A Survey of Scale Insects (Hemiptera: Coccoidea) in Citrus Orchards in São Paulo, Brazil

Authors: Almeida, Luís Fernando V., Peronti, Ana Lúcia B. G., Martinelli, Nilza Maria, and Wolff, Vera R. S.

Source: Florida Entomologist, 101(3) : 353-363

Published By: Florida Entomological Society

URL: https://doi.org/10.1653/024.101.0324
A survey of scale insects (Hemiptera: Coccoidea) in citrus orchards in São Paulo, Brazil

Luis Fernando V. Almeida¹, Ana Lúcia B. G. Peronti¹,*, Nilza Maria Martinelli¹, and Vera R. S. Wolff²

Abstract
Many scale insects (Hemiptera: Coccoidea), including species of great economic importance, are associated with plants of the genus Citrus in citrus-producing regions around the world. Revision and updating of lists of scale insect species based on field surveys contributes to improving their management and is an important tool for preventing their introduction into non-infested areas. The purpose of this study was to present an updated list of scale insect species in citrus orchards in São Paulo, Brazil. Samples were collected between Sep 2014 and Sep 2015, and between Sep 2016 and Jul 2017, from rural and urban areas and from nurseries in 27 municipalities in the principal citrus-producing regions in the state of São Paulo, known as the “citrus belt.” A total of 22 species in 6 families were identified: (1) Coccidae: Ceroplastes floridensis Comstock, Coccus viridis (Green), Parasaissseta nigra (Nietner), Saissetia coffeae (Walker); (2) Diaspididae: Acutaspis scutiformis (Cockerell), Aoniellula auranti (Maskell), Chrysomphalus aonidum (L.), Lepidosaphes gloverii (Packard), Melanaspis smilacis (Comstock), Parlatoria cinerea Hadden in Doane & Hadden, Parlatoria ziziphi (Lucas), Pinnaspis aspidistrae (Signoret), Pseudaonidia trilobitiformis (Green), Planococcus citri (Hemel), Pseudococcus cryptus Hempel. This is the first report of L. gloverii, P. nigra, P. aspidistrae, P. trilobitiformis, and P. cryptus on citrus in São Paulo, and of M. smilacis on Rutaceae host plants. Parlatoria ziziphi, S. articulatus, and U. citri were the most frequently observed species on the sampled plants, and they are among those that reached high levels of infestation throughout the collection period. A review of all scale insects associated with Citrus spp. in Brazil also is included.

Key Words: Citriculture; South America; Coccidae; Diaspididae; Monophlebidae; Ortheziidae; Pseudococcidae

Resumo
Muitas cochinilhas (Hemiptera: Coccoidea), incluindo espécies de grande importância econômica, são registradas em associação com plantas do gênero Citrus nas regiões produtoras da fruta flora do redor do mundo. Fornecer listas revisadas e atualizadas de espécies de cochinilhas, baseadas em levantamentos de campo, e, de contribuir para o manejo das mesmas, é um importante instrumento para que se possa prever a sua introdução em áreas não infestadas. O objetivo desse trabalho foi apresentar uma lista atualizada de espécies de cochinilhas em pomares cítricos localizados no estado de São Paulo, Brasil. As amostras foram coletadas entre set de 2014 e set de 2015, e entre set de 2016 e jul de 2017, em áreas rurais, áreas urbanas e viveiros de 27 municípios pertencentes às principais regiões produtoras de cítricos do estado de São Paulo, conhecida como “cinturão cítrico.” Foram identificadas 22 espécies pertencentes a seis famílias: (1) Coccidae: Ceroplastes floridensis Comstock, Coccus viridis (Green), Parasaissseta nigra (Nietner), Saissetia coffeae (Walker); (2) Diaspididae: Acutaspis scutiformis (Cockerell), Aoniellula auranti (Maskell), Chrysomphalus aonidum (L.), Lepidosaphes gloverii (Packard), Melanaspis smilacis (Comstock), Parlatoria cinerea Hadden in Doane & Hadden, Parlatoria ziziphi (Lucas), Pinnaspis aspidistrae (Signoret), Pseudaonidia trilobitiformis (Green), Planococcus citri (Hemel), Pseudococcus cryptus Hempel. Registra-se aqui pela primeira vez L. gloverii, P. nigra, P. aspidistrae, P. trilobitiformis, e P. cryptus sobre cítricos no estado de São Paulo, e M. smilacis sobre plantas hospedeiras de Rutaceae. Parlatoria ziziphi, S. articulatus, e U. citri foram as mais frequentemente observadas sobre as plantas amostradas, e estão entre as espécies que atingiram os maiores níveis de infestação durante o período de coleta. Uma revisão com todas as espécies associadas à Citrus spp. no Brasil é incluída.

Palavras Chave: Citricultura; América do Sul; Coccidae; Diaspididae; Monophlebidae; Ortheziidae; Pseudococcidae.
Citriculture is of great economic importance globally, with the principal production areas concentrated in Brazil, the United States of America, India, and China (OECD-FAO 2015). Brazil, as the world's largest orange producer and leading exporter of frozen concentrated orange juice, provides 32% of the global supply of that fruit. About 72% of the national orange production is located in the state of São Paulo, with a total planted area of 425,359 ha (AGRIANUAL 2016).

A number of important arthropod pests, including some key disease vectors, occur on citrus plants in Brazil (Yamamoto & Paiva 2014). Although the country uses cutting-edge citrus production technology, phytosanitary problems that reduce yield and increase costs remain a major challenge (Nava et al. 2007).

Scale insects (Hemiptera: Coccoidea) are one of the largest groups of insects associated with *Citrus* (Rutaceae) spp., with 332 species found primarily in tropical and subtropical regions of the globe where citrus fruits are grown. Some of these are among the key pests of this crop (García Morales et al. 2016). They damage the plants directly by sucking their sap, and indirectly by injecting toxic saliva, transmitting pathogens, attracting ants, and encouraging the development of sooty mold fungi (Granara de Willink 1990; Gravena 2005). Sooty mold can severely impair leaf respiration and photosynthesis (McKenzie 1967; Vranic 1997). Citrus fruits can lose their commercial value due to the presence of damaging scale insects or sooty mold on the fruits.

In Brazil, initial surveys of scale insects on native and cultivated plants were conducted by Ihering (1879), Cockerell (1900), and Hempel (1900, 1904, 1912, 1918, 1920, 1932). These authors, in addition to describing many native coccoid species, mainly in the state of São Paulo, also recorded many host plants for exotic coccoid species. For example, *Pinnaspis aspidistrae* (Signoret) (Diaspididae) and *Planococcus citri* (Risso) (Pseudococcidae) were reported on citrus plants by Ihering (1897) (Table 1). Subsequently, several lists and catalogs of insects, including scale insects, associated with plants in Brazil were published by Costa Lima (1936), Lepage (1938), and Silva d’Araujo et al. (1968); however, more specifically, lists of insect species associated with citrus trees were published by Bondar (1914), Azevedo (1923), Autuori (1932), Bitancout et al. (1933), Lima (1938), and Robbins (1951). Of the 61 species of scale insects associated with citrus fruits in Brazil, 49 were first reported before the 1940s (Table 1).

Starting in the 1940s, outbreaks of scale insects have been reported in Brazil, mainly of *Praelongorthezia praelonga* (Douglas) (Ortheziidae) in São Paulo, Rio de Janeiro, and some northeastern states (Robbs 1947; Kogan 1964; Prates & Brasil 1989b; Cassino et al. 1991); *Selensaspis articulatus* (Morgan) (Diaspididae) in São Paulo and Rio de Janeiro (Prates & Brasil 1989a, b; Perruso & Cassino 1993); *Lepidosaphes beckii* (Boisdouval) (Mariconi 1958); and *Pallatoria pergandii* Comstock in the state of São Paulo (Brazil & Prates 1989). The first reports of population increases of these species were coincident with 2 events: (1) the crisis in Brazilian citriculture during World War II related to the decline in exports to Europe, with the consequent abandonment of orchards resulting in the occurrence of pests and diseases (Rodrigues & Oliveira 2006); and (2) with implementation of agrochemicals in the Brazilian market around the 1960s (Peres et al. 2003).

According to Gravena (2011), with the development and application of the concepts of Integrated Pest Management (IPM) in Brazilian citrus orchards beginning in the 1980s, several scientific articles linked to pest management options were published, most notably in the journal Laranja (currently *Citrus Research & Technology*) (Parra et al. 2003; Gravena 2005; Yamamoto 2008). During the same period, surveys of scale insects associated with citrus plants were conducted in several states in Brazil, of which the most relevant were performed by Wolff & Corseuil (1993, 1994a, b), Bock & Tarragó (1995), and Wolff et al. (2004), covering 23 municipalities in Rio Grande do Sul; by Cassino & Rodrigues (2005), covering 17 municipalities in Rio de Janeiro State; and by Silva & Jordão (2005), covering 3 municipalities of Amapá. Other reports of *Citrus* spp. as hosts of scale insects in other Brazilian states appeared in surveys of scale insects on several host plants, including studies by Foldi (1988) working in the Brazilian Amazon, and by Culik et al. (2007, 2011) in Ceará, Pernambuco, and Espírito Santo, Brazil.

In the state of São Paulo, 28 species of scale insects have been reported on *Citrus* spp. sporadically throughout the 20th and early 21st centuries (Table 1). However, there are no recent surveys of coccoids in the state of São Paulo despite the state being the largest Brazilian citrus producer.

In this context, the present study aimed to provide an updated list of scale insect species associated with citrus trees in the state of São Paulo. Correct identification of scale insects based on field surveys is needed for a better understanding of the insects’ biology and is crucial for developing appropriate pest management programs in citrus orchards.

Materials and Methods

A survey of scale insects associated with citrus trees was conducted between Sep 2014 and Sep 2015 in rural and urban areas and in several nurseries. Additional collections were made in Itibinga in Sep 2016, and São Carlos and Nova Aliança in Jun and Jul 2017. The inventoried areas are located in 13 micro-regions in the “citrus belt” of the state of São Paulo (Table 2).

Scale insect individuals were arbitrarily collected from citrus plants. For each sampled plant, the following observations were reported: the citrus species and insect position on the host plant (on branches, leaves, or fruit). A total of 264 scale insect samples were collected from 197 citrus trees (orange, lemon, tangerine, and acid limes [var. ‘Tahiti’ and ‘Rangpur’]). Subsequently, the scales were stored in vials containing 70% alcohol at the Laboratory of Biosystematics of Hemiptera (LABHEM) of the Plant Protection Department of the Universidade Estadual Paulista “Julio de Mesquita Filho” – Campus Jaboticabal, São Paulo, Brazil.

Adult female specimens were slide-mounted according to the method given by Granara de Willink (1990), and were identified using a compound light microscope and the identification keys of Williams & Watson (1990) and Peronti et al. (2008) for Coccidae; Ferris (1941), Wolff & Corseuil (1993), and Miller & Davidson (2005) for Diaspididae; Howell & Kosztarab (1972) for Lecanodiaspididae; Morrison (1952) for Ortheziidae; Kondo et al. (2012) for Monophlebidae; and Cox & Freeston (1985), Williams & Granara de Willink (1992), and Granara de Willink (1999) for Pseudococcidae.

Voucher specimens of all the species of scale insects studied were deposited in the Coleção de Referência de Insetos e Ácaros – CRIA (Reference Collection of Insects and Mites) at the Department of Plant Protection [FCAV/UNESP]. Specimens of Diaspididae also were deposited in the Museum Ramiro Gomes da Costa (MRGC) in Porto Alegre, Rio Grande do Sul, Brazil.

Results

Twenty-two species of scale insects belonging to 5 families were collected from citrus trees in the state of São Paulo, Brazil (Fig. 1): 11 diaspidids (armored scales), 4 coccids (soft scales), 4 pseudococcids...
Table 1. Review of scale insects associated with Citrus spp. in Brazil, including species collected in the state of São Paulo in the present survey.

Scale insects	References
Cerococcus catenarius Fonseca	No place collecting registration (Gravena 2005)
Coccus viridis	RJ, SP, RS (Hemel 1900; Costa Lima 1936; Lima 1938; Gomes Costa 1949; Peronti et al. 2008)
Ceroplastes floridensis Comstock	RS (Lima 1938; Lepage 1941)
Ceroplastes grandis Hempel	RS (Bertels 1936)
Coccus hesperidum Linnaeus	RS, SP, RS (Hemel 1900; Costa Lima 1936; Lima 1938; Gomes Costa 1949; Bock & Tarrago 1995)
Coccus viridis (Green)	AP, AM, GO, RJ, SP, RS (Costa Lima 1936; Lima 1938; Gomes Costa 1949; Murakami 1984; Foldi 1988; Bock & Tarrago 1995; Silva & Jordão 2005; Cassino & Rodrigues 2005; Nais & Busoli 2012)
Magnococcus pseudozenmen (Cockerell) RS	RS (Corseuil & Barbosa 1971)
Mesolecanium lucidum Hempel	RS (Corseuil & Barbosa 1971)
Parasaissetia nigra (Nietner)	(Bertels 1938; Silva et al. 1968)
Partenococcum perlatum (Cockerell)	RJ, PR, RS (Costa Lima 1936; Gomes Costa 1949; Vernalha 1953; Bock & Tarrago 1995; Santos et al. 2017)
Pseudophyllia lanigera (Hempel)	RS (Costa Lima 1936; Lima 1938; Lepage 1938; Vernalha 1953)
Pulvinaria fuscus Hempel	RS (Corseuil & Barbosa 1971)
Pulvinaria flavescens Brethes	GO, SP, RS (Fonseca 1934; Costa Lima 1936; Lepage 1938; Gomes Costa 1949; Vernalha 1953; Murakami 1984)
Pulvinaria psidii Maskell	SP (Costa Lima 1936; Lepage 1938)
Saissetia coffeae (Walker)	AP, ES, BA, SP, RS (Costa Lima 1936; Lepage 1938; Lima 1938; Gomes Costa 1949; Corseuil & Barbosa 1971; Silva & Jordão 2005; Kulik et al. 2007)
Saissetia hurae	BA (Costa Lima 1936; Lepage 1938)
Saissetia oleae Olivier, 1791	SP, RS (Hemel 1900; Costa Lima 1936; Lepage 1938; Corseuil & Barbosa 1971)
Diaspididae	
Acotus paulista (Hemel)	RS (Bertels & Baucke 1966; Claps et al. 2001)
Acotus scutiformis (Cockerell)	SP, PR, RS (Costa Lima 1936; Lepage 1938; Wolff & Corseuil 1993)
Aonidiella aurantii	
Aonidiella proteus	
Aonidiella proteus	
Aonidiella proteus	
Aspidiotus destructor Signoret	AM (Foldi 1988)
Aspidiotus nerii Bouché	RS (Gianotti 1942; Wolff & Corseuil 1993; Claps et al. 2001)
Chrysomphalus aonidum (Linnaeus)	AP, PE, GO, RJ, SP, RS (Costa Lima 1936; Lima 1938; Lepage 1938; Veiga et al. 1975; Murakami 1984; Wolff & Corseuil 1993; Bock & Tarrago 1995; Silva & Jordão 2005; Cassino & Rodrigues 2005)
Chrysomphalus dictyospermi (Morgan)	RJ, SP, RS (Costa Lima 1936; Lepage 1938; Wolff & Corseuil 1993; Bock & Tarrago 1995)
Hemiberlesia cyanocephali (Signoret)	RJ, RS (Costa Lima 1936; Lepage 1938; Wolff et al. 2004)
Hemiberlesia lataniae (Signoret)	AM, RJ, MG, SP (Costa Lima 1936; Lepage 1938; Foldi 1988)
Hemiberlesia palm activities	
Hemiberlesia palmiae (Cockerell)	ES (Culik et al. 2008)
Hemiberlesia rapax (Comstock)	AM, RJ, MG, SP (Costa Lima 1936; Lima 1938; Foldi 1988; Wolff & Corseuil 1993)
Howaria biclavis (Comstock)	SP (Costa Lima 1936; Lepage 1938)
Lepidosaphes beckii (Newman)	GO, RJ, SP, RS (Lima 1938; Murakami 1984; Wolff & Corseuil 1994a; Bock & Tarrago 1995)
Lepidosaphes gloveri (Packard)	RJ, RS (Silva & al. 1968; Wolff & Corseuil 1994a; Bock & Tarrago 1995)
Lepidosaphes pinnaeformis (Bouché)	(Lepage 1938)
Lindingaspis rossi (Maskelli)	SP (Green 1930; Lepage 1938)
***Melanaspis similis** (Comstock)	SP
Marganella longisipina (Morgan)	SP, RS (Costa Lima 1936; Lepage 1938; Wolff & Corseuil 1993)
Mycetaspis personata (Comstock)	SP, RS (Costa Lima 1936; Lepage 1938; Vernalha 1953; Wolff & Corseuil 1993)
Parlatoria cinerea (Hadden)	AP, ES, RJ, SP, RS (Costa Lima 1936; Lima 1938; Vernalha 1953; Fonseca 1965; Gravena et al. 1992; Wolff & Corseuil 1994b; Silva & Jordão 2005; Kulik et al. 2008)
Parlatoria oleae (Colvée)	BA, RJ, SP (Costa Lima 1936; Lepage 1938; Vernalha 1953)
Parlatoria pergandei (Comstock)	RI, SP, RS (Costa Lima 1936; Lepage 1938; Vernalha 1953; Brasil & Prates 1989; Wolff & Corseuil 1994b; Bock & Tarrago 1995)
Parlatoria proteus (Curtis)	PB, SP (Lepage 1938; Vernalha 1953)
Parlatoria ziiphi (Lucas)	GO, SP (Murakami 1984)
Pinnaspis aspidistreia (Signoret)	AP, AM, BA, ES, GO, RJ, SP, RS (Ihering 1897; Lepage 1938; Lima 1938; Veiga et al. 1975; Murakami 1984; Wolff & Corseuil 1994a; Bock & Tarrago 1995)
Pinnaspis strachani (Cooley)	ES, RJ, RS (Claps & Wolff 2003; Kulik et al. 2008)
Pseudonidia trilobitiformis (Green)	RS (Costa Lima 1936; Lima 1938; Wolff & Corseuil 1993)
Selenaspis articulatus (Morgan)	AP, AM, PA, ES, RJ, SP (Costa Lima 1936; Lepage 1938; Silva et al. 1968; Gravena et al. 1988, 1992, Purruso & Cassino 1993; Silva & Jordão 2005; Kulik et al. 2008)

*Species found in the state of São Paulo in the present survey; **Species associated with citrus for the first time in the state of São Paulo; ***Species recorded for the first time on Rutaceae in São Paulo state. Brazilian states mentioned: RR (Roraima); AP (Amapá); AM (Amazonas); PA (Pará); CE (Ceará); PB (Paraíba); PE (Pernambuco); AL (Alagoas); BA (Bahia); GO (Goiás); ES (Espírito Santo); MG (Minas Gerais); RJ (Rio de Janeiro); SP (São Paulo); PR (Paraná); RS (Rio Grande do Sul).
(mealybugs), 1 ortheziid (ensign scales), 1 lecanodiaspidid (false pit scale), and 1 monophlebid (giant scales) were restricted to only 1 municipality or micro-region of São Paulo were: Ceroplastes floridensis Comstock, Parasaisssetia nigra (Nietner) (Coccidae), Melanaspis smilacis (Comstock) (Diaspididae), and L. minutus (Pseudococcidae) (Fig. 2). Lecanodiaspis rugosa Hempel (Lecanodiaspididae) and Parlatoria cinerea (Hadden) (Diaspididae) were observed in higher levels of infestation in only 1 locality sampled.

Of the 22 species of scale insects collected, 13 were observed in both rural and urban areas. These were: C. viridis, Saissetia coffeae (Walker) (Coccidae); Aonidiella aurantii (Maskell), Chrysomphalus aonidum (Linnaeus), Lepidosaphes ulmi (Packard), M. smilacis, P. cinerea, P. zīzīphi, Pinnaspis aspidistrae (Signoretti), P. trilobiformis, S. articulatus, U. citri (Diaspididae); Icerya purchasi Maskell (Monophlebidae), P. praelonga (Ortheziidae), and P. cryptus (Pseudococcidae). The other species were found mainly in urban areas with the exception of L. rugosa, which was collected only in rural areas. In citrus-producing areas with persistent preventive pesticide applications, only 4 species were detected: A. auranti, P. zīzīphi, S. articulatus, and U. citri.

Most species of scale insects, with the exception of Acutaspis scutiformis (Cockerell) (Diaspididae), C. floridensis, and L. rugosa were collected from the leaves. Immatures of I. purchasi, immatures and adults of C. viridis, P. trilobiformis, P. praelonga, and all of the pseu-
dococcids were collected primarily from the lower surface of leaves, with C. viridis and P. trilobiformis usually being found along the principal veins. Parlatoria cinerea and U. citri were observed mainly on bark and branches. Unaspis citri was frequently observed covering the entire surface of both the trunk bark and branches. The species A. scutiformis, A. auranti, C. floridensis, C. viridis, L. ulmi, L. rugosa, P. praelonga, P. citri, and S. coffeae also were observed on secondary branches. Species collected from citrus fruits included C. aonidum,
The citrus mealybug, *P. citri* (Table 3). On the fruits, *P. citri* was concentrated under the calyx. The citrus mealybug, *P. citri*, often was found in more sheltered locations on the plant, such as within a sheath of leaves or under the base of the fruit peduncle.

Some of the main damage symptoms caused by scale insects on citrus trees observed during this study were: (1) chlorosis on the leaves, caused mainly by species of diaspidids; (2) dieback of twigs and branches on plants infested by *U. citri* and *L. rugosa*; (3) early fruit drop in fruits infested by *P. citri*, in the calyx region; (4) sooty mold fungi on leaves infested mainly by *P. praelonga* and by species of coccids and pseudococcids, due to the large amount of honeydew eliminated by these species.

Discussion

Of the 35 species of scale insects previously known to be associated with *Citrus* spp. in São Paulo State, 16 were detected in this survey. Nineteen species previously reported by other authors were not found in the areas surveyed herein (Table 1). All these species except *P. ziziphi* were first reported prior to the 1940s. The reduction in the number of introductions of exotic species since the 1940s probably is related to the implementation of Decree n° 24.114/1934, which prohibits the import of plant products that may contain pests, and indicates the measures to be adopted in this case (Brasil 1934).

The present survey also found 4 species of scale insects not previously associated with citrus trees in the state of São Paulo: *F. virgata*, *P. nigra*, *P. cryptus*, and *P. trilobitiformis*, as well as another species, *M. smilacis*, which is an invasive species of Nearctic origin that is widely distributed and has been associated with 22 host plants distributed in 10 families, but had not been found previously on citrus or any other Rutaceae (Garcia Morales et al. 2016). In Brazil, this species has been recorded previously only from the state of Espirito Santo, on *Ananas comosus* (Linneaus) (Bromeliaceae) (Culik et al. 2008).

Most of the scale insects listed herein as associated with citrus in São Paulo originally were from the Afrotopical and Oriental regions. They probably were transported along with their host plants when the latter were first introduced into South America and Brazil (Martinelli et al. 2014). These invaders are mostly polyphagous (Wyckhuys et al. 2013), and around the world generally are associated with 3 to 12 citrus species (Garcia Morales et al. 2016), demonstrating the lack of specificity of these insects to particular *Citrus* spp. The large host range of these insects facilitated their establishment in both rural and urban areas, as was observed in the current study.

The species collected in this study differ in part from those found in the state of São Paulo by other authors in earlier times, or in other regions of Brazil (Table 1). Variation in the scale insect fauna associated with cultivated plants probably occurs due to several reasons, including climatic variations, differences in management methods used, landscape changes, and the introduction of exotic species. This variation highlights the importance of periodic surveys of species occurring in a particular region, and may explain the variations in scale insects’ frequency discussed herein, including the absence of species previously recorded from the state of São Paulo.

Table 2. Municipalities of the state of São Paulo sampled, geographic location and altitude.

Micro-regions	Municipalities	Latitude	Longitude	Height
1. Araraquara	Araraquara	21.5955'S	48.8127'W	481 m
	Gavião Peixoto	21.8388'S	48.4947'W	515 m
	Ibitinga	21.7577'S	48.8288'W	491 m
	Ibitinga	21.5955'S	48.8127'W	481 m
	Matão	21.6033'S	48.3658'W	585 m
2. Barretos	Barretos	21.5572'S	48.5677'W	530 m
3. Bauru	Bauru	22.3147'S	49.0605'W	526 m
	Duartina	22.9144'S	49.4038'W	526 m
	Ubirajara	22.5266'S	49.6630'W	499 m
4. Campinas	Campinas	22.9055'S	47.0608'W	854 m
	Holambra	22.6330'S	47.0555'W	750 m
5. Jaboticabal	Bebedouro	20.9494'S	48.4791'W	573 m
	Jaboticabal	21.2547'S	48.3222'W	605 m
	Monte Alto	21.2538'S	48.4852'W	735 m
	Taquaral	21.0719'S	48.4102'W	639 m
6. Jales	Jales	20.2688'S	50.5458'W	478 m
	Palmeira d'Oeste	20.4163'S	50.7619'W	433 m
	Urânia	20.2377'S	50.6430'W	458 m
7. Jundia	Jundia	23.1863'S	46.8850'W	761 m
8. Limeira	Cordeirópolis	21.0719'S	48.4102'W	639 m
9. Ribeirão Preto	Pontal	21.0225'S	48.0372'W	515 m
10. Rio Claro	Itirapina	22.2527'S	47.8227'W	770 m
11. São Carlos	Descalvado	21.9038'S	47.6194'W	679 m
	São Carlos	22.0175'S	47.8908'W	854 m
12. São J. do Rio Preto	Nova Aliança	21.0158'S	49.4961'W	464 m
13. Votuporanga	Votuporanga	20.4227'S	49.9727'W	525 m
Another explanation for variation in the scale insect fauna associated with citrus in different regions may be related to misidentifications, mainly due to the remarkable macro- and microscopic similarities between some of these species. For example, *Planococcus citri*, which is known to infest citrus plants in São Paulo, and *P. minor* (Maskell), which has been reported in the states of Amazonas, Espírito Santo, and Paraíba, mainly on coffee, cotton, and cassava (García Morales et al. 2016), are closely related, cryptic species. In Brazil, although *P. minor* has not been recorded on *Citrus* spp., it has been recorded on plants in this genus in other regions of the world (García Morales et al. 2016). Thus, information related to the occurrence of *P. citri* should be reviewed at the molecular level. Also, many *P. praelonga* infestations of citrus orchards in the state of Pernambuco initially were misidentified as *Insignorthezia insignis* (Browne) (Kogan 1964). These species can be separated in life mainly by the length and shape of the ovisac, which is longer and with parallel edges in *P. praelonga*, and shorter and with the posterior margin slightly convergent in *I. insignis*. However, a more obvious difference is that the dorsum in *I. insignis* is predominantly dark green, whereas in *P. praelonga* it is mostly covered by white wax plates (Kondo et al. 2012).

Another example of misidentification is that related to *Pinnaspis strachani* (Cooley), a species that often has been mistakenly identified as *Pinnaspis minor* (Maskell) (currently known as *Serenaspis minima*), which does not occur in Brazil (Claps & Wolff 2003; García Morales et al. 2016). In the current study, *P. strachani* was not found on citrus plants in São Paulo; however, *P. aspidistrae* and *U. citri* also can be confused with this species and with each other, mainly due to the similarity of the macroscopic characters of the males which, in general, are more visible and numerous than females. The male covers of these 3 species are white, felted and elongate, with 3 ridges, contrasting with the colors of the leaves, branches and stem of host plants. However, the scale covers of the adult females are oyster-shell shaped light to dark brown in *P. aspidistrae*, white to light gray in *P. strachani*, and brown to blackish brown with a longitudinal ridge in *U. citri* (Miller & Davidson 2005). According to Werner (1931), who studied the biology of *P. aspidistrae* under controlled conditions, 21 to 29.5 °C, and 60 to 70% RH, the proportion of males was 75.3% and that of females was 24.7%.

Although there are variations in the group of species of scale insects associated with citrus plants in different parts of the world, the most common species in São Paulo and the other citrus-producing areas in Brazil are those belonging to the family Diaspididae. Their predominance may be due to the difficulty of controlling them with insecticides, because in the second instar these insects begin to produce a waxy cover that protects them from contact with insecticidal sprays (Miller & Davidson 2005). In the current study, the diaspidids *S. articulans*, *P. ziziphi*, and *U. citri* were the most frequently observed scale insect species on citrus plants. According to Gravena (2005) these 3 species came to dominate the citrus area of Brazil in the 1980s. From the early 20th century to the 1970s, the most common diaspidids on
Table 3. Scale insects associated with *Citrus* spp. in the state of São Paulo, their position on the host plant, and the material examined.

Family/Species (Position on host)	Material examined
Coccidae	
C. floridensis (Br)	São Carlos, U, 15 (ix.2015, *Citrus limonia*, Peronti ALBGP col.) 1 ex., 1 slide.
C. viridis (Le, Br)	Araraquara, A, 15 (ix.2014, *C. sinensis*, LFV, Almeida LFV col.) 1 ex., 1 slide, ex. in ethanol; Bebedouro, U, 15 (ix.2015, *C. aurantifolia*, Almeida LFV col.) ex. in ethanol; Itápolis, U, 15 (ix.2015, *C. sinensis*, Almeida LFV col.) ex. in ethanol; Jaboticabal, U, 15 (ix.2015, *C. sinensis*, Almeida LFV col.) ex. in ethanol.
P. nigra (Le, Br)	Jaboticabal, U, 15 (ix.2015, *C. limonia*, Almeida LFV col.) 1 ex., 1 slide, ex. in ethanol; São Carlos, U, 25 (ix.2015, *C. limonia*, Peronti ALBGP col.) 2 ex., 2 slides, ex. in ethanol; Ubatuba, A, 15 (ix.2015, *C. sinensis*, Almeida LFV col.) ex. in ethanol.
S. coffeae (Le, Br)	Bauru, 25 (ix.2015, *C. aurantifolia*, Almeida LFV col.) ex. in ethanol; Gavião Peixoto, U, 15 (ix.2014, *C. aurantifolia*, Almeida LFV col.) ex. in ethanol; Holambra, U, 15 (ix.2015, *C. limonia*, Peronti ALBGP col.) ex. in ethanol.
Diaspididae	
A. scutiformis (Br)	Cordeirópolis, U, 15 (ix.2015, *C. sinensis*, Almeida LFV col.) 1 ex., 1 slide, + ex. in ethanol; Duartina, U, 15 (ix.2015, *C. limonia*, Almeida LFV col.) 1 ex., 1 slide, + ex. in ethanol; São Carlos, U, 15 (ix.2014, *C. aurantifolia*, Almeida LFV col.) 1 ex., 1 slide, + ex. in ethanol.
A. auranti (Le, Br)	Descalvado, A, 15 (ii.2015, *C. aurantifolia*, Palomar J col.) 5 ex., 2 slide, + ex. in ethanol; Votuporanga, A, 15 (ii.2015, *C. limonia*, Almeida LFV col.) 1 ex., 1 slide, + ex. in ethanol.
C. aonidum (Le, Fr, Br)	Barretos, U, 25 (ii.2015, *C. aurantifolia*, Almeida LFV col.) 1 ex., 1 slide, + ex. in ethanol; Descalvado, A, 15 (ii.2015, *C. sinensis*, Palomar J col.) 1 ex., 1 slide, + ex. in ethanol; Jales, A, 15 (ii.2015, *C. aurantifolia*, Almeida LFV col.) ex. in ethanol.
P. zizihi (Le, Fr)	Bauru, 25 (ix.2015, *C. aurantifolia*, Almeida LFV col.) ex. in ethanol; Bebedouro, U, 25 (ii.2015, *C. limonia*, Almeida LFV col.) ex. in ethanol; Itápolis, U, 25 (v.2015, *C. sinensis*, Almeida LFV col.) ex. in ethanol; Itapira, A, 15 (ix.2015, *C. sinensis*, Almeida LFV col.) ex. in ethanol; Jaboticabal, U, 25 (v.2015, *C. sinensis*, Almeida LFV col.) ex. in ethanol.
P. aspidistrae (Le, Fr)	São Carlos. U, 15 (ix.2015, *C. sinensis*, Almeida LFV col.) 1 ex., 1 slide, + ex. in ethanol; Ubatuba, A, 15 (ix.2015, *C. sinensis*, Almeida LFV col.) 1 ex., 1 slide, + ex. in ethanol.
P. trilobiformis (Le)	Barretos, U, 15 (ix.2015, *C. limonia*, Almeida LFV col.) ex. in ethanol; Duartina, U, 15 (ix.2015, *C. limonia*, Almeida LFV col.) 2 ex., 2 slides, ex. in ethanol; Holambra, U, 15 (ix.2015, *C. sinensis*, Almeida LFV col.) ex. in ethanol; Jaboticabal, U, 25 (v.2015, *C. sinensis*, Almeida LFV col.) ex. in ethanol.
S. articulatus (Le, Fr)	Araraquara, A, 35 (ix.2015, *C. sinensis*, Almeida LFV col.) ex. in ethanol; Campinas, U, 15 (ix.2015, *C. sinensis*, Almeida LFV col.) ex. in ethanol; Duartina, U, 15 (ix.2015, *C. sinensis*, Almeida LFV col.) ex. in ethanol; Holambra, U, 15 (ix.2015, *C. sinensis*, Almeida LFV col.) ex. in ethanol; Jaboticabal, U, 25 (v.2015, *C. sinensis*, Almeida LFV col.) ex. in ethanol; Jales, A, 15 (ix.2015, *C. aurantifolia*, Almeida LFV col.) 1 ex., 1 slide, + ex. in ethanol; Ubatuba, A, 15 (x.2015, *C. aurantifolia*, Leça AB col.) ex. in ethanol; Ubatuba, A, 15 (x.2015, *C. aurantifolia*, Almeida LFV col.) 1 ex., 1 slide, + ex. in ethanol.
U. citri (Le, Br)	Araraquara, A, 15 (ix.2015, *C. sinensis*, Almeida LFV col.) 4 ex., 3 slides, + ex. in ethanol; Barretos, U, 25 (ix.2015, *C. aurantifolia*, Almeida LFV col.) ex. in ethanol; Bebedouro, U, 25 (ix.2015, *C. aurantifolia*, Almeida LFV col.) ex. in ethanol; Campinas, U, 15 (ix.2015, *C. limonia*, Almeida LFV col.) ex. in ethanol; Congonhas, U, 15 (ix.2015, *C. sinensis*, Almeida LFV col.) ex. in ethanol; Jaboticabal, U, 25 (v.2015, *C. sinensis*, Almeida LFV col.) ex. in ethanol; Jales, A, 15 (ix.2015, *C. aurantifolia*, Almeida LFV col.) ex. in ethanol; Ubatuba, A, 15 (ix.2015, *C. aurantifolia*, Almeida LFV col.) ex. in ethanol; Ubatuba, A, 15 (ix.2015, *C. aurantifolia*, Leça AB col.) ex. in ethanol; Ubatuba, A, 15 (ix.2015, *C. aurantifolia*, Almeida LFV col.) 3 ex., 3 slides, + ex. in ethanol.

a. Position of species of scale insects on host: Le: leaf; Br: branches; Fr: fruit.
b. Collection areas: U: Urban; A: Agricultural; G: Greenhouses. Samples: S: Specimens: ex.
citrus were *C. aonidum*, *L. beckii*, and *U. citri*, and according to the same author, the first 2 species may have been successfully controlled by hymenopterous parasitoids of the genus *Aphytis* Howard (Hymenoptera: Chalcidoidea: Aphelinidae), which was introduced to Rio de Janeiro in the 1960s.

Selenaspis articulatus is found in the north, northeast, and southeast regions of Brazil but has not been recorded in southern Brazil, whereas *P. ziziphi* has been recorded only in the states of São Paulo and Goiás. *Unaspis citri* is found on citrus plants in orchards of the Northeast and the South, and is the most frequent species occurring on *Citrus sinensis* L. Osbeck in the state of Rio Grande do Sul, Brazil (Wolff et al. 2004). Because *U. citri* is primarily found on the trunk and branches, the tree’s canopy protects it from commonly used pesticides. Besides, Cassino & Rodrigues (2005) reported that *S. articulatus*

Table 3. (Continued) Scale insects associated with *Citrus* spp. in the state of São Paulo, their position on the host plant, and the material examined.

Family/Species	(Position on host)	Material examined^b
Lecanidiidae		
L. rugosa (Le, Br, Fr)	Nova Aliança, R, 45, (v 2017, vi.2017, *C. sinensis*, Peronti ALBGP col.) 15 ex., 1 slide, + ex. in ethanol	
Monophlebidae		
I. purchasi (Le, Br)	Duartina, U, 15 (ix.2015, *C. limonia*, Almeida LFV col.) ex. in ethanol; Itirapina, A, 15 (iii.2015, *C. reticulata*, Almeida LFV col.) 1 ex., 1 slide, + ex. in ethanol.	
Ortheziidae		
P. praelonga (Le, Fr, Br)	Araraquara, U, 15 (ix.2015, *C. aurantifolia*, Almeida LFV col.) 1 ex., 1 slide, + ex. in ethanol; Barretos, U, 15 (ii.2015, *C. aurantifolia*, Almeida LFV col.) ex. in ethanol; Bebedouro, U, 15 (ii.2015, *C. aurantifolia*, Almeida LFV col.) ex. in ethanol; Jaboticabal, U, 15 (vi.2015, vii.2015, viii.2015, *C. aurantifolia*, *C. limonia*, *C. sinensis*, Almeida LFV col.) 3 ex., 3 slides, + ex. in ethanol; Monte Alto, U, 35 (vii.2015, *C. aurantifolia*, *C. limonia*, Almeida LFV col.) 2 ex., 2 slides, + ex. in ethanol; Palmeira d’Oeste, A, 25 (iii.2015, *C. aurantifolia*, Almeida LFV col.) 1 ex., 1 slide, + ex. in ethanol; Pontal, U, 25 (ix.2015, *C. aurantifolia*, Teiga MZ col.) ex. in ethanol; Sorocaba, U, 25 (ix.2015, *C. aurantifolia*, Leça AB col.) ex. in ethanol; Ubirajara, A, 25 (ix.2015, *C. limonia*, Almeida LFV col.) ex. in ethanol; Votuporanga, U, 15 (iii.2015, *C. limonia*, Almeida LFV col.) 1 ex., 1 slide, + ex. in ethanol.	
Pseudococcidae		
F. virgata (Le)	Monte Alto, U, 15 (vii.2015, *C. aurantifolia*, *C. limonia*, Almeida LFV col.) 3 ex., 3 slides, + ex. in ethanol; Ubirajara, U, 15 (ix.2015, *C. sinensis*, Almeida LFV col.) 1 ex., 1 slide, + ex. in ethanol; São Carlos, U, 15 (viii.2015, *C. limonia*, Peronti ALBGP col.) 1 ex., 1 slide, + ex. in ethanol.	
L. minutus (Le)	São Carlos, U, 10S (vi.2015, vii.2015, ix.2015, *C. limonia*, Peronti ALBGP col.) 6 ex., 4 slides, + ex. in ethanol.	
P. citri (Le, Fr, Br)	Jaboticabal, G, 25 (xii.2015, *C. sinensis*, Almeida LFV col.) 2 ex., 2 slides, + ex. in ethanol.	
P. cryptus (Le)	São Carlos, U, 45 (ii.2015, vii.2015, vii.2015, *C. limonia*, Peronti ALBGP col.) 8 ex., 8 slides, + ex. in ethanol; Taquaral, A, 15 (xi.2015, *C. sinensis*, Almeida LFV col.) 1 ex., 1 slide, + ex. in ethanol; Ubirajara, U, 15 (ix.2015, *C. sinensis*, Almeida LFV col.) 1 ex., 1 slide, + ex. in ethanol.	

^a Position of species of scale insects on host: Le: leaf; Br: branches; Fr: fruit.

^b Collection areas: U: Urban; A: Agricultural; G: Greenhouses. Samples: S. Specimens: ex.
and *P. aspidistrae* were the most common scale species on *Citrus latifolia* Tanaka, *C. reticulata* L., and *C. sinensis* in Rio de Janeiro.

The armored scales (Diaspididae) that occur more frequently and in greater numbers on citrus plants also occur on most parts of them, including exposed aerial parts, such as the upper surface of leaves and the surface of fruits (McClure 1990). Because the distribution of these insects on the host plants may differ between males and females or in response to various factors such as weather, host phenology, and abundance, their spatial distributions are often quite variable between species or even among populations of the same species.

In contrast, pseudococcids were observed mainly in the most protected parts of the plants and in shaded positions. Perennial foliage-infecting mealybugs, although common in the field, are predominantly noticed in greenhouses and backyard gardens. On host plants, these insects prefer enclosed areas, such as leaf or stem axils, the calyx of the fruits, or cracks and crevices in the bark (McKenzie 1967).

In greenhouses visited in the present survey, the citrus mealybug *P. citri* was recorded in only one locality. This pseudococcid which has been considered a key pest in several citrus-producing areas around the world (Franco et al. 2004; Jacas et al. 2010; Mansour et al. 2016), has caused significant economic injury to Brazilian citrus crops (Gravena 2003). The lack of a hard waxy shell probably has contributed to the susceptibility of this species to frequent application of broad-spectrum insecticides, including those used for other groups of insects, with a consequent decrease in the population of *P. citri* in commercial citrusculture. For example, the neonicotinoid imidacloprid, which is used in Brazil to control the citrus green vector *Diaphorina citri* Kuwayama, 1908 (Psyllidea: Psyllidae) (Nakano et al. 1999), also is effective in controlling many species of scale insects, including *P. citri* (Morandi Filho et al. 2009).

Scale insects affect their host plants in various ways. On citrus plants infested by these insects, excretion of large amounts of sugary honeydew, and the consequent development of sooty mold fungi, have been associated mainly with infestations of species of Cocciidae, Pseudococcidae, and Ortheziidae (Gravena 2003, 2005; Parra et al. 2003; Kondo et al. 2012). Armored scale insects excrete little or no honeydew, and the consequent development of sooty mold fungi, has caused significant economic injury to Brazilian citrus crops (Gravena 2003). The lack of a hard waxy shell probably has contributed to the susceptibility of this species to frequent application of broad-spectrum insecticides, including those used for other groups of insects, with a consequent decrease in the population of *P. citri* in commercial citrusculture.

This article is the first comprehensive survey of scale insects associating with *Citrus* spp. in the state of São Paulo, Brazil, which produces about 23% of the world’s citrus. The information provided is important for enhancing overall control programs for these pests, and for improvement of citrusculture management and yield in Brazil.

Acknowledgments

We are grateful to Dr. Takumasa Kondo (CORPOICA, Palmita, Colombia), Dr. Lucía E. Claps (INSUE, Universidad Nacional de Tucumán, Argentina), and Dr. Gillian Watson (CFDA, Sacramento, California, USA) for reviewing the manuscript.

References Cited

AGRIANUAL. 2016. Anuário da agricultura brasileira. FNP, São Paulo, Brazil.
Franco JC, Suma P, da Silva EB, Blumberg D, Mendel Z. 2004. Management strategies of mealybug pests of citrus in Mediterranean countries. Phytopara-
sitica 32: 507–522.
Fretas AO, Carneiro H. 1949. Ocorrência e importância econômica de Orthezia insignis Douglas. Boletim da Secretaria de Agricultura, Indústria e Comércio 11: 167–123.
Garcia Morales M, Denno BD, Miller DR, Miller GL, Ben-Dov Y, Hardy NB. 2016. ScaleNet: a literature-based model of scale insect biology and systematics. http://scalenet.info (last accessed 10 Jun 2016).
Gianotti O. 1942. Duas novas espécies de coccideos do Brasil (Homoptera - Coccoidea). Arquivos do Instituto Biológico 13: 213–216.
Gomes CAR. 1942. Coccoinhas ou coccídeas do Rio Grande do Sul. Secção de Informações e Publicidade Agrícola. Porto Alegre, Rio Grande do Sul, Brazil.
Granara de Willink MC. 1990. Conociendo nuestra fauna. I. Superfamilia Coc-
coeida (Homoptera: Sternorrhyncha). Facultad de Ciencias Naturales y Instituto Miguel Lillo (Série Monográfica e Didáctica nº 6). San Miguel de Tucumán, Argentina.
Granara de Willink MC. 1999. Las cochinillas blandas de la República Argentina (Homoptera: Coccoidea: Cocccidae). Contributions on Entomology, Interna-
tional 3: 1–183.
Gravena S. 2005. Manual Prático de Manejo Ecológico de Pragas dos Citros. Jaboticabal, São Paulo, Brazil.
Gravena S, Fernandes CD, Santos AC, Pinto AS, Paiva PSB. 1992. Efeito de Bu-
meleia (Homoptera: Diaspididae) em algumas cultivares de limão. Boletim do Instituto de Pesquisa e Desenvolvimento do Citrus 13: 39–43.
Gravena S. 2018. Artrópodes invasores associados a plantas de importância econômica no estado de São Paulo. pp. 89–116 in Pinto AS [ed.], Artrópodes invasores associados a plantas de importância econômica no estado de São Paulo. FASEP, São Paulo, Brazil.
Hempel A. 1920. Descrições de coccidas novas e pouco conhecidas. Revista do Museu Paulista 12: 329–377.
Hempel A. 1900 As coccidas Brasileiras. Revista do Museu Paulista 10: 193–208.
Hempel A. 1904. Resultado do exame de diversas coleções de coccídeos enviadas ao Instituto Agronômico pelo Sr Carlos Moreira, do Museu Nacional, Rio de Janeiro. Boletim da Agricultura 1: 311–323.
Hempel A. 1912. Catálogos da fauna Brasileira editados pelo Museu Paulista. Diário Oficial São Paulo, São Paulo, Brazil.
Hempel A. 1918. Descrição de sete novas espécies de coccídios. Revista do Museu Paulista 12: 329–377.
Hempel A. 1920. Descrição de cucídios novas e pouco conhecidas. Revista do Museu Paulista 12: 329–377.
Hempel A. 1930. Notes on some Coccidae collected by Dr. Julius Melzer, at Sao Paulo, Brazil. (Rynch.). Stettiner Entomologische Zeitung 91: 214–219.
Hempel A. 1900. As coccidas Brasileiras. Revista do Museu Paulista. São Paulo 4: 365–377.
Hempel A. 1904. Resultado do exame de diversas coleções de coccídeos enviadas ao Instituto Agronômico pelo Sr Carlos Moreira, do Museu Nacional, Rio de Janeiro. Boletim da Agricultura 1: 311–323.
Ihering HV. 1897. Os piolhos vegetais (fitofágos) do Brasil. Revista do Museu Paulista 2: 385–420.
Jacas JA, Karamaouna F, Rosa Vercher R, Zappalà L. 2010. Citrus pest manage-
ment in the northern Mediterranean Basin (Spain, Italy and Greece), pp. 76: 427–435. Proceedings of the XIX Congresso Brasileiro de Entomologia, Vol. 2. Belo Horizonte, Minas Gerais, Brazil.
Parr JCP, Oliveira EH, Pinto AS. 2002. Herbicida para plantas de importância econômica e que ocorrem no Brasil. Amanhã 32: 165–174. (In Portuguese).
Kondo T, Peronti AL, Kozár F, Szita E. 2012. Los insectos escama asociados a los cultivos de frutas del sur de España. Boletín de la Sociedad Entomológica de Cataluña 47: 3–12. (In Spanish).
Robbs CF. 1947. O piolho-branco da laranjeira, uma ameaça à citricultura do Distrito Federal. Boletim do Campo 3: 1–4.
Robbs CF. 1951. Principais cochinilhas das plantas citricas. Boletim do Campo 10: 139–191. (In Portuguese).
Mansour R, Grissa-Lebdi K, Suma P, Mazzeo G, Russo A. 2016. Key scale insects of Citrus (Hemiptera: Coccoidea) and the associated parasitoid Planococcus citri (Risso, 1813) (Hemiptera: Pseu-
dococcidae) in different idades da videira. Arquivos do Instituto Biológico 76: 427–435.
Morrison H. 1952. Classification of the Ortheziidae. Supplement to “Classification of scale insects of the subfamily Ortheziinae”. United States Depart-
ment of Agriculture Technical Bulletin 1052: 1–80.
Peres F, Moreira JC, Dubois GS. 2003. Agrotóxicos, saúde e ambiente: uma in-
vestigação de cinco plantações de citros, pp. 301–307 in Anais do XII Congresso Brasileiro de Entomologia, Vol. 2. Belo Horizonte, Minas Gerais, Brazil.
Peres F, Moreira JC, Dubois GS. 2003. Agrotóxicos, saúde e ambiente: uma in-
vestigação de cinco plantações de citros, pp. 301–307 in Anais do XII Congresso Brasileiro de Entomologia, Vol. 2. Belo Horizonte, Minas Gerais, Brazil.
Peres F, Moreira JC, Dubois GS. 2003. Agrotóxicos, saúde e ambiente: uma in-
vestigação de cinco plantações de citros, pp. 301–307 in Anais do XII Congresso Brasileiro de Entomologia, Vol. 2. Belo Horizonte, Minas Gerais, Brazil.
canium perlatum (Cockerell) (Hemiptera: Coccidae) in citrus crop. Neotropical Entomology 34: 1017–1021.
Silva d’Araújo GA, Gonçalves CR, Galvão GM, Gonçalves DM. 1968. Quarto catálogo dos insetos que vivem nas plantas do Brasil. Parte II. Insetos, hospedeiros e inimigos naturais, Vol. 1. Ministerio da Cultura, Rio de Janeiro, Brazil.
Silva RA, Jordão AL. 2005. Pragas dos citros no Estado do Amapá. Revista Científica Eletrônica de Agronomia, Publicação Científica da Faculdade de Agronomia e Engenharia Florestal de Garça, FAEF (Ano IV, N. 7) http://ainfo.cnptia.embrapa.br/digital/bitstream/item/64817/1/AP-2005-pragas-citros.pdf (last accessed 5 Jun 2015).
Veiga AFSL, Arruda GP, Menezes C, Warumby JF. 1975. Primeira contribuição para o conhecimento dos inimigos naturais das pragas no estado de Pernambuco. Anais da Sociedade Entomológica Brasileira 4: 126–139.
Vernalha MM. 1953. Coccideos da coleção I.B.P.T. Arquivos de Biologia e Tecnologia, Curitiba 8: 111–304.
Vranjic JA. 1997. Effects on host plant, pp. 323–336 In Ben-Dov Y, Hodgson CJ [eds.], Soft Scale Insects: Their Biology, Natural Enemies and Control, Vol. 7A. Elsevier, Amsterdam, The Netherlands.
Williams DJ, Granara de Willink MC. 1992. Mealybugs of Central and South America. CAB International, London, United Kingdom.
Williams DJ, Watson GW. 1990. The Scale Insects of the Tropical South Pacific Region. Pt. 3: The Soft Scales (Coccidae) and Other Families. CAB International, Wallingford, United Kingdom.
Werner WHR. 1931. Observations on the life-history and control of the fern scale, Hemichionaspis aspidistrae Sign. Papers of the Michigan Academy of Science, Art, and Letters 13: 517–540.
Wyckhuys KAG, Kondo T, Herrera BV, Miller DR, Naranjo N, Hyman G. 2013. Invasion of exotic arthropods in South America’s biodiversity hotspots and agro-production systems, p. 374–400 In Peña J [ed.], Potential Invasive Pests of Agricultural Crops. CAB International, Wallingford, England.
Wolff VRS, Corseuil E. 1993. Espécies de Diaspididae (Hom.: Coccoidea) ocorrentes em plantas cítricas no Rio Grande do Sul, Brasil: I - Aspidiotinae. Biociências 1: 25–60.
Wolff VRS, Corseuil E. 1994a. Espécies de Diaspididae (Homoptera: Coccoidea) ocorrentes em plantas cítricas no Rio Grande do Sul, Brasil: II - Diaspidinae. Biociências 2: 125–148.
Wolff VRS, Corseuil E. 1994b. Espécies de Diaspididae (Homoptera: Coccoidea) ocorrentes em plantas cítricas no Rio Grande do Sul, Brasil: III - Parlatoriinae. Biociências 2: 57–68.
Wolff VRS, Pulz CE, Silva DC, Mezzomo JB, Prade CA. 2004. Inimigos naturais associados à Diaspididae (Hemiptera, Sternorrhyncha), ocorrentes em Citrus sinensis (Linnaeus) Osbeck, no Rio Grande do Sul, Brasil: I – Joaninhas e fungos entomopatogênicos. Arquivos do Instituto Biológico 71: 355–361.
Yamamoto PT. 2008. Manejo Integrado de Pragas dos Citros. CP 2 Ltda – ME, Piracicaba, São Paulo, Brazil.
Yamamoto PT, Paiva PEB. 2014. Evolução e manejo dos insetos sugadores dos citros, pp. 119–141 In Andrade DJ, Ferreira M da C, Martinelli NM [eds.], Aspectos da fitossanidade em citros. Cultura Acadêmica, Jaboticabal, São Paulo, Brazil.