM, HT, Insufficient Control of LDL Cholesterol and Metabolic Syndrome

We used the Japanese criteria for classifying DM patients\(^{20}\). Similarly, we used the Japanese criteria for HT, which include elevated blood pressure (a systolic blood pressure [BP] of ≥140 mmHg and/or a diastolic BP of ≥90 mmHg) and/or the use of antihypertensive medications\(^{20}\). The patients were considered to have insufficient control of LDL cholesterol if they did not meet the target levels recommended by the Guidelines for the Prevention of Atherosclerotic Cardiovascular Diseases\(^{8}\). The patients were considered to have metabolic syndrome (MS) according to the Japanese criteria\(^{29}\), which require the presence of abdominal obesity and at least two of the following three factors: dyslipidemia (an elevated triglyceride level or a reduced HDL cholesterol level), elevated BP and elevated fasting glucose levels. More specifically, the components of MS were defined as follows: (1) a waist circumference of ≥85 cm for men and ≥90 cm for women; (2) an elevated serum triglyceride level of ≥150 mg/dL; (3) a reduced serum HDL cholesterol level of <40 mg/dL; (4) an elevated systolic BP of ≥130 mmHg and/or a diastolic blood pressure of ≥85 mmHg and/or the use of antihypertensive medications; and (5) an elevated fasting plasma glucose level of ≥110 mg/dL and/or the use of antidiabetic medications.

Statistical Analysis

Continuous variables were expressed as the mean and standard deviation (SD). Categorical and continuous variables were compared among the patients with three grades of coronary atherosclerosis using Pearson’s test and an analysis of variance (ANOVA), respectively. A logistic regression model was used to evaluate the associations between multivessel coronary atherosclerosis and the other variables. The odds ratios and 95% confidence intervals (CIs) were calculated. The predictive value of variables for assessing multivessel coronary atherosclerosis was evaluated using receiver operating characteristic (ROC) curves. The areas under the curve (AUCs), 95% CIs and probabilities were calculated. All statistical analyses were performed using the JMP version 9 (SAS Institute Japan Inc.) or SPSS Statistics version 19 (IBM SPSS Inc.) software programs. Statistical significance was defined as a p value of <0.05.

Results

Baseline Characteristics of the Subjects

This study comprised 298 patients (age, 67.7 ± 10.3 years; men, 58.7%). The clinical characteristics of the subjects are listed in Table 1. Of the patients, 29.9% had DM, 70.4% had HT, 35.6% had MS and 30.2% had insufficient control of LDL cholesterol. Most were receiving medications for these conditions, including statins, antihypertensive agents and antidiabetic agents. A total of 54.4% of the patients had chest pain, dyspnea or palpitations provoked by exertion and 23.5% had other symptoms, such as chest pain or discomfort, that lacked the characteristics of typical angina. The CTCA images indicated that 37.9% of the patients had normal coronary arteries,
26.8% had one diseased vessel, 20.1% had two diseased vessels and 15.1% had three diseased vessels.

Associations between the Extent of Coronary Atherosclerosis and the Risk Factors

The extent of coronary atherosclerosis was graded as normal, single-vessel or multivessel and was found to be significantly associated with age, sex, DM, HT, abdominal obesity, low HDL cholesterol and the serum levels of triglycerides, HDL cholesterol, HbA1c and adiponectin (Table 2).

Relationships between Multivessel Coronary Atherosclerosis and the Risk Factors

According to a univariate logistic regression analysis, the serum adiponectin concentration was found to be significantly associated with the presence of multivessel coronary atherosclerosis (Table 3). An advanced age (≥67 years, an optimal cutoff value according to the ROC curve analysis), male gender, DM, HT, a low HDL cholesterol level (<40 mg/dL), a high triglyceride level (≥150 mg/dL) and abdominal obesity were also significant risk factors related to multivessel coronary atherosclerosis (Table 3). Among these factors, a multivariate logistic regression analysis revealed that the serum adiponectin concentration was significantly associated with multivessel coronary atherosclerosis, independent of an advanced age, male gender, DM and HT (Table 3).

Cumulative Effects of Age, Sex, a Low Adiponectin Level, DM and HT on Coronary Atherosclerosis

In the current study, we defined a low serum adiponectin level (low-adipo) as a concentration of ≤10.8 μg/mL, an optimal cutoff value for multivessel coronary atherosclerosis according to the ROC curve analysis (AUC, 0.62) (Table 4). The ROC curve analysis revealed that the combination of five factors (age, sex, HT, DM and low-adipo) was a significant predictor of multivessel coronary atherosclerosis (AUC, 0.73; 95% CI, 0.67-0.78). The combination of five factors was a significantly better predictor than a combination of three factors (age, sex and HT; p=0.047) and better than a combination of four factors (age, sex, HT and DM; p=0.079), although not significantly. The predictive value of the five factors was not improved by adding three further conventional risk factors (low HDL cholesterol, high TG and abdominal obesity; p=0.632; Table 4). As the number of the five factors increased, the proportion of patients with multivessel coronary atherosclerosis increased, while the proportion of patients with normal coronary arteries decreased (Fig. 1).

Table 1. Baseline characteristics of the subjects

N	298
Age (years), mean (SD)	67.7 (10.3)
Sex (male), n (%), n (%)	175 (58.7)
Risk factor diseases, n (%)	106 (35.6)
diabetes mellitus	89 (29.9)
hypertension	210 (70.4)
metabolic syndrome	89 (30.2)
insufficient control of LDL cholesterol	210 (70.4)
Symptoms, n (%)	90 (30.2)
any provoked by exertion	162 (54.4)
others	70 (23.5)
none	66 (22.1)
Current medications, n (%)	141 (47.3)
statins	102 (34.2)
ACE-Is/ARBs	109 (36.6)
calcium channel blockers	55 (18.5)
β-blockers	36 (12.1)
sulfonylureas	32 (10.7)
metformin	20 (6.7)
α-glucosidase inhibitors	13 (4.4)
insulin injection	88.1 (37.9)
CACS, median (min, max)	113 (37.9)
pericardial fat volume, mean (SD)	106.6 (42.7)

CTCA findings

number of diseased vessels, n (%)	106.6 (42.7)
0	113 (37.9)
1	80 (26.8)
2	60 (20.1)
3	45 (15.1)

Cumulative Effects of Age, Sex, a Low Adiponectin Level, DM and HT on Coronary Atherosclerosis

In the current study, we defined a low serum adiponectin level (low-adipo) as a concentration of ≤10.8 μg/mL, an optimal cutoff value for multivessel coronary atherosclerosis according to the ROC curve analysis (AUC, 0.62) (Table 4). The ROC curve analysis revealed that the combination of five factors (age, sex, HT, DM and low-adipo) was a significant predictor of multivessel coronary atherosclerosis (AUC, 0.73; 95% CI, 0.67-0.78). The combination of five factors was a significantly better predictor than a combination of three factors (age, sex and HT; p=0.047) and better than a combination of four factors (age, sex, HT and DM; p=0.079), although not significantly. The predictive value of the five factors was not improved by adding three further conventional risk factors (low HDL cholesterol, high TG and abdominal obesity; p=0.632; Table 4). As the number of the five factors increased, the proportion of patients with multivessel coronary atherosclerosis increased, while the proportion of patients with normal coronary arteries decreased (Fig. 1).

Discussion

The current study demonstrated that, among the various risk factors investigated, the circulating adiponectin level, age, sex, DM and HT are independently associated with the presence of multivessel coronary atherosclerosis detected on CTCA in patients with suspected CAD. Furthermore, the combination of these factors was found to be significantly associated with the extent of coronary atherosclerosis, and the number of these factors was found to be a significant predictor of multivessel coronary atherosclerosis.

CTCA allows for the noninvasive detection and characterization of coronary artery plaques, even when such lesions are not associated with significant luminal stenosis on angiography. Acute coronary syndrome (ACS) frequently results from lesions that were previ-
Adiponectin and Coronary Atherosclerosis

These studies suggest that with suitable selection of patients, CTCA can be used to identify multiple coronary plaques before the development of fatal CAD, thus enabling the use of aggressive OMT and reducing the incidence of cardiovascular events. CTCA should not be performed in healthy subjects due to its radiation burden. Therefore, less invasive methods are required to identify high-risk patients who require CTCA. Our current findings indicate that, in addition to DM and HT, the adiponectin concentration is useful for predicting the coronary plaque burden, and its measurement is warranted for identifying individuals who would benefit from CTCA.

We and other researchers have shown that adiponectin exhibits antiatherogenic properties in both in...
patients who require CTCA for risk assessment and the subsequent application of aggressive OMT.

Although the adiponectin concentration has been reported to be predictive of the total coronary plaque burden\(^23\), our findings indicate that a low adiponectin level combined with the risk factors of age, sex, HT and DM is significantly better at predicting multivessel coronary atherosclerosis than the adiponectin level itself. The exact relationship between the adiponectin level and these other four factors in terms of the development of atherosclerosis remains to be determined. However, our findings are consistent with basic research indicating that adiponectin protects against direct proatherogenic stress on the vascular wall\(^18\). Compared with wild-type mice, adiponectin-null mice develop more severe atherosclerosis when the vascular wall is

Table 4. Receiver operator characteristic curve analysis of the serum adiponectin levels and the number of risk factors required to predict multivessel coronary atherosclerosis

	Univariate	Multivariate		
	OR (95% CI)	p value	OR (95% CI)	p value
Advanced age	2.2 (1.3-3.6)	0.003	3.1 (1.7-5.6)	<0.001
Male	2.2 (1.3-3.6)	0.003	2.3 (1.3-4.2)	0.006
Diabetes mellitus	2.1 (1.2-3.5)	0.005	1.8 (1.0-3.2)	0.038
Hypertension	2.8 (1.5-4.9)	0.001	2.3 (1.2-4.5)	0.009
Adiponectin (μg/dL)	1.1 (1.0-1.1)*	0.001	1.1 (1.0-1.1)*	0.010
Low HDL cholesterol	3.6 (1.7-7.6)	0.001	2.1 (0.9-5.0)	0.088
High triglyceride	1.7 (1.0-2.9)	0.038	1.3 (0.7-2.3)	0.418
Abdominal obesity	1.9 (1.2-3.1)	0.010	1.1 (0.6-1.9)	0.847
Metabolic syndrome	1.6 (1.0-2.7)	0.053	–	–
Insufficient control of LDL cholesterol	1.0 (0.6-1.6)	0.851	–	–

The predictive factors were an advanced age (≥67 years), sex (male gender), diabetes mellitus (DM), hypertension (HT), a serum adiponectin concentration of ≤10.8 μg/mL; a low HDL cholesterol level, <40 mg/dL; a high triglyceride level, ≥150 mg/dL; abdominal obesity, a waist circumference of ≥85 cm (men) or ≥90 cm (women). A logistic regression model was used to evaluate the associations between multivessel coronary atherosclerosis and the other variables. *unit odds ratio; **range odds ratio.

Table 3. Relationships between multivessel coronary atherosclerosis assessed using CTCA and various risk factors in the univariate and multivariate analyses

	Univariate	Multivariate		
	OR (95% CI)	p value	OR (95% CI)	p value
Advanced age	2.2 (1.3-3.6)	0.003	3.1 (1.7-5.6)	<0.001
Male	2.2 (1.3-3.6)	0.003	2.3 (1.3-4.2)	0.006
Diabetes mellitus	2.1 (1.2-3.5)	0.005	1.8 (1.0-3.2)	0.038
Hypertension	2.8 (1.5-4.9)	0.001	2.3 (1.2-4.5)	0.009
Adiponectin (μg/dL)	1.1 (1.0-1.1)*	0.001	1.1 (1.0-1.1)*	0.010
Low HDL cholesterol	3.6 (1.7-7.6)	0.001	2.1 (0.9-5.0)	0.088
High triglyceride	1.7 (1.0-2.9)	0.038	1.3 (0.7-2.3)	0.418
Abdominal obesity	1.9 (1.2-3.1)	0.010	1.1 (0.6-1.9)	0.847
Metabolic syndrome	1.6 (1.0-2.7)	0.053	–	–
Insufficient control of LDL cholesterol	1.0 (0.6-1.6)	0.851	–	–

Abbreviations: HDL, high-density lipoprotein; LDL, low-density lipoprotein; OR, odds ratio; CI, confidence interval. The definitions of diabetes mellitus, hypertension, insufficient control of LDL cholesterol and metabolic syndrome are described in the Methods section. The other variables are defined as follows: an advanced age, ≥67 years; a low adiponectin level, ≤10.8 μg/mL; a low HDL cholesterol level, <40 mg/dL; a high triglyceride level, ≥150 mg/dL; abdominal obesity, a waist circumference of ≥85 cm (men) or ≥90 cm (women). A logistic regression model was used to evaluate the associations between multivessel coronary atherosclerosis and the other variables. *unit odds ratio; **range odds ratio.

vitro and in vivo experiments\(^18, 19\). Furthermore, low adiponectin levels are associated with the presence of CAD\(^36-38\). Recent clinical studies have shown that low adiponectin levels are associated with noncalcified and mixed plaques detected on CTCA\(^23-25\). However, the use of the adiponectin level as a biomarker for predicting the development of multiple coronary plaques in combination with conventional risk factors has not been fully evaluated. In the current study, a low serum adiponectin level was significantly associated with multivessel coronary atherosclerosis, independent of age, sex, DM and HT and was also predictive of the extent of coronary atherosclerosis when present in combination with the other four factors. Therefore, measuring the adiponectin level in addition to assessing these other factors is beneficial for selecting patients who require CTCA for risk assessment and the subsequent application of aggressive OMT.

Although the adiponectin concentration has been reported to be predictive of the total coronary plaque burden\(^23\), our findings indicate that a low adiponectin level combined with the risk factors of age, sex, HT and DM is significantly better at predicting multivessel coronary atherosclerosis than the adiponectin level itself. The exact relationship between the adiponectin level and these other four factors in terms of the development of atherosclerosis remains to be determined. However, our findings are consistent with basic research indicating that adiponectin protects against direct proatherogenic stress on the vascular wall\(^18\). Compared with wild-type mice, adiponectin-null mice develop more severe atherosclerosis when the vascular wall is
exposed to proatherogenic stressors (such as vascular injury), although they do not spontaneously develop atherosclerosis\(^{18}\). These data indicate that a low serum adiponectin concentration only reduces the mechanisms that protect vascular walls from these stressors and does not cause coronary atherosclerosis by itself. However, in the presence of proatherogenic stress, a reduced serum adiponectin concentration likely facilitates the development of atherosclerosis.

Our data suggest that, in addition to appropriate management of DM and HT to reduce proatherogenic stress, measures that improve the serum adiponectin level may be useful strategies for preventing the development of CAD. The adiponectin concentration has been shown to increase in response to diet-induced weight loss\(^{39, 40}\); however, few studies have reported the effects of dietary intervention on plasma adiponectin. Of the dietary fatty acids, n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), increase the plasma adiponectin concentration. In obese humans with metabolic syndrome, the consumption of highly purified EPA increases the adiponectin concentration\(^{41}\). Although dietary supplementation with fish oil rich in EPA or DHA increases the adiponectin concentrations in rodents\(^{42}\), the same has not been conclusively demonstrated in humans. The production of adiponectin is induced by nuclear peroxisome proliferator-activated receptors gamma (PPAR-\(\gamma\))\(^{43}\), and thiazolidinediones and other pharmacological agents that activate PPAR-\(\gamma\) increase the adiponectin concentration\(^{44-46}\).

These agents, as well as diets high in n-3 PUFAs, are associated with a reduced risk of cardiovascular disease\(^{47-49}\), thus suggesting that a higher adiponectin concentration is important for preventing CAD.

All patients in this study were Japanese, and any differences with respect to other ethnic populations are unknown. This was a cross-sectional study conducted at a single medical center. In the future, conducting large-scale, prospective analyses at multiple centers is recommended in order to validate our findings. Our subjects were all consecutive patients who underwent CTCA in clinical practice to detect CAD, not asymptomatic patients who underwent CTCA for risk assessment, in accordance with the current guidelines for the use of CTCA. Therefore, we cannot draw definitive conclusions regarding the latter purpose. Our findings indicate that prospective clinical studies of asymptomatic high-risk patients or the general population are required to evaluate the efficacy of CTCA for risk assessment of the subsequent need for risk-reducing OMT.

Conclusion

The results of this study suggest that adiponectin is a useful biomarker for predicting the risk of multivessel coronary atherosclerosis detected on CTCA in combination with common risk factors (age, sex, DM and HT) in patients with suspected CAD. Based on these findings, we recommend that patients who test positive for more than three of the five factors undergo CTCA. The effective identification of patients with extensive coronary atherosclerosis and use of aggressive preventive measures should help to reduce future fatality rates associated with this disease.

Acknowledgments

We thank Noriko Okamoto for providing help in constructing the clinical database. We thank all nurses and medical technologists at Kure Medical Center who supported this study. This study was financially supported by the National Hospital Organization, Kure Medical Center.

Conflicts of Interest

None to declare.

References

1) D’Agostino RB Sr, Vasan RS, Pencina MJ, Wolf PA, Cobain M, Massaro JM, Kannel WB: General cardiovas-
cular risk profile for use in primary care: the Framingham Heart Study. Circulation, 2008; 117: 743-753

2) Conroy RM, Pyorala K, Fitzgerald AP, Sans S, Menotti A, De Backer G, De Bacquer D, Ducimetiere P, Jousilahiti P, Keil U, Njolstad I, Oganov RG, Thomsen T, Tunstall-Pedoe H, Tverdal A, Wedel H, Whincup P, Wilhelmsen L, Graham IM: Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J, 2003; 24: 987-1003

3) Risk assessment chart for death from cardiovascular disease based on a 19-year follow-up study of a Japanese representative population. Circ J, 2006; 70: 1119-1122

4) Arima H, Yonemoto K, Doi Y, Ninomiya T, Hata J, Tanizaki Y, Fukuhara M, Matsumura K, Iida M, Kiyohara Y: Development and validation of a cardiovascular risk prediction model for Japanese: the Hisayama study. Hypertens Res, 2009; 32: 1119-1122

5) Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA, 2001; 285: 2486-2497

6) Catapano AL, Reiner Z, De Backer G, Graham I, Taskinen MR, Wiklund O, Agewall S, Allegria E, Chapman MJ, Durrington P, Erdine S, Halcox J, Hobbs R, Kjekshus J, Perrone Filardi P, Piccardi G, Storey RF, Wood D: ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Atherosclerosis, 2011; 217 Suppl 1: S1-44

7) Pearson TA, Blair SN, Daniels SR, Eckel RH, Fair JM, Fortmann SP, Franklin BA, Greenland P, Grundy SM, Hong Y, Miller NH, Lauer RM, Ockene IS, Sacco RL, Sallis JF Jr, Smith SC Jr, Stone NJ, Taubert KA: AHA Guidelines for Primary Prevention of Cardiovascular Disease and Stroke: 2002 Update: Consensus Panel Guide to Comprehensive Risk Reduction for Adult Patients Without Coronary or Other Atherosclerotic Vascular Diseases. American Heart Association Science Advisory and Coordinating Committee. Circulation, 2002; 106: 388-391

8) The Committee of Japan Atherosclerosis Society on guidelines for prevention of atherosclerotic cardiovascular diseases: Japan Atherosclerosis Society (JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2012, Japan Atherosclerosis Society, Tokyo, Japan, 2012 (in Japanese)

9) Boden WE, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, Knudson M, Dada M, Casperson P, Harris CL, Chaitman BR, Shaw L, Gosselin G, Nawaz S, Title LM, Gau G, Blaustein AS, Booth DC, Bates ER, Sperutis JA, Berman DS, Mancini GB, Weintraub WS: Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med, 2007; 356: 1503-1516

10) van Werkhoven JM, Schuijf JD, Jukema JW, Kroft LJ, van der Wall EE, Bax JJ: Anatomic correlates of a normal perfusion scan using 64-slice computed tomographic coronary angiography. Am J Cardiol, 2008; 101: 40-45

11) Pundziute G, Schuijf JD, Jukema JW, Boersma E, de Roos A, van der Wall EE, Bax JJ: Prognostic value of multislice computed tomography coronary angiography in patients with known or suspected coronary artery disease. J Am Coll Cardiol, 2007; 49: 62-70

12) Carrigan TP, Nair D, Schoenhagen P, Curtis RJ, Popovic ZB, Halliburton S, Kuzmiak S, White RD, Flamm SD, Desai MY: Prognostic utility of 64-slice computed tomography in patients with suspected but no documented coronary artery disease. Eur Heart J, 2009; 30: 362-371

13) Min JK, Shaw LJ, Devereux RB, Okin PM, Weinsaft JW, Russo DJ, Lippolis NJ, Berman DS, Callister TQ: Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality. J Am Coll Cardiol, 2007; 50: 1161-1170

14) Ostrom MP, Gopal A, Ahmadi N, Nasir K, Yang E, Kaki diaris I, Flores F, Mao SS, Budoff MJ: Mortality incidence and the severity of coronary atherosclerosis assessed by computed tomography angiography. J Am Coll Cardiol, 2008; 52: 1335-1343

15) Rubinshtein R, Halon DA, Gaspar T, Peled N, Lewis BS: Cardiac computed tomographic angiography for risk stratification and prediction of late cardiovascular outcome events in patients with a chest pain syndrome. Int J Cardio, 2009; 137: 108-115

16) van Werkhoven JM, Schuijf JD, Gaemperli O, Jukema JW, Kroft LJ, Boersma E, Pahzkenkottal A, Valenta I, Pundziute G, de Roos A, van der Wall EE, Kaufmann PA, Bax JJ: Incremental prognostic value of multi-slice computed coronary angiography over coronary artery calcium scoring in patients with suspected coronary artery disease. Eur Heart J, 2009; 30: 2622-2629

17) Ouchi N, Kihara S, Funahashi T, Matsuzawa Y, Walsh K: Obesity, adiponectin and vascular inflammatory disease. Curr Opin Lipidol, 2003; 14: 561-566

18) Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, Furuyama N, Kondo H, Takahashi M, Arita Y, Komuro R, Ouchi N, Kihara S, Tochino Y, Okutomi K, Horie M, Takeda S, Aoyama T, Funahashi T, Matsuzawa Y: Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat Med, 2002; 8: 731-737

19) Okamoto Y, Kihara S, Ouchi N, Nishida M, Arita Y, Kamuda M, Ohashi K, Sakai N, Shimomura I, Kobayashi H, Terasaka N, Inaba T, Funahashi T, Matsuzawa Y: Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation, 2002; 106: 2767-2770

20) Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyakata K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Obmoto Y, Funahashi T, Matsuzawa Y: Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun, 1999; 257: 79-83

21) Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Ishihara H, Kuriyama H, Ouchi N, Maeda K, Nishida M, Kihara S, Sakai N, Nakajima T, Hasegawa K, Muraguchi M, Obmoto Y, Nakamura T, Yamashita S, Hanafusa T, Matsuzawa Y: Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 dia-
Adiponectin and Coronary Atherosclerosis

21) Marso SP, Mehta SK, Frutkin A, House JA, McCrary JR, Kulikarni KR: Low adiponectin levels are associated with atherogenic dyslipidemia and lipid-rich plaque in nondiabetic coronary arteries. Diabetes Care, 2008; 31: 989-994

22) Broedel UC, Leberherz C, Lehre K, Stark R, Greif M, Becker A, von Ziegler F, Tittus J, Reiser M, Becker C, Goke B, Parhofer KG, Leber AW: Low adiponectin levels are an independent predictor of mixed and non-calcified coronary atherosclerotic plaques. PLoS one, 2009; 4: e4733

23) Bamberg F, Truong QA, Koenig W, Schlett CL, Nasir K, Butler J, Kurtz E, Nikolau K, Hoffmann U, Januzzi JL Jr: Differential associations between blood biomarkers of inflammation, oxidation, and lipid metabolism with varying forms of coronary atherosclerotic plaque as quantified by coronary CT angiography. Int J Cardiovasc Imaging, 2012; 28: 183-192

24) Kunita E, Yamamoto H, Kitagawa T, Ohashi N, Utsunomiya H, Oka T, Horiguchi J, Awai K, Kihara Y: Association between plasma high-molecular-weight adiponectin and coronary plaque characteristics assessed by computed tomography angiography in conditions of visceral adipose accumulation. Circ J, 2012; 76: 1687-1696

25) The Committee of Japan Diabetes Society on the diagnostic criteria of Diabetes mellitus: Report of the Committee on the classification and diagnostic criteria of diabetes mellitus. J. Jpn. Diabetes Soc., 2010; 53: 450-467

26) Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R: Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol, 1988; 12: 56-62

27) Viamonte M Jr, Detrano R: Quantification of coronary artery disease by cardiac computed tomography angiography in conditions of visceral adipose accumulation. J Am Coll Cardiol, 2009; 54: 49-57

28) Kitagawa T, Yamamoto H, Horiguchi J, Ohhashi N, Tadecara F, Shokawa T, Dobi Y, Kunita E, Utsunomiya H, Kohno N, Kihara Y: Characterization of noncalcified coronary plaques and identification of culprit lesions in patients with acute coronary syndrome by 64-slice computed tomography. JACC Cardiovasc Imaging, 2009; 2: 153-160

29) Budoff MJ, Achenbach S, Blumenthal RS, Carr JJ, Goldin JG, Greenland P, Guerci AD, Lima JA, Rader DJ, Rubin GD, Shaw L, Wiegers SE: Assessment of coronary artery disease by cardiac computed tomography: a scientific statement from the American Heart Association Committee on Cardiovascular Imaging and Intervention, Council on Cardiovascular Radiology and Intervention, and Committee on Cardiac Imaging, Council on Clinical Cardiology. Circulation, 2006; 114: 1761-1791

30) Joint Working Groups of Japanese Circulation Society for Guidelines for Diagnosis and Treatment of Cardiovascular Diseases: Guidelines for Noninvasive Diagnosis of Coronary Artery Lesions (JCS 2009). Circ J, 2009; 73 Suppl. III: 1019-1089

31) Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, Hotta K, Nishida M, Takahashi M, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y: Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation, 1999; 100: 2473-2476

32) Komura N, Kihara S, Sonoda M, Kumada M, Fujita K, Hiuge A, Okada T, Nakagawa Y, Tamba S, Kuroda Y, Hayashi N, Sumitsuji S, Kawamoto T, Matsumoto S, Ouchi N, Arita Y, Okamoto Y, Shimomura I, Funahashi T, Matsuzawa Y: Clinical significance of high-molecular weight form of adiponectin in male patients with coronary artery disease. Circ J, 2008; 72: 23-28

33) Yamashita T, Matsuda M, Nishimoto O, Nakamoto K, Nishiyama H, Matsumoto K, Tamura R, Kawamoto T: Combination of serum adiponectin level and metabolic syndrome is closely associated with coronary artery disease in Japanese subjects with good glycemic control. Intern Med, 2010; 49: 721-727

34) Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, Chen CL, Tai TY, Chuang LM: Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab, 2001; 86: 3815-3819

35) Kopp HP, Krzyzanowska K, Mohlig M, Spranger J, Pfeiffer AF, Schernthaner G: Effects of marked weight loss on plasma levels of adiponectin, markers of chronic subclinical inflammation and insulin resistance in morbidly obese women. Int J Obes (Lond), 2005; 29: 766-771

36) Itoh M, Suganami T, Satoh N, Tanimoto-Koyama K, Yuan X, Tanaka M, Kawano H, Yano T, Aoe S, Takeya M, Shimatsu A, Kuzuya H, Kamei Y, Ogawa Y: Increased adiponectin secretion by highly purified eicosapentaenoic acid in rodent models of obesity and human obese subjects. Arterioscler Thromb Vasc Biol, 2007; 27: 1918-1925

37) Neschen S, Morino K, Rossbacher JC, Pongratz RL, Cline GW, Sono S, Gillum M, Shulman GI: Fish oil regulates adiponectin secretion by a peroxisome proliferator-acti-
vated receptor-gamma-dependent mechanism in mice. Diabetes, 2006; 55: 924-928
43) Iwaki M, Matsuda M, Maeda N, Funahashi T, Matsuzawa Y, Makishima M, Shimomura I: Induction of adiponec
tin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes, 2003; 52: 1655-1663
44) Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, Nagaretani H, Matsuda M, Komuro R, Ouchi N, Kuriyama H, Hotta K, Nakamura T, Shimomura I, Matsuzawa Y: PPARgamma ligands increase expression and plasma concentrations of adiponec
tin, an adipose-derived protein. Diabetes, 2001; 50: 2094-2099
45) Hiuge A, Tenenbaum A, Maeda N, Benderly M, Kumada M, Fisman EZ, Tanne D, Matas Z, Hibiue T, Fujita K, Nishizawa H, Adler Y, Motro M, Kihara S, Shimomura I, Behar S, Funahashi T: Effects of peroxisome proliferator-
activated receptor ligands, bezafibrate and fenofibrate, on adiponectin level. Arterioscler Thromb Vasc Biol, 2007; 27: 635-641
46) Claessen R, Schupp M, Foryst-Ludwig A, Sprang C, Clem
tenz M, Krikov M, Thone-Reinecke C, Unger T, Kintscher U: PPARgamma-activating angiotensin type-1 receptor
blockers induce adiponectin. Hypertension, 2005; 46: 137-143
47) Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, Skene AM, Tan MH, Lefebvre PJ, Murray GD, Standl E, Wilcox RG, Wilhelmsen L, Betteridge J, Birkeland K, Golay A, Heine RJ, Koranyi L, Laakso M, Mokan M, Norkus A, Pirags V, Podar T, Scheen A, Scherbaum W, Schernthaner G, Schmitz O, Skrha J, Smith U, Tatton J: Secondary preven
tion of macrovascular events in patients with type 2 dia
betes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet, 2005; 366: 1279-1289
48) Kris-Etherton PM, Harris WS, Appel LJ: Fish consump	
tion, fish oil, omega-3 fatty acids, and cardiovascular dis
case. Circulation, 2002; 106: 2747-2757
49) Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Saito Y, Ishikawa Y, Oikawa S, Sasaki J, Hishida H, Itakura H, Kita T, Kitabatake A, Nakaya N, Nakata T, Shimada K, Shirato K: Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint anal
ysis. Lancet, 2007; 369: 1090-1098