COMMENT ON ‘TUMOUR-INFILTRATING INFLAMMATION AND PROGNOSIS IN COLORECTAL CANCER: SYSTEMATIC REVIEW AND META-ANALYSIS’

Z Mei1, Y Liu1, C Liu1 and L Cui*1

1Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China

Sir,

We are most grateful to Professor Park, McMillan and Roxburgh (2014) for their interest and valuable comments on our manuscript titled ‘Tumour-infiltrating inflammation and prognosis in colorectal cancer: systematic review and meta-analysis’ (Mei et al., 2014). They cited several recently published studies with consistent results, pointing out some other important relationships among inflammatory cell infiltrate, the tumour microenvironment and immune response in colorectal cancer (CRC), which were not discussed in detail in our original publication because of the length of the publication. Therefore, some major concerns, such as the following, must be addressed.

First, the analytical methods used in our publication for the generalised tumour inflammatory infiltrate were relatively standardised ones and included the Jass classification, the Klintrup—Makinen (K–M) criteria and Crohn’s-like reaction criteria. The pooled hazard ratios and 95% CIs for overall survival, cancer-specific survival and disease/recurrence-free survival in a subset of highly generalised tumour inflammatory infiltrate were relatively standardised ones and included the Jass classification, the Klintrup—Makinen (K–M) criteria and Crohn’s-like reaction criteria. The pooled hazard ratios and 95% CIs for overall survival, cancer-specific survival and disease/recurrence-free survival in a subset of highly generalised tumour inflammatory infiltrate were < 1, indicating a robust survival marker for CRC. However, conflicting results (with HRs and 95% CIs across 1) were noted among individual studies as heterogeneity originated from local inflammatory reaction grading systems, patient characteristics, follow-up schemes and some other factors, which was especially evident among individual T-cell subtypes. More detailed

REFERENCES

Forrest R, Guthrie GJ, Orange C, Horgan PG, McMillan DC, Roxburgh CS (2014) Comparison of visual and automated assessment of tumour inflammatory infiltrates in patients with colorectal cancer. Eur J Cancer 50(3): 544–552.

Jass JR, Love SB, Northover J (1987) A new prognostic classification of rectal cancer. Lancet 2(8545): 1303–1306.

Klintrup K, Makinen JM, Kauppila S, Vare PO, Melkko J, Tuominen H, Tuppurainen K, Makela J, Karttunen TJ, Makinen MJ (2005) Inflammation and prognosis in colorectal cancer. Eur J Cancer 41(17): 2645–2654.

Mei Z, Liu Y, Liu C, Cui A, Liang Z, Wang G, Peng H, Cui Li, Li C (2014) Tumour-infiltrating inflammation and prognosis in colorectal cancer: systematic review and meta-analysis. Br J Cancer 110(6): 1595–1605.

Mohammed ZM, Going JJ, Edwards J, Elsberger B, Dougherty JC, McMillan DC (2012) The relationship between components of tumour inflammatory infiltrate and clinicopathological factors and survival in patients with primary operable invasive ductal breast cancer. Br J Cancer 107(5): 864–873.

Richards CH, Flegg KM, Roxburgh CS, Goings JJ, Mohammed Z, Horgan PG, McMillan DC (2012) The relationships between cellular components of the peritumoural inflammatory response, clinicopathological characteristics and survival in patients with primary operable colorectal cancer. Br J Cancer 106(2): 2010–2015.

Richardson CH, Roxburgh CS, Powell AG, Foulis AK, Horgan PG, McMillan DC (2014) The clinical utility of the local inflammatory response in colorectal cancer. Eur J Cancer 50(2): 309–319.

Vayrynen JP, Tuomisto A, Klintrup K, Makela J, Karttunen TJ, Makinen MJ (2013) Detailed analysis of inflammatory cell infiltration in colorectal cancer. Br J Cancer 109(7): 1839–1847.

http://creativecommons.org/licenses/by-nc-sa/3.0/