Knockdown of Polycomb-Group RING Finger 6 Modulates Mouse Male Germ Cell Differentiation \textit{in Vitro}

Jin Suna Jian Wanga Lin Hea Yi Linc Ji Wua,b

aKey Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, bKey Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, cThe International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

Key Words
PCGF6 • Knockdown • Germ cell development

Abstract
\textbf{Background:} Polycomb-group RING finger 6 (PCGF6), one of six PCGF homologs, is the core component of the PRC1 complex that plays critical roles in epigenetic transcriptional silencing in higher eukaryotes. However, the biological functions of PCGF6 are unknown.

\textbf{Method:} qRT-PCR and Western blot were used to detect the expression profile of PCGF6 in testes. Fluorescent immunohistochemistry was used to examine the cellular localization of PCGF6 protein in testes. Cell proliferation was tested by performing CCK-8 and EdU incorporation assay. Cell cycle and haploid cell population analysis was determined by flow cytometry using propidium iodide DNA staining. Co-immunoprecipitation experiment was conducted using PCGF6 antibody to obtain interacting protein of PCGF6. Luciferase reporter assays were performed to examine the promoter activity of PCGF6 in cells overexpressing OVOL1 and PLZF.

\textbf{Results:} PCGF6 was expressed predominantly in meiotic and post-meiotic male germ cells, could negatively regulate the proliferation of GC-2 spd cells, an immortalized mouse spermatogenic cell line, and could modulate the differentiation of GC-2 spd cells \textit{in vitro}. PCGF6 could indirectly interact with HSPA2, a key factor that is essential for male meiosis, and OVOL1 and PLZF, two key transcription factors that are involved in spermatogenesis, could positively and negatively modulate \textit{Pcgf6} promoter activity, respectively. \textit{PCGF1}, \textit{BMI1}, and \textit{PCGF5} are also highly expressed in mouse testes like \textit{PCGF6}.

\textbf{Conclusion:} PCGF6 may play important roles in male germ cell development.
Introduction

Polycomb group (PcG) proteins are epigenetic repressors that are required to preserve transcriptionally silenced states through epigenetic marking of target genes in higher eukaryotes, and they play essential roles in cell differentiation and development [1]. They function within multiprotein complexes via action on chromatin; these complexes are called Polycomb repressive complexes (PRCs). Polycomb repressive complex 1 (PRC1), one of the two major classes of PRCs identified in mammals, is generally responsible for chromatin compaction and monoubiquitination of histone H2A, and there are several variants that are composed of different homologs of core components and noncanonical PRC1 members [2, 3]. PcG RING finger (PCGF) homologs (PCGF1, PCGF2, PCGF3, BMI1, PCGF5, and PCGF6) are critical core components in the assembly of distinct PRC1-related complexes, and they all have also been found to associate with ring finger protein 2 (RNF2). The RNF2–PCGF heterodimer is catalytically competent as an E3 ubiquitin transferase and is the scaffold for the assembly of additional components [4-6]. An increasing number of studies have demonstrated that the mammalian PCGFs play important roles in cell proliferation, differentiation, and tumorigenesis. For instance, PCGF1, also known as NSPc1, could promote tumor cell cycle progression and cell proliferation and also is necessary for the terminal differentiation of hematopoietic cells [7, 8]. In contrast, PCGF2, also known as Mel-18, could inhibit the tumor cell proliferation and self-renewal activity of hematopoietic stem cells [9, 10]. Additionally, it is noteworthy that BMI1, also known as PCGF4, is a famous oncogene and stem cell self-renewal factor that is extensively involved in the self-renewal of embryonic stem cells and adult stem cells, including neural stem cells, hematopoietic stem cells, spermatogonial stem cells, lung epithelial stem cells, and intestinal stem cells [11-16]. BMI1 is also involved in the tumorigenesis of various cancer types [17].

PCGF6, also known as MBLR and RNF134, is a core component of a noncanonical PRC1 complex that is composed of some canonical components, such as RNF2, CBX3, CBX4, CBX6, CBX7, and CBX8, as well as some noncanonical components, such as L3MBTL2, E2F6, WDR5, HDAC1, and RYBP [4, 18]. The RING finger domain of PCGF6 is located in the central region and exhibits high similarity to the analogous domain of PCGF2 and BMI1; it mediates the interaction between PCGF6 and RNF2, a core component of PRC1 with E3 ligase activity for histone H2A monoubiquitination at lysine 119 (H2AK119u1) [19]. Surprisingly, PCGF6 can directly interact with JARID1d/KDM5D, a trimethyl H3K4 demethylase, and regulate its enzymatic activity [20]. In addition, PCGF6 also can interact with BMI1 [19]. However, so far we only know that PCGF6 possesses the transcriptional repression activity that is common to all other PcG proteins [19], the biological functions and related molecular mechanisms of PCGF6 are still unknown.

A previous study revealed that PCGF6 is expressed in multiple adult tissues of human and mouse at different levels, including liver, skeletal muscle, ovary, testis, thymus, heart, and pancreas. It is worth noting that PCGF6 is preferentially expressed in testis, and transcript and protein levels of PCGF6 in testis were significantly higher than in other tissues [19]. Additionally, the mRNA level of Pcgf6 in testicular biopsies with normal spermatogenesis is significantly higher than in testicular biopsies with round spermatid maturation arrest. Collectively, these results imply that PCGF6 may play critical roles in mammalian male germ cell development.

In this study, we systematically examined the expression pattern of PCGF6 in testis tissue at different developmental stages and the cellular localization in adult testis for the first time. Then, we investigated the effects of PCGF6 knockdown on in vitro proliferation and differentiation of GC-2 spd cells, an immortalized mouse spermatogenic cell line. To explore the underlying molecular mechanisms of PCGF6 in male germ cell development, we obtained the interaction partners of PCGF6 by co-immunoprecipitation. Additionally, we revealed that PLZF and OVOL1, two key transcription factors involved in spermatogenesis, could modulate Pcgf6 promoter activity. Taken together, this study is the first to reveal the biological role of...
PCGF6, and the results indicated that PCGF6 plays an important role in mammalian male germ cell development.

Materials and Methods

Animals and cell line
Male C57BL/6 mice used in this study were purchased from SLAC Laboratory Animal Co., Shanghai, China. All procedures involving animals were approved by the Institutional Animal Care and Use Committee at Shanghai Jiao Tong University, Shanghai, China [SYXX (Shanghai 2007-0025)], and were conducted in accordance with the National Research Council Guide for Care and Use of Laboratory Animals. HEK 293T/17 cells (CRL-11268) and GC-2 spd cells (CRL-2053), a mouse-derived spermatogenic line, were purchased from American Type Culture Collection.

RNA isolation, reverse transcription, and quantitative real-time PCR
Total RNA derived from mouse testes and cells was purified using Trizol Reagent (Invitrogen, UAS) and treated with DNase I (Fermentas, China) according to the instruction of the manufacturer. Total RNA was reverse transcribed into cDNA with oligo dT primers using the PrimeScript RT-PCR Kit (TaKaRa, Japan). Quantitative real-time PCR (qRT-PCR) was performed using FastStart Universal SYBR Green Master (Roche, China) on an ABI PRISM 7500 Sequence Detection System (Applied Biosystems) according to the procedure used by Sun et al. [21]. The relative expression of genes was calculated based on the $2^{-\Delta\Delta Ct}$ method using the GAPDH gene as an endogenous control. The primers used for qRT-PCR are shown in Table 1.

Western blotting
The testes and harvested cells were lysed with sodium dodecyl sulfate (SDS) cell lysis buffer (Beyotime, China) containing 1 mM phenylmethylsulfonfyl fluoride (PMSF). Then, samples (50 µg protein/lane) were electrophoresed by SDS polyacrylamide gel electrophoresis (PAGE) and transferred onto a nitrocellulose membrane. The membrane was blocked with 5% (w/v) non-fat dry milk for 1 h at room temperature and subsequently incubated overnight at 4°C with rabbit-anti-PCGF6 (1:500; Abcam, USA), goat-anti-PCGF6 (1:600; Santa Cruz, USA), rabbit-anti-HSPA2 (1:600; Proteintech, USA), or mouse-anti-β-tubulin (1:1000; Santa Cruz, USA). Then, the membrane was incubated with a horseradish peroxidase-conjugated goat-anti-rabbit IgG (1:2000; Proteintech, USA), donkey-anti-rabbit (1:5000; Proteintech, USA), or goat-anti-mouse (1:5000; Proteintech, USA) for 1 h. Chemiluminescence was detected using the ECL blot detection system (Amersham, USA).

Fluorescent immunohistochemistry (IHC)
Adult mouse testes were fixed with 4% paraformaldehyde at 4°C overnight and then were embedded in paraffin and sectioned. Rehydrated sections were incubated in 0.05% trypsin in phosphate-buffered saline (PBS) for 30 min at 37°C, washed twice in PBS (10 min each), incubated for 10 min in blocking solution (10% normal goat serum in PBS) at room temperature, incubated with rabbit-anti-PCGF6 (1:50; Abcam, USA), goat-anti-PCGF6 (1:600; Santa Cruz, USA), rabbit-anti-HSPA2 (1:600; Proteintech, USA), or mouse-anti-β-tubulin (1:1000; Santa Cruz, USA), then, the membrane was incubated with a horseradish peroxidase-conjugated goat-anti-rabbit IgG (1:2000; Proteintech, USA), donkey-anti-rabbit (1:5000; Proteintech, USA), or goat-anti-mouse (1:5000; Proteintech, USA) for 1 h. Chemiluminescence was detected using the ECL blot detection system (Amersham, USA).

Cell culture and establishment of a stable PCGF6-knockdown GC-2 spd cell line
HEK 293T cells and GC-2 spd cells were cultured in Dulbecco's modified Eagle medium containing 10% (v/v) fetal bovine serum (GIBCO) at 37°C with 5% CO$_2$. Differentiation in vitro of GC-2 spd cells was induced by decreasing the temperature to 32°C [22]. We established a stable PCGF6-knockdown GC-2 spd cell line using the lentiviral shRNA expression system. Briefly, shRNA oligonucleotides specific to the PCGF6 open reading frame (ORF) (shRNA-449: AGGTTACCTGATAGATGCA) and a negative control (shRNA-NC: ACTACCGTTGTTATAGTGCA) were designed and synthesized according to the user manual of the Lenti-X shRNA Expression System (Clontech, USA) and were inserted into the modified pLVX-shRNA2
vector containing the neomycin resistance gene using BamHI/EcoRI cloning sites. Subsequently, shRNA-expressing lentiviral plasmid was cotransfected with plasmids pLP1, pLP2, and pLP/VSVG into HEK 293T cells to produce lentiviral particles using GenJet Plus DNA In Vitro Transfection Reagent (SignaGen, USA) according to the user manual of the ViraPower Lentiviral Expression System (Invitrogen, USA). GC-2 spd cells were cultured in medium containing recombinant lentiviral particles and 5 μg/mL polybrene for 48 h and then selected with 3 mg/mL geneticin for 3 weeks [22].

Cell proliferation assay

The effect of PCGF6 knockdown on GC-2 spd cell proliferation was tested by performing a WST-8 assay and 5-ethynyl-20-deoxyuridine (EdU) incorporation assay using the CCK-8 cell proliferation kit (Dojindo, Japan) and EdU assay kit (Ribobio, China), respectively. All experiments were done in triplicate, and three independent experiments were performed.

For the CCK-8 assay, cells were seeded into a 96-well plate at 1×10^3 cells per well with 100 µL complete medium and cultured at 37°C; 10 µL CCK-8 solution was added to each well after 24 h, 48 h, 72 h, and 96 h. Plates were incubated at 37°C for 2 h, and then the absorbance at 450 nm was measured with an Enspire 2300 Multilabel Reader (PerkinElmer, USA).

For the EdU incorporation assay, cells (1×10^5) were cultured in 24-well plates and exposed to 20 µM EdU for 2 h at 37°C. Then the cells were fixed with 70% alcohol in PBS overnight at 4°C. After washing in PBS, the cells were treated with propidium iodide (PI) staining solution containing 50 µg/mL PI, 100 µg/mL RNase, and 0.2% (v/v) Triton X-100 at room temperature for 30 min at room temperature. DNA was then stained with 5 µg/mL Hoechst 33342 (200 µL per well) for 10 min and imaged under a fluorescence microscope. The EdU-positive cells (green cells) were counted using Image-Pro Plus 6.0 software. The EdU incorporation rate was expressed as the ratio of EdU-positive cells to total Hoechst 33342-positive cells (blue cells).

Flow cytometry

For the cell cycle assay, cells were harvested and fixed with 70% alcohol in PBS overnight at 4°C. After washing in PBS, cells were treated with propidium iodide (PI) staining solution containing 50 µg/mL PI, 100 µg/mL RNase, and 0.2% (v/v) Triton X-100 at room temperature for 30 min in the dark. The percentage of

Gene Symbol	Sequence (5’-3’)	Product size (bp)
PCGF6	GTACAAACATACTAGGGGAATCC	220
Ccna1	GACGGTTCCACACGCAACAAATTATT	247
Ccna2	TGGATCGGTCATTGACGTTGGA	226
Cond1	CAGAAGGTGCAAGGAGGGGGGA	130
Cond2	CAGAAGGTGCAAGGAGGGGGGA	84
Cond3	TGGATCGGTCATTGACGTTGGA	212
Ccne1	AGGGCCTTAAAGTGGGCTTCAAGATAAGATACGAGGGCT	72
Ccne2	GCCGGCCGCGCTTATGCT	100
Gsk2	CAAAGGTCGGTGCAAGGAGGGGA	178
Gsk3	TGGATCGGTCATTGACGTTGGA	106
Gsk4	GCCGGCCGCGCTTATGCT	260
Gsk6	ATTCGAATTCGATCGAGGCGCATGATACGAGGGCT	189
p15	GCCTCTCGCTGCACGTAACGAGGCT	257
p16	CAAAGGTCGGTGCAAGGAGGGGA	209
p18	TTGGGACTGGGCGGCTATTGACGAGGCT	187
p19	TTGGGACTGGGCGGCTATTGACGAGGCT	304
p21	TCTGAGAATGCTGCTGCGG	115
p27	CCCCAGCTCGCCTCTCCCTG	182
p57	AGAGGGCTTGGGCGGCTATTGACGAGGCT	141
Prm1	AGGGTCTGGACAATATCTGATGCT	100
Prm2	TGGGACGTCTGATCCATTCTT	74
Prm3	CAGAATACGAGGCTTGGGAGGCT	182
Prm4	ATCCGGTCGCTGGTACGCTT	97
Prm5	GATACGGCTGCTGGTACGCTT	90
Prm6	TGGGTCTGCTGGTACGCTT	103
GAPDH	GCCGGCCGCGCTTATGCT	240

Table 1. List of the qRT-PCR primers used in this study
cells in different phases of the cell cycle was determined by a flow cytometer (BD Biosciences, USA) with the ModFit program.

For haploid cell population analysis, harvested cells were stained with freshly prepared PBS containing a final concentration of 10 µg/mL Hoechst 33342 for 30 min at 37°C in the dark. The cell suspension was analyzed by a flow cytometer. Gating parameters of haploid cells (1N) were set using sperm cells isolated from the mouse epididymis. The percentage of haploid cells was determined with the 1N gating parameters.

Co-immunoprecipitation

Protein from testes was extracted using radio-immunoprecipitation assay (RIPA) lysis buffer (Beyotime, China). The cell lysate was first pre-cleared by adding protein A/G-agarose beads (Abmart, China), incubating at 4°C for 10 min, and centrifugation. The supernatant was then incubated with rabbit-anti-PCGF6 (Abcam, USA) or normal rabbit IgG isotype control antibody (Abmart, China) for 2 h at 4°C, which was followed by the addition of protein A/G-agarose and overnight incubation. The immunoprecipitate was collected by centrifugation and washed with RIPA lysis buffer. The eluting complex was subjected to SDS-PAGE separation and Coomassie brilliant blue staining for mass spectrometry or western blotting. Mass spectrometry was performed by Sangong Biotech, Shanghai, China.

Promoter activity analysis

The promoter regions (2,000 bp region upstream of the ATG codon) of PCGF6 was amplified from mouse genomic DNA and cloned upstream of firefly luciferase in the pGL3-Basic vector (Promega, USA). DNA sequences containing the ORF of PLZF and OVOL1 were amplified from adult mouse testis cDNA and cloned into the pcDNA 3.1 (+) vector to overexpress PLZF and OVOL1. Twenty-four hours before transfection, HEK 293T cells were seeded in 24-well plates at 1 × 10⁵ cells/well. Each well of cells was transfected with 500 ng pGL3-Basic (as the no promoter control) or luciferase reporter plasmids (pGL-PCGF6) containing the promoter region of PCGF6. In co-transfection experiments, 500 ng PLZF or OVOL1 expression vector was used. Each well of cells was simultaneously transfected with 50 ng Renilla luciferase reporter plasmid (phRL-TK) as a control for transfection efficiency. The promoter activity of each group was determined by the Dual-Luciferase Reporter Assay System (Promega, USA) 24 h after transfection according to the technical manual.

Statistical analysis

All experiments were repeated three times. The results are presented as means ± SD and were analyzed by analysis of variance and Student’s t-test using the statistical software SPSS 20.0. Differences were considered significant when the P value was <0.05.

Results

PCGF6 is highly expressed in testes of 18-day-old mice

To investigate the role of PCGF6 in male germ cell development, we first examined the expression profile of PCGF6 in testes from 6-, 12-, 18-, 24-, and 30-day-old and 8-week-old mice by qRT-PCR and western blot analysis. Results revealed that PCGF6 was weakly expressed in testes of 6- and 12-day-old mice, and its expression level was sharply increased on 18 days and maintained a higher level during later developmental stages both at the mRNA level (Fig. 1) and protein level (Fig. 1B, C). According to the differentiation time course of the first wave of spermatogenesis in mouse, the expression pattern of PCGF6 hinted that it might play an essential role during the pachytene stage of meiosis and the post-meiotic stages of spermatogenesis.

PCGF6 protein is predominantly localized in pachytene spermatocytes and elongated spermatids

To obtain the cellular localization of PCGF6 protein in mouse testes, we used a PCGF6-specific antibody to perform immunolocalization analysis in testes from adult mouse (8 weeks old). Fluorescent IHC staining revealed that PCGF6 protein could be detected in all types of male germ cells including spermatogonia, pachytene spermatocytes, round
spermatids, and elongated spermatids. Notably, immunofluorescence signals were much stronger in pachytene spermatocytes and elongated spermatids than in other types of germ cells (Fig. 2). This result was consistent with the expression pattern of PCGF6 in mouse testis at different stages of postnatal development and further suggested that PCGF6 was likely to participate in meiosis and post-meiotic development of male germ cells.
PCGF6 knockdown accelerates proliferation of GC-2 spd cells

Previous studies have found that some PCGF homologs, such as PCGF1/NSPc1, PCGF2/Mel-18, and PCGF4/Bmi1, could regulate cell proliferation and differentiation. To explore whether PCGF6 is involved in the proliferation of male germ cells, we determined the effects of stable PCGF6 knockdown on the proliferation of GC-2 spd cells, an immortalized mouse spermatocyte cell line. Here, we stably silenced PCGF6 in GC-2 spd cells using recombinant lentiviral particles containing shRNAs targeted to PCGF6. These cells exhibited significantly reduced expression of PCGF6 at both the mRNA (Fig. 3A) and protein levels (Fig. 3B) compared to control lentiviral vector-infected cells. The effect of PCGF6 silencing on proliferation was measured using the CCK-8 and EdU incorporation assays. As shown in Fig. 3C, stable silencing of PCGF6 significantly increased the relative cell number. As anticipated, the number of EdU-positive cells was approximately 11% higher in PCGF6-knockdown cells than in control cells (Fig. 3D, E). These results indicated that PCGF6 knockdown promoted...
Fig. 4. Effects of PCGF6 knockdown on the mRNA expression levels of cell cycle regulatory genes in GC-2 spd cells. A: The relative mRNA levels of cyclin genes. B: The relative mRNA level of CDK genes. C: The relative mRNA level of CDKI genes. The relative mRNA levels were determined by qRT-PCR and were normalized to the mRNA levels of the GAPDH gene. Data represent the mean ± SD from three independent experiments. *P < 0.05, **P < 0.01 by the Student’s t-test.

The proliferation of GC-2 spd cells. Flow cytometry analysis revealed that PCGF6 knockdown resulted in a significantly lower number of cells in the G1 phase (P < 0.05) and a significantly higher number of cells in the S phase (P < 0.05) compared with the negative control (Fig. 3F, G). This result suggested that the knockdown of PCGF6 could promote the transition of cells from G1 phase to S phase. To investigate the potential mechanisms underlying the ability of PCGF6 to influence GC-2 spd cell proliferation, we examined the relative mRNA levels of some cell cycle regulator genes related to the G1/S transition by qRT-PCR. We found that PCGF6 knockdown upregulated five cyclin genes (Ccna2, Ccnd2, Ccnd3, Ccne1, and Ccne2) (Fig. 4A) and two cyclin-dependent kinase (CDK) genes (Cdk2 and Cdk4) (Fig. 4B), while it downregulated three CDK-inhibitor (CDKI) genes (p15, p16, and p27) (Fig. 4C).

PCGF6 knockdown suppresses the differentiation of GC-2 spd cells in vitro

The expression pattern of PCGF6 in testis tissue suggested that PCGF6 was most likely to be involved in male meiosis. To explore the role of PCGF6 in meiosis, we investigated the effects of PCGF6 knockdown on GC-2 spd cell differentiation in vitro based on the following characteristic of GC-2 spd cells: a small portion of cells can undergo meiosis to produce a haploid population and express some post-meiotic marker genes following low temperature culture (32°C) for several weeks [23, 24]. Stable PCGF6-knockdown and control GC-2 spd cell lines were cultured at 32°C for 3 weeks, and the haploid cell population was analyzed by flow cytometry. As shown in Fig. 5, PCGF6 knockdown resulted in a significantly lower portion of haploid cells in the GC-2 spd cell population (P < 0.05) than in the negative control. These results indicated that PCGF6 knockdown could hinder the differentiation of GC-2 spd cells in vitro. In addition, we found that some haploid spermatid marker genes were significantly
downregulated in PCGF6-knockdown cell lines, including Acr, Piwil2, Pgk2, and Prm1 (P < 0.05) (Fig. 6). This result indirectly indicated that silencing PCGF6 expression suppressed the differentiation of GC-2 spd cells.

PCGF6 protein interacts with heat shock-related 70-kDa protein 2 (HSPA2)

We know that components of PRC1 are complicated and variable. To unveil the potential interaction partners of PCGF6 in testis tissue, we performed immunoprecipitation on total protein derived from adult mouse testes with rabbit-anti-PCGF6 and normal rabbit
IgG isotype control antibody. Western blotting with goat-anti-PCGF6 confirmed that the immunoprecipitation showed high specificity (Fig. 7A). The eluting immunoprecipitate was separated by SDS-PAGE and stained with coomassie brilliant blue, and an obvious differential band with the size around 70 kDa was observed in the anti-PCGF6 lane but not in the control IgG lane (Fig. 7B). This differential band was identified as heat shock-related 70-kDa protein 2 (HSPA2) by mass spectrometry (data not shown). To confirm the result obtained from mass spectrometry, we performed immunoprecipitation with rabbit-anti-HSPA2 (HSPA2) or rabbit control IgG antibodies (IgG). The input (testis lysate) and immunoprecipitation (IP) fractions with goat-anti-PCGF6 were also subjected to western blot.

Table 2. Potential binding sites for OVOL1 and PLZF in mouse PCGF6 gene promoter

Transcription factor	Start position	End position	Strand
OVOL1	858	872	+
PLZF	330	344	-
PLZF	654	668	-
PLZF	977	991	-
PLZF	1679	1693	+
PLZF	1723	1737	-

The promoter activity of PCGF6 can be enhanced and inhibited by the overexpression of OVOL1 and PLZF, respectively.

Expression pattern of PCGF6 suggested that its transcriptional activity was tightly regulated during male germ cell development. To explore the mechanism of the transcriptional regulation of PCGF6, potential transcription factor binding sites in a putative PCGF6 promoter region (2,000-bp region upstream of the ATG codon) was predicted using MatInspector software (Genomatix, Germany) [25]. As shown in Table 2, one homolog-like 1 (OVOL1) and five promyelocytic leukemia zinc finger (PLZF) binding sites existed in
the PCGF6 promoter region. Previous studies have demonstrated that OVOL1 was highly expressed in pachytene spermatocytes and involved in meiotic pachytene progression as a key transcription factor [26]. In this study, we found that PCGF6 was also highly expressed in pachytene spermatocytes. Thus, we speculated that OVOL1 positively modulated the transcription of PCGF6 by binding to its promoter. PLZF, a well-known spermatogonial stem cell (SSC) marker, is directly involved in SSC self-renewal by negatively regulating SSC differentiation genes, such as c-Kit, TORC1, and RARs [27-29]. In this study, we found that PCGF6 showed a low expression level in spermatogonia; therefore, we speculated that the transcription of PCGF6 was suppressed by PLZF. To test our hypothesis, we performed PCGF6 promoter-driven luciferase reporter assays in HEK 293T cells transiently overexpressing OVOL1 and PLZF. As expected, we found that the luciferase activity was significantly increased in HEK 293T cells overexpressing OVOL1 compared with the control (P < 0.01) (Fig. 8A) and significantly decreased in HEK 293T cells overexpressing PLZF (P < 0.01) (Fig. 8B), indicating that the transcriptional activity of the PCGF6 promoter could be enhanced and inhibited by the overexpression of OVOL1 and PLZF, respectively.
PCGF1, BMI1, and PCGF5 are also highly expressed in mouse testes like PCGF6

So far, we know that there are six distinct types of PRC1 complexes that are identified by one of six distinct PCGF homologs (PCGF1, PCGF2, PCGF3, BMI1, PCGF5, and PCGF6) [4]. To understand the expression status of other PCGF paralogs in mouse testis, we obtained the expression pattern of six PCGF homologs in six mouse organs using RNA-sequencing data from David et al. by Expression Atlas of EMBL-EBI (http://www.ebi.ac.uk/gxa) [30]. We found that PCGF1, BMI1, and PCGF5 are also highly expressed in mouse testes (Fig. 9). Especially for PCGF1 and BMI1, their expression features in six different organs is very similar to PCGF6 (Fig. 9), implying that both of these PCGF homologs may play important roles in male germ development like PCGF6 and there maybe some functional redundancy between these factors.

Discussion

Previous studies have revealed that PCGF6, one of six PCGF homologs, can form a noncanonical PRC1 complex with some related partners and is preferentially expressed in testis tissue [19]. However, our understanding of the biological function of PCGF6 is still extremely poor. This study is the first systematic study of the biological function of PCGF6.

First, this paper shows that PCGF6 could negatively regulate cell proliferation. Previous research indicated that some PCGF homologs tend to positively regulate stem cell and tumor cell proliferation. For example, BMI1 is a well-known stem cell factor and oncogene that is extensively involved in stem cell and tumor cell proliferation by inhibiting several CDKI genes, such as p16 and p19, and activating Wnt, Hedgehog, and the TGF-β/BMP pathway [31-33]. Some PCGF homologs tend to be involved in cell differentiation by negatively regulating proliferation. For instance, PCGF2/Mel-18 can suppress cell proliferation and promote cell differentiation by negatively regulating several CDK genes, such as Cdk2 and Cdk4, as well as the Wnt and Akt pathway [9, 34]. In this study, we showed that the knockdown of PCGF6 could accelerate GC-2 spd cell proliferation by promoting the G1/S transition and altering the expression of some cell cycle regulators. Remarkably, some cyclin and CDK genes that were upregulated upon PCGF6 knockdown are highly expressed in SSCs or involve in SSC self-renewal; these genes include Ccna2, Ccnd2, Ccnd3, and CDK4 [35, 36]. In addition, we identified some CDKI genes, such as p15, p16, and p27, which were direct targets of the stem cell factor BMI1 and were downregulated upon PCGF6 knockdown. According to the above discussion, our results indicated that PCGF6 exhibited the ability to negatively regulate cell proliferation similar to PCGF2.

Second, this paper shows that PCGF6 participates in the differentiation of male germ cells by functioning in meiosis. In this study, PCGF6 showed a progressive increase in testes mRNA and protein until 18 days, when late pachytene spermatocytes are the most abundant population of germ cells in the seminiferous tubules and the meiotic divisions begin [37]. Consistent with this result, immunolocalization analysis showed that PCGF6 was highly expressed in pachytene spermatocytes. Expression characteristics suggested that PCGF6 was very likely to function in meiosis. Subsequently, we found that in vitro differentiation of the spermatogenic cell line GC-2 spd was inhibited by PCGF6 knockdown, indicating that PCGF6 could affect male germ cell differentiation by acting on meiosis. Importantly, we obtained a novel interaction partner of PCGF6, HSPA2. HSPA2, a testis-specific protein, is specifically expressed in meiotic and post-meiotic male germ cells. It has been found that HSPA2 plays critical roles in the completion of meiosis during male germ cell differentiation, and its knockout mice lack post-meiotic spermatids and mature sperm and was infertile [38]. Thus, the finding that PCGF6 indirectly interacts with HSPA2 further suggested that PCGF6 is involved in male meiosis. In addition, in this study, we found that the promoter activity of PCGF6 could be enhanced by OVOL1, a critical meiotic pachytene progression regulator of male germ cells, and this finding provides further evidence that PCGF6 is involved in male meiosis.
In summary, this is the first systematic study to explore biological roles of PCGF6, a PcG protein that is highly expressed in testis tissue. Our results revealed that PCGF6 was predominantly expressed in meiotic and post-meiotic male germ cells and could modulate male germ cell proliferation and differentiation. We also found that PCGF6 could interact with HSPA2 and that its promoter activity could be affected by OVOL1 and PLZF. The data presented in this paper provide a solid foundation for further elucidation of the significance of PCGF6 in male cell development.

Acknowledgments

This work was supported by National Basic Research Program of China (grant numbers 2013CB967401; http://www.most.gov.cn) and the National Nature Science Foundation of China (grant number 81370675, 81200472 and 81421061; http://www.nsfc.gov.cn)

References

1. Niessen HE, Demmers JA, Voncken JW: Talking to chromatin: Post-translational modulation of polycomb group function. Epigenetics Chromatin 2009;2:10.
2. Aloia L, Di Stefano B, Di Croce L: Polycomb complexes in stem cells and embryonic development. Development 2013;140:2525-2534.
3. Lanzuolo C, Orlando V: Memories from the polycomb group proteins. Annu Rev Genet 2012;46:561-589.
4. Gao Z, Zhang J, Bonasio R, Strino F, Sawai A, Parisi F, Kluger Y, Reinberg D: PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol Cell 2012;45:344-356.
5. Schwartz YB, Pirrotta V: A new world of polycombs: Unexpected partnerships and emerging functions. Nat Rev Genet 2013;14:853-864.
6. Chen T, Dent SY: Chromatin modifiers and remodelers: Regulators of cellular differentiation. Nat Rev Genet 2014;15:93-106.
7. Gong Y, Yue J, Wu X, Wang X, Wen J, Lu L, Peng X, Qiang B, Yuan J: NSPc1 is a cell growth regulator that acts as a transcriptional repressor of p21Waf1/Cip1 via the RARE element. Nucleic Acids Res 2006;34:6158-6169.
8. Ross K, Sedello AK, Todd GP, Paszkowski-Rogacz M, Bird AW, Ding L, Grinenko T, Behrens K, Huhner N, Mann M, Waskow C, Stocking C, Buchholz F: Polycomb group ring finger 1 cooperates with Runx1 in regulating differentiation and self-renewal of hematopoietic cells. Blood 2012;119:4152-4161.
9. Lee J-Y, Jang K-S, Shin D-H, Oh M-Y, Kim H-J, Kim Y, Kong G: Mel-18 negatively regulates ink4a/arf-independent cell cycle progression via akt inactivation in breast cancer. Cancer Res 2008;68:4201-4209.
10. Kajiume T, Ninomiya Y, Ishihara H, Kanno R, Kanno M: Polycomb group gene Mel-18 modulates the self-renewal activity and cell cycle status of hematopoietic stem cells. Exp Hematol 2004;32:571-578.
11. Molofsky AV, He S, Bydon M, Morrison SJ, Pardal R: Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev 2005;19:1432-1437.
12. Park I-k, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, Morrison SJ, Clarke MF: Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003;423:302-305.
13. Zhang S, Li D, Li E, Li L, Wang J, Wang C, Lu J, Zhang X: Expression localization of Bmi1 in mice testis. Mol Cell Endocrinol 2008;287:47-56.
14. Zacharek SJ, Fillmore CM, Lau AN, Gudish DW, Chou A, Ho JW, Zamponi R, Gazit R, Bock C, Jager N, Smith ZD, Kim TM, Saunders AH, Wong J, Lee JH, Roach RR, Rossi DJ, Meissner A, Gimelbrant AA, Park PJ, Kim CF: Lung stem cell self-renewal relies on Bmi1-dependent control of expression at imprinted loci. Cell Stem Cell 2011;9:272-281.
15. Chiba T, Seki A, Aoki R, Ichikawa H, Negishi M, Miyagi S, Oguro H, Saraya A, Kamiya A, Nakauchi H, Yokosuka O, Iwama A: Bmi1 promotes hepatic stem cell expansion and tumorigenicity in both Ink4a/Arf-dependent and -independent manners in mice. Hepatology 2010;52:1111-1123.
dependent phosphorylation.

- J

38 Cellular Physiology
37 Cellular Physiology
36 35
34 33
32 31
30 29
28 27
26 25
24 23
22 21
20 19
18 17
16 15
14 13
12 11
10 9
8 7
6 5
4 3
2 1

US A 1996;93:3264-3268.

- Proc Natl Acad Sci

- Dix DJ, Allen JW, Collins BW, Mori C, Nakamura N, Poorman-Allen P, Goulding EH, Eddy EM: Targeted gene disruption of Hsp70-2 results in failed meiosis, germ cell apoptosis, and male infertility. Proc Natl Acad Sci U S A 1996;93:3264-3268.