The formation of sigma phase in the CoCrFeNi high-entropy alloys

X J Wang, M Xu, N Liu* and I X Liu

School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, People’s Republic of China

* Author to whom any correspondence should be addressed.

E-mail: xjwang0@163.com (Xiaojing Wang) and lnynn@126.com (Ning Liu)

Keywords: multi-principal-component alloy, phase stability, cold deformation, heat treatment, phase selection

Abstract

The as-cast CoCrFeNi high-entropy alloys show simple FCC structure and outstanding deformation ability at room temperature. Respectively, after 50% of deforming at room temperature and annealing at intermediate temperature range of 600 °C–800 °C for 2 h, CoCrFeNi alloys still show simple-phase FCC structure. It is noteworthy that CoCrFeNi high-entropy alloys can’t be strengthened by means of annealing, while deformation is an effective way to strengthen the alloys. It is investigated that the formation of sigma (σ) phase in high-entropy alloys is closely related to the difference of atomic radius (δ), the concentration of valence electron (VEC) and paired sigma-forming element (PSFE) content, and PSFE plays an crucial role. When PSFE > 40 at.%, 6.75 ≤ VEC ≤ 7.86, 4.0 ≤ δ ≤ 7.2, σ phase is prone to form in high-entropy alloys. In addition, alloying and processing route are two important factors that affect the sigma-formation in CoCrFeNi high-entropy alloys.

Known as a new branch of metal materials, high entropy alloys (HEAs) have attracted extended attention because of their excellent performances [1, 2]. Originally, HEAs are defined as equiatomic or near-equatomic alloys containing five or more elements, each multi-principal components has a content of 5%–35%, and simple solid-solution structures are preferred to form. During the past ten years, HEAs have been greatly developed and the definition of HEAs have been improved. Currently, the quantity of component elements in HEAs is not limited to five any more, the ternary or quaternary HEAs have been derived; moreover, the restriction on the content of each elements (in the range of 5%–35%) has been broken. Meanwhile, single-phase solid-solution structures, two-phase eutectic and even multi-phase structures including intermetallic compounds or amorphous have been obtained in HEAs [3–8].

It is investigated that the phase selection of HEAs is determined by the following thermodynamics parameters, such as mixing entropy (ΔSmix), mixing enthalpy (ΔHmix), atomic radius difference (δ), and valence electron concentration (VEC) [9–13]. When −19 ≤ ΔHmix ≤ 5 kJ·mol⁻¹, δ ≤ 6.5, 12 ≤ ΔSmix ≤ 17.5 JK⁻¹·mol⁻¹, simple solid solution phases, i.e., FCC, BCC, and mixtures thereof-including both ordered and disordered solid solution phases will form in MPCAs [12, 13]. Later, Guo et al [10] proposed VEC value to predict the types of simple solid solution phases, the formation of FCC is favorable when VEC > 8, the BCC phase is stable when VEC < 6.87.

Sigma phase is an intermetallic compound, and is frequently observed in aged HEAs with VEC values ranging from 6.88 to 7.84. Later, Tsai et al [21] put forward a new parameter called the paired sigma-phase forming elements (PSFE) as the second criterion to predict the formation of σ-phase, if two composing elements in a multi-component alloy are known to form binary σ phase, they are called the sigma-forming elements (SFEs) in that alloy. For example, binary σ phases are formed between so-called A and B elements, in the CoCrFeNi alloys, Cr is the only A element, and the corresponding B elements available in the alloy are Co and Fe. Therefore, Cr, Co, and Fe are the SFEs in CoCrFeNi alloys. As is known, the structure prototype of the σ phase is Cr₅₀Fe₅₀, therefore, A₅₀B₅₀ is considered as the representative formula of the σ phase. If an alloy contains 30 at% of A element, 50 at% of B element, and 20 at% of other elements that do not form the σ phase with any other components, then the content of PSFE is 60 at%, i.e. 30 at% A and 30 at% of B [15]. When PSFE ≤ 20 at %,
σ phase will not form even if the VEC value of the alloy is between 6.88 and 7.84; when PSFE ≥ 40 at.%, σ phase will appear in some of the HEAs after heat treatment, even they are σ-free in as-cast state, however, it is still not clear what is the main factors that affect the formation of σ phase when the PSFE value is in the range of 20 at.% − 40 at.% [21].

Phase evolution and thermal stability of HEAs were studied based on equilibrium and non-equilibrium routes [22–32]. The CoCrFeNi HEA was founded as a thermally stable solid-solution HEA with FCC structure [25–32]. However, according to a recent research by He et al [33] composition decomposition occurred in the CoCrFeNi HEAs and two FCC structural phases with different lattice constants were found, and Cr-rich σ phase was not observed in the pure CoCrFeNi HEA, but only appeared in the CoCrFeNiAl0.1 alloy after long-term (800 h) annealing at 750 °C. Also, Dahlborg et al [34] reported that the structure of the CoCrFeNi(y = 0.8 and 1.2) alloys is not affected by 3 h heat treatment up to 1100°C, and changing the amount of Fe has no drastic effect on alloy structure.

Accordingly, in the current work, the contents of σ-PSFE (Co, Cr, and Fe) elements were changed to research the formation of σ phase in Co0.5CrFeNi, CoCr0.5FeNi, CoCrFe0.5Ni, and CoCrFeNi (The subscript is the molar ratio of the element, where 1 is omitted.) HEAs. In addition, the structural stability and mechanical properties of the alloys were studied after heat treatment and deformation, in order to explore the feasible strengthening method of CoCrFeNi HEAs, and provide a theoretical basis for the phase selection of HEAs.

1. Experimental procedure and phase selection

Alloy ingots with nominal compositions of Co0.5CrFeNi, CoCrFeNi, CoCr0.5FeNi, CoCrFe0.5Ni were synthesized by melting appropriate mixtures of high-purity (>99.95%) constituent elements at least 4 times in Ar at high temperature in an electric arc furnace to ensure chemical homogeneity. To study the effects of heat treatment, annealing temperature was varied from 600 °C to 800 °C, 2 h annealing duration was chosen, followed by water quenching. HF + HNO3 was used to etch CoCrFeNi, while other CoCrFeNi series HEAs etched with HCl + HNO3 (3:1) or FeCl3 + HCl + H2O (5 g + 50 ml + 100 ml). The as-cast and heat-treated microstructures are characterized by using XRD-6000 x-ray diffractometer (XRD, Rigaku ME510-FM2, Cu Kα radiation) and scanning electron microscope (SEM, JEM-2100F). For the deformation CoCrFeNi sample, the microstructure is also characterized by using transmission electron microscopy (TEM, JEM-2100F). Micro-hardness was measured using a Vickers hardness tester with loads of 200 g, with a duration of 15 s. Room-temperature compressive properties were tested on samples of Φ5 mm × 10 mm by an UTM5205X testing machine with a loading speed of 0.02 mm s⁻¹. To study the stability of phase structures and properties of the deformed alloys, when the deformation rate reached 50%, compression was stopped.

The calculated parameters of the CoCrFeNi HEAs are listed in table 1, and the small atomic radius difference δ(0.76 1.31) and suitable mixing enthalpy ΔHmix (−4.25 ~ −2.94 kJ·mol⁻¹) indicate the formation a simple solid solution structure. According to Guo’s criterion of VEC, the CoCrFeNi series HEAs are FCC structure. Based on the criterion proposed by Tsai et al [21], after heat treatment σ phase may form in Co0.5CrFeNi, CoCrFeNi and CoCrFe0.5Ni, however, it is still uncertain whether σ phase will form in CoCr0.5FeNi alloy.

2. Result and discussion

2.1. Experimental results

As presented in figure 1, the as-solidified structures of CoCrFeNi HEAs are typical dendrites. The XRD patterns of the as-cast Co0.5CrFeNi, CoCrFeNi, CoCr0.5FeNi, and CoCrFe0.5Ni (figure 1(f)) HEAs only show a set of peaks attributable to the FCC solid solution phase, and no σ phase was formed. The stress-strain curves of CoCrFeNi HEAs (figure 1(e)) exhibit that the alloys do not break even when the compression deformation reaches 50%, but the compressive yield strength is only 180 MPa. Moreover, the alloys show obvious work hardening.
After 50% of deformation, the CoCrFeNi HEAs are strengthened significantly, and XRD patterns show that no new phase is formed after deformation (figure 2). Clearly, the intensity of the first reflection is decreased prominently after 50% of deformation. As shown in figure 3a, where CoCr0.5FeNi alloy was taken as an example to study the influence of compression deformation on the microstructure of the alloy, the directional microstructures can be obtained after deformation, which results in the weakness of the (111) peak. After 50% of deformation, deformation bands, fibrous and feathery structures can be seen in the CoCr0.5FeNi alloy. According to TEM analysis, after 50% of deformation a large number of dislocation tangles appear, which hinder the further slip of the dislocations, so the alloys are greatly strengthened. In addition, selected area electron diffraction (SAED) conforms that the CoCr0.5FeNi alloy is single-phase FCC solid solution structure after deformation.

After heat treatment at 600 °C, 700 °C, and 800 °C for 2 h, the CoCrFeNi HEAs maintain typical dendrites and FCC structure (figure 4), indicating that CoCrFeNi HEAs are stable after a short-term annealing at 600–800 °C. Figure 5 shows that little variety of hardness can be found after heat treatment at different temperatures. It means that CoCrFeNi HEAs can’t be strengthened by the way of heat treatment.

2.2. Phase selection analysis

Based on [12, 13, 20], the δ, VEC and PSFE values of nearly 100 HEAs were calculated and presented in appendix table to explore the relationship between the formation of σ phase and the above parameter values. As shown in figure 6, the capability of forming σ phase is plotted as functions of PSFE, VEC, and δ values. Although the statistical data is limited, it does support the existence of σ–prone zone boundary conditions. It is found that σ phase forms when PSFE values exceed 40 at.%, δ and VEC in the range of 6.75 ≤ VEC ≤ 7.86, 4.0 ≤ δ ≤ 7.2.
According to the δ-VEC-PSFE criterion, σ phase would not form in the CoCrFeNi HEAs designed in this paper, it is consistent with the experimental results in this work. However, a few σ-free HEAs are found in the σ-prone area in figure 6. For L1 and L6 alloys, although all the δ, VEC and PSFE values fit well with the criterion for forming σ phase, but no σ phase is found in Al0.3CrFe1.5MnNi0.5 alloy prepared by surfacing welding (L1) and AlCoCrFeNi alloy prepared by arc furnace melting (L6). According to the references [19, 35], σ phase precipitates after heat treatment, which means that L1 and L6 alloys are σ-prone alloys, but the formation of σ phase are affected not only by the component element and composition of the alloys but also by the processing method. In addition, the σ phase will not form when the PSFE, VEC, and δ values fail to simultaneously reach the criterion for forming σ phase, such as the L2, L52, L60, L65, L70, and L95-98 HEAs. The parameter calculation results show that σ phase might form in L3-L5 (AlTiCr$_2$FeNiCu) alloys, but actually they are σ-free. Careful inspection of microstructures demonstrates that with the change of Cr content, the Cu content of the Cu-rich phase between dendrites varies from 76.6 to 77.9 at% in L3-L5 [36]. Taking the AlTiCr$_2$FeNiCu HEAs (L5) as an example, the theoretical copper content of the
alloy is 14.3at%, for the positive \(\Delta H \) values between Cu and other elements, a small amount of Cu exists in primary dendrites with solid solution structure, and substantial Cu elements segregate in the interdendritic region. This fact of serious segregation is not taken into account during the calculation of the VEC value, because of the higher VEC value of copper element (\(\text{VEC}_{\text{Cu}} = 11 \)), the theoretically calculated VEC values are higher than the actual values, it affects the judgment of the phase structure as a result.

Moreover, it is noteworthy that most of the CoCrFeNi based HEAs containing Al and Mo are prone to form \(\sigma \) phase, it indicates that the alloying of Al and Mo elements can improve the formation of \(\sigma \) phase.

Figure 5. Micro-hardness of CoCrFeNi HEAs after heat treatment.

Figure 6. Relationship between \(\sigma \) phase and \(\delta \), VEC, PSFE values in multi-component alloys. (a) \(\delta - \text{VEC} - \text{PSFE} \), (b) VEC - PSFE, (c) \(\delta - \text{PSFE} \), (d) \(\delta - \text{VEC} \).
Therefore, when the PSFE-VEC-δ criterion is used, the following factors should be comprehensively considered: (1) the synergy of the three parameters; (2) the serious segregation and phase separation occurred during the solidification process, which will cause the difference between the actually VEC and PSFE values and the theoretically calculated values, and result in the invalid of the σ-forming criterion; (3) Some alloys are σ-free in the as-cast state, but σ-prone after heat treatment, so the preparation processing method and state of the alloy should be considered. (4) Alloying is another noticeable factor that affects the formation of σ phase.

3. Conclusions

(1) Changing the amount of Co, Cr, and Fe has no obvious effect on the FCC solid solution structure of the as-cast CoCrFeNi HEAs and no σ phase was formed. Moreover, CoCrFeNi HEAs show excellent structure stability after short-term annealing at intermediate temperatures of 600 °C—800 °C or 50% of compression deformation at room temperature.

(2) The as-cast CoCrFeNi HEAs can’t be strengthened by the way of heat-treatment, while the as-deformed CoCrFeNi HEAs were strengthened dramatically. It shows that deformation is an effective way to strengthen the CoCrFeNi HEAs.

(3) The formation of σ phase in HEAs can be predicted by using the parameters of δ, VEC and PSFE, among which the PSFE plays a crucial role. When the PSFE value is higher than 40 at.%, 6.75 ≤ VEC ≤ 7.86, and 4.0 ≤ δ ≤ 7.2, σ phase is favored in HEAs.

(4) It is noteworthy that alloying and processing route are noticeable factors that affects the formation of σ phase in the CoCrFeNi based HEAs.

Appendix table: the calculated parameters of high-entropy alloys

NO.	High entropy alloys	PSFE (at.%%)	VEC	δ	Phase structure	Preparation
L1	Al0.5CrFe1.5MnNi1.5	47	7.19	6.18	BCC + B2	TIG overlay
L2	Al0.4CoCrFeNi	50	6.75	6.63	BCC + FCC	Arc melting
L3	AlCrFeNiCuTi	54	6.92	6.97	BCC + FCC	Arc melting
L4	AlCrFeNiCuTi	57	6.86	6.86	BCC + FCC	Arc melting
L5	AlCrFeNiCuTi	57	7.25	6.69	BCC + FCC	Arc melting
L6	AlCoCrFeNi	33	7.3	3.82	BCC + FCC	Arc melting
L7	AlCoCrFeMoNi	46	6.46	6.39	BCC+1+BCC+2+σ	Arc melting
L8	AlCoCrFeMoNi	75	7.53	3.35	FCC+σ+BCC	Arc melting+700 °C 20 h ageing
L9	AlCoCrFeMoNi	63	7.2	5.9	BCC+1+BCC+2+σ	Arc melting+700 °C 20 h ageing
L10	AlCoCrFeMoNi	62	7.77	4.02	BCC+1+BCC+2+σ	Arc melting
L11	AlCoCrFeMoNi	53	7.95	4.06	BCC+1+BCC+2+σ	Arc melting
L12	AlCoCrFeMoNi	57	8.76	4.03	BCC+1+BCC+2+σ	Arc melting
L13	AlCoCrFeMoNi	60	7.5	4.79	FCC+σ	Arc melting
L14	AlCoCrFeMoNi	40	7.13	6.71	BCC+1+BCC+2+σ	Arc melting
L15	AlCoCrFeMoNi	44	7.7	6.87	BCC+σ	Arc melting+700 °C 12 h ageing
L16	AlCoCrFeMoNi	60	6.9	5.82	BCC+σ	Arc melting
L17	AlCoCrFeMoNi	60	6.95	6.76	σ	Arc melting+700 °C 20 h ageing
L18	AlCoCrFeMoNi	50	7.25	5.5	BCC+1+BCC+2+σ	Arc melting
L19	AlCoCrFeMoNi	46	7.38	5.35	BCC+1+BCC+2+σ	Arc melting
L20	AlCoCrFeMoNi	62	6.92	5.35	BCC+1+BCC+2+σ	Arc melting
L21	AlCoCrFeMoNi	59	7.02	5.74	BCC+1+BCC+2+σ	Arc melting
L22	AlCoCrFeMoNi	46	7.23	5.43	BCC+1+BCC+2+σ	Arc melting
L23	AlCoCrFeMoNi	54	7.09	5.66	BCC+1+BCC+2+σ	Arc melting
L24	AlCoCrFeMoNi	60	6.8	5.82	BCC+1+BCC+2+σ	Arc melting
L25	AlCoCrFeMoNi	64	7.02	5.61	BCC+1+BCC+2+σ	Arc melting
L26	AlCoCrFeMoNi	67	7.59	5.59	BCC+1+BCC+2+σ	Arc melting
L27	AlCoCrFeMoNi	62	7.23	5.47	BCC+1+BCC+2+σ	Arc melting
L28	AlCoCrFeMoNi	57	7.43	5.35	BCC+1+BCC+2+σ	Arc melting
L29	AlCoCrFeMoNi	40	7.16	7.2	BCC+1+BCC+2+σ	Arc melting+1400K500 h ageing
L30	AlCoCrFeMoNi	42	6.63	5.89	B2+1+FCC+σ	Arc melting
L31	AlCoCrFeMoNi	40	6.6	5.82	B2+1+FCC+σ	Arc melting
L32	AlCoCrFeMoNi	50	6.75	6.13	BCC+1+FCC+σ	Arc melting
L33	AlCoCrFeMoNi	40	7.8	4.83	FCC+σ	Arc melting+700 °C 20 h ageing
NO.	High entropy alloys	PSFE (at.%.)	VEC	δ	Phase structure	Preparation
-----	---------------------	--------------	-----	---	----------------	-------------
35	Co,AlCrFeNi3,5	50	7.92	5.19	FCC + σ	Induction melting
36	Co,CoCrFeNi	80	7.8	0.32	FCC + σ	Arc melting +700 ℃ 20 h ageing
37	CoCrCuFeMn	40	8.2	4.53	FCC1 + FCC2 + σ	Injection melting
38	CoCrCuFeMNiTiV	50	7.5	7.2	BCC + FCC + σ	Arc melting
39	CoCrFeNiMnMo0.5	67	8	2.82	FCC + σ	Arc melting
40	CoCrFeNiMo0.5	76	7.86	3.39	FCC + σ	Arc melting
41	CoFeMnNiTi	44	7.78	5.51	FCC + Laves + σ	Induction melting
42	CoFeMnNiV	40	7.8	5.23	FCC + σ	Injection melting
43	CrFe3.5MnNi0.5	50	7.5	4.47	FCC + σ	Arc melting
44	CrFeMnNiTi	40	7	8.94	FCC + σ + laves	Injection melting
45	CrFeMnTiW	40	6	6.36	BCC + σ	Laser cladding
46	Co3CrFeNi3,5Mo0.5	50	7.92	5.19	FCC + σ	Arc melting
47	Co3CrFeNi3,5Mo0.5	57	7.82	5.24	FCC + σ	Arc melting
48	Al0.5CoCrCuFeNiTi	33	7.92	5.79	BCC + B2 + FCC	Arc melting
49	Al0.5CoCrFeNiTi	36	7	7.19	BCC + B2 + FCC + Laves	Arc melting
50	Al0.5CoCrFeNiTi	39	7.22	6.44	BCC + FCC + Laves	Arc melting
51	Al0.5CoCrFeNiTi	38	7.06	6.62	BCC + FCC + Laves	Arc melting
52	Al0.5CoCrFeNi	42	6.76	7.57	BCC	Arc melting
53	Al0.5CoCrFeNi	38	6.46	8.13	BCC	Arc melting
54	Al0.5CoCrCuFeNi	27	6.87	6.37	BCC + B2 + FCC	Sputtering
55	Al0.5CoCrCuFeNi	29	7.14	6.16	B2	Arc melting
56	Al0.5CoCrFeNi	33	6.5	6.58	B2	Arc melting
57	Al0.5CoCrFeNi	29	6.14	7.23	B2 + BCC	Laser RSP
58	Al0.5CoCrFeNi	29	7.29	6.16	BCC + B2	Arc melting
59	Al0.5CoCrFeNi	29	6	6.81	B2 + FCC	Laser cladding
60	AlCr0.5CoFeNi0.5V	36	6.64	7.64	BCC	Arc melting +700 ℃ 20 h ageing
61	AlCr0.5CoFeNi0.5V	40	6.8	7.94	BCC	Arc melting +700 ℃ 20 h ageing
62	AlCoCrCuFeNi	33	7.83	5.2	B2 + FCC	Arc melting
63	AlCoCrCuFeNiTi	29	7.29	6.86	BCC1 + BCC2 + FCC	Arc melting
64	AlCoCrCuFeNiTi	31	7.54	6.25	BCC1 + BCC2 + FCC	Arc melting
65	AlCoCrFeMnNi0.5Ti	40	6.27	7.73	B2 + FCC1 + FCC2	Arc melting
66	AlCoCrFeTi	33	6.67	7.32	BCC1 + BCC2	Arc melting
67	AlCoCrFeTi	36	6.91	6.75	FCC + BCC + Laves	Laser cladding
68	AlCoCrFeTi	25	6	7.9	BCC1 + FCC2 + BCC2	Arc melting
69	AlCuFeNiTi	33	7	7.08	BCC1 + FCC2 + BCC2	Arc melting
70	AlCuFeNiTi	46	5.85	8.11	B2 + FCC1 + FCC2	Arc melting
71	AlCuFeNiTi	33	7	7.08	BCC1 + BCC2 + FCC	Arc melting
72	AlFeNiCuTi0.5	36	7.27	6.54	BCC1 + BCC2 + FCC	Arc melting
73	AlCoCrFeNiCu	36	7.73	5.36	BCC + FCC	Arc melting
74	AlCoCrFeNiCu	18	8	5.36	BCC + FCC	Arc melting
75	AlCoCrFeNiCu	36	7.82	5.31	BCC + FCC	Arc melting
76	AlCoCrFeNiCu	36	7.64	5.36	BCC + FCC	Arc melting
77	AlCoCrFeNiCu0.5	36	7.55	5.43	BCC + FCC	Magnetron sputtering
78	AlCoCrFeNiCu	36	8.27	4.11	FCC	Arc melting
79	AlCoCrFeNiCu	34	8	4.85	BCC + FCC	Arc melting
80	AlCoCrFeNiCu	32	7.6	5.6	BCC + FCC	Arc melting
81	AlCoCrFeNiCu	31	7.46	5.8	BCC + FCC	Arc melting
82	AlCoCrFeNiCu	29	7.26	6.03	BCC + FCC	Arc melting
83	AlCoCrFeNiCu	28	7.14	6.16	BCC + FCC	Arc melting
84	AlCoCrFeNiCu	27	6.97	6.3	FCC	Arc melting
85	AlCoCrFeNiCu	27	6.87	6.37	BCC	Arc melting
86	AlCoCrFeNiCu	26	6.71	6.46	BCC	Arc melting
87	AlCoCrFeNiCu	25	6.63	6.5	BCC	Arc melting
88	AlCoCrFeNiCuSi	28	7.29	5.97	BCC + FCC	Arc melting
89	AlMnCrFeNiCu	33	7.5	7.2	FCC	Electrodeposition
90	AlCoCrFeNTi0.5	36	6.9	6.75	BCC1 + BCC2	Injection melting
91	AlCoCrFeNTi0.5	33	7.17	6.97	BCC + Cu+Cr	Arc melting
92	AlCoFeNiCuTi	18	7.09	7.17	FCC + FCC	Arc melting
93	Co1,5CrFeMn0.5Ni	22	8.44	3.26	FCC	Arc melting +700 ℃ 20 h ageing
94	CoCr4,5FeMn0.5Ni	33	8.19	3.88	FCC	Arc melting +700 ℃ 20 h ageing
95	CoCr4,5FeMn0.5Ni	55	8.06	2.38	FCC	Arc melting +700 ℃ 20 h ageing
96	CoCrFe3,5Mn0.5Ni	44	8.33	3.29	FCC	Arc melting +700 ℃ 20 h ageing
97	CoCrFeNiCu	40	8.8	1.08	FCC	Arc melting
(Continued.)

NO.	High entropy alloys	PSF (at.%)	VEC	δ	Phase structure	Preparation
98	CoCrFeNiMn	40	8	4.18	FCC	Arc melting
99	CoCrFeNiCuTi_{0.5}	36	8.36	4.98	FCC	Arc melting

ORCID iDs

N Liu https://orcid.org/0000-0003-2020-9226

References

[1] Yeh J W et al 2004 Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes Adv. Eng. Mater. 6 299–303
[2] Cantor B et al 2004 Microstructural development in equi-atomic multicomponent alloys. Mater. Sci. Eng. A 375–377 213–8
[3] Zhang Y et al 2014 Microstructure and properties of high-entropy alloys Prog. Mater. Sci. 61 1–93
[4] Lu Y et al 2014 A promising new class of high-temperature alloys: eutectic high entropy alloys Sci. Rep. 4 6200
[5] Zha M et al 2020 Microstructure evolution and mechanical properties of a novel CrNixZrAlx (0.25 ≤ x ≤ 1.25) eutectic refractory high-entropy alloy Mater. Lett. 272 127869
[6] Wu P H et al 2015 Microstructure and solidification behavior of multi-component CoCrCuFeMn high-entropy alloys Mater. Sci. Eng. A 642 142–9
[7] Liu N et al 2020 Microstructure Evolution, Phase Formation and Properties of Fe25Ni25Co5Moy Multi-Principal-Component Alloys Metall. Mater. Trans. A 51 2990–7
[8] Zhang Y et al 2008 Solid solution phase formation rules for multi-component alloys Adv. Eng. Mater. 10 534–8
[9] Guo S et al 2011 Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase Prog. Nat. Sci.: Mater. Int. 21 433–46
[10] Guo S et al 2011 Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys J. Appl. Phys. 109 103505
[11] Qiao Y X 2021 Corrosion behavior of a nickel-free high-nitrogen stainless steel with hydrogen charging JOM 73 1165–72
[12] Murty B S, Yeh J W and Ranganathan S 2014 High Entropy Alloys, 199 (UK: Butterworth-Heinemann)
[13] Zhang Y, Chen M B and Yang X 2019 Advanced Technology in High-entropy Alloys 181 1st (China: Chemical Industry Press)
[14] Chen S et al 2010 Microstructure and properties of age-hardenable AlxCrFe_{1-x_MnNi}_x alloys Mater. Sci. Eng. A 527 5818–25
[15] Ren B et al 2012 Aging behavior of a CuCr_{2-x}Fe_{x}NiMn high-entropy alloy Mater. Des. 33 121–6
[16] Ng C et al 2012 Entropy-driven phase stability and slow diffusion kinetics in an Al_{x}CoCrFeCuNi high-entropy alloy Intermetallics 31 165–72
[17] Tsai M H et al 2013 Significant hardening due to the formation of a sigma phase matrix in a high entropy alloy Intermetallics 33 81–6
[18] Li C et al 2009 Effect of alloying elements on microstructure and properties of multiprincipal elements high-entropy alloys J. Alloys Compd. 479 752–7
[19] Tsao L C, Chen C S and Chu C P 2012 Age hardening reaction of the Al_{x}Cr_{1-x}Fe_{x}MnNi_{x} high entropy alloy Mater. Des. 36 854–8
[20] Tsai M H et al 2013 Criteria for sigma phase formation in Cr- and V- containing high-entropy alloys Mater. Res. Lett. 1 207–12
[21] Tsai M H et al 2016 A second criterion for sigma phase formation in high-entropy alloys Mater. Res. Lett. 4 490–5
[22] Mukhopadhyay N K and Shrivam V 2020 Phase evolution and thermal stability of mechanically Alloyed AlCrFeCoNiZn high-entropy alloy Trans. Indian Inst. Met. 73 154826
[23] Shrivam V et al., 2020 Evolution of phases, hardness and magnetic properties of AlCoCrFeNi high-entropy alloy processed by mechanical alloying J. Alloys Compd. 832 154826
[24] Shrivam V et al. 2019 Phase evolution and thermal stability of mechanically alloyed CoCrCuFeNi high entropy alloy Mater. Res. Express 6 126539
[25] Wang J et al 2018 Microstructure and mechanical properties of non-equilibrium solidified CoCrFeNi high entropy alloy Mater. Chem. Phys. 210 192–6
[26] Wang W R et al. 2012 Effects of Al addition on the microstructure and mechanical property of AlxCoGrFeNi high-entropy alloys Intermetallics 26 44–51
[27] Guo S et al 2014 Solid dissolving in eutectic alloys: limit set by topological instability J. Alloys Compd. 583 410–3
[28] Wu Z et al 2014 Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solutions Intermetallics 46 131–40
[29] Singh A K and Subramaniam A 2014 On the formation of disordered solid solutions in multi-component alloys J. Alloys Compd. 587 113–9
[30] Wang Z, Guo S and Liu C T 2014 Phase selection in high-entropy alloys: from Nonequilibrium to equilibrium JOM 65 1–7
[31] Wu Z et al 2014 Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures Acta Mater. 81 428–41
[32] Liu N et al 2020 Phases, Microstructures and Properties of Multi-component FeCoNi-based Alloys Mater. Sci. Technol. 36 654–60
[33] He F et al 2017 Phase separation of metastable CoCrFeNi high-entropy alloy at intermediate temperatures Scr. Mater. 126 15–9
[34] Dahlborg U et al 2016 Structure of some CoCrFeNi and CoCrFeNiPd multicomponent HEA alloys by diffraction techniques J. Alloys Compd. 681 330–41
[35] Liang J T et al 2019 Effect of heat treatment on the phase evolution and mechanical properties of atomized AlCoCrFeNi high-entropy alloy powders J. Alloys Compd. 803 484–90
[36] Chen M et al 2007 Microstructure and mechanical properties of AlTiFeNiCuCr high-entropy alloy with multi-principal elements Acta Metall. Sinica 43 1020–4