Physical Functioning in Adolescents with Idiopathic Scoliosis

A Systematic Review of Outcome Measures and Their Measurement Properties

Samia Alamrani, PT, MSc,a,b Alison B. Rushton, EdD,a,c Adrian Gardner, BM, PhD, MRCS, FRCS (T&O),d Elena Bini, MSc,c Deborah Falla, PhD,e and Nicola R. Heneghan, PhDa

Study Design. A systematic review.

Objective. To summarize evidence on measurement properties of Outcome Measures (OM) used to assess physical functioning in adolescents with idiopathic scoliosis (AIS).

Summary of Background Data. The AIS is a common spine deformity in those aged 10 to 18 years old. Associated health problems (e.g., back pain) significantly impact the quality of life (QoL). One important domain in QoL is physical functioning, which can be measured with patient-reported outcome measures (PROM), performance-based outcome measures (PBOM), and body structure and function OM. Adequate measurement properties of OM are important for precision in research and practice.

Methods. A two-staged search strategy was performed on electronic databases up to December 2019. Search one revealed a list of OM was used for physical functioning assessment in AIS. Search two identified studies that evaluated the measurement properties of OM in AIS; using the list identified in search one. Two independent reviewers determined study eligibility, risk of bias assessment (CONsensus-based Standards for the selection of health Measurement INstruments [COSMIN] checklist), and performed data extraction. The level of evidence was established using a modified GRADE approach.

Results. Search one yielded: 28 PROM, 20 PBOM, and 10 body structure and function OM. Search two revealed: 16 measurement properties studies for PROM, one for PBOM, and three for body structure and function measures. Construct validity, reliability, and responsiveness of most PROM has been established in AIS, but not content validity or internal consistency (moderate evidence). Construct validity was sufficient for the Timed Up and Go test and body structure and function measures (very low to low evidence).

Conclusion. Currently, physical functioning is evaluated with a variety of measures in AIS. The majority of measurement properties studies evaluated PROM with a paucity of information on measurement properties of PBOM and body structure and function OM. Based on COSMIN methodology, none of the OM identified in this review can be recommended with confidence in individuals with AIS.

Key words: idiopathic scoliosis, measurement properties, outcome assessment, physical functioning, reliability, systematic review, validity.

Level of Evidence: 2

Spine 2021;46:E985–E997

Adolescent idiopathic scoliosis (AIS) is the most common spine deformity among children aged 10 to 18 years old, with prevalence ranging 1% to 3%. Comprising of a lateral curvature and axial rotation of spinal vertebrae, the cause is unknown in most cases. AIS has been linked to back pain, psychological stress, and respiratory dysfunction, potentially impacting on quality of life (QoL).

A dimension of any QoL measurement is “physical functioning,” this being the ability to carry out activities of daily living. Physical functioning limitations have been associated with an increased risk of disability and predictive of social and healthcare use. Limitations include walking and maintaining body positions, as well as pain related functional restriction. Corrective surgery is used for some, necessitating a long recovery period and often associated with pain and immobility in adolescence. Measuring the impact of AIS is therefore important in both research and clinical practice.
Physical functioning can be evaluated with patient-reported outcome measures (PROM), performance-based outcome measures (PBOM), and measures of body structure and function. Each measure assesses different, but complementary, aspects of physical functioning, with PROM for self-report, PBOM for the performance of a specific activity (e.g., chair stand test), and body structure and function providing anatomical data (e.g., range of motion) or a physiological process (e.g., muscle strength).

Outcome measures need adequate measurement properties to assure truthfulness of results and avoid risk of bias. The COmmittee on the Standardization of Measurement Instruments (COSMIN) group developed a taxonomy of measurement properties to enable this. Three main domains are validity, reliability, and responsiveness. The COSMIN group provide guidelines for conducting a systematic review for PROM, which can be adapted for other OM.

The Scoliosis Research Society questionnaire (SRS-22) and its' variants are the most widely used PROM in this population. From the core outcome study (COS), SRS-22 revised (SRS-22r) is recommended and the considered reference standard for evaluating physical functioning for adolescents and young adults with spine deformity. However, SRS-22r does not capture all aspects of physical functioning, such as mobility and self-care. Furthermore, the COS study included all forms of spinal deformities; the heterogeneity limiting applicability to individuals with AIS. Furthermore, little is known about PBOM and body structure and function measures for individuals with AIS.

In the absence of existing relevant reviews, the purpose of this review was to identify OM used to assess physical functioning in individuals with AIS, and secondly to evaluate their measurement properties.

METHODS

Design
This review was conducted according to a registered (PROSPERO CRD42019142335) and published protocol. Designed in line with COSMIN methodology for systematic review of PROM, the review is reported in line with Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statement.

Search Strategy
The search was conducted in two parts. Search one identified and generated a list of OM used for assessment of physical functioning in AIS. Search two identified the studies of measurement properties using the list from search one. Details of both search are listed in Table 1.

Data Sources
A comprehensive search was performed using MEDLINE, PsycINFO, EMBASE, CINAHL, SPORTdiscus, Web of Science, and PubMed databases from date of inception until December 2019. As well as searches on key journals, reference lists, conference proceedings, and grey literature were also searched. The search terms were first developed for MEDLINE and then adapted with relevant syntax and subject headings for the other databases. Supplemental digital content 1, http://links.lww.com/BRS/B720 shows example of search one and two.

TABLE 1. Search One and Search Two Strategy
Search One (Inventory of Outcome Measure)
Inclusion criteria
Outcome measure defined as following:
Exclusion criteria

AIS indicates adolescent idiopathic scoliosis; PBOM, performance-based outcome measure; PROM, patient reported outcome measure.
Study Selection
Two independent reviewers (S.A., E.B.) assessed studies based on the title and abstract for eligibility. In case of insufficient information, full text articles were retrieved and screened for eligibility. The reviewers discussed findings and reached consensus on eligibility of studies. The percentage agreement between reviewers was estimated using the κ statistic (IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp).

Data Extraction
Two reviewers (S.A., E.B.) independently extracted data of eligible studies. Information about study, participants characteristics, outcome measures, and measurement properties were extracted. If information was not clear or unavailable in studies, corresponding authors were contacted.

Risk of Bias Assessment
The risk of bias for each measurement properties was assessed using COSMIN checklist. Adoptions were made for studies of body structure and function, for example, interobserver reliability. This involved removal of inapplicable standards, that is, “was the time interval appropriate?” Each item of measurement property was rated as either “very good,” “adequate,” “doubtful,” or “inadequate quality.” Subsequently overall methodological quality of measurement property was rated based on “the worst score counts principle.” Two independent reviewers (S.A., E.B.) assessed study quality and inconsistencies were resolved by discussion.

Hypotheses for Construct Validity and Responsiveness
Hypotheses for evaluating construct validity and responsiveness assessed in included studies, were pre-defined and listed in supplemental digital content 2, http://links.lww.com/BRS/B721.

Data Analysis and Synthesis
The necessary homogeneity in studies results was insufficient, thus meta-analysis was not performed. Results were therefore synthesized and qualitatively summarized. The measurement property for each study was rated according to updated criteria for good measurement properties as sufficient (+), insufficient (−), or indeterminate (?). Then, evidence was graded using modified Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. Five factors determine quality of evidence: risk of bias, inconsistency, indirectness, imprecision, and publication bias. For evaluating measurement properties in systematic reviews of PROM, only four factors were assessed, with fifth factor (publication bias) removed.

RESULTS
The PRISMA flow diagram shows results of both searches, selection process, and reasons for exclusion (Figure 1).

Search One: Inventory of Outcome Measure
A list of OM was generated and classified into 28 PROM, 20 PBOM, and 10 body structure and function OM are listed in supplemental digital content 3, http://links.lww.com/BRS/B722. The International Classification of Functioning, Disability and Health (ICF) model was used to classify OM into either PBOM or body structure and function OM. Agreement between reviewers (S.A., E.B.) for title and abstract assessment was excellent (94.0%, Kappa = 0.91) and full-text (92.5%, Kappa = 0.80). The third reviewer (N.R.H.) was consulted twice.

Search Two: Measurement Properties
There were 16 studies for measurement properties of PROM, one study for PBOM, and three studies for body structure and function OM (Table 2). Excellent agreement between reviewers (S.A., E.B.) for titles/abstracts (95%, Kappa = 0.92) and substantial agreement for full-text articles (90%, Kappa = 0.78). Eleven authors responded from 21 who were contacted clarifying participants age, language of PROM utilized, or for missing data. The third reviewer (N.R.H.) was consulted four times.

Study and Outcome Measure Characteristics
Detailed information on studies and participant characteristics are shown in Table 2. The OM included were nine PROMs (six disease-specific and three generic), one PBOM, and six body structure and function OM. Detailed description of OMs and their characteristics are shown in Tables 3 and 4.

Risk of Bias
Evaluated measurement properties included, development (n = 1), internal consistency (n = 3), reliability (n = 5), measurement invariance (n = 2), measurement error (n = 2), hypothesis testing for construct validity (n = 18), responsiveness (n = 2). Results of risk bias assessment are presented in supplemental digital content 4, http://links.lww.com/BRS/B723.

Measurement Properties and Synthesis of Evidence
Table 5 shows the summary of findings table for results of measurement properties and the overall evidence for measurement properties against COSMIN and GRADE approach.

Patient-Reported Outcome Measures
Functional scales of SRS-24 displayed sufficient discriminative validity in pre and postsurgery individuals with AIS. While, construct validity of SRS-22 function scale was rated insufficient (moderate-quality evidence), and sufficiently responsive (very low-quality evidence). Measurement invariance of this scale was rated indeterminate since no multiple group factor analysis was performed, and the measurement error rated insufficient. The activity scale of SRS-22r was rated sufficiently reliable as the Interclass Correlation Coefficient (ICC) was 0.76 (0.56– 0.80)
supported by low-quality evidence. However, internal consistency was rated indeterminate. The SRS-22r showed insufficient measurement error (moderate-quality evidence). A strong correlation between function scale of SRS-22r with mobility scale of Child Health Questionnaire-Child Self-Report Form 87 (CHQ-CF87) (Pearson $r = 0.73$) indicating sufficient convergent validity. While, hypothesis of discriminative validity was not met. Thus,
Reference	Name of OM	Country	Age (Mean ± SD) Range	Gender (n)	Sample Size (n)	Curve Type (%) (n)	Curve Size Degree ± SD (n)	Type of Intervention (n)	Score (Mean ± SD)
Feise et al⁸	SQLI	Canada	14.9 ± 2.4 (10–18)	F (70) M (14)	84	NR	Unbraced 26.1 ± 10°	Postsurgical (16) Braced (30) Unbraced (24) Control (14)	81.1 ± 15.7
Parent et al⁸	SQLI	Canada	14.7 ± 1.9 (6–20)	F (95)	95	Main thoracic (2.9); Double thoracic (4); Double major (2); Thoracolumbar/lumbar (20); Thoracolumbar/lumbar, main thoracic (17)	Postsurgical (16) Braced (30) Unbraced (24) Control (14)	NR	
Bastions et al³⁰	SRS-24, SRS-22	USA	14.8 ± 2 (10–21)	F (81%)	829	Lenke 1 (43%); Lenke 2 (20%); Lenke 3 (7%); Lenke 4 (4%); Lenke 5 (16%); Lenke 6 (10%)	Presurgery 55° ± 13° Post surgery 20° ± 9°	Pre- and Postsurgery	NR
Asher et al³⁷	SRS-22	USA	16.4 (10.6–47.3)	F (48) M (10)	58	Single (36%); Double (19%); Triple (5)	63°	Surgery	Function (0 mo) 4.1 Function (3 mo) 3.3 Function (6 mo) 3.9 Function (12 mo) 4.2 Function (24 mo) 4.1
Asher et al³⁷	SRS-22	USA	Control 13 (10.7–15.4); Non-surgical untreated 14 (10.6–16) Non-surgical treated 14 (9.9–15.2); Presurgery 14 (10.6–15.6)	Control F (15) M (4); Non-surgical F (57) M (11); Non-surgical treated F (44) M (10); Non-surgical treated F (31) M (1); Presurgery F (31) M (1)	Total (119)	Control (19); Non-surgical (68 Unbraced (54) Braced (14); Presurgery (32)	Thoracic, thoracolumbar, lumbar, double triple; Largest Cobb angle; Non-surgical untreated 2°; Braced 31° Presurgery 61°	Brace, presurgery, control	Control (4.5 ± 0.5) Non-surgical (4.4 ± 0.36) Non-surgical untreated (4.4 ± 0.37) Non-surgical braced (4.5 ± 0.32) Presurgery (4.2 ± 0.42)
Parent et al⁸	SRS-22	Canada	13.5 ± 20 (153); Total (18.6 ± 9.2)	F (153)	153	NR	30° (5.6); 30°–50° (66) 50° (4)	Observation (107) Bracing (32) Presurgery (23) Postsurgery (62)	Observation (4.3 ± 0.59) Bracing (4.5 ± 0.59) Presurgery (4.2 ± 0.35) Postsurgery (4.1 ± 0.60)
Campeon et al⁸²	SRS-22	USA	14.3 ± 1.9 (10–18)	F (735) M (152)	887	NR	53° ± 18°	Pre and 1 year postsurgery	Presurgery 4.15 ± 0.55 Postsurgery 4.3 ± 0.46
Verma et al⁸⁵	SRS-22	USA and Ghana	13.4	F (100) M (60)	160	NR	67° 2° USA 52°	Presurgery	Ghana 3.7 ± 0.8 USA 4.2 ± 0.4
Berliner et al⁸⁸	SRS-22 r	USA	13.8 (11.0–17.2)	F (115) M (40)	155	Non-surgical thoracic (56.5%); Thoracolumbar (18.7%); Lumbar (48.4%); Presurgical thoracic (65.2%); Thoracolumbar (43.8%); Lumbar (20%)	43.1 Non-surgical 21.9° Presurgical 5.7°	Non-surgical and presurgical 0°–19° (4.5 ± 0.47) 20°–40° (4.4 ± 0.37) 41°–50° (4.1 ± 0.60) 51°–60° (4.2 ± 0.54) >60° (4.3 ± 0.55)	

TABLE 2. Studies and Participants Characteristics

Spine

LITERATURE REVIEW

Adolescent Idiopathic Scoliosis Outcome Measures • Alamrani et al
Reference	Name of OM	Country	Age (Mean ± SD) Range	Gender (n)	Sample Size (n)	Curve Type (%) (n)	Curve Size Degree ± SD (n)	Type of Intervention (n)	Score (Mean ± SD)
Kelly et al	SRS-22r	USA	14.6 (10–22)	F (1,034) M (247)	1,281	Lenke 1 (52%) Lenke 2 (27.2) Lenke 3 (93) Lenke 4 (46) Lenke 5 (196) Lenke 6 (120)	NR	1, 2 year Postsurgery	Activity MCID (0.08) MDMD (0.24)
Glattes et al	SRS-22r, CHQ-CF87	USA	14.1 ± 2.7 (6–16)	F (58) M (12)	Total (70)	NR	29.8 ± 12.3	Presurgery	SRS-22r (4.5 ± 0.65) CHQ-CF87 (91 ± 35.6)
Fedorak et al	PROMIS, SRS22r	USA	14.4 ± 2.1 (11.4–17.4)	F (78.8%) M (21.2%)	113	Thoracic (67%) Thoracic lumbar (21.7%) Lumbar (11.3%)	Thoricic kyphosis 3.4 ± 1.9 Lumbar lordosis 54.6 ± 13.3	Observed, Pre or postsurgery (69.0%) Braces (27.4%) Surgery (3.5%)	PROMIS, Mobility (50.9 ± 9.8) SRS-22r, Function (4.5 ± 0.5)
Roberts et al	SRS-30	USA	14.0 (15.2)	F (83.4%) M (16.5%)	744	Risser grade M (mean 3.5) F (mean 3.2)	F (53.3%) M (55.9%)	Presurgery, 2 yr. Postsurgery	Presurgery F (4.2) M (4.4) Postsurgery F (4.3) M (4.4)
Lubicki et al	SRS-30	USA	15.6 ± 1.7	F (75%)	356	NR	NR	Presurgery, 2 yr. Postsurgery	Presurgery F (4.18 ± 0.55) Postsurgery (4.34 ± 0.51)
Sarwahi et al	SAQ	USA	15 (13 to 17)	F (71) M (24)	95	NR	NR	NR	NR
Lerman et al	PODCI	North America	Patient 15.2 (11.7–18.8)	Patient 15.3 (11.7–20.9)	102	Thoracic (17) Thoracic lumbar (6) Lumbar (7) Double curve (17)	10–29 (n = 23) 20–49 (n = 20) >50° (n = 4)	1 year postsurgery	Upper extremity (96.8 ± 9.9) Transfer (97.6 ± 4.7) Sport & physical function (85.5 ± 17.5) Global function (89.4 ± 9.8)

Performance-based outcome measure:

| Gao et al | TUG | USA | Mild AIS: 14.9 ± 1.7 Moderate AIS: 16.4 ± 3.3 Severe AIS: 15.3 ± 3.1 | NR | AIS (30) Control (30) | Right-sided Thoracic lumbar: Mild AIS 19.9 ± 4.3 Moderate AIS 31.8 ± 4.2 Severe AIS 53.4 ± 16.1 | Thoricic rotation 1.1 ± 12.1 | Treatment | TUG (seconds) | Mild (6.8 ± 1.5) Moderate (6.9 ± 0.9) Severe (6.5 ± 0.8) Healthy control (6.0 ± 0.6) |

Body structure and function outcome measure:

Hresko et al	MST	USA	14.2 ± 1.9 (11.3–18.6)	F (37)	37	Thoracic Lumbar	Thoracic 40° ± 20° Lumbar 31° ± 12°	Treatment	5.7 ± 2.2 cm	
Eyvazov et al	MST, FFI test, Axial rotation, LSB, ΔC7-PSIS	China	15.7 ± 4.1 M (12) F (46)	58	Lenke 5 (Thoracic lumbar/lumbar) Group A: 25° ± 7.1 Group B: 49.8° ± 13.6 Total 34° ± 9.2	Thoracic 27.7° ± 11.4 Lumbar 25.8° ± 10.5				
Slupienski et al	TPHA test	Poland	AIS (12.7 ± 2.6) Control (11.8 ± 2.5)	F (98)	Control (49) AIS (49)	Risser sign Grade 0 (14) Grade 1 (11) Grade 2 (6) Grade 3 (3) Grade 4 (9) Grade 5 (6)	Thoracic 27.7° ± 11.4 Lumbar 25.8° ± 10.5	Physiotherapy	AIS Left TPHA −10.93° ± 4.64° Right TPHA −2.37° ± 8.30° Control	AIS Left TPHA −11° ± 3.30° Right TPHA −8.64° ± 4.70

AIS indicates adolescent idiopathic scoliosis; C7-PSIS, cervical 7 to posterior superior iliac spine; CHQ-CF87, Child Health Questionnaire-Child Self-Report Form 87; F, Female; FFI, Fingertip To Floor test; LSB, lateral side bending; M, Male; MCID, minimal clinically important difference; MDMD, minimal detectable minimal difference; MST, Modified Schober test; NR, not reported; OM, outcome measure; PODCI, Paediatrics Outcomes Data Collection Instrument; PROMIS, patient-reported outcomes measurement information system; SAQ, sport activity questionnaire; SD, standard deviation; SQLI, scoliosis quality of life index; SRS, Scoliosis Research Society; SRS-22r, Scoliosis Research Society-22 Revised; TPHA, Trunk Pelvis Hip Angle test; TUG, Timed Up and Go test; USA, United States of America.
PROMS	Country	Sub-scale Items (n)	Target Population	Mode of Administration	Recall Period	Response Options	Scoring System	Available Translations	
SRS-24	USA	General Function (1)	AIS	Self-administrated	Now, postsurgery	Five response options	1–5	–	
SRS-22	USA	Function/Activity (5)	AIS	Self-administrated	Now, postsurgery	5 response options	1–5	Turkish, Italian, Spanish, Japanese, Traditional Chinese, Simplified Chinese, Polish, French, Thai, Norwegian	
SRS-22r	USA	Function/Activity (5)	AIS	Self-administrated	Now, postsurgery	5 response options	1–5	German, Greek, Dutch, Chinese, Brazilian, Italian, Thai, Arabic, Persian, Swedish	
SRS-30	USA	Function/Activity (5) post-surgery questions (2)	AIS	Self-administrated	Now, postsurgery	Function/Activity (5 response options)	Postsurgery (three response options)	Function (1–5) postsurgery (1–3)	Finnish, Brazilian
CHQ-CF87	USA	Physical functioning (9)	Generic	Self-administrated	NR	Four, five, six response options	0–100	–	
SQLI	Canada	Physical activity (5)	AIS	Self-administrated	Four weeks	Five response options	0–4	–	
SAQ	USA	Total (24) School, gym, carry backpack, bend over, running	AIS	Self-administrated	Postsurgery	NR	NR	–	
PROMIS	USA	Mobility	Generic	Self-administrated	7-day	Five response options	Mean T-score 50, SD 10	–	
PODCI	North America	Upper extremity functioning, Transfers & basic mobility	Generic	Paediatric orthopaedic conditions	Self-administrated parent-report Adolescents report	NR	3–6	0–100	–
A difference in activity scores (0.50) observed at In upright posture, knees straight, bend to The questionnaire was Performance-Based and Body Structure and Function Outcome Measure Characteristics

Very low
R
September 2021
Moderate-quality
et al
while
A very low-quality
rated indeterminate as evidence of sufficient

TABLE 4. Performance-Based and Body Structure and Function Outcome Measure Characteristics

Outcome Measure (Reference)	Activity	Required Equipment	Number of Trials	Parameter Measured
TUG\(^{31}\)	Stand from chair, walk 3 m, return, sit down	Chair, stopwatch, walking space	Three trials	Average of time in seconds
MST\(^{32,33}\)	Marks on PSIS, keep knees straight, bend forward and touch the floor	Tape measure	Two to three trials	Average of distance in cm
FTF test\(^{34}\)	Stood upright, bend forward and touch the floor	Tape measure	Two trials	Average of distance in cm
C7-PSIS distance\(^{34}\)	Stand upright, maximally flex and extend neck, distance measured between C7 spinous process and PSIS	Tape measure	Two trials	Average of distance in cm
LSB angles\(^{31}\)	In upright posture, knees straight, bend to the side without rotation	Goniometer	Two trials	Average angle in degrees between lines joining PSIS and C7
Axial rotation\(^{34}\)	Seated position, locked both arms in front of body with fixed pelvic, shoulder rotation controlled by a goniometer holder device	Goniometer	Two trials on left and right side	Average angle in degrees
TPHA\(^{54}\)	Supine, flex and pull lower limbs, then move limbs to the left or right side	Plurimeter	Three times on each side of body	Average of angle in degrees

C7-PSIS indicates cervical 7 to posterior superior iliac spine; FTF, Fingertip To Floor test; LSB, lateral side bending; MST, Modified Schober Test; TPHA, Trunk Pelvis Hip Angle test; TUG, Timed Up and Go test.

evidence for construct validity was downgraded for inconsistency. Moreover, the scale was found unresponsiveness to change (low-quality evidence).

The SRS-30 consists of questions from both SRS-24 and SRS-22. Although no study was identified evaluated its validity or reliability, high-quality evidence indicated that the construct validity of activity scale of SRS-30 was sufficient.\(^{48}\) A difference in activity scores (0.50) observed at instrumentations construct before and after surgery, while measurement invariance was rated indeterminate.

Scoliosis quality of life index (SQLI) is a modified version of SRS-22 consisting of physical activity domain.\(^{16}\) Very low evidence demonstrated that its content validity is sufficient based on reviewers’ ratings only.\(^{79}\) The questionnaire was tested for comprehensibility among healthy school children (9.9 years old) only.\(^{36}\) Per COSMIN guidance, those children may not consider as representative to population of interest.\(^{79}\) The internal consistency of activity scale was rated indeterminate, while its reliability was insufficient (ICC = 0.46, 0.29–0.63). The evidence was downgraded due to serious risk of bias and imprecision. Moderate-quality evidence showed that construct validity of this scale was sufficient.

Mobility scale of patient-reported outcomes measurement information system (PROMIS)\(^{46}\) correlated with function scale of SRS-22r \((Pearson r = 0.65)\)^\(^{46}\) indicating sufficient construct validity, while functional domains of Paediatrics Outcomes Data Collection Instrument (PODCI) had insufficient construct validity.\(^{50}\)

Internal consistency of physical functioning scale of \((CHQ-CF87)\)^\(^{18}\) rated indeterminate as evidence of sufficient structural validity is not available,\(^{33}\) while its reliability scale was sufficient \((ICC = 0.73, 0.20–0.85)\) based on low-quality evidence.

The sport activity questionnaire (SAQ) was developed based on a test-retest method, which is considered a reliability study based on COSMIN definitions.\(^{15}\) A very low-quality evidence showed that reliability of SAQ was sufficient.

In conclusion, according to COSMIN methodology for a PROM to be recommended for use, it should exhibit any level of sufficient content validity and low level of evidence of sufficient internal consistency.\(^{33}\) None of the identified PROMs in this review met these criteria, thus we are unable to recommend any of these PROMs for use in individuals with AIS. Furthermore, none of these PROM had a high evidence of insufficient measurement properties. Therefore, these PROMs can be used but it requires further assessment of the quality of its measurement properties to be recommended for use with individuals with AIS.\(^{33}\)

Performance-Based Outcome Measure

Timed Up and Go test (TUG) is the only performance measure identified in this review with its measurement properties tested in AIS. A difference in the time to perform TUG test was found between individuals with AIS having different curve severity,\(^{21}\) indicating sufficient construct validity.\(^{31}\)

Body Structure and Function Measures

The Trunk Pelvis Hip Angle (TPHA) test is used to measure mobility of lumbo-pelvic-hip complex.\(^{54}\) Moderate-quality
evidence supported sufficient inter-observer reliability of TPHA (ICC > 0.942).13

The criterion validity of Modified Schober Test (MST) was rated indeterminate (Very low evidence), as not all required information reported, that is, amount of correlation with radiographs.52 While, its construct validity rated insufficient.52

The construct validity of the Fingertip To Floor Test (FTF) and 7th cervical vertebra to posterior superior iliac spine (C7-PSIS) distance was rated insufficient (moderate-quality

| TABLE 5. Summary of Findings Table for the Measurement Properties of Outcome Measure |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|
Measurement Property	**Outcome Measure (Subscale)**	**Summary Result**	**Overall Rating**	**Quality of Evidence**
Internal consistency				
SRS-22r (activity)	$\alpha = 0.82$	$\alpha = 0.82$	$\alpha = 0.89$	$\alpha = 0.89$
Reliability				
SRS-22r (activity)	ICC $= 0.76$ (0.56–0.80)	ICC $= 0.46$ (0.29–0.63)	ICC $= 0.73$ (0.20–0.85)	ICC $= 0.73$ (0.20–0.85)
SAQ	Kappa $\kappa \geq 0.70$	$\kappa = 0.70$	$\kappa = 0.70$	$\kappa = 0.70$
Cross-cultural validity/measuremen				
measurement invariance				
SRS-22 (activity)	No multiple group factor analysis performed			
SRS-30 (Function/Activity)				
SRS-22 (Activity)	SDC (0.24) > MIC (0.08)	SDC (0.41) > MIC (0.08)	SDC (0.41) > MIC (0.08)	SDC (0.41) > MIC (0.08)
SRS-24 (Function)				
SRS-22 (Activity)	Two hypotheses confirmed	Two hypotheses confirmed	Two hypotheses confirmed	Two hypotheses confirmed
SRS-22r (Function)				
SRL (physical activity)				
PODCI (functional scales)				
PROMIS (Mobility)				
TUG test				
MST, FTF Test, C7-PSIS				
Criterion validity				
MST	Not all information for “+”			
Responsiveness				
SRS-22 (Activity)				
SRS-22r (Function)				

C7-PSIS indicates cervical 7 to posterior superior iliac spine; CHQ-CF87 Child Health Questionnaire-Child Self-Report Form 87; FTF, Fingertip To Floor test; ICC, interclass correlation coefficient; LSB, lateral side bending; MIC, minimal important change; MST, Modified Schober test; PODCI, Paediatric Outcomes Data Collection Instrument; PROMIS, patient-reported outcomes measurement information system; SAQ, sport activity questionnaire; SDC, small detectable change; SQLI, scoliosis quality of life index; SRS, Scoliosis Research Society; SRS-22r, Scoliosis Research Society-22 revised; TPHA, Trunk Pelvis Hip Angle test; TUG, Timed Up and Go. $\alpha = $ Cronbach alpha, $+= $ sufficient, $\equiv =$ indeterminate, $\equiv =$ insufficient.

Copyright © 2021 Wolters Kluwer Health, Inc. Unauthorized reproduction of this article is prohibited.
No difference in scores of these tests was found between individuals with mild and severe curves. On the other hand, construct validity of lateral side bending (LSB) angle and axial rotation was sufficiently different between individuals with severe curves.

Interpretability and Feasibility

Information about interpretability and feasibility aspects of functional scales included in this review are available in supplemental digital content 5, http://links.lww.com/BRS/B724. The majority of these scales had high ceiling effect (20%–44%) and minimal floor effects. An exception to this is physical activity scale of SQLI (minimal ceiling and floor effects). The minimal clinical important difference (MCID) reported for activity domain for SRS-22 is 0.08. While minimum detectable measurement difference (MDMD) of activity for SRS-22r is 0.24. Review studies did not report information about response shift and percentage of missing items. Moreover, limited information found about feasibility aspects. Most of the included PROMs are completed within 2 to 3 minutes, and it could be concluded that these PROMs are easy to complete, available in different settings, and available free of charge.

DISCUSSION

This is the first rigorous systematic review identifying OM used to assess physical functioning in individuals with AIS and evaluating their respective measurement properties. Search one enabled the generation of a list of OM and search two revealed a few measurement properties studies; comprising nine PROMs, just one PBOM, and six measures of body structure and function. None of the identified PROMs had evidence of sufficient content validity and sufficient internal consistency. Thus, PROMs identified in this review have the potential to be recommended for use but are yet to have the measurement properties investigated. The current evidence showed limited information on the measurement properties of PBOM and body function and structure measure in individuals with AIS.

Patient-Reported Outcome Measure

This review highlights a gap in evidence on content validity of routinely used PROMs that evaluate physical functioning in individuals with AIS. As COSMIN suggested, content validity is the first and most important measurement property to consider when selecting any PROM. It should be assessed with an interview with both professionals and patients to assess relevance, comprehensiveness, and comprehensibility of items within a PROM. The identified PROMs lack adequate development process, as many were developed in a population whose mean age was higher than that of individuals with AIS. The physical activity scale of SQLI was the only scale where its comprehensibility had been investigated, however using healthy children it is not representative of our population of interest.

The majority of identified measurement properties’ studies tested construct validity, which displayed sufficient ratings in most of OMs. Otherwise, internal consistency was undetermined due to lack of evidence of sufficient structural validity. Most of activity scales identified demonstrated high ceiling effects, which affect its ability to assess changes in patient’s status.

Performance-Based Outcome Measure

Compared with PROMs just one study has investigated measurement properties of a PBOM where pain and psychological distress may influence the self-reporting of functional ability, it is questionable if PROMs are providing adequate information about actual functional performance of this population. While the TUG test assesses balance, mobility, and walking ability, more evidence-based PROM are needed to evaluate important and meaningful activities of daily livings for individuals with AIS.

Body Structure and Function Measures

Radiographs, measured using Cobb angle, are the gold standard measure for evaluating spinal curvature. While measurement properties of this measure have been studied before, little attention has given to other measures, such as MST and FTF test. These tests are inexpensive, easy, quick measure that does not expose young spines to ionizing radiation. When adequate measurement properties of these OM established, it could serve as a surrogate to radiographs.

Strengths and Limitations

This review utilized two-search strategy to enable identification of all types of OM used in AIS. Risk of selection bias was minimized by involving two independent reviewers for all stages. Adherence to the COSMIN methodology as preferred approach for systematic review of measurement properties is another strength. However, ratings of studies were determined using lowest score principle, which may underestimate a study’s final quality score. A potential limitation of this review is there are few studies investigating measurement properties in individuals with AIS, and some that were included where investigating of measurement property was not a primary aim.

CONCLUSION

A range of measures are used for physical functioning assessment in individuals with AIS. The majority of measurement properties studies identified were for PROM with a paucity of information on PBOM and body structure and function measures. Moreover none of the identified PROM can be recommended for use in AIS. More measurement properties studies are required to support recommendation of these measures for research and clinical practice.

Key Points

- A two staged search strategy was performed on all types of outcome measure for physical functioning assessment for AIS.
Supplemental digital content is available for this article. Direct URL citations appearing in the printed text are provided in the HTML and PDF version of this article on the journal’s Web site (www.spinejournal.com).

References
1. Konecny MR, Senyurt H, Krauspe R. Epidemiology of adolescent idiopathic scoliosis. J Child Orthop 2013;7:3–9.
2. Weinstein SL, Dolan LA, Cheng JC, et al. Adolescent idiopathic scoliosis. Lancet 2008;371:1527–37.
3. Hamad A, Ahmed EB, Tsirikos AI. Adolescent idiopathic scoliosis: a comprehensive approach to aetiology, diagnostic assessment and treatment. J Orthop Trauma 2017;31:1343–9.
4. Makino T, Kaito T, Kashii M, et al. Low back pain and patient-reported QOL outcomes in patients with adolescent idiopathic scoliosis without corrective surgery. Springerplus 2015;4:397.
5. Lesczewska J, Czaprowski D, Pawłowska P, et al. Evaluation of the stress level of children with idiopathic scoliosis in relation to the method of treatment and parameters of the deformity. Sci World J 2012;2012:538409.
6. Durmala J, Tomalak W, Kotwicki T. Function of the respiratory system in patients with idiopathic scoliosis: reasons for impairment and methods of evaluation. Stud Health Technol Inform 2008;135:237–45.
7. Du C, Yu J, Zhang J, et al. Relevant areas of functioning in patients with adolescent idiopathic scoliosis on the International Classification of Functioning, Disability and Health: The patients’ perspective. J Rehabil Med 2016;48:806–14.
8. Dodd S, Clarke M, Becker L, et al. A taxonomy has been developed for outcomes in medical research to help improve knowledge discovery. J Clin Epidemiol 2018;96:84–92.
9. Tomey KM, Sowers MR. Assessment of physical functioning: a conceptual model encompassing environmental factors and individual compensation strategies. Phys Ther 2009;89:705–14.
10. Bastrom TP, Marks MC, Yasay B, et al. A taxonomy has been developed for outcomes in medical research to help improve knowledge discovery. J Clin Epidemiol 2018;96:84–92.
11. LaMontagne LL, Hepworth JT, Cohen F, et al. Adolescent scoliosis: effects of corrective surgery, cognitive-behavioural interventions, and age on activity outcomes. Appl Nurs Res 2004;17:168–77.
12. Reiman MP, Manske RC. The assessment of function: how is it measured? A clinical perspective. J Man Manip Ther 2011;19:91–9.
13. Bean JF, Olveczky DD, Kiely DK, et al. Performance-based versus patient-reported physical function: what are the underlying predictors? Phys Ther 2011;91:1804–11.
14. Mokkink LB, de Vet HCW, Prinsen CA, et al. COSMIN methodology: none of measures identified in this review can be recommended for use in individuals with AIS.
15. Bean JF, Olveczky DD, Kiely DK, et al. Performance-based versus patient-reported physical function: what are the underlying predictors? Phys Ther 2011;91:1804–11.
16. Prinsen CA, Mokkink LB, Beuker LM, et al. COSMIN guideline for systematic reviews of patient-reported outcome measures. Qual Life Res 2010;19:2360–71.
17. Prinsen CA, Mokkink LB, Beuker LM, et al. COSMIN guideline for systematic reviews of patient-reported outcome measures. Qual Life Res 2010;19:2360–71.
18. Slavin RC, Burton DC, Lai SM, et al. The reliability and concurrent validity of the Scoliosis Research Society-22r patient questionnaire compared with the Child Health Questionnaire-CF87 patient questionnaire for adolescent spinal deformity. Spine (Phila Pa 1976) 2007;32:1778–84.
19. Hafer TR, Gorup JM, Shin TM, et al. Results of the Scoliosis Research Society instrument for evaluation of surgical outcome in adolescent idiopathic scoliosis: A multicenter study of 244 patients. Spine (Phila Pa 1976) 1999;24:1435–40.
20. de Kleuver M, Faraj SSA, Holewijn RM, et al. Defining a core outcome set for adolescent and young adult patients with a spinal deformity. Acta Orthop 2017;88:612–8.
21. Faraj SSA, van Hooff ML, Holewijn RM, et al. Measuring outcomes in adult spinal deformity surgery; a systematic review to identify current strengths, weaknesses and gaps in patient-reported outcome measures. Eur Spine J 2017;26:2084–93.
22. Alamrani S, Rushton A, Gardner A, et al. Outcome measures evaluating physical functioning and their measurement properties in adolescent idiopathic scoliosis: a protocol for a systematic review. BMJ Open 2020;10:e034286.
23. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e100097.
24. Cobb J. Outline for the study of scoliosis. Instr Course Lect AAOS 1948;5:261–75.
25. Santé Omdl, Organization WHO, Staff WHO. International Classification of Functioning, Disability and Health, ICFed. Geneva: World Health Organization; 2001.
26. Prowse A, Pope R, Gerdhem P, et al. Reliability and validity of inexpensive and easily administered anthropometric clinical evaluation methods of postural asymmetry measurement in adolescent idiopathic scoliosis: a systematic review. Eur Spine J 2016;25:450–66.
27. Langensiepen S, Semler O, Sobottke R, et al. Measuring procedures to determine the Cobb angle in idiopathic scoliosis: a systematic review. Eur Spine J 2013;22:2360–71.
28. Navarro I, Rosa BND, Candotti CT. Anatomical reference marks, evaluation parameters and reproducibility of surface topography for evaluating the adolescent idiopathic scoliosis: a systematic review with meta-analysis. Gait Posture 2019;69:112–20.
29. Wade R, Yang H, McKenna C, et al. A systematic review of the clinical effectiveness of EOS 2D/3D X-ray imaging system. Eur Spine J 2013;22:296–304.
30. Fong DY, Lee CF, Cheung KM, et al. A meta-analysis of the clinical effectiveness of school scoliosis screening. Spine (Phila Pa 1976) 2010;35:1061–71.
31. Wu HD, Liu W, Wong MS. Reliability and validity of lateral curvature assessments using clinical ultrasound for the patients with scoliosis: a systematic review. Eur Spine J 2020;29:717–25.
32. He C, Wong MS. Spinal flexibility assessment on the patients with adolescent idiopathic scoliosis: a literature review. Spine (Phila Pa 1976) 2018;43:E230–8.
33. Mokkink LB, Prinsen C, Patrick DL, et al. COSMIN methodology for systematic reviews of Patient-Reported outcome measures (PROMs): User Manual. 2018.
34. Balsen H, Helland M, Schünemann HJ, et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 2011;64:401–6.
35. Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas 1960;20:37–46.
36. Feise RJ, Donaldson S, Crowther ER, et al. Construction and validation of the scoliosis quality of life index in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2005;30:1310–5.
37. Parent EC, Hill D, Moreau M, et al. Score distribution of the Scoliosis Quality of Life Index questionnaire in different subgroups of patients with adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2007;32:1767–73.
38. Bastrom TP, Bartley C, Marks MC, et al. Postoperative perfection: ceiling effects and lack of discrimination with both SRS-22 and -24 outcomes instruments in patients with adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2015;40:E1323–9.
39. Asher M, Min Lai S, Burton D, et al. Scoliosis research society-22 patient questionnaire: responsiveness to change associated with surgical treatment. Spine (Phila Pa 1976) 2003;28:70–3.

40. Asher M, Min Lai S, Burton D, et al. Discrimination validity of the scoliosis research society-22 patient questionnaire: relationship to idiopathic scoliosis curve pattern and curve size. Spine (Phila Pa 1976) 2003;28:74–8.

41. Parent EC, Hill D, Mahood J, et al. Discriminative and predictive validity of the scoliosis research society-22 questionnaire in management and curve-severity subgroups of adolescents with idiopathic scoliosis. Spine (Phila Pa 1976) 2006;31:2304–12.

42. Carreon LY, Sanders JO, Diab M, et al. The minimum clinically important difference in scoliosis research society-22 appearance, activity, and pain domains after surgical correction of adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2010;35:2079–83.

43. Verma K, Loner B, Toombs CS, et al. International utilization of the SRS-22 instrument to assess outcomes in adolescent idiopathic scoliosis: what can we learn from a medical outreach group in Ghana?. J Pediatr Orthop 2014;34:503–8.

44. Berliner JL, Verma K, Loner BS, et al. Discriminative validity of the Scoliosis Research Society Questionnaire 22 among five curve-severity subgroups of adolescents with idiopathic scoliosis. Spine J 2013;13:127–37.

45. Shibli MP, Lenke LG, Sponseller PD, et al. The minimum detectable measurement difference for the Scoliosis Research Society-22r in adolescent idiopathic scoliosis: a comparison with the minimum clinically important difference. Spine J 2019;19:1319–23.

46. Fedorak GT, Larkin K, Heijn FA, et al. Pediatric patient-reported outcomes measurement information system is equivalent to scoliosis research society-22 in assessing health status in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2019;44:E1206–10.

47. Roberts DW, Savage JW, Schwartz DG, et al. Male-female differences in Scoliosis Research Society-30 scores in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2011;36:E53–9.

48. Lubicky JP, Hanson JE, Riley EH. Instrumentation constructs in pediatric patients undergoing deformity correction correlated with Scoliosis Research Society scores. Spine (Phila Pa 1976) 2011;36:1692–700.

49. Sarwahi V, Wendoloski S, Geacler R, et al. When do patients return to physical activities and athletics after scoliosis surgery?: A validated patient questionnaire based study. Spine (Phila Pa 1976) 2018;43:167–71.

50. Lerman JA, Sullivan E, Haynes RJ. The Pediatric Outcomes Data Collection Instrument (PODCI) and functional assessment in patients with adolescent or juvenile idiopathic scoliosis and congenital scoliosis or kyphosis. Spine (Phila Pa 1976) 2002;27:2052–7; discussion 2057–8.

51. Gao C-C, Chern J-S, Chang C-J, et al. Center of pressure progression patterns during level walking in adolescents with idiopathic scoliosis. PLoS One 2019;14:e021161.

52. Hresko MT, Mesiha M, Richards K, et al. A comparison of methods for measuring spinal motion in female patients with adolescent idiopathic scoliosis. J Pediatr Orthop 2006;26:758–63.

53. Eyvazov K, Samartza D, Cheung JPY. The association of lumbar curvature magnitude and spinal range of motion in adolescent idiopathic scoliosis: a cross-sectional study. BMC Musculoskelet Disord 2017;18:197.

54. Stepien A, Guzek K, Paldyna B, et al. The Trunk-Pelvis-Hip Angle test is a reliable measurement of the range of the lower trunk-pelvis rotation in adolescents. J Orthop Ther 2018;10:1124.

55. Alany A, Cil A, Berk H, et al. Reliability and validity of a Turkish Version of the Scoliosis Research Society-22 (SRS-22) questionnaire. Spine (Phila Pa 1976) 2005;30:2464–8.

56. Monticone M, Carab salona R, Negrini S. Reliability of the Scoliosis Research Society-22 Patient Questionnaire (Italian version) in mild adolescent vertebral deformities. Eur J Med Genet 2004;40:191–7.

57. Bagio J, Climent JM, Ey A, et al. The Spanish version of the SRS-22 patient questionnaire for idiopathic scoliosis: translational adaptation and reliability analysis. Spine (Phila Pa 1976) 2004;29:1676–80.

58. Hashimoto H, Sase T, Arai Y, et al. Validation of a Japanese version of the Scoliosis Research Society-22 Patient Questionnaire among idiopathic scoliosis patients in Japan. Spine (Phila Pa 1976) 2007;32:E141–6.

59. Cheung KM, Senkoylu A, Alany A, et al. Reliability and concurrent validity of the adapted Chinese version of Scoliosis Research Society-22 (SRS-22) questionnaire. Spine (Phila Pa 1976) 2007;32:1141–5.

60. Li M, Wang CF, Gu SX, et al. Adapted simplified Chinese (mainland) version of Scoliosis Research Society-22 questionnaire. Spine (Phila Pa 1976) 2009;34:1321–4.

61. Glowacki M, Misterska E, Laurentowska M, et al. Polish adaptation of scoliosis research society-22 questionnaire. Spine (Phila Pa 1976) 2009;34:1060–5.

62. Beausjour M, Joncas J, Goulet L, et al. Reliability and validity of an adapted French Canadian version of Scoliosis Research Society Outcomes Questionnaire (SRS-22) in Quebec. Spine (Phila Pa 1976) 2009;34:623–8.

63. Lonjon G, Illarheorde B, Odent T, et al. Reliability and validity of the French-Canadian Version of the Scoliosis Research Society Questionnaire 22 Questionnaire in France. Spine (Phila Pa 1976) 2014;39:E26–34.

64. Leelapatana P, Keorochana G, Johnson J, et al. Reliability and validity of an adapted Thai version of the Scoliosis Research Society-22 questionnaire. J Child Orthop 2011;5:33–40.

65. Adorob RD, Rimeslatten S, Keller A, et al. Repetitability, reliability, and concurrent validity of the scoliosis research society-22 questionnaire and EuroQol in patients with adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2010;35:206–9.

66. Asher MA, Lai SM, Glattes RC, et al. Refinement of the SRS-22 Health-Related Quality of Life questionnaire Function domain. Spine (Phila Pa 1976) 2006;31:593–7.

67. Niemeyer T, Schubert C, Halm HF, et al. Validity and reliability of an adapted german version of scoliosis research society-22 questionnaire. Spine (Phila Pa 1976) 2009;34:818–21.

68. Antonarakos PD, Katranitsa L, Angelis L, et al. Reliability and validity of the adapted Greek version of scoliosis research society 22 (SRS-22) questionnaire. Scoliosis 2009;4:14.

69. Schlosser TP, Stadhouder A, Schimmel JJ, et al. Reliability and validity of the adapted Dutch version of the revised Scoliosis Research Society 22-item questionnaire. Spine J 2014;14:1663–72.

70. Canavini PM, Rosanova GC, Gabriel BS, et al. The Brazilian version of the SRS-22r questionnaire for idiopathic scoliosis. Braz J Phys Ther 2013;17:494–503.

71. Monticone M, Biaardi P, Calabro D, et al. Development of the Italian version of the revised Scoliosis Research Society-22 Patient Questionnaire, SRS-22r: multicultural adaptation, factor analysis, reliability, and validity. Spine (Phila Pa 1976) 2010;35:E1412–7.

72. Sathira-Angkura V, Pirhanukkul K, Sakulpipatana S, et al. Validity and reliability of an adapted Thai version of Scoliosis Research Society-22 questionnaire for adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2012;37:783–7.

73. Haidar RK, Kasak K, Masrouha K, et al. Reliability and validity of an adapted Arabic version of the Scoliosis Research Society-22r Questionnaire. Spine (Phila Pa 1976) 2015;40:E971–7.

74. Mousavi SJ, Mobini B, Medhian H, et al. Reliability and validity of the persian version of the scoliosis research society-22 questionnaire. Spine (Phila Pa 1976) 2010;35:784–9.

75. Danielsson AJ, Romberg K. Reliability and validity of the Swedish Version of the Scoliosis Research Society-22 (SRS-22r) patient questionnaire for idiopathic scoliosis. Spine (Phila Pa 1976) 2013;38:1873–84.

76. Scoliosis Research Society web site. SRS-30 Patient Questionnaire. Available at: http://www.srs.org/professionals/outcomes/srs-30.pdf. Accessed March 2020.

77. Kyrola K, Jarvenpaa S, Ylmen J, et al. Reliability and validity study of the Finnish adaptation of scoliosis research society questionnaire version SRS-30. Spine (Phila Pa 1976) 2017;42:943–9.

78. Carrocco G, Meves R, Avanz O. Cross-cultural adaptation and validity of an adapted Brazilian Portuguese version of Scoliosis Research Society-30 questionnaire. Spine (Phila Pa 1976) 2012;37:E60–3.
79. Terwee CB, Prinsen CAC, Chiarotto A, et al. COSMIN methodology for evaluating the content validity of patient-reported outcome measures: a Delphi study. *Qual Life Res* 2018;27:1159–70.

80. Asher M, Min Lai S, Burton D, et al. The reliability and concurrent validity of the scoliosis research society-22 patient questionnaire for idiopathic scoliosis. *Spine (Phila Pa 1976)* 2003;28:63–9.

81. Sanders AE, Andras LM, Iantorno SE, et al. Clinically significant psychological and emotional distress in 32% of adolescent idiopathic scoliosis patients. *Spine Deform* 2018;6:435–40.