Chronic inflammation evoked by pathogenic stimulus during carcinogenesis

Björn L.D.M. Brücher1,2,3,*, Ijaz S. Jamall1,2,4

1 Theodor-Billroth-Academy®, Germany, USA
2 INCORE, International Consortium of Research Excellence of the Theodor-Billroth-Academy®, Germany, USA
3 Department of Surgery, Carl-Thiem-Klinikum, Cottbus, Germany
4 Risk-Based Decisions Inc., Sacramento, CA, USA

Received 21 March 2018, Accepted 21 November 2018

Abstract – A pathogenic (biological or chemical) stimulus is the earliest information received by a cell that can result in the disruption of homeostasis with consequent development of disease. Chronic inflammation involves many cell types with numerous cytokines and signaling pathways, the release of different components by the cells, and the crosstalk provoked by such stimuli involving subclinical chronic inflammation and is mechanistically manifold. Exosomes secrete chemicals that trigger the epithelium to produce exosome-like nanoparticles promoting chronic inflammation. Small molecules, together with various cytokines, selectively target signaling pathways inducing crosstalk that suppress apoptosis. 16S rRNA gene sequencing has become routine to provide information on the composition and abundance of bacteria found in human tissues and in reservoirs. The deregulation of autophagy with chronic stimulation of inflammation is an early phenomenon in carcinogenesis. The disruption of cell–cell integrity enables transcellular CagA migration and triggers deregulation of autophagy with the net result being chronic inflammation. The complex and insidious nature of chronic inflammation can be seen both inside and outside the cell and even with intracellular nuclear fragments such as chromatin, which itself can elicit a chronic inflammatory response within the cytoplasm and affect autophagy. The ultimate result of unresolved chronic inflammation is fibrosis, a step before tissue remodeling results in the formation of a precancerous niche (PCN). Various pathogenic stimuli associated with different neoplasms result in persistent inflammation. This ongoing disruption of homeostasis in the micromilieu of cells, tissues, and organs is an essential preamble to carcinogenesis and occurs early in that process.

Keywords: Adenoma, Adhesion, Akt, ALOX, Apoptosis, Aquaporin, Autothagy, Bacterium, BIM, Blastoma, Cancer, Carcinoma, Carcinogenesis, CCC, Cdc42, Cdk2, Cholangiocellular carcinoma, Crohn’s disease, Chronic inflammation, Colitis, Colorectal cancer, COX, Cycin, Cyclooxygenase, CYP, Cytochrome P450, Cytokine, CXCR4, E2F, E-cadherin, Eicosanoid, EBV, Epstein–Barr virus, ERK, ETE, Fibroblast, Fibrosis, Fluke, FOXO3a, Gastric cancer, Gastritis, Glycocalyx, HBV, HCV, Helicobacter pylori, Hepatitis B virus, Hepatitis C virus, HETE, Homeostasis, IBD, ICAM, IDO, IL-1b, Interleukin, Inflammation, Leukemia, Lipoxigenase, LTA4, LTD4, LTA4, LTE4, Liver cancer, LOX, LOXL3, Lymphoma, Lysyl oxidase, MAPK, MDA, Metalloproteinase, MMP, Mutation, NF-xB, AP1, AP2, PCN, PGD2, PGH2, PGF2α, Phagocytes, PI3K, PolyP, Precancerous niche, Prostate cancer, PUMA, Rac1, RNS, ROS, Sarcoma, SPhK, S1P, S1PR3, Simvastatin, SK2, SOX, Tissue, TGF, TNF, TOR, TXA2, VCAM, Virus, VZV

Introduction

Inflammation associated with cancer dates back to the British physician Sir Percival Pott (1714–1788), who reported chronic inflammation in testicular cancer in chimney sweeps in 1755 [1]. In 1829, William Edmonds Horner (1793–1853) described how chronic inflammation follows unresolved acute inflammation [2]. The French physiologist, Henri Dutrochet (1776–1847), reported how cells migrate to sites of inflammation [3]. In 1843, an experimental injury-induced diapedesis was shown by William Addison (1802–1881) [4], which was followed by the British physiologist, August Vinrey Waller (1816–1870) in 1846, who observed colorless blood cells in intact capillaries within frog tongue and mesentery [5]. In 1857, Brown reported acute (and chronic) inflammation...
induced by the topical application of arsenic in a patient [6].

Rudolf Virchow reported leukocytes in cancer tissues [7] and his pupil, the German-Jewish pathologist, Julius Friedrich Cohnheim (1839–1884), showed that colorless blood corpuscles migrated from vessels into inflammatory tissue and named these cells *Eiterkörpchen* (pus-corpuscles) [8,9], which resulted into the so-called migration theory and introduced a renaissance in the theory of inflammation. In contrast to his teacher Rudolf Virchow, Cohnheim found that “the leukocytes found in inflammation are predominantly derived from the blood by diapedesis through the capillary walls” (reviewed in Ref. [10]).

In 1868, the British Surgeon Thomas Bryant reported 10 cases of chronic inflammation in female breast cancer patients [11]. His fifth case was a 48-year-old female who presented with a history of earlier abscess and chronic inflammation of her right breast, which he was suspected of having cancer. Treatment against inflammation with tonic was successful but the patient developed contralateral breast cancer a year later. In 1891, Frederic S. Eve reported a 48-year male with chronic inflammation and tongue cancer with “chronic superficial glossitis for years” and a sore tongue for some 10 years [12].

Cohnheim’s *leukocytes migration* was proven by the Virchow’s pupil, Julius Arnold (1835–1915) in 1873 [13–15]. In 1883, the Russian Zoologist Elias Metschnikoff (1845–1916, also Ilya Ilyich Mechnikov from the Russian: Илья Ильич Мечникова) observed phagocytic cells surrounding rose thorns stuck into starfish larvae as a host defense [16,17]: the phagocyte doctrine was born after Mechnikov’s friend, Karl Claus, coined the term phagocytes. Metschnikoff was awarded the Nobel Prize in 1908. Various cell types during those early days had to be discovered, which may explain the difficulty to diagnose chronic inflammation-induced breast cancer [11].

Today we know that inflammation is a complex mechanism as any kind of stimulus appears to induce inflammation. The following is divided into pathogenic stimulus including viruses, bacteria, and fluke, followed by the newly described aquaporins (APQ) and autophagy followed by a section on chronic inflammation.

Pathogenic stimulus

A pathogenic (chemical or biological) stimulus is the earliest information a cell receives that can trigger the six sequential steps that lead to cancer [18,19]. The role of chemical carcinogens in the tumor microenvironment and carcinogenesis had earlier been reviewed. There is no published study wherein chemical carcinogens have been shown to induce somatic mutations and those mutations have led directly to the onset of cancers.

In fact, most studies on chemical carcinogenesis require a long latency period between repeated exposures to the carcinogen and the onset of cancer [20]. The reason for the latency period is the necessity of chronic inflammation and fibrosis with their associated changes in signaling that leads to the onset of cancer. It seems rather logical to combine results of observations in biology that the onset of cancer involves a pathogenic stimulus, followed (if unresolved) by chronic inflammation, fibrosis, and a disruption of homeostasis such that cancer can result over decades in a subset of the exposed population [18,19].

The fact that somatic mutations are detected at certain time points, post-exposure to chemical carcinogens [21,22], merely suggests that such mutations are epiphenomena or incidental to carcinogenesis and not necessarily causal to the onset of cancer as explained elsewhere [18,19,23].

For example, chronic exposure to certain asbestos fibers results in pleural mesothelioma *but with no mutations* [24]. Carbon tetrachloride causes inflammation, fibrosis of the liver, and later hepatic carcinoma [25]. Hepatitis C in humans causes chronic inflammation with liver fibrosis, cirrhosis, and some 30% of patients with cirrhosis go on to develop hepatocellular carcinoma (HCC) with no mutations [26]. This is also true in the case of Human Papilloma virus (HPV) and cervical or oropharyngeal cancers with chronic inflammation but no somatic mutations [27–30]. Although we all acknowledge that chronic cigarette smoking raises the risk of lung cancer, the fact that only about 10% of chronic smokers develop lung cancer [31] suggests that a pathogenic stimulus is not sufficient unto itself to cause cancer, other pathways must be involved such that homeostasis is disrupted.

A pathogenic stimulus causes a reaction, an inflammation. The earliest report on the role of inflammation in carcinogenesis came in 1915 when coal tar derivatives, repeatedly applied to rabbit ears, induced skin cancer [32]. Since then, alkylating agents (sulfur mustard, ethylene dibromide, and many nitrosamines), arsenic, aflatoxins, asbestos, azo dyes, benzene, cigarette smoke, vinyl chloride, and radiation have all been associated with carcinogenesis [18,19,23]. A feature shared by these chemical carcinogens is an extended latency period between repeated exposures and the onset of cancer. A nonchemical example is the chronic inflammation in persistent achalasia associated with an estimated 140-fold increased risk of developing esophageal cancer [33].

The complex, yet insidious, nature of chronic inflammation can be seen both inside and outside the cell. Disruption of the glyocalyx, the thin layer of glycoproteins, and glycolipids that coats nearly every cell, can result in both altered signaling pathways and favor a pro-inflammatory state within the cell [18,19].

One function of the glyocalyx is to protect cells and underlying tissues, while another serves as a direct mechanical-transducing link to couple the guanosine-5'-triphosphate (GTP)-binding proteins of the cell membrane as well as promoting contact with microfilaments inside the cell [18,34]. The regeneration time after disruption of the glyocalyx is about 5–7 days [35]. The consequences of the degradation of the glyocalyx involve increases in the number of intercellular adhesion molecule 1 (ICAM1, cluster of differentiation 54, CD54) on the cell surface, and activates the nuclear factor
kappa-light-chain-enhancer of activated B-cells (NF-κB), thus fostering a pro-inflammatory state marked by elevated leukocyte adhesion [36]. The glycolcalyx is found around epithelial, stromal, and tumor cells, and disruption by hyaluronidase and heparinase was reported to protect against flow-regulated invasion [37].

The role of adhesion molecules in carcinogenesis is being increasingly examined. The cytochrome P450 (CYP) metabolized statin, simvastatin, inhibits the adhesion of cancer cells to human mesothelial cells (HMCs) and decreases the adhesion molecules, vascular cell adhesion protein 1 (VCAM-1) on HMCs, and ICAM-1 and the cell surface receptor integrin beta 1 (integrin β1, cluster of differentiation 29, CD29) chain expression in ovarian cancer cells. This opens up the possibility of a therapeutic role for simvastatin in patients with peritoneal carcinomatosis [38] perhaps by applying long-circulating liposomes as a constant delivery system for simvastatin [39].

The experiments by Zeng et al. revealed that blocking metalloproteinases (MMPs), the cell surface glycoprotein cluster of differentiation 44 (CD44), or integrin alpha 3 (integrin α3, cluster of differentiation 49C, CD49C) decreases flow-induced migration. The authors theorized that sphingosine-1-phosphate (S1P), together with glyco- calyx, Snail, and MMP signaling, mediate S1P-induced cell transition [40]. The protection of the glycolcalyx is induced by S1P, thereby increasing its synthesis on endothelial cells mediated by the phosphatidylinositol 3-kinase (PI3K) pathway [41]. However, upon closer examination, it appears that S1P exerts different effects depending on where it acts within the organism [42, 43, reviewed in 44]. S1P plays a role in the chemotaxis of mast cells to sites of inflammation [45]. The disruption of the molecular homeostasis of sphingosine kinase isoforms (SphK) and S1P is thought to occur during carcinogenesis.

SphK is increased in breast cancer [46,47] and is activated by cytokines, resulting in increases in intracellular S1P [48]. SphK-induced S1P accumulation suppresses apoptosis [49]. Overexpression of SphK facilitates cancer development [45,50]. S1P signaling in Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma activates protein kinase B (Akt, PKB) and promotes cell migration through S1P receptor 3 (S1PR3), while a knockdown of S1PR3 decreases Akt activation and the S1P-triggered migration of nasopharyngeal carcinoma cells in vitro [51].

In patients with inflammatory bowel disease (IBD), the risk of cancer is increased some 20–30-fold [52]. S1P is thought to be involved in the progression from IBD to cancer [53]. It may be that two homologous proteins (S1PL2021 and S1PL2025), which were recently reported in the pathogenic bacterium *Burkholderia pseudomallei* K96243, degrade host sphingolipids (SLs) via a mechanism mediated by the pyridoxal 5'-phosphate (PLP)-dependent enzyme S1P lyase (S1PL) [54]. Exosomes secreted by enterobacteria trigger the intestinal epithelium to produce exosome-like nanoparticles derived from mucosa, which contain S1P, chemokine (C-C motif) ligand 20 (CCL20), macrophage inflammatory protein-3, MIP3A), and prostaglandin E2 (PGE2), which, in turn, promote Th17 cells and modulate intestinal inflammation [55].

Other indicators of disruption of cellular homeostasis include catenin delta-1 (protein 120, p120), conjugated bile acids (CBA), and PGE2. The cell adhesion protein 120 (p120, catenin delta-1) expression is elevated in chronic pancreatitis and can be diminished in tumors. It is thought that together with the signaling of extracellular S1P bound to S1P receptor 2 (S1PR2) on neighboring cells these changes could affect the progression to cancer [56]. Furthermore, CBA activate S1PR2 in hepatocytes [57] and, thereby, promote growth in cholangiocarcinoma through activation of S1PR2 [58].

CBA-induced cyclooxygenase 2 (Cox-2) expression in a human HuCCT1 CCA cell line is also associated with S1PR2-mediated upregulation of both Cox-2 expression and PGE2 production, highlighting the role of S1PR2 bile acid-induced Cox-2 expression and abnormal cell growth [59]. The small molecule 3-(4-chlorophenyl)-adamantane-1-carboxylic acid (pyridin-4-ylmethyl) amide (ABC294640) selectively inhibits sphingosine kinase 2 (SK2) activity leading to dose-dependent decreases in S1P expression [60]. It also targets sphingosine kinase isoforms, sphingosine kinase isoform 1 (SphK1) or sphingosine kinase isoform 2 (SphK2), inhibiting constitutive signal transduction and dose-dependent caspase cleavage, as well as apoptosis for Kaposi’s sarcoma-associated herpes virus (KSHV)-positive patient-derived primary effusion lymphoma (PEL) cells [61].

Pathogenic stimulus by virus

Some 2,400 years ago, Hippocrates is believed to have coined the term “herpes” “to describe lesions that appeared to creep or crawl along the skin” although descriptive lesions seem to have been reported on a Summarian Tablet in the third Millenium BC and on the Ebers Papyrus about 1,500 BC [62–65]. Hippocrates (460–377 BC) first described the association of uterine cancer and inflammation [66, reviewed in 67] followed by Galen (approximately 130–210 AD) with “scleroma uteri est tumor subdurus in aliqua parte uteri oxortus qui plerumque ex diuturnis inflammationibus” [68, reviewed in 67]. Arataeus of Cappadocia (approximately first to third century AD) recognized the association of inflammation in liver cancer: “The liver inflammation persists, and the pus remain inside the liver, the pain persists too, the enlargement turns to a rough area and transformed to cancer” (reviewed in Ref. [67]).

John Abruc in 1736 investigated French prostitutes and linked herpes with genital lesions [69]. This was followed by Vidal, who in 1873 associated human herpes virus 1 (HSV-1, HHV-1) associated with oro-facial and human herpes virus 2 (HSV-2, HHV-2) with genital lesions including the suggestion that herpes may be infectious between humans [70], Steiner in 1875 linked human herpes virus 3 (HHV-3, Varicella zoster virus, VZV) with chicken
pox [71], and Unna 1883 associated human herpes virus (HSV) with genital lesions but he described herpes as “...one of the most benign of affections both to the patient and her public” [72].

Kelsch and Kiener reported two cases of liver cancer in 1876 [73] and the first histological classification was done by Hanot and Gilbert [74]. Virchow differentiated between primary liver cancer and liver metastasis [75] followed by the subsequent distinctions between primary liver cancers derived from hepatocytes resulting in “hepatoma” (later hepatocellular carcinoma or HCC), and “cholangioma” deriving from the intrahepatic bile ducts (later cholangiocellular carcinoma or CCC) [76,77].

The association of liver cancer and fibrosis was pointed out by Sabourin using the term hepatoma [78], and the association of hepatitis involved during liver cancer development was recognized in 1948 [79,80].

The association of hepatitis B virus (HBV) and liver cancer was made by Prince and Sherlock [81,82] and the causal association was accepted [83] while the association of liver fluke and CCC was performed by Kartsurada 1900 and Hout 1955 [84,85], reviewed in [86].

The Irish surgeon, Denis Parsons Burkitt, then in Uganda, discovered that viruses were associated with cancer when he observed swellings in the angles of the jaw in children [87]. In 1961, Burkitt gave a lecture entitled “The Commonest Children’s Cancer in Tropical Africa – A Hitherto Unrecognized Syndrome.” In 1964, Michael Anthony Epstein, a pathologist, together with Bert Achong and Yvonne Barr, identified particles of virus in cells cultured from Burkitt’s cancer patients [88], demonstrating that viruses were associated with what later became known as Burkitt’s lymphoma. In 1968 and 1971, reports appeared that showed that cell-free extracts of human osteosarcomas inoculated in hamsters could induce the mesenchymal cancer, osteosarcoma [89,90]. Later, Balabanova et al. showed that the transformation of normal cells to cancer cells occurred in vitro after infection with two C-type viruses obtained from solid tumors [91,92]. In 1974, Epstein and Kaplan established the SU-DHL-1 lymphoma cell line from a 10-year-old boy suffering from diffuse histiocytic lymphoma [93]. Kaplan et al. later demonstrated in vitro that the SU-DHL-1 virus could infect human hematopoietic cells and transform them to malignant cells [94–96]. Subsequently, Gertrude and Werner Henle with collaborators from their Philadelphia laboratory developed serological markers and antibodies to the offending virus [97]. The first sero-epidemiological studies on EBV were published in the late 1970s. [98]. Henle later showed that EBV could affect a transition of normal lymphocytes to cancerous cells [99].

The association of HSV with chronic inflammation [100–103] and the development of squamous dysplasia, carcinoma in situ, and cervical carcinoma has been proven since the 1860s [104–112]. Since 1981, a herpes classification is available [113]. The Hungarian dermatologist, Moritz Kaposi (1837–1902), reported an idiopathic skin sarcoma [114, reviewed in 115], which was essentially ignored until 1981 when human immunodeficiency virus (HIV) infection and acquired immune deficiency syndrome (AIDS) were associated with Kaposi sarcoma syndrome and opportunistic infections [116]. Human herpes virus 8 (HHV-8) causes PEL, multicentric Castleman disease (MCD), and Kaposi sarcoma, a malignant cancer of blood vessels that is common in immune-compromised patients with AIDS [117].

Other viruses have also been causally linked to specific cancers and the association of chronic hepatitis B or C (HBV or HCV) and liver cancer is established [118].

The associations of HPV with cervical carcinoma [119], middle ear carcinoma [120], penile carcinomas [121,122], oropharyngeal cancer [123], tongue cancer [124], esophageal squamous cell carcinoma (ESCC) [125], colorectal cancer (CRC) [126,127], lung cancer [128–130], and breast cancer have since been demonstrated [131].

In regard to the herpes virus, another paradigm is falling. It was propagated for a long time that Alzheimer’s disease was caused by mutations in the majority of cases [132–135], although we now know that only some 5% of Alzheimer’s cases are causally linked to mutations [136]. Recently, it was pointed out that the majority of cases (≥50%) seem to be caused by chronic inflammation induced by herpes virus species [137].

Pathogenic stimulus by bacteria

The association of Helicobacter pylori and gastric cancer [138] was long ignored [139]. Eventually, the pathogen was shown to cause fibrosis, one step in the proposed six-step sequence of carcinogenesis [18]. It is relevant that >60% of infections by gastric spiral organisms (GSO) were observed in dogs and cats, where they act as a reservoir for subsequent human infection with *H. pylori* [140]. Dogs infected with this pathogen showed a greater incidence of moderate-to-severe gastritis than dogs that were *H. pylori* negative [141]. The mode of transmission of this gram-negative bacterium is unclear as is the possibility of transmission via fecal–oral, gastric–oral, oral–oral, and sexual routes. *H. pylori* was shown to be present and to survive in food samples such as milk, vegetables, and meat, a fact that points to the role of environmental factors in assessing cancer risk [142].

H. pylori uses the serine protease, high temperature requirement A (HtRA), to cleave important components of the tight junctions, such as occluding and claudin-8, and the cell–cell adhesion protein cadherin-1 (E-cadherin), making transcellular migration possible [143]. Bacterial adaptations to the cellular milieu are Type IV secretion systems (T4SSs) found in gram-negative and gram-positive bacteria [144]. In *H. pylori* infection, T4SSs are formed at the basolateral epithelial membrane. After disrupting cell–cell junctions and binding to the integrin-β1 receptor, the cytotoxin-associated gene A (CagA) protein of *H. pylori* is injected into the host [143]. It has recently been shown that CagA deregulates autophagy and promotes chronic inflammation through...
tyrosine-protein kinase Met (c-Met, hepatocyte growth factor receptor, HGFR)-PI3K/Akt- mechanistic target of rapamycin (mTOR) signaling [145].

Disruption of gut bacteria composition as internal pathogenic stimuli

The roles of bacteria as pathogenic stimuli were examined in a population-based study in postmenopausal women by comparing 48 breast cancer cases with 48 contemporaneous age-matched controls [146]. Adjustment for estrogens and other variables showed “…reduced alpha diversity and altered composition of both their IgA-positive- and IgA-negative faecal microbiota,” revealing that “breast cancer cases had significant oestrogen-independent associations with the IgA-positive and IgA-negative gut microbiota.” An investigation of 668 breast tumor tissue and 72 noncancerous adjacent tissue was performed to try to characterize microbiota and to study associations of microbiota with tumor expression profiles [147]. To confirm the presence of microbiota, sequencing of the 16S rRNA gene was used to identify unknown bacteria “or for providing reference identifications for unusual strains” [148]. Thompson et al. found that *Escherichia coli* was “one of the more prevalent species in the breast tissue and is observed in higher abundance within non-cancer breast tissues.” Furthermore, a greater shift in the abundance of *Proteobacteria* in cancer tissues was observed compared to *Actinobacteria* in noncancer tissues. *Listeria spp.* was associated with expression profiles of genes involved with cell transition and *H. influenza* was associated with proliferative pathways, such as G2M checkpoint, E2F transcription factors, and mitotic spindle assembly [147].

A nested case-control study of two prospective cohort studies, the American Cancer Society Cancer Prevention Study II Nutrition Cohort (CPS-II) and the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial (PLCO), investigated head and neck squamous cell cancer (HNSCC) and identified 129 incident cases of HNSCC that were associated with decreased HNSCC risk. Additionally, plant-associated methylobacteria were previously thought to act as coevolved phytosymbionts [156] and *Provi-dencia* was shown to be associated with the cancer microenvironment [162].

Although dermatophytes usually cause superficial fungal infections of the skin in immunocompromised patients, *Trichophyton rubrum* can cause deep dermatophytosis with hematogenous dissemination [163]. It has been suggested that dermatophytes could trigger mycosis fungoides [164]. Zhang et al. reported that about 25% of...
20 medulloblastomas contained the deoxyribonucleic acid (DNA) of *Brucella* species by the OMP31 primer/probe set; none of the medulloblastomas had a specific sequence for *B. melitensis*, *B. suis*, or *B. abortus* [165]. *Fusobac-terium nucleatum* ssp. *animalis* induced chronic inflammation and monocyte/macrophage activation, which could promote cancer development [166].

Chronic inflammation has been shown to initiate pancreatic carcinogenesis without a K-ras mutation and in the absence of a tumor protein 53 (p53) mutation [167].

Pathogenic stimulus by fluke

CCC has been associated with liver fluke (*Opisthorchis viverrini*) [168–170]. Thailand has the highest CCC rates worldwide, especially in the northern and northeastern part [171]. This is concordant with the finding that the “...majority of the infected cases (64.3%) were found from the immigrants of northeastern Thailand (the fluke-prevalent region), providing 2.28–2.42 times higher infectious risk on average against the local residents.” The prevalence of *O. viverrini*, *Schistosoma mekongi*, and soil-transmitted helminths (STH) is also high in the Lao People’s Democratic Republic (Lao PDR), and animal infections rates, as well as water, might serve as a reservoir for humans [172]: “*O. viverrini* and *S. mekongi* infection rates among dogs and cats were 25.0% and 14.7%, respectively. Of the cats tested, 53.1% were infected with *O. viverrini*. Prevalence of *O. viverrini* and *S. mekongi* in snails was 0.3% and 0.01%, respectively. Overall prevalence of *O. viverrini* infection in fresh water fish was 26.9%, with the highest infection rates occurring in *Hampala dispa* (87.1%).”

According to the six-step carcinogenesis sequence [18], *O. viverrini* infection is associated with a two to three times increase of plasma in hypoxia-inducible factor (HIF-1α) with inhibition of vasodilator-stimulated phosphoprotein (VASP) and consequent reduction of adhesion [180]. Activating STAT3 by IL-17 decreases myeloid-derived suppressor cells (MDSCs) in breast cancer [181]. IL-17 stimulates interleukin 6 (IL-6) expression 13-fold and interleukin 8 (IL-8) 28-fold in benign prostate hyperplasia (BPH) cells but in situ measurements showed that the amount of 17mRA in BPH cells did not correlate with IL-6 or IL-8 mRNA but rather was strongly correlated in prostate cancer tissues [182]. Furthermore, IL-17 increases in vivo tumor growth in human nonsmall cell lung cancer (NSCLC) in SCID mice through CXCR-2-dependent angiogenesis [183]. MMP-9, MMP-2 via NF-κB/hypoxia-inducible factor (HIF-1α) pathway is increased by IL-17 in rheumatoid arthritis, promoting cell migration [184], and MMP-9 through mitogen-activated protein kinase 3 (ERK1) and mitogen-activated protein kinase 1 (ERK2) MAPK activation [185].

The IL-1/IL17 signaling axis contributes in inflammatory remodeling of fibrosis in systemic sclerosis [186]. IL-17 increase via IL-6, TNF, CCL20, and C-X-C motif ligand 1 (CXCL1) in heart failure with consecutive enhancing tissue remodeling [187]. The activation of the IL-17/long noncoding RNA-AK081284 ([AK081284]/TGFβ1 increases cardiac interstitial fibrosis, while IL-17 knockout results in decrease of remodeled fibrosis and improved cardiac function in mice [188]. There are also contradictory findings, namely, pulmonary fibrosis is increased via IL-17 induced Th17 cells [189], while renal interstitial fibrosis can be inhibited by IL-17 [190], which may be dependent on the IL-17 concentration as low dose IL-17 can prevent diabetic nephropathy [191]. It is known that the effect of IL-17 in allergic airway inflammation depends on the quantity as well as the cellular source of IL-17 [192], and using anti-IL-17 in psoriasis resulted in “dose-dependent reductions from baseline in keratinocyte proliferation, hyperplasia, epidermal thickness, infiltration into the dermis and epidermis by T cells and dendritic cells” [193].

IL-17 seems to have dose- and cell source-dependent inflammatory and pro-fibrotic effect, whereas interleukin 22 (IL-22) was associated with protecting against liver fibrosis through downregulation of the TGF-β1/Notch signaling pathway [194] but being pro-fibrotic in cardiac fibrosis through STAT3/and ERK and IL-17, IL-6, IL-1β, IFN-γ, and TNF-α [195] and pro-atherosclerotic [196]. Both, IL-17 and IL-22 are associated with poor prognosis in liver cancer [197], but the exact roles of IL-17 and IL-22 need to be defined in detail in regard to concentration, kind of inflammation, and period of chronic inflammation involved in signaling axis and cell sources.

New interactions between chronic inflammation contain aquaporines (AQPs) and autophagy, both getting increasingly into cancer research focus [198–200].

Aquaporines (APQ)

The aquaporines (AQPs) are a family of small hydrophobic membrane proteins in the animal and plant kingdom that are involved in transport of water and in
water homeostasis, which was first reported in 1992 by Peter Agre’s group [201] and for which he received the Nobel Prize in Chemistry in 2003. AQPs are involved in concentrating the urine within the kidneys and the salivary glands as well as within the liver for glyconeogenesis [202–205].

AQPs are expressed “in many epithelia and endothelia involved in fluid transport, as well as in cell types that are thought not to carry fluid transport, such as skin, fat and urinary bladder cells” [206]. The various AQP function roles include trans-epithelial fluid transport, tissue swelling, cell migration, fat metabolism, pathophysiology of obesity, immune cell dysfunction, cancer, and other diseases. Piscine aquaporins, in Agnatha (jawless fish), Chondrichthyes (chimaeras, sharks, and rays), Dipnoi (lungfishes), and Teleostei (ray-finned bony fishes) “imply the physiological roles of piscine aquaporins extend at least to osmoregulation, reproduction, and early development” [207]. Research revealed the association of various AQPs with cancer, its development, and metastasis [208–214]. However, AQP seems to be heterogeneously expressed in highly aggressive cancers with increased cell migration and cell proliferation [215].

Papadopoulos et al. proposed a mechanism how AQPs may play a role in a kind of amoeboid cell migration important for metastasis and by which rapid changes in cell volume facilitated by AQP include [216] actin depolymerization and ionic influx with increased osmolality at the front end of the cell, water influx followed by actin re-polymerization with formation of localized cell membrane protrusions. There is hope that AQP inhibitors or modulators might serve as future drugs for slowing down tumor growth and migration [216,217].

The fluid clearance within the pancreatic duct chronic pancreatitis is in addition dependent on AQPs and not just on outflow obstruction: aquaporin 1 (AQP1) is mainly localized at the apical membrane of ductal cells in the human pancreas and AQP1 expression in mice is dependent on the cystic fibrosis transmembrane conductance regulator protein and chloride channel (CFTR Cl⁻), channels in mice. Induction of acute pancreatitis by intraperitoneal injection of cerulean in mice resulted in decreased channel expression, which was concordant to findings in human with acute and chronic pancreatitis [218]. AQP1 knockdown worsened the pancreatitis with significant decrease of pancreatic ductal fluid and hydrogen carbonate (HCO₃⁻) secretion with increased chronic inflammation.

A disruption of AQPs in chronic inflammations and various diseases was observed: upregulation of aquaporin 1 (AQP1) in rheumatoid arthritis [219] versus a down-regulation of aquaporin 4 (AQP4) and 8 (AQP8) in colitis-induced mice [220], and increased AQP1, aquaporin 3 (AQP3), aquaporin 7 (AQP7), and aquaporin 8 (AQP8) in early untreated human IBD [221]. The anti-inflammatory mediator, lipoxin A₄ (LXA₄, 5,6,8,15-tetrahydroxy-7E,9E,11Z,13E-eicosatetraenoic acid) [222], regulates aquaporin 5 (AQP5) and metalloproteinase 9 (MMP-9, gelatinase B) in pancreatitis-associated lung injury through the protein kinase C (PKC)/src-suppressed C-kinase substrate (SSeCKS) pathway with F-actin reconstruction [223].

AQP1 is thought to be involved in the differentiation of gastric cancer cells [224], and AQP3 and aquaporine 9 (AQP9) can be induced by arsenite with inhibition of apoptosis via decreasing p53 and increasing B-cell lymphoma 2 (Bcl-2) [225]. AQP1 and AQP5 are increasingly expressed at the apical membrane of intercalated pancreatic duct cells [226], and increased AQP5 levels result into “retinoblastoma protein phosphorylation through the formation of a nuclear complex with cyclin D1 and CDK4” [227]. AQP3 was found to be increased in advanced stages of pancreatic cancer, and AQP5 is more closely associated with tumor differentiation [228].

Autophagy

The mechanism a cell uses to rid itself of unnecessary or dysfunctional components is termed autophagy [229]. It was coined by Christian de Duve in 1963 [230], reviewed in 2029. Intracellular bacterial infections [231] such as *propionibacterium acne* [232], *Shigella* and *Salmonella* [233], *H. pylori* [234], and viruses [235] can generate autophagy. The accumulation of intracellular amino acids induces a dissociation of mTOR from the membrane with downregulation of its activity. At the same time, the amino acids activate EIF2AK4/GCN2/eIF2α/ATF-3 signaling (eukaryotic translation initiation factor 2-alpha kinase 4 (EIF2AK4)/general control nonderepressible 2 (Gen2)-eukaryotic translation initiation factor 2 subunit 1 (eIF2α, EIF2S1)/eukaryotic translation initiation factor 2 subunit 1 (eIF2α)/cyclic AMP-dependent transcription factor (ATF-3)) [233].

It has recently been reported that endogenous nuclear fragments, such as chromatin, evoke a chronic inflammatory response within the cytoplasm also leading to autophagy [236]. An external pathogenic stimulus also induces an internal protection shield process for the cell, termed consecutive autophagy [237].

Autophagy is linked to subclinical inflammation especially in precancerous lesions such as inflammatory bowel diseases (IBD), in which autophagy controls colitis by decreasing TNF-induced apoptosis [238], which is why autophagy in IBD is seen as a protection against cell suicide for the gut epithelium [239]. But the contradictory findings have not been fully explained. Chronic pancreatitis is associated with progressive chronic inflammation and a precancerous condition for pancreatic cancer [240,241].

Long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is increased in pancreatic cancer and is associated with poor survival [242,243] and promotes cancer progression by autophagy activation [244]. Retinoblastoma-coiled coil protein 1 (RB1CC1) mediates autophagy, which is seen as a key event for the activation of pancreatic stellate cells (PSCs), and knocking down retinoblastoma-coiled coil protein 1
Chronic inflammation

The interactions between mast cells, T-cells, neutrophils, granulocytes, and macrophages are complex such that the chronic activation of one or more of these results in the release of pro-inflammatory cytokines (examples included in Fig. 1) and those, in turn, are linked to the development of fibrosis [250–253]. The chronic activation of macrophages brings about a chronic release of TNFα, interleukin beta 1 (IL-β1), and oncostatin-M (OSM) and leads to a continuous activation of fibroblasts [254–256].
Chronic activation of mast cells also produces a release of cytokines as well as activating T-cells and fibroblasts [257] (Fig. 1). T-cells, involving a ligand such as cluster of differentiation 40 (CD40) in antigen presenting cells, mediate the contact activation of endothelial cells [258]. Such a process is one plausible mechanism to generate the observed chronic inflammation. Post-partum-activated fibroblasts were associated with increased Ly6C+ monocytes, decreased CD8+ T cells, and apoptosis. They displayed pro-tumorigenic, immunosuppressive activity through Cox-2/PGE2-dependent pathways [259]. This phenomenon is also a reason to consider immunosuppression in cancer therapy.

The immunosuppressive enzyme, indoleamine-2,3-dioxygenase (IDO), is produced in all tissue types [260]. Mice cells transfected with IDO become resistant to immunologic rejection [261], and IDO expression is associated with various cancers such as pancreatic [262,263], gastric [264,265], colorectal [266], breast [267], ovarian, and endometrial [268,269]. The expression of IDO isoforms differs among the various cells; tryptophan degradation by IDO is effected entirely by IDO1 but not IDO2 [264]. Applications of the heme precursor compound, zinc protoporphyrin IX (ZnP), in a preclinical melanoma model, effectively inhibited IDO [270].

Chronic fibroblast activation alone can lead to a vicious cycle as seen in liver cirrhosis, the end stage of chronic hepatitis. It is a tissue with an abnormal reconstruction of the lobular architecture that contains parenchymal nodules and septa that link the portal with central canals [271]. Popper described the vicious cycle in the creation of hepaticcellular fibrosis: “...hepaticcellular inflammation and the associated inflammation produce pericellular fibrosis interfering with cellular nutrition and septa-disturbing hemodynamics. This, in turn, induces additional liver cell injury.”

The negative regulator of Wnt signaling [272], the tumor-suppressor gene, adenomatous polyposis coli (APC), exhibits multiple functions. Silenced APC by promoter methylation was greater in HCC tissue than in noncancerous tissue and the level of APC protein expression was reduced in HCC [273]. The APC tumor suppressor gene also downregulates intestinal transport mediated by both electrogenic sodium–glucose transport protein 1 (SGLT1) and by the Na+/H+ exchanger (NHE3) [274]. It increases the nuclear factor of activated T cells (NFAT) in a microtubule-dependent fashion. APC deficiency in mice reduced NFAT within the nucleus of intestinal regulatory T cells (Tregs), leaving a disturbed Treg differentiation together with anti-inflammatory cytokine, interleukin 10 (IL-10) [275]. APC migration in prostate cancer cells is induced by transforming growth factor beta 1 (TGF-β1) and regulated by Smad7 and p38 mitogen-activated protein kinase (p38 MAPK) [276]. The interaction with microtubules plays an important role in this process.

Aspirin has been demonstrated to inhibit nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling and increase APC expression. Furthermore, it is associated with decreased polyposis in mice as well as in familial adenomatous polyposis (FAP) patients, and decreases the risk of developing CRC [277, reviewed in 278].

For the past 25 years, APC was thought to serve as one of the models for the origin of CRC as the APC mutation is also associated with both familial adenomatous polyposis (FAP) [279] and CRC [280]. However, APC mutations are not seen in mice models that were attributed to the limited lifespan of mice [281]. However, a few years ago it was shown that *APC mutations occur at a late stage of tumor formation* [282]. From this, and the observation that in a recent mouse model with a germline APC mutation,
Apoptosis in normal cells is a highly regulated process that occurs when a cell is damaged beyond repair or when the cell becomes no longer necessary to the organism. The process of apoptosis is initiated when a cell receives a signal to die, and it is characterized by a series of biochemical events that lead to the degradation of the cell's DNA and the formation of apoptotic bodies that are engulfed by neighboring cells.

The activation and interaction of T cells with antigen-presenting cells (APCs) is a critical step in the development of an immune response. The interaction of T cells with APCs is mediated by the engagement of T cell receptors (TCRs) with major histocompatibility complex (MHC) class I or class II molecules. This interaction triggers a series of intracellular signaling events that lead to the activation of the T cells and the production of cytokines that promote immune function.

The biology of apoptosis is complex and involves many different mechanisms that work together to regulate cell death. Understanding the biology of apoptosis is important for the development of new therapies for cancer and other diseases.

Summary

Unresolved chronic inflammation is an early and necessary phenomenon in the six-step carcinogenesis paradigm. The signaling and crosstalk pathways that go awry during chronic inflammation are complex because they occur both inside and outside the cell and include various cell types, proteins, and proinflammatory cytokines. Even intracellular nuclear fragments, such as chromatin, trigger chronic inflammation and affect autophagy. One end product of persistent inflammation is fibrosis, which is a preliminary stage before the formation of the PCN. Various pathogenic stimuli associated with different neoplasms result in persistent inflammatory micromilieu inducing an ongoing dysregulation of homeostasis at the cell, tissue, and organ levels. This disruption of homeostasis is an obligatory early step in carcinogenesis. Similar to other steps in carcinogenesis, a mutation is not necessary to explain carcinogenesis. The interplay of various cells, such as mast cells, macrophages, monocytes, T cells, and fibroblasts with diverse cytokines reveals considerable complexity. The "Disruption of signaling homeostasis induced crosstalk in the carcinogenesis paradigm Epistemology of the origin of cancer" (Fig. 1) becomes more complex by the involvement of the microbiome and obesity and various hydrophobic hormone-like substances, built out of polyunsaturated fatty acids: the eicosanoids.

Nomenclature of abbreviations (used in the text and the figure)

- 5-oxo-ETE: 5,8,11,14-eicosatetraenoic acid
- 12-HETE: 12-hydroxyeicosatetraenoic acid
- 20-HETE: 20-hydroxyeicosatetraenoic acid
- AK081284: long noncoding RNA-AK081284
- AIDS: acquired immune deficiency syndrome
- Akt: protein kinase B (PKB)
- ALOX: lipoxygenase
- ALOX12: 12-lipoxygenase
- ALOX5: 5-lipoxygenase
- AP1: activator protein 1
- APC: adenomatous polyposis coli
- AOM: azoxymethane
- AOPP: advanced oxidative protein products
- AQP: aquaporines
- AQP1: aquaporine 1
- AQP3: aquaporine 3
- AQP4: aquaporine 4
- AQP5: aquaporine 5
- AQP7: aquaporine 7
- AQP8: aquaporine 8
- AQP9: aquaporine 9
- ATF-3: cyclic AMP-dependent transcription factor
- AT-Cox2: aspirin-triggered cyclooxygenase 2
- Bcl-2: B-cell lymphoma 2
- BIM: Bcl-2 interacting mediator of cell death
- BPH: benign prostate hyperplasia
CFTR Cl cystic fibrosis transmembrane conductance regulator (CFTR) and chloride channel (Cl⁻)
c-c-motif chemokine
Cadherin-1 E-cadherin
CagA cytotoxin-associated gene A
CBA conjugated bile acid
CCC cholangiocellular carcinoma
CCL20 chemokine (C–C motif) ligand 20, macrophage inflammatory protein-3 (MIP3A)
CD4+ cluster of differentiation 4 positive
CD40 cluster of differentiation 40
CD44 cluster of differentiation 44
CD49C cluster of differentiation 49C (integrin alpha 3, integrin α3)
CD54 cluster of differentiation 54 (intercellular adhesion molecule 1, ICAM-1)
cdc42 cell division control protein 42 homolog
cdk2 cyclin-dependent kinase 2
c-Met tyrosine-protein kinase Met (hepatocyte growth factor receptor, HGFR)
Cox cyclooxygenase
Cox-1 cyclooxygenase 1
Cox-2 cyclooxygenase 2
(Cox-3) cyclooxygenase 2 isoform (Cox-2 isoform)
CPS-II Cancer Prevention Study II by the American Cancer Society
CRC colorectal cancer
CRP C-reactive protein
CSES chronic stress escape strategy
CXCC CC chemokine receptors
CXCL1 chemokine (C–C motif) ligand 1
CXCR4 C–C motif of chemokine receptor 4
CYP cytochrome P450
CYP* cytochrome P450 isoforms
DNA deoxyribonucleic acid
E2F4/5 cytoplasmic complex of Smad3, retino-blastoma-like protein 1 (P107, RBL1), E2F4/5 and d-prostanoid (DP1)
EBV Epstein–Barr virus
E-cadherin CAM 120/80 or epithelial cadherin, cadherin-1, epithelial cadherin
ECM extracellular matrix
EIF2AK4 eukaryotic translation initiation factor 2-alpha kinase 4
eIF2α eukaryotic translation initiation factor 2 subunit alpha (eIF2S1)
EIF2S1 eukaryotic translation initiation factor 2 subunit alpha (eIF2α)
ERK1 mitogen-activated protein kinase 3
ERK2 mitogen-activated protein kinase 1
ESCC esophageal squamous cell carcinoma
ETBF enterotoxigenic Bacteroides fragilis
FAP familial adenomatous polyposis
FOXO3a forkhead box protein O3a
FoxP3 forkhead box protein P3
Gcn2 general control nondessicatable 2
GSO gastric spiral organisms
GTP guanosine-5′-triphosphate
HBV hepatitis B virus
HCC hepatocellular carcinoma
HCO3− hydrogen carbonate
HCV hepatitis C virus
HGFR hepatocyte growth factor receptor (tyrosine-protein kinase Met, c-Met)
HHV-1 human herpes virus 1 (HSV-1)
HHV-2 human herpes virus 2 (HSV-2)
HHV-3 human herpes virus 3 (varicella zoster virus, VZV)
HHV-8 human herpes virus 8, Kaposi’s sarcoma-associated herpes virus (KSHV)
HIF-1α hypoxia-inducible factor
HIV human immunodeficiency virus
HMC human mesothelial cells
HNSCC head and neck squamous cell cancer
HPV human papilloma virus
HSV human herpes virus
HSV-1 human herpes virus 1 (HHV-1)
HSV-2 human herpes virus 2 (HHV-2)
HtrA high temperature requirement A (serine protease)
IBD inflammatory bowel disease
ICAM-1 intercellular adhesion molecule 1 (cluster of differentiation 54, CD54)
IDO indoleamine-2,3-dioxygenase
IFNγ interferon gamma
IHC immunohistochemistry
IL-1β interleukin beta 1
IL-6 interleukin 6
IL-8 interleukin 8
IL-10 interleukin 10
IL-12 interleukin 12
IL-17 interleukin 17
IL-17+ interleukin 17 positive
IL-22 interleukin 22
IL-23 interleukin 23
IL-33 interleukin 33
Integrin α3 integrin alpha 3 (cluster of differentiation 49C, CD49C)
Integrin B1 integrin beta 1 (cluster of differentiation 29, CD29)
KSHV Kaposi’s sarcoma-associated herpes virus
LGD low-grade dysplasia
LPS lipopolysaccharide
LOXL3 lysyl oxidase homolog 3
LTB4 leukotriene B4, (5S,6Z,8E,10E,12R,14Z)-5,12-dihydroxyicos-6,8,10,14-tetraenoic acid
LTC4 leukotriene C4, (5S,6R,7E,9E,11Z,14Z)-6-[(2R)-2-[(4S)-4-amino-4-carboxybutoxyl]aminol]-3-(carboxymethylamino)-3-oxopropyl]sulfanyl-5-hydroxycos-7,9,11,14-tetraenoic acid
LTD4 leukotriene D4, (5S,6R,7E,9E,11Z,14Z)-6-[(2R)-2-amino-3-(carboxymethylamino)-3-oxopropyl]sulfanyl-5-hydroxyicoso-7,9,11,14-tetraenoic acid

LTE4 leukotriene E4, (5S,6R,7E,9E,11Z,14Z)-6-[(2R)-2-amino-2-carboxethyl]sulfanyl-5-hydroxyicoso-7,9,11,14-tetraenoic acid

LXA4 lipoxin A4, 5S,6R,15S-trihydroxy-7E,9E,11Z,13E-eicosatetraenoic acid

MALAT1 metastasis-associated lung adenocarcinoma transcript 1

MAPK mitogen-activated protein kinase (see ERK1 and ERK2)

MCD multicentric Castleman disease

MDA malondialdehyde, propanedial

MDSC myeloid-derived suppressor cell

MIP3A macrophage inflammatory protein-3, chemokine (C–C motif) ligand 20 (CCL20)

mir21 micro RNA-21

MMP matrix metalloproteinase

MMP-1 metalloproteinase 1 (interstitial collagenase)

MMP-2 metalloproteinase 2 (gelatinase A)

MMP-3 metalloproteinase 3 (stromelysin-1)

MMP-7 metalloproteinase 7

MMP-9 matrix metalloproteinase 9 (gelatinase B)

MMP-14 metalloproteinase 14

mTOR mechanistic target of rapamycin

mTORC1 rapamycin complex 1

NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells

NCCCT normal cell to cancerous cell transition

NFAT nuclear factor of activated T cells

NHE3 Na+/H+ exchanger

NSCLC nonsmall cell lung cancer

OSM oncostatin-M

p53 tumor protein p53

p107 retinoblastoma-like protein 1, RBL1

p120 protein 120, catenin delta-1

p38 MAPK p38 mitogen-activated protein kinases

p300 protein 300 (p300-CBP coactivator family)

PAI1 plasminogen activator inhibitor-1

PCN precancerous niche

PEL primary effusion lymphoma

PGE2 prostaglandin E2, (Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-5-oxocyclopentyl]hept-5-enoic acid

PGI2 phosphatidylinositide 3-kinase

PKB protein kinase B (Akt)

PKC protein kinase C

PLCO prostate, lung, colorectal, and ovarian cancer screening trial

PUMA BH3-only protein

PUMA BH3-only protein

Rac1 Ras-related C3 botulinum toxin substrate 1

Rho Ras homolog gene family, member A

ROS reactive oxygen species

S1P sphingosine-1-phosphate

S1P homologous protein to S1PL2025, encoded by Burkholderia pseudomallei K96243

S1PL2025 homologous protein to S1PL2025, encoded by Burkholderia pseudomallei K96243

SIP1 S1P lyase

SIP1 S1P receptor 2

SIP3 S1P receptor 3

SGLT1 sodium – glucose transport protein 1

SIP1 Smad interacting protein 1

SK2 sphinsoine kinase 2

SNAIL zinc finger protein SNAI1

SOX [sex-determining region Y (Sry) box-containing] transcription factor family

SP1 specificity protein 1

SpHK sphingosine kinase isoform

SpK1 sphingosine kinase isoform 1

SpK2 sphingosine kinase isoform 2

SSeCKS src-suppressed C-kinase substrate

STH soil-transmitted helminths

T4SSs Type IV secretion systems

TA tubular adenomas

TGF-β1 transforming growth factor beta 1

TNRα tumor necrosis factor alpha

Tregs regulatory T cells

TXA2 thromboxane A2, (Z)-7-[(1S,2S,3R,5S)-3-hydroxy-2-[(E,3S)-3-hydroxyoct-1-enyl]-4,6-dioxabicyclo[3.1.1]heptan-2-yl]hept-5-enoic acid

VCAM-1 vascular cell adhesion protein 1

VZV varizella zoster virus (human herpes virus 3, HHV-3)

ZnPP zinc protoporphyrin IX

Acknowledgement

The manuscripts of this Special Issue were supported by the Theodor-Billroth-Academy® (TBA®) and INCORE, (International Consortium of Research Excellence) of the (TBA®). We express our gratitude to the
discussions on the web group of the Theodor-Billroth-Academy on LinkedIn, the exchange with scientists at Researchgate.com, as well as personal exchanges with distinguished colleagues who stimulated our thinking all named individually earlier in publications – we thank each one. We further gratefully acknowledge the support of Marjan S. Rupnik, PhD, Professor of Physiology, Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Austria, for pre-submission review of the literature and our fruitful discussions.

Conflict of interest

The author reports the following conflict of interest: Björn LDM Brücher is Editor-in-Chief in Life Sciences-Medicine of 4open by EDP Sciences. Ijaz S. Jamall is Senior Editorial Board member in Life Sciences-Medicine of 4open by EDP Sciences. The authors, of their own initiative, suggested to the Managing Editorial to perform a transparent peer-review of their submittals. Neither author took any action to influence the standard submission and peer-review process, and report no conflict of interest. The authors alone are responsible for the content and writing of the manuscript of this Special Issue. This manuscript contains original material that has not previously been published. Both authors contributed to the discussion on its contents and approved the manuscript.

References

1. Pott P (1755), Chirurgical observations, vol. 3, L Hawes, W Clark, and R Collins, London, pp. 177–183.
2. Horner WE (1829), A treatise on pathological anatomy, Carey, Lea & Carey, Philadelphia.
3. Dutrochet MH (1824), Recherches anatomiques et physiologiques sur la structure intime animaux et des végétaux, et sur leur motilité, Bailliere, Paris.
4. Addison W (1843), Experimental and practical researches on the structure and function of blood corpuscles; on inflammation; and on the origin and nature of tubercles in the lungs, Tr Prov Med Surg Ass 11, 233–306.
5. Waller A (1846), Microscopic examination of some of the principal tissues of the animal frame, as observed in the tongue of the living forg, toad, London, Edinburgh and Dublin. Philos Mag 29, 271–287.
6. Brown WN (1857), Case in which in inflammation and ulceration of the sound skin was caused by the application of a strong arsenical solution. Edinb Med J 3, 148–149.
7. Virchow R (1863), Über bewegliche tierische Zellen. Arch Path Anat Physiol 28, 237–240.
8. Cohnheim JF (1867), über Entzündung und Eiterung, Virchows Arch 40, 1–79.
9. Cohnheim JF (1889), Inflammation, in: Lectures on General Pathology, The New Sydenham Society, London, p. 242.
10. Malkin HM (1984), Julius Cohnheim (1839–1884): his life and contributions to pathology. Ann Clin Lab Sci 14, 335–342.
11. Bryant T (1868), Remarks on some cases of inflammation of the breast simulating cancer. Br Med J 2, 608–609.
12. Eve FS (1881), On the relation of epithelioma to irritation and chronic inflammation. Br Med J 1, 504–506.
13. Arnold J (1873), Über Diaplesis, eine experimentelle Studie. Virchows Arch 58, 203–254.
14. Arnold J (1887), über Thäldungsvorgänge an den Wanderzellen, ihre progressiven und regressiven Metamorphosen. Arch Mikroskop Anat 30, 205–310.
15. Arnold J (1888), Über die Entstehung der Entzündung und die Wirkung der entzündungserregenden Schädlichkeiten. Fortschr Med 4, 460.
16. Metchnikoff E (1883), Untersuchungen über die intra-celluläre Verdaunung bei wirbellosen Tieren. Arb Zool Inst Univ Wien 5, 141–168.
17. Metschnikoff E (1884), Üeber eine Sprosspilzkrankheit der Daphnien. Beitrag zur Lehre über den Kampf der Phagocyten gegen Krankheitserreger. Virchows Arch 96, 177–195.
18. Brücher BLDN, Jamall IS (2014), Epistemology of the origin of cancer: a new paradigm. BMC Cancer 14, 1–15.
19. Brücher BLDN, Jamall IS (2014), Cell-cell communication in tumor microenvironment, carcinogenesis and anticancer treatment. Cell Physiol Biochem 34, 213–243.
20. Van Tongeren M, Jimenez AS, Hutchings SJ, MacCalman L, Rushton L, Cherrie JW (2012), Occupational cancer in Britain: exposure assessment methodology. Br J Cancer 107, S18–S26.
21. Beir V (1990), Health effects of exposure to low levels of ionizing radiation: National Research Council (US) Committee on the Biological Effects of Ionizing Radiation (BEIR V), National Academies Press (US), Washington DC. ISBN-10: 0-309-03995-9.
22. Curtis HJ (1965), Formal discussion of somatic mutations and carcinogenesis. Cancer Res 25, 1305–1308.
23. Brücher BLDN, Jamall IS (2016), Somatic mutation theory, underway and incorrect for most cancers. Cell Physiol Biochem 38, 1663–1680.
24. Rehrauer H, Wu L, Blum W, Pecze L, Henzi T, Serre-Beinier V, Aquino C, Vrugt B, de Perrot M, Schwaller B, Felley-Bosco E (2018), How asbestos drives the tissue towards tumors: YAP activation, macrophage and mesothelial precursor recruitment, RNA editing, and somatic mutations. Oncogene 37, 2645–2659.
25. Boll M, Weber LW, Becker E, Stampf A (2001), Mechanism of carbon tetrachloride-induced hepatotoxicity: hepatocellular damage by reactive carbon tetrachloride metabolites. Z Naturforsch C 56, 649–659.
26. Irshad M, Gupta P, Irshad K (2017), Molecular basis of hepatocellular carcinoma induced by hepatitis C virus infection. World J Hepatol 9, 1305–1314.
27. Maden C, Beckmann AM, Thomas DB, McKnight B, Sherman KJ, Ashley RL, Corey L, Daling JR (1992), Human papillomaviruses, herpes simplex viruses, and the risk of oral cancer in men. Am J Epidemiol 135, 1093–1102.
28. Cobos C, Figueras JA, Miranda L, Colombo M, Summers G, Figueroa A, Aulakh A, Konala V, Verma R, Riaz J, Wade R, Saadeh C, Rahman RL, Pandey A, Radhi S, Nguyen DD, Jenkins M, Chiriva-Internati M, Cobos E (2014), The role of human papilloma virus (HPV) infection in non-anogenital cancer and the promise of immunotherapy: a review. Int Rev Immunol 33, 383–401.
29. Correia AV, Coelho MR, de Oliveira Mendes Cah, da Almeida Silva JL, da Mota Vasconcelos Brasil C, de Castro JF (2015), Seroprevalence of HSV-1/2 and correlation with aggravation of oral mucositis in patients.
with squamous cell carcinoma of the head and neck region submitted to antineoplastic treatment. Support Care Cancer 23, 2105–2111.
30. Sano D, Oridate N (2016), The molecular mechanism of human papillomavirus-induced carcinogenesis in head and neck squamous cell carcinoma. Int J Clin Oncol 21, 813–826.
31. Villeneuve PJ, Mao Y (1994), Lifetime probability of developing lung cancer, by smoking status. Canada. Can J Public Health 85, 385–388.
32. Yamagishi K, Ichikawa K (1915), Experimentelle Studie über die Pathogenese der Epithelialgeschwüste [Experimental study of the pathogenesis of epithelial tumours]. Mitt Med Fak Tokyo 15, 295–344.
33. Brucher BLD, Stein HJ, Bartels H, Feussner H, Siewert JR (2001), Achalasia and esophageal cancer: incidence, prevalence and prognosis. World J Surg 25, 745–749.
34. Zeng Y (2017), Endothelial glyocalyx as a critical signalling platform integrating the extracellular haemodynamic forces and chemical signalling. J Cell Mol Med 21, 1457–1462.
35. Potter DR, Jiang J, Damiano ER (2009), The recovery time course of the endothelial cell glyocalyx in vivo and its implications in vitro. Circ Res 104, 1318–1325.
36. McDonald KK, Cooper S, Danielzak L, Leask RL (2016), Glyocalyx degradation induces a proinflammatory phenotype and increased leukocyte adhesion in cultured endothelial cells under flow. PLoS One 11, e0167576.
37. Qazi H, Palomino R, Shi ZD, Munn L, Tarbell JM (2013), Cancer cell glyocalyx mediates mechanotransduction and flow-regulated invasion. Integr Biol (Camb) 5, 1334–1343.
38. Wagner BJ, Lüb S, Lindau D, Hörzer H, Gückel B, Klein G, Glätzle J, Ramenzee HG, Brücher BLD, Königrainer A (2011). Simvastatin reduces tumor cell adhesion, to human peritoneal mesothelial cells by a decreased expression of VCAM-1 and β1 integrin. Int J Oncol 39, 1593–1600.
39. Porfere A, Tomuta I, Muntean D, Luca L, Licaretu E, Alpaez MC, Achim M, Vlase L, Banciu M (2015), Optimizing long-circulating liposomes for delivery of simvastatin to C26 colon carcinoma cells. J Liposome Res 25, 261–269.
40. Zeng YE, Yao XY, Yan ZP, Liu JX, Liu XH (2016), Potential signaling pathway involved in sphingosine-1-phosphate-induced epithelial-mesenchymal transition in cancer. Oncol Lett 12, 379–382.
41. Zeng Y, Liu XH, Tarbell J, Fu B (2015), Sphingosine-1-phosphate induced synthesis of glyocalyx on endothelial cells. Exp Cell Res 339, 90–95.
42. Levi-Schaffer F, Auster KF, Gravallesse PM, Stevens RL (1986), Coulture of interleukin 3-dependent mouse mast cells with fibroblasts results in a phenotypic change of the mast cells. Proc Natl Acad Sci USA 83, 6485–6488.
43. Schwalm S, Pfleischsifer J, Huwiler A (2013), Sphingosine-1-phosphate: a Janus-faced mediator of fibrotic diseases. Biochim Biophys Acta 1831, 239–250.
44. Oskeritzian CA (2015), Mast cell plasticity and sphingosine-1-phosphate in immunity, inflammation and cancer. Mol Immunol 63, 104–112.
45. Spiegl S, Milstien S (2007), Functions of the multifaceted family of sphingosine kinases and some close relatives. J Biol Chem 282, 19125–19129.
46. Vadás M, Xia P, McCaughan G, Gamble J (2008), The role of sphingosine kinase 1 in cancer: oncogenic or non-oncogenic addiction? Biochim Biophys Acta 1781, 442–447.
47. Zhu YJ, You H, Tan JX, Li F, Qiu Z, Li HZ, Huang HY, Zheng K, Ren GS (2017), Overexpression of sphingosine kinase 1 is predictive of poor prognosis in human breast cancer. Oncol Lett 14, 63–72.
48. Maceyka M, Payne SG, Milstien S, Spiegel S (2002), Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochim Biophys Acta 1585, 193–201.
49. Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Curti K, Spiegel S (1996), Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381, 800–803.
50. Milstien S, Spiegel S (2006), Targeting sphingosine-1-phosphate: a novel avenue for cancer therapeutics. Cancer Cell 9, 148–150.
51. Lee HM, Lo KW, Wei W, Tsao SW, Chung GTY, Ibrahim MH, Dawson CW, Murray PG, Paterson IC, Yap LF (2017), Oncogenic SIP signalling in EBV-associated nasopharyngeal carcinoma activates AKT and promotes cell migration through SIP receptor 3. J Pathol 242, 62–72.
52. Riddell RH, Goldman H, Ramshoff DF, Appelman HD, Fenoglio CM, Haggitt RC, Ahren C, Correa P, Hamilton SR, Morson BC, Sommers SC, Yardley JH (1987), Dysplasia in inflammatory bowel disease: standardized classification with provisional clinical applications. Hum Pathol 14, 931–946.
53. Wollny T, Wątek M, Durnas B, Niemirowicz K, Piktel E, Zenzdiaz-Piotrowska M, Góźdz S, Bucki R (2017), Sphingosine-1-phosphate metabolism and its role in the development of inflammatory bowel disease. Int J Mol Sci 18, pii: E7411.
54. McLean CJ, Marles-Wright J, Custodio J, Lowther J, Kennedy AJ, Pollock J, Clarke DJ, Brown AR, Campoppiano DJ (2017), Characterization of homologous sphingosine-1-phosphate lyase isoforms in the bacterial pathogen Burkholderia pseudomallei. J Lipid Res 58, 137–150.
55. Deng Z, Mu J, Tseng M, Wattenberg B, Zhuang X, Egliñez NK, Wang Q, Zhan Z, Norris J, Guo Y, Yan J, Haribabu B, Miller D, Zhang HG (2015), Enterobacteriaceae-secreted particles induce production of exosome-like SIP-containing particles by intestinal epithelium to drive Th17-mediated tumorigenesis. Nat Commun 6, 6956 (corrigendum: Nat Commun 2016, 7, 11348).
56. Hendley AM, Wang YJ, Polireddy K, Alinza J, Ahmed I, Lafaoro KJ, Zhang H, Roy N, Savidge GC, Cao Y, Hebromk, Maitra A, Reynolds AB, Goggins M, Yonnes M, Iacobuzio-Donahue CA, Leach SD, Bailey JM (2016), p120 catenin suppresses basal epithelial cell extrusion in invasive pancreatic neoplasia. Cancer Res 76, 3351–2263.
57. Studer E, Zhou X, Zhuo R, Wang Y, Takabe K, Nagahashi M, Pandak WM, Dent P, Spiegel S, Shi R, Xu W, Liu X, Behdan P, Zhang L, Zhou H, Hylemon PB (2012), Conjugated bile acids activate the sphingosine-1-phosphate receptor 2 in primary rodent hepatocytes. Hepatology 55, 267–276.
58. Zhou H, Hylemon PB (2014), Bile acids are nutrient signaling hormones. Steroids 86, 62–68.
59. Liu R, Li X, Qiang X, Luo L, Hylemon PB, Jiang Z, Zhang L, Zhou H (2015), Taurocholate induces cyclooxygenase-2 expression via the sphingosine 1-phosphate receptor 2 in a human cholangiocarcinoma cell line. J Biol Chem 290, 30988–31002.
60. French K, Zhuang Y, Maines LW, Gao P, Wang W, Beljanski V, Upson JJ, Green CL, Keller SN, Smith CD (2010), Pharmacology and antitumor activity of ABC294640, a selective inhibitor of sphingosine kinase-2. J Pharmacol Exp Ther 333, 129–139.
61. Qin Z, Dui L, Trillo-Tinoco J, Senkal C, Wang W, Reske T, Bonstaff K, Del Valle L, Rodriguez P, Flemington E, Voelkel-Johnson C, Smith CD, Ogretmen B, Parsons C
(2014), Targeting sphingosine kinase induces apoptosis and tumor regression for KSHV-associated primary effusion lymphoma. Mol Cancer Ther 13, 154–164.

62. Cumston CG (1926), The history of herpes from the earliest times to the nineteenth century. Ann Med Hist 8, 284–291.

63. Pappus E (1937), Greatest Egyptian medical document, 1552 BC, translated by Ebbell B, Levin & Munksgaard, Copenhagen.

64. Wildy P (1973), Herpes: history and classification, in: AS Kaplan (Ed.), The Herpes Viruses Academic Press, New York, pp. 1–25.

65. Roizman B, Whitley R (2001), The nine ages of herpes simplex virus. Herpes 8, 23–27.

66. Littér E (1830–1861), Œuvres complètes d'Hippocrate: traduction nouvelle avec le texte grec en regard, collationné sur les manuscrits et toutes les éditions; accompagnée d'une introduction, de commentaires médicaux, de variantes et de notes philologiques; suivie d'une table générale des matières. Exemplaire numérisé, vols. 1–10, BNU Santé, Paris, Baillière.

67. Tsoucalas G, Karamanou M, Sgantzos M, Deligeorgoul E, Androutsos G (2015), Uterine cancer in the writings of ancient Greek physicians. J BUON 20, 1382–1385.

68. Galien C (1994), Œuvres médicales choisies: des facultés naturelles, des lieux affectés, de la méthode thérapeutique à Glaucon, in: A Pichot (Ed.), translated by Daremberg C, Gallimard pp. 323–327. ISBN 2070736857.

69. Astruc J (1736), De Morbis Venereis Libri Sex, G Cavelier, Paris.

70. Vidal E (1873), Inoculabilité des pustules d'ecthyma. Ann Dermatol Syphïlïgir II, 350–358.

71. Steiner (1875), Zur Inokulation der Varicellen. Wiener Arch Path Anat 203, 75–131.

72. Unna PG (1883), On herpes progenitalis, especially in women. J Cutan Veneral Dis 1, 321–334.

73. Kelsch A, Kiener PL (1876), Contribution à l'histoire de l'adénome du foie. Arch Physiol S II 3, 622.

74. Hanot V, Gilbert A (1888), Etudes sur les maladies du foie, adénome du foie. Arch Physiol S II 3, 622.

75. Kaplan HS, Diehl V, Kohn G, zur Hausen H, Henle G (1980), Epidemiologic aspects of human histiocytic lymphoma cell line. Proc Natl Acad Sci USA 77, 2794–2798.

76. Yamagiwa K (1911), Zur Kenntnis des primären parenchymösen Leberkarzinoms, Virchow Arch Path Anat 203, 75–131.

77. Finkel MP, Biskis BO, Farrell C (1968), Osteosarcomas appearing in Syrian hamsters after treatment with extracts of human osteosarcomas. Proc Natl Acad Sci USA 60, 1223–1230.

78. Pritchard DJ, Reilly CA, Finkel MP (1971), Evidence for a human osteosarcomavirus. Nat New Biol 234, 126–127.

79. Balabanova H, Kotler M, Becker Y (1975), Transformation of cultured human embryonic fibroblasts by oncornavirus-like particles released from a human carcinoma cell line. Proc Natl Acad Sci USA 72, 2794–2798.

80. Cook B, O'Sullivan F, Leung J, Morse P, Graham B, Chapman AL (1978), Transformation of human embryo cells with the use of cell-free extracts of a human rhabdomyosarcoma cell line (HUS-2). J Natl Cancer Inst 60, 979–984.

81. Epstein AL, Kaplan HS (1974), Biology of the human malignant lymphomas. I. Establishment in continuous cell culture and heterotransplantation of diffuse histiocytic lymphomas. Cancer 34, 1851–1972.

82. Epstein HS, Goodenow RS, Epstein AL, Gartner S, Decleve A, Rosenthal PN (1977), Isolation of a type of C RNA virus from an established human histiocytic lymphoma cell line. Proc Natl Acad Sci USA 74, 2564–2568.

83. Epstein AL, Kaplan HS (1978), Studies of an RNA virus isolated from a human histiocytic lymphoma cell line, Cold Spring Harbor Conf. Cell Proliferation 5, 695–706. In: Differentiation of normal and neoplastic hematopoietic cells [Cold Spring Harbor, N. Y.]: Cold Spring Harbor Laboratory, 1978. NLM Unique ID: 101114935.

84. Kaplan HS, Goodenow RS, Gartner S, Bieber MM (1979), Biology and virology of the human malignant lymphomas. Cancer 43, 1–24.

85. Henle W, Henle G (1980), Epidemiologic aspects of Epstein-Barr-Virus (EBV)-associated diseases. Ann N Y Acad Sci 354, 326–331.

86. De The G (1979), The epidemiology of Burkitt's lymphoma: evidence for a causal association with Epstein-Barr virus. Epidemiol Rev 1, 32–54.

87. Henle W, Diehl V, Kohn G, zur Hausen H, Henle G (1967), Herpes-type virus and chromosome marker in normal leukocytes after growth irradiated Burkitt cells. Science 157, 1064–1065.

88. Slavins HE, Gavett E (1946), Primary herpetic vulvovaginitis. Proc Soc Exp Med 63, 343–345.

89. Frost JK (1961), Cytology of benign conditions. Clin Obstet Gynecol 4, 1075–1096.

90. Kotcher E, Gray LA, James QC, Frick CA, Bottorff DW (1962), Cervical cell inclusion bodies and viral infection of the cervix. Ann N Y Acad Sci 97, 571–580.

91. Varga A, Browell B (1960), Viral inclusion bodies in the cervix. J Obstet Gynecol 4, 1075–1096.

92. Varga A, Browell B (1960), Viral inclusion bodies in the cervix. J Obstet Gynecol 4, 1075–1096.

93. Epstein AL, Kaplan HS (1974), Biology of the human malignant lymphomas. I. Establishment in continuous cell culture and heterotransplantation of diffuse histiocytic lymphomas. Cancer 34, 1851–1972.

94. Epstein AL, Kaplan HS, Gartner S, Bieber MM (1979), Biology and virology of the human malignant lymphomas. Cancer 43, 1–24.

95. Henle W, Henle G (1980), Epidemiologic aspects of Epstein-Barr-Virus (EBV)-associated diseases. Ann N Y Acad Sci 354, 326–331.

96. De The G (1979), The epidemiology of Burkitt's lymphoma: evidence for a causal association with Epstein-Barr virus. Epidemiol Rev 1, 32–54.

97. Henle W, Diehl V, Kohn G, zur Hausen H, Henle G (1967), Herpes-type virus and chromosome marker in normal leukocytes after growth irradiated Burkitt cells. Science 157, 1064–1065.

98. De The G (1979), The epidemiology of Burkitt's lymphoma: evidence for a causal association with Epstein-Barr virus. Epidemiol Rev 1, 32–54.

99. Henle W, Diehl V, Kohn G, zur Hausen H, Henle G (1967), Herpes-type virus and chromosome marker in normal leukocytes after growth irradiated Burkitt cells. Science 157, 1064–1065.

100. Slavins HE, Gavett E (1946), Primary herpetic vulvovaginitis. Proc Soc Exp Med 63, 343–345.
105. Rawls WE, Tompkins WA, Figueroa ME, Melnick JL (1968), Herpesvirus type 2: association with carcinoma of the cervix. Science 161, 1255–1256.

106. Rawls WE, Tompkins WA, Melnick JL (1969), The association of herpesvirus type 2 and carcinoma of the uterine cervix. Am J Epidemiol 89, 547–554.

107. Nahmias AJ, Naith ZM, Josey WE, Murphy FA, Luce CF (1970), Sarcomas after inoculation of newborn hamsters with Herpes virus hominis type 2 strains. Proc Soc Exp Biol Med 134, 1065–1069.

108. Royston I, Aurelian L, Davis HJ (1970), Genital herpes virus infections in relation to cervical neoplasia. J Reprod Med 4, 9–13.

109. Adam E, Levy AH, Rawls WE, Melnick JL (1971), Seroepidemiologic studies of herpesvirus type 2 and carcinoma of the cervix. I. Case-control matching. J Natl Cancer Inst 47, 941–951.

110. Frenkel N, Roizman B, Cassai E, Nahmias AJ (1972), A DNA fragment of herpes simplex 2 and its transcription in human cervical cancer tissue. Proc Natl Acad Sci USA 69, 3784–3789.

111. Rawls WE, Adam E, Melnick JL (1973), An analysis of seroepidemiological studies of herpesvirus type 2 and carcinoma of the cervix. Cancer Res 33, 1477–1482.

112. Thomas DB, Rawls WE (1978), Relationship of herpes simplex virus type-2 antibodies and squamous dysplasia to cervical carcinoma in situ. Cancer 42, 2716–2725.

113. Roizman B, Carmichael LE, Deinhardt F, de-The G, Nahmias AJ, Plowright W, Rapp F, Sheldrick P, Takahashi M, Wolf K (1981), Herpesviridae — definition, provisional nomenclature, and taxonomy. The Herpesvirus Study Group, the International Committee on Taxonomy of Viruses. Intervirology 16, 201–217.

114. Kaposis M (1872), Idiopathisches multiples Pigmentsar-kom der Haut. Arch Dermatol Syph 4, 265–273.

115. Karamanou M, Antoniou C, Stratigos AJ, Saridaki Z, Kaposi (1837-1902) and the first description of idiopathic multiple pigmented sarcoma of the skin. J BUON 18, 1101–1105.

116. Friedman-Kien AE (1981), Disseminated Kaposi’s sarco-ma syndrome in young homosexual men. J Am Acad Dermatol 5, 468–471.

117. Chang JT, Shebl FM, Pfeiffer RM, Biryahwaho B, Graubard BI, Mbulaeye SM (2013), A population-based study of Kaposi sarcoma-associated herpesvirus seropositivity in Uganda using principal components analysis. Infect Agent Cancer 8, 9378–9385.

118. Pisans P, Parkin DM, Muñoz N, Ferlay J (1997), Cancer and infection: estimates of the attributable fraction in 1990. Cancer Epidemiol Biomarkers Prev 6, 387–400.

119. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Munoz N (1999), Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189, 12–19.

120. Jin YT, Tsai ST, Li C, Chang KC, Yan JJ, Chao WY, Eng HL, Chou TY, Wu TC, Su IJ (1997), Prevalence of human papillomavirus DNA in patients with breast tumor in North Pakistan. J Cancer Res Clin Oncol 142, 2497–2502.

121. Li J, Ding J, Zhai K (2015), Detection of human papillomavirus DNA in patients with breast cancer in China. PLoS One 10, e0136050.

122. Levy E, Carman MD, Fernandez-Madrid IJ, Power MD, Lieberburg I, van Duijn SG, Bots GT, Luyendijk W, Fredonie B (1990), Mutation of the Alzheimer amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248, 1124–1126.

123. Chartier-Harlin MC, Crawford F, Houliden H, Warren A, Hughes D, Fidani L, Goate A, Rossor M, Roques P, Hardy J, Mullan M (1991), Early-onset Alzheimer’s disease caused by mutations at codon 717 of the beta-amyloid precursor protein gene. Nature 353, 844–846.

124. Hendriks L, van Duijn CM, Cras P, Cruts M, Van Hul W, van Harskamp F, Warren A, McInnis MG, Antonarakis SE, Martin JJ, et al. (1992), Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the beta-amyloid precursor protein gene. Nat Genet 1, 218–221.

125. Mullan M, Crawford F (1993), Genetic and molecular advances in Alzheimer’s disease. Trends Neurosci 16, 398–403.

126. Cascarelli R, Sleegers K, Van Broeckhoven C (2016), Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimers Dement 12, 733–748.
137. Itzhaki RF, Lathe R (2018), Herpes viruses and senile dementia: first population evidence for a causal link. J Alzheimers Dis 64, 363–366.

138. Marshall BJ (1985), The pathogenesis of non-ulcer dyspepsia. Med J Aust 143, 319.

139. Brücher BLD, Jamall IS (2019), Precancerous niche (PCN), a product of fibrosis with remodeling by incessant chronic inflammation. 4open 2, 11, 1–21, https://doi.org/10.1051/4open/20180009

140. Yamashita K, Suzuki M, Takahashi T (1998), Comparison of gastric lesions in dogs and cats with and without gastric spiral organisms. J Am Vet Med Assoc 212, 529–533.

141. Kubota-Aizawa S, Ohno K, Fukushima K, Kanemoto H, Nakashima K, Uchida K, Chambers JK, Goto-Koshino Y, Watanabe T, Sekizaki T, Mimuro H, Tsujimoto H (2017), Epidemiological study of gastric Helicobacter spp. in dogs with gastrointestinal disease in Japan and diversity of Helicobacter heilmannii sensu stricto. Vet J 225, 56–62.

142. Zamani M, Vahedi A, Maghdourz S, Shokri-Shirvani J (2017), Role of food in environmental transmission of Helicobacter pylori. Caspian J Intern Med 8, 146–152.

143. Tegtmeier N, Wessler S, Necchi V, Rohde M, Harrer A, Rau TT, Asche CI, Boehm M, Loessner H, Figueiredo C, Naumann M, Palmisano R, Solcia E, Ricci V, Backert S (2017), Helicobacter pylori employs a unique basolateral type IV secretion mechanism for CagA delivery. Cell Host Microbe 22, 552–560.

144. Chandran Darbari V, Waksman G (2015), Structural biology of bacterial type IV secretion systems. Annu Rev Biochem 84, 603–629.

145. Li N, Tang B, Jia YP, Zhu P, Zhang WJ, Guo G, Wang TJ, Feng YJ, Qiao B, Mao XH, Zou QM (2017), Microarray analysis of breast cancer and oestrogen associations with the IgA-coated and IgA-noncoated faecal microbiota. Br J Cancer 117, https://doi.org/10.1038/bjc.2017.533.

146. Goedert JJ, Hua X, Bielecka A, Okayasu I, Milne GL, Jones GS, Fujiwara M, Sinha R, Wan Y, Xu X, Ravel J, Shi J, Palm NW, Feigelson HS (2018), Postmenopausal breast cancer and oestrogen associations with the IgA-coated and IgA-noncoated faecal microbiota. Br J Cancer 118, 471–479.

147. Thompson KJ, Ingle JN, Tang X, Chia N, Jerald PR, Walther-Antonio MR, Kandimulla KK, Johnson S, Yao JZ, Harrington SC, Suman VJ, Wang L, Weishilboum RL, Boughey JC, Kocher JP, Nelson H, Goetz MP, Kallari KR (2017), A comprehensive analysis of breast cancer microbiota and host gene expression. PLoS One 12, e0188873.

148. Janda JM, Abbott SL (2007), 16S rRNA gene sequencing for the identification of the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol 45, 2761–2764.

149. Haynes RB, Ahn J, Fan X, Peters BA, Ma Y, Yang L, Agalliu I, Burk RD, Ganly I, Purdie MP, Freedman ND, Gapstur SM, Pei Z (2018), Association of oral microbiome with risk for incident head and neck squamous cell cancer. JAMA Oncol 4, 358–365.

150. Kumarasamy V, Kuppusamy UR, Jayalakshmi P, Samudri C, Ragavan ND, Kumar S (2017), Exacerbation of colon carcinogenesis by Blastocystis sp. PLoS One 12, e0183907.

151. Banerjee D, Madhusoodanan UK, Nayar S, Jacob J (2003), Urinary hydrogen peroxide: a probable marker of oxidative stress in malignancy. Clin Chim Acta 334, 205–209.

152. Xuan C, Shamonki JM, Chung A, Dinome ML, Chung M, Sieling PA, Lee DJ (2014), Microbial dysbiosis is associated with human breast cancer. PLoS One 9, e83744.

153. Yazdi HR, Movafagh A, Fallah F, Alizadeh Sharq S, Mansouri N, Heidary Pour A, Hashemi M (2016), Evaluation of Methylobacterium radiotolerance and Sphingomonas yanoikuyae in sentinel lymph nodes of breast cancer cases. Asian Pac J Cancer Prev 17, 279–285.

154. Velicer CM, Heckbert SR, Lampe JW, Potter JD, Robertson CA, Taplin SH (2004), Antibiotic use in relation to the risk of breast cancer. JAMA 291, 827–835.

155. Wang H, Altenm J, Niazi F, Green H, Calhoun BC, Sturgis C, Grobmyer SR, Eng C (2017), Breast tissue, oral and urinary microbiomes in breast cancer. Oncotarget 8, 88122–88138.

156. Kutscher U (2007), Plant-associated methylotubacteria as co-evolved plant-symbionts: a hypothesis. Plant Signal Behav 2, 74–78.

157. Lai CC, Cheng A, Liu WL, Tan CK, Huang YT, Chung KP, Lee MR, Hsueh PR (2011), Infections caused by unusual Methylobacterium species. J Clin Microbiol 49, 3329–3331.

158. Ishii Y, Sakai S, Honma Y (2003), Cytokinin-induced differentiation of human myeloid leukemia HL-60 cells is associated with the formation of nucleotides, but not with incorporation into DNA or RNA. Biochim Biophys Acta 1643, 11–24.

159. Pollock CB, Koltai H, Kapulnik Y, Prandi C, Yarden RI (2012), Strigolactones: a novel class of phytohormones that inhibit the growth and survival of breast cancer cells and breast cancer stem-like enriched mammosphere cells. Breast Cancer Res Treat 134, 1041–1055.

160. Purcell RV, Pearson J, Aitchison D, Dixon L, Frizelle FA, Keenan J (2017), Colonization with enterotoxigenic Bacterodes fragilis is associated with early-stage colorectal neoplasia. PLoS One 12, e0171602.

161. Dejea CM, Wick EC, Hechenbleikner EM, White JR, Mark Welch JL, Rossetti BJ, Peterson SN, Snesrud EC, Borisy GG, Lazarev M, Stein E, Vadevlin J, Rosiani AC, Malik AA, Wanyiwi JW, Goh KL, Thevambiga I, Fu K, Wan F, Lloos N, Houseau F, Romans K, Wu X, McAllister FM, Wu S, Vogelstein B, Kinzler KW, Pardoll DM, Sears CL (2014), Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Natl Acad Sci USA 111, 18321–18326.

162. Burns MB, Lynch J, Starr TK, Knights D, Blehm RN (2015), Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment. Genome Med 7, 1–12.

163. Wu LC, Sun PL, Chang YT (2013), Extensive deep dermatophytosis caused by Trichophyton rubrum in a patient with liver cirrhosis and chronic renal failure. Mycopathologia 176, 457–462.

164. Poonawalla T, Chen W, Duvic M (2006), Mycosis fungoides with tinea pseudoimbricata owing to Trichophyton rubrum infection. J Cutan Med Surg 10, 562–569.

165. Zhang B, Izadjoo M, Horkayne-Szakaly I, Morrison A, Wear DJ (2011), Medulloblastoma and Brucellosis: central nervous system cancer. J Cancer 2, 136–141.

166. Ye X, Wang R, Bhattacharya R, Boulbes DR, Fan F, Xia L, Adoni H, Ajami NJ, Wang MC, Smith DP, Petrosoino JF, Venable S, Qiao W, Baladandayuthapani V, Maru D, Ellis LM (2017), Fusobacterium nucleatum subspecies animalis influences proinflammatory cytokine expression and monocye activation in human colorectal tumors. Cancer Prev Res (Phila) 10, 398–409.
167. Swidnicka-Siergiejko AK, Gomez-Chou SB, Cruz-Monserrate Z, Deng D, Liu Y, Huang H, Ji B, Azizian N, Daniluk J, Lu W, Wang H, Maitra A, Logsdon CD (2017), Chronic inflammation initiates multiple forms of K-Ras-independent monoe pancreatic cancer in the absence of TP53. Oncogene 36, 3149–3158.

168. Thamavati W, Bhaskarpravati N, Sahaphong S, Vajaratsiri S, Angsubbakhon S (1978), Effects of dimethylnitrosamine on induction of cholangiocarcinoma in Opisthorchis viverrini-infected Syrian golden hamsters. Cancer Res 38, 4634–4639.

169. Sonakul D, Koompirochana C, Chinda K, Stithnimakarn T (1978), Hepatic carcinoma with opisthorchiasis. Southeast Asian J Trop Med Public Health 9, 215–219.

170. Young ND, Nagarajan N, Lin SJ, Korhonen PK, Jex AR, Hall RS, Safavi-Hemam, H, Kaeckong W, Bertrand D, Gao S, Seet Q, Wongkham S, Teh BT, Wongkham C, Intapan PM, Maleewong W, Yang X, Hu M, Wang Z, Hofmann A, Sternberg PW, Tan P, Wang J, Gasser RB (2014), The Opisthorchis viverrini genome provides insights into life in the bile duct. Nat Commun 5, 4378.

171. Sripa B, Pairojkul C (2008), Cholangiocarcinoma: lessons from Thailand. Curr Opin Gastroenterol 24, 349–356.

172. Vonghachack Y, Odermatt P, Taissayavong K, Phounsavath S, Akkhavong K, Saysone S (2017), Transmission of Opisthorchis viverrini, Schistosoma mekongi and soil-transmitted helminthes on the Mekong Islands, Southern Lao PDR. Infect Dis Poverty 6, 131.

173. Dechakhamphu S, Pilaor S, Sithithaworn P, Nair J, Bartsch H, Yongvanit P (2010), Lipid peroxidation and etheno DNA adducts in white blood cells of liver fluke-infected patients: protection by plasma alpha-tocopherol and praziquantel. Cancer Epidemiol Biomarkers Prev 19, 310–318.

174. Gouveia MJ, Pakharukova MY, Laha T, Sripa B, Maksimova GA, Rinaldi G, Brindley PJ, Mordvinov A, Bartsch H, Yongvanit P (2010), Interleukin 17, a T-cell-derived cytokine, promotes tumorigenicity of human cervical tumors in nude mice. Cancer Res 59, 3698–3704.

175. Young ND, Nagarajan N, Lin SJ, Korhonen PK, Jex AR, Hall RS, Safavi-Hemam, H, Kaeckong W, Bertrand D, Gao S, Seet Q, Wongkham S, Teh BT, Wongkham C, Intapan PM, Maleewong W, Yang X, Hu M, Wang Z, Hofmann A, Sternberg PW, Tan P, Wang J, Gasser RB (2014), The Opisthorchis viverrini genome provides insights into life in the bile duct. Nat Commun 5, 4378.

176. Thamavati W, Bhaskarpravati N, Sahaphong S, Vajaratsiri S, Angsubbakhon S (1978), Effects of dimethylnitrosamine on induction of cholangiocarcinoma in Opisthorchis viverrini-infected Syrian golden hamsters. Cancer Res 38, 4634–4639.

177. Wongsena W, Chaoensuk L, Dechakhamphu S, Pinlaor S, Sitthithaworn P, Nair J, Bartsch H, Yongvanit P (2010), Lipid peroxidation and etheno DNA adducts in white blood cells of liver fluke-infected patients: protection by plasma alpha-tocopherol and praziquantel. Cancer Epidemiol Biomarkers Prev 19, 310–318.

178. Wägsäter D, Löfgren S, Hugander A, Dimberg J (2006), Expression of interleukin-17 in human colorectal cancer. Anticancer Res 26, 4213–4216.

179. Changchun K, Pengchao H, Ke S, Ying W, Lei W (2017), Interleukin-17 augments tumor necrosis factor α-mediated increase of hypoxia-inducible factor-1α and inhibits vasodilator-stimulated phosphoprotein expression to reduce the adhesion of breast cancer cells. Oncol Lett 13, 3253–3260.

180. Ma M, Huang W, Kong D (2018), IL-17 inhibits the accumulation of myeloid-derived suppressor cells in breast cancer via activating STAT3. Int Immunopharmacol 59, 148–156.

181. Steiner GE, Newman ME, Paikl D, Stix U, Memaran-Dagda N, Lee C, Marberger MJ (2003), Expression and function of pro-inflammatory interleukin IL-17 and IL-17 receptor in normal, benign hyperplastic, and malignant prostate. Prostate 56, 171–182.

182. Numasaki M, Watanabe M, Suzuki T, Takahashi H, Nakamura A, McAllister F, Hishimuma T, Goto J, Lotze MT, Kolls JK, Sasaki H (2005), IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR2-dependent angiogenesis. J Immunol 175, 6177–6189.

183. Li G, Zhang Y, Qian Y, Zhang H, Guo S, Sunagawa M, Hisamitsu T, Liu Y (2013), Interleukin-17A promotes rheumatoid arthritis synoviocytes migration and invasion under hypoxia by increasing MMP2 and MMP9 expression through NF-κB/HIF-1α pathway. Mol Immunol 53, 227–236.

184. Obradovic H, Krstic J, Kukočić T, Trivanović D, Đorđević IO, Mojsilović S, Jauković A, Vojić B, Bugarski D, Santibañez JF (2016), Doxycycline inhibits IL-17-stimulated MMP-9 expression by downregulating ERK1/2 activation: implications in myogenic differentiation. Mediators Inflamm 2016, 299568.

185. Park MJ, Moon SJ, Lee EJ, Jung KA, Kim EK, Kim DS, Lee JH, Kwok SK, Min JK, Park SH, Cho ML (2018), IL-1β–IL-17 signaling axis contributes to fibrosis and inflammation in two different mouse models of systemic sclerosis. Front Immunol 9, 1611.

186. Chang SL, Hsiao YW, Tsai YN, Lin SF, Liu SH, Lin YJ, Lo LW, Chung FP, Chao TF, Hu YF, Tuan TC, Liao JN, Hsieh YC, Wu TJ, Higa S, Chen SA (2018), Interleukin-17 enhances cardiac ventricular remodeling via activating MAPK pathway in ischemic heart failure. J Mol Cell Cardiol 122, 69–79.

187. Zhang Y, Zhang YY, Li TB, Wang J, Jiang Y, Zhao Y, Jin XX, Xue GL, Yang Y, Zhang XF, Sun YY, Zhang ZR, Gao X, Du ZM, Lu YJ, Yang BF, Pan ZW (2018), Ablation of interleukin-17 alleviated cardiac interstitial fibrosis and impeded cardiac function via inhibiting long non-coding RNA-ANKRD1284 in diabetic mice. J Mol Cell Cardiol 115, 64–72.

188. Mehrotra P, Collett JA, Gunst SJ, Basile DP (2018), Th17 cells contribute to pulmonary fibrosis and inflammation during chronic kidney disease progression after acute ischemia. Am J Physiol Regul Integr Comp Physiol 314, R265–R273.

189. Sun B, Wang H, Zhang L, Yang Z, Zhang M, Zhu X, Ji X, Wang H (2018), Role of interleukin 17 in TGF-β signaling-mediated renal interstitial fibrosis. Cytokine 106, 80–88.

190. Mohamed R, Jayakumar C, Chen F, Fulton D, Stepp D, Gansevoort RT, Ramesh G (2016), Low-Dose IL-17 therapy prevents and reverses diabetic nephropathy, metabolic syndrome, and associated organ fibrosis. J Am Soc Nephrol 27, 745–756.

191. Kinyanjui MW, Shan J, Nakada EM, Qureshi ST, Fixman ED (2013), Dose-dependent effects of IL-17 on IL-13-induced airway inflammatory responses and airway hyperresponsiveness. J Immunol 190, 3859–3868.
193. Krüger JG, Fretzin S, Suárez-Fariñas M, Haslett PA, Phipps KM, Cameron GS, Mccoll J, Katcherian A, Cueto I, White T, Banerjee S, Hoffman RW (2012), IL-17A is essential for cell activation and inflammatory gene circuits in subjects with psoriasis. J Allergy Clin Immunol 130, 145–154.

194. Chen E, Cen Y, Lu D, Luo W, Jiang H (2018), IL-22 inactivates heptic stellate cells via downregulation of the TGF-β1/ notch signaling pathway. Mol Med Rep 17, 5449–5453.

195. Ye J, Liu L, Ji Q, Huang Y, Shi Y, Shi L, Liu J, Wang M, Xu Y, Jiang H, Wang Z, Lin Y, Wan J (2017), Anti-interleukin-22-neutralizing antibody attenuates angiotensin II-induced cardiac hypertrophy in mice. Mediators Inflamm 2017, 5635929.

196. Rattik S, Hultman K, Rauch U, Söderberg I, Sundius L, Björklund A, Håkanson L, Nilsson J (2015), IL-22 affects smooth muscle cell phenotype and plaque formation in apolipoprotein E knockout mice. Atherosclerosis 242, 506–514.

197. Molina MF, Abdelnabi MN, Fabre T, Shoukry NH (2018), Type 3 cytokines in liver fibrosis and liver cancer. Cytokine, pii: S1043-6666(18)30326-0.

198. Li H, Li G, Liu L, Guo Z, Ma X, Cao N, Lin H, Han G, Duan Y, Du G (2015), Tumor interstitial fluid promotes malignant phenotypes of lung cancer independently of angiogenesis. Cancer Prev Res (Phila) 8, 1120–1129.

199. Xia J, Wang H, Li S, Wu Q, Sun L, Huang H, Zeng M (2017), Ion channels or aquaporins as novel molecular targets in gastric cancer. Mol Cancer 16, 54.

200. Görgülü K, Diakopoulos KN, Air J, Schoeps B, Kabacoglu A, Karpathaki AF, Weichert W, Schmid RM, Herzig S, Krüger A, Sainz BA, Aichler M, Walch A, Jastroch M, Hartleben G, Mantzoros CS, Tepikin A, Schlitter AM, Steiger K, Artati A, Adamski J, Meyer O, Zvara A, Borka R, Zvara Á, Puskás LG, Borka K, Sendler M, Leric MM, Mayerle J, Kühn JP, Rakonczay Jr, Lesina M, Algül H (2018), Levels of the autophagy-related 5 protein affect progression and metastasis of pancreatic tumors in mice. Gastroenterology, pii: S0016-5077(18)35087-X.

201. Preston GM, Carroll TP, Guggino WB, Agre P (1992), Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science 256, 385–387.

202. Rojek A, Fichtbauer EM, Kwon TH, Frokiaer J, Nielsen S (2006), Severe urinary concentrating defect in renal collecting duct-selective AQP2 conditional-knockout mice. Proc Natl Acad Sci USA 103, 6037–6042.

203. Rojek AM, Skowronski MT, Fichtbauer EM, Fichtbauer AC, Fenton RA, Agre P, Frokiaer J, Nielsen S (2007), Defective glycerol metabolism in aquaporin 9 (AQP9) knockout mice. Proc Natl Acad Sci USA 104, 3609–3614.

204. Méndez-Giménez L, Rodríguez A, Balaguer I, Frühbeck G (2014), Role of aquaglyceroporins and caveolins in energy and metabolic homeostasis. Mol Cell Endocrinol 397, 78–92.

205. Madeira A, Moura TF, Soveral G (2015), Aquaglyceroporins: implications in adipose biology and obesity. Cell Mol Life Sci 72, 739–771.

206. Verkman AS (2003), More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci 118, 3225–3232.

207. Cerda J, Finn RN (2010), Piscine aquaporins: an overview of recent advances. J Exp Zool A Ecol Genet Physiol 313, 623–650.

208. Saadoun S, Papadopoulos MC, Davies DC, Bell BA, Krishna S (2002), Increased aquaporin 1 water channel expression in human brain tumours. Br J Cancer 87, 621–623.

209. Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS (2005), Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature 434, 786–792.

210. Jung JJ, Park JY, Jeon HS, Kwon TH (2011), Aquaporin-5: a marker protein for proliferation and migration of human breast cancer cells. PLoS One 6, e28492.

211. Chen J, Wang T, Zhou YC, Gao F, Zhang ZH, Xu H, Wang SL, Shen LZ (2014), Aquaporin 3 promotes epithelial-mesenchymal transition in gastric cancer. J Exp Clin Cancer Res 33, 38.

212. Lee SJ, Chae YS, Kim JG, Kim WW, Jung JH, Park HY, Jeong JJ, Park JY, Jung HJ, Kwon TH (2014), AQP5 expression predicts survival in patients with early breast cancer. Ann Surg Oncol 21, 375–383.

213. Stroxa KM, Jiang H, Chen SH, Tong Z, Wirtz D, Sun SX, Konstantopoulos K (2014), Water permeation drives tumor cell migration in confined microenvironments. Cell 157, 611–623.

214. Papadopoulos MC, Saadoun S (2015), Key roles of aquaporins in tumor biology. Biochim Biophys Acta 1848, 2576–2583.

215. Verkman AS, Hara-Chikuma M, Papadopoulos MC (2008), Aquaporins: new players in cancer biology. J Mol Med (Berl) 86, 523–529.

216. Papadopoulos MC, Saadoun S, Verkman AS (2008), Aquaporins and cell migration. Pflügers Arch 456, 693–700.

217. Mola MG, Nicchia GP, Svelto M, Spray DC, Frigeri A (2009), Automated cell-based assay for screening of aquaporin inhibitors. Anal Chem 81, 8219–8229.

218. Venglovčev I, Pallagi P, Kemény LV, Balázs A, Balla Z, Tóth E, Wegiel J, Zvara Á, Puskás LG, Borka K, Sendler M, Leric MM, Mayerle J, Kühn JP, Rakonczay Z Jr, Hegyi P (2018), The importance of aquaporin 1 in pancreatitis and its relation to the CFTR Cl-channel. Front Physiol 9, 854.

219. Trujillo E, González T, Marín R, Martín-Vasallo P, Díaz-Carreño D, Molina A, Verkman AS (2008), Automated cell-based assay for screening of aquaporin inhibitors. Anal Chem 81, 8219–8229.

220. Hardin JA, Wallace LE, Wong JF, O’Loughlin EV, Liber ME, Gall DG, MacNaughton WK, Beck PL (2004), Aquaporin expression is downregulated in a murine model of colitis and in patients with ulcerative colitis. Crohn’s disease and infectious colitis. Cell Tissue Res 318, 313–323.

221. Ricanek P, Lunde LK, Frye SA, Støen M, Nygård S, Morth JP, Rydningen A, Vatn MH, Amiry-Moghaddam M, Tonjum T (2015), Reduced expression of aquaporins in human intestinal mucosa in early stage inflammatory bowel disease. Clin Exp Gastroenterol 8, 49–67.

222. Brücher BLDM, Jamall IS (2019), Eicosanoids in cancerogenesis. 4open 2019, 2, 8.
258. Monaco C, Andreokas E, Young S, Feldmann M, Paleolog E (2002), T cell-mediated signaling to vascular endothelium: induction of cytokines, chemokines, and tissue factor. J Leukoc Biol 71, 659–668.

259. Guo Q, Minnner J, Burchard J, Chiotti K, Spellman P, Schedin P (2017). Physiologically activated mammary fibroblasts promote postpartum mammary cancer. JCI Insight 2, e89206.

260. Dai W, Gupta SL (1990), Molecular cloning, sequencing and expression of human interferon-gamma-inducible indoleamine 2,3-dioxygenase cDNA. Biochem Biophys Res Commun 168, 1–8.

261. Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Monaco C, Andreakos E, Young S, Feldmann M, Paleolog M, Prendergast GC (2010), Zinc protoporphyrin IX stimulates tumor immunity by disrupting the immunosuppressive enzyme indoleamine 2,3-dioxygenase. Mol Cancer Ther 9, 1274–1285.

262. Witkiewicz A, Williams TK, Cozzitorto J, Durkan B, Showalter SL, Yeo CJ, Brody JR (2008), Expression of indoleamine 2,3-dioxygenase in metastatic pancreatic ductal adenocarcinoma recruits regulatory T cells to avoid immune detection. J Am Coll Surg 206, 849–854.

263. Zhang T, Tan XL, Xu Y, Wang ZZ, Xiao CH, Liu R (2017), Expression and prognostic value of indoleamine 2,3-dioxygenase in pancreatic cancer. Chin Med J (Engl) 130, 710–716.

264. Lüb S, Königsrainer A, Zieker D, Brücher BLDM, Ramnussen HG, Oples G, Terness P (2009), IDO1 and IDO2 are expressed in human tumors: levo- but not dextro-1-methyl tryptophan inhibits tryptophan catabolism. Cancer Immunol Immun 58, 153–157.

265. El-Zaatari M, Bass AJ, Bowby R, Zhang M, Syu LJ, Yang Y, Grasberger H, Shreiner A, Tan B, Bishu S, Leung WK, Trudoso A, Kanada N, Cascalho M, Dlugoass AA, Kao JY (2017), Indoleamine 2,3-dioxygenase 1, increased in human gastric pre-neoplasia, promotes in situ tumor growth. J Leukoc Biol 71, 659–668.

266. Brandacher G, Perathoner A, Ladurner R, Schneeberger S, Obrist P, Winkler C, Werner ER, Werner-Felmayer G, Weiss HG, Gobel G, Margreiter R, Winkler C, Werner-Felmayer G, Föller M, Lang F, Burt R, White R, Leppert M (1992), Linkage of a variant of adenomatous polyposis coli to the WNT pathway in solid tumors, in: G Kathleen, M)

267. Ashida N, Kishihata M, Tien DN, Kamei K, Kimura T, Yokode M (2014), Aspirin augments the expression of adenomatous polyposis coli protein by suppression of IKKbeta. Biochem Biophys Res Commun 446, 460–464.

268. Zeineldin M, Neufeld KL (2015), New insights from animal models of colon cancer: inflammation control as a new facet on the tumor suppressor APC gene. Gastrointest Cancer 5, 39–52.

269. Spirio L, Otterud B, Stauffer D, Lynch H, Lynch P, Watson P, Lanspa S, Smyrk T, Cavaleri J, Howard L, Burt R, White R, Leppard M (1992), Linkage of a variant or attenuated form of adenomatous polyposis coli to the adenomatous polyposis coli (APC) locus. Am J Hum Genet 51, 92–100.

270. Powell SM, Zile N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN, Vogelstein B, Kinzler KW (2012), APC mutations occur early during colorectal tumorigenesis. Nature 359, 235–237.

271. Moser AR, Pittot HC, Dove WF (1990), A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science 247, 322–324.

272. Terzić J, Grivennikov S, Kari E, Karin M (2010), Inflammation and colon cancer. Gastroenterology 138, 2101–2114.

273. Zeineldin M, Cunningham J, McGuinness W, Altizer P, Cowley B, Blanchat B, Xu W, Pinson D, Neufeld KL (2012), A knock-in mouse model reveals roles for nuclear adenomatous polyposis coli to the WNT signaling and tumor burden in colon cancer. PLoS One 6, e23581.

274. Prosperi J, Rue HH, Goss KH (2011), Dysregulation of the WNT pathway in solid tumors, in: G Kathleen, M Kahn (Eds.), Targeting the Wnt Pathway in Cancer, Springer, New York, pp. 81–128. ISBN 978-1-4419-8023–6.

275. Groedel G, Fossum E, Bogen B (2015), Polarizing T and B cell responses by APC-targeted subunit vaccines. Front Immunol 6, 367.
Van der Auwera I, Van Laere SJ, Van den Bosch SM, Van den Eynden GG, Trinh BX, van Dam PA, Colpaert CG, van Engeland M, Van Marck EA, Vermeulen PB, Dirix LY (2008), Aberrant methylation of the Adenomatous Polyposis Coli (APC) gene promoter is associated with the inflammatory breast cancer phenotype. Br J Cancer 99, 1735–1742.

Brabender J, Usadel H, Danenberg KD, Metzger R, Schneider PM, Lord RV, Wickramasinghe K, Lum CE, Park J, Salonga D, Singer J, Sidransky D, Hölscher AH, Meltzer SJ, Danenberg PV (2001), Adenomatous polyposis coli gene promoter hypermethylation in non-small cell lung cancer is associated with survival. Oncogene 20, 3528–3532.

Usadel H, Brabender J, Danenberg KD, Jerónimo C, Harden S, Engels J, Danenberg PV, Yang S, Sidransky D (2002), Quantitative adenomatous polyposis coli promoter methylation analysis in tumor tissue, serum, and plasma DNA of patients with lung cancer. Cancer Res 62, 371–375.

Jerónimo C, Henrique R, Hoque MO, Mambo E, Ribeiro FR, Varzim G, Oliveira J, Teixeira MR, Lopes C, Sidransky D (2004), A quantitative promoter methylation profile of prostate cancer. Clin Cancer Res 10, 8472–8478.

Bastian PJ, Ellinger J, Wellmann A, Wernert N, Heukamp LC, Müller SC, von Ruecker A (2005), Diagnostic and prognostic information in prostate cancer with the help of a small set of hypermethylated gene loci. Clin Cancer Res 11, 4097–4106.

Yegnasubramanian S, Kowalski J, Gonzalgo ML, Zahurak M, Piantadosi S, Walsh PC, Bova GS, De Marzo AM, Isaacs WB, Nelson WG (2004), Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res 64, 1975–1986.

Debouki-Joudi S, Trifa F, Khabir A, Sellami-Boudawara T, Frihka M, Daoud J, Mokdad-Gargouri R (2017), CpG methylation of APC promoter 1A in sporadic and familial breast cancer patients. Cancer Biomark 18, 133–141.

Schauer IG, Zhang J, Xing Z, Guo X, Mercado-Uribe I, Sood AK, Huang P, Liu J (2013), Interleukin-1β promotes ovarian tumorigenesis through a p53/NF-kB-mediated inflammatory response in stromal fibroblasts. Neoplasia 15, 409–420.

Battat R, Kopylov U, Bessisow T, Bitton A, Cohen A, Jain A, Martel M, Seidman E, AhT W (2017), Association between ustekinumab trough concentrations and clinical, biomarker, and endoscopic outcomes in patients with Crohn’s disease. Clin Gastroenterol Hepatol 15, 1427–1434.

Steenport M, Khan KM, Du B, Barnhard SE, Dannenberg AJ, Falcone DJ (2009), Matrix metalloproteinase (MMP)-1 and MMP-3 induce macrophage MMP-9: evidence for the role of TNF-alpha and cyclooxygenase-2. J Immunol 183, 8119–8127.

Gong Y, Chippada-Venkata UD, Oh WK (2014), Roles of matrix metalloproteinases and their natural inhibitors in prostate cancer progression. Cancers (Basel) 6, 1298–1327.

Boström PJ, Ravanti L, Reunanen N, Aaltonen V, Söderström KO, Kähäri VM, Laato M (2000), Expression of collagenase-3 (matrix metalloproteinase-13) in transitional-cell carcinoma of the urinary bladder. Int J Cancer 88, 417–423.

Reunanen N, Kähäri VM (2000–2013), Matrix metalloproteinases in cancer cell invasion. Madame Curie Bioscience Database, Landes Bioscience, 2000–2013. Available at https://www.ncbi.nlm.nih.gov/books/NBK6598/.

Sternlicht MD1, Werb Z (2001), How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17, 463–516.

Lu P, Takai K, Weaver VM, Werb Z (2011), Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3, pii: a005058.

Miyoshi A, Kitajima Y, Sumi K, Sato K, Hagiwara A, Koga Y, Miyazaki K (2004), Snail and SIPI increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells. Br J Cancer 22, 1265–1273.

Miyoshi A, Kitajima Y, Kidó S, Shimomishii T, Matsuyama S, Kitahara K, Miyazaki K (2005), Snail accelerates cancer invasion by upregulating MMP expression and is associated with poor prognosis of hepatocellular carcinoma. Br J Cancer 2005, 92, 252–258.

Brücher BLDM, Jamall IS (2019), Undervalued ubiquitous proteins. 4open 2, 7, 1–13, https://doi.org/10.1051/fopen/2019002.

Brücher BLDM, Jamall IS (2019), Microbiome and morbid obesity increase pathogenic stimulus diversity. 4open 2, 10, 1–16, https://doi.org/10.1051/fopen/2018007.