Dissipative Effects on the Superfluid to Insulator Transition in Mixed-dimensional Optical Lattices

E. Malatsetxebarria
Centro de Física de Materiales (CFM), Centro Mixto CSIC-EHU,
Paseo Manuel de Lardizabal 5 E-20018 San Sebastian, Spain. and
Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastian, Spain.

Zi Cai and U. Schollwöck
Department of Physics and Arnold Sommerfeld Center for Theoretical Physics,
Ludwig-Maximilians-Universität München, D-80333 München, Germany

Miguel A. Cazalilla
Graphene Research Centre National University of Singapore, 6 Science Drive 2, Singapore 117546
Centro de Física de Materiales (CFM), Centro Mixto CSIC-EHU,
Paseo Manuel de Lardizabal E-20018 San Sebastian, Spain. and
Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastian, Spain.
(Dated: May 7, 2013)

We study the superfluid to Mott insulator transition of a mixture of heavy bosons and light fermions loaded in an optical lattice. We focus on the effect of the light fermions on the dynamics of the heavy bosons. It is shown that, when the lattice potential is sufficiently deep to confine the bosons to one dimension but allowing the fermions to freely move in three dimensions (i.e., a mixed-dimensionality lattice), the fermions act as an ohmic bath for bosons leading to screening and dissipation effects on the bosons. Using a perturbative renormalization-group analysis, it is shown that the fermion-induced dissipative effects have no appreciable impact on the transition from the superfluid to the Mott-insulator state at integer filling. On the other hand, dissipative effects are found to be very important in the half-filled case near the critical point. In this case, in the presence of a finite incommensurability that destabilizes the Mott phase, the bosons can still be localized by virtue of dissipative effects.

I. INTRODUCTION

The interest in systems of interacting bosons and fermions has been a recurrent and central topic in the study of the many-body problem. Many early studies were concerned with dilute solutions of 3He in 4He (see e.g. [1], for a review) as well as with the problem of electrons coupled to phonons in solids (see e.g. [2]). This research led to the understanding of important phenomena such like the polaron and Cooper pairing [2]. More recently, these concepts have reemerged in the context of ultracold atomic gases [3, 4], where new types of interacting Bose-Fermi mixtures have been experimentally realized [5-10]. Indeed, such experiments with ultracold gases have made it possible to study and envision Bose-Fermi systems [17] that can exhibit very different properties from their condensed-matter counterparts.

Thus far, much research has focused on understanding how interactions with the bosonic component of the mixture influences the properties of the fermions and, in particular, how the interactions mediated by the bosons can possibly induce fermion superfluidity (see e.g. [4] and references therein). The complementary problem, namely, understanding how the properties of bosons are modified by their interaction with fermions in a mixture has only recently attracted interest, especially motivated by a series of ground-breaking experiments with Bose-Fermi mixtures loaded in optical lattices [8-11].

Within this setup, in recent years a number of groups have addressed the problem of how the addition of fermions to a Bose gas in an optical lattice affects the phase transition from superfluid to Mott insulator in the latter [7, 9, 11] and references therein). Thus, experimental observations have been reported indicating that fermions effectively decrease the quantum coherence of the bosons,
quantum phase transition is studied. Depending on the low-energy properties of the effective low-energy model, perturbative renormalization group is used to analyze the Bose gas confined to one dimension [44, 47–49]. In Sect. III we consider the effect of the Fermi gas on the Mott insulator to superfluid transition of a Bose gas on the Mott insulator to superfluid transition of a Bose gas

\[H_B = H_B + H_F + H_{BF}, \]
\[H_B = \int dr \left(\frac{\hbar^2}{2m_B} \nabla \Psi_B^\dagger(r) \nabla \Psi_B(r) + U_B(r) \hat{\rho}_B(r) \right), \]
\[H_F = \int dr \left(\frac{\hbar^2}{2m_F} \nabla \Psi_F^\dagger(r) \nabla \Psi_F(r) + U_F(r) \hat{\rho}_F(r) \right), \]
\[H_{BF} = g_{BF} \int dr \hat{\rho}_B(r) \hat{\rho}_F(r), \]
where \(\hat{\Psi}_{BF}(r) \) is the boson (fermion) field operator, which obeys
\[
\left\{ \hat{\Psi}_{BF}(r), \hat{\Psi}_{BF}(r') \right\} = \delta(r - r')
\]
\((\{ \hat{\Psi}_F(r), \hat{\Psi}_F(r') \} = \delta(r - r')) \) (anti-)commuting otherwise;
\[\hat{\rho}_{BF}(r) = \hat{\Psi}_{BF}(r)\hat{\Psi}_{BF}^\dagger(r) \] is the boson (fermion) density operator and
\[N_{BF} = \int d\mathbf{r} \hat{\rho}_{BF}(r) \] the boson (fermion) number operator. The boson-fermion interaction is parametrized by the coupling
\[g_{BF} = 2\hbar^2 a_{BF}/M_{BF}, \] where
\[M_{BF} = m_B m_F/(m_B + m_F) \] is the reduced mass and
\[a_{BF} \] is the s-wave scattering length. Since we are interested in the ground state phase diagram in the thermodynamic limit of the above system, we have neglected the harmonic trapping potential, which is also present in the experiments. Note that an implicit assumption of our analysis below is that the bosons and fermions are mixed. For short range interactions between the bosons (i.e. for \(V_{BF}(r) = g_{BF}\delta(r) \)) the problem of the bosons and fermions forming a uniform mixture in the lattice geometry studied here has been previously considered in Ref. [32]. One conclusion of this work is that the uniform mixed phase in this Bose-Fermi system is always stable provided the density of bosons and fermions is sufficiently high, for both attractive and repulsive interactions (see Ref. [32] for further details).

The Hamiltonian introduced in equations [1][2][3], and [4] contains too much information about energy scales in which we are not interested. Since our goal is to analyze the ground state and low-lying excitations of the system, we next derive an effective Hamiltonian that is much more appropriate to this end. The first step is to project the Bose and Fermi fields onto the lowest Bloch band of the lattice potential. Thus, we expand
\[\hat{\Psi}_{BF}(r) = \sum_{\mathbf{R}} w_0(\mathbf{r}_\perp - \mathbf{R}) \hat{\psi}_{BF}(x) \] where
\[\mathbf{R} = \frac{1}{2}(m,n)\lambda_L \] of a 2D (square) lattice. For the fermions, \(\hat{\Psi}_F(r) \approx \sum_k \phi_k(r) f_k \) where \(\phi_k(r) \) are the Bloch states of the lowest band. The differences in treatment of the Bose and Fermi fields, which reflects their differences in mobility introduced by the conditions discussed above. Hence, upon neglecting terms coupling different lattice sites, the bosons are described by
\[
\hat{H}_B = \sum_{\mathbf{R}} \int dx \left[\frac{\hbar^2}{2m_B} \left| \partial_x \hat{\psi}_{BF}(x) \right|^2 + U_B(x)\hat{\rho}_{BF}(x) \right] + \frac{1}{2} \sum_{\mathbf{R}} \int dx dx' V_{BB}(x - x')\hat{\rho}_{BF}(x)\hat{\rho}_{BF}(x').
\]
(5)

However, the fermions are described by:
\[
\hat{H}_F = \sum_k \epsilon(k) \hat{f}_k^\dagger \hat{f}_k,
\]
where the sum is over \(k \) belonging to the first Brillouin zone and
\[\epsilon(k) = \epsilon_\parallel(k) + \epsilon_\perp(k_L) \approx \frac{\hbar^2 k^2}{2m_F} - 2t_L (\cos k_y b_0 + \cos k_z b_0), \] being \(\hat{\psi}_{BF} = \sum_{\mathbf{R}} \hat{\psi}_{BF}(x) \) the lattice parameter, and we have assumed that the periodic potential along the \(x \) direction is so weak that effectively amounts to a renormalization of the fermion mass. Finally, the boson-fermion interactions are described by:
\[
\hat{H}_{BF} = g_{BF} \sum_{\mathbf{R}} \int d\mathbf{r} |w_0(\mathbf{r}_\perp - \mathbf{R})|^2 \hat{\rho}_B(x)\hat{\rho}_F(r),
\]
(7)
where \(\mathbf{r} = (x,y,z) = (x,\mathbf{r}_\perp) \). In the above expression we have approximated the boson density operator
\[\hat{\rho}_B(r) = \hat{\rho}_B(x,\mathbf{r}_\perp) \approx \sum_{\mathbf{R}} |w_0(\mathbf{r}_\perp - \mathbf{R})|^2 \hat{\rho}_{BF}(x). \]

B. Integrating out the fermions

The total Hamiltonian obtained upon projection onto the lowest Bloch band \(H = H_B + H_F + H_{BF} \) is still too complicated to solve. Since we are mainly interested on the low-temperature properties of the heavier bosons, which are much slower, a first step towards understanding the latter is integrating out the fermion degrees of freedom. To this end, we rely on the path integral representation of the partition function \(Z = \text{Tr} e^{-\beta[H - \mu_B N_B - \mu_F N_F]} \) for the Hamiltonian, \(H = H_B + H_F + H_{BF} \), which allows us to write:
\[
Z = \int [d\bar{\psi}_B d\psi_B d\bar{\psi}_F d\psi_F] e^{-S[\bar{\psi}_B \psi_B, \bar{\psi}_F \psi_F]},
\]
(8)
where
\[S = S_B + S_F + S_{BF}, \]
\[S_B = \sum_{\mathbf{R}} \int dx \int_0^{\hbar \beta} d\tau \bar{\psi}_B(x,\tau) \partial_\tau \psi_B(x,\tau) - \frac{\mu_B}{\hbar} \sum_{\mathbf{R}} \int dx \int_0^{\hbar \beta} d\tau |\psi_B(x,\tau)|^2 \]
\[+ \int_0^{\hbar \beta} d\tau \frac{\hbar}{\tau} H_B(\tau), \]
(9)
\[S_F = \sum_k \int_0^{\hbar \beta} d\tau \bar{f}(x,k) \left[\partial_\tau f(k,\tau) - \frac{\mu_F}{\hbar} f(k,\tau) \right] \]
\[+ \frac{1}{\hbar} \int_0^{\hbar \beta} d\tau H_F(\tau), \]
(10)
\[S_{BF} = \frac{1}{\hbar} \int d\tau H_{BF}(\tau). \]
(11)
where \(\beta = (k_B T)^{-1} \) is the inverse of absolute temperature and \(k_B \) is Boltzmann’s constant. Thus, the effective action for the bosons is defined by the following equation:
\[
e^{-S_{BF}[\bar{\psi}_B \psi_B]} = \int [df d\bar{f}] e^{-S_B - S_F - S_{BF}}
\]
\[= Z_F^0 e^{-S_B(e^{-S_{BF}})F}, \]
(12)
where \(\langle \ldots \rangle_F = \text{Tr} \hat{\rho}_F \ldots \) and \(\hat{\rho}_F = Z_F^{-1} e^{-\beta(H_F - \mu N_F)} \), being \(Z_F = \text{Tr} e^{-\beta(H_F - \mu N_F)} \) the non-interacting fermion partition function. To make further progress, we shall
assume that the interaction between the bosons and the fermions is perturbatively small. Therefore, the above functional integral can be performed using the cumulant expansion, which yields:

\[\langle e^{-S_{BF}} \rangle_F = e^{-\langle S_{BF} \rangle + \frac{1}{2} \langle S_{BF}^2 \rangle} + \cdots \]

(13)

The leading term is

\[\langle S_{BF} \rangle_F = \frac{\hbar g_{BF}}{\mu} \int_{\mathbf{R}} \int_0^{h\beta} \int d\tau |d\mathbf{r} w_0(\mathbf{r}_\perp - \mathbf{R})|^2 \times \rho_{BR}(x, \tau) \]

\[\times \langle \chi_F \rangle \]

(14)

where \(\rho_{BR}(x, \tau) = \langle \rho_{FR}(x, \tau) \rangle_F \) is the equilibrium density of the Fermi gas (in the absence of the bosons). Since \(\rho_{BR}(x, \tau) \) is periodic, (14) amounts to a correction to the periodic potential that the boson gas undergoes. The correction has the same sign as the coupling \(g_{BF} \), which means that e.g. for attractive boson-fermion interactions, the effective potential seen by the bosons is deepened by its (mean-field) interaction with the fermions. This effect has been termed 'self-trapping' and has been studied both theoretically [15] and experimentally [9–11]. We shall not study it any further here. Instead, we focus on its (mean-field) interaction with the fermions. This effect has been termed 'self-trapping' and has been studied both theoretically [15] and experimentally [9–11]. We shall not study it any further here. Instead, we focus on its effective field-theoretical treatment [16].

In what follows, we will not treat the bosons and the fermions on equal footing. Such a treatment would require to also account for the effect of the bosons on the fermionic component of the mixtures, which may modify the density response \(\chi_F(\mathbf{r}, \mathbf{r'}, \tau) \). Nevertheless, below we shall assume that \(\chi_F(\mathbf{r}, \mathbf{r'}, \tau) \) is well described by the non-interacting limit where we take \(g_{BF} = 0 \). Indeed, this assumption is qualitatively correct as long as the Fermi component of the mixture remains a Fermi liquid, which is reasonable given that the fermions are much lighter, interact with the bosons weakly, and therefore their energy is dominated by the kinetic energy. However, strictly speaking the bosons will mediate effective fermion-fermion interactions, which, at sufficiently low temperature, lead to a pairing instability of the Fermi gas. Since the gas contains a single species of fermions, such a paring instability takes place in a high angular momentum wave (most likely, p-wave) and at relatively low temperatures compared to the Fermi energy \(\mu_F \).

Given that present cooling techniques in optical lattices cannot reach temperatures below a few percent of \(\mu_F \), we can safely neglect this possibility. Other instabilities that can gap the fermion spectrum, such as a charge density wave, occur at particular values of the lattice filling and/or lattice parameters and we will also neglect them in what follows.

\[\rho_{BF}(x, \tau) = \langle \rho_{BF}(x, \tau) \rangle_F \]

(15)

Thus, up to \(O(g_{BF}^2) \), we obtain the following effective action for the bosons:

\[S_{eff}[\psi_B, \psi_B] = \sum_{\mathbf{R}} S_{eff, \mathbf{R}} \]

(16)

\[S_{eff, \mathbf{R}} = \int_0^{h\beta} d\tau \int d^3x \rho_{BF}(x, \tau) \partial_x \psi_{BR}(x, \tau) + \int_0^{h\beta} d\tau \int d^3x \frac{\hbar}{2 m_B} |\partial_x \psi_{BR}(x, \tau)|^2 + \int_0^{h\beta} d\tau \int d^3x \left[\tilde{U}_B(x) - \mu_B \right] |\psi_{BR}(x, \tau)|^2 + \int_0^{h\beta} d\tau \int d^3x |\psi_{BR}(x, \tau)|^2 \times V_{BF}(x, \tau) + \frac{g_{BF}^2}{2\hbar} \int d^3x \int d^3x' \psi_{BR}(x, \tau) \psi_{BR}(x', \tau) \times \chi_F(x, x', \tau) |\psi_{BR}(x, \tau)|^2, \]

(17)

where \(\tilde{U}_B(x) = U_B(x) + g_{BF} \int d\mathbf{r}_\perp |w_0(\mathbf{r}_\perp)|^2 \rho_{BF}(x, \mathbf{r}_\perp) \).

Note that we have thus reduced the problem to a set of one dimensional systems independently coupled to a fermionic bath. Therefore, in what follows we shall drop the lattice index \(\mathbf{R} \) and study the phase diagram of a generic 1D system coupled to the fermionic bath.

However, one important caveat is in order when considering the applicability of the effective action, Eq. (17). In what follows, we will not treat the bosons and the fermions on equal footing. Such a treatment would require to also account for the effect of the bosons on the fermionic component of the mixtures, which may modify the density response \(\chi_F(\mathbf{r}, \mathbf{r'}, \tau) \). Nevertheless, below we shall assume that \(\chi_F(\mathbf{r}, \mathbf{r'}, \tau) \) is well described by the non-interacting limit where we take \(g_{BF} = 0 \). Indeed, this assumption is qualitatively correct as long as the Fermi component of the mixture remains a Fermi liquid, which is reasonable given that the fermions are much lighter, interact with the bosons weakly, and therefore their energy is dominated by the kinetic energy. However, strictly speaking the bosons will mediate effective fermion-fermion interactions, which, at sufficiently low temperature, lead to a pairing instability of the Fermi gas. Since the gas contains a single species of fermions, such a paring instability takes place in a high angular momentum wave (most likely, p-wave) and at relatively low temperatures compared to the Fermi energy \(\mu_F \).

Given that present cooling techniques in optical lattices cannot reach temperatures below a few percent of \(\mu_F \), we can safely neglect this possibility. Other instabilities that can gap the fermion spectrum, such as a charge density wave, occur at particular values of the lattice filling and/or lattice parameters and we will also neglect them in what follows.

C. Low-energy effective theory

In order to deal with the effective boson model in Eq. (17), we shall use the method of bosonization [11,43]. Thus, we first integrate the high-energy density and phase fluctuations of the bosons, and introduce two collective fields, \(\theta(x) \), and \(\phi(x) \) describing the phase fluctuations in each 1D system. In terms of these fields, the Bose field and density operators read:

\[\Psi_B(x) \simeq \mathcal{A} \rho_0^{1/2} e^{i \theta(x)}, \]

(18)

\[\rho_B(x) = \Psi_B^\dagger(x) \Psi_B(x) \simeq \rho_0 + \frac{1}{\pi} \partial_x \phi(x) \]

\[+ \rho_0 \sum_{m > 0} \mathcal{B}_m \cos 2m \phi(x) + k_F^2 x, \]

(19)

where \(\rho_0 = N_B/(ML) \) is the linear density of bosons in each of the \(M \) 1D systems of length \(L \) of the lattice and \(k_F^2 = \pi \rho_0 \). The amplitudes \(\mathcal{A} \) and \(\mathcal{B}_m \) depend on the microscopic details of the model and cannot be obtained using bosonization. Using the above expressions and retaining only the most relevant operators in the
The above action, Eq. (20), provides an effective description of the low-temperature properties of the boson system which includes (through the renormalization of the potential $U_B \rightarrow \tilde{U}_B$) the effect of the Fermi gas at the mean-field level. The dynamical effect of the fermions on the bosons is taken into account, to leading order in g_{BF}, by the last term in Eq. (17). However, since the dynamics of the (heavier) bosons described by (21) is much slower than the lighter fermions, some further simplifications of (15) are possible. First, we note (see Appendix B) that, at $T = 0$, the fermion density correlation function introduced above, $\chi_F(x, x', \tau)$ can be written as follows:

$$\chi_F(x - x', \tau) = \int_0^{+\infty} \frac{d\omega}{\pi} e^{-\omega|\tau|} \text{Im} \chi_R^F(x - x', \omega),$$ \hspace{1cm} (23)

where $\chi_R^B(x - x', \omega)$ is the retarded version of the same correlation function. We have also assumed, consistently with what was stated above, that the effect of the periodic potential can be neglected as far as the calculation of $\chi_F(x - x', \omega) \simeq \chi_F(x - x', \omega)$. The above expression allows us to treat separately the high frequency density fluctuations from the low-frequency fluctuations of the fermionic gas. This can be done by introducing the following response functions:

$$\chi_F^R(x, \tau) = \int_0^{+\infty} \frac{d\omega}{\pi} g(\omega)e^{-\omega|\tau|} \text{Im} \chi_R^F(x, \omega),$$ \hspace{1cm} (24)

$$\chi_F^S(x, \tau) = \int_0^{+\infty} \frac{d\omega}{\pi} g_c(\omega)e^{-\omega|\tau|} \text{Im} \chi_R^F(x, \omega),$$ \hspace{1cm} (25)

where $g(\omega)$ is a frequency cut-off function, which can be chosen in various ways as the result will be largely independent of this function; $g_c(\omega) = 1 - g(\omega)$. Below we use $g(\omega) = e^{-\omega\tau_c}$, where $\tau_c \ll \max\{\frac{1}{\omega_F}, \frac{1}{\omega_B}\}$. The cut-off frequency $\simeq \frac{\hbar}{\tau_c}$ is chosen such that the high-frequency density fluctuations of the Fermi gas can adapt instantaneously to the (slow) dynamics of the boson density fluctuations described by $\rho_B(x, \tau)$ (cf. Eq. (19)). Thus,

$$\int dxdx'dx''d\tau' \rho_B(x, \tau)\chi_F^R(x - x', \tau - \tau')\rho_B(x', \tau')$$

$$= \int dxdx'dt \rho_B(x, \tau + \frac{t}{2})\chi_F^R(x - x', t)\rho_B(x, \tau - \frac{t}{2})$$

$$\simeq \int dxdx'd\tau \rho_B(x, \tau)\chi_F^S(x - x', \omega = 0)\rho_B(x', \tau)$$

$$= \int dxdx'd\tau \rho_B(x, \tau)\chi_F(x - x', \omega = 0)\rho_B(x', \tau)$$

$$- \int dxdx'd\tau \rho_B(x, \tau)\chi_F^R(x - x', \omega = 0)\rho_B(x', \tau),$$ \hspace{1cm} (26)

where $\chi_F^R(x - x', \omega = 0) = \int dt \chi_F^R(x - x', t)$ and similar definitions for $\chi_F^R(x - x', \omega = 0)$ and $\chi_F^S(x - x', \omega = 0)$. Therefore, the effective action describing the interactions...
between the bosons mediated by the fermi gas takes the form:

\[S_{\text{eff}, BF} = \frac{g_{BF}^2}{2\hbar} \int dx dx' dt \rho_B(x, \tau) \chi_F(x - x', \omega = 0) \]

\[\times \rho_B(x', \tau) + \frac{g_{BF}^2}{2\hbar} \int dx dx' dt d\tau' \rho_B(x, \tau) \]

\[\times \Gamma(x - x', \tau - \tau') \rho_B(x', \tau'), \]

(28)

where the dissipative kernel \(\Gamma(x, x', \tau) \) is defined as:

\[\Gamma(x - x', \tau) = \chi_F^R(x, \tau) - \chi_F^R(x - x', \omega = 0) \delta(\tau). \]

(29)

Note that, by definition, \(\int d\tau \Gamma(x - x', \tau) = 0 \). This kernel can be evaluated as follows. Since we assume the Fermi component of the mixture to be a Fermi liquid, we note that for the latter \(-\text{Im} \chi_F^R(x - x', \omega) \propto \omega \) for \(\omega \ll |\mu_F| \). In the present system, the small \(\omega \) limit of this function is obtained explicitly in Appendix B at \(T = 0 \). It can be written as

\[\text{Im} \chi_F^R(x - x', \omega) \ll \frac{\hbar}{\tau_c} = -\pi D(x - x') \omega. \]

(30)

where \(D(x) \) is a positive function of \(x \) which is computed in Appendix B. Introducing this expression into Eq. (28), we arrive at:

\[S_{\text{eff}, BF} = \frac{g_{BF}^2}{2\hbar} \int dx dx' dt \rho_B(x, \tau) \chi_F(x - x', \omega = 0) \]

\[\times \rho_B(x', \tau) + \frac{g_{BF}^2}{2\hbar} \int dx dx' dt d\tau' \rho_B(x, \tau) \]

\[\times \frac{D(x - x')}{|\tau| + \tau_c^2} \rho_B(x', \tau'), \]

(32)

The results of the model calculation described in Appendix B for the functions \(D(q)/\hbar = -\text{Im} \chi_F^R(q, \omega) \) (for \(\omega \ll \hbar/\tau_c \)) and the static response function \(\chi_F^R(q, \omega = 0) \) are displayed in Figs. 4 and 3. It can be seen that both functions are rather smooth (i.e. non-singular) functions of the longitudinal wavevector \(q \). This assumption will prove important below. Furthermore, for certain values of the lattice filling, which determines the Fermi energy \(\epsilon_F \), see Appendix B, \(D(q) \) can be made negligible or zero for wide ranges of the wavevector \(q \). This opens the possibility of tuning the strength of the dissipative effects by simply changing the fermion density. Note, however, that by strongly reducing the fermion density, the stability of the mixture may be jeopardized.

Thus we see that the boson interaction mediated by the fermi gas consists, at low frequencies, of an instantaneous part (which stems for high frequency density fluctuations of the Fermi gas) and a dissipative part, which takes the form of a retarded \(\sim \frac{1}{\tau} \) interaction. The latter stems from the excitation by the motion of the bosons of real low-energy particle-hole pairs, which in a Fermi liquid yield the linear-\(\omega \) behavior of the density response function (i.e. Landau damping). As discussed above, the instantaneous part of the interaction can related to the static density response of the Fermi gas and leads to a renormalization of the sound velocity \(v \) and Luttinger parameter \(K \) describing the low-temperature properties of 1D boson system. The renormalized parameters obey:

\[\frac{v(g_{BF})}{K(g_{BF})} = \frac{v(g_{BF} = 0)}{K(g_{BF} = 0)} + 2 \frac{g_{BF}^2}{\hbar} \chi_F(q = 0, \omega = 0), \]

(33)

Furthermore, since the fermion-induced interaction is a density-density interaction (cf. first term in Eq. 32), we

![FIG. 3: The static response function \(\chi_F^R(q, \omega = 0)/A \) of the fermions for different values of the Fermi energy \(\epsilon_F = 2.0, 1.5, 1.0, 0.5, -0.5 \) in units where \(\hbar^2/2m = 1 \) and \(W = 4t_\perp = 1 \). See Appendix B for details of the calculation.](image)

![FIG. 4: Imaginary part of the fermion response function \(\chi_F^R(q, \omega) \) divided by the excitation frequency, \(\omega \), for \(\omega \to 0^+ \), for different values of the Fermi energy \(\epsilon_F = 2.0, 1.5, 1.0, 0.5, -0.5 \) Units where \(\hbar^2/2m = 1 \) and \(W = 4t_\perp = 1 \) have been used. See Appendix B for details of the calculation.](image)
have that \[44\]:
\[v(g_{BF})K(g_{BF}) = v(g_{BF} = 0)K(g_{BF} = 0). \]

These equations describe, to lowest order in \(g_{BF}\), the screening of the boson-boson interaction by the fermion gas, which leads to corrections to the parameters \(K\) and \(v\) in Eq. (21), which depend only on the boson-boson interaction.

Using the bosonization formula \[19\], we obtain the representation of the dissipative action in terms of the density field \(\phi(x, \tau)\):
\[
\tilde{S_D} = S_D^f + S_D^b
\]
\[
S_D^f = -\frac{g_{BD} \pi^2}{2} \int dx d\tau d\tau' \frac{\partial_\tau \phi(x, \tau) \partial_{\tau'} \phi(x, \tau')}{(|\tau - \tau'| + \tau_c)^2}, \quad (35)
\]
\[
S_D^b = -\frac{g_{BD}}{a_0} \int dx d\tau d\tau' \cos 2[\phi(x, \tau) - \phi(x, \tau')] \frac{(|\tau - \tau'| + \tau_c)^2}{(|\tau - \tau'| + \tau_c)^2}, \quad (36)
\]

In the derivation of the above perturbations to the Gaussian action, Eq. (21), we have retained only terms whose integrands are not oscillatory and are the leading terms in \(K\) and \(v\) in Eq. (21), which depend only on the boson-boson interaction.

Using the bosonization formula \[19\], we obtain the representation of the dissipative action in terms of the density field \(\phi(x, \tau)\):
\[
\tilde{S_D} = S_D^f + S_D^b
\]
\[
S_D^f = -\frac{g_{BD} \pi^2}{2} \int dx d\tau d\tau' \frac{\partial_\tau \phi(x, \tau) \partial_{\tau'} \phi(x, \tau')}{(|\tau - \tau'| + \tau_c)^2}, \quad (35)
\]
\[
S_D^b = -\frac{g_{BD}}{a_0} \int dx d\tau d\tau' \cos 2[\phi(x, \tau) - \phi(x, \tau')] \frac{(|\tau - \tau'| + \tau_c)^2}{(|\tau - \tau'| + \tau_c)^2}, \quad (36)
\]

In the derivation of the above perturbations to the Gaussian action, Eq. (21), we have retained only terms whose integrands are not oscillatory and are the leading terms in a gradient expansion. However, in the case of a half-filled lattice, the following term:
\[
S_D^b = -\frac{g_{BD}}{a_0} \int dx d\tau d\tau' \cos 2[\phi(x, \tau) - \phi(x, \tau')] \frac{(|\tau - \tau'| + \tau_c)^2}{(|\tau - \tau'| + \tau_c)^2}, \quad (37)
\]

must be also taken into account. This dissipative umklapp interaction arises from the periodicity of the boson system, for which which at half-filling \(4k_F^B = \frac{2\pi}{\tau_c}\), is a reciprocal lattice wave number. In this regard, we must recall that, in a periodic system, the (lattice) momentum along the \(x\) direction is conserved modulo a reciprocal lattice wave number. Note that this term will be also generated by the renormalization group flow from product of the \(S_u\) (cf. Eq. 22) and \(S_D^b\) (cf. 37).

Furthermore, the bare dimensionless couplings are:
\[
\tilde{g}_D(0) = g_{BF}^2 D(q = 0), \quad (39)
\]
\[
g_b(0) = 2g_{BF}^2 B_1^2 \rho^2 a_0 D(q = 2k_F^B), \quad (40)
\]
\[
g_a(0) = 2g_{BF}^2 B_1^2 \rho^2 a_0 D(q = 2k_F^B). \quad (41)
\]

In the above expressions we have made explicit the dependence of the couplings of the cut-off scale, \(a_0\) through the parameter \(\ell = \log \frac{a_0(\ell)}{a_0}\), that is \(a_0(\ell) = \ell^c a_0\) and thus \(\ell = 0\) corresponds to the scale of the bare cut-off \(a_0 \approx \nu \tau_c\), being \(\tau_c\) the short-time cut-off introduced earlier.

III. RENORMALIZATION GROUP ANALYSIS

Physically, the renormalization group (RG) flow of a system describes its behavior as it is cooled down towards the absolute zero. The effect of temperature can be mimicked by decreasing the short wavelength cut-off \(\frac{1}{a_0}\) introduced to properly define the low-temperature effective model of the last section. As the absolute temperature decreases, the ground state is approached, and the couplings that define the effective low-energy theory of equations \[21, 22, 36, 37\], etc. (i.e., \(K, v, g_u, g_{BD}, \ldots\)), must change accordingly in order to account for the reduction of the available excited states. Thus, the quantum phases of the system can be studied by analyzing the asymptotic behavior of the ‘flow’ of these couplings in the limit where the cut-off tends to zero, that is, as the absolute temperature vanishes. In the perturbative approach to RG, the flow is described by a set of differential equations, whose solutions we study in this section.

Simple power-counting arguments show that \(S_D^f \sim \int dq \omega q^2 |\omega| \phi(q, \omega)|^2\) is an irrelevant perturbation in the renormalization-group sense. This is true provided \(D(q = 0)\) is not singular, which is indeed the case (see Fig. 1 and Appendix B). Indeed, this term alone leads to a momentum dependent broadening of the long-wave phonon excitations of the gapless phase of the model in Eq. (21). Therefore, in order to study the low-temperature properties of the model, it is justified to drop \(S_D^f\), and therefore we shall next focus our attention on the second term in Eq. (35) and consider the effective model described by \(S = S_D^b + S_D^f\), where \(S_B\) is given by Eq. (21) and \(S_D^b\) given by Eq. (37). In the half-filled case, we also have to take into account \(S_D^f\) given by Eq. (38).

The resulting action contains only marginal and (potentially) relevant perturbations in the RG sense, which we shall analyze in this section. In what follows, we shall consider the cases of integer and half-integer lattice filling separately. The details of the perturbative derivation of the RG equations are given in the Appendix C.

A. Integer Lattice filling

To \(O(g_{BD}, g_u^2)\) the flow equations in this case read:
\[
\frac{d\tilde{g}_D}{d\ell} = (2 - K)\tilde{g}_D, \quad (42)
\]
\[
\frac{dg_b}{d\ell} = (1 - 2K)g_b, \quad (43)
\]
\[
\frac{dg_a}{d\ell} = -(g_a^2 + 2\pi g_{BD})K, \quad (44)
\]
\[
\frac{d\nu}{d\ell} = -2\pi g_{BD}K. \quad (45)
\]

We neglect terms of \(O(g_{BD}^2)\) or higher because \(g_{BD}(0) \propto \frac{1}{\sqrt{\tau_c}}\), that is, \(g_{BD}\) is already second order in the Bose-Fermi coupling, which is assumed to be small. For \(g_{BD} = 0\), the equations reduce to those of a pure 1D Boson system in a commensurate potential first obtained by Hal- dan 45 (see also 44 17): for \(g_u = 0\), the equations reduce to those derived in Ref. 39 which describe the quantum phase transition between a Tomonaga-Luttinger liquid and a dissipative insulator (DI).

The above equations show that near the SF to MI quantum critical point (corresponding to \(K^* = 2, g_u = 0\),
$g_{BD} = 0$) the dissipative interaction is a highly irrelevant operator because $1 - 2K \approx -3$. Thus, the most important effect of the Fermi component of the mixture is to introduce a renormalization of the periodic potential and the screening of the interactions, which leads to the renormalization of the Luttinger parameter K and the sound velocity v given by Eq. (43).

From the analysis of the RG equations, which implies that the dissipation is an irrelevant operator in the RG sense, we conclude that dissipative effects are weak in the MI phase where g_u grows as the energy cut-off $\hbar \omega_c e^{-\ell}$ (\sim the absolute temperature) decreases. Thus, the dissipative term can be treated using perturbation theory, and leads to a small (when compared to the excitation energy) broadening of the phonon excitations in the superfluid TLL phase. As for the excitations of the MI phase, which corresponds to a ‘particle’ (i.e. excess by one bosons) or a ‘hole’ (i.e. absence of bosons) propagating against the Mott-insulating background, the dissipative part of the interaction with the Fermi gas similarly introduces damping on their motion, which translates into the broadening of the excitation energy dispersion. Such enhancement of the excitation broadening can be measured by lattice modulation spectroscopy [37, 45, 49, 54].

B. Half-Integer Lattice filling

In this case, and given that the initial conditions are the same for the S_D^b and S_D^a we note that they can be combined into a single term $S_D[\phi] = S_D^b[\phi] + S_D^a[\phi]$, which can be written as:

$$S_D[\phi] = \frac{g_D}{2\omega_0} \int d\omega d\omega' d\tau [\cos 2\phi(x, \tau) - \cos 2\phi(x, \tau')]^2, \tag{46}$$

where $g_D(0) = \frac{1}{2} \left[g_B(0) + g_D(0) \right]$. The RG flow equations for this system then read:

$$\frac{dg_u}{d\ell} = (2 - 4K)g_u + \pi g_D, \tag{47}$$
$$\frac{dg_D}{d\ell} = (1 - 2K + 4g_u)g_D, \tag{48}$$
$$\frac{dK}{d\ell} = -(4g_u^2 + 2\pi g_D)K^2, \tag{49}$$
$$\frac{dv}{d\ell} = -2\pi g_D K v. \tag{50}$$

These RG equations describe the flow in the vicinity of a quantum critical point located at $K^* = \frac{1}{2}$, $g_u = g_D = 0$. Integrating them numerically, we obtain the phase diagram depicted in Fig. 5. Thus, we find that, for a relatively weak boson-fermion coupling $|g_{BF}|/\mu_B \sim 10^{-2}$, the part of the phase diagram occupied by the SF Tomonaga-Luttinger liquid phase (TLL) shrinks considerably. The latter phase is identified by the RG flows for which both g_u and g_D go to 0 as the phonon cut-off $\hbar \omega_0 e^\ell$ is reduced to zero (i.e. for $\ell \to +\infty$), that is, as the absolute temperature is decreased. On the other hand, the CDW phase is identified with those flows for which $g_u \sim 1$ at a certain value of ℓ^*. However, it is also worth noticing that we have observed numerically (see Fig. 6) that, especially close to the phase boundary (red curve in Fig. 5), $g_u(\ell^*)/g_D(\ell^*) \sim 1$, even if g_u becomes of order one first in all cases studied. This means that, even if the low-energy physics of this phase is dominated by the potential term $\propto g_u$, the dissipative effects are by no means negligible. It is interesting that this happens independently of how small the bare $g_u(0)$ is, and even in the limit $g_u(0) \to 0^+$. This is because, ultimately, the RG flow of $g_u(\ell)$ is controlled by the first term in Eq. (47), which leads to a much faster growth, although for small $g_u(0)$, the initial flow may be controlled by the second term in Eq. (47).

The RG flow equations indicate that the quantum phase transition occurs at $K = 1/2$, where the dissipation and periodic potential simultaneously become relevant, and the system is driven from a superfluid to a CDW Mott-insulating states. To study the interplay between the dissipation and interaction around the critical point, we adopt a variational self-consistent harmonic approximation (SCHA) by choosing a trial effective action of the from:

$$S_v[\phi] = \int dq d\omega G_v^{-1}(q, \omega) \phi^*(q, \omega) \phi(q, \omega) \tag{51}$$

where we have defined the Green’s function $G_v(q, \omega) = \left[\frac{1}{2\pi K} (\frac{\omega^2}{v_s} + v_s q^2) + \frac{g_u}{\omega_0} |\omega| + \frac{\Delta}{\omega_0 \tau_c} \right]^{-1}$, with the dimension-
less self-consistent parameters η and Δ that can be determined by the minimization of the variational free-energy. A variational estimate F_{var} of the true free-energy F can be obtained from Feynman’s variational principle [47]:

$$F \leq F_{\text{var}} = F_v + \beta^{-1}(S - S_v)_v$$

(52)

Therefore, optimizing $\delta F_{\text{var}}[G_v]/\delta G_v = 0$, the parameters η and Δ are found by solving the self-consistent equation above (Eq. (D2)), so that (see appendix D for further details):

$$\eta = \frac{8g_u}{(2\pi)^2} \alpha^2(\eta, \Delta, K),$$

(53)

$$\Delta = \frac{8(g_u + g_D)}{(2\pi)^2} \alpha^2(\eta, \Delta, K),$$

(54)

where we have introduced $\alpha(\eta, \Delta) = \left(\frac{nK\pi+2\sqrt{K^2\pi^2}}{4}\right)^{2K}$.

The numerical solution of these equation for the gap Δ is shown in Fig. 7. It can be seen that the gap is enhanced for $K < \frac{1}{2}$. This expected is because quantum dissipation is akin to classical friction, which hinders the motion of the particles and thus helps to stabilize the CDW Mott-insulating state. Note, however, that the SCHA erroneously yields a discontinuous transition at the critical point $K^* = \frac{1}{2}$. This is a well known artifact of this approximation [47].

IV. COMMENSURATE - INCOMMENSURATE TRANSITION IN THE PRESENCE OF DISSIPATION

A. Integer filling

In this case, as for the TLL to MI transition, the effect of dissipation is rather weak. A way of understanding this is to stop the RG flow when $g_u(\ell) \sim 1$ and consider the sine-Gordon model at the Luther-Emery point where it maps to a 1D relativistic model of massive (Dirac) fermions [41, 47]. Diagonalization of this model yields two bands separated by a gap: a filled ‘valence’ band and an empty ‘conduction’ band [41, 47]. Tuning the chemical for the bosons amounts to introducing particles in the conduction band or holes in the valence band [41]. For small particle (hole) density, the system can be described as a Tonks-Girardeau gas [58] characterized by Luttinger parameter $K \simeq 1$. The dissipation being an irrelevant for $K > K^* = \frac{1}{2}$, its effect on such a dilute liquid of particles (holes) is negligible as far as the ground state properties are concerned (although it will lead to a small linewidth of the excitations, which is due to collisions between the bosons and the fermions). Thus, in particular, the exponents characterizing the commensurate to incommensurate (C-IC) transition are thus expected to remain unchanged and, therefore, the density of particles (or holes) [41, 44] will grow as $\sqrt{\mu - \mu_c}$, where $\mu_c \sim \Delta$, where Δ is the MI gap.
B. Half-integer filling

For half-integer filling the situation is very different, as it was already pointed out in our discussion of the previous section. We can realize this by considering again the case where we take g_D infinitesimally small but $g_u \sim 1$. Applying the same reasoning used in the previous section, the Luttinger gas with a parameter $K \sim \frac{3}{2} \ll K^* = \frac{5}{2}$. Thus, the dissipative term $S_D[\phi]$ from Eq. (46) is a strongly relevant perturbation, which, as discussed in Ref. [39], leads to the localization of the system in a new phase, which we term dissipative insulator (DI). In this phase, the boson density, $\langle \rho_B(x) \rangle$ exhibits long-range order [39] with a characteristic wave number equal to $4\pi\rho_B$.

However, it is worth mentioning that, as Fig. 6 demonstrates, assuming that g_D is infinitesimal when $g_u \sim 1$ is not representative of the the RG flow described in the previous section. Indeed, we numerically found that even in the case $g_u(0) \rightarrow 0$, $g_D(\ell^*) \lesssim g_u(\ell^*) \sim 1$ (see Fig. 6) in other words, the dissipation, although diverging less strongly than the periodic potential, is not a small perturbation on the CDW state. Thus, we expect that the dissipative term needs to be treated on equal footing with the potential term $\propto \rho_B$. The universality class of the commensurate-incommensurate transition is therefore expected to be different from the case of integer filling.

VI. CONCLUSIONS

In conclusion, we have studied a model for a mixed dimensional Bose-Fermi mixture in an optical lattice, where the bosons are confined to one dimension whereas the fermions are free to hop in three dimensions (albeit with renormalized dispersion). We have argued that this system is a realization of a 1D interacting Bose gas coupled to a dissipative bath of the Ohmic type. In addition, the fermions also screen the boson-boson interactions. For integer filling of the boson lattice, we have found that the dominant effect of the fermions on the bosons is the screening of their interactions, as it was also observed in mean-field studies of 3D dimensional optical lattices [25]. Thus, provided the so-called self-trapping effect can be subtracted or compensated, the screening of the boson interactions leads to an enhancement of the superfluid properties as the bosons become polarons with reduced effective interactions. In this case, dissipation effects only contribute to an increase in the linewidth of the excitations in both the superfluid and Mott-insulating phases, which could be detected by means of lattice modulation spectroscopy [37, 45, 49].

On the other hand, the effect of the fermion-induced dissipation is much more severe when the bosons are close to a superfluid to CDW Mott-insulator transition, which happens at half-integer filling. In this case, the dissipative effects strongly hinder the motion of the bosons and help stabilizing the CDW phase (cf. Fig. 5) as well as enhancing the CDW gap (cf. Fig. 7). This effect leads to a dramatic suppression of the superfluid phase relative to the pure boson case, which can observed as a reduction of the potential depth required for the bosons to localize in the CDW phase. The enhancement of the gap on the CDW side of the transition can be also probed using lattice modulation spectroscopy.

We have also studied the commensurate-incommensurate transition and argued that in the case of integer lattice filling, the fermion-induced dissipation is an irrelevant perturbation and therefore, the universality class should not be altered. However, in the case of half-integer filling the dissipation is relevant (but less than the external potential) and therefore we expect the universality class will be modified. This subject requires further study, but it will not be pursued here. The conclusions of this work are summarized in the schematic phase diagram of Fig. 8.

VI. ACKNOWLEDGEMENT

EM acknowledges support from the CSIC JAE-predoc program, co-financed by the European Science Foundation. EM and MAC also acknowledge the support of the Basque Departamento de Educación, the UPV/EHU (Grant No. IT-366-07), and the Spanish MINECO (Grant No. FIS2010-19609-CO2-02). US and ZC acknowledge support from DFG through FOR801.
Appendix A: Relating $\chi^R_F(x, \omega)$ to $\chi_F(x, \tau)$

In this appendix we will derive the identity that we used in the main text to relate the retarded density correlation function to its imaginary time version at zero temperature. We shall first recall that the retarded correlation function is defined as:

$$\chi^R_F(x, t) = -\frac{i}{\hbar} \delta(t) (\langle \delta \rho_F(x, t) \delta \rho_F(0, 0) \rangle)_F,$$ \hspace{1cm} (A1)

where $\delta \rho_F(x, t) = \int d\mathbf{r} \mid w_0(\mathbf{r}) \mid^2 \delta \rho_F(x, \mathbf{r}, t)$, $\delta \rho_F(x, \mathbf{r}, t) = e^{iH_F t/\hbar} \delta \rho_F(x) e^{-iH_F t/\hbar}$, and $\delta \rho_F(\mathbf{r}) = \rho_F(\mathbf{r}) - \rho^R_F(\mathbf{r})$. However, the imaginary time correlation is defined as:

$$\chi_F(x, \tau) = -\frac{1}{\hbar} (\delta \rho_F(x, \tau) \delta \rho_F(0, 0))_F,$$ \hspace{1cm} (A2)

where $\delta \rho_F(x, \tau) = e^{H_F \tau / \hbar} \delta \rho_F(x) e^{-H_F \tau / \hbar}$. By taking the Fourier transform of the spectral representation of (A1) and comparing it to the spectral representation of

$$\chi_F(x, \mathbf{i} \omega_n) = \int_{-\hbar \beta/2}^{\hbar \beta/2} d\tau \chi_F(x, \tau) e^{i\omega_n \tau},$$ \hspace{1cm} (A3)

we arrive at the following relation:

$$\chi_F(x, \mathbf{i} \omega_n) = \int \frac{d\omega}{\pi} \frac{\text{Im} \chi^R_F(x, \omega)}{\omega - \mathbf{i} \omega_n} + \frac{\text{Im} \chi^R_F(x, \omega)}{\omega + \mathbf{i} \omega_n},$$ \hspace{1cm} (A4)

where, in the deriving the last expression, we have used that $\text{Im} \chi_F(x, -\omega) = -\text{Im} \chi_F(x, \omega)$. Hence, introducing the last expression in (A3), taking $\beta \rightarrow +\infty$, and performing the integral over ω_n with the help of Jordan’s lemma, we arrive at the desired result:

$$\chi_F(x, \mathbf{i} \omega_n) = \int_0^{+\infty} \frac{d\omega}{\pi} e^{-\omega |\tau|} \text{Im} \chi^R_F(x, \omega).$$ \hspace{1cm} (A5)

Appendix B: Fermion bath response function

Let us consider the Fourier transform of the density response of the Fermi gas at zero temperature, which, as we neglect the interactions induced by the bosons on the fermions, is just the Lindhard function. Recalling that the Matsubara version of the latter is defined as $\chi_F(x, \mathbf{r}, \mathbf{r}', \tau) = -\frac{1}{\pi} (\delta \rho_F(x, \mathbf{r}, \tau) \delta \rho_F(0, \mathbf{r}', 0))_F$, where $\delta \rho_F(x, \mathbf{r}, \tau) = \rho_F(x, \mathbf{r}) - \rho^R_F(x, \mathbf{r})$, being $\rho^R_F(x, \mathbf{r}) = \sum_{k, \mathbf{k}, \mathbf{k}'} \varphi^*_{k, \mathbf{k}}(x, \mathbf{r}) \varphi_{k', \mathbf{k}'}(x, \mathbf{r}) f^\dagger_{k, \mathbf{k}} f_{k', \mathbf{k}'}$ the density operator and $\rho^R_F(x, \mathbf{r}) = \langle \rho_F(x, \mathbf{r}) \rangle_F$, the equilibrium density. We shall assume that the single particle orbitals of the fermions are given by

$$\varphi_{k, \mathbf{k}}(x, \mathbf{r}) = \varphi_k(x) \varphi_{k'}(\mathbf{r}),$$

$$= \frac{1}{\sqrt{L M}} \sum_{\mathbf{R}} e^{i(k \cdot x + k \cdot \mathbf{R})} w_0^F(\mathbf{r} - \mathbf{R}),$$ \hspace{1cm} (B1)

where L is the (normalization) length in 1D and M is the number of lattice sites labelled by $\mathbf{R} = (n, m) b_0$ (b_0 is the lattice parameter), and $w_0^F(\mathbf{r})$ is Wannier orbital for the fermions. In the above expression we have assumed that the strength of the longitudinal potential in 1D is weak so that the Bloch orbitals $\varphi_k(x) \sim e^{i k x}/\sqrt{L}$. Thus, we arrive at the following expression:

$$\chi_F(q, \mathbf{r}, \mathbf{r}', \omega) = \int d\tau e^{i(\omega \tau - q x)} \chi_F(x, \mathbf{r}, \mathbf{r}', \tau)$$

$$= \sum_{k, \mathbf{k}'} \frac{n_{k, \mathbf{k}'} - n_{k+q, \mathbf{k}'}}{i\hbar \omega - \epsilon(k+q, \mathbf{k}') + \epsilon(k, \mathbf{R})} \times A_{k, \mathbf{k}'}(\mathbf{r}, \mathbf{r}'),$$ \hspace{1cm} (B2)

where the function $A_{k, \mathbf{k}'}(\mathbf{r}, \mathbf{r}') = \varphi^*_{k}(\mathbf{r}) \varphi_{k'}(\mathbf{r}) \varphi^*_{k'}(\mathbf{r}') \varphi_{k}(\mathbf{r}')$. The single-particle dispersion of the fermions is

$$\epsilon(k, \mathbf{R}) = \epsilon_{\parallel}(k) + \epsilon(k, \mathbf{R})$$

$$= \frac{\hbar^2 k^2}{2 m_F} - 2 t_L (\cos k_y b_0 + \cos k_z b_0)$$ \hspace{1cm} (B3)

where we have assumed that the longitudinal dispersion is approximated by a quadratic dispersion characterized by an effective mass $m_F^* \approx m_F$ and transverse motion is described by a tight-binding dispersion characterized by a transverse hopping t_L. Indeed, the response function in which we are interested is not the Lindhard function, but the following integral of it:

$$\chi_F(q, \mathbf{r}, \omega_n) = \int d\mathbf{r} d\mathbf{r}' F_0(\mathbf{r}, \mathbf{r}') \chi(q, \mathbf{r}, \mathbf{r}', \omega_n),$$ \hspace{1cm} (B4)

where $F_0(\mathbf{r}, \mathbf{r}') = \mid w_0(\mathbf{r}) w_0(\mathbf{r}') \mid^2$, where $w_0(\mathbf{r})$ are the Wannier orbitals for the bosons in the lowest Bloch band. Thus, in order to compute (B4), we need to consider the following integral:

$$\int d\mathbf{r} d\mathbf{r}' A_{k, \mathbf{k}'}(\mathbf{r}, \mathbf{r}') \chi(q, \mathbf{r}, \mathbf{r}', \omega_n)$$

$$= \int d\mathbf{r} d\varphi^*_{k}(\mathbf{r}) \mid w_0(\mathbf{r}) \mid^2 \varphi^*_{k}(\mathbf{r}) \mid^2$$

$$= \frac{1}{M} \sum_{\mathbf{R}, \mathbf{R}'} e^{i(k \cdot \mathbf{R} - k' \cdot \mathbf{R}')} \int d\mathbf{r} \mid w_0(\mathbf{r}) \mid^2$$

$$\times \mid w_0^F(\mathbf{r} - \mathbf{R}) \mid^2 \mid w_0^F(\mathbf{r} - \mathbf{R}) \mid^2$$

$$\approx \frac{1}{M} \int d\mathbf{r} \mid w_0(\mathbf{r}) \mid^2 \mid w_0^F(\mathbf{r}) \mid^2$$

$$= \frac{A}{M^2},$$ \hspace{1cm} (B7)
where we have approximated $w_0(R) \simeq e^{-\frac{|r|^2}{2\ell_\perp^2}}/(2\pi \ell_\perp^2)$ and $w_0^F(R) \simeq e^{-\frac{|r|^2}{2\ell_{F,\perp}^2}}/(2\pi \ell_{F,\perp}^2)$ and assumed that $\ell_{B,\perp} \ll \ell_{F,\perp}$, so that we can neglect overlap between the Wannier orbitals for $R \neq R'$. In the above expression,

$$A = \int dR^\perp |w_0(R^\perp)|^2 |w_0^F(R^\perp)|^2 = \frac{1}{\pi^2(\ell_{F,\perp}^2 + \ell_{B,\perp}^2)^2}. \tag{B8}$$

Hence,

$$\chi_F(q, i\omega_n) \simeq \frac{A}{M^2 \ell^2} \sum_{k, k, k' \perp} \frac{n_{k, k, k' \perp}}{i\hbar \omega_n - \epsilon(k + q, k') + \epsilon(k, k')}. \tag{B9}$$

Next, we take the thermodynamic limit, transform the sums over $k, k, k' \perp$ into integrals, and introduce the density of states of the 2D (square) lattice of tubes \cite{52},

$$\rho(\epsilon) = \frac{2}{\pi^2 W} K \left[1 - \left(\frac{\epsilon}{W} \right)^2 \right] \theta(W^2 - \epsilon^2). \tag{B10}$$

where $K(\epsilon)$ denotes the complete elliptic integral of the first kind and $W = 4\ell_\perp$. Thus, the retarded response function (obtained from $\chi_F(q, i\omega_n)$ by means of analytic continuation where $i\omega_n \to \omega^+ = \omega + i0^+$) can be rewritten as follows

$$\chi^R_F(q, \omega_n) = A \int_{-W}^{+W} d\epsilon d\epsilon' \rho(\epsilon) \rho(\epsilon') \times \int \frac{dk}{2\pi \hbar \omega^+ + \epsilon - \epsilon' - \epsilon\| (k + q) + \epsilon\| (k)} \tag{B11}$$

$$= A \int_{-W}^{+W} d\epsilon d\epsilon' \rho(\epsilon) \rho(\epsilon') \times \int \frac{dk}{2\pi n_{k, \epsilon}} \left[\frac{1}{\hbar \omega^+ + \epsilon - \epsilon' - \epsilon\| (k + q) + \epsilon\| (k)} + \frac{1}{\hbar \omega^+ + \epsilon - \epsilon' + \epsilon\| (k + q) - \epsilon\| (k)} \right]$$

$$= A \int_{-W}^{+W} d\epsilon d\epsilon' \rho(\epsilon) \rho(\epsilon') \int \frac{dk}{2\pi n_{k, \epsilon}} \left[\frac{1}{\hbar \omega^+ + \epsilon - \epsilon' - \epsilon\| (k + q) + \epsilon\| (k)} \right. \left. + \frac{1}{\hbar \omega^+ + \epsilon - \epsilon' + \epsilon\| (k + q) - \epsilon\| (k)} \right]$$

At zero temperature $n_{k, \epsilon} = \theta(\epsilon_F - \epsilon - \epsilon\| (k))$, where $\epsilon_F = \mu_F(T = 0)$ is the Fermi energy (note that $\epsilon_F > -W$ otherwise there will be no fermions in the mixture).

Let us first consider (minus) the imaginary part of

$$\chi^R_F(q, \omega):$$

$$\text{Im}[-\chi^R_F(q, \omega)] = A \int_{-W}^{+W} d\epsilon \int dk \theta(\epsilon_F - \epsilon - \hbar^2 k^2/2m_F^2) \times \rho(\epsilon) \left[\rho(\hbar \omega + \epsilon - \hbar^2 q^2/2m_F^2 - \hbar^2 k q) - \rho(\hbar \omega - \epsilon - \hbar^2 q^2/2m_F^2 + \hbar^2 k q) \right], \tag{B13}$$

where we have set $\epsilon\| (k + q) - \epsilon\| (k) = \frac{\hbar^2 q^2}{2m_F^2} + \frac{\hbar^2 k q}{m_F^2}$

The above expression can be used to obtain the (imaginary part of the) response for arbitrary ω. However, we are only interested in the regime of small ω, for which we can expand $\rho(\hbar \omega \pm E(k, q, \epsilon)) = \rho(\epsilon(k, q, \epsilon)) + \rho'(\epsilon(k, q, \epsilon)) \hbar \omega + \cdots$ (where $E(k, q, \epsilon) = \epsilon - \frac{\hbar^2}{2m_F^2}(q^2 + 2kq)$) and therefore, to lowest order in ω,

$$\text{Im}[-\chi^R_F(q, \omega)] \simeq A \hbar \omega \int_{-W}^{+W} d\epsilon \int dk \rho(\epsilon) \times \rho' \left(\epsilon - \frac{\hbar^2}{2m_F^2}(q^2 + 2kq) \right)$$

$$\times \theta(\epsilon_F - \epsilon - \hbar^2 k^2/2m_F^2). \tag{B14}$$

In order to perform the integration over k, we define from the constraints imposed by the Heaviside step function in Eq. \[B14\], $k_F(\epsilon) = \sqrt{\frac{2m_F}{\hbar^2}}(\epsilon_F - \epsilon)$ for $\epsilon < \epsilon_F$, and note that

$$\int_{-k_F(\epsilon)}^{+k_F(\epsilon)} dk \partial_k \rho(\epsilon - \frac{\hbar^2}{2m_F^2}(q^2 + 2kq))$$

$$= -\frac{m_F^*}{\hbar^2 q} \int_{-k_F(\epsilon)}^{+k_F(\epsilon)} dk \partial_k \rho(\epsilon - \frac{\hbar^2}{2m_F^2}(q^2 + 2kq))$$

$$= -\frac{m_F^*}{\hbar^2 q} \left[\rho(\epsilon - \frac{\hbar^2}{2m_F^2}(q^2 + 2k_F(\epsilon)q)) - \rho(\epsilon - \frac{\hbar^2}{2m_F^2}(q^2 - 2k_F(\epsilon)q)) \right]$$

Thus, the expression is simplified and only the integration over ϵ remains:

$$\text{Im}[-\chi^R_F(q, \omega)] \simeq A \hbar \omega \left(-\frac{m_F^*}{\hbar^2 q} \int_{-W}^{+W} d\epsilon \theta(\epsilon_F - \epsilon) \rho(\epsilon) \times \rho(\epsilon - \frac{\hbar^2}{2m_F^2}(q^2 + 2k_F(\epsilon)q)) - \rho(\epsilon - \frac{\hbar^2}{2m_F^2}(q^2 - 2k_F(\epsilon)q)) \right), \tag{B15}$$

This expression can be numerically evaluated (cf. Fig. 4). However, for $q \to 0$, further analytical progress is possible.
by noting that \(\rho(\varepsilon) \rho'(\varepsilon) = \frac{i}{2} d[\rho(\varepsilon)]^2/d\varepsilon \), and hence,

\[
\text{Im} \left[-\chi_R^f(q \to 0, \omega) \right] \simeq A \hbar \omega \int_{-W}^{\min[W,\epsilon_F]} d\varepsilon k_F(\varepsilon) \frac{d[\rho(\varepsilon)]^2}{d\varepsilon}.
\]

(B16)

From which, upon integration by parts, we obtain:

\[
\text{Im} \left[-\chi_R^f(q \to 0, \omega) \right] \simeq A \hbar \omega \left\{ -[\rho(-W)]^2 k_F(-W) \right. \\
+ [\rho(\min[W,\epsilon_F])]^2 k_F(\min[W,\epsilon_F]) \\
+ \frac{m_F^*}{\hbar^2} \int_{-W}^{\min[W,\epsilon_F]} d\varepsilon k_F(\varepsilon) \left[\frac{\rho(\varepsilon)}{k_F(\varepsilon)} \right]^2 \\
- \frac{A \hbar^2}{\hbar^2} \int_{-W}^{\min[W,\epsilon_F]} d\varepsilon k_F(\varepsilon) \rho(\varepsilon) \\
\left. \right\}. \hspace{1cm} \text{(B17)}
\]

Hence, by direct numerical evaluation of the above expression we see that it is not singular, which implies that the term \(q \to 0 \) (denoted \(S_D^f \) in Eq. (36)), can be neglected. In general, using Eq. (B15) to evaluate \(\text{Im} \left[-\chi_R^f(q, \omega) \right] \) for finite \(q \), we find it is also a nonsingular function of \(q \) in the neighborhood of \(q = 2k_F = 2\pi \rho^h \).

The results of a numerical evaluation of the integrals in equations (B15) and (B17) are displayed in Fig. 4.

Finally, the real part of the response function is given by:

\[
\text{Re}[\chi_R^f(q, \omega)] = A \int_{-\infty}^\infty d\varepsilon' \rho(\varepsilon) \rho'(\varepsilon') \\
\times d\varepsilon \left[\frac{1}{\hbar \omega + \varepsilon - \varepsilon' - \epsilon_{\parallel}(k + q) + \epsilon_{\parallel}(k)} + (\omega \to -\omega) \right] \\
= A \int_{-W}^{\min[W,\epsilon_F]} d\varepsilon \rho(\varepsilon) \int \frac{dk}{2\pi} \left(\epsilon_F - \varepsilon - \frac{\hbar^2 k^2}{2m_F^*} \right) \\
\times \int_{-W}^{\min[W,\epsilon_F]} d\varepsilon' P \left[\frac{\rho(\varepsilon')}{\hbar \omega + \varepsilon - \epsilon_{\parallel}(k + q) + \epsilon_{\parallel}(k)} \right. \\
+ (\omega \to -\omega) \left. \right]\hspace{1cm} \text{(B18)}
\]

where we have introduced \(E = \hbar \omega + \varepsilon - \epsilon_{\parallel}(k + q) + \epsilon_{\parallel}(k) \). Furthermore, by using the well-known Kramers-Kronig relations that connect the real and imaginary part of any complex function which is analytic in the upper half plane:

\[
\text{Re}[G^R(R = 0, \varepsilon)] = -P \int_{-\infty}^{\infty} \frac{d\varepsilon'}{\pi} \text{Im}[G^R(R = 0, \varepsilon')] \\
= \frac{A}{\pi} \int_{-W}^{\min[W,\epsilon_F]} d\varepsilon \rho(\varepsilon) \\
\times \int_{-W}^{\min[W,\epsilon_F]} d\varepsilon' P \left[\frac{\rho(\varepsilon')}{E - \varepsilon'} + (\omega \to -\omega) \right] \hspace{1cm} \text{(B19)}
\]

we have that:

\[
P \int d\varepsilon' \frac{\rho(\varepsilon')}{E - \varepsilon'} = P \int d\varepsilon' \frac{(-1/\pi)\text{Im}[G^R(R = 0, \varepsilon')]}{E - \varepsilon'} \\
= \text{Re}[G^R(R = 0, E)] \hspace{1cm} \text{(B20)}
\]

Then, we can rewrite equation (B18), so that:

\[
\text{Re}[\chi_R^f(q, \omega)] = A \int_{-W}^{\min[W,\epsilon_F]} d\varepsilon \rho(\varepsilon) \\
\times \int_{-k_F(\varepsilon)}^{+k_F(\varepsilon)} \frac{dk}{2\pi} \left[\text{Re}[G^R(R = 0, E)] + (\omega \to -\omega) \right] \\
= A \int_{-W}^{\min[W,\epsilon_F]} d\varepsilon \rho(\varepsilon) \\
\times \int_{-k_F(\varepsilon)}^{+k_F(\varepsilon)} dk \left[g \left(\hbar \omega + \varepsilon - \frac{\hbar^2 q^2}{2m_F^*} - \frac{\hbar^2 k^2}{m_F^*} \right) + g \left(-\hbar \omega + \varepsilon - \frac{\hbar^2 q^2}{2m_F^*} - \frac{\hbar^2 k^2}{m_F^*} \right) \right] \hspace{1cm} \text{(B21)}
\]

where \(g(\varepsilon) = -\text{Re}[G^R(R = 0, \varepsilon)] \) is the Hilbert transform of the density of states in a 2D square lattice modeled by a tight-binding approximation [52]:

\[
g(\varepsilon) = P \int d\varepsilon' \frac{\rho(\varepsilon')}{\varepsilon' - \varepsilon} = \left\{ \begin{array}{ll}
-\frac{2\pi}{\hbar^2 q^2} \left(\frac{1}{W} \right) & \text{for } |\varepsilon| \geq W, \\
-\frac{2\pi}{\hbar^2 q^2} \left(\frac{1}{W} \right) & \text{for } |\varepsilon| < W,
\end{array} \right. \hspace{1cm} \text{(B22)}
\]

In particular, the static limit \(\omega = 0 \) reads:

\[
\chi_s(q) = \text{Re} \left[\chi_R^f(q, \omega = 0) \right] = \frac{A}{\pi} \int_{-W}^{\min[W,\epsilon_F]} d\varepsilon \rho(\varepsilon) \\
\times \int_{-k_F(\varepsilon)}^{+k_F(\varepsilon)} dk g \left(\varepsilon - \frac{\hbar^2 q^2}{2m_F^*} - \frac{\hbar^2 k^2}{m_F^*} \right) \hspace{1cm} \text{(B23)}
\]

Therefore, it is possible to perform the calculation of the previous expression.

At low frequencies (\(\hbar \omega \ll \mu_B \ll \epsilon_F \)) we shall approximate the response function of the Fermi gas by the two first terms in the series about \(\omega = 0 \), i.e.

\[
\chi_R^f(q, \omega) \approx \chi_s(q) - i\pi \omega D(q), \hspace{1cm} \text{(B24)}
\]

where \(S(q) = \text{Im} \left[-\chi_R^f(q, \omega) \right] / (\omega \pi) \). Finally, we make use of the spectral properties of relating the retarded response function to its analytical continuation to imaginary frequencies derived in the Appendix A:

\[
\chi(q, \omega_n) = -\int \frac{d\omega}{\pi} \frac{\text{Im} \chi(q, \omega)}{\omega - \omega_n}. \hspace{1cm} \text{(B25)}
\]

In particular, the static limit \(\omega_n = 0 \) corresponds to:

\[
\chi_s(q) = \chi(q, 0) = \int \frac{d\omega}{\pi} \frac{\text{Im} \chi(q, \omega)}{\omega}. \hspace{1cm} \text{(B26)}
\]
Adding and subtracting the static part,
\[
\chi(q, \omega_n) = \chi_s(q) - \int \frac{d\omega}{\pi} \text{Im} \left(\frac{1}{i\omega_n - \omega} + \frac{1}{\omega} \right) \chi(q, \omega) \\
= \chi_s(q) - \int \frac{d\omega}{\pi} \text{Im} \left(\frac{1}{i\omega_n - \omega} + \frac{1}{\omega} \right) \chi(q, \omega) \\
\] (B27)
and recalling that
\[
\chi(q, \tau) = \int \frac{d\omega}{\pi} e^{-i\omega_n \tau} \chi(q, \omega_n) \\
= \chi_s(q) \delta(\tau) - \int \frac{d\omega}{\pi} \text{Im} \left(\frac{1}{i\omega_n - \omega} + \frac{1}{\omega} \right) \chi(q, \omega) \\
= \chi_s(q) \delta(\tau) - \int \frac{d\omega}{\pi} \text{Im} \left(\frac{1}{i\omega_n - \omega} + \frac{1}{\omega} \right) \chi(q, \omega) \\

\int \frac{d\omega}{\pi} \left[\frac{i\omega_n}{i\omega_n - \omega} + \frac{i\omega_n}{i\omega_n + \omega} \right] e^{-i\omega_n \tau}. \\
\] (B28)

Thus, upon performing the above integral over \(\omega_n\) using Cauchy’s theorem, the following expression is obtained:
\[
\chi(q, \tau) = \chi_s(q) \delta(\tau) + \int \frac{d\omega}{\pi} e^{-i\omega |\tau|} \text{Im} \chi_R(q, \omega) \\
\] (B29)
Hence, introducing Eq. (B24) in the expression above,
\[
\chi(q, \tau) \approx \chi_s(q) \delta(\tau) - \frac{D(q)}{|\tau| + \tau_c} \\
\] (B30)
The first term describes the short time behavior, which is dominated by screening, whereas the second term describes the long time behavior, which is dominated by dissipation.

Appendix C: RG analysis at half-filling

In order to obtain the RG flow equations, we consider the functional integral representation of the partition function:
\[
Z(\tau_c) = \int [d\phi] e^{-S[\phi]}, \\
\] (C1)
where
\[
S[\phi] = S_0[\phi] + S_{\text{int}}[\phi], \\
\] (C2)
\(S_0[\phi]\) being the Gaussian part of the action (the first term in Eq. [21]). When writing (C1), we have made explicit the dependence of the partition function on the short-distance cut-off \(a_0 \sim v\tau_c\). Note, however, that (up to a multiplicative constant), the partition function is independent of the cut-off, and we will base our subsequent analysis on this fact. For a general perturbation \(S_{\text{int}}[\phi]\) we cannot compute the partition function exactly. Thus, we resort to a perturbative expansion of \(Z[(1 + \delta\ell)\tau_c]\) (where \(\delta\ell \ll 1\)) in powers of \(S_{\text{int}}\):
\[
Z[(1 + \delta\ell)\tau_c] = Z_0[(1 + \delta\ell)\tau_c] \left\{ 1 - \langle S_{\text{int}}[\phi] \rangle \right\} + \frac{1}{2} \langle S_{\text{int}}[\phi] \rangle + \cdots \\
\] (C3)
To deal with this expansion it is convenient to define the normal ordered vertex operators:
\[
\langle e^{2ip\phi(x)} \rangle := \frac{1}{a_0^2}\langle e^{2ip\phi(x)} \rangle \\
\] (C5)
where \(x = (v\tau, x)\) the limit \(a_0 \to 0\) is implicitly understood. Then, when inserted in an expectation value, we have the following operator product expansions (OPE):
\[
\langle e^{2ip\phi(x)} \rangle \cdot \langle e^{2ip\phi(r')} \rangle := \langle e^{2ip\phi(x)} \rangle \\
= \frac{1}{|r - r'|^{2p^2K}} \left[1 + 2ip(r - r')\nabla \phi(R) \\
- 2p^2[(r - r')^2\nabla \phi(R)^2 + \cdots] \right] \\
\] (C6)
\[
\langle e^{2ip\phi(r)} \rangle \cdot \langle e^{2ip\phi(r')} \rangle := \langle e^{2ip\phi(r)} \rangle, \\
\] (C7)
where \(r = (v\tau, x), R = (r - r')/2 \nabla = ((1/v)\partial\tau, \partial x)\) and \(a_0 = v\tau_c\) is a short-distance cut-off. Next, let us consider the partition function at the scale \((1 + \delta\ell)a_0\), where \(\delta\ell > 0\) and \(\delta\ell \ll 1\):
\[
Z[(1 + \delta\ell)a_0] = Z_0[(1 + \delta\ell)a_0] \left\{ 1 - \langle S_{\text{int}} \rangle + \frac{1}{2\pi} \langle S_{\text{int}}^2 \rangle + \cdots \right\} \\
\] (C8)
where
\[
S_u[\phi] = -\frac{g_u}{\pi a_0^{-4K}} \int dx d\tau : \cos 4\phi(r) : \\
\] (C9)
\[
S_D[\phi] = -\frac{g_D}{a_0^{-2K}} \int_{|r - r'| > a_0} dx d\tau \delta(x - x') : \cos 2\phi(r) : \\
\times : \cos 2\phi(r') : \\
\] (C10)
where we have normal ordered the vertex operators.

1. **First order terms**

Now, let us consider the first order term \(\langle S_{\text{int}} \rangle = \langle S_u \rangle + \langle S_D \rangle\):
\[
\langle S_u \rangle = + \frac{g_u}{\pi ((1 + \delta\ell)a_0)^{2 - 4K}} \int dx \langle : \cos 4\phi(r) : \rangle \] (C11)
When compared with the same operator at the scale \(a_0\), we find that:
\[
\frac{g_u((1 + \delta\ell))}{(1 + \delta\ell)^{2 - 4K}} = g_u(l) \Rightarrow \\
g_u(l + \delta\ell) = g_u(l)[1 - (2 - 4K)\delta\ell], \\
\] (C12)
which immediately leads to the differential equation:

$$\frac{dg_u(l)}{dl} = (2 - 4K)g_u(l)$$ \hspace{1cm} (C13)

Next, we consider:

$$-\langle S_D \rangle = + \frac{g_D(l + \delta l)}{\pi [(1 + \delta l)a_0]^{1 - 2K}} \times$$

$$\int_{|r - r'| > a_0(1 + \delta l)} dr' \frac{\delta(x - x')}{|r - r'|^2} \langle : \cos 2\phi(r) : \cos 2\phi(r') : \rangle$$

To bring this expression to a form which can be compared with the same expression at the cut-off scale a_0, we first split the integral on r and r' as follows:

$$\int_{|r - r'| > a_0(1 + \delta l)} dr' \cdots$$

$$= \int_{|r - r'| > a_0} dr' \cdots - \int_{a_0(1 + \delta l) > |r - r'| > a_0} dr' \cdots$$

Thus, from the first term in the right hand-side of the above equation, we have that:

$$+ \frac{g_D(l + \delta l)}{\pi [(1 + \delta l)a_0]^{1 - 2K}} \times$$

$$\int_{|r - r'| > a_0} dr' \frac{\delta(x - x')}{|r - r'|^2} \langle : \cos 2\phi(r) : \cos 2\phi(r') : \rangle$$

Hence, following the same procedure as before:

$$\frac{g_D(l + \delta l)}{[(1 + \delta l)a_0]^{1 - 2K}} = g_D(l) \implies$$

$$\frac{dg_D(l)}{dl} = (1 - 2K)g_D(l),$$

Next, we take up the contribution from the second term in Eq. (C15):

$$- \frac{g_D(l + \delta l)}{a_0^{1 - 2K}} \int_{a_0(1 + \delta l) > |r - r'| > a_0} dr' \frac{\delta(x - x')}{|r - r'|^2} \times$$

$$\langle : \cos 2\phi(r) : \cos 2\phi(r') : \rangle$$

$$= - \frac{g_D(l + \delta l)}{2a_0^{1 - 2K}} \int_{a_0(1 + \delta l) > |r - r'| > a_0} dr' \frac{\delta(x - x')}{|r - r'|^2} \times$$

$$\langle : 1 - 2(r - r')\nabla \phi(R) \rangle^2 + \cdots \rangle$$

$$= - \frac{g_D(l + \delta l)}{2a_0^{1 - 2K}} \int_{a_0(1 + \delta l) > |r - r'| > a_0} dr' \frac{\delta(x - x')}{|r - r'|^2} \times$$

$$\langle : \cos 4\phi(R) : \rangle$$

Introducing $u = r - r'$ leads to

$$g_D(l + \delta l) \int_{a_0}^{a_0(1 + \delta l) > |u| > a_0} \frac{d\tau}{|u|^2} \frac{\delta(u_k)}{|u|^2} = \frac{\delta l}{a_0^{1 - 4K}}$$

Hence, the second term in Eq. (C18) yields:

$$\frac{g_D(l)\delta l}{a_0^{1 - 4K}} \int d\tau : \cos 4\phi(R) :$$

Therefore, the flow equation for $g_u(l)$ (i.e. Eq. C13) must be modified to:

$$\frac{g_u(l + \delta l)}{[(1 + \delta l)]^{1 - 2K}} - \pi g_D(l)\delta l = g_u(l)$$

$$g_u(l + \delta l) = [1 + (2 - 4K)\delta l]g_u(l) + \pi g_D(l)\delta l$$

$$\frac{dg_u(l)}{dl} = (2 - 4K)g_u(l) - \pi g_D(l)$$

Finally, it is necessary to consider the first term in Eq. (C18). To this end, we need to consider the following integral with $r - r' = u = (ur, u\tau)$:

$$\int_{a_0}^{a_0(1 + \delta l) > |u| > a_0} \frac{du}{|u|^{2 + 2K}} = \frac{1}{\pi e^{\frac{1}{2}}}$$

Thus, a term of the following form is generated:

$$2\pi K(1 + \delta l)v(l + \delta l) - 2\pi K(1 + \delta l)v(l) = \frac{1}{2\pi K(l)v(l)}$$

Hence,

$$\frac{1}{K(l + \delta l)v(l + \delta l)} = \frac{1}{2\pi K(l)v(l)} + 4\pi g_D(l)\delta l \implies$$

$$\frac{d}{dl} \left(\frac{1}{K(l)} \right) = \frac{4\pi g_D(l)}{v(l)}$$

Furthermore, the coefficient of $\int d\tau \nabla \phi(\partial_x \phi)^2$ is not renormalized:

$$v(l + \delta l) K(l + \delta l) = v(l) K(l) \implies \frac{d}{dl} \left(\frac{1}{K(l)} \right) = 0$$

From these equations we can extract the RG flow equations for k and v:

$$\frac{1}{K} \frac{dv}{dl} + v \frac{d}{dl} \left(\frac{1}{K} \right) = 0$$

$$\frac{1}{Kv^2} \frac{dv}{dl} + v \frac{d}{dl} \left(\frac{1}{K} \right) = 4\pi g_D \frac{dv}{v^2}$$

Thus, adding Eq. (C27) and Eq. (C28):

$$2\pi K(1 + \delta l) = 4\pi g_D \implies \frac{d}{dl} \left(\frac{1}{K(l)} \right) = 2\pi g_D.$$
2. Second order terms

After considering the first order contributions, we need to take up the second order:

\[\frac{1}{2!} \langle S^2_\text{int} \rangle = \frac{1}{2!} \langle S^2_\phi \rangle + \cdots \]

(C30)

We do not consider terms of order \(g_u g_D \) or \(g_D^2 \) because \(g_D \propto g_{BF}^2 \) is already second order and \(g_u \ll 1 \) is considered small. Thus, taking:

\[\frac{1}{2!} \langle S^2_\phi \rangle = \frac{1}{2!} \left(\frac{g_u(l + \delta l)}{\pi[(1 + \delta l)a_0]^{2-1}} \right) \]

Again, we split the integral as in Eq. (C15), which leads to:

\[\int_{|r-r'|>a_0(1+\delta l)} 2 \delta dr' \langle \cos 4\phi(r) : : \cos 4\phi(r') \rangle \]

(C31)

Hence, the RG flow equations for both \(K \) and \(v \):

\[\frac{d}{dl} \left(\frac{1}{K} \right) - \frac{1}{K} \frac{dv}{dl} = \frac{4\pi}{v} [g_D + \frac{g_u^2}{\pi}] \]

(C39)

\[\frac{d}{dl} v = -2\pi g_D K v \]

(C40)

Finally, in the analysis of the second order contributions, we need to consider the term:

\[O(g_u g_D) = \frac{2g_u(l + \delta l)}{\pi[a_0(1 + \delta l)]^{1-2K}} \frac{g_D(l + \delta l)}{[a_0(1 + \delta l)]^{1-2K}} \]

\[\times \int dr_1 dr_2 \int \delta(x_1 - x_2) \langle \cos 4\phi(r_1) \cos 4\phi(r_2) \cos 4\phi(r_3) \rangle \]

(C41)

where the star (*) under the integral means that: \(|r_1 - r_2| > a_0(1 + \delta l), \ |r_1 - r_3| > a_0(1 + \delta l), \) and \(|r_2 - r_3| > a_0(1 + \delta l). \) Let us consider the contribution resulting from the OPE when \(r_1 \to r_2 \) (or equivalently \(r_1 \to r_3 \)):

\[: \cos 4\phi(r_1) \cos 4\phi(r_2) : = \frac{1}{2| r - r' |^{4K-4}} : \cos 2\phi(R) : + \cdots \]

(C42)

Hence, as the above factor of 2 is cancelled by the two possible contractions \(r_1 \to r_2 \) and \(r_2 \to r_3 \):

\[O(g_u g_D) = -\frac{2g_u(l + \delta l)}{\pi[a_0(1 + \delta l)]^{1-2K}} \frac{g_D(l + \delta l)}{[a_0(1 + \delta l)]^{1-2K}} \]

\[\times \int_{a_0(1+\delta l)>|r|>a_0} \frac{1}{|r|^{1K}} \int dR dr_3 \delta(X - x_3) \]

\[\times \langle \cos 4\phi(R) \cos 4\phi(r_3) \rangle : + \cdots \]

\[= -\frac{4g_u(l)g_D(l)}{\pi[a_0(1 + \delta l)]^{1-2K}} \]

\[\int dr_1 dr_2 dr_3 \delta(x_1 - x_2) \langle \cos 2\phi(r) : : \cos 2\phi(r') \rangle \]

(C43)

Therefore, we obtain the following differential equation:

\[\frac{g_D(l + \delta l)}{[a_0(1 + \delta l)]^{1-2K}} - \frac{4g_u(l)g_D(l)\delta l}{[a_0(1 + \delta l)]^{1-2K}} = \frac{g_D(l)}{a_0^{1-2K}} \quad \Rightarrow \]

\[\frac{g_D}{dl} = (1 - 2K)g_D + 4g_D g_u \]

(C44)

Thus, the complete set of RG flow equations reads:

\[\frac{dv}{dl} = -4\pi g_D K v \]

(C45)

\[\frac{dK}{dl} = -(4g_u^2 + 2\pi g_D)^2 \]

(C46)

\[\frac{dg_u}{dl} = (2 - 2K)g_u + \pi g_D \]

(C47)

\[\frac{dg_D}{dl} = (1 - 2K)g_D + 4g_D g_u \]

(C48)
Appendix D: SCHA

We have adopted a variational self-consistent harmonic approximation (SCHA) by choosing a trial effective action such as in Eq. (51). To find the variational estimate of the free-energy we have to perform the averages of the effective action with respect to the trial effective action, by using S_0 (Eq. (21)), S_u (Eq. (22)) with $p = 2$ for half-lattice filling, S_D^v (Eq. (37)) and S_D^u (Eq. (38)). Thus, the variational free-energy F_{var} that follows from Eq. (52) will be:

$$F_{\text{var}}[G_v] = -\frac{T}{2} \int \frac{dq d\omega}{(2\pi)^2} \ln G_v(q, \omega)$$

$$+ T \int \frac{1}{2\pi K} \left(\frac{\omega^2}{v_s^2} + \frac{g_s q^2}{2} \right) G_v(q, \omega)$$

$$- T \frac{g_s}{a_0 \tau_0} \int dx \int_{|\tau - \tau'| > \tau_0} \left\{ \int d\tau d\tau' e^{-\frac{4}{\pi K^2} \left(1 - \cos \omega (\tau - \tau') \right) G_v(q, \omega)} \right\}$$

$$- \langle S_u \rangle_v$$

(D1)

Therefore, requiring $\delta F_{\text{var}}[G_v]/\delta G_v = 0$ yields:

$$\delta F_{\text{var}}[G_v]/\delta G_v = -\frac{T}{2} \int \frac{dq d\omega}{(2\pi)^2} \frac{1}{G_v(q, \omega)}$$

$$+ T \left[\frac{1}{2\pi K} \left(\frac{\omega^2}{v_s^2} + \frac{g_s q^2}{2} \right) + T \frac{8 g_s}{(2\pi)^2 a_0 \tau_0} \alpha^2 (\eta, \Delta, K) \right] = 0$$

(D2)

where $\alpha(\eta, \Delta, K) = \left[\frac{n K + 2 \sqrt{K^2 \Delta}}{4} \right]^{2K}$. By keeping the τ-independent terms in the integrals in Eq. (D1) which yield the leading contributions in ω to $G_v(q, \omega)$, leads to equations (53-54).

[1] G. Baym and C. J. Pethick, *Landau Fermi Liquid Theory*, Wiley (New York, 1991).
[2] A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinski, *Methods of Quantum Field theory in Statistical Physics*, Dover Publications (New York, 1975).
[3] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).
[4] T. L. Ho, Phys. Rev. Lett. 81, 742 (1998); K. Molmer, *ibid* 80, 1804 (1998); L. Viverit, C. J. Pethick, and H. Smith, Phys. Rev. A 61, 053605 (2000); A. Albus et al., *ibid* 65, 053607 (2002).
[5] G. Roati, F. Riboli, G. Modugno, and M. Inguscio, Phys. Rev. Lett. 89, 150403 (2002).
[6] M. Zaccanti, C. D’Errico, F. Ferlaino, G. Roati, M. Inguscio, and G. Modugno, Phys. Rev. A 74, 041605(R) (2006).
[7] K. Günter, T. Stöferle, H. Moritz, M. Köhl, and T. Esslinger, Phys. Rev. Lett. 96, 180402 (2006).
[8] S. Ospelkaus, C. Ospelkaus, O. Wille, M. Succi, P. Ernst, K. Sengstock, and K. Bongs, Phys. Rev. Lett. 96, 180403 (2006).
[9] D.-S. Lühmann, K. Bongs, K. Sengstock, and D. Pfannkuche, Phys. Rev. Lett. 101, 050402 (2008).
[10] Th. Best, S. Will, U. Schneider, L. Hackermüller, D. van Oosten, and I. Bloch, D.-S. Lühmann, Phys. Rev. Lett. 102, 030408 (2009).
[11] S. Sugawa, K. Inaba, S. Taie, R. Yamazaki, M. Yamashita, and Y. Takahashi, Nature Phys. 7, 642-648 (2011).
[12] G. Lamporesi, J. Catani, G. Barontini, Y. Nishida, M. Inguscio, and F. Minardi, Phys. Rev. Lett. 104, 153202 (2010).
[13] M. Khoon Tey, S. Stellmer, R. Grimm, F. Schreck, Phys. Rev. A 82, 011608(R) (2010).
[14] J. W. Park, C.-H. Wu, I. Santiago, T. G. Tiecke, P. Ahnadi, and M. W. Zwierlein, Phys. Rev. A 85, 051602(R) (2012); *ibid* Phys. Rev. A 84, 011601(R) (2011).
[15] J. Heinze, S. Götte, J. S. Krauser, B. Hundt, N. Flaschner, D.-S. Lühmann, C. Becker, and K. Sengstock, Phys. Rev. Lett. 107, 135303 (2011).
[16] H. Hara, Y. Takasu, Y. Yamaoka, J. M. Doyle, and Y. Takahashi, arXiv:1104.4430 (2011).
[17] K. K. Das, Phys. Rev. Lett. 90, 170403 (2003).
[18] L. Pollet, C. Kollath, U. Schollwöck, and M. Troyer, Phys. Rev. A 77, 023608 (2008).
[19] M. A. Cazalilla and A. F. Ho, Phys. Rev. Lett. 91, 150403 (2003).
[20] L. Mathey, D.-W. Wang, W. Hofstetter, M. D. Lukin, and E. Demler, Phys. Rev. Lett. 93, 120404 (2004).
[21] B. Wang, D.-W. Wang, S. Das Sarma, Phys. Rev. A 82, 021602(R) (2010).
[22] E. Taylor, A. Griffin, and Y. Ohashi, Phys. Rev. A 76, 023614 (2007).
[23] F. M. Marchetti, C. Matity, M. M. Parish, and D. A. Huse, Phys. Rev. B 78, 134517 (2008).
[24] G. Refael and E. Demler, Physical Review B 77, 144511 (2008).
[25] R. M. Lutchyn, S. Tewari, and S. D. Sarma, Physical Review B 78, 220504 (2008).
[26] M. Rizzi and A. Imambekov, Phys. Rev. A 77, 023621 (2008).
[27] F. M. Marchetti, Th. Jolicoeur, and M. M. Parish, Phys.
Rev. Lett. **103**, 105304 (2009).
[28] S. Modak, S.-W. Tsai, K. Sengupta, arXiv:1107.1555 (2011).
[29] F. Hebert, G. G. Batrouni, X. Roy, V. G. Rousseau, Phys. Rev. B 78, 184505 (2008).
[30] K. Noda, R. Peters, N. Kawakami, T. Pruschke, Physical Review A **85**, 043628 (2012).
[31] P. Anders, P. Werner, M. Troyer, M. Sigrist, and Lode Pollet, arxiv:1203.6359 (2012).
[32] E. Malatsetxebarria, F. Marchetti, and M. A. Cazalilla, arXiv:1304.6303 (2013).
[33] E. Fratini and P. Pieri, Physical Review A **85**, 063618 (2012).
[34] X. Yin, X.-W. Guan, Y. Zhang, S. Chen, Phys. Rev. A **85**, 013608 (2012); X.-W. Guan, M. T. Batchelor, J.-Y. Lee, Phys. Rev. A 78, 023621 (2008).
[35] M. Snoek, I. Titvinidze, I. Bloch, and W. Hofstetter, Phys. Rev. Lett. 106, 155301 (2010).
[36] T. Enss and W. Zwerger, Eur. Phys. J. B **68**, 383 (2009).
[37] T. Stöferle, H. Moritz, C. Schori, M. Köhl, and T. Esslinger, Phys. Rev. Lett. **92**, 130403 (Mar 2004).
[38] T. Kinoshita, T. Wenger, and D. S. Weiss, Science **305**, 1125 (2004).
[39] M. A. Cazalilla, F. Sols, and F. Guinea, Phys. Rev. Lett. **97**, 076401 (2006).
[40] Kun Yang, Phys. Rev. B **77**, 085115 (2008).
[41] A. O. Gogolin, A. A. Nersesyan, and A. M. Tsvelik, *Bosonization and Strongly Correlated Systems*, Cambridge University Press (Cambridge, 1998).
[42] M. R. Matthews* et al.*, Phys. Rev. Lett. **81**, 243 (1998); D. S. Hall* et al.*, *ibid* **81**, 1539 (1998).
[43] A. G. Truscott* et al.*, Science **291**, 2570 (2001); F. Schreck* et al.*, Phys. Rev. Lett. **87**, 080403 (2001).
[44] M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, M. Rigol, Rev. Mod. Phys. **83**, 1405 (2011).
[45] A. Iucci, M. A. Cazalilla, A. F. Ho, and T. Giamarchi, Phys. Rev. A **73**, 041608(R) (2006).
[46] S. Sachdev, *Quantum Phase Transitions*, Cambridge University Press (Cambridge, 1999).
[47] T. Giamarchi, *Quantum Physics in One Dimension*, Clarendon Press (Oxford, UK, 2004).
[48] F. D. M. Haldane, Phys. Rev. Lett. **45**, 1359 (1980); *ibid* **47**, 1840 (1981); **48**, 569 (1982) (Erratum).
[49] E. Haller, R. Hart, M. J. Mark, J. G. Danzl, L. Reichschild, M. Gustavsson, M. Dalmonte, G. Pupillo, H.-C. Nagerl Nature **466**, 597 (2010).
[50] R. Citro, E. Orignac, S. De Palo, and M. L. Chiofalo Phys. Rev. A **75**, 051602 (2007); P. Pedri, S. De Palo, E. Orignac, R. Citro, and M. L. Chiofalo, Phys. Rev. A **77**, 015601 (2008); S. De Palo, E. Orignac, R. Citro, and M. L. Chiofalo, Phys. Rev. B **77**, 212101 (2008).
[51] M. Valiente, Europhys. Lett. **98**, 10010 (2012); M.-T. Batchelor, M. Bortz, X.-W. Guan, and N. Oelkers, J. Stat. Mech. L10001 (2005); S. Chen, Xi-Wen Guan, X.-G. Yin, L. Guan, and M. T. Batchelor Phys. Rev. A **81**, 031608(R) (2010); R. Qi, X.-W. Guan, arXiv:1210.2596 (2012).
[52] N. Economou, *Green’s Functions in Quantum Physics*, Springer-Verlag (Berlin, Heilderberg, 2006), 3rd edition, page 89.
[53] E. Haller, M. Gustavsson, M. J. Mark, J. G. Danzl, R. Hart, G. Pupillo, H.-C. Nagerl, Science **325**, 1224 (2009).
[54] C. Kollath, A. Iucci, T. Giamarchi, W. Hofstetter, and U. Schollwöck, Phys. Rev. Lett. **97**, 050402 (2006).
[55] E. H. Lieb and W. Liniger, Phys. Rev. **130**, 1605 (1963); E. H. Lieb, *ibid* **130**, 1616 (1963).
[56] M. Olshanii, Phys. Rev. Lett. **81**, 938 (1998).
[57] M. A. Cazalilla, Phys. Rev. A **67**, 053606 (2003).
[58] M. D. Girardeau, J. Math. Phys. **1**, 516 (1965).