RANDOM GF(q)-REPRESENTABLE MATROIDS ARE NOT (b, c)-DECOMPOSABLE

JORN VAN DER POL

Abstract. We show that a random subset of the rank-n projective geometry PG(n − 1, q) is, with high probability, not (b, c)-decomposable: if k is its colouring number, it does not admit a partition of its ground set into classes of size at most ck, every transversal of which is b-colourable. This generalises recent results by Abdolazimi, Karlin, Klein, and Oveis Gharan [AKKOG21] and by Leichter, Moseley, and Pruhs [LMP22], who showed that PG(n − 1, 2) is not (1, c)-decomposable, resp. not (b, c)-decomposable.

1. Introduction

A matroid $M = (E, I)$, with ground set E and independent sets I is k-colourable (also k-coverable) if its ground set can be partitioned into k independent sets. The smallest such k is called the colouring number of M, for which we write $\text{col}(M)$. The colouring number of a matroid was studied by Edmonds [Edm65], who provided the following characterisation.

Theorem 1 (Edmonds’ Characterisation). $\text{col}(M) = \max_{X \subseteq E, r(X) > 0} \left\lceil \frac{|X|}{r(X)} \right\rceil$.

A k-colourable matroid M is $(1, c)$-decomposable if its ground set can be partitioned into an arbitrary number of classes, each of which has cardinality at most ck, such that every transversal of the classes is independent. Equivalently, for such a matroid there exists a partition matroid N on the same ground set, all of whose capacities are 1, such that every independent set in N is independent in M (in other words, the identity function is a weak map from M to N). The notion of $(1, c)$-decomposition was introduced by Bérczi, Schwarz, and Yamaguchi [BSY21], who called it a ck-colourable partition reduction of M; the definition was subsequently extended to (b, c)-decomposability by Im, Moseley, and Pruhs [IMP21].

Definition. A k-colourable matroid is (b, c)-decomposable if there is a partition $E = E_1 \cup E_2 \cup \ldots \cup E_\ell$, called a (b, c)-decomposition, such that

(i) $|E_i| \leq ck$ for all $i \in [\ell]$, and

(ii) every transversal $Y = \{y_1, y_2, \ldots, y_\ell\}$ with $y_i \in E_i$ for all $i \in [\ell]$ is b-colourable.

Bérczi, Schwarz, and Yamaguchi [BSY21 Conjecture 1.10] conjectured that every matroid is $(1, 2)$-decomposable. This was disproved by Abdolazimi, Karlin, Klein, and Oveis Gharan [AKKOG21], who showed that, for sufficiently large n, the rank-n binary projective geometry PG(n − 1, 2) is not $(1, c)$-decomposable. Recently, Leichter, Moseley, and Pruhs [LMP22] showed that the same matroid is not even (b, c)-decomposable, again provided that n is sufficiently large.

Theorem 2 ([LMP22]). For sufficiently large n, the rank-n binary projective geometry PG(n − 1, 2) admits no (b, c)-decomposition.
With minor modifications, their proof can be generalised to projective geometries over arbitrary finite fields.

Theorem 3. Let \(q \geq 2 \) be a prime power. For sufficiently large \(n \), the rank-\(n \) \(q \)-ary projective geometry \(PG(n-1, q) \) admits no \((b, c)\)-decomposition.

The crux in the argument of [LMP22] is an analysis of flats of large (depending on \(b \)) rank in \(PG(n-1, q) \). On the one hand, the number of such flats grows rapidly as \(n \) grows. On the other hand, if \(PG(n-1, q) \) is \((b, c)\)-decomposable, such flats have large colouring number, and therefore their number can be bounded from above. For large \(n \), this leads to a contradiction.

Let \(PG_p(n-1, q) \) be the random binary matroid obtained by restricting the full projective geometry \(PG(n-1, q) \) to a random subset \(E \) whose elements are chosen independently with probability \(p \). The main contribution of the current note is that the contradiction leading to the result of [LMP22] still holds with high probability in the random submatroid \(PG_p(n-1, q) \), and thus that a random GF\((q)\)-representable matroid is not \((b, c)\)-decomposable.

Theorem 4. Let \(q \geq 2 \) be a prime power and let \(p \in (0, 1/2] \). Let \(b, c \geq 1 \). With high probability \(\mathbb{P} \), \(PG_p(n-1, q) \) is not \((b, c)\)-decomposable.

Note that Theorems 2 and 3 can be recovered from Theorem 4 by choosing \(p = 1 \).

Finally, we compare the situation for random GF\((q)\)-representable matroids with the situation for random \(n \)-element matroids. While Theorem 4 with \(p = 1/2 \) implies that the random GF\((q)\)-representable matroid is, with high probability, not \((b, c)\)-decomposable, it is likely that a random matroid on \(n \) elements is decomposable: It is believed that almost every matroid is paving [CR70, MNWW11, PvdP15], and Bérczi, Schwarz, and Yamaguchi [BSY21] showed that paving matroids of rank at least 2 are \((1, 2)\)-decomposable. The following probabilistic version of the original conjecture by Bérczi, Schwarz, and Yamaguchi still seems likely.

Conjecture 5. With high probability, the random matroid on ground set \([n]\) is \((1, 3/2)\)-decomposable.

This conjecture is weaker than the original conjecture because it allows for a small number of matroids that are not \((b, c)\)-decomposable. At the same time, the conclusion for the remaining matroids is stronger, as \(3/2 < 2 \). The improved constant can be explained as follows. The random matroid on a ground set with \(n \) elements has, with high probability, rank asymptotic to \(n/2 \) [OSW13, Corollary 2.3]; a paving matroid of rank \(r \sim n/2 \) is \(k \)-colourable [BSY21, Lemma 3.5] and has a \(\lceil \frac{r}{k} \rceil \)-colourable partition reduction [BSY21, Theorem 1.6] for some \(k \in \{2, 3\} \).

Finally, for \(k \in \{2, 3\} \) and \(r \) sufficiently large we have \(\lceil \frac{r}{k} \rceil = k + 1 \leq \frac{3}{2}k \).

The remainder of this note is structured as follows. In Section 2 we introduce some of the tools we require. Then, in Section 3 we prove Theorem 4.

1A sequence of events \(\mathcal{E}_n \), indexed by \(n \), occurs with high probability when \(\lim_{n \to \infty} P(\mathcal{E}_n) = 1 \), or equivalently, \(\lim_{n \to \infty} P(\mathcal{E}_n^c) = 0 \).
2. Preliminaries

We require two probabilistic bounds. The first estimates tail probabilities for nonnegative random variables, and the second is a concentration bound for sums of independent random variables.

Lemma 6 (Markov inequality). Let X be a nonnegative random variable and let $\mu = \mathbb{E}[X]$. Then for all $x > 0$

$$P(X \geq x) \leq \frac{\mu}{x}.$$

Lemma 7 (Chernoff bound). Let X_1, X_2, \ldots, X_N be independent random variables taking values in $\{0, 1\}$. Let $X = \sum_{i=1}^{N} X_i$ and let $\mu = \mathbb{E}[X]$. For all $0 \leq \delta \leq 1$,

$$P(X \geq (1 + \delta)\mu) \leq \exp\left(-\frac{1}{3}\delta^2 \mu\right)$$

and

$$P(X \leq (1 - \delta)\mu) \leq \exp\left(-\frac{1}{2}\delta^2 \mu\right).$$

We write $\binom{n}{d}_q$ for q-binomial coefficients; that is, for $0 \leq d \leq n$ and $q > 1$

$$\binom{n}{d}_q = \frac{1}{q - 1} \prod_{j=0}^{d-1} q^n - q^j - 1.$$

When $q \geq 2$ is a prime power, $\binom{n}{d}_q$ counts the number of rank-d flats in $PG(n-1, q)$. The following standard bounds are useful for estimating q-binomial coefficients.

Lemma 8. $q^{d(n-d)} \leq \binom{n}{d}_q \leq q^{d(n-d)+1}$ for all $0 \leq d \leq n$ and $q > 1$.

Throughout, we use $o(1)$ to denote a quantity that tends to 0 as the parameter n tends to infinity. We write $a = (1 \pm b)c$ as shorthand for $(1 - b)c \leq a \leq (1 + b)c$.

3. Proof of Theorem 4

3.1. Random subsets of projective geometries. We obtain a random submatroid of the projective geometry $PG(n-1, q)$ by retaining each of its elements independently with probability p. Writing E_p for the resulting random set of points, we set $PG_p(n-1, q) = PG(n-1, q)|E_p$. This model of random $GF(q)$-representable matroids was first studied by Kelly and Oxley [KO82], who obtained results about rank, connectivity, and critical exponent in this model.

3.2. Size, rank, and colouring number of $PG_p(n-1, q)$. In the following three lemmas, we analyse the size, rank, and colouring number of the random matroid $PG_p(n-1, q)$.

Lemma 9. Let $q \geq 2$ be a prime power and let $p \in (0, 1]$. Let $\delta > 0$. With high probability, $|PG_p(n-1, q)| = (1 \pm \delta)p\frac{q^n}{q-1}$.

Proof. This follows immediately from the Chernoff bound, upon observing that $|PG_p(n-1, q)|$ is the sum of $\frac{q^n}{q-1} \sim \frac{q^n}{q-1}$ independent indicator random variables, each with expected value p. \[\square\]

The critical exponent is also known as the critical number.
The next lemma was proved in [KOS2] Theorem 4, where it was shown that with high probability \(\text{PG}_p(n-1, q) \) contains an \((n+1)\)-circuit of \(\text{PG}(n-1, q) \). Here, we provide an alternative proof.

Lemma 10. Let \(q \geq 2 \) be a prime power and let \(p \in (0, 1) \). With high probability, \(\text{PG}_p(n-1, q) \) is of full rank, that is \(r(\text{PG}_p(n-1, q)) = n \).

Proof. If \(\text{PG}_p(n-1, q) \) is not of full rank, then \(E_p \) is contained in a hyperplane of \(\text{PG}(n-1, q) \). By the union bound, this happens with probability at most

\[
\binom{n}{n-1} (1-p)^{n-1} = \frac{q^n - 1}{q-1} \frac{(1-p)^{n-1}}{(q-1)n} = o(1).
\]

Thus, \((1)\) holds with high probability, which concludes the proof. \(\square\)

Lemma 11. Let \(q \geq 2 \) be a prime power and let \(p \in (0, 1) \). Let \(\delta > 0 \). With high probability, \(\text{col}(\text{PG}_p(n-1, q)) = (1 \pm \delta) p \frac{q^n}{(q-1)n} \).

Proof. We first prove the lower bound. By Lemma 9 and Lemma 10, with high probability, \(\text{PG}_p(n-1, q) \) has at least \((1 - \delta)p \frac{q^n}{(q-1)n}\) points and has rank \(n \). It follows from Edmonds’ characterisation of the colouring number that

\[
\text{col}(\text{PG}_p(n-1, q)) \geq \frac{(1 - \delta)p \frac{q^n}{(q-1)n}}{n}
\]

with high probability.

To prove the corresponding upper bound, it suffices to show that, with high probability,

\[
|E_p \cap F| \leq (1 + \delta)p \frac{q^n}{(q-1)n} r(E_p \cap F). \tag{1}
\]

We may assume that \(n \geq \frac{1}{(1+\delta)p} \).

Let \(F \) be a flat of \(\text{PG}(n-1, q) \) of rank \(t > 0 \). If \(t \leq n - 2 \log_q n \), then

\[
|F| = \frac{q^t - 1}{q-1} < \frac{q^n - 2 \log_q n}{q-1} = \frac{q^n}{(q-1)n} = (1 + \delta)p \frac{q^n}{(q-1)n},
\]

so \((1)\) holds for all flats \(F \) of rank at most \(n - 2 \log_q n \).

Next, let \(t \geq n - 2 \log_q n \). If \(r(E_p \cap F) < t \), then \(F \) contains a rank-\((t-1)\) flat \(F' \) such that \(E_p \cap F' = \emptyset \). This happens with probability at most

\[
\left(\frac{t}{t-1} \right)_q (1-p)^{q^{t-1}} \leq q^t (1-p)^{q^{t-1}}
\]

By the Chernoff bound, the probability that \(|E_p \cap F| \) is larger than \((1 + \delta)p |F|\) is at most

\[
\exp \left(\frac{1}{3} \delta^2 p |F| \right) \leq \exp \left(\frac{1}{3} \delta^2 p q^{t-1} \right).
\]

It follows that for a flat \(F \) of rank \(t \), \((1)\) fails with probability at most

\[
q^t (1-p)^{q^{t-1}} + \exp \left(\frac{1}{3} \delta^2 p q^{t-1} \right).
\]

Summing over all flats of rank \(t \), it follows that \((1)\) fails with probability at most

\[
\sum_{t=n-2 \log_q n}^n \left(\binom{n}{t}_q \left(q^t (1-p)^{q^{t-1}} + \exp \left(\frac{1}{3} \delta^2 p q^{t-1} \right) \right) \right) = o(1).
\]

Thus, \((1)\) holds with high probability, which concludes the proof. \(\square\)
3.3. **Proof of the main theorem.** We now prove Theorem 4, which we restate here for convenience.

Theorem 4. Let $q \geq 2$ be a prime power and let $p \in (0, 1]$. Let $b, c \geq 1$. With high probability, $PG_p(n - 1, q)$ is not (b, c)-decomposable.

Proof. Let $d = \lceil \log \log n \rceil$ and let n_0 be so large that
\[
d \geq 3, \quad nq^{-d^2} > \frac{c^2 (1 + \delta)^2 p^2}{(q - 1)^2}, \quad \text{and} \quad \frac{1}{2} p \frac{q^d - 1}{q - 1} > b
\]
for all $n \geq n_0$. We may assume that $n \geq n_0$. Let $k = (1 + \delta) p \frac{q^n}{(q - 1)n}$. For convenience, write $M = PG_p(n - 1, q)$.

We say that a rank-d flat of M is dense if it contains at least $\frac{1}{2} p q^{d - 1}$ elements. Let Z_d be the set of dense rank-d flats of M.

Claim 4.1. $\text{col}(M|F) > b$ for all $F \in Z_d$.

Proof of claim. By Edmonds’ characterisation and density,
\[
\text{col}(M|F) \geq \frac{|F|}{d} \geq \frac{1}{2} p \frac{q^d - 1}{q - 1} > b.
\]

Consider the following three properties:

(i) M has at least $\frac{1}{2} p q^{d - 1}$ elements.

(ii) M is k-colourable.

(iii) $|Z_d| \geq \frac{1}{2} \binom{n}{d}$.

We will show that each of these properties holds with high probability, and that if the three properties hold then M is not (b, c)-decomposable.

Property (i) holds with high probability by Lemma 9. Property (ii) holds with high probability by Lemma 11.

Claim 4.2. Property (iii) holds with high probability.

Proof of claim. Let F be a flat of $PG(n - 1, q)$. For F to survive as a dense rank-d flat of M, $|E_p \cap F|$ must be large while $r(E_p \cap F) = d$. The probability that $|F \cap E_p| < \frac{1}{2} p q^{d - 1}$ is at most
\[
\exp \left(\frac{1}{2} p \frac{q^d - 1}{q - 1} \right) = o(1)
\]
by an application of the Chernoff bound, while the probability that $r(E_p \cap F) < d$ is at most
\[
\binom{d}{d - 1} q (1 - p)^{q^{d - 1}} \leq q^d (1 - p) q^{d - 1} = o(1).
\]
It follows that the expected number of flats of F that do not survive as a dense rank-d flat in M is $o \left(\binom{n}{d} \right)$. By the Markov inequality, the probability that more than $\frac{1}{2} \binom{n}{d}$ rank-d flats of $PG(n - 1, q)$ do not survive as dense rank-d flats in M is at most
\[
o \left(\binom{n}{d} \right) / \frac{1}{2} \binom{n}{d} q = o(1),
\]
and hence the probability that $|Z_d| < \frac{1}{2} \binom{n}{d}$ is $o(1)$. \qed
Finally, we show that if (i)–(iii) hold, then \(M \) is not \((b, c)\)-decomposable — the proof follows the argument used in [LMP22]. Suppose that (i)–(iii) hold; for the sake of contradiction, assume that \(M \) is \((b, c)\)-decomposable, and let \(\{E_1, E_2, \ldots, E_\ell\} \) be a \((b, c)\)-decomposition.

Let \(F \in \mathbb{Z}_d \). By Claim 4.1, \(M|F \) is not \(b \)-colourable. It follows that for every dense rank-\(d \) flat of \(M \) there is an index \(i \in [\ell] \) such that \(|F \cap E_i| \geq 2 \).

Every dense rank-\(d \) flat of \(M \) can therefore be specified by an element \(i \in [\ell] \), a pair of elements in \(E_i \), and \(d - 2 \) elements outside of \(E_i \) to complete a spanning subset of the flat. Thus, the number of dense rank-\(d \) flats in \(M \) is at most

\[
|Z_d| \leq \ell \binom{ck}{2} \binom{q^n}{d-2} < n \frac{(ck)^2}{2} q^{n(d-2)}
\]

\[
\leq \frac{c^2(1+\delta)^2 p^2}{2(q-1)^2 n} q^{nd-d^2} \leq \frac{1}{2} q^{nd-d^2} \leq \frac{1}{2} \binom{n}{d-2},
\]

where the penultimate inequality follows from \(n \geq n_0 \), and the final inequality follows from Lemma 8.

Equation (2) contradicts Property (iii), so \(M \) is not \((b, c)\)-decomposable. \(\square \)

References

[AKKOG21] Dorna Abdolazimi, Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. Matroid partition property and the secretary problem, 2021. Preprint, arXiv:2111.12436v1

[BSY21] Kristóf Bérzsi, Tamás Schwarz, and Yutaro Yamaguchi. List coloring of two matroids through reduction to partition matroids. SIAM Journal on Discrete Mathematics, 35(3):2192–2209, 2021.

[CR70] Henry H. Crapo and Gian-Carlo Rota. On the foundations of combinatorial theory: Combinatorial geometries. The M.I.T. Press, 1970.

[Edm65] Jack Edmonds. Minimum partition of a matroid into independent subsets. Journal of Research of the National Bureau of Standards, 69B:67–72, 1965.

[IMP21] Sungjin Im, Benjamin Moseley, and Kirk Pruhs. The matroid intersection cover problem. Operations Research Letters, 49(1):17–22, 2021.

[KO82] Douglas G. Kelly and James G. Oxley. Asymptotic properties of random subsets of projective spaces. Mathematical Proceedings of the Cambridge Philosophical Society, 91(1):119–130, 1982.

[LMP22] Marina Leichter, Benjamin Moseley, and Kirk Pruhs. On the impossibility of decomposing binary matroids, 2022. Preprint, arXiv:2206.12896v2.

[LOSW13] Lisa Lowrance, James Oxley, Charles Semple, and Dominic Welsh. On properties of almost all matroids. Advanced in Applied Mathematics, 50:115–124, 2013.

[MNWW11] Dillon Mayhew, Mike Newman, Dominic Welsh, and Geoff Whittle. On the asymptotic proportion of connected matroids. European Journal of Combinatorics, 32(6):882–890, 2011.

[PvdP15] Rudi Pendavingh and Jorn van der Pol. On the number of matroids compared to the number of sparse-paving matroids. Electronic Journal of Combinatorics, 22(2):P2.51, 2015.