ENumerating permutation polynomials over finite fields by degree

Sergei konyagin and Francesco pappalardi

Abstract. we prove an asymptotic formula for the number of permutation for which the associated permutation polynomial has degree smaller than \(q - 2 \).

Let \(\mathbb{F}_q \) be a finite field with \(q = p^f > 2 \) elements and let \(\sigma \in S(\mathbb{F}_q) \) be a permutation of the elements of \(\mathbb{F}_q \). The permutation polynomial \(f_\sigma \) of \(\sigma \) is

\[
f_\sigma(x) = \sum_{c \in \mathbb{F}_q} \sigma(c) \left(1 - (x - c)^{q-1}\right) \in \mathbb{F}_q[x].
\]

\(f_\sigma \) has the property that \(f_\sigma(a) = \sigma(a) \) for every \(a \in \mathbb{F}_q \) and this explains its name.

For an account of the basic properties of permutation polynomials we refer to the book of Lidl and Niederreiter [5].

From the definition, it follows that for every \(\sigma \)

\[
\partial(f_\sigma) \leq q - 2.
\]

A variety of problems and questions regarding permutation polynomials have been posed by Lidl and mullen in [3, 4]. Among these there is problem of determining the number \(N_d \) of permutation polynomials of fixed degree \(d \). In [6] and [7], Malvenuto and the second author address the problem of counting the permutations that move a fixed number of elements of \(\mathbb{F}_q \) and whose permutation polynomials have “low” degree.

Here we consider all permutations and we want to prove the following

Theorem 1. Let

\[
N = \# \{ \sigma \in S(\mathbb{F}_q) \mid \partial(f_\sigma) < q - 2 \}.
\]

Then

\[
|N - (q - 1)!| \leq \sqrt{2e/\pi q^{q/2}}.
\]

This confirms the common believe that \textit{almost all permutation polynomials have degree} \(q - 2 \).

The first few values of \(N \) are listed below:

\(q \)	2	3	4	5	7	8	9	11
\(N \)	0	0	12	20	630	5368	42120	3634950
\((q - 1)! \)	1	2	6	24	720	5040	40320	3628800

Proof. The proof uses exponential sums and a similar argument as the one in [6].

By extracting the coefficient of \(x^{q-2} \) in \(f_\sigma(x) \), we obtain that the degree of \(f_\sigma(x) \) is strictly smaller than \(q - 2 \) if and only if

\[
\sum_{c \in \mathbb{F}_q} c \sigma(c) = 0.
\]
For a fixed subset S of \mathbb{F}_q, we introduce the auxiliary set of functions

$$N_S = \left\{ f : \mathbb{F}_q \to S, \text{ and } \sum_{c \in S} cf(c) = 0 \right\}$$

and set $n_S = \#N_S$. By inclusion exclusion, it is easy to check that

$$N = \sum_{S \subseteq \mathbb{F}_q} (-1)^{q-|S|} n_S. \quad (1)$$

Now if $e_p(u) = e^{2\pi i u/p}$, consider the identity

$$n_S = \frac{1}{q} \sum_{a \in \mathbb{F}_q} \left(\sum_{f : \mathbb{F}_q \to S} e_p(\sum_{c \in \mathbb{F}_q} \text{Tr}(acf(c))) \right)$$

which follows from the standard property

$$\frac{1}{q} \sum_{a \in \mathbb{F}_q} e_p(\text{Tr}(ax)) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } x \neq 0. \end{cases}$$

By exchanging the sum with the product, we obtain

$$n_S = \frac{1}{q} \sum_{a \in \mathbb{F}_q} \left(\prod_{c \in \mathbb{F}_q} \sum_{t \in S} e_p(\text{Tr}(act)) \right).$$

By isolating the term with $a = 0$ in the external sum and noticing that the internal product does not depend on a (for $a \neq 0$), we get

$$n_S = \frac{|S|^q}{q} + \frac{1}{q} \sum_{a \in \mathbb{F}_q} \left(\prod_{b \in \mathbb{F}_q^*} \sum_{t \in S} e_p(\text{Tr}(bt)) \right).$$

Finally

$$n_S = \frac{|S|^q}{q} + \frac{q-1}{q} \prod_{b \in \mathbb{F}_q^*} \sum_{t \in S} e_p(\text{Tr}(bt)). \quad (2)$$

Now let us plug equation (2) in equation (1) and obtain

$$N - \sum_{S \subseteq \mathbb{F}_q} \frac{(-1)^{q-|S|}}{q} |S|^q = \frac{q-1}{q} \sum_{S \subseteq \mathbb{F}_q} (-1)^{q-|S|} \prod_{b \in \mathbb{F}_q^*} \sum_{t \in S} e_p(\text{Tr}(bt)).$$

Note that inclusion exclusion gives

$$\sum_{S \subseteq \mathbb{F}_q} \frac{(-1)^{q-|S|}}{q} |S|^q = (q - 1)!. $$

Therefore

$$N - (q - 1)! = \frac{q-1}{q} \sum_{S \subseteq \mathbb{F}_q} (-1)^{q-|S|} |S| \prod_{b \in \mathbb{F}_q^*} \sum_{t \in S} e_p(\text{Tr}(bt)).$$

Using the fact that for $b \in \mathbb{F}_q^*$

$$\sum_{t \in S} e_p(\text{Tr}(bt)) = - \sum_{t \notin S} e_p(\text{Tr}(bt))$$
and grouping together the term relative to S and the term relative to $F_q \setminus S$, we get

\[(3) \quad |N - (q - 1)!| \leq \frac{q - 1}{2q} \sum_{S \subseteq F_q} (q - 2|S|)! \prod_{b \in F_q^*} \left| \sum_{i \in S} e_p(\text{Tr}(bt)) \right|.
\]

Now let us also observe that

\[\sum_{b \in F_q^*} \left| \sum_{i \in S} e_p(\text{Tr}(bt)) \right|^2 = q|S|,
\]

so that

\[\sum_{b \in F_q^*} \left| \sum_{i \in S} e_p(\text{Tr}(bt)) \right|^2 = (q - |S||S|).
\]

From the fact that the geometric mean is always bounded by the arithmetic mean (i.e. $(\prod_{i=1}^{k} |a_i|^2)^{1/k} \leq \frac{1}{k} \sum_{i=1}^{k} |a_i|^2$), we have that

\[(4) \quad \prod_{b \in F_q^*} \left| \sum_{i \in S} e_p(\text{Tr}(bt)) \right| \leq \left(\frac{1}{q - 1} \sum_{b \in F_q^*} \left| \sum_{i \in S} e_p(\text{Tr}(bt)) \right|^2 \right)^{(q-1)/2}
\]

\[= \left(\frac{q - |S||S|}{q - 1} \right)^{(q-1)/2}.
\]

Furthermore, using (3) and (4) we obtain

\[(5) \quad |N - (q - 1)!| \leq \frac{q - 1}{2q(q - 1)^{(q-1)/2}} \sum_{S \subseteq F_q} (q - 2|S|)! ((q - |S||S|)^{(q-1)/2}.
\]

We want to estimate the above sum. Consider the inequality

\[(6) \quad ((q - |S||S|)^{(q-1)/2} \leq \left(\frac{q}{2} \right)^{q-1},
\]

and the identity

\[(7) \quad \sum_{S \subseteq F_q} |q - 2|S|| = 2q \left(\frac{q - 1}{[q/2]} \right),
\]

which holds since

\[2 \sum_{S \subseteq F_q, |S| \leq q/2} (q - 2|S|) = 2 \left[\sum_{j=0}^{[q/2]} \binom{q}{j} (q - j) - \sum_{j=1}^{[q/2]} \binom{q}{j} (j) \right]
\]

\[= 2q \left[\sum_{j=0}^{[q/2]} \binom{q-1}{j} - \sum_{j=1}^{[q/2]} \binom{q-1}{j-1} \right] = 2q \left(\frac{q-1}{[q/2]} \right).
\]

From the standard inequality

\[\binom{2n}{n} \leq \sqrt{\frac{2}{\pi}} \frac{2^n}{\sqrt{2n + 1/2}}
\]

which can be found for example in [3], we deduce

\[(8) \quad \binom{q-1}{[q/2]} \leq \sqrt{\frac{2}{\pi}} \frac{2^{q-1}}{\sqrt{q - 1/2}}.
\]
Therefore, (5), (6), (7) and (8) imply
\[|N - (q - 1)!| \leq \left(\frac{q - 1}{\sqrt{q - 1/2}}\right)^{\frac{1}{2}} \sqrt{\frac{2}{\pi}} \left(\frac{q}{q - 1}\right)^{\frac{q}{q/2}}\]
and in view of the inequalities
\[
\frac{q - 1}{\sqrt{q - 1/2}} < 1, \quad \left(\frac{q}{q - 1}\right)^{\frac{q}{q/2}} < e\]
we finally obtain
\[|N - (q - 1)!| \leq \sqrt{\frac{2e}{\pi}} q^{q/2}\]
and this completes the proof.

Conclusion. Computations suggest that a more careful estimate of the sum in (9) would yield to a constant \(\sqrt{\frac{2e}{\pi}}\) instead of \(\sqrt{\frac{2e}{\pi}}\) as coefficient in \(q^{q/2}\) in the statement of Theorem 1. However we feel that such a minor improvement does not justify the extra work.

The ideas in the proof of Theorem 1 can be used to deal with the analogous problem of enumerating the permutation polynomials that have the \(i\)-th coefficient equal to 0 and also to the problem of enumerating the permutation polynomials with degree less than \(q - k\) (for fixed \(k\)). However, the exponential sums that need to be considered are significantly more complicated.

Acknowledgements.

The first author was supported by Grants 99-01-00357 and 00-15-96109 from the Russian Foundation for Basic Research. The second author was partially supported by G.N.S.A.G.A. from Istituto Nazionale di Alta Matematica.

The authors would like to thank Igor Shparlinski for suggesting a substantial improvement with respect to the original result.

References

[1] Grosswald E. *Algebraic Inequalities for \(\pi\), Solution to a problem proposed by R. E. Shafer*, Amer. Math. Mon. 84 (1977), 63.

[2] Konyagin S., *A note on the least prime in an arithmetic progression* East J. Approxim. 1 (1995), 403–418.

[3] Lidl R. & Mullin G. L., *When does a polynomial over a finite field permute the elements of the field?* Amer. Math. Mon. 95 (1988), 243–246.

[4] Lidl R. & Mullin G. L., *When does a polynomial over a finite field permute the elements of the field? II* Amer. Math. Mon. 100 (1993), 71–74.

[5] Lidl R. & Niederreiter, H., *Finite Fields*, Encyclo. Math. and Appl. V. 20, Addison–Wesley, Reading, MA 1983.

[6] Malvenuto C. & Pappalardi F., *Enumerating Permutation Polynomials I: Permutations with non–maximal degree*, submitted.

[7] Malvenuto C. & Pappalardi F., *Enumerating Permutation Polynomials II: k–cycles with minimal degree*, in preparation.
