Supplemental information

Activation of STAT3 through combined SRC and EGFR signaling drives resistance to a mitotic kinesin inhibitor in glioblastoma

Rajappa S. Kenchappa, Athanassios Dovas, Michael G. Argenziano, Christian T. Meyer, Lauren E. Stopfer, Matei A. Banu, Brianna Pereira, Jessica Griffith, Afroz Mohammad, Surabhi Talele, Ashley Haddock, Natanael Zarco, William Elmquist, Forest White, Vito Quaranta, Peter Sims, Peter Canoll, and Steven S. Rosenfeld
Figure S1: Ispinesib resistant cells increase expression of phospho histone H3 (pHH3). Related to Fig. 1 Three biological replicates of ispinesib naïve (Naïve) and resistant (Res) cells, the latter maintained in the presence of 75 nM ispinesib, were probed on Western blot (top) for the expression of the mitotic marker pHH3. The ratio of pHH3 to total histone H3 (HH3, bottom) is significantly greater in ispinesib resistant cells (p=0.0001, two tailed t test), consistent with resistant cells experiencing a partial block in G2M with prolonged ispinesib treatment.
Figure S2: Nocodazole does not increase SRC phosphorylation in Trp53/Pten(-/-) GBM cells. Related to Fig. 3. Murine Trp53/Pten(-/-) GBM cells were treated with 100 nM nocodazole (N) or vehicle (DMSO, V) for 24 hours, and cell lysates were probed for total and pY418 SRC. The content of pY418 SRC, normalized to total SRC, is unchanged by treatment with nocodazole ($p=0.54$, two tailed t test).
Figure S3: MuSyc analysis of synergy using static cell counts. Related to Fig. 3D, E and Fig. 5I, J. (A) (Left) Dose-response surface for the combination of dasatinib and erlotinib for ispinesib-resistant Trp53/Pten(−/−) cells cultured in the presence of 75 nM ispinesib, using manual cell count after 96 hours of exposure to drug. This surface, based on cell number, is analogous to the left panel in Fig. 3D, which is based on cell doubling time. (Right) Projected edges of the surface in Fig. S1A for the maximum and minimum tested in the combination, analogous to the right panel in Fig. 3D. (B) (Left) Dose-response surface for the combination of ispinesib and saracatinib ispinesib-resistant
Trp53/Pten(−/−) cells, using manual cell count after 96 hours of exposure to drug. This surface, based on cell number, is analogous to the left panel in Fig. 3E, which is based on cell doubling time. (Right) Projected edges of the surface in Fig. S1B for the maximum and minimum tested in the combination, analogous to the right panel in Fig. 3E. (C). Corresponding dose response surface for the combination of dasatinib and erlotinib for an ispinesib resistant human GBM cell line (L1). Consistent with Fig. 5I, J, neither dasatinib nor erlotinib have any appreciable activity as single agents against ispinesib-resistant L1 cells, making calculations of EC_{50} highly uncertain. However, the dose response surface shows a marked degree of synergy of efficacy (β_{obs} = 5.09).
Figure S4: Kif15-IN-1 reduces viability of ispinesib resistant cells in the presence of ispinesib. Related to Fig. 4. Murine Trp53/Pten(-/-) cells that are ispinesib naïve or resistant (Res.) in the absence of ispinesib were treated in vitro with a range of doses of the Kif15 inhibitor Kif15-IN-1 and cell viability was measured after 3 days of exposure. Neither cell type shows any appreciable sensitivity to Kif15-IN-1. However, in the presence of 75 nM ispinesib, Kif15-IN-1 reduces cell count by 45% with an EC$_{50}$ of 456 ± 52 nM (Table S1)
Figure S5: Phosphorylation of STAT3 at Y705 and S727 contribute to ispinesib resistance in murine Trp53/Pten(-/-) cells. Related to Fig. 4. (A). Western blots of lysates from ispinesib naïve and resistant cells, probed for total and pY705 STAT3. Ispinesib resistance is associated with increased expression of both total STAT3 and pY705 STAT3. Treatment of resistant cells with either saracatinib or dasatinib reduces pY705 STAT3 levels to those of naïve cells. Please refer to Fig. 4E & G for quantitation. (B). Corresponding Western blots probing for pS727 STAT3. Please refer to Fig. 4F for quantitation. (C). Western blots of lysates from ispinesib naïve and resistant cells, probed for total and pY705 and pS727 STAT3. Treatment of resistant cells with erlotinib markedly reduces levels of pS727 STAT3 but has relatively little effect on levels of pY705 STAT3. Please refer to Fig. 4H-J for quantitation. (D). Western blots of lysates from ispinesib naïve and resistant cells, probed for total and phosphorylated AKT (Top). Treatment of ispinesib resistant cells with saracatinib reduces pAKT levels to those of naïve cells treated with vehicle, while treatment with dasatinib does not (Bottom). (E). Treatment of ispinesib resistant cells with erlotinib does not appreciably alter levels of SRC phosphorylation. (F). Western blot demonstrating >95% suppression of STAT3 in ispinesib resistant cells with shRNA. Related to Fig. 4L & M. (G). Ispinesib naïve cells were transfected with vectors encoding STAT3-C, S727A STAT3 or S727D STAT3 constructs, each fused to a Flag

Figure S5: Phosphorylation of STAT3 at Y705 and S727 contribute to ispinesib resistance in murine Trp53/Pten(-/-) cells. Related to Fig. 4. (A). Western blots of lysates from ispinesib naïve and resistant cells, probed for total and pY705 STAT3. Ispinesib resistance is associated with increased expression of both total STAT3 and pY705 STAT3. Treatment of resistant cells with either saracatinib or dasatinib reduces pY705 STAT3 levels to those of naïve cells. Please refer to Fig. 4E & G for quantitation. (B). Corresponding Western blots probing for pS727 STAT3. Please refer to Fig. 4F for quantitation. (C). Western blots of lysates from ispinesib naïve and resistant cells, probed for total and pY705 and pS727 STAT3. Treatment of resistant cells with erlotinib markedly reduces levels of pS727 STAT3 but has relatively little effect on levels of pY705 STAT3. Please refer to Fig. 4H-J for quantitation. (D). Western blots of lysates from ispinesib naïve and resistant cells, probed for total and phosphorylated AKT (Top). Treatment of ispinesib resistant cells with saracatinib reduces pAKT levels to those of naïve cells treated with vehicle, while treatment with dasatinib does not (Bottom). (E). Treatment of ispinesib resistant cells with erlotinib does not appreciably alter levels of SRC phosphorylation. (F). Western blot demonstrating >95% suppression of STAT3 in ispinesib resistant cells with shRNA. Related to Fig. 4L & M. (G). Ispinesib naïve cells were transfected with vectors encoding STAT3-C, S727A STAT3 or S727D STAT3 constructs, each fused to a Flag
epitope. Probing of lysates from transfected cells demonstrates staining of the Flag epitope at the expected Mr for the STAT3-Flag fusion (89.1 kDa).
Figure S6: Single cell RNA-seq studies of ispinesib naïve and resistant *Trp53/Pten(-/-)* cells. Related to Fig. 6. (A). UMAP projection annotating cells by cluster designation as described in the methods. (B). Co-expression analysis of *Egfr* and *Src* transcripts on randomly subsampled dataset to equalize transcript coverage across conditions. Cells were deemed *Egfr* or *Src* positive based on whether they express >0 transcripts of the respective gene. (C-E). Projecting normalized gene expression (*log2(CPM+1)*) of *Egfr* (C), *Src* (D), and *Stat3* (E) onto each cell on the UMAP.
Table S1: Dose Response Parameters Related to Figures 1-5 and S3

Cell Line	Drug	EC₅₀ (nM)	n	c	Figure
Trp53/Pten(-/-) Naive	Ispinesib	3.9 ± 0.3	0.4	1	1A
Trp53(-/-) Naive	Ispinesib	28.1 ± 0.5	0.5	1	1A
Trp53(-/-) Resistant	Ispinesib	2895 ± 953	1.0	1	1A
120 Naive	Ispinesib	10.3 ± 1.6	0.3	1	Q
612 Naive	Ispinesib	5.9 ± 1.2	0.4	1	1B
L1 Naive	Ispinesib	11.5 ± 1.9	0.5	1	1B
Trp53/Pten(-/-) Resistant	Elacridar	2977 ± 312	0.9	1	2E
Trp53/Pten(-/-) Resistant + Ispinesib	Elacridar	1503 ± 178	1.0	1	2E
Trp53/Pten(-/-) Resistant + 75 nM Ispinesib	SH5-07	99.8 ± 14.7	0.7	1	4K
Trp53/Pten(-/-) Resistant	SH5-07	1634 ± 116	1.3	1	4K
Trp53/Pten(-/-) Naive	SH5-07	3435 ± 210	1.9	1	4K
Trp53/Pten(-/-) Naive S727A transfected	Ispinesib	17.2 ± 1.8	0.5	1	4Q
Trp53/Pten(-/-) Naive S727D transfected	Ispinesib	318.7 ± 23.2	0.8	1	4Q
Trp53/Pten(-/-) Naive STAT3-C transfected	Ispinesib	397 ± 30.1	1.1	1	4Q
Trp53/Pten(-/-) Naive STAT3-C + S727D co-transfected	Ispinesib	3174 ± 951	0.9	1	4Q
L1 Resistant + Ispinesib	Saracatinib	73.7 ± 7.6	0.9	1	5K
120 Resistant + Ispinesib	Saracatinib	82.1 ± 6.6	1.2	1	5K
L1 Resistant	SH5-07	821 ± 53	1.8	1	5L
120 Resistant	SH5-07	654 ± 33	1.6	1	5L
Trp53/Pten(-/-) Resistant + 75 nM Ispinesib	Kif15-IN-1	456 ± 52	2.9	0.45	S4

*Dose response data were fit to a modified Hill equation:

\[f = 1 - \left(\frac{c}{1 + \left(\frac{EC_{50}}{d} \right)^n} \right) \]

where f is the fraction of cells viable at drug concentration d, n is the Hill coefficient, and 1-c is the extrapolated fraction of cells remaining at infinite drug concentration.
Table S3: Genes Contributing to the Core Enrichment of the Hallmark IL6_JAK_STAT3 Signaling and Apoptosis Gene Sets. Related to Figure 2.

Description	Rank metric score	Description	Rank metric score
CSF1	3.127344131	GADD45A	3.051753759
MAP3K8	2.989305019	PMAIP1	2.99844861
CXC11	2.985846412	GCH1	2.68230696
PIM1	2.876420776	CD14	2.868521437
CD14	2.684521437	BID	2.377319813
STAT2	2.472597837	PDGFRA	2.262815952
ACVR1B	2.427387714	ENO2	2.24559164
CCL10	2.319079696	BCL2L11	2.229264975
TLR2	2.197650909	BMF	2.187267005
TNFRSF1B	2.188010693	BIRC3	2.171019811
IRF1	2.058646917	HGF	2.069895744
OSMR	2.05050275	IRF1	2.059646917
IL13RA1	1.99367693	BTG3	2.015978575
IL15RA	1.890208272	ISG20	2.012355566
IFNGR2	1.88274014	ATF3	2.004239559
CCL7	1.850557685	SMAD7	1.85145733
TYK2	1.831244469	IGF2R	1.84976425
HMOX1	1.763247371	HSPB1	1.791835804
Socs3	1.72180289	HMOX1	1.763247371
MyD88	1.545367479	IFITM3	1.75944548
IRF9	1.529366493	PLaC2	1.709821278
FAS	1.476338387	DDIT3	1.604860544
CXC111	1.441642462	PDCD4	1.563193083
IL1R1	1.438171387	GSTM1	1.562746763
HAX1	1.386450648	BTG2	1.508926688
IL10RB	1.16825765	MGMT	1.482246411
IL6	1.156022787	FAS	1.476338387
PIK3R5	1.139425397	GADD45B	1.467140794
PF4	1.098421574	BNIP3L	1.461659888
TGFBI	1.068340659	TAP1	1.447855949
PDGFc	1.054469585	DPYD	1.430681109
IFNGR1	1.010493636	SATB1	1.376746655
CNTFR	0.990882218	SPTANI	1.285884976
ILIR2	0.981358619	IL1A	1.263474345
CXC12	0.95816055	FJ2R	1.240000192
CSF2	0.939109274	TIMP2	1.18730062
STAM2	0.890168846	IL6	1.156022787
IFNAR1	0.857622743	CLI	1.146504879
CXC13	0.838460088	DCN	1.100682945
SOD2	1.099037886	IFNB1	1.037026564
IFN1q	1.010493636	TXNIP	1.010767658
IFN1q	1.010493636	IFN1q	1.010493636
TGFBI	1.00625326	CDKN1B	0.989515144
GNA15	0.968944073	GPX4	0.915690064
PPT1	0.899199188	AIFM3	0.87068858
IL1B	0.851111665	CCND2	0.829753333
CASP6	0.794056118	RELA	0.76679492
PAK1	0.742235661	IER3	0.711185098
IGFBP6	0.70793264	PPP2R5B	0.70758605
TNFSF10	0.701559782	BCL10	0.696322087
MMP2	0.681311667	SC5D	0.67103474

HALLMARK_IL6_JAK_STAT3_SIGNALING_signal

HALLMARK_APOPTOSIS_signal
Table S4: Receptor Tyrosine Kinases Upregulated in Ispinesib Resistant Murine Trp53/Pten(-/-) GBM Cells. Related to Figure 2.

Receptor	baseMean	log2FoldChange	lfcSE	stat	pvalue	padj
Ddr2	9392.264714	0.390455228	0.146879204	2.658342483	0.007852605	0.02413204
Fgfr1	5302.72259	0.351221519	0.147232045	2.385496439	0.017056087	0.046289903
Fli3	8.713994578	3.113619813	1.144913642	2.719523724	0.006537601	0.020681487
Fli4	28.70890712	1.698501414	0.63262833	2.684832994	0.007256606	0.022587646
Insr	1423.927513	0.589879312	0.22157298	2.662234864	0.00776237	0.023907958
Mertk	448.3537726	1.033627033	0.224681657	4.600406844	4.22E-06	3.33E-05
Pdgfrb	3367.937553	1.407861522	0.14692621	9.58209924	9.51E-22	5.58E-20
Ret	18.44404784	3.355623884	0.692048633	4.84882669	1.24E-06	1.10E-05
Ryk	4830.402374	0.488899581	0.122874072	3.978866908	6.92E-05	0.000401032
Tyro3	984.72402	0.753419505	0.184421462	4.085313594	4.40E-05	0.000269336
Epha1	66.9367502	4.455549255	0.652102274	6.83259273	8.34E-12	1.78E-10
Epha3	28.69936978	1.928074552	0.707799258	2.724041501	0.00644884	0.020475532
Ephb4	1670.684477	0.526295371	0.140959614	3.733660698	0.00188717	0.000972843
Ephb6	382.9903593	1.155855686	0.463683009	2.493011605	0.01266471	0.036098351
Egfr	341.7866384	1.593361822	0.43508276	3.662203991	0.000250055	0.001244486
Table S5: Pharmacokinetic Parameters for Saracatinib in Wild Type and TKO Mice. Related to Figure 7.

Parameter	Wild Type	TKO
Plasma AUC$_{0\rightarrow\infty}$ (hr·ng/ml)	5111	4770
Brain AUC$_{0\rightarrow\infty}$ (hr·ng/ml)	1207	36185
Brain t$_{1/2}$ (hr)	3.8	6.8
Cl (l/hr/kg)	0.98	1.0
Kp (AUC$_{\text{Brain}}$/AUC$_{\text{Plasma}}$)	0.24	7.72