Gold and BINOL-Phosphoric Acid Catalyzed
Enantioselective Hydroamination/N-
Sulfonyliminium Cyclization Cascade

Alex W. Gregory,† Pavol Jakubec,† Paul Turner‡ and Darren J. Dixon*†

†Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA (UK) and ‡ Mereside, Alderley Park, AstraZeneca R&D Macclesfield, Cheshire SK10 4TG (UK).
darren.dixon@chem.ox.ac.uk
Contents

1. General Experimental .. - 8 -

2. Preparation and Characterisation .. - 9 -

 2.1. Preparation and characterisation of tryptamine derivatives .. - 9 -

 2.2. General procedure A for the preparation of indole carbaldehydes (17) .. - 10 -

 2.2.1. Preparation and characterisation of 17g .. - 10 -

 2.2.2. Preparation and characterisation of 17b .. - 10 -

 2.3. General procedure B for the synthesis of nitro-olefins 18 .. - 10 -

 2.3.1. Preparation and characterisation of 18g .. - 11 -

 2.3.2. Preparation and characterisation of 18b .. - 11 -

 2.4. General procedure C for the synthesis of tryptamines 19 .. - 12 -

 2.4.1. Preparation and characterisation of 19m .. - 12 -

 2.4.2. Preparation and characterisation of 19b .. - 13 -

 2.4.3. Preparation and characterisation of 20g .. - 13 -

 2.4.4. Preparation and characterisation of 19g .. - 14 -

 2.5. General procedure D for preparation of 5 .. - 15 -

 2.5.1. Preparation and characterisation of 5a .. - 15 -

 2.5.2. Preparation and characterisation of 5b .. - 16 -

 2.5.3. Preparation and characterisation of 5c .. - 16 -

 2.5.4. Preparation and characterisation of 5d .. - 17 -

 2.5.5. Preparation and characterisation of 5e .. - 17 -

 2.5.6. Preparation and characterisation of 5f .. - 18 -

 2.5.7. Preparation and characterisation of 5g .. - 18 -

 2.5.8. Preparation and characterisation of 5h .. - 19 -

 2.5.9. Preparation and characterisation of 5i .. - 20 -

 2.5.10. Preparation and characterisation of 5j .. - 20 -

 2.5.11. Preparation and characterisation of 5k .. - 21 -

 2.6. General procedure E for preparation of 6 .. - 21 -

 2.7. General procedure F for preparation of racemic derivatives 6 ... - 22 -

 2.7.1. Preparation and characterisation of 6a .. - 22 -

 2.7.2. Preparation and characterisation of 7a .. - 22 -

 2.7.3. Preparation and characterisation of 6b .. - 23 -

 2.7.4. Preparation and characterisation of 6c .. - 24 -

 2.7.5. Preparation and characterisation of 6d .. - 24 -

 2.7.6. Preparation and characterisation of 6e .. - 25 -

 2.7.7. Preparation and characterisation of 6f .. - 26 -

 2.7.8. Preparation and characterisation of 6g .. - 27 -

- S- 2 - -
2.7.9. Preparation and characterisation of 6h.. - 27 -
2.7.1. Preparation and characterisation of 6i.. - 28 -
2.7.2. Preparation and characterisation of 6j.. - 29 -
2.7.3. Preparation and characterisation of 6k.. - 29 -
2.8. Methodology extension for amide derivatives.. - 30 -
2.9. General procedure G for the preparation of 9 .. - 30 -
2.9.1. Preparation and characterisation of 9a.. - 30 -
2.9.2. Preparation and characterisation 9b.. - 31 -
2.9.3. Preparation and Characterisation of 9c... - 32 -
2.9.4. Preparation and Characterisation of 9d... - 32 -
2.10. General procedure H for the racemic preparation of cyclic amides 10 - 33 -
2.11. General procedure I for the Enantioselective preparation of cyclic amides 10 - 33 -
2.11.1. Preparation and characterisation of 10a... - 33 -
2.11.2. Preparation and Characterisation of 10b... - 34 -
2.11.3. Preparation and Characterisation of 10c... - 35 -
2.11.4. Preparation and Characterisation of 10d... - 35 -
2.12. Optimization, Derivative for X-ray and Control reactions. .. - 36 -
2.13. Preparation and characterisation of 14 .. - 36 -
2.13.1. Mechanistic evidence for N-sulfonyliminium 13 .. - 37 -
2.13.2. General Procedure for optimization in the preparation of 11b-methyl-1,2,5,6,11,11b-
hexahydroisothiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 5a... - 37 -
2.13.3. General procedure for optimization in the preparation of 10a... - 37 -
2.13.4. Optimisation table for the preparation of 10a... - 38 -
2.13.5. Preparation and characterisation of 15a... - 38 -
3. 1HNNMR and 13CNMR spectra... - 40 -
3.1. Sulfonamide starting material 5.. - 40 -
3.1.1. 1HNNMR spectra for N-[2-(1H-indol-3-yl)ethyl]but-3-yn-1-sulfonamide 5a - 40 -
3.1.2. 13CNMR spectra for N-[2-(1H-indol-3-yl)ethyl]but-3-yn-1-sulfonamide 5a - 40 -
3.1.3. 1HNNMR spectra for N-[2-(4-chloro-1H-indol-3-yl)ethyl]but-3-yn-1-sulfonamide 5b - 41 -
3.1.4. 13CNMR spectra for N-[2-(4-chloro-1H-indol-3-yl)ethyl]but-3-yn-1-sulfonamide 5b - 41 -
3.1.5. 1HNNMR spectra for N-[2-(5-bromo-1H-indol-3-yl)ethyl]but-3-yn-1-sulfonamide 5c - 42 -
3.1.6. 13CNMR spectra for N-[2-(5-bromo-1H-indol-3-yl)ethyl]but-3-yn-1-sulfonamide 5c - 42 -
3.1.7. 1HNNMR spectra for N-[2-(6-bromo-1H-indol-3-yl)ethyl]but-3-yn-1-sulfonamide 5d - 43 -
3.1.8. 13CNMR spectra for N-[2-(6-bromo-1H-indol-3-yl)ethyl]but-3-yn-1-sulfonamide 5d - 43 -
3.1.9. 1HNNMR spectra for N-[2-(5-fluoro-1H-indol-3-yl)ethyl]but-3-yn-1-sulfonamide 5e - 44 -
3.1.10. 13CNMR spectra for N-[2-(5-fluoro-1H-indol-3-yl)ethyl]but-3-yn-1-sulfonamide 5e - 44 -
3.1.11. 1HNNMR spectra for N-[2-(6-fluoro-1H-indol-3-yl)ethyl]but-3-yn-1-sulfonamide 5f - 45 -
3.2. Sulfonamide cyclization products

3.2.1. 1H NMR spectra for 11b-methyl-1,2,5,6,11b-hexahydroisothiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6a ... - 51 -

3.2.2. 13C NMR spectra for 11b-methyl-1,2,5,6,11b-hexahydroisothiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6a ... - 51 -

3.2.3. 1H NMR spectra for 2,3,6,7,12,12b-hexahydro-1H-[1,2]thiazino[2',3':1,2]pyrido[3,4-b]indole 4,4-dioxide 7a ... - 51 -

3.2.4. 13C NMR spectra for 2,3,6,7,12,12b-hexahydro-1H-[1,2]thiazino[2',3':1,2]pyrido[3,4-b]indole 4,4-dioxide 7a ... - 52 -

3.2.5. 1H NMR spectra for 7-chloro-11b-methyl-1,2,5,6,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6b ... - 53 -

3.2.6. 13C NMR spectra for 7-chloro-11b-methyl-1,2,5,6,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6b ... - 53 -

3.2.7. 1H NMR spectra for 8-bromo-11b-methyl-1,2,5,6,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6c ... - 54 -

3.2.8. 13C NMR spectra for 8-bromo-11b-methyl-1,2,5,6,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6c ... - 54 -

3.2.9. 1H NMR spectra for 9-bromo-11b-methyl-1,2,5,6,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6d ... - 55 -

3.2.10. 13C NMR spectra for 9-bromo-11b-methyl-1,2,5,6,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6d ... - 55 -

3.2.11. 1H NMR spectra for 8-fluoro-11b-methyl-1,2,5,6,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6e ... - 56 -

3.2.12. 13C NMR spectra for 8-fluoro-11b-methyl-1,2,5,6,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6e ... - 56 -

3.2.13. 1H NMR spectra for 9-fluoro-11b-methyl-1,2,5,6,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6f ... - 57 -

3.2.14. 13C NMR spectra for 9-fluoro-11b-methyl-1,2,5,6,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6f ... - 57 -
3.2.15. ¹H NMR spectra for 11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole-8-carbonitrile 3,3-dioxide 6g. ... - 58 -

3.2.16. ¹³C NMR spectra for 11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole-8-carbonitrile 3,3-dioxide 6g. ... - 58 -

3.2.17. ¹H NMR spectra for 8-methoxy-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6h. ... - 59 -

3.2.18. ¹³C NMR spectra for 8-methoxy-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6h. ... - 59 -

3.2.1. ¹H NMR spectra for 8,11b-dimethyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6i. ... - 60 -

3.2.2. ¹³C NMR spectra for 8,11b-dimethyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6i. ... - 60 -

3.2.3. ¹H NMR spectra for 10,11b-dimethyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6j. ... - 61 -

3.2.4. ¹³C NMR spectra for 10,11b-dimethyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6j. ... - 61 -

3.2.5. ¹H NMR spectra for 10-ethyl-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6k. ... - 62 -

3.2.6. ¹³C NMR spectra for 10-ethyl-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6k. ... - 62 -

3.3. Amide starting material. ... - 63 -

3.3.1. ¹H NMR spectra for N-[2-(1H-indol-3-yl)ethyl]hex-5-ynamide 9a. ... - 63 -

3.3.2. ¹³C NMR spectra for N-[2-(1H-indol-3-yl)ethyl]hex-5-ynamide 9a. ... - 63 -

3.3.3. ¹H NMR spectra for N-[2-(7-bromo-1H-indol-3-yl)ethyl]hex-5-ynamide 9b. ... - 64 -

3.3.4. ¹³C NMR spectra for N-[2-(7-bromo-1H-indol-3-yl)ethyl]hex-5-ynamide 9b. ... - 64 -

3.3.5. ¹H NMR spectra for N-[2-(7-methyl-1H-indol-3-yl)ethyl]hex-5-ynamide 9c. ... - 65 -

3.3.6. ¹³C NMR spectra for N-[2-(7-methyl-1H-indol-3-yl)ethyl]hex-5-ynamide 9c. ... - 65 -

3.3.7. ¹H NMR spectra for N-[2-(7-ethyl-1H-indol-3-yl)ethyl]hex-5-ynamide 9d. ... - 66 -

3.3.8. ¹³C NMR spectra for N-[2-(7-ethyl-1H-indol-3-yl)ethyl]hex-5-ynamide 9d. ... - 66 -

3.4. Amide cyclization products. ... - 67 -

3.4.1. ¹H NMR spectra for 12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one 10a. ... - 67 -

3.4.2. ¹³C NMR spectra for 12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one 10a. ... - 67 -

3.4.3. ¹H NMR spectra for 11b-bromo-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one 10b. ... - 68 -

3.4.4. ¹³C NMR spectra for 11b-bromo-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one 10b. ... - 68 -

3.4.5. ¹H NMR spectra for 11,12b-dimethyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one 10c. ... - 69 -

3.4.6. ¹³C NMR spectra for 11,12b-dimethyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one 10c. ... - 69 -

3.4.7. ¹H NMR spectra for 11-ethyl-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one 10d. ... - 70 -
3.4.9. 13CNMR spectra for 11-ethyl-12b-methyl-2,3,6,7,12,12b-hexahydroindol[2,3-α]quinoliniz-4(1H)-one 10d. -70 -
3.4.10. 1HNMR spectra for N-[2-(1H-indole-3-yl)ethyl]-3-oxobutane-1-sulfonamide 14. -71 -
3.4.11. 13CNMR spectra for N-[2-(1H-indole-3-yl)ethyl]-3-oxobutane-1-sulfonamide 14. -71 -
3.4.12. 1HNMR spectra for 11-(3-bromobenzyl)-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 15a. -72 -
3.4.13. HPLC reports. -73 -
4. 1. Sulfonamide cyclization products. -73 -
4.1.1. HPLC trace of racemic 11b-methyl-1,2,5,6,11,11b-hexahydroisothiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6a. -73 -
4.1.2. HPLC trace of 11b-methyl-1,2,5,6,11,11b-hexahydroisothiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6a. -73 -
4.1.3. HPLC trace of racemic 7-chloro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6b. -74 -
4.1.4. HPLC trace of 7-chloro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6b. -75 -
4.1.5. HPLC trace of racemic 8-bromo-11b-methyl-1,2,5,6,11,11b-hexahydroisothiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6c. -76 -
4.1.6. HPLC trace of racemic 8-fluoro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6c. -77 -
4.1.7. HPLC trace of racemic 9-bromo-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6d. -77 -
4.1.8. HPLC trace of racemic 9-fluoro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6d. -78 -
4.1.9. HPLC trace of 9-fluoro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6f. -79 -
4.1.10. HPLC trace of racemic 8-bromo-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6e. -79 -
4.1.11. HPLC trace of 8-bromo-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6e. -80 -
4.1.12. HPLC trace of racemic 9-fluoro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6f. -80 -
4.1.13. HPLC trace of 9-fluoro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6f. -81 -
4.1.14. HPLC trace of racemic 11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole-8-carbonitrile 3,3-dioxide 6g. -80 -
4.1.15. HPLC trace of 11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole-8-carbonitrile 3,3-dioxide 6g. -80 -
4.1.16. HPLC trace of 8-methoxy-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6h. -81 -
4.1.17. HPLC trace of 8-methoxy-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6h

4.1.18. HPLC trace of Racemic 8,11b-dimethyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6i

4.1.19. HPLC trace of 8,11b-dimethyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6j

4.1.20. HPLC trace of Racemic 10,11b-dimethyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6j

4.1.21. HPLC trace of 10,11b-dimethyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6j

4.1.22. HPLC trace of Racemic 10-ethyl-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6k

4.1.23. HPLC trace of 10-ethyl-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6k

4.2. Amide cyclization products

4.2.1. HPLC trace of Racemic 11-bromo-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one 10b

4.2.2. HPLC trace of 11-bromo-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one 10b

4.2.3. HPLC trace of racemic 11,12b-dimethyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one 10c

4.2.4. HPLC trace of 11,12b-dimethyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one 10c

4.2.5. HPLC trace of racemic 11-ethyl-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one 10d

4.2.6. HPLC trace of 11-ethyl-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one 10d

4.2.7. HPLC trace of racemic 11-(3-bromobenzyl)-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 15a

4.2.8. HPLC trace of 11-(3-bromobenzyl)-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 15a

5. Xray Data

5.1. X-ray data for compound 10b

5.2. X-Ray data for compound 15a

5.3. X-ray references

6. References
1. General Experimental

General Experimental Techniques

For reactions requiring anhydrous conditions, glassware was dried in an oven at 100 °C and reactions were carried out under a nitrogen or argon atmosphere. Room temperature (rt) refers to 20-25 °C. Temperatures of 0 °C were achieved using an ice-bath. All compounds were named using ACD IUPAC name predictor.

Solvents and Reagents

Commercial reagents were used as purchased without any further purification unless otherwise stated. Chiral Brønsted acids (BPA-1A to BPA-1D and BPA-2A) were synthesised by Dr. Michael Muratore and Dr. Lie Shi following standard literature procedure.1,2,3 Bulk solutions were concentrated under reduced pressure using a Büchi rotary evaporator. Anhydrous toluene, tetrahydrofuran and dichloromethane were obtained by filtration through activated alumina (powder ~150 mesh, pore size 58Å, basic, Sigma-Aldrich) columns. Dichloroethane and acetonitrile were distilled over calcium hydride. Petroleum ether (PE) refers to distilled light petroleum with boiling points in the range of 40 °C – 60 °C. Tryptamine derivatives 2-(1H-indol-3-yl)ethanamine, 2-(5-methyl-1H-indol-3-yl)ethanamine and 2-(5-methoxy-1H-indol-3-yl)ethanamine were used as provided from commercial suppliers. Known tryptamine derivatives were made following literature methods.4,5,6 5-cyano-tryptamine, 4-chloro-tryptamine and 7-bromo-tryptamine were synthesised as described.

Chromatography

All reactions were monitored by thin-layer chromatography (TLC) where appropriate using Merck Kiesel gel 60 F254 (230-400 mesh) silica plates which were visualised by UV-light (250 nm) or by staining using aqueous potassium permanganate solutions or vanillin, sulphuric acid in ethanol where appropriate. Column chromatography was carried out using Merck Kieselgel 60 silica gel (230-400 mesh). Enantiomeric excesses were determined using high performance liquid chromatography (HPLC) performed on a Hewlett-Packard 1050 Series system or Agilent 1200 Series system (column and solvent conditions are given with the compound).

Spectroscopy and Characterisation

All 1H and 13C nuclear magnetic resonance (NMR) spectra were collected on either a Bruker DPX400 (400 MHz 1H, 100 MHz 13C), Bruker DQX400 (400 MHz 1H, 100 MHz 13C) or Bruker AVCS00 (500 MHz 1H, 125 MHz 13C) and in the deuterated solvent stated. Chemical shift values (δ) are reported relative to tetramethylsilane (δ = 0 ppm) using the solvent residual as an internal reference. 1HNMR peak splitting (multiplicity) and coupling constants are quoted as seen in the spectra and are not compared to theoretically expected multiplicity. Assignments were aided by COSY and HSQC experiments.

Low resolution mass spectrometric (m/z) data was acquired by electrospray ionisation (ESI) on an LCT Premier instrument. High resolution mass spectra (accurate mass) were recorded on a Bruker Micromass GCT spectrometer.

Infrared spectra (νmax) were recorded (wavenumber cm⁻¹) from a thin film on a PIKE diamond ATR module. Only selected maximum absorbances are reported.
Optical rotations were recorded using an Optical Activity AA-1000 polarimeter or a Perkin-Elmer 241 polarimeter; specific rotation (SR) ([α]_D^20) are reported in 10⁻¹ deg.cm².g⁻¹; concentrations (c) are quoted in g/100 ml; D refers to the D-line of sodium (589 nm); Temperatures (T) are given in degrees Celsius (°C).

Melting points were measured on a Leica Galen III microscope apparatus, samples were measured mounted on a cover glass window.

2. Preparation and Characterisation

2.1. Preparation and characterisation of tryptamine derivatives

2.2. General procedure A for the preparation of indole carbaldehydes (17)

Phosphorus oxychloride (2.5 eq) was added dropwise to dry dimethyl formamide (5 ml per 1 ml of POCl₃) with ice-bath cooling under nitrogen. The mixture was stirred for 5 minutes before the chosen indole (1 equivalent) was added in dimethyl formamide (10 ml per 1 g of indole). The mixture was then allowed to warm to room temperature and stirred for 3 hours. The reaction became a thick suspension that required vigorous stirring. Potassium hydroxide solution (3.8 M, 10 eq) was added via dropping funnel and the mixture was heated at reflux for 14-16h. The solution was cooled to room temperature before adding a saturated sodium hydrogen carbonate solution and ethyl acetate until the mixture became clear and the organic layer was separated. The aqueous layer was extracted with ethyl acetate and the combined organic layers were dried over sodium sulphate, filtered and concentrated in vacuo to furnish the desired aldehyde that required no further purification.
2.2.1. Preparation and characterisation of 17g

3-formyl-1H-indole-5-carbonitrile

The title compound 17g was synthesised according to general procedure A in 97% yield as an off white solid. m.p. 230-233 °C; FT-IR ν max 3207 (N–H), 2221 (C≡N), 1648 (C=O); 1H NMR (d6-DMSO, 400 MHz) δH 12.54 (br s, 1H, ArNH), 9.99 (s, 1H, ArC(O), 8.49 (s, 1H, ArCH), 8.45 (d, 1H, ArCH, J 2.0 Hz), 7.69 (d, 1H, ArCH, J 8.5 Hz), 7.62 (dd, 1H, ArCH, J 8.5 Hz, 2.0 Hz); 13C NMR (d6-DMSO, 100 MHz) δC 186.2 (C=O), 141.1 (ArC), 139.7 (ArCquat), 127.2 (ArCH), 126.6 (ArCH) 124.8 (ArCquat), 120.8 (ArCquat), 118.9 (ArCN), 114.8 (ArCH), 105.2 (ArCquat); m/z (ES−) 169 ([M−H]−, 100%), HRMS (ES+) exact mass calculated for [M+Na]+ (C10H6N2NaO+) requires m/z 193.0372, found 193.0368.

2.2.2. Preparation and characterisation of 17b

4-chloro-1H-indole-3-carbaldehyde

The title compound 17b was synthesised according to general procedure A in 85% yield as a light brown solid. m.p. 147-148 °C; FT-IR ν max 1636 (C=O); 1H NMR (d6-DMSO, 400 MHz) δH 12.57 (br s, 1H, ArNH), 10.49 (s, 1H, CH(O), 8.30 (s, 1H, ArCH), 7.52 (d, 1H, ArCH, J 8.0 Hz), 7.30 (d, 1H, ArCH, J 8.0 Hz), 7.23 (t, 1H, ArCH, J 8.0 Hz); 13C NMR (d6-DMSO, 125 MHz) δC 185.6 (C=O), 139.1 (ArCquat), 134.9 (ArCH), 125.4 (ArCquat), 124.4 (ArCH), 123.8 (ArCquat), 123.4 (ArCH), 118.7 (ArCquat), 112.8 (ArCH); m/z (ES−) 178 ([M−H]−, 100%), HRMS (ES−) exact mass calculated for [M-H]− (C9H5ClNO−) requires m/z 178.0065 & 180.0036 found m/z 178.0065 & 180.0033.

2.3. General procedure B for the synthesis of nitro-olefins 18
A mixture of the corresponding aldehyde 17 (1 eq.), and ammonium acetate (dried under reduced pressure until the crystals became free flowing) (3 eq.) in nitromethane (20 ml per 1 g of aldehyde) were heated at reflux under nitrogen for 1 hour (behind a blast shield). The reaction mixture was then allowed to cool to room temperature. Two purification methods: 1) The solvent was removed *in vacuo* and the residue washed with water and filtered. The filtration cake was pre-absorbed onto silica gel and purified by flash column chromatography (PE:ethyl acetate, 2:1) to furnish the desired nitro-olefin. 2) The reaction was allowed to cool to room temperature and left to crystallize for 14-16 h. The solid was filtered, washed with water and dried over phosphorous pentoxide in a vacuum dessicator affording the desired nitro-olefin 18.

2.3.1. Preparation and characterisation of 18g

(E)-3-(2-nitrovinyl)-1H-indole-5-carbonitrile

The title compound 18g was synthesised according to general procedure B in 98% yield as a yellow solid.

m.p. 142 °C (decomposition); FT-IR 2222 (C≡N), 1621 (C=C), 1528 (NO₂(asy)), 1340 (NO₂(sy)); ¹H NMR (d₆-DMSO, 400 MHz) δH 12.6 (br s, 1H, ArNH), 8.66 (s, 1H, ArCH), 8.40 (d, 1H, O₂NCHCH = C = H), 8.38 (s, 1H, ArCH), 8.22 (d, 1H, O₂NCHCH = C = H J 13.5 Hz), 7.67 (d, 1H, ArCH, J 8.5 Hz), 7.61 (d, 1H, ArCH, J 8.5 Hz); ¹³C NMR (d₆-DMSO, 100 MHz) δC 140.2 (ArCquat), 138.3 (ArCH), 134.0 (O₂NCH=CH) 134.0 (ArCquat), 127.0 (O₂NCH=CH), 126.9 (ArCH), 125.3 (ArCH), 120.9 (ArC), 114.8 (ArCH), 109.5 (ArCquat), 104.8 (ArCquat); m/z (ES−) 212 ([M−H]−, 100%), HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₁H₇N₃NaO₂⁺) requires m/z 236.0430, found m/z 236.0430.

2.3.2. Preparation and characterisation of 18b

(E)-4-chloro-3-(2-nitrovinyl)-1H-indole
The title compound 18b was synthesised according to general procedure B in 98% yield as an orange solid.

m.p. 158-160 °C (decomposition); FT-IR \(\nu_{\text{max}} \) 3258 (N–H), 1605 (C=C), 1491 (NO\(_2\) (asy)), 1293 (NO\(_2\) (sy)); \(^1\)H NMR (d\(_6\)-DMSO, 400 MHz) \(\delta_H \) 12.57 (br s, 1H, ArN\(_2\)H), 8.92 (d, 1H, O\(_2\)NCH=CCH\(_3\), J 13.5 Hz), 8.53 (s, 1H, ArCH), 8.12 (d, 1H, O\(_2\)NCH=CH, J 13.5 Hz), 7.50 (dd, 1H, ArCH, J 7.6 Hz, 1.5 Hz), 7.23 (m, 2H, ArCH); \(^{13}\)C NMR (d\(_6\)-DMSO, 100 MHz) \(\delta_C \) 139.2 (ArC\(_{\text{quat}}\)), 134.4 (O\(_2\)NCHCH), 133.4 (O\(_2\)NCHCH), 132.6 (ArCH), 125.4 (ArC\(_{\text{quat}}\)), 124.5 (ArCH), 123.6 (ArC\(_{\text{quat}}\)), 123.5 (ArCH), 113.1 (ArCH), 107.8 (ArC\(_{\text{quat}}\)); m/z (ES–) 221 ([M–H]– 100%), HRMS (ES+) exact mass calculated for [M+Na]\(^+\) (C\(_{10}\)H\(_7\)ClN\(_2\)NaO\(_2\)) requires m/z 245.0088 & 247.0059 found m/z 245.0084 & 247.0056.

2.4. General procedure C for the synthesis of tryptamines 19

A solution nitro olefin 18 (1 equivalent) in tetrahydrofuran (10 ml per 1 mmol of nitro olefin) was added to a stirred slurry of lithium aluminium hydride powder (6 equivalents) in tetrahydrofuran (equal mass to volume, e.g. 1 g (LiAlH\(_4\)) : 1 ml (tetrahydrofuran)) at 0 °C. The mixture was allowed to warm to room temperature and stirred for 36 hours. The reaction was cooled to 0 °C and was quenched by dropwise addition of water until effervescence ceased. The mixture was then filtered and the solid washed with ethylacetate, the filtrate was concentrated in vacuo to furnish the desired tryptamine 19 which was purified by flash column chromatography or acidic extraction from CH\(_2\)Cl\(_2\) solution followed by addition of solid KOH until the PH measures 14 (by universal indicator paper) and extracted with CH\(_2\)Cl\(_2\) dried over NaSO\(_4\) and concentrated.

2.4.1. Preparation and characterisation of 19m

2-(7-bromo-1H-indol-3-yl)ethanamine
The title compound \(19m\) was synthesised according to general procedure C from known nitro-olefin\(^7\) after acid base extraction isolated as an orange solid (50% yield).

\[
\text{m.p. } 89-99 \degree C; \text{ FT-IR } \nu_{\text{max}} 3556 (\text{NH}_2), 3293 (\text{ArNH}) \text{; } ^1H \text{ NMR (CDCl}_3, 400 \text{ MHz}) \delta_H 8.67 \text{ (br s, 1H, ArNH)}, 7.55 \text{ (d, 1H, ArCH, } J 8.0 \text{ Hz}), 7.35 \text{ (d, 1H, ArCH, } J 8.0 \text{ Hz}), 7.07 \text{ (t, 1H, ArCH, } J 8.0 \text{ Hz), 3.04 \text{ (t, 2H, NCH}_2, J 6.5 \text{ Hz), 2.90 \text{ (t, 2H, ArCH}_2, J 6.5 \text{ Hz), 1.58 \text{ (br s, 2H, NCH}_2); } ^{13}C \text{ NMR (d}_6\text{-DMSO, 100 MHz) } \delta_C 135.1 \text{ (ArCquat), 128.8 \text{ (ArCquat), 124.3 \text{ (ArCH), 122.7 \text{ (ArCH), 120.4 \text{ (ArCH), 118.1 \text{ (ArCH), 114.9 \text{ (ArCquat), 104.8 \text{ (ArBr), 42.3 \text{ (NCH}_2), 29.5 \text{ (ArCH); m/z } 239 ([M+H]^+, 100\%), HRMS (ES+) exact mass calculated for [M+H]^+ (C}_10\text{H}_{12}\text{BrN}_2^+) requires m/z 239.0187 & 241.0158 found m/z 239.0178 & 241.0157.}
\]

2.4.2. Preparation and characterisation of \(19b\)

\[
\text{2-[(4-chloro-1H-indol-3-yl)ethanamine}
\]

The title compound was synthesised from \(19b\) according to general procedure C and purified by flash column chromatography (DCM ramping to DCM : MeOH : NEt\(_3\) 85 : 10 : 5) in 57% yield as an orange solid.

\[
\text{m.p. } 83-93 \degree C; \text{ FT-IR } \nu_{\text{max}} 3351 (\text{NH}_2), 3294 (\text{ArNH}) \text{; } ^1H \text{ NMR (CDCl}_3, 400 \text{ MHz}) \delta_H 9.02 \text{ (br s, 1H, ArNH)}, 7.22 \text{ (dd, 1H, ArCH, } J 6.5 \text{ Hz, 2.5 Hz), 7.08-7.02 \text{ (m, 2H, ArCH), 6.99 \text{ (s, 1H, ArCH), 3.13 \text{ (t, 2H, NCH}_2, J 6.5 \text{ Hz), 3.06 \text{ (t, 2H, ArCH}_2, J 6.5 \text{ Hz), 1.72 \text{ (br s, 2H, NH}_2); } ^{13}C \text{ NMR (CDCl}_3, 100 \text{ MHz) } \delta_C 138.1 \text{ (ArCquat), 126.3 \text{ (ArCquat), 124.1 \text{ (ArCquat), 123.9 \text{ (ArCH), 122.3 \text{ (ArCH), 120.3 \text{ (ArCH), 113.7 \text{ (ArCquat), 110.0 \text{ (ArCH), 43.5 \text{ (NCH}_2), 30.4 \text{ (ArCH); m/z } 195 ([M+H]^+, 100\%), HRMS (ES+) exact mass calculated for [M+H]^+ (C}_10\text{H}_{12}\text{ClN}_2^+) requires m/z 195.0684 & 197.0654 found m/z 195.0681 & 197.0656.}
\]

2.4.3. Preparation and characterisation of \(20g\)

\[
\text{3-[(2-nitroethyl)-1H-indole-5-carbonitrile}
\]
Sodium borohydride (25.8 mmol, 11 eq) was added portionwise to a solution of nitro-olefin 18b (2.35 mmol, 1 eq) in dimethylformamide (20 ml) and methanol (20 ml). The reaction mixture was stirred at room temperature until the reaction reached completion (complete consumption of starting material by TLC analysis). Hydrochloric acid solution (2M) was added until the pH of the solution reached pH 7. The mixture was extracted with dichloromethane (3 × 30 ml) and the organic layer was washed with brine and dried over sodium sulfate filtered and concentrated in vacuo. Purification by column chromatography afforded the title compound XX as a off white solid (70 % yield) m.p. 134-136 °C; FT-IR ν\textsubscript{max} 3290 (ArN–H), 2222 (C≡N), 1539 (NO\textsubscript{2} (asy)), 1369 (NO\textsubscript{2} (sy)); 1H NMR (CD\textsubscript{3}OD, 400 MHz) δ\textsubscript{H} 8.05 (s, 1H, ArC\textsubscript{H}), 7.49 (d, 1H, ArC\textsubscript{H}, J 8.5 Hz), 7.40 (d, 1H, ArC\textsubscript{H}, J 8.5 Hz), 7.30 (s, 1H, ArC\textsubscript{H}), 4.79-4.71 (m, 2H, NO\textsubscript{2}C\textsubscript{H}\textsubscript{2}), 3.50-3.45 (m, 2H, ArC\textsubscript{H}\textsubscript{2}); 13C NMR (CD\textsubscript{3}OD, 100 MHz) δ\textsubscript{C} 138.8 (ArC\textsubscript{quat}), 127.1 (ArC\textsubscript{quat}), 125.9 (ArC\textsubscript{H}), 124.4 (ArC\textsubscript{H}), 124.1 (ArC\textsubscript{H}), 120.8 (ArC\textsubscript{N}), 112.6 (ArC\textsubscript{H}), 111.1 (ArC\textsubscript{quat}), 101.7 (ArC\textsubscript{quat}), 75.8 (O\textsubscript{2}NCH\textsubscript{2}), 23.0 (ArC\textsubscript{H}); m/z (ES+) 238 ([M+Na]+, 100%), HRMS (ES+) exact mass calculated for [M+Na]+ (C\textsubscript{11}H\textsubscript{9}N\textsubscript{3}NaO\textsubscript{2}+) requires m/z 238.0587 & 239.0620 found m/z 238.0589 & 239.0627.

2.4.4. Preparation and characterisation of 19g

3-(2-aminoethyl)-1H-indole-5-carbonitrile

A solution of nitroalkane 20g (1.53 mmol, 10 eq) in methanol (45 ml) was added to a mixture of zinc (35 mmol, 23 eq) in hydrochloric acid solution (2M, 45 ml) and heated to reflux over 2 hours. The reaction was cooled to room temperature and filtered. Sodium hydroxide (1M) was added the filtrate until the solution reached pH 11. The solution was extracted with a dichloromethane : methanol (95 : 5) solution and dried over NaSO\textsubscript{4}. Concentration afforded the title compound 19g as a light brown solid (88% yield).

m.p. 114-125 °C; FT-IR ν\textsubscript{max} 3224 (ArN–H, NH\textsubscript{2}), 2216 (C≡N); 1H NMR (CD\textsubscript{3}OD, 400 MHz) δ\textsubscript{H} 8.03 (br s, 1H, ArC\textsubscript{H}), 7.47 (d, 1H, ArC\textsubscript{H}, J 8.5 Hz), 7.38 (d, 1H, ArC\textsubscript{H}, J 8.5 Hz), 7.28 (br s, 1H, ArC\textsubscript{H}), 2.95 (br s, 4H, NCH\textsubscript{2}), 2.05 (br s, 3H, ArC\textsubscript{H}); 13C NMR (CD\textsubscript{3}OD, 100 MHz) δ\textsubscript{C} 139.8 (ArC\textsubscript{quat}), 127.0 (ArC\textsubscript{quat}), 126.0 (ArC\textsubscript{H}), 124.4 (ArC\textsubscript{H}), 122.0 (ArC\textsubscript{N}), 111.2 (ArC\textsubscript{H}), 101.6 (ArC\textsubscript{quat}), 78.5 (O\textsubscript{2}NCH\textsubscript{2}), 23.0 (ArC\textsubscript{H}); m/z (ES+) 239 ([M+Na]+, 100%), HRMS (ES+) exact mass calculated for [M+Na]+ (C\textsubscript{12}H\textsubscript{11}N\textsubscript{3}NaO\textsubscript{2}+) requires m/z 239.0620 & 240.0624 found m/z 239.0627 & 240.0627.
MHZ) \(\delta_{C} 139.0 \) (Ar\(_{\text{quat}} \)), 127.9 (Ar\(_{\text{quat}} \)), 125.3 (Ar\(C \)), 124.3 (Ar\(C \)), 124.1 (Ar\(C \)), 121.0 (Ar\(C_{\text{CN}} \)), 113.7 (Ar\(_{\text{quat}} \)), 112.5 (Ar\(C \)), 101.2 (Ar\(C_{\text{CN}} \)), 27.8 (Ar\(CH_{2} \)); \text{m}/z (ES−) 186 ([M+H]\(^{+}\), 100\%)

2.5. General procedure D for preparation of 5

To a stirred solution of sulfonyl chloride\(^{9}\) (1.1 eq) in dichloromethane (5 ml/mmol of tryptamine) under argon at -78 °C was added the desired tryptamine derivative 19 (1 eq) and triethylamine (1.1 eq) in dichloromethane (7 ml/mmol of tryptamine). The mixture was stirred at -78 °C for 5 to 10 mins then concentrated \textit{in vacuo} (in a room temperature water bath) to give the crude product. The residue was purified by flash column chromatography (CH\(_{2} Cl_{2}:Et_{2}O, 1:0\) to 8:2) to give the desired sulfonamide derivative 5.

2.5.1. Preparation and characterisation of 5a

\textit{N}-(2-(1\textit{H}-indol-3-yl)ethyl]but-3-yn-1-sulfonamide

The title compound 5a was synthesised according to general procedure D to give 5a as an off white solid (90% yield). Recrystallization from ethanol gives thin white crystalline plates.

\textbf{m.p.} 122.4-122.5 °C; \textbf{FT-IR} \text{v}_{\text{max}} 3419 (N–H), 3409 (N–H), 1306 (S=O\(_{\text{sy}} \)), 1126 (S=O\(_{\text{as}} \)); \textbf{\(^{1}H\) NMR} (CDCl\(_{3}, 400\) MHz) \(\delta_{H} 8.10 \) (bs, 1H, Ar\(NH_{2} \)), 7.60 (d, 1H, Ar\(C_{H} \), J 8.0 Hz), 7.39 (d, 1H, Ar\(C_{H} \), J 8.0 Hz), 7.23 (t, 1H, Ar\(C_{H} \), J 8.0 Hz), 7.16 (t, 1H, Ar\(C_{H} \), J 8.0 Hz), 7.1 (d, 1H, Ar\(C_{H} \), J 2.5 Hz), 4.34 (t, 1H, CH\(_{2}\)NH, J 6.0 Hz), 3.46 (q, 2H, Ar\(CH_{2}CH_{2} \), J 6.0 Hz), 3.11 (t, 2H, S\(CH_{2} \), J 7.0 Hz), 3.07 (t, 2H, Ar\(CH_{2} \), J 6.5 Hz), 2.59 (td, 2H, S\(CH_{2}CH_{2} \), J 7.0 Hz, 3.0 Hz), 1.65 (t, 1H, C=CH\(J \) 3.0 Hz); \textbf{\(^{13}C\) NMR} (CDCl\(_{3}, 100\) MHz) \(\delta: 136.4 \) (Ar\(_{\text{quat}} \)), 126.9 (Ar\(_{\text{quat}} \)), 122.8 (Ar\(C \)), 122.5 (Ar\(C \)), 119.7 (Ar\(C \)), 118.6 (Ar\(C \)), 111.7 (Ar\(_{\text{quat}} \)), 111.4 (Ar\(C \)), 79.8 (HC\(\equiv C \)), 79.1 (HC\(\equiv C \))
70.5 (C≡CH), 49.9 (SC\textsubscript{2}H\textsubscript{2}), 43.3 (NH\textsubscript{2}CH\textsubscript{2}), 26.2 (Ar\textsubscript{2}CH\textsubscript{2}), 14.1 (HCC\textsubscript{2}H\textsubscript{2}); \textit{m/z} (ES+) 299 ([M+Na+], 100\%), \textbf{HRMS} (ES+) exact mass calculated for [M+Na+]+ (C\textsubscript{14}H\textsubscript{16}N\textsubscript{2}O\textsubscript{2}S2Na+) requires \textit{m/z} 299.0825, found \textit{m/z} 299.0822.

2.5.2. Prepar\textbf{ation and characterisation of 5b}

\textbf{N-[2-\{(4-chloro-1H-indol-3-yl)ethyl\}but-3-yn-1-sulfonamide}

\begin{center}
\includegraphics[width=0.5\textwidth]{5b.png}
\end{center}

The title compound \textbf{5b} was synthesised according to general procedure D to give \textbf{5b} as an off white solid (80\% yield). Recrystallization from ethanol gives thin white crystalline plates.

\textbf{m.p.} 84-85 °C; \textbf{FT-IR} \nu\textsubscript{max} 3381 (\textit{N}-\textit{H}), 3280 (\textit{N}-\textit{H}), 1312 (S=O (as)), 1129 (S=O (sy)); \textbf{\textit{\textit{\textit{1H NMR}}} (CDCl\textsubscript{3}, 400 MHz)} \delta\textsubscript{H} 8.21 (br s, 1H ArN\textsubscript{H}), 7.29 (dd, 1H, ArCH\textsubscript{2}, J 5.5 Hz, 3.0 Hz), 7.03 (d, 1H, ArCH\textsubscript{2}, J 2.0 Hz), 7.06-7.12 (m, 2H, ArCH\textsubscript{2}), 4.33 (t, 1H, SN\textsubscript{H}), 3.51 (q, 2H, NC\textsubscript{2}H\textsubscript{2}, J 6.5 Hz), 3.27 (t, 2H, ArCH\textsubscript{2}, J 6.5 Hz), 3.14 (t, 2H, SCH\textsubscript{2}, J 7.0 Hz), 2.63 (td, 2H, SCH\textsubscript{2}CH\textsubscript{2}, J 7.0 Hz, 3.0 Hz), 1.69 (t, 1H, C≡CH, J 3.0 Hz); \textbf{\textit{\textit{\textit{13C NMR}}} (CDCl\textsubscript{3}, 100 MHz)} \delta\textsubscript{C} 138.0 (ArC\textsubscript{quat}), 126.0 (ArC\textsubscript{quat}), 124.6 (ArCH), 123.8 (ArC\textsubscript{quat}), 122.9 (ArCH), 120.7 (Ar\textit{CH}), 112.0 (ArC\textsubscript{quat}), 110.2 (ArCH), 79.8 (HC\textsubscript{≡}\textit{C}), 70.5 (C=\textit{CH}), 49.8 (SC\textsubscript{2}H\textsubscript{2}), 44.6 (NCH\textsubscript{2}), 27.1 (Ar\textit{CH}), 14.1 (SCH\textsubscript{2}CH\textsubscript{2}); \textit{m/z} (ES+) 333 ([M+Na+], 100\%), \textbf{HRMS} (ES+) exact mass calculated for [M+Na+]+ (C\textsubscript{14}H\textsubscript{15}ClN\textsubscript{2}O\textsubscript{2}SNa+) requires \textit{m/z} 333.0435 & 335.0406 found 333.0431 & 335.0401.

2.5.3. Preparation and characterisation of \textbf{5c}

\textbf{N-[2-\{(5-bromo-1H-indol-3-yl)ethyl\}but-3-yn-1-sulfonamide}

\begin{center}
\includegraphics[width=0.5\textwidth]{5c.png}
\end{center}

The title compound \textbf{5c} was synthesised according to general procedure D to give \textbf{5c} as a brown solid (25\% yield). Recrystallization from ethanol gives an off white solid.
m.p. 68-70 °C; FT-IR νmax 3415, 3394 (N–H and ArN–H), 1305 (S=O (as)) cm⁻¹, 1132 (S=O (sy)) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ₉ 8.12 (bs, 1H, Ar NH), 7.71 (d, 1H, Ar CH, 7.15 Hz), 7.31 (dd, 1H, Ar CH, J 8.5 Hz, 2.0 Hz), 7.27 (dd, 1H, Ar CH, J 8.5 Hz), 7.13 (1H, Ar CH, J 2.0 Hz), 4.29 (t, 2H, S CH₂, J 6.5 Hz), 3.45 (q, 2H, NCH₂, J 6.5 Hz), 3.15 (t, 2H, S CH₂, J 7.0 Hz), 3.03 (t, 2H, NCH₂CH₂, J 6.5 Hz), 2.63 (td, 2H, SCH₂CH₂, J 7.0 Hz, 2.5 Hz), 1.75 (t, 1H, C ≡ CH, J 2.5 Hz); ¹³C NMR (CDCl₃, 125 MHz) δ 135.0 (Ar C Br), 128.7 (Ar Cquat), 125.4 (Ar CH), 121.2 (Ar CH), 113.0 (Ar Cquat), 79.8 (HC≡C), 50.0 (S C H₂), 43.1 (N C H₂), 26.1 (NCH₂CH₂), 14.1 (NCH₂CH₂); m/z (ES+) 377 ([M+Na]+, 100%), HRMS (ES+) exact mass calculated for [M+Na]+ (C₁₄H₁₆BrN₂O₂SNa) requires m/z 376.9930 & 378.9909, found m/z 376.9925 & 378.9904.

2.5.4. Preparation and characterisation of 5d

N-[2-(6-bromo-1H-indol-3-yl)ethyl]but-3-yne-1-sulfonamide

The title compound 5d was synthesised according to general procedure D to give 5d as an off white solid (73% yield). Recrystallization from ethanol gives an off white solid.

m.p. 110-112 °C; FT-IR νmax 3416 (N–H), 3290 (Ar–H), 1301 (S=O (as)) cm⁻¹, 1127 (S=O (sy)) cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δH 8.10 (br s, 1H, Ar NH), 7.55 (s, 1H, Ar CH), 7.45 (d, 1H, Ar CH, J 8.5 Hz), 7.25 (d, 1H, Ar CH, J 8.5 Hz), 7.09 (s, 1H, Ar CH), 4.31 (t, 1H, S NH, J 6.5 Hz), 3.44 (q, 2H, NCH₂, J 6.5 Hz), 3.12 (t, 2H, S CH₂, J 7.0 Hz), 3.04 (t, 2H, Ar CH₂, J 6.5 Hz), 2.61 (td, 2H, S CH₂CH₂, J 7.0 Hz, 2.5 Hz), 1.73 (t, 1H, C≡CH, J 2.5 Hz); ¹³C NMR (CDCl₃, 100 MHz) δC 137.2 (Ar Cquat), 125.9 (Ar Cquat), 123.3 (Ar CH), 123.0 (Ar CH), 119.8 (Ar CH), 116.0 (Ar CBr), 114.4 (Ar CH), 112.0 (Ar Cquat), 79.8 (HC≡C), 70.5 (HC≡C), 50.0 (SCH₂), 43.3 (NCH₂), 26.1 (Ar CH₂), 14.1 (HC≡CH₂); m/z (ES+) 377 ([M+Na]+, 100%), HRMS (ES+) exact mass calculated for [M+Na]+ (C₁₄H₁₃BrN₂O₂SNa) requires m/z 376.9930 & 378.9909, found m/z 376.9926 & 378.9905.

2.5.5. Preparation and characterisation of 5e

N-[2-(5-fluoro-1H-indol-3-yl)ethyl]but-3-yne-1-sulfonamide

- S- 17 - -
The title compound 5e was synthesised according to general procedure D to give 5e as an off white solid (57% yield). Recrystallization from ethanol gives thin white crystalline plates.

m.p. 99-101 °C; **FT-IR** ν_{max} 3419 (N–H), 3294 (Ar=N–H), 1300 (S=O_(as)), 1126 (S=O_(v)); ¹H NMR (CDCl₃, 400 MHz) δ_{HN}: 8.17 (br s, 1H, ArNH); 7.30 (dd, 1H, ArCH, J 9.0 Hz, 4.0 Hz), 7.22 (dd, 1H, ArCH, J 9.5 Hz, 2.0 Hz), 7.14 (d, 1H, ArCH, J 2.0 Hz), 6.97 (td, 1H, ArCH, J 9.0 Hz, 2.5 Hz), 4.40 (t, 1H, SNH, J 24 Hz), 3.43 (q, 2H, NHCH₂, J 6.5 Hz), 3.37 (t, 2H, SCH₂, J 7.0 Hz), 3.01 (t, 2H, ArCH₂, J 6.5 Hz), 2.61 (td, 2H, SCH₂CH₂, J 7.0 Hz, 3.0 Hz), 1.73 (t, 1H, C=C=CH, J 2.5 Hz) ¹³C NMR (CDCl₃, 100 MHz) δ_{CN}: 157.8 (d, Ar CF, J 236 Hz), 132.9 (Ar_{quat}), 127.3 (d, Ar_{quat}, J 10 Hz), 124.6 (Ar CH), 121.1 (d, Ar CH, J 10 Hz), 111.8 (d, Ar_{quat}, J 4.8 Hz), 110.8 (d, Ar CH, J 26 Hz), 103.5 (d, Ar CH, J 24 Hz), 79.8 (HC=C), 70.5 (C=CH), 49.9 (SCH₂), 43.1 (SNCH₂), 26.2 (Ar CH₂), 14.1 (SCH₂CH₂); ¹⁹F NMR (CDCl₃, 376 MHz), -124.0 (ArF); m/z (ES+) exact mass calculated for [M+Na]⁺ (C₁₄H₁₆FN₂O₂SNa⁻) requires m/z 317.0730 & 318.0763, found m/z 317.0724 & 318.0764.

2.5.6. Preparation and characterisation of 5f

N-[2-(6-fluoro-1H-indol-3-yl)ethyl]but-3-yne-1-sulfonamide

The title compound 5f was synthesised according to general procedure D to give 5f as an off white solid (46% yield). Recrystallization from ethanol gives thin white crystalline plates.

m.p. 98-99 °C; **FT-IR** ν_{max} 3419 (N–H), 3307 (ArF); 3170 & 3180 (HC=C), 3294 (HC=C), 3170 & 3180 (HC=N), 1301 (S=O_(as)), 1127 (S=O_(v)); ¹H NMR (CDCl₃, 400 MHz) δ_{HN}: 8.15 (br s, 1H, ArNH); 7.49 (dd, 1H, ArCH, J 9.0 Hz, 5.0 Hz), 7.07 (m, 2H, ArCH), 6.92 (td, 1H, ArCH, J 9.0 Hz, 2.0 Hz), 4.39 (t, 1H, SNH, J 26 Hz), 3.44 (q, 2H, NHCH₂, J 6.5 Hz), 3.11 (t, 2H, SCH₂, J 7.0 Hz), 3.03 (t, 2H, ArCH₂, J 6.5 Hz), 2.60 (td, 2H, SCH₂CH₂, J 7.0 Hz, 2.5 Hz), 1.74 (t, 1H, C=C=CH, J 3.0 Hz) ¹³C NMR (CDCl₃, 100 MHz) δ_{CN}: 160.1 (d, Ar CF, J 239 Hz), 136.3 (d, Ar_{quat}, J 12 Hz), 123.6 (Ar_{quat}, 123.0 (d, Ar CH, J 3 Hz)), 119.3 (d, Ar CH, J 10 Hz) 111.8 (Ar_{quat}, 108.5 (d, Ar CH, J 24 Hz), 97.7 (d, Ar CH, J 26 Hz), 79.8 (HC=C), 70.5 (C=CH), 49.9 (SCH₂), 43.1 (SNCH₂), 26.2 (Ar CH₂), 14.1 (SCH₂CH₂); ¹⁹F NMR (CDCl₃, 376 MHz), -120.4 (ArF); m/z (ES+) exact mass calculated for [M+Na]⁺ (C₁₃H₁₄FN₂O₂SNa⁻) requires m/z 317.0730 & 318.0763, found m/z 317.0727 & 318.0766.

2.5.7. Preparation and characterisation of 5g

N-[2-(5-cyano-1H-indol-3-yl)ethyl]but-3-yne-1-sulfonamide

- S 18 -
The title compound 5g was synthesised according to general procedure D to give 5g as an off white solid (42% yield). Recrystallization from ethanol gives thin white crystalline plates.

m.p. 135-136 °C; **FT-IR** ν\text{max} 3339 (N–H), 3294 (ArN–H), 2225 (C=\text{N}), 1318 (S=O\text{(aq)}), 1136 (S=O\text{(aq)}); ¹H NMR (d₆-DMSO, 400 MHz) δ\text{H} 11.46 (br s, 1H, ArNH), 8.09 (s, 1H, ArCH), 7.51 (d, 1H, ArCH\text{)}, \text{J} 8.0 Hz), 7.44-7.39 (m, 2H, ArCH); 7.26 (t, 1H, SNH, J 6.0 Hz), 3.23 (td, 2H, NCH₂, J 7.0 Hz, 6.0 Hz), 3.15 (t, 2H, SCH₂, J 7.5 Hz), 2.93 (t, 1H, C=CH₂, J 3.0 Hz), 2.90 (t, 2H, ArCH₂, J 7.0 Hz), 2.50 (signal hidden under DMSO peak, confirmed by HSQC and COSY) (m, 2H, HC=CCH₂, J 7.5 Hz, 3.0 Hz); ¹³C NMR (d₆-DMSO, 100 MHz) δ\text{C} 138.7 (Ar\text{C}≡\text{C}), 127.9 (Ar\text{C}≡\text{C}), 126.7 (Ar\text{C}≡\text{C}), 125.1 (Ar\text{C}≡\text{C}), 124.5 (Ar\text{C}≡\text{C}), 112.6 (Ar\text{C}≡\text{C}), 111.4 (Ar\text{C}≡\text{C}), 101.2 (Ar\text{C}≡\text{C}), 82.0 (HC≡\text{C}), 73.4 (C≡\text{C}), 50.2 (SC\text{H}_₂), 43.9 (NCH₂), 26.4 (ArCH₂), 14.2 (SC\text{H}_₂\text{CCH}_₂); m/z (ES⁺) 324 ([M+Na]⁺, 100%), HRMS (ES⁺) exact mass calculated for [M+Na]⁺ (C₁₃H₁₀N₂O₃SNa⁺) requires m/z 324.0777 & 325.0810, found m/z 324.0770 & 325.0812.

2.5.8. Preparation and characterisation of 5h

N-[2-(5-methoxy-1H-indol-3-yl)ethyl]but-3-yn-1-sulfonamide

The title compound 5h was synthesised according to general procedure D to give 5h as an off white solid (81% yield). Recrystallization from ethanol gives an off white solid.

m.p. 70-72 °C; **FT-IR** ν\text{max} 3405 (SN–H), 3282 (ArN–H), 1317 (S=O\text{(aq)}), 1134 (S=O\text{(aq)}); ¹H NMR (CDCl₃, 400 MHz) δ\text{H} 8.04 (br s, 1H, ArNH), 7.27 (d, 1H, ArCH, J 8.5 Hz), 7.05 (d, 1H, ArCH, J 1.5 Hz), 7.03 (d, 1H, ArCH, J 2.5 Hz), 6.89 (dd, 1H, ArCH, J 8.5 Hz, 2.5 Hz), 4.42 (t, 1H, SNH, J 6.5 Hz), 3.88 (s, 3H, OCH₃), 3.44 (q, 2H, NCH₂, J 6.5 Hz), 3.11 (t, 2H, SCH₂, J 7.0 Hz), 3.02 (t, 2H, ArCH₂, J 6.5 Hz), 2.59 (td, 2H, SCH₂CH₂, J 7.0 Hz), 1.72 (t, 1H, C=CH₂, J 2.8 Hz); ¹³C NMR (CDCl₃, 125 MHz) δ\text{C} 154.2 (Ar\text{C}≡\text{OMe}), 131.5 (Ar\text{C}≡\text{C}), 127.4 (Ar\text{C}≡\text{C}), 123.5 (Ar\text{C}≡\text{C}), 112.6 (Ar\text{C}≡\text{C}), 112.2 (Ar\text{C}≡\text{C}), 111.4 (Ar\text{C}≡\text{C}), 100.5 (Ar\text{C}≡\text{C}), 79.8 (HC≡\text{C}), 70.5 (C≡\text{C}), 56.0 (OCH₃), 49.9 (SC\text{H}_₂), 43.3 (NCH₂), 26.2 (ArCH₂), 14.1 (SC\text{H}_₂\text{CCH}_₂\text{CCH}_₂); m/z (ES⁺) 329 ([M+Na]⁺, 100%), HRMS (ES⁺) exact mass calculated for [M+Na]⁺ (C₁₃H₁₀N₂O₃SNa⁺) requires m/z 329.0930 & 330.0963, found m/z 329.0921 & 330.0969.
2.5.9. **Preparation and characterisation of 5i**

N-[[2-[(5-methyl-1H-indol-3-yl)ethyl]but-3-yn-1-yl]sulfonamide

The title compound 5i was synthesised according to general procedure D to give 5i as an off white solid (72% yield). Recrystallization from ethanol gives an off white solid.

m.p. 112-114 °C; FT-IR ν_{max} 3412 (N–H), 3300 (ArN–H), 1307 (S=O (as)), 1127 (S=O (sy)); \(^1^H\) NMR (CDCl\(_3\), 400 MHz) \(\delta_{H}\): 7.99 (br s, 1H, ArN–H), 7.37 (s, 1H, ArC\(\equiv\)C), 7.28 (d, 1H, ArCH, J 7.0 Hz), 7.06 (d, 1H, ArCH, J 1.5 Hz), 7.05 (dd, 1H, ArCH, J 7.0 Hz, 1.5 Hz), 4.32 (t, 1H, SN–H, J 6.5 Hz), 3.45 (q, 2H, NC\(\equiv\)H\(_2\), J 6.5 Hz), 3.11 (t, 2H, SC\(\equiv\)H\(_2\), J 7.5 Hz), 3.04 (t, 2H, ArC\(\equiv\)CH\(_2\), J 6.5 Hz), 2.59 (td, 2H, SCH\(_2\)C\(\equiv\)H\(_2\), J 7.0 Hz, 2.5 Hz), 2.47 (s, 3H, ArC\(\equiv\)H\(_3\)), 1.64 (t, 1H, C\(\equiv\)C\(\equiv\)C, J 2.5 Hz); \(^1^C\) NMR (CDCl\(_3\), 125 MHz) \(\delta_{C}\): 134.8 (ArC\(\equiv\)quat), 129.0 (ArCMe), 127.2 (ArC\(\equiv\)quat), 124.0 (ArCH), 122.9 (ArCH), 118.2 (ArCH), 111.1 (ArCH), 111.0 (ArC\(\equiv\)quat), 79.8 (HC\(\equiv\)C), 70.5 (C\(\equiv\)CH\(_2\)), 49.9 (SC\(\equiv\)H), 43.3 (NC\(\equiv\)H\(_2\)), 26.2 (ArCH\(_2\)), 21.5 (ArCH\(_3\)), 14.1 (HCC\(\equiv\)C\(_2\)); m/z (ES+) 313 ([M+Na]\(^+\), 100%), HRMS (ES+) exact mass calculated for [M+Na]\(^+\) (C\(_{15}\)H\(_{18}\)N\(_2\)NaO\(_2\)S\(^+\)) requires m/z 313.0981 & 314.1014 found 313.0973 & 314.1009.

2.5.10. **Preparation and characterisation of 5j**

N-[[2-[(7-methyl-1H-indol-3-yl)ethyl]but-3-yn-1-yl]sulfonamide

The title compound 5j was synthesised according to general procedure D to give 5j as an off white solid (95% yield). Recrystallization from ethanol gives an off white solid.

m.p. 113-117 °C; FT-IR ν_{max} 3400 (N–H), 3291 (ArN–H), 1303 (S=O (as)), 1127 (S=O (sy)); \(^1^H\) NMR (CDCl\(_3\), 400 MHz) \(\delta_{H}\): 8.05 (br s, 1H, ArNH), 7.45 (d, 1H, ArCH, J 7.5 Hz), 7.10 (d, 1H, ArCH, J 2.0 Hz), 7.08 (t, 1H, ArCH, J 7.5 Hz), 7.03 (d, 1H, ArCH, J 7.5 Hz), 4.36 (t, 1H, SN–H, J 6.0 Hz), 3.46 (q, 2H, NC\(\equiv\)H\(_2\), J 6.0 Hz), 3.09 (t, 2H, SC\(\equiv\)H\(_2\), J 7.0 Hz), 3.06 (t, 2H, ArCH\(_2\), J 6.0 Hz), 2.57 (td, 2H,
SCH₂CH₂, J 7.0 Hz, 3.0 Hz), 2.50 (s, 3H, ArCH₃), 1.68 (t, 1H, C=CH₂, J 3.0 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 136.1 (Ar₃ quat), 126.5 (Ar₃ quat), 122.9 (ArCH), 122.5 (ArCH), 120.6 (ArCH₂), 119.9 (ArCH), 116.3 (ArCH), 112.1 (Ar₃ quat), 79.8 (H(C=CH)), 70.5 (C≡CH), 49.9 (SCH₂), 43.3 (N(CH₃)), 26.3 (ArCH₂), 16.6 (ArCH₂), 14.1 (SCH₂CH₂); m/z (ES+) 313 ([M+Na]⁺, 100%), HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₅H₁₂N₂O₂SNa) requires m/z 313.0981 & 314.1014, found m/z 313.0977 & 314.1018.

2.5.11. Preparation and characterisation of 5k

N-[2-({7-ethyl-1H-indol-3-yl}ethyl]but-3-yne-1-sulfonamide

The title compound 5k was synthesised according to general procedure D to give 5k as an off white solid (25% yield). Recrystallization from ethanol gives thin white crystalline plates.

m.p. 109-112 °C; FT-IR ν max 3404 (N–H), 3297 (ArN–H), 1312 (S=O(quat)), 1129 (S=O(qmt)); ¹H NMR (CDCl₃, 500 MHz) δ H 8.04 (br s, 1H, ArNH₂), 7.45 (d, 1H, ArCH J 7.5 Hz), 7.11 (d, 1H, ArCH J 3.0 Hz), 7.11 (t, 1H, ArCH J 7.5 Hz), 7.07 (d, 1H, ArCH J 7.5 Hz), 4.31 (t, 1H, SNH J 6.5 Hz), 3.46 (q, 2H, NCH₂), 3.58 (t, 2H, ArCH₂), 3.07 (t, 2H, NCH₂CH₂ J 6.5 Hz), 2.87 (q, 2H, ArCH₂CH₂ J 7.5 Hz), 2.59 (td, 2H, S CH₂CH₂ J 7.5 Hz, 3.0 Hz), 1.65 (t, 1H, C=CH J 3.0 Hz), 1.37 (t, 3H, ArCH₂CH₂ J 7.5 Hz); ¹³C NMR (CDCl₃, 125 MHz) δ C 135.3 (Ar₃ quat), 126.8 (Ar₃ quat), 126.7 (Ar₃ quat), 122.4 (ArCH), 121.0 (ArCH), 120.1 (ArCH), 116.3 (ArCH), 112.1 (Ar₃ quat), 79.7 (C=CH), 70.4 (C=CH), 49.9 (SCH₂), 43.3 (N(CH₃)), 26.3 (NCH₂CH₂), 24.0 (ArCH₂CH₃), 14.1 (SCH₂CH₂), 13.8 (ArCH₂CH₃); m/z (ES-) 303 ([M–H]⁻, 100%), HRMS (ES-) exact mass calculated for [M–H]⁻ (C₁₅H₁₀N₂O₂SNa) requires m/z 327.1138 & 328.1171, found m/z 327.1134 & 328.1170.

2.6. General procedure E for preparation of 6

To a solution of the desired sulfonamide 5 (1 eq) and BPA-1A (0.1 eq) in toluene (14 ml per 0.1 mmol of sulfonamide) at 60 °C in a foil covered flask was added [Au(o-biphenylPtBu₂)(MeCN)]SbF₆ (8) (0.005 eq) in dichloromethane (0.67 ml per 1 mmol of sulfonamide). The reaction was allowed to stir at 60 °C for 1 to 12 hours. Upon completion the mixture was concentrated in vacuo and purified by flash column chromatography (CH₂Cl₂:MTBE (CH₃OC(CH₃)₂) 1:0 to 9:1).
2.7. General procedure F for preparation of racemic derivatives 6

To a solution of the desired sulfonamide 5 (1 eq) and diphenylphosphate (0.1 eq) in toluene (14 ml per 0.1 mmol of sulfonamide 5) at 60 °C in a foil covered flask was added [Au(o-biphenylPtBu₂)(MeCN)]SbF₆ (8) (0.05 eq) in dichloromethane (0.67 ml per 1 mmol of sulfonamide). The reaction was allowed to stir at 60 °C for 1 to 12 hours. Upon completion the mixture is concentrated in vacuo and purified by flash column chromatography (CH₂Cl₂:MTBE (CH₃OC(CH₃)₃), 1:0 to 9 : 1).

2.7.1. Preparation and characterisation of 6a

(R)-11b-methyl-1,2,5,6,11,11b-hexahydroisothiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide

The title compound 6a was synthesised according to general procedure E providing 6a as a white solid (84% yield, 88% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220 nm, major tₚ = 6.0 min, minor tₚ = 15.4 min); [α]D +113.8 (c 0.16, 1:1 MeOH:CH₂Cl₂).

Racemic-6a was synthesised according to general procedure F as an off white solid.

m.p. 279-283 °C; FT-IR νmax 3397 (N–H), 1289 (S=O(as)), 1145 (S=O(sy)); ¹H NMR (CDCl₃, 500 MHz) δH 7.78 (br s, 1H, ArNH), 7.50 (d, 1H, ArCH, J 8.0 Hz), 7.35 (d, 1H, ArCH, J 8.0 Hz), 7.22 (ddd, 1H, ArCH, J 8.0 Hz, 7.0 Hz, 1.0 Hz) 7.15 (ddd, 1H, ArCH, J 8.0 Hz, 7.0 Hz, 1.0 Hz), 4.05 (dd, 1H, SNCH₂H₃, J 14.5 Hz, 5.0 Hz), 3.99 (ddd, 1H, SNCH₂H₃, 15.0 Hz, 12.0 Hz, 4.5 Hz), 3.19 (m, 2H, ArCH₂H₅, SCH₂H₅), 2.90 (ddd, 1H, SCH₂H₅, J 12.0 Hz, 7.0 Hz), 2.65 (m, 3H, ArCH₂H₅, SCH₂CH₂H₅), 1.73 (s, 3H, CH₃); ¹³C NMR (CDCl₃, 125 MHz) δC 135.9 (ArCquat), 133.9 (ArCquat), 126.8 (ArCquat), 122.8 (ArCH), 120.1 (ArCH), 118.7 (ArCH), 111.9 (ArCH), 109.7 (ArCquat), 59.1 (NCCH₂), 46.0 (NSCH₂), 38.1 (SNCH₂), 33.6 (NSCH₂CH₂), 28.2 (CCCH₂), 19.9 (ArCH₂); (ES+) 299 [(M+Na)+, 100%], HRMS (ES+) exact mass calculated for [M+Na]+ (C₁₄H₁₆N₂O₂SNa⁺) requires m/z 299.0825 & 300.0858, found m/z 299.0821 & 300.0861.

2.7.2. Preparation and characterisation of 7a
The title compound 7a was isolated along side 6a according to general procedure E providing a white solid (8% yield).

m.p. 261-265 °C (decomposition); FT-IR ν\textsubscript{max} 3412 (N–H), 1323 (S=O (as)), 1149 (S=O (sy)); 1H NMR (CDCl\textsubscript{3}, 500 MHz) δ\textsubscript{H} 7.73 (br s, 1H, ArN–H), 7.51 (d, 1H, ArCH\textsubscript{3} J 8.0 Hz), 7.34 (d, 1H, ArCH\textsubscript{3} J 8.0 Hz), 7.21 (t, 1H, ArCH\textsubscript{3} J 8.0 Hz), 7.14 (t, 1H, ArCH\textsubscript{3} J 8.0 Hz), 4.97 (d, 1H, NC\textsubscript{H}CH\textsubscript{2} J 11.0 Hz), 3.68 (m, 1H, SNCH\textsubscript{a}H\textsubscript{b}), 3.60 (m, 1H, SNCH\textsubscript{a}H\textsubscript{b}), 3.21 (dt, 1H, NSC\textsubscript{H}aCH\textsubscript{b} J 13.5 Hz, 3.5 Hz), 3.02 (td, 1H, NSCH\textsubscript{2}CH\textsubscript{2} J 13.5 Hz, 4.0 Hz), 2.95 (m, 1H, ArCH\textsubscript{3}H\textsubscript{b}), 2.89 (dt, 1H, ArCH\textsubscript{3}H\textsubscript{b} J 15.5 Hz, 4.5 Hz), 2.44 (qt, 1H, NSCH\textsubscript{2}CH\textsubscript{2} J 14.0 Hz, 3.0 Hz), 1.84 (m, 1H, NSCH\textsubscript{2}CH\textsubscript{2}H\textsubscript{b}); 13C NMR (CDCl\textsubscript{3}, 125 MHz) δ\textsubscript{C} 136.2 (ArC\textsubscript{quat}), 132.0 (ArC\textsubscript{quat}), 126.5 (ArC\textsubscript{quat}), 122.4 (ArCH), 120.0 (ArCH), 118.4 (ArCH), 110.9 (ArCH), 108.7 (ArC\textsubscript{quat}), 55.5 (NCH\textsubscript{2}CH\textsubscript{2}), 46.8 (NSCH\textsubscript{a}H\textsubscript{b}), 39.8 (SNCH\textsubscript{2}CH\textsubscript{2}), 27.8 (NSCH\textsubscript{2}CH\textsubscript{2}H\textsubscript{b}), 21.4 (ArCH); m/z (ES+) 299 ([M+Na]+, 100%), HRMS (ES+) exact mass calculated for [M+Na]+ (C\textsubscript{14}H\textsubscript{16}N\textsubscript{2}O\textsubscript{2}SNa+) requires m/z 299.0825 & 300.0858, found m/z 299.0819 & 300.0863.

2.7.3. Preparation and characterisation of 6b

(R)-7-chloro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide

The title compound 6b was synthesised according to general procedure E providing a white solid (77% yield, 95% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220 nm, major t\textsubscript{R} = 5.8 min, minor t\textsubscript{R} = 8.1 min); [\alpha]_{D}^{25} = +94.3 (c 0.21, 1:1 MeOH:CH\textsubscript{2}Cl\textsubscript{2}).

Racemic-6b was synthesised according to general procedure F as an off white solid,

m.p. 208 °C (decomposition); FT-IR ν\textsubscript{max} 3321 (N–H), 1303 (S=O (as)); 1H NMR (CD\textsubscript{2}OD, 500 MHz) δ\textsubscript{H} 7.25 (dd, 1H, ArCH\textsubscript{3} J 8.0 Hz, 1.0 Hz), 7.03 (t, 1H, ArCH\textsubscript{3} J 8.0 Hz), 6.96 (d, 1H, ArCH\textsubscript{3} J 7.5 Hz), 3.92 (dd, 1H, NCH\textsubscript{2}H\textsubscript{b} J 15.0 Hz, 5.5 Hz), 3.37 (ddd, 1H, NCH\textsubscript{2}H\textsubscript{b} J 15.0 Hz, 12.0 Hz, 4.5 Hz), 3.32-3.23 (m, 2H, NCH\textsubscript{2}CH\textsubscript{2}H\textsubscript{b}, SCH\textsubscript{2}H\textsubscript{b}), 3.09 (ddd, 1H, NCH\textsubscript{2}CH\textsubscript{2}H\textsubscript{b} J 15.5...
2.7.4. Preparation and characterisation of 6c

(R)-8-bromo-11b-methyl-1,2,5,6,11,11b-hexahydroisothiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide

The title compound 6c was synthesised according to general procedure E as a white solid (82% yield, 90% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220 nm, major tₗ = 10.0 min, minor tₗ = 27.2 min; [α]D = +101.6 (c 0.25, 1:1 MeOH:CH₂Cl₂).

Racemic-6c was synthesised according to general procedure F as an off white solid.

m.p. 266 °C (decomposition); FT-IR ν max 3410 (N–H), 1301 (S=O (as)), 1143 (S=O (sy)); 1H NMR (d₆-acetone, 500 MHz) δH 10.42 (br s, 1H, ArNH), 7.63 (d, 1H, ArCH, J 2.0 Hz), 7.31 (d, 1H, ArCH, J 8.5 Hz), 7.23 (ddd, 1H, ArCH, J 8.5 Hz, 2.0 Hz), 3.91 (dd, 1H, SC₃H, J 15.5 Hz, 6.0 Hz), 3.37 (ddd, 1H, SC₃H, J 15.0 Hz, 12.5 Hz, 6.0 Hz), 2.95-2.80 (m, 2H, NC₃H, ArCH₂, 2.65-2.60 (m, 2H, ArCH₂, SCH₂CH₃), 1.72 (s, 3H, CH₃); 13C NMR (d₆-acetone, 125 MHz) δC 138.2 (ArBr), 136.0 (ArCquat), 129.6 (ArCquat), 125.2 (ArCquat), 121.6 (ArC), 113.8 (ArC), 112.7 (ArCquat), 108.6 (ArCquat), 59.8 (NC₃H), 46.7 (NC₃H), 38.1 (SC₃H), 34.0 (ArC), 28.0 (CH₃), 20.5 (SCH₂CH₃); m/z (ES−) 355 ([M–H]−, 100%), HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₄H₁₅ClN₂OSNa⁺) requires m/z 376.9930 & 378.9909, found m/z 376.9922 & 378.9900.

2.7.5. Preparation and characterisation of 6d

(R)-9-bromo-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide
The title compound 6d was synthesised according to general procedure E providing a white solid (81% yield, 91% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220 nm, major t_R = 8.3 min, minor t_R = 32.0 min; [α]_D^{25} = +148.2 (c 0.23, 1:1 MeOH:CH_2Cl_2).

Racemic-6d was synthesised according to general procedure F as an off white solid.

m.p. 228 °C (decomposition); FT-IR ν _{max} 3369 (N–H), 1295 (S=O (as)), 1135 (S=O (sy)); ¹H NMR (CD_3OD, 500 MHz) δ_H 7.48 (d, 1H, ArC_H, J 1.5 Hz), 7.34 (d, 1H, ArC_H, J 8.5 Hz), 7.14 (dd, 1H, ArC_H, J 8.5 Hz, 1.5 Hz), 3.94 (dd, 1H, NC_H, J 15.0 Hz, 6.0 Hz), 3.38-3.27 (signal hidden under methanol peak, confirmed by HSQC and COSY) (m, 1H, SC_H), 3.05 (ddd, 1H, NCH_2C_H, J 15.5 Hz, 12.0 Hz, 6.0 Hz), 2.92 (ddd, 1H, SCH_2C_H, J 12.5 Hz, 10.0 Hz, 7.0 Hz), 2.76 (ddd, 1H, SCH_2C_H, J 13.5 Hz, 7.0 Hz, 5.5 Hz), 2.63-2.56 (m, 2H, NCH_2C_H, SCH_2C_H, 1.70 (s, 3H, C_H); ¹³C NMR (CD_3OD, 125 MHz) δ_C 138.6 (ArC_quat), 137.1 (ArC_quat), 127.0 (ArC_quat), 123.3 (ArC), 120.5 (ArC), 116.1 (ArCBr), 114.9 (ArC), 109.1 (ArC_quat), 60.7 (NCH_2), 47.0 (SCH_2), 38.6 (NCH_2), 34.2 (SCH_2C_H), 27.9 (NCH_3), 20.8 (NCH_2C_H); m/z (ES+) 377 ([M+Na]^+, 100%), HRMS (ES+) exact mass calculated for [M+Na]^+ (C_14H_15BrN_2O_2SNa) requires m/z 376.9930 & 378.9909, found m/z 376.9928 & 378.9906.

2.7.6. Preparation and characterisation of 6e

(R)-8-fluoro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2’,3’:1,2]pyrido[3,4-b]indole 3,3-dioxide

The title compound 6e was synthesised according to general procedure E providing a white solid (85% yield, 93% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220 nm, major t_R = 8.5 min, minor t_R = 26.9 min; [α]_D^{25} = +164.3 (c 0.21, 1:1 MeOH:CH_2Cl_2).

Racemic-6e was synthesised according to general procedure F as an off white solid.
2.7.7. Preparation and characterisation of 6f

(R)-9-fluoro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide

The title compound 6f was synthesised according to general procedure E providing a white solid (85% yield, 83% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220 nm, major t_r = 7.4 min, minor t_r = 25.1 min; [α]^D = +138.1 (c 0.24, 1:1 MeOH:CH₂Cl₂).

Racemic-6f was synthesised according to general procedure F as an off white solid: Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220, major t_r = 7.2 min, minor t_r = 24.2 min;
([M+Na]⁺, 100%), HRMS (ES⁺) exact mass calculated for [M+Na]⁺ (C₁₄H₁₅FN₂O₂SNa⁺) requires m/z 317.0730 & 318.0763, found m/z 317.0728 & 318.0767.

2.7.8. Preparation and characterisation of 6g

(R)-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole-8-carbonitrile 3,3-dioxide

The title compound 6g was synthesised according to general procedure E providing a white solid (60% yield, 96% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220 nm, major tᵣ = 13.1 min, minor tᵣ = 53.6 min; [α]ᵦ = +95.9 (c 0.16, 1:1 MeOH:CH₂Cl₂).

Racemic 6g was synthesised according to general procedure F as an off white solid.

m.p. 210 °C (decomposition); FT-IR νmax 3316 (N–H), 2219 (C≡N), 1302 (S=O (as)), 1134 (S=O (sy)); ¹H NMR (CD₃OD, 500 MHz) δH 7.90 (s, 1H, ArCH), 7.46 (d, 1H, ArCH, J 8.5 Hz), 7.43 (dd, 1H, ArCH, J 8.5 Hz, 1.5 Hz), 3.97 (dd, 1H, NCH₂H₃, J 15.0 Hz, 5.5 Hz), 3.41 (ddd, 1H, NCH₂H₃, J 15.0 Hz, 11.5 Hz, 4.5 Hz), 3.35–3.30 (signal hidden under methanol peak, confirmed by HSQC and COSY) (m, 1H, SCH₂H₃), 3.09 (ddd, 1H, NCH₂CH₂H₃, J 15.5 Hz, 12.0 Hz, 6.0 Hz), 2.94 (ddd, 1H, SCH₂H₃, J 12.5 Hz, 9.5 Hz, 7.0 Hz), 2.78 (ddd, 1H, SCH₂CH₂H₃, J 13.0 Hz, 7.0 Hz, 5.5 Hz), 2.71–2.59 (m, 2H, SCH₂CH₂H₃, NCH₂CH₂H₃), 1.72 (s, 3H, NCH₂CH₂); ¹³C NMR (CD₃OD, 125 MHz) δC 139.7 (ArCH₃), 139.2 (ArCH₃), 128.0 (ArCH₂), 125.9 (ArCH), 124.9 (ArCH), 121.8 (ArCN), 113.2 (ArCH), 110.0 (ArCN), 102.8 (ArCH₂), 60.5 (NCH₂), 47.0 (SCH₂), 38.4 (NCH₂), 34.1 (SCH₂CH₂), 27.8 (NCH₂H₃), 20.7 (NCH₂CH₂); m/z (ES⁺) 324 ([M+Na]⁺, 100%), HRMS (ES⁺) exact mass calculated for [M+Na]⁺ (C₁₅H₁₅N₂O₂SNa⁺) requires m/z 324.0777 & 325.0810, found m/z 324.0775 & 325.0818.

2.7.9. Preparation and characterisation of 6h

(R)-8-methoxy-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide

- S- 27 - -
The title compound 6h was synthesised according to general procedure E providing a white solid (75% yield, 80% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220 nm, major $t_n = 8.2$ min, minor $t_n = 14.3$ min; $[\alpha]_D^{25} = 93.2$ (c 0.734, 1:1 MeOH:CH₂Cl₂).

Racemic-6h was synthesised according to general procedure F as an off white solid.

m.p. 210-220 °C (decomposition); FT-IR ν_{max} 3365 (N–H), 1300 (S=O (as)), 1141 (S=O (sy)); 1H NMR (CD$_3$OD, 500 MHz) δ_H 7.21 (d, 1H, ArCH, J 9.0 Hz), 6.92 (d, 1H, ArCH, J 2.5 Hz), 6.77 (dd, 1H, ArCH, J 9.0 Hz, 2.5 Hz), 3.93 (dd, 1H, NCH$_2$H$_{2n}$, J 14.5 Hz, 5.5 Hz), 3.82 (s, 3H, OCH$_3$), 3.38 (s, 3H, OCH$_3$), 3.28 (dt, 1H, SCH$_2$H$_{2n}$, J 12.0 Hz, 6.0 Hz), 3.05 (ddd, 1H, NCH$_2$H$_{2n}$, J 15.5 Hz, 12.0 Hz, 6.0 Hz), 2.90 (ddd, 1H, SCH$_2$H$_{2n}$, J 12.5 Hz, 10.0 Hz, 7.0 Hz), 2.77 (ddd, 1H, SCH$_2$CH$_3$H$_{2n}$, J 13.0 Hz, 7.0 Hz, 5 Hz), 2.58 (m, 2H, SCH$_2$CH$_3$H$_{2n}$, NCH$_2$CH$_2$H$_{2n}$), 1.70 (s, 3H, NCCH$_3$); 13C NMR (CD$_3$OD, 125 MHz) δ_C 155.3 (ArCO), 136.8 (Ar$_{C_{quat}}$), 133.0 (Ar$_{C_{quat}}$), 128.3 (Ar$_{C_{quat}}$), 112.9 (ArCH), 112.7 (ArCH), 108.6 (Ar$_{C_{quat}}$), 101.2 (ArCH), 61.0 (NCCH$_3$), 56.3 (OCH$_3$), 47.1 (SCH$_2$H$_2$), 38.8 (NCH$_3$), 34.3 (SCH$_2$CH$_2$), 28.1 (NCCH$_3$), 21.0 (NCH$_2$CH$_2$); m/z (ES+) 305 ([M+H$^+$], 100%), HRMS (ES+) exact mass calculated for [M+Na$^+$] (C$_{19}$H$_{18}$N$_2$O$_3$SNa$^+$) requires m/z 329.0930 & 330.0963, found m/z 329.0917 & 330.0965.

2.7.1. Preparation and characterisation of 6i

(R)-8,11b-dimethyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide

The title compound 6i was synthesised according to general procedure E providing a white solid (84% yield, 87% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220 nm, major $t_n = 6.7$ min, minor $t_n = 14.0$ min; $[\alpha]_D^{25} = 101.3$ (c 0.20, 1:1 MeOH:CH₂Cl₂).

Racemic-6i was synthesised according to general procedure F as an off white solid.

m.p. 220 °C (decomposition); FT-IR ν_{max} 3390 (N–H), 1300 (S=O (as)), 1141 (S=O (sy)); 1H NMR (CD$_3$OD, 500 MHz) δ_H 7.21 (br s, 1H, ArCH), 7.20 (d, 1H, ArCH, J 8.0 Hz), 6.95 (dd, 1H, ArCH, J 8.0 Hz, 1.5 Hz), 3.93 (dd, 1H, NCH$_2$H$_{2n}$, J 14.5 Hz, 5.5 Hz), 3.42-
3.35 (m, 1H, NCH$_2$H$_b$), 3.35-3.26 (m, 1H, SCH$_2$H$_b$), 3.05 (ddd, 1H, NCH$_2$CH$_2$H$_b$, J 15.5 Hz, 12 Hz, 6.0 Hz), 2.91 (ddd, 1H, SCH$_2$H$_a$, J 12.0 Hz, 10.0 Hz, 7.0 Hz), 2.78 (ddd, 1H, SCH$_2$CH$_2$H$_b$, J 13.5 Hz, 7.0 Hz, 5.0 Hz), 2.62-2.54 (m, 2H, SCH$_2$CH$_2$H$_b$, NCH$_2$CH$_2$H$_b$), 2.41 (s, 3H, ArCH$_3$), 1.70 (s, 3H, NCC$_2$H$_5$); 13C NMR (CD$_2$OD, 125 MHz) δC 136.2 (Ar$_{\text{quat}}$), 136.1 (Ar$_{\text{quat}}$), 129.2 (Ar$_{\text{quat}}$), 128.3 (Ar$_{\text{quat}}$), 124.4 (ArCH), 118.7 (ArCH), 111.7 (ArCH), 108.3 (Ar$_{\text{quat}}$), 61.0 (NCC$_2$H$_5$), 47.1 (SCH$_2$), 38.8 (NCH$_3$), 34.3 (SCH$_2$CH$_2$), 28.1 (NCC$_2$H$_5$), 21.6 (ArCH$_3$), 20.9 (NCH$_2$CH$_2$); m/z (ES$^+$) 313 ([M+Na]$^+$, 100%), HRMS (ES$^+$) exact mass calculated for [M+Na]$^+$ (C$_{13}$H$_{18}$N$_2$O$_3$SNa$^+$) requires m/z 313.0981 & 314.1014, found m/z 313.0973 & 314.1008.

2.7.2. Preparation and characterisation of 6j

(R)-10,11b-dimethyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide

The title compound 6j was synthesised according to general procedure E providing a white solid (85% yield, 92% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220 nm, major $t_a = 5.0$ min, minor $t_a = 6.1$ min); $[\alpha]_D^{2\theta} = +182.1$ (c 0.25, 1:1 MeOH:CH$_2$Cl$_2$).

Racemic 6j was synthesised according to general procedure F as an off white solid.

m.p. 195 °C (decomposition); FT-IR ν_{max} 3338 (N-H), 1296 (S=O$_{\text{a}}$), 1125 (S=O$_{\text{v}}$); 1H NMR (CD$_2$OD, 500 MHz) δH 7.25 (dd, 1H, ArCH, J 7.0 Hz, 2.0 Hz), 6.94 (t, 1H, ArCH, J 7.0 Hz), 6.91 (d, 1H, ArCH, J 7.0 Hz), 3.93 (dd, 1H, NCH$_2$H$_b$, J 15.0 Hz, 5.5 Hz), 3.38 (ddd, 1H, NCH$_2$H$_a$, J 15.0 Hz, 12.0 Hz, 4.5 Hz), 3.28 (m, 1H, SCH$_2$H$_b$), 3.07 (ddd, 1H, NCH$_2$CH$_2$H$_b$, J 15.5 Hz, 12.0 Hz, 6.0 Hz), 2.94-2.83 (m, 2H, SCH$_2$H$_b$, SCH$_2$CH$_2$H$_b$), 2.65-2.56 (m, 2H, NCH$_2$CH$_2$H$_b$, SCH$_2$CH$_2$H$_b$), 2.50 (s, 3H, ArCH$_3$), 1.74 (s, 3H, NCC$_2$H$_5$); 13C NMR (CD$_2$OD, 125 MHz) δC 137.2 (Ar$_{\text{quat}}$), 135.9 (Ar$_{\text{quat}}$), 127.7 (Ar$_{\text{quat}}$), 123.6 (ArCH), 121.6 (Ar$_{\text{quat}}$), 120.4 (ArCH), 116.7 (ArCH), 109.2 (Ar$_{\text{quat}}$), 61.1 (NCC$_2$H$_5$), 47.1 (SCH$_2$), 38.7 (NCH$_3$), 34.2 (SCH$_2$CH$_2$), 28.0 (NCC$_2$H$_5$), 21.1 (NCH$_2$CH$_2$), 17.1 (ArCH$_3$); m/z (ES$^+$) 313 ([M+Na]$^+$, 100%), HRMS (ES$^+$) exact mass calculated for [M+Na]$^+$ (C$_{13}$H$_{18}$N$_2$O$_3$SNa$^+$) requires m/z 313.0981 & 314.1014, found m/z 313.0973 & 314.1017.

2.7.3. Preparation and characterisation of 6k

(R)-10-ethyl-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide

- S- 29 - -
The title compound 6k was synthesised according to general procedure E providing a white solid (83% yield, 95% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220 nm, major t_R = 7.9 min, minor t_R = 10.2 min; [α]_D^25 = +204.4 (c 0.09, 1:1 MeOH:CH_2Cl_2).

Racemic-6k was synthesised according to general procedure F as an off white solid: Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220, major t_R = 8.0 min, minor t_R = 10.3 min; m.p. 190 °C (decomposition); FT-IR ν_{max} 3341 (N–H), 1296 (S=O (as)), 1124 (S=O (sy)); ¹H NMR (CD_3OD, 500 MHz) δ_H 7.25 (dd, 1H, ArCH, J 7.0 Hz, 2.5 Hz), 6.99-6.94 (m, 2H, ArCH), 3.93 (dd, 1H, NC_H_a_H_b, J 15.0 Hz, 5.5 Hz), 3.39 (ddd, 1H, NCH_a_H_b_H_c, J 15.0 Hz, 12.0 Hz, 4.5 Hz), 3.29 (dd, 1H, SCH_a_H_b, J 11.5 Hz, 7.0 Hz, 5.0 Hz), 3.07 (ddd, 1H, NCH_2_H_a_H_b, J 15.5 Hz, 12.0 Hz, 6.0 Hz), 2.95-2.83 (m, 4H, ArCH_2_CH_3, SCH_2_H_a, SCH_2_H_b), 1.74 (s, 3H, NCH_3), 1.34 (t, 3H, ArCH_2_C_H_3, J 7.5 Hz); ¹³C NMR (CD_3OD, 125 MHz) δ_C 136.4 (Ar C_quat), 135.8 (Ar C_quat), 128.1 (Ar C_quat), 127.9 (Ar C_quat), 121.7 (Ar CH), 120.5 (Ar CH), 116.7 (Ar CH), 109.2 (Ar C_quat), 61.1 (NCCH_3), 47.1 (SCH_2), 38.7 (NCCH_2), 34.2 (SCH_2CH_2), 28.0 (NC_CH_3), 25.1 (ArCH_2CH_3), 21.1 (NCH_2_CH_3), 14.9 (ArCH_3CH_3); m/z (ES+) 327 ([M+Na]^+, 100%), HRMS (ES+) exact mass calculated for [M+Na]^+ (C_{16}H_{20}N_2O_2SNa) requires m/z 327.1138 & 328.1171, found m/z 327.1135 & 328.1180.

2.8. Methodology extension for amide derivatives

2.9. General procedure G for the preparation of 9

Hexynoic acid (1 eq) was added in one portion to a suspension of (1.5 eq) and DMAP (0.04 eq) in dichloromethane (3 ml/mmol of hexynoic acid) under argon and the mixture was stirred for 5 mins. A solution of tryptamine 19 (1.4 eq) in dichloromethane (7 ml/mmol of hexynoic acid) was added to the solution. The reaction mixture was stirred at rt for 12 h. Upon completion hydrochloric acid solution (1M, 10 ml) was added. The layers were separated and the aqueous was extracted with dichloromethane (2 x 20 ml). The combined organics were washed with brine, dried over sodium sulfate and concentrated in vacuo. The residue was purified by flash column chromatography (CH_2Cl_2:Et_2O, 1:0 to 7:3).

2.9.1. Preparation and characterisation of 9a

N-[2-(1H-indol-3-yl)ethyl]hex-5-ynamide
The title compound 9a was synthesis according to general procedure G as a white solid (86% yield) and re-crystallized from ethanol.

m.p. 89-91 °C; **FT-IR** ν_{max} 3403 (N–H), 3286 (ArN–H), 1641 (C=O); ¹H NMR (CDCl₃, 400 MHz) δ_H 8.29 (br s, 1H, ArNH), 7.62 (d, 1H, ArCH₂, J 8.0 Hz), 7.39 (d, 1H, ArCH₂, J 8.0 Hz), 7.23 (t, 1H, ArCH₂, J 7.5 Hz), 7.14 (t, 1H, ArCH₂, J 7.5 Hz), 7.04 (d, 1H, ArCH₂, J 2.0 Hz), 5.63 (br s, 1H, OCN), 3.62 (q, 2H, NCH₂, J 6.5 Hz), 2.99 (t, 2H, NCH₂, J 6.5 Hz), 2.25 (t, 2H, OCCH₂, J 7.5 Hz), 2.22 (td, 2H, HC≡CCH₂, J 7.5 Hz, 2.5 Hz), 1.94 (t, 1H, C≡CH₂, J 2.5 Hz), 1.84 (quin, 2H, OCCH₂, J 7.5 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ_C 172.2 (C=O), 136.4 (Ar_{quat}), 127.3 (Ar_{quat}), 122.2 (ArCH), 122.1 (ArCH), 119.5 (ArCH), 118.7 (ArCH), 112.9 (Ar_{quat}), 111.3 (ArCH), 83.6 (HC≡C), 69.2 (C≡C), 39.7 (NCH₂), 35.1 (OCCH₂), 25.3 (NCH₂CH₃), 24.2 (OCCH₂CH₃), 17.8 (HC≡CCH₂); m/z (ES+) 277 ([M+Na]⁺), 100%, HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₈H₁₆N₃BrNaO⁻) requires m/z 277.1311 & 278.1345, found m/z 277.1316 & 278.1346.

2.9.2. Preparation and characterisation 9b

of N-[2-(7-bromo-1H-indol-3-yl)ethyl]hex-5-ynamide

The title compound 9b was synthesis according to general procedure G as a brown solid (65% yield) trituration (Et₂O and re-crystallized from ethanol.)

m.p. 87-89 °C; **FT-IR** ν_{max} 3400 (N–H), 3300 (ArN–H), 1636 (C=O); ¹H NMR (DMSO-d₆, 400 MHz) δ_H 11.05 (br s, 1H, ArNH), 7.93 (t, 1H, OCNH, J 6.5 Hz), 7.55 (d, 1H, ArCH₂, J 7.5 Hz), 7.28 (d, 1H, ArCH₂, J 7.5 Hz), 7.21 (d, 1H, ArCH₂, J 2.0 Hz), 6.94 (t, 1H, ArCH₂, J 7.5 Hz), 3.32 (q, 2H, NCH₂, J 6.5 Hz), 2.80 (t, 2H, OCCH₂, J 7.5 Hz), 2.78 (t, 1H, C≡CH₂, J 2.5 Hz), 2.18-2.10 (m, 4H, ArCH₂, HC≡CCH₂), 1.65 (quin, 2H, OCCH₂CH₃, J 7.5 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ_C 172.2 (C=O), 135.3 (Ar_{quat}), 129.9 (Ar_{quat}), 124.9 (ArCH), 124.3 (ArCH), 120.6 (ArCH), 118.8 (ArCH), 114.3 (Ar_{quat}), 105.1 (Ar_{Br}), 85.0 (HC≡C), 72.3 (C≡C), 41-39.7 (signal hidden under DMSO peak, confirmed by HSQC and COSY) (NCH₃) 35.1 (ArCH₃), 26.0 (OCCH₂) 25.1 (OCCH₂CH₃), 18.3 (HC≡CCH₂); m/z (ES+) 355 ([M+Na]⁺), 100%, HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₈H₁₈N₃BrNaO⁻) requires m/z 355.0416 & 357.0397, found m/z 355.0404 & 357.0385.
2.9.3. Preparation and Characterisation of 9c

N-[2-\{7-methyl-1H-indol-3-yl\}ethyl]hex-5-ynamide

The title compound 9c was synthesis according to general procedure G as a white solid (56% yield) and re-crystallized from ethanol.

m.p. 76-77 °C; **FT-IR** ν\text{max} 3402 (ArNH), 3288 (NH), 1648 (C=O); 1H **NMR** (CDCl\textsubscript{3}, 500 MHz) δ\textsubscript{H} 8.00 (br s, 1H, ArNH), 7.47 (d, 1H, ArCH\textsubscript{2}, J 7.5 Hz), 7.07 (t, 1H, ArCH\textsubscript{2}J 7.5 Hz), 7.07 (d, 1H, ArCH\textsubscript{2}, J 7.5 Hz), 7.03 (d, 1H, ArCH\textsubscript{2}, J 7.5 Hz), 5.55 (br s, 1H, OCN), 3.62 (q, 2H, NC\textsubscript{H}\textsubscript{2}, J 6.5 Hz), 2.98 (t, 2H, NCH\textsubscript{2}CH\textsubscript{3}, J 6.5 Hz), 2.50 (s, 3H, ArCH\textsubscript{3}), 2.25 (t, 2H, OCCH\textsubscript{2}, J 7.5 Hz), 2.23 (td, 2H, HCC\textsubscript{2}CH\textsubscript{3}, J 7.5 Hz, 2.5 Hz), 1.93 (t, 1H, C≡CH, J 2.5 Hz), 1.84 (quin, 2H, OCCH\textsubscript{2}CH\textsubscript{3}, J 7.5 Hz); 13C **NMR** (CDCl\textsubscript{3}, 125 MHz) δ\textsubscript{C} 172.0 (C\textsubscript{O}), 136.0 (Ar\textsubscript{quat}), 126.8 (Ar\textsubscript{quat}), 122.8 (ArCH), 121.7 (ArCH), 120.4 (Ar\textsubscript{quat}), 119.8 (ArCH), 116.4 (ArCH), 113.6 (Ar\textsubscript{quat}), 83.6 (HC≡C), 69.1 (HC≡C), 39.7 (NCH\textsubscript{2}), 35.1 (OCCH\textsubscript{2}), 25.5 (NCH\textsubscript{2}CH\textsubscript{3}), 24.1 (OCCH\textsubscript{2}CH\textsubscript{3}), 17.8 (HC≡CCH\textsubscript{3}), 16.6 (ArCH\textsubscript{3}); \textit{m/z} (ES+) 291 ([M+Na+], 100%), HRMS (ES+) exact mass calculated for [M+Na+]+ (C\textsubscript{17}H\textsubscript{20}N\textsubscript{2}NaO+) requires \textit{m/z} 291.1468 & 292.1501, found \textit{m/z} 291.1470 & 292.1503.

2.9.4. Preparation and Characterisation of 9d

-[2-\{7-ethyl-1H-indol-3-yl\}ethyl]hex-5-ynamide

The title compound 9d was synthesis according to general procedure G as a yellow oil (45% yield).

FT-IR ν\text{max} 3404 (NH), 3289 (ArNH), 1649 (C=O); 1H **NMR** (CDCl\textsubscript{3}, 400 MHz) δ\textsubscript{H} 8.17 (br s, 1H, ArNH), 7.48 (d, 1H, ArCH\textsubscript{2}, J 7.5 Hz), 7.11 (t, 1H, ArCH\textsubscript{2}, J 7.5 Hz), 7.07 (d, 1H, ArCH\textsubscript{2}, J 7.5 Hz), 7.05 (d, 1H, ArCH\textsubscript{2}, J 2.0 Hz), 5.61 (br s, 1H, OCN), 3.62 (q, 2H, NCH\textsubscript{2}, J 6.5 Hz), 2.98 (t, 2H, NCH\textsubscript{2}CH\textsubscript{3}, J 6.5 Hz), 2.88 (q, 2H, ArCH\textsubscript{2}CH\textsubscript{3}, J 7.5 Hz), 2.25 (t, 2H, OCCH\textsubscript{2}, J 7.5 Hz), 2.23 (td, 2H, HCC\textsubscript{2}CH\textsubscript{3}, J 7.5 Hz, 2.5 Hz), 1.94 (t, 1H, C≡CH, J 2.5 Hz), 1.84 (quin, 2H, OCCH\textsubscript{2}CH\textsubscript{3}, J 7.0 Hz), 1.38 (t, 3H, ArCH\textsubscript{2}CH\textsubscript{3}, J 7.5 Hz);
13C NMR (CDCl$_3$, 100 MHz) δ$_C$ 172.2 (C=O), 135.3 (Ar$_{quat}$), 127.1 (Ar$_{quat}$), 126.7 (Ar$_{quat}$), 121.7 (Ar_C), 120.8 (Ar_C), 119.8 (Ar_C), 116.5 (Ar_C), 113.4 (Ar$_{quat}$), 83.6 (HC≡C), 69.1 (C≡CH), 39.7 (NCH$_2$), 35.1 (OCCH$_2$), 25.5 (N$_2$CCH$_2$), 24.2 (OCCH$_2$), 17.8 (HC≡CH$_2$), 13.8 (ArCH$_2$CH$_3$); m/z (ES$^+$) 305 ([M+H]$^+$, 100%), HRMS (ES$^+$) exact mass calculated for [M+Na]$^+$ (C$_{18}$H$_{22}$N$_2$NaO$^+$) requires m/z 305.1624 & 306.1658, found m/z 305.1624 & 306.1661.

2.10. General procedure H for the racemic preparation of cyclic amides 10

![Chemical structure](image1)

To a foil covered flask [Au(o-biphenylPtBu$_2$)(MeCN)]SbF$_6$ (8) (0.05 eq), diphenylphosphate (0.1 eq) and desired amide derivative (9) (1 eq) were added and placed under nitrogen atmosphere. Toluene (14 ml/1 mmol of 9) was added in one portion and the reaction was heated to 110 °C and left for 48 to 72 hours. The solvent was removed in vacuo and purified by flash column chromatography (CH$_2$Cl$_2$: Et$_2$O, 1 : 0 to 7 : 3).

2.11. General procedure I for the Enantioselective preparation of cyclic amides 10

![Chemical structure](image2)

To a foil covered flask [Au(o-biphenylPtBu$_2$)(MeCN)]SbF$_6$ (8) (0.01 eq) was added in dichloromethane (1 ml/ 0.15 mmol of 9), the dichloromethane was subsequently removed via stream of nitrogen. BPA 1A (0.01 eq) and desired amide derivative (9) (0.15 mmol, 1 eq) was added and placed under nitrogen atmosphere. Toluene (21 ml) was added in one portion and the reaction was heated to 110 °C typically for 20 to 72 h until TLC shows consumption of starting material. The solvent was removed in vacuo and purified by flash column chromatography (DCM : Et$_2$O, 1 : 0 to 7 : 3).

2.11.1. Preparation and characterisation of 10a

(R)-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one

- S- 33 - -
The title compound 10a was synthesis according to general procedure I as a white solid (86% yield, 66% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220, major \(t_r = 5.1 \) min, minor \(t_r = 11.8 \) min; \([\alpha]^{25}_{D} = +157.7 \) (c 0.26, CH\(_2\)Cl\(_2\)).

Racemic-10a was synthesised according to general procedure H as a white solid.

m.p. 180 °C (decomposition); **FT-IR** \(\nu_{\text{max}} \) 3254 (N–H), 1606 (C=O); **\(^1\)H NMR** (CDCl\(_3\), 400 MHz) \(\delta \) 8.38 (br s, 1H, ArNH), 7.51 (d, 1H, ArCH\(_3\) J 7.5 Hz), 7.34 (d, 1H, ArCH\(_3\) J 7.5 Hz), 7.19 (t, 1H, ArCH\(_3\) J 7.5 Hz), 7.13 (t, 1H, ArCH\(_3\) J 7.5 Hz), 5.13 (dd, 1H, NCH\(_2\)H\(_2\) J 12.5 Hz, 5.0 Hz), 3.04 (td, 1H, NCH\(_2\)H\(_2\) J 12.5 Hz, 4.5 Hz), 2.85 (ddd, 1H, NCH\(_2\)CH\(_3\) H\(_{10}\) J 15.5 Hz, 11.5 Hz, 5.0 Hz), 2.76 (ddd, 12H, NCH\(_2\)CH\(_3\) H\(_{10}\) J 15.5 Hz, 5.0 Hz), 2.61 (dd, 1H, OCCH\(_2\)H\(_3\) J 17.0 Hz, 5.0 Hz), 2.44 (ddd, 1H, OCCH\(_2\)H\(_3\) J 18.0 Hz, 10.5 Hz, 7.0 Hz), 2.32 (m, 1H, OCC\(_2\)CH\(_2\)CH\(_3\) H\(_{10}\)), 2.09-1.84 (m, 3H, OCC\(_2\)CH\(_2\)CH\(_3\) H\(_{10}\), OCC\(_2\)CH\(_2\)CH\(_3\) H\(_{10}\)), 1.70 (s, 3H, NCCH\(_3\)); \(^{13}\)C NMR (CDCl\(_3\), 100 MHz) \(\delta \)C 169.3 (CO), 138.5 (Ar\(_{\text{qu}}\)), 136.1 (Ar\(_{\text{quat}}\)), 126.7 (Ar\(_{\text{qu}}\)), 122.0 (Ar\(_{\text{quat}}\)), 119.7 (Ar\(_{\text{quat}}\)), 118.4 (Ar\(_{\text{quat}}\)), 110.9 (Ar\(_{\text{quat}}\)), 108.0 (Ar\(_{\text{quat}}\)), 56.7 (NCCH\(_3\)), 36.5 (NCH\(_3\)), 35.5 (OCCH\(_2\)CH\(_2\)CH\(_3\)), 32.1 (OCCH\(_2\)), 26.0 (CC\(_{\text{quat}}\)), 21.3 (NCH\(_2\)CH\(_3\)), 16.8 (OCCH\(_2\)CH\(_3\)); **m/z** (ES+) 277 ([M+Na]\(^+\), 100%), **HRMS** (ES+) exact mass calculated for [M+Na]\(^+\) (C\(_{16}\)H\(_{12}\)N\(_2\)NaO\(^+\)) requires m/z 277.1311 & 278.1345, found m/z 277.1306 & 278.1335.

2.11.2. Preparation and Characterisation of 10b

(R)-11-bromo-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one

The title compound 10b was synthesis according to general procedure I as a white solid (99% yield, 93% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220, major \(t_r = 5.1 \) min, minor \(t_r = 6.6 \) min; \([\alpha]^{25}_{D} = +164.0 \) (c 0.15, CH\(_2\)Cl\(_2\)).

Racemic-10b was synthesised according to general procedure H as a white solid: Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220, major \(t_r = 5.1 \) min, minor \(t_r = 6.7 \) min;

m.p. 130-137 °C; **FT-IR** \(\nu_{\text{max}} \) 3190 (N–H), 1606 (C=O); **\(^1\)H NMR** (CDCl\(_3\), 400 MHz) \(\delta \) 8.09 (br s, 1H, ArNH), 7.44 (d, 1H, ArCH\(_3\) J 8.0 Hz), 7.33 (d, 1H, ArCH\(_3\) J 8.0 Hz), 7.01 (t, 1H, ArCH\(_3\) J 8.0 Hz), 5.12 (dd, 1H, NCH\(_2\)H\(_2\) J 13.0 Hz, 4.5 Hz), 3.01 (td, 1H, NCH\(_2\)H\(_2\) J 12.5 Hz, 4.5 Hz), 2.83 (ddd, 1H, NCH\(_2\)CH\(_3\) H\(_{10}\) J 15.5 Hz, 12.0 Hz, 5 Hz), 2.71 (dd, 1H, NH\(_2\)CH\(_2\)H\(_3\) J 15.0 Hz, 4.0 Hz),...
2.60 (br d, 1H, OCCH$_2$H$_6$, J 17.0 Hz), 2.50-2.33 (m, 2H, OCCH$_2$H$_6$, OCCH$_2$CH$_2$H$_6$), 2.10-1.85 (m, 3H, OCCH$_2$CH$_2$CH$_2$H$_6$, OCCH$_2$CH$_2$H$_6$), 1.71 (s, 3H, NCH$_3$); \(^13^C\) NMR (CDCl$_3$, 100 MHz) δ: 169.2 (CO), 139.2 (Ar$_{quat}$), 134.7 (Ar$_{quat}$), 128.0 (Ar$_{quat}$), 124.5 (Ar$_{CH}$), 121.0 (Ar$_{CH}$), 117.7 (Ar$_{CH}$), 109.6 (Ar$_{quat}$), 104.5 (Ar$_{quat}$), 56.7 (NCH$_3$), 36.2 (NCH$_3$), 35.5 (OCCH$_2$CH$_2$H$_6$), 32.1 (NCH$_2$CH$_2$), 26.0 (NCH$_3$), 21.4 (OCCH$_2$), 16.7 (OCCH$_2$CH$_2$); m/z (ES+) 355 ([M+Na]$^+$, 100%), HRMS (ES+) exact mass calculated for [M+Na]$^+$ (C$_{18}$H$_{27}$Br$_2$NaO$^+$) requires m/z 355.0416 & 357.0397, found m/z 355.0409 & 357.0392.

2.11.3. Preparation and Characterisation of 10c

(R)-11,12b-dimethyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one

The title compound 10c was synthesis according to general procedure I as white solid (90% yield, 90% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220, major t$_R$ = 4.4 min, minor t$_R$ = 5.4 min); [α]$^D_{20}$ = +167.6 (c 0.34, CH$_2$Cl$_2$).

Racemic-10c was synthesised according to general procedure H as a white solid.

m.p. 140-145 °C (decomposition); FT-IR v_{max} 3265 (N–H), 1605 (C=O); \(^1^H\) NMR (CDCl$_3$, 400 MHz) δ: 8.05 (br s, 1H, ArNH), 7.36 (d, 1H, ArCH, J 7.5 Hz), 7.06 (t, 1H, ArCH, J 7.5 Hz), 7.00 (d, 1H, ArCH, J 7.5 Hz), 5.12 (dd, 1H, NCH$_2$H$_6$, J 12.5 Hz, 4.5 Hz), 3.03 (td, 1H, NCH$_2$H$_6$, J 12.5 Hz, 4.5 Hz), 2.84 (ddd, 1H, NCH$_2$CH$_2$H$_6$, J 15 Hz, 11.5 Hz, 4.5 Hz), 2.74 (dd, 1H, NCH$_2$CH$_2$H$_6$, J 15.0 Hz, 4.5 Hz), 2.60 (br d, 1H, OCCH$_2$H$_6$, J 17.5 Hz), 2.51 (s, 3H, ArCH$_3$), 2.49-2.34 (m, 2H, OCCH$_2$H$_6$, OCCH$_2$CH$_2$H$_6$), 2.09-1.86 (m, 3H, OCCH$_2$CH$_2$CH$_2$H$_6$, OCCH$_2$CH$_2$H$_6$), 1.71 (s, 3H, NCH$_3$); \(^13^C\) NMR (CDCl$_3$, 100 MHz) δ: 169.2 (CO), 138.2 (Ar$_{quat}$), 135.6 (Ar$_{quat}$), 126.3 (Ar$_{quat}$), 122.8 (Ar$_{CH}$), 120.2 (Ar$_{quat}$), 120.0 (Ar$_{CH}$), 116.1 (Ar$_{CH}$), 108.7 (Ar$_{quat}$), 56.8 (NCH$_3$), 36.4 (NCH$_3$), 35.6 (OCCH$_2$CH$_2$H$_6$), 32.1 (OCCH$_2$), 26.0 (NCH$_3$), 21.3 (NCH$_2$CH$_2$), 16.79 (Ar$_{CH}$), 16.78 (OCCH$_2$CH$_2$); m/z (ES+) 291 ([M+H]$^+$, 100%), HRMS (ES+) exact mass calculated for [M+Na]$^+$ (C$_{18}$H$_{27}$Br$_2$NaO$^+$) requires m/z 291.1468 & 292.1501, found m/z 291.1467 & 292.1499.

2.11.4. Preparation and Characterisation of 10d

(R)-11-ethyl-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one
The title compound 10d was synthesized according to general procedure I as a white solid (60% yield, 86% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220, major tₘ = 4.1 min, minor tₙ = 4.9 min; [α]²⁵° +120.6 (c 0.34, CH₂Cl₂)

Racemic-10d was synthesised according to general procedure H as a white solid.

m.p. 127-129 °C; FT-IR ν_{max} 3277 (N–H), 1605 (C=O); ¹H NMR (CDCl₃, 400 MHz) δH 8.00 (br s, 1H, ArNH), 7.37 (d, 1H, ArCH, J 7.5 Hz), 7.10 (t, 1H, ArCH, J 7.5 Hz), 7.05 (d, 1H, ArCH, J 7.5 Hz), 5.12 (dd, 1H, NCH₂H, J 13.0 Hz, 4.5 Hz), 3.03 (td, 1H, NCH₂H, J 12.5 Hz, 4.5 Hz), 2.88 (q, 2H, ArCH₂CH₃, J 7.5 Hz), 2.84 (td, 1H, NCH₂CH₂H, J 12.0 Hz, 5.0 Hz), 2.74 (dd, 1H, NCH₂CH₂H, J 15.0 Hz, 4.0 Hz), 2.60 (br d, 1H, OCCH₂H, J 17.0 Hz), 2.49-2.31 (m, 2H, OCCH₂H, OCCH₂CH₂CH₂H), 2.08–1.85 (m, 3H, OCCH₂CH₂CH₂H, OCCH₂CH₂H), 1.71 (s, 3H, NCC₂H₃), 1.38 (t, 3H, ArCH₂CH₃, J 7.5 Hz); ¹³C NMR (CDCl₃, 100 MHz) δC 169.2 (CO), 138.1 (Ar₉quat), 134.8 (Ar₈quat), 126.5 (Ar₇quat), 126.4 (Ar₆quat), 120.7 (ArCH), 120.1 (ArCH), 116.2 (ArCH), 108.7 (Ar₅quat), 56.7 (NCC₂H₃), 36.4 (NCH₂), 35.6 (OCH₂CH₂CH₂), 32.1 (OCH₂), 26.0 (NCC₂H₃), 24.0 (ArCH₂CH₃), 21.3 (NCH₂CH₂), 16.8 (OCCH₂CH₂), 13.9 (ArCH₂CH₃); m/z (ES+) 305 ([M+Na]⁺, 100%), HRMS (ES+) exact mass calculated for [M+Na]⁺ (C₁₈H₂₂N₂NaO₂) requires m/z 305.1624 & 306.1658, found m/z 305.1626 & 306.1661.

2.12. Optimization, Derivative for X-ray and Control reactions.

2.13. Preparation and characterisation of 14

\[N\text{-}[2\text{-}(1\text{-indole-3-yl})\text{ethyl}]\text{-3-oxobutane-1-sulfonamide} \]

To a stirred solution of sulfonamide 5a (500 mg, 1.81 mmol) in dry THF (20 ml), a solution of TBAF (9.1 ml, 1M in THF) was added under nitrogen and heated to reflux for 13 hours. The reaction was monitored by ¹H NMR (CDCl₃ passed through a short pad of K₂CO₃ prior to use). Upon completion, water (20 ml) was added and the solution was stirred for 1 h. The aqueous layer was separated and the organic layer was washed with water 5 times. Purification by flash column chromatography (silica) afforded 14 (230 mg, 25%)
m.p. 108-109 °C; FT-IR \(\nu_{\text{max}} \) 3346 (ArN-H, br s), 3252 (SN-H), 1707 (C=O), 1313 (S=O (as)), 1138 (S=O (sy)); \(^1\)H NMR (CDCl\(_3\), 500 MHz) \(\delta \) 8.12 (br s, 1H, ArN-H), 7.60 (d, 1H, ArCH, J 7.6 Hz), 7.39 (d, 1H, ArCH, J 8.2 Hz), 7.23 (t, 1H, ArCH, J 7.6 Hz), 7.15 (t, 1H, ArCH, J 7.9 Hz), 7.09 (s, 1H, ArCH), 4.26 (br s, 1H, SN-H), 3.45 (q, 2H, SNCH\(_2\)), 3.19 (t, 2H, SCH\(_2\)), 3.05 (t, 2H, ArCH\(_2\)), 2.11 (s, 3H, COCH\(_3\)); \(^{13}\)C NMR (CDCl\(_3\), 125 MHz) \(\delta \) C 204.5 (CO), 136.5 (ArC quat), 127.0 (ArC quat), 122.8 (ArC), 119.8 (ArC), 118.6 (ArC), 111.7 (ArCCH\(_2\)), 111.5 (ArC), 46.7 (SCH\(_2\)), 43.3 (SNCH\(_2\)), 37.3 (SCH\(_2\)), 29.9 (COCH\(_3\)), 26.2 (ArCH\(_2\)); \(m/z \) (ES+) 317 ([M+Na\(^+\)], 100%), HRMS (ES+) exact mass calculated for [M+Na\(^+\)] (C\(_{14}\)H\(_{18}\)N\(_2\)NaO\(_3\)S\(^+\)) requires \(m/z \) 317.0930, found \(m/z \) 317.0927.

2.13.1. Mechanistic evidence for N-sulfonylimminium 13

To a flask containing ketone 14 (0.1 mmol, 1 eq), and BPA-1A (0.01 mmol, 0.1 eq) under nitrogen atmosphere was added toluene at 90 °C rapidly via canula. The reaction mixture was stirred at reflux for 1 hour then cooled to room temperature. Concentration in vacuo and purification by flash column chromatography furnished the title compound (99 % yield, 92 % e.e.).

2.13.2. General Procedure for optimization in the preparation of 11b-methyl-1,2,5,6,11,11b-hexahydroisothiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 5a.

To an aluminium foil covered flask alkyne 5a (0.15 mmol, 1 eq) and BPA-1A (0.015 mmol, 0.1 eq) were dissolved in solvent (21 ml/0.15 mmol of alkyne 5a) under nitrogen the mixture was then heated to the desired temperature and the Lewis acid was added in DCM (1 ml). The reaction mixture was then stirred at the desired temperature until the reaction reached completion (monitoring by TLC and \(^1\)HNMR). The reaction mixture was concentrated in vacuo and purified by FCC.

2.13.3. General procedure for optimization in the preparation of 10a.

To an aluminium foil covered flask [Au(o-biphenylPtBu$_2$(MeCN))SbF$_6$ (8) (0.0015 mmol, 0.01 eq) was added in dichloromethane (1 ml) and the dichloromethane was removed under nitrogen stream. Amide 9 (0.15 mmol, 1 eq) and BPA-1A (0.015 mmol, 0.1 eq) were added and were dissolved in toluene (21 ml/0.15 mmol of 9) under nitrogen. The mixture was then heated to reflux and monitored (by TLC) until the reaction reached completion. The reaction was concentrated in vacuo and purified by FCC.

2.13.4. Optimisation table for the preparation of 10a.

Entry	Acid (BPA)	Acid (mol %)	8 (mol %)	Solvent	Temp (°C)	Yield (%)	e.e. (%)
1	1A	10	5	toluene	60	47	66
2	1A	10	5	toluene	110	79	50
3	1A	10	3	toluene	110	99	62
4	1A	10	1	toluene	110	86	66
5	1A	10	0.5	toluene	110	81	68

2.13.5. Preparation and characterisation of 15a

11-(3-bromobenzyl)-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2′,3′:1,2]pyrido[3,4-b]indole 3,3-dioxide

6a (0.12 mmol, 1 eq) was dissolved in DMF (1 ml/0.12 mmol of 6a) under argon and added to a dried flask containing sodium hydride (1.6 mmol, 1.3 eq) in an ice bath. The mixture was stirred at 0°C for 10 mins and then allowed to warm to room temperature stirring for a further 10 mins. 3-bromobenzylbromide (0.37 mmol, 3 eq) was added to the mixture in one portion and allowed to stir at room temperature for 3 h. The reaction was diluted with water (5 ml/0.12 mmol of 6a) and extracted with ethyl acetate (3 x 5 ml/0.12 mmol of 6a). The combined organics were washed with brine, dried over sodium sulfate and concentrated in vacuo. Purification by FCC gave XX as a white solid (68% yield). Recrystallization from ether by slow evaporation gave crystals of high enough quality for single crystal x-ray diffraction (<99% e.e.). Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220, major $t_R = 12.0$ min, minor $t_R = 18.1$ min).
Racemic-15a was synthesised according to the same procedure as a white solid: Chiralcel AD, 80:20 Hexane/IPA, 1ml/min, 220, major t_R = 12.0 min, minor t_R = 18.0 min;

m.p. 195-196 °C; FT-IR ν_{max} 1291 (S=O), 1134 (S=O); 1H NMR (CDCl\textsubscript{3}, 500 MHz) δ \text{H}: 7.55 (m, 1H, ArC_H), 7.39 (d, 1H, PhCH), 7.20-7.15 (m, 3H, 2 × ArCH), 7.12 (t, 1H, ArCH), 7.03 (m, 1H, ArCH), 6.62 (d, 1H, PhCH), 5.43 (d, 1H, NCH\textsubscript{2}H\textsubscript{3}Ph, J 18.0 Hz), 5.38 (d, 1H, NCH\textsubscript{2}H\textsubscript{3}Ph, J 18.0 Hz), 4.08 (dd, 1H, NCH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{3}, J 14.5 Hz, 5.5 Hz), 3.34 (ddd, 1H, NCH\textsubscript{2}CH\textsubscript{2}J 14.5 Hz, 12.5 Hz, 4.5 Hz), 3.27-3.15 (m, 2H, SCH\textsubscript{2}C\textsubscript{H}_{12}), 3.01 (dt, 1H, SCH\textsubscript{2}C\textsubscript{H}_{12}, J 6.0 12.5 Hz, 7.0 Hz), 2.78 (dd, 1H, ArCH\textsubscript{2}H, J 15.5 Hz, 4.0 Hz), 2.64 (m, 1H, SCH\textsubscript{2}CH\textsubscript{2}H), 2.56 (m, 1H, SCH\textsubscript{2}CH\textsubscript{2}H), 1.67 (s, 3H, NCCH\textsubscript{3}); 13C NMR (CDCl\textsubscript{3}, 125 MHz) δ \text{C}: 139.5 (Arquat), 136.9 (Arquat), 135.3 (Arquat), 130.8 (PhCH), 130.6 (PhCH), 128.5 (PhCH), 126.6 (Arquat), 123.9 (PhCH), 123.2 (PhBr), 123.0 (ArCH), 120.2 (ArCH), 118.9 (ArCH), 109.7 (ArCH), 109.6 (Arquat), 59.6 (NCCH\textsubscript{3}), 47.3 (NCH\textsubscript{2}Ph), 45.4 (SCH\textsubscript{2}), 36.4 (NCH\textsubscript{2}), 32.7 (SCH\textsubscript{2}CH\textsubscript{2}), 27.6 (NCCH\textsubscript{3}), 20.9 (ArCH\textsubscript{2}); HRMS (TOF MS F+I) exact mass calculated for [M]^+ (C\textsubscript{21}H\textsubscript{21}BrN\textsubscript{2}O\textsubscript{2}S) requires m/z 444.0507 and 446.0488, found m/z 444.0519 and446.0502
3. 1HNMR and 13CNMR spectra
3.1. Sulfonamide starting material 5
3.1.1. 1HNMR spectra for N-[2-($1H$-indol-3-yl)ethyl]but-3-yn-1-sulfonamide 5a

![HNMR Spectra](image1.png)

3.1.2. 13CNMR spectra for N-[2-($1H$-indol-3-yl)ethyl]but-3-yn-1-sulfonamide 5a

![CNMR Spectra](image2.png)
3.1.3. 1HNMR spectra for \(N\{2\{4\text{-chloro-1\text{-H-indol-3-yl}}\text{ethyl}\}\text{but-3-ynesulfonamide 5b}\)

![HNMR Spectra](image)

3.1.4. 13CNMR spectra for \(N\{2\{4\text{-chloro-1\text{-H-indol-3-yl}}\text{ethyl}\}\text{but-3-ynesulfonamide 5b}\)

![CNMR Spectra](image)
3.1.5. 1HNMR spectra for N-[2-{(5-bromo-1H-indol-3-yl)ethyl}but-3-yne-1-sulfonamide 5c

3.1.6. 13CNMR spectra for N-[2-{(5-bromo-1H-indol-3-yl)ethyl}but-3-yne-1-sulfonamide 5c
3.1.7. 1HNMR spectra for N-[2-$(6$-bromo-$1H$-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5d

3.1.8. 13CNMR spectra for N-[2-$(6$-bromo-$1H$-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5d
3.1.9. 1HNMR spectra for N-[(2-(5-fluoro-1H-indol-3-yl)ethyl]but-3-yn-1-sulfonamide 5e

3.1.10. 13CNR spectra for N-[(2-(5-fluoro-1H-indol-3-yl)ethyl]but-3-yn-1-sulfonamide 5e
3.1.11. 1HNMR spectra for N-[2-(6-fluoro-1H-indol-3-yl)ethyl]but-3-yn-1-sulfonamide 5f

3.1.12. 13CNMR spectra for N-[2-(6-fluoro-1H-indol-3-yl)ethyl]but-3-yn-1-sulfonamide 5f
3.1.13. 1HNMR spectra for N-[2-(5-cyano-1H-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5g

3.1.14. 13CNMR spectra for N-[2-(5-cyano-1H-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5g
3.1.15. 1HNMR spectra for N-[2-(5-methoxy-1H-indol-3-yl)ethyl]but-3-yn-1-sulfonamide 5h

![HNMR spectrum](image)

3.1.16. 13CNR spectra for N-[2-(5-methoxy-1H-indol-3-yl)ethyl]but-3-yn-1-sulfonamide 5h

![CNR spectrum](image)
3.1.17. 1HNMR spectra for N-[2-(5-methyl-$1H$-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5i

![HNMR Spectra](image1)

3.1.18. 13CNMR spectra for N-[2-(5-methyl-$1H$-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5i

![CNMR Spectra](image2)
3.1.19. 1HNMR spectra for N-[2-(7-methyl-1H-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5j

3.1.20. 13CNMR spectra for N-[2-(7-methyl-1H-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5j
3.1.21. 1HNMR spectra for N-[2-(7-ethyl-$1H$-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5k

3.1.22. 13CNMR spectra for N-[2-(7-ethyl-$1H$-indol-3-yl)ethyl]but-3-yne-1-sulfonamide 5k
3.2. Sulfonamide cyclization products

3.2.1. 1H NMR spectra for 11b-methyl-1,2,5,6,11,11b-
hexahydroisothiazolo[2',3':1,2]pyrido[3,4-b]indole-3,3-
dioxide 6a

3.2.2. 13C NMR spectra for 11b-methyl-1,2,5,6,11,11b-
hexahydroisothiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-
dioxide 6a
3.2.3. \(^{1} \)H NMR spectra for 2,3,6,7,12,12b-hexahydro-1H-[1,2]thiazino[2',3':1,2]pyrido[3,4-b]indole 4,4-dioxide 7a

3.2.4. \(^{13} \)C NMR spectra for 2,3,6,7,12,12b-hexahydro-1H-[1,2]thiazino[2',3':1,2]pyrido[3,4-b]indole 4,4-dioxide 7a
3.2.5. 1HNMR spectra for 7-chloro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6b

3.2.6. 13CNMR spectra for 7-chloro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6b
3.2.7. 1HNMR spectra for 8-bromo-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6c

![HNMR spectrum](image)

3.2.8. 13CNMR spectra for 8-bromo-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6c

![CNMR spectrum](image)
3.2.9. 1HNMR spectra for 9-bromo-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6d

3.2.10. 13CNMR spectra for 9-bromo-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6d
3.2.11. 1HNMR spectra for 8-fluoro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6e

3.2.12. 13CNMR spectra for 8-fluoro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6e
3.2.13. 1HNMR spectra for 9-fluoro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6f

3.2.14. 13CNMR spectra for 9-fluoro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6f
3.2.15. 1HNMR spectra for 11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole-8-carbonitrile 3,3-dioxide 6g

3.2.16. 13CNMR spectra for 11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole-8-carbonitrile 3,3-dioxide 6g
3.2.17. 1HNMR spectra for 8-methoxy-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6h

3.2.18. 13CNMR spectra for 8-methoxy-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6h
3.2.1. 1HNMR spectra for 8,11b-dimethyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6i

3.2.2. 13CNMR spectra for 8,11b-dimethyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6i
3.2.3 1HNMR spectra for 10,11b-dimethyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6j

3.2.4 13CNMR spectra for 10,11b-dimethyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6j
3.2.5. 1HNMR spectra for 10-ethyl-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6k

3.2.6. 13CNMR spectra for 10-ethyl-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6k
3.3. Amide starting material

3.3.1. 1HNMR spectra for $\text{N-[2-}(1H\text{-indol-3-yl})\text{ethyl]hex-5-ynamide 9a}$

![HNMR Spectrum](image1.png)

3.3.2. 13CNMR spectra for $\text{N-[2-}(1H\text{-indol-3-yl})\text{ethyl]hex-5-ynamide 9a}$

![CNMR Spectrum](image2.png)
3.3.3. 1HNMR spectra for N-[2-(7-bromo-1H-indol-3-yl)ethyl]hex-5-ynamide 9b

3.3.4. 13CNMR spectra for N-[2-(7-bromo-1H-indol-3-yl)ethyl]hex-5-ynamide 9b
3.3.5. 1HNMR spectra for N-[2-(7-methyl-1H-indol-3-yl)ethyl]hex-5-ynamide 9c

3.3.6. 13CNMR spectra for N-[2-(7-methyl-1H-indol-3-yl)ethyl]hex-5-ynamide 9c
3.3.7. 1HNMR spectra for $N\{2-(7\text{-ethyl-1H-indol-3-yl})\text{ethyl}\}\text{hex-5-ynamide}$ 9d

3.3.8. 13CNMR spectra for $N\{2-(7\text{-ethyl-1H-indol-3-yl})\text{ethyl}\}\text{hex-5-ynamide}$ 9d
3.4. Amide cyclization products

3.4.1. 1H NMR spectra for 12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one 10a

3.4.2. 13C NMR spectra for 12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one 10a
3.4.3. 1HNMR spectra for 11-bromo-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-
α]quinolizin-4(1H)-one 10b

3.4.4. 13CNMR spectra for 11-bromo-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-
α]quinolizin-4(1H)-one 10b
3.4.5. 1H NMR spectra for 11,12b-dimethyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one 10c

3.4.6. 13C NMR spectra for 11,12b-dimethyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one 10c
3.4.7. 1HNMR spectra for 11-ethyl-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-
\[a\]quinolizin-4(1H)-one 10d

3.4.8. 13CNMR spectra for 11-ethyl-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-
\[a\]quinolizin-4(1H)-one 10d
3.4.9. 1HNMR spectra for N-[(1H-indole-3-yl)ethyl]-3-oxobutane-1-sulfonamide 14

3.4.10. 13CNMR spectra for N-[(1H-indole-3-yl)ethyl]-3-oxobutane-1-sulfonamide 14
3.4.11. 1HNMR spectra for 11-(3-bromobenzyl)-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 15a

3.4.12. 1HNMR spectra for 11-(3-bromobenzyl)-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 15a
4. HPLC reports

4.1. Sulfonamide cyclization products

4.1.1. HPLC trace of racemic 11b-methyl-1,2,5,6,11,11b-hexahydroisothiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6a

Signal 2: DAD1 B, Sig=220,16 Ref=360,100

Peak RetTime	Type	Width	Area	Height	Area %
1	VV	0.2996	6929.40234	361.55801	49.9763
2	VB	0.5818	6935.96973	181.50195	50.0237

Totals: 1.38654e4 543.05997

4.1.2. HPLC trace of 11b-methyl-1,2,5,6,11,11b-hexahydroisothiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6a

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak RetTime	Type	Width	Area	Height	Area %
1	BB	0.2088	8450.49805	628.89789	93.7254
2	BB	0.5624	565.73688	15.62640	6.2746

Totals: 9016.23492 644.52429
4.1.3. HPLC trace of 11b-methyl-1,2,5,6,11,11b-hexahydroisothiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide from ketone starting material 6a

![HPLC trace](image)

#	RetTime [min]	Type	Width [min]	Area [mAUs]	Height [mAU]	Area [%]
1	5.986	BB	0.3429	6.13641e4	2853.56030	95.9480
2	15.552	BB	0.5588	2591.48804	71.51179	4.0520

Totals: 6.39556e4 2925.07209
4.1.4. HPLC trace of Racemic 7-chloro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2′,3′:1,2]pyrido[3,4-b]indole 3,3-dioxide 6b

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
1 5.776 VV 0.2205 1610.56543 111.51776 44.0052
2 8.106 VV 0.3295 2049.37549 92.85419 55.9948

Totals : 3659.94092 204.37196

4.1.5. HPLC trace of 7-chloro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2′,3′:1,2]pyrido[3,4-b]indole 3,3-dioxide 6b

Signal 2: DAD1 B, Sig=220,16 Ref=360,100

Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
1 5.792 BB 0.2062 1.09271e4 816.11572 97.4035
2 8.118 BB 0.3032 291.29129 14.32851 2.5965

Totals : 1.12184e4 830.44423
4.1.6. HPLC trace of racemic 8-bromo-11b-methyl-1,2,5,6,11,11b-hexahydroisothiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6c

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	Ret Time	Type	Width	Area [mAU*s]	Height [mAU]	Area [%]
1	9.853	VB	0.3545	9467.04687	408.36649	50.1600
2	26.089	BB	1.1205	9406.65527	126.36646	49.8400

Totals: 1.88737e4 534.73294

4.1.7. HPLC trace 8-bromo-11b-methyl-1,2,5,6,11,11b-hexahydroisothiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6c

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	Ret Time	Type	Width	Area [mAU*s]	Height [mAU]	Area [%]
1	9.993	MM	0.3699	2672.50220	120.41589	95.1297
2	27.234	MM	1.0019	136.82187	2.27602	4.8703

Totals: 2809.32407 122.69190
4.1.8. HPLC trace of Racemic 9-bromo-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6d

![HPLC trace of Racemic 9-bromo-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6d](image)

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area %
1	8.384	BV	0.2880	3306.75732	175.39285	50.2104
2	31.052	BB	1.1967	3279.05029	41.73261	49.7896

Totals: 6585.80762 217.12546

4.1.9. HPLC trace of 9-bromo-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6d

![HPLC trace of 9-bromo-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6d](image)

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area %
1	8.281	MM	0.3102	1.33849e4	719.05499	95.5914
2	31.951	MM	1.1629	617.29950	8.84681	4.4086

Totals: 1.40022e4 727.90180
4.1.10. HPLC trace of Racemic 8-fluoro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6e

![HPLC trace image]

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area %
1	7.221	VV	0.2477	5179.71240	321.97113	50.4178
2	24.186	BB	0.9163	5093.87256	85.34870	49.5822

Totals: 1.02736e4 407.31983

4.1.11. HPLC trace of 8-fluoro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6e

![HPLC trace image]

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area %
1	8.497	VB	0.3021	1.30236e4	660.19110	96.1533
2	26.865	MM	0.9136	521.02521	9.50467	3.8467

Totals: 1.35446e4 669.69577
4.1.12. HPLC trace of Racemic 9-fluoro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6f

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.413	BB	0.2888	1124.35437	60.50667	50.0497
2	25.822	VB	0.9079	1122.12244	19.14278	49.9503

Totals: 2246.47681 79.64946

4.1.13. HPLC trace of 9-fluoro-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6f

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak	RetTime [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	7.352	VB	0.2388	1.05252e4	686.87543	91.8722
2	25.056	MM	0.8457	931.15240	18.35109	8.1278

Totals: 1.14564e4 705.22652
4.1.14. HPLC trace of Racemic 11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole-8-carbonitrile 3,3-dioxide 6g

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area %
1	13.241	MM	0.6082	969.83325	26.57452	49.7009
2	52.824	MM	2.3171	981.50507	7.05992	50.2991

Totals: 1951.33832 33.63444

4.1.15. HPLC trace of 11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole-8-carbonitrile 3,3-dioxide 6g

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area %
1	13.136	MM	0.6861	8630.20508	209.65181	97.7827
2	53.644	MM	2.0044	195.69910	1.62725	2.2173

Totals: 8825.90417 211.27906
4.1.16. HPLC trace of 8-methoxy-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6h

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak RetTime Type Width Area Height Area %
[min] [min] [mAU*s] [mAU] %
---|-----|-----|-----|-----|-----|-----|
1 8.241 BB 0.2805 6153.22998 337.82938 49.7137 |
2 14.420 BB 0.5110 6224.09473 187.62210 50.2863 |
Totals : 1.23773e4 525.45148 |

4.1.17. HPLC trace of 8-methoxy-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6h

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak RetTime Type Width Area Height Area %
[min] [min] [mAU*s] [mAU] %
---|-----|-----|-----|-----|-----|-----|
1 8.188 MM 0.2998 2429.04248 135.01501 90.5225 |
2 14.307 MM 0.4439 254.31540 9.54864 9.4775 |
Totals : 2683.35788 144.56366 |

4.1.18. HPLC trace of Racemic 8,11b-dimethyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6i

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area %		
#	[min]	[min] [mAU*s] [mAU]				
1		6.721	0.2099	2099.92603	153.23482	50.1598
2	13.982		0.4707	2086.54614	69.01322	49.8402

Totals: 4186.47217 222.24004

4.1.19. HPLC trace of 8,11b-dimethyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6i

Signal 2: DAD1 B, Sig=220,16 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area %		
#	[min]	[min] [mAU*s] [mAU]				
1		6.664	0.2447	3656.24561	249.06523	93.8772
2	14.145		0.4921	238.46709	8.07716	6.1228

Totals: 3894.71269 257.14240
4.1.20. HPLC trace of Racemic 10,11b-dimethyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6j

Peak	RetTime	Type	Width	Area	Height	Area %
1	5.067	VV	0.193	3511.04712	282.56686	49.6121
2	6.058	VB	0.209	3565.95630	263.95245	50.3879

Totals: 7077.00342 546.51932

4.1.21. HPLC trace of 10,11b-dimethyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6j

Peak	RetTime	Type	Width	Area	Height	Area %
1	5.046	BV	0.189	1.34379e4	1108.46716	95.6662
2	6.051	VB	0.222	608.75525	41.67521	4.3338

Totals: 1.40466e4 1150.14238
4.1.22. HPLC trace of Racemic 10-ethyl-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6k

![HPLC trace of Racemic 10-ethyl-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6k]

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	RetTime	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	8.029	MF	0.3528	2980.82861	140.81139	49.9277
2	10.304	FM	0.4335	2989.46655	114.93775	50.0723

Totals: 5970.29517 255.74914

4.1.23. HPLC trace of 10-ethyl-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6k

![HPLC trace of 10-ethyl-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 6k]

Signal 3: DAD1 C, Sig=220,8 Ref=360,100

Peak	RetTime	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	7.870	BB	0.3043	1.25748e4	631.57336	97.4176
2	10.196	BB	0.3804	333.34106	13.58081	2.5824

Totals: 1.29081e4 645.15418
Amide

HPLC trace of Racemic 12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolin-4(1H)-one 10a

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area %		
#	[min]	[min]	[mAU*s]	[mAU]		
1	5.045	VV	0.2131	4544.93945	329.05899	49.9785
2	11.632	BB	0.4097	4548.85742	171.38036	50.0215

Totals: 9093.79688 500.43935

HPLC trace of 12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolin-4(1H)-one 10a

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area %		
#	[min]	[min]	[mAU*s]	[mAU]		
1	5.082	MM	0.1846	1.04069e4	939.76501	82.8246
2	11.829	MM	0.4200	2158.08838	85.64144	17.1754

Totals: 1.25650e4 1025.40646
4.2. Amide cyclization products

4.2.1. HPLC trace of Racemic 11-bromo-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolinizin-4(1H)-one 10b

![HPLC trace of Racemic 11-bromo-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolinizin-4(1H)-one 10b]

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak RetTime	Type	Width	Area	Height	Area %	
#	[min]	[min]	[mAU*s]	[mAU]		
1	5.113	VV	0.1718	545.88226	49.84857	50.1874
2	6.658	VB	0.2154	541.80627	38.68854	49.8126

Totals: 1087.68854 88.53711

4.2.2. HPLC trace of 11-bromo-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolinizin-4(1H)-one 10b

![HPLC trace of 11-bromo-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolinizin-4(1H)-one 10b]

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak RetTime	Type	Width	Area	Height	Area %	
#	[min]	[min]	[mAU*s]	[mAU]		
1	5.067	VB	0.1602	1.88902e4	1803.75488	96.3498
2	6.645	BB	0.2103	715.64355	52.73191	3.6502

Totals: 1.96059e4 1856.48679
4.2.3. HPLC trace of racemic 11,12b-dimethyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one 10c

Signal 1: VWD1 A, Wavelength=220 nm

Peak	RetTime	Type	Width	Area	Height	Area
1	5.019	VV	0.595	6079.96680	130.96616	49.6528
2	7.085	VB	0.7037	6164.99609	123.44200	50.3472

4.2.4. HPLC trace of 11,12b-dimethyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one 10c

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak	RetTime	Type	Width	Area	Height	Area
1	4.385	BB	0.1487	3578.53735	370.48203	96.5189
2	5.347	BB	0.1754	129.06354	11.12429	3.4811

Totals: 3707.60089 381.60631
4.2.5. HPLC trace of racemic 11-ethyl-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-α]quinolinizin-4(1H)-one 10d

![HPLC trace of racemic 11-ethyl-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-α]quinolinizin-4(1H)-one 10d]

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak RetTime	Width	Area	Height	Area %	
#	[min]	[min]	[mAU*s]	[mAU]	%
---------------	-------	------------	-----------	------------	------------
1	4.108	0.1432	6486.74707	706.11816	49.4928
2	4.908	0.1667	6619.69873	609.59180	50.5072

Totals: 1.31064e4 1315.70996

4.2.6. HPLC trace of 11-ethyl-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-α]quinolinizin-4(1H)-one 10d

![HPLC trace of 11-ethyl-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-α]quinolinizin-4(1H)-one 10d]

Signal 2: DAD1 B, Sig=220,8 Ref=360,100

Peak RetTime	Width	Area	Height	Area %	
#	[min]	[min]	[mAU*s]	[mAU]	%
---------------	-------	------------	-----------	------------	------------
1	4.100	0.1379	8776.01367	966.42841	92.8026
2	4.911	0.1657	680.63605	62.18039	7.1974

Totals: 9456.64972 1028.60880
4.2.7. HPLC trace of racemic 11-(3-bromobenzyl)-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 15a

Signal 2: DAD1 B, Sig=220,16 Ref=360,100

#	Ret Time [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11.996	BB	0.3824	2.07558e4	833.93286	50.0573
2	18.018	BB	0.5878	2.07083e4	544.39233	49.9427

Totals: 4.14642e4 1378.32520

4.2.8. HPLC trace of 11-(3-bromobenzyl)-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide 15a

Signal 2: DAD1 B, Sig=220,16 Ref=360,100

#	Ret Time [min]	Type	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	11.990	MM	0.4209	2503.59058	99.12993	99.7524
2	18.110	MM	0.5144	6.21401	2.01351e-1	0.2476

Totals: 2509.80458 99.33128
5. Xray Data

5.1. X-ray data for compound 10b

11-bromo-12b-methyl-2,3,6,7,12,12b-hexahydroindolo[2,3-a]quinolizin-4(1H)-one

Crystal data

$\text{C}_{16}\text{H}_{17}\text{BrN}_{2}\text{O} \cdot \text{CHCl}_{3}$

$M_r = 452.60$

Orthorhombic, $P 2_1 2_1 2_1$

Hall symbol: $P 2ac 2ab$

$D_x = 1.567 \text{ Mg m}^{-3}$

Melting point: not measured K

Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$

Cell parameters from 83413 reflections
Data collection

Nonius KappaCCD diffractometer
Graphite monochromator
ω scans
Absorption correction: Multi-scan
DENZO/SCALEPACK (Otwinowski & Minor, 1997)

4092 reflections with $I > 2.0\sigma(I)$
$R_{int} = 0.087$
$\theta_{\text{max}} = 27.5^\circ$, $\theta_{\text{min}} = 5.2^\circ$

Hydrogen site location: Difference Fourier map

Refinement

Refinement on F^2
Least-squares matrix: Full

$R[F^2 > 2\sigma(F^2)] = 0.034$
$wR(F^2) = 0.083$
$S = 1.00$

4361 reflections
255 parameters
162 restraints

Primary atom site location: Other

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)

	x	y	z	U_{iso}/U_{eq}	Occ. (<1)
Br1	0.65201 (3)	0.67046 (3)	1.08633 (3)	0.0538	
C2	0.6812 (2)	0.65084 (19)	0.9491 (2)	0.0375	
C3	0.5948 (2)	0.60131 (19)	0.89063 (19)	0.0304	
N4	0.48228 (17)	0.56306 (15)	0.91457 (17)	0.0289	
C5	0.4336 (2)	0.51801 (19)	0.82999 (17)	0.0269	
C6	0.5127 (2)	0.52769 (19)	0.75153 (19)	0.0299	
C7	0.6164 (2)	0.58180 (19)	0.78843 (19)	0.0321	
C8	0.7263 (2)	0.6159 (2)	0.7450 (2)	0.0424	
C9	0.8085 (3)	0.6668 (3)	0.8039 (3)	0.0480	
C10	0.7884 (2)	0.6833 (2)	0.9055 (3)	0.0454	
C11	0.4861 (3)	0.4819 (2)	0.65142 (19)	0.0377	
Atomic displacement parameters (\AA^2)					

U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Br1	0.05236 (17)	0.05674 (18)	0.05220 (17)	-0.01281 (15)	-0.00665 (15)
C2	0.0338 (13)	0.0294 (12)	0.0493 (14)	-0.0009 (9)	-0.0014 (10)
C3	0.0248 (10)	0.0280 (11)	0.0384 (13)	0.0008 (8)	0.0029 (9)
N4	0.0265 (9)	0.0308 (9)	0.0296 (9)	-0.0035 (7)	0.0008 (8)
C5	0.0273 (11)	0.0266 (10)	0.0268 (11)	0.0007 (9)	0.0003 (9)
C6	0.0280 (11)	0.0317 (11)	0.0300 (11)	0.0023 (9)	0.0047 (9)
C7	0.0298 (12)	0.0283 (11)	0.0383 (12)	0.0008 (9)	0.0069 (9)
C8	0.0327 (13)	0.0425 (15)	0.0519 (16)	0.0041 (11)	0.0126 (12)
C9	0.0264 (12)	0.0435 (14)	0.074 (2)	-0.0011 (12)	0.0071 (12)
C10	0.0295 (12)	0.0356 (13)	0.0710 (19)	-0.0050 (10)	-0.0010 (14)
	Geometric parameters (Å, °)				
---	---------------------------				
C1	0.0330 (13) 0.0502 (15) 0.0299 (12) 0.0037 (11) 0.0059 (10) -0.0006 (11)				
C2	0.0365 (13) 0.0437 (14) 0.0297 (11) 0.0059 (10) -0.0013 (10) -0.0064 (10)				
N3	0.0276 (10) 0.0424 (11) 0.0256 (9) 0.0032 (8) -0.0018 (8) -0.0006 (8)				
C4	0.0255 (11) 0.0329 (11) 0.0239 (10) -0.0003 (9) -0.0005 (8) 0.0000 (8)				
C5	0.0358 (12) 0.0379 (12) 0.0345 (13) -0.0085 (20) -0.0042 (10) 0.0052 (10)				
C6	0.0262 (12) 0.0447 (14) 0.0355 (12) 0.0011 (10) 0.0023 (10) -0.0025 (11)				
C7	0.0260 (13) 0.067 (2) 0.0373 (14) 0.0027 (12) 0.0013 (10) -0.0036 (13)				
C8	0.0296 (13) 0.073 (2) 0.0398 (14) 0.0070 (13) -0.0048 (11) -0.0062 (14)				
C9	0.0314 (13) 0.0475 (14) 0.0291 (12) 0.0015 (10) -0.0041 (10) 0.0027 (10)				
O1	0.0391 (10) 0.0690 (12) 0.0290 (8) 0.0048 (9) -0.0072 (9) -0.0025 (9)				
C20	0.0506 (19) 0.0427 (18) 0.066 (2) -0.0010 (16) -0.0121 (18) 0.0043 (17)				
C21	0.0550 (10) 0.0807 (10) 0.0502 (7) 0.0210 (8) -0.0150 (6) -0.0013 (8)				
C22	0.089 (2) 0.0648 (14) 0.0833 (17) -0.0014 (16) 0.0082 (15) -0.0288 (13)				
C23	0.0523 (9) 0.127 (2) 0.151 (3) -0.0348 (11) -0.0107 (13) 0.022 (2)				
C24	0.071 (4) 0.050 (4) 0.075 (4) -0.001 (3) -0.030 (4) -0.005 (3)				
C25	0.111 (5) 0.059 (2) 0.063 (3) 0.019 (3) -0.030 (3) -0.0177 (19)				
C26	0.0318 (19) 0.047 (3) 0.056 (3) 0.0025 (14) -0.0096 (16) -0.0139 (19)				
C27	0.065 (3) 0.081 (3) 0.131 (5) -0.026 (2) -0.034 (3) 0.014 (3)				

Br1—C2 1.889 (3) N13—C19 1.349 (3)
C2—C3 1.391 (4) C14—C15 1.534 (3)
C2—C10 1.384 (4) C14—C16 1.536 (3)
C3—N4 1.374 (3) C15—H151 0.958
C3—C7 1.416 (4) C15—H152 0.967
N4—C5 1.385 (3) C15—H153 0.945
N4—H41 0.840 C16—C17 1.516 (4)
C5—C6 1.374 (3) C16—H161 0.957
C5—C14 1.502 (3) C16—H162 0.977
C6—C7 1.429 (4) C17—C18 1.520 (4)
C6—C11 1.499 (4) C17—H171 0.952
C7—C8 1.415 (4) C17—H172 0.966
C8—C9 1.371 (5) C18—C19 1.507 (4)
C8—H81 0.926 C18—H181 0.961
C9—C10 1.399 (5) C18—H182 0.969
C9—H91 0.936 C19—O20 1.244 (3)
C10—H101 0.914 C21—Cl22 1.738 (3)
C11—C12 1.527 (4) C21—Cl23 1.746 (3)
C11—H111 0.972 C21—Cl24 1.743 (3)
C11—H112 0.984 C21—H211 0.972
C12—N13 1.477 (3) C25—Cl26 1.740 (5)
C12—H121 0.976 C25—Cl27 1.743 (5)
C12—H122 0.968 C25—Cl28 1.744 (5)
N13—C14 1.489 (3) C25—H251 0.976
Br1—C2—C3 119.8 (2) N13—C14—C15 110.0 (2)
Br1—C2—C10 119.2 (2) C5—C14—C16 109.1 (2)
C3—C2—C10 119.0 (3) N13—C14—C16 110.1 (2)
C2—C3—N4 130.7 (2) C15—C14—C16 111.0 (2)
C2—C3—C7 121.0 (2) C14—C15—H151 109.7
Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
C16—H161···O20′	0.96	2.33	3.229 (4)	155 (1)
C21—H211···C7	0.97	2.55	3.511 (4)	170 (1)
C25—H211···C7	1.11	2.55	3.517 (4)	145 (1)
C25—H251···C7	0.98	2.60	3.517 (4)	157 (1)
N4—H41···O20′	0.84	1.99	2.809 (4)	166 (1)

Symmetry code: (i) −x+1/2, −y+1, z+1/2.
5.2. X-Ray data for compound 15a

11-(3-bromobenzyl)-11b-methyl-1,2,5,6,11,11b-hexahydro[1,2]thiazolo[2',3':1,2]pyrido[3,4-b]indole 3,3-dioxide

(15a)

Crystal data

\[C_{21}H_{21}BrN_2O_2S \]

\[F(000) = 912 \]
Mr = 445.38
Monoclinic, \(P2_1\)
Hall symbol: P 2yb
\(a = 10.4507 (1) \text{ Å}\)
\(b = 16.2752 (2) \text{ Å}\)
\(c = 11.5043 (1) \text{ Å}\)
\(\beta = 101.0903 (5)^\circ\)
\(V = 1920.19 (3) \text{ Å}^3\)
\(Z = 4\)

Data collection

Nonius KappaCCD
diffractometer
Graphite monochromator
\(\omega\) scans
Absorption correction: Multi-scan
\(DENZO/SCALEPACK\) (Otwinowski & Minor, 1997)
\(T_{\text{min}} = 0.54, T_{\text{max}} = 0.71\)
35947 measured reflections
8412 independent reflections

Refinement

Refinement on \(F^2\)
Least-squares matrix: Full
\(R[F^2 > 2\sigma(F^2)] = 0.029\)
\(wR(F^2) = 0.064\)
\(S = 0.99\)
8412 reflections
488 parameters
1 restraint
Primary atom site location: Structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\(\text{Å}^2\))

\(x\)	\(y\)	\(z\)	\(U_{eq}\)/\(U_{\text{eq}}\)				
Br1	1.41297 (2)	0.38134 (3)	0.34172 (2)	0.0285			
C2	1.3005 (2)	0.46900 (15)	0.2792 (2)	0.0226			
C3	1.1759 (2)	0.45052 (14)	0.2192 (2)	0.0208			
C4	1.0911 (2)	0.51396 (14)	0.1758 (2)	0.0205			
C5	1.1330 (2)	0.59512 (15)	0.1918 (2)	0.0256			
C6	1.2588 (3)	0.61223 (16)	0.2519 (2)	0.0295			
C7	1.3438 (2)	0.54976 (17)	0.2968 (2)	0.0287			
C8	0.9538 (2)	0.49079 (14)	0.1142 (2)	0.0228			
N9	0.86899 (18)	0.56083 (12)	0.08136 (17)	0.0205			
C10	0.8749 (2)	0.60797 (14)	−0.0176 (2)	0.0206			
C11	0.9386 (2)	0.59243 (16)	−0.1112 (2)	0.0245			
At.	X	Y	Z	Ue1	Ue2	Ue3	Ue4
-------	--------	-------	--------	--------	--------	--------	--------
C12	0.9203 (3)	0.64855 (17)	-0.2034 (2)	0.0276			
C13	0.8431 (2)	0.71881 (16)	-0.2021 (2)	0.0263			
C14	0.7847 (2)	0.73585 (15)	-0.1068 (2)	0.0247			
C15	0.8018 (2)	0.68067 (14)	-0.0121 (2)	0.0211			
C16	0.7523 (2)	0.67577 (14)	0.0958 (2)	0.0209			
C17	0.7947 (2)	0.60349 (14)	0.1504 (2)	0.0201			
C18	0.7553 (2)	0.56948 (14)	0.2609 (2)	0.0213			
N19	0.66573 (19)	0.63045 (12)	0.30024 (17)	0.0222			
S20	0.72133 (6)	0.66744 (5)	0.43267 (5)	0.0261			
O21	0.6787 (2)	0.61969 (14)	0.51981 (17)	0.0420			
O22	0.6911 (2)	0.75361 (12)	0.43494 (18)	0.0378			
C23	0.8865 (3)	0.64467 (16)	0.4315 (2)	0.0296			
C24	0.8725 (3)	0.56237 (15)	0.3669 (2)	0.0263			
C25	0.5806 (2)	0.68198 (16)	0.2122 (2)	0.0268			
C26	0.6594 (2)	0.73246 (16)	0.1396 (2)	0.0266			
C27	0.6827 (3)	0.48793 (16)	0.2380 (3)	0.0307			
Br28	0.97901 (3)	0.32754 (3)	0.39625 (3)	0.0391			
C29	0.8383 (2)	0.32493 (17)	0.4816 (2)	0.0267			
C30	0.7437 (3)	0.26470 (16)	0.4539 (2)	0.0289			
C31	0.6397 (3)	0.26565 (16)	0.5129 (2)	0.0274			
C32	0.6313 (2)	0.32589 (16)	0.5970 (2)	0.0230			
C33	0.7276 (2)	0.38529 (16)	0.62490 (18)	0.0207			
C34	0.8335 (2)	0.38422 (16)	0.56645 (19)	0.0224			
C35	0.7227 (2)	0.45407 (15)	0.7126 (2)	0.0227			
N36	0.64904 (19)	0.43309 (12)	0.80417 (17)	0.0219			
C37	0.6932 (2)	0.37513 (16)	0.89065 (19)	0.0228			
C38	0.6024 (2)	0.36932 (15)	0.9660 (2)	0.0233			
C39	0.4999 (2)	0.42615 (15)	0.9219 (2)	0.0229			
C40	0.5304 (2)	0.46350 (14)	0.8242 (2)	0.0210			
C41	0.4522 (2)	0.53135 (14)	0.7525 (2)	0.0216			
N42	0.32641 (19)	0.53898 (13)	0.79549 (18)	0.0241			
S43	0.20060 (6)	0.50210 (5)	0.70227 (6)	0.0298			
O44	0.1293 (2)	0.56807 (15)	0.63536 (19)	0.0477			
O45	0.1262 (2)	0.44851 (15)	0.76296 (19)	0.0450			
C46	0.2931 (2)	0.45221 (17)	0.6100 (2)	0.0296			
C47	0.4093 (2)	0.50934 (15)	0.6192 (2)	0.0253			
C48	0.3300 (3)	0.53143 (17)	0.9239 (2)	0.0290			
C49	0.3814 (2)	0.44762 (16)	0.9713 (2)	0.0271			
C50	0.5235 (3)	0.61384 (15)	0.7699 (2)	0.0287			
C51	0.6273 (3)	0.31427 (16)	1.0623 (2)	0.0300			
C52	0.7391 (3)	0.26805 (17)	1.0798 (2)	0.0363			
C53	0.8298 (3)	0.27482 (17)	1.0041 (2)	0.0339			
C54	0.8077 (2)	0.32787 (17)	0.9083 (2)	0.0299			
H31	1.1491	0.3960	0.2068	0.0270*			
H51	1.0756	0.6379	0.1623	0.0299*			
H61	1.2857	0.6670	0.2623	0.0363*			
H71	1.4282	0.5614	0.3364	0.0342*			
H81	0.9166	0.4571	0.1684	0.0282*			
H82	0.9589	0.4601	0.0431	0.0281*			
H111	0.9921	0.5464	-0.1109	0.0302*			
H121	0.9601	0.6385	-0.2681	0.0355*			
H131	0.8301	0.7549	-0.2672	0.0273*			
H141	0.7350	0.7834	-0.1051	0.0321*			
H231	0.9229	0.6857	0.3847	0.0360*			
H232	0.9390	0.6411	0.5113	0.0359*			
H262	0.7075	0.7748	0.1883	0.0328*			
H261	0.6021	0.7573	0.0731	0.0329*			
H272	0.6491	0.4727	0.3074	0.0469*			
H271	0.6120	0.4938	0.1716	0.0470*			
H273	0.7424	0.4459	0.2212	0.0471*			
H301	0.7504	0.2247	0.3964	0.0338*			
H311	0.5751	0.2252	0.4965	0.0308*			
H321	0.5599	0.3262	0.6348	0.0293*			
H341	0.9011	0.4224	0.5859	0.0268*			
H351	0.6820	0.5011	0.6698	0.0308*			
H352	0.8113	0.4677	0.5289	0.0352*			
H462	0.2456	0.4477	0.6406	0.0348*			
H461	0.3205	0.3981	0.6064	0.0322*			
H472	0.3853	0.5577	0.5718	0.0322*			
H471	0.4803	0.4814	0.5922	0.0319*			
H481	0.2415	0.5390	0.9379	0.0329*			
H482	0.3877	0.5736	0.9652	0.0330*			
H491	0.4041	0.4489	1.0576	0.0331*			
H492	0.3152	0.4064	0.9474	0.0330*			
H501	0.4693	0.6565	0.7280	0.0460*			
H502	0.5448	0.6273	0.8528	0.0461*			
H503	0.6027	0.6101	0.7397	0.0461*			
H511	0.5675	0.3105	1.1133	0.0423*			
H521	0.7544	0.2303	1.1425	0.0472*			
H531	0.9059	0.2427	1.0187	0.0368*			
H541	0.8669	0.3322	0.8573	0.0380*			

Atomic displacement parameters (Å\(^2\))

	\(U^{11}\)	\(U^{22}\)	\(U^{33}\)	\(U^{12}\)	\(U^{13}\)	\(U^{23}\)
Br1	0.02460 (11)	0.03028 (12)	0.02933 (12)	0.00474 (10)	0.00169 (9)	0.00640 (11)
C2	0.0225 (11)	0.0244 (11)	0.0212 (11)	0.0034 (9)	0.0049 (9)	0.0025 (9)
C3	0.0221 (11)	0.0198 (11)	0.0216 (11)	0.0010 (9)	0.0071 (9)	0.0010 (9)
C4	0.0211 (11)	0.0217 (12)	0.0193 (11)	0.0015 (9)	0.0053 (9)	-0.0025 (9)
C5	0.0250 (12)	0.0211 (12)	0.0296 (13)	0.0010 (10)	0.0022 (10)	0.0006 (10)
C6	0.0307 (13)	0.0213 (12)	0.0357 (14)	-0.0051 (10)	0.0047 (11)	-0.0021 (10)
C7	0.0239 (12)	0.0358 (14)	0.0255 (12)	-0.0033 (11)	0.0029 (10)	-0.0023 (11)
C8	0.0211 (11)	0.0190 (11)	0.0275 (12)	0.0031 (9)	0.0028 (9)	-0.0028 (9)
N9	0.0204 (9)	0.0188 (9)	0.0222 (10)	0.0031 (8)	0.0039 (8)	-0.0018 (8)
C10	0.0181 (10)	0.0222 (11)	0.0208 (11)	-0.0010 (9)	0.0019 (8)	-0.0024 (9)
C11	0.0217 (11)	0.0272 (12)	0.0252 (12)	-0.0006 (10)	0.0062 (9)	-0.0054 (10)
Geometric parameters (Å, °)

Bond	Length	Angle	
Br1—C2	1.900 (2)	Br28—C29	1.901 (2)
C2—C3	1.385 (3)	C29—C30	1.386 (4)
C2—C7	1.392 (4)	C29—C34	1.381 (4)
C3—C4	1.389 (3)	C30—C31	1.387 (4)

- S- 99 - -
| Bond | Distance (Å) | Bond | Distance (Å) |
|-----------------------|--------------|-----------------------|--------------|
| C3—H31 | 0.933 | C30—H301 | 0.940 |
| C4—C5 | 1.393 (3) | C31—C32 | 1.392 (4) |
| C4—C8 | 1.521 (3) | C31—H311 | 0.936 |
| C5—C6 | 1.390 (4) | C32—C33 | 1.388 (3) |
| C5—H51 | 0.938 | C32—H321 | 0.934 |
| C6—C7 | 1.383 (4) | C33—C34 | 1.401 (3) |
| C6—H61 | 0.936 | C33—C35 | 1.514 (3) |
| C7—H71 | 0.931 | C34—H341 | 0.935 |
| C8—N9 | 1.449 (3) | C35—N36 | 1.460 (3) |
| C8—H81 | 0.967 | C35—H351 | 0.963 |
| C8—H82 | 0.969 | C35—H352 | 0.968 |
| N9—C10 | 1.384 (3) | N36—C37 | 1.384 (3) |
| N9—C17 | 1.397 (3) | N36—C40 | 1.395 (3) |
| C10—C11 | 1.394 (3) | C37—C38 | 1.406 (3) |
| C10—C15 | 1.416 (3) | C37—C54 | 1.404 (3) |
| C11—C12 | 1.384 (4) | C38—C39 | 1.432 (3) |
| C11—H111 | 0.934 | C38—C51 | 1.410 (3) |
| C12—C13 | 1.401 (4) | C39—C40 | 1.368 (3) |
| C12—H121 | 0.935 | C39—C49 | 1.500 (3) |
| C13—C14 | 1.382 (4) | C40—C41 | 1.519 (3) |
| C13—H131 | 0.941 | C41—N42 | 1.497 (3) |
| C14—C15 | 1.396 (3) | C41—C47 | 1.554 (3) |
| C14—H141 | 0.934 | C41—C50 | 1.529 (3) |
| C15—C16 | 1.437 (3) | N42—S43 | 1.642 (2) |
| C16—C17 | 1.367 (3) | N42—C48 | 1.475 (3) |
| C16—C26 | 1.495 (3) | S43—O44 | 1.442 (2) |
| C17—C18 | 1.515 (3) | S43—O45 | 1.436 (2) |
| C18—N19 | 1.493 (3) | S43—C46 | 1.765 (3) |
| C18—C24 | 1.557 (3) | C46—C47 | 1.517 (4) |
| C18—C27 | 1.526 (3) | C46—H462 | 0.972 |
| N19—S20 | 1.637 (2) | C46—H461 | 0.971 |
| N19—C25 | 1.475 (3) | C47—H472 | 0.963 |
| S20—O21 | 1.432 (2) | C47—H471 | 0.971 |
| S20—O22 | 1.4389 (19) | C48—C49 | 1.528 (4) |
| S20—C23 | 1.768 (3) | C48—H481 | 0.977 |
| C23—C24 | 1.525 (4) | C48—H482 | 0.975 |
| C23—H231 | 0.980 | C49—H491 | 0.976 |
| C23—H232 | 0.976 | C49—H492 | 0.965 |
| C24—H241 | 0.971 | C50—H501 | 0.964 |
| C24—H242 | 0.966 | C50—H502 | 0.962 |
| C25—C26 | 1.522 (3) | C50—H503 | 0.960 |
| C25—H251 | 0.978 | C51—C52 | 1.372 (4) |
| C25—H252 | 0.969 | C51—H511 | 0.938 |
| C26—H262 | 0.966 | C52—C53 | 1.409 (4) |
| C26—H261 | 0.964 | C52—H521 | 0.938 |
| C27—H272 | 0.964 | C53—C54 | 1.384 (4) |
| C27—H271 | 0.960 | C53—H531 | 0.940 |
| C27—H273 | 0.970 | C54—H541 | 0.933 |
| Br1—C2—C3 | 118.66 (18) | Br28—C29—C30 | 119.17 (19) |
| Bond | Distance (Å) | Bond | Distance (Å) |
|---------------|---------------|---------------|---------------|
| Br1—C2—C7 | 119.59 (18) | Br28—C29—C34 | 118.45 (19) |
| C3—C2—C7 | 121.7 (2) | C30—C29—C34 | 122.4 (19) |
| C2—C3—C4 | 119.4 (2) | C29—C30—C31 | 118.1 (2) |
| C3—C2—H31 | 120.6 | C29—C30—H301 | 120.3 |
| C4—C3—H31 | 120.0 | C31—C30—H301 | 121.6 |
| C3—C4—C5 | 119.7 (2) | C30—C31—C32 | 120.5 (2) |
| C3—C4—C8 | 117.6 (2) | C30—C31—H311 | 119.7 |
| C5—C4—C8 | 122.8 (2) | C32—C31—H311 | 119.8 |
| C4—C5—C6 | 119.9 (2) | C31—C32—C33 | 120.8 (2) |
| C4—C5—H51 | 119.5 | C31—C32—H321 | 119.4 |
| C6—C5—H51 | 120.6 | C33—C32—H321 | 119.8 |
| C5—C6—C7 | 121.1 (2) | C32—C33—C34 | 119.0 (2) |
| C5—C6—H61 | 119.1 | C32—C33—C35 | 123.6 (2) |
| C7—C6—H61 | 119.8 | C34—C33—C35 | 117.4 (2) |
| C2—C7—C6 | 118.2 (2) | C33—C34—C29 | 119.2 (2) |
| C2—C7—H71 | 121.0 | C33—C34—H341 | 120.5 |
| C6—C7—H71 | 120.8 | C29—C34—H341 | 120.3 |
| C4—C8—N9 | 113.68 (19) | C33—C35—N36 | 113.44 (19) |
| C4—C8—H81 | 107.5 | C33—C35—H351 | 108.4 |
| N9—C8—H81 | 108.3 | N36—C35—H351 | 108.2 |
| C4—C8—H82 | 108.7 | C33—C35—H352 | 108.1 |
| N9—C8—H82 | 108.4 | N36—C35—H352 | 109.2 |
| H81—C8—H82 | 110.3 | H351—C35—H352 | 109.5 |
| C8—N9—C10 | 121.95 (19) | C35—N36—C37 | 121.92 (19) |
| C8—N9—C17 | 128.4 (2) | C35—N36—C40 | 130.2 (2) |
| C10—N9—C17 | 108.04 (18) | C37—N36—C40 | 107.90 (19) |
| N9—C10—C11 | 129.7 (2) | N36—C37—C38 | 108.5 (2) |
| N9—C10—C15 | 108.5 (2) | N36—C37—C54 | 129.4 (2) |
| C11—C10—C15 | 121.9 (2) | C38—C37—C54 | 122.1 (2) |
| C10—C11—C12 | 117.1 (2) | C37—C38—C39 | 106.6 (2) |
| C10—C11—H111| 121.1 | C37—C38—C51 | 118.8 (2) |
| C12—C11—H111| 121.8 | C39—C38—C51 | 134.6 (2) |
| C11—C12—C13 | 121.7 (2) | C38—C39—C40 | 107.6 (2) |
| C11—C12—H121| 118.5 | C38—C39—C49 | 129.2 (2) |
| C13—C12—H121| 119.8 | C40—C39—C49 | 123.2 (2) |
| C12—C13—C14 | 121.0 (2) | N36—C40—C39 | 109.4 (2) |
| C12—C13—H131| 119.8 | N36—C40—C41 | 124.8 (2) |
| C14—C13—H131| 119.2 | C39—C40—C41 | 125.7 (2) |
| C13—C14—C15 | 118.7 (2) | C40—C41—N42 | 107.20 (18) |
| C13—C14—H141| 121.0 | C40—C41—C47 | 113.02 (19) |
| C15—C14—H141| 120.4 | N42—C41—C47 | 103.86 (18) |
| C10—C15—C14 | 119.5 (2) | C40—C41—C50 | 111.70 (19) |
| C10—C15—C16 | 106.2 (2) | N42—C41—C50 | 108.67 (19) |
| C14—C15—C16 | 134.1 (2) | C47—C41—C50 | 111.9 (2) |
| C15—C16—C17 | 107.8 (2) | C41—N42—S43 | 113.44 (15) |
| C15—C16—C26 | 128.5 (2) | C41—N42—C48 | 117.98 (19) |
| C17—C16—C26 | 123.4 (2) | S43—N42—C48 | 119.11 (17) |
| N9—C17—C16 | 109.5 (2) | N42—S43—O44 | 110.06 (13) |
| N9—C17—C18 | 124.5 (2) | N42—S43—O45 | 110.16 (12) |
| C16—C17—C18 | 125.7 (2) | O44—S43—O45 | 116.07 (14) |
| Bond | Distance (Å) | Angle (°) |
|------|-------------|-----------|
| C17—C18—N19 | 107.40 (18) | N42—S43—C46 | 95.66 (11) |
| C17—C18—C24 | 112.60 (19) | O44—S43—C46 | 107.95 (13) |
| N19—C18—C24 | 104.89 (19) | O45—S43—C46 | 115.04 (14) |
| C17—C18—C27 | 112.3 (2) | S43—C46—C47 | 101.51 (17) |
| N19—C18—C27 | 108.10 (19) | S43—C46—H462 | 112.0 |
| C24—C18—C27 | 111.1 (2) | C47—C46—H462 | 111.6 |
| C18—N19—S20 | 113.29 (15) | S43—C46—H461 | 110.9 |
| C18—N19—C25 | 120.05 (18) | C47—C46—H461 | 110.7 |
| S20—N19—C25 | 119.29 (16) | H462—C46—H461 | 109.9 |
| N19—S20—O21 | 109.75 (12) | C41—C47—C46 | 106.6 (2) |
| N19—S20—O22 | 109.60 (11) | C41—C47—H472 | 111.4 |
| O21—S20—O22 | 116.58 (13) | C46—C47—H472 | 110.1 |
| N19—S20—C23 | 95.05 (11) | C41—C47—H471 | 109.3 |
| O21—S20—C23 | 108.72 (13) | C46—C47—H471 | 109.9 |
| O22—S20—C23 | 115.00 (13) | H472—C47—H471 | 109.4 |
| S20—C23—C24 | 100.68 (17) | N42—C48—C49 | 111.8 (2) |
| S20—C23—H231 | 110.1 | N42—C48—H481 | 108.2 |
| C24—C23—H231 | 110.0 | C49—C48—H481 | 109.4 |
| S20—C23—H232 | 112.2 | N42—C48—H482 | 108.9 |
| C24—C23—H232 | 113.0 | C49—C48—H482 | 108.2 |
| H231—C23—H232 | 110.5 | H481—C48—H482 | 110.3 |
| C23—C24—C18 | 107.68 (19) | C48—C49—C39 | 109.4 (2) |
| C23—C24—H241 | 109.5 | C48—C49—H491 | 110.1 |
| C18—C24—H241 | 108.6 | C39—C49—H491 | 109.5 |
| C23—C24—H242 | 113.0 | C48—C49—H492 | 109.6 |
| C18—C24—H242 | 113.0 | C39—C49—H492 | 109.2 |
| H241—C24—H242 | 110.3 | | |
| N19—C25—C26 | 114.43 (19) | C41—C50—H501 | 110.0 |
| N19—C25—H251 | 109.4 | C41—C50—H502 | 110.1 |
| C26—C25—H251 | 109.1 | H501—C50—H502 | 109.5 |
| N19—C25—H252 | 108.4 | C41—C50—H503 | 109.2 |
| C26—C25—H252 | 108.3 | H501—C50—H503 | 109.2 |
| H251—C25—H252 | 110.2 | H502—C50—H503 | 108.8 |
| C25—C26—C16 | 107.9 (2) | C38—C51—C52 | 119.1 (2) |
| C25—C26—H262 | 110.1 | C38—C51—H511 | 119.2 |
| C16—C26—H262 | 109.7 | C52—C51—H511 | 121.7 |
| C25—C26—H261 | 110.0 | C51—C52—C53 | 121.5 (2) |
| C16—C26—H261 | 109.6 | C51—C52—H521 | 119.4 |
| H262—C26—H261 | 109.6 | C53—C52—H521 | 119.1 |
| C18—C27—H272 | 109.2 | C52—C53—C54 | 120.8 (2) |
| C18—C27—H271 | 109.4 | C52—C53—H531 | 119.5 |
| H272—C27—H271 | 109.7 | C54—C53—H531 | 119.7 |
| C18—C27—H273 | 109.3 | C37—C54—C53 | 117.6 (2) |
| H272—C27—H273 | 109.5 | C37—C54—H541 | 121.1 |
| H271—C27—H273 | 109.8 | C53—C54—H541 | 121.2 |

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
C12—H121···O44\(i\)	0.94	2.54	3.390 (4)	152
Symmetry codes: (i) x+1, y, z−1; (ii) x+1, y, z; (iii) −x+1, y−1/2, −z+1.

For both compounds, data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997). Program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007) for (10b); SIR92 (Altomare et al., 1994) for (15a). For both compounds, program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

5.3. X-ray references

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.

6. References

1 P. Wipf, J. K. Jung. J. Org. Chem. 2000, 65, 6319-6337
2 R. I. Storer, D. E. Carrera, Y. Ni, D. W. C. MacMillan. J. Am. Chem. Soc. 2006, 128, 84-86
3 K. Maruoka, T. Itoh, Y. Araki, T. Shirasaka, H. Yamamoto. Bull. Chem. Soc. Jpn. 1988, 61, 2975-2976
4 M. E. Muratore, C. A. Holloway, A. W. Pilling, R. I. Storer, G. Trevitt, D. J. Dixon. J. Am. Chem. Soc. 2009, 131, 31, 10796–10797
5 M. E. Muratore, L. Shi, A. W. Pilling, R. I. Storer. D. J. Dixon. Chem. Commun. 2012, Advance Article
6 F. Hadjaz, S. Besret, S. Yous, S. Dilly, N. Lebegue, P. Chavatte, P. Berthelot, P. Carato, F. Martin-Nizard, P. Duriez. European Journal of Medicinal Chemistry, 2011, 46, 6, 2575-2585
7 T. Newhouse, C. A. Lewis, K. J. Eastman, P. S. Baran. J. Am. Chem. Soc. 2010, 132, 20, 7119-7137
8 Two step reduction for the preparation of 5-cyano-tryptamine: M. Somel, M. Wakida, T. Ohta. Chem. Pharm. Bull. 1988, 34, 3, 1162-1168.
9 Sulfonyl chloride formed following literature procedure: F. K. Cheung, A. M. Hayes, D. J. Morris, M. Wills. Org. Biomol. Chem, 2007, 5, 1093–1103
Single crystal X-ray diffraction data were collected using a Nonius Kappa CCD diffractometer and data were reduced using Denzo-SMN. The structures were solved with SIR92/SuperFlip and refined with CRYSTALS. The Flack x parameter refined to -0.007(8) and 0.010(4) for 10b and 15a respectively. For further information, see ESI (CIF); full crystallographic data have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication numbers CCDC XXXXX-X, respectively. Copies of these data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Otwinowski, Z.; Minor, W. Processing of X-ray Diffraction Data Collected in Oscillation Mode, Methods Enzymol. Carter, C. W, Sweet, R. M, Eds.; Academic Press. 1997, 276,

13 a) Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M.; J. Appl. Cryst. 1994, 27, 435; b) Palatinus, L.; Chapuis, G. J. Appl. Cryst. 2007, 40, 786.

14 a) Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, K.; Watkin, D. J. J. Appl. Cryst. 2003, 36, 1487; b) Cooper, R. I.; Thompson, A. L.; Watkin, D. J. J. Appl. Cryst. 2010, 43, 1100.

15 a) Flack, H. D. Acta Cryst. 1983, A39, 876; b) Thompson, A. L.; Watkin, D. J. J. Appl. Cryst. 2011, 44, 1017.