Prevalence and risk factors for Salmonella spp. colonization in broiler flocks in Shiraz, southern Iran

Maryam Ansari-Lari*, Shahram Shekarforoush, Samira Mehrshad, Hosna Safari

Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.

*Correspondence: Maryam Ansari-Lari, MD, MPH
Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
E-mail: ansari@shirazu.ac.ir

SHORT COMMUNICATION

Salmonella spp. are important food borne pathogens worldwide that frequently infect poultry flocks. This cross-sectional study was conducted to determine the prevalence of Salmonella spp. colonization in broiler flocks in Shiraz (southern Iran) and to find the possible association of infection status with some potential risk factors including vaccination program and use of antibiotics. During October 2009 to April 2010, a total of 40 broiler flocks were selected in slaughterhouse and 20 cloacae contents were collected from each flock. Every five cloacae contents were pooled and investigated for Salmonella spp. using appropriate culture methods. The flock was considered positive if any of the pooled samples turned positive in culture. Statistical analysis was performed using multiple logistic regression. Nine out of 40 flocks (22.50%, 95% CI: 9-36) were positive for Salmonella spp. colonization. Nearly 75.00% of flock owners reported that they used antibiotics during production period, more frequently fluoroquinolones, combination of trimethoprim-sulfonamides (TMP/SU) and tetracycline. Nearly 60.00% of the flocks which had used TMP/SU were positive for Salmonella spp. compared with 10.00% of the flocks which did not use this antibiotic (p = 0.006). Increasing flock age was associated with a decreased chance of Salmonella spp. detection (p = 0.003). In flocks which received infectious bronchitis vaccine, 36.00% were positive for Salmonella spp. whereas this was 15.00% for flocks which did not receive this vaccine (p = 0.08). Careful monitoring of antibiotics use and further studies to determine the most appropriate vaccination program in the field is recommended.

© 2014 Urmia University. All rights reserved.
Introduction

Salmonella spp. are important food borne pathogens worldwide that frequently infect poultry flocks. Poultry become infected with Salmonella spp. by direct contact with infected birds, consumption of contaminated feed or water and through the environment. Contamination of poultry and poultry products with Salmonella spp. seems to be mostly linked to flock colonization. Consumption of raw or undercooked contaminated poultry products can induce acute gastroenteritis in humans and reducing the prevalence of colonization at poultry flocks is likely to reduce the risk of human salmonellosis from broiler chicken consumption.

The Salmonella spp. prevalence in broiler flocks varied considerably between countries, nearly 0% in Sweden and 68.20% in Hungary,4 76.90% in Canada,5 69.80% in France,6 41.30% in Turkey,7 and 25.00% in Denmark.8 Several management and environmental risk factors have been shown to be associated with Salmonella spp. infection of the flocks. In epidemiological studies, inadequate cleaning and disinfection have been reported as important risks for Salmonella spp. persistence in poultry houses.9,10,11 Also, control of rodents and insects between production periods is an important factor for reducing Salmonella spp. infection.12 However, there is limited information about the association of Salmonella spp. with vaccination program (for infections other than salmonella) and using antibiotics in broiler flocks.

There are several studies concerning isolation, characterization, and prevalence of Salmonella spp. from poultry carcasses, poultry meat and broiler flocks in Iran.13-16 However, there is no epidemiologic study investigating the prevalence and flock level risk factors of salmonella in broilers in Iran. Therefore, in the present study we aimed at determining the prevalence of Salmonella spp. colonization in broiler flocks in Shiraz (southern Iran) and its possible associations with some less investigated risk factors including vaccination program and use of various types of antibiotics during the production period.

Materials and Methods

This is a cross-sectional study which was conducted in Shiraz, the capital of Fars province in southern Iran. During October 2009 to April 2010, a total of 40 broiler flocks were selected at the time of slaughtering and 20 cloacal contents were collected from each flock in poultry slaughterhouses. Every five cloaca contents were pooled and approximately 1 g of pooled samples was inoculated into the lactose broth (Merck, Darmstadt, Germany) before being incubated at 37 °C for 24 hr. One mL of the lactose broth was then used to inoculate into 10 mL of cystine-selenite (Merck, Darmstadt, Germany) and another 0.1 mL was used to inoculate into Rappaport Vassiliadis broth (RV broth; Merck, Darmstadt, Germany). The latter cultures were incubated for 18-24 hr at 37 °C and 41.5 °C. Loop full inoculums were subsequently streaked on Salmonella-Shigella agar (SS agar; Merck, Darmstadt, Germany) and xylose lysine deoxycholate agar (XLD agar; Merck, Darmstadt, Germany). After incubation at 37 °C for 24 hr, the suspected colonies streaked on Brilliant Green agar (BG agar; Merck, Darmstadt, Germany) and the isolates were identified based on their colonies appearance, Gram stain, Triple Sugar Iron agar TSI, Indol, methyl red, Voges-Proskauer and Citrate tests (IMViC), urease, Lysin and hydrolyzes the ortho-Nitrophenyl-β-D-galactoside (ONPG) tests. The flock was considered positive if any of the four pooled samples turned positive in culture as described by Arsenault et al.17

Data about age and weight at the time of slaughter, flock size, use and type of antibiotics and vaccination program were collected by interviewing the farm owners. Data about cumulative mortality was available for 21 out of 40 flocks. Prevalence of infection and corresponding 95% confidence interval (CI) was estimated. Possible association of Salmonella spp. colonization status of the flock with risk factors was investigated using uni-variable and multi-variable logistic regression analysis. Variables with p-value equal or less than 0.2 were included in the multivariable logistic regression analysis. Final logistic model was fitted based on stepwise backward elimination procedure and significance of Wald statistics. Data were analyzed using SPSS statistical software (Version 16.0; SPSS, Inc., Chicago, USA) and a p-value less than 0.05 was considered statistically significant in the final model.

Results

Overall, nine out of 40 flocks (22.5%, 95% CI: 9-36) were positive for Salmonella spp. Average (± SD) age and weight of flocks at the time of slaughter was 52 ± 5 days and 2370 ± 216 g, respectively. Average cumulative mortality was 8.30%. Summary statistics for flocks attributes according to Salmonella spp. colonization status of the flocks are presented in Table 1. The mean weight of the positive flocks (2320 ± 164 g) was slightly lower than the negative ones (2390 ± 229 g); however, the difference was not statistically significant (p = 0.43). Nearly 75.00% of flock owners reported that they used one or more antibiotics

| Attribute          | Positive flocks (n = 9) | Negative flocks (n = 31) | p-value |
|--------------------|-------------------------|---------------------------|---------|
| Weight (g)         | 2322 ± 164              | 2388 ± 229                | 0.43    |
| Age (day)          | 49.70 ± 5.30            | 52.40 ± 4.40              | 0.20    |
| Flock size (n)     | 28389 ± 18327           | 21746 ± 11569             | 0.13    |
| Mortality (%)      | 8.90 ± 7.50             | 8.10 ± 4.20               | 0.79    |
during production period, more frequently fluoro-
quinolones, combination of trimethoprim-sulfonamides
(TMP/SU) and tetracycline.

Based on uni-variable analysis, among those farms
which had reported using antibiotics during production
period, TMP/SU showed association with Salmonella spp.
colonization (p = 0.003); nearly 60.00% of the flocks
which had used TMP/SU were positive for Salmonella spp.
compared with 10.00% of the flocks which did not
use this antibiotic. Using two or more type of antibiotics
did not show significant association with Salmonella spp.
colonization of the flock (p = 0.21).

Table 2. Multivariable logistic regression analysis of risk factors for Salmonella in 40 broiler flocks from Shiraz, southern Iran.

| Attribute                  | Wald  | Standard error | p-value | Odds ratio |
|----------------------------|-------|----------------|---------|------------|
| Trimethoprim sulfonamides  |       |                |         |            |
| Yes                        | 7.60  | 1.36           | 0.006   | 43.10      |
| No*                        | -     | -              | -       | 1.00       |
| Age (day)                  | 8.70  | 0.02           | 0.003   | 0.93       |
| Infectious bronchitis vaccine|     |                |         |            |
| Yes                        | 3.10  | 1.25           | 0.080   | 8.90       |
| No*                        | -     | -              | -       | 1.00       |

*Reference category.

All the flocks received Newcastle and infectious bursal
disease vaccines; however, only 35.00% received
infectious bronchitis (IB) vaccine. In flocks which received
IB vaccines, 36.00% were positive for Salmonella spp.
whereas this measure was 15.00% for flocks which did not
receive this vaccine (p = 0.15).

Overall, four variables including using TMP/SU (p=0.003),
IB vaccination (p = 0.15), age at slaughter (p = 0.13) and
flock size (p = 0.20) were included in the logistic model.
Through stepwise backward elimination method with
excluding the intercept, three variables were remained
in the final model (Table 2). Results showed that odds
of infection decreased with increasing age of the flock
(p = 0.04) and increased in the case of using TMP/SU
(p = 0.007) and IB vaccination (p = 0.08).

Discussion

The prevalence of Salmonella spp. in the flocks in the
present study was 22.50% which is comparable with some
European countries such as Ireland (27.00%),18 and
Denmark (25.00%).8 However, possibility of false negative
results and underestimation of the prevalence of Salmonella spp.
could not be eliminated because sensitivity of microbiological
methods used to isolate Salmonella spp. is limited.

Nearly 75.00% of the flock owners reported that they
use various types of antibiotics during the production
period, more frequently fluoroquinolones, combination of
TMP/SU and tetracycline. Many poultry producers use anti-
biotics for growth promotion and/or disease prophylaxis
and treatment. Field studies concerning associations between
using antibiotics and Salmonella spp. prevalence in
poultry flocks are very limited and indicated that using
antibiotics is associated with decreasing prevalence of
Salmonella spp. in poultry flocks.3,19 This is in contrast to
the finding of the present study which showed that using
TMP/SU in the flocks increased the odds of Salmonella spp.
Due to possibility of confounding effect of other
management practices on the observed association, flock
age, mean weight at slaughter and flock size were
compared between flocks with and without use of
TMP/SU. No significant difference was detected (data not
shown). Resistance of Salmonella spp. to TMP/SU has
been reported in an in vitro study20 and in a study by
Dallal et al.13 Taken together, it could be concluded that
this antibiotic may not be a good choice for widespread
use in poultry flocks; and use of antibiotics in the poultry
farms needs careful monitoring.

Significant negative association was observed between
infection status of the flock and age at slaughter. Vertical
transmission of Salmonella spp. from parent flocks may be
a possible explanation for this observation. This is in
contrast to the results for another important food borne
pathogen, campylobacter, which had been shown to have
positive association with age of the flock.21

Association between IB vaccination and Salmonella
spp. was nearly significant in our final model (p = 0.08)
which could be attributed to the small sample size in our
study. Although IB vaccination is used in a nationwide
program in the country, significant proportion of farm
owners did not use IB vaccination in their flocks due to
their undesirable personal experience with this vaccine in
the field.22 Therefore, we had the opportunity to evaluate
the association of the IB vaccine and Salmonella spp. in
broiler flocks. To the best knowledge of authors, the
association of Salmonella spp. with IB vaccination in
broiler flocks has not been addressed previously. The only
exception is a recent study by Volkova et al. which
investigated the association between vaccination against
protozoal and viral infections and Salmonella spp. in
broiler flocks.23 They indicated that increased dosage of IB
viral vaccine delivered via spraying to the 1-day-old birds
was linked to a higher probability of detecting Salmonella spp.
in the flock during rearing and on the broiler
carcasses at the pre-chilling and post-chilling points in
processing,23 which is in agreement with our finding in the
present study. Before providing any explanation for this
observation, future studies with larger sample size in this
context are warranted.

In conclusion, the overall prevalence of Salmonella spp.
colonization was 22.50% in our studied flocks. Age at
slaughter, TMP/SU antibiotics and IB vaccination were
associated with Salmonella spp. colonization of the flock.
Careful monitoring of using antibiotics and further studies
to determine the most appropriate vaccination program in
the field is recommended.
Acknowledgments

The authors would like to thank poultry farmers for their help and cooperation. This study was supported by Shiraz University, Shiraz, Iran.

References

1. White PL, Baker AR, James WO. Strategies to control Salmonella and Campylobacter in raw poultry products. Rev Sci Tech 1997; 16(2): 525-541.
2. Corry JEL, Allen VM, Hudson WR, et al. Sources of Salmonella on broiler carcasses during transportation and processing: Modes of contamination and methods of control. J Appl Microbiol 2002; 92(3): 424-432.
3. Heyndrickx M, Vandekerckhove D, Herman L, et al. Routes for salmonella contamination of poultry meat: Epidemiological study from hatchery to slaughterhouse. Epidemiol Infect 2002; 129(2): 253-265.
4. Report of the task force on zoonoses data collection on the analysis of the baseline survey on the prevalence of Salmonella in holdings of broiler flocks of Gallus gallus, Part B. Europ Food Safety Auth J 2007; 101: 1-86.
5. Chambers JR, Bisaillon JR, Labbe Y, et al. Salmonella prevalence in crops of Ontario and Quebec broiler chickens at slaughter. Poult Sci 1998; 77(10): 1497-1501.
6. Rose N, Beaudette F, Drouin P, et al. Risk factors for Salmonella enterica subsp. enterica contamination in French broiler chicken flocks at the end of the rearing period. Prev Vet Med 1999; 39(4): 265-277.
7. Carli KT, Eyigor A, Caner V. Prevalence of Salmonella serovars in chickens in Turkey. J Food Prot 2001; 64(11): 1832-1835.
8. Chadfield M, Skov M, Christensen J, et al. An epidemiological study of Salmonella enterica serovar 4, 12:b:- in broiler chickens in Denmark. Vet Microbiol 2001; 82(3): 233-247.
9. Davies RH, Breslin MF. Observations on the distribution and persistence of Salmonella enterica serovar enteritidis phage type 29 on a cage layer farm before and after the use of competitive exclusion treatment. Br Poult Sci 2003; 44(4): 551-557.
10. Namata H, Meroc E, Aerts M, et al. Salmonella in Belgian laying hens: An identification of risk factors. Prev Vet Med 2008; 83(3-4): 323-336.
11. Rose N, Beaudette F, Drouin P, et al. Risk factors for Salmonella persistence after cleansing and disinfection in French broiler-chicken houses. Prev Vet Med 2000; 44(1-2): 9-20.
12. Carrique-Mas JJ, Barnes S, McLaren I, et al. Comparison of three plating media for the isolation of Salmonella from poultry environmental samples in Great Britain using ISO 6579:2002 (Annex D). J Appl Microbiol 2009; 107(6): 1976-1983.
13. Dallal MMS, Doyle MP, Rezadehbashi M, et al. Prevalence and antimicrobial resistance profiles of Salmonella serotypes, Campylobacter and Yersinia spp. isolated from retail chicken and beef, Tehran, Iran. Food Control 2010; 21(4): 388-392.
14. Jamshidi A, Bassami MR, Afshari-Nic S. Identification of Salmonella spp. and Salmonella typhimurium by a multiplex PCR-based assay from poultry carcasses in Mashhad-Iran. Int J Vet Res 2009; 3(1): 43-48.
15. Zahraei Salehi T, Mahzounieh M, Saeedzadeh A. The isolation of antibiotic-resistant Salmonella from intestine and liver of poultry in Shiraz province of Iran. Int J Poult Sci 2005; 4(5): 320-322.
16. Jafari RA, Ghorbanpour M, Jaideri A. An investigation into Salmonella Infection status in backyard chickens in Iran. Int J Poult Sci 2007; 6(3): 227-229.
17. Arsenault J, Letellier A, Quesy S, et al. Prevalence and risk factors for salmonella spp. and campylobacter spp. cecal colonization in broiler chicken and turkey flocks slaughtered in Quebec, Canada. Prev Vet Med 2007; 81(4): 250-264.
18. Gutierrez M, Fanning J, Murphy A, et al. Salmonella in broiler flocks in the republic of Ireland. Foodborne Pathog Dis 2009; 6(1): 111-120.
19. Cardinale E, Tall F, Gueye EF, et al. Risk factors for Salmonella enterica subsp. enterica infection in Senegalese broiler-chicken flocks. Prev Vet Med 2004; 63(3-4): 151-161.
20. Gyles CL. Antimicrobial resistance in selected bacteria from poultry.Anim Health Res Rev 2008; 9(2): 149-158.
21. Ansari-Lari M, Hosseinzadeh S, Shekarforoush SS, et al. Prevalence and risk factors associated with campylobacter infections in broiler flocks in Shiraz, southern Iran. Int J Food Microbiol 2011; 144(3): 475-479.
22. Karimi-Madab M, Ansari-Lari M, Asasi K, et al. Risk factors for detection of bronchial casts, most frequently seen in endemic H9N2 avian influenza infection, in poultry flocks in Iran. Prev Vet Med 2010; 95(3-4): 275-280.
23. Volkova VV, Wills RW, Hubbard SA, et al. Associations between vaccinations against protozoal and viral infections and Salmonella in broiler flocks. Epidemiol Infect 2011; 139(2): 206-215.