Original Article

Post-Coital Antifertility Activity of *Hibiscus rosa-sinensis* Linn. roots

Neeru Vasudeva and S. K. Sharma

Pharmacognosy and Phytochemistry Division, Faculty of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India

Ancient literature mentions the use of a number of plants/preparations for fertility regulation. Some local contraceptive agents have also been described in Ayurvedic and Unani texts. Documented experiments or clinical data are, however, lacking. Therefore, the present study was undertaken to explore the antifertility and estrogenic activity of ethanolic extract of the roots of *Hibiscus rosa-sinensis* Linn. A strong anti-implantation (inhibition 100%) and uterotropic activity was observed at the dose level of 400 mg/kg body weight. Histological studies were carried out to confirm this effect.

Keywords: anti-implantation – estrogenic – *Hibiscus rosa-sinensis* – uterotropism

Introduction

Hibiscus (Malvaceae) is a genus of herbs, shrubs and trees. Its 250 species are widely distributed in tropical and subtropical regions of the world and are reported to possess various medicinal properties viz; antitumor, antihypertensive, antioxidant, antiammonemic (1–5). About 40 species are found in India. *Hibiscus rosa-sinensis* Linn. is a native of China and is a potent medicinal plant. It is a common Indian garden perennial shrub (6) and often planted as a hedge or fence plant. Traditionally this drug is attributed to antifertility activity in Ayurvedic literature (7). The flowers have been reported to possess anti-implantation and antispermatogenic activities (8,9). The petroleum ether extracts of the leaves and flowers have been shown to potentiate hair growth in vivo and in vitro (10). Leaves and flowers also possess hypoglycemic activity (11,12). The mucilage of the leaf has anticomplementary activity (13). The extracts of *Hibiscus rosa-sinensis* have also been shown a protective effect against the tumor promotion stage of cancer development (14). The anthocynidin from the petals of the plant have protective effect against carbon tetra chloride-induced acute liver damage (15). The present investigation is the first ever study undertaken to find the unexplored anti-implantation and uterotropic activity of the roots of *Hibiscus rosa-sinensis*, using ethanol, being highly polar, so as to extract the maximum phytoconstituents present in the roots.

Materials and Methods

Plant Collection and Preparation of Extract

The roots of *Hibiscus rosa-sinensis* were collected from Hisar during August 2002. The plant was authenticated by Dr M.P. Sharma, Taxonomist, Department of Botany, Jamia Hamdard, New Delhi. Herbaria are made and their voucher specimen retained in the department for future references.

The shade-dried roots of the plant were coarsely powdered (500 g) and were extracted with ethanol (95%, 3 l) in a soxhlet extractor for 72 h. The extract was concentrated to yield a reddish brown solid (52 g). The extract was stored in refrigerator. A suspension of this was prepared in distilled water using acacia (1%).

For reprints and all correspondence: S. K. Sharma, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India. Fax: 0166-276240; E-mail: drsks_gjuhsr@yahoo.co.in

© 2007 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Rats and Mice

Colony-bred female albino rats (Wistar strain), weighing (150–200 g), were used for antifertility testing. Immature colony-bred female albino rats (Wistar strain), 21–23 days old, were used for the study of estrogenic activity. Adult albino mice of either sex were used for acute toxicity studies. The rats and mice were maintained under standard husbandry conditions with food and water ad libitum. The Institutional Ethical Committee for Animal Cares and Use approved all experimental procedures.

Acute Toxicity Studies

Acute toxicity was carried out as described by Turner (16). Adult albino mice of either sex were divided into three groups containing five animals in each group. The mice were fasted for 18 h with water ad libitum. The suspensions prepared as above were administered orally at two different doses 2000 and 4000 mg/kg body weight, respectively, to different groups of mice separately. Control mice received the vehicle (acacia 1% p.o.) only. The animals were observed for 72 h for behavioral changes and mortality.

Post-coital Antifertility Testing

Vaginal smears from each rat were monitored daily, only rats with normal estrous cycle were selected. Rats found in proestrus phase of cycle were caged with males of proven fertility, in the ratio 2:1 and examined the following morning for evidence of copulation. Rats exhibiting thick clumps of spermatozoa in their vaginal smears were separated and that day was designated as day 1 of pregnancy and those rats were divided into three groups containing six rats in each group. The extract was administered at 200 and 4000 mg/kg body weight orally from day 1 to 7 of pregnancy. Control rats received the vehicle (acacia 1% p.o.). On day 10, laparotomy was performed under light ether anesthesia and semisterile conditions. The uteri were examined to determine the number of implantation sites.

Estrogenic and Antiestrogenic Activity

Estrogenic activity of
Hibiscus rosa-sinensis Linn. roots

Estrogenic Activity

The estrogenic effects of the ethanol extract are shown in Tables 2 and 3. Oral administration of the ethanol extract at 400 mg/kg body weight caused a significant increase in uterine weight in immature rats (versus control, \(P < 0.001 \)). The uterotrophic potency, as shown by the weight of the uterus, is about 62.7% of that of the ethinyl estradiol in olive oil, 1 \(\mu g/\text{rat per day, subcutaneously}. \) The third group received the ethanol extract at a dose of 4000 mg/kg body weight. The fourth group received, in addition to ethinyl estradiol, a test dose of the ethanol extract at 400 mg/kg body weight. All the above treatments were given for 7 days. On the 8th day, the rats were sacrificed by decapitation, the uteri dissected out and surrounding tissues removed. The uteri were blotted on filter papers and weighed quickly on a sensitive balance and fixed in Bouin’s fluid for 24 h. The tissues were dehydrated and embedded in paraffin. The paraffin sections were cut at 6 \(\mu m \) and stained with hematoxylin–eosin for histological observation (23). The diameter of the uterine and thickness of the endometrium were measured in 16 randomly selected sections using an ocular micrometer.

Statistical Analysis

All results were expressed as mean ± standard error. The data was analyzed using Student’s \(t \)-test. The results were judged significant if \(P < 0.05 \).

Results

Acute Toxicity Studies

No mortality and changes in the behavior were observed in all treated and control groups of the mice up to the dose of 4000 mg/kg body weight. Hence, one-tenth of the doses were used for antifertility testing.

Post-coital Antifertility Activity

The anti-implantation activity is expressed as percentage of animals showing absence of implantation in uteri when laparotomized on day 10 of pregnancy. The ethanol extract given orally to the rats at a dose of 400 mg/kg exhibited a very potent anti-implantation activity since no implants, in all the treated animals, were observed, indicating 100% anti-implantation activity (Table 1).

No toxic effects were observed either by gross visual examination or in the weight of animals. After discontinuation of treatment, all the animals were mated. This resulted in pregnancy and delivery of normal litters, indicating that the action of the extract was reversible.
estradiol. The uterotropic changes, such as the diameter of the uterus \((P<0.01)\) and thickness of the endometrium \((P<0.001)\) were significantly increased when compared with control rats. The uteri of these rats were inflated and full of fluid resembling the proestrous/estrous uterus. The epithelium of the endometrium consisted of spindle-shaped cells with basal nuclei. The stroma consisted of loose and edematous fibroblast-type cells. The treated rats showed open vaginas. Examination of the vaginal smears of treated rats revealed predominantly cornified and nucleated epithelial cells. However, their number was less than in ethinyl estradiol-treated rats.

Simultaneous administration of ethinyl estradiol and ethanol extract caused a significant increase in the uterine weight, uterine diameter and thickness of the endometrium \((versus\ control\ P<0.001)\). When compared with ethinyl estradiol, there was significant increase in uterine weight, thickness of endometrium and diameter of uterus \((P<0.05)\). It appears that the ethanol extract has estrogenic activity, but no antiestrogenic activity at 400 mg/kg dose.

Table 1. Effect of ethanol extract of *Hibiscus rosa-sinensis* Linn. roots on implantation in rats when fed orally from days 1 to 7 of pregnancy

Treatment	Dose	No. of rats having no implantation sites on day 10	Mean number of implants ± SE	% of rats having no implantation sites on day 10
Control	0.5 ml/rat	Nil	8.60 ± 0.61	Nil
Ethanol extract	200 mg/kg	1	7.23 ± 0.44	16.66
	400 mg/kg	6	0	100

*Each group consisted of six rats.

Table 2. Estrogenic activity of the ethanol extract of *Hibiscus rosa-sinensis* Linn. Roots

Group	Treatment (dose)	Uterine weight (mg/100 g body weight; mean ± SE)	Vaginal cornification
I	Control (0.5 ml/rat)	58.06 ± 0.003	Nil
II	Ethinyl estradiol (1 µg/rat per day)	141.00 ± 0.03*	+++
III	Ethanol extract (400 mg/kg)	88.40 ± 0.04ooo*	+ to ++
IV	Ethinyl estradiol (1 µg/rat per day) + Ethanol extract (400 mg/kg)	202.15 ± 0.01*oo*	+++

+, nucleated epithelial cells; ++, nucleated and cornified cells; ++++, cornified cells.

*P<0.02 when compared with ethinyl estradiol.

**P<0.05 when compared with ethinyl estradiol.

*P<0.001 when compared with control.

Table 3. Histological changes in the uterus and endometrium after treatment with ethanol extract of *Hibiscus rosa-sinensis* Linn. roots

Treatment (dose)	Diameter of uterus (µm ± SE)	Thickness of endometrium (µm ± SE)
Control	355.80 ± 1.68	111.40 ± 0.82
Ethinyl estradiol (1 µg/rat per day)	658.00 ± 3.05*	280.00 ± 1.88*
Ethanol extract (400 mg/kg)	438.30 ± 1.30**ooo	228.60 ± 2.65**
Ethinyl estradiol (1 µg/rat per day) + Ethanol extract (400 mg/kg)	777.50 ± 3.03***oo	358.30 ± 2.45***

*P<0.001 when compared with control.

**P<0.01 when compared with control.

***P<0.05 when compared with ethinyl estradiol.

++P<0.02 when compared with ethinyl estradiol.

***P<0.001 when compared with ethinyl estradiol.

Discussion

In the present study, the roots of *Hibiscus rosa-sinensis* were tested for their anti-implantation and estrogenic properties. The loss of implantation caused by ethanol extract may be due to antizygotic, blastocytotoxic or anti-implantation activity (24).

In ovariectomized immature female rats, oral administration of the ethanol extract of *Hibiscus rosa-sinensis* roots increased the uterine weight and stimulated uterine growth, suggesting estrogenic activity. It is known that administration of estrogen has uterotropic effects in ovariectomized immature female rats and mice (25,26). Such effects are associated with growth and proliferation of endometrial microvilli on the apical surface as well as increase in cell number.

The pregnancy interceptive effect of the ethanol extract of *Hibiscus rosa-sinensis* root can be interpreted as due to the estrogenic nature of the plant. Regular development of all the events leading to nidation, at least in rats and mice, is chiefly under the direct command of
estrogen–progesterone interplay at the cellular level (27) and a slight disturbance in this hormonal balance may result in an unfavorable endometrial environment.

Pre-implantation losses can also arise due to disruption of events that are requisite for fertilization or an impairment in the production of cytokines, growth factors, and various types of adhesion molecules, either by the developing blastocyst or by uterine epithelium around the site of implantation (28,29).

Plant products exhibiting estrogenic activity and producing antifertility effects are known in literature, viz the ingestion of 200, 400 and 600 mg/kg of ethanol extract of Salvia frutcosa from day 1–6 of pregnancy did not cause pregnancy failure, but reduced the number of viable fetuses and increased the number of resorptions in female pregnant rats (30). Vascine, isolated from Adathoda vasica showed potent abortifacient and utero-viable fetuses and increased the number of resorptions.

In conclusion, the present study suggests that the ethanol extract of Hibiscus rosa-sinensis root possesses anti-implantation activity, and the estrogenic property of the extract may be responsible, at least partly, for this anticonceptive effect.

References

1. Hou DX, Tong X, Terahara N, Lou D, Fuji M. Delphendin 3-sambubioside, a Hibiscus anthocyanin, induces apoptosis in human leukemia cells through reactive oxygen species-mediated mitochondrial pathway. Arch Biochem Biophys 2005;440:101–9

2. Hirunpanich V, Utaipat A, Morales NP, Bunyapraphatasara N, Sato H, Herunsalee A, et al. Hypocholestremic and antioxidant activity of Hibiscus sabdariffa. J Ethnopharmacol 2006;103:252–60.

3. Chang YC, Haung KB, Haung AC, HO YC, Wang CJ. Hibiscus anthocyanins-rich extract inhibited LDL Oxidation and oxLDL-mediated macrophages apoptosis. Food Chem Toxicol 2006;44:1015–23.

4. Herrera AA, Flores RS, Chavez-Soto MA, Tortoriello J. Effectiveness and tolerability of a standardized extract from Hibiscus sabdariffa in patients with mild to moderate hypertension: a controlled and randomized clinical trial. Phytomedicine 2004;11:375–82.

5. Mohamed Essa M, Subramanian P. Hibiscus sabdariffa affects ammonium chloride-induced hyperammonemic rats. Evid Based Complement Altern Med 2007;4:321–326.

6. Mudgal VN. Botanical description of Hibiscus rosa-sinensis (China rose of shoe flower or japakusam). J Res Indian Med 1974;9:105.

7. Basu K, Bharatiya Ousadhabalir Sankihpta Bhaisajya Tattwa. Calcutta: Hahnemann Publishing Company, 1946.

8. Khoklute SD, Udupa KN. Antioestrogenic activity of Hibiscus rosa-sinensis Linn. flowers. Indian J Exp Biol 1976;14:175–6.

9. Murthy DRK, Reddy CM, Patil SB. Effect of benzene extract of Hibiscus rosa-sinensis on the oestrous cycle and ovarian activity in albino mice. Biol Pharm Bull 1997;20:756–8.

10. Adhirajan N, Ravi kumar T, Shanmugasundram N, Babu M. in vivo and in vitro evaluation of hair growth potential of Hibiscus rosa-sinensis Linn. J Ethnopharmacol 2003;88:235–9.

11. Sachdeva A, Nigam R, Khemani LD. Hypoglycemic effects of Hibiscus rosa-sinensis leaf. extract in glucose and streptozotocin induced hyperglycemic rats. Indian J Exp Biol 2001;39:284–6.

12. Sachdeva A, Khemani LD. Effect of Hibiscus rosa-sinensis Linn. ethanol flower extract on blood glucose and lipid profile in streptozotocin induced diabetes in rats. J Ethnopharmacol 2003;88:59–66.

13. Shimizu N, Tomoda M, Suzuki I, Takada K. Plant mucilages XLIII. A representative mucilage with biological activity from the leaves of Hibiscus rosa-sinensis. Linn. Biol Pharm Bull 1993;16:735–9.

14. Sharma S, Sultana S. Effect of Hibiscus rosa-sinensis extract on hyperproliferation and oxidative damage caused by benzoyl peroxide and ultraviolet radiations in mouse skin. Basic and Clinical Pharmacol Toxicol 2004;95:220–5.

15. Obi FO, Ovat OD, Oraifo OSJ. Time-dependent prevention of carbon tetra chloride-induced acute liver damage in the rat by Hibiscus rosa-sinensis petal anthocyanin extract administered in aqueous fifty percent ethanol. Biokemistri 2001;11:95–104.

16. Turner RA. Screening Methods in Pharmacology. Vol II. 1971. New York: Academic Press.

17. Edgren RA, Callhoun DW. Chemical Control of Fertility. In: Edgren RA (ed.). Contraception. New York: Marcel Dekker Inc., 1957, 537.

18. Yadav R, Jain GC. Antifertility effect of the aqueous extract of the seeds of Cassia fistula in female rats in female rats. Adv in Contraception 1992;15:293–301.

19. Hiremath SP, Badami S, Hunasagatta SK, Patil B. Antifertility and hormonal properties of the flavones of Striga orobanchioides. European J Pharmacol 2000;391:193–7.

20. Badami S, Aneesh R, Sarkar S, Satishkumar MN, Suresh B, Rajan S. Antifertility activity of Derris brevipes variety coriacea. J Ethnopharmacol 2003;84:99–104.

21. Hiremath SP, Rudresh K, Badami S, Patil SB, Patil B. Post-coital antifertility activity of Accalypha indica L. J Ethnopharmacol 1999; 67:253–8.

22. Vasudeva N, Sharma SK. Post-coital antifertility effect of Achyranthes aspera Linn. roots. J Ethnopharmacol 2006;107:179–81.

23. Eroschenko VP. Atals of Histology with Functional Correlations. New York and London: Lippinoti Williams and Wilkins, 2000, 311–5.

24. Hafez EE. Reproduction and Breeding. Techniques for Laboratory Animals. Philadelphia, PA: Lea and Febiger, 1970.

25. Jordan VC, Mittal S, Gosden B, Koch R, Liberman ME. Structure-activity relationship of estrogen. Environ health Perspect 1985;61:97–110.

26. Clarke JH, Markaverich BM. Action of ovarian steroid hormones. In: Knobil E, Neill J (eds). In: Comparative Physiology, Vol II. New York: Raven Press, 1988, 675–724.

27. Psychoyos A, Prapas I. Inhibition of egg development and implantation in rats after post-coital administration of the progesterone antagonist RU 486. J Reprod Fertil 1987;80:487–91.

28. Denker HW. Implantation: a cell biological paradox. J Exp Zool 1993;266:541–58.

29. Haimovici F, Anderson DJ. Cytokines and growth factor in implantation. Microse Res Tech 1993;25:201–7.

30. Elbeticha A, Al-Hamood MH, Alkofahi A, Batainesh H. Reproductive toxicity potentials of Salvia fruticosa (Labiatae) in rats. J Ethnopharmacol 1998;61:67–74.

31. Atal CK. Chemistry and Pharmacology of Vascine—a New Oxytocic and Abortifacient, Jammu: RRL, 1980, 58–75.

32. Hiremath SP, Rao SH, Jain PK, Jaya Y, Sembulingam K. Antifertility activity of Striga lutea – part I. Indian J physiol Pharmacol 1990;34:23–5.

Received April 29, 2006; accepted January 11, 2007