The study of the effect of the concentration of propylene in the PPF to the liquid yield of the reaction

Saida Jamalova
Institute of Petrochemical Processes of ANAS, Baku
saida.jamalova1@gmail.com

ABSTRACT
The results of the study of the effect of the concentration of propylene to propane-propylene fraction to a liquid yield of the reaction depending on the feed space velocity are presented. The results in the presence of a chromia-alumina catalyst in oxides of Ni, Co, Cr are examined. The optimal reaction conditions (T-280°C, \(V_{\text{overall velocity}} \) 50-200 h\(^{-1}\)), in which the liquid yield of the reaction was determined depending on the concentration of \(C_3H_8 \) and \(C_3H_6 \) in the raw feedstock, were set.

Indexing terms/Keywords
Paraffin, olefins of alkylation, liquid yield of the reaction
One of the most important tasks of oil refining from both the environmental as well as economic points of view is the effective use of hydrocarbon residue gas of refineries and the chemical industry for the production of light oil products and raw materials for the petrochemical industry. The problem of using gases of catalytic cracking can be solved to a great degree by the introduction of new processes of their alkylation over zeolite-containing catalysts in oil refining. In this regard, the problem of expansion of production of alkylation gasoline, which share now accounts for about one seventh of the total volume of the world's gasoline production, arises.

Most part of alkylation gasoline is produced by reacting isobutane with C2–C5 olefins in the presence of a catalyst. A drawback of these productions is the formation of acid sludge as well as the use of solely isoparaffins as a raw material. In this regard, the importance of developing new processes using heterogeneous catalysts is increasing. Development and implementation of recycling process of gases of oil refineries would allow production of an additional amount of automobile gasoline and drastic reduction of the amount of harmful emissions into the atmosphere.

Modern automobile gasoline is prepared by mixing the components obtained by direct distillation, catalytic cracking and reforming, alkylation, isomerization, polymerization and other refining processes [1]. Alkylate, obtained by alkylation isobutane with C2–C5 olefins, is one of the most promising components among them. Alkylate is a component satisfying the technical-operational and environmental requirements of modern European standards for fuel. This process significantly reduces manufacturing costs and provides high-quality gasoline [2].

Currently, one of the most important areas of modern petrochemistry is the development of new solid acid catalysts of alkylation over zeolites. Zeolites have sufficient activity, stability and the ability to regenerate, which is essential for the practical implementation of the process. It is commonly known, zeolites are multifunctional. They possess isomerizing, hydrogenating and dehydrogenating properties and can lead reaction to oligomerization of cracking, cyclization. Unlike mineral acids, zeolite catalysts may be modified and promoted. At that, there is no need to separate the catalyst from the reaction mixture, and it becomes possible to carry out the process in continuous conditions and the environmental conditions significantly improve [3,4,5].

Of all the existing methods for producing unsaturated hydrocarbons, the main share is accounted for the catalytic dehydrogenation of n-paraffins. This is due to the large number of studies conducted on the improvement and development of new catalysts [6,7].

EXPERIMENTAL PART

The purpose of this study is to investigate the activity of the chromia-alumina catalyst promoted with oxides of Ni, Co, Cr and study of the effect of the concentration of propylene to propane-propylene fraction to a liquid yield of the reaction depending on the feed space velocity.

One of the characteristics of the recommended process, developed in Institute of Petrochemical Processes of Azerbaijan National Academy of Sciences, is the involvement of paraffins contained in the gases of the catalytic cracking in the alkylation reaction via their dehydrogenation to the corresponding olefins. The resulting propylene C2–C5 participates in the alkylation reaction of paraffins. With this purpose, modifiers Ni, Cu, Co in an amount of 10% are added into composition of the industrial zeolite catalyst OMNIKAT-210P by applying them to a base, γ-Al₂O₃ in an amount of 10% is taken as the binder. The reactor was charged with the catalyst in an amount of 30 cm³. We have found that in the catalyst subjected to calcination under vacuum at a temperature ~500–550°C, NiAl₂O₄ and CoAl₂O₄ are formed, presence of which leads to formation of olefins by dehydrogenation of the corresponding paraffins.

In order to study the effect of the concentration of C₃H₆ in the initial fraction to yield liquid reaction products, artificial mixture of from pure propane and propylene was prepared (95–96% purity). The concentration of propylene in the artificial mixture was varied from 40 to 60% at a constant feed space velocity of PPF (50–200 h⁻¹). The volume of the loaded zeolite catalyst - 30 cm³. Studies were carried out at a temperature of 280°C. The contact time at a feed space velocity of PPF 50 h⁻¹ is 22.4 seconds (Table 1).

As shown in Table 2, when changing the concentration of C₃H₆ from 40 to 60% of volume concentration of C₃H₆ changes from 60 to 40%. At a feed space velocity of PPF 50 h⁻¹, 100% conversion of C₃H₆ is observed. Conversion of C₂H₆ thus increases from 9.8% at its content in the initial fraction of 60% to 28.7% at its content of 50%. Then conversion of C₂H₆ is somewhat reduced to 24.4% at 40% concentration of C₂H₆. With increasing concentrations of C₂H₆ in the mixture of 40 to 60%, yield of liquid product per unit weight of the catalyst increases from 0.068 g/hr to 0.1 g/hr. The yield of liquid to the original PPF increased from 42.4 to 69.8%. The yield of liquid on C₃H₆ increased from 117.3 wt% at a concentration of C₂H₆ in the initial mixture in 40 wt% to 124.37 wt% at 50% concentration of C₂H₆, and then liquid propylene yield decreased to 116.3% (Table 3).
Table 1. Change of technological parameters of process of conversion of \(\text{C}_3\text{H}_6 \) and \(\text{C}_3\text{H}_8 \) into the liquid yield of reaction (t=280°C): (Cross-section of reactor-3.14 cm\(^2\), catalyst weight -18.1 g, Catalyst volume -30 cm\(^3\), height of catalyst layer -6 cm)

Indicators	Composition of raw material, l/h			
	\(\text{C}_3\text{H}_6 \)	0.6	0.75	0.9
	\(\text{C}_3\text{H}_8 \)	0.9	0.75	0.6
\(\text{V}_{\text{overall}} \), h\(^{-1}\)	50.0			
\(\text{V}_{\text{steam}} \), l/h	1.5			
\(\text{V}_{\text{steam}} \) (t), l/h	3.04			
\(\text{V}_{\text{overall}} \) (t), h\(^{-1}\)	101.3			
\(\text{V}_{\text{linear}} \), cm/s	0.268			
\(\tau \), sec	22.4			

Table 2. Change of conversion of \(\text{C}_3\text{H}_8 \) and \(\text{C}_3\text{H}_6 \) depending on their concentration in raw material composition (t=280°C)

Indicators	Units of meas.	Concentration of components in raw material, wt%	\(\text{C}_3\text{H}_6 \)	40	50	60	
		\(\text{C}_3\text{H}_6 \)	\(\text{C}_3\text{H}_8 \)	\(\text{C}_3\text{H}_6 \)	\(\text{C}_3\text{H}_8 \)	\(\text{C}_3\text{H}_6 \)	\(\text{C}_3\text{H}_8 \)
\(\text{C}_3\text{H}_6 \) init.	g/h	1.885	1.178	1.125			
\(\text{C}_3\text{H}_6 \) prom.	g/h	1.7	0.84	0.85			
\(\text{C}_3\text{H}_6 \) init.	g/h	1.068	1.387	1.687			
\(\text{C}_3\text{H}_6 \) from dehyd.\(\text{C}_3\text{H}_8 \)	g/h	0.176	0.32	0.262			
\(\text{C}_3\text{H}_6 \) prom.	g/h	-	-	-			
Conversion of \(\Sigma \text{C}_3\text{H}_6 \)	g/h	1.244	1.707	1.95			
Conversion of \(\text{C}_3\text{H}_6 \)	g/h	0.185	0.338	0.275			
Conversion of \(\text{C}_3\text{H}_8 \)	wt%	9.8	28.7	24.4			
Conversion of \(\text{C}_3\text{H}_6 \)	wt%	100	100	100			

Table 3. Change of conversion rate of \(\text{C}_3\text{H}_8 \) и \(\text{C}_3\text{H}_6 \) and the liquid yield of reaction depending on concentration of \(\text{C}_3\text{H}_6 \) and \(\text{C}_3\text{H}_8 \) in raw material (t=280°C)

Indicators	Units of meas.	Composition of raw material, %					
		\(\text{C}_3\text{H}_6 \)	\(\text{C}_3\text{H}_8 \)	\(\text{C}_3\text{H}_6 \)	\(\text{C}_3\text{H}_8 \)	\(\text{C}_3\text{H}_6 \)	\(\text{C}_3\text{H}_8 \)
Conversion of \(\text{C}_3\text{H}_6 \)	mole/h	0.03	0.04	0.046			
Conversion rate of \(\Sigma \text{C}_3\text{H}_6 \),10\(^{-4}\)	mole/l, sec	2.74	3.76	4.26			
Conversion of \(\text{C}_3\text{H}_6 \)	mole/h	0.0042	0.0077	0.00625			
Conversion rate of \(\Sigma \text{C}_3\text{H}_6 \),10\(^{-4}\)	mole/l, sec	0.39	0.71	0.58			
Quantity of liquid product	g/h	1.253	1.725	1.962			
Yield of liquid product per unit weight of the catalyst	g/h	0.068	0.094	0.1			
Yield of liquid raw product	wt%	42.43	67.25	69.77			
Yield of liquid original propylene	wt%	117.32	124.37	116.3			
From the above it follows that the \(\text{C}_3\text{H}_6 \) is fully involved in the reaction and \(\text{C}_3\text{H}_8 \) is alkylated, the maximum amount thereof that is involved in the reaction is achieved at 50% content in the original mixture. Further reduction of the concentration of \(\text{C}_3\text{H}_8 \) in the original mixture leads to a reduction of alkylation reaction of \(\text{C}_3\text{H}_6 \) by propylene and therefore the yield of liquid is reducing based on the initial \(\text{C}_3\text{H}_6 \).

When the feed space velocity of 100 h\(^{-1} \) (process indicators are given in Table 4) yield of liquid per unit of weight of the catalyst increases from 0.105 to 0.257 g/h at a 50% concentration of \(\text{C}_3\text{H}_6 \), and then reduces to 0.1 g/h. The yield of liquid to original propylene and further increase of the concentration of \(\text{C}_3\text{H}_6 \) in the feedstock does not lead to increase of the yield of liquid products (see Table 6). The yield of liquid product on feedstock from increase the concentration of \(\text{C}_3\text{H}_6 \) in the feedstock increases from 33.02 to 80.9 wt% to 50% of \(\text{C}_3\text{H}_6 \) content in the feedstock then is reduced to 34.6 wt% at the content of \(\text{C}_3\text{H}_6 \) in 60% by volume.

By increasing the feed space velocity from 50 to 200 h\(^{-1} \), conversion of \(\text{C}_3\text{H}_6 \) increases from ~9.5 to 10.5 wt%, while reducing the yield of liquid products both to \(\text{C}_3\text{H}_6 \) and all the feedstock, wherein the concentration of \(\text{C}_3\text{H}_8 \) accounts for 40%, the rest is \(\text{C}_3\text{H}_6 \). Consequently, with increasing of partial pressure of \(\text{C}_3\text{H}_6 \), alkylation reaction of \(\text{C}_3\text{H}_8 \) by propylene also increases.

With the content of \(\text{C}_3\text{H}_6 \) the feedstock in amount of 50%, the conversion of \(\text{C}_3\text{H}_6 \) increases to feed space velocity of 100 h\(^{-1} \). Then \(\text{C}_3\text{H}_6 \) conversion decreases from 61 to ~8%. As a consequence, the yield of liquid raw material initially increases and after 100 h\(^{-1} \) decreases. Decrease the concentration of \(\text{C}_3\text{H}_6 \) in the feed to 40% leads to reduction the conversion of \(\text{C}_3\text{H}_6 \), caused by the decrease of its partial pressure. This leads to a reduction of alkylation reaction of \(\text{C}_3\text{H}_8 \) by propylene. The yield of liquid to the source \(\text{C}_3\text{H}_6 \) decreases from ~120 to 15%. This decrease means a reduction of alkylation reaction of \(\text{C}_3\text{H}_6 \) by propylene.

The contact time of hydrocarbon vapors with the catalyst is 11.2 sec (Table 4). With increase of contact time (5.6-11.2-22.4 s) or decrease of feed space velocity (PPF) (200-100-50 h\(^{-1} \)) from 5.6 to 11.2, yield of liquid product per unit weight of the catalyst increases from 0.128 to 0.257 g/h but further increase of the contact time to 22.4 leads to decrease in the yield of liquid per unit weight of the catalyst.

Table 4. Change of technological parameters of process of conversion of \(\text{C}_3\text{H}_6 \) and \(\text{C}_3\text{H}_8 \) into the liquid yield of reaction (\(t=280^\circ \text{C} \))

Indicators	Composition of raw material, l/h			
	\(\text{C}_3\text{H}_6 \)	1.2	1.5	1.8
	\(\text{C}_3\text{H}_8 \)	1.8	1.5	1.2
\(V_{\text{overall velocity}} \), h\(^{-1} \)	100			
\(V_{\text{steam volume}} \), l/h	3			
\(V_{\text{steam volume}} \) (t), l/h	6.07			
\(V_{\text{overall velocity}} \) (t), h\(^{-1} \)	202.56			
\(V_{\text{linear velocity}} \) cm/sec	0.537			
\(\tau_\text{k} \), sec	11.2			
These compounds are adsorbing on the catalyst surface at the reaction temperature (280°C) and are not desorbing, thereby lowering the number of active centers and reducing the active surface, which leads to a decrease in the yield of liquid per unit weight of the catalyst. The yield of liquid to the source C₃H₆ with increase of a contact time from 11.2 seconds to 22.4 seconds, which corresponds to the feed space velocity from 100 to 50 h⁻¹ (Table 1, 4), is reduced from 152.5 to 124.4 %.

With feed space velocity of 200 h⁻¹ (Table 7), which corresponds to a contact time of 5.58 s, yield of liquids to introduced C₃H₆ is also reduced from 152.5% at τᵣ=11.2 s. (Table 4) to 40% at 5.58 s. Essentially doubling reducing the contact time results in fact that the residence time of C₃H₆ on the surface is not enough for both dimerization like reaction and involving of C₃H₆ in alkylation reaction. And increasing the contact time from 5.6 to 22.4 leads to increased conversion of C₃H₆ from 6.8 to 61.1%. Thus, with 50% concentration of propane, increasing the contact time promotes the alkylation reaction of C₃H₆ by propylene. Table 8 presents the value of the conversion of propane and propylene, depending on their initial concentration in the feedstock. Table 9 presents the value of the transformation rate of propane and propylene into yield liquid reaction products, depending on the concentration of propane and propylene in the feedstock.

Table 5. Change of conversion of C₃H₆ and C₄H₈ depending on their concentration in raw material composition (t=280°C)

Indicators	Units of meas.	Concentration of components in raw material, wt%							
		C₃H₆	40	50	60	C₄H₈	60	50	40
C₃H₆ init.	g/h		3.528	2.7	2.27		2.25	3.05	3.287
C₃H₆ prom.	g/h		3.2	1.05	1.65				
C₄H₈ init.	g/h		2.25	3.05	3.287				
C₃H₆ from dehyd.C₄H₈	g/h	0.313	1.575	0.592					
C₄H₈ prom.	g/h	0.67	0.025	1.984					
Conversion of Σ C₃H₆	g/h	1.893	4.6	1.895					
Conversion of C₄H₈	g/h	0.328	1.65	0.62					
Conversion of C₃H₆	wt%	9.3	61.1	27.3					
Conversion of C₄H₈	wt%	70.2	99.2	39.6					

This is explained by the fact that with increase of the contact time, emerging dimers were further converted with emergence of trimers, cyclic hydrocarbons, etc. These compounds are adsorbing on the catalyst surface at the reaction temperature (280°C) and are not desorbing, thereby lowering the number of active centers and reducing the active surface, which leads to a decrease in the yield of liquid per unit weight of the catalyst. The yield of liquid to the source C₃H₆ with increase of a contact time from 11.2 seconds to 22.4 seconds, which corresponds to the feed space velocity from 100 to 50 h⁻¹ (Table 1, 4), is reduced from 152.5 to 124.4 %.

With feed space velocity of 200 h⁻¹ (Table 7), which corresponds to a contact time of 5.58 s, yield of liquids to introduced C₃H₆ is also reduced from 152.5% at τᵣ=11.2 s. (Table 4) to 40% at 5.58 s. Essentially doubling reducing the contact time results in fact that the residence time of C₃H₆ on the surface is not enough for both dimerization like reaction and involving of C₃H₆ in alkylation reaction. And increasing the contact time from 5.6 to 22.4 leads to increased conversion of C₃H₆ from 6.8 to 61.1%. Thus, with 50% concentration of propane, increasing the contact time promotes the alkylation reaction of C₃H₆ by propylene. Table 8 presents the value of the conversion of propane and propylene, depending on their initial concentration in the feedstock. Table 9 presents the value of the transformation rate of propane and propylene into yield liquid reaction products, depending on the concentration of propane and propylene in the feedstock.

Table 6. Change of conversion rate of C₃H₆ и C₄H₈ and the liquid yield of reaction depending on concentration of C₃H₆ and C₄H₈ in raw material (t=280°C)

Indicators	Ед.изм.	Concentration of components in raw material, wt%							
		C₃H₆	40	50	60	C₄H₈	60	50	40
Conversion rate of Σ C₃H₆10⁻⁴	mole/l sec	4.16	10.2	0.045					
Conversion of Σ C₄H₈	mole/l sec	0.045	0.11	0.045					
Conversion of C₃H₆	g/mole	0.00745	0.0375	0.014					
Conversion rate of Σ C₄H₈10⁻⁴	mole/l sec	0.69	3.47	1.3					
Quantity of liquid product	g/h	1.908	4.65	1.923					
Yield of liquid product per unit weight of the catalyst	g/h·sec	0.105	0.257	0.1					
Yield of liquid raw product	wt%	33.02	80.87	34.6					
Yield of liquid original propylene	wt%	84.8	152.46	58.5					
Table 7. Change of technological parameters of process of conversion of C\textsubscript{3}H\textsubscript{6} and C\textsubscript{3}H\textsubscript{8} into the liquid yield of reaction (t=280\textdegree C)

Indicators	Composition of raw material, l/h	
	C\textsubscript{3}H\textsubscript{6}	C\textsubscript{3}H\textsubscript{8}
V\textsubscript{overall} velocity, h-1	200	
V\textsubscript{steam} volume, l/h	6	
V\textsubscript{steam} volume(l), l/h	12.15	
V\textsubscript{overall} velocity (l), h-1	405	
V\textsubscript{linear} velocity sm/sec	1.075	
t\textsubscript{c}, sec	5.58	

Table 8. Change of conversion of C\textsubscript{3}H\textsubscript{8} and C\textsubscript{3}H\textsubscript{6} depending on their concentration in raw material composition (t=280\textdegree C)

Indicators	Units of meas.	Concentration of components in raw material, wt%			
		C\textsubscript{3}H\textsubscript{6}	C\textsubscript{3}H\textsubscript{8}	C\textsubscript{3}H\textsubscript{8}	C\textsubscript{3}H\textsubscript{8}
C\textsubscript{3}H\textsubscript{6} init.	g/h	6.43	5.7	4.56	
C\textsubscript{3}H\textsubscript{8} prom.	g/h	5.747	5.31	4.36	
C\textsubscript{3}H\textsubscript{6} init.	g/h	5.1	5.8	6.89	
C\textsubscript{3}H\textsubscript{8} from dehyd.C\textsubscript{3}H\textsubscript{8}	g/h	0.652	0.37	0.191	
C\textsubscript{3}H\textsubscript{8} prom.	g/h	4.12	3.87	6.037	
Conversion of \Sigma C\textsubscript{3}H\textsubscript{6}	g/h	1.632	2.3	1.044	
Conversion of C\textsubscript{3}H\textsubscript{8}	g/h	0.683	0.39	0.2	
Conversion of C\textsubscript{3}H\textsubscript{8}	wt%	10.62	6.8	4.4	
Conversion of C\textsubscript{3}H\textsubscript{8}	wt%	28.3	37.27	14.7	

Table 9. Change of conversion rate of C\textsubscript{3}H\textsubscript{8} и C\textsubscript{3}H\textsubscript{6} and the liquid yield of reaction depending on concentration of C\textsubscript{3}H\textsubscript{6} and C\textsubscript{3}H\textsubscript{8} in raw material (t=280\textdegree C)

Indicators	Units of meas.	Concentration of components in raw material, wt%			
		C\textsubscript{3}H\textsubscript{6}	C\textsubscript{3}H\textsubscript{8}	C\textsubscript{3}H\textsubscript{8}	C\textsubscript{3}H\textsubscript{8}
Conversion rate of \Sigma C\textsubscript{3}H\textsubscript{6}10-4	mole/l\.sec	3.52	5	2.3	
Conversion of \Sigma C\textsubscript{3}H\textsubscript{8}	mole/h	0.038	0.054	0.025	
Conversion of C\textsubscript{3}H\textsubscript{8}	g/mole	0.015	0.009	0.0045	
Conversion rate of \Sigma C\textsubscript{3}H\textsubscript{8}10-4	mole/l\.sec	1.43	0.83	0.42	
Quantity of liquid product	g/h	1.663	2.32	1.053	
Yield of liquid product per unit weight of the catalyst	g/h.sec	0.09	0.128	0.058	
Yield of liquid raw product	wt%	14.42	20.17	9.19	
Yield of liquid original propylene	wt%	32.6	40	15.3	
CONCLUSION

Changes in the concentration of propylene in the PPF (propane propylene fraction) to the yield of liquid products are described in the proposed article:

With the increase of space velocity (50-200 h\(^{-1}\)) at a temperature of 280°C, conversion of C\(_3\)H\(_8\) increases from 28.7% to 61.1% and with a further increase in the space velocity decreases to 6.8%. At the same conditions C\(_3\)H\(_6\) reduces from 100% to 99.2% and, at higher space velocity with concentration of the components in the initial mixture (50/50 of C\(_3\)H\(_8\) и C\(_3\)H\(_6\)), conversion decreases to 37.27%.

As it can be seen from Table 2, C\(_3\)H\(_6\) is fully involved in the reaction but C\(_3\)H\(_8\) is subjected to alkylation.

It is established that the yield of liquid products at the initial propylene (\(V_{\text{overall velocity}}\), 50-200 h\(^{-1}\)) increases from 124.37% to 152.46% and at higher feed space velocity reduces to 40%. The best option of experiment is \(\tau=11.2\)sec, \(V_{\text{overall velocity}}=100\) h\(^{-1}\).

REFERENCES

1. M.I. Rustamov, A.S. Tonisun, D.N. Mamedov. Sovremenny spravochnik po neftyanym toplivam i tekhnologiyam ikh proizvodstva. – Baku. -2005. –p.640.
2. O.I. Dmitrichenko, V.A. Berezin, Ye.V. Perin, V.N. Perin. Alkilat ideľnyy komponent sovremennykh avtomobil'nykh benzinov. //Neftepererabotka i neftekhimi. -2010. -№ 10 -pp.18-20.
3. D.B. Tagiyev. Kristallicheskiye alyumosilikaty v katalize. –Baku. -M.Nauka. -1988. –p.224.
4. O.V. Krylov. Geterogennyy kataliz. –M.Nauka. -2005. –p.614.
5. V.D. Amiko, Dzh.Gizeman, E. Van Brukhoven i dr. Novyye sposoby uvelicheniya vyrbitki chistogo alkilata. //Neftegazovyye tehnologii. -2006. -№ 6. –p.95.
6. Z.R. Ismaylova, S.A. Dzhamalova, S.A. Zeynalova, S.M. Gadzhizade, A.A. Kasimov. Izucheniyewith vliyaniya technologicheskikh parametrov protsesa prevrashcheniya propan-propilennovoy fraktii na vykhod zhidkikh produktov reaktii na pro-motirovannom tseolitsoderzhashchem katalizatora OMNIKAT. //AKHZH. -№ 3. -2007, -p.198.
7. S.A. Jamalova. Prevrashcheniye uglevodorodov, vkhodyashchikh v sostav propan-propilennovoy fraktii na tseolitsoderzhashchem katalizatore. //AKHZH. -№ 4. -2002. –p.71.