Complete Decomposition of Symmetric Tensors in Linear Time and Polylogarithmic Precision

Subhayan Saha
(joint work with Pascal Koiran)

WACT 2023

LIP, ENS Lyon
Outline

1. Problem Statement
2. Results
3. Jennrich’s Algorithm
4. Some ingredients for the proof
 - Making modifications
 - Algorithm for change of basis
 - Diagonalization
Outline

1. Problem Statement
2. Results
3. Jennrich’s Algorithm
4. Some ingredients for the proof
 - Making modifications
 - Algorithm for change of basis
 - Diagonalization

Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)
Symmetric Tensor Decomposition

\[T \in \mathbb{C}^n \otimes \mathbb{C}^n \otimes \mathbb{C}^n \] - symmetric tensor, order-3

- Can be viewed as a 3-dimensional array \((T_{ijk})_{i,j,k \in [n]}\)
- Invariant under permutations of indices
- 3-dimensional generalization of symmetric matrices
Symmetric Tensor Decomposition

\[T \in \mathbb{C}^n \otimes \mathbb{C}^n \otimes \mathbb{C}^n - \text{symmetric tensor, order-3} \]

- Can be viewed as a 3-dimensional array \((T_{ijk})_{i,j,k \in [n]}\)
- Invariant under permutations of indices
- 3-dimensional generalization of symmetric matrices

Look at decompositions of the form:

\[
T = \sum_{i=1}^{r} u_i \otimes u_i \otimes u_i \tag{1}
\]

where \(u_i \in \mathbb{C}^n\).

- Smallest value of \(r\) - symmetric tensor rank of \(T\)
- NP-hard to compute (Shitov, 2016)

Subhayan Saha (joint work with Pascal Koiran)
Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)
Symmetric Tensor Decomposition

We still look at decompositions of the form:

\[T = \sum_{i=1}^{r} u_i \otimes u_i \otimes u_i \]

where \(u_i \in \mathbb{C}^n \).
Symmetric Tensor Decomposition

We still look at decompositions of the form:

\[T = \sum_{i=1}^{r} u_i \otimes u_i \otimes u_i \]

where \(u_i \in \mathbb{C}^n \).

Impose two additional conditions:

1. \(u_i \)'s are linearly independent.
 - Decomposition unique (up to permutation and scaling by cube roots of unity), if it exists.
 - \(r \leq n \) - undercomplete decompositions

2. \(r = n \) - complete decompositions
Symmetric Tensor Decomposition

We still look at decompositions of the form:

$$T = \sum_{i=1}^{r} u_i \otimes u_i \otimes u_i$$

where $u_i \in \mathbb{C}^n$.

Impose two additional conditions:

1. u_i’s are linearly independent.
 - Decomposition unique (up to permutation and scaling by cube roots of unity), if it exists.
 - $r \leq n$ - undercomplete decompositions

2. $r = n$ - complete decompositions

Definition: Tensor T **diagonalisable** if it satisfies these conditions. Matrix U - rows u_1, \ldots, u_n **diagonalises** T
Model of Computation

Finite precision arithmetic:

- **Machine precision** u - function of input size and desired accuracy.
- **Input** $x \in \mathbb{C}$ is stored as $\text{fl}(x) = (1 + \Delta)x$ for some adversarially chosen $\Delta \in \mathbb{C}$ where $|\Delta| \leq u$
- **Bit lengths of numbers stored** - remain fixed at $\log\left(\frac{1}{u}\right)$.

Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)
Finite precision arithmetic:

- Machine precision u - function of input size and desired accuracy.
- Input $x \in \mathbb{C}$ is stored as $\text{fl}(x) = (1 + \Delta)x$ for some adversarially chosen $\Delta \in \mathbb{C}$ where $|\Delta| \leq u$
- Bit lengths of numbers stored - remain fixed at $\log\left(\frac{1}{u}\right)$.
- Each arithmetic operation $\ast \in \{+, -, \times, \div\}$ is guaranteed to yield an output satisfying

$$\text{fl}(x \ast y) = (x \ast y)(1 + \Delta) \text{ where } |\Delta| \leq u$$ \hspace{1cm} (2)
Approximate tensor decomposition:

Input: Diagonalisable tensor $T = \sum_{i=1}^{n} u_i \otimes^3$, u_i's linearly independent, accuracy parameter ϵ

Goal: Find linearly independent vectors $u_1', ..., u_n'$ such that u_i' are at $\leq \epsilon$-distance from u_i.

Forward approximation in the sense of numerical analysis - output solution close to the actual output.
Outline

1. Problem Statement
2. Results
3. Jennrich’s Algorithm
4. Some ingredients for the proof
 - Making modifications
 - Algorithm for change of basis
 - Diagonalization

Subhayan Saha (joint work with Pascal Koiran)

Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)
Matrix $A \in \mathbb{C}^{m \times n}$ - $\|A\|_F = \sqrt{\sum_{i \in [m], j \in [n]} |A_{i,j}|^2}$ - Frobenius norm.

- A-invertible, $\kappa_F(A) = \|A\|_F^2 + \|A^{-1}\|_F^2$.
- Related to usual notion of condition number $\kappa(A) = \|A\|\|A^{-1}\|$.
Matrix $A \in \mathbb{C}^{m \times n} - \|A\|_F = \sqrt{\sum_{i \in [m], j \in [n]} |A_{i,j}|^2}$ - Frobenius norm.

- A-invertible, $\kappa_F(A) = \|A\|_F^2 + \|A^{-1}\|_F^2$.
- Related to usual notion of condition number $\kappa(A) = \|A|||A^{-1}||$

Definition: T - diagonalisable tensor over \mathbb{C}, U diagonalises T.

Condition number of T ($\kappa(T)$) = $\kappa_F(U)$

Lemma: T-diagonalisable tensor. $\kappa(T)$ is well-defined (does not depend on choice of U).
Results

Input: diagonalisable tensor T, desired accuracy parameter ϵ and estimate $B \geq \kappa(T)$
Output: ϵ-approximate solution to the tensor decomposition problem for T
Number of arithmetic operations: $O(n^3 + T_{MM}(n) \log^2(\frac{nB}{\epsilon}))$
Bits of precision: $\text{poly-log}(n, B, \frac{1}{\epsilon})$
Probability: $1 - \frac{1}{8n}$
Results

Input: diagonalisable tensor T, desired accuracy parameter ϵ and estimate $B \geq \kappa(T)$

Output: ϵ-approximate solution to the tensor decomposition problem for T

Number of arithmetic operations: $O(n^3 + T_{MM}(n) \log^2(\frac{nB}{\epsilon}))$

Bits of precision: $\text{poly-log}(n, B, \frac{1}{\epsilon})$

Probability: $1 - \frac{1}{8n}$

Important conclusions:

- Bits of precision required = **polylogarithmic** in n, B and $\frac{1}{\epsilon}$.
- Running time = $O(n^3)$ for all $\epsilon = \frac{1}{\text{poly}(n)}$, i.e., **linear** in the size of the input tensor (first such algorithm)
- Can provide inverse exponential accuracy, i.e., polynomial time even when $\epsilon = \frac{1}{\exp(n)}$.

Subhayan Saha (joint work with Pascal Koiran)
Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)
Related work

- Optimized version of Jennrich’s algorithm/simultaneous diagonalisation.
Related work

- Optimized version of Jennrich’s algorithm/simultaneous diagonalisation.
- (Bhaskara et al, 2014)
 - Algorithm runs in polynomial time in the exact arithmetic computation model (even when input has some noise)
 - Requires that the diagonalisation operation be done exactly
Related work

- Optimized version of Jennrich’s algorithm/simultaneous diagonalisation.
- (Bhaskara et al, 2014)
 - Algorithm runs in polynomial time in the exact arithmetic computation model (even when input has some noise)
 - Requires that the diagonalisation operation be done exactly
- (Beltrán et al, 2019)
 - "Pencil-based algorithms" for tensor decomposition are numerically unstable
 - We can escape this result because our algorithm is randomized.
Outline

1. Problem Statement
2. Results
3. Jennrich’s Algorithm
4. Some ingredients for the proof
 Making modifications
 Algorithm for change of basis
 Diagonalization

Subhayan Saha (joint work with Pascal Koiran)

Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)
Slices

Order-3 tensor $T \in \mathbb{C}^n \otimes \mathbb{C}^n \otimes \mathbb{C}^n$ can be "cut" into n slices $T_1, \ldots, T_n \in M_n(\mathbb{K})$ where

$$(T_k)_{i,j} = (T_{ijk})_{1 \leq i,j \leq n}.$$

Note: For a symmetric tensor, each slice is a symmetric matrix of size n.

Subhayan Saha (joint work with Pascal Koiran)

Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)
Order-3 tensor $T \in \mathbb{C}^n \otimes \mathbb{C}^n \otimes \mathbb{C}^n$ can be "cut" into n slices $T_1, \ldots, T_n \in M_n(\mathbb{K})$ where

$$(T_k)_{i,j} = (T_{ijk})_{1 \leq i,j \leq n}.$$

Note: For a symmetric tensor, each slice is a symmetric matrix of size n.

Let’s look at some examples of slices:

If

$$T = \sum_{i=1}^{n} e_i \otimes 3,$$

then

$$(T_i)_{j,k} = 1 \text{ if } i = j = k \text{ and } 0 \text{ otherwise}.$$
Jennrich’s Algorithm (Symmetric version)

T-diagonalisable tensor, T_1, \ldots, T_n-slices of T

(i) Pick vectors $a = (a_1, \ldots, a_n)$ and $b = (b_1, \ldots, b_n)$ at random

(ii) Compute $T^{(a)} = \sum_{i=1}^n a_i T_i$ and $T^{(b)} = \sum_{i=1}^n b_i T_i$

(iii) Diagonalise $(T^{(a)})^{-1} T^{(b)} = VDV^{-1}$.

(iv) Let w_1, \ldots, w_n be the rows of V^{-1}.

(v) Solve for α_i in $T = \sum_{i=1}^n \alpha_i w_i \otimes^3$

(vi) Output $(\alpha_1)^{\frac{1}{3}} w_1, \ldots, (\alpha_n)^{\frac{1}{3}} w_n$.
Why does it work?

Let $T = \sum_{i=1}^{n} u_i \otimes^3$. U-rows u_1, \ldots, u_n.
Let \(T = \sum_{i=1}^{n} u_i \otimes u_i \otimes u_i \). U-rows \(u_1, \ldots, u_n \)

Structure of slices: \(T_i = U^T \begin{pmatrix} u_{1i} & \cdots & u_{ni} \end{pmatrix} U \).
Why does it work?

Let $T = \sum_{i=1}^{n} u_i \otimes^3$. U-rows $u_1, ..., u_n$

- Structure of slices: $T_i = U^T \begin{pmatrix} u_{1i} & \cdots & \cdots & u_{ni} \end{pmatrix} U$.

- Then

$$T^{(a)} = U^T \begin{pmatrix} \langle a, u_1 \rangle & \cdots & \cdots & \langle a, u_n \rangle \end{pmatrix} U$$
Let $T = \sum_{i=1}^{n} u_i^\otimes 3$. U-rows u_1, \ldots, u_n

- **Structure of slices**: $T_i = U^T \begin{pmatrix} u_{1i} & \cdots & \cdot & \cdot & \cdot & \cdot & u_{n,i} \end{pmatrix} U$.

- Then

$$T^{(a)} = U^T \begin{pmatrix} \langle a, u_1 \rangle & \cdots & \cdot & \cdot & \cdot \end{pmatrix} U$$

- **Columns of U^{-1} are eigenvectors of** $(T^{(a)})^{-1} T^{(b)}$.

Eigenvalues of $(T^{(a)})^{-1} T^{(b)}$ distinct whp.
Outline

1. Problem Statement
2. Results
3. Jennrich’s Algorithm
4. Some ingredients for the proof
 - Making modifications
 - Algorithm for change of basis
 - Diagonalization
Looking at Step 5

Step 3: Diagonalisation algorithm on \((T^{(a)})^{-1} T^{(b)} = VMV^{-1}\)

\[V = U^{-1} \Lambda, \quad \Lambda = \text{diag}(k_1, ..., k_n) \] - since eigenvalues distinct

Need to find scaling factors \(k_i\) in Step 5.
Looking at Step 5

Step 3: Diagonalisation algorithm on $(T^{(a)})^{-1} T^{(b)} = VMV^{-1}$

$V = U^{-1} \Lambda, \Lambda = \text{diag}(k_1, \ldots, k_n)$ - since eigenvalues distinct

Need to find scaling factors k_i in Step 5.

- Usual idea: Solve a system of linear equations
- System has n variables, n^3 equations - cannot achieve $O(n^3)$ even in exact arithmetic
- Need a numerically stable algorithm as well
Step 3: Diagonalisation algorithm on \((T^{(a)})^{-1} T^{(b)} = VMV^{-1}\)
\(V = U^{-1} \Lambda, \ \Lambda = \text{diag}(k_1, ..., k_n)\) - since eigenvalues distinct

Need to find scaling factors \(k_i\) in Step 5.

- Usual idea: Solve a system of linear equations
- System has \(n\) variables, \(n^3\) equations - cannot achieve \(O(n^3)\) even in exact arithmetic
- Need a numerically stable algorithm as well

Our idea:

- Perform "change of basis" of \(T\) by matrix \(V\), Compute the traces of the slices of new tensor
- Requires \(O(n^3)\) arithmetic operations and is numerically stable.
Change of basis operation: Apply map $A \otimes A \otimes A$ to a tensor T. ($A \in M_n(\mathbb{C})$) - apply A to each of the 3 components/modes of the input tensor.
Change of basis operation: Apply map $A \otimes A \otimes A$ to a tensor T. ($A \in M_n(\mathbb{C})$) - apply A to each of the 3 components/modes of the input tensor.

- $T = \sum_{i=1}^{r} u_i^3 \implies (A \otimes A \otimes A).T = \sum_{i=1}^{r} (A^T u_i)^3$.
- Via polynomial-tensor equivalence: Can be thought of as a change of variables, $g(x) = f(Ax)$.

Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)
Change of basis operation: Apply map $A \otimes A \otimes A$ to a tensor T. ($A \in M_n(\mathbb{C})$) - apply A to each of the 3 components/modes of the input tensor.

- $T = \sum_{i=1}^{r} u_i \otimes 3 \implies (A \otimes A \otimes A).T = \sum_{i=1}^{r} (A^T u_i) \otimes 3$.

- Via polynomial-tensor equivalence: Can be thought of as a change of variables, $g(x) = f(Ax)$.

$D = \sum_{i=1}^{n} e_i \otimes 3$ - diagonal tensor. T - diagonalisable tensor.
Then $T = (U \otimes U \otimes U).D$ for $U \in \text{GL}_n(\mathbb{C})$.
Replaced Step 5:
The algorithm proceeds as follows.

(i) Pick vectors $a = (a_1, ..., a_n)$ and $b = (b_1, ..., b_n)$ at random
(ii) Compute $T^{(a)} = \sum_{i=1}^{n} a_i T_i$ and $T^{(b)} = \sum_{i=1}^{n} b_i T_i$
(iii) Diagonalise $(T^{(a)})^{-1} T^{(b)} = VDV^{-1}$.
(iv) Let $w_1, ..., w_n$ be the rows of V^{-1}.
(v) Let $T' = (V \otimes V \otimes V) T$. Let $T'_1, ..., T'_n$ be the slices of T'. Define $\alpha_i = \text{Tr}(T'_i)$.
(vi) Output $(\alpha_1)^{\frac{1}{3}} w_1, ..., (\alpha_n)^{\frac{1}{3}} w_n$.
Input tensor $T = \sum_{t=1}^{n} u_t \otimes^3$. U -rows u_1, \ldots, u_n.
Step (iii) outputs $V = U^{-1}\Lambda$ where $\Lambda = \text{diag}(k_1, \ldots, k_n)$, $k_i \neq 0$.
Recall that we want to find the scaling factors k_i.
Recall that for diagonal tensor D

$$U \text{ diagonalises } T \quad \implies \quad T = (U \otimes U \otimes U).D$$
Input tensor $T = \sum_{t=1}^{n} u_t \otimes^3$. U -rows u_1, \ldots, u_n.
Step (iii) outputs $V = U^{-1}\Lambda$ where $\Lambda = \text{diag}(k_1, \ldots, k_n)$, $k_i \neq 0$.
Recall that we want to find the scaling factors k_i.

Recall that for diagonal tensor D

$$U \text{ diagonalises } T \iff T = (U \otimes U \otimes U).D$$

$$T' = (U^{-1}\Lambda \otimes U^{-1}\Lambda \otimes U^{-1}\Lambda).T = (\Lambda \otimes \Lambda \otimes \Lambda).D$$

So $\text{Tr}(T'_i) = k_i^3$.

Subhayan Saha (joint work with Pascal Koiran)

Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)
Change of basis

Algorithmic Problem:
Input: \(V \in M_n(\mathbb{C}) \), symmetric tensor \(T \in \mathbb{C}^n \otimes \mathbb{C}^n \otimes \mathbb{C}^n \)
Output: \(\text{Tr}(S_1), ..., \text{Tr}(S_n) \) where \(S_1, ..., S_n \)-slices of \(S = (V \otimes V \otimes V) \cdot T \), We give an \(O(n^3) \) algorithm for this problem.
Idea:

Don’t need to compute entire tensor after change of basis - too expensive
Idea:

Don’t need to compute entire tensor after change of basis - too expensive

Lemma

Let $S = (V \otimes V \otimes V).T$, S_1, \ldots, S_n-slices of S. Then

$$S_i = V^T D_i V \text{ where } D_i = \sum_{m=1}^{n} v_{m,i} T_m$$
Idea:

Don’t need to compute entire tensor after change of basis - too expensive

Lemma

Let $S = (V \otimes V \otimes V).T$, S_1, \ldots, S_n-slices of S. Then

$$S_i = V^T D_i V \text{ where } D_i = \sum_{m=1}^{n} v_{m,i} T_m$$

$$Tr(S_i) = Tr(V^T D_i V) = Tr(V^T VD_i) = Tr(V^T V(\sum_{m=1}^{n} v_{m,i} T_m))$$

$$= \sum_{m=1}^{n} v_{mi} Tr(V^T VT_m)$$

Subhayan Saha (joint work with Pascal Koiran)

Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)
Eigenvalue gaps

\(A \) - diagonalisable matrix, \(\lambda_1, ..., \lambda_n \)-eigenvalues of \(A \). Then

\[
gap(A) := \min_{i \neq j} |\lambda_i - \lambda_j|
\]

Step 3: Diagonalise \(D := (T^{(a)})^{-1}T^{(b)} \)

Use fast and numerically stable diagonalisation algorithm from [Banks et al’20]

Lower bounds on \(\text{gap}(D) \) required for numerically stable diagonalisation.
\[T = \sum_{i=1}^{n} u_i \otimes 3, \quad U \in M_n(\mathbb{C}), \text{ rows } u_1, \ldots, u_n, \quad T_1, \ldots, T_n\text{-slices of } T \]

Recall

\[T^{(a)} = U^T \begin{pmatrix} \langle a, u_1 \rangle \\ \vdots \\ \langle a, u_n \rangle \end{pmatrix} U \]

\[\text{gap}(D) = \min_{i \neq j} \left| \frac{\langle b, u_i \rangle}{\langle a, u_i \rangle} - \frac{\langle b, u_j \rangle}{\langle a, u_j \rangle} \right| = \min_{i \neq j} \left| \frac{\langle b, u_i \rangle \langle a, u_j \rangle - \langle b, u_j \rangle \langle a, u_i \rangle}{\langle a, u_i \rangle \langle a, u_j \rangle} \right| \]
Looking at polynomials

\[P^{kl}(x, y) = \sum_{i, j \in [n]} p_{ij}^{kl} x_i y_j \]

where coefficients \(p_{ij}^{kl} = u_{ik} u_{jl} - u_{il} u_{jk} \)

\[|P^{kl}(a, b)| = |\langle b, u_i \rangle \langle a, u_j \rangle - \langle b, u_j \rangle \langle a, u_i \rangle| \]

lower bds for \(P^{kl}(a, b) \) \(\forall k, l \in [n] \) \(\implies \) **lower bds** for gap(A)
Probabilistic analysis

- Quadratic polynomial P^{kl} emerges out of analysis for gap(D)
- Need to show that for random choices of a, b, $P^{kl}(a, b)$ is bounded far away from 0 with high probability.
Probabilistic analysis

- Quadratic polynomial P_{kl} emerges out of analysis for $\text{gap}(D)$
- Need to show that for random choices of a, b, $P_{kl}(a, b)$ is bounded far away from 0 with high probability.

We follow a two-step process:

- First, we assume a and b are drawn from the uniform distribution on the hypercube $[-1, 1]^n$. Using Carbery-Wright inequalities, we can show this.

- Round the coordinates of a and b to obtain a point (a', b') from the discrete grid. Use multivariate Markov inequality to show that the function value at (a', b') is not too far.
Probabilistic analysis

- Quadratic polynomial P^{kl} emerges out of analysis for gap(D)
- Need to show that for random choices of a, b, $P^{kl}(a, b)$ is bounded far away from 0 with high probability.

We follow a two-step process:

- First, we assume a and b are drawn from the uniform distribution on the hypercube $[-1, 1)^n$. Using Carbery-Wright inequalities, we can show this.
- Round the coordinates of a and b to obtain a point (a', b') from the discrete grid. Use multivariate Markov inequality to show that the function value at (a', b') is not too far.

Inspired by construction of robust hitting sets from [Forbes, Shpilka, 2018]

Subhayan Saha (joint work with Pascal Koiran)
Contact: Subhayan Saha (subhayan.saha@ens-lyon.fr)
Future work

- Composition of numerically stable algorithms
- Undercomplete decompositions (number of summands $r < n$)
- Overcomplete decompositions (number of summands $r > n$)
Thank You!