Supplemental Information

S1. Supplemental information on APSIM configuration and performance

Experimental treatments at the sites encompassed one or more crop rotation sequences of maize, soybean, wheat and rye cover crop. Management records (planting date and rate, tillage type and timing, and N fertilizer amount and timing), cultivar relative maturity, and drainage system characteristics (depth and spacing) were available (Table S1). Measured data included end-of-season maize and soybean yields, daily water flow in subsurface drainage tiles and NO$_3$ concentrations in drainage, spanning at least five weather years (Table S1). The latter two were used to calculate cumulative annual NO$_3$ loads (kg N ha$^{-1}$) and flow-weighted NO$_3$ concentrations in subsurface drainage (mg N L$^{-1}$). These observations were used to test the robustness of the model predictions.

As a first step, we used the management, soil information and weather data available for each crop rotation treatment at the seven experimental sites (Table S1) to configure APSIM (version 7.8) to replicate the experimental data. All simulations were set up using the following modules: maize, soybean, and wheat (to simulate rye cover crop), SWIM (soil hydrology; Huth et al. 2012), soilN (soil C and N cycling), surfaceom (residue model; Probert et al. 1998; Thorburn et al. 2005, 2001) and manager (Keating et al. 2003).

Maize, Soybean and Wheat

The maize and soybean cultivars used at the experimental sites were represented in the model with generic APSIM cultivars. For maize these corresponded to the “B” cultivars (Archontoulis et al. 2014b), while for soybean these corresponded to the “MG” cultivars (Archontoulis et al. 2014a). These have been previously calibrated to broadly characterize locally adapted commercial genotypes in the region. We selected maturity groups appropriate for at each site based on the management records available. Changes made to the crop cultivar parameters included lowering the critical N concentration in grains (n_conc_crit_grain) from 1.5 to 1.2% in maize and 6.5 to 6% in soybean. This follows
experimental evidence of declining grain N concentrations in new-era maize hybrids (Ciampitti and Vyn 2012) and soybean cultivars (Tamagno et al 2017). These changes have been seen to improve simulation of soil NO$_3$ (Puntel et al 2016) and NO$_3$ leaching (Martinez-Feria et al 2016). The *wheat* module was used to simulate rye cover crop at the KELLEY and GILMORE sites, employing the calibrated *wheat* version developed by Dietzel et al (2016) and improved by Martinez-Feria et al (2016).

Supplemental Table S1. Summary of the experimental datasets used to configure and test the APSIM model. CC = Continuous Maize; CS = Maize-Soybean; SWC = Soybean-Wheat-Maize; MRTN = Maximum Return to N rate.

Site Name	Location	Soil Classification	Subsurface drain specifications	Cropping System(s)	MRTN4
			Depth Spacing		CC CS
			cm m		kg N ha$^{-1}$
HICKS.B1	Walnut Grove, MN (44.351, -95.537)	Havelock clay loam, Du Page silt loam, Hawick sandy loam	120 15	CC (2011-2015)	178 138
NASHUA2	Nashua, IA (42.931, -92.572)	Clyde silty clay loam, Floyd loam, Kenyon loam, Readlyn loam	120 28.5	CS* (2007-2015)	211 157
GILMORE3	Gilmore City, IA (42.748, -94.495)	Canisteo clay loam, Nicollet loam, Webster silty clay loam	110 7.6	CS* with and without tillage (2011-2015), CS* with rye cover crop no tillage (2011-2015)	211 157
KELLEY2,3	Kelley, IA (41.920, -93.749)	Nicollet loam, Webster silty clay loam	110 13.5	CS* (2011-2015), CC (2011-2015), CC with residue Removal and rye cover crop (2011-2015)	211 157
SERF1	Crawfordsville, IA (41.193, -91.483)	Kalona silty clay loam, Taintor silty clay loam	122 18.3	CC (2012-2015), CS* (2011-2015)	228 172
DPAC1	Albany, IN (40.267, -85.161)	Blount silt loam, Pewamo clay loam, Glynwood silt loam	91 15.2	CS (2011-2015)	251 251
STJOHNS1	St. Johns, OH (40.518, -84.085)	Minster silty clay loam, Blount silt loam	91 12.2	SWC (2011-2015)	221 195

* Includes both phases of the rotation every year

1 Abendroth et al (2017)

2 Martinez-Feria et al (2018)

3 Dietzel et al (2016)

4 Sawyer et al (2006)
SWIM, SoilN and surfaceom

Soil hydrological and organic matter parameters were derived from the SSURGO database (Soil Survey Staff n.d.) This was done by conducting database queries using the fields’ geospatial coordinates with the FedData (Bocinsky et al 2018) package in R (R Core Team 2017). Then, we extracted the tabular data of the major components for each of the map units present at the field sites. Given that the soil layer structure for SSURGO components differ across map units, we standardized the soil layers (breaks = 0, 5, 10, 15, 20, 30, 45, 60, 80, 100, 130, 160, 200, 240, and 280 cm) across all sites using linear interpolation. To represent the whole field site, data were aggregated across all map units, using the average weighted with the percent of area occupied by each map unit. Data extracted included estimates for APSIM parameters such as drainage upper limit (DUL, mm mm\(^{-1}\)), drainage lower limit (LL15, mm mm\(^{-1}\)), saturation point (SAT, mm mm\(^{-1}\)) and saturated hydraulic conductivity (Ksat, mm mm\(^{-1}\)), bulk density (BD g cm\(^{-3}\)), and soil organic carbon (SOC; %). The crop lower limit (CLL, mm mm\(^{-1}\)) for maize, soybean, and wheat was assumed equal to LL15, while the soil/root water extraction coefficient (KL, d\(^{-1}\)) was set to 0.08 in the top soil and decreased exponentially to values of 0.03 at 180 cm soil depth (Hammer et al 2009). The root penetration parameter (XF, 0–1) was set to 1 for all sites. Subsurface drainage was set up according to site specifications (Table S1), with lateral saturated soil water conductivity (klat) at 2800 mm d\(^{-1}\) (Dietzel et al 2016). We induced the “water table” option in SWIM to represent water table fluctuation (Singh et al 2006), initialized at the depth of the subsurface drains. The R code used to download, process and write soil files with the APSIM format has been made available through the APssurgo repository (Martinez-Feria and Archontoulis 2018)

Daily atmospheric N deposition was simulated with the implementation of a manager module script that estimates N deposition by multiplying daily precipitation (mm) by a factor of 0.01 (Holland et al 2005). This approach adds on average ~8 kg N ha\(^{-1}\) yr\(^{-1}\) to soils in this region, which is well within measured ranges (Zhang et al 2012). To mitigate exceptionally high denitrification in the deep soil layers (> 1m) we used the change to the soilN module which has been described in detail in Martinez-Feria et al (2018). We used depth_inhibit = 1.0 m (i.e. no denitrification below 1 m depth) and dul_fac_dni = 1.1 (i.e. denitrification is triggered at 10% above field capacity) at all sites.

To remove the confounding effects of buildup or decline in soil organic carbon humic (Hum) or microbial pools (Biom), we ran the model for a “spin-up” period (Dietzel et al 2016, Puntel et al 2016), during which a maize-soybean rotation with fertilizer applied at the MRTN (Table S1) was continuously simulated for 15 years at each site. Initial values for soil nitrate and moisture, and above and below-ground residue amount and C:N were also derived from this step. To avoid introducing bias from a given set of conditions experienced during the last year of the spin-up, we used the average value of these variables at harvesting for the last five simulated years for each crop. The values derived from this step, which were used as the initial conditions in model test runs and scenario experiments are shown on Fig. S1.1.
Supplemental Figure S1.1. Summary of configuration of soils in APSIM. Soil organic carbon pools (a), inorganic N concentrations (b) and hydrological parameters (c) used for model simulation at the seven experimental sites. Values from (a) and (b) were derived from a 15 year spin-up model run, during which a maize-soybean rotation was simulated. Horizontal line in (c) indicates depth of the subsurface drainage tube (tile). FBiom = microbial carbon pool; FHum=humic carbon pool; Fnert=inert carbon pool. DUL=Drainage upper limit (0.3 bar); LL=Lower limit (15 bar); SAT=Saturation point.
Model performance

Having configured APSIM, the goal of this next step was to use the observed crop yields, drainage NO\(_3\) loads and flow-weighted NO\(_3\) concentrations to test the robustness of the predictions. Model fit was evaluated visually by means of plotting the observed vs. simulated values, and statistically by computing root mean squared error (RMSE), relative root mean squared error (RRMSE) and the mean bias error (MBE; Fig. S2). The RMSE and RRMSE are measures of model error and the smaller the value the better. The MBE is a measure of model accuracy, and the closer the value to zero the better. The equations for these indices can be viewed in Archontoulis and Miguez (2013).

Supplemental Figure S1.2. Testing the robustness of the APSIM model at the seven long-term experimental sites. Symbols represent the average for every treatment across years at every site. Solid line represents the 1:1 relationship (i.e. perfect fit), while dotted lines the ±20% error range for maize and soybean yield and ±40% for drainage NO\(_3\) loads and concentrations. RMSE = root mean squared error; RRMSE = relative root mean squared error; MBE = mean bias error.
Considering that configuration and calibration of the simulations were largely based on limited (i.e. publicly available) data and literature values, the APSIM model was able to satisfactorily reproduce the measured crop yields and subsurface drainage NO₃ losses (Fig S2). Grain yields across all sites and crop rotation treatments were simulated with a RMSE of 1.27 and 0.38 Mg ha⁻¹ yr⁻¹, for maize and soybean respectively. This represented a RRMSE of around 13% in both crops. Across all sites and cropping systems, the model simulated subsurface drainage NO₃ loads with a MBE of -3 kg N ha⁻¹ yr⁻¹, although the model slightly under predicted NO₃ loads in the GILMORE and STJOHNS sites. The observed flow weighted NO₃ concentrations were similarly under-predicted across those two sites, which seems to indicate this may be due to an underestimation of drainage water flow. At the rest of the sites, drainage NO₃ loads and concentrations were simulated with good precision; except for drainage NO₃ concentrations at HICKS.B, where the model over-predicted the measured data (Fig. 1.2).

S2. Supplemental information on mean-variance PE calculation

Portfolio theory had its origins in the idea that an efficient financial portfolio should balance the tradeoff between maximizing expected returns and minimizing the risks to the integrity of the investment (Markowitz 1959). In practice, financial managers do this by selecting multiple assets that tend to be weakly or negatively correlated. The contribution of a single asset to the stability of the portfolio can be examined by comparing the average coefficient of variation (CV; standard deviation divided by the mean) of all assets in the portfolio, against the average CV of the portfolio without the specific asset. This approach assumes that investing in an asset stock does not meaningfully affect the asset’s properties, so that the standard deviation of the return increases linearly with the value of the investment (i.e., variance increases by the power of two).

In biological systems, changes to the standard deviation are often non-linear, so that larger populations or greater plant biomass, for example, may be less variable than expected by simply comparing their CV (Anderson et al 2013). In ecological research this is known as Taylor’s law (Taylor and Woiwod 1980), which predicts that the slope of the log-log variance and mean individuals of a species per unit area (z) is less than 2:

$$\log(\sigma^2) = \beta_0 + z \times \log(\mu)$$

This relationship can be used to estimate how we expect the standard variation (σ) of a system to change according to changes in the observed mean (μ). β₀ is the intercept of the log-log mean-variance relationship. Tilman (1999) proposed to use this approach to scale the variance when examining portfolio effects (PE) in ecological systems. For mathematical convenience PE is often calculated as the ratio of the observed and expected CV. Because in both cases, the CV is computed with the same μ, this term cancels out so that PE is simply the ratio of the observed and expected σ. The mean-variance approach has become a well-established methodology to quantify PE of diversification in population dynamics and productivity of natural and managed ecosystems (Anderson et al 2013, Schindler et al 2015, Renard and Tilman 2019).
We applied this methodology to our simulated dataset, by fitting the equation 1 to the mean and variance of management scenarios where only a single improved practice was adopted (Fig. S2). For NO₃ load and soil NO₃ at harvest, the z value of tended to be < 2 across classifications of spring rainfall, although z was generally lower for NO₃ load and higher for soil NO₃ at harvest in years of high rainfall. This was not the case for corn yields where there were wide variations in z value, indicating the log-log mean-variance relationship cannot be adequately modeled in this context. (Fig S2).

Supplemental Figure S2. Modeling the mean-variance relationship. (a) Each data point represents a simulated scenario where only one improved management practice was adopted at each site and spring rainfall classification. Mean and variance are computed across years and sets of initial conditions (see table 1). Line shows the fitted regression, which was used to extrapolate the expected variance to the level of the observed (i.e. simulated) mean (see Fig. 2 in main text for example). (b) Distribution of the Z values (i.e., slope of the log-log mean-variance regression across levels of spring rainfall.)
Supplemental Table S2. Rankings for each simulated multi-management strategy scenario at each level of spring rainfall. Rankings were computed according to the scenario’s PE-adjusted mean, separately for each variable. A combined ranking for each management scenario was developed by computing the Euclidian distance from the origin in the three-dimensional space of each ranking. All ranks are from best to worst (best being the smallest number).

Apr-Jun Rainfall	Multi-strategy management	Ranking							
	Genotype	Planting time	N rate	N time	Cover crop	NO\textsubscript{3} load	Soil NO\textsubscript{3} at harvest	Yield	Combined (d)
Low	High	Early	-30%	Spring	Overwinter	15	13	20	1
Low	High	Early	-30%	Split	Overwinter	14	16	19	2
Low	High	Average	-30%	Split	Overwinter	4	11	47	3
Low	High	Early	-30%	Spring	Winter-kill	35	30	22	4
Low	High	Early	-30%	Split	Winter-kill	34	32	21	5
Low	High	Average	-30%	Spring	Overwinter	5	10	50	6
Low	High	Early	-30%	Split	None	44	33	23	7
Low	High	Early	-30%	Spring	None	45	31	24	8
Low	Low	Early	-30%	Spring	Overwinter	22	34	44	9
Low	Low	Early	-30%	Split	Overwinter	21	38	43	10
Low	Low	Normal	-30%	Split	Overwinter	17	24	62	11
Low	Low	Normal	-30%	Spring	Overwinter	18	23	72	12
Low	Low	High	Average	MRTN	Spring	20	84	29	13
Low	Low	High	Average	MRTN	Split	19	88	31	14
Low	Low	Early	MRTN	Spring	Overwinter	29	97	5	15
Low	Low	Early	MRTN	Split	Overwinter	26	99	4	16
Low	Low	High	Average	-30%	Split	37	43	90	17
Low	Low	High	Average	-30%	Spring	38	39	94	18
Low	Low	Normal	Early	-30%	Split	42	49	91	19
Low	Low	Normal	Early	-30%	Spring	43	48	95	20
Low	Low	High	Average	-30%	Split	53	46	92	21
Low	Low	Normal	Early	MRTN	Spring	39	102	39	22
Low	Low	Normal	Early	MRTN	Split	36	104	41	23
Low	Low	High	Average	-30%	Spring	55	40	96	24
Low	Low	Low	Early	-30%	Spring	51	72	80	25
Low	Low	Low	Early	-30%	Split	50	75	79	26
Low	Low	Low	Average	-30%	Spring	12	26	118	27
Low	Low	Low	Average	-30%	Split	11	28	119	28
Low	Low	Normal	Early	-30%	Split	56	52	97	29
Low	Low	Low	Early	MRTN	Spring	48	108	38	30
Low	Low	Normal	Early	-30%	Spring	61	50	98	31
Low	Low	Low	Early	MRTN	Split	46	111	40	32
Low	Low	Normal	Average	-30%	Split	9	19	126	33
Low	Low	Low	High	-30%	Split	1	5	128	34
Low	Low	Normal	Average	-30%	Spring	10	17	127	35
Low	Low	Low	Early	-30%	Spring	65	77	84	36
Low	Low	Low	Early	-30%	Spring	68	74	85	37
Low	Low	High	Early	MRTN	Split	66	114	11	38
Low	Low	Low	Early	MRTN	Spring	70	112	10	39
Low	Low	High	Late	MRTN	Spring	16	58	123	40
Low	Low	Late	MRTN	Split	Overwinter	13	59	124	41
Low	Low	High	Early	MRTN	Spring	87	113	13	42
Low	Low	High	Early	MRTN	Split	86	115	14	43
Low	Low	High	Late	-30%	Spring	2	4	145	44
Low	Low	Normal	Average	MRTN	Spring	30	100	115	45
Low	Low	High	Average	MRTN	Spring	81	122	53	46
Low	Low	Normal	Average	MRTN	Split	27	101	116	47
Low	Low	High	Average	MRTN	Split	76	126	55	48
Low	Low	Low	Average	MRTN	Spring	33	105	114	49
Low	Low	Low	Average	MRTN	Split	31	106	117	50
Low	Low	High	Average	MRTN	Spring	93	125	54	51
Low	Low	High	Average	MRTN	Split	91	130	56	52
Low	Low	Normal	Early	MRTN	Spring	97	124	67	53
Low	Low	High	Average	30%	Split	41	165	27	54
Low	Low	High	Average	30%	Spring	47	164	26	55
Low	Low	Normal	Early	MRTN	Split	92	129	71	56
Low	Low	High	Early	-30%	Fall	170	27	28	57
Low	Low	Late	Split	30%	Overwinter	32	123	121	58
Supplemental Table S2 (continued).

Apr-Jun Rainfall	Genotype	Planting time	N rate	N time	Cover crop	NO$_3$ load	Soil NO$_3$ at harvest	Yield	Combined
Low	Normal	Average	-30%	Split	Winter-kill	49	64	157	59
Low	High	Normal	Average	-30%	Fall	None	172	29	30
Low	Normal	Average	-30%	Spring	Winter-kill	54	61	158	61
Low	Low	Average	-30%	Spring	Winter-kill	59	82	148	62
Low	Low	Low	-30%	Split	Winter-kill	57	85	150	63
Low	Normal	Early	MRTN	Spring	None	107	128	74	64
Low	High	Late	MRTN	Spring	Overwinter	40	131	122	65
Low	Normal	Average	-30%	Split	None	67	65	159	66
Low	Low	Average	-30%	Spring	None	69	62	160	67
Low	Low	Average	-30%	Spring	None	78	83	149	68
Low	Normal	Early	MRTN	Split	None	109	132	77	69
Low	High	Early	30%	Split	Overwinter	73	174	2	70
Low	Low	Early	30%	Split	Overwinter	64	178	3	71
Low	Low	Average	-30%	Split	None	77	86	151	72
Low	Low	High	30%	Split	Winter-kill	56	54	174	73
Low	High	Early	-30%	Fall	Overwinter	167	12	93	74
Low	Low	Early	MRTN	Spring	Winter-kill	105	146	66	75
Low	High	Late	MRTN	Spring	Winter-kill	62	51	175	76
Low	Low	Early	MRTN	Split	Winter-kill	103	150	70	77
Low	Low	Late	MRTN	Spring	Overwinter	8	18	194	78
Low	Normal	Late	-30%	Split	Overwinter	6	7	196	79
Low	Low	Late	-30%	Split	Overwinter	7	21	195	80
Low	Low	Normal	-30%	Split	Overwinter	3	8	197	81
Low	High	Average	-30%	Fall	None	187	47	46	82
Low	Low	High	MRTN	Fall	Overwinter	193	79	8	93
Low	Low	Normal	MRTN	Fall	Overwinter	95	183	37	94
Low	Low	Late	MRTN	Spring	Overwinter	28	91	187	95
Low	Low	Early	MRTN	Spring	Winter-kill	173	66	99	96
Low	Low	Early	-30%	Fall	Overwinter	168	20	125	97
Low	Low	Normal	-30%	Spring	Overwinter	101	182	35	98
Low	Normal	Early	-30%	Fall	None	177	45	106	99
Low	Low	Late	MRTN	Split	Overwinter	25	92	192	100
Low	Low	Early	MRTN	Split	None	178	68	100	101
Low	Low	Early	30%	Split	Overwinter	104	186	36	102
Low	Normal	Average	30%	Split	Overwinter	71	171	112	103
Low	Normal	Average	30%	Spring	Overwinter	79	170	110	104
Low	Low	Early	30%	Spring	Overwinter	110	185	34	105
Low	Normal	Early	MRTN	Fall	Overwinter	195	95	45	106
Low	Low	High	MRTN	Fall	Winter-kill	194	109	17	107
Low	High	Early	MRTN	Split	Winter-kill	117	190	7	108
Low	Low	Early	30%	Spring	Winter-kill	121	189	6	109
Low	Normal	Average	MRTN	Spring	Winter-kill	102	145	138	110
Low	High	Early	MRTN	Fall	None	196	110	18	111
Low	Low	Early	MRTN	Fall	Overwinter	197	107	42	112
Low	Normal	Average	MRTN	Split	Winter-kill	100	148	142	113
Low	Low	Average	30%	Spring	Overwinter	88	180	111	114
Low	Low	Average	30%	Split	Overwinter	84	181	113	115
Low	High	Early	30%	Spring	None	131	191	9	116
Low	Normal	Average	MRTN	Split	Winter-kill	116	147	140	117
Low	High	Early	30%	Split	None	133	192	12	118
Low	Normal	Average	MRTN	Fall	Overwinter	190	67	120	119
Low	High	Late	MRTN	Spring	Winter-kill	99	133	167	120
Supplemental Table S2 (continued).

Genotype	Planting time	N rate	N time	Cover crop	NO$_3$ load	Soil NO$_3$ at harvest	Yield	Combined	
Low	High	Late	MRTN	Split	Winter-kill	94	135	169	121
Low	Normal	Average	MRTN	Split	None	114	149	144	122
Low	Normal	Late	30%	Split	Overwinter	52	134	189	123
Low	Average	MRTN	Fall	Overwinter	192	89	109	124	
Low	High	Average	-30%	Fall	Overwinter	152	6	184	125
Low	Normal	Late	30%	Spring	Overwinter	63	138	185	126
Low	Average	MRTN	Spring	Winter-kill	111	162	137	127	
Low	Normal	Late	-30%	Spring	Winter-kill	75	69	218	128
Low	High	Average	30%	Split	Winter-kill	122	202	51	129
Low	Average	MRTN	Split	Winter-kill	106	166	141	130	
Low	High	Average	30%	Spring	Winter-kill	199	116	75	131
Low	High	Average	30%	Split	None	124	203	48	132
Low	Normal	Late	-30%	Split	None	74	71	220	133
Low	High	Late	MRTN	Spring	None	113	136	168	134
Low	High	Late	MRTN	Split	None	108	139	170	135
Low	Average	MRTN	Fall	None	201	117	78	136	
Low	Normal	Early	MRTN	Fall	Winter-kill	198	118	88	137
Low	Normal	Late	-30%	Spring	None	90	70	219	138
Low	High	Average	30%	Split	None	130	205	52	139
Low	Low	Late	-30%	Spring	Winter-kill	85	93	214	140
Low	Normal	Early	30%	Split	Winter-kill	137	198	61	141
Low	Low	Late	-30%	Split	Winter-kill	89	73	221	142
Low	Normal	Early	30%	Winter-kill	143	196	57	143	
Low	High	Average	30%	Spring	None	135	204	49	144
Low	High	Average	30%	Fall	Overwinter	214	127	25	145
Low	Low	Late	-30%	Split	Winter-kill	160	96	216	146
Low	Low	Average	-30%	Fall	Overwinter	159	14	193	147
Low	Normal	Early	MRTN	Fall	None	202	119	89	148
Low	Normal	Average	-30%	Fall	Winter-kill	175	56	171	149
Low	High	Late	30%	Fall	Overwinter	208	90	108	150
Low	Low	Average	MRTN	Spring	None	126	167	139	151
Low	Low	Average	MRTN	Split	None	125	168	143	152
Low	Low	Average	-30%	Fall	Winter-kill	179	80	161	153
Low	Normal	Average	-30%	Fall	Overwinter	158	9	199	154
Low	Low	Late	-30%	Spring	None	98	94	215	155
Low	Low	Late	-30%	Split	Overwinter	160	160	190	156
Low	Normal	Average	-30%	Fall	None	181	57	172	157
Low	Low	Late	30%	Spring	Overwinter	72	161	186	158
Low	Low	Late	-30%	Split	None	96	98	217	159
Low	High	Late	MRTN	Fall	Overwinter	180	15	183	160
Low	Low	Average	-30%	Fall	None	183	81	162	161
Low	Normal	Early	30%	Split	None	149	201	69	162
Low	Low	Early	MRTN	Fall	Winter-kill	200	142	86	163
Low	High	Late	-30%	Fall	Winter-kill	182	42	181	164
Low	Normal	Early	30%	Spring	None	156	200	64	165
Low	Low	Early	MRTN	Fall	None	204	144	87	166
Low	Low	Early	30%	Split	Winter-kill	147	213	60	167
Low	High	Late	-30%	Fall	None	189	44	182	168
Low	Low	Early	30%	Spring	Winter-kill	153	211	58	169
Low	High	Late	-30%	Fall	Overwinter	138	1	230	170
Low	Low	Late	-30%	Fall	Overwinter	141	3	231	171
Low	High	Early	30%	Fall	Overwinter	217	163	1	172
Low	Normal	Late	-30%	Fall	Overwinter	142	2	232	173
Low	Low	Late	MRTN	Fall	Overwinter	185	36	198	174
Low	Low	Early	30%	Spring	None	165	216	65	175
Low	Low	Early	30%	Split	None	183	219	68	176
Low	Normal	Late	MRTN	Spring	Winter-kill	115	153	207	177
Low	Normal	Late	MRTN	Split	Winter-kill	112	154	210	178
Low	High	Early	30%	Fall	Winter-kill	216	187	15	179
Low	Normal	Average	30%	Fall	Overwinter	218	155	102	180
Low	Normal	Early	30%	Fall	Overwinter	222	179	33	181
Low	High	Early	30%	Fall	None	219	188	16	182
Supplemental Table S2 (continued).

Apr-Jun Rainfall	Genotype	Planting time	N rate	N time	Cover crop	NO$_3$ load	Soil NO$_3$ at harvest	Yield	Combined
Low	Normal	Average	MRTN	Fall	Winter-kill	203	137	155	183
Low	Normal	Late	MRTN	Spring	None	129	156	208	184
Low	Low	Average	MRTN	Spring	Winter-kill	145	217	130	185
Low	Low	Early	MRTN	Fall	Overwinter	224	184	32	186
Low	Normal	Average	MRTN	Fall	Split	140	218	134	187
Low	Low	Late	MRTN	Fall	Overwinter	184	22	226	188
Low	Normal	Late	MRTN	Split	None	127	157	212	189
Low	High	Late	MRTN	Split	Winter-kill	128	206	165	190
Low	Low	Late	MRTN	Spring	Winter-kill	123	172	205	191
Low	Normal	Average	MRTN	Fall	None	207	140	156	192
Low	Low	Late	MRTN	Spring	Winter-kill	134	207	163	193
Low	Normal	Late	MRTN	Fall	Split	212	103	180	194
Low	High	Late	MRTN	Spring	Split	205	120	178	195
Low	Low	Average	MRTN	Spring	Winter-kill	118	173	211	196
Low	Low	Average	MRTN	Split	None	220	175	101	197
Low	Normal	Late	MRTN	Split	None	186	60	228	198
Low	High	Average	MRTN	Fall	Winter-kill	221	195	59	199
Low	High	Late	MRTN	Split	None	209	121	179	200
Low	High	Late	MRTN	Split	None	139	209	166	201
Low	Low	Average	MRTN	Fall	Winter-kill	206	158	153	202
Low	High	Late	MRTN	Spring	None	144	208	164	203
Low	Normal	Average	MRTN	Split	None	155	221	135	204
Low	Low	Average	MRTN	Split	Winter-kill	148	228	133	205
Low	Low	Average	MRTN	Spring	Winter-kill	154	227	129	206
Low	Low	Average	MRTN	Split	None	162	220	132	207
Low	Normal	Late	MRTN	Split	None	191	63	229	208
Low	Low	Average	MRTN	Fall	None	210	159	154	209
Low	Low	Late	MRTN	Spring	None	136	176	209	210
Low	High	Average	MRTN	Fall	None	225	197	63	211
Low	Normal	Early	MRTN	Fall	Winter-kill	223	193	82	212
Low	Low	Late	MRTN	Split	None	132	177	213	213
Low	Low	Late	MRTN	-30%	Fall	188	87	227	214
Low	Normal	Early	MRTN	Fall	None	226	194	83	215
Low	Low	Average	MRTN	Spring	None	166	229	131	216
Low	Low	Average	MRTN	Split	None	163	230	136	217
Low	Low	Early	MRTN	Fall	Winter-kill	227	210	81	217
Low	Normal	Late	MRTN	Split	Winter-kill	146	222	203	219
Low	Normal	Late	MRTN	Spring	Winter-kill	151	223	201	220
Low	Low	Late	MRTN	Split	Winter-kill	211	141	224	221
Low	Low	Late	MRTN	Fall	None	215	143	225	222
Low	Low	Late	MRTN	Split	Winter-kill	150	231	204	223
Low	Normal	Late	MRTN	Split	None	160	224	206	224
Low	Normal	Late	MRTN	Spring	None	164	225	202	225
Low	Low	Late	MRTN	Spring	Winter-kill	157	232	200	226
Low	Normal	Average	MRTN	Split	Winter-kill	231	215	147	227
Low	Normal	Average	MRTN	Fall	Winter-kill	229	214	152	228
Low	High	Late	MRTN	Fall	Winter-kill	228	199	173	229
Low	Low	Late	MRTN	Split	Winter-kill	213	169	223	230
Low	Low	Average	MRTN	Fall	Winter-kill	230	226	146	231
Low	Normal	Late	MRTN	Fall	Winter-kill	232	212	222	232
Average	High	Early	MRTN	-30%	Split	18	15	23	1
Average	High	Early	MRTN	-30%	Split	21	14	24	2
Average	High	Early	MRTN	-30%	Winter-kill	51	29	19	3
Average	High	Early	MRTN	-30%	Winter-kill	52	27	21	4
Average	High	Early	MRTN	-30%	Split	55	31	20	5
Average	High	Early	MRTN	-30%	Split	59	28	32	6
Average	High	Average	MRTN	Spring	Overwinter	20	77	30	7
Average	High	Average	MRTN	Split	Winter-kill	54	40	58	9
Average	High	Average	MRTN	Split	Overwinter	7	11	89	10
Average	High	Early	MRTN	Spring	Overwinter	34	87	5	11
Average	High	Average	MRTN	Spring	Winter-kill	56	38	65	12
Supplemental Table S2 (continued).

Apr-Jun Rainfall	Genotype	Planting time	N rate	N time	Cover crop	NO$_3$ load	Soil NO$_3$ at harvest	Yield	Combined
Average	High	Average	-30%	Spring	Overwinter	10	10	93	13
Average	High	Average	-30%	Split	None	60	41	61	14
Average	High	Early	MRTN	Split	Overwinter	31	92	4	15
Average	Low	Early	-30%	Split	Overwinter	24	48	82	16
Average	Low	Early	-30%	Spring	Overwinter	27	46	83	17
Average	High	Average	-30%	Spring	None	68	39	68	18
Average	Normal	Early	-30%	Split	Overwinter	22	24	100	19
Average	Normal	Early	-30%	Spring	Overwinter	26	23	101	20
Average	High	Late	MRTN	Spring	Overwinter	13	50	107	21
Average	Normal	Early	MRTN	Spring	Overwinter	40	105	51	22
Average	High	Late	MRTN	Split	Overwinter	9	59	108	23
Average	Normal	Early	-30%	Split	Winter-kill	57	53	96	24
Average	Normal	Early	MRTN	Split	Overwinter	37	106	53	25
Average	Normal	Early	-30%	Spring	Winter-kill	62	47	98	26
Average	Normal	Early	-30%	Split	None	69	55	97	27
Average	Normal	Early	-30%	Spring	None	75	49	99	28
Average	Low	Early	-30%	Split	Winter-kill	64	83	85	29
Average	Low	Early	-30%	Spring	Winter-kill	70	78	86	30
Average	Low	Early	MRTN	Spring	Overwinter	43	123	49	31
Average	Low	Early	MRTN	Split	Overwinter	41	125	52	32
Average	High	Early	MRTN	Spring	Overwinter	91	108	13	33
Average	High	Early	MRTN	Split	Overwinter	85	114	12	34
Average	Low	Early	-30%	Split	None	76	84	87	35
Average	Low	Early	-30%	Spring	None	83	81	88	36
Average	High	Early	MRTN	Spring	None	98	110	14	37
Average	High	Early	MRTN	Split	None	94	115	15	38
Average	Normal	Average	MRTN	Spring	Overwinter	29	94	118	39
Average	Low	Average	-30%	Split	Overwinter	11	36	149	40
Average	Low	Average	-30%	Spring	Overwinter	14	30	151	41
Average	High	Average	MRTN	Spring	Winter-kill	96	120	37	42
Average	Normal	Average	MRTN	Split	Overwinter	25	100	120	43
Average	High	Average	MRTN	Split	Winter-kill	90	126	41	44
Average	High	Average	30%	Spring	Overwinter	39	154	27	45
Average	Low	Average	MRTN	Spring	Overwinter	33	107	117	46
Average	High	Late	-30%	Split	Overwinter	1	4	162	47
Average	High	Average	MRTN	Spring	None	101	132	36	48
Average	High	Average	MRTN	Split	None	97	127	39	49
Average	Low	Average	MRTN	Split	Overwinter	30	111	119	50
Average	High	Late	30%	Spring	Overwinter	32	124	105	51
Average	High	Average	30%	Split	Overwinter	35	161	28	52
Average	High	Late	30%	Split	Overwinter	28	128	106	53
Average	High	Late	-30%	Spring	Overwinter	3	3	169	54
Average	Normal	Average	-30%	Split	Overwinter	8	18	170	55
Average	High	Early	-30%	Fall	Winter-kill	168	25	25	56
Average	High	Early	-30%	Fall	None	170	26	26	57
Average	Normal	Average	-30%	Spring	Overwinter	12	16	173	58
Average	High	Early	30%	Spring	Overwinter	49	171	1	59
Average	High	Early	-30%	Fall	Overwinter	145	13	104	60
Average	High	Early	30%	Split	Overwinter	46	173	2	61
Average	Normal	Early	MRTN	Spring	Winter-kill	106	130	66	62
Average	Normal	Early	MRTN	Split	Winter-kill	103	133	73	63
Average	Normal	Average	-30%	Split	Winter-kill	67	64	163	64
Average	Low	Early	-30%	Fall	Overwinter	149	34	109	65
Average	Normal	Early	MRTN	Split	None	107	135	77	66
Average	High	Late	-30%	Split	Winter-kill	58	57	171	67
Average	Normal	Early	MRTN	Spring	None	118	132	69	68
Average	Normal	Average	-30%	Spring	Winter-kill	73	61	165	69
Average	High	Late	-30%	Spring	Winter-kill	61	51	174	70
Average	Low	Late	-30%	Spring	Overwinter	6	19	191	71
Average	High	Late	-30%	Split	None	66	58	172	72
Average	Normal	Late	-30%	Split	Overwinter	2	8	193	73
Average	Normal	Average	-30%	Split	None	78	66	164	74
Apr-Jun Rainfall	Genotype	Planting time	N rate	N time	Cover crop	NO₃ load	Soil NO₃ at harvest	Yield	Combined
-----------------	----------	---------------	--------	--------	------------	----------	---------------------	-------	----------
Average	Low	Late	-30%	Split	Winter-overwinter	4	22	192	75
Average	Normal	Late	-30%	Spring	Winter-overwinter	5	7	194	76
Average	Low	Average	-30%	Spring	Winter-kill	80	86	156	77
Average	Normal	Early	30%	Split	Winter-overwinter	53	182	47	78
Average	Normal	Early	30%	Spring	Overwinter	63	183	44	79
Average	High	Late	-30%	Spring	None	72	52	175	80
Average	Low	Average	-30%	Split	Winter-kill	74	90	158	81
Average	Normal	Average	-30%	Spring	None	86	62	166	82
Average	High	Average	-30%	Fall	Winter-kill	173	32	90	83
Average	Normal	Late	MRTN	Spring	Overwinter	19	68	185	84
Average	High	Early	MRTN	Fall	Winter-overwinter	187	67	18	85
Average	Low	Average	-30%	Spring	None	92	88	155	86
Average	Low	Average	-30%	Split	None	87	91	157	87
Average	High	Average	-30%	Fall	None	176	33	92	88
Average	Normal	Late	MRTN	Split	Winter-overwinter	15	75	189	89
Average	Normal	Early	-30%	Fall	Winter-kill	171	44	102	90
Average	Low	Early	MRTN	Spring	Winter-kill	120	153	64	91
Average	Low	Early	MRTN	Split	Winter-kill	112	159	70	92
Average	Normal	Early	-30%	Fall	None	175	45	103	93
Average	Low	Late	MRTN	Spring	Overwinter	23	95	184	94
Average	Low	Early	-30%	Fall	Winter-kill	174	70	94	95
Average	Normal	Average	30%	Spring	Winter-overwinter	48	170	114	96
Average	Low	Early	30%	Split	Winter-overwinter	65	196	46	97
Average	Normal	Average	30%	Split	Winter-overwinter	45	172	116	98
Average	Low	Early	-30%	Fall	None	177	72	95	99
Average	Low	Early	30%	Spring	Overwinter	81	193	45	100
Average	Low	Early	MRTN	Spring	Overwinter	None	130	157	67
Average	Low	Late	MRTN	Split	Winter-overwinter	17	99	190	102
Average	High	Average	MRTN	Fall	Overwinter	194	35	91	103
Average	Low	Early	MRTN	Split	None	123	162	76	104
Average	High	Early	MRTN	Fall	Winter-kill	191	103	16	105
Average	Low	Average	30%	Spring	Overwinter	50	181	113	106
Average	High	Early	MRTN	Fall	None	193	104	17	107
Average	High	Late	MRTN	Spring	Winter-kill	99	134	146	108
Average	Low	Average	30%	Split	Winter-overwinter	47	185	115	109
Average	High	Late	MRTN	Spring	None	102	136	145	110
Average	Normal	Average	MRTN	Spring	Winter-kill	145	143	132	111
Average	High	Late	MRTN	Split	Winter-kill	95	137	153	112
Average	Normal	Average	MRTN	Split	Winter-kill	104	146	139	113
Average	Normal	Early	MRTN	Fall	Overwinter	190	93	84	114
Average	Normal	Average	MRTN	Spring	None	119	145	130	115
Average	High	Average	MRTN	Fall	Winter-kill	196	109	43	116
Average	High	Late	MRTN	Split	None	100	138	152	117
Average	Normal	Early	-30%	Fall	Winter-overwinter	147	20	176	118
Average	High	Average	MRTN	Fall	None	197	112	42	119
Average	Normal	Average	MRTN	Split	None	113	147	137	120
Average	High	Early	30%	Split	Winter-kill	129	191	8	121
Average	High	Early	30%	Spring	Winter-kill	138	186	6	122
Average	Normal	Late	30%	Spring	Overwinter	42	139	183	123
Average	High	Early	30%	Split	None	137	192	9	124
Average	High	Early	30%	Spring	None	142	189	7	125
Average	Low	Early	MRTN	Fall	Overwinter	195	113	74	126
Average	Normal	Late	30%	Split	Winter-overwinter	36	142	187	127
Average	High	Average	30%	Split	Winter-kill	127	200	35	128
Average	Normal	Late	-30%	Spring	Winter-kill	77	69	218	129
Average	Low	Average	MRTN	Spring	Winter-kill	122	163	131	130
Average	High	Average	30%	Spring	Winter-kill	136	198	33	131
Average	Normal	Late	-30%	Split	Winter-kill	71	74	220	132
Average	Normal	Early	MRTN	Fall	Winter-kill	199	117	80	133
Average	High	Average	30%	Split	None	134	202	34	134
Average	Low	Average	MRTN	Split	Winter-kill	115	167	138	135
Average	High	Average	30%	Spring	None	141	199	32	136
Genotype	Planting time	N rate	N time	Cover crop	NO$_3$ load	Soil NO$_3$ at harvest	Yield	Combined	
----------	---------------	--------	--------	------------	-------------	------------------------	--------	----------	
Average	Normal	Late	-30%	Spring	None	88	71	219	137
Average	Normal	Early	MRTN	Fall	None	201	119	81	138
Average	Normal	Late	-30%	Split	None	82	76	221	139
Average	Low	Average	MRTN	Spring	None	131	166	129	140
Average	Low	Late	-30%	Spring	Winter-kill	84	97	212	141
Average	Low	Late	30%	Spring	Overwinter	44	164	182	142
Average	Low	Average	MRTN	Split	None	125	169	136	143
Average	Low	Late	-30%	Spring	None	93	98	211	144
Average	Low	Late	-30%	Split	Winter-kill	79	101	217	145
Average	High	Average	30%	Fall	Overwinter	223	116	29	146
Average	Low	Late	30%	Split	Overwinter	38	168	186	147
Average	Low	Late	-30%	Fall	Overwinter	109	5	230	148
Average	Low	Late	-30%	Split	None	89	102	216	149
Average	Normal	Late	-30%	Fall	Overwinter	108	2	232	150
Average	High	Late	-30%	Fall	Overwinter	111	1	231	151
Average	High	Late	-30%	Fall	Winter-kill	179	42	180	152
Average	Normal	Average	-30%	Fall	Winter-kill	178	54	178	153
Average	Low	Average	-30%	Fall	Winter-kill	180	79	168	154
Average	High	Late	-30%	Fall	None	182	43	181	155
Average	Normal	Average	-30%	Fall	None	181	56	179	156
Average	Low	Average	-30%	Fall	None	183	82	167	157
Average	Normal	Early	30%	Split	Winter-kill	150	206	60	158
Average	High	Average	-30%	Fall	Overwinter	140	6	222	159
Average	Normal	Early	30%	Spring	Winter-kill	158	203	54	160
Average	High	Late	30%	Fall	Overwinter	227	73	111	161
Average	Low	Early	MRTN	Fall	Winter-kill	203	148	78	162
Average	High	Early	30%	Fall	Overwinter	213	155	3	163
Average	Low	Early	MRTN	Fall	None	205	149	79	164
Average	Low	Average	-30%	Fall	Overwinter	144	17	223	165
Average	Normal	Early	30%	Split	Winter-kill	157	207	62	166
Average	Normal	Early	30%	Spring	None	165	205	56	167
Average	Normal	Average	-30%	Fall	Overwinter	143	9	228	168
Average	Normal	Average	MRTN	Fall	Overwinter	200	85	161	169
Average	Low	Average	MRTN	Fall	Overwinter	198	60	177	170
Average	High	Late	MRTN	Fall	Overwinter	168	12	198	171
Average	Normal	Late	MRTN	Spring	Winter-kill	114	150	199	172
Average	Normal	Late	MRTN	Split	Winter-kill	152	208	173	
Average	Normal	Late	MRTN	Spring	None	124	151	202	174
Average	High	Early	30%	Fall	Winter-kill	214	183	10	175
Average	Low	Early	30%	Spring	Winter-kill	167	221	55	176
Average	High	Late	MRTN	Fall	Winter-kill	202	118	159	177
Average	Low	Early	30%	Split	Winter-kill	161	225	59	178
Average	High	Early	30%	Fall	None	215	184	11	179
Average	Normal	Late	MRTN	Split	None	117	156	206	180
Average	High	Late	30%	Split	Winter-kill	126	211	142	181
Average	High	Late	30%	Spring	Winter-kill	135	208	141	182
Average	Normal	Average	MRTN	Fall	Winter-kill	206	129	150	183
Average	High	Late	MRTN	Fall	None	204	121	160	184
Average	Normal	Average	MRTN	Fall	None	207	131	148	185
Average	Low	Early	30%	Spring	None	172	222	57	186
Average	Normal	Early	30%	Fall	Overwinter	219	178	50	187
Average	Low	Early	30%	Split	None	166	226	63	188
Average	High	Late	30%	Spring	None	139	209	140	189
Average	High	Late	30%	Split	None	133	212	143	190
Average	High	Average	30%	Fall	Winter-kill	216	187	40	191
Average	High	Average	30%	Fall	None	208	197	38	192
Average	Normal	Average	30%	Split	Winter-kill	148	216	127	193
Average	Normal	Average	30%	Spring	Winter-kill	156	213	124	194
Average	Low	Late	MRTN	Spring	Winter-kill	121	175	200	195
Average	Normal	Average	30%	Fall	Overwinter	230	144	112	196
Average	Low	Early	30%	Fall	Overwinter	221	188	48	197
Average	Normal	Average	30%	Split	None	154	217	126	198
Supplemental Table S2 (continued).

Genotype	Planting time	N rate	N time	Cover crop	NO$_3$ load	Soil NO$_3$ at harvest	Yield	Combined	
Average	Normal Average	30%	Spring	None	163	215	121	199	
Average	Normal Late	-30%	Fall	Winter-kill	184	63	225	200	
Average	Low Late	MRTN	Fall	Winter-kill	116	177	209	201	
Average	Normal Late	MRTN	Fall	Overwinter	189	21	229	202	
Average	Low Late	MRTN	Spring	None	182	176	202	203	
Average	Low Late	MRTN	Fall	Overwinter	192	37	227	204	
Average	Low Average	MRTN	Fall	Winter-kill	208	158	147	205	
Average	Normal Late	-30%	Fall	None	186	65	226	206	
Average	Low Average	MRTN	Fall	None	209	160	144	207	
Average	Normal Early	30%	Fall	Winter-kill	220	194	72	208	
Average	Low Late	MRTN	Spring	Fall	128	179	207	209	
Average	Low Low	-30%	Fall	Winter-kill	185	89	224	210	
Average	Low Average	30%	Spring	None	155	229	128	211	
Average	Normal Early	30%	Fall	None	222	195	75	212	
Average	Low Average	30%	Spring	Winter-kill	164	227	123	213	
Average	Low Average	30%	Spring	Split	None	162	230	125	214
Average	Low Average	30%	Spring	None	169	228	122	215	
Average	Low Average	30%	Split	Winter-kill	232	174	110	216	
Average	Normal Late	30%	Fall	Overwinter	231	96	188	217	
Average	Low Early	30%	Fall	Winter-kill	225	214	71	218	
Average	Normal Average	30%	Fall	Winter-kill	224	201	135	219	
Average	Normal Late	MRTN	Fall	Winter-kill	210	140	214	220	
Average	Normal Late	30%	Spring	Winter-kill	153	218	197	221	
Average	High Late	30%	Fall	Winter-kill	218	197	154	222	
Average	Normal Average	30%	Fall	None	226	204	133	223	
Average	Normal Late	MRTN	Fall	None	211	141	215	224	
Average	Normal Late	30%	Spring	None	169	228	122	215	
Average	Normal Late	30%	Spring	None	160	219	195	226	
Average	Normal Late	30%	Spring	Split	None	152	224	203	227
Average	Low Late	30%	Spring	Winter-kill	159	231	196	228	
Average	Low Low	-30%	Spring	Winter-kill	212	165	213	229	
Average	Low Average	30%	Split	Winter-kill	151	232	205	230	
Average	Low Average	30%	Fall	Winter-kill	228	223	134	231	
Average	High High	30%	Split	Winter-kill	229	210	210	232	
Average	High High	30%	Split	Winter-kill	16	15	28	1	
Average	High High	30%	Spring	Winter-kill	20	14	39	2	
Average	High High	30%	Split	Winter-kill	41	32	39	3	
Average	High High	30%	Split	None	44	31	20	4	
Average	High High	30%	Spring	Winter-kill	49	27	24	5	
Average	High High	30%	Spring	None	57	28	26	6	
Average	High High	30%	Split	Winter-kill	47	43	48	7	
Average	High High	30%	Split	Winter-kill	11	82	15	16	
Average	High High	30%	Spring	Overwinter	26	75	25	9	
Average	High High	-30%	Spring	None	52	44	49	10	
Average	High High	-30%	Spring	Overwinter	17	84	23	11	
Average	High High	-30%	Spring	Overwinter	11	8	90	12	
Average	High High	MRTN	Spring	Overwinter	36	88	9	13	
Average	High High	MRTN	Split	Overwinter	30	92	7	14	
Average	Normal Early	-30%	Split	Overwinter	18	26	100	15	
Average	Low Early	-30%	Split	Overwinter	21	58	85	16	
Average	Low Early	-30%	Spring	Overwinter	25	52	88	17	
Average	High High	-30%	Spring	Winter-kill	66	36	75	18	
Average	High Normal	-30%	Spring	Overwinter	24	24	105	19	
Average	High High	-30%	Spring	None	73	38	78	20	
Average	High Normal	-30%	Spring	Winter-kill	51	53	91	21	
Average	High Low	MRTN	Spring	Overwinter	19	59	103	22	
Average	High Low	-30%	Spring	None	62	54	92	23	
Average	High Low	MRTN	Split	Overwinter	9	68	104	24	
Average	High Normal	MRTN	Spring	Overwinter	42	104	60	25	
Average	High Normal	MRTN	Split	Winter-kill	37	106	61	26	
Average	High Normal	MRTN	Spring	Winter-kill	71	46	98	27	
Average	High Low	-30%	Split	Winter-kill	58	83	83	28	
Apr-Jun Rainfall	Genotype	Planting time	N rate	N time	Cover crop	NO$_3$ load	Soil NO$_3$ at harvest	Yield	Combined
-----------------	----------	---------------	--------	--------	------------	------------	------------------------	-------	---------
High	Normal	Early	-30%	Spring	None	77	47	99	29
High	Low	Early	-30%	Split	None	67	85	84	30
High	Low	Early	-30%	Spring	Winter-kill	76	79	86	31
High	Low	Average	-30%	Split	Overwinter	10	45	135	32
High	Low	Early	-30%	Spring	None	81	80	87	33
High	Low	Early	MRTN	Spring	Overwinter	48	123	58	34
High	High	Early	MRTN	Split	Winter-kill	88	115	11	35
High	Low	Early	MRTN	Split	Overwinter	38	130	59	36
High	High	Early	-30%	Fall	Winter-kill	140	22	42	37
High	High	Early	MRTN	Split	None	94	114	13	38
High	High	Early	-30%	Fall	None	143	23	43	39
High	Normal	Average	MRTN	Spring	Winter-kill	104	111	14	41
High	High	Early	MRTN	Spring	Winter-kill	107	121	35	50
High	High	Average	MRTN	Split	Overwinter	7	20	164	51
High	High	Late	-30%	Split	Overwinter	1	4	166	52
High	Low	Average	MRTN	Split	Overwinter	14	40	149	43
High	High	Early	MRTN	Split	None	112	110	15	44
High	High	Average	MRTN	Split	Winter-kill	91	125	33	45
High	High	Average	30%	Spring	Overwinter	45	153	21	46
High	High	Average	MRTN	Split	None	97	126	34	47
High	Low	Average	MRTN	Spring	Overwinter	35	113	114	48
High	High	Average	30%	Split	Overwinter	107	160	22	49
High	High	Average	MRTN	Spring	Winter-kill	104	121	35	50
High	Low	Average	30%	Split	Overwinter	7	20	164	51
High	High	Average	30%	Split	Winter-kill	1	4	166	52
High	High	Average	30%	Fall	Winter-kill	155	29	93	62
High	High	Early	MRTN	Fall	Overwinter	172	64	18	63
High	High	Average	30%	Split	Winter-kill	59	65	163	64
High	High	Late	-30%	Spring	Winter-kill	64	50	167	65
High	High	Early	-30%	Fall	Overwinter	100	12	159	66
High	Normal	Early	MRTN	Split	Winter-kill	113	134	69	67
High	High	Early	30%	Spring	Overwinter	90	166	2	68
High	High	Average	30%	Fall	None	160	30	96	69
High	High	Early	-30%	Fall	Winter-kill	148	41	111	70
High	High	Late	-30%	Spring	None	74	51	168	71
High	Low	Early	-30%	Fall	Winter-kill	150	71	94	72
High	Low	Average	-30%	Split	None	70	66	165	73
High	Low	Late	-30%	Split	Overwinter	3	25	190	74
High	Low	Average	-30%	Split	Winter-kill	65	93	155	75
High	Low	Late	-30%	Spring	Overwinter	8	21	191	76
High	Normal	Early	-30%	Fall	None	151	42	112	77
High	Normal	Early	MRTN	Spring	Winter-kill	129	128	66	78
High	Normal	Early	MRTN	Split	None	118	136	71	79
High	Low	Early	-30%	Fall	None	154	72	95	80
High	Normal	Average	-30%	Spring	Winter-kill	78	62	169	81
High	Low	Average	-30%	Spring	Winter-kill	75	94	156	82
High	Low	Average	-30%	Spring	Winter-kill	80	91	157	83
High	Normal	Early	MRTN	Spring	None	125	129	68	84
High	Normal	Average	-30%	Spring	None	85	63	170	85
High	Normal	Late	MRTN	Spring	Overwinter	28	76	185	86
High	Low	Average	-30%	Spring	None	89	90	158	87
High	Normal	Late	-30%	Split	Overwinter	2	10	203	88
High	High	Average	MRTN	Fall	Overwinter	177	35	97	89
High	High	Late	MRTN	Split	Winter-kill	84	139	125	90
Supplemental Table S2 (continued).

Apr-Jun Rainfall	Genotype	Planting time	N rate	N time	Cover crop	Ranking
High	Normal	Late	MRTN	Split	Winter-over	13
High	Low	Early	-30% Fall	Overwinter	111	
High	High	Late	MRTN	Split	Winter-kill	103
High	Normal	Average	-30%	Split	Overwinter	40
High	High	Late	MRTN	Split	None	92
High	High	Early	-30% Fall	Overwinter	106	
High	Low	Late	MRTN	Spring	Overwinter	29
High	Low	Early	MRTN	Split	Winter-kill	119
High	Normal	Early	30%	Split	Overwinter	96
High	High	Late	MRTN	Spring	None	110
High	Low	Late	MRTN	Split	Overwinter	15
High	Low	Early	MRTN	Split	None	123
High	Normal	Late	-30%	Spring	Overwinter	6
High	Low	Early	30%	Split	Overwinter	101
High	High	Average				198
High	High	Average				108
High	Low	Early	MRTN	Fall	Winter-kill	138
High	High	Early	MRTN	Fall	None	194
High	Low	Average				195
High	Normal	Average				43
High	Low	Early	MRTN	Fall	Overwinter	186
High	High	Early	MRTN	Spring	None	142
High	Low	Early	MRTN	Spring	Overwinter	124
High	High	Average				101
High	High	Average				198
High	High	Average				108
High	Low	Early	MRTN	Fall	Overwinter	189
High	Low	Average				95
High	High	Average				126
High	High	Early	30%	Split	Winter-kill	137
High	Normal	Average				117
High	Low	Late	-30% Fall	Overwinter	56	
High	High	Late	-30% Fall	Overwinter	54	
High	High	Early	-30% Split	None	141	
High	Normal	Late	-30% Fall	Overwinter	55	
High	High	Late	-30% Split	None	132	
High	Low	Average				134
High	High	Average				130
High	Normal	Late	30%	Split	Overwinter	31
High	Normal	Late	30%	Spring	Overwinter	61
High	High	Late	-30% Spring	Winter-kil	79	
High	High	Average				214
High	High	Average				93
High	High	Late	-30% Fall	Winter-kil	162	
High	High	Normal	MRTN Fall	Winter-kil	200	
High	High	Late	-30% Split	None	83	
High	High	Average				163
High	Low	Late	-30% Spring	Winter-kil	82	
High	Low	Late	-30% Split	Winter-kil	63	
High	High	Early	30%	Spring	Winter-kil	158
High	High	Average				136
High	Low	Average				99
High	Normal	Early	MRTN Fall	None	201	
High	Low	Late	-30% Split	None	72	
High	Low	Late	-30% Spring	None	87	
High	High	Average				98
High	High	Late	-30% Fall	Overwinter	116	
High	High	Average				152
High	High	Early	30%	Spring	None	164
High	Low	Average				166
Supplemental Table S2 (continued).

Apr-Jun Rainfall	Genotype	Planting time	N rate	N time	Cover crop	NO$_3$ load	Soil NO$_3$ at harvest	Yield	Combined
High	Normal	Average	-30%	Fall	None	171	49	178	153
High	Low	Average	MRTN	Spring	Winter-kill	131	168	136	154
High	Low	Average	MRTN	Split	None	120	172	142	155
High	High	Average	MRTN	Fall	Winter-kill	156	198	30	156
High	High	Early	MRTN	Split	Overwinter	211	141	117	157
High	Low	Average	-30%	Fall	None	173	78	173	158
High	Low	Late	MRTN	Split	Overwinter	34	175	186	159
High	Low	Average	MRTN	Spring	None	139	169	138	160
High	Low	Average	MRTN	Fall	Overwinter	187	86	160	161
High	Low	Late	30%	Spring	Overwinter	68	174	182	162
High	Normal	Average	MRTN	Fall	Overwinter	185	57	176	163
High	Low	Early	MRTN	Fall	Winter-kill	203	148	76	164
High	Low	Early	MRTN	Fall	None	205	149	77	165
High	High	Late	30%	Split	Winter-kill	121	211	120	166
High	High	Late	30%	Fall	Overwinter	215	67	152	168
High	Normal	Early	30%	Split	Winter-kill	169	206	55	168
High	High	Late	MRTN	Fall	Overwinter	157	13	224	169
High	High	Late	30%	Split	Winter-kill	202	117	145	170
High	High	Late	30%	Fall	None	125	213	121	171
High	Normal	Late	MRTN	Spring	Winter-kill	122	150	198	172
High	Normal	Early	30%	Split	None	176	207	56	173
High	Normal	Late	MRTN	Split	Winter-kill	102	154	207	174
High	High	Late	MRTN	Fall	None	204	116	148	175
High	High	Early	MRTN	Fall	Overwinter	217	162	63	176
High	High	Normal	MRTN	Fall	Overwinter	219	131	113	177
High	Normal	Late	MRTN	Split	None	109	155	205	178
High	Normal	Late	MRTN	Spring	None	128	152	197	179
High	High	Late	30%	Spring	Winter-kill	145	209	119	180
High	High	Early	30%	Fall	Winter-kill	216	181	10	181
High	Normal	Late	MRTN	Fall	Overwinter	165	19	228	182
High	High	Late	30%	Spring	None	149	210	118	183
High	Normal	Early	30%	Spring	Winter-kill	191	204	51	184
High	High	Early	30%	Fall	None	218	182	12	185
High	Low	Late	MRTN	Fall	Overwinter	168	34	227	186
High	High	Average	MRTN	Fall	Winter-kill	206	124	153	187
High	Normal	Early	MRTN	Spring	None	193	205	52	183
High	Normal	Average	MRTN	Split	None	208	127	154	189
High	Normal	Late	-30%	Fall	Winter-kill	174	60	222	190
High	Low	Late	MRTN	Split	Winter-kill	105	178	206	191
High	High	Average	MRTN	Fall	Winter-kill	222	186	37	192
High	Low	Early	30%	Split	Winter-kill	179	225	54	193
High	Low	Early	30%	Fall	Winter-kill	221	184	62	194
High	High	Late	-30%	Fall	None	182	61	223	195
High	High	Average	30%	Fall	None	224	187	38	196
High	Low	Late	MRTN	Split	None	114	179	204	197
High	Low	Late	MRTN	Spring	Winter-kill	127	176	199	198
High	High	Average	30%	Split	Winter-kill	153	215	131	199
High	Low	Late	MRTN	Spring	None	133	177	196	200
High	Low	Early	30%	Split	None	183	226	57	201
High	Low	Average	30%	Fall	Overwinter	223	164	106	202
High	Low	Late	-30%	Fall	Winter-kill	178	89	221	203
High	Low	Average	MRTN	Fall	Winter-kill	207	157	150	204
High	Normal	Average	30%	Split	None	161	216	133	205
High	Low	Early	30%	Spring	Winter-kill	196	223	50	206
High	Low	Average	MRTN	Fall	None	209	159	151	207
High	Low	Early	30%	Spring	None	197	214	53	208
High	Normal	Late	30%	Fall	Overwinter	220	87	192	209
High	Normal	Early	30%	Fall	Winter-kill	226	194	73	210
High	Normal	Average	30%	Spring	Winter-kill	184	212	127	211
High	Normal	Early	30%	Fall	None	227	195	74	212
High	Low	Average	30%	Split	Winter-kill	159	229	132	213
High	Normal	Average	30%	Spring	None	190	214	129	214
Supplemental Table S2 (continued).

Apr-Jun Rainfall	Genotype	Planting time	N rate	N time	Cover crop	NO\textsubscript{3} load	Soil NO\textsubscript{3} at harvest	Yield	Combined
High	Low	Average	30%	Split	None	167	230	134	215
High	Low	Average	30%	Spring	Winter-kill	188	227	128	216
High	High	Late	30%	Fall	Winter-kill	225	193	126	217
High	Low	Average	30%	Fall	Winter-kill	229	217	72	218
High	Low	Average	30%	Spring	None	192	228	130	219
High	Normal	Late	MRTN	Fall	Winter-kill	210	137	211	220
High	Normal	Late	MRTN	Fall	None	213	138	213	222
High	Normal	Late	30%	Split	None	147	221	200	223
High	Normal	Average	30%	Fall	Winter-kill	228	200	144	224
High	Normal	Average	30%	Fall	None	230	202	147	225
High	Normal	Late	30%	Spring	Winter-kill	175	218	193	226
High	Low	Late	30%	Split	Winter-kill	146	232	201	227
High	Low	Late	MRTN	Fall	Winter-kill	212	165	209	228
High	Normal	Late	MRTN	Fall	None	181	220	195	229
High	Low	Late	30%	Spring	Winter-kill	180	231	194	230
High	Low	Average	30%	Fall	Winter-kill	231	222	146	231
High	Normal	Late	30%	Fall	Winter-kill	232	208	208	232
References

Abendroth L J, Herzmann D E, Chighladze G, Kladivko E J, Helmers M J, Bowling L, Castellano M, Cruse R M, Dick W A, Fausey N R, Frankenberger J, Gassmann A J, Kravchenko A, Lal R, Lauer J G, Mueller D S, Nafziger E D, Nkongolo N, O’Neal M, Sawyer J E, Scharf P, Strock J S and Villamil M B 2017 Sustainable Corn CAP Research Data (USDA-NIFA Award No. 2011-68002-30190) Natl. Agric. Libr. - ARS - USDA

Anderson S C, Cooper A B and Dulvy N K 2013 Ecological prophets: quantifying metapopulation portfolio effects. Methods Ecol. Evol. 4 971-81

Archontoulis S V and Miguez F E 2013 Nonlinear regression models and applications in agricultural research Agron. J. 105 1–13

Archontoulis S V, Miguez F E and Moore K J 2014a A methodology and an optimization tool to calibrate phenology of short-day species included in the APSIM PLANT model: Application to soybean Environ. Model. Softw. 62 465–77

Archontoulis S V, Miguez F E and Moore K J 2014b Evaluating APSIM maize, soil water, soil nitrogen, manure, and soil temperature modules in the Midwestern United States Agron. J. 106 1025–40

Bocinsky R K, Beaudette D and Chamberlain S 2018 FedData: Functions to Automate Downloading Geospatial Data Available from Several Federated Data Sources Online: https://cran.r-project.org/web/packages/FedData/index.html

Ciampitti I A and Vyn T J 2012 Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: A review F. Crop. Res. 133 48–67

Dietzel R, Liebman M, Ewing R, Helmers M J, Horton R, Jarchow M E and Archontoulis S V 2016 How efficiently do corn- and soybean-based cropping systems use water? A systems modeling analysis Glob. Chang. Biol. 22 666–81

Hammer G L, Dong Z, McLean G, Doherty A, Messina C, Schussler J, Zinselmieier C, Paszkiewicz S and Cooper M 2009 Can changes in canopy and/or root system architecture explain historical maize yield trends in the U.S. Corn belt? Crop Sci. 49 299–312

Holland E A, Braswell B H, Sulzman J and Lamarque J-F 2005 Nitrogen Deposition onto the United States and Western Europe: Synthesis of Observations and Models Ecol. Appl. 15 38–57

Huth N I, Bristow K L and Verburg K 2012 SWIM3: Model use, calibration and validation Trans. ASABE 55 1303–13

Keating B A, Carberry P S, Hammer G L, Probert M E, Robertson M J, Holzworth D, Huth N I, Hargreaves J N G, Meinke H, Hochman Z, McLean G, Verburg K, Snow V, Dimes J P, Silburn M, Wang E, Brown S, Bristow K L, Asseng S, Chapman S, McCown R L, Freebairn D M and Smith C J 2003 An overview of APSIM, a model designed for farming systems simulation Eur. J. Agron. 18 267–88

Markowitz H 1959 Portfolio selection: efficient diversification of investments (Yale University Press)

Martinez-Feria R A and Archontoulis S V. 2018 APssurgo: Get SSURGO data and convert into APSIM “.xml” format Online: https://doi.org/10.5281/zenodo.1467205

Martinez-Feria R A, Castellano M J, Dietzel R N, Helmers M J, Liebman M, Huber I and Archontoulis S V 2018 Linking crop- and soil-based approaches to evaluate system nitrogen-use efficiency and tradeoffs Agric. Ecosyst. Environ. 256

Martinez-Feria R A, Dietzel R, Liebman M, Helmers M J and Archontoulis S V 2016 Rye cover crop effects on maize: A system-level analysis F. Crop. Res. 196 145–59
Probert M E, Dimes J P, Keating B A, R. C. Dalal and Strong W M 1998 APSIM’s water and nitrogen modules and simulation of the dynamics of water and nitrogen in fallow systems *Agric. Syst.* **56** 1–28

Puntel L A, Sawyer J E, Barker D W, Dietzel R, Poffenbarger H, Castellano M J, Moore K J, Thorburn P J and Archontoulis S V 2016 Modeling long-term corn yield response to nitrogen rate and crop rotation *Front. Plant Sci.* **7** 1630

R Core Team 2017 *R*: A language and environment for statistical computing

Renard D and Tilman D 2019 National food production stabilized by crop diversity *Nature* **571** 257–60

Sawyer J E, Nafziger E, Randall G, Brundy L, Rehm G and Joern B 2006 Concepts and rationale for regional nitrogen rate guidelines for corn (PM2015) *Iowa State Univ. Ext. Outreach*

Schindler D E, Armstrong J B and Reed T E 2015 The portfolio concept in ecology and evolution *Front. Ecol. Environ.* **13** 25–32

Singh R, Helmers M J and Qi Z 2006 Calibration and validation of DRAINMOD to design subsurface drainage systems for Iowa’s tile landscapes *Agric. Water Manag.* **85** 221–32

Soil Survey Staff Soil Survey Geographic (SSURGO) Database Online: https://sdmdataaccess.sc.egov.usda.gov

Tamagno S, Balboa G R, Assefa Y, Kovács P, Casteel S N, Salvagiotti F, García F O, Stewart W M and Ciampitti I A 2017 Nutrient partitioning and stoichiometry in soybean: A synthesis analysis *F. Crop. Res.* **200** 18–27

Taylor L R and Woiwod I P 1980 Temporal Stability as a Density-Dependent Species Characteristic *J. Anim. Ecol.* **49** 209

Thorburn P J, Meier E A and Probert M E 2005 Modelling nitrogen dynamics in sugarcane systems: Recent advances and applications *F. Crop. Res.* **92** 337–51

Thorburn P J, Probert M E and Robertson F A 2001 Modelling decomposition of sugar cane surface residues with APSIM-residue *F. Crop. Res.* **70** 223–32

Tilman D 1999 The ecological consequences of changes in biodiversity: a search for general principles *80* 1455–1474

Zhang L, Jacob D J, Knipping E M, Kumar N, Munger J W, Carouge C C, Van Donkelaar A, Wang Y X and Chen D 2012 Nitrogen deposition to the United States: Distribution, sources, and processes *Atmos. Chem. Phys.* **12** 4539–54