Approximately 5% of patients with sarcoidosis will have cardiac involvement clinically manifest as one or more of ventricular arrhythmias, conduction abnormalities and heart failure. Another 20% to 25% have clinically silent disease (asymptomatic cardiac involvement). There is a growing realisation that CS can be the first manifestation of sarcoidosis in any organ. In particular physicians should consider CS in patients with VT of unknown etiology and in patients aged < 60 presenting with idiopathic advanced conduction system disease. Immunosuppression therapy (usually with corticosteroids) has been suggested for the treatment of clinically manifest CS despite modest data. Positron emission tomography (FDG-PET) imaging is often used to detect active disease and guide immunosuppression. The extent of left ventricular dysfunction seems to be the most important predictor of prognosis. Also the extent of LGE on CMR is emerging as an important prognostic factor. Patients with clinically manifest disease often need device therapy, usually with implantable cardioverter defibrillators. There are still much to be learned as regarding best practices in managing CS patients and multi-center research efforts are underway.

Keywords: Atrio-ventricular block, Cardiac sarcoidosis, Clinically manifest, Clinically silent, Heart failure, Sudden cardiac death, Ventricular arrhythmias

Ann Nucl Cardiol 2017; 3 (1): 131–136
patients with clinically manifest disease. Abnormalities include various degrees of conduction block including isolated bundle branch block and fascicular block. Right bundle branch block is consistently more common than left in all CS cohorts (10-15). Also pathological Q waves (pseudo-infarct pattern), ST-T wave changes, and rarely epsilon waves can occur (16). In contrast the ECG is abnormal in only 3.2-8.6% of patients with clinically silent CS (10, 11, 13, 14).

Echocardiography
Abnormalities tend to be non-specific; basal interventricular thinning is the most typical feature of CS. Less commonly an increase in myocardial wall thickness may be seen, simulating left ventricular hypertrophy or hypertrophic cardiomyopathy (17). There may be other abnormalities, such as aneurysms, left ventricular (LV) and/or right ventricular (RV) diastolic and systolic dysfunction, and isolated wall motion abnormalities.

Cardiac magnetic resonance imaging
LGE is most often seen in basal segments (particularly of the septum and lateral wall) and typically in the epicardium and mid myocardium (18, 19). Typically it is multi-focal and patchy in distribution, with sparing of the endocardial border, and no specific pattern of LGE is diagnostic for CS (20).

Fluorodeoxyglucose positron emission tomography (FDG-PET) imaging
A glucose analog, FDG, is useful in distinguishing inflammatory lesions, in which the activated pro-inflammatory macrophages show a higher metabolic rate and glucose utilization (21). FDG uptake indicating inflammation, can be evident earlier than scar formation findings on LGE CMR (22). Appropriate diet preparation is important to overcome challenges of myocardial activity for image interpretation (23). There have been suggestions that PET could be a useful disease activity marker for guiding CS therapy (24).

Tissue biopsy
In view of the lower procedural risk and higher diagnostic yield, lymph node or lung biopsy is targeted first in patients with extra-cardiac sarcoidosis. In negative extra-cardiac biopsy cases and in patients having no extracardiac disease endomyocardial biopsy (EMB) is necessary to confirm the
diagnosis. To increase the positive biopsy rate, electrophysiological (electro-anatomic mapping, see Fig. 1) (16, 25) or imaging (PET or CMR) (1) guided biopsy procedures have been described, and are now recommended by consensus guidelines (26). Using these techniques positive biopsy rates have been reported as up to 50% (1, 25, 27).

Consensus guidelines for diagnosing CS

There are a number of published guideline documents; most recently in 2014 by the Heart Rhythm Society in collaboration with multiple other societies. (see Table 1) (26). Previous diagnostic guidelines were published by the National Institutes of Health’s A Case Control Etiology of Sarcoidosis Study (ACCESS) (28) and the Japanese Ministry of Health and Welfare criteria (29).

Screening for cardiac sarcoidosis

Cardiac sarcoidosis screening in patients with specific cardiac presentations

1. Unexplained Mobitz II or third degree atrioventricular (AV) block

In a Finnish study of patients aged <55, biopsy-verified CS was found in 14/72 (19%) and “probable” CS was found in 4/72 (6%); and giant cell myocarditis was found in 4/72 (6%) (30). In a similar study from a tertiary Canadian centre CS was diagnosed in 11/32 (34%) patients aged <60 (3). In both studies the prognosis for CS patients was poorer versus those who had idiopathic complete AV block (3, 30).

2. Sustained monomorphic ventricular tachycardia (VT) of unknown etiology

In a prospective study that screened consecutive patients with VT of unknown etiology (excluded patients with outflow tract or fascicular VT) for sarcoidosis, 4 of 14 patients (29%) were diagnosed with CS (2). In a study by Tung of 103 patients (85% Caucasian, 7% African American and 8% Asian with VT and non-ischemic cardiomyopathy, 17/103 (16.5%) had undiagnosed CS (31).

3. Arrhythmogenic right ventricular cardiomyopathy (ARVC)

ARVC and CS may have overlapping clinical features. Phillips et al. described 15 patients who met task force criteria for a diagnosis of ARVC but were subsequently found to have CS (32).

Screening for cardiac involvement in patients with biopsy-proven, extra-cardiac sarcoidosis

There are few data to compare the utility of screening tests for cardiac involvement in patients with extra-cardiac sarcoidosis (10). It is apparent that larger studies are needed to define the sensitivity and specificity (and cost effectiveness) of various screening strategies and tests to detect clinically silent cardiac involvement.

Clinical management

Role of immunosuppression

Sadek et al. published a systematic review of corticosteroids for the treatment of CS (33). Ten manuscripts met the criteria for inclusion and all publications ranged from poor to fair in quality. The best data related to AV block and LV dysfunction; otherwise in view of the poor in data quality, no clear conclusions could be established for other outcomes (33). Twenty seven of 57 patients (47. 4%) treated with corticosteroids had improvements in AV conduction while in contrast, out of 16 patients not treated with corticosteroids, 0/16 improved (33). The data summary for LV dysfunction from 73 patients, of whom 60 were treated with steroids and 13 were not, suggested that corticosteroid therapy is associated

Table 1 Expert consensus recommendations on criteria for the diagnosis of Cardiac Sarcoidosis (modified from (26) with permission)

There are 2 pathways to a diagnosis of Cardiac Sarcoidosis:
1. Histological diagnosis from myocardial tissue
CS is diagnosed in the presence of non-caseating granuloma on histological examination of myocardial tissue with no alternative cause identified (including negative organismal stains if applicable).
2. Clinical diagnosis from invasive and non-invasive studies
It is probable* that there is CS if:
a) There is a histological diagnosis of extra-cardiac sarcoidosis AND
b) One or more of following is present
1. Steroid +/- immunosuppressant responsive cardiomyopathy or heart block
2. Unexplained left ventricular ejection fraction <40%
3. Unexplained sustained (spontaneous or induced) ventricular tachycardia
4. Mobitz type II second degree heart block or third degree heart block
5. Patchy uptake on dedicated cardiac FDG-PET (in a pattern consistent with CS)
6. Late Gadolinium Enhancement on CMR (in a pattern consistent with CS)
7. Positive gallium uptake (in a pattern consistent with CS)
AND
c) Other causes for the cardiac manifestation(s) have been reasonably excluded

CS: cardiac sarcoidosis, FDG-PET: fluorodeoxyglucose- positron emission tomography, CMR: cardiac magnetic resonance
with maintenance of LV function in patients who have normal function at diagnosis, with improved ejection fraction in those with mild to moderate LV dysfunction and no improvement was found in patients with severe LV dysfunction (33). In contrast a more recent study of 102 CS patients, showed improved LV function after steroid therapy in patients with severely depressed ejection fraction (<35%) but no change in patients with moderately depressed ejection fraction (34).

Most experts have been proponents of treating CS despite this scarcity of data. Other unknowns include the optimal dose and duration of corticosteroids; most experts recommend a starting dose of 30 mg to 40 mg daily (35). FDG-PET imaging is increasingly being used to assess direct therapy. Due to the possibility of relapse, physicians should follow patients for minimum 3 years after completing treatment (8). In refractory cases or in if significant steroid side effects develop, methotrexate is often used as a second line drug (36). Azathioprine, cyclophosphamide, and infliximab are also sometimes used to treat CS (37).

Heart failure

Patients who have CS and LV dysfunction should also be treated with standard medical and device therapies for heart failure, including heart transplantation in refractory cases. Recurrent disease has been reported in the transplanted heart but long-term patient outcomes are similar to outcomes for control groups (38).

Atrio-ventricular block

Recovery of AV block with steroids is unpredictable in these patients and hence permanent pacing is recommended. Also ICD implantation is generally recommended for patients with second or third degree atrio-ventricular block as these patients have a substantial risk of VT/VF in follow-up (39).

Ventricular arrhythmias

The most common mechanism of ventricular arrhythmia is macro re-entry around areas of scar/fibrosis (40, 41). Reported ablation outcomes are generally modest; in one study, the multiple procedure VT-free survival rate was 37% at 1 year (41), another study found a success rate of 56%. (40). A stepwise approach, therefore, is recommended with initial therapy with immunosuppression, if ongoing inflammation is evident, and anti-arrhythmic drugs; then ablation if this is unsuccessful (26).

Risk stratification for sudden cardiac death and when to consider implantable cardioverter defibrillator (ICD) implantation

CS carries a risk of sudden death, but there are few data to aid with risk stratification. Importantly CS may not behave like other types of non-ischemic cardiomyopathy with regard
to ventricular arrhythmias, ejection fraction, and sudden death risk. This is possibly due to the mixture of scar and active inflammation in many patients. As an example, CS patient cohorts seem to have higher rates of ICD therapies than other patients (42, 43). The 2014 Heart Rhythm Society consensus document (Fig. 2) (26) illustrates one possible approach.

Prognosis
In the current era of heart failure therapy, including ICDs and active transplant surgery, deaths from CS have become rare. The best data is from a recent Finnish nationwide study which found 10-year survival was 92.5% in 102 patients (34). The extent of LV dysfunction is commonly regarded as the most important predictor of survival (33). Several recent CMR studies have, however, raised the presence and extent of myocardial LGE as an even more important overall prognostic factor than LV function (6, 44).

Conclusions and future directions
Approximately 5% of patients with sarcoidosis will have cardiac involvement clinically manifest as one or more of ventricular arrhythmias, conduction abnormalities and heart failure. Another 20% to 25% have clinically silent disease asymptomatic cardiac involvement. There is a growing realisation that CS can be the first manifestation of sarcoidosis in any organ. In particular physicians should consider CS in patients with VT of unknown etiology and in patients aged <60 presenting with idopathic advanced conduction system disease. Immunosuppression therapy (usually with corticosteroids) has been suggested for the treatment of clinically manifest CS despite modest data. The extent of left ventricular dysfunction seems to be the most important predictor of prognosis. In addition the extent of LGE is emerging as an important prognostic factor. Patients with clinically manifest disease often need device therapy, typically with implantable cardioverter defibrillators. There are still many unknowns in terms of best practices in diagnosing and managing CS patients and multi-center research efforts are underway.

Acknowledgments
None.

Sources of funding
D. B. is a Mid-career Investigator supported by the HSFO, UOHI Leadership Chair in Electrophysiology and the Tier 1 University of Ottawa Chair in Electrophysiology Research.
RSB is a Career Investigator supported by the Heart and Stroke Foundation of Ontario (HSFO), the University of Ottawa Heart Institute (UOHI) Vered Chair in Cardiology and the Teir 1 University of Ottawa Chair in Cardiovascular Imaging Research.

Conflicts of interest
None.

Reprint request and correspondence:
David H. Birnie, MD, MB ChB
The Arrhythmia Service, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, Canada, K1Y4W7
E-mail: dbirnie@ottawaheart.ca

References
1. Kandolin R, Lehtonen J, Graner M, et al. Diagnosing isolated cardiac sarcoidosis. J Intern Med 2011; 270: 461-8.
2. Nery PB, Mc Ardle BA, Redpath CJ, et al. Prevalence of cardiac sarcoidosis in patients presenting with monomorphic ventricular tachycardia. Pacing Clin Electrophysiol 2014; 37: 364-74.
3. Nery PB, Beanlands RS, Nair GM, et al. Ativoventricular block as the initial manifestation of cardiac sarcoidosis in middle-aged adults. J Cardiovasc Electrophysiol 2014; 25: 875-81.
4. Sharma PS, Lubahn JG, Donsky AS, et al. Diagnosing cardiac sarcoidosis clinically without tissue confirmation. Proc (Bayl Univ Med Cent) 2009; 22: 236-8.
5. Iwai K, Tachibana T, Takemura T, et al. Pathological studies on sarcoidosis autopsy. I. Epidemiological features of 320 cases in Japan. Acta Pathol Jpn 1993; 43: 372-6.
6. Greulich S, Deluigi CC, Gloekler S, et al. CMR imaging predicts death and other adverse events in suspected cardiac sarcoidosis. JACC Cardiovasc Imaging 2013; 6: 501-11.
7. Murtagh G, Laffin LJ, Beshai JF, et al. Prognosis of myocardial damage in sarcoidosis patients with preserved left ventricular ejection fraction: risk stratification using cardiovascular magnetic resonance. Circ Cardiovasc Imaging 2016; 9: e003738.
8. Valeyre D, Prasse A, Nunes H, et al. Sarcoidosis. Lancet 2014; 383: 1155-67.
9. Kandolin R, Lehtonen J, Airaksinen J, et al. Usefulness of cardiac troponins as markers of early treatment response in cardiac sarcoidosis. Am J Cardiol 2015; 116: 960-4.
10. Mehta D, Lubitz SA, Frankel Z, et al. Cardiac involvement in patients with sarcoidosis: diagnostic and prognostic value of outpatient testing. Chest 2008; 133: 1426-35.
11. Nagai T, Kohsaka S, Okuda S, et al. Incidence and prognostic significance of myocardial late gadolinium enhancement in patients with sarcoidosis without cardiac manifestation. Chest 2014; 146: 1064-72.
12. Nagao S, Watanabe H, Sboue Y, et al. Electrocardiographic abnormalities and risk of developing cardiac events in extracardiac sarcoidosis. Int J Cardiol 2015; 189: 1-5.
13. Patel MR, Cawley PJ, Heitner JF, et al. Detection of myocardial damage in patients with sarcoidosis. Circulation 2009; 120: 1969-77.
14. Pizarro C, Goebel A, Dabir D, et al. Cardiovascular magnetic resonance-guided diagnosis of cardiac affection in a Caucasian sarcoidosis population. Sarcoidosis Vasc Diffuse Lung Dis...
Management of CS

216; 32: 325-35.

15. Schuller JL, Olson MD, Zipse MM, et al. Electrocardiographic characteristics in patients with pulmonary sarcoidosis indicating cardiac involvement. J Cardiovasc Electrophysiol 2011; 22: 1243-8.

16. Nery PB, Keren A, Healey J, et al. Isolated cardiac sarcoidosis: establishing the diagnosis with electroanatomic mapping-guided endomyocardial biopsy. Can J Cardiol 2013; 29: 1015, e1-3.

17. Agarwal A, Sulemanjee NZ, Cheema O, et al. Cardiac sarcoid: a chameleon masquerading as hypertrophic cardiomyopathy and dilated cardiomyopathy in the same patient. Echocardiography 2014; 31: E138-E41.

18. Smiedema JP, Snoep G, van Kroonenburgh MP, et al. Evaluation of the accuracy of gadolinium-enhanced cardiovascular magnetic resonance in the diagnosis of cardiac sarcoidosis. J Am Coll Cardiol 2005; 45: 1683-90.

19. Patel AR, Klein MR, Chandra S, et al. Myocardial damage in patients with sarcoidosis and preserved left ventricular systolic function: an observational study. Eur J Heart Fail 2011; 13: 1231-7.

20. Cummings KW, Bhalla S, Javidan-Nejad C, et al. Inter- and Intra-observer agreement of FDG-PET/CT image interpretation in patients referred for assessment of Cardiac Sarcoidosis. J Nucl Med 2005; 46: 1522-30.

21. Pellegrino D, Bonab AA, Dragotakes SC, et al. Inflammation and infection: imaging properties of 18F-FDG-labeled white blood cells versus 18F-FDG. J Nucl Med 2005; 46: 1522-30.

22. Ohira H, Birnie DH, Pena E, et al. Comparison of 18F-fluorodeoxyglucose positron emission tomography (FDG PET) and cardiac magnetic resonance (CMR) in corticosteroid-naive patients with conduction system disease due to cardiac sarcoidosis. Eur J Nucl Med Mol Imaging 2016; 43: 259-69.

23. Ohira H, Mc Ardle B, deKemp RA, et al. Inter- and Intraobserver agreement of FDG-PET/CT image interpretation in patients referred for assessment of Cardiac Sarcoidosis. J Nucl Med 2017. [Epub ahead of print]

24. Osborne MT, Hulten EA, Singh A, et al. Reduction in 18F-fluorodeoxyglucose uptake on serial cardiac positron emission tomography is associated with improved left ventricular ejection fraction in patients with cardiac sarcoidosis. J Nucl Cardiol 2014; 21: 166-74.

25. Liang JJ, Hebl VB, DeSimone CV, et al. Electrogram guidance: a method to increase the precision and diagnostic yield of endomyocardial biopsy for suspected cardiac sarcoidosis and myocarditis. JACC Heart Fail 2014; 2: 466-73.

26. Birnie DH, Sauer WH, Bogun F, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm 2014; 11: 1305-23.

27. Simonen P, Lehtonen J, Kandolin R, et al. F-18-fluorodeoxyglucose positron emission tomography-guided sampling of mediastinal lymph nodes in the diagnosis of cardiac sarcoidosis. Am J Cardiol 2015; 116: 1581-5.

28. Judson MA, Baughman RP, Teirstein AS, et al. Defining organ involvement in sarcoidosis: the ACCESS proposed instrument. ACCESS Research Group. A Case Control Etiologic Study of Sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 1999; 16: 75-86.

29. Diagnostic standard and guidelines for sarcoidosis. Jpn J Sarcoidosis and Granulomatous Disorders 2007; 27: 89-102.

30. Kandolin R, Lehtonen J, Kupari M. Cardiac sarcoidosis and giant cell myocarditis as causes of atrioventricular block in young and middle-aged adults. Circ Arrhythm Electrophysiol 2011; 4: 303-9.

31. Tung R, Bauer B, Schelbert H, et al. Incidence of abnormal positron emission tomography in patients with unexplained cardiomyopathy and ventricular arrhythmias: The potential role of occult inflammation in arrhythmogenesis. Heart Rhythm 2015; 12: 2488-98.

32. Philips B, Madhavan S, James CA, et al. Arrhythmogenic right ventricular dysplasia/cardiomyopathy and cardiac sarcoidosis: distinguishing features when the diagnosis is unclear. Circ Arrhythm Electrophysiol 2014; 7: 230-6.

33. Sadek MM, Yung D, Birnie DH, et al. Corticosteroid therapy for cardiac sarcoidosis: a systematic review. Can J Cardiol 2013; 29: 1034-41.

34. Iannuzzi MC, Rybicki BA, Teirstein AS. Sarcoidosis. N Engl J Med 2007; 357: 2153-65.

35. Nagai S, Yokomatsu T, Tanizawa K, et al. Treatment with methotrexate and low-dose corticosteroids in sarcoidosis patients with cardiac lesions. Intern Med 2014; 53: 2761.

36. Nery PB, Keren A, Healey J, et al. Isolated cardiac sarcoidosis: establishing the diagnosis with electroanatomic mapping-guided endomyocardial biopsy. Can J Cardiol 2013; 29: 1015, e1-3.

37. Taniguchi M, Ueda T, Imai K, et al. Corticosteroid therapy for cardiac sarcoidosis: the ACCESS proposed instrument. Ann Nucl Cardiol 2017; 3 (1): 131-136.