A reduction of perfusion can lead to an artificial elevation of slow diffusion measure: examples in acute brain ischemia MRI intravoxel incoherent motion studies.
Yì Xiáng, J. Wang

To cite this version:
Yì Xiáng, J. Wang. A reduction of perfusion can lead to an artificial elevation of slow diffusion measure: examples in acute brain ischemia MRI intravoxel incoherent motion studies.. 2021. hal-03169314

HAL Id: hal-03169314
https://hal.science/hal-03169314
Preprint submitted on 15 Mar 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A reduction of perfusion can lead to an artificial elevation of slow diffusion measure: examples in acute brain ischemia MRI intravoxel incoherent motion studies.

Running title: Perfusion reduction leads to artificial Dslow elevation.

Yì Xiáng J. Wáng¹,

¹ Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR

Conflict of interest: None.

Correspondence to: Dr. Yì Xiáng J. Wáng. Department of Imaging and Interventional Radiology, Faculty of Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong SAR. Email: yixiang_wang@cuhk.edu.hk

Key words: brain; MRI; diffusion; Intravoxel incoherent motion, ischemia.

Word count: 1066 for the main body
Abstract

Intravoxel incoherent motion (IVIM) theory in MRI was proposed by Le Bihan et al. to account for the effect of vessel/capillary perfusion on the aggregate diffusion weighted MR signal. The fast component of diffusion is related to micro-perfusion, whereas the slow component is linked to molecular diffusion. Among IVIM research community, it has been generally assumed that the perfusion component and the diffusion component can be separately determined. However, we recently published that, for the liver, IVIM modeling of the perfusion component is constrained by the diffusion component, and a reduced D_{slow} measure leads to artificially higher PF and D_{fast} measures. Two related questions would then follow: Is this phenomenon also observed in organs other than the liver? Can a reduction of PF lead to an artificial elevation of D_{slow} measure? I argue that the answer is 'yes' to both questions. Hereby I explain this point by using examples in existing brain IVIM literatures with acute PF change being the initiating factor. These examples demonstrate a lower PF can lead to a higher observed D_{slow}.
Intravoxel incoherent motion (IVIM) theory in MRI was proposed by Le Bihan et al. to account for the effect of vessel/capillary perfusion on the aggregate diffusion weighted MR signal. The fast component of diffusion is related to micro-perfusion, whereas the slow component is linked to molecular diffusion. Three parameters can be computed. D_{slow} (or D) is the diffusion coefficient representing the slow ‘pure’ molecular diffusion (unaffected by perfusion). The perfusion fraction (PF, or f) represents the fraction of the compartment related to (micro)circulation, which can be understood as the proportional ‘incoherently flowing fluid’ (i.e., blood) volume. D_{fast} (or D^*) is the perfusion-related diffusion coefficient representing the incoherent microcirculation within the voxel, which holds information for blood perfusion’s speed. Among IVIM research community, it has been generally assumed that the perfusion component and the diffusion component can be separately determined. However, in *NMR in Biomedicine* we recently published that, for the liver, IVIM modeling of the perfusion component is constrained by the diffusion component, and a reduced D_{slow} measure leads to artificially higher PF and D_{fast} measures [1,2]. Two related questions would then follow: Is this phenomenon also observed in organs other than the liver? Can a reduction of PF lead to an artificial elevation of D_{slow} measure? I argue that the answer is ‘yes’ to both questions. Hereby I explain this point by using examples in existing brain IVIM literatures with acute PF change being the initiating factor. These examples demonstrate a lower PF can lead to a higher observed D_{slow}.

By increasing arterial carbon dioxide pressure (Paco2), McKinstry et al. [3] induced brain grey matter perfusion increases in three dogs. Paco2 was changed according to the order of: low Paco2, high Paco2, and normal Paco2. Their Fig-5 unequivocally shows, among various Paco2, PF and D_{slow} changed toward the opposition directions. When PF went up, D_{slow} went down; when PF went down, D_{slow} went up. Pavilla et al. [4] studied cerebral hypoperfusion induced by hyperventilation challenge in 10 healthy volunteers. For the IVIM measures, they reported cerebellum grey matter had PF of 0.16±0.07 under normal ventilation and 0.07±0.09 (p=0.03) under hyperventilation, while D_{slow} was 0.55±0.10 and 0.63±0.13 (p=0.05) respectively under normal ventilation and hyperventilation. Thus, hyperventilation included lower PF and higher D_{slow} in cerebellum grey matter. In the study of Xu et al. [5], a middle cerebral artery occlusion model was established in 24 beagle dogs, and IVIM image data were acquired at 4.5 hours after model establishment. Serum soluble CD40L level was used
as an indicator of microvascular thrombosis after acute ischemic stroke onset, with its higher level associated with more microvascular thrombosis events and thus lower perfusion in the ischemic stroke lesions [5, 6]. Their Fig-5A (for D_{slow}) and Fig-5B (for PF) show a potential negative correlation between PF and D_{slow}. Compared with the contralateral healthy brain hemisphere (PF= 0.055±0.008, D_{slow}= 0.813±0.152), the stroke lesions had lower PF and low D_{slow}. However, the stroke lesions with higher serum soluble CD40L level and lower PF (0.041±0.007) had higher D_{slow} (0.531±0.153) than that of the stroke lesions (D_{slow}: 0.435±0.044, p=0.057) with lower serum soluble CD40L level and higher PF (0.051 ± 0.007, p<0.001). With IVIM measures of 20 acute ischemic stroke patients, Zhu et al [5] reported penumbra zone, ipsilateral non-ischemia region, and contralateral healthy hemisphere had PF of 0.0541±0.0323, 0.0755± 0.0454, and 0.0722±0.0293 respectively, while the corresponding D_{slow} measure was 0.847±0.116, 0.819±0.225, 0.842±0.100 respectively, with the lowest PF associated with highest D_{slow} and highest PF associated with lowest D_{slow}. Though the differences for IVIM values of ipsilateral non-ischemia region and contralateral healthy hemisphere may not be statistically significant in their study, the values for penumbra zone were paradoxical.

In interpreting the relationship between PF and D_{slow}, it should be noted acute brain ischemia (with a reduction of PF) can indeed induce cytotoxic edema resulting in a reduction of D_{slow} [8]. When both PF and D_{slow} are truly decreased and the decrease of D_{slow} is of sufficient extent, D_{slow} can still be measured as ‘decreased’ (such as the case for IVIM measure of brain ischemic core [7, 8]); though a possibility remains that, even for such decreased D_{slow} measures, their observed value is still over-estimated. On the other hand, there likely is a PF change magnitude window which does not induce observed D_{slow} reduction but instead induce observed D_{slow} artificial elevation. As time goes on, ischemia induced cytotoxic edema may turn into vasogenic edema which will demonstrate a true D_{slow} elevation [8]. In the examples discussed above, no lesion would have had dominant vasogenic edema with true D_{slow} elevation.

The point discussed here will have important implications in interpreting IVIM data. For example, in the report of Zhu et al [7], the penumbra zone had a decreased PF of
0.0541±0.0323 (normal: 0.0722±0.0293, ischemic core: 0.0445±0.0262), while the observed D_{slow} was 0.847±0.116 (normal: 0.842±0.100, ischemic core: 0.544±0.111). Considering the degree of PF reduction, there is high possibility that penumbra zone’s true D_{slow} had decreased, the observed D_{slow} which was normal (or slightly higher than normal) was masked by an artificial increase of D_{slow} measure due to true reduction of PF. Moreover, the results McKinstry et al [3] and Zhu et al [7] also suggest the possibility that a truly increased PF can lead to an artificial lowering of D_{slow} measure. In the study of McKinstry et al [3], when a PF increase was induced by increasing Paco2, a lowering of D_{slow} was noted. In the results of Zhu et al [6], compared with the contralateral healthy brain, the ipsilateral non-ischemia region had slightly higher PF measure (0.0755±0.0454) than that of the contralateral brain (PF: 0.0722±0.0293) which would have been caused by collateral blood flow compensation [9], and slightly lower D_{slow} measure than that of the contralateral brain (0.819±0.225 vs. 0.842±0.100).

Taking together the evidence explained here and our previously discussions [1, 2], it may be summarized that if one component, being perfusion component or diffusion component, changes toward one direction (i.e., increase or decrease), the other component will be constrained to change toward the opposite direction to a certain extent. Further research into IVIM modeling to better separate diffusion component and perfusion component should be pursued. Another possible approach would be that, if the reference values of IVIM diffusion and perfusion components are already known with standardised data acquisition, then we may be able to understand how these constrains can be computationally compensated for each targeted tissue.

References

1. Huang H, Zheng CJ, Wang LF, Che-Nordin N, Wang YX. Age and gender dependence of liver diffusion parameters and the possibility that intravoxel incoherent motion modeling of the perfusion component is constrained by the diffusion component. *NMR in Biomedicine*. 2020; doi: 10.1002/nbm.4449. Online ahead of print.
2. Wang YX. Observed paradoxical perfusion fraction elevation in steatotic liver: An example of intravoxel incoherent motion modeling of the perfusion component is constrained by the diffusion component. *NMR in Biomedicine*. 2020; DOI: 10.1002/nbm.4488

3. McKinstry RC, Weiskoff RM, Belliveau JW, et al. Itrafast MR imaging of water mobility: animal models of altered cerebral perfusion. *J Magn Reson Imaging* 1992;2:377-84.

4. Pavilla A, Arrigo A, Mej doubi M, Duvauf errier R, Gam barota G, Saint-Jalmes H. Measuring Cerebral Hypoperfusion Induced by Hyperventilation Challenge With Intravoxel Incoherent Motion Magnetic Resonance Imaging in Healthy Volunteers. *J Comput Assist Tomogr* 2018;42:85-91.

5. Xu XQ, Wu CJ, Lu SS, et al. Correlation between Intravoxel Incoherent Motion Magnetic Resonance Imaging Derived Metrics and Serum Soluble CD40 Ligand Level in an Embolic Canine Stroke Model. *Korean J Radiol* 2017;18:835-843.

6. Ishikawa M, Vowinkel T, Stokes KY, et al. CD40/CD40 ligand signaling in mouse cerebral microvasculature after focal ischemia/reperfusion. *Circulation* 2005;111:1690-1696

7. Zhu G, Federau C, Wintermark M, et al. Comparison of MRI IVIM and MR perfusion imaging in acute ischemic stroke due to large vessel occlusion. *Int J Stroke* 2020;15:332-342.

8. Li TQ, Chen ZG, Hindmarsh T. Diffusion-weighted MR imaging of acute cerebral ischemia. *Acta Radiol*. 1998;39:460-73.

9. Copen WA, Schaefer PW, Wu O. MR perfusion imaging in acute ischemic stroke. *Neuroimaging Clin N Am*. 2011;21:259-83