LARGE DEVIATIONS FOR SPECTRAL MEASURES OF SOME SPIKED MATRICES
Nathan Noiry, Alain Rouault

To cite this version:
Nathan Noiry, Alain Rouault. LARGE DEVIATIONS FOR SPECTRAL MEASURES OF SOME SPIKED MATRICES. 2022. hal-02951170v2

HAL Id: hal-02951170
https://hal.science/hal-02951170v2
Preprint submitted on 13 Jan 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Copyright
LARGE DEVIATIONS FOR SPECTRAL MEASURES OF SOME SPIKED MATRICES

NATHAN NOIRY1 AND ALAIN ROUAULT2

Abstract. We prove large deviations principles for spectral measures of perturbed (or spiked) matrix models in the direction of an eigenvector of the perturbation. In each model under study, we provide two approaches, one of which relying on large deviations principle of unperturbed models derived in the previous work "Sum rules via large deviations" (Gamboa-Nagel-Rouault, JFA [16] 2016).

1. Introduction

Beside the empirical spectral distribution of a $n \times n$ random matrix M_n

$$\mu^{(n)} = \frac{1}{n} \sum_{k=1}^{n} \delta_{\lambda_k},$$

whose asymptotical behavior is widely known for numerous matrix models, there has been a growing interest in the study of the so-called spectral measures. For any fixed unit vector $e^{(n)} \in \mathbb{C}^n$, the spectral measure associated to the pair $(M_n, e^{(n)})$ is the probability measure $\mu^{(n)}_w$ defined by

$$\langle e^{(n)}, (M_n - z)^{-1} e^{(n)} \rangle = \int_{\mathbb{R}} \frac{d\mu_w^{(n)}(x)}{x - z} \text{ for all } z \in \mathbb{C} \setminus \mathbb{R}$$

if M_n is Hermitian or

$$\langle e^{(n)}, \frac{M_n + z}{M_n - z} e^{(n)} \rangle = \int_{0}^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} d\mu_w^{(n)}(\theta) \text{ for all } z : |z| \neq 1,$$

if M_n is unitary. It turns out that the spectral measure is a weighted version of the empirical spectral distribution:

$$\mu_w^{(n)} = \sum_{k=1}^{n} w_k \delta_{\lambda_k},$$

where $w_k = |\langle \phi_k, e^{(n)} \rangle|^2$, with ϕ_k a unit eigenvector associated to the eigenvalue λ_k and $e^{(n)}$ is assumed to be cyclic. It was studied under the name eigenvector empirical spectral distribution in [43], in the context of unperturbed random covariance matrices.

\textit{Date}: January 13, 2022.

\textit{2010 Mathematics Subject Classification.} 60F10, 60G57, 60B20, 47B36.

\textit{Key words and phrases.} Large deviations, Sum rules, Jacobi coefficients, Verblunsky coefficients, Matrix measures, Relative entropy.

1 Telecom Paris, 91120 Palaiseau France, e-mail: noirynathan@gmail.com.

2 Laboratoire de Mathématiques de Versailles, UVSQ, CNRS, Université Paris-Saclay, 78035-Versailles Cedex France, e-mail: alain.rouault@uvsq.fr.
In a series of papers \[22, 16, 17, 18, 19\] Gamboa et al. studied the random spectral measure \(\mu^{(n)}\) of a pair \((M_n, e^{(n)})\) where \(M_n\) is a random \(n \times n\) matrix self-adjoint or unitary, whose distribution is invariant by conjugation, and \(e^{(n)}\) is a fixed vector of \(\mathbb{C}^n\). When the Radon-Nikodym density of this distribution is of the form \(\exp(-n \text{Tr} V(M_n))\) and with convenient assumptions on the potential \(V\), the authors proved that the family \((\mu^{(n)}_{\omega})_{n \geq 1}\) satisfies a large deviations principle at scale \(n\) with a good rate function consisting of two parts. The first part is the Kullback entropy of the equilibrium measure \(\mu_V\) with respect to the absolute continuous part of the argument measure. The second part corresponds to the contribution of the outliers of the argument measure, namely of the eigenvalues that belong to the complement of the support of \(\mu_V\). Besides, when the spectral measure is encoded by the Jacobi recursion coefficients (or the Verblunsky coefficients in the unitary case), the rate function admits another expression in term of these coefficients, which is a simple functional in most of the classical cases. The identification of the two expressions of the rate function leads to the so called \textit{sum rules}.

The simplest Hermitian invariant models are the well known Gaussian Unitary Ensemble GUE\((n)\) and Laguerre Unitary Ensemble LUE\(_N(n)\), whose equilibrium measures are respectively given by the semi-circle law (SC) and the Marchenko-Pastur law (MP\(_\tau\)) when \(N/n \to \tau^{-1}\). In the unitary world, the simplest model is of course the CUE\((n)\) which corresponds to the Haar measure on the unitary group. The first non-trivial models are provided by the Gross-Witten measures GW\(_g(n)\) which form a family of probability measures on the unitary group, absolutely continuous with respect to the CUE\((n)\), parametrized by a real number \(g\).

In this paper, we are interested in the large deviations of the spectral measures of rank-one perturbations of the classical aforementioned models. More precisely, we will consider additive perturbations of the GUE\((n)\), multiplicative perturbations of the LUE\(_{N\tau}(n)\) and multiplicative perturbation of the Gross-Witten measures.

The first model of spiked random matrices was proposed by Johnstone \[26\], who was motivated by several statistical reasons. Among others, the largest eigenvalues (and their associated eigenvectors) of the variance-covariance matrix of some data points is at the basis of the so-called Principal Component Analysis. With the current ability to collect and store massive databases, the practitioner is often faced with a number of observations \((n)\) of the same order as their dimension \((p)\), which makes the study of large random matrices relevant, at least to understand the mechanisms underlying the behavior of the spectrum. This initial observation of Johnstone has led Baik, Ben Arous and Péché to find their famous phase transition \[3\]. Since then, a tremendous amount of work has been conducted on spiked models. we refer the reader to [11] for a survey of the afferent literature.

Let us mention that, at the level of large deviations, the extreme eigenvalues have been studied in \[5\], and the pair (extreme eigenvalue, weight) has been recently considered in \[6\]. In the present work, we establish large deviations principles for the sequences of spectral measures associated to the pairs \((M_n, e^{(n)})\), in the case where the reference vector \(e^{(n)}\) is colinear to the eigenvector of the perturbation. The corresponding good rate functions are simple perturbations of the good rate functions of the undeformed models and we refer the reader to Theorems 5.1, 5.2 and 5.3 for precise statements.
In order to derive these large deviations principles, we propose two approaches, each based on the already known LDP for classical models, and shedding different lights on the problem. The first one uses that the distributions of the spectral measures of the deformed models are tilted versions of the distributions of the spectral measures of the undeformed ones. The second approach relies on the computations of the Jacobi (resp. Verblunsky) parameters of the deformed models.

Of course, the unique minimizers of the rate functions corresponds to the limiting spectral measures of the considered models. In particular, we recover the expressions of the limiting spectral measures associated to the perturbations of the GUE(n) and the LUE_N(n), which belong to the class of free Meixner laws. In the Gaussian setting, this was first observed in [31]. In the general case, this is a consequence of the local laws [30, 28], as observed in [33]. For related papers on finite rank perturbations, see [29] and [42]; on Meixner class see [10].

A byproduct of our considerations also yields a characterization of the limiting measures as the unique minimizers of the rate functions of the unperturbed models, under a constraint on the mean.

In a last part, we propose two generalizations. The first one is concerned with perturbations of general invariant models, while the second one deals with matricial versions of the spectral measures. As an application, we derive an LDP when the reference vector is not colinear to the vector of the rank-one additive perturbation.

In all the sum rules considered, the Kullback-Leibler divergence or relative entropy between two probability measures \(\mu \) and \(\nu \) plays a major role. When the probability space is \(\mathbb{R} \) endowed with its Borel \(\sigma \)-field, it is defined by

\[
K(\mu \mid \nu) = \begin{cases}
\int_{\mathbb{R}} \log \frac{d\mu}{d\nu} \, d\mu & \text{if } \mu \text{ is absolutely continuous with respect to } \nu, \\
\infty & \text{otherwise}.
\end{cases}
\]

(1.1)

Usually, \(\nu \) is the reference measure. Here the spectral side will involve the reversed Kullback-Leibler divergence, where \(\mu \) is the reference measure and \(\nu \) is the argument.

The outline of the paper is as follows. In Section 2, we present our three random models and the main notations. Section 3 gives the encoding of the spectral measures by Jacobi parameters in the real case and Verblunsky parameters in the complex case. In Section 4, we recall the results obtained by the second author of this paper with Gamboa and Nagel about large deviations and sum rules. Section 5 contains our results, which are stated in Theorems 5.1, 5.2 and 5.3. In Section 6, we present some generalizations in Theorems 6.3, 6.4 and 6.5. Finally, in an appendix we present a technical lemma and a short panorama of measures found in the different limits, which simplifies some computations along the paper.

2. Notations

In this article, we are going to consider perturbed versions of three classical models of random matrices whose definitions are recalled here. The two first models have real eigenvalues and correspond to the Hermite and the Laguerre ensembles. The third model will have its eigenvalues on \(\mathbb{T} := \{ z \in \mathbb{C}, |z| = 1 \} \), and corresponds to the so-called Gross-Witten measure, which is absolutely continuous with respect to the Haar measure on \(U(n) \). We denote by \(\mathcal{M}_1(\mathbb{R}) \) (resp. \(\mathcal{M}_1(\mathbb{T}) \)) the set of probability measures on \(\mathbb{R} \) (resp. \(\mathbb{T} \)).
The Hermite ensemble. For all $n \geq 1$, the Gaussian Unitary Ensemble GUE(n), or Hermite ensemble, is a probability distribution on Hermitian matrices of size $n \times n$, whose density is proportional to $\exp \left(-\frac{1}{2} \mathrm{Tr} \left(X_n X_n^* \right) \right)$ with respect to the Lebesgue measure dX_n. The rescaled matrix $H_n = \frac{1}{\sqrt{n}} X_n$ has law:

$$P_0^{(n)}(dH) := \frac{1}{Z_n} \exp \left(-\frac{n}{2} \mathrm{Tr}(H H^*) \right) dH,$$

(2.1)

where Z_n is the normalization constant.

The equilibrium measure of this ensemble, i.e. the limit of the empirical spectral distribution $\mu^{(n)}_n$ is the semicircle distribution:

$$\text{SC}(dx) = \frac{1}{2\pi} \sqrt{4 - x^2} \mathbb{1}_{[-2,2]}(x) dx.$$

(2.2)

The Laguerre ensemble. For all $n \geq 1$, let $N = N(n)$ be such that $n \leq N$. Let X_n be a $n \times N$ complex matrix with i.i.d. Gaussian entries whose real and imaginary parts are i.i.d. $N(0; 1/2)$. Then, the Laguerre Unitary Ensemble LUE$_N(n)$ is the distribution of $X_n X_n^*$, whose density is proportional to $(\det XX^*)^{N-n} \exp \left(-\mathrm{Tr} XX^* \right)$.

The law of the rescaled matrix $L_n = \frac{1}{N} X_n X_n^*$ is therefore given by

$$Q_1^{(n)}(dL) := \frac{1}{Z_{n,N}} (\det L)^{N-n} \exp \left(-N \mathrm{Tr} L \right) dL.$$

(2.3)

All along this article, we will assume that $N/n \to \tau^{-1} \geq 1$ as $n \to +\infty$. The equilibrium measure of this Laguerre ensemble, is the Marchenko-Pastur distribution with parameter τ:

$$\text{MP}_\tau(dx) = \frac{\sqrt{(\tau^+ - x)(x - \tau^-)}}{2\pi \tau x} \mathbb{1}_{(\tau^-, \tau^+)}(x) dx,$$

(2.4)

where $\tau^\pm := (1 \pm \sqrt{\tau})^2$.

The Gross-Witten ensemble. Our third model has its eigenvalues on \mathbb{T} and corresponds to the Gross-Witten measure $GW_g(n)$ with parameter $g \in \mathbb{R}$. It is a probability measure on the unitary group $U(n)$ given by

$$\mathbb{R}_g^{(n)}(dU) = \frac{1}{Z_n} \exp \left[\frac{ng}{2} \mathrm{Tr} \left(U + U^* \right) \right] dU,$$

(2.5)

where dU is the Haar probability measure on $U(n)$. Let us mention that the Gross-Witten measure arises in the context of the Ulam’s problem which concerns the length of the longest increasing subsequence inside a uniform permutation $[4]$. For other details and applications of this distribution we refer to $[24]$ p. 203, $[23]$, $[41]$.

There are two different behaviors according to the value of the parameter g.

For $|g| \leq 1$ (ungapped or strongly coupled phase). In this context, the equilibrium measure GW_g is supported on \mathbb{T} and has the following density:

$$GW_g(dz) = \frac{1}{2\pi} (1 + g \cos \theta) d\theta, \quad (z = e^{i\theta}, \theta \in [-\pi, \pi)).$$

(2.6)

Note that GW_g has only nontrivial moments of order ± 1.

For $|g| > 1$, the equilibrium measure is supported by an arc. This case will not be considered here since the paper would be lengthened with involved computations.

1All the normalization constants will be denoted by the same symbol, without possible confusion since the different models are treated separately.
3. Recap on Orthogonal polynomials

In this section we recall the possible parametrization of positive measures on \mathbb{R} (resp. \mathbb{T}) by their Jacobi (resp. Verblunsky) coefficients. The latter appear through the spectral theory of orthogonal polynomials on the real line (OPRL), resp. the spectral theory of orthogonal polynomials on the unit circle (OPUC), which we briefly recall here. In the next section, we will use these parametrizations in order to recall the large deviations principles satisfied by the spectral measures of the models defined in Section 2.

3.1. OPRL. Let ρ be a positive measure on \mathbb{R} whose support is bounded but not made of a finite union of points. Let $(p_n(x))_{n \geq 0}$ be the sequence of orthonormal polynomials associated to ρ, obtained by applying the Gram-Schmidt algorithm to the basis $\{1, x, x^2, \ldots\}$, with respect to the scalar product $\langle f, g \rangle = \int f(x)g(x)\,d\rho(x)$. Then, there exists two sequences of uniformly bounded real numbers $(a_n)_{n \geq 1}$ and $(b_n)_{n \geq 1}$ such that $a_n > 0$ for all $n \geq 1$ and such that the polynomials $p_n(x)$’s satisfy the following three terms recursion:

$$\forall n \geq 1, \quad xp_n(x) = a_{n+1}p_{n+1}(x) + b_{n+1}p_n(x) + a_np_{n-1}(x).$$

(3.1)

The parameters $(a_n, b_n)_{n=1}^{\infty}$ are called the Jacobi parameters associated to ρ. We will denote

$$\text{Jac}(\rho) = (b_1, b_2, \ldots a_1, a_2, \ldots).$$

(3.2)

As it is well known (see, e.g., [37, Section 1.3]), Equation (3.1) sets up the one-to-one correspondence between uniformly bounded sequences $(a_n)_{n \geq 1}$, $(b_n)_{n \geq 1}$ and positive measures ρ on \mathbb{R} whose supports are bounded but not made of a finite union of points. Moreover, a similar argument implies that there exists a one-to-one correspondence between the set of positive measures ρ on \mathbb{R} whose supports are finite union of N distinct points and the set of sequences $(a_n)_{1 \leq n \leq N-1}$ and $(b_n)_{1 \leq n \leq N}$ such that $a_n > 0$ for all $1 \leq n \leq N - 1$. Let us mention that the Jacobi parameters of the semicircle law are given by:

$$\text{Jac}(\text{SC}) = (0, 0, \ldots 1, 1, \ldots).$$

(3.3)

it is called the “free” case in the OPRL literature.

When ρ is supported on $[0, \infty)$ the recursion coefficients can be decomposed as

$$b_k = z_{2k-2} + z_{2k-1},$$

$$a_k^2 = z_{2k-1}z_{2k},$$

(3.4)

for $k \geq 1$, where $z_k \geq 0$ and $z_0 = 0$. In fact, by Favard’s Theorem a measure ρ is supported on $[0, \infty)$ if and only if its Jacobi coefficients satisfy the decomposition (3.4). In particular, the MP$_\tau$ distribution corresponds to $z_{2n-1} = 1$ and $z_{2n} = \tau$ for all $n \geq 1$, so that

$$\text{Jac}(\text{MP}_\tau) = \left(1, \frac{1}{\sqrt{\tau}}, \frac{1+\tau}{\sqrt{\tau}}, \frac{1+\tau}{\sqrt{\tau}}, \ldots\right).$$

(3.5)

Let us finally mention that the measure ρ can be realized as the spectral measure associated to the pair (J, e_1), where J is the so-called Jacobi matrix which represents
the multiplication by x in the basis $\langle p_n(x) \rangle_{n \geq 0}$ of $L^2(\rho)$:

$$J := \begin{pmatrix} b_1 & a_1 & 0 \\ a_1 & b_2 & a_2 \\ 0 & a_2 & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots \end{pmatrix}.$$

(3.6)

3.2. OPUC

Let μ be a probability measure on \mathbb{T} whose support is not a finite set of points. Let $(\varphi_n(z))_{n \geq 0}$ be the sequence of orthonormal polynomials associated to μ, obtained by applying the Gram-Schmidt algorithm to the basis $\{1, z, z^2, \ldots\}$. Then, there exists a sequence of complex numbers $(\alpha_n)_{n \geq 0}$, called the Verblunsky coefficients associated to μ, such that $|\alpha_n| < 1$ for all $n \geq 0$ and such that the polynomials $\varphi_n(z)$’s satisfy the following recursion:

$$z \varphi_n(z) = \rho_n \varphi_{n+1}(z) + \alpha_n \varphi_n^*(z),$$

(3.7)

where

$$\varphi_n^*(z) = z^n \varphi_n(1/z) \quad \rho_n = (1 - |\alpha_n|^2)^{1/2}. \quad (3.8)$$

Equation (3.7) sets up a one-to-one correspondence between sequences $(\alpha_n)_{n \geq 0}$ with values inside $\{z, |z| < 1\}$ and the set of positive measures μ on \mathbb{T} whose supports are not finite union of points. Moreover, a similar argument implies that there exists a one-to-one correspondence between the set of positive measures μ on \mathbb{T} whose support are finite union of N distinct points and the set of sequences $(\alpha_n)_{0 \leq n \leq N-1}$ such that $|\alpha_n| < 1$ for all $0 \leq n \leq N-2$ and $|\alpha_{N-1}| = 1$.

The sequence $\alpha_n \equiv 0$ corresponds to λ_0, the normalized Lebesgue measure on \mathbb{T}, and is called “free” case in the OPUC literature.

For the Gross-Witten model, when $|g| \leq 1$, the V-coefficients are given by (see [37], p. 86):

$$\alpha_n^{GW} = \begin{cases} \frac{x_+ - x_-}{x_+^{n+2} - x_-^{n+2}} & \text{if } |g| < 1 \\ \frac{(-g)^{n+1}}{n+2} & \text{if } |g| = 1 \end{cases},$$

(3.9)

where x_\pm are roots of the equation

$$x + \frac{1}{x} = -\frac{2}{g}.$$

In particular

$$\alpha_0^{GW} = \frac{g}{2}. \quad (3.10)$$

4. Recap on LDP and sum rules

See [13, 14, 1] for background on LDP. For the self-adjoint models the sequence $(\mu_n^{(n)})$ satisfies the LDP at scale n^2 with good rate function involving the non-commutative entropy and the potential. Moreover the extremal eigenvalues satisfy the LDP at scale n with a rate function F_H and F_L^\pm, which represent effective potentials. For the unitary model studied here, the support of the limiting measure is the whole unit circle and there exists no outlier. The following results are the sum rules obtained by the second author of this paper together with Gamboa and Nagel.
4.1. OPRL.

4.1.1. LDP on the measure side. To begin with, let us give some notations. Let $S = S(\alpha^-, \alpha^+)$ be the set of all bounded positive measures μ on \mathbb{R} with

(i) $\text{supp}(\mu) = J \cup \{E_i^-\}_{i=1}^{N^-} \cup \{E_i^+\}_{i=1}^{N^+}$, where $J \subset [\alpha^-, \alpha^+]$, $N^-, N^+ \in \mathbb{N} \cup \{\infty\}$ and $E_1^- < E_2^- < \cdots < \alpha^-$ and $E_1^+ > E_2^+ > \cdots > \alpha^+$.

(ii) If N^- (resp. N^+) is infinite, then E_j^- converges towards α^- (resp. E_j^+ converges to α^+).

Such a measure μ will be written as

$$\mu = \mu|_I + \sum_{i=1}^{N^+} \gamma_i^+ \delta_{E_i^+} + \sum_{i=1}^{N^-} \gamma_i^- \delta_{E_i^-}.$$ \hfill (4.1)

Further, we define $S_1 = S_1(\alpha^-, \alpha^+) := \{\mu \in S| \mu(\mathbb{R}) = 1\}$. We endow S_1 with the weak topology and the corresponding Borel σ-algebra.

On the measure side we have

Theorem 4.1. The family of distributions of $(\mu^{(n)}_\omega)$ under GUE(n) (resp. LUE$_N(n)$) satisfies the LDP on $\mathcal{M}_1(\mathbb{R})$ equipped with the weak topology in the scale n with good rate function $I_{\text{meas}}^H(\mu)$ given by

$$I_{\text{meas}}^H(\mu) = \begin{cases} K(\text{SC} \mid \mu) + \sum_k F_H(E_k^+) & \text{if } \mu \in S_1(-2, 2), \\ \infty & \text{otherwise}, \end{cases}$$ \hfill (4.2)

where

$$F_H(x) := \begin{cases} \int_{|x|}^{\sqrt{x^2 - 4}} dt & \text{if } |x| \geq 2 \\ \infty & \text{otherwise}, \end{cases}$$ \hfill (4.3)

resp.

$$I_{\text{meas}}^L(\mu) = \begin{cases} K(\text{MP}_\tau \mid \mu) + \sum_k F_L(E_k^+) & \text{if } \mu \in S_1(\tau^-, \tau^+) \\ \infty & \text{otherwise}, \end{cases}$$ \hfill (4.4)

where

$$F_L^+(x) = \int_{\tau^+}^{x} \frac{\sqrt{(t-\tau)(t-\tau^+)} \tau}{t\tau} dt \quad \text{if } x \geq \tau^+, \hfill (4.5)$$

$$F_L^-(x) = \int_{\tau^-}^{x} \frac{\sqrt{(\tau^- - t)(\tau^+ - t)} \tau}{t\tau} dt \quad \text{if } x \leq \tau^-, \hfill (4.6)$$

$$F_L^\pm(x) = \infty \quad \text{if } x \in [\tau^-, \tau^+]. \hfill (4.7)$$

The measure SC (resp. MP$_\tau$) is the unique minimum of I_{meas}^H (resp. I_{meas}^L).

Actually, we can strenghten the topology on the set of measures. We refer to [22] for more details.

Corollary 4.2. The above LDPs are in force in the set \mathcal{M}^d_1 of probability measures with finite moments and determined by these moments, equipped with the topology \mathcal{T}^m of convergence of moments.
The weak convergence. Now let, for every

\[M \]

is a subset of \(M \).

For every

\[\mathcal{K}_M = \{ \mu \in M_1 : \mu([-M,M]^c) = 0 \}. \]

This set is compact for the \(T^m \) topology. Moreover

\[\mathbb{P}(\mu^{(n)} \in \mathcal{K}_M) \leq \mathbb{P}(|\lambda_{\max}^{(n)}| > M) \]

where \(|\lambda_{\max}^{(n)}| = \max|\lambda_k|, k = 1, \ldots, n\). But this probability is bounded by \(\exp -nh(M) \) with \(h(M) \to \infty \) as \(M \to \infty \). So, the family of distributions of \(\mu^{(n)} \) is exponentially tight in \(M_1 \) for the \(T^m \) topology. By application of Corollary 4.2.6 in [13] we get the LDP for the \(T^m \) topology. \(\square \)

4.1.2. Coefficients side - Sum rules. We start by stating the classical Killip-Simon sum rule (due to [27] and explained in [40] p.37). It gives two different expressions for the discrepancy between a measure and the semicircle law SC.

For a probability measure \(\mu \) on \(\mathbb{R} \) with recursion coefficients

\[a := (a_k)_k, b := (b_k)_k, \]

define

\[T^H_{\text{coeff}}(a, b) := \sum_{k \geq 1} \left(\frac{1}{2} b_k^2 + G(a_k^2) \right), \tag{4.8} \]

where \(G(x) = x - 1 - \log x \). It is a convex function of \((a, b)\) with values in \([0, \infty]\) which has a unique minimum at \(a_k = 1, b_k = 0 \), corresponding to the semicircle law SC (see (3.3)).

If the support of \(\mu \) is a subset of \([0, \infty)\) with \(\vec{z} = (z_k)_k \), define

\[T^L_{\text{coeff}}(\vec{z}) := \sum_{k=1}^{\infty} \left(\tau^{-1} G(z_{2k-1}) + G(\tau^{-1} z_{2k}) \right). \tag{4.9} \]

It is a convex function of \(\vec{z} \) with values in \([0, \infty]\) which has a unique minimum at \(\vec{z} = (z_k)_{k \geq 0} \) with

\[z_0 = 0, z_{2k-1} = 1, z_{2k} = \tau \ (k \geq 1). \]

which corresponds with MP.

Then we have the following theorem.

Theorem 4.3.

1. [27] Let \(J \) be a Jacobi matrix with diagonal entries \(b_k \in \mathbb{R} \) and subdiagonal entries \(a_k > 0 \) satisfying \(\sup_k a_k + \sup_k |b_k| < \infty \) and let \(\mu \) be the associated spectral measure. Then \(T^H_{\text{meas}}(\mu) = \infty \) if \(\mu \notin S_1(-2,2) \) and for \(\mu \in S_1(-2,2) \),

\[T^H_{\text{coeff}}(a, b) = T^H_{\text{meas}}(\mu) \tag{4.10} \]

where in (4.10), both sides may be infinite simultaneously.

2. [16] Assume the entries of the Jacobi matrix \(J \) satisfy the decomposition (3.4) with \(\sup_k z_k < \infty \) and let \(\mu \) be the spectral measure of \(J \). Then for all \(\tau \in (0,1) \), \(T^L(\mu) = \infty \) if \(\mu \notin S_1(\tau^-, \tau^+) \) and for \(\mu \in S_1(\tau^-, \tau^+) \),

\[T^L_{\text{coeff}}(\vec{z}) = T^L_{\text{meas}}(\mu) \tag{4.11} \]

where in (4.11), both sides may be infinite simultaneously.
Note that if \(\tau = 1 \), the support of the limit measure is \([0, 4]\), so that we have a hard edge at 0 with \(N^- = 0 \) and no contribution of outliers to the left.

The results (1) and (2) are obtained by probabilistic method ([16]) and up to now it is the only method to prove (2).

4.2. OPUC. For the unitary case we have LDPs on the measure side and some sum rules. In the following \(\mathcal{K}(\nu \mid \mu) \) denotes the Kullback-Leibler divergence or relative entropy of \(\nu \) with respect to \(\mu \) on \(\mathbb{T} \). Here, since \(\mathbb{T} \) is a compact set, it is enough to equip \(\mathcal{M}_1(\mathbb{T}) \) with the topology on \(\mathcal{M}_1(\mathbb{T}) \).

4.2.1. Measure side.

Theorem 4.4 ([17] Cor. 4.5). When \(|g| \leq 1 \), the family of distributions of \((\mu_n^{(\nu)}) \) under \(GW_g(n) \) satisfies the LDP in \(\mathcal{M}_1(\mathbb{T}) \) with speed \(n \) and rate function

\[
\mathcal{I}_{\text{meas}}^{GW}(\mu) = \mathcal{K}(GW_g \mid \mu).
\]

The measure \(GW_g \) is the unique minimum of \(\mathcal{I}^{GW} \).

4.2.2. Coefficient side - sum rules. For a probability measure \(\mu \) on \(\mathbb{T} \) we denote by \(\alpha := (\alpha_k)_k \) the sequence of its Verblunsky coefficients.

On the unit circle, the most famous sum rule is the Szegö formula:

\[
\mathcal{K}(\lambda_0 \mid \mu) = -\sum_{k \geq 0} \log(1 - |\alpha_k|^2) \quad (4.12)
\]

where, as above \(\lambda_0 \) is the normalized Lebesgue measure on \(\mathbb{T} \), whose Verblunsky coefficients are \(\alpha_k = 0 \) for every \(k \).

There are many proofs of (4.12) in [37] and a probabilistic proof in [21].

In the Gross-Witten case, we define successively, for \(-1 \leq g \leq 0 \)

\[
H(g) := 1 - \sqrt{1 - g^2} + \log \frac{1 + \sqrt{1 - g^2}}{2} \quad (4.13)
\]

and, for \(-1 \leq g \leq 0\)

\[
\mathcal{I}_{\text{coeff}}^{GW}(\alpha) := H(g) - g \left(\Re \alpha_0 + \frac{|\alpha_0|^2}{2} + \frac{1}{2} \sum_{k=1}^{\infty} |\alpha_k - \alpha_{k-1}|^2 \right) + \sum_{k=0}^{\infty} -\log(1 - |\alpha_k|^2) + g|\alpha_k|^2 \quad (4.14)
\]

and for \(0 \leq g \leq 1 \)

\[
\mathcal{I}_{\text{coeff}}^{GW}(\alpha) := H(g) + g \left(-\Re \alpha_0 + \frac{|\alpha_0|^2}{2} + \frac{1}{2} \sum_{k=1}^{\infty} |\alpha_k + \alpha_{k-1}|^2 \right) + \sum_{k=0}^{\infty} -\log(1 - |\alpha_k|^2) - g|\alpha_k|^2 \quad (4.15)
\]

The following sum rule was pointed out in [37] Theorem 2.8.1 for \(GW_{-1} \) and extended in Cor. 5.4 in [17]) for \(-1 < g < 0\). The extension to \(0 \leq g \leq 1 \) is easy if we observe that changing \(g \) into \(-g\) is equivalent to consider the pushforward of \(\mu \) by \(\rho_\pi : \theta \mapsto \theta + \pi \), which has V-coefficients \(\alpha_k(\rho_\pi \# \mu) = (-1)^{k+1} \alpha_k(\mu) \). In [9], the authors proved the LDP for the coefficient side when \(g = -1 \) by probabilistic arguments, and actually this proof may be extended easily to the case \(|g| < 1 \).
Theorem 4.5. Let μ be a probability measure on T with Verblunsky coefficients $\alpha = (\alpha_k)_{k \geq 0} \in \mathbb{D}^N$. Then, for $0 \leq |g| < 1$, we have

$$I_{\text{coeff}}^{GW}(\alpha) = I_{\text{meas}}^{GW}(\mu). \quad (4.18)$$

Remark 1. The case $|g| > 1$ is more complex and involve outliers (see [17] and [20]).

5. LDP for perturbations

We are now in position to state and prove our main results, which are concerned with large deviations of spectral measures of rank-one perturbation of the models introduced in Section 2. As advertised during the Introduction, we will always provide two proofs. The first proof, which will be called the direct proof, uses the fact that the law of the spectral measure of the deformed model is a tilted version of the law of the initial model. The second proof, which will be called the alternative proof, uses the fact that the Jacobi (resp. Verblunsky) coefficients of the deformed models are simple perturbations of the initial coefficients (in fact, only one parameter is affected).

5.1. Additive perturbation - Gaussian case. For all $n \geq 1$, let us consider

$$W_n = \frac{1}{\sqrt{n}} X_n + A_n,$$

where X_n follows the GUE(n) distribution and A_n is a rank-one Hermitian deterministic matrix of size $n \times n$. Since the Gaussian Unitary Ensemble is unitarily invariant, we can assume that $A_n = \theta uu^*$, where $\theta \in \mathbb{R}$ and where $u = e_1$ is the first vector of the canonical basis. Let $\mu^{(n)}$ be the spectral measure of the pair (W_n, u). It is known ([30] Th. 4.6, [33] Cor. 1) that, as $n \to \infty$, $\mu^{(n)}$ converges in probability towards the following probability measure:

$$\mu_{SC, \theta}(dx) = \frac{\sqrt{(4 - x^2)^+}}{2\pi(\theta^2 + 1 - \theta x)} dx + (1 - \theta^{-2})_+ \delta_{\theta, \theta^{-1}}. \quad (5.1)$$

Our first result establishes a large deviation principle for the sequence of probability measures $(\mu^{(n)})_{n \geq 1}$.

Theorem 5.1. The family $(\mu^{(n)})$ satisfies in $\mathcal{M}_1^d(\mathbb{R})$ (see Cor. 4.2) the LDP at scale n with good rate function

$$I^W(\mu) = \left\{ \begin{array}{ll} K(\text{SC} \mid \mu) - \theta m_1(\mu) + \frac{1}{2} \theta^2 + \sum_k F_H(E_k^+) & \text{if } \mu \in \mathcal{S}_1(-2, 2), \\ \infty & \text{otherwise.} \end{array} \right. \quad (5.2)$$

Moreover:

1. $\mu_{SC, \theta}$ is the unique minimizer of I^W.
2. $\mu_{SC, \theta}$ is the unique minimizer of I^H_{meas} under the constraint $m_1(\mu) = \theta$, where we recall that I^H_{meas} is defined in (4.2).

Proof. We first prove (5.2) using two different arguments.

A) Direct proof. If X_n has the GUE(n) distribution (see (2.1)), the distribution of $W = n^{-1/2}X_n + \theta uu^*$ is

$$p^{(n)}_{\theta}(dW) = \frac{1}{Z_n} \exp \left(-\frac{n}{2} \text{Tr}((W - \theta uu^*)(W^* - \theta uu^*)) \right) dW,$$
where \(Z_n \) does not depend on \(\theta \). But
\[
\text{Tr}((W - \theta uu^*)(W^* - \theta uu^*)) = \text{Tr}(WW^*) - \theta (\text{Tr}(Wuu^*) + \text{Tr}(uu^*W^*)) + \theta^2 \text{Tr}(uu^*)
\]
which allows us to rewrite
\[
\mathbb{P}_\theta^{(n)}(dW) = \exp \left(-\frac{n}{2} (\theta^2 - 2\theta u^*Wu) \right) \mathbb{P}_0^{(n)}(dW).
\]
Since \(u = e_1 \), one has
\[
\left. u^*Wu = W_{11} = m_1(\mu^{(n)}) \right\},
\]
which yields
\[
\mathbb{P}_\theta^{(n)}(\mu^{(n)} \in d\mu) = \frac{\exp n\Psi(\mu)}{\mathbb{E}_0^{(n)}(\exp n\Psi(\mu^{(n)}))} \mathbb{P}_0^{(n)}(\mu^{(n)} \in d\mu),
\]
where
\[
\Psi(\mu) = \theta m_1(\mu)
\]
and
\[
\mathbb{E}_0^{(n)}(\exp n\Psi(\mu^{(n)})) = \exp \frac{n\theta^2}{2}. \tag{5.3}
\]
We may apply Varadhan’s lemma in view of:
- the continuity of \(\Psi \) with respect to \(\mathcal{M}_1 \)
- the uniform exponential integrability condition. Indeed, (5.3) implies, for every \(\gamma \)
\[
\frac{1}{n} \log \mathbb{E}_0^{(n)}[\exp \gamma nm_1(\mu^{(n)})] = \frac{\gamma^2}{2}.
\]
From (5.3), Varadhan’s integral lemma ([13] Th 4.3.1) gives
\[
\frac{\theta^2}{2} = -\inf_{\mu} \mathcal{I}^{H}_{\text{meas}}(\mu) - \Psi(\mu) \tag{5.4}
\]
and following [14, Exercise 2.1.24] we get the rate function:
\[
\mathcal{I}^{H}_{\text{meas}} - \Psi - \inf_{\mu} \mathcal{I}^{H}_{\text{meas}}(\mu) - \Psi(\mu) = \mathcal{I}^{H}_{\text{meas}} - \Psi + \frac{\theta^2}{2}. \tag{5.5}
\]

B) Alternative proof. Fix \(n \geq 1 \). A consequence of the tridiagonal representation of the GUE(\(n \)) of Dumitriu and Edelman ([1] Sec. 4.5) is that \(\mu^{(n)} \) is the spectral measure of the pair \((J_n, e_1) \), where \(J_n \) is the following random Jacobi matrix:
\[
J_n \sim \begin{pmatrix}
\mathcal{N}(0, \frac{1}{n}) + \theta & \frac{1}{\sqrt{n}} \chi_2(n-1) & \mathcal{N}(0, \frac{1}{n}) & \ldots \\
\frac{1}{\sqrt{n}} \chi_2(n-1) & \mathcal{N}(0, \frac{1}{n}) & \frac{1}{\sqrt{n}} \chi_2(n-2) & \ldots \\
\mathcal{N}(0, \frac{1}{n}) & \frac{1}{\sqrt{n}} \chi_2(n-2) & \mathcal{N}(0, \frac{1}{n}) & \ldots \\
& \ldots & \ldots & \ldots \\
& & & \mathcal{N}(0, \frac{1}{n}) & \frac{1}{\sqrt{n}} \chi_2 & \ldots & \frac{1}{\sqrt{n}} \chi_2
\end{pmatrix}.
\]
Here, the matrix \(J_n \) is symmetric and up to this symmetry, its coefficients are independent. Note that this corresponds to the usual tridiagonalisation of the GUE(\(n \)) except for the addition of the parameter \(\theta \) to the \((1,1)\) coefficient.

Fix \(\mu \) a measure on \(\mathbb{R} \) with Jacobi parameters \(a = (a_n)_{n \geq 1} \) and \(b = (b_n)_{n \geq 1} \).

Then, using a projective method and the independence of the coefficients of \(J_n \), as
in [22] we see that \((\mu_n^{(n)}) \) satisfies the LDP in \(\mathcal{M}_d \) equipped with \(\mathcal{T}_n \), with the rate function given by

\[
\mathcal{I}_\text{coeff}(a, b) = \frac{1}{2} (b_1 - \theta)^2 + \frac{1}{2} \sum_{k \geq 2} b_k^2 + \sum_{k \geq 1} G(a_k^2) \tag{5.6}
\]

But, by Theorem 4.3,

\[
\mathcal{I}_\text{coeff}(a, b) = \mathcal{I}_\text{meas}(\mu) = K(\text{SC} | \mu) + \sum_k \mathcal{F}(E_k^\pm).
\]

Besides, \(b_1 = m_1(\mu) \), so that the random measure \(\mu_n^{(n)} \) satisfies the LDP at scale \(n \) with rate function

\[
\mathcal{I}_w(\mu) = \mathcal{I}_\text{coeff}(a, b) = K(\text{SC} | \mu) - \theta m_1(\mu) + \frac{1}{2} \theta^2 + \sum_k \mathcal{F}(E_k^\pm). \tag{5.8}
\]

We now turn to the proofs of (1) and (2).

(1) The infimum can be looked from the coefficient side, i.e. from (5.8) and (5.6), and is given by:

\[
\text{Jac}(\text{argmin } \mathcal{I}_w) = \left(\theta, 0, 0, \ldots, 1, 1, \ldots \right).
\]

Using section 7.2, we deduce that \(\text{Jac}(\text{argmin } \mathcal{I}_w) = \text{Jac}(\tilde{\mu}_{-\theta,0}) \), namely \(\text{argmin } \mathcal{I}_w = \mu_{\text{SC},\theta} \).

(2) If \(m_1(\mu) = \theta \), we deduce from (5.7) and the sum rules that

\[
\mathcal{I}_\text{meas}(\mu) = \mathcal{I}_\text{meas}(\mu) + \frac{\theta^2}{2} \geq \frac{\theta^2}{2},
\]

with equality if and only if \(\mu = \mu_{\text{SC},\theta} \).

\[\square \]

Remarks. (1) Let us first observe that we can check by hands that the minimum of \(\mathcal{I}_w \) is zero. Indeed, we have

\[
\mathcal{F}_H(\theta + \theta^{-1}) = \frac{\theta^2 - \theta^{-2}}{2} - 2 \log \theta
\]

and besides \(\mathcal{F}_H \), which is the rate function of the top eigenvalue, is also given by ([1] Th. 2.6.6
\[^2\])

\[
\mathcal{F}_H(\theta + x^{-1}) = \frac{(\theta + x^{-1})^2}{2} - 2 \int \log(\theta + x^{-1} - x) \text{SC}(dx) - 1,
\]

Since

\[
K(\text{SC} | \mu_{\text{SC},\theta}) = \int \log(1 + \theta^2 - \theta x) \text{SC}(dx)
\]

\[
= \log \theta + \int \log(\theta + x^{-1} - x) \text{SC}(dx),
\]

\[^2\text{There is a mistake in [1] p.81 see http://www.wisdom.weizmann.ac.il/zeitouni/cormat.pdf} \]
we deduce that $\mathcal{K}(SC \mid \mu_{SC,\theta}) + \mathcal{F}(\theta + \theta^{-1}) = \frac{\theta^2}{2}$ and:

$$\mathcal{I}_{\text{meas}}(\mu_{SC,\theta}) = \mathcal{K}(SC \mid \mu_{SC,\theta}) + \mathcal{F}(\theta + \theta^{-1}) - \theta m_1(\mu_{SC,\theta}) + \frac{\theta^2}{2}$$

$$= \frac{\theta^2}{2} - \theta^2 + \frac{\theta^2}{2} = 0.$$

(2) The fact that $\mu_{SC,\theta}$ is the only minimizer of \mathcal{I}^W allows to retrieve the convergence of $\mu^{(n)}_\vartheta$ towards $\mu_{\vartheta,SC}$, and actually to strengthen the convergence in probability into an almost sure convergence.

5.2. Multiplicative perturbation. For all $n \geq 1$, let us consider $S_n = \Sigma^{1/2} L_n \Sigma^{1/2}$

where $\Sigma_n = \text{Diag}(\theta,1,\ldots)$ with $\theta > 0$. It is known ([28] Prop. 6.1) that the sequence of measure $(\mu^{(n)}_\vartheta)_{n \geq 1}$ has a limit. An explicit computation of the limiting measure $\mu_{L,\vartheta}$ can be performed as in [33], and we get:

$$\mu_{L,\vartheta}(dx) = \sqrt{\frac{4\tau - (x - (1 + \tau))^2_+}{2\pi x ((\theta + \tau - 1) + x(\theta^{-1} - 1))}} dx + u\delta_0 + v\delta_w, \quad (5.9)$$

with

$$u = \frac{(\tau - 1)_+}{\theta + \tau - 1}, \quad v = \frac{\tau ((\theta - 1)^2 - \tau)_+}{(\theta - 1)(\theta + \tau - 1)}, \quad w = -\frac{\theta + \tau - 1}{\theta^{-1} - 1}.$$

Here, we will restrict the setting to the case where $n/N \rightarrow \tau \leq 1$, that is to the case where $\mu_{L,\vartheta}$ does not have a mass at zero. In this context, we obtain a large deviation principle for the family of spectral measures $(\mu^{(n)}_\vartheta)_{n \geq 1}$ associated to the pairs (S_n, e_1).

Theorem 5.2. The family $(\mu^{(n)}_\vartheta)$ satisfies the LDP at scale n in \mathcal{M}_1^d with good rate function

$$\mathcal{I}^S(\mu) = \begin{cases} \mathcal{K}(\mathcal{M}_1^d \mid \mu) + \frac{\theta^{-1}}{\tau} m_1(\mu) + \frac{1}{\tau} \log \theta + \sum_k \mathcal{F}_L^k(E_k^\pm) & \text{if } \mu \in S_1(\tau^-, \tau^+) \\ \infty & \text{otherwise} \end{cases} \quad (5.10)$$

Moreover,

1. $\mu_{L,\vartheta}$ is the unique minimizer of \mathcal{I}^S,
2. $\mu_{L,\vartheta}$ is the unique minimizer of \mathcal{I}^L under the constraint $m_1(\mu) = \theta$.

Proof. We first prove two proofs of (5.10).

A) Direct proof. Let L_n be a random $n \times n$ matrix following the LUE$_N(n)$ distribution (see (2.3)), and Σ_n a Hermitian positive $n \times n$ matrix. Then, the distribution of $S_n = \Sigma^{1/2} L_n \Sigma^{1/2}$ is

$$Q^{(n)}_\theta(dS) = \frac{1}{Z_{n,N}} (\det S)^{N-n}(\det \Sigma)^{-N} \exp \left(-N \text{Tr} \Sigma^{-1} S \right) dS,$$

This is the same measure as $\mu_{\mathcal{M}_1^d, \tau^{-1}, \theta}$ in [33] up to a little change, due to the convention on the definition of sample covariance matrix.
where $Z_{n,N}$ does not depend on θ. In our case, $N/n \to \tau^{-1}$ and $\Sigma_n = \text{Diag}(\theta, 1, \ldots, 1)$, so that we have $\det \Sigma_n = \theta$ and:

$$\text{Tr}(S_n \Sigma_n^{-1}) = \theta^{-1}(S_n)_{11} + \sum_{k \geq 2} (S_n)_{kk} = (\theta^{-1} - 1)(S_n)_{11} + \text{Tr} S_n,$$

which allows us to rewrite,

$$Q^{(n)}_{\theta}(dS) = \theta^{-n\tau^{-1}} \exp \left(n\tau^{-1}(1 - \theta^{-1})S_{11} \right) Q^{(n)}_{\theta}(dS).$$

Moreover, since $\mu^{(n)}_\theta$ is the spectral measure associated to the pair (S_n, e_1), we have $S_{11} = m_1(\mu^{(n)}_\theta)$, which implies that

$$Q^{(n)}_{\theta}(\mu^{(n)}_\theta \in d\mu) = \frac{\exp n\Phi(\mu)}{E^{(n)}_1(\exp n\Phi(\mu^{(n)}_\theta)))} Q^{(n)}_{\theta}(\mu^{(n)}_\theta \in d\mu),$$

where

$$\Phi(\mu) = \tau^{-1}(1 - \theta^{-1})m_1(\mu)$$

and

$$E^{(n)}_1(\exp n\Phi(\mu^{(n)}_\theta))) = \theta^{n\tau^{-1}}.$$ (5.11)

In order to apply Varadhan’s Lemma, let us check the uniform exponential integrability condition. From (5.11) we have

$$E^{(n)}(\exp \varphi n\tau^{-1} m_1(\mu^{(n)}_\theta))) = (1 - \varphi)^{-n\tau^{-1}},$$ (5.12)

for all $\varphi < 1$. Therefore

$$\frac{1}{n} \log E^{(n)}_1(\exp \gamma n\Phi(\mu^{(n)}_\theta))) = -\tau^{-1} \log(1 - \gamma (1 - \theta^{-1})),$$

as soon as $\gamma (1 - \theta^{-1}) < 1$. This means that we can choose any $\gamma > 1$ if $\theta \leq 1$ and $\gamma \in (1, (1 - \theta^{-1})^{-1})$ if $\theta > 1$ to satisfy the uniform integrability condition. Exactly as in the above section, Varadhan’s lemma and (5.12) give (by taking $\gamma = 1$):

$$\tau^{-1} \log \theta = -\inf_{\mu} \{I^{L\text{meas}}(\mu) - \Phi(\mu)\}$$ (5.13)

and the rate function is

$$I^{L\text{meas}} - \Phi - \inf_{\mu} \{I^{L\text{meas}}(\mu) - \Phi(\mu)\} = I^{L\text{meas}} - \Phi + \tau^{-1} \log \theta.$$ (5.14)

B) Alternative proof.

Fix $n \geq 1$. A consequence of the tridiagonal representation of the LUE(n) of Dumitriu and Edelman is that $\mu^{(n)}_\theta$ is the spectral measure of the pair (J_n, e_1), where $J_n = B_n B_n^*$ with:

$$B_n \sim \frac{1}{\sqrt{2N}} \begin{pmatrix} \sqrt{\theta} \chi_{2N} & \chi_{2(n-1)} & \chi_{2(N-1)} \\ \chi_{2(n-1)} & \chi_{2(n-2)} & \chi_{2(N-2)} \\ \vdots & \vdots & \ddots \\ \chi_{2} & \chi_{2(N-n+1)} \end{pmatrix}.$$

Here, the matrix B_n is bidiagonal and its coefficients are independent. Note that this corresponds to the usual bidiagonal matrix of the LUE$_N(n)$ except for the
addition of the multiplicative factor $\sqrt{\theta}$ to the $(1, 1)$ coefficient. Using the parameters system (3.4), we deduce that the transformation $L_n \mapsto S_n$ changes the first coefficient z_1 into $z'_1 = \theta z_1$ and does not change the other parameters. Since the rate function for z_1 is $\tau^{-1}G(z)$ with $G(z) = z - 1 - \log z$, the rate function for θz_1 is $\tau^{-1}G(z/\theta)$. Let μ be a positive measure on $[0, \infty)$ with γ-parameters $(z_i)_{i \geq 0}$.

Then, using a projective method and the independence of the coefficients of J_n as in [22], we see that the LDP on the coefficient side is given by:

$$I_{\text{coeff}}^S(z) = \tau^{-1} \left[G(z_1/\theta) - G(z_1) \right] + I_{\text{coeff}}^L(z),$$

But by the sum rule (4.11),

$$I_{\text{coeff}}^L(z) = K(MP \mid \mu) + \sum_k F_L(E_k^\pm). \quad (5.15)$$

Moreover, $z_1 = b_1 = m_1(\mu)$, so that our random measure satisfies the LDP with rate function

$$I_{\text{meas}}(\mu) = K(MP \mid \mu) + \tau^{-1}(\theta^{-1} - 1)m_1(\mu) + \tau^{-1}\log \theta + \sum_k F_L(E_k^\pm). \quad (5.16)$$

We now turn to the proof of (1) and (2).

(1) The minimizer of I^S can be looked from the coefficient side and is given by the following γ-parameters:

$$z_1 = \theta, z_{2k-1} = 1, \ k \geq 2, \ z_{2k} = \tau, \ k \geq 1. \quad (5.17)$$

Owing to (3.4), it corresponds to the following Jacobi coefficients:

$$\text{Jac} \left(\arg \min W \right) = \left(\frac{\theta}{\sqrt{\theta \tau}}, \frac{1 + \tau}{\sqrt{\tau}}, \frac{1 + \tau}{\sqrt{\tau}}, \cdots \right). \quad (5.18)$$

By Lemma 7.1, we deduce that

$$\text{Jac} \left(T_{\sqrt{\tau}, \theta} \left(\arg \min W \right) \right) = \text{Jac} \left(\mu_{b, c} \right) \quad (5.19)$$

where

$$b = \frac{1 + \tau - \theta}{\sqrt{\theta \tau}}, \quad c = \frac{1 - \theta}{\theta}. \quad (5.20)$$

Coming back to our distribution, we find the expression given in (5.9) for $\mu_{L, \theta}$. For $\theta > 1$ (resp. $\theta < 1$), it is the free binomial (resp. free Pascal) distribution (see Section 7.2).

(2) The condition $m_1(\mu) = \theta$ rewrites $z_1 = \theta$. Combining (5.15) and the sum rule (4.11), we deduce that

$$I^L(\mu) = I^S(\mu) + \tau^{-1}(\theta - 1 - \log \theta) \geq \tau^{-1}(\theta - 1 - \log \theta),$$

with equality if and only if $\mu = \mu_{L, \theta}$. \qed
5.3. Perturbations of Unitary Matrices. Up to our knowledge, there is only one type of perturbation of unitary matrices which was studied in relation with Verblunsky (for short “V”) coefficients. If $U_n \in \mathbb{U}(n)$ and $e = e_1$ is cyclic, let as usual $(\alpha_k)_{k \geq 0}$ be the V-coefficients of the pair (U_n, e). Now, for any fixed element $e^{i\varphi} \in \mathbb{T}$, we define

$$W_n = U_n Q_n \ , \ \text{with} \ \ Q_n = I_n + (e^{i\varphi} - 1)e \langle e, \cdot \rangle .$$

Such a rank-one perturbation has been considered in Sections 1.3.9, 1.4.16, 3.2, and 4.5 of [37], 10.1, A.1.D and A.2.D of [38], see also [39].

If μ is the spectral measure of the pair (U_n, e) let us denote by $\tau_{e^{i\varphi}} \mu$ the spectral measure of the pair (W_n, e). A usual tool for the study of a measure μ on \mathbb{T} is its Carathéodory transform, which is the analog of the Stieltjes transform, defined by

$$F_\mu(z) = \int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} d\mu(\theta).$$

Conversely, if $d\mu = w(\theta) d\lambda_0(\theta) + d\mu_s$, then

$$w(\theta) = \lim_{r \uparrow 1} \Re F_\mu(re^{i\theta})$$

and μ_s is supported by $\{ \theta : \lim_{r \uparrow 1} \Re F_\mu(re^{i\theta}) = \infty \}$ (see [37] (1.3.31)).

The mapping $(\mu \mapsto \tau_{e^{i\varphi}} \mu)$ gives at the level of Carathéodory transform :

$$F_{\tau_{e^{i\varphi}} \mu} = \frac{(1 - e^{-i\varphi}) + (1 + e^{-i\varphi})F}{(1 + e^{-i\varphi}) + (1 - e^{-i\varphi})F},$$

(see [37] (1.3.90)), which implies, by the Schur recursion, the remarkable relation:

$$\alpha_k(\tau_{e^{i\varphi}} \mu) = e^{-i\varphi} \alpha_k(\mu) , \ (k \geq 0).$$

When φ is varying, it generates the so-called Aleksandrov family of measures. In particular, if $\mathbb{R}_\varphi^{(n)}$ (resp. $\mathbb{E}_\varphi^{(n)}$) denotes the distribution of W_n (resp. U_n), we have

$$\mathbb{R}_\varphi^{(n)}(\mu_{\varphi}^{(n)} \in d\mu) = \mathbb{E}_\varphi^{(n)} \left(\mu_{\varphi}^{(n)} \in d(\tau_{e^{i\varphi}} \mu) \right) .$$

Here is our theorem which establishes a large deviation principle for the sequence of spectral measures associated to the pairs (W_n, e).

Theorem 5.3. Assume $|g| \leq 1$.

1. The family of distribution of random measures $(\mu_{\varphi}^{(n)})$ under $GW_g(n)$ satisfies the LDP on $M_1(\mathbb{T})$, at scale n with good rate function

$$\mathcal{I}^W(\mu) = \mathcal{I}^{GW}(\mu) - g \Re \left((e^{-i\varphi} - 1)m_1(\mu) \right) ,$$

where \mathcal{I}^{GW} has been defined in Theorem 4.4.

2. The unique minimizer of \mathcal{I}^W is $\mu^\varphi = \tau_{e^{i\varphi}} (GW_g)$ and

$$d\mu^\varphi(\theta) = \frac{1}{2\pi} \frac{1 + g \cos \theta}{1 - 2g \sin \frac{\theta}{2} \sin \left(\theta - \frac{\varphi}{2} \right) + g^2 \sin^2 \frac{\theta}{2}} \ d\theta .$$

3. μ^φ is the unique minimizer of $\mathcal{I}^{GW}_{\text{meas}}$ under the constraint $m_1(\mu) = \frac{\pi}{2} e^{i\varphi}$.

Proof. (1) A) Direct proof.

From (2.5) we deduce

$$\mathbb{R}_\varphi^{(n)}(dW) = \frac{1}{Z_n} \exp \frac{ng}{2} \text{Tr}(WQ_n^{-1} + (WQ_n^{-1})^*) \ dW ,$$

(5.29)
where Z_n does not depend on φ. But
\[
\text{Tr} (WQ_n^{-1}) = \text{Tr} W + (e^{-i\varphi} - 1)W_{11}, \quad \text{Tr} (WQ_n^{-1})^* = \text{Tr} W^* + (e^{i\varphi} - 1)\bar{W}_{11}
\]
so that
\[
\mathbb{R}^{(n)}(dW) = \exp ng \{ (e^{-i\varphi} - 1)W_{11} \} \mathbb{R}_0^{(n)}(dW)
\]
and since $W_{11} = m_1(\mu_\varphi^{(n)})$ we get
\[
\mathbb{R}_\varphi^{(n)}(\mu_\varphi^{(n)} \in d\mu) = \exp ng \Re (e^{-i\varphi} - 1)m_1(\mu) \mathbb{R}_0^{(n)}(\mu_\varphi^{(n)} \in d\mu).
\]
This yields (1) by application of Varadhan’s lemma without integrability condition since $m_1(\mu_\varphi^{(n)}) \in \mathbb{D}$. Notice that due to the form of (5.32), there is no constant term in the rate function.

(1) B) An alternative proof
Under $\mathcal{G}W_g(n)$, the rate function for the LDP of the V-coefficients is $\mathcal{I}_{\text{coeff}}^{GW}$ given by (4.14). After a pushing forward by (5.26) the new rate function on the coefficient side becomes
\[
\mathcal{I}_{\text{coeff}}^{W}(\alpha) = \mathcal{I}_{\text{coeff}}^{GW}(e^{i\varphi}\alpha) = \mathcal{I}_{\text{coeff}}^{GW}(\alpha) - g \Re (\alpha_0(e^{i\varphi} - 1)) \text{ .} \tag{5.33}
\]
Coming back to the sum rule and using $\alpha_0(\mu) = \bar{m}_1(\mu)$ we get (5.27).

(2) From (5.26), we have
\[
\mathcal{I}^{W}(\mu) = \mathcal{I}_{\text{coeff}}^{GW}(\tau_{e^{-i\varphi}}(\mu)) \text{ .} \tag{5.34}
\]
Therefore, the rate function \mathcal{I}^{W} has a unique minimum at
\[
\mu^\varphi := \tau_{e^{-i\varphi}}(\mathcal{G}W_g) \text{ .} \tag{5.35}
\]

The Caratheodory transform of the equilibrium measure is ([37] p.86)
\[
F(z) = 1 + g z
\]
so that, using (5.35), (5.24) and (5.23), we find the density (5.28). Moreover there is no extra mass since F^φ has no pole on \mathbb{T}.

We could also have applied formula (3.2.96) in [37], which states that if $\mu = w(\theta)d\lambda_0(\theta) + d\mu_\phi(\theta)$, then the density \tilde{w} of μ^φ is given by
\[
\tilde{w}(\theta) = \frac{w(\theta)}{|\cos \frac{\varphi}{2} + i \sin \frac{\varphi}{2} F(e^{i\theta})|^2} \text{ .} \tag{5.36}
\]

(3) If $m_1(\mu) = e^{i\varphi}g/2$, we deduce from (5.27) that
\[
\mathcal{I}_{\text{coeff}}^{GW}(\mu) = \mathcal{K}(GW_g \mid \mu) = \mathcal{I}^{W}(\mu) + \frac{g^2}{2}(1 - \cos \varphi) \geq \frac{g^2}{2}(1 - \cos \phi),
\]
with equality if and only if $\mu = \mu^\varphi$.

6. Generalizations

In this section, we discuss two possible generalizations of our considerations. The first one concerns the rank-one perturbations of invariant models with general potentials and the second one deals with a matricial version of our results. In each case, for the sake of clarity and to avoid numerous repetitions, we will only treat in details the Hermitian setting.
6.1. General potential.

Additive perturbation. Let \(V \) be a convex polynomial potential of even degree \(2d \) with positive leading coefficient:

\[
V(x) = a_{2d}x^{2d} + \cdots , \quad a_{2d} > 0 .
\]

(6.1)

Let \(\mathbb{P}_0^{(n)} \) be the invariant measure on the set of \(n \times n \) Hermitian matrices given by:

\[
\mathbb{P}_0^{(n)}(dH) = \frac{1}{Z_n} \exp \left(-n \Tr V(H) \right) dH .
\]

(6.2)

Under our assumptions on \(V \), this model has a unique equilibrium measure \(\mu_V \), which is the almost-sure limit of the empirical spectral measures. Moreover, \(\mu_V \) is supported by a single interval \([a_V, b_V] \) and has a density of the form:

\[
\mu_V(dx) = \frac{1}{\pi r(x)} \sqrt{(b_V - x)(x - a_V)} 1_{[a_V, b_V]}(x) dx ,
\]

where \(r \) is a polynomial of degree \(2d - 2 \) with nonreal zeros (see for example Proposition 3.1 and Equation (2.8) of [25]).

As in Section 5.1, we are interested in the following additive rank-one perturbation of the model:

\[
W_n := H_n + \theta e_1 e_1^T , \quad H_n \sim \mathbb{P}_0^{(n)} .
\]

Denoting \(\pi = e_1 e_1^T \), we see from (6.2) that the distribution of random matrix \(W_n \) is:

\[
\mathbb{P}_\theta^{(n)}(dW) := \exp \left(-n \left[\Tr V(W - \theta \pi) - \Tr V(W) \right] \right) \mathbb{P}_0^{(n)}(dW) .
\]

(6.3)

Let \(\mu_V^{(n)} \) be the spectral measure associated to the pair \((W_n, e_1)\). In [16] it is proved that under the above assumptions, the sequence \((\mu_V^{(n)}) \) satisfies the LDP with good rate function

\[
\mathcal{J}(\mu) = K(\mu_V | \mu) + \sum_k \mathcal{F}_V(E_k^\pm)
\]

where

\[
\mathcal{F}_V(x) = \begin{cases}
\int_{x}^{b_V} r(t) \sqrt{(t-b_V)(t-a_V)} \ dt & \text{if } x \geq b_V \\
\int_{x}^{b_V} r(t) \sqrt{(b_V-t)(a_V-t)} \ dt & \text{if } x \leq a_V
\end{cases}
\]

(6.4)

(see [19] Sec. 3.2).

In order to compute the distribution of \(\mu_V^{(n)} \), we need the following lemma, whose proof is postponed to the end of this section.

Lemma 6.1. There exists a polynomial \(Q_V(\theta, x_1, \ldots, x_{2d-1}) \) in \(2d \) variables such that, for all Hermitian matrix \(M \),

\[
\Tr V(M - \theta \pi) - \Tr V(M) = Q_V(\theta, M_{11}, (M^2)_{11}, \ldots, (M^{2d-1})_{11}) ,
\]

and such that each monomial with non zero coefficient \(\theta^{r_0}x_1^{r_1} \cdots x_{2d-1}^{r_{2d-1}} \) satisfies

\[
r_0 + \sum_{k=1}^{2d-1} kr_k \leq 2d , \quad r_0 \geq 1, r_k \geq 0 , \quad k = 1, \ldots, 2d - 1.
\]

(6.5)

Remark 2. Although a concise formula for \(Q_V \) in function of \(V \) seems out of reach, let us give two simple examples:
Lemma 6.2. If $V(x) = x^2$, $Q_V = \theta^2 - 2\theta M_{11}$, and $V(x) = x^4$, $Q_V = \theta^4 - 4\theta^3(M^3)_{11} + 4\theta^2(M^2)_{11} + 2\theta^2(M_{11})^2 - 4\theta(M^3)_{11}$.

With the notation of Lemma 6.1, we have that
\[P_{\theta}^{(n)}(\mu_{\theta}^{(n)} \in d\mu) = \exp \left(-nQ_V(\theta, m_1(\mu_{\theta}^{(n)}), \ldots, m_{2d-1}(\mu_{\theta}^{(n)})) \right) P_{\theta}^{(0)}(\mu_{\theta}^{(n)} \in d\mu), \]
where we recall that $m_i(\mu_{\theta}^{(n)})$ stands for the i-th moment of $\mu_{\theta}^{(n)}$. To study the asymptotical behavior of $\mu_{\theta}^{(n)}$ we also need the following observation, whose proof is postponed to the end of this section.

Lemma 6.2. If V is a convex polynomial of even degree, then for all $\gamma > 0$,
\[\sup_n \frac{1}{n} \log \mathbb{E} \exp \left(-n\gamma (\mathbb{Tr} V(M - \theta \pi) - \mathbb{Tr} V(M)) \right) < \infty \]
(6.6)

This exponential integrability allows an application of Varadhan’s Lemma, which gives the following result.

Theorem 6.3. The sequence of probability measures $(\mu_{\theta}^{(n)})_{n \geq 1}$ satisfies a large deviations principle at scale n with good rate function:
\[I^W(\mu) = J(\mu) - \inf_\nu J(\nu), \]
(6.7)

where
\[J(\mu) := K(\mu_V | \mu) - Q_V(\theta, m_1(\mu), \ldots, m_{2d-1}(\mu)) + \sum_k F_V(E_k^{11}). \]
(6.8)

We now turn to the proofs of Lemmas 6.1 and 6.2.

Proof of Lemma 6.1. It is enough to check the assertion when V a monomial $V(x) = cx^s$ with $s \leq 2d$. The matrix $(M - \theta \pi)^r$ is the sum of 2^s products of elements which are M or $\theta \pi$. Since π is a projection, $\pi^k = \pi$ for every $k \geq 1$, hence the products involved in $(M + \theta \pi)^r - M^r$ are of the form
\begin{align*}
(1) \quad & \theta^r \pi M^{a_1} \pi \cdots \pi M^{a_s} \\
(2) \quad & \theta^r \pi M^{a_1} \pi \cdots \pi M^{a_s} \\
(3) \quad & \theta^r M^{a_1} \pi \cdots \pi M^{a_s}, \\
(4) \quad & \theta^r M^{a_1} \pi \cdots \pi M^{a_s} \pi,
\end{align*}
with $r_0 + a_1 + \cdots + a_i = s$ and $r_0, a_1, \ldots, a_i \geq 1$. Since $\pi A \pi = (A_{11})\pi$, the trace of the first expression is exactly $\theta^r (M^{a_1}_{11}) \cdots (M^{a_s}_{11})$. But there are possible repetitions in the indices a so that the contribution in the polynomial Q_V is of the form $\theta^r x_1^{r_0} \cdots x_{s-1}^{r_0} + \theta^r x_1^{r_0} \cdots x_{s-1}^{r_0}$ with $r_0 + \sum_{k=1}^{s-1} kr_k = s$ and $r_0 \geq 1, r_k \geq 0, k = 1, \ldots, s - 1$.

The three other expressions can be reduced to the first type, using
\begin{itemize}
 \item $\mathbb{Tr} (AB) = \mathbb{Tr} (BA)$
 \item $\mathbb{Tr} (\pi A) = \mathbb{Tr} (A \pi) = \mathbb{Tr} (\pi A \pi)$
 \item $\mathbb{Tr} (A \pi B) = \mathbb{Tr} (\pi B A \pi)$.
\end{itemize}

Proof of Lemma 6.2. Let us denote $\ell := \max\{|\lambda_{\text{max}}|, |\lambda_{\text{min}}|\}$. Combining Lemma 6.1 and the fact that for all $k \geq 1$, $(M^k)_{11} \leq \ell^k$, we deduce that
\[|\mathbb{Tr} V(M + \theta \pi) - \mathbb{Tr} V(M)| \leq C \ell^{2d - 1} \]
for some constant C depending only on V and θ.

\[\Box \]
Therefore, it is enough to check that \(\sup_n n^{-1} \log \mathbb{E} \exp C n^{\ell_d - 1} < \infty \). But this is a direct consequence of the following rough large deviations estimate: there exists \(C' > 0 \) such that for every \(x > 0 \) large enough \(\mathbb{P}(\ell > x) \leq e^{-nC'x} \). It is a consequence of Th. 11.1.2 in [34] (see [8] Prop. 2.1 for a precise rate function). The proof is ended recalling that \(V \) is given by (6.1).

\[\blacksquare \]

6.2. Matricial spectral measures. Let \(E \) be \(T \) or \(\mathbb{R} \) and \(r \) a positive integer.

A matrix measure \(\Sigma = (\Sigma_{ij}) \) of size \(r \times r \) on \(E \) is a matrix of complex measures, such that for any Borel set \(A \subset E \), \(\Sigma(A) = (\Sigma_{ij}(A)) \in \mathcal{H}_p \) is (Hermitian and) non-negative definite. A matrix measure on \(E \) is a probability matrix measure normalized, if \(\Sigma(E) = 1 \). We denote by \(\mathcal{M}_{r,1}(E) \) the set of \(r \times r \) probability matrix measures with support in \(T \subset E \).

Given a squared matrix \(M \) of size greater than \(r \) we define the matricial spectral measure \(\nu^M := (\nu^{M}_{ij})_{1 \leq i,j \leq r} \) as the only element of \(\mathcal{M}_{r,1} \) such that, for all \(i,j \in \{1, \ldots, r\} \) and all \(k \geq 0 \)

\[
\langle e_i, M^k e_j \rangle = \int_E x^k d\nu^{M}_{ij}(x),
\]

where \(e_1, \ldots, e_r \) are the first \(r \) vectors of the canonical basis. In other words

\[
(M^k)_{ij} = \left(\int_E x^k d\nu^{M}_{ij}(x) \right)^{1 \leq i,j \leq r}.
\]

We will denote by \(m_k = m_k((\nu^M)) \) the right-hand side of the above equality. Note that when \(r = 1 \), we retrieve the previously considered spectral measure associated to the pair \((M, u_1)\). Interestingly, our method also applies to the study of matricial spectral measures of perturbations of the invariant models described in Section 2. Analogously to Sections 5.1, 5.2 and 5.3, our results rely on former large deviations principles obtained for the unperturbed models.

In order to state them, we first need to introduce some notations. Let \(\Sigma \in \mathcal{M}_{r,1}(E) \) be a quasi-scalar measure, which means that \(\Sigma = \sigma \cdot 1 \) where \(\sigma \in \mathcal{M}_1(E) \) is a scalar probability measure and \(1 \) is the \(r \times r \) identity matrix. Let \(\mu \in \mathcal{M}_{r,1}(E) \).

We say that \(\mu \) is absolutely continuous (a.c. for short) with respect to \(\sigma \) (\(\mu \ll \sigma \)) if each entry of \(\mu \) is a.c. with respect to \(\sigma \). In general there is a Lebesgue decomposition

\[
\mu(dx) = h(x) \sigma(dx) + \mu_s(dx),
\]

where \(h \) is Hermitian nonnegative and \(\mu_s \) is singular with respect to \(\sigma \), i.e. nonzero only on a set of \(\sigma \)-measure zero. Then, we define the notion of Kullback-Leibler divergence

\[
\mathcal{K}(\Sigma \mid \mu) := -\int_E \log \det h(x) \, \sigma(dx). \tag{6.9}
\]

if \(\log \det h \in L^1(\sigma) \) and \(\infty \) otherwise. We remark that it is possible to rewrite the above quantity in the flavour of Kullback-Leibler information (or relative entropy) with the notation of [32] or [35].

Finally, we define \(\mathcal{S} = \mathcal{S}(\alpha^-, \alpha^+) \) the set of all bounded matricial measures \(\mu \) of size \(r \times r \) such that

(i) \(\text{supp}(\mu) = J \cup \{E_i^-\}_{i=1}^{N^-} \cup \{E_i^+\}_{i=1}^{N^+} \), where \(J \subset I = [\alpha^-, \alpha^+] \), \(N^-, N^+ \in \mathbb{N} \cup \{\infty\} \) and

\[
E_1^- < E_2^- < \cdots < \alpha^- \quad \text{and} \quad E_1^+ > E_2^+ > \cdots > \alpha^+.
\]
(ii) If \(N^- \) (resp. \(N^+ \)) is infinite, then \(E_j^- \) converges towards \(\alpha^- \) (resp. \(\lambda_j^+ \) converges to \(\alpha^+ \)).

Such a matricial measure \(\mu \) can always be written as

\[
\mu = \sum_{i=1}^{N^+} \Gamma_i^+ \delta_{E_i^+} + \sum_{i=1}^{N^-} \Gamma_i^- \delta_{E_i^-},
\]

for some \(r \times r \) matrices \(\Gamma_i^\pm \). We also introduce

\[
\mathcal{S}_1 = \mathcal{S}_1(\alpha^-, \alpha^+) := \{ \mu \in \mathcal{S} | \mu(\mathbb{R}) = 1 \},
\]

and endow \(\mathcal{S}_1 \) with the weak topology and the corresponding Borel \(\sigma \)-algebra.

In the unitary case, there is a corresponding framework. We omit to give details for simplicity.

The Hermitian case. For all \(n \geq r \), let \(X_n \) be a GUE\((n)\) random matrix. Let also \(A_n \) be a deterministic Hermitian matrix having all of its entries equal to zero except for the \(r \times r \) top-left block which is given by some Hermitian matrix \(\Theta \). We are interested in the matricial spectral measure of the deformed matrix:

\[
W_n := X_n \sqrt{n} + A_n.
\]

The distribution \(\mathbb{P}^{(n)}(\Theta) \) of \(W_n \) is given by:

\[
\mathbb{P}^{(n)}(\Theta)(dW) = \frac{1}{Z_n} \exp \left(-\frac{n}{2} \text{Tr} \left[(W - A_n)(W - A_n)^* \right] \right) dW.
\]

Let \(\mu^{(n)} \) be the matricial spectral measure associated to \(W_n \) and the \(r \)-tuple \((e_1, \ldots, e_r)\). Since

\[
\text{Tr} (W - A_n)(W - A_n)^* = \text{Tr}(WW^*) - 2\text{Tr}(A_n W) + \text{Tr}(A_n A_n^*) = \text{Tr}(WW^*) - 2\text{Tr}(\Theta m_1) + \text{Tr}(\Theta \Theta^*),
\]

we deduce that

\[
\mathbb{P}^{(n)}(\Theta)(\mu^{(n)}(\Theta) \in d\mu) = \frac{\exp n\Psi(\mu) - \mathbb{E}_0[\exp n\Psi(\mu^{(n)})]}{\mathbb{E}_0[\exp n\Psi(\mu^{(n)})]} \mathbb{P}^{(n)}(\Theta)(\mu^{(n)} \in d\mu),
\]

where \(\Theta \) is the \(r \times r \) matrix having all its coefficients equal to zero and where

\[
\Psi(\mu) = \text{Tr}(\Theta m_1(\mu)).
\]

Under \(\mathbb{P}^{(n)}_0 \), it is known (see for example [18]) that the sequence \((\mu^{(n)}(\Theta))_{n \geq r} \) satisfies a large deviations principle at speed \(n \) and with good rate function

\[
\mathcal{I}^X(\mu) = \begin{cases}
\mathcal{K}(SC \cdot \mathbf{1}; \mu) + \sum_{k \geq 1} \mathcal{F}_B(E_k^+) & \text{if } \mu \in \mathcal{S}_1(-2, 2), \\
\infty & \text{otherwise}.
\end{cases}
\]

Besides, note that for every \(\gamma > 0 \),

\[
\frac{1}{n} \log \mathbb{E}_0[\exp n\gamma \text{Tr}(\Theta m_1)] = \frac{\gamma^2}{2} \text{Tr}(\Theta \Theta^*).
\]

Therefore, applying Varadhan's Lemma to (6.11), we obtain the following analog of Theorem 5.1.
Theorem 6.4. The sequence \((\mu_n(n))_{n \geq r}\) satisfies a large deviations principle at speed \(n\) and with good rate function \(\mathcal{I}^W\) given by
\[
\mathcal{I}^W(\mu) = \begin{cases}
K(SC \cdot 1 | \mu) + \sum_k F_H(E_k^{1/k}) - \text{Tr} (\Theta m_1) + \frac{1}{2} \text{Tr} (\Theta \Theta^*) & \text{if } \mu \in S_1(-2, 2), \\
\infty & \text{otherwise}.
\end{cases}
\]

Let us finally describe the unique minimizer of \(\mathcal{I}^W\). First, we claim that, as in the scalar case described in Section 3, there exists a one-to-one correspondence between nontrivial matricial measures \(\mu\) and sequences of \(r \times r\) matrices \((A_n)_{n \geq 1}\) and \((B_n)_{n \geq 1}\) such that the matrices \(A_i\)'s are Hermitian positive definite. Using the matricial sum rule (Th. 2.1 in [18]), the good rate function can be rewritten, when \(\mu \in S_1(-2, 2)\):
\[
\mathcal{I}^W(\mu) = \frac{1}{2} \text{Tr} \left[(B_1 - \Theta)(B_1 - \Theta)^* \right] + \frac{1}{2} \sum_{n \geq 2} \text{Tr} (B_n B_n^*) + \sum_{n \geq 1} \text{Tr} G(A_n A_n^*).
\]
The unique minimizer \(\mu_{SC, \Theta} = \text{argmin} \mathcal{I}^W\) can therefore be described by its matricial Jacobi coefficients:
\[
\text{Jac}(\mu_{SC, \Theta}) = \left(\Theta, \ 0, \ 0, \ \cdots \right).
\]
In order to obtain an explicit formula, we use the matricial Stieltjes transform of \(\mu_{SC, \Theta}\), defined by
\[
G(z) := \int \frac{d\mu_{SC, \Theta}(x)}{x - z}.1.
\]
By [40, Theorem 4.3.3], it satisfies the following equation:
\[
G(z) = (\Theta - \omega(z)1)^{-1}, \quad \text{(6.12)}
\]
where \(\omega\) (called the subordination function) is here
\[
\omega(z) = z + G_{SC}(z) \quad \text{(6.13)}
\]
with \(G_{SC}(z) = \frac{1}{2}(z - \sqrt{z^2 - 4})\) is the Stieltjes transform of the semi-circle law.

Since the absolutely continuous part of \(\mu_{SC, \Theta}\) is given by
\[
\frac{d\mu_{SC, \Theta}(x)}{dx} = \lim_{t \to 0^+} \frac{1}{\pi} \Im G(x + it),
\]
and we deduce that
\[
\frac{d\mu_{SC, \Theta}(x)}{dx} = \sqrt{(4 - x^2)^+} (\Theta \Theta^* + 1 - x \Theta)^{-1}.
\]
Moreover, \(\mu_{SC, \Theta}\) has an atom at each pole of \(G\) and the mass of this atom is the corresponding residue. Thanks to (6.12), the poles of \(G\) correspond to the reals \(x\) such that
\[
\det(\Theta - \omega(x)1) = 0.
\]
For simplicity, let us assume from now on that \(\Theta\) has distinct eigenvalues \(\theta_1, \ldots, \theta_r\), the adaptation in the general case being straightforward. Let \(U\) be the matrix whose columns are the eigenvectors of \(\Theta\). Then, \(\Theta = UDU^*\) with \(D = \text{Diag}(\theta_1, \ldots, \theta_r)\), and we deduce that
\[
G(z) = U(D - \omega(z)1)^{-1} U^*.
\]
We now use the following well-known fact about the function ω:

- if |θ| ≤ 1, there is no real x such that ω(x) = θ;
- if |θ| > 1, there exists exactly one real x_θ = θ + 1/θ such that |x_θ| > 2 and ω(x_θ) = θ. Moreover, 1/ω'(x_θ) = 1 − 1/θ^2.

Therefore, the poles of \(G \) are in one-to-one correspondence with the eigenvalues \(\theta_i \) of \(\Theta \) satisfying |\(\theta_i \)| > 1, and each of this pole has a residue given by \(U(1 - 1/\theta_i^2)e_ie_i^TU^* \).

Hence, we have proved that:

\[
\mu_{SC,\Theta}(dx) = \frac{\sqrt{4 - x^2}}{2\pi} (\Theta\Theta^* + 1 - x\Theta)^{-1} dx
+ \sum_{i=1}^r \left(1 - \frac{1}{\theta_i^2} \right) Ue_ie_i^TU^*1_{|\theta_i| > 1}\delta_{\theta_i} + \frac{1}{\pi}(dx). \tag{6.14}
\]

It can also be written as follows:

\[
\mu_{SC,\Theta} = U \text{Diag}(\mu_{SC,\theta_1}, \cdots, \mu_{SC,\theta_r})U^*.
\]

Application. In Section 5.1, we have considered the spectral measure \(\mu^{(n)}_\psi \) of the pair \((W_n, e)\) for a rank-one perturbation \(\theta uu^* \) when \(u = e \). The matricial theory (with \(r = 2 \)) allows to consider the case \(u \neq e \). Assume \(\langle u, e \rangle = \cos \varphi \neq \pm 1 \) and consider the following orthonormal basis. We set \(f_1 = e, w = u - \langle u, e \rangle e, f_2 = w/\|w\| \) and we complete by \(f_3, \cdots, f_n \). We can now consider the random matrix

\[
W_n = \frac{X_n}{\sqrt{n}} + A_n,
\]

where \(A_n \) is a rank-one deterministic Hermitian matrix, having all its entries equal to zero except for the 2 × 2 top-left block matrix which is \(\Theta = \theta R \) with

\[
R = \begin{pmatrix}
\cos^2 \varphi & \sin \varphi \cos \varphi \\
\sin \varphi \cos \varphi & \sin^2 \varphi
\end{pmatrix}.
\]

\(R \) is a projection and then

\[
\Theta\Theta^* + 1 - z\Theta = 1 - (\theta z - \theta^2)R
\]
\[
(\Theta\Theta^* + 1 - z\Theta)^{-1} = 1 + ((\theta^2 + 1 - \theta z)^{-1} - 1) R, \tag{6.15}
\]

as soon as \(\theta^2 + 1 - \theta z \neq 0 \). Moreover

\[
U = \begin{pmatrix}
\cos \varphi & -\sin \varphi \\
\sin \varphi & \cos \varphi
\end{pmatrix},
D = \begin{pmatrix}
\theta & 0 \\
0 & 0
\end{pmatrix}.
\]

The (scalar) spectral measure \(\mu^{(n)}_\psi \) of the pair \((W_n, e)\) is exactly \(\left(\mu^{(n)}_\psi \right)_1 \). The equilibrium measure is \((\mu_{SC,\Theta})_1 \) and then, from (6.14) and (6.15)

\[
(\mu_{SC,\Theta})_1 = (\sin^2 \varphi)SC + (\cos^2 \varphi)\mu_{SC,\theta}. \tag{6.16}
\]

As seen above, \(\mu^{(n)}_\psi \) satisfies the LDP in the scale \(n \) and then, by the contraction principle, \(\mu^{(n)} \) satisfies the LDP with rate function

\[
\mu \in \mathcal{M}_1(\mathbb{R}) \mapsto \inf \{ T^W(\mu) : \mu \in \mathcal{M}_{2,1}(\mathbb{R}), (\mu)_1 = \mu \},
\]

where \(T^W \) was defined in Theorem 6.4. We didn’t find an explicit expression of this rate function.
The Gross-Witten case. The role of $e^{i\tau}$ is now played by a unitary $r \times r$ operator. In the sequel, we will omit the subscript n to simplify the notation. As in (4.5.10) in [37] we consider

$$W = UQ, \quad Q = 1 + P^\ast(\Lambda - 1)P, \quad (6.17)$$

where P is the projection on $\mathcal{H}_r = \text{Vect} \{e_1, \ldots, e_r\}$ and Λ is a unitary operator acting on \mathcal{H}_r. Notice that

$$Q^{-1} = Q^\ast = 1 + P^\ast(\Lambda^\ast - 1)P.$$

In other words,

$$Q = \Lambda \oplus I_{n-r}, \quad Q^{-1} = Q^\ast = \Lambda^\ast \oplus I_{n-r}.$$

If μ is the spectral measure of the pair $(U; e_1, \ldots, e_r)$, let us denote by $\tau_\Lambda \mu$ the spectral measure of the pair $(W; e_1, \ldots, e_r)$. We have the matricial version of (5.24) (Theorem 4.5.6 in [37])

$$F_\Lambda = [(1 + \Lambda) - F(1 - \Lambda)]^{-1} \left[-(1 - \Lambda) + F(1 + \Lambda)\right].$$

which gives, via the Schur recursion

$$\alpha_k(\tau_\Lambda \mu) = \Lambda^\ast \alpha_k(\mu), \quad (k \geq 0). \quad (6.18)$$

To compute the distribution of W, let us denote by W^\dagger_r the $r \times r$ upper left corner of W and by W^\perp_{n-r} the $(n - r) \times (n - r)$ lower right corner of W so that

$$P^{(n)}_\Lambda(dW) = \frac{1}{Z_0^{(n)}} \exp \frac{ng}{2} \text{Tr}(WQ^{-1} + (WQ^{-1})^\ast) \, dW. \quad (6.19)$$

Since

$$\text{Tr}(WQ^{-1}) = \text{Tr}W + \text{Tr}(W^\dagger_r(\Lambda^\ast - 1))$$

$$\text{Tr}(WQ^{-1} + (WQ^{-1})^\ast) = \text{Tr}(W + W^\ast) + 2\text{Re} \text{Tr}(W^\dagger_r(\Lambda^\ast - 1)), \quad (6.20)$$

(6.19) may be written

$$P^{(n)}_\Lambda(dW) = \exp ng\text{Re} \text{Tr}(W^\dagger_r(\Lambda^\ast - 1)) \cdot P^{(n)}_1(dW). \quad (6.21)$$

Let $\mu^{(n)}_\phi$ be the matricial spectral measure of $(W; e_1, \ldots, e_r)$. Since $W^\dagger_r = \alpha_0^\ast = m_1(\mu^{(n)}_\phi)$, we get

$$P^{(n)}_\Lambda(\mu^{(n)}_\phi \in d\mu) = \exp ng\text{Re} \text{Tr}(m_1(\mu)(\Lambda^\ast - 1)) \cdot P^{(n)}_1(\mu^{(n)}_\phi \in d\mu). \quad (6.22)$$

Under $P^{(n)}_1$, it is known ([17]) that the sequence $(\mu^{(n)}_\phi)_{n \geq r}$ satisfies an LDP at speed n. If $|g| \leq 1$, the rate function is

$$\mathcal{I}^{GW}(\mu) = K(\text{GW}_g \cdot 1 | \mu). \quad (6.23)$$

The matrix measure $\text{GW}_g \cdot 1$ is the unique minimum of \mathcal{I}^{GW}.

This allows to obtain the following analog of Theorem 5.3.

Theorem 6.5. The sequence $(\mu^{(n)}_\phi)_{n \geq r}$ satisfies an LDP at speed n and good rate function

$$\mathcal{I}^W(\mu) = \mathcal{I}^{GW}(\mu) - g\text{Re} \text{Tr}(m_1(\mu)(\Lambda^\ast - 1)). \quad (6.24)$$
There is a matrix version of the method to recover the measure (Prop. 3.16 in [12] and Lemma 7.1 in [7]). From (6.18), it is then straightforward to state that if
\[d\mu(\theta) = w(\theta) \cdot 1 \ d\lambda_0(\theta) + d\mu_\theta(\theta), \]
then \(\tau_\Lambda(\mu \cdot 1) \) has for density
\[w_\Lambda(\theta) = 4w(\theta) |1 + \Lambda + F(\theta)(1 - \Lambda)|^{-2} \tag{6.25} \]
where \(|A|^2 = AA^*\) (analog of (5.36). Notice that if \(|g| \leq 1\) there is no extra mass. From (6.18) we have
\[P(n) \Lambda(\mu) = P(n) 1(\mu) \]. \tag{6.26}
Under \(GW_g \), the rate function for the LDP is \(K(GW_g \cdot 1 \mid \mu) \). A pushforward of this LDP gives
\[I^W(\mu) = K(GW_g \cdot 1 \mid \tau_\Lambda \mu) \]. \tag{6.27}
It is then clear that \(I^W \) reaches his unique minimum at \(\tau_\Lambda(\mu) \).

Remark 3. We don’t give an alternative proof of the LDP. Actually we could have used the matrix version of the sum rule (4.18) proved recently by analytic methods in [36]: for \(0 \leq g \leq 1 \),
\[K(GW_{-g} \cdot 1 \mid \mu) = r H(g) + g R Tr(\alpha_0) + \frac{g}{2} Tr(\alpha_0^\dagger \alpha_0) + \sum_{0}^{\infty} T_g(\alpha_k) \]
\[+ \frac{g}{2} \sum_{0}^{\infty} Tr((\alpha_{k+1} - \alpha_k)(\alpha_{k+1} - \alpha_k)^\dagger) \] \tag{6.28}
where \(r \) is the size of matrix measures and
\[T_g(\alpha) = -\log \det(1 - a \alpha^\dagger) - g Tr(\alpha\alpha^\dagger). \]
Replacing \(\alpha_k \) by \(\alpha_k e^{i\phi} \) allows to recover:
\[K(GW_{-g} \cdot 1 \mid \tau_{e^{-i\phi}} \mu) = K(GW_{-g} \cdot 1 \mid \mu) + g R Tr(\alpha_0(1 - e^{i\phi} - 1)) \] \tag{6.29}

7. **Appendix**

We use the affine transformation \(T_{\alpha,\beta} : x \mapsto \alpha x + \beta \) and denote by \(T_{\alpha,\beta} \# \mu \) the pushforward of the measure \(\mu \) by \(T_{\alpha,\beta} \).

7.1. A technical result. The first lemma is elementary. We give its proof for the sake of completeness.

Lemma 7.1. If
\[\text{Jac}(\mu) = \begin{pmatrix} b_1, & b_2, & \cdots \\ a_1, & a_2, & \cdots \end{pmatrix} \] \tag{7.1}
then
\[\text{Jac}(T_{r,s} \# \mu) = \begin{pmatrix} \tilde{b}_1, & \tilde{b}_2, & \cdots \\ \tilde{a}_1, & \tilde{a}_2, & \cdots \end{pmatrix} \text{ with } \tilde{a}_k = \frac{a_k}{|r|}, \ \tilde{b}_k = \frac{b_k - s}{r}. \] \tag{7.2}

Proof. If \(J \) be the Jacobian matrix associated with \(\mu \)
\[\langle e, (J - z)^{-1} e \rangle = \int \frac{d\mu(x)}{x - z}. \]
hence
\[\int \frac{dT_{r,s} \# \mu(y)}{y - z} = \int \frac{d\mu(x)}{r^{-1} (x - s) - z} = \langle e, (r^{-1} (J - s) - z)^{-1} \rangle \]
hence if \(r > 0 \) the Jacobi matrix associated to \(T_{r,s}(\mu) \) is \(\tilde{J} = r^{-1} (J - s) \).

If \(r = -1, s = 0 \), the tridiagonal operator \(-J\) admits \(T_{-1,0} \) as its spectral measure, but \(-J\) is not Jacobi. A change of basis \(\epsilon_k \mapsto \tilde{e}_k = (-1)^{k-1} \epsilon_k \) gives the true Jacobi with \(\tilde{b}_k = \langle \tilde{e}_k, (-J) \tilde{e}_k \rangle = -b_k \) and \(\tilde{a}_k = \langle \tilde{e}_{k+1}, (-J) \tilde{e}_k \rangle = a_k \).

7.2. Free Meixner distributions

From [2], we know\(^4\) that the normalized free Meixner distributions \(\mu_{b,c} \) are probability measures on \(\mathbb{R} \) with Jacobi parameter sequences

\[
\text{Jac}(\mu_{b,c}) = \begin{pmatrix} 0, & b, & b, & \cdots \\ 1, & \sqrt{1 + c}, & \sqrt{1 + c}, & \cdots \\ \end{pmatrix}
\]

(7.3)

\(b \in \mathbb{R}, c > -1 \). The first line corresponds to the \(b \)'s (diagonal terms) and the second to the \(a \)'s (subdiagonal terms). The corresponding probability measure is

\[
\mu_{b,c}(dx) := \frac{1}{2\pi} \cdot \frac{\sqrt{(4(1 + c) - (x - b)^2)_+}}{1 + bx + cx^2} dx + p_1 \delta_{x_1} + p_2 \delta_{x_2},
\]

(7.4)

where \(x_1 \) and \(x_2 \) are real roots of \(1 + bx + cx^2 = 0 \) (if there exist(s)) and \(p_1, p_2 \in [0, 1) \).

The mean is 0 and the variance is 1.

The case \(b = c = 0 \) and \(p_1 = p_2 = 0 \) is just SC also called "free Gaussian".

In order to compare \(\mu_{b,c} \) with SC, we transform the support into \([-2, 2]\) and set

\[
\tilde{\mu}_{b,c}(dy) := T_{1 + \frac{a}{b}, b} \# \mu_{b,c}(dy) := \frac{1}{2\pi} \cdot \frac{\sqrt{(4 - y^2)_+}}{cy^2 + ay + \beta} dy + p_1 \delta_{y_1} + p_2 \delta_{y_2}
\]

(7.5)

with

\[
\text{Jac}(\tilde{\mu}_{b,c}) = \begin{pmatrix} -b/\sqrt{1 + c}, & 0, & 0, & \cdots \\ b/\sqrt{1 + c}, & 0, & 0, & \cdots \\ \end{pmatrix}
\]

(7.6)

Apart from SC there are only 5 situations.

(1) \(c = 0, (b \neq 0) \).

\[
\mu_{b,0}(dx) \equiv \frac{1}{2\pi} \cdot \frac{\sqrt{(4 - (x - b)^2)_+}}{1 + bx} + (1 - b^{-2})_+ \delta_{-b^{-1}}
\]

(7.7)

\[
T_{1,b} \# \mu_{b,0}(dy) \equiv \frac{1}{2\pi} \cdot \frac{\sqrt{(4 - y^2)_+}}{1 + b^2 + by} dy + (1 - b^{-2})_+ \delta_{-b^{-1}}.
\]

(7.8)

It is a variant of MP, called also "free Poisson". Indeed,

\[
T_{b,1} \# \mu_{b,0}(dy) = \frac{1}{2\pi b^2} \cdot \frac{\sqrt{((1 + b^2)^2 - y)(y - (1 - b)^2)_+}}{y} dy + (1 - b^{-2})_+ \delta_0
\]

(2) \(c \neq 0 \)

\(^4\)Be careful, the author considered the sequence \(\{a_n^2, b_n\} \) as Jacobi coefficients.
(a) $-1 < c < 0$, it is called ”free binomial”, the denominator has two real roots. For instance, when $b = 0$ we get the measure

$$
\mu_{0,c}(dx) = \frac{1}{2\pi} \cdot \frac{\sqrt{(4(1+c) - x^2)_+}}{1 + cx^2} dx + p \left(\delta_{-1/(\sqrt{-c})} + \delta_{1/(\sqrt{-c})} \right), \quad (7.9)
$$

with $p = (1 + \frac{1}{2c})^{-1}$.

$$
T_{\sqrt{1+c,0} \# \mu_{0,c}(dy)} = \frac{1}{2\pi} \cdot \frac{\sqrt{(4 - y^2)_+}}{(1 + c)^{-1} + cy^2} dy + p \left(\delta_{-1/\sqrt{c(1+c)}} + \delta_{1/\sqrt{c(1+c)}} \right). \quad (7.10)
$$

Notice that the variance is $\sigma^2 = 1/(1 + c) > 1$. There are masses if and only if $c \in (-1, -1/2)$.

Up to an affine transform, this distribution is of the KMK type (see [16] Sec. 1.4). In other words it is the equilibrium measure when the potential is $-\kappa_2 \log x - \kappa_1 \log(1 - x)$.

(b) $c > 0, b^2 - 4c < 0$, for instance with $b = 0$. We get

$$
\mu_{0,c}(dx) = \frac{1}{2\pi} \cdot \frac{\sqrt{(4(1+c) - x^2)_+}}{1 + cx^2} dx \quad (7.11)
$$

(without any atoms). It is called ”free hyperbolic tangent” or ”free Meixner type”, and

$$
T_{\sqrt{1+c,0} \# \mu_{0,c}(dy)} = \frac{1}{2\pi} \cdot \frac{\sqrt{(4 - y^2)_+}}{(1 + c)^{-1} + cy^2} dy.
$$

Notice that the variance is $\sigma^2 = 1/(1 + c) < 1$. Up to a scaling, this distribution can be obtained by Cayley transform from the Hua-Pickrell distribution. In other words it is the equilibrium measure when the potential is $\log(1 + x^2)$ (see [17]).

(c) $b^2 = 4c$, one double root $x = -2/b$, the measure is

$$
\mu_{b,b^2/4}(dx) = \frac{1}{2\pi} \cdot \frac{\sqrt{(4 + 2bx - x^2)_+}}{(1 + \frac{b^2}{4})^2} dx.
$$

It is sometimes called ”free Gamma type” and

$$
T_{\sqrt{1+\frac{b^2}{4},b} \# \mu_{b,b^2/4}(dy)} = \frac{1}{2\pi} \cdot \frac{\sqrt{(4 - y^2)_+}}{\left(\frac{b}{2} y + \frac{b^2+2}{\sqrt{b^2+4}}\right)^2} dy. \quad (7.12)
$$

(d) $c > 0, b^2 - 4c > 0$, it is called ”free Pascal”, the denominator in (7.4) has two real roots

$$
x_{\pm} = -\frac{b}{2c} \pm \text{sgn} b \frac{\sqrt{b^2 - 2c}}{2c}
$$

and there is a mass $p = \left(1 - \frac{|b| - \sqrt{b^2 - 4c}}{2\sqrt{b^2 - 4c}}\right)_+$ at x_+, and

$$
T_{\sqrt{1+c,b} \# \mu_{b,c}(dx)} = \frac{1}{2\pi} \cdot \frac{\sqrt{(4 - y^2)_+}}{c(y - y_+)(y - y_-)} + p \delta_{y_+}, \quad (7.13)
$$
where $y_+ = \frac{x-b}{\sqrt{1+c}}$.

Acknowledgement. We thank the referees whose remarks helped us to improve the presentation of the paper. A.R. thanks Fabrice Gamboa and Jan Nagel for valuable comments on this work.

References

[1] G. Anderson, A. Guionnet and O. Zeitouni. An introduction to random matrices. Cambridge University Press, 2010.

[2] M. Anshelevich. Bochner–Pearson-type characterization of the free Meixner class. Adv. Appl. Math., 46(1-4):25–45, 2011.

[3] J. Baik, and G. Ben Arous and S. Péché. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices Ann. Probab., 1643–1697, 2005.

[4] J. Baik, P. Deift and K. Johansson. On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc., 12(4):1119–1178, 1999.

[5] F. Benaych-Georges, A. Guionnet and M. Maida. Large deviations of the extreme eigenvalues of random deformations of matrices. Probab. Th. Rel. Fields, 154:703–751, 2012.

[6] G. Biroli and A. Guionnet. Large deviations for the largest eigenvalues and eigenvectors of spiked random matrices. Electron. Commun. Probab., 25, 2020.

[7] V. Bolotnikov and H. Dym. On boundary interpolation for matrix valued Schur functions. Mem. Amer. Math. Soc., 181(856):vi+107, 2006.

[8] G. Borot and A. Guionnet. Asymptotic expansion of β matrix models in the one-cut regime. Comm. Math. Phys., 317(2):447–483, 2013.

[9] J. Breuer, B. Simon and O. Zeitouni. Large deviations and the Lukic conjecture. Duke Math. J., 167(15):2857–2902, 2018.

[10] W. Bryc. Free exponential families as kernel families. Demostratio Math. XLII (3): 657-672, 2009.

[11] M. Capitaine and C. Donati-Martin. Spectrum of deformed random matrices and free probability. In Advances topics in random matrices. SMF, 2017.

[12] D. Damanik, A. Pushnitski and B. Simon. The analytic theory of matrix orthogonal polynomials. Surv. Approx. Theory, 4:1–85, 2008.

[13] A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications. Springer, 1998.

[14] J-D. Deuschel and D. Stroock. Large deviations, volume 342. American Mathematical Soc., 2001.

[15] R. Ellis. Entropy, large deviations, and statistical mechanics Springer, 1985.

[16] F. Gamboa, J. Nagel and A. Rouault. Sum rules via large deviations. J. Funct. Anal., (270):509–559, 2016.

[17] F. Gamboa, J. Nagel and A. Rouault. Sum rules and large deviations for spectral measures on the unit circle. Random Matrices Theory Appl., 6(1):1750005, 49, 2017.

[18] F. Gamboa, J. Nagel and A. Rouault. Sum rules and large deviations for spectral matrix measures. Bernoulli, 25(1):712–741, 2018.

[19] F. Gamboa, J. Nagel and A. Rouault. Sum rules via large deviations: extension to polynomial potentials and the multi-cut regime. To appear in J. Funct. Anal., preprint arXiv:2004.13566, 2020.

[20] F. Gamboa, J. Nagel and A. Rouault. Some gateways between some sum rules. In preparation

[21] F. Gamboa and A. Rouault. Canonical moments and random spectral measures. J. Theoret. Probab., 23:1015–1038, 2010. Erratum in the same journal (2015) doi 10.1007/s10959-015-0653-5.

[22] F. Gamboa and A. Rouault. Large deviations for random spectral measures and sum rules. Applied Mathematics Research eXpress, 2011(2):281–307, 2011.

[23] D.J. Gross and E. Witten. Possible third-order phase transition in the large-N lattice gauge theory. Phys. Rev. D, 21(2):446–453, 1980.

[24] F. Hiai and D. Petz. The Semicircle Law, Free Random Variables and Entropy, volume 77 of Mathematical Surveys and Monographs. Amer. Math. Soc., Providence, 2000.

[25] K. Johansson. On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J., 91(1):151–204, 1998.
[26] I. Johnstone. On the distribution of the largest eigenvalue in principal components analysis. *Ann. Statist.*, 295–327, 2001.
[27] R. Killip and B. Simon. Sum rules for Jacobi matrices and their applications to spectral theory. *Ann. of Math. (2)*, 158(1):253–321, 2003.
[28] A. Knowles and J. Yin. Anisotropic local laws for random matrices. *Probab. Theory Rel. Fields*, (169):257–362, 2017.
[29] R. Kozhan. Finite range perturbations of finite gap Jacobi and CMV operators. *Adv. Math.*, (301): 204-226, 2016.
[30] J.O. Lee and K. Schnelli. Edge universality for deformed Wigner matrices. *Rev. Math. Phys.*, 27(08):1550018, 2015.
[31] R. Lenczewski. Random matrix model for free Meixner laws. *Int. Math. Res. Not. IMRN*, (11):3499–3524, 2015.
[32] V. Mandrekar and H. Salehi. On singularity and Lebesgue type decomposition for operator-valued measures. *J. Multivariate Anal.*, 1(2): 167–185, 1971.
[33] N. Noiry. Spectral measures of spiked random matrices. *J. Theoret. Probab.*, 34(2): 923-952, 2021.
[34] L. Pastur and M. Shcherbina. *Eigenvalue distribution of large random matrices*. Number 171. American Mathematical Soc., 2011.
[35] J.B. Robertson and M. Rosenberg. The decomposition of matrix-valued measures. *Michigan Math. J.*, 15: 353-368, 1968.
[36] A. Rouault. A matrix version of a higher-order Szegő theorem. *J. Approx. Th.*, 266, 2021.
[37] B. Simon. *Orthogonal polynomials on the unit circle. Part 1: Classical theory*. Colloquium Publications. American Mathematical Society 54, Part 1. Providence, RI: American Mathematical Society (AMS), 2005.
[38] B. Simon. *Orthogonal polynomials on the unit circle. Part 2: Spectral theory*. Colloquium Publications. American Mathematical Society 51, Part 2. Providence, RI: American Mathematical Society, 2005.
[39] B. Simon. Rank one perturbations and the zeros of para-orthogonal polynomials on the unit circle. *J. Math. Anal. Appl.*, 329(1):376–382, 2007.
[40] B. Simon. *Szegő’s theorem and its descendants*. M. B. Porter Lectures. Princeton University Press, Princeton, NJ, 2011.
[41] S. Wadia. A study of U(N) lattice gauge theory in 2-dimensions. *arXiv preprint arXiv:1212.2906*, 2012.
[42] M. Webb and S. Olver. Spectra of Jacobi operators via connection coefficient matrices. *Comm. Math. Phys.*, 382(2):687-707, 2021.
[43] H. Xi, F. Yang and J. Yin. Convergence of eigenvector empirical spectral distribution of sample covariance matrices. *Ann. Statist.*, 48(2):953–982, 2020.