"Brown-Ring"-Related Coordination Polymers of the Quartet-{FeNO}^7 Chromophore

Georg Monsch,[a] Areenan In-Iam,[a] Xaver Kästele,[a] and Peter Klüfers*\[a]

Dedicated to Professor Manfred Scheer on the Occasion of his 65th Birthday

Abstract. A conspicuous detail of the so-called brown-ring test (the analytical test on nitrate) is the reddish color of the bottom layer of concentrated sulfuric acid, which develops upon the bleeding of the brown layer into the acid. Crystals of the same color form from a solution of ferrous sulfate in concentrated sulfuric acid on saturation with gaseous nitric oxide. The structure of this $\text{H}_2\text{O}^\{\text{Fe(NO)}(\mu_2-\text{SO}_4)\cdot \text{Fe(NO)}\}_{\text{n}}$ (1a) is made up from infinite chessboard-type layers with sulfur on the field junctions and Fe(NO) moieties below the black and above the white fields. An Fe–N–O angle of about 160° causes disorder in the tetragonal space group Pnmm. A similar crystal pathology was found in the related $\{\text{Fe(MeOH)}(\text{NO})(\mu_2-\text{SO}_4)\}_{\text{n}}$ (1b) in the same crystal class. A one-dimensional coordination polymer is formed in crystals of a third compound that comprises the Fe(NO)O$_2$ coordination pattern, namely the brown oxalato species $\{\text{Fe(H}_2\text{O})(\text{NO})(\mu_2-\text{ox})\}_{\text{n}}H_2$O (2). A still larger NO tilt of about 156° is not obscured by disorder in the triclinic crystals of 2.

Introduction

In a first intense period of research on the reaction products of iron(II)-containing solutions and gaseous nitric oxide, the competing groups of Manchot and Kohlschütter discovered experimental conditions for the preparation of the parent chromophore $\{\text{Fe(H}_2\text{O)}_{\text{n}}(\text{NO})\}_{\text{n}}$ as well as variants thereof.[1] In terms of color, weakly acidic Fe(II)/NO solutions containing this ion resemble the brown part of the layer, which is obtained in the course of a positive nitrate test in the classical "brown-ring" test.

Few crystalline solids had been reported in the publications of that time. In particular, Manchot claimed two solids: a brown to black $2\text{FeSO}_4\cdot\text{NO}+\text{H}_2\text{O}$, which precipitated from aqueous solutions of the components on ethanol addition, and red crystals of an FeSO$_4$-NO, which grew from red solutions of ferrous sulfate in concentrated sulfuric acid after exposure to nitric oxide.[1e] Schlesinger and Salathe reproduced Manchot's red solutions and considered them identical with Raschig's "ferrous nitrosisulfonate".[2] We and others were not able to reproduce brown crystals of the claimed formula.[3]

However, the formation of red crystals from concentrated sulfuric acid reliably occurred as described by Manchot. It should be noted at this point that Manchot's attention was drawn to Fe(II)/NO solutions in concentrated sulfuric acid by a peculiarity of the nitrate test. Thus, Figure 1 of reference[3a,3b] shows the typical cherry-red color when the ring's brown component bleeds into the bottom layer of concentrated acid.

In this work, we report on the composition and structure of Manchot's red crystals. After having demonstrated their polymeric nature, we will extend our discussion to a related coordination polymer where the sulfate was replaced by oxalate. Both substances extend the rather limited class of quartet-[FeNO]7 compounds with an Fe(NO)O$_3$ chromophore, that is, a class with the brown-ring cation $\{\text{Fe}\text{(H}_2\text{O})\text{(NO)}(\mu_2-\text{ox})\}_{\text{n}}H_2$O as the parent species.[3a,3b] (Note the Enemark–Feltham notation, where the superscript "7" is the sum of the central metal's d-electrons and the nitrosyl ligand's π* electrons; here, d^8 ferrous centers reacted with a neutral NO molecule, hence, $6+1=7$.)

Results and Discussion

(H$_2$O)$\{\text{Fe(NO)}(\mu_2\text{-SO}_4)(\mu_2\text{-SO}_4)\}_{\text{n}}H_2$O (1a)

Following Manchot's recipe, red, highly reactive crystals were obtained by the reaction of a ferrous-sulfate solution in concentrated sulfuric acid with nitric oxide gas at ambient temperature.[1e] The solutions turned red immediately on contact to NO and, as reported by Manchot, large red crystals formed in the course of some hours.

At this point, it may be noted that our scientific ancestors fostered a rather poetical language in their publications. Thus, Manchot described these crystals with the words: "[The precipitate] consists of small, crimson, rather thick platelets, which keel over in the heavy liquid like floundering ice floes, and thus, contingent upon the position, from which they are beheld, appear as platelets or, when their narrow darker edge is turned upward, needle-shaped." (Translation of Manchot's "[Der Niederschlag] besteht aus kleinen, rothen, ziemlich
dicken Krystallblättchen, welche in der schweren Flüssigkeit ähnlich wie Eisschollen umkippen und sich herumwälzen und daher je nach der Lage, in der man sie erblickt, als Blättchen oder, wenn die schmale dunklere Kante nach oben gerichtet ist, nadelförmig erscheinen.

Crystal-structure analysis in the tetragonal space group $I4/mmm$ revealed a two-dimensional coordination polymer of the Fe(μ_4-SO$_4$)(NO) part (Figure 1). The layers extend perpendicularly to the fourfold axis in the $(x\ y\ 1/4)$ plane. They may be described as a chessboard arrangement with the sulfato ligands on the junctions and Fe(NO) moieties above the black and below the white fields. The positional disorder of the nitrosoyl ligand’s oxygen atoms is distinct and could be resolved by a split model. As a result, Figure 2 shows one of the components and highlights the obvious tilt of the FeNO group. Notably, the tilt angle of about 164° is close to the value in crystals of the parent aqua cation.$^{[3a,3b]}$ The space between the Fe(μ_4-SO$_4$) layers is heavily disordered. O3 in Figure 2 and a symmetry-generated counterpart in the layer below belong to a μ_2-bridging sulfate, whose remaining SO$_2$ part is eightfold disordered with all the atoms in the $(x\ 0\ 0)$ plane. Finally, residual electron density in the same $(x\ 0\ 0)$ plane was assigned to a disordered oxonium ion. Since the positions of the hydrogen atoms were inaccessible, our interpretation of a H_3O^+/H$^+$ counterion, which was a reactive solid, which decomposed rapidly in air. We, thus, tried to obtain the 2D

Figure 1. The two-dimensional $\{\text{Fe(NO)}(\mu_4\text{-SO}_4)\}$ network, highlighting the fourfold disorder of the nitrosoyl ligands about the space group’s fourfold axis.

Two points regarding Manchot’s experiments should be mentioned. First, Manchot himself, published the simple formula FeSO$_4$$\cdot$NO for 1a. Adopting this notation, 1a may be reformulated as FeSO$_4$$\cdotNO\cdot$$\frac{1}{2}H_2SO_4$$\cdotH_2$O. We may assume that he attempted to analyze the red crystals. However, given a sulfuric-acid- and water-containing solid, Manchot might have assumed to have a solid in his hands with adhering solvent.

Second, the preparation of cherry-red solutions could also starting from iron(III) sulfate in concentrated sulfuric acid.$^{[1d]}$ In the case of organic media, which react with the co-product nitrites as the by-products.$^{[4a]}$ However, concentrated sulfuric acid is a well controllable solvent for this particular system despite its high reactivity in general. The reason is its ability to simply dissolve salts of the nitrosoyl cation such as nitrosyl hydrogensulfate without further transformation.$^{[5]}$ Moreover, different from organic media, the reaction formulated above is a true equilibrium in H$_2$SO$_4$(conc.), thus restoring the ferric precursor on shifting it to the left, for example, by dilution with water – that was the course of events Manchot obviously observed. Thus, aqueous solutions are inappropriate for this reaction since, in a first step, NO$^+$ is transformed there according to NO$^+$ + H$_2$O \rightarrow HNO$_2$ + H$.^+$ Nitrous acid then acts as an oxidant for any iron(II) species in the acidic solution, which restores the iron(III) state and NO. (It should be noted that this reaction is followed by Fe(NO)$_2^+$ formation in the course of the analytical nitrite test since iron(II) excess has to be assured there.)

$[(\text{Fe(CH}_3\text{OH})(\text{NO})(\mu_2\text{-SO}_4))_{n/4}]$ (1b)

Due to the H$_2$O$^+$ counterion, 1a was a reactive solid, which decomposed rapidly in air. We, thus, tried to obtain the 2D
network of 1a free of reactive components. In fact, a red, and more robust solid was obtained from solutions containing ferrous and sulfate ions in wet methanol. On reaction with gaseous nitric oxide, the solutions turned green and tiny red crystals precipitated. In order to obtain crystals of sufficient size for single-crystal X-ray work, citric acid was added as a weakly bonding ligand to Fe²⁺ in the hope that the nucleation of too many seeds might have been retarded to some extent. In fact, larger crystals grew on citrate addition. However, again, disorder in a highly symmetric space group, here P4/mmm (used with origin choice 2), impaired the analysis. Notably, the same 2D pattern of the Fe(NO)(μ₄-SO₄) part of the red solid \[(Fe(MeOH)(NO)(μ₄-SO₄))_{1a}\] (1b) reveals itself in almost equal lattice constants \(a\) in 1a and 1b. The packing type as well as the trans ligand differ between 1a and 1b. In the latter, a methanol ligand has replaced the μ₄-sulfato group of the former. Due to the non-linearity of the Fe–O–Me moiety, the methyl group is fourfold disordered (as is the μ₄-sulfate in 1a).

The same holds for the Fe–N–O moiety, which is slightly bent with an angle of 163.3(1)° with all other values similar to the same 2D pattern of the Fe(NO)(μ₄-SO₄) coordination in 1a.

Among the three compounds of this work, 1b was the most stable in terms of a lack of cleaning off nitric oxide. Thus, various spectroscopic data were collected. The N–O stretching frequency of 1837 cm⁻¹ was as high as those of the related Fe(NO)O₅ compounds, which all mark the upper limit of the quartet-[FeNO]⁷ class (for a compilation, see reference⁶). Maxima of the Kubelka–Munk-transformed diffuse reflexion spectrum of the solid were found in the visible range at 473 and 590 nm, rather close to the respective maxima of the parent brown-ring chromophore (464 and 592 nm).

While the quality of the highly symmetrical (crystal class 4/mmm) red crystals of 1 is low due to pronounced disorder, the related one-dimensional polymer in the triclinic crystals of 2 can be described with more detail. As a result, the typical red color has its origin in an additional absorption of the μ₂-sulfato group of the for-}
test on nitrate, similar but non-polymeric species seem to prevail in the concentrated acid of this compartment. We could assume, the bridging sulfato ligands of the solid might be replaced by terminal hydrogensulfato ligands.

Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre, CCDC, 12 Union Road, Cambridge CB21EZ, UK. Copies of the data can be obtained free of charge on quoting the depository numbers CCDC-1973267 (1a), CCDC-1973268 (1b), and CCDC-1973269 (2) (Fax: +44-1223-336-033; E-Mail: deposit@ccdc.cam.ac.uk, http://www.ccdc.cam.ac.uk).

Supporting Information (see footnote on the first page of this article): Preparation of 1 and 2, Mößbauer spectrum of 1b, and selected X-ray data.

Acknowledgements

We are indebted to Prof. Dr. Birgit Weber, University of Bayreuth, for the Mößbauer spectrum. The authors gratefully acknowledge financial support from the DFG priority program SPP1740 (KL 624/18–1), aimed at “Reactive bubbly flows”. Open access funding enabled and organized by Projekt DEAL.

Keywords: Coordination chemistry; Iron; Nitrosyls; Coordination polymer; \{FeNO\}_7 species

References

[1] a) V. Kohlschütter, M. Kutscheroff, *Ber. Dtsch. Chem. Ges.* **1904**, *37*, 3044–3052; b) W. Manchot, K. Zechentmayer, *Justus Liebigs Ann. Chem.* **1906**, *350*, 368–389; c) V. Kohlschütter, M. Kutscheroff, *Ber. Dtsch. Chem. Ges.* **1907**, *40*, 873–878; d) W. Manchot, *Justus Liebigs Ann. Chem.* **1910**, *372*, 179–186; e) W. Manchot, F. Huttner, *Justus Liebigs Ann. Chem.* **1910**, *372*, 153–178; f) V. Kohlschütter, P. Sazanoff, *Ber. Dtsch. Chem. Ges.* **1911**, *44*, 1423–1432; g) W. Manchot, *Ber. Dtsch. Chem. Ges.* **1914**, *47*, 1601–1614; h) W. Manchot, *Ber. Dtsch. Chem. Ges.* **1914**, *47*, 1614–1616.

[2] H. I. Schlesinger, A. Salathe, *J. Am. Chem. Soc.* **1923**, *45*, 1863–1878.

[3] a) G. Monsch, P. Klüfers, *Angew. Chem.* **2019**, *131*, 8654–8659; b) G. Monsch, P. Klüfers, *Angew. Chem. Int. Ed.* **2019**, *58*, 8566–8571; c) W. P. Griffith, J. Lewis, G. Wilkinson, *J. Chem. Soc.* **1958**, *3993–3998.

[4] a) A. In-Iam, M. Wolf, C. Wilfer, D. Schaniel, T. Woike, P. Klüfers, *Chem. Eur. J.* **2019**, *25*, 1304–1325; b) A. L. Speelman, B. Zhang, A. Silakov, K. M. Skodje, E. E. Alp, J. Zhao, M. Y. Hu, E. Kim, C. Krebs, N. Lehnerl, *Inorg. Chem.* **2016**, *55*, 5485–5501.

[5] D. Beck, A. Belz, A. In-Iam, P. Mayer, P. Klüfers, *Z. Anorg. Allg. Chem.* **2017**, *643*, 1191–1194.

[6] A. Banerjee, J. Li, A. L. Speelman, C. J. White, P. L. Pawlak, W. W. Brennessel, N. Lehnerl, F. A. Chavez, *Eur. J. Inorg. Chem.* **2018**, *2018*, 4797–4804.

Received: December 21, 2019
Published Online: March 5, 2020