Effect of Large Inputs of Manure and Fertilizer on Nitrogen Mineralization in the Newly Built Solar Greenhouse Soils

Shichao Wang, Zhujun Chen¹, Jun Man, and Jianbin Zhou
College of Natural Resources & Environment/Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712700, China

Abstract. In China, greenhouse soils often receive large rates of different manures and have a high content of soil organic matter (SOM). Understanding changes in nitrogen (N) mineralization in soils of newly built greenhouses after their construction is important for managing N. Soil samples were obtained from solar greenhouses of different ages (0, 1, 2, and 3 years) located in the south edge of the Loess Plateau, China, at 0- to 20- and 20- to 40-cm depth. N mineralization in the soils was measured with the Stanford and Smith long-term aerobic incubation method over 30 weeks. SOM, total N, and the mineralized N in the 0- to 20-cm and 20- to 40-cm soil layers were significantly increased in the older greenhouses. The cumulative mineralized N in the 0- to 20-cm soil layer in different cultivation years was increased in each year since the greenhouses were established. For the greenhouses with the same age, the cumulative mineralized N in the 0- to 20-cm soil layer was greater than that in the 20- to 40-cm layer. The potentially mineralizable N (N₀) both in the 0- to 20-cm and the 20- to 40-cm soil layers increased with the greenhouse’s age. Regression analysis indicated that when SOM increased 1 g·kg⁻¹, N₀ in the 0- to 20-cm and 20- to 40-cm depth increased 22.6 and 8.4 mg·kg⁻¹, respectively. Therefore, as the N supply in soil increases with the age of the solar greenhouse, we suggest that the application rates of manure and synthetic fertilizer be reduced.

Materials and Methods

Site description. The study site was located in Yangling, Shaanxi, China (108°2'E, 34°17'N), which is the south edge of the Loess Plateau. The region has a continental monsoon climate. The average attitude is about 520 m above the sea level. Average annual precipitation is 630 mm, with most of the rainfall occurring from July to September. The average annual air temperature is 12.9 °C.

The solar greenhouses in the study region were built in 2009 and 2010. The greenhouse is of a typical design, with a loess back and side walls and a quadrant metal frame supporting a removable polyethylene cover facing south. The area of each greenhouse ranges from 350 to 700 m². The average air temperature in the solar greenhouses during vegetable season is 19 °C. The soil at the study region is an Anthrosol. The original topsoil was removed to build the walls of the greenhouses. Therefore, the soil fertility of the new greenhouse was quite low (Table 1).

The main vegetable crop in the greenhouses is tomato, which is usually transplanted in October and harvested the following June. Chicken and cattle manures are commonly applied, and some greenhouses also receive sheep, swine manures, and anaerobic fermentation residues. Manures are broadcasted onto the soil surface each year, then incorporated into soil before plowing the field. Chemical fertilizers applied include urea, Ca(H₂PO₄)₂·K₂SO₄, and a range of compound fertilizers. The average application rates of N, P₂O₅, and K₂O fertilizers in the region are 690 kg·ha⁻¹, 720 kg·ha⁻¹, and 760 kg·ha⁻¹, respectively.
Table 1. Physical and chemical properties of solar greenhouse soils used.

Soil layer (cm)	Yr	Organic matter (g·kg⁻¹)	Total N (g·kg⁻¹)	Mineral N (mg·kg⁻¹)	Olsen-P (mg·kg⁻¹)	Available K (mg·kg⁻¹)
0–20	Before planting	8.7 ± 0.6 C	0.70 ± 0.01 B	29.00 ± 7.0 A	9.0 ± 2.3 C	147 ± 6.4 C
	First year	9.9 ± 1.8 BC	0.68 ± 0.12 B	52.82 ± 34.97 A	8.46 ± 30.38 B	202 ± 55 BC
	Second year	14.1 ± 3.0 B	1.05 ± 0.10 A	55.54 ± 34.72 A	101.2 ± 22.25 AB	286 ± 65 AB
	Third year	20.1 ± 5.3 A	1.27 ± 0.26 A	95.39 ± 88.01 A	139.1 ± 46.99 A	363 ± 103 A
20–40	Before planting	9.0 ± 0.6 B	0.60 ± 0.1 B	19.90 ± 2.2 A	8.7 ± 1.4 A	147 ± 9.0 A
	First year	7.2 ± 0.8 B	0.55 ± 0.08 B	36.56 ± 15.28 A	21.1 ± 21.37 A	123 ± 39 AB
	Second year	7.9 ± 2.1 B	0.59 ± 0.08 B	35.84 ± 36.68 A	16.9 ± 4.41 A	136 ± 24 A
	Third year	12.1 ± 3.1 A	0.82 ± 0.18 A	41.02 ± 17.54 A	26.5 ± 10.57 A	179 ± 79 A

Notes: Different letters in the table indicate significant differences at the 1% level (Duncan’s multiple comparison test).

Table 2. Nutrient inputs from manure and inorganic fertilizer in solar greenhouses (kg·ha⁻¹).

Yr	N	P₂O₅	K₂O	N	P₂O₅	K₂O
First year	1332 ± 194^a	1022 ± 44	1003 ± 190	621 ± 205	738 ± 176	834 ± 164
Second year	886 ± 256	688 ± 228	707 ± 207	933 ± 293	959 ± 523	1145 ± 343
Third year	769 ± 223	590 ± 170	705 ± 186	766 ± 265	790 ± 288	1106 ± 369

Notes: Values are means ± sd.

kg·ha⁻¹, respectively (Bai et al., 2013; Gao et al., 2012). All organic manure, phosphorus (P) fertilizer, and about one-fourth of N, potassium (K) fertilizers are basally applied and plowed into the soil. The remaining N, K fertilizers are dressed equally with a fertigation system five to seven times since the first fruit expansion period. Detailed information on nutrient addition in the three successive growing seasons is shown in Table 2.

Soil samples. Soil samples of two depths (i.e., 0- to 20-cm and 20- to 40-cm layers) were collected from five newly built solar greenhouse at the different times, i.e., before planting (i.e., after construction the greenhouse and before addition of manures and fertilizers) and the first, second, and third year after construction the greenhouse. Three cores were collected from the different locations in each greenhouse each year after harvesting the crops in June and then mixed into a composite sample. A portion of fresh soil sample was extracted with 1 mol·L⁻¹ KCl (soil:solution rate, 1:10) to determine mineral N in soil. The remaining soils were air-dried and sieved to 1 mm for subsequent incubation experiment. The basic properties of soils were determined with conventional methods (ISSAS, 1995). To summarize, SOM was measured with the dilution heat K₂Cr₂O₇ oxidation volumetric method. Total N was measured with the Kjeldahl method. Available P was determined according to the method of Olsen et al. (1954). Available K was extracted with 1 mol·L⁻¹ CH₃COONH₄ (soil:solution ratio, 1:10) and determined using flame photometry.

Nitrogen mineralization incubation method. The aerobic incubation method of Stanford and Smith (1972) was used to estimate the mineralizable N from the different soils. To summarize, a sand soil mixture including 15-g samples of soil and equal weights of 20-mesh quartz sand were moistened using a fine spray of distilled water and mixed thoroughly. This mixture was placed into a 50-mL leaching tube. A 6-mm glass wool board was put at the bottom of the tubes and a 3-mm glass wool was put on the top, then 10 g of quartz sand was added. Soil samples were leached four times with 100 mL of 0.01 M CaCl₂ to remove the originally mineral N in soil. Then, 25 mL of N-free nutrient solution was added into the tube and a vacuum was applied to remove excess water. The tubes were covered with a plastic sheet with several small holes and incubated at 35 °C. There were three replicates for each soil after incubation for periods of 0, 1, 2, 3, 4, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, and 30 weeks, the tubes were leached with 100 mL of 0.01 M CaCl₂ and leachate was collected. The leachate tubes were then leached with 25 mL of an N-free nutrient solution composed of 0.002 mol·L⁻¹ CaSO₄ ·2H₂O, 0.002 mol·L⁻¹ MgSO₄, 0.005 mol·L⁻¹ Ca (H₂PO₄)₂·2H₂O, and 0.0025 K₂SO₄ in succession. The tubes were pumped down to –80 k Pa before continuing the incubation. Leachates were analyzed with a Bran+Luebbe A3 auto-analyzer (SPW FLOW, Norderstedt, Germany) to determine NO₃-N and NH₄⁺-N content.

Data analysis. Differences in soil nutrient contents over time were analyzed by analysis of variance and Duncan’s multiple comparison test using SAS, version 8.0 (SAS Institute, Cary, NC). The first-order kinetic model was used to fit the pattern of N mineralization during the incubation period:

\[N_t = N_0 \left(1 - e^{-kt}\right) \]

where \(N_t\) is the cumulative mineralized N in time \(t\), \(N_0\) is potentially mineralizable N, and \(k\) is the mineralization rate constant. The nonlinear least-square regression was used to estimate \(N_0\) and \(k\) in the model. Linear regression analyses were used to investigate the relationship between potentially mineralizable N (\(N_0\)) and organic matter, total N in different soil layers. All figures were plotted using Sigmaplot (Version 12.0; Systat Software, Inc., San Jose, CA).

Results

Organic matter and total N content. The average contents of SOM and total N in 0- to 20- and 20- to 40-cm soil layers were significantly increased through time after the greenhouses were constructed (Table 1). Compared with the newly built greenhouse before planting, the SOM and total N contents of the 0- to 20-cm depth at the end of the second and third planting years increased significantly (\(P < 0.01\)). In addition, SOM and total N contents in the 20- to 40-cm soil depth at the end of the third year also increased significantly (\(P < 0.01\)). The rapid increase of SOM and total N is related to the high application rates of manures each year in the greenhouses.

Cumulative mineralized N. The cumulative mineralized N in the 0- to 20-cm soil layer increased linearly with duration of incubation (Fig. 1). The mineralized N in the second and third years of the greenhouse’s life in the 0- to 20-cm soil layer was significantly greater than those at the beginning and first year of the greenhouses. The mineralized N at the end of the first year was significantly greater than that before the greenhouses were constructed. The cumulative mineralized N in the 20- to 40-cm soil layer was significantly lower than in the 0- to 20-cm soil layer. After 30 weeks of incubation, the average cumulative mineralized N during the life of the greenhouse in the 0- to 20-cm soil layer was 86.2 mg·kg⁻¹ and was only 47.2 mg·kg⁻¹ in the 20- to 40-cm soil layer. There were no significant differences in the mineralized N between the first year and the beginning of the study.

Potentially mineralizable N (\(N_0\)). The first-order kinetic model fitted the curves of cumulative mineralized N from the greenhouse soils with the different well. Potentially mineralizable N (\(N_0\)) and the mineralization rate constant increased through time after the greenhouses were constructed (Table 2). This could be explained by the increase of SOM and total N in the older greenhouses (Table 1). Potentially mineralizable N of the 0- to 20-cm soil layer of the third year was 290 mg·kg⁻¹, which was 2.04, 1.42, and 1.16 times greater than that before construction, in the first year and the second year, respectively.
The k value of the third year in the 0- to 20-cm soil layer was significantly greater than the end of the first year. Potentially mineralizable N₀ of the 20- to 40-cm soil layers was significantly lower than those of 0- to 20-cm soil depth. This indicates that as the greenhouse aged, the mineralized N in both the 0- to 20-cm and 20- to 40-cm soil layer increased. The mineralization rate constant (k) of the 20- to 40-cm depth of soil showed no significant differences over time (Table 3).

![Graph](image)

Fig. 1 The cumulative mineralized nitrogen from (A) 0- to 20-cm and (B) 20- to 40-cm layers of the different soils of the solar greenhouses with different ages during the incubation.

Table 3. Potentially mineralizable N (N₀) and its constant fitted with the single model over the life of the solar greenhouse.

Soil layer (cm)	Yr	N₀ (mg·kg⁻¹)	k	R
0-20	Before planting	142.06 ± 27.42 b	0.0037 ± 0.0021 ab	0.9975 y
	First year	204.22 ± 62.64 b	0.0049 ± 0.0021 ab	0.9990 y
	Second year	250.71 ± 71.83 ab	0.0059 ± 0.0033 ab	0.9984 y
	Third year	290.03 ± 107.04 a	0.0065 ± 0.0041 a	0.9995 y
20–40	Before planting	80.62 ± 37.08 b	0.0034 ± 0.0023 a	0.9963 y
	First year	72.19 ± 38.78 b	0.0032 ± 0.0025 a	0.8669 y
	Second year	107.62 ± 10.71 ab	0.0035 ± 0.0028 a	0.9961 y
	Third year	163.88 ± 45.09 a	0.0038 ± 0.0005 a	0.9949 y

Different letters in the table indicate significant differences at the 5% level (Duncan's multiple comparison test).

Indicates 1% significant correlation.

The k value of the third year in the 0- to 20-cm soil layer was significantly greater than the end of the first year. Potentially mineralizable N₀ of the 20- to 40-cm soil layers was significantly lower than those of 0- to 20-cm soil depth. This indicates that as the greenhouse aged, the mineralized N in both the 0- to 20-cm and 20- to 40-cm soil layer increased. The mineralization rate constant (k) of the 20- to 40-cm depth of soil showed no significant differences over time (Table 3).

The relationship between potentially mineralizable N (N₀) and SOM and total N. Potentially mineralizable N₀ was positively and linearly correlated with SOM and total N (Fig. 2). Regression analysis indicated that when SOM increased 1 g·kg⁻¹, N₀ in the 0- to 20-cm and 20- to 40-cm depth increased by 22.63 and 8.41 mg·kg⁻¹, respectively. When the soil total N increased 1 g·kg⁻¹, N₀ in the 0- to 20-cm and 20- to 40-cm depth increased by 324.84 and 131.27 mg·kg⁻¹, respectively.

The ratio of potentially mineralizable N (N₀) to soil total N also was increased with cultivation years. In the 0- to 20-cm soil layer, the ratios of potentially mineralizable N (N₀) to soil total N before construction, first year, second year, and third year were 0.77%, 1.17%, 1.47%, and 1.95%, respectively. In the 20- to 40-cm soil layer, the ratios of potentially mineralizable N (N₀) of total N were greatest at the end of the third year, which was about 3.09 times greater than that before construction of the greenhouse. The first year and second year were 1.23 and 2.48 times greater than at the beginning of monitoring.

Discussion

Changes of mineralizable N in the newly built solar greenhouse soils. Many researchers have reported that application of manures or straws in arable fields significantly increases the content of the mineralized N (Bruun et al., 2006; Singh et al., 2007). However, there are only a few researchers who have evaluated N mineralization from the intensive horticultural soils, especially soils with history of many years of cultivation. Our study found that the potentially mineralizable N (N₀) in 0- to 20-cm soil layer increased significantly with time. Potentially mineralizable N₀ at the end of the third year was more than double that at the start of the greenhouse cultivation. Wang et al. (2010) reported that it took 19 years for soil N₀ in manure and inorganic fertilizer treatments to double that in no fertilizer treatment in an arable crop field. The increasing rate of soil mineralizable N in the greenhouse is faster than that in arable soils in the study region. The rapid and significant increase in potentially mineralizable N₀ in our study is related to the fast increase of SOM in this system due to the large application of manures every year (Chen et al., 2004; Gao et al., 2012). According to our survey in the study region, the application rate of manure in solar greenhouses was in the range of 36 to 360 t·ha⁻¹ (Bai et al., 2013). Manures contributed 71% of the total N input, 66% of the total P input, and 64% of the total K input in the newly built greenhouses (Gao et al., 2012). Other studies in Beijing, Shandong Provinces also found that manures have contributed more than one-half of total nutrient inputs in greenhouses (Chen et al., 2004; Ju et al., 2006). The original fertile topsoil was removed to build the walls of the new greenhouses in Loess Plateau; therefore, adding high rate of manures is a quick way to improve the N supply ability of soils in newly built greenhouses.

Studies on N mineralization from the different soils focus mainly on topsoil (He et al., 2005; Li, 2008). Recent studies indicate that the subsoil contributes more than two-thirds of the plant requirements for N, P, and K, indicating the important role of nutrient supply from the subsoil. However, our current knowledge on subsoil nutrition remains vague (Kautz et al., 2013). This research showed that with the length of greenhouse cultivation, the mineralized N in the 20- to 40-cm soil layer was significantly increased. This could be explained by the repeated and large additions of organic manures and fertilizer and the downward movement of soluble organic matter in the solar greenhouse (Murphy et al., 2000). Enrichment of N in the subsoil improves N supply ability in the newly built greenhouse soils. In contrast, it
could increase the risk of N losses by denitrification and leaching in solar greenhouses.

Our study found that with increasing time since the greenhouses were constructed that not only total N content but also the ratio of the potentially mineralizable N (N₀) to soil total N was increased. He et al. (2005) also reported that the mineralized N and its ratio to soil total N in vegetable fields were significantly greater than the soils under arable crops. It indicates that with time, the N pool size and its activity soil of greenhouse were both increased. This further confirms that the application of manure in solar greenhouse improves the soil N supply capacity.

Implications for N management in the solar greenhouse. Chinese farmers have the tradition of adding different manures to their greenhouses. They believe that manure is beneficial for soil fertility (Yang, 2006). That's the reason why farmers usually apply high rates of different manures in the newly built greenhouses in study region (Gao et al., 2012). However, they usually ignore available N input from the manures. In our study, the N input from manures was as high as inorganic N fertilizer in the greenhouses (Table 2). Although the bulk of N in manures is in organic form, and is not readily available to crop, it could be released by microbial mineralization after application. If one-third of total organic N in manure is mineralized during the first growth season (Agehara and Warncke, 2005; Brady and Well, 1996; DEFRA, 2010), the available N from manure in the greenhouse could meet the crop need. Therefore, ignoring total N input from manures is one main reason that explains the overapplication and accumulation of N in the most greenhouses in China.

N uptake during crop growth includes mineral N that existed in soil before planting and N mineralized from organic matter during the crop growth season (Li, 2008). The mineral N that had accumulated in greenhouse soils was very high and was mainly in nitrate form, which is an available N pool, and also easily lost by leaching due to high rate of irrigation in greenhouse (Yan et al., 2012). Our results show that the potentially mineralizable N (N₀) in the topsoil was significantly greater than the mineral N before planting (Table 3). In addition, the potentially mineralizable N (N₀) in both 0- to 20-cm and 20- to 40-cm soil layers was increased significantly with time since the greenhouse was built. The optimum water and temperature conditions in solar greenhouses favor soil organic N mineralization. Thus, the mineralizable N from SOM under the greenhouse cultivation can substantially contribute to the available N for vegetable crops. As a result, to avoid overaddition of nitrogen, we recommend reducing the application rate of manures and synthetic N fertilizer in the older greenhouses. Field experiments are needed to determine the optimum N application rates from manure and synthetic N fertilizers.

Conclusions

Our study found that the potentially mineralizable N₀ in both the 0- to 20- and 20- to 40-cm soil layers increased significantly with time since a solar greenhouse was built. This is related to the rapid increasing SOM and total N over time due to high application of manures and fertilizers in solar greenhouses. The rapid increasing mineralizable N under
the greenhouse soil can substantially contribute to the available N for vegetable crops. Therefore, it is needed to take into account this N pool when calculating N fertilizer requirements. For the established solar greenhouse, N input both in manure and N fertilizer should be decreased.

Literature Cited

Aghara, S. and D.D. Warncke. 2005. Soil moisture and temperature effects on nitrogen release form organic nitrogen sources. Soil Sci. Soc. Amer. J. 69:1844–1855.

Bai, X.L., J.J. Gao, J.F. Lei, Z.J. Chen, and J.B. Zhou. 2013. Survey of fertilizer application of tomato in new-established greenhouse in Yangling. Act Agriculturae Boreali-occidentalis Sinica 22:148–151.

Benbi, D.K. and J. Richter. 2002. A critical review of some approaches to modelling nitrogen mineralization. Biol. Fertil. Soils 35:168–183.

Brady, N.C. and R.R. Weil. 1996. The nature and properties of soils. 11th ed. Prentice-Hall, Inc., Upper Saddle River, NJ.

Brunu, S., I.J. Lush, and J. Magid. 2006. A nitrogen mineralization model based on relationships for gross mineralization and immobilization. Soil Biol. Biochem. 38:2712–2721.

Cai, H.M., S.C. Wang, Y. Liu, Z.J. Chen, and J.B. Zhou. 2016. Nutrient balance and accumulation in soil of solar greenhouse in Shaanxi. J. Northwest A&F University 9:83–91.

Carter, M.R. and E.G. Gregorich. 2008. Soil sampling and methods of analysis. 2nd ed. CRC Press, Boca Raton, FL.

Chen, D.S. 2001. Theory and practice of energy-saving solar greenhouse in China. Transactions of the CSAE 17:22–26.

Chen, Q., X.S. Zhang, and H.Y. Zhang. 2004. Evaluation of current fertilizer practice and soil fertility in vegetable production in the Beijing region. Nutr. Cycl. Agroecosyst. 69:51–58.

Dai, J.F., S.S. Liu, W.R. Zhang, R. Xu, W.H. Luo, S.F. Zhang, X.Y. Yin, L. Han, and W.P. Chen. 2011. Quantifying the effects of nitrogen on fruit growth and yield of cucumber crop in greenhouses. Scientia Hortic. 130:551–561.

Department for Environment Food and Rural Affairs (DEFRA). 2010. Fertiliser manual (RB209). 8th ed. TSO, Norwich, UK.

Gao, J.J., X.L. Bai, J.B. Zhou, B. Zhou, and Z.J. Chen. 2012. Soil nutrient content and nutrient balances in newly-built solar greenhouses in northern China. Nutr. Cycl. Agroecosyst. 94:63–72.

Gianello, C. and J.M.M. Bremner. 1986. Comparison of chemical methods of assessing potentially available organic nitrogen in soil. Commun. Soil Sci. Plant Anal. 17:215–236.

He, Y.F., B. Yin, G.X. Cai, X.X. Jin, and H.X. Li. 2005. Comparison of nitrogen mineralization and nitrification in upland soils grown with vegetables and food crops. Chinese J. Soil Sci. 36:41–44.

Institute of Soil Science of Academia Sinica (ISSAS). 1995. China’s Soil Classification Systems. China’s Agricultural Science and Technology Press, Beijing.

Ji, J.H., Y.L. Zhang, Y.L. Zhang, N. Yu, H.T. Zou, Y.Y. Li, S.Q. Liu, and Y.X. Tong. 2014. Soil nitrogen mineralization dynamics under long-term different irrigation methods in greenhouses. Acta Agr. Scand. B Soil Plant Sci. 2:117–126.

Jin, X.X., X.H. Fan, G.X. Cai, F.Y. He, H.X. Li, and Y. Huang. 2004. Characteristics of nitrogen mineralization and nitrification in vegeta-

green and garden soils. Soil 36:382–386.

Ju, X.T., C.L. Kou, F.S. Zhang, and P. Christie. 2006. Nitrogen balance and groundwater nitrate contamination: Comparison among three intensive cropping systems on the North China Plain. Environ. Pollut. 143:117–125.

Ju, X.T., Q. Gao, P. Christie, C.L. Kou, Z.X. Dou, and F.S. Zhang. 2007. Interception of residual nitrate from a calcareous alluvial soil profile on the North China Plain by deep-rooted crops: A 15N tracer study. Environ. Pollut. 146:534–542.

Kaul, T., W. Amelung, F. Wwert, T. Gaiser, R. Horn, R. Jahn, M. Javaux, A. Kemna, and Y. Kuzyakov. 2013. Nutrient acquisition from arable subsols in temperate climates: A review. Soil Biol. Biochem. 57:1003–1022.

Liu, R.N., X.P. Wu, Y.C. Zhang, L.Y. Wang, F.Z. Zhai, L.L. Chen, J.S. Shi, Q.S. Xu, and S.W. Huang. 2017. Effects of reduced phosphorus fertilization on soil phosphorus accumulation, leaching and utilization in greenhouse vegetable production. Scientia Agricultura Sinica 50:3944–3952.

Li, S.X. 2008. Soil-plant nitrogen of dryland farming in China. China Science Press, Beijing.

Liu, Y., J.B. Zhou, Z.J. Liu, H.X. Li, and Z.J. Chen. 2017. Relationships between content and ratio of soil nutrient and cultivating years in solar greenhouse. Chinese J. Soil Sci. 48:420–426.

Ma, W.Q., D.R. Mao, and F.S. Zhang. 2000. Nutrients accumulation within vegetable awning (greenhouse) in proving nutrient. Phosphate Compound Fertilizer 15:65–67.

Min, J., X. Zhao, W.M. Shi, G.X. Xing, and Z.L. Zhu. 2011. Nitrogen balance and loss in a greenhouse vegetable system in southeastern China. Pedosphere 21:643–652.

Murphy, D.V., A.J. Macdonald, E.A. Stockdale, K.W.T. Goulding, S. Fortune, J.L. Gaunt, P.R. Poulton, J.A. Wakefield, C.P. Webster, and W.S. Wilmer. 2000. Soluble organic nitrogen in agricultural soils. Biol. Fertil. Soils 30:374–387.

Olsen, S.R., C.V. Cole, F.S. Watanabe, and L.A. Dean. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture (USDA). Circular No. 939. USDA, Washington.

Shi, N., Y. Li, Y.P. Jing, L.J. Bo, Y.P. Zhang, M. Sun, and Z.W. Zhong. 2018. Effect of long-term fertilization on spatio-temporal changes and risk of nitrogen and phosphorus loss in intensive vegetable production system soil. J. Agro-Environment Sci. 37:2434–2442.

Shi, W.M., J. Yao, and F. Yan. 2009. Vegetable cultivation under greenhouse conditions leads to rapid accumulation of nutrient, acidification and salinity of soils and groundwater contamination in South-Eastern China. Nutr. Cycl. Agroecosyst. 83:73–84.

Singh, S., N. Ghoshala, and K.P. Singh. 2007. Synchronizing nitrogen availability through application of organic inputs of varying resource quality in a tropical dryland agroecosystem. Appl. Soil Ecol. 36:164–175.

Stanford, G. and S.J. Smith. 1972. Nitrogen mineralization potentials of soils. Soil Sci. Soc. Amer. J. 36:465–472.

Wang, Y., J.B. Zhou, and X.Y. Yang. 2010. Effects of different long-term fertilization on the fractions of organic nitrogen and nitrogen mineralization in soils. Scientia Agricultura Sinica 41:1173–1180.

Xin, L.J., X.B. Li, and M.H. Tai. 2012. Temporal and regional variations of China’s fertilizer consumption by crops during 1998-2008. J. Geogr. Sci. 22:643–652.

Yan, F., X.P. Wu, L. He, Q.P. Wu, Y.K. Li, H.J. Wu, X.B. Wang, D.X. Cai, Y.C. Zhang, R.N. Li, and X.Y. Wang. 2012. Effects of different water and nitrogen amounts on nitrate leaching in sunlight greenhouse during cucumber growing season. Plant Nutrition and Fertilizer Science 18:645–653.

Yang, H.S. 2000. Resource management, soil fertility and sustainable crop production: Experiences of China. Agr. Ecosyst. Environ. 116:27–33.

Yue, H.Y., T.X. Li, and X.Z. Zhang. 2010. Nutrient budget and soil nutrient status in greenhouse system. Agr. Sci. China 9:871–879.

Yu, J.Q. 2011. Progress in protected vegetable production and research during ‘The Eleventh Five-year plan’ in China. China Vegetables 2:11–23.

Zhang, F.S., Z.L. Cui, M.S. Fan, W.F. Zhang, X.P. Chen, and R.F. Jiang. 2011. Integrated soil-crop management: Reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China. J. Environ. Qual. 40:1051–1057.

Zhao, H.D., M.Y. Ge, H.D. Wang, and J.Y. Wu. 2017. Analysis on the utilization of nitrogen fertilizer in three main vegetables in China. Northern Horticulture 5:151–155.

Zhou, J.B., Z.J. Chen, X.J. Liu, B.N. Zhai, and D.S. Xin. 2012. Temporal different irrigation methods in greenhouse vegetable system. Northern Horticulture 5:151–155.

Zhou, J.B., Z.J. Chen, X.J. Liu, B.N. Zhai, and D.S. Xin. 2012. Temporal different irrigation methods in greenhouse vegetable system. Northern Horticulture 5:151–155.

Zhou, J.B., Z.J. Chen, X.J. Liu, B.N. Zhai, and D.S. Xin. 2012. Temporal different irrigation methods in greenhouse vegetable system. Northern Horticulture 5:151–155.