Prevalence of Pathological Germline Mutations of hMLH1 and hMSH2 Genes in Colorectal Cancer

Dandan Li1, Fulan Hu1, Fan Wang1, Binbin Cui2, Xinshu Dong2, Wencui Zhang1, Chunqing Lin1, Xia Li1, Da Wang3, Yashuang Zhao1*

1 Department of Epidemiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China, 2 Department of Abdominal Surgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P. R. China, 3 Department of Science and Technology Administration, Harbin Medical University, Harbin, Heilongjiang Province, P. R. China

Abstract

The prevalence of pathological germline mutations in colorectal cancer has been widely studied, as germline mutations in the DNA mismatch repair genes hMLH1 and hMSH2 confer a high risk of colorectal cancer. However, because the sample size and population of previous studies are very different from each other, the conclusions still remain controversial. In this paper, Databases such as PubMed were applied to search for related papers. The data were imported into Comprehensive Meta-Analysis V2, which was used to estimate the weighted prevalence of hMLH1 and hMSH2 pathological mutations and compare the differences of prevalence among different family histories, ethnicities and related factors. This study collected and utilized data from 102 papers. In the Amsterdam-criteria positive group, the prevalence of pathological germline mutations of the hMLH1 and hMSH2 genes was 28.55% (95%CI 26.04%–31.19%) and 19.41% (95%CI 15.88%–23.51%), respectively, and the prevalence of germline mutations in hMLH1/hMSH2 was 15.44%/10.02%, 20.43%/13.26% and 15.43%/11.70% in Asian, American multiethnic and European/Australian populations, respectively. Substitution mutations accounted for the largest proportion of germline mutations (hMLH1: 52.34%, hMSH2: 43.25%). The total prevalence of mutations of hMLH1 and hMSH2 in Amsterdam-criteria positive, Amsterdam-criteria negative and sporadic colorectal cancers was around 45%, 25% and 15%, respectively, and there were no obvious differences in the prevalence of germline mutations among different ethnicities.

Citation: Li D, Hu F, Wang F, Cui B, Dong X, et al. (2013) Prevalence of Pathological Germline Mutations of hMLH1 and hMSH2 Genes in Colorectal Cancer. PLoS ONE 8(3): e51240. doi:10.1371/journal.pone.0051240

Editor: Amanda Ewart Toland, Ohio State University Medical Center, United States of America

Received June 27, 2011; Accepted November 5, 2012; Published March 19, 2013

Copyright: © 2013 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from the National Natural Science Foundation of China (Grant number 30671801), the Harbin Foundation for the Returned Scholars (Grant number 2005AFLXJ017), and the Health Bureau of Heilongjiang Province (Grant number 2005-103). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: zhao_yashuang@263.net

Introduction

Colorectal cancer (CRC) is a major worldwide public health problem [1], and is the second leading cause of cancer death in developed countries. In developing countries, CRC represents the sixth or seventh leading cause of cancer death [2].

It is estimated that hereditary nonpolyposis colorectal cancer (HNPCC) accounts for somewhere between less than 1% to 13% [3,4] of colorectal cancers, which make it the most common inherited CRC syndrome [5,6]. HNPCC is characterized by an autosomal dominant inheritance pattern of early onset colorectal cancer, which is associated with extra colonic malignancies, such as endometrial, urological and upper gastrointestinal cancers [7]. There is no characteristic phenotype associated with HNPCC, and its diagnosis is dependent on the recognition of a strong family history suggestive of dominant inheritance [8].

HNPCC, also known as Lynch syndrome (LS), is caused by a germline mutation in the DNA mismatch repair (MMR) genes [9,10]. A normal functioning MMR system can recognize and correct the base-pair mismatches and small nucleotide (1–4 base pair) insertion/deletion mutations, which is essential for the maintenance of genomic stability [11].

There are at least of five germline mutations in the DNA mismatch repair genes that can cause Lynch syndrome, including hMLH1, hMSH2, hMSH6, hPMS1 and hPMS2 [12–17]. Mutations in hMLH1 and hMSH2 account for the majority of case of Lynch syndrome [18].

The hMSH2 gene, which is a component of the DNA mismatch repair pathway, was the first gene identified to be associated with HNPCC. It serves as the “scout” that recognizes and binds directly to the mismatched DNA sequence [19,20] and can form a heterodimer with hMSH6 when a single base-pair mismatch is recognized or with hMSH3 if two to eight nucleotide insertions or deletions exist [11].

The hMLH1 gene protein product is also a component of the DNA mismatch repair pathway, which has been shown to form a heterodimer with the hMLH3, hPMS2 and hPMS1 genes. However, this protein has unknown enzymatic activity and likely acts as a “molecular matchmaker” that recruits other DNA repair proteins to the mismatch repair complex [21].

Since the hMLH1 and hMSH2 genes were found in humans, the prevalence of germline mutations has been widely studied not only in case of colorectal cancer with a suggestive family history but also in sporadic colorectal cancer. However, the results of these studies
are inconsistent because the sample sizes were small, and the ethnic backgrounds were varied [22–24]. Therefore, a systematic review and meta-analysis is essential to provide recommendations for genetic tests based on family history and a basis for the prevention, early diagnosis and treatment of colorectal cancer.

Methods

1. Search strategy and selection criteria

Databases, including PubMed, Embase and Cochrane Library, were applied to search for related papers published from January 1993 to March 2011 with the following keywords: hMLH1, hMSH2, mutation, hereditary nonpolyposis colorectal cancer, colorectal cancer and/or carcinoma, tumor or neoplasm. Chosen papers were limited to those that were published in English and fulfilled the following selection criteria: 1) paper assessing only a specific type of mutation or only specific regions of genes were excluded; 2) the mutations had to be germline mutations with pathological features but not somatic, studies that revealed somatic alteration of the MMR genes presence were excluded; 3) case reports were excluded; 4) repetitive reports were unified by using the latest or the largest edition; 5) research on polymorphism was excluded; 6) Lynch syndrome patients with known MMR gene mutations were excluded; 7) the detection patient was limited to a diagnosis of colorectal cancer rather than other Lynch syndrome related cancer such as endometrial cancer. The specific process of study selection has been shown in Figure S4 in supporting information.

2. Classification of family history and ethnicity

We categorized colorectal cancer patients who met the stringent Amsterdam criteria (I or II) [25] as the Amsterdam-criteria positive group (AC+). Patients without any family history of cancer, regardless of the onset age, were categorized in the sporadic cancer group. Others who had a family history but did not strictly conform to the Amsterdam criteria were defined as the Amsterdam-criteria negative group (AC−). Additionally, we named the patients with an ambiguous family history or those who did not have enough information to be re-classified again, as the family history not clear group.

Because the information about ethnicity of patients was not well-defined, we had to define the ethnicity based on continents, including Asian, American multiethnic, European/Australian or mixed ethnicities (some studies did not offer this type of data or this data included American, European and Australian).

3. MSI status and category

If more than 30% of the typically used microsatellite markers show instability, the tumor will be considered MSI-high. MSI-stable (MSS) is defined as no markers indicating instability [26,27]. Otherwise, the tumor is defined as MSI-low. For patients without information about microsatellite status, we classify them as MSI-not identified. Additionally we define studies that combined MSI-high and MSI-low tumors as MSI.

4. Determination of pathogenicity

We determined the pathogenicity of mutations primarily by three methods combined. First, we deferred to the interpretations of the original papers and the pathogenic definition including: a frameshift mutation that would be predicted to result in a truncated protein; nonsense mutations; missense mutations associated with a functional assay; large genomic deletions that removed at least one exon; or duplication of exon, to segregation of the alteration with cancer in the kindred [28]. Second, we used the analytic program PolyPhen to predict this mutation to be pathogenic [29], If PolyPhen score>2.0 then the change was predicted to affect protein function. Last, we checked two websites including “International Society for Gastrointestinal Hereditary Tumours Incorporated (InSiGHT) (www.insight-group.org/mutations/)” and “MMR Gene Unclassified Variants Database (www.mmrw.info)” to further determine pathogenicity. To apply functional assays will be more accurate and objective when testing missense variants for pathogenicity. But many articles could not do this due to various limitations; some studies distinguished between pathological changes with polymorphism or determined pathogenicity when the same variants founding in the control population. In the InSiGHT database, its “Reported pathogenicity” was categorized as reported pathogenic or probably pathogenic and “Concluded pathogenicity” was unknown. We then considered it as reported pathogenicity according to these results. In our Meta-analysis, we categorized those reported pathogenic mutations or probably pathogenic meeting the definition as pathogenic mutations.

5. Data Extraction

Two investigators (Dandan Li and Fulan Hu) independently extracted data and checked all of the differences in the variables until an agreement was reached on all items. Information such as the first author, published years, continent, country, family history, mutation sites, mutation types, and MSI phenotype and detection methods was collected from each article.

6. Statistical analysis

Data were imported into Comprehensive Meta-Analysis V2, which estimated the weighted prevalence and compared the difference of prevalence among related factors. A significant α level of 0.05 was applied. For multiple tests, an α level of 0.05 was adjusted to α divided by the number of multiple tests. Heterogeneity between studies was assessed with meta-regression and I² statistics. If statistics included 25, 50 and 75 corresponding to low, medium and high heterogeneity, respectively [30]. If I² was ≤50 combined with the characteristics of the data [31], the fixed-effects model was used. Otherwise, random-effects models were adopted. The publication bias was assessed visually using a funnel plot. The rank correlation method suggested by Begg [32] and the linear regression approach proposed by Egger et al. [33,34] were used to quantitatively analyze the potential publication bias.

Results

After filtering for potentially relevant citation, there were 796 abstracts retrieved. We then excluded those studies that had no clear gene mutation detection data. Finally, a total of 279 articles on hMLH1 and hMSH2 germline mutations in colorectal cancer were searched in an electronic database. However, there were only 102 papers included in this study [6,8,24,26,35–132] based on the selection criteria. A clear family history was provided in 82 of these papers. The detected population came from Asian, American, European/Australian and mixed ethnic populations in 22, 11, 63 and 6 papers, respectively. Basic characteristics of the included articles are shown in Table S1 in supporting information.

1. The prevalence of germline pathological mutations in different family histories

In total, 861 of 7057 and 698 of 7096 colorectal cancer cases reported had hMLH1 and hMSH2 gene mutations, respectively. Additionally, 1526 of 6965 cases had a mutation in one gene or the other when both genes were screened.
The highest prevalence of pathological germline mutations occurred in the AC+ group and was 28.53% (95% CI 26.04%–31.19%) and 19.41% (95% CI 15.38%–23.51%) in the hMLH1 and hMSH2 genes (P = 0.00<0.05), respectively. The prevalence in the AC− group was 16.70% (95% CI 14.53%–19.13%) and 11.30% (95% CI 9.49%–13.42%) (P = 0.00<0.05), respectively. In the sporadic cancer group, the prevalence of mutations was 0.72% (95% CI 6.12%–12.29%) and 7.28% (95% CI 5.12%–10.26%) (P = 0.47>0.05) (Table 1). High heterogeneity among the included studies was observed in both hMLH1 (I² = 80.10%) and hMSH2 (I² = 79.98%) across all colorectal cancers. However, the heterogeneity was at an acceptable level for both genes in the three ethnicities group compared to the European/Australian group (Table 1).

The total prevalence of the two genes’ pathological mutations in papers that detected both of them were 44.70% (95% CI 39.13%–50.40%), 24.65% (95% CI 20.37%–29.50%), 11.56% (95% CI 7.11%–18.23%) and 17.02% (95% CI 11.24%–24.93%) in the AC+, AC−, sporadic cancer and family history not clear groups, respectively (P = 0.00<0.05) (Table 2). In articles that detected both genes, the prevalence of mutation types in the AC+, sporadic cancer and family history not clear groups, respectively (P = 0.00<0.05). In the AC+ group, the mutation prevalence ranged from 25.64% to 32.94% in the four ethnicities (P = 0.48>0.05). In the AC− group, they ranged from 14.88% to 17.35% (P = 0.99>0.05), and they ranged from 3.21% to 16.71% (P = 0.13>0.05) in the sporadic cancer group (Table 1).

In the hMSH2 gene, the mutation prevalence ranged from 17.56% to 33.78% in the AC+ group, from 10.33% to 20.60% in the AC− group and from 3.64% to 21.90% in the sporadic cancer group (AC+: P = 0.00<0.05; AC−: P = 0.91>0.05; sporadic: P = 0.00<0.05) in the four ethnicities evaluated. In the AC+ and sporadic cancer group, differences were seen in the mixed ethnicities group compared to the European/Australian group (P = 0.000<0.007) and in the Asian group compared to the mixed ethnicities group (P = 0.000<0.007), respectively (Table 1).

Refers to the articles that had both gene that were detected, in the AC+ group, the total mutation prevalence of hMLH1 and hMSH2 for Asian, American multiethnic, European/Australian and mixed ethnicities was 38.01%, 54.02%, 42.59% and 66.09%, respectively (Table 2). In the AC− group, the prevalence was around 25% (P = 0.83>0.05). In sporadic cases, there was a wide range and difference in the prevalence (from 3.51% to 37.63%, P = 0.00<0.05) (Table 2). There were obvious differences among these ethnicities in the AC+ and sporadic cancer groups (all had P = 0.000<0.007). Further analysis showed that these differences were seen in Asian compared to mixed ethnicities and European/Australian compared to mixed ethnicities. No differences were observed among the three clear ethnicities.

3. The mutation distribution in different exons

All of the exons in these two genes showed mutations. The highest mutation prevalence of 3.62% was found in exon 16 of the hMLH1 gene, with 2.19 mutations/100 bp, which, remarkably, accounted for 16.36% of all mutations. In addition to exon 16, the prevalence of mutation was higher in exon 2, exon 6, exon 8, exon 12, exon 13 and exon 19. Mutations in these seven exons (including exon16) accounted for 55.43% of the total mutations. In the hMSH2 gene, the mutation prevalence and densities in different exons were generally lower than those in the hMLH1 gene. The highest prevalence of mutation was 2.62% in exon 7. Those in exon 3, exon 5, exon 11 and exon 12 were also higher than in other exons. The total mutations in these five exons accounted for 53.39% of the total mutations (Table 3).

4. The mutation types

As shown in Table 4, there were three main types of gene mutations, including substitutions (with inclusion of transition and transversion), deletions or insertions and large genomic rearrangements. Substitution accounted for 60.97% and 53.77% of all three point mutations in hMLH1 and hMSH2 gene, respectively. The next highest was deletion, which accounted for 24.15% and 36.98% of the total, respectively.

5. MSI status and prevalence of germline mutations

In MSI-high phenotype, the mutation prevalence in the hMLH1 gene was 29.84% (95% CI 22.43%–38.48%), 22.03% (95% CI 13.66%–33.33%) and 18.34% (95% CI 9.39%–32.72%) in AC+, AC− and sporadic cancer, respectively. The next highest mutation prevalence was in the MSI-low and MSS groups. There were no statistical differences among different family histories in all of these three MSI phenotype categories (P = 0.25, 0.41 and 0.93, respectively).

The mutation prevalence in the hMSH2 gene was also the highest in AC+ (26.81% 95% CI 19.02%–36.35%), followed by AC− (24.84%, 95% CI 16.14%–36.21%) and sporadic cancer (7.46%, 95% CI 2.64%–19.34%) with MSI-high phenotype, with marginal statistical differences (P = 0.04<0.05). Cases with MSS manifested the lowest prevalence of mutations in the different family history group (P = 0.48>0.05). The prevalence in MSI-low was moderate (P = 0.98>0.05) (Table 5).

In articles that detected both genes, the prevalence of mutation was the highest in AC+ (53.41%, 95% CI 38.02%–68.17%), followed by AC− (38.30%, 95% CI 27.87%–50.98%) and sporadic cancer (22.54%, 95% CI 12.55%–37.11%) with MSI-high phenotype (P = 0.02<0.05). These were followed by cases with MSI-low and MSS in the different family history group (P>0.05).

6. Prevalence of germline mutations in different subject select setting

There were 28 population-based series articles and 29 clinic-based series articles that were evaluated in this study. In the hMLH1 gene, the mutation prevalence was 12.49% (95% CI 8.65%–17.71) in the population-based group and 17.39 (95% CI 13.62%–21.93) in the clinic-based group (P = 0.13). In the hMSH2 gene, the mutation prevalence were 10.50% (95% CI 6.94%–15.59%) and 12.03% (95% CI 8.47%–16.80%), respectively (P = 0.62) (Table S5 in supporting information). To further consider the difference in each family history group, there were no significant statistics in any group.

7. Prevalence of hMLH1 and hMSH2 gene intron area germline mutation

Our results found that the highest intronic mutation frequency in the AC+ group was 8.49% (95% CI 6.43%–11.13%) and 5.42% (95% CI 3.82%–7.64%) in the hMLH1 and hMSH2 genes, respectively. The prevalence in the AC− group was 4.15% (95% CI 2.75%–6.23%) and 4.01% (95% CI 2.57%–6.21%), respectively. In sporadic cancer, the prevalence of mutations was 5.81% (95% CI 3.04%–10.84%) and 5.51% (95% CI 2.76%–10.68%), respectively (Table S6 in supporting information). And there were no differences between different ethnicities in either gene (hMLH1: P = 0.78 in AC+, P = 0.12 in AC−, P = 0.38 in
Family history	Ethnicity	hMLH1	hMSH2								
		NP	Detected cases	Mutation cases	Prevalence (%)						
		NP	Detected cases	Mutation cases	Range of prevalence (%)	P for Z test	I² (%)	N @	Detected cases	Mutation cases	Prevalence (%)
AC+	Asian	11	313	43	16.81(12.69–21.93)	0.00–40.00	0.00	0.00	11	313	43
	American multiethnic	5	70	8	17.35(8.80–31.37)	0.00–40.00	0.00	0.00	5	70	8
	European/Australian	34	881	116	16.69(14.09–19.69)	0.00–50.00	0.00	0.00	34	881	116
	Mixed population	2	27	4	14.86(7.02–28.38)	12.50–15.79	0.00	0.00	2	27	4
					16.69(14.09–19.69)	0.00–50.00	0.00	0.00	34	881	116
					14.86(7.02–28.38)	12.50–15.79	0.00	0.00	2	27	4
Sporadic colorectal cancer	Asian	12	214	9	17.41(7.02–32.02)	14.29–17.65	0.00	0.00	12	214	9
	American multiethnic	36	6	6	16.71(7.02–32.02)	14.29–17.65	0.00	0.00	36	6	6
	European/Australian	14	3247	260	12.50–15.79	0.00–40.00	0.00	0.00	14	3247	260
	Mixed population	2	27	4	14.86(7.02–28.38)	12.50–15.79	0.00	0.00	2	27	4
					14.86(7.02–28.38)	12.50–15.79	0.00	0.00	2	27	4
Sporadic colorectal cancer	Asian	21	440	64	11.30(7.29–16.31)	0.00–20.42	63.03	3	2	27	4
	American multiethnic	34	881	116	16.69(14.09–19.69)	0.00–50.00	0.00	0.00	34	881	116
	European/Australian	14	3247	260	12.50–15.79	0.00–40.00	0.00	0.00	14	3247	260
	Mixed population	2	27	4	14.86(7.02–28.38)	12.50–15.79	0.00	0.00	2	27	4
					14.86(7.02–28.38)	12.50–15.79	0.00	0.00	2	27	4
Sporadic colorectal cancer	Asian	22	304	56	15.44(11.49–19.54)	0.00–50.00	0.00	0.00	22	304	56
	American multiethnic	11	234	42	12.50–15.79	0.00–40.00	0.00	0.00	11	234	42
	European/Australian	62	1531	250	15.44(11.49–19.54)	0.00–50.00	0.00	0.00	62	1531	250
	Mixed population	6	785	132	15.44(11.49–19.54)	0.00–50.00	0.00	0.00	6	785	132
					15.44(11.49–19.54)	0.00–50.00	0.00	0.00	6	785	132
Asian Subtotal		101	7057	861	15.44(11.49–19.54)	0.00–50.00	0.00	0.00	101	7057	861
American multiethnic Subtotal		44	6540	894	15.44(11.49–19.54)	0.00–50.00	0.00	0.00	44	6540	894
European/Australian Subtotal		62	1531	250	15.44(11.49–19.54)	0.00–50.00	0.00	0.00	62	1531	250
Mixed population Subtotal		62	1531	250	15.44(11.49–19.54)	0.00–50.00	0.00	0.00	62	1531	250

*This type of population include American, European and Australian.
This indicates the number of studies have been included.

This indicates the number of studies have been included.

We categorized colorectal cancer patients who met the stringent Amsterdam criteria as Amsterdam-criteria positive group (AC+). Others have a strong family history but not strictly in conformity with Amsterdam criteria as Amsterdam-criteria negative group (AC−).
8. Publication bias

Funnel plots of the prevalence of pathological mutation in these two genes both in general and with different family histories showed some extent of asymmetry, with small studies on the left side of the plot (Figure S1, S2 and S3 in supporting information). Detailed results of an Egger regression, a Begg correlation and a “Trim and Fill” analysis for different family histories with these two genes, both separately and together, are shown in Table 6.

Discussion

Based on a systemic review and meta-analysis, we found that the total mutation prevalence of hMLH1 and hMSH2 in patients having both genes screened was 44.70%, 24.65% and 11.56% in the AC+, AC− and sporadic cancer groups, respectively. However, the reported mutations in these two genes were very different in Lynch syndrome [6,48,59]. One reason for the difference was that we limited the mutation region to exons and the mutation type to pathogenicity, which allowed us to provide more stable mutation prevalence results by executing a systematic review and meta-analysis.

Although papers on mutations in different ethnicities have been published, no reports have explicitly described any differences among them. Our analysis found that there was no substantial statistical difference between these four ethnicities with different family histories across both genes, either separately or together.

Although InSiGHT database have collected information about new mutations in different exons, few papers or websites provided information on exon-specific prevalence and detailed mutation types. Our results showed that a remarkable high prevalence of mutation occurred in exon 16. It was also noteworthy that the mutations in exon 16 and exon 2 were mainly aggregated at c.1852_1854delAAG and c.199G>T, which accounted for 37.78% and 29.03% of the mutations, respectively (data not shown). In hMSH2, the highest mutation prevalence was found in exon 7. The total mutations in exon 3, exon 5, exon 7, exon 11 and exon 12 amounted to 53.39% of the total (Table 3). Therefore, when performing hMLH1 and hMSH2 gene mutation tests, it would be important to focus attention on these exons and their common mutation points.

In Wei W. et al. [133], three mutations (exon 8 c.649C>T, exon 14 c.1623A>T and exon 15 c.1721T>C) in hMLH1 and four mutations (exon 1 c.23C>T and c.187dupG, exon 3 c.505A>G and exon 7 c.1168C>T) in hMSH2 had a much higher prevalence in Asian populations than in European populations. Furthermore, three mutations (exon 13 c.1433G>C, exon 16 c.1742C>T and c.1758dupC) in hMLH1 and two (exon 7 c.1253C>A and exon 12 c.1806A>G) in hMSH2 were only found in the Asian population, which implies that...
Table 3. Prevalence of hMLH1 and hMSH2 gene germline mutation in different exons.

Exon	hMLH1 Length (bp)	Detected cases	Mutation cases	Prevalence of Mutation (%) and 95% CI	Mutation Density (/100 bp)	Component Ratio	hMSH2 Length (bp)	Detected cases	Mutation cases	Prevalence of Mutation (%) and 95% CI	Mutation Density (/100 bp)	Component Ratio
Exon1	176	4942	39	2.05 (1.62–2.59)	1.17	7.09	279	4905	15	1.60 (1.21–2.11)	0.58	3.50
Exon2	91	4942	31	2.10 (1.64–2.68)	2.31	5.64	155	4905	6	1.47 (1.09–1.98)	0.95	1.40
Exon3	99	4942	15	1.60 (1.21–2.12)	1.62	2.73	279	4905	41	2.27 (1.79–2.82)	0.82	9.56
Exon4	74	4942	29	1.92 (1.50–2.45)	2.59	5.27	147	4905	20	1.65 (1.26–2.15)	1.12	4.66
Exon5	73	4942	4	1.55 (1.14–2.09)	2.12	0.73	150	4905	36	2.14 (1.68–2.71)	1.42	8.39
Exon6	92	4942	22	2.24 (1.72–2.91)	2.44	4.00	134	4905	23	2.05 (1.57–2.67)	1.53	5.36
Exon7	43	4942	7	1.58 (1.18–2.13)	3.68	1.27	200	4905	64	2.62 (2.13–3.23)	1.31	14.92
Exon8	89	4942	33	2.16 (1.68–2.77)	2.43	6.00	110	4905	19	1.63 (1.24–2.14)	1.48	4.43
Exon9	113	4942	12	1.89 (1.42–2.51)	1.67	2.18	124	4905	20	1.89 (1.45–2.46)	1.52	4.66
Exon10	94	4942	20	1.72 (1.32–2.25)	1.83	3.64	151	4905	13	1.60 (1.20–2.14)	1.06	3.03
Exon11	154	4942	29	1.98 (1.54–2.55)	1.29	5.27	98	4905	31	2.07 (1.60–2.66)	2.11	7.23
Exon12	371	4942	33	2.29 (1.79–2.93)	0.62	6.00	246	4905	57	2.30 (1.85–2.85)	0.93	13.29
Exon13	149	4942	57	3.26 (2.65–4.01)	2.19	10.36	205	4905	36	1.77 (1.39–2.26)	0.87	8.39
Exon14	109	4942	18	1.91 (1.46–2.50)	1.75	3.27	248	4905	18	1.66 (1.26–2.18)	0.67	4.29
Exon15	64	4942	17	1.66 (1.27–2.17)	2.59	3.09	176	4905	27	2.03 (1.56–2.64)	1.15	6.29
Exon16	165	4942	90	3.62 (3.00–4.53)	2.19	16.36	443	4905	3	1.52 (1.11–2.06)	0.34	0.70
Exon17	93	4942	26	1.95 (1.51–2.33)	2.10	4.73	—	—	—	—	—	—
Exon18	114	4942	29	2.09 (1.64–2.67)	1.83	5.27	—	—	—	—	—	—
Exon19	361	4942	39	2.58 (2.03–3.28)	0.72	7.09	—	—	—	—	—	—

doi:10.1371/journal.pone.0051240.t003
Table 4. Prevalence of gene germline mutation by types, family histories and ethnicities.

	hMLH1 (%)	hMSH2 (%)			
	Large genomic rearrangement	Insertion	Substitution	Deletion	Not identified
Asian	3.13 (13.56)	6.09 (22.03)	9.85 (55.93)	3.90 (5.93)	2.21 (2.54)
American	4.99 (21.05)	4.15 (10.53)	12.03 (50.88)	2.35 (3.51)	6.63 (14.04)
multiethnic	4.90 (23.81)	3.41 (14.29)	7.13 (46.03)	2.90 (15.87)	1.04 (0.00)
European/Mixed	3.70 (21.86)	3.98 (14.29)	6.45 (46.03)	2.90 (15.87)	1.04 (0.00)

- Component ratio in parentheses.
- doi:10.1371/journal.pone.0051240.t004

Our results showed that the major mutation type of both genes was substitution and deletion. The substitution of a nucleotide could result in missense, nonsense and silent mutations, while deletion and insertion typically lead to frameshift. There were no differences in mutation type by ethnicity in hMSH2 (deletion $P = 0.18 > 0.05$; insertion $P = 0.11 > 0.05$; substitution $P = 0.85 > 0.05$), but there were in the hMLH1 gene. For insertion, differences existed between the Asian and European/Australian populations ($P = 0.00 < 0.05$). Insertion mutations accounted for a larger proportion in the Asian population than in the European/Australian population (Table 4 and Table S4 in supporting information).

These results suggested that not only point mutations occurred frequently in colorectal cancer but also large genomic rearrangements were present to some extent. Initially, the detection methods for large genomic rearrangements were mainly southern analysis [113] and conversion analysis [18]. Recently, more sensitive MLPA analysis was performed for patients who had no point mutations to determine the occurrence of large genomic deletions of these two genes [154]. In our 102 studies, there were only five papers using MLPA separately or combined with other methods, representing 4.90% of the total studies. The prevalence of large genomic rearrangements in hMLH1 and hMSH2 was 6.76% (95% CI 3.11%–14.05%) and 13.56% (95% CI 11.19%–16.32%) (Data not shown), respectively, which was higher than the results in Table 4, where the subjects and detection methods were not specified. Therefore, the mutation prevalence in future results is expected to be higher with the use of more sensitive methods to identify large genomic deletions.

Studies have revealed that cases with negative microsatellite instability may also carry germline mutations. The mutation prevalence is widely ranged in different MSI situations and with different family histories [70]. The prevalence of mutation was 53.41% in AC+ patients with tumors exhibiting MSI-high phenotype, which suggested that the predicted value of MSI-high for mutations in these two genes was 53.41% in the AC+ group. The next highest was 30.80% in the AC− group and then 22.54% in the sporadic group. If we took MSI as one group (combined MSI-high, MSI-low and MSI cannot identify MSI-high or MSI-low), the corresponding predicted value was 57.12% (95% CI 50.43%–63.55%) in the AC+ group (Table 5).

Several techniques for detecting mutations are commonly used, including immunohistochemistry followed by DNA-sequencing, single-strand conformational polymorphism followed by DNA-sequencing, heteroduplex analysis followed by DNA-sequencing, denaturing gradient gel electrophoresis followed by DNA-sequencing, denaturing high-performance liquid chromatography followed by DNA-sequencing, and direct DNA-sequencing. Analysis of the effect of different detection methods on the prevalence have found that, in general, there was no significant difference in prevalence detected by the four methods in AC+ ($P = 0.60 > 0.05$) and AC− ($P = 0.30 > 0.05$) group. In the sporadic group, there were too few studies to analysis (Table S2 in supporting information).

A distinction between a population-based and clinic-based series was made, for this was a potentially important bias of the analysis. However, we observed that there were no significant differences in the mutation prevalence between the clinic-based and population-based groups in either gene. When considering the effects of family history, the conclusion did not change (Table S3 in supporting information).
Table 5. MSI phenotype and prevalence of \textit{hMLH}1 and \textit{hMSH}2 gene germline mutation.

MSI Status	Family history	Detected cases	Mutation cases	Prevalence of Mutation (%) and 95%CI	\(\phi^2\) (%)	Detected cases	Mutation cases	Prevalence of Mutation (%) and 95%CI	\(\phi^2\) (%)	Detected cases	Mutation cases	Prevalence of Mutation (%) and 95%CI	\(\phi^2\) (%)
MSI-High	AC+	138	38	29.84(24.23–38.48)	0	138	30	26.81(19.02–36.35)	28.48	138	68	53.41(38.02–68.17)	54.22
	AC−	91	15	22.03(13.66–33.53)	0	91	19	24.84(16.14–36.21)	15.53	91	34	38.80(27.87–50.98)	41.75
	Sporadic	45	8	18.34(9.39–32.72)	0	45	2	7.46(2.64–19.34)	45.10	45	10	22.54(12.55–37.11)	0
	Not clear	132	13	11.80(5.22–24.54)	50.70	132	21	19.67(13.10–28.46)	48.42	132	34	28.03(14.30–47.62)	73.89
	Subtotal	406	74	20.85(16.88–25.47)	0	406	72	21.21(17.11–25.98)	33.10	406	146	37.82(30.38–45.91)	50.54
MSI-Low	AC+	5	0	16.67(0.95–80.64)	0	5	0	16.67(0.95–80.64)	0	5	0	16.67(0.95–80.64)	0
	AC−	15	1	20.95(6.16–51.69)	0	15	1	12.68(5.55–44.67)	15.53	15	3	29.92(10.79–60.10)	0
	Sporadic	3	0	12.50(0.73–73.44)	0	3	0	12.50(0.73–73.44)	0	3	0	12.50(0.73–73.44)	0
	Not clear	31	0	3.03(0.43–18.62)	0	31	1	5.06(1.02–21.64)	0	31	1	5.06(1.02–21.64)	0
	Subtotal	54	2	12.17(9.42–17.93)	0	54	2	9.18(6.46–22.17)	0	54	4	16.11(7.21–32.19)	0
MSS	AC+	151	51	35.80(28.36–43.99)	39.58	151	49	35.98(28.59–44.10)	23.57	151	100	61.77(41.44–78.68)	73.94
	AC−	47	13	27.25(16.43–41.64)	24.66	47	10	24.73(15.01–37.95)	0	47	23	46.14(33.26–59.56)	16.98
	Sporadic	119	6	9.87(4.83–19.12)	4.04	119	15	16.71(6.66–36.05)	57.17	119	21	23.31(10.40–44.38)	65.00
	Not clear	232	35	14.75(8.54–24.29)	50.44	232	19	7.41(4.19–12.79)	15.80	232	54	19.99(11.41–32.64)	66.43
	Subtotal	549	105	17.84(12.46–24.89)	63.24	549	93	16.95(10.96–25.28)	70.31	549	198	34.05(22.37–48.04)	85.86
MSI not identified	AC+	1017	267	26.85(22.16–32.13)	57.32	1013	158	18.06(13.92–23.09)	56.96	968	401	43.78(37.10–50.69)	69.51

*Compared among these five subgroups in \textit{hMLH}1 gene, \(P\) value (2-sided) = 0.00.
\#Compared among these five subgroups in \textit{hMSH}2 gene, \(P\) value (2-sided) = 0.00.
\(n\)MSI refers to the cases can not identify MSI-high or MSI-low.

doi:10.1371/journal.pone.0051240.t005
There was higher heterogeneity in total prevalence. Meta-regression results showed that 22.34% of this heterogeneity was explained by different family histories ($P = 0.00$) (Table S3 in supporting information). Subgroup analysis showed that the heterogeneity was at moderate or low levels for different family histories with respect to the prevalence in these two genes. In addition to family history, factors such as years since publication, different ethnicities and detection methods were also analyzed, and none of them showed any statistically significant effect on heterogeneity (Table S3 in supporting information).

From funnel plots (Figure S2 and S3 in supporting information), we observed that the figures from the meta-analysis for the mutation prevalence with different family histories of the two genes were all skewed to the left. Further quantity analysis by Egger regression and Begg correlation methods on the extent of asymmetry found that the left-side asymmetry was statistically significant in some situations (Table 6). This indicated that an increased number of accepted publications and small study sizes had no effect on positive results. This only illustrated that more studies with small sample sizes and lower detection ability were conducted and published. However, we can still use “Trim and Fill” to adjust the value of the original data [135]. We observed that the adjusted value increased from 28.55% to 33.94% in the hMLH1 gene and from 19.41% to 23.00% in the hMSH2 gene in the AC+ group (Table 6).

In addition to mutations in exons, some of most common pathogenic variants are intronic. So, we systematically searched papers on associations between intervening sequence or intron area mutations and Lynch syndrome, and we also analyzed the difference of prevalence among related factors such as family history and ethnicities (Table S6 in supporting information). When we calculated the two genes combined, the intronic mutation frequency was 12.30% (95% CI 9.80%–15.33%) in the AC+ group and 5.90% (95% CI 4.08%–8.47%) in the AC− group. Moreover, we found that the most common pathogenic deleterious variants in Lynch syndrome were hMSH2 Intron5 c.942+3A>T, and hMLH1 Intron9 c.790+1G>A, with a mutational consequence of deletion of exon5 in hMSH2 and a deletion of exon9–10 in hMLH1.

Sensitivity analysis indicated that the results of our study were reliable and stable. However, this meta-analysis still has some limitations, such as the family history information of the patients not being clearly explained and studies providing insufficient ethnicity information having to be roughly classified. In the sporadic colorectal cancer group, the detection population was usually filtered by MSI phenotype or onset age [64,129]. Moreover, insufficient studies on sporadic colorectal cancer and information on gender need to be further analyzed. In addition, in order to control the quality and uniform standards for articles, the written language was limited to English, which may have affected the number of included studies.

Not only hMLH1 and hMSH2 gene, we remained concerned about the prevalence of these mutations of other MMR genes, in particular hMSH6 or hPMS2. In 2009, a systematic review was conducted and a meta-analysis was undertaken to determine the frequency of hMSH6 mutation in colorectal and endometrial cancers by our academic team [136]. As to hPMS2 gene, mutations in hPMS2 gene are a rare cause of Lynch syndrome [15,16]. And the mutation frequency were currently less than 2% (http://www.med.mun.ca/mmrvariants), moreover, there was fewer papers study hPMS2 gene mutation [137], so we did not include it avoiding destabilizing results. In spite of these limitations, our results are still reliable and yield important conclusions. Data on sporadic cases were not sufficient or detailed, and, hence, large, well-designed studies with information on ethnicity, gender and age of onset are needed.

Category	Intercept	value	Tau value	Intercept	value	Tau value
AC+	1.02	0.00	0.12	0.32	0.23	0.09
AC−	1.00	0.00	0.00	0.00	0.00	0.00
Sporadic	1.00	0.00	0.00	0.00	0.00	0.00
Not-clear	1.00	0.00	0.00	0.00	0.00	0.00
Total	0.47	0.40	0.47	0.17	0.06	0.07
The prevalence of hMLH1 and hMSH2 genes detected with different detection methods.

Table S5 Prevalence of hMLH1 and hMSH2 genes by types in detail.

Table S3 Meta-regression result by different variance.

Table S4 Prevalence of hMLH1 and hMSH2 gene germline mutation by clinic and population-based.

Table S7 Prevalence of hMLH1 and hMSH2 gene germline mutation in different family history and ethnicity.

References

1. Weitz J, Koch M, Debus J, Hohler T, Galle PR, et al. (2005) Colorectal cancer. Lancet 365: 153–165.
2. Parkin DM, Whelan SL, Flay J, Raymond L, Young J (1997) Cancer incidence in five continents. Volume VII. IARC Sci Publ: 1-xx, 1–1240.
3. Green SE, Bradburn DM, Varma JS, Burn J (1998) Hereditary non-polyposis colorectal cancer. Int J Colorectal Dis 13: 3–12.
4. Lynch HT, Smyrk T (1996) Hereditary nonpolyposis colorectal cancer (Lynch syndrome). An updated review. Cancer 78: 1149–1167.
5. Cederquist K, Golodove I, Emanuelsen M, Steenling R, Gronberg H (2001) A population-based cohort study of patients with multiple colon and endometrial cancer: correlation of microsatellite instability (MSI) status, age at diagnosis and cancer risk. Int J Cancer 91: 486–491.
6. de Leon MP, Pedroni M, Benatti P, Percesepe A, Di Gregorio C, et al. (1999) Hereditary colorectal cancer in the general population: from cancer registration to molecular diagnosis. Gut 45: 32–38.
7. Vasen HF, Watson P, Mecklin JP, Lynch HT (1999) New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPPC, Lynch syndrome) proposed by the International Collaborative group on HNPPC. Gastroenterology 116: 1453–1456.
8. Coggins RF, Cawkwell L, Bell SM, Crockford GP, Quinke P, et al. (2005) Association between family history and mismatch repair in colorectal cancer. Gut 54: 636–642.
9. Canard G, Lefevre JH, Colas C, Coulet F, Svrcek M, et al. (2011) Screening for Lynch Syndrome in Colorectal Cancer: Are We Doing Enough? Ann Surg Oncol.
10. Lynch HT, de la Chapelle A (1999) Genetic susceptibility to non-polyposis colorectal cancer. J Med Genet 36: 801–818.
11. Chung DC, Rustgi AK (2003) The hereditary nonpolyposis colorectal cancer syndrome: genotypes and clinical implications. Ann Intern Med 138: 569–570.
12. Aaltonen LA, Peltomaki P (1994) Genes involved in hereditary nonpolyposis colorectal carcinoma. Anticancer Res 14: 1657–1660.
13. Bronner CE, Baker SM, Morrison PT, Warren G, Smith LG, et al. (1994) Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary nonpolyposis colon cancer. Nature 368: 258–261.
14. Fishel R, Lescoe MK, Rao MR, Copeland NG, Jenkins NA, et al. (1993) The molecular basis of Turcot’s syndrome. N Engl J Med 323: 389–401.
15. Hamilton SR, Liu B, Parsons RE, Papadopoulos N, Jen J, et al. (1995) Germline mutation of hMLH1 and hMSH2 in predisposing to colorectal cancer. Cancer Res 65: 2798–7802.
16. Liu T, Yan H, Kuismanen S, Percesepe A, Bignaard ML, et al. (2001) The role of mismatch repair protein expression. Cancer Res 57: 4749–4756.
17. Cases G, Lindor NM, Papadopoulos N, Thibodeau SN, Moskow J, et al. (2005) Conversion analysis for mutation in MLH1 and MSH2 in patients with colorectal cancer. Jama 293: 799–809.
18. Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, et al. (1998) A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58: 5248–5257.
19. Dietmaier W, Wallinger S, Becker T, Kullmann F, Fishe1 R, et al. (1997) Diagnostic microsatellite instability: definition and correlation with mismatch repair protein expression. Cancer Res 57: 4749–4756.
20. Modrich P (1991) Mechanisms and biological effects of mismatch repair. Annu Rev Genet 25: 229–253.
21. Balmana J, Stockwell DH, Steyerberg EW, Steffel EM, Deffenbaugh AM, et al. (2006) Prediction of MLH1 and MSH2 mutations in Lynch syndrome. Jama 296: 1469–1478.
22. Dunlop MG, Farrington SM, Nicholl I, Aaltonen L, Petersen G, et al. (2000) Population carrier frequency of hMSH2 and hMLH1 mutations. Br J Cancer 83: 1643–1645.
23. Shin VK, Heo SC, Shin JH, Hong SH, Ku JL, et al. (2004) Germline mutations in MLH1, MSH2 and MSH6 in Korean hereditary non-polyposis colorectal cancer families. Hum Mutat 24: 351.
24. Kouraklis G, Misiakos EP (2005) Hereditary nonpolyposis colorectal cancer (Lynch syndrome): criteria for identification and management. Dig Dis Sci 50: 336–344.
25. Mangold E, Pagenstecher C, Friedl W, Mathiak M, Buerstner R, et al. (2005) Spectrum and frequencies of mutations in MSH2 and MLH1 identified in 1,721 German families suspected of hereditary nonpolyposis colorectal cancer. Int J Cancer 116: 692–702.
26. Cotton RG, Scrivener CR (1998) Proof of “disease causing” mutation. Hum Mutat 12: 1–3.
27. Ramensky V, Bork P, Sunyaev S (2002) Human non-synonymous SNPs: server and survey. Nucleic Acids Res 30: 3894–3900.
28. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21: 1539–1558.
29. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327: 557–560.
30. Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50: 1081–1101.
31. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. Bmj 313: 629–634.
32. Peters JL, Sutton AJ, Jones DR, Abrams KR, Rushton L (2006) Comparison of two methods to detect publication bias in meta-analysis. Jama 295: 676–680.
33. Aaltonen LA, Salmovaara R, Kristo P, Canzian F, Hemminki A, et al. (1998) Spectrum and frequencies of mutations in MSH2 and MLH1 identified in 1,721 German families suspected of hereditary nonpolyposis colorectal cancer. Int J Cancer 116: 692–702.
Influence of selection criteria on mutation detection in patients with hereditary nonpolyposis colorectal cancer (HNPCC) by a multi-method approach. Eur J Hum Genet 7: 309–317.

Caldes T, Godinó J, de la Hoya M, Garcia Carbonero I, Perez Segura P, et al. (1995) Systematic analysis of hMSH2 and hMLH1 in young colon cancer patients and controls. Am J Hum Genet 63: 749–759.

Cunningham JM, Kim CY, Christensen ER, Tester DJ, Parc Y, et al. (2001) Mutational germline analysis of hMSH2 and hMLH1 genes in early onset colorectal cancer kindreds. Int J Cancer 89: 87–91.

Cederquist K, Emanuelsson M, Goransson I, Holinski-Feder E, Muller-Koch P, et al. (1998) Detection of microsatellite instability and mismatch repair gene inactivation in sporadic colorectal cancer. Gut 44: 839–843.

Luo DC, Cai Q, Sun MH, Ni YZ, Ni SC, et al. (2005) Clinicopathological and molecular genetic analysis of HNPCC in China. World J Gastroenterol 11: 1673–1679.

Maliaka YK, Chudina AP, Belev NF, Alday P, Bochkov NP, et al. (1996) CpG island microsatellites in the hMSH2 and hMLH1 genes are hotspots for HNPCC. Hum Mol Genet 5: 1245–1252.

Kurzawski G, Suchy J, Lener M, Klujszo-Grabowska E, Kladyń J, et al. (2006) Lynch syndrome (hereditary nonpolyposis colorectal cancer) diagnostics. J Natl Cancer Inst 99: 291–299.

Lamberti E, Kruse R, Ruhiel K, Gaspar D, Wang Y, et al. (1999) Mismatch repair instability-a useful diagnostic tool to select patients at high risk for hereditary non-polyposis colorectal cancer: a study in different groups of patients with colorectal cancer. Gut 48: 839–843.

Bartosova Z, Fridrichova I, Bujalkova M, Radice P, Gazzoli I, et al. (2000) Microsatellite instability in colorectal-cancer patients with suspected genetic predisposition. Int J Cancer 89: 87–91.

Farrington SM, Petersen CM, Hamilton SR, Parsons R, et al. (1995) Genetic instability occurs in the majority of young patients with colorectal cancer. Nat Med 1: 348–352.

Birrer M, Schraml C, Karsch L, Dirix LY, Kemper B, et al. (2004) Validation of the hMSH2 and hMLH1 gene mutation carrier among Chinese population with hereditary non-polyposis colorectal cancer. BMC Cancer 8: 44.

Kathalke N, Christensen M, Wikman FP, Orntoft TF, Laurberg S (2002) Frequency of hereditary non-polyposis colorectal cancer in Danish colorectal cancer patients. Gut 50: 43–51.

Kohonen-Corish M, Ross VL, Doe WF, Kool DA, Edkins E, et al. (1996) Racial-based mutation screening in hereditary nonpolyposis colorectal cancer. Am J Hum Genet 59: 818–824.

Hutter P, Couturié A, Membrez V, Joris F, Sappino AP, et al. (1998) Excess of hMLH1 germline mutations in Swiss families with hereditary non-polyposis colorectal cancer. Int J Cancer 78: 680–684.

Jin HY, Lai X, Li VK, Ding Y, Yang B, et al. (2008) Detection of mismatch repair gene germline mutation carrier among Chinese population with colorectal cancer. BMC Cancer 8: 15.

Herfarth KK, Konderl J, Whelan AJ, Ivanovitch JL, Bracamontes JR, et al. (1997) Mutations in MLH1 are more frequent than in MSH2 in sporadic colorectal cancers with microsatellite instability. Genes Chromosomes Cancer 10: 42–49.

Maliaka YK, Chudina AP, Belev NF, Alday P, Bochkov NP, et al. (1996) CpG island microsatellites in the hMSH2 and hMLH1 genes are hotspots for HNPCC. Hum Mol Genet 5: 1245–1252.

Birrer M, Schraml C, Karsch L, Dirix LY, Kemper B, et al. (2004) Validation of the hMSH2 and hMLH1 gene mutation carrier among Chinese population with hereditary non-polyposis colorectal cancer. BMC Cancer 8: 44.

Farrington SM, Petersen CM, Hamilton SR, Parsons R, et al. (1995) Genetic instability occurs in the majority of young patients with colorectal cancer. Nat Med 1: 348–352.

Birrer M, Schraml C, Karsch L, Dirix LY, Kemper B, et al. (2004) Validation of the hMSH2 and hMLH1 gene mutation carrier among Chinese population with hereditary non-polyposis colorectal cancer. BMC Cancer 8: 44.

Kathalke N, Christensen M, Wikman FP, Orntoft TF, Laurberg S (2002) Frequency of hereditary non-polyposis colorectal cancer in Danish colorectal cancer patients. Gut 50: 43–51.

Kohonen-Corish M, Ross VL, Doe WF, Kool DA, Edkins E, et al. (1996) Racial-based mutation screening in hereditary nonpolyposis colorectal cancer. Am J Hum Genet 59: 818–824.

Kurzawski G, Suchy J, Lener M, Klujszo-Grabowska E, Kladyń J, et al. (2006) Lynch syndrome (hereditary nonpolyposis colorectal cancer) diagnostics. J Natl Cancer Inst 99: 291–299.

Lamberti E, Kruse R, Ruhiel K, Gaspar D, Wang Y, et al. (1999) Mismatch repair instability-a useful diagnostic tool to select patients at high risk for hereditary non-polyposis colorectal cancer: a study in different groups of patients with colorectal cancer. Gut 48: 839–843.

Liu B, Farrington SM, Petersen CM, Hamilton SR, Parsons R, et al. (1995) Genetic instability occurs in the majority of young patients with colorectal cancer. Nat Med 1: 348–352.

Birrer M, Parsons R, Papadopoulous N, Nicolaides NC, Lynch HT, et al. (1996) Analysis of mismatch repair gene germline mutations in hereditary non-polyposis colorectal cancer patients. Nat Med 2: 169–174.

Liu SR, Zhao B, Wang ZJ, Wan YL, Huang YT (2004) Clinical features and mismatch repair gene mutation screening in Chinese patients with hereditary nonpolyposis colorectal cancer. World J Gastroenterol 10: 2647–2651.

Liu T, Walshberg S, Rubio C, Holberg E, Groszmann R, et al. (1998) DGGE screening of mutations in mismatch repair genes (hMSH2 and hMLH1) in 34 Swedish families with colorectal cancer. Clin Genet 53: 131–135.

Lo C, Cui Q, Sun MH, Ni YZ, Ni SC, et al. (2005) Clinicopathological and molecular genetic analysis of HNPCC in China. World J Gastroenterol 11: 1673–1679.

Malýka YK, Chudina AP, Belev NF, Alday P, Bochkov NP, et al. (1996) CpG dinucleotides in the hMSH2 and hMLH1 genes are hotspots for HNPCC. Hum Mutat Genet 5: 255–259.

Maullion JL, Michel P, Limacher JC, Latsouche JB, Dechelotte P, et al. (1996) Identification of novel germline MLH1 mutations including a 22 kb Alu-mediated deletion in patients with familial colorectal cancer. Cancer Res 56: 5726–5733.

Miller AL, Pal T, Madlenski L, Sherman C, Temple L, et al. (1999) Mismatch repair gene defects contribute to the genetic basis of double primary cancers of the colorectum and endometrium. Hum Mol Genet 8: 823–829.

Maliaka YK, Konishi M, Moriya K, Koide Y, Imanaka K, et al. (1995) Germ line mutations of hMSH2 and hMLH1 genes in Japanese families with hereditary nonpolyposis colorectal cancer (HNPCC): usefulness of DNA analysis for screening and diagnosis of HNPCC patients. J Mol Med 73: 513–520.

Montera M, Resta N, Simone C, Guanti G, Marchese C, et al. (2000) Microsatellite analysis of hMSH2 and hMLH1 genes in early onset colorectal cancer patients. J Med Genet 37: E7.

Moslen G, Tester DJ, Lindor NM, Henschel R, Cunningham JM, et al. (1996) Microsatellite instability and mutation analysis of hMSH2 and hMLH1 in patients with sporadic, familial and hereditary colorectal cancer. Hum Mol Genet 5: 1249–1252.

Nishimura S, Kishishita H, Taniguchi T, Fukayama N, et al. (2000) Enhanced detection of deleterious and other germline mutations of hMSH2 and hMLH1 in patients with colorectal cancer. J Natl Cancer Inst 92: 1676–1683.

Palacio M, Balmana J, González S, Blanco I, Marccello E, et al. (2002) Mismatch repair gene mutations in Catalanian families with colorectal cancer. J Med Genet 39: E29.

Patel J, Kovacs ME, Oalh E (2007) Germline MLH1 and MSH2 mutational spectrum including frequent large genomic aberrations in Hungarian hereditary non-polyposis colorectal cancer families: implications for genetic testing. J Gastroenterol 13: 2727–2732.
106. Southey MC, Jenkins MA, Mead L, Whitty J, Trivett M, et al. (2005) Use of molecular screening for hereditary non-polyposis colorectal cancer (HNPCC) families correlates with the presence of mutations in DNA mismatch repair genes. Genes Chromosomes Cancer 39: 152–162.

107. Persson V, Radice P, Presciutti S, Calisti D, Gazzoli I, et al. (1997) Mean age of tumor onset in hereditary non-polyposis colorectal cancer (HNPCC) families. Dis Colon Rectum 40: 1261–1264.

108. Pinol V, Castells A, Andreu M, Castello-Bel S, Alenda C, et al. (2005) Accuracy of revised Bethesda guidelines, microsatellite instability, and immunohistochemistry for the identification of patients with hereditary non-polyposis colorectal cancer. JAMA 293: 1896–1904.

110. Taylor CF, Charlton RS, Burn J, Sheridan E, Taylor GR (2003) Genomic gene mutation in colorectal cancer with implications for diagnosis and genetic testing. Int J Cancer 102: 516–519.

111. Pe’er DJ, Ziegas A, Fox EA, Guldeo A., Jaffee E, et al. (2000) Characterization of hereditary non-polyposis colorectal cancer (HNPCC) families from a population-based series of cases. J Natl Cancer Inst 92: 1517–1522.

112. Tomlinson IP, Beck NE, Hombry T, Harocopos CJ, Bodmer WF (1997) Germline HNPCC gene variants have little influence on the risk for sporadic colorectal cancer. J Med Genet 34: 39–42.

113. Vasaen HF, Stormorken A, Merko HH, Nagengast FM, Kleibeuker JH, et al. (2000) The MSI2 mutation carriers are at higher risk of cancer than MSI1 mutation carriers: a study of hereditary nonpolyposis colorectal cancer families. J Clin Oncol 18: 4074–4080.

114. Viale A, Gennari M, Capozzi E, Leonardi F, Bellaccia A, et al. (1997) Characterization of MSI2 and MSI3 germline mutations in Italian families with hereditary nonpolyposis colorectal cancer. Genes Chromosomes Cancer 18: 8–10.

115. Wagner A, Barrows A, Wijnen JT, van der Klift H, Franken PP, et al. (2003) Mismatch repair analysis of hereditary non-polyposis colorectal cancer at the United States: high mutation detection rate among clinically selected families and characterization of an American founder genomic deletion of the MLH2 gene. Am J Hum Genet 72: 1028–1100.

116. Wallberg SS, Nyström-Lahni M, Kane MF, Kolodner RD, Peltomäki P, et al. (1999) Low frequency of MSI2 mutations in Swedish HNPCC families. Int J Cancer 74: 134–137.

117. Wang CF, Zhou XY, Zhang TM, Xu Y, Gai SJ, et al. (2007) Two novel germline mutations of MLH1 and investigation of their pathobiology in hereditary non-polyposis colorectal cancer families in China. World J Gastroenterol 13: 6254–6258.

118. Wang Q, Desseigne F, Lasset C, Saurin JC, Navarro C, et al. (1997) Germline hMLH2 and hMSH2 gene mutations in incomplete HNPCC families. J Natl Cancer Inst 89: 831–836.

119. Wang Q, Lasset C, Desseigne F, Saurin JC, Maugard C, et al. (1999) Prevalence of germline mutations of MLH1, HML2, HPM1, HPM2, and HML6 genes in 75 French kindreds with nonpolyposis colorectal cancer. Cancer Genet Cytogenet 105: 79–83.

120. Wang XL, Yuan Y, Zhang SZ, Cai SR, Huang YQ, et al. (2006) Clinical and genetic characteristics of Chinese hereditary non-polyposis colorectal cancer families. World J Gastroenterol 12: 4074–4077.

121. Weber TK, Chin HM, Rodriguez-Bigas M, Keitz B, Gilligan R, et al. (1999) Novel hMLH1 and hMSH2 germline mutations in African Americans with colorectal cancer. JAMA 281: 2316–2320.

122. Weber TK, Conlon W, Petrelli NJ, Rodriguez-Bigas M, Keitz B, et al. (1997) Genomic DNA-based hMLH2 and hMSH2 mutation screening in 32 Eastern United States hereditary nonpolyposis colorectal cancer pedigrees. Cancer Res 57: 3798–3803.

123. Wehner M, Buschhausen I, Lamberti C, Kruse R, Caspari R, et al. (1997) Hereditary nonpolyposis colorectal cancer (HNPCC): eight novel germline mutations in MSH2 and MLH1 genes. Hum Mutat 10: 241–244.

124. Wei SC, Yu CY, Tsai-Wu JJ, Su NY, Sheu JC, et al. (2003) Low mutation rate of hMSH2 and hMLH1 in Taiwanese hereditary non-polyposis colorectal cancer. Clin Genet 64: 241–253.

125. Wijnen J, Khan PM, Vassen H, van der Klift H, Mulder A, et al. (1997) Hereditary nonpolyposis colorectal cancer families not complying with the Amsterdam criteria show extremely low frequency of mismatch-repair-gene mutations. Am J Hum Genet 61: 329–335.

126. Wijnen J, van der Klift H, Vassen H, Khan PM, Melot F, et al. (1998) MSI2 and hMLH1 gene mutations in incomplete HNPCC families. Hum Mutat 10: 241–244.

127. Wolf B, Henglmueller S, Janschek E, Ilencikova D, Ludwig-Papst C, et al. (2001) MSH2 gene mutations in 75 French kindreds with nonpolyposis colorectal cancer. Cancer Genet Cytogenet 133: 296–302.

128. Wu Y, Nystrom-Lahti M, Ojanen J, Looman MW, Peltonäki P, et al. (1997) MSH2 and MSIH mutations in sporadic replication error-positive colorectal carcinoma as assessed by two-dimensional DNA electrophoresis. Genes Chromosomes Cancer 18: 269–278.

129. Yan Hl, Hao LQ, Jin HY, Xing QH, Xue G, et al. (2008) Clinical features and mismatch repair gene analyses of Chinese suspected hereditary non-polyposis colorectal cancer: a cost-effective screening strategy proposal. Cancer Sci 99: 770–780.

130. Yuan Y, Ye Z, Zheng S (2004) Clinical and genetic features of International Collaborative Group-hereditary nonpolyposis colorectal cancer families and suspected hereditary nonpolyposis colorectal cancer families. Clin Med J (Eng) 117: 748–752.

131. Yuen ST, Chan TL, Ho JW, Chan AS, Chung LP, et al. (2002) Germline, somatic and epigenetic events underlying mismatch repair deficiency in colorectal and HNPCC-related cancers. Oncogene 21: 7385–7392.

132. Yuen ST, Chan TL, Ho JW, Chung AS, Chung LP, et al. (2002) Germline, somatic and epigenetic events underlying mismatch repair deficiency in colorectal and HNPCC-related cancers. Oncogene 21: 7385–7392.

133. Zhang CH, He YL, Wang FJ, Song W, Yuan XY, et al. (2008) Detection of hMSH2 and hMLH1 mutations in Chinese hereditary nonpolyposis colorectal cancer kindreds. World J Gastroenterol 14: 298–302.

134. Wei W, Liu L, Chen J, Jin K, Jiang F, et al. (2010) Racial differences in MLH1 and MSI2 mutation: an analysis of yellow race and white race and black race in the InSIGHT database. Bioinform Comput Biol 8 Suppl 1: 111–125.

135. Schouten JP, McGlenn CJ, Waaarj R, Wijngers J, Diepvens F, et al. (2002) Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 30: 547–557.

136. Duval S, Tweedie R (2000) Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56: 453–463.
136. Zhao YS, Hu FL, Wang F, Han B, Li DD, et al. (2009) Meta-analysis of MSH6 gene mutation frequency in colorectal and endometrial cancers. J Toxicol Environ Health A 72: 690–697.

137. Peltomaki P, Vasen HF (1997) Mutations predisposing to hereditary nonpolyposis colorectal cancer: database and results of a collaborative study. The International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer. Gastroenterology 113: 1146–1158.