The co-transfer of plasmid-borne colistin-resistant genes mcr-1 and mcr-3.5, the carbapenemase gene bla\textsubscript{NDM-5} and the 16S methylase gene rmtB from Escherichia coli

Haiyan Long1,2,5, Yu Feng1,2, Ke Ma1,2, Lu Liu1,2, Alan McNally5 & Zhiyong Zong1,2,3,4

We found an unusual Escherichia coli strain with resistance to colistin, carbapenem and amikacin from sewage. We therefore characterized the strain and determined the co-transfer of the resistance determinants. Whole genome sequencing was performed using both Illumina HiSeq X10 and MinION sequencers. Short and long reads were subjected to de novo hybrid assembly. Sequence type, antimicrobial resistance genes and plasmid replicons were identified from the genome sequences. Phylogenetic analysis of all IncHI2 plasmids carrying mcr-1 available in GenBank was performed based on core genes. Conjugation experiments were performed. mcr-3.5 was cloned into E. coli DH5\(\alpha\). The strain belonged to ST410, a type with a global distribution. Two colistin-resistant genes, mcr-1 and mcr-3.5, a carbapenemase gene bla\textsubscript{NDM-5}, and a 16S methylase gene rmtB were identified on different plasmids of IncHI2(ST3)/IncN, IncP, IncX3 and IncFII, respectively. All of the four plasmids were self-transmissible and mcr-1, mcr-3.5, bla\textsubscript{NDM-5} and rmtB were transferred together. mcr-1-carrying IncHI2 plasmids belonged to several sequence types with ST3 and ST4 being predominant. In conclusion, carbapenem resistance, colistin resistance and high-level aminoglycoside resistance can be transferred together even when their encoding genes are not located on the same plasmid. The co-transfer of multiple clinically-important antimicrobial resistance represents a particular challenge for clinical treatment and infection control in healthcare settings. Isolates with resistance to both carbapenem and colistin are not restricted to a given sequence type but rather are diverse in clonal background, which warrants further surveillance. The amino acid substitutions of MCR-3.5 have not altered its activity against colistin.

Colistin is the last resort antimicrobial agent to treat infections caused by most Gram-negative bacteria commonly seen in clinical settings, including Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa1,2. Bacterial strains that have acquired resistance to colistin have emerged worldwide. In addition to mutations or interruptions in certain chromosomal genes, acquired resistance to colistin has occurred due to plasmid-borne genes1. Eight plasmid-borne colistin resistance genes, i.e. mcr-13, mcr-24, mcr-35, mcr-46, mcr-57, mcr-68, mcr-79 and mcr-810, have been reported. The co-existence of two plasmid-borne colistin-resistant genes in bacterial isolates is uncommon, but recently, we reported the co-existence of mcr-1 and mcr-3 plus the carbapenemase gene bla\textsubscript{NDM-5} in an E. coli clinical strain, WCHEC020123, of phylogenetic group A and sequence type 206 (ST206)11. Here we report a second independent occurrence of the co-existence of mcr-1, mcr-3 and

1Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China. 2Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China. 3Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China. 4Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China. 5Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK. Correspondence and requests for materials should be addressed to Z.Z. (email: zongzhiy@scu.edu.cn)
Materials and Methods

Recovery of the strain and in vitro antimicrobial susceptibility testing. E. coli strain WCHEC025943 was recovered from the influx mainstream of hospital sewage at West China Hospital, Chengdu, western China, in April 2017. The sewage sample was mixed with 100 ml brain heart infusion broth (Oxoid, Hampshire, UK) in a 500 ml flask. After overnight incubation at 37 °C, the culture suspension was diluted to a McFarland standard and an 100 μl aliquot was plated onto a CHROMAagar Orientation agar plate (CHROMagar, Paris, France) containing 4 μg/ml colistin and 16 μg/ml meropenem. The plate was then incubated at 37 °C overnight. The pink colony that represents E. coli was screened for mcr-1 as described previously3. Species identification was established by Vitek II (bioMérieux, Marcy-l’Étoile, France) and by MALDI-TOF MS (Bruker, Billerica, MA, USA).

MICs of amikacin, aztreonam, aztreonam-avibactam, ceftazidime, ceftazidime-avibactam, ciprofloxacin, colistin, imipenem, meropenem, tigecycline and trimethoprim-sulfamethoxazole were determined using the broth microdilution method of the Clinical and Laboratory Standards Institute (CLSI)32. For ceftazidime-avibactam, colistin and tigecycline, the breakpoints defined by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) (http://www.eucast.org/) were used, while the breakpoints of aztreonam were applied for aztreonam-avibactam.

Whole genome sequencing and analysis. Genomic DNA of strain WCHEC025943 was prepared using the QiAamp DNA Mini Kit (Qiagen, Hilden, Germany) and was subjected to whole genome sequencing using both the HiSeq X10 platform (Illumina, San Diego, CA, USA) and the long-read MinION Sequencer (Nanopore, Oxford, UK). The de novo hybrid assembly of both short Illumina reads and long MinION reads was performed using Unicycler13 under conservative mode for increased accuracy. Complete circular contigs generated were then corrected using PlasmidFinder 19 with default settings, resulting in a sum of 56 genes representing the E. coli multi-locus sequence typing database (http://enterobase.warwick.ac.uk/species/index/ecoli). Antimicrobial resistance genes were identified from genome sequences using ResFinder at https://cge.cbs.dtu.dk/services/ResFinder/. Plasmid replicon types and sequence types of IncHI2 and IncF plasmids were determined using PlasmidFinder and pMLST tools at https://cge.cbs.dtu.dk/services/PlasmidFinder/ and https://cge.cbs.dtu.dk/services/pMLST/. Single nucleotide polymorphisms (SNPs) between strain WCHEC025943 and strain WCHEC14828 (also called WCHEC005828, GenBank accession no. RIAW00000000), a bla_{NDM-5}-carrying ST410 E. coli identified in the same hospital in 201433, was determined from a two-way whole genome alignment in HarvestTools16.

Nucleotide sequence accession numbers. Complete sequences of the chromosome and plasmids of strain WCHEC025943 have been deposited into GenBank under the accession no. CP027199 to CP027205.

Phylogenetic group typing. E. coli phylogenetic group of strain WCHEC025943 was determined using PCR as described previously37.

Cloning of mcr-3.5. The complete coding sequence of mcr-3.5 was amplified with primers mcr3.5-up (CTGGTCGGAGATATGGGTGT) and mcr3.5-dw (GGCATTCAACATCAGAGCAA) using PrimeSTAR Max DNA Polymerase (Takara, Dalian, China). The primers were designed to amplify the gene with 222-bp upstream and 540-bp downstream sequences of mcr-3.5. Amplicons were ligated to the pMD20-T vector using the Mightyl TA-cloning kit (Takara). The ligated fragments were transformed into E. coli DH5α, mcr-3.5-containing transformants were selected on LB agar plates containing 2 μg/mL colistin. The presence of mcr-3.5 in transformants was confirmed by PCR. MIC of colistin was determined for transformants carrying mcr-3.5 using the broth microdilution method13.

Phylogenetic analysis of IncHI2 plasmids. Complete sequences of all IncHI2 plasmids carrying mcr-1 (n = 25 in addition to pMCR1_025943 and pMCR1_020123) were retrieved from GenBank. Plasmid replicon types and sequence types of these plasmids were determined using PlasmidFinder and pMLST. Annotation was performed using Prokka18 and antimicrobial resistance genes were identified using ResFinder. Orthologues of these plasmids were identified using OrthoFinder19 with default settings, resulting in a sum of 56 genes representing the core genome of these 27 plasmids. The alleles of orthogonal genes were aligned using MAFFT20 and concatenated into a single sequence containing 56 aligned genes for each plasmid. The maximum-likelihood phylogenetic tree was inferred based on the core genome using RAxML21 with a 1000-bootstrap test.

Conjugation. Conjugation experiments were carried out in brain heart infusion broth at 30 °C using azide-resistant E. coli strain J53 as the recipient. Transconjugants were selected on LB agar plates containing 150 μg/ml sodium azide plus 2 μg/ml colistin for mcr-1.1 and mcr-3.5, plus 1 μg/ml meropenem for bla_{NDM-5}, or plus 64 μg/ml amikacin for rmtB. Transconjugants were also selected on LB agar plates containing 150 μg/ml sodium azide plus 2 μg/ml colistin, 1 μg/ml meropenem and 64 μg/ml amikacin to examine whether mcr, bla_{NDM-5} and rmtB could be transferred together. The presence of mcr-1.1, mcr-3.5, bla_{NDM-5} and/or rmtB in transconjugants was screened using PCR and Sanger sequencing. Conjugation frequency was calculated as the number of transconjugants per recipient cell.
plasmids. Like strain WCHEC020123, in strain WCHEC025943, \(pMCR1 \) was carried on a 50.5-kb IncP plasmid, designated \(pMCR3_025943 \), in strain WCHEC025943. \(pMCR3_025943 \) is identical to \(pMCR3_020123 \), the mcr-3-carrying IncP plasmid in strain WCHEC020123, except that an insertion sequence, IS1294, is absent from \(pMCR3_025943 \) but is inserted in a spacer region in \(pMCR3_020123 \). mcr-1 was carried on a 265.5-kb plasmid (designated \(pMCR1_025943 \)) containing both \(\text{IncHI2} \) (ST3) and \(\text{IncX3} \) replicons in strain WCHEC020123, which was larger than the 223.7-kb \(mcr-1 \)-sequence, IS1294, is absent from \(pMCR3_025943 \) but is inserted in a spacer region in \(pMCR3_020123 \).

Results and Discussion

Strain WCHEC025943 was recovered from the sewage sample and grew on the agar plate containing 4 μg/ml colistin and 16 μg/ml meropenem. The complete genome sequence of strain WCHEC025943 was obtained, which was 5.1 Mb and contained a 4.82 Mb circular chromosome and six plasmids of different replicon types (Table 1).

The strain was resistant to amikacin (>512 μg/ml), aztreonam (>512 μg/ml), ceftazidime (512 μg/ml), ceftazidime-avibactam (>512/4 μg/ml), ciprofloxacin (8 μg/ml), colistin (8 μg/ml), imipenem (128 μg/ml), meropenem (128 μg/ml) and trimethoprim-sulfamethoxazole (128/2432 μg/ml), but was susceptible to aztreonam-avibactam (1/4 μg/ml) and tigecycline (0.5 μg/ml). Strain WCHEC025943 had 31 known acquired antimicrobial resistance genes mediating resistance to aminoglycosides \((\text{aac}(3)-\text{Ia}, \text{aac}(3)-\text{IIa}, \text{aac}(6')-\text{Ib-cr}, \text{aadA16}, \text{aph}(3')-\text{Ia}, \text{aph}(3')-\text{Ib}, \text{aph}(6)-\text{Ib})\), ampicillin \((\text{bla}_{\text{TEM-1}}, \text{bla}_{\text{SHV-1}}, \text{bla}_{\text{OXA-23}}, \text{bla}_{\text{CTX-M-32}}, \text{bla}_{\text{OXA-40}}, \text{bla}_{\text{OXA-41}}\), fosfomycin \((\text{fosA})\), chloramphenicol \((\text{cmr}-1.1, \text{cmr}-1.5\)) and macrolide-lincosamide-streptogramin B \((\text{b谁知道}(F), \text{mph}(A), \text{mph}(B), \text{mph}(C), \text{mph}(D))\), rifampicin \((\text{rrmT}, \text{rrmB})\),

Plasmid	Replicon type	Size (bp)	Antimicrobial resistance genes
p1_025943	Y	95,859	\(\text{bla}_{\text{CTX-M-45}} \)
p2_025943	FII, FIB	75,779	\(\text{bla}_{\text{TEM-1}}, \text{bla}_{\text{OXA-23}}, \text{bla}_{\text{CTX-M-32}} \)
p3_025943	Col (B5512)	2,088	\(\text{bla}_{\text{TEM-1}} \)
pMCR1_025943	H12, N	265,538	\(\text{bla}_{\text{TEM-1}}, \text{bla}_{\text{OXA-23}}, \text{bla}_{\text{CTX-M-32}}, \text{bla}_{\text{OXA-41}} \)
pMCR3_025943	P	50,520	\(\text{cmr}-3.5 \)
pNDM5_025943	X3	45,275	\(\text{bla}_{\text{NDM-5}} \)

Table 1. Plasmids and antimicrobial resistance genes in strain WCHEC025943. \(\text{bla}_{\text{CMY-2}} \) was located on the chromosome.

Of note, \(\text{cmr}-3.5 \) encodes three amino acid substitutions (M23V, A456E and T488I) compared with the original \(\text{mcr}-3 \). Of note, \(\text{cmr}-3.5 \) encodes three amino acid substitutions (M23V, A456E and T488I) compared with the original \(\text{mcr}-3 \).
genes (traN, traU, traW) encoding conjugation in the former but absent from the latter. ST3-IncHI2 plasmids have been found increasingly as the vector of mcr-1 and are particularly large and complex in structure with the ability to acquire multiple antimicrobial resistance genes and additional plasmid replicons27–29.

mcr-1-carrying IncHI2 plasmids were mostly found in *E. coli* and were also present in several other species of the Enterobacteriaceae (Fig. 1). A few IncHI2 plasmids also contain additional replicons, among which IncN replicon was the most common (Fig. 1). These plasmids were large in size (125,572 to 256,620 bp for plasmids...
containing IncHII2 replicons alone and 238,539 to 369,298bp for those containing additional replicons) and commonly carried multiple antimicrobial resistance genes (Fig. 1). Most of these plasmids belong to ST3 (n = 15) or ST4 (n = 8), while one belongs to ST14 and the sequence type is not assigned to three plasmids due to the absence of an allele for four IncH12 pMLST. This suggests that several types of IncH12 plasmids could mediate the transfer of mcr-1 and ST3-IncH12 is the most common type (Fig. 1). These plasmids were also aligned against pSLK172-1 (GenBank accession no. CP017632), the largest (369,298 bp) mcr-1-carrying IncH12 plasmid, using BRIG. This revealed that mcr-1-carrying IncH12 plasmids are complex and highly variable in structure (Fig. 2).

In strain WCHEC025943, the four plasmids carrying mcr-1-1, mcr-3-5, blaoaNDM-5 or rmtB were all self-transmissible at a 10^{-3}, 10^{-4}, 10^{-3} and 10^{-4} frequency, respectively. Alarmingly, the four plasmids could be transferred together to a single transconjugant at a 10^{-6} frequency. This suggests that carbapenem resistance, colistin resistance and aminoglycoside resistance can be transferred together even when their encoding genes are located on separate plasmids.

Conclusion

The above findings suggest that carbapenem resistance, colistin resistance and high-level aminoglycoside resistance can be transferred together even when their encoding genes are not located on the same plasmid. The co-transfer of multiple clinically-important antimicrobial resistance represents a particular challenge for clinical treatment and infection control in healthcare settings, which warrant more surveillance and further studies to explore counter measures. Isolates with resistance to both carbapenem and colistin are not restricted to a given sequence type but rather are diverse in clonal background. mcr-1-carrying IncH12 plasmids belonged to several sequence types with ST3 and ST4 being predominant.

References

1. Poirel, L., Jayol, A. & Nordmann, P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. _Clin Microbiol Rev_ 30, 557–596 (2017).
2. Olatan, A. O., Morand, S. & Rolain, J. M. Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. _Front Microbiol_ 5, 643 (2014).
3. Liu, Y.-Y. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. _Lancet Infect Dis_ 16, 161–168 (2016).
4. Xavier, B. B. et al. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in _Escherichia coli_, Belgium, June 2016. _Euro Surveill_ 21, 30280 (2016).
5. Yin, W. et al. Novel plasmid-mediated colistin resistance gene mcr-3 in _Escherichia coli_. _mBio_ 8, e00543–00517 (2017).
6. Carattoli, A. et al. Novel plasmid-mediated colistin resistance mcr-4 gene in _Salmonella_ and _Escherichia coli_, Italy 2013, Spain and Belgium, 2015 to 2016. _Euro Surveill_ 22, 30589 (2017).
7. Borowiak, M. et al. Identification of a novel transposon-associated phosphoethanolamine transerase gene, mcr-5, conferring colistin resistance in _D-tartrate fermenting Salmonella enterica_ subs. _enterica serovar Paratyphi_ B. _J Antimicrob Chemother_ 72, 3317–3324 (2017).
8. AbuOun, M. et al. mcr-1 and mcr-2 variant genes identified in _Moraxella_ species isolated from pigs in Great Britain from 2014 to 2015. _J Antimicrob Chemother_ 72, 2745–2749 (2017).
9. Yang, Y. Q., Li, Y. X., Lei, C. W., Zhang, A. Y. & Wang, H. N. Novel plasmid-mediated colistin resistance gene _mcr-7.1_ in _Klebsiella pneumoniae_. _J Antimicrob Chemother_ 73, 1791–1795 (2018).
10. Wang, X. et al. Emergence of a novel mobile colistin resistance gene, _mcr-8_, in NDM-producing _Klebsiella pneumoniae_. _Emerg Microbes Infect_ 7, 122 (2018).
11. Liu, L., Feng, Y., Zhang, X., McNally, A. & Zong, Z. New variant of _mcr-3_ in an extensively drug-resistant _Escherichia coli_ clinical isolate carrying _mcr-1_ and _blaOXA-14_. _Antimicrob Agents Chemother_ 61, 01757–01717 (2017).
12. CLSI. _Performance Standards for Antimicrobial Susceptibility Testing: Twenty-Seventh Informational Supplement_. M100-S27. (Clinical and Laboratory Standards Institute 2017).
13. Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Uncycler: Resolving bacterial genome assemblies from short and long sequencing reads. _PLoS Comput Biol_ 13, e1005595 (2017).
14. Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. _PLoS One_ 9, e112963 (2014).
15. Liu, Y. et al. First report of OXA-181-producing _Escherichia coli_ in China and characterization of the isolate using whole-genome sequencing, _Antimicrobial Agents and Chemistry_ 59, 5022–5025 (2015).
16. Treangen, T. J., Ondov, B. D., Koren, S. & Phillippy, A. M. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. _Genome Biol_ 15, 324 (2014).
17. Clermont, O., Christenson, J. K., Denamur, E. & Gordon, D. M. The Clermont _Escherichia coli_ phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. _Environ Microbiol Rep_ 5, 58–65 (2013).
18. Seemann, T. Prokka: rapid prokaryotic genome annotation. _Bioinformatics_ 30, 2068–2069 (2014).
19. Ennos, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. _Genome Biol_ 16, 157 (2015).
20. Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. _Nucleic Acids Res_ 30, 3059–3066 (2002).
21. Stamatakis, A. RAXML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. _Bioinformatics_ 30, 1312–1313 (2014).
22. Vervoort, J. et al. High rates of intestinal colonisation with _fluoroquinolone-resistant ESBL-harbouring Enterobacteriaceae_ in hospitalised patients with antibiotic-associated diarrhoea. _Eur J Clin Microbiol Infect Dis_ 33, 2215–2221 (2014).
23. Shen, Y. et al. KPC-2 encoding plasmids from _Escherichia coli_ and _Klebsiella pneumoniae_ in Taiwan. _J Antimicrob Chemother_ 69, 628–631 (2014).
24. Huber, H., Zweefel, C., Wittenbrink, M. M. & Stephan, R. ESBL-producing uropathogenic _Escherichia coli_ isolated from dogs and cats in Switzerland. _ Vet Microbiol_ 162, 992–996 (2013).
25. He, T. et al. Characterization of NDM-5-positive extensively resistant _Escherichia coli_ isolates from dairy cows. _Vet Microbiol_ 207, 153–158 (2017).
26. Yang, R. S. et al. Emergence of NDM-5- and MCR-1-producing _Escherichia coli_ clones ST648 and ST156 from a single muscovy duck (_Cairina moschata_). _Antimicrob Agents Chemother_ 60, 6899–6902 (2016).
27. Cain, A. K. & Hall, R. M. Evolution of IncH12 plasmids via acquisition of transposons carrying antibiotic resistance determinants. _J Antimicrob Chemother_ 67, 1121–1127 (2012).
28. Fang, L. X. et al. High genetic plasticity in multidrug resistant ST3-IncHI2 plasmids revealed by sequence comparison and phylogenetic analysis. *Antimicrob Agents Chemother* **62**, e02068–02017 (2018).

29. Zhao, F., Feng, Y., Lu, X., McNally, A. & Zong, Z. Remarkable diversity of *Escherichia coli* carrying *mcr-1* from hospital sewage with the identification of two new *mcr-1* variants. *Front Microbiol* **8**, 2094 (2017).

30. Alikhan, N. F., Petty, N. K., Ben Zakour, N. L. & Beatson, S. A. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons. *BMC Genomics* **12**, 402 (2011).

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (Project Nos 81772233, 81661130159 and 81572030) and the Newton Advanced Fellowship, Royal Society, UK (NA150363).

Author Contributions

Z.Z. designed the study. H.L., Y.F., K.M. and L.L. collected the data. H.L., A.M. and Z.Z. analyzed and interpreted the data. Z.Z. wrote the manuscript.

Additional Information

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019