The Association Between Healthy Lifestyle Behaviours and Coronavirus Protective Behaviours

Gabriel Nudelman1 · Shira Peleg2 · Shoshana Shiloh2

Accepted: 15 January 2021 / Published online: 10 February 2021
© International Society of Behavioral Medicine 2021

Abstract

Background Based on models of cross-behavioural associations and the role of past behaviour in predicting behaviour, an association was hypothesized between healthy lifestyle behaviours prior to the COVID-19 pandemic and adherence to coronavirus protective behaviours. Self-assessed health was also examined as a potential moderator.

Methods A cross-sectional sample (N = 463) completed online questionnaires during a COVID-19-related lockdown that measured engagement in healthy lifestyle behaviours (e.g., exercising and eating fruits and vegetables), adherence to coronavirus protective behaviours (e.g., wearing a face mask and practicing social distancing), and self-assessed health (subjective evaluation of overall health).

Results As predicted, higher engagement in healthy lifestyle behaviours prior to the pandemic was significantly correlated with higher adherence to coronavirus protective behaviours (Pearson r(459) = .308, p < .001). Adherence levels were higher than engagement in healthy lifestyle behaviours, and self-assessed health was related to the latter but not to the former. Moderation was examined using model 1 in PROCESS for SPSS; as expected, the association was stronger among individuals with higher levels of self-assessed health (coefficient 95% CI [.04, .20]).

Conclusions The findings highlight cross-behavioural facilitating processes, specifically between lifestyle behaviours and adherence to recommended protective behaviours during the pandemic. They also draw attention to the need to address individuals whose poorer evaluations of their general health might prevent them from implementing their behavioural intentions.

Keywords Healthy lifestyle behaviours · Adherence to behavioural recommendations · Coronavirus · Cross-behaviour associations · Self-assessed health · Self-rated health

Introduction

A novel coronavirus has caused the COVID-19 global pandemic [1]. With no vaccine to prevent the highly contagious disease, people around the world have been instructed to mitigate its transmission by adopting behavioural measures ranging from frequent hand washing to strict self-isolation. While these protective behaviours are currently the public’s only weapon against the pandemic [2], not everybody adheres to them to the same extent. The present study was undertaken to examine the effects of regular healthy lifestyle behaviours and self-assessed health status on differences in adherence to COVID-19 protective behaviours.

Predicting Current Health Behaviours From Past Behaviours

Research points to the tendency of health behaviours to have high temporal stability, making past behaviours among the strongest predictors of present health behaviour [e.g., 3, 4, 5, 6]. This might reflect implicit or nonconscious processes that affect behaviour, such as behavioural scripts [7] or routines [8, 9]. However, the coronavirus pandemic is new and most people have had no prior experience with such an occurrence. Nevertheless, there might be a relationship between the new recommended coronavirus-related protective behaviours and healthy lifestyle behaviours. Indeed, numerous studies have suggested that engaging in one health behaviour might result in a higher likelihood of engaging in other health behaviours.

1 The Academic College of Tel Aviv-Yafo, Rabenu Yeruham St 2, Tel Aviv-Yafo, Israel
2 Tel Aviv University, Tel Aviv-Yafo, Israel
Behaviours and adherence to coronavirus protective behaviours. Higher well-being and better perceived health outcomes related to engagement in health behaviours were suggested as mechanisms that facilitate cross-behavioural associations [21, 37]. Therefore, we decided to test this proposition by using self-assessed health as a measure of well-being and better-perceived health outcomes [32, 38, 39]. We predicted that the association between healthy lifestyle behaviours and coronavirus protective behaviours would be stronger among individuals with higher, compared with lower, self-assessed health. This hypothesis was compatible with our previous predictions, in that individuals with poorer self-assessed health may be less able to perform certain health behaviours due to their limited mental and/or physical functioning when higher levels of effort are required. On the other hand, limited functioning is not expected to impede the performance of health behaviours among individuals with better self-assessed health, resulting in stronger predicted associations between healthy lifestyle behaviours and coronavirus protective behaviours.

To sum up, the research hypotheses were as follows:

Hypothesis 1: Higher engagement in healthy lifestyle behaviours would be related to higher adherence to coronavirus protective behaviours.

Hypothesis 2: Adherence to coronavirus protective behaviours would be higher on average than engagement in healthy lifestyle behaviours.

Hypothesis 3: Self-assessed health would be related more to engagement in healthy lifestyle behaviours than to adherence to coronavirus protective behaviours.

Hypothesis 4: Self-assessed health would moderate the relationship between healthy lifestyle behaviours and coronavirus protective behaviours: the relationship would be stronger among individuals with higher self-assessed health.

Method

Participants

The initial dataset included a representative sample of 537 participants. However, due to quality control procedures, the final number of individuals in the analyses was 463, of which 243 were women (52.5%). This sample size was

1 Fifteen participants had duplicate IP addresses; 11 completed the survey in an unreasonably short time, defined as three times the Semi-Quartiles Range lower than the Mean time; 13 reported having contracted COVID-19 (which may have influenced their engagement in protective behaviors); 35 reported that Hebrew was not their first language, which may have caused difficulty in understanding the survey. Nevertheless, similar results were found when participants with COVID-19 and those whose first language was not Hebrew were included in the analysis (N=511).
adequate for our purposes: minimum sample size, based on prior research \cite{11, 12, 17} and calculated using G*Power 3.1 \cite{40}, was 359 \((\alpha = 0.05, 1−\beta = 0.90, f^2 = 0.04)\). Age ranged between 18 and 70 years \((M = 40.01, SD = 14.90)\). Education ranged between 8 and 29 school years \((M = 14.45, SD = 2.41)\), with 12 participants unreported (2.6%).

Measures

Coronavirus Protective Behaviours. A list of 17 behavioural recommendations aimed at preventing and containing the COVID-19 pandemic was compiled (see Appendix 1), based on official guidelines \cite{41}. The list included behaviours such as wearing a face mask and washing hands frequently with soap and water. Participants were instructed to indicate the degree to which they adhere to each recommendation on a 7-point scale \((1 = \text{not at all} \text{ and } 7 = \text{com} \text{plete adherence})\). An average was calculated across items to represent overall adherence to coronavirus protective behaviours, with higher scores indicating higher engagement (Cronbach’s \(\alpha = 0.88\)).

Healthy Lifestyle Behaviours. A list of 12 healthy lifestyle behaviours was developed (see Appendix 1) that included items such as eating at least five fruits and vegetables a day and engaging in at least 150 min of moderate-intensity aerobic physical activity or 75 min of vigorous-intensity aerobic physical activity throughout the week \cite{25}. The items on the list represented all behavioural clusters according to the Health Behaviour Taxonomy, a cognitive schema of lay people’s perceptions of health behaviours \cite{42}. Participants were instructed to refer to their health habits in general, prior to the coronavirus situation, and asked to indicate the extent to which they perform each behaviour on a 7-point scale \((1 = \text{not at all} \text{ and } 7 = \text{to a very great extent})\). An average was calculated across the behaviours to represent overall engagement in healthy lifestyle behaviours, with higher scores indicating higher engagement and engagement (Cronbach’s \(\alpha = 0.76\)).

Self-Assessed Health. Participants were asked the following question: “How do you assess your health in general?” Responses were marked on a 7-point scale \((1 = \text{poor} \text{ and } 7 = \text{excellent})\).

Procedure

The study was approved by Tel Aviv University’s Institutional Review Board. It was part of a larger project that included additional measures related to the pandemic. The study was conducted online using the Qualtrics platform and distributed by a well-known survey company\(^3\) aiming at collecting a representative sample of the population. Participants first read an explanation about the study and were assured that participation was anonymous. After checking for eligibility (age over 18 years), participants who expressed their consent were presented with the study measures in the following order: demographic variables, self-assessed health, coronavirus protective behaviours, and healthy lifestyle behaviours. Participants were reimbursed with a nominal sum of about $2. The data supporting the findings of this study are openly available at \url{https://osf.io/4dtmw/}.

\(^2\) The goal of the larger project was to examine various perceptions, coping styles, and behaviours related to COVID-19. It included measures of coronavirus representations, perceived threat, coping strategies, anxiety, and trust in authorities.

\(^3\) \url{https://www.panel4all.co.il}
Results

Table 1 presents means, standard deviations, and bivariate correlations among study variables. Age and gender were significantly correlated with adherence to coronavirus protective behaviours: older participants and women displayed higher levels of adherence to protective behaviours than younger participants and men. Consequently, these variables were statistically controlled for in all subsequent analyses.

Table 1 Results of Bootstrap Moderation Test Predicting Adherence to Coronavirus Protective Behaviours
Coefficient
Healthy lifestyle behaviours
Self-assessed health
Healthy lifestyle behaviours × Self-assessed health
Age
Gender

Healthy lifestyle behaviours were the predicting variable; self-assessed health was the moderating variable; age and gender were entered as covariates. Predictors were centred prior to analysis.

SE standard error, LL lower limit of 95% confidence interval, UL upper limit of 95% confidence interval

**p < .01

N = 463

Consistent with hypothesis 1, there was a significant positive correlation between healthy lifestyle behaviours and coronavirus protective behaviours, $r(459) = .31$, $p < .001$. The correlation was of medium effect size [43], and the highest of all the correlations among study variables. Moreover, sensitivity analysis wherein familiar behaviours were removed from the calculation of the coronavirus protective behaviour score resulted in the same correlation (see Appendix 1). Hypothesis 2 was also supported: the average adherence to coronavirus protective behaviours was significantly higher than the average engagement in healthy lifestyle behaviours, $F(1, 460) = 30.70$, $MSE = .75$, $p < .001$, partial $\eta^2 = .06$ (Table 1). Consistent with hypothesis 3, self-assessed health was positively and significantly correlated with healthy lifestyle behaviours, $r(459) = .17$, $p < .001$, but not with coronavirus protective behaviours, $r(459) = .05$, $p > .05$, and the difference between the two correlations was significant, $Z = 2.24$, $p < .05$, Cohen’s $q = .12$ [44].

To test hypothesis 4, a moderation effect was examined using Model 1 in the PROCESS macros for SPSS v3.0 [45], with number of bootstrap samples set to 5000 and confidence intervals at 95%. Healthy lifestyle behaviours were entered as the predictor, behaviours to reduce coronavirus transmission as the predicted variable, self-assessed health as the moderator, and age and gender as covariates. The model was significant, $F(5, 457) = 16.19$, $MSE = .98$, $p < .001$, $R^2 = .15$. As expected, self-assessed health values are the 16th, 50th, and 84th percentiles, respectively.

Note: $N = 463$. Self-assessed health values are the 16th, 50th, and 84th percentiles, respectively.
health was a significant moderator of the relationship (Table 2): higher levels of self-assessed health corresponded to a stronger association between healthy lifestyle behaviours and adherence to coronavirus protective behaviours (Fig. 1).

Discussion

The goal of the current study was to examine potential sources of the variance in adherence to protective behaviours aimed at reducing COVID-19 transmission. As expected, engagement in healthy lifestyle behaviours prior to the outbreak of the pandemic was found related to adherence to coronavirus protective behaviours. In addition, adherence to coronavirus protective behaviours was higher than engagement in healthy lifestyle behaviours; and the latter, but not the former, was associated with self-assessed health. Moreover, in line with our fourth hypothesis, the association between healthy lifestyle behaviours and coronavirus protective behaviours was stronger among people with higher, compared with lower, self-assessed health.

Healthy Lifestyle Behaviours as Predictors of Coronavirus Protective Behaviours

To the best of our knowledge, this is the first empirical evidence of cross-behavioural effects between healthy lifestyle behaviours and situationally unique behaviours demanded as a protection from a pandemic. The findings are consistent with prior reports on cross-behaviour associations [10, 13], and support the importance of considering the interconnectedness among health-related behaviours [11]. Several explanations have been offered to account for cross-behaviour effects, some even leading to contradictory predictions. For example, in one study, engagement in a particular health behaviour was expected to facilitate engagement in other behaviours through shared cognitions [17]. In another, engagement in a health behaviour was expected to hinder engagement in other behaviours due to compensatory health beliefs whereby the negative effects of an unhealthy behaviour can be compensated for by engaging in a healthy behaviour [46]. This could have been reflected in the current context as higher engagement in healthy lifestyle behaviours associated with less adherence to corona protective behaviours, perhaps due to a belief that the health benefits related to lifestyle behaviours decrease the severity of COVID-19 or even create a sense of perceived invulnerability [47, 48]. However, consistent with previous findings [49], our results indicate that engagement in healthy lifestyle behaviours is positively related to adherence to protective behaviours against the new health threat.

Observations that actions can be initiated and carried out even without conscious goals [50] underscore the importance of exploring nonconscious mechanisms and constructs that may facilitate cross-behaviour associations over time such as shared motivations, strategies, and implicit attitudes towards a behaviour [21, 51, 52]. Consequently, common social-cognitive models [53] may benefit from including measures addressing past-behaviour effects, such as the Self-Report Habit Index [54] or a component multiplying frequency of past behaviour by the stability of the context of behavioural performance [e.g., 55], as well as constructs related to cross-behaviour influences on engagement in a given behaviour, such as measuring the effects carried over from changes in other behaviours [56].

Self-Assessed Health and Health Behaviours

The present study considered self-assessed health as the sum of health-related experiences, outcomes and evaluations [32, 38]. Although a positive relationship was found between past healthy lifestyle behaviours and current adherence to coronavirus protective behaviours, it was stronger for people with higher subjective health ratings. This is consistent with the theoretical prediction that higher well-being and better perceived health outcomes related to health behaviours serve as facilitating mechanisms for cross-behaviour carryover effects [21].

Another explanation for the moderating role of self-assessed health on the association between healthy lifestyle behaviours and coronavirus protective behaviours may be related to perceived differences in their ease of performance [24] and in their outcome timeframe: long-term vs. immediate [57–59]. The relative ease of performing the coronavirus protective behaviours, combined with the immediate short-term consequences of not performing them, may mobilize people to engage in them regardless of their subjective perceived health condition. This partly explains the higher adherence to protective behaviours compared with healthy lifestyle behaviours, as well as the lack of association between the former and self-assessed health. However, people with low self-assessed health who do adhere to coronavirus protective behaviours might have found it difficult to engage in some healthy lifestyle behaviours. In addition, when individuals are coping with poor health and maintain an enduring unhealthy self-concept [60], all efforts may focus on the health conditions involved, leaving little energy or attention to engage in other preventive lifestyle behaviours. Such individuals may still be acutely aware of the COVID-19 situation and take preventive measures, regardless of their overall lifestyle. Moreover, the long-term consequences of lifestyle behaviours, which may occur decades after engagement or nonengagement in them (e.g., from smoking), might not
be a strong enough incentive to overcome existing health constraints and bring people in poor health to implement their health intentions. Consequently, people with low self-assessed health might display weaker cross-behavioural associations.

Finally, the relationship between self-assessed health and healthy lifestyle behaviours is often presented as causal, wherein less engagement in health behaviours predicts lower health status (e.g., [61]). The current findings suggest a possible bi-directional causality: although engagement in health behaviours is beneficial for one’s health, individuals with lower self-assessed health may have limitations that cause less engagement in healthy lifestyle behaviours. Consequently, the magnitude of the effect of lifestyle behaviours on illness, disability, and mortality should be adjusted to account for the variability in people’s baseline health status.

Limitations and Future Directions

Caution is advised in generalizing from the current findings. Since there are differences between, and even within, countries in health behaviours [62], replications are warranted, both within the studied population and across cultures. Because of the abrupt nature of the global coronavirus pandemic, both healthy lifestyle behaviours and coronavirus protective behaviours were measured simultaneously, precluding the possibility to properly determine causality [63]. Future studies should try to assess engagement in healthy lifestyle behaviours during normal times, as a benchmark, prior to investigating protective behaviour during a pandemic or similar crisis.

Self-assessed health is often measured by a single scale [30], as in our study. However, since some health dimensions may be more important than others when assessing subjective health [64], it is recommended that identification of the specific aspects of self-assessed health that moderate the relationship between healthy lifestyle behaviours and coronavirus protective behaviours includes more specific health-related measures, such as fatigue assessment [65] and objective biomarkers [66]. Moreover, since individuals with higher levels of self-assessed health base their overall health evaluations on health behaviours more than individuals with lower levels of health [67], higher self-assessed health may also make the cross-behaviour associations more evident.

Finally, this study focused on the roles of healthy lifestyle behaviours and self-assessed health in explaining coronavirus protective behaviours. It is advisable to also examine the relationship between these factors and other theoretical constructs that predict engagement in health behaviours and may potentially act as psychological mechanisms that link both clusters of behaviours, such as anticipated regret and attitudes towards the behaviours [68, 69], behaviour-specific risk perception, and perceived susceptibility to the threat [70, 71]. Ease of performance may also be strongly correlated with habit strength of a behaviour [72], and both constructs should be examined as possible explanations for the study’s findings.

Conclusions

The novel coronavirus has become a global threat, and the only means currently available to contain it is behavioural [2, 26]. Understanding individual differences in adherence to recommended protective behaviours is essential for communicating recommendations to the public, tailoring interventions for specific subgroups, and modifying these behaviours. Consistent with the formation of implicit and explicit cognitions and motivations to achieve health goals [5, 10, 50], this study revealed that leading a healthy lifestyle prior to the pandemic was associated with adherence to coronavirus protective behaviours, especially among people with high self-assessments of their health. These findings suggest that investing efforts in enhancing the population’s engagement in healthy lifestyle behaviours does not only have direct benefits, but it also might potentially increase adherence to behavioural instructions during the next global health crisis.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s12529-021-09960-6.

Data Availability The data that support the findings of this study will be openly available in Open Science Framework upon the acceptance of the manuscript.

Declarations

Ethical Approval All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent Informed consent was obtained from all individual participants included in the study.

References

1. Centers for Disease Control and Prevention. Coronavirus Disease 2019 (COVID-19) [Internet]. 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/summary.html
2. Arden MA, Chilcot J. Health psychology and the coronavirus (COVID-19) global pandemic: a call for research. Br J Health Psychol. John Wiley and Sons Ltd. 2020;25:231–2.
3. Conner M, Sandberg T, Norman P. Using action planning to promote exercise behavior. Ann Behav Med [Internet]. Oxford
4. Nudelman G, Shiloh S. Connectionism and behavioral clusters: differential patterns in predicting expectations to engage in health behaviors. Ann Behav Med [Internet]. 2018 [cited 2018 Feb 9]; 52:890–901. Available from: https://academic.oup.com/abm/advance-article/doi/10.1093/abm/kax063/4835825

5. Hagger MS, Polet J, Lintunen T. The reasoned action approach applied to health behavior: role of past behavior and tests of some key moderators using meta-analytic structural equation modeling. Soc Sci Med Elsevier Ltd. 2018;213:85–94.

6. Dombrowski S, Luszczynska A. The interplay between conscious and automatic self-regulation and adolescents’ physical activity: the role of planning, intentions, and lack of awareness. Appl Psychol [Internet]. John Wiley & Sons, Ltd. 2009 [cited 2020 May 14]: 58:257–73. Available from: http://doi.wiley.com/10.1111/j.1464-0597.2008.00335.x

7. Abelson RP. Psychological status of the script concept. Am Psychol. 1981;36:715–29.

8. Ouellette JA, Wood W. Habit and intention in everyday life: the multiple processes by which past behavior predicts future behavior. Psychol Bull. American Psychological Association Inc 1998;124:54–74.

9. Sutton S. The past predicts the future: Interpreting behaviour–behaviour relationships in social psychological models of health behaviour. In: Rutter DR, Quine L, editors. Soc Psychol Heal Eur Perspect. Avebury/Ashgate Publishing Co. 1994. p. 71–88.

10. Fleig L, Küper C, Lippke S, Schwarzer R, Wiedemann AU. Cross-behavior associations and multiple health behavior change: a longitudinal study on physical activity and fruit and vegetable intake. J Health Psychol [Internet]. SAGE Publications Ltd. 2015 [cited 2020 May 14]: 20:525–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25903240

11. Nudelman G, Kalish Y, Shiloh S. The centrality of health behaviours: a network analytic approach. Br J Health Psychol. John Wiley and Sons Ltd. 2019;24:215–36.

12. Miao M, Gan Y, Gan T, Zhou G. Carry-over effect between diet and physical activity: the bottom-up and top-down hypotheses of hierarchical self-efficacy. Psychol Health Med Routledge. 2017;22:266–74.

13. Reichenberger DA, Hilmet CJ, Irish LA, Secor-Turner M, Randall BA. Associations between sleep and health-risk behaviors in a rural adolescent population. J Pediatr Heal Care. Mosby Inc. 2016;30:317–22.

14. Hoehn M, Pearson N, Foster PJ, Biddle SJH. Sedentary behaviour and diet across the lifespan: an updated systematic review. Br J Sports Med. BMJ Publishing Group. 2015;49:1179–88.

15. Cohn A, Villanti A, Richardson A, Rath JM, Williams V, Stanton C, et al. The association between alcohol, marijuana use, and new and emerging tobacco products in a young adult population. Addict Behav Elsevier Ltd. 2015;48:79–88.

16. Laaksonen M, Luoto R, Helakorpi S, Uutela A. Associations between health-related behaviors: a 7-year follow-up of adults. Prev Med (Baltim). Elsevier. 2002;34:162–70.

17. Fleig L, Kerschreiter R, Schwarzer R, Pomp S, Lippke S. ‘Sticking to a healthy diet is easier for me when I exercise regularly’: cognitive transfer between physical exercise and healthy nutrition. Psychol Health [Internet]. Routledge, 2014 [cited 2020 May 14]: 29:1361–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24894668

18. Paech J, Lippke S. Put two (and two) together to make the most of physical activity and healthy nutrition—a longitudinal online study examining cross-behavioural mechanisms in multiple health behaviour change. Res Sport Med. Taylor and Francis Inc. 2017;25:357–72.
Estonia, Finland, Latvia and Lithuania. Eur J Pub Health [Internet]. 2004 [cited 2020 May 30]: 14:32-6. Available from: https://academic.oup.com/europub/article/abstract/14/1/32/517981

35. Sargent-Cox K, Cherbuin N, Morris L, Butterworth P, Anstey KJ. The effect of health behavior change on self-rated health across the adult life course: A longitudinal cohort study. Prev Med (Baltim). Academic Press. 2014;58:75–80.

36. Nudelman G, Ivanova E. The relationship between frequency of performance and perceived importance of health behaviours. J Health Psychol [Internet]. SAGE PublicationsSage UK: London, England. 2018 [cited 2018 Apr 25]: Advance online publication. Available from: http://journals.sagepub.com/doi/10.1177/1359105318770724

37. Lippe S. Modelling and supporting complex behavior change related to obesity and diabetes prevention and management with the compensatory carry-over action model. J Diabetes Obes. 2014;1:39–43.

38. Manderbacka K. Examining what self-rated health question is understood to mean by respondents. Scand J Soc Med [Internet]. Sage Publications Sage UK: London, England. 1998 [cited 2020 May 29]: 26:145–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9658518

39. Rytsamb E, Tambs K, Reichborn-Kjannerud T, Neale MC, Harris JR. Happiness and health: environmental and genetic contributions to the relationship between subjective well-being, perceived health, and somatic illness. J Pers Soc Psychol. 2003;85:1136–46.

40. Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1.1: tests for correlation and regression analyses. Behav Res Methods. Springer. 2009;41:1149–60.

41. Israel Ministry of Health. The Novel Coronavirus - Guidelines [Internet]. 2020 [cited 2020 May 16]. Available from: https://gov.tra.gov.il/ministry-of-health/corona/corona-virus/guidelines/

42. Nudelman G, Shiloh S. Mapping health behaviors: constructing and validating a common sense taxonomy of health behaviors. Soc Sci Med [Internet]. 2015 [cited 2015 Dec 1]: 146:1–10. Available from: http://www.sciencedirect.com/science/article/pii/S027795361501465

43. Cohen J. Statistical power analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.; 1988.

44. Lee IA, Preacher KJ. Calculation for the test of the difference between two dependent correlations with one variable in common [Computer software] [Internet]. 2013. Available from: http://quantpsy.org

45. Hayes AF. Introduction to mediation, moderation, and conditional process analysis: a regression-based approach. New York, NY: Guilford Press; 2013.

46. Knäuper B, Rabiau M, Cohen O, Patriciu N. Compensatory health beliefs: scale development and psychometric properties. Psychol Health. 2004;19:607–24.

47. Hill PL, Duggan PM, Lapsley DK. Subjective invulnerability, risk behavior, and adjustment in early adolescence. J Early Adolesc [Internet]. SAGE PublicationsSage CA: Los Angeles, CA. 2012 [cited 2020 May 16]: 32:489–501. Available from: http://journals.sagepub.com/doi/10.1177/0272431611400304

48. Beyth-Marom R, Austin L, Fischhoff B, Palmen C, Jacobs-Quadrel M. Perceived consequences of risky behaviors: adults and adolescents. Dev Psychol [Internet]. 1993 [cited 2020 Oct 9]: 29:549–63. Available from: record/1993-32937-001

49. Inauen J, Radtke T, Rennie L, Schulz U, Orbell S. Transfer or compensation? Swiss J Psychol Hogrefe AG. 2018;77:59–67.

50. Custers R, Aarts H. The unconscious will: how the pursuit of goals operates outside of conscious awareness. Science (80-). American Association for the Advancement of Science. 2010;329:47–50.

51. Gawronski B, Brannon SM. Attitudes and the implicit-explicit dualism. In: Albarracin D, Johnson BT, editors. Handb attitudes Vol 1 Basic Princ. 2nd ed. New York, NY: Routledge; 2019. p. 158–96.

52. Hagger MS. Non-conscious processes and dual-process theories in health psychology. Health Psychol Rev Routledge. 2016;10:375–80.

53. Armitage CJ, Conner M. Social cognition models and health behaviour: a structured review. Psychol Health Routledge. 2000;15:173–89.

54. Gardner B, de Brujin G-J, Lally P. A systematic review and meta-analysis of applications of the self-report habit index to nutrition and physical activity behaviours. Ann Behav Med [Internet]. Oxford Academic. 2011 [cited 2020 Oct 8]: 42:174–87. Available from: https://academic.oup.com/abm/article/42/2/174/4569561

55. Sheeran P, Conner M. Degree of reasoned action predicts increased intentional control and reduced habitual control over health behaviors. Soc Sci Med [Internet]. Elsevier Ltd. 2019 [cited 2020 Jul 25]: 228:68–74. Available from: https://pubmed.ncbi.nlm.nih.gov/30884424/

56. Galizzi MM, Whitmarsh L. How to measure behavioral spillovers: a methodological review and checklist [Internet]. Front. Psychol. Frontiers Media S.A. 2019 [cited 2020 Oct 8]: p. 342. Available from: www.frontiersin.org

57. McCaehan RRC, Lawton RJ, Conner M. Classifying health-related behaviours: exploring similarities and differences amongst behaviours. Br J Health Psychol [Internet]. Blackwell Publishing Ltd. 2010 [cited 2017 Sep 15]: 15:347–66. Available from: http://doi.wiley.com/10.1111/j.1467-9280.2010.004684

58. Nudelman G, Shiloh S. Understanding behavioural clusters: identifying differences between clusters of health behaviours on key constructs. Psychol Health [Internet], 2016 [cited 2017 Sep 19]: 31:1375–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27373554

59. Pavey L, Churchil S. Impulsivity and temporal frame: reducing frequency of snacking by highlighting immediate health benefits. Eat Behav Elsevier Ltd. 2017:26:1–5.

60. Bailis DS, Segall A, Chipperfield JG. Two views of self-rated general health status. Soc Sci Med [Internet]. Soc Sci Med. 2003 [cited 2020 Oct 10]: 56:203–17. Available from: https://pubmed.ncbi.nlm.nih.gov/12473308/

61. Harrington J, Perry JJ, Lutomski J, Fitzgerald AP, Shiely F, McGee H, et al. Living longer and feeling better: healthy lifestyle, self-rated health, obesity and depression in Ireland. Eur J Public Health. 2010;20:91–5.

62. Grant N, Wardle J, Steptoe A. The relationship between life satisfaction and health behavior: a cross-cultural analysis of young adults. Int J Behav Med Springer. 2009;16:259–68.

63. Parascandola M, Weed DL. Causation in epidemiology. J Epidemiolol Community Health. BMJ Publishing Group Ltd. 2001;55:905–12.

64. Au N, Johnston DW. Self-assessed health: what does it mean and what does it hide? Soc Sci Med Elsevier Ltd. 2014;121:21–8.

65. Michelsen HJ, De Vries J, Van Heck GL. Psychometric qualities of a brief self-rated fatigue measure: The Fatigue Assessment Scale. J Psychosom Res Elsevier. 2003;54:345–52.

66. Piazza JR, Almeida DM, Dmitrovic NO, Klein LC. Frontiers in the use of biomarkers of health in research on stress and aging. J Gerontol Ser B. 2010;65B:513–25.

67. Benyamini Y, Leventhal EA, Leventhal H. Elderly people’s ratings of the importance of health-related factors to their self-assessments of health. Soc Sci Med Pergamon. 2003;56:1561–7.

68. Ajzen I. The theory of planned behavior. Organ Behav Hum Decis Process [Internet]. Academic Press. 1991 [cited 2018 Feb 7]: 50:179–211. Available from: https://www.sciencedirect.com/science/article/pii/074959789190020T
69. Riebl SK, Estabrooks PA, Dunsmore JC, Savla J, Frisard MI, Dietrich AM, et al. A systematic literature review and meta-analysis: the Theory of Planned Behavior’s application to understand and predict nutrition-related behaviors in youth. Eat Behav Elsevier Ltd. 2015;18:160–78.

70. Carpenter CJ. A meta-analysis of the effectiveness of health belief model variables in predicting behavior. Health Commun Taylor & Francis Group. 2010;25:661–9.

71. Rosenstock IM. Historical origins of the health belief model. Health Educ Monogr [Internet]. 1974 [cited 2017 Sep 16]:2:328–35. Available from: http://journals.sagepub.com/doi/pdf/10.1177/109019817400200403

72. Wood W. Habit in Personality and Social Psychology. Pers Soc Psychol Rev [Internet]. SAGE Publications Inc. 2017 [cited 2020 Oct 8]: 21:389–403. Available from: https://journals.sagepub.com/doi/abs/10.1177/1088868317720362?journalCode=psra

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.