A New Algebraic Inequality and Some Applications in Submanifold Theory

Ion Mihai 1,*,† and Radu-Ioan Mihai 2,†

1 Department of Mathematics, University of Bucharest, 010014 Bucharest, Romania
2 Faculty of Mathematics and Computer Science, University of Bucharest, 010014 Bucharest, Romania;
radu.mihai4@unibuc.ro
* Correspondence: imihai@fmi.unibuc.ro
† These authors contributed equally to this work.

Abstract: We give a simple proof of the Chen inequality involving the Chen invariant \(\delta(k) \) of submanifolds in Riemannian space forms. We derive Chen’s first inequality and the Chen–Ricci inequality. Additionally, we establish a corresponding inequality for statistical submanifolds.

Keywords: Riemannian space form; submanifold; Chen invariants; Chen inequalities; statistical manifold; statistical submanifold

MSC: 53C40; 53C05

1. Introduction

One of the most important topics of research in the geometry of submanifolds in Riemannian manifolds is to establish sharp relationships between extrinsic and intrinsic invariants of a submanifold.

The most used intrinsic invariants are sectional curvature, scalar curvature and Ricci curvature. The main extrinsic invariant is the squared mean curvature.

There are well-known relationships between the above extrinsic and intrinsic invariants for a submanifold in a Riemannian space form: (generalized) Euler inequality, Chen–Ricci inequality, Wintgen inequality, etc.

In [1,2], B.-Y. Chen introduced a sequence of Riemannian invariants, which are known as Chen invariants. They are different in nature from the classical Riemannian invariants. B.-Y. Chen established optimal relationships between the squared mean curvature and Chen invariants for submanifolds in Riemannian space forms, known as Chen inequalities (see [2]). The proofs of these inequalities use an algebraic inequality, discovered by B.-Y. Chen in [1].

In the present paper, we give simple proofs of some Chen inequalities by using a different algebraic inequality.

Other Chen inequalities were proved in [3] by applying another inequality.

2. Preliminaries

The theory of Chen invariants and Chen inequalities was initiated by B.-Y. Chen [1,2].

Let \((M,g) \) be an n-dimensional (\(n \geq 2 \)) Riemannian manifold, \(\nabla \) its Levi-Civita connection and \(R \) the Riemannian curvature tensor field on \(M \). The sectional curvature \(K(\pi) \) of the plane section \(\pi \subset T_pM, p \in M \), is defined by

\[
K(\pi) = R(e_1,e_2,e_1,e_2) = g(R(e_1,e_2)e_2,e_1),
\]

where \(\{e_1,e_2\} \) is an orthonormal basis of \(\pi \).
Let \(\{e_1, ..., e_n\} \) be an orthonormal basis of \(T_p M \). The scalar curvature \(\tau \) at \(p \) is given by

\[
\tau(p) = \sum_{1 \leq i < j \leq n} K(e_i \wedge e_j),
\]

where \(K(e_i \wedge e_j) \) is the sectional curvature of the plane section spanned by \(e_i \) and \(e_j \).

If \(X \) is a unit vector tangential to \(M \) at \(p \), consider the orthonormal basis \(\{e_1 = X, e_2, ..., e_n\} \) of \(T_p M \). The Ricci curvature is defined by

\[
\text{Ric}(X) = \sum_{j=2}^{n} K(X \wedge e_j).
\]

Let \(L \) be an \(r \)-dimensional subspace of \(T_p M \) and \(\{e_1, ..., e_r\} \) an orthonormal basis of \(L, \ 2 \leq r \leq n \). The scalar curvature \(\tau(L) \) of \(L \) is given by

\[
\tau(L) = \sum_{1 \leq k < \beta \leq r} K(e_k \wedge e_\beta).
\]

In particular, for \(r = 2 \), \(\tau(L) \) is the sectional curvature of \(L \) and for \(r = n \), \(\tau(T_p M) = \tau(p) \) is the scalar curvature of \(M \) at \(p \).

B.-Y. Chen introduced a sequence of Riemannian invariants \(\delta(n_1, ..., n_l) \), known as Chen invariants (see [2]). The Chen first invariant is \(\delta_M = \tau - \inf K \), where

\[
(\inf K)(p) = \inf \{K(\pi)|\pi \subset T_p M \text{ plane section}\}.
\]

Let \(l > 0 \) be an integer and \(n_1, ..., n_l \geq 2 \) integers such that \(n_1 < n \) and \(n_1 + ... + n_l \leq n \). The Chen invariant \(\delta(n_1, ..., n_l) \) is defined by

\[
\delta(n_1, ..., n_l)(p) = \tau(p) - \inf \{\tau(L_1) + ... + \tau(L_l)\},
\]

where \(L_1, ..., L_l \) are mutually orthogonal subspaces of \(T_p M \) with dim \(L_j = n_j, j = 1, ..., l \).

For \(l = 1 \) in particular, one has \(\delta(2) = \delta_M \) and \(\delta(n-1) = \max \text{Ric} \), with

\[
\max \text{Ric}(p) = \max \{\text{Ric}(X)|X \in T_p M, g(X, X) = 1\}.
\]

We shall consider the Chen invariant \(\delta(k) \), which is given by

\[
\delta(k)(p) = \tau(p) - \inf \tau(L_k),
\]

where \(L_k \) is any \(k \)-dimensional subspace of \(T_p M \).

3. An Algebraic Inequality

In this section, we give an algebraic inequality and study its equality case. As an application, we get a simple proof of the Chen inequality for the invariant \(\delta(k) \).

Lemma 1. Let \(k, n \) be nonzero natural numbers, \(2 \leq k \leq n - 1 \), and \(a_1, a_2, ..., a_n \in \mathbb{R} \). Then

\[
\sum_{1 \leq i < j \leq n} a_i a_j - \sum_{1 \leq \alpha < \beta \leq k} a_\alpha a_\beta \leq \frac{n - k}{2(n - k + 1)} \left(\sum_{i=1}^{n} a_i \right)^2.
\]

Moreover, the equality holds if and only if \(\sum_{\alpha = 1}^{k} a_\alpha = a_j \), for all \(j \in \{k + 1, ..., n\} \).

Proof. We prove this Lemma by using the Cauchy–Schwarz inequality. We have

\[
\left(\sum_{i=1}^{n} a_i \right)^2 \leq \left(\sum_{\alpha = 1}^{k} a_\alpha + a_{k+1} + ... + a_n \right)^2 \leq \frac{n - k}{2(n - k + 1)} \left(\sum_{i=1}^{n} a_i \right)^2.
\]
which implies the desired inequality.

The equality holds if and only if we have equality in the Cauchy–Schwarz inequality, i.e., \(\sum_{a=1}^{k} a_{a} = a_{j} \), for all \(j \in \{ k + 1, ..., n \} \). \(\square \)

4. Proof of the Chen Inequality for \(\delta(K) \)

We apply Lemma 1 for obtaining a simple proof of the Chen inequality corresponding to the Chen invariant \(\delta(k) \) for submanifolds in Riemannian space forms.

Let \(\bar{M}(c) \) be an \(m \)-dimensional Riemannian space form of constant sectional curvature \(c \). The Euclidean space \(\mathbb{E}^{m} \), the sphere \(S^{m} \) and the hyperbolic space \(H^{m} \) are the standard examples.

Consider \(M \) an \(n \)-dimensional submanifold of \(\bar{M}(c) \) and denote by \(h \) the second fundamental form of \(M \) in \(\bar{M}(c) \). The mean curvature vector \(H(p) \) at \(p \in M \) is defined by

\[
H(p) = \frac{1}{n} \sum_{i=1}^{n} h(e_{i}, e_{i}),
\]

where \(\{ e_{1}, ..., e_{n} \} \) is an orthonormal basis of \(T_{p}M \).

The submanifold \(M \) is called minimal if the mean curvature vector \(H(p) \) vanishes at any \(p \in M \).

We recall the Gauss equation (see [4]):

\[
R(X, Y, Z, W) = c + g(h(X, Z), h(Y, W)) - g(h(X, W), h(Y, Z)),
\]

for all vector fields \(X, Y, Z, W \) tangential to \(M \).

Theorem 1. Let \(\bar{M}(c) \) be an \(m \)-dimensional Riemannian space form of constant sectional curvature \(c \) and \(M \) an \(n \)-dimensional submanifold of \(\bar{M}(c) \). Then, for any \(2 \leq k \leq n - 1 \), one has the following Chen inequality:

\[
\delta(k) \leq \frac{n^{2}(n - k)}{2(n - k + 1)} ||H||^{2} + \frac{1}{2}[n(n - 1) - k(k - 1)]c.
\]

Moreover, the equality holds at a point \(p \in M \) if and only if there exist suitable orthonormal bases \(\{ e_{1}, ..., e_{n} \} \subset T_{p}M \) and \(\{ e_{n+1}, ..., e_{m} \} \subset T_{p}^{\perp}M \) such that the shape operators take the forms

\[
A_{e_{k+1}} = \begin{pmatrix}
 a_{1} & 0 & 0 & ... & 0 \\
 \vdots & \ddots & \vdots & \ddots & \vdots \\
 0 & \ldots & a_{k} & 0 & 0 \\
 0 & \ldots & 0 & \mu & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & \ldots & 0 & 0 & \mu
\end{pmatrix}, \quad \sum_{a=1}^{k} a_{a} = \mu,
\]

\[
A_{e_{r}} = \begin{pmatrix}
 A_{r} & 0 \\
 0 & O_{n-k}
\end{pmatrix}, \quad r = n + 2, ..., m,
\]
where A_r is a symmetric $k \times k$ matrix with trace $A_r = 0$ and O_{n-k} is the $(n-k) \times (n-k)$ null matrix.

Proof. Let $p \in M$, $L \subset T_pM$ be a k-dimensional subspace and $\{e_1, ..., e_k\}$ be an orthonormal basis of L. We take $\{e_1, ..., e_k, e_{k+1}, ..., e_m\} \subset T_pM$ and $\{e_{n+1}, ..., e_m\} \subset T_p^\perp M$ as orthonormal bases, respectively.

Denote as usual by $h^r_{ij} = g(h(e_i, e_j), e_r)$, $i, j = 1, ..., n$, $r \in \{n + 1, ..., m\}$, the components of the second fundamental form.

The Gauss equation implies

$$\tau = \sum_{1 \leq i < j \leq n} K(e_i \wedge e_j) = \sum_{1 \leq i < j \leq n} R(e_i, e_j, e_r) = \frac{n(n-1)}{2} c + \sum_{r=n+1}^m \sum_{1 \leq i < j \leq n} [h^r_{ij}h^r_{ij} - (h^r_{ij})^2].$$

Additionally, by the Gauss equation one has

$$\tau(L) = \frac{k(k-1)}{2} c + \sum_{r=n+1}^m \sum_{1 \leq a < b \leq k} [h^r_{ab}h^r_{ab} - (h^r_{ab})^2].$$

Then we get

$$\tau - \tau(L) = \frac{1}{2}[n(n-1) - k(k-1)]c + \sum_{r=n+1}^m \left(\sum_{1 \leq i < j \leq n} h^r_{ij}h^r_{ij} - \sum_{1 \leq a < b \leq k} h^r_{ab}h^r_{ab} \right) - \sum_{r=n+1}^m \sum_{1 \leq i < j \leq n, (i, j) \notin \{1, ..., k\}^2} (h^r_{ij})^2.$$

By using the algebraic inequality from the previous section, we obtain

$$\tau - \tau(L) \leq \frac{n-k}{2(n-k+1)} \sum_{r=n+1}^m \left(\sum_{i=1}^n h^r_{ii} \right)^2 + \frac{1}{2} [n(n-1) - k(k-1)]c = \frac{n^2(n-k)}{2(n-k+1)} ||H||^2 + \frac{1}{2} [n(n-1) - k(k-1)]c,$$

which implies the inequality to prove.

If the equality case holds at a point $p \in M$, then we have equalities in all the inequalities in the proof, i.e.,

$$\left\{ \begin{array}{l}
\sum_{a=1}^k h^r_{ab} = h^r_{ij}, \forall j \in \{k+1, ..., n\}, \\
h^r_{ij} = 0, \forall 1 \leq i < j \leq n, (i, j) \notin \{1, ..., k\}^2,
\end{array} \right.$$

for any $r \in \{n+1, ..., m\}$.

If we choose e_{n+1} parallel to $H(p)$, then the shape operators take the above forms. \(\square\)

Corollary 1. Let $\tilde{M}(c)$ be an m-dimensional Riemannian space form of constant sectional curvature c and M an n-dimensional submanifold of $\tilde{M}(c)$. If there exists a point $p \in M$ such that $\delta(k)(p) > \frac{1}{2} [n(n-1) - k(k-1)]c$, then M is not minimal.

If $k = 1$, we derive Chen’s first inequality:
Corollary 2. [1] Let $\tilde{M}(c)$ be an m-dimensional Riemannian space form of constant sectional curvature c and M an n-dimensional submanifold of $\tilde{M}(c)$. Then one has
\[
\inf K \geq \tau - \frac{n - 2}{2} \left[\frac{n^2}{n - 1} ||H||^2 + (n + 1)c \right].
\]

Equality holds at a point $p \in M$ if and only if, with respect to suitable orthonormal bases $\{e_1, ..., e_n\} \subset T_p M$ and $\{e_{n+1}, ..., e_m\} \subset T_p M$, the shape operators take the following forms:
\[
A_{e_n} = \begin{pmatrix}
0 & 0 & 0 & \ldots & 0 \\
0 & \mu - a & 0 & \ldots & 0 \\
0 & 0 & \mu & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & \mu
\end{pmatrix}
\]
\[
A_{e_r} = \begin{pmatrix}
h_{r11} & h_{r12} & 0 & \ldots & 0 \\
h_{r12} & -h_{r11} & 0 & \ldots & 0 \\
0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & 0
\end{pmatrix}, \quad r = n + 2, ..., m.
\]

Recall that $\delta(n - 1) = \max \text{Ric}$. Then, from Theorem 1 we deduce the Chen–Ricci inequality:

Corollary 3. [5] Let $\tilde{M}(c)$ be an m-dimensional Riemannian space form of constant sectional curvature c and M an n-dimensional submanifold of $\tilde{M}(c)$. Then, for any $p \in M$ and any unit vector X tangential to M, one has
\[
\text{Ric}(X) \leq \frac{n^2}{4} ||H||^2 + (n - 1)c.
\]

We present the following examples:

Example 1. Let k, n be integers such that $k \geq 2$ and $n \geq 2k - 1$. Consider the hypercylinder $M = S^k \times \mathbb{E}^{n-k} \subset \mathbb{E}^{n+1}$.

Clearly $\delta(k) = \tau = \frac{1}{2}k(k-1)$. Then the equality case of Theorem 1 holds identically if and only if $n = 2k - 1$, i.e., $M = S^k \times \mathbb{E}^{k-1}$.

Moreover, $\max \text{Ric} = \frac{n^2}{4} ||H||^2$ if and only if $k = 2$ and $n = 3$, i.e., $M = S^2 \times \mathbb{E}$.

Example 2. The generalized Clifford torus.

Let $T = S^k(\sqrt{\frac{k}{n}}) \times S^{n-k}(\sqrt{\frac{n-k}{n}}) \subset S^{n+1} \subset \mathbb{E}^{n+2}$, $n > k \geq 1$.

It is known that T is a minimal hypersurface of S^{n+1}, but a non-minimal submanifold of \mathbb{E}^{n+2}.

Obviously $\max \text{Ric} = \max\{(k - 1)\frac{\sqrt{k}}{n}, (n - k - 1)\frac{\sqrt{n-k}}{n-k}\}$.

Then $T \subset S^{n+1}$ does not satisfy the equality case of Theorem 1 for $\delta(n - 1)$, $\forall n \geq 2$.

If we consider $T \subset \mathbb{E}^{n+2}$, then it does not satisfy the equality case of Theorem 1 for $\delta(n - 1)$, $\forall n \geq 2$.
5. A Chen Inequality for Statistical Submanifolds

A statistical manifold is an m-dimensional Riemannian manifold (\tilde{M}, \tilde{g}) endowed with a pair of torsion-free affine connections $\tilde{\nabla}$ and $\tilde{\nabla}^*$, which satisfy

$$Z\tilde{g}(X,Y) = \tilde{g}(\tilde{\nabla}_X Y, Z) + \tilde{g}(X, \tilde{\nabla}^*_Z Y),$$

for any $X,Y,Z \in \Gamma(T\tilde{M})$. The connections $\tilde{\nabla}$ and $\tilde{\nabla}^*$ are called dual connections (see [6,7]), and it is easily seen that $(\tilde{\nabla}^*)^* = \tilde{\nabla}$. The pairing $(\tilde{\nabla}, \tilde{g})$ is said to be a statistical structure. If $(\tilde{\nabla}, \tilde{g})$ is a statistical structure on \tilde{M}, then $(\tilde{\nabla}^*, \tilde{g})$ is a statistical structure too [6,8].

Any torsion-free affine connection $\tilde{\nabla}$ on \tilde{M} always has a dual connection given by

$$\tilde{\nabla} + \tilde{\nabla}^* = 2\tilde{\nabla}^0,$$

where $\tilde{\nabla}^0$ is the Levi–Civita connection on \tilde{M}.

The dual connections are called conjugate connections in affine differential geometry (see [9]).

Denote by \hat{R} and \hat{R}^* the curvature tensor fields of $\tilde{\nabla}$ and $\tilde{\nabla}^*$, respectively. They satisfy

$$\tilde{g}(\hat{R}^*(X,Y)Z, W) = -\tilde{g}(Z, \hat{R}(X,Y)W).$$

A statistical structure $(\tilde{\nabla}, \tilde{g})$ is said to be of constant curvature $\varepsilon \in \mathbb{R}$ if

$$\hat{R}(X,Y)Z = \varepsilon \{g(Y, Z)X - g(X, Z)Y\}. $$

A statistical structure $(\tilde{\nabla}, \tilde{g})$ of constant curvature 0 is called a Hessian structure.

The Equation (2) implies that if $(\tilde{\nabla}, \tilde{g})$ is a statistical structure of constant curvature ε, then $(\tilde{\nabla}^*, \tilde{g})$ is also a statistical structure of constant curvature ε (obviously, if $(\tilde{\nabla}, \tilde{g})$ is Hessian, $(\tilde{\nabla}^*, \tilde{g})$ is also Hessian).

The dual connections are not metric, then we cannot define a sectional curvature in the standard way. A sectional curvature on a statistical manifold was defined by B. Opozda [10].

More precisely, if one considers $p \in \tilde{M}$, π a plane section in $T_p\tilde{M}$ and an orthonormal basis $\{X, Y\}$ of π, then a sectional curvature is defined by

$$\hat{\kappa}(\pi) = \frac{1}{2} \tilde{g}(\hat{R}(X, Y)Y + \hat{R}^*(X, Y)Y, X),$$

which is independent of the choice of the orthonormal basis.

Next, we consider a statistical manifold (\tilde{M}, \tilde{g}) and a submanifold M of dimension n of \tilde{M}. Then $(M, g|_M)$ is also a statistical manifold with the connection induced by $\tilde{\nabla}$ and induced metric g.

In Riemannian geometry, the fundamental equations are the Gauss and Weingarten formulae and the equations of Gauss, Codazzi and Ricci.

As usual, we denote by $\Gamma(T^\perp M)$ the set of the sections of the bundle normal to M.

In our case, for any $X,Y \in \Gamma(TM)$, according to [8], the corresponding Gauss formulae are

$$\tilde{\nabla}_X Y = \nabla_X Y + h(X,Y),$$

$$\nabla^*_X Y = \nabla^*_X Y + h^*(X,Y),$$

where $h, h^* : \Gamma(TM) \times \Gamma(TM) \rightarrow \Gamma(T^\perp M)$ are symmetric and bilinear, called the imbedding curvature tensor (see [6,8]) of M in \tilde{M} for $\tilde{\nabla}$ and the imbedding curvature tensor of M in \tilde{M} for $\tilde{\nabla}^*$, respectively.

In [8], it was also proven that $(\tilde{\nabla}, \tilde{g})$ and $(\tilde{\nabla}^*, \tilde{g})$ are dual statistical structures on M.

Since h and h^* are bilinear, there are linear transformations $A_{\tilde{g}}$ and $A^*_{\tilde{g}}$ on TM defined by

$$\tilde{g}(A_{\tilde{g}} X, Y) = \tilde{g}(h(X, Y), \tilde{c}).$$
for any \(\xi \in \Gamma(T^\perp M) \) and \(X, Y \in \Gamma(TM) \).

Further (see [8]), the corresponding Weingarten formulae are

\[
\nabla_X \xi = -A^\perp_X \xi + \nabla_X^\perp \xi ,
\]

\[
\nabla^\perp_X \xi = -A^\perp_X \xi + \nabla_X^{\perp} \xi ,
\]

for any \(\xi \in \Gamma(T^\perp M) \) and \(X \in \Gamma(TM) \). The connections \(\nabla \) and \(\nabla^{\perp} \) are Riemannian dual connections with respect to the induced metric on \(\Gamma(T^\perp M) \).

Let \(\{e_1, \ldots, e_n\} \) and \(\{e_{n+1}, \ldots, e_m\} \) be orthonormal tangential and normal frames, respectively, on \(M \). Then the mean curvature vector fields are defined by

\[
H = \frac{1}{n} \sum_{i=1}^{n} h(e_i, e_i) = \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{n} h^i_j \right) e_i, \quad h^i_i = g(h(e_i, e_i), e_i),
\]

and

\[
H^{\ast} = \frac{1}{n} \sum_{i=1}^{n} h^\ast(e_i, e_i) = \frac{1}{n} \sum_{i=1}^{n} \left(\sum_{j=1}^{n} h^\ast_{i j} \right) e_i, \quad h^\ast_{i i} = g(h^\ast(e_i, e_i), e_i),
\]

for \(1 \leq i, j \leq n \) and \(n + 1 \leq \alpha \leq m \).

The Gauss equations for the dual connections \(\nabla \) and \(\nabla^{\ast} \), respectively, are given by (see [8])

\[
g(\tilde{R}(X, Y)Z, W) = g(R(X, Y)Z, W) + g(h(X, Z), h^{\ast}(Y, W)) - g(h^{\ast}(X, W), h(Y, Z)),
\]

\[
g(R^{\ast}(X, Y)Z, W) = g(R^{\ast}(X, Y)Z, W) + g(h^{\ast}(X, Z), h(Y, W)) - g(h(X, W), h^{\ast}(Y, Z)),
\]

Geometric inequalities for statistical submanifolds in statistical manifolds with constant curvature were obtained in [11].

In this section we prove the Chen inequality corresponding to the Chen invariant \(\delta(k) \) for statistical submanifolds in statistical manifolds of constant curvature.

We consider an \(m \)-dimensional statistical manifold \(M(\varepsilon) \) of constant curvature \(\varepsilon \) and an \(n \)-dimensional statistical submanifold \(M \). Let \(p \in M \) and \(L \) be a \(k \)-dimensional subspace of \(T_pM \). Denote by \(\{e_1, \ldots, e_k\} \) an orthonormal basis of \(L \), \(\{e_{k+1}, \ldots, e_{n} \} \) an orthonormal basis of \(T_pM \) and \(\{e_{n+1}, \ldots, e_{m}\} \) an orthonormal basis of \(T^pM \), respectively.
The Gauss equation implies
\[
\tau = \frac{1}{2} \sum_{1 \leq i < j \leq n} [g(R(e_i, e_j)e_i, e_i) + g(R^* (e_i, e_j)e_i, e_i)] = \\
= \frac{n(n-1)}{2} \epsilon + \frac{1}{2} \sum_{1 \leq i < j \leq n} [g(h^*(e_i, e_i), h(e_j, e_j)) + g(h(e_j, e_i), h^*(e_i, e_j)) - 2g(h(e_i, e_j), h^*(e_i, e_j))] = \\
= \frac{n(n-1)}{2} \epsilon + \frac{1}{2} \sum_{r=n+1}^{m} \sum_{1 \leq i < j \leq n} (h^*_{ii}h^*_{jj} + h^*_{ij}h^*_{ij} - 2h^*_{ij}h^*_{ij}) = \\
= \frac{n(n-1)}{2} \epsilon + \frac{1}{2} \sum_{r=n+1}^{m} \sum_{1 \leq i < j \leq n} \left((h^*_{ii} + h^*_{ij})(h^*_{ij} + h^*_{ij}) - h^*_{ii}h^*_{ij} - h^*_{ij}h^*_{ii} - (h^*_{ij})^2 \right) = \\
= \frac{n(n-1)}{2} \epsilon + \frac{1}{2} \sum_{r=n+1}^{m} \sum_{1 \leq i < j \leq n} \left\{ 2[h^*_{ii}h^*_{ij} - (h^*_{ij})^2] - \frac{1}{2} [h^*_{ii}h^*_{ij} - (h^*_{ij})^2] - \frac{1}{2} [h^*_{ii}h^*_{ij} - (h^*_{ij})^2] \right\} = \\
= \frac{n(n-1)}{2} \epsilon + \frac{1}{2} \sum_{r=n+1}^{m} \sum_{1 \leq i < j \leq n} \left\{ 2[h^*_{ii}h^*_{ij} - (h^*_{ij})^2] - \frac{1}{2} [h^*_{ii}h^*_{ij} - (h^*_{ij})^2] - \frac{1}{2} [h^*_{ii}h^*_{ij} - (h^*_{ij})^2] \right\}.
\]
where \(h^0 \) is the second fundamental form of the Riemannian submanifold \(M \).

We denote by \(\tau_0 \) the scalar curvature with respect to the Levi–Civita connection and by \(\tilde{\tau}_0 = \sum_{1 \leq i < j \leq n} \tilde{K}_0(e_i \wedge e_j) \).

The Gauss equation with respect to the Levi–Civita connection gives
\[
\tau_0 = \tau_0 + \sum_{r=n+1}^{m} \sum_{1 \leq i < j \leq n} [h^*_{ii}h^*_{ij} - (h^*_{ij})^2].
\]
(5)

By substituting Equation (5) into (4), we get
\[
\tau = 2(\tau_0 - \tilde{\tau}_0) + \frac{n(n-1)}{2} \epsilon - \frac{1}{2} \sum_{r=n+1}^{m} \sum_{1 \leq i < j \leq n} [h^*_{ii}h^*_{ij} - (h^*_{ij})^2] - \frac{1}{2} \sum_{r=n+1}^{m} \sum_{1 \leq i < j \leq n} [h^*_{ii}h^*_{ij} - (h^*_{ij})^2].
\]
(6)
By using Gauss equation, we have

\[\tau(L) = \frac{1}{2} \sum_{1 \leq \alpha < \beta \leq k} [g(R(e_{\alpha}, e_{\beta})e_{\beta}, e_{\alpha}) + g(R^*(e_{\alpha}, e_{\beta})e_{\beta}, e_{\alpha})] = \]

\[= \frac{k(k - 1)}{2} \varepsilon + \frac{1}{2} \sum_{1 \leq \alpha < \beta \leq k} \left[g(h^*(e_{\alpha}, e_{\alpha}), h(e_{\beta}, e_{\beta})) + g(h(e_{\alpha}, e_{\alpha}), h^*(e_{\beta}, e_{\beta})) - 2g(h(e_{\alpha}, e_{\beta}), h^*(e_{\alpha}, e_{\beta})) \right] = \]

\[= \frac{k(k - 1)}{2} \varepsilon + \frac{1}{2} \sum_{r = n + 1}^{m} \sum_{1 \leq \alpha < \beta \leq k} \left(h_{\alpha \alpha}^r h_{r \beta}^r + h_{\alpha \alpha}^r h_{r \beta}^r - 2h_{\alpha \beta}^r h_{r \beta}^r \right) = \]

\[= \frac{k(k - 1)}{2} \varepsilon + \frac{1}{2} \sum_{r = n + 1}^{m} \sum_{1 \leq \alpha < \beta \leq k} \left((h_{\alpha \alpha}^r + h_{\alpha \alpha}^r)(h_{r \beta}^r + h_{r \beta}^r) - h_{r \alpha}^r h_{r \beta}^r - h_{r \alpha}^r h_{r \beta}^r - (h_{r \beta}^r)^2 + (h_{r \beta}^r)^2 \right) = \]

\[= \frac{k(k - 1)}{2} \varepsilon + \sum_{r = n + 1}^{m} \left(\sum_{1 \leq \alpha < \beta \leq k} \left(2h_{\alpha \alpha}^r h_{r \beta}^r - (h_{r \beta}^r)^2 \right) - \frac{1}{2} \left(h_{r \alpha}^r h_{r \beta}^r - (h_{r \beta}^r)^2 \right) \right) = \]

\[= 2\tau_0(L) - 2\tau_0(L) + \frac{k(k - 1)}{2} \varepsilon - \frac{1}{2} \sum_{r = n + 1}^{m} \sum_{1 \leq \alpha < \beta \leq k} \left\{ h_{r \alpha}^r h_{r \beta}^r - (h_{r \beta}^r)^2 \right\} \].

By subtracting the last equation from (4), we obtain

\[(\tau - \tau(L)) - 2(\tau_0 - \tau_0(L)) \geq 2(\tilde{\tau}_0(L) - \tilde{\tau}_0) + \frac{1}{2} |n(n - 1) - k(k - 1)| \varepsilon - \]

\[- \frac{1}{2} \sum_{r = n + 1}^{m} \left(\sum_{1 \leq \alpha < \beta \leq n} h_{r \alpha}^r h_{r \beta}^r - \sum_{1 \leq \alpha < \beta \leq k} h_{r \alpha}^r h_{r \beta}^r \right) - \]

\[- \frac{1}{2} \sum_{r = n + 1}^{m} \left(\sum_{1 \leq \alpha < \beta \leq n} h_{r \alpha}^r h_{r \beta}^r - \sum_{1 \leq \alpha < \beta \leq k} h_{r \alpha}^r h_{r \beta}^r \right). \]

We denote by \(\max \hat{K}_0(p) \) the maximum of the Riemannian sectional curvature function of \(\hat{M}(\varepsilon) \) restricted to 2-plane sections of the tangent space \(T_p M, p \in M \). Obviously

\[\tau_0 - \tilde{\tau}_0(L) \leq \frac{1}{2} |n(n - 1) - k(k - 1)| \max \hat{K}_0(p). \]

On the other hand, by using Lemma 1, one has

\[\sum_{1 \leq i < j \leq n} h_{ij}^r h_{ij}^r - \sum_{1 \leq \alpha < \beta \leq k} h_{r \alpha}^r h_{r \beta}^r \leq \frac{n - k}{2(n - k + 1)} \left(\sum_{i = 1}^{n} h_{ii}^r \right)^2, \]

\[\sum_{1 \leq i < j \leq n} h_{ij}^r h_{ij}^r - \sum_{1 \leq \alpha < \beta \leq k} h_{r \alpha}^r h_{r \beta}^r \leq \frac{n - k}{2(n - k + 1)} \left(\sum_{i = 1}^{n} h_{ii}^r \right)^2. \]

It follows that

\[\tau - \tau(L) \geq 2(\tau_0 - \tau_0(L)) + \frac{1}{2} |n(n - 1) - k(k - 1)| (\varepsilon - 2 \max \hat{K}_0(p)) - \]
We state the following result.

Theorem 2. Let M be an n-dimensional statistical submanifold of an m-dimensional statistical manifold $\tilde{M}(\varepsilon)$ of constant curvature. Then, for any $p \in M$ and any k-plane section L of T_pM, we have:

\[
\tau_0 - \tau_0(L) \leq \frac{1}{2}(\tau - \tau(L)) + \frac{n^2(n-k)}{4(n-k+1)} \left(||H||^2 + ||H^*||^2\right) + \\
\frac{1}{2} \left[n(n-1) - k(k-1)\right](\max \tilde{K}_0(p) - \varepsilon^2).
\]

Moreover, the equality holds at a point $p \in M$ if and only if there exist orthonormal bases $\{e_1, \ldots, e_n\}$ of T_pM and $\{e_{n+1}, \ldots, e_m\}$ of T^\perp_pM such that

\[
\begin{cases}
\sum_{k=1}^{k} h^r_{nn} = h^r_{jj}, \forall j \in \{k+1, \ldots, n\}, \\
\sum_{k=1}^{k} h^r_{NN} = h^r_{jj}, \forall j \in \{k+1, \ldots, n\}, \\
h^r_{ij} = h^r_{ij} = 0, \forall 1 \leq i < j \leq n, (i,j) \notin \{1, \ldots, k\}^2,
\end{cases}
\]

for any $r \in \{n+1, \ldots, m\}$.

Author Contributions: Conceptualization, I.M. and R.-I.M.; methodology, I.M.; validation, I.M. and R.-I.M.; formal analysis, R.-I.M.; investigation, I.M. and R.-I.M.; resources, R.-I.M.; writing–original draft preparation, I.M.; writing–review and editing, R.-I.M.; visualization, R.-I.M.; supervision, I.M.; project administration, I.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, B.-Y. Some pinching and classification theorems for minimal submanifolds. *Arch. Math.* 1993, 60, 568–578. [CrossRef]
2. Chen, B.-Y. Some new obstructions to minimal and Lagrangian isometric immersions. *Jpn. J. Math.* 2000, 26, 105–127. [CrossRef]
3. Mihai, I.; Mihai, R.I. An algebraic inequality with applications to certain Chen inequalities. *Axioms* 2021, 10, 7. [CrossRef]
4. Chen, B.-Y. *Geometry of Submanifolds*; M. Dekker: New York, NY, USA, 1973.
5. Chen, B.-Y. Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions. *Glasg. Math. J.* 1999, 41, 33–41. [CrossRef]
6. Amari, S. *Differential-Geometrical Methods in Statistics*; Springer: Berlin, Germany, 1985.
7. Shima, H. *The Geometry of Hessian Structures*; World Scientific: Singapore, 2007.
8. Vos, P.W. Fundamental equations for statistical submanifolds with applications to the Bartlett correction. *Ann. Inst. Statist. Math.* 1989, 41, 429–450. [CrossRef]
9. Dillen, F.; Nomizu, K.; Vrancken, L. Conjugate connections and Radon’s theorem in affine differential geometry. *Monatsh. Math.* 1990, 108, 221–235. [CrossRef]
10. Opozda, B. Bochner’s technique for statistical structures. *Ann. Glob. Anal. Geom.* 2015, 48, 357–395. [CrossRef]
11. Aydin, M.E.; Mihai, A.; Mihai, I. Some inequalities on submanifolds in statistical manifolds of constant curvature. *Filomat* 2015, 29, 465–477. [CrossRef]