Synchronous and metachronous liver metastases in patients with colorectal cancer—towards a clinically relevant definition

Jennie Engstrand 1*, Cecilia Strömberg 2, Henrik Nilsson 1, Jacob Freedman 1 and Eduard Jonas 2,3

Abstract

Background: Approximately 25% of patients with colorectal cancer (CRC) will have liver metastases classified as synchronous or metachronous. There is no consensus on the defining time point for synchronous/metachronous, and the prognostic implications thereof remain unclear. The aim of the study was to assess the prognostic value of differential detection at various defining time points in a population-based patient cohort and conduct a literature review of the topic.

Methods: All patients diagnosed with CRC in the counties of Stockholm and Gotland, Sweden, during 2008 were included in the study and followed for 5 years or until death to identify patients diagnosed with liver metastases. Patients with liver metastases were followed from time of diagnosis of liver metastases for at least 5 years or until death. Different time points defining synchronous/metachronous detection, as reported in the literature and identified in a literature search of databases (PubMed, Embase, Cochrane library), were applied to the cohort, and overall survival was calculated using Kaplan-Meier curves and compared with log-rank test. The influence of synchronously or metachronously detected liver metastases on disease-free and overall survival as reported in articles forthcoming from the literature search was also assessed.

Results: Liver metastases were diagnosed in 272/1026 patients with CRC (26.5%). No statistically significant difference in overall survival for synchronous vs. metachronous detection at any of the defining time points (CRC diagnosis/surgery and 3, 6 and 12 months post-diagnosis/surgery) was demonstrated for operated or non-operated patients. In the literature search, 41 publications met the inclusion criteria. No clear pattern emerged regarding the prognostic significance of synchronous vs. metachronous detection.

Conclusion: Synchronous vs. metachronous detection of CRC liver metastases lacks prognostic value. Using primary tumour diagnosis/operation as standardized cut-off point to define synchronous/metachronous detection is semantically correct. In synchronous detection, it defines a clinically relevant group of patients where individualized multimodality treatment protocols will apply.

Keywords: Colorectal cancer, Liver metastases, Synchronous, Metachronous
Background
In the USA as well as in Europe, colorectal cancer (CRC) is the third most common cancer and a leading cause of cancer-related death [1]. Approximately 25% of patients diagnosed with CRC will be diagnosed with liver metastases during the course of the disease [2–4]. A large number of clinic-pathologic features of CRC liver metastases (CRCLM), including patient characteristics, pre-operative factors, primary tumour and liver metastases characteristics and operative factors have been assessed as prognostic factors [5, 6]. Synchronous vs. metachronous detection or occurrence of CRCLM as prognostic factor was mainly investigated and reported in surgical case series [7, 8]. There is, however, no consensus on the definition of synchronous and metachronous as used in the context of CRCLM. The time point of diagnosis of the primary tumour, alternatively the time of operation of the primary tumour and a variation of time intervals related to these time points have been used [3]. An effort to solve this was made by Adam et al. in 2015, where synchronous was defined as liver metastases detected before or at the time of diagnosis of the primary tumour [9]. With current trends and developments in CRC and CRCLM treatment, the detection of liver metastases at the time of diagnosis of the primary tumour has important therapeutic implications, both in terms of surgical strategy and the planning of oncologic treatment [10–13]. In a previously published population-based cohort of patients with CRC, the time of detection of liver metastases (synchronous vs. metachronous) did not significantly influence survival in a multivariate analysis [4]. In this study, previously used definitions of synchronous vs. metachronous detection of CRCLM are applied on that same patient cohort to assess the prognostic value of detection at the various defining time points in a population-based cohort. To identify previously used definitions for synchronous vs. metachronous detection of CRCLM, a literature search was performed for articles where a time point was specified for synchronous vs. metachronous detection. The reported prognostic value of the distinction in articles where OS and/or DFS were reported was also documented. The PubMed, Embase and the Cochrane library databases were searched, and articles were reviewed following the PRISMA statement guidelines [15]. The following search headings were used: (CRC OR colorectal cancer) AND (liver OR hepatic) AND (metastases OR metastasis OR metastatic) AND (synchronous OR metachronous) AND survival. Articles not written in English, duplicates, conference abstracts, case reports, review articles and articles written before 2005 were excluded. The remaining articles were subjected to a more thorough screening. For inclusion, the studies had to (a) specify a definition of synchronous vs. metachronous detection of CRCLM and (b) assess synchronous vs. metachronous detection as a prognostic factor (as OS and/or DSF). If the same population was used in two different studies, the later study was included. Publications not meeting the inclusion criteria were deemed irrelevant. A reference screening was performed to detect
possible missed articles. The study was approved by the Regional Ethical Review Board in Stockholm.

**Statistical analysis**
Non-normally distributed continuous data are presented as medians (min, max) and categorical data as frequencies (percentage). Survival curves were calculated using Kaplan-Meier estimates, and survivor functions were compared using the log-rank test. The threshold for statistical significance was set to \( a < 0.05 \). SigmaPlot 13 (Systat Software, San Jose, CA 95131, USA) were used for the statistical analyses.

**Results**
**Survival data from the population-based cohort**
During the study period, a total of 1026 patients were diagnosed with CRC. The median age was 71 years (31, 97), 485 (47.3%) were females and 651 (65.1%) had a primary tumour of left-sided origin. At 5-year follow-up, 272 (26.5%) of subjects (57.7% male and 42.3% female) had been diagnosed with liver metastases of whom 65 (24%) had undergone liver resection, Table 1. The cumulative incidence of detection of the liver metastases as related to the time of diagnosis of the primary tumour are depicted in Fig. 1. The number of patients with metastases that were classified as synchronous or metachronous according to the different time points used in the literature, namely the time of primary tumour diagnosis (in non-operated patients) or time of primary tumour surgery (operated patients) and 3, 6 and 12 months after the primary tumour diagnosis/surgery, is shown in Table 2.

The overall survival curves of patients with synchronously and metachronously detected metastases for operated and non-operated patients are shown for the different synchronous vs. metachronous-defining time points (Fig. 2). No statistically significant difference in survival at any of the time points was seen, neither for operated nor for non-operated patients.

**Review of existing literature on the topic**
The flow chart presenting the results of the electronic database search is shown in Fig. 3. After exclusion, 39 articles were retained, and 2 articles were added from reference screening. The majority of studies reported patients only operated for CRCLM \((n = 34)\), 6 included both operated and non-operated patients and 1 study only included patients treated with palliative intent (Table 3). Prognostic results as per time point are summarized in Table 4. There was a considerable variation in the number of subjects included in studies (minimum 40, maximum 1784), and the proportion of patients with synchronous detection of liver metastases varied from 31.3 to 79.7%. The most commonly used defining time point for synchronicity was at primary tumour diagnosis/surgery (18 out of 41 publications). There was a trend in a better OS of metachronous detected metastases with an earlier cut-off with 50% of studies showing statistically significant differences when using a 0- or 3-month definition, compared to 33% with a 6-month definition and 0% for a 12-month definition; the majority of the studies concluded a non-significant prognostic value of synchronous vs. metachronous detection.

**Discussion**
The present study questions the prognostic impact of the time of liver metastases detection in CRC and also

---

**Table 1** Patient and tumour characteristics of 272 patients with liver metastases

| Characteristic                        | n = 272               |
|---------------------------------------|-----------------------|
| Gender, male/female (%)               | 157/115 (57.7/42.3)   |
| Age, years (min, max)                 | 68 (31, 95)           |
| Primary tumour location, n (%)        |                       |
| Caecum/ascending colon                | 64 (23.5)             |
| Transverse colon                      | 13 (4.8)              |
| Descending/sigmoid colon              | 90 (33.1)             |
| Rectum                                | 95 (34.9)             |
| Multiple primary tumours              | 9 (3.3)               |
| Unknown                               | 1 (0.4)               |
| Nodal stage of primary, n (%)         |                       |
| N0                                    | 43 (15.8)             |
| N1                                    | 141 (51.8)            |
| N2                                    | 37 (13.6)             |
| Unknown                               | 51 (18.8)             |
| Tumour stage of primary, n (%)        |                       |
| T0                                    | 1 (0.4)               |
| T1                                    | 5 (1.8)               |
| T2                                    | 7 (2.6)               |
| T3                                    | 131 (48.2)            |
| T4                                    | 96 (35.3)             |
| Unknown                               | 32 (11.7)             |
| No. of liver metastases, n (%)        |                       |
| 1                                     | 55 (20.2)             |
| 2-5                                   | 96 (35.3)             |
| 6-10                                  | 34 (12.5)             |
| ≥ 11                                  | 87 (32.0)             |
| No. of involved segments              |                       |
| 1-2                                   | 111 (40.8)            |
| 3-4                                   | 45 (16.6)             |
| 5-6                                   | 36 (13.2)             |
| 7-8                                   | 80 (29.4)             |
| Size of largest liver metastasis (mm) |                       |
| (min, max)                            | 26 (5, 120)           |
the meaningfulness of time points other than the time of primary tumour diagnosis in non-operated patients and time of primary tumour surgery in operated patients as definition of synchronous detection. In a well-defined cohort from a well-defined geographical region in Sweden, no significant difference was seen in survival as measured from time of detection of liver metastases to death between the two groups, irrespective of time points being used.

In patients with CRCLM, the proportions of tumours being detected synchronously and metachronously and the prognostic value of this distinction have been reported in numerous studies [3, 9]. Reports addressing the issue differ considerably regarding the time points used as cut-off for defining synchronous vs. metachronous detection. Furthermore, there are wide variations in the number of subjects and the proportions of synchronous vs. metachronous detection in the included cohorts. Although a trend was seen in patients with metachronous detection having a better OS with early time points as cut-off (50% of studies showing statistically significant differences using a 0- or 3-month definition) as opposed to later time points (50% for a 6-month and 0% for a 12-month definition), there is no compelling evidence that the distinction has any prognostic value. In a study by Furukawa et al., the prognostic value of synchronous vs. metachronous detection was investigated in a cohort of patients with unresectable liver metastases. With the cut-off defined as the time of primary tumour evaluation, no difference in the OS of patients was found [33]. Adam et al. took a consensus approach to the same question and concluded that metachronous tumours are regarded as having a better biology and better survival, and the conclusion was illustrated with survival curves from LiverMetSurvey [9].

With current trends and developments in CRC and CRCLM treatment, establishing the presence of liver metastases at the time of diagnosis of the primary tumour has important therapeutic implications [6, 55]. Firstly, surgical intervention for the CRCLM needs to be coordinated with the surgery for the primary tumour. Different surgical options, for example the liver first approach or simultaneous resection of primary tumour and liver metastases, need to be considered [10, 56–58]. Secondly, it may also influence the use and timing of oncologic treatment, with neoadjuvant chemotherapy increasingly being favoured in patients with liver metastases detected before surgery of the primary tumour [11–13].

### Table 2
The number of patients with liver metastases classified as synchronous vs. metachronous according to the different defining time points.

| Time point                              | Synchronous | Metachronous |
|-----------------------------------------|-------------|--------------|
|                                         | Total       | Resected     | Non-resected | Total     | Resected     | Non-resected |
| Primary tumour diagnosis/surgery        | 155         | 26           | 129          | 117       | 39           | 78           |
| Three months post-primary tumour        | 174         | 29           | 145          | 98        | 36           | 62           |
| diagnosis/surgery                       |             |              |              |           |              |              |
| Six months post-primary tumour          | 186         | 34           | 152          | 86        | 31           | 55           |
| diagnosis/surgery                       |             |              |              |           |              |              |
| Twelve months post-primary tumour       | 207         | 39           | 168          | 65        | 26           | 39           |
| diagnosis/surgery                       |             |              |              |           |              |              |
Terminology frequently used in the literature, for example development of synchronous vs. metachronous metastases, implies two different clinical entities, creating the unfounded impression that the metastatic events occur during the respective periods. The mechanism for CRC metastases to the liver has been described in detail, with tumour cells entering the liver either via the portal vein or hepatic artery, the common point of entry being the sinusoidal space [59]. Whether the risk for new metastases to the liver ceases at removal of the primary tumour is unclear. Patterns of hepatic recurrence observed in a cohort of patients transplanted for CRCLM suggest that previously undiagnosed lung or lymph node metastases could be the source of liver metastases in the transplanted liver [60, 61]. The development of liver metastases in the transplanted liver in the absence of any

**Fig. 2 a–d** Overall survival curves for synchronous and metachronous detected metastases. Operated and non-operated patients shown for the different synchronous/metachronous cut-off points at a, detection of the primary tumour (non-operated, palliative)/operation for the primary tumour (resected) and b, 3 months, c, 6 months and d, 12 months after detection/resection of the primary tumour.
other metastases suggests that viable tumour cells may persist in the circulation after elimination of the primary tumour and resection of the whole liver with liver metastases. It is however more plausible that preoperatively present but undetected hepatic lesions account for the vast majority of liver metastases detected after operation of the primary tumour. These lesions are therefore potentially detectable at initial liver work-up.

In the light of the above-mentioned, we propose a standardized definition for synchronous vs. metachronous detection of CRCLM that will be rational, semantically correct and will have a clear clinical application, namely the time of operation for the primary tumour in operated patients and the time of diagnosis of the primary tumour, including the metastatic work-up, for patients treated non-operatively for the primary tumour as cut-off. The rationale for having the cut-off for synchronicity during and not before the primary tumour operation is that, even though establishing the presence of metastases during the pre-operative work-up of the primary tumour is optimal in terms of treatment planning, intra-operative detection still to some extent offers the possibility of changing the treatment plan if needed. Intra-operative detection of pre-operatively undiagnosed liver metastases is fortunately an increasingly rare event due to high-quality imaging using high-end technology and state-of-the-art protocols during work-up [62]. The proposed definition will also focus attention on the effectiveness of hepatic imaging at the time of detection of the primary tumour, the proportion of metastases detected before operation for the primary tumour being directly related to the quality and diligence of the imaging strategy. This could serve as a robust parameter of pre-operative imaging quality control. A randomized trial has shown that MRI with liver-specific contrast is superior for detection of CRCLM, as compared to contrast-enhanced CT and MRI with extracellular contrast [63]. Health economic studies suggest that an MRI first approach is from a cost perspective comparable to a step-up approach with contrast-enhanced CT first [64, 65].

There are, however, a number of limitations that need to be considered in the interpretation and generalization of results. The SCRCR only includes the Swedish population, a relatively homogeneous group in terms of ethnic diversity, and results may not be generalizable. In a previous publication on the total CRC patient cohort from which the CRCLM patients were included in this
| Reference          | Year of publication | Cohort   | Definition* | Synchronous/metachronous | OS      | DFS  |
|--------------------|---------------------|----------|-------------|--------------------------|---------|------|
| Mutsaerts et al.   | 2005                | Operated | 2           | 43/59                    | S (p = 0.048) | NR   |
| Leporrier et al.   | 2006                | All      | 3           | 250/108                  | NS (p = 0.498) | NR   |
| Minagawa et al.    | 2006                | Operated | 1           | 187/182                  | NS (p = 0.19) | NR   |
| Taniai et al.      | 2006                | Operated | 4           | 67/41                    | NS (p = 0.354) | NR   |
| Shimizu et al.     | 2007                | Operated | 3           | 70/94                    | NS (p = 0.738) | NR   |
| Tsai et al.        | 2007                | Operated | 1           | 97/58                    | NS (p = 0.150) | S (p = 0.004) |
| Wang et al.        | 2007                | Operated | 3           | 514/409                  | NS (p = 0.312) | NR   |
| Bockhorn et al.    | 2008                | Operated | 4           | 101/101                  | NS (p = 0.78) | NS (p = 0.28) |
| Harndy et al.      | 2008                | Operated | 4           | 138/46                   | NS (p = 0.6) | NR   |
| Vigano et al.      | 2008                | Operated | 1           | 55/66                    | S (p = 0.011) | NR   |
| Konopke et al.     | 2009                | Operated | 1           | 70/131                   | S (p = 0.030) | NR   |
| Ng et al.          | 2009                | Operated | 2           | 35/20                    | NS (p = 0.075) | NS (p = 0.43) |
| Xu et al.          | 2009                | Operated | 3           | 379/290                  | NS (p > 0.05) | NR   |
| Tonelli et al.     | 2010                | Operated | 1           | 70/37                    | S (p = 0.018) | NR   |
| Van der Pool et al.| 2010                | Operated | 1           | 105/167                  | NS (p = 0.6) | NS (p = 0.3) |
| Brouquet et al.    | 2011                | Operated | 1           | 47/13                    | S (p = 0.003) | NR   |
| Settmacher et al.  | 2011                | Operated | 1           | 158/224                  | S (p = 0.033) | S (p = 0.003) |
| Swan et al.        | 2011                | Operated | 4           | 577/625                  | NS (p = 0.530) | NR   |
| Furukawa et al.    | 2012                | Unresectable | 1      | 26/14                    | NS (p = 0.085) | NA   |
| Vigano et al.      | 2012                | Operated | 1           | 182/194                  | NS       | NR   |
| Dexiang et al.     | 2012                | All      | 3           | 1061/552                 | S (p < 0.001) | NR   |
| Gur et al.         | 2013                | Operated | 1           | 79/79                    | NS (p = 0.14) | S (p = 0.04) |
| Nanji et al.       | 2013                | Operated | 1           | 125/195                  | S (p = 0.003) | NS (p = 0.092) |
| Ribeiro et al.     | 2012                | Operated | 3           | 89/81                    | NS (p = 0.162) | NS (p = 0.214) |
| John et al.        | 2013                | Operated | 4           | 257/174                  | NS (p = 0.253) | NR   |
| Hackl et al.       | 2014                | All      | 2           | 1019/407                 | NS (p = 0.799) | NR   |
| Kumar et al.       | 2014                | All      | 1           | 1054/542                 | S (p = 0.003) | NR   |
| Kuo et al.         | 2015                | Operated | 2           | 104/55                   | S (p = 0.001) | NR   |
| Ali et al.         | 2015                | Operated | 3           | 66/50                    | NS (p = 0.997) | NR   |
| Kawamura et al.    | 2016                | Operated | 1           | 34/38                    | S (p = 0.010) | NS   |
| Lermke et al.      | 2016                | Operated | 3           | 68/84                    | S (p = NR) | NR   |
| Miller et al.      | 2017                | Operated | 3           | 181/46                   | NS (p = 0.58) | NS (p = 0.87) |
| Angelsen et al.    | 2017                | Operated | 4           | 39/488                   | NS (p = 0.068) | NR   |
| Bartolini et al.   | 2018                | Operated | 1           | 39/31                    | NS (p = 0.085) | S (p = 0.0001) |
| Margonis et al.    | 2018                | Operated | 3           | 266/583                  | S (p = 0.02) | NS (p = 0.58) |
| Marques et al.     | 2018                | Operated | 3           | 95/55                    | NS (p = 0.505) | NS (p = 0.07) |
| Memeo et al.       | 2018                | Operated | 4           | 753/1031                 | NS (p = NR) | NR   |
| Quirez et al.      | 2018                | All      | 3           | 38/16                    | S (0.036) metastochron worse | NS (p = 0.629) |
| Suthananthan et al.| 2018                | All      | 1           | 276/98                   | NS (p = 0.172) | NR   |
| Strandberg et al.  | 2018                | Operated | 1           | 146/138                  | S (p = 0.031) | NR   |
| Zhao et al.        | 2018                | Operated | 1           | 172/71                   | NS (p = 0.110) | NS (p = 0.088) |

*Definition: 1, Time of primary tumour diagnosis/operation; 2, 3 months after primary tumour diagnosis/operation; 3, 6 months after primary tumour diagnosis/operation; 4, 12 months after primary tumour diagnosis/operation. NA not applicable, NR not reported, S significant, NS non-significant, OS overall survival, DFS disease-free survival.
study, a Cox regression analysis, including age, sex, tumour factors (tumour stage, nodal stage, right- vs. left-sided), number and size of liver metastases, time of detection (synchronous vs. metachronous), liver resection and the presence of lung metastases, was performed. In the multivariate analysis age, primary tumour origin (midgut vs. hindgut), size of largest liver metastasis and liver resection significantly predicted survival, while synchronous vs. metachronous (HR 0.91, 95% CI 0.64–1.30) did not significantly influence survival [4]. In this article, patients that were operated and patients not operated for CRCLM were assessed separately. Ideally, additional treatment such as neoadjuvant, adjuvant and palliative chemotherapy therapy should have been controlled for in a multivariable analysis, but the rather small CRCLM cohort precludes further subgroup analysis.

Although the PRISMA statement guidelines were adhered for extraction of published data required for the study (definitions for and impact of synchronous vs. metachronous detection on prognosis at the different time points), a formal systematic review was not performed. A systematic review and meta-analysis to assess the prognostic value of synchronous vs. metachronous detection using the proposed definition is highly desirable, as this may clarify the impact on prognosis.

Conclusion
This study, to our knowledge, is the first to address the issue in a well-validated population-based cohort, and it fails to show any prognostic value in distinguishing synchronous from metachronous detection of CRCLM for any of the previously reported defining cut-off points, neither for operated patients nor for patients treated with palliative intent. We suggest using primary tumour diagnosis/operation as standard cut-off point to define synchronous/metachronous detection as a clinically relevant definition.

Abbreviations
CRC: Colorectal cancer; CRCLM: Colorectal cancer liver metastases; DFS: Disease-free survival; OS: Overall survival; SCRCR: Swedish Colorectal Cancer Registry

Acknowledgements
Not applicable.

Authors’ contributions
The authors contributed equally in reviewing the clinical records. Data analysis was performed by JE, HN and EJ. JE, CS and JF performed the literature search. All authors read and approved the final manuscript.

Funding
None of the authors were supported by any grants or donations to complete this study. Open access funding provided by Karolinska Institute.

Availability of data and materials
The datasets generated and/or analyzed during the current study are not publicly available since it was not originally stated in the ethical application and subsequent approval.

Ethics approval and consent to participate
The study was approved by the Regional Ethical Review Board in Stockholm.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Division of Surgery, Department of Clinical Sciences, Karolinska Institutet, Danderyd Hospital, 182 88 Stockholm, Sweden. Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden. 3Surgical Gastroenterology Unit, Department of Surgery, Groote Schuur Hospital, University of Cape Town Health Sciences Faculty, Cape Town, South Africa.

Received: 16 September 2019 Accepted: 16 December 2019

References
1. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49(6):1374–403.
2. Sjovall A, Jarv V, Blomqvist L, Singnomklao T, Cedernark B, Glimelius B, et al. The potential for improved outcome in patients with hepatic metastases from colon cancer: a population-based study. Eur J Surg Oncol. 2004;30(8):834–41.
3. Hackl C, Neumann P, Gerken M, Loss M, Klinkhammer-Schalke M, Schlitt HJ. Treatment of colorectal liver metastases in Germany: a ten-year population-based analysis of 5772 cases of primary colorectal adenocarcinoma. BMC Cancer. 2014;14:910.
4. Engstrand J, Nilsson H, Stromberg C, Jonas E, Freedman J. Colorectal cancer liver metastases - a population-based study on incidence, management and survival. BMC Cancer. 2018;18(1):78.
5. de Jong MC, Pulitano C, Ribero D, Strub J, Mentha G, Schulick RD, et al. Rates and patterns of recurrence following curative intent surgery for

Table 4 Summary of time points for defining synchronous vs. metachronous and prognostic significance as measured by OS and DFS in publications in 2005–2018

| Defining time point                        | Studies (n) | Prognostic value | OS significant | OS non-significant | DFS significant | DFS non-significant |
|-------------------------------------------|-------------|------------------|----------------|--------------------|----------------|--------------------|
| Primary tumour diagnosis/surgery          | 18          | 9                | 9              | 4                  | 8              |                    |
| Three months post-primary tumour diagnosis/surgery | 4           | 2                | 2              | 0                  | 1              |                    |
| Six months post-primary tumour diagnosis/surgery | 12          | 4                | 8              | 0                  | 5              |                    |
| Twelve months post-primary tumour diagnosis/surgery | 7           | 0                | 7              | 0                  | 1              |                    |
| Total                                     | 41          | 15               | 26             | 4                  | 15             |                    |

OS overall survival, DFS disease-free survival
49. Marques MC, CR HS, Costa WL Jr, VHF d J, de Macedo MP, Diniz AL, et al. Is primary sidedness a prognostic factor in patients with resected colon cancer liver metastases (CLM)? J Surg Oncol. 2018;117(5):858–63.

50. Memeo R, de Blasi V, Adam R, Goéré D, Piardi T, Lermite E, et al. Margin status is still an important prognostic factor in hepatectomies for colorectal liver metastases: a propensity score matching analysis. World J Surg. 2018;42(3):892–901.

51. Quireze Junior C, Brasil AMS, Morais LK, Campion ERL, Taveira EF, Rassi MC. Metachronous colorectal liver metastases has better prognosis – is it true? Arq Gastroenterol. 2018;53(3):258–63.

52. Suthanathan AE, Bhandari M, Platei C. Influence of primary site on metastatic distribution and survival in stage IV colorectal cancer. ANZ J Surg. 2018;88(5):445–9.

53. Strandberg Holka P, Eriksson S, Eberhard J, Bergenfeldt M, Lindell G, Sturesson C. Significance of poor performance status after resection of colorectal liver metastases. World J Surg Oncol. 2018;16(1):3.

54. Zhao Y, Deng Y, Peng J, Sui Q, Lin J, Qi M, et al. Does the preoperative prognostic nutritional index predict survival in patients with liver metastases from colorectal cancer who underwent curative resection? J Cancer. 2018;9(12):2167–74.

55. Veereman G, Robays J, Verleye L, Leroy R, Rolfo C, Van Cutsem E, et al. Pooled analysis of the surgical treatment for colorectal cancer liver metastases. Crit Rev Oncol Hematol. 2015;94(1):122–35.

56. Lam WY, Laurence JM, Pang T, Johnston E, Hollands MJ, Pleass HC, et al. A systematic review of a liver-first approach in patients with colorectal cancer and synchronous colorectal liver metastases. HPB. 2014;16(2):101–8.

57. Siriwardena AK, Mason JM, Mullamitha S, Hancock HC, Jegatheeswaran S. Management of colorectal cancer presenting with synchronous liver metastases. Nat Rev Clin Oncol. 2014;11(8):446–59.

58. Slessor AA, Simillis C, Goldin R, Brown G, Mudan S, Tekkis PP. A meta-analysis comparing simultaneous versus delayed resections in patients with synchronous colorectal liver metastases. Surg Oncol. 2013;22(1):36–47.

59. Van den Eynden GG, Majeed AW, Illemann M, Vermeulen PB, Bird NC, Hoyer-Hansen G, et al. The multifaceted role of the microenvironment in liver metastasis: biology and clinical implications. Cancer Res. 2013;73(7):2031–43.

60. Hagness M, Foss A, Egge TS, Dueland S. Patterns of recurrence after liver transplantation for nonresectable liver metastases from colorectal cancer. Ann Surg Oncol. 2014;21(4):1323–9.

61. Hagness M, Foss A, Line PD, Scholz T, Jorgensen PF, Fosby B, et al. Liver transplantation for nonresectable liver metastases from colorectal cancer. Ann Surg. 2013;257(5):800–6.

62. Kanalis N, Brismar TB, Mihocsa L, Itakson B, Albin N. The added value of contrast-enhanced ultrasound in patients with colorectal cancer undergoing preoperative evaluation with extensive gadobenate dimeglumine liver MRI. Eur Radiol. 2011;21(10):2067–73.

63. Zech CJ, Korpraphong P, Huppertz A, Denecke T, Kim MJ, Tanomkiat W, et al. Randomized multicentre trial of gadoxetic acid-enhanced MRI versus conventional MR or CT in the staging of colorectal cancer liver metastases. Br J Surg. 2014;101(6):613–21.

64. Zech CJ, Justo N, Lang A, Ra-Salamah A, Kim MJ, Rinde H, et al. Cost evaluation of gadoxetic acid-enhanced magnetic resonance imaging in the diagnosis of colorectal-cancer metastasis in the liver: results from the VALUE Trial. Eur Radiol. 2016;26(11):4121–30.

65. Zech CJ, Grazioti L, Jonas E, Ekman M, Niebecker R, Gschwend S, et al. Health-economic evaluation of three imaging strategies in patients with suspected colorectal liver metastases: gadoxetate disodium-enhanced MRI vs. extracellular contrast media-enhanced MRI and 3-phase MDCT in Germany, Italy and Sweden. Eur Radiol. 2009;19 Suppl 3:S753-S763.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.