The Updated Review on Plant Peptides and Their Applications in Human Health

Saiprahalad Mani¹ · Smruti B. Bhatt¹ · Vinduja Vasudevan¹ · Dhamodharan Prabhu² · Sundararaj Rajamanikandan² · Palaniyandi Velusamy² · Palaniappan Ramasamy² · Pachaiappan Raman¹

Accepted: 20 June 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
Biologically active plant peptides, consisting of secondary metabolites, are compounds (amino acids) utilized by plants in their defense arsenal. Enzymatic processes and metabolic pathways secrete these plant peptides. They are also known for their medicinal value and have been incorporated in therapeutics of major human diseases. Nevertheless, its limitations (low bioavailability, high cytotoxicity, poor absorption, low abundance, improper metabolism, etc.) have demanded a need to explore further and discover other new plant compounds that overcome these limitations. Keeping this in mind, therapeutic plant proteins can be excellent remedial substitutes for bodily affliction. A multitude of these peptides demonstrates anti-carcinogenic, anti-microbial, anti-HIV, and neuro-regulating properties. This article's main aim is to list out and report the status of various therapeutic plant peptides and their prospective status as peptide-based drugs for multiple diseases (infectious and non-infectious). The feasibility of these compounds in the imminent future has also been discussed.

Keywords
Therapeutic plant peptides · Peptide-based drugs · Anti-carcinogenic · Anti-HIV · Antifungal · Ribosomal-Inactivating Proteins (RIPs)

Introduction
Plants can be exploited as a bioreactor for many therapeutic proteins, the majority of which are secondary metabolites and their derivatives. Nephroblastoma lymphoma and acute lymphoblastic leukemia are treated with paclitaxel and vincristine which are derived from Taxus brevifolia Nutt and Catharanthus roseus, respectively (Seca and Pinto 2018). Furthermore, ingenol mebutate and curcumin extracted from Euphorbia peplus L and Curcuma longa L being were tested in clinical trials for pancreatic, colorectal (Pan et al. 2012), and non-melanoma skin cancers (Seca and Pinto 2018). Notwithstanding, these peptide-based drugs are accompanied by unquestionable impediments, including toxicity, low abundance, complex multi-step synthesis, developmental stage-specific production, improper metabolism, poor absorption, poor systemic bioavailability, development of multi-drug resistance, and associated adverse health issues (Seca and Pinto 2018). These preordained constraints have compelled the scientific community to explore plants for other medicinal peptides.

In contrast to metabolite-based drugs, protein-based drugs have high therapeutic efficiency due to: (i) High specificity ergo fewer chances of interference with biological processes, thereby alleviating the toxicity, (ii) Performance of complex functions, (iii) High tolerance (Leader et al. 2008) and (iv) Varying charging of proteins/peptides due to existence of numerous functional groups thereby targeting different tissues of our body with varying pH (Reddy and Yang 2011). Although a multitude of therapeutic plant peptides has been identified, only a small number of them have found their way into databases i.e., research on the characterization of plant peptides has been left halfway or indeterminate (Leader et al. 2008 and references therein). This is due to: (i) the absence of high-throughput techniques, (ii) expensive and arduous, (iii) problems associated with protein stability. Nevertheless, therapeutic plant peptides appear propitious in...
peptide-based drugs for many diseases and are brought to the scientific community. This review article encapsulates therapeutic plant proteins and their implementation focusing on infectious and non-infectious diseases in light of this situation.

Infectious diseases encompass diseases caused by organisms (bacteria, viruses, fungi, parasites, nematodes). In contrast, non-infectious diseases constitute metabolic disorders (diabetes, obesity, cancer, cardiovascular, genetic disorders, neuroregulatory, and much more). This review might guide to development of peptide drugs for the treatment of various diseases and disorders (Fig. 1).

Infectious Diseases

Anti-microbial activity of plant peptides/proteins

Microbes are one of the leading causes of various infectious diseases like common cough, cold, influenza, etc. Owing to their ubiquitous nature, infectious diseases can be transmitted easily from anywhere. To protect our bodies from such conditions, antibiotics have been used. However, the consumption of many antibiotics has given rise to the problem of anti-microbial resistance and has rendered present anti-microbial drugs fruitless (Kaur et al. 2012). Therefore, the scientific community has taken a keen interest in identifying prospective anti-microbial agents from native sources, particularly plants. Plants produce an extensive range of Anti-microbial Peptides/Proteins (AMP) since these peptides act as the first line of defense against pathogens, hence dubbed as Pathogen Response/Pathogenesis-Related (P.R.) Proteins. Plant AMPs are tissue-specific and are expressed constitutively, having both polar and non-polar groups and positive charges. They are cysteine-rich residues, and they generate multiple (2–6) disulfide bonds, thereby granting them stability and resistance against proteases and chemicals (Hernández-Ledesma et al. 2009; Hernández-Ledesma and Hsieh 2017). In addition to this, plant AMPs are small, have high target specificity, simple configuration (structure), various modes of administration, quick modifications can be performed, and negligible antigenicity (Yadav and Batra 2015). Considering the characteristics mentioned above and advantages, plant AMPs have been used to develop novel, highly efficient drugs to resolve multi-drug resistance infections. The main drawback is that only a few (not more than thousands) have been structurally and functionally characterized. In this article, we will consider three main classes of microbes: Bacteria, Fungi and Viruses. This review also deals with the Pathogenesis—Related (PR) proteins from plants and their therapeutic applications.

![Fig. 1 Schematic representation of plants peptides displaying various therapeutic properties](image-url)
Anti-bacterial activity

Plant ABPs (Anti-Bacterial Proteins) had emerged as potential alternative for a new class of antibiotics, tackling the obstacle of multi-drug resistance pathogens. Purothionin, the introductory ABP, was extracted from *Triticum aestivum* to inhibit a multitude of bacteria, including *Xanthomonas campestris*, *Corynebacterium michiganensis*, and *Pseudomonas solanacearum* (Naider and Anglister 2009). The majority of these plant ABPs are positively charged (Kaur et al. 2012). They are highly antagonistic against a multitude of bacteria, even in lower concentrations. In contrast, some of them are highly specific. Nevertheless, though promising, only a few have been identified and characterized structurally and functionally (Naider and Anglister 2009). The amino acid sequence, location and number of cysteine residues are the key classification criteria for ABPs. There are several families such as defensins, thionins, lipid transfer proteins (LTR), snakins, cyclotides, thaumatin, etc.

Talking about the mechanism of action of ABPs, the most established notion is that ABPs will cause the breakage of bacteria when they come in contact with the negatively charged membrane (Pan et al. 2012). The strong selectivity of ABPs towards bacterial cells is due to the intrinsic negative charge of the bacterial cell membrane which protects the host cell against infection. Once the ABPs associate with the cell membrane, the ABP concentration builds until it reaches its threshold value (Girish et al. 2006). Upon attaining the threshold value ABP oligomers were generated to enter the membrane perpendicularly forming micelle-like structures (Barrel-Stave Model). Owing to the electrostatic interactions, ABPs assemble on bacterial membrane, manifesting like a carpet generating tension in the lipid membrane and subsequent phospholipids rearrangement. This results in varied membrane fluidity and membrane disruption (Carpet Model); ABPs, upon interacting with the polar head groups of the phospholipids, manifest into a transmembrane pore that provokes bends in the membrane, causing the adjacent layers of the pore to merge. Pore formation causes ion and metabolite efflux, membrane depolarization, deranging the respiratory mechanism, preventing cell wall formation, disrupting the membrane, ultimately leading to cell death (Toroidal Pore Model) (Girish et al. 2006). One of the primary purposes for producing ABPs is to overcome the challenge of antibiotic resistance. ABP drugs are multifarious and have a high potential of forming a new class of antibiotics with lower odds of bacterial resistance. Many proteins have been extracted from plants with high antibacterial activity having low IC₅₀ value (Half Maximal Inhibitory Concentration) and Minimal Inhibitory Concentration (MIC). Shepherin I and II, two glycine-histidine-containing peptides isolated from *Capsella bursa-pastoris* inhibits several gram-negative bacteria. Circulin A and B, macrocyclic peptides (Cyclotides) extracted from *Chassalia parviflora* inhibits a multitude of gram-positive and gram-negative bacteria, with Circulin B inhibiting both (Park et al. 2004). In *Chromobacterium violaceum*, the amino acid lysine had anti-QS and anti-biofilm properties. It was documented that at a concentration of 0.684 mM, lysine decreased biofilm development by 16%, chitinolytic activity by 88.3%, and EPS production by 12.5% after 24 hours. It might also be used as a key component in the synthesis of peptides/proteins and tested for use in the treatment of bacterial infections, perhaps lowering the need for traditional antibiotics (Champalal et al. 2018).

The chitin-binding peptides isolated from *Tulipa gesneriana* Tu-AMP-1 and Tu-AMP-2, affect a wide variety of bacteria, including *Agrobacterium rhizogenes*, *Curtobacterium flaccumfaciens*, *Erwinia carotovora*, and *Agrobacterium radiobacter*, having an IC₅₀ value of 11–20 μg/ml (Walsh et al. 2013). The ABPs mentioned above are some of the examples that have been structurally and functionally defined. A variety of ABPs with superior specificity and other novel properties is yet to be explored. Additionally, research should be focused on identifying novel ABPs having low toxicity, rapid mode of action and reported antibacterial peptides as shown in Table 1.

Anti-fungal activity of plant peptides/proteins

There have been high incidences of patients with threatening fungal infections, particularly those with a compromised immune system like AIDS, organ transplants, cancer, etc. The prolonged use of medicines they take for their therapy makes them vulnerable to potent fungal infections that can ultimately lead to death. The main challenge is that not many drugs are available for many conditions and, worst case, the absence of drugs for the treatment. Furthermore, another obstacle of drug resistance originates from extended drug utilization, rendering the current drug unusable. Correspondingly, we have to hunt for novel drugs, especially from natural sources like plants. Antifungal Proteins/Peptides (AFP) are low molecular weight compounds that act as the first line of defense against fungal pathogens. These proteins include defensins, thionins, lipid-transfer proteins (LTR), chitinase-like proteins, lectins, etc. (Lee-Huang et al. 1991a). The majority of AFPs work by lysis of fungal cell wall or by targeting components like sphingolipids and chitin, thereupon inhibiting cell wall synthesis. One of the instances is that certain AFPs result in pore formation or membrane polarization upon binding of chitin on its conserve domain, causing an efflux of K^+ and influx of Ca^{2+}, ultimately cell lysis (Lee-Huang et al. 1991b). Some other examples of AFPs mechanism of action are of defensins. They follow receptor-mediated activation (Leader et al. 2008). Subsequent binding to this receptor causes ion...
S. No	Plant and its part (Seeds)	Protein	Nature	M. Wt (kDa)	N-terminal sequence	Bacterial species (Tested)	*IC₅₀	References
1	*Vigna sesquipedalis*	Sesquin	Peptide	7	KTCENLADTY	*M. phlei*	87 ± 5 µM	Wong and Ng (2005b)
						B. megaterium	105 ± 5 µM	
						B. subtilis	98 ± 2 µM	
						P. vulgaris	75 ± 6 µM	
2	*Phaseolus lunatus L.*	Lunatusin	Peptide	7	KTCENLADTFRGPCFATSNC	*M. phlei*	96 ± 9 µM	Wong and Ng (2005a)
						B. megaterium	115 ± 6 µM	
						B. subtilis	98 ± 5 µM	
						P. vulgaris	81 ± 6 µM	
3	*Cycas revoluta*	Cy-AM P1	Peptide	4.58	KGAPCAKKPCGPGHLHYKVD	*C. michiganensi*	7.3 µg/ml	Yokoyama et al. (2008)
						C. flaccumfaciens	8.9 µg/ml	
						A. radiobacter	8.3 µg/ml	
						A. rhizogenes	8.5 µg/ml	
						E. carobora	8.0 µg/ml	
		Cy-AMP2	Peptide	4.57	KGAPCAKKPCGPGHLHYKVD	*C. michiganensi*	7.6 µg/ml	
						C. flaccumfaciens	8.3 µg/ml	
						A. radiobacter	7.8 µg/ml	
						A. rhizogenes	8.2 µg/ml	
						E. carobora	8.1 µg/ml	
		Cy-AMP3	Peptide	9.27	AVTCNTVTSLSACPVPPFA	*C. michiganensi*	235 µg/ml	
						C. flaccumfaciens	195 µg/ml	
						A. radiobacter	260 µg/ml	
						A. rhizogenes	235 µg/ml	
						E. carobora	230 µg/ml	
4	*Phytolacca americana*	Pa-AMP-1	Protein	3.94	–	*B. megaterium*	8 µg/ml	Liu et al. (2000)
	(Seeds)					*S. aureus*	11 µg/ml	
						S. faecalis	> 300 µg/ml	
5	*Impatiens balsamina*	B-AMP1	Peptide	2.46	QWGRCCGWPGGRYVCVRWC	*B. subtilis*	10 µg/ml	Tailor et al. (1997)
	(Seeds)					*M. luteus*	10 µg/ml	
						S. aureus	30 µg/ml	
						S. faecalis	6 µg/ml	
		B-AMP4	Peptide	2.52	QYGRCCNWPGGRYCRW	*B. subtilis*	5 µg/ml	
						M. luteus	5 µg/ml	
						S. aureus	20 µg/ml	
						S. faecalis	5 µg/ml	
						X. campestris	6 µg/ml	
						X. oryzae	15 µg/ml	
Table 1

S. No	Plant and its part	Protein	Nature	M. Wt (kDa)	N-terminal sequence	Bacterial species (Tested)	*IC$_{50}$	References
6	*Capsella bursapastoris* (Roots)	Shepherin I	Peptide	2.36		*E. coli*	<2.5 µg/ml	Park et al. (2000)
						P. putida	<2.5 µg/ml	
						P. syringae	<2.5 µg/ml	
						S. typhimurium	<2.5 µg/ml	
						Serratia sp.	8 µg/ml	
						B. megaterium	6 µg/ml	
7	*Mirabilis jalapa* (Seeds)	Mj-AMP1	Homodimeric peptide	8	–	*B. megaterium*	6 µg/ml	Cammue et al. (1992)
		Mj-AMP2	Homodimeric peptide	7	–	*B. lutea*	100 µg/ml	
						B. megaterium	2 µg/ml	
						S. lutea	50 µg/ml	
8	*Psidium guajava* (Seeds)	Pg-AMP1	Peptide	6.0	–	*Klebsiella sp.*	ND	Pelegrini et al. (2008)
9	*Withania somnifera* (Root tubers)	WSG	Glycoprotein	28	–	*B. subtilis*	ND	Girish et al. (2006)
						P. fluorescens		
						C. michiganensis sub. sp. michiganensis		
						X. oryzae pv. oryzae		
						X. axanopodis pv. malvaearum		
10	*Ficus glomerata* (Leaves)	NA	Protein	35	–	*S. enterica*	ND	Thapliyal et al. (2016)
						P. aeruginosa		
						E. coli		
						B. subtilis		
S. No	Plant and its part	Protein	Nature	M. Wt (kDa)	N-terminal sequence	Bacterial species (Tested)	*IC$_{50}$ References	References
-------	-------------------	---------	--------	------------	---------------------	---------------------------	-------------------------	---------
11	*Foeniculum vulgare* Mill. (Seeds)	Elute1	Protein mixture	–		*S. aureus*	27.64 µg/ml	al Akeel et al. (2017)
		Elute2	Protein mixture	34.4–48		*E. coli*	67.56 µg/ml	
						P. aeruginosa	28.01 µg/ml	
						P. vulgaris	59.68 µg/ml	
		Elute3	Protein mixture	–		*S. aureus*	25.91 µg/ml	
		Elute4	Protein mixture	–		*E. coli*	64.12 µg/ml	
						P. aeruginosa	68.33 µg/ml	
						P. vulgaris	57.83 µg/ml	
						S. aureus	21.27 µg/ml	
12	*Murraya koenigii* L. (Leaves)	APC	Protein	35		*E. coli*	60.52 µg/ml	
						P. aeruginosa	25.02 µg/ml	
						P. vulgaris	41.24 µg/ml	
						S. aureus	20.8 µg/ml	
						B. subtilis	41.06 µg/ml	
						E. coli	26.67 µg/ml	
						S. typhi	35.67 µg/ml	
						V. cholerae	ND	Ningappa et al. (2010)
13	*Chassalia parviflora* (Whole Plant)	Circulin A	Macrocyclic peptides	3.17	-	*S. aureus*	ND	Tam et al. (1999)
		Circulin B	Macrocyclic peptides	3.30	-	*C. keyfyr*	ND	
						C. tropicalis	ND	
						E. coli	ND	
						P. vulgaris	ND	
						K. oxytoca	ND	
						S. aureus	ND	
S. No	Plant and its part	Protein	Nature	M. Wt (kDa)	N-terminal sequence	Bacterial species (Tested)	*IC$_{50}$	References
-------	-------------------	---------	--------	-------------	---------------------	---------------------------	-----------	------------
14	*Spinacia oleracea* (Leaves)	So-D1	Peptide	2.29	–	*C. michiganensis*	1 µM	Segura et al. (1998)
		So-D2		5.80		*R. solanacearum*	15 µM	
		So-D6		2.55		*C. michiganensis*	1 µM	
		So-D7		4.23		*R. solanacearum*	1 µM	
15	*Oldenlandia affinis* (Whole Plant)	Kalata B2	Macrocyclic peptides	2.9	–	*S. aureus* (DA7127)	ND	Printing et al. (2010)
		Kalata B1		2.89	–	*E. coli* (DA4201)		
						S. enterica (DA6192)		
16	*Vigna unguiculata* (Seeds)	Cp-thionin II	Peptide	5.2	–	*S. aureus* (ATTC 25923)	ND	Franco et al. (2006)
						E. coli (ATTC25922)		
						P. syringae		
17	*Pharbitis nil* (Seeds)	Prn-AMP1	Peptide	4.3	–	*B. subtilis*	38 µg/ml	Koo et al. (1998)
		Prn-AMP2	Peptide	4.2	–	*B. subtilis*	20 µg/ml	
18	*Vigna angularis* (Seeds)	VaD1	Peptide	5.0	–	*S. epidermidis*	36.6 µg/ml	Chen et al. (2005b)
						X. campestris pv. vesicatoria	40.8 µg/ml	
						S. typhimurium	143.4 µg/ml	
						B. cereus	> 500 µg/ml	
						E. coli	> 500 µg/ml	
						E. carotovora pv. carotovora	1000 µg/ml	
						P. vulgaris	> 1000 µg/ml	
						S. enteritidis	> 1000 µg/ml	
						P. syringae pv. syringae	> 1000 µg/ml	
19	*Phaseolus vulgaris* (Seeds)	Vulgarinin	Seeds	7	–	*M. phlei*	87 ± 5 µM	Wong and Ng (2005c)
						B. megaterium	105 ± 5 µM	
						B. subtilis	98 ± 2 µM	
						P. vulgaris	75 ± 6 M µM	
S. No	Plant and its part	Protein	Nature	M. Wt (kDa)	N-terminal sequence	Bacterial species (Tested) *IC₅₀	References	
-------	--------------------	---------	--------	-------------	---------------------	---	------------	
20	**Tulipa gesneriana** (Tulip Bulbs)	Tu-AMP-1 Peptide	4.9	–	E. carotovora	11 µg/ml	Fujimura et al. (2004)	
	Tu-AMP 2 Heterodimeric Peptide	5	–	A. radiobacter	17 µg/ml			
				A. rhizogenes	20 µg/ml			
				C. michiganensis	17 µg/ml			
				C. flaccumfaciens	15 µg/ml			
				E. carotovora	15 µg/ml			
21	**Solanum tuberosum** (Tubers)	Snakin-1 Peptide	6.9	M	C. michiganensis	4 µM	Berrocal-Lobo et al. (2002)	
	Snakin-2 Peptide	7.0	MAISKALFAS LLLSLLLLEQ	C. michiganensis	1 µM			
				R. meliloti	8 µM			
22	**Triticum aestivum** L. (Endosperm)	α-Purothionin Polypeptide	6	MKSCCRSTLG RNCYNLCRAR	P. solanacearum	ND	de Caleya et al. (1972)	
	β-Purothionin Polypeptide	6	MGSKGLKGVM VCLLILGLVL	X. phaseoli	ND			
				P. solanacearum	ND			
23	**Viola odorata** (Whole Plant)	Cycloviolacin O2 Macrocyclic peptides	3.14	GIPCGESCVPW IPCISSAIGC SCKSKVCYRN	S. enterica (DA6192)	ND		
				E. coli (DA4201)				
				S. aureus (DA7127)				
	Vaby A Macrocyclic peptides	2.86	–	S. enterica (DA6192)	ND	Printing et al. (2010)		
				E. coli (DA4201)				
				S. aureus (DA7127)				
	Vaby D Macrocyclic peptides	3.06	–	S. enterica (DA6192)	ND			
				E. coli (DA4201)				
				S. aureus (DA7127)				
25	**Beta vulgaris** (Leaves)	AX 1 Peptides	5.0	AICKKPSKFV KGACGRDADC EKACDQENWP GGVCVPFLRC ECQRSC	C. betica	0.4–0.8 µM	Kragh et al. (1995)	
	AX2 Peptides	5.1	ATCRKPSMYF SGCFAEDTNQKACNRREDWP NGKCLVG-FKC ECQRPC					

*IC₅₀ values indicate the concentration at which 50% inhibition is observed.
S. No	Plant and its part	Protein	Nature	M. Wt (kDa)	N-terminal sequence	Bacterial species (Tested)	*IC₅₀	References
26	*Mirabilis expansa* (Roots)	ME1	Protein	27	METMRLLFLL LTIWTTVVGS	*P. syringae* B, A. tumefaciens C58, A. rhizogenes ATCC15834, B. subtilis G13R, F. carotovora ATCC15713, X. campestris pv vesicatoria, R. leguminosarum, S. marcescens	ND	Vivanco et al. (1999)
		ME2	Protein	27.5	–	*P. syringae* A. tumefaciens A. rhizogenes (ATCC15834), B. subtilis G13R, F. carotovora, X. campestris pv vesicatoria, R. leguminosarum, S. marcescens		
27	*Benincasa hispida* (Seeds)	Hispidalin	Peptide	5.7	–	*E. coli* P. aeruginosa S. enterica S. aureus	ND	Sharma et al. (2014)
28	*Zizyphus jujuba* (Fruit)	Snakin-Z	Peptide	3.3	–	*K. pneumoniae* B. subtilis S. aureus	ND	Daneshmand et al. (2013)
S. No	Plant and its part	Protein	Nature	M. Wt (kDa)	N-terminal sequence	Bacterial species (Tested)	*IC$_{50}$	References
-------	--------------------	---------	--------	-------------	--------------------	--------------------------	----------	-----------
29	*Fagopyrum esculentum* Moe-nch. (Seeds)	Fa-AMP1	Peptide	3.8	AQCGAQGGGA TCPGGLCCSQ WGWCGSTPKY CGAGCQSNCK	*E. carotovora*	11 µg/ml	Fujimura et al. (2003)
		Fa-AMP2	Peptide	3.9	AQCGAQGGGA TCPGGLCCSQ WGWCGSTPKY CGAGCQSNCR	*A. radiobacter*	17 µg/ml	
						A. rhizogenes	24 µg/ml	
						C. michiganensis	14 µg/ml	
						C. flaccumfaciens	15 µg/ml	
						E. carotovora	15 µg/ml	
30	*Allium sativum* (Bulbs)	Alliumin	Protein	13	DDFLCAGGCL	*P. fluorescens*	ND	Xia and Ng (2005)
31	*Vicia faba* (Flower)	Fabatin-1	Peptide	5.2	LLGRCKVKS NFHFIPCLTD HCSTVCRGEG YKGGDCHGLR RRCMCLC	*E. coli*	ND	Zhang and Lewis (1997)
		Fabatin-2	Peptide	5.20	LLGRCKVKS NFNGPCLTD HCSTVCRGEG YKGGDCHGLR RRCMCLC	*P. aeruginosa*	ND	
						E. hirae	ND	
32	*Moringa Oleifera* (Seeds)	MoCP	Dimeric protein	13				Shebek et al. (2015)
33	*Zea mays* (Kernel)	MBP-1	Peptide	4.1	RSGRGECRRQ CLRRHEGQPW	*C. michiganense ssp. Nebraskaense*	ND	Duvick et al. (1992)
34	*Vigna radiate* (Seeds)	VrD1	Peptide	5.1	MERKTSFLF LLLVVASDV	*E. coli*	ND	Lin et al. (2007)

*IC$_{50}$: Concentration of protein required for 50% growth inhibition, NA Not available, ND Not determined, Cy-AMP Cycad antimicrobial peptide, Pa-AMP-1 Phytolacca americana antimicrobial peptide, Ih-AMP1 Impatiens balsamina antimicrobial peptides, Pg-AMP Psidium guajava-antimicrobial peptide, WSG Withania somnifera glycoprotein, APC antioxidant protein from curry leaves, VaD1 Vigna angularis defending, *M. E. Mirabilis expansa*, MoCP *Moringa oleifera* cationic protein, MBP-1 Maize Basic Peptide 1, VrD1 *Vigna radiate* defending-1, Mj-AMP *Mirabilis jalapa* antimicrobial peptide
permeability and pore formation. Other AFPs cause various modifications in host cell signaling processes, leading to ROS generation (Reactive Oxygen Species), eventually leading to apoptosis. AX1 and AX2, thionin-like peptides that are cationic, interact with anionic phospholipids causing fungal membrane permeabilization (Lee-Huang et al. 1991a; b). Thaumatin-like proteins, a class of AFPs, inhibit the fungal spore formation, leading to lysis. Pn-AMP-1 and Pn-AMP-2 (extracted from *Pharbitis nil*) hinder the hyphal growth, causing the tips to be shattered upon insertion of hyphae, ultimately leading to rupture of fungal membrane and cytoplasmic leakage (Leader et al. 2008). Like other plant peptides, AFPs are diverse, having inert anti-cancer and anti-HIV activity. Mungin, sesquin, lunatusin, and PHP (Peganum harmala protein) are examples (Lee-Huang et al. 1991a; b; Liu et al. 2000; Mazalovska and Kouokam 2018). The non-specific lipid transfer protein (nLTP) PHP, isolated from *Peganum harmala* have been shown to inhibit various fungal species with an IC50 value ranging 1.5–12.19 μM (Yokoyama et al. 2008). Hypotin (extracted from *Ara-chis hypogaea*) has been shown to inhibit the activity of species like *Pythium aphainerdermatum*, *Fusarium solani*, *Physalospora piricola*, *Alternaria alternata*, *Botrytis cinerea*, *Fusarium oxysporum*, and *Pythium aphainerderma-tum* (Stirpe et al. 1986). Vulgin inhibits the fungal activity of a wide variety of species, combined with potent anti-HIV activity by inhibiting HIV reverse transcriptase (Ye and Ng 2003). It was reported that a proteinaceous α-amylase inhibitor extracted from rhizome of *Cheilocostus specious* and purified employing anion exchange chromatography and column gel filtration had an activity on fungal α-amylase. The fungal activity was reduced by this 31.18 kDa protein from *C. specious* by 71% using ion-exchange chromatography and 96% using gel filtration (Balasubramanian et al. 2018). It was documented that *Ferula asafoetida* root was used to extract three major proteins with molecular weights of 14 kDa, 27 kDa, and 39 kDa. The 39-kDa protein significantly improved chymotrypsin activity, while the 14-kDa protein had antibacterial action towards *Pseudomonas aer-uginosa*. All three pure proteins were also reported to have significantly increased antioxidant activity (Chandran et al. 2017). Quorum-sensing inhibitors from Solanaceae family were also reported to possess anti-bacterial action against *Pseudomonas aeruginosa* (Singh et al. 2015).

Until now, hundreds of AFPs have been identified as having negligible toxicity. Tu-AMP-1 and Tu-AMP-2 are highly potent AFPs inhibiting *Fusarium oxysporum* and *Geotrichum candidum* (Wong and Ng 2005). Ginkobilobin (extracted from *Ginkgo biloba*) strongly affects the activity of *B. cinerea* (Wang and Ng 2000). Sesquin (extracted from *Vigna sesquipedalis*) is a highly active AFP with an IC50 value of 0.15 μM and 1.4 μM for *Mycosphaerella arachidicola* and *F. oxysporium*, respectively (Wani et al. 2020).

Despite all of these studies showing the therapeutic effects of AFPs, not many have reached clinical trials. Most of these peptides have been ignored due to a lack of proper classification and structural and functional diversity. Efforts in this direction are required so that the therapeutic potential of AFPs can be used to a full extent and the available AFPs are tabulated (Table 2).

Anti-viral Activity of plant peptides and proteins

Anti-HIV Activity

Acquired Immunodeficiency Syndrome (AIDS) is the fourth leading cause of death triggered by the Human immunodeficiency virus (HIV) (Irvin and Uckun 1992). Two variants of HIV are HIV-1 and HIV-2, each being etiologically and genetically different. Medically, these types vary with the disease’s pace of progression, with HIV-1 being faster than HIV-2 (Irvin and Uckun 1992). The mode of action of HIV-1 involves host and viral membrane interaction through binding of the envelope glycoproteins (g120 and gp41) to CD4, CCR5 and CXCR4 receptors of the host cell. Subsequently, the virus enters the cell along with the integration of the viral genome into the host genome (Wang 2012). Preventing protein maturation and viral RNA replication to DNA are some of the treatment options available to enhance the infected’s survivability. Nevertheless, no proper vaccine is available yet due to: (i) Advent of viral strains that are highly resistant to current anti-HIV drugs, (ii) Incapability to annihilate latent viruses, (iii) Toxicity, (iv) Lack of proper route of administration (Irvin and Uckun 1992). Hence, as mentioned earlier, the scientific community is probing novel drug molecules to curb the obstacle. Within this framework, therapeutic plant peptides are seen as prospective contestants. As an alternative, plant peptides can be used as an excellent medication due to their highly specific nature, increased bioactivity, non accumulated in our organs and less to negligible toxicity (Barbieri et al. 1982; Barbosa Pelegrini et al. 2011). Many antiviral plant proteins belong to the family of cyclotides endowed with a highly stable peptide framework. Cyclotides are cyclic structures that are 28–37 amino acid residues long. They consist of a cyclic cysteine knot motif (CCK) made up of highly conserved cysteine residues linked together by three disulfide bonds. Surface-exposed hydrophobic patches formed by the CCK motif and its cyclicity are some of the reasons for its anti-HIV activity (Gerlach and Mondal 2012). Some other plant proteins including RIPs (Ribosome Inactivating Proteins) such as TCS (Trichosanthin) and PAP (Pokeweed antiviral Protein-N-glycosidase that exhibits antiviral activity against several viruses) have strong anti-HIV potential with some present in clinical trials. TCS has
S. No	Plant and its part	Protein	Nature	M.Wt. (kDa)	Peptide sequence	Fungal species (Tested)	*IC50	References
1	*Momordica charantia* (Leaves)	MCha-Pr	Protein	25.5	VEYTTGNAGNTPGG	*A. brassicae*	33 µM	*Zhang et al.* (2015)
						C. personata	42 µM	
						F. oxysporum	37 µM	
						Mucor sp.	40 µM	
						R. solani	48 µM	
						P. ananidermatum	18.9 µM	*Wang et al.* (2007)
2	*Arachis hypogaea* (Seeds)	Hypotin	Protein	30.4	CDVGSVISASLFE-ALQKHRN	*B. cinerea*	7 µM	*Ye and Ng* (2003)
						A. alternate	NA	
						S. rolfsii	NA	
						F. oxysporum	NA	
						F. solani	NA	
3	*Phaseolus coccineus* cv. 'Major' (Seeds)	Coccinin	Peptide	7	KQTENLADTY	*M. arachidicola*	75 ± 5 µM	*Ngai and Ng* (2004)
						F. oxysporum	81 ± 7 µM	
						P. piricola	89 ± 4 µM	
						B. cinerea	109 ± 5 µM	
						C. comatus	122 ± 7 µM	
						R. solani	134 ± 2 µM	
4	*Phaseolus vulgaris* (Seeds)	Vulgin	Polypeptide	5	VDVGTVLTAT-FIEQQFKHRNDQAPEKG-GFYTYNAFISAAR	*B. cinerea*	7 µM	*Ye and Ng* (2003)
		Fraction PTA2c	Peptide	5	KTCENLVDTYRGPCFT	*M. arachidicola*	NA	
						B. cinerea	1 µM	
						F. oxysporum	NA	
5	*Chrysanthemum coronarium* (Seeds)	Chrysancorin	Protein	13.4	RVDQKAQNLKKCCQKHFHRNDQAPEKG-GFYTYNAFISAAR	*B. cinerea*	11 µM	*Wang et al.* (2001)
						M. arachidicola	17.4 µM	
						P. piricola	14.6 µM	
						F. oxysporum	1.9 µM	
						B. cinerea	2.6 µM	
						M. arachidicola	0.32 µM	
6	*Phaseolus lunatus L.* (Seeds)	Lunatusin	Peptide	7	KTCENLADTFRGPC-FATSNC	*F. oxysporum*	13.5 µM	*Wong and Ng* (2005a)
						H. maydis	27 µM	
						M. arachidicola	10 µM	
						B. cinerea	14.3 µM	
						M. arachidicola	NA	
7	*Brassica juncea var. integrifolia* (Seeds)	Juncin	Protein	18.9	GVEVTRELRSERPSGKIVTI	*F. oxysporum*	13.5 µM	*Ye and Ng* (2009)
						H. maydis	27 µM	
						M. arachidicola	10 µM	
						B. cinerea	14.3 µM	
8	*Vigna angularis* (Seeds)	Angularin	Peptide	8	–	*B. cinerea*	14.3 µM	*Ye and Ng* (2002b)
						M. arachidicola	NA	
						F. oxysporum	0.25 µM	
						M. arachidicola	6.5 µM	*Wang and Ng* (2000)
						R. solani	3.6 µM	
						C. comatus	8.7 µM	
9	*Ginkgo biloba* (Seeds)	Ginkbilobin	Protein	13	–	*P. sasakii Ito*	ND	*Huang et al.* (2000)
						A. alternate (Fries) Keissler	3.4 µM	
						F. oxysporum	1.8 µM	*Wang and Ng* (2003)
						M. arachidicola	1.4 µM	

| 10 | *Dendrocalamus latiflora* Munro (Shoot) | Dendrocin | Protein | 20 | – | *B. cinerea* | 1.8 µM | *Wang and Ng* (2003) |
S. No	Plant and its part	Protein	Nature	M.Wt. (kDa)	Peptide sequence	Fungal species (Tested)	*IC₅₀	References
11	*Vigna sesquipedalis* (Seeds)	Sesquin	Peptide	7		*B. cinerea*	2.5 µM	Wong and Ng (2005b)
						F. oxysporum	1.4 µM	
						M. arachidicola	0.15 µM	
12	*Withania somnifera* (Root tubers)	WSG	Glycoprotein	28		*A. flavus*	ND	Girish et al. (2006)
						A. niger		
						A.nidulans		
						A. flaviceps		
						A. alternate		
						A. carthami		
						F. oxysporum		
						F. verticilloides		
13	*Allium sativum* (Bulbs)	Alliumin	Protein	13		*M. arachidicola*	1.3 µM	Xia and Ng (2005)
14	*Pharbitis nil* (Seeds)	Pn-AMP1	Peptides	4.29		*B. cinerea*	16 µg/ml	Koo et al. (1998)
						C. langenarium	10 µg/ml	
						S. sclerotiorum	11 µg/ml	
						F. oxysporum	10 µg/ml	
						R. solani	26 µg/ml	
						P. capsici	5 µg/ml	
						P. parasitica	3 µg/ml	
						Pythium spp.	N.A	
						S. cerevisiae	14 µg/ml	
						B. cinerea	2 µg/ml	
						C. langenarium	4 µg/ml	
						S. sclerotiorum	3 µg/ml	
						F. oxysporum	2.5 µg/ml	
						R. solani	75 µg/ml	
						P. capsici	0.6 µg/ml	
						P. parasitica	2 µg/ml	
						Pythium spp.	2.5 µg/ml	
						S. cerevisiae	8 µg/ml	
15	*Beta vulgaris* L. (Leaves)	IWF4	Dimeric protein	4.5		*C. beticola*	≤ 2 µg/ml	Nielsen et al. (1997)
							(0.7 µM)	
16	*Eucommia ulmoides* Oliv (Bark)	EAFP1	Peptides	4.20		*A. lycopersici*	155 µg/ml	Huang et al. (2002)
						F. moniliforme	56 µg/ml	
						F. oxysporum	46 µg/ml	
						C. gossypii	35 µg/ml	
						A. lycopersici	109 µg/ml	
						F. moniliforme	18 µg/ml	
						F. oxysporum	94 µg/ml	
						C. gossypii	56 µg/ml	
S. No	Plant and its part	Protein Nature	M.Wt. (kDa)	Peptide sequence	Fungal species (Tested)	*IC50	References	
-------	--------------------------	----------------	-------------	------------------	-------------------------	-------	-----------------------------	
17	Capsella bursa-pastoris (Roots)	Shepherin I Peptide	2.36		C. albicans < 2.5 µg/ml	8 µg/ml	Park et al. (2000)	
		Shepherin II Peptide	3.26		C. neoformans < 2.5 µg/ml	7 µg/ml		
					S. cerevisiae 7 µg/ml			
					A. alternate 7 µg/ml			
					A. flavus 65 µg/ml			
					A. fumigatus > 100 µg/ml	> 100 µg/ml		
					F. culmorum 72 µg/ml			
					C. albicans 5 µg/ml			
					C. neoformans < 2.5 µg/ml			
					S. cerevisiae 3 µg/ml			
					A. alternate > 100 µg/ml	> 100 µg/ml		
					A. flavus 60 µg/ml			
					A. fumigatus > 100 µg/ml	> 100 µg/ml		
					F. culmorum 68 µg/ml			
18	Hevea brasiliensis (Latex)	Hevein Protein	4.7		B. cinerea 500 µg/ml		van Parijs et al. (1991)	
					F. culmorum 600 µg/ml			
					F. oxysporum 1.25 mg/ml			
					P. blakesleeanus 300 µg/ml			
					P. triticirepentis 350 µg/ml			
					P. oryzae 500 µg/ml			
					S. nodorum 500 µg/ml			
					T. hamatum 90 µg/ml			
					A. alternate 51 µg/ml		Kiba et al. (2005)	
					B. cinerea 61 µg/ml			
					F. solani 99 µg/ml			
					R. solani 30 ± 4 µM		Lam and Ng (2010)	
19	Gentiana triflora (Leaves)	GtAFP1 Protein	20		F. oxysporum 2 µg/ml		Fujimura et al. (2004)	
					G. candidum 2 µg/ml			
					A. alternate 1.56–12.5 µg/ml			
					C. tropicalis, C. parapsilosis 1.56 µM			
					M. arachidica 5.5 µM		Ye and Ng (2002b)	
20	Acacia confusa (Seeds)	Acaconin Protein	32		M. arachidica 1.3 µM		Kumar et al. (2014)	
					B. cinerea 1.56–12.5 µg/ml			
21	Tulipa gesneriana (Tulip Bulbs)	Tu-AMP1 Peptide	4.9		F. oxysporum 2 µg/ml		Wong and Ng (2003a)	
		Tu-AMP2 Dimeric peptide	2.259		G. candidum 2 µg/ml		Ye and Ng (2001)	
22	Cicer arietinum (Seeds)	CLAP Protein	18		M. arachidica 5.5 µM			
		C-25 Lectin protein	25		B. cinerea 1.3 µM			
23	Gymnocladus chinensis Baill (Beans)	Gymnin Peptide	6.5		F. oxysporum 2 µM			
24	Adzuckia angularia (Seeds)	Fraction AB2 Peptide	5		M. arachidica 3.5 µM			
S. No	Plant and its part	Protein	Nature	M.Wt. (kDa)	Peptide sequence	Fungal species (Tested)	*IC₅₀	References
-------	------------------------	------------------	----------	-------------	------------------------	-----------------------------	------------	------------------------------
25	Macadamia integrifolia (Seeds)	MiAMP1	Peptide	5.9		C. michiganensis	50 µg/ml	Marcus et al. (1999)
26	Vigna angularis (Seeds)	VaD1	Peptide	5.0		F. oxysporum sp. pisi	30 µg/ml	Chen et al. (2005b)
27	Phaseolus vulgaris (Seeds)	Vulgarinin	Peptide	7	KTCENLADTYKGP CFTSGGD	B. cinerea	2.9 µM	Wong and Ng (2005c)
						F. oxysporum	1.7 µM	
						M. arachidica	2.2 µM	
						C. albicans	0.21 µM cc	
28	Spinacia oleracea (Leaves)	So- D2	Peptide	5.80		F. culmorum	0.2 µM	Segura et al. (1998)
		So-D6	Peptide	2.55		F. solani	0.2 µM	
		So-D7	Peptide	4.23		F. culmorum	11 µM	
29	Actinidia chinensis (Fruit)	Kiwi TLP	Protein	21		M. arachidica	0.43 µM	Wang and Ng (2002)
						C. albicans	8 µM	
30	Benincasa hispida (Seeds)	Hispidalin	Peptide	5.7		A. flavus	ND	Sharma et al. (2014)
						F. solani	ND	
						G. candidida	ND	
						P. chrysogenum	ND	
						C. gloeosporioides	ND	
31	Peganum harmala (Seeds)	PHP	Homodimeric protein	18		A. alternate	1.5 µM	Ma et al. (2013)
						P. degitatum	7.5 µM	
						R. stolonifer	8.44 µM	
32	Cycas revoluta (Seeds)	Cy-AMP1	Peptide	4.58		F. oxysporum	6.0 µg/ml	Yokoyama et al. (2008)
		Cy-AMP2	Peptide	4.56		G. candidum	7.4 µg/ml	
						F. oxysporum	7.1 µg/ml	
33	Allium tuberosum (Shoot)	Cy-AMP3	Peptide	9.27		G. candidum	7.0 µg/ml	Lam et al. (2000)
		Fraction MS3	Protein	36		F. oxysporum	0.2 µM	
34	Dolichos lablab (Seeds)	Dolichin	Protein	28		R. solani	ND	Ye et al. (2000)
been shown to lower HIV-1 p24 antigen levels in AIDS patients (Leader et al. 2008). MAP30 (Momordica anti-
human immunodeficiency virus protein) is a highly potent anti-HIV agent and a type-I RIP, with an IC$_{50}$ of only 0.33

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
S. No & Plant and its part & Protein & Nature & M.Wt. (kDa) & Peptide sequence & Fungal species (Tested) & *IC$_{50}$ & References \\
\hline
35 & Panax ginseng (Roots) & Panaxagin & Homodimeric protein & 53 & – & \textit{F. oxysporum} & ND & Ng and Wang (2001) \\
36 & Phaseolus mungo (Seeds) & Mungin & Protein & 18 & – & \textit{R. solani} & ND & Ye and Ng (2000) \\
37 & Zea mays (Kernels) & MBP-1 & Peptide & 4.13 & – & \textit{F. graminearum} & ND & Duvick et al. (1992) \\
38 & Raphanus sativus (Seeds) & RsAFP1 & Tetrameric poly-peptide & 20 & – & \textit{A. brassicola} & ND & Terras et al. (1992) \\
 & & RsAFP2 & Trimeric poly-peptide & 15 & – & \textit{A. brassicola} & ND & \\
39 & Zingiber officinalis (Rhizome) & G-24 & Protein & 24 & – & \textit{F. oxysporium} & 4.6 µM & Terras et al. (1992) \\
40 & Trichosanthes dioica (Seeds) & TDSC & Glyco-protein & 39 ± 1 EING GGA & & \textit{A. niger} & ND & Kabir et al. (2016) \\
\hline
*IC$_{50}$ Concentration of protein required for 50% growth inhibition, ND Not determined, NA Not available, as these proteins have been claimed to exhibit the activity, but no activity parameters have been mentioned, Kiwi TLP Kiwi fruit thaumatin-like protein, \textit{MCha-Pr} \textit{Momordica charantia} pathogenesis-related protein, \textit{Fraction PTA2c} Pinto bean antifungal peptide, \textit{WSG \textit{Withania somnifera} glycoprotein}, \textit{IWF4} Intercellular washing fluid, \textit{EAFP} \textit{Eucommia antifungal peptide}, \textit{GtAFP} \textit{Gentiana triflora antifungal protein}, \textit{MBP-1} \textit{Maize basic peptide}, \textit{CLAP} \textit{Chickpea cyclophilin-like antifungal protein}, \textit{VaD1} \textit{Vigna angularis} variegate 1, \textit{TDSC} \textit{Trichosanthes dioica} seed chitinase
\end{tabular}
\end{table}
PAP has been conjugated with TXU and attacks the CD7 antigen of HIV-infected cells, thereby inhibiting the infection (Lee-Huang et al. 1990).

Being prone to microbial infections, the combined activity of both anti-HIV and anti-microbial peptides could create new opportunities for HIV therapy. Aforementioned proteins have properly recorded structures, but not much research has been done to understand their mode of action. The most widely accepted hypothesis is attacking the viral envelope (Bokesch et al. 2004). The cyclotides work by viral membrane disruption leading to the formation of the pore (Gerlach and Mondal 2012). These cyclotides (Kalata 1) get bound to the phospholipid-rich viral coat with the help of its hydrophobic patches, resulting in an oligomeric form that penetrates the viral coat. This leads to the formation of discrete pores, thereby causing the coat to collapse (Wang 2012). As viral coat has glycoproteins in it, plant peptides like ricin and con A, possessing carbohydrate-binding sites in them, have been considered as potential candidates for inhibiting HIV at initial stages (Mazalovska and Kouokam 2018). RIPs like PAP, MAP30, TCS stop HIV-1 replication through depurination of long terminal repeats (LTRs) present in the DNA (Kaur et al. 2012). Another RIP saporin impedes the activity of HIV1 integrase for processing the 3' end of the viral DNA disintegrating genome and its mRNA (Yadav and Batra 2015). If we can decipher the role of such proteins at different phases of the viral infection, anti-HIV activity can be exploited. Steps are to be taken to extract and characterize much more powerful anti-HIV agents that are less toxic. The available anti-HIV peptides are reported in Table 3.

Anti-SARS-CoV-2 activity

SARS-CoV-2, also called COVID-19 (Coronavirus Disease 2019), has more than 130 million reported cases worldwide and has taken the lives of more than 2.8 million people since its onset in late 2019 (Zhou et al. 2020) and successive pandemic declarations by the WHO on 11 March 2020 (WHO 2021). Since the virus outbreak, a monumental effort has been made by researchers and drug companies worldwide to discover a vaccine. Multiple candidates were chosen from varied sources, most of them being in clinical trials. But so far, no definite cure has been developed. Only a few vaccines have been engineered as a contingency plan against the virus. Plant peptides have also been tested for vaccine production to broaden the range of candidates. Lectin extracted from red marine alga *Grifithsia* sp. (GRFT) have been shown to inhibit the cytopathic effect of SARS-CoV, enhancing the mortality of cells (O’Keefe et al. 2010). In the case of MERS-CoV (Middle East respiratory syndrome-CoV: Strain of SARS-CoV in the Middle East), GRFT acts by preventing its entry into the host cell through spike protein inhibition. Thus, GRFT serves as an effective inhibitor of MERS-CoV infection (Millet et al. 2016). In-silico methods using plant proteins have also been utilized to identify the potential lead compounds for COVID-19 vaccine design. Avenin from oats, α/β-gliadin from wheat, and ribulose bisphosphate carboxylase small chain from multiple sources have been utilized to generate effective binders to SARS-CoV-2 spike receptor-binding protein (RBD). When combined with certain oligopeptides (VQVVN, PISCR), these plant peptides / proteins might be employed as lead compounds in developing potent entry inhibitors (Luo et al. 2020). A wide variety of therapeutic plant peptides exist, out of which only a few have been explored (Mammari et al. 2021). Future research should focus on other plant-derived peptides, their mode of action, and their side effects in order to engineer a proper peptide vaccine for COVID-19.

Non-infectious Diseases

The diseases which are mainly caused due to environmental or genetic factors and not by pathogens are termed non-infectious diseases. Examples of non-infectious diseases include diabetes mellitus, most cancers, and cardiovascular diseases. These could be cured using therapeutic peptides obtained from various plant sources. Peptides are essential molecules that can attach to multiple cell surface receptors. The plant peptides used as drugs are increasing day by day. This review is majorly discuss the plant peptides with anti-diabetic, anti-cancer, and anti-hypertensive properties. When treated with proteolytic enzymes of plant proteins form protein hydrolysates and yield peptides. These therapeutic peptides could be used to treat various non-infectious diseases. Nineteen percent of the medicinal plant peptides are used to cure metabolic disorders, twelve percent are used to cure cancer, and almost three percent to cure cardiac related problems (Patil et al. 2020). The peptides obtained from various plant sources such as common bean, rice, pinto bean, hemp seeds, and mulberry have anti-diabetic properties. Peptides obtained from soybean, wheat, barley, and walnut have anti-cancer properties. Anti-hypertensive activity is observed in peptides purified from rice and walnut. This review focuses on the various peptides, their origins, sequences, and how they prevent non-infectious diseases (Table 4).

Anti-diabetic activity of plant peptides/proteins

Diabetes mellitus is widespread, and it is one of the most prevalent non-infectious diseases and its treatment is challenging. A study conducted in India, reports 80 million diabetic cases, and projected to be 140 million cases by 2037 (Deepthi et al. 2018). The increasing number of cases shows diabetic prevalence in India and the need
S. No	Plant and its part	Protein	Nature	M. Wt. (kDa)	Peptide Sequence	Mode of action	*IC₅₀	References
1	*Phaseolus lunatus* (Seeds)	Lunatusin	Peptide	7	KTCENLADTFRGPCKFATSNCP1	HIV-1 reverse transcriptase inhibition	120 µM	Wong and Ng (2005a)
2	*Phaseolus vulgaris* (Seeds)	Vulgin	Polypeptide	5	VDVGTVTATFIEQFFKHRRNDAQPEGKGFYTNAFISAAR	HIV-1 reverse transcriptase inhibition	58 µM	Ye and Ng (2003)
3	*Lens culinaris* (Seeds) LTI	Fraction PTA2c Peptide	Peptide	16	GDKKKQAYTDYSTRSQQPP	HIV-1 reverse transcriptase inhibition	258 µM	Ye and Ng (2001)
4	*Vigna sesquipedalis* (Ground Beans)	Sesquin Peptide	Peptide	7	KTCENLADTY	HIV-1 reverse transcriptase inhibition	ND	Ye and Ng (2005b)
5	*Acacia confusa* (Seeds) N.A	Acaconin Protein	Protein	32	–	HIV-1 reverse transcriptase inhibition	73 µM	Lam and Ng (2010)
6	*Gelonium multiflorum* (Seeds) GAP 31	GAP 31 Protein	Protein	31	–	HIV-1 reverse transcriptase inhibition	0.32 nM	Lee-Huang et al. (1991b)
7	*Dianthus caryophyllus* (Leaves) DAPs 30	DAPs 30 Protein	Protein	30	ATAYLNLAPSASQSYSXF	HIV-1 reverse transcriptase inhibition Inhibition of syncytium formation	0.28 nM	
		DAPs 32 Protein	Protein	32	AVKTLNLVSPSANSRYATF	HIV-1 reverse transcriptase inhibition Inhibition of syncytium formation	0.88 nM	
8	*Momordica charantia* (Seeds) MAP 30	MAP 30 Protein	Protein	30	DVNFDLSTATAKTYTATLF	HIV-1 reverse transcriptase inhibition Inhibition of viral core protein p24 expression	0.33 nM	
					Inhibition on syncytium formation		0.22 nM	Lee-Huang et al. (1990)
S. No	Plant and its part	Protein	Nature	M. Wt. (kDa)	Peptide Sequence	Mode of action	*IC$_{50}$	References
-------	-------------------	---------	--------	-------------	-----------------	---------------	----------	------------
9	*Trichosanthes kirilowii* (Root tubers)	TAP 29	Protein	29	–	Inhibition of syncytium formation	0.34 nM	Lee-Huang, et al. (1991a)
						Inhibition of viral core protein p24 expression	0.37 nM	
						Inhibition of viral-associated reverse transcriptase activity	0.46 nM	
10	*Dorstenia contrajerva* (Leaves)	Contrajervin	Peptide	5	ERDDHRCGPDPYGNPSCSGDRCCSIYWNCGGGS-SCSegerQYQCWY	HIV-1 inhibition by binding to gp120 and gp41	> 4.9 µM	Bokesch et al. (2004)
11	*Treculia obovoidea* (Bark)	Treculavirin	Dimeric peptide	10	PGCEERPDHCQGPYNPCGGAGGRCSIHGWCGSSAYDSCSTSCQYQCSC	HIV-1 inhibition by binding to gp120 and gp41	> 2.5 µM	Bokesch et al. (2004)
12	*Dolichos lablab* (Seeds)	Dolichin	Protein	28	GAVGSVINA-SLFQQLKHRRNQDP-PEGKG	HIV-1 reverse transcriptase inhibition	< 180 µM	Ye et al. (2000)
13	*Oldenlandia affinis*	Kalata B 1 (Whole Plant)	Macrocyclic Peptides	2.89	GLPVCEGETCVGGTC-GTNG	HIV inhibition by cell envelope disruption	3.5 µM	Daly et al. (2004)
		Kalata B 8 (Aerial Parts)	Macrocyclic Peptides	3.28	GSNLECGTCELLGCYTTG	HIV inhibition by cell envelope disruption	11 µM	Daly et al. (2006)
14	*Chassalia parvifolia*	Circulin A (Crude Extract)	Macrocyclic Peptides	3.17	GIPCGESCVW IPCISAALGCSCKNKV-CYR N	HIV replication inhibition	0.05 µM	Gustafson et al. (1994)
	Circulin B (Crude Extract)	Macrocyclic Peptides	3.3	GIPCGESCVFIPCISTAALGCSCKNKV-CYR N	HIV replication inhibition	0.05 µM	Gustafson et al. (1994)	
	Circulin C (Stems)	Macrocyclic Peptides	3.1	NA	NA	NA	Gustafson et al. (2000)	
	Circulin D (Stems)	Macrocyclic Peptides	3.39	NA	NA	NA	Gustafson et al. (2000)	
	Circulin E (Stems)	Macrocyclic Peptides	3.39	NA	NA	NA	Gustafson et al. (2000)	
	Circulin F (Stems)	Macrocyclic Peptides	3.05	NA	NA	NA	Gustafson et al. (2000)	
15	*Peganum harmala* (Seeds)	PHP	Homodimeric protein	18	–	HIV-1-RT inhibition	1.26 µM	Ma et al. (2013)
16	*Palicourea condensata* (Bark)	Palicourein	Polypeptide	3.9	RNGDPTFCGETCRVIPVCTYSAALGCTCD-DRSDGLCK	HIV-1 replication inhibition	1.5 µM	Bokesch et al. (2001)
17	*Trichosanthes kirilowii* (Root tubers)	TCS or (GLQ 223)	Protein	26	–	HIV-1 replication inhibition	0.46 nM	Shu et al. (2009)
S. No	Plant and its part	Protein	Nature	M. Wt. (kDa)	Peptide Sequence	Mode of action	*IC₅₀	References
-------	-------------------	---------	--------	-------------	-----------------	---------------	-------------	------------
18	*Leonia cymosa* (Bark)	Cycloviol A	Macrocyclic peptides	3.2	SCVFIPCISAIGC-SCKNKVCY	NA	0.56 μM	Hallock et al. (2000)
		Cycloviol B		2.8	SCYVLPCFTVGCCTTSSQ			
		Cycloviol C		3.1	SCVFIPCLTTVAGC-SCKNK			
		Cycloviol D		3.1	SCVFIPCISAIGC-SCKNKCY			
19	*Viola odorata* (Whole Plant)	Cycloviolacin O2	Macrocyclic peptides	3.1	HIV inhibition by cell membrane disruption	NA	6.4 μM	Ireland et al. (2008)
		Cycloviolacin O13 (Aerial Parts)		3.12			4.8 μM	
		Cycloviolacin O14 (Aerial Parts)		3.17				
		Cycloviolacin O24 (Aerial Parts)		3.04			6.17 μM	
20	*Viola yedoensis* (Whole Plant)	Cycloviol Y1	Macrocyclic peptides	3		NA	4.47 μM	Wang et al. (2008)
		Cycloviol Y4					1.72 μM	
		Cycloviol Y5					1.76 μM	
21	*Viola tricolor* (Whole Plant)	Varv E	Macrocyclic peptides	2.99		NA	3.98 μM	Wang et al. (2008)
22	*Viola hederacea* (Leaves)	Vhl-1	Macrocyclic peptides	3.33		NA	0.87 μM	Chen et al. (2005a)
23	*Vicia faba* cv. Giza 843 (Seeds)	VFTI-G1	Protein	15	HIV-1-RT inhibition	0.76 μM		Dia and Krishnan (2016)
24	*Gymnocladus chinensis* Baill (Beans)	Gymnin	Peptide	6.5	HIV-1-RT inhibition	200 μM		Wong and Ng (2003b)
25	*Adzukia angularia* (Seeds)	Fraction AB2	Peptide	5	HIV-1-RT inhibition	280 μM		Ye and Ng (2001)
26	*Bauhinia variegata* (Seeds)	Fraction BG2	Homodimeric lectin	64	HIV-1-RT inhibition	1.02 μM		Chan and Ng (2015)
27	*Momontica balsamina* (Seeds)	Balsamin	Protein	28	HIV-1 replication inhibition	10.2 nM		Kaur et al. (2012)
28	*Phaseolus vulgaris* (Seeds)	Vulgarinin	Peptide	7	HIV-1-RT inhibition	130 μM		Wong and Ng (2005c)
Table 3 (continued)

S. No	Plant and its part	Protein Nature	M. Wt. (kDa)	Peptide Sequence	Mode of action	References
29	Phytolacca americana (Leaves)	PAP Protein	29 - 30	-	Inhibited p24 production in HIV	Irvin and Uckun (1992)
		PAP-I	14 ± 2.1 nM	Asp, Val, Asp-Phe, Leu, Ser, Gly, Ala, Asp	HIV-1-RT inhibition	Rajamohan et al. (1999)
		PAP-II	17 ± 2.0 nM	Ser, Gly, Ala, Asp	HIV-1-RT inhibition	Jantakryjak et al. (2000)
		PAP-III	18 ± 2.0 nM	Ser, Gly, Ala, Asp	HIV-1-RT inhibition	Ye and Ng (2009)
30	Momordica charantia (Seeds)	MRK29 Protein	28.6	Asp, Val, Asp, Phe, Leu, Ser, Gly, Ala, Asp	HIV-1-RT inhibition	Jiratchariyakul et al. (2001)
31	Brassica juncea var. integrifolia (Seeds)	Juncin Protein	18.9	-	HIV-1-RT inhibition	Ye and Ng (2009)
32	Panax ginseng (Roots)	Panaxagin Homodimeric protein	53	-	HIV-1-RT inhibition	Ng and Wang (2001)
33	Allium tuberosum (Shoot)	Fraction MS3 Protein	36	EQHGSQAGGALH-PXHLSKYGGYGGTTPDYYGDGGQQ	HIV-1-RT inhibition	Lam et al. (2000)

*IC$_{50}$ Concentration causing 50% inhibition, ND Not determined, NA Not available, as these proteins have been claimed to exhibit activity, but no activity parameters have been mentioned.

LTI Lentil trypsin-chymotrypsin inhibitor, **TAP** 29 Trichosanthes anti-HIV protein, **MAP** 30 Momordica anti-HIV protein, **Vhl-1** Viola hederacea leaf cyclotide-1, **MR-29** Thai anti-HIV protein

Several peptides in plants are reported to possess anti-diabetic property by controlling/inhibiting the enzymes and transporters associated with glucose metabolism (α-glucosidase inhibitors, α-amylase inhibitors, DPP-IV inhibitors, GLUT and SLUT) (Patil et al. 2020).

α-Glucosidase Peptide Inhibitors

The outcome of Ren et al. (2016) study reported that *Cannabis sativa L.* (hemp seeds) peptide (Leucine-Arginine and Proline-Leucine-Methionine-Leucine-Proline) has α-glucosidase inhibitory activity. The hydrophobic nature of the amino acids proline and leucine has shown to have α-glucosidase inhibitory activity, which can be incorporated in therapeutic peptide for further development of effective anti-diabetics. Similarity, 14 amino acids (Tryptophan-glycine-valine-glutamate-asparagine-alanine-threonine-tyrosine-phenylalanine-tryptophan-glutamine-threonine-valine) long peptide from *Morus alba L.* (Mulberry) and a peptide (Threonine-threonine-glycine-glycine-lysine-glycine-lysine) from *Phaseolus vulgaris L.* (black bean) were shown to have α-glucosidase inhibitory activity (Jha et al. 2018; Mojica and Mejia 2016).

α-Amylase Peptide Inhibitors

The peptide CSP-1 (cumin seed peptide) obtained from *Cuminum cyminum L.*, has shown 25 % of α-amylase inhibition property (Patil et al. 2020), whereas the peptide from *Phaseolus vulgaris cv. Pinto* (pinto beans) showed 62.10 % of inhibition. Seven peptides from pinto beans are reported to have α-amylase inhibition property and each of which are in 6–16 amino acids in length. One among the seven peptides which had higher inhibition activity is composed of proline-proline-histidine-methionine-leucine-proline (Ngoh and Gan 2016).

Dipeptidyl Peptidase-IV (DPP-IV) Peptide Inhibitors

DPP-IV facilitates the degradation of Glucagon-like peptide-1 (GLP-1), hence DPP-IV inhibitors are the prime molecules in controlling diabetics. The proteases Umamizyme G and Bioprase SP containing Leucine-Proline and Isoleucine-Proline amino acids from *Oryza sativa* were having inhibitory activity against DPP-IV. Among which, Isoleucine-Proline was the most potent DPP-IV enzyme inhibitor with the IC$_{50}$ value of 2.5 mg/ml (Hatanaka et al. 2015).
GLUT and SLUT Plant-Based Peptide Inhibitors

GLUT and SLUT are to be inhibited during hyperglycemic condition where the blood glucose levels are highly elevated. Patil et al. 2020 reported that the peptides in black beans (*Phaseolus vulgaris L.*) have the ability to block the glucose transporters (GLUT-2 and SLUT-1) in order to control the elevated blood glucose level.

Anti-hypertensive activity of plant peptides/proteins

Hypertension, an elevated pressure in the blood vessels and it is one of the major causes of cardiovascular diseases. Renin-Angiotensinogen System (RAS) is mainly involved in the management of blood pressure. The inhibitors of these enzymes (renin and Angiotensin-I-Converting Enzyme (ACE) of RAS) inhibits the elevated vasodilators to control the blood pressure level. Daskaya-Dikmen et al. 2017 reported several plant-based peptides showing inhibitory activity against ACE towards the development of novel anti-hypertensive therapeutics.

Peptide Inhibitors of ACE

The peptide P-2a2 (Tryptophan-proline-glutamate-arginine-proline-proline-glutamine-isoleucine-proline) from walnut has the molecular weight of 1034 Da and it has shown higher level of inhibition profile with an IC\textsubscript{50} value of 23.67 μg/ml against ACE, which prevents the breakdown of vasodilator, bradykinin (Liu et al. 2013). The peptide (Leucine–Arginine–Alanine) obtained from *Oryza sativa* and chebulin (Aspartate–Glutamate–Asparagine–Serine–Phenylalanine) from *Terminalia chebula Retz* has shown anti-hypertension activity by inhibiting ACE. The walnut and the fruit of *Terminalia chebula Retz* have been used as a food supplement in the control the hypertension (Shobako and Ohinata 2020; Sornwatana et al. 2015).

Table 4 List of plant peptides/proteins used for non-infectious diseases

S. No	Plant and its part	M. Wt	Sequence	Inhibitor target	Property	References
1	*Cannabis sativa L.* (Seeds)	287.2 Da	LR PLMLP	Alpha-glucosidase inhibition	Anti-diabetic	Ren et al. (2016)
2	*Morus alba L.* (Leaves)	0.3–5 KDa	WGVENAATY-FWQTV	Alpha-glucosidase inhibition	Anti-diabetic	Jha et al. (2018)
3	*Phaseolus vulgaris L.* (Fruit)	–	–	Alpha-glucosidase inhibition	Anti-diabetic	Mojica and de Mejía (2016)
4	*Phaseolus vulgaris L.* (Fruit)	> 3 kDa	–	Alpha-amylase inhibition	Anti-diabetic	Ngoh and Gan (2016)
5	*Oryza sativa L.* (Seeds)	–	–	DPP-IV enzyme inhibitor	Anti-diabetic	Hatanaka et al. (2015)
6	*Phaseolus vulgaris L.* (Fruit)	–	–	GLUT2 and SLUT1 inhibitor	Anti-diabetic	Patil et al. (2020)
7	Walnut (Fruit)	1033.42 Da	WPERPPEIP	ACE inhibitor	Anti-hypertensive	Liu et al. (2013)
8	*Oryza sativa* (Husk)	–	–	ACE inhibitor	Anti-hypertensive	Shobako and Ohinata (2020)
9	*Terminalia chebula Retz* (Fruit)	1033 Da	DENSKF	ACE inhibitor	Anti-hypertensive	Sornwatana et al. (2015)
10	*Oryza sativa* (Husk)	–	–	–	Anti-proliferative	Kannan et al. (2010)
11	*Glycine max* *Triticum aestivum* *Hordeum vulgare* *Amaranthus- hypochondriacs* (Fruit)	–	–	–	Anti-mitotic, anti-cancer	Hernandez-Ledesma et al. (2009)
12	*Juglans regia L.* (Fruit)	621.2795 Da	CTLEW	–	Causes apoptosis and autophagy	Ma et al. (2015)
antioxidant property than native soybean peptide. Similarly, Zhang et al. 2018 study shows the antioxidant peptides, valine-leucine-tyrosine-isoleucine-tryptophan (MW 673.1 Da) and serine-valine-proline-tyrosine-glutamate (MW 566.9 Da) were having potential antioxidant activity. Six peptides obtained from Pinto beans by Ngoh and Gan (2016) shown highest antioxidant activity.

Ribosome Inactivating Proteins and peptides from plants

Ribosome-Inactivating Proteins (RIPs) are a category of proteins whose principal function is to impair ribosomes in an irreversible manner modifying rapidly through enzymatic pathways (Stirpe 2004). Considering their discovery in the last few decades, RIPs investigation and inculcation in therapeutics have garnered tremendous scientific attention. RIPs are present in bacteria and plants, yet many plant RIPs have been well-characterized and have been traced to their functions compared to bacterial RIPs (Walsh et al. 2013). By hydrolyzing a specific N-C glycosidic bond of the eukaryotic 28S rRNA (belonging to the large 60S ribosomal subunit), the integral N-glycosidase activity of RIPs liberates the adenine residue from the 3’ end of its conserved GAGA tetraloop (sarcin/ricin loop), thereby impeding protein synthesis and irreversibly inactivating the ribosome (Walsh et al. 2013). RIPs have also been shown to exhibit RNase, DNase, polynucleotide adenosine glycosidase, superoxide dismutase activity (Park et al. 2006). RIPs have been classified into three subclasses, two of them being most prominently exploited for research purposes (Girish et al. 2006). The highly ubiquitous RIP-I is the most widely used RIP with a 26–35 kDa molecular weight. RIP-I launches itself into the cell by attaching to the LDL (Low-Density Lipoprotein) receptors (Walsh et al. 2013). The example of Saporin (Type I RIP extracted from Saponaria officinalis) can be used to understand the mechanism of protein synthesis inhibition by RIP-I. Internalization of saporin takes place through endocytosis by binding to the member of the LDL receptor family, α2-macroglobulin/LPR1 (low-density lipoprotein receptor-related protein1) existent in the host cell membrane (Vago et al. 2005). Saporin sets foot on cytoplasm through golgi independent pathway, thereby steering clear of low pH conditions of intracellular compartments. Once inside the cytoplasm, saporin inhibits protein synthesis by excising the adenine residue from the 3’ end of the particular site of the ribosome (Walsh et al. 2013). Another example of RIP-I, TCS (Trichosanthes kirilowii), associated with negatively charged phospholipid containing monolayer through electrostatic, hydrophobic interactions under acidic conditions (low pH), altering the charge of some residues, which is accompanied by salt-bridge breakage and charge to charge repulsion. This is followed by partial denaturation of TCS into a molten globular state, thus entering the host cell (Puri et al. 2012).

The process of protein synthesis inhibition is similar to that of any Type-I RIP. The RIP-II, is group of proteins is highly toxic. It is a heterodimeric carbohydrate-binding protein composed of 2 chains, A and B, held together by a disulfide bond. It has a molecular weight of 56–69 kDa, with each chain having a molecular weight of about 30 kDa (Girish et al. 2006). The A-chain exhibits vital N-glycosidase activity. The B-chain enables RIP-II to attach to the particular carbohydrate-containing cell receptors, as it has a strong affinity for carbohydrate moieties. This, in turn, leads to the migration of chain A across the cell membrane (Stirpe 2004). The entry process into cells for RIP-II is highly different from RIP-I because the latter lacks B-chain, which plays a vital role in its internalization process. Ricin (extracted from Ricinus communis) as almost all the Type-II RIPs are analogous to ricin, which has a well-identified for their mode of action (Puri et al. 2012). Binding to a particular receptor on the host cell membrane through the B-chain, ricin enters the cell either by clathrin-dependent or clathrin-independent endocytosis resulting in the origin of ricin containing endosomal vacuole (Puri et al. 2012). Eventually, ricin enters the trans-golgi network in COP-I vesicles. It is delivered to the early endosomes, either recycled by returning it to the cell surface or undergoes proteolytic degradation by the lysosome, finally reaching the E.R. lumen (Fujimura et al. 2004; Gustafson et al. 2000). The disulfide bond joining the two chains is degraded within the E.R. lumen, letting the remaining ricin transported by Endoplasmic Reticulum Associated Degradation (ERAD-Pathway for degradation of misfolded proteins) to the cytoplasm (Fujimura et al. 2004; Gustafson et al. 2000). Almost most of the toxin is degraded by 26s proteasome, leaving behind only a small portion that influences protein synthesis (Puri et al. 2012). Additionally, another class of RIP is not universal-Type-III RIPs. They show similar enzymatic activity to RIP-I as they have an identical N-terminal domain bound to the carboxyl domain with an unestablished function. Moreover, they are always synthesized in an inactive form (Girish et al. 2006).

In the present scenario, in-depth research on RIPs has been encouraged due to their miscellaneous biological involvement in viral, HIV, and microbial infections (Pizzo and di Maro 2016).

RIPs have been coupled to specific antibodies to generate immunoonjugates in cancer and HIV therapy by targeting a specific cell due to their ability to hydrolyze N-glycosidase bond (Pizzo and di Maro 2016). Anti CD4-PAP is an immunoonjugate created by combining PAP with an antibody that targets HIV-infected CD4 T-cells and prevents HIV infection (Irvin and Uckun 1992). Another example is B43-PAP (anti-CD19 pokeweed antiviral protein), an
immunotoxin made by combining B43 [an antibody-targeting CD19 antigen found on B-lineage acute lymphoblastic leukemia (ALL cells)] and PAP (Irvin and Uckun 1992). Alpha-momorcharin (0.12 nM), beta-momorcharin (0.11 nM), MAP30, balsams, isomers of luffin (a—1.64 ng/ml and b—0.84 ng/ml), ricin (814 pM), abrin (500 pM), and other plant RIPs with extremely low IC50 values have been isolated. Cell-Free Protein Synthesis (CFPS-growing in vitro) has been demonstrated to be inhibited by these RIPs (Puri et al. 2012). Despite having many RIPs, only a minority have been fully identified. Therefore, the main challenge arises in exploring and identifying some potent plant RIPs with high therapeutic efficiency and less toxicity. The available ribosome-inactivating peptides are listed in Table 5.

Anti-carcinogenic activity of plant peptides/proteins

One of the causes of death in recent times is the various types of cancer. Cancer caused due to genetic effects is 5-10%, but almost 90-95% of the cancers are caused due to the environment and lifestyle changes. Bioactive plant peptides can be used to cure cancer. Plant peptides prevent the proliferation of cancerous cells and cause their death-apoptosis (Hernandez-Ledesma and Hsieh 2017). A study conducted by Kannan et al. (2010) on Oryza sativa—heat stabilized defatted rice bran showed that when treated with alcalase (protease), peptide hydrolysates were produced, which are less than 5 kDa. This peptide hydrolysate was subjected to ion-exchange chromatography followed by an MTS assay. The peptide at 1000 μg/ml could show the highest inhibition for the colon and liver cancer cells for up to 84%. This study further analyzed for the amino acid composition from the peptide, and it was found that the peptide contains arginine, proline, and glutamic acid. The peptide chain was found to be glutamate-glutamine-arginine-proline-arginine, a short pentapeptide sequence. The peptide showed anti-proliferative effects on cancer cells. A peptide that prevents cancer is found in Glycine max (soybean), Triticum aestivum (wheat), Hordeum vulgare (barley) is called lunasin. Lunasin is an effective anticancer agent consisting of 43 amino acids. It has a presence of 8 aspartate residues in the C terminal; they are responsible for opposing mitosis, they play a role in the attachment of lunasin to chromatin. The amino acids arginine-glycine-aspartate are called cell adhesion motif they internalize lunasin into the cell’s nucleus. The amino acids 23–31 target the lunasin to H3–H4 histones in DNA.

In vivo mouse models were used to check the effects of lunasin on cancer cells. Lunasin was also found in Amaranthus hypochondriacus. Lunasin obtained from soybean could be taken orally as it is resistant to enzymes present in our body like pepsin and pancreatin. This property of lunasin makes it an ideal plant peptide that could cure the cancer.

The amount of lunasin found was 4.4–70.5 mg lunasin/g of protein in Glycine max, the highest among the other plants like wheat and barley (Hernandez-Ledesma et al. 2009). A study was conducted by Ma et al. (2015) on Juglans regia L. (walnut). The walnut protein was treated with different proteases, followed by purification steps to obtain the pure peptide. The peptide was further subjected to its anti-cancer activity on cells. The walnut protein hydrolyzed with papain exhibited inhibitory actions on the MCF-7 cell line (human breast cancer cell line). The peptide was found to be cysteine-threonine-leucine-glutamate-tryptophan. This peptide CTLEW induces the process of apoptosis and autophagy. The reported anti-carcinogenic proteins are listed in Table 6.

Rational drug design

Rational drug design is the process of designing drug molecules that bind to a target. Cyclotides are a new type of microproteins with a unique topology that includes a head-to-tail cyclized backbone structure that is further stabilised by three disulfide bonds that form a cystine knot. They are disulphide rich peptides and their basic function is plant defence. When compared to linear peptides of equal size, they have a unique molecular architecture that renders them extremely resistant to physical, chemical, and biological destruction. Apart from the conserved regions composing the cystine knot, the cyclotides are orally accessible and able to traverse cellular membranes to alter intracellular protein–protein interactions (PPIs) in vitro and in vivo. They are ideal scaffolds for numerous biotechnological applications, including drug development, because of their unique characteristics (Camarero and Campbell 2019). It does not involve trial and error like traditional drug design. The cyclotide sequences are updated on Cybase regularly. The example, plant cyclotide used is Kalakata B1, the peptide sequence is converted to cyclotide scaffold because of the cysteine knot. Graffiti of sequences from myelin oligodendrocyte glycoprotein (MOG) into kalakata B1 has been used to design drugs for multiple sclerosis (Craik and Du 2017). By applying molecular grafting of bioactive epitopes or even molecular evolution methods, it is possible to create cyclotides with unique biological properties. Cyclotides which can target a wide range of protein targets have been developed and evaluated using these methods, largely in vitro but also in animal models. Despite the early success of using the cyclotide scaffold to target specific proteins and modify their biological activity, no cyclotides have yet been tested in humans. Potential immunogenicity and oral bioavailability are two obstacles that bioactive cyclotides must overcome before entering the clinic. More research into the biopharmaceutical properties of these fascinating new micro-proteins
Table 5 List of ribosome-inactivating proteins from plants

S. No	Plant and its part	Protein	Nature	M. Wt. (kDa)	Class of RIP	Mode of action	*IC50	References
1	*Momordica balsamina* (Seeds)	Balsamin	Protein	28	RIP-I	28S rRNA depurination with the liberation of RNA fragment of about 400 nucleotides	90.6 ng/ml	Kaur et al. (2012)
2	*Cucurbita foetidissima* (Root)	Foetidissimin	Protein	63	RIP-II	28S rRNA depurination with the liberation of RNA fragment of about 550 nucleotides	25.9 nM	Zhang and Halaweish (2003)
		Foetidissimin II	Protein	61	RIP-II	28S rRNA depurination with the liberation of RNA fragment of about 450 nucleotides	0.251 µM	Zhang and Halaweish (2007)
3	*Cucurbita texana*	Texanin (Fruit)	Protein	29.7	RIP-I	28S rRNA depurination	NA	Zhang and Halaweish (2007)
	ME2 (Roots)		Protein	27.5	RIP-I	28S rRNA depurination	NA	Vivanco et al. (1999)
4	*Abrus precatorius* (Seeds)	AGG	Heterodimeric lectin	134	RIP-II	28S rRNA depurination	0.469 µg/ml	Bhutia et al. (2016)
	Abrin		Homotetrameric protein	260	RIP-I	28S rRNA depurination	500 pM	Ferreras et al. (2011)
5	*Viscum album L.* (Green Parts)	Viscum	Heterodimeric protein	60	RIP-I	28S rRNA depurination	NA	Olsnes et al. (1982)
6	*Amaranthus viridis L.* (Leaves)	Amaranthin	Protein	30	RIP-I	28S rRNA depurination	25 pM	Kwon et al. (1997)
7	*Beta vulgaris L.* (Leaves)	Beetin-27	Protein	27.59	RIP-I	28S rRNA depurination	1.15 ng/ml	Iglesias et al. (2005)
8	*Citrullus colocynthis (L.) Schrad (Seeds)*	Colocin 1	Protein	26.3	RIP-I	28S rRNA depurination	0.04 nM	Bolognesi et al. (1990)
		Colocin 2	Protein	27.98	RIP-I	28S rRNA depurination	0.063 nM	Remi Shih et al. (1998)
9	*Marah oreganus* (Seeds)	MOR-I	Protein	27.63	RIP-I	28S rRNA depurination	0.13 nM	Puri et al. (2012)
		MOR-II	Protein	115	RIP-II	28S rRNA depurination	0.071 nM	
10	*Momordica charantia L.* (Seeds)	MCL	Heterotetrameric lectin	115	RIP-II	28S rRNA depurination	5 µg/ml	
	α-momorcharin	Protein	28	RIP-I	0.12 nM			
	β-momorcharin	Protein	29	RIP-I	0.11 nM			
	MAP 30	Protein	30	RIP-I	3.3 nM			
	γ-momorcharin	Protein	11.5	sRIP-I	55 nM			
	δ-momorcharin	Protein	30	RIP-I	0.15 nM			
11	*Trichosanthes kirilowii* Matim	TCS(GLQ223) (Seeds)	Protein	26	RIP-I	28S rRNA depurination	0.36 ng/ml (3.7 nM)	Lee-Huang et al. (1991a); Schrot et al. (2015)
S. No	Plant and its part	Protein	Nature	M. Wt. (kDa)	Class of RIP	Mode of action	*IC₅₀	References
-------	---	------------------	--------------	--------------	---------------	------------------------	--------	--
1	TAP 29 (Root tubers)	29	RIP-I	3.7 nM				Lee-Huang et al. (1991a)
2	Trichosantrhip (Seeds)	10.96	sRIP-I	1.6 ng/ml				Shu et al. (2009)
3	α-kirilowin (Seeds)	28.8	RIP-I	1.2–1.8 ng/ml				Wong et al. (1996)
4	β-kirilowin (Seeds)	27.5	RIP-I	1.8 ng/ml				
5	Basella rubra L. (Seeds)	Basella RIP 2a protein fraction	30.6	RIP-I	NA		1.70 ng/ml	Bolognesi et al. (1997)
6	Basella RIP 2b protein fraction	31.2	RIP-I	NA			1.70 ng/ml	
7	Basella RIP 3	31.2	RIP-I	1.66 ng/ml				
8	Saponaria ocyoides L. (Seeds)	Ocymoidin	Protein	30.2	RIP-I	28S rRNA depurination	46 pM; 4.8 ng/ml	Bolognesi et al. (1995), di Massimo et al. (1997)
9	Secale cereale (Seeds)	RPSI (Seeds)	Protein	30.1	RIP-I	NA	0.42 µg/ml	Minami et al. (1998)
10	Phytolacca americana L	PAP (Leaves)	Protein	29–30	RIP-I	28S rRNA depurination	0.29 nM	Irvin and Uckun (1992), Poyet and Hoeveler (1997)
	PAP-I (Leaves)	29	RIP-I	3 ± 0.2 pM				Rajamohan et al. (1999)
	PAP-II (Leaves)	30	RIP-I	4 ± 0.2 pM				
	PAP-III (Leaves)	30	RIP-I	3 ± 0.2 pM				
	PAP-S (Seeds)	30	RIP-I	36–83 nM; 1.09				Barbieri et al. (1982)
	PAP-R (Roots)	25.0	RIP-I	0.05 nM				Stirpe et al. (1986)
11	Trichosanthes lepiniate (Root tuber)	Trichomaglin	Protein	24.6	RIP-I	28S rRNA depurination	10.1 nM	Chen et al. (1999)
12	Iris hollandica var. Professor Blaauw (Bulbs)	IrisRIP	Protein	28	RIP-I	28S rRNA depurination	0.1–0.16 nM	Desmyter et al. (2003)
	IrisRIP.A1	29	RIP-I	0.16 nM				van Damme et al. (1997)
	IrisRIP.A2	29	RIP-I	0.12 nM				
	IrisRIP.A3	29	RIP-I	0.10 nM				
13	Viscum album L. (Leaves)	ML-I	Heterodimeric lectin	115	RIP-II	NA	2.6 µg/mL	Stirpe et al. (1980)
14	Momordica grosvenorii (Seeds)	Momorgrosvin	Glycoprotein	27.7	RIP-I	NA	0.3 nM	Tsang and Ng (2001)
15	Pisum sativum var. arvense Poir (Seeds)	α pisavins	Protein	20.5	RIP-I	NA	0.5 nM	Lam et al. (1998)
	β pisavins	18.7						
16	Vaccaria pyramidata (Seeds)	Pyramidatine	Protein	28.0	RIP-I	28S rRNA depurination	3.6 ng/ml	di Massimo et al. (1997)
Table 5 (continued)

S. No	Plant and its part	Protein	Nature	M. Wt. (kDa)	Class of RIP	Mode of action	*IC$_{50}$	References
22	*Cinnamomum porrec- tum (Seeds)*	Parrettin	Glycoproteins	64.5	RIP-II	28S rRNA depurination	0.11 µM	Li et al. (1996)
23	*Cicer arietinum (Seeds)*	CLAP	Protein	18	–	NA	20 µM	Ye and Ng (2002a)
24	*Phaseolus mungo (Seeds)*	Mungin	Protein	18	–	NA	24 µM	Ye and Ng (2000)
25	*Adzukia angularia (Seeds)*	Fraction AB2	Peptide	5	–	NA	11 µM	Ye and Ng (2001)
26	*Phaseolus vulgaris (Seeds)*	Fraction PTA2c	Peptide	5	–	NA	9 µM	Ye and Ng (2001)
27	*Dianthus caryophyllus (Leaves)*	DAPS 30	Protein	30	RIP-I	28S rRNA depurination	3.4 nM	Lee-Huang et al. (1991b)
28	*Gelonium multiflorum (Seeds)*	GAP 31	Protein	31	RIP-I	28S rRNA depurination	4.1 nM	Lee-Huang et al. (1991b)
29	*Asparagus officinali (Seeds)*	Asparin 1	Protein	30.5	RIP-I	NA	0.27 nM	Bolognesi et al. (1990)
		Asparin 2	-	29.8	-	-	0.15 nM	Kishida et al. (1983)
30	*Luffa cylindriaRoem (Seeds)*	Luffin	Protein	26	RIP-I	NA	0.42 ng/ml	Ng et al. (1992b); Schrot et al. (2015)
		Luffin a	-	28	-	-	1.64 ng/ml	Ng et al. (1992b); Schrot et al. (2015)
		Luffin b	-	29	-	-	0.84 ng/ml	Ng et al. (1992b); Schrot et al. (2015)
31	*Lychnis chalcedonica (Seeds)*	Lychnin	Protein	26.6	RIP-I	NA	0.17 nM	Bolognesi et al. (1990)
32	*Manihot palmata (Seeds)*	Mapalmin	Protein	32.3	RIP-I	NA	0.05 nM	Bolognesi et al. (1990)
33	*Bryonia dioica*	Bryodin-L (Leaves)	Protein	28.8	RIP-I	NA	0.09 nM	Bolognesi et al. (1990)
		Bryodin (Roots)	-	30	-	-	0.12 nM	Bolognesi et al. (1990)
34	*Ricinus communis.L (Seeds)*	Ricin D = Ricin	Glycoprotein	62.8	RIP-II	28S rRNA depurination	5.5 ng/ml; 814 pM	Battelli et al. (1997), Endo and Tsurugi (1987), Schrot et al. (2015), Wei and Koh (1978)
		Ricin E	-	64	-	-	NA	Schrot et al. (2015)
		RCA	-	118–130	-	-	NA	Schrot et al. (2015)
35	*Ricinus communis.L USA (Seeds)*	Ricin 1	Glycoprotein	66	RIP-II	28S rRNA depurination	NA	Schrot et al. (2015)
		Ricin 2	-	-	-	-	NA	Schrot et al. (2015)
		Ricin 3	-	-	-	-	NA	Schrot et al. (2015)
S. No	Plant and its part	Protein	Nature	M. Wt. (kDa)	Class of RIP	Mode of action	*IC$_{50}$	References
-------	-------------------	---------	--------	--------------	--------------	----------------	------------	------------
36	*Ricinus communis*, India (Seeds)	Ricin I	Glycoprotein	64	RIP-II	28S rRNA depurination	NA	
		Ricin II						
		Ricin III						
37	*Trichosanthes cucumeroides* (Set.) Maxim (Root tubers)	β-TCS	Protein	28	RIP-I	28S rRNA depurination	2.8 ng/ml; 0.1 nM	Ng et al. (1992a); No et al. (1991); Yeung and Li (1987)
38	*Saponaria officinalis* L	Saporin-L1 (Leaves)	Protein	31.6	RIP-I	28S rRNA depurination	0.25 nM	Ferreras et al. (1993)
		Saporin-L2 (Leaves)		31.6		0.54 nM		
		Saporin-R1 (Roots)		30.2		0.86 nM		
		Saporin-R2 (Roots)		30.9		0.47 nM		
		Saporin-R3 (Roots)		30.9		0.48 nM		
		Saporin-S5 (Seeds)		30.9		0.05 nM		
		Saporin-S6 (Seeds)		31.6		0.06 nM		
39	*Phaseolus vulgaris* (Seeds)	Vulgarinin	Peptide	7	–	NA	13 μM	Wong and Ng (2005c)
40	*Adenia digitata* (Roots)	Modeccin	Protein	57–63	RIP-II	28S rRNA depurination	4 μg/ml	Olsnes et al. (1978); Schrot et al. (2015)
		Modeccin 6B		57		0.31 μg/ml		Barbieri et al. (1980)
41	*Panax ginseng* (Roots)	Panaxagin	Homodimeric protein	53	–	NA	0.28 nM	Ng and Wang (2001)
42	*Allium tuberosum* (Shoot)	Fraction MS3	Protein	36	–	NA	850 nM	Lam et al. (2000)

*IC$_{50}$ Concentration causing 50% inhibition, ND Not determined, NA Not available, *CAP30* *Chenopodium album* antiviral RIP, *RPSI* Rye protein synthesis inhibitor, *PAP* Pokeweed anti-viral protein, *IrisRIP = IRIP* Type-1 ribosome-inactivating protein from iris bulbs, *CLAP* Chickpea cyclophilin-like antifungal protein, Fraction AB2 Red bean antifungal peptide, Fraction PTA2c Pinto bean antifungal peptide, *DAPs 30* Dianthus anti-HIV proteins, *GAP 31* Gelonium anti-HIV protein, *RCA* *Ricinus communis* agglutinin, TAP 29 Trichosanthes anti-HIV protein, β-TCS β-trichosanthin
S. No	Plant and its part	Protein	Nature	Sequence	Mode of action	M. Wt. (kDa)	*IC\textsubscript{50}	References
1	*Acacia confuse* (Seeds)	Acaconin	Protein	DPLLDFPGNEVEAS-RAYVVSVIRGAG	Prevents the growth of human hepatoma cells and leukemia cells	32	128±9 µM	Lam and Ng (2010)
2	*Clausena lansium* (Lour) (Seeds)	CLTI	Homodimeric protein	DPLLDFPGNEVEAS-RAYVVSVIRGAG	Prevents the growth of human hepatoma cells and leukemia cells	54	100 µM	Ng et al. (2003)
3	*Momordica charantia* (Seeds)	BG-4	Peptide	RDSDCLAQCIYVGHC	Apoptosis of human colon cancer cells	4	NA	Dia and Krishnan (2016)
							134.4 µg/ml	
							217.0 µg/ml	
							28.6 µM	
							6.9 µM	
4	*Castanopsis chinensis* (Seeds)	CCL	Homotetrameric lectin	NFEETILGSK	Prevents growth of HepG2 cells	120	NA	Wong et al. (2008)
5	*Phaseolus lunatus* (Seeds)	Lunatin	Peptide	KTCENLADTRGPGC-FATSNC	Inhibits growth of MCF-7, breast cancer cell line	7	5.71 µM	Wong and Ng (2005a)
6	*Vigna sesquipedalis* (Seeds)	Sesquin	Peptide	KTCENLADTY	Anti-tumour activity	7	NA	Wong and Ng (2005b)
7	*Phaseolus coccineus cv. ‘Major’* (Seeds)	Coccin	Peptide	KQTENLADTY	Prevents proliferation in leukemia cell lines	7	30 µM	Ngai and Ng (2004)
							40 µM	
8	*Arachis hypogaea* (Seeds)	Hypotin	Protein	CDVGSVISALFE-ALQKRRN	Anti-proliferative activity	30.4	296 µg/ml	Wang et al. (2007)
9	*Cicer arietinum* (Seeds)	C-25	Lectin	TKTGYINAADF	Anti-proliferative activity	25	37.5 µg/ml	Kumar et al. (2014)
10	*Corydalis cava* (Tubers)	Fraction 18	Protein	–	Prevents the growth of human carcinoma cells	30	NA	Nawrot et al. (2010)
11	*Arisaema tortuosum* Schott (Tubers)	ATL	Homotetrameric lectin	–	–	54	NA	Dhuna et al. (2005)
Table 6 (continued)

S. No	Plant and its part	Protein	Nature	Sequence	Mode of action	M. Wt. (kDa)	IC50	References			
12	*Phaseolus vulgaris* *cv. Blue tiger king* (Seeds)	BTKL	Dimeric lectin	–	–	60	35.2 ± 2.7 µM	Fang et al. (2011b)			
							347.9 ± 24.5 µM				
							494.6 ± 70.4 µM				
13	*Canavalia ensiformis* (Seeds)	Con A	Homotetraeric lectin	–	Anti-hepatoma effect	104	5 µg/ml	Lei and Chang (2009), Liu et al. (2009)			
							10 µg/ml				
							20 µg/ml				
							NA				
14	*Withania somnifera* (Fruit)	Asparginase	Homodimeric protein	–	Anti-tumour activity	72 ± 0.5	1.45 ± 0.05 IU/ml	Oza et al. (2010)			
15	*Glycine max* (Seeds)	BBI	Peptide	–	Colorectal chemopreventive agents	8	32 to 73 µM	Clemente and del Carmen Arques (2014); Kennedy (1998)			
							NA				
		IBB1	Protein	DDESSKPCCDQCACIK SNPPQCRCSDM RLNSCHSACKSCICAL SYPACFCVDITDFCY EPCKPSEDHKEN	Colorectal chemopreventive agents	10–12	39.9 ± 2.3 µM	Clemente et al. (2010)			
		IBBD2	Protein	SDQSSYDDDEYSKPC CDLCMCTRMPPQC SCEDIRLNSCHSDCK SCMTQSDQPPQR CLDTNDFCYKPK SRDD	colorectal chemopreventive agents	10–12	48.3 ± 3.5 µM				
16	*Abrus precatorius* (Seeds)	Abrin	Homotetrameric protein	–	–	260	3.70 pM	Lin et al. (1971); Olesen and Pihl (1973)			
		AGG	Heterodimeric glyco-protein	–	–	134	NA	Bhutia et al. (2016); Mukhopadhyay et al. (2014)			
17	*Trichosanthes kirilowii* (Root Tuber)	TCS	Protein	26–27	–	31.6 µM		Fang et al. (2012c)			
							20.5 µM				
							130 µM				
							28.6 µM				
S. No	Plant and its part	Protein	Nature	Sequence	Mode of action	M. Wt. (kDa)	*IC$_{50}$	References			
-------	---------------------------------------	---------------	-------------------	----------	----------------	--------------	-----------	-----------------------------------			
18	*Gynura procumbens* (Lour.) Merr. (Leaves)	SN-F11/12	Mixture of proteins			25	3.8 µg/ml	Tsao et al. (1986)			
19	*Allium sativum* (Bulbs)	Alliumin	Protein			13	8.33 µM	Xia and Ng (2005)			
20	*Cucurbita foetidissima* (Roots)	Foetidissimin II	Proteins			61	70 nM	Zhang and Halaweish (2007)			
21	*Viola arvensis* (Whole plant)	Varv A	Macrocyclic peptides			2.87	3.56 µM	Lindholm et al. (2002)			
		Varv F	Macrocyclic peptides			2.95		1.34 µM 4.88 µM 11.03 µM 3.24 µM 3.19 µM 6.35 µM 7.13 µM 7.49 µM 7.07 µM 5.90 µM 6.31 µM NA			
22	*Viola odorata* (Whole plant)	Cycloviolacin O2	Macrocyclic peptides			3.14	0.11 µM	Lindholm et al. (2002)			
							0.12 µM 0.26 µM 0.12 µM 0.12 µM 0.10 µM 1.32 µM				
23	*Viola biflora* (Aerial parts)	Vibi D	Macrocyclic peptides			2.9	> 30 µM	Herrmann et al. (2008)			
		Vibi E				3.08	3.2 µM				
		Vibi G				3.2	0.96 µM				
		Vibi H				3.27	1.6 µM				
S. No	Plant and its part	Protein	Nature	Sequence	Mode of action	M. Wt. (kDa)	*IC₅₀	References			
-------	--------------------	---------	-----------------	----------	----------------	--------------	--------	------------			
24	Viola philippica	Vphi A	Macrocyclic peptides			3.17	4.91 ± 0.04 µM	He et al. (2011)			
	(Whole plant)	Vphi B				2.98	NA				
		Vphi C				3.05	NA				
		Vphi D				3.08	2.51 ± 0.03 µM	He et al. (2011)			
		Vphi E				3.15	2.51 ± 0.03 µM				
		Vphi F				3.14	1.03 ± 0.03 µM				
		Vphi G				3.17	1.03 ± 0.03 µM				
		Vphi H				3.09	NA				
		Viba 15				2.86	1.32 ± 0.15 µM				
		Viba 17				2.84	1.32 ± 0.15 µM				
		Varv A				2.87	1.32 ± 0.15 µM				
		Kalata B1				2.89	1.32 ± 0.15 µM				
25	Viola labidorica	Vila A	Macrocyclic peptides			3.16	7.08 µg/ml	Tang et al. (2010a)			
	(Whole Plant)						5.13 µg/ml				
							> 10 µg/ml				
							5.08 µg/ml				
S. No	Plant and its part	Protein	Nature	Sequence	Mode of action	M. Wt. (kDa)	\(^{*}IC_{50}\)	References			
-------	--------------------------	---------	-------------------------	----------	----------------	--------------	----------------	-----------------------------			
5	Viola B		Macrocyclic peptides	5.80 µg/ml	> 10 µg/ml	3.16	34.65 µg/ml				
6	Viola D		Macrocyclic peptides	8.25 µg/ml	> 10 µg/ml	2.94	49.59 µg/ml				
7	Varv D		Macrocyclic peptides	6.34 µg/ml	> 10 µg/ml	2.87	46.62 µg/ml				
26	Psychotria leptothyrsa (Whole Plant)	Psyle A	Macrocyclic peptides	5.80 µg/ml	> 10 µg/ml	2.91	26 µM	Gerlach et al. (2010)			
		Psyle B	Macrocyclic peptides	5.80 µg/ml	> 10 µg/ml	.01	NA	NA			
		Psyle C	Linear cyclotide	5.80 µg/ml	> 10 µg/ml	2.84	3.5 µM	NA			
		Psyle D	Macrocyclic peptides	5.80 µg/ml	> 10 µg/ml	3.25	NA	NA			
		Psyle E	Macrocyclic peptides	5.80 µg/ml	> 10 µg/ml	3.25	0.76 µM	NA			
		Psyle F	Macrocyclic peptides	5.80 µg/ml	> 10 µg/ml	3.21	NA	NA			
27	Viola abyssinica (Whole Plant)	Vaby A	Macrocyclic peptides	5.80 µg/ml	> 10 µg/ml	2.86	7.6 µM	Yeshak et al. (2011)			
		Vaby D	Macrocyclic peptides	5.80 µg/ml	> 10 µg/ml	3.06	2.8 µM				
28	Viola tricolor (Whole Plant)	Varv A	Macrocyclic peptides	5.80 µg/ml	> 10 µg/ml	2.87	3 µM	Tang et al. (2010b)			
							6 µM				
S. No	Plant and its part	Protein Nature	Mode of action	M. Wt. (kDa)	*IC$_{50}$	References					
-------	--------------------	----------------	----------------	--------------	------------	------------					
37	18 µg/ml	> 10 µg/ml	> 10 µg/ml	> 10 µg/ml	> 10 µg/ml						
38	62 µg/ml	> 10 µg/ml	> 10 µg/ml	> 10 µg/ml	> 10 µg/ml						
39	84 µg/ml	> 10 µg/ml	> 10 µg/ml	> 10 µg/ml	> 10 µg/ml						
40	49 µg/ml	> 10 µg/ml	> 10 µg/ml	> 10 µg/ml	> 10 µg/ml						
41	70 µg/ml	> 10 µg/ml	> 10 µg/ml	> 10 µg/ml	> 10 µg/ml						
42	54 µg/ml	> 10 µg/ml	> 10 µg/ml	> 10 µg/ml	> 10 µg/ml						
43	53 µg/ml	> 10 µg/ml	> 10 µg/ml	> 10 µg/ml	> 10 µg/ml						
S. No	Plant and its part	Protein	Nature	Sequence	Mode of action	M. Wt. (kDa)	*IC₅₀	References			
-------	---------------------	---------	--------------	----------	----------------	--------------	-------	------------			
	Varv Hm	Macrocyclic peptides	3.06	> 10 µg/ml	74.39 µg/ml	> 10 µg/ml	NA				
					> 10 µg/ml						
	Vitri A	Macrocyclic peptides	3.15	3.90 µg/ml	4.94 µg/ml	3.07 µg/ml	3.69 µg/ml	NA	6.03 µg/ml	NA	
					> 10 µg/ml						
	Vitri B	Macrocyclic peptides	2.87	> 10 µg/ml	45.21 µg/ml	> 10 µg/ml	> 10 µg/ml	> 10 µg/ml	NA	45.21 µg/ml	NA
					> 10 µg/ml						
	Vitri C	Macrocyclic peptides	2.96	> 10 µg/ml	46.96 µg/ml	> 10 µg/ml	> 10 µg/ml	> 10 µg/ml	NA	46.96 µg/ml	NA
					> 10 µg/ml						
	Vitri D	Macrocyclic peptides	3.04	> 10 µg/ml	51.65 µg/ml	> 10 µg/ml	> 10 µg/ml	> 10 µg/ml	NA	51.65 µg/ml	NA
					> 10 µg/ml						
	Vitri E	Macrocyclic peptides	2.92	> 10 µg/ml							
S. No	Plant and its part	Protein	Nature	Sequence	Mode of action	M. Wt. (kDa)	*IC$_{50}$	References			
-------	------------------------	-----------	---------------	----------	----------------	--------------	------------	-------------------			
29	*Vicia faba* cv. Giza 843 (Seeds)	VFTI-G1	Protein	15	> 3.33 µM	54.39 µg/ml	> 10 µg/ml	Fang et al. (2011a)			
30	*Asparagus officinalis* (Seeds)	Asparin 1	Protein	29.7	> 3.33 µM	5.36 µg/ml	> 10 µg/ml	Bolognesi et al. (1990)			
		Asparin 2	Protein	28.1	> 3.33 µM	3.44 µg/ml	> 10 µg/ml				
31	*Citrullus colocynthis* (Seeds)	Colocin 1	Glycoprotein	20.4	> 3.33 µM	2.74 µg/ml	> 10 µg/ml				
		Colocin 2	Glycoprotein	19.5	1.41 µM	6.31 µg/ml	> 10 µg/ml				
32	*Lychnis chalcedonica* (Seeds)	Lychnin	Glycoprotein	20.0	> 3.33 µM	NA	NA				
S. No	Plant and its part	Protein	Nature	Sequence	Mode of action	M. Wt. (kDa)	\({IC}_{50} \) References				
-------	-------------------	---------	--------------	----------	--------------	-------------	-------------------				
33	*Manihot palmata* (Seeds)	Mapalmin	Glycoprotein		26.9	2.11 µM	> 3.33 µM				
						0.03 µM					
						1.53 µM					
						0.33 µM					
34	*Bryonia dioica*	Bryodin-L (Leaves)	Glycoprotein		27.3	1.68 µM	> 3.33 µM				
						0.03 µM					
						1.64 µM					
						0.08 µM					
		Bryodin (Roots)	Glycoprotein		30	0.77 µM					
						0.05 µM					
						> 3.33 µM					
						NA	Stirpe et al. (1986)				
35	*Bauhinia variegata* var. variegate (Seeds)	BvvL	Homodimeric lectin		64	1.4 µM	Chan and Ng (2015)				
	Bauhinia variegata (Seeds)	BG2	Homodimeric lectin			1.4 µM	Lin and Ng (2008)				
						0.18 µM	Gondim et al. (2017)				
	Dioclea lasiocarpa (Seeds)	DlasiL	Homotetrameric lectin			52 ± 2 nM	Gondim et al. (2017)				
37	*Lens culinaris* (Seeds)	Bowman-Birk Isoinhibitor	Peptide		7.5	224 ± 10 nM	Caccialupi et al. (2010)				
38	*Pisum Sativum* (Seeds)	TII B	Peptide		7.9	275 ± 4 nM	Clemente et al. (2012)				
39	*Canavalia brasiliensis* (Seeds)	ConBr	Lectin		30	167 ± 1 nM	Grangeiro et al. (1997)				
S. No	Plant and its part	Protein	Nature	Sequence	Mode of action	M. Wt. (kDa)	*IC₅₀	References			
-------	--------------------	---------	------------	----------	---------------	--------------	----------------	-----------------------------			
40	*Canavalia maritima* (Seeds)	ConM	Tetrameric lectin	102	95 ± 14 nM	1146 ± 24 nM	529 ± 8 nM	67 ± 2 nM	Delatorre et al. (2006)		
41	*Dioclea sclerocarpa* (Seeds)	DscLrL	Lectin		Anti-cancer	64 ± 2 nM	102 ± 8 nM	1250 ± 9 nM	Gondim et al. (2017)		
42	*Aspidistra elatior Blume* (Rhizomes)	AEL	Heterotetramer lectin	56	NA	141 ± 4 nM	264 ± 1 nM		Xu et al. (2007)		
43	*Soybean* (Cotyledon)	Lunasin	Peptide	MTKFILTIS LLIFCIAHTCS	5.5	181 µM	16 µM	25 nM	Hernandez-Ledesma et al. (2013)		
44	*Saponaria officinalis L*	Saporin-L1 (Leaves)	Protein	MKSWMHVT WLIILQTVT	31.6	> 3300 nM	120 nM	13 nM	Ferreras et al. (1993)		
		Saporin-L2 (Leaves)	Protein	–	31.6	> 3300 nM	150 nM				
		Saporin-R1 (Roots)	Protein	–	30.2	340 nM	490 nM	76 nM			
		Saporin-R2 (Roots)	Protein	–	30.9	170 nM	230 nM	33 nM			
		Saporin-R3 (Roots)	Protein	–	30.9	3200 nM	84 nM	34 nM			
		Saporin-S5 (Seeds)	Protein	–	30.9	420 nM	7 nM				
S. No	Plant and its part	Protein	Nature	Sequence	Mode of action	M. Wt. (kDa)	*IC_{50}	References			
-------	---------------------------------	---------------	---------------	----------	----------------	--------------	---------	---------------------			
45	*Ricinus communis* (Seeds)	Saporin-S6	Protein –	31.6	2 nM	310 nM	18 nM	6 nM			
46	*Basella rubra L.* (Seeds)	Ricin	Protein	64	34.1 ng/ml	Trung et al. (2016)					
		Basella RIP 2	Mixture of two proteins	30.6–31.2	63.7 ± 15.6 nM	Bolognesi et al. (1997)					
		Basella RIP 3	Protein	31.2	43.8 ± 9.2 nM		166 ± 24 nM	16.6 ± 3.7 nM			
							169 ± 87 nM	353 ± 5.7 nM			
							30.6–31.2	63.7 ± 15.6 nM			
47	*Vaccaria pyramidata* (Seeds)	Pyramidatine	Protein	28.0	6.3 nM	Bolognesi et al. (1995)					
48	*Saponaria ocymoides* L. (Seeds)	Ocymoidin	Protein	30.2	11.7 nM		179 nM	142 nM			
							5.7 nM	4.3 nM			
							493 nM	> 3330 nM			
49	*Viscum album* L. var. coloratum (Arial parts)	VCA	Heterodimeric lectin –	Anti-tumour	60	Han et al. (2015)					
50	*Viscum album* L. (N.A.)	ML-I	Heterodimeric lectin	115	125 ng/ml	60	125 ng/ml				
		ML-II	Heterodimeric lectin		NA	7 ng/ml	Fnnz et al. (1981)				
S. No	Plant and its part	Protein	Nature	Sequence	Mode of action	M. Wt. (kDa)	*IC₅₀	References			
-------	--------------------	---------	--------	----------	----------------	--------------	-------------	------------			
51	*Dianthus superbus*-var longicalycinus (Whole Plant)	Longicalycinin A	Cyclic peptide	Cyclo(Gly1–Phe2–Tyr3–Pro1–Phe5–	Cytotoxic to HepG2 cancer cell line	50	6.11	13.52 µg/ml	Hsieh et al. (2005)		
52	*Phaseolus vulgaris* (Seeds)	Vulgarinin	Peptide	K T CENLADTYKG CFTS G GD	Inhibition of proliferation in leukemia cell lines	7	NA	Wong and Ng (2005c)			
53	*Brassica juncea* var. *Integrifolia* (Seeds)	Juncin	Protein	–	–	18.9	5.6 µM	Kwon et al. (1997)			
54	*Peganum harmala* (Seeds)	PHP	Homodimeric protein	ITCPQVTQSLAP-CVPYLISG	Anti-proliferative activity against cancer cells	18	0.7 µM	Ma et al. (2013)			
55	*Allium tuberosum* (Shoot)	Fraction MS3	Protein	–	–	36	2.74 µM, 3.13 µM, 1.47 µM	Lam et al. (2000)			
56	*Zingiber officinalis* (Rhizome)	G-24	Protein	–	Inhibition of human oral cancer cell line	24	NA	Gill et al. (2012)			

IC₅₀ Concentration causing 50% inhibition, *ND* Not determined, *NA* Not available, *CLTI* *Clausena lanzium* trypsin inhibitor, *VFTI-G1* Bowman birk type trypsin inhibitor, *BG-4* Bitter gourd-4, *MAP 30* Momordica anti-human immunodeficiency virus protein, *ML* *Momordica charantia* lectin, *α-MMC* α-Momorcharin, *CCL* *Castanopsis chinensis* lectin, *ATL* *Arisaema tortuosum* lectin, *BTKL* Blue Tiger King Lectin, *Con A* *Concanavalin A*, *BBI* Bowman birk inhibitor, *IBB1* and *IBB2* Bowman birk isoinhibitors, *TCS* *Trichosanthin* or *Tin Hua Fen* or *GLQ223*, *BvvL* *Bauhinia variegate* var *variegata* lectin, *DsclerL* *Dioclea sclerocarpa* lectin, *VCA* *Viscum album* L. var *coloratum* agglutinin, *ML-I,II,III* Mistletoe lectin-I,II,III, *PHP* *Peganum harmala* protein, *AEL* *Aspidistra elatior* Blume lectin, *AGG* *Abrus agglutinin*
is expected to be released soon (Camarero and Campbell 2019).

Conclusion

Finally, this review encapsulates the therapeutic plant peptides and their prospective applications. They can serve as future treatments that are both unique and effective. Although many plant peptides have been explored for therapeutic applications, only a handful have progressed to the next stages. Usually, drug development constitutes in vitro examinations, in vivo corroboration and clinical trial review. Regrettably, almost all the research involving protein therapies reaches a dead-end in vitro, with only a handful of them being marketed as medicine. Various strategies have been applied to overcome such disadvantages (low bioavailability, high toxicity). One such strategy is bioconjugation and it has improved target selectivity, lower toxicity, and enhanced retention time with a regulated release in the target tissue. As these intricate component systems become more ubiquitous, research into bioconjugate treatments should become more focused due to their peculiarity in contrast to single-molecule drug organization. New formulation strategies have to be developed to design new drug candidates and bring out the peptide's full potential. To summarise, substantial research into medicinal plant proteome could identify novel plant-based peptide drugs. Many therapies involving proteins could be discovered due to research in this approach. Plant-derived peptide therapeutics is still the primary source of bioactive compounds worldwide.

Acknowledgements We thank SRM Institute of Science and Technology and Department of Biotechnology, School of Bioengineering for their constant support.

Author Contributions SM, SBB and VV collected the literature data and prepared Tables. SR and DP prepared the figure. SM, SBB, VV, DP, SR, PR and PV wrote the manuscript. PR, PR and PV revised the manuscript. All authors reviewed the final version of the manuscript for submission.

Funding This work was supported by a grant received from SRM Institute of Science and Technology under Faculty Selective Excellence Program - 2021.

Declarations

Conflict of interest The authors have no conflicts of interest to declare that are relevant to the content of this article.

References

Al Akeel R, Mateen A, Syed R, Alyousef AA, Shaik MR (2017) Screening, purification and characterization of anionic antimicrobial proteins from *Foeniculum vulgare*. Molecules (basel, Switzerland) 22(4):602. https://doi.org/10.3390/molecules22040602

Balasubramanian A, Bhattacharjee M, Sakhivel M, Thirumavalavan M, Madhavan T, Nagarajan SK et al (2018) Isolation, purification and characterization of proteinoaceous fungal α-amylase inhibitor from rhizome of *Cheliotostos speciosus* (J. Koenig) CD Specht. Int J Biol Macromol 111:39–51

Barbieri L, Aron GM, Irvin JD, Stirpe F (1982) Purification and partial characterization of another form of the antiviral protein from the seeds of *Phytolacca americana* L. (pokeweed). Biochem J 203(1):55–59. https://doi.org/10.1042/bj2030055

Barbieri L, Zamboni M, Montanaro L, Sperri S, Stirpe F (1980) Purification and properties of different forms of modeccin, the toxin of *Adenia digitata*. Separation of subunits with inhibitory and lectin activity. Biochem J 185(1):203–210. https://doi.org/10.1042/bj1850203

Barbosa Pelegrini P, Del Sarto RP, Silva ON, Franco OL, Grossi-de-Sa MF (2011) Antibacterial peptides from plants: what they are and how they probably work. Biochem Res Int 2011:250349. https://doi.org/10.1155/2011/250349

Battelli MG, Citores L, Buonamici L, Ferreras JM, de Benito FM, Stirpe F, Girbès T (1997) Toxicity and cytotoxicity of nigrin b, a two-chain ribosome-inactivating protein from *Sambucus nigra*: comparison with ricin. Arch Toxicol 71(6):360–364. https://doi.org/10.1007/s002040050399

Berrocal-Lobo M, Segura A, Moreno M, López G, García-Ómedo F, Molina A (2002) Snakin-2, an antimicrobial peptide from potato whose gene is locally induced by wounding and responds to pathogen infection. Plant Physiol 128(3):951–961. https://doi.org/10.1104/pp.010685

Bhutia SK, Behera B, Nandini Das D, Mukhopadhyay S, Sinha N, Panda PK, Naik PP, Patra SK, Mandal M, Sarkar S, Menezes ME, Talukdar S, Maiti TK, Das SK, Sarkar D, Fisher PB (2016) Abrus agglutinin is a potent anti-proliferative and anti-angiogenic agent in human breast cancer. Int J Cancer 139(2):457–466. https://doi.org/10.1002/ijc.30055

Bokesch HR, Charan RD, Meragelman KM, Beutler JA, Ward JP, Palicourea condensata. FEBS Lett 567(2–3):287–290. https://doi.org/10.1016/j.fels.2004.04.085

Bokesch HR, Pannell LK, McKeen TF, McKee TC, Boyd MR (2001) A novel anti-HIV macrocyclic peptide from *Palicourea condensata*. J Nat Prod 64(2):249–250. https://doi.org/10.1021/np0003721

Bolognesi A, Barbieri L, Abbondanza A, Falasca AI, Carnicelli D, Battelli MG, Stirpe F (1990) Purification and properties of new ribosome-inactivating proteins with RNA N-glycosidase activity. Biochem Biophys Acta 1078(3):293–302. https://doi.org/10.1016/1674-7813(90)90435-3

Bolognesi A, Olivieri F, Battelli MG, Barbieri L, Falasca AI, Parente A, Del Vecchio Blanco F, Stirpe F (1995) Ribosome-inactivating proteins (RNA N-glycosidases) from the seeds of *Saponaria ocy- moides* and *Vaccaria pyramidata*. Eur J Biochem 228(3):935–940. https://doi.org/10.1111/j.1432-1033.1995.tb20343.x

Bolognesi A, Polito L, Olivieri F, Vallbonesi P, Barbieri L, Battelli MG, Carusi MV, Benvenuto E, Del Vecchio Blanco F, Di Maro A, Parente A, Di Loreto M, Stirpe F (1997) New ribosome-inactivating proteins with polynucleotide:adenosine glycosidase and antiviral activities from *Basella rubra* L. and bougainvil-lea spectabilis Wild. Planta 203(4):422–429. https://doi.org/10.1007/s000250052029

Caccialupi P, Ceci LR, Siciliano RA, Pignone D, Clemente A, Sonnante S (2010) Bowman-Birk inhibitors in lentil: Heterologous expression, functional characterisation and anti-proliferative properties
in human colon cancer cells. Food Chem 120(4):1058–1066. https://doi.org/10.1016/j.foodchem.2009.11.051

Camarero JA, Campbell MJ (2019) The potential of the cyclotide scaffold for drug development. Biomedicines 7(2):31. https://doi.org/10.3390/biomedicines7020031

Cammue BP, de Bolle MF, Terras FR, Proost P, van Damme J, Rees SB, Vanderleyden J, Broekaert WF (1992) Isolation and characterization of a novel class of plant antimicrobial peptides form Mirabils jalapa L. seeds. J Biol Chem 267(4):2228–2233. https://doi.org/10.1016/S0021-9258(12)85668-8

Champalal L, Kumar US, Krishnan N, Vaseeharan B, Mariappanadar V, Raman P (2018) Modulation of quorum sensing-controlled virulence factors in Chromobacterium violaceum by selective amino acids. FEBS Microbiol Lett 365(23):fny252. https://doi.org/10.1016/j.femsle.2018.07.014

Chan YS, Ng TB (2015) Bauhinia variegata var. variegata lectin: isolation, characterization, and comparison. Appl Biochem Biotechnol 175(1):75–84. https://doi.org/10.1007/s12010-014-1261-z

Chandran S, Sakhivel M, Thirumavalavan M, Thota JR, Mariappanadar V, Raman P (2017) A facile approach to the isolation of proteins in Ferula asafoetida and their enzyme stabilizing, anti-microbial and anti-oxidant activity. Int J Biol Macromol 98(8):1211–1219. https://doi.org/10.1016/j.ijbiomac.2017.05.010

Chen B, Colgrave ML, Daly NL, Rosengren KJ, Gustafson KR, Craik DJ (2014) Bowman-Birk inhibitors from legumes for drug development. Curr Opin Biotechnol 28(3):22395–22405. https://doi.org/10.1016/j.copbio.2014.03.526

Cheung AH, Ng TB (2007) Isolation and characterization of a trypsin-inhibitory peptide from the seeds of green lentil (Lens culinaris). Protein Pept Lett 14(9):859–864. https://doi.org/10.2174/13892030778210310

Chen A, Arques M (2014) Bowman-Birk inhibitors from legumes as colorectal chemopreventive agents. World J Gastroenterol 20(30):10305–10315. https://doi.org/10.3748/wjg.v20.10305

Clemente A, Carmen Marin-Manzano M, Jiménez E, Carmen Arques M, Domenoy C (2012) The anti-proliferative effect of T11B, a major Bowman-Birk iso-inhibitor from pea (Pisum sativum L.), on HT29 colon cancer cells is mediated through protease inhibition. Br J Nutr 108(1):S135–S144. https://doi.org/10.1017/s000711451200075X

Clemente A, Moreno FJ, Marin-Manzano M, Jiménez E, Domenoy C (2010) The cytotoxic effect of Bowman-Birk iso-inhibitors, IB1B and IB2B2, from soybean (Glycine max) on HT29 human colorectal cancer cells is related to their intrinsic ability to inhibit serine proteases. Mol Nutr Food Res 54(3):396–405. https://doi.org/10.1002/mnfr.200901222

Craik DJ, Du J (2017) Cyclotides as drug design scaffolds. Curr Opin Chem Biol 38:8–16. https://doi.org/10.1016/j.copcb.2017.01.018

Daly NL, Clark RJ, Plan MR, Craik DJ (2006) Kalata B8, a novel antiviral circular protein, exhibits conformational flexibility in the cystine knot motif. Biochem J 393(Pt 3):619–626. https://doi.org/10.1014/bj20051371

Daly NL, Gustafson KR, Craik DJ (2004) The role of the cyclic peptide backbone in the anti-HIV activity of the cyclotide kalata B1. FEBS Lett 574(1–3):69–72. https://doi.org/10.1016/j.febslet.2004.08.007

Daneshmand F, Zare-Zardini H, EbrahimI L (2013) Investigation of the antimicrobial activities of Snakin-Z, a new cationic peptide derived from Zizyphus jujuba fruits. Nat Prod Res 27(24):2292–2296. https://doi.org/10.1080/14786419.2013.827192

Daskaya-Dikmen C, Yucetepa A, Karbancioglu-Guler F, Daskaya H, Ozcelik B (2017) Angiotensin-I-converting enzyme (ACE)-inhibitory peptides from plants. Nutrients 9(4):316. https://doi.org/10.3390/nu9040316

Deepthi B, Sowjanya K, Lidiya B, Bhargavi RS, Babu PS (2018) A modern review of diabetes mellitus: an annihilatory metabolic disorder. J In Silico In Vitro Pharmacol. https://doi.org/10.21767/2469-6692.100014

Delatorre P, Rocha BA, Gadelha CA, Santi-Gadelha T, Cajaizeras JB, Souza EP, Nascimento KS, Freire VN, Sampayo AH, Azevedo WF Jr, Cavada BS (2006) Crystal structure of a lectin from Canavalia maritima (ConM) in complex with trehalose and maltose reveals relevant mutation in ConA-like lectins. J Struct Biol 154(3):280–286. https://doi.org/10.1016/j.jsb.2006.03.011

Desmyter S, Vandebussche F, Hao Q, Proost P, Peumans WJ, Van Damme EJ (2003) Type-1 ribosome-inactivating protein from irises: a useful agronomic tool to engineer virus resistance? Plant Mol Biol 51(4):577–576. https://doi.org/10.1023/a:1022389205295

Dhuna V, Bains JS, Kamboj SS, Singh J, Kamboj S, Saxena AK (2005) Purification and characterization of a lectin from Arisaeona tootsum Schott having in-vitro anticancer activity against human cancer cell lines. J Biol Chemol Mol Biol 38(5):526–532. https://doi.org/10.1054/jbmb.2005.03.526

Di Massimo AM, Di Loreto M, Pacilli A, Raucci G, D’Alati L, Mele A, Bolognesi A, Polito L, Stirpe F, De Santis R (1997) Immunonoconjugates made of an anti-EGF receptor monoclonal antibody and type I ribosome-inactivating proteins from Sapronaria ocyoides or Vaccaria pyramidalta. Br J Cancer 75(6):822–828. https://doi.org/10.1038/bjc.1997.147

Dia VP, Krishnan HB (2016) BG-4, a novel anticancer peptide from bitter gourd (Momordica charantia), promotes apoptosis in human colon cancer cells. Sci Rep 6:33532. https://doi.org/10.1038/srep33532

Duvick J, Rood T, Rao A, Marshak D (1992) Purification and characterization of a novel antimicrobial peptide from maize (Zea mays L.) kernels. J Biol Chem 267(26):18814–18820. https://doi.org/10.1016/0021-9258(93)90314-6

Endo Y, Tsurugi K (1987) RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J Biol Chem 262(17):8128–8130. https://doi.org/10.1016/0021-9258(90)87538-2

Fang EF, Hassaniien AA, Wong JH, Bah CS, Soliman SS, Ng TB (2011a) Isolation of a new trypsin inhibitor from the Faba bean (Vicia faba cv. Giza 43) with potential medicinal applications. Protein Peptide Lett 18(1)(1–6):64–72. https://doi.org/10.2174/13892029287

Fang EF, Pan WL, Wong JH, Chan YS, Ye XJ, Ng TB (2011) A new Phaseolus vulgaris lectin induces selective toxicity on human liver carcinoma Hep G2 cells. Arch Toxicol 85(12):1551–1563. https://doi.org/10.1007/s00204-011-0698-x

Fang EF, Zhang CZ, Ng TB, Wong JH, Pan WL, Ye XJ, Chan YS, Fong WP (2012a) Momordica Charantia lectin, a type II ribosome inactivating protein, exhibits antitumor activity toward human nasopharyngeal carcinoma cells in vitro and in vivo. Cancer Prev Res 5(1):109–121. https://doi.org/10.1158/1940-6207.CAPR-11-0203

Fang EF, Zhang CZ, Wong JH, Shen YJ, Li CH, Ng TB (2012b) The MAP30 protein from bitter gourd (Momordica charantia) seeds promotes apoptosis in liver cancer cells in vitro and in vivo. Cancer Lett 324(1):66–74. https://doi.org/10.1016/j.canlet.2012.05.005
Fang EF, Zhang CZ, Zhang L, Wong JH, Chan YS, Pan WL, Dan XL, Yin CM, Cho CH, Ng TB (2012c) Trichosanthin inhibits breast cancer cell proliferation in both cell lines and nude mice by promotion of apoptosis. PLoS ONE 7(9):e41592. https://doi.org/10.1371/journal.pone.0041592

Fernandez de Caleya R, Gonzalez-Pascual B, Garcia-Olmedo F, Car-Fang EF, Zhang CZ, Zhang L, Wong JH, Chan YS, Pan WL, Dan XL, International Journal of Peptide Research and Therapeutics (2022) 28:135

Franco OL, Murad AM, Leite JR, Mendes PA, Prates MV, Bloch C, Franz H, Ziska P, Kindt A (1981) Isolation and properties of three lectins from Caesalpinia coriaria L.). Biochem J 195(2):481–484. https://doi.org/10.1042/bj1950481

Fujimura M, Ideguchi M, Minami Y, Watanabe K, Tadera K (2004) Purification, characterization, and sequencing of novel antimicrobial peptides, Tu-AMP 1 and Tu-AMP 2, from bulbs of tulip (Tulipa gesneriana L.). Biosci Biotechnol Biochem 68(3):571–577. https://doi.org/10.1271/bbb.68.571

Fujimura M, Minami Y, Watanabe K, Tadera K (2003) Purification, characterization, and sequencing of a novel type of antimicrobial peptides, Fa-AMP1 and Fa-AMP2, from seeds of buckwheat (Fagopyrum esculentum Moench.). Biosci Biotechnol Biochem 67(8):1636–1642. https://doi.org/10.1271/bbb.67.1636

Gerlach SL, Burman R, Bohlin L, Mondal D, Göransson U (2010) Isolation, characterization, and bioactivity of cyclotides from the Micronesian plant Psychotria leptothyrsa. J Nat Prod 73(7):1207–1213. https://doi.org/10.1021/jp100376x

Gerlach S, Mondal D (2012) The bountiful biological activities of cyclotides. Chronicles of Young Scientists 3(3):169. https://doi.org/10.4103/2229-5186.994559

Gill K, Singh AK, Kumar S, Mishra B, Kapoor V, Das SN, Somvanro P, Dey S (2012) Isolation and characterization of a potent protein from ginger rhizomes having multiple medicinal properties. Res J Med Plant 6(2):160–170. https://doi.org/10.3923/rjrpm.2012.160.170

Girish KS, Machia KD, Ushandanini S, Harish Kumar K, Nagaraju S, Govindappa M, Vedavathi M, Kamath K (2006) Antimicrobial properties of a non-toxic glycoprotein (WSG) from Withania somnifera (Ashagwaganda). J Basic Microbiol 46(5):365–374. https://doi.org/10.1002/jobm.200510108

Gondim A, Romero-Canelón I, Sousa E, Blindauer CA, Butler JS, Romero MJ, Sanchez-Can C, Sousa BL, Chaves RP, Nagano CS, Cavada BS, Sadler PJ (2017) The potent anti-cancer activity of Didelphys asiopea lectin. J Inorg Biochem 175:179–189. https://doi.org/10.1016/j.inorgbio.2017.07.011

Grangeiro TB, Schrieler A, Calvette J, Raida M, Urbanke C, Barral-Netto M, Cavada BS (1997) Molecular cloning and characterization of ConBr, the lectin of Canavalia brasilensis seeds. Eur J Biochem 248(1):43–48. https://doi.org/10.1111/j.1432-1033.1997.00043.x

Gustafson KR, Sowder RC, Henderson LE, Parsons IC, Kashman Y, Cardellina JH, McMahon JB, Buckheit RW, Pannell LK, Boyd MR (1994) Circulin A and B. Novel human immunodeficiency virus (HIV)-inhibitory macrocyclic peptides from the tropical tree Chassalia parvifolia. J Am Chem Soc 116(20):9337–9338. https://doi.org/10.1021/ja00099a064

Gustafson KR, Walton LK, Sowder RC Jr, Johnson DG, Pannell LK, Cardellina JH Jr, Boyd MR (2000) New circulin macrocyclic polypeptides from Chassalia parvifolia. J Nat Prod 63(2):176–178. https://doi.org/10.1021/jp990432r

Hallow YF, Sowder RC 2nd, Pannell LK, Hughes CB, Johnson DG, Gulakowski R, Cardellina JH 2nd, Boyd MR (2000) Cycloviolins A-D, anti-HIV macrocyclic peptides from Leonia cymosa. J Org Chem 65(1):124–128. https://doi.org/10.1021/jo990952r

Han SY, Hong CE, Kim HG, Lyu SY (2015) Anti-cancer effects of enteric-coated polymers containing mistletoe lectin in murine melanoma cells in vitro and in vivo. Mol Cell Biochem 408(1–2):73–87. https://doi.org/10.1007/s11010-015-2484-1

Hatanaka T, Uraji M, Fujita A, Kawakami K (2015) Anti-oxidation activities of rice-derived peptides and their inhibitory effects on dipeptidylpeptidase-IV. Int J Pept Res Ther 21(4):479–485. https://doi.org/10.1007/s10909-015-9478-4

He W, Chan LY, Zeng G, Daly NL, Craik DJ, Tan N (2011) Isolation and characterization of cytotoxic cyclotides from Viola philippica. Peptides 32(8):1719–1723. https://doi.org/10.1016/j.peptides.2011.06.016

Hernández-Ledesma B, Hsieh CC (2017) Chemopreventive role of food-derived proteins and peptides: a review. Crit Rev Food Sci Nutr 57(11):2358–2376. https://doi.org/10.1080/10408398.2015.1057632

Hernández-Ledesma B, Hsieh C, De Lumen B (2013) Chemopreventive properties of peptide lunasin: a review. Protein Peptide Lett 20(4):442–432. https://doi.org/10.2174/092866513200400006

Hernández-Ledesma B, Hsieh CC, De Lumen B0 (2009) Lunasin, a novel seed peptide for cancer prevention. Peptides 30(2):426–430. https://doi.org/10.1016/j.peptides.2008.11.002

Herrmann A, Burman R, Mylns JS, Karlsson G, Gullbo J, Craik DJ, Clark RJ, Göransson U (2008) The alpine violet, Viola biflora, is a rich source of cyclotides with potent cytotoxicity. Phytochemistry 69(4):939–952. https://doi.org/10.1016/j.phytochem.2007.10.023

Hew CS, Khoo BY, Gam LH (2013) The anti-cancer property of proteins extracted from Gymnura procumbens (Lour.) Merr. PLoS ONE 8(7):e68524. https://doi.org/10.1371/journal.pone.0068524

Hsieh PW, Chang FR, Wu CC, Li CM, Wu KY, Chen SL, Yen HF, Wu YC (2005) Longicalycinin A, a new cytotoxic cyclic peptide from Dianthus superbus var. longicalycinus (MAXIM.) WILL. Chem Pharm Bull 53(3):336–338. https://doi.org/10.1248/cpb.53.336

Huang RH, Xiong Y, Liu XZ, Zhang Y, Hu Z, Wang DC (2002) Two novel antifungal peptides distinct with a five-disulfide motif from the bark of Eucommia ulmoides Oliv. FEBS Lett 521(1–3):87–90. https://doi.org/10.1016/s0014-5793(02)02829-6

Huang X, Xie W, Gong Z (2000) Characteristics and antifungal activity of a chitin binding protein from Ginkgo biloba. FEBS Lett 478(1–2):123–126. https://doi.org/10.1016/s0014-5793(00)01834-2

Iglesias R, Pérez Y, de Torre C, Ferreras JM, Antolín P, Jiménez P, Rojo MA, Méndez E, Girbés T (2005) Molecular characterization and systemic induction of single-chain ribosome-inactivating proteins (RIPs) in sugar beet (Beta vulgaris) leaves. J Exp Bot 56(416):1675–1684. https://doi.org/10.1039/jxb20040401

Ireland DC, Wang CK, Wilson JA, Gustafson KR, Craik DJ (2008) Cyclotides as natural anti-HIV agents. Biopolymers 87(1):45–65. https://doi.org/10.1002/bip.20886

Irvin JD, Uckun FM (1992) Pokeweed antiviral protein: ribosome inactivation and therapeutic applications. Pharmacol Ther 55(3):279–302. https://doi.org/10.1016/0163-7258(92)90053-3
Lee-Huang S, Huang PL, Nara PL, Chen HC, Kung HF, Huang P, Huang HI, Huang PL (1990) MAP 30: a new inhibitor of HIV-1 infection and replication. FEBS Lett 272(1–2):12–18. https://doi.org/10.1016/0014-5793(90)80438-o
Lee-Huang S, Kung HF, Huang PL, Huang PL, Li BQ, Huang P, Huang HI, Chen HC (1991b) A new class of anti-HIV agents: GAP31, DAPs 30 and 32. FEBS Lett 291(1):139–144. https://doi.org/10.1016/0014-5793(91)81122-o
Lei HY, Chang CP (2009) Lectin of Concanavalin A as an anti-hepatoprotective therapeutic agent. J Biomed Sci 16(1):10. https://doi.org/10.1186/1412-4273-16-10
Li XD, Liu WY, Niu CL (1996) Purification of a new ribosome-inactivating protein from the seeds of Cinnamomum porrectum and characterization of the RNA N-glycosidase activity of the toxic protein. Biol Chem 377(12):825–831. https://doi.org/10.1515/bchm3.1996.377.12.825
Lin JY, Shaw YS, Tung TC (1971) Studies on the active principle from Abruus precatorius L. leguminosae seed kernels. Toxicon 9(2):97–101. https://doi.org/10.1016/0041-0101(71)90001-8
Lin KF, Lee TR, Tsai PH, Hsu MP, Chen CS, Lyu PC (2007) Structure-based protein engineering for alpha-amylase inhibitory activity of plant defensins. Proteins 68(2):530–540. https://doi.org/10.1002/prot.21378
Lin P, Ng TB (2008) Preparation and biological properties of a melibiose binding lectin from Bauhinia variegata seeds. J Agric Food Chem 56(22):10481–10486. https://doi.org/10.1021/jf8016332
Lindholm P, Göransson U, Johansson S, Claeson P, Gullbro J, Larsen R, Bohlin L, Backlund A (2002) Cyclotides: a novel type of cytotoxic agents. Mol Cancer Therap 1(6):365–369
Liu B, Min MW, Bao JK (2009) Induction of apoptosis by Concanavalin A and its molecular mechanisms in cancer cells. Autophagy 5(3):432–433. https://doi.org/10.4161/aut.5.3.7924
Liu M, Du M, Zhang Y, Xu W, Wang C, Wang K, Zhang L (2013) Purification and identification of an ACE inhibitory peptide from walnut protein. J Agric Food Chem 61(17):4097–4100. https://doi.org/10.1021/jf4001378
Liu Y, Luo J, Xu C, Ren F, Peng C, Wu G, Zhao J (2000) Purification, characterization, and molecular cloning of the gene of a seed-specific antimicrobial protein from pokeweeds. Plant Physiol 122(4):1015–1024. https://doi.org/10.1104/pp.122.4.1015
Luo Z, Su K, Zhang X (2020) Potential of plant proteins digested in silico by gastrointestinal enzymes as nutritional supplement for COVID-19 patients. Plant Foods Hum Nutr 75:583–591. https://doi.org/10.1007/s11130-020-00850-y
Ma S, Huang D, Zhai M, Yang L, Peng S, Chen C, Feng X, Weng Q, Zhang B, Xu M (2015) Isolation of a novel bio-peptide from walnut residual protein inducing apoptosis and autophagy on cancer cells. BMC Complement Altern Med 15:413. https://doi.org/10.1186/s12906-015-0940-9
Ma X, Liu D, Tang H, Wang Y, Wu T, Li Y, Yang J, Yang J, Sun S, Zhang F (2013) Purification and characterization of a novel anti-fungal protein with antiproliferation and anti-HIV-1 reverse transcriptase activities from Peganum harmala seeds. Acta Biochim Biophys Sin 45(2):87–94. https://doi.org/10.1093/abbs/gms094
Mammari N, Krier Y, Albert Q, Devocelle M, Varbanov M, Oemonom OBOT (2021) Plant-derived antimicrobial peptides as potential antiviral agents in systemic viral infections. Pharmaceuticals (Basel, Switzerland) 14(8):774. https://doi.org/10.3390/ph14080774
Marcus JP, Green JL, Goulter KC, Manners JM (1999) A family of antimicrobial peptides is produced by a 7S globulin protein in Macadamia integrifolia kernels. Plant J 19(6):699–710. https://doi.org/10.1046/j.1365-313x.1999.00569.x
Mazalovska M, Koukam JC (2018) Lectins as promising therapeutics for the prevention and treatment of HIV and other potential...
cointections. Biomed Res Int 2018:3750646. https://doi.org/10.1155/2018/3750646

Millet JK, Séron K, Lattib RN, Danneels A, Palmer KE, Whittaker GR, Dubuisson J, Belouzard S (2016) Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin. Antiviral Res 133:1–8. https://doi.org/10.1016/j.antiviral.2016.07.011

Minami Y, Yamaguchi K, Yagi F, Tadera K, Funatsu G (1998) Isolation and amino acid sequence of a protein-synthesis inhibitor from the seeds of rye (Secale cereale). Biosci Biotechnol Biochem 62(6):1152–1156. https://doi.org/10.1271/bbb.62.1152

Mojica L, de Mejía EG (2016) Optimization of enzymatic production of anti-diabetic peptides from black bean (Phaseolus vulgaris L.) proteins, their characterization and biological potential. Food Funct 7(2):713–727. https://doi.org/10.1039/c5fo01204j

Mukhopadhyay S, Panda PK, Sinha N, Behera B, Maiti TK, Mojica L, de Mejía EG (2016) Optimization of enzymatic production of anti-diabetic peptides from black bean (Phaseolus vulgaris L.) proteins, their characterization and biological potential. Food Funct 7(2):713–727. https://doi.org/10.1039/c5fo01204j

Mukhopadhyay S, Panda PK, Das DN, Sinha N, Behera B, Maiti TK, Bhutia SK (2014) Abrus agglutinins suppresses human hepatocellular carcinoma in vitro and in vivo by inducing caspase-mediated cell death. Acta Pharmacol Sin 35(6):814–824. https://doi.org/10.1038/aps.2014.15

Naider F, Anglistor J (2009) Peptides in the treatment of AIDS. Curr Opin Struct Biol 19(4):473–482. https://doi.org/10.1016/j.sbi.2009.07.003

Nath A, Kaiol GG, Medynánszky Z, Kiskó G, Csehi B, Pásztorné–Nawrot R, Wolun-Cholewa M, Bialas W, Wyrzykowska D, Balcer–NN TB, Chan WY, Yeung HW (1992) Proteins with abortifacient, ribosomal and amino acid sequence of a protein-synthesis inhibitor from the seeds of rye (Secale cereale). Biosci Biotechnol Biochem 62(6):1152–1156. https://doi.org/10.1271/bbb.62.1152

Ng TB, Wang H (2001) Panaxagin, a new protein from Chinese ginseng possesses anti-fungal, anti-viral, translation-inhibiting and ribonuclease activities. Life Sci 68(7):739–749. https://doi.org/10.1016/S0021-9350(00)00970-x

Ng TB, Chan WY, Yeung HW (1992) Proteins with abortificient, ribosome-inactivating, immunomodulatory, antitumor and anti-AIDS activities from Cucurbitaceae plants. Gen Pharmacol 23(4):579–590. https://doi.org/10.1016/0306-3623(92)90131-3

Ng TB, Lam SK, Fong WP (2003) A homodimeric sporanin-type tryptic inhibitor with antiproliferative, HIV reverse transcriptase-inhibitory and antifungal activities from wampee (Clausena lanium) seeds. Biochem Biophys Res Commun 304(2):289–293. https://doi.org/10.1015/j.bc.2003.032

Ng TB, Wong RN, Yeung HW (1992b) Two proteins with ribosome-inactivating, cytotoxic and abortifacient activities from seeds of Luffa cylindrica roem (Cucurbitaceae). Biochem Int 27(2):197–207

Ngai PH, Ng TB (2004) Coccin, an antifungal peptide with antiproliferative and HIV-1 reverse transcriptase inhibitory activities from large scarlet runner beans. Peptides 25(12):2063–2068. https://doi.org/10.1016/j.peptides.2004.08.003

Ngoi YY, Gan CY (2016) Enzyme-assisted extraction and identification of antioxidant and α-amylase inhibitory peptides from Pinto beans (Phaseolus vulgaris cv. Pinto). Food Chem 190:331–337. https://doi.org/10.1016/j.foodchem.2015.05.120

Nielsen KK, Nielsen JE, Madrid SM, Mikkelsen JD (1997) Characterization of a new antifungal chitin-binding peptide from sugar beet leaves. Plant Physiol 115(1):83–91. https://doi.org/10.1104/pp.113.1.83

Ningappa MB, Dhananjaya B, Dinesha R, Harsha R, Srinivas L (2010) Potent antibacterial property of APC protein from curry leaves (Murraya koenigii L.). Food Chem 118(3):747–750. https://doi.org/10.1016/j.foodchem.2009.05.059

No T, Feng Z, Li W, Yeung H (1991) Improved isolation and further characterization of beta-trichosanthin, a ribosome-inactivating and abortifacient protein from tubers of trichosanthes cucumeroides (cucurbitaceae). Int J Biochem 23(5–6):561–567. https://doi.org/10.1016/0020-711x(87)90050-4

O’Keefe BR, Giomarelli B, Barrand DL, Shenyor SR, Chan PK, McMahon JB, Palmer KE, Barnett BW, Meyerholz DK, Wohlford-Lenane CL, McCray PB Jr (2010) Broad-spectrum in vitro activity and in vivo efficacy of the antiviral protein griffithsin against emerging viruses of the family Coronaviridae. J Virol 84(5):2511–2521. https://doi.org/10.1128/JVI.02322-09

Olsnes S, Pihl A (1973) Isolation and properties of aribin: a toxic protein inhibiting protein synthesis. Evidence for different biological functions of its two constituent-peptide chains. Eur J Biochem 35(1):179–185. https://doi.org/10.1111/j.1432-1033.1973.tb02823.x

Olsnes S, Haylett T, Refsnes K (1978) Purification and characterization of the highly toxic lectin modeccin. J Biol Chem 253(14):5069–5073. https://doi.org/10.1016/0021-9258(78)90658-6

Olsnes S, Stirpe F, Sandvig K, Pihl A (1982) Isolation and characterization of visumcin, a toxic lectin from Viscum album L. (mistletoe). J Biol Chem 257(22):13263–13270

Oza VP, Parmar PP, Kumar S, Subramanian RB (2010) Anticancer properties of highly purified L-asparaginase from Withania somnifera L. against acute lymphoblastic leukemia. Appl Biochem Biotechnol 160(6):1833–1840. https://doi.org/10.1007/s12010-009-8667-z

Pan L, Chai HB, Kinghorn AD (2012) Discovery of new anticancer agents from higher plants. Front Biosci (schol Ed) 4:142–156. https://doi.org/10.2741/257

Park CJ, Park CB, Hong SS, Lee HS, Lee SY, Kim SC (2000) Characterization and cDNA cloning of two glycine- and histidine-rich antimicrobial peptides from the roots of shepherd’s purse Capsella bursa-pastoris. Plant Mol Biol 44(2):187–197. https://doi.org/10.1023/a:1006431320677

Park JS, Hwang DJ, Lee SM, Kim YT, Choi SB, Cho KJ (2004) Ribosome-inactivating activity and cDNA cloning of antiviral protein isoforms of Chenopodium album. Mol Cells 17(1):73–80

Park SW, Prithiviraj B, Vepachedu R, Vivanco JM (2006) Isolation and purification of ribosome-inactivating proteins. Methods Mol Biol (Clifton, NJ) 318:335–347. https://doi.org/10.1385/1-59259-959-1:335

Patil SP, Goswami A, Kalia K, Kate AS (2020) Plant-derived bioactive peptides: a treatment to cure diabetes. Int J Pept Res Ther 26(2):955–968. https://doi.org/10.1007/s10989-019-09899-z

Pelegrini BP, Murad AM, Silva LP, Dos Santos RC, Costa FT, Tagliari PD, Bloch C Jr, Noronha EF, Miller RN, Franco OL (2008) Identification of a novel storage glycine-rich peptide from guava (Psidium guajava) seeds with activity against Gram-negative bacteria. Peptides 29(8):1271–1279. https://doi.org/10.1016/j.peptides.2008.03.013

Pizzo E, Di Maro A (2016) A new age for biomedical applications of ribosome inactivating proteins (RIPs): from bioconjugate to nanoconstructs. J Biomed Sci 23(1):54. https://doi.org/10.1186/s12929-016-0272-1

Poyet JL, Hoeveler A (1997) cDNA cloning and expression of pokeweed antiviral protein from seeds in Escherichia coli and its inhibition of protein synthesis in vitro, FEBS Lett 406(1–2):97–100. https://doi.org/10.1016/0014-5793(97)00250-0

Pränting M, Lööv C, Burman R, Göransson U, Andersson DI (2010) Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin. Antiviral Res 84(5):2511–2521. https://doi.org/10.1128/JVI.02322-09

Puri M, Kaur I, Perugini MA, Gupta RC (2012) Ribosome-inactivating proteins: current status and biomedical applications. Drug
Wang H, Ng TB (2000) Ginkobilobin, a novel antifungal protein from *Ginkgo biloba* seeds with sequence similarity to embryo-abundant protein. Biochem Biophys Res Commun 279(2):407–411. https://doi.org/10.1006/bbrc.2000.3929

Wang H, Ng TB (2002) Isolation of an antifungal thaumatin-like protein from kiwi fruits. Phytochemistry 61(1):1–6. https://doi.org/10.1016/s0031-9422(01)00444-9

Wang H, Ye XY, Ng TB (2001) Purification of chrysancorin, a novel antifungal protein with mitogenic activity from garland chrysanthemum seeds. Biol Chem 382(6):947–951. https://doi.org/10.1515/BC.2001.118

Wang S, Shao B, Rao P, Lee Y, Ye X (2007) Hypotin, a novel antipathogenic and antiproliferative protein from peanuts with a sequence similar to those of chitinase precursors. J Agric Food Chem 55(24):9792–9799. https://doi.org/10.1021/jf071540j

Wani SS, Dar PA, Zargar SM, Dar TA (2020) Therapeutic potential of medicinal plant proteins: present status and future perspectives. Curr Protein Pept Sci 21(5):443–487. https://doi.org/10.2174/13892032066619110905624

Wei C, Koh C (1978) Crystalline ricin D, a toxic anti-tumor lectin from seeds of *Ricinus communis*. J Biol Chem 253(6):2061–2066. https://doi.org/10.1016/s0021-9258(19)62354-9

Wong JH, Ng TB (2003a) Gymnin, a potent defensin-like antifungal peptide from the yunnan pea (*Gymnocladus chinensis* Baill.). Peptides 24(7):963–968. https://doi.org/10.1016/s0196-9781(03)00319-x

Wong JH, Ng TB (2003b) Purification of a trypsin-stable lectin with antiproliferative and HIV-1 reverse transcriptase inhibitory activity. Biochem Biophys Res Commun 301(2):545–550. https://doi.org/10.1016/j.bbrc.2002.02.002

Wong JH, Ng TB (2003b) Luatinus, a trypsin-stable antimicrobial peptide from lima beans (*Phaseolus lunatus* L.). Peptides 26(11):2086–2092. https://doi.org/10.1016/j.peptides.2005.03.004

Wong JH, Ng TB (2005b) Sesquin, a potent defensin-like antimicrobial peptide from ground beans with inhibitory activities toward tumor cells and HIV-1 reverse transcriptase. Peptides 26(7):1120–1126. https://doi.org/10.1016/j.peptides.2005.01.003

Wong JH, Ng TB (2005c) Vulgarinin, a broad-spectrum antimicrobial peptide from haricot beans (*Phaseolus vulgaris*). Int J Biochem Cell Biol 37(8):1626–1632. https://doi.org/10.1016/j.biocel.2005.02.022

Wong JH, Chan HY, Ng TB (2008) A mannose/glucose-specific lectin from Chinese evergreen chinkapin (*Castanopsis chinensis*). Biochem Biophys Acta 1780(9):1017–1022. https://doi.org/10.1016/j.bbagen.2008.05.007

Wong RN, Dong TX, Ng TB, Choi WT, Yeung HW (1996) alpha-kirilowin and other related proteins. Int J Pept Protein Res 47(1–2):103–109. https://doi.org/10.1111/j.1399-3011.1996.tb00816.x

World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. https://covid19.who.int/

Xia L, Baill. 2001. 118

Xia L, Ng TB (2000) Mungin, a novel cyclophilin-like antifungal protein from the mung bean. Biochem Biophys Res Commun 273(3):1111–1115. https://doi.org/10.1006/bbrc.2000.3067

Ye XY, Ng TB (2001) Peptides from pinto bean and red bean with sequence homology to cowpea 10-kDa protein precursor exhibit antifungal, mitogenic, and HIV-1 reverse transcriptase-inhibitory activities. Biochem Biophys Res Commun 285(2):424–429. https://doi.org/10.1006/bbrc.2001.5194

Ye XY, Ng TB (2002a) Isolation of a new cyclophilin-like protein from chickpeas with mitogenic, antifungal and anti-HIV-1 reverse transcriptase activities. Life Sci 70(10):1129–1138. https://doi.org/10.1016/s0022-3207(01)01473-4

Ye XY, Ng TB (2002b) Purification of angularin, a novel antifungal peptide from adzuki beans. J Peptide Sci 8(3):101–106. https://doi.org/10.1002/psc.372

Ye XY, Ng TB (2003) Isolation of vulgarin, a new antifungal polypeptide with mitogenic activity from the pinto bean. J Peptide Sci 9(2):114–119. https://doi.org/10.1002/psc.436

Ye XY, Wang HX, Ng TB (2000) Dolichin, a new chitinase-like antifungal protein isolated from field beans (*Dolichos lablab*). Biochem Biophys Res Commun 269(1):155–159. https://doi.org/10.1006/bbrc.2000.2115

Ye X, Ng TB (2009) Isolation and characterization of juncin, an antifungal protein from seeds of Japanese Takana (*Brassica juncea* Var. integrifolia). J Agric Food Chem 57(10):4366–4371. https://doi.org/10.1021/jf8035337

Yeshak MY, Burman R, Asres K, Göransson U (2011) Cyclotides from an extreme habitat: characterization of cyclic peptides from *Viola abyssinica* of the Ethiopian highlands. J Nat Prod 74(4):727–731. https://doi.org/10.1021/np100790f

Yeung HW, Li WW (1987) Beta-trichosanthin: a new abortifacient protein from the Chinese drug, wangua, *Trichosanthes cucumeroides*. Int J Pept Protein Res 29(3):289–292. https://doi.org/10.1111/j.1399-3011.1987.tb02256.x

Yokoyama S, Kato K, Koba A, Minami Y, Watanabe K, Yagi F (2008) Purification, characterization, and sequencing of antimicrobial peptides, Cy-AMP1, Cy-AMP2, and Cy-AMP3, from the CDCY (Cycas revoluta) seeds. Peptides 29(12):2110–2117. https://doi.org/10.1016/j.peptides.2008.08.007

Zhang B, Xie C, Wei L, Li X, Yang X (2015) Purification and characterization of an antifungal protein, MCha-Pr, from the intercellular fluid of bitter gourd (*Momordica charantia*) leaves. Protein Expr Purif 107:43–49. https://doi.org/10.1016/j.pep.2014.09.008

Zhang D, Halaweish FT (2003) Isolation and identification of foetidisin: a novel ribosome-inactivating protein from *Cucurbita foetida* (*C. foetidissima*). Plant Sci 164(3):387–393. https://doi.org/10.1016/s0168-9452(02)00425-9

Zhang D, Halaweish FT (2007) Isolation and characterization of ribosome-inactivating proteins from *Cucurbitaceae*. Chem Biodivers 4(3):431–442. https://doi.org/10.1002/cbdv.200790035

Zhang H, Xue J, Zhao H, Zhao X, Xue H, Sun Y, Xue W (2018) Isolation and structural characterization of antioxidant peptides from degreased apricot seed kernels. J AOAC Int 101(5):1661–1663. https://doi.org/10.5740/jaoacint.17-0465

Zhang Y, Lewis K (1997) Fabatins: new antimicrobial plant peptides. FEMS Microbiol Lett 149(1):59–64. https://doi.org/10.1111/j.1574-6968.1997.tb10308.x

Zhou P, Yang XL, Wang XG et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–273. https://doi.org/10.1038/s41586-020-2012-7

Zou TB, He TP, Li HB, Tang HW, Xia EQ (2016) The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules (baSel, Switzerland) 21(1):72. https://doi.org/10.3390/molecules21010072

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.