Characterization of copulatory courtship song in the Old World sand fly species *Phlebotomus argentipes*

Alejandra S. Araki1*, Reginaldo P. Brazil2, James G. C. Hamilton3 & Felipe M. Vigoder4*

Acoustic communication in the form of courtship and mating songs are often involved in reproductive isolation between species of Diptera, such as Drosophila, mosquitoes and sand flies. The patterns of courtship songs in New World sand fly species evolve quickly under sexual selection; and therefore, represent an important trait that can be used as a marker to study the evolution of species complexes and may aid identification of sibling species with a complex. The ability to identify vector species within species complexes is of critical importance for effective and efficient vector control programs. Species-specific song patterns seem to contribute to reproductive isolation in New World sand fly species, suggesting that auditory communication signals may be widespread among these important vectors of leishmaniasis. The main goal of the present study was to characterize the copulatory courtship song of *Phlebotomus argentipes*, an important vector of visceral leishmaniasis in the Old World. *Ph. argentipes* males produce acoustic signals during copulation and two types of songs were observed. The one we called primary song is a ‘pulse song’ with similar length and amplitude to the previously observed ‘P1’ pattern recorded in Brazilian populations of *Lutzomyia longipalpis* s.l. The secondary song has ‘sine song’ characteristics and is quite different from any song produced by New World species. The discovery of this copulation courtship songs in *Ph. argentipes* supports the possibility that acoustic communication in sand flies might be more widespread than previously thought, including Old World species. Our results highlight the importance of further research on acoustic communication in the *Ph. argentipes* species complex and other Old World vectors of leishmaniasis.

Acoustic signaling represents one of several methods of insect communication and can be used as a defense mechanism in male-male competition and for male-female intra-specific recognition1,2. When associated with mating behavior, songs are frequently under sexual selection and thus can diverge quickly3–5. In *Drosophila* species, differences in acoustic signals are often associated with pre-mating reproductive isolation and represent sexual traits that result in restricted gene flow between closely related species6. Moreover, acoustic communication studies have played a key role in the identification of cryptic sibling species, and therefore, can provide species-specific traits for taxonomic studies when song are associated with reproductive success7,8.

Lutzomyia longipalpis s.l. Lutz & Neiva 1912 is known to consist of a number of cryptic species that are morphologically indistinguishable from each other9. Males of this species produce acoustic signals by flapping their wings. Usually acoustic signals associated with reproductive behavior are produced during pre-mating courtship, as in most *Drosophila* species, and these signals are important for reproductive success1. Unlike *Drosophila*, males of *Lu. longipalpis* s.l produce songs after copulation has started, e.g. once the male genital clasps the female genitalia8,10–12. Although not very common, copulatory courtship has been reported in some insect groups13–17. In the case of *Lu. longipalpis* s.l, copulatory courtship songs are likely to be involved in insemination success as many

1Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, RJ, Brasil. 2Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, 21040-900, RJ, Brasil. 3Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancashire, LA1 4YG, United Kingdom. 4Universidade Federal do Rio de Janeiro, Instituto de Biologia. Avenida Carlos Chagas Filho, 373, Block A/A2-075.Cidade Universitária/CCS - Centro de Ciências da Saúde, 21941902, Rio de Janeiro, Brazil. *email: saoriaraki13@gmail.com; fvigoder@gmail.com

www.nature.com/scientificreports
L. donovani is the vector of the Protist parasite, which was suggested to be a cue indicating differences among sibling species. In the burst-type, pulse-type and mix-type song variation observed suggests that the song varies considerably among Brazilian populations of *Lu. longipalpis* s.l with three patterns already identified: Burst-type, Pulse-type and Mix-type. The song variation observed suggests that the *Lu. longipalpis* species complex in Brazil consists of at least six cryptic species.

Males from other New World sandfly species also produce acoustic signals. The main vector of visceral leishmaniasis (VL) in the Central-West region of Brazil is *Lu. cruzi* and *Ph. argentipes*. Males of *Phlebotomus argentipes* s.s, known to produce a song during courtship. They produce two types of song: a primary song which is a pulse song, and a secondary song which has sine song characteristics (Fig. 1). Pulse songs consist of trains of uni- or polycyclic pulses with variable intervals that are produced by some (but not all) males. The primary copulatory courtship song varies considerably among Brazilian populations of *Lu. longipalpis* s.l with three patterns already identified: Burst-type, Pulse-type and Mix-type. The song variation observed suggests that the *Lu. longipalpis* species complex is the vector, *Ph. argentipes*.

Results and Discussion

It is known that *Ph. argentipes* males, like *Lu. longipalpis* s.l. males, do not produce a courtship song similar to those that have been observed in *Drosophila* species. *Lutzomyia intermedia* is the only sand fly species that is known to produce a song during courtship.

The study presented here shows that *Ph. argentipes* males produce acoustic signals during copulation, which have similarities to the *Lu. longipalpis* s.l., *Lu. migonei* and *Lu. cruzi* copulation songs. Only males were observed to produce songs. They produced two types of song: a primary song which is a pulse song, and a secondary song which has sine song characteristics (Fig. 1). Pulse songs consist of trains of uni- or polycyclic sound pulses and sine songs are continuous, humming-like sounds. Figure 2 shows the song spectrograms of both types of songs (audio file: Additional File 1).

The primary song is composed of pulses with similar length and amplitude and shares the qualitative properties of the pulse-type song observed in some Brazilian populations of *Lu. longipalpis* s.l., the P1 pattern recorded previously in populations from Jacobina, Jequié and Cavunge (Bahia State). Each train is composed of 43 to 83 pulses (mean 58 ± 3.6), with a mean inter-pulse interval (IPI) of 54.9 ms (SEM ± 4.21), a length of 3.1 s (SEM ± 0.29) and a mean of frequency of 246.8 Hz (SEM ± 15.44) (Additional File 2; Fig. 1B). The secondary song follows immediately after the primary song and has a mean frequency of 313.1 Hz (SEM ± 7.36) and lasts approximately 2.3 s (SEM ± 0.21) presenting multiple harmonics that resemble the flight sound observed in several mosquito species. The *Ph. argentipes* secondary song presents more differences when compared to the New World species counterpart. Some male *Lu. longipalpis* s.l. also produce a secondary song, however, the pattern is quite different to the one observed in *Ph. argentipes*. The *Lu. longipalpis* s.l. secondary song is more of a pulse-like song with polycyclic pulses that are flanked by two primary songs, and it is not produced by every male. On the other hand, the secondary song of *Ph. argentipes* was produced by every male that we examined (n = 13). Both the primary song and secondary song are produced only once in each copulation interaction, unlike *Lu. longipalpis* s.l., where males can produce each song multiple times during the same copulation sequence.

Sexual signaling controls the exchange of sensory information between partners and plays a direct role in divergence and speciation. For example, in the *Drosophila montium* species subgroup the sine song frequency was suggested to be a cue indicating differences among sibling species. In the *Lu. longipalpis* species complex the same function may be performed by the pulse and burst pattern songs. *Phlebotomus argentipes* s.s. belongs to a species complex and although there are two nominotypical members, *Ph. annandalei* Sinton 1932 and *Ph. glucas* Mitra & Roy 1953, which can be distinguished by morphological characters, the full extent of the species complex is unclear. It would be interesting to analyze the songs of males from populations of the known species complex members as well as within *Ph. argentipes* s.s., particularly in areas of VL transmission, to evaluate the possibilities that acoustic signals are involved in reproductive isolation within this species.

The study of acoustic communication in vector insects, such as mosquitoes and sandflies, can provide a useful tool in vector control programs, such as the potential to design sound traps or for the assessment of male mating competitiveness in relation to control based on modified male release programs in the field.

Conclusions

Our results show that *Ph. argentipes* males produce copulatory courtship songs. Two types of patterns are observed, a primary song similar to P1 subtype previously described in a sibling species of the *Lu. longipalpis* species complex, and a subsequent secondary sine song that has not been seen previously in *Lu. longipalpis*. Our
analysis represents the first report of the acoustic signals produced during copulation in *Ph. argentipes* and supports the idea that acoustic communication might be widespread in sandflies, including the Old World species. Future study is required to identify song patterns in other putative members of the *Ph. argentipes* species complex and to determine whether copulatory courtship song is important for sexual communication in Old World sandflies.

Methods

The *Ph. argentipes* specimens used in this study were obtained from a colony maintained at Keele University, UK, for more than 40 generations at 27°C, 95% RH, under a 12:12 light-dark photocycle. The colony originated from wild-stock collected near Pune, India, on the east side of India, in a region where there is no visceral leishmaniasis, also known as kala-azar. Recordings were performed according to Souza et al. The virgin male and a...
References

1. Ewing, A. W. Arthropod Bioacoustics. Neurobiology and Behavior. Comstock, Cornell University Press, Ithaca, New York: p. 260 (1989).

2. Drosopoulos, S. & Claridge, M. F. Insect sounds and communication: physiology, behavior, ecology and evolution (contemporary topics in entomology), CRC press, Boca Raton, p. 552 (2005).

3. Lande, R. Models of speciation by sexual selection on polygenic traits. Proc. Nat. Acad. Sci. USA 78, 3721–3725 (1981).

4. Gleason, J. M. & Ritchie, M. G. Evolution of courtship song and reproductive isolation in the Drosophila willistoni species complex: do sexual signals diverge the most quickly? Evolution. 52, 1493–1500, https://doi.org/10.1111/j.1558-5082.1998.tb02031.x (1998).

5. Ritchie, M. G. Sexual selection and speciation. Annu. Rev. Ecol. Evol. Syst. 38, 79–102, https://doi.org/10.1146/annurev.ecolsys.38.091206.095733 (2007).

6. Gleason, J. M. Mutations and natural genetic variation in the courtship song of Drosophila. Behav. Genet. 35, 265–277, https://doi.org/10.1007/s10519-005-3219-y (2005).

7. Stone, C. M., Tuten, H. C. & Dobson, S. L. Determinants of male Aedes aegypti and Aedes polynesiensis (Diptera: Culicidae) response to sound: efficacy and considerations for use of sound traps in the field. J. Med. Entomol. 50(4), 723–730 (2013).

8. Vigoder, F. M., Ritchie, M. G., Gibson, G. & Peixoto, A. A. Acoustic communication in insect disease vectors. Mem. Inst. Oswaldo Cruz. 108(1), 26–33, https://doi.org/10.1590/0074-027610390 (2013).

9. Souza, N. A., Brazil, R. P. & Araki, A. S. The current status of the Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae) species complex. Mem. Inst. Oswaldo Cruz. 112(3), 161–174, https://doi.org/10.1590/0074-027606104637 (2017).

10. Souza, N. A., Ward, R. D., Hamilton, J. G. C., Ryriacou, C. P. & Peixoto, A. A. Copulation songs in three sibling species of Lutzomyia longipalpis (Diptera: Psychodidae). Trans. R. Soc. Trop. Med. Hyg. 96, 102–103 (2002a).

11. Souza, N. A. et al. Analysis of the copulatory courtship songs of Lutzomyia longipalpis in six populations from Brazil. J. Med. Entomol. 41(5), 906–913, https://doi.org/10.1603/0222-2585-41.906 (2004).

12. Souza, N. A., Andrade-Coelho, C. A., Vigoder, F. M., Ward, R. D. & Peixoto, A. A. Reproductive isolation between sympatric and allopatric Brazilian populations of Lutzomyia longipalpis s.l. (Diptera: Psychodidae). Mem. Inst. Oswaldo Cruz. 103, 216–219 (2008).

13. Wulff, N. C., Schiene, S. & Lehmann, G. U. Female perception of copulatory courtship by male titillators in a bushcricket. Proc. Biol. Sci. 15, 285(1884), https://doi.org/10.1098/rspb.2018.1235 (2018).

14. Wulff, N. C., van de Kamp, T., Peixoto, A. A. & Vigoder, F. M. Copulatory courtship behavior and sire recognition in Drosophila lineola and its sibling species. Zoolog. Sci. 29(7), 469–75, https://doi.org/10.1093/zsj/28.469 (2011).

15. Chen, C. C. et al. Courtship patterns in the Drosophila montium species subgroup: repeated loss of copulatory courtship? Zoolog. Sci. 30(12), 1056–62 (2013).

16. Edvardsson, M. & Arnqvist, G. Copulatory courtship and cryptic female choice in red flour beetles Tribolium castaneum. Proc. Biol. Sci. Mar. 222(1443), 559–63 (2000).

17. Araki, A. S. et al. Molecular and behavioral differentiation among Brazilian populations of Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae). PLoS Negl. Trop. Dis. 3, e365, https://doi.org/10.1371/journal.pntd.0000365 (2009).

18. Vigoder, F. M. et al. Phenotypic differentiation in love song traits among sibling species of the Lutzomyia longipalpis complex. Brazil. Parasit. Vectors. 8, 290, https://doi.org/10.1186/s13071-015-0908-8 (2015).

19. Vigoder, F. M. et al. Lovesongs and period gene polymorphisms indicate Lutzomyia cruzi (Mangabeira, 1938) as a sibling species of the Lutzomyia longipalpis (Lutz and Neiva, 1912) complex. Infect. Genet. Evol. 10(6), 734–9, https://doi.org/10.1016/j.meegid.2010.05.004 (2010a).

20. Vigoder, F. M., Souza, N. A. & Peixoto, A. A. Copulatory courtship song in Lutzomyia migonei (Diptera: Psychodidae). Mem. Inst. Oswaldo Cruz. 105(8), 1065–1067, https://doi.org/10.2646/1518-172X-MC-10-0102 (2010b).

21. Vigoder, F. M., Souza, N. A. & Peixoto, A. A. Acoustic signals in the sand fly Lutzomyia (Nyssomyia) intermedia (Diptera: Psychodidae). Parasit. Vectors. 4, 76, https://doi.org/10.1186/1756-3305-4-76 (2011).

22. Greenspan, R. J. & Ferveur, J. F. Copulatory courtship in Drosophila. Annu. Rev. Genet. 34, 205–232, https://doi.org/10.1146/annurev.genet.34.1.200 (2000).

23. Maroli, M., Feliciangeli, M. D., Bichaud, L., Charrel, R. N. & Grandoni, L. Phlebotomine sandflies and the spreading of leishmaniasis and other diseases of public health concern. Med. Vet. Entomol. 27, 123–147, https://doi.org/10.1111/j.1365-2915.2012.01034.x (2013).

24. Akhoundsi, M. et al. A historical overview of the classification, evolution, and dispersion of Leishmania parasites and sandflies. PLoS Negl. Trop. Dis. 10(3), e004349, https://doi.org/10.1371/journal.pntd.0004349 (2016).

25. Bray, D. P. & Hamilton, J. G. C. Courtship behavior in the sandfly Lutzomyia longipalpis, the New World vector of visceral leishmaniasis. Med. Vet. Entomol. 2, 332–338, https://doi.org/10.1111/j.1365-2915.2007.00700.x (2007).

26. Bray, D. P. et al. Multi-modal analysis of courtship behavior in the Old World leishmaniasis vector Phlebotomus argentipes. PLoS Negl. Trop. Dis. 8(12), e3316, https://doi.org/10.1371/journal.pntd.0003316 (2014).

27. Lane, R. P., Pile, M. M. & Amaresinghe, F. P. Anthropophagy and aggregation behavior of the sandfly Phlebotomus argentipes in Sri Lanka. Med. Vet. Entomol. 4(1), 79–88 (1990).

28. Morrison, A. C. et al. Nocturnal activity patterns of Lutzomyia longipalpis (Diptera, Psychodidae) at an endemic focus of visceral leishmaniasis in Colombia. J. Med. Entomol. 32, 605–617 (1995).

29. Suvanto, L., Hoikka, A. & Liiimatainen, J. O. Secondary courtship songs and inhibitory songs of Drosophila virilis-group males. Behav. Genetics. 24(1), 85–94 (1994).

30. Souza, N. A. et al. Analysis of the copulatory courtship songs of Lutzomyia longipalpis in six populations from Brazil. J. Med. Entomol. 41(5), 906–913, https://doi.org/10.1603/0222-2585-41.906 (2004).

31. Von Schilcher, F. The function of pulse song and sire song in the courtship of Drosophila melanogaster. Anim. Behav. 24, 622–625 (1976).

32. Warren, B., Gibson, G. & Russell, I. J. Sex recognition through midflight mating duets in Culex mosquitoes is mediated by acoustic distortion. Curr. Biol. 19(6), 485–91, https://doi.org/10.1016/j.cub.2009.01.059 (2009).
34. Cator, L. J., Arthur, B. J., Harrington, L. C. & Hoy, R. R. Harmonic convergence in the love songs of the dengue vector mosquito. *Science*. **323**, 1077–1079. https://doi.org/10.1126/science.1166541 (2009).
35. Kirkpatrick, M. Sexual selection and the evolution of female choice. *Evolution*. **36**, 1–12 (1982).
36. Wen, S. et al. Copulatory courtship behavior and sine song as a mate recognition cue in Drosophila lini and its sibling species. *ZooLog. Sci.* **28**(7), 469–75. https://doi.org/10.2108/zsj.28.469 (2011).
37. Rango, K. A taxonomic reassessment of the Phlebotomus argenteipes species complex (Diptera: Psychodidae: Phlebotomine). *J. Med. Entomol.* **47**(1), 1–15 (2010).
38. Gorczyca, M. & Hall, J. C. The INSECTAVOX, an integrated device for recording and amplifying courtship songs of Drosophila. *Drosophila Inform. Serv.* **66**, 157–160 (1987).
39. Charif, R. A., Ponirakis, D. W. & Krein, T. P. Raven Lite 2.0. Cornell Laboratory of Ornithology, Ithaca, NY. www.birds.cornell.edu/raven (2006).

Supplementary information

Acknowledgements

We would like to thank Dra. Rafaela Bruno for laboratory supplies, Dr. João Gesto for support in figure design, Kashinath Gosh, Ann Underhill and Khatijah Yaman for collected and maintaining the *Phlebotomus argenteipes* colony at Keele University. We would also like to thank Dra. Nicola Cook and two anonymous reviewers for helpful comments on the manuscript. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-PNPD), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Oswaldo Cruz, the Malaysian Government and the Wellcome Trust.

Author contributions

A.S.A. and F.M.V. performed the experiments and analyzed the data. A.S.A. prepared figures. A.S.A., R.P.B., J.G.C.H. and F.M.V. wrote the main manuscript text. All authors reviewed the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-61867-6.

Correspondence and requests for materials should be addressed to A.S.A. or F.M.V.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020