Terrestrial capture of prey by the reedfish, a model species for stem tetrapods

Sam Van Wassenbergh1,2 | Christoffel Bonte1 | Krijn B. Michel1,3

1Department of Biology, University of Antwerp, Antwerp, Belgium
2Département d’Ecologie et de Gestion de la Biodiversité, Muséum National D’Histoire Naturelle, UMR 7179 CNRS, Paris Cedex 05, France
3Structure & Motion Laboratory, The Royal Veterinary College, Hatfield, Hertfordshire, UK

Correspondence
Sam Van Wassenbergh, Département d’Ecologie et de Gestion de la Biodiversité Muséum National D’Histoire Naturelle, UMR 7179 CNRS, Paris Cedex 5, France. Email: svanwassenbergh@mnhn.fr

Funding information
Agence Nationale de la Recherche, Grant/Award Number: ANR-16-ACHN-0006-01; New Research Initiative grant from the Special Research Fund (NOI-BOF) of the University of Antwerp

Abstract
Due to morphological resemblance, polypterid fishes are used as extant analogues of Late Devonian lobe-finned sarcopterygians to identify the features that allowed the evolution of a terrestrial lifestyle in early tetrapods. Previous studies using polypterids showed how terrestrial locomotion capacity can develop, and how air ventilation for breathing was possible in extinct tetrapodomorphs. Interestingly, one polypterid species, the reedfish Erpetoichthys calabaricus, has been noted being capable of capturing prey on land. We now identified the mechanism of terrestrial prey-capture in reedfish. We showed that this species uses a lifted trunk and downward inclined head to capture ground-based prey, remarkably similar to the mechanism described earlier for eel-catfish. Reedfish similarly use the ground support and flexibility of their elongated body to realize the trunk elevation and dorsoventral flexion of the anterior trunk region, without a role for the pectoral fins. However, curving of the body to lift the trunk may not have been an option for the Devonian tetrapodomorphs as they are significantly less elongated than reedfish and eel-catfish. This would imply that, in contrast to the eel-like extant species, evolution of the capacity to capture prey on land in early tetrapods may be linked to the evolution of the pectoral system to lift the anterior part of the body.

KEYWORDS
feeding, polypteridae, prey-capture, terrestrialization

1 INTRODUCTION

The origin of tetrapods and their invasion of terrestrial environments was a major event in vertebrate evolution (Ashley-Ross, Hsieh, Gibb, & Blob, 2013). The transition from Late Devonian lobe-finned fishes such as Eusthenopteron, Panderichthys, and Tiktaalik to early tetrapods such as Acanthostega and Ventastega shows that the origin of tetrapods involved a multitude of morphological changes to the locomotor, respiratory, sensory, and feeding systems (Ahlberg & Milner, 1994; Coates & Clack, 1995; Daeschler, Shubin, & Jenkins, 2006; Jarvik, 1980; Laurin, 2010; Shubin, Daeschler, & Jenkins, 2006). However, as the link between form and function is often not evident from these fossils alone (Ashley-Ross et al., 2013), modern model species have an important role in identifying the functional implication of the morphological changes in this Late Devonian period (Brainerd, Liem, & Samper, 1989; Ijspeert, Crespi, Ryczko, & Cabelguen, 2007; Markey & Marshall, 2007; Standen, Du, & Larsson, 2014).

Extant polypterids fishes are important models for fishapods. They have retained many of the features of the common ancestor of actinopterygians and sarcopterygians and therefore occupy the most basal position in the actinopterygian phylogeny (Inoue, Miya, Tsukamoto, & Nishida, 2003; Near et al., 2012). Polypteridae possess several
morphological traits which are comparable to the Late Devonian lobe-finned fishes (Eiptostegalia): a relatively elongate cylindrical body form, rhomboid scales that interlock with peg-and-socket articulations, ventrolaterally positioned pectoral fins, functional lungs, and similar overall shape and suture morphology of the skull (Claeson, Bemis, & Hagadorn, 2007; Markey & Marshall, 2007; Standen et al., 2014). A recent experimental study relied on similarities in the locomotor system between polypterids and these stem tetrapods to infer the locomotor efficacy on land in the earliest tetrapods (Standen et al., 2014). An earlier study used Polypterus to demonstrate how ventilation of the lungs without moveable ribs or a diaphragm could allow early tetrapods to breathe actively (Brainerd et al., 1989).

An equally important step in the terrestrialization of sarcopterygians is the evolution of terrestrial feeding. Early tetrapods were confronted with serious constraints on terrestrial foraging due to density and viscosity differences between water and air (Herrel, Van Wassenbergh, & Aerts, 2012). To infer which of the stem tetrapods had a feeding behavior similar to Polypterus (an aquatic suction feeder; Lauder, 1980), and to determine which species were more likely to perform terrestrial biting, Markey and Marshall (2007) compared the cranial suture morphology of Polypterus to that of early lobe-finned fishes and tetrapods. Suture resemblance with Polypterus was still present in Eusthenopteron but lost in the later fossils Acanthostega and Phonerpeton (Markey & Marshall, 2007). This is suggestive of a terrestrial feeding mode in the latter two taxa. This study illustrates the central importance of polypterid fishes in reconstructing the evolution of early tetrapods, but does not explain which changes are needed to other cranial components or postcranial anatomy to make the transition from a suction feeder to terrestrial feeder (Michel, Heiss, Aerts, & Van Wassenbergh, 2015) and Periophthalmus barbarus (N = 4; specimens from Michel, Heiss, et al., 2015) and measured on anatomy drawings for the eelcatfishes Channallabes apus and Gymnallabes typus (Cabuy, Adriaens, Verraes, & Teugels, 1999; Devaere, Adriaens, Verraes, & Teugels, 2001). Head length was measured as the distance between the anterior tip of the jaws and the posterior margin of the opercle. These ratios were also determined for a broad taxonomic sample of Actinopterygii by measurements on the lateral-view contour drawings of the fishes from this group from Nelson's (1994) Fishes of the World encyclopedia (N = 375). Anguilliform taxa displayed in this book with a folded tail were replaced by measurements on pictures from the scientific literature. These data were compared to the ratios from reconstructions of four Upper Devonian fossils from the stem tetrapod lineage that are sufficiently complete to allow this quantification: Gooologorgia loomesi (Johanson & Ahlberg, 1998), Eusthenopteron (Ahlberg & Milner, 1994), Ichthyostega, and Acanthostega (Ahlberg, Clack, & Blom, 2005).

3 | RESULTS AND DISCUSSION

We will describe the kinematic events during terrestrial prey-capture based on the image sequence shown in Figure 1a (Movie S1). Initially, E. calabaricus emerges from the water and propels itself on to the shore, with its head slightly pitched downward (Figure 1a; t = 0 s). Once the snout makes contact with the prey, the mouth is opened, and this elevates the skull to some extent as the mandible pushes against the wooden ground surface (Figure 1a; t = 0.144 s). The pectoral fins are moved backward to become adjacent to the body, seemingly without making contact with the ground. The body is then propelled forward toward the prey, the anterior part of the trunk is lifted, and the head increases its nose-down tilting angle (Figure 1a; t = 0.272 s). Next, the jaws are closed over the prey, and the lifted pectoral region...
falls back down to the substrate (Figure 1a; $t = 0.432$ s). The prey is held between the jaws while the reedfish moves back into the water. The dorsoposterior views on the head show that the opercular slits open to release air during terrestrial prey-captures. While searching for prey in the terrestrial environment, the head angle is often similarly tilted downward to about 20° (Figure 1b). Terrestrial swallowing of prey was not observed; reedfish always returned to the water for intraoral transport of the prey.

This mode of prey-capture is remarkably similar to that described for the eel-catfish *C. apus* (Van Wassenbergh, 2013; Van Wassenbergh et al., 2006). The eel-catfish also used a lifted trunk and downward inclined head to capture ground-based prey. Buccal expansion and compression during mouth opening also resulted in air-bubble release through the opercular slits. Reedfish thus similarly use the ground support and flexibility of an eel-like body to perform the trunk elevation and dorsoventral flexion of the anterior trunk region. No role for the pectoral fins (not present in adult eel-catfish) during prey-capture could be identified in the reedfish. The only notable difference with the eel-catfish is that the mouth of the reedfish is not open the entire time it is close to food on land, but opened after contact with the prey (Figure 1a). These findings support the hypothesis that body elongation combined with sufficient anterior trunk flexibility enables ancestrally aquatic species to capture prey on land (Van Wassenbergh et al., 2006).

Also aquatic, benthic feeding behavior of the reedfish resembles that of the eel-catfish (Van Wassenbergh, 2013; see Movie S2; Figure 1c). The reedfish also uses inertial suction feeding, as was previously described by Lauder (1980) for *Polypterus senegalus*. We consistently observed the head being inclined to a relatively steep angle with respect to the substrate during feeding (mean \pm SD; $N = 13$; $51 \pm 28^\circ$; Figure 1c). Skin folds along the upper and lower jaws help to occlude the corners of the mouth during suction in both eel-catfish and reedfish. This is assumed to be an adaptation for suction feeding, as this extends the distance in front of the mouth at which suction is effective (Muller & Osse, 1984; Skorczewski, Cheer, & Wainwright, 2012; Van Wassenbergh & Heiss, 2016). These skin folds of reedfish appear considerably looser and are stretched more medially by the flow of water (Figure 1c) than those of eel-catfish.

Recent studies have shown a variety of ways ray-finned fish can capture prey on land. Mudskippers (*P. barbarus*) pivot about the pectoral fins to bring their mouth toward terrestrial prey (Michel et al., 2014), of which the capture and intraoral transport is often aided by movement of the water retained in the buccal cavity while on land (Michel, Heiss, et al., 2015). The largescale foureyes (*A. anableps*) uses
VAN WASSENBURGH ET AL.

eel-catfish species *Erpetoichthys calabaricus* that terrestrially capture prey (reedfish histogram; data from Nelson, 1994), the three anguilliform species between a broad taxonomic sample of ray-finned fishes (upper deviation. Numerical data are included as Supporting information resemble the average actinopterygian. Error bars denote standard deviation. Aistopoda, a group of limbless lepospondyls that lived from early Carboniferous to Early Permian, are extremely elongated (Baird, 1964; Clack, 2012; Germain, 2008). Based on fossils of different species all found in coal swamp localities, the function of the feeding system of aistopods is still debated: Snake-like cranial kinesis was first proposed (Lund, 1978), but later rejected (Anderson, 2002). Our current data suggest that in analogy with reedfish and eel-catfish, aistopods probably were capable of capturing relatively small prey on land without the need for a specialized kinesis in their cranial skeletal system. Similarly, a terrestrial prey-capturing capacity was probably also present in adelogyrinids, another group of elongated lepospondyls, which are presumed to be aquatic suction feeders because they have a highly elaborated hyoid apparatus (Carroll, 1989; Clack, 2012). In reedfish and eel-catfish, aquatic suction is indispensable to swallow prey that were caught on land. Foraging by adelogyrinids could thus also have taken place at the interface between water and land.

ACKNOWLEDGMENTS

We thank Bart Vervust and Jonathan Brecko for their help in this study. We also thank the two reviewers for their insights on how to improve our article. This research was supported by a New Research Initiative grant from the Special Research Fund (NOI-BOF) of the University of Antwerp and by a grant from the Agence National de la Recherche (ANR-16-ACHN-0006-01) to S.V.W.
CONFLICT OF INTEREST

None declared.

REFERENCES

Ahlberg, P. E., Clack, J. A., & Blom, H. (2005). The axial skeleton of the Devonian tetrapod Icthyostega. Nature, 437, 137–140.

Ahlberg, P. E., & Milner, A. R. (1994). The origin and early diversification of tetrapods. Nature, 368, 507–514.

Anderson, J. S. (2002). Revision of the aïstopod genus Clarias. Journal of Paleontology, 79, 1029–1046.

Ashley-Ross, M. A., Hsieh, S. T., Gibb, A. C., & Blob, R. W. (2013). Vertebrate feeding by the lungfish Clarias gariepinus. Journal of Morphology, 279, 1145–1160.

Aubert, P., & Le Loeuff, J. (2014). Functional anatomy and kinematics of the oral jaw system during terrestrial feeding in Tiktaalik roseae (Pachyosteidae). Nature, 440, 764–771.

Aubry, M. T., & Erwin, D. H. (2013). Fossils and the Paleocene–Eocene thermal maximum. Nature, 496, 218–225.

Baird, D. (1964). The aïstopod amphibians surveyed. Breviora, 206, 1–17.

Baird, D. (1984). The aïstopod amphibians surveyed. Breviora, 206, 1–17.

Baumer, A., & Erwin, D. H. (2014). Fossils and the Paleocene–Eocene thermal maximum. Nature, 496, 218–225.

Basic structure and evolution of vertebrates. London, UK: Academic Press.

Johnson, Z., & Ahlberg, P. E. (1998). A complete primitive rhizodont from Australia. Nature, 394, 569–573.

Laude, G. V. (1980). Evolution of the feeding mechanism in primitive actinopterygian fishes: A functional anatomical analysis of Polypterus, Lepisosteus, and Amia. Journal of Morphology, 163, 283–317.

Laurin, M. (2010). How vertebrates left the water. Berkeley, CA: University of California Press.

Lund, R. (1978). Anatomy and relationships of the family Phlegethontiidae (Amphibia, Aistopoda). Annals of Carnegie Museum, 47, 53–79.

Markey, M. J., & Marshall, C. R. (2007). Terrestrial-style feeding in a very early aquatic tetrapod is supported by evidence from experimental analysis of suture morphology. Proceedings of the National Academy of Sciences of the United States of America, 104, 7134–7138.

Michel, K., Adriaens, D., Aerts, P., Dierick, M., & Van Wassenbergh, S. (2014). Functional anatomy and kinematics of the oral jaw system during terrestrial feeding in Tiktaalik roseae. Journal of Morphology, 275, 1029–1046.

Kim, B. K., Heiss, E., Aerts, P., & Van Wassenbergh, S. (2015). A fish that uses its hydrodynamic tongue to feed on land. Proceedings of the Royal Society B, 282, 20150057.

Muller, M., & Osse, J. W. M. (1984). Hydrodynamics of suction feeding in fish. The Transactions of the Zoological Society of London, 37, 51–135.

Near, T. J., Eytan, R. I., Dornburg, A., Kuhn, K. L., Moore, J. A., Davis, M. P., ... Smith, W. L. (2012). Resolution of ray-finned fish phylogeny and timing of diversification. Proceedings of the National Academy of Sciences of the United States of America, 109, 13698–13703.

Nelson, J. S. (1994). Fishes of the world (3rd ed.). New York, NY: John Wiley & Sons Inc.

Pace, C. M., & Gibb, A. C. (2011). Locomotor behavior across an environmental transition in the ropefish, Erpetoichthys calabaricus. Journal of Experimental Biology, 214, 530–537.

Sacc, R., & Burggren, W. (1982). Oxygen uptake in air and water in the air-breathing reedfish Calamoichthys calabaricus: Role of skin, gills and lungs. Journal of Experimental Biology, 97, 179–186.

Shibun, N. H., Daeschler, E. B., & Jenkins Jr, F. A. (2006). The pectoral fin of Tiktaalik roseae and the origin of the tetrapod limb. Nature, 440, 764–771.

Skorczewski, T., Cheer, A., & Wainwright, P. C. (2012). The benefits from flat circular mouths on suction feeding performance. Journal of the Royal Society Interface, 9, 1767–1773.

Standen, E. M., Du, T. Y., & Larsson, H. C. (2014). Developmental plasticity and the origin of tetrapods. Nature, 513, 54–58.

Van Wassenbergh, S. (2013). Kinematics of terrestrial capture of prey by the eel-catfish Channallabes apus. Integrative and Comparative Biology, 53, 258–268.

Van Wassenbergh, S., & Heiss, E. (2016). Phenotypic flexibility of gape anatomy fine-tunes the aquatic prey-capture system of newts. Scientific Reports, 6, 29277.

Van Wassenbergh, S., Herrel, A., Adriaens, D., Huysentruyt, F., Devaere, S., & Aerts, P. (2006). Evolution: A catfish that can strike its prey on land. Nature, 440, 881.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.

How to cite this article: Van Wassenbergh S, Bonte C, and Michel KB. Terrestrial capture of prey by the reefish, a model species for stem tetrapods. Ecol Evol. 2017;7:3856–3860. https://doi.org/10.1002/ece3.2694