Complete plastid genome sequences of Coreanomecon hylomeconoides Nakai (Papaveraceae), a Korea endemic genus

Hoe-Won Kim and Ki-Joong Kim

Division of Life Sciences, Korea University, Seoul, Korea

ABSTRACT

The plastid genome (plastome) sequences from the monotypic endemic genus of Korea, Coreanomecon hylomeconoides Nakai, were completed in this study (NCBI No. KT274030). The complete plastome size was 158,824 bp in length, containing a pair of 26,685 bp inverted repeat (IR), which were separated by a large and small single copy (LSC, SSC) region of 86,916 bp and 18,538 bp, respectively. The overall GC contents were 38.8%. The plastome contained 112 genes, including protein-coding genes, 30 tRNA genes, 4 rRNA genes. Sixteen genes contained one intron and two genes had two introns. Phylogenetic analysis revealed that C. hylomeconoides was sister group of Papaver somniferum with 100% support value.

Coreanomecon hylomeconoides Nakai (Papaveraceae) are monotypic endemic genus in Korea (Nakai 1935). It is a perennial herb that mainly distributed in the southern region of Korea. The genus Coreanomecon belongs to the subfamily Chelidonioideae which consists of 10 genera (Blattner & Kadereit 1999). In Korea, this subfamily comprised of three genera (Chelidonium, Hylomecon, Coreanomecon). Some authors combined Coreanomecon into Hylomecon or Chelidonium based on morphological characters (Ohwi 1953; Lee 1973). However, palagenetic study and cladistic analysis have supported that Coreanomecon is the distinctive Korea endemic genus (Lee & Kim 1984; Park et al. 1999). In this paper, we report the complete plastome sequence of C. hylomeconoides. This data will provide better information for plastome evolution and phylogenetic relationships for the Papaveraceae.

Materials were collected from the natural habitat of the Mt. Huia, Suncheon, Korea. Chloroplast DNA was isolated from approximately 100 g fresh leaves using a sucrose gradient centrifugation method (Jansen et al. 2005). Sequencing was performed by Genome Sequencer FLX System (Roche, Basel, Switzerland), and assembled by GS De Novo Assembler (Roche Diagnostics Company). Junctions between the IR and the LSC and SSC were confirmed using PCR and Sanger sequencing. Annotations was performed using the BLAST of the National Center for Biotechnology Information (NCBI), DOGMA (Wyman et al. 2004) and tRNAscan-SE (Lowe & Eddy 1997). The DNAs and voucher specimens used in this study were deposited in the Plant DNA Bank of Korea (PDBK 2008-0361) and Korea University Herbarium (KUS 2008-0361), respectively.

The plastome structure, gene order and content of C. hylomeconoides were similar to the typical land plant plastome (Palmer 1991). The C. hylomeconoides plastome contains a pair of inverted repeat regions (IRa and IRb) consisting of 26,685 bp each. The two IR regions were divided into LSC region of 86,916 bp and SSC region of 18,538 bp. The total cp genome is 158,824 bp in length. The plastome comprised 130 genes (113 unique), including 79 protein-coding genes, 30 tRNA genes, 4 rRNA genes. The overall GC contents of the plastome were 38.8%, and in the LSC, SSC and IR regions were 37.3%, 32.8%, 43.2%. A total of 18 genes contain one or two introns. Two genes, ycf3 and clpP have two introns. The rps12 gene is the unique divided gene in which the 5′ exon is located in the LSC region and two 3′ exons and introns are duplicated and located in the IR region.

To validate the phylogenetic relationships of C. hylomeconoides among Ranunculaceae, we constructed Maximum likelihood (ML) tree. Phylogenetic analyses were performed on a data set that included 79 protein-coding genes and four rRNA genes for 33 taxa using RAxML v. 8.2.8 on CIPRES (http://www.phylo.org). The 83 gene sequences (80,565 bp) were aligned with MUSCLE in Geneious v. 6.1.7 (Biomatters Ltd., Auckland, New Zealand). This analysis showed that Eupteleaceae was split first in Ranunculaceae followed by Papaveraceae (Figure 1). Therefore, the Eupteleaceae and Papaveraceae are the two early diverging lineages in the Ranunculales. Only two complete plastome sequences of C. hylomeconoides and Papaver somniferum are available from MITOGENOME ANNOUNCEMENT

Contact: Ki-Joong Kim (kijk@korea.ac.kr)

Division of Life Sciences, Korea University, Seoul, Korea

© 2016 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
the Papaveraceae at this time. Two species form a sister group in the tree with 100% support value. In order to evaluate the validity of the endemic genus of the Coreanomecom, we need more comprehensive plastome data in the subfamily Chelidonioideae of the Papaveraceae.

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Funding

This work was supported by the National Research Foundation of Korea (NRF) under Grants (NRF-2015M3A9B8030588 and NRF-2015M3A9B8047398) and the Eco-Innovation project (416-111-007) of the Ministry of Environment from KEITI to KKJ.

References

Blattner F, Kadereit J. 1999. Morphological evolution and ecological diversification of the forest-dwelling poppies (Papaveraceae: Chelidonioideae) as deduced from a molecular phylogeny of the region. Plant Syst Evol. 219:181–197.

Jansen RK, Raubeson LA, Boore JL, Chumley TW, Haberle RC, Wyman SK, Alverson AJ, Peery R, Herman SJ, Fournacle HM. 2005. Methods for obtaining and analyzing whole chloroplast genome sequences. Methods Enzymol. 395:348–384.

Lee Y. 1973. Taxonomic study on genus Hyleomecon. J Korean Res Inst Better Living. 11:127–136.

Lee S-T, Kim M-Y. 1984. Articles: a palynotaxonomic study of Coreanomecon hylomeconoides Nakai (Papaveraceae) and its closely related species. Korean J Pl Taxon. 14:181–185.

Lowe TM, Eddy SR. 1997. Trnascan-se: a program for improved detection of transfer rna genes in genomic sequence. Nucleic Acids Res. 25:955–964.

Nakai T. 1935. Coreanomecon hylomeconoides Nakai. Jap Bot. 11:151.

Ohwi J. 1953. Flora of Japan. Tokyo: Shibundo.

Palmer JD. 1991. Plastid chromosomes: structure and evolution. Mol Biol Plastids. 7:5–53.

Park G-R, Kim M-Y, Gwon S-Y. 1999. Reexamination the generic status of the Korean endemic Coreanomecon within subfamily Chelidonioideae (Papaveraceae). Korean J Pl Taxon. 29:295–295.

Wyman SK, Jansen RK, Boone JL. 2004. Automatic annotation of organelar genomes with dogma. Bioinformatics. 20:3252–3255.