Supporting Information

for Adv. Mater., DOI: 10.1002/adma.202102807

First-Principles Multiscale Modeling of Mechanical Properties in Graphene/Borophene Heterostructures Empowered by Machine-Learning Interatomic Potentials

Bohayra Mortazavi,* Mohammad Silani, Evgeny V. Podryabinkin, Timon Rabczuk, Xiaoying Zhuang,* and Alexander V. Shapeev
Supplementary Information

First-Principles Multiscale Modeling of Mechanical Properties in Graphene/Borophene Heterostructures Empowered by Machine-Learning Interatomic Potentials

Bohayra Mortazavi*, Mohammad Silani, Evgeny V. Podryabinkin, Timon Rabczuk, Alexander V. Shapeev and Xiaoying Zhuang

*a Chair of Computational Science and Simulation Technology, Institute of Photonics, Department of Mathematics and Physics, Leibniz Universität Hannover, Appelstraße 11, 30167 Hannover, Germany.
*b Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering–Innovation Across Disciplines), Gottfried Wilhelm Leibniz Universität Hannover, Hannover, Germany.
*c Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
*d Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Nobel St. 3, Moscow 143026, Russia.
*e College of Civil Engineering, Department of Geotechnical Engineering, Tongji University, Shanghai, China.

*bohayra.mortazavi@gmail.com

Computational details are accessible via: http://dx.doi.org/10.17632/yrn7p7w37f.1

Which contains:

Important Notes.pdf which contains important information for straightforward training of MTPs and details of various folders.

LAMMPS-Inputs.zip folder includes: four examples of LAMMPS input scripts to study the mechanical properties at 300 K with the MTPs interatomic potentials.

AIMD-Inputs.zip folder includes: VASP input parameters for the AIMD simulations.

POSCARs-for-AIMD.zip folder includes: all considered structures for AIMD calculations.

Heterostructure-Models.zip folder includes: constructed four graphene/borophene heterostructure models.

Training-Data-Full.zip folder includes: full obtained AIMD trajectories.

Clean-MTP.zip folder includes: untrained MTPs.

FEM-ABAQUS-Models.zip folder includes: examples of ABAQUS input files for two heterostructures with the domain size of 63 μm (ABAQUS version 6.20).
Fig. S1, Phonon dispersion relations of graphene by DFPT (red-dotted lines) method and trained MTP (continuous green lines) under different biaxial strains ($\varepsilon_{\text{biaxial}}$).
Fig. S2, MTP-based CMD results for the uniaxial stress-strain response and deformation of a heterostructure with the illustrated interface at room temperature. The color coding represents the out-of-plane displacement at each strain level.

Fig. S3, MTP-based CMD results for the uniaxial stress-strain response and deformation of a heterostructure with the illustrated interface at room temperature. The color coding represents the out-of-plane displacement at each strain level.

Fig. S4, MTP-based CMD results for the uniaxial stress-strain response and deformation of a heterostructure with the illustrated interface at room temperature. The color coding represents the out-of-plane displacement at each strain level.
Fig. S5, MTP-based CMD results for the uniaxial stress-strain response and deformation of a heterostructure with the illustrated interface at room temperature. The color coding represents the out-of-plane displacement at each strain level.

Fig. S6, MTP-based CMD results for the uniaxial stress-strain response and deformation of a heterostructure with the illustrated interface at room temperature. The color coding represents the out-of-plane displacement at each strain level.

Fig. S7, MTP-based CMD results for the uniaxial stress-strain response and deformation of a heterostructure with the illustrated interface at room temperature. The color coding represents the out-of-plane displacement at each strain level.
Fig. S8, MTP-based CMD results for the uniaxial stress-strain response and deformation of a heterostructure with the illustrated interface at room temperature. The color coding represents the out-of-plane displacement at each strain level.

Fig. S9, MTP-based CMD results for the uniaxial stress-strain response of pristine graphene and borophene at room temperature at different [strain rates].
Fig. S10. Construction of Voronoi based polycrystalline models of heterostructures in ABAQUS/standard.