Abstract

Purpose: Proposal to study liver with gray level histogram width (GLHW), clinical ultrasound tissue characterization, using usual B-mode devices.

Materials: Placental intervillous space fibrin deposit in fetal growth restriction (FGR), malignant neoplasia, fetal brain, immature fetal lung, meconium-stained amniotic fluid, and healthy adult liver.

Methods: Commercial ultrasound B-mode histogram base width divided by full gray scale length was gray level histogram width (GLHW), and it was used to tissue characterization.

Results: GLHW of ovarian, cervical and endometrial malignancies were 50 or higher %. Fibrin deposit in placental intervillous space was diagnosed with GLHW and treated with heparin administration to obtain normal neonate. Fetal brain echo density, immature fetal lung, meconium stained amniotic fluid, and healthy adult liver GLHW were studied with GLHW. Helsinki declaration was followed.

Conclusion: The GLHW objectively diagnosed ultrasound B-mode image, thus, it would be applied even in adult human cases.

Keywords: Ultrasound; GLHW; Tissue characterization; Placenta; FGR; Malignancy; Fetal organ; Liver; Radiation Measurement Inc; Respiratory Distress Syndrome; Region Of Interest; Periventricular Echodensity; Ultrasonic B-mode; Intervillous fibrin; Hydrocortisone; Growth factor; Erythropoietin

Introduction

Although ultrasound B-mode image diagnosis was superb, objective tissue echogeninity characterization was desired, however, particular computer and program were mandatory [1]. Ultrasound B-mode gray-level histogram width (GLHW) achieved clinical tissue characterization in obstetrics and gynecology.

Methods

The clinical tissue characterization was achieved by gray level histogram width divided by full gray scale length Figure1 [2,3], of which value was called gray level histogram width (GLHW), which was standardized by studying RMI 412 phantom (Radiation Measurement Inc. Middleton, Wisconsin), of which histogram width did not change when the B-mode device gain controled, while image contrast had to be lowest, because histogram width was enlarged when the image contrast was high. The GLHW of RMI 412 phantom was studied to be standardized in various Aloka machines (Aloka, Tokyo) and Voluson 530D (GE Healthcare), The GLHW was manually calculated, and also automatically calculated by “%W” index in the histogram of Aloka B-mode devices (Tokyo), where the value was the same as manual determination [3].

Figure 1: The calculation of GLHW in the histogram of usual diagnostic ultrasound B-mode device. H: Gray level histogram width. W: full gray scale length. H/W (%) is GLHW, which is automatically obtained by the %W index of ultrasound histogram of Aloka diagnostic B-mode devices.
Materials and Results

Diagnosis of malignancy

GLHW in preoperative ovarian masses were compared to postoperative pathology in benign and malignant tumors [4], where mean GLHW was 18±10 % in benign masses, while it was 51±11 % in malignancy, and mean GLHW values were larger in malignant masses than benign tumors Figure 2 [4], and therefore, ovarian malignant neoplasia is diagnosed by GLHW. Ovarian dermoid cyst was intermediate between benign and malignant masses, however, a dermoid cyst is diagnosed by its characteristic B-mode image, which is the niveau formation.

In other studies, mean GLHW was 42.7±5.0 % in normal endometrium, while it was 58.2±11.2 % in endometrial cancer, thus, endometrial cancer will be diagnosed using GLHW [5,6].

The author found that the GLHW of an uterine cervical cancer was higher than 50%. Thus, general malignancy will be indicated, if its GLHW is 50 or more %.

Recently, Nam et al. [7] reported differentiation of malignant and benign thyroid nodules using histogram analysis of gray scale sonograms. Ultrasonic B-mode histogram diagnosis of malignancy was supported also by the report.

Grade 3 placenta and intervillous fibrin deposit

GLHW of 1 cm² region of interest (ROI) of placental image was manually determined in every 2 gestational weeks in 20 to 41 weeks of normal pregnancies, where mean±1.5SD of GLHW were determined. The GLHW was larger in grade 3 placenta than normal placenta [3].

Placental fibrin deposit in FGR treated by heparin

Placental GLHW of a case of IUGR (fetal growth restriction, FGR) was larger than that of normal placenta and diagnosed by Utsu to be intervillous fibrin deposit (Figure 3) due to positive cardiolipin antigen in the pregnant woman, and daily 5,000 unit heparin was administrered to the woman. The GLHW decreased, estimated fetal weight increased to normal, and normal neonate was obtained (Figure 4) [3].

Discussion: The deposited fibrin would reduce placental active transfer of fetal nourishing material developing FGR, and further damaged passive transfer of oxygen would cause fetal demise in previous pregnancy. Heparin solved deposited fibrin to promote placental transfer function then treated FGR and prevented fetal demise after hypoxia.

Fetal brain periventricular echogenicity

Yamamoto et al. [8] studied fetal brain in preterm pregnancy detecting periventricular echodensity (PVE) (Figure 5), of which 18 % (corresponding 0.2 % of all births) preceded neonatal periventricular leukomalacia (PVL) followed by cerebral palsy (CP), if the PVE lasted until preterm birth, while there was no neonatal PVL when the PVE disappeared before birth. Also, no PVE developed in full-term births’ neonates. The GLHW of fetal PVE was 36±5 % which was significantly larger than 23±5 % of normal fetal brain GLHW [9], thus, GLHW is useful to diagnose fetal and neonatal brain PVE in the prevention of neonatal PVL and CP, namely, the PVE ultrasonically detected immediately after a preterm birth will be effectively treated administrating...
by ultrasound GLHW, namely, fetal asphyxia will be detected by GLHW of amniotic fluid.

GLHW of healthy adult liver

Mean GLHW of 33 healthy adult liver was 34.8±3.7 % and its coefficient of variation was 10.5%, where no relation of GLHW was noted to the age or gender [3]. Therefore, pathological state of adult liver is preferable to be studied by its specialists using GLHW, which is determined by the division of histogram base width by full gray scale length in the ultrasound B-mode, or simply by the “%W” parameter in the Aloka ultrasound B-mode histogram.

Conclusion

Gray level histogram width (GLHW) is update clinical ultrasound tissue characterization calculated from ultrasound B-mode echogenicity histogram parameter in commercial B-mode imaging device. Placental intervillous space fibrin deposit, malignant neoplasia, immature fetal lung, meconium-stained amniotic fluid and normal adult liver were studied, where GLHW was useful non-invasive clinical tissue characterization using commercial B-mode devices.

References

1. Akaiwa A (1989) Ultrasonic attenuation character estimated from backscattered radiofrequency signals in obstetrics and gynecology. Yonago Acta Med 32(1):1-10.
2. Maeda K, Akaiwa A, Kihaile PE (1993) Ultrasound Tissue Characterization. Ultrasound in Obstetrics and Gynecology Little Braun, Boston, USA, pp. 55-59.
3. Maeda K, Utsu M, Kihaile PE (1998) Quantification of sonographic echogenicity with grey-level histogram width: A clinical tissue characterization. Ultrasound Med Bio124(2): 225-234.
4. Kihaile PE (1989) Ultrasonic tissue characterization of ovarian tumors by the scanning of grey-level histograms. Yonago Acta Medica 32(3):251-260.
5. Maeda K, Utsu M, Yamamoto N, Ito T, Serizawa M (2002) Clinical tissue characterization with gray level histogram width in obstetrics and gynecology: The Ultrasound Review of Obstetrics and Gynecology 2(2): 124-128.
6. Ito T (2007) Diagnosis of endometrial cancer with GLHW tissue characterization. Personal communication.
7. Nam SJ, Yoo J, Lee HS, Kim EK, Moon HJ, et al. (2016) Quantitative evaluation for differentiating malignant and benign thyroid nodules using histogram analysis of grayscale sonograms. J Ultrasound Med 35(4):775-782.
8. Yamamoto N, Utsu M, Serizawa M, Ohki S, Murakoshi T, et al. (2000) Neonatal periventricular leukomalacia preceded by fetal periventricular echodensity. Fetal Diagn Ther 15(4): 198-208.
9. Maeda, Serizawa M, Utsu M, Yamamoto N (1999) Echogenicity of fetal lung and liver quantified by the gray-level histogram width. Ultrasound Med Bio125(2): 201-208.
10. Serizawa M, Maeda K (2010) Noninvasive fetal lung maturity prediction based on ultrasonic gray level histogram width. Ultrasound Med Biol 36(12): 1998-2003.
11. Maeda K, Serizawa M, Yamamoto N (2005) Ultrasound tissue characterization with the gray level histogram width of the B-mode. The Ultrasound Review of Obstetrics and Gynecology 5(2): 92-95.

Citation: Maeda K, Kihaile PE, ITO T, Utsu M, Yamamoto N, Serizawa M (2017) Gray Level Histogram Width Tissue Characterization. J Liver Res Disord Ther 3(1): 00046. DOI: 10.15406/Jlrdt.2017.03.00046