Research Article

Protective Effect of *Barringtonia racemosa* Ethyl Acetate Fraction against Cisplatin-Induced Nephrotoxicity in Rats

Rachna B. Patel1, Umesh B. Mahajan1, Sameer N. Goyal2, Sanjay J. Surana3, Chandragouda R. Patil1, Kalpesh R. Patil3*

1Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, District Dhule, Maharashtra, India
2Shri Vile Parle Relavani Mandals’ Institute of Pharmacy, Dhule-424001, Maharashtra, India
3Department of Pharmacognosy, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, District Dhule, Maharashtra, India

ARTICLE INFO

Article history:
Received: 28 April, 2020
Revised: 06 June, 2020
Accepted: 26 June, 2020
Published: 30 July, 2020

Keywords:
Anti-oxidant,
Barringtonia racemosa,
Bartogenic acid,
Cisplatin,
Nephrotoxicity.

DOI:
10.25004/IJPSDR.2020.120413

ABSTRACT

Cisplatin is a major antineoplastic drug for the treatment of solid tumors. Nephrotoxicity is a dose-limiting side effect associated with the clinical use of cisplatin. The present study was executed to determine whether bartogenic acid, containing fraction of *Barringtonia racemosa* fruits (BREAF) possess a nephroprotective effect against cisplatin-induced nephrotoxicity in rats. Furthermore, the study was also aimed to explore the mechanisms underlying this effect of BREAF. The BREAF was orally administered at the doses of (2, 5, and 10 mg/kg) for five consecutive days following single-dose administration of cisplatin (5 mg/kg, i.p.). Treatment of animals with cisplatin resulted in significant body weight changes, oxidative stress, elevated levels of serum biomarkers, and histological alterations in the kidney architecture. The BREAF administration reduced relative body weight and organ weight changes in cisplatin-treated rats. The BREAF exhibited a nephroprotective effect through the significant reduction of the cisplatin-induced rise in the serum creatinine and blood urea nitrogen levels, as well as, renal levels of malondialdehyde (MDA) the makers of lipid peroxidation. Additionally, the treatment with BREAF resulted in increased renal levels of reduced glutathione (GSH), superoxide dismutase (SOD), and catalase activity. Histopathological examination established the nephroprotective effect of BREAF. In conclusion, the anti-oxidant and anti-inflammatory effects of BREAF have an important role underlying its nephroprotective effect.

INTRODUCTION

Cisplatin is a platinum compound and chemotherapeutic agent effective against wide variety of cancer.[1,2] Although higher doses of cisplatin suppress cancer, chemotherapy with cisplatin is associated with various organ toxicities.[2] Cisplatin-induced nephrotoxicity is a limiting factor in the clinical use of this potential chemotherapeutic agent.[3,4] Drug-induced nephrotoxicity is an extremely common condition that is responsible for a variety of pathological effects on the kidneys. Nephrotoxicity refers to characteristics of structural and functional abnormalities in the renal structures that occur in patients following exposure to the toxicants.[5]

Acute renal failure has been reported after a single dose of cisplatin.[6] Cisplatin accumulates in the proximal and distal convoluted tubules and promotes the kidney damage. Renal impairment is manifested by increased serum creatinine and blood urea nitrogen levels.[3,7] Several mechanisms, like DNA damage, oxidative stress, apoptosis, and inflammation are involved in cisplatin-induced nephrotoxicity.[8-9]

Cisplatin targets the proximal tubule and decreases the glomerular filtration rate and causes subsequent renal failure.[10] Anti-oxidants like GSH, SOD, and catalase (CAT) help to scavenge the reactive oxygen species (ROS). Anti-cancer drug, cisplatin produces ROS in kidney epithelial

Corresponding Author: Dr. Kalpesh R. Patil

Address: Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Karvand Naka, Shirpur-425405, District Dhule, Maharashtra, India

Email: kalpeshpharma20@gmail.com

Tel.: +91-9850875021

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Rachna B. Patel et al. This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.
cells and diminishes anti-oxidant enzyme activity by reducing the intracellular concentrations of GSH. Thus, depletion of anti-oxidant mechanisms, increased production of ROS, and renal accumulation of lipid peroxide products have been proposed as important mechanisms behind cisplatin-induced nephrotoxicity.

Several studies have demonstrated the protective role of natural anti-oxidants against cisplatin-induced nephrotoxicity. B. racemosa is a mangrove plant belongs to the Lecythidaceae family and used in traditional Indian medicine. Various parts of this plant are used in asthma, cough, control of blood pressure, and skin diseases. B. racemosa contains several biologically active phytoconstituents, amongst which bartogenic acid, a natural pentacyclic triterpenoid, is well known for its biological properties, including α-glucosidase inhibitor, anti-arthritic, and anti-cancer. It has also been reported that various parts of B. racemosa exhibit many pharmacological effects, like anti-oxidant, anti-inflammatory, anti-fungal, anti-cancer, analgesic, anti-tuberculosis, and anti-diarrhoea activity. To our knowledge, there are no reports on the protective role of B. racemosa or bartogenic acid against anti-cancer drug-induced nephrotoxicity. Therefore, the present study was undertaken to evaluate the nephroprotective effect of bartogenic acid containing fraction of B. racemosa fruits (BREAF) against cisplatin-induced renal toxicity in rats.

Materials and Method

Animals

Experimental procedures involving the use of laboratory animals were approved by the Institutional Animal Ethics Committee (IAEC) of R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, District Dhule, India (Reg. No. 651/PO/ReBi/S/02/CPSEA) constituted under the “Prevention of Cruelty to the Animals Act, 1960.” All the experiments were carried out according to the guidelines prescribed by the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPSEA), Government of India. Healthy Sprague Dawley rats of either sex (180–230 g) were used in the present study. Rats were housed in polypropylene cages under the standard laboratory condition at 22 ± 2°C, and 12 hours (light:dark) cycle with free access to water, and commercially available standard pellet feed (Nutmix Std-1020) obtained from Nutrivet Life Sciences, Pune, India.

Plant Material

B. racemosa Roxb. (Lecythidaceae) fruits, collected from the sea coast of Maharashtra, were purchased from the local vendor. The specimen was authenticated by the taxonomist, and the specimen was deposited for future reference. An authentic marker of bartogenic acid was supplied by Dr. Mangala Gowri, Senior Scientist, Indian Institute of Chemical Technology, Hyderabad, Telangana, India.

Extraction and Isolation of BREAF

The BREAF was isolated according to the earlier reported methods with some modification. Briefly, the dried and powdered fruits of B. racemosa were defatted with petroleum ether, followed by cold maceration with methanol at room temperature for 3 days. The methanol extract was subsequently fractionated using ethyl acetate. Ethyl acetate extract was loaded on silica gel column (3 × 90 cm), using ethyl acetate as mobile phase. Elution was monitored by thin-layer chromatography (TLC) of each fraction using methanol as a solvent. The fractions having similar TLC patterns were combined to get a triterpenoids enriched fraction called BREAF. Part of this fraction (BREAF) was subjected to chromatography on pre-coated reverse-phase silica gel plate (Merck) using acetonitrile:water (85:15 v/v) as eluent. High-performance thin-layer chromatography (HPTLC) of fraction revealed three spots, including one blue spot (Rf = 0.68) approaching to bartogenic acid marker. The composition of BREAF was confirmed by liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) analysis, as described previously.

Chemicals

Cisplatin (CAS Number: 15663-27-1) were purchased from Sigma Aldrich, USA. Creatinine kit, urea/blood urea nitrogen (BUN) kit, albumin kit, and protein kit were obtained from Accurex Biomedical Pvt. Ltd., Mumbai, Agappe Diagnostics Ltd., Mumbai, Beacon Diagnostic Pvt. Ltd., Navsari, India, and Span Diagnostic Ltd., Surat, India, respectively. 5-5-dithio bis-(2-nitrobenzoic acid) and thiobarbituric acid were purchased from Loba Chemie Pvt. Ltd., Mumbai, India. Other chemicals and solvents used in the fractionation and chromatographic separations were of analytical grade.

Experimental Protocol

Rats were randomly divided into five groups, each consisting of six animals (n = 6). Group I (normal): control group of rats received single dose of 1 mL saline i.p. and tween-80 solution p.o. for 5 days. Group II: cisplatin control group of animals was treated with single dose of cisplatin 5 mg/kg i.p. and tween-80 solution p.o. for 5 days. Group III: cisplatin + BREAF (2) group of rats received single dose of cisplatin 5 mg/kg i.p. and BREAF (2 mg/kg p.o.) for 5 days. Group IV: cisplatin + BREAF (5) group of animals received single dose of cisplatin 5 mg/kg i.p. and BREAF (5 mg/kg p.o.) for 5 days. Group V: cisplatin + BREAF (10) group of rats received single dose of cisplatin 5 mg/kg i.p. and BREAF (10 mg/kg p.o.) for 5 days.

The BREAF was dissolved in tween-80, and administered orally at the dosage of 2, 5, and 10 mg/kg.
Protective Effect of BREAF against Cisplatin-Induced Nephrotoxicity in Rats

Body weight of rats was recorded before the administration of cisplatin and at the end of the experiment. Percentage (%) change in body weight was calculated. After scarification of rats on the 5th day, the organs like kidney, spleen, and thymus were harvested, and weighed immediately after the isolation.

Biochemical Estimations

At the termination of the experiment, blood samples were analyzed for markers of renal function. Creatinine, albumin, alkaline phosphatase (ALP), and BUN levels were estimated using commercially available kits and according to the manufacturer’s instructions. Creatinine estimation was done by using alkaline picrate method. Albumin was estimated by using bromocresol green method. Determination of albumin in serum is based on the preliminary hydrolysis of ammonium ion. The histological sections were examined with a light microscope.

Statistical Analysis

Results are expressed as mean ± SEM, and statistical significance of difference in the central tendencies of treatment groups was determined by one-way ANOVA followed by Dunnett’s multiple comparison test. p < 0.05 was considered statistically significant.
RESULTS

BREAF contains Bartogenic Acid

The BREAF on HPTLC showed an intense blue spot (Rf = 0.68) matching with bartogenic acid marker. LC-ESI-MS analysis showed molecular ion peak at m/z 517.5 [M-H]-, corresponding to molecular formula C30H46O7 which is in congruence with previously available data of bartogenic acid.\(^{[20]}\) HPTLC and LC-ESI-MS analysis revealed that the chief constituent of BREAF was bartogenic acid.\(^{[20]}\)

BREAF significantly altered the Body and Organ Weights in Treated Animals

Single intraperitoneal injection of cisplatin (5 mg/kg) caused the notable weight loss in the cisplatin-control group as compared with the normal control group on 5th day (p < 0.001). However, these changes were significantly (p < 0.001) prevented by BREAF at the dosage of 2, 5, and 10 mg/kg, p.o. (Fig. 1A). The relative kidney, spleen, and thymus weights in BREAF (2, 5, and 10 mg/kg, p.o.) treated animals were significantly (p < 0.001) reduced as compared with organ weights of animals in cisplatin-control group (Figs 1A to D).

BREAF demonstrated favorable Effects on Renal Functions

Serum creatinine and BUN levels were measured in all the animals to evaluate the protective effect of BREAF on renal function. Elevated levels of creatinine and BUN indicate acute nephrotoxicity. However, elevated alkaline phosphate is the hallmark of organ toxicity. Following injection of cisplatin (5 mg/kg i.p.), the serum levels of creatinine, BUN, and alkaline phosphate were found to increase significantly (p < 0.001), as compared with normal-control group, suggesting severe kidney damage following cisplatin injection (Figs 2A to D). Administration of BREAF (2, 5, and 10 mg/kg p.o.) to animals exerted significant (p < 0.001) nephroprotective effect, as evidenced by decreased levels of creatinine and BUN, as compared to cisplatin control group (Figs 2A and B). The four-fold increase in alkaline phosphate was observed in cisplatin-control group, as compared to normal-control group. In the present study, BREAF showed significant (p < 0.001) and dose-dependent decrease in serum alkaline phosphate levels and non dose-dependent increase in albumin level as compared to cisplatin-control group (Figs 2C and D).

BREAF diminished Cisplatin-Induced Oxidative Stress

Single-dose administration of cisplatin resulted in the notable increase of MDA content along with significant (p < 0.001) decrease in GHS, SOD, and catalase content as compared with normal-control group (Figs 3A to D). Alternatively, treatment of animals with BREAF at the dosage of 2, 5, and 10 mg/kg p.o. for 5 days resulted in significant (p < 0.001) increase in GHS, SOD, and catalase level along with significant (p < 0.001) decrease in MDA level. The effect of BREAF on SOD level was in dose-dependent manner; however, the effect of BREAF on GHS, catalase, and MDA was found to be non-dose dependent (Figs 3A to D).

BREAF attenuated Cisplatin-Induced Renal Histopathological Changes in Rats

Histopathological study of kidney tissues in normal rats demonstrated the normal appearance of renal tubules. The kidney tissues in cisplatin exposed group showed necrosis

Fig. 1: Effect of BREAF on body weight changes and relative organ weight in cisplatin-induced nephrotoxicity in rats; A) % change in body weight; B) Relative kidney weight; C) Relative spleen weight; D) Relative thymus weight; values represent mean ± SEM (n = 6) animals per group; \(^{##}\)p < 0.001 as compared with normal group; \(^{###}\)p < 0.001 as compared with control group (one-way ANOVA followed by Dunnett’s multiple comparison post hoc test)

Fig. 2: Effect of BREAF on biomarkers of kidney function in cisplatin-induced nephrotoxicity in rats; A) Serum creatinine (mg/dL); B) Serum BUN (mg/dL); C) ALP (mg/dL); D) Albumin (gm/dL); values represent mean ± SEM (n = 6) animals per group; \(^{##}\)p < 0.001 as compared with normal group; \(^{###}\)p < 0.001 as compared with control group (one-way ANOVA followed by Dunnett’s multiple comparison post hoc test)
Protective Effect of BREAF against Cisplatin-Induced Nephrotoxicity in Rats

Discussion

Cisplatin is effective chemotherapeutic agent used for the treatment of several cancers. Despite its anti-cancer potential, the use of cisplatin is associated with severe side effects, especially nephrotoxicity. There is a lack of drugs that can offer protection to the kidneys against cisplatin-induced toxicity, and search for the nephroprotective drugs is continuing. Several studies have been conducted to enhance our understanding of the pathogenesis and treatment of cisplatin-induced nephrotoxicity. Pathophysiology of cisplatin-induced tubular damage is complex, which shows the involvement of many interconnected factors. The mechanisms of cisplatin-induced nephrotoxicity may involve accumulation of cisplatin in renal tubules, conversion of cisplatin into nephrotoxins, mitochondrial dysfunction, and DNA damage. Additional mechanisms include, oxidative stress, inflammation, and fibrogenesis along with activation of the apoptotic pathway through the activation of cell cycle arrest, disturbance of renal tubular cell transport systems, and alterations in ATPase activity.

The various parts of *B. racemosa* are reported to possess biological activities, like anti-bacterial, anti-fungal, anti-oxidant, analgesic, anti-inflammatory, anti-arthritic, and anti-diarrhoeal activity. The present study was conducted to evaluate the protective effect of BREAF in cisplatin-induced nephrotoxicity in rats. We observed that BREAF decreased cisplatin-induced nephrotoxicity through the minimization of renal tubular damage, body weight changes, oxidative stress, and inflammation. Intraperitoneal administration of cisplatin resulted in augmented oxidative stress through increase in MDA and decrease in anti-oxidant enzymes, as well as, increased creatinine and BUN levels, suggesting the induction of nephrotoxicity in cisplatin exposed rats. Results demonstrated that oral treatment of animals with BREAF at the dosage of 2, 5, and 10 mg/kg had nephroprotective effect as evident through observational, biochemical, and histopathological investigations in cisplatin and BREAF treated animals.

In the present study, the rats treated with cisplatin showed a decrease in total body weight along with a decrease in relative kidney, thymus, and spleen weights. The oral treatment of rats with BREAF (2, 5, and 10 mg/kg) showed significant recovery from cisplatin-induced total body weight and organ weight loss. The cisplatin-induced decrease in weight loss could be due to reduced food intake by the animals and gastrointestinal toxicity. Creatinine and urea are the major biomarkers of nephrotoxicity, and their level significantly increases in nephrotoxicity. Increase in serum creatinine and BUN levels in cisplatin-treated rats, which occurred due to glomerular and renal tubular damage, is well established through several studies. Serum creatinine is easily measurable and important indicator of renal function. Creatinine is mainly filtered through the kidneys and any injury to the kidney that leads to an increase in serum creatinine...
level. Administration of cisplatin at single-dose causes acute renal failure. The peak creatinine level following cisplatin administration is reported on the 5th day of cisplatin injection. Increased serum creatinine represents irreversable renal tubular injury, and it is the indirect measure of glomerular filtration rate. Serum urea level, usually referred to as BUN, is also used to determine renal function. Ammonia formed during the protein metabolism is transformed into urea, which is excreted through the kidney. Renal dysfunction leads to decrease in the elimination of urea that causes accumulation of urea in the bloodstream. BREAF administration offered protection through the improvement of renal function as revealed by a notable decrease in serum creatinine and BUN in comparison with the cisplatin-control group. ALP is an important biomarker of kidney damage. The ALP level is increase in pathological conditions, especially liver and kidney diseases. In the present study, treatment of animals with BREAF resulted in a decreased level of ALP.

Oxidative stress is a major factor contributing to acute renal failure. Usually, the endogenous anti-oxidants, like SOD, GSH, and catalase detoxifies the ROS produced during the course of normal cellular processes. However, the administration of cisplatin causes excessive accumulation of ROS, leading to increased lipid peroxidation and endogenous anti-oxidant depletion. Increased MDA level following cisplatin administration indicate the enhanced LPO due to deleterious effect of ROS on cell membrane lipids. Excessive accumulation of MDA in kidney tissues leads to overutilization and subsequent depletion of anti-oxidant enzymes, including GSH. The notable decrease in the activity of anti-oxidant enzymes in the present study may occur due to increased activity of NADPH oxidase and xanthine oxidase, which causes subsequent depletion of anti-oxidant enzymes (catalase and SOD), GSH, and enhancement of MDA in kidney tissues.

GSH is essential anti-oxidant tripeptide for the maintenance of cellular integrity and cell metabolism. Oxidative stress caused by cisplatin treatment in rats has been reported to deplete the GSH levels in kidney tissues. A decrease in GSH levels following treatment with cisplatin can be attributed to its utilization in the detoxification of toxicants and regulation of cellular homeostasis. GSH offers protection against potential nephrotoxicity through the formation of GSH adducts. ROS scavenging by GSH may involve various enzymatic and non-enzymatic mechanisms. Lipid peroxidation after cisplatin administration is attributed to the depletion of GSH and impaired anti-oxidant enzyme activity. Treatment of animals with BREAF (2, 5, and 10 mg/kg p.o.) resulted in an increased level of GSH as compared with cisplatin-control group. This effect of BREAF on GSH levels may involve its direct anti-oxidant effects, increased biosynthesis of GSH, or enhanced levels of other anti-oxidants.

Superoxide is highly reactive, and cytotoxic ROS produced during oxygen metabolism. The SOD has an important role in the conversion of toxic superoxide into the less toxic hydrogen peroxide. SOD is the first line of defense against ROS-mediated tissue injuries. In the present study, level of SOD was decreased in cisplatin-control group, as compared to the normal-control group, which may occur due to exhaustion of zinc and copper that are essential for the activity of anti-oxidant enzymes. Whereas, the treatment of animals with BREAF at 2, 5, and 10 mg/kg p.o., resulted in an increased level of SOD in renal tissues. Catalase is an enzyme that catalyzes the conversion of hydrogen peroxide to water and oxygen. Catalase offers protection against several ROS-mediated toxicities, including cisplatin-induced nephrotoxicity. Treatment of animals with BREAF at all the tested dosages showed significant increase in catalase level. It signifies the anti-oxidant activity of BREAF during cisplatin-induced kidney toxicity. Overall results of this study demonstrate that BREAF caused a decrease in oxidative stress and an increase in anti-oxidant enzymes. These results of BREAF are in agreement with previous studies reporting the anti-oxidant potential of B. racemosa.

Histopathological observation also showed that BREAF decreased the tissue necrosis, interstitial edema, and inflammatory cell infiltration caused by cisplatin. This study substantiates that intraperitoneal injection of cisplatin at the dose of 5 mg/kg in single-dose induced severe nephrotoxicity in rats. BREAF ameliorated cisplatin-induced nephrotoxicity at the minute dosage of 2, 5, and 10 mg/kg p.o. The nephroprotective effect of BREAF involves the anti-oxidant mechanisms, and this activity of BREAF is attributed to its bartogenic acid content.

In conclusion, bartogenic acid is a pentacyclic triterpenoid present in the fruits of B. racemosa. It was reported to possess the anti-cancer activity in DMBA-croton oil-induced two-stage carcinogenesis model in mice. The present study highlights the nephroprotective activity of BREAF against cisplatin-induced nephrotoxicity in rats. The anti-cancer and nephroprotective activities of BREAF can facilitate the activities of various chemotherapeutic drugs and offer protection against cisplatin-induced nephrotoxicity. Therefore, BREAF could be a suitable adjuvant to anti-cancer chemotherapy.

Acknowledgements
Authors are thankful to Dr. P. Mangala Gowri, Indian Institute of Chemical Technology, Hyderabad (India), for providing the sample of bartogenic acid.

References
1. Delord J-P, Puozzo C, Lefresne E, Bugat R. Combination chemotherapy of vinorelbine and cisplatin: a phase I pharmacokinetic study in patients with metastatic solid tumors. Anti-cancer Research. 2009;29(2):553-560.
Protective Effect of BREAF against Cisplatin-Induced Nephrotoxicity in Rats

2. Somani SM, Hussain K, Whitworth C, Trammell GL, Malafa M, Rybak LP. Dose-dependent protection by lipic acid against cisplatin-induced nephrotoxicity in rats: antioxidant defense system. Basic and Clinical Pharmacology and Toxicology. 2000;86(5):234-241.

3. Ilić S, Stojačković N, Veljković M, Veljković S, Stojanović G. Protective effect of quercetin on cisplatin-induced nephrotoxicity in rats. Facta Universitatis, Series: Medicine and Biology. 2014;16(2):71-75.

4. Mohan IK, Khan M, Shotha JC, Naidu MUR, Prayag A, Kuppusamy P, et al. Protection against cisplatin-induced nephrotoxicity by Spiculina in rats. Cancer Chemotherapy and Pharmacology. 2006;58(6):802. https://doi.org/10.1007/s00280-006-0231-8

5. Gao L, Wu W-F, Dong L, Ren G-L, Li H-D, Yang Q, et al. Protocatechic aldehyde attenuates cisplatin-induced acute kidney injury by suppressing nox-mediated oxidative stress and renal inflammation. Frontiers in Pharmacology. 2016;7:479. DOI: 10.3389/fphar.2016.00479

6. Heidemann HT, Müller S, Mertins L, Stepan G, Hoffmann K, Ohnhaus E. Effect of aminophylline on cisplatin nephrotoxicity in the rat. British Journal of Pharmacology. 1989;97(2):313-318.

7. Miller RP, Tagadavadi RK, Ramesh G, Reeves WB. Mechanisms of cisplatin nephrotoxicity. Toxins. 2010;2(11):2490-2518.

8. Safirstein R, Winston J, Moel D, Dikman S, Gutttenplan J. Cisplatin nephrotoxicity: insights into mechanism. International Journal of Andrology. 1987;10(1):325-346.

9. Xiao T, Choudhary S, Zhang W, Ansari N, Salahudeen A. Possible involvement of oxidative stress in cisplatin-induced apoptosis in LLC-PK1 cells. Journal of Toxicology and Environmental Health Part A. 2003;66(5):469-479.

10. Prabhu VV, Kannan N, Guruvayoorappan C. 1. 2-Diazole prevents cisplatin-induced nephrotoxicity in experimental rats. Pharmacological Reports. 2013;65(4):980-990.

11. Bhat SG, Mishra S, Mei Y, Nie Z, Whitworth CA, Rybak LP, et al. cisplatin up-regulates the adenosine A1 receptor in the rat kidney. European Journal of Pharmacology. 2002;442(3):251-264.

12. Peres LAB, Cunha Júnior Add. Acute nephrotoxicity of cisplatin: molecular mechanisms. Jornal Brasileiro de Nefrologia. 2013;35(4):332-340.

13. Sheriff IO. Amelioration of cisplatin-induced nephrotoxicity in rats by triterpenoid saponin of Terminalia arjuna. Clinical and Experimental Nephrology. 2015;19(4):591-597.

14. Ali AM, Muse R, Mohd NB. Anti-oxidant and anti-inflammatory activities of leaves of Barringtonia racemosa. Journal of Medicinal Plants Research. 2007;1(5):95-102.

15. Kong KW, Aziz AA, Razali N, Aminuddin N, Junit SM. Antioxidant-rich leaf extract of Barringtonia racemosa significantly alters the in vitro expression of genes encoding enzymes that are involved in methylglyoxal degradation III. PeerJ. 2016;4:e2379.

16. Gowri PM, Tiwari AK, Ali AZ, Rao JM. Inhibition of α-glucosidase and amylase by bartogenic acid isolated from Barringtonia racemosa Roxb. seeds. Phytotherapy Research. 2007;21(8):796-799.

17. Patil KR, Patil CR, Jadhav RB, Mahajan VK, Patil PR, Gaikwad PS. Anti-arthritic activity of bartogenic acid isolated from fruits of Barringtonia racemosa Roxb. (Lecythidaceae). Evidence-Based Complementary and Alternative Medicine. 2011;2011:785245. DOI: 10.1093/ecam/nep148

18. Patil CR, Sonara BM, Mahajan UB, Patil KR, Patil DD, Jadhav RB, et al. Chemomodulatory potential of bartogenic acid against DMB/Acrolein induced two-step skin carcinogenesis in mice. Journal of Cancer. 2016;7(14):2139.

19. Nurul MH, Radzali M, Johari R, Syahida A, Maziah M. Antioxidant activities of different aerial parts of putat (Barringtonia racemosa L.). Malaysian Journal of Biochemistry and Molecular Biology. 2008;16(2):15-19.

20. Patil KR, Patil CR. Anti-inflammatory activity of bartogenic acid containing fraction of fruits of Barringtonia racemosa Roxb. in acute and chronic animal models of inflammation. Journal of Traditional and Complementary Medicine. 2017;7(1):86-93.

21. Hussin N, Mure S, Ahmad S, Ramli J, Mahmood M, Sulaiman M, et al. Antifungal activity of extracts and phenolic compounds from Barringtonia racemosa L. (Lecythidaceae). African Journal of Biotechnology. 2009;8(12):2385-2392.

22. Thomas TJ, Panikkar B, Subramoniam A, Nair MK, Panikkar K. Antitumour property and toxicity of Barringtonia racemosa Roxb seed extract in mice. Journal of Ethnopharmacology. 2002;82(2-3):223-227.

23. Deranijaga S, Ratnasooriya W, Goonasekara C. Anticoagulative effect and toxicological study of the aqueous bark extract of Barringtonia racemosa on rats. Journal of Ethnopharmacology. 2003;86(1):21-26.

24. Mmushi T, Masoko P, Mde L, Mokgotsi M, Mampuru L, Howard R. Antimycobacterial evaluation of fifteen medicinal plants in South Africa. African Journal of Traditional, Complementary and Alternative Medicines. 2010;7(1):34-39.

25. Saha S, Sarkar KK, Hossain ML, Hossain A, Barman AK, Ahmed MI, et al. Bioactivity studies on Barringtonia racemosa (Lam.) Bark. Pharmacologyonline. 2013;1:93-100.

26. Bami E, Ozakpinar OB, Ozdemir-Kumar LN, Köröglu K, Erkan F, Cirakli Z, et al. Protective effect of ferulic acid on cisplatin-induced nephrotoxicity in rats. Environmental Toxicology and Pharmacology. 2017;54:105-111.

27. Shirwaikar A, Issac D, Malini S. Effect of Aerva lanata on cisplatin and gentamicin models of acute renal failure. Journal of Ethnopharmacology. 2004;90(1):81-86.

28. Harlalka GV, Patil CR, Patil MR. Protective effect of Kalancchoe pinnata Pers. (Crassulaceae) on gentamicin-induced nephrotoxicity in rats. Indian journal of pharmacology. 2007;39(4):201-205.

29. Li W, Yan M-H, Liu Y, Liu Z, Wang Z, Chen C, et al. Ginsenoside Rg5 ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of inflammation, oxidative stress, and apoptosis. Nutrients. 2016;8(9):566. DOI: 10.3390/nu8090566.

30. Avi-Dor Y, Lipkin R. A spectrophotometric method for the determination of reduced glutathione. J Biol Chem. 1958;233(1):69-72.

31. Palipoch S, Punsawad C, Chinnapun D, Suwannakert P. Amelioration of cisplatin-induced nephrotoxicity in rats by curcumin and α-tocopherol. Tropical Journal of Pharmaceutical Research. 2013;12(6):973-979.

32. Kono Y. Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Archives of Biochemistry and Biophysics. 1978;186(1):189-195.

33. Chao C-S, Tsai C-S, Chang Y-P, Chen J-M, Chin H-K, Yang S-C. Hyperin inhibits nuclear factor kappa B and activates nuclear factor E2-related factor-2 signaling pathways in cisplatin-induced acute kidney injury in mice. International Immunopharmacology. 2016;40:517-523.

34. Lück H. Catalase. Methods of enzymatic analysis: Elsevier; 1965. p. 885-894.

35. Arjunam W, Seth A, Sultana S. Rutin attenuates cisplatin induced renal inflammation and apoptosis by reducing NFκB and caspase-3 expression in Wistar rats. Food and Chemical Toxicology. 2011;49(9):2013-2021.

36. Malik S, Suchal K, Bhatia J, Gamad N, Dinda AK, Gupta YK, et al. Molecular mechanisms underlying attenuation of cisplatin-induced acute kidney injury by epicatechin gallate. Laboratory Investigation. 2016;96(8):853-861.

37. Razzaque MS. Cisplatin nephropathy: is cytotoxicity avoidable? Oxford University Press; 2007.

38. Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin nephrotoxicity: a review. The American Journal of the Medical Sciences. 2007;334(2):115-124.

39. Hosseinian S, Rad AK, Moussa-Al-Reza HNM, Roshan SH, Shafiee S. The protective effect of Nigella sativa against cisplatin-induced nephrotoxicity in rats. Avicenna Journal of Phytomedicine. 2016;6(1):44-54.

40. Khan S, Jabbar A, Hasan C, Rashid M. Antibacterial activity of Barringtonia racemosa. Fitoterapia. 2001;72(2):162-164.

41. Kong KW, Mat-Junit S, Aminudin N, Ismail A, Abdul-Aziz A. Antioxidant activities and polyphenolics from the shoots of Barringtonia racemosa (L.) Spreng in a polar to apolar medium system. Food Chemistry. 2012;134(1):324-332.
42. de Oliveira Mora L, Antunes LMG, Francescato HsDC, Bianchi MdLP. The effects of oral glutamine on cisplatin-induced nephrotoxicity in rats. Pharmacological Research. 2003;47(6):517-522.
43. Atessahin A, Yilmaz S, Karahan I, Ceribasi AO, Karaoglu A. Effects of lycopene against cisplatin-induced nephrotoxicity and oxidative stress in rats. Toxicology. 2005;212(2-3):116-123.
44. Helmy M, Helmy M, ALLAH D, ZAID A, El-Din M. Role of nitergic and endothelin pathways modulations in cisplatin-induced nephrotoxicity in male rats. JPP. 2014;65(3):393-399.
45. Domitrović R, Cvijanović O, Šušnić V, Katalinić N. Renoprotective mechanisms of chlorogenic acid in cisplatin-induced kidney injury. Toxicology. 2014;324:98-107.
46. Dickey DT, Muldoon LL, Doolittle ND, Peterson DR, Kraemer DF, Neuwelt EA. Effect of N-acetylcysteine route of administration on chemoprotection against cisplatin-induced toxicity in rat models. Cancer Chemotherapy and Pharmacology. 2008;62(2):235-241.
47. Vaziri ND, Dicus M, Ho ND, Boroujerdi-Rad L, Sindhuk RK. Protective effect of the ethanol extract of the roots of Brassica rapa on cisplatin-induced nephrotoxicity in LLC-PK1 cells and rats. Biological and Pharmaceutical Bulletin. 2006;29(12):2436-2441.
48. Kim Y-H, Kim Y-W, Oh Y-J, Back N-I, Chung S-A, Chung H-G, et al. Protective effect of the hydroethanolic extract of the roots of Barringtonia racemosa ethyl acetate fraction against cisplatin-induced nephrotoxicity in rats. Int. J. Pharm. Sci. Drug Res. 2020;12(4):396-403. DOI: 10.25004/IJPSDR.2020.12.0413