Research Article

Association between interleukin-10 gene rs1800896 polymorphism and diabetic retinopathy in a Chinese Han population

Lun Liu1, Jie Zheng1, Yajing Xu1, Jian Gao1, Lingling Fan1 and Dong Xu2

1Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; 2Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China

Correspondence: Lun Liu (13956956362@163.com)

Introduction

Diabetic retinopathy (DR), the most common single cause of newly reported cases of blindness amongst adults [1], is a neurovascular complication of type 2 diabetes mellitus (T2DM) [2–4]. DR is characterized by injuries in neural and vascular structures [3] and is increasingly reported to be greatly influenced by inflammation [5]. The levels of cytokines, inflammatory cells, and angiogenic factors reportedly increase following DR [6]. The development and progression of DR may involve interleukin-10 (IL-10), an anti-inflammatory cytokine with potent deactivating properties.

IL-10 is expressed by most cells of the adaptive and innate immune systems, including dendritic cells, leukocytes, and macrophages [7]. IL-10 gene rs1800896 polymorphism (IL-10 -1082G/A polymorphism) in the promoter region could affect the IL-10 expression [8]. The IL-10 gene polymorphism is reportedly associated with the risk of DR in different populations [9–12]. However, this single nucleotide polymorphism (SNP) has not been investigated in Chinese populations. Therefore, we decided to investigate whether the IL-10-1082G/A polymorphism was associated with proliferative DR (PDR) in a Chinese Han population with T2DM.

Methods

Study population

In this hospital-based case–control design, totally 327 hospitalized T2DM patients with PDR and 461 T2DM patients without PDR were selected from the First Affiliated Hospital of Anhui Medical University between March 2014 and July 2017. T2DM was diagnosed according to the American Diabetes Association guidelines [13], while PDR was diagnosed through direct funduscopy examination. The stage of PDR was determined according to the retinopathy severity scale of the Early Treatment Diabetic Retinopathy Study.
Table 1 Clinical manifestations of PDRy in patients with type 2 diabetes

Variable	With PDR (n=325)	Without DR (n=460)	P
Age (years)	53.58 ± 12.81	52.89 ± 12.29	0.440
Sex			
Male	165 (50.5%)	249 (54.1%)	
Female	162 (49.5%)	212 (45.9%)	
BMI (kg/m²)	34.98 ± 4.78	29.44 ± 5.92	<0.001
LDL (mmol/l)	3.19 ± 0.95	3.14 ± 0.97	0.534
HDL (mmol/l)	1.22 ± 0.28	1.20 ± 0.31	0.340
TC (mmol/l)	5.48 ± 1.57	5.36 ± 1.43	0.286
Hypertension			
Yes	307 (93.9%)	400 (86.8%)	
No	20 (6.1%)	61 (13.2%)	
Dyslipidemia			
Yes	301 (92.0%)	404 (87.6%)	0.047
No	26 (8.0%)	57 (12.4%)	
Duration of diabetes (years)	15.52 ± 5.86	16.30 ± 7.06	0.003

Study Research Group. The inclusion criteria were (i) no need of permanent insulin treatment within the first year of diagnosis, (ii) no previous episodes of ketoacidosis, and (iii) age at diagnosis of diabetes ≥ 30 years. People with coronary artery diseases, peripheral vascular diseases, history of any thrombotic event, acute infection, or any other ocular disorders (e.g. branch retinal venous occlusion, glaucoma, Eales disease) were excluded. The demographic, lifestyle and clinical characteristics of all subjects were collected from medical records, including age, gender, body mass index (BMI); kg/m²), hypertension and dyslipidemia. This case–control study was approved by the Ethics Committee of the Hospital and performed according to Declaration of Helsinki. All patients provided written informed consent prior to participation.

Genomic DNA extraction and genotyping

Blood samples were collected using vacutainer tubes and then transferred to ethylene- diamine-tetra-acetic acid (EDTA) tubes. DNA was extracted using a Biopur Mini Spin kit (Biometrix). The genotypes of IL-10 gene polymorphism were identified by PCR-based restriction fragment length polymorphism (RFLP) assay. The PCR program was as follows: initial denaturation at 95°C for 5 min; 35 cycles of denaturation at 95°C for 30 s, annealing at 58°C for 30 s, and extension at 72°C for 30 s; final extension at 72°C for 10 min. To ensure the genotyping quality, two independent investigators interpreted the images of each gel, and at least 10% of the samples were randomly selected for repeated genotyping.

Statistical analysis

The Hardy–Weinberg equilibrium (HWE) of the SNP genotypes was accessed by the goodness-of-fit Chi-square (χ²) test to compare the observed and expected genotype frequencies amongst controls. Associations between demographic characteristics and IL-10 gene rs1800896 polymorphism genotypes were assessed through χ² test (for categorical variables) and Student’s t test (for continuous variables). Associations between the IL-10 gene rs1800896 polymorphism A/G genotypes and the risk of PDR were estimated by calculating odds ratios (ORs) and 95% confidence intervals (CIs) using logistic regression analysis. All statistical analyses were performed on SAS software package 9.1.3 (SAS Institute, Cary, NC, U.S.A.) with the significance level at P < 0.05.

Results

Clinical information of the study population

The characteristics of the subjects are summarized in Table 1. The cases and controls were aged 53.58 and 52.89 years on an average, respectively, and involved 50.5 and 54.1% of males, respectively, indicating the two groups were well matched in terms of age and gender (both P > 0.05). TC, HDL, and LDL values are listed in the left column. Significant association was found in the analyses of hypertension and dyslipidemia between cases and controls, indicating hypertension and dyslipidemia are important factors for the DR development in the Chinese Han population.
Table 2 Logistic regression analysis of associations between IL-10 rs1800896 polymorphism and risk of PDR

Genotype	With PDR* (n=325)	Without DR* (n=460)	OR (95% CI)	P		
	n	%	n	%		
AA	124	31.7	146	31.7	1.00	
AG	153	48.7	224	48.7	0.80; (0.59–1.10)	0.176
GG	48	19.6	90	19.6	0.63; (0.41–0.96)	0.031
AG+GG	201	63.8	314	68.3	0.75; (0.56–1.02)	0.063
AG+AA	277	85.3	370	80.4	1.00	
GG	48	19.6	90	19.6	0.71; (0.49–1.05)	0.083
A	401	56.1	516	56.1	1.00	
G	249	43.9	404	43.9	0.79 (0.65, 0.97)	0.027

*The genotyping was successful in 325 cases and 460 controls. Bold values are statistically significant (P<0.05).

Table 3 Stratified analyses between IL-10 rs1800896 polymorphisms and PDR

Variable	rs1800896 (with PDR/without DR)	AG vs. AA	GG vs. AA	GG+AG vs. AA	GG vs. AG+AA
Sex		AG	GG	GG+AG	GG
Male	63/82	0.85 (0.54–1.31); 0.453	0.65 (0.37–1.16); 0.142	0.78 (0.52–1.18); 0.247	0.72 (0.43–1.20); 0.206
Female	61/64	0.75 (0.48–1.19); 0.222	0.61 (0.32–1.14); 0.122	0.72 (0.47–1.10); 0.150	0.72 (0.41–1.27); 0.258
Hypertension					
Yes	113/121	0.79 (0.56–1.10); 0.159	0.62 (0.40–0.97); 0.085	0.74 (0.54–1.01); 0.058	0.71 (0.48–1.06); 0.098
No	11/25	0.57 (0.18–1.78); 0.352	0.57 (0.13–2.42); 0.445	0.57 (0.21–1.57); 0.276	0.72 (0.18–2.87); 0.642
Dyslipidemia					
Yes	112/128	0.83 (0.59–1.16); 0.267	0.65 (0.42–1.02); 0.059	0.78 (0.57–1.06); 0.116	0.73 (0.49–1.09); 0.119
No	12/18	0.59 (0.22–1.62); 0.305	0.41 (0.09–1.78); 0.234	0.54 (0.21–1.40); 0.203	0.55 (0.14–2.15); 0.386
Age (years)					
<55	61/84	0.97 (0.63–1.49); 0.892	0.69 (0.39–1.22); 0.198	0.88 (0.59–1.33); 0.552	0.70 (0.42–1.17); 0.170
≥55	63/62	0.65 (0.41–1.03); 0.067	0.57 (0.30–1.09); 0.090	0.63 (0.40–0.98); 0.038	0.74 (0.41–1.32); 0.305
BMI					
<25	3/29	0.54 (0.10, 2.83); 0.486	0.35 (0.03, 3.52); 0.389	0.47 (0.10, 2.23); 0.344	0.49 (0.06, 4.28); 0.522
≥25	121/117	0.85 (0.61, 1.19); 0.354	0.73 (0.46, 1.16); 0.182	0.82 (0.60, 1.13); 0.223	0.80 (0.55, 1.21); 0.298

*The genotyping was successful in 325 cases and 460 controls. Bold values are statistically significant (P<0.05).

Association between IL-10 gene rs1800896 polymorphism and PDR risk

The genotype distributions of IL-10 gene rs1800896 polymorphism in the controls conformed to the HWE (Table 2). Logistic regression analyses revealed GG genotype or G allele was related to decrease the risk for PDR (Table 2). We also evaluated the effects of the SNP on PDR risk according to patient characteristics (Table 3). The association between the rs1800896 polymorphism and PDR was only observed amongst the hypertensive subjects and older subjects (≥55 years), but was independent of gender or dyslipidemia. No significant association was found between genotype and the clinical or biochemical characteristics (Table 4).
Table 4 The clinical and biochemical characteristics of rs1800960 polymorphism amongst two groups

	With PDR (n=325)	Without DR (n=460)						
	AA (n=124)	AG (n=153)	GG (n=48)	P	AA (n=146)	AG (n=224)	GG (n=90)	P
Age (years)	55.14 ± 13.34	52.91 ± 12.10	51.81 ± 13.65	0.207	52.37 ± 12.17	53.19 ± 12.45	52.87 ± 12.21	0.823
BMI (kg/m²)	34.65 ± 4.77	35.03 ± 4.78	35.78 ± 4.86	0.381	30.24 ± 6.24	29.16 ± 5.60	28.70 ± 5.93	0.191
TC (mmol/l)	5.57 ± 1.72	5.51 ± 1.48	5.21 ± 1.45	0.400	5.27 ± 1.42	5.44 ± 1.43	5.32 ± 1.45	0.525
HDL (mmol/l)	1.22 ± 0.27	1.21 ± 0.28	1.23 ± 0.31	0.961	1.20 ± 0.29	1.21 ± 0.31	1.19 ± 0.32	0.935
LDL (mmol/l)	3.19 ± 0.92	3.21 ± 1.00	3.06 ± 0.88	0.643	3.13 ± 0.97	3.12 ± 0.97	3.24 ± 1.01	0.611

Discussion

This case–control study showed that IL-10 gene rs1800896 polymorphism was related to decreased risk for PDR in a Chinese population.

DR is proposed to be a manifestation of a persistent low-grade inflammation [14]. IL-10 can inhibit the production of pro-inflammatory cytokines and stimulate differentiation, proliferation and survival of some immune cells [7]. The IL-10 deficiency may not elicit protective immune response, but excessive production can exaggerate inflammatory response, resulting in immunopathology and tissue damage.

Recently, several studies explored the association between IL-10 gene rs1800896 polymorphism and DR risk. A Caucasian study first uncovered an association between this SNP and the PDR development in T2DM and demonstrated that the GG genotype of this polymorphism was associated with increased risk of PDR [12]. Later, a study from India investigating the relationship between this SNP and PDR risk found GG genotype or G allele of this polymorphism was associated with increased risk for PDR [10]. Two Brazilian studies yielded conflicting findings, as Rodrigues et al. [11] did not obtain an association, while da Silva Pereira et al. [9] found rs1800896 polymorphism increased the risk of non-PDR (NPDR), but not in PDR. Moreover, AA genotype of the rs1800896 polymorphism was independently associated with increased risk of NPDR, but the GG genotype was not associated with increased risk of PDR [9]. Thus, what reasons could explicate the conflicting findings? The first reason was clinical heterogeneity, since the study subjects were DR patients [11] or NPDR or PDR patients [9]. We assumed different types of DR showed genetic heterogeneity. Second, the discrepancy may be explained by different living environments and lifestyles, although they were both Brazilians. Third, the limited sample sizes [11] might not have sufficient power to reach a convincing conclusion compared with other studies.

The present study showed GG genotype or G allele carriers were related to decreased risk for PDR. Different genetic backgrounds, living environments, sample sizes, exposure factors, and clinical phenotypes of PDR may account for conflicting results of the above studies. The stratified analyses showed the risk of PDR conferred by the IL-10 gene rs1800896 polymorphism remained significant in the hypertensive and older subgroups (age ≥ 55 years), which was because susceptible individuals are likely to expose to risk factors. However, the results should be interpreted with caution because of the limited sample sizes in the stratified analyses and the limited power. Additionally, no significant association between genotype and the clinical or biochemical characteristics was observed in the present study. Nevertheless, our findings still provide evidence for a possible interaction between the rs1800896 polymorphism and some PDR risk factors.

Potential limitations of the present study should be considered. First, we only investigated PDR, but not NPDR. Second, our results were based on unadjusted estimates for confounding factors. Third, the sample size was not large enough, which might underpower our work. Fourth, no details about DR severity or treatment response were obtained, which restricted our analyses. Fifth, the underlying mechanisms of this SNP in DR should also be investigated. Sixth, multiple comparisons included in the analyses (five genetic models, and stratification of four demographic and clinical factors) may result in some false positive associations. Finally, true significance of the association between this SNP and PDR risk should be supported by further studies in different populations.

In conclusion, this case–control study indicates that IL-10 gene rs1800896 polymorphism is associated with a decreased risk of PDR. Nevertheless, this finding should be verified by further multicenter well-designed studies with larger sample sizes that include gene–environment interaction assessment.

Author contribution

L.L. and J.Z. designed and performed the experiments. Y.X., J.G., L.F., and D.X. analyzed the data. L.L. and J.Z. wrote the present paper. J.G. and L.L. revised the manuscript.
Funding
The authors declare that there are no sources of funding to be acknowledged.

Competing interests
The authors declare that there are no competing interests associated with the manuscript.

Abbreviations
DR, diabetic retinopathy; HDL, High-density lipoprotein; HWE, Hardy–Weinberg equilibrium; IL-10, interleukin-10; LDL, Low-density lipoprotein; PDR, proliferative DR; NPDR, non-PDR; SNP, single nucleotide polymorphism; TC, total cholesterol; T2DM, type 2 diabetes mellitus.

References
1 Heng, L.Z., Comyn, O., Peto, T., Tadros, C., Ng, E., Sivaprasad, S. et al. (2013) Diabetic retinopathy: pathogenesis, clinical grading, management and future developments. Diabetes Med. 30, 640–650, https://doi.org/10.1111/dme.12089
2 Solomon, S.D., Chew, E., Duh, E.J., Sobrin, L., Sun, J.K., VanderBeek, B.L. et al. (2017) Diabetic retinopathy: a position statement by the American Diabetes Association. Diabetes Care 40, 412–418, https://doi.org/10.2337/dc16-2641
3 Cheung, N., Mitchell, P. and Wong, T.Y. (2010) Diabetic retinopathy. Lancet 376, 124–136, https://doi.org/10.1016/S0140-6736(09)62124-3
4 Karadeniz, S. (2017) Diabetic retinopathy: from evidence and promise to real life observations. Diabetes Res. Clin. Pract. 124, 102–104, https://doi.org/10.1016/j.diabres.2017.01.018
5 Roy, S., Kern, T.S., Song, B. and Stuebe, C. (2017) Mechanistic insights into pathological changes in the diabetic retina: implications for targeting diabetic retinopathy. Am. J. Pathol. 187, 9–19, https://doi.org/10.1016/j.ajpath.2016.08.022
6 Adams, A.P., Miller, J.W., Bernal, M.T., D’Amico, D.J., Folkman, J., Yeo, T.K. et al. (1994) Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am. J. Ophthalmol. 118, 445–450, https://doi.org/10.1016/S0002-9394(14)75794-0
7 Saxena, A., Khosraviani, S., Noel, S., Mohan, D., Donner, T. and Hamad, A.R. (2015) Interleukin-10 paradox: a potent immunoregulatory cytokine that has been difficult to harness for immunotherapy. Cytokine 74, 27–34, https://doi.org/10.1016/j.cyto.2014.10.031
8 Lin, M.T., Storer, B., Martin, P.J., Tseng, L.H., Gooley, T. and Chen, P.J. (2003) Relation of an interleukin-10 promoter polymorphism to graft-versus-host disease and survival after hematopoietic-cell transplantation. N. Engl. J. Med. 349, 2201–2210, https://doi.org/10.1056/NEJMoa022060
9 da Silva Pereira, B.L., Polina, E.R., Crispim, D., Sbruzzi, R.C., Canani, L.H. and Dos Santos, K.G. (2018) Interleukin-10 -1082A>G (rs1800896) polymorphism is associated with diabetic retinopathy in type 2 diabetes. Diabetes Res. Clin. Pract. 138, 187–192
10 Paine, S.K., Sen, A., Choudhuri, S., Mondal, L.K., Chowdhury, L.H., Basu, A. et al. (2012) Association of tumor necrosis factor alpha, interleukin 6, and interleukin 10 promoter polymorphism with proliferative diabetic retinopathy in type 2 diabetic subjects. Retina 32, 1197–1203, https://doi.org/10.1097/IAE.0b013e31822f55f3
11 Rodrigues, K.F., Pietrani, N.T., Sandrim, V.C., Vieira, C.M., Fernandes, A.P. and Bosco, A.A. (2015) Association of a large panel of cytokine gene polymorphisms with complications and comorbidities in type 2 diabetes patients. J. Diabetes Res. 2015, 605965, https://doi.org/10.1155/2015/605965
12 Čižnšek, I., Hercegovac, A., Starčević, J., Vukojević, K., Babić, M. and Živin, A. (2011) Polymorphisms of interleukin-4, -10 and 12B genes and diabetic retinopathy. Open Life Sci. 2011, 6
13 American Diabetes Association (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37 (Suppl. 1), S81–S90, https://doi.org/10.2337/dc14-S081
14 Tang, J. and Kern, T.S. (2011) Inflammation in diabetic retinopathy. Prog. Retin. Eye Res. 30, 343–358, https://doi.org/10.1016/j.preteyeres.2011.05.002