Retrospective Study

Outcome and costs of laparoscopic pancreaticoduodenectomy during the initial learning curve vs laparotomy

Chun-Lu Tan, Hao Zhang, Bing Peng, Ke-Zhou Li

Chun-Lu Tan, Hao Zhang, Bing Peng, Ke-Zhou Li, Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China

Author contributions: Peng B and Li KJ designed the research; Tan CL and Zhang H collected data and wrote the paper.

Ethics approval: The study was a retrospective study; it has been reviewed and approved by the Institutional Review Board.

Conflict-of-interest: The authors have no conflicts of interest to report.

Data sharing: No additional data are available.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Correspondence to: Dr. Ke-Zhou Li, Department of Pancreatic Surgery, West China Hospital, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu 610041, Sichuan Province, China. huaxipancreas@163.com

Telephone: +86-28-85422474
Fax: +86-28-85422474
Received: November 2, 2014
Peer-review started: November 3, 2014
First decision: December 26, 2014
Revised: January 22, 2015
Accepted: February 11, 2015
Article in press: February 11, 2015
Published online: May 7, 2015

Abstract

AIM: To compare laparoscopic pancreaticoduodenectomy (TLPD) during the initial learning curve with open pancreaticoduodenectomy in terms of outcome and costs.

METHODS: This is a retrospective review of the consecutive patients who underwent TLPD between December 2009 and April 2014 at our institution. The experiences of the initial 15 consecutive TLPD cases, considered as the initial learning curve of each surgeon, were compared with the same number of consecutive laparotomy cases with the same spectrum of diseases in terms of outcome and costs. Laparoscopic patients with conversion to open surgery were excluded. Preoperative demographic and comorbidity data were obtained. Postoperative data on intestinal movement, pain score, mortality, complications, and costs were obtained for analysis. Complications related to surgery included pneumonia, intra-abdominal abscess, postpancreatectomy hemorrhage, biliary leak, pancreatic fistula, delayed gastric emptying, and multiple organ dysfunction syndrome. The total costs consisted of cost of surgery, anesthesia, and admission examination.

RESULTS: A total of 60 patients, including 30 consecutive laparoscopic cases and 30 consecutive open cases, were enrolled for review. Demographic and comorbidity characteristics of the two groups were similar. TLPD required a significantly longer operative time (513.17 ± 56.13 min vs 371.67 ± 85.53 min, P < 0.001). The TLPD group had significantly fewer mean numbers of days until bowel sounds returned (2.03 ± 0.55 d vs 3.83 ± 0.59 d, P < 0.001) and exhaustion (4.17 ± 0.75 d vs 5.37 ± 0.81 d, P < 0.001). The mean visual analogue score on postoperative day 4 was less in the TLPD group (3.5 ± 9.7 vs 4.47 ± 1.11, P < 0.05). No differences in surgery-related morbidities and mortality were observed between the two groups. Patients in the TLPD group recovered more quickly and required a shorter hospital stay after surgery (9.97 ± 3.74 d vs 11.87 ± 4.72 d, P < 0.05). A significant difference in the total cost was found between the two groups (TLPD 81317.43 ± 2027.60 RMB vs laparotomy 78433.23 ± 5788.12 RMB, P < 0.05). TLPD had a statistically higher cost for both surgery (24732.13 ± 292.28 RMB vs 19317.53 ± 795.94 RMB, P < 0.001).
and anesthesia (6192.37 ± 272.77 RMB vs 5184.10 ± 146.93 RMB, P < 0.001), but a reduced cost for admission examination (50392.93 ± 1761.22 RMB vs 53931.60 ± 5556.94 RMB, P < 0.05).

CONCLUSION: TLPD is safe when performed by experienced pancreatobiliary surgeons during the initial learning curve, but has a higher cost than open pancreaticoduodenectomy.

Key words: Cost; Initial learning curve; Laparoscopic surgery; Pancreaticoduodenectomy; Postoperative event

© The Author(s) 2015. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Open pancreaticoduodenectomy is the classic procedure for pancreatic and periampullary malignancies and some benign diseases. However, laparoscopic pancreaticoduodenectomy has only been in application for ten years, and has been popular for only a few years. The technique used in the laparoscopic procedure is quite different from laparotomy. Thus, experienced laparotomy surgeons are required to adapt to these changes. The safety of laparoscopic pancreaticoduodenectomy by experienced surgeons in laparotomy during the initial learning curve was demonstrated in our study and resulted in faster postoperative recovery.

INTRODUCTION

Total laparoscopic pancreaticoduodenectomy (TLPD) is the most advanced laparoscopic procedure for pancreatetomy. TLPD seems to be as safe as open pancreaticoduodenectomy (OPD) by skilled surgeons, but the technical difficulties still prevent many surgeons from attempting this technique. Since Gagner and Pomp first reported TLPD in 1994, only 285 reported cases have been reported as of 2011. In this research, we retrospectively analyzed surgical outcomes following TLPD and the safety and cost during the initial learning curve vs OPD.

MATERIALS AND METHODS

General data

This is a retrospective review of consecutive patients who underwent TLPD performed by experienced surgeons between December 2009 and April 2014. Following Institutional Review Board approval, a retrospective review of our database was performed. For enrollment, TLPD patients were required to have no sign of malignant pancreatic disease during the initial learning curve. The experiences of the initial 15 TLPD cases for each surgeon were considered the initial learning curve in this research. The same number of consecutive OPD cases with the same spectrum of diseases was selected and these patients served as the control group (Figure 1).

Perioperative care

Preoperative investigations included routine blood tests, neoplastic markers (carcinoembryonic antigen, α-fetoprotein, cancer antigen 19-9), chest X-ray, abdominal ultrasound, computed tomography, or magnetic resonance imaging. No patient had preoperative biliary drainage. The nasogastric tube was removed on postoperative day 1 if the patient had been extubated and had no sign of delayed gastric emptying. All patients received prophylactic antibiotics intraoperatively and for three days postoperatively, except those with infective complications. Self-controlled analgesia comprised of sufentanil 200 µg, tramadol 1500 mg, and granisetron 12 mg was given to adult patients for three days postoperatively. The visual analogue score (VAS) was evaluated on postoperative day 4. Peripancreatic drainage fluid was collected to measure amylase levels on postoperative day 3 and every three days thereafter as needed. Prophylactic Stilamin (EMD Serono of Merck KGaA, Darmstadt, Germany) was administered to all patients for at least six days to prevent pancreatic fistula (PF).

Defining postoperative morbidity

Major postoperative morbidities were defined and graded using criteria recommended by the International Study Group of Pancreatic Surgery, including postoperative pancreatic fistula, delayed gastric emptying, and postpancreatectomy hemorrhage. Biliary leak was defined as drainage of any volume of fluid from percutaneous drains or the wound consistent with bile, which was defined by a bilirubin concentration greater than the serum concentration. Enteric leaks were identified using radiographic contrast imaging. Fluid collection in intra-abdominal or pleural regions was performed via radiographic imaging, which was differentiated from abscess by positive microbial cultures. Pneumonia was diagnosed based on chest X-ray changes following antibiotic therapy.

Statistical analysis

The Pearson χ² test was used for categorical variables. Fisher’s exact test was used in cases with a variable count < 5. For continuous variables, the Student’s t test was used for normally distributed variables and
the Wilcoxon rank-sum test was used for non-normally distributed variables. \(P < 0.05 \) was considered statistically significant. All analyses were performed using SPSS version 18.0 software (SPSS Inc., Chicago, IL, United States).

Surgical technique
Two surgeons performed TLPD using a similar procedure during the initial learning curve. The patients were placed in the modified lithotomy reverse Trendelenburg position with thighs parallel to the ground. The surgeon operating the camera stood on the right side of the patient and the assistant surgeon stood on the left side of the patient. The port positions are shown in Figure 2. Five trocars were used: a 12-mm telescope trocar in the navel; two 12-mm trocars along the left and right midclavicular lines, lateral to the rectus muscles, 2 cm above the naval trocar; and two 5-mm trocars along the left and right anterior axillary line.

A systematic examination of the peritoneal cavity was performed, and any suspicious serosal lesions were biopsied. The extent and mobility of the primary tumor were assessed. Malignant carcinoma in the pancreas required conversion during the initial learning curve. The gastrocolic omentum was mobilized to gain entry to the lesser sac. The gastrohepatic omentum was opened to visualize the caudate lobe. The right gastric artery was identified and divided. The gastrocolic trunk was clipped and then cut. The stomach was cut on the left side of the pylorus using an endo linear cutter (Ethicon of Johnson and Johnson, New Brunswick, NJ, United States). Calot’s triangle was dissected, the cystic artery and duct were ligated, and cholecystectomy was performed at this stage. All the fibro-fatty tissue along the common bile duct was moved down caudally. The common hepatic duct was incised and blocked. The gastroduodenal artery, identified at the groove between the neck and head of the pancreas, was ligated and divided at its origin (Figure 3). The duodenum was then mobilized using the Kocher maneuver (Figure 4), and the inferior vena cava and aorta were exposed. The hepatic flexure and transverse colon were mobilized down, exposing the entire second and third part of the duodenum up to the neck of the pancreas. Blunt dissection in the tissue plane between the anterior surface of the superior mesenteric vein (SMV) and the posterior surface of the neck of the pancreas created a tunnel. An umbilical tape was passed through this tunnel and the pancreatic neck was lifted off the SMV/portal vein. The tunnel was then extended towards the body of the pancreas for 2 cm. The duodenojejunal flexure was mobilized and the distal jejunum divided using an endo linear cutter. The free end of the jejunum was passed under the root of the mesentery (retrocolic) to the supracolic compartment. The neck of the pancreas was carefully divided using ultrasonic shears (Ethicon). Both the superior and inferior pancreaticoduodenal veins were ligated. The uncinate process was separated along the right aspect portal vein, and the specimen was retracted to the right (Figure 5). The common hepatic artery was skeletonized by dissecting...
during the initial learning curve(10) (Figure 7). No stents were placed in the pancreatic duct. The end of the common bile duct was trimmed, and an end-to-side choledochojunostomy was performed. Finally, an end-to-side gastrojunostomy anastomosis was performed in the infracolic region by placing the stomach in an antecolic fashion.

After the initial learning curve, surgeons preferred the pylorus preserving pancreatoduodenectomy. The duct-to-mucosa PJ was chosen for dilated pancreatic ducts.

RESULTS

In total, 60 cases were scheduled for TLPD between December 2009 and April 2014, which were performed by two experienced pancreatobiliary surgeons. Two patients were excluded due to conversion during the selection process. Both conversions occurred during the initial learning curve. In the remaining 58 cases, the mortality rate was 1.7\% (1/58), and morbidity was 55.2\% (32/58). The first 15 consecutive successful TLPD cases for each surgeon were considered the initial learning curve in this review. In total, 30 TLPD cases considered the initial learning curve without pancreatic malignancy were included. The remaining 28 cases were considered to be outwith the learning curve, and 3 cases of pancreatic malignancy were included. Thirty TLPD cases were selected as the initial learning curve in this study, and 30 consecutive cases of OPD with the same spectrum of diseases served as controls. These 30 cases underwent surgery performed by six experienced surgeons.

The baseline patient characteristics are presented in Table 1. Pathologic diagnoses included malignant lesions in 90\% (27/30) of TLPD cases, including periampullary adenocarcinoma (n = 25), distal common bile duct adenocarcinoma (n = 1), and duodenum adenocarcinoma (n = 1), and in 87\% (26/30) of OPD cases, including periampullary adenocarcinoma (n = 23), distal common bile duct adenocarcinoma (n = 2), and malignant branch-duct intraductal papillary mucinous neoplasm (n = 1). Comorbidities were similar in both groups. The American Society of Anesthesiologists scores were also similar in both groups.

The mean operative time was longer in the TLPD group compared with the OPD group (P < 0.001) (Table 2). No statistical differences in the need for perioperative transfusion or mean number of lymph nodes harvested were observed between the two groups. The mean number of days to the return of bowel sounds was less in the TLPD group (P < 0.001). The mean number of days in which the patients were exhausted was also less in the TLPD group (P < 0.001). The mean VAS score on postoperative day 4 was less in the TLPD group (P = 0.010). There was no statistically significant difference in PF rates between
the groups, although grade A PF tended to be higher in the TLPD group. The rates of other surgery-related morbidities were not significantly different between the two groups. No difference in mortality rates was observed between the groups. Patients in the TLPD group had a significantly shorter hospital stay after surgery compared to in the OPD group ($P = 0.002$).

A significant difference was observed in the total cost of pancreaticoduodenectomy in the TLPD group compared with the OPD group ($81317.43 ± 2027.60$ RMB vs $78433.23 ± 5788.12$ RMB, $P = 0.014$) (Figure 8). When the total cost was broken down into cost of surgery, anesthesia, and admission evaluation, the TLPD group had a statistically higher cost for both surgery ($24732.13 ± 929.28$ RMB vs $19317.53 ± 795.94$ RMB, $P < 0.001$) and anesthesia ($5192.37 ± 272.77$ RMB vs $5184.10 ± 146.93$ RMB, $P < 0.001$), but decreased cost for admission evaluation ($50392.93 ± 1761.22$ RMB vs $53931.60 ± 5556.94$ RMB, $P = 0.034$), compared with the OPD group.

Table 1 Demographic and comorbidity characteristics of the patients, n

Characteristic	TLPD	OPD	P value
Age, yr (range)	59.3 ± 9.3 (44-79)	59.9 ± 10.4 (36-78)	0.804
Male/female	18/12	23/7	0.165
Malignant/benign	27/3	26/4	0.688
Comorbidities			
Hypertension	3	4	1.000
Chronic pancreatitis	0	1	1.000
Hepatocirrhosis	0	2	0.472
Diabetes	3	2	1.000
Pulmonary disease	1	2	1.000
Cardiac disease	0	1	1.000
ASA score			0.943
ASA 1	6	6	
ASA 2	19	18	
ASA 3	5	6	

ASA: American Society of Anesthesiologists; OPD: Open pancreaticoduodenectomy; TLPD: Total laparoscopic pancreaticoduodenectomy.

Table 2 Postoperative characteristics

Characteristic	TLPD	OPD	P value
Operative time (min)	513.17 ± 56.13	371.67 ± 85.53	< 0.001
Perioperative transfusion needed, n	0	1	1
No. of lymph nodes harvested	8.67 ± 1.71	9.58 ± 2.21	0.102
Return of bowel sounds (d)	2.03 ± 0.55	3.83 ± 0.59	< 0.001
Exhaustion (d)	4.17 ± 0.75	5.37 ± 0.81	< 0.001
VAS score	3.50 ± 9.70	4.47 ± 1.11	0.010
LOS (d)	9.97 ± 3.74	11.87 ± 4.72	0.002
Surgery-related morbidity, n			
Pneumonia	3	5	0.704
Intra-abdominal abscess	0	1	1.000
Postpancreatectomy	1	1	1.000
hemorrhage			
Biliary leak	1	0	1.000
Pancreatic fistula	10	6	0.099
A	9	3	0.053
B	0	2	
C	1	1	
Delayed gastric emptying, n	2	3	1.000
MODS, n	0	1	1.000
Mortality, n	0	1	1.000

LOS: Length of hospital stay; MODS: Multiple organ dysfunction syndrome; OPD: Open pancreaticoduodenectomy; TLPD: Total laparoscopic pancreaticoduodenectomy; VAS: Visual analogue score.

A significant difference was observed in the total cost of pancreaticoduodenectomy in the TLPD group compared with the OPD group ($81317.43 ± 2027.60$ RMB vs $78433.23 ± 5788.12$ RMB, $P = 0.014$) (Figure 8). When the total cost was broken down into cost of surgery, anesthesia, and admission evaluation, the TLPD group had a statistically higher cost for both surgery ($24732.13 ± 929.28$ RMB vs $19317.53 ± 795.94$ RMB, $P < 0.001$) and anesthesia ($5192.37 ± 272.77$ RMB vs $5184.10 ± 146.93$ RMB, $P < 0.001$), but decreased cost for admission evaluation ($50392.93 ± 1761.22$ RMB vs $53931.60 ± 5556.94$ RMB, $P = 0.034$), compared with the OPD group.
DISCUSSION

During the past 25 years, significant advances have been achieved in OPD surgery. A recent analysis of 424 patients who underwent pancreatic resection showed a 90-d mortality rate of 1.7%, and one- and five-year survival rates of 76% and 23%, respectively. Although minimally invasive surgery has been used in many pancreatic operations, the most controversial topic in pancreatic surgery is still the utility of minimally invasive PD. The literature shows that TLPD can be performed safely, with good clinical and oncologic outcomes. However, the procedure is technically demanding and can only be performed safely by skilled surgeons. Gumbs et al. conducted a review of the literature on laparoscopic Whipple procedures from articles published between 1994 and 2010, and found a total of only 285 cases. It is unknown whether there are any differences in the surgical outcomes and cost between TLPD during the initial learning curve and OPD by experienced OPD surgeons, only that it is safe after the learning curve. This study analyzed and compared the surgical outcomes and cost during the initial learning curve of TLPD with OPD by experienced pancreatic surgeons.

Surgeons may have had some experience of other laparoscopic surgeries before TLPD, such as laparoscopic cholecystectomy, laparoscopic splenectomy, and laparoscopic distal pancreatectomy. However, there is little skill required regarding the sutures used in these laparoscopic surgeries. PD requires meticulous manipulation and complicated reconstruction, and a number of sutures are needed during the procedure. This is a big challenge for surgeons beginning TLPD. From the results of the present study, an obvious difference in surgical outcomes was observed between the TLPD and OPD groups, and surgeons require more time to complete TLPD compared with OPD.

Consideration for TLPD required no signs of malignant pancreatic disease during initial learning curve in this review. OPD was chosen when pancreatic head malignant disease was suspected. As it is very important to clean the retroperitoneal margin during skeletonization of the lateral, posterior, and anterior borders of the superior mesenteric artery as recommended by the National Comprehensive Cancer Network guidelines, this may have been related to the survival rate. In fact, it was hard to achieve optimal dissection and skeletonization of the hepatic artery in the TLPD group during the initial learning curve. Although we found that the number of lymph nodes harvested was similar in the TLPD and OPD groups, the soft tissue around the vessels in the TLPD group could not be cleaned as well as that in the OPD group (Figure 6B), including the superior mesenteric artery. This may be not an obstacle after the learning curve. In large centers performing TLPD, even major veins can be resected and reconstructed during TLPD. More lymph nodes were retrieved in TLPD patients compared with OPD patients for malignant disease in the study by Asbun et al. Some reports also show a higher R0 rate and increased lymph node retrieval in minimally invasive PD. In one report from Palanivelu et al., the five-year actuarial survival rate for pancreatic head adenocarcinoma following TLPD was 19.1%. This was close to the five-year survival rate of OPD, but their results only included patients with early stage pancreatic head adenocarcinoma. Unfortunately, the five-year survival rates for malignancy were lacking in this study due to a short follow-up period in the TLPD group.

Two patients were converted to open surgery during the initial learning curve. One patient was converted because pancreatic head adenocarcinoma was highly suspected during the procedure. The other patient was converted due to uncontrolled bleeding when creating a tunnel between the anterior surface of the SMV and the posterior surface of the neck of the pancreas. When the second patient was converted, it was found that the bleeding was caused by a small...
TLPD is challenging during the initial learning curve. Exposure and suturing are two main problems during this procedure, especially for small diameter biliary or pancreatic ducts. Grade A PF tended to be higher in the TLPD group in this study. However, grade B and C were similar in both groups. We think that the quality of PJ seriously affected grade A PF in the TLPD group, but we are unsure why the high PF rate was only limited to grade A. From our observations of the PF patients, the volume of PF decreased quickly after exhaustion in a few patients. Is quick bowel function recovery beneficial to PJ resolution? More studies are required to explain this issue. No mortality was observed in the TLPD group. One patient died in the OPD group. This was a 63-year-old male patient who developed grade C PF after surgery, which resulted in postpancreatectomy hemorrhage and infection. This patient died of multiple organ dysfunction syndrome.

The mean total cost was higher in the TLPD group compared with the OPD group. When the total cost was broken down, TLPD was noted to result in significant increases in the cost of both surgery and anesthesia, but a decrease in the cost of admission evaluation. The higher cost of surgery and anesthesia in the TLPD group was due to the required surgical equipment and supplies, and longer surgical time. The lower cost of admission evaluation in the TLPD group due to a shorter hospital stay and reduced requirement for parenteral alimentation. In addition, a group from the United States found that TLPD was associated with a significantly higher surgical cost due to both increased time and supply costs. However, mean hospital admission cost associated with OPD in their study was greater in comparison with TLPD. These results are similar to our findings, although the total cost for TLPD was higher than OPD. We suggest that the higher cost of surgical equipment and supplies in China caused this difference compared with the United States.

In conclusion, it seems safe to perform TLPD during the initial learning curve by experienced pancreatobiliary surgeons. TLPD is beneficial for patient recovery. The cost of TLPD was higher compared with OPD. The cost of TLPD may be lower than OPD if the price of surgical equipment and supplies decreases.

COMMENTS

Background

Total laparoscopic pancreatectoduodenectomy (TLPD) has proven to be the most advanced laparoscopic procedure for pancreatectomy. However, the procedure requires not only skill, but also time and physical energy of surgeons. The safety is another problem that prevents many surgeons who are experienced in open procedure from performing this laparoscopic procedure. This procedure has been demonstrated as safe in large medical centers, but the outcome in initial learning curve is not fully known.

Research frontiers

Although some specialized surgeons in large medical centers have rich experience in TLPD, especially the extensive TLPD such as major venous resection, many other surgeons have only limited experience with this
procedure. This study compared the safety of TLPD during the initial learning curve with open pancreaticoduodenectomy (OPD) in terms of outcome and costs.

Innovations and breakthroughs

Few reports are available on the difference between TLPD in initial learning curve and the open procedure. To understand the exact difference in the surgical outcome and the inpatient cost for this procedure, the authors selected patients who received TLPD in initial learning curve or OPD with the same spectrum of disease performed by surgeons at different experience levels. It seems safe to perform TLPD in the initial learning curve by experienced pancreaticobiliary surgeons. The cost of TLPD is higher than OPD, due to an increased cost for both surgery and anesthesia, but is associated with a decreased cost for admission examination. The higher cost of surgery and anesthesia in TLPD incurred from surgical equipment and supplies, and longer operation time.

Applications

The study results suggest that it is safe to perform TLPD by experienced pancreaticobiliary surgeons. Whether pancreatic cancer could be treated by this procedure in the initial learning curve should be further studied.

Terminology

Pancreaticoduodenectomy is a complicated abdominal surgical procedure with trauma. The extent of resection comprises part of pancreas, adjacent duodenum, middle and distal common bile duct, part of stomach, and jejunum.

Peer-review

This paper compared the surgical safety and feasibility of TLPD during the initial learning curve with open pancreaticoduodenectomy. TLPD is difficult for most surgeons and references are limited. Therefore, the study is important. Although the patients operated upon during the initial learning curve are included in the statistical analysis, information on mortality and morbidity after initial learning curve should be provided.

REFERENCES

1. Duleuc JI, Wintringer P, Mahajna A. Laparoscopic pancreaticoduodenectomy for benign and malignant diseases. Surg Endosc 2006; 20: 1045-1050 [PMID: 16736311 DOI: 10.1007/s00464-005-0474-1]
2. Gumbs AA, Gayet B. The laparoscopic duodenopancreatectomy: the posterior approach. Surg Endosc 2008; 22: 539-540 [PMID: 18071816 DOI: 10.1007/s00464-007-9365-8]
3. Croome KP, Farrel MB, Que FG, Reid-Lombardo KM, Truty MJ, Nagorney DM, Kendall ML. Pancreaticoduodenectomy with major vascular resection: a comparison of laparoscopic versus open approaches. J Gastrointest Surg 2015; 19: 189-194; discussion 194 [PMID: 25274069 DOI: 10.1007/s11605-014-2644-8]
4. Song KB, Kim SC, Hwang DW, Lee JH, Lee DJ, Lee JW, Park KM, Lee YJ. Matched Case-Control Analysis Comparing Laparoscopic and Open Pylorus-Preserving Pancreaticoduodenectomy in Patients With Periampullary Tumors. Ann Surg 2015; Epub ahead of print [PMID: 25563866 DOI: 10.1097/SLA.0000000000001079]
5. Gagner M, Pomp A. Laparoscopic pylorus-preserving pancreaticoduodenectomy. Surg Endosc 1994; 8: 408-410 [PMID: 7915434]
6. Gumbs AA, Rodriguez Rivera AM, Milone L, Hoffman JP. Laparoscopic pancreaticoduodenectomy: a review of 285 published cases. Ann Surg Oncol 2011; 18: 1335-1341 [PMID: 21207166 DOI: 10.1245/s10434-010-1503-4]
7. Bassi C, Dervenis C, Butturini G, Fingerhat A, Yeo C, Izibicki J, Neoptolomos J, Sarr M, Traverso W, Buchler M. Postoperative pancreatic fistula: an international study group (ISGPF) definition. Surgery 2005; 138: 8-13 [PMID: 16003309 DOI: 10.1016/j.surg.2005.05.001]
8. Wente MN, Bassi C, Dervenis C, Fingerhat A, Gouma DJ, Izibicki JR, Neoptolomos JP, Padbury RT, Sarr MG, Yeo CJ, Büchler MW. Postpancreatectomy hemorrhage (PPH): an International Study Group of Pancreatic Surgery (ISGSP) definition. Surgery 2007; 142: 20-25 [PMID: 17629996 DOI: 10.1016/j.surg.2007.02.001]
9. Palanivelu C, Rajan PS, Rangarajan M, Vaithiswaran V, Senthilkumar P, Parthasarathi R, Praveen Raj P. Evolution in techniques of laparoscopic pancreaticoduodenectomy: a decade long experience from a tertiary center. J Hepatobiliary Pancreat Surg 2009; 16: 731-740 [PMID: 19652900 DOI: 10.1007/s00534-009-0157-8]
10. Lewis R, Dreibin JA, Callery MP, Fraker D, Kent TS, Gates J, Vollmer CM. A contemporary analysis of survival for resected pancreatic ductal adenocarcinoma. HPB (Oxford) 2013; 15: 49-60 [PMID: 23216769 DOI: 10.1111/j.1477-2578.2012.00571.x]
11. de la Fuente SG. Laparoscopic pancreaticoduodenectomies: a word of caution. J Am Coll Surg 2013; 216: 1218 [PMID: 23683779 DOI: 10.1016/j.jamcollsurg.2013.02.016]
12. Qin H, Qiu J, Zhao Y, Pan G, Zeng Y. Does minimally-invasive pancreaticoduodenectomy have advantages over its open method? A meta-analysis of retrospective studies. PLoS One 2014; 9: e104274 [PMID: 25119463 DOI: 10.1371/journal.pone.0104274]
13. Croome KF, Farrel MB, Que FG, Reid-Lombardo KM, Truty MJ, Nagorney DM, Kendall ML. Total laparoscopic pancreaticoduodenectomy for pancreatic ductal adenocarcinoma: oncologic advantages over open approaches? Ann Surg 2014; 260: 633-68; discussion 638-640 [PMID: 25203880 DOI: 10.1097/SLA.0000000000000937]
14. Kendrick ML. Laparoscopic and robotic resection for pancreatic cancer. Cancer J 2012; 18: 571-576 [PMID: 23187844 DOI: 10.1097/PPO.0b013e31827b8f86]
15. Fisher SB, Kooby DA. Laparoscopic pancreatic resection for malignancy. J Surg Oncol 2013; 107: 39-50 [PMID: 22991263 DOI: 10.1002/jso.23253]
16. Kang CM, Lee SH, Chung MJ, Hwang HK, Lee WJ. Laparoscopic pancreatic resection: a comparison of robotic-assisted pancreaticoduodenectomy and laparoscopic pancreaticoduodenectomy. J Hepatobiliary Pancreat Sci 2015; 22: 202-210 [PMID: 25546026 DOI: 10.1007/jbhp.193]
17. Tol JA, Brossen LA, van Dieren S, van Gulik TM, Busch OR, Besselink MG, Gouma DJ. Impact of lymph node ratio on survival in patients with pancreatic and periampullary cancer. Br J Surg 2015; 102: 237-245 [PMID: 25529117 DOI: 10.1002/bjs.9790]
18. Li J, Zhang B, Cui G, Dai D. [Correlation between characteristics of lymph node metastases and prognosis in pancreatic cancer treated with pancreaticoduodenectomy]. Zhonghua Zhong Liu Za Zhi 2014; 36: 688-692 [PMID: 25564060]
19. El Nakheb A, El Shobary M, El Dosoky M, Nabeh A, El Sorogy M, El Eneem AA, Abu Zeid M, Elwahab MA. Prognostic factors affecting survival after pancreaticoduodenectomy for pancreatic adenocarcinoma (single center experience). Hepatogastroenterology 2014; 61: 1426-1438 [PMID: 25553106]
20. Young S, Abbott P, Hughes SJ. Port-site recurrence of pancreatic adenocarcinoma following laparoscopic pancreaticoduodenectomy. J Gastrointest Surg 2012; 16: 2294-2296 [PMID: 23093448 DOI: 10.1007/s11605-012-2050-z]
21. Kendrick ML, Sclabas GM. Major venous resection during total laparoscopic pancreaticoduodenectomy. HPB (Oxford) 2011; 13: 454-458 [PMID: 21689228 DOI: 10.1111/j.1477-5535.2011.00323.x]
22. Ashburn HJ, Stauffer JA. Laparoscopic vs open pancreaticoduodenectomy: overall outcomes and severity of complications using the Accordion Severity Grading System. J Am Coll Surg 2012; 215: 810-819 [PMID: 22999327 DOI: 10.1016/j.jamcollsurg.2012.08.006]
23. Chaklonda S, Aguilar-Saavedra JR, Walsh RM. Laparoscopic robotic-assisted pancreaticoduodenectomy: a case-matched comparison with open resection. Surg Endosc 2012; 26: 2397-2402 [PMID: 22437947 DOI: 10.1007/s00464-012-2207-6]
24. Zeh HJ, Zureikat AH, Seerat A, Daouadi M, Bartlett D, Moser AJ. Outcomes after robot-assisted pancreaticoduodenectomy for periampullary lesions. Ann Surg Oncol 2012; 19: 864-870 [PMID: 21947670 DOI: 10.1245/s10434-011-2045-0]
Tan CL et al. TLPD is practicable during initial learning curve

26 Palanivelu C, Jani K, Senthilnathan P, Parthasarathi R, Rajapandian S, Madhankumar MV. Laparoscopic pancreateo-duodenectomy: technique and outcomes. *J Am Coll Surg* 2007; *205*:222-230 [PMID: 17660068 DOI: 10.1016/j.jamcollsurg.2007.04.004]

27 Coolsen MM, van Dam RM, van der Wilt AA, Slim K, Lassen K, Dejong CH. Systematic review and meta-analysis of enhanced recovery after pancreatic surgery with particular emphasis on pancreateicoduodenectomies. *World J Surg* 2013; *37*: 1909-1918 [PMID: 23568250 DOI: 10.1007/s00268-013-2044-3]

28 Paton F, Chambers D, Wilson P, Eastwood A, Craig D, Fox D, Jayne D, McGinnes E. Effectiveness and implementation of enhanced recovery after surgery programmes: a rapid evidence synthesis. *BMJ Open* 2014; *4*: e005015 [PMID: 25052168 DOI: 10.1136/bmjopen-2014-005015]

29 Abu Hilal M, Di Fabio F, Badran A, Alsaati H, Clarke H, Fecher I, Armstrong TH, Johnson CD, Pearce NW. Implementation of enhanced recovery programme after pancreateoduodenectomy: a single-centre UK pilot study. *Pancreatology* 2013; *13*: 58-62 [PMID: 23395571 DOI: 10.1007/s00268-012-0312-7]

30 Mesleh MG, Stauffer JA, Bowers SP, Asbun HJ. Cost analysis of open and laparoscopic pancreateicoduodenectomy: a single institution comparison. *Surg Endosc* 2013; *27*: 4518-4523 [PMID: 23943116 DOI: 10.1007/s00464-013-3101-6]
