Abstract

Let \(\| \cdot \| \) be a norm on \(\mathbb{R}^n \). Averaging \(\| (\varepsilon_1 x_1, \cdots, \varepsilon_n x_n) \| \) over all the \(2^n \) choices of \(\varepsilon = (\varepsilon_1, \cdots, \varepsilon_n) \in \{-1, +1\}^n \), we obtain an expression \(\| | \cdot | \| \) which is an unconditional norm on \(\mathbb{R}^n \).

Bourgain, Lindenstrauss and Milman [3] showed that, for a certain (large) constant \(\eta > 1 \), one may average over \(\eta^n \) (random) choices of \(\varepsilon \) and obtain a norm that is isomorphic to \(\| | \cdot | \| \). We show that this is the case for any \(\eta > 1 \).

1 Introduction

Let \((E, \| \cdot \|) \) be a normed space, and let \(v_1, \cdots, v_n \in E \setminus \{0\} \). Define a norm \(\| | \cdot | \| \) on \(\mathbb{R}^n \):

\[
\| |x| \| = \mathbb{E} \| \sum \varepsilon_i x_i v_i \| ,
\]

where the expectation is over the choice of \(n \) independent random signs \(\varepsilon_1, \cdots, \varepsilon_n \). This is an unconditional norm; that is,

\[
\| |(x_1, x_2, \cdots, x_n)| \| = \| |(|x_1|, |x_2|, \cdots, |x_n|)| \| .
\]

The following theorem states that it is sufficient to average \(O(n) \), rather than \(2^n \), terms in (1), in order to obtain a norm that is isomorphic to \(\| | \cdot | \| \) (and in particular approximately unconditional).
Theorem. Let \(N = (1 + \xi)n, \xi > 0, \) and let

\[
\{\varepsilon_{ij} \mid 1 \leq i \leq n, 1 \leq j \leq N\}
\]

be a collection of independent random signs. Then

\[
P\left\{ \forall x \in \mathbb{R}^n \; c(\xi) \|x\| \leq \frac{1}{N} \sum_{j=1}^{N} \| \sum_{i=1}^{n} \varepsilon_{ij} x_i v_i \| \leq C(\xi) \|x\| \right\} \geq 1 - e^{-c' \xi n},
\]

where

\[
c(\xi) = \begin{cases}
 c\xi^2, & 0 < \xi < 1 \\
 c, & 1 \leq \xi < C'', \\
 1 - C'/\xi^2, & C'' \leq \xi
\end{cases}
\]

\[
C(\xi) = \begin{cases}
 C, & 0 < \xi < C'' \\
 1 + C''/\xi^2, & C'' \leq \xi
\end{cases}
\]

and \(c, c', C, C', C'' > 0 \) are universal constants (such that \(1 - C'/C''^2 \geq c, \) \(1 + C'/C''^2 \leq C) \).

This extends a result due to Bourgain, Lindenstrauss and Milman \[3\], who considered the case of large \(\xi \) \((\xi \geq C'')\); their proof makes use of the Kahane–Khinchin inequality. Their argument yields the upper bound for the full range of \(\xi \), so the innovation is in the lower bound for small \(\xi \).

With the stated dependence on \(\xi \), the corresponding result for the scalar case \(\dim E = 1 \) was proved by Rudelson \[6\], improving previous bounds on \(c(\xi) \) in \[4, 1, 2\]; see below. This is one of the two main ingredients of our proof, the second one being Talagrand’s concentration inequality \[8\] (which, as shown by Talagrand, also implies the Kahane–Khinchin inequality).

Acknowledgement: We thank our supervisor Vitali Milman for his support and useful discussions.

2 Proof of Theorem

Let us focus on the case \(\xi < 1 \); the same method works (in fact, in a simpler way) for \(\xi \geq 1 \).

Denote \(\|x\|_N = \frac{1}{N} \sum_{j=1}^{N} \| \sum_{i=1}^{n} \varepsilon_{ij} x_i v_i \| \); this is a random norm depending on the choice of \(\varepsilon_{ij} \). Let \(S_{\|\| \|}^{m-1} = \{x \in \mathbb{R}^n : \|x\|_N = 1\} \) be the unit sphere.
of \((\mathbb{R}^n, ||\cdot||)\); we estimate
\[
P \left\{ \forall x \in S_{||\cdot||}^{n-1}, \ c\xi^2 \leq ||x||_N \leq C \right\}
\geq 1 - P \left\{ \exists x \in S_{||\cdot||}^{n-1}, ||x||_N > C \right\}
- P \left\{ \left(\forall y \in S_{||\cdot||}^{n-1}, ||y||_N \leq C \right) \land \left(\exists x \in S_{||\cdot||}^{n-1}, ||x||_N < c\xi^2 \right) \right\}.
\]

Upper bound: Let us estimate the first term
\[
P \left\{ \exists x \in S_{||\cdot||}^{n-1}, ||x||_N > C \right\}.
\]

Remark. As we mentioned, the needed estimate follows from the argument in [3]; for completeness, we reproduce a proof in the similar spirit.

Theorem (Talagrand [8]). Let \(w_1, \cdots, w_n \in E\) be vectors in a normed space \((E, ||\cdot||)\), and let \(\varepsilon_1, \cdots, \varepsilon_n\) be independent random signs. Then for any \(t > 0\)
\[
P \left\{ \left| \sum_{i=1}^{n} \varepsilon_i w_i \right| - E \left| \sum_{i=1}^{n} \varepsilon_i w_i \right| \geq t \right\} \leq C_1 e^{-c_1t^2/\sigma^2},
\]
where \(c_1, C_1 > 0\) are universal constants, and
\[
\sigma^2 = \sigma^2(w_1, \cdots, w_n) = \sup \left\{ \sum_{i=1}^{n} \varphi(w_i)^2 \mid \varphi \in E^*, ||\varphi||^* \leq 1 \right\}.
\]

Remark. Talagrand has proved [3] with the median \(\text{Med} \left| \sum_{i=1}^{n} \varepsilon_i w_i \right|\) rather than the expectation; one can however replace the median by the expectation according to the proposition in Milman and Schechtman [5, Appendix V].

For \(x = (x_1, \cdots, x_n) \in \mathbb{R}^n\), denote
\[
\sigma^2(x) = \sigma^2(x_1v_1, \cdots, x_nv_n).
\]

Claim 1. \(\sigma\) is a norm on \(\mathbb{R}^n\) and \(\sigma(x) \leq C_2||x||\) for any \(x \in \mathbb{R}^n\).

Proof. The first statement is trivial. For the second one, note that
\[
||x|| = E \left| \sum \varepsilon_i x_i v_i \right| \geq E \left| \varphi \left(\sum \varepsilon_i x_i v_i \right) \right| = E \left| \sum \varepsilon_i \varphi(x_i v_i) \right|, \quad ||\varphi||^* \leq 1.
\]
Now, by the classical Khinchin inequality,
\[\sqrt{\sum y_i^2} \geq \mathbb{E} \left| \sum \varepsilon_i y_i \right| \geq C_2^{-1} \sqrt{\sum y_i^2} \] (4)
(see Szarek [7] for the optimal constant \(C_2 = \sqrt{2} \)). Therefore
\[\|x\| \geq C_2^{-1} \sup_{\|\varphi\| \leq 1} \sqrt{\sum \varphi(x_i v_i)^2} = C_2^{-1} \sigma(x) . \]
\[\square \]

By the claim and Talagrand’s inequality, for every (fixed) \(x \in S_{\|\cdot\|}^{n-1} \)
\[\mathbb{P} \left\{ \left\| \sum_{i=1}^n \varepsilon_i x_i \right\| \geq t \right\} \leq C_1 \exp(-c_2 t^2) . \]
Together with a standard argument (based on the exponential Chebyshev inequality), this implies (for \(t \) large enough):
\[\mathbb{P} \left\{ \frac{1}{N} \sum_{j=1}^N \left\| \sum_{i=1}^n \varepsilon_{ij} x_i \right\| \geq t \right\} \leq \exp(-c_3 t^2 N) . \]
In particular, for \(t = C_3 \geq \sqrt{4/c_3} \) the left-hand side is smaller than \(12^{-N} < 6^{-n 2^{-N}} \).

The following fact is well-known, and follows for example from volume estimates (cf. [5]).

Claim 2. For any \(\theta > 0 \), there exists a \(\theta \)-net \(\mathcal{N}_\theta \) with respect to \(\|\cdot\| \) on \(S_{\|\cdot\|}^{n-1} \) of cardinality \(\# \mathcal{N}_\theta \leq (3/\theta)^n \).

For now we only use this for \(\theta = 1/2 \). By the above, with probability greater than \(1 - 2^{-N} \), we have: \(\|x\|_N \leq C_3 \) simultaneously for all \(x \in \mathcal{N}_{1/2} \).

Representing an arbitrary unit vector \(x \in S_{\|\cdot\|}^{n-1} \) as
\[x = \sum_{k=1}^{\infty} a_k x^{(k)} , \quad |a_k| \leq 1/2^{k-1} , \quad x^{(k)} \in \mathcal{N}_{1/2} , \]
we deduce: \(\|x\|_N \leq 2C_3 \), and hence finally:
\[\mathbb{P} \left\{ \exists x \in S_{\|\cdot\|}^{n-1} , \|x\|_N > C \right\} \leq 2^{-N} \] (5)
(for \(C = 2C_3 \)).

Lower bound: Now we turn to the second term

\[
\mathbb{P} \left\{ \left(\forall y \in S_{||\cdot||}^{n-1}, ||y||_N \leq C \right) \land \left(\exists x \in S_{||\cdot||}^{n-1}, ||x||_N < c\xi^2 \right) \right\}.
\]

For \(\sigma_0 \) (that we choose later), let us decompose \(S_{||\cdot||}^{n-1} = U \cup V \), where

\[
U = \left\{ x \in S_{||\cdot||}^{n-1} \mid \sigma(x) \geq \sigma_0 \right\}, \quad V = \left\{ x \in S_{||\cdot||}^{n-1} \mid \sigma(x) < \sigma_0 \right\}.
\]

Recall the following result (mentioned in the introduction); we use the lower bound that is due to Rudelson [6].

Theorem ([4, 1, 2, 6]). Let \(N = (1 + \xi) n, 0 < \xi < 1 \), and let

\[
\{ \varepsilon_{ij} \mid 1 \leq i \leq n, 1 \leq j \leq N \}
\]

be a collection of independent random signs. Then

\[
\mathbb{P} \left\{ \forall y \in \mathbb{R}^n \mid c_4 \xi^2 |y| \leq \frac{1}{N} \sum_{j=1}^{N} \left| \sum_{i=1}^{n} \varepsilon_{ij} y_i \right| \leq C_4 |y| \right\} \geq 1 - e^{-c_4 \xi n},
\]

where \(c_4, c'_4, C_4 > 0 \) are universal constants, and \(|\cdot|\) is the standard Euclidean norm.

Remark. By the Khinchin inequality [4], this is indeed the scalar case of Theorem 1 for \(0 < \xi < 1 \).

Thence with probability \(\geq 1 - e^{-c_4 \xi n} \) the following inequality holds for all \(x \in U \) (simultaneously):

\[
|||x|||_N \geq \frac{1}{N} \sum_{j=1}^{N} \varphi \left(\sum_{i=1}^{n} \varepsilon_{ij} x_i v_i \right) = \frac{1}{N} \sum_{j=1}^{N} \left| \sum_{i=1}^{n} \varepsilon_{ij} x_i \varphi(v_i) \right| \geq c_4 \xi^2 \sigma(x) \geq c_4 \xi^2 \sigma_0 .
\]

Now let us deal with vectors \(x \in V \). Let \(\mathcal{N}_\theta \) be a \(\theta \)-net on \(S_{||\cdot||}^{n-1} \) (where \(\theta \) will be also chosen later). For \(x' \in \mathcal{N}_\theta \) such that \(|||x - x'|||_N \leq \theta, \sigma(x') \leq \sigma_0 + C_2 \theta \) by Claim 1. Therefore by Talagrand’s inequality [3],

\[
\mathbb{P} \left\{ \left\| \sum_{i=1}^{n} \varepsilon_i x'_i v_i \right\| < 1/2 \right\} \leq C_1 \exp(-c_1/(4(\sigma_0 + C_2 \theta)^2)),
\]

5
and hence definitively
\[
\mathbb{P}\left\{ \frac{1}{N} \sum_{j=1}^{N} \sum_{i=1}^{n} \varepsilon_{ij} x'_i v_i < 1/4 \right\} \leq 2^N \left\{ C_1 \exp \left(-\frac{c_1}{4(\sigma_0 + C_2 \theta)^2} \right) \right\}^{N/2} \\
= \exp \left\{ -\left(\frac{c_1}{8(\sigma_0 + C_2 \theta)^2} - \log(2\sqrt{C_1}) \right) N \right\}.
\]

Let \(\sigma_0 = C_2 \theta \), and choose \(0 < \theta < 1/(8C) \) so that
\[
\frac{c_1}{32C_2^2 \theta^2} - \log(2\sqrt{C_1}) > \log 2 + \log(3/\theta).
\]

Then the probability above is not greater than \(2^{-N}(\theta/3)^N < 2^{-N}/\#N_\theta \) (by Claim 2). Therefore with probability \(\geq 1 - 2^{-N} \) we have:
\[
\|\|x'\|\|_N \geq 1/4 \quad \text{for} \ x' \in N_\theta \text{ such that } \|\|x - x'\|\| < \theta \text{ for some } x \in V.
\]

Using the upper bound (5), we infer:
\[
\|\|x\|\|_N \geq \|\|x'\|\|_N - \|\|x' - x\|\|_N \\
\geq 1/4 - C/8C = 1/4 - 1/8 = 1/8, \quad x \in V.
\] (7)

The juxtaposition of (2), (5), (6), and (7) concludes the proof. \(\square \)

References

[1] Sh. Artstein-Avidan, O. Friedland, V. D. Milman, Some Geometric Applications of Chernoff-type Estimates, Geometric Aspects of Functional Analysis, in: Lecture Notes in Math., Springer, Berlin, 2006

[2] Sh. Artstein-Avidan, O. Friedland, V. D. Milman, S. Sodin, Polynomial bounds for large Bernoulli sections of \(\ell_1^N \), Israel J. Math. 156 (2006), 141–155.

[3] J. Bourgain, J. Lindenstrauss, V. D. Milman, Minkowski sums and symmetrizations, Geometric aspects of functional analysis (1986/87), 44–66, Lecture Notes in Math., 1317, Springer, Berlin, 1988.
[4] A. E. Litvak, A. Pajor, M. Rudelson, N. Tomczak-Jaegermann, *Smallest singular value of random matrices and geometry of random polytopes*, Adv. Math. 195 (2005), no. 2, 491–523.

[5] V. D. Milman, G. Schechtman, *Asymptotic theory of finite-dimensional normed spaces*, Lecture Notes in Mathematics, 1200, Springer-Verlag, Berlin, 1986

[6] M. Rudelson, *Lower estimates for the singular values of random matrices*, C. R. Math. Acad. Sci. Paris 342 (2006), no. 4, 247–252.

[7] S. J. Szarek, *On the best constants in the Khinchin inequality*, Studia Math. 58 (1976), no. 2, 197–208.

[8] M. Talagrand, *An isoperimetric theorem on the cube and the Khintchine-Kahane inequalities*, Proc. Amer. Math. Soc. 104 (1988), no. 3, 905–909.