Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

Compilation Album of The Kinks

Alberto Alonso-Izquierdo

1 Departamento de Matemática Aplicada (Universidad de Salamanca) and UIC MathPhys-CyL

6th International Workshop on New Challenges in Quantum Mechanics: Integrability and Supersymmetry
A BRIEF HISTORY OF TWO-COMPONENT KINKS

where the concept kink is defined and allows us to introduce
A BRIEF HISTORY OF TWO-COMPONENT KINKS

1. A BRIEF HISTORY OF TWO-COMPONENT KINKS

 where the concept kink is defined and allows us to introduce

2. A SYSTEM OF TWO COUPLED SCALAR FIELDS IN TWO SPACE-TIME DIMENSIONS
A BRIEF HISTORY OF TWO-COMPONENT KINKS

1. A BRIEF HISTORY OF TWO-COMPONENT KINKS
where the concept kink is defined and allows us to introduce

2. A SYSTEM OF TWO COUPLED SCALAR FIELDS IN TWO SPACE-TIME DIMENSIONS
where we describe

3. STATIC KINK VARIETY
which comprises

3.1 Vacuum solutions
3.2 Static kink solutions
A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A brief history of two-component kinks

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions
Definition. A 1-component Kink is a non-singular solution of the nonlinear Klein-Gordon equation

\[
\frac{\partial^2 \phi}{\partial t^2} - \frac{\partial^2 \phi}{\partial x^2} = -\frac{\partial U}{\partial \phi}
\]

which can be interpreted as an extended particle.

- The previous equations are the Euler-Lagrange equations of a (1+1) relativistic scalar field theory model with action functional

\[
S = \int d^2 x \left\{ \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - U(\phi) \right\}
\]

- The total energy is defined as

\[
E = \int dx \left\{ \frac{1}{2} \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial t} + \frac{1}{2} \frac{\partial \phi}{\partial x} \frac{\partial \phi}{\partial x} + U(\phi) \right\}
\]

The energy density is localized around one point.

- The configuration space \(C = \{ \phi (x, t) \in \mathbb{R} : E[\phi (x, t)] < +\infty \} \)

- Examples:
 - \(\phi^4 \)-Model: \(\phi_{tt} - \phi_{xx} = 2\phi(1 - \phi^2) \)
 - sine-Gordon Model: \(\phi_{tt} - \phi_{xx} = -\sin \phi \)
A BRIEF HISTORY OF TWO-COMPONENT KINKS

1 Structural phase transitions in ferroelectric and ferromagnetic materials.
 A.H. Eschenfelder, Magnetic Bubble Technology, (1981) Berlin, Springer-Verlag.
 F. Jona and G. Shirane, Ferroelectric Crystals, (1993) New York, Dover
 E.K. Salje, Phase Transitions in Ferroelastic and Co-Elastic Crystals, Cambridge, UK, Cambridge University Press.
 B.A. Strukov and A. Levanyuk, Ferroelectric Phenomena in Crystals, Berlin, Springer-Verlag.

2 Topological excitations in quasi-one-dimensional systems like biological macromolecules and hydrogen bonded chains, or polymers, etc.
 J.M. Harris, Poly(ethylene glycol) chemistry: Biotechnical and Biomedical Applications, (1992) New York, Plenum.
 A. S. Davydov, Solitons in molecular systems, (1985) Dordrech, D. Reidel.

3 Electric charge fractionization phenomena in polyacetilen
 Jackiw R and Schrieffer R 1981 Nucl. Phys. B 190 253

4 Nonlinear excitations in Bose-Einstein condensates
 J. Belmonte-Beitia, V. M. Perez-Garcia, V. Vekslerchik, and V. V. Konotop, Physical Review Letters, 100, (2008) 16, 164102.
 A. T. Avelar, D. Bazeia, and W. B. Cardoso, Phys. Rev. E79, 2 (2009) 025602R.

5 Hydrodynamics and solitary waves
 Scott A, Chu F and McLaughlin D 1973 Proc. IEEE 61 1443

6 Cosmology: Study of the Early Universe
 A. Vilenkin and E.P.S. Shellard, Cosmic strings and other topological defects, Cambridge University Press, 1994
A brief history of two-component kinks

Definition. A N-component Kink is a non-singular solution of the nonlinear Klein-Gordon equations

$$\frac{\partial^2 \phi^a}{\partial t^2} - \frac{\partial^2 \phi^a}{\partial x^2} = - \frac{\partial U}{\partial \phi^a} \quad a = 1, \ldots, N$$

which can be interpreted as an extended particle.

- The previous equations are the Euler-Lagrange equations of a (1+1) relativistic scalar field theory model with action functional

$$S = \int d^2 x \left\{ \frac{1}{2} \partial_\mu \phi^a \partial^\mu \phi^a - U(\phi_1, \ldots, \phi_N) \right\}$$

- The total energy is defined as

$$E = \int dx \left\{ \frac{1}{2} \frac{\partial \phi^a}{\partial t} \frac{\partial \phi^a}{\partial t} + \frac{1}{2} \frac{\partial \phi^a}{\partial x} \frac{\partial \phi^a}{\partial x} + U(\phi_1, \ldots, \phi_N) \right\}$$

The energy density is localized around one point.

- The configuration space $C = \{ \phi^a(x, t) \in \mathbb{R} : E[\phi^a(x, t)] < +\infty \}$

- Examples:

???
A BRIEF HISTORY OF TWO-COMPONENT KINKS

Two coupled scalar field theory system:

\[
\begin{align*}
\phi_{tt} - \phi_{xx} &= -U_\phi(\phi, \psi) \\
\psi_{tt} - \psi_{xx} &= -U_\psi(\phi, \psi)
\end{align*}
\]

Rajaraman: Solitons and Instantons

Let us move on to the next level of complexity, i.e. static solutions to systems of coupled scalar fields in two space-time dimensions. This already brings us to the stage where no general methods are available for obtaining all localised static solutions, given the field equations. However, some solutions, but by no means all, can be obtained for a class of such Lagrangians using a little trial and error (Rajaraman 1979).
A brief history of two-component kinks

Two coupled scalar field theory system:

\[\phi_{tt} - \phi_{xx} = -U_\phi(\phi, \psi) \]

\[\psi_{tt} - \psi_{xx} = -U_\psi(\phi, \psi) \]

Rajaraman: Solitons and Instantons

Let us move on to the next level of complexity, i.e. static solutions to systems of coupled scalar fields in two space–time dimensions. This already brings us to the stage where no general methods are available for obtaining all localised static solutions, given the field equations. However, some solutions, but by no means all, can be obtained for a class of such Lagrangians using a little trial and error (Rajaraman 1979).

Strategy: Choose a non-negative potential term \(U(\phi, \psi) \), which gives rise to a completely integrable dynamical system in a \((\phi, \psi)\)-space.
A brief history of two-component kinks

Two coupled scalar field theory system:

\[
\phi_{tt} - \phi_{xx} = -U_\phi(\phi, \psi) \\
\psi_{tt} - \psi_{xx} = -U_\psi(\phi, \psi)
\]

Rajaraman: Solitons and Instantons

Let us move on to the next level of complexity, i.e. static solutions to systems of coupled scalar fields in two space-time dimensions. This already brings us to the stage where no general methods are available for obtaining all localised static solutions, given the field equations. However, some solutions, but by no means all, can be obtained for a class of such Lagrangians using a little trial and error (Rajaraman 1979).

UIC MathPhys-CYL (section Usal)

Strategy: Choose a non-negative potential term \(U(\phi, \psi) \), which gives rise to

A HAMILTON-JACOBI SEPARABLE DYNAMICAL SYSTEM

in a \((\phi, \psi)\)-space.
A BRIEF HISTORY OF TWO-COMPONENT KINKS

References:

1. A. Alonso-Izquierdo, M.A. González León and J. Mateos Guilarte, Kink manifolds in (1+1)-dimensional scalar field theory, Journal of Physics A 31 (1998), 209-229.

2. A. Alonso-Izquierdo, M.A. González León and J. Mateos Guilarte, Kinks from dynamical systems: domain walls in a deformed linear $O(N)$, Nonlinearity 13 (2000), 1137-1169.

3. A. Alonso-Izquierdo, M.A. González León and J. Mateos Guilarte, The Kink variety in systems of two coupled scalar fields in two space-time dimensions, Physical Review D 65 (2002) 085012, 1-8.

4. A. Alonso Izquierdo, M.A. González León and J. Mateos Guilarte, Stability of Kink Defects in a Deformed $O(3)$ Linear Sigma Model, Nonlinearity 15 (2002), 1097-1125.

5. A. Alonso Izquierdo, M.A. González León y M. de la Torre Mayado, Adiabatic motion of two-component BPS kinks, Physical Review D 66 (2002) 105022, 1-9.

6. A. Alonso Izquierdo, J.C. Bueno Sánchez, M.A. González León y M. de la Torre Mayado, Kink manifolds in a three-component scalar field theory, Journal of Physics A 37 (2004) 3607-3626.

7. A. Alonso Izquierdo, M.A. González León, M. de la Torre Mayado y J. Mateos Guı̈larte, Changing shapes: adiabatic dynamics of composite solitary waves, Physica D 200 (2005) 220-241.

8. A. Alonso Izquierdo, J. Mateos Guı̈larte Composite solitary waves in three-component scalar field theory: Three-body low-energy scattering, Physica D 220 (2006), 31-53.

9. A. Alonso Izquierdo y J. Mateos Guı̈larte, One-dimensional solitary waves in singular deformations of $SO(2)$ invariant two-component scalar field theory models, Nonlinearity 20 (2007) 2691-2719.

10. A. Alonso Izquierdo, J. Mateos Guı̈larte, Generalized MSTB models: Structure and kink varieties, Physica D 237 (2008) 3263-3291.

11. A. Alonso-Izquierdo, M.A. Gonzalez Leon, J. Mateos Guı̈larte, Kinks in a Nonlinear Massive Sigma Model, Physical Review Letters 101, 131602, 1-4.

12. A. Alonso-Izquierdo, M.A. Gonzalez Leon, J. Mateos Guı̈larte, BPS and non-BPS kinks in a massive nonlinear S^2-sigma model, Physical Review D 79, 125003, 1-16.

13. A. Alonso-Izquierdo, M.A. González León, M. de la Torre Mayado, Solitary Waves in Massive Nonlinear S^N-Sigma Models, SIGMA 6 (2010), 017, 1-22.
A brief history of two-component kinks

References:

1. A. Alonso-Izquierdo, M.A. González León and J. Mateos Guilarte, *Kink manifolds in (1+1)-dimensional scalar field theory*, Journal of Physics A 31 (1998), 209-229.

2. A. Alonso-Izquierdo, M.A. González León and J. Mateos Guilarte, *Kinks from dynamical systems: domain walls in a deformed linear $O(N)$*, Nonlinearity 13 (2000), 1137-1169.

3. A. Alonso-Izquierdo, M.A. González León and J. Mateos Guilarte, *The Kink variety in systems of two coupled scalar fields in two space-time dimensions*, Physical Review D 65 (2002) 085012, 1-8.

4. A. Alonso Izquierdo, M.A. González León and J. Mateos Guilarte, *Stability of Kink Defects in a Deformed $O(3)$ Linear Sigma Model*, Nonlinearity 15 (2002), 1097-1125.

5. A. Alonso Izquierdo, M.A. González León, J. Mateos Guilarte y M. de la Torre Mayado, *Adiabatic motion of two-component BPS kinks*, Physical Review D 66 (2002) 105022, 1-9.

6. A. Alonso Izquierdo, J.C. Bueno Sánchez, M.A. González León y M. de la Torre Mayado, *Kink manifolds in a three-component scalar field theory*, Journal of Physics A 37 (2004) 3607-3626.

7. A. Alonso Izquierdo, M.A. González León, M. de la Torre Mayado y J. Mateos Guilarte, *Changing shapes: adiabatic dynamics of composite solitary waves*, Physica D 200 (2005) 220-241.

8. A. Alonso Izquierdo, J. Mateos Guilarte *Composite solitary waves in three-component scalar field theory: Three-body low-energy scattering*, Physica D 220 (2006), 31-53.

9. A. Alonso Izquierdo y J. Mateos Guilarte, *One-dimensional solitary waves in singular deformations of $SO(2)$ invariant two-component scalar field theory models*, Nonlinearity 20 (2007) 2691-2719.

10. A. Alonso Izquierdo, J. Mateos Guilarte, *Generalized MSTB models: Structure and kink varieties*, Physica D 237 (2008) 3263-3291.

11. A. Alonso-Izquierdo, M.A. Gonzalez Leon, J. Mateos Guilarte, *Kinks in a Nonlinear Massive Sigma Model*, Physical Review Letters 101, 131602, 1-4.

12. A. Alonso-Izquierdo, M.A. Gonzalez Leon, J. Mateos Guilarte, *BPS and non-BPS kinks in a massive nonlinear S^2-sigma model*, Physical Review D 79, 125003, 1-16.

13. A. Alonso-Izquierdo, M.A. González León, M. de la Torre Mayado, *Solitary Waves in Massive Nonlinear S^N-Sigma Models*, SIGMA 6 (2010), 017, 1-22.
A SYSTEM OF TWO COUPLED SCALAR FIELDS

- **Action functional:**
 \[S = \int d^2x \left\{ \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + \partial_\mu \psi \partial^\mu \psi - U(\phi, \psi) \right\} \]

- **Potential term:**
 \[U(\phi, \psi) = (4\phi^2 + \psi^2 - 1)^2 + 4\phi^2\psi^2 \]

- **Klein-Gordon equations:**
 \[\frac{\partial^2 \phi}{\partial t^2} - \frac{\partial^2 \phi}{\partial x^2} = - \frac{\partial U}{\partial \phi} = -16\phi \left[4\phi^2 + \frac{3}{2} \psi^2 - 1 \right] \]
 \[\frac{\partial^2 \psi}{\partial t^2} - \frac{\partial^2 \psi}{\partial x^2} = - \frac{\partial U}{\partial \psi} = -4\psi \left[6\phi^2 + \psi^2 - 1 \right] \]

- **System invariants:**
 1. **Total Energy:**
 \[E[\phi, \psi] = \int dx \left[\frac{1}{2} \left(\frac{\partial \phi}{\partial t} \right)^2 + \frac{1}{2} \left(\frac{\partial \phi}{\partial x} \right)^2 + \frac{1}{2} \left(\frac{\partial \psi}{\partial t} \right)^2 + \frac{1}{2} \left(\frac{\partial \psi}{\partial x} \right)^2 + U(\phi, \psi) \right] \]
 2. **Total Momentum:**
 \[P[\phi, \psi] = \int dx \left[\frac{\partial \phi}{\partial x} \frac{\partial \phi}{\partial t} + \frac{\partial \psi}{\partial x} \frac{\partial \psi}{\partial t} \right] \]
A SYSTEM OF TWO COUPLED SCALAR FIELDS

- Action functional:
 \[S = \int d^2 x \left\{ \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + \partial_\mu \psi \partial^\mu \psi - U(\phi, \psi) \right\} \]

- Potential term:
 \[U(\phi, \psi) = (4\phi^2 + \psi^2 - 1)^2 + 4\phi^2 \psi^2 \]

- Klein-Gordon equations:
 \[
 \begin{align*}
 \frac{\partial^2 \phi}{\partial t^2} - \frac{\partial^2 \phi}{\partial x^2} &= -\frac{\partial U}{\partial \phi} = -16\phi \left[4\phi^2 + \frac{3}{2} \psi^2 - 1 \right] \\
 \frac{\partial^2 \psi}{\partial t^2} - \frac{\partial^2 \psi}{\partial x^2} &= -\frac{\partial U}{\partial \psi} = -4\psi \left[6\phi^2 + \psi^2 - 1 \right]
 \end{align*}
 \]

- System invariants:
 1. Total Energy:
 \[E[\phi, \psi] = \int dx \left[\frac{1}{2} \left(\frac{\partial \phi}{\partial t} \right)^2 + \frac{1}{2} \left(\frac{\partial \psi}{\partial t} \right)^2 + \frac{1}{2} \left(\frac{\partial \phi}{\partial x} \right)^2 + \frac{1}{2} \left(\frac{\partial \psi}{\partial x} \right)^2 + U(\phi, \psi) \right] \]
 2. Total Momentum:
 \[P[\phi, \psi] = \int dx \left[\frac{\partial \phi}{\partial x} \frac{\partial \phi}{\partial t} + \frac{\partial \psi}{\partial x} \frac{\partial \psi}{\partial t} \right] \]
A SYSTEM OF TWO COUPLED SCALAR FIELDS

- Action functional:
\[S = \int d^2 x \left\{ \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + \partial_\mu \psi \partial^\mu \psi - U(\phi, \psi) \right\} \]

- Potential term:
\[U(\phi, \psi) = (4\phi^2 + \psi^2 - 1)^2 + 4\phi^2 \psi^2 \]

- Klein-Gordon equations:
\[
\begin{align*}
\frac{\partial^2 \phi}{\partial t^2} - \frac{\partial^2 \phi}{\partial x^2} &= -\frac{\partial U}{\partial \phi} = -16\phi \left[4\phi^2 + \frac{3}{2} \psi^2 - 1 \right] \\
\frac{\partial^2 \psi}{\partial t^2} - \frac{\partial^2 \psi}{\partial x^2} &= -\frac{\partial U}{\partial \psi} = -4\psi \left[6\phi^2 + \psi^2 - 1 \right]
\end{align*}
\]

- System invariants:

1. Total Energy:
\[E[\phi, \psi] = \int dx \left[\frac{1}{2} \left(\frac{\partial \phi}{\partial t} \right)^2 + \frac{1}{2} \left(\frac{\partial \psi}{\partial t} \right)^2 + \frac{1}{2} \left(\frac{\partial \phi}{\partial x} \right)^2 + \frac{1}{2} \left(\frac{\partial \psi}{\partial x} \right)^2 + U(\phi, \psi) \right] \]

2. Total Momentum:
\[P[\phi, \psi] = \int dx \left[\frac{\partial \phi}{\partial x} \frac{\partial \phi}{\partial t} + \frac{\partial \psi}{\partial x} \frac{\partial \psi}{\partial t} \right] \]
A SYSTEM OF TWO COUPLED SCALAR FIELDS

- **Action functional:**
 \[S = \int d^2 x \left\{ \frac{1}{2} \partial_\mu \phi \partial^\mu \phi + \partial_\mu \psi \partial^\mu \psi - U(\phi, \psi) \right\} \]

- **Potential term:**
 \[U(\phi, \psi) = (4\phi^2 + \psi^2 - 1)^2 + 4\phi^2 \psi^2 \]

- **Klein-Gordon equations:**
 \[
 \begin{align*}
 \frac{\partial^2 \phi}{\partial t^2} - \frac{\partial^2 \phi}{\partial x^2} &= -\frac{\partial U}{\partial \phi} = -16\phi \left[4\phi^2 + \frac{3}{2} \psi^2 - 1 \right] \\
 \frac{\partial^2 \psi}{\partial t^2} - \frac{\partial^2 \psi}{\partial x^2} &= -\frac{\partial U}{\partial \psi} = -4\psi \left[6\phi^2 + \psi^2 - 1 \right]
 \end{align*}
 \]

- **System invariants:**
 1. **Total Energy:**
 \[E[\phi, \psi] = \int dx \left[\frac{1}{2} \left(\frac{\partial \phi}{\partial t} \right)^2 + \frac{1}{2} \left(\frac{\partial \psi}{\partial t} \right)^2 + \frac{1}{2} \left(\frac{\partial \phi}{\partial x} \right)^2 + \frac{1}{2} \left(\frac{\partial \psi}{\partial x} \right)^2 + U(\phi, \psi) \right] \]
 2. **Total Momentum:**
 \[P[\phi, \psi] = \int dx \left[\frac{\partial \phi}{\partial x} \frac{\partial \phi}{\partial t} + \frac{\partial \psi}{\partial x} \frac{\partial \psi}{\partial t} \right] \]
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

VACUUM SOLUTIONS

Solutions of the model:

\[\phi_{tt} - \phi_{xx} = -16\phi\left[4\phi^2 + \frac{3}{2}\psi^2 - 1\right] , \quad \psi_{tt} - \psi_{xx} = -4\psi\left[6\phi^2 + \psi^2 - 1\right] \]

in the configuration space: \(C = \{ \phi(x, t) \in \mathbb{R} : E[\phi(x, t)] < +\infty \} \)
Vacuum solutions

Solutions of the model:

\[0 = -16\phi [4\phi^2 + \frac{3}{2}\psi^2 - 1] , \quad 0 = -4\psi [6\phi^2 + \psi^2 - 1] \]

in the configuration space: \(C = \{ \phi(x, t) \in \mathbb{R} : E[\phi(x, t)] < +\infty \} \)
Vacuum solutions

Solutions (static and homogeneous) of the model:

\[0 = -16\phi [4\phi^2 + \frac{3}{2}\psi^2 - 1], \quad 0 = -4\psi [6\phi^2 + \psi^2 - 1] \]

in the configuration space: \(C = \{ \phi(x, t) \in \mathbb{R} : E[\phi(x, t)] < +\infty \} \).

• Zero Energy Solutions:

\[\mathcal{M} = \{ (\phi_0, \psi_0) \in \mathbb{R}^2 : U(\phi_0, \psi_0) = 0 \} = \{ A_1 = \left(\frac{1}{2}, 0 \right), A_2 = \left(-\frac{1}{2}, 0 \right), B_1 = (1, 0), B_2 = (-1, 0) \} \]
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

Vacuum solutions

Kink statics:
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

\[\phi_{tt} - \phi_{xx} = -16\phi\left[4\phi^2 + \frac{3}{2}\psi^2 - 1\right] , \quad \psi_{tt} - \psi_{xx} = -4\psi\left[6\phi^2 + \psi^2 - 1\right] \]

in the configuration space: \(C = \{ \phi(x, t) \in \mathbb{R} : E[\phi(x, t)] < +\infty \} \)
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

Static Kinks

Solutions of the model:

$$0 - \phi_{xx} = -16\phi[4\phi^2 + \frac{3}{2}\psi^2 - 1], \quad 0 - \psi_{xx} = -4\psi[6\phi^2 + \psi^2 - 1]$$

in the configuration space: $$C = \{\phi(x, t) \in \mathbb{R} : E[\phi(x, t)] < +\infty\}$$
Static kinks of the model:

\[0 - \phi_{xx} = -16\phi \left[4\phi^2 + \frac{3}{2}\psi^2 - 1 \right] , \quad 0 - \psi_{xx} = -4\psi \left[6\phi^2 + \psi^2 - 1 \right] \]

in the configuration space: \(C = \{ \phi(x, t) \in \mathbb{R} : E[\phi(x, t)] < +\infty \} \).

Newton equations of an analogue mechanical system
Static kinks of the model:

\[0 - \phi_{xx} = -16\phi[4\phi^2 + \frac{3}{2}\psi^2 - 1] \quad , \quad 0 - \psi_{xx} = -4\psi[6\phi^2 + \psi^2 - 1] \]

in the configuration space: \(C = \{ \phi(x, t) \in \mathbb{R} : E[\phi(x, t)] < +\infty \} \).

Newton equations of an analogue mechanical system

\[-U(\phi, \psi) = -(4\phi^2 + \psi^2 - 1)^2 - 4\phi^2\psi^2 \]

Completely integrable mechanical system
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

Static kinks

Static kinks of the model:

\[0 - \phi_{xx} = -16\phi [4\phi^2 + \frac{3}{2}\psi^2 - 1] \quad , \quad 0 - \psi_{xx} = -4\psi [6\phi^2 + \psi^2 - 1] \]

in the configuration space: \(C = \{ \phi(x, t) \in \mathbb{R} : E[\phi(x, t)] < +\infty \} \).

The Newton equations of an analogue mechanical system:

\[-U(\phi, \psi) = -(4\phi^2 + \psi^2 - 1)^2 - 4\phi^2\psi^2\]

The completely integrable mechanical system:

Hamilton-Jacobi separable system

Parabolic coordinates

Static kinks with one energy density lump
Static kinks with two energy density lumps
Static kinks with four energy density lumps

Notation: \(\bar{x} = x - x_0 \)
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

\[K_{\text{static}}^{(q_1, q_2, \lambda)}(\bar{x}) = \left(\frac{q_1}{4} [\lambda + \tanh(\sqrt{2} \bar{x})], -\lambda q_2 \sqrt{\frac{1}{2} [1 - \lambda \tanh[\sqrt{2} \bar{x}]]} \right), \quad q_i, \lambda = \pm 1 \]
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

Static single kinks

\[K_{\text{static}}^{(q_1, q_2, \lambda)}(\bar{x}) = \left(\frac{q_1}{4} \left[\lambda + \tanh(\sqrt{2} \bar{x}) \right], -\lambda q_2 \sqrt{\frac{1}{2} \left[1 - \lambda \tanh(\sqrt{2} \bar{x}) \right]} \right), \quad q_i, \lambda = \pm 1 \]
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

Static single kinks

\[K^{(q_1, q_2, \lambda)}_{\text{static}}(\bar{x}) = \left(\frac{q_1}{4} [\lambda + \tanh(\sqrt{2} \bar{x})], -\lambda q_2 \sqrt{\frac{1}{2} [1 - \lambda \tanh(\sqrt{2} \bar{x})]} \right), \quad q_i, \lambda = \pm 1 \]
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

Static single kinks

\[K_{\text{static}}^{(q_1, q_2, \lambda)}(x) = \left(\frac{q_1}{4} \left[\lambda + \tanh(\sqrt{2}x) \right], -\lambda q_2 \sqrt{\frac{1}{2} \left[1 - \lambda \tanh(\sqrt{2}x) \right]} \right), \quad q_i, \lambda = \pm 1 \]
A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

\[K_{\text{static}}^{(q_1, q_2, \lambda)}(\vec{x}) = \left(\frac{q_1}{4} [\lambda + \tanh(\sqrt{2} \vec{x})], -\lambda q_2 \sqrt{\frac{1}{2} \left[1 - \lambda \tanh(\sqrt{2} \vec{x}) \right] } \right), \quad q_i, \lambda = \pm 1 \]
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

STATIC SINGLE KINKS

\[
K_{\text{static}}^{(q_1, q_2, \lambda)}(x) = \left(\frac{q_1}{4} \left[\lambda + \tanh(\sqrt{2}x) \right], -\lambda q_2 \sqrt{\frac{1}{2} \left[1 - \lambda \tanh[\sqrt{2}x] \right]} \right), \quad q_i, \lambda = \pm 1
\]
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

Static Single Kinks

\[
K^{(q_1, q_2, \lambda)}_{\text{static}}(x) = \left(\frac{q_1}{4} \left[\lambda + \tanh(\sqrt{2}x) \right], -\lambda q_2 \sqrt{\frac{1}{2} \left[1 - \lambda \tanh[\sqrt{2}x] \right]} \right), \quad q_i, \lambda = \pm 1
\]
FUNDAMENTAL PARTICLES

LIST OF FUNDAMENTAL EXTENDED PARTICLES

Particles	First topological charge	Second topological charge
$K_{\text{static}}^{-1,1,-1}$	-1	1
$K_{\text{static}}^{1,1,-1}$	1	1
$K_{\text{static}}^{1,-1,-1}$	1	-1
$K_{\text{static}}^{-1,-1,-1}$	-1	-1

Antiparticles	First topological charge	Second topological charge
$K_{\text{static}}^{1,-1,1}$	1	-1
$K_{\text{static}}^{-1,-1,1}$	-1	-1
$K_{\text{static}}^{-1,1,1}$	-1	1
$K_{\text{static}}^{1,1,1}$	1	1
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

\[\bar{K}_{\text{static}}^{(q_1,0)}(\bar{x}, b) = \left(\frac{q_1}{4} \frac{\sinh(2\sqrt{2} \bar{x})}{\cosh(2\sqrt{2} \bar{x}) + b^2}, \frac{b}{[b^2 + \cosh(2\sqrt{2} \bar{x})]^{\frac{1}{2}}} \right), \quad q_1 = \pm 2, \ b \in \mathbb{R} \]
STATIC TWO-LUMP COMPOSITE KINKS

\[\overline{K}^{(q_1,0)}_{\text{static}}(x,b) = \left(\frac{q_1}{4} \frac{\sinh(2\sqrt{2}x)}{\cosh(2\sqrt{2}x) + b^2}, \frac{b}{[b^2 + \cosh(2\sqrt{2}x)]^{\frac{1}{2}}} \right), \quad q_1 = \pm 2, \ b \in \mathbb{R} \]
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

STATIC TWO-LUMP COMPOSITE KINKS

\[
K_{\text{static}}^{(q_1,0)}(\bar{x}, b) = \left(\frac{q_1}{4} \frac{\sinh(2\sqrt{2}\bar{x})}{\cosh(2\sqrt{2}\bar{x}) + b^2}, \frac{b}{[b^2 + \cosh(2\sqrt{2}\bar{x})]^\frac{1}{2}} \right), \quad q_1 = \pm 2, \ b \in \mathbb{R}
\]
Static two-lump composite kinks

\[\overline{K}_{\text{static}}^{(q_1,0)}(\vec{x}, b) = \left(\frac{q_1}{4} \frac{\sinh(2\sqrt{2} \vec{x})}{\cosh(2\sqrt{2} \vec{x}) + b^2}, \frac{b}{[b^2 + \cosh(2\sqrt{2} \vec{x})]^{\frac{1}{2}}} \right), \quad q_1 = \pm 2, \quad b \in \mathbb{R} \]
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

STATIC TWO-LUMP COMPOSITE KINKS

\[
\overline{K}^{(q_1,0)}_{\text{static}}(\bar{x}, b) = \left(\frac{q_1}{4} \frac{\sinh(2\sqrt{2} \bar{x})}{\cosh(2\sqrt{2} \bar{x}) + b^2}, \frac{b}{[b^2 + \cosh(2\sqrt{2} \bar{x})]^\frac{1}{2}} \right), \quad q_1 = \pm 2, \ b \in \mathbb{R}
\]
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

\[\overline{K}_{\text{static}}^{(0,q_2)}(\bar{x}, c) = \left(\frac{\sinh 2\sqrt{c} \sinh 2\sqrt{2\bar{x}}}{\cosh^2 2\sqrt{2\bar{x}} + 2 \cosh 2\sqrt{2c} \cosh 2\sqrt{2\bar{x}} + 1}, \begin{array}{c} q_2 \frac{\sinh 2\sqrt{2\bar{x}}}{[\cosh^2 2\sqrt{2\bar{x}} + 2 \cosh 2\sqrt{2c} \cosh 2\sqrt{2\bar{x}} + 1]^{\frac{1}{2}}} \\ q_2 = \pm 2, \ c \in \mathbb{R} \end{array} \right) \]
A. Alonso

Static Four-Lump Composite Kinks

\[
\mathcal{K}_{\text{static}}^{(0,q_2)}(\bar{x}, c) = \left(\frac{\sinh 2\sqrt{2}c \sinh 2\sqrt{2\bar{x}}}{\cosh^2 2\sqrt{2\bar{x}} + 2 \cosh 2\sqrt{2}c \cosh 2\sqrt{2\bar{x}} + 1}, q_2 \left(\frac{\sinh 2\sqrt{2\bar{x}}}{\cosh^2 2\sqrt{2\bar{x}} + 2 \cosh 2\sqrt{2}c \cosh 2\sqrt{2\bar{x}} + 1} \right)^{\frac{1}{2}} \right)
\]

\(q_2 = \pm 2, \quad c \in \mathbb{R} \)
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

STATIC FOUR-LUMP COMPOSITE KINKS

\[
\overline{K}^{(0, q_2)}_{\text{static}} (\vec{x}, c) = \left(\frac{\sinh 2\sqrt{2}c \cdot \sinh 2\sqrt{2}\vec{x}}{\cosh^2 2\sqrt{2}\vec{x} + 2 \cosh 2\sqrt{2}c \cosh 2\sqrt{2}\vec{x} + 1}, \frac{q_2}{2} \frac{\sinh 2\sqrt{2}\vec{x}}{[\cosh^2 2\sqrt{2}\vec{x} + 2 \cosh 2\sqrt{2}c \cosh 2\sqrt{2}\vec{x} + 1]^{\frac{1}{2}}} \right)
\]

\[q_2 = \pm 2, \ c \in \mathbb{R}\]
STATIC FOUR-LUMP COMPOSITE KINKS

\[
\overline{K}_{\text{static}}^{(0,q_2)}(\bar{x}, c) = \left(\frac{\sinh 2\sqrt{2}c \sinh 2\sqrt{2\bar{x}}}{\cosh^2 2\sqrt{2\bar{x}} + 2 \cosh 2\sqrt{2\bar{x}} \cosh 2\sqrt{2\bar{x}} + 1}, \frac{q_2}{2} \frac{\sinh 2\sqrt{2\bar{x}}}{[\cosh^2 2\sqrt{2\bar{x}} + 2 \cosh 2\sqrt{2\bar{x}} \cosh 2\sqrt{2\bar{x}} + 1]^{\frac{1}{2}}} \right),
\]

\[q_2 = \pm 2, \quad c \in \mathbb{R}\]
Static Four-Lump Composite Kinks

\[
K_{\text{static}}^{(0,q_2)}(\bar{x}, c) = \left(\frac{\sinh 2\sqrt{2}c \sinh 2\sqrt{2}\bar{x}}{\cosh^2 2\sqrt{2}\bar{x} + 2 \cosh 2\sqrt{2}c \cosh 2\sqrt{2}\bar{x} + 1}, \frac{q_2}{2} \right) \frac{\sinh 2\sqrt{2}\bar{x}}{[\cosh^2 2\sqrt{2}\bar{x} + 2 \cosh 2\sqrt{2}c \cosh 2\sqrt{2}\bar{x} + 1]^{1/2}}
\]

\[q_2 = \pm 2, \quad c \in \mathbb{R}\]
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

STATIC FOUR-LUMP COMPOSITE KINKS

\[
\overline{K}_{\text{static}}^{(0,q_2)}(\bar{x}, c) = \left(\frac{\sinh 2\sqrt{2}c \sinh 2\sqrt{2}\bar{x}}{\cosh^2 2\sqrt{2}\bar{x} + 2 \cosh 2\sqrt{2}c \cosh 2\sqrt{2}\bar{x} + 1}, \frac{q_2}{2} \frac{\sinh 2\sqrt{2}\bar{x}}{[\cosh^2 2\sqrt{2}\bar{x} + 2 \cosh 2\sqrt{2}c \cosh 2\sqrt{2}\bar{x} + 1]^\frac{1}{2}} \right)
\]

\[q_2 = \pm 2, \; c \in \mathbb{R}\]
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics:

[Image of a camera]
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics

Solutions of the model:

\[
\phi_{tt} - \phi_{xx} = -16\phi[4\phi^2 + \frac{3}{2}\psi^2 - 1], \quad \psi_{tt} - \psi_{xx} = -4\psi[6\phi^2 + \psi^2 - 1]
\]

in the configuration space: \(C = \{ \phi(x, t) \in \mathbb{R} : E[\phi(x, t)] < +\infty \} \)
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics

Solutions of the model:

\[\phi_{tt} - \phi_{xx} = -16\phi[4\phi^2 + \frac{3}{2} \psi^2 - 1] \quad \psi_{tt} - \psi_{xx} = -4\psi[6\phi^2 + \psi^2 - 1] \]

in the configuration space: \[C = \{ \phi(x, t) \in \mathbb{R} : E[\phi(x, t)] < +\infty \} \]

Numerical method: \[\phi_j^n = \phi(x_m + j\delta, n\tau) \quad \text{and} \quad \psi_j^n = \psi(x_m + j\delta, n\tau), \quad j = 0, \ldots, J \]

Energy conservative Second order finite difference scheme

\[\frac{\phi_{j+1}^n - 2\phi_j^n + \phi_{j-1}^n}{\tau^2} - \frac{\phi_{j+1}^{n+1} - 2\phi_j^{n+1} + \phi_{j-1}^{n+1}}{\tau^2} + \frac{U[\phi_{j+1}^{n+1}, \psi_j^n] - U[\phi_{j+1}^n, \psi_j^n]}{\phi_{j+1}^{n+1} - \phi_j^n} = 0 \]

\[\frac{\psi_{j+1}^n - 2\psi_j^n + \psi_{j-1}^n}{\tau^2} - \frac{\psi_{j+1}^{n+1} - 2\psi_j^{n+1} + \psi_{j-1}^{n+1}}{\tau^2} + \frac{U[\phi_j^n, \psi_{j+1}^{n+1}] - U[\phi_j^n, \psi_{j-1}^{n+1}]}{\psi_{j+1}^{n+1} - \psi_j^{n+1}} = 0 \]

Mur absorbing contour conditions

\[\phi_0^{n+1} - \phi_1^n - \frac{n_c - 1}{n_c + 1} (\phi_1^{n+1} - \phi_0^n) = 0 \]

\[\phi_J^{n+1} - \phi_{J-1}^n - \frac{n_c - 1}{n_c + 1} (\phi_{J-1}^{n+1} - \phi_J^n) = 0 \]

\[\psi_0^{n+1} - \psi_1^n - \frac{n_c - 1}{n_c + 1} (\psi_1^{n+1} - \psi_0^n) = 0 \]

\[\psi_J^{n+1} - \psi_{J-1}^n - \frac{n_c - 1}{n_c + 1} (\psi_{J-1}^{n+1} - \psi_J^n) = 0 \]
A TWO COUPLED SCALAR FIELD THEORY MODEL

A. Alonso

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions
A TWO COUPLED SCALAR FIELD THEORY MODEL

A. Alonso

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions
Fundamental Two-Particle Scattering

List of Fundamental Two-Particle Scattering

Two-lump scattering processes	Arrangement	
Type	**kink-antikink**	**antikink-kink**
different type	KINK-ANTIKINK OF THE DIFFERENT TYPE	ANTIKINK-KINK OF THE DIFFERENT TYPE
same type	KINK-ANTIKINK OF THE SAME TYPE	ANTIKINK-KINK OF THE SAME TYPE
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

Kink-antikink (of different type) scattering

\[K^{(q_1, q_2, -1)}(v_0) \cup K^{(q_1, -q_2, 1)}(-v_0) \rightarrow \]
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

Kink-antikink (of different type) scattering

\[K^{(q_1, q_2, -1)}(v_0) \cup K^{(q_1, -q_2, 1)}(-v_0) \rightarrow \]
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

Kink-antikink (of different type) scattering

\[K^{(q_1, q_2, -1)}(v_0) \cup K^{(q_1, -q_2, 1)}(-v_0) \rightarrow \]
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

Kink-antikink (of different type) scattering

\[K^{(q_1, q_2, -1)}(v_0) \cup K^{(q_1, -q_2, 1)}(-v_0) \rightarrow \]
Kink-dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

Kink-antikink (of different type) scattering

\[K^{(q_1, q_2, -1)}(v_0) \cup K^{(q_1, -q_2, 1)}(-v) \rightarrow \]
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

Kink-antikink (of different type) scattering

\[K^{q_1, q_2, -1} (v_0) \cup K^{q_1, -q_2, 1} (-v_0) \rightarrow K^{q_1, -q_2, -1} (-v_0) \cup K^{q_1, q_2, 1} (v_0) \]
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

\[K^{(q_1, q_2, 1)}(v_0) \cup K^{(-q_1, q_2, -1)}(-v_0) \rightarrow \]

ANTIPLICIT-KINK (OF DIFFERENT TYPE) SCATTERING
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

ANTI-KINK-KINK (OF DIFFERENT TYPE) SCATTERING

$$K^{(q_1, q_2, 1)}(v_0) \cup K^{(-q_1, q_2, 1)}(-v_0) \rightarrow K^{(q_1, q_2, 1)}(-v_0) \cup K^{(-q_1, q_2, 1)}(v_0)$$
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

Kink-antikink (of different type) scattering

\[K^{(q_1, q_2, -1)}(v_0) \cup K^{(q_1, -q_2, 1)}(-v_0) \rightarrow \]
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

Kink-antikink (of same type) scattering

\[K^{(q_1,q_2,-1)}(v_0) \cup K^{(-q_1,-q_2,1)}(-v_0) \rightarrow \]
KINK-ANTI KINK (OF SAME TYPE) SCATTERING

\[K^{(q_1, q_2, -1)}(v_0) \cup K^{(-q_1, -q_2, 1)}(-v_0) \rightarrow K^{(q_1, q_2, -1)}(-v_0) \cup K^{(-q_1, -q_2, 1)}(v_0) + \nu \]
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

ANTI KINK-KINK (OF SAME TYPE) SCATTERING

\[K^{(q_1, q_2, 1)}(v_0) \cup K^{(-q_1, -q_2, -1)}(-v_0) \rightarrow \]
A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

ANTIKINK-KINK (OF SAME TYPE) SCATTERING

\[K^{(q_1, q_2, 1)}(v_0) \cup K^{(-q_1, -q_2, -1)}(-v_0) \rightarrow \]
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

Antikink-kink (of same type) scattering

\[K^{(q_1, q_2, 1)}(v_0) \cup K^{(-q_1, -q_2, -1)}(-v_0) \rightarrow K^{(q_1, q_2, 1)} \cup K^{(-q_1, -q_2, -1)} \]
Conclusions: Kink Dynamics

1. There exist four basic extended particles together with its corresponding antiparticles described by kinks and antikinks in this model.

2. There exist attractive forces between kinks and antikinks of the same type, which can form bound states. The kink-antikink interaction is stronger at short distances than the antikink-kink force although this last one has a longer range. The kink-antikink pair formation involves radiation emission.

3. The repulsive forces manage the antikink-kink interaction when the involved lumps are of different type.

4. The kink-antikink (of different type) interaction is almost absent although an exchange of the second topological charge is induced.

Thank your for your attention!
Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

A. Alonso

A brief history of two-component kinks

A brief history of two-component kinks

A system of two coupled scalar fields in two space-time dimensions

Kink variety in a system of two coupled scalar fields in two space-time dimensions

Kink dynamics in a system of two coupled scalar fields in two space-time dimensions

THREE LUMP SCATTERING

\[K(q_1, q_2, -1) \cdot K(q_1, -q_2, 1) \cdot K(-q_1, -q_2, -1) \text{ scattering} \]

\[K(q_1, q_2, -1) \cdot K(q_1, -q_2, 1) \cdot K(-q_1, -q_2, -1) \text{ scattering} \]

\[K(q_1, q_2, -1) \cdot K(-q_1, -q_2, 1) \cdot K(q_1, -q_2, -1) \text{ scattering} \]

\[K(q_1, q_2, -1) \cdot K(-q_1, -q_2, 1) \cdot K(q_1, q_2, -1) \text{ scattering} \]