ON A GRADIENT MAXIMUM PRINCIPLE
FOR SOME QUASILINEAR PARABOLIC EQUATIONS
ON CONVEX DOMAINS

SEONGHAK KIM

Abstract. We establish a spatial gradient maximum principle for classical solutions to the initial and Neumann boundary value problem of some quasilinear parabolic equations on smooth convex domains.

1. Statement of main theorem

In this note, we study the initial and Neumann boundary value problem of a quasilinear diffusion equation with a linear reaction term:

\[
\begin{align*}
\frac{du}{dt} &= \text{div}(\sigma(Du)) - c(t)u & \text{in } \Omega \times (0, T], \\
\frac{\partial u}{\partial n} &= 0 & \text{on } \partial \Omega \times (0, T], \\
u(x, 0) &= u_0(x) & \text{for } x \in \Omega.
\end{align*}
\]

Here, \(\Omega \subset \mathbb{R}^n \) \((n \geq 1)\) is a bounded convex domain with \(C^2 \) boundary, \(T > 0 \) is any fixed number, \(u = u(x, t) \) is the unknown function with \(u_t \) and \(Du = (u_{x_1}, \ldots, u_{x_n}) \) denoting its rate of change and spatial gradient respectively, \(n \) is the outer unit normal on \(\partial \Omega \), \(u_0 \in C^2(\bar{\Omega}) \) is a given initial function satisfying the compatibility condition:

\[
\frac{\partial u_0}{\partial n} = 0 \text{ on } \partial \Omega.
\]

\(c = c(t) \in W^{1, q}(0, T) \) is nonnegative for some \(n + 2 < q_0 < \infty \), and \(\sigma: \mathbb{R}^n \to \mathbb{R}^n \) is given by \(\sigma(p) = f(|p|^2)p \) \((p \in \mathbb{R}^n)\) for some function \(f \in C^3([0, \infty)) \) fulfilling

\[
\lambda \leq f(s) + 2sf'(s) \leq \Lambda \quad \forall s \geq 0,
\]

where \(\Lambda \geq \lambda > 0 \) are ellipticity constants. We easily have

\[
\sigma_i^j(p) = f(|p|^2)\delta_{ij} + 2f'(|p|^2)p_i p_j \quad (i, j = 1, 2, \ldots, n; p \in \mathbb{R}^n)
\]

and hence the uniform ellipticity condition:

\[
\lambda |q|^2 \leq \sum_{i,j=1}^{n} \sigma_i^j(p)q_i q_j \leq \Lambda |q|^2 \quad \forall p, q \in \mathbb{R}^n;
\]

that is, (1.1) is a quasilinear uniformly parabolic problem with conormal boundary condition. Thus the existence, uniqueness and regularity of a classical solution \(u \) to

2010 Mathematics Subject Classification. 35B50, 35B65, 35K20, 35K59.

Key words and phrases. quasilinear parabolic equation, gradient maximum principle, convex domain, Hopf’s lemma, bootstrap of regularity.
follow from the standard theory such as in [9, Theorem 13.24] under suitable H"older regularity assumptions on u_0 and $\partial \Omega$.

The main result of this note is the following theorem.

Theorem 1.1 (Gradient Maximum Principle). If $u \in C^{2,1}(\bar{\Omega}_T)$ is a classical solution to problem (1.1), where $\Omega_T = \Omega \times (0, T]$, then it satisfies the gradient maximum principle:

$$\|Du\|_{L^\infty(\Omega_T)} = \|Du_0\|_{L^\infty(\Omega)}.$$

Gradient estimates for parabolic equations are usually given as a priori estimates depending on the initial datum, domain and ellipticity constants. Our result, Theorem 1.1, gives an estimate independent of the convex domain and ellipticity constants. In case of the heat equation ($f \equiv 1$ and $c \equiv 0$), (1.3) was proved in [3] for $C^{3,1}$ solutions and convex C^3 domains. Theorem 1.1 extends such a result to a large class of uniformly parabolic equations for $C^{2,1}$ solutions and convex C^2 domains. It is also important to note that the convexity assumption on the domain Ω in our result cannot be dropped in general; see a counterexample in [1, Theorem 4.1]. Also, we refer the reader to [10, 11] for more extensive studies on the maximum principles in elliptic and parabolic differential equations.

Our motivation of (1.3) is in the application of its pure diffusion case ($c \equiv 0$) to the study of the Neumann problem of some forward-backward diffusion equations [5, 6, 7]. Although the proof of Theorem 1.1 would become much easier if u belonged to $C^{3,1}(\bar{\Omega}_T)$, the existence of such a solution u often requires the initial datum u_0 lie in $C^{3+\alpha}(\bar{\Omega})$ for some $0 < \alpha < 1$ and satisfy, in addition to (1.2), the second compatibility condition:

$$\partial(\text{div}(\sigma(Du_0))) / \partial n = 0 \quad \text{on} \quad \partial \Omega.$$

These requirements give rise to a subtle but critical issue on the application of the convex integration method for constructing infinitely many Lipschitz solutions to certain forward-backward parabolic Neumann problems. For example, dealing with Perona-Malik type equations in [5], condition (1.4) was posted for nonconstant radial initial data $u_0 \in C^{3+\alpha}(\bar{\Omega})$ when Ω is a ball. Also, an earlier version of the main existence theorem in [6] for the Perona-Malik equation assumed that initial data $u_0 \in C^{3+\alpha}(\bar{\Omega})$ with compatibility conditions (1.2) and (1.4) satisfy some technical restrictions, which cannot handle the cases with $\|Du_0\|_{L^\infty(\partial \Omega)} \geq 1$ or with $0 < \|Du_0\|_{L^\infty(\partial \Omega)} < 1$ and $\|Du_0\|_{L^\infty(\Omega)} \geq \|Du_0\|_{L^\infty(\partial \Omega)}^{-1}$. Our main result of this note removes these requirements and restrictions on nonconstant initial data u_0; the only requirement is that initial data $u_0 \in C^{2+\alpha}(\bar{\Omega})$ fulfill (1.2).

Another purpose of studying (1.3) (when $c \equiv 0$) is to confirm the validity of [4, Theorem 6.1] for convex domains. It has been a general belief that the initial-Neumann boundary value problem of a forward-backward parabolic equation in [4] admits a unique global classical solution if the initial datum $u_0 \in C^{2+\alpha}(\bar{\Omega})$ satisfies (1.2) and $\|Du_0\|_{L^\infty(\Omega)} < s_0$, where $s_0 > 0$ is the threshold at which the forward parabolicity of governing equation turns into the backward one. Regarding this, many authors often reported that such a problem is well-posed for subcritical (or
where

\[v \]

From these equations, using Lemma 2.2, one has

\[u \in C^{3+\beta_0,\frac{3\beta_0}{2}}(\Omega_T) \]

for some \(0 < \beta_0 < 1 \).

We now prove Theorem 1.1 based on the two lemmas above.

Proof of Theorem 1.1. Let \(v = |Du|^2 \) on \(\Omega_T \). By Lemma 2.2, \(v \in C^{1,0}(\Omega_T) \cap C^{2,1}(\Omega_T) \). We compute, within \(\Omega_T \),

\[\Delta v = 2Du \cdot D(\Delta u) + 2|D^2 u|^2, \]

\[u_t = \text{div}(f(v)Du) - cu = f'(v)Du \cdot Du + f(v)\Delta u - cu, \]

\[Du_t = f''(v)(Dv \cdot Du)Du + f'(v)(D^2 u)Du \]

\[+ f'(v)(D^2 v)Du + f'(v)(\Delta u)Du + f(v)D(\Delta u) - cDu. \]

From these equations, using \(v_t = 2Du \cdot Du_t \), we obtain

\[v_t - \mathcal{L}(v) - V \cdot Du = -2f(v)|D^2 u|^2 - 2c|Du|^2 \leq 0 \text{ in } \Omega_T, \]

where \(\mathcal{L}(v) \) and \(V \) are defined by

\[\mathcal{L}(v) = f(|Du|^2)\Delta v + 2f'(|Du|^2)Du \cdot (D^2 v)Du, \]

\[V = 2f''(v)(Dv \cdot Du)Du + 2f'(v)(D^2 u)Du + 2f'(v)(\Delta u)Du. \]
Set $\mathcal{L}(v) = a_{ij}v_{x_i x_j}$ with coefficients $a_{ij} = a_{ij}(x, t)$, given by

$$a_{ij} = \sigma^i_{pj}(Du) = f(|Du|^2)\delta_{ij} + 2f'(|Du|^2)u_{x_i}u_{x_j} \quad (i, j = 1, \cdots, n).$$

Then, on $\bar{\Omega}_T$, all eigenvalues of the matrix (a_{ij}) lie in $[\lambda, \Lambda]$.

We now show

$$\max_{(x,t) \in \bar{\Omega}_T} v(x, t) = \max_{x \in \bar{\Omega}} v(x, 0),$$

which completes the proof. We argue by contradiction; suppose

$$M := \max_{(x,t) \in \bar{\Omega}_T} v(x, t) > \max_{x \in \bar{\Omega}} v(x, 0).$$

Let $(x_0, t_0) \in \bar{\Omega}_T$ with $v(x_0, t_0) = M$; then $t_0 > 0$. If $x_0 \in \Omega$, then the strong maximum principle [2] applied to (2.2) would imply that v is constant on $\bar{\Omega} \times [0, t_0]$, which yields $v(x, 0) = M$ on $\bar{\Omega}$, a contradiction to (2.3). Consequently, $x_0 \in \partial\Omega$ and thus $v(x_0, t_0) = M > v(x, t)$ for all $(x, t) \in \Omega$. We can then apply Hopf’s Lemma for parabolic equations [10] to (2.2) to deduce $\partial v(x_0, t_0)/\partial n > 0$, which contradicts the conclusion of Lemma 2.1. \hfill \Box

We finally give the proof of Lemma 2.2 although it may be well known to the experts in regularity theory.

Proof of Lemma 2.2 We rely on [8, Theorem III.12.1] for the bootstrap of interior regularity for the solution $u \in C^{2,1}(\bar{\Omega}_T)$ to problem (1.1). We divide the proof into several steps.

1. In $\bar{\Omega}_T$,

$$u_t = \text{div}(f(|Du|^2)Du) - cu = a_{ij}u_{x_i x_j} - cu,$$

where $a_{ij} = \sigma^i_{pj}(Du) = f(|Du|^2)\delta_{ij} + 2f'(|Du|^2)u_{x_i}u_{x_j} \in C^{1,0}(\bar{\Omega}_T)$ and $c \in W^{-q_0}(0, T) \subset C^{\alpha_0}(\bar{\Omega}_T)$ with $n + 2 < q_0 < \infty$ and $\alpha_0 := 1 - 1/q_0$. Note that the uniform ellipticity holds:

$$\lambda|\xi|^2 \leq a_{ij}(x, t)\xi_i \xi_j \leq \Lambda|\xi|^2 \quad \forall (x, t) \in \bar{\Omega}_T, \forall \xi \in \mathbb{R}^n.$$

2. Fix an index $k \in \{1, \cdots, n\}$, and set $v = u_{x_k} \in C^{1,0}(\bar{\Omega}_T)$. Differentiating (2.4) formally with respect to x_k, we have

$$v_t - \frac{\partial}{\partial x_j}(a_{ij}v_{x_j}) + b_i v_{x_i} + cv = g,$$

where

$$b_i = (a_{ij})_{x_j}, \quad g = (a_{ij})_{x_k}u_{x_i}u_{x_j} \in C^0(\bar{\Omega}_T), \quad c \in C^{\alpha_0}(\bar{0}, T]).$$

The membership (2.7) easily verifies the admissible criteria (1.3)–(1.6) in Chapter III of [8] for coefficients and free term of equation (2.6). It is also easy to see that $v \in V^0_c(\bar{\Omega}_T)$ is a weak (or generalized) solution to (2.6) in the sense of [8].

To check some additional conditions in [8, Theorem III.12.1], we rewrite equation (2.6) in non-divergence form:

$$v_t - a_{ij}v_{x_i x_j} + cv = g.$$
Choose any $n + 2 < q < \infty$. From $a_{ij} \in C^{1,0}(\bar{\Omega}_T)$ and (2.7), it follows that a_{ij}’s are bounded and continuous in Ω_T, that $\|c\|_{L^q(\Omega \times (t,t+\tau))} \to 0$ as $\tau \to 0$ for each $t \in (0,T)$, and that $g \in L^q(\Omega_T)$; that is, coefficients and free term of equation (2.8) fulfill the conditions in [8, Theorem IV.9.1] associated to the chosen number q.

With (2.5), we can now apply [8, Theorem III.12.1] to obtain that weak derivatives $v_t, v_{x,i,j} (i,j = 1, \cdots, n)$ exist and belong to $L^q(Q)$ for all $1 \leq q < \infty$ and domains $Q \subset \Omega_T$ with $\text{dist}(Q, \Gamma_T) > 0$, where $\Gamma_T = \bar{\Omega}_T \setminus \Omega_T$ is the parabolic boundary of Ω_T.

3. Fix any $\epsilon > 0$ sufficiently small, and let

$$\Omega' = \{ x \in \Omega : \text{dist}(x, \partial \Omega) > \epsilon \}, \quad \Omega'_T = \Omega' \times (\epsilon, T].$$

Also, fix any two indices $k, l \in \{1, \cdots, n\}$, and set $w = u_{x,k} \in C^0(\bar{\Omega}_T)$. Then by Step 2, we have $w \in V^{1,0}_{2}(\Omega'_T)$. Taking formal derivative of (2.6) in terms of x_t, we have

$$w_t - \partial \frac{\partial}{\partial x_j}(a_{ij} w_{x_i}) + b_i w_{x_i} + cw = h,$$

where

$$h = (a_{ij})_{x_k} u_{x,i,j} + (a_{ij})_{x_k} u_{x,i,j} x_i + (a_{ij})_{x_l} u_{x,i,j} x_k.$$

Since $f \in C^3([0, \infty))$, Step 2 implies

$$h \in L^q(\Omega'_T) \quad \forall 1 \leq q < \infty.$$

Observe that coefficients of equation (2.9) are the same as those of equation (2.6). Thus as in Step 2, with (2.10), we see that the admissible criteria (1.3)–(1.6) in Chapter III of [8] are satisfied by coefficients and free term of equation (2.9). Also, $w \in V^{1,0}_{2}(\Omega'_T)$ is a weak solution to (2.9).

As in Step 2, we also rewrite equation (2.9) in non-divergence form:

$$w_t - a_{ij} w_{x,i,j} + cw = h.$$

Likewise, coefficients of (2.11) are equal to those of (2.8), and free term h satisfies (2.10).

Again with (2.5), it follows from [8, Theorem III.12.1] that weak derivatives $w_t, w_{x,i,j}$ $(i,j = 1, \cdots, n)$ exist and belong to $L^q(Q)$ for all $1 \leq q < \infty$ and domains $Q \subset \Omega'_T$ with $\text{dist}(Q, \Gamma'_T) > 0$, where $\Gamma'_T = \bar{\Omega}_T \setminus \Omega'_T$ is the parabolic boundary of Ω'_T.

4. Set $\tilde{w} = u_t \in C^0(\bar{\Omega}_T)$. By Step 2, we have $\tilde{w} \in V^{1,0}_{2}(\Omega'_T)$. Differentiating (2.4) formally with respect to t,

$$\tilde{w}_t - \partial \frac{\partial}{\partial x_j}(a_{ij} \tilde{w}_{x_i}) + b_i \tilde{w}_{x_i} + c \tilde{w} = \tilde{h},$$

where

$$\tilde{h} = (a_{ij})_{t} u_{x,i,j} - c'u.$$

From Step 2 and $c' \in L^q(0,T)$, we have

$$\tilde{h} \in L^q(\Omega'_T).$$
As above, we obtain from Theorem III.12.1 that \(\tilde{w}_t = u_{tt} \) exists and belongs to \(L^{q_0}(Q) \) for all domains \(Q \subset \Omega^T \) with \(\text{dist}(Q, \Gamma^T_\epsilon) > 0 \).

5. By Steps 2–4, we conclude that

\[
u \in W^{4,2}_{q_0}(\Omega^{2\epsilon}_T) \quad \forall \epsilon > 0.
\]

By the parabolic Sobolev embedding theorem Lemma II.3.3], we obtain

\[
u \in C^{3+\beta_0, \frac{3+\beta_0}{2}}(\Omega_T),
\]

where \(0 < \beta_0 < 1 - \frac{n+2}{q_0} \); hence (2.1) holds.

\[\square \]

Acknowledgments. The author would like to thank Professor Baisheng Yan and the referee for many helpful comments and suggestions to improve the presentation of the paper.

References

[1] N.D. Alikakos and R. Rostamian, *Gradient estimates for degenerate diffusion equations. I*, Math. Ann., 259 (1) (1982), 53–70.

[2] L.C. Evans, “Partial differential equations,” Graduate Studies in Mathematics, 19 (2nd ed.), American Mathematical Society, Providence, RI, 2010.

[3] C.S. Kahane, *A gradient estimate for solutions of the heat equation. II*, Czechoslovak Math. J., 51 (126) (1) (2001), 39–44.

[4] B. Kawohl and N. Kutev, *Maximum and comparison principle for one-dimensional anisotropic diffusion*, Math. Ann., 311 (1) (1998), 107–123.

[5] S. Kim and B. Yan, *Radial weak solutions for the Perona-Malik equation as a differential inclusion*, J. Differential Equations, 258 (6) (2015), 1889–1932.

[6] S. Kim and B. Yan, *Convex integration and infinitely many weak solutions to the Perona-Malik equation in all dimensions*, SIAM J. Math. Anal., 47 (4) (2015), 2770–2794.

[7] S. Kim and B. Yan, *On Lipschitz solutions for some forward-backward parabolic equations*, Preprint.

[8] O.A. Ladyženskaja, V.A. Solonnikov and N.N. Ural’ceva, “Linear and quasilinear equations of parabolic type. (Russian),” Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, RI, 1968.

[9] G.M. Lieberman, “Second order parabolic differential equations,” World Scientific Publishing Co., Inc., River Edge, NJ, 1996.

[10] M. Protter and H. Weinberger, “Maximum principles in differential equations,” Prentice-Hall, Inc., Englewood Cliffs, NJ, 1967.

[11] P. Pucci and J. Serrin, “The maximum principle,” Progress in Nonlinear Differential Equations and their Applications, 73. Birkhauser Verlag, Basel, 2007.

Institute for Mathematical Sciences, Renmin University of China, Beijing 100872, PRC

E-mail address: kimseol14@ruc.edu.cn