Abstract—In this letter, we report on high-performance depletion/enhancement-mode β-Ga_2O_3 on insulator (GOOI) field-effect transistors (FETs) with record high drain currents (I_D) of 600/450 mA/mm, which are nearly one order of magnitude higher than any other reported I_D values. The threshold voltage (V_T) can be modulated by varying the thickness of the β-Ga_2O_3 films and the E-mode GOOI FET can be simply achieved by shrinking the β-Ga_2O_3 film thickness. Benefiting from the good interface between β-Ga_2O_3 and SiO$_2$, and wide bandgap of β-Ga_2O_3, a negligible transfer characteristic hysteresis, high I_D ON/OFF ratio of 10^{10}, and low subthreshold swing of 140 mV/decade for a 300-nm-thick SiO$_2$ are observed. E-mode GOOI FET with source to drain spacing of 0.9 μm demonstrates a breakdown voltage of 185 V and an average electric field (E) of 2 MV/cm, showing the great promise of GOOI FET for future power devices.

Index Terms—β-Ga_2O_3, GOOI FET, D-mode, E-mode, nano-membrane.

I. INTRODUCTION

MONOCLINIC β-Ga_2O_3 with an ultra-wide bandgap of 4.6-4.9 eV has been identified as a promising contender for the next generation power devices [1]–[8]. Its ultra-wide bandgap enables the β-Ga_2O_3 material to possess a critical breakdown field (E_c) of 8 MV/cm. Even at such early development stage, high average E of 3.8 MV/cm and high breakdown voltage (BV) of 750 V have already been achieved [2], [9]. Combined with 100 cm2/V·s electron mobility (μ) at room temperature, β-Ga_2O_3 possesses a high Baliga’s figure of merit of 3444, defined as $\varepsilon\mu E_c^2$, where ε is the dielectric constant of β-Ga_2O_3 [10]. In addition to its excellent material property, potential cost effective substrate can be realized through Czochralski method [11], [12]. Besides those aforementioned material characteristics, β-Ga_2O_3 crystal also possesses some unique properties. For instance, its (100) surface has a large lattice constant of 12.23 Å along [100] direction, which allows a facile cleavage into thin belts or nano-membranes [6], [13]. Therefore, β-Ga_2O_3 on insulator (GOOI) field-effect transistor (FET) can be formed by transferring the β-Ga_2O_3 nano-membrane to SiO$_2$/Si substrate and followed by regular device fabrication.

On the other hand, the quest for the low on-resistance (R_{on}) and high I_D are always demanded for improved power device performance. This situation is more severe in E-mode or normally-off devices, and currently the I_D is less than 10 mA/mm with large R_{on} [14], [15]. In this letter, we have successfully demonstrated high performance D-mode and E-mode GOOI FETs with record high I_D, record low R_{on}, high on/off ratio, low subthreshold swing (SS), and negligible hysteresis. Specifically, the record high performance E-mode GOOI FET, which satisfies the failure-safe requirement of power devices, can be simply achieved by optimizing the β-Ga_2O_3 thickness upon specs.

II. DEVICE FABRICATION AND MEASUREMENT

Fig. 1(a) and (b) are the schematic of a GOOI FET and atomic force microscopy (AFM) image of the β-Ga_2O_3 surface after cleavage, which shows atomically flat and uniform within the whole nano-membrane or the single device. Device fabrication was started from a 6 nm by 6 nm (-201) β-Ga_2O_3 bulk substrate with Sn doping concentration of 2.7×10^{18} cm$^{-3}$, determined by capacitance -voltage (C-V) measurements [16]. Thin β-Ga_2O_3 nano-membrane was transferred from the substrate cleavage to the SiO$_2$/p$^+$ Si substrate with SiO$_2$ thickness of 300 nm. The SiO$_2$/Si substrates were cleaned in acetone for 24 hours and the Ga_2O_3 nano-membrane transfer time was within 1 minute. Then source and drain regions were...
was no capping or protection layer on the 150 nm, confirmed by the AFM measurements, were chosen for face n-type doping for the reduction of the contact resistance \(R_c \). The device without Ar bombardment shows poor electrical contact resistance \(R_c \). The reduced \(R_c \) of E-mode devices is likely due to the thinner \(\beta \)-Ga2O3 nano-membrane thickness. The backage bias can be more effective to electrostatically dope the thinner nano-membrane surface where the metal contacts are physically contacted.

The success of integrate \(\beta \)-Ga2O3 on Si substrate shows the potential to migrate the issue of low thermal conductivity of \(\beta \)-Ga2O3 substrate by wafer bonding \(\beta \)-Ga2O3 on AlN or diamond substrates. The advantage of this device fabrication process can enable to study \(\beta \)-Ga2O3 channel thickness dependent \(V_T \), and provide a higher bandgap material underneath the \(\beta \)-Ga2O3 channel for BV enhancement. Most importantly, it offers an effective route to study the fundamental transport properties of \(\beta \)-Ga2O3 and device performance potentials without using many expensive \(\beta \)-Ga2O3 epitaxy wafers with different channel thickness.

III. Results and Discussion

Fig. 2(a) shows the well-behaved direct current (DC) output current-voltage (I-V) of a D-mode GOOI FET with source to drain spacing \(L_{SD} \), also gate length \(L_G \) of 0.85 \(\mu \)m and channel thickness of 94 nm. The typical range of physical width of these nano-membrane devices is 0.3–1 \(\mu \)m, accurately determined by scanning electron microscopy (SEM) as shown in Fig. 2(d). Considering on the depletion width at the edges of the nano-membrane, the presented drain current densities are under-estimated because they are normalized by the physical width instead of effective electrical width. The measurements start from applying the back-gate bias \(V_{GS} \) to 120 V and then stepping to the device pinch-off \(-110\) V with \(-10\) V as the step, while the drain bias \(V_{DS} \) is swept from 0 to 8 V. Maximum drain current densities \(I_{DMAX} \) of 600 mA/mm is obtained, which is nearly one order of magnitude higher than any other reported \(\beta \)-Ga2O3 MOSFETs [1]–[9], [13].

We ascribe this record high \(I_{DMAX} \) to the much higher doping concentration of \(\beta \)-Ga2O3 membrane applied and the positive back-gate bias reduced source and drain \(R_c \). The Ron is extracted to be 13 \(\Omega \).mm. The \(R_c \) and sheet resistance \(R_S \) of D-mode devices are extracted to be 2.7 \(\Omega \)-mm and 8.5 \(\kappa \Omega/\square \) at \(V_{GS} = 120 \) V, respectively, through the transfer length method (TLM) of various similar \(\beta \)-Ga2O3 thickness but with different \(L_G \). The Schottky-like contacts with large \(R_c \) lead to the \(I_{D}-V_{DS} \) output characteristics of the D-mode devices showing curvature in the linear region. More efforts are needed to improve the contacts, i.e. by Si or Sn ion implantation, to further boost the device performance. The \(I_{D}-V_{DS} \) output characteristics of the E-mode devices with \(L_G = 1.3 \) \(\mu \)m and channel thickness of 79 nm. A record high \(I_{DMAX} = 450 \) mA/mm is obtained, which is more than one order of magnitude higher than any other E-mode MOSFETs [14], [15]. Similar to D-mode device, the \(R_{on} \), \(R_{SH} \) and \(R_c \) of E-mode device are extracted to be 20 \(\Omega \)-mm, 14.1 \(\kappa \Omega/\square \), and 0.95 \(\Omega \)-mm, respectively. The reduced \(R_c \) of E-mode devices is likely due to the thinner nano-membrane. The backage bias can be more effectively to electrostatically dope the thinner nano-membrane surface where the metal contacts are physically contacted.

Fig. 3(a) presents the \(I_{D}-V_{DS} \) output characteristics of an E-mode GOOI FET with \(L_G = 1.3 \) \(\mu \)m and channel thickness of 79 nm. A record high \(I_{DMAX} = 450 \) mA/mm is obtained, which is more than one order of magnitude higher than any other E-mode MOSFETs [14], [15]. Similar to D-mode device, the \(R_{on} \), \(R_{SH} \) and \(R_c \) of E-mode device are extracted to be 20 \(\Omega \)-mm, 14.1 \(\kappa \Omega/\square \), and 0.95 \(\Omega \)-mm, respectively. The reduced \(R_c \) of E-mode devices is likely due to the thinner nano-membrane.

To have a direct comparison about the \(V_T \) shift from negative values in D-mode to positive values in E-mode by reducing \(\beta \)-Ga2O3 nano-membrane thickness, we have carried out measurements on GOOI FETs with various \(\beta \)-Ga2O3 thickness. Fig. 4(a) describes the thickness dependent...
Fig. 3. (a) Output characteristics I_D-V_{DS} of an E-mode GOOI FET with 79 nm thick of β-Ga$_2$O$_3$ nano-membrane. Record high maximum I_D of 450 mA/mm is demonstrated. (b) and (c) Linear-scale I_D-g_m-V_{GS} and log-scale I_D-V_{GS} transfer characteristics of the same device with V_T = 7 V, respectively. High on/off ratio of 10^{10} and low SS = 140 mV/dec are obtained. (d) Dual-sweep hysteresis measurement of another device with thickness of 80 nm. Negligible hysteresis is observed, which shows the high quality interface.

Fig. 4. (a) Thickness dependent I_D-V_{GS} plots of various GOOI FETs from D-mode of thicker β-Ga$_2$O$_3$ to E-mode of thinner β-Ga$_2$O$_3$. (b) Thickness dependent V_T extracted at V_{DS} = 1 V of 15 devices.

representative I_D-V_{GS} characteristics. Obviously, the V_T is shifted from negative to positive when the thickness is slowly reduced. Fig. 4(b) summarizes the extracted thickness dependent V_T of 15 devices. Generally, they all follow the same trend as shown in Fig. 4(a). The determined thickness dependent V_T may be valuable in the realization of high performance top gate E-mode GOOI FETs in the near future [18].

To evaluate the potential of GOOI FETs for power device applications, we have performed off-state breakdown measurements on E-mode device. Fig. 5(a) presents the off-state breakdown measurement of an E-mode GOOI FET with L_{SD} = 0.9 μm and β-Ga$_2$O$_3$ thickness = 61 nm. (b) Simulation of the electrostatic potential of the GOOI FET with L_{SD} = 0.9 μm and 300 nm SiO$_2$ gate dielectric. The same color is the equipotential contour. (c) The simulated potential along the source-β-Ga$_2$O$_3$-drain direction. Average E_{av} = 2 MV/cm is obtained.

Fig. 5. (a) Off-state breakdown measurement of a floating gate GOOI FET with L_{SD} = 0.9 μm and β-Ga$_2$O$_3$ thickness = 61 nm. (b) Simulation of the electrostatic potential of the GOOI FET with L_{SD} = 0.9 μm and 300 nm SiO$_2$ gate dielectric. The same color is the equipotential contour. (c) The simulated potential along the source-β-Ga$_2$O$_3$-drain direction. Average E_{av} = 2 MV/cm is obtained.

device from AFRL with L_{SD}/L_{GD} = 4.4/0.6 μm reported in [9], our work has reached nearly a 5 times lower R_{on}, which can potentially improve the thermal management issues during the on-state. There is a tradeoff between the BV and the thickness of SiO$_2$. Thick SiO$_2$ can help to increase the BV but it makes the poor thermal conductivity issue of β-Ga$_2$O$_3$ even worse. In the near future, GOOI FETs on AlN or diamond substrate might be a good solution to have high BV while maintaining high thermal conductivity of β-Ga$_2$O$_3$ to substrate. Fig. 5(b) shows the simulation of the electrostatic potential of the same device as Fig. 5(a). The β-Ga$_2$O$_3$ channel is modeled with n-type doping concentration of 1×10^{13} cm$^{-3}$ to simulate the situation of $10^{-3} \sim 10^{-4}$ mA/mm off-state I_P. The simulated potential against position is plotted in Fig. 5(c). The average electrical field (E_{av}) in the channel is calculated to be 2 MV/cm, which further confirms the potential of GOOI FETs as next generation power devices.

IV. CONCLUSION

We have achieved record high I_{DMAX} of 600/450 mA/mm for D/E-mode GOOI FETs. E-mode device can be realized through the thickness reduction of the β-Ga$_2$O$_3$ membranes. High on/off ratio of 10^{10}, low SS of 140 mV/dec and negligible I_{DSS} hysteresis reveals the high quality interface between β-Ga$_2$O$_3$ and SiO$_2$. E-mode GOOI FET with L_{SD} = 0.9 μm demonstrates a high BV = 185 V and E_{av} = 2 MV/cm, showing the great promise of GOOI FETs for future power devices.

ACKNOWLEDGEMENT

The authors thank D. Jena for the valuable discussions and the technical support and guidance from the Sensors Directorate of Air Force Research Laboratory.
REFERENCES

[1] M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates,” Appl. Phys. Lett., vol. 100, no. 1, pp. 013504-1–013504-3, Jan. 2012, doi: 10.1063/1.3674287.

[2] M. H. Wong, K. Sasaki, A. Kuramata, T. Masui, and M. Higashiwaki, “Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V,” IEEE Electron Device Lett., vol. 37, no. 2, pp. 212–215, Feb. 2016, doi: 10.1109/LED.2015.2512279.

[3] M. Higashiwaki, K. Sasaki, T. Kamimura, M. H. Wong, K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics,” Appl. Phys. Lett., vol. 103, pp. 123511-1–123511-4, Sep. 2013, doi: 10.1063/1.4821858.

[4] K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Ga2O3 Schottky barrier diodes fabricated by using single-crysta β-Ga2O3 (010) substrates,” IEEE Electron Device Lett., vol. 34, no. 4, pp. 493–495, Apr. 2013, doi: 10.1109/LED.2013.2244057.

[5] K. Sasaki, A. Kuramata, T. Masui, E. G. Villora, K. Shimamura, and S. Yamakoshi, “Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy,” Appl. Phys. Exp., vol. 5, pp. 035502-1–035502-3, Mar. 2012, doi: 10.1143/apex.5.035502.

[6] W. S. Hwang, A. Verma, H. Peelaers, V. Protasenko, S. Rouvimov, H. Xing, A. Seabaugh, W. Haensch, C. Van de Walle, D. Jena, “Intrinsic electron mobility limits in β-Ga2O3,” Appl. Phys. Lett., vol. 109, pp. 213501-1–213501-5, Nov. 2016, doi: 10.1063/1.4984096.

[7] M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Depletion-mode Ga2O3 MOSFETs on β-Ga2O3 (010) substrates with Si-ion-implanted channel and contacts,” in IEDM Tech. Dig., Dec. 2013, pp. 28.7.1–28.7.4, doi: 10.1109/IEDM.2013.6724713.

[8] K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Si-ion implantation doping in β-Ga2O3 and its application to fabrication of low-resistance ohmic contacts,” Appl. Phys. Exp., vol. 6, no. 8, pp. 086502-1–086502-4, Aug. 2013, doi: 10.1143/APEX.6.086502.

[9] A. J. Green, K. D. Chabak, E. R. Heller, R. C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S. E. Tetlak, A. Crespo, K. Leedy, and G. H. Jessen, “3.8 MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs,” IEEE Electron Device Lett., vol. 37, no. 7, pp. 902–905, Jul. 2016, doi: 10.1109/LED.2016.2568139.

[10] B. J. Baliga, “Power semiconductor-device figure of merit for high-frequency applications,” IEEE Electron Device Lett., vol. 10, no. 10, pp. 455–457, Oct. 1989, doi: 10.1109/55.43098.

[11] K. Irmscher, Z. Galazka, M. Pietsch, R. Uecker, and R. Fornari, “Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method,” J. Appl. Phys., vol. 110, pp. 063720-1–063720-8, Sep. 2011, doi: 10.1063/1.3642962.

[12] Z. Galazka, K. Irmscher, R. Uecker, R. Bertram, M. Pietsch, A. Kvasniewski, M. Naumann, T. Schulz, R. Schewski, D. Klimm, and M. Bickermann, “On the bulk β-Ga2O3 single crystals grown by the Czochralski method,” J. Cryst. Growth, vol. 404, pp. 184–191, Oct. 2014, doi: 10.1016/j.jcrysgro.2014.07.021.

[13] S. Ahn, F. Ren, J. Kim, S. Oh, J. Kim, M. A. Mastro, and S. J. Pearton, “Effect of front and back gates on β-Ga2O3 nano-belt field-effect transistors,” Appl. Phys. Exp., vol. 10, pp. 062102-1–062102-4, Aug. 2016, doi: 10.1063/1.4960651.

[14] K. Zeng, K. Sasaki, A. Kuramata, T. Masui, and U. Singisetti, “Depletion and enhancement mode β-Ga2O3 MOSFETs with ALD SiO2 gate and near 400 V breakdown voltage,” in Proc. 74th Annu. DRC, Aug. 2016, pp. 1–2, doi: 10.1109/DRC.2016.7548430.

[15] M. J. Tadjer, N. A. Mahadik, V. D. Wheeler, E. R. Glaser, L. Ruppalt, A. D. Koehler, K. D. Hobart, C. R. Eddy, and F. J. Kub, “Communications—A (001) β-Ga2O3 MOSFETs with +2.9 V threshold voltage and HfO2 gate dielectric,” ECS J. Solid State Technol., vol. 5, no. 9, pp. 468–470, Jul. 2016, doi: 10.1149/2.0061609ss.

[16] H. Zhou, S. Alghamdi, M. W. Si, and P. D. Ye, “Al2O3/β-Ga2O3(-201) interface improvement through piranha pretreatment and post deposition annealing,” IEEE Electron Device Lett., vol. 37, no. 11, pp. 1411–1414, Nov. 2016, doi: 10.1109/LED.2016.2609202.

[17] N. Ma, N. Tanen, A. Verma, Z. Guo, T. Luo, H. G. Xing, and D. Jena, “Intrinsic electron mobility limits in β-Ga2O3,” Appl. Phys. Lett., vol. 109, pp. 212101-1–212101-5, Nov. 2016, doi: 10.1063/1.3968550.

[18] K. D. Chabak, N. Moser, A. J. Green, D. E. Walker, S. E. Tetlak, E. Heller, A. Crespo, R. Fitch, J. P. McCandless, K. Leedy, M. Baldini, G. Wagner, Z. Galazka, X. Li, and G. Jessen, “Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage,” Appl. Phys. Lett., vol. 109, pp. 213501-1–213501-5, Nov. 2016, doi: 10.1063/1.4967931.