Spectral interpretation of late-stage mare basalt mineralogy unveiled by Chang’E-5 samples

The western maria of lunar near-side are widely covered with late-stage mare basalts. Due to the lack of returned samples, the mineralogy of the late-stage basalts was previously speculated as having high abundance of olivine based on remote sensing observation. However, here we show that Chang’E-5 (CE-5) lunar soil samples, the ground truth from past unsampled lunar late-stage mare region, give a different interpretation. Our laboratory spectroscopic and X-ray diffraction (XRD) analyses of the CE-5 soil samples demonstrate that their special spectral signatures are representative of iron-rich high-Ca pyroxene rather than olivine. Considering the spectral and compositional similarities between CE-5 soil samples and lunar late-stage basalts, the mineralogy and petrology of CE-5 samples may be able to be generalized to entire lunar late-stage basalts. Our study would provide a constraint on the thermal evolution of the Moon, especially the young lunar volcanism.

Lunar mare basalts, as an important product of lunar volcanism, cover about 17% of the total lunar surface area. Analysis of basalts samples returned by the Apollo and Luna missions suggests that lunar mare volcanism was active between ~4.3 Ga and 3.1 Ga. Crater size-frequency distribution (CSFD) measurements based on remote sensing data indicate that although most lunar volcanism occurred at 3.6–3.8 Ga during the Late Imbrian (Im) period, lunar volcanism continued to at least 1.2 Ga. The basalts released by these late-stage volcanisms are mainly distributed in Oceanus Procellarum (OP) and Mare Imbrium. They are distinguishable dark volcanic flows with medium to high titanium contents and also relative high iron contents (Supplementary Fig. 1a–c). Understanding their petrogenesis is of significant importance for understanding the late-stage thermal evolution of the Moon. However, due to the lack of returned samples, the composition of late-stage mare basalts can be only inferred from spectral analysis of remote sensing data. Lunar late-stage basalts have been found to have distinctive spectral features, either through Earth-based telescope and hyperspectral (e.g., Moon Mineralogy Mapper (M3)) orbital data. Their 1μm absorption is broad and asymmetric, while their 2μm absorption is much weaker. Moreover, the band centers of the late-stage basalts shift toward the longer wavelengths. Such spectral signatures have been speculated as having a high abundance of olivine, even indicating the abundance ratio of olivine to pyroxene could exceed 114. Also, due to their distinctive spectral characteristics, the late-stage basalts appear in red hue on the integrated band depth (IBD) map derived from M3 data, while nearby older mare regions are in green-yellow hue (Supplementary Fig. 1d). According to the inferred mineral features of enriching olivine, Staid et al. proposed that the Fe-rich olivine in the late-stage mare basalts may originate through the crystallization of an evolved residual melt rather than through the assimilation of more primitive (Mg-rich) olivine-rich sources. Furthermore, Chang’E-3 (CE-3) landed at north Mare Imbrium (340.49°E, 44.12°N) a region likely to be covered by late-stage mare basalts. This landing site is also thought to have high olivine abundance. Based on CE-3 in-situ measurements from the
orthopyroxene in a hybridized mantle source. However, these specilmen cumulates sank and mixed with deeper, ferroan olivine and stage lunar magma ocean differentiation, when dense ferropyroxene-source of olivine-rich young mare deposits may be formed during late-stage lunar surface5,22,26 (named as P58 in ref.5) which is one of the youngest basaltic regions on (51.916°W, 43.058°N) is located in an Eratosthenian (Em) mare unit (Fig.1a). The landing site around the mare to the west of the CE-5 landing site shows a green-yellow hue. The solid cross indicates the CE-5 landing site. The IBDR statistic of P58 unit and adjacent older mare basalts to the west. The IBDR statistic shows a bimodal distribution. IBDRs of PSS unit are mostly concentrated in the lower peak, while the IBDRs of older basalts to the west are mostly concentrated in the upper peak. The IBDR of CE-5 samples (orange arrow) is small (0.22) within the range of PSS unit, and is consistent with the IBDR value (0.29, black arrow) of the average spectrum derived from 3 × 3 M3 pixels area around CE-5 landing site. The small white rectangle in the map is not covered by M3 data.

onboard Visible and Near-Infrared Imaging Spectrometer and Active Particle-Induced X-ray Spectrometer, Ling et al. proposed that the source of olivine-rich young mare deposits may be formed during late-stage lunar magma ocean differentiation, when dense ferropyroxene-ilmenite cumulates sank and mixed with deeper, ferroan olivine and orthopyroxene in a hybridized mantle source. However, these speculations about the petrogenesis of the late-stage mare basalts are based on the fact that they have an elevated olivine abundance. Since the relevant ground truth was absent, it remains unconfirmed whether late-stage mare basalts are indeed rich in olivine as postulated by remote sensing observations.

On December 1, 2020, Chinese CE-5 spacecraft successfully landed on the mare plain in the northeastern part of OP. The landing site (SL19.6°W, 43.058°N) is located in an Eratosthenian (Em) mare unit (named as PSS in ref. 5) which is one of the youngest basaltic regions on the lunar surface (Fig.1a). The two-billion-year-old sample returned by CE-5 mission provides an opportunity to reconnect with the lunar late-stage mare volcanism.

Here, we show that the spectral features of CE-5 returned lunar soil samples are representative of iron-rich high-Ca pyroxene rather than olivine based on laboratory measurements (see Methods section for detailed sample preparation, spectroscopic, and XRD measurements). Spectral and compositional similarity between CE-5 samples and late-stage mare basalt regions indicates their similar mineralogy and petrology.

Results and discussion

Laboratory spectroscopic analysis of Chang‘E-5 soil samples

We performed spectroscopic measurement on three CE-5 lunar soil samples in laboratory, which are CESC0800YJFM001-1, CESC0100YJFM002-1 and CESC0100YJFM002-2 (hereinafter referred as CESC-S1, CESC-S2, and CESC-S3, respectively). As shown in Fig. 2a, the overall spectral shape of three samples is essentially consistent, indicating that the mineral abundances of three samples should be similar. The corresponding continuum removed spectra demonstrate their absorption features more clearly (Fig. 2b). Their 1 μm absorptions are wide and asymmetric due to the presence of prominent absorptions around 1.2 μm, and they all have weaker 2 μm absorptions relative to 1 μm absorptions. Such spectral characteristics are in agreement with the spectral signature of late-stage basalts as observed from remote sensing data. Figure 3a and Table 1 show that the 1 μm and 2 μm band centers, the basic spectral parameters to identify the pyroxene-bearing materials, of CE-5 samples occur at longer wavelengths, suggesting that the bulk composition of pyroxene composing CE-5 soils should be augitic. Since the area of 2 μm band is much smaller than the 1 μm band, all three CE-5 samples have small IBDR2,IBDR1 (IBDR) values (Table 1), which falls within the IBDR range of late-stage mare basalts covering the landing site (Fig. 1b).

X-ray diffraction analysis of Chang‘E-5 soil samples

XRD measurement was performed to obtain the phase types and their modal abundances of three CE-5 lunar soil samples. The mineral assemblage of three samples is composed of augite (high-Ca clinopyroxene, HCP), pigeonite (low-Ca clinopyroxene, LCP), plagioclase, forsterite, fayalite, ilmenite, quartz,apatite, and glassy materials (Supplementary Table 1 and 2). Pyroxene and olivine are of interest in this study because they are ferrous silicate minerals yielding the strong spectral absorption characteristics of lunar soils. The XRD result reveals that CE-5 samples are dominated by pyroxene rather than olivine, and the olivine/pyroxene (OL/PYX) ratio of CE-5 samples is quite comparable to that of Apollo mare soil samples (Fig. 4a), much <1. This is inconsistent with the past speculations of the late-stage basalt mineralogy based on remote sensing data, which were interpreted as olivine-rich or even having the olivine/pyroxene ratio over 1. In terms of the pyroxene composition in CE-5 samples, HCP is more abundant than LCP. The HCP/LCP ratio is relatively high, akin to those measured in Apollo II high-Ti soils (Fig. 4b).

Iron-rich high-Ca clinopyroxene dominating the spectral characteristics

Preliminary works have identified that the CE-5 returned soil sample is basically comprised of a type of lunar basalt that have never been sampled before. In comparison with the mare samples collected from previous missions, the bulk composition of pyroxene in CE-5 samples (both soils and clasts) is relatively iron and calcium-rich based on electron microprobe analysis (Fig. S and Supplementary Fig. 2). The high HCP/LCP ratio of CE-5 samples is also revealed by the XRD measurements. The absorption features of a lunar soil spectrum are usually
Fe$^{2+}$ cations in M2 site leads to a weakening of 2 μm absorption band in near-infrared wavelengths, the decreasing amount of Fe$^{2+}$ cations is not a transition metal cation and cannot cause diagnostic absorption. What causes the misidentification of an HCP-dominated spectrum as an olivine-dominated spectrum? The spectrum of a pure olivine has a diagnostic absorption near 1.3 μm which only arises from M2 site, strengthening the 1.2 μm absorption band, and weaken the 2 μm absorption band. The resulting spectral shape is indeed easily confused with an HCP-dominated spectrum, such as the example given in Supplementary Fig. 4. Besides, the limitation of the returned samples, especially the lack of young-aged mare basalts, may also contribute to the spectral misinterpretation.

Recognizing high-Ca clinopyroxene dominant spectra on spectral parameters

We attempt to further demonstrate that the spectral characteristics presented by CE-5 samples indicate HCP-dominated instead of olivine-rich from the perspective of spectral parameters. The commonly used relationship between 1 μm and 2 μm band centers is a valid tool to access the bulk pyroxene composition (Fig. 3a). However, it is hard to determine whether a mixture spectrum suggests the enrichment of olivine if based only on the relationship of band centers, even if the pyroxene/olivine ratio is close to 50/50 (see Supplementary Note 1 and 2). Therefore, a special spectral parameter is employed in this work, which we call as 1.2 μm band area ratio (BAR$_{1.2\mu m}$; the definition is in the Methods section). BAR$_{1.2\mu m}$ is associated with the 1.2 μm and 2 μm absorption bands, which are the key features causing confusion in previous studies. This spectral parameter was once used to evaluate the cooling history of pyroxenes and pyroxene-dominated rocks (known as MI Area Ratio in ref. 41), while we apply it to the more...
complex olivine-bearing mixtures in this study. As described in detail in Supplementary Note 2, BAR$_{2.2\mu m}$ as a function of 2 μm band center can help to distinguish whether the olivine abundance is significant in a mixture containing both olivine and pyroxene. The value of BAR$_{2.2\mu m}$ will exceed 0.5 if the olivine abundance could be >50% in a mixture of olivine and HCP (Supplementary Note 2). CE-5 samples (Fig. 3b and Table 1) are at the HCP end, basically following the relationship derived from pure pyroxenes, with their BAR$_{2.2\mu m}$ values not >0.5. This supports that the spectra of CE-5 samples should be dominated by HCP rather than olivine.

Spectral comparison with samples from previous mission

LSCC has acquired typical spectra of the samples returned from each Apollo mission, and the corresponding mineral abundances and compositions are also available. Figure 2c, d present the spectral shape comparison between our three CE-5 soil samples and LSCC soil samples. Note that our spectroscopic measurement of CE-5 soil samples was performed on the bulk soil possibly with an average grain size of ~50 μm, but LSCC samples were sieved into different grain size ranges (~<45 μm, 20–45 μm, 10–20 μm and <10 μm). It has been demonstrated that the smaller size fractions dominate the optical properties of the bulk soil. Among these size fractions of LSCC, both <45 μm and 10–20 μm fractions are considered to represent the bulk soil. The fractions with grain size >25 μm (such as the 20–45 μm size fractions) have stronger absorption bands than the bulk soil, and the optical property of the <10 μm size fractions was found to be characterized by a distinct flattening toward longer wavelengths and different from bulk soil. Besides, the mineral data for <45 μm size fraction were not obtained by LSCC. In this case, we finally chose the LSCC samples in the range of 10–20 μm for comparison. Intuitively, CE-5 samples have long-wavelength band centers among these Apollo samples. This is also determined in our quantitative calculations of band centers (Fig.3a). Apollo 11 high-Ti mare soil displays the most similar spectral parameters to CE-5 samples. The olivine abundance in both of them is not remarkable, and their OL/YPX and LCP/HCP ratios are very comparable (Fig. 4). The bulk pyroxene composition of Apollo 11 soil may be less iron-rich but is still close to those of CE-5 soil samples (Fig. 5). The band centers of Apollo 17 high-Ti mare soils also occur at relatively long-wavelength, but are shorter than CE-5 and Apollo 11 samples and longer than other lower-Ti mare samples. Although Apollo 17 mare soils contain similar pyroxene composition as Apollo 11 mare soil (Fig. 5), they do not have such high HCP proportions (Fig. 4b). In addition, probably resulting from the relatively high olivine abundance (OL/YPX is nearly 30/70 shown in Fig. 4a), the BAR$_{2.2\mu m}$ values of Apollo 17 mare soils tend to be large.

We also compared the spectral properties of CE-5 soil samples with some lunar mare basalts (Fig. 3). In general, the spectral characteristics of CE-5 samples are akin to some high-Ti basalts (e.g., Apollo 11 high-Ti basalt and Apollo 12 ilmenite basalt). These basalts basically present some evolved magmatic products, and laboratory analysis of the CE-5 samples gave a similar interpretation, though the TiO$_2$ content in CE-5 samples do not reach that high.

Spectral comparison with the P58 unit where Chang’E-5 landed

The sampling site of the CE-5 mission is located in the area covered by Eratosthenian-aged late-stage mare basalts, which is named as P58 unit in ref. 5. Since the collected CE-5 samples are dominated by iron-rich HCP instead of olivine, does this suggest that the entire P58 unit also have similar mineral abundances? We selected some small-sized fresh craters in P58 unit. These craters show stronger absorption bands than the surrounding mature soils, appearing in red hue on the M* MBD map (Fig. 1a). Bright ejecta rays and abundant rocks of these fresh craters can be also observed in the Lunar Reconnaissance Orbiter Camera (LROC) images. Their corresponding orbital M* spectra (dark gray lines in Fig. 6b) were compared with the laboratory-measured spectra of the CE-5 samples. To highlight the discrepancy of the Em basalts from the common Im basalts, some spectra from the fresh craters in the Imbrium-aged older mare basin located to the west of the P58 unit were also extracted (light gray lines in Fig. 6b). On the M* MBD map, the older mare basalts show in green-yellow hue. The root mean squared error (RMSE) of the spectra from P58 unit and nearby Im older basalts with the average spectrum of CE-5 samples are 0.031 and 0.080 (Supplementary Table 3), respectively, indicating the overall spectral shapes of the spectra from P58 unit are closer to those of CE-5 samples. Relative to the nearby Im basalts, weakening of the 2 μm bands is evident in both spectra of CE-5 samples and P58 unit basalts. In addition, the band centers and BAR$_{2.2\mu m}$ of P58 unit basalts are in accordance with CE-5 samples and much different from nearby Im older basalts (Fig. 3), namely, P58 unit basalts are very likely dominated by similar iron-rich HCP as CE-5 samples rather than olivine.

Although our laboratory spectroscopic measurement was completed on a small amount of CE-5 returned sample (~300 mg), given that CE-5 samples are generally homogeneous and other study on different CE-5 sub samples have drawn consistent conclusions, we
believe that the ~300 mg sample we analyzed are representative of most CE-5 returned samples. The laboratory measured TiO2 (5 wt%) and FeO (22.5 wt%) contents of the ~300 mg CE-5 samples are also comparable to those of P58 unit estimated from remote sensing data (Supplementary Fig. 1b, c). Thus, benefitting from spectroscopic measurement, the spectral similarity of the ~300 mg CE-5 samples and P58 unit basalts strongly suggests that the mineralogy and petrology of CE-5 returned samples can be at least generalized to the entire P58 unit.

Mineralogy and petrogenesis of lunar late-stage basalts
CE-5 returned samples provide a crucial ground truth to our remote observations, which can aid in revising previous hypotheses regarding the mineralogy of the distinct lunar late-stage basalt regions (Supplementary Fig. 1). On the basis of remote spectral interpretation, late-stage basalts were previously recognized as olivine-rich14,16.18. Zhang et al.18 extracted numerous spectra from every late-stage basalt unit (including P58 unit which was named as U2 in ref. 18) and found their spectral characteristics are very similar. They all have strong, broad, and asymmetric 1 μm absorptions with distinct secondary absorptions around 1.2 μm and weak 2 μm absorptions. The band centers of all these spectra also occur at longer wavelengths (0.986–1.037 μm for 1 μm absorptions, 2.154–2.235 μm for 2 μm absorptions). However, our laboratory analysis on the CE-5 samples prompts us that such spectral characteristics should indicate the likely presence of iron-rich HCP. It is reasonable to suspect that the mineralogy of lunar late-stage basalts is generally dominated by iron-rich HCP rather than olivine, and the variation of the band centers may originate from the variable compositions of HCP containing in different units. Besides, the FeO and TiO2 contents of the late-stage basalts are also variable among different units, but are relatively high as a whole compared to their nearby older basalts (Supplementary Fig. 1b, c). The consistent chemical and mineralogical characteristics of lunar late-stage basalts imply that their petrogenesis could be identical. Analysis on the rare-earth elements (REE) patterns and strontium–neodymium (Sr-Nd) isotopes of CE-5 samples may suggest that the CE-5 basalts were formed by low-degree partial melting of the depleted mantle followed by moderate- to high-degree fractional crystallization47,49. The possible presence of iron-rich HCP in all lunar late-stage basalts, together with relatively high FeO and TiO2 abundance, is also in accordance with the feature of those evolved magmatic products. Accordingly, we speculate that lunar late-stage basalts may have the same petrogenesis as revealed by CE-5 samples. The variation among different late-stage mare units may be

Spectral parameters	CE5C-S1 (STD)	CE5C-S2 (STD)	CE5C-S3 (STD)	Mean
1 μm band center (nm)	1021.15 (1.34)	1020.50 (1.90)	1020.21 (2.39)	1020.62
2 μm band center (nm)	2220.89 (11.55)	2231.73 (5.50)	2232.13 (6.06)	2228.25
IBD1 (μm)	1.74 (0.01)	1.49 (0.01)	1.37 (0.01)	1.53
IBD2 (μm)	0.40 (0.11)	0.31 (0.06)	0.32 (0.07)	0.34
IBDR (IBD2/IBD1)	0.23 (0.06)	0.21 (0.04)	0.23 (0.05)	0.22
1.2 μm band area ratio (BAR1.2 μm)	0.34 (0.04)	0.36 (0.03)	0.33 (0.03)	0.34
The late-stage basalts are the products of young mare volcanism on the Moon, overlapping a large portion of the nearside mare region (Supplementary Fig. 1A). Their ages were generally dated as younger than 3.0 Ga based on the CSFD method. Though the absolute ages of the younger basalts may need to be updated due to the recently dated ages of CE-5 samples, we do not obtain the specific pyroxene compositions of the three spectrscopically analyzed samples, the pyroxene compositions of the two source samples were measured and could be considered as representative of the approximate compositions of these three samples. The corresponding data are from ref. 33. The pyroxene compositions of low-Ti mare soil samples are not compared because they were not provided by LSCC. The five-digit number (e.g., 10084) corresponds to the Apollo sample number. Di, Hd, En, Fs represent diopside, hedenbergite, enstatite, and ferrosilite, respectively.

attributed to multiple mantle sources or different degrees of the fractional crystallization.

Nevertheless, the involvement of KREEP materials in the evolution of late-stage basalts based on CE-5 samples remains controversial. Megaregolith could be one of the reasonable sources, which is an insulating layer coating the lunar surface and keeps the Moon’s interior warm over time. One other plausible heating source is from the liberational tides. Even though tidal variation becomes progressively smaller with decreasing latitudinal migration and increasing Earth-Moon distance during the Eratosthenian period, tidal dissipation may still act at the locations consistent with the occurrence of younger mare basalts. Both hypotheses of megaregolith and tide may appear to meet the requirements of the heat source in the extent and duration of late-stage mare volcanism, but further evidence and investigations are still strongly needed and deserved. More samples collected from late-stage mare basalt regions by future sample-return mission will help to finally confirm these hypotheses.

In summary, our comprehensive spectroscopic, XRD, and chemical analyses demonstrate that the special spectral features of CE-5 samples are attributed to the presence of high abundance of iron-rich high-Ca pyroxene rather than olivine, and similar spectral features may also occur in some other evolved mare basalt and soil samples with high titanium contents. Spectral comparison between CE-5 samples and the landing area (PS8 unit) as well as other late-stage mare basalt regions suggests their similar mineralogy and petrogenesis. Our work would shed light on the future study of lunar late-stage mare basalts and provide a constraint on the origin and source energy properties of young lunar volcanism.

Methods

Preparation of Chang’E-5 lunar soil samples

CE-5 scooped lunar soils were initially packed in a sealed container. After returned to the laboratory, these scooped samples were first transferred into another 16 cm square stainless-steel container (CSEC0000), in which they were thoroughly mixed and large grains (~1 mm) visible to the naked eye were picked out using tweezers. Then, the samples surface was smoothed and drawn into 16 squares. Ten of these squares were randomly selected, and samples within each square were scooped and placed into ten corresponding sample bottles (CSEC0100 to CSEC1000). After one sampling process, the remaining samples in container CSEC0000 were re-stirred thoroughly, re-smoothed, re-drawn into 16 squares, and re-scooped randomly. This process was repeated several times until all soils in container CSEC0000 were evenly separated into 10 sample bottles (CSEC0100 to CSEC1000). The sampling process ensures a high degree of sample homogeneity among different bottles. All these processes were conducted in a nitrogen-filled glove box.

Three CE-5 scooped soil samples were used in this study. CSEC-S1 is from the CE-5 soil CSEC0800YJM001, and CSEC-S2 and CSEC-S3 are from the CE-5 soil CSEC0100YJM002. CSEC0800YJM001 and CSEC0100YJM002 are from bottle CSEC0800 and CSEC1000, respectively. During the sample preparation, we first placed each soil sample into the circular groove (2 cm wide, 5 mm deep) of a glassy dish, and then the surface of the samples was lightly smoothed by a piece of quartz glass for subsequent spectroscopic and XRD analysis. The amount of each sample is about 100 mg.

Spectroscopic measurement of Chang’E-5 soil samples

The spectroscopic measurements of the lunar soil samples were performed in the darkroom. The instrument used was ASD FieldSpec 4. For each sample, one sample dish containing lunar soils was first placed on a platform sprayed with light-absorbing material, which formed a diffused reflection surface with its hemispherical reflectance <0.02. This minimized the effect of scattered light on the measurement results. Then, the viewing geometry of measurement was set to 30° incidence and 0° emergence angle to guarantee that the laboratory measured data have the same viewing geometry as the remote.

![Fig. 5 | Pyroxene quadrilateral showing pyroxene compositions for CE-5 soil samples and Lunar Soil Characterization Consortium (LSCC) high-Ti mare soil samples.](image-url)
The XRD measurement conditions were set as following: 2θ XRD measurements were added up to further eliminate the in-smoothing, and XRD measurement process 20 times, and the obtained measurement was performed. For each sample, we repeated this stirring, sample was smoothed with a piece of quartz glass and XRD measurement was performed. The preferred orientation of soil grains. Then, the surface of the stirred sample was smoothed with a piece of quartz glass and XRD measurement was performed. For each sample, we repeated this stirring, sample was smoothed with a piece of quartz glass and XRD measurement was performed. The preferred orientation of soil grains. Then, the surface of the stirred sample was smoothed with a piece of quartz glass and XRD measurement was performed.

Fig. 6 | Spectral comparison of the CE-5 soil samples with PS8 unit and adjacent older mare region. a Location of the fresh craters selected for spectral extraction. The base map is Moon Mineralogy Mapper (M^*) 1508 nm reflectance map. b Continuum-removed spectra of CE-5 samples and spectra from PS8 unit and adjacent older mare region. Vertical dashed lines indicate the mean band centers of CE-5 samples, and vertical gray solid lines refer to mean band centers of PS8 unit and older mare region. The mean 1μm and 2μm band centers of the spectra in old mare region are 976.37 nm and 2095.06 nm, respectively, while the mean 1μm and 2μm band centers of the spectra in PS8 unit are 1008.80 nm and 2202.04 nm, respectively. Numbers close to dashed line represent the average 1μm and 2μm band centers of three CE-5 soil samples. The small white rectangle in the map is not covered by M^* data.

X-ray diffraction measurement of ChangE-5 soil samples
Identification and quantification of the mineral phases of CE-5 soil samples were analyzed by a Bruker D8 Advanced X-ray diffraction instrument and using the whole-pattern Rietveld refinement method. Before conducting XRD analysis, each sample was first stirred thoroughly for at least 1 h to ensure the homogenous mixing and to avoid the preferred orientation of soil grains. Then, the surface of the stirred sample was smoothed with a piece of quartz glass and XRD measurement was performed. For each sample, we repeated this stirring, smoothing, and XRD measurement process 20 times, and the obtained 20 XRD measurements were added up to further eliminate the influence of sample grains’ preferred orientation on the output result of the instrument. The XRD measurement conditions were set as following: 2θ angle ranges from 5° to 90° with the increment set to be 0.015°, the time for each increment is 0.5 s, and the whole-pattern measurement of each sample took ~1 h. A sintered alumina disc (The Standard Reference Material (SRM 1976a)) was used in calibration of X-ray diffraction instrument with respect to diffraction peak position and intensity as a function of 2θ angle.

The JADE software was applied to the measured diffraction pattern of CE-5 samples to realize the mineral phases identification and quantification. This software first identified mineral phases composing CE-5 samples using the method of Hanawalt and Rinn\(^62\) based on the standard Powder Diffraction Files (PDF) of each mineral phase in the database of International Center for Diffraction Data (ICDD) (https://www.icdd.com). Then, the whole-pattern Rietveld refinement method\(^63\)–\(^65\) was adopted by JADE to quantitatively analyze the abundance of each identified mineral phase. Rietveld method fits the entire measured diffraction pattern rather than just the strongest peaks of the sample. The fitting process iteratively compares the sum of weighted, squared differences between the measured and calculated XRD pattern at every 20 until their best agreement is obtained. The uncertainty in the derived weight fractions and the effects of sample preferred orientation can be minimized using this method. Rietveld fitting requires initial input crystal structure parameters (unit-cell parameters, space group symmetries) set for each mineral phase within the sample. For this study, these information are also from ICDD PDF, and the corresponding PDF numbers used for each mineral phase are the same as that of refs.\(^33,66\).

The measured diffraction patterns of three CE-5 samples to realize the mineral phases identification and quantification. This software first identified mineral phases composing CE-5 samples using the method of Hanawalt and Rinn\(^62\) based on the standard Powder Diffraction Files (PDF) of each mineral phase in the database of International Center for Diffraction Data (ICDD) (https://www.icdd.com). Then, the whole-pattern Rietveld refinement method\(^63\)–\(^65\) was adopted by JADE to quantitatively analyze the abundance of each identified mineral phase. Rietveld method fits the entire measured diffraction pattern rather than just the strongest peaks of the sample. The fitting process iteratively compares the sum of weighted, squared differences between the measured and calculated XRD pattern at every 20 until their best agreement is obtained. The uncertainty in the derived weight fractions and the effects of sample preferred orientation can be minimized using this method. Rietveld fitting requires initial input crystal structure parameters (unit-cell parameters, space group symmetries) set for each mineral phase within the sample. For this study, these information are also from ICDD PDF, and the corresponding PDF numbers used for each mineral phase are the same as that of refs.\(^33,66\).

The measured diffraction patterns of three CE-5 samples are in good agreement with the fitted data (see Supplementary Fig. 3 of ref. \(^33\)). The parameters most commonly used to assess the fit is the weighted-profile residual (R_w). Typical values of R_w range from a few percent for very good fitting to 20–30%\(^\text{rd}\). The fitting R_w of three CE-5
samples are 6.06%, 5.04%, and 5.77%, respectively. The weight fractions of each mineral phase of three samples are shown in Supplementary Table 1.

The XRD measured abundance of CE-5 samples is in terms of weight percentage (wt%). However, the reported mineral abundance of LSCC soil samples is in term of volume percentage (vol%)44,67. To obtain the reliable mineral abundance comparison between CE-5 and LSCC soils, the original XRD analysis result in terms of wt% was converted to vol% using the densities (in g/cm3) of 2.68 for plagioclase, 3.40 for augite, 3.38 for pigeonite, 3.27 for forsterite, 4.39 for fayalite, 4.72 for ilmenite, 3.19 for apatite, 2.62 for quartz, and 2.40 for glass. These densities data are from https://www.webmineral.com/, which are also the same as that of ref. 31. The converted vol% of each mineral phase is shown in Supplementary Table 2.

Processing of spectral data

M3 data used in this study are from https://pds-imaging.jpl.nasa.gov/volumes/m3.html (see Supplementary Table 4 for M3 image IDs used for creating the mosaic of CE-5 landing area). LSCC and mare basalt spectra are available at Reflectance Experiment Laboratory (RELAB) database (now integrated into https://pds-speclb.rsl.wustl.edu/search.aspx). C-TAPE database is at https://www.uwinnipeg.ca/c-tape/sample-database.html. For each CE-5 soil sample, the average of 20 spectra was used as its mean reflectance. The same data processing was applied for all the spectra used in the study, including the spectra of M3 data, LSCC samples, RELAB samples, C-TAPE samples and laboratory measured CE-5 samples. The spectra were first smoothed using the Savitzky-Golay method to reduce the influence of noise68. Then, the two-straight-lines method69 was adopted for the continuum removal of all spectra used in this study. The two-straight lines were tangent to the left and right shoulders of the absorption bands. For 1 µm absorption, the left tangent point was found within 600 to 800 nm, and the right tangent point varied between 1300 to 1800 nm. Iteratively, one point was taken in each of these two ranges until the line joining the two points completely cover the 1 µm band. The continuum-removed spectrum was obtained by dividing the reflectance value of each band by the corresponding tangent line value. All spectra used in this study were treated the same regarding continuum fits for the 2 µm absorption feature.

To characterize the features of the spectra of M3 data, LSCC samples, RELAB samples, C-TAPE samples and laboratory measured CE-5 samples, some basic spectral parameters were calculated (Table 1). Band center is often used to identify the lunar pyroxene-bearing materials. Fourth order polynomials were used to fit the continuum removed spectrum around 1 µm and 2 µm absorption regions, and wavelengths corresponding to the minimums of the fitted lines were regarded as the band centers. Integrated band depth (IBD) refers to integration of the band depths over the spectral subset of an absorption feature, and is often used in analyzing M3 spectra. The formula used for the calculation of IBD\textsubscript{1µm} and IBD\textsubscript{2µm} are as follows20,26:

\[
IBD_{1\mu m} = \sum_{N=0}^{26} \frac{1}{R_c (789 + 20N)} \left[1 - R (789 + 20N) / R_c (789 + 20N) \right]
\]

\[
IBD_{2\mu m} = \sum_{N=0}^{21} \frac{1}{R_c (1658 + 40N)} \left[1 - R (1658 + 40N) / R_c (1658 + 40N) \right]
\]

Here, \(R\) is reflectance, \(R_c\) is the continuum removed reflectance, and \(N\) is the number of bands used for the calculation of IBD\textsubscript{1µm} and IBD\textsubscript{2µm}. IBD\textsubscript{1µm} represents the band depth between 789 nm and 1308 nm relative to a continuum, whereas IBD\textsubscript{2µm} is the integrated band depth between 1658 nm and 2498 nm relative to a continuum20. Integrated band depth ratio (IBDR) is the ratio of IBD\textsubscript{2µm} to IBD\textsubscript{1µm}. In addition, a spectral parameter was also calculated to characterize the strength of the 1.2 µm band, which we named as 1.2 µm band area ratio (BAR\textsubscript{1.2µm}) and is defined by:

\[
BAR_{1.2\mu m} = \frac{\text{Area}_{1.2\mu m}}{\text{Area}_{1.2\mu m} + \text{Area}_{2\mu m}}
\]

where Area\textsubscript{1.2µm} and Area\textsubscript{2µm} are the areas of 1.2 µm and 2 µm bands, respectively (see Supplementary Fig. 6).

We also performed the error evaluation associated with the spectral band parameters. By treating the 20 spectra of each CE-5 sample as replicate analysis, the 1 µm and 2 µm band centers, IBD\textsubscript{1µm} and IBD\textsubscript{2µm}. IBDR and BAR\textsubscript{1.2µm} of each individual spectrum were first derived using above mentioned method. Then, the standard deviation (STD) of each parameter was calculated. Results show that the STDs for all the parameters analyzed are small (Table 1), implying agreement among 20 spectra and thus reliable spectroscopic measurement of CE-5 samples.

The formula for the calculation of RMSE between the spectra of the CE-5 samples and M3 data is as follows:

\[
\text{RMSE} = \sqrt{\frac{\sum_{i=1}^{n} (\hat{y}_i - y_i)^2}{n}}
\]

Here, \(y_i\) is the mean reflectance of three CE-5 samples at band \(i\); \(\hat{y}_i\) is the reflectance of late-stage mare basalts or older mare basalts at band \(i\); and \(n\) is the number of bands. The smaller value of RMSE suggests similar spectral features between the CE-5 samples and fresh craters.

Data availability

Laboratory measured reflectance data for CESC-S1, CESC-S2, and CESC-S3 samples are provided in Source Data files. In addition, the spectral parameters data for pure pyroxene, LSCC soil samples, Apollo mare basalts samples, and M3 spectra data derived in this study are also provided in Source Data files. Source data are provided with this paper.

References

1. Head, J. W. III Lunar volcanism in space and time. Rev. Geophys. 14, 265–300 (1976).
2. Nyquist, L. E. & Shih, C. Y. The isotopic record of lunar volcanism. Geochim. Cosmochim. Acta. 56, 2213–2234 (1992).
3. Taylor, L. A. et al. Pre-4.2 AE mare-basalt volcanism in the lunar highlands. Earth Planet. Sci. Lett. 66, 33–47 (1983).
4. Hiesinger, H., Jaumann, R., Neukum, G. & Head, J. W. III Ages of mare basalts on the lunar nearside. J. Geophys. Res. Planets 105, 29239–29275 (2000).
5. Hiesinger, H., Head, J. W. III, Wolf, U., Jaumann, R. & Neukum, G. Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Nubium, Mare Cognitum, and Mare Insularum. J. Geophys. Res. Planets 108, E7 (2003).
6. Hiesinger, H., Head III, J. W., Wolf, U., Jaumann, R. & Neukum, G. Recent Advances and Current Research Issues in Lunar Stratigraphy (The Geological Society of America, 2011).
7. Lucey, P. G., Blewett, D. T. & Hawke, B. R. Mapping the FeO and TiO\textsubscript{2} content of the lunar surface with multispectral imagery. J. Geophys. Res. Planets 103, 3679–3699 (1998).
8. Lawrence, D. J. et al. Iron abundances on the lunar nearside as measured by the Lunar Prospector gamma-ray and neutron spectrometers. J. Geophys. Res. Planets 107, 13–1–13–26 (2002).
9. Elphic, R. C. et al. Lunar Prospector neutron spectrometer constraints on TiO$_2$. J. Geophys. Res. Planets 107, E1–8 (2002).
10. Otake, H., Ohtake, M. & Hirata, N. L. 43rd Lunar and Planetary Science Conference, 1995 (Lunar and Planetary Institute, 2012).
11. Sato, H. et al. Lunar mare TiO$_2$ abundances estimated from UV/VIS reflectance. Icarus 296, 216–238 (2017).
12. Xia, W. et al. Novel maps of lunar surface chemistry. Icarus 321, 203–215 (2019).
13. Staid, M. I. & Pieters, C. M. Mineralogy of the last lunar basalts: results from Clementine. J. Geophys. Res. Planets 106, 27887–27900 (2001).
14. Staid, M. I. et al. The mineralogy of late stage lunar volcanism as observed by the Moon Mineralogy Mapper on Chandrayaan-1. J. Geophys. Res. Planets 116, E6 (2011).
15. Lucey, P. G. Mineral maps of the Moon. Geophys. Res. Lett. 31, 8 (2004).
16. Pieters, C. M. Mare basalt types on the front side of the moon: a summary of spectral reflectance data. Proc. Lunar Planet. Sci. Conf. 9, 2825–2849 (1978).
17. Pieters, C. M. et al. Late high-titanium basalts of the western mariageology of the Flamsteed region of Oceanus Procellarum. J. Geophys. Res. -Solid Earth 85, 3913–3938 (1980).
18. Zhang, X. et al. Mineralogical variation of the late stage mare basalts. J. Geophys. Res. Planets 121, 2063–2080 (2016).
19. Varatharajan, I., Srivastava, N. & Murty, S. V. Mineralogy of young lunar mare basalts: assessment of temporal and spatial heterogeneity using M2 data from Chandrayaan-1. Icarus 236, 56–71 (2014).
20. Besse, S. et al. Compositional variability of the Marius Hills volcanic complex from the Moon Mineralogy Mapper (M3). J. Geophys. Res. Planets 116, E6 (2011).
21. Thieszen, F., Besse, S., Staid, M. I. & Hiesinger, H. Mapping lunar mare basin units in mare Imbrium as observed with the Moon Mineralogy Mapper (M2). Planet. Space Sci. 104, 244–252 (2014).
22. Morota, T. et al. Timing and characteristics of the latest mare eruption on the Moon. Earth Planet. Sci. Lett. 302, 255–266 (2011).
23. Wu, Y. et al. Geology, tectonism and composition of the northwest Imbrium region. Icarus 303, 67–90 (2018).
24. Ling, Z. et al. Correlated compositional and mineralogical investigations at the Chang’e-3 landing site. Nat. Commun. 6, 8880 (2015).
25. Hess, P. C. & Parmentier, E. M. A model for the thermal and chemical evolution of the Moon’s interior: implications for the onset of mare volcanism. Earth Planet. Sci. Lett. 134, 501–514 (1995).
26. Whitford-Stark, J. L. & Head, J. W. Ill Stratigraphy of Oceanus Procellarum basalts: sources and styles of emplacement. J. Geophys. Res. Solid Earth 85, 6579–6609 (1980).
27. Qian, Y. et al. Geology and scientific significance of the Rümker region in northern Oceanus Procellarum: China’s Chang’e-5 landing region. J. Geophys. Res. Planets 123, 1407–1430 (2018).
28. Qian, Y. et al. Young lunar mare basalts in the Chang’e-5 sample return region, northern Oceanus Procellarum. Earth Planet. Sci. Lett. 555, 116702 (2021).
29. Qian, Y. et al. China’s Chang’e-5 landing site: Geology, stratigraphy, and provenance of materials. Earth Planet. Sci. Lett. 561, 116855 (2021).
30. Li, Q. L. et al. Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts. Nature 600, 54–58 (2021).
31. Che, X. et al. Age and composition of young basalts on the Moon, measured from samples returned by Chang- e-5. Science 374, 887–890 (2021).
32. Adams, J. B. Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system. J. Geophys. Res. 79, 4829–4836 (1974).
33. Li, C. et al. Characteristics of the lunar samples returned by Chang’E-5 mission. Nat. Sci. Rev. 9, nwab188 (2022).
54. Whitten, J. et al. Lunar mare deposits associated with the Orientale impact basin: New insights into mineralogy, history, mode of emplacement, and relation to Orientale Basin evolution from Moon Mineralogy Mapper (M3) data from Chandrayaan-1. J. Geophys. Res. Planets 116, E6 (2011).

55. Haskin, L. A., Gillis, J. J., Korotev, R. L. & Jolliff, B. L. The materials of the lunar Procellarum KREEP Terrane: a synthesis of data from geomorphological mapping, remote sensing, and sample analyses. J. Geophys. Res. Planets 105, 20403–20415 (2000).

56. Wieczerzak, M. A. & Phillips, R. J. "The Procellarum KREEP Terrane": implications for mare volcanism and lunar evolution. J. Geophys. Res. Planets 105, 20417–20430 (2000).

57. Borg, L. E., Shearer, C. K., Asmerom, Y. & Papike, J. J. Prolonged KREEP magmatism on the Moon indicated by the youngest dated lunar igneous rock. Nature 432, 209–211 (2004).

58. Ziethe, R., Seiferlin, K. & Hiesinger, H. Duration and extent of lunar volcanism: comparison of 3D convection models to mare basalt ages. Planet. Space Sci. 57, 784–796 (2009).

59. Wones, D. R. & Shaw, H. R. Tidal dissipation: a possible heat source for mare basalt magmas. Lunar Planet. Sci. Conf. 6, 878–880 (1975).

60. Schultz, P. H., Burns, J. A. & Greeley, R. Ancient lunar tides and the emplacement of the maria. Lunar Planet. Sci. Conf. 7, 785–787 (1976).

61. Lammlein, D. R., Latham, G. V., Dorman, J., Nakamura, Y. & Ewing, M. Lunar seismicity, structure, and tectonics. J. Geophys. Res. 105, 932–940 (1993).

62. Hanawalt, J. D. & Rinn, H. W. Identification of crystalline materials: classification and use of X-ray diffraction patterns. Powder Diffr. 1, 2–6 (1986).

63. Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65–71 (1969).

64. Bish, D. L. & Post, J. E. Quantitative mineralogical analysis using the Rietveld full-pattern fitting method. Am. Mineral. 78, 932–940 (1993).

65. Hill, R. J. & Howard, C. J. Quantitative phase analysis from neutron powder diffraction data using the Rietveld method. J. Appl. Cryst. 20, 467–474 (1987).

66. Liu, J. et al. Evidence of water on the lunar surface from Chang’E-5 in-situ spectra and returned samples. Nat. Commun. 13, 1–10 (2022).

67. Taylor, L. A., Patchen, A., Taylor, D. H. S., Chambers, J. G. & McKay, D. S. X-ray digital imaging petrography of lunar mare soils: Modal analyses of minerals and glasses. Icarus 124, 500–512 (1996).

68. Savitzky, A. & Golay, M. J. E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).

69. Zhang, X. et al. Study of the continuum removal method for the Moon Mineralogy Mapper (M3) and its application to Mare Humorum and Mare Nubium. Res. Astron. Astrophys. 16, 7 (2016).

70. Cheek, L. C. et al. Goldschmidt crater and the Moon’s north polar region: results from the Moon Mineralogy Mapper (M3). J. Geophys. Res. Planets 116, E6 (2011).

Acknowledgements
This research was funded by the Key Research Program of Chinese Academy of Sciences (Grant No. ZDBS-SSW-JSC007-6 to C.L. and J.L.), and the National Key R & D Project of China (Grant No. 2021YFA0715101 to D.L.). We thank the team of the CE-5 Project, especially the Ground Research and Application System (GRAS) of CLEP for their efficient assistance with providing the data and data calibration. Thanks to Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences for providing XRD measurements guidance.

Author contributions
C.L., J.L., and D.L. designed the research. D.L. and X.W. wrote the paper. B.L. and X.R. performed the XRD and spectral measurements. X.W., Y.C., and Z.C. conducted the data processing. Q.Z., H.Z., and G.Z. helped with the CE-5 samples preparation. Z.Z. and Q.F. are the Ground Research and Application System (GRAS) team members and helped with data retrieval and instrument operations.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-33670-6.

Correspondence and requests for materials should be addressed to Jianjun Liu, Bin Liu or Chunlai Li.

Peer review information Nature Communications thanks Michael Lucas, Kelsey Prissel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022