Cell-type heterogeneity in the zebrafish olfactory placode is generated from progenitors within preplacodal ectoderm

Raphaël Aguillon¹, Julie Batut¹, Arul Subramanian², Romain Madelaine¹#, Pascale Dufourcq¹, Thomas F. Schilling² and Patrick Blader¹*

¹ Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR3743), Université de Toulouse, CNRS, UPS, 31062, France.
² Department of Developmental and Cell Biology, 4109 Natural Sciences II, University of California, Irvine, CA 92697-2300, USA.

Present address: Beckman Center, Stanford University School of Medicine, Stanford, CA 94305
§ These authors contributed equally.
*For correspondence: patrick.blader@univ-tlse3.fr
Abstract

Vertebrate olfactory placodes consist of a variety of neuronal populations, which are thought to have distinct embryonic origins. In the zebrafish, while ciliated sensory neurons arise from preplacodal ectoderm (PPE), previous lineage tracing studies suggest that both Gonadotropin releasing hormone 3 (Gnrh3) and microvillous sensory neurons derive from cranial neural crest (CNC). We find that the expression of Islet1/2 is restricted to Gnrh3 neurons associated with the olfactory placode. Unexpectedly, however, we find no change in Islet1/2+ cell numbers in sox10 mutant embryos, calling into question their CNC origin. Lineage reconstruction based on backtracking in time-lapse confocal datasets, and confirmed by photoconversion experiments, reveals that Gnrh3 neurons derive from the anterior/medial PPE. Similarly, all of the microvillous sensory neurons we have traced arise from preplacodal progenitors. Our results suggest that rather than originating from separate ectodermal populations, cell-type heterogeneity is generated from overlapping pools of progenitors within the preplacodal ectoderm.
Introduction

A fundamental question in developmental neurobiology is how different neuronal subtypes arise from fields of pluripotent progenitors. At the end of gastrulation, the anterior neural plate border of vertebrate embryos gives rise to two specialized regions of ectoderm: the preplacodal ectoderm (PPE) that will ultimately produce the cranial placodes, and the cranial neural crest (CNC). Specification of the PPE is achieved through the action of so-called preplacodal competence factors such as *tfap2a*, *tfap2c*, *fox1* and *gata3* (Kwon et al., 2010). During a similar time-window, key neural crest specifier genes, such as *foxd3* (Lister et al., 2006; Montero-Balaguer et al., 2006; Stewart et al., 2006), *tfap2a* (Barrallo-Gimeno et al., 2004) and *sox10* (Dutton et al., 2001) establish the CNC fate. Cranial placodes subsequently arise via the condensation of specific regions within the PPE along the antero-posterior axis, with the adenohypophyseal and olfactory placodes forming anteriorly, the lens and trigeminal placodes forming at an intermediate position and the otic and epibranchial placodes forming posteriorly (for reviews see (Steventon et al., 2014; Aguillon et al., 2016)). Concomitantly, CNC cells delaminate and migrate throughout the head, where they have been reported to contribute to a large number of cell types, including neurons associated with derivatives of the cranial placodes. These include sensory neurons of the various peripheral sensory ganglia (D'Amico-Martel and Noden, 1983; Harlow and Barlow, 2007), as well as sensory and neurosecretory cells of the olfactory system (Whitlock et al., 2003; Saxena et al., 2013). This dual embryonic (PPE/CNC) origin for olfactory neurons may have critical developmental and functional consequences.

In zebrafish embryos, olfactory neurons are generated in two waves, early olfactory neurons (EON) and olfactory sensory neurons (OSN), under the redundant control of the bHLH proneural transcriptions factors Neurog1 and Neurod4 (Madelaine et al., 2011). EONs act as pioneers for the establishment of projections from the olfactory placode to the olfactory bulb. Once OSN projections are established, a subset of EONs dies by apoptosis (Whitlock and Westerfield, 1998) suggesting the existence of distinct subtypes of neurons within the population, but specific markers for these different neurons have yet to be described. Neural subtype heterogeneity is also detected early within the OSN population; in zebrafish the predominant subtypes are ciliated sensory neurons that have long dendrites and express olfactory marker protein (OMP) and microvillous sensory neurons, which
have short dendrites and express the Transient receptor potential cation channel, 1 subfamily C, member 2b (Trpc2b) (Hansen and Zeiske, 1998; Sato et al., 2005). A third neural subtype associated with the early olfactory placode in zebrafish expresses gonadotropin releasing hormone 3 (gnrh3). Rather than projecting exclusively to the olfactory bulb, Gnrh3 neurons send their axons caudally to various brain regions, including the hypothalamus (Abraham et al., 2008). While laser-ablating Gnrh3+ cells leads to sterility, animals homozygous for TALEN-induced mutations of gnrh3 are fertile, pointing to the need of identifying other genes expressed in these cells that might underlie the differences between these phenotypes (Abraham et al., 2010; Spicer et al., 2016).

Although the major neural cell types associated with the olfactory epithelium appear to be conserved across vertebrates, there is no coherent vision as to their lineage origin between species. For instance, while Gnrh cells associated with the developing olfactory placode are reported to be of preplacodal origin in chick, in the zebrafish they have been shown to derive from the neural crest (Whitlock et al., 2003; Sabado et al., 2012); in mouse, Cre/lox experiments suggest that Gnrh cells are of mixed lineage origin, coming from both the ectoderm and CNC (Forni et al., 2011). To identify additional markers of cell-type heterogeneity in the developing zebrafish olfactory placode we screened expression of molecules known to label discreet sets of neurons in other regions of the nervous system. We found that an antibody that recognizes the Islet family (Islet1/2) of LIM-homeoproteins labels Gnrh3 neurons in the olfactory placode from an early developmental stage (Ericson et al., 1992). With this new marker we find no change in the numbers of Islet1/2+ cells in the olfactory system in sox10−/− mutants, which are deficient in many CNC lineages. This is in contrast with previous studies and calls into question the proposed CNC origin of Gnrh+ cells. Consistent with these findings, lineage reconstructions of time-lapse confocal movies show that most if not all Gnrh3+ neurons, as well as microvillous sensory neurons, derive from the PPE. Thus, cell-type heterogeneity within the olfactory placode is likely established entirely from progenitors within the PPE.
Results

Islet1/2 expression in Gnrh3 neurons in the olfactory placode is unaffected in sox10 mutants

Heterogeneity in neuronal subtypes is apparent in the zebrafish olfactory placode from early developmental stages (Whitlock and Westerfield, 1998; Whitlock and Westerfield, 2000; Whitlock et al., 2003; Sato et al., 2005; Madelaine et al., 2011; Saxena et al., 2013). While searching for novel markers of this heterogeneity, we found that at 48 hours post-fertilization (hpf) immunoreactivity to the Islet1/2 monoclonal antibody 39.4D5 is restricted to a small group of cells in the olfactory placode at the interface with the telencephalon (Figure 1A). The number and position of these Islet1/2+ cells resembles expression of gonadotropin releasing hormone 3 (gnrh3) (Gopinath et al., 2004). To determine if they are the same cells, we examined expression of Islet1/2 in a transgenic line expressing enhanced GFP (eGFP) under the control of the gnrh3 promoter, which recapitulates the endogenous expression of gnrh3 in the olfactory placode (Abraham et al., 2008). Our results reveal a complete overlap between eGFP expression from the Tg(gnrh3:eGFP) transgene and Islet1/2 (Figure 1A).

It has been reported that zebrafish Gnrh3+ neurons associated with the olfactory placode derive from cranial neural crest (CNC), and that impairing CNC specification through morpholino knock-down of the HMG transcription factor sox10 dramatically reduces their number (Whitlock et al., 2003; Whitlock et al., 2005). Unexpectedly, we found no difference in Islet1/2+ cell numbers in embryos homozygous for a strong sox10 mutant allele (sox10^{t3/t3}) relative to wildtype siblings (6.9+/-.4 versus 6.8+/-.3 cells per placode, n=16; Figure 1A and B; (Dutton et al., 2001)). Similarly, eGFP expression in embryos carrying the Tg(gnrh3:eGFP) transgene was unaffected in a sox10^{t3/t3} mutant background (7.1+/-.4 versus 7.2+/-.3 cells per placode, n=16; Figure 1A,C); endogenous gnrh3 expression was also unaffected in sox10 mutant embryos, ruling out a transgene-specific effect (Figure 1 – figure supplement 1). Our results indicate that Islet1/2 is a novel marker of Gnrh3 neurons associated with the zebrafish olfactory placode, and that these cells do not require Sox10 for specification.

A previous study assessed the origin of zebrafish Gnrh3 neurons by DiI labeling of premigratory CNC followed by immunostaining for GnRH (Whitlock et al., 2003). To revisit the proposed CNC origin of these neurons, we chose a Cre/lox-
based approach coupled with analysis of Islet1/2 expression. Double-heterozygous embryos carrying both a Tg(-28.5Sox10:Cre) and Tg(ef1a:loxP-DsRed-loxP-eGFP) transgene display a permanent shift from DsRed to eGFP expression in CNC lineages (Kague et al., 2012). Despite widespread expression of eGFP throughout the heads of 48 hpf double-heterozygous Tg(-28.5Sox10:Cre);Tg(ef1a:loxP-DsRed-\textit{loxP-egfp}) embryos, including in cells surrounding the olfactory placode, we did not detect eGFP;Islet1/2 double-positive cells in the placodes themselves (n=20; Figure 2). While these are negative results, when combined with the lack of defects in Islet1/2+ cell numbers in sox10 mutants they lend further support against a CNC origin for Gnrh3 neurons in the developing zebrafish olfactory system.

Lineage reconstruction reveals an anterior preplacodal ectoderm origin for Gnrh3 neurons

Gnrh3+ neurons associate closely with the olfactory placode from early stages (Gopinath et al., 2004). However, a lack of Cre lines specific for placodal progenitors precluded using a Cre/\textit{lox} approach to address if Gnrh3 neurons derive from these cells. As an alternative, we developed an unbiased backtracking approach using time-lapse confocal movies. Briefly, synthetic mRNAs encoding Histone2B-RFP (H2B-RFP) were injected into Tg(gnrh3:eGFP) transgenic embryos, which were subsequently imaged from 12-36 hpf (Figure 3A); delamination and migration of CNC begins approximately 2 hours after the initiation of the time-lapse acquisition, and eGFP from the transgene is robustly expressed at 36 hpf (Schilling and Kimmel, 1994; Abraham et al., 2008). The lineage of various populations of cells was then manually retraced by backtracking H2B-RFP+ nuclei to their position at the beginning of the time-lapse series using Imaris software (Figure 3A and Video 1). To test our approach relative to well-established fate maps already generated for zebrafish cranial placodes, we first backtracked H2B-RFP+ nuclei of gnrh3:eGFP-negative cells in the olfactory placode as well as lens cells, which can be identified at the end of the time-lapse series by their distinct morphology (Figure 3B,C). Consistent with previous lineage studies (Whitlock and Westerfield, 2000), we found that gnrh3:eGFP-negative cells of the olfactory placode derived from progenitors in the preplacodal ectoderm (PPE) at the anterior/lateral neural plate border (n=32 cells from 9 placodes; Figure 3B,E and Figure 3 - figure supplement 1). Also as expected from earlier studies (Dutta et al., 2005), the H2B-RFP+ nuclei of lens cells traced back to a
PPE domain posterior and slightly lateral to that of the olfactory placode progenitors (n=10 cells from 2 lenses; Figure 3C,E). In contrast to previous reports, the nuclei of gn rh3:eGFP-positive cells traced back to the most anterior/medial region of the PPE (n=30 cells from 9 placodes; Figure 3D,E and Figure 3 – figure supplement 1), rather than from a region posterior to the lens progenitors as would be expected for CNC cells.

To confirm the anterior/medial PPE origin of Gn rh3 neurons, we used photoconversion to label the cells. We loaded Tg(gnrh3:eGFP) embryos with NLS-mEos2 by mRNA injection and at 12 hpf photoconverted either the left or right half of the domain predicted by backtracking to contain precursors of Gn rh3 neurons at this stage. Photoconverted embryos were then allowed to develop until 36 hpf, at which stage we determined if any gn rh3:eGFP+ cells had photoconverted nuclei (NLS-mEos2_{PC}; Figure 4A-D). Photoconversion caused no changes in the number of gn rh3:eGFP+ cells (5.4+/−0.5 versus 5.2+/−0.6 cells per placode, n=9; Figure 4E). However, while on average less than one NLS-mEos2_{PC};gn rh3:eGFP+ double-labeled cell per placode was detected on the control side of the embryo (0.3+/−0.2 cells per placode, n=9), the entire gn rh3:eGFP+ population was double-labeled on the photoconverted side (4.6+/−0.3 cells per placode, n=9; Figure 4E). There was no statistical difference between the number of gn rh3:eGFP+ and eGFP/mEos2_{PC}-double-positive cells in the photoconverted side suggesting that all Gn rh3 neurons associated with the olfactory placode are derived from the anterior/medial PPE.

Microvillous sensory neurons also derive from the preplacodal ectoderm

Zebrafish microvillous sensory neurons, like their counterparts in the rodent vomeronasal organ, express Transient receptor potential cation channel, subfamily C, member 2 (Trpc2) and VR-type olfactory receptors (Sato et al., 2005). The expression of a Tg(-4.5trpc2b:GAP-Venus) transgene is reduced in sox10 morphant embryos suggesting a CNC origin for microvillous sensory neurons in zebrafish (Saxena et al., 2013), similar to Gn rh3+ neurons. Given our results with Gn rh3 neurons in sox10 mutants (Figure 1A,B; (Whitlock et al., 2005)), we also revisited the microvillous lineage. Indeed, we found that the expression of endogenous trpc2b was unaffected in sox10 mutants (Figure 5 - figure supplement 1). We then backtracked eGFP+ neurons in the Tg(-4.9sox10:eGFP) transgenic background (Video 2; (Wada et al., 2005)); expression from this transgene has been shown to overlap almost
completely with that of \textit{Tg(-4.5trpc2b:GAP-Venus)} (Saxena et al., 2013). As before, nuclei of randomly chosen eGFP-negative cells in the olfactory placode trace back to an anterior/lateral position in the PPE \((n=44 \text{ cells from 7 placodes; Figure 5A,D and Figure 5 – figure supplement 2})\); backtracked lens cells also behaved as before \((n=10 \text{ cells from 2 lenses; Figure 5B,D})\). Unexpectedly, backtracking revealed a similar anterior/lateral PPE origin for sox10:eGFP+ cells as their eGFP-negative neighbors \((n=41 \text{ cells from 7 placodes; Figure 5C,D and Figure 5 – figure supplement 2})\).

Similar to the Gnrh3+ cells, we used photoconversion of NLS-mEos2 to confirm our backtracking results for the microvillous population. This time, however, photoconversion was focused on the left or right two-thirds of the anterior/lateral PPE of \textit{Tg(-4.9sox10:eGFP)} embryos (Figure 6A,B). As before, the number of eGFP+ cells was unaffected by the photoconversion \((8+/-0.6 \text{ versus } 9.8+/-0.7 \text{ cells per placode, } n=9 \text{ and 6 respectively; Figure 6C-E})\), and less than one NLS-mEos2\(^{PC}\)-sox10:eGFP+ cell per placode was detected on the control side of the embryo \((0.3+/-0.3 \text{ cells per placode, } n=6; \text{ Figure 6E})\). On the photoconverted side, however, an average of just under 60% of the total sox10:eGFP+ population was also NLS-mEos2\(^{PC}\)-positive \((4.6+/-0.6 \text{ cells per placode, } n=9; \text{ Figure 6D,E})\). This is consistent with the fact that we photoconverted approximately two-thirds of the cells in the PPE that gives rise to the olfactory placode.

Taken together, our results obtained using a combination of backtracking and photoconversion, indicate that Gnrh3 and microvillous sensory neurons associated with the zebrafish olfactory placode derive from the anterior/medial and anterior/lateral PPE, respectively.
Discussion

As part of our ongoing studies into the mechanisms underlying neurogenesis in the early zebrafish olfactory placode (Madelaine et al., 2011), here we have investigated how different subtypes of olfactory neurons arise. Using a novel marker for Gnrh3 neurons we have revisited this lineage and its origins within the placode. By combining Cre/lox, backtracking in 4D confocal datasets and photoconversion, we show that Gnrh3+ neurons derive from progenitors in the PPE; similar live imaging techniques also indicate a PPE origin for microvillous sensory neurons. These results support a common PPE origin for all of the neuronal populations within the olfactory system and argue against any CNC contribution. More generally, they suggest a mechanism by which cellular heterogeneity arises progressively within a field of neuronal progenitors.

In zebrafish at least two Islet genes, islet1 and islet2b, are expressed in the olfactory Gnrh3+ cells (R. Aguillon and P. Blader, unpublished data). Whether or not Islet transcription factors regulate the development of Gnrh3 neurons, similar to Islet1 in pancreatic β-cells, remains unknown (Ahlgren et al., 1997). If this is the case, the specification of endocrine lineages, like Gnrh3 olfactory cells and Insulin expressing β-cells, may be an ancestral role of Islet proteins, which were later co-opted into other lineages such as motor neurons in the spinal cord (Karlsson et al., 1990; Ericson et al., 1992; Appel et al., 1995). Our analysis also reassigns the Gnrh3 lineage to progenitors found in a domain of the PPE known to give rise to neurons of the adenohypophysis (Dutta et al., 2005) and proposed to generate hypothalamic Gnrh2 neurons (Whitlock et al., 2003). Whether or not this region of the zebrafish PPE provides an environment that promotes the production of neuroendocrine lineages remains an open question.

Lineage reconstruction experiments in the tunicate, Ciona intestinalis, recently demonstrated the existence of a proto-placodal ectoderm, equivalent to the vertebrate PPE, which gives rise to both sensory neurons and Gnrh cells (Abitua et al., 2015). We propose that the development of a Gnrh population from the anterior/medial PPE has been conserved during chordate evolution. Whether or not this conservation holds for other vertebrates, however, remains unclear. DiI labeling experiments in the chick suggest that GnRH cells derive from precursors of the olfactory placodes separate from the adenohypophysis (Sabado et al., 2012), while our study and others show that in zebrafish these two populations overlap.
significantly in the PPE (reviewed in (Toro and Varga, 2007)). In mice Cre/lox lineage analysis suggests that GnRH cells associated with the olfactory system are of mixed origin, being derived 70% from the ectoderm and 30% from CNC (Forni et al., 2011). This does not appear to be the case in chick, however, as grafted neural folds expressing GFP do not contribute to the olfactory placode (Sabado et al., 2012). Furthermore, similar to our results in zebrafish no change in GnRH cells numbers is detected in Sox10-null mutant mice (Pingault et al., 2013). As the original lineage assignment in mouse was established using only a single ectodermal (Creect; (Reid et al., 2011)) and neural crest (Wnt1Cre; (Danielian et al., 1998)) Cre line, respectively, our results suggest that revisiting the lineage assignment in the mouse with other genetic tools or other approaches is needed.

The origin of zebrafish microvillous sensory neurons is controversial (Saxena et al., 2013; Torres-Paz and Whitlock, 2014). Our results indicate that this lineage is derived from progenitors in the PPE. Furthermore, they imply that the expression of eGFP in the olfactory placode of Tg(sox10:eGFP) embryos does not reflect a CNC origin for these cells but rather an ectopic site of transgene expression. Why ectopic expression of the transgene in the olfactory placode appears restricted to microvillous sensory neurons is unclear but highlights the need to be cautious when using transgenic tools in lineage analyses. In this regard, the backtracking approach we have developed provides a powerful alternative for ascertaining lineage assignments during zebrafish embryogenesis. While in this study we used transgenic lines to identify cell types for backtracking, with the caveats that this obliges, we have also backtracked cells identified using antibody markers. For this, cells for backtracking can be identified by comparing the 3D architecture of a tissue described by nuclear position at the end of a time-lapse series to that of the same embryo after fixation and antibody labeling. Our analysis also highlights difficulties with using morpholinos when studying tissues for which a detailed comparison between the morphant and mutant phenotypes has not been undertaken. Thus, while sox10 morphants recapitulate a variety of phenotypes described in strong alleles of sox10 mutants (Dutton et al., 2001), our data suggests that this cannot be extrapolated to the olfactory placode.

In conclusion, our results argue that cell-type heterogeneity in the zebrafish olfactory placode is generated from progenitors within the PPE, and begin to provide coherence for the lineage assignment of olfactory neural subtypes between...
vertebrate species. Identifying the mechanisms underlying the segregation of the various olfactory lineages from overlapping progenitor pools is an important avenue for future research.

Acknowledgments

This work was supported by the Centre National de la Recherche Scientifique (CNRS); the Institut National de la Santé et de la Recherche Médicale (INSERM); Université de Toulouse III (UPS); University of California, Irvine; National Institute of Health (NIH R01 DE13828 and AR67797 to TS); Fondation pour la Recherche Médicale (DEQ20131029166 to PB); Fédération pour la Recherche sur le Cerveau; and the French Ministère de la Recherche. We would like to thank Brice Ronsin and the Toulouse RIO Imaging platform (LITC), and Aurore Laire, Richard Brimicombe-Lefevre and Ines Gehring for fish husbandry. We thank the Alsina, Fisher, Granato, Kelsh, Neuhauss, and Zohar labs for providing fish lines and other reagents. We also thank Christian Mosimann, Tatjana Sauka-Spengler and Trevor Williams for comments and suggestions.

Materials and methods

Fish Husbandry and lines

Fish were maintained at the CBD (Toulouse) and UCI (Irvine) zebrafish facilities in accordance with the rules and protocols in place in the respective locations. The sox10^3, Tg(-2.4gnrh3:egfp)^zf103 and Tg(-4.9sox10:eGFP)^ba2Tg lines have previously been described (Dutton et al., 2001; Wada et al., 2005; Abraham et al., 2008), as were the Tg(-28.5Sox10:Cre)^zf384 and Tg(ef1a:loxP-DsRed-loxP-eGFP)^zf284 lines used for Cre/loxP-based lineage analyses (Kague et al., 2012). Embryos were obtained through natural crosses and staged according to (Kimmel et al., 1995).

In situ Hybridisation, Immunostaining and Microscopy

In situ hybridisation was performed as previously described (Oxtoby and Jowett, 1993). Antisense DIG-labelled probes for *gnrh3* (Abraham et al., 2008) and *trpc2b* (Von Niederhausern et al., 2013) were generated using standard procedures. In situ hybridisations were visualised using BCIP and NBT (Roche) as substrates.

Embryos were immunostained as previously described (Madelaine et al., 2011); primary antibodies used were chicken anti-GFP (1:1000; ab13970, Abcam, ...
USA), rabbit anti-GFP (1:1000; TP-401, Torrey Pines Biolabs, USA) and mouse anti-
Islet1/2 (1:200; 39.4D5, Developmental Studies Hybridoma Bank, USA). Primary
antibodies were detected using the following fluorescently conjugated secondary
antibodies (1:1000): Alexa Fluor 680 conjugated donkey anti-mouse IgG (A10038,
Molecular Probes, USA), Alexa Fluor 568 conjugated goat anti-mouse IgG (A-11004,
Molecular Probes, USA), Alexa Fluor 488 conjugated goat anti-rabbit IgG (A-11034,
Molecular Probes, USA) and Alexa Fluor 488 conjugated donkey anti-chicken IgY
(703-486-155, Jackson ImmunoResearch, USA). Immunolabellings were
counterstained with DAPI (1:1000; D1306, Life Technologies, USA).

Fluorescently labelled embryos were imaged using an inverted Nikon Eclipse Ti Confocal and
brightfield images were taken on a Nikon Eclipse 80i microscope. Images were
analysed using ImageJ and Imaris 8.3 (Bitplane, Switzerland) software.

Live confocal imaging and lineages reconstruction

Embryos from the Tg(gnrh3:egfp)zf103 or Tg(-4.9sox10:eGFP)ba2Tg transgenic lines
were injected with synthetic mRNA encoding an H2B-RFP fusion protein. Resulting
embryos were grown to 12 hpf, a stage preceding the delamination and anterior
migration of cranial neural crest cells (Schilling and Kimmel, 1994). They were then
dechorionated and embedded for imaging in 0.7% low-melting point agarose in
embryos medium in 55mm round petri dish (Gosselin; BP-50). A time-lapse series of
confocal stacks (1 mm slice/180 mm deep) was generated of the anterior neural plate
and flanking non-neural ectoderm on an upright Leica SP8 Confocal microscope
using a 25x HC FLUOTAR water-immersion objective (L25 x 0.95 W VISIR). Stacks
were acquired each 8 min until 36 hpf, a stage when eGFP from either transgene is
strongly expressed in the olfactory placode. The lineage of the various neuronal
populations was subsequently reconstructed manually by backtracking H2B-RFP+ nuclei using Imaris 8.3 analysis software (Bitplane, Switzerland).

Photoconversion

Embryos from the Tg(gnrh3:egfp)zf103 and Tg(-4.9sox10:eGFP)ba2Tg transgenic lines
were injected with synthetic mRNA encoding an NLS-mEos2 (mEOS2 fused to a
nuclear localization sequence) fusion protein (Sapede et al., 2012). Embryos were
then grown to 12 hpf, dechorionated and embedded for photoconversion/imaging in
0.7% low-melting point agarose in embryos medium in 35mm circular petri dish
(Nunc™; 153066) bearing a silicone sealed 22mm circular cover slip (Thermo Scientific™; 174977). Mounted embryos were first imaged for NLS-mEos2 expression prior photoconversion at very low laser levels (confocal stack 2 mm slice/80 mm deep). Subsequently, a region of interest (ROI) was photoconverted using a 405nm diode (100% laser, 41sec), after which embryos were imaged again to assess the extent of NLS-mEos2 conversion. Photoconversion and imaging was done on an inverted SP8 Leica confocal with an HC PL APO CS2 40x/1.3 oil objective. Full z-stacks were acquired for each photoconverted embryo 24h after the photoconversion (confocal stack 1 mm slice/80 mm deep) to determine the contribution of progenitors located in the ROI at the time of photoconversion to the Gnrh3 or microvillous lineages.

Statistical analysis

All statistical comparisons are indicated in figure legends including one sample and unpaired t-test performed using Prism (GraphPad.) The scatter dot plots were generated with Prism. Data are mean ± s.e.m. Two-tailed t-test *p<0.05, **p<0.01, ***p<0.005, ****p<0.0001.

Additional information

Funding

Funder	Grant reference number	Author
Fondation pour la Recherche Médicale	DEQ20131029166	Raphaël Aguillon
		Julie Batut
		Romain Madelaine
		Pascale Dufourcq
		Patrick Blader
National Institute of Health	AR67797	Arul Subramanian
	DE13828	Thomas F Schilling

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Author contributions

RA, JB, Conception and design, Acquisition, analysis and interpretation of data, Drafting or revising the article; AS, RM, PD, Acquisition, analysis and interpretation of data; TFS, PB, Conception and design, Analysis and interpretation of data, Drafting or revising the article.
Author ORCIDs

1. Arul Subramanian, http://orcid.org/0000-0001-8455-6804
2. Thomas F Schilling, http://orcid.org/0000-0003-1798-8695
3. Patrick Blader, http://orcid.org/0000-0003-3299-6108
4. Julie Batut, http://orcid.org/0000-0002-1984-2094

Ethics
Animal experimentation: The study was performed in strict accordance with French and European guidelines (Toulouse), and to the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health (Irvine). Toulouse, France: French veterinary service and national ethical committee approved the protocols in this study, with approval ID: A-31-555-01 and APAPHIS #3653-2016011512005922v6. Irvine, USA: All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#2000-2149) of the University of California, Irvine. The renewal of this protocol was approved by the IACUC (Animal Welfare Assurance #A3416.01) on December 11, 2015.

All animal experiments were performed on embryos derived from natural spawnsings and every effort was made to minimize suffering.

References
Abitua, P. B., Gainous, T. B., Kaczmarczyk, A. N., Winchell, C. J., Hudson, C., Kamata, K., Nakagawa, M., Tsuda, M., Kusakabe, T. G. and Levine, M. (2015) The pre-vertebrate origins of neurogenic placodes, Nature 524(7566): 462-5.

Abraham, E., Palevitch, O., Gothilf, Y. and Zohar, Y. (2010) Targeted gonadotropin-releasing hormone-3 neuron ablation in zebrafish: effects on neurogenesis, neuronal migration, and reproduction, Endocrinology 151(1): 332-40.

Abraham, E., Palevitch, O., Ijiri, S., Du, S. J., Gothilf, Y. and Zohar, Y. (2008) Early development of forebrain gonadotrophin-releasing hormone (GnRH) neurones and the role of GnRH as an autocrine migration factor, J Neuroendocrinol 20(3): 394-405.

Aguillon, R., Blader, P. and Batut, J. (2016) Patterning, morphogenesis, and neurogenesis of zebrafish cranial sensory placodes, Methods Cell Biol 134: 33-67.

Ahlgren, U., Pfaff, S. L., Jessell, T. M., Edlund, T. and Edlund, H. (1997) Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells, Nature 385(6613): 257-60.

Appel, B., Korzh, V., Glasgow, E., Thor, S., Edlund, T., Dawid, I. B. and Eisen, J. S. (1995) Motoneuron fate specification revealed by patterned LIM homeobox gene expression in embryonic zebrafish, Development 121(12): 4117-25.

Barrallo-Gimeno, A., Holzschuh, J., Driever, W. and Knapik, E. W. (2004) Neural crest survival and differentiation in zebrafish depends on mont blanc/tfap2a gene function, Development 131(7): 1463-77.

D'Amico-Martel, A. and Noden, D. M. (1983) Contributions of placodal and neural crest cells to avian cranial peripheral ganglia, Am J Anat 166(4): 445-68.

Danielian, P. S., Muccino, D., Rowitch, D. H., Michael, S. K. and McMahon, A. P. (1998) Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase, Curr Biol 8(24): 1323-6.
Dutta, S., Dietrich, J. E., Aspock, G., Burdine, R. D., Schier, A., Westerfield, M. and Varga, Z. M. (2005) pitx3 defines an equivalence domain for lens and anterior pituitary placode, Development 132(7): 1579-90.

Dutton, K. A., Paulinly, A., Lopes, S. S., Elworthy, S., Carney, T. J., Rauch, J., Geisler, R., Haftter, P. and Kelsh, R. N. (2001) Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates, Development 128(21): 4113-25.

Ericson, J., Thor, S., Edlund, T., Jessell, T. M. and Yamada, T. (1992) Early stages of motor neuron differentiation revealed by expression of homeobox gene Islet-1, Science 256(5063): 1555-60.

Forni, P. E., Taylor-Burds, C., Melvin, V. S., Williams, T. and Wray, S. (2011) Neural crest and ectodermal cells intermix in the nasal placode to give rise to GnRH-1 neurons, sensory neurons, and olfactory ensheathing cells, J Neurosci 31(18): 6915-27.

Gopinath, A., Andrew Tseng, L. and Whitlock, K. E. (2004) Temporal and spatial expression of gonadotropin releasing hormone (GnRH) in the brain of developing zebrafish (Danio rerio), Gene Expr Patterns 4(1): 65-70.

Hansen, A. and Zeiske, E. (1998) The peripheral olfactory organ of the zebrafish, Danio rerio: an ultrastructural study, Chem Senses 23(1): 39-48.

Harlow, D. E. and Barlow, L. A. (2007) Embryonic origin of gustatory cranial sensory neurons, Dev Biol 310(2): 317-28.

Kague, E., Gallagher, M., Burke, S., Parsons, M., Franz-Odendaal, T. and Fisher, S. (2012) Skeletogenic fate of neural crest cranial and trunk neural crest, PLoS One 7(11): e47394.

Karlisson, O., Thor, S., Norberg, T., Ohlsson, H. and Edlund, T. (1990) Insulin gene enhancer binding protein Isl-1 is a member of a novel class of proteins containing both a homoeo- and a Cys-His domain, Nature 344(6289): 879-82.

Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. and Schilling, T. F. (1995) Stages of embryonic development of the zebrafish, Dev Dyn 203(3): 253-310.

Kwon, H. J., Bhat, N., Sweet, E. M., Cornell, R. A. and Riley, B. B. (2010) Identification of early requirements for preplacodal ectoderm and sensory organ development, PLoS Genet 6(9): e1001133.

Lister, J. A., Cooper, C., Nguyen, K., Modrell, M., Grant, K. and Raible, D. W. (2006) Zebrafish Foxd3 is required for development of a subset of neural crest derivatives, Dev Biol 290(1): 92-104.

Madeleine, R., Garric, L. and Blader, P. (2011) Partially redundant proneural function reveals the importance of timing during zebrafish olfactory neurogenesis, Development 138(21): 4753-62.

Montero-Balaguer, M., Lang, M. R., Sachdev, S. W., Knappmeyer, C., Stewart, R. A., De La Guardia, A., Hatzopoulos, A. K. and Knapik, E. W. (2006) The mother superior mutation ablates foxd3 activity in neural crest progenitor cells and depletes neural crest derivatives in zebrafish, Dev Dyn 235(12): 3199-212.

Oxtoby, E. and Jowett, T. (1993) Cloning of the zebrafish krox-20 gene (krx-20) and its expression during hindbrain development, Nucleic Acids Res 21(5): 1087-95.

Pingault, V., Bodereau, V., Baral, V., Marcos, S., Watanabe, Y., Chaoui, A., Foueaut, C., Leroy, C., Verier-Mine, O., Francannet, C. et al. (2013) Loss-of-function mutations in SOX10 cause Kallmann syndrome with deafness, Am J Hum Genet 92(5): 707-24.

Reid, B. S., Yang, H., Melvin, V. S., Taketo, M. M. and Williams, T. (2011) Ectodermal Wnt/beta-catenin signaling shapes the mouse face, Dev Biol 349(2): 261-9.

Sabado, V., Barraud, P., Baker, C. V. and Streit, A. (2012) Specification of GnRH-1 neurons by antagonistic FGF and retinoic acid signaling, Dev Biol 362(2): 254-62.

Sapede, D., Dyballa, S. and Pujades, C. (2012) Cell lineage analysis reveals three different progenitor pools for neurosensory elements in the otic vesicle, J Neurosci 32(46): 16424-34.

Sato, Y., Miyasaka, N. and Yoshihara, Y. (2005) Mutually exclusive glomerular innervation by two distinct types of olfactory sensory neurons revealed in transgenic zebrafish, J Neurosci 25(20): 4889-97.

Saxena, A., Peng, B. N. and Bronner, M. E. (2013) Sox10-dependent neural crest origin of olfactory microvillus neurons in zebrasib, Elife 2: e00336.

Schilling, T. F. and Kimmel, C. B. (1994) Segment and cell type lineage restrictions during pharyngeal arch development in the zebrafish embryo, Development 120(3): 483-94.

Spicer, O. S., Wong, T. T., Zmora, N. and Zohar, Y. (2016) Targeted Mutagenesis of the Hypophysiotropic Gnrh3 in Zebrafish (Danio rerio) Reveals No Effects on Reproductive Performance, PLoS One 11(6): e0158141.

Steventon, B., Mayor, R. and Streit, A. (2014) Neural crest and placode interaction during the development of the cranial sensory system, Dev Biol 389(1): 28-38.
Stewart, R. A., Arduini, B. L., Berghmans, S., George, R. E., Kanki, J. P., Henion, P. D. and Look, A. T. (2006) Zebrafish foxd3 is selectively required for neural crest specification, migration and survival, *Dev Biol* 292(1): 174-88.

Toro, S. and Varga, Z. M. (2007) Equivalent progenitor cells in the zebrafish anterior preplacodal field give rise to adenohypophysis, lens, and olfactory placodes, *Semin Cell Dev Biol* 18(4): 534-42.

Torres-Paz, J. and Whitlock, K. E. (2014) Olfactory sensory system develops from coordinated movements within the neural plate, *Dev Dyn* 243(12): 1619-31.

Von Niederhausern, V., Kastenhuber, E., Stauble, A., Gesemann, M. and Neuhauss, S. C. (2013) Phylogeny and expression of canonical transient receptor potential (TRPC) genes in developing zebrafish, *Dev Dyn* 242(12): 1427-41.

Wada, N., Javidan, Y., Nelson, S., Carney, T. J., Kelsh, R. N. and Schilling, T. F. (2005) Hedgehog signaling is required for cranial neural crest morphogenesis and chondrogenesis at the midline in the zebrafish skull, *Development* 132(17): 3977-88.

Whitlock, K. E., Smith, K. M., Kim, H. and Harden, M. V. (2005) A role for foxd3 and sox10 in the differentiation of gonadotropin-releasing hormone (GnRH) cells in the zebrafish Danio rerio, *Development* 132(24): 5491-502.

Whitlock, K. E. and Westerfield, M. (1998) A transient population of neurons pioneers the olfactory pathway in the zebrafish, *J Neurosci* 18(21): 8919-27.

Whitlock, K. E. and Westerfield, M. (2000) The olfactory placodes of the zebrafish form by convergence of cellular fields at the edge of the neural plate, *Development* 127(17): 3645-53.

Whitlock, K. E., Wolf, C. D. and Boyce, M. L. (2003) Gonadotropin-releasing hormone (GnRH) cells arise from cranial neural crest and adenohypophyseal regions of the neural plate in the zebrafish, Danio rerio, *Dev Biol* 257(1): 140-52.
Figure Legends

Figure 1. Islet1/2 labels Gnrh3 neurons of the olfactory placode and its expression is unaffected in sox10 mutants.

(A) Single confocal sections of olfactory placodes from Tg(gnrh3:eGFP) embryos at 48 hpf, in either wildtype or sox10f3f3 mutants, labelled for the expression of Islet1/2 (magenta) and eGFP (green); nuclei are labelled with DAPI (grey). Embryos are viewed dorsally and the inset in the first panel shows a schematic representation of a 48 hpf embryonic head indicating the region analysed. Dotted lines highlight the olfactory placodes and scalebars represent 15 µm.

(B) Counts of cells expressing Islet1/2 in either wildtype or sox10f3f3 mutant placodes (6.8+/-.3 versus 6.9+/-.4 cells per placode, n=16 placodes).

(C) Counts of cells expressing eGFP from the Tg(gnrh3:eGFP) transgene in either wildtype or sox10f3f3 mutant placodes (7.2+/-.3 versus 7.1+/-.4 cells per placode, n=16 placodes).

(B-C) Mean ± s.e.m. P values are calculated using a two-tailed Student's t-test, n.s. not significant.

The following figure supplement is available for figure 1:

Figure supplement 1. Expression of endogenous gnrh3 in sox10f3f3 mutants and wildtype siblings.

Representative bright-field images of in situ hybridisation against endogenous gnrh3 transcripts in wildtype or sox10f3f3 mutant placodes showing high and low numbers of expressing cells. The number of placodes binned for each category over the total number of placodes analysed is indicated. Dotted lines highlight the olfactory placodes and scalebars represent 20 µm.

The following source data is available for figure 1:

Source data 1. Islet+ cell number quantification.

Source data 2. eGFP+ cell number quantification.

Figure 2. Cre/lox lineage mapping of neural crest cells reveals contributions to cells surrounding the olfactory epithelium but not to Islet/Gnrh3+ neurons.
Single confocal sections of an olfactory placode from double-heterozygous Tg(-28.5Sox10:Cre);Tg(ef1a:loxP-DsRed-loxP-egfp) embryo at 48 hpf, labelled for the expression of Islet1/2 (magenta) and eGFP (green); nuclei are labelled with DAPI (grey). No eGFP;Islet1/2 double-positive cells are detected in the placodes. Embryos are viewed dorsally and the inset in the first panel shows a schematic representation of a 48 hpf embryonic head indicating the orientation of the region analysed. Dotted lines highlight the olfactory placode and scalebars represent 15 µm.

Figure 3. Lineage reconstruction reveals an anterior preplacodal ectoderm origin for Gnrh3 neurons: backtracking.

(A) Schematic representation of the backtracking strategy. Synthetic mRNAs encoding Histone2B-RFP (H2B-RFP) were injected into Tg(gnrh3:eGFP) transgenic embryos, which were subsequently imaged from 12 to 36 hpf. The lineages of various populations of cells were manually retraced by backtracking H2B-RFP+ nuclei to their position at the beginning of the time-lapse series.

(B-D) Confocal projections from a representative 4D dataset at 36, 28, 20 and 12 hpf showing the position of the nuclei backtracked from 10 gnrh3:eGFP-negative (B, pink), 10 lens (C, yellow) and 7 gnrh3:eGFP-positive (D, blue) cells at each timepoint. Scalebars represent 40 µm.

(E) Schematic representation of an embryonic head at 36 hpf and the anterior neural plate (NP, dark grey) and adjacent preplacodal ectoderm (light grey) at 12 hpf, dorsal views. The 36 hpf head shows the colour code of the backtracked lineages, and the position of backtracked nuclei at 12 hpf is indicated in the preplacodal ectoderm. The 12 hpf representation shows the results obtained from 9 placodes (5 embryos) for 30 gnrh3:eGFP-positive cells and 32 gnrh3:eGFP-negative cells; the 10 lens were backtracked from a pair of placodes in a single 4D dataset only.

The following figure supplements are available for figure 3:

Figure supplement 1. Backtracking data from individual Tg(gnrh3:eGFP) embryos.

Confocal projections extracted from 4D datasets at 36 and 12 hpf for all embryos analysed showing the position of the backtracked nuclei of gnrh3:eGFP-negative (pink) and gnrh3:eGFP-positive (blue) cells at both timepoints. Backtracked nuclei for
the lens were only performed for Embryo 1 and are not shown. Scalebars represent 40 µm.

Figure 4. Lineage reconstruction reveals an anterior preplacodal ectoderm origin for Gnrh3 neurons: photoconversion.

(A,B) Confocal projections of NLS-mEos2 loaded, Tg(gnrh3:eGFP) embryos at 12 hpf before (A) and after photoconversion (B). The first panel in (A) shows a schematic representation of the anterior neural plate (NP, dark grey) and adjacent preplacodal ectoderm (light grey) at 12 hpf indicating the origin of backtracked gnrh3:eGFP-positive cells (blue dots) and the photoconverted area (magenta square), which is also indicated on the confocal projection shown in (B) after photoconversion. Scalebars represent 30 µm.

(C,D) Single confocal sections of olfactory placodes from Tg(gnrh3:eGFP) embryos at 36 hpf showing the expression of eGFP from the transgene (cytoplasmic green), unconverted NLS-mEos2 (mEos2; nuclear green) and converted NLS-mEos2 (mEos2_{PC}; nuclear magenta). Insets in (C) and (D) shows a schematic representation of an embryonic head at 36 hpf indicating the region analysed (black rectangle). Scalebars represent 5 µm.

(E) Counts of cell expressing eGFP from the Tg(gnrh3:eGFP) transgene or eGFP and photoconverted mEos2 (mEos2_{PC}) on the control (Ctl) versus photoconverted (PC) sides of the embryo at 36 hpf. No difference in the number of eGFP-positive cells is apparent between the Ctl and PC conditions (5.2+/−0.6 versus 5.4+/−0.5 cells per placode, n=9 placodes). Conversely, while a number of cells equivalent to the entire gnrh3:eGFP+ population is also mEos2_{PC}-positive on the photoconverted side, virtually no eGFP/mEos2_{PC}-double positive cells are detected on the control side (4.6+/−0.3 versus 0.3+/−0.2 cells per placode, n=9 placodes). Mean ± s.e.m. P values are calculated using a two-tailed Student’s t-test, n.s. not significant, ****p<0.0001.

The following source data is available for figure 4:

Source data 1. gnrh3:eGFP+ and mEos2_{PC}+ cell number quantification.

Figure 5. Microvillous sensory neurons derive from preplacodal precursors: backtracking.
(A-C) Confocal projections from a representative 4D dataset at 36, 28, 20 and 12 hpf showing the position of the nuclei backtracked from 10 sox10:eGFP-negative (A, pink), 10 lens (B, yellow) and 10 sox10:eGFP-positive (C, blue) cells at each timepoint. Scalebars represent 40 µm.

(D) Schematic representation of an embryonic head at 36 hpf and the anterior neural plate (NP, dark grey) and adjacent preplacodal ectoderm (light grey) at 12 hpf, dorsal views; the cranial neural crest (CNC) at the earlier stage is indicated. While the 36 hpf head shows the colour code of the backtracked lineages, the position of backtracked nuclei at 12 hpf is indicated in the preplacodal ectoderm. The 12 hpf schema represents the results obtained from 7 placodes (4 embryos) for 41 sox10:GFP-positive cells and 44 sox10:eGFP-negative cells; the 10 lens were backtracked from a pair of placodes in a single 4D dataset only.

The following figure supplements are available for figure 5:

Figure supplement 1. Expression of endogenous trpc2b is unchanged in sox10^{3/3} mutant embryos relative to wildtype siblings.

Representative bright-field images of in situ hybridisation against endogenous trpc2b transcripts in wildtype or sox10^{3/3} mutant placodes showing high and low numbers of expressing cells or no expressing cells. The number of placodes binned for each category over the total number of placodes analysed is indicated. Dotted lines highlight the olfactory placodes and scalebars represent 20 µm.

Figure supplement 2. Backtracking data from individual Tg(sox10:eGFP) embryos.

Confocal projections extracted from 4D datasets at 36 and 12 hpf for all embryos analysed showing the position of the backtracked nuclei of sox10:eGFP-negative (pink) and sox10:eGFP-positive (blue) cells at both timepoints. Backtracked nuclei for the lens were only performed for Embryo 1 and are not shown. Scalebars represent 40 µm.

Figure 6. Microvillous sensory neurons derive from preplacodal precursors: photoconversion.

(A,B) Confocal projections of NLS-mEos2 loaded, Tg(-4.9sox10:eGFP) embryos at 12 hpf before (A) and after photoconversion (B). The first panel in (A) shows a
schematic representation of the anterior neural plate (NP, dark grey), adjacent
preplacodal ectoderm (light grey) and cranial neural crest (CNC) at 12 hpf indicating
the origin of backtracked sox10:eGFP-positive cells and the photoconverted area
(magenta square), which is also indicated on the projection shown in (B) after
photoconversion. Scalebars represent 30 µm.

(C,D) Single confocal sections of olfactory placodes from Tg(-4.9sox10:eGFP)
embryos at 36 hpf showing the expression of eGFP from the transgene (cytoplasmic
green), unconverted NLS-mEos2 (mEos2; nuclear green) and converted NLS-mEos2
(mEos2\textsubscript{PC}; nuclear magenta). Insets in (C) and (D) shows a schematic representation
of an embryonic head at 36 hpf, dorsal view, indicating the area analysed (black
rectangle). Scalebars represent 5 µm.

(E) Counts of cell expressing eGFP from the Tg(-4.9sox10:eGFP) transgene or
eGFP and photoconverted mEos2 (mEos2\textsubscript{PC}) on the control (Ctl) versus
photoconverted (PC) sides of the embryo at 36 hpf. No difference in the number of
eGFP-positive cells is apparent between the Ctl and PC conditions (9.8+/-.0.7 versus
8+/-.6 cells per placode, n=9 and 6, respectively). Conversely, while numerous
sox10:eGFP+ cells are also mEos2\textsubscript{PC}-positive on the photoconverted side, virtually
no eGFP/mEos2\textsubscript{PC}-double positive cells are detected on the control side (4.6+/-.6
versus 0.3+/-.3 cells per placode, n=9 and 6, respectively). Shown are mean ±
s.e.m. P values are calculated using a two-tailed Student's t-test, n.s. not significant,
***p=0.0001.

The following source data is available for figure 6:
Source data 1. sox10:eGFP+ and mEos2\textsubscript{PC}+ cell number quantification.

Video 1. Lineage reconstruction reveals an anterior preplacodal ectoderm origin for
Gnrh3 neurons.

Movie showing an acquisition series and backtracking of a Gnrh3 neuron in an
Histone2B-RFP loaded Tg(gnrh3:eGFP) transgenic embryo. The movie is divided
into 5 parts: an acquisition phase, a phase showing a z-stack of the olfactory placode
at 36 hpf, an initial backtracking phase, the unique mitosis detected during the
backtracking, and a final backtracking phase. During backtracking, the nucleus being
followed is labelled with a blue dot. During the mitosis, the sister cell is labelled with a
pink dot for three frames until the two sister nuclei fuse. The movie finishes with a schematic representation of the anterior neural plate and adjacent preplacodal ectoderm at 12 hpf showing the results obtained from backtracking 30 gnrh3:eGFP-positive cells. The cell backtracked in the movie is indicated (arrowhead).

Video 2. Microvillous sensory neurons derive from classical preplacodal precursors: backtracking. Movie showing an acquisition series and backtracking of a mircovillous sensory neuron in an Histone2B-RFP loaded Tg(sox10:eGFP) transgenic embryo. The movie is divided into 5 parts: an acquisition phase, a phase showing a z-stack of the olfactory placode at 36 hpf, an initial backtracking phase, the unique mitosis detected during the backtracking, and a final backtracking phase. During backtracking, the nucleus being followed is labelled with a blue dot. During the mitosis, the sister cell is labelled with a pink dot for three frames until the two sister nuclei fuse. The movie finishes with a schematic representation of the anterior neural plate, the adjacent preplacodal ectoderm (light grey) and neural crest (CNC) at 12 hpf showing the results obtained from backtracking 41 sox10:eGFP-positive cells. The cell backtracked in the movie is indicated (arrowhead).
Aguillon et al., Figure 1

A

48 hpf

wildtype sox10 t3/t3

	0	2	4	6	8	10
Islet+ cell number						
eGFP+ cell number						

n.s. n.s.

B

n.s.

C

n.s.
Aguillon et al., Figure 1 - figure supplement 1
Figure 1–source data 1. Islet+ cell number quantification.

	wildtype	sox10t3/t3
number of placode	16	16
minimum	4	5
25% Percentile	6.250	6
75% Percentile	7.750	8.750
maximum	9	10
Median	7	6
Mean	6.875	6.938
Std. Deviation	1.204	1.652
Std. Error	0.3010	0.4130

t-test

wildtype versus sox10t3/t3 0.9027 n.s.
Figure 1–source data 2. eGFP+ cell number quantification

	wildtype	sox10t3/t3
number of placode	16	16
minimum	5	5
25% Percentile	6.250	6
75% Percentile	8	8.750
maximum	9	10
Median	7	7
Mean	7.250	7.125
Std. Deviation	1.125	1.708
Std. Error	0.2814	0.4270

t-test

wildtype versus sox10t3/t3 0.8086 n.s.
Aguillon et al., Figure 2
Aguillon et al., Figure 3

A

H2B-RFP mRNA

0 hpf 12 hpf 36 hpf

Acquisition

Backtracking

B

36 hpf 28 hpf 20 hpf 12 hpf

C

D

E

36 hpf 12 hpf

NP

Aguillon et al., Figure 3
Aguillon et al., Figure 4
Figure 4–source data 1. gnrh3:eGFP+ and mEos2PC+ cell number quantification.

	Total (Ctl)	Total (PC)	mEos2PC (Ctl)	mEos2PC (PC)
number of placode	9	9	9	9
minimum	3	3	0	3
25% Percentile	4	4	0	4
75% Percentile	6.5	7	1	5.5
maximum	8	8	1	6
Median	5	5	0	5
Mean	5.222	5.444	0.3333	4.667
Std. Deviation	1.716	1.667	0.5	1
Std. Error	0.5720	0.5556	0.1667	0.3333

t-test	two-tailed P value
Total (Ctl) versus Total (PC)	0.7843 n.s.
Total (PC) versus mEos2PC (PC)	0.2479 n.s.
mEos2PC (Ctl) versus mEos2PC (PC)	<0.0001 ****
Aguillon et al., Figure 5 - figure supplement 1

48 hpf
wildtype

trpc2b
20/32
7/32
5/32

sox10

trpc2b
22/34
6/34
6/34
Aguillon et al., Figure 5 - figure supplement 2
Aguillon et al., Figure 6
Figure 6–source data 1. sox10:eGFP+ and mEos2PC+ cell number quantification.

	Total (Ctl)	Total (PC)	mEos2PC (Ctl)	mEos2PC (PC)
number of placode	6	9	6	9
minimum	8	6	0	3
25% Percentile	8	6.5	0	4
75% Percentile	11.25	9	0.5	6
maximum	12	12	2	8
Median	10	8	0	4
Mean	9.833	8	0.3333	4.556
Std. Deviation	1.602	1.871	0.8165	1.810
Std. Error	0.6540	0.6236	0.3333	0.6035

t-test
two-tailed P value
Total (Ctl) versus Total (PC) 0.0715 n.s.
mEos2PC (Ctl) versus mEos2PC (PC) 0.0001 ***