Genomic inversions are an increasingly recognized source of genetic variation. However, a lack of reliable high-throughput genotyping assays for these structures has precluded a full understanding of an inversion’s phylogenetic, phenotypic, and population genetic properties. We characterize these properties for one of the largest polymorphic inversions in man (the 4.5-Mb 8p23.1 inversion), a structure that encompasses numerous signals of natural selection and disease association. We developed and validated a flexible bioinformatics tool that utilizes SNP data to enable accurate, high-throughput genotyping of the 8p23.1 inversion. This tool was applied retrospectively to diverse genome-wide data sets, revealing significant population stratification that largely follows a clinal “serial founder effect” distribution model. Phylogenetic analyses establish the inversion’s ancestral origin within the Homo lineage, indicating that 8p23.1 inversion has occurred independently in the Pan lineage. The human inversion breakpoint was localized to an inverted pair of human endogenous retrovirus elements within the large, flanking low-copy repeats; experimental validation of this breakpoint confirmed these elements as the likely intermediary substrates that sponsored inversion formation. In five data sets, mRNA levels of disease-associated genes were robustly associated with inversion genotype. Moreover, a haplotype associated with systemic lupus erythematosus was restricted to the derived inversion state. We conclude that the 8p23.1 inversion is an evolutionarily dynamic structure that can now be accommodated into the understanding of human genetic and phenotypic diversity.

[Supplemental material is available for this article.]

Genomic inversions are a ubiquitous class of structural variation, implicated in speciation (Lowry and Willis 2010), adaptation (Hoffmann and Rieseberg 2008), and human disease (Girirajan and Eichler 2010). In addition to dislocating coding sequences (Feuk 2010), inversions can influence gene expression (Weiler and Eichler 2010). In addition to dislocating coding sequences (Feuk 2010), inversions can influence gene expression (Weiler and Eichler 2010). In addition to dislocating coding sequences (Feuk 2010), inversions can influence gene expression (Weiler and Eichler 2010).

The origin, global distribution, and functional impact of the human 8p23 inversion polymorphism

Maximilian P.A. Salm,1,8,9 Stuart D. Horswell,2 Claire E. Hutchison,1 Helen E. Speedy,1 Xia Yang,3 Liming Liang,4 Eric E. Schadt,3 William O. Cookson,5 Anthony S. Wierzbicki,6 Rossi P. Naoumova,7 and Carol C. Shoulders1,9

1Centre for Endocrinology, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom; 2Bioinformatics & Biostatistics Group, Cancer Research UK London Research Institute, London WC2A 3LY, United Kingdom; 3Department of Systems Biology, Sage Bionetworks, Seattle, Washington 98109, USA; 4Department of Epidemiology, Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA; 5National Heart & Lung Institute, Imperial College London, London SW3 6LY, United Kingdom; 6Guys & St. Thomas Hospital, King’s College London, London SE1 2PR, United Kingdom; 7Institute of Clinical Science, Imperial College London, London W12 0NN, United Kingdom

The origin, global distribution, and functional impact of the human 8p23 inversion polymorphism

1144 Genome Research 22:1144–1153 © 2012, Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/12; www.genome.org
Dehghan et al. (2011) disease phenotypes. The precise molecular mechanisms underlying these associations are poorly defined. Given the profound effect of inversions on local genetic structure (Hoffmann and Rieseberg 2008), future studies should benefit from detailed characterization of 8p23-inv (Harley et al. 2009).

Inversions are often associated with elevated LD within their boundaries due to recombination inhibition between noncollinear regions in inversion heterozygotes (Hoffmann and Rieseberg 2008). This makes high-throughput inversion-typing via genetic markers that perfectly correlate with the structure tenable (Donnelly et al. 2010). This approach was applied to 8p23-inv; identifying candidate inversion proxy single-nucleotide polymorphisms (SNPs) in small (n ≤ 13), ancestrally diverse HapMap samples (Antonacci et al. 2009). Furthermore, two potential inversion-associated SNP homozygosity tracts were identified in six Europeans (Bosch et al. 2009). However, these two studies generally do not concur, in either the predictive SNPs identified or the inversion-type predictions made, which may be attributable to inflated LD estimates stemming from the small sample sizes analyzed (Iles 2008). In a related approach, principal components analysis of phased SNP genotypes was used to predict inversion-type (Deng et al. 2008), but as discussed by Antonacci et al. (2009), these predictions differed considerably from FISH genotype data.

Herein we present a novel, robust high-throughput method to genotype 8p23-inv. By use of this tool, we define population, evolutionary, and functional attributes of the inversion.

Results

Development of a novel 8p23 inversion detection method

To develop a high-throughput assay for 8p23-inv, we typed the inversion by FISH in 68 CEU samples representing 13 CEU trios and 42 HapMap phase II founders (Supplemental Table S1; Supplemental Fig. S1). For clarity, N (noninverted) refers to the orientation represented in the human genome reference (hg19) and I to the inverted state. The inversion was transmitted according to Mendelian inheritance patterns as expected, and published inversion genotypes were confirmed (Supplemental Table S1).

No HapMap SNPs or 1000 Genome Project variants were in complete LD with 8p23-inv (data not shown). Thus no known SNP acts as a perfect proxy for the inversion. However, 20 SNPs with a strong correlation to the inversion (i.e., r² > 0.8) (Supplemental Table S2) were identified. To evaluate their combined efficacy in predicting inversion-type, a leave-n-out cross-validation imputation analysis was performed. While the concordance between known and imputed inversion-type using this SNP set was 86.5 ± 9.2% (mean ± SD), the full range was 45%–100%. Such uncertainty precludes reliable inversion genotyping, and we therefore developed an alternative inversion-typing method based on local genetic substructure.

To explore the relationship between genetic substructure and inversions in the 8p23 region in Europeans, SNP genotypes restricted to the inversion interval in CEU founders were examined using multidimensional scaling (MDS). Individuals stratified into three groups along the first axis, in perfect correlation with their inversion-type (Fig. 1). Moreover, a tri-modal Gaussian mixture model fit to the positions along the first axis allowed effectively unsupervised clustering of this data set into their concomitant inversion-types with associated confidence values. The clustering solution is independently corroborated by three measures: connectivity, the Dunn index, and silhouette width. These concate-
and 3 clusters in the JPT and YRI samples, respectively (Supplementary Fig. S5). Moreover, at a PFIDO clustering threshold of $P < 0.05$, experimentally determined JPT and YRI inversion-types were all predicted correctly ($P = 1.40 \times 10^{-3}$ and $P = 3.61 \times 10^{-5}$, respectively).

To establish the worldwide distribution of 8p23-inv, PFIDO was applied to a combined data set representing 1894 individuals sampled from 56 globally distributed populations (Supplemental Table S4). The 8p23 inversion exhibits a striking clinal distribution, strongly correlating with geographic distance from Addis Ababa (Fig. 3A), a conceivable origin of modern humans (Handley et al. 2007). The I allele is frequent in sub-Saharan Africa (mean = 69.7 ± 5.6%) and progressively diminishes in frequency across the Eurasian continent, effectively disappearing in the Americas (mean = 1.3 ± 2.5%). This population stratification is reflected in a global F_{st} of 0.213, suggesting greater partitioning of 8p23-inv frequency variance between populations than within populations (Holsinger and Weir 2009). Pairwise F_{st} values (estimated in the Human Genome Diversity Project [HGDP]) also strongly correlate with the geographic distance between sampled populations (Mantel test, $r = 0.7, P = 1 \times 10^{-4}$), and there is empirically significant pairwise genetic differentiation between African and Oceanic/American samples ($P < 0.01$) (Fig. 3B).

To examine whether the inversion’s distribution is explicable by non-demographic factors (e.g., positive selection), the 8p23-inv distribution in the HGDP data set was compared with that of 19,969 autosomal SNPs, selected to represent loci of similar allele frequency under putatively neutral selection. Relative to these SNPs, the inversion’s geographical correlation differs marginally ($P < 0.049$) (Supplemental Fig. S6A). Similarly, the 8p23-inv global F_{st} (0.218) is marginally significant compared with the null distribution ($P < 0.022$) (Supplemental Fig. S6B). Thus the inversion’s distribution is

![Figure 2. 8p23 inversion prediction in WTCCC cohorts. PFIDO output (based on 1043 SNPs) is shown overlaying the corresponding MDS plot, for four data sets combined. Predicted inversion-type frequencies are in HWE in all cohorts and CEU FISH-derived inversion-types served as an internal control. For further details, see Figure 1 legend.](image1)

![Figure 3. Population stratification of 8p23-inv. (A) The worldwide frequency distribution of 8p23-inv. The frequency of the inverted allele (I) in each population (Supplemental Table S4) is plotted against geographical distance from Addis Ababa (Ethiopia). Populations are color-coded according to continental origin, and larger symbols correspond to larger samples ($n > 60$). The dashed LOESS fitted line highlights the significant negative correlation between the two variables, as assessed by the Spearman’s rank correlation test. Although one Oceanic sample (Tongan/Samoan) appears as an outlier, its allele frequency (19%) is consistent with this sample’s previously reported genetic relationship to East Asians (Xing et al. 2010). (B) Pairwise F_{st} between HGDP populations, based on 8p23-inv. The bottom right triangle shows pairwise F_{st} values: Each shaded box represents a pairwise population comparison, with higher values in red. The top left triangle (green) shows the corresponding significance of the F_{st} values relative to an empirical distribution of 1000 SNPs (Supplemental Fig. S6C). (Dark green) F_{st} values in the top 1% of the distribution (i.e., $P < 0.01$); (lighter green) F_{st} values in the top 5% (i.e., $P < 0.05$). Populations are grouped by continent of origin (as in A).](image2)
largely consistent with demographic models of the human expansion out of Africa, with a potential weak contribution from positive/negative selection. Nevertheless, given this distribution, population stratification must be accounted for in 8p23-inv case-control association analyses.

Inversion-specific haplotypes and their phenotypic influence

We examined the influence of 8p23-inv on local gene expression in five data sets (Supplemental Note). 8p23-inv was robustly associated with BLK, PPP1R3B, XR6, FAM167A, and CTSH mRNA levels (Supplemental Table SSA). The association between 8p23-inv and PPP1R3B expression is particularly noteworthy as the trend is consistent across populations (Supplemental Fig. S7) and PPP1R3B mRNA levels have been associated with serum lipid levels (Teslovich et al. 2010).

Although inversions can directly influence gene expression (Weiler and Wakimoto 1995), they also exert indirect effects by maintaining allelic configurations (Myers et al. 2007). To explore the latter, the contribution of SNPs in maintaining allelic configurations (Myers et al. 2007). To explore this, we constructed a median-joining network representing phased HapMap CEU haplotypes (Fig. 4). It is therefore likely that associations between 8p23-inv and primary transcripts from the BLK-FAM167A intergenic region (Supplemental Table SSB). However, another SNP identified by re-sequencing (rs1382567) (Ge et al. 2009) is more significantly associated with the 14 reported “expression windows” than the originally reported SNP associations (Ge et al. 2009: supplemental table S1). Moreover, including these SNPs as covariates in the 8p23-inv analysis led only to one significant association: that between 8p23-inv and primary transcripts from the BLK-FAM167A intergenic region (Supplemental Table SSB). However, another SNP identified by re-sequencing (rs1382567) (Ge et al. 2009) is more significantly associated with the BLK-FAM167A intergenic region expression than 8p23-inv (Supplemental Table SSB). These data suggest that the inversion-eQTLs are primarily mediated via SNP alleles common to a specific inversion background.

Allelic expression associations with BLK-FAM167A have been refined to four 16-kb haplotypes (A–D); the A-haplotype accounts for differential BLK and FAM167A expression, while the A- and C-haplotypes account for differential expression from the BLK-FAM167A intergenic region (Ge et al. 2009). In Europeans these haplotypes are completely restricted to specific inversion backgrounds; the B- and D-haplotypes reside on an A background, while the A- and C-haplotypes are found on an N background (Fig. 4). It is therefore likely that associations between 8p23-inv and BLK/FAM167A expression are mediated by the major A-haplotype found only on the N background. Moreover, the fidelity of 8p23-inv as a predictor of BLK-FAM167A intergenic expression is probably attributable to the N background harboring both the A- and C-haplotypes. Regarding disease, risk alleles for systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA) are transmitted solely on the A-haplotype (Fig. 4), and their functional effect is putatively mediated via BLK expression (Hom et al. 2008; Gregersen et al. 2009). Thus, variants specific to the noninverted configuration contribute to the etiology of these autoimmune disorders.

In summary, recombination suppression induced by the inversion appears to have maintained allelic combinations that collectively influence levels of at least five transcripts, leading to distinct expression patterns associated with inversion-type. This suppression of recombination may also have contributed to preservation of a risk haplotype on the N allele for SLE and RA.

Defining the origin of 8p23-inv

To investigate whether 8p23-inv predates the speciation event between humans and chimpanzees, we estimated the “time to most recent common ancestor” (TMRCA) between inversion alleles (Zody et al. 2008). Overlapping allelic RPCI-11 BAC sequences (totaling 178 kb) derived from a likely African-American inversion heterozygote (Supplemental Note) were aligned to a chimpanzee genome assembly (Supplemental Table S6). Assuming the chimpanzee and human lineages diverged 4.5–6 million years ago (mya) (Locke et al. 2011), the I- and N-sequences diverged on average between 390 ± 70 and 520 ± 90 thousand years ago (kya). Including the orangutan sequence (and dating the orangutan-human lineage split at 12–16 mya) (Locke et al. 2011) yielded similar divergence dates whether comparing the RPCI-11 sequence to the chimpanzee (390 ± 100 to 520 ± 130 kya) or orangutan (420 ± 100 to 560 ± 130 kya). Similarly, aligning 2.1 Mb of the chimpanzee genome to HuRef haplotypes (a predicted inversion-heterozygote of European descent) generated comparable 8p23-inv divergence dates of 250 ± 60 to 340 ± 80 kya.

Gene flow potentially confounds these divergence estimates by homogenizing genetic diversity over time, resulting in a seemingly recent TMRCA (Supplemental Note and Fig. S8). We therefore estimated the TMRCA between HuRef haplotypes for a ~22-kb interval with no evidence of gene flow (chr8:10848492–10870275; CEU N and J haplotypes share no polymorphic sites according to HapMap and 1000 Genome Project data), which yielded divergence dates of 315 ± 58 and 420 ± 78 kya. An alternative method designed to estimate the minimum TMRCA between inversion alleles (Andolfatto et al. 1999) indicated that N and J alleles diverged ~364–389 kya (based on HapMap CEU and YRI data). Collectively these data indicate that 8p23-inv arose independently in the Homo and Pan lineages and is thus a recurrent event within primate lineages.

Evolution of the genomic architecture facilitating 8p23-inv

FISH and genetic mapping have narrowed the 8p23-inv breakpoints to two highly homologous low-copy repeat (LCR) regions...
known as “distal repeat” (REPD; ~1.14 Mb) and “proximal repeat” (REPP; ~635 kb) (Hollox et al. 2008). As these structures plausibly enabled inversion formation via nonallelic homologous recombination (NAHR) (Feuk 2010), we investigated their origin by analyzing the syntenic primate sequence in these locations. This identified two orangutan-derived bacterial artificial chromosomes (BACs) that span the syntenic REPP completely, each mapping to two single-copy regions within and outside the human inversion and supporting the inverted orientation as the ancestral state (AC207782 & AC212986) (Supplemental Fig. S9). Remarkably, only 1.5 kb of these BACs shows homology with human LCR sequences (Jiang et al. 2008), indicating an effective absence of LCRs at the syntenic orangutan REPP. Conversely, the orangutan REPD position contains extensive LCRs; for example, a clone that unambiguously maps to the syntenic REPD contains 26.8 kb of LCRs (AC206098) (Supplemental Fig. S9). In gorillas, however, BAC-end sequence analysis identified 11 clones with one end anchored in unique sequence and the other end mapping to REPD/REPP LCRs (Supplemental Fig. S9). These data suggest the paired REPD/REPP arrangement evolved after the emergence of orangutans in the primate lineage.

The timing of REPP formation is also reflected in the genetic divergence between LCR subunits. TM RCA analysis of a non-duplicated LCR section in orangutans that is duplicated in humans and chimpanzees dates the divergence of human REPP/REPD to ~9.5 mya (Supplemental Fig. S10A,B), suggesting REPP was formed prior to the emergence of gorillas during primate speciation. Moreover, pairwise TM RCA analyses of seven ancestral LCR subunits (Jiang et al. 2008) common to REPP/REPD exhibit two peaks in age distribution (Supplemental Fig. S10C): one at ~9 mya and another at ~800 kya (approaching the TM RCA of the J and N alleles).

Collectively, the data suggest that LCR segments were duplicatively transposed (Johnson et al. 2006) from the REPD to the REPP locus in the common ancestor of gorillas, chimpanzees, and humans, resulting in a 27-kb deletion (Supplemental Fig. S11) and the paralogous LCR loci that now bracket the human 8p23-inv, the substrates for inversion-formation. Such a model accounts for the restriction of 8p23-inv to the human and chimpanzee lineages and supports the inverted orientation as the ancestral state.

A breakpoint mapping to a HERV-K element is associated with 8p23-inv
To map the inversion breakpoints at the nucleotide level, REP D and REPP were stringently reassembled into tiling paths using only finished RPCI-11 8p23 BACs (Supplemental Note). This produced two assemblies mapping to REP D (named LCR-A and -B) and two assemblies mapping to REPP (LCR-C and -D), which broadly mirror the existing reference genome assembly, except for the exclusion of non–RPCI-11 data (Supplemental Figs. S12-14). Six RPCI-11 BACs with significant homology with LCRs–A–D were identified that represent putative structural variants. These exhibited mosaic homology patterns, in which subsections of each BAC optimally aligned to different LCR haplotypes (Fig. S5A,B; Supplemental Fig. S15). Similar haplotype junction patterns were found in several clones (Supplemental Fig. S15), indicating that these are not cloning artifacts (Oseogawa et al. 2007).

The haplotype junctions fall into three broad categories (Fig. S5C): The first covers the DEFB locus, a site of extensive copy-number variation (Hollox et al. 2008); the second constitutes a junction between LCR-A and LCR-C; and the third represents junctions between LCR-B and LCR-D. The latter two groups map to large inverted repeats between haplotypes (Fig. S5C). Based on the premise that the inversion was created by NAHR between inverted repeats, the junctions represented in the second and third groups are reasonable candidates for inversion breakpoints.

To explore the potential breakpoints further (see also Supplemental Fig. S16 & Supplemental Note: Fosmid-End Sequences Support the LCR–Haplotype Junctions), multiple sequence alignments of the LCR-A/C and LCR-B/D BAC groups were constructed and analyzed for historical recombination events. At a Bonferroni corrected P < 0.01, five recombination events were detected by all seven detection methods employed (Table 1). In all cases, phylogenetic analysis of the sequences flanking the breakpoint revealed clear migration of one clade between two divergent clades (e.g., Supplemental Fig. S17A), consistent with a recombination product having formed from sequences represented by the two divergent clades. Four recombinant events were detected in multiple BAC libraries (Table 1), suggestive of common breakpoints.

To establish whether recombinant haplotypes co-segregated with inversion-type, 34 CEU founders (15x II, 14x NN, 5x IN) were typed for breakpoint-spanning haplotypes using the double “amplification refractory mutation system” (Lo et al. 1991), followed by PCR-product sequencing to verify haplotype specificity (Supplemental Fig. S17B). After multiple-testing correction, a single haplotype exhibited significant association with inversion-type (P = 3.22 × 10^{-5}, r_e = 0.8) (Table 1, event 5): The “parental” LCR-B related haplotype-group was more common in II samples (14/15) than NN samples (2/14), while the reciprocal “recombinant” LCR-D–related haplotype-group was present in all NN samples and five II samples (P = 0.05) (Supplemental Fig. S18).

In summary, a recombination event was identified that strongly correlates with inversion-type. The data also suggest the N allele derives from an ancestral I allele, consistent with the clinal geographic distribution of 8p23-inv and the orientation of the region in orangutans. Moreover, the recombination event maps to an inverted pair of 9.5-kb human endogenous retrovirus elements (HERV-K27 and HERV-KOLD130352) (Romano et al. 2006), members of an ancient retrovirus family frequently implicated in promoting NAHR (Jern and Coffin 2008).

Discussion
At 8p23-inv, inversion-type and genetic substructure correlate perfectly in ancestrally diverse populations, providing a further example of inversion-mediated recombination suppression (Hoffmann and Rieseberg 2008). This feature acts as an effective surrogate for the inversion, enabling high-throughput 8p23-inv genotyping: Crucially, our predictions perfectly correlated with all FISH-based breakpoint typing method (PFIDO) implicitly suggests that 8p23-inv is infrequent and relatively ancient. Nevertheless, given that no genetic markers were found that perfectly correlate with inversion-type, 8p23-inv may not be an absolute recombination barrier, which corresponds with theoretical predictions for larger inversions (Andolfatto et al. 2001).

Although 8p23-inv encompasses ~4.5 Mb, its worldwide distribution broadly reflects that of simpler genetic markers (Supplemental Fig. S6). Conceptually, the serial founder model of migration from Africa (Novembre and Di Rienzo 2009) accounts for its distribution. This implies that the inversion is not responsible for any highly penetrant adaptive/nonadaptive phenotypes and appears to be under neutral (or very weak) selection pressure. However, numerous signals of natural selection reside within 8p23-inv.
Whether detection of selection was confounded by 8p23-inv remains to be determined; for example, estimates of interpopulation differentiation (Novembre and Di Rienzo 2009) may be influenced by random fluctuations of alleles “hitch-hiking” on the stratified inversion, whereas long-range LD-based neutrality tests (Barreiro and Quintana-Murci 2010) may be affected by the inversion’s pronounced effect on local LD patterns (O’Reilly et al. 2008). Therefore reassessment of selection at 8p23 loci (controlled for inversion-type) is warranted.

Marked population stratification of 8p23-inv may explain the ethnic genetic map length differences observed in the region (Wegmann et al. 2011); for example, there is an inverse correlation between African-American and Asian genetic distance for the

(e.g., Barreiro et al. 2008; Pickrell et al. 2009; Browning and Weir 2010). Whether detection of selection was confounded by 8p23-inv remains to be determined; for example, estimates of interpopulation differentiation (Novembre and Di Rienzo 2009) may be influenced by random fluctuations of alleles “hitch-hiking” on the stratified inversion, whereas long-range LD-based neutrality tests (Barreiro and Quintana-Murci 2010) may be affected by the inversion’s pronounced effect on local LD patterns (O’Reilly et al. 2008). Therefore reassessment of selection at 8p23 loci (controlled for inversion-type) is warranted.

Marked population stratification of 8p23-inv may explain the ethnic genetic map length differences observed in the region (Wegmann et al. 2011); for example, there is an inverse correlation between African-American and Asian genetic distance for the

![Figure 5. LCR structural diversity captured by sequenced RPCI-11 clones. (A) Pairwise alignments (PID > 99%) between LCRs A–D and 10-kb windows of a specified BAC. Each alignment is colored by LCR haplotype, and the dashed line represents PID > 99.9%. A “consensus” is represented on the x-axis, in which each 10-kb window is assigned to its most homologous LCR haplotype. In this example, an interleaved mosaic pattern between LCR-A and -B is found in the first 100 kb of the clone, followed by a transition into LCR-C toward the clone’s end. (B) For the specified BAC, the top pairwise alignment for each 10-kb BAC window (i.e., the consensus) is mapped to its corresponding LCR haplotype (joining lines). The inversion’s single-copy region (interrupted gray line) links the LCR-B and -C haplotypes. This example includes a junction between LCR-A and -C. (C) LCR haplotype junctions discovered in six finished RPCI-11 BACs. Each transition from one haplotype to another is represented by a joining line. (Purple/green) Those that cluster together and are observed in more than one BAC. The first group (purple, represented by AC134683, AC134395, and AC148106) covers the DEFB locus. The second group (green, represented by AC134683 and AC134395) constitutes a junction between LCR-A and LCR-C. The third group (green, involving AC087342, AC092766, AC105214, and AC148106) represents junctions between LCR-B and LCR-D. Notably, AC087342 is anchored by 46 kb of uniquely mapping sequence in the distal end of the inversion. The first annotation track represents the copy-number variant DEFB locus (purple); the second and third annotation tracks (red) indicate inverted repeats between LCR-A and -C (“AvC”) or LCR-B and -D (“BvD”). Statistically significant recombinant sites (numbered 1–5) (Table 1) are marked by vertical breaks in the inverted repeats. The inversion’s single-copy region is represented as in (B).]
breakpoint spanning intervals (Jorgenson et al. 2005; He et al. 2011). Given that the I allele is ~4.5× more frequent in Africans than in Asians (Fig. 3A), breakpoint-flanking markers that are physically close on the (noninverted) genome reference map will frequently be separated by a considerable distance in Africans due to the inversion, resulting in (unexpectedly) long genetic map distances. In Asians, the physical distance between the same markers would generally be concordant with the reference map (with correspondingly “normal” genetic distances). Comparison of the intermarker genetic distances between Africans and Asians consequently gives an impression of increased local recombination in Africans (Jorgenson et al. 2005), whereas the converse would be expected for markers distinctly separated on the genome reference map.

The 17q21.31 inversion (Zody et al. 2008), the Homo and Pan 8p23 inversions appear to have occurred independently as the divergence time between these lineages significantly predates that estimated for the human I and N alleles (~200–600 kya); therefore, the Pan paniscus inversion allele (Antonacci et al. 2009) is likely to represent an independent inversion event. Although the TMRCA analyses suffice to date the 8p23-inv relative to primate speciation events, the actual age estimates are necessarily imprecise. Not only do TMRCA estimates depend on numerous model assumptions (e.g., minimal gene flow), the construction of deep genealogies for inversions is theoretically restricted by their effective population size (Garrigan and Hammer 2006). The difficulty in precisely estimating TMRCA for inversions is exemplified by the 17q21.31 inversion, for which estimates differ greatly, from 1.9–2.7 mya (Zody et al. 2008) to ~14–108 kya (Donnelly et al. 2010); nevertheless, these estimates suffice to place the 17q21.31 inversion event in the Homo lineage.

The timing of REPP formation (Supplemental Fig. S10) coincides with a burst of LCR activity that occurred after the divergence of African great apes and orangutans (Marques-Bonet et al. 2009). This could explain the restriction of 8p23-inv to the African great ape lineage; once accelerated LCR formation had generated the paired REPP/REPD arrangement, the region was susceptible to NAHR-mediated structural instability. Although a derived inversion allele was not observed in gorillas (Antonacci et al. 2009), this may be attributable to limited sampling (n = 3); alternatively, further REPP/REPD rearrangements may have been required prior to inversion formation (e.g., LCR expansion beyond a certain size) (Liu et al. 2011).

In humans, it is unlikely that inversion at 8p23 was a highly recurrent event; this would have eroded the gene-flow barrier between inversion haplotypes, abolishing the observed correlation between inversion-type and genetic substructure. However, a single universal inversion breakpoint was not identified (Supplemental Fig. S18) suggesting some inversion recurrence. Indeed, this might account for the unexpected number of shared polymorphisms observed between I and N alleles (Supplemental Note). Alternatively, given the structural diversity of the surrounding LCRs (Hollox et al. 2008), successive waves of gene conversion and duplication/deletion may have obscured breakpoint signals beyond reasonable recognition. In this regard, the candidate breakpoint may mark a haplotype strongly correlated with inversion status. Finally, in the absence of uninterrupted haplotype-specific LCR assemblies bridging flanking single-copy sequence, the amount of uncharacterized REPD/REPP sequence remains unclear. Therefore, to reliably resolve additional 8p23-inv breakpoints, further positionally anchored REPP/REPD assemblies will be invaluable, a task suited to “third-generation” sequencing techniques (Schadt et al. 2010; Alkan et al. 2011b).

The single LCR–haplotype junction associated with 8p23-inv maps to inverted HERV-K elements, which refines and validates a previously proposed 8p23-inv breakpoint (Antonacci et al. 2009). Transposable elements such as HERV-K are common NAHR substrates (Jern and Coffin 2008); for example, ~20% of the fixed inversions distinguishing human and chimpanzee genomes are products of NAHR at Alu and LINE-1 elements (Lee et al. 2008). Similarly, >16% of human HERV-K elements may have mediated large-scale genome rearrangements during primate evolution (Hedges and Coffin 2001). Retrotransposons promote genomic instability through replication-fork stalling (Zaratiegui et al. 2011), and such a mechanism (mediated by paralogous HERV-K elements) may have generated a common 8p23-inv allele.

8p23-inv exerts an indirect functional impact by inhibiting meiotic recombination, leading to the preservation of deleterious haplotypes. Indeed, SLE risk alleles were restricted to a haplotype on the derived N chromosome (Fig. 4), a haplotype that plausibly accounts for the strong association between 8p23-inv and BLK expression (Ge et al. 2009). Again, a parallel situation exists on the 17q21.31 inversion, in which the “MAPT H1c” haplotype (associated with neurodegenerative disorders and MAPT expression) (Pittman et al. 2006) is restricted to the derived noninverted chromosome (Zody et al. 2008).

The inversion is also robustly associated with mRNA levels of other transcripts, particularly PPP1R3B whose expression levels influence serum lipid levels in rodents and humans (Gasa et al. 2002; Teslovich et al. 2010). Intriguingly, BLK is also involved in pancreatic β-cell insulin metabolism (Borowiec et al. 2009) and

Table 1. Statistically significant recombination events in LCR-A/C and LCR-B/D haplotype groups

Event	1	2	3	4	5
Proximal	7,194,095	7,963,585	8,030,787	8,059,039-8,073,159	8,100,317
Distal	12,016,889	12,500,219	12,431,708	12,389,316-12,403,443	12,362,178
RDP	5.31 × 10⁻²⁴	2.01 × 10⁻¹⁹	1.26 × 10⁻¹⁰	2.01 × 10⁻⁵	5.63 × 10⁻²⁴
GENECNV	1.20 × 10⁻⁴	1.78 × 10⁻¹³	5.55 × 10⁻³	2.73 × 10⁻¹⁵	2.29 × 10⁻²⁵
Bootscan	1.55 × 10⁻²	2.01 × 10⁻¹⁹	8.19 × 10⁻⁴	3.42 × 10⁻⁵	2.25 × 10⁻²⁷
Maxchi	7.74 × 10⁻⁸	4.62 × 10⁻⁸	5.58 × 10⁻³	1.73 × 10⁻¹⁴	9.18 × 10⁻¹⁰
Chimaera	3.86 × 10⁻⁶	3.22 × 10⁻⁸	3.50 × 10⁻⁴	1.69 × 10⁻¹⁰	2.42 × 10⁻¹⁸
SiScan	2.12 × 10⁻²⁹	1.38 × 10⁻¹²	2.80 × 10⁻³	2.71 × 10⁻¹⁴	2.69 × 10⁻²⁹
3Seq	2.60 × 10⁻²²	2.00 × 10⁻¹⁴	6.39 × 10⁻⁵	2.72 × 10⁻⁵	8.74 × 10⁻¹²

Libraries: RPCI-11, RP13, and SCb, RPCI-11 and CTB, RPCI-11 and ABC11, RPCI-11, RP13, SCb, CTD1, and ABC11

Seven recombination detection methods (Martin et al. 2010) identified five recombination events (corrected P-values given), for which physical proximal/distal locations on chromosome 8 are reported (hg18) (see also Fig. 5C). The estimated physical breakpoint location of event 4 was broad, in contrast to the other breakpoints. No definitive “parental” sequences from which the recombinant arose were designated, possibly reflecting missing “parental” sequence data.
insulin is a key regulator of lipid metabolism (Guilherme et al. 2008), suggesting 8p23-inv may influence lipid phenotypes via its joint association with PPP1R3B and BLK expression. Such propositions can now be formally tested using PFIDO.

Methods
All samples were collected with informed consent and approval from relevant institutional review boards. Statistical analyses were performed in R (R Development Core Team 2011) unless otherwise stated. Full descriptions of the enhanced FISH protocol and of SNP genotype data sets are provided in the Supplemental Note.

The PFIDO
The PFIDO (phase free inversion detection operator) algorithm predicts 8p23 inversion-type from diploid SNP genotype data without the need for phase inference (Supplemental Fig. S2). PFIDO first excludes SNPs missing >30% genotype data and then individuals missing >10% data. A pairwise identity-by-state distance matrix is calculated across individuals, using the supplMatrix package (Clayton and Leung 2007), followed by transformation with MDS. Outlier samples are identified in each dimension using the extremalvalues package and are optionally excluded. The derived “axis” (i.e., dimension) showing the most evidence of substructure is identified using the Shapiro-Wilk test, and the mclust package clusters individuals along this axis using a model-based approach (Fraley and Raftery 2006). Specifically, 18 parameterized Gaussian mixture models (1–9 component Gaussian distributions with equal or nonequal variance) are fit by maximum likelihood estimation to impute inversion status based on “tagging” SNPs (r² > 0.8) as derived for inversions according to the method of Andolfatto et al. (1999), where N_e is the effective population size (CEU = 11,418; YRI = 17,469), n_i is the number of inverted chromosomes, and f is approximated using the number of segregating sites specific to inverted and noninverted alleles, which partially accommodates minimal gene flow. A generation time of 25 yr was assumed. In a complementary analysis, sequence overlaps between finished RPCI-11 BACs were extracted. Those corresponding to alternate haplotypes (PID < 99.9999%) (Supplemental Table S6) were aligned to whole-genome shotgun assemblies representing a chimpanzee (“Chimp”/CH251, contig NW_001240294.1) and a Sumatran orangutan (“Susie”/SIS no. 71, contigs NW_002882464.1, NW_002882460.1, NW_002882451.1) using MUSCLE. Assembled HuRef haplotypes (Levy et al. 2007) were similarly aligned to NW_001240294.1. Alignments <10 kb or covering LCRs were excluded. Genetic distances were calculated in MEGA4 (Tamura et al. 2007) using the Kimura 2-parameter method (complete deletion option) (Kimura 1980), and evolutionary rate equality assessed with Tajima’s relative rate test (alignments with P < 0.05) were discarded (Tajima 1993). Divergence times between RPCI-11 haplotypes were calculated according to the method describe by Zody et al. (2008) with the formula T = K/2R (where K is the Kimura 2-parameter estimate, and R the average between taxa substitution rate). Either chimpanzee or orangutan were used as an outgroup, and average divergence times were weighted by alignment length.

Analysis of primate REPD/REPP
REPD/REPP (±200 kb) were downloaded from the UCSC database (hg19) and aligned to the nr database using MegaBLAST. All nonhuman primate sequence was retained and remapped back onto the human genome assembly to confirm their mapping to...
Haplotype-specific PCR

Primers flanking putative breakpoints were designed using Primer3, positioning sequence variants that distinguish BAC haplotype groups at the primer’s 3' end (Supplemental Table S7). PCR was performed in quadruplicate with CEU DNA (Coriell Institute) using AmpliTaq Gold (Applied Biosystems; PCR parameters optimized empirically). To verify product specificity, PCR products were purified with Exonuclease I and SAP and sequenced on an ABI 3730xl.

References

This research was supported by the Medical Research Council and a British Heart Foundation grant. We thank Emma Jones, Margaret Town, Matthew Hurles, and Panos Deloukas for helpful discussions.

Acknowledgments

REPP/REP. Gorilla BAC end sequence data was downloaded from the Trace Archive (ftp://ftp.ncbi.nih.gov/pub/TraceDB/; download date November 26, 2011).

Identifying recombinant sequences

“Finished” BAC sequences were fragmented into overlapping 10-kb segments and aligned to RPCI-11-specific LCR haplotypes using MegaBLAST (parameters: -p 90 -s 90 -q -3 -r 1 -W 28). Each BAC fragment’s optimal alignment against each LCR haplotype was retrieved. Alignments with <99% identity were discarded, which diminished the risk of mistakenly analyzing paralogous LCRs from other cytogenetic intervals, as confirmed by 17 negative control BACs that map to paralogous LCRs on chromosomes 3, 4, 7, 11, and 12.

RPCI-11 clones with evidence of LCR mosaicism were screened for recombination events using seven algorithms implemented in the RDP3 suite (Supplemental Note; Martin et al. 2010). A Bonferroni correction was applied to the P-values, and P < 0.01 was deemed significant. Recombination events with a defined breakpoint identified by all methods and supported by phylogenetic evidence are reported.

Salm et al.

www.genome.org

1152 Genome Research

chromosome 8p23.1 inversion polymorphism. PLoS ONE 4: e8269. doi: 10.1371/journal.pone.0008269.

Brock G, Pihur V, Datta S. 2008. eValid, an R package for cluster validation. J Stat Softw 25: 1–22.

Bronk K, Matsuno N, Giglio S, Martin C, Roseberry J, Zuffardi O, Ledbetter D, Weber JL. 2003. Common long human inversion polymorphism on chromosome 8p. In Science and statistics: A festschrift for Terry Speed. Institute of Mathematical Statistics Lecture Notes Monograph Series (ed. D.R. Goldstein), pp. 237–245. Institute of Mathematical Statistics, Bethesda.

Browning SR, Weir BS. 2010. Population structure with localized haplotype clusters. Genetics 185: 1337–1344.

Chung SA, Taylor KE, Graham RR, Nihtham J, Lee AT, Ortmann WA, Jacob CO, Alarcon-Riquelme ME, Tsao BP, Harley JR et al. 2011. Differential genetic associations for systemic lupus erythematosus based on anti-dsDNA autoantibody production. PLoS Genet 7:e1001323. doi: 10.1371/journal.pgen.1001323.

Clayton D, Leung HT. 2007. An R package for analysis of whole-genome association studies. Hum Hered 64: 45–51.

Dehghan A, Dupuis J, Bardbach M, Bis JC, Eiriksdottir G, Lu C, Peillika A, Wallaschofski H, Kettunen J, Nennemann F et al. 2011. Meta-analysis of genome-wide association studies in >80,000 subjects identifies multiple loci for C-reactive protein levels. Circulation 123: 731–738.

de Meeus T, Goudet J. 2007. A step-by-step tutorial to use HierFst to analyse populations hierarchically structured at multiple levels. Infect Genet Evol 7: 751–755.

Deng Y, Tsao BP. 2010. Genetic susceptibility to systemic lupus erythematosus in the genomic era. Nat Rev Rheumatol 6: 683–692.

Deng L, Zhang Y, Kang J, Liu T, Zhao H, Gao Y, Li C, Pan H, Tang X, Wang D et al. 2008. An unusual haplotype structure on human chromosome 17q21.1 derived from the inversion polymorphism. Hum Mutat 29: 1209–1216.

Donnelly MP, Paschou P, Grigorenko E, Wurzitz D, Mehdi SQ, Kajuna SL, Barta C, Kungulilo S, Kanoma NJ, Lu RB et al. 2010. The distribution and most recent common ancestor of the 17q21 inversion in humans. Am J Hum Genet 86: 161–171.

Feuk L. 2010. Inversion variants in the human genome: role in disease and genome architecture. Genome Med 2: 11.

Frayling C, Raftery AE. 2006. MCLUST version 3 for R: Normal mixture modeling and model-based clustering. Technical report no. 504, Department of Statistics, University of Washington, Seattle.

Garrigan D, Hammer ME. 2006. Reconstructing human origins in the genomic era. Nat Rev Genet 7: 669–680.

Gasa R, Clark C, Yang R, DePalois-Roa AC, Newgard CB. 2002. Reversal of diet-induced glucose intolerance by hepatic expression of a variant glycogen-targeting subunit of protein phosphatase-1. J Biol Chem 277: 1524–1530.

Giglio S, Broman KW, Matsuno N, Calvari V, Gimelli G, Neumann T, Ohashi H, Vouillaire L, Larizza D, Giorda R et al. 2001. Olfactory receptor-gene clusters, genomic-inversion polymorphisms, and common chromosome rearrangements. Am J Hum Genet 68: 874–883.

Girirajan S, Eichler EE. 2010. Phenotypic variability and genetic susceptibility to genomic disorders. Hum Mol Genet 19: R176–R187.

Graham RR, Crotapas C, Davies L, Hackett R, Lessard CJ, Leon JM, Burtt NP, Guiducci C, Parkin M, Gates C et al. 2008. Genetic variants near TNFAIP3 on 6q23 are associated with systemic lupus erythematosus. Nat Genet 40: 1059–1061.

Gregersen PK, Amos CI, Lee AT, Yang R, Remmers EF, Eshel G, Pritchard JK, Coop G, Di Rienzo A. 2008. Adipocyte dysfunctions in obesity: insights from a common NF-κB family of transcription factors, is a newly defined risk locus for rheumatoid arthritis. Nat Genet 40: 821–823.

Guilherme A, Virbasius JV, Puri V, Czech MP. 2008. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9: 567–577.

Hancock AM, Witonsky DB, Gordon AS, Eshel G, Pritchard JK, Coop G, Di Rienzo A. 2008. Adaptations to climate in candidate genes for common metabolic disorders. PLoS Genet 4: e32. doi: 10.1371/journal.pgen.0040332.

Handley LJ, Manica A, Goudet J, Balloux F. 2007. Going the distance: Human population genetics in a clinal world. Trends Genet 23: 432–439.

Harley TF, Kaufman KM, Langefeld CD, Harley JB, Kelly JA. 2009. Genetic susceptibility to SLE: New insights from fine mapping and genome-wide association studies. Nat Rev Rheumatol 5: 285–290.

He C, Weeks DE, Buyske S, Abecasis GR, Stewart WC, Matise TC. Enhanced Map Consortium. 2011. Enhanced genetic maps from family-based disease studies: Population-specific comparisons. BMC Med Genet 12: 15. doi: 10.1186/1471-2350-12-15.
Characterization of the 4.5-Mb 8p23 inversion

Hoffmann AA, Rieseberg LH. 2008. Revisiting the impact of inversions in evolution: From population genetic markers to drivers of adaptive shifts and speciation. *Ann Rev Ecol Evol Syst* 39: 21–42.

Hollox EJ, Barber JC, Brookes AJ, Armour JA. 2008. Defensins and the dynamic genome: What can we learn from structural variation in the human chromosome band 8p23.1. *Genome Res* 18: 1686–1697.

Holsinger KE, Weir BS. 2009. Genetics in geographically structured populations: Defining, estimating and interpreting *Fst*. *Nat Rev Genet* 10: 469–480.

Hom G, Graham RR, Modrek B, Taylor KE, Ottmann W, Garnier S, Lee AT, Chung SA, Ferreira RC, Pant PV, et al. 2008. Association of systemic lupus erythematosus with C10orf13-1BLK and ITGAM-ITGAX. *Nat Ecol Med* 3568: 906–911.

Huang L, Li Y, Singleton AB, Hardy JA, Hillier LW, Jiang Z, Baker C, Mallaun-Borja R, Fulton LA, et al. 2009. A burst of segmental duplications in the genome of the African great ape ancestor. *Nature* 457: 877–881.

Marques-Bonet T, Kidd JM, Ventura M, Graves TA, Cheng Z, Hillier LW, Jiang Z, Baker C, Mallaun-Borja R, Fulton LA, et al. 2009. A burst of segmental duplications in the genome of the African great ape ancestor. *Nature* 457: 877–881.

Martinez DP, Lemey P, Lott M, Moulton V, Posada D, Lefrere P. 2010. RDP3: A flexible and fast computer program for analyzing recombinant. *Bioinformatics* 26: 2462–2463.

Myers AJ, Pittman AM, Zhao AS, Rohrer K, Kaelem M, Malliowe L, Lees A, Leven D, McKiegh PG, Purry RH, et al. 2007. The MAPT H1c risk haplotype is associated with increased expression of tau and especially of 4 repeat containing transcripts. *Neurobiol Dis* 25: 561–570.

Nordmark G, Kristjansdottir G, Theander E, Appel S, Eriksson P, Vasalits L, Kvamstorn M, Delaunau N, Lundmark P, Lundmark A, et al. 2011. Association of EBF1, FAM167A(C10orf13)-1BLK and TNFSF4 gene variants with primary Sjogren’s syndrome. *Genes Immun* 12: 100–109.

Novembre J, Di Rienzo A. 2009. Spatial patterns of variation due to natural selection in humans. *Nat Rev Genet* 10: 745–755.

O’Reilly PF, Birney E, Balding DJ. 2008. Confounding between recombination and selection, and the Ped/Pop method for detecting selection. *Genome Res* 18: 1304–1313.

Oseogawa K, Vessere GM, Li Shu C, Hoskins RA, Abad JP, de Pablos B, Villasante A, de Jong PJ. 2007. BAC clones generated from sheared DNA. *Genomics* 89: 291–299.

Pickrell JK, Coop G, Novembre J, Kudaravalli S, Li JZ, Absher D, Stinivasan RS, Bash GH, Myers RM, Feldman MW, et al. 2009. Signals of recent positive selection in a worldwide sample of human populations. *Genome Res* 19: 826–837.

Pittman AM, Fung HC, de Silver R. 2006. Untangling the tau gene association with neurodegenerative disorders. *Hum Mol Genet* 15: R188–R195.

Raap AK. 1998. Advances in fluorescence in situ hybridization. *Mutat Res* 400: 287–298.

R Development Core Team. 2011. *R: A language and environment for statistical computing*. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.

Romano CM, Ramalho RF, Zanotto PM. 2006. Tempo and mode of ERV-K evolution in human and chimpanzee genomes. *Arch Virol* 151: 2215–2228.

Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canekes K, Chetverin V, Church DM, DiCuccio M, Federhen S, et al. 2011. Database resources of the National Center for Biotechnology Information. *Nucleic Acids Res* 39: D38–D51.

Schadt EE, Turner S, Kasarskis A. 2010. A window into third-generation sequencing. *Hum Mol Genet* 19: R227–R240.

Sugawara H, Harada N, Ida T, Ishida T, Ledbetter DH, Yoshioka K, Ohta T, Kishino T, Nikawa N, Matsumoto N. 2003. Complex low-copy repeats associated with a common polymorphic inversion at human chromosome 8p23. *Genomics* 82: 238–244.

Tajima F. 1989. Simple methods for testing the molecular evolutionary clock hypothesis. *Genetics* 135: 599–607.

Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. *Mol Biol Evol* 24: 1596–1599.

Teo YY, Sim X, Ong RT, Tan AK, Martin C, Fauconnier Y, Gaj A, Ou D, Cheung W, Kirby S, Ku CS, Lee EJ, Seielstad M, et al. 2009. Singapore Genome Variation Project: A haplotype map of three Southeast Asian populations. *Genome Res* 19: 2154–2162.

Tajima F, Mutsumura K, Smith AV, Edmondson AC, Stylianou IM, Koski M, Piruccello JP, Ripatti S, Chasman DI, Willer CJ, et al. 2010. Biological, clinical and population relevance of 95 loci for blood lipids. *Nature* 466: 707–713.

Velgmann D, Kessner DE, Veeramah KR, Mathias RA, Nicolae DL, Yanek LR, Seielstad M, et al. 2009. Complex low-copy repeats associated with a common polymorphic inversion at human chromosome 8p23. *Genomics* 82: 238–244.

Wegmann D, Kessner DE, Veeramah KR, Mathias RA, Nicolae DL, Yanek LR, Sun YY, Torgerson DG, Rafaels N, Mosley T, et al. 2011. Recombination rates in admixed individuals identified by ancestry-based inference. *Nat Genet* 43: 847–853.

Wellmer KS, Wakimoto BT. 1995. Heterochromatin and gene expression in *Drosophila*. *Ann Rev Genet* 29: 577–605.

Wellcome Trust Case Control Consortium. 2007. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. *Nature* 447: 671–678.

Xing J, Watkins WS, Shlien A, Walker E, Huff CD, Witherspoon DJ, Zhang Y, Simonson TS, Weiss RB, Schiffman JD, et al. 2010. Toward a more uniform sampling of human genetic diversity: A survey of worldwide populations with high-density genotyping. *Genomics* 96: 529–533.

Yang SP, Wang Z, Chinwalla AT, Minx P, et al. 2011. Comparative and demographic analysis of orangutan genomes. *Nature* 469: 529–533.

Zaratiegui M, Vaughn MW, Irvine DV, Goto D, Tisdale RM, Arai K, Kishino T, Nikawa N, Matsumoto N. 2003. Complex low-copy repeats associated with a common polymorphic inversion at human chromosome 8p23.