Defining remission of type 2 diabetes in research studies: A systematic scoping review

Mireille Captieux¹*, Regina Prigge¹&, Sarah Wild¹¶, Bruce Guthrie¹¶

¹ Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, EH8 9AG, UK,

*Corresponding author
Email: mireille.captieux@ed.ac.uk (MC)

¶These authors contributed equally to this work.

&These authors also contributed equally to this work.
Non-standard Abbreviations

2hr PG: two hour plasma glucose, ADA: American Diabetes Association, DG: diagnosis guidelines, FPG: Fasting Plasma Glucose, GLT: glucose-lowering therapy, PCOS: polycystic ovarian syndrome, PICOS: Patient, problem or population, Intervention, Comparison, control or comparator, Outcome, Setting, PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses, UK: United Kingdom, WHO: World Health Organisation,
ABSTRACT

Background
Remission has been identified as a top priority by people with type 2 diabetes. Remission is commonly used as an outcome in research studies, however, a widely accepted definition of remission of type 2 diabetes is lacking. A report on defining remission was published (but not formally endorsed) in Diabetes care, an American Diabetes Association (ADA) journal. This Diabetes care report remains widely used. It was the first to suggest three components necessary to define the presence of remission: (1) absence of glucose-lowering treatment (2) normoglycaemia (3) for duration ≥1 year. Our aim is to systematically review how remission of type 2 diabetes has been defined by observational and interventional studies since publication of the 2009 report.

Methods and Findings
Four databases (MEDLINE, EMBASE, Cochrane library, CINAHL) were searched for studies published from 01.09.2009-18.07.2020 involving at least 100 participants with type 2 diabetes in their remission analysis, which examined an outcome of type 2 diabetes remission in adults ≥18 years, and which had been published in English since 2009. Remission definitions were extracted and categorised by glucose lowering therapy, glycaemic thresholds and duration. 8966 titles/abstracts were screened. 178 studies (165 observational, 13 interventional) from 33 countries were included. These contributed 266 definitions of which 96 were unique. The 2009 report was referenced in 121 (45%) definitions. 247 (93%) definitions required the absence of glucose-lowering therapy. 232 (87%) definitions specified numeric glycaemic thresholds. The most frequently used threshold was HbA1c<42mmol/mol (6.0%) in 47 (20%) definitions. Time was frequently omitted. 104 (39%) definitions defined time as a duration. The main limitations of this systematic review lie in the restriction to published studies written in English with sample sizes of over 100. Grey literature was not included in the search.

Conclusions
We found that there is substantial heterogeneity in the definition of type 2 diabetes remission in research studies published since 2009, at least partly reflecting ambiguity in the 2009 report. This complicates interpretation of previous research on remission of type 2 diabetes.
and the implications for people with type 2 diabetes. Any new consensus definition of remission should include unambiguous glycaemic thresholds and emphasise duration. Until an international consensus is reached, studies describing remission should clearly define all three components of remission.

Registration

PROSPERO CRD42019144619

Funding

MC is funded by a Chief Scientist Office Clinical Academic Fellowship.
Author Summary

Why was this study done?

- Remission of type 2 diabetes is very important to people with type 2 diabetes but there is no single agreed definition of remission.
- Varying definitions of remission risks making research findings inconsistent and makes remission difficult to effectively use as a target in clinical care.

What did the researchers do and find?

- We systematically reviewed 178 research studies with an outcome of type 2 diabetes remission that had been published between 2009-2020 to evaluate how remission of type 2 diabetes had been defined.
- There were 96 unique definitions of type 2 diabetes remission, with substantial heterogeneity.
- 93% of type 2 diabetes remission definitions stated that all glucose lowering therapy should be stopped. 87% included a numeric glycaemic threshold, but the exact threshold and combination of tests to measure normal glycaemic levels varied considerably. 61% did not include duration of stopping therapy or normal glycaemic levels as part of the definition of type 2 diabetes remission.

What do these findings mean?

- The heterogeneity of type 2 diabetes remission definitions in the recent research literature highlights a fundamental problem for remission research.
- Synthesising the findings of studies of remission will be limited by variation in definition. Future meta-analyses should ideally use individual participant data.
- Categorising people into remission and non-remission groups in a way that is consistent with the current type 2 diabetes diagnosis guidelines is challenging and should be carefully considered before integrating remission with clinical type 2 diabetes management pathways.
- Researchers should always clearly and unambiguously state their definition of remission. There is a clear need for an internationally accepted and routinely implemented definition of remission.
INTRODUCTION

Type 2 diabetes is a global health priority [1]. By 2045 an estimated 629 million people will be affected by diabetes of whom 90-95% will have type 2 diabetes [1]. Drivers for the twin epidemics of obesity and diabetes lie in complex interactions between obesogenic environments, a biological tendency for weight gain, and an ageing population [2,3]. The rapid spread of obesity and diabetes worldwide has considerable health implications for the individual and major financial consequences for health services [3]. In 2015, the global economic burden of diabetes was estimated to be US $1.3 trillion [4] and total costs are estimated to rise to $2.2-2.5 trillion by 2030 [4]. Type 2 diabetes has conventionally been considered a lifelong, progressive disease [5]. The concept of reversing type 2 diabetes by metabolic surgery was introduced in the early nineties [6]. Buchwald et al strengthened this concept by defining and demonstrating the resolution of clinical and laboratory manifestations of type 2 diabetes in their 2004 and 2009 systematic reviews and meta-analyses [7,8]. Whilst such research groups did not publish any guidance on defining resolution of diabetes, their definitions of resolution developed for use in review and meta-analysis were widely adopted [9]. In 2009, a multi-disciplinary expert group published a consensus report (2009 report) in Diabetes Care, an American Diabetes Association (ADA) journal to provide guidance on defining this concept [10], although this 2009 report does not represent the official ADA position [11]. The 2009 report recommends that the term remission should be applied to a chronic disease such as diabetes, rather than terms like resolution. It broadly defines remission as “achieving glycaemia below the diabetic range in the absence of active pharmacologic or surgical therapy” [10] (page 2134). Three specific types of remission are then explicitly defined: Partial, Complete and Prolonged Remission (cure) (Table 1). Each remission type is composed of three components: (1) the absence of glucose lowering therapy (GLT); (2) the achievement of a glycaemic threshold; and (3) a duration during which the other two components have to be sustained for remission to have occurred. The 2009 report is not to be confused with the annually updated ADA Standards of Care, which contains the official ADA position on the diagnosis of diabetes and prediabetes [12], as yet, there is no official ADA position or internationally agreed consensus on the definition of remission [12].
Table 1 2009 Report recommendation for defining remission of diabetes and possible interpretations of recommendations (adapted from Buse, 2009)10

Remission term	Glucose lowering therapy (GLT)	Glycaemic threshold	Time (years)
Unspecified Remission	Broadly defined in main text as: “achieving glycemia below the diabetic range in the absence of active pharmacologic (anti-hyperglycemic medications, immunosuppressive medications) or surgical (ongoing procedures such as repeated replacements of endoluminal devices) therapy. A remission can be characterized as partial or complete.”10 p2134.		

Partial remissiona	No active pharmacologic therapy (or ongoing procedures)	Hyperglycaemia below diagnostic thresholds for diabetesd	At least 1 year duration
Complete remissionb	No active pharmacologic therapy (or ongoing procedures)	Normal glycaemic measuresd	At least 1 year duration
Prolonged remissionc	No active pharmacologic therapy (or ongoing procedures)	Normal glycaemic measuresd	At least 5 years duration

a Partial remission is specifically defined as “Sub-diabetic hyperglycaemia (HbA1c not diagnostic of diabetes <48mmol/mol (<6.5%), fasting glucose 5.6–6.9 mmol/l (100–125 mg/dL)) of at least 1 year's duration in the absence of active pharmacologic therapy or ongoing procedures.” [10] (p2134)

b Complete remission is specifically defined as “A return to “normal” measures of glucose metabolism (A1C in the normal range, fasting glucose <5.6 mmol/l (<100 mg/dl)) of at least 1 year's duration in the absence of active pharmacologic therapy or ongoing procedures.” [10] (p2134)

c Prolonged remission is specifically defined as “Complete remission that lasts for more than 5 years and might operationally be considered a cure.” [10] (p2134)

d There is ambiguity in terms of whether remission requires HbA1c< threshold AND FPG<threshold, or whether the logic is HbA1c<threshold OR FPG<threshold (see footnotes a-c where the join between HbA1c and FPG is a comma rather than a logical operator).

Remission of type 2 diabetes is of increasing interest to professionals and patients 12. Two recent trials in the US and UK have demonstrated cost-effective remission of type 2 diabetes through intensive lifestyle measures such as very low-calorie diets [13,14]. These have reignited interest (particularly amongst people living with diabetes and their carers) 15 into whether remission might be a realistic goal for some people with type 2 diabetes and an additional strategy for health services. This issue is difficult to address when there is no official international consensus on how to define remission 16. In the UK, the Primary Care Diabetes Society and the Association of British Clinical Diabetologists responded by publishing a consensus in 2019 which states that “remission can be achieved when a person with type 2 diabetes achieves 1. Weight loss; 2. HbA1c<48mmol/mol (6.5%) or FPG <7.0mmol/l (126mg/dL) on two occasions separated by six months; 3. Following complete cessation of all GLT.” [17] p 74. The International Diabetes Federation discusses remission...
in the context of bariatric surgery in their 2017 clinical practice recommendations for primary care, where they state “Remission is defined by most guidelines as an HbA1c below 6% (42mmol/mol) without medication for 6 months or more” [18] p21. Similar consensus discussions are ongoing as part of the response to calls for an international consensus on definition [16]. However, it is unclear how remission is currently being interpreted in research literature. The aim of this study is to systematically review how remission of type 2 diabetes has been defined by observational and interventional studies since the publication of the 2009 report, in order to contribute to developing future consensus on defining type 2 diabetes remission.
METHODS

Search strategy and selection criteria

We adapted The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement for scoping reviews to report our systematic review of observational and interventional studies [19] (S1 Table). We included observational and interventional studies involving at least 100 participants with type 2 diabetes in their remission analysis, which examined an outcome of type 2 diabetes remission in adults ≥18 years old, and which had been published in English since 2009 (when the 2009 report was published) [10]. These restrictions were decided a priori and were expected to provide a sufficient number of papers specifically focussing on the effect of the 2009 report in reasonably large research studies within our time and resource constraints (S2 Table). Web-content or materials produced outside the traditional academic publishing were not searched as we were interested in how remission was defined in manuscripts that had been peer-reviewed in academic publication and distribution channels. We excluded case reports, systematic reviews, protocols or reviews. Studies focusing on: prediabetes; impaired glucose tolerance; impaired fasting glucose; gestational diabetes; maturity onset diabetes of the young; steroid induced diabetes; or type 1 diabetes were excluded as beyond the scope of this review (S2 Table).

Patients or the public were not involved in the design, or conduct, or reporting, or dissemination plans of our research. The Diabetes UK-James Lind Alliance Priority Setting Partnership has recently identified remission as the top shared priority amongst people living with diabetes and their carers, healthcare professionals and black and minority ethnic groups [15].

We searched MEDLINE, EMBASE, CINAHL and the Cochrane library from 1st January 2009 until 18th July 2020 (S2 Table). The PICOS search strategy [20] was developed with a senior librarian and combined terms for: “remission” AND “type 2 diabetes” AND “weight loss strategies” and limits specified (human subjects, English language) (S3 Table). Two reviewers (MC and one of BG, SW and RP) independently screened all title and abstracts and all full texts against our inclusion criteria using Covidence systematic review software (Veritas Health Innovation, Melbourne, Australia). MC and RP independently extracted data in duplicate to a piloted Microsoft Excel extraction form. In all cases, disagreement was discussed and a third reviewer involved to resolve these if needed. The systematic review
protocol was pre-specified and prospectively registered (PROSPERO registration: CRD42019144619).

Outcomes

The primary outcome was the definition of remission used in each study irrespective of the term(s) used to name the outcome (partial, complete, or prolonged remission, and synonyms such as resolution, cure or reversal). Since an individual study could measure remission in more than one way, we extracted data for all distinct definitions used in each paper.

Data Analysis

For each definition of remission given by an underlying study, we sought to specify how each of the three components of remission defined by the 2009 report were operationalised (absence of GLT, normoglycaemia, and duration of one or both of absence of GLT and normoglycaemia), irrespective of whether they referenced the 2009 report [10] For each definition we recorded whether any components were omitted and quantified the heterogeneity within each component by counting the number of unique ways each component was defined. We mapped every definition extracted to the three types of remission initially introduced by the 2009 report (Partial Remission, Complete Remission, Prolonged Remission) based on the term used by the authors. Where it was not possible to map to one of the three types, for example, authors used general terms such as remission or resolution, we categorised a definition as Unspecified Remission. We also counted the number of unique definitions across all definitions, regardless of the term used by authors. We examined how the 2009 report defined remission and listed feasible interpretations for each definition. We calculated the proportions of studies that cited the 2009 report, attempted to quantify fidelity to the 2009 report and whether studies justified their particular interpretation. Assessing the methodological quality and risk of bias of included studies in terms of the effect of their intervention on remission was not relevant to our aims or outcomes. Assessing whether poor reporting of remission definitions was linked to high risk of bias was outwith the scope of this preliminary exploration. Therefore, we did not undertake risk of bias assessment of the underlying studies in relation to the analysis they did.
RESULTS

The search identified 8966 citations, and 6772 title and abstracts underwent screening after removal of duplicates. After screening of 381 full texts against inclusion criteria, 178 studies from 33 countries met the inclusion criteria (Fig 1), comprising 164 cohort studies, eleven randomised-controlled trials, two cluster-randomised trials and one cost-effectiveness model (S4 Table). Surgical interventions were the focus of 164 (93%) studies, compared to eight (4%) pharmacological and five (2%) lifestyle interventions. One epidemiological study investigated the incidence of remission in adults in a diabetes registry [21]. The 2009 report was referenced in 70 (39%) studies and 121 (45%) of definitions. 34 (19%) studies used an alternative or additional reference. Of the 18 alternative references, different versions of the ADA diagnostic guidelines for diabetes [12] or Brethauer et al., 2015 [22] were used most frequently (S4 Table). 81 (46%) of studies did not directly reference an existing guideline or paper.

Fig 1. PRISMA diagram showing selection of studies

Variation in nomenclature and definition of remission

177 (99%) studies included one or more explicit definitions of remission, using ten different terms: partial remission; complete remission; prolonged remission; sustained remission; sustained remission of hyperglycaemia; persistent remission of hyperglycaemia; any remission of hyperglycaemia; remission; resolution and cure (S4 Table). We combined definitions named as remission, remission of hyperglycaemia and resolution into a single category (Unspecified Remission) and definitions named as prolonged remission and cure into a single category (Prolonged Remission) to create four groups. There were 266 distinct definitions extracted, since 61 (34%) studies examined more than one remission type (for example, separately defining Partial Remission and Complete Remission). Almost half of definitions were categorised as Unspecified Remission (124 definitions (47% of all definitions)), compared to the more specific terms Partial Remission (57 definitions (21%)), Complete Remission (64 definitions (24%)) and Prolonged Remission (21 definitions (8%)) (Table 2).
Table 2 Definition of remission in terms of glucose lowering therapy (GLT), time and glycaemic threshold components for all 266 definitions of remission cited

	All 3 components defined	Glucose lowering therapy (GLT)	Glycaemic Threshold	Time	
	n (%)	Absence of GLT specified n (%)	Explicit numeric threshold specified n (%)	Defined cross-sectionally n (%)	Defined longitudinally n (%)
Unspecified Remission	45 (36.3)	116 (93.5)	95 (76.6)	19 (15.3)	34 (27.4)
124 definitions (57 unique)					
Partial Remission	34 (59.6)	49 (86.0)	54 (94.7)	9 (15.7)	28 (49.1)
57 definitions (22 unique)					
Complete Remission	38 (59.4)	61 (95.3)	62 (96.9)	12 (18.8)	27 (42.2)
64 definitions (25 unique)					
Prolonged Remission	21 (100)	21 (100)	21 (100)	6 (28.6)	15 (71.4)
21 definitions (11 unique)					
Total 266 definitions (96 unique)	138 (51.9)	247 (92.9)	232 (87.2)	46 (17.3)	104 (39.1)

a. Studies can contribute more than one definition of remission, for example, because they measure both Complete Remission and Partial Remission
b. Glycaemic threshold had to be defined with an explicit numeric threshold
c. Assessing remission at one moment in time such as at one year follow-up after an intervention
d. Assessing remission after criteria have been met for a duration of time
Glucose lowering therapy

The GLT component of remission definitions was the most consistently defined. 254 (95%) definitions included a GLT component, with 247 (93%) requiring the absence of GLT and eight definitions (3%) allowing continued use of GLT (either metformin or ‘some GLT’) in their definition of remission (Table 2, Fig 2) [23-29]. One study specified that metformin prescribed for a non-type 2 diabetes indication e.g. polycystic ovarian syndrome (PCOS) need not be stopped for remission to be achieved [29].

Fig 2: Sankey diagrams showing heterogeneity in definitions of remission
(A) Unspecified Remission (B) Partial Remission (C) Complete Remission (D) Prolonged Remission
Red indicates a definition which has one or more missing (i.e. undefined or ambiguously defined) component

Glycaemic thresholds

232 (87%) definitions specified numeric glycaemic thresholds (Table 2), but with considerable heterogeneity. There were 25 unique numeric definitions of glycaemic threshold in Unspecified Remission definitions, eight in Partial Remission, eleven in Complete Remission, and nine in Prolonged Remission (Fig 2, Table 3). HbA1c was used more often than FPG and two-hour plasma glucose (2-hr PG). Of the 232 definitions that explicitly specified a numeric glycaemic threshold, 105 (45%) were based on HbA1c alone and HbA1c<42mmol/mol (6.0%) was used most frequently in 47 (20%) definitions. HbA1c <48mmol/mol (6.5%) with or without normoglycaemic interpretations of FPG (103 definitions) and HbA1c<42mmol/mol (6.0%) with or without normoglycaemic interpretations of FPG (89 definitions) were the most frequently used thresholds (S5 Table). It was not clear whether both or either of FPG and HbA1c needed to be attained in 23 definitions (S5 table). There were 27 unique ways to categorise normoglycaemia (when all categories of remission type were merged, regardless of the term used by the authors) due to variation in the glycaemic thresholds for each of HbA1c, FPG and 2 hr PG, and also the combination of glycaemic tests specified (S5 Table).
Table 3: Unique definitions for remission in terms of glucose lowering therapy (GLT), glycaemic threshold component and time components for all 266 definitions of remissions cited

Category	No. (%) of definitions which did not clearly specify each component	GLT component	Glycaemic threshold component	Time component	Full definition		
	GLT absence	Glycaemia	Time				
Unspecified Remission	6 (4.9)	29 (23.4)^a	72 (58.1)	2	25	11	57
(n=124 definitions)							
Partial Remission	3 (5.3)	3 (5.3)^b	20 (35.1)	2	8	5	22
(n=57 definitions)							
Complete Remission	2 (3.1)	2 (3.1)^c	25 (40.6)	2	11	5	25
(n=64 definitions)							
Prolonged Remission	0	0	0	1	9	2	11
(n=21 definitions)							
Total unique definitions	GLT absence: 11 (4.1)	Glycaemia 34 (12.8)	Time 117 (44.0)	3	27	13	96
(regardless of remission term)^d							

a. 13 (10.5%) definitions were missing 16 (12.9%) definitions were ambiguous as they did not state a numeric threshold
b. 3 (5.3%) definitions were ambiguous as they did not state a numeric threshold
c. 2 (3.5%) definitions were ambiguous as they did not state a numeric threshold
d. Unique definitions merged across categories. Due to overlap in unique definitions when sub-categories were merged, total is less than the sum of unique categories in each sub-category of remission.
Time

The time component was the most poorly reported component of remission definitions. It was always specified in definitions of Prolonged Remission, but not specified in 72 (58%) of Unspecified Remission definitions, 20 (35%) of Partial Remission definitions, and 25 (41%) of Complete Remission definitions (Table 3, Fig 2). When specified, the time periods defining duration of normoglycaemia ranged from 30 days to five years (Fig 2), with 17% of definitions defining time cross-sectionally (e.g. assessing remission at one moment in time such as at one year follow-up after an intervention) rather than longitudinally (e.g. absence of GLT and glycaemic threshold definitions met for a duration of one year) (Table 2). Eleven studies (13 definitions) specified a time period or follow-up of less than one year in their definitions [13,23,25,30-37] (Fig 2). We found 13 unique definitions for the time component (when all categories of remission type were merged, regardless of the term used by the authors) (Figure 2, Table 3). This was due to variation in the period of time specified, definition of time cross-sectionally or longitudinally and applying a different definition of time to the other two remission components (Fig 2).

Unique definitions

Overall, there were 96 unique definitions of remission. There were 57 unique definitions of Unspecified Remission, 22 unique definitions of Partial Remission, 25 unique definitions of Complete Remission, and eleven unique definitions of Prolonged Remission (Table 2, Fig 2). For each remission category, heterogeneity in defining glycaemic thresholds was the most frequent driver of total heterogeneity (Table 3, S1 Fig).
DISCUSSION

Since the publication of the 2009 report, our analysis of 178 studies conducted in 33 countries identified substantial heterogeneity in how remission is named and defined. We identified 96 unique definitions of remission which reflected heterogeneity in the three components relating to glucose-lowering therapy (GLT - three unique explicit definitions), glycaemic thresholds (27 unique numeric definitions) and time (13 unique explicit definitions), as well as heterogeneity in different combinations of these three components in each definition. The 2009 report was the most widely used guide in defining remission and was referenced in 121 (45%) definitions.

To our knowledge, this is the first review to systematically categorise and quantify heterogeneity of remission definitions in recent research. Previous studies have shown that the choice of glycaemic thresholds in remission definitions markedly affects the estimates of the proportion of people in remission [9, 38-42]. Despite a variety of strategies to manage heterogeneous definitions of remission, systematic reviews have acknowledged the limitations of summarising data from primary remission studies and interpreting pooled estimates [43-46]. Our findings confirm and quantify the substantial heterogeneity and ambiguity in defining the glycaemic component of remission. We additionally identify that the inconsistent definition of time creates further heterogeneity.

Strengths of the study include systematic searching, and that all screening and extraction was carried out independently by two reviewers. We used the PRISMA statement for scoping reviews to ensure clarity of reporting [19]. We had to adapt traditional PRISMA recommendations for a review assessing and evaluating a particular aspect of methodology (how remission was defined) rather than a traditional outcome focused systematic review. Potential limitations include the restriction to studies with sample sizes of over 100, and not searching for grey literature or performing a forward citation search. The review still included 178 studies with considerable heterogeneity in remission definition, but these limitations may have introduced bias. For example, smaller studies may have been carried out by practising clinicians who may have used different definitions of remission to large research studies. However, the likely direction of any bias is towards underestimating true heterogeneity in defining remission, so we do not think our conclusions would change. In restricting to English only manuscripts, we are potentially limited in our ability to draw conclusions on international practice, however our included studies still demonstrate a good distribution of
countries, so this decision may not have unduly biased the outcome of the study (S4 Table). In the registered protocol, one objective was to evaluate fidelity to the 2009 report in studies citing it. However, while carrying out the review we identified that the glycaemic component of the 2009 report is itself ambiguous in terms of: (1) whether both or either FPG and HbA1c measures are required to determine normoglycaemia (2) What constitutes normal glycaemic thresholds for Complete Remission and Prolonged Remission. (3) Whether Remission is defined as a term in its own right. This precluded a meaningful analysis of fidelity (S6 Table).

Some studies responded to this ambiguity by discussing their interpretation and implementation of the 2009 report remission definitions, [21,41,47,48] whilst others [40,49-60] did not clarify whether both or either of FPG and HbA1c were needed. The ambiguity in the 2009 report is likely to at least partly underlie the heterogeneity we observed in the definition of remission.

The findings of this review have implications for research and identifies issues for future consensus groups to consider. The 2009 report authors stated that they hoped their recommendations would stimulate discussion, implying an expectation that their proposed remission definitions would evolve. A persisting problem is the difficulty in applying discrete binary terms such as remission to a chronic disease characterised by glycaemia which is a continuous parameter [10,61]. Diagnostic thresholds for type 2 diabetes or prediabetes/intermediate hyperglycaemia have shifted in response to different interpretations of the association between glycaemia and vascular complications since the WHO first created a framework to diagnose diabetes in 1965 [62]. This review highlighted a tendency or preference in the research literature to use the word “remission” without qualification rather than “partial”, “complete” or “prolonged remission.” The complexity in defining remission and creating partial and complete subcategories mirrors the complexity in defining diabetes and prediabetes [12]/intermediate hyperglycaemia [62]. Complete remission mirrors the diagnosis of prediabetes which is in itself controversial and is not internationally consistent. We therefore suggest the alternative terms Remission of type 2 diabetes (instead of partial remission) and Remission of prediabetes (instead of complete remission) to make this clear. Creating and defining a remission of prediabetes category will be highly challenging (Table 4) and it may be worth focussing on a consensus for Remission of type 2 diabetes in the first instance. There is an argument that combining multiple patient characteristics in a risk prediction model may be an alternative approach which sidesteps the issue of creating and defining a remission state and focusses instead on minimising future vascular complications.
rather than attaining remission [61]. However, until such tools are created, clinicians rely upon naming and classifying disease states which match diagnostic classification and coding schemas [63]. Future systematic reviews and meta-analyses would ideally use meta-analysis of individual participant data to apply a consistent definition of remission to make best use of existing data.

The first step in translating research to clinical practice is to provide clinicians with guidance on diagnosing type 2 diabetes remission. Given the fundamental difficulties in categorising type 2 diabetes, thought must be given to how remission guidelines maintain consistency with diabetes diagnostic guidelines. Type 2 diabetes is diagnosed by HbA1c, or FPG, or 2-hr PG. These continuous measures of glycaemia are categorised using the following thresholds: HbA1c ≥48mmol/mol (6.5%); FPG ≥7.0mmol/l (126mg/dL); 2-hr PG ≥11.1mmol/l (200 mg/dL). As a consequence of diabetes diagnostic guidelines, the logical operator between HbA1c, FPG and 2-hr PG would ideally be AND. This would avoid the situation of a person diagnosed in remission from their type 2 diabetes based solely on an HbA1c<48mmol/mol (6.5%) (one of the most commonly used definitions of remission) whilst simultaneously meeting criteria for diabetes diagnosis if their FPG was over 7.0mmol/l (126mg/dL) [12,64]. However, achieving remission in all three glycaemic measures has substantial time and cost implications. This definition would be impractical to implement and would not be clinically appropriate in all patients (e.g. HbA1c is an inaccurate measure of glycaemia in certain patients and not easily available in all countries [64]) (Table 4). Therefore, using either HbA1c or FPG or 2-hr PG approach may be the best compromise to define remission of type 2 diabetes. Potential inconsistencies between diabetes diagnosis and remission diagnosis should, however, be specifically addressed in guidelines to avoid causing confusion amongst clinicians and patients.

People with type 2 diabetes have prioritised remission of type 2 diabetes and want more guidance about how to achieve remission and its implications [15]. This systematic review focuses on how remission has been defined in the recent literature. In doing so, we have demonstrated diverse multiple definitions of remission. If the concept of type 2 diabetes remission is to be pursued and implemented in clinical practice, then proceeding without a widely adopted consensus remission definition will be confusing for patients and clinicians alike. Heterogeneity also impedes research reproducibility, building knowledge and the provision of clear guidance to people with type 2 diabetes. This review supports the need for an international consensus definition of remission to guide both research and clinical practice.
In the meantime, any research study using ‘remission’ as an outcome should unambiguously report and justify their definition in terms of absence of GLT, glycaemic thresholds, and time.
Table 4 Proposed alternative terms for Remission of type 2 diabetes and Remission of prediabetes/intermediate hyperglycaemia

2009 report category	Proposed category	Possible definition for discussion
Partial Remission	Remission of type 2 diabetes	1. Absence of GLT required
Consensus required on GLT prescribed for non-diabetes indications e.g. metformin for PCOS
2. Normoglycaemia thresholds for diabetes diagnosis as defined by WHO and ADA applied in reverse:
- HbA1c<48mmol/mol (6.5%)[12, 64] AND
- FPG<7.0mmol/l (126mg/dL)[12, 62] AND
- 2hr PG <11.1mmol/l (200mg/dL)[12, 62]
Consensus is required on whether all available glycaemic tests must be normal given ADA and WHO diagnostic guidelines, or whether remission can be diagnosed based on the single most appropriate test for the patient (e.g. HbA1c OR FPG OR 2hr PG). If only one test is required for remission, how to manage conflicting glycaemic results e.g. HbA1c<48mmol/mol and FPG>7.0mmol/l.
3. Absence of GLT and glycaemic thresholds both met for a **duration** of time
Consensus is required on the duration required e.g. 6 months or 12 months. |
| **Complete Remission** | Remission of pre-diabetes/intermediate glycaemia* | 1. Absence of GLT required
Consensus required on GLT prescribed for non-diabetes indications e.g. metformin for PCOS
2. Normoglycaemia thresholds used for prediabetes (ADA) or intermediate glycaemia (WHO) applied in reverse:
- HbA1c threshold is disputed
 a) ADA: HbA1c <39mmol/mol (5.7%) [12]
 b) WHO: insufficient evidence [64]
- FPG threshold is disputed
 a) ADA: <5.6mmol/l (100mg/dL)[12]
 b) WHO: <6.1mmol/mol (110mg/dL)[62]
- 2hr PG <7.8mmol/l (140mg/dL)[12, 62]
Consensus required on thresholds and whether all available glycaemic tests must be normal, or whether remission can be diagnosed based on the single most appropriate test for the patient
3. Absence of GLT and glycaemic thresholds both met for a **duration** of time
Consensus is required on the duration required e.g. 6 months or 12 months. |

*Prediabetes itself is a disputed concept and a consensus definition for a remission of prediabetes/intermediate hyperglycaemia is likely to be very challenging. WHO does not use the term prediabetes and suggests Intermediate Glycaemia which can include: (1) Impaired Fasting Glucose; FPG 6.1-6.9mmol/l (110-124mg/dL) and (if measured) 2-hour plasma glucose <7.8mmol/l (140mg/dL) (2) Impaired Glucose Tolerance; FPG<7.0mmol/l (126mg/dL) and 2-hour plasma glucose>7.8 (140mg,dL) and <11.1mmol/l (200mg/dL)) [62] (page 3)
Bibliography

1. International Diabetes Federation. IDF Diabetes Atlas Brussels, Belgium: International Diabetes Federation 2017 [2020 July 30]. 8th Edition; Available from: http://www.diabetesatlas.org.
2. Butland B, Jebb S, Kopelman P, McPherson K, Thomas S, Mardell J, et al. FORESIGHT Tackling Obesities: Future Choices – Project report 2007 [2020 July 31]. 2nd Edition [1-161]. Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/287937/07-1184x-tackling-obesities-future-choices-report.pdf.
3. Commission for Healthcare Audit and Inspection. Managing diabetes: improving services for people with diabetes 2007 [cited 2020 July 30]. Available from: http://www.yearofcare.co.uk/sites/default/files/pdfs/Managing_diabetes.pdf.
4. Bommer C, Sagalova V, Heesemann E, Manne-Goehler J, Atun R, Barnighausen T, et al. Global Economic Burden of Diabetes in Adults: Projections From 2015 to 2030. Diabetes Care. 2018;41(5):963-70. doi: 10.2337/dc17-1962.
5. World Health Organization. Global Report on Diabetes 2016 [2020 July 30]. Available from: http://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf
6. Pories WJ, MacDonald KG, Jr., Morgan EJ, Sinha MK, Dohm GL, Swanson MS, et al. Surgical treatment of obesity and its effect on diabetes: 10-y follow-up. Am J Clin Nutr. 1992;55(2 Suppl):582S-5S. doi: 10.1093/ajcn/55.2.582s.
7. Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724-37. doi: 10.1001/jama.292.14.1724.
8. Buchwald H, Estok R, Fahrbach K, Banel D, Jensen MD, Pories WJ, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248-56 e5. doi: 10.1016/j.amjmed.2008.09.041.
9. Pournaras DJ, Aasheim ET, Sovik TT, Andrews R, Mahon D, Welbourn R, et al. Effect of the definition of type II diabetes remission in the evaluation of bariatric surgery for metabolic disorders. Br J Surg. 2012;99(1):100-3. doi: 10.1002/bjs.7704.
10. Buse JB, Caprio S, Cefalu WT, Ceriello A, Del Prato S, Inzucchi SE, et al. How do we define cure of diabetes? Diabetes Care. 2009;32(11):2133-5. doi: 10.2337/dc09-9036.
11. American Diabetes Association. Introduction: Standards of Medical Care in Diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S1-S2. doi: 10.2337/dc19-S1t01.
12. American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019. Diabetes Care. 2019;42(Suppl 1):S13-S28. doi: 10.2337/dc19-S002.
13. Lean ME, Leslie WS, Barnes AC, Brosnahan N, Thom G, McCombie L, et al. Primary care-led weight management for remission of type 2 diabetes (DIRECT): an open-label, cluster-randomised trial. Lancet. 2018;391(10120):541-51. doi: 10.1016/S0140-6736(17)33102-1.
14. Gregg EW, Chen H, Wagenknecht LE, Clark JM, Delahanty LM, Bantle J, et al. Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA. 2012;308(23):2489-96. doi: 10.1001/jama.2012.67929.
15. Finer S, Robb P, Cowan K, Daly A, Robertson E, Farmer A. Top ten research priorities for type 2 diabetes: results from the Diabetes UK-James Lind Alliance Priority Setting Partnership. Lancet Diabetes Endocrinol. 2017;5(12):935-6. doi: 10.1016/S2213-8587(17)30324-8.
16. Diabetes UK. Diabetes UK interim position statement on remission in adults with Type 2 diabetes 2018 [2020 July 28]. Available from: https://www.diabetes.org.uk/resources-s3/2017-12/1302_Remission Position Statement_v1_92kb.pdf
17. Nagi D, Hambling C, Taylor R. Remission of type 2 diabetes: a position statement from the Association of British Clinical Diabetologists (ABCD) and the Primary Care Diabetes Society (PCDS). Brit J Diab. 2019;19(1):73-6. doi: 10.15277/bjd.2019.221.
18. International Diabetes Federation. Recommendations For Managing Type 2 Diabetes In Primary Care 2017 [26.08.2020]. Available from: https://www.idf.org/e-library/guidelines/128-idf-clinical-practice-recommendations-for-managing-type-2-diabetes-in-primary-care.html.

19. Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann Intern Med. 2018;169(7):467-73. doi: 10.7326/M18-0850.

20. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Plos Med. 2009;6(7):e1000097. doi: 10.1371/journal.pmed.1000097.

21. Karter AJ, Nundy S, Parker MM, Moffet HH, Huang ES. Incidence of remission in adults with type 2 diabetes: the diabetes & aging study. Diabetes Care. 2014;37(12):3188-95. doi: 10.2337/dc14-0874.

22. Brethauer SA, Kim J, El Chaar M, Papasavas P, Eisenberg D, Rogers A, et al. Standardized outcomes reporting in metabolic and bariatric surgery. Obes Surg. 2015;25(4):587-606. doi: 10.1007/s11695-015-1645-3.

23. Madsen LR, Baggesen LM, Richelsen B, Thomsen RW. Effect of Roux-en-Y gastric bypass surgery on diabetes remission and complications in individuals with type 2 diabetes: a Danish population-based matched cohort study. Diabetologia. 2019;62(4):611-20. doi: 10.1007/s00125-019-4816-2.

24. van der Merwe M-T, Fetter G, Naidoo S, Wilson R, Drabble N, Gonçalves D, et al. Baseline patient profiling and three-year outcome data after metabolic surgery at a South African centre of excellence. Journal of Endocrinology, Metabolism and Diabetes of South Africa. 2015;20(3):115-26. doi: 10.1080/16089677.2015.1085700.

25. Bhasker AG, Remedios C, Batra P, Sood A, Shaikh S, Lakdawala M. Predictors of Remission of T2DM and Metabolic Effects after Laparoscopic Roux-en-y Gastric Bypass in Obese Indian Diabetics-a 5-Year Study. Obes Surg. 2015;25(7):1191-7. doi: 10.1007/s11695-014-1501-x.

26. Dicker D, Yahalom R, Comanescu DR, Vinker S. Long-Term Outcomes of Three Types of Bariatric Surgery on Obesity and Type 2 Diabetes Control and Remission. Obes Surg. 2016;26(8):1814-20. doi: 10.1007/s11695-015-2025-8.

27. Kular KS, Manchanda N, Cheema GK. Seven Years of Mini-Gastric Bypass in Type II Diabetes Patients with a Body Mass Index <35 kg/m(2). Obes Surg. 2016;26(7):1457-62. doi: 10.1007/s11695-015-1941-y.

28. Moh MC, Cheng A, Tan CH, Lim BK, Tan BC, Ng D, et al. Metabolic Surgery Diabetes Remission (MDR) Score: a New Preoperative Scoring System for Predicting Type 2 Diabetes Remission at 1 Year After Metabolic Surgery in the Singapore Multi-ethnic Asian Setting. Obes Surg. 2020. doi: 10.1007/s11695-020-04576-3.

29. Friedman AN, Wang J, Wahed AS, Docherty NG, Fenner PR, Pompl S, et al. The Association Between Kidney Disease and Diabetes Remission in Bariatric Surgery Patients With Type 2 Diabetes. Am J Kidney Dis. 2019;74(6):761-70. doi: 10.1053/j.ajkd.2019.05.013.

30. Yska JP, van Roon EN, de Boer A, Leufkens HG, Wilffert B, de Heide LJ, et al. Remission of Type 2 Diabetes Mellitus in Patients After Different Types of Bariatric Surgery: A Population-Based Cohort Study in the United Kingdom. JAMA Surg. 2015;150(12):1126-33. doi: 10.1001/jamasurg.2015.2398.

31. Nora M, Morais T, Almeida R, Guimarães M, Monteiro MP. Should Roux-en-Y gastric bypass biliopancreatic limb length be tailored to achieve improved diabetes outcomes? Medicine 2017;96(48):e8859. doi: 10.1097/MD.0000000000008859.

32. Scopinaro N, Adami GF, Bruzzi P, Cordera R. Prediction of Diabetes Remission at Long Term Following Biliopancreatic Diversion. Obes Surg. 2017;27(7):1705-8. doi: 10.1007/s11695-017-2555-3.

33. Douglas JI, Bhaskaran K, Batterham RL, Smeeth L. Bariatric Surgery in the United Kingdom: A Cohort Study of Weight Loss and Clinical Outcomes in Routine Clinical Care. PLoS Med. 2015;12(12):e1001925. doi: 10.1371/journal.pmed.1001925.
34. Arterburn D, Bogart A, Coleman KJ, Haneuse S, Selby JV, Sherwood NE, et al. Comparative effectiveness of bariatric surgery vs. nonsurgical treatment of type 2 diabetes among severely obese adults. Obes Res Clin Pract. 2013;7(4):e258-68. doi: 10.1016/j.orcp.2012.08.196.
35. Arterburn DE, Bogart A, Sherwood NE, Sidney S, Coleman KJ, Haneuse S, et al. A multisite study of long-term remission and relapse of type 2 diabetes mellitus following gastric bypass. Obesity Surgery. 2013;23(1):93-102.
36. Bohula EA, Scirica BM, Inzucchi SE, McGuire DK, Kech AC, Smith SR, et al. Effect of lorcaserin on prevention and remission of type 2 diabetes in overweight and obese patients (CAMELLIA-TIMI 61): a randomised, placebo-controlled trial. Lancet. 2018;392(10161):2269-79. doi: 10.1016/S0140-6736(18)32328-6.
37. McTigue KM, Wellman R, Nauman E, Anau J, Coley RY, Odor A, et al. Comparing the 5-Year Diabetes Outcomes of Sleeve Gastrectomy and Gastric Bypass: The National Patient-Centered Clinical Research Network (PCORNet) Bariatric Study. JAMA Surg. 2020;155(5):e200087. doi: 10.1001/jamasurg.2020.0087.
38. Ramos-Levi AM, Cabrerizo L, Matia P, Sanchez-Pernaute A, Torres AJ, Rubio MA. Which criteria should be used to define type 2 diabetes remission after bariatric surgery? BMC surgery. 2013;13:8.
39. Alhambra-Exposito MR, Molina-Puerta MJ, Prior-Sanchez MI, Manzano-Garcia G, Calanas-Continente A, Galvez-Moreno MA. Variations in diabetes remission rates after bariatric surgery in Spanish adults according to the use of different diagnostic criteria for diabetes. BMC Endocr Disord. 2017;17(1):51. doi: 10.1186/s12902-017-0201-7.
40. Pereyra-Garcia Castro FM, Oliva Garcia JG, Garcia Nunez MA, Garcia Bray BF, Suarez Llanos JP, Moneva Arce ME, et al. Efficacy in type 2 diabetes mellitus remission in patients undergoing bariatric surgery. Endocrinol Diabetes Nutr. 2019;66(1):56-61. doi: 10.1016/j.endinu.2018.08.007.
41. Blackstone R, Bunt JC, Cortes MC, Sugerman HJ. Type 2 diabetes after gastric bypass: remission in five models using HbA1c, fasting blood glucose, and medication status. Surg Obes Relat Dis. 2012;8(5):548-55. doi: 10.1016/j.soard.2012.05.005.
42. Murphy R, Clarke MG, Evennett NJ, John Robinson S, Lee Humphreys M, Hammodat H, et al. Laparoscopic Sleeve Gastrectomy Versus Banded Roux-en-Y Gastric Bypass for Diabetes and Obesity: a Prospective Randomised Double-Blind Trial. Obes Surg. 2018;28(2):293-302. doi: 10.1007/s11695-017-2872-6.
43. Panunzi S, De Gaetano A, Carnicelli A, Mingrone G. Predictors of remission of diabetes mellitus in severely obese individuals undergoing bariatric surgery: do BMI or procedure choice matter? A meta-analysis. Ann Surg. 2015;261(3):459-67. doi: 10.1097/SLA.0000000000000863. PubMed PMID: 25361217.
44. Gloy VL, Briel M, Bhatt DL, Kashyap SR, Schauer PR, Mingrone G, et al. Bariatric surgery versus non-surgical treatment for obesity: a systematic review and meta-analysis of randomised controlled trials. BMJ. 2013;347:f5934. doi: 10.1136/bmj.f5934.
45. Muller-Stich BP, Senft JD, Warschkwor R, Kenngott HG, Billeter AT, Vit G, et al. Surgical versus medical treatment of type 2 diabetes mellitus in nonseverely obese patients: a systematic review and meta-analysis. Ann Surg. 2015;261(3):421-9. doi: 10.1097/SLA.0000000000001014.
46. Rao WS, Shan CX, Zhang W, Jiang DZ, Qiu M. A meta-analysis of short-term outcomes of type 2 diabetes mellitus and BMI < = 35 kg/m2 undergoing Roux-en-Y gastric bypass. World J Surg. 2015;39(1):223-30. doi: 10.1007/s00268-014-2751-4.
47. Lee SK, Heo Y, Park JM, Kim YJ, Kim SM, Park do J, et al. Roux-en-Y Gastric Bypass vs. Sleeve Gastrectomy vs. Gastric Banding: The First Multicenter Retrospective Comparative Cohort Study in Obese Korean Patients. Yonsei Med J. 2016;57(4):956-62. doi: 10.3349/ymj.2016.57.4.956.
48. Ahuja A, Tantia O, Chaudhuri T, Khanna S, Seetharamaiah S, Majumdar K, et al. Predicting remission of diabetes post metabolic surgery: a comparison of ABCD, diarem, and DRS scores. Obes Surg. 2018;28(7):2025-31. doi: 10.1007/s11695-018-3136-9.
49. Aminian A, Daigle CR, Romero-Talamas H, Kashyap SR, Kirwan JP, Brethauer SA, et al. Risk prediction of complications of metabolic syndrome before and 6 years after gastric bypass. Surg Obes Relat Dis. 2014;10(4):576-82. doi: 10.1016/j.soard.2014.01.025.

50. Araia M, Wood M, Kroll J, Abou-Samra A, Seyoum B. Resolution of diabetes after bariatric surgery among predominantly African-American patients: race has no effect in remission of diabetes after bariatric surgery. Obes Surg. 2014;24(6):835-40. doi: 10.1007/s11695-014-1187-0.

51. Aron-Wisnewsky J, Sokolovska N, Liu Y, Comanescu DS, Vinker S, Pecht T, et al. The advanced-DiaRem score improves prediction of diabetes remission 1 year post-Roux-en-Y gastric bypass. Diabetologia. 2017;60(10):1892-902. doi: 10.1007/s00125-017-4371-7.

52. Boza C, Valderas P, Daroch DA, Leon FI, Salinas JP, Barros DA, et al. Metabolic surgery: roux-en-Y gastric bypass and variables associated with diabetes remission in patients with BMI <35. Obes Surg. 2014;24(8):1391-7. doi: 10.1007/s11695-014-1218-x.

53. Chen JC, Hsu NY, Lee WJ, Chen SC, Ser KH, Lee YC. Prediction of type 2 diabetes remission after metabolic surgery: a comparison of the individualized metabolic surgery score and the ABCD score. Surgery for Obesity and Related Diseases. 2018;14(5):640-5.

54. Craig Wood G, Horwitz D, Still CD, Mirshahi T, Benotti P, Parikh M, et al. Performance of the DiaRem Score for Predicting Diabetes Remission in Two Health Systems Following Bariatric Surgery Procedures in Hispanic and non-Hispanic White Patients. Obes Surg. 2018;28(1):61-8. doi: 10.1007/s11695-017-2799-y.

55. Hayes S, Napolitano MA, Lent MR, Wood GC, Gerhard GS, Irving BA, et al. The effect of insurance status on pre- and post-operative bariatric surgery outcomes. Obes Surg. 2015;25(1):191-4. doi: 10.1007/s11695-014-1478-5.

56. Lee WJ, Chong K, Ser KH, Chen JC, Lee YC, Chen SC, et al. C-peptide predicts the remission of type 2 diabetes after bariatric surgery. Obes Surg. 2012;22(2):293-8. doi: 10.1007/s11695-011-0565-0.

57. Prasad J, Vogels E, Dove JT, Wood C, Petrick AT, Parker DM. Is age a real or perceived discriminator for bariatric surgery? A long-term analysis of bariatric surgery in the elderly. Surg Obes Relat Dis. 2019;15(5):725-31. doi: 10.1016/j.soard.2018.12.019.

58. Still CD, Wood GC, Benotti P, Petrick AT, Gabrielsen J, Strodel WE, et al. Preoperative prediction of type 2 diabetes remission after Roux-en-Y gastric bypass surgery: a retrospective cohort study. Lancet Diabetes Endocrinol. 2014;2(1):38-45. doi: 10.1016/S2213-8587(13)70070-6.

59. Valencia A, Garcia LC, Morton J. The Impact of Ethnicity on Metabolic Outcomes After Bariatric Surgery. J Surg Res. 2019;236:345-51. doi: 10.1016/j.jss.2018.09.061.

60. Techagumpuch A, Thanavachirsin K, Udomsawaengsup S. A prospective randomized control trial: two years outcome in diabetes control after bariatric surgery comparison between laparoscopic sleeve gastrectomy and laparoscopic roux-en-Y gastric bypass. Chotmaihet thangphaet [Journal of the Medical Association of Thailand]. 2019;102(3):298-303.

61. Vickers AJ, Basch E, Kattan MW. Against diagnosis. Ann Intern Med. 2008;149(3):200-3. doi: 10.7326/0003-4819-149-3-200808050-00010.

62. World Health Organization, International Diabetes Federation. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia : report of a WHO/IDF consultation Geneva: World Health Organization; 2006 [2020 July 25]. Available from: https://apps.who.int/irishandle/10665/43588.

63. Kveim Lie A, Greene JA. From Ariadne's Thread to the Labyrinth Itself - Nosology and the Infrastructure of Modern Medicine. N Engl J Med. 2020;382(13):1273-7. doi: 10.1056/NEJMms1913140.

64. World Health Organization. Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus. Abbreviated Report of a WHO Consultation 2011 [2020 July 30]. Available from: https://www.who.int/diabetes/publications/report-hba1c_2011.pdf?ua=1.
65. Abd Ellatif ME, Abdallah E, Askar W, Thabet W, Aboushady M, Abbas AE, et al. Long term predictors of success after laparoscopic sleeve gastrectomy. Int J Surg. 2014;12(5):504-8. doi: 10.1016/j.ijsu.2014.02.008.

66. Abu-Abeid A, Lessing Y, Pencovich N, Dayan D, Klausner JM, Abu-Abeid S. Diabetes resolution after one anastomosis gastric bypass. Surg Obes Relat Dis. 2018;14(2):181-5. doi: 10.1016/j.soard.2017.10.023.

67. Adams TD, Davidson LE, Litwin SE, Kolotkin RL, LaMonte MJ, Pendleton RC, et al. Health benefits of gastric bypass surgery after 6 years. JAMA. 2012;308(11):1122-31. doi: 10.1001/2012.jama.11164.

68. Al-Khyatt W, Bull CA, Awad S, Ahmed J. Laparoscopic Roux en-Y Gastric Bypass Using a Modified Retrocolic-Supracolic Approach: Outcomes from 300 Patients. World J Surg. 2016;40(8):1918-24. doi: 10.1007/s00268-016-3478-1.

69. Almalki OM, Lee WJ, Chong K, Ser KH, Lee YC, Chen SC. Laparoscopic gastric bypass for the treatment of type 2 diabetes: a comparison of Roux-en-Y versus single anastomosis gastric bypass. Surg Obes Relat Dis. 2018;14(4):509-15. doi: 10.1016/j.soard.2017.12.022.

70. Al-Sabah S, Almaseedi S, Alosaimi S, Al-Mulla A, Ali DAM, Al-Elewah A, et al. Remission of Type 2 diabetes mellitus after laparoscopic sleeve gastrectomy. World Journal of Laparoscopic Surgery. 2014;7(3):121-4.

71. Aminian A, Vidal J, Salminen P, Still CD, Nor Hanipah Z, Sharma G, et al. Late Relapse of Diabetes After Bariatric Surgery: Not Rare, but Not a Failure. Diabetes Care. 2020;43(3):534-40. doi: 10.2337/dc19-1057.

72. Aminian A, Brethauer SA, Andalib A, Nowacki AS, Jimenez A, Corcelles R, et al. Individualized Metabolic Surgery Score: Procedure Selection Based on Diabetes Severity. Ann Surg. 2017;266(4):650-7. doi: 10.1097/SLA.0000000000002407.

73. Aminian A, Brethauer SA, Andalib A, Punchai S, Mackey J, Rodriguez J, et al. Can Sleeve Gastrectomy "Cure" Diabetes? Long-term Metabolic Effects of Sleeve Gastrectomy in Patients With Type 2 Diabetes. Ann Surg. 2016;264(4):674-81. doi: 10.1097/SLA.0000000000001857.

74. Ardestani A, Rhoads D, Tavakkoli A. Insulin cessation and diabetes remission after bariatric surgery in adults with insulin-treated type 2 diabetes. Diabetes Care. 2015;38(4):659-64. doi: 10.2337/dc14-1751.

75. Aung L, Lee WJ, Chen SC, Ser KH, Wu CC, Chong K, et al. Bariatric Surgery for Patients With Early-Onset vs Late-Onset Type 2 Diabetes. JAMA Surg. 2016;151(9):798-805. doi: 10.1001/jamasurg.2016.1130.

76. Bayham BE, Greenway FL, Bellanger DE, O’Neil CE. Early resolution of type 2 diabetes seen after Roux-en-Y gastric bypass and vertical sleeve gastrectomy. Diabetes Technol Ther. 2012;14(1):30-4. doi: 10.1089/dia.2011.0151.

77. Bebehanehi F, Ammori BJ, New JP, Summers LK, Soran H, Syed AA. Metabolic outcomes 2 years following gastric bypass surgery in people with type 2 diabetes: an observational cohort study. QJM. 2014;107(9):721-6. doi: 10.1093/qjmed/hcu060.

78. Bhasker AG, Dixon JB, Lakdawala M. Selection of Bypass vs Sleeve for the Management of Type-2 Diabetes in Severely Obese: Could Ethnicity Play a Role? Obes Surg. 2018;28(10):3073-9. doi: 10.1007/s11695-018-3294-9.

79. Biertho L, Lebel S, Marceau S, Hould FS, Lesclaurer O, Marceau P, et al. Laparoscopic sleeve gastrectomy: with or without duodenal switch? A consecutive series of 800 cases. Dig Surg. 2014;31(1):48-54. doi: 10.1159/000354313.

80. Brethauer SA, Aminian A, Romero-Talamas H, Batayyah E, Mackey J, Kennedy L, et al. Can diabetes be surgically cured? Long-term metabolic effects of bariatric surgery in obese patients with type 2 diabetes mellitus. Annals of Surgery. 2013;258(4):628-36.

81. Bruno G, Gruden G, Barussi M, Cavallari Perin P, Morino M, Toppino M. What is the impact of sleeve gastrectomy and gastric bypass on metabolic control of diabetes? A clinic-based cohort of Mediterranean diabetic patients. Surgery for Obesity and Related Diseases. 2015;11(5):1014-9.
82. Camerini GB, Papadia FS, Carlini F, Catalano M, Adami GF, Scopinaro N. The long-term impact of biliopancreatic diversion on glycemic control in the severely obese with type 2 diabetes mellitus in relation to preoperative duration of diabetes. Surg Obes Relat Dis. 2016;12(2):345-9. doi: 10.1016/j.soard.2015.05.012.

83. Chen A, Huang Z, Wan X, Deng W, Wu J, Li L, et al. Attitudes toward diabetes affect maintenance of drug-free remission in patients with newly diagnosed type 2 diabetes after short-term continuous subcutaneous insulin infusion treatment. Diabetes Care. 2012;35(3):474-81. doi: 10.2337/dc11-1638.

84. Chen Y, Corsino L, Shantavasinkul PC, Grant J, Portenier D, Ding L, et al. Gastric Bypass Surgery Leads to Long-term Remission or Improvement of Type 2 Diabetes and Significant Decrease of Microvascular and Macrovascular Complications. Ann Surg. 2016;263(6):1138-42. doi: 10.1097/SLA.0000000000001509.

85. Chikunguwo SM, Wolfe LG, Dodson P, Meador JG, Baugh N, Clore JN, et al. Analysis of factors associated with durable remission of diabetes after Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2010;6(3):254-9. doi: 10.1016/j.soard.2009.11.003.

86. Cottam A, Cottam D, Zaveri H, Cottam S, Surve A, Medlin W, et al. An Analysis of Mid-Term Complications, Weight Loss, and Type 2 Diabetes Resolution of Stomach Intestinal Pylorus-Sparing Surgery (SIPS) Versus Roux-En-Y Gastric Bypass (RYGB) with Three-Year Follow-Up. Obes Surg. 2018;28(9):2894-902. doi: 10.1007/s11695-018-3309-6.

87. Courcoulas AP, King WC, Belle SH, Berk P, Flum DR, Garcia L, et al. Seven-Year Weight Trajectories and Health Outcomes in the Longitudinal Assessment of Bariatric Surgery (LABS) Study. JAMA Surg. 2018;153(5):427-34. doi: 10.1001/jamasurg.2017.5025.

88. Dambha-Miller H, Day AJ, Strelitz J, Irving G, Griffin SJ. Behaviour change, weight loss and remission of Type 2 diabetes: a community-based prospective cohort study. Diabet Med. 2020;37(4):681-8. doi: 10.1111/dme.14122.

89. Dang JT, Sheppard C, Kim D, Switzer N, Shi X, Tian C, et al. Predictive factors for diabetes remission after bariatric surgery. Can J Surg. 2019;62(5):315-9. doi: 10.1503/cjs.014516.

90. Davies SW, Efird JT, Guidry CA, Penn RI, Sawyer RG, Schirmer BD, et al. Long-term diabetic response to gastric bypass. J Surg Res. 2014;62(5):315-9. doi: 10.1016/j.jss.2014.01.047.

91. Debedat J, Sokolovska N, Coupaye M, Panunzi S, Chakaroun R, Genser L, et al. Long-term Relapse of Type 2 Diabetes After Roux-en-Y Gastric Bypass: Prediction and Clinical Relevance. Diabetes Care. 2018;41(10):2086-95. doi: 10.2337/dc18-0567.

92. De Oliveira VLP, Martins GP, Mottin CC, Rizzolli J, Friedman R. Predictors of Long-Term Remission and Relapse of Type 2 Diabetes Mellitus Following Gastric Bypass in Severely Obese Patients. Obes Surg. 2018;28(1):195-203. doi: 10.1007/s11695-017-2830-3.

93. Dicker D, Golan R, Aron-Wisnewsky J, Zucker JD, Sokolowska N, Canoneshter DS, et al. Prediction of Long-Term Diabetes Remission After RYGB, Sleeve Gastrectomy, and Adjustable Gastric Banding Using DiaRem and Advanced-DiaRem Scores. Obes Surg. 2019;29(3):796-804. doi: 10.1007/s11695-018-3583-3.

94. Dixon JB, Chuang LM, Chong K, Chen SC, Lambert GW, Straznicky NE, et al. Predicting the glycemic response to gastric bypass surgery in patients with type 2 diabetes. Diabetes Care. 2013;36(1):20-6. doi: 10.2337/dc12-0779.

95. Dorman RB, Serrot FJ, Miller CJ, Slusarek BM, Sampson BK, Buchwald H, et al. Case-matched outcomes in bariatric surgery for treatment of type 2 diabetes in the morbidly obese patient. Ann Surg. 2012;255(2):287-93. doi: 10.1097/SLA.0b013e318232b033.

96. Du X, Fu XH, Shi L, Hu JK, Zhou ZG, Cheng Z. Effects of Laparoscopic Roux-en-Y Gastric Bypass on Chinese Type 2 Diabetes Mellitus Patients with Different Levels of Obesity: Outcomes After 3 Years’ Follow-Up. Obes Surg. 2018;28(3):702-11. doi: 10.1007/s11695-017-2903-3.

97. Durmush EK, Ermerak G, Durmush D. Short-term outcomes of sleeve gastrectomy for morbid obesity: Does staple line reinforcement matter? Obesity Surgery. 2014;24(7):1109-16.
98. Egan RJ, Johnson AB, Morgan JDT, Norton SA. The Impact of Laparoscopic Adjustable Gastric Banding on an NHS Cohort of Type 2 Diabetics: a Prospective Cohort Study. Obes Surg. 2016;26(9):2006-13. doi: 10.1007/s11695-015-2039-2.

99. English TM, Malkani S, Kinney RL, Omer A, Dzwietin MB, Perugini R. Predicting remission of diabetes after RYGB surgery following intensive management to optimize preoperative glucose control. Obes Surg. 2015;25(1):1-6. doi: 10.1007/s11695-014-1339-2.

100. Esposito K, Maiorino MI, Petrizzo M, Bellastella G, Giugliano D. The effects of a Mediterranean diet on the need for diabetes drugs and remission of newly diagnosed type 2 diabetes: follow-up of a randomized trial. Diabetes Care. 2014;37(7):1824-30. doi: 10.2337/dc13-2899.

101. Finno P, Osorio J, Garcia-Ruiz-de-Gordejuela A, Casajoana A, Sorribas M, Admella V, et al. Single Versus Double-Anastomosis Duodenal Switch: Single-Site Comparative Cohort Study in 440 Consecutive Patients. Obes Surg. 2020. doi: 10.1007/s11695-020-04566-5.

102. Girundi MG. Type 2 Diabetes Mellitus remission eighteen months after Roux-en-Y gastric bypass. Rev Col Bras Cir. 2016;43(3):149-53. doi: 10.1590/0100-69912016003002.

103. Guerreiro V, Neves JS, Salazar D, Ferreira MJ, Oliveira SC, Soutiro P, et al. Long-Term Weight Loss and Metabolic Syndrome Remission after Bariatric Surgery: The Effect of Sex, Age, Metabolic Parameters and Surgical Technique - A 4-Year Follow-Up Study. Obes Facts. 2019;12(6):639-52. doi: 10.1159/000503753.

104. Gullick AA, Graham LA, Richman J, Kakade M, Stahl R, Grams J. Association of race and socioeconomic status with outcomes following laparoscopic Roux-en-Y gastric bypass. Obes Surg. 2015;25(4):705-11. doi: 10.1007/s11695-014-1447-z.

105. Gulliford MC, Booth HP, Reddy M, Charlton J, Fildes A, Prevost AT, et al. Effect of Contemporary Bariatric Surgical Procedures on Type 2 Diabetes Remission. A Population-Based Matched Cohort Study. Obes Surg. 2016;26(10):2308-15. doi: 10.1007/s11695-016-2103-6.

106. Hall TC, Pellen MG, Sedman PC, Jain PK. Preoperative factors predicting remission of type 2 diabetes mellitus after Roux-en-Y gastric bypass surgery for obesity. Obes Surg. 2010;20(9):1245-50. doi: 10.1007/s11695-010-0198-8.

107. Haider KS, Haider A, Saad F, Doros G, Hanefeld M, Dhindsa S, et al. Remission of type 2 diabetes following long-term treatment with injectable testosterone undecanoate in patients with hypogonadism and type 2 diabetes: 11-year data from a real-world registry study. Diabetes Obes Metab. 2020;19. doi: 10.1111/dob.14122.

108. Hariri K, Guevara D, Jayaram A, Kini SU, Herron DM, Fernandez-Ranvier G. Preoperative insulin therapy as a marker for type 2 diabetes remission in obese patients after bariatric surgery. Surg Obes Relat Dis. 2018;14(3):332-7. doi: 10.1016/j.soard.2017.11.016.

109. Haruta H, Kasama K, Ohta M, Sasaki A, Yamamoto H, Miyazaki Y, et al. Long-Term Outcomes of Bariatric and Metabolic Surgery in Japan: Results of a Multi-Institutional Survey. Obes Surg. 2017;27(3):754-62. doi: 10.1007/s11695-016-2361-3.

110. Hatoum U, Blackstone R, Hunter TD, Francis DM, Steinbuch M, Harris JL, et al. Clinical Factors Associated With Remission of Obesity-Related Comorbidities After Bariatric Surgery. JAMA Surg. 2016;151(2):130-7. doi: 10.1001/jamasurg.2015.3231.

111. Hayes MT, Hunt LA, Foo J, Tychinska, Y, Stubbs RS. A model for predicting the resolution of type 2 diabetes in severely obese subjects following Roux-en Y gastric bypass surgery. Obes Surg. 2011;21(7):910-6. doi: 10.1007/s11695-011-0370-9.

112. Hoerger TJ, Zhang P, Segel JE, Kahn HS, Barker LE, Couper S. Cost-effectiveness of bariatric surgery for severely obese adults with diabetes. Diabetes Care. 2010;33(9):1933-9. doi: 10.2337/dc10-0554.

113. Hofso D, Fatima F, Borgeraas H, Birkeland Kl, Gulseth HL, Hertel JK, et al. Gastric bypass versus sleeve gastrectomy in patients with type 2 diabetes (Oseberg): a single-centre, triple-blind, randomised controlled trial. Lancet Diabetes Endocrinol. 2019;7(12):912-24. doi: 10.1016/S2213-8587(19)30344-4.
114. Honarmand K, Chetty K, Vanniyasingam T, Anvari M, Chetty VT. Type 2 diabetes remission rates 1-year post-Roux-en-Y gastric bypass and validation of the DiaRem score: the Ontario Bariatric Network experience. Clin Obes. 2017;7(3):176-82. doi: 10.1111/cob.12189.
115. Hsu CC, Almulaiﬁ A, Chen JC, Ser KH, Chen SC, Hsu KC, et al. Effect of Bariatric Surgery vs Medical Treatment on Type 2 Diabetes in Patients With Body Mass Index Lower Than 35: Five-Year Outcomes. JAMA Surg. 2015;150(12):1117-24. doi: 10.1001/jamasurg.2015.2602.
116. Hussain A, El-Hasani S. Short- and Mid-term Outcomes of 527 One Anastomosis Gastric Bypass/Mini-Gastric Bypass (OAGB/MGB) Operations: Retrospective Study. Obes Surg. 2019;29(1):262-7. doi: 10.1007/s11695-018-3516-1.
117. Iacobellis G, Xu C, Campo RE, De La Cruz-Munoz NF. Predictors of short-term diabetes remission after laparoscopic Roux-en-Y gastric bypass. Obes Surg. 2015;25(5):782-7. doi: 10.1007/s11695-014-1477-6.
118. Ikramuddin S, Korner J, Lee WJ, Bantle JP, Thomas AJ, Connett JE, et al. Durability of Addition of Roux-en-Y Gastric Bypass to Lifestyle Intervention and Medical Management in Achieving Primary Treatment Goals for Uncontrolled Type 2 Diabetes in Mild to Moderate Obesity: A Randomized Control Trial. Diabetes Care. 2016;39(9):1510-8. doi: 10.2337/dc15-2481.
119. Inabnet WB, 3rd, Winegar DA, Sherif B, Sarr MG. Early outcomes of bariatric surgery in patients with metabolic syndrome: an analysis of the bariatric outcomes longitudinal database. J Am Coll Surg. 2012;214(4):550-6; discussion 6-7. doi: 10.1016/j.jamcollsurg.2011.12.019.
120. Jakobsen GS, Smastuen MC, Sandbu R, Nordstrand N, Hofso D, Lindberg M, et al. Association of Bariatric Surgery vs Medical Obesity Treatment With Long-term Medical Complications and Obesity-Related Comorbidities. JAMA. 2018;319(3):291-301. doi: 10.1001/jama.2017.21055.
121. Jans A, Naslund I, Ottosson J, Szabo E, Naslund E, Stenberg E. Duration of type 2 diabetes and remission rates after bariatric surgery in Sweden 2007-2015: A registry-based cohort study. PLoS Med. 2019;16(11):e1002985. doi: 10.1371/journal.pmed.1002985. PubMed PMID: 31747392.
122. Jimenez A, Casamitjana R, Flores L, Viaplana J, Corcelles R, Lacy A, et al. Long-term effects of sleeve gastrectomy and Roux-en-Y gastric bypass surgery on type 2 diabetes mellitus in morbidly obese subjects. Ann Surg. 2012;256(6):1023-9. doi: 10.1097/SLA.0b013e318262ee6b.
123. Jimenez A, Ceriello A, Casamitjana R, Flores L, Viaplana-Masclans J, Vidal J. Remission of type 2 diabetes after Roux-en-Y gastric bypass or sleeve gastrectomy is associated with a distinct glycemic profile. Ann Surg. 2015;261(2):316-22. doi: 10.1097/SLA.0000000000000586.
124. Jonsson E, Ornstein P, Goine H, Hedenbro JL. Diabetes Resolution and Work Absenteeism After Gastric Bypass: a 6-Year Study. Obes Surg. 2017;27(9):2246-52. doi: 10.1007/s11695-017-2642-5.
125. Kaska L, Proczko M, Kobiela J, Stefaniak TJ, ledzinski Z. Dynamics of type 2 diabetes mellitus laboratory remission after Roux-en-Y gastric bypass in patients with body mass index lower than 35 kg/m2 and higher than 35 kg/m2 in a 3-year observation period. Wideochirurgia I Inne Techniki Maloinwazyjne. 2014;9(4):523-30.
126. Khalaj A, Mousapour P, Motamed MAK, Mahdavi M, Valizadeh M, Hosseinpanah F, et al. Comparing the Efficacy and Safety of Roux-en-Y Gastric Bypass with One-Anastomosis Gastric Bypass with a Bilipancreatic Limb of 200 or 160 cm: 1-Year Results of the Tehran Obesity Treatment Study (TOTS). Obes Surg. 2020. doi: 10.1007/s11695-020-04681-3.
127. Kim JW, Cheong JH, Hyung WJ, Choi SH, Noh SH. Outcome after gastrectomy in gastric cancer patients with type 2 diabetes. World J Gastroenterol. 2012;18(1):49-54. doi: 10.3748/wjg.v18.i1.49. PubMed Central PMCID: PMCPMC3251805.
128. Kim S, Richards WO. Long-term follow-up of the metabolic proﬁles in obese patients with type 2 diabetes mellitus after Roux-en-Y gastric bypass. Ann Surg. 2010;251(6):1049-55. doi: 10.1097/SLA.0b013e3181d9769b.
129. Kothari SN, Borgert AJ, Kallies KJ, Baker MT, Grover BT. Long-term (>10-year) outcomes after laparoscopic Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2017;13(6):972-8. doi: 10.1016/j.soard.2016.12.011.
130. Lager CJ, Esfandiari NH, Luo Y, Subauste AR, Kraftson AT, Brown MB, et al. Metabolic Parameters, Weight Loss, and Comorbidities 4 Years After Roux-en-Y Gastric Bypass and Sleeve Gastrectomy. Obes Surg. 2018;28(11):3415-23. doi: 10.1007/s11695-018-3346-1.

131. Lean MEJ, Leslie WS, Barnes AC, Brosnahan N, Thom G, McCombie L, et al. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol. 2019;7(5):344-55. doi: 10.1016/S2213-8587(19)30068-3.

132. Lee MH, Lee WJ, Chong K, Chen JC, Ser KH, Lee YC, et al. Predictors of long-term diabetes remission after metabolic surgery. J Gastrointest Surg. 2015;19(6):1015-21. doi: 10.1007/s11605-015-2808-1.

133. Lee PC, Tham KW, Ganguly S, Tan HC, Eng AKH, Dixon JB. Ethnicity Does Not Influence Glycemic Outcomes or Diabetes Remission After Sleeve Gastrectomy or Gastric Bypass in a Multiethnic Asian Cohort. Obes Surg. 2018;28(6):1511-8. doi: 10.1007/s11695-017-3050-6.

134. Lee W, Ahn SH, Lee JH, Park DJ, Lee HJ, Kim HH, et al. Comparative study of diabetes mellitus resolution according to reconstruction type after gastrectomy in gastric cancer patients with diabetes mellitus. Obes Surg. 2012;22(8):1238-43. doi: 10.1007/s11695-011-0580-1.

135. Lee WJ, Almulaifi A, Chong K, Chen SC, Tsou JJ, Ser KH, et al. The Effect and Predictive Score of Gastric Bypass and Sleeve Gastrectomy on Type 2 Diabetes Mellitus Patients with BMI < 30 kg/m². Obes Surg. 2015;25(10):1772-8. doi: 10.1007/s11695-015-1603-0.

136. Lee WJ, Almulaifi A, Chong K, Yao WC, Tsou JJ, Ser KH, et al. Bariatric versus diabetes surgery after five years of follow up. Asian J Surg. 2016;39(2):96-102. doi: 10.1016/j.asjsur.2015.04.001.

137. Lee WJ, Chong K, Aung L, Chen SC, Ser KH, Lee YC. Metabolic Surgery for Diabetes Treatment: Sleeve Gastrectomy or Gastric Bypass? World J Surg. 2017;41(1):216-23. doi: 10.1007/s00268-016-3690-z.

138. Lee WJ, Chong K, Chen SC, Zachariah J, Ser KH, Lee YC, et al. Preoperative Prediction of Type 2 Diabetes Remission After Gastric Bypass Surgery: a Comparison of DiaRem Scores and ABCD Scores. Obes Surg. 2016;26(10):2418-24. doi: 10.1007/s11695-016-2120-5.

139. Lee WJ, Hur KY, Lakadawala M, Kasama K, Wong SK, Chen SC, et al. Predicting success of metabolic surgery: age, body mass index, C-peptide, and duration score. Surg Obes Relat Dis. 2013;9(3):379-84. doi: 10.1016/j.soard.2012.07.015.

140. Lemos R, Karni D, Hong D, Gmora S, Breau R, Anvari M. The impact of bariatric surgery on insulin-treated type 2 diabetes patients. Surg Endosc. 2018;32(2):990-1001. doi: 10.1007/s00464-017-5777-5.

141. Liang H, Cao Q, Liu H, Guan W, Wong C, Tong D. The Predictive Factors for Diabetic Remission in Chinese Patients with BMI > 30 kg/m² and BMI < 30 kg/m² Are Different. Obes Surg. 2018;28(7):1943-9. doi: 10.1007/s11695-017-3106-7.

142. Liang Z, Wu Q, Chen B, Yu P, Zhao H, Ouyang X. Effect of laparoscopic Roux-en-Y gastric bypass surgery on type 2 diabetes mellitus with hypertension: a randomized controlled trial. Diabetes Res Clin Pract. 2015;108(2):250-7. doi: 10.1016/j.diabres.2015.04.005.

143. Liu J, Liu J, Fang D, Liu L, Huang Z, Wan X, et al. Fasting plasma glucose after intensive insulin therapy predicted long-term glycemic control in newly diagnosed type 2 diabetic patients. Endocr J. 2013;60(6):725-32. doi: 10.1507/endocr.j.ej12-0315.

144. Liu L, Ke W, Wan X, Zhang P, Cao X, Deng W, et al. Insulin requirement profiles of short-term intensive insulin therapy in patients with newly diagnosed type 2 diabetes and its association with long-term glycemic remission. Diabetes Res Clin Pract. 2015;108(2):250-7. doi: 10.1016/j.diabres.2015.02.011.

145. Mathew L, Killimozh D, Parimala Krishnan S, Ismail M. Effect of metabolic surgery on type 2 diabetes remission: A matched group analysis. International Journal of Pharmacy and Pharmaceutical Sciences. 2015;7(9):206-9.
146. Mathew L, Kilimozhi D, Parimala Krishnan S, Ismail M. Metabolic effects of three different bariatric procedures—a retrospective study. International Journal of Pharmacy and Pharmaceutical Sciences. 2015;7(11):278-82.

147. Mu PW, Chen YM, Lu HY, Wen XQ, Zhang YH, Xie RY, et al. Effects of a combination of oral anti-diabetes drugs with basal insulin therapy on beta-cell function and glycaemic control in patients with newly diagnosed type 2 diabetes. Diabetes Metab Res Rev. 2012;28(3):236-40. doi: 10.1002/dmrr.1292.

148. Musella M, Susa A, Greco F, De Luca M, Manno E, Di Stefano C, et al. The laparoscopic mini-gastric bypass: the Italian experience: outcomes from 974 consecutive cases in a multicenter review. Surg Endosc. 2014;28(1):156-63. doi: 10.1007/s00464-013-3141-y.

149. Musella M, Apers J, Rheinwalt K, Ribeiro R, Manno E, Greco F, et al. Efficacy of Bariatric Surgery in Type 2 Diabetes Mellitus Remission: the Role of Mini Gastric Bypass/One Anastomosis Gastric Bypass and Sleeve Gastrectomy at 1 Year of Follow-up. A European survey. Obes Surg. 2016;26(5):933-40. doi: 10.1007/s11695-015-1865-6.

150. Naitoh T, Kasama K, Seki Y, Ohta M, Oshiro T, Sasaki A, et al. Efficacy of Sleeve Gastrectomy with Duodenal-Jejunal Bypass for the Treatment of Obese Severe Diabetes Patients in Japan: a Retrospective Multicenter Study. Obes Surg. 2018;28(2):497-505. doi: 10.1007/s11695-017-2874-4.

151. Ng J, Seip R, Stone A, Ruano G, Tishler D, Papasavas P. Ethnic variation in weight loss, but not co-morbidity remission, after laparoscopic gastric banding and Roux-en-Y gastric bypass. Surgery for Obesity and Related Diseases. 2015;11(1):94-100.

152. Nor Hanipah Z, Hsin MC, Liu CC, Huang CK. Laparoscopic loop duodenaljejunal bypass with sleeve gastrectomy in type 2 diabetic patients. Surg Obes Relat Dis. 2019;15(5):696-702. doi: 10.1016/j.soard.2019.01.016.

153. O’Rourke RW, Johnson GS, Purnell JQ, Courcoulas AP, Dakin GF, Garcia L, et al. Serum biomarkers of inflammation and adiposity in the LABS cohort: associations with metabolic disease and surgical outcomes. Int J Obes (Lond). 2019;43(2):285-96. doi: 10.1038/s41366-018-0088-z. PubMed PMID: 29777230; PubMed Central PMCID: PMCPMC6240401.

154. Panunzi S, Carlsson L, De Gaetano A, Peltonen M, Rice T, Sjostrom L, et al. Determinants of Diabetes Remission and Glycemic Control After Bariatric Surgery. Diabetes Care. 2016;39(1):166-74. doi: 10.2337/dc15-0575.

155. Park JY, Kim YJ. Prediction of Diabetes Remission in Morbidly Obese Patients After Roux-en-Y Gastric Bypass. Obes Surg. 2016;26(4):749-56.

156. Park JY, Kim YJ. Laparoscopic Roux-en-Y gastric bypass in obese Korean patients: efficacy and potential adverse events. Surg Today. 2016;46(3):348-55. doi: 10.1007/s00595-015-1170-y.

157. Pessoa BM, Browning MG, Mazzini GS, Wolfe L, Kaplan A, Khoraki J, et al. Factors Mediating Type 2 Diabetes Remission and Relapse after Gastric Bypass Surgery. J Am Coll Surg. 2020;230(1):7-16. doi: 10.1016/j.jamcollsurg.2019.09.012.

158. Pucci A, Tymoszuk U, Cheung WH, Makaronidis JM, Scholes S, Tharakan G, et al. Type 2 diabetes remission 2 years post Roux-en-Y gastric bypass and sleeve gastrectomy: the role of the weight loss and comparison of DiaRem and DiaBetter scores. Diabet Med. 2018;35(3):360-7. doi: 10.1111/dme.13532.

159. Purnell JQ, Selzer F, Wahed AS, Pender J, Pories W, Pomp A, et al. Type 2 Diabetes Remission Rates After Laparoscopic Gastric Bypass and Gastric Banding: Results of the Longitudinal Assessment of Bariatric Surgery Study. Diabetes Care. 2016;39(7):1101-7. doi: 10.2337/dc15-2138.

160. Ramos-Levi AM, Matia P, Cabrerizo L, Barabash A, Sanchez-Pernaute A, Calle-Pascual AL, et al. Statistical models to predict type 2 diabetes remission after bariatric surgery. J Diabetes. 2014;6(5):472-7. doi: 10.1111/1753-0407.12127.

161. Ramos-Levi AM, Sanchez-Pernaute A, Cabrerizo L, Matia P, Barabash A, Hernandez C, et al. Remission of type 2 diabetes mellitus should not be the foremost goal after bariatric surgery. Obes Surg. 2013;23(12):2020-5.
162. Ruiz-Tovar J, Carbajo MA, Jimenez JM, Castro MJ, Gonzalez G, Ortiz-de-Solorzano J, et al. Long-term follow-up after sleeve gastrectomy versus Roux-en-Y gastric bypass versus one-anastomosis gastric bypass: a prospective randomized comparative study of weight loss and remission of comorbidities. Surg Endosc. 2019;33(2):401-10. doi: 10.1007/s00464-018-6307-9.

163. Samuel N, Jalal Q, Gupta A, Mazari F, Vasas P, Balachandra S. Mid-term bariatric surgery outcomes for obese patients: does weight matter? Ann R Coll Surg Engl. 2020;102(1):54-61. doi: 10.1308/rcsann.2019.0100.

164. Santoro S, Castro LC, Velhote MC, Malzioni CE, Klajner S, Castro LP, et al. Sleeve gastrectomy with transit bipartition: a potent intervention for metabolic syndrome and obesity. Ann Surg. 2012;256(1):104-10. doi: 10.1097/SLA.0b013e31825370c0.

165. Scally CP, Varban OA, Carlin AM, Birmeyer JD, Dimick JB, Michigan Bariatric Surgery C. Video Ratings of Surgical Skill and Late Outcomes of Bariatric Surgery. JAMA Surg. 2016;151(6):e160428. doi: 10.1001/jamasurg.2016.0428.

166. Schoeera A, Kasten K, Celio A, Pories W, Spaniolas K. The effect of close postoperative follow-up on co-morbidity improvement after bariatric surgery. Surg Obes Relat Dis. 2017;13(8):1347-52. doi: 10.1016/j.soard.2017.03.024.

167. Seki Y, Kasama K, Haruta H, Watanabe A, Yokoyama R, Porciuncula JP, et al. Five-Year-Results of Laparoscopic Sleeve Gastrectomy with Duodenojejunal Bypass for Weight Loss and Type 2 Diabetes Mellitus. Obes Surg. 2017;27(3):795-801. doi: 10.1007/s11695-016-2372-0.

168. Sepulveda M, Alamo M, Preiss Y, Valderas JP. Metabolic Surgery Comparing Sleeve Gastrectomy with Jejunal Bypass and Roux-en-Y Gastric Bypass in Type 2 Diabetic Patients After 3 Years. Obes Surg. 2018;28(11):3466-73. doi: 10.1007/s11695-018-3402-x.

169. Ser KH, Lee WJ, Chen JC, Tsai PL, Chen SC, Lee YC. Laparoscopic single-anastomosis duodenal-jejunal bypass with sleeve gastrectomy (SADJB-SG): Surgical risk and long-term results. Surg Obes Relat Dis. 2019;15(2):236-43. doi: 10.1016/j.soard.2018.11.020.

170. Shah K, Johnny Nergard B, Stray Frazier K, Geir Leifsson B, Aghajani E, Gislason H. Long-term effects of laparoscopic Roux-en-Y gastric bypass on metabolic syndrome in patients with morbid obesity. Surg Obes Relat Dis. 2016;12(8):1449-56. doi: 10.1016/j.soard.2016.03.017.

171. Shen SC, Wang W, Tam KW, Chen HA, Lin YK, Wang SY, et al. Validating Risk Prediction Models of Diabetes Remission After Sleeve Gastrectomy. Obes Surg. 2019;29(1):221-9. doi: 10.1007/s11695-018-3510-7.

172. Shi X, Shi Y, Chen N, Lin M, Su W, Zhang H, et al. Effect of exenatide after short-time insulin therapy on glycaemic remission maintenance in type 2 diabetes patients: a randomized controlled trial. Sci Rep. 2017;7(1):2383. doi: 10.1038/s41598-017-02631-1.

173. Sjoholm K, Pajunen P, Jacobson P, Karason K, Sjostrom CD, Torgerson J, et al. Incidence and remission of type 2 diabetes in relation to degree of obesity at baseline and 2 year weight change: the Swedish Obese Subjects (SOS) study. Diabetologia. 2015;58(7):1448-53. doi: 10.1007/s00125-015-3591-y.

174. Sjostrom L, Peltonen M, Jacobson P, Ahlin S, Andersson-Assarsson J, Anveden A, et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA. 2014;311(22):2297-304. doi: 10.1001/jama.2014.5988.

175. Souto P, Belo S, Magalhaes D, Pedro J, Neves JS, Oliveira SC, et al. Long-term diabetes outcomes after bariatric surgery-managing medication withdrawal. Int J Obes (Lond). 2019;43(11):2217-24. doi: 10.1038/s41366-019-0320-5.

176. Souto P, Belo S, Neves JS, Magalhaes D, Silva RB, Oliveira SC, et al. Preoperative Beta Cell Function Is Predictive of Diabetes Remission After Bariatric Surgery. Obes Surg. 2017;27(2):288-94. doi: 10.1007/s11695-016-2300-3.

177. Still CD, Benotti P, Mirshahi T, Cook A, Wood GC. DiaRem2: Incorporating duration of diabetes to improve prediction of diabetes remission after metabolic surgery. Surg Obes Relat Dis. 2019;15(5):717-24. doi: 10.1016/j.soard.2018.12.020.
178. Sudan R, Jain-Spangler K. Tailoring Bariatric Surgery: Sleeve Gastrectomy, Roux-en-Y Gastric Bypass and Biliopancreatic Diversion with Duodenal Switch. J Laparoendosc Adv Surg Tech A. 2018;28(8):956-61. doi: 10.1089/lap.2018.0397.

179. Sudan R, Maciejewski ML, Wilk AR, Nguyen NT, Ponce J, Morton JM. Comparative effectiveness of primary bariatric operations in the United States. Surg Obes Relat Dis. 2017;13(5):826-34. doi: 10.1016/j.soard.2017.01.021.

180. Sundbom M, Hedberg J, Marsk R, Boman L, Bylund A, Hedenbro J, et al. Substantial Decrease in Comorbidity 5 Years After Gastric Bypass: A Population-based Study From the Scandinavian Obesity Surgery Registry. Ann Surg. 2017;265(6):1166-71. doi: 10.1097/SLA.0000000000001920.

181. Taha O, Abdelaal M, Abozeid M, Askalany A, Alaa M. Outcomes of One Anastomosis Gastric Bypass in 472 Diabetic Patients. Obes Surg. 2017;27(11):2802-10. doi: 10.1007/s11695-017-2711-9.

182. Taylor BA, Ng J, Stone A, Thompson PD, Papasavas PK, Tishler DS. Effects of statin therapy on weight loss and diabetes in bariatric patients. Surg Obes Relat Dis. 2017;13(4):674-80. doi: 10.1016/j.soard.2016.11.018.

183. Tharakan G, Scott R, Szepietowski O, Miras AD, Blakemore AI, Purkayastha S, et al. Limitations of the DiaRem Score in Predicting Remission of Diabetes Following Roux-En-Y Gastric Bypass (RYGB) in an ethnically Diverse Population from a Single Institution in the UK. Obes Surg. 2017;27(3):782-6. doi: 10.1007/s11695-016-2368-9.

184. Thereaux J, Corigliano N, Poitou C, Oppert JM, Czernichow S, Bouillot JL. Comparison of results after one year between sleeve gastrectomy and gastric bypass in patients with BMI >/= 50 kg/m(2). Surg Obes Relat Dis. 2015;11(4):785-90. doi: 10.1016/j.soard.2014.11.022.

185. Toh BC, Chan WH, Eng AKH, Lim EKW, Lim CH, Tham KW, et al. Five-year long-term clinical outcome after bariatric metabolic surgery: A multi-ethnic Asian population in Singapore. Diabetes Obes Metab. 2018;20(7):1762-5. doi: 10.1111/dom.13263.

186. Van De Laar AW, De Brauw LM, Meesters EW. Relationships between type 2 diabetes remission after gastric bypass and different weight loss metrics: Arguments against excess weight loss in metabolic surgery. Surg Obes and Relat Dis. 2016;12(2):274-82.

187. Velazquez-Fernandez D, Sanchez H, Monraz F, Zanela OO, CabrA HA, Pantoja JP, et al. Development of an Interactive Outcome Estimation Tool for Laparoscopic Roux-en-Y Gastric Bypass in Mexico Based on a Cohort of 1002 Patients. Obes Surg. 2019;29(9):2878-85. doi: 10.1007/s11695-019-03929-x.

188. Victorzon M, Peromaa-Haavisto P, Tolonen P. Perioperative morbidity, mortality and early outcome of the first 360 gastric bypass operations performed in a district hospital. Scand J Surg. 2012;101(3):184-9. doi: 10.1177/145749691210100308.

189. Viscido G, Gorodner V, Signorini FJ, Biasoni AC, Navarro L, Rubin G, et al. Obese Patients with Type 2 Diabetes: Outcomes After Laparoscopic Sleeve Gastrectomy. J Laparoendosc Adv Surg Tech A. 2019;29(5):655-62. doi: 10.1089/lap.2018.0652.

190. Wadden TA, Chao AM, Bahnsen JL, Bantle JP, Clark JM, Gaussoin SA, et al. End-of-Trial Health Outcomes in Look AHEAD Participants who Elected to have Bariatric Surgery. Obesity (Silver Spring). 2019;27(4):581-90. doi: 10.1002/oby.22411.

191. Walker E, Elman M, Takemoto EE, Fennern E, Mitchell JE, Pories WJ, et al. Bariatric Surgery Among Medicare Subgroups: Short- and Long-Term Outcomes. Obesity (Silver Spring). 2019;27(11):1820-7. doi: 10.1002/oby.22613.

192. Wazir N, Arshad MF, Finney J, Kirk K, Dewan S. Two Years Remission of Type 2 Diabetes Mellitus after Bariatric Surgery. J Coll Physicians Surg Pak. 2019;29(10):967-71. doi: 10.29271/jcpsp.2019.10.967.

193. Wei JH, Chou RH, Huang PH, Lee WJ, Chen SC, Lin SJ. Metabolic surgery ameliorates cardiovascular risk in obese diabetic patients: Influence of different surgical procedures. Surg Obes Relat Dis. 2018;14(12):1832-40. doi: 10.1016/j.soard.2018.08.026.

194. Wood GC, Gerhard GS, Benotti P, Petrick AT, Gabrielsen JD, Strodel WE, et al. Preoperative use of incretins is associated with increased diabetes remission after RYGB surgery among patients
taking insulin: a retrospective cohort analysis. Ann Surg. 2015;261(1):125-8. doi: 10.1097/SLA.0000000000000588.

195. Wood MH, Carlin AM, Ghaferi AA, Varban OA, Hawasli A, Bonham AJ, et al. Association of Race With Bariatric Surgery Outcomes. JAMA Surg. 2019;154(5):e190029. doi: 10.1001/jamasurg.2019.0029.

196. Xu L, Wang L, Huang X, Liu L, Ke W, He X, et al. Baseline red blood cell distribution width predicts long-term glycemic remission in patients with type 2 diabetes. Diabetes Res Clin Pract. 2017;131:33-41. doi: 10.1016/j.diabres.2017.06.019.

197. Yan W, Bai R, Li Y, Xu J, Zhong Z, Xing Y, et al. Analysis of Predictors of Type 2 Diabetes Mellitus Remission After Roux-en-Y Gastric Bypass in 101 Chinese Patients. Obes Surg. 2019;29(6):1867-73. doi: 10.1007/s11695-019-03783-x.

198. Young L, Nor Hanipah Z, Brethauer SA, Schauer PR, Aminian A. Long-term impact of bariatric surgery in diabetic nephropathy. Surg Endosc. 2019;33(5):1654-60. doi: 10.1007/s00464-018-6458-8.

199. Zaman JA, Shah N, LeVerson GE, Greenberg JA, Funk LM. The effects of optimal perioperative glucose control on morbidly obese patients undergoing bariatric surgery. Surg Endosc. 2017;31(3):1407-13. doi: 10.1007/s00464-016-5129-x.

200. Zaveri H, Surve A, Cottam D, Cottam A, Medlin W, Richards C, et al. Mid-term 4-Year Outcomes with Single Anastomosis Duodenal-Ileal Bypass with Sleeve Gastrectomy Surgery at a Single US Center. Obes Surg. 2018;28(10):3062-72. doi: 10.1007/s11695-018-3358-x.

201. Zenti MG, Rubbo I, Ceradini G, Rinaldi E, Nadalini L, Battistoni M, et al. Clinical factors that predict remission of diabetes after different bariatric surgical procedures: interdisciplinary group of bariatric surgery of Verona (G.I.C.O.V.). Acta Diabetologica. 2015;52(5):937-42. doi: 10.1007/s00592...

202. Zhang H, Di J, Yu H, Han X, Li K, Zhang P. The Short-Term Remission of Diabetic Nephropathy After Roux-en-Y Gastric Bypass in Chinese Patients of T2DM with Obesity. Obes Surg. 2015;25(7):1263-70. doi: 10.1007/s11695-015-1666-y.

203. Zhang H, Han X, Yu H, Di J, Zhang P, Jia W. Effect of Roux-en-Y Gastric Bypass on Remission of T2D: Medium-Term Follow-up in Chinese Patients with Different BMI Obesity Class. Obes Surg. 2017;27(1):134-42. doi: 10.1007/s11695-016-2262-5.

204. Zhu Z, Shan X, Cheng Y, Xu J, Fu H, Wang W, et al. Clinical course of diabetes after gastrectomy according to type of reconstruction in patients with concurrent gastric cancer and type 2 diabetes. Obes Surg. 2015;25(4):673-9. doi: 10.1007/s11695-014-1426-4.