Characterization of the major histocompatibility complex class II DOB, DPB1, and DQB1 alleles in cynomolagus macaques of Vietnamese origin

Fei Ling · Li-qiong Wei · Tao Wang · Hai-bo Wang · Min Zhuo · Hong-li Du · Ju-fang Wang · Xiao-ning Wang

Original Paper

Characterization of the major histocompatibility complex class II DOB, DPB1, and DQB1 alleles in cynomolagus macaques of Vietnamese origin

Fei Ling · Li-qiong Wei · Tao Wang · Hai-bo Wang · Min Zhuo · Hong-li Du · Ju-fang Wang · Xiao-ning Wang

Immunogenetics 2011, 63:155–166

DOI 10.1007/s00251-010-0498-0

Abstract Major histocompatibility complex (MHC) molecules play an important role in the susceptibility and/or resistance to many diseases. To gain an insight into the MHC background and to facilitate the experimental use of cynomolagus macaques, the second exon of the MhcMafa-DOB, -DPB1, and -DQB1 genes from 143 cynomolagus macaques were characterized by cloning to sequencing. A total of 16 Mafa-DOB, 16 Mafa-DPB1, and 34 Mafa-DQB1 alleles were identified, which revealed limited, moderate, and marked allelic polymorphism at DOB, DPB1, and DQB1, respectively, in a cohort of cynomolagus macaques of Vietnamese origin. In addition, 16 Mafa-DOB, 5 Mafa-DPB1, and 8 Mafa-DQB1 alleles represented novel sequences that had not been reported in earlier studies. Almost of the sequences detected at the DOB and DQB1 locus in the present study belonged to DOB*01 (100%) and DQB1*06 (62%) lineages, respectively. Interestingly, four, three, and one high-frequency alleles were detected at Mafa-DOB, -DPB1, and -DQB1, respectively, in this monkeys. The alleles with the highest frequency among these monkeys were Mafa-DOB*010102, Mafa-DPB1*13, and Mafa-DQB1*0616, and these were found in 33 (25.6%) of 129 monkeys, 32 (31.37%) of 102 monkeys, and 30 (31%) of 143 monkeys, respectively. The high-frequency alleles may represent high priority targets for additional characterization of immune function. We also carried out evolutionary and population analyses using these sequences to reveal population-specific alleles. This information will not only promote the understanding of MHC diversity and polymorphism in the cynomolagus macaque but will also increase the value of this species as a model for biomedical research.

Keywords High frequency · Major histocompatibility complex class II · Macaca fascicularis

Introduction

Rhesus macaques have been used as animal models for various human diseases for a long time. With the 1978 ban on exportation of Rhesus macaques from India, researchers have become increasingly interested in an alternative macaque, the cynomolagus macaque, which has a shorter breeding cycle, a docile personality, and requires lower dosages of drugs. The cynomolagus macaque (Macaca fascicularis), also known as the crab-eating monkey or long-tailed macaque, is used mainly in animal models of diabetes, renal transplantation, virological research, SARS, tuberculosis, studies of the pathogenesis of simian immunodeficiency virus (SIV), and pharmacodynamic evaluation (O'Sullivan et al. 1997; Menninger et al. 2002; McAuliffe et al. 2004; Reed et al. 2009). Owing to the need for reliable data on experimental drug reactions provided by animal models, researchers have focused on genes of the immune system of cynomolagus monkeys, in particular, the genes of the major histocompatibility complex (MHC). Molecules of MHC class I and II play an important role in immune regulatory processes by presenting peptides of
intracellular or extracellular origin to CD8⁺ or CD4⁺ T cells, respectively.

The classical MHC genes of cynomolgus macaques can be divided into MHC-I and MHC-II genes. The MHC-I genes include mainly -A and -B alleles, and MHC-II genes include mainly -DM, -DO, -DP, -DQ, and -DR alleles. DO is a non-classical class II heterodimer that consists of α and β chains, which are encoded by the DOA and DOB genes located in the MHC class II region. The function of MHC-DO is poorly understood; it may act as a negative regulator by binding to HLA-DM and inhibiting the exchange reaction of class II-associated invariant chain peptides for antigenic peptides (Fernandez-Donoso et al. 1970; O'Sullivan et al. 1997). HLA-DPB1 alleles have been demonstrated to be involved in corneal and renal transplantation, myasthenia gravis, multiple sclerosis, Hodgkin's disease, Beryllium disease, and sarcoidosis. In addition, an MHC-DPB1 allele was found to be involved in the susceptibility to experimental autoimmune encephalomyelitis in rhesus macaques (Slierendregt et al. 1995a, b). Thus, the primate MHC-DPB1 plays a fundamental and important role in the peptide-binding selectivity of the DP antigen (Uda et al. 2005) and is a significant factor in the humoral response (Krebs et al. 2005). It has been reported that HLA-DQB1 alleles have been associated as an increased risk of developing type 1 diabetes (Todd 1990; Todd 1997; Redondo et al. 2001), celiac disease (Murray et al. 2007), multiple sclerosis (Dymant et al. 1997; Schmidt et al. 2006), Beryllium disease, and sarcoidosis (Sano et al. 2006). It is very rare that cynomolgus macaques from different regions share MHC-II genes (Krebs et al. 2005).

Haplotype screening, which employs multiple markers rather than single genes, would be meaningful in MHC disease association studies because it is well-known that most of the MHC loci are tightly linked and exhibit very little recombination (Dukkipati et al. 2006). The high-frequency alleles may represent high priority targets for additional characterization of immune function (Wiseman et al. 2009). Therefore, to examine whether the MHC class II genes found in a cohort of Vietnamese cynomolgus macaques are common to other geographical populations of cynomolgus macaques, the Mafa class II region was characterized in

Table 1 Primers used to amplify MHC class II alleles

Locus	Primer name	Sequence (5’ to 3’)	Tm (°C)	Product (bp)
DOB	DOB-F	GTAGCATTATTTCCCTTT	50	600
	DOB-R	ACAGACAAACGTTATCC		
DPB1	DPB1-F1	CACAGAATCCGTTACTAGGAAA	52	700
	DPB1-R1	CTCAGGAACTCTAAACC		
	DPB1-F2	CCTGAGTTGGAAAGATTG	55.5	588
	DPB1-R2	TCTCCTGCTCCCATCCT		
DQB1	DQB1-F1	CACTGTTGACGGGAAACT	52	700
	DQB1-R1	GGAGGGAACCGGATAAGG		
	DQB1-F2	CCCGGAGAGATTCAGTG	62	250
	DQB1-R2	GGCGAAGTGTCTACCTC		

Haplotype screening, which employs multiple markers rather than single genes, would be meaningful in MHC disease association studies because it is well-known that most of the MHC loci are tightly linked and exhibit very little recombination (Dukkipati et al. 2006). The high-frequency alleles may represent high priority targets for additional characterization of immune function (Wiseman et al. 2009). Therefore, to examine whether the MHC class II genes found in a cohort of Vietnamese cynomolgus macaques are common to other geographical populations of cynomolgus macaques, the Mafa class II region was characterized in...
the present study by sequencing of the polymorphic exon 2 of the -DOB, -DPB1, and -DQB1 genes.

Materials and methods

Animals

Whole blood samples from 150 unrelated cynomolgus macaques, originally from Vietnam, were provided generously by South China Primates Research Central. Whole blood samples (3–5 ml) withdrawn from each monkey were collected into EDTA vacuum tubes. All the monkeys were clinically normal with no known diseases.

DNA isolation and sequencing of exon 2 of Mafa-DOB, -DPB1, and -DQB1

Genomic DNA was extracted from EDTA blood samples using an Animal Genomics DNA Mini Preparation Kit (NewProbe, China) as per the manufacturer’s instructions. Sequences of exon 2 regions of Mafa-DOB, -DPB1, and -DQB1

Sequence no.	Accession no.	Allele name	No. of haplotypes	Gene frequency
P1	HM153018	Mafa-DOB*1*101	11	0.108
P2	HM153016	Mafa-DOB*1*20	6	0.059
P3	HM153013	Mafa-DOB*1*51	2	0.020
P4	HM153019	Mafa-DOB*1*21	14	0.137
P5	HM153017	Mafa-DOB*1*19	1	0.010
P6	HM153015	Mafa-DOB*1*40	9	0.088
P7	HM153014	Mafa-DOB*1*50	3	0.029
P8	HM371244	Mafa-DOB*1*52	4	0.039
P9	HM371245	Mafa-DOB*1*13	32	0.314
P10	HM371246	Mafa-DOB*1*53	3	0.029
P11	HM371247	Mafa-DOB*1*54	1	0.010
P12	HM371248	Mafa-DOB*1*24	6	0.059
P13	HM371249	Mafa-DOB*1*55	1	0.010
P14	HM371250	Mafa-DOB*1*44	2	0.020
P15	HM371251	Mafa-DOB*1*32	1	0.010
P16	HM371252	Mafa-DOB*1*17	6	0.059
-DQB1 were obtained by direct sequencing of polymerase chain reaction (PCR) products according to the following procedures: the PCR amplification was performed in 50 μL reaction mixtures containing 25 μL of 2X Taq Plus PCR Master Mix, 1 μL (10 pm/μL) of each primer, 1 μL of template DNA, and 22 μL of ddH2O. The sequences of the DOB, DPB1, and DQB1 primers are shown in Table 1. In general, amplification was carried out for 3 min at 94°C, 32 cycles of 30 s at 94°C, 30 s at 60°C, and 1 min at 72°C, ending with 3 min at 72°C. The annealing temperature was adjusted on the basis of the \(T_m \) of the primers. The PCR products were subjected to agarose gel electrophoresis and ethidium bromide staining for visualization.

Phylogenetic analysis

The sequences of the exon 2 regions of Mafa-DOB, -DPB1, and -DQB1 obtained in the present study were aligned, and the phylogenetic tree was generated, which was done using the neighbor-joining method (Saitou and Nei 1987) and Mega 4.0 software (Tamura et al. 2007). The bootstrap consensus tree inferred from 1,000 replicates is taken to represent the evolutionary history of the taxa analyzed (Felsenstein 1985). Branches corresponding to partitions reproduced in fewer than 50% of bootstrap replicates are collapsed. The evolutionary distances were computed using the Kimura 2-parameter method (Kimura 1980) and are in

Sequence no.	Accession no.	Allele name	No. of haplotypes	Gene frequency
Q1	HM371224	Mafa-DQB1*1603	1	0.007
Q2	HM371225	Mafa-DQB1*1503	3	0.021
Q3	HM371226	Mafa-DQB1*1501	2	0.014
Q4	HM153006	Mafa-DQB1*0601	4	0.028
Q5	HM153000	Mafa-DQB1*2401	4	0.028
Q6	HM371227	Mafa-DQB1*1703	8	0.056
Q7	HM153008	Mafa-DQB1*0611	2	0.014
Q8	HM371228	Mafa-DQB1*0622	2	0.014
Q9	HM153009	Mafa-DQB1*1702	4	0.028
Q10	HM371229	Mafa-DQB1*0627	1	0.007
Q11	HM371230	Mafa-DQB1*0623	3	0.021
Q12	HM371231	Mafa-DQB1*1804	8	0.056
Q13	HM371232	Mafa-DQB1*0626	7	0.049
Q14	HM153001	Mafa-DQB1*0619	6	0.042
Q15	HM371223	Mafa-DQB1*0628	1	0.007
Q16	HM371224	Mafa-DQB1*0616	30	0.210
Q17	HM371225	Mafa-DQB1*0614	8	0.056
Q18	HM371226	Mafa-DQB1*0629	4	0.028
Q19	HM371237	Mafa-DQB1*0630	6	0.042
Q20	HM371238	Mafa-DQB1*1818	1	0.007
Q21	HM371239	Mafa-DQB1*1809	4	0.028
Q22	HM371240	Mafa-DQB1*1819	1	0.007
Q23	HM371241	Mafa-DQB1*1817	3	0.021
Q24	HM371242	Mafa-DQB1*1806	1	0.007
Q25	HM371243	Mafa-DQB1*1601	1	0.007
Q26	HM152999	Mafa-DQB1*1816	12	0.084
Q27	HM153002	Mafa-DQB1*0613	3	0.021
Q28	HM153003	Mafa-DQB1*1810	4	0.028
Q29	HM153004	Mafa-DQB1*0610	3	0.021
Q30	HM153012	Mafa-DQB1*170701	1	0.007
Q31	HM153005	Mafa-DQB1*1802	2	0.014
Q32	HM153007	Mafa-DQB1*060702	1	0.007
Q33	HM153010	Mafa-DQB1*170802	1	0.007
Q34	HM153011	Mafa-DQB1*1602	1	0.007
the units of the number of base substitutions per site. The rate of variation among sites was modeled with a gamma distribution (shape parameter = 1). New alleles were confirmed by three repeats sequencing. The names of new sequences were derived according to the published guidelines, and the Immunopomorphism Database of Major Histocompatibility Complex for Non-Human Primates was searched to avoid the same name(s) being assigned to different alleles (Klein et al. 1990; Robinson et al. 2005).

Results and discussion

Allele frequencies of Mafa-DOB, -DPB1, and -DQB1 in Vietnamese cynomolgus macaques

Limited polymorphism at the MHC-DOB locus and extensive polymorphism at the MHC-DPB1 and -DQB1 loci have been reported in the primates tested until now, and most of the variability is confined to exon 2, which encodes a major part of the peptide-binding site.

To analyze the genetic polymorphism and allelic variation in the MhcMafa-DOB gene, which may affect the efficiency of class II restricted antigen presentation and therefore be involved in the susceptibility to MHC associated diseases, 16 Mafa-DOB alleles were identified in this study, none of which had been described previously in rhesus and/or cynomolgus macaques, by direct sequencing of exon 2 of the MhcMafa-DOB gene using blood samples from 129 randomly sampled cynomolgus macaques. These novel sequences were submitted to GenBank and were assigned by the NHP Nomenclature Committee. Their accession numbers are listed in Table 2. All the new sequences are highlighted in italic and boldface type. The novel allele with the highest frequency among these cynomolgus monkeys was Mafa-DOB*010102, and it was found in 33 (25.6%) of the 129 monkeys, followed by Mafa-DOB*010401, Mafa-DOB*010103, and Mafa-DOB*010104, which were detected in 20 (15.5%), 17 (13.2%), and 14 (10.9%) of the monkeys, respectively. Five alleles presented only once in these monkeys (Table 2). Only six allelic variations (HLA-DOB*0101101, *0101102, *01012, *01022, *0104101, and *0104102) were identified until now. It has been demonstrated that strong linkage disequilibrium exists between HLA-DOB*01022 and HLA-DRB1*1502, with no linkage disequilibrium between the DOA and the DOB genes (Naruse et al. 2002). A new allelic type of DOB*010103 has been described in the Korean population (Gu et al. 2005). So, limited polymorphism in the DOB gene is profitable in the execution of the unique function of its product as a co-chaperone. Therefore, strong selection pressure operates to prevent generic variation in the DOB molecule in its interaction with the DM molecule thus maintaining the specified immunological function of regulating antigen presentation (Naruse et al. 2002; Lith et al. 2002). Ectopic expression of HLA-DO in mouse dendritic cells diminishes MHC class II antigen presentation (Fallas et al. 2004). It has also been demonstrated that a highly significant upregulation of DOA and DOB mRNA occurs in purified malignant cells, when compared with B cells from healthy donors (Souwer et al. 2009). The increased levels of mRNA were not translated into enhanced protein levels but could reflect aberrant transcriptional regulation, which forms a novel and additional prognostic indicator for survival in B cell chronic lymphocytic leukemia (Souwer et al. 2009).

By direct sequencing of the second exon of the MhcMafa-DPB1 genes using blood samples from 102 randomly sampled cynomolgus macaques, 16 alleles of MhcMafa-DPB1 were identified in this study, of which 11 were identical to alleles described formerly in cynomolgus macaques whose sequences could be retrieved from

![Fig. 1](Alignment of the deduced amino acid sequences of the second exon of 16 cynomolgus macaque MhcMafa-DOB alleles and 6 human HLA-DOB alleles)
Fig. 2 Alignment of the deduced amino acid sequences of the second exon of 52 Mafa-DPB1, 33 Mamu-DPB1, and 18 HLA-DPB1 sequences. Five novel alleles were listed in the middle frame; previously reported alleles also detected in this study were indicated by an underline.
Fig. 3 Alignment of the deduced amino acid sequences of the second exon of 47 Mafa-DQB1, 23 Mamu-DQB1, and 11 HLA-DQB1 sequences. Eight novel alleles were listed in the middle frame, 26 sequences common to the earlier studies were listed in the over frame, and other alleles not detected in this study were listed under the frame.

Position	Mafa-DQB1	Mamu-DQB1	HLA-DQB1
6	G	G	G
16	S	H	S
26	N	V	D
36	P	M	L
46	I	R	I
56	M	Y	V
66	I	M	Y
76	S	R	M
86	I	R	I
96	K	F	
GenBank. The other five alleles were not documented in the literatures or databases. These novel sequences were submitted to GenBank and were assigned by the NHP Nomenclature Committee. Their accession numbers are listed in Table 3, in which all the new sequences are highlighted in italic and boldface type. The allele with the highest frequency among these cynomolgus macaques was \textit{DPB1*13}, which was found in 32 (31.37%) of the 102 monkeys. The next most frequent alleles were \textit{Mafa-DPB1*21} and \textit{Mafa-DPB1*35}, which were detected in 14 (13.72%) and 11 (10.77%) of the monkeys. Four alleles presented only once in these monkeys (Table 3). The frequency of the five novel alleles found in this study was less than 4%.

It has been shown that the most frequent alleles in Vietnam cynomolgus macaques are \textit{Mafa-DPB1*13} and \textit{-DPB1*35} (Sano et al. 2006), which supports our results above. In contrast to the result from Sano et al. (Sano et al. 2006), a high frequency of the \textit{Mafa-DPB1*21} allele was detected in our study. The \textit{Mafa-DPB1*21} allele was also observed in Mauritian cynomolgus macaques, but was not at a high frequency (O'Connor et al. 2007). Like HLA-\textit{DPB1}, the \textit{Mafa-DPB1} gene of the cynomolgus macaque also displays moderate polymorphism, and more than 50 alleles have been documented to date (Slierendregt et al. 1995a, b; Otting et al. 1998; Marsh et al. 2005; O'Connor et al. 2007). In cynomolgus macaques, point mutations might play crucial role in generating \textit{DPB1} polymorphism, whereas in humans, much of the variability has been produced by frequent exchange of polymorphic sequence motifs (Zangenberg et al. 1995; Bontrop et al. 1999; Doxiadis et al. 2001).

By direct sequencing of the second exon of \textit{MhcMafa-DQB1} genes using blood samples from 143 randomly sampled cynomolgus macaques, 34 \textit{MhcMafa-DQB1} alleles were identified in this study, of which 26 were identical to alleles described formerly in cynomolgus macaques whose sequences could be retrieved from GenBank. The other eight alleles were not documented in the literatures or databases. These novel sequences were submitted to GenBank and were assigned by the NHP Nomenclature Committee. Their accession numbers are listed in Table 4, in which all the new sequences are highlighted in italic and boldface type. Most of the sequences (62%) observed in this study belong to \textit{DQB1*06} lineages (15 alleles), the second most common (27%) belong to \textit{DQB1*18} (9 alleles), and the rest (less than 1%) belong to the \textit{DQB1*15, DQB1*16, and DQB1*17} lineages. The allele with the highest frequency among these cynomolgus macaques was \textit{Mafa-DQB1*0616}, which was found in 30 (20.97%) of the 143 monkeys. Eleven alleles presented only once in these monkeys (Table 4). The frequency of the eight novel alleles found in this study was less than 4%, and most of them (seven of eight) were at less than 2%.

Although the \textit{MhcMamu-DQB1*06111} (equivalent to the \textit{-DQB1*061101}) allele was the most frequent (13%) in 105 randomly sampled Chinese rhesus macaques (Qiu et al. 2008), the allele, which corresponds to \textit{MhcMafa-DQB1*0613} in the present study, was at a low frequency (2%) in the 143 monkeys tested. The \textit{Mafa-DQB1} polymorphism has been studied earlier (Otting et al. 2002), and only eight of the 34 alleles detected in this study have not been reported previously. Given that the number of different \textit{-DQ} alleles observed is nearly as high as the number of animals tested, it is likely that cynomolgus macaques display abundant \textit{Mafa-DQB1} polymorphism and, when other populations are tested, the levels may reach or even exceed those reported for rhesus macaques (Robinson et al. 2003; Doxiadis et al. 2006).

\textbf{Amino acid sequences encoded by the MhcMafa-DOB, -DPB1, and -DQB1 genes}

Eighty-nine amino acid residues of \textit{DOB} exon 2 that encode the DO antigen \(\beta\) domain of MHC class II molecules were blasted using 16 \textit{Mafa-DOB} and six HLA-\textit{DOB} sequences (Fig. 1). Almost all of these 22 \textit{MHC-DOB} alleles were conserved except for four different amino acid sequences, located at amino acid positions 50, 58, 68, and 87, respectively. \textit{Mafa-DOB*0101} and \textit{Mafa-DOB*0104} were the most frequent in the Vietnamese population (Table 2), in which the amino acid positions 58
Eighty-seven amino acid residues of DPB1 exon 2, which encodes the DP antigen β1 domain, were aligned using 52 Mafa-DPB1, 33 Mamu-DPB1, and 18 HLA-DPB1 sequences (Fig. 2). All 103 MHC-DPB1 alleles had different amino acid sequences. Although all the Mafa-DPB1 alleles were conserved at two cysteine sites (amino acid positions 10 and 72) and did not contain a terminator codon, an amino acid insertion or deletion was seen in nine Mafa-DPB1 alleles (Sano et al. 2006). Mafa-DPB1*16 and Mafa-DPB1*49 contained a methionine residue inserted between amino acid positions 43 and 44, whereas Mafa-DPB1*35, which was the most frequent in the Vietnamese population (Table 2), had a single amino acid residue deleted from position 58 (Fig. 2). Of the 87 residue positions, 54 residues were polymorphic among the Mafa-DPB1 alleles in contrast to two residues among the HLA-DOB alleles. In addition, two species-specific amino acid residues were identified from the comparison between the Mafa- and HLA-DOB alleles, and of these, one was specific to Mafa-DOB (Fig. 2).

The second exon in the MHC-DQB1 sequences encodes the β1 domain of MHC class II molecules, which contributes a major part to the peptide-binding domain that has a high degree of polymorphism. The amino acid sequence variations of MhcMafa-DQB1 identified so far (48 amino acid sequences) are shown in Fig. 3. The differences between the alleles and the consensus sequences range from 7 to 26 amino acid positions, averaging approximately 16 amino acid positions. There are 47 amino acid positions with codons for more than one amino acid residue, among which are three positions (26:7, 28:5, 57:5) with codons for five to seven amino acid residues. Similarly, there are 47 amino acid positions with codons for more than one amino acid residue, among which are four positions (26:8, 28:6, 57:6, 86:5) with codons for five to eight amino acid residues, in Mamu-MHC-DQB1 (Qiu et al. 2008). Among the amino acid positions classified as participating in pockets, based on HLA-DR and DQ structure (9, 11, 13, 28, 47, 57, 61, 67, 70, 71, 74, 74, 85, 86, 89, and 90; Diaz et al. 2000; Siebold et al. 2004;
Ettinger et al. 2006), most are with codons for two to five amino acid residues. Among the eight novel sequences (under the frame in Fig. 3), 36 amino acid positions with variable numbers of codons were found; for the 14 sequences not observed in this study (above the frame in Fig. 3), 34 such positions were found.

Phylogenetic tree of the MhcMafa-DOB, -DPB1, and -DQB1 genes

A phylogenetic tree was created using the novel MhcMafa-DOB gene sequences obtained in this study and those (1 BoLA-DOB, 1 HLA-DOB sequences) retrieved from GenBank. As evident in the phylogenetic tree (Fig. 4), all the novel sequences identified in this study grouped into three DOB allele lineages, including group 1 (Mafa-DOB*0101 and -DOB*0102), group 2 (Mafa-DOB*0103 and -DOB*0104), and one other (Mafa-DOB*0105), whereas the HLA-DOB alleles belonged to a separate group.

A phylogenetic tree constructed from a neighbor-joining analysis of 105 MHC-DPB1 exon 2 sequences using 54 Mafa-DPB1, 33 Mamu-DPB1, and 18 HLA-DPB1 allelic sequences is shown in Fig. 5. The general appearance of the tree is similar to a previously reported tree for the MHC class II polymorphisms in Mafa-DPB1 and other primates (Bontrop et al. 1999; Sano et al. 2006). The 13 Mafa-DPB1 alleles and all HLA-DPB1 alleles were included in the separated group allele clusters. Of the 54 Mafa-DPB1 alleles, 41 alleles were related closely to Mamu-DPB1 alleles, suggesting the possibility of interspecies inheritance. In particular, in our present study Mafa-DPB1*21, -DPB1*18, and -DPB1*24 were matched perfectly with Mamu-DPB1*12, -DPB1*08, and -DPB1*01, respectively, whereas Mafa-DPB1*02, -DPB1*18, -DPB1*20, and -DPB1*24 were matched perfectly with Mamu-DPB1*04, -DPB1*08, -DPB1*06, and -DPB1*01, respectively (Sano et al. 2006).

A phylogenetic tree was created using 34 MhcMafa-DQB1 gene sequences obtained in this study and those (14 Mafa-DQB1, 23 Mamu-DQB1, and 11 HLA-DQB1 sequences) retrieved from GenBank. The relationships among the sequences of exon 2 from this study and those from other studies are shown in Fig. 6. As evident in the phylogenetic tree, novel sequences (shown with a solid round spot) identified in this study grouped into the DQB1 allele lineages DQB1*06 (4), *16 (1), *17 (1), and *18 (2). They tend to cluster with sequences that are common to the

Fig. 6 Phylogenetic tree of 47 Mafa-DQB1, 23 Mamu-DQB1, and 1 HLA-DQB1 amino acid sequences. Novel alleles identified in this study were shown with a solid round spot and boldface, previously reported alleles also detected in this study were shown with a solid triangle; alleles not detected in this study were indicated by underline.
earlier studies of *Mamu-DQB1* (shown with a solid triangle), rather than clustering with sequences detected only in the earlier reports on *Mafa-DQB1* (shown in black), with the exception of *DQB1*\(^*\)0629 and *DQB1*\(^*\)0630, which clustered together. In addition, the high-frequency *DQB1*\(^*\)0616 allele identified in the present study clustered with *DQB1*\(^*\)0629 and *DQB1*\(^*\)0630. All major *Mhc-Mafa-DQB1* lineages that have been reported previously were detected (*DQB1*\(^*\)06, *15, *16, *17, *18, *24).

In conclusion, the *Mafa-DOB*, -*DPB1*, and -*DQB1* alleles detected in this manuscript are mostly specific for a given geographic area, and only a small number of alleles appear to be shared with other populations, providing an important addition to the limited immunogenetic information available for Vietnamese cynomolgus macaques. This suggests the fast evolution of *Mafa-DOB*, -*DPB1*, and -*DQB1* alleles due to adaptation to new environments. The high-frequency alleles among Vietnamese population, *Mafa-DOB*\(^*\)010102, *Mafa-DPB1*\(^*\)13, and *Mafa-DQB1*\(^*\)0616, may represent high priority targets for additional characterization of immune function. Characterization of shared and unique MHC class II DNA sequences may be vital for disease research and may help better elucidate the biogeography of non-human primates.

Acknowledgment We thank the Primate Research Center of South China for providing blood samples from animals. We thank Dr. Natasa de Groot, Dr. Nel Otting, and IMGT Non-human Primate Nomenclature Committee for naming the *Mafa-DOB*, -*DPB1*, and -*DQB1* sequences. We wish to thank Dr. Xiao-hui Liu and David Cushey for editing the manuscript. This project was supported by the National Basic Research Program of China (2006CB701500 and 2007CB512402), the Fundamental Research Funds for the Central Universities of South China University of Technology (20092M0105) and Science and Technology Planning Project of Guangdong Province, China (2010B060200007).

References

Blancher A, Tisseyre P, Dutaur M, Apoil P, Maurer C, Quesniaux V, Rauf F, Bigaud M, Abbal M (2006) Study of cynomolgus monkey (Macaca fascicularis) MhcDRA (Mafa-DRA) polymorphism in two populations. Immunogenetics 58:269–282

Bontrop RE, Otting N, de Groot NG, Doxiadis GG (1999) Major histocompatibility complex class II polymorphisms in primates. Immunol Rev 167:339–350

Diaz D, Naegeli M, Rodriguez R, Nino-Vasquez JJ, Moreno A, Patarroyo ME, Pluschke G, Daubenberger GA (2000) Sequence and diversity of Mhc DQA and DQB genes of the owl monkey *Aotus nancymaae*. Immunogenetics 51:528–537

Doxiadis GG, Otting N, Groot NG, Bontrop RE (2001) Differential evolutionary MHC class II strategies in humans and rhesus macaques: relevance for biomedical studies. Immunol Rev 183:76–85

Doxiadis GG, Rouweler AJ, de Groot NG, Louwerse A, Otting N, Verschoor EJ, Bontrop RE (2006) Extensive sharing of MHC class II alleles between rhesus and cynomolgus macaques. Immunogenetics 58:259–268

Duckipati VS, Blair HT, Garrick DJ, Murray A (2006) ‘Ovar-Mhc’—ovine major histocompatibility complex: structure and gene polymorphisms. Genet Mol Res 5:581–608

Dymant DM, Sadovnick AD, Ebers GC, Sadovnick AD (1997) Genetics of multiple sclerosis. Hum Mol Genet 6:1693–1698

Ettenger RA, Papadopoulos GK, Moustakas AK, Nepom GT, Kwok WW (2006) Allelic variation in key peptide-binding pockets discriminates between closely related diabetes-protective and diabetes-susceptible HL-A-DQB1*06 alleles. J Immunol 176:1988–1998

Fallas JL, Tobin HM, Lou O, Guo D, Sant’Angelo DB, Denzin LK (2004) Ectopic expression of HLA-DO in mouse dendritic cells diminishes MHC class II antigen presentation. J Immunol 173:1549–1560

Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

Fernandez-Donoso R, Lindsten J, Norrby E (1970) The chromosomes of the cynomolgus macaque (Macaca fascicularis). Hereditas 65:269–275

Florese RH, Wiseman RW, Venzon D, Karl JA, Demberg T, Larsen K, Flanary L, Kalyanaraman VS, Pal R, Titti F, Patterson LJ, Heath MJ, O’Connor DH, Caiaro A, Ensoli B, Robert-Guroff M (2008) Comparative study of Tat vaccine regimens in Mauritian cynomolgus and Indian rhesus macaques: influence of Mauritian MHC haplotypes on susceptibility/resistance to SHIV(89.6P) infection. Vaccine 26:3312–3321

Gu H, Lee KJ, Oh B (2005) Identification of a novel HLA-DOB-allele, DOB*010102, by sequence-based typing in the Korean population. Tissue Antigens 65:287–288

Hao L, Nei M (2005) Rapid expansion of killer cell immunoglobulin-like receptor genes in primates and their coevolution with MHC class I genes. Gene 347:149–159

Hu SL (2005) Non-human primate models for AIDS vaccine research. Curr Drug Targets Infect Disord 5:193–201

Kadotani H, Faraco J, Mignot E (1998) Genetic studies in the sleep disorder narcolepsy. Genome Res 8:427–434

Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

Klein J, Bontrop RE, Dawkins RL, Erlich HA, Gyllensten UB, Heise ER, Jones PP, Parham P, Wakeland EK, Watkins DJ (1990) Nomenclature for the major histocompatibility complexes of different species: a proposal. Immunogenetics 31:217–219

Krebs KC, Jin ZJ, Rudersdorf R, Hughes AL, O’Connor DH (2005) Unusually high frequency MHC class I alleles in Mauritian origin cynomolgus macaques. J Immunol 175:5230–5239

Lith M, Ham W, Neefjes J (2002) Novel polymorphisms in HLA-DOA and HLA-DOB in B-cell malignancies. Immunogenetics 54:591–595

Menninger K, Wieczorek G, Riesen S, Kunkler A, Audet M, Blancher A, Schuurman HJ, Quesniaux V, Bigaud M (2002) The origin of cynomolgus monkey affects the outcome of kidney allotransplantation under Neoral immunosuppression. Transplant Proc 34:2887–2888

Marsh SG, Albert ED, Bodmer WF, Bontrop RE, Dupont B, Erlich HA, Gerghthy DE, Hansen JA, Hurley CK, Mach B, Mayr WR, Parham P, Petersdorf EW, Sasazuki T, Schreuder GM, Strominger JL, Svejgaard A, Terasaki PI, Trowsdale J (2005) Nomenclature for factors of the HLA system, 2004. Hum Immunol 66:571–636

McAuliffe J, Vogel L, Roberts A, Fahle G, Fischer S, Shieh WJ, Butler E, Zaki S, St Claire M, Murphy B, Subbarao K (2004) Replication of SARS coronavirus administered into the respiratory tract of African Green, rhesus and cynomolgus monkeys. Virology 330:8–15

Mothe BR, Weinfurter J, Wang CX, Rehrauer W, Wilson N, Allen TM, Allison DB, Watkins DJ (2003) Expression of the major
histocompatibility complex class I molecule Mamu-A*01 is associated with control of simian immunodeficiency virus SIVmac239 replication. J Virol 77:2736–2740

Murray JA, Moore SB, Van Dyke CT, Lahr BD, Dierkising RA, Zinsmeister AR, Melton LJ 3rd, Kroning CM, El-Youssef M, Czaja AJ (2007) HLA DQ gene dosage and risk and severity of celiac disease. Clin Gastroenterol Hepatol 5:1406–1412

Naruse TK, Kawata H, Inoko H, Isshiki G, Yamano K, Hino M, Tatsumi N (2002) The HLA-DOB gene displays limited polymorphism with only one amino acid substitution. Tissue Antigens 59:512–519

O’Connor SL, Blasky AJ, Pendley CJ, Becker EA, Wiseman RW, Karl JA, Hughes AL, O’Connor DH (2007) Comprehensive characterization of MHC class II haplotypes in Mauritian cynomolous macaques. Immunogenetics 59:449–462

O’Sullivan MG, Anderson DK, Goodrich JA, Tulli H, Green SW, Young NS, Brown KE (1997) Experimental infection of cynomolous monkeys with simian parvovirus. J Virol 71:4517–4521

Otting N, de Groot NG, Doxiadis GG, Bontrop RE (2002) Extensive Mhc-DQB variation in humans and non-human primate species. Immunogenetics 54:230–239

Otting N, Doxiadis GG, Versluis L, Versluisb L, Grootb N, Anholtb J, Verduinc W, Rozenullerb E, Claasc F, Tilanusb MJ, Bontropba R (1998) Characterization and distribution of Mhc-DPB1 alleles in chimpanzee and rhesus macaque populations. Hum Immunol 59:656–664

Qiu CL, Zhao Y, Yang GB, Liu Q, Shao Y (2008) Flow cytometric characterization of T lymphocyte subsets in the peripheral blood of Chinese rhesus macaques: normal range, age- and sex-related differences. Vet Immunol Immunopathol 124:313–321

Reed SG, Coler RN, Dalemans W, Tan EV, DeLa Cruz EC, Basaraba LJ, Orme IM, Skeiky YA, Alderson MR, Cowgill KD, Prieels JP, Abalos RM, Dubois MC, Cohen J, Mettens P, Lobet Y (2009) Defined tuberculosis vaccine, Mtb72F/AS02A, evidence of protection in cynomolgus monkeys. Proc Natl Acad Sci USA 106:2301–2306

Redondo MJ, Fain PR, Eisenbarth GS (2001) Genetics of type 1A diabetes. Recent Prog Horm Res 56:69–89

Robinson J, Waller MJ, Parham P, de Groot N, Bontrop R, Kennedy LJ, Stoehr P, Marsh SG (2003) IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex. Nucleic Acids Res 31:311–314

Robinson J, Waller MJ, Stoehr P, Marsh SG (2005) IPD—the immunopolymorphism database. Nucleic Acids Res 33:D523

Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

Sano K, Shiina T, Kohara S (2006) Novel cynomolous macaque MHC-DPB1 polymorphisms in three South-East Asian populations. Tissue Antigens 67:297–306

Schmidt H, Williamson D, Ashley-Koch A (2007) HLA-DR15 haplotype and multiple sclerosis: a HuGE review. Am J Epidemiol 165:1097–1109

Siebold C, Hansen BE, Wyer JR, Harlos K, Esmouf RE, Sveiggaard A, Bell JJ, Strominger JL, Jones EY, Fugger L (2004) Crystal structure of HLA-DQ0602 that protects against type 1 diabetes and confers strong susceptibility to narcolepsy. Proc Natl Acad Sci USA 101:1999–2004

Slierendregt BL, Otting N, Kenter M, Bontrop RE (1995a) Allelic diversity at the Mhc-DP locus in rhesus macaques (Macaca mulatta). Immunogenetics 41:29–37

Slierendregt BL, Hall M, Bert’t H, Otting N, Anholt J, Verduin W, Claas F, Jonker M, Lanchbury JS, Bontrop RE (1995b) Identification of an Mhc-DPB1 allele involved in susceptibility to experimental autoimmune encephalomyelitis in rhesus macaques. Int Immunol 7:1671–1679

Souwer Y, Chamuleau ME, van de Loosdrecht AA, Tolosa E, Jorritsma T, Muris JJ, Dinnissen-van Poppel MJ, Snel SN, van de Corput L, Ossenkoppele GJ, Meijer CJ, Neefjes JJ, Marieke van Ham S (2009) Detection of aberrant transcription of major histocompatibility complex class II antigen presentation genes in chronic lymphocytic leukaemia identifies HLA-DOA mRNA as a prognostic factor for survival. Br J Haematol 145:334–343

Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

Todd JA (1990) Genetic control of autoimmunity in type 1 diabetes. Immunol Today 11:122–129

Todd JA (1997) Genetics of type 1 diabetes. Pathol Biol 45:219–227

Uda A, Terao K, Tanabayashi K, Fujita O, Hotta A, Terao K, Yamada A (2005) Identification of the MHC class I B locus in cynomolgus monkeys. Immunogenetics 57:189–197

Walsh GP, Tan EV, Dela Cruz EC, Abalos RM, Villahermosa LG, Young LJ, Cellona RV, Narareno JB, Horwitz MA (1996) The Philippine cynomolgus monkey (Macaca fascicularis) provides a new nonhuman primate model of tuberculosis that resembles human disease. Nat Med 2:430–436

Wiseman RW, Karl JA, Bimber BN, O’Leary CE, Lank SM, Tuscher JJ, Detmer AM, Bouffard P, Levenkova N, Turcotte CL Jr, ES WC, Harkins T, O’Connor DH (2009) Major histocompatibility complex genotyping with massively parallel pyrosequencing. Nat Med 15:1322–1326

Zangenberg G, Huang MM, Arneheim N, Erlich H (1995) New HLA-DPBI alleles generated by interallelic gene conversion detected by analysis of sperm. Nat Genet 10:407–414