WEAK AND STRONG CONVERGENCE THEOREMS OF ALGORITHMIC SCHEMES FOR THE MULTIPLE-SETS SPLIT FEASIBILITY PROBLEM

Nguyen Buong¹, Nguyen Duong Nguyen²*

¹ Institute of Theoretical and Applied Research
Faculty of Information Technology, Duy Tan University
Vietnam Academy of Science and Technology, Institute of Information Technology,
² Foreign Trade University

ARTICLE INFO

Received: 26/9/2021
Revised: 05/11/2021
Published: 05/11/2021

KEYWORDS

Nonexpansive mapping
Fixed point
Metric projection
Multiple-sets split feasibility problem
String-averaged algorithmic scheme

ABSTRACT

In this paper, for solving the multiple-sets split feasibility problem (MSSFP) in Hilbert spaces, we present a general approach to design iterative methods. We propose a weak convergence string-averaged algorithmic scheme and a strong convergence string-averaged algorithmic scheme. The strong convergence string averaged algorithmic scheme is constructed based on the general iterative method for nonexpansive mappings, in which the step-size is computed directly in each iteration without the knowledge of the operator norm. These algorithmic schemes contain not only improvement modifications of the well known cyclic and simultaneous iterative methods as particular cases but also new ones.

DOI: https://doi.org/10.34238/tnu-jst.5084

*Corresponding author. Email: duongnguyen@ftu.edu.vn
1. Introduction and preliminaries

Let \(I = \{1, 2, \ldots , N \} \) and \(J = \{1, 2, \ldots , M \} \) with any fixed positive integers \(N \) and \(M \). Let \(H_1 \) and \(H_2 \) be two real Hilbert spaces with \(\{C_i\}_{i \in I} \) and \(\{Q_j\}_{j \in J} \) being two families of closed convex subsets in \(H_1 \) and \(H_2 \), respectively. Let \(A \) be a bounded linear mapping from \(H_1 \) into \(H_2 \) with the norm denoted by \(\|A\| \). We use the symbol \(E, \langle \cdot , \cdot \rangle \) and \(\| \cdot \| \) to define the identity mapping, an inner product and a norm, respectively, in any Hilbert space.

The MSSFP is to find a point
\[
p \in C := \cap_{i \in I} C_i \quad \text{such that} \quad Ap \in Q := \cap_{j \in J} Q_j.
\]
(1.1)

Denote by \(\Gamma \) the set of solutions for (1.1). Throughout this paper, we assume that \(\Gamma \neq \emptyset \). This problem was first introduced by Censor and Elfving [1] for modeling inverse problems that arise from phase retrievals and in image reconstruction [2],[3]. Recently, the MSSFP can also be used to model the intensity-modulated radiation therapy [4],[5].

For solving the split feasibility problem, that is (1.1) with \(N = M = 1 \), Byrne [2],[3] introduced a well-known iterative method, named CQ-method and defined by
\[
x^{k+1} = P_C (E - \gamma A^T (E - P_Q) A)x^k, \quad k \geq 1,
\]
(1.2)
with a fixed real number \(\gamma \in (0, 2/\|A\|^2) \), where \(P_C \) and \(P_Q \) denote the metric projections on the sets \(C \) and \(Q \), respectively, and \(A^T \) stands for the transpose of \(A \).

Up to now, there is a long list of works concerning iterative methods to solve (1.1), for example, see [6]–[13] and references therein. These methods are extensions and modifications of (1.2) in different directions. In many works, one used the gradient of a proximity function, that measures the distance of a point to all the sets in the image space, to construct iterative methods. Among them, there are two important ones, the first of which is the cyclic iterative method,
\[
x^{k+1} = P_{C_{m(k)}} (E - \gamma \sum_{j=1}^{M} \eta_j A^* (E - P_{Q_j}) A)x^k,
\]
(1.3)
where \(m(k) = k \mod (N + 1) \), \(\eta_j > 0 \) for every \(1 \leq j \leq M \) and \(A^* \) denotes the adjoint of \(A \).

Another method is the simultaneous iterative one,
\[
x^{k+1} = \sum_{i=1}^{N} \beta_i P_{C_i} (E - \gamma \sum_{j=1}^{M} \eta_j A^* (E - P_{Q_j}) A)x^k,
\]
(1.4)
where \(\beta_i > 0 \) for all \(i \) such that \(\sum_{i=1}^{N} \beta_i = 1 \) and \(0 < \gamma < 2/\tilde{L} \) with \(\tilde{L} = \|A\|^2 \sum_{j=1}^{M} \eta_j \). Xu [10] showed that (1.3) and (1.4) converge weakly to an element in \(\Gamma \). Recently, Buong [6] proposed two weakly convergent improvement modifications of (1.3) and (1.4) with two new iterative methods, described in a general form,
\[
x^{k+1} = P_1 (E - \gamma A^* (E - P_2) A)x^k,
\]
(1.5)
where \(P_1 = P_{C_1} \cdots P_{C_N} \) or \(P_1 = \sum_{i=1}^{N} \beta_i P_{C_i} \) and \(P_2 = P_{Q_1} \cdots P_{Q_M} \) or \(P_2 = \sum_{j=1}^{M} \eta_j P_{Q_j} \), with positive real numbers \(\beta_i \) and \(\eta_j \), satisfying \(\sum_{i=1}^{N} \beta_i = \sum_{j=1}^{M} \eta_j = 1 \).

In the case that \(H_1 \equiv H_2 \) and \(A = E \), the MSSFP deduces to the convex feasibility problem (CFP), that is to find a point \(p \in C \). To solve the CFP, Censor et al. [14] proposed an algorithmic scheme in which the end-points of strings of sequential projections onto the constraints are averaged.

In Section 2, motivated by the results in the works above, we introduce two algorithmic schemes that contains the algorithm (1.5) and new others as particular cases. Specifically, in Section 2.1, for solving (1.1), we propose a new weak convergence string-averaged algorithmic scheme. In Section 2.2, in order to obtain the strong convergence, based on the general iterative method for nonexpansive mappings [15], we give a new general string-averaged algorithmic scheme with a self-adaptive step-size.
First, we list some facts that will be used in the proof of our results.

Definition 1.1 A mapping T from a subset C of a Hilbert space H into H is called:
(i) θ-Lipschitz continuous with a Lipschitz constant $\theta \in [0, \infty)$ if $\|Tx - Ty\| \leq \theta \|x - y\|$ for all $x, y \in C$ and nonexpansive if $\theta = 1$;
(ii) γ-inverse strongly monotone if $\gamma \|Tx - Ty\|^2 \leq \langle Tx - Ty, x - y \rangle$ for all $x, y \in C$ where γ is a positive number and firmly nonexpansive if $\gamma = 1$;
(iii) averaged, if $T = (1 - \alpha)E + \alpha U$ for some fixed $\alpha \in (0, 1)$ and a nonexpansive mapping U and we say T is α-averaged;
(iv) η-strongly monotone and γ-strictly pseudocontractive, if it satisfies, respectively, the conditions, $\langle Tx - Tz, x - z \rangle \geq \eta \|x - z\|^2$ and $\langle (T - \gamma E)x, x - z \rangle \leq \|x - z\|^2 - \gamma \|Tz - x\|^2$ for all $x, z \in C$ and η and γ are some positive real numbers.

For a closed convex subset C of H, there exists a mapping P_C from H onto C such that $\|P_Cx - x\| = \inf_{y \in C} \|y - x\|$ for each $x \in H$. The mapping P_C is called the metric projection on C. We know that P_C is firmly nonexpansive (hence, nonexpansive) and $(1/2)$-averaged. Moreover, $\|x - P_Cx\|^2 + \|P_Cx - z\|^2 \leq \|x - z\|^2$, $x \in H, z \in C$. We denote by $\text{Fix}(T) = \{x \in C : Tx = x\}$, the set of fixed points for a mapping T.

Lemma 1.1 ([16]) Let H be any real Hilbert space, let T_i be an α_i-averaged mapping with $\alpha_i > 0$ for each $i \in \{1, 2, \cdots, S\}$ and let $\omega = (\omega_1, \omega_2, \cdots, \omega_S)$ be a positive real vector such that $\sum_{i=1}^{S} \omega_i = 1$. Set $T = \sum_{i=1}^{S} \omega_i T_i$ and $\alpha = \sum_{i=1}^{S} \omega_i \alpha_i$. Then, T is α-averaged. Moreover, $\bar{T} = T ST_{S-1} \cdots T_1$ is $\bar{\alpha}$-averaged with $\bar{\alpha} = 1/(1 + 1/\sum_{i=1}^{S} \omega_i/(1 - \alpha_i))$ and $\text{Fix}(T) = \cap_{i=1}^{S} \text{Fix}(T_i)$.

Lemma 1.2 ([17]) Let C be a closed convex subset of a real Hilbert space H and let $T : C \to C$ be a nonexpansive mapping with $\text{Fix}(T) \neq \emptyset$. If $\{z^i\}$ is a sequence in C weakly converging to x and if $\{(E - T)z^i\}$ converges strongly to y, then $(E - T)x = y$. In particular, if $y = 0$, then $x \in \text{Fix}(T)$.

Lemma 1.3 ([18]) Let $\{a_k\}$ and $\{c_k\}$ be sequences of real numbers, having the properties:

- $a_{k+1} \leq (1 - t_k)a_k + t_k c_k$, $a_k \geq 0$, $\limsup_{k \to \infty} c_k \leq 0$ and t_k satisfies condition (1): $t_k \in (0, 1)$ for all $k \geq 1$, $\lim_{k \to \infty} t_k = 0$ and $\sum_{k=1}^{\infty} t_k = \infty$.

Then, $\lim_{k \to \infty} a_k = 0$.

Lemma 1.4 ([19]) Let H be a real Hilbert space and let $F : H \to H$ be an η-strongly monotone and γ-strictly pseudocontractive mapping with $\eta + \gamma > 1$. Then, for any $t \in (0, 1), E - tF$ is contractive with constant $1 - t\tau$ where $\tau = 1 - \sqrt{(1 - \eta)/\gamma}$.

Lemma 1.5 ([20]) Let $\{a_k\}$ be a sequence of real numbers with a subsequence $\{k_l\}$ of $\{k\}$ such that $a_{k_l} < a_{k_l+1}$ for all integer numbers $l \geq 1$. Then, there exists a nondecreasing sequence $\{m_k\} \subseteq \{k\}$ such that $m_k \to \infty, a_{m_k} \leq a_{m_k+1}$ and $a_k \leq a_{m_k+1}$ for all (sufficiently large) integer numbers $k \geq 1$. In fact, $m_k = \max\{l \leq k : a_l \leq a_{l+1}\}$.

2. Main results

2.1. String-averaged algorithmic scheme for the multiple-sets split feasibility problem

Let the string $I_t = (i_{t1}, i_{t2}, \ldots, i_{t\gamma(I_t)})$ be a finite nonempty subset of I, for every $t = 1, 2, \cdots, S_1$, where the length of the string I_t, denoted by $\gamma(I_t)$, is the number of elements in I_t. Put $T_{t1} := P_{t_i(l)} \cdots P_{t2} P_{t1}$, where $P_{tl} = P_{C_{tl}^1}$ for $l = 1, 2, \cdots, \gamma(I_t)$ and $t = 1, 2, \cdots, S_1$.

Given a positive weight vector $\beta = (\beta_1, \beta_2, \cdots, \beta_{S_1})$ with $\sum_{l=1}^{S_1} \beta_l = 1$, we define the algorithmic mapping $P_1 := \sum_{i=1}^{S_1} \beta_l T_{l1}$. We suppose that every element of I appears in at least
one of the string I_t. Analogously, for the family $\{Q_j\}_{j \in J}$, we can construct the mapping $P_2 := \sum_{l=1}^{S_2} \eta_l T_l^2$ where $T_l^2 := P_{\gamma(I_l)} P_{\alpha(I_l)} P_{\gamma(I_l)}^{t_l}$ for $t_l = 1, 2, \ldots, S_2$, $l = 1, 2, \ldots, \gamma(I_l)$ and $\eta = (\eta_1, \eta_2, \ldots, \eta_{S_2})$ is also a positive weight vector such that $\sum_{l=1}^{S_2} \eta_l = 1$.

First, we need to prove the following lemma.

Lemma 2.1 Let $z \in \Gamma$ if and only if $(E - P_1)z = A^*(E - P_2)Az = 0$. Moreover, the last equality holds if and only if $(E - P_2)Az = 0$.

Proof. Clearly, when $z \in \Gamma$, we have that $z \in C_i$ and $Az \in Q_j$ for every $i \in I$ and $j \in J$. Consequently, for all $t = 1, 2, \ldots, S_1$, we have that $T_l^1 z = z$ and for $t = 1, 2, \ldots, S_2$, $T_l^2 Az = Az$. From the last two equalities and the properties of β_t and η_t it follows $(E - P_1)z = A^*(E - P_2)Az = 0$. Inversely, we have to prove that if z satisfies the equalities then $z \in \Gamma$. Take any point $p \in \Gamma$. It is easy to see that

$$
\|z - p\|^2 = \|P_1 z - p\|^2 \leq \sum_{l=1}^{S_1} \beta_l \|T_l^1 z - p\|^2 \leq \|z - p\|^2 - \sum_{l=1}^{S_1} \beta_l \sum_{t=1}^{\gamma(I_l)} \|U_t^l z - U_t^{l+1} z\|^2,
$$

where $U_t^l = P_{2l} \cdot \ldots \cdot P_{2l} P_{\gamma(I_t)}$ and $U_t^0 = E$. Therefore, we get that $\|U_t^l z - U_t^{l+1} z\|^2 = 0$ for $l = 1, 2, \ldots, \gamma(I_t)$, because $\beta_t > 0$. Taking $l = 1, 0$, we obtain that $U_1^1 z = z$, which together with the case that $l = 2$ implies $U_t^2 z = z$. Repeating the process for $l = 3, \ldots, \gamma(I_t)$, we get that $U_t^l z = z$ for $l = 3, \ldots, \gamma(I_t)$. Finally, $U_t^l z = z$ for $l = 1, 2, \ldots, \gamma(I_t)$ and $t = 1, 2, \ldots, S_1$.

Since each element of I appears in at least one I_t, $P_{C_t} z = z$ for each $i \in I$. So, in order to finish the proof for the first conclusion, it is sufficient to show that $P_{Q_j} Az = Az$ for all $j \in J$. Indeed, from $A^*(E - P_2)Az = 0$ and the nonexpansivity of P_2, we can write, respectively, that $P_2 Az = Az - w$ where $A^*w = 0$ and

$$
\|Az - Ap\|^2 \geq \|P_2 Az - P_2 Ap\|^2 = \|Az - w - Ap\|^2 = \|Az - Ap\|^2 + \|w\|^2 - 2\langle A^*w, z - p \rangle.
$$

Thus, $w = 0$. Consequently, $P_2 Az = Az$. By the similar argument as the above, we get the first conclusion. For the second conclusion, we need only to prove the case that if $A^*(E - P_2)Az = 0$ then $(E - P_2)Az = 0$. Indeed, from the $(1/2)$-inverse strongly monotone property of $(E - P_2)$ [21], we get that

$$
0 \leq (1/2)(E - P_2)Az - (E - P_2)Az = (E - P_2)Az = 0.
$$

This completes the proof. \hfill \Box

We have the following results.

Theorem 2.1 Let H_1 and H_2 be two real Hilbert spaces, let $A : H_1 \to H_2$ be a bounded linear mapping such that $A \neq 0$. Let C_i and Q_j, for each $i \in I$ and $j \in J$, be closed convex subsets in H_1 and H_2, respectively. Assume that $\Gamma \neq \emptyset$. Then, the sequence $\{x^k\}$, defined by Algorithmic scheme 1:

$$
x^{k+1} = Tx^k, \quad T = P_1 (E - \gamma A^* (E - P_2) A),
$$

(2.1)

where $\gamma
\in (0, 1/\|A\|^2)$ is a fixed number, converges weakly to a solution of (1.1), as $k \to \infty$.

Proof. Since $P_{\gamma(I_t)}$ is $(1/2)$-averaged, by Lemma 1.1, the mapping T_l^1 is α_t-averaged with $\alpha_t = 1/(1 + 1/\gamma(I_t))$, and hence, P_1 is a β-averaged mapping with $\beta = \sum_{l=1}^{S_1} \beta_l \alpha_t l$. Meantime, since P_2 is nonexpansive, by using Lemma 3.3 in [22], the mapping $E - \gamma A^*(E - P_2)A$ is η-averaged, where $\eta = \gamma \|A\|^2$ and $0 < \gamma < 1/\|A\|^2$. Therefore, again by Lemma 1.1, the mapping T is τ-averaged with $\tau = (\beta + \eta - 2\beta \eta)/(1 - \eta)$. Thus, from Lemmas 2.1 and 1.1, we have that Fix(T) = Fix(P_1) \cap Fix($E - \gamma A^*(E - P_2)A$) = Fix(P_1) \cap $\text{Zer}(A^*(E - P_2)A) = \Gamma$, where $\text{Zer}(B)$ denotes the set of x such that $Bx = 0$ for any mapping B in H_1. Further, by using Theorem 2.1 in [3], we get the conclusion. \hfill \Box

Remark 2.1 Taking $S_1 = S_2 = 1$, we have that $P_1 = P_{C_1} P_{C_2} P_{C_1}$ and $P_2 = P_{Q_1} P_{Q_2} P_{Q_1}$.

http://jst.tnu.edu.vn

Email: jst@tnu.edu.vn
When $S_1 = N$ and $S_2 = M$ with $\gamma(I_t) = \gamma(J_t) = 1$, we obtain that $P_1 = \sum_{i=1}^{N} \beta_i P_{C_i}$ and $P_2 = \sum_{j=1}^{M} \eta_j P_{Q_j}$. Then, the method (2.1) in this case contains (1.5), as particularities.

2.2. A general string-averaged algorithmic scheme for the multiple-sets split feasibility problem

In this section, in order to obtain the strong convergence, we propose a new algorithmic scheme based on the general iterative method for nonexpansive mappings, introduced by Marino and Xu [15].

Algorithmic scheme 2:
Step 1. Let x^1 and ε_1 be any point in H_1 and any positive real number, respectively. Set $k := 1$;
Step 2. Assume that the kth iterate x^k has been constructed. If $(E - P_1)x^k = (E - P_2)Ax^k = 0$ then stop and x^k is a solution of (1.1). Otherwise, compute
$$a^k = P_1 (E - \gamma_k A^*(E - P_2)A)x^k, \quad x^{k+1} = t_k \gamma f x^k + (E - t_k F) a^k,$$
where $\gamma_k = \rho_k q(x^k)/\|A^*(E - P_2)Ax^k\|^2$ if $(E - P_2)Ax^k \neq 0$ and
$$\gamma_k = \frac{\rho_k q(x^k)}{\|A^*(E - P_2)Ax^k\|^2 + \varepsilon_k^2},$$
if $(E - P_2)Ax^k = 0$, with $q(x) = (1/2) \sum_{i=1}^{S_2} \eta_i \| (E - T^2_i) Ax \|^2$, a new proximity function, $f : H_1 \to H_1$ is a θ-Lipschitz continuous mapping with a Lipschitz constant $\theta \in [0, \infty)$ and $F : H_1 \to H_1$ is an η-strongly monotone and γ-strictly pseudocontractive mapping.
Step 3. Set $k := k + 1$ and go to Step 2.

We assume parameters ρ_k and ε_k for all $k \geq 1$, satisfy, respectively, the following conditions:

(ρ): $0 < \rho < \rho_k \leq \overline{\rho} < 2$ and
(ε): $\{\varepsilon_k\}$ is a bounded sequence of positive real numbers such that $\lim \inf_{k \to \infty} \varepsilon_k > 0$.

For the sake of simplicity, when $(E - P_1)x^k \neq 0$, the next iterate x^{k+1} can be calculated by (2.2) and (2.3) without verifying that $(E - P_2)Ax^k$ equal or does not equal to zero.

Theorem 2.2 Let H_1, H_2, A, C_i and Q_j with Γ be as in Theorem 2.1. Let $f : H_1 \to H_1$ be a θ-Lipschitz continuous mapping with a Lipschitz constant $\theta \in [0, \infty)$ and let $F : H_1 \to H_1$ be an η-strongly monotone and γ-strictly pseudocontractive mapping such that $\gamma + \gamma > 1$. Assume that there hold conditions (ρ), (ε) and (t), $\overline{\rho} \in (0, \tau/\gamma)$ is a fixed number with $\tau = 1 - \sqrt{(1 - \eta)/\gamma}$ when $\theta \neq 0$ and $\overline{\rho} = 0$ when $\theta = 0$. Then, the sequence $\{x^k\}$, defined by Algorithmic scheme 2, converges strongly to a point in Γ, as $k \to \infty$.

Proof. We only discuss the case when the algorithm does not stop after finite number of iterates. First, we consider the case when $\theta \neq 0$. We prove that $\{x^k\}$, defined by Algorithmic scheme 2, is bounded. Take a point $p \in \Gamma$. Then, since P_1 and T^2_i are nonexpansive and $E - T^2_i$ is $(1/2)$-inverse strongly monotone [21] for each $t = 1, 2, \cdots, S_2$, we have that
$$\|u^k - p\|^2 = \|P_1 (E - \gamma_k A^*(E - P_2)A)x^k - P_1 p\|^2 \leq \|x^k - p - \gamma_k A^*(E - P_2)Ax^k\|^2$$
$$= \|x^k - p\|^2 - 2\gamma_k \langle (E - P_2)Ax^k - (E - P_2)Ap, Ax^k - Ap \rangle$$
$$+ \gamma_k^2 \|A^*(E - P_2)Ax^k\|^2$$
$$= \|x^k - p\|^2 - 2\gamma_k \sum_{i=1}^{S_2} \eta_i \langle (E - T^2_i)Ax^k - (E - T^2_i)Ap, Ax^k - Ap \rangle$$
$$+ \gamma_k^2 \|A^*(E - P_2)Ax^k\|^2$$
$$\leq \|x^k - p\|^2 - 2\gamma_k q(x^k) + \gamma_k^2 \|A^*(E - P_2)Ax^k\|^2 + \varepsilon_k^2$$
$$= \|x^k - p\|^2 - \rho_k (2 - \rho_k) q^2(x^k)/(\|A^*(E - P_2)Ax^k\|^2 + \varepsilon_k^2) \leq \|x^k - p\|^2.$$
Therefore,
\[
\|x^{k+1} - p\| = \|tk\bar{\gamma}(f(x^k - f) + (E - t_k F)u^k - (E - t_k F)p - tkFp + tk\bar{\gamma}fp\|
\leq t_k\bar{\gamma}\|x^k - p\| + (1 - t_k\bar{\gamma})\|u^k - p\| + tk\|Fp - \bar{\gamma}fp\|
\leq (1 - t_k(\tau - \bar{\gamma}\theta))\|x^k - p\| + tk\|Fp - \bar{\gamma}fp\|
\leq \max\{\|x^1 - p\|, \|Fp - \bar{\gamma}fp\|/(\tau - \bar{\gamma}\theta)\},
\]
from which it follows the boundedness of \(\{x^k\}\). Further, we have the following estimate
\[
\|x^{k+1} - p\|^2 \leq (1 - t_k(\tau - \bar{\gamma}\theta))\|x^k - p\|^2 - \tilde{\rho}\frac{q^2(x^k)}{(\|A^*(E - \mathcal{P}_2)Ax^k\| + \varepsilon_k)^2}
- 2t_k\|Fp - \bar{\gamma}fp, x^{k+1} - p\|,
\]
where \(\tilde{\rho}\) is some positive constant such that \((1 - t_k\bar{\tau})\rho_k(2 - \rho_k) \geq \tilde{\rho}\) for all \(k \geq 1\). We need only to consider two cases.

Case 1. \(\|x^{k+1} - p\| \leq \|x^k - p\|\) for all \(k \geq k_0\) large enough. Then, there exists \(\lim_{k \to \infty} \|x^k - p\|\). From (2.5) it follows that
\[
0 \leq \frac{\tilde{\rho}q^2(x^k)}{(\|A^*(E - \mathcal{P}_2)Ax^k\| + \varepsilon_k)^2} \leq \|x^k - p\|^2 - \|x^{k+1} - p\|^2
- t_k(\tau - \bar{\gamma}\theta)\|x^k - p\|^2 + 2t_k\|Fp - \bar{\gamma}fp\|\|x^{k+1} - p\|.
\]
So, from (2.6), the existence of \(\lim_{k \to \infty} \|x^k - p\|\) with the boundedness of \(\{x^k\}\) and property of \(\{\varepsilon_k\}\), we get that \(\lim_{k \to \infty} q(x^k) = 0\). Thus, \(\lim_{k \to \infty} \|(E - T^2)Ax^k\| = 0\) for all \(t = 1, \cdots, S_2\), and hence,
\[
\lim_{k \to \infty} \|(E - \mathcal{P}_2)Ax^k\| = 0
\]
and \(\lim_{k \to \infty} \|(E - \mathcal{P}_2)Ax^k\| = 0\). Put \(v^k := -\bar{\gamma}A^*(E - \mathcal{P}_2)Ax^k\) and \(z^k = x^k + v^k\). It is clear that \(\lim_{k \to \infty} v^k = 0\) and
\[
\|u^k - p\|^2 = \|P_1z^k - p\|^2 \leq \sum_{t=1}^{S_1} \beta_t \|T_1^iz^k - p\|^2
\leq \|z^k - p\|^2 - \sum_{t=1}^{S_1} \beta_t \|U_{1t}z^k - U_{1t-1}z^k\|^2
\leq \|x^k - p\|^2 + 2\|v^k\|^2 \|z^k - p\|^2 - \sum_{t=1}^{S_1} \beta_t \|U_{1t}z^k - U_{1t-1}z^k\|^2.
\]
Therefore,
\[
\|x^{k+1} - p\|^2 \leq t_k\bar{\gamma}\theta\|x^k - p\|^2 + \|x^k - p\|^2 + 2\|v^k\|^2 \|z^k - p\|
- \sum_{t=1}^{S_1} \beta_t \|U_{1t}z^k - U_{1t-1}z^k\|^2 + 2t_k\|Fp - \bar{\gamma}fp\|\|x^{k+1} - p\|,
\]
and hence, \(\lim_{k \to \infty} \|U_{1t}z^k - U_{1t-1}z^k\| = 0\) for all \(t = 1, 2, \cdots, S_1\). As in the proof of Lemma 2.1,
\[
\lim_{k \to \infty} \|(E - P_{C_I})x^k\| = 0 \forall i \in I.
\]
Since \(\{x^k\}\) is bounded, there exists a subsequence \(\{x^{km}\}\) of the sequence \(\{x^k\}\) such that \(x^{km}\) converges weakly to a point \(\bar{p} \in H_1\) as \(m \to \infty\). Then, \(Ax^{km}\) also converges weakly to \(A\bar{p}\). From Lemmas 1.2 and 2.1 with (2.7) and (2.8) it follows that \(\bar{p} \in \Gamma\). Similarly, we have that every cluster point of \(\{x^k\}\) belongs to \(\Gamma\). Therefore,
\[
\lim\sup_{k \to \infty} \langle F_{p_*} - \bar{\gamma}fp_{p_*}, p_* - x^k \rangle = \lim_{m \to \infty} \langle F_{p_*} - \bar{\gamma}fp_{p_*}, p_* - x^{km} \rangle = \langle F_{p_*} - \bar{\gamma}fp_{p_*}, p_* - \bar{p} \rangle \leq 0,
\]
where \(p_*\) is a unique solution of \(p_* \in \Gamma\) : \(\langle F_{p_*} - \bar{\gamma}fp_{p_*}, p_* \rangle \leq 0 \forall p \in \Gamma\). Now, from (2.5) we have that
\[
\|x^{k+1} - p_*\|^2 \leq (1 - t_k(\tau - \bar{\gamma}\theta))\|x^k - p_*\|^2 + 2t_k\langle F_{p_*} - \bar{\gamma}fp_{p_*}, p_* - x^{k+1} \rangle.
\]
By Lemma 1.3, \(\|x^k - p_*\| \to 0\) as \(k \to \infty\).
Case 2. There exists a subsequence \{k_l\} of \{k\} such that \(\|x^{k_l} - p\| < \|x^{k_l+1} - p\| \) for all \(l \geq 0 \). Hence, by Lemma 1.5, there exists a nondecreasing sequence \{m_k\} \subseteq \{k\} such that \(m_k \to \infty \),
\[
\|x^{m_k} - p\| \leq \|x^{m_k+1} - p\| \quad \text{and} \quad \|x^k - p\| \leq \|x^{m_k+1} - p\|
\] (2.9)
for each \(k \geq 1 \). Then, from (2.5) and the first inequality in (2.9), we know that
\[
\|x^{m_k} - p\|^2 \leq (2/(\tau - \theta))(FP - \tau fp, p - x^{m_k+1}).
\] (2.10)
In this case, instead of (2.6), we get that
\[
\rho q^2(x^{m_k}) = 0 \leq \|A^*(E - P_2)Ax^{m_k} + \delta_{m_k}\|^2 \leq 2t_m\|FP - \tau fp\|\|x^{m_k+1} - p\|,
\]
and hence, \(\lim_{k \to \infty} g(x^{m_k}) = 0 \). By the similar argument as in the proof for the case 1, \(\lim_{k \to \infty} \|(E - P_2)Ax^{m_k}\| = 0 \) and \(\lim_{k \to \infty} \|(E - P_{C_i})x^{m_k}\| = 0 \) for all \(i \in I \) and any cluster point of \(\{x^{m_k}\} \) belongs to \(\Gamma \). Thus, \(\limsup_{k \to \infty} \langle FP*, \tau fp*, p*, x^{m_k+1}\rangle \leq 0 \), which together with (2.10) implies that \(\|x^{m_k} - p_k\| \to 0 \) as \(k \to \infty \). Now, from (2.5) with \(k \) and \(p \) replaced, respectively, by \(m_k \) and \(p_k \), it follows that \(\|x^{m_k+1} - p_k\| \to 0 \). Noting the second inequality in (2.9), \(\|x^k - p_k\| \to 0 \).

In the case that \(\theta = 0, \tau = 0 \). Hence, (2.2) has the expression
\[
x^{k+1} = (E - t_kF)P_1(E - \gamma_k A^*(E - P_2)Ax^k.
\] (2.11)
Replacing \(\tau = 0 \) in the proof when \(\tau \neq 0 \), we obtain the conclusion. The proof is completed. □

Remark 2.2 It is easy to see that \(F = E - f \) is also \(\eta \)-strongly monotone and \(\gamma \)-strictly pseudocontractive such that \(\eta + \gamma > 1 \), where \(f = aE + (1 - a)u \) with a fixed \(u \in H_1 \) and \(a \in (0, 1) \). Then, replacing \(F = E - f \) in (2.11), we obtain a modified Halpern’s algorithmic scheme,
\[
x^{k+1} = t_k u + (1 - t_k)P_1(E - \gamma_k A^*(E - P_2)Ax^k.
\] (2.12)
with a new \(t_k := (1 - a)t_k \).

From Theorem 2.2, we have the following result for the strong convergence of Halpern’s algorithmic scheme (2.12) with (2.3).

Theorem 2.3 Let \(H_1, H_2, A, C_i \) and \(Q_j \) with \(\Gamma \) be as in Theorem 2.1. Assume that there hold conditions (c), (e) and (t). Then, the sequence \(\{x^k\} \), defined by the algorithmic scheme (2.12) with \(\gamma_k \) defined in Algorithmic scheme 2, converges strongly to a point in \(\Gamma \), as \(k \to \infty \).

3. Conclusion

In this paper, to solve the multiple-sets split feasibility problem (MSSFP) in Hilbert spaces, we proposed two string-averaged algorithmic schemes, one of which was given with the strong convergence and a self-adaptive step-size. We also considered the particular case of the proposed schemes.

Acknowledgements This paper is the product of Grassroots level scientific and technological project of Foreign Trade University: “Some methods for finding a zero of a maximal monotone mapping and a solution of the split feasibility problem” with the code NTCS2021-22 by PhD Nguyen Duong Nguyen—the project manager.

REFERENCES

[1] Y. Censor Y and T. Elfving, "A multiprojection algorithm using Bregman projections in a product spaces," *Numer. Algorithms*, vol. 8, pp. 221-239, 1994.

[2] C. Byrne, "Iterative oblique projection onto convex sets and the split feasibility problem," *Inverse Problems*, vol. 18, no. 2, pp. 441-453, 2002.

[3] C. Byrne, "A unified treatment of some iterative algorithms in signal processing and image reconstruction," *Inverse Problems*, vol. 20, pp. 103-120, 2004.

http://jst.tnu.edu.vn
[4] Y. Censor, T. Bortfeld, B. Martin, and A. Trofimov, "A unified approach for inverse problems in intensity-modulated radiation therapy," *Phys. Med. Biol.*, vol. 51, pp. 2353-2365, 2006.

[5] Y. Censor, T. Elfving, N. Knop, and T. Bortfeld, "The multiple-sets split feasibility problem and its applications for inverse problems," *Inverse Problems*, vol. 21, pp. 2071-2084, 2005.

[6] Ng. Buong, "Iterative algorithms for the multiple-sets split feasibility problem in Hilbert spaces," *Numer. Algorithms*, vol. 76, no. 3, pp. 783-789, 2017.

[7] Ng. Buong, P. T. T. Hoai, and K. T. Binh, "Iterative regularization methods for the multiple-sets split feasibility problem in Hilbert spaces," *Acta Math. Appl.*, vol. 165, no. 1, pp. 183-197, 2020.

[8] J. Wang, Y. Hu, C. K. W. Yu, and X. Zhuang, "A family of projection gradient methods for solving the multiple-sets split feasibility problem," *J. Optim. Theory Appl.*, vol. 183, pp. 520-534, 2019.

[9] M. Wen, J. Peng, and Y. Tang, "A cyclic and simultaneous iterative method for solving the multiple-sets split feasibility problem," *J. Optim. Theory Appl.*, vol. 166, pp. 844-860, 2015.

[10] H. K. Xu, "A variable Kronecker'skii-Mann algorithm and the multiple-set split feasibility problem," *Inverse Problems*, vol. 22, pp. 2021-2034, 2006.

[11] W. Zhang, D. Han, and Zh. Li, "A self-adaptive projection method for solving the multiple-sets split feasibility problem," *Inverse Problems*, vol. 25, 115001, 16 pp, 2009.

[12] J. Zhao and Q. Yang, "A simple projection method for solving the multiple-sets split feasibility problem," *Inverse Probl. Sci. Eng.*, vol. 21, pp. 537-546, 2013.

[13] J. Zhao, Y. Zhang, and Q. Yang, "Modified projection methods for the split feasibility problem and the the multiple-sets split feasibility problem," *Appl. Math. Comput.*, vol. 219, pp. 1644-1653, 2012.

[14] Y. Censor, T. Elfving, and G. T. Herman, "Averaging strings of sequential iterations for convex feasibility problems," in *Inherently parallel algorithms in feasibility and optimization and their applications (Haifa, 2000)* Stud. Comput. Math., 8, North-Holland, Amsterdam, 2001, pp. 101-113.

[15] G. Marino and H. K. Xu, "A general iterative method for nonexpansive mappings in Hilbert spaces," *J. Math. Anal. Appl.*, vol. 318, pp. 43-52, 2006.

[16] P. L. Combettes and I. Yamada, "Compositions and convex combinations of averaged nonexpansive operators," *J. Math. Anal. Appl.*, vol. 425, pp. 55-70, 2015.

[17] K. Goebel and W. A. Kirk, *Topics in Metric Fixed Point Theory*, vol. 28, Cambridge University Press, Cambridge, UK, 1990.

[18] H. K. Xu, "An iterative approach to quadratic optimization," *J. Optim. Theory Appl.*, vol. 116, pp. 659-678, 2003.

[19] L. C. Ceng, Q. H. Ansari, and J. Ch. Yao, "Mann-type steepest-descent and modified hybrid steepest descent methods for variational inequalities in Banach spaces," *Num. Funct. Anal. Optim.*, vol. 29, no. 9-10, pp. 987-1033, 2008.

[20] P. E. Maingé, "Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization," *Set-Valued Var. Anal.*, vol. 16, pp. 899-912, 2008.

[21] W. Takahashi and M. Toyoda, "Weak convergence theorems for nonexpansive mappings and monotone mappings," *J. Optim. Theory and Appl.*, vol. 118, no. 2, pp. 417-428, 2003.

[22] W. Takahashi, H. K. Xu, and J. -C. Yao, "Iterative methods for generalized split feasibility problems in Hilbert spaces," *Set-Valued Var. Anal.*, vol. 23, pp. 205-221, 2015.