THE EFFECT OF 3He DIFFUSION ON THE PULSATIONAL SPECTRA OF DBV MODELS

M. H. MONTGOMERY
Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, United Kingdom

AND

T. S. METCALFE & D. E. WINGET
McDonald Observatory and Department of Astronomy, The University of Texas, Austin, TX 78712, USA.

Received 2000 August 28; accepted 2000 November 16

ABSTRACT

We consider envelopes of DB white dwarfs which are not composed of pure 4He, but rather a mixture of 3He and 4He. Given this assumption, the same diffusive processes which produce a relatively pure H layer overlying a He layer in the DA’s should work to produce a 3He layer overlying a 4He layer in the DB’s. We examine the relevant timescales for diffusion in these objects, and compare them to the relevant evolutionary timescales in the context of the DBV white dwarfs. We then explore the consequences which 3He separation has on the pulsational spectra of DBV models. Since GD 358 is the best-studied member of this class of variables, we examine fits to its observed pulsation spectrum. We find that the inclusion of a 3He layer results in a modest improvement in a direct fit to the periods, while a fit to the period spacings is significantly improved.

Subject headings: dense matter—stars: oscillations, evolution—white dwarfs

1. ASTROPHYSICAL CONTEXT

The two greatest successes of white dwarf asteroseismology have come from the analysis and interpretation of Whole Earth Telescope (WET) data on the objects GD 358 and PG 1159 (Winget et al. 1991, 1994). The temporal spectra of both objects show well-defined multiplet structures as well as many consecutive radial orders of the same ℓ. This allows us immediately to estimate the rotational frequency, Ω, and the mean period spacing, $\langle \Delta P \rangle/\ell$, with the latter quantity putting strong constraints on the mass of the best-fitting model. Furthermore, the variations from equidistant period spacing, i.e., “mode trapping”, give us information (at least in the case of GD 358) about the radial structure of the star, such as the thickness of its surface He layer.

In a detailed analysis of the frequency distribution in GD 358, Bradley & Winget (1994) found evidence of a chemical transition zone located at a mass depth of $1.5 \times 10^{-6} M_\odot$, which they interpreted as the C/He boundary. A He layer thickness of $\sim 10^{-4} M_\odot$ is thinner than expected on naive evolutionary grounds, as well as thinner than suggested for the DA white dwarfs by the asteroseismological work of Clemens (1993). While the fit of Bradley & Winget explained the trapping features in the neighborhood of 700 sec reasonably well, it did not do as well for periods near 500 sec. They found evidence that these periods near 500 sec might be better fit if an additional chemical transition zone at a depth of $\sim 10^{-2} M_\odot$ is assumed.

Independent of the above considerations, if the theory of diffusion of chemical species in stars is correct, then at least a partial separation of different isotopes of the same element must occur in white dwarfs, as was pointed out to one of us by Clayton (1988, private communication). At the time, there were no known observational consequences; this has since changed with the advent of white dwarf asteroseismology.

While the Galactic number ratio of 4He to 3He has been measured to be of order 10^{-4} in many astrophysical environments (Galli et al. 1995; Prantzos 1996), this does not necessarily hold for the stellar cores which are presumably the white dwarf progenitors. In fact, standard evolutionary theory would suggest quite low levels of 3He in these objects (Galli et al. 1995). Our view is that given the theoretical uncertainties in the late stages of stellar evolution, we should not rule out any possibilities, and indeed should seek to make as many independent measurements as possible.

These considerations led to two independent motivations for considering 3He diffusion (Winget 1998). First, it is a process which may be a generic feature of white dwarf cooling, and, as such, should be considered as part of our asteroseismological analyses. Second, it might allow us to place the mode trapping data for GD 358 in a different context: this star could have a C/4He transition zone at $\sim 10^{-2} M_\odot$ and a thinner 4He/3He transition zone at $\sim 10^{-4} M_\odot$. If this is the case, then the DBV’s and the DAV’s would again have the same order of magnitude He layer thicknesses. To determine the plausibility of these hypotheses, we first examine the relevant diffusion timescales, and then the effect which such a layering structure has on our fits of GD 358.

2. DIFFUSION

2.1. TIMESCALES

The process of diffusion is of major importance, since we are aware of no other effect which could lead to the spatial separation of 3He and 4He. We therefore examine the relevant timescales for such diffusive processes, to see if it is plausible for a significant fraction of the 3He to have separated from 4He in the elapsed evolutionary times for these objects.

Fortunately for us, Fontaine & Michaud (1979) have already examined the related problem of C diffusion in a background of normal He, i.e., 4He. In their analysis, they treated C as a trace element. This is an excellent approximation for our case as well, since we naively expect that the 3He is only about one part in 10^3 of the 4He.
Applying their equations for this case for a 0.612 M_\odot model, we obtain the result shown in Figure 1. We see that if we assume a T_{eff} of 25,000 K for a typical DBV, then diffusive equilibrium between 3He and 4He should prevail down to approximately the $10^{-4}M_\star$ mass point. Thus, if the 4He layer is as thick or thicker than this, and the 3He abundance is $\sim 10^{-4}$ that of the 4He abundance, we would expect a 3He layer of thickness $\sim 10^{-8}$.

One clear prediction of this is that the spectra of DB’s in this temperature range should show more or less pure 3He, at least for 4He layers which are thicker than $\sim 10^{-6}$. This is currently in the process of being tested using high-resolution spectroscopic observations (Koester, private communication).

We mention as an aside that the case of 3He may be unique in that it is a trace isotope which is lighter than the dominant species, so that it can diffuse upwards and produce a thin, but not asteroseismologically negligible layer. For trace isotopes which sink, there should be no such signature.

2.2. Profiles

In this preliminary exploration, we will only consider 4He/3He zones with equilibrium profiles, although the profiles could in fact be less sharp than this. The treatment of the chemical profiles in the transition zones in our present and previous work is based on the work of Arcoragi & Fontaine (1980). Essentially, we use equation (A6) of Arcoragi & Fontaine (1980), which assumes that an equilibrium distribution has been reached and that one of the elements may be treated as a trace element. This is certainly a valid assumption for the initial stages of 3He diffusion, given the expected abundance ratio of 3He to 4He.

3. EQUATION OF STATE

To include the effects of a 3He layer we have made a relatively simple modification to the envelope routines in our evolutionary code. Since we are interested in modeling a DB, we are free to use the array space normally reserved for the H profile and use it for the 3He profile. To this end, we have replaced the H equation of state (EOS) and opacities with those appropriate for 3He. In doing this, we have taken the 3He EOS and opacities to be equal to those of 4He at 3/4 the density (to correct for the isotopic mass ratio). This approximation should be more than sufficient for our purposes. A comparison of the region of period formation for the cases of a 4He/H and a 4He/3He envelope is given in Montgomery & Winget (1999).

4. PREVIOUS BEST FITS

We now wish to examine the effect which a 3He layer could have on the pulsation frequencies. First, in the top panel of Figure 2, we show one of the best-fit models for the star GD 358 from Bradley & Winget (1994). The filled circles connected by solid lines show the observed mode trapping structure, and the open circles connected by dotted lines show the results from the best-fit model. This model has $M_\star/M_\odot = 0.61$, $T_{\text{eff}} = 24,044$ K, and $M_{^4\text{He}}/M_\star = 1.5 \cdot 10^{-5}$. The lower 3 panels show the effect a thin layer of 3He has on the mode trapping structure. If the layer is as thick as $M_{^3\text{He}}/M_\star = 1.5 \cdot 10^{-9}$, corresponding to $N(^3\text{He})/N(^4\text{He}) = 10^{-4}$, then we see that the mode trapping structure in the vicinity of 700 sec is significantly altered.
Unfortunately, this is the region in which the fit was already quite good, whereas in the region around 500 sec, where the fit was poor, there is very little change. However, this analysis clearly demonstrates that the inclusion of a 3He layer can have a measurable effect on the calculated mode trapping structure.

5. NEW FITS USING A GENETIC ALGORITHM

In an effort to test asteroseismologically the viability of the hypothesis of a 3He layer, we performed an extensive set of calculations. Using a genetic algorithm (Metcalfe 1999; Metcalfe, Nather, & Winget 2000), the parameters M_*, T_{eff}, $M_{4\text{He}}$, and $M_{3\text{He}}$, were varied to produce pulsational models whose $\ell = 1$, $m = 0$ periods were compared with those inferred from the observations. The region of parameter space explored is given by:

\begin{align*}
0.45 M_\odot &< M_* < 0.95 M_\odot \\
20,000 \text{ K} &< T_{\text{eff}} < 30,000 \text{ K} \\
\sim 10^{-5} M_* &< M_{4\text{He}} < 10^{-3} M_* \\
10^{-3} M_{3\text{He}} &< 10^{-3} M_{4\text{He}}
\end{align*}

The best-fit models from these runs are listed in Table 1. The column labeled $\sigma(P)$ gives the residuals (standard deviation) of the calculated and observed periods, and the column labeled $\sigma(\Delta P)$ gives the residuals of the calculated and observed period spacings. For the upper four models we have taken the fitness criterion to be $1/\sigma(P)$, whereas for the lower two models we took it to be $1/[(\sigma(P)+\sigma(\Delta P))];$ thus, for these last two entries, we are fitting not just the periods but the spacings between consecutive periods. We have chosen this criterion for the models with a more realistic core composition based on our suspicion that the period spacings will be a more sensitive diagnostic of the 3He layer than the periods themselves will be.

As a reference to previous fits, the fit of Bradley & Winget (1994) for a C core model has $\sigma(P) \sim 2.3$ sec. Thus, the present best fits, both with and without a 3He layer, having period residuals of ~ 1.5 and 1.3 sec, respectively, represent a significant improvement over previous fits.

6. DISCUSSION

We see from Table 1 that the fits with O/C cores are significantly better than those with pure carbon cores, independent of whether a 3He layer is present or not, a result previously found by Metcalfe, Nather, & Winget (2000). In Figure 3, we display the mode trapping diagrams for these two fits. Both fits reproduce the periods quite well, with the 3He model reproducing the period spacings much better (~ 1.3 sec compared to ~ 1.9 sec). This indicates that the period spacing may be a better diagnostic for the fine structure produced by the 4He3He transition zone than just the periods themselves.

We now seek to understand the relative importance of the O/C and 4He3He transition zones. In the asymptotic limit of high radial overtones and large periods, the frequency of a given mode is given by a simple radial integral of the Brunt-Väisälä frequency. Using a "period formation" diagram, we can show the relative weight which a given region has in determining a mode's period.

In Figure 4, we show such a diagram for the case of our best-fit 3He model. The three peaks which are labeled correspond to the O/C, C$/^4$He, and 4He3He transition zones. Using the equilibrium diffusion coefficients for the 4He3He transition zone, we see that it is of relatively minor importance in determining the mode frequencies. In contrast, the O/C and C$/^4$He

Model	T_{eff} (K)	M_*/M_\odot	$\log M_{4\text{He}}/M_*$	$\log M_{3\text{He}}/M_*$	$\sigma(P)$	$\sigma(\Delta P)$
C/thick4He	23,100	0.655	-2.74	...	2.30	2.65
C/thick4He/3He	23,200	0.605	-2.74	-6.02	1.99	2.29
C/thin4He	23,800	0.600	-5.76	...	2.71	2.53
C/thin4He/3He	24,400	0.580	-5.71	-10.09	1.95	2.66
O/C/4He3He	22,600	0.650	-2.74	...	1.50	1.92
O/C/4He/3He3He	22,300	0.630	-2.79	-7.49	1.29	1.32
Inferred Errors	500	0.015	0.06	0.12

*These fits were performed using $f = 1/[(\sigma(P)+\sigma(\Delta P))]$ as the fitness criterion; for the other models $f = 1/\sigma(P)$ was used.
transition zones are both quite pronounced and should significantly affect the periods of the modes calculated in the models; this is borne out by the major improvement in the standard deviation of the periods, \(\sigma(P) \), with the inclusion of an O/C chemical profile. The period spacings, on the other hand, are a differential quantity, and therefore sensitive to even small deviations in the background structure. It is therefore not surprising that the inclusion of a \(^3\)He layer results in a major reduction in the residuals of the period spacings.

We now attempt to quantify the statistical significance of the improvement of the fit when the parameter corresponding to the \(^3\)He layer thickness is added. Following Koen & Laney (2000), we apply the Bayes Information Criterion (BIC) for \(N = 11 \) data points. We find that the addition of a parameter should be accompanied by a decrease in the residuals of at least \(\sim 10\% \) in order to be considered statistically significant. We note that this is a necessary but certainly not sufficient condition for the validity of adding a parameter.

Examining the best-fit O/C core models, we see that the standard deviation of the fit to the period spacings improved from 1.92 sec to 1.32 sec with the addition of \(^3\)He. This is a decrease of 30\% and should therefore be considered statistically significant.

Finally, we again note that the models with O/C cores yield markedly lower residuals, regardless of which criterion is used (periods or period spacings). This result has recently been obtained by Metcalfe, Nather, & Winget (2000), who report the results of such fits in an extensive parameter space of white dwarf models.

7. CONCLUSIONS

From this preliminary analysis, we have shown that diffusion theory applied to white dwarfs predicts that any \(^3\)He initially present in the DBV’s down to a depth of \(\sim 10^{-4}\)\(M_\odot \) should have diffused upward to produce a surface layer of \(^3\)He. In addition to being detectable spectroscopically (Koester, private communication), such a \(^3\)He layer can significantly affect the astrophysical fits, and therefore needs to be included in such analyses.

We find that although the inclusion of a \(^3\)He layer results in only a marginal improvement to the fits to the periods, the fit to the period spacings is significantly improved. This is because the period spacings are more sensitive to the fine structure which a \(^3\)He/\(^4\)He transition zone produces than the periods themselves are.

Finally, we find that an O/C core (essentially, the transition in the core from an O/C mixture to pure C) fits the observed pulsational spectrum of GD 358 much better than a pure C core, in agreement with Metcalfe, Nather, & Winget (2000), who first obtained this result. This gives us the hope of someday being able to constrain the prior nuclear burning history of GD 358 and other pulsating white dwarfs.

We would like to thank Jim Truran, Don Clayton, and Hugh Van Horn for useful discussions on this topic. This work was supported in part by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung, project number S7304, by the National Science Foundation under grant AST-9876730, and by the National Aeronautics and Space Administration under grant NAG5-9321.

REFERENCES

Arcoragi, J. P., & Fontaine, G. 1980, ApJ, 242, 1208
Bradley, P. A., & Winget, D. E. 1994, ApJ, 430, 850
Clemens, J. C. 1993, PhD thesis, The University of Texas at Austin
Fontaine, G., & Michaud, G. 1979, ApJ, 231, 826
Galli, D., Palla, F., Ferrini, F., & Penco, U. 1995, ApJ, 443, 536
Koen, C., & Laney, D. 2000, MNRAS, 311, 636
Metcalfe, T. S. 1999, AJ, 117, 2503
Metcalfe, T. S., Nather, R. E., & Winget, D. E. 2000, ApJ, in press (astro-ph/0008022)
Montgomery, M. H., & Winget, D. E. 1999, Baltic Astronomy, 9, 23
Prantzos, N. 1996, A&A, 310, 106
Winget, D. E. 1998, Journal of Physics: Condensed Matter, 10, 11247
Winget, D. E., Nather, R. E., Clemens, J. C., Provencal, J., Kleinman, S. J., Bradley, P. A., Wood, M. A., Claver, C. F., Frueh, M. L., Grauer, A. D., Hine, B. P., Hansen, C. J., Fontaine, G., Achilleos, N., Wickramasinghe, D. T., Marar, T. M. K., Seetha, S., Ashoka, B. N., O’Donoghue, D., Warner, B., Kurucz, D. W., Buckley, A. D., Brickhill, J., Vauclair, G., Doelz, N., Chevreton, M., Barstow, M. A., Solheim, J.-E., Kanaan, A., Kepler, S. O., Henry, G. W., & Kawai, S. D. 1991, ApJ, 378, 326
Winget, D. E., Nather, R. E., Clemens, J. C., Provencal, J. L., Kleinman, S. J., Bradley, P. A., Claver, C. F., Dixon, J. S., Montgomery, M. H., Hansen, C. J., Hine, B. P., Birch, P., Candy, M., Marar, T. M. K., Seetha, S., Ashoka, B. N., Leibowitz, E. M., O’Donoghue, D., Warner, B., Buckley, D. A. H., Tripe, P., Vauclair, G., Doelz, N., Chevreton, M., Serre, T., Garrido, R., Kepler, S. O., Kanaan, A., Augusteijn, T., Wood, M. A., Bergeron, P., & Grauer, A. D. 1994, ApJ, 430, 839