ESSENTIAL NORMS OF WEIGHTED COMPOSITION OPERATORS BETWEEN HARDY SPACES IN THE UNIT BALL

ZHONG-SHAN FANG AND ZE-HUA ZHOU *

Abstract. Let \(\varphi(z) = (\varphi_1(z), \cdots, \varphi_n(z)) \) be a holomorphic self-map of \(B_n \) and \(\psi(z) \) a holomorphic function on \(B_n \), and \(H(B_n) \) the class of all holomorphic functions on \(B_n \), where \(B_n \) is the unit ball of \(C^n \), the weight composition operator \(W_{\psi,\varphi} \) is defined by \(W_{\psi,\varphi} = \psi f(\varphi) \) for \(f \in H(B_n) \). In this paper we estimate the essential norm for the weighted composition operator \(W_{\psi,\varphi} \) acting from the Hardy space \(H^p \) to \(H^q \) (\(0 < p, q \leq \infty \)). When \(p = \infty \) and \(q = 2 \), we give an exact formula for the essential norm. As their applications, we also obtain some sufficient and necessary conditions for the bounded weighted composition operator to be compact from \(H^p \) to \(H^q \).

1. Introduction

Let \(B_n \) be the unit ball of \(C^n \) with boundary \(\partial B_n \), \(\sigma \) the normalized rotation invariant measure on \(\partial B_n \). The class of all holomorphic functions on domain \(B_n \) will be denoted by \(H(B_n) \). Let \(\varphi(z) = (\varphi_1(z), \cdots, \varphi_n(z)) \) be a holomorphic self-map of \(B_n \) and \(\psi(z) \) is in \(H(B_n) \). Multiplication operator, Composition operator and weighted composition operator are defined as follows:

\[
M_{\psi}(f)(z) = \psi(z) \cdot f(z);
\]

\[
C_{\varphi}(f)(z) = f(\varphi(z));
\]

\[
W_{\psi,\varphi}(f)(z) = \psi(z) \cdot f(\varphi(z))
\]

for any \(f \in H(B_n) \) and \(z \in B_n \).

If let \(\psi \equiv 1 \), then \(W_{\psi,\varphi} = C_{\varphi} \); if let \(\varphi = Id \), then \(W_{\psi,\varphi} = M_{\psi} \). So we can regard weighted composition operator as a generalization of a multiplication operator and a composition operator. It is easy to show that \(C_{\varphi} \) and \(W_{\psi,\varphi} \) take \(H(B_n) \) into itself.

Shapiro’s monograph \cite{Shap1} gives an interesting account of these developments. See also Cowen and MacCluer’s book \cite{CowMac} for a comprehensive treatment of these and other related problems with composition operators.

In the recent years, boundedness and compactness of composition operators between several spaces of holomorphic functions have been studied by many authors: by Smith \cite{Smi1} between Bergman and Hardy spaces, by Jarchow and Ried \cite{JarR} between generalized Bloch-type spaces and Hardy spaces, between Bloch spaces and Besov spaces and BMOA and VMOA in Tian’s thesis \cite{JarR}, on BMOA by Simth \cite{Smi2}, and by Simth and Zhao \cite{SmiZ} from Bergman and Hardy spaces and

2000 Mathematics Subject Classification. Primary: 47B38; Secondary: 47B33,26A16, 32A16, 32A26, 32A30, 32A37, 32A38, 32H02.

Key words and phrases. Essential norm, Weighted composition operator, Bloch-type space, Hardy space, Several complex variables.

*Ze-Hua Zhou, corresponding author. Supported in part by the National Natural Science Foundation of China (Grand Nos.10671141, 10371091), and LiuHui Center for Applied Mathematics, Nankai University & Tianjin University.
Blanch space into Q_p spaces. All of papers above focus on studying the composition operators in function spaces for 1-dimensional case.

More recently, there have been many papers focused on studying the same problems for n-dimensional case: by Luo and Shi [LS1] between Hardy spaces on the unit ball. [LS2] weighted Bergman spaces on bounded symmetric domains, by Zhou and Shi [ZS1] [ZS2] [ZS3] on the Bloch space in polydisk or classical symmetric domains, Gorkin and MacCluer [GorM] between hardy spaces in the unit ball, and Lipschitz space in polydisc by Zhou [Zho]. In all these works the main goal is to relate function theoretic properties of L_1 spaces to boundedness and compactness of C_ϕ.

The essential norm of an operator T is by definition its distance to the compact operators; that is

$$||T||_e := \inf \{|T - K| : K \text{ compact}\}.$$

Notice that $||T||_e = 0$ if and only if T is compact, so that estimates on $||T||_e$ lead to the conditions for T to be compact.

In general, there is no easy way to determine the essential norms of composition operator or weighted composition operator.

Let f be in $H(B_n)$. For $0 < p < \infty$, f is said to be in the Hardy space $H^p(B_n)$ provided that

$$||f||_p = \sup_{0<r<1} \int_{\partial B_n} |f(r\xi)|^p d\sigma(\xi) < \infty.$$

The Banach space of bounded holomorphic functions on B_n in the sup norm is denoted by H^∞.

When $f \in H^p$, then f has radial limits at almost every ([dσ]) point of ∂B_n, and its H^p norm is also given by the $L^p(d\sigma)$ norm of its radial limit function f^*. That is

$$||f||_p = \int_{\partial B_n} |f^*(\xi)|^p d\sigma(\xi).$$

Typically we continue to write $f(\xi)$ for the radial limit; occasionally for clarity we use the special notation $f^*(\xi)$ for $\lim_{r \to 1} f(r\xi)$. In the whole of paper, $E = \{\xi \in \partial B_n : |f^*(\xi)| = 1\}$, which we call it the extreme set of φ.

It is well known that C_φ is always bounded on $H^p(D)$ for $0 < p \leq \infty$, this is a consequence of a theorem of J. Littlewood, see [CowMac], where $D = B_1$ is an unit disk. In 1987, J. Shapiro [Shap2] determined precisely when C_φ acts compactly on $H^p(D)$, for $p < \infty$, and gave a formula for the essential norm of C_φ acting on $H^2(D)$ in terms of the Nevanlinna counting function for φ. In 2002, L. Zheng [Zhe] proved the essential norm of C_φ acting on $H^\infty(D)$ is 1 whenever C_φ is not compact on $H^\infty(D)$ (equivalently, whenever $||\varphi||_\infty = 1$); it is also true when D is replaced by the unit ball [GorMS]. For $0 \leq p < q > 0$, C_φ acting from $H^p(D)$ to $H^q(D)$ will of course be bounded. H. Jarchow [JarN] and T. Goebeler [Goe] shew independently that C_φ is compact if and only if $|E| = 0$.

It seems reasonable to expect the essential norm to be given by a formula that involves $|E|$. In fact, P.Gorkin and B.MacCluer [GorM] pointed out the essential norm of C_φ acting from $H^\infty(D)$ to $H^2(D)$ is precisely $|E|^2$, and they have obtained the same results in the setting of Hardy spaces $H^p(B_n)$ (we write it H^p in the following) and also gave some simple estimates for the essential norm of a composition operator acting from H^∞ to H^q for $q \neq 2$ and for $0 < p < \infty$, from H^p to H^q under a natural additional condition. Here the additional condition is that there exists
0 < p < ∞ such that $C_\varphi : H^p \to H^p$ is bounded, which is naturally satisfied in the case $n = 1$. This assumption has two properties of interest to us:

1. No set of positive measure in ∂B_n is mapped by φ^* to a set of measure 0 in ∂B_n (see Corollary 3.38 of [GorM]);
2. If $f \in H^p(B_n)$, then for a.e. $\sigma_\xi \in \partial B_n$, $(f \circ \varphi)^*(\xi) = f^*(\varphi^*(\xi))$ (see Lemma 1.6 in [Mac]).

In our paper, in addition to extend corresponding cases in [GorM] to the weighted composition operator, we also get the lower estimates for the essential norm of a weighted composition operator from H^p to H^q for $1 < p \leq q \leq \infty$.

The remainder of the present paper is assembled as follows: In section 2, we refer the reader some Lemmas which needs in next sections. In section 3, we will show that the essential norm of the bounded weighted composition operator $W_{\psi, \varphi}$ is precisely $\left(\mu_{\psi, \varphi, 2}(\varphi(E)) \right)^{1/2}$ for the case $p = \infty, q = 2$ (Theorem 3.1), and give an estimate for the case $p = \infty, q \neq 2$ (Theorem 3.2). In section 4, we give the upper estimate for the case $1 < p < \infty$ (Theorem 4.1) and lower estimate for the case $1 < q < p < \infty$ (Theorem 4.2). The fundamental ideas of the proof are those used by Gorkin and MacCluer in [GorM], but some new techniques are still used in this section because of the citation of the new measure induced by ψ and φ and the difference between weighted composition operator and composition operator. If $\psi = 1$, $W_{\psi, \varphi} = C_\varphi$, we can completely the corresponding results in [GorM].

In sections 5 and 6 (not be considered in Gorkin and MacCluerin’s paper), using different methods, we obtain some estimates for the essential norms of the weighted operator acting from H^p to H^∞ for $p > 1$ (Theorem 5.2) and from H^p to H^q for $1 < p \leq q < \infty$ (Theorem 6.2). All of them are done under the same additional condition. As their applications, we also obtained some sufficient and necessary conditions for the weighted composition operator to be compact from H^p to H^q for the above cases. For convenience, we always abbreviate $H^p(B_n)$ to H^p.

2. Some Lemmas

Lemma 2.1. Let φ is holomorphic self-map of B_n and $\psi \in H^p$, where $0 < p < \infty$. For any measurable subset E of ∂B_n, denote $\mu_{\psi, \varphi, p}(E) = \int_{\varphi^{-1}(E) \cap \partial B_n} |\psi|^p d\sigma$. Then

$$\int_{\partial B_n} g d\mu_{\psi, \varphi, p} = \int_{\partial B_n} |\psi|^p(g \circ \varphi) d\sigma,$$

where g is an arbitrary measurable positive function in \overline{B}_n.

Proof If g is a measurable simple function defined on \overline{B}_n given by $g = \sum_{i=1}^n \alpha_i \chi_{E_i}$, then

$$\int_{\overline{B}_n} g d\mu_{\psi, \varphi, p} = \sum_{i=1}^n \alpha_i \mu_{\psi, \varphi, p}(E_i) = \sum_{i=1}^n \alpha_i \int_{\varphi^{-1}(E_i) \cap \partial B_n} |\psi|^p d\sigma = \int_{\partial B_n} |\psi|^p(\sum_{i=1}^n \alpha_i \chi_{\varphi^{-1}(E_i) \cap \partial B_n}) d\sigma = \int_{\partial B_n} |\psi|^p(g \circ \varphi) d\sigma.$$
Now, if g is a measurable positive function in \overline{B}_n, then we can take an increasing sequence $\{g_m\}$ of positive and simple functions such that $g_m(z) \to g(z)$ for all $z \in \overline{B}_n$, it follows that

$$\int_{\overline{B}_n} g_m d\mu_{\psi, \varphi, p} \to \int_{\overline{B}_n} g d\mu_{\psi, \varphi, p}.$$

On the other hand, $|\psi|^p(g_m \circ \varphi)$ is an increasing sequence such that

$$|\psi(z)|^p(g_m(\varphi(z))) \to |\psi(z)|^p(g(\varphi(z)))$$

for all $z \in \overline{B}_n$, so

$$\int_{\overline{B}_n} g_m d\mu_{\psi, \varphi, p} = \int_{\partial B_n} |\psi|^p(g_m \circ \varphi)d\sigma \to \int_{\partial B_n} |\psi|^p(g \circ \varphi)d\sigma.$$

And the conclusion follows by the uniqueness of the limit.

Lemma 2.2. (See p116 in [Zhu2]) Suppose $0 < p < \infty$ and $f \in H^p$. Then $|f(z)| \leq \frac{|f|_p}{(1-|z|^p)_p}$ for all $z \in B_n$.

Lemma 2.3. Let Ω be a domain in C^n, $f \in H(\Omega)$. If a compact set K and its neighborhood G satisfy $K \subset G \subset \subset \Omega$ and $\rho = \text{dist}(K, \partial G) > 0$, then

$$\sup_{z \in K} \frac{\partial f}{\partial z_j}(z) \leq \frac{\sqrt{n}}{\rho} \sup_{z \in G} |f(z)|.$$

Proof Since $\rho = \text{dist}(K, \partial G) > 0$, for any $a \in K$, the polydisc

$$P_a = \{(z_1, \cdots, z_n) \in C^n : |z_j - a_j| < \frac{\rho}{\sqrt{n}}, j = 1, \cdots, n\}$$

is contained in G. Using Cauchy inequality, we have

$$\left|\frac{\partial f}{\partial z_j}(a)\right| \leq \frac{\sqrt{n}}{\rho} \sup_{z \in \partial P_a} |f(z)| \leq \frac{\sqrt{n}}{\rho} \sup_{z \in G} |f(z)|.$$

So the Lemma follows.

Lemma 2.4. For fixed $0 < \delta < 1$, let $G = \{z \in B_n : |z| \leq 1 - \delta\}$. Then

$$\limsup_{r \to 1} \sup_{z \in G} |f(z) - f(rz)| = 0$$

for any $f \in H^p(B_n)$.

Proof

$$\sup_{z \in G} |f(z) - f(rz)| = \sup_{z \in G} \left|\sum_{j=1}^n (f(rz_1, rz_2, \cdots, rz_{j-1}, z_j, \cdots, z_n) - f(rz_1, rz_2, \cdots, rz_j, z_{j+1}, \cdots, z_n))\right|$$

$$\leq \sup_{z \in G} \sum_{j=1}^n \left|\int_0^1 |z_j - t z_j| \frac{\partial f}{\partial z_j}(rz_1, rz_2, \cdots, rz_{j-1}, tz_j, z_{j+1}, \cdots, z_n) dt\right|$$

$$\leq (1 - r)n \sup_{z \in G} \left|\frac{\partial f}{\partial z_j}(z)\right|.$$

Define $G_1 = \{z \in B_n : |z| \leq 1 - \frac{\delta}{2}\}$, then $G \subset G_1$ and $\text{dist}(G, \partial G_1) = \frac{\delta}{2}$.

It follows from Lemma 2.3 that
\[
\sup_{z \in G} \left| \frac{\partial f}{\partial z_j}(z) \right| \leq \frac{2\sqrt{n}}{\delta} \sup_{z \in G_1} |f(z)|.
\]
If \(p = \infty \), then
\[
\sup_{z \in G} |f(z) - f(rz)| \leq \frac{2(1-r)n\sqrt{n}}{\delta} ||f||_\infty.
\]
For \(0 < p < \infty \), it follows from Lemma 2.2 that
\[
\sup_{z \in G} |f(z) - f(rz)| \leq \frac{2(1-r)n\sqrt{n}}{\delta} \sup_{z \in G_1} ||f||_p (1 - |z|^n)^{n/p} \leq \frac{2(1-r)n\sqrt{n}}{\delta} ||f||_p \left(\frac{2}{3} \right)^{n/p}.
\]
Let \(r \to 1 \), the conclusion follows.

Lemma 2.5. (See corollary 1.3 in [CowMac]) A sequence in a reflexive functional Banach space converges weakly if and only if it is bounded and converges point-wise.

Lemma 2.6. Assume \{\(f_m \)\} is a bounded sequence in \(H^p(B_n)(p > 1) \), and \{\(f_m \)\} converges weakly to 0, then for any compact operator \(K \) from \(H^p(B_n) \) to \(Y \) (\(Y \) is a normalized linear space), we have \(\|Kf_m\|_Y \to 0 \).

Proof This is easily followed by Lemma 2.5 and the property of compact operator.

3. FROM \(H^\infty \) TO \(H^q \)

Case 1. \(p = \infty, q = 2 \)

It is well known that for any \(f \in H(B_n) \), \(f \) has homogeneous expansion \(f(z) = \sum_{s=0}^\infty F_s(z) \), where \(F_s(z) \) is the homogeneous polynomial \(\sum_{|\alpha| = s} c(\alpha)z^\alpha \), \(z^\alpha = z^{\alpha_1} \cdots z^{\alpha_n} \), \(\alpha = (\alpha_1, \cdots, \alpha_n) \), and \(|\alpha| = \alpha_1 + \cdots \alpha_n \).

If \(f \in H^2(B_n) \), then
\[
||f||_2^2 = \sum_{\alpha} |c(\alpha)|^2 ||z^\alpha||_2^2,
\]
where
\[
||z^\alpha||_2^2 = \frac{(n-1)!|\alpha|}{(n-1 + |\alpha|)!},
\]
where \(\{\frac{z^\alpha}{||z^\alpha||_2} \} \) is an orthonormal basis for \(H^2(B_n) \), and \(c(\alpha) = D^\alpha f(0)/\alpha! \) with \(\alpha! = \alpha_1! \cdots \alpha_n! \). If necessary, we refer the reader to see [Rud].

For \(m \) a positive integer, define the operators from \(H^2(B_n) \) to itself:
\[
R_m(\sum_{s=0}^\infty F_s) = \sum_{s=m+1}^\infty F_s
\]
and
\[
Q_m = I - R_m.
\]
It is easy to show that \(R_m \) is compact and \(\|R_m\| = 1 \).
Lemma 3.1. $W_{\psi, \varphi} : H^\infty \to H^q$, $0 < q < \infty$ is bounded if and only if $\psi \in H^q$.

Proof If $W_{\psi, \varphi}$ is bounded, let $f = 1$, then $W_{\psi, \varphi}f = \psi f(\varphi) = \psi \in H^q$. Conversely, apparently we have $||W_{\psi, \varphi}f||_q \leq ||\psi||_q ||f||_\infty$ for any $f \in H^\infty$, that is, $||W_{\psi, \varphi}|| \leq ||\psi||_q^q$.

Using the same methods as that of Gorkin-MacCluer in [GorM], with minor modifications, we can obtain the following Lemmas 3.2 and 3.3. But for the reader’s convenience, we give still the detail proof for the results.

Lemma 3.2. If $W_{\psi, \varphi} : H^\infty \to H^2$ and $\psi \in H^2$, then

$$||W_{\psi, \varphi}||_e = \lim_{m \to \infty} ||R_m W_{\psi, \varphi}||.$$

Proof On one hand, by hypothesis and Lemma 3.1, we know $W_{\psi, \varphi}$ is bounded, so the compactness of Q_m implies that $Q_m W_{\psi, \varphi}$ is also compact,

$$||W_{\psi, \varphi}||_e = ||(R_m + Q_m)W_{\psi, \varphi}||_e = ||R_m W_{\psi, \varphi}||_e \leq ||R_m W_{\psi, \varphi}||,$$

it follows that

$$||W_{\psi, \varphi}||_e \leq \lim inf_{n \to \infty} ||R_m W_{\psi, \varphi}||.$$

On the other hand, let $K : H^\infty \to H^2$ be compact. Since $||R_m|| = 1$,

$$||W_{\psi, \varphi} - K|| \geq ||R_m (W_{\psi, \varphi} - K)|| = ||R_m W_{\psi, \varphi} - R_m K|| \geq ||R_m W_{\psi, \varphi}|| - ||R_m K||.$$

Note that K is compact, the image of the unit ball in H^∞ under K has compact closure in H^2. Since $||R_m|| = 1$ and $R_m K$ tends to 0 point-wise in H^2, $R_m K$ tends to 0 uniformly on the unit ball of H^∞, that is $||R_m K|| \to 0$ as $n \to \infty$. It follows that

$$||W_{\psi, \varphi}||_e \geq \lim sup_{m \to \infty} ||R_m W_{\psi, \varphi}||,$$

this completes the proof.

Lemma 3.3. For $W_{\psi, \varphi} : H^\infty \to H^2$ and $\psi \in H^2$, if k is fixed positive integer and g is any non-constant holomorphic function on B_n with $||g||_\infty \leq 1$, then $||Q_k W_{\psi, \varphi}(g^m)||_2 \to 0$ as $m \to \infty$.

Proof If α is a multi-index with $|\alpha| \leq k$, then

$$||z^\alpha||^2 = \frac{(n-1)!n!}{(n-1+|\alpha|)!} \leq (k!)^n \equiv c(n, k).$$

Since $D^n(0, \frac{1}{2n}) \subseteq B_n$ and Cauchy’s estimates, for any holomorphic function F in B_n, we have

$$\frac{D^n F(0)}{\alpha!} \leq (2n)^{|\alpha|} ||F||_{\infty, D^n(0, \frac{1}{2n})}$$

where $||F||_{\infty, D^n(0, \frac{1}{2n})}$ denotes the maximum modulus of F on the polydisc $D^n(0, \frac{1}{2n})$.

Since the series coefficients for F are $c(\alpha) = \frac{D^n F(0)}{\alpha!}$, we get the series coefficients for $\psi \cdot g^m \circ \varphi$ are bounded above by

$$(2n)^{|\alpha|} ||\psi \cdot g^m \circ \varphi||_{\infty, D^n(0, \frac{1}{2n})}.$$

Let $c = \max |\psi|$ and $s = \max |g \circ \varphi|$ on $D^n(0, \frac{1}{2n})$, then $s < 1$ by hypothesis. This implies that $||\psi \cdot g^m \circ \varphi||_{\infty, D^n(0, \frac{1}{2n})} \leq cs^m$, which tends to 0 as $m \to \infty$. For
fixed k, $\|Q_k W_{\psi,\varphi}(g^m)\|^2 = \sum_{|\alpha| \leq k} |c(\alpha)||z^\alpha|^2$, where $c(\alpha)$ is the coefficients of z^α in the expansion of $\psi \cdot (g \circ \varphi)^m$. By the above estimate, we have

$$\|Q_k W_{\psi,\varphi}(g^m)\|^2 \leq \sum_{|\alpha| \leq k} ((2n)^k c s^m)^2 c(n,k) \leq c'(n,k)s^{2m}.$$

For fixed k, the last expression tends to 0 as $m \to \infty$.

Lemma 3.4. Let $\epsilon > 0$, set $E_\epsilon = \{\xi \in \partial B_n : |\varphi(\xi)| \geq 1 - \epsilon\}$ and let E^c_ϵ denote its complement in ∂B_n, $\psi \in H^2$. Define an operator $K : H^\infty \to H^2$ by $K(f) = P(\chi_{E^c_\epsilon} \psi \cdot (f \circ \varphi))$, where P is the orthogonal projection of L^2 onto H^2 (where we identify a function in H^2 with its radial limit function). Then K is compact from H^p to H^2, for any $2 < p \leq \infty$.

Proof Let $\{f_m\}$ be a sequence from the unit ball of H^p. By Lemma 2.4, $\{f_m\}$ is a normal family when $2 < p < \infty$, and this is obviously true for $p = \infty$. So there is a subsequence which converges uniformly on compact subset of B_n, to say f. For simplicity we still denote this subsequence as $\{f_m\}$. Clearly $f \in H^p$. So

$$\|Kf_m - Kf\|^2 \leq ||P||^2 \|\chi_{E^c_\epsilon} \psi \cdot (f_m \circ \varphi) - \chi_{E^c_\epsilon} \psi \cdot (f \circ \varphi)\|^2 \leq \int_{\partial B_n} |\chi_{E^c_\epsilon} \psi \cdot (f_m \circ \varphi) - \chi_{E^c_\epsilon} \psi \cdot (f \circ \varphi)|^2 d\sigma = \int_{E^c_\epsilon} |\psi \cdot (f_m \circ \varphi) - \psi \cdot (f \circ \varphi)|^2 d\sigma.$$

Since $\{f_m\}$ are uniformly bounded on E^c_ϵ and $\psi \in H^2$, the above expression tends to 0 as $n \to \infty$ by Lebesgue’s dominated convergence theorem. This verifies the compactness of K.

Theorem 3.1. For $W_{\psi,\varphi} : H^\infty \to H^2$ and $\psi \in H^2$, then $\|W_{\psi,\varphi}\|_e = (\mu_{\psi,\varphi,2}(\varphi(E)))^{1/2}$, where $E = \{\xi \in \partial B_n : |\varphi^*(\xi)| = 1\}$.

Proof we consider the lower estimate first.

Let g be a non-constant inner function on B_n and set $h = g^m$ for a positive integer m, then

$$\|W_{\psi,\varphi}(g^m)\|^2 = \int_{\partial B_n} |\psi \cdot (h^* \circ \varphi^*)|^2 d\sigma = \int_{E^c_\epsilon} |h^*| d\mu_{\psi,\varphi,2} \geq \int_{\varphi(E)} |h^*| d\mu_{\psi,\varphi,2} \geq \mu_{\psi,\varphi,2}(\varphi(E))$$

where the last inequality follows by the fact that $|h^*| = 1$ a.e $[d\mu]$ on $\varphi(E)$, this is true that h is inner and the restriction of $\mu_{\psi,\varphi,2}$ to ∂B_n is absolutely continuous with respect to σ.

In fact, for any measurable subset E of ∂B_n,

$$\mu_{\psi,\varphi,2}(E) = \int_{\varphi^{-1}(E) \cap \partial B_n} |\psi|^2 d\sigma,$$

by hypothesis of C_{φ}, if $\sigma(E) = 0$, then $\sigma(\varphi^{-1}(E)) = 0$, and $\mu_{\psi,\varphi,2}(E) = 0$ follows. So

$$\|R_k W_{\psi,\varphi}\| \geq \|R_k W_{\psi,\varphi}(g^m)\| \geq \|W_{\psi,\varphi}(g^m)\| - \|Q_k W_{\psi,\varphi}(g^m)\| \geq \mu_{\psi,\varphi,2}(\varphi(E)) - \|Q_k W_{\psi,\varphi}(g^m)\|.$$
for all m.

Fix k and let $m \to \infty$ and apply Lemma 3.2 we obtain

$$
||R_k W_{\psi,\varphi}|| \geq (\mu_{\psi,\varphi,2}(\varphi(E)))^{1/2}
$$

for any k. Now let $k \to \infty$, by Lemma 3.1 we have the desired lower estimate on

$$
||W_{\psi,\varphi}||_e.
$$

Now we turn to the upper estimate.

Take K as in Lemma 3.3, for any $g \in H^\infty$ with $||g||_\infty = 1$, we have

$$
||W_{\psi,\varphi}(g) - K(g)||_2 = ||\varphi \cdot g \circ \varphi - P(\chi_{E}\varphi \cdot (f \circ \varphi))||_2
$$

$$
= ||P(\chi_{E}\varphi \cdot (f \circ \varphi))||_2 \leq ||\chi_{E}\varphi \cdot (f \circ \varphi)||_2
$$

$$
= (\int_{E_n} |\varphi \cdot g \circ \varphi|^2 d\sigma)^{1/2} \leq ||g \circ \varphi||_\infty (\int_{E_n} |\psi|^2 d\sigma)^{1/2}
$$

$$
\leq ||g \circ \varphi||_\infty (\int_{\varphi^{-1}(\varphi(E)_e)} |\psi|^2 d\sigma)^{1/2}
$$

$$
= ||g \circ \varphi||_\infty (\mu_{\psi,\varphi,2}(\varphi(E)_e))^{1/2}.
$$

Let $\epsilon_m \downarrow 0$ and K_m the corresponding operator defined by

$$
K_m(f) = P(\chi_{E_m} \varphi \cdot (f \circ \varphi)).
$$

For $p = \infty$ we have

$$
||W_{\psi,\varphi}||_e \leq ||W_{\psi,\varphi} - K_m|| \leq (\mu_{\psi,\varphi,2}(\varphi(E_{\epsilon_m})))^{1/2}
$$

for all m, and let $m \to \infty$, as desired.

Corollary 3.1. $W_{\psi,\varphi} : H^\infty \to H^2$ is compact if and only if $\psi \in H^2$ and $\sigma(E) = 0$.

Proof. If $W_{\psi,\varphi}$ is compact, it is obviously bounded, it follows from Lemma 3.1 that $\psi \in H^2$. From Theorem 3.1, the compactness of $W_{\psi,\varphi}$ implies $\mu_{\psi,\varphi,2}(\varphi(E)) = 0$, so $\sigma(\varphi^{-1}(\varphi(E)) \cap \partial B_n) = 0$ (see 5.5.9 in [Rud]), therefore $0 \leq \sigma(E) \leq \sigma(\varphi^{-1}(\varphi(E)) \cap \partial B_n) = 0$, $\sigma(E) = 0$.

On the other hand, if $\psi \in H^2$, from the proof of theorem 3.1, it follows that

$$
||W_{\psi,\varphi}||_e \leq (\int_{E_n} |\psi|^2 d\sigma)^{1/2}
$$

when $\epsilon \to 0$ and since $\sigma(E) = 0$, we get $||W_{\psi,\varphi}||_e = 0$, so $W_{\psi,\varphi}$ is compact.

In the above proof, set $\psi = 1 \in H^2$, then $||W_{1,\varphi}||_e = ||C_{\varphi}||_e \leq \sigma(E)^{1/2}$. And if set $\psi = 1$ in theorem 3.1, then

$$
||C_{\varphi}||_e \geq (\mu_{1,\varphi,2}(E))^{1/2} = \sigma(\varphi^{-1}(\varphi(E)))^{1/2},
$$

so $\sigma(\varphi^{-1}(\varphi(E))) = \sigma(E)$, we have the following Corollary

Corollary 3.2. (Theorem 1 in [GorM]) $C_{\varphi} : H^\infty \to H^2$ is bounded and

$$
||C_{\varphi}||_e = \sigma(E)^{1/2}.
$$

Case 2. $p = \infty, q \neq 2$

Theorem 3.2. Suppose $W_{\psi,\varphi} : H^\infty \to H^q (q > 1)$, and $\psi \in H^q$, then

$$
\frac{1}{2}(\mu_{\psi,\varphi,q}(\varphi(E)))^{1/q} \leq ||W_{\psi,\varphi}||_e \leq 2(\mu_{\psi,\varphi,q}(\varphi(E)))^{1/q}.
$$
Thus, for that \(K \) is any compact operator. For any positive integer \(m \)

we consider upper estimate first. Obviously \(W_{\psi,r\varphi} \) is compact for any

fixed \(0 < r < 1 \). Let \(E_\epsilon = \{ \xi \in \partial B_n : |\varphi(\xi)| \geq 1 - \epsilon \} \) and let \(E_\epsilon^c \) denote its

complement in \(\partial B_n \). So

\[
\| W_{\psi,\varphi} - W_{\psi,r\varphi} \| = \sup_{|f| = 1} \| (W_{\psi,\varphi} - W_{\psi,r\varphi})f \|_q
\]

\[
= \sup_{|f| = 1} \left(\int_{\partial B_n} |\psi(f \circ \varphi) - \psi(f \circ (r\varphi))|^q d\sigma \right)^{1/q}
\]

\[
= \sup_{|f| = 1} \left(\int_{E_\epsilon} |\psi(f \circ \varphi) - \psi(f \circ (r\varphi))|^q d\sigma \right)^{1/q}
\]

\[
+ \sup_{|f| = 1} \left(\int_{E_\epsilon^c} |\psi(f \circ \varphi) - \psi(f \circ (r\varphi))|^q d\sigma \right)^{1/q}.
\]

Apply Lemma 2.4, we can choose \(r \) sufficiently close to 1 to make the second term

less than \(\epsilon \| \varphi \|_q \). For the first term, the triangle inequality yields

\[
|f \circ \varphi(\xi) - f \circ (r\varphi)(\xi)| \leq 2
\]

So, the first term is less than

\[
2\left(\int_{E_\epsilon} |\psi|^q d\sigma \right)^{1/q} \leq 2\left(\int_{\varphi^{-1}(E_\epsilon) \cap \partial B_n} |\psi|^q d\sigma \right)^{1/q} = 2(\mu_{\psi,\varphi,q}(\varphi(E_\epsilon)))^{1/q}.
\]

Let \(m \downarrow 0 \), and \(E_{\epsilon_m} = \{ \xi \in \partial B_n : |\varphi(\xi)| \geq 1 - \epsilon_m \} \), then \(\mu_{\psi,\varphi,q}(\varphi(E_{\epsilon_m})) \to \mu_{\psi,\varphi,q}(\varphi(E)) \), the upper estimate follows.

Now we turn to lower estimate. Let \(f \) be a non-constant inner function in \(B_n \),

\(K \) is any compact operator. For any positive integer \(m \), the sequence \(\{ f^m \} \) are

in the unit ball of \(H^\infty \). So there exists a subsequence \(\{ f^{m_k} \} \) such that \(\{ K(f^{m_k}) \} \)

converges in norm. Therefore, given \(\epsilon > 0 \), there exists \(M \) such that \(\| K(f^{m_k}) - K(f^{m_l}) \|_q < \epsilon \) for any \(k, l > M \). Fix \(k > M \), there exists \(r \) with \(0 < r < 1 \) such that \((\psi(f \circ \varphi)^{m_k})(z) = \psi(rz)(f \circ \varphi(rz))^{m_k} \) satisfies

\[
\| (\psi(f \circ \varphi)^{m_k})_r \|_q \geq \| (\psi(f \circ \varphi)^{m_k}) \| - \epsilon.
\]

Thus, for \(m \geq M \)

\[
\| W_{\psi,\varphi} - K \| \geq \| (W_{\psi,\varphi} - K) \frac{f^{m_k} - f^{m_l}}{2} \|_q
\]

\[
\geq \frac{1}{2} \| (\psi(f \circ \varphi)^{m_k}) - (\psi(f \circ \varphi)^{m_l}) \|_q - \epsilon/2
\]

\[
\geq \frac{1}{2} \| (\psi(f \circ \varphi)^{m_k})_r \|_q - \| (\psi(f \circ \varphi)^{m_l})_r \|_q - \epsilon/2
\]

\[
\geq \frac{1}{2} \| (\psi(f \circ \varphi)^{m_k})_r \|_q - \| (\psi(f \circ \varphi)^{m_l})_r \|_q - \epsilon.
\]

letting \(l \to \infty \) and \(h = f^{m_k} \), we have

\[
\| W_{\psi,\varphi} - K \| \geq \frac{1}{2} \| (\psi(f \circ \varphi)^{m_k})_r \|_q - \epsilon
\]

\[
= \frac{1}{2} \left(\int_{\partial B_n} |\psi^* \cdot (h^* \circ \varphi^*)|^q d\sigma \right)^{1/q} - \epsilon
\]

\[
= \frac{1}{2} \left(\int_{B_n} |h^*|^q d\mu_{\psi,\varphi,q} \right)^{1/q} - \epsilon
\]

\[
\geq \frac{1}{2} \left(\int_{\varphi(E)} |h^*|^q d\mu_{\psi,\varphi,q} \right)^{1/q} - \epsilon
\]

\[
\geq \frac{1}{2} (\mu_{\psi,\varphi,q}(\varphi(E)))^{1/q} - \epsilon.
\]
Now letting $\epsilon \to 0$ yields the result.

Corollary 3.3. $W_{\psi, \varphi} : H^\infty \to H^q$ is compact if and only if $\psi \in H^q$ and $\sigma(E) = 0$.

Proof Combining Lemma 3.1 and Theorem 3.2, the corollary follows.

Corollary 3.4. (Theorems 2 and 3) $C_\varphi : H^\infty \to H^q$ is compact if and only if $\psi \in H^q$ and $\sigma(E) = 0$.

Proof Let $\psi = 1 \in H^q$, then $W_{\psi, \varphi} = C_\varphi$, the corollary follows by Theorem 3.2.

4. **From H^p to H^q for $1 < q < p < \infty$**

Theorem 4.1. Assume $W_{\psi, \varphi} : H^p \to H^q$ $(1 < p < \infty)$ is bounded, then

$$||W_{\psi, \varphi}||_e \geq (\mu_{\psi, \varphi, q}(\varphi(E)))^{1/q}.$$

Proof Let g be a non-constant inner function on B_n and set $h = g^m$ for a positive integer m. Then $||g^m||_p = 1$ for any m, and g^m converges weakly to 0 as $m \to \infty$, thus $||Kf_w|| \to 0$ for any compact operator from H^p to H^q when $|w| \to 1$. Like in Theorem 3.1, we have

$$||W_{\psi, \varphi} - K|| \geq \limsup_{m \to \infty} ||(W_{\psi, \varphi} - K)(g^m)||_q \geq \limsup_{m \to \infty} ||W_{\psi, \varphi}(g^m)||_q - \limsup_{m \to \infty} ||K(g^m)||_q = \limsup_{m \to \infty} ||W_{\psi, \varphi}(g^m)||_q = \limsup_{m \to \infty} (\int_{\partial B_n} |\psi^* \cdot (h^* \circ \varphi^*)|^q d\sigma)^{1/q} = \limsup_{m \to \infty} (\int_{\varphi(E)} |h^*| d\mu_{\psi, \varphi, q})^{1/q} \geq \limsup_{m \to \infty} (\int_{\varphi(E)} |h^*| d\mu_{\psi, \varphi, q})^{1/q} \geq (\mu_{\psi, \varphi, 2}(\varphi(E)))^{1/q}.$$

This ends the proof.

Corollary 4.1. Assume $W_{\psi, \varphi} : H^p \to H^q$, $p > 1, 0 < q < \infty$ is compact, then $\sigma(E) = 0$.

Remark 1. We will show that when $0 < p < q < \infty$ and $W_{\psi, \varphi} : H^p \to H^q$ is bounded, then $\mu_{\psi, \varphi, q}(\varphi(E)) = 0$ (see Corollary 6.1), So the above estimate is useless.

Theorem 4.2. Suppose $1 < q < p < \infty$ and there exists $r > q$ such that $W_{\psi, \varphi} : H^p \to H^r$ $(1 < p < \infty)$ is bounded, then

$$||W_{\psi, \varphi}||_e \leq ||P|| \cdot ||W_{\psi, \varphi}||_{p,r} \cdot \sigma(E)^{\frac{r-q}{qr}}$$

where P is the Szegő projection of $L^q(\sigma)$ onto H^q.

Proof We consider the operator $K : H^p \to H^q$ defined by $K(f) = P(\chi_{E^c} \psi \cdot (f \circ \varphi))$.
where P is the Szegő projection of $L^q(\sigma)$ onto H^q. Like in Lemma 3.3, K is compact operator from H^p to H^q. So for any $g \in H^p$ with $\|g\|_p = 1$, we have
\[
\|W_{\psi,\varphi}(g) - K(g)\|_q = \|\psi \cdot g \circ \varphi - P(\chi_{E_\epsilon} \psi \cdot (f \circ \varphi))\|_q
\]
\[
= \|P(\chi_{E_\epsilon} \psi \cdot (f \circ \varphi))\|_q
\]
\[
\leq \|P\| \cdot \|\chi_{E_\epsilon} \psi \cdot (f \circ \varphi)\|_q
\]
\[
= \|P\| \cdot \left(\int_{E_\epsilon} |\psi \cdot g \circ \varphi|^q d\sigma \right)^{\frac{1}{q}}
\]
\[
\leq \|P\| \cdot \left(\int_{\partial B_n} \chi_{E_\epsilon} |\psi \cdot g \circ \varphi|^q d\sigma \right)^{\frac{1}{q}}
\]
\[
\leq \|P\| \cdot \|W_{\psi,\varphi}(g)\|_r \sigma(E_\epsilon)^{\frac{q}{q'}}
\]
\[
\leq \|P\| \cdot \|W_{\psi,\varphi}\|_{p,r} \cdot \sigma(E_\epsilon)^{\frac{q}{q'}}.
\]

Letting $\epsilon \to 0$ yields the conclusion.

5. From H^p to H^∞

Theorem 5.1. For $W_{\psi,\varphi} : H^p \to H^\infty$, and $0 < p < \infty$, then $W_{\psi,\varphi}$ is bounded if and only if $\sup_{z \in B_n} \frac{\psi(z)}{(1 - |\varphi(z)|^2)^{n/p}} < \infty$.

Proof " \Rightarrow " For any $w \in B_n$, define $f_w(z) = \frac{(1 - |w|^2)^{n/p}}{(1 - <z,w>)^2n/p}$, and it is easy to check $\|f_w\|_p = 1$. So
\[
C \geq \|W_{\psi,\varphi}\| = \sup_{\|f\|_p = 1} \|W_{\psi,\varphi}f\|_\infty \geq \sup_{z \in B_n} \|W_{\psi,\varphi}f_{w}\|_\infty
\]
\[
= \sup_{w \in B_n} \sup_{z \in B_n} |\psi(z)| |f_{w}(\varphi(z))|
\]
setting $w = \varphi(z)$, as desired.

" \Leftarrow "
\[
\|W_{\psi,\varphi}\| = \sup_{\|f\|_p = 1} \|W_{\psi,\varphi}f\|_\infty = \sup_{\|f\|_p = 1} \sup_{z \in B_n} |\psi(z)| f(\varphi(z))
\]
\[
\leq \sup_{\|f\|_p = 1} \sup_{z \in B_n} |\psi(z)| \frac{\|f\|_p}{(1 - |\varphi(z)|^2)^{n/p}} = \sup_{z \in B_n} \frac{|\psi(z)|}{(1 - |\varphi(z)|^2)^{n/p}}
\]

Theorem 5.2. For $W_{\psi,\varphi} : H^p \to H^\infty$ ($p > 1$), and $W_{\psi,\varphi}$ is bounded, then
\[
\lim_{\delta \to 0} \sup_{\text{dist}(\varphi(z), \partial B_n) < \delta} \frac{|\psi(z)|}{(1 - |\varphi(z)|^2)^{n/p}} \leq \|W_{\psi,\varphi}\|_e
\]
\[
\leq 2 \lim_{\delta \to 0} \sup_{\text{dist}(\varphi(z), \partial B_n) < \delta} \frac{|\psi(z)|}{(1 - |\varphi(z)|^2)^{n/p}}.
\]

Proof We consider the upper estimate first.
For any fixed $0 < r < 1$, it is easy to check that $W_{\psi,\varphi}$ is compact. Thus
\[
\|W_{\psi,\varphi}\|_e \leq \|W_{\psi,\varphi} - W_{\psi,\varphi,r}\|.
\]
Now for any $0 < \delta < 1$
\[
\|W_{\psi, r} - W_{\psi, r}\| = \sup_{\|f\|_p = 1} \| (W_{\psi, r} - W_{\psi, r}) f \|_\infty \\
= \sup_{\|f\|_p = 1} \sup_{z \in B_n} |\psi(z)| \cdot |f(\varphi(z)) - f(r\varphi(z))| \\
\leq \|\psi\|_\infty \sup_{\|f\|_p = 1} \sup_{\text{dist}(\varphi(z), \partial B_n) < \delta} |f(\varphi(z)) - f(r\varphi(z))| \\
+ \sup_{\|f\|_p = 1} \sup_{\text{dist}(\varphi(z), \partial B_n) < \delta} |\psi(z)| \cdot |f(\varphi(z)) - f(r\varphi(z))|.
\]

From Lemma 2.4, we can choose r sufficiently close to 1 such that the first term of the right hand side is less than any given ϵ. And we denote the second term by I. Then,
\[
I \leq \sup_{\|f\|_p = 1} \sup_{\text{dist}(\varphi(z), \partial B_n) < \delta} |\psi(z)| \cdot |f(\varphi(z))| + \sup_{\|f\|_p = 1} \sup_{\text{dist}(\varphi(z), \partial B_n) < \delta} |f(\varphi(z)) - f(r\varphi(z))| \frac{\|f\|_p}{(1 - |\varphi(z)|^2)^{n/p}} + \frac{\|f\|_p}{(1 - |r\varphi(z)|^2)^{n/p}}
\]
\[
\leq 2 \sup_{\text{dist}(\varphi(z), \partial B_n) < \delta} |\psi(z)| \frac{\|f\|_p}{(1 - |\varphi(z)|^2)^{n/p}}.
\]

Now let $r \to 1$ first, then let $\delta \to 0$, we get the desired upper estimate.

We now turn to the lower estimate.

Let K be any compact operator from H^p to H^∞. For any $w \in B_n$ define $f_w(z) = \frac{(1 - |w|^2)^{n/p}}{(1 - \langle z, w \rangle)^{n/p}}$, it is easy to check $\|f_w\|_p = 1$ and f_w converge weakly to 0 as $|w| \to 1$, thus $\|Kf_w\| \to 0$ when $|w| \to 1$.

So for any $0 < \delta < 1$
\[
\|W_{\psi, r} - K\| \geq \limsup_{|w| \to 1} \| (W_{\psi, r} - K) f_w \|_\infty \\
\geq \limsup_{|w| \to 1} \|W_{\psi, r} f_w \|_\infty - \limsup_{|w| \to 1} \|K f_w\|_\infty \\
= \limsup_{|w| \to 1} \sup_{z \in B_n} |\psi(z)| \|f_w(\varphi(z))\| \\
\geq \limsup_{|w| \to 1} \sup_{\text{dist}(\varphi(z), \partial B_n) < \delta} |\psi(z)| \|f_w(\varphi(z))\|.
\]

Let $\delta \to 0$ then $|\varphi(z)| \to 1$ and set $w = \varphi(z)$, we obtain the lower estimate of $\|W_{\psi, r}\|_e$.

Corollary 5.1. Assume $W_{\psi, r} : H^p \to H^\infty$ is bounded, then it is compact if and only if
\[
\lim_{\delta \to 0} \sup_{\text{dist}(\varphi(z), \partial B_n) < \delta} \frac{|\psi(z)|}{(1 - |\varphi(z)|^2)^{n/p}} = 0.
\]

Remark 2. If $\|\varphi\|_\infty < 1$, then $E = \{ z \in \overline{B_n} \ | \varphi(z) = 1 \} = \emptyset$, without the loss of generality, we set
\[
\lim_{\delta \to 0} \sup_{\text{dist}(\varphi(z), \partial B_n) < \delta} \frac{|\psi(z)|}{(1 - |\varphi(z)|^2)^{n/p}} = 0.
\]
6. FROM H^p TO H^q FOR $1 < p \leq q < \infty$

Definition Let $\beta \geq 1$. A finite and positive measure μ on is called a β-Carleson measure. If there is a constant $M \leq \infty$ such that $\mu(S_h(\xi)) \geq M h^\beta$ for all $\xi \in \partial B_n$ and $0 < h < 2$, it is called vanishing β-Carleson measure if $\lim_{h \to 0} \sup_{\xi \in \partial B_n} \frac{\mu(S_h(\xi))}{h^\beta} = 0$.

Lemma 6.1. (see corollary 2 in [LS1]). Let μ be a finite and positive measure on \overline{B}_n, and $0 < p \leq q < \infty$, then the following statement are equivalent:

(i) μ is a bounded $\frac{1}{p} - \text{Carleson}$ measure.

(ii) There is a constant $C < \infty$ so that

\[
\int_{\overline{B}_n} |f|^p \, d\mu \leq C \|f\|_p^q
\]

for all f in \overline{B}_n.

Lemma 6.2. (X) Suppose that $0 < p \leq q < \infty$ and $W_{\psi, \varphi} : H^p \to H^q$ is bounded, then the following conditions are equivalent:

(i) $W_{\psi, \varphi}$ is vanishing $\frac{1}{p} - \text{Carleson}$ measure

(ii) $W_{\psi, \varphi} : H^p \to H^q$ is compact operator.

Theorem 6.1. For $0 \leq p \leq q < \infty$, then the following statement are equivalent:

(i) $\mu_{\psi, \varphi, q}$ is a bounded $\frac{1}{p} - \text{Carleson}$ measure.

(ii) $W_{\psi, \varphi} : H^p \to H^q$ is bounded.

(iii)

\[
\sup_{z \in B_n} \int_{B_n} \frac{(1 - |z|^2)^{nq/p}}{|1 - <w, z>|^{2nq/p}} d\mu_{\psi, \varphi, q}(w) < \infty.
\]

Proof (i) \Rightarrow (ii) From Lemma 3.4, if $\mu_{\psi, \varphi, q}$ is bounded $\frac{1}{p} - \text{Carleson}$ measure, then there exists constant C such that

\[
\int_{\overline{B}_n} |f|^p d\mu_{\psi, \varphi, q} \leq C \|f\|_p^q
\]

for any $f \in H^p(B_n)$. Apply Lemma 2.1, and put $g = |f|^q$, we have

\[
\int_{B_n} |f|^q d\mu_{\psi, \varphi, q} = \int_{\partial B_n} |\psi|^q |f \circ \varphi|^q d\sigma = \|W_{\psi, \varphi} f\|_q.
\]

So

\[
\|W_{\psi, \varphi}(f)\|_q \leq C^{1/q} \|f\|_p
\]

for any $f \in H^p(B_n)$. That is, $W_{\psi, \varphi} : H^p \to H^q$ is bounded.

(ii) \Rightarrow (iii) For any $z \in B_n$, set $f_z(w) = \frac{(1 - |z|^2)^{nq/p}}{|1 - <w, z>|^{2nq/p}}$, then $\|f_w\|_p = 1$

\[
C \geq \|W_{\psi, \varphi}\|^q = \sup_{\|f\|_p = 1} \|W_{\psi, \varphi} f\|_q \geq \sup_{z \in B_n} \|W_{\psi, \varphi} f_z\|_q
\]

\[
= \sup_{z \in B_n} \left(\int_{\partial B_n} |\psi|^p |f_z \circ \varphi|^q d\sigma \right) = \sup_{z \in B_n} \int_{B_n} |f_z|^q d\mu_{\psi, \varphi, q}
\]

\[
= \sup_{z \in B_n} \int_{B_n} \frac{(1 - |z|^2)^{nq/p}}{|1 - <w, z>|^{2nq/p}} d\mu_{\psi, \varphi, q}(w)
\]
Assume that

\[
M = \sup_{z \in B_n} \int_{B_n} \frac{(1 - |z|^2)^{nq/p}}{|1 - <w, z| |2nq/p} d\mu_{\psi, \varphi, q}(w) < \infty
\]

we show that \(\mu_{\psi, \varphi, q} \) is a bounded \(\frac{2}{p} \)-Carleson measure.

First let \(z = 0 \), then \(\mu_{\psi, \varphi, q}(B_n) \leq M \). Thus \(\mu_{\psi, \varphi, q} \) is finite and hence \(\mu_{\psi, \varphi, q}(S_h(\xi)) \leq M \leq 4M^{nq/p} \) for all \(\xi \in \partial B_n \) and \(h \geq (\frac{1}{4})^{\frac{1}{nq/p}} \). Suppose \(h \leq (\frac{1}{4})^{\frac{1}{nq/p}} \) and \(\xi \in \partial B_n \).

Let \(\xi_0 = (1 - \frac{1}{2} h) \xi \), then for any \(w \in S_h(\xi) \),

\[
|1 - <w, \xi_0>| = |1 - \frac{1}{2} h + \frac{1}{2} h| < w, \xi_0| = |(1 - \frac{1}{2}) (1 - <w, \xi> + h)| \leq |(1 - \frac{1}{2}) h| + \frac{h}{2} \leq \frac{3h}{2}
\]

and \(1 - |\xi_0|^2 = (1 - |\xi_0|)(1 + |\xi_0|) \geq (1 - |\xi_0|) \), we have

\[
\frac{(1 - |\xi_0|^2)^{nq/p}}{1 - <w, \xi_0>} \geq \frac{(1 - |\xi_0|^{nq/p}}{\frac{3h}{2}} \geq \frac{c}{h^{nq/p}}.
\]

So

\[
M \geq \int_{B_n} \frac{(1 - |\xi_0|^2)^{nq/p}}{|1 - <w, \xi_0>} |2nq/p d\mu_{\psi, \varphi, q}(w)
\]

\[
\geq \int_{S_h(\xi)} \frac{c}{h^{nq/p}} d\mu_{\psi, \varphi, q} \geq \frac{c \mu_{\psi, \varphi, q}(S_h(\xi))}{h^{nq/p}}
\]

Therefore, \(\mu_{\psi, \varphi, q} \) is bounded \(\frac{2}{p} \)-Carleson measure.

Corollary 6.1. If \(0 < p < q < \infty \) and \(W_{\psi, \varphi} : H^p \to H^q \) is bounded, then \(\mu_{\psi, \varphi, q}(\varphi(E)) = 0 \).

Proof Denote \(g \) the Radon – Nikodým derivative of \(\mu_{\psi, \varphi, q}| \partial B_n \) with respect to \(\sigma \), \(\mu_{\psi, \varphi, q} \) is absolutely continuous with respect to \(\sigma \) on \(\partial B_n \), so it follows that

\[
g(b) = \lim_{h \to 0} \frac{1}{\sigma(S_h(b))} \int_{S_h(b)} \mu_{\psi, \varphi, q}(S_h(b)) \geq \lim_{h \to 0} \frac{c \mu_{\psi, \varphi, q}(S_h(b))}{\sigma(S_h(b))} \geq 0
\]

almost everywhere in \(\partial B_n \). Where the penultimate inequality uses the fact that \(\sigma(S_h(b)) \) is roughly proportional to \(h^n \) (see P67 in [Rud]). Now we have \(\mu_{\psi, \varphi, q}| \partial B_n = 0 \), the corollary is proved.

Theorem 6.2. For fixed \(1 < p \leq q < \infty \) and weighted composition operator \(W_{\psi, \varphi} : H^p \to H^q \) is bounded, then

\[
||W_{\psi, \varphi}||_e \geq \lim_{|w| \to 1} \int_{B_n} \frac{(1 - |w|^2)^{nq/p}}{|1 - <z, w>} |2nq/p d\mu_{\psi, \varphi, q}(z).
\]

Proof Let \(K \) be any compact operator from \(H^p \) to \(H^\infty \). For any \(w \in B_n \) define \(f_w(z) = \frac{(1 - |w|^2)^{nq/p}}{(1 - <z, w>)^{nq/p}} \), it is easy to check \(||f_w||_p = 1 \) and \(f_w \) converge weakly to 0 as
\[|w| \to 1, \text{ thus } \|Kf_w\| \to 0 \text{ when } |w| \to 1. \] So for any \(0 < \delta < 1 \),

\[
\|W_{\psi, \varphi} - K\| \geq \limsup_{|w| \to 1} \| (W_{\psi, \varphi} - K)f_w \|_q
\]

\[
\geq \limsup_{|w| \to 1} \|W_{\psi, \varphi}f_w\|_q - \limsup_{|w| \to 1} \|Kf_w\|_q
\]

\[
= \limsup_{|w| \to 1} \int_{\partial B_n} \frac{|\psi(z)|^q}{|1 - \psi(z), w|^{2nq/p}} d\sigma(z)
\]

\[
\geq \limsup_{|w| \to 1} \int_{\mathcal{B}_n} \frac{(1 - |w|^2)^{nq/p}}{|1 - z, w|^{2nq/p}} d\mu_{\psi, \varphi, q}(z)
\]

The conclusion follows.

We cannot give the upper estimate in the above form, but we have the following theorem.

Theorem 6.3. Assume \(1 < p \leq q < \infty \) and \(W_{\psi, \varphi} : H^p \to H^q \) is bounded, then \(W_{\psi, \varphi} : H^p \to H^q \) is compact if and only if

\[
\lim_{|w| \to 1} \int_{\mathcal{B}_n} \frac{(1 - |w|^2)^{nq/p}}{|1 - z, w|^{2nq/p}} d\mu_{\psi, \varphi, q}(z) = 0.
\]

Proof The necessary condition follows by theorem 6.2. We consider the sufficient condition. By Lemma 6.2, we only have to show \(\mu_{\psi, \varphi, q} \) is vanishing \(\frac{q}{p} - \text{Carleson measure} \). From the proof of (iii) \(\Rightarrow \) (i) in theorem 6.1, for any \(z \in \partial B_n \), set \(|z_0| = 1 - \frac{h}{2} \). Suppose

\[
\lim_{|w| \to 1} \int_{\mathcal{B}_n} \frac{(1 - |w|^2)^{nq/p}}{|1 - z, w|^{2nq/p}} d\mu_{\psi, \varphi, q}(z) = 0.
\]

That is, \(\forall \epsilon > 0, \exists 1 > r > 0 \), when \(|w| > r \) we have

\[
| \int_{\mathcal{B}_n} \frac{(1 - |w|^2)^{nq/p}}{|1 - z, w|^{2nq/p}} d\mu_{\psi, \varphi, q}(z) | < \epsilon.
\]

When \(h < 2(1 - r) \), for any \(z \in \partial B_n \), the corresponding \(|z_0| > r \), so

\[
\epsilon > \int_{\mathcal{B}_n} \frac{(1 - |z|^2)^{nq/p}}{|1 - z, z_0|^{2nq/p}} d\mu_{\psi, \varphi, q}(w)
\]

\[
\geq \int_{S_h(z)} \frac{c}{h^{nq/p}} d\mu_{\psi, \varphi, q}
\]

\[
\geq \frac{c\mu_{\psi, \varphi, q}(S_h(z))}{h^{nq/p}}.
\]

This is true for any \(z \in \partial B_n \). So \(\mu_{\psi, \varphi, q} \) is vanishing \(\frac{q}{p} - \text{Carleson measure} \).

References

[ConH] M.D. Contreras and A G. Herández-Díaz, *Weighted composition operators in weighted Banach spaces of analytic functions*, J. Austral. Math. Soc. (Ser. A), **69**(2000): 41-46.

[CowMac] C.C. Cowen and B.D. MacCluer, *Composition operators on spaces of analytic functions*, CRC Press, Boca Raton, FL, 1995.

[Goe] T. Goebeler, *Composition operators acting between Hardy spaces*, Integr. Equ. Oper. Theory, **41**(2001): 389-395.
[GorM] P. Gorkin and B.D. MacCluer, *Essential norms of composition operators*, Integr. Equ. Oper. Theory, 48 (2004): 27-40.

[GorMS] P. Gorkin, R. Mortini, and D. Suarez, *Homotopic composition operators on H∞(B_N)*, Function space, Edwardsville, IL, 2002, 177-188, Contemporary mathematics, 328, Amer. Math. Soc., Providence, RI, 2003.

[Hal] Paul R. Halmos, *Measure theory*, Springer-Verlag, GTM 18, 1970.

[JarR] H. Jarchow and R. Riedl, *Factorization of composition operators through Bloch space*, Illinois J. Math. 39 (1995): 431-440.

[LS1] L. Luo and J. H. Shi, *Composition operators between Hardy spaces on the unit ball*, Acta Math. Sinica, 44 (2001): 209-216.

[LS2] L. Luo and J. H. Shi, *Composition operators between the weighted Bergman spaces on bounded symmetric domains of C^n*, Chinese Journal of Contemporary mathematics, 21 (2000): 55-64.

[Kos] P. Koosis, *Introduction to H_p spaces, second edition*, Cambridge University Press, Cambridge, 1998.

[Mac] B. D. MacCluer, *Compact composition operators on H^p(B_N)*, Michigan Math. J., 32 (1985): 237-248.

[Rud] W. Rudin, *Function theory in the unit ball of C^n*, Springer-Verlag, New York, 1980.

[Tja] M. Tjani, *Compact Composition operators some Mobius invariant Banach spaces*, Thesis, Michigan State University, 1996.

[Shap1] Joel H. Shapiro, *Composition operators and classical function theory*, Springer-Verlag, 1993.

[Shap2] L. H. Shapiro, *The essential norm of a composition operator*, Annals Math., 125 (1987): 375-404.

[Shap3] J. H. Shapiro, *Compact composition operators on spaces of boundary regular holomorphic functions*, Proc. Amer. Math. Soc., 100 (1987): 49-57.

[Smi1] W. Smith, *Composition operators between Bergman and Hardy spaces*, Trans. Amer. Math. Soc., 348 (1996): 2331-2348.

[Smi2] W. Smith, *Composition operators on BMOA*, Proc. Amer. Math. Soc., 127 (1999): 2715-2725.

[SmiZ] W. Smith and R. Zhao, *Composition operators mapping into the Q_p spaces*, Analysis 17 (1999): 239-263.

[X] H. M. Xu and T. S. Liu, Weighted composition operators between Hardy spaces on the unit ball, Chin. Quart. J. of Math, 19 (2004): 111-119.

[Zhe] L. Zheng, *The essential norms and spectra of composition operators on H^∞*, Pacific J. Math, 203 (2002), 503-510.

[Zho] Z. H. Zhou, *Composition operators on the Lipschitz space in polydiscs*, Sci. China Ser. A, 46 (1) (2003), 33-38.

[ZC] Z. H. Zhou and Renyu Chen, *Weighted composition operators from F(p,q,s) to Bloch type spaces*, International Journal of Mathematics, preprint.

[ZC1] Z. H. Zhou and Renyu Chen, On the composition operators on the Bloch space of several complex variables, Science in China (Series A), 48(Supp.), 2005: 392-399.

[ZL] Z. H. Zhou and Yan Liu. The essential norms of composition operators between generalized Bloch spaces in the polydisc and their applications, Journal of Inequalities and Applications, 2006(2006), Article ID 90742: 1-22.

[ZS1] Z. H. Zhou and J. H. Shi. *Compact composition operators on the Bloch space in polydiscs*, Science in China (Series A), 44 (2001), 286-291.

[ZS2] Z. H. Zhou and J. H. Shi. *Composition operators on the Bloch space in polydiscs*, Complex Variables, 46 (1) (2001), 73-88.

[ZS3] Z. H. Zhou and J. H. Shi. *Compactness of composition operators on the Bloch space in classical bounded symmetric domains*, Michigan Math. J. 50 (2002), 381-405.

[Zhu1] K. H. Zhu, *Operator theory in function spaces*, Marcel Dekker, New York, 1990.

[Zhu2] K. H. Zhu, *Spaces of holomorphic functions in the unit ball*, Springer 2004.
Department of Mathematics
Tianjin Polytechnic University
Tianjin 300160
P.R. China.
E-mail address: fangzhongshan@yahoo.com.cn

Department of Mathematics
Tianjin University
Tianjin 300072
P.R. China.
E-mail address: zehuazhou2003@yahoo.com.cn