ON A RESULT OF KIYOTA, OKUYAMA AND WADA

JOHN MURRAY

Abstract. M. Kiyota, T. Okuyama and T. Wada recently proved that each 2-block of a symmetric group Σ_n contains a unique irreducible Brauer character of height 0. We present a more conceptual proof of this result.

1. Background on bilinear forms

According to the main result in [6], every 2-block of the symmetric group Σ_n has a unique irreducible Brauer character of height 0. This is not true for an arbitrary 2-block of a finite group. For example, let B be a real non-principal 2-block which is Morita equivalent to the group algebra of A_4 and which has a Klein-four defect group and a dihedral extended defect group (in the sense of [1]). Then one can show that B has three real irreducible Brauer characters of height 0. The non-principal 2-block of $((C_2 \times C_2) : C_9) : C_2$ is of this type.

In this note we place the results of [6] in a more general context using the approach to bilinear forms developed by R. Gow and W. Willems [2]. We use results and notation from [7] for representation theory, from [5] for symmetric groups, and from [8] for bilinear forms in characteristic 2.

Let G be a finite group and let (K, R, F) be a 2-modular system for G. So R is a complete discrete valuation ring with field of fractions K of characteristic 0, and residue field $R/J = F$ of characteristic 2. Assume that K contains a primitive $|G|$-th root of unity, and that F is perfect. Then K and F are splitting fields for each subgroup of G.

The anti-isomorphism $g \mapsto g^{-1}$ on G extends to an involutory F-algebra anti-automorphism $\sigma : FG \to FG$ called the contragredient map. Let V be a right FG-module. The linear dual $V^* := \text{Hom}_F(V, F)$ is considered as a right FG-module via $(f.x)(v) := f(vx^\sigma)$, for $f \in V^*$, $x \in FG$ and all $v \in V$. The Frobenius automorphism $\lambda \mapsto \lambda^2$ of the field F induces an automorphism $(a_{ij}) \mapsto (a_{ij}^2)$ of the group $\text{GL}_F(V)$. Composing the module map $G \to \text{GL}_F(V)$ with this automorphism
endows V with another FG-module structure. This module is called the Frobenius twist of V, and is denoted $V^{(2)}$.

Let $V^* \otimes V^*$ be the space of bilinear forms on V and let $\Lambda^2(V^*)$ be the subspace of symplectic bilinear forms on V; a bilinear form $b : V \times V \to F$ is symplectic if and only if $b(v, v) = 0$, for all $v \in V$. The quotient space $V^* \otimes V^*/\Lambda^2(V^*)$ is called the symmetric square of V^* and is denoted $S^2(V^*)$.

A quadratic form on V is a map $Q : V \to F$ such that $Q(\lambda v) = \lambda^2 Q(v)$ and $(u, v) \mapsto Q(u + v) - Q(u) - Q(v)$ is a bilinear form on V, for all $u, v \in V$ and $\lambda \in F$. Now if b is a bilinear form, its diagonal $\delta(b) : v \mapsto b(v, v)$ is a quadratic form. The assignment δ is linear with kernel $\Lambda^2(V^*)$. So there is a short exact sequence of vector spaces

\begin{equation}
0 \longrightarrow \Lambda^2(V^*) \longrightarrow V^* \otimes V^* \overset{\delta}{\longrightarrow} S^2(V^*) \longrightarrow 0
\end{equation}

We may identify $S^2(V^*)$ with the space of quadratic forms on V. If Q is a quadratic form, its polarization is the associated bilinear form $\rho(Q) : (u, v) \mapsto Q(u + v) - Q(u) - Q(v)$.

The dual $S^2(V)^*$ of the symmetric square $S^2(V)$ of V is the space of symmetric bilinear forms on V. As $\text{char}(F) = 2$, each symplectic form is symmetric. If b is a symmetric bilinear form, $\delta(b)$ is additive and hence can be identified with a linear map $V^{(2)} \to F$. Thus there is a short exact sequence:

\begin{equation}
0 \longrightarrow \Lambda^2(V^*) \longrightarrow S^2(V^*) \overset{\delta}{\longrightarrow} V^{(2)*} \longrightarrow 0
\end{equation}

All of these F-spaces are FG-modules, and the maps are FG-module homomorphisms. It is a singular feature of the characteristic 2-theory that $S^2(V^*)$ and $S^2(V)^*$ need not be isomorphic as FG-modules.

Now let b be a bilinear form on V. We say that b is G-invariant if the associated map $v \mapsto b(v,)$ for $v \in V$, is an FG-module map $V \to V^*$. We say that b is nondegenerate if this map is an F-isomorphism. Taking G-fixed points in (2) we get a long exact sequence of the form

\[0 \longrightarrow \Lambda^2(V^*)^G \longrightarrow S^2(V)^{G} \overset{\delta}{\longrightarrow} V^{(2)*G} \longrightarrow H^1(G, \Lambda^2(V^*)) \longrightarrow \ldots \]

In particular, if $V^{(2)*G} = 0$, then each G-invariant symmetric bilinear form on V is symplectic. Now the trivial FG-module equals its Frobenius twist. A simple argument then shows:

Lemma 1. If $V \cong V^*$, and V has no trivial G-submodules, then each G-invariant symmetric bilinear form on V is symplectic.

We will make use of Fong's Lemma:
Lemma 2. Let V be an absolutely irreducible non-trivial FG-module. Then $V \cong V^*$ if and only if V affords a nondegenerate G-invariant symplectic bilinear form. In particular $\dim(V)$ is even.

Let $t, h \in G$, with t an involution and h not an involution. Define quadratic forms Q_t and Q_h on FG by setting, for $u = \sum_{g \in G} u_g g \in FG$

\begin{equation}
(3) \quad Q_t(u) = \sum_{\{g, tg\} \subseteq G} u_g u_{tg},
Q_h(u) = \sum_{g \in G} u_g u_{hg}.
\end{equation}

Then each G-invariant quadratic form on FG is a linear combination of Q_t’s and Q_h’s.

2. **Real 2-blocks of defect zero**

Assume that G has even order, and that B is a real 2-block of G which has a trivial defect group. Equivalently B is a simple F-algebra which is a σ-invariant $FG \times G$-direct summand of FG. Moreover, B has a unique irreducible K-character χ and a unique simple module S.

Let e_B be the identity element (or block idempotent) of B. Then

$$e_B = e_1 + e_2 + \cdots + e_d,$$

where $d = \dim_F(S)$ and the e_i are pairwise orthogonal primitive idempotents in FG. Each e_iFG is isomorphic to S. In particular S is a projective FG-module.

Let M be an RG-lattice whose character is χ. Then $M/J(R)M \cong S$, as FG-modules. Now M has a quadratic geometry because χ has Frobenius-Schur indicator $+1$. Thus S has a quadratic geometry.

By [2] there exists an involution t in G such that the restriction of the form Q_t of (3) to e_1FG is non-degenerate. It follows that e_1 can be chosen so that $e_1 = e_1^\sigma = te_1^\sigma t$. We note that it can be shown that $\langle t \rangle$ is an extended defect group of B and S is a direct summand of $F\bar{C}_G(t)^\uparrow G$.

As $e_B = e_B^\sigma$, we have $e_B = e_1 + e_2^\sigma + \cdots + e_d^\sigma$, and each e_i^σ is primitive in FG and $e_i e_i^\sigma = 0 = e_i^\sigma e_1$, for $i > 1$.

Suppose next that V is a B-module, equipped with a (possibly degenerate) G-invariant symmetric bilinear form \langle , \rangle. The G-invariance is equivalent to $\langle ux, v \rangle = \langle u, vx^\sigma \rangle$, for all $u, v \in V$ and $x \in FG$. Now $e_1 e_i = 0$, for $i > 1$. So

$$\langle V e_1, V e_i^\sigma \rangle = 0, \quad \text{for } i > 1.$$

Following [6], we define a bilinear form b on the F-space Ve_1 by

$$b(ue_1, ve_1) := \langle ue_1, ve_1 t \rangle, \quad \text{for all } ue_1, ve_1 \in Ve_1.$$
Then b is symmetric, as

$$b(ue_1, ve_1) = \langle ue_1 t, ve_1 \rangle = \langle ve_1, u e_1 t \rangle = b(ve_1, u e_1).$$

Now consider the radicals of the forms

$$\text{rad}(V) := \{ u \in V \mid \langle u, v \rangle = 0, \forall v \in V \},$$

$$\text{rad}(Ve_1) := \{ u e_1 \in Ve_1 \mid b(ue_1, ve_1) = 0, \forall ve_1 \in Ve_1 \}.$$

We include a proof of Lemma 4.5 of [6] for the benefit of the reader:

Lemma 3. $\text{rad}(Ve_1) = \text{rad}(V)e_1$ and $Ve_1/\text{rad}(Ve_1) \cong (V/\text{rad}(V))e_1$.

Proof. Let $u \in \text{rad}(V)$ and $ve_1 \in V e_1$. Then

$$b(ue_1, ve_1) = \langle u e_1, ve_1 t \rangle = \langle u, ve_1 t e_1^\sigma \rangle = 0.$$

So $\text{rad}(Ve_1) \supseteq \text{rad}(V)e_1$. Now let $ue_1 \in \text{rad}(Ve_1)$ and $v \in V$. Writing $v = \sum_{i=1}^d ve_i^\sigma$, we have

$$\langle u e_1, v \rangle = \sum_{i=1}^d \langle u e_1, ve_i^\sigma \rangle = \langle u e_1, v e_1^\sigma \rangle = b(ue_1, v e_1) = 0.$$

So $\text{rad}(Ve_1) \subseteq \text{rad}(V)e_1$. The stated equality follows.

We have an F-vector space map $\phi : Ve_1 \to (V/\text{rad}(V))e_1$ such that $\phi(ve_1) = ve_1 + \text{rad}(V)$. Now $(v + \text{rad}(V))e_1 = ve_1 + \text{rad}(V)e_1 \subseteq \text{rad}(V)e_1 \subseteq \text{rad}(V)$. So ϕ is onto. Moreover, $\ker(\phi) = \text{rad}(V)e_1$. The stated isomorphism follows from this.

\[\square\]

3. Brauer characters of symmetric groups

Let n be a positive integer. Corresponding to each partition λ of n, there is a Young subgroup Σ_λ of Σ_n and a permutation $R \Sigma_n$-module $M^\lambda := \text{Ind}_{\Sigma_\lambda}^{\Sigma_n}(R \Sigma_\lambda)$. This module has a Σ_n-invariant symmetric bilinear form with respect to which the permutation basis is orthonormal. The *Specht lattice* S^λ is a uniquely determined R-free $R \Sigma_n$-submodule of M^λ c.f. [5] 4.3. Then $S^\lambda \otimes_R K$ is an irreducible $K \Sigma_n$-module and all irreducible $K \Sigma_n$-modules arise in this way.

Now S^λ is usually not a self-dual $R \Sigma_n$-module; the dual module $S^\lambda := S^{\lambda^\vee}$ is naturally isomorphic to $S^{[\lambda^\vee]} \otimes_R S^\lambda$ where λ^\vee is the transpose partition to λ. Note that $S^{[\lambda^\vee]}$ is the 1-dimensional *sign module*.

Set $\overline{S^\lambda} := S^\lambda/JS^\lambda$. Then $\overline{S^\lambda}$ is a Specht module for $F \Sigma_n$. It inherits an Σ_n-invariant symmetric bilinear form \langle , \rangle from S^λ. This form is nonzero if and only if λ is 2-regular (i.e. if λ has different parts).

Suppose that λ is 2-regular. Then $D^\lambda := S^\lambda/\text{rad}(\overline{S^\lambda})$ is a simple $F \Sigma_n$-module, and all simple $F \Sigma_n$-modules arise uniquely in this way. The D^λ are evidently self-dual. Indeed, \langle , \rangle induces a nondegenerate form on D^λ, which by Fong’s Lemma is symplectic if D^λ is non-trivial.
Note that \(S^{[w]} \) is the trivial \(F\Sigma_n \)-module, as \(\text{char}(F) = 2 \). It follows that the dual of a Specht module in characteristic 2 is a Specht module:

\[
\overline{S}_\lambda \cong S^\lambda^t.
\]

Let \(B \) be a 2-block of \(\Sigma_n \). Then \(B \) is determined by an integer weight \(w \) such that \(n - 2w \) is a nonnegative triangular number \(k(k+1)/2 \). The partition \(\delta := [k, k-1, \ldots, 2, 1] \) is called the 2-core of \(B \). Each defect group of \(B \) is \(\Sigma_n \)-conjugate to a Sylow 2-subgroup of \(\Sigma_{2w} \).

Recall that the 2-core of a partition \(\lambda \) is obtained by successively stripping removable domino shapes from \(\lambda \). We attach to \(B \) all partitions of \(n \) which have 2-core \(\delta \).

Set \(m := n - 2w \) and identify \(\Sigma_{2w} \times \Sigma_m \) with a Young subgroup of \(\Sigma_n \). Now \(\Sigma_m \) has a 2-block \(B_\delta \) of weight 0 and 2-core \(\delta \). This block is real and has a trivial defect group. Moreover, \(S^K_\delta \) is the unique irreducible \(K\Sigma_m \)-module in \(B_\delta \) and \(D^\delta = \overline{S}\delta \) is the unique simple \(B_\delta \)-module. It is important to note that \(D^\delta \) is a projective \(F\Sigma_m \)-module and every \(F\Sigma_m \)-module in \(B_\delta \) is semi-simple.

Let \(e_\delta \) be the block idempotent of \(B_\delta \). Following Section 2 choose an involution \(t \in \Sigma_m \) and a primitive idempotent \(e_1 \) in \(F\Sigma_m \) such that \(e_1 = e_1 e_\delta \) and \(e_1^t = e_1 \). Note that \(\dim_F(D^\delta e_1) = 1 \).

Let \(\mu \) be a 2-regular partition in \(B \). Regard \(V := \overline{S}\mu e_\delta \) as an \(F\Sigma_{2w} \times \Sigma_m \)-module by restriction. Then \(V e_1 \) is an \(F\Sigma_{2w} \)-module, as the elements of \(\Sigma_{2w} \) commute with \(e_1 \). Indeed

\[
V \cong V e_1 \otimes_F D^\delta \quad \text{as } F\Sigma_{2w} \times \Sigma_m \text{-modules}.
\]

Now \(\overline{S}\mu \) and hence \(V \) affords a \(\Sigma_{2w} \times \Sigma_m \)-invariant symmetric bilinear form \(\langle , \rangle \) such that \(V/\text{rad}(V) = D^\mu e_\delta \). It then follows from Lemma 3 that we may use the identity \(e_1^t = e_1 \) to construct a symmetric bilinear form \(b \) on \(V e_1 \). Moreover, \(V e_1/\text{rad}(V e_1) \cong D^\mu e_1 \). So the \(F\Sigma_{2w} \)-module \(D^\mu e_1 \) inherits a nondegenerate symmetric bilinear form \(b \). Reviewing the construction of \(b \) from \(\langle , \rangle \), we see that \(b \) is \(\Sigma_{2w} \)-invariant (as \(t \in \Sigma_m \) commutes with all elements of \(\Sigma_{2w} \), and \(\langle , \rangle \) is \(\Sigma_n \)-invariant).

Lemma 4. Suppose that \(\mu \neq [k + 2w, k - 1, \ldots, 2, 1] \). Then \(D^\mu e_1 \) affords a non-degenerate \(\Sigma_{2w} \)-invariant symplectic bilinear form.

Proof. In view of Lemma 1 and the discussion above, it is enough to show that \(D^\mu e_1 \) has no trivial \(F\Sigma_{2w} \)-submodules. Suppose otherwise. Then \(F\Sigma_{2w} \otimes_F D^\delta \) is a submodule of the restriction of \(D^\mu \) to \(\Sigma_{2w} \times \Sigma_m \). But \(D^\mu \) is a submodule of \(\overline{S}\mu \). So \(D^\delta \) is a submodule of \(\text{Hom}_{F\Sigma_{2w}}(F\Sigma_{2w}, \overline{S}\mu) \) as \(F\Sigma_m \)-modules.
We have F-isomorphisms
\[
\text{Hom}_{F \Sigma_2} (F_{\Sigma_2}, S_\mu) \cong \text{Hom}_{F \Sigma_n} (M^{[2,1^m]}_{2w}, S_\mu),
\]
by Eckmann-Shapiro
\[
\cong \text{Hom}_{F \Sigma_n} (S_\mu, M^{[2,1^m]}_{2w}),
\]
as $M^{[2,1^m]}_{2w}$ is self-dual.

As μ is 2-regular, it follows from [3, 13.13] that $\text{Hom}_{F \Sigma_n} (S_\mu, M^{[2,1^m]}_{2w})$ has a basis of semistandard homomorphisms. The argument of Theorem 4.5 of [1] now applies, and shows that
\[
\text{Hom}_{F \Sigma_2} (F_{\Sigma_2}, S_\mu) \cong S_{\mu\setminus[1^{2w}]}^\delta
\]
as $F \Sigma_m$-modules.

Here $\mu\setminus[1^{2w}]$ is a skew-partition of m; it is empty if $\mu_1 < 2w$ (in which case $\text{Hom}_{F \Sigma_2} (F_{\Sigma_2}, S_\mu) = 0$). Otherwise its diagram is the set of nodes in the Young diagram of μ not in the top $2w$ rows of the first column.

Now $S_{\mu\setminus[1^{2w}]}^\delta$ has an $F \Sigma_m$-submodule isomorphic to D^δ if and only if $S_{\Sigma_m}^\delta\setminus[1^{2w}]$ has an $K \Sigma_m$-submodule isomorphic to $S_{\Sigma_m}^\delta$, as $D^\delta = S_K^\delta$, and using the projectivity of D^δ.

The multiplicity of $S_{\Sigma_m}^\delta$ in $S_{\mu\setminus[1^{2w}]}^\delta$ is the number of $\mu\setminus[2w]$-tableau of type $\delta' = \delta$ which are strictly increasing along rows and nondecreasing down columns. Suppose for the sake of contradiction that such a tableau T exists.

We claim that $\mu_i \leq k - i + 2$ for $i = 2, \ldots, k$, and $\mu_i = 0$ for $i > k + 1$. This is true for $i = 2$, as the entries in the second row of T are different. Suppose that $i \geq 2$ and $\mu_{i-1} \leq k - i + 3$. But $\mu_i < \mu_{i-1}$, as μ is 2-regular. So $\mu_i \leq k - i + 2$, proving our claim.

On the other hand, $\mu_i \geq \delta_i = k - i + 1$, for $i = 1, \ldots, k$, as μ has 2-core δ. It follows that $\mu\setminus\delta$ consists of the last $\mu_1 - k$ nodes in the first row of μ, and a subset of the nodes $(2, k), (3, k-1), \ldots, (k, 2), (k+1, 1)$. On the other hand, μ has 2-core δ. So $\mu\setminus\delta$ is a union of domino shapes. It follows that T does not exist if $\mu \neq [k + 2w, k - 1, \ldots, 2, 1]$. This contradiction completes the proof of the Lemma. \hfill \square

Suppose that G is a finite group and that B is a 2-block of G with defect group $P \leq G$. Then it is known that $[G : P]_2$ divides the degree of every irreducible Brauer character in B. Recall that a Brauer character in B has height zero if the 2-part of its degree is $[G : P]_2$. We now prove the main result of [6].

Theorem 5. Let B be a 2-block of Σ_n. Then B contains a unique irreducible Brauer character of height 0.

Proof. Suppose as above that B has weight w and 2-core δ, and let θ be a height zero irreducible Brauer character in B. Then θ is the Brauer character of D^μ for some 2-regular partition μ of n belonging to B.

Let \(P \) be a vertex of \(D^\mu \). Then \(P \) is a defect group of \(B \). We may assume that \(P \) is a Sylow 2-subgroup of \(\Sigma_{2w} \). It is easy to show that \(N_{\Sigma_n}(P) = P \times \Sigma_m \), a subgroup of \(\Sigma_{2w} \times \Sigma_m \).

Let \(B_0 \) denote the principal 2-block of \(\Sigma_{2w} \). Then \(B_0 \otimes B_\delta \) is the Brauer correspondent of \(B \) with respect to \((\Sigma_n, P, \Sigma_{2w} \times \Sigma_m) \). So the Green correspondent of \(D^\mu \) with respect to \((\Sigma_n, P, \Sigma_{2w} \times \Sigma_m) \) has the form \(U^\mu \otimes D^\delta \), where \(U^\mu \) is an indecomposable \(\Sigma_{2w} \)-direct summand of \(D^\mu e_1 \) which belongs to \(B_0 \). Moreover, \(U^\mu \) is the unique component of \(D^\mu e_1 \) that has vertex \(P \).

If \(\mu = [k + 2w, k - 1, \ldots , 2, 1] \) it can be shown that \(U^\mu \) is the trivial \(F\Sigma_{2w} \)-module. Suppose that \(\mu \neq [k + 2w, k - 1, \ldots , 2, 1] \). Lemma 4 implies that \(D^\mu e_1 \) has a symplectic geometry. It then follows from the first proposition in [3] that \(U^\mu \) has a symplectic geometry. In particular \(\dim(U^\mu) \) is even.

Now the 2-part of \(\dim(U^\mu \otimes D^\delta) \) divides \(2|\Sigma_m|_2 = 2[\Sigma_n : P]_2 \). A standard result on the Green correspondence implies that the 2-part of \(\dim(D^\delta) \) divides \(2|\Sigma_n : P|_2 \). This contradicts the assumption that \(\theta \) has height zero, and completes the proof.

4. Acknowledgement

B. Külshammer drew my attention to the preprint [6] during a visit to Jena in April 2011. S. Kleshchev suggested I look at the restrictions of dual Specht modules, and D. Hemmer clarified the ‘fixed-point functors’ used to prove Lemma 4. G. Navarro gave me the example of the group of order 72 which has a 2-block with 3 real irreducible Brauer characters of height 0.

References

[1] R. Gow, Real 2-blocks of characters of finite groups, Osaka J. Math. 25 (1988), 135–147.
[2] R. Gow, W. Willems, Quadratic geometries, projective modules and idempotents, J. Algebra 160 (1993), 257–272.
[3] R. Gow, W. Willems, A note on Green correspondence and forms, Comm. Algebra 23 (4) (1995), 1239–1248.
[4] D. J. Hemmer, Fixed-point functors for symmetric groups and Schur algebras, J. Algebra 280 (2004), 295–312.
[5] G. D. James, The representation theory of the symmetric groups, Lecture Notes in Math. 682, Springer-Verlag, 1978.
[6] M. Kiyota, T. Okuyama, T. Wada, The heights of irreducible Brauer characters in 2-blocks of the symmetric groups, to appear in J. Algebra.
[7] H. Nagao, Y. Tsushima, Representations of Finite Groups, Academic Press, Inc., 1989.
[8] W. Willems, *Duality and forms in representation theory*, Progress in Math. 95 (1991), 509–520.

Department of Mathematics, National University of Ireland, Maynooth, Co. Kildare, Ireland

E-mail address: John.Murray@maths.nuim.ie