A Role for Mitochondrial Phosphoenolpyruvate Carboxykinase (PEPCK-M) in the Regulation of Hepatic Gluconeogenesis

Romana Stark1*, Fitsum Guebre-Egziabher1*, Xiaojian Zhao1, Colleen Feriod2, Jianying Dong1,3, Tiago C. Alves1, Simona Ioja1, Rebecca L. Pongratz1, Sanjay Bhanot4, Gary W. Cline1, Gerald I. Shulman1,2,3, Richard G. Kibbey1,2†

Departments of 1Internal Medicine, 2Cellular & Molecular Physiology, and 3Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, 06520, USA
4Isis Pharmaceuticals, Carlsbad, CA, 92010, USA
5German Diabetes Center, Düsseldorf, Germany

*Contributed equally

Running title: Gluconeogenesis relies on PEPCK-M

†Please address all correspondence to: Richard G. Kibbey, M.D., Ph.D., Yale University School of Medicine, Department of Internal Medicine, P. O. Box 208020, New Haven, CT 06520-8020; phone 203-737-4055; fax 203-785-3823; email: richard.kibbey@yale.edu

Keywords: Diabetes, Gluconeogenesis, Glyceroneogenesis, GTPase, Intermediary metabolism, Metabolic Regulation, Metabolic tracers, Metabolism, Mitochondrial metabolism, Phosphoenolpyruvate carboxykinase

Background: PEPCK-C is generally considered irrelevant for glucose production, though gluconeogenesis has never been characterized in its absence.

Results: PEPCK-M loss impaired gluconeogenesis from lactate, lowered plasma glucose, insulin, and triglycerides, reduced hepatic glycogen, and increased glycerol turnover. There is a switch of gluconeogenic substrate preference to glycerol that quantitatively accounts for a third of glucose production. In contrast to the severe mitochondrial deficiency characteristic of PEPCK-C knockout livers, hepatocytes from PEPCK-M deficient livers maintained normal oxidative function. Consistent with its predicted role, gluconeogenesis rates from hepatocytes lacking PEPCK-M are severely reduced for lactate, alanine, and glutamine, but not for pyruvate and glycerol. Thus, PEPCK-M has a direct role in fasted and fed glucose homeostasis and this mitochondrial GTP-dependent pathway should be reconsidered for its involvement in both normal and diabetic metabolism.

Inappropriately elevated gluconeogenic flux contributes to the increased fasting plasma glucose associated with poorly controlled type 2 diabetes mellitus (1-4). The decarboxylation of OAA into PEP by PEPCK (E.C.4.1.1.32) is obligate for mitochondrial-derived gluconeogenesis (5). Mitochondrial gluconeogenic precursors such as lactate have an absolute requirement for PEPCK.

Two isoforms of PEPCK in mammals, cytosolic
Glucose metabolism generates mitochondrial GTP

6.2.1.4) at a rate proportional to TCA cycle flux (16). Nevertheless, while substantial indirect data supports a diminished role for PEPCK-M, a loss of function has never been directly assessed (14).

The first prominent metabolic role for PEPCK-M was identified in the mechanism of intracellular metabolic flux. Here, we test the hypothesis that mitochondria of gluconeogenic tissues have a mtGTP-dependent flux-sensing pathway to generate mtPEP for gluconeogenesis.

EXPERIMENTAL PROCEDURES

PEPCK-M silencing—The Institutional Animal Care and Use Committee (IACUC) of Yale University School of Medicine approved all procedures in rats. Antisense oligonucleotides (ASO’s) stabilized with a 2′-O-(2-methoxy)ethyl modification and a phosphorothioate backbone have been widely used to acutely silence genes in liver, adipose, and proximal tubules but not skeletal muscle or pancreas of healthy, regular chow-fed adult male Sprague-Dawley rats as well as in humans (20). Twice-weekly intraperitoneal injections were given for four weeks of 25 mg/kg PEPCK-M ASO (PCK2ASO; ISIS421062:′5″-GCACGCGCTCTTCCAGGGCC-3″) compared to a control ASO (ConASO; ISIS141923:′5″-CCTTCCCCTGAAGGTTCTCC-3″) (21,22).

Basal turnover studies—Catheters were surgically inserted into the right internal jugular vein for sampling and left carotid artery into the proximal aorta for infusion. The rats recovered for one week prior to study. At the end of the studies, rats were anesthetized with intravenous pentobarbital and tissues were freeze clamped and stored at -80°C for later analysis of hepatic glycogen, triglycerides, and mRNA (15,21,22). To minimize disturbance, rats were swivel harnessed for the fasting studies and had free access to the cage (15). Glucose turnover rates were determined by primed continuous infusion of 99%[6,6-D2] glucose (21,22). In a separate study 98%[1,1,2,3,3-2H5]L-lactate (3 µmol·kg⁻¹·min⁻¹), 99%[1,1,2,3,3-2H5]glycerol (0.8 µmol·kg⁻¹·min⁻¹), 98%[2,3,3,3-2H4]L-alanine (2 µmol·kg⁻¹·min⁻¹), 97%[2,3,3,4,4-2H5]L-glutamine (1 µmol·kg⁻¹·min⁻¹), and 98%[13C, 15N2]urea (1.2 µmol·kg⁻¹·min⁻¹) were used as a primed-continuous infusion (Cambridge Isotope Laboratories Inc. MA). The choice of isotope labels minimized the exchange of label between the metabolites during the study. The experimental set up lead to no change in plasma substrate levels and all labels reached steady state at the time of their measurement. Glucose and glycerol enrichments were measured using GC/MS and lactate, alanine, glutamine, and urea were measured by LC/MS/MS (17,23). Samples were separated by isocratic elution (0.1% formic acid or 4 mM ammonium formate) from a Hypercarb column (3...
μm particle size, 3x150 mm, Thermo Fisher Scientific) at 700 ul/min using a Shimatzu Prominance UHPLC. Samples were ionized by electrospray into an ABI SCIEX 5500 QTRAP equipped with a SelexION for differential mobility separation and acquired using multiple reaction monitoring (MRM) simultaneously in positive mode (24). Samples were integrated using Multiquant (ABSCIEX). Retention times of each of the metabolites were identified using known natural abundance and labeled standards. Atom percent excess (APE) of the metabolites was corrected for background and concentrations were determined using standard curves of both unlabeled and labeled standards as previously described (17,24). Unique parent daughter ions of alanine (90/44), glutamine (147/130) and urea (61/41) and their isotopologues were collected. Rates of basal turnover were determined as the ratio of the rate of the tracer minus the tracer infusion rate (corrected for its enrichment).

Hepatocyte Studies—Hepatocytes were isolated by Yale University Liver Center from overnight fasted ConASO and PCK2ASO. Isolated hepatocytes were suspended and washed two times in recovery medium containing DMEM high glucose (20 mM) (Sigma, D5648) with 10% FBS, 1 nM insulin, 1 nM dexamethasone and antibiotics (10,000 units/ml penicillin and 10 mg/ml streptomycin, Invitrogen). Cell count and viability were estimated by trypan blue exclusion. The cells were plated at 5x105 cells/cm2 in collagen-I-coated (BD Bioscience) 6-well plates in recovery medium and were cultured under 5% CO\textsubscript{2} and 95% O\textsubscript{2} in air at 37 °C. After 4 h, cells were washed with PBS and the medium was changed to DMEM low glucose (5 mM) (Sigma, D5921) with supplemented antibiotics but no hormones prior to gluconeogenesis assays. Hepatocytes were also transfected using RNAiFect (Qiagen) reagent with a control or PEPCK-M siRNA and then cultured overnight before analysis as previously described for INS-1 cells (17). Silencing was confirmed at the time of gluconeogenesis by mRNA measurements. Hepatocytes were incubated in the presence of substrates as indicated in DMEM with 0.5 mM oleic acid without glucose. After 3 hours media was removed for enzymatic analysis of glucose and normalized to the protein content. Oxygen consumption was measured from the indicated substrates in bicarbonate-free DMEM with 0.5 mM oleic acid using a Seahorse XF24 per the manufacturers recommendations.

Hormone and metabolite measurements—Plasma glucose values for the animal experiments were determined by using 10 μl of plasma by a glucose oxidase method (Beckman Glucose Analyzer II; Beckman Coulter). Plasma insulin, glucagon, adiponectin and leptin concentrations were determined by Multiplex assay (Millipore) and collected on ice in the presence of aprotinin. Corticosterone was measured via RIA (Millipore). Chemistry analysis to measure plasma triglyceride, NEFA, albumin, ALT and ketone concentrations was performed using the COBAS MIRA Plus (Roche Diagnostics). Blood gases were determined immediately by a handheld clinical analyser (iSTAT EC8, Abbot Laboratories). Data are presented as mean ± S.E.M. T-test: * P<0.05; ***, P<0.001

Statistics and data analysis—The difference in glycogenolytic contribution to EGP for PCK2ASO was estimated assuming a uniform rate across the 12-hour fast. Here, the difference in total liver glycogen between ConASO and PCK2ASO in the basal state was divided by the body weight and duration of the fast. This calculation could underestimate glycogenolytic contributions if fed glycogen was higher in the PCK2ASO or if glycogenolytic rates increased as the fast progressed. All data are reported as mean ±S.E.M. Differences were considered to be significant at p<0.05 by unpaired two-tailed Student’s t-tests and one-way ANOVA.

RESULTS

\textit{PCK2ASO impairs hepatic mitochondrial gluconeogenesis but not oxidative respiration—} Hepatocytes were isolated and studied from the livers of ConASO and PCK2ASO rats to confirm whether PEPCK-M deletion directly affected hepatic gluconeogenesis. PEPCK-M mRNA and protein were silenced by the ASO treatment, though PEPCK-C protein was not significantly increased (Figs. 1A-C). Preserved mitochondrial oxidative function in PCK2ASO hepatocytes was indicated by preserved basal and uncoupled mitochondrial respiration (Fig. 1D).

Maximal gluconeogenic rates from lactate and alanine were severely impaired in hepatocytes from PCK2ASO rats with less impact for pyruvate or glycerol (Fig. 1E). The NADH made by LDH during lactate metabolism is consumed by glyceraldehyde-3-phosphate dehydrogenase (GAPDH) during gluconeogenesis and thus favors PEPCK-M to maintain a balanced cytosolic redox.
state (14,25-27). In contrast, pyruvate depends on cytosolic malate dehydrogenase (rather than LDH) to supply GAPDH with NADH and thus favors PEPCK-C metabolism. Accordingly, pyruvate was a better gluconeogenic substrate than lactate in PCK2ASO rats. Glycerol is independent of both PEPCK isoforms and was largely unaffected. At higher glycerol concentrations, there were no differences in gluconeogenesis (not shown). Therefore, PEPCK-M silencing does not impair mitochondrial respiration or post-mitochondrial gluconeogenesis but severely impairs gluconeogenesis from mitochondrial substrates.

To rule out off-target effects of the ASO, PEPCK-M was acutely silenced with two different siRNA in normal rat hepatocytes (Figs. 1F,G). Here maximal rates of gluconeogenesis from alanine and glutamine as well as lactate were also reduced (Figs. 1H,I). Thus, despite its reported relatively low enzyme activity, at least in vitro PEPCK-M loss appears to have significant role in hepatic gluconeogenesis and particularly from lactate.

PEPCK-M deficiency is more exposed during the fed state—ASO-treated rats were studied while fed and following a 36-hour fast. The insulin to glucagon ratio largely determines the expression of PEPCK-C but not PEPCK-M. Thus, compensation by PEPCK-C should be minimal while fed and greatest following a prolonged fast. PEPCK-M was silenced in gluconeogenic/ glceroneogenic tissues but not in muscle (where its relative expression is very low) (Fig. 2A). Both groups started at the same weight and lost ~8% of initial body weight during the fast, although the epididymal fat pad mass was 20% lower in PCK2ASO (Figs 2B-D). Fed PCK2ASO glucose levels were 14 mg/dl lower but that difference disappeared following the fast (Fig. 2E). Strikingly, fed insulin in PCK2ASO rats was also 40% lower, but this difference vanished at the end of the fast (Fig. 2F). Counter-regulatory hormones were similar at both times (Fig. 2G,H). As would be predicted, the role of PEPCK-M in glucone homeostasis is more obvious during the fed state when insulin is high and PEPCK-C is suppressed.

PCK2ASO impacts basal metabolism—Following an overnight fast, the difference in plasma glucose was intermediate between the fed and 36-hour fasted state (~8 mg/dl) and the difference in plasma insulin was no longer statistically significant although ketones were elevated (Table 1).

Glucagon, adiponectin, leptin and corticosterone were similar but hepatic glycogen content was ~70% lower in PCK2ASO rats. In contrast to the hepatic steatosis previously demonstrated with PEPCK-C deficiency (12,28) hepatic triglycerides as well as other liver function tests were not elevated with PCK2ASO. In addition, there is a consistent reduction in epididymal fat and plasma triglycerides (~40%) despite similar insulin levels. While plasma lactate was not elevated in PEPCK-C knockout mice (12) it was 25% higher in PCK2ASO. Nevertheless, the other gluconeogenic precursors are unchanged and pH balance was maintained. Increased amino acid deamination is suggested by a lower urine pH and higher BUN and ammonia. In previous studies there was no quantitatively significant difference in basal glucose turnover in hepatic PEPCK-C knockouts (11,12) Similarly, basal EGP was the same for CONASO and PCK2ASO suggesting that another metabolic pathway was compensating for PEPCK-M loss (Table 1).

PEPCK-M deficiency promotes a gluconeogenic-substrate switch from lactate to glycerol—Lower hepatic glycogen (Table 1) following an overnight fast could indicate either decreased glycogen synthesis or enhanced glycogenolysis. However, if equivalent glycogen stores at the beginning of the fast are assumed, then enhanced PCK2ASO glycogenolysis could only account for at most an additional estimated 3 μmol.kg⁻¹.min⁻¹ of glucose production. The elevated lactate also suggested dysfunctional Cori cycling. In order to assess whether compensation from other PEPCK-M independent pathways helps maintain endogenous glucose production, the turnover rates of other gluconeogenic substrates were independently determined via tracer infusion. Basal turnover of glutamine (16.2±0.7 vs. 15.9±0.4 μmol.kg⁻¹.min⁻¹), alanine (21.3±1.1 vs. 20.6±2.2 μmol.kg⁻¹.min⁻¹) and urea (51.6±2.5 vs. 52.3±2.3 μmol.kg⁻¹.min⁻¹) suggest that amino acids individually or together are not providing significant additional gluconeogenic support. In contrast, the glycerol turnover is ≥25% (22.7±4.9 μmol.kg⁻¹.min⁻¹) higher than controls and mirrored by a reciprocal decrease in lactate turnover (Figs. 3A,B). In vivo, lactate rapidly equilibrates across LDH making accurate determinations of lactate turnover via tracer infusion more challenging (29). Nevertheless, the individual and overall differences between glycerol and lactate turnover rates identifies a substantial shift to a PEPCK-
in adipose glyceroneogenesis. Circulating glycerol reduction in white adipose (Fig 2D and Table 1) is independent gluconeogenic precursor at a rate that can account for a third of EGP (Fig. 3C). The reduction in white adipose (Fig 2D and Table 1) is consistent with increased lipolysis supplying the glycerol rather than a glycerol-consuming defect in adipose glyceroneogenesis. Circulating glycerol must be phosphorylated by hepatic and/or renal glycerol kinase to be further metabolized. Increased glycerol turnover in the setting of lower plasma and hepatic triglycerides indicate that glycerol is fueling gluconeogenesis rather than being used to esterify fatty acids. Taken together, elimination of PEPCK-M from gluconeogenic tissues from otherwise healthy adult rats significantly impacts glucose homeostasis.

DISCUSSION

Contemporary views of PEPCK-M would argue its elimination would be inconsequential to gluconeogenesis (14). Previously, strong arguments have favored a role for PEPCK-M in lactate gluconeogenesis and repeated calls to further study PEPCK-M have been made (10,14,25-27). Nevertheless, PEPCK-M deletion was predicted to be “unlikely to have a relevant metabolic impact” at least in rodents (10). This apparent “tyranny of the species” may have arisen from a consistent underestimation of hepatic PEPCK-M activity in rodents by some assays (14,17). Given the strong knockout phenotype in rodents, this may indicate a much more important role in humans where its prevalent activity is not questioned. PEPCK-M silencing lowers plasma glucose, insulin, triglycerides, fat mass, and hepatic glycogen and raises lactate in normal healthy adult rats. While the aggregate EGP did not change in this model, the relative contributions of lactate and glycerol did. There is a robust increase in glycerol turnover with a compensating reduction in lactate turnover accounting for nearly a third of EGP. Finally, silencing PEPCK-M in hepatocytes severely reduces glucose production from lactate but not glycerol. Unlike PEPCK-C deficiency, where resulting mitochondrial dysfunction affects both PEPCK isoforms (14), PEPCK-M loss leaves mitochondrial function intact but still impairs gluconeogenesis. In this setting, even normal PEPCK-C levels do not completely compensate for PEPCK-M loss. Thus, despite its reported scarcity compared to PEPCK-C, PEPCK-M is identified as a key component of physiologic gluconeogenesis. It is important to clarify that the PCK2ASD data do not rule out contributions from PEPCK-C, but rather demonstrate for the first time a prominent and direct gluconeogenic role for PEPCK-M in mammals in vivo. Given the contribution of excessive gluconeogenesis to diabetes (1,2), a hitherto-untested possibility is that PEPCK-M is a nutrient-driven pathogenic contributor to excessive glucose production in diabetes that is potentially independent of insulin signaling.

This study is the first to directly address the role of PEPCK-M by elimination of the enzyme. The rats in these studies are otherwise healthy and not PEPCK-C deficient. Basal glucose R_a is the same between the two groups in vitro despite severely impaired gluconeogenesis for individual substrates. This is similar to PEPCK-C knockouts with the exception that hepatic PEPCK-C deletion did not change glycerol or lactate turnover (11,12). Glucose R_a is a composite of both PEPCK-isoform fluxes plus net glycerol-3-phosphate dehydrogenase flux (into dihydroxyacetone phosphate) minus pyruvate kinase flux and glycogen synthesis. Still, it is often confused as a direct surrogate for PEPCK flux. In the absence of PEPCK-M, PEPCK-C was unable to fully compensate for PEPCK-M loss as indicated by a switch to glycerol to maintain glucose output. Indeed, the total physiologic contribution of PEPCK-M is likely underestimated given the possibility of enhanced glycogenolysis, other contributions from unmeasured gluconeogenic precursors, and/or partial PEPCK-C compensation.

Despite PEPCK-C’s impressive hormonal regulation, its prominent activity in rodent livers, and that its knockout impairs glucose production from perfused livers, the enthusiasm for PEPCK-C as sole regulator of gluconeogenic PEP synthesis may need to be recalibrated (14). In the past, a major argument against PEPCK-M in rodents has hinged upon relative enzyme activities of the isoforms. The cytosolic and mitochondrial isoforms are in different compartments and PEPCK-M/PEPCK-C activity ratios can range anywhere from undetectable to 50% in rat liver depending on how the assay is performed (6,14,17,30-38). Furthermore, expression levels are relevant only if PEPCK-M activity is rate-limiting. Pancreatic beta-cells are devoid of PEPCK-C while PEPCK-M is present at comparable levels to liver (17). Here PEPCK-M flux approaches 40% the glycolytic rate indicating a high flux capacity. Rodents should not be considered PEPCK-M knockouts especially when interpreting data from...
Gluconeogenesis relies on PEPCK-M. It is important to point out that both isoforms depend on mitochondrial metabolism. While stoichiometrically implausible, complete hepatic PEPCK-C loss reduces O2 consumption by 20% and also reduces 13C-propionate-NMR estimates of TCA flux by 85% (13). Whole-body loss of PEPCK-C increases hepatic TCA cycle intermediates and reduces oxidation of glucose, acetate, and glutamate between 65-80% (12,28). Recently, 100-fold hepatic over-expression of PEPCK-M in liver-specific knockouts of PEPCK-C had no measurable consequence in vivo and only a marginal improvement (~8%) of PEP gluconeogenesis in vitro (39). The interpretation was that PEPCK-M has a minimal supportive role in gluconeogenesis. Another interpretation is that normal levels of PEPCK-M are sufficient for its metabolic role, but that complete PEPCK-C deletion impairs mitochondrial function severely enough to block PEPCK-M-mediated gluconeogenesis. The lack of hypoglycemia in hepatic PEPCK-C knockouts has been attributed to extra-hepatic sources, though this has not been experimentally tested. Prima facie, without a change in expression or activity of PEPCK-C in the kidney, without changes in insulin, glucagon, or corticosterone and without alterations in gluconeogenic substrate concentrations or turnover rates, this would appear a less likely explanation (11,12).

The PEPCK isoforms consume GTP in compartmentalized but parallel reactions to generate PEP. The linkage of PEPCK-M to mtGTP production acts metaphorically like a mitochondrial “metabolic tachometer” coupling PEP production to TCA flux. In principle, this mechanism can sense and respond to acute changes within the local energetic environment (14,17,18). PEPCK-M provides a more efficient pathway from mitochondrial OAA to cytosolic PEP from lactate in terms of energetics (as much as 60% more energy efficient), enzymatics (2 vs. 4 enzymes), and transport (2 vs. 4 transporters) that is independent of oxidative phosphorylation (14,25-27). In rats lipopolysaccharide administration raises plasma lactate and lowers plasma glucose and is associated with a decreased PEPCK-M but increased PEPCK-C expression (40). Interestingly, whole-body PEPCK-C reduction >90% did not significantly change basal glucose metabolism (12). This fits a model where constitutive PEPCK-M activity provides the foundation of gluconeogenesis that can be augmented by PEPCK-C in times of increased demand.

In summary, despite reports of low rodent enzyme activity in vitro, PEPCK-M has a crucial metabolic role in fed and fasted PEP production in vivo. Even in the presence of normal PEPCK-C, PCK2 Δαβ rats have lower plasma glucose and insulin but increased lactate. During fasting, a switch to glycerol bypasses the PEPCK reaction and consequently there is no hypoglycemia. Future studies are indicated for the role of PEPCK-M in lipid metabolism given the reduced plasma lipids, increased glycerol turnover, and reduced adipose. Notably, there is no mitochondrial impairment, disruption of pH, hepatic steatosis or hepatitis. We hypothesize that PEPCK-M and SCS-GTP serve as intermeshing metabolic gears that use the mtGTP cycle to sense TCA flux (14). Curiously, the same mitochondrial metabolic cycle could regulate both insulin secretion and gluconeogenesis. Incidentally, human liver has quantitatively more PEPCK-M activity than rodents (41). Taken together, gluconeogenesis from PEPCK-M is significant in rodents and may be an overlooked contributor to diabetes and/or a viable pharmaceutical target in humans.

REFERENCES:
1. Hundal, R. S., Krissak, M., Dufour, S., Laurent, D., Lebon, V., Chandramouli, V., Inzucchi, S. E., Schumann, W. C., Petersen, K. F., Landau, B. R., and Shulman, G. I. (2000) Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 49, 2063-2069
2. Magnusson, I., Rothman, D. L., Katz, L. D., Shulman, R. G., and Shulman, G. I. (1992) Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J Clin Invest 90, 1323-1327
3. Gastaldelli, A., Miyazaki, Y., Pettiti, M., Buzzigoli, E., Mahankali, S., Ferrannini, E., and DeFronzo, R. A. (2004) Separate contribution of diabetes, total fat mass, and fat topography to glucose production, gluconeogenesis, and glycogenolysis. J Clin Endocrinol Metab 89, 3914-3921
4. Maggs, D. G., Buchanan, T. A., Burant, C. F., Cline, G., Gumbiner, B., Hsueh, W. A., Inzucchi, S., Kelley, D., Nolan, J., Olefsky, J. M., Polonsky, K. S., Silver, D., Valiquest, T. R., and
Gluconeogenesis relies on PEPCK-M

Shulman, G. I. (1998) Metabolic effects of troglitazone monotherapy in type 2 diabetes mellitus. A randomized, double-blind, placebo-controlled trial. *Ann Intern Med* **128**, 176-185

5. Owen, O. E., Kalhan, S. C., and Hanson, R. W. (2002) The key role of anaplerosis and cataplerosis for citric acid cycle function. *J Biol Chem* **277**, 30409-30412

6. Nordlie, R. C., and Lardy, H. A. (1963) Mammalian liver phosphoenolpyruvate carboxykinase activities. *J Biol Chem* **238**, 2259-2263

7. Utter, M. F., and Kurahashi, K. (1954) Purification of oxalacetic carboxylase from chicken liver. *J Biol Chem* **207**, 787-802

8. Siess, E. A., Brocks, D. G., Lattke, H. K., and Wieland, O. H. (1977) Effect of glucagon on metabolite compartmentation in isolated rat liver cells during gluconeogenesis from lactate. *Biochem J* **166**, 225-235

9. Modaressi, S., Brechtel, K., Christ, B., and Jungermann, K. (1998) Human mitochondrial phosphoenolpyruvate carboxykinase 2 gene. Structure, chromosomal localization and tissue-specific expression. *Biochem J* **333 (Pt 2)**, 359-366

10. Hanson, R. W. (2009) Thematic minireview series: a perspective on the biology of phosphoenolpyruvate carboxykinase 55 years after its discovery. *J Biol Chem* **284**, 27021-27023

11. She, P., Burgess, S. C., Shiota, M., Flakoll, P., Donahue, E. P., Malloy, C. R., Sherry, A. D., and Magnuson, M. A. (2003) Mechanisms by which liver-specific PEPCK knockout mice preserve euglycemia during starvation. *Diabetes* **52**, 1649-1654

12. She, P., Shiota, M., Shelton, K. D., Chalkley, R., Postic, C., and Magnuson, M. A. (2000) Phosphoenolpyruvate carboxykinase is necessary for the integration of hepatic energy metabolism. *Mol Cell Biol* **20**, 6508-6517

13. Burgess, S. C., He, T., Yan, Z., Lindner, J., Sherry, A. D., Malloy, C. R., Browning, J. D., and Magnuson, M. A. (2007) Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver. *Cell Metab* **5**, 313-320

14. Stark, R., and Kibbey, R. G. (2013) The mitochondrial isofrom of phosphoenolpyruvate carboxykinase (PEPCK-M) and glucose homeostasis: Has it been overlooked? *Biochim Biophys Acta*

15. Jamison, R. A., Stark, R., Dong, J., Yonemitsu, S., Zhang, D., Shulman, G. I., and Kibbey, R. G. (2011) Hyperglucagonemia precedes a decline in insulin secretion and causes hyperglycemia in chronically glucose-infused rats. *Am J Physiol Endocrinol Metab* **301**, E1174-1183

16. Samuel, V. T., Beddow, S. A., Iwasaki, T., Zhang, X. M., Chu, X., Still, C. D., Gerhard, G. S., and Shulman, G. I. (2009) Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with Type 2 Diabetes. *Proc Natl Acad Sci USA* **106**, 12121-12126

17. Stark, R., Pasquel, F., Turcu, A., Pongratz, R. L., Roden, M., Cline, G. W., Shulman, G. I., and Kibbey, R. G. (2009) Phosphoenolpyruvate carboxykinase cycling via mitochondrial phosphoenolpyruvate carboxykinase links anaplerosis and mitochondrial GTP with insulin secretion. *J Biol Chem* **284**, 26578-26590

18. Kibbey, R. G., Pongratz, R. L., Romanelli, A. J., Wollheim, C. B., Cline, G. W., and Shulman, G. I. (2007) Mitochondrial GTP regulates glucose-stimulated insulin secretion. *Cell Metab* **5**, 253-264

19. Vozza, A., Blanco, E., Palmieri, L., and Palmieri, F. (2004) Identification of the mitochondrial GTP/GDP transporter in Saccharomyces cerevisiae. *J Biol Chem* **279**, 20850-20857

20. Yu, R. Z., Kim, T. W., Hong, A., Watanabe, T. A., Gaus, H. J., and Geary, R. S. (2007) Cross-species pharmacokinetic comparison from mouse to man of a second-generation antisense oligonucleotide, ISIS 301012, targeting human apolipoprotein B-100. *Drug Metab Dispos* **35**, 460-468

21. Samuel, V. T., Liu, Z. X., Wang, A., Beddow, S. A., Geisler, J. G., Kahn, M., Zhang, X. M., Monia, B. P., Bhanot, S., and Shulman, G. I. (2007) Inhibition of protein kinase Cepsilon prevents hepatic insulin resistance in nonalcoholic fatty liver disease. *J Clin Invest* **117**, 739-745

22. Erion, D. M., Ignatova, I. D., Yonemitsu, S., Nagai, Y., Chatterjee, P., Weismann, D., Hsiao, J. J., Zhang, D., Iwasaki, T., Stark, R., Flannery, C., Kahn, M., Carmean, C. M., Yu, X. X., Murray, S. F., Bhanot, S., Monia, B. P., Cline, G. W., Samuel, V. T., and Shulman, G. I. (2009) Prevention
of hepatic steatosis and hepatic insulin resistance by knockdown of cAMP response element-binding protein. *Cell Metab* **10**, 499-506
23. Hundal, R. S., Petersen, K. F., Mayerson, A. B., Randhawa, P. S., Inzucchi, S., Shoelson, S. E., and Shulman, G. I. (2002) Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. *J Clin Invest* **109**, 1321-1326
24. Israelsen, W. J., Dayton, T. L., Davidson, S. M., Fiske, B. P., Hosios, A. M., Bellinger, G., Li, J., Yu, Y., Sasaki, M., Horner, J. W., Burga, L. N., Xie, J., Jurczak, M. J., DePinho, R. A., Clish, C. B., Jacks, T., Kibbey, R. G., Wulf, G. M., Di Vizio, D., Mills, G. B., Cantley, L. C., and Vander Heiden, M. G. (2013) PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells. *Cell* **155**, 397-409
25. Garber, A. J., and Ballard, F. J. (1969) Phosphoenolpyruvate synthesis and release by mitochondria from guinea pig liver. *J Biol Chem* **244**, 4696-4703
26. Söling, H. D., Kleineke, J., Willms, B., Janson, G., and Kuhn, A. (1973) Relationship between intracellular distribution of phosphoenolpyruvate carboxykinase, regulation of gluconeogenesis, and energy cost of glucose formation. *Eur J Biochem* **37**, 233-243
27. Yang, J., Kalhan, S. C., and Hanson, R. W. (2009) What is the metabolic role of phosphoenolpyruvate carboxykinase? *J Biol Chem* **284**, 27025-27029
28. Hakimi, P., Johnson, M. T., Yang, J., Lepage, D. F., Conlon, R. A., Kalhan, S. C., Reshef, L., Tilghman, S. M., and Hanson, R. W. (2005) Phosphoenolpyruvate carboxykinase and the critical role of cataplerosis in the control of hepatic metabolism. *Nutr Metab (Lond)* **2**, 33
29. Wolfe, R. R., Jahoor, F., and Miyoshi, H. (1988) Evaluation of the isotopic equilibration between lactate and pyruvate. *Am J Physiol* **254**, E532-535
30. Wiese, T. J., Lambeth, D. O., and Ray, P. D. (1991) The intracellular distribution and activities of phosphoenolpyruvate carboxykinase isozymes in various tissues of several mammals and birds. *Comp Biochem Physiol B* **100**, 297-302
31. Soling, H., Wilms, B., Kleineke, J., and Gehlhoff, M. (1970) Regulation of gluconeogenesis in the guinea pig liver. *Eur J Biochem* **16**, 289-302
32. Cornell, N. W., Schramm, V. L., Kerich, M. J., and Emig, F. A. (1986) Subcellular location of phosphoenolpyruvate carboxykinase in hepatocytes from fed and starved rats. *J Nutr* **116**, 1101-1108
33. Ballard, F. J., and Hanson, R. W. (1967) Phosphoenolpyruvate carboxykinase and pyruvate carboxylase in developing rat liver. *Biochem J* **104**, 866-871
34. Usatenko, M. (1970) Hormonal regulation of phosphoenolpyruvate carboxykinase activity in liver and kidney of adult animals and formation of this enzyme in developing rabbit liver. *Biochemical medicine* **3**, 298
35. Heitzman, R., Herriman, I., and Mallinson, C. (1972) Some effects of glucocorticoids on the subcellular distribution of the activities of citrate synthase and phosphoenolpyruvate carboxykinase in livers of rats and cows. *FEBS Lett* **20**, 19-21
36. Saggerson, D., and Evans, C. J. (1975) The activities and intracellular distribution of nicotinamide-adenine dinucleotide phosphate-malate dehydrogenase, phosphoenolpyruvate carboxykinase and pyruvate carboxylase in rat, guinea-pig and rabbit tissues. *Biochem J* **146**, 329-332
37. Horn, D., Podolin, D., Friedman, J., Scholnick, D., and Mazzeo, R. (1997) Alterations in key gluconeogenic regulators with age and endurance training. *Metab Clin Exp* **46**, 414
38. MacDonald, M. J., Bentle, L. A., and Lardy, H. A. (1978) P-enolpyruvate carboxykinase ferroactivator. Distribution, and the influence of diabetes and starvation. *J Biol Chem* **253**, 116-124
39. Mendez-Lucas, A., Duarte, J. A., Sunny, N. E., Satapati, S., He, T., Fu, X., Bermudez, J., Burgess, S. C., and Perales, J. C. (2013) PEPCK-M expression in mouse liver potentiates, not replaces, PEPCK-C mediated gluconeogenesis. *J Hepatol* **59**, 105-113
40. Caton, P. W., Nayuni, N. K., Murch, O., and Corder, R. (2009) Endotoxin induced hyperlactatemia and hypoglycemia is linked to decreased mitochondrial phosphoenolpyruvate carboxykinase. *Life Sci* **84**, 738-744
Gluconeogenesis relies on PEPCK-M

Acknowledgements—We thank Yanna Kosover and Lonnette Diggs of Yale University School of Medicine for their expert technical assistance with the studies; Aida Groszmann for performing hormone assays.

FOOTNOTES
§This work was supported by: R01 DK092606, K08 DK080142, R01 DK-40936, R24 DK-085638, U24 DK-059635, P30 DK79310-01, P30 DK34989, P30 DK45735, American Diabetes Association (7-12-BS-092), and Société Francophone de Néphrologie, Hospices Civils de Lyon. S.B. is employed by and holds stocks in ISIS Pharmaceuticals. There were no conflicts for the remaining authors.

‡Abbreviations used are: PEPCK, Phosphoenolpyruvate carboxykinase; OAA, oxaloacetic acid; PEP, phosphoenolpyruvate, mtPEP, mitochondrial phosphoenolpyruvate; mtGTP, mitochondrial GTP; ASO, antisense oligonucleotide; EGP, endogenous glucose production; APE, atomic percent enrichment; DMEM, Dulbecco’s modified essential medium; NEFA, non-esterified fatty acid; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BUN, blood urea, nitrogen; LDH, lactate dehydrogenase; GAPDH, Glycerol-3-phosphate dehydrogenase; Ra, rate of appearance; SCS-GTP, succinyl CoA synthetase GTP isoform; DNP, dinitrophenol; WAT, white adipose tissue; BAT, brown adipose tissue

FIGURE LEGENDS

FIGURE 1. (A) PEPCK-M mRNA levels from hepatocytes isolated from ConASO (white bars) and PCK2ASO (black bars). (B,C) PEPCK-M and PEPCK-C protein expression quantified by western blotting and normalized to actin. Knockdown levels in hepatocytes are indicative of PEPCK-M levels at the time of the in vivo and in vitro studies. (D) Oxygen consumption rates in hepatocytes incubated in the presence of either 10 mM lactate or pyruvate alone or uncoupled by 100 µM dinitrophenol (DNP) (n=5/5) in isolated primary hepatocytes ConASO (white) and PCK2ASO (black) rats (n=6/6). (E) Glucose production rates from hepatocytes treated with the indicated concentration of substrate. Percent decrease from ConASO is indicated in parentheses for each substrate (n=6/6). (F,G) PEPCK-M and PEPCK-C mRNA levels from isolated hepatocytes acutely transfected (n=6/6) with control (white) or two different siRNA (PCK2-A and PCK2-B, black). Glucose production from hepatocytes incubated with 9 mM lactate and 1 mM pyruvate (H) or 10 mM glutamine or alanine with siRNA PCK2-A (I). Data are presented as mean±S.E.M. T-test: *, P<0.05; ***, P<0.001.

FIGURE 2. Fed and fasted glucose homeostasis: rodents were allowed to eat ad lib overnight and then food was withdrawn at 6am (Fed) before undergoing a 36-hour fast (Fasted). (A) PEPCK-M mRNA in indicated tissue ConASO (white) and PCK2ASO (black) rats determined by quantitative PCR. Results are normalized to the control liver mRNA to demonstrate relative abundance of message and significance is between ConASO and PCK2ASO. Shown are initial weights (B), weight loss during and white adipose mass after the 36-hour fast (C). Glucose, insulin, glucagon and corticosterone (E-H) were measured. Data are shown as mean ±S.E.M. for n=14/12 rats. *, P<0.05; **, P = 0.01; ***, P<0.001; N.S., not significant.

FIGURE 3. Basal turnover studies were performed in overnight fasted rats. CONASO (white) and PCK2ASO (black) rats were given tracer infusions of labeled (A) lactate and (B) glycerol (n=7/8) for basal turnover calculations. The individual differences between glycerol and lactate Ra (C) are indicative of a substantial switch in gluconeogenic precursor preference. Data are presented as mean ± S.E.M., **, P<0.01; ***, P<0.001.
Tissue weight, metabolites and hormones from Con\(^{10}\) (white) and PCK2\(^{20}\) (black) rodents following an overnight (12-hour) fast (n=22/24).
Gluconeogenesis relies on PEPCK-M

Figure 1

A. PEPCK-M mRNA

B. PEPCK Protein

C. PEPCK-M, PEPCK-C, Actin

D. O$_2$ Consumption

E. Gluconeogenesis

F. PEPCK-M mRNA

G. PEPCK mRNA

H. Gluconeogenesis (Lactate/Pyruvate)

I. Gluconeogenesis (Amino Acids)
Figure 2

Gluconeogenesis relies on PEPCK-M

A. Tissue PEPCK-M mRNA expression

B. Weight

C. Weight Loss

D. White Adipose

E. Glucose

F. Insulin

G. Glucagon

H. Corticosterone

Legend:

- ** ns
- * p < 0.05
- ** p < 0.01
- *** p < 0.001
Gluconeogenesis relies on PEPCK-M

Figure 3

A Glycerol (Ra) **

B Lactate (Ra)

C Glycerol-Lactate (Ra)

- Control
- PEPCK-M

** ***
A Role for Mitochondrial Phosphoenolpyruvate Carboxykinase (PEPCK-M) in the Regulation of Hepatic Gluconeogenesis
Romana Stark, Fitsum Guebre-Egziabher, Xiaojian Zhao, Colleen Feriod, Jianying Dong, Tiago C Alves, Simona Ioja, Rebecca L Pongratz, Sanjay Bhanot, Michael Roden, Gary W. Cline, Gerald I. Shulman and Richard G. Kibbey

J. Biol. Chem. published online February 4, 2014

Access the most updated version of this article at doi: 10.1074/jbc.C113.544759

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts