The effect of drying treatment to metabolite profile and cytotoxic potential of *Rhizophora apiculata* leaves

MADA TRIANDALA SIBERO1,2,3, ANGGUN PUSPITARINI SISWANTO1,2, RUDHI PRIBADI1, AGUS SABDONO1, OCKY KARNA RADJASA1, AGUS TRIENTO1, EVAN HANSEL FREDERICK1,2, ALDI PRATAMA WIJAYA1,2, DWI HARYANTI1, DESY WULAN TRININGSIH2, SASTRA JENDRA HAYUNGRAT1,2, YASUHIRO IGARASHI4

1Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Diponegoro. Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang 50275, Central Java, Indonesia. Tel.: +62-24-7474698, Fax.: +62-24-7474698, *email: madatriandalasibero@lecturer.undip.ac.id*
2Laboratory of Tropical Bioprospecting and Biomedicine Studies, Integrated Laboratory, Universitas Diponegoro. Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang 50275, Central Java, Indonesia
3Chemical Engineering, Vocational School, Universitas Diponegoro. Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang 50275, Central Java, Indonesia
4Biotechnology Research Center, Department of Biotechnology, Toyama Prefectural University. 5180 Kurokawa, Imizu-shi, Toyama 939-0398, Japan

Introduction:

FAO (2005) and Daradjati et al. (2016) stated that Indonesia as a maritime country has abundant mangrove genera such as *Avicennia, Bruguiera, Ceriops, Excoecaria, Lumnitzera, Rhizophora, Sonneratia*, and *Xylocarpus*. These coastal plants provide sufficient ecological services for its associated organisms. In terms of ecosystem services for humans, mangrove has been used as traditional medicine especially in Asian countries for many years (Tarman et al. 2013; Saranraj and Sujitha 2015; Saranya et al. 2015). Bibi et al. (2019) stated that China, India, Malaysia, Philippines, and Thailand utilized various mangroves to cure diarrhea, vomiting, diabetes, fever, intestinal worm infection, stings from venomous fishes, etc. Furthermore, these medicinal properties in mangrove are influenced by the production of secondary metabolites (Aljaghtmi et al. 2018). The secondary metabolites of mangroves help themselves to adapt to the extreme habitat (Basyuni et al. 2012, 2019).

Local communities in several coastal regions in Indonesia utilize mangrove metabolites for natural dye, paralytic substance for fishing, as well as traditional medicine (Purwanti 2016; Kusmana 2018; Pringgenies et al. 2018). Among all mangrove species, *R. apiculata* is commonly found in most of Indonesia's mangrove forests. Thus, this species is used as traditional medicine. However, the study of *R. apiculata* as biomedicine is less done rather than *R. mucronata*. Tarman et al. (2013) reported the alkaloid derivatives in the crude extract of *R. mucronata* leaves successfully inhibited diarrhea causative agents. Several studies also reported the effectiveness of *R. mucronata* against plenty of pathogens (Joel and Bhimba 2010; Saranraj and Sujitha 2015; Saranya et al. 2015; Sumardi et al. 2018). Nevertheless, study from other countries showed outstanding antimicrobial and anticancer properties of *R. apiculata* (Seepana et al. 2016; Ramalingam and Rajaram, 2018). Therefore, *R. mucronata* and *R. apiculata* are recognized as a traditional medicinal herb.

As an herbal plant, it is really important to understand the appropriate handling of *R. apiculata* to maintain the bioactive contents to be not degraded. Joel and Bhimba (2010) did a shade drying before extraction of the bioactive...
in the leaves, on the other hand, Sumardi et al. (2018) dried the leaves at 60-75°C before extraction. In addition, this mangrove also reported as a potential source of anticancer agents (Diastuti and Warsinah 2010; Palaniyandi et al. 2018). Nonetheless, there is no further study about the effect of the drying treatment on the metabolite profile and its biological activity, especially anticancer. Hence, this study was conducted to understand the impact of different drying treatment on the metabolite profile.

**MATERIALS AND METHODS**

**General information**

Methanol for extraction was purchased from PT. Brataco Chemicals, Indonesia. Evaporation using rotary evaporator (EYELA N-1001S-W, USA) then dried using vacuum centrifuge (Speed Vac® Plus) SC210A combined with refrigerated vapor trap (RVT 400, Thermo Scientific). Acetonitrile, chloroform, formic acid, and methanol for chromatography analysis were purchased from Wako, Japan. Thin-layer chromatography (TLC) glass plate using silica 60 F254 base from Merck, Germany. High-performance liquid chromatography (HPLC) instrument from Agilent 1100 series (Agilent Technologies, USA) with diode array detector (DAD) and column COSMOSIL 3C18-AR-II (4.6ID × 100 mm) from Nacalai Tesque, Japan.

**Sampling**

*R. apiculata* leaves were collected from a mangrove forest in Rembang, Central Java, Indonesia with coordinate 6°41’57.4”S 111°23’18.6”E (Figure 1) and kept in a zip-lock plastic bag then brought to the laboratory for further step. Sample was taken in September 2019.

**Sample preparation**

Sorting was done to discard the infected, old, and broken leaves. All green and healthy leaves (without any infection symptom) were resized using a mechanical grinder then divided into three groups for drying treatments: fresh (75.5 g), sun-dried (75.5 g), and oven-dried at 40°C (75.5 g). Further, samples were extracted using methanol by maceration combined with agitation (110 r.p.m.) at room temperature (27°C) for 24 h. Samples were separated using cotton to obtain the solvent phase and then concentrated using rotary evaporator at 30-35°C. The crude extracts were dried using cold vacuum centrifuge for 3 × 24 h then stored at -20°C to prevent degradation of components.

![Figure 1. Sampling location in Rembang, Central Java, Indonesia](image-url)
Metabolite profiling

Phytochemical test

Phytochemical test was performed for alkaloid, saponin, and steroid according to Sibero et al. (2019) while flavonoid and tannin were referred to Khan et al. (2011).

Thin-layer chromatography (TLC) method

A TLC glass plate F254 (Merck) was prepared for this analysis. The crude extracts with concentration 4 mg/mL were dotted onto the TLC plate then run in a TLC chamber. Chloroform (Wako, Japan), methanol (Wako, Japan), and water with ratio 7:3:0.5 (v/v) were prepared as the eluent system. A sulfuric acid (5%) (Wako, Japan) in 1-butanol (Wako, Japan) was sprayed onto the TLC plate then heated at 60-80 °C for spot visualization.

High-performance liquid chromatography with diode array detector (HPLC-DAD)

A total of 100 µL sample with concentration 1 mg/mL was injected into HPLC-DAD for metabolite profiling. Eluent system for this chromatography was acetonitrile (Wako, Japan) and 0.1% formic acid (Wako, Japan) solution. Metabolite profiling using HPLC was carried out with the following condition: 0-40% of acetonitrile for 0-25 min, 40-85 % for 25-28 min, 85 % for 28-30 min, and 85-90 % for 30-35 min. The flow rate was 1.2 mL/min, pressure 160 bar with column COSMOSIL 3C18-AR-II (4.6ID x 100 mm) from Nacalai Tesque.

Cytotoxicity assay

Cytotoxicity potential of R. apiculata leaves was evaluated to inhibit P388 murine leukemia cells according to Sharma et al. (2019). The cells were recultured in RPMI-1640 medium containing and HEPES (product no. 189-02145) supplemented with 10% fetal bovine serum, 0.1 mg/ml gentamicin sulfate, L-glutamine, and phenol red. The crude extracts were diluted in DMSO with concentration 2 to 2 x10-3 mg/mL. Doxorubicin was set as positive control with concentration 1 x10-1 to 1 x10-4 µg/mL, while DMSO as negative control. P388 murine leukemia cells with density 104 cells/mL were added and added into 96-well round-bottom microtiter plate with volume of 200 µL/well while samples and control were added with volume of 1 µL/well with 3 repetitions. Plate was homogenized and then incubated for 72 h at 37 °C in an atmosphere of 5% CO2 in air with 100% humidity. After that, 50 µL of XTT was added and incubated for 4 h to visualize the cell viability. The cell viability was counted using microplate reader at 450 nm. The data was plotted into a linear regression equation with formula Y = a+bX utilized to count the IC50 to understand the cytotoxicity potential (Sharma et al. 2019).

RESULTS AND DISCUSSION

Mangrove produces bioactive compounds to adapt to their extreme habitat (Joel and Bhimba 2010; Sumardi et al. 2018). The bioactive compound is defined as a chemical substance that gives biological effects on organisms in vitro and/or in vivo test (Guadaoui et al. 2014; Dewanjee et al. 2015). Unfortunately, several unstable bioactive compounds are broken down or decomposed after processing, such as drying (Angelillo et al. 2015; Altamimi et al. 2017). In this study, the influence of sun-drying and oven-drying treatment on the metabolite profile of R. apiculata leaves was observed. The result of phytochemical comparison is shown in Table 1.

The result of phytochemical test indicates that all crude extracts gave positive results for alkaloid, flavonoid, saponin, and steroid/triterpenoid. Nonetheless, previous studies reported various results of this qualitative test. Poompozhil and Kumarasamy (2014) dried R. apiculata leaves by shade-dried method at room temperature then extracted using methanol showed positive results for alkaloids, flavonoids, phenols, saponins, steroids, and terpenoids. A similar result was reported by Muthulingam and Chaithanya (2018). The shade-dried R. apiculata leaves gave positive results on phenolic, alkaloid, flavonoids, tannin, saponin but it did not show positive results of steroids. Nevertheless, a recent study stated that the shade-dried methanol extract of the leaves contained alkaloid, flavonoid, phenol hydroquinone, tannin, and saponin, whereas the extract gave negative results for triterpenoid and steroid (Mulyani et al. 2019). The various results of phytochemical content of R. apiculata might be caused by the different production of secondary metabolites by this plant. As noted, plant produces secondary metabolites to adapt to environmental stress such as salinity, pH, light uptake, moisture, drought, tide and nutrient uptake from the soil (Dasgupta et al. 2014; Iwuala and Alami 2017; Uddin 2019). The presence of steroid/triterpenoid content in our crude extracts was suggested as the response of salinity fluctuation in its habitat, even less our samples were taken from the tree which grew in the tidal area. The salinity fluctuation in the sampling location was reported by Ariyanto et al. (2018). They stated that the lowest salinity that recorded was 16.67±2.87 psu (practical salinity unit), while the highest salinity was 34.46±0.78 psu. This contention is supported by Basyuni et al. (2009, 2012) who stated mangrove produces triterpenoid derivatives to tolerate the salinity fluctuation in the environment. Moreover, steroid derivatives such as brassinosteroid, known as plant hormone, also play an important role in salt tolerance, development, and growth (Ryu and Cho 2015; Su et al. 2019). Further analysis to understand the effect of drying treatment on the metabolite by thin-layer chromatography (TLC) is shown in Figure 2.

Metabolite profiling through TLC led to a fact that the pre-drying treatment gave chemical alteration in the R. apiculata leaves (Figure 2). Crude extracts of fresh and oven-dried leaves were noted to have 10 spots on the TLC plates after visualization, on the other hand, the sun-dried leaves merely gave 9 spots because it lacked one spot at Rf value of 0.61 (Table 2). This might have happened because the missing spot contained unstable or photolabile compounds. Consequently, the compounds were degraded and subsided, or the amount was decreased by the exposure to sunlight during the drying. Ademiluyi et al. (2018)
showed that sun-drying method for plant leaves causing a significant reduction of certain metabolite contents such as alkaloid, flavonoid, saponin, oxalate and vitamin C. Interestingly, most of studies stated that oven-drying treatment resulted in higher amount of beneficial bioactive substances such as flavonoid, tannin, and phenolic rather than the sun-drying (Roshanak et al. 2016; Mbondo et al. 2018). Furthermore, the chemical alteration after the drying treatment also could be detected using HPLC which is presented in Figure 3.

The application of HPLC-DAD for observing the effect of drying treatment on metabolite profile of R. apiculata leaves was performed according to the report by Ademiluyi et al. (2018) which showed HPLC-DAD has decent sensitivity to compare metabolite profiles in particular samples with or without any marker standard in several UV-wavelengths. Chemical alteration was not detected by UV monitoring at 210 and 254 nm, whereas UV monitoring at 400 nm successfully showed chemical alteration at retention times ($R_t$) 29 to 30 mins caused during drying process. The retention time ($R_t$) of the altered peaks is shown in Table 3.

Table 1. Phytochemical content in fresh, oven-dried and sun-dried R. apiculata leaves

| Phytochemical test | Positive result | Fresh | Oven-dried | Sun-dried |
|--------------------|-----------------|-------|------------|----------|
| Alkaloid           | Presence of yellow to deep orange precipitate\(^1\) | +++   | +          | ++       |
| Flavonoid          | Presence of yellow to orange color after addition of 1% KOH\(^2\) | +     | +          | +++      |
| Saponin            | Formation of a stable foam after addition of 2 N HCl\(^1\) | +     | +++        | +        |
| Steroid/Triterpenoid | Formation of green color in the upper layer and deep red to color in the lower layer\(^1\) | +++   | +++        | +++      |

Note: +: positive; -: negative. The more “+” notation indicates more convincing result. \(^1\) according to Sibero et al. (2019); \(^2\) according to Khan et al. (2011)
Table 2. Retention factor (R_f) of TLC spots from *R. apiculata* leaves crude extracts

| Treatment       | Retention factors (R_f) | 0.98 | 0.97 | 0.93 | 0.88 | 0.85 | 0.82 | 0.77 | 0.72 | 0.61 | 0.37 |
|-----------------|-------------------------|------|------|------|------|------|------|------|------|------|------|
| Fresh           | ●                       | ●    | ●    | ●    | ●    | ●    | ●    | ●    | ●    | ●    | ●    |
| Oven-dried      | ●                       | ●    | ●    | ●    | ●    | ●    | ●    | ●    | ●    | ●    | ●    |
| Sun-dried       | ●                       | ×    | ●    | ●    | ●    | ●    | ●    | ●    | ●    | ●    | ●    |
| Color           | Intense green           | Pale purple | Pale yellow | Pale yellow | Pale purple | Grey | Grey | Pale yellow | Yellow | Yellow |

Note: “●” indicates the presence of the same R_f; while notation “×” indicates the absence of the same R_f in the crude extract.

Figure 3. HPLC chromatogram of fresh (blue), oven-dried (red) and sun-dried (green) *R. apiculata* crude extracts. HPLC chromatograms were recorded at 210 nm (A), 254 nm (B) and 400 nm (C).
Compounds detected by UV absorption at 400 nm are usually contained chromophore that gives color to the compounds. This compound type is usually easily degraded by unfavorable environmental conditions such as heat and light. Peak number 4 which detected by UV lamp at 400 nm in fresh (R_t value of 31.4 min), oven-dried (R_t value of 31.5 min), and sun-dried (R_t value of 31.4 min) crude extracts is suggested as thermo and photo-stable compounds. These compounds are not degraded by exposure to sunlight and heat during the drying. Then, peak number 2 appeared at fresh and oven-dried chromatograms suggested to be the thermo-stable but photolabile. Interestingly, two peaks (numbers 3 and 5) appeared merely in oven-dried crude extract at R_t value of 30.6 min and 31.7 min. Roshanak et al. (2016) stated that drying treatment will inactivate certain enzyme that probably causes degradation of metabolites in the plant. The dry samples did not have sufficient water to activate the enzyme, thereby limiting, the degradation of metabolite (Mediani et al. 2014). This explanation rationalizes the previous studies which reported higher phenolic content in dried samples than the fresh sample. Hence, the peak numbers 3 and 5 were suggested as the thermo-stable compounds. However, these compounds were either photolabile or were prone to degradation by particular endogenous enzymes in fresh extracts.

The effect of drying treatment to cytotoxic property of Rhizophora apiculata leaves and Doxorubicin are presented in Figure 4. The results of cytotoxicity assay show that the highest toxicity (IC_{50} value of 0.0323 mg/mL) was observed in extracts of oven-dried leaves, followed by that of fresh leaves (IC_{50} value of 0.1215 mg/mL). In contrast, the sun-dried leaves had lowest cytotoxicity (IC_{50} value of > 2 mg/mL) whereas Doxorubicin as the positive control had IC_{50} value of 0.0011 µg/mL. It is highlighted that the oven-drying treatment gave the best IC_{50} value, while the sun-drying treatment weakened the cytotoxicity against P388 murine leukemia cells. Interestingly, the weakening of bioactivity in sun-drying might be correlated to the loss of several metabolites which emphasized by Figure 3 and Table 3. Hence, it is expected that the lost metabolites might play an important role in the anticancer activity of Rhizophora apiculata leaves.

As a summary, this study showed that drying treatment caused alteration of metabolite profile in the Rhizophora apiculata leaves. TLC and HPLC analyses explained that oven drying caused the disappearance of heat-intolerant compounds, while the heat and light-sensitive compounds were disappeared in the sun-drying crude extract. However,
the result of the phytochemical test indicated that there was no difference in bioactive compounds in fresh and dried leaves, qualitatively. Furthermore, this study showed that oven-drying treatment can preserve the anticancer potential of R. apiculata leaves.

ACKNOWLEDGEMENTS

We thank Biotechnology Research Center, Toyama Prefectural University, Japan which provided reagents and instruments to conduct all analyses for this study. This article is an outcome of research grant from the Faculty of Fisheries and Marine Science, Universitas Diponegoro, Indonesia scheme 2020, and fellowship program funded by Toyama Prefectural University to MTS.

REFERENCES

Ademiluyi AO, Aladeselu OH, Oboh G, Boligon G. 2018. Drying alters the phenolic constituents, antioxidant properties, α-amylase, and α-glucosidase inhibitory properties of Moringa (Moringa oleifera) leaf. Food Sci Nutr 6 (4): 2123-33. DOI: 10.1002/fsn3.770.

Aljaghthmi O, Heba H, Zeid IA. 2020. Evaluation of secondary metabolite production in red mangrove (Rhizophora mangle L.; Rhizophoraceae). J Adv Biol Biotech 15 (1): 1-6. DOI: 10.9734/jabb/2017/36300.

Altemimi A, Lakhssassi N, Baharlouei A, Watson DG, and Lightfoot DA. 2021. The influence of different drying methods and storage time on free radical scavenging activity and total phenolic content of Cosmos caudatus. Antioxidants 3 (2): 558-70. DOI: 10.3390/antiox3020538.

Mulyani Y, Syaputra ND, Dewi KC, Lili W, and Agung MUK. 2019. Total phenolic, flavonoid content and antioxidant capacity of stem bark, root, and leaves methanolic extract of Rhizophora mucronata Lam. World News Nat Sci 26: 118-27.

Muthulingam M, Chaitanya KK. 2018. Qualitative and quantitative phytochemical analysis and in vitro antioxidant activities of methanolic leaf extract of Rhizophora apiculata Blume. Drug Invent. Today 10(3): 3335-3343.

Palaniyandi T, Sivaji A, Thiruganasambandam R, Natarajan S, Hari R. 2018. In vitro anti gastric cancer activity of squalene, a terpenoid compound isolated from Rhizophora mucrona mangrove plant leaves against AGS Cell Line. Pharmacogn Mag 14 (57): 369-76. https://doi.org/10.4103/pm.pm.108293.

Ramalingam V, Rajaram R. 2018. Enhanced antimicrobial, antioxidant, and anticancer activity of Rhizophora apiculata: An experimental report. J Biotech 8(200). DOI: https://doi.org/10.1007/s12374-018-1222-2.

Roshanak S, Rahimmalek M, and Goli SAH. 2016. Evaluation of seven medicinal plants against oak and pine wilt disease caused by Piromyces pinicola. J Med Plant Res 5 (25): 6017-21. DOI: 10.5829/idosi.jmpr.2011.8.64.

Saranya A, Ramanathan T, Kesavanarayanan KS, Adam A. 2015. Traditional medicinal uses, chemical constituents and biological activities of a mangrove plant, Acanthus ilicifolius Linn.: A brief review. Am-Eurasian J Toxicol Sci 7 (3): 146-156. DOI: 10.5829/doi.ejas.2015.7.3.94150.

Seepana R, Perumal, G, Kama ND, Chatragadda R, Raju M, Annamalai V. 2016. Evaluation of antimicrobial properties from the mangrove species Rhizophora apiculata and Bruguiera gymnorrhiza from Burmanal for coastal, South Andaman, India. J Coast Life Med. 4 (6): 475-478. DOI: 10.12980/jclm.4.2016J6-52.
Sharma AR, Zhou T, Harunari E, Oku N, Trianto A, and Igarashi Y. 2019. Labrenzbactin from a coral-associated bacterium Labrenzia sp. J Antibiot 72 (8): 634-639. DOI: 10.1038/s41429-019-0192-x.

Sibero MT, Igarashi Y, Radjasa OK, Sabdono A, Trianto A, Zilda DS, Wijaya YJ. 2019. Sponge-associated fungi from a mangrove habitat in Indonesia: Species composition, antimicrobial activity, enzyme screening and bioactive profiling. Intl Aquat Res 11 (2): 173-86. DOI: 10.1007/s40071-019-0227-8.

Su W, Ye C, Zhang Y, Hao S, Li QQ. 2019. Identification of putative key genes for coastal environments and cold adaptation in mangrove Kandelia obovata through transcriptome analysis. Sci Tot Environ 681: 191-201. DOI: 10.1016/j.scitotenv.2019.05.127.

Sumardi, Basyuni M, Wati R. 2018. Antimicrobial activity of polyisoprenoids of sixteen mangrove species from North Sumatra, Indonesia. Biodiversitas 19 (4): 1243-1248. DOI: 10.13057/biodiv/d190409.

Turman K, Purwaningsih S, Negara AAPAP. 2013. Aktivitas antibakteri ekstrak daun bakau hitam (Rhizophora mucronata) terhadap bakteri penyebab diare. Jurnal Pengolahan Hasil Perikanan Indonesia 16 (3): 249-58. [Indonesian]

Uddin M. 2019. Environmental factors on secondary metabolism of medical plants. Acta Scientific Pharmaceutical Sciences 3 (8): 34-46. DOI: 10.31080/ASPS.2019.03.0338.