Supplementary materials for

Human Rev1 relies on insert-2 to promote selective binding and accurate replication of stabilized G-quadruplex motifs

Amit Ketkar¹, Lane Smith¹, Callie Johnson³, Alyssa Richey³, Makayla Berry¹, Jessica H. Hartman⁴, Leena Maddukuri¹, Megan R. Reed¹, Julie Gunderson⁵, Justin W.C. Leung², and Robert L. Eoff¹*

¹Department of Biochemistry and Molecular Biology and ²Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, ³Arkansas School for Mathematics, Sciences, and the Arts, Hot Springs, AR 71901, USA, ⁴Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA, ⁵Department of Physics, Hendrix College, Conway, AR 72032, USA.

* To whom correspondence should be addressed. Tel: +1 501 686 8343; Fax: +1 501 686 8169; Email: RLEoff@uams.edu

Running title: Human Rev1 interaction with G-quadruplex DNA
SUPPORTING INFORMATION

CONTENTS

Supplementary materials and methods

Table S1. CD melting temperatures of the ss-DNA G4 oligos used in this study.

Table S2. Equilibrium dissociation constants for hRev1^{330-833} binding to ss-G4 and non-G4 DNA substrates in a buffer containing 100 mM LiCl.

Table S3. Equilibrium dissociation constants for hRev1^{330-833} binding to ds-G4 and non-G4 DNA substrates in a buffer containing 100 mM KCl.

Table S4. hRev1^{1-1251}-derived peptides (trypsin-digested) identified by mass spectrometry.

Figure S1. Circular dichroism spectra of the DNA oligonucleotides used in this study.

Figure S2. Purification and CD spectra of hRev1^{330-833} wild-type and mutant proteins.

Figure S3. Cloning, purification, DNA binding and enzyme activity of full-length hRev1^{1-1251}.

Figure S4. Schematic showing the DNA sequence of the pSP189 plasmids used in the forward mutagenesis assay.

Figure S5. Uncropped immunoblots of whole-cell lysates from HAP-1 REV1^{KO} cells transiently transfected with the pMH-SFB-Rev1 wild-type and mutant plasmids.

Figure S6. Alignment of the G4-supF plasmid sequences obtained from white MBM7070 E. coli colonies after replication in HAP-1 cells.

Figure S7. Alignment of the G4-supF plasmid sequences obtained from white MBM7070 E. coli colonies after replication in HAP-1 REV1^{KO} cells.

Figure S8. Sequence information, circular dichroism spectra and DNA binding of the putative G4-forming sequence identified at the REV1 promoter.

Figure S9. Binding affinity of hRev1^{330-833} to primer-template G4 DNA substrates.

Figure S10. Alignment of the Rev1 polymerase domain from multiple species.
Supplementary materials and methods

Circulr dichroism spectroscopy -
Circular dichroism (CD) spectroscopy for all DNA oligonucleotide substrates was performed on a Jasco J-1100 spectropolarimeter (Jasco, Easton, MD, USA). The ss-DNA G4 or non G4 oligos, or the corresponding primer-template ds-DNA substrates were prepared by annealing, as described in Methods. Solutions were prepared in 10 mM Tris-HCl, pH 7.5, containing either 100 mM KCl or LiCl. For measuring spectra, DNA was taken at a concentration of 5 μM in a total volume of 200 μL of buffer in a quartz cuvette with pathlength of 1 mm. Spectra were measured between the wavelength range of 230 nm to 330 nm, with a band-width of 1 nm, data pitch of 0.1 nm, at a scanning speed of 100 nm/min. Spectra were reported as an average of three scans. A similar scan of the buffer alone was used as blank to subtract and obtain the corrected spectra for oligo substrates. Thermal stability for the ss-G4 oligo substrates was measured by monitoring the change in CD signal at the corresponding peak wavelength, across a temperature range of 4°C to 95°C, by applying a melting temperature gradient of 1°C/min. An average of two scans was reported. Data analysis was performed using Graphpad Prism (San Diego, CA, USA), and the melting temperature values were obtained by fitting the data to a four-parameter logistic model allowing a variable slope.

Immunoblotting -
Aliquots at different stages during purification (lysate, supernatant after interaction with streptavidin-Sepharose beads, biotin-eluted fraction, etc.) from the large-scale culture of HEK293T cells stably expressing SFB-tagged hRev11-1251 were retained during protein purification. These were then loaded on a 4–20% gradient SDS-PAGE gel (Bio-Rad Laboratories, Hercules, CA, USA), and electrophoresis was performed at 120 V for 80 min. The separated proteins were transferred to a 0.2 μm polyvinylidene difluoride membrane (Bio-Rad; Cat # 162-0177) at 4°C at 200 mA for 90 min. After blocking with 5% (w/v) nonfat milk in 1X Tris-buffered saline (TBS), western blotting to detect the presence of SFB-tagged hRev11-1251 was performed by probing the membrane with the rabbit polyclonal anti-FLAG epitope antibody (Novus Biologicals; Cat # NB600-345). Dilution of the primary antibody was 1:1000 made in 1X TBS containing 1% (w/v) BSA. The blots were also probed with a rabbit anti-GAPDH primary antibody (Cell Signaling Technologies, Danvers, MA, USA; Cat #2118S) used at 1:10,000 dilution as loading control. Horseradish peroxidase-coupled anti-rabbit secondary antibody (Thermo-Scientific; Cat #32460) was used at a 1:2000 dilution. Blot was developed by enhanced chemiluminescence using the ECL kit (Bio-Rad; Cat # 170-5060) and the bands were visualized on a ChemiDoc MP imaging system (Bio-Rad; Cat # 12003154).

For the HAP-1 REV1KO cells transiently transfected to express the SFB-tagged hRev11-1251 wild-type or mutant proteins, whole cell lysates were prepared 48 hrs post-transfection. REV1KO cells that were sham-transfected (no plasmid) were used as untransfected control. Protein concentration of the lysates was estimated using the Pierce BCA assay kit (Thermo-Fisher Cat#23225). 50 μg of each lysate sample was loaded and separated by gel electrophoresis followed by transfer and blocking as described earlier. The immunoblot was then probed with the rabbit polyclonal anti-FLAG epitope antibody (Novus Biologicals; Cat # NB600-345; 1:1000 [v/v] dilution) to detect the level of each SFB-
hRev1 protein expression. The blot was subsequently also probed for loading control, with a rhodamine-conjugated anti-actin FAB (Bio-Rad12004164; 1:2000 [v/v] dilution).
Table S1. Melting temperatures of the G4 ssDNA substrates used in the study, measured by CD, in 10 mM Tr-s-Cl buffer (pH 7.5) containing 100 mM KCl/LiCl.

	T_m ($^\circ$C) [100 mM KCl]	T_m ($^\circ$C) [100 mM LiCl]
Myc 14/23	91 ± 3	52 ± 4
Myc 2/11	84 ± 4	49 ± 2
Rev1-prom	80 ± 3	51 ± 4
Bcl-2 1245	66 ± 5	53 ± 3
KRAS 22RT	56 ± 3	44 ± 1
TBA	48 ± 7	38 ± 4
hTel-4	62 ± 5	41 ± 4

a T_m values reported represent the mean ± SD (n=3).
Table S2. Equilibrium dissociation constants for hRev1³³⁰⁻⁸³³ binding to ss-G4 and non-G4 DNA substrates in a buffer containing 100 mM LiCl.^b

	K_D (nM) Non-G4	K_D (nM) G4	Fold preference for G4 DNA (K_D,Non-G4 DNA/K_D,G4 DNA)
Myc 14/23	760 ± 290	220 ± 70	4
Myc 2/11	-	90 ± 20	8
Rev1-prom	260 ± 120	180 ± 70	2
Bcl-2 1245	750 ± 340	200 ± 40	4
KRAS 22RT	1620 ± 800	250 ± 130	7
TBA	310 ± 40	140 ± 20	2
hTelo-4	920 ± 120	630 ± 100	2

^bFluorescence polarization experiments were performed by titrating hRev1³³⁰⁻⁸³³ into a solution containing the indicated ss-DNA substrate containing 100 mM LiCl. The resulting equilibrium dissociation constant values were calculated by fitting the resulting polarization values to a quadratic equation. Data represent the mean ± SD (n=3).
Table S3. Equilibrium dissociation constants for hRev1³³⁰⁻⁸³³ binding to ds-G4 and non-G4 DNA substrates in a buffer containing 100 mM KCl.^c

	Non-G4 (nM)	G4 (nM)	Fold preference for G4 DNA \(\frac{K_{D,\text{Non-G4 DNA}}}{K_{D,\text{G4 DNA}}} \)
Myc 14/23	770 ± 80	59 ± 9	13
Myc 2/11	-	45 ± 6	17
Rev1-prom	154 ± 30	11 ± 2	14
Bcl-2 1245	660 ± 120	97 ± 20	7
KRAS 22RT	1120 ± 80	120 ±10	9
TBA	270 ± 30	165 ± 25	2
hTelo-4	1600 ± 320	840 ± 50	2

^cFluorescence polarization experiments were performed by titrating hRev1³³⁰⁻⁸³³ into a solution containing the indicated ds-DNA substrate containing 100 mM KCl. The resulting equilibrium dissociation constant values were calculated by fitting the resulting polarization values to a quadratic equation. Data represent the mean ± SD (n=3).
Peptide Sequence (Trypsin cleavage sites in parentheses)	m/z	M.W.	Charge state	Residue (Start-End)
(K)AAPSVPSKPSDeNFISNYSHSR(L)⁺	856.73	2567.18	+3	335-357
(R)LHHISMKW(C)	526.28	1050.54	+2	358-365
(K)cELTEFVNTLQR(Q)	755.37	1508.73	+2	366-377
(R)QSnGIFFGREK(L)⁺	617.31	1232.62	+2	378-388
(R)QSnGIFFGREK(L)++	683.33	1364.64	+2	378-388
(K)mKTGRSLAVVTDGdSVLNSPR(H)⁺	650.57	2598.24	+4	392-414
(R)SLAVVTDGdSVLNSPR(H)	621.32	1860.93	+3	397-414
(R)HQScImHVMDcFFSvGIR(N)	818.70	2453.07	+3	415-434
(R)NRpDLKGPVAVTSNRSnGK(D)	438.75	1750.98	+4	435-450
(R)NRpDLKGPVAVTSNRSnGK(D)	471.76	1883.00	+4	435-450
(K)GKPvAVTSNRGTGAR(S)	700.39	1398.77	+2	441-454
(K)GKPvAVTSNRGTGAR(S)	511.27	1530.79	+3	441-454
(R)GTGAPLRPGANPQEwQQYQQN(K)	661.84	2643.33	+4	451-473
(R)GTGAPLRPGANPQEwQQYQQN(K)	694.85	2775.35	+4	451-473
(K)GKAADIPDSSLwENPDAsAQnGIDSvLSR(A)	1005.48	3013.43	+3	477-505
(K)AAdIPDSSLwENPDAsAQnGIDSvLSR(A)	1355.96	4064.86	+3	479-516
(R)AEIAScSYEARQLGK(N)	599.31	1794.89	+3	506-521
(R)AEIAScSYEARQLGK(N)	643.31	1926.92	+3	506-521
(R)QLGKgKnGMFFGhKQ(A)	516.94	1547.79	+3	517-530
(K)NGMFFGhKQ(A)	504.74	1007.48	+2	522-530
(K)QLcPNLQAvPvFYDHAYK(E)	1032.50	2062.99	+2	531-547
(K)LTPDEFANAVR(M)	616.82	1231.62	+2	585-595
(R)MEIKDQTK(C)	496.76	991.50	+2	596-603
(K)cAAsvGIGsNllar(M)	751.41	1500.81	+2	604-618
(K)cAAsvGIGsNllarRMAT(K)	703.69	2108.05	+3	604-622
(R)KAKPDGYHLKPEEVDDFIR(G)	597.06	2384.21	+4	623-642
(K)AKPDGYHLKPEEVDDFIR(G)	565.04	2256.12	+4	624-642
(R)GQLvTNLPvGvGhSMeSK(L)	885.45	1768.88	+2	643-659
(R)GQLvTNLPvGvGhSMeSKLsLGlI	818.11	2451.32	+3	643-666
(K)LAsLGLIKTcGDLQyMTrMaK(L)	706.35	2116.04	+3	660-678
(K)TcGDQLyMTrMaK(L)	717.81	1433.60	+2	667-678
(K)LQKEFGKPtGQmLYR(F)	453.74	1810.94	+4	679-686
(K)TGQmLYRFcR(G)	493.89	1478.64	+3	687-696
(K)TGQmLYRFcR(G)	488.56	1462.65	+3	687-696
(R)GLDDRVPVEK(E)	709.36	1416.70	+2	697-707
(R)GLDDRVPVEK(E)	785.92	1569.82	+2	697-709
(K)ERKsvsAEinyGIR(F)	541.29	1620.86	+3	708-721
(R)ERKsvsAEinyGIR(F)	446.25	1335.71	+3	710-721
(K)SVsAEinyGIR(F)	403.55	1207.62	+3	711-721
Sequence	Charge	Mass	MRM Window	Notes
----------	--------	------	------------	-------
(R)FTQPKEAEAFLLSLSEEIQR(R)	779.41	2335.21	+3	722-741
(K)JEAEAFLLSLSEEIQR(R)	867.95	1733.88	+2	727-741
(R)RLEATGmKGK(R)	553.80	1105.59	+2	742-751
(R)LTLKImVRKPGAPVETAK(F)	492.80	1967.16	+4	753-770
(K)ImVRKPGAPVETAK(F)	548.96	1643.87	+3	757-770
(K)ImVRKPGAPVETAK(F)	756.93	1511.85	+2	757-770
(R)KPGAPVETAKFGGHGlcDNIAR(T)	574.55	2294.16	+4	761-782
(K)FGGHGlcDNIARTVTLDqATDNK(I)	677.32	2705.25	+4	771-794
(R)TVTLDqATDNK(I)	639.31	1276.61	+2	783-794
(R)TVTLDqATDnAKIIGK(A)	563.64	1687.90	+3	783-798
(K)IIGKAmlNMFHTMK(L)	550.96	1649.85	+3	795-808
(K)AMLNmFHTmKLNISDMR(G)	695.66	2083.97	+3	799-815

* Lowercase 'n' indicates deamidation (+1) of Asn residues, while lowercase 'c' indicates carbamidomethyl modification (+57), and 'm' indicates oxidation (+16) of Met residues.

** Arg residues highlighted in red were modified by HPG (+132).
Figure S1. Circular dichroism spectra of the ss-DNA oligonucleotides used in this study. Spectra measured in 100 mM KCl are shown in blue, while those in 100 mM LiCl are shown in red. Positions of signature peaks and troughs for parallel (265 nm), anti-parallel (262 nm and 295 nm) and mixed (265 nm and 290 nm) G4-DNA CD curves are marked.
Figure S2. hRev1\(^{330-833}\) wild-type and mutant proteins were overexpressed in *E. coli* BL21 (DE3) cells and purified. (A) All the hRev1\(^{330-833}\) proteins were purified to homogeneity. A Coomassie brilliant blue R-250 stained SDS-PAGE gel with 10 μg of each protein is shown. (B) CD spectra of the purified hRev1\(^{330-833}\) proteins are shown. The spectra of all proteins overlapped, indicative of similar folding for the wild-type and mutant proteins.
Figure S3. Full-length hRev1 was used in supF-forward mutagenesis assay and biochemical experiments. (A) Full-length hRev1 (a.a. 1-1251) was cloned into the Gateway-compatible pMH-SFB mammalian expression vector as a N-terminal tandem S protein-FLAG-streptavidin-Binding peptide (SFB) tagged construct. The domain organization of the construct is shown, where the affinity tag and hRev1 domains are labeled. S, S-protein; 2xFLAG, two tandem FLAG-peptide sequences; SBP, streptavidin-binding peptide; BRCT, BRCA1 C terminus domain; pol core, hRev1 polymerase core domain (a.a. 330-833) colored according to the scheme identical to that used in Figure 2C to show the sub-domains; ubm, ubiquitin-binding motif; CT, C-terminal domain (a.a. 1150-1251). This plasmid was used to transfect HAP-1 mammalian cells for the forward mutagenesis assay. All the mutant hRev1 constructs described in the mutagenic assay were subsequently made using this construct. (B) HEK293T cells stably expressing SFB-tagged hRev1¹⁻¹²⁵¹ were generated using the construct described in A, and the overexpressed protein was purified using affinity chromatography with
streptavidin-sepharose beads. Aliquots from different stages of the protein purification protocol were separated using SDS-PAGE gel electrophoresis. Lane 1, Lysate from the HEK293T cells; lane 2, supernatant after interaction with streptavidin-sepharose beads; lane 3, first eluate with 2 mg/mL biotin; lane 4, biotin eluate after second round of binding; lane 5, final dialyzed sample. A major band at ~120 kDa was observed for the purified protein. Molecular weight markers are shown in the far-left lane. The panel below the Ponceau-stained blot shows the western blot probed with an anti-FLAG antibody. A single band was detected for SFB-hRev1 at different stages of purification. (C) DNA binding properties of the purified hRev11-1251 protein were studied using the Myc 14/23 substrate. Binding curves for the Myc 14/23 G4 substrate (blue) and the non-G4 control (red) are shown. The values for the equilibrium dissociation constants are given in Table 2. (D) Enzyme activity on both G4- and non-G4 template-primer substrates was tested for the purified hRev11-1251 protein, in an assay as described in Methods and Figure 4.
Figure S4. Schematic showing the DNA sequence of the pSP189 plasmids used in the forward mutagenesis assay. The unmodified pSP189 plasmid sequence is shown in the top panel, with the supF-tRNA coding region marked in yellow. The numbering is according to Seidman et al (1). In the lower panel, the region marked in green indicates the Myc-G4 sequence inserted into the pSP189 plasmid. The color scheme is identical to that used in Figure 6.
Figure S5. Uncropped Western immunoblots of whole-cell lysates from HAP-1 \(REV1^{\times0} \) cells transiently transfected with the pMH-SFB-Rev1 plasmids. The HAP-1 \(REV1^{\times0} \) cells were transiently transfected with different constructs of the pMH-SFB-Rev1 plasmid, expressing the wild-type, or mutant form of hRev1, and these were used in the complementation experiments in the supF forward mutagenesis assay. Cropped versions of these blots are shown in Figure 5A. (A) The immunoblot was probed with a rabbit anti-FLAG tag polyclonal primary antibody (Novus Biologicals Cat# NB600-345; 1:1000 [v/v] dilution), to detect the level of protein expression for each of the SFB-tagged hRev1 proteins as indicated above each lane. (B) The immunoblot described in A was probed with a rhodamine-conjugated anti-actin loading control antibody FAB (Bio-Rad Cat#12004164; 1:2000 [v/v] dilution.
HAP-1 No PDS

	Sequence
G4_supF	GAATTCAGAGCCCTGCTCGAGCTGGGGAGGCTGGGAGGTCTGCGGTCTCATCGAC
No-PDS_1	GAATTCAGAGCCCTGCTCGAGCTGGGGAGGCTGGGAGGTCTGCGGTCTCATCGAC
No-PDS_2	GAATTCAGAGCCCTGCTCGAGCTGGGGAGGCTGGGAGGTCTGCGGTCTCATCGAC
No-PDS_3	GAATTCAGAGCCCTGCTCGAGCTGGGGAGGCTGGGAGGTCTGCGGTCTCATCGAC
No-PDS_4	GAATTCAGAGCCCTGCTCGAGCTGGGGAGGCTGGGAGGTCTGCGGTCTCATCGAC
No-PDS_5	GAATTCAGAGCCCTGCTCGAGCTGGGGAGGCTGGGAGGTCTGCGGTCTCATCGAC
No-PDS_6	GAATTCAGAGCCCTGCTCGAGCTGGGGAGGCTGGGAGGTCTGCGGTCTCATCGAC
No-PDS_7	GAATTCAGAGCCCTGCTCGAGCTGGGGAGGCTGGGAGGTCTGCGGTCTCATCGAC
No-PDS_8	GAATTCAGAGCCCTGCTCGAGCTGGGGAGGCTGGGAGGTCTGCGGTCTCATCGAC
No-PDS_9	GAATTCAGAGCCCTGCTCGAGCTGGGGAGGCTGGGAGGTCTGCGGTCTCATCGAC
No-PDS_10	GAATTCAGAGCCCTGCTCGAGCTGGGGAGGCTGGGAGGTCTGCGGTCTCATCGAC

** ************** ******* ******* ************** ******* ******* ******* ** ** ******* ** ************** **

	Sequence
G4_supF	TTCGAAGGTTCGATCTCCCTCCACCAAGCAGGCTTTACCCGCACTCTTTAGCC
No-PDS_1	TTCGAAGGTTCGATCTCCCTCCACCAAGCAGGCTTTACCCGCACTCTTTAGCC
No-PDS_2	TTCGAAGGTTCGATCTCCCTCCACCAAGCAGGCTTTACCCGCACTCTTTAGCC
No-PDS_3	TTCGAAGGTTCGATCTCCCTCCACCAAGCAGGCTTTACCCGCACTCTTTAGCC
No-PDS_4	TTCGAAGGTTCGATCTCCCTCCACCAAGCAGGCTTTACCCGCACTCTTTAGCC
No-PDS_5	TTCGAAGGTTCGATCTCCCTCCACCAAGCAGGCTTTACCCGCACTCTTTAGCC
No-PDS_6	TTCGAAGGTTCGATCTCCCTCCACCAAGCAGGCTTTACCCGCACTCTTTAGCC
No-PDS_7	TTCGAAGGTTCGATCTCCCTCCACCAAGCAGGCTTTACCCGCACTCTTTAGCC
No-PDS_8	TTCGAAGGTTCGATCTCCCTCCACCAAGCAGGCTTTACCCGCACTCTTTAGCC
No-PDS_9	TTCGAAGGTTCGATCTCCCTCCACCAAGCAGGCTTTACCCGCACTCTTTAGCC
No-PDS_10	TTCGAAGGTTCGATCTCCCTCCACCAAGCAGGCTTTACCCGCACTCTTTAGCC

** ******* ******* ************** ******* ******* ******* ** ** ******* ** ************** **

16
Figure S6. Alignment of the G4-supF plasmid sequences obtained from white MBM7070 E. coli colonies. These plasmids were first allowed to replicate in HAP-1 cells grown in the presence or absence of 0.5 μM PDS. After extracting these plasmids from the HAP-1 cells, they were used to transform the bacterial indicator strain as described in Methods. The top sequence is for the parent G4-supF plasmid (before transfection into HAP-1 cells), while lower sequences were obtained from the white-colony transfectants. Ten colonies per condition were used for sequencing.
The positions of conserved/unmutated bases (in all the ten sequences) are marked by asterisks, while deletions are marked by dashes in each sequence. The shading/coloring of the unmodified G4-supF sequence marks the zones I to IV as mentioned in Figure 6 of the manuscript.
	Sequence
G4_SupF	TCGAAGTTTCGAATCCCTCCCCACCACCAAGGCCGAAAATTCGGAATCCCGGATCTTTAGC
No-PDS_1	TT---AGGTTTGAAATCTCCCTCCCATACACCAGCCGAAAATTCGGAATCCCGGATCTTTAGC
No-PDS_2	TCGAGGTTTCGAATCTCCCTCCCATACACCAGCCGAAAATTCGGAATCCCGGATCTTTAGC
No-PDS_3	TGGTATGCCAGAATCTCCCTCCCATACACCAGCCGAAAATTCGGAATCCCGGATCTTTAGC
No-PDS_4	TGGTATGCCAGAATCTCCCTCCCATACACCAGCCGAAAATTCGGAATCCCGGATCTTTAGC
No-PDS_5	TGGTATGCCAGAATCTCCCTCCCATACACCAGCCGAAAATTCGGAATCCCGGATCTTTAGC
No-PDS_6	TGGTATGCCAGAATCTCCCTCCCATACACCAGCCGAAAATTCGGAATCCCGGATCTTTAGC
No-PDS_7	TGGTATGCCAGAATCTCCCTCCCATACACCAGCCGAAAATTCGGAATCCCGGATCTTTAGC
No-PDS_8	TGGTATGCCAGAATCTCCCTCCCATACACCAGCCGAAAATTCGGAATCCCGGATCTTTAGC
No-PDS_9	TGGTATGCCAGAATCTCCCTCCCATACACCAGCCGAAAATTCGGAATCCCGGATCTTTAGC
No-PDS_10	TGGTATGCCAGAATCTCCCTCCCATACACCAGCCGAAAATTCGGAATCCCGGATCTTTAGC
Figure S7. Alignment of the G4-supF plasmid sequences obtained from white MBM7070 E. coli colonies. These plasmids were first allowed to replicate in HAP-1 \(REV_1^{K0} \) cells grown in the presence or absence of 0.5 μM PDS.	
Figure S8. A putative G4-forming sequence was identified at the REV1 promoter. The human REV1 gene is located on chromosome 2 (2q11.2; 99490201-99490218 on the negative strand). (A) Cartoon schematic showing the region spanning -2000 to +100 bp at the REV1 gene locus. The transcription start site (marked by position '0') is indicated, as well as the region +100 bp into the coding region (blue). DNA sequence was retrieved from the Eukaryotic promoter database and the G4-forming prediction was done by analyzing the sequence using the G4-prediction tool on the QGRS web server. The three top-scoring sequences (based on G-score>20) are marked as I (G-score = 42), II (G-score = 35) and III (G-score = 21) respectively, and the DNA sequences are shown, with the guanine bases involved in putative quadruplex formation marked in bold and underlined. Sequence ‘I’ was used for designing the Rev1-prom oligonucleotide used in this study. The position of each sequence is marked by the numbers on the 5’- and 3’-end. (B) Circular dichroism spectra of the Rev1-prom sequence (Table 1 in main text) were measured in buffer containing 100 mM KCl (blue curve) or 100 mM LiCl (red curve). The position of the signature peak at 265 nm for parallel	
G4-form is indicated. (C) Binding affinity for Rev1-prom G4 (blue) and nonG4 (red) DNA was measured for the wild-type hRev1^{330-833} protein as indicated. The measured values are listed in Table 3 of main text. Reported values represent the mean ± SD (n=3).	
Figure S9. Binding affinity of hRev1^{330-833} to primer-template G4 DNA substrates. Oligonucleotides forming the different types of G4 DNA folds (described in main text and Table 1) were annealed to a common 11-mer primer to obtain primer-template substrates. The hRev1^{330-833} protein was then titrated into a solution containing each of these ds-G4-DNA (blue) or ds-non-G4-DNA (red) substrates at 1 nM in a buffer containing 100 mM KCl. The range of concentrations for the protein is indicated on the X-axis. The change in fluorescence polarization at each concentration was measured and plotted as a function of the protein concentration. (A-F) Binding curves for hRev1^{330-833} core protein with the indicated G4 DNA	
substrate. In panel A, the binding curve for Myc-14/23 is shown as a solid blue line (full circles), while that for Myc-2/11 is shown as a dotted blue line (open circles). The G4 fold is indicated by the direction of arrows in parentheses for each panel (\(\uparrow\uparrow\) = parallel G4, \(\uparrow\downarrow\) = anti-parallel G4, \(\uparrow\downarrow\downarrow\) = hybrid G4). Resulting data were fit to a quadratic equation to yield the binding dissociation constants given in Table S3. Reported values represent the mean ± SD (n=3).	
Species	Sequence
--------------	--
Human	SMWKCELTEFVNLQR---SGIFGFREKLKMKTGRLSALVTDGDMSVLSREPHQS
Chimpanzee	SMWKCELTEFVNLQR---SGIFGFREKLKMKTGRLSALVTDGDMSVLSREPHQS
Gorilla	SMWKCELTEFVNLQR---SGIFGFREKLKMKTGRLSALVTDGDMSVLSREPHQS
Rhesus	SMWKCELTEFVNLQR---SGIFGFREKLKMKTGRLSALVTDGDMSVLSREPHQS
Cattle	SMWKCELTEFVNLQR---SGIFGFREKLKMKTGRLSALVTDGDMSVLSREPHQS
Sheep	SMWKCELTEFVNLQR---SGIFGFREKLKMKTGRLSALVTDGDMSVLSREPHQS
Pig	SMWKCELTEFVNLQR---SGIFGFREKLKMKTGRLSALVTDGDMSVLSREPHQS
Mouse	SMWKCELTEFVNLQR---SGIFGFREKLKMKTGRLSALVTDGDMSVLSREPHQS
Dog	SMWKCELTEFVNLQR---SGIFGFREKLKMKTGRLSALVTDGDMSVLSREPHQS
Opossum	SMWKCELTEFVNLQR---SGIFGFREKLKMKTGRLSALVTDGDMSVLSREPHQS
Bat	SMWKCELTEFVNLQR---SGIFGFREKLKMKTGRLSALVTDGDMSVLSREPHQS
Frog	SMWKCELTEFVNLQR---SGIFGFREKLKMKTGRLSALVTDGDMSVLSREPHQS
Lizard	SMWKCELTEFVNLQR---SGIFGFREKLKMKTGRLSALVTDGDMSVLSREPHQS
Zebrafish	SMWKCELTEFVNLQR---SGIFGFREKLKMKTGRLSALVTDGDMSVLSREPHQS
Chicken	SMWKCELTEFVNLQR---SGIFGFREKLKMKTGRLSALVTDGDMSVLSREPHQS
Fruitfly	SMWKCELTEFVNLQR---SGIFGFREKLKMKTGRLSALVTDGDMSVLSREPHQS
Leishmania	GTWRNYRKRPHGSSNG---LK---WADSQCN---TAEMAKKS
Trypanosoma	GTWRNYRKRPHGSSNG---LK---WADSQCN---TAEMAKKS
Saccharomyces	GTWRNYRKRPHGSSNG---LK---WADSQCN---TAEMAKKS
Fission Yeast	GTWRNYRKRPHGSSNG---LK---WADSQCN---TAEMAKKS
Arabidopsis	GTWRNYRKRPHGSSNG---LK---WADSQCN---TAEMAKKS
Figure S10
Alignment of the Rev1 polymerase domain from multiple species. Name of each species is indicated on the left of each sequence as its trivial/common name: human, *Homo sapiens*; chimpanzee, *Pan troglodytes*; gorilla, *Gorilla gorilla*; rhesus, *Macaca mulatta*; cattle, *Bos taurus*; sheep, *Ovis aries*; pig, *Sus domesticus*; mouse, *Mus musculus*; dog, *Canis familiaris*; cat, *Felis catus*; opossum, *Monodelphis domestica*; bat, *Desmodus rotundus*; frog, *Xenopus tropicalis*; lizard, *Zootoca vivipara*; zebrafish, *Danio rerio*; Chicken, *Gallus gallus domesticus*; fruitfly, *Drosophila melanogaster*; leishmania, *Leishmania donovani*; trypanosome, *Trypanosoma cruzi*; saccharomyces, *Saccharomyces cerevisiae*; fission yeast, *Schizosaccharomyces pombe*; Arabidopsis.

Species	Alignment	
human	CINHVDMDCFFSVVGRNP——DLKGPVATSNRSTGQAR—PLRPAGNPLEWQ	468
chimpanzee	CINHVDMDCFFSVVGRNP——DLKGPVATSNRSTGQAR—PLRPAGNPLEWQ	468
gorilla	CINHVDMDCFFSVVGRNP——DLKGPVATSNRSTGQAR—PLRPAGNPLEWQ	468
rhesus	CINHVDMDCFFSVVGRNP——DLKGPVATSNRSTGQAR—PLRPAGNPLEWQ	502
cattle	CINHVDMDCFFSVVGRNP——DLKGPVATSNRSTGQAR—PLRPAGNPLEWQ	468
sheep	CINHVDMDCFFSVVGRNP——DLKGPVATSNRSTGQAR—PLRPAGNPLEWQ	468
pig	CINHVDMDCFFSVVGRNP——DLKGPVATSNRSTGQAR—PLRPAGNPLEWQ	508
mouse	CINHVDMDCFFSVVGRNP——DLKGPVATSNRSTGQAR—PLRPAGNPLEWQ	468
dog	CINHVDMDCFFSVVGRNP——DLKGPVATSNRSTGQAR—PLRPAGNPLEWQ	468
cat	CINHVDMDCFFSVVGRNP——DLKGPVATSNRSTGQAR—PLRPAGNPLEWQ	467
opossum	CINHVDMDCFFSVVGRNP——DLKGPVATSNRSTGQAR—PLRPAGNPLEWQ	470
bat	CINHVDMDCFFSVVGRNP——DLKGPVATSNRSTGQAR—PLRPAGNPLEWQ	467
frog	CINHVDMDCFFSVVGRNP——DLKGPVATSNRSTGQAR—PLRPAGNPLEWQ	470
lizard	CINHVDMDCFFSVVGRNP——DLKGPVATSNRSTGQAR—PLRPAGNPLEWQ	462
zebrafish	CINHVDMDCFFSVVGRNP——DLKGPVATSNRSTGQAR—PLRPAGNPLEWQ	472
chicken	CINHVDMDCFFSVVGRNP——DLKGPVATSNRSTGQAR—PLRPAGNPLEWQ	468
fruitfly	YVHMDCCFVSVGRLTRP——ELRGPLAPVTHSKGQANATDFVIPHVPADRAKLE	327
leishmania	TFVHMDCAFCCSSVQLA-KP——EYAHKTVFGVIAAGK	92
trypanosoma	LFVHMDCAFCCSSVQLA-KE——ENAHMRKPVICAIAGK	98
saccharomyces	IIIFHDFDCFCFATAYCRLSSSFSACDKRIPVVCBG	394
fission yeast	PFLHDFDCFCFCASVSTRFSH——ELRLKPVPVBAG	309
arbidiposis	TIIHIDLDCFSSVVKRNRL——ELHDKPVACSHDNSF	408

```
human YYQKNKILKGGAA——DIPDSSLWENPDSQAANGIDS——VLSRAEIASCSYRR——516
chimpanzeee YYQKNKILKGGAA——DIPDSSLWENPDSQAANGIDS——VLSRAEIASCSYRSLVK | 520
gorilla YYQKNKILKGGAA——DIPDSSLWENPDSQAANGIDS——VLSRAEIASCSYRSLVK | 520
rhesus YYQKNKILKGGAA——DIPDSSLWENPDSQAANGIDS——VLSRAEIASCSYRSLVK | 520
cattle YYQKNKILKGGAA——DIPDSSLWENPDSQAANGIDS——VLSRAEIASCSYRSLVK | 520
sheep YYQKNKILKGGAA——DIPDSSLWENPDSQAANGIDS——VLSRAEIASCSYRSLVK | 520
pig YYQKNKILKGGAA——DIPDSSLWENPDSQAANGIDS——VLSRAEIASCSYRSLVK | 520
mouse YYQKNKILKGGAA——DIPDSSLWENPDSQAANGIDS——VLSRAEIASCSYRSLVK | 520
dog YYQKNKILKGGAA——DIPDSSLWENPDSQAANGIDS——VLSRAEIASCSYRSLVK | 520
cat YYQKNKILKGGAA——DIPDSSLWENPDSQAANGIDS——VLSRAEIASCSYRSLVK | 520
opossum YYQKNKILKGGAA——DIPDSSLWENPDSQAANGIDS——VLSRAEIASCSYRSLVK | 520
bat YYQKNKILKGGAA——DIPDSSLWENPDSQAANGIDS——VLSRAEIASCSYRSLVK | 520
frog YYQKNKILKGGAA——DIPDSSLWENPDSQAANGIDS——VLSRAEIASCSYRSLVK | 520
lizard YYQKNKILKGGAA——DIPDSSLWENPDSQAANGIDS——VLSRAEIASCSYRSLVK | 520
zebrafish YYQKNKILKGGAA——DIPDSSLWENPDSQAANGIDS——VLSRAEIASCSYRSLVK | 520
chicken YYQKNKILKGGAA——DIPDSSLWENPDSQAANGIDS——VLSRAEIASCSYRSLVK | 520
fruitfly YYQKNKILKGGAA——DIPDSSLWENPDSQAANGIDS——VLSRAEIASCSYRSLVK | 520
leishmania YYQKNKILKGGAA——DIPDSSLWENPDSQAANGIDS——VLSRAEIASCSYRSLVK | 520
trypanosoma YYQKNKILKGGAA——DIPDSSLWENPDSQAANGIDS——VLSRAEIASCSYRSLVK | 520
saccharomyces YYQKNKILKGGAA——DIPDSSLWENPDSQAANGIDS——VLSRAEIASCSYRSLVK | 520
fission yeast YYQKNKILKGGAA——DIPDSSLWENPDSQAANGIDS——VLSRAEIASCSYRSLVK | 520
arabidiposis YYQKNKILKGGAA——DIPDSSLWENPDSQAANGIDS——VLSRAEIASCSYRSLVK | 520

:****:****:*:**:**:****:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:**:`
```
Schizosaccharomyces pombe; *arabidops*, *Arabidopsis thaliana*. The top sequence is of the human Rev1 protein, with the domains colored as: *orange*, N-digit (a.a. 344-377); *light grey*, insert 1 (a.a. 379-417); *red*, palm 1 (a.a. 418-425); *blue*, finger (a.a. 427-447 & 505-516); *dark grey*, insert 2 (a.a. 448-504).
REFERENCES

1. Seidman, M.M., Dixon, K., Razzaque, A., Zagursky, R.J. and Berman, M.L. (1985) A shuttle vector plasmid for studying carcinogen-induced point mutations in mammalian cells. *Gene*, **38**, 233–237.