Abstract: This manuscript is concerned with the oscillatory properties of 4th-order differential equations with variable coefficients. The main aim of this paper is the combination of the following three techniques used: the comparison method, Riccati technique and integral averaging technique. Two examples are given for applying the criteria.

Keywords: delay differential equations; oscillation; fourth-order

1. Introduction

Differential equations of fourth-order have applications in dynamical systems, optimization, and in the mathematical modeling of engineering problems [1]. The p-Laplace equations have some significant applications in elasticity theory and continuum mechanics, see, for example, [2,3]. Symmetry plays an important role in determining the right way to study these equations [4]. The main aim of this paper is the combination of the following three techniques used:

(a) The comparison method.
(b) Riccati technique.
(c) Integral averaging technique.

We consider the following fourth-order delay differential equations with p-Laplacian like operators

$$
\left(\frac{a(\zeta)}{u''(\zeta)} \right)' + \frac{q(\zeta)}{a(\eta(\zeta))} = 0,
$$

where $\zeta \geq \xi_0$. Throughout this work, we suppose that:

K1: $p > 1$ is a real number.
K2: $a \in C^1(\xi_0, \infty), a(\xi) > 0$, $a'(\xi) \geq 0$ and under the condition

$$
\int_{\xi_0}^{\infty} \frac{1}{a^{1/(p-1)}(s)} ds = \infty,
$$

K3: $q \in C(\xi_0, \infty), q(\xi) > 0$,
K4: $\eta \in C ([\xi_0, \infty), \mathbb{R})$, $\eta (\zeta) \leq \zeta$, $\lim_{\zeta \to \infty} \eta (\zeta) = \infty$,

K5: $g \in C (\mathbb{R}, \mathbb{R})$ such that $g (u) \geq m \|u\|^{p-2} u > 0$, for $u \neq 0$ and m is a constant.

Definition 1. The function $u \in C^1 ([\xi_0, \infty), \mathbb{R})$, $\zeta \geq \xi_0$ is called a solution of (1), if $u (\zeta) \sim u'' (\zeta) \in C^1 ([\xi_0, \infty), \mathbb{R})$, and $u (\zeta)$ satisfies (1) on $[\xi_0, \infty)$. Moreover, the equation (1) is oscillatory if all its solutions oscillate.

In the last few decades, there have been a constant interest to investigate the asymptotic property for oscillations of differential equation, see [5–25]. Furthermore, there are some results that study the oscillatory behavior of 4th-order equations with p-Laplacian, we refer the reader to [26,27].

Now the following results are presented.

Grace and Lalli [28], Karpuz et al. [29] and Zafer [30] studied the even-order equation

$$u^{(\gamma)} (\zeta) + q (\zeta) u (\eta (\zeta)) = 0,$$

they used the Riccati substitution to find several oscillation criteria and established the following results, respectively:

$$\int_{\xi_0}^{\infty} \left(\delta (s) q (s) - \frac{(\gamma - 1)!}{2^{\gamma - 2} \eta^{\gamma - 2} (s) \eta' (s) \delta (s)} \right) ds = \infty, \quad (3)$$

where $\delta \in C^1 ([\xi_0, \infty), (0, \infty))$.

$$\liminf_{\zeta \to \infty} \int_{\eta (\zeta)}^{\zeta} q (s) \eta^{\gamma - 2} (s) ds > \frac{(\gamma - 1) 2^{(\gamma - 1)(\gamma - 2)}}{e} \quad (4)$$

and

$$\liminf_{\zeta \to \infty} \int_{\eta (\zeta)}^{\zeta} q (s) \eta^{\gamma - 2} (s) ds > \frac{(\gamma - 1)!}{e} \quad (5)$$

Zhang et al. [31,32] studied the even-order equation

$$\left(a (\zeta) \left(u^{(\gamma - 1)} (\zeta) \right)^\beta \right)' + q (\zeta) u^\beta (\eta (\zeta)) = 0, \quad (6)$$

where β is a quotient of odd positive integers. They proved that it is oscillatory, if

$$\liminf_{\zeta \to \infty} \int_{\eta (\zeta)}^{\eta (\zeta)} \frac{q (s)}{a (\eta (s))} \left(\eta^{\gamma - 2} (s) \right)^\beta ds > \frac{(\gamma - 1)!}{e} \beta, \quad (7)$$

where $\gamma \geq 2$ is even and they used the compare with first order equations. If there exists a function $\delta \in C^1 ([\xi_0, \infty), (0, \infty))$ for all constants $M > 0$ such that

$$\liminf_{\zeta \to \infty} \int_{\xi_0}^{\infty} \delta (s) \left(\frac{q (s) - a (s) \left(\theta \eta M \eta^{\gamma - 2} (s) \eta' (s) \right)^{1-p} \left(\delta' (s) - \frac{a (s)}{\eta' (s)} \right)^p}{\delta (s)} \right) ds = \infty, \quad (8)$$

for some constant $\theta \in (0, 1)$.

Our aim in this work is to complement results in [28–32]. Two examples are given for applying the criteria.
Theorem 1. Let (2) holds. If the equations

\[\left(\frac{2q^{p-1} (\xi')^{p-1}}{(\beta \xi^p)^{p-1}} (u' (\xi))^{p-1} \right)' + kq (\xi) \left(\frac{\eta^3 (\xi)}{\xi^3} \right)^{p-1} u^{p-1} (\xi) = 0 \]
where

\[u''(\xi) + u(\xi) \int_{\xi}^{\infty} \left(\frac{1}{a(s)} \int_{\xi}^{s} q(s) \left(\frac{\eta(s)}{\xi} \right)^{p-1} ds \right)^{1/p-1} d\xi = 0 \quad (13) \]

are oscillatory, then every solution of (1) is oscillatory.

Proof. Assume, for the sake of contradiction, that \(u \) is a positive solution of (1). Then, we let \(u(\xi) > 0 \) and \(u(\eta(\xi)) > 0 \). By Lemma 3, we have \((S_1)\) and \((S_2)\).

Let case \((S_1)\) holds. Using [25], [Lemma 2.2.3], we find

\[u'(\xi) \geq \frac{\theta}{2} \zeta^2 u'''(\xi), \]

for every \(\theta \in (0, 1) \).

From Lemma 2, we get

\[\frac{u'(\xi)}{u(\xi)} \leq \frac{3}{\xi}. \]

Integrating from \(\eta(\xi) \) to \(\xi \), we find

\[\frac{u(\eta(\xi))}{u(\xi)} \geq \frac{\eta^3(\xi)}{\xi^3}. \]

Defining

\[\varphi(\xi) := \delta(\xi) \left(\frac{a(\xi) (u'''(\xi))^{p-1}}{u^{p-1}(\xi)} \right), \varphi(\xi) > 0, \]

where \(\delta \in C^1((\xi_0, \infty), (0, \infty)) \) and

\[\varphi'(\xi) = \delta'(\xi) \frac{a(\xi) (u'''(\xi))^{p-1}}{u^{p-1}(\xi)} + \delta(\xi) \left(\frac{a(\xi) (u'''(\xi))^{p-1}}{u^{p-1}(\xi)} \right)'(\xi) - (p-1) \delta(\xi) \frac{u^{p-2}(\xi) u'(\xi) a(\xi) (u'''(\xi))^{p-1}}{u^{2(p-1)}(\xi)}. \]

Combining (14) and (16), we obtain

\[\varphi'(\xi) \leq \frac{\delta'(\xi)}{\delta(\xi)} \varphi(\xi) + \delta(\xi) \left(\frac{a(\xi) (u'''(\xi))^{p-1}}{u^{p-1}(\xi)} \right)'(\xi) - (p-1) \delta(\xi) \frac{\theta \zeta^2 a(\xi) (u'''(\xi))^{p}}{u^{p}(\xi)} \]

\[\leq \frac{\delta'(\xi)}{\delta(\xi)} \varphi(\xi) + \delta(\xi) \left(\frac{a(\xi) (u'''(\xi))^{\delta(\xi)}}{u^{\delta(\xi)}} \right)'(\xi) - \frac{(p-1) \beta \zeta^2}{2 \delta(\xi) a(\xi))^{\frac{p-1}{\delta(\xi)}}} \varphi^{\frac{p}{\delta(\xi)}}(\xi). \]

From (1) and (17), we find

\[\varphi'(\xi) \leq \frac{\delta'(\xi)}{\delta(\xi)} \varphi(\xi) - m \delta(\xi) \frac{q(\xi) u^{p-1}(\eta(\xi))}{u^{p-1}(\xi)} - \frac{(p-1) \beta \zeta^2}{2 \delta(\xi) a(\xi))^{\frac{p-1}{\delta(\xi)}}} \varphi^{\frac{p}{\delta(\xi)}}(\xi). \]
From (15), we have

$$
\varphi' (\xi) \leq \delta' (\xi) \varphi (\xi) - m \delta (\xi) q (\xi) \left(\frac{\eta^3 (\xi)}{\xi^3} \right)^{p-1} - \frac{(p-1) \theta \xi^2}{2 (\delta (\xi) a (\xi))^{p-1}} \varphi^{p-1} (\xi). \tag{18}
$$

Let \(\delta (\xi) = m = 1 \) in (18), we have

$$
\varphi' (\xi) + \frac{(p-1) \theta \xi^2}{2 a^{p-1}} \varphi^{p-1} (\xi) + q (\xi) \left(\frac{\eta^3 (\xi)}{\xi^3} \right)^{p-1} \leq 0.
$$

Hence, the equation (12) is nonoscillatory, which is a contradiction.

Let case \((S_2) \) holds. By Lemma 2, we find

$$
\frac{u' (\xi)}{u (\xi)} \leq \frac{1}{\xi}.
$$

Integrating again from \(\eta (\xi) \) to \(\xi \), we find

$$
\frac{u (\eta (\xi))}{u (\xi)} \geq \frac{\eta (\xi)}{\xi}. \tag{19}
$$

Defining

$$
\psi (\xi) := \vartheta (\xi) \frac{u' (\xi)}{u (\xi)} > 0,
$$

where \(\vartheta \in C^1 ([\xi_0, \infty), (0, \infty)) \) and

$$
\psi' (\xi) = \frac{\vartheta' (\xi)}{\vartheta (\xi)} \psi (\xi) + \vartheta (\xi) \frac{u'' (\xi)}{u (\xi)} - \frac{1}{\vartheta (\xi)} \psi (\xi)^2. \tag{20}
$$

Integrating (1) from \(\xi \) to \(x \) and using \(u' (\xi) > 0 \), we have

$$
a (x) (u'' (x))^{p-1} - a (\xi) (u'' (\xi))^{p-1} = - \int_{\xi}^{x} q (s) g (u (\eta (s))) ds.
$$

From (19), we get

$$
a (x) (u'' (x))^{p-1} - a (\xi) (u'' (\xi))^{p-1} \leq - ky^{p-1} (\xi) \int_{\xi}^{x} q (s) \left(\frac{\eta (s)}{s} \right)^{p-1} ds.
$$

Letting \(x \to \infty \), we have

$$
a (\xi) (u'' (\xi))^{p-1} \geq ky^{p-1} (\xi) \int_{\xi}^{\infty} q (s) \left(\frac{\eta (s)}{s} \right)^{p-1} ds
$$

and so

$$
u'' (\xi) \geq u (\xi) \left(\frac{m}{a (\xi)} \int_{\xi}^{\infty} q (s) \left(\frac{\eta (s)}{s} \right)^{p-1} ds \right)^{1/(p-1)}.
$$

Integrating again from \(\xi \) to \(\infty \), we get

$$
u'' (\xi) + u (\xi) \int_{\xi}^{\infty} \left(\frac{m}{a (\xi)} \int_{\xi}^{s} q (\mu) \left(\frac{\eta (\mu)}{\mu} \right)^{p-1} d\mu \right)^{1/(p-1)} d\xi \leq 0. \tag{21}
$$
Combining (20) and (21), we find
\[\psi'(\zeta) \leq \frac{\partial'(\zeta)}{\partial(\zeta)} \Psi(\zeta) - \partial(\zeta) \int_{\zeta}^{\infty} \left(\frac{m}{a(\zeta)} \right) q(s) \left(\frac{\eta(s)}{s} \right)^{p-1} ds \right)^{1/(p-1)} \partial(\zeta) \Psi(\zeta)^2. \] (22)

If \(\partial(\zeta) = m = 1 \) in (22), we get
\[\psi'(\zeta) + \psi^2(\zeta) + \int_{\zeta}^{\infty} \left(\frac{1}{a(\zeta)} \right) q(s) \left(\frac{\eta(s)}{s} \right)^{p-1} ds \right)^{1/(p-1)} \partial(\zeta) \Psi(\zeta)^2 \leq 0. \]

Thus, the Equation (13) is nonoscillatory, which is a contradiction. The proof of the theorem is complete. \(\square \)

Next, we obtain the following Hille and Nehari type oscillation criteria for (1) with \(p = 2 \).

Theorem 2. Let \(p = 2, m = 1 \). Assume that
\[\int_{\zeta_0}^{\infty} \frac{\theta^2}{2a(\zeta)} d\zeta = \infty \]
and
\[\lim \inf_{\zeta \to \infty} \left(\int_{\zeta_0}^{\zeta} \frac{\theta^2}{2a(s)} ds \right) \int_{\zeta}^{\infty} q(s) \left(\frac{\eta(s)}{s} \right)^{p-1} ds > \frac{1}{4}, \] (23)
for some constant \(\theta \in (0,1) \),
\[\lim \inf_{\zeta \to \infty} \int_{\zeta_0}^{\zeta} \int_{\zeta}^{\infty} q(s) \left(\frac{\eta(s)}{s} \right)^{p-1} ds d\zeta dv > \frac{1}{4}. \] (24)
then all solutions of (1) is oscillatory.

In this theorem, we use the integral averaging technique:

Theorem 3. Let (2) holds. If there exist positive functions \(\delta, \partial \in C^1 ((\zeta_0, \infty), \mathbb{R}) \) such that
\[\lim \sup_{\zeta \to \infty} \frac{1}{H_1(\zeta, \zeta_1)} \int_{\zeta_1}^{\zeta} \left(H_1(\zeta, s) m \delta(s) q(s) \left(\frac{\eta(s)}{s} \right)^{p-1} - \pi(s) \right) ds = \infty \] (25)
and
\[\lim \sup_{\zeta \to \infty} \frac{1}{H_2(\zeta, \zeta_1)} \int_{\zeta_1}^{\zeta} \left(H_2(\zeta, s) \partial(s) a(s) - \frac{\partial(s) h^2(\zeta, s)}{4} \right) ds = \infty, \] (26)
where
\[\pi(s) = \frac{h^p(\zeta, s) H_1^{p-1}(\zeta, s) 2^{p-1} \delta(s) a(s)}{(\theta \delta^2)^{p-1}}, \]
for all \(\theta \in (0,1) \), and
\[\omega(s) = \left(\frac{1}{a(\zeta)} \right) \int_{\zeta}^{\infty} q(s) \left(\frac{\eta(s)}{s} \right)^{p-1} ds \right)^{1/(p-1)} d\zeta, \]
then (1) is oscillatory.
Proof. Proceeding as in the proof of Theorem 1. Assume that (S1) holds. From Theorem 1, we get that (18) holds. Multiplying (18) by $H_1 (\zeta, s)$ and integrating the resulting inequality from ζ_1 to ζ, we find that

$$\int^{\zeta}_{\zeta_1} H_1 (\zeta, s) m \delta (s) q (s) \left(\frac{\eta^3 (s)}{s^3} \right)^{p-1} ds \leq \varphi (\zeta_1) H_1 (\zeta, \zeta_1) + \int^{\zeta}_{\zeta_1} \left(\frac{\partial}{\partial s} H_1 (\zeta, s) + \frac{\delta' (s)}{\delta (s)} H_1 (\zeta, s) \right) \varphi (s) ds - \int^{\zeta}_{\zeta_1} \frac{(p-1) \theta s^2}{2 \left(\delta (s) a (s) \right)^{1-p} H_1 (\zeta, s) \varphi^{\frac{p}{p-1}} (s) ds. \quad (27)$$

From (10), we get

$$\int^{\zeta}_{\zeta_1} H_1 (\zeta, s) m \delta (s) q (s) \left(\frac{\eta^3 (s)}{s^3} \right)^{p-1} ds \leq \varphi (\zeta_1) H_1 (\zeta, \zeta_1) + \int^{\zeta}_{\zeta_1} h_1 (\zeta, s) H_1^{(p-1)/p} (\zeta, s) \varphi (s) ds - \int^{\zeta}_{\zeta_1} \frac{(p-1) \theta s^2}{2 \left(\delta (s) a (s) \right)^{1-p} H_1 (\zeta, s) \varphi^{\frac{p}{p-1}} (s) ds. \quad (27)$$

Using Lemma 1 with $V = (p-1) \theta s^2 / \left(2 \left(\delta (s) a (s) \right)^{1-p} \right) H_1 (\zeta, s) \varphi (s)$ and $u = \varphi (s)$, we get

$$h_1 (\zeta, s) H_1^{(p-1)/p} (\zeta, s) \varphi (s) - \frac{(p-1) \theta s^2}{2 \left(\delta (s) a (s) \right)^{1-p} H_1 (\zeta, s) \varphi^{\frac{p}{p-1}} (s)} \leq \frac{h_1^p (\zeta, s) H_1^{p-1} (\zeta, s) 2^{p-1} \delta (s) a (s)}{(\theta s^2)^{p-1}},$$

which, with (27) gives

$$\frac{1}{H_1 (\zeta, \zeta_1)} \int^{\zeta}_{\zeta_1} \left(H_1 (\zeta, s) m \delta (s) q (s) \left(\frac{\eta^3 (s)}{s^3} \right)^{p-1} - \pi (s) \right) ds \leq \varphi (\zeta_1).$$

This contradicts (25).

Assume that (S2) holds. From Theorem 1, (22) holds. Multiplying (22) by $H_2 (\zeta, s)$ and integrating the resulting inequality from ζ_1 to ζ, we get

$$\int^{\zeta}_{\zeta_1} H_2 (\zeta, s) \theta (s) \omega (s) ds \leq \psi (\zeta_1) H_2 (\zeta, \zeta_1)$$

$$+ \int^{\zeta}_{\zeta_1} \left(\frac{\partial}{\partial s} H_2 (\zeta, s) + \frac{\delta' (s)}{\delta (s)} H_2 (\zeta, s) \right) \psi (s) ds$$

$$- \int^{\zeta}_{\zeta_1} \frac{1}{\theta (s)} H_2 (\zeta, s) \psi^2 (s) ds.$$

Thus, from (11), we get

$$\int^{\zeta}_{\zeta_1} H_2 (\zeta, s) \theta (s) \omega (s) ds \leq \psi (\zeta_1) H_2 (\zeta, \zeta_1) + \int^{\zeta}_{\zeta_1} h_2 (\zeta, s) \sqrt{H_2 (\zeta, s) \psi (s)} ds$$

$$- \int^{\zeta}_{\zeta_1} \frac{1}{\theta (s)} H_2 (\zeta, s) \psi^2 (s) ds$$

$$\leq \psi (\zeta_1) H_2 (\zeta, \zeta_1) + \int^{\zeta}_{\zeta_1} \frac{\theta (s) h_2^2 (\zeta, s)}{4} ds.$$
and so
\[
\frac{1}{H_2(\zeta, \xi_1)} \int_{\xi_1}^{\zeta} \left(H_2(\zeta, s) \vartheta(s) \omega(s) - \frac{\vartheta(s) h_2^2(\zeta, s)}{4} \right) ds \leq \psi(\xi_1),
\]
which contradicts (26). The proof of the theorem is complete. \(\square \)

Example 1. Consider the equation
\[
u^{(4)}(\zeta) + \frac{q_0}{\zeta^4} v \left(\frac{9\zeta}{10} \right) = 0, \quad \zeta \geq 1, \quad q_0 > 0. \tag{28}
\]

Let \(p = 2, \ a(\zeta) = 1, \ q(\zeta) = q_0/\zeta^4 \) and \(\eta(\zeta) = 9\zeta/10. \) If we set \(m = 1, \ H_1(\zeta, s) = (\zeta - s)^2 \) and \(\delta(s) = s^3, \) then \(h_1(\zeta, s) = (\zeta - s)(5 - 3\zeta s^{-1}), \) and conditions (23) becomes
\[
\limsup_{\zeta \to \infty} \frac{1}{H_1(\zeta, \xi_1)} \int_{\xi_1}^{\zeta} \left(H_1(\zeta, s) m \delta(s) q(s) \left(\frac{\eta^2(s)}{s^3} \right)^{p-1} - \pi(s) \right) ds
\]
\[
= \limsup_{\zeta \to \infty} \frac{1}{(\zeta - 1)^2} \int_{\xi_1}^{\zeta} \left(\frac{729q_0\zeta^2s^{-1}}{1000} + \frac{729q_0s}{1000} - \frac{729q_0s}{500} - \frac{s(25 + 9\zeta^2s^{-2} - 30\zeta s^{-1})}{2\theta} \right) ds
\]
if \(q_0 > 500/1810 \) for some \(\theta \in (0, 1), \) letting \(\theta = 81/82, \) then \(q_0 > 6.25. \)

Also, set \(H_2(\zeta, s) = (\zeta - s)^2 \) and \(\vartheta(s) = s, \) then \(h_2(\zeta, s) = (\zeta - s)(3 - \zeta s^{-1}), \varphi(s) = 3q_0/(20\zeta^2) \) and conditions (24) becomes
\[
\limsup_{\zeta \to \infty} \frac{1}{H_2(\zeta, \xi_1)} \int_{\xi_1}^{\zeta} \left(H_2(\zeta, s) \vartheta(s) \omega(s) - \frac{\vartheta(s) h_2^2(\zeta, s)}{4} \right) ds
\]
\[
= \limsup_{\zeta \to \infty} \frac{1}{(\zeta - 1)^2} \int_{\xi_1}^{\zeta} \left(\frac{3q_0\zeta^2s^{-1}}{20} + \frac{3q_0s}{20} - \frac{3q_0s}{40} - \frac{s(9 - 6\zeta s^{-1} + \zeta^2 s^{-2})}{4} \right) ds
\]
if \(q_0 > 5/3, \) From Theorem 3, all solutions of (28) are oscillatory, if \(q_0 > 6.25. \)

Remark 1. By comparing our results with previous results
1. By applying condition (3) in [28], we get
\[
q_0 > 1728,
\]
2. By applying condition (4) in [29], we get
\[
q_0 > 919.6,
\]
3. By applying condition (5) in [30], we get
\[
q_0 > 28.73,
\]
4. By applying condition (7) in [31], we get
\[
q_0 > 28.73,
\]
5. The condition (8) in [32] cannot be applied to Equation (28) due to the arbitrariness in the choice of \(\theta. \) Therefore, our result complement results [28–32].
Example 2. Let the equation

\[u^{(4)}(\zeta) + \frac{q_0}{\zeta^4} u \left(\frac{1}{2} \zeta \right) = 0, \quad \zeta \geq 1, \quad q_0 > 0. \]

(29)

Let \(a(\zeta) = 1 \), \(q(\zeta) = q_0 / \zeta^4 \) and \(\eta(\zeta) = \zeta / 2 \). If we set \(m = 1 \), then condition (23) becomes

\[\lim \inf_{\zeta \to \infty} \left(\int_{\zeta_0}^\zeta \frac{q(s)}{2a(s)} ds \right) \int_{\zeta}^\infty \left(\frac{\eta^3(s)}{s^3} \right) ds = \lim \inf_{\zeta \to \infty} \left(\frac{\zeta^3}{3} \right) \int_{\zeta}^\infty \frac{q_0}{8s^4} ds = \frac{q_0}{72} > \frac{1}{4} \]

and condition (24) becomes

\[\lim \inf_{\zeta \to \infty} \zeta \int_{\zeta_0}^\zeta \int_{\varphi(\zeta)}^\infty \left(\frac{1}{a(\zeta)} \int_{\zeta}^\infty q(s) \left(\frac{\eta(s)}{s} \right) ds \right) d\zeta d\varphi = \lim \inf_{\zeta \to \infty} \left(\frac{q_0}{12\zeta} \right) \]

\[= \frac{q_0}{12} > \frac{1}{4}. \]

Hence, by Theorem 2, all solution equation (29) is oscillatory if \(q_0 > 18 \).

Remark 2. We point out that continuing this line of work, we can have oscillatory results for a fourth order equation of the type:

\[\left(a(\zeta) |u'''(\zeta)|^{p-2} u'''(\zeta) \right)' + \sum_{i=1}^{m} q_i(\zeta) |u(\eta_i(\zeta))|^{p-2} u(\eta_i(\zeta)) = 0, \quad \zeta \geq \zeta_0, \quad m \geq 1, \]

under the condition

\[\int_{\zeta_0}^\infty \frac{1}{a^{1/(p-1)}(s)} ds < \infty. \]

4. Conclusions

In this article, we studied some oscillation conditions for 4th-order differential equations by the comparison method, Riccati technique and integral averaging technique.

Further, in the future work we study Equation (1) under the condition \(\int_{\zeta_0}^\infty \frac{1}{a^{1/(p-1)}(s)} ds < \infty. \)

Author Contributions: O.B.: Writing original draft, writing review and editing. M.P.: Formal analysis, writing review and editing, funding and supervision. All authors have read and agreed to the published version of the manuscript.

Funding: The authors received no direct funding for this work.

Acknowledgments: The authors thank the reviewers for their useful comments, which led to the improvement of the content of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hale, J.K. Theory of Functional Differential Equations; Springer: New York, NY, USA, 1977.
2. Agarwal, R.; Grace, S.; O’Regan, D. Oscillation Theory for Difference and Functional Differential Equations; Kluwer Acad. Publ.: Dordrecht, The Netherlands, 2000.
3. Aronsson, G.; Janfalk, U. On Hele-Shaw flow of power-law fluids. Eur. J. Appl. Math. 1992, 3, 343–366. [CrossRef]
4. Walcher, S. Symmetries of Ordinary Differential Equations: A Short Introduction. arXiv 2019, arXiv:1911.01053.
5. Bazighifan, O.; Abdeljawad, T. Improved Approach for Studying Oscillatory Properties of Fourth-Order Advanced Differential Equations with p-Laplacian Like Operator. Mathematics 2020, 8, 656. [CrossRef]
6. Bazighifan, O.; Ahmed, H.; Yao, S. New Oscillation Criteria for Advanced Differential Equations of Fourth Order. Mathematics 2020, 8, 728. [CrossRef]
7. Agarwal, R.; Shieh, S.L.; Yeh, C.C. Oscillation criteria for second order retarded differential equations. Math. Comput. Model. 1997, 26, 1–11. [CrossRef]
8. Baculikova, B.; Dzurina, J.; Graef, J.R. On the oscillation of higher-order delay differential equations. Math. Slovaca 2012, 187, 387–400. [CrossRef]
9. Bazighifan, O.; Minhos, F.; Moaaz, O. Sufficient Conditions for Oscillation of Fourth-Order Neutral Differential Equations with Distributed Deviating Arguments. Axioms 2020, 9, 39. [CrossRef]
10. Bazighifan, O.; Postolache, M. An improved conditions for oscillation of functional nonlinear differential equations. Mathematics 2020, 8, 552. [CrossRef]
11. Bazighifan, O.; Cesarano, C. A Philos-Type Oscillation Criteria for Fourth-Order Neutral Differential Equations. Symmetry 2020, 12, 379. [CrossRef]
12. Bazighifan, O. An Approach for Studying Asymptotic Properties of Solutions of Neutral Differential Equations. Symmetry 2020, 12, 555. [CrossRef]
13. Bazighifan, O.; Elabbasy, E.M.; Moaaz, O. Oscillation of higher-order differential equations with distributed delay. J. Inequal. Appl. 2019, 55, 1–9. [CrossRef]
14. Bazighifan, O.; Ramos, H. On the asymptotic and oscillatory behavior of the solutions of a class of higher-order differential equations with middle term. Appl. Math. Lett. 2020, 107, 106431. [CrossRef]
15. Cesarano, C.; Pinelas, S.; Al-Showaikh, F.; Bazighifan, O. Asymptotic Properties of Solutions of Fourth-Order Delay Differential Equations. Symmetry 2019, 11, 628. [CrossRef]
16. Bazighifan, O.; Dassios, I. On the Asymptotic Behavior of Advanced Differential Equations with a Non-Canonical Operator. Appl. Sci. 2020, 10, 3130. [CrossRef]
17. Bazighifan, O.; Kumam, P. Oscillation Theorems for Advanced Differential Equations with p-Laplacian Like Operators. Mathematics 2020, 8, 821. [CrossRef]
18. Gyori, I.; Ladas, G. Oscillation Theory of Delay Differential Equations with Applications; Clarendon Press: Oxford, UK, 1991.
19. Bazighifan, O.; Dassios, I. Riccati Technique and Asymptotic Behavior of Fourth-Order Advanced Differential Equations. Mathematics 2020, 8, 590. [CrossRef]
20. Bazighifan, O.; Ruggieri, M.; Scapellato, A. An Improved Criterion for the Oscillation of Fourth-Order Neutral Differential Equations. Mathematics 2020, 8, 610. [CrossRef]
21. Moaaz, O.; Kumam, P.; Bazighifan, O. On the Oscillatory Behavior of a Class of Fourth-Order Nonlinear Differential Equation. Symmetry 2020, 12, 524. [CrossRef]
22. Moaaz, O.; Elabbasy, E.M.; Muhib, A. Oscillation criteria for even-order neutral differential equations with distributed deviating arguments. Adv. Differ. Eq. 2019, 1, 297. [CrossRef]
23. Nehari, Z. Oscillation criteria for second order linear differential equations. Trans. Amer. Math. Soc. 1957, 85, 428–445. [CrossRef]
24. Philos, C. On the existence of nonoscillatory solutions tending to zero at \(\infty \) for differential equations with positive delay. Arch. Math. 1981, 36, 168–178. [CrossRef]
25. Bazighifan, O. Kamenev and Philos-types oscillation criteria for fourth-order neutral differential equations. Adv. Differ. Eq. 2020, 201, 1–12. [CrossRef]
26. Li, T.; Baculikova, B.; Dzurina, J.; Zhang, C. Oscillation of fourth order neutral differential equations with p-Laplacian like operators. Bound. Value Probl. 2014, 56, 41–58. [CrossRef]
27. Zhang, C.; Agarwal, R.P.; Li, T. Oscillation and asymptotic behavior of higher-order delay differential equations with p -Laplacian like operators. J. Math. Anal. Appl. 2014, 409, 1093–1106. [CrossRef]
28. Grace, S.R.; Lalii, B.S. Oscillation theorems for nth-order differential equations with deviating arguments. Proc. Am. Math. Soc. 1984, 90, 65–70.
29. Karpuz, B.; Ocalan, O.; Ozturk, S. Comparison theorems on the oscillation and asymptotic behavior of higher-order neutral differential equations. Glasg. Math. J. 2010, 52, 107–114. [CrossRef]
30. Zafer, A. Oscillation criteria for even order neutral differential equations. Appl. Math. Lett. 1998, 11, 21–25. [CrossRef]
31. Zhang, C.; Agarwal, R.P.; Bohner, M.; Li, T. New results for oscillatory behavior of even-order half-linear delay differential equations. *Appl. Math. Lett.* **2013**, *26*, 179–183. [CrossRef]

32. Moaaz, O.; El-Nabulsi, R.A.; Bazighifan, O.; Muhib, A. New Comparison Theorems for the Even-Order Neutral Delay Differential Equation. *Symmetry* **2020**, *12*, 764. [CrossRef]