Iranian Medicinal Plants: From Ethnomedicine to Actual Studies

Piergiacomo Buso 1, Stefano Manfredini 1, Hamid Reza Ahmadi-Ashtiani 2,3, Sabrina Sciabica 1, Raissa Buzzi 1,4, Silvia Vertuani 1,* and Anna Baldisserotto 1

1 Department of Life Sciences and Biotechnology, Master Course in Cosmetic Sciences, University of Ferrara, Via Luigi Borsari 43, 44121 Ferrara, Italy; piergiacomo.buso@student.unife.it (P.B.); smanfred@unife.it (S.M.); sabrina.sciabica@student.unife.it (S.S.); raissa.buzzi@unife.it (R.B.); anna.baldisserotto@unife.it (A.B.)
2 Department of Basic Sciences, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 194193311, Iran; ahmadi@iaups.ac.ir
3 Cosmetic, Hygienic and Detergent Sciences and Technology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran 194193311, Iran
4 Ambrosialab S.r.l. University of Ferrara Spinof Company, Via Mortara 171, 44121 Ferrara, Italy
* Correspondence: silvia.vertuani@unife.it

Received: 9 January 2020; Accepted: 21 February 2020; Published: 26 February 2020

Abstract: Iran has a rich and diverse cultural heritage, consisting of a complex traditional medicine deeply rooted in the history of the territory that goes back to the Assyrian and Babylonian civilizations. The ethnomedical practices that can be identifiable nowadays derive from the experience of local people who have developed remedies against a wide range of diseases handing down the knowledge from generation to generation over the millennia. Traditional medicine practices represent an important source of inspiration in the process of the development of new drugs and therapeutic strategies. In this context, it is useful to determine the state of the art of ethnomedical studies, concerning the Iranian territory, and of scientific studies on plants used in traditional Iranian medicine. Data regarding 245 plants used in Iranian ethnomedical practices and scientific studies conducted on 89 plants collected in the Iranian territory have been reported. All of the scientific studies here reported draw inspiration from traditional medicine. The World Health Organization (WHO) has repeatedly called for an intensification of the scientific validation processes of traditional medicines intended as an important contribution to public health in various parts of the world. The process of study and validation of Iranian ethnomedical practices appears to be at an early stage.

Keywords: Iranian traditional medicine; biological activities; pharmaceutical; cosmeceutical; nutriceutical

1. Introduction

Traditional medicine practices represent an important and often underestimated part of healthcare around the world. Moreover, traditional knowledge is a source of inspiration for researches on biological activities of vegetal extracts and pure compounds that can be obtained from them. A great number of lifesaving therapeutic assets belonging to modern medicine and new active compounds are derived from traditional knowledge and traditional uses of plants.

The awareness of this fact led to the drawing up of the World Health Assembly (WHA) resolution on Traditional Medicine (WHA62.13) and the WHO Traditional Medicine Strategy 2002–2005 and 2014–2023. These documents aim to integrate at the international level national healthcare systems with traditional knowledge and practices through an assessment of safety, efficacy, and quality of the treatments. In order to achieve these objectives, it is necessary to properly carry out
scientific researches; the biological activities of the plants used must be tested, and the effectiveness of the treatments both “in vitro” and “in vivo” must be assessed considering the risk/benefit profile. Thus, one of the main raised issues—related to the use of traditional practices in national policies and regulations—is the lack of research data [1].

WHO defines traditional medicine as follows: “Traditional medicine has a long history. It is the sum total of the knowledge, skill, and practices based on the theories, beliefs, and experiences indigenous to different cultures, whether explicable or not, used in the maintenance of health as well as in the prevention, diagnosis, improvement or treatment of physical and mental illness” [2].

In light of a literature search, the traditional Iranian medicine (also known as Persian medicine) results, particularly rich in information, which can justify new studies regarding the therapeutic use of plants and vegetal extracts; it consists of the totality of the knowledge passed down through the generations and of the practices based entirely on observations and practical experience used, from ancient times to nowadays, in diagnosis, prevention, and elimination of diseases in the Iranian territory [3].

In this context, it was of great interest for us to collect scientific reports/studies, deriving from traditional practices, regarding health properties: biological activities of native Iranian plants proper to the medicinal, dermo-cosmetic, and nutriceutical use, in order to provide a complete overview of the scientific knowledge and establish a starting point for further research. Particular attention was paid to works that open up research possibilities on new therapeutic assets that deserve a follow-up to determine the efficacy of the reported biological activities in vivo.

2. Materials and Methods

The Present Review Was Performed Adopting The Following Databases: Scifinder, Pubmed, Google Scholar

Selection criteria were defined, including articles regarding ethnobotanical studies on medicinal plants traditionally used in the Iranian territory and articles reporting scientific studies on plants grown and collected in Iran, including biological activities that can be spent in the pharmaceutical, cosmetic/cosmeceutical, nutraceutical fields. Particular attention was paid to works that may open up research paths to new therapeutic assets. All the studies reported in this review draw inspiration from Iranian traditional medicine practices.

The following keywords were selected: “Iran plants”, “Iranian medicinal plants”, “Iranian plants biological activities”. Only articles in the English language were selected, and data from patents, symposiums, and congress abstracts were excluded because not enough complete to warrant an effective comparison with full papers. Papers that did not show a clear botanical identification were rejected. The database www.theplantlist.org was used to check the correctness of the nomenclature of the reported plant species.

3. Results and discussion

3.1. Medicinal Plants Traditionally Used in Iran

Iran has a history of great importance in the field of traditional medicine practices; this knowledge heritage goes back to the time of Babylonian-Assyrian civilization; every generation added his experience and new elements to this “cultural database”. Nowadays, medicinal plants are still used in Iran as curatives for various types of health problems [4]. A great part of this traditional knowledge has not been considered by the scientific point of view yet, and it would be advisable to check the effectiveness of the traditional treatments, especially when there are no supporting data in the scientific literature.

A bibliographic search was performed, selecting ethnobotanical studies conducted through questionnaires and personal interviews with traditional healers and local people in the Iranian territory that include clear botanical identification of the plants, traditional uses, and type of administration.
Table 1 collects reports of plants used for medicinal purposes in the Iranian territory, their local name, the part of the plant used, type of extraction/preparation, the territory where the plant use is reported.
Table 1. Plants traditionally used as medicinal remedies in the Iranian territory. Local name, part of the plant used, type of extraction/preparation, the area where the use of the plant is reported. (N.r. = not reported).

Scientific Name	Family	Local Name	Part Used	Type of Extract	Medicinal Uses	Area	Author(s)	
1. *Abelmoschus esculentus* (L.) Moench	Malvaceae	Bamieh	Seed	n.r.	Anti-inflammatory, Diuretic, Laxative	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013	
2. *Acanthophyllum sordidum* Bunge ex Boiss.	Caryophylaceae	Choobak	Root	n.r.	Warts, Washing	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013	
3. *Acanthophyllum* spp.	Caryophylaceae	Chobak	Aerial parts	Herbal tea/decocction	Antiparasitic	Shiraz, Fars province	[6] Bahmani et al. 2016	
4. *Achillea millefolium* L.	Asteraceae	n.r.	Inflorescence	Boiled, steamed	Antidiabetic	Urmia county, Northwest Iran	[7] Bahmani et al. 2014	
5. *Achillea millefolium* L.	Asteraceae	Boomadaran	Aerial parts	Herbal tea/decocction	Antiparasitic	Shiraz, Fars province	[6] Bahmani et al. 2016	
6. *Achillea santolinoides subsp. wilhelmsii* (K. Koch) Gruter	Asteraceae	Bumadaran	Aerial parts	n.r.	Anti-hemorrhoids, Antidiarrhea, Hypoglycemic, Anthelmintic, Mastitis, Antacid, Dyspepsia, Nerve Tonic, Treatment of Osteoarthritis, Treatment of Blood Flooding, Appetizer	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013	
7. *Adiantum capillus-veneris* L.	Pteridaceae	Parsiavashan	Aerial parts	n.r.	Antitussive, Anti-hemorrhoid, Treatment of Sore Throat, Febrifuge, Jaundice, Laxative, Anti-thirst,	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013	
No.	Species	Family	Part(s)	Type	Conditions	Location	Reference	
-----	---------------------------------	-----------------	-----------------	------------------	--	---------------------------------------	---------------------------------	
7.	*Alcea spp.*	Malvaceae	Flower	n.r.	Antitussive, Febrifuge, Treatment of Pimples, Laxative, Depurative, Treatment of Gum Swelling	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013	
8.	*Alhagi graecorum* Boiss.	Fabaceae	Manna	n.r.	Jaundice, Laxative, Febrifuge, Thirst, Aphthous Ulcers	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013	
9.	*Alhagi maurorum* Medik.	Fabaceae	Aerial parts - Manna	n.r.	Appetite Supressant, Diuretic, Jaundice, Febrifuge	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013	
10.	*Allium altissimum* Regel	Amaryllidaceae	Bulb	n.r.	Antiseptic, Appetizer, Digestive	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013	
11.	*Allium cepa*	Amaryllidaceae	Bulb	Herbal tea/decocition	Antiparasitic, Treatment of Trichodplosis	Shiraz, Fars province	[6] Bahmani et al. 2016	
12.	*Allium haementhoides* Bioss. & Ruet. Ex Regel	Liliaceae	Leaf, flower stem	Brew	Peptic Ulcer	Lorestan province	[8] Delfan et al. 2015	
13.	*Allium sativum* L.	Amaryllidaceae	Bulb	n.r.	Hypoglycemic, Cardiac Diseases, Antiseptic, Toothache, Antihyperlipidemia, Anthelmintic, Antihypertensive	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013	
14.	*Althaea officinalis* L.	Malvaceae	Charme giah	Root	Mouth Wounds, Bone Fracture, Treatment of Bruises, Treatment of Dysuria	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013	
	Species and Common Names	Family	Place of Collection	Part Used	Preparation/Use	Region	Reference	
---	--------------------------	--------	---------------------	-----------	----------------	--------	-----------	
15.	*Alyssum alyssoides* (L.) L.	Brassicaceae	Ghodumeh	Seed	n.r.	Pharyngitis, Antitussive, Febrifuge, Laxative, Treatment of Hoarseness	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013
16.	*Alyssum desertorum* Stapf.	Brassicaceae	n.r.	Seed	Boiled, herbal fumigation	Antidiabetic	Urmia county, Northwest Iran	[7] Bahmani et al. 2014
17.	*Amaranthus caudatus* L.	Amaranthaceae	Taj Khorus	Aerial parts	n.r.	Disinfectant Treatment of Entertis, Febrifuge, Antitussive, Antidiarrhea, Laxative	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013
18.	*Amygdalus communis*	Rosaceae	Badam-e shirin	Green fruit and seed	Boiled, brewed, raw	Anti-hair Loss	Khiregah-e Jangali, Ghasemloo	[9] Baharvand-Ahmadi et al. 2015
	Amygdalus communis	Rosaceae	Baadam	Fruit	Herbal tea/decoction	Antiparasitic	Shiraz, Fars province	[6] Bahmani et al. 2016
19.	*Anacamptis morio* (L.) R. M. Bateman	Orchidaceae	Saalab gholveh	Root	n.r.	Tonic	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013
20.	*Anastatica hierochuntica* L.	Brassicaceae	Change mayam	Aerial parts	n.r.	Bring Luck to Pregnant Women, Menstrual Regulator	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013
21.	*Anchusa italica*	Boraginaceae	Gole-gazou	Leaf, flower	Decoction	Stomach Ache	Lorestan province	[8] Delfan et al. 2015
22.	*Anethum graveolens* L	Apiaceae	Shevid	Fruit	n.r.	Abortion, Anti-dysmenorrhea, Galactagogue, Antihyperlipidemia, Carminative	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013
23.	*Anthemis tinctoria* L.	Asteraceae	Baboone-ye zard	Flowering shoot	Boiled, brewed, paste	Beauty and Clarity of the Skin, Strengthening of Hair Roots	Khiregah-e Jangali, Ghasemloo valley	[9] Baharvand-Ahmadi et al. 2015
No.	Plant Name	Family	Origin	Part Used	Preparation	Medicinal Use	City, Region	Reference(s)
-----	------------	--------	--------	-----------	-------------	--------------	--------------	--------------
24.	*Apium graveolens* L.	Apiaceae	Karafs	Fruit	n.r.	Emmenagogue, Diuretic, Carminative	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013
25.	*Arctium lappa* L.	Asteraceae	Baba Adam	Leaves - Root	n.r.	Diuretic, Cholagogue, Depurative, Hypoglycemic, Antidiabetic	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013
26.	*Arnebia euchroma* (Royle) I.M.Johnst.	Boraginaceae	Havachoobeh	Root	n.r.	Treatment of Dermal Disorders, Hair Tonic	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013
27.	*Artemisia absinthium*	Asteraceae	Ofsantin	Leaf	Herbal tea/decoction	Antiparasitic, Anthelmintic, Appetizer, Indigestion	Shiraz, Fars province	[6] Bahmani et al. 2016
28.	*Artemisia dracunculus* L.	Asteraceae	Tarkhun	Leaves	n.r.	Appetizer, Dyspepsia, Antacid, Carminative	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013
29.	*Artemisia sieberi* Besser	Asteraceae	Dermaneh	Flowering shoot	Boiled, brewed, paste	Baldness	Khiregah-e Jangali, Ghasemloo valley	[9] Baharvand-Ahmadi et al. 2015
30.	*Artemisia vulgaris* L.	Asteraceae	Baranjasef	Flower	n.r.	Nerve Tonic, Sexual Impotency, Menstrual Regulator	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013
31.	*Arundo donax* L.	Poaceae	Tabashir ghalam	Latex	n.r.	Aphthous Ulcer, Anti Thirst, Depurative, Treatment of Pimples, Febrifuge	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013
No.	Species	Family	Part(s)	Source	Additional Notes			
-----	--	------------	------------------------	------------------	-----------------------------------			
32	*Astragalus adscendens* Boiss. & Hausskn. ex Boiss.	Fabaceae	Gazangabin	Manna	Laxative, Febrifuge			
				n.r.	Digestive			
				Mashhad city,	Northeaster n Iran			
				[5] Amiri and	Joharchi 2013			
33	*Astragalus fasciculifolius* subsp. *arbusculinus* (Bornm. & Gauba) Tietz	Fabaceae	Anzerut	Gum	Antitussive, Jaundice, Laxative,			
				n.r.	Anthelmintic			
				Mashhad city,	Northeaster n Iran			
				[5] Amiri and	Joharchi 2013			
34	*Astragalus hamosus* L.	Fabaceae	Nakhonak	Fruit	Anodyne, Repel of Kidney Stone,			
				n.r.	Diuretic, Arthrodynia, Carminative			
				Mashhad city,	Northeaster n Iran			
				[5] Amiri and	Joharchi 2013			
35	*Astragalus sieversianus* Pall.	Fabaceae	Gol Sefid	Fruit	Menstrual Disorders			
				n.r.	Mashhad city, Northeaster n Iran			
				[5] Amiri and	Joharchi 2013			
36	*Astragalus spp.*	Fabaceae	Katira	Gum	Mouth Wounds, Aphrodisiac,			
				n.r.	Cystitis, Hair Tonic			
				Mashhad city,	Northeaster n Iran			
				[5] Amiri and	Joharchi 2013			
37	*Atropa belladonna* L.	Solanaceae	Beladon	Leaves	Antispasmodic, Sedative			
				n.r.	Mashhad city, Northeaster n Iran			
				[5] Amiri and	Joharchi 2013			
38	*Avena sativa* L.	Poaceae	Jo dosar	Seed	Treatment of Acne			
				n.r.	Mashhad city, Northeaster n Iran			
				[5] Amiri and	Joharchi 2013			
39	*Berberis integerima* Bunge.	Berberidaceae	n.r.	Fruit, leaf,	Antidiabetic, Hypoglycemic,			
				skin,	Antihypertensive, Blood and Liver			
				Boiled, steamed	Cleanser, Jaundice, Febrifuge,			
					Antigout			
					Mashhad city,			
					Urmia county, Northwest Iran			
					Bahmani et al. 2014			
	Berberis integerima Bunge	Berberidaceae	Zereshk Kuhi	Fruit				
				n.r.				
No.	Plant Name	Family	Part	Preparation	Uses	Location	References	
-----	----------------------------	------------	----------	-------------	---	---------------------------	-----------------------------	
40	*Berberis sp.*	Berberidaceae	Fruit	n.r.	Antigout, Blood and Liver Cleanser, Febrifuge, Anthelmintic, Treatment of Dysentery	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013	
41	*Borago officinalis*	Boraginaceae	Flower	Herbal tea/decocction	Antiparasitic	Shiraz, Fars province	[6] Bahmani et al. 2016	
42	*Brassica napus*	Brassicaceae	Leaf	Decoction	Stomach Ache	Lorestan province	[8] Delfan et al. 2015	
	Brassica napus L.	Brassicaceae	Seed	n.r.	Antiseptic, Treatment of Cold, Tonic	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013	
43	*Brassica nigra* (L.) K.Koch	Brassicaceae	Seed	n.r.	Laxative	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013	
44	*Bunium cylindricum* (Boiss. & Hohen.) Drude	Apiaceae	Zireh Siah	Fruit	n.r.	Carminative	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013
45	*Bunium persicum* (Boiss.) B. Fedtsch.	Apiaceae	Zireh Siah	Fruit	n.r.	Obesity, Galactogogue, Flavoring, Carminative, Calmative, Appetizer, Indigestion	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013
46	*Caccinia macranthera* (Banks & Sol.) Brand	Boraginaceae	Gavzaban sabz	Aerial parts	n.r.	Sedative, Treatment of Cough, Expectorant	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013
47	*Camellia sinensis* (L.) Kuntze	Theaceae	Chai Sabz	Leaves	n.r.	Obesity, Anticancer, Antihypertensive, Hepatitis, Antihyperlipidemia	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013
No.	Species	Family	Part(s)	Use(s)	Location	Reference		
-----	---------------------------------------	-------------	---------------	---------------------------------------	---------------------------------	-----------------		
48	Cannabis sativa L.	Cannabinaceae	Seed	Sedative, Tonic Treatment of Osteoarthritis, Treatment of Ear Pain	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013		
49	Capparis spinosa L.	Capparaceae	Kavar Fruit-Root	Liver Tonic, Hepatitis, Appetizer, Anthelmintic, Stomach Tonic, Emmenagogue, Antigout	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013		
50	Capsella bursa-pastoris (L.) Medik.	Brassicaceae	Kiseh Keshish Seed	Period Regulator, Anti-hemorrhage, Antidiarrhea	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013		
51	Capsicum annuum L.	Solanaceae	Feifel Ghermez Fruit	Appetizer, Spice, Treatment of Osteoarthritis, Tonic, Stimulant, Aphrodisiac	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013		
52	Carthamus tinctorius L.	Asteraceae	Golrang (Kajireh) Flower - Seed	Emmenagogue, Flavoring Luxative, Treatment of Rheumatism	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013		
53	Centaurea behen L.	Asteraceae	Bahman Sefid Root	Aphrodisiac, Anti-lithiasis	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013		
54	Centaurea depressa M. Bieb.	Asteraceae	Gole Gandom Aerial parts	Digestive, Febrifuge, Cholagogue, Blood Cleanser, Antigout	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013		
55	Cerasus avium (L.) Moench	Rosaceae	Dome Gilas Pedicel	Anti-lithiasis, Prostate Disorders Kidney Stone, Anti-inflammatory	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013		
56	Cerasus microcarpa	Rosaceae	n.r. Fruit	Boiled, raw use Blood Refining	Urmia county, Northwest Iran	Bahmani et al. 2014		
No.	Plant Name	Family	Place	Part(s)	Treatment/Use	Reference		
-----	---------------------------------	-----------------	----------------	--------------------------	---	--		
57.	Ceterach officinalis	Phillicineae	Saraks	Aerial parts	Paste	Khiregah-e Jangali, Ghasemloo valley	[9] Baharvand-Ahmadi et al. 2015	
					Head Itching			
58.	Cichorium intybus L.	Asteraceae	Kasni	Root, leaves, flower, and seeds	n.r.	Treatment of Pulpitation, Appetizer, Depurative, Treatment of Furuncles, Jaundice, Febrifuge, Anti-allergic	[5] Amiri and Joharchi 2013	
	Cichorium intybus L.	Asteraceae	Kasni	Boiled		Mashhad city, Northeaster n Iran	[9] Baharvand-Ahmadi et al. 2015	
59.	Cinnamomum verum	Lauraceae	n.r.	Skin	Boiled	Antidiabetic	[7] Bahmani et al. 2014	
	Cinnamomum verum	Lauraceae	Darchin	Fruit shells	Herbal tea/decoction	Antiparasitic	[6] Bahmani et al. 2016	
60.	Citrullus colocynthis (L.) Schrad.	Cucurbitaceae	n.r.	Fruit	Boiled	Antidiabetic	[7] Bahmani et al. 2014	
	Citrullus colocynthis (L.) Schrad.	Cucurbitaceae	Hanzal	Fruit-Seed		Purgative, Anodyne, Hypoglycemic	[5] Amiri and Joharchi 2013	
						Mashhad city, Northeaster n Iran		
61.	Citrus aurantiifolia (Christm.) Swingle	Rutaceae	Limu Amani	Fruit	n.r.	Antihypertensive, Calmative	[5] Amiri and Joharchi 2013	
62.	Citrus aurantium L.	Rutaceae	Bahar Naranj	Flower	n.r.	Anti-stress, Cardiac Tonic, Food Digestion, Antihypertensive	[5] Amiri and Joharchi 2013	
63.	Clinopodium graveolens (M. Bieb.) Kuntze	Lamiaceae	Faranjmeshk	Seed	n.r.	Pharyngitis, Gastric Ulcer, Nerve Tonic	[5] Amiri and Joharchi 2013	
						Mashhad city,		
No.	Species	Family	Part(s)	Form	Uses	Region	Reference	
-----	---------------------------------	-----------------	-----------	--------	---	---	--	
64.	*Colchicum autumnale* L.	Colchicaceae	Root	n.r.	Antigout, Calmative, Arthrodynia	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013	
65.	*Colchicum kotschyi* Boiss.	Liliaceae	Gol-e hasrat	Flower	Paste	Khiregah-e Jangali, Ghasemloo valley	[9] Baharvand-Ahmadi et al. 2015	
66.	*Conium maculatum* L.	Apiaceae	Shokaran	Root	Cholagogue, Depilator, Treatment of Dermal Allergies	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013	
67.	*Convolvulus arvensis* L.	Convolvulaceae	Pichak-e sabrae	Aerial parts	Paste	Khiregah-e Jangali, Ghasemloo valley	[9] Baharvand-Ahmadi et al. 2015	
68.	*Cordia myxa* L.	Boraginaceae	Sepestan	Fruit	Pharyngitis, Antitussive, Febrifuge, Laxative	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013	
69.	*Coriandrum sativum* L.	Apiaceae	Geshniz	Fruit	Acne, Treatment of Flatulence, Appetizer, Aphrodisiac, Calmative, Jaundice, Antiseptic, Aromatic	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013	
70.	*Cornus mas* L.	Cornaceae	Zoghal Akhteh	Fruit	Prostatic Hypertrophy, Anti-hemorrhage, Antidiarrhea, Febrifuge	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013	
71.	*Coronilla varia* L.	Fabaceae	n.r.	Leaf	Raw use, boiled	Urmia county, Northwest Iran	[7] Bahmani et al. 2014	
72.	*Corylus avellana* L.	Betulaceae	Fandogh	Fruit	Treatment of Anemia	Mashhad city	[5]	
73.	Crataegus aronia (L.) Bosc ex Dc.	Rosaceae	n.r.	Fruit and skin	Raw use, boiled	Antidiabetic	Urmia county, Northwest Iran	Bahmani et al. 2014
74.	Crataegus oxycaantha L.	Rosaceae	n.r.	Fruit, flower root, skin	Raw use, boiled	Antidiabetic	Urmia county, Northwest Iran	Bahmani et al. 2014
75.	Crataegus sp.	Rosaceae	Sorkhe Valik	Fruit-Leaves	n.r.	Depurative, Repairs Blood Vessel	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013
76.	Crocus sativus L.	Iridaceae	Zaffaron	Style	n.r.	Tonic, Dysmenorrheal, Emmenagogue, Nerve Tonic, Premature Ejaculation, Gastric Ulcer, Aphrodisiac	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013
77.	Cucumis sativus L.	Cucurbitaceae	Khiar	Seed	n.r.	Diuretic, Antilithiasis, Blood Cleansing, Febrifuge	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013
78.	Cuminum cyminum L.	Apiaceae	Zireh Sabz (Keravieh)	Fruit	n.r.	Treatment of Colic, Galactogogue, Obesity, Digestive, Flavoring, Antiseptic	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013
79.	Cuscuta epithymum Murray	Convolvulaceae	Aftimun	Aerial parts	n.r.	Laxative, Antihemorrhoids	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013
80.	Cydonia oblonga Mill.	Rosaceae	Beh Daneh	Seed-Leaves	n.r.	Cardiac Diseases, Antitussive, Sore Throat, Laxative, Febrifuge	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013
81.	Cyperus rotundus L.	Cyperaceae	Soade Kufi	Root	n.r.	Strengthening of Memory	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013
No.	Plant Name	Family	Part Used	Source	Treatment	Location	Reference	
-----	------------	--------	-----------	--------	-----------	----------	-----------	
82.	*Dactylorhiza umbrosa* (Kar. & Kir.) Nevski	Orchidaceae	Root	n.r.	Treatment of Sexual Impotency, Tonic	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013	
83.	*Datura stramonium* L.	Solanaceae	Seed	n.r.	Sedative, Treatment of Addiction, Treatment of Colic	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013	
	Datura stramonium L.	Solanaceae	Seed	n.r.	Boiled and Paste	Khiregh-e Jangali, Ghasemloo valley	[9] Baharvand-Ahmedi et al. 2015	
84.	*Daucus carota* L.	Apiaceae	Fruit	n.r.	Diuretic, Emmenagogue	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013	
85.	*Delphinium semibarbatum* Bien. ex Boiss	Ranunculaceae	Flower	n.r.	Treatment of Dermal Allergies, Coloring	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013	
86.	*Descurainia Sophia* (L.) Schr.	Brassicaceae	Fruit	Fresh food	Antiparasitic, Blood and Liver Cleanser, Jaundice, Febrifuge, Treatment of Furuncles, Antithirst, Laxative	Shiraz, Fars province	[6] Bahmani et al. 2016	
	Descurainia sophia (L.) Webb ex Prantl	Brassicaceae	Seed	n.r.		Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013	
87.	*Dorema ammoniacum* D. Don	Apiaceae	Gum- Root	n.r.	Cystitis, Digestive, Treatment of Colic, Treatment of Furuncles, Expectorant, Antihelmintic, Emmenagogue, Anticovulsion	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013	
88.	*Drimia maritima* (L.) Stearn	Asparagaceae	Bulb	n.r.	Arthrodynia, Emmenagogue, Hair Tonic	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013	
No.	Species Name	Family	Location	Part Used	Use(s)	Reference		
-----	--------------	--------	----------	-----------	--------	-----------		
89.	*Dysphania botrys* (L.) Mosyakin & Clemants	Amaranthaceae	Dermaneh Torki	Aerial parts	n.r.	Diabetes, Treatment of Sinusitis, Respiratory Disorders, Anthelmintic, Antacid, Antidiarrhea, Carminative, Urinary Antiseptic	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013
90.	*Echinops cephalotes* DC.	Asteraceae	Shekar Tighal	Manna	n.r.	Antitussive, Anti-asthmatic, Pharyngitis, Febrifuge	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013
91.	*Echium amoenum* Fisch. & C.A.Mey.	Boraginaceae	Gole Gavzaban	Flower	n.r.	Antihypertensive, Nerve Tonic, Diuretic, Antistress, Blood Cleanser Cardiac Tonic	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013
92.	*Elaeagnus angustifolia* L.	Elaeagnaceae	Senjed	Fruit	n.r.	Arthrodynia, Antidiarrhea, Treatment of Rheumatism, Female Aphrodisiac	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013
93.	*Ephedra major* Host	Ephedraceae	Khakestar Koshtar	Aerial parts	n.r.	Treatment of Joints Pain	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013
94.	*Equisetum arvense* L.	Equisetaceae	Dome Asb	Aerial parts	n.r.	Obesity, Antilithiasis, Antihypertensive, Prostate Disorders, Treatment of kidney Disorders	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013
94.	*Equisetum arvense* L.	Equisetaceae	Dome Asb	Aerial parts	Boiled	Hair Loss, Nails Strengthening	Khiregah-e Jangali, Ghasemloo valley	Baharvand-Ahmadi et al. 2015
94.	*Equisetum arvense* L.	Equisetaceae	n.r.	Aeration organ	Boiled	Antidiabetic		Bahmani et al. 2014
No.	Taxonomic Name	Family	Common Name	Part(s) Used	Use(s)	Location	Reference	
-----	----------------	--------	--------------	-------------	--	----------	-----------	
95	*Eremurus spectabilis* M. Bieb.	Xanthorrhoeaceae	Serish	Root	n.r.	Dermal Infection, Sticking, Antihyperlipidemia	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013
96	*Eruca sativa* (L.) Mill.	Brassicaceae	Mandah (Roghani cheragh)	Seed	n.r.	Sedative, Laxative, Diuretic, Stomach Tonic,	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013
97	*Euphorbia macroclada* Boiss.	Euphorbiaceae	Ferfion	Leaves	Paste	Wart	Khiregah-e Jangali, Ghasemloo valley	[9] Baharvand-Ahmadi et al. 2015
98	*Falcaria vulgaris* Bernh.	Apiaceae	Ghaz Yaghi	Leaves - Fruit	n.r.	Treatment of Vitiligo, Cut, Wound	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013
99	*Ferula assa foetida* L.	Apiaceae	Anghozeh	Leaf	Herbal tea/decoction	Antiparasitic, Antihelmintic, Treatment of Colic, Emmenagogue	Shiraz, Fars province	[6] Bahmani et al. 2016
99	*Ferula foetida* (Bunge) Regel	Apiaceae	Anghuzeh	Gum	n.r.		Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013
100	*Ferula gummosa* Boiss.	Apiaceae	Barijeh	Gum- Root	n.r.	Anthelmintic, Anticatarrhal, Anti-allergic, Dyspepsia, Appetizer, Emmenagogue	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013
101	*Ficus carica* L.	Moraceae	Anjir	Fruit	n.r.	Anti-hemorrhoids, Laxative, Tonic	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013
102	*Ficus johannis* Boiss.	Moraceae	Anjirevahshi	Fruit	Fresh food and herbal tea/decoction	Antiparasitic	Shiraz, Fars province	[6] Bahmani et al. 2016
103	*Foeniculum vulgare* Mill.	Apiaceae	Razianeh	Fruit	n.r.	Galactogogue, Digestive, Bronchitis,	Mashhad city.	[5] Amiri and Joharchi 2013
No.	Plant Species	Family	Part	Use	Location	Reference		
-----	-----------------------------	--------------	---------------------	--	-------------------------------	--------------------------------		
104	*Fraxinus excelsior* L.	Oleaceae	Zaban Gonjeshk Fruit	n.r. Appetizer, Antacid, Flatulence	Mashhad city, Northeastern Iran	[8] Delfan et al. 2015		
105	*Fritillaria imperialis* L.	Liliaceae	Laleh Sarnegun Root	n.r. Treatment of Joints Pain	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013		
106	*Fumaria asepala* Boiss.	Fumariaceae	Shahtareh Aerial parts	Boiled Head and Face Itching, Allergy, Face Acne	Khiregah-e Jangali, Ghasemlooo valley	[9] Baharvand-Ahmadi et al. 2015		
107	*Fumaria vaillantii* Loisel.	Papaveraceae	Shatareh Aerial parts	n.r. Pimples, Febrifuge, Blood Cleansing, Psoriasis, Appetizer, Antacid, Jaundice	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013		
108	*Gentiana olivieri* Griseb.	Gentianaceae	Suloo Flower n.r.	Cardiac Ailments	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013		
109	*Glycyrrhiza glabra* L.	Fabaceae	Shirin Bayan Root	n.r. Antitussive, Antacid, Tonic, Gastric Ulcer, Treatment of Hypotension, Treatment of Anemia	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013		
110	*Gundelia tournefortii* L.	Asteraceae	Kangar Aerial parts	n.r. Liver Tonic, Treatment of Hepatitis	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013		
111	*Gundeliatournefortii*	Asteraceae	Kanghar Fruit Fresh food	Antiparasitic	Shiraz, Fars province	[6] Bahmani et al. 2016		
112	*Helichrysum graveolens* (M. Bieb.) Sweet	Asteraceae	Afsantin Aerial parts n.r.	Anodyne, Anthelmintic, Mashhad city.	Amiri and Joharchi 2013			
	Species	Family	Part(s)	Description	Uses	Location	Reference	
---	----------------------	------------	-----------	--	--	---	-----------------------------------	
113.	*Heracleum persicum*	Apiaceae	Leaf, flower	Decoction n.r.	Appetizer, Nerve Tonic, Stomach Ache Treatment of Hiccups, Appetizer, Flavoring, Carminative, Anthelmintic, Stomach Tonic	Lorestan province, Mashhad city, Northeaster n Iran	[8] Delfan et al. 2015	
114.	*Hibiscus syriacus* L.	Malvaceae	Flower	n.r.	Febrifuge, Antitussive	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013	
115.	*Hibiscus trionum* L.	Malvaceae	Flower	Boiled, boiled and brewed for washing	Head Itching, Strengthening of Hair Root	Khiregah-e Jangali, Ghasemloo valley	[9] Baharvand-Ahmadi et al. 2015	
116.	*Humulus lupulus* L.	Cannabinaceae	Hops	n.r.	Diuretic, Treatment of Sleeplessness, Kidney Tonic, Calming, Sedative for Digestion	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013	
117.	*Hymenocrater spp.*	Lamiaceae	Aerial parts	n.r.	Cardiac Tonic, Hypnotic, Antitussive, Carminative, Dyspnoea, Anti-stress Convulsion	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013	
118.	*Hyoscyamus niger* L.	Solanaceae	Seed	n.r.	Sedative, Treatment of Addiction, Treatment of Toothache, Treatment of Headache, Antigout	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013	
119.	*Hypecum pendulum*	Apiaceae	flowering shoot	Boiled	Skin Allergy	Khiregah-e Jangali, Ghasemloo valley	[9] Baharvand-Ahmadi et al. 2015	
No.	Species Name	Family	Part	Type	Medical Uses	Location	Reference	
-----	------------------------------	-------------	---------	--------	--	---------------------------------	----------------------------	
120	Hypericum scabrum L.	Hypericaceae	Flower	n.r.	Antimigraine, Gastric Ulcer, Anti hemorrhage, Urinary Incontinence, Treatment of Headache	Mashhad city, Northeaster n Iran	Amiri and Joharchi 2013	
121	Indigofera argentea Burm.f.	Fabaceae	Leaves	n.r.	Antifungal, Hair Color, Hair Tonic	Mashhad city, Northeaster n Iran	Amiri and Joharchi 2013	
122	Iris spuria L.	Iridaceae	Root	n.r.	Arthrodynia, Diuretic	Mashhad city, Northeaster n Iran	Amiri and Joharchi 2013	
123	Ixillirion tataricum (Pall.) Roem et Schult	Amaryllidaceae	Khiarak	Gland, flowering shoot	Paste	Washing of Skin Abscess and Disinfection of Infectious Wounds	Khiregah-e Jangali, Ghasemloo valley	Baharvand-Ahmadi et al. 2015
124	Juglans regia	Juglandaceae	Gerdou		Fruit, trunk palm, leaves Boiled Anti-allergic, Hematopoietic	Urmia county, Northwest Iran	Bahmani et al. 2014	
	Juglans regia	Juglandaceae		Fruit, leaf, and skin Boiled Antidiabetic	Mashhad city, Northeaster n Iran	Amiri and Joharchi 2013		
	Juglans regia L.	Juglandaceae	Gerdou	Fruit-Leaves n.r.	Boiled Eczema, Antidiarrhea, Hair Color	Mashhad city, Northeaster n Iran	Amiri and Joharchi 2013	
125	Juniperus sabina L.	Cupressaceae	Abhal	Fruit	n.r. Diuretic, Anti-lithiasis, Food Digestion, Urinary Antiseptic	Mashhad city, Northeaster n Iran	Amiri and Joharchi 2013	
126	Lamium album L.	Lamiaceae	n.r.	Flowering offshoot Boiled Antidiabetic	Urmia county, Northwest Iran	Bahmani et al. 2014		
No.	Scientific Name	Family	Common Name	Form	Uses	City, Province	Reference	
-----	---------------------------------	------------	-------------	------	---	------------------------------------	------------------------------------	
127	*Lactuca sativa* L.	Asteraceae	Kahu	Seed	Anti-thirst, Hypnotic	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013	
128	*Lagenaria vulgaris*	Cucurbitaceae	Kadoo	Seed	Herbal tea/decoction, Antiparasitic	Shiraz, Fars province	Bahmani et al. 2016	
129	*Lallemantia iberica* (M.Bieb.) Fisch. & C.A. Mey.	Lamiaceae	Tokhm Sharbati	Seed	Gastric Ulcer, Antitussive, Laxative, Hoarseness, Anti-thirst	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013	
130	*Laurus nobilis* L.	Lauraceae	Barg Bu	Leaves	Carminative, Appetizer, Flavor	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013	
131	*Lawsonia inermis* L.	Lythraceae	Hana	Leaves	Hair Color, Treatment of Headache, Heart Tonic, Washing, Antifungal, Antiseptic	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013	
132	*Lepidium sativum* L.	Brassicaceae	Shahi (Tartizak)	Seed	Appetizer, Anthelmintic, Laxative, Sore Throat	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013	
133	*Levisticum officinale* W.D.J.Koch	Apiaceae	Angedane roomi	Fruit	Nerve Diseases, Heart Tonic, Indigestion, Cholesterol-lowering, Antitussive, Laxative, Obesity, Bedsore	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013	
134	*Linum usitatissimum* L.	Linaceae	Katan	Seed		Mashhad city, Northeastern Iran	Amiri and Joharchi 2013	
135	*Malva neglecta* Wallr.	Malvaceae	Nan Kalagh	Flower - Fruit	Sore Throat, Antitussive, Febrifuge	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013	
No.	Plant Name	Family	Part(s)	Name(s)	Medicinal Uses	Location	References	
------	----------------------------------	-----------	------------------	----------------	---	-----------------------------------	------------	
136	*Malva sylvestris* L.	Malvaceae	Panirak (Khatmi khabbzi)	Flower - Fruit	n.r.	Pharyngitis, Furuncles, Aphthous Ulcers, Febrifuge, Antitussive, Jaundice, Laxative, Gastric Ulcer, Treatment of Wounds	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013
137	*Marrubium vulgare* L.	Lamiaceae	Ferasion	Aerial parts	n.r.	Liver Tonic, Antitussive	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013
138	*Matricaria chamomilla* L.	Asteraceae	Gole babooneh	Flower	n.r.	Eczema, Antitussive, Anticatarrhal, Hair Tonic, Treatment of Colic, Menstrual Pains	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013
139	*Matricaria recutita*	Asteraceae	Babooneh	Flower, leaf	Herbal tea/decoction	Antiparasitic	Shiraz, Fars province	Bahmani et al. 2016
140	*Medicago sativa* L.	Fabaceae	Yunjeh	Aerial parts	n.r.	Appetizer, Tonic, Osteomalacia, Anti-hemorrhage	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013
141	*Melissa officinalis* L.	Lamiaceae	Badranjbuyeh	Aerial parts	n.r.	Nerve Tonic, Cardiac Tonic, Hypnotic, Antitussive, Carminative, Anti-stress, Convulsion	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013
142	*Mentha longifolia* (L.) Hudson	Lamiaceae	Puneh	Aerial parts	n.r.	Herpes, Anthelmintic, Antacid, Carminative, Antidiarrhea, Digestive	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013
143	*Mentha spicata* L.	Lamiaceae	Naana	Aerial parts	n.r.	Appetizer, Antacid, Carminative, Antidiarrhea, Digestive	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013
No.	Species	Family	Part(s)	Form(s)	Use(s)	Location	Reference	
-----	-------------------------------	------------	---------	---------	--	---	--------------------------	
144	Morus nigra L.	Moraceae	Shatut	Root	Anodyne, Anthelmintic	Abortion Mashhad city, Northeaster n Iran	Amiri and Joharchi 2013	
				n.r.	Abortion			
145	Myrtus communis L.	Myrtaceae	Murd	Leaves - Fruit	Psoriasis, Treatment of Sinusitis, Mouth Ulcers, Antifungal, Treatment of Cold, Strengthening of Hair, Herpes	Abortion Mashhad city, Northeaster n Iran	Amiri and Joharchi 2013	
				n.r.	Abortion			
146	Nasturtium officinale R. Br.	Brassicaceae	Alafe cheshmeh	Aerial parts	Diabetes, Dyspepsia	Abortion Mashhad city, Northeaster n Iran	Amiri and Joharchi 2013	
				n.r.	Abortion			
147	Nasturtium officinalis (L.) R. Br.	Cruciferae	n.r.	Leaf, root	Antidiabetic	Urmia county, Northwest Iran	Bahmani et al. 2014	
					Abortion			
148	Nepeta binalouensis Jamzad	Lamiaceae	Ostokhodus	Aerial parts	Treatment of Cold, Carminative, Nerve Tonic, Treatment of Sinusitis, Pulmonary Infections, Treatment of Rheumatism, Anti-asthmatic, Antitussive, Cardiac Tonic	Abortion Mashhad city, Northeaster n Iran	Amiri and Joharchi 2013	
				n.r.	Abortion			
149	Nepeta bracteata Benth.	Lamiaceae	Zafa	Aerial parts	Pulmonary Infections, Anti-asthmatic, Treatment of cold, Febrifuge, Treatment of Colic, Antitussive, Antidiabetic	Abortion Mashhad city, Northeaster n Iran	Amiri and Joharchi 2013	
	Nepeta bracteata Benth.	Lamiaceae	n.r.	Flowering offshoot	Boiled, steamed	Abortion Urmia county, Northwest Iran	Bahmani et al. 2014	
					Abortion			
No.	Species	Family	Part	Action	Location	Ref.		
------	-------------------------------	--------------	-----------------	-------------------------------	---------------------------------	-----------		
150	*Nepeta menthoides* Boiss. & Buhse	Lamiaceae	Ostokodus	Aerial parts	Treatment of Cold, Nerve Tonic, Expectorant	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013	
151	*Nepeta meyeri* Benth.	Lamiaceae	n.r.	Flowering offshoot	Antidiabetic	Urmia county, Northwest Iran	[7] Bahmani et al. 2014	
152	*Nigella sativa*	Ranunculaceae	Siah doom	Seed	Herbal tea/decoction	Kidney Stone, Carminative, Antacid, Galactogogue, Anthelmintic, Food Digestion, Antitussive, Treatment of Colic	Shiraz, Fars province, Mashhad city, Northeaster n Iran	[6] Bahmani et al. 2016
	Nigella sativa L.	Ranunculaceae	Siah Daneh	Seed	n.r.	[5] Amiri and Joharchi 2013		
153	*Nymphaea alba* L.	Nymphaeaceae	Nilufar Abi	Flower	Antiparasitic	Expectorant, Hypnotic, Antitussive, Calmative	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013
154	*Ocimum basilicum* L.	Lamiaceae	Reyhan (Tokhm sharbati)	Seed	n.r.	Aphthous Ulcers, Antiseptic, Antidiarrhea, Antitussive, Carminative, Laxative, Digestive, Antacid	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013
155	*Origanum vulgare* L.	Lamiaceae	Marzanjush	Aerial parts	Treatment of Colic, Treatment of Sinusitis, Sedative, Cardiac Tonic, Nerve Tonic, Treatment of Dyspnoea	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013	
156	*Oryza sativa* L.	Poaceae	Chaltooke Berenj	Seed coat	Hair Tonic, Treatment of Anemia	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013	
157	*Papaver rhoeas* L.	Papaveraceae	Shaghayegh	Flower	n.r.	Treatment of Addiction,	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013
No.	Plant Name	Family	Part(s)	Form(s)	Uses	Location	Reference	
-----	-----------------------------------	-------------------	---------	---------------	---	-----------------------------------	-------------------	
158.	*Papaver somniferum* L.	Papaveraceae	Fruit- Seed	n.r.	Anodyne, Laxative, Tonic, Hypnotic	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013	
159.	*Peganum harmala* L.	Nitrariaceae	Seed	n.r.	Diabetes, Antiseptic, Hypnotic, Treatment of Rheumatism and Sciatica Disorders, Anthelmintic, Emmenagogue	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013	
160.	*Perovskia abrotanoides* Kar.	Lamiaceae	Aerial parts	n.r.	Treatment of Sinusitis, Treatment of Toothache, Antitussive, Nerve Tonic, Carminative, Sedative, Antiseptic, Anthelmintic, Treatment of Colic	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013	
161.	*Petroselinum crispum* (Mill.) Nyman ex A. W. Hill	Apiaceae	Fruit	n.r.	Emmenagogue, Diuretic, Carminative, Kidney Disorders	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013	
162.	*Phleum pratense* L.	Poaceae	Branch	Brew	Stomach Ache	Lorestan province	[8] Delfan et al. 2015	
163.	*Physalis alkekengi* L.	Solanaceae	Fruit	n.r.	Emmenagogue, Treatment of Kidney Stones, Blood Cleansing	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013	
No.	Plant Name	Family	Part Used	Use	Place of Use	Author(s)		
-----	----------------------------------	--------------	--------------------	-------------------	--------------	-----------------		
164	*Pimpinella anisum* L.	Apiaceae	Fruit n.r.	Treatment of Flatulence, Anthelmintic, Treatment of Colic, Antacid, Stomach Ache, Antidiarrhea	Mashhad city, Northeaster n Iran	Amiri and Joharchi 2013		
165	*Pistacia atlantica* Desf. ssp kurdica	Anacardiaceae	Saghez Oleore sin n.r.	Appetizer, Digestive, Antacid	Mashhad city, Northeaster n Iran	Amiri and Joharchi 2013		
166	*Pistacia atlantica* Desf. ssp mutica	Anacardiaceae	Baneh Fruit n.r.	Laxative, Tonic Stumulant, Treatment of Anemia	Mashhad city, Northeaster n Iran	Amiri and Joharchi 2013		
167	*Plantago major* L.	Plantaginaceae	Barhang Seed-Leaves n.r.	Eczema, Anti-allergic, Febrifuge, Jaundice, Antitussive, Antidiarrhea, Toothache, Depurative, Gastric Ulcer	Mashhad city, Northeaster n Iran	Amiri and Joharchi 2013		
168	*Plantago ovata* Forssk.	Plantaginaceae	Esfarzeh Seed n.r.	Obesity, Depilator, Tonsillitis, Antacid, Antitussive, Gastric Ulcer, Febrifuge, Laxative, Jaundice, Anti-hemorrhoids	Mashhad city, Northeaster n Iran	Amiri and Joharchi 2013		
169	*Platanus orientalis* L.	Platanaceae	Chenar Fruit n.r.	Prostate Diseases	Mashhad city, Northeaster n Iran	Amiri and Joharchi 2013		
170	*Polygonatum orientale* Desf.	Asparagaceae	Shagghahol Root n.r.	Tonic, Diuretic, Nerve Tonic, Aphrodisiac	Mashhad city, Northeaster n Iran	Amiri and Joharchi 2013		
171	*Polygonum aviculare* L.	Polygonaceae	Alaf Haftband n.r. Aerial parts n.r.	Diabetes, Treatment of Colic, Antidiarrhea	Mashhad city, Northeaster n Iran	Amiri and Joharchi 2013		
	Polygonum aviculare L.	Polygonaceae	Boiled Antidiabetic			[7]		
No.	Species	Family	Place of Collection	Habitat/Part Used	Activity	Source		
------	------------------------	-------------------	--------------------	-------------------	--	--		
172	*Polypodium vulgare* L.	Polypodiaceae	Baspayak	Root	n.r. Expectorant, Jaundice, Digestive	Mashhad city, Northwest Iran Amiri and Joharchi 2013		
173	*Portulaca oleracea* L.	Portulacaceae	Khorfeh	Seed-Leaves	n.r. Antitussive, Febrifuge, Anti-thirst, Food Digestion, Depurative, Anti-hemorrhoids	Mashhad city, Northeastern Iran Amiri and Joharchi 2013		
174	*Punica granatum*	Punicaceae	Anar-doun	Seed	n.r. Pomegranate fruits cooked under hot wood ashes and eat Peptic Ulcer Anti-hemorrhage, Blood Flux, Anthelmintic	Lorestan province Mashhad city, Northeastern Iran Amiri and Joharchi 2013		
	Punica granatum L.	Punicaceae	Gole Anar	Flower-Root	n.r. Oak fruit crushed and mixed with yogurt and eat	Stomach Ache Lorestan province Amiri and Joharchi 2013		
175	*Quercus branti*	Fagaceae	Bali	Pith leaf peel	n.r. Nosebleed, Anti-hemorrhage, Uterus Ailments, Mouth Wounds, Anti-hemorrhoids	Mashhad city, Northeastern Iran Amiri and Joharchi 2013		
176	*Quercus infectoria* Oliv.	Fagaceae	Mazuye sabz	Insect gull	n.r. Antidiarrhea, Anti-hemorrhage	Mashhad city, Northeastern Iran Amiri and Joharchi 2013		
177	*Quercus spp.*	Fagaceae	Balut (Mazu)	Fruit	n.r. Antidiarrhea, Anti-hemorrhage	Mashhad city, Northeastern Iran Amiri and Joharchi 2013		
178	*Rheum ribes* L.	Polygonaceae	Rivas	Fruit-Petiole	n.r. Jaundice, Urinary Antiseptic, Diuretic, Depurative, Liver Tonic, Antiseptic, Hair Tonic	Mashhad city, Northeastern Iran Amiri and Joharchi 2013		
179.	*Rheum turkestanicum* Janisch.	Polygonaceae	Eshghan	Root	n.r.	Diabetes, Antihypertensive, Anticancer, Depurative	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013
180.	*Rhus coriaria* L.	Anacardiaceae	Somagh	Fruit	n.r.	Antidiarrhea, Antihemorrhage, Flavoring, Blood Refining	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013
	Rhus coriaria L.	Anacardiaceae	n.r.	Fruit, leaf, resin	Boiled			
181.	*Ribes khorasanicum* Saghafi & Assadi	Grossulariaceae	Ghareh Ghat	Fruit	n.r.	Antihypertensive, Diabetes, Depurative	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013
182.	*Ricinus communis* L.	Euphorbiaceae	Karchak	Seed	n.r.	Purgative	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013
183.	*Rosa beggeriana* Schrenk	Rosaceae	Nastaran	Fruit	n.r.	Antihypertensive, Diuretic, Kidney Stone	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013
184.	*Rosa damascena* Mill.	Rosaceae	Gole Mohammadi	Flower	n.r.	Anti-hemorrhoid, Laxative, Calmative	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013
185.	*Rosa foetida* Hermam.	Rosaceae	n.r.	Petal	Boiled	Antidiabetic	Urmia county, Northwest Iran	[7] Bahmani et al. 2014
	Rosa foetida Herrm.	Rosaceae	Gole Zard	Flower	n.r.	Ovary Tonic, Emmenagogue	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013
186.	*Rubia tinctorum* L.	Rubiaceae	Ronas	Root	n.r.	Strengthening of Hair, Hair Color	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013
	Rubia tinctorum L.	Rubiaceae	Ronnas	Root, fruit	Boiled			
No.	Species	Family	Part(s)	Use(s)	Region/Source			
-----	--------------------------	--------------	---------------	-------------------------	---			
187	Rumex acetosella L.	Polygonaceae	Sagh Torshak	Root, n.r.	Jaundice, Febrifuge, Mashhad city, Northeaster Iran			
					Amiri and Joharchi 2013			
188	Rumex sculantus L.	Polygonaceae	n.r.	Fruit, leaf, Raw use, boiled	Blood Refining, Urmia county, Northwest Iran			
					Bahmani et al. 2014			
189	Ruta graveolens L.	Rutaceae	Sodab	Aerial parts, n.r.	Abortion, Sedative, Emmenagogue, Mashhad city, Northeaster Iran			
					Amiri and Joharchi 2013			
190	Salix aegyptiaca L.	Salicaceae	Bidmeshk	Flower, n.r.	Calmative, Cardiac Tonic, Painful Menstruation, Mashhad city, Northeaster Iran			
					Amiri and Joharchi 2013			
191	Salix alba L.	Salicaceae	Bid	Leaves-Bark, n.r.	Menstrual Pains, Anodyne, Jaundice, Antitussive, Mashhad city, Northeaster Iran			
					Amiri and Joharchi 2013			
192	Salix excelsa J.F. Gmel.	Salicaceae	Bidkhesht	Manna, n.r.	Febrifuge, Jaundice, Laxative, Mashhad city, Northeaster Iran			
					Amiri and Joharchi 2013			
193	Salvia leriifolia Benth.	Lamiaceae	Noruzak	Aerial parts, n.r.	Diabetes, Period Regulator, Mashhad city, Northeaster Iran			
					Amiri and Joharchi 2013			
194	Salvia macrosiphon Boiss.	Lamiaceae	Kenocheh	Seed, n.r.	Jaundice, Antitussive, Febrifuge, Gastric Ulcer, Pharyngitis, Laxative, Mashhad city, Northeaster Iran			
					Amiri and Joharchi 2013			
195	Salvia nemorosa L.	Lamiaceae	n.r.	Flowering offshoot, Boiled	Antidiabetic, Urmia county, Northwest Iran			
					Bahmani et al. 2014			
196.	**Sanguisorba minor** Scop.	Rosaceae	Tout-e roubahi	Fruit	Boiled and edible raw	Skin Wounds Disinfection	Khiregh-e Jangali, Ghasemlou valley	[9] Baharvand-Ahmadi et al. 2015
197.	**Satureja hortensis** L.	Lamiaceae	Marzeh	Aerial parts	n.r.	Indigestion, Antidiabetic	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013
198.	**Satureja khozistanica**	Lamiaceae	Jataneh	Branch	Dried leaves poured on food	Kidney Troubles, Antidiarrhea, Treatment of Joints Pain	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013
199.	**Scrophularia striata** Boiss.	Scrophulariaceae	Mokhallaseh	Aerial parts	n.r.	Diabetes, Antihyperlipidemia	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013
200.	**Securigera securidaca** (L.) Degen & Dorfl.	Fabaceae	Gandeh Talkheh	Seed	n.r.	Blood Tonic, Hair Loss, Strengthening of Memory, Increase Sperm Count, Treatment of Skin’s Split, Laxative	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013
201.	**Sesamum indicum** L.	Pedaliaceae	Konjed	Seed	n.r.	Jaundice, Febrifuge, Antihepatitis, Liver Tonic	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013
202.	**Silybum marianum** (L.) Gaertn.	Asteraceae	Khare Maryam	Seed	n.r.	Treatment of Osteoarthritis, Mastitis, Expectorant	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013
203.	**Solanum americanum** Mill.	Solanaceae	Tajrizi	Fruit	n.r.		Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013
No.	Species	Family	Part	Method	Effect	Location	Reference	
-----	---------	--------	------	--------	--------	----------	-----------	
204	**Sophora alopecuroides**	Fabaceae	n.r.	Inflorescence	Boiled	Antidiabetic	Urmia county, Northwest Iran	Bahmani et al. 2014
205	**Stachys lavandulifolia Vahl**	Lamiaceae	Chai Kuhi	Flower	n.r.	Nerve Tonic, Treatment of cold, Cardiac Tonic, Treatment of Colic	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013
206	**Tanacetum parthenium (L.) Sch. Bip.**	Asteraceae	Gole babooneh	Flower	n.r.	Antitussive, Anticatarrhal, Hair Tonic, Treatment of Colic, Menstrual Pains	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013
207	**Teucrium orientale L.**	Lamiaceae	n.r.	Leaf	Boiled	Antidiabetic	Urmia county, Northwest Iran	Bahmani et al. 2014
208	**Teucrium polium**	Lamiaceae	Maryam-nokhodi	Flower, Seed	Brew	Stomach Ache, Antacid, Indigestion, Diabetes, Treatment of Colic, Antidiarrhea	Mashhad city, Northeastern Iran	Delfan et al. 2015
209	**Teucrium polium L.**	Lamiaceae	Kalpureh	Aerial parts	n.r.			Amiri and Joharchi 2013
	Teucrium polium L.	Lamiaceae	n.r.	Flowering offshoot	Boiled	Antidiabetic		Bahmani et al. 2014
209	**Teucrium polium**	Lamiaceae	Maryam-nokhodi	Flower, Seed	Brew	Stomach Ache, Antacid, Indigestion, Diabetes, Treatment of Colic, Antidiarrhea	Mashhad city, Northeastern Iran	Delfan et al. 2015
210	**Thalictrum sultanabadense Stapf**	Ranunculaceae	Parsiavashan	Aerial parts	n.r.	Antitussive, Febrifuge	Mashhad city, Northeastern Iran	Amiri and Joharchi 2013
210	**Thymus daenensis**	Lamiaceae	Azboue	Flower, leaf, branch	Decoction	Stomach Ache	Lorestan province	Delfan et al. 2015
211	**Thymus kotschyanus**	Lamiaceae	Azboue	Flower, leaf, branch	Decoction	Stomach Ache	Lorestan province	Delfan et al. 2015
No.	Species	Family	Geographic Region	Part of Plant	Preparation	Medical Use	Reference	
-----	--------------------------	--------------	-------------------	---------------	-------------	--	-----------------------------	
212	*Thymus pubescens*	Lamiaceae	Azboue	Flower, leaf, branch	Decoction	Stomach Ache	Lorestan province [8] Delfan et al. 2015	
213	*Thymus fallax*	Lamiaceae	Azboue	Flower, leaf, branch	Decoction	Stomach Ache	Lorestan province [8] Delfan et al. 2015	
214	*Thymus. eriocalyx*	Lamiaceae	Azboue	Flower, leaf, branch	Decoction	Stomach Ache	Lorestan province [8] Delfan et al. 2015	
215	*Tilia cordata* Mill.	Malvaceae	Zirfun	Leaves - Fruit	n.r.	Nerve Tonic, Sudorific, Diuretic, Calmative	Mashhad city, Northeaster n Iran Amiri and Joharchi 2013	
216	*Trachyspermum anui* (L.) Sprague	Apiaceae	Zenyan (Khordaneh)	Fruit	n.r.	Carminative, Anthelmintic, Antidiarrhea, Treatment of Colic, Antacid, Galactogogue	Mashhad city, Northeaster n Iran Amiri and Joharchi 2013	
217	*Tragapogon caricifolius*	Compositae	Sheng	Flower	Brew, raw, dried	Stomach Ache	Lorestan province [8] Delfan et al. 2015	
218	*Tribulus terrestris* L.	Zygophyllaceae	Kharkhasak	Aerial parts	n.r.	Diuretic, Kidney Stone, Tonic, Treatment of Prostate, Hypertrophy, Anthelmintic, Jaundice, Treatment of Flooding, Treatment of Dysuria, Urinary Antiseptic	Mashhad city, Northeaster n Iran Amiri and Joharchi 2013	
219	*Trichodesma incanum* (Bunge) A. DC.	Boraginaceae	Alaf-e-simkesh	Aerial parts	n.r.	Treatment of Bone Fracture	Mashhad city, Northeaster n Iran Amiri and Joharchi 2013	
220	*Trifolium pratense* L.	Fabaceae	n.r.	Flowering offshoot	Boiled	Antidiabetic	Urmia county, Northwest Iran Bahmani et al. 2014	
221	*Trifolium purpureum* Loisel.	Fabaceae	n.r.	Flowering offshoot	Boiled	Antidiabetic	Urmia county, Northwest Iran Bahmani et al. 2014	
No.	Common Name	Family	Part Used	Application	Place of Use	Reference		
------	---	------------	-----------------	--	--------------	----------------		
222.	Trigonella foenum-graecum L.	Fabaceae	Seed n.r.	Diabetes, Bronchitis, Osteomalacia, Antihyperlipidemia, Tonic, Treatment of Anemia	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013		
223.	Tripleurospermum disciforme (C. A. Mey.) Sch.Bip.	Asteraceae	Flower n.r.	Treatment of Cough, Febrifuge	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013		
224.	Tussilago farfara L.	Asteraceae	Aerial parts n.r.	Expectorant, Antitussive, Mouth Wounds, Treatment of Furuncles	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013		
225.	Urtica dioica L.	Urticaceae	Whole plant n.r.	Hypoglycemic, Enlarged Prostate, Anemia, Anti-inflammatory, Digestive Antidiabetic	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013		
	Urtica dioica L.	Urticaceae	Seed, aeration organ Boiled	Anaphylaxis and Constipation	Urmia county, Northwest Iran	[7] Bahmani et al. 2014		
226.	Urtica pilulifera L.	Urticaceae	Seed n.r.	Laxative, Treatment of Cough	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013		
227.	Vaccaria oxyodonta Boiss.	Caryophyllaceae	Flower Boiled	Skin Allergy and Constipation	Khiregah-e Jangali, Ghasemloo valley	[9] Baharvand-Ahmadi et al. 2015		
228.	Vaccinium arctostaphylos L.	Ericaceae	Fruit n.r.	Diabetes, Depurative, Antihypertensive, Calmative	Mashhad city, Northeaster n Iran	[5] Amiri and Joharchi 2013		
229.	Verbascum agrimonifolium	Scrophulariaceae	Leaves, flower Boiled	Wound Microbial Infection	Khiregah-e Jangali, Ghasemloo valley	[9] Baharvand-Ahmadi et al. 2015		
230.	Verbascum cheiranthifolium Boiss.	Scrophulariaceae	Aerial parts n.r.	Dyspepsia, Antidiarrhea, Expectorant,	Mashhad city	[5] Amiri and Joharchi 2013		
No.	Plant Name	Family	Part(s) Used	Preparation	Medical Use	Location/Date References		
------	-------------------------------	--------------	------------------	--------------	--	--------------------------		
231.	Verbascum macrocarpum Boiss.	Scrophulariaceae	Gol-e mahour	Leaves, flower, Boiled	Antiacid, Stomach Tonic, Nails Fungal Infection	Khiregah-e Jangali, Ghasemloo valley/ Baharvand-Ahmadi et al. 2015		
232.	Verbascum speciosum Schord.	Scrophulariaceae	Gol-e mahour	Leaves, flower, Paste	Wound Microbial Infection	Khiregah-e Jangali, Ghasemloo valley/ Baharvand-Ahmadi et al. 2015		
234.	Verbena officinalis L.	Verbenaceae	Shahpasand	Aerial parts, n.r.	Appetizer, Indigestion	Mashhad city, Northeaster n Iran/ Amiri and Joharchi 2013		
235.	Viola odorata L.	Violaceae	Banafsheh	Flower, n.r.	Eczema, Febrifuge, Blood Cleansing, Jaundice, Treatment of Cold, Expectorant	Mashhad city, Northeaster n Iran/ Amiri and Joharchi 2013		
236.	Viola tricolor	Umbelliferae	Golebenoushe	Flower branch, Decoction	Stomach Ache, Treatment of Sinusitis	Lorestan province/ Delfan et al. 2015		
237.	Vitex negundo L.	Lamiaceae	Felfel Kuhi	Fruit, n.r.	Menstrual Regulator, Obesity, Treatment of Sinusitis	Mashhad city, Northeaster n Iran/ Amiri and Joharchi 2013		
238.	Zataria multiflora Boiss.	Lamiaceae	Avishan Shirazi	Aerial parts, n.r.	Treatment of Sinusitis, Menstrual Pains, Dysmenorrhreal, Anthelmintic, Antacid, Treatment of Colic, Anti-asthmatic, Dyspnoea, Arthrodyinia, Carminative	Mashhad city, Northeaster n Iran/ Amiri and Joharchi 2013		
239.	Zataria multiflora	Lamiaceae	Avishan	Leaf	Herbal tea/decoction, Antiparasitic	Shiraz, Fars province/ Bahmani et al. 2016		
240.	Zea mays L.	Poaceae	Kakole Zorat	Style, n.r.	Obesity, Anti-inflammatory, Anti-lithiasis,	Mashhad city, Northeaster n Iran/ Amiri and Joharchi 2013		
No.	Species	Family	Place Name	Part Used	Effects	Place of Use	Ref.	
-----	-----------------------------	----------	-------------	------------	--	--------------------------------------	-------	
241	Ziziphora clinopodioides Lam.	Lamiaceae	Avishan kuhi	Aerial parts	Kidney Disorders, Prostate Disorders, Diuretic	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013	
				n.r.	Kidney Pain, Antacid, Carminative, Treatment of Colic, Anthelmintic, Antitussive, Antidiarrhea, Digestive			
242	Ziziphora teniuor L.	Lamiaceae	Kakuti	Aerial parts	Digestive, Treatment of Colic, Calefacient, Antacid, Antiseptic	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013	
				n.r.				
243	Ziziphus jujuba Miller	Rhamnaceae	Annab	Fruit	Depurative, Febrifuge, Laxative, Jaundice, Antitussive, Treatment of Thirst	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013	
				n.r.				
244	Ziziphus spina-christi	Rhamnaceae	Konar	Flower, leaf	Stomach Ache, Eczema, Hair Tonic, Antifungal, Antipruritic, Washing	Lorestan province	[8] Delfan et al. 2015	
	Ziziphus spina-christi (L.) Willd.	Rhamnaceae	Sedr	Leaves		Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013	
245	Ziziphus nummularia	Rhamnaceae	Melim	Leaf, root	Peptic Ulcer	Lorestan province	[8] Delfan et al. 2015	
				Decoction				
246	Zosima orientalis Hoffm.	Apiaceae	Angedane roomi	Fruit	Nerve Diseases, Indigestion	Mashhad city, Northeastern Iran	[5] Amiri and Joharchi 2013	
				n.r.				
3.2. Biological Activities of Plants Grown and Collected in Iran

A bibliographic search was conducted, focusing on biological activities of plants collected in the Iranian territory. The purpose of this section is to collect data related to scientific studies in order to evidence potential correlations between traditional treatments and proved biological activities of plants and phytocomplexes obtained from them. The results are summarized in Table 2.

Table 2. Biological activities of plants collected in the Iranian territory. Scientific name, family, type of extract, part of the plant used, Authors. (N.r. = not reported).

Family	Plant	Plant Part(s) Used	Author(s)	
Achillea millefolium	Asteraceae	Methanolic extract	Aerial parts	[10] Lotfipour et al. 2008
Alhagi maurorum Medik.	Leguminosae	Methanolic extract (Lyophilized)	Leaves	[11] Bonjar et al. 2004
Beta vulgaris	Amaranthaceae	Ethanolic extract	Aerial parts	[12] Koochak et al. 2010
Cuminum cyminum L.	Apiaceae	Methanolic extract (Lyophilized)	Leaves	[11] Bonjar et al. 2004
Dorema ammoniacum	Apiaceae	Methanolic extract	Seeds	[13] Abedini et al. 2014
Echinophora orientalis	Apiaceae	Aqueous extract	Leaves	[14] Sepahi et al. 2014
Etchium italicum	Boraginaceae	Methanolic extract	Aerial parts	[10] Lotfipour et al. 2008
Ferula assa-foetida	Apiaceae	Methanolic extract	Seeds	[13] Abedini et al. 2014
Ferula foetida Regel	Apiaceae	Methanolic extract	Roots	[15] Chitsazian-Yazdi et al. 2015
Ferula gummosa	Apiaceae	Aqueous extract	Leaves	[14] Sepahi et al. 2014
Ferulago contracta	Apiaceae	Methanolic extract	Seeds	[13] Abedini et al. 2014
Lawsonia inermis L.	Lythraceae	Methanolic extract (Lyophilized)	Leaves	[11] Bonjar et al. 2004
Malva sylvestris L.	Malvaceae	Methanolic extract	Flowers	[16] Razavi et al. 2011
Nasturtium microphyllum	Brassicaceae	Aqueous extract	Leaves	[14] Sepahi et al. 2014
Nymphaea alba L.	Nymphaeaceae	Methanolic extract (Lyophilized)	Leaves	[11] Bonjar et al. 2004
Perovskia abrotanoides	Lamiaceae	Methanolic extract	Aerial parts	[13] Abedini et al. 2014
Polygonum patulum M. Bieb.	Polygonaceae	Ethanolic extract	Aerial parts	[12] Koochak et al. 2010
Rheum ribes L.	Polygonaceae	Methanolic extract (Lyophilized)	Leaves	[11] Bonjar et al. 2004
Rhus coriaria L.	Anacardiaceae	Methanolic extract (Lyophilized)	Leaves	[11] Bonjar et al. 2004
Rumex obtusifolius	Polygonaceae	Ethanolic extract	Aerial parts	[12] Koochak et al. 2010
Salvia sahendica	Lamiaceae	Methanolic extract	Aerial parts	[10] Lotfipour et al. 2008
Satureja bachtiarica	Lamiaceae	Hydro-distillation and ethanolic extract	Leaves and flowers	[17] Pirbalouti et al. 2010
Thalictrum minus	Ranunculaceae	Methanolic extract	Aerial parts	[10] Lotfipour et al. 2008
Thymus daenensis	Lamiaceae	Hydro-distillation and ethanolic extract	Leaves and flowers	[17] Pirbalouti et al. 2010
Species	Family	Preparation	Part	Reference
-------------------------------	-----------------	--	-------------------	-------------------------------
Trachyspermum ammi L.	Apiaceae	Methanolic extract (Lyophilized)	Leaves	[11] Bonjar et al. 2004
Trachyspermum copticum	Apiaceae	Methanol/petroleum benzene/diethyl ether extract	Aerial parts	[18] Nariman et al. 2004
Trigonella foenum-graecum L.	Leguminosae	Methanolic extract (Lyophilized)	Leaves	[11] Bonjar et al. 2004
Verbascum Thapsus	Scrophulariaceae	Aqueous extract	Leaves	[14] Sepahi et al. 2014
Xanthium brasiliicum	Compositae	Methanol/petroleum benzene/diethyl ether extract	Aerial parts	[18] Nariman et al. 2004

Antifungal Activity

Species	Family	Preparation	Part	Reference
Satureja bachtiarica	Lamiaceae	Hydro-distillation	Leaves	[19] Pirbalouti et al. 2009
Scrophularia striata	Scrophulariaceae	Infusion	Leaves and stems	[19] Pirbalouti et al. 2009
Thymus daenensis	Lamiaceae	Hydro-distillation	Leaves	[19] Pirbalouti et al. 2009
Trachyspermum ammi	Apiaceae	Hydro-distillation	Fruits	[19] Pirbalouti et al. 2009
Zhumeria majdae	Lamiaceae	Hydro-distillation	Aerial parts	[20] Imani et al. 2015
Ziziphus spinachristi	Rhamnaceae	Infusion	Fruits	[19] Pirbalouti et al. 2009

Antimalarial Activity

Species	Family	Preparation	Part	Reference
Citrullus colocynthis	Cucurbitaceae	Methanolic extract	Fruits	[21] Feiz Haddad et al. 2017
Physalis alkekengi	Solanaceae	Methanolic extract	Leaves and fruits	[21] Feiz Haddad et al. 2017
Scrophularia frigida	Scrophulariaceae	Dichloromethane extract	Aerial parts	[22] Afshar et al. 2018
Solanum nigrum	Solanaceae	Methanolic extract	Fruits	[21] Feiz Haddad et al. 2017

Antioxidant Activity

Species	Family	Preparation	Part	Reference
Convolvulus persicus	Convolvulaceae	Methanol extract	Roots	[23] Dehghan et al. 2016
Heracleum persicum	Apiaceae	n-Hexane extract (subsequently fractionated)	Roots	[24] Dehghan et al. 2017
Hyssopus angustifolius	Lamiaceae	Ethyl acetate extracts	Stems, Leaves, Owes	[25] Alinezhad et al. 2012
Hyssopus officinalis	Lamiaceae	Ethyl acetate and n-butanol extracts	Aerial parts	[26] Fathiazad et al. 2011
Mellilotus officinalis	Leguminosae	Methanolic extract	Whole plant	[27] Pourmorad et al. 2006
Primula heterochroma	Primulaceae	Methanolic extract Ethyl acetate extract	Leaves	[23] Dehghan et al. 2016
Pyrus boissieriana	Rosaceae	Methanolic extract	Leaves and stems	[23] Dehghan et al. 2016
Quercus infectoria	Fagaceae	Methanolic extract	Galls	[28] Khazaeei et al. 2009
Salix aegyptiaca L.	Salicaceae	Methanolic extract	Male inflorescences	[29] Sonboli et al. 2010
Stachys inflata	Lamiaceae	Methanolic extract polar and non-polar fractions	Aerial parts	[30] Ebrahimabadi et al. 2010
Terminalia chebula	Combretaceae	Methanolic extract	Fruits	[28] Khazaeei et al. 2009
Tetrataenium lasiopetalum	Apiaceae	Hydro-alcoholic extract	Laminas, Stems, Petioles, Fruits, Peduncle, Flowers	[31] Dehshiri et al. 2013

Anticancer/Cytotoxic Activity

Anthemis mirheydari	Compositae	Dichloromethane extract	Whole plant	[32] Jassbi et al. 2016
Euphorbia szovitsii Fisch. & C.A. Mey.	Euphorbiaceae	Hydro-alcoholic extract	Aerial parts	[33] Asadi-Samani et al. 2018
Ferula foetida Regel	Apiaceae	Methanolic extract	Roots	[15] Chitsazian-Yazdi et al. 2015
Ferula szowitsiana	Apiaceae	Methanolic extract (fractionated)	Roots	[34] Sahanavar-Yazdi et al. 2009
Hypericum scabrum	Hypericaceae	Methanolic extract (fractionated)	Leaves	[35] Hamzeloo-Moghadam et al. 2015
Malva sylvestris L.	Malvaceae	Methanolic extract	Flowers and leaves	[16] Razavi et al. 2011
Medicago sativa	Leguminosae	Hydro-alcoholic extract	Aerial parts	[33] Asadi-Samani et al. 2018
Mentha lonigfolia	Lamiaceae	Methanolic extract	Aerial parts	[36] Esmaeilbeig et al. 2015
Satureja bachtiarica	Lamiaceae	Methanolic extract	Aerial parts	[36] Esmaeilbeig et al. 2015
Satureja hortensis	Lamiaceae	Methanolic extract	Aerial parts	[36] Esmaeilbeig et al. 2015
Thymus daenensis	Lamiaceae	Methanolic extract	Aerial parts	[36] Esmaeilbeig et al. 2015
Thymus vulgaris	Lamiaceae	Methanolic extract	Aerial parts	[36] Esmaeilbeig et al. 2015
Urtica dioica	Urticaceae	Hydro-alcoholic extract	Aerial parts	[33] Asadi-Samani et al. 2018

Antidiabetic Activity

Heracleum persicum	Apiaceae	n-hexane extract	Aerial parts, roots	[23] Dehghan et al. 2016 and [24] Dehghan et al. 2017
Parrotia persica	Hamamelidaceae	Ethyl acetate and methanolic extract	Leaves	[23] Dehghan et al. 2016
Primula heterochroma	Primulaceae	Methanolic and ethyl acetate extract	Leaves and roots	[23] Dehghan et al. 2016
Pyrus boissieriana	Rosaceae	Methanolic, n-hexane, Ethyl acetate extract	Leaves and stems	[23] Dehghan et al. 2016
Salvia officinalis L	Lamiaceae	Hydro-alcoholic extract	Leaves	[37] Hasanein et al. 2016
Smilax excelsa	Smilacaceae	Ethyl acetate and n-hexane extract	Stems and leaves	[23] Dehghan et al. 2016

Iron Chelating Activity

Epilobium hirsutum	Onagraceae	n.r.	Leaves	[38] Ebrahimzadeh et al. 2008
Feijoa sellowiana	Myrtaceae	Infusion and methanolic extract	Fruits and leaves	[38] Ebrahimzadeh et al. 2008
Melilotus arvensis	Fabaceae	n.r.	Leaves	[38] Ebrahimzadeh et al. 2008
Pistacia lentiscus	Anacardiaceae	n.r.	Gum	[38] Ebrahimzadeh et al. 2008

Anti-Platelet Aggregation Activity
Inhibition of Mushroom Tyrosinase

Plant Name	Family	Type of Extract	Part Used	Reference
Allium atrovioleum	Amaryllidaceae	Hydro-distillation	Aerial parts	[39] Lorigooini et al. 2014
Amarum infectoria	Fagaceae	Methanolic extract	Galls	[28] Khazaelli et al. 2009
Terminalia chebula	Combretaceae	Methanolic extract	Fruits	[28] Khazaelli et al. 2009

Acetylcholinesterase-Inhibitory Activity

Plant Name	Family	Type of Extract	Part Used	Reference
Brassica nigra	Brassicaceae	Aqueous-methanolic extract	Seeds	[40] Jazayeri et al. 2014
Camellia sinensis	Theaceae	Aqueous-methanolic extract	Leaves	[40] Jazayeri et al. 2014
Citrus aurantifolia	Rutaceae	Aqueous-methanolic extract	Fruits	[40] Jazayeri et al. 2014
Peganum harmala L.	Nitrariaceae	Methanolic extract, Dichloromethane extract	Seeds	[41] Adhami et al. 2011
Prangos ferulacea	Apiaceae	n-hexane extract	Aerial parts	[42] Abbas-Mohammadi et al. 2018
Rosa damascena	Rosaceae	Aqueous-methanolic extract	Flowers	[40] Jazayeri et al. 2014
Zizyphus vulgaris	Rhamnaceae	Aqueous-methanolic extract	Fruits	[40] Jazayeri et al. 2014

Antihyperlipidemic and Antihypertensive Activities

Plant Name	Family	Type of Extract	Part Used	Reference
Achillea wilhelmsii C. Koch	Compositae	Hydro-alcoholic extract	Aerial parts	[43] Asgary et al. 2000

Gastric Antiulcerogenic Activity

Plant Name	Family	Type of Extract	Part Used	Reference
Portulaca oleracea L.	Portulacaceae	Aqueous extract Ethanol extract	Leaves	[44] Karimi et al. 2004

Anti-Dyspepsia Activity

Plant Name	Family	Type of Extract	Part Used	Reference
Mentha pulegium L.	Lamiaceae	Hydro-alcoholic extract	Leaves	[45] Khonche et al. 2017

Inhibitory Effect on Gastric Acid Output

Plant Name	Family	Type of Extract	Part Used	Reference
Achillea wilhelmsii	Compositae	Aqueous-ethanolic extract	Aerial parts	[46] Niazmand et al. 2010

Anti-Colitic Activity

Plant Name	Family	Type of Extract	Part Used	Reference
Rosmarinus officinalis	Lamiaceae	Hydro-alcoholic extract and hydro-distillation (EO)	Leaves	[47] Minaiyan et al. 2011

3.2.1. Antibacterial Activity

Abedini et al. (2014) [13] tested the antimicrobial activity of forty-four methanolic extracts, obtained from plants grown and collected in the Iranian territory, against thirty-five pathogenic bacteria and one yeast. The biological activity was evaluated with Müller–Hinton agar in Petri dishes seeded by a multiple inoculator and minimal inhibition concentration (MIC) method. The authors identified four candidates that deserve further chemical characterization and biological evaluation: *Dorema ammoniacum*, *Ferula assa-foetida*, *Ferulago contracta* (Seeds), and *Perovskia abrotanoides* (Aerial parts). These plants showed broad-spectrum activity and interesting MIC values against one or several strains (MIC = 78 μg/mL). The lowest MIC value of 78 μg/mL was achieved by *Dorema ammoniacum* against *Staphylococcus aureus*, *Staphylococcus epidermidis*, *Staphylococcus lugdunensis*. *Ferula assa-foetida* against *Staphylococcus aureus* and *Staphylococcus epidermidis*. *Ferulago contracta* against *Staphylococcus epidermidis* [13].

Bonjar (2004) [11] evaluated the antibacterial properties of forty-five plant species used in Iranian traditional medicine practices against eleven bacterial species. The extracts were prepared by maceration of the plant material with methanol for three days, and the result was lyophilized after filtration. The lyophilized methanol extracts were diluted to a concentration of 20 mg/mL in
dimethylsulfoxide (DMSO): methanol (1/1: v/v) solvent in order to perform antimicrobial bioassay. The author declared that the following plant extracts showed broad spectra antimicrobial activity:

Rhus coriaria L., *Trachyspermum ammi* L., *Alhagi maurorum* Medik., *Trigonella foenum-graecum* L., *Lawsonia inermis* L., *Rheum ribes* L., and *Cuminum cyminum* L. Further studies are needed to find out which compounds are responsible for this activity. Particular plants, such as *Lawsonia inermis* L., which is active against *Pseudomonas fluorescens* and *Trachyspermum ammi* L., *Nymphaea alba* L. active against *Pseudomonas aeruginosa*, are proper candidates for further studies as possible sources of active compounds [11].

Chitsazian-Yazdi et al. (2015) [15] studied an Iranian medicinal plant known for its various biological activities, including antispasmodic and anthelmintic, named *Ferula foetida* Regel (Apiaceae).

Sulfur compounds obtained by methanolic extract of the roots of the plant were isolated and characterized to test their antimicrobial activity and cytotoxic activity. Six compounds were isolated: foetithiophene C, foetithiophene F, foetithiophene A, foetithiophene B, coniferaldehyde, and sinapic aldehyde.

Their antimicrobial activities and cytotoxicity were evaluated using broth microdilution method and Alamar blue assay. Antimicrobial activity was evidenced against Gram-positive bacteria, more in particular foetithiophene F, which showed interesting antimicrobial activity with MIC value 50 mg/mL against the Gram-positive *Bacillus cereus*. No cytotoxic activity was detected against MCF-7 and K562 cells [15].

Koochak et al. (2010) [12] conducted a preliminary study regarding the antibacterial activity of ethanolic extracts obtained by four plant species used in traditional medicinal practices in Iran. The studied plants were *Beta vulgaris* L., *Amaranthus graecizans* L., *Rumex obtusifolius* L., *Polygonum patulum* M. Bieb. The antibacterial activity was tested using the agar disc diffusion method against Gram-positive and Gram-negative bacteria. No one of the used extracts had significant antibacterial activity against Gram-negative bacteria. The highest activity was evidenced by the ethanolic extract of *Polygonum patulum* against *Streptococcus pyogenes* (inhibitory zone = 28 mm) followed by *Beta vulgaris* against *Staphylococcus epidermidis* (inhibitory zone = 23 mm) and *Rumex obtusifolius* against *Streptococcus pyogenes*. Minimum inhibitory concentration (MIC) = minimum bactericidal concentration (MBC) = 5 mg/mL. Further studies are needed to define which compounds contained in the extracts are responsible for the antimicrobial activity [12].

Lotfipour et al. (2008) [10] tested the antimicrobial activity of thirty-six extracts obtained from ten plans collected in north-west Iran against some Gram-negative strains.

Among them, the methanol extract of *Thalictrum minus* was the most active one with a minimum inhibitory concentration (MIC) value of 0.3125 mg/mL against *Staphylococcus aureus*.

Furthermore, the broad spectra of activity of some plant extracts (especially methanolic extracts) studied, obtained by the plants *Thalictrum minus, Salvia sahendica, Achillea millefolium*, and *Echium italicum*, were promising [10].

Mehdi Razavi et al. (2011) [16] tested the in vitro antimicrobial activity and cytotoxic activity of different extracts obtained by the plant *Malva sylvestris* L. (flowers and leaves); this plant is commonly used in traditional medicine practices in Iran. Flowers and leaves of the plant were collected from Tabriz, Iran. The flowers methanolic extract showed high antibacterial effects against some human pathogenic bacteria strains, such as *Staphylococcus aureus*, *Streptococcus agalactiae*, *Enterococcus faecalis*, with MIC values of 192, 200, and 256 μg/mL, respectively. Further studies are needed to identify the main active compounds [16].

Nariman et al. (2004) [18] tested the antibacterial activity of six plants collected (and endemic) in Iran, against *Helicobacter pylori*: *Glycyrrhiza aspera, Juglans regia, Ligustrum vulgare, Thymbus kotschyanus, Trachyspermum cicutum*, and *Xanthium basilicum*. A disk susceptibility assay was used for the evaluation. All of the studied extracts showed anti-*H. pylori* activity; the most active were obtained from *Xanthium basilicum* and *Trachyspermum cicutum*; the solvents used to obtain the extracts were water and an equal mixture of methanol, petroleum benzene, diethyl ether. Minimum inhibitory concentrations (MIC) of the extracts obtained from the two plants range from 31.25 to 250 μg/mL [18].
Pirbalouti et al. (2010) [17] tested the antibacterial activity of essential oils and ethanolic extracts obtained by ten plants traditionally used as medicaments grown and collected in Iran. The tested vegetal extracts were investigated against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae by agar disc diffusion assay. Most of the samples showing antibacterial activity were considered as interesting by the authors against the tested bacteria with the diameter of inhibition zone ranging between 8 and 23 mm. The most interesting plants were Satureja bachtiarica and Thymus daenensis (leaves and flowers), with MIC values ranging from 0.039 to 10 mg/mL [17].

Sepahi et al. (2014) [14] tested the antibacterial activity of aqueous extracts obtained by four plants collected in Iran: Ferula gummosa, Echinophora orientalis, Nasturtium microphyllum, and Verbascum thapsus. The radial diffusion assay was performed using Staphylococcus aureus and Escherichia coli; moreover, hemolysis assay was used to test eventual toxic effects on human red blood cells. All the studied extracts showed interesting activity with MIC values lower than 750 μg/mL, and these extracts deserve further studies to identify the main active compounds [14].

3.2.2. Antifungal Activity

Imani et al. (2015) [20] studied the essential oil obtained by hydro-distillation of aerial parts of Zhumeria majdae, which is a traditionally used medicinal plant endemic in Iran. The antifungal activity was determined using the serial dilution method. The essential oil (EO) was tested on six pathogenic fungal species and one yeast, and all of them resulted as sensitive to Z. majdae essential oil. Moreover, in particular, the essential oil was interestingly effective against Candida albicans, with a MIC (minimal inhibitory concentration) of 0.031 μl/mL. This evidence confirmed the value of Zhumeria majdae as an antifungal agent, and further studies are needed to identify the compounds responsible for this biological activity [20].

In a study conducted by Pirbalouti et al. (2009) [19], the anti-Candida activity of essential oils and extracts of nine plants grown and collected in Iran was tested by agar disc diffusion assay. The studied plants are used in ethnomedical practices. Most of the tested samples showed diameters of inhibition zone ranging from 7 to 46 mm; moreover, in particular, the extracts of Ziziphus spinachristi and Scrophularia striata and the essential oil of Satureja bachtiarica showed the best anti-Candida activity, followed by the essential oils of Thymus daenensis and Trachyspermum ammi [19].

3.2.3. Antimalarial Activity

Afshar et al. (2018) [22] studied the in vitro antimalarial activity of different extracts of three Iranian endemic species belonging to the Scrophularia genus, including Scrophularia frigida, Scrophularia subaphylla, and Scrophularia atropatana. The antimalarial activity was tested by the cell-free β-hematin formation assay. Among the studied extracts, the dichloromethane one, obtained by aerial parts of Scrophularia frigida, exhibited strong antimalarial activity with inhibitory capacity (IC50) value of 0.67 ± 0.11 mg/mL. Scrophularia frigida represented a deserving candidate for further studies focused on the identification of the main active compounds [22].

Feiz Haddad et al. (2017) [21] tested the in vitro and in vivo antimalarial activity of ten Iranian plants used in traditional medicine practices. All the plants’ samples were collected in the Iranian territory. Methanolic extracts were tested for in vitro antimalarial activity against chloroquine-sensitive 3D7 and multi-drug resistant K1 strains of Plasmodium falciparum. The in vivo activity against Plasmodium berghei infection in mice was determined. Citrullus colocynthis fruits, Physalis alkekengi leaves and fruits, and Solanum nigrum fruits displayed potent in vitro antimalarial activity against both 3D7 and K1 strains; the in vivo studies comparisons between mice treated with the three plant extracts and untreated controls showed reduced parasitemia by 65.08%, 57.97%, and 60.68%, respectively [21]. Moreover, no toxicity was evidenced. Further studies can be designed to identify the active constituents and clarify their mechanism of action.
3.2.4. Antioxidant activity

Alinezhad et al. (2012) [25] tested the antioxidant activity of ethyl acetate extracts of stems and leaves and owes of the plant *Hyssopus angustifolius*, collected in Iran. Antioxidant activity of extracts was evaluated with six different tests: nitric oxide, hydrogen peroxide scavenging, 2,2-diphenyl-1-picrylhydrazyl (DPPH), metal chelating, reducing power activities, and hemoglobin-induced linoleic acid system. The results confirmed the interesting antioxidant profile of this plant; it could be a natural source of active compounds. Further studies are necessary to identify the main active compounds present in the different parts of the plant [25].

Dehghan et al. (2016) [23] evaluated the antioxidant activity and α-amylase and α-glucosidase inhibition activity of *Hyssopus officinalis* L., a medicinal herb collected from north of Iran. Total phenolic content and antioxidant activity were tested by Folin Ciocalteau and DPPH tests. Apigenin 7-D-glucosidate showed weak activity. The extract exhibited strong antioxidant activity with IC\(_50\) = 0.2 μM, a value that was interesting if compared with butylated hydroxytoluene (BHT) (IC\(_50\) = 16.7 mg/mL; used as a positive control) [23].

Dehghan et al. (2017) [24] evaluated the antioxidant and antidiabetic activity of extracts obtained by the plant *Heracleum persicum*. This work led to the isolation of eleven furanocoumarins. These compounds were identified as psoralen, bergapten, xanthotoxin, iso-pimpinellin, angelicin, isobergaptene, siphonid, pimpinellin, heratomin, 5-methoxyheratomin, moellendorfifilin, and fraxetin. As the antioxidant activity concerns, among the listed compounds, moellendorfifilin exhibited strong antioxidant activity with IC\(_50\) = 0.1 μM; used as a positive control) [24].

Ebrahimabadi et al. (2010) [30] tested the antioxidant activity of polar and non-polar fractions of the methanolic extract obtained by the plant *Stachys inflata*. Aerial parts of the plant were collected from Kashan area, Isfahan province, Iran. The biological activity was tested using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and β-carotene/linoleic acid assays. In the DPPH test, interesting results were shown by the methanolic extract polar subfraction with an IC\(_50\) of 89.50 μg/mL, indicating an antioxidant potency of about 22% of that of butylated hydroxytoluene (IC\(_50\) = 19.72 μg/mL). In β-carotene/linoleic acid assay, the best inhibition belonged to the nonpolar subfraction, with an inhibition percentage of 77.08%. Further studies are needed to identify the main active compounds [30].

Fatihiazad et al. (2011) [26] studied the ethyl acetate and n-butanol extracts obtained by aerial parts of the plant *Hyssopus officinalis* L., a medicinal herb collected from north of Iran. Total phenolic content and antioxidant activity were tested by Folin–Ciocalteau and DPPH tests. Apigenin 7-O-β-D-glucuronide was also isolated as the major flavon. Phenolic content of n-butanol and ethyl acetate extracts was determined and expressed as milligrams of gallic acid equivalents—246 mgGAE/g and 51 mg GAE/g, respectively. The antioxidant activity of apigenin 7-O-β-D-glucuronide, ethyl acetate extract, and the n-butanol extract was determined, obtaining IC\(_50\) values of 116×10\(^{-3}\), 103×10\(^{-3}\), 25×10\(^{-3}\) mg/mL, respectively. The purified apigenin 7-O-β-D-glucuronide showed weak activity. The extract that showed interesting antioxidant activity values, because of the highest content of total phenolic compounds, was the n-butanol one [26].

Khazaei et al. (2009) [28] tested five traditional medicinal plants from Iran on free radicals scavenging activity and on the inhibition of mushroom tyrosinase activity. Focusing on the radical scavenging activity, methanolic extracts of *Quercus infectoria* and *Terminalia chebula* showed a strong radical scavenging effect in the 2,2′-diphenyl-1-picrylhydrazyl (DPPH) assay with values of IC\(_50\) (concentration providing 50% inhibition of the DPPH radical) of 15.3 and 82.2 μg/mL, respectively. This study encouraged further investigations on *Quercus infectoria* and *Terminalia chebula* in the field of solar protection (due to the radical scavenging activity) and of skin depigmentation agents (due to inhibitory effects on mushroom tyrosinase) [28].

Dehshiri et al. (2013) [31] tested the antioxidant activity of laminas, stems, petioles, fruits, peduncles, and flowers in the hydro-alcoholic extracts from the plant *Tetraenaemium lasiopetalum*. The
plant samples were collected from Oshtoran Kuh, Azna, Lorestan, Iran. Antioxidant activities of the extracts were examined by different in vitro assays: 2,2′-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, metal chelating, reducing power activities, and hemoglobin-induced linoleic acid system. All the tested extracts showed interesting antioxidant activity, confirming hypotheses based on traditional knowledge. Moreover, in particular, the hydro-alcoholic extract of the flower showed the highest activity in the DPPH test (IC₅₀ = 170 ± 7 μg/mL). In the metal chelating assay, lamina extract showed the best iron ion chelating activity among the other extracts (IC₅₀ = 230 ± 10 μg/mL). Lamina hydro-alcoholic extract demonstrated better activity in the hemoglobin-induced linoleic acid system test than other parts of T. lasiopetalum [31]. Further studies could identify the main active compounds.

Pourmorad et al. (2006) [27] worked on the antioxidant activity, phenol, and flavonoid content of five plants (Mellilotus officinalis, Equisetum maximum, Plantago major, Adiantum capillus-veneris, and Urtica dioica) collected from Northern provinces of Iran (Gilan and Mazandaran). Methanolic extraction was performed after drying at room temperature, and the result was freeze-dried. The extract of Mellilotus officinalis showed a high amount of flavonoid (57 ± 5.4 mg/g) and phenolic compounds (289.5 ± 5 mg/g) and exhibited the greatest radical scavenging activity (IC₅₀ = 0.018 mg/mL) in a DPPH test among the tested extracts [27].

Sonboli et al. (2010) [29] assessed antioxidant activities and total phenolic contents of methanolic extracts obtained from male inflorescences of Salix aegyptiaca L., grown and collected in Ashena Abad village, Urmia (West Azarbajian province), Iran. 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and Folin–Ciocalteu method were performed on the whole methanolic extract and on three fractions (water fraction, butanol fraction, and chloroform fraction) obtained from it. The butanol fraction evidenced, among the others, the best antioxidant activity and the highest phenolic content with an IC₅₀ value of 27.7 μg/mL and total phenols of 313.8 ppm; the results were interesting because this extract was comparable with the synthetic antioxidant butylated hydroxytoluene (BHT) (IC₅₀ = 26.5 μg/mL) [29]. The detected antioxidant activity encouraged the use of this plant for its antioxidant properties in food industries and in cosmetic and pharmaceutical preparations.

3.2.5. Anticancer Activity/Cytotoxic Activity

Asadi-Samani et al. (2018) [33] tested the in vitro antiproliferative activity of twenty Iranian medicinal plants against prostate cancer. The plant samples were collected in Chaharmahal and Bakhtiari provinces, Iran. The extraction of the powdered aerial parts was conducted by maceration in ethanol 70% for 72 h and was concentrated under reduced pressure. Antiproliferative activity of the tested extracts on PC-3, DU145 (prostate cancer cell lines), and HDF (non-cancer cell line) cell lines was evaluated by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. The hydro-alcoholic extract obtained by the plant Euphorbia szovitsii Fisch. & C. A. Mey showed good antiproliferative activity against PC-3 and DU145 cell lines. Urtica dioica and Medicago sativa resulted active only on the DU-145 cell line. These results could be a starting point in the development of new anticancer drugs, and further studies are needed in order to identify the main active compounds [33].

Esmaeielbeig et al. (2015) [36] tested the in vitro anticancer activities of ten species of plants grown and collected in southern Iran using the MTT colorimetric assay. Methanolic extracts obtained by aerial parts of the plants Arctium lappa, Cichorium intybus, Glycyrrhiza glabra, Allhagi psuedalhahi, Mentha longifolia, Thymus daenensis, Thymus vulgaris, Satureja bachtiarica, Satureja hortensis, and Rheum ribes were tested against five tumor cell lines: K562 (myelogenous leukemia), Jurkat (T cell leukemia), and Raji (Burkitt’s lymphoma), Fen (bladder carcinoma), and HeLa (human cervical epithelioid carcinoma). No activity was detected against solid tumor cell lines Fen and HeLa, and leukemic cell lines demonstrated to be more sensitive to the extracts. Satureja hortensis, Satureja bachtiarica, Thymus vulgaris, Thymus daenensis, and Mentha longifolia showed strong inhibitory activity on Jurkat cells with inhibition values higher than 80% at a concentration of 200 μg/mL. At the same concentration, these extracts inhibited the K562 cell line with more than 50% of inhibition [36]. Further studies are needed to identify the main active compounds.

Hamzeloo-Moghadam et al. (2015) [35] tested the cytotoxic activity and the apoptosis induction activity of different fractions obtained by methanolic extract of Hypericum scabrum leaves. The plant
was collected from Alborz province, Iran. The petroleum ether, dichloromethane, and methanol fractions were evaluated for cytotoxicity against M-CF7, A-549, HT-29, and HepG-2 cell lines. The apoptosis induction ability was assessed by activated caspase-3 inspection and Annexin V FITC/PI (propidium iodide) assays.

The results evidenced strong cytotoxicity against HT-29 and HepG-2 cell lines and interesting apoptosis induction ability; the authors suggested further studies in this field [35].

Jassbi et al. (2016) [32] tested the cytotoxic activity, against three human cancer cell lines (LS180, MCF-7, and MOLT-4), of dichloromethane and methanol extracts of Anthemis mirheydari, an endemic plant from Iran. The plant samples were collected in Jahrom in Fars province, Iran, and the whole plant was used for the extraction. The dichloromethane extract evidenced interesting IC50 values, 30.8, 25.2, and 8.6 mg/mL for the three cell lines, respectively. Four compounds were isolated from the dichloromethane extract: taraxasterol, pseudotaraxasterol, β-sitosterol, and 7-methoxycoumarin. Taraxasterol and 7-methoxycoumarin are known in scientific literature to present anticancer properties; this fact, along with the encouraging results of the study, makes Anthemis mirheydari a new potential anticancer medicinal plant that certainly deserves further investigations [32].

Mehdi Razavi et al. 2011 [16] tested the in vitro cytotoxic activity of different extracts obtained by the plant Malva sylvestris L. (flowers and leaves); this plant is commonly used in traditional medicine practices in Iran. Flowers and leaves of the plant were collected from Tabriz, Iran. The methanolic extracts of flowers and leaves evidenced interesting cytotoxic activity against the MacCoy cell line, reducing their viability with IC50 values of 265.3 and 311.0 μg/mL, respectively. The authors declared that Malva sylvestris L. plant extracts could be considered as an antiproliferative agent [16]. Further studies are needed to identify the main active compounds.

Sahranavard et al. (2009) [34] tested the cytotoxic activity of methanolic extracts of fifteen Iranian medicinal plants against three cancer cell lines (MCF7, HepG2, WEHI164). The extract obtained by Ferula szowitsiana root showed IC50 values lower than 100 μg/mL in all the tested cell lines, and it was chosen for further studies. Fractionation was performed, which led to the isolation of two monoterpenoids; both of them were bornyl esters that were identified as Chimganin and Chimgin. These compounds showed interesting cytotoxic effects with values of IC50 significantly lower if compared to the whole extract; they performed a little less than tamoxifen, which was used as a positive control. These results demonstrated that the two compounds were mostly responsible for the cytotoxic activity of this plant [34].

3.2.6. Antidiabetic Activity

Dehghan et al. (2016) [23] evaluated α-amylase and α-glucosidase inhibition activities of n-hexane, ethyl acetate, and methanol extracts obtained by various parts of eleven plants grown and collected in Hycran region, Iran.

The n-hexane extract of Heracleum persicum (aerial parts, roots), ethyl acetate and n-hexane extract of Smilax excelsa (stem and leaves), methanolic, n-hexane, ethyl acetate extract of Pyrus boissieriana (leaves and steam), ethyl acetate and methanolic extract of Parrotia persica (leaves), and methanolic and ethyl acetate extract of Primula heterochroma (leaves and roots) exhibited significant antidiabetic activities in α-glucosidase and α-amylase assays, more effective than acarbose used as a positive control [23]. These plants, in conclusion, are deserving candidates for further studies in the antidiabetic field.

Dehghan et al. (2017) [24] evaluated the antidiabetic activity of extracts obtained by the plant Heracleum persicum. This work led to the isolation of eleven furanocoumarins. These compounds were identified as psoralen, bergapten, xanthotoxin, iso-pimpinellin, angelicin, isobergapten, spsodin, pimpinellin, heratomin, 5-methoxyheratomin, moellendorffline, and fraxetin. Among them, moellendorffline showed significant inhibitory activity against α-glucosidase with an IC50 value of 17.9 nM, and it was more active than acarbose (IC50 = 23.5 nM; used as a positive control) [24].

Hasanein et al. (2016) [37] studied the effects of Salvia officinalis L. against learning and memory deficit induced by diabetes. This plant has been used in Iranian traditional medicine practices against
diabetes. The plant samples were collected in Hamedan, Iran. The effects of the leaves’ hydroalcoholic extract on passive avoidance learning (PAL) and memory in streptozocin-induced diabetic and non-diabetic rats were evaluated. Administration for thirty days demonstrated to alleviate the negative influence of diabetes on learning and memory. Positive effects on hyperglycemia and oxidative stress were evidenced. Therefore, Salvia officinalis L. and its constituent rosmarinic acid represented a potential therapeutic option against diabetic memory impairment, and further studies are needed to clarify the mechanisms involved in this activity [37].

3.2.7. Iron chelating activity

Ebrahimzadeh et al. (2008) [38] tested the iron chelating activity, phenol, and flavonoid content of eleven medicinal plants from Iran. The extraction was performed by maceration of the vegetal dried material for three days. The solvent was evaporated under reduced pressure and then lyophilized. Epilobium hirsutum leaves and Melilotus arvensis showed the best chelating activity with IC₅₀ values of 0.49 ± 0.01 mg/mL and 0.08 ± 0.01 mg/mL, respectively. These plant extracts also showed high phenol and flavonoid contents. Feijoa sellowiana leaves and Pistacia lentiscus showed good chelating activity [38].

3.2.8. Anti-platelet aggregation activity

Lorigooini et al. (2014) [39] studied the essential oil obtained by aerial parts of Allium atrovio laceum. The plant was collected in Rig mountain, Shahr-e-kord province, Iran. In this work, the anti-platelet aggregation activity of the essential oil was examined using arachidonic acid (AA) and adenosine diphosphate (ADP) as platelet aggregation inducers.

The essential oil evidenced dose-dependent inhibitory effect against AA and ADP-induced aggregation with IC₅₀ values of 0.25 mg/mL and 0.47 mg/mL, respectively [39]. Further studies are required to identify the main active compounds of the essential oil.

3.2.9. Mushroom tyrosinase inhibition activity

Khazaeli et al. (2009) [28] tested five traditional medicinal plants from Iran on the inhibition of mushroom tyrosinase activity. Methanolic extracts obtained from Quercus infectoria galls and Terminalia chebula fruits showed inhibitory effects on mushroom tyrosinase in the hydroxylation of L-tyrosine (85.9% and 82.2% of inhibition, respectively). Furthermore, these two plants inhibited the oxidation of Levodopa (L-DOPA), performing similarly to kojic acid (used as a positive control) with values of IC₅₀ = 102.8 and 192.6 μg/mL, respectively [28]. This study encouraged further investigations on the two plants in the field of solar protection due to the radical scavenging activity and of skin depigmentation agents due to inhibitory effects on mushroom tyrosinase.

3.2.10. Acetylcholinesterase-Inhibitory Activity

Abbas-Mohammadi et al. (2018) [42] tested the acetylcholinesterase-inhibitory activity of n-hexane, ethyl acetate, and methanolic extracts obtained by aerial parts of twenty-five plants grown and collected in Iran. The evaluation was conducted by an in vitro enzymatic Ellman method and molecular docking study. The n-hexane extract obtained by the plant Prangos ferulacea showed the highest acetylcholinesterase (AChE)-inhibitory activity with 75.6% inhibition at a concentration of 50 μg/mL. The chemical characterization of the extract led to the identification of seventeen compounds. Further studies led to the identification of a subfraction (named F₁₀) that resulted as the most potent inhibitor of AChE in this extract with an IC₅₀ value of 25.2 μg/mL [42]. Prangos ferulacea deserves further in vivo and in vitro studies as the discovery of new acetylcholinesterase (AChE) inhibitors might lead to new tools for the treatment of Alzheimer’s disease.

Adhami et al. (2011) [41] tested the acetylcholinesterase-inhibitory activity of forty herbal drugs traditionally used against cognitive disorders in Iran. Eighty drugs were tested by TLC bioautography method and microplate colorimetric assay, and, due to the interesting activity, the
seeds of *Peganum harmala* L. were investigated in detail. The alkaloids harmaline and harmine were identified as active compounds. The IC₅₀ values were 8.4 μg/mL for harmaline (pure compound) and 10.9 μg/mL for harmine (pure compound), 41.2 μg/mL for the methanolic extract, 95.5 μg/mL for the dichloromethane extract [41]. The two tested alkaloids were the major AChE-inhibitory compounds in *Peganum harmala*; this plant deserves further studies to test the biological activity in vivo.

Jazayeri et al. (2014) [40] evaluated the acetylcholinesterase-inhibitory activity of eighteen aqueous-methanolic extracts (1:1 v/v) obtained by plants commonly used in Iranian traditional medicine collected in Tehran. The inhibitory activity was tested using the in vitro Ellman spectrophotometric method. According to the results, five plants evidenced interesting properties. The inhibitory activity values, expressed as IC₅₀ μg/mL, in fact were 5.96 μg/mL for *Camellia sinensis* (leaves), 19.57 μg/mL for *Citrus aurantifolia* (fruits), 24.37 μg/mL for *Zizyphus vulgaris* (fruits), 84.30 μg/mL for *Brassica nigra* (seeds), and 93.1 μg/mL for *Rosa damascena* (flowers) [40]. Further investigations regarding the identification of active components in the extracts are needed.

3.2.11. Antihyperlipidemic and Antihypertensive Activities

Aşgary et al. (2000) [43] studied the antihyperlipidemic and antihypertensive effects of *Achillea wilhelmsii* C. Koch drops, with a double-blind placebo-controlled clinical trial. The aerial parts of the plant were collected in Chatrood village in the province of Kerman, Southeast Iran. Moderate hyperlipidemic and primary hypertensive subjects were treated with a hydro-alcoholic extract twice daily for more than six months. The results showed a significant decrease in triglycerides after two months of treatment. Significant decreases in triglycerides, total cholesterol, and low-density lipoproteins (LDL)-cholesterol were observed after four months of treatment. Levels of high-density lipoproteins (HDL)-cholesterol were significantly increased after six months. A significant decrease in diastolic and systolic blood pressure was observed after two and six months, respectively [43].

3.2.12. Gastric Antiulcerogenic Activity

Karimi et al. (2004) [44] studied the gastric antiulcerogenic activity of aqueous and ethanolic extracts obtained from the plant *Portulaca oleracea* L. collected in the village of Khaje-rabi, Khorasan province, Iran. Both leaves extracts, tested in vivo in mice, showed remarkable dose-dependent inhibition of gastric lesions induced by absolute ethanol or HCl [44]. This gastroprotective activity resulted in line with Iranian traditional medicine knowledge, and it deserves further studies to determine the involved mechanisms.

3.2.13. Anti-Dyspepsia Activity

Khonche et al. (2017) [45] tested the efficacy of *Mentha pulegium* L., collected in the Alborz province of Iran, against functional dyspepsia in a randomized double-blind placebo-controlled clinical trial. Leaves of this plant are used in Iranian traditional medicine practices to treat dyspeptic symptoms. The hydro-alcoholic leaf extract taken daily for two months was shown to be effective in the reduction of dyspeptic symptoms, improving quality of life, and contributing to eradicate *Helicobacter pylori* in patients affected by functional dyspepsia [45].

3.2.14. Inhibitory Effect on Gastric Acid Output

Niazmand et al. (2010) [46] studied the effects of the aqueous-ethanolic extract obtained by aerial parts of the plant *Achillea wilhelmsii* on rat’s gastric acid output in basal, vagotomized, and vagal-stimulated conditions. The plant samples were collected from South Khorasan province, Iran. *Achillea wilhelmsii* is a plant frequently used in Iranian traditional medicine against gastrointestinal disorders. The results of the in vivo study showed that the aqueous-ethanol extract of *A. wilhelmsii* exhibited an inhibitory effect on gastric acid output in basal conditions via the gastric parasympathetic nerve. The extract had no effect on vagal-stimulated conditions [46]. Further studies are needed to identify the compounds and mechanisms responsible for this activity.
3.2.15. Anti-Colitic Activity

Minaiyan et al. (2011) [47] tested the anti-colitic activity of hydro-alcoholic extract and the essential oil obtained by *Rosmarinus officinalis* leaves. The plant material was collected in the city of Isfahan, Iran. The study was performed in vivo on a model of experimental colitis induced by trinitrobenzene sulfonic acid in rats.

Both the extracts at all the tested doses demonstrated to be effective in the reduction of colon tissue lesions and of colitis indices; the higher doses tested were considerably effective in diminishing histopathologic parameters. These data supported the traditional medicine knowledge and suggested that both hydro-alcoholic extract and the essential oil obtained by *Rosmarinus officinalis* leaves possess consistent anti-colitic activity [47].

4. Conclusions

The Iranian territory possesses a great abundance of plants suitable for medicinal use and remarkable heritage of knowledge handed down from generation to generation concerning natural remedies against a wide range of diseases and disorders. Nowadays, the study of this heritage is at an early stage.

As reported in sections 3 and 4, the bibliographic research evidenced ethnobotanical studies conducted in the Iranian territory, carrying out questionnaires and interviews with traditional healers or local people, and scientific studies inspired by traditional medicinal practices conducted on plants collected in Iran. Comparing ethnobotanical studies and traditional medicine-inspired scientific studies, it is evident that most of the Iranian traditional herbal remedies have not been considered from a scientific point of view yet. Only 34 plants are cited in both sections 3 and 4 among the 245 of section 3. Table 3 provides a comparison between traditional uses and tested biological activities of the plants cited both in sections 3 and 4.

Table 3. Comparison between traditional uses and tested biological activities of Iranian plants.
(N.r. = not reported).

Plant Name	Family	Traditional Uses	Biological Activities	
		Part of the Plant (When Reported)	Part of the Plant	
		Type of Extract (When Reported)	Type of Extract (When Reported)	
		Authors	Authors	
Achillea millefolium	Asteraceae	Antidiabetic	Antibacterial activity	
L.		Inflorescence	Aerial parts	
		Boiled, Steamed	Methanolic extract	
		[7] Bahmani et al. 2014	[10] Lotfipour et al. 2008	
		Antiparasitic		
		Aerial parts		
		[6] Bahmani et al. 2016		
		Herbal tea/decocction		
Alhagi maurorum	Fabaceae	Appetite suppressant, Diuretic, Jaundice, Febriuge	Antibacterial activity	
		Aerial parts, Manna	Leaves	
		[5] Amiri and Joharchi 2013	Methanolic extract (Lyophilized)	
			[11] Bonjar et al. 2004	
Brassica nigra (L.)	Brassicaceae	Laxative	Acetylcholinesterase-inhibitory activity	
		Seeds	Seeds	
		[5] Amiri and Joharchi 2013	Aqueous-methanolic extract	
			[40] Jazayeri et al. 2014	
Camellia sinensis (L.)	Theaceae	Obesity, Anticancer, Antihypertensive, Hepatitis, Antihyperlipidemia	Acetylcholinesterase-inhibitory activity	
		Leaves	Leaves	
		[5] Amiri and Joharchi 2013	Aqueous-methanolic extract	
			[40] Jazayeri et al. 2014	
Species	Family	Activities	Products	References
---------	--------	------------	----------	------------
Citrullus colocynthis (L.) Cucurbitaceae		Antidiabetic Fruit	Purgative, Anodyne, Hypoglycemic Fruit-Seed	[7] Bahmani et al. 2014 [5] Amiri and Joharchi 2013
Citrus aurantiifolia Rutaceae		Antihypertensive, Calmative Fruit		[5] Amiri and Joharchi 2013
Cuminum cyminum L. Apiaceae		Treatment of colic, Galactogogue, Obesity, Digestive, Flavoring, Antiseptic Fruit		[5] Amiri and Joharchi 2013
Dorema ammoniacum Apiaceae		Cystitis, Digestive, Treatment of colic, Treatment of furuncles, Expectorant, Anthelmintic, Emmenagogue, Anticoagulation Gum-Root		[5] Amiri and Joharchi 2013
Ferula assa-foetida L. Umbelliferae		Antiparasitic Leaf Herbal tea/decoction		[6] Bahmani et al. 2016 [5] Amiri and Joharchi 2013
Ferula foetida Apiaceae		Anthelmintic, Treatment of colic, Emmenagogue Gum		[5] Amiri and Joharchi 2013
Ferula gummosa Apiaceae		Anthelmintic, Anticatarrhal, Anti-allergic, Dyspepsia, Appetizer, Emmenagogue Gum-Root		[5] Amiri and Joharchi 2013
Heracleum persicum Apiaceae		Stomach ache Leaf, Flower Decoction		[8] Delfan et al. 2015 [24] Dehghan et al. 2017
Hypericum scabrum L. Hypericaceae		Antimigraine, Gastric ulcer, Anti-hemorrhage, Urinary incontinence, Treatment of headache Flower		[5] Amiri and Joharchi 2013

Medicina 2020, 56, 97
Plant Name	Scientific Name	Family	Common Names	Active Constituents	Active Constituents Literature	
Lawsonia inermis L.	*Lawsonia inermis* L.	Lythraceae	Hair color, Treatment of headache, Hair tonic, Washing, Antifungal, Antiseptic	Antimicrobial activity	[35] Hamzeloo-Moghadam et al. 2015	
Malva sylvestris L. Var.	*Malva sylvestris* L.	Malvaceae	Hair color, Treatment of headache, Hair tonic, Washing, Antifungal, Antiseptic	Antimicrobial activity	[16] Razavi et al. 2011	
Medicago sativa L.	*Medicago sativa* L.	Fabaceae	Appetizer, Tonic, Osteomalacia, Anti-hemorrhage, Febrifuge, Antitussive, Calmative, Digestive, Aerial parts	Antiproliferative activity on DU-145 cell line	[36] Esmaeilbeig et al. 2015	
Mentha longifolia Lam.	*Mentha longifolia* Lam.	Lamiaceae	Herpes, Anthelmintic, Antacid, Carminative, Antidiarrhea, Digestive	Anticancer activity	[33] Asad-Samani et al. 2018	
Nymphaea alba L.	*Nymphaea alba* L.	Nymphaeaceae	Expectorant, Hypnotic, Antitussive, Calmative	Antimicrobial activity	[11] Bonjar et al. 2004	
Peganum harmala L.	*Peganum harmala* L.	Nitrariaceae	Diabetes, Antiseptic, Hypnotic, Treatment of rheumatism and sciatica disorders, Anthelmintic	Acetylcholinesterase-inhibitory activity	[41] Adhami et al. 2011	
Perovskia abrotanoides Kar.	*Perovskia abrotanoides* Kar.	Lamiaceae	Treatment of sinusitis, Treatment of toothache, Antitussive, Nerve tonic, Carminative, Sedative, Antiseptic, Anthelmintic, Treatment of colic	Antimicrobial activity	[13] Abedini et al. 2014	
Physalis alkekengi L.	*Physalis alkekengi* L.	Solanaceae	Emmenagogue, Treatment of kidney stones, Blood cleansing, Fruit	Antimalarial activity	[21] Feiz Haddad et al. 2017	
Portulaca oleracea L.	*Portulaca oleracea* L.	Portulacaceae	Antitussive, Febrifuge, Anti-thirst, Food digestion, Depurative, Diuretic, Ant-hemorrhoids	Gastric antulcerogenic activity	[44] Karimi et al. 2004	
Quercus infectoria Oliv.	*Quercus infectoria* Oliv.	Fagaceae	Nosebleed, Anti-hemorrhage, Uterus ailments, Mouth wounds, Anti-hemorrhoids, Insect gull	Radical scavenging activity	[28] Khazaeli et al. 2009	
Common Name	Scientific Name	Family	Uses	Methods		
-----------------------------	----------------------	---------------------	--	---		
Rheum ribes L. Polygonaceae	Jaundice, Urinary antiseptic, Diuretic, Depurative, Liver tonic, Antiseptic, Hair tonic Fruit-Petiole		Antibacterial activity	Leaves, Methanolic extract (Lyophilized)	[5] Amiri and Joharchi 2013 [11] Bonjar et al. 2004	
Rhus coriaria L. Anacardiaceae	Jaundice, Cholesterol-lowering, Diabetes, Antihypertensive, Antidiarrhea, Anti-hemorrhage, Flavouring		Antibacterial activity	Leaves, Methanolic extract (Lyophilized)	[5] Amiri and Joharchi 2013 [11] Bonjar et al. 2004	
Rosa damascena Mill. Rosaceae	Anti-hemorrhoid, Laxative, Calmative Flower		Acetylcholinesterase-inhibitory activity	Flowers, Aqueous extract and methanolic extract	[5] Amiri and Joharchi 2013 [40] Jazayeri et al. 2014	
Salix aegyptiaca L. Salicaceae	Calmative, Cardiac tonic, Painful menstruation Flower		Antioxidant activity, Anticancer activity	Male inflorescences, Methanolic extract	[5] Amiri and Joharchi 2013 [29] Sonboli et al. 2010	
Satureja hortensis L. Lamiaceae	Indigestion, Anthelmintic, Appetizer, Antacid, Antidiarrhea Aerial parts		Anticancer activity	Aerial parts, Methanolic extract	[5] Amiri and Joharchi 2013 [36] Esmaeilbeig et al. 2015	
Scrophularia striata Scrophulariaceae	Kidney troubles, Antidiarrhoea, Treatment of colic, Carminative, Treatment of joints pain Aerial parts		Antibacterial activity	Leaves and stems, Infusion	[5] Amiri and Joharchi 2013 [19] Pirbalouti et al. 2009	
Thymus daenensis Lamiaceae	Stomach ache Flower, Leaf, Branch Decoction		Anti-Candida activity	Leaves, Hydro-distillation and ethanolic extract	[8] Delfan et al. 2015	
Trachyspermum ammi L. Apiaceae	Carminative, Anthelmintic, Antidiarrhoea, Treatment of colic, Antacid, Galactogogue Fruit		Antibacterial activity	Leaves, Methanolic extract (Lyophilized)	[5] Amiri and Joharchi 2013 [11] Bonjar et al. 2004	
				Anticancer activity	[5] Amiri and Joharchi 2013 [36] Esmaeilbeig et al. 2015	
				Aerial parts, Methanolic extract	[5] Amiri and Joharchi 2013 [19] Pirbalouti et al. 2009	
				Antibacterial activity	Leaves, Methanolic extract (Lyophilized)	[11] Bonjar et al. 2004
				Anticancer activity	Leaves, Methanolic extract (Lyophilized)	[5] Amiri and Joharchi 2013 [19] Pirbalouti et al. 2009
Plant Common Name	Scientific Name	Family	Medicinal Uses	Scientific Activities	References	
----------------------------------	-----------------	--------------	---	---	-------------------------------------	
Trigonella foenum-graecum L.	Fabaceae		Diabetes, Bronchitis, Osteomalacia, Antihyperlipidemia, Tonic, Treatment of anemia Seed	Antibacterial activity	[5] Amiri and Joharchi 2013	
				Leaves	[11] Bonjar et al. 2004	
Urtica dioica L.	Urticaceae		Hypoglycemic, Enlarged prostate, Anemia, Anti-inflammatory, Digestive Whole plant	Antiproliferative on DU-145 cell line	[5] Amiri and Joharchi 2013	
				Aerial parts	[33] Asadi-Samani et al. 2018	
Ziziphus spina-christi	Rhamnaceae		Stomach ache, Flower, Leaf, Decoction, Eczema, Hair tonic, Antifungal, Antipruritic, Washing	Anti-Candida activity	[8] Delfan et al. 2015	
				Fruits	[19] Pirbalouti et al. 2009	

The identification of a direct correspondence between the traditional uses and biological activities represents a complex issue. Some plant species mentioned in this work have already been studied in other parts of the world with different climatic characteristics and, consequently, different phytocomplexes. In our opinion, it is of interest to study plants that are not interesting from a medicinal point of view in other parts of the world if included in traditional medicinal practices in Iran, as they could be active due to a quite different phytocomplex expressed in the particular climatic characteristics and ecosystems of the Iranian territory. It should be pointed out that, considering the research works found in literature, the process of valorization and study of plant species does not often pay particular attention to the aspect of sustainability of eventual systematic exploitation. This aspect is becoming more and more important these days.

Traditional remedies are often effective due to the synergistic activity of a large number of compounds that are part of the plant phytocomplex; therefore, careful research is needed to identify the active molecules. The research work is further complicated by the fact that in some cases, natural remedies act as palliatives. In any case, the evidence that nature has always inspired medicine, constituting itself as a source of inspiration for the development of pharmacological treatments, makes the study of traditional remedies a very important component of basic research in the medicinal and pharmacological field.

A summary of the information in the scientific literature, related to documented traditional medicinal practices and plants studied from a scientific point of view in the same territory, represents a useful tool to plan new researches in order to avoid repeating work already done and to concentrate on apparently effective but not yet scientifically evaluated plants. In our opinion, there is still a large room for scientific works that could deepen the above-stated aspects, encouraging further research in the field.

Author Contributions: Conceptualization, S.M. and H.R.A.; methodology, S.V.; validation, S.V., A.B.; investigation, P.B., R.B., S.S.; resources, S.M.; data curation, P.B.; writing—original draft preparation, P.B.; writing—review and editing, P.B.; supervision, S.M., H.R.A.; project administration, S.V.; funding acquisition, S.M. All authors have read and agreed to the published version of the manuscript.

Funding: The present work has been financially supported by the Ministry of Education and Research (MIUR) of Italy (PRIN: 2017E84AA4_002).

Acknowledgments: The technical support of Dr. Elisa Durini is gratefully acknowledged.

Conflicts of Interest: The authors state no conflict of interest.
References

1. Minaiyan, M.; Ghannadi, A.R.; Afsharipour, M.; Mahzouni, P. Effects of extract and essential oil of Rosmarinus officinalis L. on TNBS-induced colitis in rats. Res. Pharm. Sci. 2011, 6, 13–21.

2. WHO Traditional Medicine Strategy 2014–2023. Available online: https://www.who.int/medicines/publications/traditional/trm_strategy14_23/en/ (accessed on 1 October 2019).

3. Available online: http://www.who.int/medicines/areas/traditional/de_nitions/en/ (accessed on 1 October 2019).

4. Rezaieizadeh, H.; Alizadeh, M.; Naseri, M.; Shams Ardakani, M.R. The Traditional Iranian Medicine Point of View on Health and Disease. Iran. J. Public Health 2009, 38 (Suppl. 1), 169–172.

5. Mojahed, M.; Naseri, M.; Majdzadeh, R.; Keshavarz, M.; Ebadini, M.; Nazem, E.; Isfandivaganij, M.S. Reliability and Validity Assessment of Mizaj Questionnaire: A Novel Self-report Scale in Iranian Traditional Medicine. Iran. Red Crescent Med. J. 2014, 16, e15924, doi:10.5812/ircmj.15924.

6. Amiri, M.S.; Joharchi, M.R. Ethnobotanical investigation of traditional medicinal plants commercialized in the markets of Mashhad, Iran. Anticenna J. Phytomed. 2013, 3, 254–271.

7. Bahmani, M.; Tajeddini, P.; Ezatpour, B.; Rafieian-Kopaei, M.; Naghdi, N.; Asadi-Samani, M. Ethnobotanical study of medicinal plants against parasites detected in Shiraz, southern part of Iran. Der. Pharm. Lett. 2016, 8, 153–160.

8. Bahmani, M.; Zargaran, A.; Rafieian-Kopaei, M.; Saki, K. Ethnobotanical study of medicinal plants used in the management of diabetes mellitus in the Urmia, Northwest Iran. Asian. Pac. J. Trop. Med. 2014, 7 (Suppl. 1), S348–S354.

9. Delfan, B.; Bahmani, M.; Hassanzadazar, H.; Saki, K.; Rafieian-Kopaei, M.; Rashidipour, M.; Bagheri, F.; Sharifi, A. Ethnobotany study of effective medicinal plants on gastric problems in Lorestan province, West of Iran. J. Chem. Pharm. Res. 2015, 7, 483–492.

10. Koochak, H.; Seyyednejad, S.M.; Motamedi, H. Preliminary study on the antibacterial activity of some medicinal plants of Khuzestan (Iran). Asian Pac. J. Trop. Med. 2010, 3, 180–184.

11. Abedini, A.; Roumy, V.; Mahieux, S.; Gohari, A.; Farimani, M.M.; Rivie, C.; Mamee, J.; Sahpaz, S.; Bailleul, F.; Neut, C.; et al. Antimicrobial activity of selected Iranian medicinal plants against a broad spectrum of pathogenic and drug multiresistant micro-organisms. Lett. Appl. Microbiol. 2014, 59, 412–421.

12. Chitsazian-Yazdi, M.; Agnolet, S.; Lorenz, S.; Schneider, B.; Es’haghi, Z.; Kasaian, J.; Khameneh, B.; Iranshahi, M. Foetithiophenes C-F thiophene derivatives from the roots of Ferula foetida. Pharm. Biol. 2015, 53, 710–714.

13. Baharvand-Ahmadi, B.; Bahmani, M.; Naghdi, N.; Saki, K.; Baharvand-Ahmadi, S.; Rafieian-Kopaei, M. Medicinal plants used to treat infectious and non-infectious diseases of skin and skin appendages in city of Urmia, northwest Iran. Der. Pharm. Lett. 2015, 7, 189–196.

14. Pirbalouti, A.G.; Malekpoor, F.; Enteshari, S.; Yousefi, M.; Mottaz, H.; Hamed, B. Antibacterial Activity of Some Folklore Medicinal Plants Used by Bakhtiari Tribal in Southwest Iran. Int. J. Biol. 2010, 2, 2, doi:10.5539/ijb.v2n2p55.

15. Shahidi, B. Evaluation of antibacterial properties of some medicinal plants used in Iran. J. Ethnopharmacol. 2004, 94, 301–305, doi:10.1016/j.jep.2004.06.007.

16. Lotfipour, F.; Nazemiyeh, H.; Fathi-Azad, F.; Garaei, N.; Arami, S.; Talat, S.; Sadegpour, F.; Hasanpour, R. Evaluation of Antibacterial Activities of Some Medicinal Plants from North-West Iran. Iran. J. Basic Med. Sci. 2008, 11, 80–85.

17. Nariman, F.; Eftekhar, F.; Habibi, Z.; Falsafi, T. Anti-Helicobacter pylori Activities of Six Iranian Plants. Helicobacter 2004, 9, 146–151.

18. Razavi, S.M.; Zarrini, G.; Molavi, G.; Ghaseimi, G. Bioactivity of Malva Sylvestris L., a Medicinal Plant from Iran. J. Basic Med. Sci. 2011, 14, 574–579.

19. Imani, Z.; Asgarpahan, J.; Hashemi, F.; Hashemi Hezaveh, J. Composition and antifungal activity of Zmeloria majdae essential oil. Curr. Med. Mycol. 2015, 1, 13–19.

20. Sepahi, S.; Ghorani-Azam, A.; Sepahi, S.; Assoodeh, A.; Rostami, S. In Vitro Study to Evaluate Antibacterial and Non-haemolytic Activities of Four Iranian Medicinal Plants. West Indian Med. J. 2014, 63, 289–293.

21. Afshar, F.H.; Delazar, A.; Asnaashari, S.; Vaez, H.; Zolali, E.; Asgharian, P. Screening of Anti-Malarial Activity of Different Extracts Obtained from Three Species of Scrophularia Growing in Iran. Iran. J. Pharm. Res. 2018, 17, 668–676.
22. Pirbalouti, A.G.; Bahmani, M.; Avijgan, M. Anti-Candida Activity of Some of the Iranian Medicinal Plants. *Electron. J. Biol.* 2009, 5, 85–88.

23. Alinezhad, H.; Baharfar, R.; Zare, M.; Azimi, R.; Nabavi, S.F.; Nabavi, S.M. Biological activities of ethyl acetate extract of different parts of *Hyssopus angustifolius*. *Pharm. Biol.* 2012, 50, 1062–1066, doi:10.3109/13880209.2012.655859.

24. Dehghan, H.; Sarrafi, Y.; Salehi, P. Antioxidant and antidiabetic activities of 11 herbal plants from Hrycania region, Iran. *J. Food Drug Anal.* 2016, 24, 179–188.

25. Haddad, F.M.H.; Mahbodfar, H.R.; Zamani, Z.; Ramazani, A. Antimalarial evaluation of selected medicinal plant extracts used in Iranian traditional medicine. *Iran. J. Basic Med. Sci.* 2017, 20, 413–422.

26. Ebrahimabadi, A.H.; Ebrahimabadi, E.H.; Djafari-Bidgoli, Z.; Kashi, F.J.; Mazoochi, A.; Batoooli, H. Composition and antioxidant and antimicrobial activity of the essential oil and extracts of *Stachys inflata* Benth from Iran. *Food Chem.* 2010, 119, 452–458.

27. Dehshiri, M.M.; Aghamollaei, H.; Zarini, M.; Nabavi, S.M.; Mirzaei, M.; Loizzo, M.R.; Nabavi, S.F. Antioxidant activity of different parts of *Tetrataenium lasiopetalum*. *Pharm. Biol.* 2013, 51, 1081–1085, doi:10.3109/13880209.2013.775594.

28. Fathiazad, F.; Mazandarani, M.; Hamedeyazdan, S. Phytochemical analysis and antioxidant activity of *Hyssopus officinalis* L. from Iran. *Adv. Pharm. Bull.* 2011, 1, 63–67.

29. Pourmorad, F.; Hosseinimehr, S.J.; Shahabimajd, N. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. *Afr. J. Biotechnol.* 2006, 5, 1142–1145.

30. Dehghan, H.; Sarrafi, Y.; Salehi, P.; Ebrahim, S.N. α-Glucosidase inhibitory and antioxidant activity of furanocoumarins from *Heracleum persicum*. *Med. Chem. Res.* 2017, 26, 849–855.

31. Khazaelli, P.; Goldoozian, R.; Sharififar, F. An evaluation of extracts of five traditional medicinal plants from Iran on the inhibition of mushroom tyrosinase activity and scavenging of free radicals. *Int. J. Cosmet. Sci.* 2009, 31, 375–381, doi:10.1111/j.1468-2494.2009.00503.x.

32. Hamzeloo-Moghadam, M.; Khalaj, A.; Malekmohammadi, M. Cytotoxic Activity and Apoptosis Induction of *Hypericum scabrum* L. in *Iran. Red Crescent Med. J.* 2015, 17, e19453.

33. Sonboli, A.; Mojarrad, M.; Ebrahim, S.N.; Enayat, S. Free Radical Scavenging Activity and Total Phenolic Content of Methanolic Extracts from Male Inflorescence of *Salix aegyptiaca* Grown in Iran. *Iran. J. Pharm. Res.* 2010, 9, 293–296.

34. Jassbi, A.R.; Firuzi, O.; Miri, R.; Salhe, S.; Zare, S.; Zare, M.; Masroorabanari, M.; Chandran, J.N.; Schneider, B.; Baldwin, I.T. Cytotoxic activity and chemical constituents of *Anthemis mirheydari*. *Pharm. Biol.* 2016, 54, 2044–2049, doi:10.3109/13880209.2016.1141220.

35. Esmaeilbeg, M.; Koulhayeh, S.A.; Amirghofran, Z. An Investigation of the Growth Inhibitory Capacity of Several Medicinal Plants from Iran on Tumor Cell Lines. *Iran. J. Cancer Prev.* 2015, 8, e4032.

36. Asadi-Samani, M.; Rafieian-Kopaei, M.; Lorigooini, Z.; Shirzad, H. A screening of growth inhibitory activity of Iranian medicinal plants on prostate cancer cell lines. *Biomedicine* 2018, 8, 16–21.

37. Sahranavard, S.; Naghibi, F.; Mosaddegh, M.; Esmaeili, S.; Sarkhail, P.; Taghvai, M.; Ghafari, S. Cytotoxic activities of selected medicinal plants from Iran and phytochemical evaluation of the most potent extract. *Res. Pharm. Sci.* 2010, 4, 133–137.

38. Hasanein, P.; Feleghari, Z.; Emamjomeh, A. Preventive effects of *Salvia officinalis* L. against learning and memory deficit induced by diabetes in rats: Possible hypoglycaemic and antioxidant mechanisms. *Neurosci. Lett.* 2016, 622, 72–77.

39. Ebrahimzadeh, M.A.; Pourmorad, F.; Bekhradnia, A.R. Iron chelating activity, phenol and flavonoid content of some medicinal plants from Iran. *Afr. J. Biotechnol.* 2008, 7, 3188–3192.

40. Adhami, H.R.; Farsam, H.; Krenn, L. Screening of Medicinal Plants from Iranian Traditional Medicine for Acetylcholinesterase Inhibition. *Phytother. Res.* 2011, 25, 1148–1152.

41. Abbas-Mohammadi, M.; Farimani, M.M.; Salehi, P.; Ebrahim, S.N.; Sonboli, A.; Kelso, C.; Skropeta, D. Acetylcholinesterase-inhibitory activity of Iranian plants: Combined HPLC/bioassay-guided fractionation, molecular networking and docking strategies for the dereplication of active compounds. *J. Pharm. Biomed. Anal.* 2018, 158, 471–479.

42. Lorigooini, Z.; Kobarakfard, F.; Ayatollahi, A. Anti-platelet aggregation assay and chemical composition of essential oil from *Allium atrovioletaceum* Boiss growing in Iran. *Int. J. Biosci.* 2014, 5, 151–156.
43. Jazayeri, S.B.; Amanlou, A.; Ghanadian, N.; Pasalar, P.; Amanlou, M. A preliminary investigation of anticholinesterase activity of some Iranian medicinal plants commonly used in traditional medicine. *DARU J. Pharm. Sci.* **2014**, *22*, 17.

44. Asgary, S.; Nader, I.G.H.; Sarrafzadegan, N.; Mohammadiard, N.; Mostafavi, S.; Vakili, R. Antihypertensive and Antihyperlipidemic Effects Of *Achillea Wilhelmsii*. *Drugs Exp. Clin. Res.* **2000**, *26*, 89–93.

45. Karimi, G.; Hosseinzadeh, H.; Etehad, N. Evaluation of the Gastric Antiulcerogenic Effects of Portulaca oleracea L. Extracts in Mice. *Phytother. Res.* **2004**, *18*, 484–487.

46. Khonche, A.; Huseini, H.F.; Abdi, H.; Mohtashami, R.; Nabati, F.; Kianbakht, S. Efficacy of *Mentha pulegium* extract in the treatment of functional dyspepsia: A randomized double-blind placebo-controlled clinical trial. *J. Ethnopharmacol.* **2017**, *206*, 267–273.

47. Niazmand, S.; Khooshnood, E.; Derakhshan, M. Effects of *Achillea wilhelmsii* on rat’s gastric acid output at basal, vagotomized, and vagal-stimulated conditions. *Pharmacogn. Mag.* **2010**, *6*, 282–285.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).