The cathode tube effect: heavy quarks probing the Glasma in p-Pb collisions

Marco Ruggieri1 and Santosh K. Das1
1School of Nuclear Science and Technology, Lanzhou University,
222 South Tianshui Road, Lanzhou 730000, China.

We study the propagation of charm quarks in the early stage of high energy proton-lead collision, considering the interaction of these quarks with the evolving Glasma by means of the Wong equations. Neglecting quantum fluctuations at the initial time the Glasma is made of longitudinal fields, but the dynamics leads to a quick formation of transverse fields; we estimate such a formation time as \(\Delta t \approx 0.1 \text{ fm/c} \) which is of the same order of the formation time of heavy quark pairs \(t_{\text{formation}} \approx 1/(2m) \). Limiting ourselves to the simple case of a static longitudinal geometry, we find that heavy quarks are accelerated by the strong transverse color fields in the early stage and this leads to a tilting of the \(c^- \)-quarks spectrum towards higher \(p_T \) states. This average acceleration can be understood in terms of drag and diffusion of \(c^- \)-quarks in a hot medium and appears to be similar to the one felt by the electrons ejected by the electron cannon in a cathode tube: we dub this effect as cathode tube effect. The tilting of the spectrum affects the nuclear modification factor, \(R_{pPb} \), suppressing this below one at low \(p_T \) and making it larger than one at intermediate \(p_T \). We compute \(R_{pPb}(p_T) \) after the evolution of charm quarks in the gluon fields and we find that its shape is in qualitative agreement with the measurements of the same quantity for \(D^- \)-mesons in proton-lead collisions.

PACS numbers: 12.38.Aw,12.38.Mh
Keywords: Relativistic heavy ion collisions, evolving Glasma, classical Yang-Mills fields, heavy quarks, nuclear modification factor, quark-gluon plasma

Introduction. The study of the initial condition of the system produced by high energy collisions is a difficult but interesting problems related to the physics of relativistic heavy ion collisions (RHICs), as well as to that of high energy proton-proton (pp) and proton-nucleus (pA) collisions. If the energy of the collision is very large then the two colliding nuclei in the backward light cone can be described within the color-glass-condensate (CGC) effective theory [1–7], in which fast partons are frozen by time dilation and act as static sources for low momentum gluons: their large occupation number allows for a classical treatment of these fields. The collision of two colored glass sheets, each representing one of the colliding objects in high energy collisions, leads to the formation of strong gluon fields in the forward light cone named as the Glasma [8–18]. In the weak coupling regime the Glasma consists of longitudinal color-electric and color-magnetic fields; these are again characterized by large gluon occupation number, \(A^g \approx 1/g \) with \(g \) the QCD coupling, so they can be described by classical field theory namely the Classical Yang-Mills (CYM) theory. Finite coupling bring up quantum fluctuations on the top of the Glasma [19–33] that we do not consider in the present letter leaving their inclusion to a forthcoming study. Among the high energy collisions mentioned above, pA are interesting because they allow for both a theoretical and an experimental study of the cold nuclear matter effects (CNME), namely those effects that are not directly related to the formation of the QGP and that include shadowing [34] as well as gluon saturation [35–37].

*Electronic address: ruggieri@lzu.edu.cn

\[R_{pPb}, \text{for } D^- \text{-mesons that has been measured} \]
recently [54, 55]. In fact, we find that the propagation in gluon fields leads to R_{ppb}, that reminds at least qualitatively the one measured for D-mesons in p-Pb collisions.

Propagation of heavy quarks in the Glasma has been studied previously in [53] although within a simplified approach based on a Fokker-Planck equation. Despite studying a simplified situation, the work in [53] is interesting because it shows how the evolution of $c-$quarks in Glasma can be interpreted in terms of drag and diffusion in momentum space, similarly to the evolution in a thermal medium. Here we aim to perform a more complete study of the same problem without relying on the small transferred momentum expansion of [53], as well as including the dynamical evolution of the gluon medium that is missing in [53], in order to quantify the effect of the evolution of $c-$quarks in the Glasma on observables. This is achieved by solving consistently the classical equations of motion of the gluon fields, namely the classical Yang-Mills equations, and of the heavy quarks propagating in the Glasma, that are the Wong equations. This approach is equivalent to solve the Boltzmann-Vlasov equations for the heavy quarks in a collisionless plasma: as a matter of fact, the Boltzmann-Vlasov equations can be solved by means of the test particles method which amounts to solve the classical equations of motion of the test particles, here represented by the heavy quarks, and these classical equations are just the Wong equations.

The purpose of our study is twofold. Firstly, we aim to estimate the impact of the early stage of p-Pb collisions on R_{ppb}. Secondly, we notice that this effect does not come alone, in the sense that in our calculation the modification to R_{ppb} comes entirely from the propagation in the evolving Glasma: as a consequence, the shape of R_{ppb} that we find (which qualitatively agrees with experimental data) can be understood as the signature that the Glasma leaves on this observable.

We need to mention that the present study should be considered as a preliminary one since we do not include a longitudinal expansion in our calculation, therefore we do not attempt to a serious comparison with the existing experimental data: while the inclusion of the expansion might reduce the effect on R_{ppb}, we find that the largest part of it comes within ≈ 1 fm/c of evolution, therefore most likely at least part of this effect will remain also in case the longitudinal expansion is taken into account (we will include the longitudinal expansion anyway in a forthcoming paper). Keeping this in mind, whenever we mention that we consider p-Pb collisions at a given energy it means that we have set up the initial color charge distributions on the proton and Pb sides in agreement with what should be done for simulations of realistic collisions, trying to keep both the color charge distributions and the saturation scales as closer as possible to what should be done in a complete calculation where expansion is taken into account.

Glasma and classical Yang-Mills equations. In this section we briefly review the Glasma and the McLerran-Venugopalan (MV) model [1-3, 56]. We remark that in our notation the gauge fields have been rescaled by the QCD coupling $A_\mu \rightarrow A_\mu / g$. In the MV model, the static color charge densities ρ_a on the nucleus A are assumed to be random variables that are normally distributed with zero mean and variance specified by the equation

$$
\langle \rho_A^n(x_T) \delta_A^b(y_T) \rangle = (g^2 \mu_A)^2 \varphi_A(x_T) \varphi_A(y_T) \delta^{ab} \delta^{(2)}(x_T - y_T),
$$

(1)

here A corresponds to either the proton or the Pb nucleus, a and b denote the adjoint color index; in this work we limit ourselves for simplicity to the case of the SU(2) color group therefore $a, b = 1, 2, 3$. In Eq. (1) $g^2 \mu_A$ denotes the color charge density and it is of the order of the saturation momentum Q_s [57].

The function $\varphi_A(x_T)$ in Eq. (1) allows for a nonuniform probability distribution of the color charge in the transverse plane. In this letter we study the gluon fields produced in p-Pb collisions. For the case of the Pb nucleus we assume a uniform probability and take $\varphi(x_T) = 1$. On the other hand, for the proton we use the constituent quark model [55, 61]: for each event, we firstly extract the position of the three valence quarks, x_i with $i = 1, 2, 3$, assuming a gaussian distribution, namely

$$
\psi(x_T) = e^{-(x_T^2)/(2B_{\rho})},
$$

(2)

then we build up the probability density

$$
\varphi_{\rho}(x_T) = \frac{1}{3} \sum_{i=1}^3 e^{-(x_T^2-x_i^2)/(2B_{\rho})},
$$

(3)

The two parameters in Eqs. (2) and (3) are $B_{\rho} = 3$ GeV and $B_{\rho} = 0.3$ GeV. We remark that this procedure does not correspond to assume that the three valence quarks are the only sources of the large x color charges: indeed, from Eq. (1) it should be obvious to any reader familiar with the MV model that we distribute sea color charges analogously to what is done for the case of a homogeneous $g^2 \mu$. In fact, the constituent quark models amounts simply to assume that the large x charges from the sea localize around the valence quarks: these act as seeds for the sea charges. The sensitivity on the number of constituent hot spots of color charge has been studied in [61]; in [53, 61] the significance of this model in comparison with the simpler gaussian one is well explained. The gaussian model of the proton can be used as well in our study and we will report on this in a future work.

For the proton $g^2 \mu_P \varphi_P(x_T)^{1/2}$ can be understood as an x_T-dependent $g^2 \mu_P$ because $\varphi_P(x_T)$ localizes the distribution around the valence quarks: we fix $g^2 \mu_P$ for each event assuming that $\langle g^2 \mu_P \varphi_P(x_T)^{1/2} / Q_s \rangle = 0.57$ following the result of [57], where the average is defined with $\varphi_P(x_T)$ as a weight function, then estimating Q_s at the relevant energy by using the standard GBW fit [62-64]

$$
Q_s^2 = Q_{s,0}^2 \left(\frac{x_0}{x} \right)^{\lambda},
$$

(4)

with $\lambda = 0.277$, $Q_{s,0} = 1$ GeV and $x_0 = 4.1 \times 10^{-5}$. We remind that whenever we apply this equation to high-en-
ergy collisions, the relevant value of x for the two colliding objects can be estimated at midrapidity as $\langle p_T \rangle / \sqrt{s}$ where $\langle p_T \rangle$ corresponds to the average p_T of the gluons produced by the collision. For example, at the RHIC energy for $x = 0.01$ we obtain $Q_s = 0.47$ GeV in agreement with the estimate of \[65\]. At the LHC energy $\sqrt{s} = 5.02$ TeV we find $Q_s = 0.80$ GeV which gives $(g^2 \mu_p \varphi(x_T)^{1/2}) = 1.41$ GeV.

For the Pb nucleus the uncertainty on the Q_s as well as on $g^2 \mu_p$ comes from the different model used to compute Q_s for a large nucleus. Indeed the GBW fit in this case is modified as

$$Q^2_s = f(A)Q^2_{s,0}\left(\frac{x_0}{x}\right)^{\lambda},$$

where

$$f(A) = A^{1/3}$$

within a naive scaling hypothesis, and

$$f(A) = caA^{1/3}\log A$$

within the IP-Sat model \[65\]. While other forms of $f(A)$ are possible \[66, 67\], the two above give the higher and lower value of Q_s at the RHIC energy \[57\] therefore we take these two to set the upper and lower estimate of Q_s. Using again $Q_s/g^2 \mu_p = 0.57$ we find $g^2 \mu_p \, p_T = 2$ GeV and $g^2 \mu_p \, p_T = 3$ GeV at the RHIC energy taking respectively the IP-Sat and naive forms; the modified GBW fit then leads to $g^2 \mu_p \, p_T = 3.4$ GeV and $g^2 \mu_p \, p_T = 5.2$ GeV for the two cases at the LHC energy.

The static color sources $\{\rho\}$ generate pure gauge fields outside and on the light cone, which in the forward light cone combine and give the initial Glasma fields. In order to determine these fields we firstly solve the Poisson equations for the gauge potentials generated by the color charge distributions of the nuclei A and B, namely

$$-\partial^2 \Lambda^{(A)}(x_T) = \rho^{(A)}(x_T)$$

(a similar equation holds for the distribution belonging to B). Wilson lines are computed as $V^\dagger(x_T) = e^{i\Lambda^{(A)}(x_T)}$, $W^\dagger(x_T) = e^{i\Lambda^{(B)}(x_T)}$, and the pure gauge fields of the two colliding nuclei are given by $\alpha_i^{(A)} = iV^\dagger \partial_t V^\dagger$, $\alpha_i^{(B)} = iW^\dagger \partial_t W^\dagger$. In terms of these fields the solution of the CYM in the forward light cone at initial time, namely the Glasma gauge potential, can be written as $A_i = \alpha_i^{(A)} + \alpha_i^{(B)}$ for $i = x, y$ and $A_z = 0$, and the initial longitudinal Glasma fields are \[9\]

$$E^z = i \sum_{i=x,y} \left[\alpha_i^{(B)}, \alpha_i^{(A)} \right],$$

$$B^z = i \left(\left[\alpha_x^{(B)}, \alpha_y^{(A)} \right] + \left[\alpha_x^{(A)}, \alpha_y^{(B)} \right] \right),$$

while the transverse fields are vanishing. It has been suggested that the gauge potentials should be computed by defining the Wilson lines as path ordered exponentials of multiple layers of color charges in order to describe the propagation of a colored probe through a thick nucleus \[57\]: we have checked that using multiple layers instead of a single layer of charge does not affect considerably our results, and for the sake of simplicity we report here only the results obtained using one single layer, leaving a more complete report to a forthcoming article.

The dynamical evolution that we study here is given by the classical Yang-Mills (CYM) equations. In this study we follow \[23\] therefore we refer to that reference for more details. The hamiltonian density is given by

$$H = \frac{1}{2} \sum_{a,i} E_i^a(x)^2 + \frac{1}{4} \sum_{a,i,j} F_{ij}^a(x)^2,$$

where the magnetic part of the field strength tensor is

$$F_{ij}^a(x) = \partial_i A_j^a(x) - \partial_j A_i^a(x) + \sum_{b,c} f^{abc} A_i^b(x) A_j^c(x);$$

here $f^{abc} = \varepsilon^{abc}$ with $\varepsilon^{123} = +1$. The equations of motion for the fields and conjugate momenta, namely the CYM equations, are

$$\frac{dA_i^a(x)}{dt} = E_i^a(x),$$

$$\frac{dE_i^a(x)}{dt} = \sum_j \partial_i F_{ij}^a(x) + \sum_{b,c} f^{abc} A_j^b(x) F_{ij}^c(x).$$

We solve the above equations on a static box in three spatial dimension as in \[23, 33\].

Heavy quarks in the evolving Glasma. At the initial time we assume that the momentum distribution of c-quarks is the prompt one obtained within Fixed Order + Next-to-Leading Log (FONLL) QCD which describes the D-mesons spectra in collisions after fragmentation \[69, 71\]

$$\frac{dN}{d^2p_T}|_{\text{prompt}} = \frac{x_0}{(x_1 + p_T)^2} ;$$

the parameters that we use in the calculations are $x_0 = 6.37 \times 10^5$, $x_1 = 9.0$ and $x_2 = 10.279$. Normalization of the spectrum is not relevant in this letter because we are interested to the nuclear modification factor which is a ratio of the final over initial spectrum and this is unaffected by the overall normalization since the number of heavy quarks is conserved during the evolution; the slope of the spectrum has been calibrated to a collision at 5.02 TeV. Moreover, we assume that the initial longitudinal momentum vanishes (in a longitudinally expanding geometry this condition can be replaced by the standard Bjorken flow $y = \eta$). Initialization in coordinate space is done as follows: the transverse coordinates distribution is built up by means of the function $\psi(x_T)$ in Eq. \[2\], because we expect the heavy quarks to be produced in the overlap region of proton and Pb nucleus that coincides with the transverse area of the proton; on the other
hand, we use a uniform distribution for the longitudinal coordinate (in a longitudinally expanding geometry this condition can be replaced by a uniform distribution in spacetime rapidity).

The dynamics of heavy quarks in the evolving Glasma is studied by the Wong equations \[72, 73\], that for a single quark can be written as

\[
\frac{dx_i}{dt} = p_i, \quad E^i \frac{dp_i}{dt} = Q_a F^a_{\mu\nu} p^\nu, \\
E \frac{dQ_a}{dt} = -Q_a e c a \mathbf{A} \cdot \mathbf{p},
\]

where \(i = x, y, z\); here, the first two equations are the familiar Hamilton equations of motion for the coordinate and its conjugate momentum, while the third equation corresponds to the gauge invariant color current conservation. Here \(E = \sqrt{\mathbf{p}^2 + m^2}\) with \(m = 1.5\) GeV corresponding to the charm quark mass. In the third Wong equation \(Q_a\) corresponds to the \(c\)–quarks color charge: we initialize this by a uniform distribution with support in the range \((-1, +1)\). For each \(c\) quark we produce a \(\bar{c}\) quark as well: for this we assume the same initial position of the companion \(c\), opposite momentum and opposite color charge. Solving the Wong equations is equivalent to solve the Boltzmann-Vlasov equations for a collisionless plasma made of heavy quarks, which propagate in the evolving Glasma; in fact, the latter equation can be solved by means of the test particle method which amounts to solve the classical equations of motion of the particles in the background of the evolving gluon field. In principle, we should include the heavy quarks color current density on the right hand side of Eq. (14) and compute the backreaction on the gluon fields. However, we neglect this backreaction: this approximation is usually used to study the propagation of heavy probes in a thermal QGP bath and sounds quite reasonable due to the small number of heavy quarks produced by the collision, as well as to their large mass, both of these factors leading eventually to a negligible color current density. On the transverse lattice we do not assume periodic boundary conditions for the heavy quarks: as soon as a heavy quark reaches the boundary of the transverse box we cancel any interaction with the gluon fields and its motion becomes a simple free streaming.

Results. In Fig. 1 we plot the averaged color-electric fields, measured in lattice units, versus time. Solid lines correspond to the longitudinal fields while dashed lines denote the transverse fields; green and indigo lines correspond to \(g^2\mu_{\text{PP}} = 5.2\) GeV and \(g^2\mu_{\text{PP}} = 3.4\) respectively. Lattice spacing is \(\delta x = 0.04\) fm.

![FIG. 1: Color online. Averaged color-electric fields for p-Pb collision, measured in lattice units. Solid lines correspond to the longitudinal fields while dashed lines denote the transverse fields; green and indigo lines correspond to \(g^2\mu_{\text{PP}} = 5.2\) GeV and \(g^2\mu_{\text{PP}} = 3.4\) respectively. Lattice spacing is \(\delta x = 0.04\) fm.](image)

where \(z = p_D/p_c\) is the momentum fraction of the D-meson fragmented from the charm quark and \(\epsilon_c\) is a free parameter to fix the shape of the fragmentation function in order to reproduce the D-meson production in pp collisions \[75\] namely \(\epsilon_c = 0.06\). In the lower panel of Fig. 1 we plot the \(c\)–quark distribution \(dN_c/dp_T\) at the initial time (maroon dashed line), at \(t = 0.5\) fm/c (orange dot-dashed line) and at \(t = 1\) fm/c (green solid line). We assume \(g^2\mu_{\text{PP}} = 5.2\) GeV. In the calculation we have assumed that the formation time of \(c\)–quarks is \(t_{\text{formation}} = 1/(2m_c) \approx 0.06\) fm/c for \(m = 1.5\) GeV but we have checked that lowering this value does not affect considerably the final result. At the end of the evolution we adopt a standard fragmentation for the charm quark to D-meson \[74\], with

\[
f(z) \propto \frac{1}{z \left(1 - \frac{1}{z} - \frac{\epsilon_c}{1-z}\right)^2}
\]
FIG. 2: Color online. In the upper panel we plot the D-meson spectrum, dN/d^2p_T, at initial time (maroon dashed line) and at $t = 1$ fm/c (green solid line). In the lower panel we plot the momentum distribution of $c-$quarks, dN/d^2p_T, at the initial time (dashed maroon line), at $t = 0.5$ fm/c (orange dot-dashed line) and at $t = 1$ fm/c (green solid line). We take $g^2\mu_{Pb} = 5.2$ GeV.

In order to understand better the interaction of the $c-$quarks with the evolving Glasma fields we prepare initializations in which we put all the $c-$quarks in a very thin p_T bin to obtain a $\delta-$like distribution; the evolution of this distribution is studied again by means of the Wong equations. This is done in order to better understand the interaction of the Glasma with different p_T modes. The results of this are shown in Fig. 3 in which we plot the distribution function dN_c/dp_T at initial time (solid black lines), at $t = 0.5$ fm/c (green dashed lines) and at $t = 1$ fm/c (solid red lines) for several values of the initial p_T. We notice that in all the cases examined here the interaction with the Glasma fields leads to the spreading of dN/dp_T, which is very similar to the standard diffusion in momentum space encountered in a Brownian motion. In addition to this, for low p_T we find that diffusion is flanked by a drag towards higher values of p_T: this results in an average acceleration of the $c-$quarks and it is similar to what we would expect putting low-p_T quarks in a hot medium. A more quantitative comparison of the evolution of heavy quarks in Glasma and in a hot plasma will be the subject of a forthcoming article.

The drag and diffusion of the $c-$quarks in momentum space has an effect on the nuclear modification factor of...
$D-$meson, defined as

$$R_{pPb} = \frac{(dN/d^2 pT)_{\text{evolved}}}{(dN/d^2 pT)_{\text{prompt}}},$$ \hspace{1cm} (20)$$

where the prompt spectrum is given by Eq. (15) after fragmentation and $(dN/d^2 pT)_{\text{evolved}}$ corresponds to the spectrum obtained by fragmentation of the $c-$quark spectrum after the evolution in the Glasma fields. In Fig. 4 we plot the nuclear modification factor for the $D-$meson that we obtain within our calculation. The result is shown for two values of $g^2 \mu_{pPb}$, for the Pb nucleus at $\sqrt{s} = 5.02$ TeV, namely $g^2 \mu_{pPb} = 3.4$ GeV (dashed blue line) and $g^2 \mu_{pPb} = 5.2$ GeV (solid green line) as discussed in the previous section. Experimental data correspond to the backward rapidity region (namely to the proton side) obtained by the LHCb collaboration \([55]\). We remark that although we show experimental data here, we do not aim to a precise fit of these by our calculation because we miss the longitudinal expansion: data are shown only to quantify the order of magnitude of our result, while a closer comparison with data will be the subject of a forthcoming study. We have chosen to show these data rather than the averaged published by the ALICE collaboration because those are an average of the forward and backward rapidity region, and in this case the CNME are very important and should be included in our initial state. We have checked however that including these effects in the initial state does not affect the drag and diffusion of $c-$quarks in the evolving Glasma (results will be reported elsewhere).

Figure 4 is the main result of the present letter: it shows that R_{pPb} can get a substantial deviation from one because of the interaction of the $c-$quarks with the evolving gluon fields in the Glasma in the very early stage of a high energy p-Pb collision. As explained above, this result is due to the diffusion of heavy quarks in momentum space accompanied by a drag of the low p_T quarks towards higher momenta. The net effect that we find is very different from what is usually discussed in the heavy quark community, namely energy loss. In fact, our results suggest that in the very early stage heavy quarks can gain energy rather than loose it, because they are formed almost immediately after the collision and probe the strong gluon fields of the Glasma while energy loss will be substantial only in presence of a medium, namely of the quark-gluon plasma that forms in a later stage. Most likely, this energy gain can be understood even in simpler terms considering that low and intermediate p_T heavy quarks are injected at the formation time into a system with a very large energy density: therefore it appears natural that during their propagation they get energy rather than lose it.

This effect is interesting not only for its straightforward application to heavy quarks: as a matter of fact, since it comes from the propagation in the strong gluon fields of the evolving Glasma, the $c-$quarks probe these fields. The fact that the qualitative shape of our R_{pPb} resembles that measured in experiments might suggest that at least part of the measured R_{pPb} comes from the propagation of the $c-$quarks in the Glasma, and might be considered as the signature of the Glasma itself. In this regards a more quantitative statement will be put in a forthcoming article when the longitudinal expansion will be included, and the amount of this effect will be compared to CNME.

We dub the effect summarized in Figs. 2 and 4 as the cathode tube effect. The reason for this name is easy to understand. As a matter of fact, the cathode tubes are devices in old televisions, in which an electron cannon ejects electrons and these are accelerated and deflected by electric field before they hit a fluorescent screen. Mutatis mutandis, the same effect takes place in the early stage of high energy p-Pb collisions: indeed, here (color-)electric fields accelerate the prompt $c-$quarks that are injected into the bulk by the inelastic collisions among the proton on the one hand and the nucleons in Pb on the other hand (using this analogy, the electron cannon is here replaced by the p and Pb projectiles).

Conclusions and outlook. We have studied consistently the propagation of $c-$quarks in the evolving strong gluon fields allegedly produced in high energy p-Pb collisions. As the initial condition we have taken the standard Glasma with longitudinal color-electric and color-magnetic fields, adapted in order to take into account the finite size of the system; for the initialization of the $c-$quarks we have considered the standard FONLL perturbative production tuned in order to reproduce the $D-$meson spectrum in proton-proton collisions. We have set up the saturation scale for both the proton and the Pb nucleus in order to reproduce the expected one at $\sqrt{s} = 5.02$ TeV: for this reason, even if we do not include the longitudinal expansion in the calculation, we discuss about the gluon fields produced in p-Pb collisions at this energy.

We have computed the nuclear modification factor, R_{pPb}, for these collisions: the result is summarized in Fig. 4. Although we do not aim to reproduce the experimental data because of the lack of the longitudinal expansion, we have found that the qualitative shape of our R_{pPb} resembles that measured by the LHCb collaboration on the proton side. Since in our calculation this shape comes directly from the propagation of the $c-$quarks in the evolving Glasma fields, we suggest that at least part of the measured R_{pPb} is the signature of the Glasma formed in high energy collisions. A firm statement will be put after we will have included the longitudinal expansion in our calculation and this will be the subject of another article. For the time being, we emphasize that the propagation of $c-$quarks in the evolving Glasma has only been partly studied within a small transferred momentum approximation and assuming a static gluonic medium \([52]\), so this letter aims to start to fill this gap and paves the way for more complete studies.

We remark that we have not assumed the formation of a hot medium, namely the QGP, in this calculation. Indeed, although there is a lot of evidence that the QGP is formed in Pb-Pb collisions, such a strong evidence is
missing at the moment for p-Pb collisions. We will consider more closely this problem in the future, by coupling our evolution of the c–quark spectrum to relativistic transport and to Langevin dynamics, in order to estimate quantitatively the effect of a hot medium on R_{pPb}.

We have preliminarily studied the effect of the propagation of the c–quarks in the evolving Glasma in the case of Pb-Pb collisions at the LHC energy. In this case we have checked that a propagation for approximately 0.3 fm/c, which is a standard initialization time for QGP in relativistic transport and hydro simulations, is enough to obtain a substantial effect. Although the R_{pPb} in this case cannot be compared directly with the experimental data due to the much longer propagation in the hot QGP, the effect of the early propagation in the gluon fields should not be ignored. Again, we will couple our hot QGP, the effect of the early propagation in the gluon fields to relativistic transport and to Langevin dynamics, in order to estimate quantitatively the effect of a hot medium on relativistic transport.

We have considered more closely this problem in the future, by coupling our evolution of the c–quarks in the evolving Glasma in the case of Pb-Pb collisions at the LHC energy. In this case we have checked that a propagation for approximately 0.3 fm/c, which is a standard initialization time for QGP in relativistic transport and hydro simulations, is enough to obtain a substantial effect. Although the R_{pPb} in this case cannot be compared directly with the experimental data due to the much longer propagation in the hot QGP, the effect of the early propagation in the gluon fields should not be ignored. Again, we will couple our hot QGP, the effect of the early propagation in the gluon fields to relativistic transport and to Langevin dynamics, in order to estimate quantitatively the effect of a hot medium on relativistic transport.

Acknowledgments

M. R. acknowledges discussions with the participants of the Next Frontiers in QCD 2018 Workshop held in Yukawa Institute for Theoretical Physics, Kyoto University, where this work has been presented for the first time. Comments from K. Fukushima and S. Mrowczynski have spurred the authors to study diffusion in more detail and have lead to the results in Fig. 3. Moreover, the authors acknowledge V. Greco for useful discussions during the preparation of this article. The work of M. R. has been supported by the Fundamental Research Funds for the Central Universities.

[1] L. D. McLerran and R. Venugopalan, Phys. Rev. D 49, 2233 (1994) hep-ph/9309289.
[2] L. D. McLerran and R. Venugopalan, Phys. Rev. D 49, 3352 (1994) hep-ph/9311205.
[3] L. D. McLerran and R. Venugopalan, Phys. Rev. D 50, 2225 (1994) hep-ph/9402235.
[4] F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, Ann. Rev. Nucl. Part. Sci. 60, 463 (2010).
[5] E. Iancu and R. Venugopalan, In *Iwa, R.C. (ed.) et al.: Quark gluon plasma* 249-363.
[6] L. McLerran, arXiv:0812.4989 [hep-ph]; hep-ph/0402137.
[7] F. Gelis, Int. J. Mod. Phys. A 28, 1330001 (2013).
[8] A. Kovner, L. D. McLerran and H. Weigert, Phys. Rev. D 52, 6231 (1995) doi:10.1103/PhysRevD.52.6231 hep-ph/9502289.
[9] A. Kovner, L. D. McLerran and H. Weigert, Phys. Rev. D 52, 3809 (1995) doi:10.1103/PhysRevD.52.3809 hep-ph/9505220.
[10] M. Gynalasy and L. D. McLerran, Phys. Rev. C 56, 2219 (1997) doi:10.1103/PhysRevC.56.2219 nucl-th/9704034.
[11] T. Lappi and L. McLerran, Nucl. Phys. A 772, 200 (2006) doi:10.1016/j.nuclphysa.2006.04.001 hep-ph/0602189.
[12] R. J. Fries, J. I. Kapusta and Y. Li, nucl-th/0604054.
[13] G. Chen, R. J. Fries, J. I. Kapusta and Y. Li, Phys. Rev. C 92, no. 6, 064912 (2015) doi:10.1103/PhysRevC.92.064912 arXiv:1507.03524 [nucl-th]]).
[14] A. Krasnitz and R. Venugopalan, Phys. Rev. Lett. 86, 1717 (2001) doi:10.1103/PhysRevLett.86.1717 hep-ph/0007108.
[15] A. Krasnitz, Y. Nara and R. Venugopalan, Phys. Rev. Lett. 87, 192302 (2001) doi:10.1103/PhysRevLett.87.192302 hep-ph/0108092.
[16] A. Krasnitz, Y. Nara and R. Venugopalan, Nucl. Phys. A 727, 427 (2003) doi:10.1016/j.nuclphysa.2003.08.004 hep-ph/0305112.
[17] K. Fukushima, F. Gelis and L. McLerran, Nucl. Phys. A 786, 107 (2007) doi:10.1016/j.nuclphysa.2007.01.086 hep-ph/0610416.
[18] H. Fujii, K. Fukushima and Y. Hidaka, Phys. Rev. C 79, 024900 (2009) doi:10.1103/PhysRevC.79.024900 arXiv:0811.0437 [hep-ph].
[19] K. Fukushima, Phys. Rev. C 89, no. 2, 024907 (2014) doi:10.1103/PhysRevC.89.024907 arXiv:1307.1046 [hep-ph].
[20] P. Romatschke and R. Venugopalan, Phys. Rev. Lett. 96, 062302 (2006) doi:10.1103/PhysRevLett.96.062302 hep-ph/0510212.
[21] P. Romatschke and R. Venugopalan, Phys. Rev. D 74, 045011 (2006) doi:10.1103/PhysRevD.74.045011 hep-ph/0605045.
[22] K. Fukushima and F. Gelis, Nucl. Phys. A 874, 108 (2012) doi:10.1016/j.nuclphysa.2011.11.003 arXiv:1106.1396 [hep-ph].
[23] H. Iida, T. Kunihiro, A. Ohnishi and T. T. Takahashi, arXiv:1410.7309 [hep-ph].
[24] T. Epelbaum and F. Gelis, Phys. Rev. Lett. 111, 232301 (2013) doi:10.1103/PhysRevLett.111.232301 arXiv:1307.2214 [hep-ph].
[25] T. Epelbaum and F. Gelis, Phys. Rev. D 88, 085015 (2013) doi:10.1103/PhysRevD.88.085015.
[65] H. Kowalski, T. Lappi and R. Vingopalan, Phys. Rev. Lett. 100, 022303 (2008) doi:10.1103/PhysRevLett.100.022303 [arXiv:0705.3047 [hep-ph]].

[66] N. Armesto, C. A. Salgado and U. A. Wiedemann, Phys. Rev. Lett. 94, 022002 (2005) doi:10.1103/PhysRevLett.94.022002 [hep-ph/0407018].

[67] A. Freund, K. Rummukainen, H. Weigert and A. Schafer, Phys. Rev. Lett. 90, 222002 (2003) doi:10.1103/PhysRevLett.90.222002 [hep-ph/0210139].

[68] J. L. Albacete, A. Dumitru, H. Fujii and Y. Nara, Nucl. Phys. A 897, 1 (2013) doi:10.1016/j.nuclphysa.2012.09.012 [arXiv:1209.2001 [hep-ph]].

[69] M. Cacciari, M. Greco and P. Nason, JHEP 9805 (1998) 007 [arXiv:hep-ph/9805490]; M. Cacciari, S. Frixione and P. Nason, JHEP 0103 (2001) 006 [arXiv:hep-ph/0102134].

[70] M. Cacciari, S. Frixione, N. Houdeau, M. L. Mangano, P. Nason and G. Ridolfi, JHEP 1210 (2012) 137 [arXiv:1205.6344 [hep-ph]].

[71] M. Cacciari, M. L. Mangano and P. Nason, arXiv:1507.06197 [hep-ph].

[72] S. K. Wong, Nuovo Cim. A 65, 689 (1970). doi:10.1007/BF02892134.

[73] A. D. Boozer, Am. J. Phys. 79 (9), September 2011.

[74] C. Peterson et al., Phys. Rev. D 27, 105 (1983).

[75] F. Scardina, S. K. Das, V. Minissale, S. Plumari and V. Greco, Phys. Rev. C 96, no. 4, 044905 (2017) doi:10.1103/PhysRevC.96.044905 [arXiv:1707.05452 [nucl-th]].

[76] S. Plumari, V. Minissale, S. K. Das, G. Coci and V. Greco, Eur. Phys. J. C 78, no. 4, 348 (2018) doi:10.1140/epjc/s10052-018-5828-7 [arXiv:1712.00730 [hep-ph]].