ON STABILITY AND GENERALIZATION OF BILEVEL OPTIMIZATION PROBLEM

Meng Ding
Department of Computer Science and Engineering
The State University of New York at Buffalo

Mingxi Lei
Department of Computer Science and Engineering
The State University of New York at Buffalo

Yunwen Lei
School of Computer Science
University of Birmingham

Di Wang
Division of CEMSE
King Abdullah University of Science and Technology

Jinhui Xu
Department of Computer Science and Engineering
The State University of New York at Buffalo

ABSTRACT

(Stochastic) bilevel optimization is a frequently encountered problem in machine learning with a wide range of applications such as meta-learning, hyper-parameter optimization, and reinforcement learning. Most of the existing studies on this problem only focused on analyzing the convergence or improving the convergence rate, while little effort has been devoted to understanding its generalization behaviors. In this paper, we conduct a thorough analysis on the generalization of first-order (gradient-based) methods for the bilevel optimization problem. We first establish a fundamental connection between algorithmic stability and generalization error in different forms and give a high probability generalization bound which improves the previous best one from $\mathcal{O}(\sqrt{n})$ to $\mathcal{O}(\log n)$, where n is the sample size. We then provide the first stability bounds for the general case where both inner and outer level parameters are subject to continuous update, while existing work allows only the outer level parameter to be updated. Our analysis can be applied in various standard settings such as strongly-convex-strongly-convex (SC-SC), convex-convex (C-C), and nonconvex-nonconvex (NC-NC). Our analysis for the NC-NC setting can also be extended to a particular nonconvex-strongly-convex (NC-SC) setting that is commonly encountered in practice. Finally, we corroborate our theoretical analysis and demonstrate how iterations can affect the generalization error by experiments on meta-learning and hyper-parameter optimization.

1 INTRODUCTION

(Stochastic) bilevel optimization is a widely confronted problem in machine learning with various applications such as meta-learning [Finn et al. 2017; Bertinetto et al. 2018; Rajeswaran et al. 2019], hyper-parameter optimization [Franceschi et al. 2018; Shaban et al. 2019; Baydin et al. 2017; Bergstra et al. 2011; Luketina et al. 2016], reinforcement learning [Hong et al. 2020], and few-shot learning [Koch et al. 2015; Santoro et al. 2016; Vinyals et al. 2016]. The basic form of this problem can be defined as follows

$$\min_{x \in \mathbb{R}^{d_1}} R(x) = F'(x, y^*(x)) := \mathbb{E}_\xi [f(x, y^*(x); \xi)]$$

subject to

$$y^*(x) = \arg \min_{y \in \mathbb{R}^{d_2}} \{G(x, y) := \mathbb{E}_\zeta [g(x, y; \zeta)]\},$$

where $f : \mathbb{R}^{d_1} \times \mathbb{R}^{d_2} \to \mathbb{R}$ and $g : \mathbb{R}^{d_1} \times \mathbb{R}^{d_2} \to \mathbb{R}$ are two continuously differentiable loss functions with respect to x and y. Problem (1) has an optimization hierarchy of two levels, where
the outer-level objective function f depends on the minimizer of the inner-level objective function g.

Due to its importance, the above bilevel optimization problem has received considerable attention in recent years. A natural way to solve problem (1) is to apply alternating stochastic gradient updates with approximating $\nabla g(x, y)$ and $\nabla f(x, y)$, respectively. Briefly speaking, previous efforts mainly examined two types of methods to perceive an approximate solution that is close to the optimum $g^*(x)$. One is to utilize the single-timescale strategy (Chen et al., 2021; Guo et al., 2021; Khanduri et al., 2021; Hu et al., 2022), where the updates for y and x are carried out simultaneously. The other one is to apply the two-timescale strategy (Ghadimi & Wang, 2018; Ji et al., 2021; Hong et al., 2020; Pedregosa, 2016), where the update of y is repeated multiple times to achieve a more accurate approximation before conducting the update of x.

While there is a long list of work on bilevel optimization, most of the existing work only focuses on either analyzing its convergence behaviors (Ghadimi & Wang, 2018; Hong et al., 2020; Ji et al., 2021) or improving its convergence rate, based on the convexity and the smoothness properties of $f(\cdot, \cdot)$ and/or $g(\cdot, \cdot)$ (Liu et al., 2020; Li et al., 2020). Contrarily, only little effort is devoted to understanding the generalization behavior of the problem. To the best of our knowledge, only one recent work considers generalization (Bao et al., 2021), which presents the first expected stability bound for the bilevel optimization problem. Unfortunately, the problem is still far from well-understood and there are several undesirable issues in this work: (1) Their study is only for the hyper-parameter optimization problem, which is only a special instance of bilevel optimization. Thus, the stability for general bilevel optimization is still unknown; (2) Their result is only for the uniform stability (which could be deduced from argument stability with certain conditions, see Definition 4 for details), leaving the analysis of other stronger definitions of algorithmic stability open; (3) Bao et al. (2021) only considers a general setting for inner function. However, there are some technical flaws in their analysis (see Remark 4 for detailed discussions) and their bound is quite loose in some cases. For example, in the case where the inner function is strongly convex, it is known that even in the classical stochastic convex optimization, strongly convex functions have better stability than the convex ones (Hardt et al., 2016). Thus, it is possible to provide improved stability bounds in some cases via different and novel analysis; (4) Their work only considers a special class of optimization algorithms, which allows the outer level parameters to be updated continuously but needs to reinitialize the inner level parameters before each iteration in the inner level. However, such algorithms are not commonly used in practice due to their inefficiency; (5) Their experiments take only hyper-parameter optimization into consideration and neglect other applications in the bilevel optimization instances.

To address all the aforementioned issues, we give in this paper a thorough analysis on the generalization behaviors of first-order (gradient-based) methods for general bilevel optimization problem. We employ the recent advances of algorithmic stability to investigate the generalization behaviors in different settings. Specifically, our main contributions can be summarized as follows:

- Firstly, we establish a fundamental connection between generalization error and different notations of algorithmic stability (argument stability and uniform stability) for bilevel optimization problem in both expectation and high probability forms. Specifically, we show that the high probability form of the generalization error bound can be improved from $O(\sqrt{n})$ to $O(\log n)$ compared with the result in Bao et al. (2021).

- Next, we present the first stability bounds for gradient-based methods with either single-timescale or two-timescale update strategy under different standard settings. In detail, we consider the settings of strongly-convex-strongly-convex (SC-SC), convex-convex (C-C), and nonconvex-nonconvex (NC-NC), and further extend our analysis to a particular nonconvex-strongly-convex (NC-SC) setting that is widely appeared in practice. Especially, for the SC-SC and C-C cases with single-timescale update strategy we significantly improve the generalization bounds compared with (Bao et al., 2021) (see Table 1 for details). To the best of our knowledge, our work is the first thorough generalization analysis for general bilevel optimization problem.

- Thirdly, we provide the first generalization bounds for the case where both the outer and inner level parameters are subject to continuous (iterative) changes. Compared to the previous work (Bao et al., 2021), our work does not need the reinitialization step before each
iteration in the inner level and hence our algorithm can carry over the last updated inner level parameters, which is more general and practical.

- Finally, we conduct empirical studies to corroborate our theories via meta-learning and hyperparameter optimization, which are two applications of bilevel optimization.

Due to space limitations, all the proofs and additional experiments are included in Appendix.

1.1 Related work

Research at the interface between generalization and the bilevel problem can be roughly classified into two categories. The first one includes all the research on bilevel optimization. In recent decades, extensive studies have been done on this topic, which suggests that bilevel optimization has a wide range of applications in machine learning such as hyper-parameter optimization (Franceschi et al., 2018, Lorraine & Duvenaud, 2018, Okuno et al., 2021), meta learning (Bertinetto et al., 2018, Rajeswaran et al., 2019, Soh et al., 2020) and reinforcement learning (Yang et al., 2018, Tschiatschek et al., 2019). Most of the existing work studies the problem from an optimization perspective. For example, Ghadimi & Wang (2018), Ji et al. (2021) provide the convergence rate analysis based on the nonconvex-strongly-convex assumption for the two functions $f(\cdot, \cdot)$ and $g(\cdot, \cdot)$. Grazzi et al., 2020 considers the iteration complexity for hypergradient computation. Liu et al., 2020 present an asymptotic analysis for the convex-strongly-convex setting. Perhaps the most related one to ours from the generalization standpoint (i.e., the expectation of population risk and empirical risk) is Bao et al., 2021. Table 1 is the comparison between our work and the results in (Bao et al., 2021). We can see that our analysis is more comprehensive as we consider various settings. Firstly, in this paper we consider the general bilevel problem defined in Problem (1), while Bao et al., 2021 only concentrates on the hyper-parameter optimization, which is just an instance of bilevel optimization problem (to be detailed in Section 5 and Appendix D). Secondly, our work adopts a stronger version of stability called argument stability, which implies the previously used uniform stability if the function is sufficiently smooth. Furthermore, our work does not need to reinitialize the inner-level parameters and allows them to carry over their last updated parameters at each time updating the inner level. This indicates that y in the inner level is updated iteratively and depends on the current parameter of x, which is more common and efficient in practice.

The second category includes all the work on stability analysis. There is a long list of research on stability and generalization (Bousquet & Elisseeff, 2002, Mukherjee et al., 2006, Shalev-Shwartz et al., 2010). Bousquet & Elisseeff (2002) first introduces the notion of uniform stability and establishes the first framework of stability analysis. Hardt et al., 2016 later extends the stability analysis to iterative algorithms based on stochastic gradient methods for the vanilla stochastic optimization. After that, there are subsequent studies on generalization analysis for various problems via algorithmic stability, such as minmax problems [Lei et al., 2021, Farnia & Ozdaglar, 2021, Zhang et al., 2021] and pairwise learning [Yang et al., 2021, Lei et al., 2020, Xue et al., 2021, Huai et al., 2020]. However, it is notable that due to the additional stochastic function in the constraint in the bilevel optimization, all the previous techniques and results cannot be applied to our problem. Although the generalization analysis of minmax optimization is somewhat similar to ours, it involves only one objective function f and a single level in algorithms for typical minimax optimization problems, while in the bilevel optimization algorithms there is an inner level and an outer level, which is considerably more challenging.

Reference	SC-SC	C-C	NC-SC	NC-SC	Argument	Uniform	Consistency
UD (Bao et al., 2021)	$O(1/m_1)$	$O(1/m_1)$	$O(1/m_1)$	$O(1/m_1)$	✓	✓	✓
SSGD (This Work)	$O(\kappa/m_1)$	$O(\kappa/m_1)$	$O(\kappa/m_1)$	$O(\kappa/m_1)$	✓	✓	✓
TSGD (This Work)	$O(\kappa T^2/m_1)$	$O(\kappa T^2/m_1)$	$O(\kappa T^2/m_1)$	$O(\kappa T^2/m_1)$	✓	✓	✓

Table 1: Comparison of related work with ours. κ: a constant such that $\kappa_i \in (0, 1)$ for all i above; T: inner iterations; K: outer iterations; m_1: size of outer dataset. UD indicates the unrolled differentiation (Algorithm 3). SSGD and TSGD stand for Algorithm 1 and Algorithm 2, the single-timescale and two-timescale methods, via stochastic gradient descent. We provide a comparison of TSGD and UD in the Appendix. Consistency indicates whether it is allowed to update inner-level or outer-level parameters continuously.
2 Preliminaries

2.1 Definitions and Assumptions

In the following, we give some necessary definitions and assumptions that are widely used in bilevel optimization (Chadami & Wang [2018], Ji et al. [2021], Khanduri et al. [2021] and generalization analysis [Hardt et al., 2016], Lei et al. [2021]).

Definition 1 (Joint Lipschitz Continuity). A function \(f(x, y) \) is jointly \(L \)-Lipschitz over \(\mathbb{R}^{d_1} \times \mathbb{R}^{d_2} \), if for all \(x \in \mathbb{R}^{d_1}, y \in \mathbb{R}^{d_2} \), the following holds, \(\|f(x, y) - f(x', y')\| \leq L \sqrt{\|x - x'\|^2 + \|y - y'\|^2} \).

Definition 2 (Smoothness). A function \(f \) is \(l \)-smooth over a set \(S \) if for all \(u, w \in S \) the following is true, \(\|\nabla f(u) - \nabla f(w)\| \leq l \|u - w\| \).

Definition 3 (Strong Convexity). A function \(f \) is \(\mu \)-strongly-convex over a set \(S \), if for all \(u, w \in S \), the following holds, \(f(u) + \langle \nabla f(u), w - u \rangle + \frac{\mu}{2}\|w - u\|^2 \leq f(w) \).

Assumption 1 (Inner-level Function Assumption). We assume the inner stochastic function \(g(x, y) \) in (1) satisfies the following:
(i) \(g(x, y) \) is jointly \(L_g \)-Lipschitz for any \(x \in \mathbb{R}^{d_1} \) and \(y \in \mathbb{R}^{d_2} \).
(ii) \(g(x, y) \) is continuously differentiable and \(l_g \)-smooth for any \((x, y) \in \mathbb{R}^{d_1} \times \mathbb{R}^{d_2} \).

Assumption 2 (Outer-level Function Assumption). We assume the outer stochastic function \(f(x, y) \) in (1) satisfies the following:
(iii) \(f(x, y) \) is jointly \(L_f \)-Lipschitz for any \(x \in \mathbb{R}^{d_1} \) and \(y \in \mathbb{R}^{d_2} \).
(iv) \(f(x, y) \) is continuously differentiable and \(l_f \)-smooth for any \((x, y) \in \mathbb{R}^{d_1} \times \mathbb{R}^{d_2} \).

2.2 Problem Formulation

Given two distributions \(\mathcal{D}_1 \) and \(\mathcal{D}_2 \), in the (stochastic) optimization problem we aim to find the minimizer of Problem (1). However, since the distributions are often unknown, in practice we only have two finite-size datasets \(D_{m_1} = \{\xi_i \mid i = 1, \ldots, m_1\} \sim \mathcal{D}_1^{m_1} \) and \(D_{m_2} = \{\zeta_i \mid i = 1, \ldots, m_2\} \sim \mathcal{D}_2^{m_2} \), where each \(\xi_i \) and \(\zeta_i \) are i.i.d. samples from \(\mathcal{D}_1 \) and \(\mathcal{D}_2 \), respectively. Based on these datasets, we will design some (randomized) algorithm \(A \) with output \(A(D_{m_1}, D_{m_2}) = (x, y) \in \mathbb{R}^{d_1} \times \mathbb{R}^{d_2} \). Our goal is to investigate the generalization behavior of such an output. Note that although there are two stochastic functions in the bilevel optimization problem, we only care about the generalization of the outer-level one since it is the one that we prefer to minimize.

Below we define the generalization error to measure the generalization behavior. Given distribution \(\mathcal{D}_1 \) and a finite data \(D_{m_1} \sim \mathcal{D}_1^{m_1} \), the population risk function \(R(x, y, \mathcal{D}_1) \) of \(x, y \) on \(\mathcal{D}_1 \) is defined as \(R(x, y, \mathcal{D}_1) := \mathbb{E}_{\xi \sim \mathcal{D}_1}[f(x, y(x); \xi)] \), and its empirical risk function on \(D_{m_1} \) is \(R_s(x, y, D_{m_1}) = \frac{1}{m_1} \sum_{i=1}^{m_1} [f(x, y(x); \xi_i)] \). Moreover, for a fixed hyperparameter \(x \in \mathbb{R}^{d_1} \) and \(y(x) \in \mathbb{R}^{d_2} \) (note that \(y(x) \) might be dependent on \(x \)), we define the difference between the population risk and the empirical risk over \((x, y(x)) \) as the bilevel generalization error of \((x, y(x)) \): \(\mathbb{E}_s[R(x, y) - R_s(x, y)] \), where \(\mathbb{E}_s \) denotes the expectation of \(D_{m_1} \sim \mathcal{D}_1^{m_1} \). When there is no ambiguity, we simplify the notation as follows: \(R(x, y, \mathcal{D}_1) = R(x, y) \) and \(R_s(x, y, D_{m_1}) = R_s(x, y) \). Our goal is thus to analyze the bilevel generalization error of the output of algorithm \(A(D_{m_1}, D_{m_2}) \) based on \(D_{m_1} \) and \(D_{m_2} \). Since the generalization error depends on the algorithm itself, in the following we will introduce the algorithms to be considered in this paper.

Most of the existing algorithms adopt the following idea: first approximate \(y^* \) on \(D_{m_2} \) for a given parameter \(x \) in the inner level and then seek the hyperparameter \(x^*(D_{m_1}, D_{m_2}) \) with corresponding hypothesis \(y^*(x^*(D_{m_1}, D_{m_2}), D_{m_2}) \) by the below estimation:

\[
\hat{x}(D_{m_1}, D_{m_2}) \approx \arg \min_x R_s(x, y(x, D_{m_2}), D_{m_1}),
\]

where \(\hat{y}(x, D_{m_2}) \approx \arg \min_y G_s(x, y, D_{m_2}), \) (2)

where \(G_s(x, y, D_{m_2}) \) is the empirical risk of \(G(x, y) \) over \(D_{m_2} \), i.e., \(G(x, y, D_{m_2}) = \frac{1}{m_2} \sum_{i=1}^{m_2} g(x, y(x); \zeta_i) \). Most of the current gradient-based (first-order) algorithms for approximating (2) can be categorized into two classes: single-timescale methods and two-timescale methods. The single-timescale method performs the updates for \(y \) and \(x \) simultaneously via stochastic
Algorithm 1 Single-timescale SGD (SSGD)

1: **Input:** number of iterations K, step sizes α_x, α_y, initialization x_0, y_0, Datasets D_{m_1} and D_{m_2}
2: **Output:** x_K, y_K
3: for $k = 0$ to $K - 1$
4: Uniformly sample $i \in [m_2]$, $j \in [m_1]$
5: $y_{k+1} = y_k - \alpha_y \nabla y f(x_k, y_k; \zeta_i)$
6: $x_{k+1} = x_k - \alpha_x \nabla f(x_k, y_k; \zeta_j)$
7: end for
8: return x_K and y_K

Algorithm 2 Two-timescale SGD (TSGD)

1: **Input:** number of iterations K, step sizes α_x, α_y, initialization x_0, y_0
2: **Output:** x_K, y_K
3: for $k = 0$ to $K - 1$
4: $y_k^0 \leftarrow y_k^{T-1}$
5: for $t = 0$ to $T - 1$
6: Uniformly sample $i \in [m_2]$
7: $y_{k+1}^{t+1} = y_{k+1}^t - \alpha_y \nabla y f(x_{k+1}^t, y_k^t; \zeta_i)$
8: end for
9: Uniformly sample $j \in [m_1]$
10: $x_{k+1} = x_k - \alpha_x \nabla f(x_k, y_k^T; \zeta_j)$
11: end for
12: return x_K, y_K^T

3 Generalization and Stability for Bilevel Optimization

Algorithmic stability is one of the classical approaches to analyzing the generalization bound for algorithms. Roughly speaking, the algorithmic stability of (randomized) algorithm A measures how the output of the algorithm A changes if we change one data sample in the input dataset. While there are various notions of stability, most of the existing work on analyzing the stability of stochastic optimization, pairwise learning and minimax optimization focuses on the uniform-stability [Bousquet & Elisseeff, 2002] and the argument-stability [Liu et al., 2017; Lei & Ying, 2020]. Thus, we also adopt these two notions of stability for the bilevel optimization problem. Briefly speaking, uniform-stability focuses on the resulting change in population risk function, while the argument-stability considers the resulting change in arguments, i.e., the output of the algorithm.

Definition 4 (Algorithmic Stability). Let $A : D_1^{m_1} \times D_2^{m_2} \rightarrow \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$ be a randomized algorithm.

(a) A is β-uniformly-stable if for all datasets $D_{m_1}, D'_{m_1} \sim D_1^{m_1}$ and $D_{m_2} \sim D_2^{m_2}$ such that D_{m_1} and D'_{m_1} differ in at most one sample, we have the following for any $\xi \sim D_1$:

$$\mathbb{E}_A[|f(A(D_{m_1}, D_{m_2}), \xi) - f(A(D'_{m_1}, D_{m_2}), \xi)|] \leq \beta.$$

(b) A is β-argument-stable in expectation if for all datasets $D_{m_1}, D'_{m_1} \sim D_1^{m_1}$ and $D_{m_2} \sim D_2^{m_2}$ such that D_{m_1} and D'_{m_1} differ in at most one sample, we have:

$$\mathbb{E}_A[\|A(D_{m_1}, D_{m_2}) - A(D'_{m_1}, D_{m_2})\|_2] \leq \beta.$$

Note that the definition of uniform stability in expectation is the same as the definition in [Bao et al., 2021]. Thus, our other definitions can be considered as extensions of the previous stability for bilevel optimization. In the following, we present Theorem 1 as our first result, which shows a crucial relationship between generalization error and algorithmic stability for an algorithm A.

Theorem 1. Let $A : \xi^{m_1} \times \zeta^{m_2} \rightarrow \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$ be a randomized BO algorithm.
(a) If A is β-uniform-stable in expectation, then the following holds for $D_{m_1} \sim \mathbb{D}_{m_1}^1$, $D_{m_2} \sim \mathbb{D}_{m_2}^2$:
$$
\mathbb{E}_{A,D_{m_1},D_{m_2}}[R(A(D_{m_1}, D_{m_2})) - R_s(A(D_{m_1}, D_{m_2}))] \leq \beta.
$$

(b) If A is β-argument-stable in expectation and Assumption (2) holds, then the following holds for $D_{m_1} \sim \mathbb{D}_{m_1}^1$, $D_{m_2} \sim \mathbb{D}_{m_2}^2$:
$$
\mathbb{E}_{A,D_{m_1},D_{m_2}}[R(A(D_{m_1}, D_{m_2})) - R_s(A(D_{m_1}, D_{m_2}))] \leq L_f \beta.
$$

(c) Assume that $|f(\mathbf{x}, y; \xi)| \leq M$ for some $M \geq 0$. If A is β-uniform-stable almost surely, then for $D_{m_1} \sim \mathbb{D}_{m_1}^1$, $D_{m_2} \sim \mathbb{D}_{m_2}^2$, the following holds with probability $1 - \delta$:
$$
|R(A(D_{m_1}, D_{m_2})) - R_s(A(D_{m_1}, D_{m_2}))|
\leq 2 \beta + e^{\frac{AM}{\sqrt{m_1}} \sqrt{\log \frac{e}{\delta} + 12 \sqrt{2} \beta \log m_1} \sqrt{\log \frac{e}{\delta}}}.
$$

Remark 1. The above theorem suggests that the generalization error can be controlled by several notions of algorithmic stability. Part (a) and Part (b) show that the expectation of generalization error can be bounded by uniform stability and argument stability with the Lipschitz constant, respectively; Part (c) indicates that the generalization error for the algorithm is no more than $O(\beta \log(m_1) + 1/\sqrt{m_1})$ with probability $1 - \delta$. Compared with the existing work [Bao et al., 2021], Theorem 1 considers argument stability additionally, which is a stronger notion of stability than uniform stability (since uniform stability can be deduced from argument stability with the condition that the function is sufficiently smooth). Moreover, we use the McDiarmid’s inequality and the equivalence of tails and moments for the random variable with a mixture of sub-gaussian and sub-exponential tails (Lemma 1 in Bousquet et al. (2020)), which provide a significantly improved high probability bound in Part (c) (i.e., improving from $O(\beta \sqrt{m_1})$ in Bao et al. (2021) to $O(\beta \log m_1)$).

4 STABILITY ANALYSIS FOR BILEVEL OPTIMIZATION ALGORITHMS

Motivated by Theorem 1, we can see that to analyze the generalization behaviors for any algorithm, it is sufficient to analyze its stability. As mentioned in the previous Section 2.2, we will consider the stability of SSGD and TSGD. For simplicity we let SC-SC denote the case where f and g both are strongly convex functions. C-C, NC-NC, and NC-SC are also denoted in a similar manner with "C" representing convex function and "NC" representing nonconvex function.

4.1 STABILITY BOUNDS FOR SINGLE-TIMESCALE SGD

As we can see from Algorithm 1, SSGD updates y and x simultaneously. In the following we develop stability bounds for this algorithm in different settings.

Theorem 2. Suppose that Assumptions 1 and 2 hold and Algorithm A is SSGD with K iterations:

(a) Assume that Problem (7) is SC-SC with strongly convexity parameters μ_f and μ_g. Let $\alpha_x = \alpha_y$ (see Lemma 4 for details) be the step sizes. Denote $l = \max\{l_f, l_g\}$. Then, A is β-argument-stable in expectation, where
$$
\beta \leq O\left(\left(L_f^2 + L_g^2\right)^{1/2} \left(m_1 (\mu_f + \mu_g - (\alpha_x l)^2 / 2 + 0.25)\right)^{-1}\right).
$$

(b) Assume that Problem (7) is C-C. Let α_x, α_y be the step sizes. Then, A is β-argument-stable in expectation, where
$$
\beta \leq O\left(m_1^{-1} \sqrt{(\alpha_x L_f)^2 + (\alpha_y L_g)^2} \left(2 + 2 \max\{(\alpha_x l)^2, (\alpha_y l)^2\}\right)^{K/2}\right).
$$

(c) Assume that Problem (7) is NC-NC. Let the step sizes satisfy $\max\{\alpha_x, \alpha_y\} \leq c/k$ for some constant $c \geq 0$ and $l = \max\{l_f, l_g\}$. Then, A is β-argument-stable in expectation, where
$$
\beta \leq O\left((m_1 cl)^{-1} \left(2cL_f \sqrt{l_f^2 + l_g^2}\right)^{1/4} \cdot K^{1/4}\right),
$$

Remark 2. Theorem 2 shows that by employing the tools of argument stability, we can achieve a significantly improved high probability bound for the generalization error compared to existing results (Theorem 1).
where \(l_f, l_g \) and \(L_f, L_g \) are smoothness constants and Lipschitz constants for \(f, g \), respectively.

Remark 2. Note that the above stability bounds are independent of the specific form of the objective function \(f(\cdot, \cdot) \) and the exact form of the sample distribution \(D_1 \), which are more reliant on the properties of the loss functions and sample size \(m_1 \), and the stability bounds in the C-C and NC-NC cases are related to the number of iterations additionally. Specifically, Part(a) establishes a stability bound of \(O(1/m_1) \) in the SC-SC setting and Part(b) considers a C-C case with a stability bound \(O(CK/2/m_1) \) related to the number of iterations and the data size, where \(C \) is a constant. The NC-NC case is discussed in Part(c) which provides a stability bound of \(O(K^2/m_1) \), where \(c \) is a constant to control the step size and \(T \) is the larger smoothness number of \(l_f \) and \(l_g \). The conclusions here match the existing results in minmax problems (Lei et al., 2021; Farnia & Ozdaglar, 2021).

4.2 Stability Bounds for Two-timescale SGD

Compared with the above SSGD, Two-timescale SGD (TSGD; Algorithm 2) always achieves more accurate approximate solutions by updating \(y \) multiple times before updating \(x \). In this section, we extend our analysis from SSGD to TSGD. Particularly, compared with the results in Bao et al. (2021), we provide stability bounds in Theorem 3 for the case where the inner level parameter \((y) \) is updated iteratively (i.e., consistency). We further explore in Theorem 4 a particular NC-SC setting, which is commonly appeared in bilevel optimization applications such as meta learning and hyperparameter optimization.

Theorem 3. Suppose that Assumptions 1 and 2 hold and \(|g(\cdot, \cdot)| \leq 1\). Let \(A \) be the TSGD algorithm with \(K \) outer-iterations and \(T \) inner-iterations. Then we have

(a) Assume that Problem \(P \) is SC-SC. Let \(\alpha_x = \alpha_y \leq \frac{1}{l_g} \) be the step sizes. Then, \(A \) is \(\beta \)-argument-stable in expectation, where

\[
\beta \leq O \left(m_1^{-1} \sqrt{L_f^2 \alpha_x^2 + \left(\frac{2T}{\alpha_y (2 - \alpha_y l_g)} \right)^2 (1 - \alpha_x \mu_g + \alpha_x \alpha_l T^K)} \right).
\]

(b) Assume that Problem \(P \) is C-C. Let \(\alpha_1 = \max \{ \alpha_x l_f, \alpha_y l_g \} \) and \(\alpha_x, \alpha_y \leq \frac{1}{l_g} \) be the step sizes. Then, \(A \) is \(\beta \)-argument-stable in expectation, where

\[
\beta \leq O \left(m_1^{-1} \sqrt{L_f^2 \alpha_x^2 + \left(\frac{2T}{\alpha_y (2 - \alpha_y l_g)} \right)^2 (2 + 2(\alpha_1 T)^2 K^{1/2})} \right).
\]

(c) Assume that Problem \(P \) is NC-NC. Let the step sizes satisfy \(\max \{ \alpha_x, \alpha_y \} \leq c/l \) for some constant \(c \geq 0 \) and \(l = \max \{ l_f, l_g \} \). Then, \(A \) is \(\beta \)-argument-stable in expectation, where

\[
\beta \leq O \left((m_1 T c l)^{-1} \left(2c L_f \sqrt{L_f^2 + L_g^2} \right) \cdot \frac{1}{T^{1/2} K^{1/2}} \right).
\]

Remark 3. Compared with the previous results for SSGD, the stability bounds of TSGD depend on the number of iterations in the outer level loop, the number of iterations in the inner level loop, and the data size in the outer level loop. If the step sizes are sufficiently small, we can see that the bounds in Theorem 3 are asymptotically the same as the bounds of SSGD in Theorem 2. Thus, Theorem 3 can be considered as a generalization of the previous one. However, in comparison to Theorem 2, we can also see that our bounds are exponential in the inner loop iteration \(T \). This is caused by the accumulation of the sub-sampled gradients in the inner level, which makes the outer loop update overly expansive. The exponential dependence on \(T \) also reveals the difference with the existing work of stability analysis for other problems, such as simple SGD and minmax problems.

Remark 4. Comparing our results with the ones in Bao et al. (2021), we have the following observations. 1) They only established the uniform stability bound for the Unrolled Differentiation algorithm, where the algorithm is reinitialized at each time entering the inner level loop, indicating that it takes into account the changes to only one parameter in the outer level loop, while our algorithm considers the update for both parameters. 2) Its proof needs to assume that the update of \(y \) in the inner level after the reinitialization will not be affected by the value specified for \(x \).
However, this assumption is quite uncommon and is probably the reason that they do not need to make any assumption on the inner level objective function. 3) The term \(\ell'(\lambda'_t, \theta'(\lambda'_t, S')^t, z) \) in their paper, which corresponds to the inner loss function \(g(x'_k, y'_k (x'_k, D_{m_2}), \eta) \) in our paper, includes three arguments \(\text{i.e., } \lambda'_t, \theta'(\lambda'_t, S')^t \) and \(z \), where \(\theta'(\lambda'_t, S')^t \) is a function of \(\lambda'_t \). This implies that \(\theta'(\lambda'_t, S')^t \) will change in the inner level updates as a result of the change of \(\lambda'_t \), and thus cannot be treated as an argument independent of \(\lambda'_t \), which is misused and causes technical flaws in their proof subsequently. In contrast, our work allows the inner level parameters to be updated consistently (i.e., carrying over the value in the last update), instead of being reinitialized at each time entering the inner level loop. Specifically, we allow \(y'_k \) to be employed at the beginning of the \((k+1)\)-th outer level iteration, rather than \(y_0 \). This enables us to obtain different stability bounds for different inner level objective functions.

In the following, we extend our analysis to a particular NC-SC setting that is frequently encountered in real-world applications and optimization analysis.

Theorem 4. Suppose that Assumptions 1 and 2 hold, \(0 \leq f(\cdot, \cdot) \leq 1 \) and Problem 7 is NC-SC. Let \(A \) be the TSGD Algorithm with \(K \) outer-iterations and \(T \) inner-iterations with \(\max\{\alpha_x, \alpha_y\} \leq c/k \) for constant \(c \geq 0 \). Denote \(l = \max\{l_f, l_y\} \). Then, \(A \) is \(\beta \)-uniform-stable in expectation, where

\[
\beta \leq O\left(\frac{2cL_f \sqrt{l_f^2 + l_y^2 T^2} \cdot \frac{1}{\sqrt{T^3 + c(T+1)\mu_g} + 1}}{m_1(T l + l - \mu_g + 2/c)} \right).
\]

Remark 5. Compared with our previous analysis, we now sketch the technique differences in our analysis. We consider the bound of the term \((\delta_{x,k}, \delta_{y,k})^T = (||x_k - x_k'||, ||y_k - y_k'||)^T \), while we employ \(\delta_k = \sqrt{||x_k - x_k'||^2 + ||y_k - y_k'||^2} \) in the previous analysis, where \((x_k, y_k), (x'_k, y'_k)\) are the outputs of TSGD after \(k \) iterations for \(D_{m_1} \) and \(D'_{m_2} \) respectively with \(D_{m_1}, D'_{m_2} \) differing in one sample. In the NC-SC setting, we show that \((\delta_{x,k+1}, \delta_{y,k+1})^T \leq ((1 + \alpha_x l)\delta_{x,k}, (1 + \alpha_x T l)\delta_{y,k})^T \) (\(\leq \) means the entry-wise inequality), which means our term can be controlled. Then, we take the expectation of it to derive our uniform stability bound. To achieve the generalization error over continuously changing parameters, it is imperative to take into account the growth of \((\delta_{x,k}, \delta_{y,k})\) instead of \(\delta_{x,k} \) in (Bao et al., 2021). Appendix C.3 provides more details.

Thus, based on our previous results, we now provide the first generalization bounds in the NC-NC setting for both SSGD and TSGD.

Corollary 5. Assume that the problem is NC-NC, \(|f(\cdot, \cdot, \xi)| \leq 1 \) for all \(\xi \), and Assumptions 3 and 2 hold. Denote \(l = \max\{l_f, l_y\} \) with \(\max\{\alpha_x, \alpha_y\} \leq c/k \) for constant \(c \geq 0 \). Then, the generalization error of SSGD 7 with \(K \) iterations is bounded by \(O(K^{\frac{1}{m_1}}) \).

Corollary 6. Assume that the problem is NC-NC, \(|f(\cdot, \cdot, \xi)| \leq 1 \) for all \(\xi \), and Assumptions 3 and 2 hold. Let \(l = \max\{l_f, l_y\} \) with \(\max\{\alpha_x, \alpha_y\} \leq c/k \). Then, the generalization error of TSGD 2 with \(K \) outer iterations and \(T \) inner iterations is bounded by \(O(T^{\frac{1}{m_1}} K^{1 - \frac{1}{m_1} + \frac{1}{m_2}}) \).

Remark 6. By Theorem 1, 2, 3, we can derive the above corollaries on generalization error from stability bounds. Corollary 5 and Corollary 6 show that extremely high number of iterations \((K \text{ for TSGD and } K,T \text{ for SSGD})\) will drastically reduce the stability of these algorithms and increase the generalization error, which will make these algorithms increase the risk of overfitting. We will also verify it in the following experiments.

5 Experiments

In this section, we empirically validate our previous theoretical results on real-world datasets. Two experiments, including meta-learning and hyperparameter optimization, are conducted via Algorithm 2 (TSGD) (note that when \(T = 1 \), TSGD is just SSGD). Due to the space limitation, we just present the meta learning experiment here, leaving the hyperparameter optimization experiment and other details in the Appendix D.
5.1 Meta Learning

Consider the few-shot meta-learning problem with M tasks $\{T_i, i = 1, ..., M\}$ sampled from distribution P_T. We aim to learn a model that can rapidly adapt to different tasks. Firstly, the embedding model ϕ is shared by all tasks to learn embedded features. Secondly, the task-specific parameter w_i is to adapt the shared embedding to its own sub-problem. Thus, the overall problem of meta-learning can be formulated as follow:

$$\min_{\phi} L_\phi(\phi, \bar{w}^*) = E_{\xi \in \mathcal{D}^*_T}[L(\phi, w_i; \xi)],$$

(3a)

$$\text{s.t.} \ \bar{w}^* = \arg\min_{w} \left[L_D(w, \bar{w}) = E_{T_i} \left[L_{D^i_T}(\phi, w_i) \right] \right].$$

(3b)

where \mathcal{D}^*_T and \mathcal{D}^i_T are the training and testing datasets for task T_i. Each w_i is computed from one or more gradient descent updates from \bar{w} on the corresponding task (rapid adaptation), i.e., $w_i = \bar{w} - \alpha \nabla_{\bar{w}} L_{D^i_T}(\phi, w_i)$. In the inner level, the base learner optimizes the series of w_i for each task (Equation 3b). In the outer level, the meta-learner optimizes the embedding model ϕ using the minimizers w_i^* learned from the inner level and computes the loss from the testing dataset (Equation 3a).

Settings and Implementation We evaluate the behavior of the 5-way-1-shot task on the Omniglot dataset (Lake et al., 2015). i.e., it aims to classify 5 unseen classes from only 1 labeled sample. It contains 1623 different handwritten characters from 50 different alphabets. The image is in greyscale with a size 28×28. We follow similar settings in Ji et al. (2021). A five-layer fully-connected network is constructed, where the task-specific parameter w_i corresponds to the last layer of the network and the shared embedding model ϕ corresponds to all preceding layers. Thus, we train the two sets of layers separately in the outer and inner level of optimization. We build our model and establish our training using the software library learn2learn (Arnold et al., 2020). We follow the official train-validation-test partition and train ϕ, w_i using the training set. The size of each layer in the network is $784 \rightarrow 256 \rightarrow 128 \rightarrow 64 \rightarrow 64 \rightarrow 5$. We set the number of tasks for training and testing set to 2000 and the batch size of tasks to 32. The learning rate of ϕ and w_i are 0.002 and 0.01, respectively. Results are evaluated based on the average of 5 trial runs with different random seeds.

Results Evaluation Figure 1 presents the learning curves on training set, testing set and the generalization error with different values of inner iterations T and outer iterations K. Generalization error is estimated by the difference between training and testing loss. On one hand, it can be seen that the model easily overfits on the testing set as K increases drastically (Figure 1b) and the effect of T is very limited. On the other hand, with an appropriate value of K, smaller T (i.e) will result in underfitting on the testing loss ($T = 1$ in the Figure 1c causes highest generalization error due to the underfitting training process). The trend of generalization error in terms of K and T matches with our analysis in Theorem 4.

6 Conclusion

We give a thorough analysis on the generalization of first-order (gradient-based) methods for the bilevel optimization framework. In particular, we establish a quantitative connection between gen-
eralization and algorithmic stability and provide the first generalization bounds of the continuous updates for inner parameters and outer parameters in multiple settings. Our experiments suggest that inappropriate iterations will cause underfitting and overfitting easily. The tendency of generalization error also validates our theoretical results.

From the discussion in previous sections, we only discussed the first-order method, while there exists a number of estimating second-order and momentum-based approaches to solve the bilevel optimization problem. Dealing with the approximation of hypergradient in generalization analysis is another direction for future work.

REFERENCES

Sébastien M R Arnold, Praateek Mahajan, Debajyoti Datta, Ian Bunner, and Konstantinos Saitas Zarkias. learn2learn: A library for Meta-Learning research. August 2020. URL http://arxiv.org/abs/2008.12284.

Fan Bao, Guoqiang Wu, Chongxuan Li, Jun Zhu, and Bo Zhang. Stability and generalization of bilevel programming in hyperparameter optimization. Advances in Neural Information Processing Systems, 34:4529–4541, 2021.

Atilim Gunes Baydin, Robert Cornish, David Martinez Rubio, Mark Schmidt, and Frank Wood. Online learning rate adaptation with hypergradient descent. arXiv preprint arXiv:1703.04782, 2017.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter optimization. Advances in neural information processing systems, 24, 2011.

Luca Bertinetto, Joao F Henriques, Philip HS Torr, and Andrea Vedaldi. Meta-learning with differentiable closed-form solvers. arXiv preprint arXiv:1805.08136, 2018.

Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of Machine Learning Research, 2:499–526, 2002.

Olivier Bousquet, Yegor Klochkov, and Nikita Zhivotovskiy. Sharper bounds for uniformly stable algorithms. In Conference on Learning Theory, pp. 610–626. PMLR, 2020.

Tianyi Chen, Yuejiao Sun, and Wotao Yin. A single-timescale stochastic bilevel optimization method. arXiv preprint arXiv:2102.04671, 2021.

Farzan Farnia and Asuman Ozdaglar. Train simultaneously, generalize better: Stability of gradient-based minimax learners. In International Conference on Machine Learning, pp. 3174–3185. PMLR, 2021.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel programming for hyperparameter optimization and meta-learning. In International Conference on Machine Learning, pp. 1568–1577. PMLR, 2018.

Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv preprint arXiv:1802.02246, 2018.

Riccardo Grazzi, Luca Franceschi, Massimiliano Pontil, and Saverio Salzo. On the iteration complexity of hypergradient computation. In International Conference on Machine Learning, pp. 3748–3758. PMLR, 2020.

Zhishuai Guo, Quanqi Hu, Lijun Zhang, and Tianbao Yang. Randomized stochastic variance-reduced methods for multi-task stochastic bilevel optimization. arXiv preprint arXiv:2105.02266, 2021.

Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic gradient descent. In International conference on machine learning, pp. 1225–1234. PMLR, 2016.
Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale framework for bilevel optimization: Complexity analysis and application to actor-critic. *arXiv preprint arXiv:2007.05170*, 2020.

Xiaoyin Hu, Nachuan Xiao, Xin Liu, and Kim-Chuan Toh. An improved unconstrained approach for bilevel optimization. *arXiv preprint arXiv:2208.00732*, 2022.

Mengdi Huai, Di Wang, Chenglin Miao, Jinhui Xu, and Aidong Zhang. Pairwise learning with differential privacy guarantees. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pp. 694–701, 2020.

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and enhanced design. In *International Conference on Machine Learning*, pp. 4882–4892. PMLR, 2021.

Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A near-optimal algorithm for stochastic bilevel optimization via double-momentum. *Advances in Neural Information Processing Systems*, 34, 2021.

Gregory Koch, Richard Zemel, Ruslan Salakhutdinov, et al. Siamese neural networks for one-shot image recognition. In *ICML deep learning workshop*, volume 2, pp. 0. Lille, 2015.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning through probabilistic program induction. *Science*, 350(6266):1332–1338, 2015.

Yann LeCun. The mnist database of handwritten digits. *http://yann.lecun.com/exdb/mnist/*, 1998.

Yunwen Lei and Yiming Ying. Fine-grained analysis of stability and generalization for stochastic gradient descent. In *International Conference on Machine Learning*, pp. 5809–5819. PMLR, 2020.

Yunwen Lei, Antoine Ledent, and Marius Kloft. Sharper generalization bounds for pairwise learning. *Advances in Neural Information Processing Systems*, 33:21236–21246, 2020.

Yunwen Lei, Zhenhuan Yang, Tianbao Yang, and Yiming Ying. Stability and generalization of stochastic gradient methods for minimax problems. In *International Conference on Machine Learning*, pp. 6175–6186. PMLR, 2021.

Junyi Li, Bin Gu, and Heng Huang. Improved bilevel model: Fast and optimal algorithm with theoretical guarantee. *arXiv preprint arXiv:2009.00690*, 2020.

Risheng Liu, Pan Mu, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A generic first-order algorithmic framework for bi-level programming beyond lower-level singleton. In *International Conference on Machine Learning*, pp. 6305–6315. PMLR, 2020.

Tongliang Liu, Gábor Lugosi, Gergely Neu, and Dacheng Tao. Algorithmic stability and hypothesis complexity. In *International Conference on Machine Learning*, pp. 2159–2167. PMLR, 2017.

Jonathan Lorraine and David Duvenaud. Stochastic hyperparameter optimization through hypernetworks. *arXiv preprint arXiv:1802.09419*, 2018.

Jelena Luketina, Mathias Berglund, Klaus Greff, and Tapani Raiko. Scalable gradient-based tuning of continuous regularization hyperparameters. In *International conference on machine learning*, pp. 2952–2960. PMLR, 2016.

Sayan Mukherjee, Partha Niyogi, Tomaso Poggio, and Ryan Rifkin. Learning theory: stability is sufficient for generalization and necessary and sufficient for consistency of empirical risk minimization. *Advances in Computational Mathematics*, 25(1):161–193, 2006.

Takayuki Okuno, Akiko Takeda, Akihiro Kawana, and Motokazu Watanabe. On lp-hyperparameter learning via bilevel nonsmooth optimization. *J. Mach. Learn. Res.*, 22:245–1, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. *Advances in neural information processing systems*, 32, 2019.
Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In *International conference on machine learning*, pp. 737–746. PMLR, 2016.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with implicit gradients. *Advances in neural information processing systems*, 32, 2019.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-learning with memory-augmented neural networks. In *International conference on machine learning*, pp. 1842–1850. PMLR, 2016.

Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-propagation for bilevel optimization. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pp. 1723–1732. PMLR, 2019.

Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridharan. Learnability, stability and uniform convergence. *The Journal of Machine Learning Research*, 11:2635–2670, 2010.

Jae Woong Soh, Sunwoo Cho, and Nam Ik Cho. Meta-transfer learning for zero-shot super-resolution. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 3516–3525, 2020.

Sebastian Tschiatschek, Ahana Ghosh, Luis Haug, Rati Devidze, and Adish Singla. Learner-aware teaching: Inverse reinforcement learning with preferences and constraints. *Advances in Neural Information Processing Systems*, 32, 2019.

Roman Vershynin. High-dimensional probability. 2018.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one shot learning. *Advances in neural information processing systems*, 29, 2016.

Zhiyu Xue, Shaoyang Yang, Mengdi Huai, and Di Wang. Differentially private pairwise learning revisited. In *IJCAI*, pp. 3242–3248, 2021.

Zhenhuan Yang, Yunwen Lei, Puyu Wang, Tianbao Yang, and Yiming Ying. Simple stochastic and online gradient descent algorithms for pairwise learning. *Advances in Neural Information Processing Systems*, 34:20160–20171, 2021.

Zhuoran Yang, Zuyue Fu, Kaiqing Zhang, and Zhaoran Wang. Convergent reinforcement learning with function approximation: A bilevel optimization perspective. 2018.

Junyu Zhang, Mingyi Hong, Mengdi Wang, and Shuzhong Zhang. Generalization bounds for stochastic saddle point problems. In *International Conference on Artificial Intelligence and Statistics*, pp. 568–576. PMLR, 2021.
A COMPARISON BETWEEN UD AND TSGD

Algorithm 3 Unrolled differentiation (UD)

1: Input: number of iterations K, step sizes α_x, α_y, initialization x_0, y_0
2: Output: x_K, y_K
3: for $k = 0$ to $K - 1$ do
4: \[y_k^0 \leftarrow y_0 \]
5: for $t = 0$ to $T - 1$ do
6: \[y_k^{t+1} = y_k^t - \alpha_y \nabla_y g(x_k^t, y_k^t; D_{m_2}) \]
7: end for
8: \[x_{k+1} = x_k - \alpha_x \nabla f(x_k, y_k^T; D_{m_1}) \]
9: end for
10: return x_K, y_K^T

Algorithm 4 Two-timescale SGD (TSGD)

Input: number of iterations K, step sizes α_x, α_y, initialization x_0, y_0, Datasets: D_{m_1}, D_{m_2}

Output: x_K, y_K

for $k = 0$ to $K - 1$ do
\[y_k^0 \leftarrow y_K^T \]
for $t = 0$ to $T - 1$ do
\[y_k^{t+1} = y_k^t - \alpha_y \nabla_y g(x_k^t, y_k^t; D_{m_2}) \]
end for
\[x_{k+1} = x_k - \alpha_x \nabla f(x_k, y_k^T; D_{m_1}) \]
end for
return x_K, y_K^T

B PROOF OF PRELIMINARIES

B.1 THE PROOF OF THEOREM 1

Proof of Part (a). Since ξ and ξ_i are drawn from the same distribution, we know
\[
E_A[R(A(D_{m_1}, D_{m_2}), D_1) - R(A(D_{m_1}, D_{m_2}), D_{m_1})] = E_{A, \xi_i \sim D_{m_1}, \xi \sim D_1}[f(A(D_{m_1}, D_{m_2}, \xi) - f(A(D_{m_1}, D_{m_2}, \xi_i))] = E_{A, \xi \sim D_{m_1}, \xi_i \sim D_1}[f(A(D_{m_1}, D_{m_2}, \xi) - f(A(D_{m_1}, D_{m_2}, \xi_i))] = E_{A, \xi \sim D_{m_1}, \xi_i \sim D_1}[f(A(D_{m_1}, D_{m_2}, \xi) - f(A(D_{m_1}, D_{m_2}, \xi_i))] \leq \beta,
\]
where D_{m_1} and D_{m_2} differ in at most one sample ξ_i.

Proof of Part (b). Similarly, we have
\[
E_A[f(A(D_{m_1}, D_{m_2}), D_1) - f(A(D_{m_1}, D_{m_2}), D_{m_1})] = E_{A, \xi_i \sim D_{m_1}, \xi \sim D_1}[f(A(D_{m_1}, D_{m_2}, \xi) - f(A(D_{m_1}, D_{m_2}, \xi_i))] = E_{A, \xi \sim D_{m_1}, \xi_i \sim D_1}[f(A(D_{m_1}, D_{m_2}, \xi) - f(A(D_{m_1}, D_{m_2}, \xi_i))] = E_{A, \xi \sim D_{m_1}, \xi_i \sim D_1}[f(A(D_{m_1}, D_{m_2}, \xi) - f(A(D_{m_1}, D_{m_2}, \xi_i))] \leq E_{A, \xi \sim D_{m_1}, \xi_i \sim D_1}[L_f\|A(D_{m_1}, D_{m_2}) - A(D_{m_1}, D_{m_2})\|] \leq L_f\beta.
\]

To prove high probability bounds, we need the following lemma on the concentration behavior on the summation of weakly dependent random variables.

Lemma 7 (Bousquet et al., 2020). Let $Z = (Z_1, \ldots, Z_n)$ be a vector of independent random variables with each taking values in Z, and g_1, \ldots, g_n be some functions $g_i : \mathcal{Z}^n \rightarrow \mathbb{R}$ such that the following holds for any $i \in [n]$:

- $|E[g_i(Z) | Z_i]| \leq M$ a.s.,
- $E[g_i(Z) | Z_{[n]\{i\}}] = 0$ a.s.,
- g_i has a bounded difference β with respect to all variables except for the i-th variable.

Then, for any $p \geq 2$,
\[
\left\| \sum_{i=1}^n g_i(Z) \right\|_p \leq 12\sqrt{2}p\beta \log_2 n + 4M\sqrt{p}n,
\]
where the L_p-norm of a random variable Z is denoted by $\|Z\|_p := (\mathbb{E}[|Z|^p])^{1/p}$, $p \geq 1$.

Next, we state the following well-known relationship between tail bounds and moment bounds.

Lemma 8 (Bousquet et al. [2020]; Vershynin [2018]). Let $a, b \in \mathbb{R}_+$. Let Z be a random variable with $\|Z\|_p \leq \sqrt{pa + pb}$ and $p \geq 2$. Then, for any $\delta \in (0, 1)$, we have, with probability at least $1 - \delta$

\[
|Z| \leq e\left(a\sqrt{\log \left(\frac{e}{\delta}\right)} + b\log \left(\frac{e}{\delta}\right)\right).
\]

Proof of Part (c). In order to make use of Lemma 7 to obtain the generalization bounds, we will introduce:

\[h_i = \mathbb{E}_{\xi \sim D_1} [\mathbb{E}_{\xi_i \sim D_1} \{f(A(D_{m_1}^{i_1}, D_{m_2}; \xi)) - f(A(D_{m_1}^{i_1}, D_{m_2}; \xi_i))\}],\]

where $D_{m_1}^i = \{\xi_1, \xi_2, ..., \xi_{i-1}, \xi_i', \xi_{i+1}, ..., \xi_{m_1}\}$, and ξ_i' obeys identical distribution of ξ_i.

Hence, we have:

\[
|R(A(D_{m_1}, D_{m_2}); D_1) - R_\gamma(A(D_{m_1}, D_{m_2}); D_{m_1})| = \frac{1}{m_1} \sum_{i=1}^{m_1} (\mathbb{E}_{\xi \sim D_1} f(A(D_{m_1}, D_{m_2}); \xi) - f(A(D_{m_1}, D_{m_2}; \xi_i)) | \leq \frac{1}{m_1} \sum_{i=1}^{m_1} (\mathbb{E}_{\xi \sim D_1} [f(A(D_{m_1}^{i_1}, D_{m_2}; \xi)) - f(A(D_{m_1}^{i_1}, D_{m_2}; \xi_i))] + \frac{1}{m_1} \sum_{i=1}^{m_1} (\mathbb{E}_{\xi_i \sim D_1} [f(A(D_{m_1}^{i_1}, D_{m_2}; \xi_i))] - f(A(D_{m_1}^{i_1}, D_{m_2}; \xi_i))) |.
\]

It then follows from the definition of uniform stability that

\[
|R(A(D_{m_1}, D_{m_2}); D_1) - R_\gamma(A(D_{m_1}, D_{m_2}; D_{m_1}))|
\leq 2\beta + \frac{1}{m_1} \sum_{i=1}^{m_1} (\mathbb{E}_{\xi_i \sim D_1} [f(A(D_{m_1}^{i_1}, D_{m_2}; \xi_i))] - f(A(D_{m_1}^{i_1}, D_{m_2}; \xi_i)))
n\]

\[= 2\beta + \frac{1}{m_1} \sum_{i=1}^{m_1} |h_i|.
\]

Notice that all conditions of Lemma 7 hold. Thus, the following outcome can be derived for any $p \geq 2$:

\[
\left\| \sum_{i=1}^{m_1} h_i(\xi) \right\|_p \leq 12\sqrt{2}pm_1\beta [\log_2 m_1] + 4M\sqrt{pm_1}.
\]

Combining Lemma 7 and Lemma 8 with h_i defined above, we have the following inequality with probability $1 - \delta$:

\[
\sum_{i=1}^{m_1} h_i(\xi) \leq e\left(\frac{4M}{\sqrt{m_1}} \sqrt{\log \left(\frac{e}{\delta}\right)} + 12\sqrt{2}\beta [\log_2 m_1] \sqrt{\log \left(\frac{e}{\delta}\right)}\right).
\]

The deviation bound now follows immediately:

\[
|R(A(D_{m_1}, D_{m_2}); D_1) - R_\gamma(A(D_{m_1}, D_{m_2}); D_{m_1}))|
\leq 2\beta + e\left(\frac{4M}{\sqrt{m_1}} \sqrt{\log \left(\frac{e}{\delta}\right)} + 12\sqrt{2}\beta [\log_2 m_1] \sqrt{\log \left(\frac{e}{\delta}\right)}\right).
\]

The proof is completed. \(\square \)
C MAIN PROOF

C.1 APPROXIMATE EXPANSIVITY OF UPDATE RULES

With step size α_x and α_y, the update rules for single-timescale can be presented:

$$G_s \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) := \begin{bmatrix} x - \alpha_x \nabla f(x, y) \\ y - \alpha_y \nabla_y g(x, y) \end{bmatrix}.$$

Definition 5 (expansivity). An update rule is η-expansive if for every $x, x' \in \mathbb{R}^d_1$, $y, y' \in \mathbb{R}^d_2$:

$$\|G(x, y) - G(x', y')\|_2 \leq \eta \sqrt{\|x - x'\|_2^2 + \|y - y'\|_2^2}.$$

Lemma 9. Suppose that Assumptions 1 and 2 hold for Problem (1). Then:

1. If f and g are non-convex functions, then G_s is $(1 + \max\{l_f \alpha_x, l_g \alpha_y\})$-expansive with step size α_x, α_y.

2. If f and g are convex functions, then G_s is $(\sqrt{2} + 2 \max\{(l_f \alpha_x)^2, (l_g \alpha_y)^2\})$-expansive with step size α_x, α_y.

3. If f and g are strongly-convex with μ_f and μ_g respectively, then G_s is $\sqrt{2}(1 - 2\alpha_x (\mu_f + \mu_g) + \alpha_x^2 l^2)$-expansive with step size:

$$\frac{(u_f + \mu_g) - \sqrt{(u_f + \mu_g)^2 - 0.5 l^2}}{l^2} \leq \alpha_x = \alpha_y \leq \min \left\{ \frac{1}{\mu_f + \mu_g}, \frac{(u_f + \mu_g) + \sqrt{(u_f + \mu_g)^2 - 0.5 l^2}}{l^2} \right\}.$$

Proof. In Case 1 with the NC-NC objectives and the smoothness of objectives on Assumptions 1 and 2 we have:

$$\left\| G_s \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) - G_s \left(\begin{bmatrix} x' \\ y' \end{bmatrix} \right) \right\| = \left\| \begin{bmatrix} x - x' - \alpha_x (\nabla f(x, y) - \nabla f(x', y')) \\ y - y' + \alpha_y (\nabla_y g(x, y) - \nabla_y g(x', y')) \end{bmatrix} \right\|$$

$$\leq \left\| \begin{bmatrix} x - x' \\ y - y' \end{bmatrix} \right\| + \left\| \begin{bmatrix} \alpha_x (\nabla f(x, y) - \nabla f(x', y')) \\ \alpha_y (\nabla_y g(x, y) - \nabla_y g(x', y')) \end{bmatrix} \right\|$$

$$\leq (1 + \max\{l_f \alpha_x, l_g \alpha_y\}) \left\| \begin{bmatrix} x - x' \\ y - y' \end{bmatrix} \right\|.$$

In case 2, with the monotonicity of the convex objective’s gradient, we have:

$$\langle x - x', \alpha_x (\nabla f(x, y) - \nabla f(x', y)) \rangle \geq 0$$

$$\langle y - y', \alpha_y (\nabla_y g(x', y) - \nabla_y g(x', y')) \rangle \geq 0.$$

Thus, the stated result then follows:

$$\left\| G_s \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) - G_s \left(\begin{bmatrix} x' \\ y' \end{bmatrix} \right) \right\|^2 = \left\| \begin{bmatrix} x - x' \\ y - y' \end{bmatrix} \right\|^2 - 2 \left\| \begin{bmatrix} x - x' \\ y - y' \end{bmatrix} \right\|^T \begin{bmatrix} \alpha_x (\nabla f(x, y) - \nabla f(x', y)) \\ \alpha_y (\nabla_y g(x, y) - \nabla_y g(x', y)) \end{bmatrix} \right\|^2$$

$$+ \left\| \begin{bmatrix} \alpha_x (\nabla f(x, y) - \nabla f(x', y)) \\ \alpha_y (\nabla_y g(x, y) - \nabla_y g(x', y)) \end{bmatrix} \right\|^2$$

$$\leq \max\{(l_f \alpha_x)^2, (l_g \alpha_y)^2\} \left\| \begin{bmatrix} x - x' \\ y - y' \end{bmatrix} \right\|^2 + \|x - x'\|^2.$$

(4)
and
\[
\|G_s \left(\begin{bmatrix} x' \\ y \end{bmatrix} \right) - G_s \left(\begin{bmatrix} x' \\ y \end{bmatrix} \right) \|^2 = \left\| \begin{bmatrix} x' - x' \\ y - y \end{bmatrix} \right\|^2 - 2 \left\| \begin{bmatrix} x' - x' \\ y - y \end{bmatrix}^T \begin{bmatrix} \alpha_x (\nabla f(x', y') - \nabla f(x', y)) \\ \alpha_y (\nabla g(x', y') - \nabla g(x', y)) \end{bmatrix} \right\|^2 \\
+ \left\| \begin{bmatrix} \alpha_x (\nabla f(x', y) - \nabla f(x', y')) \\ \alpha_y (\nabla g(x', y) - \nabla g(x', y')) \end{bmatrix} \right\|^2 \\
\leq \max\{ (l_f \alpha_x)^2, (l_g \alpha_y)^2 \} \left\| \begin{bmatrix} x' - x' \\ y - y \end{bmatrix} \right\|^2 + \|y - y'\|^2.
\]

Combining the above equations and inequality \((\sum_{i=1}^k a_k)^2 \leq k \sum_{i=1}^k a_k^2 \), we can derive the expansive of update rule \(G_s \) under convexity condition:
\[
\|G_s \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) - G_s \left(\begin{bmatrix} x' \\ y \end{bmatrix} \right) \|^2 \leq (2 + 2 \max\{ (l_f \alpha_x)^2, (l_g \alpha_y)^2 \}) \left\| \begin{bmatrix} x - x' \\ y - y' \end{bmatrix} \right\|^2.
\]

If \(f \) and \(g \) are strongly-convex, then, \(\tilde{f}(x, y) = f(x, y) - \frac{\mu_f}{2} (\|x\|^2 + \|y\|^2) \) and \(\tilde{g}(x, y) = g(x, y) - \frac{\mu_g}{2} (\|x\|^2 + \|y\|^2) \) will be convex. With the above conclusions, we can derive the following:
\[
\|G_s \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) - G_s \left(\begin{bmatrix} x' \\ y \end{bmatrix} \right) \|^2
\leq (1 - (\alpha_x \mu_f + \alpha_x \mu_g))^2 \left\| \begin{bmatrix} x - x' \\ y - y \end{bmatrix} \right\|^2 + \alpha_x 2 \left\| \begin{bmatrix} (\nabla \tilde{f}(x, y) - \nabla \tilde{f}(x', y)) \\ (\nabla \tilde{g}(x, y) - \nabla \tilde{g}(x', y)) \end{bmatrix} \right\|^2

\leq (1 - 2 \alpha_x (\mu_f + \mu_g) + \alpha_x 2)^2 \|x - x'\|^2.
\]

The penultimate inequality arises from the smoothness of \(\tilde{f}, \tilde{g} \), which is based on our assumption for simplicity that \(l = \max\{l_f, l_g\} \), and the details will be revealed as follows:
\[
\| \nabla \tilde{f}(x, y) - \nabla \tilde{f}(x', y) \|^2 \\
= \left\| \begin{bmatrix} \nabla \tilde{f}(x, y) - \nabla \tilde{f}(x', y) \\ \nabla \tilde{g}(x, y) - \nabla \tilde{g}(x', y) \end{bmatrix} \right\|^2 + (\mu_f + \mu_g)^2 \left\| \begin{bmatrix} x - x' \\ y - y \end{bmatrix} \right\|^2

\geq \left\| \begin{bmatrix} \nabla \tilde{f}(x, y) - \nabla \tilde{f}(x', y) \\ \nabla \tilde{g}(x, y) - \nabla \tilde{g}(x', y) \end{bmatrix} \right\|^2 + (\mu_f + \mu_g)^2 \left\| \begin{bmatrix} x - x' \\ y - y \end{bmatrix} \right\|^2.
\]

Similar to the convex case, we can have:
\[
\|G_s \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) - G_s \left(\begin{bmatrix} x' \\ y \end{bmatrix} \right) \|^2 \leq (2 - 2 \alpha_x (\mu_f + \mu_g) + \alpha_x 2)^2 \left\| \begin{bmatrix} x - x' \\ y - y' \end{bmatrix} \right\|^2.
\]

\(\square\)
C.2 Single timescale

We first introduce the following lemma before providing the proof of the Theorem.

Lemma 10 (Hardt et al. (2016)). Consider two sequences of updates $G_s^1, ..., G_s^K$ and $(G_s^1)', ..., (G_s^K)'$ with initial points $x_0 = x_0'$, $y_0 = y_0'$. Define $\delta_k = \sqrt{\|x_k - x_k\|^2 + \|y_k - y_k\|^2}$. Then, we have:

$$
\delta_{k+1} \leq \begin{cases}
\eta \delta_k & \text{if } G_s^k = (G_s^k)' \text{ is } \eta\text{-expansive} \\
\min(\eta, 1) \delta_k + 2\sigma & \text{if } \sup \left\lVert \frac{x}{y} - G \left(\frac{x}{y} \right) \right\rVert \leq \sigma \\
G_s^k \text{ is } \eta \text{ expansive}
\end{cases}
$$

Proof. The first part of the inequality is obvious from the definition of expansivity and the assumption of $G_s^k = (G_s^k)'$. For the second bound, note that:

$$
\delta_{k+1} = \left\lVert G_s^k \left(\begin{bmatrix} x_k \\ y_k \end{bmatrix} \right) - G_s'(\begin{bmatrix} x'_k \\ y'_k \end{bmatrix}) \right\rVert \\
\leq \left\lVert G_s^k \left(\begin{bmatrix} x_k \\ y_k \end{bmatrix} \right) - \begin{bmatrix} x_k \\ y_k \end{bmatrix} \right\rVert + \left\lVert G_s'(\begin{bmatrix} x'_k \\ y'_k \end{bmatrix}) - \begin{bmatrix} x'_k \\ y'_k \end{bmatrix} \right\rVert \\
\leq \delta_k + \left\lVert G_s^k \left(\begin{bmatrix} x_k \\ y_k \end{bmatrix} \right) - \begin{bmatrix} x_k \\ y_k \end{bmatrix} \right\rVert + \left\lVert G_s'(\begin{bmatrix} x'_k \\ y'_k \end{bmatrix}) - \begin{bmatrix} x'_k \\ y'_k \end{bmatrix} \right\rVert \\
\leq \delta_k + 2\sigma.
$$

Also, δ_{k+1} can be further expressed as:

$$
\delta_{k+1} = \left\lVert G_s^k \left(\begin{bmatrix} x_k \\ y_k \end{bmatrix} \right) - G_s' \left(\begin{bmatrix} x'_k \\ y'_k \end{bmatrix} \right) \right\rVert \\
\leq \left\lVert G_s^k \left(\begin{bmatrix} x_k \\ y_k \end{bmatrix} \right) - G_s \left(\begin{bmatrix} x'_k \\ y'_k \end{bmatrix} \right) \right\rVert + \left\lVert G_s \left(\begin{bmatrix} x'_k \\ y'_k \end{bmatrix} \right) - G_s' \left(\begin{bmatrix} x'_k \\ y'_k \end{bmatrix} \right) \right\rVert \\
\leq \left\lVert G_s^k \left(\begin{bmatrix} x_k \\ y_k \end{bmatrix} \right) - G_s \left(\begin{bmatrix} x'_k \\ y'_k \end{bmatrix} \right) \right\rVert + \left\lVert \begin{bmatrix} x'_k \\ y'_k \end{bmatrix} - G_s \left(\begin{bmatrix} x'_k \\ y'_k \end{bmatrix} \right) \right\rVert + \left\lVert \begin{bmatrix} x'_k \\ y'_k \end{bmatrix} - G_s' \left(\begin{bmatrix} x'_k \\ y'_k \end{bmatrix} \right) \right\rVert \\
\leq \eta \delta_k + 2\sigma.
$$

Combining the above completes the proof of the Lemma.

Now, we are ready to prove Theorem.

Proof of Part(a). Suppose that D_m^1 and D'_m^1 are two neighboring sets differing only in one sample. Consider the updates $G_s^1, ..., G_s^K$ and $(G_s^1)', ..., (G_s^K)'.$ We can observe that the example chosen by the algorithm is the same in D_m^1, D'_m^1 at step k with probability $1 - 1/m_1$ and different with probability $1/m_1$. In the former case, we have identical update rules, while $\sqrt{1 - 2\alpha_x (\mu_f + \mu_g) + \alpha_x^2 t^2}$.

Lemma 11 (Hardt et al. (2016)). Assume that \(f(x, y; \xi) \) is \(L_f \)-Lipschitz continuous and \(0 \leq f(x, y; \xi) \leq 1 \). Let \(D_{m_1} \) and \(D'_{m_1} \) be two datasets differing in only one sample. Denote \((x_K, y_K)\) and \((x'_K, y'_K)\) as the output of \(K \) steps of SSGD (single-timescale algorithm) on \(D_{m_1} \) and \(D'_{m_1} \), respectively. Then, the following holds for every \(k \in \{0, 1, ..., K\} \), where \(\delta_k = \sqrt{\|x_k - x'_k\|^2 + \|y_k - y'_k\|^2} \):

\[
\mathbb{E} [f(x_k, y_k; \xi) - f(x'_k, y'_k; \xi)] \leq \frac{k_0}{m_1} + L_f \mathbb{E} [\delta_k \mid \delta_{k_0} = 0].
\]
Proof of Part(c). Applying Lemma [11] we get ready to prove the NC-NC case. Analogous to the previous case, we have:

\[
\mathbb{E}[\delta_{k+1}] \leq \left(1 - \frac{1}{m_1} \right) \left(1 + \frac{c_l}{K} \right) \mathbb{E}[\delta_k] + \frac{1}{m_1} \left(1 + \frac{c_l}{k} \right) \mathbb{E}[\delta_k] + \frac{2c\sqrt{l_f^2 + l_g^2}}{m_1 k}.
\]

The following can be derived:

\[
\mathbb{E}[\delta_K | \delta_{k_0} = 0] \leq \sum_{k=k_0+1}^K \prod_{t=k+1}^T \left(1 + \frac{c_l}{t} \right) \frac{2c\sqrt{l_f^2 + l_g^2}}{m_1 k}.
\]

Analogous to the single-timescale case, we first provide the expansivity of the update rules.

\[
\mathbb{E}[|f(x, y) - f(x', y')|] \leq k_0 \frac{2L_f \sqrt{l_f^2 + l_g^2}}{m_1 l} \left(\frac{K}{k_0} \right)^{c_l}.
\]

The right hand side is approximately minimized when

\[
k_0 = \left(2cL_f \sqrt{l_f^2 + l_g^2} \right)^{\frac{1}{c_l+\tau}} \cdot K^{\frac{c_l}{c_l+\tau}}.
\]

Therefore, we have

\[
\beta \leq O \left(\frac{2cL_f \sqrt{l_f^2 + l_g^2}}{m_1 c_l} \cdot K^{\frac{c_l}{c_l+\tau}} \right)
\]

for argument stability.

C.3 Two-timescale SGD (TSGD)

C.3.1 Standard settings

With step size \(\alpha_x\) and \(\alpha_y\), the update rule for two-timescale can be presented as:

\[
G_T \left(\begin{bmatrix} x_k \\ y_k \end{bmatrix} \right) := \begin{bmatrix} x_k - \alpha_x \nabla f(x_k, y_k^T) \\ y_k - \alpha_y \sum_{t=1}^T \nabla_y g(x_k, y_t^T) \end{bmatrix}.
\]

Analogous to the single-timescale case, we first provide the expansivity of the update rules.
Lemma 12. Suppose that Assumptions 1 and 2 hold for Problem 3. Let $\alpha_l = \max\{\alpha_xl_f, \alpha_yl_g\}$ for simplicity sake. Then:

1. If f and g are non-convex functions, G_T is $(1 + \alpha_lT)$-expansive.
2. If f and g are convex functions, G_T is $(\sqrt{2 + 2(\alpha_lT)^2})$-expansive with step size α_x, α_y.
3. If f and g are strongly-convex with μ_f and μ_g respectively, G_T is $\sqrt{2 \left((1 - \alpha_x\mu_g - \alpha_x\mu_f)^2 + (\alpha_lT)^2 \right)}$-expansive with step size:

$$\alpha_x = \alpha_y \leq \frac{1}{\mu_f + \mu_g}.$$

Proof. Because the main proof of Lemma 12 is similar to that of Lemma 9 we omit it. \hfill \Box

Next, we give a bound for the update rule G_T and prepare to prove Theorem 3. Since $g()$ is a l_g-smooth function, we have:

$$g(x, y^{t+1}) \leq g(x, y^t) + \langle \nabla g(x, y^t), y^{t+1} - y^t \rangle + \frac{l_g}{2} \| y^{t+1} - y^t \|^2.$$

$$\leq g(x, y^t) - \langle \nabla g(x, y^t), \alpha_g \nabla g(x, y^t) \rangle + \frac{l_g}{2} \| \alpha_g \nabla g(x, y^t) \|^2 \leq g(x, y^t) - \alpha_g \left(1 - \frac{\alpha_l g}{2} \right) \| \nabla g(x, y^t) \|^2.$$

The two sides are accumulated from $t = 1$ to $t = T$ and we could derive the following by Cauchy–Schwarz inequality:

$$\sum_{t=1}^{T} \| \nabla g(x, y^t) \|^2 \leq \frac{g(x, y_1) - g(x, y_T)}{\alpha_g (2 - \alpha_l g)} \Rightarrow \left(\sum_{i=1}^{T} \nabla g(x, y^t) \right)^2 \leq T \sum_{i=1}^{T} \nabla g^2(x, y^t) \leq \frac{T (g(x, y_1) - g(x, y_T))}{\alpha_g (2 - \alpha_l g)}.$$

Hence, the bound of G_T equals to $\sqrt{\frac{L_f^2}{\alpha_l^2} + \left(\frac{T (g(x, y_1) - g(x, y_T))}{\alpha_g (2 - \alpha_l g)} \right)^2}$. Now, we are ready to give the proof of Theorem 3.

Proof of Part(a). Suppose that D_{m_1} and D'_{m_1} are two neighboring sets differing in only one sample. Consider the updates $G^{t}_k, ..., G^{T}_k$ and $(G^{t}_k)'', ..., (G^{T}_k)'$. We can observe that the example chosen by algorithm is the same in D_{m_1}, D'_{m_1} at step k with probability $1 - 1/m_1$ and different with probability $1/m_1$. Similarly to the previous single-timescale methods, in the former case, we have identical update rules, while $\sqrt{2 \left((1 - \alpha_x\mu_g - \alpha_x\mu_f)^2 + (\alpha_lT)^2 \right)}$-expansive can be employed in the latter through lemma 10.
\[E[\delta_{k+1}] \leq \left(1 - \frac{1}{m_1} \right) \sqrt{2 \left(\left(1 - \alpha_x \mu_g - \alpha_x \mu_f \right)^2 + (\alpha I)^2 \right) E[\delta_k]} + \frac{1}{m_1} E[\delta_k] \]
\[+ \frac{2}{m_1} \sqrt{L_f^2 \alpha_x^2 + \left(\frac{T (g(x, y) - g(x, y_T))}{\alpha_x (2 - \alpha_x I_g)} \right)^2} \]
\[= \sqrt{2 \left(\left(1 - \alpha_x \mu_g - \alpha_x \mu_f \right)^2 + (\alpha I)^2 \right) E[\delta_k]} + \frac{2}{m_1} \sqrt{L_f^2 \alpha_x^2 + \left(\frac{T (g(x, y) - g(x, y_T))}{\alpha_x (2 - \alpha_x I_g)} \right)^2} \cdot \frac{(1 - \alpha_x \mu_g + \alpha_x I T)^{k+1} - 1}{1 - \alpha_x \mu_g + \alpha_x I T - 1} \]
\[E[\delta_k] \leq \mathcal{O}\left(\frac{L_f^2 \alpha_x^2 + \left(\frac{2T}{\alpha_x (2 - \alpha_x I_g)} \right)^2 (1 - \alpha_x \mu_g + \alpha_x I T)^k}{m_1} \right). \]

The proof of Part(b) and Part(c) are analogous to their counterparts in the single-timescale case. Thus, we omit them here.

C.3.2 Particular Setting

We introduce the following lemma as an extension of expansivity for the particular NC-SC setting.

Lemma 13. Consider Problem 7 in the NC-SC setting and assume that Assumptions 7 and 8 hold. Suppose that \((x, y)\) and \((x', y')\) are produced by Algorithm 2 with step size \(\alpha_x = \alpha_y\). Let \(c_1 = \max\{\alpha_x l_f, \alpha_y l_g\}\). Then, we have the following expansivity equality:

\[\| G_T \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) - G_T \left(\begin{bmatrix} x' \\ y' \end{bmatrix} \right) \| \leq \left[\begin{array}{cc} 1 + \alpha_x I T & 0 \\ 0 & 1 - \alpha_x \mu_g + \alpha_x I T \end{array} \right] \left[\begin{array}{c} x - x' \\ y - y' \end{array} \right]. \]

Proof. By the triangle inequality, we have:

\[\| G_T \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) - G_T \left(\begin{bmatrix} x' \\ y' \end{bmatrix} \right) \| \leq \| G_T \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) - G_T \left(\begin{bmatrix} x' \\ y' \end{bmatrix} \right) \| + \| G_T \left(\begin{bmatrix} x' \\ y' \end{bmatrix} \right) - G_T \left(\begin{bmatrix} x' \\ y' \end{bmatrix} \right) \|. \]

The first item can be derived from:

\[\| G_T \left(\begin{bmatrix} x \\ y \end{bmatrix} \right) - G_T \left(\begin{bmatrix} x' \\ y' \end{bmatrix} \right) \| = \left\| \begin{bmatrix} x - x' - \alpha_x (\nabla f(x, y) - \nabla f(x', y)) \\ y - y + \alpha_y T (\nabla y g(x, y^t) - \nabla y g(x', y^t)) \end{bmatrix} \right\| \]
\[\leq (1 + \alpha T I) \| x - x' \|. \]

If \(g \) is strongly-convex, then \(\tilde{g}(x, y) = g(x, y) - \frac{\mu_g}{2} (\| x \|^2 + \| y \|^2) \) will be convex. With the monotonicity of \(\tilde{g} \) gradient, we can derive the following:

\[\| G_T \left(\begin{bmatrix} x' \\ y \end{bmatrix} \right) - G_T \left(\begin{bmatrix} x' \\ y' \end{bmatrix} \right) \|^2 \]
\[= \left\| \begin{bmatrix} x' - x' \\ y - y' \end{bmatrix} \right\|^2 \text{ } - 2 \alpha_x \left\| \begin{bmatrix} x' - x' \\ y - y' \end{bmatrix} \right\|^T \left(\nabla f(x', y) - \nabla f(x', y') \right) \]
\[+ \alpha_x^2 \left\| \begin{bmatrix} \nabla f(x', y) - \nabla f(x', y') \\ \nabla y g(x', y) - \nabla y g(x', y') \end{bmatrix} \right\|^2 \]
\[= (1 - \alpha_x \mu_g)^2 \left\| \begin{bmatrix} x' - x' \\ y - y' \end{bmatrix} \right\|^2 + \alpha_x^2 \left\| \begin{bmatrix} \nabla f(x', y) - \nabla f(x', y') \\ \nabla y g(x', y) - \nabla y g(x', y') \end{bmatrix} \right\|^2 \]
\[- 2 (1 - \alpha_x \mu_g) \alpha_x \left\| \begin{bmatrix} x' - x' \\ y - y' \end{bmatrix} \right\|^T \left(\nabla f(x', y) - \nabla f(x', y') \right) \]
\[\leq ((1 - \alpha_x \mu_g)^2 + \alpha_x^2 (2T^2)) \| y - y' \|^2. \]
Lemma 14. Consider two sequences of updates \(G_T^1, \ldots, G_T^K\) and \((G_T^1)', \ldots, (G_T^K)'\) with initial points \(x_0 = x_0', y_0 = y_0'\). Define \(\delta_{x,k} = \|x_k - x_0'\|\) and \(\delta_{y,k} = \|y_k - y_0'\|\). Suppose that \(G_T^K\) is \(\eta\)-expansive and for every \((x_{(G_T^k)'}, y_{(G_T^k)'}) := G_T^k(x, y)\), \((x_{(G_T^k)'}, y_{(G_T^k)'}) := (G_T^k)'(x, y)\) and

\[
\sup_{x,y} \|x_{G_T^k} - x\| \leq \sigma_x, \quad \sup_{x,y} \|y_{G_T^k} - y\| \leq \sigma_y,
\]

Then, we have

\[
\left[\frac{\delta_{x,k+1}}{\delta_{y,k+1}} \right] \leq \eta \left[\frac{\delta_{x,k}}{\delta_{y,k}} \right] + 2 \left[\frac{\sigma_x}{\sigma_y} \right].
\]

Proof.

\[
\begin{align*}
\mathbb{E} \left[\sum_{k=k_0+1}^{k} \frac{e^{T_l + l}}{m_1} \sum_{k=k_0+1}^{K} \frac{\sigma_x}{\sigma_y} \right]
&\leq \mathbb{E} \left[\sum_{k=k_0+1}^{k} \frac{e^{T_l + l}}{m_1} \sum_{k=k_0+1}^{K} \frac{\sigma_x}{\sigma_y} \right]
\leq \frac{2c_1 \sqrt{\tilde{f}^2 + T^2 T^2} - c(Tl + 1 - \mu_g)}{m_1 (Tl + 1 - \mu_g)} \cdot \left(\frac{K}{k_0} \right)^{c(Tl + 1 - \mu_g)}.
\end{align*}
\]

According to Lemma 11, we have:

\[
\mathbb{E} \left[\|f(x, y) - f(x', y')\| \right] \leq k_0 \frac{2L_f \sqrt{\tilde{f}^2 + T^2 T^2}}{m_1 (Tl + 1 - \mu_g)} \left(\frac{K}{k_0} \right)^{c(Tl + 1 - \mu_g)}.
\]

Let \(p = Tl + l - \mu_g\). The right hand side is approximately minimized when

\[
k_0 = \left(2c L_f \sqrt{\tilde{f}^2 + T^2 T^2} \right)^{\frac{1}{p+1}} \cdot K^{\frac{1}{p+1}}.
\]
Therefore, we have
\[
\beta \leq O\left(\frac{\left(2cL_f\sqrt{l_f^2 + l_g^2}T^2\right)^{\frac{1}{p+1}} \cdot K^{\frac{p}{p+1}} (p + 2/c)}{m_1 p}\right).
\]

\section*{C.4 The Proof of Corollary}

\textbf{Proof of Corollary 5.} Based on the proof of previous result in [C.2] we have:
\[
\mathbb{E}[|f(x, y) - f(x', y')|] \leq k_0 + \frac{2L_f\sqrt{l_f^2 + l_g^2}}{m_1 l} \left(\frac{K}{k_0}\right)^{cl}.
\]
The right hand side is approximately minimized when
\[
k_0 = \left(2cL_f\sqrt{l_f^2 + l_g^2}\right)^{\frac{1}{p+1}} \cdot K^{\frac{p}{p+1}}.
\]
Therefore, we have
\[
\mathbb{E}[|f(x, y) - f(x', y')|] \leq O\left(\frac{\left(2cL_f\sqrt{l_f^2 + l_g^2}T^2\right)^{\frac{1}{p+1}} \cdot K^{\frac{p}{p+1}} (l + 2/c)}{m_1 l}\right)
= O\left(K^{\frac{2}{p+1}} / m_1\right).
\]

\textbf{Proof of Corollary 6.} Based on the previous result, we have:
\[
\mathbb{E}[|f(x, y) - f(x', y')|] \leq k_0 + \frac{2L_f\sqrt{l_f^2 + T^2l_g^2}}{m_1 Tl} \left(\frac{K}{k_0}\right)^{Tcl}.
\]
The right hand side is approximately minimized when
\[
k_0 = \left(2cL_f\sqrt{l_f^2 + l_g^2}\right)^{\frac{1}{p+1}} \cdot K^{\frac{p}{p+1}}.
\]
Therefore, we have
\[
\mathbb{E}[|f(x, y) - f(x', y')|] \leq O\left(\frac{\left(2cL_f\sqrt{l_f^2 + T^2l_g^2}T^2\right)^{\frac{1}{p+1}} \cdot K^{\frac{p}{p+1}} (Tl + c/2)}{m_1 Tl}\right)
= O\left(T^{\frac{1}{p+1}} K^{1-\frac{3}{p+1}} / m_1\right).
\]
D ADDITIONAL EXPERIMENT

D.1 META LEARNING

We also conduct other experiments with single timescale (Algorithm 1) on meta learning to validate our theoretical findings. The model overfits with large value of K, which matches our theorem 2.

![Figure 2: Results of Meta Learning with single timescale optimization](image)

D.2 HYPERPARAMETER OPTIMIZATION

Hyperparameter optimization (HO) is also an instance of bilevel optimization that minimizes the validation error of a model parameterized by w with respect to hyperparameter λ. Mathematically, the objective function could be given by:

\[
\begin{align*}
\min_{\lambda} & \mathcal{L}_{D_{val}}(\lambda) = \mathbb{E}_{\xi \in D_{val}} \mathcal{L}(w^*; \xi), \\
\text{s.t.} & \quad w^* = \arg \min_w \mathbb{E}_{\xi \in D_{tr}} \left(\mathcal{L}(w, \lambda; \xi) + R_{w, \lambda} \right),
\end{align*}
\]

where \(D_{tr}\) and \(D_{val}\) are the training and validation sets and \(R_{w, \lambda}\) is the regularizer. In the inner level, the procedure optimizes \(w\) using the training set (Equation 6b). In the outer level, it optimizes \(\lambda\) using the validation set (Equation 6a).

Settings and Implementation We adopt the task of data hyper-cleaning. It aims to reweight data samples with the noisy label. Therefore, the hyperparameter \(\lambda\) is the weight of each sample in the training set. We follow a similar setting in Bao et al. (2021) on the MNIST dataset (LeCun, 1998), which consists of greyscale hand-written digits with size \(28 \times 28\). The model \(w\) corresponds to the classification network and the hyperparameter \(\lambda\) corresponds to the weights of each individual training sample. We establish the experiment using PyTorch (Paszke et al., 2019). The model \(w\) is a 2-layer fully connected network with size \(784 \rightarrow 256 \rightarrow 10\) for the 10 digit classification. The hyperparameter \(\lambda\) is a weighting vector with length 2000 for all training samples. We randomly sample 2000, 1000 and 1000 images for the training, validation and testing set. Training samples are corrupted with the probability of 50%, i.e., roughly half samples are labeled with random and wrong values, instead of the correct ones. We train \(w\) using the training set in the inner level and \(\lambda\) using the validation set in the outer level. The batch size is 32 and the learning rate for \(w\) and \(\lambda\) are 0.01 and 10, respectively. Results are evaluated based on the average of 5 trial runs with different random seeds.

Results Evaluation Figure 3 demonstrates the results of Algorithm 2 on the regularized HO problem where the inner level function is often strongly-convex. It is clearly shown in Figure 3b that \(T = 8\) causes the increase of testing loss and indicates that the risk of model overfitting increases as \(T\) rises. Additionally, the generalization error maintains a consistent relationship with both inner and outer iterations, \(T\) and \(K\) respectively, which is corresponding to our Theorem 4.

We also conduct the experiment with smaller learning rate 0.001 and larger number of steps \(\{64, 128, 256\}\) in the inner level. Compared to Figure 3, Figure 4 presents similar behavior in terms of the effect of the value of \(K\) and \(T\), while Figure 4c performs a higher variance caused by the accumulation of inner level updates. Furthermore, we can show that performance on the test dataset is comparable to performance with smaller inner iteration even when inner iteration \(T\) substantially increases, suggesting the effectiveness of TSGD and validating our Theorem 4.
Figure 3: Results of hyperparameter optimization with various values of T and K

Figure 4: Results of hyperparameter optimization with large values of T