ON THE NUMBER OF REPRESENTATIONS OF INTEGERS AS DIFFERENCES BETWEEN PIATETSKI-SHAPIRO NUMBERS

YUUYA YOSHIDA

ABSTRACT. For $\alpha > 1$, set $\beta = 1/(\alpha - 1)$. We show that, for every $1 < \alpha < (\sqrt{21} + 4)/5 \approx 1.717$, the number of pairs (m, n) of positive integers with $d = \lfloor n^\alpha \rfloor - \lfloor m^\alpha \rfloor$ is equal to $\beta \alpha^{-\beta} \zeta(\beta) d^{\beta - 1} + o(d^{\beta - 1})$ as $d \to \infty$, where ζ denotes the Riemann zeta function. We use this result to derive an asymptotic formula for the number of triplets (l, m, n) of positive integers such that $l < n$ and $\lfloor l^\alpha \rfloor + \lfloor m^\alpha \rfloor = \lfloor n^\alpha \rfloor$. Furthermore, we prove that the additive energy of the sequence $(\lfloor n^\alpha \rfloor)_{n=1}^N$, i.e., the number of quadruples (n_1, n_2, n_3, n_4) of positive integers with $\lfloor n_1^\alpha \rfloor + \lfloor n_2^\alpha \rfloor = \lfloor n_3^\alpha \rfloor + \lfloor n_4^\alpha \rfloor$ and $n_1, n_2, n_3, n_4 \leq N$, is equal to $O(\alpha^4 N^{4-\alpha})$ when $1 < \alpha \leq 4/3$.

1. Introduction

1.1. The number of solutions of the equation $x + y = z$ in $\text{PS}(\alpha)$. Let $\text{PS}(\alpha)$ be the set $\{\lfloor n^\alpha \rfloor : n \in \mathbb{N}\}$ for $\alpha \geq 1$, where $\lfloor x \rfloor$ (resp. $\lceil x \rceil$) denotes the greatest (resp. least) integer $\leq x$ (resp. $\geq x$) for a real number x, and \mathbb{N} denotes the set of all positive integers. The set $\text{PS}(\alpha)$ has infinitely many solutions of the equation $x + y = z$ if $\alpha = 1, 2$, and has no solutions of the same equation if $\alpha \geq 3$ is an integer (Fermat’s last theorem) \cite{25}. When $\alpha = 2$, such a solution (x, y, z) is called a Pythagorean triple, and several asymptotic formulas are known for the number of Pythagorean triples. For example, the number of Pythagorean triples with hypotenuse less than x is estimated as \cite{22}

$$\#\{(l, m, n) \in \mathbb{N}^3 : n < x, \ l^2 + m^2 = n^2\} = \frac{1}{\pi} x \log x + Bx + O(x^{1/2} \exp(-C(\log x)^{3/5}(\log \log x)^{-1/5})) \quad (x \to \infty)$$

for an explicit constant B and some $C > 0$. If the Riemann hypothesis is true, the above error term is improved \cite{16}. Also, the number of Pythagorean triples with both

2020 Mathematics Subject Classification. Primary 11D85 11D04 11D72, Secondary 11B30 11B25 37A44.

Key words and phrases. Piatetski-Shapiro sequence, additive energy, arithmetic progression, equidistribution, discrepancy.
legs less than x is estimated as \[3\]

\[
\{ (l, m, n) \in \mathbb{N}^3 : l, m < x, \ l^2 + m^2 = n^2 \} \\
= \frac{4 \log(1 + \sqrt{2})}{\pi^2} x \log x + O(x) \quad (x \to \infty).
\]

For other asymptotic formulas, see \[12, 14\] (primitive Pythagorean triples with perimeter less than x) and \[5, 12, 24, 27\] (primitive Pythagorean triples with area less than x).

Consider the case of non-integral $\alpha > 1$. As a special case of \[6, Proposition 5.1\], it is known that, for all $\alpha \in (1, 2)$ and sufficiently large $d \in \mathbb{N}$, the set $PS(\alpha)$ has a solution of the equation $d = z - y$. This fact immediately implies that the set $PS(\alpha)$ has infinitely many solutions of the equation $x + y = z$ if $\alpha \in (1, 2)$. However, we almost never know an asymptotic formula for the number of such solutions in the case $\alpha \in (1, 2)$. Indeed, we only know the following asymptotic formula \[26, Corollary 1.3\]:

\[
\lim_{x \to \infty} \frac{\# \{ (l, m, n) \in \mathbb{N}^3 : n < x, \ \lfloor n^{\alpha} \rfloor + \lfloor m^{\alpha} \rfloor = \lfloor l^{\alpha} \rfloor \} }{x^{\alpha - 1} (\beta - 1) + 1} = \frac{\beta \alpha^{-\beta} \zeta(\beta)}{\alpha (\beta - 1) + 1},
\]

where Γ denotes the gamma function.

In this paper, we estimate the number of solutions of the equation $d = z - y$ in $PS(\alpha)$.

For a real number $\alpha > 1$ and an integer $d \geq 1$, define the number $N_\alpha(d)$ as

\[
N_\alpha(d) = \# \{ (m, n) \in \mathbb{N}^2 : \lfloor n^{\alpha} \rfloor - \lfloor m^{\alpha} \rfloor = d \}.
\]

Note that $N_\alpha(d)$ is finite for all $\alpha > 1$ and $d \in \mathbb{N}$.

Theorem 1.1. Let $1 < \alpha < (\sqrt{21} + 4)/5$ and $\beta = 1/ (\alpha - 1)$. Then

\[
\lim_{d \to \infty} \frac{N_\alpha(d)}{d^{\beta - 1}} = \beta \alpha^{-\beta} \zeta(\beta),
\]

where ζ denotes the Riemann zeta function.

Theorem 1.1 yields the following asymptotic result immediately.

Corollary 1.2. Let $1 < \alpha < (\sqrt{21} + 4)/5$ and $\beta = 1/ (\alpha - 1)$. Then

\[
\lim_{x \to \infty} \frac{\# \{ (l, m, n) \in \mathbb{N}^3 : l < x, \ \lfloor l^{\alpha} \rfloor + \lfloor m^{\alpha} \rfloor = \lfloor n^{\alpha} \rfloor \} }{x^{\alpha(\beta - 1) + 1}} = \frac{\beta \alpha^{-\beta} \zeta(\beta)}{\alpha (\beta - 1) + 1}.
\]

Proof of Corollary 1.2 assuming Theorem 1.1. The above number of triplets (l, m, n) is expressed as $\sum_{1 \leq l < x} N_\alpha(\lfloor l^{\alpha} \rfloor)$. Hence, **Corollary 1.2** follows form **Theorem 1.1**. \qed

The set $PS(\alpha)$ is called a *Piatetski-Shapiro sequence* when $\alpha > 1$ is non-integral. When f is a positive-integer-valued function with suitable properties, we can apply **Theorem 1.1** to the equation $f(x) + y = z$ in the same way as the proof of **Corollary 1.2**.
Although Corollary 1.2 does not cover the case $\alpha \geq (\sqrt{21} + 4)/5$, we expect that the asymptotic formula in Corollary 1.2 should be true for every $1 < \alpha \leq 2$. If formally substituting $\alpha = 2$ in Corollary 1.2, then we obtain
\[
\lim_{x \to \infty} \frac{\# \{(l, m, n) \in \mathbb{N}^3 : l > x, l^2 + m^2 = n^2\}}{x} = \infty.
\]
Actually, one can verify the asymptotic formula
\[
\# \{(l, m, n) \in \mathbb{N}^3 : l > x, l^2 + m^2 = n^2\} = \frac{x(\log x)^2}{\pi^2} + O(x \log x) \quad (x \to \infty)
\]
in a similar way to [3].

1.2. Additive energies of Piatetski-Shapiro sequences. Recently, many researchers have paid attention to the additive energies of strictly increasing integer sequences $(a_n)_{n=1}^N$, i.e., the number of quadruples $(n_1, n_2, n_3, n_4) \in \mathbb{N}^4$ such that $a_{n_1} + a_{n_2} = a_{n_3} + a_{n_4}$ and $n_1, n_2, n_3, n_4 \leq N$, since it is closely related to the metric Poissonian property [1, 2, 4, 13]. From now on, we denote by $\mathcal{E}_\alpha(N)$ the additive energy of $(\lfloor \alpha n \rfloor)_{n=1}^N$.

Several bounds for $\mathcal{E}_\alpha(N)$ are known in existing studies. For example, it follows from [1, p. 505] (essentially [17, Theorem 2]) that $\mathcal{E}_\alpha(N) \ll \varepsilon N^{2+\varepsilon} + N^{4-\alpha+\varepsilon}$ for all $\alpha > 1, \varepsilon > 0$ and $N \in \mathbb{N}$. Also, it is known that $\mathcal{E}_\alpha(N) \ll \alpha N^{4-\alpha} \log(N + 1)$ for all $\alpha \in (1, 3/2]$ and $N \in \mathbb{N}$ [7, p. 1000]. Moreover, it is easy to check that $\mathcal{E}_\alpha(N) \gg N^2 + N^{4-\alpha}$ for all $\alpha \geq 1$ and $N \in \mathbb{N}$ (for instance, see [7, p. 1000]). However, this lower bound is not equal to the above upper bounds as the growth rate.

In this paper, we estimate $\mathcal{E}_\alpha(N)$ and obtain an upper bound for $\mathcal{E}_\alpha(N)$ when $1 < \alpha \leq 4/3$.

Theorem 1.3. For all $\alpha \in (1, 4/3]$ and $N \in \mathbb{N}$, the additive energy $\mathcal{E}_\alpha(N)$ of $(\lfloor \alpha n \rfloor)_{n=1}^N$ is equal to $O_\alpha(N^{4-\alpha})$.

The upper bound in Theorem 1.3 is best possible, since the known lower bound $N^2 + N^{4-\alpha}$ is greater than $N^{4-\alpha}$. We prove Theorem 1.3 by estimating a variant of $\mathcal{N}_\alpha(d)$ in Section 7.

However, one can also estimate $\mathcal{E}_\alpha(N)$ as follows. Let $\mathcal{R}_\alpha(N)$ be the number of solutions of the equation $x + y = N$ in $\text{PS}(\alpha)$. Then
\[
\mathcal{E}_\alpha(N) \leq \sum_{2 \leq n \leq 2N^\alpha} \mathcal{R}_\alpha(n)^2.
\]
Assume $\alpha \in (1, 4/3)$. Since $\mathcal{R}_\alpha(N) \asymp N^{2/\alpha - 1}$ as $N \to \infty$ [26, Corollary 1.6], it can easily be checked that $\mathcal{E}_\alpha(N) \ll_\alpha N^{4-\alpha}$. This way is different from the proof in Section 7 and is easier to come up with.
1.3. Related work on the number of solutions of a linear equation in $\text{PS}(\alpha)$.
There are existing studies that examined whether a linear equation in two or three variables has infinitely many solutions or not. An equation $f(x_1, \ldots, x_k) = 0$ is called solvable in a subset \mathcal{S} of \mathbb{N} if \mathcal{S}^k contains infinitely many pairwise distinct tuples (x_1, \ldots, x_k) with $f(x_1, \ldots, x_k) = 0$. Matsusaka and Saito [15] showed that, for all $t > s > 2$ and $a, b, c \in \mathbb{N}$, the set of all $\alpha \in [s, t]$ such that the equation $ax + by = cz$ is solvable in $\text{PS}(\alpha)$, has positive Hausdorff dimension. Glasscock [8] showed that if the equation $y = ax + b$ with real numbers $a \neq 0, 1$ and b is solvable in \mathbb{N}, then, for Lebesgue-a.e. $\alpha \in (1, 2)$ (resp. $\alpha > 2$), the equation $y = ax + b$ is solvable (resp. not solvable) in $\text{PS}(\alpha)$.
Saito [18] improved Glasscock’s result in the case $a > b > 0$ as follows. Let $a \neq 1$ and b be real numbers with $a > b \geq 0$. If the equation $y = ax + b$ is solvable in \mathbb{N}, then (i) for all $\alpha \in (1, 2)$, the equation $y = ax + b$ is solvable in $\text{PS}(\alpha)$; (ii) for all $t > s > 2$, the set of all $\alpha \in [s, t]$ such that the equation $y = ax + b$ is solvable in $\text{PS}(\alpha)$, has the Hausdorff dimension $2/s$. Moreover, Saito [19] investigated the Hausdorff dimension of the set of $\alpha \in [s, t]$ such that a linear equation $y = a_1x_1 + \cdots + a_nx_n$ with positive coefficients a_1, \ldots, a_n has infinitely many solutions in $\text{PS}(\alpha)$. For example, he showed the following statement [19, Theorem 1.2]: for Lebesgue-a.e. $\alpha > 3$, the equation $x + y = z$ has at most finitely many solutions in $\text{PS}(\alpha)$.

2. More general statements

2.1. Arithmetic progressions with fixed common difference. We extend the definition of $\mathcal{N}_\alpha(d)$ a little. For a real number $\alpha > 1$ and integers $d \geq 1$ and $k \geq 2$, define the number $\mathcal{N}_{\alpha,k}(d)$ as

$$\mathcal{N}_{\alpha,k}(d) = \# \left\{ (n, r) \in \mathbb{N}^2 : \forall j = 0, 1, \ldots, k-1, \frac{\lfloor n \alpha \rfloor}{d} + dj \right\}.$$

In other words, $\mathcal{N}_{\alpha,k}(d)$ is the number of arithmetic progressions P of length k (k-APs) such that $(\lfloor n \alpha \rfloor)_{n \in P}$ is an AP with common difference d. The number $\mathcal{N}_{\alpha}(d)$ is equal to $\mathcal{N}_{\alpha,2}(d)$. Note that $\mathcal{N}_{\alpha,k}(d)$ is finite for all $\alpha > 1$, all integers $d \geq 1$ and $k \geq 2$. The following theorem is an extension of Theorem [11].

Theorem 2.1. Let $1 < \alpha < (\sqrt{21} + 4)/5$ and $\beta = 1/(\alpha - 1)$. Then, for every integer $k \geq 2$,

$$\lim_{d \to \infty} \frac{\mathcal{N}_{\alpha,k}(d)}{d^{\beta - 1}} = \frac{\beta \alpha^{-\beta} \zeta(\beta)}{k - 1}.$$

Notation. From now on, we denote by $\{x\} = x - \lfloor x \rfloor$ the fractional part of a real number x, and use the notations “$o(\cdot)$, $O(\cdot)$, \sim, \asymp, \ll” in the usual sense. If implicit constants depend on parameters a_1, \ldots, a_n, we often write “$O_{a_1, \ldots, a_n}(\cdot)$, $\asymp_{a_1, \ldots, a_n}$,”
<\alpha_1, \ldots, \alpha_n>" instead of "O(\cdot), \asymp, \ll". Also, the expression \(a/bc \) always means \(\frac{a}{b} \cdot c \) and does not mean \(\frac{a}{b}c \).

Theorem 2.1 is derived from the following propositions and lemmas immediately.

Proposition 2.2. Let \(1 < \alpha < 2 \) and \(\beta = 1/(\alpha - 1) \). Then, for every integer \(k \geq 2 \),

\[
\lim_{d \to \infty} \frac{N_{\alpha,k}(d)}{d^{\beta - 1}} = \frac{\beta \alpha^{-\beta} \zeta(\beta)}{k - 1}.
\]

Proposition 2.3. Let \(1 < \alpha < 2 \) and \(\beta = 1/(\alpha - 1) \). For an integer \(r \geq 1 \), define the strictly increasing function \(f_r : [0, \infty) \to [r^\alpha, \infty) \) as \(f_r(x) = (x + r)^\alpha - x^\alpha \). Then, for every integer \(k \geq 2 \),

\[
\lim_{d \to \infty} \frac{N_{\alpha,k}(d)}{d^{\beta - 1}} \leq \frac{\beta \alpha^{-\beta} \zeta(\beta)}{k - 1} + \lim_{d \to \infty} \frac{E_1(d) + E_2(d)}{d^{\beta - 1}},
\]

where \(E_1(d) \) and \(E_2(d) \) are defined as

\[
E_1(d) = \#\{ r \in \mathbb{N} : r \leq d^{1/\alpha}/4, \{ f_r^{-1}(d) \} + C_1 d^{\beta - 1}/r^\beta > 1 \}
\]

and

\[
E_2(d) = \#\{ n \in \mathbb{N} : n < C_2 d^{1/\alpha}, \{ (n^\alpha + d)^{1/\alpha} \} + 2d^{1/\alpha - 1} > 1 \}
\]

with suitable constants \(C_1, C_2 > 0 \) only depending on \(\alpha \).

Lemma 2.4. Let \(1 < \alpha < 1 + 1/\sqrt{2}, \beta = 1/\alpha - 1 \) and \(C_1 > 0 \). Then \(E_1(d) \) defined in Proposition 2.3 is equal to \(o(d^{\beta - 1}) \) as \(d \to \infty \).

Lemma 2.5. Let \(1 + 1/\sqrt{2} < \alpha < (\sqrt{21} + 4)/5, \beta = 1/(\alpha - 1) \) and \(C_1 > 0 \). Then \(E_1(d) \) defined in Proposition 2.3 is equal to \(o(d^{\beta - 1}) \) as \(d \to \infty \).

Lemma 2.6. Let \(1 < \alpha < (\sqrt{10} + 2)/3, \beta = 1/(\alpha - 1) \) and \(C_2 > 0 \). Then \(E_2(d) \) defined in Proposition 2.3 is equal to \(o(d^{\beta - 1}) \) as \(d \to \infty \).

The above propositions and lemmas are proved in Sections 4 and 6.

2.2. **Statements in order to prove Theorem 1.3.** To prove Theorem 1.3, we extend the definition of \(\mathcal{N}_\alpha(d) \) a little in another way. For a real number \(\alpha > 1 \) and integers \(d, l \geq 1 \), define the number \(\mathcal{N}_{\alpha,l}(d) \) as

\[
\mathcal{N}_{\alpha,l}(d) = \#\{(n, r) \in \mathbb{N}^2 : r \geq l, \lfloor (n + r)^\alpha \rfloor - \lfloor n^\alpha \rfloor = d \}.
\]

If \(l = 1 \), then \(\mathcal{N}_{\alpha,l}(d) = \mathcal{N}_{\alpha,2}(d) = \mathcal{N}_\alpha(d) \). Theorem 1.3, which is proved in Section 7, is derived from the following proposition and lemmas.
Proposition 2.7. Let $1 < \alpha < 2$ and $\beta = 1/(\alpha - 1)$. Then, for all integers $d, l \geq 1$,
\[N^{cl}_\alpha(d) \ll_{\alpha} d^{\beta-1}l^{1-\beta} + d^{2/\alpha-1} + E^{cl}_1(d-1) + E_2(d-1), \]
where $E_2(d)$ is defined in Proposition 2.3, and $E^{cl}_1(d)$ is defined as
\[E^{cl}_1(d) = \# \{ r \in \mathbb{N} : l \leq r \leq d^{1/\alpha}/4, \{ f^{-1}_r(d) \} + C_1d^{3-1}/r^{\beta} > 1 \}
\]
with the same function f_r and the same constant C_1 as in Proposition 2.3.

Lemma 2.8. Let $1 < \alpha \leq 3/2$ and $\beta = 1/(\alpha - 1)$. Then, for all integers $d, l \geq 1$,
\[E^{cl}_1(d) \ll_{\alpha} d^{\beta-1}l^{1-\beta} + d^{3/3l(1-\beta)/3} + d^{2/\alpha-1}, \]
where $E^{cl}_1(d)$ is defined in Proposition 2.7.

Lemma 2.9. Let $1 < \alpha \leq 4/3$ and $\beta = 1/(\alpha - 1)$. Then, for all integers $d \geq 1$,
\[E_2(d) \ll_{\alpha} d^{2/\alpha-1}, \]
where $E_2(d)$ is defined in Proposition 2.3.

The above proposition and lemmas are proved in Section 7.

3. Equidistribution modulo 1 and exponential sums

The following lemma is a key point in proving Propositions 2.2 and 2.3.

Lemma 3.1 (Equidistribution modulo 1). Let $1 < \alpha < 2$, $\beta = 1/(\alpha - 1)$, $r \in \mathbb{N}$, $c_1 < c_2$ and $c_2 - c_1 \in \mathbb{N}$. Then, for every convex set C of $[0,1)^2$,
\[\lim_{d \to \infty} \frac{1}{d^{\beta-1}} \# \left\{ n \in \mathbb{N} : \frac{(d + c_1)}{r\alpha} \leq n < \frac{(d + c_2)}{r\alpha}, \right\} \]
\[\left(\{ n^\alpha \}, \{ r\alpha n^\alpha - 1 \} \right) \in C \]
\[= \frac{\beta(c_2 - c_1)}{(r\alpha)^{\beta}} \mu(C), \]
where μ denotes the Lebesgue measure on \mathbb{R}^2.

Recently, Saito and Yoshida [20, Lemma 5.7] investigated the distribution of the sequence $((n^\alpha, r\alpha n^\alpha - 1))_{n=1}^\infty$ modulo 1 on short intervals. However, we cannot use their lemma here because the length
\[\left(\frac{d + c_2}{r\alpha} \right)^{\beta} - \left(\frac{d + c_1}{r\alpha} \right)^{\beta} \sim \beta(c_2 - c_1) \frac{d^{\beta-1}}{(r\alpha)^{\beta}} \]
of the interval in Lemma 3.1 is too short. Nevertheless, the above equidistribution holds due to the assumption $c_2 - c_1 \in \mathbb{N}$. We prove Lemma 3.1 at the end of this section.
To prove Lemma 3.1, we need to estimate exponential sums. Denote by \(e(x) \) the function \(e^{2\pi ix} \), and by \(|I| \) the length of an interval \(I \) of \(\mathbb{R} \). The following lemmas are useful to estimate exponential sums.

Lemma 3.2 (van der Corput). Let \(I \) be an interval of \(\mathbb{R} \) with \(|I| \geq 1 \) and \(f: I \to \mathbb{R} \) be a \(C^2 \) function, and let \(c \geq 1 \). If \(\lambda_2 > 0 \) satisfies that

\[
\lambda_2 \leq |f''(x)| \leq c\lambda_2
\]

for all \(x \in I \), then

\[
\sum_{n \in I \cap \mathbb{Z}} e(f(n)) \ll_e |I| \lambda_2^{1/2} + \lambda_2^{-1/2}.
\]

Lemma 3.3 (Sargos–Gritsenko). Let \(I \) be an interval of \(\mathbb{R} \) with \(|I| \geq 1 \) and \(f: I \to \mathbb{R} \) be a \(C^3 \) function, and let \(c \geq 1 \). If \(\lambda_3 > 0 \) satisfies that

\[
\lambda_3 \leq |f'''(x)| \leq c\lambda_3
\]

for all \(x \in I \), then

\[
\sum_{n \in I \cap \mathbb{Z}} e(f(n)) \ll_e |I| \lambda_3^{1/6} + \lambda_3^{-1/3}.
\]

Lemma 3.2 is called the second derivative test; for its proof, see [9, Theorem 2.2] for instance. Lemma 3.3 was shown by Sargos [21] and Gritsenko [10] independently. Now, let us prove Lemma 3.1 by using Lemma 3.2.

Proof of Lemma 3.1. Define the function \(f \) as \(f(x) = x^\alpha \). If the following criterion holds, Lemma 3.1 follows in the same way as Weyl’s equidistribution theorem. **Weyl’s criterion:** for every non-zero \((h_1, h_2) \in \mathbb{Z}^2\),

\[
\lim_{d \to \infty} \frac{1}{N-M} \sum_{n=M}^{N-1} e(h_1 f(n) + h_2 f'(n)) = 0,
\]

where

\[
M = M(d) := \left\lfloor \left(\frac{d+c_1}{r\alpha} \right)^\beta \right\rfloor \quad \text{and} \quad N = N(d) := \left\lfloor \left(\frac{d+c_2}{r\alpha} \right)^\beta \right\rfloor.
\]
First, we show (3.1) when $h_1 = 0$ and $h_2 \neq 0$. Let $h_1 = 0$, and let $h_2 \neq 0$ be an integer.

Then

$$\left| \frac{1}{N - M} \sum_{n=M}^{N-1} e(h_2rf'(n)) \right|$$

$$\leq \frac{1}{N - M} \left| \sum_{n=M}^{N-1} e(h_2rf'(n)) - \sum_{n=M}^{N-1} e(h_2r(f'(M) + (n - M)f''(M))) \right|$$

$$+ \frac{1}{N - M} \left| \sum_{n=M}^{N-1} e(h_2r(f'(M) + (n - M)f''(M))) \right| \tag{3.2}$$

Taylor’s theorem implies that for every integer $M < n < N$, there exists $\theta_n \in (M, n)$ such that

$$f'(n) = f'(M) + (n - M)f''(M) + \frac{(n - M)^2}{2}f'''(\theta_n).$$

Due to this equality and the inequality $|e(y) - e(x)| \leq 2\pi |y - x|$, the first term of (3.2) bounded from above by

$$\frac{2\pi |h_2|}{N - M} \sum_{n=M}^{N-1} |f'(n) - (f'(M) + (n - M)f''(M))|$$

$$\leq \frac{2\pi |h_2|}{N - M} \sum_{n=M}^{N-1} \frac{(n - M)^2}{2} |f'''(\theta_n)| \tag{3.3}$$

To estimate (3.3), we note that

$$N - M \sim \left(\frac{d + c_2}{r\alpha} \right) - \left(\frac{d + c_1}{r\alpha} \right) \sim \frac{\beta(c_2 - c_1)}{r\alpha} \left(\frac{d}{r\alpha} \right)^{\beta - 1} (d \to \infty).$$

Eq. (3.3) is bounded from above by

$$\pi |h_2| r(N - M)^2 |f'''(M)| \ll_{\alpha, c_1, c_2, h_2} d^{2(\beta - 1)} d^{3(\alpha - 3)} = d^{-1},$$

whence (3.3) is equal to $O_{\alpha, c_1, c_2, h_2}(1/d)$, and so is the first term of (3.2). Also, the second term of (3.2) is equal to

$$\frac{1}{N - M} \left| \frac{1 - e(h_2r(N - M)f''(M))}{1 - e(h_2rf''(M))} \right|$$

$$= \frac{1}{N - M} \left| \frac{\sin(\pi h_2r(N - M)f''(M))}{\sin(\pi h_2rf''(M))} \right| \tag{3.4}.$$
Since the relations $N - M \gg_{\alpha, r, c_1} d^{\beta - 1}$ and $f''(M) \in (0, \pi/2)$ hold for sufficiently large $d \geq 1$, it follows that

$$(N - M) \left| \sin(\pi h_2 r f''(M)) \right| \geq (N - M) \cdot \frac{2}{\pi} \cdot \pi |h_2| r f''(M)$$

\[\gg_{\alpha, r, c_1} d^{\beta - 1} d^{\beta(\alpha - 2)} = 1 \]

for sufficiently large $d \geq 1$. Thus, (3.4) is equal to

$$O_{\alpha, r, c_1} \left(\left| \sin(\pi h_2 r (N - M) f''(M)) \right| \right)$$

for sufficiently large $d \geq 1$, which vanishes as $d \to \infty$ because

$$r(N - M)f''(M) \sim r \cdot \frac{\beta(c_2 - c_1)}{r\alpha} \left(\frac{d}{r\alpha} \right)^{\beta - 1} \cdot \alpha(\alpha - 1) \left(\frac{d}{r\alpha} \right)^{\beta(\alpha - 2)}$$

$$= (c_2 - c_1) \left(\frac{d}{r\alpha} \right)^{\beta - 1} \left(\frac{d}{r\alpha} \right)^{1 - \beta}$$

$$= c_2 - c_1 \in \mathbb{N} \quad (d \to \infty).$$

Therefore, (3.4) vanishes as $d \to \infty$, and so does the second term of (3.2).

Next, we show (3.1) when $h_1 \neq 0$. Let $h_1 \neq 0$ and h_2 be integers. The second derivative of the function $g(x) := h_1 f(x) + h_2 r f'(x)$ satisfies that

$$|g''(x)| \leq |h_1| \alpha(\alpha - 1)x^{\alpha - 2}(1 + |h_2/h_1| r(2 - \alpha)x^{-1})$$

$$\leq 2|h_1| \alpha(\alpha - 1)x^{\alpha - 2}$$

and

$$|g''(x)| \geq |h_1| \alpha(\alpha - 1)x^{\alpha - 2}(1 - |h_2/h_1| r(2 - \alpha)x^{-1})$$

$$\geq (1/2)|h_1| \alpha(\alpha - 1)x^{\alpha - 2}$$

for every $x \geq M$ with sufficiently large $d \geq 1$. Thus, for every $M \leq x \leq N$ with sufficiently large $d \geq 1$,

$$|g''(x)| \asymp_{\alpha, r, h_1} d^{\beta(\alpha - 2)} = d^{1 - \beta}.$$

By Lemma 3.2 and the inequality $N - M \gg_{\alpha, r, c_1} d^{\beta - 1}$, we obtain that

$$\left| \frac{1}{N - M} \sum_{n=M}^{N-1} c(h_1 f(n) + h_2 r f'(n)) \right|$$

$$\ll_{\alpha, r, h_1} \frac{(N - M)d^{(1-\beta)/2} + d^{(\beta-1)/2}}{N - M} \ll_{\alpha, r, c_1} d^{(1-\beta)/2}$$

for sufficiently large $d \geq 1$. Therefore, (3.1) follows. \qed
4. PROOFS OF PROPOSITIONS 2.2 AND 2.3

We prove Propositions 2.2 and 2.3 by using Lemma 3.1.

Proof of Proposition 2.2. Let $k \geq 2$ be an integer. Take arbitrary $\varepsilon \in (0, 1)$ and $R \in \mathbb{N}$. We also take $x_0 = x_0(k, \varepsilon, R) > 0$ such that

\begin{equation}
\frac{R^2(k - 1)^2}{2} \alpha(\alpha - 1)x_0^{\alpha-2} \leq \varepsilon.
\end{equation}

Let us show that

\[
\lim_{d \to \infty} \frac{N_{\alpha,k}(d)}{d^{\beta-1}} \geq \frac{(1 - \varepsilon)^2 \beta \alpha^{-\beta}}{k - 1} \sum_{r=1}^{R} \frac{1}{r^\beta}.
\]

Define the convex set $C_k^-(\varepsilon)$ of \mathbb{R}^2 as

\[C_k^-(\varepsilon) = \{(y_0, y_1) \in \mathbb{R}^2 : 0 \leq y_0 < 1 - \varepsilon, 0 \leq y_0 + (k - 1)y_1 < 1 - \varepsilon\}. \]

Note that if $(y_0, y_1) \in C_k^-(\varepsilon)$, then $0 \leq y_0 + jy_1 < 1 - \varepsilon$ for all $j = 0, 1, \ldots, k - 1$. Taylor’s theorem implies that for all integers $n, r, j \geq 1$, $j \geq 0$ and s,

\begin{equation}
(n + rj)^\alpha = n^\alpha + rj\alpha n^{\alpha-1} + \frac{(rj)^2}{2} \alpha(\alpha - 1)(n + rj\theta)^{\alpha-2}
\end{equation}

\[= \lfloor n^\alpha \rfloor + j(\lfloor r\alpha n^{\alpha-1} \rfloor + s) + \delta_s(n, r, j), \]

where $\theta = \theta(n, r, j) \in (0, 1)$ and

\[\delta_s(n, r, j) := \lfloor n^\alpha \rfloor + j(\lfloor r\alpha n^{\alpha-1} \rfloor - s) + \frac{(rj)^2}{2} \alpha(\alpha - 1)(n + rj\theta)^{\alpha-2}. \]

Thus, if $s \in \mathbb{Z}$, $n \geq x_0$ and $(\lfloor n^\alpha \rfloor, \lfloor r\alpha n^{\alpha-1} \rfloor - s) \in C_k^-(\varepsilon)$, then $0 \leq \delta_s(n, r, j) < 1$ and $\lfloor (n + rj)^\alpha \rfloor = \lfloor n^\alpha \rfloor + j(\lfloor r\alpha n^{\alpha-1} \rfloor + s)$ for all $r = 1, 2, \ldots, R$ and $j = 0, 1, \ldots, k - 1$. (We have $s \in \{0, 1\}$ under the same assumptions, but this fact is not necessarily used here.) Also, the following equivalence holds:

\[\lfloor r\alpha n^{\alpha-1} \rfloor + s = d \iff \left(\frac{d - s}{r\alpha} \right)^\beta \leq n < \left(\frac{d - s + 1}{r\alpha} \right)^\beta. \]

From the above facts, it follows that for sufficiently large $d \geq 1$,

\[N_{\alpha,k}(d) \geq \sum_{r=1}^{R} \# \left\{ n \in \mathbb{N} : \forall j = 0, 1, \ldots, k - 1, \lfloor (n + rj)^\alpha \rfloor = \lfloor n^\alpha \rfloor + dj \right\} \]

\[\geq \sum_{r=1}^{R} \sum_{s \in \mathbb{Z}} \# \left\{ n \geq x_0 : \left(\frac{d - s}{r\alpha} \right)^\beta \leq n < \left(\frac{d - s + 1}{r\alpha} \right)^\beta, (\lfloor n^\alpha \rfloor, \lfloor r\alpha n^{\alpha-1} \rfloor - s) \in C_k^-(\varepsilon) \right\}, \]
where the sum $\sum_{s \in \mathbb{Z}}$ is a finite sum due to the boundedness of $C_k^-(\varepsilon)$ (or due to $s \in \{0, 1\}$ as already stated). Using Lemma 3.1, we obtain

$$\lim_{d \to \infty} \frac{N_{\alpha,k}(d)}{d^{\beta-1}} \geq \sum_{r=1}^{R} \sum_{s \in \mathbb{Z}} \frac{\beta}{(r\alpha)^\beta} \mu\left(C_k^-(\varepsilon) \cap ([0,1) \times [-s, 1-s])\right)$$

$$= \sum_{r=1}^{R} \frac{\beta}{(r\alpha)^\beta} \mu(C_k^-(\varepsilon)) = \sum_{r=1}^{R} \frac{\beta}{(r\alpha)^\beta} \cdot \frac{(1-\varepsilon)^2}{k-1} = \frac{(1-\varepsilon)^2 \beta \alpha^{-\beta}}{k-1} \sum_{r=1}^{R} \frac{1}{r^\beta}.$$

Finally, letting $\varepsilon \to +0$ and $R \to \infty$, we complete the proof. \hfill \Box

Proof of Proposition 2.3. Let $k \geq 2$ be an integer. Take arbitrary $\varepsilon \in (0, 1)$ and $R \in \mathbb{N}$. We also take $x_0 = x_0(k, \varepsilon, R) > 0$ that satisfies (4.1). Let us show that

$$\lim_{d \to \infty} \frac{N_{\alpha,k}(d)}{d^{\beta-1}} \leq \frac{(1+\varepsilon)\beta \alpha^{-\beta}}{k-1} \sum_{r=1}^{R} \frac{1}{r^\beta}$$

$$+ \lim_{d \to \infty} \frac{E_1(d) + E_2(d)}{d^{\beta-1}} + O\left(\sum_{r>R} \frac{1}{r^\beta}\right),$$

where the implicit constant only depends on $\alpha \in (1, 2)$. Define the convex set $C_k^+(\varepsilon)$ of \mathbb{R}^2 as

$$C_k^+(\varepsilon) = \{(y_0, y_1) \in \mathbb{R}^2 : 0 \leq y_0 < 1, \ -\varepsilon \leq y_0 + (k-1)y_1 < 1\}.$$

Step 1. Take $x_0 = x_0(k, \varepsilon, R) > 0$ that satisfies (4.1). We show that if integers $d \geq 1$, $n \geq x_0$ and $1 \leq r \leq R$ satisfy $[(n+rj)^\alpha] = [n^\alpha] + dj$ for all $j = 0, 1, \ldots, k-1$, then there exists an integer $s < d$ such that

- the point $\{(n^\alpha), \{r\alpha n^{\alpha-1}\} - s\}$ lies in $C_k^+(\varepsilon)$, and
- $$\left(\frac{d-s}{r\alpha}\right)^\beta \leq n < \left(\frac{d-s+1}{r\alpha}\right)^\beta.$$

Set $s = d - \lfloor r\alpha n^{\alpha-1} \rfloor$. Then the second condition holds. Since Taylor’s theorem implies (4.2), it follows that

$$(n+rj)^\alpha = [n^\alpha] + j(\lfloor r\alpha n^{\alpha-1} \rfloor + s) + \delta_s(n, r, j)$$

$$= [n^\alpha] + dj + \delta_s(n, r, j) = [(n+rj)^\alpha] + \delta_s(n, r, j)$$

for all $j = 0, 1, \ldots, k-1$. This yields that $0 \leq \delta_s(n, r, j) < 1$ for all $j = 0, 1, \ldots, k-1$. Thus, the point $\{(n^\alpha), \{r\alpha n^{\alpha-1}\} - s\}$ lies in $C_k^+(\varepsilon)$.

Step 2. For an integer $d \geq 1$, define the number $E_0(d, R)$ as

$$E_0(d, R) = \#\{(n, r) \in \mathbb{N}^2 : r > R, \ [(n+r)^\alpha] - [n^\alpha] = d\}.$$
By Step 1, we have that for sufficiently large $d \geq 1$,

$$N_{\alpha,k}(d) = \sum_{r=1}^{R} \# \left\{ n \in \mathbb{N} : \forall j = 0, 1, \ldots, k - 1, \left\lfloor (n + rj)^\alpha \right\rfloor = \lfloor n^\alpha \rfloor + dj \right\} + E_0(d, R)$$

$$\leq \sum_{r=1}^{R} \sum_{s \in \mathbb{Z}} \# \left\{ n \geq x_0 : \left(\frac{d - s}{r^\alpha} \right)^\beta \leq n < \left(\frac{d - s + 1}{r^\alpha} \right)^\beta, \right\}$$

$$\leq R \sum_{r=1}^{R} \sum_{s \in \mathbb{Z}} \# \left\{ n \geq x_0 : \left(\frac{d - s}{r^\alpha} \right)^\beta \leq n < \left(\frac{d - s + 1}{r^\alpha} \right)^\beta, \right\}$$

$$+ R x_0 + E_0(d, R),$$

where the sum $\sum_{s \in \mathbb{Z}}$ is a finite sum due to the boundedness of $C_k^+(\varepsilon)$. Lemma 3.1 implies that

$$\lim_{d \to \infty} \frac{N_{\alpha,k}(d)}{d^{\beta-1}} \leq \sum_{r=1}^{R} \sum_{s \in \mathbb{Z}} \frac{\beta}{(r^\alpha)^\beta} \mu \left(C_k^+(\varepsilon) \cap \left(\left[0, 1 \right] \times [-s, 1 - s) \right) \right)$$

$$+ \lim_{d \to \infty} \frac{E_0(d, R)}{d^{\beta-1}}$$

$$= \sum_{r=1}^{R} \frac{\beta}{(r^\alpha)^\beta} \mu \left(C_k^+(\varepsilon) \right) + \lim_{d \to \infty} \frac{E_0(d, R)}{d^{\beta-1}}$$

$$= \frac{1 + \varepsilon}{k - 1} \sum_{r=1}^{R} \frac{1}{r^\beta} + \lim_{d \to \infty} \frac{E_0(d, R)}{d^{\beta-1}}.$$

Also, it follows that

$$E_0(d, R) \leq \# \{(n, r) \in \mathbb{N}^2 : r > R, \ d - 1 < f_r(n) < d + 1 \}$$

$$\leq \# \{(n, r) \in \mathbb{N}^2 : R < r \leq (d - 1)^{1/\alpha}/4, \ d - 1 < f_r(n) < d + 1 \}$$

$$+ \# \{(n, r) \in \mathbb{N}^2 : r > (d - 1)^{1/\alpha}/4, \ d - 1 < f_r(n) < d + 1 \}. \tag{4.5}$$

Step 3. Let us estimate the first term of (4.5). For every $1 \leq r \leq (d - 1)^{1/\alpha}$, the inverse function of $f_r : [0, \infty) \to [r^{\alpha}, \infty)$ is defined, and so are the values $f_r^{-1}(d - 1)$ and
\[f_r^{-1}(d+1). \] Thus,
\[
\# \{(n,r) \in \mathbb{N}^2 : R < r \leq (d - 1)^{1/\alpha}/4, \; d - 1 < f_r(n) < d + 1\}
= \sum_{R < r \leq (d - 1)^{1/\alpha}/4} \# \{n \in \mathbb{N} : f_r^{-1}(d - 1) < n < f_r^{-1}(d + 1)\}
\leq \sum_{R < r \leq (d - 1)^{1/\alpha}/4} ([f_r^{-1}(d + 1)] - [f_r^{-1}(d - 1)])
= \sum_{R < r \leq (d - 1)^{1/\alpha}/4} F_r(d - 1)
+ \sum_{R < r \leq (d - 1)^{1/\alpha}/4} ([f_r^{-1}(d - 1)] - [f_r^{-1}(d + 1)]),
\] (4.6)
where \(F_r(x) := f_r^{-1}(x + 2) - f_r^{-1}(x) \). The mean value theorem implies that
\[
F_r(d - 1) = \frac{2}{(f_r' \circ f_r^{-1})(d + \theta)} = \frac{2}{f_r'(y_\theta)} < \frac{2(y_\theta + r)^{2-\alpha}}{\alpha(\alpha - 1)r},
\]
where \(\theta = \theta(r,d) \in (-1,1) \) and \(y_\theta := f_r^{-1}(d + \theta) \). If \(d \geq 1 \) and \(1 \leq r \leq (d - 1)^{1/\alpha}/4 < d^{1/\alpha} \), then the inequalities \(r < (d/r)^\beta \),
\[
y_\theta + r < \left(\frac{d + \theta}{r\alpha}\right)^\beta + (d/r)^\beta \ll_\alpha (d/r)^\beta,
F_r(d - 1) \ll_\alpha r^{-1}(d/r)^{\beta(2-\alpha)} = d^{\beta - 1}/r^\beta
\]
hold. Thus, the first sum of (4.6) is equal to \(O_\alpha(d^{3-1} \sum_{r > R} 1/r^\beta) \). The second sum of (4.6) is bounded from above by
\[
\# \{r \leq (d - 1)^{1/\alpha}/4 : [f_r^{-1}(d-1)] > [f_r^{-1}(d+1)]\}
\leq \# \{r \leq (d - 1)^{1/\alpha}/4 : [f_r^{-1}(d-1)] + F_r(d-1) \geq 1\}
\leq \# \{r \leq (d - 1)^{1/\alpha}/4 : [f_r^{-1}(d-1)] + C_1(d-1)^{\beta - 1}/r^\beta > 1\}
= E_1(d - 1),
\]
where \(C_1 > 0 \) is a constant only depending on \(\alpha \). Therefore, the first term of (4.5) is less than or equals to \(O_\alpha(d^{3-1} \sum_{r > R} 1/r^\beta) + E_1(d - 1) \).

Step 4. Let us estimate the second term of (4.5). If \(d \geq 2 \), \(r > (d - 1)^{1/\alpha}/4 \) and \(f_r(n) < d + 1 \), then the mean value theorem implies that
\[
(d - 1)^{1/\alpha}n^{\alpha - 1} \ll (d - 1)^{1/\alpha}(\alpha/4)n^{\alpha - 1}
< ran^{\alpha - 1} < f_r(n) < d + 1 \ll d - 1,
\]
whence \(n \ll_{\alpha} (d - 1)^{1/\alpha} \). Thus, for some constant \(C_2 > 0 \) only depending on \(\alpha \),

\[
\# \{(n, r) \in \mathbb{N}^2 : r > (d - 1)^{1/\alpha}/4, \; d - 1 < f_r(n) < d + 1\}
\leq \# \left\{(n, r) \in \mathbb{N}^2 : n < C_2(d - 1)^{1/\alpha}, \; (n^\alpha + d - 1)^{1/\alpha} < n + r < (n^\alpha + d + 1)^{1/\alpha} \right\}
\leq \sum_{n < C_2(d - 1)^{1/\alpha}} \left(\lfloor (n^\alpha + d + 1)^{1/\alpha} \rfloor - \lfloor (n^\alpha + d - 1)^{1/\alpha} \rfloor \right)
= \sum_{n < C_2(d - 1)^{1/\alpha}} G_n(d - 1)
+ \sum_{n < C_2(d - 1)^{1/\alpha}} \left(\{n^\alpha + d + 1)^{1/\alpha}\} - \{n^\alpha + d - 1)^{1/\alpha}\} \right),
\]

where \(G_n(x) := (n^\alpha + x + 2)^{1/\alpha} - (n^\alpha + x)^{1/\alpha} \). Since the mean value theorem implies

\[
G_n(d - 1) < \frac{2}{\alpha}(n^\alpha + d - 1)^{1/\alpha-1} < 2(d - 1)^{1/\alpha-1},
\]

the first sum of (4.7) is bounded from above by

\[
C_2(d - 1)^{1/\alpha} : 2(d - 1)^{1/\alpha-1} \ll_{\alpha} d^{2/\alpha-1}.
\]

Moreover, the second sum of (4.7) is bounded from above by

\[
\# \{n < C_2(d - 1)^{1/\alpha} : \{n^\alpha + d - 1)^{1/\alpha}\} > \{n^\alpha + d + 1)^{1/\alpha}\} \leq \# \{n < C_2(d - 1)^{1/\alpha} : \{n^\alpha + d - 1)^{1/\alpha}\} + G_n(d - 1) \geq 1\}
\leq \# \{n < C_2(d - 1)^{1/\alpha} : \{n^\alpha + d - 1)^{1/\alpha}\} + 2(d - 1)^{1/\alpha-1} > 1\}
= E_2(d - 1).
\]

Therefore, the second term of (4.5) is less than or equal to \(O_{\alpha}(d^{2/\alpha-1}) + E_2(d - 1) \).

Step 5. By Steps 2–4, the inequality (4.3) holds. Letting \(\varepsilon \to +0 \) and \(R \to \infty \) in (4.3), we complete the proof. \(\square \)

5. **Discrepancy and Preliminary Lemmas**

This section is a preparation to prove Lemmas 2.4, 2.6. For a sequence \((x_n)_{n=1}^N \) of real numbers, define the discrepancy \(D(x_1, \ldots, x_N) \) as

\[
D(x_1, \ldots, x_N)
= \sup_{0 \leq a < b \leq 1} \left| \frac{\# \{n \in \mathbb{N} : n \leq N, \; a \leq \{x_n\} < b\}}{N} - (b - a) \right|.
\]
Lemma 5.3. Let $0 < H < 1$. By Lemma 5.1, the estimation of discrepancies reduces to that of exponential sums. In order to apply Lemmas 3.2 and 3.3, we examine the second and third derivatives of the function $f_r^{-1}(d)$ of r, where f_r is defined in Proposition 2.3.

Lemma 5.4. Let $1 < \alpha < 2$, $\beta = 1/(\alpha - 1)$, $d \in \mathbb{N}$ and $c > 0$. Define the function y of $0 < r \leq d^{1/\alpha}$ as $y = f_r^{-1}(d)$. Then $y \leq y + r \leq (1 + c^{-1})y$ for all $0 < r \leq d^{1/\alpha}/f_1(c)^{1/\alpha}$.

Proof. Let $0 < r \leq d^{1/\alpha}/f_1(c)^{1/\alpha}$. Then $f_r(cr) = f_1(c)r^{\alpha} \leq d = f_r(y)$. Thus, $cr \leq y$ and $y \leq y + r \leq (1 + c^{-1})y$.

Lemma 5.5. Let $1 < \alpha < 2$, $\beta = 1/(\alpha - 1)$ and $d \in \mathbb{N}$. Define the function y of $0 < r \leq d^{1/\alpha}$ as $y = f_r^{-1}(d)$. Then

\begin{equation}
(5.1) \quad y'' = \frac{d(\alpha - 1)}{((y + r)^{\alpha - 1} - y^{\alpha - 1})^2} y^{2-\alpha}(y + r)^{2-\alpha}.
\end{equation}

In particular, $y'' \approx d^3/r^{3\alpha + 2}$ for all $0 < r \leq d^{1/\alpha}/2$.

Proof. Differentiating both sides of $f_r(y) = d$ with respect to r, we obtain

\begin{equation}
(5.2) \quad -y' = \frac{(y + r)^{\alpha - 1}}{(y + r)^{\alpha - 1} - y^{\alpha - 1}} \quad \text{and} \quad -y' - 1 = \frac{y^{\alpha - 1}}{(y + r)^{\alpha - 1} - y^{\alpha - 1}}.
\end{equation}
Lemma 5.5. Let \(y \) suffocating \(\alpha \) such that \(f \). Since \(y \), it follows that \(y \), we have
\[
\frac{y''}{y'} = (\alpha - 1) \left(\frac{y'}{y + r} + \frac{(y + r)^{\alpha - 2} - y'y^{\alpha - 2}}{(y + r)^{\alpha - 1} - y^{\alpha - 1}} \right)
\]
\[
= (\alpha - 1) \frac{-(y' + 1)(y + r)^{\alpha - 1} + y'y^{\alpha - 2}}{(y + r)^{\alpha - 1} - y^{\alpha - 1}}
\]
\[
= (\alpha - 1)y^{\alpha - 2} \cdot \frac{-y + ry'}{(y + r)((y + r)^{\alpha - 1} - y^{\alpha - 1})}.
\]
Since
\[
y - ry' = \frac{y((y + r)^{\alpha - 1} - y^{\alpha - 1}) + r(y + r)^{\alpha - 1}}{(y + r)^{\alpha - 1} - y^{\alpha - 1}}
\]
\[
= \frac{(y + r)^{\alpha} - y^{\alpha}}{(y + r)^{\alpha - 1} - y^{\alpha - 1}} = \frac{d}{(y + r)^{\alpha - 1} - y^{\alpha - 1}},
\]
it follows that
\[
\frac{y''}{y'} = \frac{-d(\alpha - 1)y^{\alpha - 2}}{(y + r)((y + r)^{\alpha - 1} - y^{\alpha - 1})^2}
\]
and
\[
y'' = \frac{d(\alpha - 1)y^{\alpha - 2}(y + r)^{\alpha - 2}}{((y + r)^{\alpha - 1} - y^{\alpha - 1})^3}.
\]
Next, assume \(0 < r \leq d^{1/\alpha}/2 \). Then \(f_1(1) = 2^{\alpha} - 1 < 2^{\alpha} \) and \(r \leq d^{1/\alpha}/2 < d^{1/\alpha}/f_1(1)^{1/\alpha} \). By Lemma 5.3, the inequality \(y \leq y + r \leq 2y \) holds. Also, the mean value theorem implies that
\[
 r^{\alpha}y^{\alpha - 1} < f_1(y) < r^{\alpha}(y + r)^{\alpha - 1}.
\]
Since \(f_r(y) = d \), it follows that \((d/r^{\alpha})^3 < y + r \) and \(y < (d/r^{\alpha})^3 \). Therefore,
\[
y \asymp y + r \asymp (d/r^{\alpha})^3 \text{ and } (y + r)^{\alpha - 1} - y^{\alpha - 1} \asymp (r^{\alpha}y^{\alpha - 2}.
\]
whence \(y'' \asymp \frac{d^3}{r^{3/2}} \) for all \(0 < r \leq d^{1/\alpha}/2 \).
Proof. Taking the logarithmic derivative of both sides in (5.1), we have

\[
\frac{y'''}{y''} = -3(\alpha - 1) \frac{(y' + 1)(y + r)^{\alpha-2} - y'y^{\alpha-2}}{(y + r)^{\alpha-1} - y^{\alpha-1}} - (2 - \alpha) \left(\frac{y'}{y} + \frac{y' + 1}{y + r} \right).
\]

By (5.2), it follows that

\[
\frac{y'''}{y''} = 3(\alpha - 1) \frac{y^{\alpha-1}(y + r)^{\alpha-2} - (y + r)^{\alpha-1}y^{\alpha-2}}{((y + r)^{\alpha-1} - y^{\alpha-1})^2}
+ \frac{2 - \alpha}{(y + r)^{\alpha-1} - y^{\alpha-1}} \left(\frac{y + r}{y} + \frac{y^{\alpha-1}}{y + r} \right).
\]

(5.5)

The first term of the right-hand side in (5.5) is equal to

\[
3(\alpha - 1) \frac{-ry^{\alpha-2}(y + r)^{\alpha-2}}{((y + r)^{\alpha-1} - y^{\alpha-1})^2}
= 3(\alpha - 1) \frac{-ry^{\alpha-1}(y + r)^{\alpha-1}}{((y + r)^{\alpha-1} - y^{\alpha-1})^2 y(y + r)},
\]

and the second term of the right-hand side in (5.5) is equal to

\[
(2 - \alpha) \frac{((y + r)^{\alpha-1} - y^{\alpha-1})(y + r)\alpha + y^\alpha)}{((y + r)^{\alpha-1} - y^{\alpha-1})^2 y(y + r)}
= (2 - \alpha) \frac{y + r)^{2\alpha-1} - y^{2\alpha-1} - ry^{\alpha-1}(y + r)^{\alpha-1}}{((y + r)^{\alpha-1} - y^{\alpha-1})^2 y(y + r)}.
\]

Thus,

\[
\frac{y'''}{y''}(y + r)^{\alpha-1} - y^{\alpha-1})^2 y(y + r)
= -3(\alpha - 1)ry^{\alpha-1}(y + r)^{\alpha-1}
+ (2 - \alpha)((y + r)^{2\alpha-1} - y^{2\alpha-1} - ry^{\alpha-1}(y + r)^{\alpha-1})
= -(2\alpha - 1)ry^{\alpha-1}(y + r)^{\alpha-1} + (2 - \alpha)((y + r)^{2\alpha-1} - y^{2\alpha-1}),
\]

which implies (5.4).
Next, assume $0 < r \leq d^{1/\alpha}/2$. Then (5.3) holds. By the mean value theorem, the numerator of the right-hand side in (5.4) is equal to

$$(2\alpha - 1)ry^{\alpha - 1}(y + r)^{\alpha - 1} - (2 - \alpha)((y + r)^{2\alpha - 1} - y^{2\alpha - 1})$$

$$= (2\alpha - 1)r(y^{\alpha - 1}(y + r)^{\alpha - 1} - (2 - \alpha)(y + r\theta)^{2\alpha - 2})$$

where $\theta = \theta(y, r) \in (0, 1)$. Since the inequality $y + r \leq 2y$ holds by Lemma 5.3 it turns out that

$$y^{\alpha - 1}(y + r)^{\alpha - 1} > y^{\alpha - 1}(y + r)^{\alpha - 1} - (2 - \alpha)(y + r\theta)^{2\alpha - 2}$$

$$> 2^{1-\alpha}(y + r)^{2\alpha - 2} - (2 - \alpha)(y + r)^{2\alpha - 2} = (2^{1-\alpha} + \alpha - 2)(y + r)^{2\alpha - 2}.$$

Noting the inequality $2^{1-\alpha} + \alpha - 2 > 0$, we have

$$y^{\alpha - 1}(y + r)^{\alpha - 1} - (2 - \alpha)(y + r\theta)^{2\alpha - 2} \simeq y^{2\alpha - 2}.$$

Thus, the numerator of the right-hand side in (5.4) is $\simeq \alpha ry^{2\alpha - 2}$. This, (5.4) and (5.3) yield that $-y'' \simeq \alpha d^{3}/r^{\beta + 3}$.

6. Proofs of Lemmas 2.4–2.6

We prove Lemmas 2.4–2.6 by using Lemmas 3.2, 3.3, 5.1, 5.4 and 5.5.

Proof of Lemma 2.4. Note that (i) the inequality $(3 - 2\beta)/(\beta - 1) < \beta - 1$ is equivalent to $\alpha < 1 + 1/\sqrt{2} \approx 1.707$ if $1 < \alpha < 2$; (ii) the inequality $(3 - 2\beta)/(\beta - 1) < 1/\alpha$ is equivalent to $\alpha < (\sqrt{10} + 2)/3 \approx 1.721$ if $1 < \alpha < 2$, since

$$(3 - 2\beta)/(\beta - 1) < 1/\alpha \iff 3\alpha - 5 - (3(\alpha - 1) - 2) < 1/\alpha$$

$$\iff 3\alpha^2 - 4\alpha - 2 < 0 \iff \alpha < (\sqrt{10} + 2)/3.$$

Now, we can take a positive number γ_1 with $(3 - 2\beta)/(\beta - 1) < \gamma_1 < \min\{1/\alpha, \beta - 1\}$ due to the assumption $1 < \alpha < 1 + 1/\sqrt{2}$. Then, for sufficiently large $d \geq 1$,

$$E_1(d) = \#\{r \leq d^{1/\alpha}/4 : \{f_r^{-1}(d)\} + C_1d^{\beta - 1}/r^\beta > 1\}$$

$$\leq d^{\gamma_1} + \sum_{j=\lceil \gamma_1 \log_2 d \rceil}^{(1/\alpha)\log_2 d} \#\{2^j < r \leq 2^{j+1} : \{f_r^{-1}(d)\} + C_1d^{\beta - 1}/r^\beta > 1\}.$$

(6.1)
Denote by $D_1(d, R)$ the discrepancy of the sequence $(f_r^{-1}(d))_{R < r \leq 2R}$. The second term of (6.1) is bounded from above by

$$\sum_{j = \lceil \gamma \log_2 d \rceil}^{\lfloor (1/\alpha) \log_2 d \rfloor - 2} 2^j \leq \sum_{j = \lceil \gamma \log_2 d \rceil}^{\lfloor (1/\alpha) \log_2 d \rfloor - 2} \left(C_1 d^{\beta - 1}/2^j \beta + D_1(d, 2^j) \right) \cdot 2^j \leq \alpha d^{(1 - \gamma)(\beta - 1)} + \sum_{j = \lceil \gamma \log_2 d \rceil}^{\lfloor (1/\alpha) \log_2 d \rfloor - 2} D_1(d, 2^j) \cdot 2^j.$$ (6.2)

Now, we estimate the discrepancy $D_1(d, R)$ when R is an integer with $d^{\gamma_1}/2 < R \leq d^{1/\alpha}/2$. Set $H = d^{-\beta/3} R^{(\beta + 2)/3}$. By Lemma 5.1

$$D_1(d, R) R \ll H^{-1} R + \sum_{1 \leq h \leq H} \frac{1}{h} \left| \sum_{R < r \leq 2R} e(h f_r^{-1}(d)) \right|.$$

Since $2R \leq d^{1/\alpha}/2$, Lemmas 3.2 and 5.4 imply that

$$\sum_{R < r \leq 2R} e(h f_r^{-1}(d)) \ll \alpha R(h d^\beta / R^{\beta + 2})^{1/2} + h^{1/2} d^{\beta/2} R^{-\beta/2} + h^{-1/2} d^{-\beta/2} R^{(\beta + 2)/2}.$$

Thus,

$$D_1(d, R) R \ll H^{-1} R + \sum_{1 \leq h \leq H} \left(h^{1/2 - 1/2} d^{\beta/2} R^{-\beta/2} + h^{-1/2} d^{-\beta/2} R^{(\beta + 2)/2} \right) \ll H^{-1} R + H^{1/2} d^{\beta/2} R^{-\beta/2} + d^{-\beta/2} R^{(\beta + 2)/2} \ll d^{3/3} R^{(1 - \beta)/3} + d^{-\beta/2} R^{(\beta + 2)/2}.$$
The second term of (6.2) is bounded from above as follows:

\[
\sum_{j=[\gamma_1 \log_2 d]}^{\lfloor (1/\alpha) \log_2 d \rfloor - 2} D_1(d, 2^j) \cdot 2^j
\]

Since \(\gamma_1 > (3 - 2\beta)/(\beta - 1) \), it turns out that

\[
\beta/3 - \gamma_1(\beta - 1)/3 < \beta/3 - (3 - 2\beta)/3 = \beta - 1,
\]

whence the first term of (6.3) is equal to \(o(d^{3-1}) \). Also, noting the equality \(\alpha \beta = \beta + 1 \),

we have the following equivalence if \(\alpha > 1 \):

\[
1/2 \alpha < \beta - 1 \iff 1/2 < \beta + 1 - \alpha \iff -1/2 < \beta - \alpha.
\]

From the assumption \(1 < \alpha < 1 + 1/\sqrt{2} \), it follows that

\[
\beta - \alpha > \sqrt{2} - (1 + 1/\sqrt{2}) = \sqrt{2}/2 - 1 > 1/2 - 1 = -1/2.
\]

Thus, the second term of (6.3) is equal to \(o(d^{3-1}) \). Moreover, (6.2) and (6.1) are also equal to \(o(d^{3-1}) \). Therefore, \(E_1(d) = o(d^{3-1}) \).

Proof of Lemma 2.5. Note that the inequality \(1 < \beta \leq \sqrt{2} \) is equivalent to \(1 + 1/\sqrt{2} \leq \alpha < 2 \). Also, if \(5/4 < \alpha < 2 \) (i.e., \(1 < \beta < 4 \)), then the following equivalences hold:

\[
\beta - 1 \leq \frac{3 - 2\beta}{\beta - 1} \iff \alpha \geq 1 + 1/\sqrt{2};
\]

\[
\frac{3 - 2\beta}{\beta - 1} < \frac{6\beta - 7}{4 - \beta} \iff \alpha < \frac{\sqrt{21} + 4}{5} \approx 1.717;
\]

\[
\frac{3 - 2\beta}{\beta - 1} < \frac{4\beta - 3}{\beta + 3} \iff \alpha < \frac{\sqrt{10} + 2}{3} \approx 1.721;
\]

\[
\frac{3\alpha - 5}{2 - \alpha} = \frac{3 - 2\beta}{\beta - 1} < 1/\alpha \iff \alpha < \frac{\sqrt{10} + 2}{3}.
\]

Now, we can take positive numbers \(\gamma_1 \) and \(\gamma_2 \) with

\[
0 < \gamma_2 < \beta - 1 \leq \frac{3 - 2\beta}{\beta - 1} < \gamma_1 < \min \left\{ \frac{6\beta - 7}{4 - \beta}, \frac{4\beta - 3}{\beta + 3}, 1/\alpha \right\}
\]
due to the assumption $1 + 1/\sqrt{2} \leq \alpha < (\sqrt{21} + 4)/5$. Then, for sufficiently large $d \geq 1$,

$$E_1(d) = \# \{ r \leq d^{1/\alpha}/4 : \{ f^{-1}_r(d) \} + C_1 d^\beta / r^\beta > 1 \}$$

$$\leq d^{\gamma_2} + \sum_{j = \lceil \gamma_1 \log_2 d \rceil}^{\lceil (1/\alpha \log_2 d) \rceil - 1} \# \{ 2^j < r \leq 2^j + 1 : \{ f^{-1}_r(d) \} + C_1 d^\beta / r^\beta > 1 \}$$

$$+ \sum_{j = \lceil \gamma_1 \log_2 d \rceil}^{\lceil (1/\alpha \log_2 d) \rceil - 2} \# \{ 2^j < r \leq 2^j + 1 : \{ f^{-1}_r(d) \} + C_1 d^\beta / r^\beta > 1 \}. $$

In the same way as the proof of Lemma 2.4, it follows that

$$E_1(d) \ll_{\alpha} d^{\gamma_2} + d^{(1-\gamma_2)(\beta-1)} + d^{(1-\gamma_1)(\beta-1)}$$

$$+ \sum_{j = \lceil \gamma_1 \log_2 d \rceil}^{\lceil (1/\alpha \log_2 d) \rceil - 1} D_1(d, 2^j) \cdot 2^j + \sum_{j = \lceil \gamma_1 \log_2 d \rceil}^{\lceil (1/\alpha \log_2 d) \rceil - 2} D_1(d, 2^j) \cdot 2^j. \quad (6.6)$$

Now, we estimate the discrepancy $D_1(d, R)$ when R is an integer with $d^{\gamma_2}/2 < R \leq d^{\gamma_1}/2 < d^{1/\alpha}/4$. Set $H = d^{-\beta/7} R^{(\beta+3)/7}$. Since $2R \leq d^{1/\alpha}/2$, Lemmas 5.1, 3.3 and 5.5 imply that

$$D_1(d, R) \ll_{\alpha} H^{-1} R + H^{1/6} R \cdot (d^\beta / R^\beta + 3)^{1/6} + (d^\beta / R^\beta + 3)^{-1/3}$$

$$\ll d^{3/7} R^{(4-\beta)/7} + d^{-\beta/3} R^{(\beta+3)/3}. $$

Noting the inequality $1 < \beta \leq \sqrt{2} < 4$, we obtain

$$\ll_{\alpha} \sum_{j = \lceil \gamma_1 \log_2 d \rceil}^{\lceil \gamma_1 \log_2 d \rceil - 1} D_1(d, 2^j) \cdot 2^j \quad (6.7)$$

$$\ll_{\alpha} \sum_{j = \lceil \gamma_1 \log_2 d \rceil}^{\lceil \gamma_1 \log_2 d \rceil - 1} (d^{\beta/7} \cdot 2^{j(4-\beta)/7} + d^{-\beta/3} \cdot 2^{j(\beta+3)/3})$$

$$\ll_{\alpha} d^{3/7} \cdot d^{\gamma_1(4-\beta)/7} + d^{-\beta/3} \cdot d^{\gamma_1(\beta+3)/3}. $$

Also, the inequality (6.3) holds in the same way as the proof of Lemma 2.4. Thus, the inequalities (6.3), (6.6) and (6.7) yield that

$$E_1(d) \ll_{\alpha} d^{\gamma_2} + d^{(1-\gamma_2)(\beta-1)} + d^{(1-\gamma_1)(\beta-1)}$$

$$+ d^{\beta/7+\gamma_1(4-\beta)/7} + d^{-\beta/3+\gamma_1(\beta+3)/3}$$

$$+ d^{\beta/3-\gamma_1(\beta-1)/3} + d^{1/2\alpha}. \quad (6.8)$$
By (6.5), all terms of (6.8) except for the last term are equal to $o(d^{3-1})$. Also, noting the inequality $\alpha < (\sqrt{21} + 4)/5 < (\sqrt{10} + 2)/3$, we have

$$\beta - \alpha > 3/((\sqrt{10} - 1) - (\sqrt{10} + 2)/3) = (\sqrt{10} + 1)/3 - (\sqrt{10} + 2)/3 = -1/3 > -1/2.$$

By (6.4), the last term of (6.8) is equal to $o(d^{3-1})$. Therefore, $E_1(d) = o(d^{3-1})$. □

Proof of Lemma 2.6. Denote by $D_2(d, N)$ the discrepancy of the sequence $((n^\alpha + d)^{1/\alpha})_{N \leq n < 2N}$. Then

$$E_2(d) = \# \{n < C_2d^{1/\alpha} : (n^\alpha + d)^{1/\alpha} + 2d^{1/\alpha - 1} > 1\}$$

$$\leq \sum_{j=0}^{[\log_2(C_2d^{1/\alpha})]} \# \{2^j \leq n < 2^{j+1} : (n^\alpha + d)^{1/\alpha} + 2d^{1/\alpha - 1} > 1\}$$

$$\leq \sum_{j=0}^{[\log_2(C_2d^{1/\alpha})]} (2d^{1/\alpha - 1} \cdot 2^j + D_2(d, 2^j) \cdot 2^j)$$

$$\ll_\alpha d^{1/\alpha - 1} \cdot d^{1/\alpha} + \sum_{j=0}^{[\log_2(C_2d^{1/\alpha})]} D_2(d, 2^j) \cdot 2^j.$$

(6.10)

We estimate the discrepancy $D_2(d, N)$ when d and N are positive integers with $1 \leq N \leq C_2d^{1/\alpha}$. Set $H = d^{(\alpha - 1)/3\alpha} N^{(2 - \alpha)/3}$. By Lemma 5.1

$$D_2(d, N)N \ll H^{-1}N + \sum_{1 \leq h \leq H} \frac{1}{h} \left| \sum_{N \leq n < 2N} e(h(n^\alpha + d)^{1/\alpha}) \right|.$$

The second derivative of the function $y = (x^\alpha + d)^{1/\alpha}$ is equal to

$$y'' = (\alpha - 1)dx^{\alpha - 2}(x^\alpha + d)^{1/\alpha - 2},$$

which satisfies that $y'' \approx_\alpha d^{1/\alpha - 1}N^{\alpha - 2}$ for all $N \leq x < 2N$ (because of $0 < x^d \ll d$). By Lemma 3.2

$$\sum_{N \leq n < 2N} e(h(n^\alpha + d)^{1/\alpha})$$

$$\ll_\alpha N(hd^{1/\alpha - 1}N^{\alpha - 2})^{1/2} + (hd^{1/\alpha - 1}N^{\alpha - 2})^{-1/2}$$

$$= h^{1/2}d^{(1-\alpha)/2\alpha}N^{\alpha/2} + h^{-1/2}d^{(\alpha-1)/2\alpha}N^{(2-\alpha)/2}. $$
Thus,
\[
D_2(d, N)N \ll_{\alpha} H^{-1}N + H^{1/2}d^{(1-\alpha)/2\alpha}N^{\alpha/2} + d^{(\alpha-1)/2\alpha}N^{(2-\alpha)/2}
\ll d^{(1-\alpha)/3\alpha}N^{(\alpha+1)/3} + d^{(\alpha-1)/2\alpha}N^{(2-\alpha)/2},
\]
and moreover, the second term of \(6.10\) is bounded from above as follows:
\[
\left\lfloor \log_2\left(\frac{C_2d_1}{\alpha}\right) \right\rfloor \sum_{j=0}^{[\log_2(C_2d^{1/\alpha})]} D_2(d, 2^j) \cdot 2^j
\ll_{\alpha} d^{(1-\alpha)/3\alpha} \cdot 2^{(\alpha+1)/3} + d^{(\alpha-1)/2\alpha} \cdot 2^{(2-\alpha)/2}
= d^{2/3\alpha} + d^{1/2\alpha} \ll d^{2/3\alpha}.
\]
Also, noting the equality \(\alpha \beta = \beta + 1\), we have the following equivalence if \(\alpha > 1\):
\[
2/3\alpha < \beta - 1 \iff 2/3 < \beta + 1 - \alpha \iff -1/3 < \beta - \alpha.
\]
Since \(6.9\) follows from the assumption \(1 < \alpha < (\sqrt{10}+2)/3\), the second term of \(6.10\) is equal to \(o(d^{\beta-1})\). Since the first term of \(6.10\) is also equal to \(o(d^{\beta-1})\), we complete the proof. \(\square\)

7. Proof of Theorem 1.3

We prove Proposition 2.7, Lemmas 2.8, 2.9 and Theorem 1.3.

Proof of Proposition 2.7. The number \(N_{\alpha}^{\geq l}(d)\) is equal to \(E_0(d, l - 1)\) defined in \((4.4)\). Thus, by \((4.5)\), we have
\[
N_{\alpha}^{\geq l}(d) \leq \#\{(n, r) \in \mathbb{N}^2 : l \leq r \leq (d - 1)^{1/\alpha}/4, \ d - 1 < f_r(n) < d + 1\}
+ \#\{(n, r) \in \mathbb{N}^2 : r > (d - 1)^{1/\alpha}/4, \ d - 1 < f_r(n) < d + 1\}.
\]
The first term of the right-hand side is equal to \(O_{\alpha}(d^{\beta-1} \sum_{r \geq l} 1/r^\beta) + E_{1}^{\geq l}(d - 1)\), and the second term of the right-hand side is equal to \(O_{\alpha}(d^{2/\alpha - 1}) + E_2(d - 1)\) in the same way as Steps 3 and 4 of the proof of Proposition 2.3. Since \(\sum_{r \geq l} 1/r^\beta \ll_{\alpha} l^{1-\beta}\), we obtain the desired inequality. \(\square\)
Proof of Lemma 2.8. By the definition of $E_1^{≥ l}(d)$,

$$E_1^{≥ l}(d) = \# \{ r \in \mathbb{N} : l \leq r \leq d^{1/\alpha}/4, \{ f_r^{-1}(d) \} + C_1d^{3-1}/r^\beta > 1 \}$$

$$\leq 1 + \sum_{j=\lceil \log_2 l \rceil} \# \{ 2^j < r \leq 2^{j+1} : \{ f_r^{-1}(d) \} + C_1d^{3-1}/r^\beta > 1 \}.$$

Thus,

$$E_1^{≥ l}(d) \ll_\alpha d^{\beta l - 1 - \beta} + d^{3/2}(1-\beta)/3 + d^{1/2\alpha}$$

in the same way as the proof of Lemmas 2.4 (replace d^γ with l^α). Since the inequality $1/2\alpha \leq 2/\alpha - 1$ follows from the assumption $1 < \alpha \leq 3/2$, we obtain the desired inequality. \hfill \Box

Proof of Lemma 2.9. By the proof of Lemmas 2.6,

$$E_2(d) \ll_\alpha d^{2/\alpha - 1} + d^{2/3\alpha}.$$

Since the inequality $2/3\alpha \leq 2/\alpha - 1$ follows from the assumption $1 < \alpha \leq 4/3$, we obtain the desired inequality. \hfill \Box

Proof of Theorem 1.3. Let $\alpha > 1$ and $N \in \mathbb{N}$. First, we show that

(7.1) $$\mathcal{E}_\alpha(N) \leq N^2 + 6 \sum_{l=1}^{N-1} \sum_{(l-1)\alpha N^{\alpha-1} \leq d \leq l\alpha N^{\alpha-1}} N_\alpha^{≥ l}(d)^2.$$

Noting that the equation $\lfloor n_1^\alpha \rfloor + \lfloor n_2^\alpha \rfloor = \lfloor n_3^\alpha \rfloor + \lfloor n_4^\alpha \rfloor$ is equivalent to

$$\exists d \in \mathbb{Z}, \lfloor n_1^\alpha \rfloor - \lfloor n_2^\alpha \rfloor = d \quad \text{and} \quad \lfloor n_3^\alpha \rfloor - \lfloor n_4^\alpha \rfloor = d,$$

we have

$$\mathcal{E}_\alpha(N) = N^2 + 2 \sum_{d=1}^{\infty} \left(\# \left\{ (n, r) \in \mathbb{N}^2 : \left\lfloor (n + r)^\alpha \right\rfloor - \lfloor n^\alpha \rfloor = d \right\} \right)^2.$$

(7.2)

$$= N^2 + 2 \sum_{d=1}^{\infty} \sum_{r=1}^{N-1} \# \left\{ n \in \mathbb{N} : \left\lfloor (n + r)^\alpha \right\rfloor - \lfloor n^\alpha \rfloor = d \right\}^2.$$

Set the summands of the inner sum in (7.2) as

$$N_{r,d} = \# \left\{ n \in \mathbb{N} : \left\lfloor (n + r)^\alpha \right\rfloor - \lfloor n^\alpha \rfloor = d \right\} (d \geq 1, 1 \leq r < N).$$
Then

$$\mathcal{E}_\alpha(N) = N^2 + 2 \sum_{d=1}^\infty \left(\sum_{r=1}^{N-1} N_{r,d} \right)^2$$

(7.3)

$$= N^2 + 2 \sum_{d=1}^\infty \sum_{r=1}^{N-1} N_{r,d}^2 + 4 \sum_{d=1}^\infty \sum_{1 \leq r_1 < r_2 < N} N_{r_1,d} N_{r_2,d}.$$

Now, consider the equation \(\lfloor (n + r)^\alpha \rfloor - \lfloor n^\alpha \rfloor = d \) in the variables \(n, r \in \mathbb{N} \) when \(d \geq 1 \) is an integer. If \(n + r \leq N \), then the mean value theorem implies that

(7.4)

\[d - 1 < (n + r)^\alpha - n^\alpha < r\alpha(n + r)^{\alpha - 1} \leq r\alpha N^{\alpha - 1}. \]

By this,

(7.5)

\[\sum_{d=1}^\infty \sum_{r=1}^{N-1} N_{r,d}^2 = \sum_{r=1}^{N-1} \sum_{0 \leq d - 1 < r\alpha N^{\alpha - 1}} N_{r,d}^2 \leq \sum_{l=1}^{N-1} \sum_{(l-1)\alpha N^{\alpha - 1} \leq d - 1 < l\alpha N^{\alpha - 1}} N_{\alpha}^{\geq 1}(d)^2, \]

where we have used

(7.6)

\[\sum_{r=1}^{N-1} \sum_{0 \leq d - 1 < r\alpha N^{\alpha - 1}} = \sum_{r=1}^{N-1} \sum_{l=1}^{(l-1)\alpha N^{\alpha - 1} \leq d - 1 < l\alpha N^{\alpha - 1}} \sum_{l=1}^{N-1} \sum_{r=l}^{(l-1)\alpha N^{\alpha - 1} \leq d - 1 < l\alpha N^{\alpha - 1}} \]

to obtain the last inequality. Also,

(7.7)

\[\sum_{d=1}^\infty \sum_{1 \leq r_1 < r_2 < N} N_{r_1,d} N_{r_2,d} = \sum_{2 \leq r_2 < N} \sum_{d=1}^\infty \sum_{1 \leq r_1 < r_2} N_{r_1,d} N_{r_2,d}. \]
By (7.6) (when replacing \(r \) and \(N \) with \(r_1 \) and \(r_2 \), respectively) and the fact around (7.4),

\[
\sum_{d=1}^{\infty} \sum_{1 \leq r_1 < r_2} N_{r_1,d} N_{r_2,d} = \sum_{1 \leq r_1 < r_2} \sum_{0 \leq d-1 < r_1 \alpha N^{-1}} N_{r_1,d} N_{r_2,d}
\]

By this and (7.7),

\[
\sum_{d=1}^{\infty} \sum_{1 \leq r_1 < r_2 < N} N_{r_1,d} N_{r_2,d} \\
\leq \sum_{2 \leq r_2 < N} \sum_{1 \leq l \leq (r_2-1) \alpha N^{-1}} \sum_{d-1 < l \alpha N^{-1}} N_{r_1,d} N_{r_2,d}
\]

Next, assuming \(1 < \alpha \leq 4/3 \), we show that \(\mathcal{E}_\alpha(N) \ll N^{4-\alpha} \). Proposition 2.7, Lemmas 2.8 and 2.9 imply that

\[
\mathcal{N}_{\alpha}^{\geq l}(d) \ll \alpha l^{1-\beta}d^{\beta-1} + l^{(1-\beta)/3}d^{3/3} + d^{2/\alpha-1}.
\]

This and (7.1) yield that

\[
\mathcal{E}_\alpha(N) \ll N^2 + \sum_{l=1}^{N-1} \sum_{(l-1) \alpha N^{-1} \leq d-1 < l \alpha N^{-1}} N_{\alpha}^{\geq l}(d)^2
\]

\[
\ll \alpha N^2 + \sum_{l=1}^{N-1} \sum_{(l-1) \alpha N^{-1} \leq d-1 < l \alpha N^{-1}} (l^{2-2\beta}d^{2\beta-2} + l^{2(1-\beta)/3}d^{23/3} + d^{4/\alpha-2}).
\]
The first sum with summands $l^2 - 2\beta d^2 - 2$ is
\[
\sum_{l=1}^{N-1} \left\{ \sum_{(l-1)\alpha N^{\alpha-1} \leq d-1 < l\alpha N^{\alpha-1}} l^2 - 2\beta d^2 - 2 \right\} \\
\leq \sum_{l=1}^{N-1} \int_{[(l-1)\alpha N^{\alpha-1}]+1}^{[l\alpha N^{\alpha-1}]+1} l^2 - 2\beta d^2 - 2 \, dx \\
\ll_{\alpha} \sum_{l=1}^{N-1} l^2 - 2\beta \cdot N^{\alpha-1} (lN^{\alpha-1})^2 - 2 \\
= \sum_{l=1}^{N-1} N^{3-\alpha} < N^{4-\alpha}.
\]

The second sum with summands $l^{2(1-\beta)/3} d^2 / 3$ is
\[
\sum_{l=1}^{N-1} \left\{ \sum_{(l-1)\alpha N^{\alpha-1} \leq d-1 < l\alpha N^{\alpha-1}} l^{2(1-\beta)/3} d^2 / 3 \right\} \\
\leq \sum_{l=1}^{N-1} \int_{[(l-1)\alpha N^{\alpha-1}]+1}^{[l\alpha N^{\alpha-1}]+1} l^{2(1-\beta)/3} d^2 / 3 \, dx \\
\ll_{\alpha} \sum_{l=1}^{N-1} l^{2(1-\beta)/3} \cdot N^{\alpha-1} (lN^{\alpha-1})^{2/3} \\
= \sum_{l=1}^{N-1} l^{2/3} N^{\alpha-1/3} < N^{\alpha+4/3}.
\]

The third sum with summands $d^{4/\alpha - 2}$ is
\[
\sum_{l=1}^{N-1} \left\{ \sum_{(l-1)\alpha N^{\alpha-1} \leq d-1 < l\alpha N^{\alpha-1}} d^{4/\alpha - 2} \right\} \\
\leq \sum_{l=1}^{N-1} \int_{[(l-1)\alpha N^{\alpha-1}]+1}^{[l\alpha N^{\alpha-1}]+1} x^{4/\alpha - 2} \, dx \ll_{\alpha} \sum_{l=1}^{N-1} N^{\alpha-1} (lN^{\alpha-1})^{4/\alpha - 2} \\
= \sum_{l=1}^{N-1} l^{4/\alpha - 2} N^{5-\alpha - 4/\alpha} < N^{4/\alpha - 1} N^{5-\alpha - 4/\alpha} = N^{4-\alpha}.
\]
Since the inequality \(\alpha + \frac{4}{3} \leq 4 - \alpha \) follows from the assumption \(1 < \alpha \leq \frac{4}{3} \), we obtain \(E_\alpha(N) \ll \alpha N^{4-\alpha} \).

\[\square \]

Acknowledgments

The author thanks Dr. Kota Saito for reading the first draft and finding mistakes. Also, the author is grateful to Prof. Christoph Aistleitner for suggesting that Theorem 1.1 probably gives a precise upper bound for the additive energies of Piatetski-Shapiro sequences and telling Refs. [1][17] to the author. The author was supported by JSPS KAKENHI Grant Numbers JP19J20161, JP22J00339 and JP22KJ1621.

References

[1] C. Aistleitner, D. El-Baz, and M. Munsch. A pair correlation problem, and counting lattice points with the zeta function. *Geom. Funct. Anal.*, 31(3):483–512, 2021.

[2] C. Aistleitner, G. Larcher, and M. Lewko. Additive energy and the Hausdorff dimension of the exceptional set in metric pair correlation problems. *Israel J. Math.*, 222(1):463–485, 2017. With an appendix by Jean Bourgain.

[3] M. Benito and J. L. Varona. Pythagorean triangles with legs less than \(n \). *J. Comput. Appl. Math.*, 143(1):117–126, 2002.

[4] T. F. Bloom, S. Chow, A. Gafni, and A. Walker. Additive energy and the metric Poissonian property. *Mathematika*, 64(3):679–700, 2018.

[5] J. Duttlinger and W. Schwarz. Über die Verteilung der pythagoräischen Dreiecke. *Colloq. Math.*, 43(2):365–372 (1981), 1980.

[6] N. Frantzikinakis and M. Wierdl. A Hardy field extension of Szemerédi’s theorem. *Adv. Math.*, 222(1):1–43, 2009.

[7] M. Z. Garaev and K.-L. Kueh. \(L_1 \)-norms of exponential sums and the corresponding additive problem. *Z. Anal. Anwendungen*, 20(4):999–1006, 2001.

[8] D. Glasscock. A perturbed Khinchin-type theorem and solutions to linear equations in Piatetski-Shapiro sequences. *Acta Arith.*, 192(3):267–288, 2020.

[9] S. W. Graham and G. Kolesnik. *Van der Corput’s method of exponential sums*, volume 126 of *London Mathematical Society Lecture Note Series*. Cambridge University Press, Cambridge, 1991.

[10] S. A. Gritsenko. On estimates for trigonometric sums with respect to the third derivative. *Mat. Zametki*, 60(3):383–389, 479, 1996.

[11] J. F. Koksma. *Some theorems on Diophantine inequalities*. Scriptum no. 5. Math. Centrum Amsterdam, 1950.

[12] J. Lambek and L. Moser. On the distribution of Pythagorean triangles. *Pacific J. Math.*, 5:73–83, 1955.

[13] G. Larcher and W. Stockinger. Pair correlation of sequences \(\{a_n \alpha\} \) with maximal additive energy. *Math. Proc. Cambridge Philos. Soc.*, 168(2):287–293, 2020.

[14] K. Liu. On the mean value of a kind of zeta functions. *Acta Arith.*, 166(1):33–54, 2014.

[15] T. Matsuoka and K. Saito. Linear Diophantine equations in Piatetski-Shapiro sequences. *Acta Arith.*, 200(1):91–110, 2021.
[16] W. G. Nowak and W. Recknagel. The distribution of Pythagorean triples and a three-dimensional divisor problem. *Math. J. Okayama Univ.*, 31:213–220, 1989.

[17] O. Robert and P. Sargos. Three-dimensional exponential sums with monomials. *J. Reine Angew. Math.*, 591:1–20, 2006.

[18] K. Saito. Linear equations with two variables in Piatetski-Shapiro sequences. *Acta Arith.*, 202(2):161–171, 2022.

[19] K. Saito. Finiteness of solutions to linear Diophantine equations on Piatetski-Shapiro sequences. preprint, available at https://arxiv.org/abs/2306.17813, 2023.

[20] K. Saito and Y. Yoshida. Distributions of finite sequences represented by polynomials in Piatetski-Shapiro sequences. *J. Number Theory*, 222:115–156, 2021.

[21] P. Sargos. Points entiers au voisinage d’une courbe, sommes trigonométriques courtes et paires d’exposants. *Proc. London Math. Soc. (3)*, 70(2):285–312, 1995.

[22] M. I. Stronina. Integral points on circular cones. *Izv. Vyssh. Učebn. Zaved. Matematika*, 1969(8 (87)):112–116, 1969.

[23] P. Szüsz. Über ein Problem der Gleichverteilung. In *Comptes Rendus du Premier Congrès des Mathématiciens Hongrois, 27 Août–2 Septembre 1950*, pages 461–472. Akadémiai Kiadó, Budapest, 1952.

[24] R. E. Wild. On the number of primitive Pythagorean triangles with area less than n. *Pacific J. Math.*, 5:85–91, 1955.

[25] A. Wiles. Modular elliptic curves and Fermat’s last theorem. *Ann. of Math. (2)*, 141(3):443–551, 1995.

[26] Y. Yoshida. Asymptotic and non-asymptotic results for a binary additive problem involving Piatetski-Shapiro numbers. *J. Number Theory*, 265:138–180, 2024.

[27] W. Zhai. On the number of primitive Pythagorean triangles. *Acta Arith.*, 105(4):387–403, 2002.

Yuuya Yoshida, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan

Email address: yyoshida9130@gmail.com