IMPACT DES TRAITEMENTS ANTIRÉTROVIRAUX HAUTEMENT ACTIFS SUR LE DEVENIR DES NOURRISSONS NÉS DE MÈRES INFECTÉES PAR LE VIH

Dr. Tessa Goetghebuer

Promoteur: Prof. Jack Levy
Service de Pédiatrie,
Maladies infectieuses,
CHU St Pierre, Bruxelles
Membres du jury

Prof. Michel TOUNGOUZ, Président
Laboratoire de Thérapie Cellulaire Clinique,
Hôpital Erasme

Prof. Jack LEVY, Secrétaire
Chef de Service de Pédiatrie,
CHU St Pierre

Prof. Stéphane DE WIT,
Médecin responsable CETIM,
CHU St Pierre

Prof. Jean-Christophe GOFFARD,
Chef de Clinique Adjoint,
Centre de Référence SIDA, Hôpital Erasme

Prof. Robert SNOECK
Professeur de Virologie
Faculté de Médecine, ULB

Experts extérieurs

Prof. Stéphane BLANCHE
Unité d’Immunologie–Hématologie–Rhumatologie pédiatriques
Hôpital Necker Enfants Malades

Prof. Robert COLEBUNDELS
Professeur de Maladies Infectieuses
Université d’Anvers

Titre de la thèse annexe :

Prévalence des troubles du langage dans une population de migrants: étude des facteurs de risque et dépistage précoce en consultation de médecine preventive

Bruxelles, 26 mai 2014
REMERCIEMENTS

Mes remerciements vont en premier lieu à mon promoteur Jack Levy qui m’a permis, à mon retour en Belgique, de faire de la recherche dans le service de pédiatrie qu’il dirige, de bénéficier de son expertise et d’un formidable environnement, pour avoir toujours été d’un très grand soutien dans toutes les études que nous avons menées, pour sa porte ouverte à tout moment et sa grande disponibilité d’esprit.

Je suis reconnaissante à la Fondation Smiles, et en particulier à Monique Kuborn, pour m’avoir permis de réaliser ces études, et pour tout ce qu’elle apporte à nos patients.

Je remercie Edwige Haelterman avec qui je me suis lancée dans la grande aventure de l’étude collaborative européenne, et sans laquelle ce n’aurait pas été possible. Ses qualités d’épidémiologiste et de statisticienne rigoureuse ont été et sont encore une aide précieuse et indispensable à la qualité de notre recherche.

Au cours de « cette aventure », nous avons fait la connaissance de Josiane Warszawski et de Jérome Le Chenadec de l’ANRS avec qui nous avons initié depuis lors des collaborations et qui sont surtout devenus des amis. Par ailleurs je remercie Claire Thorne de l’Institute of Child Health de Londres et Carlo Giaquinto de PENTA avec qui nous collaborons et dont les qualités scientifiques autant qu’humaines sont très grandes.

Je tiens à remercier mes collègues pédiatres de l’équipe HIV du CHU St Pierre, Marc Hainaut, Anna Vanderfaeillie, Cristina Epalza et Catherine Adler, et d’ailleurs, Véronique Schmitz, Dimitri Van der Linden, Philippe Lepage et Philip Maes, avec lesquels c’est un réel plaisir de travailler aussi bien dans la prise en charge des enfants que dans la conduite de nos études. Le travail au quotidien implique aussi la précieuse collaboration de Sophie Penninck et d’Evelyne Van der Kelen, les infirmières de l’équipe, toujours motivées, souriantes et chaleureuses. Et notre équipe psycho-sociale HIV incluant Brigitte Vanthournout, Gisèle Frisch, Alice Wolf, Raffaella Vignali et Marie Céline Dilbeck, est un des piliers de la prise en charge de nos familles. C’est en mettant en commun nos compétences que nous parvenons à aider nos patients à mieux vivre.

Je remercie également les gynécologues du CHU St Pierre, Patricia Barlow, Yannick Manigart et Christine Gilles, et les infectiologues du CETIM, Déborah Konopnicki, Anne-Françoise Gennette et Stéphane De Wit, avec qui nous collaborons dans la prise en charge de nos patients.

Je remercie mes enfants (Marie, François et Romain) pour le soutien qu’ils m’ont apporté, et leur compréhension pendant les périodes de stress. Une famille c’est important et je rends hommage à mes parents (Cécile et Luc), ma soeur (Carine), mes frères (David et Gilles), et mes belles-mères (Viviane et Denise) qui sont très présents pour moi.

Merci à Naïm pour la mise en page de ce travail.
Et pour finir je remercie mon mari, Arnaud, pour m’avoir fait connaît’re d’autres ho-
rizons et m’avoir associé à ses projets en Gambie, ce qui in fine m’a donné le goût de la
recherche, pour avoir été à mes côtés dans les moments plus difficiles, et surtout pour
m’avoir donné confiance dans tout ce que j’entreprenais. C’est à lui que je dédie ce
travail
DESPUIS LA DESCRIPTION DES PREMIERS CAS DE SIDA PÉDIATRIQUES EN 1983, D’IMPORTANTS PROGRÈS ONT ÉTÉ RÉALISÉS DANS LA COMPRÉHENSION DES MÉCANISMES DE TRANSMISSION, PUIS DANS LA PRÉVENTION DE CELLE-CI, ET DANS LA CONNAISSANCE DE L’HISTOIRE NATURELLE DE L’INFECTION PAR LE VIH CHEZ L’ENFANT. DEPUIS 1996 LES MULTITHERAPIES ARV ONT PERMIS UNE DIMINUTION CONSIDÉRABLE DE LA TRANSMISSION VERTICALE ET DE LA MORBIDITÉ ET MORTALITÉ DES ENFANTS INFECTÉS PAR LE VIH.

LES BUTS DE CE TRAVAIL ONT ÉTÉ :

- D’ÉVALUER, DANS LE Contexte DE L’OFFRE DE SOIN MISE EN PLACE DANS UN CENTRE DE RÉFÉRENCE, L’IMPACT DE L’ADMINISTRATION PROPHYLACTIQUE DES TRAITEMENTS ARV PENDANT LA GROSSESSE SUR LA TRANSMISSION VERTICALE DU VIRUS.
- DE DÉTERMINER SI L’INSTAURATION PRÉCOCE D’UN TRAITEMENT ARV CHEZ LES ENFANTS INFECTÉS À LA NAISSANCE ET ENCORE ASYMPTOMATIQUES AMÉLIORAIT LE DEVENIR DE L’ENFANT.
- DE CONTRIBUTER À L’ÉVALUATION DE L’IMPACT DE L’EXPOSITION À LA MALADIE MATERNELLE ET AUX TRAITEMENTS ARV SUR LE DEVENIR DES ENFANTS NON INFECTÉS NÉS DE MÈRES INFECTÉES PAR LE VIH.

UNE ÉTUDE RÉTROSPECTIVE PORTANT SUR LES ENFANTS NÉS DE MÈRES INFECTÉES PAR LE VIH ET SUIVIS À L’HÔPITAL ST-PIERRE ENTRE 1986 ET 2002, NOUS A PERMIS DE COMPARER 3 COHORTES DE NAISSANCE CORRESPONDANT À DIFFÉRENTS TYPES DE PRISE EN CHARGE. NOUS AVONS PU MONTRER QUE LE TAUX DE TRANSMISSION A DIMINUÉ GLOBALEMENT DE 10% DURANT LA PÉRIODE PRÉCEDANT L’ADMINISTRATION DE PROPHYLAXIE ARV À 5% DURANT LA TROISIÈME PÉRIODE OÙ LES MULTITHERAPIES ÉTAIENT RECOMMANDÉES EN PROPHYLAXIE DURANT LA GROSSESSE. NOUS AVONS MONTRÉ QUE CHEZ LES MÈRES QUI NE BÉNÉFICIAIENT PAS DE PROPHYLAXIE ARV LE TAUX DE TRANSMISSION AVAIT AUGMENTÉ SIGNIFICATIVEMENT ENTRE 1986 ET 2002 ; LE PLUS SOUVEN TOUTE À UNE PRIME EN CHARGE TROP TARDIVE DE LA GROSSESSE, À UN DÉPISTAGE TARDIF DE LA SÉROPPOSITIVITÉ MATERNELLE, OU À UNE MAUVAISE COMPLIANCE AU TRAITEMENT.

CHEZ LE NOUVEAU-NÉ INFECTÉ PAR LE VIH, LA MULTIPLICATION VIRALE EST BEAUCOUP PLUS IMPORTANTE ET PROLONGÉE QUE LORS DE LA PRIMO-INFECTION CHEZ L’ADULTE. PARALLÈLEMENT, L’ÉVOLUTION CLINIQUE DE L’INFECTION PEUT ÊTRE RAPIDE DANS UN QUART DES CAS, ET ABOUTIR AU SIDA OU AU DÉCÈS AVANT L’ÂGE DE 1 AN, SANS QU’IL EXISTE DE BONS FACTEURS PRÉDICTIFS DE CETTE ÉVOLUTION DÉFavorable EN DÉBUT DE VIE. JUSQU’EN 2007, LES DIFFÉRENTES RECOMMANDATIONS INTERNATIONALES INDICAIENT DE DÉBUTER UN TRAITEMENT CHEZ LES NOURRISONS INFECTÉS LORS D’APPARITION DE SYMPTÔMES CLINIQUES OU D’IMMUNODÉPRESSION. CEPENDANT, DÈS 1996, CERTAINS CENTRES DANS DES PAYS INDUSTRIALISÉS, DONC L’ÉQUIPE DE PÉDIATRIE DU CHU ST PIERRE, ONT DÉCIDÉ D’INITIER UN TRAITEMENT ARV CHEZ TOUS LES NOURRISONS INFECTÉS DÈS CONFIRMATION DU DIAGNOSTIC. EN 2006, NOUS AVONS INITIÉ UNE ÉTUDE RÉTROSPECTIVE MULTICENTRIQUE INCLUANT 13 COHORTES EUROPÉENNES VISANT À ÉTUDIER L’IMPACT DU TRAITEMENT PRÉCOCE SUR L’ÉVOLUTION CLINIQUE ET BIOLOGIQUE DE L’ENFANT. LES DONNÉES DE 210 ENFANTS, NÉS ENTRE 1996 ET 2004 ET INFECTÉS À LA NAISSANCE ONT ÉTÉ ANALYSÉES, ET ONT PERMIS DE DÉ-
montrer que les enfants traités avant l’âge de 3 mois avaient un risque de développer un SIDA ou de décéder 5 fois inférieur aux enfants traités après cet âge. Des résultats similaires ont été observés dans une étude randomisée réalisée en Afrique du Sud et publiée simultanément. Depuis, les recommandations internationales ont été revues et préconisent la mise sous traitement de tous les nourrissons infectés. L’analyse des données biologiques a permis de montrer que la réponse virologique immédiate était plus rapide avec un pic de charge virale moins élevé et que la chute des lymphocytes CD4 était moins prononcée lorsque le traitement était débuté précocement.

Avec la généralisation de la prophylaxie ARV pendant la grossesse, le nombre d’enfants exposés in utero au VIH mais indemnes de l’infection a considérablement augmenté. Des études, menées principalement dans des pays en développement, ont révélé un risque accru de morbidité et de mortalité infectieuse ainsi que la survenue d’infections sévères inhabituelles chez ces enfants. Nous avons été frappés durant le suivi de ces enfants par la survenue d’un nombre élevé d’infections néonatales causées par le streptocoque du groupe B (GBS). La comparaison avec le taux d’infection observé dans une population contrôle (estimé sur base des naissances survenues pendant la même période dans le même hôpital) nous a permis de décrire une incidence 19 fois supérieure d’infection à GBS chez les enfants exposés au VIH et non infectés que chez les enfants contrôles. Il s’agit du premier travail publié évoquant une susceptibilité accrue aux infections des enfants exposés non infectés dans un pays industrialisé.

En conclusion, la prophylaxie ARV pendant la grossesse et en début de vie a permis de diminuer considérablement la transmission verticale de l’infection à VIH. Un dépistage manqué, une prise en charge tardive de la grossesse, ou la mauvaise adhérence au traitement sont encore responsables d’infection du nouveau-né. Lors de confirmation d’infection du nourrisson par le VIH, il est très important de débuter un traitement le plus rapidement possible afin de contrôler rapidement la multiplication virale, de maintenir une bonne immunité et de prévenir le développement de la maladie. Enfin, en l’absence d’infection du nourrisson par le VIH, il est important de poursuivre le suivi pendant les premières années de vie puisqu’il semble que les enfants exposés au VIH et non infectés soient plus susceptible aux infections sévères. Ceci a été démontré en ce qui concerne les infections néonatales à GBS.
ABREVIATIONS

ADN = acide désoxyribonucléique
ARN = acide ribonucléique
ARV = antirétroviral
CHU = centre hospitalier universitaire
CV = charge virale
EFV = Efavirenz
EIC = european infant collaboration
GBS = streptocoque du groupe B
INNTI = inhibiteur non nucléosidique de la transcriptase inverse
INTI = inhibiteur nucléosidique de la transcriptase inverse
IV = intraveineuse
NVP = Nevirapine
PCR = polymerase chain reaction
PENTA = pediatric european network for trials in AIDS
SIDA = syndrome d’immunodéficience acquise
VIH = virus de l’immunodéficience humaine
ZDV = Zidovudine
3TC = Lamivudine
PLAN

1. INTRODUCTION:
 1.1. L’infection par le Virus de l’Immunodéficience Humaine (VIH) .. p9
 1.1.1. Epidémiologie .. p9
 1.1.2. Le Virus ... p9
 1.1.3. Transmission .. p11
 1.1.4. Détection ... p11
 1.1.5. Les traitements antirétroviraux .. p11
 1.1.6. L’infection par le VIH chez l’adulte .. p13
 1.2. L’enfant affecté par le VIH .. p14
 1.2.1. Transmission mère-enfant du VIH ... p14
 1.2.1.1. Dépistage de l’infection chez le nouveau-né ... p15
 1.2.1.2. Impact des mesures de prévention ... p16
 1.2.2. Infection de l’enfant par voie verticale ... p18
 1.2.2.1. Histoire naturelle de la maladie .. p18
 1.2.2.2. Traitement précoce du nourrisson infecté par le VIH ... p22
 1.2.3. Les enfants non infectés exposés in utero au VIH et aux traitements antirétroviraux ... p23
 2. BUTS DU TRAVAIL .. p29
 3. RESULTATS
 3.1. Evaluation rétrospective de l’impact de l’administration de prophylaxie antirétrovirale pendant la grossesse sur la transmission verticale du virus dans le contexte de l’offre de soin mise en place dans un centre de référence .. p31
 3.2. Impact du traitement précoce de l’infection par le VIH chez le nourrisson p41
 3.2.1. Publication de l’expérience belge du traitement précoce .. p42
 3.2.2. Etude collaborative européenne de l’impact du traitement précoce de l’infection par le VIH chez le nourrisson ... p47
 3.3. Augmentation de l’incidence d’infections à streptocoque du groupe B chez les enfants exposés au VIH et non infectés ... p63
 4. DISCUSSION ... p73
 5. REFERENCES ... p85
1. INTRODUCTION

1.1. L'infection par le Virus de l’Immunodéficience Humaine

L'infection par le virus de l'immunodéficience humaine (VIH) est un des plus importants problèmes de santé publique d'origine infectieuse dans le monde.

1.1.1. Epidémiologie de l'infection par le VIH

En 1981 une maladie nouvelle était décrite aux USA ; elle survenait essentiellement chez des hommes homosexuels et chez des patients hémophiles et associait des affections pulmonaires et cancéreuses à un déficit de l'immunité cellulaire. Il est vite apparu qu’un syndrome identique était responsable d’une morbidité et d’une mortalité importante dans plusieurs pays d’Afrique subsaharienne. Cette maladie a reçu le nom de syndrome d’immunodéficience acquise (SIDA). Les premiers cas de SIDA chez l’enfant ont été rapportés dès 1983 [1]. Le VIH, agent responsable de ce syndrome, n’a été identifié qu’en 1984, de manière parallèle par des équipes de chercheurs français et américains. L’identification de l’agent responsable de la maladie, et le développement de tests diagnostics sérologiques signant l’infection, ont permis de décrire l’histoire naturelle de la maladie chez l’adulte et l’enfant, ainsi que les mécanismes et les facteurs de risque de la transmission. Depuis 1987, la lutte contre le VIH/SIDA est devenue une priorité pour l’ONU à travers son programme ONUSIDA et a été intégrée dans les programmes de santé publique gouvernementaux pour de nombreux pays. Il y a eu de 1981 à 2006 environ 25 millions de décès dus au SIDA. L’épidémie du SIDA s’est transformée en pandémie au début des années 1990. Depuis 1996, l’utilisation des médicaments ARV en combinaisons hautement actives a permis de diminuer considérablement la morbidité et la mortalité des patients infectés par le VIH ainsi que la transmission du virus. Grâce à la mise en place des mesures de prévention et aux traitements ARV, le nombre de nouvelles infections dans le monde diminue chaque année depuis 2001 [2]. A la fin de l’année 2012, 35,3 millions de personnes étaient infectées par le VIH, parmi lesquelles 69% vivaient en Afrique subsaharienne et 1.6 millions de patients décédaient d’une cause liée au VIH [2]. En 2012, 3.3 millions d’enfants (0 à 15 ans) vivaient avec le VIH et 260 000 nouvelles infections étaient observées chez des enfants, ce qui représentait une diminution de 52% par rapport aux nouvelles infections observées en 2001 [2].

1.1.2. Le Virus de l’Immunodéficience Humaine

Le VIH est un lentivirus de la famille des Retroviridae. Le virion est composé de 2 copies d’ARN simple brin, protégées par une capside protéique constituée de la protéine p24, puis par une matrice protéique, le tout entouré d’une enveloppe glyco-protéique (voir figure 1). Le virus infecte préférentiellement les cellules exprimant la
molécule CD4 et entre dans la cellule de l’hôte via l’interaction avec des récepteurs de surface cellulaire type CD4 et des corécepteurs de type CCR5 ou CXCR4. Après reconnaissance de la cellule par le virion (au niveau de la glycoprotéine d’enveloppe gp120), les membranes cellulaires et virales vont fusionner grâce à la glycoprotéine gp41 permettant à la capsid du virion de pénétrer dans la cellule. Une fois dans la cellule, l’ARN viral est transcrit dans le cytoplasme grâce à la transcriptase inverse virale, en ADN qui est ensuite transporté dans le noyau où il peut se retrouver sous forme linéaire non intégré ou s’intégrer dans le génome cellulaire de la cellule hôte grâce à l’intégrase virale. L’ADN du VIH intégré est appelé provirus. Il semble qu’il n’y ait qu’une faible proportion des cellules CD4 qui aient intégré l’ADN viral dans leur génome [3]. Certains lymphocytes mémoires peuvent persister à l’état latent dans l’organisme pendant des années ; elles constituent le réservoir de virus. C’est l’existence de ce réservoir qui rend impossible l’eradication du virus de l’organisme.

La transcriptase inverse ne possédant pas de mécanisme de détection et de correction des erreurs de transcription de l’ARN en ADN, les mutations sont fréquentes, générant des variants viraux. Lors de traitements ARV suboptimaux, la réplication virale sous pression médicamenteuse insuffisante fait émerger des variants résistants qui permettent au virus d’échapper aux traitements. D’autres facteurs contribuent à la grande variabilité du VIH. En effet le taux extrêmement rapide de multiplication virale, la fréquence de mutations, les recombinaisons génétiques lorsqu’une cellule est infectée par des virions génétiquement différents, et le processus de sélection naturelle s’ajoutent à la sélection médicamenteuse pour conduire à cette variabilité.

Figure 1: Virus de l’immunodéficience humaine

(http://commons.wikimedia.org/wiki/File: HIV_Virion-fr.svg)
1.1.3. Transmission du VIH

Le virus de l’immunodéficience humaine se transmet d’un individu à l’autre par les rapports sexuels, par contact avec le sang ou du matériel contaminé (transfusion de sang, échange de seringues chez les toxicomanes, utilisation de matériel médical non stérile…), et par transmission verticale (de la mère à l’enfant). La majorité des enfants infectés ont acquis leur virus par transmission verticale.

1.1.4. Détection de l’infection par le VIH

Il existe plusieurs méthodes pour détecter une infection par le VIH.

Méthodes indirectes :

• Les sérologies permettent de détecter les anticorps. La méthode de type Elisa est très sensible et est utilisée principalement dans le dépistage. Lorsque le test Elisa est positif, le résultat est confirmé par la méthode de Western Blot plus spécifique.

Méthodes directes détectant le virus ou un composant du virus :

• L’antigène p24 est détectable dans le sang dès le 10ème jour de la contamination et avant que les anticorps ne soient présents. Ce test est utile dans le dépistage précoce de l’infection.

• L’isolement en culture était autrefois le seul moyen de détecter l’infection chez les nourrissons nés de mères infectées par le VIH puisque ceux-ci restent séropositifs jusqu’à ce qu’ils aient perdu les anticorps transmis par voie transplacentaire autour de l’âge de 18 mois.

• La détection de l’ARN viral (méthode quantitative) et de l’ADN proviral (méthode le plus souvent qualitative) par réaction de polymérisation en chaîne ou Polymerase chain reaction (PCR) a remplacé la méthode d’isolement par culture pour le diagnostic de l’infection chez les nouveau-nés exposés au virus in utero.

1.1.5. Les traitements antirétroviraux

Les traitements (ARV) visent à empêcher la multiplication du virus au sein des cellules de l’hôte. Ils sont dirigés contre des enzymes spécifiques du virus, ou interfèrent avec l’entrée du virus dans la cellule. Le premier médicament ARV a été utilisé chez des patients infectés par le VIH dès 1985 et ensuite commercialisé en 1987. Il s’agit de la Zidovudine (ZDV), un analogue de la thymidine qui inhibe l’activité de la transcriptase inverse utilisée par le virus pour transformer son ARN viral en ADN.
C'est encore un médicament largement utilisé aujourd'hui. Par la suite d'autres inhibiteurs de la transcriptase inverse (INTI) sont apparus sur le marché (Lamivudine (3TC) en 1989, Stavudine (D4T) ...), et continuent d’apparaître. Une 2ème classe de médicaments ARV, les inhibiteurs de protéase (IP), est apparue sur le marché à partir de 1995. Ceci a constitué un tournant majeur dans la prise en charge médicamenteuse et médicale des patients atteints par le VIH, puisque le virus pouvait être soumis à l’action synergique de médicaments agissant par des mécanismes différents. Les antiprotéases agissent en effet en inhibant l’action de l’enzyme qui permet le clivage et l’assemblage des protéines virales. En 1996, les traitements par trithérapie, associant 2 INTI et une IP ont été débutés et ont rapidement démontré leur efficacité en terme de diminution drastique de la morbidité et de la mortalité des patients infectés par le VIH.

Ensuite les inhibiteurs non nucléosidiques de la transcriptase inverse (INNTI) ont été commercialisés dès 1997. Depuis, de nouvelles molécules ont été développées dans chacune de ces classes, et de nouvelles classes de médicaments sont également apparues (les analogues nucléotidiques en 2002, les inhibiteurs de l’intégrase, un antagoniste du CCR5 en 2007, et les inhibiteurs de la fusion en 2009...). Comme explicité plus haut, le taux de mutation du virus VIH est très important suite à son incapacité à détecter les erreurs de transcription. Il en résulte une apparition rapide de résistance aux agents ARV si la multiplication virale reste active sous traitement. Dès lors, l’association de plusieurs agents ARV, agissant si possible à des étapes différentes du cycle de réplication virale, dans le traitement de l’infection par le VIH permet d’éviter le développement de telles résistances. La mauvaise adhésion au traitement est la principale cause d’émergence de résistance induisant un échec thérapeutique. Le virus à l’état latent présent dans les réservoirs n’est pas sensible aux ARV puisqu’il n’est pas à un stade de réplication.

Le choix des médicaments ARV utilisables chez l’enfant est plus restreint que pour l’adulte pour plusieurs raisons. D’une part, les données nécessaires à l’obtention des autorisations d’utilisation des nouvelles molécules chez l’enfant, en particulier concernant la pharmacocinétique et la toxicité, sont disponibles des années après celles chez l’adulte, d’autre part les formes galéniques sont souvent inadaptées à l’enfant (il existe peu de formes d’agents ARV en sirop). Par ailleurs la compliance au traitement repose, pendant au moins les 10 premières années de vie, sur l’implication des parents dans l’administration des médicaments. Tous ces facteurs sont associés à une incidence plus importante de développement de résistance aux traitements chez l’enfant que chez l’adulte [4] et à un moindre choix de traitements alternatifs.

Les ARV induisent des effets secondaires non négligeables qui doivent être pris en considération dans le choix et la poursuite du traitement. Ces effets secondaires peuvent survenir à court ou à long terme. Dans la première catégorie, on rencontre entre autres les problèmes d’intolérance gastro-intestinale, les éruptions, les anémies, ou les anomalies des tests hépatiques. Dans la seconde catégorie, figurent les altérations lipidiques associées à une augmentation du risque cardio-vasculaire chez l’adulte, les altérations physiques liées à la redistribution corporelle des graisses devenues moins
fréquentes avec les traitements les plus récents, certaines pathologies neurologiques rénales, osseuse, et un vieillissement précoce des systèmes en général.

1.1.6. L'infection par le VIH chez l'adulte

Chez l'adulte infecté par voie horizontale, la primo-infection survient dans les semaines qui suivent l'acquisition du virus et consiste souvent en un syndrome viral dont les symptômes sont très aspécifiques. Après une dizaine de jours (Eclipse phase), le virus est détectable dans le sang mais la sérologie est encore négative. Entre 1 et 2 mois après la contamination, la sérologie se positive. Pendant la phase de primo-infection, le virus se multiplie d’abord dans le système lymphoïde du tube digestif puis dans le sang et la charge virale atteint un pic de virémie correspondant à une dissémination du virus dans les tissus lymphoïdes (via l’infection des cellules de type lymphocyte CD4, macrophages et cellules dendritiques) mais aussi dans le système nerveux via les cellules microgliales cérébrales. Ensuite la charge virale diminue pour atteindre un plateau entre 6 et 12 semaines après la primo-infection. Survient alors une phase de latence qui peut durer entre 2 et 15 années [3].

Parallèlement à la montée de la charge virale, il y a une déplétion transitoire en lymphocytes CD4, avec retour à la normale le plus souvent suite à la diminution de la charge virale plasmatique. Au terme de la phase de latence, le taux de lymphocytes CD4 chute et la charge virale ré-augmente ; les symptômes cliniques du syndrome d’immunodéficience acquise vont alors apparaître, avec la survenue de maladies infectieuses opportunistes ou tumorales, évoluant le plus souvent en l’absence de traitement vers le décès (voir figure 2).

Figure 2: Graphique représentant L'évolution naturelle de l'infection par le VIH et la relation entre la charge virale et le nombre de lymphocytes CD4. (http://commons.wikimedia.org/wiki/File:Hiv-timecourse-Fr_01.png)
Pendant la première décennie, le suivi du patient infecté par le VIH comprenait des mesures régulières du taux de lymphocytes CD4. Dès décembre 1996, la mesure de la charge virale plasmatique par la méthode PCR est devenue possible permettant d’évaluer plus rapidement l’évolution de la maladie, la réponse et la compliance au traitement des patients. Entre 1996 et 2002 le seuil de détection était de 400 copies/ml, pour passer à 50 copies/ml entre 2002 et 2012, et depuis 2012, il est de 20 copies/ml dans la plupart des laboratoires dans les pays industrialisés. Dès le début de l’utilisation des multithérapies, la morbidité et la mortalité des patients a considérablement diminué [5]. Les indications de mise sous traitement ARV des adultes infectés reposent sur la conjonction de facteurs cliniques et immunologiques. Elles ont évolué au cours du temps, avec une tendance à traiter de plus en plus tôt au cours du développement de la maladie. Parallèlement à la réduction du risque d’évolution de la maladie il est apparu que le traitement ARV jouait un rôle non négligeable dans la prévention de la transmission sexuelle [6, 7]. Actuellement dans le monde, parmi les patients infectés par le VIH et nécessitant un traitement ARV, 61% des adultes ont accès à ce traitement [2].

1.2. L’enfant affecté par le VIH

La grande majorité des enfants infectés par le VIH l’ont été par voie de transmission verticale.

1.2.1. Transmission mère-enfant du VIH

La transmission verticale peut toucher jusqu’à 40% des enfants nés de mères infectées par le VIH en l’absence d’intervention [8]. Le passage du virus survient principalement à la fin de la grossesse ou pendant l’accouchement, mais peut également avoir lieu lors de l’allaitement maternel.

- La transmission intra-utérine est le résultat du passage du virus du sang maternel infecté dans la circulation fœtale, soit au travers du placenta, soit à la suite d’une infection du placenta par le virus. Certains facteurs de risque comme la chorioamniontite, les maladies sexuellement transmissibles ou le tabagisme augmentent le risque de transmission en altérant l’intégrité placentaire [9]. La transmission intra-utérine est confirmée si le virus est isolé dans le sang du nouveau-né endéans les premières 48h de vie [10]. Ces transmissions précoces représentaient ¼ des infections verticales avant l’utilisation des agents ARV pour la prévention de la transmission verticale [11-13]. Cependant avec l’implémentation de certaines mesures de prophylaxie dans les pays en développement comme l’administration d’une dose unique de Nevirapine (NVP) pendant l’accouchement n’agissant que sur la transmission péripartale, la proportion de transmission verticale survenant in utero tend à augmenter [14].
• La transmission péripartale peut résulter soit d’une micro-transfusion materno-fœtale durant les contractions utérines, soit de l’infection du liquide amniotique par ascension au départ du vagin après rupture de la poche des eaux, ou encore d’un contact direct du nouveau-né avec le sang et les sécrétions génitales durant le passage dans la filière génitale [15]. L’excrétion du virus dans le tractus génital est augmenté chez la femme enceinte [16] et la charge virale dans les sécrétions vaginales peut différer de celle du plasma [9]. Néanmoins, la charge virale chez la femme enceinte est le facteur le plus prédictif du risque de transmission verticale du VIH en présence ou en absence de prophylaxie ARV [17]. Cependant des cas de transmission ont été rapports alors que la virémie plasmatique maternelle était indétectable [18]. La durée du travail après rupture de la poche des eaux est également un facteur intervenant dans le risque de transmission [19, 20]. Les autres facteurs de risque pour la transmission péripartale incluent le monitoring invasif, l’épistiotomie, et la prématurité. La gémellité était également un facteur de risque de transmission avant l’ère des multithérapies, avec un risque accru pour le premier jumeau par rapport au second [21].

• L’allaitement maternel est également une source de transmission materno-fœtale [22, 23]. Il est associé à un taux de transmission estimé entre 7 et 22%, mais pouvant atteindre 30% si l’infection de la mère a lieu pendant la période d’allaitement [24]. Le risque de transmission a été estimé à 4% pendant les 6 premiers mois en cas d’allaitement exclusif suivi de 1% par mois par la suite [25]. L’allaitement mixte pourrait être associé à un risque plus important de transmission que l’allaitement maternel exclusif, probablement à cause de l’augmentation de la perméabilité intestinale lors de l’introduction d’aliments autres que le lait maternel [26]. Il y a 3 compartiments contenant du virus dans le lait maternel : les particules virales libres, les lymphocytes T latents contenant de l’ADN viral intégré et les lymphocytes T activés contenant de l’ARN intracellulaire [27]. Une étude récente a montré que le taux de particules virales libres dans le lait maternel était corrélé avec la charge virale plasmatique, et était significativement associé à la transmission du virus par allaitement durant les 6 premiers mois de vie [27]. La contribution des réservoirs cellulaires de virus dans la transmission durant l’allaitement n’a pas encore été clairement élucidée.

1.2.1.1. Dépistage de l’infection chez le nouveau-né

L’infection du nouveau-né par le VIH peut être actuellement détectée tôt dans la vie grâce à la PCR recherchant l’ADN proviral réalisée endéans les 3 premiers jours de vie, et répétée à au moins deux reprises endéans les 6 premiers mois de vie. La sensibilité des PCR ARN et ADN est respectivement de 58% et 55% à la naissance (la prophylaxie par ZDV pouvant rendre compte de 11% de résultats faussement négatif), et de 100% à 3 mois. La spécificité des PCR ARN et ADN est de 100% à tous les âges [28].
L'enfant est considéré comme non infecté si au moins 2 PCR sont négatives après 2 mois de vie. La sérologie est toujours contrôlée après l’âge de 15 mois. Il semble que l’âge de la séro-reversion soit plus tardif depuis l’introduction des multithérapies hautement actives. Dans une étude américaine récente, à l’âge de 18 mois, 14% des enfants possédaient encore des anticorps maternels circulants [29].

Malheureusement il existe encore de nombreux pays où la PCR n’est pas accessible et où l’absence de transmission verticale ne peut être confirmée qu’après l’âge de 18 mois par la négativation de la sérologie.

1.2.1.2. Impact des mesures de prévention de la transmission materno-fœtale du VIH

Le taux de transmission verticale a fortement diminué dans les pays industrialisés au cours des deux dernières décennies grâce à différentes mesures de prévention utilisées pendant la grossesse et en période néonatale.

Les premières mesures visant à réduire le risque de transmission verticale du VIH dans les pays affluents ont été le recours à l’alimentation par lait de formule, et à des procédures obstétricales visant à limiter le contact du nouveau-né avec les liquides biologiques maternels à l’accouchement. Dès 1994, des agents ARV ont été utilisés chez la femme enceinte pour prévenir la transmission verticale.

Les différents modes d’action pour prévenir la transmission materno-fœtale du virus sont :

- **La détection de l’infection par le VIH durant la grossesse :**

 Il est très important de dépister l’infection par le VIH chez toute femme enceinte afin de pouvoir le cas échéant prévenir la transmission verticale du virus. En France, un dépistage systématique a été instauré dès 1993 [30]. En Belgique le dépistage de l’infection par le VIH chez la femme enceinte est recommandé et proposé après information de la patiente. Ce dépistage est généralement bien accepté. Dans certaines situations à risque, où l’un des deux partenaires appartient à un groupe à haute prévalence, il est indiqué de contrôler la sérologie en cours de grossesse, ou même de demander une PCR VIH en présence de symptômes évoquant une primo-infection en cours de grossesse.

- **Prise en charge obstétricale :**

 Les procédures invasives utilisées pendant la grossesse ou pendant l’accouchement comme la pose d’électrode au scalp, ou l’épisiotomie sont déconseillées afin d’éviter au maximum l’exposition de l’enfant au sang maternel [9, 19]. La réalisation d’une amniocentèse est évaluée au cas par
Cas pour chaque situation clinique. Le lavage de la filière génitale avec une solution de Chlorhexidine à 0.25% est une intervention simple dont l’efficacité dans la diminution du risque de transmission verticale n’a été démontrée que lors de rupture prolongée de la poche des eaux (>4h) [31]. Un grande étude randomisée publiée en 1999 a démontré la diminution du risque de transmission lors de césarienne élective par rapport à celui des naissances par voie vaginale en présence ou en l’absence d’une prophylaxie par ZDV en monothérapie [32]. La césarienne élective (réalisée vers 37 ou 38 semaines d’âge gestationnel, avant la mise en travail) a été implémentée en Belgique en 1998. Le risque de transmission verticale pour une femme traitée par multithérapie étant actuellement estimé à moins de 1%, le bénéfice supplémentaire apporté par la césarienne élective est probablement négligeable lorsque la charge virale maternelle en fin de grossesse est indétectable [15]. Par ailleurs, la césarienne étant associé à une plus grande morbidité maternelle et infantile que l’accouchement par voie basse, et ce particulièrement chez les patientes séropositives [15], cette pratique systématique a été abandonnée en 2008 et l’indication de césarienne élective ne concerne plus que les patientes ayant une réplication virale non contrôlée en fin de grossesse.

- **Eviction de l’allaitement maternel** :

Dans les pays industrialisés, l’allaitement artificiel est instauré dès la naissance chez tous les nouveau-nés de mères séropositives. Dans certaines circonstances exceptionnelles, l’allaitement maternel sous prophylaxie ARV est une alternative envisagée dans certains pays industrialisés [33]. Dans les pays en développement où l’absence d’allaitement maternel est associé à une plus grande mortalité et morbidité infantiles, les recommandations alternatives sont de poursuivre la prophylaxie chez la mère ou chez l’enfant durant toute la durée de l’allaitement [34].

- **Traitement ARV prophylactique pendant la grossesse** :

Le traitement des femmes enceintes séropositives doit prendre en considération outre la diminution du risque de transmission verticale du virus, le traitement requis par le stade de la maladie maternelle, les effets secondaires possibles à court et à moyen terme pour la mère et pour l’enfant, ainsi que les possibilités thérapeutiques pour l’enfant s’il acquiert le virus. En 1994, l’étude ACTG 076 a démontré que, dans un groupe de femmes enceintes à un stade peu avancé de la maladie (lymphocytes CD4 > 200/mm³ et jamais traitées), l’administration de ZDV pendant la grossesse (après 14 semaines), en intraveineux pendant l’accouchement, puis au bébé pendant 6 semaines réduisait la transmission de 67.5% [35]. Cette diminution du risque de transmission a pu être validée ensuite chez des patientes plus malades (lymphocytes CD4 < 200/mm³, et quelle que soit la charge virale) [36]. Dans
les années qui ont suivi, la combinaison de traitements ARV hautement actifs et de césarienne élective avec les mesures déjà décrites plus haut ont permis de diminuer le taux de transmission jusqu’à près de 1% [37] et actuellement lorsque toutes les approches de prophylaxie sont implémentées ce risque est inférieur à 1% [38].

Les recommandations actuelles de prévention de transmission périnatale ont fait l’objet d’un consensus entre différents représentants des centres de références pour la prise en charge des patients infectés par le VIH en Belgique [18]. Ce consensus a été revu en décembre 2013.

1.2.2. Infection de l’enfant par voie verticale

1.2.2.1. Histoire naturelle de la maladie

La transmission du VIH de la mère à l’enfant est évitable si les mesures de prévention peuvent être appliquées : elle est donc devenue très rare dans les pays industrialisés, mais reste fréquente dans les pays en développement où les mesures de prévention ne sont pas encore largement accessibles.

L’histoire naturelle de l’infection chez l’enfant infecté en période périnatale est différente de celle observée chez l’adulte. Durant la primo-infection, qui survient lors de transmission verticale durant les premiers jours de vie, la multiplication virale est beaucoup plus importante que durant la primo-infection chez l’adulte. La charge virale plasmatique peut atteindre 10^7 copies/ml au cours des premières semaines de vie [39]. La prolifération virale ne diminue ensuite que très lentement pour atteindre un plateau autour de 10^5 copies/ml vers l’âge de 3 ans [39]. Différentes raisons ont été évoquées pour expliquer cette multiplication virale intense persistante: le pool de cellules CD4 positives est plus important chez l’enfant, ce qui permet une plus grande dissémination du virus lors de la primo-infection, la thymopoïèse particulièrement active chez le nourrisson peut contribuer à l’élévation de la charge virale, et l’immaturité du système immunitaire du nouveau-né peut expliquer la difficulté à contrôler la réplication virale [3]. Le taux de CD4 diminue rapidement chez le nourrisson infecté en l’absence de traitement : en Europe avant l’ère des multithérapies, 17% des enfants atteignaient un taux de CD4 <20% endéans les 6 premiers mois de vie [40] alors que cette proportion atteignait 70% des enfants dans une étude en Afrique du Sud [14].

L’évolution clinique de la maladie en cas de transmission materno-fœtale, décrite dès 1991, est bimodale [40-42]. Entre 25 et 30% des enfants, appelés les « progresseurs rapides », vont évoluer rapidement au cours de la première année de vie vers le stade SIDA. Une grande étude prospective européenne réalisée avant l’ère des thérapies ARV a montré que 23% des enfants développaient des signes cliniques de SIDA avant l’âge de 1 an et 40% avant l’âge de 6 ans [40]. Dans certains pays en développement, la mortalité des enfants infectés par le VIH en l’absence de traitement atteignait 50% avant l’âge de
2 ans [44].

L’évolution clinique et immunologique de l’infection du nouveau-né en l’absence de traitement est illustrée par la figure 3 issue d’une publication de l’European Collaborative Study [47].

![Figure 3: Evolution clinique et biologique des enfants infectés par transmission verticale avant l’ère des multithérapies. Reproduit avec l’autorisation de C. Thorne, Institute of Child Health, London UK.](image)

La classification des stades cliniques est différente chez l’enfant de celle de l’adulte. La table 1 reprend la classification pédiatrique du CDC pour les stades cliniques.

Chez les « progresseurs rapides », les symptômes du stade SIDA comportent souvent le développement d’une encéphalopathie et / ou l’apparition d’infection à CMV et de pneumonie à *Pneumocystis jiroveci*. Il est intéressant de noter que les maladies opportunistes peuvent survenir chez le nourrisson même lorsque le taux de CD4 reste dans des valeurs normales [45]. Les autres enfants, appelés progresseurs lents, ont une évolution clinique plus comparable à celle de l’adulte mais cependant un peu plus rapide. Il faut noter que ces enfants « progresseurs lents » présentent souvent des manifestations cliniques (polyadénopathies, néphropathie) qui justifient l’initiation d’un traitement malgré la conservation d’une bonne immunité. Il existe par ailleurs chez l’enfant la même proportion de « non progresseurs » à long terme que chez l’adulte [46].
CATEGORY A: MILDLY SYMPTOMATIC
Children who have two or more of the conditions listed below but none of the conditions listed in Categories B and C.
• Lymphadenopathy (>0.5 cm at more than two sites; bilateral = one site)
• Hepatomegaly
• Splenomegaly
• Dermatitis
• Parotitis
• Recurrent or persistent upper respiratory infection, sinusitis, or otitis media

CATEGORY B: MODERATELY SYMPTOMATIC
Children who have symptomatic conditions other than those listed for Category A or C that are attributed to HIV infection. Examples of conditions in clinical Category B include but are not limited to:
• Anemia (<8 gm/dL), neutropenia (<1,000/mm3), or thrombocytopenia (<100,000/mm3) persisting >30 days
• Bacterial meningitis, pneumonia, or sepsis (single episode)
• Candidiasis, oropharyngeal or pulmonary (bronchi, trachea, lungs)
• Coccidiodomycosis, disseminated (at site other than or in addition to lungs or cerebral or hilar lymph nodes)
• Cryptococcosis, extrapulmonary
• Cryptococcosis, or isosporiasis with diarrhea persisting >1 month
• Cytomegalovirus disease with onset of symptoms at age >1 month (at a site other than liver, spleen, or lymph nodes)
• Encephalopathy (at least one of the following progressive findings present for at least 2 months in the absence of a concurrent illness other than HIV infection that could explain the findings): a) failure to attain or loss of developmental milestones or loss of intellectual ability verified by standard developmental scale or neuropsychological tests; b) impaired brain growth or acquired microcephaly demonstrated by head circumference measurements or brain atrophy demonstrated by computerized tomography or magnetic resonance imaging (serial imaging is required for children 2 years of age or younger); c) acquired symmetric motor deficit manifested by two or more of the following: paresis, pathologic reflexes, ataxia, or gait disturbance
• Herpes simplex virus infection causing a mucocutaneous ulcer that persists for >1 month; or bronchitis, pneumonitis, or esophagitis for any duration affecting a child >1 month of age
• Histoplasmosis, disseminated (at a site other than or in addition to lungs or cerebral or hilar lymph nodes)
• Kaposi's sarcoma
• Lymphoma, primary, in brain
• Lymphoma, small, noncleaved cell (Burkitt's), or immunoblastic or large cell lymphoma of B-cell or unknown immunologic phenotype
• Mycobacterium tuberculosis, disseminated or extrapulmonary
• Mycobacterium, other species or unidentified species, disseminated (at a site other than or in addition to lungs, skin, or cerebral or hilar lymph nodes)
• Mycobacterium avium complex or Mycobacterium kansasii, disseminated (at site other than or in addition to lungs, skin, or cerebral or hilar lymph nodes)
• Pneumocystis carinii pneumonia
• Progressive multifocal leukoencephalopathy
• Salmonella (nontyphoid) septicemia, recurrent
• Toxoplasmosis of the brain with onset at >1 month of age
• Wasting syndrome in the absence of a concurrent illness other than HIV infection that could explain the following findings: a) persistent weight loss >10% of baseline OR b) downward crossing of at least two of the following percentile lines on the weight-for-age chart (e.g., 95th, 75th, 50th, 25th, 5th) in a child >1 year of age OR c) >5th percentile on weight-for-height chart on two consecutive measurements, >30 days apart PLUS a) chronic diarrhea (i.e., at least two loose stools per day for >30 days) OR b) documented fever (for >30 days, intermittent or constant)

CATEGORY C: SEVERELY SYMPTOMATIC
Children who have any condition listed in the 1987 surveillance case definition for acquired immunodeficiency syndrome (10), with the exception of LIP (Box 3).

CATEGORY C: SEVERELY SYMPTOMATIC *
Children who have any condition considered to be the result of HIV infection or who have only one of the conditions listed in Category A.

* See the 1987 AIDS surveillance case definition (10) for diagnosis criteria.

Table 1: classification clinique de l'infection par le virus de l'immunodéficience chez l'enfant en stade CDC [52].
Il n’existe pas de bons critères prédictifs d’évolution rapide de la maladie permettant de faire la différence en tout début de vie entre les « progresseurs rapides » et les « progresseurs lents ». Cependant il semble que les nouveau-nés infectés in utero présentent un pic de charge virale plus élevé [14] et soient plus à risque de progression rapide que ceux qui acquièrent le virus durant l’accouchement [47]. Par ailleurs, une étude américaine a démontré que la charge virale mesurée après la première semaine de vie était corrélée avec la progression clinique chez le nourrisson infecté par voie verticale [48]. Plusieurs études ont suggéré que les enfants infectés par voie verticale malgré l’administration d’une prophylaxie antirétrovirale chez la mère pendant la grossesse avaient un moins bon pronostic et une moins bonne réponse au traitement [14, 49].

Contrairement à l’enfant plus âgé, le taux de CD4 en période néonatale est un mauvais facteur prédictif de l’évolution de la maladie [50]. Physiologiquement, le nombre de lymphocytes CD4 est élevé chez le nourrisson et diminue spontanément au cours des premières années de vie. Le pourcentage de CD4 est une mesure plus stable et c’est essentiellement celle qui est utilisé jusqu’à l’âge de 5 ans pour suivre la progression de l’immunité chez l’enfant infecté par le VIH [51].

Les indications de mise sous traitement ARV varient avec l’âge, et comportent des critères cliniques, ou l’évaluation du risque d’évolution vers le SIDA en fonction de l’âge et du taux de CD4. A partir de l’âge de 6 mois, des seuils de pourcentage de CD4 ont été calculés pour différentes tranches d’âge permettant de prédire le risque statistique de décès ou de développement de SIDA. La figure 4 issue de l’étude collaborative sur les marqueurs pronostiques pédiatriques illustre la variation du risque de mortalité en fonction du taux de CD4 et de l’âge de l’enfant. On voit que pour un même pourcentage de CD4, le risque de mortalité diminue au cours des 10 premières années de vie.

Actuellement dans le monde, 34% des enfants infectés par le VIH et nécessitant un traitement ARV ont accès à ce traitement [2].

Figure 4 : Risque de mortalité en fonction du taux de CD4 et de l’âge de l’enfant (http://www_hppmcs.org)
1.2.2.2. Traitement précoce du nourrisson infecté par le VIH

Avec l’avènement des médications antirétrovirales, la question s’est posée de savoir s’il valait mieux traiter précocement les nourrissons infectés, et avant toute apparition de symptômes, ou s’il fallait attendre la baisse de l’immunité ou l’apparition de symptômes pour initier le traitement. Jusqu’en 2007, les différentes recommandations européennes, américaines et de l’OMS proposaient de débuter un traitement chez les nourrissons infectés lorsque des symptômes de type stade B ou stade C se développaient ou en présence de chute des lymphocytes CD4 [53, 54]. Dès 1996, le débat entre les partisans et les opposants au traitement précoce a eu lieu au sein des pays industrialisés. Etant donné l’impossibilité d’identifier précocement les progresseurs rapides, certaines équipes, parmi lesquelles celle du service de pédiatrie du CHU St Pierre, ont décidé d’initier un traitement ARV hautement actif chez tous les nourrissons infectés dès confirmation du diagnostic, tandis que d’autres préféraient attendre les signes d’évolution de la maladie ou la chute de lymphocytes CD4 pour débuter le traitement.

Rapidement des publications issues d’études monocentriques en Europe ou aux États-Unis ont démontré qu’une multithérapie débutée précocelement chez le nourrisson infecté par le VIH permettait de diminuer efficacement la charge virale et de prévenir le développement de la maladie. Le Tableau 2 reprend et compare les séries de patients traités précocement par multithérapies hautement actives publiées dans la littérature entre 2004 et 2006.

Le devenir clinique après instauration d’un traitement précoce a également fait l’objet de publications d’analyses rétrospectives: une étude française décrivait 6 enfants ayant développé un stade SIDA (3 encéphalopathies et 3 infections opportunistes) parmi 43 enfants chez qui le traitement avait été débuté après l’âge de 6 mois, alors qu’aucun événement n’était survenu chez les 40 enfants traités par multithérapie avant l’âge de 6 mois [55]. Une étude multicentrique américaine montrait que 62% des enfants non traités avaient développé un SIDA à l’âge de 3 ans, contre 28% des enfants traités par mono ou bithérapie, et 0% des enfants traités par multithérapies [56]. Par ailleurs, il est apparu que si l’administration précoce de mono ou bithérapie antirétrovirale permettait de ralentir significativement l’évolution clinique comparé à l’absence de traitement, les bénéfices étaient largement inférieures à ceux des multithérapies hautement active débutées précocement [56, 57]. Les traitements par mono ou bithérapie ne sont plus utilisées actuellement.
Table 2: Études portant sur la réponse virologique au traitement précoce

1.2.3. Les enfants non infectés exposés in utero au VIH et aux traitements antirétroviraux.

Avec la généralisation de l’utilisation de prophylaxie ARV pendant la grossesse, le nombre de naissances d’enfants exposés in utero au VIH mais également aux agents ARV et indemnes de l’infection a augmenté considérablement [61]. Si le bénéfice de la prophylaxie ARV est incontestablement reconnu, l’impact éventuel de l’exposition in utero à ces traitements sur le déroulement de la grossesse et sur la santé de l’enfant a fait l’objet de nombreuses études et continue à susciter des questions.

Les effets secondaires attribués au traitement ARV chez la femme enceinte sont similaires à ceux observés chez l’adulte. L’intolérance digestive est cependant souvent plus marquée en cours de grossesse. Diverses publications ont suggéré que l’administration de combinaisons hautement actives d’ARV pendant la grossesse augmentait le risque de prématurité, cependant cette observation n’a pas été retrouvée de manière constante [62]. Des publications récentes suggèrent un rôle des IP dans le risque de naissance prématurée [63].

Les effets tératogènes éventuels des agents ARV dépendent de leur passage transplacentaire. Chez l’homme l’existence d’un passage transplacentaire est établie pour la ZDV (85%), pour tous les INTI et pour les INNTI. En revanche, les IP ne passent pas ou peu au travers du placenta, ce qui est rassurant au point de vue té-
ratogénicité ou effet toxique sur le fœtus mais pourrait entraîner un effet moindre sur le plan de la prophylaxie. La ZDV est l’agent antirétroviral pour lequel l’expérience est la plus grande et pour lequel l’efficacité et l’innocuité durant la grossesse et chez le nouveau-né a été établie en premier lieu. Pour tous les autres ARV les données animales sont relativement rassurantes excepté pour l’Efavirenz (EFV), pour lequel des anomalies du tube neural ont été observées après exposition durant la vie fœtale [64, 65].

Les premières publications portant sur la survenue de malformations congénitales chez les enfants exposés aux ARV pendant la grossesse suggéraient un taux d’incidence similaire à celui observé dans la population générale [66]. Le registre d’exposition aux agents ARV (www.apregistry.com), qui est une base de données constituée par les cliniciens sur une base volontaire, comporte au 31 janvier 2013 des données sur 15062 grossesses. L’analyse des données met en évidence un taux de malformations observées chez les nouveau-nés de 2,9% quelle que soit la période de la grossesse exposée aux médicaments ARV, ce taux étant comparable à celui de la population générale (basé sur le système de surveillance des malformations congénitales du CDC) [67]. Cependant une publication américaine récente a rapporté un taux d’incidence de 5,5/100 naissances vivantes, ce qui est supérieur au taux observé dans la population générale [68]. Dans ce rapport les malformations les plus fréquemment rencontrées chez les enfants exposés non infectés concernaient les systèmes cardio-vasculaires, musculo-squelettique et rénaux. Après analyse des expositions individuelles à chaque agent ARV, seul l’EFV administré durant le 1er trimestre de la grossesse était significativement associé à un risque de malformation congénitale [68, 69]. Une étude réalisée sur la cohorte française a également montré une augmentation d’anomalies neurologiques chez le nouveau-né après exposition à l’EFV durant le 1er trimestre de la grossesse [70]. D’autre part une méta-analyse récente portant sur 9 études prospectives évaluant le risque de malformations après exposition pendant le premier trimestre à l’EFV (sur un total de 1132 femmes) a montré un risque relatif global de 0.87 (95% CI: 0.61-1.24, p=0.45), ne confirmant pas d’augmentation de risque de malformation suite à l’exposition à cet INNTI [71]. Toutes ces publications se basent sur des taux d’incidence de malformations concernant les naissances vivantes, une sous-estimation du problème est possible car les fausses couches spontanées et les interruptions médicales de grossesse ne sont pas prises en considération.

Les INTI traversent donc le placenta en grande partie [72, 73]. Or ces médicaments interagissent avec la polymérase gamma de la cellule hôte. Cette polymérase gamma est la seule polymérase présente au niveau de la mitochondrie. La réplication de l’ADN mitochondrial, hérité en grande partie de la mère est indépendante de la réplication de l’ADN nucléaire. Il s’agit d’un ADN circulaire comprenant 16569 paires de bases, et qui peut différer d’une cellule à l’autre en fonction des mutations qu’il subit, avec un système de réparation moindre que pour l’ADN nucléaire. La mitochondrie est le siège de la phosphorylation oxydative qui va produire de l’ATP via le cycle de Krebs et la chaine des complexes respiratoires situées dans la membrane de la mitochondrie
La glycolyse anaérobie se déroule également dans la mitochondrie. Selon le seuil d’expression atteint, des altérations de la fonction mitochondriale vont apparaître et induire l’accumulation d’acide lactique (par transformation du pyruvate ne pouvant être utilisé dans le cycle de Krebs) et de corps cétoniques. Différents systèmes peuvent être atteints par un dysfonctionnement mitochondrial (système nerveux, musculaire, cardiaque, hépatique…). In vitro l’exposition des cellules aux INTI induit une diminution de la quantité d’ADN mitochondrial, des anomalies morphologiques des mitochondries et une accumulation d’acide lactique [75]. Dans plusieurs études, l’ADN mitochondrial était significativement diminué dans les cellules mononucléées du sang de cordon [73, 76] chez les enfants exposés non infectés comparés aux enfants de mères non infectées par le VIH [76]. Dans une étude canadienne plus récente, les taux d’ADN mitochondrial étaient augmentés dans les cellules du sang de cordon mais les taux d’ARN mitochondrial (beta actine) étaient significativement diminués, témoignant d’un déficit d’expression du gène mitochondrial [77]. Une étude d’exposition in utero des primates aux ARV a montré une diminution de l’ADN mitochondrial et la présence d’anomalies mitochondriales au niveau du foie et du cerveau dans 28 à 51% des cas [78]. Par ailleurs, la majorité des enfants exposés aux INTI présentent une élévation transitoire et asymptomatique de l’acide lactique sanguin [79, 80].

En 1990, des myopathies induites par l’administration de ZDV ont été décrites chez des adultes infectés par le VIH [81]. En 1999, des maladies mitochondriales graves ont été décrites dans la cohorte française chez les enfants issus de mères séropositives traitées pendant la grossesse. Parmi 1754 enfants exposés à des ARV en période périnatale, des pathologies mitochondriales ont été décrites chez 8 enfants, ce qui représentait une incidence 26 fois plus grande que dans la population générale [82]. Par la suite une autre grande étude de cohorte américaine a observé une incidence de pathologies neurologiques de type mitochondriales de 1,9% avec un risque significativement augmenté lors d’administration d’INTI (ZDV, 3TC) durant le dernier trimestre de la grossesse [83]. Des études prospectives multicentriques sont en cours pour évaluer le risque de ces pathologies et en déterminer les facteurs de risques.

La cohorte française a également rapporté une augmentation de l’incidence de convulsions hyperthermiques chez les enfants exposés non infectés [84]. Le lien entre la survenue de convulsions hyperthermiques et l’exposition aux ARV n’a pas pu être formellement démontré et aucune étude n’est venue confirmer ou infirmer cette observation par la suite.

Par ailleurs une incidence augmentée d’anomalies cardiaques congénitales [69, 70, 86] ou d’anomalies cardiaques échographiques [85] a également été rapportée après exposition à la ZDV ou à d’autres ARV durant la grossesse.

Malgré la suspicion clinique d’un risque de retard de développement partagée par un grand nombre d’équipes s’occupant du suivi des enfants exposés non infectés, il n’existe dans la littérature scientifique qu’un petit nombre de publications se rapportant à ce
sujet, et les résultats sont contradictoires. Une étude menée au Canada, comparant 39 enfants âgés de 18 à 36 mois exposés au VIH et non infectés à 24 enfants nés de mères infectées par l’hépatite C, a montré un score de développement significativement plus bas chez les premiers [87]. Une autre étude incluant 1840 enfants aux Etats Unis n’a pas pu démontrer d’association significative entre l’exposition anténatale aux ARV chez les enfants exposés non infectés et le retard de développement [88]. Un article récent portant sur les retards de langage chez les enfants exposés non infectés dans une large cohorte américaine a décrit une prévalence de retard de langage de 26% à l’âge de 1 an et de 23% à l’âge de 2 ans, et une association significative avec l’exposition anténatale à l’Atazanavir [89]. D’autres études prospectives et contrôlées seront encore nécessaires pour déterminer si il existe ou non un risque de retard de développement dans cette population et quels en sont les mécanismes d’action et les facteurs de risques, mais il y a de plus en plus d’évidence suggérant qu’une exposition à des médicaments ARV et ou à un état d’inflammation pendant la vie foetale puisse avoir des répercussions sur le développement du cerveau chez le fœtus [90, 91].

La toxicité des INTI est probablement également la cause des altérations de l’hématopoïèse observées dans de nombreuses études. En effet, en dehors de l’anémie transitoire observée durant l’administration de ZDV pendant le premier mois de vie, pouvant nécessiter dans de rares cas une transfusion sanguine, des cytopénies affectant toutes les lignées cellulaires et pouvant persister des années ont été décrites en association avec l’exposition foetale aux ARV [92-95]. Ces cytopénies n’ont jusqu’à présent jamais été corréllées avec des manifestations cliniques chez ces enfants.

Des études comparant la population des enfants exposés non infectés aux enfants non exposés issues de pays à ressources limitées ont rapporté une mortalité accrue chez les premiers comme l’illustre la figure 6 issue d’une revue sur le sujet [96].

Toutes les études portant sur les effets des traitements ARV visant à réduire le risque de transmission verticale, soulèvent l’importance du suivi à long terme dans de larges cohortes des enfants dont les mères sont infectées par le VIH, et traitées pendant la grossesse.
Figure 6 : Mortalité survenant chez les enfants exposés au VIH et non infectés comparé aux enfants non exposés dans différents pays d’Afrique subsaharienne *(avec l’autorisation de reproduction du prof S. Filteau)[96]*
2. BUTS DU TRAVAIL

Les multithérapies antirétrovirales ont profondément modifié l’histoire naturelle de la transmission mère-enfant et de l’infection par le VIH chez l’enfant. Les objectifs de ce travail ont été

1) d’évaluer, dans le contexte de l’offre de soin mise en place dans un centre de référence VIH pédiatrique dans un pays industrialisé, l’impact de l’administration des traitements antirétroviraux prophylactiques pendant la grossesse sur la transmission verticale du virus.

2) de déterminer si l’instauration précoce d’un traitement antirétroviral chez les enfants infectés à la naissance et encore asymptomatiques diminue le risque d’évolution vers le SIDA.

3) de contribuer à l’évaluation de l’impact éventuel des traitements antirétroviraux administrés pendant la grossesse sur le devenir des enfants non infectés nés de mères séropositives.
3. RESULTATS

3.1. Evaluation rétrospective de l’impact de l’administration de prophylaxie antirétrovirale pendant la grossesse sur la transmission verticale du virus dans le contexte de l’offre de soin mise en place dans un centre de référence.

Dès 1985, tous les enfants nés de mères infectées par le VIH au CHU St Pierre ou ceux nés dans plusieurs autres maternités belges (CHU Brugmann, Hôpital Ambroise Paré, Hôpital de Tivoli) référencés dès la naissance au service de pédiatrie du CHU Saint Pierre ont été suivis pendant les 2 premières années de vie pour détecter une possible transmission du VIH. La croissance du nombre de ces enfants entre 1985 et 2012 est illustrée sur la figure 7. Cette figure illustre également la diminution du taux de transmission verticale au cours du temps.

Figure 7 : Evolution du nombre de nouveau-nés de mères infectées par le VIH suivis au CHU Saint Pierre

Les mesures de prophylaxie de la prévention de transmission verticale ont évolué entre 1985 et 2012 et été adaptées en temps réel aux recommandations internationales.

Dès 1989, la prise en charge des femmes enceintes infectées par le VIH au CHU St Pierre a été pluridisciplinaire, incluant des rencontres entre les intervenants des équipes obstétricales, internistes et pédiatriques pendant la grossesse de chaque femme.
séropositive. Au sein du service de pédiatrie, l’équipe pluridisciplinaire se compose de pédiatres, infirmières, psychologues et assistantes sociales.

Dans la publication présentée page 34, nous avons analysé rétrospectivement l’évolution du taux de transmission verticale chez les enfants né de mères infectées par le VIH et suivi au CHU St Pierre entre 1986 et 2002 en relation avec les changements de mesures de prophylaxie. Trois périodes ont été comparées, correspondant à l’implémentation de mesures prophylactiques différentes :

- Pendant la première période (cohorte 1986–93) : les mesures de prévention comportaient le recours exclusif à l’allaitement artificiel associé à des mesures obstétricales visant à éviter le contact prolongé du nouveau-né avec le sang maternel, ou les sécrétions vaginales, ainsi qu’à éviter la rupture prolongée de la poche des eaux.

- La deuxième période (cohorte 1994–98) a vu s’ajouter à ces mesures l’administration de ZDV en monothérapie pendant le troisième trimestre de la grossesse, durant l’accouchement (IV) et au nouveau-né pendant les 6 premières semaines de vie. Pendant une courte période (Octobre 1997 à 1998), une combinaison de ZDV et 3TC était utilisée chez le nouveau-né.

- Pendant la troisième période (cohorte 1999–2002) : les césariennes électives à 38 semaines d’âge gestationnel ont été introduites (fin 1998), et la prophylaxie antirétrovirale a comporté une multithérapie hautement active pendant au moins le troisième trimestre, voire pendant toute la grossesse.

L’échantillon incluait 361 nouveau-nés nés au cours de la période étudiée. Le pourcentage de transmission verticale a globalement diminué au cours du temps, passant de 10% dans la première période - une valeur attendue avec les mesures de prévention appliquées à cette époque - à 4,7% dans la troisième, un taux de transmission supérieur à ce qui était attendu à partir du moment où les traitements ARV hautement actifs étaient recommandés pendant la grossesse. Lorsque nous avons stratifié les cohortes selon l’accès à la prophylaxie ARV, nous avons constaté que l’efficacité était maximale dans le groupe des femmes y ayant accès, avec un taux de transmission de 1.7%. Mais chez les femmes non traitées pendant la grossesse le risque était 4x plus élevé après 1994 qu’avant 1994 ; la proportion de transmission verticale passant de 10% pendant la première période à 37% pendant la troisième. Cette observation suggère qu’un diagnostic tardif, une mauvaise prise en charge de la grossesse, l’absence d’accès aux soins ou des conditions de vie précaires sont autant de facteurs de risque de transmission verticale du VIH s’ajoutant à l’absence de prophylaxie médicalementeuse. En effet, en analysant les cas de transmission survenant pendant la dernière période, il apparaît clairement qu’il s’agissait de mères ayant été diagnostiquées tardivement pendant la grossesse ou chez lesquelles la séropositivité avait été découverte à l’accouchement, ou de mères non compliantes au traitement ou n’ayant pas fait suivre leur grossesse. Par ailleurs, nous avons démontré que la durée de la prophylaxie était un facteur déterminant dans
le risque de transmission verticale : ce sont les multithérapies administrées pendant une durée supérieure à 1 mois (en fin de grossesse) qui sont associées au risque le plus bas de transmission verticale, comparées aux multithérapies administrées moins long-temps ainsi qu'aux mono ou bithérapie administrées pendant la même période. Le diagnostic tardif entraîne un retard d’initiation de prophylaxie qui se traduit par un risque augmenté de transmission verticale.

Nous avons pu par ailleurs confirmer que la charge virale maternelle élevée et/ou le taux de CD4 bas en fin de grossesse étaient associés à un risque accru de transmission verticale.

En ce qui concerne les naissances prématurées, nous n’avons pas pu mettre en évidence d’association significative entre l’administration de multithérapies pendant la grossesse et l’incidence de naissance survenant prématurément.
Vertical transmission of HIV in Belgium: a 1986–2002 retrospective analysis

Tessa Goetghebuer · Edwige Haelterman · Isabelle Marvillet · Patricia Barlow · Marc Hainaut · Assaad Salameh · Roberta Ciardelli · Michele Gerard · Jack Levy

Abstract Prophylactic interventions have lead to the reduction of the mother-to-child transmission (MTCT) of human immunodeficiency virus type 1 (HIV-1) to less than 2% in industrialized countries. The aim of this study was to evaluate the changes over time in vertical transmission according to the standard care of prophylaxis in the practice of a single large reference center and to identify the risk factors for failure. The rate of MTCT decreased progressively from 10% in 1986–1993 to 4.7% in 1999–2002, reflecting the progressive implementation of newly available means of prevention. During the last period evaluated (1999–2002), where highly active antiretroviral therapy (HAART) prophylaxis was the standard of care, 17% of women had a viral load between 400 and 20,000 copies/ml around delivery and 5% had a viral load above 20,000 copies/ml. High viral load and low CD4 lymphocyte count were strongly associated with vertical transmission. The rate of MTCT in women who received HAART for more than one month during pregnancy was 1.7%, compared to 13.3% in women treated with HAART for less than one month. The risk of vertical transmission in the absence of therapy was four times higher than before the era of antiretroviral therapy (ART; \(p=0.05 \)). In conclusion, since the prevention of MTCT of HIV with HAART is the standard of care, a short duration or absence of ART during pregnancy linked to late or absent prenatal care is associated with a high risk of transmission. The early detection of HIV-1 infection in pregnant women, and close follow up and support during pregnancy are crucial to the success of the prevention of transmission.

Keywords Vertical transmission · HIV infection · Pregnancy · Mother-to-child transmission

Abbreviations

MTCTMother-to-child transmission
HIVHuman immunodeficiency virus
ZDVZidovudine
HAARTHighly active antiretroviral therapy
ARTAntiretroviral therapy
CDCCenters for Disease Control and Prevention
PCRPolymerase chain reaction
ORSpecial ratio
CIColor

Introduction

Without any prophylaxis, the mother-to-child transmission (MTCT) rate of the human immunodeficiency virus type 1 (HIV-1) varies from 12 to 20% in industrialized countries, but reaches 35 to 40% in Africa, where breast-feeding is the norm [10, 17].

Formula feeding was the first measure proposed to reduce the exposure of the newborn to the virus. In 1994,
the efficacy of zidovudine (ZDV) given to the mother during pregnancy and delivery and to the newborn has been demonstrated to reduce MTCT [2]. In 1998, elective cesarean section has been recommended as an additional effective measure [6, 10, 11, 13]. Since 1996, the administration of highly active antiretroviral therapy (HAART) to HIV-infected pregnant women has been progressively generalized in industrialized countries. The combination of these preventive measures have lead to the reduction of MTCT to less than 2% [1, 12].

Between 1986 and 2002, 361 singletons babies born to HIV-infected mothers were followed up from birth in our center. During this period of time, the measures to prevent vertical transmission were made a part of standard care at the time they were implemented in most industrialized countries. This retrospective cohort study was conducted to evaluate the changes over time in the vertical transmission rates.

Methods

This is a retrospective cohort study on vertical transmission in infants born to HIV-1-infected mothers over the period 1986–2002.

Study population

All 361 singleton babies born alive between 1986 and 2002 from an HIV-1-infected mother and followed up since birth in our center were included in this study; eight twin pairs were excluded.

As the prophylactic measures used changed over time, we divided the whole group into three birth cohorts:

– Births between 1986 and 1993 (cohort 86–93): preventive measures included obstetrical interventions to shorten the duration of membrane rupture and the exposure of the newborn to the mother’s blood and vaginal secretions, together with the avoidance of breast-feeding.

– Births between 1994 and 1998 (cohort 94–98): in addition to the above, ZDV was given to the mother during the last trimester of pregnancy, intravenously during delivery and orally to the infant over the first 6 weeks of life. During a short period of time (October 1997 to 1998), the combination of ZDV and lamivudine was used in newborns.

– Births between 1999 and 2002 (cohort 99–02): the recommendation to perform an elective cesarean section at 38 weeks of gestation was introduced for all pregnancies and HAART was given during (at least) the last trimester of pregnancy.

Data collection

The following data were abstracted from the mothers’ medical records: ethnicity, parity, maternal age at delivery, time of maternal HIV diagnosis (before pregnancy, during pregnancy, or at delivery), type, and duration of maternal antiretroviral therapy (ART) regimen, viral load, CD4 lymphocyte count and maternal CDC stage at delivery. The obstetrical data included: date, mode of delivery, gestational age, episiotomy, and time between rupture of the amniotic membranes and delivery. The data from the newborns included: birth weight and diagnosis of HIV infection. Before 1994, viral culture and the persistence of HIV-1-specific antibodies after the age of 18 months were used to establish HIV infection in children, but since 1994, the diagnosis of HIV infection is based on the detection of proviral HIV DNA and/or by the determination of plasma HIV RNA viral load in two separate blood samples (AmpliCor method).

Outcome

The main outcome was the MTCT of HIV. Secondary outcomes were preterm birth (<37 weeks of gestation) and low birth weight (<2,500 g).

Statistical analysis

We computed the risk of vertical transmission of HIV and the risk of preterm birth according to maternal characteristics, preventive measures used, and period. We used logistic regression modeling to estimate the adjusted odds ratios (ORs) for the associations of different interventions implemented during pregnancy with the outcomes. Among 361 pregnancies, 34 were second and four were third consecutive pregnancies to the same mother in the cohort; they were considered as independent events. As data are often missing for the first period (1986–1993), some analyses only included the last two periods.

Statistical significance was assigned by a two-sided alpha level of 0.05. All p-values are two-tailed. Statistical analysis was performed using SPSS version 15.0 (SPSS Inc., Chicago, IL).

Results

The distribution of the maternal characteristics of the 361 infants included in the study, divided into the time cohorts, is shown in Table 1. Most of the mothers were of sub-Saharan African origin and had acquired HIV heterosexually. Maternal age and the proportion of non-European mothers increased over time.
Risk of vertical transmission

Table 2 describes the outcomes for each birth cohort according to the preventive measures other than avoiding breast-feeding. None of the mothers had ART given during pregnancy between 86–93, whereas, respectively, 86% and 95% of the 94–98 and 99–02 cohorts received antiretroviral prophylaxis. Over the whole period, vertical transmission occurred in 26 of the 361 infants. There was a progressive decline, although not significant, in the risk of vertical transmission between cohort 86–93 and cohort 99–02. A subgroup analysis of the women who did not receive ART during pregnancy showed a strong linear increase over time in the risk of vertical transmission: the risk was 10/100 (10.0%; 95%CI: 4.9%–17.6%) in the 86–93 cohort, 3/16 (18.8%; 95%CI: 4.0%–45.7%) in the 94–98 cohort, and

Table 1 Maternal characteristics according to birth cohort

	Cohort 86–93	Cohort 94–98	Cohort 99–02	p-value
	n=100	n=111	n=150	
Maternal age (years)	27.6 (4.7)	29.5 (4.4)	30.7 (5.5)	<0.001
Parity				
One	16 (21.3%)	30 (28.0%)	50 (33.3%)	
Two to three	41 (54.7%)	50 (46.7%)	82 (54.7%)	
Four or more	18 (24.0%)	27 (25.2%)	18 (12.0%)	0.03
Non-European mother	61 (69.3%)	86 (79.6%)	124 (84.9%)	0.02
Time of maternal HIV diagnosis				
Before pregnancy	52 (50.5%)	88 (58.7%)		
During pregnancy	48 (46.6%)	57 (38.0%)		
During delivery	3 (2.9%)	5 (3.3%)		0.38*
Maternal CDC stage at delivery				
A	90 (88.2%)	98 (66.7%)		
B	6 (5.9%)	39 (26.5%)		
C	6 (5.9%)	10 (6.8%)		<0.001
Viral load at delivery (copies/ml)				
≤400		114 (78.1%)	25 (17.1%)	
>20,000	NA	NA	7 (4.8%)	
CD4 at delivery <100 cells/ml	NA	5 (5.6%)	1 (0.7%)	0.03*
CD4 at delivery (cells/ml)	450 (6–1,515)	412 (90–1,656)	0.31	

*Exact test
1 Median (min–max) and Mann-Whitney test
NA=not available

Table 2 Preventive measures and outcomes distribution according to birth cohort

	Cohort 86–93	Cohort 94–98	Cohort 99–02	p-value
	n=100	n=111	n=150	
Type of ART regimen during pregnancy				
No ART	100 (100%)	16 (14.4%)	8 (5.3%)	
Mono or dual therapy	0 (0%)	94 (84.7%)	11 (7.3%)	<0.001*
Triple or quadruple therapy	0 (0%)	1 (0.9%)	131 (87.3%)	<0.001*
More than one month of ART during pregnancy	0 (0%)	58 (59.8%)	122 (81.3%)	<0.001*
Elective cesarian section	8 (8.7%)	37 (33.9%)	89 (59.7%)	<0.001
Less than 4 h between rupture of the amniotic membranes and childbirth	19 (57.6%)	75 (75.8%)	130 (87.8%)	<0.001
Episiotomy	19 (27.9%)	11 (10.1%)	8 (5.4%)	<0.001
Vertical transmission	10 (10.0%)	9 (8.1%)	7 (4.7%)	0.10*
Gestational age at birth <37 weeks	12 (12.0%)	13 (11.7%)	20 (13.3%)	0.91*
Birth weight <2,500 g	13 (13.5%)	14 (12.6%)	20 (13.3%)	0.98*

*Test for linear trend
1 Pearson chi-square
2 p-value for the comparison between cohort 94–98 and cohort 99–02
reached 3/8 (37.5%; 95%CI: 8.5%–75.5%) in the 99–02 cohort. Between 1999 and 2002, seven of the 150 infants were infected (4.7%; 95%CI: 1.9%–9.4%): three were born to mothers who did not receive ART prophylaxis because HIV diagnosis was made at delivery, two were born to mothers who received HAART for less than one month, and two to mothers who received HAART for more than one month during pregnancy.

High viral load and low CD4 lymphocyte count were strongly associated with vertical transmission. In the last cohort, among the seven mothers with a viral load $>20,000$ copies/ml around the time of delivery, two infants were infected, compared with four infants (3%) born to 139 mothers who had a viral load $<20,000$ copies/ml (risk ratio [RR]: 9.9; 95%CI: 2.2–45.3; $p=0.027$). In the period 94–02, among six mothers who had CD4 lymphocyte count <100 cells/ml, three transmissions occurred, compared with 11/229 (5%) among the mothers with a higher level of CD4 (RR: 10.4; 95%CI: 3.9–27.9; $p=0.003$).

Table 3 shows the associations between the type and duration of prophylaxis during pregnancy, obstetrical characteristics, and the risk of MTCT. The lowest risk of vertical transmission (1.7%; 95%CI: 0.2%–6.1%) was observed for mothers who received HAART for >1 month during pregnancy. Among the women who received prophylaxis, the risk of vertical transmission was greater when HAART was administered for less than one month as compared to >1 month (adjusted OR=6.7). Women who received a mono or a dual therapy for >1 month during pregnancy had a higher risk of transmission compared with those who received HAART for >1 month (adjusted OR=2.5), but this difference was not statistically significant. Performing an episiotomy was not a risk factor of vertical transmission after adjustment for treatment.

Table 4 shows the characteristics of mothers and pregnancies where vertical transmission occurred despite ART prophylaxis administered for >1 month during pregnancy. In the last three infants, the transmission occurred most probably during delivery, since the first polymerase chain reaction (PCR) obtained at birth was negative. The first mother was severely immunodepressed and reported a poor adherence to treatment and the second received ZDV only during the third trimester. The last two mothers had detectable viral load on delivery.

Table 3

Type of ART	Infected infants, n (%)	Crude OR (95%CI)	p-value*	Adjusted OR (95%CI)	p-value*
None	6/24 (25.0%)	19.0 (3.6–101.5)	25.9 (3.5–190.8)		
Mono or dual therapy ≤ 1 month	3/28 (10.7%)	6.8 (1.1–43.1)	6.7 (0.8–58.4)		
Mono or dual therapy >1 month	2/64 (3.1%)	1.8 (0.3–13.4)	2.5 (0.3–20.0)		
Tri or quadri-therapy ≤ 1 month	2/15 (13.3%)	8.8 (1.1–67.6)	6.7 (0.7–59.7)		
Tri or quadri-therapy >1 month	2/116 (1.7%)	1.0	1.0 (0.7–9.7)	0.04	0.02
Mode of delivery					
Vaginal delivery with episiotomy	2/19 (10.5%)	2.0 (0.4–10.4)	0.8 (0.1–11.0)		
Vaginal delivery without episiotomy	4/78 (5.1%)	0.9 (0.3–3.2)	0.4 (0.1–2.4)		
Emergency cesarean section	3/33 (9.1%)	1.7 (0.4–7.0)	1.7 (0.3–9.1)		
Elective cesarean section	7/126 (5.6%)	1.0	0.73 (0.3–9.1)	1.0	0.57
Duration between rupture of the amniotic membranes and childbirth <4	12/205 (5.9%)	1.0	1.0		
≥ 4	4/42 (9.5%)	1.7 (0.5–5.5)	0.38	1.44 (0.3–6.7)	0.65

OR=odds ratio; CI=confidence interval

*Wald test

4 Adjusted for age, parity, ethnicity, and other variables presented in the table (duration between rupture of the amniotic membranes and childbirth was not entered in models simultaneously with the mode of delivery because of colinearity)

Table 4

Table 4 shows the characteristics of mothers and pregnancies where vertical transmission occurred despite ART prophylaxis administered for >1 month during pregnancy. In the last three infants, the transmission occurred most probably during delivery, since the first polymerase chain reaction (PCR) obtained at birth was negative. The first mother was severely immunodepressed and reported a poor adherence to treatment and the second received ZDV only during the third trimester. The last two mothers had detectable viral load on delivery.

Risk of preterm delivery

Table 5 shows the association between the type and duration of ART prophylaxis during pregnancy and preterm delivery. Since the introduction of ART, mothers remaining untreated during pregnancy were more likely to be diagnosed late or to deliver prematurely. Therefore, the reference group we used was the group of women treated with mono or dual therapy.

The risk of preterm delivery (<37 weeks) was higher for women who received HAART and for untreated women compared to women who received mono or dual therapy. Interestingly, this risk was higher in women treated with HAART for <1 month compared to women treated with HAART for a longer duration. Among the women treated for >1 month, HAART was associated with low birth weight ($<2,500$ g) (adjusted OR: 1.4; 95%CI: 0.4–4.6 for
HAART compared with mono or dual therapy). These associations, however, were not statistically significant.

Discussion

Since the introduction of antiretroviral prophylaxis during pregnancy, the rate of MTCT of HIV has dramatically decreased in developed countries. In 1994, the PACTG076 study showed that ZDV given to the mother during pregnancy, delivery, and to the newborn could reduce the risk of transmission from 25% to 8% [2]. By 1996, combination ART progressively became the standard of care for the prevention of MTCT. In recent studies, the transmission was shown to be reduced to <2% in mothers treated with HAART [3, 5]. Our study aimed primarily at reviewing the impact of prophylactic measures on vertical transmission in a single reference center cohort of infants born to HIV-1-infected mothers between 1986 and 2002. The decrease in the vertical transmission rate from 10% in 1986–1993 to 4.7% in 1999–2002 reflects the progressive implementation of newly available means of prevention. Whilst the transmission rate is 4.7% globally for the cohort in the era of HAART, it is lower than 2% in women who received HAART for more than one month during pregnancy.

The timing of the diagnosis has an obvious impact on the feasibility of implementing prophylactic measures to reduce MTCT. During the period 94–02, 43% of the women were diagnosed with HIV infection during pregnancy or at delivery, and 24/261 (9%) had no antenatal ART prophylaxis: the MTCT rate in this small group of patients was 25%. The risk of vertical transmission in untreated women in the era of HAART was four times higher than in the group of mothers followed before 1994 (p=0.05). This suggests that factors such as late diagnosis during pregnancy, poor antenatal care, insufficient implementation of preventive interventions associated or not with social

Table 4 Characteristics of mothers and pregnancies where vertical transmission occurred despite ART prophylaxis being administered for longer than 1 month during pregnancy

Year of birth	Age (years)	Ethnicity	Parity	BF HIV diagnosis	On delivery	Treatment During pregnancy	On delivery	Compliance	BF	Delivery mode	First PCR	GA (weeks)	
1994	29	A	1	no before P	C3	NA	18	ZDV 2nd and 3rd trimester	–	poor	no ECs	NA	36
1996	30	E	1	no during P	A1	NA	814	ZDV 3rd trimester	ZDV IV	good	no VD	neg	41
1999	37	A	1	no before P	B2	2,400	242	HAART 2nd and 3rd trimester	ZDV IV	good	no ECs	neg	38
1999	40	A	3	no during P	A2	19,900	397	HAART 3rd trimester	ZDV IV	poor	no ECs	neg	38

A=African; E=European; P=pregnancy; VL=viral load; GA=gestational age; BF=breast-feeding; ECs=elective cesarean section; VD=vaginal delivery; NA=not available

Table 5 Risk of preterm birth (<37 weeks) according to the administration of ART during pregnancy (1986–2002)

Type of treatment during pregnancy	n (%)	Crude OR (95%CI)	p-value*	Adjusted OR (95%CI)	p-value*
None	15 (12.1%)	1.3 (0.6–3.0)	1.0	1.4 (0.5–4.2)	1.0
Mono or dual therapy	10 (9.5%)	1.0	0.43	2.5 (1.0–6.5)	0.15
Tri or quadri-therapy	20 (15.2%)	1.7 (0.8–3.8)	0.04	3.1 (0.4–25.9)	0.08

Duration of ART during pregnancy

None	15 (12.1%)	1.8 (0.4–8.3)	0.04	3.1 (0.4–25.9)	0.08
Mono or dual therapy ≤1 month	2 (7.1%)	1.0	1.0	1.0	1.0
Mono or dual therapy >1 month	6 (9.4%)	1.4 (0.3–7.1)	1.4	1.0 (1.0–13.4)	1.0
Tri or quadri-therapy ≤1 month	6 (5.0%)	8.7 (1.5–50.9)	10.1	1.0 (1.0–103.2)	1.0
Tri or quadri-therapy >1 month	13 (11.2%)	1.6 (0.4–7.7)	0.04	3.1 (0.4–25.9)	0.08

OR=odds ratio; CI=confidence interval
p-value Wald test
Adjusted for age, parity, and ethnicity
précocité play a significant role in vertical transmission. The duration of prophylaxis appeared to play a crucial role in its effectiveness. Among the mothers treated with HAART for <1 month, 13.3% transmitted HIV to their newborn compared with 1.7% in mothers treated for >1 month. Among the women receiving ART for >1 month during pregnancy, those who received a mono or a dual therapy tended to have a higher risk of vertical transmission (3.1%) compared to the women who received HAART (1.7%). Due to the lack of power, this difference was not significant, but it persisted after adjustment for other obstetrical interventions, which indicates that it does not only reflect a more systematic implementation of these preventive interventions in the era of HAART.

In agreement with other studies, we showed that MTCT was correlated with high maternal viral load and low CD4 count at delivery [5, 16]. In our cohort, the rate of transmission was similar in elective cesarean section and in vaginal delivery without episiotomy (6% and 5%, respectively). Current guidelines no longer propose cesarean section in mothers with undetectable viral load [9].

Several studies have suggested that the use of HAART during pregnancy was associated with the increased risk of preterm birth [4, 7, 14], although others could not confirm this observation [15]. We found that HAART administered for a short duration was associated with a higher risk of preterm birth, which could either reflect the lower opportunity of women who deliver preterm in receiving treatment, or represent an acute side-effect of HAART in a subsample of women. Among the women treated for longer periods, the differences between premature delivery between the mother receiving HAART and the mother receiving mono or dual therapy was not significant, and this might possibly be due to lack of the power due to the small sample size. Obviously, there are other maternal factors known to be associated with preterm delivery, including ethnicity, socio-economic factors, illicit drug use, poor quality of the obstetrical follow up, or poor clinical status of the mother. In our cohort, most women were of African origin and living in poor socio-economic situations. The rate of premature birth in this population in Brussels is known to be higher than in the general population (9.7% vs. 7.4%) [8].

In conclusion, HAART given during pregnancy, together with other preventive measures, allows us to dramatically decrease the MTCT of HIV. However, transmission still occurs at a high rate in the subgroup of women who miss the opportunity to benefit from these interventions because of a late diagnosis of HIV infection or poor antenatal care.

Acknowledgment The authors would like to thank the mothers who participated to this study. The Smiles Foundation, Belgium, supported this study.

References

1. Coll O, Fiore S, Floridia M, Giaquinto C, Grosch-Wörner I, Guilliano M, Lindgren S, Lyall H, Mandelbrot L, Newell ML, Peckham C, Rudin C, Semprini AE, Taylor G, Thorne C, Tovo PA (2002) Pregnancy and HIV infection: a European consensus on management. AIDS 16(Suppl 2):S1–S18

2. Connor EM, Sperling RS, Gelber R, Kiselev P, Scott G, O’Sullivan MJ, VanDyke R, Boy M, Shearer W, Jacobson RL, Jimenez E, O’Neill E, Bazin D, Delfraissy J-F, Culhane M, Coombs R, Elkins M, Moye J, Stratton P, Balslev J (1994) Reduction of maternal-infant transmission of human immunodeficiency virus type 1 with zidovudine treatment. Pediatric AIDS Clinical Trials Group Protocol 076 Study Group. N Engl J Med 331(18):1173–1180

3. Cooper ER, Charurat M, Mofenson L, Hanson IC, Pitt J, Diaz C, Hayani K, Handelsman E, Smeriglio V, Hoff R, Blattner W; Women and Infants’ Transmission Study Group (2002) Combination antiretroviral strategies for the treatment of pregnant HIV-1-infected women and prevention of perinatal HIV-1 transmission. J Acquir Immune Defic Syndr 29(3):484–494

4. European Collaborative Study; Swiss Mother and Child HIV Cohort Study (2000) Combination antiretroviral therapy and duration of pregnancy. AIDS 14(18):2913–2920

5. European Collaborative Study (2005) Mother-to-child transmission of HIV infection in the era of highly active antiretroviral therapy. Clin Infect Dis 40(3):458–465

6. The European Mode of Delivery Collaboration (1999) Elective caesarean-section versus vaginal delivery in prevention of vertical HIV-1 transmission: a randomised clinical trial. Lancet 353 (9158):1035–1039

7. Grosch-Wörner I, Puch K, Maier RF, Niehues T, Notheis G, Patel D, Castelein S, Feiterna-Sperling C, Groeger S, Zakrun D; Multicenter Interdisciplinary Study Group Germany/Austria (2008) Increased rate of prematurity associated with antenatal antiretroviral therapy in a German/Austrian cohort of HIV-1-infected women. HIV Med 9(1):6–13

8. Haelterman E, De Spiegelaere M (2007) Les Indicateurs de Santé Périnatale en Région de Bruxelles-Capitale, 1998–2004. In: Rapport Observatoire de la Santé et du Social., Observatoire de la Santé et du Social, Brussels. Available online at: http://www.observathru.be/documents/Pernatalite.pdf

9. Hawkins D, Blott M, Clayden P, de Ruiter A, Foster G, Gilling-Smith C, Gosrani B, Lyall H, Mercey D, Newell ML, O’Shea S, Smith R, Sunderland J, Wood C, Taylor G; BHIVA Guidelines Writing Committee (2005) Guidelines for the management of HIV infection in pregnant women and the prevention of mother-to-child transmission of HIV. HIV Med 6(Suppl 2):107–148

10. The International Perinatal HIV Group (1998) The mode of delivery and the risk of vertical transmission of human immunodeficiency virus type 1—a meta-analysis of 15 prospective cohort studies. N Engl J Med 340(13):977–987

11. Landers DV, Duarte G (1999) Mode of delivery and the risk of vertical transmission of HIV-1. N Engl J Med 341(3):205–207

12. Newell ML, Thorne C (2004) Antiretroviral therapy and mother-to-child transmission of HIV-1. Expert Rev Anti Infect Ther 2 (5):717–732

13. Rowland BL, Vermillion ST, Soper DE (2001) Scheduled cesarean delivery and the prevention of human immunodeficiency virus transmission: a survey of practicing obstetricians. Am J Obstet Gynecol 185(2):327–331

14. Townsend CL, Cortina-Borja M, Peckham CS, Tookey PA (2007) Antiretroviral therapy and premature delivery in diagnosed HIV-infected women in the United Kingdom and Ireland. AIDS 21 (8):1019–1026
15. Tuomala RE, Shapiro DE, Mofenson LM, Bryson Y, Culnane M, Hughes MD, O’Sullivan MJ, Scott G, Stek AM, Wara D, Bulterys M (2002) Antiretroviral therapy during pregnancy and the risk of an adverse outcome. N Engl J Med 346(24):1863–1870

16. Warszawski J, Tubiana R, Le Chenadec J, Blanche S, Teglas JP, Dollfus C, Faye A, Burgard M, Rouzioux C, Mandelbrot L; ANRS French Perinatal Cohort (2008) Mother-to-child HIV transmission despite antiretroviral therapy in the ANRS French Perinatal Cohort. AIDS 22(2):289–299

17. The Working Group on Mother-To-Child Transmission of HIV (1995) Rates of mother-to-child transmission of HIV-1 in Africa, America, and Europe: results from 13 perinatal studies. J Acquir Immune Defic Syndr Hum Retrovirol 8(5):506–510
3.2. Impact du traitement précoce de l’infection par le VIH chez le nourrisson

Comme pour l’adulte, le recours aux multithérapies antirétrovirales a permis, à partir de 1996, de réduire considérablement la morbidité et la mortalité des enfants infectés par le VIH comme l’atteste la figure 8 issue d’une publication de l’European Collaborative Study [97].

Figure 8 : Courbes de survie des enfants infectés par voie verticale pour différentes cohortes de naissances entre 1985 et 1999. Reproduit avec l’autorisation de C. Thorne, Institute of Child Health, London, UK

De plus, à partir de 1994, la recherche du matériel génétique du VIH par PCR durant les premiers mois de vie a permis un diagnostic précoce de l’infection chez le très jeune nourrisson. Comme décrit précédemment l’évolution de l’infection par le VIH chez le nouveau-né peut être rapide et sévère dans un quart des cas et aboutir au SIDA ou au décès avant l’âge de 1 an et il n’existe pas de bons facteurs prédictifs de cette évolution rapidement défavorable. Dès le début de l’ère des multithérapies, la question de savoir s’il valait mieux traiter précocement les nourrissons infectés, et avant toute apparition de symptômes ou s’il fallait attendre la baisse de l’immunité ou l’apparition de symptômes pour initier le traitement a donc été soulevée. Le débat entre les partisans et les opposants au traitement précoce a d’abord eu lieu au sein des pays industrialisés où les médicaments ARV étaient disponibles. Les arguments en faveur du traitement précoce étaient le risque non prédictible de progression rapide et la démonstration dès les premières études de la possibilité de suppression virale chez les nouveau-nés traités.
précocement [98, 99]. En revanche, les arguments en défaveur du traitement précoce étaient la pharmacocinétique mal connue des agents ARV en début de vie, la difficulté d’initier un traitement « à vie » chez un nourrisson (dans le cadre de l’annonce aux parents de l’infection de leur enfant), le risque élevé de développement de résistance si le traitement était mal donné, et la peur des effets secondaires lors d’administration des ARV à cet âge. En conséquence, et en l’absence de données fortes en faveur du traitement précoce, les différentes recommandations européennes, américaines et de l’OMS proposaient jusqu’en 2007 de débuter un traitement chez les nourrissons infectés lors de l’apparition de symptômes décrits au stade B ou C de la maladie ou en présence d’une chute des lymphocytes CD4.

3.2.1. Publication de l’expérience belge du traitement précoce

Parmi les 19 enfants infectés par le VIH suivis au CHU Saint-Pierre entre 1985 et 1996, 7 ont développé des manifestations sévères de la maladie dès les premiers mois de vie et 5 sont décédés avant l’âge de 2 ans. Sur base de cette expérience, le choix a été fait de traiter tous les nouveau-nés infectés, dès la confirmation de l’infection, sans attendre l’apparition des symptômes. En 2005, nous avons réalisé une étude rétrospective des dossiers cliniques de 17 enfants, nés en Belgique, infectés par voie verticale et traités précocement dont la publication est présentée p. 44. Le traitement avait été initié chez tous les enfants avant 66 jours de vie, et incluait pour la plupart un INNTI associé à 2 INTI. La grande majorité de ces enfants avait atteint une suppression virale à l’âge de 4 mois, et l’absence d’évolution clinique ou immunologique contrastait avec ce qui était attendu sur base de l’expérience du centre au cours des 10 années précédentes et des données historiques accumulées sur l’histoire naturelle de la maladie sans traitement. Chez certains enfants traités très précocement, la suppression précoce de la réplication virale avait permis d’empêcher la production d’anticorps chez le nourrisson. L’enfant, bien qu’infecté par le virus, devenait alors séronégatif après l’âge de 1 an après perte des anticorps maternels circulants [98], comme l’illustre la figure 9.
Figure 9: Disparition des anticorps maternels chez un enfant infecté et traité précocement. (méthode de Western Blood)
EFFECTIVENESS OF EARLY INITIATION OF PROTEASE INHIBITOR-SPARING ANTIRETROVIRAL REGIMEN IN HUMAN IMMUNODEFICIENCY VIRUS-1 VERTICALLY INFECTED INFANTS

Dimitri Van der Linden, MD,* Marc Hainaut, MD,* Tessa Goethgebaer, MD,* Edwige Haeltlman, MD, MSc, Véronique Schmitz, MD,† Philip Maes, MD,‡ Alexandra Peliter, MD,* and Jack Levy, MD, PhD*

Abstract: Each of the 17 vertically infected infants born to HIV-1-infected mothers in Belgian HIV reference centers since 1996 was treated with a combination of 3 reverse transcription inhibitors as soon as the diagnosis was established. Treatment was initiated in all patients before 66 days of life. Twelve patients, including 11/13 infants treated with the combination of zidovudine, lamivudine and nevirapine, experienced a complete viral suppression (<50 copies/mL) with their first drug regimen. At last follow-up, 12 patients were asymptomatic, 2 were CDC stage A and 3 were stage B; 15 had HIV-1 RNA levels of <50 copies/mL and 14 had ≥25% CD4 lymphocytes. These results suggest that early initiation of treatment with 3 reverse transcription inhibitors is highly effective to inhibit viral replication and to prevent clinical and immunologic progression of HIV infection in vertically infected infants.

Key Words: infants, highly active antiretroviral therapy, HIV, viral load

Accepted for publication January 11, 2007.

From the *CHU Saint-Pierre, ULB, Brussels; †CHR de la Citadelle, ULg, Liège; and ‡AZM Koningin Paola Kinderziekenhuis, Antwerp.

Address for correspondence: Jack Levy, Pediatric department, Centre Hospitalier Universitaire St Pierre, 322 rue haute, 1000 Brussels, Belgium. E-mail: jack_levy@stpierre-bru.be.

Copyright © 2007 by Lippincott Williams & Wilkins

DOI: 10.1097/01.inf.0000258626.34984.eb

In the absence of treatment about 20% of HIV-1 vertically infected children develop severe manifestations of the disease within the first year of life.1,2 There are no markers to identify infants who are at risk for rapid disease progression. When highly active antiretroviral therapy (HAART) became available, early treatment of vertically infected infants to avoid rapid progression was advocated3,4 and this approach has been supported by a reduction in disease progression observed in cohorts of HIV-1-infected infants followed since birth.5,6 The limited number of studies that have assessed the efficacy of HAART initiated before 3 months of age have confirmed the absence of major clinical or immunologic progression, but have reported a low rate of virologic success.7,8

In 1996, we decided to treat all vertically HIV-1-infected infants as soon as the diagnosis was established with a regimen including 3 reverse transcription inhibitors (RTI). Between 1996 and 2003 each of the 17 infected infants followed in 3 Belgian pediatric HIV reference centers were treated accordingly. We report the ability of these protease inhibitor (PI)-sparking regimen initiated early in life to inhibit viral replication, and to prevent clinical and immunologic progression of HIV infection.

MATERIALS AND METHODS

Vertical transmission of HIV-1 infection was established on the basis of 2 positive virologic tests (DNA or RNA PCR) performed on 2 separate blood samples. For this purpose, blood samples were taken from all infants born to known HIV-1-infected mothers before 48 hours of life and at 1, 2 and 3 months. Plasma HIV-1 RNA copies were measured using the Amplicor HIV-1 monitor test, version 1.5 (Roche) from December 1996 to June 2002. From June 2002 onwards the Cobas Ampliprep/Cobas Amplicor HIV-1 monitor test version 1.5 was used.

A PI-sparking combination of 3 antiretroviral agents was administered as soon as feasible after the confirmation of infection. At the time of initiation of this protocol only nucleoside reverse transcription inhibitors (NRTIs) were available for use in young children and the infants were treated with a combination of zidovudine (ZDV), didanosine (ddI) and lamivudine (3TC). When nonnucleoside reverse transcription inhibitors (NNRTIs) became available, the first line regimen was ZDV + 3TC + nevirapine (NVP). These 3 drugs were chosen because they are easily administered to infants and pharmacokinetic data were available for young age groups. Other drugs were considered as second line in case of suspected resistance.

Children were assessed at the time of initiation of therapy, at months 1 and 3 and then at least every 3 months. Assessment included physical examination, tolerability and blood sampling for laboratory assessment. Data collection ended in June 2005.

RESULTS

Patient Characteristics. Seventeen infected infants were born between December 1996 and April 2003: 14 in Brussels, 2 in Liège and 1 in Antwerp. Ten of the 17 were born by cesarean delivery. Four were premature (gestational ages from 30 to 35 weeks). Nine of the 17 infants had received complete antiretroviral prophylaxis (antenatal, peripartal and postnatal). All but 4 were treated prophylactically postnatally with at least ZDV. The age at first detection of HIV-1 suggests in utero transmission in 8 patients, peripartal transmission in 4 patients and was indeterminate for 5 patients (Table 1).

At initiation of therapy, 1 infant (Table 1, ID3) was classified in CDC clinical category B and the 16 others were asymptomatic (stage N). The time elapsed between diagnosis of vertical transmission and the initiation of treatment was less than 30 days in 13/17. Treatment was initiated in all patients within 66 days of life. Treatment characteristics and outcome are summarized in the table.

Initial Antiretroviral Therapy. Two infants born in 1996 were treated with ZDV + ddI + 3TC and 13 infants received ZDV + 3TC + NVP. Two infants received stavudine (d4T) + ddI + NVP because of concern about baseline resistance.

Viral suppression (<50 copies/mL) with the first antiretroviral regimen was achieved in 12/17 infants. Eleven of these 12 infants had plasma HIV-1 RNA <400 copies/mL 17 weeks after initiation of HAART (median: 8 weeks, range: 3–17), and a plasma HIV-1 RNA level <50 copies/mL after 42 weeks (median: 16 weeks, range: 6–42). One patient (ID 16) had a much slower response (plasma HIV-1 RNA level <400 and <50 copies/mL after 47 and 65 weeks, respectively). Among the 12 patients who experienced virologic success with their first line therapy, 11 were treated with the combination of ZDV + 3TC + NVP and 1 with ZDV + 3TC + ddI.

Five of the 17 patients failed to reach plasma HIV-1 RNA of <50 copies/mL with the initial therapy. One (ID 6) was born at 33 weeks of gestation after 6 weeks of maternal therapy with ZDV + 3TC + NVP + NFV and pharmacokinetic factors relating to prematurity as well as prior resistance could explain the poor response. Another patient (ID 7) had received prolonged ZDV + 3TC prophylaxis, and was then treated with d4T + ddI + NVP initiated at 60 days of life. Although baseline resistance testing showed only a single mutation (M184V) associated to 3TC resistance, his lowest viral load with the regimen was 413 copies/mL despite an apparent good compliance. Periods of major lack of compliance were acknowledged by the parents of the other 3 patients (ID 1, 10 and 15).
Treatment Modifications. Eleven of the 17 patients remain treated with their initial regimen at last follow-up: 10 with ZDV + 3TC + NVP and 1 with ZDV + 3TC + ddI. One patient had a change in treatment regimen to decrease the pill burden. Five other patients had 6 changes of therapy because of failure. Three children have received a PI (nelfinavir (NFV) or lopinavir/ritonavir) after their initial therapy. Follow-up and Long-Term Virologic Outcome. Median follow-up duration on June 2005 was 56 months (range 26–103). All patients were alive and treated with HAART. None had developed AIDS-associated events since initiation of therapy. Two patients had progressed from CDC stage N to A (multiple adenopathies) during a period of interrupted therapy and 2 patients progressed to stage B (severe bacterial infection). The viral load of 15/17 patients was <50 copies/mL at last follow-up.

Among the 12 infants who had viral suppression with their initial regimen, 5 had plasma HIV-1 RNA permanently <50 copies/mL (all treated with ZDV + 3TC + NVP) and 7 had 1 or several rebounds but had undetectable viral load at last follow-up. Among the 5 patients who did not achieve viral suppression with the initial therapy, 3 eventually had plasma HIV-1 RNA <50 copies/mL with second or third line regimens and maintained undetectable plasma viral load at last follow-up. Tolerance of Antiretroviral Therapy. One patient had severe side effects (nonregenerative anemia and pancreatitis) when his treatment was simplified to crushed tablets of Trizivir (association of ZDV-3TC-ABC) to decrease the number of pills. One patient treated for the last 4 years with d4T + ddI + ABC developed clinical signs of lipodystrophy. Hypercholesterolemia and hypertriglyceridaemia were observed in 4 patients. Prevalence of febrile seizures in this cohort was 23.5% with multiple events in 2 patients. Production of Antibodies. Among the 12 patients who achieved viral suppression with their initial regimen, 6 (50%) became seronegative for HIV-1 before the age of 19 months, among whom 5 remained seronegative at last follow up (ID 2, 3, 5, 12, 13).9

DISCUSSION

No randomized trials have investigated the benefit of beginning HAART in asymptomatic infants diagnosed very early in life. Such trials are now difficult to perform in industrialized countries, because prophylaxis with these drugs has markedly reduced the rate of vertical transmission. Two prospective open-labeled non comparative trials of antiretroviral treatments with at least 3 drugs administered in the first months of life to asymptomatic infected infants have been reported by European (PENTA) and North American (PACTG) collaborative groups.7-8 The clinical outcomes in these 2 trials were good, confirming the information obtained from cohorts follow up but suppression of viral replication was difficult to obtain. In the PENTA trial, only 4/20 infants treated with a combination of d4T, ddI and NFV achieved suppression of plasma HIV-1 RNA to <50 copies/mL.7 In PACTG 356, 15/25 infants treated before 3 months of age had <400 HIV-1 RNA copies/mL at 48 weeks. Triple or quadruple PI-sparing regimens were inferior to a quadruple therapy including a PI.

In our cohort, treatment with a regimen including 3 RTI initiated before 2.5 months of age reduced plasma HIV-1 RNA to <50 copies/mL in 70% of the infants, an efficacy comparable to that obtained with a 4 drugs regimen including 2 NRTI, 1 NNRTI and 1 PI in PACTG 356. Lack of compliance of the parents to treatment might be an explanation for the disappointing results observed in earlier studies. If HAART is initiated very early in the life of HIV vertically infected infants, the time to build a relationship between the pediatric team and the parents to obtain their adhesion to treatment is short. In our centers, the multidisciplinary pediatric team is involved in the care as soon as possible during pregnancy, to help the parents to cope with the diagnosis, to break the social barriers to treatment and to support them in the care of the infant if vertical transmission occurs. Among other explanations that might explain the high rate of virologic failure in PENTA 7 was the poor pharmacokinetic profile of NFV in infants, and the fact that ddI has to be administered on an empty stomach, adding an additional constraint during early life. The absence of food restriction of the association of ZDV + 3TC + NVP, its tolerability and well established pharmacokinetic data for use in infants make it an attractive option in this setting, as indicated by our data. However this regimen has a low genetic barrier to resistance and would not be suitable in case of baseline resistance to any of its component.

In conclusion, a 3 drugs regimen including only RTI initiated during the first few weeks of life in HIV-1 vertically infected infants
is easy to administer, well tolerated and can inhibit HIV-1 replication in the long term. It prevents clinical and immunologic progression and in some patients specific antibody production. Parental adherence to therapy is crucial. Close follow up of these children to detect the occurrence of metabolic abnormalities is important.

ACKNOWLEDGMENTS

The authors thank the patients and their families for their collaboration.

This study was supported by the Smiles Foundation, Belgium and a grant from the European AIDS Clinical Society (to DVdL).

REFERENCES

1. Gray L, Newell ML, Thorne C, Peckham C, Levy J. Fluctuations in symptoms in human immunodeficiency virus-infected children: the first 10 years of life. Pediatrics. 2001;108:116–122.
2. Blanche S, Newell ML, Mayaux MJ, et al. Morbidity and mortality in European children vertically infected by HIV-1. The French Pediatric HIV Infection Study Group and European Collaborative Study. J Acquir Immune Defic Syndr Hum Retrovir. 1997;14:442–450.
3. Luzuriaga K, Bryson Y, Krogstad P, et al. Combination treatment with zidovudine, didanosine, and nevirapine in infants with human immunodeficiency virus type 1 infection. N Engl J Med. 1997;336:1343–1349.
4. Hainaut M, Peltier CA, Gerard M, Marissens D, Zissis G, Levy J. Effectiveness of antiretroviral therapy initiated before the age of 2 months in infants vertically infected with human immunodeficiency virus type 1. Eur J Pediatr. 2000;159:778–782.
5. Faye A, Le Chenadec J, Dollfus C, et al. Early versus deferred antiretroviral multidrug therapy in infants infected with HIV type 1. Clin Infect Dis. 2004;39:1692–1698.
6. Chiappini E, Galli L, Tovo PA, et al. Virologic, immunologic, and clinical benefits from early combined antiretroviral therapy in infants with perinatal HIV-1 infection. Aids. 2006;20:207–215.
7. Abouker JP, Babiker A, Chaux ML, et al. Highly active antiretroviral therapy started in infants under 3 months of age: 72-week follow-up for CD4 cell count, viral load and drug resistance outcome. Aids. 2004;18:237–245.
8. Luzuriaga K, McManus M, Mofenson L, Britto P, Graham B, Sullivan JL. A trial of three antiretroviral regimens in HIV-1-infected children. N Engl J Med. 2004;350:2471–2480.
9. Hainaut M, Peltier CA, Goorhebuer T, et al. Seroreversion in children infected with HIV type 1 who are treated in the first months of life is not a rare event. Clin Infect Dis. 2005;41:1820–1821.
3.2.2. Etude collaborative européenne de l’impact du traitement précoce de l’infection par le VIH chez le nourrisson

Plusieurs autres centres dans les pays industrialisés ont également décidé de traiter tous les nourrissons infectés avant l’apparition de symptômes ou la chute de lymphocytes, et dès 2000 des publications ont démontré qu’une multithérapie précoce permettait d’empêcher la réplication virale chez le nouveau-né infecté par voie verticale [59, 60, 98, 99].

Pendant des années les pratiques de traitement des nouveau-nés variaient en Europe d’un pays à l’autre ou d’un centre à l’autre au sein d’un même pays. Alors qu’une étude randomisée avait été initiée en Afrique du Sud pour évaluer les bénéfices de l’initiation thérapeutique précoce, et qu’il était devenu impossible de faire une telle étude prospective dans les pays industrialisés étant donné que les naissances d’enfants infectés par le VIH étaient devenues rares, nous avons voulu étudier rétrospectivement l’impact du traitement précoce en comparant le devenir des enfants traités précocement ou non au sein des différentes cohortes européennes. En 2006, nous avons donc initié l’étude européenne multicentrique EIC (European Infant Collaboration). Les différentes cohortes européennes participant au réseau PENTA (Paediatric European Network for Trials in AIDS) ont été invitées à participer à cette étude, et les données de 327 enfants infectés par le VIH, nés entre 1996 et 2004 dans 11 pays européens ont été recueillies. Afin de comparer le devenir des enfants traités précocement ou non, et de se rapprocher du design d’une étude prospective, nous avons exclu les enfants n’ayant pas bénéficié de prophylaxie néonatale car cela signifiait que la séropositivité maternelle n’était pas connue à la naissance. Nous avons alors sélectionné les enfants diagnostiqués avant l’âge de 3 mois et avons exclu les enfants ayant développé un stade SIDA ou perdus de vue avant l’âge de 3 mois. La population étudiée cliniquement comprenait 210 enfants infectés par le VIH, diagnostiqués et toujours asymptomatiques à l’âge de 3 mois. Pour l’analyse des données biologiques, nous avons sélectionné les enfants ayant débuté un traitement ARV hautement actif avant l’apparition du stade SIDA et avant l’âge de 1 an (figure 10).

Dans cette population de 210 enfants infectés par le VIH et asymptomatiques à l’âge de 3 mois, la proportion cumulée d’enfants mis sous traitement était de 23% avant l’âge de 1 mois, 59% avant 3 mois et 87% avant l’âge de 1 an (figure 11). Il existait des différences importantes de mise sous traitement selon les pays concernés. La population a été divisée en deux groupes : les enfants traités précocement (124 enfants traités avant l’âge de 3 mois) et les enfants traités tardivement (84 enfants traités après 3 mois de vie). Nous avons alors pu comparer leur évolution clinique et biologique. Ces deux groupes ne différaient pas en terme de caractéristiques anténatales, néonatales et démographiques.
327 nourrissons infectés

Absence de prophylaxie néonatale 68

Prophylaxie néonatale 259

Diagnostic > 3 mois 43

Diagnostic < 3 mois 216

SIDA < 3 mois 4

Perdu de vue < 3 mois 2

Asymptomatique à 3 mois 210

Traitement multithérapie < 1 an 139

Figure 10: Sélection de la population de l’étude EIC

Figure 11 : Proportion cumulative d’enfants inclus dans l’étude EIC mis sous traitements depuis la naissance (n=210).
La durée médiane du suivi était de 58 mois, et 24 enfants ont développé un SIDA ou sont décédés pendant ce suivi. Les événements caractéristiques du SIDA rapportés étaient des encéphalites, des pneumonies à *Pneumocystis jiroveci*, des infections bactériennes récurrentes, des retards de croissance sévères, et des infections disséminées à CMV. La publication présentée page 51 décrit le devenir clinique de ces enfants en relation avec l’âge d’instauration du traitement. Nous avons pu constater que le risque de développer un SIDA ou de décéder était 5 fois plus important chez les enfants traités après l’âge de 3 mois que chez ceux chez qui le traitement était débuté avant 3 mois (HR 5.0 95%CI 2.0-12.6, p=0.001). Après ajustement pour les cohortes, ce risque restait significatif (HR 3.0 95%CI 1.2-7.9, p=0.021). Cette étude, la plus importante réalisée dans un pays industrialisé sur ce thème, venait donc confirmer les précédentes sur les bénéfices de l’initiation précoce du traitement antirétroviral chez le nouveau-né infecté.

Une deuxième publication (page 59-62) issue de cette étude a décrit l’évolution immunologique et virologique de ces enfants en réponse au traitement ARV. Nous avons montré que la réponse virologique précoce était plus rapide, avec une amputation du pic de charge virale si le traitement était débuté avant 3 mois, avec comme corolaire une diminution moins importante des lymphocytes CD4 en début de vie. Cependant il est apparu qu’au long terme, il n’y avait plus de différence au niveau de la charge virale ni du taux de CD4 entre les enfants traités précocement ou non.

De façon intéressante il existe chez les enfants traités précocement une corrélation significative entre l’âge de début de traitement et le pic de charge virale comme l’illustre la figure 12.

Figure 12 : Corrélation entre l’âge de début de traitement et la valeur du pic de charge virale avant l’âge de 3 mois.
L'ensemble des résultats de l'étude EIC [100, 101] suggère que le contrôle de la réplication virale en tout début de vie est important pour prévenir l'évolution clinique défavorable chez les nourrissons infectés par le VIH. En effet, le gain du contrôle de la charge virale et du maintien des CD4 au cours des premiers mois de vie est l'élément critique de cette protection. Le bénéfice clinique n'est pas seulement précoce, mais se maintient même si les paramètres biologiques ne diffèrent pas à long terme.
Effect of early antiretroviral therapy on the risk of AIDS/death in HIV-infected infants

Tessa Goetghebuer, Edwige Haelterman, Jerome Le Chenadec, Catherine Dollfus, Diana Gibb, Ali Judd, Hannah Green, Luisa Galli, Jose Tomas Ramos, Carlo Giaquinto, Josiane Warszawski, Jack Levy, for the European Infant Collaboration group

Objective: In the absence of treatment, rapid progression to AIDS occurs in approximately 20% of HIV-1-infected infants over the first year of life. The prognosis of these children has considerably improved with highly active antiretroviral therapy. As data from well resourced countries are lacking, the objective of this collaborative study was to evaluate the impact of early treatment in vertically infected infants.

Design: Children born to HIV-infected mothers between 1 September 1996 and 31 December 2004, who were diagnosed with HIV and free of AIDS before 3 months, were eligible. Demographics and pregnancy data, details of antiretroviral therapy, and clinical outcome were collected from 11 European countries.

Methods: The risk of AIDS or death, by whether or not an infant started treatment before 3 months of age, was estimated by Kaplan–Meier survival analysis and Cox proportional hazards models.

Results: Among 210 children, 21 developed AIDS and three died. Baseline characteristics of the 124 infants treated before 3 months were similar to those of the 86 infants treated later. The risk of developing AIDS/death at 1 year was 1.6 and 11.7% in the two groups, respectively (P < 0.001). Deferring treatment was associated with increased risk of progression [crude hazard ratio 5.0; 95% confidence interval (CI) 2.0–12.6; P = 0.001] that persisted after adjusting for cohort in multivariate models (adjusted hazard ratio 3.0; 95% CI 1.2–7.9; P = 0.021).

Conclusion: In HIV-1 vertically infected infants, starting antiretroviral therapy before the age of 3 months is associated with a significant reduction in progression to AIDS and death.

Introduction

In the absence of highly active antiretroviral therapy (HAART) about 20% of children born in developed countries will progress to AIDS or die in the first year of life [1–3]. Markers for high risk of rapid disease progression in children under 12 months of age are inaccurate, although infants with positive PCR at birth...
(presumed to be infected in utero) appear to be at higher risk [4,5]. When HAART became available in the mid-1990s, initiation of combination therapy in the first months of life was advocated as a possible approach to avoid rapid progression of disease [6,7]. However, this remained controversial: the limited knowledge on pharmacokinetics of antiretroviral drugs in early life and the lack of appropriate formulations for infants complicated their administration, and there were concerns about the long-term toxicities and the risk of development of resistance, thereby limiting future treatment options.

Several nonrandomized studies in industrialized countries have suggested that HAART initiation before 6 months of age reduces the occurrence of early-onset severe disease [8–10]. In 2004 the PACTG356 trial demonstrated that initiating treatment at an age of 3 months or younger was associated with an improved long-term viral suppression [11]. Furthermore, children initiating HAART before the age of 3 months have been shown to maintain higher CD4 cell counts despite variable rates of viral load suppression [9–12]. Most recently, the clinical impact of early initiation of HAART has been established by a South African randomized, controlled trial including 375 infants [Children with HIV Early antiRetroviral therapy (CHER)]. This trial demonstrated a highly significant 76% reduction in mortality in infants without symptoms and with CD4 >25% initiating HAART before 12 weeks of age compared with those deferring therapy [13].

The clinical benefit of treating HIV-infected infants early in life has never been quantified in a large population in industrialized countries, and a prospective randomized trial is not anymore feasible in this setting. As recommendations about the timing of HAART initiation in infants diagnosed with HIV have varied across Europe and have changed over time, we designed this collaborative cohort study to evaluate the benefit of starting therapy before 3 months of age in asymptomatic HIV-infected infants born between 1996 and 2004 in eleven European countries.

Methods

Participating cohorts
Thirteen cohorts from 11 European countries participated to this study, providing their dataset for 327 HIV-infected children born between 1 September 1996 and 31 December 2004, and followed since birth. Of these 327 infants, 201 (61%) originated from three national multicenter cohorts: the French Pediatric Cohort – ANRS/EPF CC010 (France, EPF) \((n = 96)\), the Collaborative HIV Paediatric Study (UK and Ireland, CHIPS) \((n = 52)\), and the Italian Register for HIV Infection in Children (Italy, ITLR) \((n = 53)\). All HIV-infected mothers delivering at participating clinical sites and their infants are eligible for these cohorts and data from the infants are prospectively collected. The vast majority of clinical sites participate in the national cohorts’ data collection. For the EPF cohort, it has been estimated that 70% of the detected HIV-positive pregnant mothers delivering in France are included (Josiene Warszawski, personal communication). These three cohorts are described in details elsewhere [8,9,14]. Various other cohorts contributed a total of 65 infants, principally from individual large tertiary clinical centers [Amsterdam \((n = 6)\), Rotterdam \((n = 3)\), Munich \((n = 5)\)], four centers in Belgium \((n = 20)\), and six centers in Spain \((n = 31)\) and are referred as ‘local cohorts’ in the study. ‘Other cohorts’ included the following: study patients from the Paediatric European Network for the Treatment of AIDS (PENTA) 7 study [12] and from the European Collaborative Study (ECS) [3] \((n = 20)\) that did not belong to the above-mentioned cohorts, children from the Swiss Mother and Child HIV Cohort Study (MoCHiV) \((n = 15)\) and from single centers in Eastern Europe [Warsaw \((n = 17)\) and Bucharest \((n = 9)\)].

Study population
To minimize selection bias linked to the heterogeneity of inclusion criteria in the different cohorts, the following inclusion criteria for this study were used: infants born between 1 September 1996 and 31 December 2004 to mothers known to be HIV-infected at delivery, who received antiretroviral prophylaxis within 3 days after birth \((n = 259)\), and who were diagnosed for HIV-1 infection by at least two positive tests (PCR or culture or Ag p24) during the first 91 days of life \((n = 216)\). Infants who were lost to follow-up \((n = 2)\) or who developed AIDS before 3 months of age \((n = 4)\) were excluded. Taking into account these inclusion criteria, 210 infants constitute the population of the present analysis.

Variables and data collection
Demographics and pregnancy data, details of prophylaxis and ART in early life, Centers for Disease Control (CDC) events and death, and immunological and virological measurements since birth were collected. Data on resistance and on compliance were available from very few cohorts and were thus not considered for pooling. Crude data were abstracted from structured routine databases (National Cohorts, and some of the local and other cohorts) or from medical records (most local and other cohorts) and transferred to the coordinating center at Saint Pierre Hospital, Brussels, which sent queries to the cohort coordinators. Data were checked for inconsistencies, cleaned, and pooled with SPSS software (version 15.0; SPSS Inc., Chicago, Illinois, USA).

Definitions
Postnatal antiretroviral prophylaxis was defined as any antiretroviral regimen started within 3 days following
Birth for a maximum of 12 weeks. Treatment was defined as any antiretroviral regimen started after 3 days of life or, if started within 3 days of life, continued for longer than 12 weeks. Infants were classified into the ‘early treatment group’ if they started ART before 3 months of age (0–91 days) and into the ‘deferred treatment group’ if they did not start ART before 3 months of age. HAART was defined as any regimen including at least three antiretroviral drugs. Outcome was AIDS or death from any cause combined. AIDS was defined as the first occurrence of a CDC category C event [15]. CD4 at baseline was defined as CD4 measure closest to the age of 1 month, and not after the age of 3 months.

Results

Table 1 describes and compares the characteristics of mothers and children in each cohort. Overall, the median follow-up time was 58 months [interquartile range (IQR): 35–89], and differed significantly between cohorts ranging from 43 months (IQR: 33–81) for the UK/Ireland to 76 months (IQR: 41–101) for local cohorts. In the UK/Ireland, France, and local cohorts, most mothers originated from sub-Saharan Africa (60–91), and differed significantly between cohorts ranging from 43 months (IQR: 33–81) for the UK/Ireland to 76 months (IQR: 41–101) for local cohorts. The median age at ART initiation varied significantly according to cohort (P = 0.002), ranging from 2 months in France and in local cohorts to 5 months in the UK/Ireland. At 1 year, 79% of the infants in the UK/Ireland had been treated with ART compared to approximately 95% for each of the other cohorts (P = 0.001), and this trend was reflected in the proportion of infants treated early, lowest in the UK/Ireland cohort (37%) and highest in France (68%) and in local cohorts (75%). Overall during the period 1996–2004, the proportion of infants treated before 3 months remained stable (P for trend = 0.6). The proportion of infants who started ART as mono or dual therapy was higher in France (26%) and Italy (36%) than in the UK/Ireland (9%) and local cohorts (8%).

Overall, 124 infants initiated treatment before 3 months of age (early treatment group), and 86 did not (deferred treatment group). Baseline maternal, infant characteristics and duration of follow-up were very similar in these two groups (Table 1). A total of 24 infants developed AIDS (n = 21) or died (n = 3). The risk of AIDS/death strongly varied according to cohort (P < 0.001), the highest risk being observed in the UK/Ireland cohort (Table 2). Differences remained significant when restricting the analysis to the end of the study period (2000–2004).

None of the baseline maternal, obstetrical, and infant characteristics in Table 2 was significantly associated with the occurrence of AIDS/death.

Among the 124 infants treated early, four developed AIDS (three encephalopathies diagnosed at 7, 8, and 13 months of age; one wasting syndrome identified at 82 months) and two died (at 17 and 45 months, respectively). Among the 86 infants from the deferred treatment group, 58 started ART within the first year of life. This included six children who started therapy because of the occurrence of an AIDS-defining event [three encephalopathies, one Pneumocystis jiroveci pneumonia (PCP), one cytomegalovirus (CMV) infection, one serious recurrent bacterial infection], and 52 children who started therapy in the absence of AIDS. Among the latter, six developed AIDS several weeks or months after treatment start (three encephalopathies, two CMV infections, and one serious recurrent bacterial infection) and one died without treatment. Among the 28 children who were untreated at 1 year of age, six AIDS events were reported.

The Kaplan–Meier cumulative probability risk of AIDS or death was considerably higher in infants with deferred treatment compared with those initiating ART early: 11.7
Table 1. Characteristics of the study population by Cohort and treatment group.

	According to cohort	According to treatment group
	Total (N=210)	According to cohort
		France (n=83)
		UK/Ireland (n=38)
		Italy (n=23)
		Local cohorts (n=40)
		Other (n=26)
		Early treatment (n=124)
		Deferred treatment (n=86)
		n (%) or median (IQR)
		n (%) or median (IQR)
		P-value
		n (%) or median (IQR)
		P-value
Year of birth		
1996–1999	96 (45.7)	44 (53.0)
		11 (28.9)
		8 (34.8)
		21 (52.5)
		12 (46.2)
		0.09
2000–2004	114 (54.3)	39 (47.0)
		27 (71.1)
		15 (65.2)
		19 (47.5)
		14 (53.8)
		0.51
Follow-up time (months)	58 (35–89)	63 (37–95)
		43 (33–81)
		46 (18–69)
		76 (41–101)
		55 (33–86)
		0.008**
Maternal and obstetric characteristics		
Maternal geographical origin		
Europe	71 (33.8)	20 (24.1)
		1 (2.6)
		20 (87.0)
		15 (37.5)
		15 (57.7)
		<0.001*
Sub-Saharan Africa	119 (56.7)	50 (60.2)
		32 (84.2)
		3 (13.0)
		24 (60.0)
		10 (38.5)
Other	20 (9.5)	13 (15.7)
		5 (13.2)
		0 (0.0)
		1 (2.5)
		1 (3.8)
No ART during pregnancy	66 (31.9)	15 (18.3)
		8 (21.3)
		10 (43.5)
		19 (48.7)
		14 (56.0)
		0.001
No ART at delivery	59 (28.9)	19 (23.5)
		4 (10.5)
		9 (39.1)
		14 (37.8)
		13 (52.0)
		0.002**
Caesarean delivery	102 (55.1)	44 (54.3)
		12 (46.2)
		17 (100.0)
		19 (48.7)
		10 (45.5)
		0.003
Gestational age <37 weeks	44 (21.6)	16 (19.3)
		5 (13.2)
		6 (28.6)
		9 (24.3)
		8 (32.0)
		0.38
Infant characteristics		
Sex female	128 (61.0)	50 (60.2)
		26 (68.4)
		16 (69.6)
		22 (55.0)
		14 (53.8)
		0.60
Birth weight <2500 g	55 (27.6)	19 (22.9)
		7 (23.3)
		6 (27.3)
		15 (37.5)
		8 (33.3)
		0.47
Breastfeeding	7 (3.5)	3 (3.6)
		1 (3.0)
		2 (8.7)
		1 (2.6)
		0 (0.0)
		0.64*
CD4 cell percentage<25%	12 (7.0)	3 (3.7)
		0 (0.0)
		3 (16.7)
		2 (6.7)
		4 (19.0)
		0.04*
Number of drugs in postnatal prophylaxis		
1	158 (77.5)	63 (75.9)
		25 (69.4)
		22 (95.7)
		26 (70.3)
		22 (88.0)
		0.018*
2	33 (16.2)	18 (21.7)
		5 (13.9)
		1 (4.3)
		8 (21.6)
		1 (4.0)
3	13 (6.4)	2 (2.4)
		6 (16.7)
		0 (0.0)
		3 (8.1)
		2 (8.0)
No PCP prophylaxis	24 (12.2)	9 (11.0)
		0 (0.0)
		8 (34.8)
		2 (5.7)
		5 (20.8)
		0.001*
Age at treatment initiation (months)	2 (1–5)	2 (1–3)
		5 (2–11)
		3 (–2)
		2 (1–3)
		3 (–2)
		0.002**
Treated by 3 months of age	124 (59.0)	56 (67.5)
		14 (36.8)
		12 (52.2)
		30 (75.0)
		12 (46.2)
		0.022
Number of drugs in first ART regimen		
1 or 2	38 (19.2)	20 (25.6)
		3 (9.1)
		8 (36.4)
		3 (7.5)
		4 (16.0)
		0.002*
3	139 (70.2)	51 (65.4)
		20 (60.6)
		14 (63.6)
		35 (87.5)
		19 (76.0)
		0.22
4	21 (10.6)	7 (9.0)
		10 (30.3)
		0 (0.0)
		2 (5.0)
		2 (8.0)
		0.11

*Median (IQR).

Number of drugs in first ART treatment for 17 infants whose treatment started between day 0 and day 6.

Number of infants who are not under treatment at last follow up excluded.

P-value from Exact tests or Monte Carlo method.

P-value from Mann–Whitney U test or Kruskal–Wallis test.
vs. 1.6% at 1 year, and 21.5 vs. 4.6% at 5 years (P < 0.001) (Fig. 1). The crude hazard ratio of AIDS/death associated with deferred compared with early ART was 5.0 [95% confidence interval (CI) 2.0–12.6; P = 0.001] (Table 2). This association remained highly significant and of the same magnitude after adjusting separately for each possible confounder (year of birth, sex, maternal origin, ART during pregnancy, ART during delivery, mode of delivery, gestational age <37 weeks, birth weight <2500 g, CD4 cell percentage <25%, number of drugs in postnatal prophylaxis, PCP prophylaxis, and number of drugs in the first ART). Only adjustment for cohort had an impact on the estimated value of hazard ratio, which decreased to 3.0 (95% CI 1.2–7.9; P = 0.021). In a sensitivity analysis restricted to children who started HAART (including triple NRTI or two NRTI + nevirapine) as first antiretroviral therapy, the association was even stronger (hazard ratio 7.9; 95% CI 2.3–27.6; P < 0.001).

Table 2. Factors associated with risk of AIDS and deaths in univariate analysis.

Number of events (AIDS or death)	Crude hazard ratio	95% Confidence interval	P-value
Age at treatment initiation			
Treated by 3 months of age	6	1	0.001
Not treated by 3 months of age	18	5.0	2.0–12.6
Cohort			
France	3	1	<0.001
UK/Ireland	13	12.9	3.6–46.1
Italy	3	5.3	1.0–26.8
Local cohort	1	0.6	0.1–6.2
Other	4	5.2	1.2–23.4
Year of birth			
2000–2004	13	1	0.42
1996–1999	11	0.7	0.3–1.7
Maternal geographical origin			
Europe	6	1	0.61
Sub-Saharan Africa	16	1.6	0.6–4.0
Other	2	1.1	0.2–5.6
ART during pregnancy			
Yes	15	1	0.46
No	9	1.4	0.6–3.1
ART at delivery			
Yes	18	1	0.66
No	6	0.8	0.3–2.1
Mode of delivery			
Caesarean section	11	1	0.69
Vaginal	9	0.8	0.3–2.0
Gestational age			
≥37 weeks	19	1	0.98
<37 weeks	5	1.0	0.4–2.6
Infant sex			
Male	9	1	0.80
Female	15	1.1	0.5–2.5
Birth weight			
≥2500 g	19	1	0.25
<2500 g	4	0.6	0.2–1.6
CD4 percentage			
≥25%	15	1.0	0.96
<25%	1	1	0.76
Number of drugs in neonatal prophylaxis			
1	17	1	0.74
2	4	1.0	0.2–3.4
3	2	1.8	0.4–7.9
PCP prophylaxis			
Yes	21	1	0.14
No	2	0.8	0.2–1.7
Number of drugs in first ART regimen			
1–2	6	1	0.66–6.6
3	12	0.6	0.2–1.7
4	5	2.0	0.6–6.6

*Number of drugs in first ART treatment for 17 infants whose treatment started between day 0 and day 6.

Twelve infants who are not under treatment at last follow-up excluded.

Discussion

The prognosis of HIV-infected children has improved considerably since the introduction of HAART, with a
rate of progression to AIDS/death in infancy and early childhood decreasing significantly after 1996 [14,16,17]. However, criteria for initiation of HAART in HIV-infected infants have varied over time and between countries and clinical centers. In previous US and European guidelines [18–20], indications to start treatment have been based on level of CD4% or viral load, according to analysis of the risk of AIDS in untreated infected children from the large longitudinal HIV Paediatric Prognostic Markers Collaborative Study (HPPMCS) [21]. However, these biological markers are poor predictors of rapid disease progression in infancy.

Although there was a consensus on the need to treat infants who present clinical symptoms of disease progression or with very low CD4, at the time when the study patients were born early initiation of HAART in asymptomatic infants was still controversial [18–20,22].

Several single-arm studies (some of which contributed data to the European Infant Collaborative study) from Europe [9,10,12] and the USA [11] have previously reported variable virological responses, but good clinical and immunological responses to the early initiation of HAART in infancy. More importantly, the CHER randomized trial in South Africa, which included 375 infants from birth, recently reported a 76% reduction in mortality in those who started HAART before the age of 12 weeks, compared with the deferred treatment arm, after only 32 weeks of follow-up [13]. A randomized trial is no longer feasible in industrialized countries. As vertically infected children are prospectively followed in most European cohorts, this collaborative study provided the opportunity to evaluate in a large number of infants followed up prospectively from birth, whether early initiation of HAART is associated with a clinical benefit in high-income countries. The results of the analysis indicate that the risk of AIDS/death was three times lower in infants starting antiretroviral therapy before 3 months of age compared with those deferring treatment. The reduction in the risk of progression to AIDS or death with early vs. deferred ART observed in this study is consistent with the reduction in mortality risk reported in the randomized controlled trial, although in a very different setting.

The cohorts participating to the study were quite heterogeneous. Some were incident cohorts including children born to HIV-infected mothers and using prospective standardized follow-up from birth; others were hospital-based cohorts including HIV-infected children at time of diagnosis which may occur later in infancy or childhood; others were a mix of both types of populations. In order to overcome potential selection biases due to the heterogeneity of the cohorts’ populations, we restricted inclusion in the study to infants who received ART in the postnatal period to ensure that they were identified as at risk of HIV infection since birth and prospectively followed, and who were diagnosed with HIV within 3 months of age. Furthermore we excluded infants with AIDS before the age of 3 months. Reporting of type and age of onset of AIDS clinical events may vary according to cohort, especially for complex events such as encephalopathies or wasting syndrome. However, undiagnosed stage C events are likely to be rare for these children followed in specialized pediatric clinical centers. The association between deferred therapy and the occurrence of AIDS/death decreased but remained strong after adjustment for cohorts (hazard ratio = 3.0). Other potential confounders...
such as year of birth, maternal origin, and type of ART had little effect on the relationship between treatment group and risk of AIDS/death so that crude and adjusted estimates of hazard ratio were very similar.

Prior to the availability of ART in European countries, approximately 20% of infants experienced early disease progression in the first year of life and 10% died [1,3]. The benefit or systematic antiretroviral therapy before 3 months of age to avoid this rapid progression has been recently demonstrated in the South African controlled randomized trial [13]. Our analysis confirmed that this is also the case in routine clinical practice in industrialized countries. As shown in the figure, the AIDS events in the early treatment group occurred uniformly over time during the follow-up, whereas in the deferred treatment group, most events occurred before the age of 2 years. The rate of occurrence of AIDS or death of infant from this latter group is similar to historical reports of natural history in infected infants without treatment in similar populations [2,3]. HIV encephalopathy is a particular concern for children exposed to HIV during brain development, and is difficult to detect early enough to prevent irreversible damage. A study from the French Perinatal Cohort showed that early initiation of ART was associated with a significantly reduced risk of HIV encephalopathy [8]. Immunological progression is also limited by early treatment in infants [23]. The recent prospective study from South Africa showed that 85% of untreated vertically infected infants presented CD4 percentage under 25% over the first 6 months of life [24].

However, initiating HAART soon after the diagnosis of vertical transmission remains difficult in daily practice. Parents or carers need support to help them to cope with the diagnosis and optimize adherence to medication. Palatable pediatric syrups, appropriate low-dose tablet formulations, and pharmacokinetic data to inform correct dosing of antiretroviral drugs in infancy are still needed. The best ART regimen for use in early life remains debated, and has not been addressed here. Other important issues are the long-term toxicities of antiretroviral agents, the problems of therapy adherence relying on caregiver administration of medication, and the development of resistance, limiting future therapy options. The safety of interrupting therapy in older children is currently being addressed in the PENTA 11 trial and in the CHER trial [13].

In conclusion, results from this first analysis of the European Infant Collaborative study strongly suggest that ART initiated before the age of 3 months has a dramatic effect in reducing progression to AIDS and death in high income countries, and concur with results from a randomized trial in South Africa [13]. Deferring treatment in infected infants is no longer an option and guidelines for industrialized and poor-income countries are being updated [25].

Acknowledgements

E.H., J.L., T.G., D.G., A.J., C.G., C.D. and J.W. contributed to the design and initiation of the study. L.G. and J.T.R. participated to the data collection. E.H., T.G., J.LeC., H.G., D.G., J.L. and J.W. contributed to the analysis of the data. All authors participated to the writing and revision of the manuscript.

We are indebted to the infants included in this study and to their parents, and to all physicians who participated in collecting clinical data. We thank Michele Dramaix for statistical advice, and also acknowledge all the staff of the contributing cohorts:

Stéphane Blanche (AP-HP, Necker Hospital, Unité d’Immunologie Hématologie Pédiatrique, France); Katherine Boyd and Sarah Walker (MRC Clinical Trials Unit, London, UK); Maurizio de Martino (Italian Register, Department of Paediatrics, University of Firenze, Italy), and Pierangelo Tovo (Italian Register, Department of Paediatrics, University of Turin, Italy); Sara Guiller Martin (Hospital 12 Octubre, Madrid, Spain), Deven Patel (ECS, Institute of Child Health, London, UK), Jolanta Popielaska (Infectious Disease Hospital, Medical University Warsaw, Poland), Martin.Rickenbach, Christoph Rudin, David Nadal (Swiss Mother and Child HIV Cohort Study MoChiV), Dimitri Van der Linden (St Pierre Hospital, Brussels), Dan Duiculescu (Hospital for Infectious Diseases ‘Dr Victor Babes’, Bucharest, Romania); Eugenie Le Poole (Emma Children’s Hospital, Academic Medical Center, Amsterdam, The Netherlands), Gundula Nothiers, (University Children’s Hospital, Munich, Germany), Ronald De Groot and Nico G. Hartwig (Erasmus MC Sophia Children’s Hospital, Rotterdam, The Netherlands).

EIC group: Albert Faye, AP-HP, Hôpital Robert Debré, Service de pédiatrie générale, Paris, France, Clara Gabiano, Italian Register, Department of Paediatrics, University of Turin, Italy, Claire Thorne, ECS, institute of Child Health, London, UK; Olivia Keiser, Data Center of the Swiss HIV Cohort Study, Lausanne, and Institute of Social and Preventive Medicine, University of Bern, Switzerland; MagdalenaMarczynska, Infectious Disease Hospital, Medical University Warsaw; Poland; Lumiita Ene, Hôpital for Infectious Diseases ‘Dr. Victor Babes’, Bucharest, Romania; Marc Hainaut, Paediatric Department, CHU St Pierre, Brussels, Belgium; Henriette Scherpier, Emma Children’s Hospital, Academic Medical Center, Amsterdam, The Netherlands; Uwe Wintergerst, University Children’s Hospital, Munich, Germany; Véronique Schmitz, Hôpital La Citadelle, Liège, Belgium; Bénédicte Brichard, Hôpital St Luc, Brussels, Belgium, Gwenda Verweel, Erasmus MC Sophia Children’s Hospital, Rotterdam, The Netherlands.

The study was supported by the Paediatric European Network for the Treatment of AIDS (PENTA), by the
References

1. Natural history of vertically acquired human immunodeficiency virus-1 infection. The European Collaborative Study. Pediatrics 1994; 94:815–819.
2. Blanche S, Newell ML, Mayaux MJ, Dunn DT, Teglas JP, Rouzioux C, Peckham CS. Morbidity and mortality in European children vertically infected by HIV-1. The French Pediatric HIV Infection Study Group and European Collaborative Study. J Acquir Immune Defic Syndr Hum Retrovirol 1997; 14:442–450.
3. Children born to women with HIV-1 infection: natural history and risk of transmission. European Collaborative Study. Lancet 1991; 337:253–260.
4. Dickover RE, Dillon M, Leung KM, Krogstad P, Plaeger S, Kwok S, et al. Early prognostic indicators in primary perinatal human immunodeficiency virus type 1 infection: importance of viral RNA and the timing of transmission on long-term outcome. J Infect Dis 1998; 178:375–387.
5. Blanche S, Mayaux MJ, Rouzioux C, Teglas JP, Firtion G, Monpoux P, et al. Relation of the course of HIV infection in children to the severity of the disease in their mothers at delivery. N Engl J Med 1994; 330:308–312.
6. Luzuriaga K, McManus M, Catalina M, Mayack S, Sharkey M, Stevenson M, Sullivan JL. Early therapy of vertical human immunodeficiency virus type 1 (HIV-1) infection: control of viral replication and absence of persistent HIV-1-specific immune responses. J Virol 2000; 74:6984–6991.
7. Hainaut M, Peltier CA, Gerard M, Marisens D, Zissis G, Levy J. Effectiveness of antiretroviral therapy initiated before the age of 2 months in infants vertically infected with human immunodeficiency virus type 1. Eur J Pediatr 2000; 159:778–782.
8. Faye A, Le Chenadec J, Dollfus C, Thuret I, Douard D, Firtion G, et al. Early versus deferred antiretroviral multidrug therapy in infants infected with HIV type 1. Clin Infect Dis 2004; 39:1692–1698.
9. Chiappini E, Galli L, Tovo PA, Gabiano C, Gattinara GC, Guatino A, et al. Virologic, immunologic, and clinical benefits from early combined antiretroviral therapy in infants with perinatal HIV-1 infection. AIDS 2006; 20:207–215.
10. Van der Linden D, Hainaut M, Goetghheber T, Haelterman E, Schmitz V, Maes P, et al. Effectiveness of early initiation of protease inhibitor-sparing antiretroviral regimen in human immunodeficiency virus-1 vertically infected infants. Pediatr Infect Dis J 2007; 26:359–361.
11. Luzuriaga K, McManus M, Mofenson L, Britto P, Graham B, Sullivan JL. A trial of three antiretroviral regimens in HIV-1-infected children. N Engl J Med 2004; 350:2471–2480.
12. Aboulker JP, Babiker A, Chaix ML, Compagnucci A, Darbyshire J, Debre M, et al. Highly active antiretroviral therapy started in infants under 3 months of age: 72-week follow-up for CD4 cell count, viral load and drug resistance outcome. AIDS 2004; 18:237–245.
13. Violiari A, Cotton MF, Gibb DM, Babiker AG, Steyn J, Madhi SA, et al. Early antiretroviral therapy and mortality among HIV-infected infants. N Engl J Med 2006; 359:2233–2244.
14. Judd A, Doerholt K, Tookey PA, Sharland M, Rordion A, Menson E, et al. Morbidity, mortality, and response to treatment by children in the United Kingdom and Ireland with perinatally acquired HIV infection during 1996–2006: planning for teenage and adult care. Clin Infect Dis 2007; 45:918–924.
15. CDC. 1994 revised classification system for human immunodeficiency virus infection in children less than 13 years of age. MMWR Recomm Rep 1994; 43:1–10.
16. Nesheim SR, Kapogiannis BG, Soe MM, Sullivan KM, Abrams E, Farley J, et al. Trends in opportunistic infections in the pre and posthighly active antiretroviral therapy eras among HIV-infected children in the Perinatal AIDS Collaborative Transmission Study, 1986–2004. Pediatrics 2007; 120:100–109.
17. Doerholt K, Duong T, Tookey P, Butler K, Lyall H, Sharland M, et al. Outcomes for human immunodeficiency virus-1-infected infants in the United Kingdom and Republic of Ireland in the era of effective antiretroviral therapy. Pediatr Infect Dis J 2006; 25:420–426.
18. Sharland M, Blanche S, Castelli G, Ramos J, Gibb DM. PENTA guidelines for the use of antiretroviral therapy, 2004. HIV Med 2004; 5 (Suppl 2):61–86.
19. Center for Disease Control and Prevention. Guidelines for the use of antiretroviral agents in pediatric HIV infection. MMWR Recomm Rep 1996; 47:1–43.
20. Guidelines for the use of antiretroviral agents in pediatric HIV infection. AIDSinfo 2003.
21. HPPMCS. Predictive value of absolute CD4 cell count for disease progression in untreated HIV-1-infected children. AIDS 2006; 20:1289–1294.
22. AIDS CoP. Evaluation and medical treatment of the HIV-exposed infant. American Academy of Pediatrics. Committee on Pediatric AIDS. Pediatrics 1997; 99:909–917.
23. Newell ML, Patel D, Goetghheber T, Thorne C. CD4 cell response to antiretroviral therapy in children with vertically acquired HIV infection: is it associated with age at initiation? J Infect Dis 2006; 193:954–962.
24. Mphatswe W, Blanckenberg N, Tudor-Williams G, Prendergast A, Thobakgale C, Michawanzi N, et al. High frequency of rapid immunological progression in African infants infected in the era of perinatal HIV prophylaxis. AIDS 2007; 21:1253–1261.
25. Revised pediatric treatment guidelines. AIDS Patient Care STDS 2008; 22:761.
Short- and Long-term Immunological and Virological Outcome in HIV-Infected Infants According to the Age at Antiretroviral Treatment Initiation

Tessa Goetghebuer,1 Jerome Le Chenadec,2 Edwige Haelterman,1 Luisa Galli,3 Catherine Dollfus,4 Claire Thorne,5 Ali Judd,6 Olivia Keiser,7,8 Jose Tomas Ramos,9 Jack Levy,1 Josiane Warszawski,2,10 and the European Infant Collaboration Groupa

1Pediatric Department, CHU St Pierre, Brussels, Belgium; 2Inserm, U822, Le Kremlin-Bicêtre, France; 3Italian Register, Department of Paediatrics, University of Florence, Italy; 4P-HP, Hôpital Trousseau, Service d’Hematologie et d’oncologie pédiatrique, Paris, France; 5MRC Centre of Epidemiology for Child Health, Institute of Child Health, University College London, 6Collaborative HIV Paediatric Study, MRC Clinical Trials Unit, London, United Kingdom; 7Data Center of the Swiss HIV Cohort Study, Lausanne, and 8Institute of Social and Preventive Medicine, University of Bern, Switzerland; 9Pediatric Department, Hospital Universitario de Getafe, Madrid, Spain; and 10Université Paris-Sud, Faculté de Médecine Paris-Sud, U822, Le Kremlin-Bicêtre, France

The clinical benefit of antiretroviral therapy in infants is established. In this cohort collaboration, we compare immunological and virological response to treatment started before or after 3 months of age. Early initiation provides a better short-term response, although evolution after 12 months of age is similar in both groups.

In the absence of combination antiretroviral therapy (cART), approximately 20% of vertically infected children born in developed countries progress to AIDS in the first year of life [1]. Since cART became available, early initiation of antiretroviral therapy (ART) in infants has been questioned, and policies have varied across Europe. The prevention of disease progression when treatment is started before the age of 3 months was clearly demonstrated in the South African Children with HIV Early Antiretroviral Therapy randomized trial [2] and in the European Infant Collaboration (EIC) [3]. All guidelines have been updated to recommend early ART in infants infected with human immunodeficiency virus (HIV).

Vertical infection is associated with rapid viral multiplication during the first weeks of life and high viral load (VL) over the first 2 years of life. At birth, the CD4 percentage is high and decreases during the first weeks of life and high viral load (VL) over the first 2 years of life. It was suggested that early intervention during primary infection leads to better long-term virological suppression (VS) and preserved immune system function [5]. Indeed, when cART is started early in infancy with persistent control of HIV replication, children may become seronegative after the loss of maternal antibodies [5, 6]. Our aim, within the EIC group, was to determine if virological and immunological responses to treatment differ according to the age at which cART is started during first 12 months of life.

METHODS

Study Population

EIC study methods have been described previously [3]. For the present analysis, infants were excluded if they received monotherapy or dual therapy (n = 38), developed AIDS before cART was initiated (n = 7), or did not begin treatment before the age of 12 months (n = 26). The final sample size was 139 infants. A subsequent data merger collected virological and immunological data to the end of 2008.

Variables

Demographics, pregnancy data, details of prophylaxis and treatment, and CD4 and VL measurements available since birth were collected. We defined cART as any regimen that included at least 3 antiretroviral drugs. Infants were classified into 3 groups: those starting cART at ≤3 months of age (0–91 days) (the early-treatment group), those starting at ages 3–6 months, and those starting at ages 6–12 months; the latter 2 groups were considered the deferred-treatment group.

Baseline VL and CD4 percentages were measured before 3 months of age in both groups. This corresponded to the pretreatment values in the early treatment group, which were measured at a median age 37 days (interquartile range [IQR], 12–54 days) for VL and 39 days (IQR, 17–56 days) for CD4...
percentage. In the deferred treatment group, baseline values were selected at the age closest to the median ages before age 3 months. Outcomes were VL and CD4 percentage at 6, 12, 18, 24, and 48 months of age. As the threshold for viral detection varied along the study period, VS was defined as VL <500 copies/mL.

Statistical Analysis

Evolution of CD4 percentage and log_{10} VL from baseline to 48 months was described separately for the 3 groups, using smoother techniques [7]. We added the reference curve of CD4 percentage by age established among HIV-exposed, uninfected (HEU) children included in the national French Perinatal Cohort (N = 11 851) and the European Collaborative Study (ECS) (N = 1028) [8]. CD4 z scores generated from these populations as reference were compared with zero at 6, 12, and 24 months in early- and deferred-treatment groups.

The time from treatment initiation to first VS was estimated in each group by the Kaplan-Meier method, censored at last follow-up using the log-rank test for significance. A hazard ratio for the associations with early versus deferred treatment was estimated using the Cox model.

Levels of quantitative CD4 percentage and log_{10} VL, and proportion of VL <500 copies/mL at baseline and measured at 6 months (±1.5 month) and 12, 18, 24, and 48 months (±3 months) were compared in the 2 groups. The χ² test, Fisher exact test, or Monte Carlo method was used for categorical data, and the Student t test, analysis of variance, Mann-Whitney U test, and Kruskal-Wallis test were used for continuous data.

The analysis was intent-to-treat, using SAS (version 9.1; SAS Institute, Cary, North Carolina) and R software (Foundation for Statistical Computing).

RESULTS

Baseline characteristics of the 139 infants were evenly distributed between the 3 treatment groups including cohort of origin, year of birth, geographical origin of the mother, mode of delivery, antenatal and postnatal ART prophylaxis, maternal VL nearest delivery, gestational age, sex, and baseline infant CD4 cell count and VL (Supplementary Table 1).

Immunological Response

The CD4 percentage diminished less markedly over the first year of life in the early-treatment group compared with the deferred-treatment groups (Figure 1a). However, CD4 percentages were consistently lower in all groups of HIV-infected infants compared with HEU infants, and median CD4 z score values remained significantly lower in both early- and deferred-treatment groups at the ages of 6, 12, and 24 months (Supplementary Table 2). Median nadir CD4 cell count and CD4 percentages were significantly higher in the early-treatment group until the age of 6 months, but not thereafter.

Virological Response

A lower peak VL was observed in the early-treatment group infants compared with the 2 other groups (Figure 1b). Kaplan-Meier survival analysis showed that time from treatment initiation to first VS was significantly shorter in the early-treatment group (crude hazard ratio [HR], 1.8 [95% confidence interval [CI], 1.2–2.7]; P = .003; HR adjusted for baseline VL and cohort = 1.7 [95% CI; 1.0–2.9]; P = .05) (Figure 1c).

Although similar at baseline, the zenith VL and median VL at 6 months were significantly lower in the early-treatment group, compared with the deferred-treatment group. Moreover, in the early-treatment group, the zenith VL was significantly correlated with the starting age for cART (r = 0.48, P < .001). There was a trend to lower VL between 12 and 48 months in the early-treatment group compared with the deferred-treatment group.

DISCUSSION

The prognosis of HIV-infected children has improved considerably since the introduction of cART in 1996 [9]. The EIC has demonstrated that, in routine clinical practice in industrialized countries, the risk of AIDS/death was 5 times lower in infants starting ART before 3 months of age compared with those whose treatment was deferred, and the difference was significant until the age of 60 months [3]. Several reports previously demonstrated that early initiation of treatment and low-baseline VL were significant predictors of long-term VS [10–12]. In this article, we report that early initiation of cART was associated with a lower VL peak despite similar baseline VL. Moreover, we showed that the virological response was more rapid when cART was started before 3 months of age. There was a significant correlation between the age at treatment initiation and the zenith VL in this latter group, suggesting that the sooner the treatment is started, the better the virological control. This observation is important, because VL peak may be correlated with the establishment of a reservoir of latently infected cells.

Regarding the immunological response to treatment, we observed that the decrease of CD4 cell count was less pronounced and the CD4 percentages were higher in the early-treatment group until 12 months of age than in the deferred-treatment group. However, the CD4 percentages remained significantly lower in all groups of HIV-infected infants than in HEU controls up to the age of 2 years.

In this report, the better immunological and virological evolution observed in the early-treatment group compared with the deferred-treatment group was no longer detectable by age 12 months, possibly because of lack of power due to sample size. However, it is possible that the functional competences of CD4 cells are influenced by early initiation of therapy and may maintain an impact on the clinical outcome after the age of 12 months.
To limit potential selection and information biases, the study included HIV-infected infants prospectively followed from birth to exclude the few long-term nonprogressor children diagnosed later. We analyzed only infants who received cART as first treatment before AIDS developed to evaluate response to cART in asymptomatic children. The

Figure 1. Comparison of immunological and virological evolution according to age at treatment initiation. A, Evolution of CD4 percentage in human immunodeficiency virus (HIV)–infected infants according to age at treatment initiation and in HIV-exposed uninfected infants (HEU). B, Evolution of viral load (VL) from birth in different groups according to age at treatment initiation. C, Kaplan-Meier survival analysis: time to attaining undetectable VL (VL <500 copies/mL) from the time of treatment initiation according to age at treatment initiation.
2 groups did not differ significantly for the type of first cART regimen used.

In conclusion, this analysis of the EIC study indicates that cART initiated before the age of 3 months, in addition to the strong and durable impact on the clinical outcome previously described, results in more rapid control of early virological replication and preservation of CD4 lymphocytes up to age 12 months compared with deferred treatment. After the age of 12 months, immunovirological outcomes did not differ significantly between the groups. Because early initiation of treatment in HIV vertically infected infants is now recommended in all guidelines, efforts should be made to establish the diagnosis of infection as soon as possible after birth.

Supplementary Data

Supplementary materials are available at Clinical Infectious Diseases online (http://www.oxfordjournals.org/our_journals/cid/). Supplementary materials consist of data provided by the author that are published to benefit the reader. The posted materials are not copyedited. The contents of all supplementary data are the sole responsibility of the authors. Questions or messages regarding errors should be addressed to the author.

Notes

Acknowledgments. We are indebted to the infants included in this study and to their parents, and to all physicians who participated in collecting clinical data. We thank Dr A. Marchant for his critical review of the manuscript.

EIC group: Albert Faye, AP-HP, Hôpital Robert Debré, Service de pédiatrie générale, Paris, France; Stephanie Blanche, AP-HP, Hôpital Necker, Service d’immunologie pédiatrique, Paris, France; Clara Gabiano, Italian Register, Department of Paediatrics, University of Turin, Italy; Diana Gibb, Hannah Castro, Trinh Duong, Collaborative HIV Paediatric Study, MRC Clinical Trials Unit, London; Carlo Giacchino, Martina Penazzato, Department of Pediatrics, University of Padova, Italy; Magdalena Marczyńska, Infectious Disease Hospital, Medical University Warsaw, Poland; Luminia Ene, Hospital for Infectious Diseases “Dr Victor Babes,” Bucharest, Romania; Marc Hainaut, Paediatric Department, CHU St Pierre, Brussels, Belgium; Henrietje Scherpier, Emma Children’s Hospital, Academic Medical Center, Amsterdam, Netherlands; Uwe Wintergerst, University Children’s Hospital, Munich, Germany; Véronique Schmitz, Hôpital La Citadelle, Liège, Belgium; Bénédicte Brichard, Hôpital St Luc, Brussels, Belgium; Gwenda Verweel, Erasmus MC Sophia Children’s Hospital, Rotterdam, Netherlands; Pat Tooker, National Study of HIV in Pregnancy and Childhood, MRC Centre of Epidemiology for Child Health, Institute of Child Health, UCL, London.

Financial support. This work was supported by the Paediatric European Network for the Treatment of AIDS (PENTA), which has previously received funding from the European Union Sixth Framework Programme (grant agreement PENTA/ECS 018865); the European Union Seventh Framework Programme (FP7/2007–2013) under EuroCoord grant agreement 260694; the French National Agency for AIDS and Hepatitis Research; and the Smiles Foundation, Belgium.

Potential conflicts of interest. All authors: No conflicts.

All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed.

References

1. Gray L, Newell ML, Thorne C, Peckham C, Levy J. Fluctuations in symptoms in human immunodeficiency virus-infected children: the first 10 years of life. Pediatrics 2001; 108:116–22.
2.violari A, Cotton MF, Gibb DM, et al. Early antiretroviral therapy and mortality among HIV-infected infants. N Engl J Med 2008; 359:2233–44.
3. Goedertuer H, Haelterman E, Le Chenadec J, et al. Effect of early antiretroviral therapy on the risk of AIDS/death in HIV-infected infants. AIDS 2009; 23:597–604.
4. Bunders M, Cortina-Borja M, Newell ML. Age-related standards for total lymphocyte, CD4+ and CD8+ T cell counts in children born in Europe. Pediatr Infect Dis J 2005; 24:595–600.
5. Luzuriaga K, Bryson Y, Krolospad P, et al. Combination treatment with zidovudine, didanosine, and nevirapine in infants with human immunodeficiency virus type 1 infection. N Engl J Med 1997; 336:1343–9.
6. Hainaut M, Peltier CA, Gerard M, Marissens D, Zissis G, Levy J. Effectiveness of antiretroviral therapy initiated before the age of 2 months in infants vertically infected with human immunodeficiency virus type 1. Eur J Pediatr 2000; 159:778–82.
7. Friedman J. A variable span scatterplot smoother. Laboratory for Computational Statistics. Stanford University technical report. JASA 1984; 1–16.
8. Bunders M, Thorne C, Newell ML. Maternal and infant factors and lymphocyte, CD4 and CD8 cell counts in uninfected children of HIV-1-infected mothers. AIDS 2005; 19:1071–9.
9. Dore'olt K, Duong T, Tooker P, et al. Outcomes for human immuno- deficiency virus-1-infected infants in the United Kingdom and Republic of Ireland in the era of effective antiretroviral therapy. Pediatr Infect Dis J 2006; 25:420–6.
10. Luzuriaga K, McManus M, Mofenson L, Britto P, Graham B, Sullivan JL. A trial of three antiretroviral regimens in HIV-1-infected children. N Engl J Med 2004; 350:2471–80.
11. Chiappini E, Galli L, Tovo PA, et al. Virologic, immunologic, and clinical benefits from early combined antiretroviral therapy in infants with perinatal HIV-1 infection. AIDS 2006; 20:207–15.
12. Van der Linden D, Hainaut M, Goedertuer H, et al. Effectiveness of early initiation of protease inhibitor-sparing antiretroviral regimen in human immunodeficiency virus-1 vertically infected infants. Pediatr Infect Dis J 2007; 26:359–61.
3.3. Augmentation de l’incidence d’infections à streptocoques du groupe B chez les enfants exposés au VIH et non infectés

Une analyse rétrospective des données de suivi des enfants nés de mères infectées par le VIH et suivis au CHU St Pierre avait montré une incidence élevée d’infections sévères (données en cours de publication). Ces infections sévères étaient particulièrement fréquentes dans la première année de vie et étaient dues notamment à des germes encapsulés, en particulier le streptocoque du groupe B (GBS). La comparaison avec le taux d’infection observé dans une population contrôle (estimé sur base des naissances survenues pendant la même période dans le même hôpital) nous a permis de décrire une incidence 19 fois supérieure d’infection à GBS chez les enfants exposés au VIH et non infectés que chez les enfants non exposés nés entre 2001 et 2008 [32]. Par ailleurs ces infections survenaient plus tardivement et étaient plus sévères dans la population d’enfants exposés que chez les enfants contrôles. Ce travail présenté page 64 représente la première publication évoquant une susceptibilité accrue aux infections des enfants exposés non infectés dans un pays industrialisé [33].

Une publication du Malawi avait montré que le taux de portage du GBS était comparable chez les femmes séronégatives et séropositives mais au sein de ces dernières, le taux de portage était plus élevé chez les femmes dont les taux de CD4 étaient les plus élevés, suggérant que les femmes immunodéprimées avaient une flore vaginale plus importante avec exclusion compétitive du GBS. Nous avons écrit une lettre à l’éditeur (page 72) suggérant d’étudier également la transmission du GBS au nouveau-né et l’incidence de sepsis à GBS dans les populations d’enfants exposés non infectés d’Afrique subsaharienne ou la morbidité infectieuse néonatale est très importante, et particulièrement la survenue de sepsis néonataux à GBS [102].
High Incidence of Invasive Group B Streptococcal Infections in HIV-Exposed Uninfected Infants

AUTHORS: Cristina Epalza, MD, a Tessa Goetghebuer, MD, a Marc Hainaut, MD, a Fany Prayez, MD, a Patricia Barlow, MD, a Anne Dediste, MD, a Arnaud Marchant, MD, PhD, a and Jack Levy, MD, PhD a

* aPediatric Department, bObstetrical Department, and cMicrobiological Department, St Pierre University Hospital, Brussels, Belgium; and dInstitute for Medical Immunology, Free University of Brussels, Brussels, Belgium

WHAT’S KNOWN ON THIS SUBJECT: Several recent articles from less affluent countries have shown an increased susceptibility to infection in HIV-exposed uninfected infants.

WHAT THIS STUDY ADDS: This is the first report of increasing susceptibility to infection in a population of exposed uninfected infants from developed countries.

abstract

OBJECTIVES: The occurrence of an unusual number of group B streptococcal (GBS) infections in HIV-exposed uninfected (HEU) infants who were followed in our center prompted this study. The objective of this study was to describe and compare the incidence and clinical presentation of GBS infections in infants who were born to HIV-infected and -uninfected mothers.

METHODS: All cases of invasive GBS infections in infants who were born between 2001 and 2008 were identified from the database of HEU infants and from the microbiology laboratory records. The medical charts of all infants with GBS infection were reviewed.

RESULTS: GBS invasive infections were described for 5 (1.55%) infants who were born to 322 HIV-infected mothers who delivered in our center. The incidence of GBS infections during the same period was 16 (0.08%) of 20,158 infants who were born to HIV-uninfected mothers. One HEU infant presented a recurrent infection 28 days after completion of treatment for the first episode. Late-onset infection was more frequent in HEU infants (5 of 6 vs 2 of 16 episodes in the control population). The diseases were also more severe in HEU infants with 5 of 6 sepsis or sepsis shock in HEU infants versus 10 of 16 in control subjects, and most HEU infants had leukopenia at onset of infection.

CONCLUSIONS: The incidence of GBS infection was significantly higher in HEU infants than in infants who were born to HIV-uninfected mothers. These episodes of GBS sepsis in HEU infants were mostly of late onset and more severe than in the control population, suggesting an increased susceptibility of HEU infants to GBS infection. Pediatrics 2010; 126:e631–e638

FINANCIAL DISCLOSURE: The authors have indicated they have no financial relationships relevant to this article to disclose.
Highly active antiretroviral therapy (HAART) has markedly improved the health and the long-term prognosis of HIV-infected patients and reduced the risk for mother-to-child transmission (MTCT) of the virus. This has led to an increase in the number of HIV-exposed uninfected (HEU) infants.

The potential adverse effects of maternal disease and/or exposure to the antiretroviral (ARV) agents that are used for prevention of MTCT on the outcome of pregnancy and on the health of HEU infants have been actively investigated. Although a limited number of studies that were conducted before the use of MTCT prophylaxis suggested that HEU infants had a similar outcome to children born to HIV-uninfected women, more recent studies from developing countries showed a higher morbidity and mortality risk in HEU infants compared with infants born to HIV-uninfected mothers, mostly as a result of infectious diseases. These studies, most of them conducted in sub-Saharan Africa, where access to MTCT prophylaxis is not generalized, showed a correlation between mortality risk in HEU infants and advanced maternal disease.

With the widespread use of ARV agents during pregnancy, studies mainly from more affluent countries have attempted to evaluate potential adverse effects of these drugs on the fetus or the infant. An association between the use of HAART during pregnancy and an increased rate of preterm birth has been described but not confirmed in another cohort. The incidence of congenital malformations observed in HEU infants is similar to that of the general population, and a transient effect of ARV agents on growth during the first year of life has been observed in several large cohorts. An increased incidence of febrile convolution in early life and of mitochondrial disorders that affect severely the neurologic system have been described in HEU infants. Although reversible anemia is generally observed during the postnatal zidovudine prophylaxis, other blood lineages are also affected in infants who are born to HIV-infected mothers, possibly associated with ARV exposure, without any link to clinical manifestations.

We have observed the occurrence of an unusual number of severe group B streptococcal (GBS) infections during the first months of life in the cohort of HEU infants who were followed up in our center. In this report, we describe the characteristics and incidence of these infections in HEU infants and compare them with GBS infections that occurred during the same period in the children who were born in the same hospital to HIV-uninfected mothers.

METHODS

Setting of the Study

Saint-Pierre Hospital is a university-affiliated hospital and referral center for HIV-affected children and adults located in downtown Brussels. The hospital has a large maternity department and a tertiary neonatal center.

Local Guidelines and Procedures

Prevention of MTCT of HIV and Follow-up of Exposed Infants

Children who are born to HIV-infected women are followed up during the first years of life to diagnose HIV transmission and to detect possible adverse effects of ARV prophylaxis. A child is considered to be uninfected when RNA polymerase chain reaction (threshold <50 copies per mL; Amplicor HIV-1 Monitor test [Roche, Basel, Switzerland]) or DNA polymerase chain reaction is negative in at least 2 peripheral blood samples. Preventive measures to reduce the risk for MTCT have been implemented over time according to published guidelines as previously described.

Prevention and Definition of Neonatal GBS Infections

Interventions to prevent neonatal GBS invasive infections are implemented in the obstetric and neonatal departments according to international guidelines endorsed by the Belgian Superior Health Council.

Outcome Definition

GBS invasive infection was defined as the isolation of the microorganism from blood or cerebrospinal fluid (CSF) in infants who were ≤90 days of age.

Study Populations

The medical charts of all HEU infants who were born between January 1, 2001, and December 31, 2008, were reviewed to identify GBS infection. For comparison of the characteristics of GBS infection in HEU infants with those of infants who were born to HIV-uninfected mothers, the microbiologic laboratory records were searched to identify all invasive GBS infections that occurred in infants who were born in this hospital during the same period. For the comparison of GBS infection among HEU infants and the control infants, only the children who were born in Saint-Pierre Hospital were considered. The total number of births during the study period was extracted from the birth register. This study was approved by the hospital’s ethics committee.

Data Collection

The medical chart of all children who presented a GBS infection and their mother were reviewed to collect age and ethnicity of the mother, mode of delivery, GBS carriage and use of antibiotic prophylaxis. In addition, for HIV-infected mothers, date of HIV diagnosis, ARV prophylaxis during pregnancy and labor, HIV viral load, and CD4 cell count around delivery were collected.
Data that were collected on infants who presented GBS infection included gestational age (GA); birth weight; presence of GBS in cutaneous smear taken from axillary region, anal region, or external auditory canal; admission to the NICU; type of feeding; and neonatal ARV prophylaxis. Infants who were small for GA (SGA) were defined as having a birth weight less than the third percentile according to Gairdner and Pearson.28

The data concerning GBS infections were the type of infection, age at onset, number of GBS-positive culture sites, full blood count at onset, antibiotic treatment, and evolution. GBS infections were divided into early-onset (0 – 6 days of life) and late-onset (7–90 days of life) infection.29–31 Severity was evaluated according to international definitions.32

Statistical Analysis

Statistical analysis was performed by using Stata 8.0 software, StatXact-9, and EpiInfo 3.5.1. Incidence risk ratio (RR) was computed according to the HIV status of the mother. \(\chi^2 \) and Fisher’s exact tests were used to compare the proportions. Statistical significance was assigned by a 2-sided \(\alpha \) level of .05. All \(P \) values are 2-tailed.

RESULTS

Characteristics of GBS Infection in HEU Infants

From January 2001 to December 2008, 403 infants who were born alive to HIV-infected women were followed up in our center; 6 of them had HIV infection (Fig 1). The study population includes 397 uninfected infants (including 3 pairs of twins) who were born to 394 mothers. Seventy-five mothers delivered in another facility, and their infants were referred to our center for postnatal care. Among the 394 mothers, 88% initiated HAART prophylaxis during pregnancy, 33% had elective cesarean delivery, and 17% had emergency cesarean delivery. Eighty-eight percent of the mothers were of Sub-Saharan African origin; most of them arrived in Belgium in the previous years and were living in poor socioeconomic conditions.

Seven episodes of neonatal invasive GBS infections were documented in 6 of 397 infants (1 infant had 2 episodes). All of these infants were confirmed to be HIV-uninfected at follow-up. As shown in Table 1, the mothers of 5 of these 6 infants originated from Sub-Saharan Africa, and the majority received the diagnosis of HIV before the pregnancy. Two mothers delivered by cesarean delivery (1 emergency and 1 elective). Five mothers received HAART during pregnancy: 1 during the whole pregnancy, 2 from the second trimester, and 2 during the third trimester. The most prescribed drugs were zidovudine (2 of 6 mothers), lamivudine (3 of 6 mothers), and lopinavir/ritonavir (2 of 6 mothers); 5 of 6 mothers received intravenous zidovudine during labor. Viral load during the third trimester was undetectable (<50 copies per mL) in 1, between 50 and 1000 copies per mL in 4, and unavailable for 1. The CD4 \(^+ \) cell count during the third trimester was <200 cells per \(\mu L \) in 1 case (98 cells/\(\mu L \)).

As shown in Table 1, 4 (67%) of 6 infants were female; the median GA was 35 weeks; and median birth weight was 2380 g, with 3 (50%) of 6 being SGA. Four (67%) of 6 infants were admitted to the NICU: 3 for preterm birth and 1 for sepsis. None of the infants was breastfed, and all received neonatal ARV prophylaxis for a median of 37 days.

GBS was isolated from 5 of 6 mothers’ vaginal swabs and from 2 of 6 infants’ cutaneous swabs at birth. Among the 7 episodes of invasive GBS infections, 5 were late-onset diseases (LOD; occurring at 9, 26, 33, 64, and 72 days), 2 presented as septic shock, 4 presented as sepsis, and 1 presented as bacteremia. Two infants had a meningitis-associated infection (GBS isolated from the CSF). One infant (patient 4, Table 1) presented 2 episodes of GBS infection; the second episode occurred 28 days after the 10-day ampicillin treatment of the first episode was discontinued. In 5 of 7 episodes, infants had a white blood cell count <5000/\(\mu L \) (range: 1350–4300/\(\mu L \)) at onset of infection. All infants were treated by intravenous antibiotics. The evolution was favorable for 5 patients, but 1 patient died.
None of the patients was admitted at the same time.

Comparison of GBS Infection in HEU Infants and in Infants Who Were Born to HIV-Uninfected Mothers

The review of the St Pierre Hospital’s microbiology laboratory records identified 21 infants who were born between 2001 and 2008 and had GBS isolated in a blood culture: 16 of them were born to HIV-uninfected mothers (referred to as control population) and 5 to HIV-infected mothers (patients 1, 3, 4, 5, and 6 in Table 1).

The characteristics of the inborn infants who presented GBS infections are summarized in Table 2. The maternal origin was significantly different between the 2 groups: 80% of the HIV-infected mother were of sub-Saharan Africa origin. Preterm births and infants who were SGA were more frequent among HEU infants than in the control population, although very low birth weight preterm infants were seen only in the latter. There were significantly more cesarean deliveries in HIV-infected mothers than in the control group. None of the HEU infants were breastfed, compared with 10 (63%) of 16 infants in the control population.

The comparison of the GBS infections is shown in Table 3. Infections tended to be more severe in HEU infants than in the control population. GBS meningitis (2 cases) and recurrence (1 case)

TABLE 2
Parameter	HEU Infants Born to HIV-Infected Mothers	HEU Infants Born to HIV-Uninfected Mothers	\(p^a \)
Total No. of infants	5	16	.13
Female gender, n (%)	3 (60)	8 (50)	.13
Sub-Saharan African origin, n (%)	4 (80)	3 (19)	.03
Preterm (<27 wk), n (%)	5 (60)	4 (25)	.28
GA, range, wk	31–33	26–33	
SGA, n (%)	2 (40)	2 (13)	.23
GBS* skin smears, n (%)	1 (20)	9 (57)	.51
GBS* maternal vaginal smears, n (%)	5 (100)	14 (88)	.99
Antibiotics during labor, n (%)	4 (80)	9 (69)^b	.99
Cesarean delivery, n (%)	2 (40)	1 (6)	.13

\(^a \) Fisher’s exact test.

\(^b \) Three missing values.

Table 3
Parameter	HEU Infants Born to HIV-Infected Mothers	HEU Infants Born to HIV-Uninfected Mothers	\(p^a \)
Total No. of episodes of GBS infection	6	16	.13
Type of infection, n (%)			
Septic shock	2 (33)	2 (13)	
Sepsis	3 (50)	8 (50)	.587
Bacteremia	1 (17)	6 (37)	
Particulars			
Meningitis associated	2 (33)	0 (0)	.070
LOD	5 (83)	2 (13)	.004
Age at LOD, d	9, 26, 33, 64, 72	19, 55	
WBC count at onset, /μL			
<5000	4 (68)	2 (13)	.059
5000–15000	1 (17)	5 (31)	
>15000	1 (17)	9 (56)	

\(^a \) Only children who were born in St Pierre Hospital were considered in this analysis.

\(^b \) Fisher’s exact test.
Risk for GBS Infection Among Infants who were Born in St Pierre University Hospital (2001–2008)

Parameter	HEU (n = 322), n (%)	Infants Born to HIV-Negative Mothers (n = 20 138), n (%)	RR	95% CI
All GBS infections	5 (1.55)	16 (0.08)	19.6	7.5–51.7
Early-onset infections	1 (0.51)	14 (0.07)	4.5	0.3–26.7
Late-onset infections	4 (1.4)	2 (0.01)	125.2	26.3–620.2

CI indicates confidence interval.

* Only children who were born in St Pierre hospital were considered in this analysis.

** Fisher’s exact test.

were observed only in the group of HEU infants. There were significantly more LODs (P = .002) and more leukopenia at onset (white blood cell count <5000/µL; P = .059) in the HEU infants than in control subjects.

Although the mortality rate was similar in the 2 groups, the characteristics of the infants who died differed. The HEU infant was born at 32 weeks’ gestation, was admitted to the NICU, and had an uneventful hospital course until the 33rd day of life, when she developed GBS septic shock and meningitis that led to death 5 days later (patient 5, Table 1). The 2 infants from the control group both were very low birth weight preterm infants, born at 26 and 27 weeks’ gestation, who died during their first week of life, with severe respiratory and neurologic problems.

Incidence Risk for GBS Infection in HEU Infants and in Infants Who Were Born to HIV-Uninfected Mothers

As shown in Table 4, the incidence risk for GBS infections was 1.55% in HEU infants and 0.08% in the control infants who were born to HIV-uninfected mothers in the same hospital during the same period. This significant difference is mostly attributable to the higher incidence of LOD in HEU infants: 1.24% vs 0.01% in the control group (RR: 125.2 [95% confidence interval: 26.3–620.2]; P < .0001).

DISCUSSION

This is the first report to describe a high risk for GBS infection in a cohort of HEU infants. This report is based on the compilation of GBS infections observed during the prospective follow-up of infants who were born to HIV-infected mothers in 1 single center. The follow-up of these children varies in length, but all were followed up until at least the 90th day of life, excluding reporting bias of GBS infections in HEU infants. For comparison of the rate of GBS infections in HEU infants with that of the population of infants who were born to HIV-uninfected mothers, all episodes of GBS infection were retrieved from the hospital microbiology laboratory records, and only the inborn children were included in this analysis. A reporting bias in the incidence risk for late-onset GBS infection in infants who were born to HIV-uninfected mothers cannot be excluded, because these infections might have been diagnosed in another hospital; however, the incidence rate that was observed in this control cohort is similar to the most recent incidences reported in the literature in settings where intrapartum antibiotic prophylaxis is used: 0.05% to 0.09%, 0.04% to 0.05%, and 0.02% to 0.04% for the overall GBS neonatal infections, early-onset disease (EOD), and LOD, respectively.26,31,34

There are several possible explanations for the higher susceptibility of HEU infants to GBS invasive infection. HIV-infected mothers might have a higher rate of colonization with GBS or could be colonized by a higher number or by more virulent organisms than HIV-uninfected mothers. The risk for EOD is clearly related to the carriage of GBS in the mother’s genital tract, with transmission occurring during labor, whereas LOD is caused by vertically or horizontally acquired organisms.26–31 Some studies, although in different populations, reported that black ethnicity is associated with a higher carriage of GBS in women35 and with a higher risk for invasive GBS infection in neonates than white ethnicity.36 Most HIV-infected mothers in our study originated from sub-Saharan Africa, whereas most control subjects are white. In our center, the GBS carriage is higher in HIV-infected than in uninfected women: 29% vs 19%, respectively (P < .001; unpublished data). The ethnicity and/or the higher carriage rate of HIV-infected women might contribute to the difference observed, but it is unlikely to account for a RR of 19. Whether the serotypes of the strains carried by HIV-infected women were more virulent should also be questioned. Indeed, serotype distribution varies according to the site of infection (blood versus CSF) and the time of infection (EOD versus LOD) and can change according to geography and time. One European study reported that the percentage of neonatal infections that are caused by serotype III is increasing over time, mainly in LOD and meningitis.36 Unfortunately, the strains that were isolated from HEU infants and from control infants could not be typed retrospectively. Prematurity is a major risk factor for early-onset GBS infection;26,31,34 however, it is unlikely that prematurity influenced the increased incidence risk for GBS infection in HEU infants in this study, because the rate of prematurity is similar in HEU infants to that of the control population (10.7% births <37 weeks in HEU infants versus 10.9% in the population of children who were born to HIV-uninfected mothers in St Pierre Hospital, a referral center for complicated pregnancy).
immunity. Antibody transplacental transfer has been shown to be reduced during pregnancy in HIV-infected women. There are suggestions that an immunodeficient mother may have defective transplacental transfer of hematopoietic cytokines, resulting in lower thymic output of CD4+ cells in the child. A reduction of interleukin 12 cytokine production (intermediate profile between HIV-infected infants and control subjects) has been observed in cord blood mononuclear cells of HEU infants, inducing potentially delay in immune cellular maturation or deficit in antigen-presenting cells. The hypothesis of transplacental diffusion of viral soluble products or defective virus-causing immune paresis is supported by the demonstration of production of interleukin 2 by peripheral blood cells after stimulation by HIV antigens and the detection of HIV-specific T helper and cytotoxic T cell in HEU infants that persist for several years. The possible role of perinatal ARV exposure can also be considered. Several studies showed a depressed hematopoiesis in HEU children, including a decrease in platelets, neutrophils, total lymphocytes, CD4 and CD8+ cell count, that might be attributable to mitochondrial dysfunction associated with exposure to nucleoside reverse transcriptase inhibitors (NRTIs). Indeed, NRTIs cross the placenta and have an affinity for the mitochondrial DNA polymerase. It has been shown that mitochondrial DNA of cord blood mononuclear cells is significantly reduced in HEU infants compared with infants who are born to HIV-uninfected mothers, and the majority of infants who are exposed to NRTI present transient and asymptomatic hyperlactatemia; however, persistent mitochondrial dysfunction that leads to severe neurologic impairment has been reported in a limited number of HEU infants. Additional risk factors of susceptibility to infection in early life might be the absence of breastfeeding and the psychosocial and socioeconomic conditions of HEU infants.

CONCLUSIONS

Our observation of increased susceptibility of HEU infants to GBS infection is an additional piece of evidence, the first from an industrialized country, that HEU infants might be more susceptible to infection than infants who are born to HIV-uninfected mothers. With the generalization of MTCT prophylaxis, the number of HEU infants will continue to increase worldwide, and it is crucial to determine what the cause of this increased susceptibility is. Prospective investigations are needed to confirm this susceptibility and to demonstrate possible immune dysfunction. Identification of surrogate markers of susceptibility might help to prevent early-life infectious morbidity in this population.

ACKNOWLEDGMENTS

This study was supported by the Smiles Foundation, Belgium. Dr Marchant is a senior research associate at the Fonds National de la Recherche Scientifique, Belgium.

We are indebted to the infants who were included in this study and to their mothers and to all physicians who looked after them. We thank Edwige Haeltgerman and Claire Thorne for contribution to the statistical analysis.

REFERENCES

1. Mother-to-child transmission of HIV infection in the era of highly active antiretroviral therapy. Clin Infect Dis. 2005;40(13):458–465
2. Agangi A, Thorne C, Newell ML. Increasing likelihood of further live births in HIV-infected women in recent years. BJOG. 2005;112(7):881–888
3. Spira R, Lepage P, Msellati P, et al. Natural history of human immunodeficiency virus type 1 infection in children: a five-year prospective study in Rwanda. Mother-to-Child
HIV-1 Transmission Study Group. Pediatrics. 1999;104(5). Available at: www.pediatrics.org/content/full/104/5/e66

4. Slogrove AL, Cotton MF, Esser MM. Severe infections in HIV-exposed uninfected infants: clinical evidence of immunodeficiency. J Trop Pediatr. 2010;56(2):75–81

5. Marinda E, Humphrey JH, Iliff PJ, et al. Child mortality according to maternal and infant HIV status in Zimbabwe. Pediatr Infect Dis J. 2007;26(8):519–526

6. Musi-Mihalata MM, Freimanis L, Yamamoto AY, et al. Infectious disease morbidity among young HIV-1-exposed but uninfected infants in Latin American and Caribbean countries: the National Institute of Child Health and Human Development International Site Development Initiative Perinatal Study. Pediatrics. 2007;119(3). Available at: www.pediatrics.org/content/full/119/3/e684

7. Thea DM, St Louis ME, Atido U, et al. A prospective study of diarrhea and HIV-1 infection among 429 Zairian infants. N Engl J Med. 1993;329(23):1696–1702

8. McNally LM, Jeena PM, Gajee K, et al. Effect of age, polymicrobial disease, and maternal HIV status on treatment response and cause of severe pneumonia in South African children: a prospective descriptive study. Lancet. 2007;369(9571):1440–1451

9. Kuhn L, Kasonde P, Sinkala M, et al. Does exposure to antiretroviral therapy affect growth and mortality during the first two years of life among uninfected children born to human immunodeficiency virus type 1-infected women: the women and infants transmission study. Pediatr Infect Dis J. 2005;24(1):48–56

10. Landreau-Mascaro A, Barret B, Mayaux MJ, Tardieu M, Blanche S. Risk of early febrile seizure with perinatal exposure to nucleoside analogues. Lancet. 2002;358(9306):583–584

11. Blanche S, Tardieu M, Rustin P. Mitochondrial dysfunction and perinatal exposure to antiretroviral nucleoside analogues [in French]. Arch Pediatr. 2000;7(1):7–9

12. Barret B, Tardieu M, Rustin P, et al. Persistent mitochondrial dysfunction in HIV-1-exposed but uninfected infants: clinical screening in a large prospective cohort. AIDS. 2003;17(12):1769–1785

13. Blanche S, Tardieu M, Benhamou M, Warszawski J, Rustin P. Mitochondrial dysfunction following perinatal exposure to nucleoside analogues. AIDS. 2006;20(13):1685–1690

14. Brogly SB, Yitalo N, Mofenson LM, et al. In utero nucleoside reverse transcriptase inhibitor exposure and signs of possible mitochondrial dysfunction in HIV-uninfected children. AIDS. 2007;21(8):929–938

15. Fachecho SE, McIntosh K, Lu M, et al. Effect of perinatal antiretroviral drug exposure on hematologic values in HIV-uninfected children: an analysis of the women and infants transmission study. J Infect Dis. 2006;194(8):1089–1097

16. Le Chenadec J, Mayaux MJ, Guineenne-Jouyaux C, Blanche S. Perinatal antiretroviral treatment and hematopoiesis in HIV-infected infants. AIDS. 2005;19(14):2053–2061

17. Bunders MJ, Bekker V, Scherpjberg HJ, Boer K, Godfried M, Kuipers TW. Haematological parameters of HIV-1-uninfected infants born to HIV-1-infected mothers. Acta Paediatr. 2005;94(11):1571–1577

18. Levels and patterns of neutrophil cell counts over the first 8 years of life in children of HIV-1-infected mothers. AIDS. 2004;18(3):2009–2017

19. Goethebeuer T, Haelteman E, Marvillet I, et al. Vertical transmission of HIV in Belgium: a 1986–2002 retrospective analysis. Eur J Pediatr. 2009;168(1):79–85

20. From the Centers for Disease Control: revision of guidelines for the prevention of perinatal group B streptococcal disease. JAMA. 2002;287(9):1106–1107

21. Prevention of neonatal GBS infection. [In French]. Guidelines From the Belgian Super-Antime Sepsis Conference: definitions for sepsis and organ dysfunction in pediatrics. Pediatr Crit Care Med. 2005;6(1):2–8

22. Trijbel-Smeulders M, de Jonge GA, Seelen MS, et al. Epidemiology of neonatal group B streptococcal disease in the Netherlands before and after introduction of guidelines for prevention. Arch Dis Child Fetal Neonatal Ed. 2007;92(4):F271–F276

23. Centers for Disease Control and Prevention (CDC). Trends in perinatal group B streptococcal disease.—United States, 2000–2006. MMWR Morb Mortal Wkly Rep. 2008;57(5):109–111

24. Stapleton RD, Kohn JM, Evans LE, Critchlow CW, Gardella GM. Risk factors for group B streptococcal genital tract colonization in pregnant women. Obstet Gynecol. 2005;106(6):1248–1252

25. Fluegge K, Supper S, Siedler A, Berner R. Serotype distribution of invasive group B streptococcal isolates in infants: results from a nationwide active laboratory surveillance study over 2 years in Germany. Clin Infect Dis. 2005;40(5):760–763

26. Shapiro RL, Lockman S, Kim S, et al. Infant morbidity, mortality, and breast milk immunologic profiles among breast-feeding HIV-infected and HIV-uninfected women in Botswana. J Infect Dis. 2007;196(4):562–569

27. Fiteau S. The HIV-exposed, uninfected African child. Trop Med Int Health. 2009;14(5):276–287

28. Jeena PM, Bobat B, Thula SA, Adhikari M. Children with Pneumocystis jiroveci pneumonia and acute hypoxaemic respiratory failure admitted to a PICU, Durban, South Africa. Arch Dis Child. 2008;93(6):545

29. McNally LM, Jeena PM, Laloo U, et al. Probable mother to infant transmission of Pneu-
mocystis jiroveci from an HIV-infected woman to her HIV-uninfected infant. AIDS. 2005;19(14):1548–1549
41. Heresi GP, Caceres E, Atkins JT, Reuben J, Doyle M. Pneumocystis carinii pneumonia in infants who were exposed to human immunodeficiency virus but were not infected: an exception to the AIDS surveillance case definition. Clin Infect Dis. 1997;25(3):739–740
42. de Moraes-Pinto MI, Almeida AC, Kenj G, et al. Placental transfer and maternally acquired neonatal IgG immunity in human immunodeficiency virus infection. J Infect Dis. 1996;173(5):1077–1084
43. Clerici M, Saresella M, Colombo F, et al. T-lymphocyte maturation abnormalities in uninfected newborns and children with vertical exposure to HIV. Blood. 2000;96(12):3868–3871
44. Weinhold KJ, Lyerly HK, Stanley SD, Austin AA, Matthews TJ, Bolognesi DP. HIV-1 Gp120-mediated immune suppression and lymphocyte destruction in the absence of viral infection. J Immunol. 1989;142(9):3091–3097
45. Chougnet C, Kovacs A, Baker R, et al. Influence of human immunodeficiency virus-infected maternal environment on development of infant interleukin-12 production. J Infect Dis. 2000;181(5):1590–1597
46. Rich KC, Siegel JN, Jennings C, Rydman RJ, Landay AL. Function and phenotype of immature CD4+ lymphocytes in healthy infants and early lymphocyte activation in uninfected infants of human immunodeficiency virus-infected mothers. Clin Diag Lab Immunol. 1997;4(3):358–361
47. Kuhn L, Coutousois A, Moodley D, et al. T-helper cell responses to HIV envelope peptides in cord blood: protection against intrapartum and breast-feeding transmission. AIDS. 2001;15(1):1–9
48. Kuhn L, Meddows-Taylor S, Gray G, Tiemenssen C. Human immunodeficiency virus (HIV)-specific cellular immune responses in newborns exposed to HIV in utero. Clin Infect Dis. 2002;34(2):267–276
49. Rowland-Jones SL, Nixon DF, Aihous MC, et al. HIV-specific cytotoxic T-cell activity in an HIV-exposed but uninfected infant. Lancet. 1993;341(8849):860–861
50. Legrand FA, Nixon DF, Loo CP, et al. Strong HIV-1-specific T cell responses in HIV-1-exposed uninfected infants and neonates revealed after regulatory T cell removal. PLoS ONE. 2008;3:e102
51. Bunders M, Thorne C, Newell ML. Maternal and infant factors and lymphocyte, CD4 and CD8 cell counts in uninfected children of HIV-1-infected mothers. AIDS. 2005;19(10):1071–1079
52. Feiterna-Sperling C, Weizsaecker K, Buhrer C, et al. Hematologic effects of maternal antiretroviral therapy and transmission prophylaxis in HIV-1-exposed uninfected newborn infants. J Acquir Immune Defic Syndr. 2007;45(1):43–51
53. Poirier MC, Divi RL, Al-Harthi L, et al. Long-term mitochondrial toxicity in HIV-uninfected infants born to HIV-infected mothers. J Acquir Immune Defic Syndr. 2005;33(2):175–183
54. Aldrovandi GM, Chu C, Shearer WT, et al. Antiretroviral exposure and lymphocyte mtDNA content among uninfected infants of HIV-1-infected women. Pediatrics. 2009;124(6). Available at: www.pediatrics.org/cgi/content/full/124/6/e1189
55. Alimenti A, Burdge DR, Ogilvie GS, Money DM, Forbes JC. Lactic acidemia in human immunodeficiency virus-uninfected infants exposed to antiretrovirals. Pediatrics. 2004;114(5). Available at: www.pediatrics.org/cgi/content/full/114/5/e598
To the Editor: In their cross-sectional study comparing group B streptococcus (GBS) carriage among HIV-infected and HIV-uninfected women in Malawi, Gray et al. found no differences in GBS carriage between both groups but found a higher carriage rate for HIV-infected women with high CD4 cell counts (1). They proposed that a GBS-specific immune defect might exist in HIV-infected pregnant women and suggested that this defect could be blunted by competitive exclusion of GBS as a consequence of changes in microbial flora at lower CD4 counts.

We recently reported an increased incidence of neonatal GBS sepsis in HIV-exposed uninfected (HEU) infants born in Belgium, compared with the general population (2). In our cohort, the risk for GBS infection was 20× higher in HEU infants than in infants born to HIV-uninfected mothers. Moreover, the episodes of GBS sepsis in HEU infants, compared with the general population, were more severe and mostly of late onset. We are currently looking prospectively at GBS carriage in HIV-infected and control uninfected pregnant women to learn whether our observation can be explained by a higher carriage rate in HIV-infected women or by increased susceptibility of HEU infants to this capsulated bacteria. The latter hypothesis would be in line with the higher susceptibility of HEU children to other types of severe infections, as has been described in several studies from sub-Saharan Africa and Latin America (3–5).

The incidence of GBS sepsis in HIV-exposed infants born in Africa is unknown. In addition to the need for further investigation of anti-GBS immunity in HIV-infected pregnant women, we believe that studies comparing the incidence of neonatal GBS sepsis in HEU and HIV-unexposed infants are warranted. If the increased risk for GBS sepsis is confirmed, prophylaxis should be implemented in the population concerned.

Tessa Goetghhebuer,
Catherine Adler, Cristina Epalza,
and Jack Levy
Author affiliation: Saint-Pierre University Hospital, Brussels, Belgium
DOI: http://dx.doi.org/10.3201/eid1803.111630

Address for correspondence: Tessa Goetghhebuer, Hôpital Saint-Pierre–Department of Pediatrics, 322 Rue Haute, Brussels 1000, Belgium; email: tessa_goetghhebuer@stpierre-bru.be

References
1. Gray KJ, Kaufulufala G, Matemba M, Kamolozi M, Membre G, French N, et al. Streptococcus and HIV infection in pregnant women, Malawi, 2008–2010. Emerg Infect Dis. 2011;17:1932–5.
2. Epalza C, Goetghhebuer T, Hainaut M, Prayez F, Barlow P, Dediste A, et al. High incidence of invasive group B streptococcal infections in HIV-exposed uninfected infants. Pediatrics. 2010;126:e631–8. http://dx.doi.org/10.1542/peds.2010-0183
3. Mussi-Pinhata MM, Freimanis L, Yamamoto AY, Korelitz J, Pinto JA, Cruz ML, et al. Infectious disease morbidity among young HIV-1–exposed but uninfected infants in Latin American and Caribbean countries: the National Institute of Child Health and Human Development International Site Development Initiative Perinatal Study. Pediatrics. 2007;119:e694–704. http://dx.doi.org/10.1542/peds.2006-1856
4. Koyanagi A, Humphrey JH, Nozini R, Nathoo K, Moulton LH, Hill P, et al. Mortality among human immunodeficiency virus-exposed but uninfected, human immunodeficiency virus–infected, and human immunodeficiency virus–unexposed infants in Zimbabwe before availability of highly active antiretroviral therapy. Pediatr Infect Dis J. 2011;30:45–51. http://dx.doi.org/10.1097/INF.0b013e3181eb7e7f
5. Filleau S. The HIV-exposed, uninfected African child. Trop Med Int Health. 2009;14:276–87. http://dx.doi.org/10.1111/j.1365-3156.2009.02220.x

High Incidence of Group B Streptococcal Infection in Infants Born to HIV-Infected Mothers

In their cross-sectional study comparing group B streptococcus (GBS) carriage among HIV-infected and HIV-uninfected women in Malawi, Gray et al. found no differences in GBS carriage between both groups but found a higher carriage rate for HIV-infected women with high CD4 cell counts.

vironments.
4. DISCUSSION

Au cours des 30 dernières années, la prise en charge des malades infectés par le VIH a radicalement changé. Au début des années 1980, seules les maladies opportunistes étaient traitées mais les malades du SIDA finissaient par décéder de celles-ci. Depuis l’avènement des médicaments antirétroviraux, et surtout des multithérapies hautement actives, le devenir de ces patients s’est vu transformé. Les critères de mise sous traitement des patients ont évolué vers une initiation de plus en plus précoce dans le cours de la maladie. Les effets secondaires liés aux traitements et l’apparition des résistances sont venus à l’avant plan dans la prise en charge des patients. Les premiers enfants infectés par voie verticale ayant bénéficié des traitements antirétroviraux sont devenus adultes et ont été transférés vers les services de médecine interne, avec au CHU St Pierre un passage facultatif par une consultation de transition, pour leur suivi. Une dizaine d’entre eux sont devenus parents à leur tour.

Parallèlement à l’amélioration de la qualité et de l’espérance de vie des patients infectés par le VIH, la transmission du virus a diminué et en particulier la transmission verticale de la mère à l’enfant. En effet les mesures de prévention disponibles, si elles sont accessibles et appliquées, permettent d’atteindre un taux de transmission de moins de 1%. Dans l’étude rétrospective des enfants suivis dans notre centre, nous avons revu l’évolution de la transmission verticale entre 1986 et 2002 afin d’évaluer l’impact de l’implémentation de la prophylaxie par multithérapie hautement active sur la transmission verticale. Nous avons retrouvé les différents facteurs de risque de transmission verticale déjà décrits dans la littérature: la charge virale plasmatique et le taux de CD4 maternel au moment de l’accouchement [18, 37, 103]. D’autres facteurs de risque de transmission verticale décrits dans la littérature comme la prématurité [18], l’usage de drogues [103], ou le sexe féminin [18] n’ont pas été retrouvés dans notre étude.

Nous n’avons pas pu démontrer de différence entre les taux de transmission lors des naissances par voie vaginale et par césarienne. La place de la césarienne dans la prévention de la transmission verticale est actuellement controversée. Avant l’instauration des multithérapies, le bénéfice de la césarienne réalisée avant le début du travail avait été clairement démontré [32, 104]. L’étude collaborative européenne (ECS) sur les facteurs de risque de transmission verticale à l’ère des multithérapies montrait encore une réduction significative du risque de transmission verticale lors de césarienne élective et indépendamment du taux de CD4 ou de l’administration de prophylaxie antirétrovirale [38]. Cependant étant donné la faible incidence actuelle de transmission verticale, plusieurs centaines de césariennes seraient nécessaires afin d’éviter un seul cas de transmission [18]. Or les césariennes sont associées à un risque non négligeable de complications du postpartum [105], celles-ci étant plus nombreuses chez les patientes infectées par le VIH [106]. Plus récemment une étude française a montré l’absence de bénéfice conféré par la césarienne en terme de prévention de transmission verticale lors de naissance à terme avec une charge virale maternelle indétectable [107]. Actuel-
lement dans la plupart des guidelines la césarienne n’est indiquée que lorsque la charge virale maternelle est détectable en fin de grossesse.

La comparaison des taux de transmission verticale entre les différentes cohortes d’enfants suivis au CHU St Pierre par années de naissances, a montré que le taux de transmission avait diminué significativement au cours du temps, mais le bénéfice était cependant moindre qu’attendu sur base des données de littérature. Lorsque nous avons stratifié les cohortes selon l’administration de prophylaxie, nous avons constaté que l’efficacité était telle qu’attendue dans le groupe des femmes ayant bénéficié d’une prophylaxie ARV (< 2%), mais que le risque de transmission chez les femmes non traitées pendant la grossesse était 4x plus élevé après 1994 atteignant 37%. Après la publication de nos observations, des études multicentriques américaine et canadienne [103, 108], au design similaire à la nôtre, ont également mis en évidence des taux de transmission élevés (9 à 16 %) chez les patientes non traitées à l’ère des multithérapies, bien qu’inférieurs à ceux retrouvés dans notre travail. Ces observations suggèrent qu’en plus de l’absence de prophylaxie médicamenteuse, une situation sociale précaire, l’absence d’accès aux soins ou le refus d’adhésion aux approches prophylactiques jouent un rôle important dans la transmission verticale du VIH. Nous avons pu démontrer également, comme dans les études française et canadienne, que la durée de la prophylaxie jouait un rôle crucial dans le risque de transmission, ce risque étant fortement augmenté lorsque les prophylaxies étaient administrées pendant moins de 1 mois [18, 108]. On peut parler d’«opportunités manquées» pour décrire les cas de transmission en absence de diagnostic maternel, de suivi de la grossesse, de prescription d’ARV pendant la grossesse, l’accouchement ou en période néonatale, lorsque une césarienne n’a pas été réalisée alors que la charge virale était > 1000 copies/ml, ou lorsque l’enfant a été allaité [103].

Il apparaît donc que les infections verticales sont devenues rares dans les pays industrialisés depuis l’avènement des multithérapies mais un petit nombre de femmes transmettent malgré tout le virus lors de prise en charge tardive ou de grossesse non suivie. Les efforts doivent être poursuivis pour continuer et intensifier le dépistage systématique de l’infection par le VIH chez les femmes enceintes en début de grossesse (avec répétition de la sérologie pendant le troisième trimestre chez les femmes appartenant à un groupe à risque d’infection, par exemple lorsque le partenaire est séropositif) et assurer aux femmes infectées un suivi régulier et multidisciplinaire de la grossesse comprenant une prophylaxie antirétrovirale durant au moins les deux derniers trimestres.

Des estimations récentes de transmission verticale dans les pays à faibles revenus suggèrent une couverture de prophylaxie pendant la grossesse de 55% [109]. Sur base des résultats d’études réalisées au cours des dernières années, l’OMS a émis des recommandations pour réduire le risque de transmission postnatale du VIH en maintenant l’allaitement maternel, dont les bénéfices en termes nutritionnels et infectieux sont majeurs dans le contexte socio-économique de ces pays [110]. Les recommandations sont de
débuter une multithérapie antirétrovirale chez la femme enceinte et de la poursuivre jusqu’à la fin de l’allaitement (option B) ou à vie (option B+) [34]. Les études portant sur la transmission survenant durant l’allaitement maternel lors de traitement de la mère par antirétroviraux rapportent des taux de transmission autour de 3 à 6% [111-114]. Une étude randomisée réalisée au Malawi n’a pas montré de différence significative de transmission pendant l’allaitement entre le traitement prophylactique administré à la mère ou à l’enfant pendant les 6 premiers mois de vie [115]. Les rapports d’ONUSIDA estiment qu’en 2012 seulement 49% des femmes allaitantes étaient sous prophylaxie antirétrovirale et que la moitié des cas de transmissions verticales avait eu lieu durant l’allaitement [2].

Une association entre l’utilisation des multithérapies hautement actives pendant la grossesse et le risque de naissance prématurée a été décrite à plusieurs reprises dans la littérature [116-118]. Dans notre étude rétrospective portant sur les naissances entre 1986 et 2002, nous n’avons pas observé d’augmentation du risque de naissance prématurée lié à l’administration de médicaments antirétroviraux, mais plutôt lié à l’absence de prophylaxie anténatale ou à une multithérapie d’une durée inférieure à 1 mois. Cette association avec une multithérapie de très courte durée pourrait être une association fortuite due au fait que les mères accouchant prématurément ont une durée moindre d’exposition à la prophylaxie, ou pourrait correspondre à un effet secondaire survenant en début de traitement chez un petit groupe de patiente et déclenchant une naissance prématurée. Notre taille d’échantillon ne nous a pas permis de le démontrer. Les études les plus récentes portant sur le sujet suggèrent une association entre l’administration d’antiprotéases et la survenue de naissance prématurée [63, 119]. L’hypothèse évoquée est l’effet du Ritonavir, puissant inhibiteur de cytochromes P450, sur la fonction surrenaliennne maternelle et fœtale qui induirait un déclenchement prématuré du travail.

Lorsque suite à « une opportunité manquée », l’enfant est infecté par voie verticale, il est important après confirmation du diagnostic de débuter un traitement antirétroviral précocement. Cette indication est actuellement unanimement admise et est reprise dans tous les guidelines.

Or au début de l’ère des multithérapies, beaucoup ont voulu considérer le nouveau-né infecté comme l’adulte infecté et préféraient attendre qu’il développe des symptômes ou que son immunité chute pour débuter le traitement. Au CHU St Pierre, dès 1996, tous les nouveau-nés ont été mis sous traitement dès la confirmation de l’infection par le VIH. D’autres soignants en Europe et aux Etats Unis ont également décidé de débuter le traitement chez tous les nourrissons infectés avant le développement de symptômes ou d’immunosuppression. Les arguments en faveur du traitement précocé étaient la possibilité de diagnostic précoce permettant le traitement de la primo-infection, et la proportion de progresseurs rapides chez les nouveau-nés infectés par voie verticale associée à l’absence de facteurs prédictifs de progression rapide en début de vie. Les arguments en faveur du traitement différé étaient la multiplication virale élevée
chez le nourrisson avec le risque hypothétique de développement de résistance accru, l’absence d’arguments basés sur la preuve (« evidence based medicine ») en faveur de l’initiation précoce du traitement, la connaissance insuffisante de la pharmacocinétique pendant les premiers mois de vie et la crainte des effets secondaires chez le jeune enfant. Une succession de publications issues de cohortes individuelles ont montré que le traitement initié précocement permettait une bonne réponse virologique [58, 60, 120] mais aussi l’absence d’évolution clinique [55, 56]. Parmi celles-ci l’expérience belge était celle qui rapportait l’initiation de traitement la plus précoce (< 2 mois ½), et les meilleurs résultats en terme de réponse virologique : 11/17 enfants avaient une suppression virologique à 17 semaines de traitement. Les causes de cette bonne réponse au traitement reposent probablement sur la prise en charge multidisciplinaire étroite des patients et sur le traitement par Nevirapine (NVP), facile à administrer et bien toléré, chez la grande majorité d’entre eux.

Une étude randomisée (étude CHER) a été initiée en Afrique du Sud en 2006 pour comparer l’évolution des enfants traités avant l’âge de 3 mois à ceux chez qui le traitement n’était débuté que si l’enfant développait des symptômes ou si le taux de CD4 chutait en dessous de 20%. Parallèlement nous avons étudié rétrospectivement l’impact du traitement précocé chez des enfants nés dans différents pays européens. Les résultats de l’étude CHER publiée dans le New England Journal of Medicine, montraient que le traitement différé était associé à une augmentation de la mortalité de 76% par rapport au traitement précoce [121]. Concomitamment à la publication des résultats de l’étude CHER notre première publication des résultats de l’étude EIC montrait également un excès de mortalité/SIDA chez les enfants traités après l’âge de 3 mois. En effet, les observations de l’étude EIC ont confirmé le bénéfice du traitement précocé dans les pays industrialisés : le risque de développer un SIDA ou de décéder avant l’âge de 5 ans était réduit d’un facteur 5 chez les enfants traités avant l’âge de 3 mois, alors qu’ils étaient asymptomatiques. Cette étude illustre par ailleurs l’intérêt d’une analyse à posteriori de données collectées dans des centres où des options de traitement différentes avaient été adoptées, en l’absence de données basées sur la preuve, et dans des circonstances où des études cliniques prospectives contrôlées ne peuvent plus être réalisées pour des raisons éthiques ou de taille d’échantillon.

La convergence des résultats de ces 2 études et des observations individuelles a suscité une révision des recommandations américaine [122] puis européenne en 2009 [123] puis de l’OMS en 2010 [124]. En 2010, les recommandations de l’OMS étaient de débuter un traitement chez tous les enfants âgés de moins de 2 ans et infectés par le VIH. Les bases de cette recommandation étaient : les risques de progression clinique démontrés en début de vie, l’absence de marqueurs prédicatifs avant l’âge de 2 ans et la rétention des enfants en suivi clinique [125]. Récemment ces recommandations de l’OMS ont été étendues à tous les enfants âgés de moins de 5 ans [34]. Cependant il n’y a eu aucune étude démontrant un bénéfice clinique d’instauration systématique de traitement après l’âge de 1 an [126]. L’étude PREDICT réalisée en Asie n’a pas pu démontrer d’avantage à débuter un traitement en l’absence de signe d’immunosuppression après l’âge de 1 an.
De façon similaire, l’étude IeDEA conduite sur une plus large échelle en Afrique Subsaharienne n’a pas permis de montrer de différence de mortalité lors d’initiation de traitement en l’absence de critères entre l’âge de 2 et 5 ans [128]. Les recommandations de l’OMS visent probablement à améliorer la couverture antirétrovirale des enfants infectés par le VIH et à les maintenir en suivi médical.

Dans un second temps, dans la cohorte des enfants enrôlés dans l’étude CHER, un testing neuromoteur (Griffiths Mental Development scale) a été réalisé autour de l’âge de 1 an et a permis de démontrer des scores neurologiques significativement meilleurs chez les enfants traités précocement comparés aux enfants survivants du groupe de traitement différé, amenant un argument supplémentaire pour le bien-fondé de cette approche [129].

Bien sûr, il existe des questions qui restent encore en suspend: le type de traitement à administrer, l’opportunité d’interrompre le traitement pendant l’enfance, ainsi que la toxicité médicamenteuse à long terme. En pratique, initier un traitement chez le nouveau-né n’est pas facile. Les enfants infectés par le VIH sont souvent négligés en termes d’accès au traitement. En effet, les formulations utilisables en pédiatrie sont rares et parfois difficiles à administrer. La prise de médicaments repose sur les parents, et la régularité absolue est nécessaire afin d’éviter le développement de résistance. Il est indispensable d’apporter un soutien psychologique aux parents à qui on vient d’annoncer l’infection de leur enfant, pour les aider à surmonter les difficultés liées à l’annonce du diagnostic, au traitement et au suivi médical.

La question du meilleur traitement à administrer en début de vie est toujours d’actualité et n’a pas encore fait l’objet de consensus. Les premières publications américaines (PACTG 356) relataient la supériorité d’une quadrithérapie (associant les trois classes d’antirétroviraux) chez le nourrisson infecté par rapport à une tri ou quadrithérapie épargnant les inhibiteurs de protéase [58]. Dans l’expérience de notre centre, un traitement associant la NVP à 2 INTI a montré d’excellents résultats lors de traitement initiés précocement [98, 120]. Il s’agit du traitement le plus aisé à donner, dû à son faible coût, sa bonne tolérance, l’existence de sirop et sa bonne acceptabilité. Cependant l’utilisation de dose unique de NVP, recommandée dans les pays en développement comme prévention de transmission verticale à l’accouchement a induit des résistances qui ont entravé la bonne réponse au traitement chez l’enfant [130, 131]. Les IP ont l’avantage d’avoir un meilleur profil de résistance mais le seul IP utilisable chez le nourrisson est le Lopinavir dont le sirop a extrêmement mauvais goût et contient de l’alcool. Une publication française a récemment rapporté le risque de troubles endocriniens chez les nouveau-nés qui avaient reçu du Lopinavir [132]. Le Lopinavir est largement utilisé pour l’instauration du traitement chez le nourrisson après la première semaine de vie [133, 134]. Plusieurs études ont comparé différents régimes d’antirétroviraux administrés en début de vie. Une étude randomisée multicentrique conduite en Europe et aux États Unis n’a pas montré de différence entre une initiation de traitement comprenant un INNTI ou un IP [135]. En revanche, une autre étude randomisée multicentrique
conduite en Afrique subsaharienne a montré un risque d’échec thérapeutique significativement supérieur lors d’administration de régime contenant un INNTI comparé au régime comprenant un IP, même en absence d’utilisation de Nevirapine dans le cadre de PMTCT [136]. Par ailleurs, les résultats de l’étude ARROW récemment publiée dans le Lancet montrent une légère supériorité de la réponse clinique lors d’initiation chez l’enfant de quadrithérapie comportant un INNRT et 3 INRT comparé à une trithérapie comportant un INNRTI et 2 INRT mais ces meilleurs résultats sont seulement observés pendant la première année de traitement [137]. La même observation a été faite dans une étude rétrospective portant sur la réponse au traitement initié avant l’âge d’un an dans les différentes cohortes européennes [138]. Dans cette dernière étude, il est intéressant de noter qu’après 5 ans, 65% des enfants étaient toujours sous le même régime thérapeutique.

Quant à la durée du traitement à administrer, la question reste ouverte également. Une alternative au traitement à vie serait de débuter un traitement précocement, puis d’arrêter pendant une certaine période, avant de reprendre un traitement selon les critères de mise sous traitement chez l’enfant publiés dans les guidelines. Dans l’étude CHER, les patients traités précocement ont été randomisés pour interrompre le traitement à 40 ou à 96 semaines. Les résultats de l’évaluation à 5 ans montrent clairement que le pronostic, après interruption de traitement, est significativement meilleur chez les enfants traités précocement que chez les enfants traités plus tardivement. Le devenir était meilleur lors de traitement administré pendant 96 semaines par rapport au traitement administré pendant 40 semaines mais le pouvoir de l’étude ne permettait pas de voir une différence significative au niveau de l’évolution clinique entre les 2 groupes. Cependant dans le second groupe, 1/3 des enfants étaient toujours en interruption de traitement à la fin de l’étude [139]. Une équipe pédiatrique de Barcelone a rapporté une série de 7 patients traités avant 12 semaines de vie, chez lesquels le traitement avait été interrompu autour de l’âge de 2 ans. Le traitement avait été redémarré chez 4 enfants sur les 7, après une interruption d’une durée médiane de 57 mois et sans qu’il n’y ait eu d’évolution clinique vers le stade SIDA. Des investigations immunologiques réalisées chez ces enfants avant interruption et au cours de l’interruption suggéraient que l’initiation précoce du traitement augmentait les possibilités de contrôle de la réplication virale pour des longues périodes et cela d’autant plus que la déplétion en CD4 est moins marquée avant l’initiation du traitement [140]. Ces résultats sont à rapprocher des résultats de l’étude VISCONTI ou les patients adultes traités en phase de primo-infection avaient un meilleur contrôle de la réplication virale après arrêt du traitement avec 10% de contrôleurs à long terme [141]. Il apparaît donc que chez l’enfant traité pendant les premiers mois de vie l’interruption planifiée de traitement est une alternative au traitement à vie, qui n’entrave pas la reconstitution immune, et n’entraîne pas de risque accru de morbidité. Ceci est probablement du à la préservation d’une bonne réponse immunitaire et à une limitation des réservoirs lors d’initiation précoce du traitement [139]. En effet, une étude américaine a montré une corrélation, chez l’enfant traité précocement, entre l’âge de la première charge virale indétectable et la taille
des réservoirs [142]. Une partie de ces enfants traités suffisamment tôt dans la vie vont devenir séronégatifs après perte des anticorps maternels, et chez une partie d’entre eux l’ADN proviral deviendra indétectable par les méthodes classiques [98, 99, 142, 143]. De plus, chez la majorité de ces enfants traités précocement, on n’observe aucune réponse des lymphocytes CD4 et CD8 après stimulation aux antigènes gag et env [143]. Si le traitement est poursuivi sans interruption ces enfants peuvent rester séronégatifs pendant des années, mais si le traitement est interrompu la séroconversion se produit. L’expérience de notre centre confirme ces données. Entre 1996 et 2010, 18 enfants infectés par le VIH et suivis depuis la naissance au CHU St Pierre ont initié un traitement avant l’âge de 2 mois. Deux enfants ont été perdus de vue précocement. Parmi les 16 enfants suivis, 5 sont devenus séronégatifs, parmi lesquels 2 ont séroconverti par la suite lors d’une interruption temporaire de traitement, et 3 sont encore séronégatifs (enfants âgés de 6, 11 et 16 ans). Des investigations sont en cours pour mesurer les réservoirs chez ces enfants. Dix enfants n’ont jamais arrêté leur traitement, ils ont tous une charge virale indétectable et un taux de lymphocytes CD4 supérieur à 25%. Six enfants ont eu une interruption prolongée de traitement : 5 enfants ont arrêté leur traitement puis ont du réinitier un traitement en moyenne 5 ans après l’arrêt et 1 enfant est toujours en arrêt de traitement. Aucun de ces enfants n’a développé un stade SIDA (Marc Hainaut, communication personnelle).

L’année passée, un premier cas de « guérison fonctionnelle » a été décrit chez un nourrisson infecté à la naissance et traité très précocement. Il s’agit d’un enfant né à 35 semaines d’âge gestationnel de mère infectée par le VIH et non traitée. Le diagnostic d’infection a été posé par PCR sur un prélèvement sanguin réalisé au premier jour de vie. Un traitement comprenant la NVP, la ZDV et le 3TC a été initié à 30 heures de vie suivi d’un remplacement de la NVP par le Lopinavir à 7 jours de vie. Les charges virales en ARN étaient à 20 000 copies/ml à 30 heures de vie, puis ont décliné progressivement sous traitement, pour devenir indétectable à 29 jours de vie. L’enfant est resté sous traitement ARV jusqu’à l’âge de 18 mois puis a été perdu de vue et n’a plus été traité jusqu’à l’âge de 2 ans. Lors de sa réapparition l’enfant était séronégatif et les charges virales sont restées indétectables. Après 1 an d’arrêt de traitement, la sérologie était toujours négative, la charge virale plasmatique était indétectable et les recherches ultrasonables d’ADN intégré dans les cellules « resting cells » n’ont pas permis de mettre en évidence un virion ayant une capacité réplicative. Les auteurs du rapport dans le New England Journal of Medicine sur ce cas suggèrent que le traitement extrême-ment précoce administré à cet enfant a permis d’empêcher l’établissement des réservoirs et ceci a permis une éradication du virus avec guérison fonctionnelle [134]. Cette observation bouleverse quelque peu les perspectives relatives au traitement du nourrisson infecté. Si une guérison avec éradication du virus est possible, il est important d’une part de détecter suffisamment tôt l’infection chez le nouveau-né afin de débuter le traitement pendant les premiers jours de vie, et d’autre part le choix du traitement pourrait être influencé vers un traitement plus agressif et plus court [144].

Cette guérison fonctionnelle est un espoir qui concerne à l’heure actuelle essentiel-
lement les pays industrialisés. Dans la plupart des pays d’Afrique subsaharienne, la recherche du virus par PCR chez l’enfant ne se fait pas avant l’âge de 6 semaines et les résultats sont disponibles après quelques semaines. Cela implique d’une part un risque de perte au niveau du suivi du nouveau-né né de mère séropositive, et d’autre part une impossibilité de débuter un traitement avant 2 ou 3 mois de vie. Une des priorités à l’heure actuelle est de pouvoir réaliser un test rapide au premier jour de vie (« point of care »), afin de débuter rapidement le traitement chez les enfants infectés in utero. Cependant il est indispensable de refaire un test vers l’âge de 6 semaines afin de dépister les infections survenues pendant l’accouchement. Le coût de ces tests est le principal obstacle au dépistage précoce dans ces pays [144].

Depuis l’accessibilité des prophylaxies antirétrovirales comme prévention de la transmission verticale, les enfants nés de mères séropositives ont été suivis pendant au moins les 18 premiers mois de vie afin de confirmer l’absence d’infection par la négativation de la sérologie. La population d’enfants exposés au VIH (et aux antirétroviraux) et non infectés est devenue de plus en plus importante et fait l’objet de nombreuses publications.

Durant le suivi de ces enfants au sein du service de pédiatrie au CHU St Pierre, nous avons été frappés de voir survenir un grand nombre d’infections sévères en début de vie. Parmi ces infections figuraient des infections néonatales à GBS, qui étaient remarquables par leur sévérité, et leur caractère tardif. Un enfant a présenté 2 infections à 38 jours d’intervalle. Etant donné que pour la période néonatale une population contrôle fiable était accessible rétrospectivement (les nouveau-nés nés dans la même maternité) et que les infections à GBS étaient répertoriées au laboratoire de bactériologie de l’hôpital, nous avons pu quantifier le risque infectieux en le comparant à celui de la population générale, et objectiver une susceptibilité accrue des enfants exposés non infectés aux infections invasives à GBS. Les explications possibles à cette susceptibilité incluent un portage augmenté de GBS chez les mères infectées par le VIH, ou une colonisation par des germes plus virulents. Parmi les facteurs de risque d’infection néonatale à GBS, on retrouve dans la littérature l’ethnicité noire et la prématurité [145, 146]. Une étude américaine a décrit un portage accru de GBS chez les femmes d’ethnicité noire ainsi qu’une augmentation du risque d’infection invasive chez les enfants noirs comparés aux enfants blancs [146]. Si l’ethnicité noire (d’origine africaine) était prédominante dans la population des enfants exposés non infectés de notre étude, et a pu contribuer à l’excès d’infections observé chez ces enfants, il n’est probablement pas responsable de l’augmentation du risque d’un facteur 20 que nous avons pu mettre en évidence. En ce qui concerne le taux de prématurité, il ne différait pas entre les deux populations étudiées. Il existe peu d’études sur le taux de portage de GBS chez les femmes infectées par le VIH [147-149]. La seule étude montrant un portage maternel augmenté des germes GBS, E. Coli ou Klebsiella pneumonia, menée en Afrique du Sud, n’a pas montré de risque accru d’infections néonatales chez les enfants nés de mères séropositives par rapport aux enfants nés de mères séronégatives [150].
Les sepsis à GBS sont une pathologie très importante dans certains pays en développement, notamment en Afrique du Sud [102], il est important d’établir si la pathologie maternelle de l’infection par le VIH contribue à cette morbidité, c’est ce que nous avons suggéré dans la lettre à l’éditeur du journal Emerging Infectious Disease [151]. Nous n’avons pas pu mettre en évidence des facteurs de risque de susceptibilité aux infections à GBS parmi les grossesses chez les femmes enceintes séropositives, car la conception de cette étude n’incluait pas une étude cas-control au sein de la population d’enfants exposés non infectés. Cependant il est fortement probable que la dépression immunitaire maternelle joue un rôle dans cette susceptibilité comme nous avons pu le démontrer pour la survenue d’infections néonatales dans une étude cas-control rétrospective portant sur les infections infantiles survenues chez les enfants exposés non infectés nés entre 1986 et 2006 (manuscrit soumis pour publication).

Cette publication sur l’incidence des infections à GBS est la première publication issue d’un pays industrialisé décrivant un risque infectieux accru chez les enfants exposés non infectés. Plusieurs publications issues de pays à ressources limitées (principalement d’Afrique subsaharienne) ont rapporté une mortalité et une morbidité infectieuse augmentée chez les enfants exposés non infectés comparé aux enfants non exposés [96, 152-154]. L’étude ZVITAMBO portant sur le suivi de 14000 enfants a décrit une mortalité à 2 ans trois fois plus importante chez les enfants exposés non infectés (qui pour la plupart n’avaient pas bénéficié d’une prophylaxie ARV anténatale) par rapport aux enfants non exposés [153]. Une étude prospective multicentrique menée en Amérique du Sud a montré une incidence élevée d’infections durant les 6 premiers mois de vie chez les enfants exposés non infectés [61] incluant des infections respiratoires basses survenant chez 18% des nourrissons, parmi lesquels la moitié requérait une hospitalisation [155]. Une étude prospective récente menée en Afrique du Sud a également démontré un risque accru d’hospitalisation pendant la première année de vie chez les enfants exposés non infectés comparés aux enfants non exposés [156]. Par ailleurs, des cas d’infections sévères ou atypiques suggérant un déficit immunitaire ont été décrits dans cette même population [157]. En effet des pneumopathies à pneumocoystis ont été rapportées chez des enfants exposés non infectés en Afrique du Sud [157, 158] mais aussi aux États Unis [159].

Les mécanismes impliqués dans cette susceptibilité accrue aux infections pourraient impliquer une plus grande exposition aux pathogènes, un niveau socio-économique plus bas, l’absence d’allaitement maternel, la toxicité des prophylaxies antirétrovirales administrées pendant la grossesse, ou un déficit immunitaire lié à l’infection maternelle.

- L’exposition des enfants aux pathogènes est plus grande lorsque les mères (et souvent aussi les pères) sont infectées par le VIH puisque ceux-ci sont plus susceptibles aux infections, et peuvent devenir source de contamination.

- Le milieu socio-économique de cette population d’enfant est souvent bas, ce qui
a une répercussion sur la morbidité infectieuse comme le montre les rapports de l’observatoire de la santé de Bruxelles [160]. En Belgique, il apparaît aussi que la population d’immigrants récents (non naturalisés) présente une mortalité péri-natale plus grande comme l’a montré une étude récente du CEPIP [161].

• Dans les pays industrialisés, les enfants nés de mères infectées par le VIH ne sont pas allaités. L’absence d’allaitement maternel est associé à une morbidité infectieuse accrue [162].

• La toxicité des médicaments ARV peut également être incriminée dans cette susceptibilité aux infections. Les cytopénies, liées à la toxicité des INTI, décrites dans de nombreuses publications [62, 92, 94, 95] pourraient être associées à une moins bonne réponse immunitaire aux agents infectieux, et auraient comme corrélat clinique une susceptibilité accrue aux infections en début de vie. Jusqu’à ce jour aucune corrélation entre les anomalies hématologiques décrites plus haut et les infections affectant le jeune enfant exposé non infecté n’a été démontrée. Des études sont en cours pour évaluer le bénéfice d’une prophylaxie antirétrovirale sans INTI pendant la grossesse.

• L’immunité maternelle joue probablement un rôle non négligeable dans la susceptibilité aux infections. En effet, une association entre le risque de morbidité/mortalité et la maladie maternelle avancée a été démontré à plusieurs reprises [61, 96, 153, 163][148, 151, 157]. Un certain nombre d’études indiquent que l’infection maternelle par le VIH pourrait influencer les défenses immunitaires des jeunes enfants même en l’absence de transmission du virus, comme c’est le cas dans d’autres infections chroniques maternelles [164]. Il a été démontré que le transfert transplacentaire des anticorps maternels est diminué chez la femme enceinte infectée par le VIH [165, 166], or ces anticorps maternels jouent un rôle important dans la défense du nourrisson contre les infections pendant les premiers mois de la vie. Par ailleurs, la réplication virale non contrôlée chez la mère est associée à une activation immune avec sécrétion de cytokines pro-inflammatoires par les cellules du sang de cordon [167], et à une augmentation de la population de lymphocytes mémoires. Comme chez les patients adultes, une activation immune pourrait induire une forme d’immunodéficience chez les enfants exposés. D’autre part, certaines observations suggèrent que l’exposition au VIH altérerait la fonction thymique, avec pour conséquence une diminution du nombre de CD4, et particulièrement de CD4 naïf [168]. Par ailleurs, Une capacité limitée des monocytes de sang de cordon à produire l’IL-12 pourrait être responsable d’une diminution des réponses immunes à médiation cellulaire chez le nourrisson exposé non infecté [169]. Enfin, il est possible que des particules virales antigéniques ou non infectieuses puissent altérer le développement immunitaire du fœtus et induire une immunodéficience relative. En effet des réponses CD4 et CD8 HIV spécifiques ont été décrites chez ces enfants et peuvent même persister pendant plusieurs années après la naissance [170, 171]. Toutes
ces altérations pourraient contribuer à la susceptibilité des enfants exposés non infectés en début de vie.

La susceptibilité aux infections décrites chez les enfants exposés non infectés, de même que les problèmes neurologiques observés dans cette même population, sont probablement d’origine multifactoriels. Il est actuellement difficile de distinguer la part jouée par les facteurs maternels, médicamenteux et environnementaux [172].

Afin d’étudier l’incidence et les déterminants des infections sévères chez les enfants exposés au VIH et non infectés, nous avons initié une étude prospective en mars 2011. Ce projet inclut le suivi d’une cohorte de naissance de 120 enfants nés de mères séropositives et de 120 enfants « contrôles » pendant 36 mois. Parallèlement au suivi clinique, des prélèvements sanguins sont réalisés afin de rechercher une altération du développement immunitaire chez les enfants exposés non infectés, et d’identifier des corrélats de susceptibilité aux infections. Le recrutement des 240 enfants est à présent achevé et le suivi clinique se poursuit. Les résultats préliminaires confirment un taux d’hospitalisation pour infections plus important dans le groupe des enfants exposés non infectés.
5. REFERENCES

1. Oleske J, Minnefor A, Cooper R, Jr., et al. Immune deficiency syndrome in children. Jama 1983;249:2345-9

2. UNAIDS. Progress Report on the Gobal Plan towards the elimination of new HIV infections among children by 2015 and keeping their mothers alive, 2013

3. Pizzo P. Pediatric AIDS, the Challenge of HIV Infection in Infants, Children, and Adolescents. 3rd ed.: Williams & Wilkins, 1998

4. Faye A, Bertone C, Teglas JP, et al. Early multitherapy including a protease inhibitor for human immunodeficiency virus type 1-infected infants. Pediatr Infect Dis J 2002;21:518-25

5. Palella FJ, Jr., Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med 1998;338:853-60

6. Cohen MS, Chen YQ, McCauley M, et al. Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med 2011;365:493-505

7. Tanser F, Barnighausen T, Grapsa E, Zaidi J and Newell ML. High coverage of ART associated with decline in risk of HIV acquisition in rural KwaZulu-Natal, South Africa. Science 2013;339:966-71

8. The Working Group on Mother-To-Child Transmission of HIV. Rates of mother-to-child transmission of HIV-1 in Africa, America, and Europe: results from 13 perinatal studies. The Working Group on Mother-To-Child Transmission of HIV. J Acquir Immune Defic Syndr Hum Retrovirol 1995;8:506-10

9. Mandelbrot L, Mayaux MJ, Bongain A, et al. Obstetric factors and mother-to-child transmission of human immunodeficiency virus type 1: the French perinatal cohorts. SEROGEST French Pediatric HIV Infection Study Group. Am J Obstet Gynecol 1996;175:661-7

10. Bryson YJ, Luzuriaga K, Sullivan JL and Wara DW. Proposed definitions for in utero versus intrapartum transmission of HIV-1. N Engl J Med 1992;327:1246-7

11. Rogers MF, Ou CY, Rayfield M, et al. Use of the polymerase chain reaction for early detection of the proviral sequences of human immunodeficiency virus in infants born to seropositive mothers. New York City Collaborative Study of Maternal HIV Transmission and Montefiore Medical Center HIV Perinatal Transmission Study Group. N Engl J Med 1989;320:1649-54

12. Mandelbrot L, Brossard Y, Aubin JT, et al. Testing for in utero human immunodeficiency virus infection with fetal blood sampling. Am J Obstet Gynecol 1996;175:489-93
13. Brossard Y, Aubin JT, Mandelbrot L, et al. Frequency of early in utero HIV-1 infection: a blind DNA polymerase chain reaction study on 100 fetal thymuses. Aids 1995;9:359-66

14. Mphatswe W, Blanckenberg N, Tudor-Williams G, et al. High frequency of rapid immunological progression in African infants infected in the era of perinatal HIV prophylaxis. Aids 2007;21:1253-61

15. Legardy-Williams JK, Jamieson DJ and Read JS. Prevention of mother-to-child transmission of HIV-1: the role of cesarean delivery. Clin Perinatol 2010;37:777-85

16. Henin Y, Mandelbrot L, Henrion R, Pradinaud R, Coulaud JP and Montagnier L. Virus excretion in the cervicovaginal secretions of pregnant and nonpregnant HIV-infected women. J Acquir Immune Defic Syndr 1993;6:72-5

17. Mofenson LM, Lambert JS, Stiehm ER, et al. Risk factors for perinatal transmission of human immunodeficiency virus type 1 in women treated with zidovudine. Pediatric AIDS Clinical Trials Group Study 185 Team. N Engl J Med 1999;341:385-93

18. Warszawski J, Tubiana R, Le Chenadec J, et al. Mother-to-child HIV transmission despite antiretroviral therapy in the ANRS French Perinatal Cohort. Aids 2008;22:289-99

19. Landesman SH, Kalish LA, Burns DN, et al. Obstetrical factors and the transmission of human immunodeficiency virus type 1 from mother to child. The Women and Infants Transmission Study. N Engl J Med 1996;334:1617-23

20. International perinatal HIV group. Duration of ruptured membranes and vertical transmission of HIV-1: a meta-analysis from 15 prospective cohort studies. Aids 2001;15:357-68

21. Scavalli CP, Mandelbrot L, Berrebi A, et al. Twin pregnancy as a risk factor for mother-to-child transmission of HIV-1: trends over 20 years. Aids 2007;21:993-1002

22. Lepage P, Van de Perre P, Carael M, et al. Postnatal transmission of HIV from mother to child. Lancet 1987;2:400

23. Miotti PG, Taha TE, Kumwenda NI, et al. HIV transmission through breastfeeding: a study in Malawi. Jama 1999;282:744-9

24. Dunn DT, Newell ML, Ades AE and Peckham CS. Risk of human immunodeficiency virus type 1 transmission through breastfeeding. Lancet 1992;340:585-8

25. Coovadia HM, Rollins NC, Bland RM, et al. Mother-to-child transmission of HIV-1 infection during exclusive breastfeeding in the first 6 months of life: an intervention cohort study. Lancet 2007;369:1107-16
26. Coutsoudis A, Pillay K, Spooner E, Kuhn L and Coovadia HM. Influence of infant-feeding patterns on early mother-to-child transmission of HIV-1 in Durban, South Africa: a prospective cohort study. South African Vitamin A Study Group. Lancet 1999;354:471-6

27. Neveu D, Viljoen J, Bland RM, et al. Cumulative exposure to cell-free HIV in breast milk, rather than feeding pattern per se, identifies postnatally infected infants. Clin Infect Dis;52:819-25

28. Burgard M, Blanche S, Jasseron C, et al. Performance of HIV-1 DNA or HIV-1 RNA tests for early diagnosis of perinatal HIV-1 infection during anti-retroviral prophylaxis. J Pediatr 2012;160:60-6 e1

29. Gutierrez M, Ludwig DA, Khan SS, et al. Has highly active antiretroviral therapy increased the time to seroreversion in HIV exposed but uninfected children? Clin Infect Dis 2012;55:1255-61

30. Yeni P. prise en charge médicale des personnes infectées par le VIH. direction de l'information legale et administrative, 2010

31. Biggar RJ, Miotti PG, Taha TE, et al. Perinatal intervention trial in Africa: effect of a birth canal cleansing intervention to prevent HIV transmission. Lancet 1996;347:1647-50

32. European mode of delivery collaboration. Elective caesarean-section versus vaginal delivery in prevention of vertical HIV-1 transmission: a randomised clinical trial. Lancet 1999;353:1035-9

33. Taylor GP, Anderson J, Clayden P, et al. British HIV Association and Children's HIV Association position statement on infant feeding in the UK 2011. HIV Med 2011;12:389-93

34. WHO. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection, 2013

35. Connor EM, Sperling RS, Gelber R, et al. Reduction of maternal-infant transmission of human immunodeficiency virus type 1 with zidovudine treatment. Pediatric AIDS Clinical Trials Group Protocol 076 Study Group. N Engl J Med 1994;331:1173-80

36. Sperling RS, Shapiro DE, Coombs RW, et al. Maternal viral load, zidovudine treatment, and the risk of transmission of human immunodeficiency virus type 1 from mother to infant. Pediatric AIDS Clinical Trials Group Protocol 076 Study Group. N Engl J Med 1996;335:1621-9

37. Cooper ER, Charurat M, Mofenson L, et al. Combination antiretroviral strategies for the treatment of pregnant HIV-1-infected women and prevention of perinatal HIV-1 transmission. J Acquir Immune Defic Syndr 2002;29:484-94

38. European Collaborative Study. Mother-to-child transmission of HIV infection in the era of highly active antiretroviral therapy. Clin Infect Dis 2005;40:458-65
39. Shearer WT, Quinn TC, LaRussa P, et al. Viral load and disease progression in infants infected with human immunodeficiency virus type 1. Women and Infants Transmission Study Group. N Engl J Med 1997;336:1337-42

40. European Collaborative Study E. Natural history of vertically acquired human immunodeficiency virus-1 infection. The European Collaborative Study. Pediatrics 1994;94:815-9

41. European Collaborative Study E. Risk factors for mother-to-child transmission of HIV-1. Lancet 1992;339:1007-12

42. Blanche S, Newell ML, Mayaux MJ, et al. Morbidity and mortality in European children vertically infected by HIV-1. The French Pediatric HIV Infection Study Group and European Collaborative Study. J Acquir Immune Defic Syndr Hum Retrovirol 1997;14:442-50

43. Newell ML, Coovadia H, Cortina-Borja M, Rollins N, Gaillard P and Dabis F. Mortality of infected and uninfected infants born to HIV-infected mothers in Africa: a pooled analysis. Lancet 2004;364:1236-43

44. European Collaborative Study E. Children born to women with HIV-1 infection: natural history and risk of transmission. European Collaborative Study. Lancet 1991;337:253-60

45. Dunn D. Short-term risk of disease progression in HIV-1-infected children receiving no antiretroviral therapy or zidovudine monotherapy: a meta-analysis. Lancet 2003;362:1605-11

46. Warszawski J, Lechénadec J, Faye A, et al. Long-term nonprogression of HIV infection in children: evaluation of the ANRS prospective French Pediatric Cohort. Clin Infect Dis 2007;45:785-94

47. Blanche S, Mayaux MJ, Rouzioux C, et al. Relation of the course of HIV infection in children to the severity of the disease in their mothers at delivery. N Engl J Med 1994;330:308-12

48. Abrams EJ, Weedon J, Steketee RW, et al. Association of human immunodeficiency virus (HIV) load early in life with disease progression among HIV-infected infants. New York City Perinatal HIV Transmission Collaborative Study Group. J Infect Dis 1998;178:101-8

49. Rapid disease progression in HIV-1 perinatally infected children born to mothers receiving zidovudine monotherapy during pregnancy. The Italian register for HIV Infection in Children. Aids 1999;13:927-33

50. HIV Paediatric Prognostic Markers Collaborative Study H. Predictive value of absolute CD4 cell count for disease progression in untreated HIV-1-infected children. Aids 2006;20:1289-94

51. Dunn D, Woodburn P, Duong T, et al. Current CD4 cell count and the short-term risk of AIDS and death before the availability of effective antiretroviral therapy in HIV-infected children and adults. J Infect Dis 2008;197:398-404
52. CDC. 1994 Revised Classification System for Human Immunodeficiency Virus Infection in Children Less Than 13 Years of Age, 1994

53. Center for Disease Control and Prevention. Guidelines for the use of antiretroviral agents in pediatric HIV infection. MMWR Recomm Rep 1998;47:1-43

54. Sharland M, Blanche S, Castelli G, Ramos J and Gibb DM. PENTA guidelines for the use of antiretroviral therapy, 2004. HIV Med 2004;5 Suppl 2:61-86

55. Faye A, Le Chenadec J, Dollfus C, et al. Early versus deferred antiretroviral multidrug therapy in infants infected with HIV type 1. Clin Infect Dis 2004;39:1692-8

56. Berk DR, Falkovitz-Halpern MS, Hill DW, et al. Temporal trends in early clinical manifestations of perinatal HIV infection in a population-based cohort. Jama 2005;293:2221-31

57. Chiappini E, Galli L, Gabiano C, Tovo PA and de Martino M. Early triple therapy vs mono or dual therapy for children with perinatal HIV infection. Jama 2006;295:626-8

58. Luzuriaga K, McManus M, Mofenson L, Britto P, Graham B and Sullivan JL. A trial of three antiretroviral regimens in HIV-1-infected children. N Engl J Med 2004;350:2471-80

59. Aboulker JP, Babiker A, Chaix ML, et al. Highly active antiretroviral therapy started in infants under 3 months of age: 72-week follow-up for CD4 cell count, viral load and drug resistance outcome. Aids 2004;18:237-45

60. Chiappini E, Galli L, Tovo PA, et al. Virologic, immunologic, and clinical benefits from early combined antiretroviral therapy in infants with perinatal HIV-1 infection. Aids 2006;20:207-15

61. Mussi-Pinhata MM, Freimanis L, Yamamoto AY, et al. Infectious disease morbidity among young HIV-1-exposed but uninfected infants in Latin American and Caribbean countries: the National Institute of Child Health and Human Development International Site Development Initiative Perinatal Study. Pediatrics 2007;119:e694-704

62. Heidari S, Mofenson L, Cotton MF, Marlink R, Cahn P and Katabira E. Antiretroviral drugs for preventing mother-to-child transmission of HIV: a review of potential effects on HIV-exposed but uninfected children. J Acquir Immune Defic Syndr 2011;57:290-6

63. Sibiude J, Warszawski J, Tubiana R, et al. Premature delivery in HIV-infected women starting protease inhibitor therapy during pregnancy: role of the ritonavir boost? Clin Infect Dis 2012;54:1348-60

64. De Santis M, Carducci B, De Santis L, Cavaliere AF and Straface G. Periconceptional exposure to efavirenz and neural tube defects. Arch Intern Med 2002;162:355
65. Cadman J. Efavirenz pregnancy warning. GMHC Treat Issues 1998;12:12

66. Patel D, Thorne C, Fiore S and Newell ML. Does highly active antiretroviral therapy increase the risk of congenital abnormalities in HIV-infected women? J Acquir Immune Defic Syndr 2005;40:116-8

67. Registry TAP. The Antiretroviral Pregnancy Registry: Interim Report, 2013

68. Knapp KM, Brogly SB, Muenz DG, et al. Prevalence of congenital anomalies in infants with in utero exposure to antiretrovirals. Pediatr Infect Dis J 2012;31:164-70

69. Brogly SB, Abzug MJ, Watts DH, et al. Birth defects among children born to human immunodeficiency virus-infected women: pediatric AIDS clinical trials protocols 219 and 219C. Pediatr Infect Dis J 2010;29:721-7

70. Sibiude J. ML, NBlanche S., et al. Birth defects and ART in the French Perinatal Cohort, a prospective Exhaustive Study among 13,124 Live Births from 1994 to 2010. In: 20th Conference on retroviruses and Opportunistic Infections. Atlanta, USA, 2013

71. Ford N, Mofenson L, Kranzer K, et al. Safety of efavirenz in first-trimester of pregnancy: a systematic review and meta-analysis of outcomes from observational cohorts. Aids 2010;24:1461-70

72. Poirier MC, Olivero OA, Walker DM and Walker VE. Perinatal genotoxicity and carcinogenicity of anti-retroviral nucleoside analog drugs. Toxicol Appl Pharmacol 2004;199:151-61

73. Aldrovandi GM, Chu C, Shearer WT, et al. Antiretroviral exposure and lymphocyte mtDNA content among uninfected infants of HIV-1-infected women. Pediatrics 2009;124:e1189-97

74. Brinkman K, ter Hofstede HJ, Burger DM, Smeitink JA and Koopmans PP. Adverse effects of reverse transcriptase inhibitors: mitochondrial toxicity as common pathway. Aids 1998;12:1735-44

75. Chen CH, Vazquez-Padua M and Cheng YC. Effect of anti-human immunodeficiency virus nucleoside analogs on mitochondrial DNA and its implication for delayed toxicity. Mol Pharmacol 1991;39:625-8

76. Poirier MC, Divi RL, Al-Harthi L, et al. Long-term mitochondrial toxicity in HIV-uninfected infants born to HIV-infected mothers. J Acquir Immune Defic Syndr 2003;33:175-83

77. Cote HC, Raboud J, Bitnun A, et al. Perinatal exposure to antiretroviral therapy is associated with increased blood mitochondrial DNA levels and decreased mitochondrial gene expression in infants. J Infect Dis 2008;198:851-9

78. Divi RL, Einem TL, Fletcher SL, et al. Progressive mitochondrial compromise in brains and livers of primates exposed in utero to nucleoside reverse transcriptase inhibitors (NRTIs). Toxicol Sci 2010;118:191-201
79. Alimenti A, Burdge DR, Ogilvie GS, Money DM and Forbes JC. Lactic acidemia in human immunodeficiency virus-uninfected infants exposed to perinatal antiretroviral therapy. Pediatr Infect Dis J 2003;22:782-9

80. Noguera A, Fortuny C, Munoz-Almagro C, et al. Hyperlactatemia in human immunodeficiency virus-uninfected infants who are exposed to antiretrovirals. Pediatrics 2004;114:e598-603

81. Dalakas MC, Illa I, Pezeshkpour GH, Laukaitis JP, Cohen B and Griffin JL. Mitochondrial myopathy caused by long-term zidovudine therapy. N Engl J Med 1990;322:1098-105

82. Blanche S, Tardieu M, Rustin P, et al. Persistent mitochondrial dysfunction and perinatal exposure to antiretroviral nucleoside analogues. Lancet 1999;354:1084-9

83. Brogly SB, Ylitalo N, Mofenson LM, et al. In utero nucleoside reverse transcriptase inhibitor exposure and signs of possible mitochondrial dysfunction in HIV-uninfected children. Aids 2007;21:929-38

84. Landreau-Mascaro A, Barret B, Mayaux MJ, Tardieu M and Blanche S. Risk of early febrile seizure with perinatal exposure to nucleoside analogues. Lancet 2002;359:583-4

85. Lipshultz SE, Shearer WT, Thompson B, et al. Cardiac effects of antiretroviral therapy in HIV-negative infants born to HIV-positive mothers: NHLBI CHAART-1 (National Heart, Lung, and Blood Institute Cardiovascular Status of HAART Therapy in HIV-Exposed Infants and Children cohort study). J Am Coll Cardiol 2011;57:76-85

86. Watts DH, Huang S, Culnane M, et al. Birth defects among a cohort of infants born to HIV-infected women on antiretroviral medication. J Perinat Med 2011;39:163-70

87. Alimenti A, Forbes JC, Oberlander TF, et al. A prospective controlled study of neurodevelopment in HIV-uninfected children exposed to combination antiretroviral drugs in pregnancy. Pediatrics 2006;118:e1139-45

88. Williams PL, Marino M, Malee K, Brogly S, Hughes MD and Mofenson LM. Neurodevelopment and in utero antiretroviral exposure of HIV-exposed uninfected infants. Pediatrics 2010;125:e250-60

89. Rice ML, Zeldow B, Siberry GK, et al. Evaluation of risk for late language emergence after in utero antiretroviral drug exposure in HIV-exposed uninfected infants. Pediatr Infect Dis J 2013;32:e406-13

90. Smith SE, Li J, Garbett K, Mirnics K and Patterson PH. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci 2007;27:10695-702

91. Giovanoli S, Engler H, Engler A, et al. Stress in puberty unmasks latent neuropathological consequences of prenatal immune activation in mice. Science;339:1095-9
92. Le Chenadec J, Mayaux MJ, Guihenneuc-Jouyaux C and Blanche S. Perinatal antiretroviral treatment and hematopoiesis in HIV-uninfected infants. Aids 2003;17:2053-61

93. Feiterna-Sperling C, Weizsaecher K, Buhrer C, et al. Hematologic effects of maternal antiretroviral therapy and transmission prophylaxis in HIV-1-exposed uninfected newborn infants. J Acquir Immune Defic Syndr 2007;45:43-51

94. Pacheco SE, McIntosh K, Lu M, et al. Effect of perinatal antiretroviral drug exposure on hematologic values in HIV-uninfected children: An analysis of the women and infants transmission study. J Infect Dis 2006;194:1089-97

95. Bunders MJ, Bekker V, Scherpbier HJ, Boer K, Godfried M and Kuijpers TW. Haematological parameters of HIV-1-uninfected infants born to HIV-1-infected mothers. Acta Paediatr 2005;94:1571-7

96. Filteau S. The HIV-exposed, uninfected African child. Trop Med Int Health 2009;14:276-87

97. Gray L, Newell ML, Thorne C, Peckham C and Levy J. Fluctuations in symptoms in human immunodeficiency virus-infected children: the first 10 years of life. Pediatrics 2001;108:116-22

98. Hainaut M, Peltier CA, Gerard M, Marissens D, Zissis G and Levy J. Effectiveness of antiretroviral therapy initiated before the age of 2 months in infants vertically infected with human immunodeficiency virus type 1. Eur J Pediatr 2000;159:778-82

99. Luzuriaga K, McManus M, Catalina M, et al. Early therapy of vertical human immunodeficiency virus type 1 (HIV-1) infection: control of viral replication and absence of persistent HIV-1-specific immune responses. J Virol 2000;74:6984-91

100. Goetghebuer T, Haelterman E, Le Chenadec J, et al. Effect of early antiretroviral therapy on the risk of AIDS/death in HIV-infected infants. Aids 2009;23:597-604

101. Goetghebuer T, Le Chenadec J, Haelterman E, et al. Short- and Long-term Immunological and Virological Outcome in HIV-Infected Infants According to the Age at Antiretroviral Treatment Initiation. Clin Infect Dis 2012; 54 (6): 878-881

102. Cotton MF, Rabie H. Group B streptococcal disease in infants. Lancet 2012;379:502-3

103. Whitmore SK, Taylor AW, Espinoza L, Shouse RL, Lampe MA and Nesheim S. Correlates of mother-to-child transmission of HIV in the United States and Puerto Rico. Pediatrics 2012;129:e74-81

104. The mode of delivery and the risk of vertical transmission of human immunodeficiency virus type 1--a meta-analysis of 15 prospective cohort studies. The International Perinatal HIV Group. N Engl J Med 1999;340:977-87
105. Read JS, Tuomala R, Kpamegan E, et al. Mode of delivery and postpartum morbidity among HIV-infected women: the women and infants transmission study. J Acquir Immune Defic Syndr 2001;26:236-45

106. Fiore S, Newell ML and Thorne C. Higher rates of post-partum complications in HIV-infected than in uninfected women irrespective of mode of delivery. Aids 2004;18:933-8

107. Briand N, Jasseron C, Sibiude J, et al. Cesarean section for HIV-infected women in the combination antiretroviral therapies era, 2000-2010. Am J Obstet Gynecol 2013; 209: 1-12

108. Forbes JC, Alimenti AM, Singer J, et al. A national review of vertical HIV transmission. Aids 2011;26:757-63

109. Tudor Car L, Van Velthoven MH, Brusamento S, et al. Integrating prevention of mother-to-child HIV transmission programs to improve uptake: a systematic review. PLoS One 2013;7:e35268

110. Zunza M, Mercer GD, Thabane L, Esser M and Cotton MF. Effects of postnatal interventions for the reduction of vertical HIV transmission on infant growth and non-HIV infections: a systematic review. J Int AIDS Soc 2014;16:1865

111. Jamieson DJ, Chasela CS, Hudgens MG, et al. Maternal and infant antiretroviral regimens to prevent postnatal HIV-1 transmission: 48-week follow-up of the BAN randomised controlled trial. Lancet 2012;379:2449-58

112. de Vincenzi I. Triple antiretroviral compared with zidovudine and single-dose nevirapine prophylaxis during pregnancy and breastfeeding for prevention of mother-to-child transmission of HIV-1 (Kesho Bora study): a randomised controlled trial. Lancet Infect Dis 2011;11:171-80

113. Coovadia HM, Brown ER, Fowler MG, et al. Efficacy and safety of an extended nevirapine regimen in infant children of breastfeeding mothers with HIV-1 infection for prevention of postnatal HIV-1 transmission (HPTN 046): a randomised, double-blind, placebo-controlled trial. Lancet 2012;379:221-8

114. Kumwenda NI, Hoover DR, Mofenson LM, et al. Extended antiretroviral prophylaxis to reduce breast-milk HIV-1 transmission. N Engl J Med 2008;359:119-29

115. Chasela CS, Hudgens MG, Jamieson DJ, et al. Maternal or infant antiretroviral drugs to reduce HIV-1 transmission. N Engl J Med 2010;362:2271-81

116. Thorne C, Patel D and Newell ML. Increased risk of adverse pregnancy outcomes in HIV-infected women treated with highly active antiretroviral therapy in Europe. Aids 2004;18:2337-9

117. Grosch-Woerner I, Puch K, Maier RF, et al. Increased rate of prematurity associated with antenatal antiretroviral therapy in a German/Austrian cohort of HIV-1-infected women. HIV Med 2008;9:6-13
118. Townsend C, Schulte J, Thorne C, et al. Antiretroviral therapy and preterm delivery—a pooled analysis of data from the United States and Europe. BJOG 2010;117:1399-410

119. Watts DH, Williams PL, Kacanek D, et al. Combination antiretroviral use and preterm birth. J Infect Dis 2013;207:612-21

120. Van der Linden D, Hainaut M, Goetghebuer T, et al. Effectiveness of early initiation of protease inhibitor-sparing antiretroviral regimen in human immunodeficiency virus-1 vertically infected infants. Pediatr Infect Dis J 2007;26:359-61

121. Violari A, Cotton MF, Gibb DM, et al. Early antiretroviral therapy and mortality among HIV-infected infants. N Engl J Med 2008;359:2233-44

122. CDC. Guidelines for the Use of Antiretroviral Agents in pediatric HIV Infection, 2008

123. Welch S, Sharland M, Lyall EG, et al. PENTA 2009 guidelines for the use of antiretroviral therapy in paediatric HIV-1 infection. HIV Med 2009;10:591-613

124. WHO. Antiretroviral Therapy for HIV infection in infants and children: towards universal access, 2010

125. Prendergast AJ, Penazzato M, Cotton M, et al. Treatment of young children with HIV infection: using evidence to inform policymakers. PLoS Med 2012;9:e1001273

126. Collins IJ, Judd A and Gibb DM. Immediate antiretroviral therapy in young HIV-infected children: benefits and risks. Curr Opin HIV AIDS 2013

127. Puthanakit T, Saphonn V, Ananworanich J, et al. Early versus deferred antiretroviral therapy for children older than 1 year infected with HIV (PREDICT): a multicentre, randomised, open-label trial. Lancet Infect Dis 2012;12:933-41

128. Schomaker M, Egger M, Ndirangu J, et al. When to start antiretroviral therapy in children aged 2-5 years: a collaborative causal modelling analysis of cohort studies from southern Africa. PLoS Med 2013;10:e1001555

129. Laughton B, Cornell M, Grove D, et al. Early antiretroviral therapy improves neurodevelopmental outcomes in infants. Aids 2012;26:1685-90

130. Lockman S, Shapiro RL, Smeaton LM, et al. Response to antiretroviral therapy after a single, peripartum dose of nevirapine. N Engl J Med 2007;356:135-47

131. Palumbo P, Lindsey JC, Hughes MD, et al. Antiretroviral treatment for children with peripartum nevirapine exposure. N Engl J Med 2010;363:1510-20
132. Simon A, Warszawski J, Kariyawasam D, et al. Association of prenatal and postnatal exposure to lopinavir-ritonavir and adrenal dysfunction among uninfected infants of HIV-infected mothers. Jama 2011;306:70-8

133. Penazzato M, Prendergast A, Tierney J, Cotton M and Gibb D. Effectiveness of antiretroviral therapy in HIV-infected children under 2 years of age. Cochrane Database Syst Rev 2012;7:CD004772

134. Persaud D, Gay H, Ziemniak C, et al. Absence of detectable HIV-1 viremia after treatment cessation in an infant. N Engl J Med 2013;369:1828-35

135. Babiker A, Castro nee Green H, Compagnucci A, et al. First-line antiretroviral therapy with a protease inhibitor versus non-nucleoside reverse transcriptase inhibitor and switch at higher versus low viral load in HIV-infected children: an open-label, randomised phase 2/3 trial. Lancet Infect Dis 2011;11:273-83

136. Violari A, Lindsey JC, Hughes MD, et al. Nevirapine versus ritonavir-boosted lopinavir for HIV-infected children. N Engl J Med 2012;366:2380-9

137. Kekitiinwa A, Cook A, Nathoo K, et al. Routine versus clinically driven laboratory monitoring and first-line antiretroviral therapy strategies in African children with HIV (ARROW): a 5-year open-label randomised factorial trial. Lancet 2013;381:1391-403

138. Judd A. Early antiretroviral therapy in HIV-1-infected infants, 1996-2008: treatment response and duration of first-line regimens. Aids 2011;25:2279-87

139. Cotton MF, Violari A, Otwombe K, et al. Early time-limited antiretroviral therapy versus deferred therapy in South African infants infected with HIV: results from the children with HIV early antiretroviral (CHER) randomised trial. Lancet 2013;382:1555-63

140. Fortuny C, Noguera-Julian A, Alsina L, et al. Impact of CD4 T cell count on the outcome of planned treatment interruptions in early-treated human immunodeficiency virus-infected children. Pediatr Infect Dis J 2011;30:435-8

141. Saez-Cirion A, Bacchus C, Hocqueloux L, et al. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog 2013;9:e1003211

142. Persaud D, Palumbo PE, Ziemniak C, et al. Dynamics of the resting CD4(+) T-cell latent HIV reservoir in infants initiating HAART less than 6 months of age. Aids 2012;26:1483-90

143. Ananworanich J, Puthanakit T, Suntarattiwong P, et al. Reduced markers of HIV persistence and restricted HIV-specific immune responses after early antiretroviral therapy in children. Aids 2014;28:1015-20
144. Shiau S, Kuhn L. Antiretroviral treatment in HIV-infected infants and young children: novel issues raised by the Mississippi baby. Expert Rev Anti Infect Ther 2014;12:307-18

145. Stapleton RD, Kahn JM, Evans LE, Critchlow CW and Gardella CM. Risk factors for group B streptococcal genitourinary tract colonization in pregnant women. Obstet Gynecol 2005;106:1246-52

146. CDC. CfDCaP. Trends in perinatal group B streptococcal disease - United States, 2000-2006. MMWR Morb Mortal Wkly Rep 2009;58:109-12

147. El Beitune P, Duarte G, Mafie CM, Quintana SM, De Sa Rosa ESAC and Nogueira AA. Group B Streptococcus carriers among HIV-1 infected pregnant women: prevalence and risk factors. Eur J Obstet Gynecol Reprod Biol 2006;128:54-8

148. Mavenyengwa RT, Moyo SR and Nordbo SA. Streptococcus agalactiae colonization and correlation with HIV-1 and HBV seroprevalence in pregnant women from Zimbabwe. Eur J Obstet Gynecol Reprod Biol 2010;150:34-8

149. Gray KJ, Kafalufa G, Matemba M, Kamdolozi M, Membe G and French N. Group B Streptococcus and HIV infection in pregnant women, Malawi, 2008-2010. Emerg Infect Dis 2011;17:1932-5

150. Cutland CL, Schrag SJ, Zell ER, et al. Maternal HIV infection and vertical transmission of pathogenic bacteria. Pediatrics 2012;130:e581-90

151. Goetghebuer T, Adler C, Epalza C and Levy J. High incidence of Group B streptococcal infection in Infants of HIV-infected mothers. Emerging Infectious Dis 2012;18 (3): 539-40

152. Koyanagi A, Humphrey JH, Ntozini R, et al. Morbidity among human immunodeficiency virus-exposed but uninfected, human immunodeficiency virus-infected, and human immunodeficiency virus-unexposed infants in Zimbabwe before availability of highly active antiretroviral therapy. Pediatr Infect Dis J 2011;30:45-51

153. Marinda E, Humphrey JH, Iliff PJ, et al. Child mortality according to maternal and infant HIV status in Zimbabwe. Pediatr Infect Dis J 2007;26:519-26

154. Brahmbhatt H, Kigozi G, Wabwire-Mangen F, et al. Mortality in HIV-infected and uninfected children of HIV-infected and uninfected mothers in rural Uganda. J Acquir Immune Defic Syndr 2006;41:504-8

155. Mussi-Pinhata MM, Motta F, Freimanis-Hance L, et al. Lower respiratory tract infections among human immunodeficiency virus-exposed, uninfected infants. Int J Infect Dis 2010;14 Suppl 3:e176-82

156. Slogrove A, Reikie B, Naidoo S, et al. HIV-exposed uninfected infants are at increased risk for severe infections in the first year of life. J Trop Pediatr 2012;58:505-8
157. Slogrove AL, Cotton MF and Esser MM. Severe infections in HIV-exposed uninfected infants: clinical evidence of immunodeficiency. J Trop Pediatr 2010;56:75-81

158. McNally LM, Jeena PM, Gajee K, et al. Effect of age, polymicrobial disease, and maternal HIV status on treatment response and cause of severe pneumonia in South African children: a prospective descriptive study. Lancet 2007;369:1440-51

159. Paul ME, Chantry CJ, Read JS, et al. Morbidity and mortality during the first two years of life among uninfected children born to human immunodeficiency virus type 1-infected women: the women and infants transmission study. Pediatr Infect Dis J 2005;24:46-56

160. Observatoire de la Santé et du Social B-C: Tableaux de bord de la santé. 2010

161. Minsart AF, Englert Y and Buekens P. Naturalization of immigrants and perinatal mortality. Eur J Public Health 2012;23:269-74

162. WHO. Effect of breastfeeding on infant and child mortality due to infectious diseases in less developed countries: a pooled analysis. WHO Collaborative Study Team on the Role of Breastfeeding on the Prevention of Infant Mortality. Lancet 2000;355:451-5

163. Kuhn L, Kasonde P, Sinkala M, et al. Does severity of HIV disease in HIV-infected mothers affect mortality and morbidity among their uninfected infants? Clin Infect Dis 2005;41:1654-61

164. Dauby N, Goetghebuer T, Kollmann TR, Levy J and Marchant A. Uninfected but not unaffected: chronic maternal infections during pregnancy, fetal immunity, and susceptibility to postnatal infections. Lancet Infect Dis 2012;12:330-40

165. de Moraes-Pinto MI, Almeida AC, Kenj G, et al. Placental transfer and maternally acquired neonatal IgG immunity in human immunodeficiency virus infection. J Infect Dis 1996;173:1077-84

166. Scott S, Moss WJ, Cousens S, et al. The influence of HIV-1 exposure and infection on levels of passively acquired antibodies to measles virus in Zambian infants. Clin Infect Dis 2007;45:1417-24

167. Hygino J, Vieira MM, Guillermo LV, et al. Enhanced Th17 phenotype in uninfected neonates born from viremic HIV-1-infected pregnant women. J Clin Immunol 2011;31:186-94

168. Nielsen SD, Jeppesen DL, Kolte L, et al. Impaired progenitor cell function in HIV-negative infants of HIV-positive mothers results in decreased thymic output and low CD4 counts. Blood 2001;98:398-404

169. Chougnet C, Kovacs A, Baker R, et al. Influence of human immunodeficiency virus-infected maternal environment on development of infant interleukin-12 production. J Infect Dis 2000;181:1590-7
170. Rowland-Jones SL, Nixon DF, Aldhous MC, et al. HIV-specific cyto-
toxic T-cell activity in an HIV-exposed but uninfected infant. Lancet
1993;341:860-1

171. Legrand FA, Nixon DF, Loo CP, et al. Strong HIV-1-specific T cell responses
in HIV-1-exposed uninfected infants and neonates revealed after regulato-
ry T cell removal. PLoS One 2006;1:e102

172. Afran L, Garcia Knight M, Nduati E, Urban BC, Heyderman RS and
Rowland-Jones SL. HIV-exposed uninfected children: a growing popula-
tion with a vulnerable immune system? Clin Exp Immunol 2014;176:11-22