Weighted Random Popular Matchings

TOSHIYA ITOH
titoh@dac.gsic.titech.ac.jp
Global Sci. Inform. and Comput. Center
Tokyo Institute of Technology
Meguro-ku, Tokyo 152-8550, Japan

OSAMU WATANABE
watanabe@is.titech.ac.jp
Dept. of Math. and Comput. Sys.
Tokyo Institute of Technology
Meguro-ku, Tokyo 152-8552, Japan

Abstract: For a set A of n applicants and a set I of m items, we consider a problem of computing a matching of applicants to items, i.e., a function M mapping A to I; here we assume that each applicant $x \in A$ provides a preference list on items in I. We say that an applicant $x \in A$ prefers an item p than an item q if p is located at a higher position than q in its preference list, and we say that x prefers a matching \mathcal{M} over a matching \mathcal{M}' if x prefers $\mathcal{M}(x)$ over $\mathcal{M}'(x)$. For a given matching problem A, I, and preference lists, we say that \mathcal{M} is more popular than \mathcal{M}' if the number of applicants preferring \mathcal{M} over \mathcal{M}' is larger than that of applicants preferring \mathcal{M}' over \mathcal{M}, and \mathcal{M} is called a popular matching if there is no other matching that is more popular than \mathcal{M}. Here we consider the situation that A is partitioned into A_1, A_2, \ldots, A_k, and that each A_i is assigned a weight $w_i > 0$ such that $w_1 > w_2 > \cdots > w_k > 0$. For such a matching problem, we say that \mathcal{M} is more popular than \mathcal{M}' if the total weight of applicants preferring \mathcal{M} over \mathcal{M}' is larger than that of applicants preferring \mathcal{M}' over \mathcal{M}, and we call \mathcal{M} an k-weighted popular matching if there is no other matching that is more popular than \mathcal{M}. Mahdian [In Proc. of the 7th ACM Conference on Electronic Commerce, 2006] showed that if $m > 1.42n$, then a random instance of the (nonweighted) matching problem has a popular matching with high probability. In this paper, we analyze the 2-weighted matching problem, and we show that (lower bound) if $m/n^{4/3} = o(1)$, then a random instance of the 2-weighted matching problem with $w_1 \geq 2w_2$ has a 2-weighted popular matching with probability $o(1)$; and (upper bound) if $n^{4/3}/m = o(1)$, then a random instance of the 2-weighted matching problem with $w_1 \geq 2w_2$ has a 2-weighted popular matching with probability $1 - o(1)$.

Key Words: Random Popular Matchings, Weighted Popular Matchings, Well-Formed Matchings.

1 Introduction

For a set A of n applicants and a set I of m items, we consider the problem of computing a certain matching of applicants to items, i.e., a function M mapping A to I. Here we assume that each applicant $x \in A$ provides its preference list defined on a subset $J_x \subseteq I$. A preference list ℓ_x of each applicant x may contain ties among the items and it ranks subsets J_x^h’s of J_x; that is, J_x is partitioned into $J_x^1, J_x^2, \ldots, J_x^d$, where J_x^h is a set of the hth preferred items. We say that an applicant x prefers $p \in J_x$ than $q \in J_x$ if $p \in J_x^i$ and $q \in J_x^j$ for $i < h$. For any matchings \mathcal{M} and \mathcal{M}', we say that an applicant x prefers \mathcal{M} over \mathcal{M}' if the applicant x prefers $\mathcal{M}(x)$ over $\mathcal{M}'(x)$, and we say that \mathcal{M} is more popular than \mathcal{M}' if the total number of applicants preferring \mathcal{M} over \mathcal{M}' is larger than that of applicants preferring \mathcal{M}' over \mathcal{M}. \mathcal{M} is called a popular matching if there is no other matching that is more popular than \mathcal{M}. The popular matching problem is to compute this popular matching for given A, I, and preference lists. This problem has applications in the real world, e.g., mail-based DVD rental systems such as NetFlix.

Here we consider the (general) situation that the set A of applicants is partitioned into several categories A_1, A_2, \ldots, A_k, and that each category A_i is assigned a weight $w_i > 0$ such that $w_1 > w_2 > \cdots > w_k$. This setting can be regarded as a case where the applicants in A_1 are platinum members, the applicants in A_2 are gold members, the applicants in A_3 are silver members, the applicants in A_4 are regular members, etc. In a way similar to the above, we define the k-weighted popular matching problem, where the goal is to compute a popular matching \mathcal{M} in the sense that for any other matching \mathcal{M}', the total weight of applicants preferring \mathcal{M} is larger than that of applicants preferring \mathcal{M}'. Notice that the original popular
matching problem, which we will call the single category popular matching problem, is the 1-weighted popular matching problem.

We say that a preference list $\vec{\ell}_x$ of an applicant x is complete if $J_x = I$, that is, x shows its preferences on all items, and a k-weighted popular matching problem $(A, I, \{\vec{\ell}_x\}_{x \in A})$ is called complete if $\vec{\ell}_x$ is complete for every applicant $x \in A$. We also say that a preference list $\vec{\ell}_x$ of an applicant x is strict if $|J_x| = 1$ for each h, that is, x prefers each item in J_x differently, and a k-weighted popular matching problem is called strict if $\vec{\ell}_x$ is strict for every applicant $x \in A$.

1.1 Known Results

For the strict single category popular matching problem, Abraham, et al. [2] presented a deterministic $O(n + m)$ time algorithm that outputs a popular matching if it exists; they also showed, for the single category popular matching problem with ties, a deterministic $O(\sqrt{nm})$ time algorithm. To derive these algorithms, Abraham, et al. introduced the notions of f-items (the first items) and s-items (the second items), and characterized popular matchings by f-items and s-items. Mestre [8] generalized those results to the k-weighted popular matching problem, and he showed a deterministic $O(n + m)$ time algorithm for the strict case, where it outputs a k-weighted popular matching if any, and a deterministic $O(\min(k\sqrt{n}, nm))$ time algorithm for the case with ties.

In general, some instances of the complete and strict single category popular matching problem do not have a popular matching. Answering to a question of when a random instance of the complete and strict single category popular matching problem has a popular matching, Mahdian [7] showed that if $m > 1.42n$, then a random instance of the popular matching problem has a popular matching with probability $1 - o(1)$; he also showed that if $m < 1.42n$, then a random instance of the popular matching problem has a popular matching with probability $o(1)$.

1.2 Main Results

In this paper, we consider the complete and strict 2-weighted popular matching problem, and investigate when a random instance of the complete and strict 2-weighted popular matching problem has a 2-weighted popular matching. Our results are summarized as follows.

Theorem 4.1: If $m/n^{4/3} = o(1)$, then a random instance of the complete and strict 2-weighted popular matching problem with $w_1 \geq 2w_2$ has a 2-weighted popular matching with probability $o(1)$.

Theorem 5.1: If $n^{4/3}/m = o(1)$, then a random instance of the complete and strict 2-weighted popular matching problem with $w_1 \geq 2w_2$ has a 2-weighted popular matching with probability $1 - o(1)$.

For an instance of the single category popular matching problem, it suffices to consider only a set F of f-items and a set S of s-items [7]. For an instance of the 2-weighted popular matching problem, however, we need to separately consider f_1-items, s_1-items, f_2-items, and s_2-items; let F_1, S_1, F_2, and S_2 denote these item sets. Some careful analysis is necessary, in particular, because in general, we may have the situation $S_1 \cap F_2 \neq \emptyset$, which makes our probabilistic analysis much harder than (and quite different from) the single category case.

2 Preliminaries

In the rest of this paper, we consider the complete and strict 2-weighted popular matching problem. Let A be the set of n applicants and F be the set of m items. We assume that A is partitioned into A_1 and A_2, and we refer to A_1 (resp. A_2) as the first (resp. the second) category. For any constant $0 < \delta < 1$, we also assume that $|A_1| = \delta|A| = \delta n$ and $|A_2| = (1 - \delta)|A| = (1 - \delta)n$. Let $w_1 > w_2 > 0$ be weights of the first category A_1 and the second category A_2, respectively.
We define \(f \)-items and \(s \)-items \[2\, \[8\] as follows: For each applicant \(x \in A_1 \), let \(f_1(x) \) be the most preferred item in its preference list \(\ell_x \), and we call it an \(f_1 \)-item of \(x \). We use \(F_1 \) to denote the set of all \(f_1 \)-items of applicants \(x \in A_1 \). For each applicant \(x \in A_1 \), let \(s_1(x) \) be the most preferred item in its preference list \(\ell_x \) that is not in \(F_1 \), and we use \(S_1 \) to denote the set of all \(s_1 \)-items of applicants \(x \in A_1 \). Similarly, for each applicant \(y \in A_2 \), let \(f_2(y) \) and \(s_2(y) \) be the most preferred item in its preference list \(\ell_y \) that is not in \(F_1 \) and not in \(F_1 \cup F_2 \), respectively, where we use \(F_2 \) and \(S_2 \) to denote the set of all \(f_2 \)-items and \(s_2 \)-items, respectively. From this definition, we have that \(F_1 \cap S_1 = \emptyset \), \(F_1 \cap F_2 = \emptyset \), and \(F_2 \cap S_2 = \emptyset \); on the other hand, we may have that \(S_1 \cap F_2 \neq \emptyset \) or \(S_1 \cap S_2 \neq \emptyset \).

For characterizing the existence of \(k \)-weighted popular matching, Mestre \[8\] defined the notion of “well-formed matching,” which generalizes well-formed matching for the single category popular matching problem \[2\]. We recall this characterization here. Below we consider any instance \((A, I, \{\ell_x\}_{x \in A})\) of the strict (not necessarily complete) 2-weighted popular matching problem.

Definition 2.1 A matching \(M \) is well-formed if by \(M \) (1) each \(x \in A_1 \) is matched to \(f_1(x) \) or \(s_1(x) \); (2) each each \(y \in A_2 \) is matched to \(f_2(y) \) or \(s_2(y) \); (3) each \(p \in F_1 \) is matched to some \(x \in A_1 \) such that \(p = f_1(x) \); and (4) each \(q \in F_2 \) is matched to some \(y \in A_2 \) such that \(q = f_2(y) \).

Mestre \[8\] showed that the existence of a 2-weighted popular matching is almost equivalent to that of a well-formed matching. Precisely, he proved the following characterization.

Proposition 2.1 (\[8\]) Let \((A, I, \{\ell_x\}_{x \in A})\) be an instance of the strict 2-weighted popular matching problem. Any 2-weighted popular matching of \((A, I, \{\ell_x\}_{x \in A})\) is a well-formed matching, and if \(w_1 \geq 2w_2 \), then any well-formed matching of \((A, I, \{\ell_x\}_{x \in A})\) is a 2-weighted popular matching.

Consider an instance \((A, I, \{\ell_x\}_{x \in A})\) of the strict (not necessarily complete) 2-weighted popular matching problem with weights \(w_1 \geq 2w_2 \). As shown above, the existence of a 2-weighted popular matching is characterized by that of a well-formed matching, which is determined by the structure of \(f_1 \)-, \(f_2 \)-, \(s_1 \)-, and \(s_2 \)-items. Here we introduce a graph \(G = (V, E) \) for investigating this structure, and in the following discussion, we will mainly use this graph. The graph \(G = (V, E) \) is defined by a set \(V = F_1 \cup S_1 \cup F_2 \cup S_2 \) of vertices, and the following set \(E \) of edges.

\[
E = \{(f_1(x), s_1(x)) : x \in A_1\} \cup \{(f_2(y), s_2(y)) : y \in A_2\}.
\]

We use \(E_1 \) and \(E_2 \) to denote the sets of edges defined for applicants in \(A_1 \) and \(A_2 \), respectively, i.e., the former and the latter sets of the above. In the following, the graph \(G = (V, E) \) defined above is called an fs-relation graph for \((A, I, \{\ell_x\}_{x \in A})\). Note that this fs-relation graph \(G = (V, E) \) consists of \(M = |V| \leq m \) vertices and \(n = |A| \) edges. If \(e_1 \in E_1 \) and \(e_2 \in E_2 \) are incident to the same vertex \(p \in V \), then we have either \(p \in S_1 \cap F_2 \) or \(p \in S_1 \cap S_2 \). This situation makes the analysis of the 2-weighted popular matching problem harder than and different from the one for the single category case.

We now characterize the existence of a well-formed matching as follows.

Lemma 2.1 An instance \((A, I, \{\ell_x\}_{x \in A})\) of the strict 2-weighted popular matching problem has a well-formed matching iff its fs-relation graph \(G = (V, E) \) has an orientation \(O \) on edges such that (a) each \(p \in V \) has at most one incoming edge in \(E_1 \cup E_2 \); (b) each \(p \in F_1 \) has one incoming edge in \(E_1 \); and (c) each \(q \in F_2 \) has one incoming edge in \(E_2 \).

Proof: Consider any instance \((A, I, \{\ell_x\}_{x \in A})\) of the strict 2-weighted popular matching problem, where \(A = A_1 \cup A_2 \), and let \(G = (V, E) \) be its fs-relation graph.

First assume that this instance has a well-formed matching \(M \). Define an orientation \(O \) on edges of the graph \(G = (V, E) \) as follows: For each applicant \(a \in A_1 \), orient an edge \(e_a = (f_1(a), s_1(a)) \) to \(E_i \) toward \(M(a) \). Since \(M \) is a matching between \(A \) and \(I \), we have that each \(p \in V \) has at most one incoming edge. From the condition (3) of Definition 2.1 it follows that each \(p \in F_1 \) has one incoming edge in \(E_1 \), and from
the condition (4) of Definition 2.1 it follows that each $q \in F_2$ has one incoming edge in E_2. Thus the orientation \mathcal{O} on edges of $G = (V, E)$ satisfies the conditions (a), (b), and (c).

Assume that the graph $G = (V, E)$ has an orientation \mathcal{O} on edges satisfying the conditions (a), (b), and (c). Then we define a matching \mathcal{M} as follows: For each $x \in A_1$, its f_1-item $f_1(x)$ (resp. s_1-item $s_1(x)$) is matched to x if \mathcal{O} at \mathcal{O} orients the edge $e_x = (f_1(x), s_1(x)) \in E_1$ by $f_1(x) \leftarrow s_1(x)$ (resp. $f_1(x) \rightarrow s_1(x)$), and for each $y \in A_2$, its f_2-item $f_2(y)$ (resp. s_2-item $s_2(y)$) is matched to y if \mathcal{O} orients the edge $e_y = (f_2(y), s_2(y)) \in E_2$ by $f_2(y) \leftarrow s_2(y)$ (resp. $f_2(y) \rightarrow s_2(y)$). From the condition (a) of the orientation \mathcal{O}, it is immediate to see that \mathcal{M} is a matching for $(A, I, \{\mathcal{F}_x\}_{x \in A})$. From the definition of the graph $G = (V, E)$, we have that \mathcal{M} satisfies the conditions (1) and (2) of Definition 2.1. The condition (b) of the orientation \mathcal{O} implies that each $p \in F_1$ is matched to $x \in A_1$ by \mathcal{M}, where $f_1(x) = p$, and the condition (c) of the orientation \mathcal{O} guarantees that each $q \in F_2$ is matched to $y \in A_2$ by \mathcal{M}, where $f_2(y) = q$. Thus the matching \mathcal{M} for $(A, I, \{\mathcal{F}_x\}_{x \in A})$ satisfies the conditions (1), (2), (3), and (4) of Definition 2.1. $
$

3 Characterization for the 2-Weighted Popular Matching Problem

In this section, we present necessary and sufficient conditions for an instance of the strict 2-weighted popular matching problem to have a 2-weighted popular matching. For an instance $(A, I, \{\mathcal{F}_x\}_{x \in A})$ of the strict 2-weighted popular matching problem, let $G = (V, E)$ be its fs-relation graph, and consider the subgraphs G_1, G_2, and G_3 of the graph $G = (V, E)$ as in Figure 1.

![Subgraphs](image)

Figure 1: (a) a path $P = v_{i_1}, v_{i_2}, \ldots, v_{i_k}$ that has vertices $v_{i_2}, v_{i_{k-1}} \in S_1 \cap F_2$ such that $(v_{i_2}, v_{i_3}) \in E_1$ and $(v_{i_{k-2}}, v_{i_{k-1}}) \in E_1$; (b) a cycle C and a path $P = v_{i_1}, v_{i_2}, \ldots, v_{i_k}$ incident to C at v_{i_k} that has a vertex $v_{i_2} \in S_1 \cap F_2$ such that $(v_{i_2}, v_{i_3}) \in E_1$; (c) a connected component including cycles C_1 and C_2.

Theorem 3.1 An instance $(A, I, \{\mathcal{F}_x\}_{x \in A})$ of the strict 2-weighted popular matching problem has a well-formed matching iff its fs-relation graph $G = (V, E)$ contains none of the subgraphs G_1, G_2, nor G_3 in Figure 1.

Proof: Assume that the graph $G = (V, E)$ contains one of the subgraphs G_1, G_2, and G_3 in Figure 1. For the case where the graph G contains the subgraph G_1, if the edge $(v_{i_2}, v_{i_3}) \in E_1$ is oriented by $v_{i_2} \leftarrow v_{i_3}$, then the edge $(v_{i_1}, v_{i_2}) \in E_2$ is oriented by $v_{i_1} \leftarrow v_{i_2}$ to satisfy the condition (a) of Lemma 2.1. However, this does not meet the condition (c) of Lemma 2.1 since the vertex $v_{i_2} \in S_1 \cap F_2 \subseteq F_2$ has no incoming edges in E_2. So the edge $(v_{i_2}, v_{i_3}) \in E_1$ must be oriented by $v_{i_2} \rightarrow v_{i_3}$. It is also the case for the edge $(v_{i_{k-2}}, v_{i_{k-1}}) \in E_1$, that is, $(v_{i_{k-2}}, v_{i_{k-1}}) \in E_1$ must be oriented by $v_{i_{k-1}} \rightarrow v_{i_{k-2}}$. These facts imply that
there exists $2 < j < k - 1$ such that the vertex $v_{ij} \in V$ has at least two incoming edges, which violates the condition (a) of Lemma 2.1. Thus if the graph G contains the subgraph G_1, then the instance does not have a well-formed matching. Similarly we can show that if the graph G contains the subgraph G_2, then the instance does not have a well-formed matching. The case where the graph G contains the subgraph G_3 can be argued in a way similar to the proof by Mahdian [7] Lemma 2.

Assume that the graph $G = (V, E)$ does not contain any of the subgraph G_1, G_2, or G_3 and let $\{C_i\}_{i \geq 1}$ be the set of cycles in G. We first orient cycles $\{C_i\}_{i \geq 1}$. Since the graph G does not contain the subgraph G_1, we can orient each cycle C_i in one of the clockwise and counterclockwise orientations to meet the conditions (a), (b), and (c) of Lemma 2.1. From the assumption that the graph G does not contain the subgraph G_3, the remaining edges can be categorized as follows: $E_{tree} = \{\text{edges in subtrees of } G\}$ that are incident to some cycle $C \in \{C_i\}_{i \geq 1}$, and $E_{tree} = \{\text{set of edges in subtrees of } G\}$ that are not incident to any cycle $C \in \{C_i\}_{i \geq 1}$. Since the graph G does not contain the subgraphs G_1 and G_2, we can orient edges in E_{tree} away from the cycles to meet the conditions (a), (b), and (c) of Lemma 2.1. Notice that edges in E_{tree} form subtrees of G. For each such T, let E_T^2 be the set of edges (v, u) that is assigned to some applicant in A_2 and $u \in S_1 \cap F_2$. For each edge $e = (v, u) \in E_T^2$, we first orient the edge e by $v \rightarrow u$, and then the remaining edges in E_T^2 are oriented away from each $u \in S_1 \cap F_2$. By the assumption that the graph G does not contain the subgraph G_1, such an orientation meets the conditions (a), (b), and (c) of Lemma 2.1 for each $v \in T$.

From Proposition 2.1 and Theorem 3.1, we immediately have the following corollary:

Corollary 3.1 Any instance $(A, I, \{\vec{\ell}_x\}_{x \in A})$ of the strict 2-weighted popular matching problem with $w_1 \geq 2w_2$ has a 2-weighted popular matching iff its fs-relation graph $G = (V, E)$ contains none of the subgraphs G_1, G_2, nor G_3 in Figure 1.

Let us consider a random instance of the complete and strict 2-weighted popular matching problem. Roughly speaking, a natural uniform distribution is considered here. That is, given a set $A = A_1 \cup A_2$ of n applicants and a set I of m items, and we consider an instance obtained by defining a random preference list $\vec{\ell}_x$ for each applicant $x \in A$, which is a permutation on I that is chosen independently and uniformly at random. But as discussed above for the 2-weighted case, the situation is completely determined by the corresponding fs-relation graph that depends only on the first and second items of applicants. Thus, instead of considering a random instance of the problem, we simply define the first and second items as follows, and discuss with the fs-relation graph $G = (V, E)$ obtained defined by f_1, s_1, f_2, and s_2-items.

1. For each $x \in A_1$, assign an item $p \in I$ as a f_1-item $f_1(x)$ independently and uniformly at random, and let F_1 be the set of all f_1-items;
2. For each $x \in A_1$, assign an item $p \in I - F_1$ as a s_1-item $s_1(x)$ independently and uniformly at random, and let S_1 be the set of all s_1-items;
3. For each $x \in A_2$, assign an item $p \in I - F_1$ as a f_2-item $f_2(x)$ independently and uniformly at random, and let F_2 be the set of all f_2-items; and
4. For each $x \in A_2$, assign an item $p \in I - (F_1 \cup F_2)$ as a s_2-item $s_2(x)$ independently and uniformly at random, and let S_2 be the set of all s_2-items.

It is easy to see that this choice of first and second items is the same as defining first and second items from a random instance of the complete and strict 2-weighted popular matching problem.

4 Lower Bounds for the 2-Weighted Popular Matching Problem

Let n be the number of applicants and m be the number of items. Assume that m is large enough so that $m - n \geq m/c$ for some constant $c > 1$, i.e., $m \geq cn/(c - 1)$. For any constant $0 < \delta < 1$, let $n_1 = \delta n$
and \(n_2 = (1 - \delta)n \) be the numbers of applicants in \(A_1 \) and \(A_2 \), respectively. In this section, we show a lower bound for \(m \) such that a random instance of the complete and strict 2-weighted popular matching problem has a 2-weighted popular matching with low probability.

Theorem 4.1 If \(m/n^{4/3} = o(1) \), then a random instance of the complete and strict 2-weighted popular matching problem with \(w_1 \geq 2w_2 \) has a 2-weighted popular matching with probability \(o(1) \).

Proof: Consider a random fs-relation graph \(G = (V, E) \). As shown in Corollary 3.4, it suffices to prove that \(G = (V, E) \) contains one of the graphs \(G_1, G_2, \) and \(G_3 \) of Figure 1 with high probability. But here we focus on one simple such graph, namely, \(G' \) given Figure 2, and in the following, we argue that the probability that \(G = (V, E) \) contains \(G'_1 \) is high if \(m/n^{4/3} = o(1) \).

![Figure 2: The Simplest “Bad” Subgraphs \(G'_1 \)](image)

Let \(F_1 \) and \(F_2 \) be the sets of the first items, \(S_1 \) and \(S_2 \) be the sets of the second items, respectively, for applicants in \(A_1 \) and \(A_2 \). By the definitions of \(F_1, F_2, S_1, \) and \(S_2 \), we have that \(F_1 \cap S_1 = \emptyset \), \(F_1 \cap F_2 = \emptyset \), \(F_1 \cap S_2 = \emptyset \), and \(F_2 \cap S_2 = \emptyset \). On the other hand, we may have that \(S_1 \cap F_2 \neq \emptyset \) or \(S_1 \cap S_2 \neq \emptyset \). Let \(R_1 = I - F_1 \) and \(R_2 = R_1 - F_2 = I - (F_1 \cup F_2) \). It is obvious that \(1 \leq |F_1| \leq \delta n \) and \(1 \leq |F_2| \leq (1 - \delta)n \), which implies that \(m - \delta n \leq |R_1| \leq m \) and \(m - n \leq |R_2| \leq m \).

For any pair of \(x_1, x_2 \in A_1 \) such that \(x_1 < x_2 \) and any pair of \(y_1, y_2 \in A_2 \) such that \(y_1 \neq y_2 \), we simply use \(\vec{v} \) to denote \((x_1, x_2, y_1, y_2)\), and \(T \) to denote the set of all such \(\vec{v} \)'s. Since \(n_1 = \delta n = |A_1| \) and \(n_2 = (1 - \delta)n = |A_2| \), we have that for sufficiently large \(n \),

\[
|T| = \left(\frac{n_1}{2} \right) n_2 (n_2 - 1) \geq \frac{\delta^2 (1 - \delta)^2}{3} n^4.
\]

(1)

For each \(\vec{v} = (x_1, x_2, y_1, y_2) \in T \), define a random variable \(Z_\vec{v} \) to be \(Z_\vec{v} = 1 \) if \(x_1, x_2, y_1, \) and \(y_2 \) form the bad subgraph \(G'_1 \) in Figure 2, \(Z_\vec{v} = 0 \) otherwise. Let \(Z = \sum_{\vec{v} \in V} Z_\vec{v} \). Then from Chebyshev’s Inequality [9, Theorem 3.3], it follows that

\[
\Pr[Z = 0] \leq \Pr[|Z - \mathbf{E}[Z]| \geq \mathbf{E}[Z]] = \Pr\left[|Z - \mathbf{E}[Z]| \geq \frac{\mathbf{E}[Z]}{\sqrt{\mathbf{V}
\text{ar}[Z]}} \right] \leq \frac{\sigma_Z^2}{\mathbf{E}^2[Z]} = \frac{\text{Var}[Z]}{\mathbf{E}^2[Z]}.
\]

(2)

To derive the lower bound for \(\Pr[Z > 0] \), we estimate the upper bound for \(\text{Var}[Z]/\mathbf{E}^2[Z] \). We first consider \(\mathbf{E}[Z] \). For each \(\vec{v} \in T \), it is easy to see that

\[
\Pr[Z_\vec{v} = 1] \geq \frac{1}{m} \cdot \left(\frac{1}{m} \right)^2 = \frac{1}{m^3};
\]

\[
\Pr[Z_\vec{v} = 1] \leq \frac{1}{m} \cdot \left(\frac{1}{m - n_1} \right)^2 \leq \frac{1}{m} \cdot \left(\frac{1}{m - n} \right)^2 = \frac{c^2}{m^3};
\]

(3)
Thus from the estimations for $\Pr[Z_{\vec{v}} = 1]$, it follows that

$$
\mathbb{E}[Z] = \mathbb{E} \left[\sum_{\vec{v} \in T} Z_{\vec{v}} \right] = \sum_{\vec{v} \in T} \mathbb{E}[Z_{\vec{v}}] = \sum_{\vec{v} \in T} \Pr[Z_{\vec{v}} = 1] \geq \frac{|T|}{m^3};
$$

(4)

$$
\mathbb{E}[Z] = \mathbb{E} \left[\sum_{\vec{v} \in T} Z_{\vec{v}} \right] = \sum_{\vec{v} \in T} \mathbb{E}[Z_{\vec{v}}] = \sum_{\vec{v} \in T} \Pr[Z_{\vec{v}} = 1] \leq \frac{c^2|T|}{m^3}.
$$

(5)

We then consider $\text{Var}[Z]$. From the definition of $\text{Var}[Z]$, it follows that

$$
\text{Var}[Z] = \mathbb{E} \left[\left(\sum_{\vec{v} \in T} Z_{\vec{v}} \right)^2 \right] - \left(\mathbb{E} \left[\sum_{\vec{v} \in T} Z_{\vec{v}} \right] \right)^2
$$

$$
= \mathbb{E} \left[\sum_{\vec{v} \in T} Z_{\vec{v}}^2 + \sum_{\vec{v} \in T} \sum_{\vec{w} \in T - \{\vec{v}\}} Z_{\vec{v}} Z_{\vec{w}} \right] - \left(\mathbb{E} \left[\sum_{\vec{v} \in T} Z_{\vec{v}} \right] \right)^2
$$

$$
= \mathbb{E} \left[\sum_{\vec{v} \in T} Z_{\vec{v}} \right] - \left(\mathbb{E} \left[\sum_{\vec{v} \in T} Z_{\vec{v}} \right] \right)^2 + \sum_{\vec{v} \in T} \sum_{\vec{w} \in T - \{\vec{v}\}} \mathbb{E}[Z_{\vec{v}} Z_{\vec{w}}]
$$

$$
= \mathbb{E}[Z] - \mathbb{E}^2[Z] + \sum_{\vec{v} \in T} \sum_{\vec{w} \in T - \{\vec{v}\}} \mathbb{E}[Z_{\vec{v}} Z_{\vec{w}}].
$$

(6)

In the following, we estimate the last term of Equality (6). For each $\vec{v} = (x_1, x_2, y_1, y_2) \in T$ and each $0 \leq h \leq 2$, we say that $\vec{w} = (x_1', x_2', y_1', y_2') \in T$ is h-common to \vec{v} if $|\{x_1, x_2\} \cap \{x_1', x_2'\}| = h$. For any $\vec{w} = (x_1', x_2', y_1', y_2') \in T$ that is 2-common to \vec{v}, we have that $x_1 = x_1'$ and $x_2 = x_2'$, because if $x_1 = x_2'$ and $x_2 = x_1'$, then $x_1 = x_2' > x_1 = x_2$, which contradicts the assumption that $x_1 < x_2$. For each $\vec{v} \in T$, we use $T_2(\vec{v})$ to denote the set of $\vec{w} \in T - \{\vec{v}\}$ that is 2-common to \vec{v}; $T_1(\vec{v})$ to denote the set of $\vec{w} \in T - \{\vec{v}\}$ that is 1-common to \vec{v}; $T_0(\vec{v})$ to denote the set of $\vec{w} \in T - \{\vec{v}\}$ that is 0-common to \vec{v}. Then from the assumption that $m - n \geq m/c$, it follows that

$$
\sum_{\vec{v} \in T} \sum_{\vec{w} \in T_2(\vec{v})} \mathbb{E}[Z_{\vec{v}} Z_{\vec{w}}] \leq \left\{ \frac{c^4(1 - \delta)^2}{m^5} n^2 + \frac{2c^3(1 - \delta)}{m^4} n \right\} |T|;
$$

(7)

$$
\sum_{\vec{v} \in T} \sum_{\vec{w} \in T_1(\vec{v})} \mathbb{E}[Z_{\vec{v}} Z_{\vec{w}}] \leq \left\{ \frac{4c^4\delta(1 - \delta)^2}{m^6} n^3 + \frac{4c^3\delta(1 - \delta)}{m^5} n^2 + \frac{4c^2\delta}{m^4} \right\} |T|;
$$

(8)

$$
\sum_{\vec{v} \in T} \sum_{\vec{w} \in T_0(\vec{v})} \mathbb{E}[Z_{\vec{v}} Z_{\vec{w}}] \leq \mathbb{E}^2[Z] + \left\{ \frac{2c^4\delta^2(1 - \delta)}{m^6} n^3 + \frac{c^3\delta^2}{m^5} n^2 \right\} |T|.
$$

(9)

The proofs of Inequalities (7), (8), and (9) are shown in Subsections A.1, A.2 and A.3 respectively. Thus from Inequalities (5), (6), (7), (8), and (9), it follows that

$$
\text{Var}[Z] \leq \mathbb{E}[Z] - \mathbb{E}^2[Z] + \sum_{\vec{v} \in T} \sum_{\vec{w} \in T - \{\vec{v}\}} \mathbb{E}[Z_{\vec{v}} Z_{\vec{w}}]
$$

$$
= \mathbb{E}[Z] - \mathbb{E}^2[Z] + \sum_{\vec{v} \in T} \sum_{\vec{w} \in T_2(\vec{v})} \mathbb{E}[Z_{\vec{v}} Z_{\vec{w}}] + \sum_{\vec{v} \in T} \sum_{\vec{w} \in T_1(\vec{v})} \mathbb{E}[Z_{\vec{v}} Z_{\vec{w}}] + \sum_{\vec{v} \in T} \sum_{\vec{w} \in T_0(\vec{v})} \mathbb{E}[Z_{\vec{v}} Z_{\vec{w}}]
$$

$$
\leq \frac{c^2|T|}{m^3} + \left\{ \frac{c^4(1 - \delta)^2}{m^5} n^2 + \frac{2c^3(1 - \delta)}{m^4} n \right\} |T|.
$$
\[+ \left\{ \frac{4c^4\delta(1-\delta)^2}{m^6}n^2 + \frac{4c^3\delta(1-\delta)}{m^5}n^2 + \frac{4c^3\delta}{m^4}n \right\} |T| \]
\[+ \left\{ \frac{2c^4\delta^2(1-\delta)}{m^6}n^2 + \frac{c^4\delta^2}{m^5}n^2 \right\} |T| \]
\[\leq \frac{c^2|T|}{m^3} \left\{ 1 + \frac{c(1-\delta)^2}{m^2}n^2 + \frac{2c(1-\delta)}{m}n + \frac{4c^2\delta(1-\delta)^2}{m^3}n^3 \right. \]
\[\left. + \frac{4c\delta(1-\delta)}{m^2}n^2 + \frac{4c\delta}{m}n + \frac{2c^2\delta^2(1-\delta)}{m^3}n^3 + \frac{c^2\delta^2}{m^2}n^2 \right\} \]
\[\leq \frac{c^2|T|}{m^3} \left\{ 1 + (c-1)^2(1-\delta)^2 + 2(c-1)(1-\delta) + \frac{4(c-1)^3\delta(1-\delta)^2}{c} \right. \]
\[\left. + \frac{4(c-1)^2\delta(1-\delta)}{m} + \frac{2(c-1)^3\delta^2(1-\delta)}{m} + \frac{(c-1)^2\delta^2}{m} \right\}, \quad (10) \]

where Inequality (10) follows from the assumption that \(m-n \geq m/c \), i.e., \(cn/m \leq c-1 \). Thus it follows that \(\text{Var}[Z] \leq d|T|/m^3 \) for some constant \(d \) that is determined by the constants \(0 < \delta < 1 \) and \(c > 1 \). Then from Inequalities (1), (2), and (4), we finally have that
\[
\Pr[Z = 0] \leq \frac{\text{Var}[Z]}{\text{E}^2[Z]} \leq \frac{d|T|}{m^3 \cdot |T|^2} = \frac{dm^3}{|T|^2} \leq \frac{3dm^3}{\delta^2(1-\delta)^2n^4} = O\left(\frac{m^3}{n^4}\right),
\]
which implies that \(\Pr[Z = 0] = o(1) \) for any \(m \geq n \) with \(m/n^{4/3} = o(1) \). Therefore, if \(m/n^{4/3} = o(1) \), then with probability \(1-o(1) \), we have \(Z > 0 \), that is, \(G = (V, E) \) contains \(G' \) as a subgraph.

5 Upper Bounds for the 2-Weighted Popular Matching Problem

As shown in Theorem 4.1, a random instance of the complete and strict 2-weighted popular matching problem has a 2-weighted popular matching with probability \(o(1) \) if \(m/n^{4/3} = o(1) \). Here we consider roughly opposite case, i.e., \(n^{4/3}/m = o(1) \), and prove that a random instance has a 2-weighted popular matching with probability \(1-o(1) \).

First we show the following lemma that will greatly simplify our later analysis.

Lemma 5.1 If \(n/m = o(1) \), then a random instance \(G = (V, E) \) of the fs-relation graphs contains a cycle as a subgraph with probability \(o(1) \).

Proof: For each \(\ell \geq 2 \), let \(C_\ell \) be a cycle with \(\ell \) vertices and \(\ell \) edges, and \(\mathcal{E}^{\text{cyc}}_\ell \) be the event that a random fs-relation graph \(G = (V, E) \) contains a cycle \(C_\ell \). Then from the assumption that \(m-n \geq m/c \) for some constant \(c > 1 \), it follows that
\[
\Pr[G \text{ contains a cycle}] = \Pr \left[\bigcup_{\ell \geq 2} \mathcal{E}^{\text{cyc}}_\ell \right] \leq \sum_{\ell \geq 2} \Pr[\mathcal{E}^{\text{cyc}}_\ell] \]
\[
\leq \sum_{\ell \geq 2} \left\{ \frac{1}{2\ell} \binom{m}{\ell} \ell! \left(\frac{n}{\ell} \right) \left(\frac{m}{m-n} \right)^{2\ell} \right\} \leq \sum_{\ell \geq 2} \left\{ \frac{1}{2\ell} m^{\ell} n^\ell \left(\frac{c}{m} \right)^{2\ell} \right\} \]
\[
= \sum_{\ell \geq 2} \frac{1}{2\ell} \left(\frac{c^2n}{m} \right)^\ell \leq \sum_{\ell \geq 2} \left(\frac{c^2n}{m} \right)^\ell = \frac{c^4n^2}{m^2} \sum_{h \geq 0} \left(\frac{c^2n}{m} \right)^h = O\left(\frac{n^2}{m^2}\right),
\]
where the last equality follows from the assumption that \(n/m = o(1) \) and \(c > 1 \) is a constant. Thus it follows that if \(n/m = o(1) \), then a random fs-relation graph \(G = (V, E) \) contains a cycle as a subgraph with probability \(o(1) \).
Theorem 5.1 If \(n^{4/3}/m = o(1) \), then a random instance of the complete and strict 2-weighted popular matching problem with \(w_1 \geq 2w_2 \) has a 2-weighted popular matching with probability \(1 - o(1) \).

Proof: Consider a random fs-relation graph \(G = (V, E) \) corresponding to a random instance of the complete and strict 2-weighted popular matching problem. By Lemma 5.1 and the assumption that \(n^{4/3}/m = o(1) \), we know that the fs-relation graph \(G = (V, E) \) contains bad subgraphs \(G_2 \) or \(G_3 \) of Figure I with vanishing probability \(o(1) \). Thus in the rest of the proof, we estimate the probability that the graph \(G = (V, E) \) contains a bad subgraph \(G_1 \) of Figure I.

For any \(\ell \geq 4 \), let \(P_\ell \) be a path with \(\ell + 1 \) vertices and \(\ell \) edges, and \(\mathcal{E}^\text{path}_\ell \) be the event that \(G = (V, E) \) contains a path \(P_\ell \). It is obvious that a path \(P_\ell \) is a bad subgraph \(G_1 \) for each \(\ell \geq 4 \). Then from the assumption that \(m - n \geq m/c \) for some constant \(c > 1 \), it follows that

\[
\Pr[G \text{ contains a bad subgraph } G_1] = \Pr\left[\bigcup_{\ell \geq 4} \mathcal{E}^\text{path}_\ell \right] \leq \sum_{\ell \geq 4} \Pr[\mathcal{E}^\text{path}_\ell]
\]

\[
\leq \sum_{\ell \geq 4} \left\{ \frac{1}{(m-n)^{2\ell}(\ell + 1)!} \binom{m}{\ell} \binom{n}{\ell} \ell! \right\}
\]

\[
\leq \sum_{\ell \geq 4} \left\{ \left(\frac{c}{m} \right)^{2\ell} m^{\ell+1} n^\ell \right\} = \frac{c^8 n^4}{m^3} \sum_{h \geq 0} \left(\frac{c^2 n}{m} \right)^h = O\left(\frac{n^4}{m^3} \right),
\]

where the last equality follows from the assumption that \(n^{4/3}/m = o(1) \) and that \(c > 1 \) is a constant. Notice that \(n/m = o(1) \) if \(n^{4/3}/m = o(1) \). Thus from Lemma 5.1 and Corollary 3.1 it follows that if \(n^{4/3}/m = o(1) \), then a random instance of the complete and strict 2-weighted popular matching problem has a 2-weighted popular matching with probability \(1 - o(1) \). \(\blacksquare \)

6 Concluding Remarks

In this paper, we have analyzed the 2-weighted matching problem, and have shown that (Theorem 4.1) if \(m/n^{4/3} = o(1) \), then a random instance of the complete and strict 2-weighted popular matching problem with \(w_1 \geq 2w_2 \) has a 2-weighted popular matching with probability \(o(1) \); (Theorem 5.1) if \(n^{4/3}/m = o(1) \), then a random instance of the complete and strict 2-weighted popular matching problem with \(w_1 \geq 2w_2 \) has a 2-weighted popular matching with probability \(1 - o(1) \). These results imply that there exists a threshold \(m \approx n^{4/3} \) to admit 2-weighted popular matchings, which is quite different from the case for the single category popular matching problem due to Mahdian [7].

Theorem 6.1 can be trivially generalized to any multiple category case; that is, with the same proof, we have the following bound.

Theorem 6.1 For any integer \(k > 2 \), if \(m/n^{4/3} = o(1) \), then a random instance of the complete and strict \(k \)-weighted popular matching problem with \(w_1 \geq 2w_{i+1} \) \((1 \leq i \leq k-1)\) has a \(k \)-weighted popular matching with probability \(o(1) \).

Then an interesting problem is to show some upper bound result by generalizing Theorem 5.1 for any integer \(k > 2 \), maybe under the condition that \(w_i \geq 2w_{i+1} \) for all \(i, 1 \leq i \leq k-1 \).

References

[1] D.J. Abraham, N. Chen, V. Kumar, and V. Mirrokni. Assignment Problems in Rental Markets. In Proc. Internet and Network Economics, Lecture Notes in Computer Science 4286, pp.198-213, 2006.
[2] D.J. Abraham, R.W. Irving, T. Kavitha, and K. Mehlhorn. Popular Matchings. In Proc. of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pp.424-432, 2005.

[3] D.J. Abraham and T. Kavitha. Dynamic Matching Markets and Voting Paths. In Proc. of the 10th Scandinavian Workshop on Algorithm Theory, Lecture Notes in Computer Science 4059, pp.65-76, 2006.

[4] N. Alon and J. Spencer. The Probabilistic Method. John Wiley & Sons, 2000.

[5] B. Bollobás. Random Graphs. Cambridge University Press, 2001.

[6] P. Gardenfors. Match Making: Assignment Based on Bilateral Preferences. Behavioural Sciences, 20:166-173, 1975.

[7] M. Mahdian. Random Popular Matchings. In Proc. of the 7th ACM Conference on Electronic Commerce, pp.238-242, 2006.

[8] J. Mestre. Weighted Popular Matchings. In Proc. of the 33rd International Colloquium on Automata, Languages, and Programming (Part I), Lecture Notes in Computer Science 4051, pp.715-726, 2006.

[9] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.
A Proofs of Inequalities

A.1 Proof of Inequality (7)

Let $\vec{v} = (x_1, x_2, y_1, y_2) \in T$. For each $\vec{w} = (x'_1, x'_2, y'_1, y'_2) \in T_2(\vec{v})$, let us consider the following cases:
(case-0) $|\{y_1, y_2\} \cap \{y'_1, y'_2\}| = 0$; (case-1) $|\{y_1, y_2\} \cap \{y'_1, y'_2\}| = 1$. Let

\[T_2^0(\vec{v}) = \{\vec{w} \in T_2(\vec{v}) : |\{y_1, y_2\} \cap \{y'_1, y'_2\}| = 0\}; \]
\[T_2^1(\vec{v}) = \{\vec{w} \in T_2(\vec{v}) : |\{y_1, y_2\} \cap \{y'_1, y'_2\}| = 1\}. \]

For each $\vec{v} \in T$, it is immediate to see that $T_2^0(\vec{v})$, $T_2^1(\vec{v})$ is the partition of $T_2(\vec{v})$, and from the definitions of $T_2^0(\vec{v})$ and $T_2^1(\vec{v})$, we have that $|T_2^0(\vec{v})| \leq n_2^2$, $|T_2^1(\vec{v})| \leq 2n_2$. So from the assumption that $m - n \geq m/c$ for some constant $c > 1$, it follows that for each $\vec{v} \in T$,

\[
\sum_{\vec{w} \in T_2^0(\vec{v})} \mathbf{E}[Z_{\vec{v}}Z_{\vec{w}}] \leq \sum_{\vec{w} \in T_2^0(\vec{v})} \frac{1}{m} \left(\frac{1}{m - n}\right)^4 \leq \sum_{\vec{w} \in T_2^0(\vec{v})} \frac{1}{m} \left(\frac{1}{m - n}\right)^4 \\
\leq \frac{c^4}{m^5} |T_2^0(\vec{v})| \leq \frac{c^4}{m^5} n_2^2 \\
= \frac{c^4(1 - \delta)^2}{m^5} n_2^2; \tag{11}
\]
\[
\sum_{\vec{w} \in T_2^1(\vec{v})} \mathbf{E}[Z_{\vec{v}}Z_{\vec{w}}] \leq \sum_{\vec{w} \in T_2^1(\vec{v})} \frac{1}{m} \left(\frac{1}{m - n}\right)^3 \leq \sum_{\vec{w} \in T_2^1(\vec{v})} \frac{1}{m} \left(\frac{1}{m - n}\right)^3 \\
\leq \frac{c^3}{m^4} |T_2^1(\vec{v})| \leq \frac{2c^3}{m^4} n_2 \\
= \frac{2c^3(1 - \delta)}{m^4} n. \tag{12}
\]

Thus from Inequalities (11) and (12), we finally have that

\[
\sum_{\vec{v} \in T} \sum_{\vec{w} \in T_2(\vec{v})} \mathbf{E}[Z_{\vec{v}}Z_{\vec{w}}] = \sum_{\vec{v} \in T} \sum_{\vec{w} \in T_2^0(\vec{v})} \mathbf{E}[Z_{\vec{v}}Z_{\vec{w}}] + \sum_{\vec{v} \in T} \sum_{\vec{w} \in T_2^1(\vec{v})} \mathbf{E}[Z_{\vec{v}}Z_{\vec{w}}] \\
\leq \sum_{\vec{v} \in T} \left\{ \frac{c^4(1 - \delta)^2}{m^5} n_2^2 + \frac{2c^3(1 - \delta)}{m^4} n \right\} \times |T|.
\]

A.2 Proof of Inequality (8)

Let $\vec{v} = (x_1, x_2, y_1, y_2) \in T$. For each $\vec{w} = (x'_1, x'_2, y'_1, y'_2) \in T_1(\vec{v})$, we have the following cases: (case-0) $|\{y_1, y_2\} \cap \{y'_1, y'_2\}| = 0$; (case-1) $|\{y_1, y_2\} \cap \{y'_1, y'_2\}| = 1$; (case-2) $|\{y_1, y_2\} \cap \{y'_1, y'_2\}| = 2$. Let

\[T_1^0(\vec{v}) = \{\vec{w} \in T_1(\vec{v}) : |\{y_1, y_2\} \cap \{y'_1, y'_2\}| = 0\}; \]
\[T_1^1(\vec{v}) = \{\vec{w} \in T_1(\vec{v}) : |\{y_1, y_2\} \cap \{y'_1, y'_2\}| = 1\}; \]
\[T_1^2(\vec{v}) = \{\vec{w} \in T_1(\vec{v}) : |\{y_1, y_2\} \cap \{y'_1, y'_2\}| = 2\}. \]

For each $\vec{v} \in T$, it is immediate that $T_1^0(\vec{v})$, $T_1^1(\vec{v})$, $T_1^2(\vec{v})$ is the partition of $T_1(\vec{v})$, and from the definitions of $T_1^0(\vec{v})$, $T_1^1(\vec{v})$, and $T_1^2(\vec{v})$, we have that $|T_1^0(\vec{v})| \leq 4n_1n_2^2$; $|T_1^1(\vec{v})| \leq 4n_1n_2$; $|T_1^2(\vec{v})| \leq 4n_1$. So from the
assumption that \(m - n \geq m/c \) for some constant \(c > 1 \), it follows that for each \(\bar{v} \in T \),

\[
\sum_{\bar{w} \in T^0_1(\bar{v})} \mathbb{E}[Z_{\bar{v}}Z_{\bar{w}}] \leq \sum_{\bar{w} \in T^1_1(\bar{v})} \frac{1}{m^2} \left(\frac{1}{m - n} \right)^4 \leq \sum_{\bar{w} \in T^1_1(\bar{v})} \frac{1}{m^2} \left(\frac{1}{m - n} \right)^4 \\
\leq \sum_{\bar{w} \in T^1_1(\bar{v})} \frac{1}{m^2} \left(\frac{c}{m} \right)^4 = \frac{c^4}{m^6} |T^0_1(\bar{v})| \leq \frac{4c^4}{m^6 n_1 n_2^3} \\
= \frac{4c^4 \delta(1 - \delta)^2}{m^6 n^3}, \quad (13)
\]

\[
\sum_{\bar{w} \in T^1_1(\bar{v})} \mathbb{E}[Z_{\bar{v}}Z_{\bar{w}}] \leq \sum_{\bar{w} \in T^1_1(\bar{v})} \frac{1}{m^2} \left(\frac{1}{m - n} \right)^3 \leq \sum_{\bar{w} \in T^1_1(\bar{v})} \frac{1}{m^2} \left(\frac{1}{m - n} \right)^3 \\
\leq \sum_{\bar{w} \in T^1_1(\bar{v})} \frac{1}{m^2} \left(\frac{c}{m} \right)^3 = \frac{c^3}{m^5} |T^1_1(\bar{v})| \leq \frac{4c^3 n_1 n_2^2}{m^5} \\
= \frac{4c^3 \delta(1 - \delta)}{m^5 n^2}; \quad (14)
\]

\[
\sum_{\bar{w} \in T^1_1(\bar{v})} \mathbb{E}[Z_{\bar{v}}Z_{\bar{w}}] \leq \sum_{\bar{w} \in T^1_1(\bar{v})} \frac{1}{m^2} \left(\frac{1}{m - n} \right)^3 \leq \sum_{\bar{w} \in T^1_1(\bar{v})} \frac{1}{m^2} \left(\frac{1}{m - n} \right)^3 \\
\leq \sum_{\bar{w} \in T^1_1(\bar{v})} \frac{1}{m^2} \left(\frac{c}{m} \right)^3 = \frac{c^3}{m^5} |T^2_1(\bar{v})| \leq \frac{4c^3 n_1}{m^5} \\
= \frac{4c^3 \delta}{m^5 n}. \quad (15)
\]

Thus from Inequalities (13), (14), and (15), we finally have that

\[
\sum_{\bar{v} \in T} \sum_{\bar{w} \in T_1(\bar{v})} \mathbb{E}[Z_{\bar{v}}Z_{\bar{w}}] = \sum_{\bar{v} \in T} \sum_{\bar{w} \in T^0_1(\bar{v})} \mathbb{E}[Z_{\bar{v}}Z_{\bar{w}}] + \sum_{\bar{v} \in T} \sum_{\bar{w} \in T^1_1(\bar{v})} \mathbb{E}[Z_{\bar{v}}Z_{\bar{w}}] + \sum_{\bar{v} \in T} \sum_{\bar{w} \in T^2_1(\bar{v})} \mathbb{E}[Z_{\bar{v}}Z_{\bar{w}}] \\
\leq \sum_{\bar{v} \in T} \left\{ \frac{4c^4 \delta(1 - \delta)^2}{m^6 n^3} + \frac{4c^3 \delta(1 - \delta)}{m^5 n^2} + \frac{4c^3 \delta}{m^5 n} \right\} |T| \\
= \left\{ \frac{4c^4 \delta(1 - \delta)^2}{m^6 n^3} + \frac{4c^3 \delta(1 - \delta)}{m^5 n^2} + \frac{4c^3 \delta}{m^5 n} \right\} |T|.
\]

A.3 Proof of Inequality (9)

Let \(\bar{v} = (x_1, x_2, y_1, y_2) \in T \). For each \(\bar{w} = (x_1', x_2', y_1', y_2') \in T_0(\bar{v}) \), we have the following cases: (case-0) \(|\{y_1, y_2\} \cap \{y_1', y_2\}| = 0\); (case-1) \(|\{y_1, y_2\} \cap \{y_1', y_2\}| = 1\); (case-2) \(|\{y_1, y_2\} \cap \{y_1', y_2\}| = 2\). Let

\[
T^0_0(\bar{v}) = \{ \bar{w} \in T_0(\bar{v}) : |\{y_1, y_2\} \cap \{y_1', y_2\}| = 0 \}; \\
T^0_1(\bar{v}) = \{ \bar{w} \in T_0(\bar{v}) : |\{y_1, y_2\} \cap \{y_1', y_2\}| = 1 \}; \\
T^1_0(\bar{v}) = \{ \bar{w} \in T_0(\bar{v}) : |\{y_1, y_2\} \cap \{y_1', y_2\}| = 2 \}.
\]

For each \(\bar{v} \in T \), it is immediate that \(T^0_0(\bar{v}), T^0_1(\bar{v}), T^1_0(\bar{v}) \) is the partition of \(T(\bar{v}) \). For any \(\bar{w} \in T^0_0(\bar{v}) \), it is obvious that \(\Pr[Z_{\bar{v}} = 1 \wedge Z_{\bar{w}} = 1] = \Pr[Z_{\bar{v}} = 1] \times \Pr[Z_{\bar{w}} = 1] \), which implies that

\[
\sum_{\bar{v} \in T} \sum_{\bar{w} \in T^0_0(\bar{v})} \mathbb{E}[Z_{\bar{v}}Z_{\bar{w}}] = \sum_{\bar{v} \in T} \sum_{\bar{w} \in T^0_0(\bar{v})} \Pr[Z_{\bar{v}} = 1 \wedge Z_{\bar{w}} = 1]
\]
\[
\sum_{\vec{v} \in T} \sum_{\vec{w} \in T_0^1(\vec{v})} Pr[Z_{\vec{v}} = 1] \times Pr[Z_{\vec{w}} = 1] = \sum_{\vec{v} \in T} \Pr[Z_{\vec{v}} = 1] \sum_{\vec{w} \in T_0^1(\vec{v})} \Pr[Z_{\vec{w}} = 1] \\
\leq \sum_{\vec{v} \in T} \Pr[Z_{\vec{v}} = 1] \sum_{\vec{w} \in T} \Pr[Z_{\vec{w}} = 1] = E^2[Z]. \quad (16)
\]

From the definitions of \(T_0^1(\vec{v})\) and \(T_0^2(\vec{v})\), we have that \(|T_0^1(\vec{v})| \leq 2n_1^2 n_2\); \(|T_0^2(\vec{v})| \leq n_2^2\). Then from the assumption that \(m - n \geq m/c\) for some constant \(c > 1\), it follows that for each \(\vec{v} \in T\),

\[
\sum_{\vec{w} \in T_0^1(\vec{v})} E[Z_{\vec{v}} Z_{\vec{w}}] = \sum_{\vec{w} \in T_0^1(\vec{v})} \frac{1}{m^2} \left(\frac{1}{m - n_1} \right)^4 \leq \sum_{\vec{w} \in T_0^1(\vec{v})} \frac{1}{m^2} \left(\frac{1}{m - n} \right)^4 \\
\leq \sum_{\vec{w} \in T_0^1(\vec{v})} \frac{1}{m^2} \left(\frac{c}{m} \right)^4 = \frac{c^4}{m^6} |T_0^1(\vec{v})| \leq \frac{2c^4 n_1^2}{m^6 n_2} \\
= \frac{2c^4 \delta^2 (1 - \delta)}{m^6} n^3; \quad (17)
\]

\[
\sum_{\vec{w} \in T_0^2(\vec{v})} E[Z_{\vec{v}} Z_{\vec{w}}] = \sum_{\vec{w} \in T_0^2(\vec{v})} \frac{1}{m^2} \left(\frac{1}{m - n_1} \right)^4 \leq \sum_{\vec{w} \in T_0^2(\vec{v})} \frac{1}{m^2} \left(\frac{1}{m - n} \right)^4 \\
\leq \sum_{\vec{w} \in T_0^2(\vec{v})} \frac{1}{m^2} \left(\frac{c}{m} \right)^4 = \frac{c^4}{m^6} |T_0^2(\vec{v})| \leq \frac{c^4 n_1^2}{m^6} \\
= \frac{c^4 \delta^2}{m^6} n^2. \quad (18)
\]

Thus from Inequalities (16), (17), and (18), we finally have that

\[
\sum_{\vec{v} \in T} \sum_{\vec{w} \in T_0(\vec{v})} E[Z_{\vec{v}} Z_{\vec{w}}] = \sum_{\vec{v} \in T} \sum_{\vec{w} \in T_0^1(\vec{v})} E[Z_{\vec{v}} Z_{\vec{w}}] + \sum_{\vec{v} \in T} \sum_{\vec{w} \in T_0^1(\vec{w})} E[Z_{\vec{v}} Z_{\vec{w}}] + \sum_{\vec{v} \in T} \sum_{\vec{w} \in T_0^2(\vec{w})} E[Z_{\vec{v}} Z_{\vec{w}}] \\
\leq E^2[Z] + \sum_{\vec{v} \in T} \left\{ \frac{2c^4 \delta^2 (1 - \delta)}{m^6} n^3 + \frac{c^4 \delta^2}{m^6} n^2 \right\} \left| T \right| \\
= E^2[Z] + \left\{ \frac{2c^4 \delta^2 (1 - \delta)}{m^6} n^3 + \frac{c^4 \delta^2}{m^6} n^2 \right\} |T|.
\]

13