Comparison of diagnostic accuracy of 3 diagnostic criteria combined with refined pathological scoring system for drug-induced liver injury

Yiqi Liu, MDa,b, Ping Li, MD, PhDb,c,*, Fangfang Wang, MDd, Liang Liu, MDa,b, Yilian Zhang, MDa,b, Yonggang Liu, MDc,e, Ruifang Shi, MDc,e

Abstract

Drug-induced liver injury (DILI) is difficult in diagnosis, criteria used now are mostly based on history review. We tried to evaluate the value of these criteria and histopathology features in DILI to perform a method diagnosing DILI more definitely.

We enrolled 458 consecutive hospitalized DILI patients from January 1, 2012 to December 31, 2018, using Roussel-Uclaf Causality Assessment Method (RUCAM), Maria & Victorino scale (M&V), and Digestive Disease Week-Japan criterion (DDW-J) combined with refined pathological scoring system respectively to perform the evaluation.

A total of 458 DILI patients were enrolled, the area under receiver operating characteristics (AUROC) of the 3 clinical diagnostic criteria were 0.730 (95% confidence interval [CI]: 0.667–0.793), 0.793 (95% CI: 0.740–0.847), and 0.764 (95% CI: 0.702–0.826) respectively. Three hundred two DILI patients’ liver biopsies were included: steatosis in 204 cases (67.5%), cholestasis in 151 cases (50%), cell apoptosis in 139 cases (46%), eosinophil granulocyte infiltration in 131 cases (43.4%), central and/or portal phlebitis in 103 cases (34.1%), iron deposition in 90 cases (29.8%), and pigmented macrophages in 92 cases (30.5%). The AUROC of refined pathological scale combined with 3 criteria were 0.843 (95% CI: 0.747–0.914), 0.907 (95% CI: 0.822–0.960), and 0.881 (95% CI: 0.790–0.942) respectively. In hepatocellular type, the AUROCs were 0.894 (95% CI: 0.787–0.959), 0.960 (95% CI: 0.857–0.994), and 0.940 (95% CI: 0.847–0.985); in cholestatic type, the AUROCs were 0.750 (95% CI: 0.466–0.931), 0.500 (95% CI: 0.239–0.761), and 0.500 (95% CI: 0.239–0.761); in mixed type, the AUROCs were 0.786 (95% CI: 0.524–0.943), 0.869 (95% CI: 0.619–0.981), and 0.762 (95% CI: 0.498–0.930).

Combined with pathological scale can significantly improve the accuracy of clinical diagnostic criteria, no matter in alone or combined condition, M&V might be more accurate in diagnosing DILI from suspected patients.

Abbreviations: 95% CI = 95% confidence interval, ALF = acute liver failure, ALP = alkaline phosphatase, ALT = alanine transaminase, AST = aspartate aminotransferase, AUROC = area under the ROC, CK18 = caspase-cleaved keratin 18, CD68 = cluster of differentiation, CHO = total cholesterol, CIOMS = The Council for International Organizations of Medical Sciences, CK19 = cytokinin-19, DB = direct bilirubin, DDW-J = Digestive Disease Week-Japan criterion, DILI = drug-induced liver injury, DILI-PSS = DILI-pathological scoring system, DLST = drug lymphocyte stimulation test, GGT = γ-glutamyltransferase, Glu = blood-glucose, HbV = hepatitits B virus, HBCAg = hepatitis B virus core antigen, HBsAg = hepatitis B virus surface antigen, HMGB1 = high mobility group box 1, H&E = hematoxylin-eosin staining, LR+ = positive likelihood ratio, LR− = negative likelihood ratio, M&V = Maria & Victorino scale, NPV = negative predictive value, NSAIDs = Non-steroidal anti-inflammatory drugs, PPV = positive predictive value, RUCAM = Roussel-Uclaf Causality Assessment Method, ROC curve = receiver operating characteristic curve, TB = total bilirubin, TG = triglyceride, ULN = upper limits of normal.

Keywords: drug-induced liver injury, diagnostic accuracy, liver pathology, Roussel-Uclaf Causality Assessment Method

Editor: Chun Gao.

Ethics approval and consent to participate: The Study protocol was approved by the Ethics Committee of Tianjin Second People’s Hospital and conformed to the Declaration of Helsinki. All patients signed an informed consent form before enrolment in this study.

Consent for publication: Not applicable.

Availability of data and materials: Not applicable.

The authors declare that they have no competing interests.

Funding: Not applicable.

The authors have no conflicts of interest to disclose.

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

* School of Graduates, Tianjin Medical University, † Department of Hepatology, Tianjin Second People’s Hospital, ‡ Tianjin Research Institute of Liver Diseases, Tianjin, ¶ Department of Infectious Disease, Cangzhou Central Hospital, Cangzhou, ‖ Department of Pathology, Tianjin Second People’s Hospital, Tianjin, China.

Correspondence: Ping Li, Department of Hepatology, Tianjin Second People’s Hospital, No.7 South Sudi Road, Nankai District, Tianjin, 300192, China (e-mail: tpjieg@163.com).

Copyright © 2020 the Author(s). Published by Wolters Kluwer Health, Inc.

This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial License 4.0 (CCBY-NC), where it is permissible to download, share, remix, transform, and buildup the work provided it is properly cited. The work cannot be used commercially without permission from the journal.

How to cite this article: Liu Y, Li P, Wang F, Lu L, Zhang Y, Liu Y, Shi R. Comparison of diagnostic accuracy of 3 diagnostic criteria combined with refined pathological scoring system for drug-induced liver injury. Medicine 2020;99:41(e22259).

Received: 25 March 2020 / Received in final form: 18 July 2020 / Accepted: 14 August 2020

http://dx.doi.org/10.1097/MD.0000000000022259
1. Introduction
Drug-induced liver injury (DILI) is a serious, worldwide health problem. In the United States and Europe, it is the most common reason for acute liver failure, even though it accounts for <1% of acute liver injury cases.11–13 Studies showed that DILI occurs with an annual incidence of approximately 13.9 per 100,000 inhabitants in France compared with 19.1 per 100,000 in Iceland.4,5 In China, a retrospective study of 22,030 DILI patients showed that only 50.65% of them were cured, but 1.60% died.6 Additionally, DILI is a potentially severe adverse drug reactions that is a major concern for healthcare systems and the pharmaceutical industry, with a cost of $1 billion in the United Kingdom and $4 billion in the United States.7

Despite its potentially severe outcomes and drug post-marketing restrictions, diagnosing DILI is still a major challenge, and remains a diagnosis of exclusion. Based on patient data and the typical “signatures” associated with certain drugs, expert opinion recommends using causality scores to help diagnose, but due to the lack of a reliable method, no objective scales that assess the causality of a given drug in DILI patients, beyond expert opinion, has been developed.8 On the other hand, histopathology plays an irreplaceable role in providing direct and objective information about the characteristics of liver injury, for example, defining injury patterns.9 Popper et al.10 were the first who divided DILI into 6 patterns: zonal necrosis, simple cholestasis, hepatitis with/without cholestasis, acute hepatitis-like with/without massive necrosis, reactive hepatitis, and steatosis. However, a prospective study showed that liver biopsy was performed in only approximately 50% of patients.11

Thus, we compared the diagnostic accuracy of 3 kinds of clinical diagnostic criteria: the RUCAM, Maria & Victorino scale (M&V), and Digestive Disease Week-Japan scale (DDW-J) to assess DILI patients, and analyzed their sensitivity and specificity in diagnosing DILI, and then, for patients with liver biopsy, we explored the value of histopathological characteristics and the role of a pathological scale in diagnosing DILI combined with the clinical criteria.

2. Method
2.1. Patients
Consecutive DILI inpatients at Tianjin Second People’s Hospital from January 1, 2012 to December 31, 2018 were enrolled. The standard of definite DILI and suspected DILI were based on the diagnosis and treatment guideline published in 2015, by The Drug Induced Liver Disease Study Group of Chinese Medical Association (which were published in English in 201712) and determined again in a multidisciplinary consultation held by a panel of hepatologists, pharmacologists, clinical toxicologists, and pathologists. The Study protocol was approved by the Ethics Committee of Tianjin Second People’s Hospital and conformed to the Declaration of Helsinki. All patients signed an informed consent form before enrolment in this study.

2.2. Biochemical data
Serum samples were collected on the first day of hospital admission. The laboratory data included serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyl transferase (GGT), alkaline phosphatase (ALP), total bilirubin (TB), direct bilirubin (DB), fasting plasma glucose (GLu), triglyceride (TG), and total cholesterol (CHO) levels, measured by a Hitachi 7600–110 automatic analyzer (Hitachi Co., Tokyo, Japan). Serum HBsAg, HBeAg, and HBV-DNA were measured by a Roche COBAS e411 (Roche Co., Basel, Switzerland). R values were defined as the ALT/upper limit of normal (ULN) ratio divided by the ALP/ULN ratio according to the Council for International Organizations of Medical Sciences (CIOMS) criteria,13 and DILI was classified as hepatocellular, cholestatic, or mixed types based on its R-value.

2.3. Diagnostic criterion scales
Three diagnostic criterion scales: the RUCAM, M&V, and DDW-J, were used in this study. Each patient was scored with the 3 different diagnostic rating scales by 3 physicians. RUCAM14 has 5 degrees: score = 0, relationship “excluded”; 1–2: “unlikely”; 3–5: “possible”; 6–8: “probable”; and ≥9: “highly probable.” M&V15 has 5 degrees: score < 6, “excluded”; 6–9: “unlikely”; 10–13: “possible”; 14–17: “probable”; and ≥18: “definite.” DDW-J16,17 has 3 degrees: ≤2: “possible”; 3–4: “probable”; and ≥5 “highly probable.”

2.4. Liver biopsy and refined DILI-PSS
Patients who underwent a percutaneous ultrasound-guided liver biopsy using a MaxCore disposable automatic biopsy needle (C. R. Bard, Inc., Murray Hill, NJ) were included. Each specimen was fixed in formalin, embedded in paraffin and stained with hematoxylin-eosin (H&E), special staining included Masson’s trichrome, Gomori collagen, and Perls blue. Immunohistochemical staining included keratin 19, HBsAg, HBeAg, preS1 antigen, and CD68. The refined DILI-Pathological Scoring System (rDILI-PSS) in our study was based on Hu studies in China18,19 which include: hepatocellular steatosis (macrovesicular steatosis counts for 1 point, microvesicular steatosis counts for 2, and mixed steatosis counts for 3), hepatocellular cholestasis (1 point), apoptosis (1 point), eosinophil infiltration (2 point), vascular inflammation (1 point), iron deposition (1 point) and pigmented macrophages (1 point, in the original DILI-PSS, this was intraepithelial granuloma). H&E and specific staining reagents were purchased from Abcam (Abcam Co., Cambrige, UK). Blinded to the clinical data, 2 experienced hepatic pathologists independently reviewed the histologic findings. Consensus was reached in cases of disagreement.

2.5. Statistical analysis
Continuous variables were compared using the Mann–Whitney U test for 2 nonnormal datasets and the Kruskal-Wallis H test for >2 nonnormal datasets. A chi-square test was used to compare categorical data between groups. Diagnostic performances of RUCAM, M&V, DDW-J, and new parameters which were combined with refined DILI-PSS using logistic regression analysis were evaluated by computing receiver operating characteristics (ROC) curves, the area under the ROC (AUROC), and its 95% confidence intervals (CI). The optimal diagnostic cut-off for each scale was found by the maximum Youden Index. For each cut-off, a corresponding positive predictive value (PPV), a negative predictive value (NPV), and positive and negative likelihood ratios (LR+ and LR−) were also calculated. Logistics regression analysis was used to fit new parameters. A P value of <.05 was...
considered indicative of significance. Statistical analyses were performed using SPSS 21.0 (SPSS, Chicago, IL) and MedCalc 15. (MedCalc Software, M&Vkerke, Belgium).

3. Results

3.1. Patients' demographic and clinical characteristics

A total of 458 DILI patients at Tianjin Second People's Hospital were enrolled during the study period. The CONSORT diagram is shown in Table 1. The majority of the DILI patients, and female patients were more than male patients: 290 (63.32%) patients had the hepatocellular type injury, 188 (64.83%) were women; 71 (15.5%) patients had the cholestatic type, 52 (73.24%) were women; 97 (21.18%) patients had the mixed type, 68 (70.10%) were women. The patient ages (mean ± SD) in the 3 types were 47.47 ± 13.87, 51.82 ± 12.77, and 50.71 ± 12.03, respectively. The median (range) values of ALT, AST, GGT, ALP, TB, DB, Glu, TG, and CHO were shown in Table 2. Except for Glu and TG, other biochemical data were statistically significant (P < .05) among the different DILI types, using the Kruskal-Wallis H test, followed by a step-down pairwise comparison test. The results are shown in Fig. 1.

Table 1

Description	Count
Patients hospitalized with a principal diagnosis of DILI and suspected DILI in Tianjin Second People’s Hospital from 1 January 2012 to 31 December 2017 (n=634).	
Exclude:	
1. Match the guidelines’ exclusion criteria. (n=107)	
2. Daily alcohol consumption >20g. (n=53)	
3. Immune suppressive treatment within 1 year. (n=12)	
Patients were included in analysis and demographics, medication details, laboratory data and histological characteristics were extracted (n=458), patients under liver biopsy (n=306).	
Exclude:	
Liver biopsy specimen <15 mm length or <0.8 mm diameter (n=4).	
The RUCAM, M&V and DDW-J score were calculated by three designated hepatologist (n=458) and rDILI-PSS was calculated independently by two pathologists (n=302).	
Serological characteristics of 458 DILI patients.

Characteristics	Hepatocellular type (n = 290)	Mixed type (n = 97)	Cholestatic type (n = 71)	P value
Demographic variables				
Age (year, mean ± SD)	47.47 ± 13.87	50.71 ± 12.03	51.62 ± 12.77	.009
Female gender [%/n]	188 (64.83%)	68 (70.10%)	52 (73.24%)	.319
Biochemical data [median (range)]				
ALT, IU/L	1018.5 (131, 4435)	253 (48, 1920)	151 (12, 477)	<.001
AST, IU/L	612.5 (53, 3045)	175 (28, 1513)	135 (18, 823)	<.001
GGT, IU/L	207.5 (17, 1516.4)	255 (39, 2625)	295 (25, 868)	<.001
ALP, IU/L	713.5 (20, 769)	204 (64, 1240)	265 (64, 1399)	<.001
TB, µmol/L	74.75 (9.3, 492.9)	22.8 (5.3, 213.9)	54.6 (48, 439.2)	<.001
DB, µmol/L	56.1 (3, 365)	12.3 (1.142)	11.1 (1, 358)	<.001
Glu, mmol/L	5.33 (3, 16)	5.53 (4, 29)	5.42 (4, 17)	.112
TG, mmol/L	1.74 (1, 8)	1.51 (1.22)	1.64 (0, 5)	.263
CHO, mmol/L	4.02 (2, 8)	4.82 (3, 24)	4.91 (2, 17)	<.001
Interval days, d	19 (2, 47)	16 (2, 45)	12 (1, 38)	<.001

3.2. Causative drugs involved in DILI patients

In this study, Chinese herbal medicines were the most commonly used drugs in 240 (52.41%) patients: multiple herbal medicine use in 158 (34.50%) patients, and the top 3 individually used herbal medicines were Polygonum multiflorum, Alismae rhizome, and Radix bupleuri, used in 46 (10.04%), 7 (1.53%), and 5 (1.09%) patients respectively. The second highest major category was chemotherapeutics, used in 40 (8.73%) patients, followed by non-steroidal anti-inflammatory drugs (NSAIDs) used in 37 (8.08%) patients, antibiotics used in 29 (6.38%) patients, and healthcare products used in 25 (5.46%) patients. Detailed results were shown in Table 3.

3.3. The diagnostic value of 3 clinical criteria

Among all 458 DILI patients, 340 were ultimately diagnosed with definite DILI, 118 were suspected DILI. For the 3 diagnostic criteria of DILI, the scores (mean ± SD) of RUCAM, M&V, and DDW-J were 8.04 ± 1.66, 11.59 ± 2.63, and 8.24 ± 1.2, respectively. RUCAM confirmed DILI diagnosis with an AUROC of 0.730 (95% CI: 0.667–0.793), Z = 7.147, P < .001; the optimal cut-off was 8, and the Youden Index were 0.3558 for “≥8,” 0.3446 for “≥8.” M&V confirmed DILI diagnosis with an AUROC of 0.793 (95% CI: 0.740–0.847), Z = 10.753, P < .001; the optimal cut-off was 11, and the Youden Index were 0.4084 for “≥11,” 0.3907 for “≥11.” DDW-J confirmed DILI diagnosis with an AUROC of 0.764 (95% CI: 0.702–0.826), Z = 8.303, P < .001; the optimal cut-off was 8, and the Youden Index were 0.3558 for “≥8,” 0.4185 for “≥8.” The ROC curves are shown in Fig. 2. The AUROCs, sensitivities, specificities, PPVs, NPVs, and LR+ , LR− values are shown in Table 4.

A sub-analysis of ROC and AUROC was performed according to the clinical injury type. In the hepatocellular type, the AUROCs of RUCAM, M&V, and DDW-J were 0.688 (95% CI: 0.617–0.753), Z = 4.207, P < .001; 0.741 (95% CI: 0.673–0.802), Z = 6.297, P < .001; and 0.759 (95% CI: 0.692–0.818), Z = 6.552, P < .001, respectively, in the cholestatic type, the AUROCs of RUCAM, M&V, and DDW-J were 0.701 (95% CI: 0.534–0.837), Z = 2.030, P = .042, 0.807 (95% CI: 0.649–0.915), Z = 4.283, P < .001 and 0.656 (95% CI: 0.487–0.800), Z = 1.606, P = .108 respectively. In the mixed type, the AUROCs of RUCAM, M&V, and DDW-J were 0.765 (95% CI: 0.673–0.865), Z = 4.173, P < .001; 0.886 (95% CI: 0.777–0.933), Z = 8.528, P < .001 and 0.794 (95% CI: 0.670–0.888), Z = 4.444, P < .001, respectively.

3.4. Histological findings and its diagnostic value combined with clinical criteria

We used immunohistochemistry HBsAg(−), HBeAg(−), preS1(−) to histologically confirming patients without hepatitis B virus infection, and occult infection, CD68(+) were used to explain the pigmented macrophages. Among 458 DILI patients, 149 refused and 7 couldn’t perform liver biopsy because of physical condition. Finally, 302 DILI patients’ liver biopsies were included (Fig. 1), 248 were diagnosed definite DILI and 54 were suspected DILI. Although there were numerous histological manifestations in DILI,[9,20–22] we used rDILI-PSS to evaluate: steatosis in 204 (67.5%) cases, χ² = 4.487, P = .106; cholestasis in 151(50.9%) cases, χ² = 3.886, P = .143; cell apoptosis in 139(46%) cases, χ² = 0.840, P = .657; eosinophil granulocyte infiltration in 131 (43.4%) cases, χ² = 0.30, P = .985; central and/or portal phlebitis in 103 (34.1%) cases, χ² = 25.948, P < .001; iron deposition in 90 (29.8%) cases, χ² = 5.737, P = .057; and pigmented macrophages in 92(30.5%) cases, χ² = 6.616, P = .037. Table 5 showed the results of the characteristics of histological findings according to injury type. The mean ± SD of the refined DILI-PSS score was 3.26 ± 1.34. The new parameters: (pre1, pre2, and pre3) were DILI-PSS combined with RUCAM, M&V, and DDW-J, respectively. Logistic regression formulas were expressed as pre1 = PSS + 0.374*RUCAM, pre2 = PSS + 0.338*M&V, and pre3 = PSS + 0.578*DDW-J. The AUROCs of pre1, pre2, and pre3 were 0.843 (95% CI: 0.747–0.914), Z = 7.653, P < .001, with a sensitivity of 77.94%, specificity of 85.71%; 0.907 (95% CI: 0.822–0.960), Z = 10.467, P < .001, with a sensitivity of 77.94%, specificity of 92.86%; and 0.881 (95% CI: 0.790–0.942), Z = 9.352, P < .001, with a sensitivity of 77.94%, specificity of 85.71%, respectively. The ROC curves were shown in Fig. 2 and the diagnostic performance of pre1, pre2, and pre 3 were also shown in Table 4.
Figure 1. The distribution of characteristics in DILI patients. DILI = drug-induced liver injury.
In the hepatocellular type, the AUROCs of pre1, pre2, and pre3 were 0.894 (95% CI: 0.787–0.959), Z = 9.086, P < .001, 0.960 (95% CI: 0.857–0.994), Z = 19.015, P < .001, and 0.940 (95% CI: 0.847–0.985), Z = 14.544, P < .001, respectively; in the cholestatic type, the AUROCs were 0.750 (95% CI: 0.466 to 0.931), Z = 2.000, P = .045, 0.500 (95% CI: 0.239–0.761), Z = 0.000, P = 1.000, and 0.500 (95% CI: 0.239–0.761), Z = 0.000, P = 1.000, respectively; in the mixed type, the AUROCs were 0.786 (95% CI: 0.524–0.943), Z = 2.146, P = .032, 0.869 (95% CI: 0.619–0.981), Z = 3.058, P = .002 and 0.762 (95% CI: 0.498–0.930), Z = 2.052, P = .040, respectively.

Table 3

Pathogenicity drugs [n(%)] used by the 458 DILI patients.	Hepatocellular type (n=290)	Mixed type (n=97)	Cholestatic type (n=71)
Antibiotics			
Cephalosporin	8 (2.76%)	5 (5.16%)	2 (2.82%)
Macrolid antibiotic	3 (1.04%)	0	1 (1.41%)
Floxacin antibiotics	2 (0.69%)	0	0
Antifungal	2 (0.69%)	4 (4.12%)	0
Tetracycline	0	2 (2.06%)	0
NNRIs	4 (1.38%)	2 (2.06%)	2 (2.82%)
NSAIDs	22 (7.59%)	9 (9.28%)	6 (8.45%)
Antimicrobial drugs	2 (0.69%)	2 (2.06%)	0
Antihistamine drugs	2 (0.69%)	2 (2.06%)	2 (2.82%)
Antimicrobial drugs			
Calcium antagonons	1 (0.34%)	3 (3.09%)	0
Fluoxetine-melitracen	5 (1.72%)	0	0
Antiepileptic drug	2 (0.69%)	0	0
Cardiovascular system drugs			
Cardiovascular system drugs			
Calcium antagonons	2 (0.69%)	1 (1.03%)	0
ACEI	2 (0.69%)	0	0
Diuretics			
Proton pump inhibitor	4 (1.38%)	0	0
Endocrinology and metabolic drugs			
Antithyroid drug	4 (1.38%)	3 (3.09%)	2 (2.82%)
Diabetes drug	0	0	2 (2.82%)
Glucocorticoid	2 (0.69%)	2 (2.06%)	0
Statins	5 (1.72%)	4 (4.12%)	0
Luteosterone		2 (2.82%)	
Chinese traditional herbs			
Croton	1 (0.34%)	0	0
Rhizome atracylodis	4 (1.38%)	0	0
RADX bupeuri	2 (0.69%)	0	3 (4.22%)
RADX salviae millontrhiae	2 (0.69%)	0	1 (1.41%)
Poria cocos	2 (0.69%)	0	0
Hera miobada	2 (0.69%)	0	0
Tripterygium wilfordi	1 (0.34%)	2 (2.06%)	0
Ginseng	0	0	2 (2.82%)
Garter snake	0	1 (1.03%)	0
Arslam sieboldi Mig.	1 (0.34%)	0	0
Monkshood	0	0	3 (4.22%)
Alismiae rhizome	5 (1.72%)	2 (2.06%)	0
Herba epimedium	2 (0.69%)	0	0
Polygonum multiflorum	37 (12.76%)	5 (5.16%)	4 (5.84%)
Multiple herbal use	121 (41.73%)	24 (24.74%)	13 (18.30%)

ACEI = angiotension converting enzyme inhibitors; DILI = drug-induced liver injury; NNRIs = new non-nucleoside reverse transcriptase inhibitors; NSAIDs = non-steroidal anti-inflammatory drugs.

4. Discussion

The 3 diagnostic criteria were RUCAM, designed in 1993 by Danan and Benichou,[14] M&V, also called the clinical diagnostic scale (CDS) scoring system, and improved by Maria and Victorino in 1997,[15] and DDW-J, put forward by Japanese scholars at the Digestive Disease Week (DDW) meeting in 2003.[16] However, studies have shown that diagnosis scales may not be the best way to diagnose DILI. For example, in the case of patients diagnosed with DILI when a low score is obtained or opposite and different results are obtained using different scales.[23,24] Although it may be agreed that M&V and DDW-J...
were based on original RUCAM, they were invented to better diagnosis DILI. The M&V scoring system is different from RUCAM in terms of time limit and score setting, and extra-hepatic clinical manifestations are added as diagnostic criteria, however, the diagnostic accuracy for patients with chronic liver injury after a long-term incubation period and drug withdrawal is poor.\(^{[25]}\) DDW-J concerned the genes encoding drug-metabolizing enzymes in different ethnic groups, and was probably proposed for Asian populations, but further clinical research is still needed.\(^{[26]}\) Our study showed that the M&V was better in confirming DILI in suspected patients. Occasionally, the reviewer’s opinions begrudgingly abided by the final assessment, and thus, the reviewer decision was different from that produced by the grading process, as in cases of score of 3 or 4 in the RUCAM categories, where the likelihood of DILI was balanced around a 50% likelihood.\(^{[27]}\) Although the DDW-J score was proposed by Japanese scholars for Asian populations, virtually no drug lymphocyte stimulation test (DLST) is performed during our actual clinical diagnosis and treatment process. Also, questions remained that: on which grade of these scales, can we say it is DILI.

Some emerging biomarkers, such as microRNAs\(^{[28,29]}\) high mobility group box 1 (HMGBox1) and caspase-cleaved keratin 18 (cK18)\(^{[30,31]}\) have been identified in the assessment of DILI. Coupled with traditional liver enzyme tests, these new biomarkers are still questionable. ALT and AST are also present in skeletal muscle and elevated in patients in polymyositis or during extreme exercise.\(^{[32]}\) and ALP is also present in bone tissue and increased by osteoblast activity; TBIL is elevated after the processing of erythrocytes and subsequent degradation of hemoglobin or alteration of bilirubin transporters.\(^{[33]}\) Thus, the physiological processes underlying changes in these markers may be unrelated to damage to the liver.\(^{[34]}\) Therefore, no biomarkers are currently suitable for diagnosing DILI.

As histopathological examination can detect damage directly, diagnosis can be assisted by eliminating (or confirming) conflicting causes of liver injury and by conducting a biopsy associated with DILI patterns.\(^{[35]}\) In our study, hepatological pathologists (Liu and Shi) carefully reviewed 302 slides without knowing the clinical diagnosis, and used a descriptive method for the assessment of the typical histological features. The 7 histological characteristics in our refined pathological scoring system were based on DILI-PSS\(^{[18,19]}\) by Hu, such as steatosis, cholestasis, apoptosis, and vascular inflammation are similar to features reported in other published studies focused on the histopathological characteristics of DILI. We found that vascular inflammation and pigmented macrophages in DILI patients were significantly different among the 3 clinical types (\(P < .05\), which may prove the correlation between clinical classification and pathological classification. Moreover, to explore the specific pigmented macrophages in our histopathological findings, we further studied immunohistochemical expression of CD68 (Fig. 3). CD68 is known as a specific marker expressed in various kinds of macrophages, in the liver, where it is mainly expressed in Kupffer cells.\(^{[36]}\) Kupffer cells are a type of nonessential cells that originated from the yolk sac and were first identified as macrophages by Naito in 1990.\(^{[37]}\) These cells play an important role in the natural immune response and can effectively phagocytize pathogens or other toxic particulate matter through the portal vein or arterial circulation.\(^{[38–40]}\) The pigmented macrophages observed by H&E staining may be related to the type and timing of drugs taken and may progress to granuloma performance to help diagnose DILI in an early stage, which is why we propose the concept of deposition rather than granuloma in the refined DILI-PSS. Fortunately, our study showed that the refined DILI-PSS can be helpful for improving diagnostic accuracy: combined with clinical diagnostic criteria, the diagnosis efficiency of the new parameters increased with AUROCs of 0.843 (95% CI: 0.747–0.914); 0.907 (95% CI: 0.822–0.960); and 0.881 (95% CI: 0.790–0.942). These values were better than those of RUCAM alone with an AUROC of 0.730 (95% CI: 0.667–0.793), M&V alone with an AUROC of 0.793 (95% CI: 0.740–0.847), and DDW-J alone with an AUROC of 0.764 (95% CI: 0.702–0.826).
In our study, the following limitations should be considered. First, the standards of diagnosed DILI and suspected DILI were based on China’s clinical guidelines and confirmed by multidisciplinary consultation, thus, the diagnosis of patients may not be applicable to a wider population. Second, we used liver biopsies as a reference standard but not all patients underwent a liver biopsy. Only 302 patients were enrolled after exclusion (65.94% of the total 458 patients), and the uneven specimens may present a bias. Third, the number of cases such as non-resident DILI patients is lacking. Moreover, the refined rDILI-PSS were not performed in biopsy slices from patients with other diseases or healthy volunteers, which was not available for a more scientific and rigorous evaluation.

In conclusion, our study compared the accuracy of the 3 diagnostic criteria in diagnosing DILI from suspected patients; this study shows that M&V has the highest diagnostic performance among the 3 criteria when a patient was suspected definitely. Further study is still needed, especially on suspected DILI patients who are difficult to diagnose definitely.

5. Conclusions

The main age of onset of DILI patients in this study is 40 to 60 years old, mostly are women. The main drug caused DILI is Chinese herbal medicine. The most common clinical subtypes is hepatocyte injury, followed by mixed subtypes and cholestasis subtypes; pathological injury patterns of DILI are not completely consistent with the clinical subtypes, which are basically consistent with previous studies, and refined pathological scoring system (rDILI-PSS) in this study can provide a scientific and objective assessment of liver pathological damage in DILI patients; this study shows that M&V has the highest diagnostic performance among the 3 criteria when a patient was suspected definitely.

Characteristics	Hepatocellular type (n = 220)	Mixed type (n = 38)	Cholestatic type (n = 44)	P value	Definite DILI (n = 248)	Suspected DILI (n = 54)	P value
Steatosis	142 (64.5%)	31 (81.6%)	31 (70.5%)	.106	175 (69.7%)	29 (56.9%)	.074
Cholestasis	118 (53.6%)	16 (42.1%)	20 (45.5%)	.143	129 (51.4%)	23 (40.1%)	.412
Cell apoptosis	100 (45.5%)	18 (47.4%)	19 (43.2%)	.657	117 (46.6%)	22 (43.1%)	.650
Eosinophil infiltration	95 (43.2%)	16 (42.1%)	20 (45.5%)	.985	104 (41.4%)	27 (52.9%)	.131
Central and/or portal phlebitis	73 (33.2%)	18 (47.4%)	12 (27.3%)	<.001	89 (35.5%)	14 (25.5%)	.271
Iron deposition	74 (33.6%)	7 (19.4%)	9 (20.5%)	.057	81 (32.3%)	9 (17.7%)	.037
Pigmented macrophages	75 (34.1%)	10 (26.3%)	7 (15.9%)	.037	76 (30.3%)	16 (31.4%)	.877

DILI = drug-induced liver injury.
Acknowledgments

The authors acknowledged the numerous individuals participated in this study, and the strong support for this research from the hospital: Tianjin Second People’s Hospital.

Author contributions

Yiqi Liu analyzed and interpreted the patient data, also a major contributor in writing the manuscript, Ping Li put forward constructive revisions to the paper, Yiqi Liu and Ping Li carried out the idea and study design, Fangfang Wang, Liang Liu, and Yilian Zhang participated in the data collection and coordination of the analysis work, Yonggang Liu and Ruifang Shi performed the histological examination of the liver. All authors read and approved the final manuscript.

References

[1] Ostapowicz G, Fontana RJ, Schiodt FV, et al. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann Intern Med 2002;137:947–54.

[2] Lee WM. Drug-induced acute liver failure. Clin Liver Dis 2013;17:575–86. viii.

[3] Fontana RJ, Hayashi PH, Gu J, et al. Idiosyncratic drug-induced liver injury is associated with substantial morbidity and mortality within 6 months from onset. Gastroenterology 2014;147:96.e4–108.e4.

[4] Sgro C, Cimard F, Ouazir K, et al. Incidence of drug-induced hepatic injuries: a French population-based study. Hepatology 2002;36:431–5.

[5] Bjorjsson ES, Bergmann OM, Bjornsson HK, et al. Incidence, presentation, and outcomes in patients with drug-induced liver injury in the general population of Iceland. Gastroenterology 2013;144:1419–25. 25.e1–3; quiz e19–20.

[6] Zhang YM, Sun WJ, Wen LZ, et al. Clinical features of patients with drug-induced liver injury in China in the last five years. J Clin Hepatol 2018;34:562–6.

[7] Alfirevic A, Perthomehamed M. Genomics of adverse drug reactions. Trends Pharmacol Sci 2017;38:100–9.

[8] Kullak-Ublick GA, Andrade RJ, Merz M, et al. Drug-induced liver injury: recent advances in diagnosis and risk assessment. Gut 2017;66:1154–64.

[9] Kleiner DE. Histopathological challenges in suspected drug-induced liver injury. Liver Int 2018;38:198–209.

[10] Popper H, Rubin E, Cardiol D, et al. Drug-induced liver disease: a penalty for progress. Arch Intern Med 1965;115:128–36.

[11] Chalasani N, Fontana RJ, Borkowsky HL, et al. Causes, clinical features, and outcomes from a prospective study of drug-induced liver injury in the United States. Gastroenterology 2008;135:1924–34. 1934.e1–4.

[12] Yu YC, Mao YM, Chen CW, et al. CSH guidelines for the diagnosis and treatment of drug-induced liver injury. Hepatol Int 2017;11:221–41.

[13] Benichou C. Criterias of drug-induced liver disorders. Report of an international consensus meeting. J Hepatol 1990;11:272–6.

[14] Dana G, Benichou C. Causality assessment of adverse reactions to drugs-I. A novel method based on the conclusions of international consensus meetings: application to drug-induced liver injuries. J Clin Epidemiol 1993;46:123–30.

[15] Maria VA, Victorino RM. Development and validation of a clinical scale for the diagnosis of drug-induced hepatitis. Hepatology 1997;26:664–9.

[16] Takikawa H, Takamori Y, Kuma T, et al. Assessment of 287 Japanese cases of drug induced liver injury by the diagnostic scale of the International Consensus Meeting. Hepatol Res 2003;27:192–5.

[17] Watanabe M, Shibuya A. Validity study of a new diagnostic scale for drug-induced liver injury in Japan-comparison with two previous scales. Hepatol Res 2004;30:148–54.

[18] Hu X. Discussion on pathological scoring system of drug-induced liver injury. Chin J Hepatol 2012;3:176–7.

[19] Hu X. Re-discussion on pathological scoring system of drug-induced liver injury. Chin Hepatol 2014;8:577–9.

[20] Kleiner DE, Chalasani NP, Lee WM, et al. Hepatic histopathological findings in suspected drug-induced liver injury: systematic evaluation and clinical associations. Hepatology 2014;59:661–70.

[21] Bhajar F, Anders RA. Drug-induced hepatic histologic clues to a difficult diagnosis. Diagnos Histopathol 2017;23:559–62.

[22] Philips CA, Paramaguru R, Joy AK, et al. Clinical outcomes, histopathological patterns, and chemical analysis of Ayurveda and herbal medicine associated with severe liver injury-A single-center experience from southern India. Indian J Gastroenterol 2018;37:9–17.

[23] Garcia-Cortes M, Stephens C, Lucena MI, et al. Causality assessment methods in drug induced liver injury: strengths and weaknesses. J Hepatol 2011;55:683–91.

[24] Das S, Behera SK, Xavier AS, et al. Agreement among different scales for causality assessment in drug-induced liver injury. Clin Drug Investig 2018;38:231–4.

[25] Camargo R, Andrade RJ, Lucena MI, et al. Comparison of two algorithms for the diagnosis of drug-induced hepatotoxicity: Goms and Maria and Victorino (M&V). J Hepatol 2000;33:124.

[26] Xu Qin LH, Yuexin Z. Application and comparison of 3 kinds of diagnostic criterion for drug-induced liver injury. China Pharm 2016;27:363–5.

[27] Hayashi PH. Drug-induced liver injury network causality assessment: criteria and experience in the United States. Int J Mol Sci 2016;17:201.

[28] Starkey Lewis PJ, Dear J, Platt V, et al. Circulating microRNAs as potential markers of human drug-induced liver injury. Hepatology 2011;54:1767–76.

[29] Howell LS, Ireland L, Park BK, et al. MiR-122 and other microRNAs as potential circulating biomarkers of drug-induced liver injury. Expert Rev Mol Diagn 2018;18:47–54.

[30] Lea JD, Clarke JI, McGuire N, et al. Redox-dependent HMGB1 isoforms as pivotal co-ordinators of drug-induced liver injury: mechanistic biomarkers and therapeutic targets. Antioxid Redox Signal 2016;24:652–65.

[31] Antoine DJ, Jenkins RE, Dear JW, et al. Molecular forms of HMGB1 and keratin-18 as mechanistic biomarkers for modes of cell death and prognosis during clinical acetaminophen hepatotoxicity. J Hepatol 2012;56:1070–9.

[32] Nathwani RA, Pats S, Reynolds TB, et al. Serum alanine aminotransferase in skeletal muscle diseases. Hepatology 2005;41:380–2.
[33] Church RJ, Watkins PB. The transformation in biomarker detection and management of drug-induced liver injury. Liver Int 2017;37:1582–90.
[34] Church RJ, Kullak-Ublick GA, Aubrecht J, et al. Candidate biomarkers for the diagnosis and prognosis of drug-induced liver injury: an international collaborative effort. Hepatology 2018;69:760–73.
[35] Irey NS. Teaching monograph. Tissue reactions to drugs. Am J Pathol 1976;82:613–47.
[36] Lapis K, Zalatnai A, Timar F, et al. Quantitative evaluation of lysozyme- and CD68-positive Kupffer cells in diethylnitrosamine-induced hepatocellular carcinomas in monkeys. Carcinogenesis 1995;16:3083–5.
[37] Naito M, Takahashi K, Nishikawa S. Development, differentiation, and maturation of macrophages in the fetal mouse liver. J Leukoc Biol 1990;48:27–37.
[38] Ju C, Reilly TP, Bourdi M, et al. Protective role of Kupffer cells in acetaminophen-induced hepatic injury in mice. Chem Res Toxicol 2002;15:1504–13.
[39] Dixon LJ, Barnes M, Tang H, et al. Kupffer cells in the liver. Compr Physiol 2013;3:785–97.
[40] Akai S, Uematsu Y, Tsuneyama K, et al. Kupffer cell-mediated exacerbation of methimazole-induced acute liver injury in rats. J Appl Toxicol 2016;36:702–15.