Prevalence of *Helicobacter pylori* among Sudanese patients diagnosed with colon polyps and colon cancer using immunohistochemistry technique

Aziza K. Mohamed¹, Nazik M. Elhassan¹, Zahra A. Awhag¹, Fadwa S. Ali¹, Eman T. Ali¹,², Najwa A. Mhmoud³,⁴, Emmanuel E. Siddig³,⁵,⁶, Rowa Hassan³, Eiman S. Ahmed³, Azam Fattahi⁷, Ayman Ahmed⁸, Mohamed S. Muneer⁹,¹⁰,¹¹, Hussam A. Osman¹², Nouh S. Mohamed¹³,¹⁴,¹⁵, Star and Ali M. M. Edris¹,¹⁶

Abstract

Objectives: Infection with the bacteria *Helicobacter pylori* has been classified as class one carcinogen associated with increasing susceptibility of gastritis and gastric carcinoma. This study is aiming at investigating the prevalence of *H. pylori* among colon polyps and colon cancer patients. A descriptive cross-sectional hospital-based study was conducted between February and June 2017. Sixty-nine formalin-fixed paraffin blocks collected from colon polyps and colon cancer patients to detect *H. pylori* using immunohistochemistry technique.

Results: Of the 69 patients included in the study, 39 (56.5%) males and 30 (43.5%) were females, their age ranged from 21 to 80 years with a mean age of 47.1 ± 19.7. Of the 69 colon polyps and colon cancer patients, 44 (63.8%) were diagnosed as adenocarcinoma, 10 (14.5%) colitis, 15 (21.7%) juvenile polyposis syndrome. The results of immunohistochemistry technique showed the presence of 16 (23.2%) positive patients for *H. pylori* infection. Of these 16, 13 (81.3%) patients were diagnosed with adenocarcinoma and 3 (18.7%) patients were diagnosed with juvenile polyps. The results of *H. pylori* detection among the different colon polyps and colon cancer patients were showing a statistically significant association for *H. pylori* infection and adenocarcinoma, P value 0.028.

Keywords: Colon polyps, Colon cancer, *Helicobacter pylori*, Immunohistochemistry

Introduction

Colorectal cancer (CRC) is accounted as the third most common malignancy and the third most common cause of death due to cancer in both men and women in the US [1]. CRC mostly arises from adenomatous polyps (adenomas) and from hyperplastic polyps [2, 3]. Early diagnosis and surgical removal of these polyps have associated with the decreased in the incidence of mortality [4–6]. Therefore, clinicians started to focus in recent years on the prevention measures that decrease the incidence of developing CRC; although, researchers started to explore the role of several infectious organism and their ability to increase or induce CRC [7–10]. For instance, many epidemiological studies have linked the infection of *Helicobacter pylori* to colorectal neoplasm either through high prevalence of *H. pylori* seropositivity among CRC or colorectal polyp patients [11–13], or through the presence of bacterial products and their trophic effects on colon mucosa [14–17]. Moreover, few studies have linked the presence of *H. pylori* in the stomach or colon with colon cancer and/or polyps [18–23].
It is well known that \textit{H. pylori} predisposes to develop gastric cancer precursor lesions, thus it has been classified as class 1 carcinogen [24]. A recent meta-analysis correlating between \textit{H. pylori} and extra-gastric malignancies revealed a statistically significant relationship of \textit{H. pylori} infection with both colon cancer and polyps [25]. Also, \textit{H. pylori} infection linked with colorectal lesions appeared to be more common in African Americans compared to the Caucasian population in the US [26, 27].

Epidemiological studies have confirmed a causal relationship between \textit{H. pylori} and gastric cancer, and the colonic phenotype of \textit{H. pylori}-related intestinal metaplasia (IM) [28]. Thus, association of \textit{H. pylori} in various gastrointestinal cancers has been investigated, moreover, \textit{Helicobacter} DNAs were prevalent in more than 50\% of hepatobiliary cancer cases [29]. \textit{Helicobacter} species, which may colonize the biliary tract, have been implicated as a possible cause of hepatobiliary diseases ranging from chronic cholecystitis and primary sclerosing cholangitis to gall-bladder carcinoma and primary hepatic carcinomas [30]. Therefore, the hypothesis that \textit{H. pylori} would also be associated with colon lesions needs to be investigated. In Sudan, no reports addressing this manner were existed. Previous studies investigating the seroprevalence of \textit{H. pylori} among Sudanese using ELISA and rapid immunochromatographic tests for the detection of \textit{H. pylori} IgM and IgG antibodies, reported a seroprevalence ranging from 20\% up to 70\% [31–34]. Therefore, the aim of this study was to investigate the presence of \textit{H. pylori} infections among Sudanese patients diagnosed with colon polyps and colon cancer and to correlate between its presence and the type of the lesions.

\textbf{Main text}

\textbf{Materials and methods}

\textit{Sample and data collection}

This is a preliminary, descriptive study aimed to investigate the frequency of \textit{H. pylori} infections among Sudanese patients diagnosed with colon cancer. Data were collected from 69 patients attended the National Laboratory and Alrahmna Laboratory between February and June 2017.

During colonoscopy, presence of abnormal tissue, such as clumps of cells; polyps, formed on the inside of the colon, the pathologists obtained colon biopsies. Colon biopsies were fixed with formalin and processed into paraffin embedded blocks. Formalin-fixed paraffin blocks were used for the immunohistochemical detection of \textit{H. pylori}. Ethical approval was previously obtained by the pathologists of each hospital before colon polyps’ biopsies were taken.

\textit{Preparation of the formalin fixed paraffin blocks}

Four sections from each formalin-fixed paraffin block to increase detection sensitivity were obtained with a thickness of 4 \(\mu\)m using Rotary microtome (LEICA RM2125RT). All sections were de-waxed with two changes of Xylene for 3 min and then dehydrated in descending concentrations of Methanol starting from absolute Methanol through 90\% and lastly, a concentration of 70\% for 2 min in each concentration, and then washed using distilled water.

\textit{Immunohistochemistry diagnosis}

Immunohistochemistry diagnosis was performed on all the obtained sections. Known gastric sections containing \textit{H. pylori} infection was used as positive and negative controls; for the negative control the primary antibody incubation step was omitted. All sections were pretreated to retrieve antigens at 97 °C for 10 min in citrate buffer solution, and then sections were blocked by 3\% Hydrogen peroxide and absolute Methanol for 20 min at humidified chamber. Afterward, sections were blocked into Bovine serum Albumin (Thermo Fisher Scientific, Germany). A rabbit polyclonal antibody ULC3R (BioGenex, USA) (prepared from tissue culture supernatant diluted in PBS, pH 7.6 containing 5\% BSA and 0.09\% Sodium Azaide) against \textit{H. pylori} was applied for 40 min, then washed in buffer solution for 5 min. Then, a polymer solution was applied for 15 min, and washed in buffer solution for 5 min. Chromogen solution was added for 10 min, and washed in distilled water. Finally, Mayer’s Hematoxylin was added for 2 min, and then, sections were blued using running distilled water for 5 min. After bluing, sections were dehydrated, cleared, and mounted in DPX. Prepared sections were investigated microscopically by two experts’ pathologists blindly without knowing the duplication of slides sections of each patient using X40 lens. Results were recorded into categories of positive and negative results; the dot like shape denoted the coccolid form of the organism as describe previously [35–38].

\textit{Statistical analysis}

Descriptive data were analyzed using the Statistical Package for Social Science (SPSS-v20). Pearson Chi-square test was used to test the association of \textit{H. pylori} infection with the different types of lesions. A \(P\) value < 0.05 was considered as a statistically significant.

\textbf{Results}

Of the 69 patients, there were 30 (43.5\%) females and 39 (56.5\%) males, their ages ranged from 21 to 80 years with a mean age 47.1 ± 19.8. 44 (63.8\%) patients were diagnosed with adenocarcinoma, 10 (14.5\%) patients were
colitis, and 15 (21.7%) patients were juvenile polyposis syndrome. No statistically significant was observed for the association of gender and the pathological condition of each patient, P value = 0.649. Out of the 69 patients, 16 (23.2%) patients were positive for H. pylori infection. These 16 positive patients included; 13 (81.3%) patients diagnosed with adenocarcinoma and 3 (18.7%) patients diagnosed with juvenile polyps. The correlation between presence of H. pylori infection and the histopathological condition of patients were positively correlated (P value 0.028) (Table 1).

In respect to Immunohistochemistry diagnosis, the bacteria were prominent and easier to detect in the immune-stained sections in several patterns including organisms attached to the epithelial cells or within the superficial mucus. And in some cases, the bacteria were masked by inspissated mucus or being positioned flat and closely opposed to the epithelial surface. Regarding the morphological appearance of the organism; H. pylori stained brown in color and take a dot and small curved shape in different sizes (Fig. 1).

Discussion

The exact role of H. pylori in the induction of colon cancer is still a debate between the scientific researcher communities; this is attributed to the controversial results obtained. In previous studies, H. pylori were linked to the development of gastric cancer [39], while others reported paradoxical results showing no association between H. pylori and gastric cancer susceptibility [22, 40, 41]. However, reports from Sudan regarding the possible link between H. pylori and colon cancer are scarce. Therefore, in the present study, we examined the presence of H. pylori using immunohistochemistry technique on colon polyps and colon cancer lesions of Sudanese patients underwent colonoscopy.

The results obtained from this study showed a positive correlation between the presence of H. pylori infection and the histopathological diagnosis, as H. pylori was prevalent in higher frequency in patients diagnosed with adenocarcinoma compared to those diagnosed as juvenile polyposis syndrome, and the result was statistically significant. This result also agrees with studies conducted by Jones et al. and Grahn et al. they investigated the presence of H. pylori among 59 patients diagnosed with colon adenocarcinomas using immunohistochemistry technique, and 77 colon and rectum cancer patients using molecular technique, correspondingly [20, 39]. Jones et al., reported that H. pylori were detected in 10/59 adenocarcinoma cases which represent about 16.9% of the total cancer cases studied [39]. While, Grahn et al. showed that H. pylori were present in 27% of the patients; among the studied colon cancer, H. pylori were present in 11/42 (26%) patients [20].

Although, several studies failed to demonstrate any association between H. pylori and colon cancer, or even if this microorganism can colonize the colon [42–46]. This could only be attributed to the ability of demonstrating the H. pylori bacteria, which was achieved by the aid of the immunohistochemistry technique that allowed a better localization of H. pylori within the various colon lesions of colitis, polyps, and adenocarcinoma included in this study.

Interestingly, several theories were proposed regarding the exact role by which H. pylori induced colon cancer, one hypothesis is that colon cancer can be induced by toxins produced by H. pylori; however, this theory was based only on serological data [22, 40, 41, 47]. Furthermore, some studies showed that colitis and colon cancer were also developed in experimental mice models infected with H. hepaticus [46]. Accordingly, the development of colon cancer seems most likely due to

Table 1 Shows the correlation between gender, immunohistochemistry detection of H. pylori with the histopathological diagnosis
Histopathological Diagnosis
Adenocarcinoma
Male
Female
Total
Negative
Positive
Total
the interaction between toxins produced by the bacteria and the immune cells of the mice [46]. Therefore, the results we obtained from our study showing that *H. pylori* were present, nevertheless, it means that *H. pylori* infection is responsible for the induction and the development of colon cancer, since the presence of *H. pylori* could be encountered as post-cancer incidence. This however, still requires more complicated experimental studies to investigate this hypothesis; yet, the role of *H. pylori* cannot be excluded due to this hypothesis. Therefore, this preliminary report needs further advanced experimental investigations to enable the

![Image of detection of *H. pylori* using IHC staining technique.](image-url)

Fig. 1 Detection of *H. pylori* using IHC staining technique. **a** Indicates positive control tissue section of known gastric biopsy infected with *H. pylori*. **b-d** Indicates tissue sections of patients diagnosed with colon polyps and colon cancer. Black arrows indicate *H. pylori* stained brown in color and take a dot and small curved shapes in different sizes.
determination on the exact mechanisms by which \textit{H. pylori} can induce colon cancer.

Conclusion

This study was able to demonstrate the presence of \textit{H. pylori} in colon polyps and colon cancer using immunohistochemistry marker, besides the significant association in the presence of \textit{H. pylori} with colon adenocarcinoma, indeed further studies are required to elaborate more in-depth about the exact role of \textit{H. pylori} in the development of colon cancer.

Limitations

- In this study the sample size studied was relatively small, but still a significant association was observed. A bigger sample size of colon cancer lesions and benign colon lesions; non cancer lesions, should be included in future studies to determine the significant association of \textit{H. pylori} with adenocarcinoma among the Sudanese patients diagnosed with colon cancer.

Abbreviations

DNA: Deoxyribonucleic acid; CRC: Colorectal cancer; IM: Intestinal metaplasia.

Acknowledgements

The authors are grateful to the patients and the staff at the National Laboratory and Al-Rahma Laboratory for their continued collaboration and generous hospitality.

Authors’ contributions

AKM, NME, ZAA, FSA, EES and AMME provided conceptual framework for the project. AKM, NWJ, ZAA, FSA, ETA, NAM, RH, HAO and ESA participated in the preparation of the samples and performed the diagnosis. NSM, AF, EES, MSM, AA, and AMME performed the data analysis and guidance for data interpretation. AA, MSM, ETA, NAM, RH, ESA, AF, and NSM drafted the manuscript. All authors read and approved the final manuscript.

Funding

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate

The study ethical clearance was obtained from University of Khartoum, Faculty of Medical Laboratory Sciences ethical review board. Informed consent was obtained from each participant prior to enrollment using writing and verbal informed consent.

Consent to publish

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1 Department of Histopathology and Cytology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan. 2 Department of Histopathology and Cytology, Faculty of Medical Laboratory Sciences, National University, Sudan, Khartoum, Sudan. 3 Mycetoma Research Center, University of Khartoum, Khartoum, Sudan. 4 Department of Microbiology and Immunology, Faculty of Medical Laboratory Sciences, University of Khartoum, Khartoum, Sudan. 5 School of Medicine, Nile University, Khartoum, Sudan. 6 Department of Histopathology and Cytology, Alfarrabi College for Science and Technology, Khartoum, Sudan. 7 Center for Research and Training in Skin Disease and Leprosy, Tehran University of Medical Sciences, Tehran, Iran. 8 Department of Parasitology and Medical Entomology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan. 9 Department of Neurology, Mayo Clinic, Jacksonville, FL, USA. 10 Department of Radiology, Mayo Clinic, Jacksonville, FL, USA. 11 Department of Internal Medicine, Faculty of Medicine, University of Khartoum, Khartoum, Sudan. 12 Biomedical Research Laboratory, Ahmad University for Women, Omdurman, Sudan. 13 Molecular Biology Department, Alfarrabi College for sciences and Technology, Khartoum, Sudan. 14 Department of Parasitology and Medical Entomology, Faculty of Medicine, Sinnar University, Sinnar, Sudan. 15 Department of Parasitology and Medical Entomology, Faculty of Medical Laboratory Sciences, Nile University, Khartoum, Sudan. 16 Faculty of Applied Medical Sciences, University of Bisha, Bisha, Kingdom of Saudi Arabia.

References

1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.
2. Hawkins NJ, Ward RL. Sporadic colorectal cancers with microsatellite instability and their possible origin in hyperplastic polyps and serrated adenomas. J Natl Cancer Inst. 2001;93:1307–13.
3. Jass JR. Hyperplastic-like polyps as precursors of microsatellite-unstable colorectal cancer. Am J Clin Pathol. 2003;119:773–5.
4. Kahi CJ, Imperiale TF, Julian BE, Rex DK. Effect of screening colonoscopy on colorectal cancer incidence and mortality. Clin Gastroenterol Hepatol. 2009;7:770–5.
5. Levin B, Lieberman DA, McFarland B, Andrews KS, Dash C, Giardiello FM, Glick S, Levin TR. Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. CA Cancer J Clin. 2008;58:130–60.
6. Winawer SJ, Zauber AG, Ho MN, O’Brien MJ, Gottlieb LS, Brooks D, Andrews KS, Waye JD, Schapiro M, Bond JH, Panish JF. Prevention of colorectal cancer by colonoscopic polypectomy. N Engl J Med. 1993;329:1977–81.
7. Burnett-Hartman AN, Newcomb PA, Potter JD. Infectious agents and colorectal cancer: a review of Helicobacter pylori, Streptococcus bovis, JC virus, and human papillomavirus. Cancer Epidemiol Prev Biomarkers. 2008;17:2970–9.
8. Meira LB, Bugni JM, Green SL, Lee C-W, Pang B, Borenshtein D, Rickman BH, Rogers AB, Moroski-Erulk CA, McFaline JL. DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J Clin Invest. 2008;118:2516–25.
9. Parsonnet J. Helicobacter infection as a cause of cancer. Environ Health Perspect. 1995;103:263–8.
10. Dejea C, Wick E, Sears CL. Bacterial oncogenesis in the colon. Future Microbiol. 2013;8:445–60.
11. Fujimori S, Kishida T, Kobayashi T, Sekita Y, Seo T, Nagata K, Tatsuguchi A, Gudis K, Yoko K, Tanaka N. Helicobacter pylori infection increases the risk of colorectal adenoma and adenocarcinoma, especially in women. J Gastroenterol. 2005;40:887–93.
12. Zhao Y-s, Wang F, Chang D, Han B, You D-Y. Meta-analysis of different test indicators: Helicobacter pylori infection and the risk of colorectal cancer. Int J Colorectal Dis. 2008;23:875–82.
13. Zumkeller N, Brenner H, Chang-Claude J, Hoffmeister M, Nieters A, Rothenbacher D. Helicobacter pylori infection, interleukin-1 gene
polymorphisms and the risk of colorectal cancer: evidence from a case-control study in Germany. Eur J Cancer. 2007;43:1283–9.

14. D’Onghia V, Leoncini R, Carli R, Santoro A, Giglioni S, Sorbellini F, Marzocca G, Bennini A, Campagna S, Marinello E. Circulating gastrin and ghrelin levels in patients with colorectal cancer: correlation with tumour stage. Helicobacter pylori infection and BMI. Biomed Pharmacother. 2007;61:137–41.

15. Georgopoulos SD, Polymeros D, Triantafyllou K, Spiliadis C, Mentas A, Karamanolis DG, Lasas SD. Hypergastrinemia is associated with increased risk of distal colon adenomas. Digestion. 2006;74:42–6.

16. Hartwich A, Korteuk S, Perezchalski F, Zuchowicz M, Labza H, Konturek S, Kaczewska E, Bielanski W, Mrozik C, Starzynska T. Helicobacter pylori infection, gastrin, cyclooxygenase-2, and apoptosis in colorectal cancer. Int J Colorectal Dis. 2001;16:202–10.

17. Siddheswarar R, Gray J, Kelly S. Plasma levels of progastrin but not amidated gastrin or cyegmcin extended gastrin are elevated in patients with colorectal carcinoma. Gut. 2001;48:47–52.

18. Bae RC, Jeon SW, Cho HJ, Jung MK, Kweon YO, Kim SK. Gastric dysplasia and cancer in patients with colorectal neoplasia: evidence against an aetiological relationship. World J Gastroenterol. 2009;15:5722.

19. Bulajic M, Stimec B, Ille T, Jesenofsky R, Kecmanovic D, Pavlov M, Ceranic M, Schneider-Brachert W, Lowenfels A, Maisonneuve P. PCR detection of Helicobacter pylori genome in colonic mucosa: normal and malignant. Prilozi. 2007;28:25–38.

20. Grahn N, Hmani-Aifa M, Fransén K, Söderkvist P, Monstein H-J. Molecular identification of Helicobacter DNA present in human colorectal adenocarcinomas by 16 rDNA PCR amplification and pyrosequencing analysis. J Med Microbiol. 2005;54:1031–5.

21. Jones NL, Day AS, Jennings HA, Sherman PM. Helicobacter pylori induces gastric epithelial cell apoptosis in association with increased Fas receptor expression. Infection immunity. 1999;67:4237–42.

22. Muzzo N, Monta Y, Inui T, Asakawa A, Ueno N, Ando T, Kato H, Uchida M, Yoshikawa T, Inui A. Helicobacter pylori infection is associated with colon adenomatous polyps detected by high-resolution colonoscopy. Int J Cancer. 2005;117:1058–9.

23. Soylu A, Ozkara S, Alis H, Dolay K, Kalayci M, Yasar N, Kumbasar AB. Immunohistochemical testing for Helicobacter pylori in colorectal polyps and colorectal carcinoma. J Gastroenterol Hepatol. 2000;15:H25–H25.

24. Ali ET, Fadul TM, Nam ML, Ersad EE, Mohandes NS, Edris AM. Comparison between immunohistochemical marker and conventional histochemical stains in detecting Helicobacter pylori. EC Microbiol. 2018;14(8):430–7.

25. Jones M, Hellwell P, Pritchard C, Tharakan J, Mathew J. Helicobacter pylori in colorectal neoplasms: is there an aetiological relationship? World J Surg Oncol. 2007;5:31.

26. Shmuely H, Passaro D, Figart A, Niv Y, Piltik S, Samra Z, Koren R, Yavah J. Relationship between Helicobacter pylori CagA status and colorectal cancer. Am J Gastroenterol. 2001;96:3406.

27. Fiezman Z, Trott L, Koppelmen Y, Segal A, Sternberg A. Helicobacter pylori seroprevalence and colorectal cancer. Isr Med Assoc J IMAJ. 2000;2:6–9.

28. Limburg PJ, Stolzenberg-Solomon RZ, Colbert LH, Perez-Perez GI, Blaser MJ, Kelly RF, Virtamo J, Albanes D. Helicobacter pylori seropositivity and colorectal cancer risk: a prospective study of male smokers. Cancer Epidemiol Prev Biomarkers. 2002;11:1095–9.

29. Moss SF, Neugut AI, Garbowsky GC, Wang S, Treat MR, Forde KA. Helicobacter pylori seroprevalence and colorectal neoplasia: evidence against an association. JNCI J Natl Cancer Inst. 1995;87:762–3.

30. Siddheswarar R, Muhammad K, Gray J, Kelly S. Seroprevalence of Helicobacter pylori in patients with colorectal polyps and colorectal carcinoma. Am J Gastroenterol. 2001;96:84.

31. Luzzas F, Maletta M, Imeneo M, Monteleone G, Marasco R, Biancone L, Pallone F. Evidence against colonic mucosa colonisation by Helicobacter pylori Lack of a specific antibody response in homogenates of rectal endoscopic biopsies. Ital J Gastroenterol. 1996;28:447–51.

32. Bell S, Chisholm S, Owen R, Bonello S, Kimm M. Evaluation of Helicobacter species in inflammatory bowel disease. Aliment Pharmacol Ther. 2003;18:481–6.

33. Hsu W-Y, Lin C-H, Lin C-C, Sung F-C, Hsu C-P, Kao C-H. The relationship between Helicobacter pylori and cancer risk. Eur J Internal Med. 2014;25:235–40.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.