Central African biomes and forest succession stages derived from modern pollen data and plant functional types

J. Lebamba, A. Ngomanda, A. Vincens, D. Jolly, C. Favier, H. Elenga, Ilham Bentaleb

To cite this version:
J. Lebamba, A. Ngomanda, A. Vincens, D. Jolly, C. Favier, et al.. Central African biomes and forest succession stages derived from modern pollen data and plant functional types. Climate of the Past, European Geosciences Union (EGU), 2009, 5 (3), pp.403-429. 10.5194/cp-5-403-2009. hal-03197644

HAL Id: hal-03197644
https://hal.archives-ouvertes.fr/hal-03197644
Submitted on 14 Apr 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Central African biomes and forest succession stages derived from modern pollen data and plant functional types

J. Lebamba, A. Ngomanda, A. Vincens, D. Jolly, C. Favier, H. Elenga, and I. Bentaleb

1ISE-M, UMR 5554 CNRS/Université Montpellier II, Place Eugène Bataillon, cc61, 34095 Montpellier cedex 5, France
2Institut de Recherche en Ecologie Tropicale (IRET/CENAREST), BP 13354, Libreville, Gabon
3CEREGE, CNRS/Université Aix-Marseille/IRD/CdF, BP 80, 13545 Aix-en-Provence cedex 04, France
4Faculté des Sciences, Université Marien Ngouabi, BP 69, Brazzaville, Congo
5LSCE, UMR CNRS/CEA/UVSQ, 12 Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
†deceased

Received: 23 October 2008 – Published in Clim. Past Discuss.: 15 January 2009
Revised: 20 May 2009 – Accepted: 17 June 2009 – Published: 29 July 2009

Abstract. New detailed vegetation reconstructions are proposed in Atlantic Central Africa from a modern pollen data set derived from 199 sites (Cameroon, Gabon and Congo) including 131 new sites. In this study, the concept of plant functional classification is improved with new and more detailed plant functional types (PFTs) and new aggregations of pollen taxa. Using the biomisation method, we reconstructed (1) modern potential biomes and (2) potential succession stages of forest regeneration, a new approach in Atlantic Central African vegetation dynamics and ecosystem functioning reconstruction. When compared to local vegetation, potential biomes are correctly reconstructed (97.5% of the sites) and tropical rain forest (TRFO biome) is well identified from tropical seasonal forest (TSFO biome). When the potential biomes are superimposed on the White’s vegetation map, only 76.4% of the sites are correctly reconstructed. But using botanical data, correspondence and cluster analyses, the 43 sites from Congo (Mayombe) evidence more affinities with those of central Gabon and so they can also be considered as correctly reconstructed as TRFO biome and White’s map should be revised. In terms of potential succession stages of forest regeneration, the mature forest (TMFO) is well differentiated from the secondary forest (TSF), but inside this latter group, the young and the pioneer stages are not clearly identified due probably to their low sampling representation. Moreover, linked to their progressive and mosaic character, the boundaries between two forest biomes or two forest stages are not clearly detected and need also a more intensive sampling in such transitions.

Correspondence to: J. Lebamba (judi@isem.univ-montp2.fr)

1 Introduction

Plant functional classifications were first proposed by a core project of IGBP, “Global Change and Terrestrial Ecosystems”, in the early-mid 1990’s as a tool to model vegetation dynamics and ecosystem functioning in response to climate and CO2. Such classifications appeared as an ecological alternative to traditional taxonomic entities for the simplification of floristic complexity in global vegetation models (e.g. Prentice et al., 1992; Woodward and Cramer, 1996; Haxeltine and Prentice, 1996; Cramer, 1997; Leemans, 1997; Smith et al., 1997) and for mapping vegetation patterns at key periods in the past (Prentice and Webb, 1998; Prentice et al., 2000). Since then, extensive research has been carried out to identify plant functional types (PFTs) which are sets of plant species exhibiting similar responses to environmental conditions and grouped on the basis of structural and functional characters (e.g. Noble and Gitay, 1996; Diaz and Cabido, 1997; Diaz Barradas et al., 1999). These PFTs are characterised by a set of common biological attributes correlated with their behaviour (Gitay and Noble, 1996; Diaz Cabido, 1997; Diaz Barradas et al., 1999).
plant functional classifications have proved to be a good tool
for understanding the present, past and future functioning of
the African ecosystems.

The aim of this paper is to apply this concept of classification
on a large modern pollen data set (199 pollen assemblages, 272 taxa) from Atlantic Central Africa. In this region the main ecosystems, particularly the forest ones, were not always previously accurately identified by their pollen rain due to their low sampling representation, providing difficult a comparison of the data with vegetation models. Plant functional classifications, associated with the biomisation method (Prentice et al., 1996), were used following two ways: (1) the reconstruction of modern potential biomes and (2) the reconstruction of potential succession stages of forest regeneration, a new approach in Atlantic Central African vegetation dynamics and ecosystem functioning reconstruction. New PFTs and assignment of pollen taxa in these plant functional types are proposed.

2 Botanical environmental setting

The study area, covering the southern Cameroon, the Gabon and the southern Congo, is located between latitude 5° N and 5° S and between longitude 10° and 15° E (Fig. 1; Table 1). It is mainly occupied by lowlands, with an average altitude of 400 m.

This area is floristically located in the Guineo-Congolian centre of endemism (White, 1983). In this region three main types of vegetation occurring on well-drained soils are differentiated by this author.

2.1 The wetter types of Guineo-Congolian rain forest

These types of forest includes: (i) The coastal evergreen rain forest characterized by the presence of Sacoglottis gabonensis and Lophira alata in Cameroon (Letouzey, 1957; Tchouto Mbatchou, 2004), this latter tree being replaced by Okounea klaineana in Gabon (De Saint Aubin, 1963; Caballé, 1978) and Congo (Hecketsweiler and Mokoko Ikonga, 1991; Doumenge, 1992). This forest type is called “Atlantic littoral forest” by Letouzey (1968, 1985). Inland, on the small hills and low mountains, this evergreen rain forest is replaced by an evergreen rain forest very rich in Caesalpiniaeae (“Biafran forest”, Letouzey, 1968, 1985). (ii) The mixed moist semi-evergreen rain forest (“Congo- lian forest”, Letouzey, 1968, 1985), well developed in south-eastern Cameroon (Letouzey, 1968, 1985) and the eastern half Gabon (Nicolas, 1977) is characterized by a mixture of evergreen and some semi-deciduous species becoming more

![Fig. 1. Location of modern pollen samples in Central Africa according to White’s vegetation map. (a) Reconstructed potential biomes (TRFO: Tropical rain forest; TSFO: Tropical seasonal forest; SAVA: Savanna), (b) Reconstructed succession stages of forest regeneration.](image-url)
Table 1. Location of modern pollen samples in Atlantic Central Africa, derived vegetation and reconstructed biomes and succession stages (column A, authors of the data: (a) Vincens, unpublished; (b) Lebamba et al., 2009; (c) Vincens et al., 2000; (d) Jolly et al., 1996; (e) Ngomanda, unpublished; (f) Elenga et al., 2000b); (Reconstructed biomes: TRFO (Tropical Rain Forest), TSFO (Tropical Seasonal Forest) and SAVA (savanna); Reconstructed stages: TMFO (Tropical Mature Forest), TOSF (Tropical Old Secondary Forest), TYSF (Tropical young Secondary Forest) and SAVA (Savanna). (in bold italics, not correctly reconstructed potential biomes and stages compared to local vegetation).

Samples	Location	Country	Lat.	Long.	Alt (m)	Local observed vegetation	Reconstructed biomes	Reconstructed stages
1C83	Ndokou	Cameroon	4.38	11.72	516	Savanna	SAV	SAVA
ka1620	Kandara Nord	Cameroon	4.33	13.72	640	mature semi-deciduous forest	TSFO	TOSF
ka1600	Kandara Nord	Cameroon	4.33	13.72	640	mature semi-deciduous forest	TSFO	TMFO
ka1580	Kandara Nord	Cameroon	4.33	13.72	640	mature semi-deciduous forest	TSFO	TMFO
ka1560	Kandara Nord	Cameroon	4.33	13.72	640	mature semi-deciduous forest	TSFO	TOSF
ka1540	Kandara Nord	Cameroon	4.33	13.72	640	old secondary semi-deciduous forest	TSFO	TMFO
ka1520	Kandara Nord	Cameroon	4.33	13.72	640	old secondary semi-deciduous forest	TSFO	TOSF
ka1500	Kandara Nord	Cameroon	4.33	13.72	640	old secondary semi-deciduous forest	TSFO	TOSF
ka1480	Kandara Nord	Cameroon	4.33	13.72	640	old secondary semi-deciduous forest	TSFO	TOSF
ka1460	Kandara Nord	Cameroon	4.33	13.72	640	old secondary semi-deciduous forest	TSFO	TOSF
ka1440	Kandara Nord	Cameroon	4.33	13.72	640	young secondary semi-deciduous forest	TSFO	TMFO
ka1420	Kandara Nord	Cameroon	4.33	13.72	640	young secondary semi-deciduous forest	TSFO	TOSF
ka1400	Kandara Nord	Cameroon	4.33	13.72	640	young secondary semi-deciduous forest	TSFO	TOSF
ka1380	Kandara Nord	Cameroon	4.33	13.72	640	young secondary semi-deciduous forest	TSFO	TOSF
ka1360	Kandara Nord	Cameroon	4.33	13.72	640	young secondary semi-deciduous forest	TSFO	TOSF
ka1300	Kandara Nord	Cameroon	4.33	13.72	640	savanna	TSFO	TOSF
ka1280	Kandara Nord	Cameroon	4.33	13.72	640	savanna	SAV	SAVA
ka1260	Kandara Nord	Cameroon	4.33	13.72	640	savanna	SAV	SAVA
ka1240	Kandara Nord	Cameroon	4.33	13.72	640	savanna	SAV	SAVA
ka1220	Kandara Nord	Cameroon	4.33	13.72	640	forest regrowth	SAV	SAVA
ka1200	Kandara Nord	Cameroon	4.33	13.72	640	forest regrowth	TSFO	SAVA
ka735	Kandara Sud	Cameroon	4.33	13.72	640	savanna	SAV	SAVA
ka705	Kandara Sud	Cameroon	4.33	13.72	640	savanna	SAV	SAVA
ka675	Kandara Sud	Cameroon	4.33	13.72	640	savanna	SAV	SAVA
ka645	Kandara Sud	Cameroon	4.33	13.72	640	savanna	SAV	SAVA
ka615	Kandara Sud	Cameroon	4.33	13.72	640	savanna	SAV	SAVA
ka585	Kandara Sud	Cameroon	4.33	13.72	640	savanna	SAV	SAVA
ka555	Kandara Sud	Cameroon	4.33	13.72	640	savanna	SAV	SAVA
ka525	Kandara Sud	Cameroon	4.33	13.72	640	savanna	SAV	SAVA
ka502	Kandara Sud	Cameroon	4.33	13.72	640	forest regrowth	TSFO	TYSF
ka480	Kandara Sud	Cameroon	4.33	13.72	640	forest regrowth	TSFO	TOSF
ka450	Kandara Sud	Cameroon	4.33	13.72	640	young secondary semi-deciduous forest	TSFO	TOSF
ka420	Kandara Sud	Cameroon	4.33	13.72	640	young secondary semi-deciduous forest	TSFO	TOSF
ka390	Kandara Sud	Cameroon	4.33	13.72	640	young secondary semi-deciduous forest	TSFO	TOSF
ka360	Kandara Sud	Cameroon	4.33	13.72	640	young secondary semi-deciduous forest	TSFO	TOSF
ka330	Kandara Sud	Cameroon	4.33	13.72	640	young secondary semi-deciduous forest	TSFO	TOSF
ka300	Kandara Sud	Cameroon	4.33	13.72	640	old secondary semi-deciduous forest	TSFO	TOSF
ka270	Kandara Sud	Cameroon	4.33	13.72	640	old secondary semi-deciduous forest	TSFO	TMFO
ka240	Kandara Sud	Cameroon	4.33	13.72	640	old secondary semi-deciduous forest	TSFO	TOSF
ka210	Kandara Sud	Cameroon	4.33	13.72	640	mature semi-deciduous forest	TSFO	TOSF
ka180	Kandara Sud	Cameroon	4.33	13.72	640	mature semi-deciduous forest	TSFO	TOSF
ka150	Kandara Sud	Cameroon	4.33	13.72	640	mature semi-deciduous forest	TSFO	TMFO
Table 1. Continued.

Samples	Location	Country	Lat.	Long.	Alt (m)	Local observed vegetation	Reconstructed biomes	Reconstructed stages
ka120 (c)	Kandara Sud	Cameroon	4.33	13.72	640	mature semi-deciduous forest	TSFO	TMFO
ka90 (c)	Kandara Sud	Cameroon	4.33	13.72	640	mature semi-deciduous forest	TSFO	TMFO
ka60 (c)	Kandara Sud	Cameroon	4.33	13.72	640	mature semi-deciduous forest	TSFO	TMFO
ka40 (c)	Kandara Sud	Cameroon	4.33	13.72	640	mature semi-deciduous forest	TSFO	TMFO
may1 (a)	Mayos	Cameroon	4.32	13.57	600	old secondary semi-deciduous forest	TSFO	TMFO
may2 (a)	Mayos	Cameroon	4.32	13.57	600	old secondary semi-deciduous forest	TSFO	TMFO
may3 (a)	Mayos	Cameroon	4.32	13.57	600	mature semi-deciduous forest	TSFO	TMFO
C58 (b)	Nebodo	Cameroon	4.01	12.64	662	mature semi-deciduous forest	TSFO	TMFO
C84 (b)	Nyek	Cameroon	4.00	12.22	693	savanna	SAV	SAV
C60 (b)	Biba	Cameroon	3.88	12.24	667	mature semi-deciduous forest	TSFO	TMFO
C61 (b)	Biba	Cameroon	3.86	12.24	671	mature semi-deciduous forest	TSFO	TMFO
C62 (b)	Biba	Cameroon	3.85	12.24	643	mature semi-deciduous forest	TSFO	TMFO
C63 (b)	Biba	Cameroon	3.85	12.24	687	mature semi-deciduous forest	TSFO	TMFO
C75 (b)	Cyrie (Dja)	Cameroon	3.82	13.31	668	mature rain forest/semi-deciduous forest transition	TRFO	TMFO
C76 (b)	Cyrie (Dja)	Cameroon	3.82	13.31	678	mature rain forest/semi-deciduous forest transition	TRFO	TMFO
C77 (b)	Cyrie (Dja)	Cameroon	3.82	13.31	684	mature rain forest/semi-deciduous forest transition	TRFO	TMFO
C78 (b)	Cyrie (Dja)	Cameroon	3.82	13.31	681	mature rain forest/semi-deciduous forest transition	TSFO	TMFO
C66 (b)	Tissongo	Cameroon	3.58	11.00	26	mature rain forest	TRFO	TMFO
C67 (b)	Tissongo	Cameroon	3.58	11.00	14	mature rain forest	TRFO	TMFO
C68 (b)	Tissongo	Cameroon	3.58	11.00	11	mature rain forest	TRFO	TMFO
C69 (b)	Nsah	Cameroon	3.56	11.00	17	mature rain forest	TRFO	TMFO
C70 (b)	Nsah	Cameroon	3.54	11.00	19	mature rain forest	TRFO	TMFO
C72 (b)	Nsah	Cameroon	3.54	11.00	15	mature rain forest	TRFO	TMFO
C71 (b)	Nsah	Cameroon	3.54	11.00	19	mature rain forest	TSFO	TMFO
C82 (b)	Nkoul (Nja)	Cameroon	3.36	13.52	697	mature rain forest/semi-deciduous forest transition	TRFO	TMFO
C80 (b)	Nkoul (Nja)	Cameroon	3.36	13.52	697	mature rain forest/semi-deciduous forest transition	TSFO	TMFO
C81 (b)	Nkoul (Nja)	Cameroon	3.36	13.52	699	young secondary rain forest/semi-deciduous forest transition	TSFO	TMFO
C73 (b)	Nkoul (Nja)	Cameroon	3.35	13.53	710	mature rain forest/semi-deciduous forest transition	TRFO	TMFO
C74 (b)	Nkoul (Nja)	Cameroon	3.35	13.53	716	mature rain forest/semi-deciduous forest transition	TSFO	TMFO
eb1 (a)	Eboundja	Cameroon	2.82	9.90	10	mature rain forest	TRFO	TMFO
eb2 (a)	Boussibeltika	Cameroon	2.73	9.87	20	mature rain forest	TRFO	TMFO
GA2B (d)	Belinga	Gabon	1.12	13.12	925	mature rain forest	TRFO	TMFO
GA1M (d)	Makokou	Gabon	0.65	12.71	470	mature rain forest	TRFO	TMFO
GA2M (d)	Makokou	Gabon	0.65	12.71	470	mature rain forest	TRFO	TMFO
GA9M (d)	Makokou	Gabon	0.65	12.71	470	mature rain forest	TRFO	TMFO
G10M (d)	Makokou	Gabon	0.65	12.71	470	mature rain forest	TRFO	TMFO
G12M (d)	Makokou	Gabon	0.65	12.71	470	mature rain forest	TRFO	TMFO
G13M (d)	Makokou	Gabon	0.65	12.71	470	mature rain forest	TRFO	TMFO
G14M (d)	Makokou	Gabon	0.65	12.71	470	mature rain forest	TRFO	TMFO
G16M (d)	Makokou	Gabon	0.65	12.71	470	mature rain forest	TRFO	TMFO
G17M (d)	Makokou	Gabon	0.65	12.71	470	mature rain forest	TRFO	TMFO
G18M (d)	Makokou	Gabon	0.65	12.71	470	mature rain forest	TRFO	TMFO
G20M (d)	Makokou	Gabon	0.65	12.71	470	mature rain forest	TRFO	TMFO
G21M (d)	Makokou	Gabon	0.65	12.71	470	mature rain forest	TRFO	TMFO
G25M (d)	Makokou	Gabon	0.65	12.71	470	mature rain forest	TRFO	TMFO
Table 1. Continued.

Samples	Location	Country	Lat.	Long.	Alt (m)	Local observed vegetation	Reconstructed biomes	Reconstructed stages
G26M (d)	Makokou	Gabon	0.65	12.71	470	mature rain forest	TRFO	TMFO
G50 (b)	Ntsiete	Gabon	0.48	13.08	501	mature rain forest	TRFO	TMFO
G20 (b)	Ntsiete	Gabon	0.40	13.04	528	mature rain forest	TRFO	TMFO
G22 (b)	Makokou	Gabon	0.37	12.21	442	mature rain forest	TRFO	TMFO
G51 (b)	Ntsiete	Gabon	0.37	13.12	534	mature rain forest	TSFO	TMFO
G23 (b)	Ovan	Gabon	0.33	12.07	413	mature rain forest	TRFO	TMFO
G52 (b)	Ntsiete	Gabon	0.33	13.18	554	mature rain forest	TRFO	TMFO
G16 (b)	Ivindo (camp)	Gabon	0.18	12.54	327	mature rain forest	TRFO	TMFO
G48 (b)	Djidji	Gabon	0.02	12.40	420	mature rain forest	TRFO	TMFO
G47 (b)	Djidji	Gabon	0.01	12.44	500	mature rain forest	TRFO	TMFO
G19 (b)	Djidji	Gabon	0.01	12.44	540	mature rain forest	TRFO	TMFO
G46 (b)	Djidji	Gabon	0.01	12.44	540	mature rain forest	TSFO	TMFO
G49 (b)	Djidji	Gabon	−0.02	12.35	424	mature rain forest	TRFO	TMFO
G45 (b)	Ivindo National Park	Gabon	−0.16	12.51	547	mature rain forest	TRFO	TMFO
G12 (b)	Ivindo National Park	Gabon	−0.17	12.25	324	mature rain forest	TRFO	TMFO
G13 (b)	Ivindo National Park	Gabon	−0.17	12.25	325	mature rain forest	TRFO	TMFO
G14 (b)	Ivindo National Park	Gabon	−0.17	12.25	326	mature rain forest	TRFO	TMFO
G15 (b)	Ivindo National Park	Gabon	−0.17	12.25	327	mature rain forest	TRFO	TMFO
G17 (b)	Langoué bai	Gabon	−0.17	12.57	360	mature rain forest	TRFO	TMFO
G18 (b)	Langoué bai	Gabon	−0.17	12.55	360	mature rain forest	TRFO	TMFO
G31 (b)	Langoué bai	Gabon	−0.17	12.54	495	mature rain forest	TRFO	TMFO
G37 (b)	Langoué forest	Gabon	−0.17	12.53	500	mature rain forest	TRFO	TMFO
G44 (b)	Ivindo National Park	Gabon	−0.17	12.53	500	mature rain forest	TRFO	TMFO
G36 (b)	Langoué forest	Gabon	−0.17	12.54	515	mature rain forest	TRFO	TMFO
G41 (b)	Langoué forest	Gabon	−0.18	12.54	459	mature rain forest	TRFO	TMFO
G35 (b)	Langoué forest	Gabon	−0.18	12.54	468	mature rain forest	TRFO	TMFO
G38 (b)	Langoué forest	Gabon	−0.18	12.54	495	mature rain forest	TRFO	TMFO
G42 (b)	Langoué forest	Gabon	−0.18	12.54	463	mature rain forest	TRFO	TMFO
G13L (c)	Lopé National Park	Gabon	−0.18	11.59	250	savanna	SAV	SAV
G33 (b)	Langoué bai	Gabon	−0.18	12.54	460	mature rain forest	TRFO	TMFO
G39 (b)	Langoué forest	Gabon	−0.18	12.54	455	mature rain forest	TRFO	TMFO
G11L (c)	Lopé National Park	Gabon	−0.18	11.67	250	mature rain forest	TRFO	TMFO
G25 (b)	Ivindo (camp)	Gabon	−0.18	12.54	460	mature rain forest	TRFO	TMFO
G40 (b)	Langoué forest	Gabon	−0.18	12.54	460	mature rain forest	TRFO	TMFO
G29 (b)	Langoué bai	Gabon	−0.18	12.50	350	mature rain forest	TRFO	TMFO
G28 (b)	Langoué bai	Gabon	−0.19	12.50	342	mature rain forest	TRFO	TMFO
G32 (b)	Langoué bai	Gabon	−0.19	12.54	450	mature rain forest	TRFO	TMFO
G30 (b)	Langoué bai	Gabon	−0.19	12.50	360	mature rain forest	TRFO	TMFO
G34 (b)	Langoué bai	Gabon	−0.19	12.54	380	mature rain forest	TRFO	TMFO
G43 (b)	Langoué forest	Gabon	−0.19	12.54	461	mature rain forest	TRFO	TMFO
G27 (b)	Langoué bai	Gabon	−0.19	12.55	370	mature rain forest	TRFO	TMFO
G10L (c)	Lopé National Park	Gabon	−0.19	11.59	250	mature rain forest	TRFO	TMFO
G17L (c)	Lopé National Park	Gabon	−0.19	11.57	350	mature rain forest	TRFO	TMFO
G18L (c)	Lopé National Park	Gabon	−0.19	11.58	300	mature rain forest	TRFO	TMFO
GA9L (c)	Lopé National Park	Gabon	−0.20	11.58	250	mature rain forest	TRFO	TMFO
Table 1. Continued.

Samples	Location	Country	Lat.	Long.	Alt (m)	Local observed vegetation	Reconstructed biomes	Reconstructed stages
G12L (e)	Lopé National Park	Gabon	−0.20	11.68	250	mature rain forest	TRFO	TMFO
G15L (e)	Lopé National Park	Gabon	−0.20	11.56	450	mature rain forest	TRFO	TMFO
G16L (e)	Lopé National Park	Gabon	−0.20	11.58	400	mature rain forest	TRFO	TMFO
G14L (e)	Lopé National Park	Gabon	−0.20	11.55	500	mature rain forest	TRFO	TMFO
G24 (b)	Lake Nguene	Gabon	−0.21	10.50	28	mature rain forest	TRFO	TMFO
G18L (e)	Lopé National Park	Gabon	−0.21	11.59	250	mature rain forest	TRFO	TMFO
G16L (e)	Lopé National Park	Gabon	−0.22	11.59	250	mature rain forest	TRFO	TMFO
G17L (e)	Lopé National Park	Gabon	−0.23	11.59	300	mature rain forest	TRFO	TMFO
G11L (e)	Lopé National Park	Gabon	−0.68	11.78	350	mature rain forest	TRFO	TMFO
G1 (b)	Lambarééné-Fougamou	Gabon	−0.94	10.47	148	mature rain forest	TRFO	TMFO
G2 (b)	Lambarééné-Fougamou	Gabon	−0.94	10.47	148	mature rain forest	TRFO	TMFO
G3 (b)	Lambarééné-Fougamou	Gabon	−0.94	10.47	148	mature rain forest	TRFO	TMFO
G4 (b)	Doubou	Gabon	−1.75	10.87	89	savanna	SAV	SAV
G5 (b)	Doubou	Gabon	−1.75	10.87	89	savanna	SAV	SAV
G6 (b)	Doubou	Gabon	−1.75	10.87	89	savanna	SAV	SAV
G11 (b)	Bengui	Gabon	−2.02	11.11	92	young secondary rain forest	TRFO	TYSF
G8 (b)	Biendi	Gabon	−2.06	11.07	139	savanna	SAV	SAV
G10 (b)	Lake Massou	Gabon	−2.19	11.20	134	savanna	SAV	SAV
G9 (b)	Sogadel	Gabon	−2.44	11.42	153	savanna	SAV	SAV
CO29 (f)	Mandzi	Congo	−4.08	12.15	200	mature rain forest	TRFO	TMFO
CO30 (f)	Mandzi	Congo	−4.08	12.15	200	mature rain forest	TRFO	TMFO
CO31 (f)	Mandzi	Congo	−4.08	12.15	200	mature rain forest	TRFO	TMFO
CO32 (f)	Mandzi	Congo	−4.08	12.15	200	mature rain forest	TRFO	TMFO
CO33 (f)	Mandzi	Congo	−4.08	12.15	200	mature rain forest	TRFO	TMFO
CO34 (f)	Mandzi	Congo	−4.08	12.15	200	mature rain forest	TRFO	TMFO
CO35 (f)	Mandzi	Congo	−4.08	12.15	200	mature rain forest	TRFO	TMFO
CO36 (f)	Mandzi	Congo	−4.08	12.15	200	mature rain forest	TRFO	TMFO
CO37 (f)	Mandzi	Congo	−4.08	12.15	200	mature rain forest	TRFO	TMFO
CO1 (f)	La Tour	Congo	−4.17	12.38	360	mature rain forest	TRFO	TMFO
CO2 (f)	La Tour	Congo	−4.17	12.38	360	mature rain forest	TRFO	TMFO
CO3 (f)	La Tour	Congo	−4.17	12.38	360	mature rain forest	TRFO	TMFO
CO4 (f)	La Tour	Congo	−4.17	12.38	360	mature rain forest	TRFO	TMFO
CO5 (f)	La Tour	Congo	−4.17	12.38	360	mature rain forest	TRFO	TMFO
CO6 (f)	La Tour	Congo	−4.17	12.38	360	mature rain forest	TRFO	TMFO
CO7 (f)	La Tour	Congo	−4.17	12.38	360	mature rain forest	TRFO	TMFO
CO8 (f)	La Tour	Congo	−4.17	12.38	360	mature rain forest	TRFO	TMFO
CO9 (f)	La Tour	Congo	−4.17	12.38	360	mature rain forest	TRFO	TMFO
CO10 (f)	La Tour	Congo	−4.17	12.38	360	mature rain forest	TRFO	TMFO
CO41 (f)	Mpassi Mpassi	Congo	−4.17	12.5	350	mature rain forest	TRFO	TMFO
Table 1. Continued.

Samples	Location	Country	Lat.	Long.	Alt (m)	Local observed vegetation	Reconstructed biomes	Reconstructed stages
CO11 (f)	Dimonika	Congo	−4.22	12.43	380	mature rain forest	TRFO	TMFO
CO12 (f)	Dimonika	Congo	−4.22	12.43	380	mature rain forest	TRFO	TMFO
CO13 (f)	Dimonika	Congo	−4.22	12.43	380	mature rain forest	TRFO	TMFO
CO14 (f)	Dimonika	Congo	−4.22	12.43	380	mature rain forest	TRFO	TMFO
CO15 (f)	Dimonika	Congo	−4.22	12.43	380	mature rain forest	TRFO	TMFO
CO16 (f)	Mindou	Congo	−4.28	12.07	90	mature rain forest	TRFO	TMFO
CO17 (f)	Mindou	Congo	−4.28	12.07	90	mature rain forest	TRFO	TMFO
CO18 (f)	Mindou	Congo	−4.28	12.07	90	mature rain forest	TRFO	TMFO
CO19 (f)	Mindou	Congo	−4.28	12.07	90	mature rain forest	TRFO	TMFO
CO20 (f)	Mindou	Congo	−4.28	12.07	90	mature rain forest	TRFO	TMFO
CO21 (f)	Mindou	Congo	−4.28	12.07	90	mature rain forest	TRFO	TMFO
CO22 (f)	Mindou	Congo	−4.28	12.07	90	mature rain forest	TRFO	TMFO
CO23 (f)	Mindou	Congo	−4.28	12.07	90	mature rain forest	TRFO	TMFO
CO24 (f)	Mindou	Congo	−4.28	12.07	90	mature rain forest	TRFO	TMFO
CO25 (f)	Mindou	Congo	−4.28	12.07	90	mature rain forest	TRFO	TMFO
CO26 (f)	Mindou	Congo	−4.28	12.07	90	mature rain forest	TRFO	TMFO
CO27 (f)	Mindou	Congo	−4.28	12.07	90	mature rain forest	TRFO	TMFO
CO28 (f)	Mindou	Congo	−4.28	12.07	90	mature rain forest	TRFO	TMFO
CO29 (f)	Les Bandas	Congo	−4.32	12.32	390	mature rain forest	TRFO	TMFO

important in the canopy. The Guineo-Congolian wet rain forest represents the climax ecosystem of the central part of the study area. The upper stratum of this formation is generally 35–45 m high and is well-distributed in diameter classes. The high canopy density precludes the development of an herbaceous strata and favours epiphytes. The thermal gradient in the canopy is very marked, while the atmospheric moisture is permanently high. This type of forest does not show any noticeable seasonal behaviour (Mayaux et al., 1997, 1999).

2.2 The drier types of Guineo-Congolian rain forest (“semi-deciduous rain forest”, Letouzey, 1968, 1985)

These forests, also called dry peripheral semi-evergreen rain forest by White (1983), are located at the border of the wet rain forest and are floristically richer than the previous ones. More individuals of the common largest tree species are deciduous (up to 70% in the upper stratum) and lose their leaves during the dry season allowing the development of a continuous shrub stratum. The diameter classes’ distribution of the upper layer is irregular. The thermal gradient is less marked than in the previous type, while the seasonality is more marked in mesological conditions (Mayaux et al., 1997, 1999).

Secondary forest, occurring on past cultivated areas, is widespread in the region, and corresponds to various stages of forest regrowth in which light-demanding species and pioneers are abundant (e.g. Kahn, 1982; Catinot et al., 1983; White, 1983; Mayaux et al., 1997, 1999). The upper layer of the secondary formations is continuous and homogenous and often characterised by a monospecific composition in its earliest stages, with heliophytic and fast height growth pioneer species.

2.3 The mosaic of rain forest and secondary grassland

Much of the rain forest at the northern and southern limits of the Guineo-Congolian region has been destroyed by cultivation and fire and replaced by secondary grassland which often occurs in mosaic with small, usually severely degraded, patches of the original forest.

Inside the Guineo-Congolian domain appear vast savannas, either as large patches surrounding the forest massif, or as small islands enclosed within the forest. The trees and shrubs of these savannas are sparse while grasses form a
Table 2. Plant functional types proposed for the Atlantic Central African areas under investigations for biome reconstructions and corresponding tropical ecosystems.

Codes	Plant functional types
Te1	wet tropical evergreen trees and shrubs
Te2	dry tropical evergreen trees and shrubs
Tr1	wet tropical rainforest trees and shrubs
Tr2	dry tropical rainforest trees and shrubs
Tr3	driest tropical rainforest trees and shrubs
TLw	wet tropical lianas
TLd	dry tropical lianas
THw	wet tropical herbs
THd	dry tropical herbs
g	grasses

continuous and high stratum. They find their origin in soil conditions (poorly developed, sandy or lateritic soils), in past and present human activity (settlements, fire) or in past climatic changes (e.g. Robyns, 1936; Richards, 1952; Schwartz et al., 2000).

3 The modern pollen data set

A total of 199 modern pollen spectra were compiled in a data set. They all have been exclusively extracted from surface soil (in savanna) or litter (in forest) samples collected following the Wright method (1967) widely used in African modern pollen studies (e.g. Jolly et al., 1996; Lézine and Edorh, 1991; Bonnefille et al., 1993; Vincens et al., 1997, 2000; Elenga et al., 2000b). The location of the study modern pollen samples is given in Fig. 1 and Table 1. Seventy three samples were collected in southern Cameroon (Vincens et al., 2000 and unpublished data; Lebamba et al., 2009), eighty three in Gabon (Jolly et al., 1996; Lebamba et al., 2009; Ngomanda, unpublished data) and forty three in southern Congo (Elenga et al., 2000b). All samples come from vegetation formations occurring on well-drained soils excluding riparian and swampy formations since these formations are not directly linked to climate but rather to local hydrological conditions. They cover the three main White’s vegetation types described above. Local vegetation at each site, extracted from field observations or detailed inventories, is given in Table 1.

The pollen data set comprises a total of 272 pollen taxa which nomenclature was standardized following the list of taxa available in Vincens et al. (2007) and on the African Pollen Data base web site (2008). This list refers to the botanical nomenclature proposed by Lebrun and Stork (1991–1997).

4 The biomisation method and its application to the modern pollen data set

The biomisation method classifies the plant taxa represented in the pollen assemblages into a number of plant functional types (PFTs) which are broad classes of plants defined by life form (e.g. tree/shrub/lianas/herbs), leaf form (e.g. broad-leaved/needle-leaved), phenology (e.g. evergreen/deciduous) and bioclimatic factors. Pollen taxa are assigned to one or more PFTs, then affinity scores are calculated for each biome in turn based on its list of characteristic PFTs. The pollen sample is assigned to the biome to which it has the highest affinity. This method, initially developed for Europe and now used worldwide, was described in detail by Prentice et al. (1996).

In this paper the biomisation procedure has been applied on our modern pollen data set from Atlantic Central Africa, following two ways: (1) the reconstruction of modern potential biomes (see 4.1) and (2) the reconstruction of potential succession stages of forest regeneration (see 4.2) Comparisons with local or more regional botanical data were performed in the aim to test the level of confidence of our reconstructions, and particularly of our taxa-PFT assignments.

4.1 Potential biome reconstructions

The taxon versus site matrix used for these reconstructions include 245 pollen taxa among the 272 identified in the 199 spectra, corresponding to native and non-edaphic pollen taxa. We removed marshy or aquatic herbs and shrubs (Cyperaceae, Burnatia, Sesbania, Typha, Eriocaulaceae, Mimosa pigra, Utricularia, Hydrocotyle), typical swamp trees such (Symphonia globulifera, Phoenix reclinata, Raphia, Pandanus, Rhizophora, Morelia senegalensis, Clappertonia), anthropogenic taxa (Cassia didymobotrya, Ricinus communis, Capsicum, Zea mais, Eucalyptus, Plantago and Elaeis guineensis), all the Pteridophyta which generally were not identified at a high level of determination (genus or species, but also pioneer taxa which distribution is not primarily related to climate (Musanga, Anthocleista, Vismia guineensis and Polyscias fulva).

Compared to previous works undertaken in Africa, we propose in this paper the creation of new PFTs taking into account: (1) a more precise definition of the life form of plants which produce the pollen taxa (trees or shrubs, lianas and herbs) and (2) the place these plants occupy in the different central African ecosystems (e.g. tropical wet rain forest, tropical dry rain forest...), mainly linked to bioclimatic factors (e.g. rainfall, temperature, cloud cover, atmospheric humidity...). We have differentiated the trees and shrubs from the lianas and herbs. In the PFTs Te1 (wet tropical
Table 3. Allocation of the pollen taxa derived from all sites listed in Table 1 to the plant functional types used for the biomes reconstructions.

Family	Taxa	Te1	Te2	Tr1	Tr2	Tr3	TLw	TLd	THw	THd	g
ACANTHACEAE	Acanthaceae undiff.	x	x	x	x	x	x	x			
ACANTHACEAE	Anisotes	x									
ACANTHACEAE	Asystasia gangetica-type									x	
ACANTHACEAE	Mendoncia										x
ACANTHACEAE	Thomandersia	x	x	x							
AMARANTHACEAE	Achyranthes-type aspera										x
AMARANTHACEAE	Cyathula-type	x									
AMARANTHACEAE	Sericostachys-type scandens										x
AMARANTHACEAE/CHENOPODIACEAE	Anacardiaceae/Chenopodiaceae undiff.	x	x	x							
ANACARDIACEAE	Anacardiaceae undiff.	x	x	x	x	x					x
ANACARDIACEAE	Antrocaryon-type		x	x							
ANACARDIACEAE	Antrocaryon-type klaineanum										x
ANACARDIACEAE	Fegimandra										x
ANACARDIACEAE	Lannea-type	x	x	x							
ANACARDIACEAE	Pseudospondias-type		x								x
ANACARDIACEAE	Soricinoblabia-type										x
ANISOPHYLLEACEAE	Anisophyllea										x
ANISOPHYLLEACEAE	Anoptyx klaineana										x
ANNONACEAE	Annonaceae undiff.	x	x	x	x	x					x
APIACEAE	Apiaceae undiff.										x
APOCYNACEAE	Alstonia-type	x	x								x
APOCYNACEAE	Alstonia-type boonei		x								x
APOCYNACEAE	Apocynaceae undiff.	x	x	x	x	x	x	x			x
APOCYNACEAE	Funtumia-type	x	x								x
APOCYNACEAE	Landolphia-type										x
APOCYNACEAE	Oncinotis-type										x
APOCYNACEAE	Picralima-type nitida	x	x	x							x
APOCYNACEAE	Pleiocarpa										x
APOCYNACEAE	Rauvolia	x	x	x							x
APOCYNACEAE	Tabernaeomontana										x
ASTERACEAE	Asteraceae undiff.	x	x								x
ASTERACEAE	Vernioeae undiff.	x	x	x							x
BALANTACEAE	Balanites	x	x	x							x
BEGONIACEAE	Begonia										x
BOMBACACEAE	Bombacaceae undiff.	x	x								x
BOMBACACEAE	Ceiba pentandra	x	x								x
BORAGINACEAE	Boraginaceae undiff.		x	x		x					x
BORAGINACEAE	Cordia platythrissa-type										x
BORAGINACEAE	Ehretia	x	x	x							x
BORAGINACEAE	Heliotropium indicum-type										x
BORAGINACEAE	Heliotropium steudneri-type										x
BURSERACEAE	Acoumoea klaieanea										x
Table 3. Continued.

Family	Taxa	Te1	Te2	Tr1	Tr2	Tr3	TLw	TLd	THw	THd	g
BURSERACEAE	Burseraceae undiff.	x		x							x
BURSERACEAE	Canarium-type	x		x							x
BURSERACEAE	Commiphora edulis-type								x		x
BURSERACEAE	Dacryodes-type	x									x
BURSERACEAE	Santiria-type			x							x
CAESALPINIACEAE	Anthonotha-type		x								x
CAESALPINIACEAE	Berlinia-type							x			x
CAESALPINIACEAE	Caesalpiniaceae undiff.		x								x
CAESAL	Copaifera-type					x					x
CAESALPINIACEAE	Crudia-type gabonensis										x
CAESALPINIACEAE	Daniellia	x									x
CAESALPINIACEAE	Detarium	x		x							x
CAESALPINIACEAE	Dialium						x				x
CAESALPINIACEAE	Dialium pachyphyllum-type										x
CAESALPINIACEAE	Distemonanthus benthamianus-type		x								x
CAESALPINIACEAE	Duparquetia orchidacea									x	x
CAESALPINIACEAE	Gilbertiodendron-type										x
CAESALPINIACEAE	Guibourtia	x									x
CAESALPINIACEAE	Guibourtia demeusei-type										x
CAESALPINIACEAE	Hylodendron gabunense	x									x
CAESALPINIACEAE	Hymenostegia-type pellegrinii	x									x
CAESALPINIACEAE	Tessmannia										x
CAPPARIDACEAE	Capparidaceae undiff.		x	x							x
CELAISTRACEAE/HIPPOCRATEACEAE	Celastraceae/Hippocrateaceae undiff.	x	x	x						x	x
CHRYSOBALANACEAE	Chrysobalanus-type icaco	x									x
CHRYSOBALANACEAE	Maranthes-type	x									x
CHRYSOBALANACEAE	Parinari-type		x								x
CLUSIACEAE	Allanblackia	x									x
CLUSIACEAE	Garcinia epunctata-type		x								x
CLUSIACEAE	Mammea africana-type	x									x
COMBRETACEAE	Combretaceae undiff.	x	x								x
COMBRETACEAE	Terminalia-type							x			x
COMBRETACEAE/MELASTOMATACEAE	Combretaceae/Melastomataceae undiff.	x	x	x	x	x	x	x	x	x	x
CONNARACEAE	Cnestis	x									x
CONVOLVULACEAE	Convovulaceae undiff.		x	x							x
CONVOLVULACEAE	Evolvulus-type										x
CONVOLVULACEAE	Ipomoea-type	x									x
CUCURBITACEAE	Coccinia	x									x
CUCURBITACEAE	Cucurbitaceae undiff.			x							x
CUCURBITACEAE	Luffa-type										x
DILLENIACEAE	Tetracera	x	x								x
DIOSCOREACEAE	Dioscorea	x									x
Table 3. Continued.

Family	Taxa	Te1	Te2	Tr1	Tr2	TLw	TLd	THw	THd	g	
DRACAENACEAE	Dracaena	x	x	x	x						
EBENACEAE	Diospyros		x							x	
EUPHORBIACEAE	Acalypha					x	x			x	
EUPHORBIACEAE	Alchornea		x	x							
EUPHORBIACEAE	Anthostema-type		x								
EUPHORBIACEAE	Antidesma-type					x	x	x		x	
EUPHORBIACEAE	Bridelia ferruginea-type		x		x						
EUPHORBIACEAE	Bridelia micrantha-type					x	x	x		x	
EUPHORBIACEAE	Centroplacus glaucinus		x							x	
EUPHORBIACEAE	Cleistanthus-type polystachy					x				x	
EUPHORBIACEAE	Croton-type									x	
EUPHORBIACEAE	Cyathogynye		x								
EUPHORBIACEAE	Cyttaranthus congolensis					x				x	
EUPHORBIACEAE	Discogyprema caloneura					x				x	
EUPHORBIACEAE	Drypetes-type					x				x	
EUPHORBIACEAE	Elaeophorbia-type					x				x	
EUPHORBIACEAE	Euphorbia-type					x					
EUPHORBIACEAE	Euphorbiaceae undiff.					x	x	x		x	
EUPHORBIACEAE	Klaineanthus gabonae		x								
EUPHORBIACEAE	Macaranga-type					x				x	
EUPHORBIACEAE	Mallotus-type oppositifolius					x				x	
EUPHORBIACEAE	Margaritaria discoidea					x				x	
EUPHORBIACEAE	Martretia quadricornis					x				x	
EUPHORBIACEAE	Phyllanthus-type					x	x	x		x	
EUPHORBIACEAE	Plagioestyles-type africana					x				x	
EUPHORBIACEAE	Tetrorchiidium					x				x	
EUPHORBIACEAE	Uapaca					x				x	
EUPHORBIACEAE	Uapaca guineensis-type					x				x	
EUPHORBIACEAE	Uapaca heudeotii-type					x				x	
FABACEAE	Baphia-type					x				x	
FABACEAE	Aescynomene baumii-type										
FABACEAE	Fabaceae undiff.					x	x	x		x	
FABACEAE	Indigofera										
FABACEAE	Pterocarpus-type					x	x	x		x	
FLACOURTIACEAE	Caloncoba-type					x	x	x		x	
FLACOURTIACEAE	Camptostyles					x				x	
FLACOURTIACEAE	Casearia					x				x	
FLACOURTIACEAE	Flacourtiaceae undiff.					x				x	
FLACOURTIACEAE	Homalium					x				x	
FLACOURTIACEAE	Scottelia klaineana-type					x				x	
FLAGELLARIACEAE	Flagellaria									x	
HYMENOCARDIACEAE	Hymenocardia					x	x	x		x	
HYMENOCARDIACEAE	Hymenocardia ulmoides-type					x				x	
HYPERICACEAE	Harungana madagascariensis-type									x	
Family	Taxa	Te1	Te2	Tr1	Tr2	Tr3	TLw	TLd	THw	THd	g
---------------------	-----------------------------	-----	-----	-----	-----	-----	-----	-----	-----	-----	---
ICACINACEAE	Icacinaceae undiff.	x		x							
ICACINACEAE	Raphiolepis	x									
IRVINGIACEAE	Irvingia-type gabonensis	x									
LAMIACEAE	Hoslundia-type opposita		x								
LAMIACEAE	Lamiaceae undiff.	x									
LECYTHRIDIACEAE	Petersianthus-type macrocarpus	x									
LEGUMINOSAE	Leguminosae undiff.	x		x							
LOGANIACEAE	Strychnos	x									
LORANTHACEAE	Loranthaceae undiff.	x		x							
MALPighiaceae	Acridochrus	x									
MELASTOMATACEAE	Melaostomataceae undiff.	x		x							
MELICLAEAE	Catapa-type prosera	x									
MELICLAEAE	Entandrophragma-type	x									
MELICLAEAE	Khaya-type	x									
MELICLAEAE	Meliaceae undiff.	x									
MELICLAEAE	Tschilinia-type	x									
MENISPERMACEAE	Memispermaceae undiff.										x
MENISPERMACEAE	Tiliacora-type funifera	x									
MIMOSACEAE	Acacia										
MIMOSACEAE	Albizia-type			x							
MIMOSACEAE	Calpocalyx-type										
MIMOSACEAE	Calpocalyx-type letestui										
MIMOSACEAE	Cylindricocarpus-type gabunensis										
MIMOSACEAE	Entala-type										G
MIMOSACEAE	Memosaceae undiff.			x							
MIMOSACEAE	Parkia										
MIMOSACEAE	Pentaclethia macrophylla										
MIMOSACEAE	Pentaclethia-type cervereiens										
MIMOSACEAE	Piptadeniastrum-type africanum										
MIMOSACEAE	Tetrapleura tetraptera-type										
MONOCOTYLEDONEAE	Monocotyledoneae undiff.										x
MORACEAE	Aniaris-type toxicaria										
MORACEAE	Dorrinia-type	x									
MORACEAE	Ficus	x		x							
MORACEAE	Milicia-type etexla	x									
MORACEAE	Moraceae undiff.	x		x							
MORACEAE	Myrianta-type arbores										x
MORACEAE	Trecolia	x		x							
MORACEAE	Teleopsis-type madagascariensis										x
MYRISTICACEAE	Corlocaryon	x									
MYRISTICACEAE	Pymnanthus angolensis-type	x									
MYRISTICACEAE	Scyphocephalium	x									
MYRISTICACEAE	Stauibia kammenensis	x									
MYRTACEAE	Syzygium-type	x		x							
OCHNACEAE	Campylospernum	x									
OCHNACEAE	Lophira alata-type	x									
OLACACEAE	Cordia edulis	x									
OLEACEAE	Heistenia	x		x							
OLACACEAE	Olax	x		x							
OLACACEAE	Strombosia	x									
OLACACEAE	Strombosis scheffleri-type	x									
OLACACEAE	Strombosis tetrandra	x									
PALMACEAE	Boransea-type aethiopum	x									
PALMACEAE	Podococcus barteri	x									
PALMACEAE	Scleropera	x									
PANDACEAE	Microdiscos	x		x							
POACEAE	Poaceae undiff.	x		x							
RANUNCULACEAE	Clematis-type	x									x
RHAMNACEAE	Rhamnaceae undiff.	x		x							
Table 3. Continued.

Family	Taxa	Te1	Te2	Te3	Tr1	Tr2	Tr3	TLw	TLd	THw	THd
RUBIACEAE	Aidia-type	x	x								
RUBIACEAE	Aidia-type micrantha										
RUBIACEAE	Crossopteryx febrilga	x									
RUBIACEAE	Hallea-type	x									
RUBIACEAE	Hallea-type rubrostipulata										
RUBIACEAE	Hymenodictyon-type floribundum	x									
RUBIACEAE	Keetia-type gueinzii										
RUBIACEAE	Macrostopha-type										
RUBIACEAE	Morinda	x	x								
RUBIACEAE	Nausica-type										
RUBIACEAE	Oldenlandia-type										
RUBIACEAE	Oligocodon-type canaliculata										
RUBIACEAE	Passinotaka-type macroceras	x									
RUBIACEAE	Psychotria										
RUBIACEAE	Psydrax-type schimperiata	x									
RUBIACEAE	Psydrax-type subcordata	x									
RUBIACEAE	Rubiaceae undiff.										
RUBIACEAE	Sherbournia bignonii-type	x									
RUBIACEAE	Spermacoce-type										
RUBIACEAE	Uncaria-type africana										
RUTACEAE	Rutaceae undiff.										
RUTACEAE	Vepria-type	x									
RUTACEAE	Zanthoxylum-type										
SAPINDACEAE	Allophylus	x									
SAPINDACEAE	Aspasia-type senegalensis	x									
SAPINDACEAE	Blighia										
SAPINDACEAE	Cariospernum	x									
SAPINDACEAE	Chloranthus-type										
SAPINDACEAE	Dodonaea										
SAPINDACEAE	Eriocoeum										
SAPINDACEAE	Ganophyllum-type giganteum	x									
SAPINDACEAE	Lacoceclus										
SAPINDACEAE	Lecaniodiscus-type										
SAPINDACEAE	Panocevia-type										
SAPINDACEAE	Placiodiscus	x									
SAPINDACEAE	Sapindaceae undiff.										
SAPOTACEAE	Sapoteaceae undiff.	x									
SOLANACEAE	Solanum-type										
STERCULIACEAE	Cola cordifolia-type	x									
STERCULIACEAE	Mansonia albiziana-type										
STERCULIACEAE	Nesogordonia										
STERCULIACEAE	Sterculiaceae undiff.	x									
STERCULIACEAE	Sterculia-type										
STERCULIACEAE	Triplochiton scleroxylon-type	x									
THYMELAEACEAE	Thymelaeaceae undiff.										
TILIACEAE	Grewia-type	x									
TILIACEAE	Tiliaceae undiff.										
TILIACEAE	Triametilla-type										
ULMACEAE	Cellosa	x									
ULMACEAE	Chartacme arisata										
ULMACEAE	Holoptelea grandis	x									
ULMACEAE	Trema-type orientalis	x									
ULMACEAE	Ulmaceae undiff.										
URTICACEAE	Urticaeae undiff.										
VERBENACEAE	Vitis-type										
VITACEAE	Cissus quadrangularis-type	x									
VITACEAE	Vitisaceae undiff.	x									
Table 4. Atlantic Central African Biomes and their characteristic plant functional types (abbreviations for PFTs as in Table 2).

Codes	Biomes	Plant functional types
TRFO	tropical rain forest	Te1, Te2, TLw, THw
TSFO	tropical seasonal forest	Te2, Tr1, TLw, THw
TDFO	tropical dry forest	Tr2, Tld, THd, g
SAV	savanna	Tr3, Tld, THd, g

evergreen), Te2 (dry tropical evergreen), Tr1 (wet tropical rainforest), Tr2 (dry tropical rainforest) and Tr3 (driest tropical rainforest) as defined by Jolly et al. (1998b) or Vincens et al. (2006) we have only included the tropical tree and shrub taxa. We have created four new PFTs, corresponding to tropical wet lianas (TLw), tropical dry lianas (TLD), tropical herbs from humid forest environments (THw) and from dry open environments (THd). As Peyron et al. (2000) and Vincens et al. (2006), grasses (Poaceae) represent a particular PFT (g). Thus, a total of 10 PFTs is used in this work (Table 2).

The 245 pollen taxa have been allocated to one or more of these PFTs (Table 3). When a taxon is assigned to more than one PFT, this is generally due to its low level of identification (family or genus). Thus, it can include several species with different biology (e.g. Rubiaceae, Daniella, Parinari….) or it can comprise species that can adopt different life forms in different environments (e.g. Acacia a tree in savanna and a liana in forest….). The taxa-PFT allocation has been adapted to the study area and so shows many differences compared to the works of Jolly et al. (1998b), Peyron et al. (2000), Vincens et al. (2006) or Lézine et al. (2009). The corresponding plant life form and habitat of pollen taxa have been determined using West and Central African botanical literature (e.g. Flore du Congo, 1961–2004; Flore du Cameroun, 1963–1972; Flore de la République Centrale (Zaire, Rwanda, Burundi), 1972–2004; Hutchinson and Dalziel, 1954–1972; Flore du Gabon, 1961–1964; Flore du Cameroun, 1963–2001; Letouzey, 1968, 1985; Lebrun and Stork, 2003, 2006; Tchouto Mbatchou, 2004). Then, a final matrix involving the allocation of plant functional types to the 4 main biomes (TRFO [tropical rain forest], TSFO [tropical seasonal forest], TDFO [tropical dry forest] and SAVA [savanna]) occurring in Atlantic Central Africa has been created (Table 4).

4.2 Potential succession stage reconstructions

The same numerical procedure than the one used for potential biome reconstructions has been applied for the reconstruction of the succession stages of forest regeneration. The pollen data set comprises 250 taxa, including here Elaeis guineensis, Musanga, Anthoecleista, Vismia guineensis and Polyscias fulva, pioneer taxa which play an important role in the regeneration of the forest in its youngest stages.

The matrix taxa-PFTs comprises 14 PFTs including 13 new ones whose definition is based: (1) on the life form of the plants as for biome reconstructions and (2) on the place they occupy in the forest succession in function of their behaviour and growth strategies (savanna, regrowth, young secondary, old secondary and mature stages) (Richards, 1952; Descouings, 1969; Letouzey, 1968, 1985; Schell, 1976; Kahn, 1982; Catinot et al., 1983; White, 1983; White and Abernethy, 1996; Achoundong, 2000; Moutsamboté et al., 2000; Lebrun et Stork, 2003, 2006; Tchouto Mbatchou, 2004; de Namur, unpublished) (Table 5). Such succession status classification was already successfully applied for the aggregation of tropical tree species of the Sabah’s lowland rain forests in Malaysia by Köhler et al. (2000) to suit for applications with process-based rain forest growth models. As above, the 250 pollen taxa have been allocated to one or more of these PFTs (Table 6).

Instead of “biomes” we have created dynamic “stages” of succession of forest regenaration which are from the youngest to the oldest one:

- SAVA: corresponding to the grass herbaceous to semi-woody stage;
- TRFE: corresponding to the forest woody regrowth stage. In this stage the dominant shrubs and small trees, mainly heliophilous, such as Albizia, Anthoecleista, Harungana, Tetororchidium, Trema and Vernon Quinnella are mixed with many coarse herbs (e.g. Zingiberaceae), soft woody shrubs and small climbers (e.g. Dioscorea);
- TYSF: characteristically this young secondary stage is dominated by the fast growing heliophilous Musanga cecropioides which is the most abundant and characteristic secondary forest tree in tropical Africa, associated with Myrionthos, Macaranga or Albizia for the most abundant trees. The herbaceous and shrubby layer is dense and lianas are abundant (e.g. Apocynaceae);
- TOSF: this old secondary stage is dominated by semi-heliophilous species of moderately rapid growth. Characteristic species occurring in the canopy are: Alstonia boonei, Canarium, Ceiba pentandra, Zanthoxylum macrophyllum, Pycnanthus angolensis, Terminalia superba, Triplochiton scleroxylon….
- TMFO: This is the ultimate stage, or climacic mature stage, of forest regeneration. The floristic composition of this forest stage, the presence of shrub and herbaceous strata depends on the status of the forest: semi-deciduous or mixed semi-evergreen.

The final matrix involving the allocation of plant functional types to the 5 main succession stages is shown in Table 7.
Table 5. Allocation of the pollen taxa derived from all sites listed in Table 1 to the plant functional types used in dynamics reconstructions.

Family	Taxon	Tma	Lma	Hma	Tosf	Tysf	Lsf	Hsf	Tpi	Lpi	Hpi	Tr3	Lr3	Hr3	g
ACANTHACEAE	Acanthaceae undiff.	x			x	x									x
ACANTHACEAE	Anisotes														
ACANTHACEAE	Asystasia gangetica-type														
ACANTHACEAE	Mendoncia														
ACANTHACEAE	Thumandersonia														
AMARANTHACEAE	Achyranthes-type aspera	x													
AMARANTHACEAE	Cyathula-type		x												
AMARANTHACEAE	Sericostachys-type scandens			x											
AMARANTHACEAE/CHENOPODIACEAE	Amaranthaceae/Chenopodiaceae undiff.				x										
ANACARDIACEAE	Anacardiaceae undiff.	x				x									
ANACARDIACEAE	Antrocaryon-type						x								
ANACARDIACEAE	Antrocaryon-type klaineanum	x						x							
ANACARDIACEAE	Fegimanra								x						
ANACARDIACEAE	Lannea-type			x	x	x									
ANACARDIACEAE	Pseudospondias-type														
ANACARDIACEAE	Sutindrea-type									x					
ANACARDIACEAE	Trichoscypha-type										x				
ANISOPHYLLEACEAE	Anisophylla											x			
ANISOPHYLLEACEAE	Anopystis klaineana												x		
ANNONACEAE	Annonaceae undiff.					x									
APIACEAE	Apiaceae undiff.														x
APOCYNACEAE	Alstonia-type				x										
APOCYNACEAE	Alstonia-type boonii														
APOCYNACEAE	Apocynaceae undiff.	x			x										
APOCYNACEAE	Funtumia-type														
APOCYNACEAE	Landolphia-type			x											
APOCYNACEAE	Oncinotis-type														
APOCYNACEAE	Picralima-type nitida														
APOCYNACEAE	Pleiocarpa														
APOCYNACEAE	Rauvolfia														
APOCYNACEAE	Tabernaerontana														
ARALIACEAE	Polyscias fulva-type	x													
ASTERACEAE	Asteraceae undiff.														
ASTERACEAE	Vemoniae undiff.			x											
BALANITACEAE	Balanites														
BEGONIACEAE	Begonia														
BOMBACACEAE	Bombacaceae undiff.				x										
BOMBACACEAE	Ceiba pentandra	x													
BORAGINACEAE	Boraginaceae undiff.	x			x										
BORAGINACEAE	Cordia platythysa-type	x			x										
BORAGINACEAE	Ehretia	x			x										
BORAGINACEAE	Heliotropium indicum-type														
BORAGINACEAE	Heliotropium steudneri-type														
BURSERACEAE	Aucoumea klaineana				x										
BURSERACEAE	Burseraceae undiff.														
BURSERACEAE	Canarium-type	x													
BURSERACEAE	Compinophora edulis-type														
BURSERACEAE	Ducyodes-type														
BURSERACEAE	Santiria-type														
CAESALPINIACEAE	Anthonotha-type														
CAESALPINIACEAE	Berlinia-type														
CAESALPINIACEAE	Caesalpiniaeracea undiff.	x			x										
CAESALPINIACEAE	Copaefera-type														
CAESALPINIACEAE	Crudia-type gabonensis														
Family	Taxon	Tma	Lma	Hma	Tosf	Tysf	Lsf	Hsf	Tpi	Lpi	Hpi	Tr3	Lr3	Hr3	g
------------------------	------------------------------------	-----	-----	-----	------	------	-----	-----	-----	-----	-----	-----	-----	-----	---
[2mm] CAESALPINIACEAE	Daniellia	x			x										
CAESALPINIACEAE	Detarium	x													
CAESALPINIACEAE	Dialium	x													
CAESALPINIACEAE	Dialium pachyphyllum-type														
CAESALPINIACEAE	Dipteronanthus benthamianus-type	x													
CAESALPINIACEAE	Duparquetia orchidacea														
CAESALPINIACEAE	Gilbertiodendron-type														
CAESALPINIACEAE	Guibourtiia														
CAESALPINIACEAE	Guibourtiia demeusei-type														
CAESALPINIACEAE	Hylodendron gabunense	x													
CAESALPINIACEAE	Hymenostegia-type pellegrinii														
CAESALPINIACEAE	Tessmannia														
CAPPARIDACEAE	Capparidaceae undiff.	x	x	x	x	x									
CELASTRACEAE/HIPPOCRATEACEAE	Celastraceae/Hippocrateaceae undiff.	x	x	x	x	x	x	x							
CHRYSOBALANACEAE	Chrysobalanus-type icaco														
CHRYSOBALANACEAE	Maranthes-type														
CHRYSOBALANACEAE	Purinari-type														
CLUSIACEAE	Allanblackia														
CLUSIACEAE	Guaianaia														
CLUSIACEAE	Guineaia														
COMBRETACEAE	Combretaceae undiff.	x	x	x	x	x	x								
COMBRETACEAE	Terminalia-type														
COMBRETACEAE/MELASTOMATACEAE	Combretaceae/Melastomateae undiff.	x	x	x	x	x	x	x	x						
CONNARACEAE	Cnemitis	x	x	x	x	x									
CONVOLVULACEAE	Convolvulaceae undiff.	x	x	x	x	x									
CONVOLVULACEAE	Evolanaea-type														
CONVOLVULACEAE	Ipomea-type	x	x	x											
CUCURBITACEAE	Cocinia		x	x											
CUCURBITACEAE	Cucurbitaceae undiff.	x	x	x											
CUCURBITACEAE	Luffia-type														
DILLENIACEAE	Tetracera	x	x	x	x	x									
DIOSCOREACEAE	Dioscorea		x	x	x	x									
DRACAENACEAE	Dracaena	x	x												
EBENACEAE	Diospyros	x													
EUPHORBIACEAE	Acalypha	x	x	x	x										
EUPHORBIACEAE	Alchornea	x	x	x	x										
EUPHORBIACEAE	Anthosperma-type														
EUPHORBIACEAE	Antidesma-type	x	x	x											
EUPHORBIACEAE	Bridelia ferruginea-type	x	x	x	x										
EUPHORBIACEAE	Bridelia micrantha-type	x	x	x	x										
EUPHORBIACEAE	Centroplacus glaucins	x	x	x											
EUPHORBIACEAE	Cleistanthus-type polysachybus														
EUPHORBIACEAE	Croton-type	x	x	x	x										
EUPHORBIACEAE	Cyathogyne	x	x												
EUPHORBIACEAE	Cymananthus congolensis														
EUPHORBIACEAE	Discoglyptema calometra	x													
EUPHORBIACEAE	Drypetes-type														
EUPHORBIACEAE	Elaeophorbia-type	x	x	x	x										
EUPHORBIACEAE	Euphorbia-type														
EUPHORBIACEAE	Euphorbiae undiff.	x	x												
EUPHORBIACEAE	Klaineathus gabonum	x													
EUPHORBIACEAE	Macaranga-type	x	x	x	x										
EUPHORBIACEAE	Mallotus-type oppositionis	x	x	x	x										
Table 5. Continued.

Family	Taxon	Tma	Lma	Hma	TsoI	Tyf	Lsf	Hsf	Tpi	Lpi	Hpi	Tr3	Lr3	Hr3	g
EUPHORBIACEAE	Margaritaria discoidea	x	x	x	x										x
EUPHORBIACEAE	Martvetia quadricornis														x
EUPHORBIACEAE	Phyllanthus-type	x	x	x	x	x	x	x	x						x
EUPHORBIACEAE	Plagiochilus-type africana	x	x												x
EUPHORBIACEAE	Tetrachilidium	x	x												x
EUPHORBIACEAE	Uapaca	x													x
EUPHORBIACEAE	Uapaca guineensis-type	x													x
EUPHORBIACEAE	Uapaca heudelotii-type														x
FABACEAE	Aeschynomene baumiana-type	x													x
FABACEAE	Baphia-type	x	x	x		x									x
FABACEAE	Fabaceae undiff.	x	x	x	x	x	x	x	x	x	x	x			x
FABACEAE	Indigofera														x
FABACEAE	Petrocarpus-type	x													x
FLACOURTIACEAE	Caloncoba-type	x	x	x											x
FLACOURTIACEAE	Camptostylus	x													x
FLACOURTIACEAE	Casenia	x	x	x											x
FLACOURTIACEAE	Flacourtia undiff.	x	x	x											x
FLACOURTIACEAE	Homalium	x	x												x
FLACOURTIACEAE	Scotclisia klainana-type	x													x
FLACELLARIACEAE	Flagellaria														x
HYMENOCARDIACEAE	Hymenocardia		x	x											x
HYMENOCARDIACEAE	Hymenocardia ulmoides-type	x													x
HYPERICACEAE	Harungana madagascariensis-type	x													x
HYPERICACEAE	Vismia guineensis	x	x												x
ICACINACEAE	Icacinaceae undiff.	x	x	x	x	x	x	x	x	x	x	x			x
ICACINACEAE	Raphiolepis	x	x												x
IRVINGIACEAE	Irvingia-type gabonensis	x	x												x
LAMIACEAE	Hoslundia-type opposita														x
LAMIACEAE	Lamiaceae undiff.														x
LECYTHIDIIACEAE	Petersiatthys-type macrocarpus	x													x
LEGUMINOSAE	Leguminosae undiff.	x	x	x	x	x	x	x	x	x					x
LOGANIACEAE	Anthocleista	x		x											x
LOGANIACEAE	Strychnos	x	x	x	x	x									x
LORANTHACEAE	Loranthaceae undiff.	x	x												x
MALPIGHIACEAE	Acridocarpus	x	x	x	x	x	x	x							x
MALSTEMATACEAE	Melastomaceae undiff.	x	x	x	x	x	x	x	x	x					x
MELIACEAE	Carapa-type proceria	x													x
MELIACEAE	Entandrophygma-type	x													x
MELIACEAE	Khaya-type	x													x
MELIACEAE	Meliaceae undiff.	x	x												x
MELIACEAE	Trichilia-type	x													x
MENISPERMACEAE	Menispermaceae undiff.	x	x												x
MENISPERMACEAE	Tiliaca-type fanifera	x	x												x
MIMOSACEAE	Acacia	x	x												x
MIMOSACEAE	Albizia-type	x	x												x
MIMOSACEAE	Calpocalyx-type	x													x
MIMOSACEAE	Calpocalyx-type leuconidu	x													x
MIMOSACEAE	Cylindrisus-type gabonensis	x													x
MIMOSACEAE	Entada-type	x	x	x	x	x	x	x							x
MIMOSACEAE	Mimosaceae undiff.	x	x	x	x	x	x	x	x						x
MIMOSACEAE	Parkia	x													x
MIMOSACEAE	Pentaclethra macrophylla	x	x												x
MIMOSACEAE	Pentaclethra-type eestvenleania	x	x												x
MIMOSACEAE	Piptadeniastrum-type africana	x													x
MIMOSACEAE	Tetrapleura tetraptera-type	x	x												x
MONOCOTYLEDONAEI	Monocotyledoneae undiff.	x	x	x											x
MORACEAE	Antiaris-type toxicaria	x													x
Table 5. Continued.

Family	Taxon	Tma	Lma	Hma	Tosf	Tytf	Lsf	Hsf	Tpi	Lpi	Hpi	Tr3	Lr3	Hr3	g
MORACEAE	Dorstenia-type	x													
MORACEAE	Ficus	x	x												
MORACEAE	Milicia-type excelsa	x													
MORACEAE	Moraceae undiff.	x	x	x											
MORACEAE	Musanga-type		x												
MORACEAE	Myrcianthus-type arboresum	x	x	x											
MORACEAE	Trecula														
MORACEAE	Telephium-type madagascariensis	x													
MYRISTICACEAE	Coelocaryon														
MYRISTICACEAE	Pycnanthus angolensis-type	x													
MYRISTICACEAE	Scythochileophilum														
MYRISTICACEAE	Staudia kamerunensis														
MYRTACEAE	Syzygium-type	x	x	x											
OCHNACEAE	Campylospernum	x	x	x											
OCHNACEAE	Lophira alata-type	x	x	x											
OLACACEAE	Coula edulis														
OLACACEAE	Heisteria														
OLACACEAE	Olia														
OLACACEAE	Strombosia														
OLACACEAE	Strombosia schefferi-type														
OLACACEAE	Strombosiopsis tetrandra														
PALMAE	Borassus-type aethiopum														
PALMAE	Elatia guineensis														
PALMAE	Podococcus barteri														
PALMAE	Sclerosperma														
PANDACEAE	Microdesmis														
POACEAE	Poaceae undiff.														
RANUNCULACEAE	Clematis-type														
RHAMNACEAE	Rhamnaceae undiff.	x	x	x	x	x			x						
RUBIACEAE	Aidia-type														
RUBIACEAE	Aidia-type micrantha														
RUBIACEAE	Crossopteryx febrifuga		x												
RUBIACEAE	Hallea-type														
RUBIACEAE	Hallea-type rubrostipulata														
RUBIACEAE	Hymenodictyon-type floribandum														
RUBIACEAE	Kerria-type guineae	x	x												
RUBIACEAE	Macrophyra-type														
RUBIACEAE	Morinda														
RUBIACEAE	Nauclea-type	x	x	x											
RUBIACEAE	Oldlandia-type	x	x												
RUBIACEAE	Oligocodon-type cunilifera	x													
RUBIACEAE	Pausinystalia-type macrocerras	x													
RUBIACEAE	Psychotria	x	x	x											
RUBIACEAE	Psyrax-type schimperiiana														
RUBIACEAE	Psyrax-type subcordata														
RUBIACEAE	Rubiaceae undiff.	x	x	x	x	x	x	x	x	x	x				
RUBIACEAE	Sherboumiia bigunniflora-type	x													
RUBIACEAE	Spermacoce-type														
RUBIACEAE	Uncaria-type africana														
RUTACEAE	Rutaceae undiff.	x	x	x	x	x	x	x							
RUTACEAE	Vepris-type														
RUTACEAE	Zanthoxylum-type	x	x	x	x	x	x	x							
Table 5. Continued.

Family	Taxon	Tma	Lma	Hma	Tsuf	Tyef	Lof	Hof	Tpi	Lpi	Hpi	Tr3	Lr3	Hr3	g
SAPINDACEAE	Allophylus	x			x	x		x	x						
SAPINDACEAE	Aphania-type senegalensis							x							
SAPINDACEAE	Blighia		x												
SAPINDACEAE	Cardiospermum				x	x									
SAPINDACEAE	Chytranthus-type				x										
SAPINDACEAE	Dodonaea								x	x					
SAPINDACEAE	Eriocoeleum														
SAPINDACEAE	Genophyllum-type giganteum														
SAPINDACEAE	Laccodiscus														
SAPINDACEAE	Lecaniodiscus-type														
SAPINDACEAE	Pancovia-type														
SAPINDACEAE	Placidiscus														
SAPINDACEAE	Sapindaceae undiff.	x			x	x		x	x	x	x	x	x	x	
SAPOTACEAE	Sapotaceae undiff.	x													
SOLANACEAE	Solanum-type													x	
STERCULIACEAE	Cola cordifolia-type														
STERCULIACEAE	Mansonia altissima-type														
STERCULIACEAE	Nesogordonia														
STERCULIACEAE	Sterculiaefund.	x			x	x		x	x						
STERCULIACEAE	Sterculia-type								x	x					
STERCULIACEAE	Triplochiton scleroxylon-type	x													
THYMELAEACEAE	Thymelaeaceae undiff.	x	x		x	x		x	x						
TILIAEAE	Grewia-type				x	x									
TILIAEAE	Tiliaceae undiff.	x			x	x		x	x						
TILIAEAE	Triumfetta-type													x	
ULMACEAE	Celtis				x	x									
ULMACEAE	Chorera aristata				x	x									
ULMACEAE	Holoptelea grandis														
ULMACEAE	Trema-type orientalis									x	x				
ULMACEAE	Ulmaceae undiff.	x								x	x				
URTICACEAE	Urticaceae undiff.				x	x		x	x	x					
VERBENACEAE	Vitex-type				x	x									
VITACEAE	Cicus quadrangularis-type														
VITACEAE	Vitaceae undiff.	x			x	x		x	x						

5 The results

5.1 Reconstruction of the Atlantic Central Africa Biomes

5.1.1 Comparison between reconstructed biomes and vegetation at each sampled site

The results of the comparison (Table 8 and for detailed results refer to Table 1) show that among the 199 pollen sites considered in this study, 87 are correctly reconstructed as a potential biome Tropical Rain Forest (TRFO). They correspond to 74 sites of rain forest from Gabon and to 13 sites from the Cameroon littoral rain forest (8) and from the Dja forest area at the wet/dry rain forest transition (5). For the 43 other sites, all originating in the Mayombe forest massif in southern Congo, a potential TRFO biome is reconstructed. This result arises the problem of the status of this forest in Atlantic Central Africa mapped by White (1983) as Guineo-Congolian dry rain forest (Fig. 1), i.e. such as the Letouzey’s semi-deciduous forest of southern Cameroon, north of 4° N (see specific discussion below, in Sect. 6.1.).

A potential biome Tropical Seasonal Forest (TSFO) is reconstructed at 49 sites. Among them, 45 sites from Cameroon, located in dry rain forest and 3 in the Dja forest area at the wet/dry rain forest transition are correctly reconstructed. Three other sites inside the wet rain forest of Gabon (2) and Cameroon (1) are clearly incorrectly reconstructed as potential TSFO biome such as one savanna in Cameroon.

All the 20 remaining sites are reconstructed as a potential biome Savanna (SAV). Among them, 19 are really savanna, and one is from a forest regrowth, but largely disturbed by Man for cultivation, leading to high frequencies of Poaceae in the pollen spectra.
5.1.2 Comparison between reconstructed biomes and White’s Central Atlantic vegetation types

The results of the comparison are given in Fig. 1a and Table 9. Among the 199 sites, 65 sites from the wetter types of rain forest (i.e. Cameroon coastal evergreen forest and the Gabon mixed moist semi-evergreen rain forest) (vegetation type 1a, White, 1983) are correctly reconstructed as potential TRFO biome.

In the Dja area in southern Cameroon, where occurs the transition between the mixed moist semi-evergreen forest (type 1a) and the dry rain forest (type 2) (indicated in Table 9 as 1a/2 transition) the 9 sites can be considered as correctly reconstructed with 5 sites as potential TRFO biome and 4 sites as potential TSFO biome.

Inside the White’s dry rain forest (type 2), only 8 Cameroon sites are correctly reconstructed as potential TSFO biome. One site is reconstructed as a SAVA but, corresponding locally to an enclosed savanna inside the forest, this reconstruction can be considered as correct. The 43 remaining sites are all the forest sites from the Congolese Mayombe massif which are reconstructed as potential TRFO biome and not as potential TSFO biome as it could be expected according to White’s vegetation map.

The last White’s vegetation type occurring in Central Africa (of drier type in southern Cameroon, and wetter type in central and southern Gabon) – mainly developed at the border of the forest massif – is the mosaic of rain forest and secondary grassland (type 11a). Inside this vegetation type, 17 Gabon sites are reconstructed as TRFO biome (Lopé area), 34 Cameroon sites as TSFO biome (Kandara area) and 19 Gabon and Cameroon sites as SAVA biome (Lopé area and southern Gabon, Kandara area) indicating well the mosaic character of the vegetation. For each site (total of 70), when the potential biome proposed is compared to the local vegetation as defined in the field (Table 1), it appears that all sites are well reconstructed. This shows the importance to have a minimum of botanical information at each sampling site.

5.2 Reconstruction in terms of forest dynamics

In a first step, we have considered all the succession stages which can be observed in a dynamics of reconstruction of the forest, from the younger herbaceous stage (SAVA) to the Tropical Mature Forest stage (TMFO), including successively the Tropical Forest Regrowth (TFRE), the Tropical Young Secondary Forest (TYSF) then the Tropical Old Secondary Forest (TOSF). The results of the comparison between potential reconstructed stages and local vegetation show that only 3 stages can be considered as correctly reconstructed, with a number of correct assignments exceeding the number of incorrect ones (Table 10a and for details at each site refer to Table 1). These are the TMFO (148 sites), TOSF (6 sites) and SAVA (19 sites) stages. The youngest stages of arboreal recolonisation are poorly (TYSF) or totally uncorrected (TFRE) reconstructed.

According to these results we have re-arranged these stages into only 3 main stages: TMFO, TSFE (Tropical Secondary Forest) grouping all secondary succession stages, and SAVA (Table 10b and Fig. 1b). In this way, the potential stages correctly reconstructed are of 97.4% (148 sites), 66.6% (18 sites) and 95% (21) of confidence, respectively.

6 Discussion

Our reconstructions in terms of biomes or succession stages of forest regeneration arise some questions concerning (1) the status of the Congolese Mayombe forest inside the Guineo-Congolian forest massif and (2) the boundary features between two biomes or two succession stages.

6.1 The status of the Congolese Mayombe forest

The potential biomes reconstructed at all the sites from the Congolese Mayombe forest show discrepancies compared with the White’s Central Atlantic vegetation type locations. Indeed, all these sites are located in the dry rain forest (type 2) and are reconstructed as Tropical Rain Forest biome (TRFO) such as the Gabon forested sites and not as Tropical seasonal Forest biome (TSFO) as it could be expected (Table 1).

As in this work, White’s vegetation map, based on a combination of physiognomic and floristic factors, is classically used by African palynologists to localise modern samples or fossil pollen sedimentary sequences (e.g. Lézine and Edorh, 1991; Vincens et al., 2006; Lézine et al., 2009). Sometimes it has been locally modified and complemented according to regional botanical and ecological data such as by Maley (1990), Maley and Elenga (1993) or more recently in Giresse et al. (2008) for Central Africa. But these authors have always conserved the status of semi-deciduous forest or dry rain forest as defined by White (1983) for the Mayombe forest in spite of detailed contradictory botanical field works in this area (e.g. Dowsett-Lemaire, 1991; Hecketsweiler and

Table 6. Atlantic Central African succession stages and their characteristic plant functional types (abbreviations for PFTs as in Table 4).

Codes	Stages	Plant functional types
TMFO	tropical mature forest	Tma, Lma, Hma
TOSF	tropical old secondary forest	Tsf, Lsf, Hsf
TYSF	tropical young secondary forest	Tysf, Lsf, Hsf
TFRE	tropical forest regrowth	Tpi, Lpi, Hpi
SAVA	savanna	Tr3, Lr3, Hr3, g
Table 7. Numerical comparison between pollen-derived (p) and observed (o) biomes at each sampled site.

TRFO (p)	TSFO (p)	TDFO (p)	SAVA (p)	Potential biomes correctly reconstructed (%)	
TRFO (o)	87+43	3	0	0	97.7
TSFO (o)	0	45	0	1	97.8
TDFO (o)	0	0	0	0	
SAVA (o)	0	1	0	19	95

Fig. 2. Cluster analysis of the 176 modern pollen spectra from Atlantic Central African forest (JL: Lebamba et al., 2009).
Table 8. Numerical comparison between pollen-derived biomes (p) and the main Atlantic Central African vegetation types defined by White (1983) (White’s vegetation types: 1a – wetter types of Guineo-Congolian rain forest; 2 – drier types of Guineo-Congolian rain forest; 11a – mosaic of rain forest and secondary grassland).

	TRFO (p)	TSFO (p)	SAVA (p)
1a	65	3	0
1a/2 transition	5	4	0
2	43 (Congo)	8	1
11a	17	34	19

Table 9. Plant functional types proposed for the Atlantic Central African areas under investigation for dynamic reconstructions.

Codes	Plant functional types
Tma	tropical mature forest trees and shrubs
Lma	tropical mature forest lianas
Hma	tropical mature forest herbs
Tosf	tropical old secondary forest trees and shrubs
Tysf	tropical young secondary forest trees and shrubs
Lsf	tropical secondary forest lianas
Hsf	tropical secondary forest herbs
Tpi	tropical forest pioneer trees and shrubs (regrowth)
Lpi	tropical forest pioneer lianas (regrowth)
Hpi	tropical forest pioneer herbs (regrowth)
Tr3	tropical savanna trees and shrubs
Lr3	tropical savanna lianas
Hr3	tropical savanna herbs
g	grasses

Mokoko Ikonga, 1991; Doumenge, 1992; de Namur, unpublished. As observed by Dowsett-Lemaire (1991) the striking feature of the Mayombe forest is the importance of the Caesalpinioideae, locally dominant in the canopy. Among the dominant and most widespread emergent are found two families: the Irvingiaceae, and the Myristicaceae. Other very large and frequent trees belong to the Burseraceae, Combretaceae, Mimosaceae and Sapotaceae. The canopy in the Mayombe is also characterized by a significant proportion of briefly deciduous species; several species, however, are found essentially in secondary situations along roads and in abandoned farmlands and their importance must have increased with the spread of human disturbances. The epiphytic flora is especially rich in the central Mayombe between 400 and 500 m altitude. According to its floristic composition, Dowsett-Lemaire (1991) considers that the Mayombe forest is a rather complex assemblage of two main types of forest: the Atlantic coastal evergreen rain forest and the mixed moist semi-evergreen rain forest, and so, it must be classified as Guineo-Congolian wet rain forest. Such a conclusion seems to be confirmed by Doumenge (1992) who considers that the Mayombe forest has many affinities with the Biafran forest rich in Caesalpinioideae described by Letouzey (1985) in Cameroon, extending southward in Central Gabon as evergreen forest (Nicolas, 1977; Caballé, 1978). Doumenge (1992) estimates that the Mayombe forest on well-drained soils is of dense wet semi-evergreen type. Before these works, Descoings (1969) mapped the Mayombe forest as equatorial rain forest, of the same type than those that occur in northern Congo on well-drained soils and Sita (1989) classified it as dense mixed wet semi-evergreen forest. Moreover, on the Central African vegetation map produced by de Namur (1990) the Mayombe massif appears as of transitional type between an evergreen type to a semi-deciduous one, as are mapped also forests from the northern Gabon (including the Makokou area) and from the southern Cameroon (including the Dja area).

In the light of these botanical information, we have analysed part of our pollen data set – i.e. considering only forest sites (176 and 272 taxa) – using hierarchical cluster analysis (Ward, 1963) and correspondence analysis (CA) (Benzécri, 1973) to identify the possible affinities between pollen assemblages from Congo and those from Gabon and Cameroon.

The dendrogram of the cluster analysis (Fig. 2) shows, at a first level of division (1), a clear differentiation between the Cameroon pollen spectra of Kandara and Mayos located in the northern dry peripheral rain forest (or semi-deciduous forest) and all the others. The next division (2) separates the spectra from Makokou and Belinga in Gabon and from Mayombe (Congo) from the others. At the third level of division (3a) spectra from Makokou and Belinga are well differentiated from those from the Mayombe and (3b) spectra from the Lopé (Gabon) are well separated from the other Cameroon and Gabon spectra. The Correspondence analysis (Fig. 3) displays the same features than the cluster analysis showing along the first axis a clear separation of pollen spectra from the dry peripheral rain forest of Cameroon (Kandara and Mayos) from the others, and along the axis 2 better affinities between the Congolese Mayombe spectra and the Makokou and Belinga ones than with all the others.

These results show that the Mayombe forest, though under lower mean annual rainfall (1400 mm/year) and a longer dry season of 4 months, has more floristic affinities with the wet inland evergreen semi-evergreen rain forest occurring in Gabon (mean of 1600 mm/year, a dry season of 3 months) as previously proposed by Doumenge (1992) and
Table 10. Numerical comparison between pollen-derived (p) and observed (o) succession stages at each sampled site.

	TMFO (p)	TOSF (p)	TYSF (p)	TFRE (p)	SAVA (p)	Potential stages correctly reconstructed (%)
TMFO (o)	148	4	0	0	0	97.4
TOSF (o)	3	6	0	0	0	66.6
TYSF (o)	3	9	1	0	0	7.6
TFRE (o)	1	1	1	0	2	0
SAVA (o)	0	1	0	0	19	95

(b) TMFO (p) TSFE (p) SAVA (p) Potential stages correctly reconstructed (%)

	TMFO (o)	TSFE (o)	SAVA (o)	Potential stages correctly reconstructed (%)
TMFO (o)	148	4	0	97.4
TSFE (o) (TOSF + TYSF + TFRE)	7	18	2	66.6
SAVA (o)	0	1	19	95

Fig. 3. Correspondence analysis with respect to CA axes 1 and 2 of the 176 modern pollen spectra from Atlantic Central African forest (JL: Lebamba et al., 2009).

mapped by de Namur (1990), than with the dry Cameroon semi-deciduous rain forest (1600 mm/year, a dry season of 3 months) as mapped by White (1983). This would confirm the hypothesis expressed by Lebamba et al. (2009) suggesting the importance of the role played by the cloud cover and the relative atmospheric humidity during the dry season in the floristic composition of forests north and south of the meteorological equator, rather than the annual rainfall amount and/or the length of the dry season. High values of these two climatic parameters, linked to monsoon influences from

www.clim-past.net/5/403/2009/ Clim. Past, 5, 403–429, 2009
the Gulf of Guinea in Congo and Gabon, are measured during June, July and August versus low values in Cameroon linked to influences of continental trade winds (Harmattan) during December, January and February (Nicholson, 2000; FAO Web LocClim, 2008).

6.2 The boundaries between biomes or succession stages

While the boundary between grassland and rain forest is clearly identified in the field and on aerial or satellite photographs, by their floristic composition, structure and physiognomy, as well as in pollen assemblages by the abundance of the Poaceae versus arboreal taxa, inside the forest massif the limit between the wet and the dry rain forest, and between the old secondary and the mature forest, is often difficult to establish.

The difference between the wet and the dry forest types is chiefly floristic and this floristic difference does not produce a fundamentally different physiognomy. The transition from one community to the other is usually gradual; one passing into the other imperceptibly except where a concomitant change of soil and climate occurs, it may then be more abrupt (Aubreville, 1938; Richard, 1952). The gradual character of this transition, but also its mosaic character (Tchouto Mbatchou, 2004) is well evidenced in our biome reconstructions in sites of southern Cameroon in the Dja forest area (Nkoul and Cyrie sites) where some sites are reconstructed as TRFO potential biome and others as TSFO potential biome, so they have all been considered as correctly reconstructed (Tables 1 and 8).

The same problem is observed at the boundary of old secondary forest and mature forest. Richards (1952) estimates that it is almost impossible to differentiate these two types of forest formation. In tropical central American forest Budowski (1970) used 3 criteria to differentiate the old secondary forest: (1) a high concentration of deciduous species in the evergreen domain, (2) abundance of lianas of low diameter and (3) the paucity in epiphytes, which are also the most characteristic criteria of the west and central old African secondary forest (Kahn, 1982). Other authors base the boundary of these two forest types in central Africa on the presence of markers such as Elaeis guineensis only in the old secondary forest (Kahn, 1982) or species of Rinorea only in the mature one (Achoundong, 1996, 2000) or in dynamic term, on the acquisition of the mechanism of regeneration by windfall that get forest species in position to regenerate in mature forest (Kahn, 1982).

But, all these criteria used by botanists in the field are very difficult to consider in our palynological work due to the lack of detailed botanical inventories at each pollen site and to the level of identification of our pollen taxa, more generally at the genus or family levels. Only the site of Kandara can illustrate this transition between old secondary forest and mature forest, pollen samples being collected along 2 continuous transects (Vincens et al., 2000 and unpublished data). Along these transects the boundary between the two formations has been placed following botanical inventories and mainly the presence of Rinorea species only in the mature forest (Achoundong, 2000). Unfortunately, pollen grains of Rinorea have not been identified in our samples due probably to the entomophilous character of the pollination of this plant. This boundary is not clearly identified by our pollen assemblages since some samples from the old secondary forest are reconstructed as a TMFO potential stage and some samples from the mature forest as a TOSF potential stage (Table 1). But often the calculated scores for these two stages in a same sample are very close. There is probably not a well defined boundary between these two types of forest such as between dry and wet forest; instead we suggest a transitional zone with a mosaic character. Moreover, our work being based on pollen analysis, part of pollen grains produced by the plants growing on a plot (mainly great pollen producers with well dispersed pollen grains) can be transported in a contiguous plot and so affect the local pollen rain. This could also explain why the regrowth (TRFE) and the young secondary forest (TYSF) stages are not well reconstructed by pollen assemblages, probably associated also with a high anthropogenic impact in the northern Kandara transect.

7 Conclusions

The application of biomisation to Atlantic Central African pollen data using a larger data set, a new and more precise classification of plant functional types and new allocations of pollen taxa to these PFTs adapted to the study area than in previous works, demonstrates that this objective and quantitative method is able to accurately predict the potential vegetation in a tropical forest region with high taxonomic diversity. In the majority of the cases, the results are comparable to site-specific descriptions of the vegetation. Savannas (SAVA potential biome), tropical rain forests (TRFO potential biome) and tropical seasonal forests (TSFO potential biome) are correctly reconstructed at 97.5% of the sites, such as the main successions stages of forest regeneration (93% of the sites): savanna (SAVA potential stage), tropical secondary forest (TSFE potential stage) and tropical mature forest (TMFO potential stage). But inside the secondary forest the young and the pioneer stages are not clearly identified due probably to their low sampling representation. Some reconstructions can remain questionable mainly at sites located at the boundary of two forest biomes (wet rain forest and dry rain forest) or two forest stages (old secondary forest and mature forest) due to the lack of precise botanical inventories on these sites and to the fact that it does not occur a clear boundary between these forest types but a gradual and transitional zone, with also a probable mosaic character.

This work evidences the ability of modern pollen data to predict accurately the present potential vegetation in tropical
African forest ecosystems in terms of biomes but also for the first time in Africa in terms of vegetation dynamics. These positive results open the possibility to use now with confidence fossil pollen data to reconstruct more precisely potential vegetation and its dynamics in Atlantic Central Africa during the Late Quaternary from lacustrine pollen sequences and also to refine climate past reconstructions in this region for a more accurate comparison data/modelling.

Acknowledgements. The pollen data presented in this paper were obtained in the frame of the French projects “ECOFIT” (CNRS-IRD-CEA), “PRIMUS” (PNEDC-INSU-CNRS) and “REGAB” (ECLIPSE-INSU-CNRS). We thank the Institut de Recherche pour le Développement (IRD) of Pointe-Noire, Congo and of Yaoundé, Cameroon, the Cameroon Wildlife Conservation Society (CWCS), and the Institut de Recherche en Ecologie Tropicale (IRET/CENAREST, Libreville, Gabon) for their logistical help and support. We also acknowledge all the local people who assisted us during fieldworks, C. Doumenge (CIRAD, Montpellier) for support. J. Lebamba thanks the government of Gabon for the PhD grant 981195.

Edited by: R. Bonnefille

Publication of this paper was granted by EDD (Environnement, Développement Durable) and INSU (Institut des Sciences de l’Univers) at CNRS.

References

Achoundong, G.: Les Rinorea comme indicateurs des grands types forestiers du Cameroun, in: The biodiversity of African plants, edited by: van der Maesen, L. G. J., van der Burget, X. M., and van Madenbach de Rooy, J. M., Kluwer Academic Publishers, Netherlands, 536–544, 1996.

Achoundong, G.: Formation et évolution des recrûs sur savanes, in: Dynamique à long terme des écosystèmes forestiers intertropicaux, edited by: Servant, M. and Servant-Vildary, S., IRD, UNESCO, MAB, CNRS, Paris, 31–41, 2000.

African Pollen Data base: http://medias.obs-mip.fr/apd/, access: September 2008.

Aubreville, A.: La forêt coloniale: les forêts de l’Afrique occidentale française, Annales de l’Académie des Sciences coloniale, 9, 1–245, 1938.

Benzécri, J. P.: L’analyse des données, II. L’analyse des correspondances, Dunod, Paris, 1973.

Bonnefille, R., Buchet, G., Friis, I., Kelbessa, E., and Mohammed, M. U.: Modern pollen rain on an altitudinal range of forests and woodlands in South West Ethiopia, Opera Botanica, 212, 71–84, 1993.

Budowski, G.: The distinction between old secondary and climax species in tropical Central American forest, Trop. Ecol., 11, 44–48, 1970.

Caballé, G.: Essai sur la géographie forestière du Gabon, Adansonia, 2, 17, 425–440, 1978.

Catinot, R., Fontaine, R. G. and Guillaumet, J. L.: Successions secondaires, in: Écosystèmes forestiers tropicaux d’Afrique, ORSTOM – UNESCO (eds), 198–215, 1983.

Cramer, W.: Using plant functional types in a global vegetation model, in: Plant functional types, their relevance to ecosystem properties and global change, edited by: Smith, T. M., Shugart, H. H., Woodward, F. I., Cambridge University Press, Cambridge, 271–288, 1997.

De Namur, C.: Aperçu sur la végétation de l’Afrique centrale atlantique, in: Paysages quaternaires de l’Afrique centrale atlantique, edited by: Lanfranchi, R. and Schwartz, D., ORSTOM, Paris, 60–67, 1990.

De Saint Aubin, G.: Les formations végétales et composition de la forêt, in: La forêt du Gabon, Centre Technique Forestier Tropical, Nogent-sur-Marne, 13–30, 1963.

Descoings, B.: Ésquisses phytogéographique du Congo, in: Atlas du Congo, ORSTOM, Paris, 1969.

Diaz, S. and Cabido, M.: Plant functional types and ecosystem function in relation to global change: an multiscale approach, J. Veg. Sci., 8, 463–474, 1997.

Diaz Barradas, M. C., Zunzunegui, M., Tirado, R., Ain-Lhout, F., and Garcia Novo, F.: Plant functional types and ecosystem function in Mediterranean shrubland, J. Veg. Sci., 10, 709–716, 1999.

Doumenge, C.: La réserve de la Conkouati : Congo. Le secteur sud-ouest, BP Exploration et UICN, Gland, Suisse, 1992.

Dowsett-Lemaire, F.: The vegetation of the Kouilou basin in Congo, Tauraco Research Report, 4, 17–51, 1991.

Elenga, H., Peyron, O., Bonnefille, R., Prentice, I. C., Jolly, D., Cheddadi, R., Guiot, J., Andrieu, V., Bottema, S., Buchet, G., de Beaulieu, J.L., Hamilton, A. C., Maley, J., Marchant, R., Perez-Obiol, R., Reille, M., Riollet, G., Scott, L., Straka, H., Taylor, D., Van Campo, E., Vincens, A., Laarif, F., and Jonson, H.: Pollen-based biome reconstruction for southern Europe and Africa 18,000 years ago, J. Biogeogr., 27, 3, 621–634, 2000a.

Elenga, H., de Namur, C., Vincens, A., Roux, M., and Schwartz, D.: Use of plots to define pollen-vegetation relationships in densely forested ecosystems of tropical Africa, Rev. Palaeobot. Palyno., 112, 1–3, 79–96, 2000b.

FAO Web LocClim: http://www.fao.org/sd/locclim/srv/en/locclim.home, access: September 2008.

Flore d’Afrique Centrale (Zaïre, Rwanda, Burundi): Jardin botanique de Belgique, Bruxelles, 1972–2004.

Flore du Cameroun : Museum National d’Histoire Naturelle, Paris, 1963–2001.

Flore du Congo Belge et du Ruanda-Urundi: Publications de l’Institut National pour l’Étude Agronomique du Congo Belge, Bruxelles, 1948–1963.

Flore du Congo, du Rwanda et du Burundi: Jardin Botanique Na-
tional de Belgique, Bruxelles, 1967–1971.
Flore du Gabon: Museum National d’Histoire Naturelle, Paris, 1961–2004.
Griesse, P., Makaya Mvoubou, Maley, J. and Ngomanda, A.: Late-Holocene equatorial environments inferred from deposition processes, carbon isotopes of organic matter, and pollen in three shallow lakes of Gabon, west central Africa, J. Paleolimnol., 41, 2, 369–392, 2008.
Gitay, H. and Noble, I. R.: What are functional types and how should we seek them?, in: Plant functional types, their relevance to ecosystem properties and global change, edited by: Smith, T. M., Shugart, H. H., and Woodward, F. I., Cambridge University Press, Cambridge, 3–19, 1997.
Haxeltine, A. and Prentice, I. C.: BIOME3: an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional type, Global Biogeochem. Cy., 10, 693–709, 1996.
Hecketsweiler, P. and Mokoko Ikonga, J.: La réserve de la Conkouati: Congo. Le secteur sud-est., BP Exploration and UICN, Gland, Suisse, 4, 323 pp., 1991.
Hély, C., Bremond, L., Alleaume, S., Smith, B., Sykes, M., and Guiot, J.: Sensitivity of African biomes to changes in the precipitation regime, Global Ecol. Biogeogr., 15, 258–270, 2006.
Hutchinson, J. and Dalziel, J. M.: Flora of West Tropical Africa, Whitefriars, London, 1954–1972.
Jolly, D., Bonnefille, R., Burcq, S., and Roux, M.: Représentation pollinique de la forêt dense humide du Gabon, tests statistiques, C. R. Acad. Sci., Paris, 322, 1, 63–70, 1996.
Jolly, D. and Haxeltine, A.: Effect of low glacial atmospheric CO2 on tropical African montane vegetation, Science, 276, 786–788, 1997.
Jolly, D., Harrison, S. P., Dammati, B., and Bonnefille, R.: Simulated climate and biomes of Africa during the Late Quaternary: comparison with pollen and lake status data, Quaternary Sci. Rev., 17, 629–657, 1998a.
Jolly, D., Prentice, I. C., Bonnefille, R., Ballouche, A., Bengo, M., Brenac, P., Buchet, G., Burney, D., Cazet, J. P., Cheddadi, R., Edorh, T., Eloumati, S., Guiot, J., Laarif, F., Lamb, H., Lezine, A. M., Maley, J., Mbenza, M., Peyron, O., Reille, M., Reynaud-Farrera, I., Riollet, G., Ritchie, J. C., Roche, E., Scott, L., Ssemmanda, I., Straka, H., Umer, M., Van Campo, E., Villumbulo, S., Vincens, A., and Waller, M.: Biome reconstruction from pollen and plant macrofossil data for Africa and the Arabian peninsula at 0 and 6000 years, J. Biogeogr., 25, 1007–1027, 1998b.
Kahn, F.: La reconstitution de la forêt tropicale humide. Sud-Ouest de la Côte d'Ivoire, ORSTOM, Paris, mémoire 97, 1982.
Köhler, P., Ditzer, T., and Huth, A.: Concepts for the aggregation of tropical tree species into functional types and the application to Sabah’s lowland rain forests, J. Trop. Ecol., 16, 591–602, 2000.
Lavorel, S., McIntyre, S., Landsberg, J., and Forbes, D.: Plant functional classifications: from general groups to specific groups based on response to disturbance, Trends Ecol. Evol., 12, 474–478, 1997.
Lavorel, S. and Garnier, E.: Predicting the effects of environmental changes on plant community composition and ecosystem functioning: revisiting the Holy Grail, Funct. Ecol., 16, 545–556, 2002.
Mays, P., Janodet, E., Blair-Myers, C., and Legeay-Janvier, P.: Vegetation map of central Africa at 1:500000. Tropical Ecosystem Environment Observation by Satellites, TREES series D, 1, 1997.
Mays, P., Richards, T., and Janodet, E.: A vegetation map of Central Africa derived from satellite imagery, J. Biogeogr., 25, 353–366, 1999.
Moutsamboté, J. M., N’zala, D., and Ngondo, J. C.: Evolution des recours forestiers après culture de manioc au Mayombe (Congo), Cahiers d’Etudes et de Recherches Francophones, Agriculture, 9, 2, 141–144, 2000.
Ngomanda, A.: Dynamique des écosystèmes forestiers du Gabon.
au cours des cinq derniers millénaires, Ph.D. thesis, University of Montpellier 2, France, 2005.

Nicholson, S. E.: The nature of rainfall variability over Africa on time scales of decades to millennia, Global Planet. Change, 26, 137–158, 2000.

Nicolas, P.: Contribution à l'étude phytogéographique de la forêt du Gabon, Ph.D. thesis, University Paris I, France, 1977.

Noble, I. R. and Gitay, H. A.: A functional classification for predicting the dynamics of landscapes, J. Veg. Sci., 7, 329–336, 1996.

Peyron, O., Jolly, D., Bonnefille, R., Vincens, A., and Guiot, J.: Climate of east Africa 6000 \(^{14}C\) yr B.P. as inferred from pollen data, Quaternary Res., 54, 90–101, 2000.

Peyron, O., Jolly, D., Bracconnot, P., Bonnefille, R., Guiot, J., Wyrmann, D., and Chalié, F.: Quantitative reconstructions of annual rainfall in Africa 6000 years ago: model-data comparison, J. Geophys. Res., 111, D24110, doi:10.1029/2006JD007396, 2006.

Prentice, I. C., Cramer, W., Harrison, S. P., Leemans, R., Monserud, R. A., and Solomon, A. M.: A global biome model based on plant physiology and dominance, soil properties and climate, J. Biogeogr., 19, 117–134, 1992.

Prentice, I. C., Guiot, J., Huntley, B., Jolly, D. and Chebbadji, R.: Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka, Clim. Dynam., 12, 185–194, 1996.

Prentice, I. C. and Webb III, T.: Biome 6000: reconstructing global mid-Holocene vegetation patterns from palaeoecological records, J. Biogeogr., 25, 997–1053, 1998.

Prentice, I. C., Jolly, D. and BIOME 6000 participants: Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa, J. Biogeogr., 27, 507–519, 2000.

Richards, P. W.: The tropical rain forest. An ecological study, Cambridge University Press, Cambridge, 450 pp., 1952.

Robyns, W.: Contribution à l’étude des formations herbeuses du district forestier central du Congo Belge, Mém. Inst. Roy. Colon. Belge, 5, 1936.

Schnell, R.: Introduction à la phytogéographie des pays tropicaux. 3. La flore et la végétation de l’Afrique tropicale, Gauthier-Villars, Paris, 1976.

Schwartz, D., Engela, H., Vincens, A., Bertaux, J., Mariotti, A., Achoumdong, G., Alexandre, A., Belingard, C., Girardin, C., Guillet, B., Maley, J., de Namur, C., Reynaud-Farrera, I., and Youla Hippi, J.: Origine et évolution des savanes des marges forestières en Afrique centrale Atlantique (Cameroun, Gabon, Congo): approche aux échelles millénaires et séculaires, in: Dynamique à long terme des écosystèmes forestiers intertropicaux, edited by: Servant, M. and Servant-Vildary, S., IRD, UNESCO, MAB, CNRS, Paris, 325–338, 2000.

Sita, P.: La forêt tropicale au Congo, in: Hommes et environnement, Quarante ans de recherche scientifique au Congo, Conférences de l’ORSTOM, Brazzaville novembre 1989, ORSTOM, 104–110, 1989.

Skarpe, C.: Plant functional types and climate in a southern African savanna, J. Veg. Sci., 7, 397–404, 1996.

Smith, T. M., Shugart, H. H., and Woodward, F. I.: Plant functional types, their relevance to ecosystem properties and global change, Cambridge University Press, Cambridge, 1997.

Tchouto Mbachtou, G. P.: Plant diversity in a Central African forest. Implications for biodiversity conservation in Cameroon, Tropenbos International, Publications, Cameroon series 7, 210 pp., 2004.

Vincens, A., Ssemmanda, I., Roux, M., and Jolly, D.: Study of the modern pollen rain in western Uganda with a numerical approach, Rev. Palaeobot. Palyno., 96, 145–168, 1997.

Vincens, A., Dubois, M. A., Guillet, B., Achoumdong, G., Buchet, G., Kamgang Kabeyene Beyala, V., de Namur, C., and Riéra, B.: Pollen-rain-vegetation relationships along a forest-savanna transect in southeastern Cameroon, Rev. Palaeobot. Palyno., 110, 3–4, 191–208, 2000.

Vincens, A., Bremond, L., Brewer, S., Buchet, G., and Dussouillez, P.: Modern pollen-based biome reconstructions in East Africa expanded to southern Tanzania, Rev. Palaeobot. Palyno., 140, 187–212, 2006.

Vincens, A., Lézine, A.-M., Buchet, G., Lewden, D., Le Thomas, A., and contributors: African Pollen Database inventory of tree and shrub pollen types, Rev. Palaeobot. Palyno., 145, 135–141, 2007.

Ward, J. H.: Hierarchical grouping to optimize an objective function, J. Am. Stat. Assoc., 58, 236–244, 1963.

White, F.: The vegetation of Africa. A descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa, UNESCO, Paris, 1983.

White, L. J. T. and Abernethy, K.: Le guide de la végétation de la Réserve de La Lopé, ECOFAC-GABON, Libreville, 1996.

Woodward, F. I. and Cramer, W.: Plant functional types and climatic changes: introduction, J. Vege. Sci., 7, 306–308, 1996.

Wright, H. E.: The use of surface samples in Quaternary pollen analysis, Rev. Palaeobot. Palyno., 2, 321–330, 1967.