Some remarks on general sum–connectivity coindex

M. Matejić, E. Milovanović, I. Milovanović

Abstract: Let $G = (V, E)$, $V = \{v_1, v_2, \ldots, v_n\}$ be a simple connected graph with n vertices, m edges and a sequence of vertex degrees $d_1 \geq d_2 \geq \cdots \geq d_n > 0$, $d_i = d(v_i)$. The general sum–connectivity coindex is defined as

$$H_\alpha(G) = \sum_{i \sim j} (d_i + d_j)^\alpha,$$

while multiplicative first Zagreb coindex is defined as

$$P_1(G) = \prod_{i \sim j} (d_i + d_j).$$

Here α is an arbitrary real number, and $i \sim j$ denotes that vertices i and j are not adjacent. Some relations between $H_\alpha(G)$ and $P_1(G)$ are obtained.

Keywords: Topological indices and coindices, sum–connectivity coindex, multiplicative Zagreb coindex.

1 Introduction

Let $G = (V, E)$, $V = \{v_1, v_2, \ldots, v_n\}$, $E = \{e_1, e_2, \ldots, e_m\}$, be a simple connected graph with $n = |V|$ vertices and $m = |E|$ edges. With $d_1 \geq d_2 \geq \cdots \geq d_n > 0$, $d_i = d(v_i)$, a sequence of vertex degrees of G is designated. If vertices v_i and v_j are adjacent, we write $i \sim j$, otherwise we write $i \sim j$. We define values $\overline{\Delta}_e$ and \overline{d}_e as

$$\overline{\Delta}_e = \max_{i \sim j} \{d_i + d_j\} \quad \text{and} \quad \overline{d}_e = \min_{i \sim j} \{d_i + d_j\}.$$

A topological index of a graph is a numerical quantity which is invariant under automorphisms of the graph.

Two vertex-degree based topological indices, the first and the second Zagreb index, M_1 and M_2, are defined as [7, 8]

$$M_1 = M_1(G) = \sum_{i=1}^{n} d_i^2 \quad \text{and} \quad M_2 = M_2(G) = \sum_{i \sim j} d_id_j.$$
As shown in [12], the first Zagreb index can be also expressed as

\[M_1 = \sum_{i<j} (d_i + d_j). \]

A so-called forgotten topological index, \(F \), is defined as [6]

\[F = F(G) = \sum_{i=1}^{n} d_i^3. \]

By analogy to \(M_1 \), the invariant \(F \) can be written in the following way

\[F = \sum_{i<j} (d_i^2 + d_j^2). \]

The general sum–connectivity index was conceived in [17] as

\[H_\alpha(G) = \sum_{i<j} (d_i + d_j)^\alpha, \]

where \(\alpha \) is an arbitrary real number. Some special cases of this index are the first Zagreb index \(M_1(G) = H_1(G) \), the harmonic index \(H(G) = 2H_{-1}(G) \) [5], the sum–connectivity index \(SC(G) = H_{-1/2}(G) \) [18], and hyper–Zagreb index \(HM(G) = H_2(G) \) [13]. It is not difficult to see that

\[HM(G) = \sum_{i<j} (d_i + d_j)^2 = F(G) + 2M_2(G). \]

In [4] a concept of coindices was introduced. In this case the sum runs over the edges of the complement of \(G \). Thus, the first and the second Zagreb coindices are defined as [4]

\[\overline{M}_1(G) = \sum_{i<j} (d_i + d_j) \quad \text{and} \quad \overline{M}_2(G) = \sum_{i<j} d_id_j, \]

and the forgotten Zagreb coindex as [3] (see also [10]) as

\[\overline{F}(G) = \sum_{i<j} (d_i^2 + d_j^2). \]

The general sum–connectivity coindex was defined in [14] as

\[\overline{H}_\alpha(G) = \sum_{i<j} (d_i + d_j)^\alpha, \]

where \(\alpha \) is an arbitrary real number. Again, some special cases of \(\overline{H}_\alpha(G) \) are apart from \(\overline{M}_1(G) \), the sum–connectivity coindex \(SC(G) = \overline{H}_{-1/2}(G) \), the harmonic coindex \(\overline{H}(G) = \overline{H}_1(G) \), the harmonic coindex \(\overline{H}_1(G) \), the harmonic.
Some remarks on general sum–connectivity coindex

2\(H_{-1}(G)\), the hyper Zagreb coindex \(HM(G) = H_2(G)\) [15]. It is not difficult to see that the following identity holds

\[HM(G) = \overline{F}(G) + 2\overline{M}_2(G).\]

The multiplicative first Zagreb coindex was defined in [16] as

\[\overline{\Pi}_1(G) = \prod_{i \neq j}(d_i + d_j).\]

In this paper we determine the bound for the difference

\[\overline{H}_a(G) - \overline{m}(\overline{\Pi}_1(G))^{\alpha/\overline{m}},\]

where \(\overline{m} = \frac{n(n-1)}{2} - m\).

2 Preliminaries

In this section we recall some analytical inequalities for the real number sequences that will be used in the subsequent considerations.

Let \(a = (a_i)\) and \(b = (b_i), i = 1, 2, \ldots, n,\) be positive real number sequences with the properties

\[0 < r_1 \leq a_i \leq R_1 < +\infty \quad \text{and} \quad 0 < r_2 \leq b_i \leq R_2 < +\infty.\]

In [1] (see also [11]) the following inequality was proven

\[n \sum_{i=1}^{n} a_i b_i - \sum_{i=1}^{n} a_i \sum_{i=1}^{n} b_i \leq n^2 \gamma(n)(R_1 - r_1)(R_2 - r_2),\]

(1)

where

\[\gamma(n) = \frac{1}{n^2} \left(1 - \frac{n}{2} \left(1 - \frac{n}{2}\right)\right) = \frac{1}{4} \left(1 - \frac{(-1)^{n+1} + 1}{2n^2}\right).\]

Equality holds if and only if \(R_1 = a_1 = \cdots = a_n = r_1\) or \(R_2 = b_1 = \cdots = b_n = r_2.\)

For the positive real number sequence \(a = (a_i), i = 1, 2, \ldots, n,\) the following inequality was proven in [9]

\[\left(\sum_{i=1}^{n} \sqrt{a_i}\right)^2 \leq (n-1) \sum_{i=1}^{n} a_i + n \left(\prod_{i=1}^{n} a_i\right)^{1/n},\]

(2)

with equality if and only if \(a_1 = a_2 = \cdots = a_n.\)

For the positive real number sequence \(a = (a_i), i = 1, 2, \ldots, n,\) with the property \(a_1 \geq a_2 \geq \cdots \geq a_n > 0,\) in [2] the following inequality was proven

\[\sum_{i=1}^{n} a_i - n \left(\prod_{i=1}^{n} a_i\right)^{1/n} \geq (\sqrt[n]{a_1} - \sqrt[n]{a_n})^2.\]

(3)

Equality holds if \(a_2 = a_3 = \cdots = a_{n-1} = \sqrt[n]{a_1 a_n}.\)
3 Main results

In the next theorem we establish lower and upper bounds for the difference \(H_\alpha(G) - m(\Pi_1(G))^{\alpha/m} \) depending on the parameters \(\alpha, m, \bar{\Delta}_e \) and \(\bar{\delta}_e \).

Theorem 1. Let \(G \) be a simple graph with \(m \geq 2 \) edges. If \(\alpha \geq 0 \), then

\[
\left(\bar{\Delta}_e^\alpha - \bar{\delta}_e^\alpha \right)^2 \leq H_\alpha(G) - m(\Pi_1(G))^{\alpha/m} \leq m^2 \gamma(m) \left(\bar{\Delta}_e^\alpha - \bar{\delta}_e^\alpha \right)^2 .
\] (4)

If \(\alpha \leq 0 \), \(G \not\cong K_n \), then

\[
\left(\bar{\delta}_e^\alpha - \bar{\Delta}_e^\alpha \right)^2 \leq H_\alpha(G) - m(\Pi_1(G))^{\alpha/m} \leq m^2 \gamma(m) \left(\bar{\delta}_e^\alpha - \bar{\Delta}_e^\alpha \right)^2 .
\]

Equality on the left–hand side holds if \(\alpha = 0 \), or \(d_i + d_j = \sqrt{\bar{\Delta}_e \bar{\delta}_e} \), for any pair of nonadjacent vertices of \(G \). Equality on the right–hand side holds if and only if \(\alpha = 0 \) or \(d_i + d_j \) is a constant for any pair of non adjacent vertices of \(G \).

Proof. For \(\alpha \geq 0 \), \(n := m, a_i = b_i := (d_i + d_j)^{\alpha/2} \), \(R_1 = R_2 = \bar{\Delta}_e^\alpha, r_1 = r_2 = \bar{\delta}_e^\alpha \), with summation performed over all non adjacent vertices of \(G \), the inequality (1) becomes

\[
m \sum_{i \neq j} (d_i + d_j)^{\alpha} - \left(\sum_{i \neq j} (d_i + d_j)^{\alpha/2} \right)^2 \leq m^2 \gamma(m) \left(\bar{\Delta}_e^\alpha - \bar{\delta}_e^\alpha \right)^2 ,
\]

that is

\[
m H_\alpha(G) - \left(\sum_{i \neq j} (d_i + d_j)^{\alpha/2} \right)^2 \leq m^2 \gamma(m) \left(\bar{\Delta}_e^\alpha - \bar{\delta}_e^\alpha \right)^2 . \tag{5}
\]

For \(\alpha \geq 0 \), \(n := m, a_i := (d_i + d_j)^{\alpha} \), where summation is performed over all pairs of non adjacent vertices of \(G \), the inequality (2) transforms into

\[
\left(\sum_{i \neq j} (d_i + d_j)^{\alpha/2} \right)^2 \leq (m - 1) \sum_{i \neq j} (d_i + d_j)^{\alpha} + m \left(\prod_{i \neq j} (d_i + d_j)^{\alpha} \right)^{1/m} ,
\]

that is

\[
\left(\sum_{i \neq j} (d_i + d_j)^{\alpha/2} \right)^2 \leq (m - 1) H_\alpha(G) + m \left(\Pi_1(G) \right)^{\alpha/m} . \tag{6}
\]

Now from (5) and (6) we obtain right-hand side of (4). Equalities in (5) and (6), and consequently in the right-hand side of (4), hold if and only if \(\alpha = 0 \) or \(d_i + d_j \) is a constant for any pair of non adjacent vertices of \(G \).
For $\alpha \geq 0$, $n := m$, $a_i := (d_i + d_j)^\alpha$, $a_1 := \Delta^\alpha$, $a_n := \delta^\alpha$, with summation performed over all pairs of non-adjacent vertices, the inequality (3) becomes

$$\sum_{i \neq j} (d_i + d_j)^\alpha - m \left(\prod_{i \neq j} (d_i + d_j)^\alpha \right)^{1/m} \geq \left(\frac{\frac{\Delta^\alpha}{e}}{\frac{\delta^\alpha}{e}} \right)^2,$$

from which left-hand part of (4) is obtained. Equality in (7), and consequently in (4), holds if $\alpha = 0$ or $d_i + d_j = \sqrt{\Delta \delta}$ for any pair of non-adjacent vertices of G.

The case $\alpha < 0$ is proved analogously, thus omitted.

Since for any m holds $\gamma(m) \leq \frac{1}{4}$, we have the next corollary of Theorem 1.

Corollary 1. Let G be a simple graph with $m \geq 2$ edges. If $\alpha \geq 0$, then

$$H_\alpha(G) - m (\Pi_1(G))^{\alpha/m} \leq \frac{m^2}{4} \left(\frac{\frac{\Delta^\alpha}{e} - \frac{\delta^\alpha}{e}}{\frac{\Delta^\alpha}{e} - \frac{\delta^\alpha}{e}} \right)^2.$$

If $\alpha \leq 0$ and $G \not\cong K_n$, then

$$H_\alpha(G) - m (\Pi_1(G))^{\alpha/m} \leq \frac{m^2}{4} \left(\frac{\frac{\Delta^\alpha}{e} - \frac{\delta^\alpha}{e}}{\frac{\Delta^\alpha}{e} - \frac{\delta^\alpha}{e}} \right)^2.$$

Equalities hold if and only if $\alpha = 0$, or $d_i + d_j$ is a constant for any pair of non-adjacent vertices of G.

For some specific values of parameter α the following inequalities are obtained.

Corollary 2. Let G, $G \not\cong K_n$, be a simple graph with $m \geq 2$ edges. Then we have

$$\left(\frac{\sqrt{\Delta} - \sqrt{\delta}}{\sqrt{\Delta} \delta} \right)^2 \leq \frac{1}{2} H(G) - m (\Pi_1(G))^{-1/m} \leq m^2 \gamma(m) \left(\frac{\sqrt{\Delta} - \sqrt{\delta}}{\sqrt{\Delta} \delta} \right)^2 \leq \frac{m^2}{4} \left(\frac{\sqrt{\Delta} - \sqrt{\delta}}{\sqrt{\Delta} \delta} \right)^2,$$

$$\left(\frac{\sqrt{\Delta} - \sqrt{\delta}}{\sqrt{\Delta} \delta} \right)^2 \leq \frac{m^2}{4} \left(\frac{\sqrt{\Delta} - \sqrt{\delta}}{\sqrt{\Delta} \delta} \right)^2,$$

$$\left(\frac{\sqrt{\Delta} - \sqrt{\delta}}{\sqrt{\Delta} \delta} \right)^2 \leq \frac{m^2}{4} \left(\frac{\sqrt{\Delta} - \sqrt{\delta}}{\sqrt{\Delta} \delta} \right)^2,$$

$$\left(\sqrt{\Delta} - \sqrt{\delta} \right)^2 \leq \frac{m^2}{4} \left(\frac{\sqrt{\Delta} - \sqrt{\delta}}{\sqrt{\Delta} \delta} \right)^2.$$

Equalities hold if and only if $\alpha = 0$, or $d_i + d_j$ is a constant for any pair of non-adjacent vertices of G.

The case $\alpha \leq 0$ is proved analogously, thus omitted.
\[
(\overline{\Delta_e} - \overline{\delta_e})^2 \leq H\overline{M}(G) - \overline{m}(\overline{\Pi}_1(G))^{2/m} \leq \overline{m}^2 \gamma(\overline{m}) (\overline{\Delta_e} - \overline{\delta_e})^2 \leq \frac{\overline{m}^2}{4} (\overline{\Delta_e} - \overline{\delta_e})^2.
\]

Equalities in the left-hand sides of the above inequalities hold if \(d_i + d_j = \sqrt{\overline{\Delta_e} \overline{\delta_e}} \) for any pair of non-adjacent vertices \(v_i \) and \(v_j \) of \(G \). Equalities in the right-hand sides of the above inequalities hold if and only if \(d_i + d_j \) is constant for any pair of non-adjacent vertices \(v_i \) and \(v_j \) of \(G \).

Since \(2\overline{F}(G) \geq H\overline{M}(G) = \overline{F}(G) + 2\overline{M}_2(G) \geq 4\overline{M}_2(G) \), the following is valid.

Corollary 3. Let \(G \) be a simple graph with \(m \geq 2 \) edges. Then
\[
4\overline{M}_2(G) - \overline{m}(\Pi_1(G))^{2/m} \leq \overline{m}^2 \gamma(\overline{m}) (\overline{\Delta_e} - \overline{\delta_e})^2 \leq \frac{\overline{m}^2}{4} (\overline{\Delta_e} - \overline{\delta_e})^2,
\]
\[
2\overline{F}(G) - \overline{m}(\Pi_1(G))^{2/m} \geq (\overline{\Delta_e} - \overline{\delta_e})^2.
\]

Equalities hold if and only if \(d_i = d_j \) for any pair of non-adjacent vertices of \(G \).

References

[1] M. Biernacki, H. Pidek, C. Ryll–Nardzewski, *Sur une inequality des integralles*, Univer. Marie Curie–Skłodowska, A4 (1950) 1–4.

[2] V. Cirtoaje, *The best lower bound depended on two fixed variables for Jensen’s inequality with order variables*, J. Ineq. Appl. 2010 (2010)# 12858.

[3] N. De, S. M. A. Nayeeam, A. Pal, *The \(F \)-coindex of some graph operations*, Springerplus, 5 (2016) article 221.

[4] T. Došlić, *Vertex–weighted Wiener polynomials for composite graphs*, Ars Math. Contemp. 1 (2008) 66–80.

[5] S. Fajtlowicz, *On conjectures of Graffiti-II*, Congr. Numer. 60 (1987) 187–197.

[6] B. Furtula, I. Gutman, *A forgotten topological index*, J. Math. Chem. 53 (2015) 1184–1190.

[7] I. Gutman, N. Trinajstić, *Graph theory and molecular orbitals. Total \(\pi \)-electron energy of alternant hydrocarbons*, Chem. Phys. Lett. 17 (1972) 535–538.

[8] I. Gutman, B. Rušič, N. Trinajstić, C. F. Wilcox, *Graph theory and molecular orbitals. XII. Acyclic polyenes*, J. Chem. Phys. 62 (1975) 3399–3405.

[9] H. Kober, *On the arithmetic and geometric means and on Hölder’s inequality*, Proc. Amer. Math. Soc. 9 (1958) 452–459.

[10] T. Mansour, C. Song, *The \(a \) and \((a,b) \)-analog of Zagreb indices and coindices of graphs*, Int. J. Combinatorics 2012 (2012) Article ID909285.

[11] D. S. Mitrinović, P. M. Vasić, *Analytic inequalities*, Springer Verlag, Berlin–Heidelberg–New York, 1970.
Some remarks on general sum–connectivity coindex

[12] S. Nikolić, G. Kovačević, A. Miličević, N. Trinajstić, The Zagreb indices 30 years after, CROAT. CHEM. ACTA 76 (2003) 113–124.

[13] G. H. Shirdel, H. Rezapour, A. M. Sayad, The hyper – Zagreb index of graph operations, IRAN. J. MATH. CHEM. 4 (2013) 213–220.

[14] G. Su, L. Xu, On the general sum–connectivity co–index of graphs, IRAN. J. MATH. CHEM. 2 (1) (2011) 89–98.

[15] M. Veylaki, M. J. Nikmehr, The third and hyper–Zagreb coindex of some graph operations, J. APPL. MATH. COMPUT. 50 (2016) 315–325.

[16] K. Xu, K. C. Das, K. Tang, On the multiplicative Zagreb coindex of graphs, OPUSCULA MATH. 33 (1) (2013) 191–204.

[17] B. Zhou, N. Trinajstić, On general sum–connectivity index, J. MATH. CHEM. 47, (2010) 210–218.

[18] B. Zhou, N. Trinajstić, On a novel connectivity index, J. MATH. CHEM. 46 (2009) 1252–1270.