Conductive geopolymers as low-cost electrode material for microbial fuel cells

Shifan Zhang¹, Jürgen Schuster², Hanna Frühauf-Wyllie³, Serkan Arat⁴, Sandeep Yadav⁵, Jörg J. Schneider⁵, Markus Stöckl²*, Neven Ukrainczyk¹*, Eddie Koenders¹

¹ Department of Materials in Civil Engineering at the Technical University of Darmstadt, Franziska-Braun-Straße 3, 64287 Darmstadt, Germany
² Department of Electrochemistry,³ Department of Industrial Biotechnology and ⁴ Department of Corrosion, DECHEMA-Research Institute, Theodor-Heuss-Allee 25, 60486 Frankfurt a. M., Germany
⁵ Department of Chemistry at the Technical University of Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany

Supporting Information 1: Metakaolin and waterglass raw materials

Used metakaolin is a commercial product of industrial-scale calcination (and subsequent grinding) of a quartz-rich clay which originated from a primary geological deposit. The clay was calcined in an industrial rotary kiln for about 4 h at 700–750°C with a production capacity of about 11 tons/hour. Quantitative powder X-ray diffraction by means of DIFFRACT.TOPAS (Version 5, Bruker) software for Rietveld refinement and using 10 wt.% spiked corundum resulted in 46 wt.% amorphous, 40 wt.% quartz and 10 % Muscovite in the metakaolin (full mineralogical composition given in Figure S1). Metakaolin had a Blaine specific surface area of 10 000 cm²/g and a median grain size of 41 µm.

Figure S1: Powder X-ray diffraction quantitative analysis of the raw metakaolin based on Rietveld refinement (using DIFFRACT.TOPAS Version 5, Bruker).
Potassium silicate solution (waterglass) was used as alkaline activator, with a molar SiO$_2$/K$_2$O ratio of 1.5, 45% total SiO$_2$ and K$_2$O “solid” content, 20 mPas viscosity and 1.51 g/cm$^3$ density.

Chemical composition of metakaolins and K-based silicate solution (waterglass) is given in Table S1.

**Table S1.** Chemical composition of metakaolins and K-based silicate solution (waterglass).

| Material          | SiO$_2$ | Al$_2$O$_3$ | CaO | TiO$_2$ | Fe$_2$O$_3$ | MgO | Na$_2$O | K$_2$O | H$_2$O |
|-------------------|---------|-------------|-----|---------|-------------|-----|---------|--------|--------|
| Metakaolin MK1    | 67.0    | 27.0        | 1.0 | 1       | 4           | 0.1 | 0.1     | 0.2    | –      |
| K-waterglass      | 22      | –           | –   | –       | –           | –   | –       | 23     | 55     |

**Supporting Information 2: Graphite powder raw material**

The graphite used is a high purity, specially ground natural graphite. The technical data of graphite is given in Table S2.

**Table S2.** The technical data of natural graphite.

| Material | Carbon wt. % | D$_{10}$ | D$_{50}$ | D$_{90}$ | Spec. surface | Bulk density | Electrical conductivity |
|----------|--------------|----------|----------|----------|---------------|--------------|------------------------|
| Graphite | >99          | 1-3      | 4-6      | 8-11     | 10            | 250          | 183                    |

Figure S2. Particle size distribution of graphite powder.
Graphite powder was analyzed by scanning electron microscopy (Philips XL-30 FEG, Netherlands) using an electron beam at 30 kV as the accelerating voltage. Figure S3 shows SEM images of the natural graphite. The flake graphite particles have thin plate shapes.

Figure S3. Scanning electron microscope images of the graphite powders.
Supporting Information 3: Mixture design of PCG and GPG is given in Table S3.

Table S3. Mixture design of PCG and GPG.

| PCG  | Graphite [g] | Cement [g] | Water [g] | PCE [g] | Fly ash [g] |
|------|--------------|------------|-----------|---------|-------------|
| PC Ref. | 0 | 948 | 570 | 0 | 0 |
| PC06 1C | 28 | 948 | 570 | 0 | 0 |
| PC06 3C | 57 | 948 | 570 | 0 | 0 |
| PC06 4C | 85 | 948 | 570 | 0 | 0 |
| PC06 9C | 199 | 948 | 570 | 19.9 | 0 |
| PC06 3F 8C | 176 | 733 | 572 | 17.6 | 220 |
| PC06 3F 9C | 198 | 723 | 564 | 19.8 | 217 |
| PC06 3F 10C | 220 | 714 | 557 | 22 | 214 |
| PC75 8C | 176 | 843 | 632 | 17.6 | 0 |
| PC75 9C | 198 | 832 | 624 | 19.8 | 0 |
| PC75 10C | 220 | 820 | 615 | 22 | 0 |

| GPG  | Graphite [g] | Metakaolin [g] | Waterglass [g] | PCE [g] | Water [g] |
|------|--------------|-----------------|----------------|---------|-----------|
| GP Ref. | 0 | 1173.2 | 938.5 | 0 | 0 |
| GP08 1W 1C | 22 | 1133.3 | 906.6 | 2.2 | 22 |
| GP08 1W 2C | 44 | 1093.4 | 874.7 | 4.4 | 44 |
| GP08 1W 3C | 66 | 1053.5 | 842.8 | 6.6 | 66 |
| GP08 1W 5C | 110 | 973.7 | 779 | 11 | 110 |
| GP08 1W 7C | 154 | 894 | 715.2 | 15.4 | 154 |
| GP08 1W 8C | 176 | 854.1 | 683.3 | 17.6 | 176 |
| GP08 1W 9C | 198 | 814.2 | 651.3 | 19.8 | 198 |
| GP08 1W 10C | 220 | 774. | 619.4 | 22 | 220 |
| GP08 1.2W 10C | 220 | 572 | 578 | 22 | 264 |
| GP08 1.7W 10C | 220 | 594 | 475 | 22 | 374 |
| GP08 2W 10C | 220 | 516.2 | 413 | 22 | 440 |

Supporting Information 4: Laboratory Electrochemical H-Cell

The H-shaped reactor consists of two modified 100 mL laboratory bottles, which are connected to each other by flanges. Between the flanges, which are fixed by means of a clamping ring, a circular proton exchange membrane on a sealing ring is located. A second flange is attached to the working electrode chamber (WE chamber), over which the working electrode is attached from the outside by means of a clamping system. A 1 mm thick circular silicone seal between the working electrode and the flange is used. The inner diameter of the flange is 2.5 cm and thus the geometrically accessible area 4.9 cm². The counter electrode chamber (CE chamber) contains a graphite electrode (submerged geometric area approx. 20 cm²), which can be immersed via the bottle neck, through a screw cap with septum. To ensure constant potential control, a reference electrode can be introduced into the WE chamber through a screw cap with fixing rings. Figure S4 shows a completely mounted H-cell prepared for sterilization.
Supporting Information 5: Description of the working steps of the MFC experiments

At day 1 the cultivation of a 7-day culture was prepared: In a sterile workbench, 1 mL of a stationary grown culture was taken from the septum bottle of the 7-day culture prepared one week ago using a syringe and cannula and transferred to a new septum bottle containing 50 mL of the growth media. The newly prepared 7-day culture was stored at 30 °C.

At day 4 the cultivation of the precultures for further deployment in the MFCs was done: In a sterile workbench, 1 mL of the culture media was taken from the septum bottle of the 7-day culture produced on day 1 and inoculated to 4 septum bottles each containing 50 mL of the growth medium. The septum bottles were incubated at 30 °C.

At day 5 the assembly and sterilization of the fuel cells was carried out: 4 MFCs were assembled with the electrode materials (WE) to be tested. The fuel cells were filled with ultrapure water and sealed with aluminium foil. Subsequently the MFCs were sterilized in an autoclave for 20 min at 120 °C. After sterilization they were temporarily stored under a clean-bench.

At Day 6 the preparation of the MFCs was completed and the tests were started: The four sterilized MFCs were emptied in a sterile workbench and filled with growth media lacking disodium fumarate. The WE chambers were filled with 120 mL each and the CE chamber with 105 mL, respectively.

The Haber-Luggin capillaries were inserted into the WE chambers after being sterilized in 70 % ethanol via the screw caps with fixing rings and sealed gas-tight with foil. Then, the Ag/AgCl/KCl_{sat}-reference electrodes (Sensortechnik Meinsberg, Waldheim, Germany) were inserted into the Haber-Luggin capillaries filled with KCl_{sat}. Finally, cannulas attached to sterile filters (pore size = 0.22 μm) were placed for gassing the WE chambers at 40 mL min^{-1} with a gas mixture of 80 % N\textsubscript{2} + 20 % CO\textsubscript{2}. 

Figure S4. Mounted H-cell without reference electrode
Supporting Information 6: Current density curves of tests with PC063F10C.

Figure S5. Current density curves for cultivations of G. sulfurreducens in H-cell MFCs at PC063F10C (anoxic Geobacter medium without fumarate + acetate; electron acceptor: anode; 30 °C; anaerobic). Current density is referred to the geometrical WE surface (4.9 cm$^2$).

Photo of the multi-MFCs setup.

Figure S6: MFCs connected to a multipotentiostat placed on multi-position magnetic stirrer inside an incubator.