Ultrasound-guided bilateral transversus abdominis plane block versus spinal morphine for pain relief after caesarean section

Sofiene Ben Marzouk*, Laidi Bennasr, Imen cherni, Arbia Shili, Maha Touaibia, Hayen Maghrebi

University Hospital Assistant, Center of Maternity And Neonatology, La Rabta, Tunis, Tunisia

Abstract

Background: Ultrasound-guided transversus abdominis plane block is an effective method for pain relief after cesarean delivery. The gold standard to treat pain after cesarean delivery is spinal morphine administration; at the same time TAP is considered as an effective method to treat this pain. In this study, we compared efficiency and side effects of these techniques in patients undergoing elective cesarean delivery.

Methods: 104 women undergoing elective cesarean delivery under spinal anesthesia were randomized to receive either TAP block with Bupivacaine 0.25% (BUPICAINE, UNIMED, TUNISIA) or spinal morphine. All patients received a standard postoperative analgesia with Paracetamol intravenously. Rescue analgesia using Nefopam and morphine intravenously was given when necessary. Patients were assessed at 2, 4, 6, 12 and 24 hours after cesarean delivery. Visual analog scale (VAS) pain scores at rest and during the palpation of the uterine globe were recorded. Analgesic consumption, time to first analgesic request, heart rate, systolic and diastolic blood pressure were noted. Patients rated the severity of opioid side effects and their satisfaction with the protocol of analgesia.

Results: Pain scores at rest and during the palpation of the uterine globe during the first 24 postoperative hours were similar in both groups. The number of patients who received additional analgesia was similar in both groups. The intestinal transit recovery was earlier in the TAP block group with a statistically significant difference (p < 10^-3). Maternal satisfaction was similar in both groups.

Conclusion: TAP block and intrathecal morphine were of similar efficiency for pain relief after cesarean section. The incidence of side effects was comparable in both groups.

Introduction

Pain after caesarean section is severe during the first 48 postoperative hours, and then it gradually decreases during the second and the third day [1]. Post caesarean section pain management is an important clinical issue due to the increase of caesarean sections, to the need for an earlier perambulation and to an early recovery of mother-child relationship.

Common analgesic strategies are based on a multimodal approach combining spinal, epidural or systemic opioids to non-opioids such as Paracetamol, anti-inflammatory drugs, Tramadol or Nefopam. However, the use of opioids is usually associated with side effects such as nausea and vomiting, sedation, itch, urinary retention, delayed recovery of intestinal transit, respiratory depression and even hyperalgesia. Trying other analgesic techniques may be useful to reduce not only postoperative pain but also opioid-related side effects, and, as a result, to promote postoperative rehabilitation in order to limit the risk of thromboembolism on per partum [2]. The infiltration of the abdominal wall with local anesthetics is more commonly used for pain management. The transversus abdominis plane (TAP) block has recently been proposed to relieve the somatic pain component [3]. It is efficient especially when performed under ultrasound guidance. The aim of our study was to compare efficiency and side effects of spinal morphine to ultrasound-guided TAP block in patients undergoing elective caesarean delivery.

Methods

After local ethics committee agreement, we led a prospective randomized simple-blind study in the Maternity and Neonatology Center of Tunis. A clear explanation of the analgesic technique and pain assessment were given to the patients before obtaining their informed consent. Initially, we enrolled 104 ASA I or II parturients, all scheduled for elective cesarean delivery, via a Pfannenstiel incision under spinal anesthesia. Emergent cases, ASA III and IV, and non-consenting parturients were not included. Parturients in whom spinal analgesia failed were excluded (n=0) as well as those in whom the typical biconvex lens image was not obtained while performing the ultrasound-guided TAP block (n=2), those who had anesthetic or surgical complications (n=2), and those who received any other analogesics than those prescribed in our study protocol (n=0).

Randomization was performed using a computer-generated table of random numbers. Parturients were assigned to receive either additional spinal morphine or ultrasound-guided bilateral TAP block. Parturients were assessed at 2, 4, 6, 12 and 24 hours after cesarean delivery. Visual analog scale (VAS) pain scores at rest and during the palpation of the uterine globe during the first 24 postoperative hours were similar in both groups. The number of patients who received additional analgesia was similar in both groups. The intestinal transit recovery was earlier in the TAP block group with a statistically significant difference (p < 10^-3). Maternal satisfaction was similar in both groups.

Conclusion: TAP block and intrathecal morphine were of similar efficiency for pain relief after cesarean section. The incidence of side effects was comparable in both groups.

Correspondence to: Sofiene Ben Marzouk, Anesthesiologist, University Hospital Assistant, Center Of Maternity And Neonatology, La Rabta, Tunis, Tunisia, Tel: 0021699941968; E-mail: bmarzouksofiene@live.fr

Key words: anesthesia, cesarean delivery, intrathecal morphine, transversus abdominis plane block, ultrasonography

Received: March 08, 2016; Accepted: April 08, 2016; Published: April 12, 2016
subarachnoid morphine (SM group) or TAP block (TAP group). Patients in the SM group received spinal anesthesia with 10 mg of 0.5% hyperbaric bupivacaine (BUPI, UNIMED, TUNISIA), 5 µg of sufentanil (SUFENTAMED, UNIMED, TUNISIA) and 100 µg of preservative-free morphine (MORPHINE CHLOHYDRATE, AGUETTANT). Patients in the TAP group received spinal anesthesia with only 10 mg of 0.5% hyperbaric bupivacaine and 5 µg of sufentanil, they had in addition TAP block with 0.25% isobaric Bupivacaine 20 ml on each side. The TAP block was performed at the end of surgery: A linear array 5-12 MHz ultrasound probe (MySono U6® MEDISON) was used. Imaging depth was set at 4 to 6 cm. The probe was transversely oriented and placed at the midpoint between the lower costal margin and the iliac crest in the midaxillary line. The probe was angulated in order to identify the external oblique, internal oblique, and transversus abdominis muscles and their interfascial planes. A 20-gauge Quincke needle (adhe-els’) was used, after scraping the tip in order to refine the sensation of loss of resistance when crossing the fascia. The needle was introduced via in plane technique into the neurofascial plane between the internal oblique and the transversus abdominis muscle, with the tip in the midaxillary line. A 3 mL test dose of the study solution was administered to check appropriate positioning. Twenty mL of 0.25% isobaric Bupivacaine was slowly injected on each side with negative aspiration every 5 mL. under real-time ultrasounds visualization. Patients in both groups were given intravenous Paracetamol 1 gram aspiration every 5 mL under real-time ultrasounds visualization. Patients in both groups were given intravenous Paracetamol 1 gram every 6 hours. The first dose was given on arrival in postoperative care unit. Postoperative pain was assessed using a visual analogue scale (VAS). Breakthrough pain was treated with Nefopam (Acupan®) 20 mg every time the VAS score was more than 4 cm. Intravenous morphine 5 mg was given every time the VAS score remained above 4 cm after Nefopam infusion [4,5].

The primary outcome of our study was pain scores at rest and during the palpation of uterine globe. Secondary outcomes were Nefopam and morphine consumption, time to first analgesic request, the occurrence of itching and postoperative nausea and vomiting, time to intestinal transit recovery and finally the maternal satisfaction. We aimed to detect a mean VAS score difference of 1 ± 1.5 cm between the groups. A calculation based on α = 0.05 and a power of 90% yielded a sample size of 39 patients per group using a 2-tailed test. But we chose to enroll 52 parturients per group to improve the quality of our results.

Collected data were: age, weight, height, ASA status, parity, and number of deliveries, gestational age, and the indication for caesarean section. Patients were assessed for VAS scores at rest and during the palpation of uterine globe immediately after surgery then at the 2nd, 3rd, 6th, 12th and 24th hour postoperative. We also noted heart rate, systolic and diastolic blood pressure, itch, postoperative nausea and vomiting, time to first analgesic request and the total given dose of Nofopam and morphine, and finally time to intestinal transit recovery. Patients were asked to rate their satisfaction by the mean of a three-item scale (Excellent-Good-Bad).

Statistical analyses were performed using Statistical Package for the Social Sciences SPSS® version 20 software. Quantitative data were reported as mean ± standard deviation (SD) and were analyzed using Student’s t test. Qualitative data were reported as numbers and percentages and were analyzed using Chi2 test. Statistical significance level was fixed at 0.05.

Results

104 patients were enrolled in the study. Four patients were excluded: Two patients had post-partum hemorrhage requiring general anesthesia, two other patients were excluded because the typical biconvex lens image was not obtained while performing the ultrasound-guided TAP block. Consequently, only 100 patients were studied. Age, weight, height, body mass index, number of pregnancies, number of deliveries, gestational age, history of cesarean delivery, ASA status and duration of surgery were all similar in both groups (Table 1). VAS Pain scores at rest were similar in both groups during the first 24 hours postoperative (Table 2). VAS pain scores during palpation of the uterine globe were similar in both groups during the first 24 hours postoperative (Table 3). Breakthrough pain occurred in 18 patient (36%) in TAP group versus 16 patients (32%) in SM group.

Table 1. Characteristics of both groups.

Group	TAP group (N=50)	SM group (N=50)	P
Age (year)	32.3 ± 4.3	32.3 ± 4.3	0.55
Weight (Kg)	80.9 ± 13.8	78.1 ± 11.7	0.26
Height (cm)	162.9 ± 5.6	162 ± 6.2	0.43
BMI (kg/m²)	30.5 ± 4.9	29.7 ± 3.8	0.38
Number of pregnancies	2 ± 1	2 ± 1	0.87
Number of deliveries	2.2 ± 1	2 ± 1	0.52
Gestational age (Week)	38.7 ± 1.1	39.1 ± 1.2	0.08
History of cesarean delivery (%)	72%	62%	0.39
ASA 1 (%)	78%	88%	0.28
ASA 2 (%)	22%	12%	0.81
Duration of surgery (min)	36.5 ± 8.7	35.9 ± 6.6	0.75

Data are expressed as mean ± SD or percentages

Table 2. VAS pain scores scale at rest.

VAS (cm)	TAP group (N=50)	SM group (N=50)	P
H2	1.0 ± 1.5	0.7 ± 1.1	0.19
H4	2.1 ± 2.1	1.9 ± 1.9	0.6
H6	2.8 ± 2.2	2.2 ± 2.2	0.12
H12	2.4 ± 2.4	2.3 ± 1.8	0.81
H24	2.1 ± 1.4	2.6 ± 1.7	0.1

Data are expressed as mean ± SD

Table 3. VAS pain scores during palpation of the uterine globe.

VAS (cm)	TAP (N=50)	MIT (N=50)	P
H2	2.3 ± 1.9	2.3 ± 2.1	0.92
H4	3.7 ± 2.4	3.6 ± 2.5	0.92
H6	4.2 ± 2.2	4.0 ± 2.6	0.77
H12	4.4 ± 2.4	4.0 ± 2.3	0.43
H24	4.1 ± 1.9	4.5 ± 2.1	0.31

Data are expressed as mean ± SD

Table 4. Evolution of systolic blood pressure and heart rate.

TAP n=50	MIT n=50	P	
H2	BP 112 ± 11	113 ± 13	0.65
	HR 79 ± 11	77 ± 9	0.08
H4	BP 112 ± 10	115 ± 11	0.15
	HR 80 ± 10	79 ± 10	0.3
H6	BP 114 ± 9	113 ± 11	0.72
	HR 81 ± 9	80 ± 11	0.8
H12	BP 110 ± 8	113 ± 8	0.17
	HR 79 ± 9	78 ± 14	0.7
H24	BP 112 ± 10	114 ± 7	0.2
	HR 78 ± 8	79 ± 8	0.75

BP: Systolic blood pressure (mmHg), HR: Heart rate (bpm). Data are expressed as mean ± SD.
Spinal morphine used to be the « gold standard » technique for post cesarean pain relief. However, recent studies have shown that ultrasound-guided transversus abdominis plane block provides comparable analgesic efficacy with fewer side effects. In our study, the time to first analgesic request was significantly delayed in the spinal morphine group compared to the TAP block group.

Our study as well as, Kanazi’s study [8], found that spinal morphine and TAP block provided equivalent maternal satisfaction. The conjunction of spinal morphine administration with the TAP block also improved maternal satisfaction [17].

Because of its analgesic benefit, the TAP block may be useful as rescue analgesia rather than a routine technique [25]. Ultrasound-guided TAP block seems to be safe but cases of visceral injury were reported [14,26-28]. Injection of high local anesthetics volumes may increase the risk of systemic toxicity [29]. On the other side, the optimal dose of local anesthesia as well as the duration of analgesia remains poorly estimated. Carney et al. [30] founded TAP block to be efficient for up to 48 hours.

Despite their well-established efficiency, Non-steroidal anti-inflammatory drugs [31] were not used in our study in order to bring out the role of local anesthetics. In our study, we did not assess the success rate of sensory distribution of the block, because residual sensory block related to spinal anesthesia may remain in the early postoperative period. We did not measure the Bupivacaine blood rates in the TAP group.

Conclusion

TAP block and spinal morphine have similar efficiency for pain relief after cesarean section. No difference was noted regarding the VAS pain scores, the total cumulative dose, the time to first analgesic request, the systolic blood pressure and heart rate. The restoration of transit was comparable in both groups in our study. The restoration of transit was significantly delayed in the spinal morphine group compared to the TAP block group. Nausea and vomiting are the commonest side effects of spinal morphine; it is seen in more than 30% of cases [9,14,18-24].

A meta-analysis [15] including nine studies found that incidence of nausea is reduced during the first 12 postoperative hours with TAP block analgesia. However, none of these studies mentioned the effect of the analgesic protocols on the recovery time of transit.

The mean heart rate and blood pressure were similar in both groups. Kanazi et al. [8] reported a longer time to first analgesic request in the spinal morphine administration group (8 hours vs 4 hours).

The conjunction of spinal morphine administration with the TAP block may improve both safety and block effectiveness [19].

In our study, total doses of rescue analgesia were comparable in both groups. Kanazi et al. [8] showed reduced total tramadol doses during the first 12 hours in the spinal morphine group; however, they used higher doses (0.2 mg) of spinal morphine.

We did not find studies that use these data for assessment of pain relief.

Spinal morphine used to be the « gold standard » technique for post cesarean pain relief [20-22]. The recommended dose of 100 µg is in fact a good compromise between efficacy and side effects (respiratory depression, itch, nausea, vomiting and delay recovery of transit) [23]. The incidence of itch, nausea and vomiting was
Analgesic Efficacy of Subarachnoid Morphine in comparison with Ultrasound-Guided Transversus Abdominis Plane Block After Cesarean Delivery: A Randomized Controlled Trial. Society for Obstetric Anesthesia and Perinatal Medicine. *Anaesth Analg* 111: 475-481. [Crossref]

9. Belavy D, Cowlishaw PJ, Howes M, Phillips F (2009) Ultrasound-guided transversus abdominis plane block for analgesia after Caesarean delivery. *Br J Anaesth* 103: 726-730. [Crossref]

10. Uchiyama A, Nakano S, Ueyama H, Nishimura M, Tashiro C (1994) Low dose intrathecal morphine and pain relief following caesarean section. *Int J Obstet Anesth* 3: 87-91. [Crossref]

11. Milner AR, Bogod DG, Harwood RJ (1996) Intrathecal administration of morphine for elective caesarean section. A comparison between 0.1 mg and 0.2 mg. *Anaesthesia* 51: 871-873. [Crossref]

12. Girgin NK, Gurbet A, Turker G, Aksoy H, Gulhan N (2008) Intrathecal morphine in anesthesia for cesarean delivery: dose-response relationship for combinations of low-dose intrathecal morphine and spinal bupivacaine. *J Clin Anesth* 20: 180-185. [Crossref]

13. Palmer CM, Emerson S, Volgoropolous D, Alves D (1999) Dose-response relationship of intrathecal morphine for postcesarean analgesia. *Anesthesiology* 90: 437-444. [Crossref]

14. Leane H, Preston R, Douglas MJ, Massey S, Papsdorf M, et al. (2012) A randomized controlled trial comparing intrathecal morphine with transversus abdominis plane block for post-caesarean delivery analgesia. *International Journal of Obstetric Anesthesia* 21: 112-118. [Crossref]

15. Mishríký BM1, George RB, Habib AS (2012) Transversus abdominis plane block for analgesia after cesarean delivery: a systematic review and meta-analysis. *Can J Anaesth* 59: 766-778. [Crossref]

16. Anthony Ghosn, Jean Claude Stephan, Neematallah Aghnatiós et al. (2012) Superiority of the Transverse abdominal plane Association (TAP) block and intrathecal morphine compared with the MIT alone in the treatment of post cesarean pain. *Can J Anaesth* 59: 766-768. [Crossref]

17. Lee AJ, Palte HD, Chehade JM, Artchart KL, Ranasinghe JS, et al. (2013) Ultrasound-guided bilateral transversus abdominis plane blocks in conjunction with intrathecal morphine for postcesarean analgesia. *J Clin Anesth* 25: 475-482. [Crossref]

18. McMorrow RC, Ni Mhuirechteardtaigh RJ, Ahmed KA, Aslani A, Ng SC, et al. (2011) Comparison of transversus abdominis plane block vs spinal morphine for pain relief after Caesarean section. *Br J Anaesth* 106: 706-712. [Crossref]

19. Barrington MJ, Ivanusic JJ, Rozen WM, Hebbard P (2009) Spread of injectate after ultrasound-guided sub costal transversus abdominis plane block: a cadaveric study. *Anesthesia* 64: 745-750. [Crossref]

20. Dahl JB, Jeppesen JS, Jorgensen H, Weterslev J, Manniche S (1999) Intraoperative and postoperative analgesic efficacy and adverse effects of intrathecal opioids in patients undergoing cesarean section with spinal anesthesia: A qualitative and quantitative systematic review of randomized controlled trials. *Anesthesiology* 91: 1919-1927. [Crossref]

21. Scott PV, Bowen FE, Cartwright P, Rao BC, Deeley D, et al. (1980) Intrathecal morphine as sole analgesia during labour. *Br Med J* 281: 351-353. [Crossref]

22. Tong C, Conklin D, Eisenach JC (2006) A pain model after gynecologic surgery: the effect of intrathecal and systemic morphine. *Anaesth Analg* 103: 1288-1293. [Crossref]

23. Wong JY, Carvalho B, Riley ET (2013) Intrathecal morphine 100 and 200 µg for post cesarean delivery analgesia: A trade-off between analgesic efficacy and side effects. *International Journal of Obstetric Anesthesia* 22: 36-41. [Crossref]

24. Chaney MA (1995) Side effects of intrathecal and epidural opioids. *Can J Anaesth* 42: 891-903. [Crossref]

25. Misra F, Carvalho B (2013) Transversus abdominis plane blocks for rescue analgesia following Cesarean delivery: A case series. *Can J Anaesth* 60: 299-303. [Crossref]

26. Frigon C, Mai R, Valois-Gomez T, Desparmet J (2006) Bowel hematoma following an iliobypagastri-ilioinguinal nerve block. *Pediatric Anesthesia* 16: 993-996. [Crossref]

27. Lancaster P, Chadwick M (2010) Liver trauma secondary to ultrasound-guided transversus abdominis plane block. *Br J Anaesth* 104: 509-510. [Crossref]

28. Weintraud M, Marhofer P, Rosenberg A, Kapral S, Wilschke H, et al. (2008) Iliohypogastric/ilioinguinal blocks in children: where do we administer the local anesthetic without direct visualization. *Anaesth Analg* 106: 89-93. [Crossref]

29. Griffiths JD, Barron FA, Grant S, Bjorksten AR, Hebbard P (2010) Plasma ropivacaine concentration after ultrasound-guided transversus abdominis plane block. *Br J Anaesth* 105: 853-856. [Crossref]

30. Carney HJ, McDonnell JG, Ochana A, Bhinder R, Laffey JG (2008) The transversus abdominis plane block provides effective postoperative analgesia in patients undergoing total abdominal hysterectomy. *Anaesth Analg* 107: 2056-2060. [Crossref]

31. Abdallah FW, Halpern SH, Margarido CB (2012) Transversus abdominis plane block for postoperative analgesia after Caesarean delivery performed under spinal anaesthesia? A systematic review and meta-analysis. *Br J Anaesth* 109: 679-687. [Crossref]