Molecular mapping and characterization of QBp.caas-3BL for black point resistance in wheat (*Triticum aestivum* L.)

Cuihe Liu1 · Jie Song1 · Siyang Liu1 · Jingdong Liu2 · Dengan Xu1 · Xiuling Tian1 · Yingjie Bian1 · Yachao Dong1 · Fengju Wang1 · Rongge Wang1,3 · Zhonghu He1,4 · Xianchun Xia1 · Shuanghe Cao1

Received: 12 March 2021 / Accepted: 17 June 2021 / Published online: 23 June 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

Key message We fine-mapped QBp.caas-3BL for black point resistance in an interval of 1.7 Mb containing five high-confidence annotated genes and developed a KASP marker suitable for selection of QBp.caas-3BL.

Abstract Wheat black point, which occurs in most wheat-growing regions of the world, is detrimental to grain appearance, processing and nutrient quality. Mining and characterization of genetic loci for black point resistance are helpful for breeding resistant wheat cultivars. We previously identified a major QTL QBp.caas-3BL in a recombinant inbred line (RIL) population of Linmai 2/Zhong 892 across five environments. Here we confirmed the QTL in two additional environments. The genetic region of QBp.caas-3BL was enriched with newly developed markers. Using four sets of near isogenic lines, QBp.caas-3BL was narrowed down to a physical interval of approximately 1.7 Mb, including five annotated genes according to IWGSC reference genome. *TraesCS3B02G404300, TraesCS3B02G404600* and *TraesCS3B02G404700* were predicted as candidate genes based on the analyses of sequence polymorphisms and differential expression. We also converted a SNP of *TraesCS3B02G404700* into a breeding-applicable KASP marker and verified its efficacy for marker-assisted breeding in a panel of germplasm. The findings not only lay a foundation for map-based cloning of QBp.caas-3BL but also provide a useful marker for selection of resistant cultivars genotypes in wheat breeding.

Keywords Black point · Candidate gene prediction · Fine mapping · Marker-assisted selection · Wheat

Introduction

Wheat is an important staple crop that provides about 20% of calories for humankind. Black point (also known as kernel smudge) is a severe disease characterized by dark discoloration at the embryo end of wheat grains and occurs in most wheat-growing regions of the world. Black point does not typically cause yield loss, but reduces grain quality. It causes inferior grain appearance, processing and nutrient quality as well as lower seed vigor (Liu et al. 2016). The causes of black point are complicated, including biotic and abiotic causal agents. It can be caused by several pathogens, such as *Alternaria alternata* (Southwell et al. 1980; Perelló et al. 2008; Davis and Jackson 2009; Busman et al. 2012), *Bipolaris sorokiniana* (Kumar et al. 2002; Li et al. 2020) and *Fusarium proliferatum* (Conner et al. 1992; Desjardins et al. 2007; Busman et al. 2012). It was also reported that the formation of black point was due to an enzymatic browning reaction caused by peroxidases (POD) (March et al. 2007; Fernandez et al. 2014), polyphenol oxidase (PPO) (Fuerst et al. 2014) and lipoxygenase (LOX) (Porta and Rocha-Sosa 2002), which can transform phenolic compounds into brown or black pigments like melanins (Fuerst et al. 2014) and quinines (Tomás-Barberán and Espín 2001; Fernandez and Conner 2011). Some environmental factors, such as temperature and humidity, also have
great effect on black point incidence (Conner et al. 1992; Fernandez and Conner 2011; Fernandez et al. 2014). Considering the causes of black point incidence, several methods are employed to reduce kernel infection, such as reducing irrigation after flowering and spraying foliar fungicides at flowering or fungicide seed treatments (https://cropprotectionnetwork.org/resources/articles/diseases/black-point-of-wheat). However, the methods can result in yield loss or environmental and toxicological contamination. Utilization of cultivars with resistance to black point is an environment-friendly and cost-effective way of wheat protection. Mining and characterization of genetic loci for black point resistance are helpful for breeding cultivars with resistance to the disease.

To date, relatively few genetic studies have been performed on black point resistance in wheat. A total of nine QTL for black point resistance were mapped on chromosomes 1D, 2A, 2B, 2D, 3D, 4A, 5A and 7A (2 QTL) in bi-parent mapping populations derived from crosses Cascades/AUS1408 and Sunco/Tasman, each explaining 4.0–18.4% of the phenotypic variance (Lehmensiek et al. 2004). Twenty-five loci associated with black point resistance on chromosomes 2A, 2B, 3A, 3B (2), 3D, 4B (2), 5A (3), 5B (3), 6A, 6B, 6D, 7A (5), 7B and 7D (2) explained phenotypic variances ranging from 7.9 to 18.0% (Liu et al. 2017). Recently, Li et al. (2020) detected 23 loci associated with black point resistance on chromosomes 1B, 1D, 2B (2), 2D, 3A (2), 3B (2), 3D, 4A, 5A (2), 5B (2), 6B (3), 6D, 6A, 7A (2) and 7D (2), respectively. Lv et al. (2020) identified 386 marker-trait associations (MTAs) for black point response by genome-wide association analysis, and three of the MTAs were further verified in a bi-parental population. These studies laid the foundation for map-based cloning of genes for resistance to black point, but fine mapping of the genetic loci has not been conducted thus far.

In our previous study, nine QTL for black point resistance were mapped on chromosomes 2AL, 2BL, 3AL, 3BL, 5AS, 6A, 7AL (2) and 7BS in a recombinant inbred line (RIL) population derived from the Linmai 2/Zhong 892 cross (Liu et al. 2016). *QBp.caas-3BL* was detected across five environments and explained 6.0–12.2% of the phenotypic variances, suggesting that it was a stable major QTL for black point resistance. Here *QBp.caas-3BL* was confirmed in another two environments. We created a series of near isogenic lines to fine-map *QBp.caas-3BL* and predicted its candidate genes. A cost-effective KASP marker was also developed to improve black point resistance in wheat breeding.

Phenotypic evaluation for black point

Black point in mature grains was assessed manually at least 15 days after harvest. Each RIL or NIL was scored for black point resistance (obvious discoloration around the embryos) by counting the number of black point-affected grains among three samples of 200. The percentage of black point-affected kernels was taken as the black point score for each plot. To ensure the accuracy of phenotyping, black point of all materials was scored by the same person under similar illumination conditions.

PCR-based genotyping by sequencing

To enrich the target region of *QBp.caas-3BL*, annotated genes were identified in the physical interval according to the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v1.1 (http://plants.ensembl.org/index.html). The sequences from some annotated genes were retrieved and aligned to design gene-specific primers using DNAMAN software. The polymorphic sites between parents Linmai 2 and Zhong 892 were used to develop markers for fine mapping of *QBp.caas-3BL*. PCR was performed in reaction mixtures of 15 μl containing 7.5 μl of 2 × Taq PCR Mix (Beijing HT-biotech Co., Ltd., Beijing), 5 pmol of each primer and 50–100 ng of genomic DNA using an ABI Applied Biosystems Veriti 96 Well Thermal Cycler (Gene Co., Ltd., Shanghai). PCR amplification was performed at 95 °C for 3 min, followed by 35 cycles (94 °C for 30 s, 59–61 °C for 30 s and 72 °C for 1 min) and a final extension at 72 °C for 7 min. Primer pairs and their annealing temperatures for PCR are listed in Table S2. PCR products were recovered from 1.5% agarose gels and purified by TIANgel MIDI Purification Kit (Tiangen, Biotechnology Co., Ltd., Beijing). The sequencing of target PCR products was performed by BGI Genomics Co., Ltd in Beijing.

Materials and methods

Plant materials

To confirm *QBp.caas-3BL*, we planted the Linmai 2/Zhong 892 RIL population in Anyang (Henan province) and Suixi (Anhui province) during the 2018–2019 cropping season. The residual heterozygous recombinant plants for *QBp.caas-3BL* were screened from the RIL population. Four sets of near isogenic lines (NILs) for *QBp.caas-3BL* were identified from the residual heterozygous recombinant plants and used for fine mapping (Table S1). The NILs were grown in single row plots of 2 m with approximately 40 plants per row and 20 cm between rows at Anyang during the 2018–2019 cropping season and Xinxiang (Henan province) during the 2019–2020 cropping season. A panel of 166 wheat cultivars from the Huang-Huai Wheat Region was used to validate the genetic effect of *QBp.caas-3BL* on black point response (Liu et al. 2017).
Development of a KASP marker

PolyMarker software (http://polymarker.tgac.ac.uk/) was used to design KASP markers for target polymorphic sites (Table S3). The PCR cycling conditions were 94 °C for 15 min, followed by 10 touchdown cycles (94 °C for 20 s; 62 °C to 55 °C for 60 s), 26 cycles of 94 °C for 20 s and 55 °C for 60 s, 6 cycles of 94 °C for 20 s and 57 °C for 60 s, and one final acquisition cycle at 16 °C for 60 s (Collins et al. 2018). The KASP platform of LGC Co., Ltd was used to carry out genotyping and statistical analyses.

Quantitative PCR

Grains of Linmai2 and Zhong892 were sampled 25 days after flowering and used to isolate total RNA with a Total RNA Extraction Kit (Beijing TransGen Biotechnology, Cat#ER301-01). cDNA was generated with a PrimeScript RT Reagent Kit plus gDNA Eraser (TaKaRa, Dalian). Quantitative PCR (qPCR) was performed on cDNA samples produced from three biological replicates in a BioRad CFX system using iTaq Universal SYBR Green Supermix (BioRad, Beijing). The primer pairs for gene-specific qPCR were designed according to the gene sequences from RefSeq v1.1 (Table S4). The profile of qPCR was as follows: 95 °C for 2 min, followed by 40 cycles of 95 °C for 5 s and 59 °C for 20 s. A final dissociation stage was run to generate a melting curve for judgment of amplification specificity. Relative gene expression was normalized to elongation factor 1 alpha (EF1α) using the 2−ΔΔCt equation.

Linkage mapping and QTL analysis

A genetic linkage map for QBp.caas-3BL was constructed using JoinMap 4.0 (http://www.kyazma.com). QTL mapping was conducted by inclusive composite interval mapping (ICIM) in IciMapping 4.0 software (https://www.isbreading.net) with a LOD threshold of 3.0. The means of phenotypic data for RILs in each environment were used for QTL analysis.

Statistical analysis

Association analysis for declaration of significance at P<0.05 in KASP marker validation was conducted by student’s t-tests in Excel. The Excel software was also used to calculate the means, standard deviation and coefficients of variation in phenotypic data.

Results

Confirmation of QBp.caas-3BL

In the previous study, QBp.caas-3BL was identified as a major QTL for black point in the RIL population of Linmai 2/Zhong 892 (Liu et al. 2016). To confirm the presence of QBp.caas-3BL, we re-investigated black point response of the RIL population in two additional environments (2019 Anyang and 2019 Suixi). Based on the phenotypes in these two environments, a QTL for black point was detected with a consistent genetic location of QBp.caas-3BL (Fig. 1A; Liu et al. 2016) and explained 6.6–12.4% of the phenotypic variance. These results confirmed that QBp.caas-3BL is a stable QTL for black point.

Generation of secondary mapping populations for QBp.caas-3BL

To narrow down the target interval of QBp.caas-3BL, we created secondary mapping populations. Based on the genotyping data by the wheat 90 K SNP chip, four RILs with residual heterozygosity in the QBp.caas-3BL target region were identified using markers. We genotyped approximately 2000 individual plants from the heterozygous recombinant lines using the flanking markers RAC875_rep_c105184_88 (M1) and Tdurum_contig67350_494 (M12) (Fig. 1A; Table S2). Each of the so-called residual heterozygous recombinant lines had homozygous plants with contrasting genotypes in the target region of QBp.caas-3BL. Since the plants from each residual heterozygous recombinant line harbored contrasting genotypes in the target region but were homozygous for most other regions of the genome based on SNP arrays, they were treated as NILs of QBp.caas-3BL. Four sets of QBp.caas-3BL NILs were selected and used to create secondary populations for fine mapping (Table S1).

Fine mapping of QBp.caas-3BL

To enrich the interval of QBp.caas-3BL, we identified polymorphic sites of six genes within the target region based on the IWGSC RefSeq v1.1 (http://plants.ensembl.org/index.html) and developed gene-specific markers (Table S2). Six chip-based SNP s that were identified previously as flanking markers of QBp.caas-3BL were also converted into sequencing-based markers. Using these markers, we mapped QBp.caas-3BL to a smaller genetic
region (Fig. 1A). \(QBp.caas-3BL\) was further delimited in a physical interval between \(M8\) (\(TraesCS3B02G404200\)) and \(M10\) (\(TraesCS3B02G404800\)) based on genotypic and phenotypic analyses of the secondary mapping populations (Fig. 1B; Table S1). The physical interval spanned 1.7 Mb, including five high-confidence annotated genes, \(TraesCS3B02G404300\), \(TraesCS3B02G404400\), \(TraesCS3B02G404500\), \(TraesCS3B02G404600\) and \(TraesCS3B01G404700\) according to RefSeq v1.1 (Fig. 1C).

Prediction of candidate genes

Among the five candidate genes, \(TraesCS3B02G404300\), \(TraesCS3B02G404400\), \(TraesCS3B02G404500\) and \(TraesCS3B02G404600\) are bZIP family transcription factors that are orthologous to \textit{ABSCISIC ACID-INSENSITIVE 5} (\(ABI5\)) (Fig. 1C and S1), whereas \(TraesCS3B02G404700\) is a homolog of \textit{protein phosphatase} (Fig. S2). To determine the candidate gene(s) in \(QBp.caas-3BL\), we compared the open reading frames (ORFs) of the five genes from parents Linmai 2 and Zhong 892 by sequencing. The ORFs of \(TraesCS3B02G404600\) and \(TraesCS3B02G404700\) contained sites polymorphic between Linmai 2 and Zhong 892. The SNP in \(TraesCS3B02G404600\) was a synonymous mutation, whereas that of \(TraesCS3B02G404700\) was a nonsynonymous mutation causing a serine-to-alanine substitution (Fig. 2A and 2B). We also investigated the expression patterns of the five genes in Wheat Expression Browser (http://wheat-expression.com/) and found that all were expressed in grains, suggesting that they could be involved in black point response (Fig. S3-7). All four \(ABI5\) homologs, \(TraesCS3B02G404300\), \(TraesCS3B02G404400\), \(TraesCS3B02G404500\) and \(TraesCS3B02G404600\), have spike- and seed-specific expression patterns, whereas \(TraesCS3B02G404700\) is highly expressed in all tissues (Fig. S3-7). We further compared the transcriptional levels of the five genes in developing grains using qPCR assays and observed that \(TraesCS3B02G404300\),
TraesCS3B02G404600 and TraesCS3B02G404700 were differentially expressed between Linmai 2 and Zhong 892 (Fig. 2C). All three differentially expressed genes were downregulated in Linmai 2 compared to Zhong 892 (Fig. 2C). Thus, each of TraesCS3B02G404300, TraesCS3B02G404600, and TraesCS3B02G404700 could be the causal gene of QBp.caas-3BL based on sequence polymorphism and differential expression.

Development and validation of a KASP marker for QBp.caas-3BL

TraesCS3B02G404700 was identified as a candidate gene for QBp.caas-3BL, with a SNP in its ORF between the parents. To develop a breeding-applicable marker for QBp.caas-3BL, we converted the SNP into a cost-effective,

| Fig. 2 | Prediction of candidate genes and development of a breeding marker for QBp.caas-3BL. Polymorphic sites between the parents in open reading frames of genes TraesCS3B02G404600 A and TraesCS3B02G404700 B. C Differential expression of the annotated genes in the target region of QBp.caas-3BL in grains 25 days after flowering. D Genotyping of 166 wheat cultivars from the Huang-Huai Wheat Region using the KASP marker developed from TraesCS3B02G404700 |
high-throughput KASP marker (Fig. 2D; Table S3) and validated it in a panel of 166 wheat cultivars from the Huang-Huai Wheat Region, the largest wheat area in China. Association analysis indicated that sequence variation in *TraesCS3B02G404700* was significantly associated with black point response (Table 1; Table S5).

Discussion

QBp.caas-3BL has potential to improve black point resistance in wheat breeding

In the present study, we confirmed the effect of *QBp.caas-3BL* in additional two environments, in agreement with Liu et al. (2016). *QBp.caas-3BL* was further mapped into a physical interval of approximately 1.7 Mb from which candidate genes were also identified. These results provide important reference information for map-based cloning and marker-assisted selection of *QBp.caas-3BL*. Based on a polymorphic site in *TraesCS3B02G404700*, a candidate gene for *QBp.caas-3BL*, we developed a cost-effective and high-throughput KASP marker. Association analysis showed that *QBp.caas-3BL* had a significant effect on black point resistance using the KASP marker in a diverse panel of 166 wheat cultivars, suggesting that the marker is breeding-applicable for marker-assisted selection of black point resistance. The additional field data obtained in the study confirmed that *QBp.caas-3BL* is a stable major QTL for black point resistance and could be useful to improve black point resistance in wheat breeding.

Table 1

Environment	Genotype	Number of accessions	Mean ± SD (%)	P-value
2013AY	0	93	30.5 ± 1.52	0.0002**
	2	73	19.5 ± 0.53	
2014AY	0	93	20.6 ± 2.15	0.046*
	2	73	16.4 ± 0.74	
2013SX	0	93	23.9 ± 0.75	0.0003**
	2	73	19.8 ± 0.56	

0, 2 indicate the genotypes of Linhan 2 and Zhong 892, respectively

* and ** indicate significant differences at *P* < 0.05 and *P* < 0.01, respectively

2013AY, 2014AY and 2013SX represent different cropping seasons in Anyang (AY) and Suixi (SX), respectively

Functional prediction of candidate genes for QBp.caas-3BL

The cause of black point is complicated; the symptom has been attributed to fungal infection, enzymatic browning and environmental stress, such as high humidity and temperature (March et al. 2007; Fernandez and Conner 2011; Busman et al. 2012; Fernandez et al. 2014). In this study, we mapped *QBp.caas-3BL* to a physical interval of 1.7 Mb and determined *TraesCS3B02G404300*, *TraesCS3B02G404600* and *TraesCS3B02G404700* as candidate genes. Phylogenetic analysis showed that *TraesCS3B02G404300* and *TraesCS3B02G404600* are probably resulted from tandem duplication events (Fig. S1A). Additionally, it appears that the tandem duplication events have happened in *Triticum dicoccoides* (also known as wild emmer), the putative progenitor of wheat subgenomes A and B, according to BLASTN against WERSeq_v.1.0 (Genomic sequence) (http://plants.ensembl.org/Triticum_dicoccoides/Tools/Blast/Results?r=3B:639752637-639756075;tl=7tHVuMiVeE1hF80L-20388519). *TraesCS3B02G404300* and *TraesCS3B02G404600* are orthologous to *Ab15* in Arabidopsis and *OsAb15-I* in rice (Fig. S1A). *Ab15* has pleiotropic effects on plant growth and development and is also involved in response to biotic and abiotic stresses. In Arabidopsis, *Ab15* (AT2G36270) is a key regulator in ABA signaling during seed maturation and germination and modulates late embryogenesis abundant genes during both developmental stages (Finkelstein and Lynch 2000; Ibarr et al. 2016). Bi et al. (2017) showed that AtAb15 played a role in regulating the homeostasis of reactive oxygen species (ROS) by activating *CATALASE1* transcription during seed germination. *OsAb15* (Os01g0859300) was reported to regulate fertility and stress tolerance in rice (Zou et al. 2016). Bi et al. (2017) showed that AtAb15 participated in grain development by physically interacting with *PKABA1*, a signaling component in the ABA suppression of GA-induced gene expression in cereal grains (Fig. S1; Johnson et al. 2008). *TaABF1-3A* (*TraesCS3A02G371800*), an ortholog of *TraesCS3B02G404300*, was shown to participate in grain development by physically interacting with *PKABA1*, a signaling component in the ABA suppression of GA-induced gene expression in cereal grains (Fig. S1; Johnson et al. 2008). Harris et al. (2013) further validated that *TaABF1* functioned as an integrator of ABA and GA signaling in aleurone cells of grains. Recently, overexpression of *TaABF1* (99.4% similarity with *TraesCS3D02G364900* in IWGSC RefSeq v1.1) in Arabidopsis transformants exhibited high sensitivity to ABA and repressed germination (Utsugi et al. 2020). Hence, *TraesCS3B02G404300* and *TraesCS3B02G404600*, homologs of *Ab15*, are probably involved in seed development by modulating ABA and GA signaling.

TraesCS3B02G404700, the third candidate gene of *QBp.caas-3BL*, is orthologous to *OsPP16* in rice, whereas
an ortholog is not detected in Arabidopsis based on phylogenetic analyses (Fig. S2). OsPP16 belongs to a dual specificity phosphatase (DUSP) clade (Singh et al. 2010). As a member of the tyrosine phosphatase superfamily, dual specificity phosphatase (DUSP) can dephosphorylate tyrosine, serine and threonine residues and is involved in many basic physiological activities such as plant growth, development and abiotic/biotic stress response (Jiang et al. 2018). OsPFA-DSPI, an atypical dual-specific phosphatase (PFA-DSPI) subfamily member in rice, may act as a negative regulator in drought stress responses (Liu et al. 2012). DUSP IBR5 in Arabidopsis is involved in regulation of R protein CHS3-mediated temperature-dependent responses (Liu et al. 2015). Thus, it appears that *TraesCS3B02G404700* is involved in response to abiotic/ biotic stress, a postulated cause of black point.

In summary, the functional prediction of candidate genes in *QBp.caas-3BL* lays a strong foundation for identification of its causal gene and ascertainment of the underlying mechanism. Transgenic experiments are ongoing to validate the functions of the candidate genes.

Supplementary information The online version contains supplementary material available at https://doi.org/10.1007/s00122-021-03893-0.

Acknowledgements We thank Prof. R. A. McIntosh, Plant Breeding Institute, University of Sydney, for reviewing this manuscript. This work was funded by the National Natural Science Foundation of China (31971929, 31961143007), the National Key Research and Development Program of China (2016YFD0101802, 2016YFE0108600) and CAAS Science and Technology Innovation Program.

Author contribution statement C. H. Liu and S. H. Cao wrote the draft manuscript; C. H. Liu, J. Song, S. Y. Liu, J. D. Liu, D. A. Xu and Y. C. Dong performed the experiments; X. L. Tian, Y. J. Bian, F. J. Wang and R. G. Wang participated in field trials; S. H. Cao designed the experiment. X. C. Xia and Z. H. He assisted in writing and revising the manuscript.

Declarations

Conflict of interest We declare no conflicts of interest in regard to this manuscript.

Ethical standards These experiments complied with the ethical standards in China.

References

Bi C, Ma Y, Wu Z, Yu YT, Liang S, Lu K, Wang XF (2017) *Arabidopsis* AB15 plays a role in regulating ROS homeostasis by activating *CATALASE 1* transcription in seed germination. Plant Mol Biol 94:197–213

Busman M, Desjardins AE, Proctor RH (2012) Analysis of fumonisin contamination and the presence of *Fusarium* in wheat with kernel black point disease in the US. Food Addit Contam 29:1092–1100

Collins D, Emebiri L, Tan MC, El Bouhssini M, Wildman O (2018) Association of KASP markers with Hessian fly resistance in wheat of diverse origin. Euphytica 214:144

Conner RL, Carefoot JM, Bole JB, Koizub GC (1992) The effect of nitrogen fertilizer and irrigation on black point incidence in soft white spring wheat. Plant Soil 140:41–47

Davis RM, Jackson LF (2009) UC IPM pest management guidelines: small grains. Oakland (CA): University of California ANR/Communication Services Diseases

Desjardins AE, Busman M, Proctor RH, Stiessman R (2007) Wheat kernel black point and fumonisin contamination by *Fusarium proliferatum*. Food Addit Contam 24:1131–1137

Fernandez MR, Wang H, Singh AK (2014) Impact of seed discol- oration on emergence and early plant growth of durum wheat at different soil gravimetric water contents. Can J Plant Pathol 36:509–516

Fernandez MR, Conner RL (2011) Black point and smudge in wheat. Prairie Soils 335 Crops 4:158–164

Finkelstein RR, Lynch TJ (2000) *Arabidopsis* abscisic acid response gene AB15 encodes a basic leucine zipper transcription factor. Plant Cell 12:599–609

Fuerst EP, Okubara PA, Anderson JV, Morris CF (2014) Polyphenol oxidase as a biochemical seed defense mechanism. Front Plant Sci 5:689

Harris LJ, Martinez SA, Keyser BR, Dyer WE, Johnson RR (2013) Functional analysis of TaABF1 during abscisic acid and gibber- ellin signaling in aleurone cells of cereal grains. Seed Sci Res 23:89–98

Ibarra SE, Tognacca RS, Dave A, Graham IA, Sánchez RA, Botto JF (2016) Molecular mechanisms underlying the entrance in secondary dormancy of *Arabidopsis* seeds. Plant Cell Environ 39:213–221

Jiang L, Chen Y, Luo L, Peck SC (2018) Central roles and regulatory mechanisms of dual-specificity MAPK phosphatases in developmental and stress signaling. Front Plant Sci 9:1697

Johnson RR, Shin M, Sheng QJ (2008) The wheat PKAB1A-interacting factor TaABF1 mediates both abscisic acid-suppressed and absci- sic acid-induced gene expression in bombarded aleurone cells. Plant Mol Biol 68:93–103

Kumar J, Schäfer P, Hückelhoven R, Langen G, Baltruschat H, Stein E, Nagaranjan S, Kogel KH (2002) Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular approaches towards better control. Mol Plant Pathol 3:185–195

Lehmensiek A, Campbell AW, Williamson PM, Michalowitz M, Sutherland MW, Daggard GE (2004) QTLs for black-point resist- ance in wheat and the identification of potential markers for use in breeding programs. Plant Breed 123:410–416

Li Q, Niu H, Xu K, Xu Q, Wang S, Liang X, Jiang Y, Niu J (2020) GWAS for resistance against black point caused by *Bipolaris sorokiniana* in wheat. J Cereal Sci 91:e102859

Liu B, Fan JQ, Zhang Y, Mu PQ, Wang P, Su JB, Lai HH, Li SW, Feng DR, Wang JF, Wang HB (2012) OsPFA-DSPI, a rice protein tyrosine phosphatase, negatively regulates drought stress responses in transgenic tobacco and rice plants. Plant Cell Rep 31:1021–1032

Liu JY, Yang HB, Bao F, Ao K, Zhang XY, Zhang YL, Yang SH (2015) IBR5 modulates temperature-dependent, R protein CHS3-mediated defense responses in *Arabidopsis*. PLoS Genet 11:e1005584

Liu JD, He ZH, Wu L, Bai B, Wen WE, Xie CJ, Xia XC (2016) Genome-wide linkage mapping of QTL for black point reaction in bread wheat (*Triticum aestivum* L.). Theor Appl Genet 129:2179–2190

Liu JD, He ZH, Rasheed A, Wen WE, Yan J, Zhang PZ, Wan YX, Zhang Y, Xie CJ, Xia XC (2017) Genome-wide association mapping of black point reaction in common wheat (*Triticum aestivum* L.). BMC Plant Biol 17:220–231
Lv GG, Dong ZD, Wang YD, Geng JY, Li J, Lv XL, Sun CW, Ren Y, Zhang JW, Chen F (2020) Identification of genetic loci of black point in Chinese common wheat by genome-wide association study and linkage mapping. Plant Dis 104:2005–2013
March TJ, Able JA, Schultz C, Able AJ (2007) A novel late embryo genesis abundant protein and peroxidase associated with black point in barley grains. Proteomics 7:3800–3808
Perelló A, Moreno M, Sisterna M (2008) Alternaria infectoria species-group associated with black point of wheat in Argentina. Plant Pathol 57:379
Porta H, Rocha-Sosa M (2002) Plant lipoxygenases. Physiol Mole Features Plant Physiol 130:15–21
Singh A, Giri J, Kapoor S, Tyagi AK, Pandey GK (2010) Protein phosphatase complement in rice: genome-wide identification and transcriptional analysis under abiotic stress conditions and reproductive development. BMC Genomics 11:435–441
Southwell RJ, Brown JF, Wong PT (1980) Effect of inoculum density, stage of plant growth and dew period on the incidence of black point caused by *Alternaria alternata* in durum wheat. Ann Appl Biol 96:29–35
Tomás-Barberán FA, Espín JC (2001) Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. J Sci Food Agric 81:853–876
Utsugi S, Ashikawa I, Nakamura S, Shibasaka M (2020) TaABI5, a wheat homolog of *Arabidopsis thaliana* ABA insensitive 5, controls seed germination. J Plant Res 133:245–256
Zou MJ, Guan YC, Ren HB, Zhang F, Chen F (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol Biol 66:675–683

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.