Controlled K-Fusion Frame for Hilbert Spaces

Nadia ASSILA1, Samir KABBAJ2, and Brahim MOALIGE3

Abstract. K-fusion frames are a generalization of fusion frames in frame theory. In this paper, we extend the concept of controlled fusion frames to controlled K-fusion frames, and we develop some results on the controlled K-fusion frames for Hilbert spaces, which generalize some well known results of controlled fusion frame case. Also we discuss some characterizations of controlled Bessel K-fusion sequences and of controlled K-fusion frames. Further, we analyze stability conditions of controlled K-fusion frames under perturbation.

Mathematics Subject Classification (2020). 42C15, 46A35, 26A18.
Key words and phrases. Fusion Frame, K-Fusion Frame, Controlled Fusion Frame, Stability.

1. Introduction

Frames are more flexible than bases to solve some problems in Hilbert spaces. They were firstly introduced by Duffin and Schaeffer [11] to study nonharmonic Fourier series in 1952, and widely studied by Daubechies, Grossman and Meyer [10] in 1986. More results of frames are in [7].
Fusion frames as a generalisation of frames were introduced by Casazza and Kutyniok in [6] and further there were developed in their joint paper [9] with Li. The theory for fusion frames...
is available in arbitrary separable Hilbert spaces (finite-dimensional or not). The motivation behind fusion frames comes from signal processing, more precisely, the desire to process and analyze large data sets efficiently. A natural idea is to split such data sets into suitable smaller “blocks” which can be treated independently. From a pure mathematical point of view, fusion frames are special cases of the g-frames [22]. However, the connection to concrete applications is less apparent from the more abstract definition of g-frames. In 2012, L. Gavruta [15] introduced the notions of K-frames in Hilbert space to study the atomic systems with respect to a bounded linear operator K. Controlled frames in Hilbert spaces have been introduced by P. Balaz [1] to improve the numerical efficiency of iterative algorithms for inventing the frame operator. Further A. Khosravi [17] generalized this concept to the case of fusion frames. He has showed that controlled fusion frame as a generalization of fusion frames give a generalized way to obtain numerical advantage in the sense of preconditioning to check the fusion frame condition. In 2015 Rahimi [20] defined the concept of controlled K-frames in Hilbert spaces and showed that controlled K-frames are equivalent to K-frames.

Motivated by the above literature, we introduce and investigate some properties of controlled K-fusion frames, we also generalize some known results for controlled fusion frames to controlled K-fusion frames. Finally, we present perturbation result for controlled K-fusion frames. This paper is organized as follows. In Section 2, we recall several definitions about fusion frames, K-fusion frames and controlled fusion frames. Then, we give a basic properties about a bounded linear operator. In Section 3, we introduce the concept of controlled K-fusion frames and discuss their properties. In section 4, we analyze stability conditions of controlled K-fusion frames under perturbation.

2. Preliminaries and Notations

Throughout this paper, we will adopt the following notations. \mathcal{H} is a separable Hilbert space, $\{W_i\}_{i \in I}$ is a sequence of closed subspaces of \mathcal{H}, where I is a countable index set. the family of all bounded linear operators on \mathcal{H} is denoted by $B(\mathcal{H})$. We denote R_T, N_T, range and null space of a bounded linear operator T, respectively. $GL(\mathcal{H})$ is the set of all bounded invertible operators on \mathcal{H} with bounded inverse, and $GL(\mathcal{H})^+$ denotes the set of all positive operators in $GL(\mathcal{H})$. π_{W_i} is the orthogonal projection from \mathcal{H} into W_i, and $\{w_i\}_{i \in I}$ is a family of weights, i.e. $w_i > 0$, for any $i \in I$.

The space $(\oplus_{i \in I} \mathcal{H})_2$ which is defined by

$$(\oplus_{i \in I} \mathcal{H})_2 = \{\{f_i\}_{i \in I} : f_i \in \mathcal{H}, i \in I, \sum_{i \in I} \|f_i\|^2 < \infty\},$$

with the inner product as

$$\langle \{f_i\}_{i \in I}, \{g_i\}_{i \in I} \rangle = \sum_{i \in I} \langle f_i, g_i \rangle_{\mathcal{H}},$$

is a separable Hilbert space [17].

2.1. Fusion frames.
If only the right inequality of (2.1) holds, we call the family

\[K \]

Definition 2.2. [3] Let \(K \)

Where \(K \)

\[K \]

Frame for \(H \)

Where \(K \)

Its adjoint operator, which is called the analysis operator \(K \)

2.2. \(K \)-fusion frames.

Definition 2.2. [3] Let \(K \in B(H) \), let \(\{ W_i \}_{i \in I} \) be a family of closed subspaces of a Hilbert space \(H \), and let \(\{ w_i \}_{i \in I} \) be a family of weights. Then the family \(W = \{ W_i, w_i \}_{i \in I} \) is called a \(K \)-fusion frame for \(H \), if there exist positive constants \(A \leq B < \infty \) such that

\[A \| f \|^2 \leq \sum_{i \in I} w_i^2 \| \pi_{W_i} f \|^2 \leq B \| f \|^2, f \in H. \tag{2.1} \]

\(A \) and \(B \) are called the lower and upper bounds of fusion frame, respectively. If only the right inequality of (2.1) holds, we call the family \(\{ W_i, w_i \}_{i \in I} \) a fusion Bessel sequence.

2.2. \(K \)-fusion frames.

Definition 2.2. [3] Let \(K \in B(H) \), let \(\{ W_i \}_{i \in I} \) be a family of closed subspaces of a Hilbert space \(H \), and let \(\{ w_i \}_{i \in I} \) be a family of weights. Then the family \(W = \{ W_i, w_i \}_{i \in I} \) is called a \(K \)-fusion frame for \(H \), if there exist positive constants \(A \leq B < \infty \) such that

\[A \| K^* f \|^2 \leq \sum_{i \in I} w_i^2 \| \pi_{W_i} f \|^2 \leq B \| f \|^2, f \in H. \tag{2.2} \]

Where \(K^* \) is the adjoint operator of \(K \).

\(A \) and \(B \) are called the lower and upper bounds of \(K \)-fusion frame, respectively.

suppose that \(\{ W_i, w_i \}_{i \in I} \) is a fusion Bessel sequence for \(H \), then the synthesis operator of \(\{ W_i, w_i \}_{i \in I} \) is defined by \(T_W : (\sum_{i \in I} \oplus W_i)_{l^2} \rightarrow H \),

\[T_W(\{ f_i \}_{i \in I}) = \sum_{i \in I} w_i f_i, \quad \{ f_i \}_{i \in I} \in (\sum_{i \in I} \oplus W_i)_{l^2}. \]

Where

\[(\sum_{i \in I} \oplus W_i)_{l^2} = \{ \{ f_i \}_{i \in I} : f_i \in W_i, i \in I, \sum_{i \in I} \| f_i \|^2 < \infty \}. \]

Its adjoint operator, which is called the analysis operator \(T^*_W : H \rightarrow (\sum_{i \in I} \oplus W_i)_{l^2} \), is defined by

\[T^*_W(f) = \{ w_i \pi_{W_i} f \}_{i \in I}, \quad f \in H. \]

And the \(K \)-fusion frame operator associated is \(S_W : H \rightarrow H \).

\[S_W(f) = \sum_{i \in I} w_i^2 \pi_{W_i} f, \quad f \in H. \tag{2.3} \]

2.3. Controlled fusion frame.

Definition 2.3. [17] Let \(\{ W_i \}_{i \in I} \) be a family of closed subspaces of a Hilbert space \(H \), let \(\{ w_i \}_{i \in I} \) be a family of weights, and let \(T, U \in GL(H) \). Then the family \(W = \{ W_i, w_i \}_{i \in I} \) is called a \((T, U) \)-controlled fusion frame for \(H \), if there exist positive constants \(A \leq B < \infty \) such that

\[A \| f \|^2 \leq \sum_{i \in I} w_i^2 \langle \pi_{W} T f, \pi_{W} U f \rangle \leq B \| f \|^2, f \in H. \tag{2.4} \]

\[118 N. ASSILA, S. KABBAJ AND B. MOALIGE \]
A and B are called the lower and upper bounds of \((T, U)\)-controlled fusion frame, respectively. For further information in \(K\)-fusion frame and controlled fusion frame theory we refer the reader to [3], [17] [18] and [9].

In theory of frames, often use the following theorem, which describes some properties of the adjoint operator.

Theorem 1. [7] Let \(H_1, H_2\) be Hilbert spaces, and suppose that \(U \in B(H_1, H_2)\). Then,

i) \(U^* \in B(H_2, H_1)\) and \(\|U^*\| = \|U\|\).

ii) \(U\) is surjective if and only if \(\exists A > 0\) such that \(\|U^*h\|_{H_2} \geq A\|h\|_{H_1}\).

It is well-known that not all bounded operator \(U\) on a Hilbert space \(H\) is invertible: an operator \(U\) needs to be injective and surjective in order to be invertible. For doing this, one can use right-inverse operator. The following lemma shows that if an operator \(U\) has closed range, there exists a "right-inverse operator" \(U^\dagger\) in the following sense:

Lemma 2. [7] Let \(H_1, H_2\) be Hilbert spaces, and \(U \in B(H_1, H_2)\) be a closed range \(R_U\). Then there exists a bounded operator \(U^\dagger : H_2 \rightarrow H_1\) for which

\[
UU^\dagger x = x, \quad x \in \mathcal{R}_U,
\]

and

\[
(U^*)^\dagger = (U^\dagger)^*.
\]

The operator \(U^\dagger\) is called the Pseudo-inverse of \(U\).

In the literature, one will often see the pseudo-inverse of an operator \(U\) with closed range defined as the unique operator \(U^\dagger\) satisfying that

\[
\mathcal{N}_{U^\dagger} = \mathcal{R}_{U}^\perp, \quad UU^\dagger x = x, \quad x \in \mathcal{R}_U.
\]

The following lemma is necessary for our results.

Lemma 3. [14] Let \(V \subseteq H\) be a closed subspace, and \(T\) be a linear bounded operator on \(H\). Then

\[
\pi_V T^* = \pi_V T^* \pi_{TV}.
\]

If \(T\) is a unitary (i.e. \(T^* T = T T^* = \text{Id}_H\)), then

\[
\pi_{TV} T = T \pi_V.
\]

Proposition 2.1. [21] Let \(T : H \rightarrow H\) be a linear operator. Then the following condition are equivalent:

1. There exist \(m > 0\) and \(M < \infty\), such that \(m I \leq T \leq M I\);
2. \(T\) is positive and there exist \(m > 0\) and \(M < \infty\), such that \(m \|f\|^2 \leq \|T^{1/2} f\|^2 \leq M\|f\|^2\) for all \(f \in H\);
3. \(T\) is positive and \(T^{1/2} \in \text{GL}(H)\);
4. There exists a self-adjoint operator \(A \in \text{GL}(H)\), such that \(A^2 = T\);
5. \(T \in \text{GL}^+(H)\).

The following lemma will be used in the sequel.
Lemma 4. [12] Let F, G, H be Hilbert spaces. Let $T \in B(F, G)$ and $T' \in B(H, G)$ with $\overline{R}_{T'}$ be orthogonally complemented. Then the following statements are equivalent:

i) $T' T'^* \leq \lambda T T^*$ for some $\lambda > 0$.

ii) There exists $\mu > 0$ such that $\|T^* z\| \leq \mu \|T^* z\|$ for all $z \in G$.

Theorem 5. [13] Let T be a positive linear bounded operator on H. T possesses a unique positive bounded square root which commutes with every bounded operator that commutes with T.

3. Controlled K-fusion frame

In this section, we introduce the notion of controlled K-fusion frames in Hilbert spaces and we discuss some their properties.

Definition 3.1. Let $K \in B(H)$, and $\{W_i\}_{i \in I}$ be a family of closed subspaces of a Hilbert space H. Also, let $\{w_i\}_{i \in I}$ be a family of weights, and let $C, C' \in GL(H)$. Then $\mathcal{W} = \{W_i, w_i\}_{i \in I}$ is called a K-fusion frame controlled by C and C' or (C, C')-controlled K-fusion frame if there exist two constants $0 < A_{CC'} \leq B_{CC'} < \infty$ such that

$$A_{CC'} \|K^* f\|^2 \leq \sum_{i \in I} w_i^2 < \pi_{W_i} C f, \pi_{W_i} C' f > \leq B_{CC'} \|f\|^2, f \in H. \quad (3.1)$$

Where K^* is the adjoint operator of K.

$A_{CC'}$ and $B_{CC'}$ are called lower and upper bounds of a (C, C')-controlled K-fusion frame respectively.

1. We call \mathcal{W} a (C, C')-controlled Parsval K-fusion frame if $A_{CC'} = B_{CC'} = 1$.

2. If only the second inequality (3.1) is required, we call \mathcal{W} a (C, C')-controlled Bessel K-fusion sequence with Bessel bound B.

Remark 6. i) If $K = I$ (where is the identity operator), then every (C, C')-controlled K-fusion frame is a (C, C')-controlled fusion frame.

ii) If $C = C' = I$, then every (C, C')-controlled K-fusion frame is a K-fusion frame.

iii) Every (C, C')-controlled fusion frame is a (C, C')-controlled K-fusion frame. Indeed, by definition (3.1) there exist constants $0 < A_{CC'} \leq B_{CC'}$, such that for all $f \in H$, we have $A_{CC'} \|f\|^2 \leq \sum_{i \in I} w_i^2 < \pi_{W_i} C f, \pi_{W_i} C' f > \leq B_{CC'} \|f\|^2$.

Therefore, for $\|K\| > 0$, one has $A_{CC'} \|K^* f\|^2 \leq B_{CC'} \|f\|^2 \leq A_{CC'} \|K\|^2 \|f\|^2$, that is,

$$\frac{A_{CC'}}{\|K\|^2} \|K^* f\|^2 \leq A_{CC'} \|f\|^2,$$
it follows that,
\[
\frac{A_{CC'}}{\|K\|^2} \|K^* f\|^2 \leq \sum_{i \in I} w_i^2 < \pi_{W_i} C f, \pi_{W_i} C' f > \leq B_{CC'} \|f\|^2.
\]

Hence, the family \(W \) is a \((C, C')\)-controlled \(K \)-fusion frame for \(\mathcal{H} \).

The next example shows that in general, frames may be controlled \(K \)-fusion frame without being a controlled fusion frame.

Example 3.1. Let \(\mathcal{H} = l_2(\mathbb{C}) = \{\{a_n\}_{n \in \mathbb{N}} \subset \mathbb{C} \mid \sum_{n=0}^{+\infty} |a_n|^2 < \infty\} \) be a Hilbert space, with respect to the inner product
\[
\langle \{a_n\}_{n \in \mathbb{N}}, \{b_n\}_{n \in \mathbb{N}} \rangle = \sum_{n \in \mathbb{N}} a_n \overline{b_n},
\]
equipped with the norm
\[
\|\{a_n\}_{n \in \mathbb{N}}\|_{l_2(\mathbb{C})} = \left(\sum_{n \in \mathbb{N}} |a_n|^2 \right)^{\frac{1}{2}}.
\]
Consider two operators \(C \) and \(C' \) defined by
\[
C : \mathcal{H} \rightarrow \mathcal{H}, \quad \{a_n\}_{n \in \mathbb{N}} \mapsto \{\alpha a_n\}_{n \in \mathbb{N}}
\]
and
\[
C' : \mathcal{H} \rightarrow \mathcal{H}, \quad \{a_n\}_{n \in \mathbb{N}} \mapsto \{\beta a_n\}_{n \in \mathbb{N}}
\]
where \(\alpha, \beta \in \mathbb{R}^*_+ \).

It is easy to see that:
- \(C \) and \(C' \) are positives.
- \(C \) and \(C' \) are invertibles.

Then, invertible operators are given respectively by:
\[
C^{-1} : \mathcal{H} \rightarrow \mathcal{H}, \quad \{a_n\}_{n \in \mathbb{N}} \mapsto \{\alpha^{-1} a_n\}_{n \in \mathbb{N}},
\]
and
\[
C'^{-1} : \mathcal{H} \rightarrow \mathcal{H}, \quad \{a_n\}_{n \in \mathbb{N}} \mapsto \{\beta^{-1} a_n\}_{n \in \mathbb{N}}.
\]
Let \(E_i = \{a_j\}_{j \in \mathbb{N}}, \) where \(a_j = \{\delta^i_j\}_{j \in \mathbb{N}} \) (where \(\delta^i_j \) is the Kronecker symbol). Let \(\{W_i\}_{i \in \mathbb{N}} \) be a closed subspaces of \(\mathcal{H} \) such that \(W_i = CE_i \), and let \(w_i = \frac{1}{\sqrt{i+1}} \), for all \(i \in \mathbb{N} \).

The family \(W = \{W_i, w_i\}_{i \in \mathbb{N}} \) is a \((C, C')\)-controlled Bessel fusion sequence. Indeed for each \(\{a_n\}_{n \in \mathbb{N}} \in \mathcal{H} \), we have
\[
\sum_{i \in \mathbb{N}} w_i^2 \langle \pi_{W_i} C(\{a_n\}_{n \in \mathbb{N}}), \pi_{W_i} C'(\{a_n\}_{n \in \mathbb{N}}) \rangle = \alpha \beta \sum_{i \in \mathbb{N}} \frac{1}{i+1} |a_i|^2
\]
\begin{align*}
\leq \alpha\beta \sum_{i \in \mathbb{N}} |a_i|^2 \\
= \alpha\beta \|\{a_n\}_{n \in \mathbb{N}}\|_H^2.
\end{align*}

But is not \((C,C')\)-controlled fusion frame, For this, assume the contrary that exists \(A_{CC'} > 0\) such that:

\begin{equation}
A_{CC'} \sum_{i \in \mathbb{N}} |a_i|^2 \leq \sum_{i \in \mathbb{N}} \frac{\alpha\beta}{i+1} |a_i|^2.
\end{equation}

Hence

\[
\sum_{i \in \mathbb{N}} |a_i|^2 < \infty \implies \lim_{i \to +\infty} a_i = 0
\]

So, we have

\[
|a_j| \to 0 \quad \text{as} \quad j \to \infty;
\]

\[
\frac{\alpha\beta}{i+1} \to 0 \quad \text{as} \quad i \to \infty.
\]

\[
\implies \left\{ \begin{array}{ll}
\forall \varepsilon \geq 0 & \exists N \in \mathbb{N} : \ j \geq N \implies |a_j| < \varepsilon,
\forall \gamma \geq 0 & \exists N \in \mathbb{N} : \ j \geq M \implies \frac{\alpha\beta}{j+1} < \gamma.
\end{array} \right.
\]

\[
\implies \sum_{i \in \mathbb{N}} \frac{\alpha\beta - (j+1)A_{CC'}}{j+1} |a_j|^2 \geq 0.
\]

By fixing \(\varepsilon = \gamma\), there exist \(N, M \in \mathbb{N}^*\), such that

\[
\left\{ \begin{array}{ll}
j \geq N & \implies |a_j| < \varepsilon,
\end{array} \right.
\]

Now, let \(N_1 = \max(N, M)\), then \(\forall j \geq N_1\), \(|a_j| < \varepsilon\) and \(\frac{\alpha\beta}{j+1} < \varepsilon\). Hence

\[
\sum_{i=0}^{N_1-1} \frac{\alpha\beta - (i+1)A_{CC'}}{i+1} |a_i|^2 + \varepsilon^2 \sum_{i=N_1}^{\infty} (\varepsilon - A_{CC'}) \geq 0.
\]

Now, for \(\varepsilon = \frac{A_{CC'}}{2}\), we obtain

\[
\sum_{i=0}^{N_1-1} \frac{\alpha\beta - (i+1)A_{CC'}}{i+1} |a_i|^2 + \left(\frac{A_{CC'}}{2}\right)^2 \sum_{i=N_1}^{\infty} \left(-\frac{A_{CC'}}{2}\right) \geq 0.
\]

absurde.

Now if we considere the operator

\[
K : \mathcal{H} \to \mathcal{H} \quad \{a_n\}_{n \in \mathbb{N}} \mapsto \left\{ \frac{a_n}{\sqrt{n+1}} \right\}_{n \in \mathbb{N}}.
\]
Then, K is a bounded linear operator on \mathcal{H}. Furthermore, for each $\{a_n\}_{n \in \mathbb{N}} \in \mathcal{H}$, we have

$$\langle K^*(\{a_n\}_{n \in \mathbb{N}}), K^*(\{a_n\}_{n \in \mathbb{N}}) \rangle = \sum_{i=0}^{\infty} \frac{|a_n|^2}{n+1}. $$

So,

$$\sum_{i=0}^{\infty} \frac{\alpha \beta}{n+1} |a_n|^2 \leq \sum_{i=0}^{\infty} \frac{\alpha \beta}{n+1} |a_n|^2 \leq \alpha \beta \sum_{i=0}^{\infty} |a_n|^2,$$

The following proposition provides a relation between controlled K-fusion frames and controlled fusion frames.

Proposition 7. Let $K \in \mathcal{B}(\mathcal{H})$ be a closed range operator. Then, every (C, C')-controlled K-fusion frame is a (C, C')-controlled fusion frame for \mathcal{R}_K.

Proof. Let $\mathcal{W} = \{W_i, w_i\}_{i \in I}$ be a (C, C')-controlled K-fusion frame with frame bounds $A_{CC'}$ and $B_{CC'}$. Then for all $f \in \mathcal{R}_K$, we have

$$A_{CC'}\|K^*f\|^2 \leq \sum_{i \in I} w_i^2 < \pi_{W_i}Cf, \pi_{W_i}C'f > \leq B_{CC'}\|f\|^2.$$

Therefore, via lemma 2, we have

$$A_{CC'}\|f\|^2 \leq A_{CC'}\|(K^*)^\dagger f\|^2\|K^*f\|^2.$$

Hence,

$$\frac{A_{CC'}}{\|(K^*)^\dagger\|^2}\|f\|^2 \leq A_{CC'}\|K^*f\|^2.$$

Thus,

$$\frac{A_{CC'}}{\|(K^*)^\dagger\|^2}\|f\|^2 \leq \sum_{i \in I} w_i^2 < \pi_{W_i}Cf, \pi_{W_i}C'f > \leq B_{CC'}\|f\|^2.$$

So, we have the result.

If \mathcal{W} is a (C, C')-controlled K-fusion frame and $C'^*\pi_{W_i}C$ is a positive operator for each $i \in I$, then $C'^*\pi_{W_i}C = C^*\pi_{W_i}C'$ and we have

$$A_{CC'}\|K^*f\|^2 \leq \sum_{i \in I} w_i^2 \|(C'^*\pi_{W_i}C)^{\frac{1}{2}}f\|^2 \leq B_{CC'}\|f\|^2, f \in \mathcal{H}.$$

Indeed,

$$\sum_{i \in I} w_i^2 \langle \pi_{W_i}Cf, \pi_{W_i}C'f \rangle = \sum_{i \in I} w_i^2 \langle (C'^*\pi_{W_i}C)^{\frac{1}{2}}f, (C'^*\pi_{W_i}C)^{\frac{1}{2}}f \rangle = \sum_{i \in I} w_i^2 \|(C'^*\pi_{W_i}C)^{\frac{1}{2}}f\|^2.$$
\[f \mapsto T_{CC'}(f) := (w_i(C'^* \pi_{W_i} C)^{1/2} f)_{i \in I}, \]

Where

\[K = \{ (w_i(C'^* \pi_{W_i} C)^{1/2} f)_{i \in I} | f \in \mathcal{H} \} \subseteq (\oplus_{i \in I} \mathcal{H})_2. \]

\(K \) is closed [17] and \(T_{CC'} \) is well defined. Moreover \(T_{CC'} \) is a bounded linear operator. Its adjoint operator is given by

\[T^*_{CC'} : K \rightarrow \mathcal{H} \]

\[(w_i(C'^* \pi_{W_i} C)^{1/2} f)_{i \in I} \mapsto T^*_{CC'}((w_i(C'^* \pi_{W_i} C)^{1/2} f)_{i \in I}) := \sum_{i \in I} w_i^2 C'^* \pi_{W_i} C f, \]

and is called the controlled synthesis operator.

Therefore, we define the controlled \(K \)-fusion frame operator \(S_{CC'} \) on \(\mathcal{H} \) by

\[S_{CC'} = T^*_{CC'} T_{CC'}(f) = \sum_{i \in I} w_i^2 C'^* \pi_{W_i} C f, \quad f \in \mathcal{H}. \] (3.3)

In fact, many of the properties of the ordinary \(K \)-fusion frames are valid in this case.

Lemma 8. Let \(W = \{ W_i, w_i \}_{i \in I} \) be a \((C, C')\)-controlled \(K \)-fusion frame with bounds \(A_{CC'} \) and \(B_{CC'} \). Then the operator \(S_{CC'} \) (3.3) is a well-defined, linear, positive, bounded and self-adjoint operator. Furthermore, we have

\[A_{CC'} K K^* \leq S_{CC'} \leq B_{CC'} \text{Id}_H. \] (3.4)

Proof.
- By definition, \(S_{CC'} \) is a linear bounded and well-defined operator, and it is clear to see that \(S_{CC'} \) is a positive and self-adjoint operator.
- The family \(W = \{ W_i, w_i \}_{i \in I} \) is a \((C, C')\)-controlled \(K \)-fusion frame for \(\mathcal{H} \) with bounds \(A_{CC'} \) and \(B_{CC'} \) if and only if

\[A_{CC'} \| K^* f \|^2 \leq \langle S_{CC'} f, f \rangle = \langle \sum_{i \in I} w_i^2 C'^* \pi_{W_i} C f, f \rangle \leq B_{CC'} \| f \|^2, \quad f \in \mathcal{H}, \]

that is,

\[A_{CC'} \langle K^* f, f \rangle \leq \langle S_{CC'} f, f \rangle \leq B_{CC'} \langle f, f \rangle, \quad f \in \mathcal{H}. \]

Hence,

\[A_{CC'} K K^* \leq S_{CC'} \leq B_{CC'} \text{Id}_H, \]

so the conclusion holds.

The next theorem generalizes the situation of controlled Bessel \(K \)-fusion sequence. Since it has similar procedure, the proof is omitted.

Theorem 9. \(W \) is a \((C, C')\)-controlled Bessel \(K \)-fusion sequence with bound \(B_{CC'} \) if and only if \(T^*_{CC'} \) is well-defined bounded operator and \(\| T_{CC'} \| \leq \sqrt{B} \).
Controlled K-fusion frame operator of \((C, C')\)-controlled K-fusion frame is not invertible in general, but we can show that it is invertible on the subspace \(R_K \subset \mathcal{H}\). In fact, since \(R_K\) is closed
\[
KK^\dagger |_{R_K} = id_{R_K},
\]
so we have
\[
id^*_R = (K^\dagger |_{R_K})^* K^*.
\]
Hence for any \(f \in R_K\)
\[
\|f\| = \|(K^\dagger |_{R_K})^* K^* f\| \leq \|K^\dagger\| \|K^* f\|,
\]
that is,
\[
\|f\|^2 \leq \|K^\dagger\|^2 \|K^* f\|^2.
\] (3.5)
Combined with (3.1) we have
\[
\langle S_{CC'}f, f \rangle \geq A_{CC'} \|K^* f\|^2 \geq A_{CC'} \|K^\dagger\|^2 \|f\|^2, \quad \forall f \in R_K.
\]
So from the definition of \((C, C')\)-controlled K-fusion frame, one implies that \(S : \mathcal{R}_K \rightarrow S(\mathcal{R}_K)\) is an isomorphism, furthermore we have
\[
B_{CC'}^{-1} \|f\| \leq \|S^{-1} f\| \leq A_{CC'}^{-1} \|K^\dagger\|^2 \|f\|, \quad \forall f \in (S(\mathcal{R}_K)).
\]

Theorem 10. Let \(K \in B(\mathcal{H})\) be a closed range operator, then \(W\) is a \((C, C')\)-controlled K-fusion frame with bounds \(A_{CC'}\) and \(B_{CC'}\) if and only if \(T_{CC'}^*\) is well-defined and surjective.

Proof. Let the sequence \(W\) be a \((C, C')\)-controlled K-fusion frame for \(\mathcal{H}\), and let \(S_{CC'}\) be its controlled K-fusion frame operator. Then, it is a \((C, C')\)-controlled Bessel K-fusion sequence and therefore, by Theorem 9, the bounded operator \(T_{CC'}^*\) is well-defined. It remains to show that By definition, for each \(f \in \mathcal{H}\), we have
\[
A_{CC'} \|K^* f\|^2 \leq \sum_{i \in I} w_i^2 < \pi_{W_i} C f, \pi_{W_i} C' f > \leq B_{CC'} \|f\|^2.
\]
In particular, we have
\[
A_{CC'} \|K^* f\|^2 \leq \langle S_{CC'}f, f \rangle \leq \|S_{CC'}f\| \|f\|.
\]
Since, \(S_{CC'} = T^* T\), then
\[
\|S_{CC'}f\| \|f\| \leq \|T\| \|Tf\| \|f\|.
\]
Hence,
\[
A_{CC'} \|T\|^{-1} \|K^* f\|^2 \leq \|Tf\| \|f\|.
\]
Since \(R_K\) is closed, and via lemma we have
\[
KK^\dagger |_{R_K} = id_{R_K},
\]
so we have
\[
id^*_R = (K^\dagger |_{R_K})^* K^*.
\]
Hence for any \(f \in \mathcal{R}_K \)
\[
\|f\| = \|(K^*|_{\mathcal{R}_K})^*K^*f\|,
\]
that is,
\[
\|f\|^2 \leq \|(K^*)^t\|^2\|K^*f\|^2. \tag{3.6}
\]
Therefore, we have
\[
A_{CC'}\|f\|^2 \leq A_{CC'}\|(K^*)^t\|^2\|K^*f\|^2.
\]
Hence,
\[
\frac{A_{CC'}}{\|(K^*)^t\|^2}\|f\|^2 \leq A_{CC'}\|K^*f\|^2.
\]
\[
\|Tf\| \geq \frac{A_{CC'}}{\|T\|(K^*)^t\|^2}\|f\|.
\]
Thus, \(T_{CC'}^* \) is a surjective operator.
Conversely, let \(T_{CC'}^* \) be a well-defined, bounded and surjective, then theorem 9 shows that \(\mathcal{W} \) is a \((C, C')\)-controlled Bessel \(K \)-fusion sequence for \(\mathcal{H} \). Therefore, for each \(f \in \mathcal{H} \), since \(T_{CC'}^* \) is surjective, then, by Lemma 2, there exists an operator \((T_{CC'}^*)^t : \mathcal{H} \rightarrow \mathcal{K}, \) such that
\[
T_{CC'}^*(T_{CC'}^*)^t = id.
\]
Hence,
\[
T_{CC'}^tT_{CC'} = id.
\]
So, for each \(f \in \mathcal{H} \), we have
\[
\|K^*f\|^2 \leq \|K\|^2\|T_{CC'}^t\|^2\|T_{CC'}f\|^2
\]
\[
= \|T_{CC'}^t\|^2\|K\|^2\sum_{i \in I} w_i^2 < \pi_{W_i}Cf, \pi_{W_i}C'f >.
\]
Therefore, \(\mathcal{W} \) is a \((C, C')\)-controlled \(K \)-fusion frame for \(\mathcal{H} \).

Proposition 11. Let \(K \in B(\mathcal{H}) \), \(C, C' \in GL^+(\mathcal{H}) \) and let \(\mathcal{W} \) be a \((C, C')\)-controlled \(K \)-fusion frame for \(\mathcal{H} \) with bounds \(A_{CC'} \) and \(B_{CC'} \) with \(\mathcal{R}_T \) is orthogonally complemented. If \(T \in B(\mathcal{H}) \) with \(\mathcal{R}_T \subset \mathcal{R}_K \). Then \(\mathcal{W} \) is a \((C, C')\)-controlled \(T \)-fusion frame for \(\mathcal{H} \).

Proof. Assume that \(\mathcal{W} \) be a \((C, C')\)-controlled \(K \)-fusion frame for \(\mathcal{H} \) with bounds \(A_{CC'} \) and \(B_{CC'} \). Then for each \(f \in \mathcal{H} \), we have
\[
A_{CC'}\langle K^*f, K^*f \rangle \leq \sum_{i \in I} w_i^2 \langle \pi_{W_i}Cf, \pi_{W_i}C'f \rangle \leq B_{CC'}\langle f, f \rangle.
\]
Since \(\mathcal{R}_T \subset \mathcal{R}_K \), so by using lemma 4, there exists some \(\lambda > 0 \) such that
\[
TT^* \leq \lambda KK^*.
\]
This implies that for all \(f \in \mathcal{H} \), we have
\[
A_{CC'}\langle T^*f, T^*f \rangle \leq A_{CC'}\lambda\langle K^*f, K^*f \rangle.
\]
Therefore,
\[
\frac{A_{CC}^i}{\lambda} \langle T^* f, T^* f \rangle \leq A_{CC}^i \langle K^* f, K^* f \rangle \leq \sum_{i \in I} w_i^2 \langle \pi_{W_i} C f, \pi_{W_i} C' f \rangle \leq B_{CC'}^i \langle f, f \rangle.
\]

Then, \(W \) is a \((C, C')\)-controlled \(T\)-fusion frame for \(\mathcal{H} \) with bounds \(\frac{A_{CC}^i}{\lambda} \) and \(B_{CC'}^i \).

Theorem 12. Let \(K_1, K_2 \in B(\mathcal{H}) \) such that \(\mathcal{R}_{K_1^*} \perp \mathcal{R}_{K_2^*} \). If \(\mathcal{W} \) is a \((C, C')\)-controlled \(K_i \)-fusion frame for \(\mathcal{H} \) \((i = 1, 2)\). Then \(\mathcal{W} \) is a \((C, C')\)-controlled \((aK_1 + \beta K_2)^*\)-fusion frame for \(\mathcal{H} \), where \(a, \beta \in \mathbb{C} \).

Proof. Since \(\mathcal{W} \) is a \((C, C')\)-controlled \(K_i \)-fusion frame for \(\mathcal{H} \) \((i = 1, 2)\), there exist \(A_{CC'}^i, B_{CC'}^i > 0 \), such that for all \(f \in \mathcal{H}, j = 1, 2 \), we have
\[
A_{CC'}^i \langle K_j^* f, K_j^* f \rangle \leq \sum_{i \in I} w_i^2 \langle \pi_{W_i} C f, \pi_{W_i} C' f \rangle \leq B_{CC'}^i \langle f, f \rangle.
\]

Then for any \(f \in \mathcal{H} \), we have
\[
\langle (aK_1 + \beta K_2)^* f, (aK_1 + \beta K_2)^* f \rangle = \langle \pi K_1^* f + \overline{\beta} K_2^* f, \pi K_1^* f + \overline{\beta} K_2^* f \rangle = |a|^2 \langle K_1^* f, K_1^* f \rangle + |\beta|^2 \langle K_2^* f, K_2^* f \rangle + \overline{\beta} \pi \langle K_1^* f, K_1^* f \rangle + \beta \pi \langle K_2^* f, K_2^* f \rangle.
\]

Since \(\mathcal{R}_{K_1} \perp \mathcal{R}_{K_2} \), then, for any \(f \in \mathcal{H} \), we have
\[
\langle K_1^* f, K_2^* f \rangle = 0,
\]
\[
\langle K_2^* f, K_1^* f \rangle = 0.
\]

Thus,
\[
\langle (aK_1 + \beta K_2)^* f, (aK_1 + \beta K_2)^* f \rangle = |a|^2 \langle K_1^* f, K_1^* f \rangle + |\beta|^2 \langle K_2^* f, K_2^* f \rangle.
\]

Therefore, for any \(f \in \mathcal{H} \), we have
\[
|a|^2 \langle K_1^* f, K_1^* f \rangle + |\beta|^2 \langle K_2^* f, K_2^* f \rangle \leq \frac{|a|^2}{A_{CC'}^1} + \frac{|\beta|^2}{A_{CC'}^2} \sum_{i \in I} w_i^2 \langle \pi_{W_i} C f, \pi_{W_i} C' f \rangle \leq \frac{A_{CC'}^1 |a|^2 + A_{CC'}^2 |\beta|^2 + 1}{A_{CC'}^1 A_{CC'}^2} \sum_{i \in I} w_i^2 \langle \pi_{W_i} C f, \pi_{W_i} C' f \rangle.
\]

Then,
\[
0 < \frac{A_{CC'}^1 A_{CC'}^2}{(A_{CC'}^2 |a|^2 + A_{CC'}^1 |\beta|^2 + 1)} \langle (aK_1 + \beta K_2)^* f, (aK_1 + \beta K_2)^* f \rangle \leq \sum_{i \in I} w_i^2 \langle \pi_{W_i} C f, \pi_{W_i} C' f \rangle.
\]

Then, we have
\[
\frac{A_{CC'}^1 A_{CC'}^2}{(A_{CC'}^2 |a|^2 + A_{CC'}^1 |\beta|^2 + 1)} \langle (aK_1 + \beta K_2)^* f, (aK_1 + \beta K_2)^* f \rangle \leq \sum_{i \in I} w_i^2 \langle \pi_{W_i} C f, \pi_{W_i} C' f \rangle.
\]
then,
\[
\sum_{i \in I} w_i^2 \langle \pi_{W_i} C f, \pi_{W_i} C' f \rangle = \frac{1}{2} \left(\sum_{i \in I} w_i^2 \langle \pi_{W_i} C f, \pi_{W_i} C f \rangle + \sum_{i \in I} w_i^2 \langle \pi_{W_i} C f, \pi_{W_i} C' f \rangle \right)
\leq \frac{B_{1CC'}^1 + B_{1CC'}^2}{2} \langle f, f \rangle.
\]

Thus, \(W \) is a \((C, C')\)-controlled \(\alpha K_1 + \beta K_2 \)-fusion frame with bounds \(A_{CC'}^1 \) and \(B_{CC'}^1 \)\(A_{CC'}^2 \) and \(B_{CC'}^1 + B_{CC'}^2 \).

Lemma 13. Let \(K \in \mathcal{B}(\mathcal{H}) \), and \(C, C' \in \mathcal{GL}^+(\mathcal{H}) \) such that \(CC' = C'C \). Assume that \(CK = KC \), \(C'K = KC' \); \(SC = CS \), \(SC' = C'S \) and \(\pi_{W_i} C = \pi_{W_i} C' \). Then, \(W \) is a \((C, C')\)-controlled \(K \)-fusion frame for \(\mathcal{H} \) if and only if \(W \) is a \(K \)-fusion frame for \(\mathcal{H} \).

Where \(S \) is the \(K \)-fusion frame operator (2.3), defined by
\[
S f = \sum_{i \in I} w_i^2 \pi_{W_i} f, \quad f \in \mathcal{H}.
\]

Proof. Assume that \(W \) is a \(K \)-fusion frame with bounds \(A \) and \(B \). Then for each \(f \in \mathcal{H} \), we have
\[
A \|K^* f\|^2 \leq \sum_{i \in I} w_i^2 \|\pi_{W_i} f\|^2 \leq B \|f\|^2.
\]

Since, \(C \) and \(C' \) are linear bounded operators, applying 2.1, there exist constants \(m, m', M \) and \(M' > 0 \) such that
\[
\begin{cases}
ml \leq C \leq Ml, \\
m'l \leq C' \leq M'l.
\end{cases}
\]

\[\langle SC f, f \rangle = \langle f, CS f \rangle.\]

Then,
\[
mKK^* \leq CS \leq MS \leq MBl.
\]

We deduce that
\[
mm'KK^* \leq C'SC \leq MM'B1.
\]

Therefore, for each \(f \in \mathcal{H} \), we have
\[
mm' A \langle K^* f, K^* f \rangle \leq \sum_{i \in I} w_i^2 \langle \pi_{W_i} C f, \pi_{W_i} C' f \rangle \leq MM'B \|f\|^2.
\]

Thus, \(W \) is a \((C, C')\)-controlled \(K \)-fusion frame.

Conversely, Assume that \(W \) is a \((C, C')\)-controlled \(K \)-fusion frame with bounds \(A \) and \(B \). Then for each \(f \in \mathcal{H} \), we have
\[
A_{CC'} \|K^* f\|^2 \leq \sum_{i \in I} w_i^2 \langle \pi_{W_i} C f, \pi_{W_i} C' f \rangle \leq B_{CC'} \|f\|^2.
\]
By assumption, $C, C' \in GL^+(\mathcal{H})$, $CC' = C'C$ and via theorem 5, we have

$$((C)^{\frac{1}{2}}(C')^{-\frac{1}{2}})^* = (C'^*)^{-\frac{1}{2}}(C^*)^{\frac{1}{2}}$$
$$= (C')^{-\frac{1}{2}}(C)^{\frac{1}{2}}$$
$$= (C)^{\frac{1}{2}}(C')^{-\frac{1}{2}}.$$

Then, for each $f \in \mathcal{H}$, we have

$$A_{CC'}(K^*f, K^*f) = A_{CC'}((CC')^{\frac{1}{2}}(CC')^{-\frac{1}{2}}K^*f, (CC')^{\frac{1}{2}}(CC')^{-\frac{1}{2}}K^*f)$$
$$\leq \|(CC')^{\frac{1}{2}}\|^2 \sum_{i \in I} w_i^2 \langle \pi_{W_i} C(CC')^{-\frac{1}{2}}f, \pi_{W_i} C'(CC')^{-\frac{1}{2}}f \rangle$$
$$= \|(CC')^{\frac{1}{2}}\|^2 \sum_{i \in I} w_i^2 \langle \pi_{W_i}(C)^{\frac{1}{2}}(C')^{-\frac{1}{2}}f, \pi_{W_i}(C')^{\frac{1}{2}}(C')^{-\frac{1}{2}}f \rangle$$
$$= \|(CC')^{\frac{1}{2}}\|^2 \sum_{i \in I} w_i^2 \langle \pi_{W_i}(C)^{\frac{1}{2}}(C')^{-\frac{1}{2}}f, \pi_{W_i}(C')^{\frac{1}{2}}(C')^{-\frac{1}{2}}f \rangle$$
$$= \|(CC')^{\frac{1}{2}}\|^2 \sum_{i \in I} w_i^2 \langle \pi_{W_i}(C)(C')^{-\frac{1}{2}}f, \pi_{W_i}(C')^{\frac{1}{2}}(C')^{-\frac{1}{2}}f \rangle$$
$$= \|(CC')^{\frac{1}{2}}\|^2 \sum_{i \in I} w_i^2 \pi_{W_i} f, f \rangle.$$

$$\implies A_{CC'}\|CC'\|^2 \|K^*f, K^*f\| \leq \sum_{i \in I} w_i^2 \langle \pi_{W_i} f, \pi_{W_i} f \rangle.$$

In the other hand

$$\sum_{i \in I} w_i^2 \langle \pi_{W_i} f, \pi_{W_i} f \rangle = \langle Sf, f \rangle,$$

where $Sf = \sum_{i \in I} w_i^2 \pi_{W_i} f$.

$$\langle Sf, f \rangle = \langle (CC')^{-\frac{1}{2}}(CC')^{\frac{1}{2}}Sf, f \rangle$$
$$= \langle (CC')^{\frac{1}{2}}Sf, (CC')^{-\frac{1}{2}}f \rangle$$
$$= \langle (CC')^{-\frac{1}{2}}Sf, (CC')^{\frac{1}{2}}f \rangle$$
$$= \langle CC'(CC')^{-\frac{1}{2}}Sf, (CC')^{-\frac{1}{2}}f \rangle$$
$$= \langle CC' S, (CC')^{-\frac{1}{2}}f \rangle$$
$$\leq B_{CC'}\|CC'\|^2 \|f\|^2.$$

Thus, W is a K-fusion frame with bounds $A_{CC'}\|CC'\|^2 \|K^*f, K^*f\|^{-2}$ and $B_{CC'}\|CC'\|^{-2}$.

Theorem 14. Let $K \in B(\mathcal{H})$, let \mathcal{W} be a (C, C)-controlled K-fusion frame with bounds A_{CC} and B_{CC}. If $U \in B(\mathcal{H})$ is an invertible operator such that $U^*C = CU^*$ and $K(U^*)^{-1} = (U^*)^{-1}K^*$, then $(UW_i, w_i)_{i \in I}$ is a (C, C)-controlled K-fusion frame for \mathcal{H}.

Proof. Assume that \mathcal{W} is a (C, C)-controlled K-fusion frame with bounds A_{CC} and B_{CC}. By definition, for each $f \in \mathcal{H}$, we have

$$A_{CC}\|K^*f\|^2 \leq \sum_{i \in I} w_i^2 \|\pi_{W_i}Cf\|^2 \leq B_{CC}\|f\|^2.$$

Now, let $f \in \mathcal{H}$. Via lemma 3 and since UW_i is closed, we have

$$\|\pi_{W_i}CU^*f\| = \|\pi_{W_i}U^*Cf\| = \|\pi_{W_i}U^*\pi_{UW_i}Cf\| \leq \|U\|\|\pi_{UW_i}Cf\|.$$

Therefore,

$$A_{CC}\|K^*U^*f\|^2 \leq \sum_{i \in I} w_i^2 \|\pi_{W_i}CU^*f\|^2 \leq \|U\|^2 \sum_{i \in I} w_i^2 \|\pi_{UW_i}Cf\|^2.$$

$$\|K^*f\|^2 = \|K^*(U^*)^{-1}U^*f\|^2 = \|(U^*)^{-1}K^*U^*f\|^2 \leq \|U^{-1}\|^2\|K^*U^*f\|^2.$$

Then, we have

$$\frac{A_{CC}}{\|U^{-1}\|^2\|U\|^2} \|K^*f\|^2 \leq \sum_{i \in I} w_i^2 \|\pi_{UW_i}Cf\|^2.$$

On the other hand, via lemma 3, we obtain with U^{-1} instead of T:

$$\pi_{UW_i} = \pi_{UW_i}(U^*)^{-1}\pi_{W_i}U^*.$$

Thus,

$$\|\pi_{UW_i}Cf\|^2 = \|\pi_{UW_i}(U^*)^{-1}\pi_{W_i}U^*Cf\|^2 \leq \|U^{-1}\|^2\|\pi_{W_i}U^*Cf\|^2,$$

and it follows

$$\sum_{i \in I} w_i^2 \|\pi_{UW_i}Cf\|^2 \leq \|U^{-1}\|^2 \sum_{i \in I} w_i^2 \|\pi_{W_i}U^*Cf\|^2.$$

hence,

$$\sum_{i \in I} w_i^2 \|\pi_{UW_i}Cf\|^2 \leq B_{CC}\|U^{-1}\|^2\|U\|^2\|f\|^2.$$

Thus, \mathcal{W} is a (C, C)-controlled K-fusion frame with bounds $A_{CC}\|U^{-1}\|^2\|U\|^2$ and $B_{CC}\|U^{-1}\|^2\|U\|^2$.

Corollary 15. Let $K \in B(\mathcal{H})$, let \mathcal{W} be a (C, C)-controlled K-fusion frame with bounds A_{CC} and B_{CC}. If $U \in B(\mathcal{H})$ is a unitary operator such that $U^{-1}C = CU^{-1}$ and $K^*U = UK^*$, then $(UW_i, w_i)_{i \in I}$ is a (C, C)-controlled K-fusion frame for \mathcal{H}.

Proof. The result follows from Theorem 14.

4. Perturbation on Controlled K-fusion frame

The following result provides a sufficient condition on a family of closed subspaces of \mathcal{H} to be a controlled K-fusion frame, in the presence of another controlled K-fusion frame. In fact it is a generalisation of Proposition 2.4 in [2], Proposition 4.6 in [8] and Proposition 2.6 in [17].

Proposition 16. Let $K \in B(\mathcal{H})$ be a closed range operator \mathcal{R}_K, let $T, U \in GL(\mathcal{H})$ and let $\mathcal{W} = \{W_i, w_i\}_{i \in I}$ be a (C, C')-controlled K-fusion frame for \mathcal{H} with lower and upper bounds $A_{CC'}$ and $B_{CC'}$, respectively. Let $\{V_i\}_{i \in I}$ be a family of closed subspaces of \mathcal{H}. If there exists a number $0 < R < A_{CC'}$ such that

$$0 < \sum_{i \in I} w_i^2 \langle C' (\pi_V - \pi_W) C f, f \rangle \leq R \|f\|^2, \forall f \in \mathcal{H},$$

(4.1)

then $\mathcal{V} = \{V_i, w_i\}_{i \in I}$ is a (C, C')-controlled Bessel K-fusion sequence for \mathcal{H} and a (C, C')-controlled K-fusion frame for \mathcal{R}_K.

Proof. Let $f \in \mathcal{H}$. Considering that the family $\mathcal{W} = \{W_i, w_i\}_{i \in I}$ is a (C, C')-controlled K-fusion frame for \mathcal{H}, we have

$$A_{CC'} \|K^* f\|^2 \leq \sum_{i \in I} w_i^2 \langle C' \pi_W C f, f \rangle \leq B_{CC'} \|f\|^2.$$

Firstly, let us prove that $\{V_i, w_i\}_{i \in I}$ is a (C, C')-controlled Bessel K-fusion sequence for \mathcal{H}. We have

$$\sum_{i \in I} w_i^2 \langle C' \pi_V C f, f \rangle = \sum_{i \in I} w_i^2 \langle C' (\pi_V - \pi_W) C f, f \rangle + \sum_{i \in I} w_i^2 \langle C' \pi_W C f, f \rangle \leq R \|f\|^2 + B_{CC'} \|f\|^2,$$

consequently,

$$\sum_{i \in I} w_i^2 \langle C' \pi_V C f, f \rangle \leq (R + B_{CC'}) \|f\|^2.$$

Now, let us establish for $\{V_i, w_i\}_{i \in I}$ the left-hand side. We obtain

$$\sum_{i \in I} w_i^2 \langle C' \pi_V C f, f \rangle = \sum_{i \in I} w_i^2 \langle C' \pi_W C f, f \rangle + \sum_{i \in I} w_i^2 \langle C' (\pi_V - \pi_W) C f, f \rangle \geq \sum_{i \in I} w_i^2 \langle C' \pi_W C f, f \rangle - \sum_{i \in I} w_i^2 \langle C' (\pi_V - \pi_W) C f, f \rangle \geq A_{CC'} \|K^* f\|^2 - R \|f\|^2.$$

(4.2)
Therefore, for any \(f \in \mathcal{R}_K \), we have
\[
\|f\| = \|(K^+ |_{\mathcal{R}_K})^* K^* f\| \leq \|K^*\| \|K^* f\|,
\]
that is, \(\|K^* f\|^2 \geq \|K^+\|^{-2} \|f\|^2 \).

Then, according to (4.2) and (4.3), we have
\[
\sum_{i \in I} w_i^2 \langle C_i \pi_i V_i C f, f \rangle \geq (A_{CC} - R \|K^+\|^{-2}) \|K^* f\|^2.
\]
Which completes the proof.

Aknowlegements : The authors would like to thank the referee for carefully reading our manuscript and for giving such constructive comments which substantially helped improving the quality of the paper.

References

[1] P. Balaz, J-P. Antoine and A. Grybos, Weighted and controlled frames. Int. J. Wavelets Multi. Inf. Process., 8(10) (2010) 109-132.
[2] M. S. Asgarri, A. Khosravi, Frames and bases of subspaces in Hilbert spaces, J. Math. Anal. appl. 308 (2005),541-553.
[3] F. Arabyani-Neyshaburi and A. Arefijamaal. Characterization and construction of K-fusion frames and their duals in Hilbert spaces. Results Math, 73 (2018).
[4] A. Arefijamaal, F. Arabyani-Neyshaburi, Some properties of alternate duals and ap-proximate alternate duals of fusion frames. Turk J. Math (2017) 41: 1191 12033.
[5] L. Arambasic, On frames for countably generated Hilbert C*-modules, Proc. Amer. Math. Soc. 135(2007) 469-478.
[6] P. G. Casazza, G. Kutyniok, Frames and subspaces. In: Wavelets, Frames, and Operator Theory. Contemporary Mathematics, vol. 345, pp. 87113. American Mathematical Society, Providence (2004).
[7] O. Christensen, An introduction to frames and Riesz bases, Birkhauser, Boston (2016).
[8] O. Christensen, C. Heil, Perturbations of Banach frames and atomic decomposition, Math. Nachr. 185(1997), 33-47.
[9] P. G. Casazza, G. Kutyniok and S. Li, Fusion frames and distributed processing, Appl. Comput. Harmon. Anal., 25 (2008), 114-132.
[10] I. Daubechies, A. Grossmann, Y. Meyer, Painless non orthogonal expansions, J. Math. Phys. 27(1986) 1271-1283.
[11] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Am. Math. Soc 72. (1952), 341366.
[12] X.Fang, J. Yu and H. Yao, Solutions to operator equations On Hilbert C-modules, linear Alg. Appl, 431(11) (2009) 2142-2153.
[13] I. ICHIM , Sur la racine carré d’un opérator linare, Bulletin mathematique, Vol. 29 (77), No. 1 (1985), pp. 45-54 (10 pages).
[14] L. Gavruta, On the duality of fusion frames, J. Math. Anal. Appl. 333 (2007), 871-879.
[15] L. Gavruta, Frames for operators, Appl. Comput. Harmon. Anal. 32 (2012), 139-144.
[16] G. Hong, PLi, fusion frames for Hilbert spaces. J. Inequal Appl 2019, 226 (2019).
[17] A. Khosravi and K. Musazadeh, Controlled fusion frames, Methods Funct. Anal. Topology (2012), 18(3), 256-265.
[18] Ai Fang Liu , Peng Tong Li,K-fusion Frames and the Corresponding Generators for Unitary Systems. Acta. Math. Sin.-English Ser. 34, 84354(2018).
[19] D. Han and D. R. Larson, Frames, bases and group representations, Memoirs of the American Mathematical Society, vol. 147, no. 697, pp. 191, 2000.
[20] M. Nouri, A. Rahimi and Sh. Najafzadeh, Controlled K-frames in Hilbert Spaces, J. of Ramanujan Society of Math. and Math. Sc., 4(2)(2015) 39-50.

[21] W. Paschke, Inner product modules over B^*-algebras, Trans. Amer. Math. Soc., (182)(1973), 443-468.

[22] Sun, W., G-Frames and G-Riesz bases. J. Math. Anal. Appl. 326, 437-452 (2006).

[23] R. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, NY, USA, 1980. Applied and Numerical Harmonic Analysis, Birkhauser, Boston, Mass, USA, 2003.