Base of the Toarcian Stage of the Lower Jurassic defined by the Global Boundary Stratotype Section and Point (GSSP) at the Peniche section (Portugal)

1 GeoBioTec and Earth Sciences Department, Faculty of Sciences and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica (Portugal); Toarcian Task Group Convenor. E-mail: rbr@fct.unl.pt
2 Univ Lyon, Université Claude Bernard Lyon 1, Ens de Lyon, CNRS, UMR 5276 LGL-TPE, F-69622, Villeurbanne, France. E-mail: emanuela.mattioli@univ-lyon1.fr, Toarcian Task Group Secretary; bernard.pittet@univ-lyon1.fr; guillaume.suan@univ-lyon1.fr
2 Present address: Observatoire de Lyon, Université Lyon 1, Campus de la Doua, Bâtiment Geode, 69622 Villeurbanne Cedex (France). E-mail: samuel.mailliot@univ-lyon1.fr
2 Former Toarcian Working Group Convenor.
3 MARE - University of Coimbra, Earth Sciences Department, Rua Silvio Lima, Polo II, Coimbra (Portugal). E-mail: duarte@dct.uc.pt
4 Université Catholique de Lyon, France.
5 Universidade de Lisboa, Faculdade de Ciências, Departamento de Geologia e Instituto Dom Luiz (IDL), Campo Grande, C6-40, 1749-016 Lisboa (Portugal). E-mail: mccabral@fc.ul.pt
6 Departamento de Paleontologia, Faculdad de Ciencias Geológicas, Univ. Complutense de Madrid. José António Novais, 2, 28040 Madrid (Spain). E-mail: mjcomas@ucm.es; angoy@geo.ucm.es
7 Departamento de Estratigrafía, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid e IEGO (CSIC-UCM), José Antonio Novais 2, 28040 Madrid, España. E-mail: jgomez@ucm.es
8 Camborne School of Mines, University of Exeter (United Kingdom). E-mail: S.P.Hesselbo@exeter.ac.uk; K.Littler@exeter.ac.uk
9 Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN (United Kingdom). E-mail: hughj@earth.ox.ac.uk
10 Petrobras University, Rua Ulisses Guimarães 565, 80 andar, 20211-225, Rio de Janeiro (Brazil). E-mail: lceveiga@petrobras.com.br
11 Departamento de Física de la Tierra, Facultad de Ciencias Físicas, Avenida Complutense s/n, Universidad Complutense de Madrid and Instituto de Geociencias, IEGO, CSIC, 28040 Madrid (Spain). E-mail: mlosete@fis.ucm.es
12 Dipartimento Scienze della Terra, Università degli Studi di Pisa, Via S. Maria 53, 56100 Pisa (Italy). E-mail: nicola.perilli@unipi.it
13 Universidade de Lisboa, Faculdade de Ciencias, Departamento de Geologia, Campo Grande, C6-40, 1749-016 Lisboa (Portugal). E-mail: susanappinto@gmail.com
14 Chipier, Route de Pimotin, 69420 Tupin et Semons (France). E-mail: andrechris.ruget@gmail.com

The Global Stratotype Section and Point (GSSP) for the base of Toarcian Stage, Lower Jurassic, is placed at the base of micritic limestone bed 15e at Ponta do Trovão (Peniche, Lusitanian Basin, Portugal; coordinates: 39º22'15''N, 9º23'07''W), 80km north of Lisbon, and coincides with the mass occurrence of the ammonite Dactylioceras (Eodactylyites). The Pliensbachian/Toarcian boundary (PLB/TOA) is contained in a continuous section forming over 450m of carbonate-rich sediments. Tectonics, syn-sedimentary disturbance, metamorphism or significant diagenesis do not significantly affect this area. At the PLB/TOA, no vertical facies changes, stratigraphical gaps or hiatuses have been recorded. The base of the Toarcian Stage is marked in the bed 15e by the first occurrence of D. (E.) simplex, co-occurring with D. (E.) pseudocommune and D. (E.)
polymorphum. The ammonite association of Dactylioceras (Eodactylites) sp. and other species e.g. Protogrammoceras (Paltarpites) cf. paltum, Lioceratoides aff. ballinense and Tiliticeras aff. capillatum is particularly significant for the boundary definition and correlation with sections in different basins. Ammonites of the PLB/TOA are taxa characteristic of both the Mediterranean and Northwest European provinces that allow reliable, global correlations. The PLB/TOA is also characterized by other biostratigraphical markers (brachiopods, calcareous nanofossils, ostracods and benthic foraminifers) and by high-resolution stable carbon and oxygen isotopes, and $^{87} \text{Sr}/^{86} \text{Sr}$ ratios that show distinctive changes just above the PLB/TOA, thus providing additional, powerful tools for global correlations. The PLB/TOA lies at the end of a second (and third) order cycle of sea-level change, and the top of bed 15e is interpreted as a sequence boundary. Cyclostratigraphy analysis is available for the Lower Toarcian of Ponta do Trovão. Detailed correlations with the Almonacid de la Cuba section (Iberian Range, Spain) provide complementary data of the ammonite succession in the Northwest European Hawskerense and Palatum Subzones, and magnetostratigraphical data that allow supra-regional correlations. The proposal was voted on by the Toarcian Working Group in June, 2012, and by the International Subcommission on Jurassic Stratigraphy in September, 2012, approved by the ICS in November, 2014, and ratified by the IUGS in December, 2014. With this Toarcian GSSP, all international stages of the Lower Jurassic have been officially defined.

Introduction

The Toarcian is the highest stage in the Early Jurassic. D’Orbigny in 1852 designated “étage Toarcien”, from the town of Thouars (Toarcium) (Deux-Sèvres, France), but the boundary Pliensbachian - Toarcian is marked by an important unconformity in this locality, and a big question stands: what is missing at the base of the Toarcian (or the top of the Pliensbachian)? This well-known problem has a big question stands: what is missing at the base of the Toarcian (or the top of the Pliensbachian)? This well-known problem has been addressed. By considering the different advances of knowledge in various domains, the Toarcian Working Group intensified local investigations, with the aim of producing local standards (Fischer, 1984). Over the following fifteen years, the Toarcian Working Group has carried out fieldwork or scientific meetings in several selected sections before finally choosing Peniche (central-west Portugal; Fig. 1a, b) as the formal candidate for the GSSP of the Toarcian Stage. A final consensus was obtained in June, 2005, when the Toarcian Working Group accepted the Peniche section as the best section currently available (Elmi et al., 2005).

This report presents the GSSP for the Toarcian Stage at the base of the Polymorphum Zone in the Peniche section. It also presents in detail all the biostratigraphical (ammonites, brachiopods, calcareous nanofossils, ostracods, palynomorphs, and benthic foraminifers) and chemostratigraphical (carbon and oxygen stable isotope, strontium isotopes) data acquired for the Peniche section. A detailed comparison of the Peniche with the Almonacid de la Cuba section in the Iberian Range is then presented. The latter section is particularly interesting because magnetostratigraphy has been successfully applied (Comas-Rengifo et al., 2010). An indirect correlation of the Peniche section to the magnetic record of the Karoo basalts (South Africa) was then possible.

The Pliensbachian and the Toarcian stages in the Lusitanian Basin

Geological setting and lithostratigraphy

The Lower Jurassic is well represented in the Lusitanian Basin (Fig. 1c). The lithological succession corresponds to a thick carbonate series (over 450m), and is composed of shallow-marine dolomites to deep-marine limestones and argillaceous limestones (Mouterde et al., 1972; Soares et al., 1993; Duarte and Soares, 2002; Azeredo et al., 2003; Duarte et al., 2004b, 2010; Duarte, 2007a; Kullberg et al., 2013). The Lower Pliensbachian recorded the opening of the basin to marine influence, with basin-wide occurrence of ammonoids. The Pliensbachian and Toarcian stages are dominated by hemipelagic deposits composed of marlstone-limestone alternations very rich in nektonic (ammonite and belemnite) and benthic (bivalve, brachiopod, crinoid and siliceous sponge) macrofauna. Ammonite biostratigraphy provides
a good resolution throughout basin (Mouterde, 1967; Mouterde et al., 1972; Phelps, 1985; Rocha et al., 1987, 1996; Dommergues, 1987; Elmi, 2006; Elmi et al., 2007; Mouterde et al., 2007). In Portugal, the PLB/TOA outcrops in several localities and yields Tethyan ammonites associated with some classically NW European taxa. These assemblages provide good markers for worldwide correlations. Moreover, although condensation occurs at some levels, the transition beds commonly indicate continuous sedimentation, in contrast to the widespread significant gaps recorded in sections from NW Europe (Pittet et al., 2014).

The Peniche peninsula, located some 80km north of Lisbon (Fig. 1b) shows the most representative Lower Jurassic succession for the Lusitanian Basin. Cropping out along the Atlantic coast, the Peniche section (>450m thick; Fig. 2a) ranges in age from the Early Sinemurian (Coimbra Fm) to the early Middle Jurassic (Aalenian ?); top of Cabo Carvoeiro Fm; França et al., 1960; Duarte and Soares, 2002; Duarte et al., 2004b). Good exposure and detailed biostratigraphical data (Mouterde, 1955, 1967; Phelps, 1985; Dommergues, 1987; Elmi, 2006; Elmi et al., 2007) allowed the definition of three formations with type localities in Peniche: Vale das Fontes, Lemede and Cabo Carvoeiro (Duarte and Soares, 2002).

The whole succession dips gently to the south.

In the Ponta do Trovão section, the PLB/TOA (coordinates: 39°22′15″N, 9°23′07″W) is included in the uppermost part of the Lemede Fm, just below the base of Cabo Carvoeiro Fm (Fig. 2b). The Lemede Fm is composed of bioturbated, cm-thick marlstones alternating with dm-thick limestones, rich in belemnites, ammonites, bivalves and brachiopods. The formation age ranges from the top of Margaritatus Zone to the lowermost part of Polymorphum Zone (Duarte et al., 2014), attaining in Peniche a thickness of around 24m. The Cabo Carvoeiro Fm consists of a thick, carbonate-rich succession; an increase in siliciclastic sandstones and oolitic/peloidal limestones is recorded towards the top of the formation (Wright and Wilson, 1984; Duarte, 1997). This unit, more than 150m thick, is subdivided into five members (CC1 to 5; Duarte and Soares, 2002; Fig. 2a). The first member, around 11m thick, is dated as Polymorphum Zone, and consists of dm-thick alternations of marls and cm-thick limestones. The macrofauna is very abundant and diverse, being particularly rich in brachiopods, bivalves, belemnites and pyritised ammonites (dactylioceratids), but benthic fauna decreases upwards in terms of number of individuals and of species. Zoophycos, Planolites and pyritised burrows are very common. Member CC1 is the lateral equivalent of the Marly limestones with “Leptaena” fauna (MLLF) Member of S. Gião Fm, showing very similar sedimentary characteristics.

The uppermost part (top ~1m) of the Lemede Fm described by Choffat (1880) and Mouterde (1955) shows a progressive sedimentary evolution from carbonate- to marl-dominated sediments and is named Couches de passage (Transition beds, 15a-e; Fig. 3). These beds have yielded a continuous and diversified fossil record. Shells are commonly concentrated, forming irregular heaps. Some chaotically oriented belemnite accumulations have been interpreted as coprolite remains. Plicatula and serpulids are attached to ammonite shells or casts. Because of these features, the Couches de passage are interpreted as being deposited under a low sedimentation rate, although there is no evidence for the occurrence of a hiatus. The uppermost bed (15e; Fig. 3) has yielded a characteristic association of dactylioceratids that is classically interpreted as marking the base of the Toarcian. As a consequence, the chronostratigraphical boundary is distinct from the lithological boundary, the latter being situated between the Couches de passage (beds 15, topmost part of Lemede Fm) and the base of the Cabo Carvoeiro Fm (bed 16, base of Cabo Carvoeiro CC1; Fig. 3).

Sequence stratigraphy and cyclostratigraphy

In the Lusitanian Basin, the Pliensbachian and Toarcian series are included in an Upper Triassic (Norian?)–Callovian sedimentary cycle (Hallam, 1971; Wright and Wilson, 1984; Wilson et al., 1989; Soares et al., 1993; Azerêdo et al., 2003, 2014). This cycle begins with coarse, red siliciclastic sediments from the base of the Upper Triassic, and ends with bioclastic limestones of Late Callovian age (Athleta Zone). In this cycle, the Pliensbachian and Toarcian deposits correspond to the maximum transgressive interval and the strata are subdivided into two second-order sequences, equivalent to transgressive-regressive facies cycles of de Graciansky et al. (1998) (Fig. 2a; Soares et al., 1993; Duarte, 1997, 2007a; Duarte et al., 2004b; Azerêdo et al., 2014). The sequence boundary of the second sequence is dated to the lowermost Polymorphum Zone (intra-Mirabile Subzone, at the top of bed 15e; Fig. 2b) at the top of the Lemede Formation that shows a regressive trend (Duarte et al., 2010) well constrained in the proximal part of the Lusitanian Basin (Tomar region;
Figure 2. A. Stratigraphical log of the Late Sinemurian – Aalenian (?) succession at Peniche: lithostratigraphy, sequence stratigraphy (second-order Transgressive (T) – Regressive (R) cycles) and main sedimentary features (adapted from Duarte et al., 2004b). PMb – Polvoeira Member; PPLMb – Praia da Pedra Lisa Member; MLUP Mb – Marls and limestones with Uptonia and Pentacrinus member; LML Mb – Lumpy marlstones and limestones member; MLBF Mb – Marly limestones with bituminous facies member; CC1 to CC5 Mb – Cabo Carvoeiro members 1 to 5. B. The PLB/TOA interval at Peniche with high-resolution wt% CaCO$_3$ data. Fluctuations of the wt% CaCO$_3$ related to eccentricity, obliquity and precession, are shown. Also are shown the fluctuations in wt%CaCO$_3$ not related to cycles (doubled-tipped arrows), but likely corresponding to values measured on samples collected in or just below turbiditic layers (shaded zones). Low-resolution wt% CaCO$_3$ data in the Emaciatum and uppermost Levisoni Zones are also displayed to characterize the long-term evolution of the lithology (Suan et al., 2008b). 3rd order transgressive-regressive sequences are based upon Pittet et al. (2014). The stratigraphic position of the T-OAE equivalent interval is displayed. Even if this log shows only two meters of uppermost Pliensbachian (a part of its uppermost ammonite subzone), there is a more complete Upper Pliensbachian in the Ponta do Trovão section.
Fig. 1) by coarse calcarenites deposited in coastal environments (Suan et al., 2010). This level was immediately followed by a fast transgression at the onset of Early Toarcian in the Lusitanian Basin and the installation of a clay-rich sedimentation (Fig. 2b). The transgression is locally materialized by a condensed interval on top of bed 15e (Mouterde, 1955) and in the lowermost marls of the Cabo Carvoeiro Formation (Pittet et al., 2014).

The Lemede Fm (Upper Pliensbachian) is formed by lithological alternations where marlstones have a calcium carbonate content of 50–60wt% and limestones of 75–85wt% (Fig. 2b; Suan et al., 2008a). The Polymorphum Zone in the Cabo Carvoeiro Fm displays more variable CaCO$_3$ content. Some 30 cm above the Pliensbachian-Toarcian boundary, a 15 cm-thick marly interval has a CaCO$_3$ content of 20–25wt%. This clay-rich interval is also recorded in other sections of the Lusitanian Basin. Above, carbonate content fluctuates between 25 and 75wt%, and a decrease in the average carbonate content is recorded in the uppermost Polymorphum Zone. Spectral analysis of the carbonate content has been undertaken for most of the Lower Toarcian (Suan et al., 2008b), which demonstrates a dominant control of eccentricity and precession in the lower part of the Polymorphum Zone, of eccentricity alone in the upper part of this zone, and of eccentricity and obliquity in most of the Levisoni Zone, with precessional pacing being well-resolved in the upper part of the latter zone (Fig. 2b). The change from precession to obliquity dominance for the shorter term orbital control on sedimentation passing from the Pliensbachian to the Toarcian has also been recorded in other sedimentary sequences (Hinnov and Park, 1999), which suggests that the Pliensbachian of the Lemede Fm was also formed in tune with precession. The marlstone-limestone alternations display an average thickness (~27 cm in the upper part of the Emaciatum Zone, Fig. 2b) comparable to the precession-related carbonate content fluctuations recorded in the Polymorphum Zone (two cyclicities at 23 and 33 cm; Suan et al., 2008b). Similar results were obtained by Huang and Hesselbo (2014) who applied spectral analysis to the high-resolution δ^{13}C$_{carb}$ record of the Peniche section.

Figure 3. A. General view of the outcrop at Ponta do Trovão section, Peniche peninsula (Portugal). B. The PLB/TOA boundary, with the Transition beds (“Couches de passage”) defined by Mouterde (1955). C. Detail of the Transition beds.
Fossil content of the Transition beds

Ammonites

The Peniche section, first mentioned by Choffat (1880), is one of the most important settings in Europe for establishing the ammonite zones succession of the Pliensbachian and Toarcian stages (Mouterde, 1955, 1967; Phelps, 1985; Rocha et al., 1987, 1996; Dommergues, 1987; Elmi, 2006, 2007; Elmi et al., 2007; Mouterde et al., 2007). The detailed description of the Couches de passage (Transition beds) succession marking the PLB/TOA interval is presented here, from the bottom to the top (Figs. 4A and 5):

Emaciatum Zone, Elisa Subzone

Bed 15a (0.15m) also named Canavaria bed: bioturbated, micritic limestone containing some irregular, nodular lumps. Canavaria zancleana (Fucini) is associated with Emaciaticeras emaciatum (Catullo), E. lotti (Fucini) and Lioceratoides aff. ballinense (Haas).

Bed 15b (0.25/0.30m) no ammonites recorded in these calcareous laminated marls, which bear brachiopods (Zeilleria sp.), belemnites, gastropods and bivalves (Plicatula (P) spinosa (Sowerby) var. pectinoidea (Lamark)).

Bed 15c (0.25/0.30m) also known as Taumonericeras bed: formed of bioturbated micritic limestones, with Taumonericeras elisa (Fucini), T. disputandum Dubar, T. gr. nerina (Fucini), Lioceratoides aradasi (Fucini), L. aff. ballinense (Haas), Tiltoniceras aff. capitatum (Denckmann), Pleuromoceras cf. buckmani Moxon, Protoplamoceras (Pallarties) sp., Spiriferina gr. rostrata Schlotheim and P. (P) spinosa var. pectinoidea (Lamark).

Bed 15d (0.20/0.30m): marly limestone enriched in belemnites and spiriferinids. Taumonericeras mazetieri (Dubar), Neolioceratoidea aff. hoffmanni (Gemmellaro), Spiriferina gr. rostrata Schl., Zeilleria sp. and P. (P) spinosa var. pectinoides (Lamark) are commonly recorded.

Polymorphum Zone, Mirabile Subzone

Bed 15e (0.20m) also named Eodactylites bed: micritic limestone bearing numerous ammonites. Ammonites generally correspond to oxidized-pyrite internal moulds. Eodactylites are abundant and diversified: Dactylioceras (Eodactylites) simplex (Fucini), D. (E) pseudocommune Fucini, D. (E) polymorphum Fucini. According to Elmi et al. (1994), the Mirabile Subzone is defined on the basis of the presence of D. (E) simplex. The association of D. (E) simplex with D. (E) pseudocommune may indicate a slight condensation. Upper Pliensbachian specimens, like Tiltoniceras aff. capitatum (Denckmann) and Lioceratoidea aff. ballinense (Haas), are also associated. The presence of Protoplamoceras (Pallartipes) cf. paltum (Buckman) is especially important for correlations with NW Europe. Brachiopods (Spiriferina sp., Zeilleria sp. and Rhyxonella sp.), belemnites and bivalves (P. (P) spinosa var. pectinoides (Lamark)) are also common. This bed marks the beginning of the Toarcian (Paltus/Mirabile Subzone of the Tenuicostatum/Polyplumus Zone), also characterized by the disappearance of articulatoids (Emaciaticeras, Canavaria, Taumonericeras) and hildoceratids (Neolioceratoidea).

Polymorphum Zone, Semicelatum Subzone

Bed 16a (1.70m): base of the Cabo Carvoeiro Fm. The lowest two metres of this marl-dominated unit contain small pyritized internal moulds of specimens attributed to NW European Orthodactylites namely, D. (O) crobseyi (Simpson), D. (O) clevelandicium Howarth, associated with Protoplamoceras (Pallartipes) sp. The base of the Semicelatum Subzone is defined on the basis of the occurrence of D. (O) crobseyi and D. (O) clevelandicium, whilst D. (O) clevelandicum (Simpson) is recorded from the bed 16c. The record of these specimens allows a tentative correlation with the Crobseyi/Clevelandicium Subzones of Britain, and supports the hypothesis that the absence of Eodactylites in many classic NW European sections is due to a sedimentary gap, rather than to a palaeogeographically controlled distribution of this genus. This bed also yields an abundant assemblage of belemnites, gastropods and brachiopods. Brachiopods are small and perhaps indicative of dwarfism, related to poorly oxygenated, organic matter-rich environments. Bioturbation is widespread (Zoophycos and pyritised tubular burrows). The upper part of Bed 16c contains several fossiliferous layers yielding mainly D. (O) clevelandicum. These ammonites are commonly randomly orientated, probably as a result of bioturbation.

In the Lusitanian Basin, the successive fossil assemblages of the PLB/TOA mainly contain genera characteristic of the Mediterranean Province (Lioceratoidea, Neolioceratoidea, Dactylioceras (Eodactylites)) and of the Northwest European Province (Protoplamoceras (Pallartipes), Dactylioceras (Orthodactylites); Figs. 4, 5). The occurrence of taxa from both provinces in the Peniche section is extremely helpful in improving correlations between different areas.

For the definition of the base of the Toarcian, the ammonite assemblage includes (Figs. 4A, 5):

Dactylioceras (Eodactylites) polymorphum Fucini,
D. (E) pseudocommune Fucini,
D. (E) simplex (Fucini),
Protoplamoceras (Pallartipes) cf. paltum (Buckman),
Lioceratoidea aff. ballinense (Haas),
Tiltoniceras aff. capitatum (Denckmann).

This assemblage well characterizes the Mirabile Subzone, although the zonal index (D. (E) mirabile Fucini 1935, p. 85, tav. VIII, fig. 1-4) is not present in the Peniche section but in the Almonacid of the Cuba section, well correlated to Peniche (see below). Lioceratoidea aff. ballinense and Tiltoniceras aff. capitatum are found below and above the boundary. The latter species differs from the Tiltoniceras antiquum of Britain (Howarth, 1992) in having a more open umbilicus, and its stratigraphical range is also different, being confined to the Polymorphum Zone (Dommergues et al., in Cariou and Hantzpergue, 1997).

Brachiopods

The early work of Choffat (1880) mentioned in the upper part of the “Couches de passage” (beds with Ammonites spinatus), Terebratula cf. punctata Sow., T. davidsoni Haimé, Zeilleria darvini Desl., Z. cf. cornuta Sow., Z. resupinata Sow., Kingena deslongchampsi Dav., Rhyxonella cf. bidens Sow., R. cf. serrata Sow., R. amalthei Qu., R. rimosa Buch, R. moorei Dav., Spiriferina rostrata Schl. In the “Couches a Leptaena”, are mentioned: Terebratula davidsoni Haimé, Zeilleria darvini Desl., Kingena
deslongchampsi Dav., Rynchonella pygmaea Sow., R. amalthei Qu., R. moorei Morr., R. cf. bouchardi Dav., R. cf. frontalis Desl., Spiriferina rostrata Schl., Leptula lisina Bouch., Thecidea simina Desl. Choffat (1947, posthumous publication coordinated by C. Teixeira) figured Zeilleria conocolis Rau (Charmouthian, “couches à Am. spinatus”), Terebratula ovalum Qu., Zeilleria sp. ind., Z. cornuta Sow., Z. darwini Desl. (Lower Toarcian, “Couches de passage”), Terebratula ovalum Qu. var. penichensis Chof. (“Couches à Leptaena”).

Mouterde (1955) described Spiriferina gr. S. rostrata Schl., S. sicula Canav., Aulacothyris aff. walfordi Dav., Zeilleria gr. darwini Desl., Zeilleria sp., Rynchonella sp. from the upper part of the Sinematum Zone (beds 14a-c, 15 a-d). At the base of the Toarcian (bed 15e), he recorded S. rostrata Schl. var. madagascariense Thév., S. apenninica Canav., Zeilleria sp., Rynchonella sp., and in the overlying beds 16a-b R. pygmaea Morr., Koninkaella lisina Desl., K. deslongchampsi Dav. It is recorded in these beds. The most abundant species in bed 16c is R. pygmaea Sow.

More recently, many authors have mentioned the presence of Upper Pliensbachian and Lower Toarcian brachiopods from the Peniche section, but there are few detailed studies (Alméras et al., in Rocha and Soares, 1988; Alméras et al., 1995; Comas-Rengifo et al., 2015) where the most representative species of Emaciatum Zone (Elisa Subzone) are illustrated, namely: Liospiriferina cf. rostrata (Schl.), L. aff. nicklesi (Corroy), Prionorhynchia serrata (Sow.), Gibbirhynchia northamptonensis (Dav.), Quadratirhynchia quadtrata Buck., Homoeorrhynchia acuta (Sow.), Lobothyris punctata (Sow.), L. subpunctata (Dav.). These papers also report the specimens from the Elisa Subzone and the lower part of Semicelatum Subzone: Liospiriferina cf. falloti (Corroy), Cisnerospira sp. n., Gibbirhynchia aff. reyi Alméras and Fauré, Gibbirhynchia cantabrica Garcia Joral and Goy, Zeilleria quadrifida (Lamarck), Zeilleria culeiformis (Rollier), Lobothyris cf. arcta (Dubar). Alméras et al. (in Rocha and Soares, 1988), Alméras et al. (1995) and Comas-Rengifo et al. (2015) also document the brachiopods recorded only from the Polymorph Zone (Semicelatum Subzone): Liospiriferina subquadrata (Seguenza), Cirpa fallax (Desl.), Namirhynchia pygmaea (Morris), Pseudokingena deslongchampsi (Dav.) and K. lisina (Bouchard).

Below the PLB/TOA, the recorded taxa are very similar to the Southern England faunas and enable correlation with the basins of Western Europe and North Africa outside the Alpine Belt. In the Mirabile Subzone of the Lower Toarcian, taxa show a more restricted palaeobiogeographic distribution, allowing correlation with several neighboring European basins. At the base of the Semicelatum Subzone, an important environmental change took place with
Figure 5. Ammonites from Ponta do Trovão (Peniche) section. Specimens are from the René Mouterde’s collection, by the courtesy of David Besson curator of the Musée des Confluences Lyon (MNHL). Photos by Emmanuel Robert (curator, Collections de Géologie de Lyon) unless for bed 15e and for Protogrammoceras (Paltarpites) cf. paltum and Dactylioceras (Eodactylites) simplex that are from Elmi et al. (2007). Scale is 1 cm. A. Specimens from beds 15a, 15c and 15d. B. Specimens from beds 15e and 16a.
development of probable dysoxic conditions. Brachiopods are rather small in size, polymorphs, very abundant and with a low diversity assemblage. They are represented by Athyridida, Koninckinidae (*K. lissina*), Terebratulida, *incertae sedis* (*P. deslongchampsi*) and Rhyconchellida, *Norellidida* (*N. pygmaea*), which represent the lower beds of the Koninkelda fauna, equivalent to the Leptaena fauna described in England and Normandy (Davidson and Morris, 1847; Deslongchamps, 1853). In Peniche, as in other Western Tethys areas, a major extinction episode affected brachiopods during the Polyporphum–Levision Zones, with the complete disappearance of the orders Athyridida and Spiriferida, the renewal of many of the specimens of the order Rhyconchellida, and a negative impact on the Terebratulida (García Joral and Goy, 2000; Almáras and Fauré, 2000; Gahr, 2002; Víros, 2002; Gómez et al., 2008). The reappearance of the group took place subsequently and is marked by the presence of the widely distributed species *Soaresirhynchia bouchardi* (Davidson).

Calcareaous nannofossils

Calcareaous nannofossils represent a powerful biostratigraphic tool for the Lower Jurassic series. Events and assemblages of Peniche have already been described (Comas-Rengifo et al., 2004; Oliveira et al., 2005; 2007b; Perilli and Duarte, 2006; Mailliot et al., 2007; Suan et al., 2008a; Mattioli et al., 2008; 2013). The majority of the samples analyzed here display a good to moderate preservation of nannofossils (Fig. 7), with the Upper Pliensbachian marlstone/limestone alternations of Peniche (Emaciatum Zone) showing a moderate preservation, whereas the basal Toarcian marlstone/limestone alternations (Polyorphism Zone) generally display a better preservation where delicate forms of coccoliths are commonly observed. A gradual diversification of coccoliths is observed at Peniche (Mattioli et al., 2013) and this trend is consistent with the diversification pattern documented within the western Tethys (Bown and Cooper, 1998). Species richness significantly increases across the PLB/TOA. Nannofossil diversification mainly concerned placoliths (coccoliths with two sub-horizontal shields separated by a tube, Bown and Young, 1998). Thus, assemblages in the Pliensbachian were dominated by murooliths (coccoliths having a wall-like, sub-vertical rim; Bown and Young, 1998), whereas placoliths became more common in the Toarcian (Fig. 6). Just above the PLB/TOA, absolute abundance progressively increases up to the highest value recorded in the section (Suan et al., 2008a). This increase parallels a significant decrease of *Schizosphaerella* spp. size from 12 µm on average to <9 µm (Suan et al., 2010). The presence of *Calyculus spp.*, *Crepidolithus cavus*/*Impontus*, *Lotharingius sigillatus* and *Lotharingius crucicentralis* is recorded from the base of the interval studied here (Fig. 6). *Lotharingius* aff. *L. velatus* (having the same diagnostic characters of *Lotharingius velatus* but smaller in size and with a thinner rim; Fig. 7.17) first occurs within the Emaciatum Zone at the very base of the studied interval (Oliveira et al., 2007b; Mattioli et al., 2013). Slightly higher, we report the First Occurrences (FOs) of *Biscutum intermedium* *L. velatus* and *Discorhabdus ignotus* (1.20 m and 2.95 m, respectively; Fig. 6). In particular, the FO of *Discorhabdus* genus at the very base of the Toarcian is a new datum. A similar record is documented in the Amellago (Morocco; Bodin et al., 2010) and Valdorbia (central Italy; Mattioli et al., 2013) sections. A possible explanation for this new record relies on the presence of a hiatus affecting several Tethyan areas at the PLB/TOA, when *Discorhabdus* first occurs, and a subsequent Lazarus behaviour of this taxon during the Toarcian Oceanic Anoxic Event (T-OAE; for more discussion, see Mattioli et al., 2013). Also, the FO of *B. intermedius* was previously referred to as Middle Toarcian (Bown, 1987; Bown and Cooper, 1998). The Peniche record represents, therefore, significant new evidence of nannofossil events. The FOs of *Diductius constans* and *Carinolithus superbus* are recorded in the basal Toarcian (8.1 m; Fig. 6), and this record is consistent in the literature (Bown, 1987).

The PLB/TOA at Peniche is within the NJ5b *L. sigillatus* nannofossil subzone of Mattioli and Erba (1999; South Tethyan margin) or in the NJ5b *C. impontus* Subzone of Bown and Cooper (1998; NW Europe). Because the Peniche nannofossil assemblages show characters intermediate between the N and S Tethyan assemblages, both biostratigraphical schemes can be used. Finally the FO of *Carinolithus superbus* (reported as the FO of *Carinolithus* spp. by Oliveira et al., 2007b) is very important because it marks the base of the NJ6 Nannofossil Zone, which encapsulates the T-OAE. The PLB/TOA is in the nannofossil Unitary Association Zone UA-Z II, spanning the Upper Pliensbachian to the Lower Toarcian interval (Mailliot et al., 2006). This zone is characterized by the co-occurrence of *Similiscutum precarium* and 22 other nannofossil species. Among these taxa, *Similiscutum finchi* is the oldest FO within the UA-Z II, while *Discorhabdus ignotus* represents the youngest. Peniche nannofossils show some peculiar features. Over-calciﬁed specimens of *L. frodoi* are observed in various samples (Fig. 7.14), displaying higher birefringence colours. These specimens are probably transitional between *Lotharingius* and *Watznaueria britannica*, as the FO of *W. britannica* is commonly reported at the Aalenian/Bajocian boundary (Mattioli and Erba 1999). The presence of these transitional forms, similar to *W. britannica*, may explain the presence of *Ellipsagelosphaera (=Watznaueria) britannica* (that are very likely over-calciﬁed *L. frodoi*) from the Toarcian of the Lusitanian Basin (Hamilton, 1979). The presence of over-calciﬁed, robust coccoliths seems to be a common pattern in Peniche, mainly in the uppermost Pliensbachian interval. Robust specimens of *Similiscutum aff. S. finchi*, named here *S. giganteum* (Fig. 7.9-10), and *C. granulatus*, are also recorded sporadically. Conversely, in the Lower Toarcian under-calciﬁed, tiny coccoliths are observed, including *L. velatus* (Fig. 7.18), *L. barozi*, and *Similiscutum finchi*. These taxa do not show reduced dimensions (i.e., coccolith length and width) with respect to holotype descriptions, but instead have a very thin ring and an enlarged central area.

Ostracods

Ostracod data from Peniche have previously been published in part in Pinto et al. (2007). Ostracods are present in all the analysed samples with poor preservation (recrystallized and worn specimens). Species richness is high in the interval from the top of Emaciatum to the top of Polyporphum zones, with 13 genera and at least 28 marine species. Ostracods from the top of Emaciatum Zone are dominated by *Ogmoconcha, Ogmoconchella* and *Liasina*, associated with *Polycope, Paracypris* and *Ledabia*. Ostracods from the Polyporphum Zone are represented by *Ogmoconcha, Ogmoconchella* and *Liasina* genera, which are dominant, and by heavily ornamented species of *Kinkelina* and *Ekthropycythere*. Of the 28 ostracod species, 19 are common to the topmost Pliensbachian and Lower Toarcian. Most of
the Lower Toarcian species extend into the Middle and Upper Toarcian (unpublished data from Boca da Mata and Rabagal/Zambujal sections, Lusitanian Basin). In the Peniche section, the first appearance of *Kinkelinelia* sp. 1 and of *Eritrophycythe* *knitleri* (Riegraf 1984) marks the PLB/TOA. The disappearance of several species of *Omoconcha*, *Omoconchella* and *Isobythocypris* aff. *ovalis* Bate and Coleman 1975, together with the appearance of *Cytherella* cf. *tearcensis* Bizon 1960 and *Kinkelinelia* *sermoisensis* (Apostolescu 1959), occurs at the transition from Polymorphum to Levisoni zones. The main biological changes in ostracod assemblages are observed at the top of the Polymorphum Zone, just below the major C-isotope negative excursion coinciding with the T-OAE (Hesselbo et al., 2007).

A strong reduction in ostracod diversity and abundance, and the disappearance of *Omoconcha*, *Omoconchella* and *Ledahia* genera occurs at this level. The disappearance of these three genera is also observed at a global scale, related to the global extinction of Metacopina (Cabral et al., 2013). The studied assemblages show strong similarities with those described from other European areas (see Arias and Whatley, 2005). The data reported here are also similar to previous works on the Peniche section (Lord, 1982).

Benthic foraminifers

Foraminifera of the PLB/TOA at Peniche are very similar to the fauna recorded in other Portuguese sites. The microfauna of Beds 16a and 16b (lowermost Toarcian) is clearly dominated by typical Upper Pliensbachian species. These assemblages consist of *Lenticulina* morphogenus *Lenticulina* and rare morphogen of *Planulalaria* or *Marginulinosis*, although the morphogenus *Falsopatula* also present in very small numbers. The specimens collected from the Polymorphum Zone are: *Lenticulina praecobonensis* morphogenus *Planulalaria* (Boudchiche et al., 1994). Numerous specimens of *Marginulina prima* d’Origine, *M. spinata* Terquem, *M. interrupta* Terquem, ornamented forms, are found. In level 16b, arenaceous forms are present, accompanied by smooth *Pseudoglandulina* and by *Pseudonodosaria multicostata* (Bornemann).

From Bed 16c upwards, a clear reduction in the number of individuals of *Marginulina prima* group is observed. The only abundant forms are *Dentalina terquemi d’Origine*, *D. obscura* Terquem and *D. arbuscula* Terquem. The *Lenticulina s.s.* group (coiled specimens) assemblage in Bed 16c differs with respect to the Upper Pliensbachian assemblages. The umbilicus of the specimens recorded in Bed 16c is higher, the keels are more acute and wider, and the body chambers are more numerous. These forms are morphologically close to those from the basai Toarcian that have been described in France, Spain and Morocco (e.g., Bassoullet, in Cariou and Hantzpergue, 1997; Ruget and Nicollin, in Cariou and Hantzpergue,

Figure 6. Distribution chart of calcareous nannofossils across the PLB/TOA boundary of Peniche section. Arrows indicate the first occurrences (FO) recorded in the studied interval. Even if this log shows only two meters of uppermost Pliensbachian (a part of its uppermost ammonite subzone), there is a more complete Upper Pliensbachian in the Ponta do Trovão section.
Level 16d also yields *L. praeobonensis*, which usually occurs in the Lower Toarcian (Polymorphum Zone). In these two beds, numerous Holothurian sclerites are also present.

Palynomorphs

A rich but poorly preserved palynoflora was documented by Oliveira et al. (2007a) from the PLB/TOA of Peniche. Terrestrial palynomorphs (spores and pollen grains) dominate the assemblage (see also Barrón et al., 2013). Bisaccate and monosulcate pollen grains are rare components of the assemblage. The most common spores belong to *Dictyophyllidites* and *Deltoidospora*, and the pollen grains are dominated by *Corollina torosa*, *Spheripollenites scabratarius*, *Exesipollenites scabratarius*, and other small inaperturate pollen grains. Dinoflagellate cysts are common in the Upper Pliensbachian and are mainly represented by *Mancodinium* and *Nannoceratopsis*. Other marine microplankton (acritarchs and microforaminifer lining) are common.

The palynoflora is mainly represented by relatively long-ranging species. The most conspicuous component of the palynoflora is *Nannoceratopsis gracilis*, which ranges from the late Pliensbachian to Bajocian (see compilation in Bucefalo-Palliani and Riding, 2003) and shows a wide geographical distribution in the Northern Hemisphere. Davies (1985) correlated the first occurrence of *N. gracilis* to the *Luehndea* sp. A biozone. He considered this palynozone to encompass the Spinatum and Tenuicostatum (Polymorphum) ammonite zones. *Mancodinium semitabulatum* is considered to have...
ranged from the Pliensbachian to the Bajocian (Bucefalo-Palliani and Riding, 2003). In the palynomorph assemblages of Peniche, a Tethyan influence is indicated by the presence of $M. \text{semitabulatum}$ and $N. \text{gracilis}$ (Bucefalo-Palliani and Riding, 2003).

Isotope stratigraphy (C, O and Sr)

In recent years, large quantities of geochemical data have been published from the Pliensbachian-Toarcian succession at Peniche (Jenkyns et al., 2002; Oliveira et al., 2005; 2006; Hesselbo et al., 2007; Hermoso et al., 2009; Suan et al., 2008a; 2010; Silva et al., 2011). These include carbon and oxygen stable isotopes ($\delta^{13}\text{C}$, $\delta^{18}\text{O}$), strontium isotopes ($^{87}\text{Sr}/^{86}\text{Sr}$), and total organic carbon (wt% TOC) data. Isotopic data have been derived from bulk carbonate, belemnites, brachiopods, and fossil wood. Some of the isotopic data span the Toarcian oceanic anoxic event (T-OAE) and have demonstrated the importance of the Peniche section for understanding of this global phenomenon (Hesselbo et al., 2007; Suan et al., 2008a; 2010).

Across the PLB/TOA, TOC values are generally low, around 0.2 wt% in the Emaciatum Zone and around 0.5 wt% in the Polymorphum Zone (Oliveira et al., 2006; Hesselbo et al., 2007). In the marlstone/limestone succession across the PLB/TOA, a prominent negative carbon-isotope excursion has been recognized. The $\delta^{13}\text{C}$ values of bulk carbonate decrease through the upper Emaciatum Zone, with the most negative values observed in the lowermost part of the Polymorphum Zone (0.65m above the PLB/TOA boundary; base of Semicelatum Subzone), representing an overall decrease of about 2.0‰ (Oliveira et al., 2005; Hesselbo et al., 2007; Fig. 9). The same trend has been documented in carbon isotopes of belemnites and brachiopods from Peniche, as well as in fossil wood (Hesselbo et al.,

Figure 8. Selected ostracod specimens from the PLB/TOA. Legend: Cp = carapace; RV = right view; LV = left view. $Bar = 100 \mu m$.

1. Ogmoconcha cf. hagenowi Drexlcr, 1958, Cp, RV, sample PP-1, Emaciatum Zone. 2. Ledahia septenaria Gründel, 1964, Cp, LV, sample P-6, Polymorphum Zone. 3. Bairdia cf. kempti Ainsworth, 1989, Cp, RV, sample P-4, Polymorphum Zone. 4. Polycop cf. cincinnata Apostolescu, 1959, Cp, RV, sample PP-3, Emaciatum Zone. 5. Paracypris sp. 1, Cp, RV, sample PP-2, Emaciatum Zone. 6. Liasina lanceolata (Apostolescu, 1959), Cp, RV, sample P-6, Polymorphum Zone. 7. Ogmoconcha inflata (Ainsworth, 1987), Cp, RV, sample P-4, Polymorphum Zone. 8. Psychobairdia hahnii (Lord & Moorley, 1974), Cp, LV, sample P-6, Polymorphum Zone. 9. Kinkelinella sp. 1, Cp, RV, sample P-8, Polymorphum Zone. 10. Bairdia aff. rostrata Issler, 1908, Cp, RV, sample P-4, Polymorphum Zone. 11. Paracypris redcarensis (Blake, 1876), Cp, RV, sample P-11-B, Polymorphum Zone. 12. Ektyphocythere knitteri Riegraf, 1984, Cp, RV, sample P-13-B, Polymorphum Zone. 13. Bairdia sp. 2, Cp, RV, sample P-11-T, Polymorphum Zone.
This negative shift in δ\(^{13}\)C is also recorded in other sections in the Lusitanian Basin (Pittet et al., 2014). Littler et al. (2010) also detected a very similar negative carbon-isotope excursion, centred at the Hawskerense–Paltum Subzone boundary, in bulk organic matter from Yorkshire (England), and Bodin et al. (2010) documented a significant negative excursion in bulk carbonate at the base of the Polymorphum Zone in a section from Morocco. Although less precisely dated and smaller in amplitude, such a boundary negative excursion in carbon stable isotopes (both bulk rock and organic matter) was further recorded in the Ionian zone (Kafousia et al., 2014). These records demonstrate the potential importance of the δ\(^{13}\)C excursion as a chemostratigraphical marker for the PLB/TOA. The morphology of the negative spike at Peniche with respect to the expanded sections in Yorkshire and Morocco is further evidence for the continuous sedimentary record at Peniche across the PLB/TOA boundary.

In the Polymorphum Zone, the δ\(^{13}\)C\(_{\text{bulk-carb}}\) data show a positive shift of +2.0‰, reaching maximum values in the middle–upper part of the Polymorphum Zone (Hesselbo et al., 2007). The same shift was observed in δ\(^{13}\)C values from of belemnites, brachiopods and wood (Hesselbo et al., 2007; Suan et al., 2008; 2010). This positive excursion was also recognized in the Coimbra area and other distal sectors of the Lusitanian Basin (Duarte et al., 2007; Pittet et al., 2014). Above this level, the trend is reversed and an abrupt large negative carbon-isotope excursion is observed in the Lusitanian Basin at the base of the Levisoni Zone, which is considered as a characteristic feature of the T-OAE (Duarte, 1998; Jenkyns et al., 2002; Duarte et al., 2004a, 2007; Oliveira et al., 2005; Hesselbo et al., 2007; Suan et al., 2008a; Pittet et al., 2014). According to cyclostratigraphy, the negative shift in δ\(^{13}\)C values characterizing the T-OAE occurred ~860 kyr after the PLB/TOA (Suan et al., 2008b; Huang and Hesselbo, 2014).

Figure 9. A. Oxygen isotopes measured on calcite brachiopod shells in the interval corresponding to the Emaciatum – Levisoni Zones (Suan et al., 2008a). B. High-resolution C-isotopes of bulk rock, C-isotope values of belemnites and ⁸⁷Sr/⁸⁶Sr around the PLB/TOA at Peniche (Hesselbo et al., 2007).
Oxygen-isotope values of bulk carbonates through the Upper Pliensbachian and Lower Toarcian interval fluctuate considerably. However, around the PLB/TOA a negative excursion is observed in bulk rock, and both belemnite and brachiopod calcite, with several low δ18O values observed at the base of the Polymorphum Zone (20–30 cm above the PLB/TOA) suggesting a sharp warming event occurred at the base of the Toarcian (Oliveria et al., 2005; Suan et al., 2008a; Hermoso et al., 2009). The δ18O values of belemnites and brachiopods increase gradually until the middle part of the Polymorphum Zone, then decrease towards the Polymorphum/Levisoni zones boundary (Fig. 9). Strontium-isotope data have been generated from belemnites at Peniche (Fig. 9; Jenkyns et al., 2002; Hesselbo et al., 2007), although the uncertainties associated with these analyses are large in comparison to equivalent determinations from the sections in Yorkshire (McArthur et al., 2000). However, it is notable that the lowest strontium-isotope ratios inferred for Early Jurassic seawater occur at the PLB/TOA.

Correlation of Peniche to other relevant areas based on ammonites and other fossil groups

Ammonites are the most relevant taxonomic group for global biochronological correlation of the PLB/TOA. Upper Pliensbachian and Lower Toarcian ammonites are found worldwide in the two major marine, palaeogeographical realms, Boreal and Tethyan, and a few biogeographical provinces (Arkell, 1956; Hallam, 1969; Stevens, in Hallam, 1973; Howarth, in Hallam, 1973; Cariou, in Hallam, 1973; Enay, 1980; Enay and Mangold, 1982; Cariou et al., 1985; Smith et al., 1988; Hillebrandt et al., in Westermann, 1992; 2000; Enay and Cariou, 1997; Page, 2004, 2008). The classical biogeographical schemes for the Early Jurassic usually do not recognize an Austral ammonite fauna or an Austral Province that is known for the Late Jurassic seawater occur at the PLB/TOA. In fact, the Lower Jurassic Austral and Tethyan ammonite faunas show a less marked contrast than the Tethyan and Boreal Realms (Enay and Cariou, 1997).

Figure 10 shows standard zonations for the three ammonite biogeographical provinces present in Western Europe, namely the Subboreal, the NW European and the Mediterranean, as compared to the Peniche section ammonite zonation. Ammonites of the Subboreal, Northwest European and Mediterranean Provinces are also made with North America and circum-Pacific zonations, namely South America, Japan and NE Asia. Absolute ages are after Gradstein et al. (2012).

Figure 10. Lower Toarcian subdivisions and correlations: Subboreal, Northwest European and Mediterranean Provinces. Comparisons are also made with North America and circum-Pacific zonations, namely South America, Japan and NE Asia. Absolute ages are after Gradstein et al. (2012).
did occur across the PLB/TOA. Within the dinoflagellates, N. gracilis and Luhendea sp. A first occur. Benthic foraminifera also display an important renewal (Fig. 11). All these events are fundamental for correlating Peniche to other marine sections that do not contain a detailed ammonite biostratigraphy.

Comparisons with the Almonacid de la Cuba section (Iberian Range, Spain)

A reference section for the base of the Toarcian Stage is located near the Almonacid de la Cuba town, 35 km South of Zaragoza (Aragonese branch of the Iberian Range, Spain) where magnetostratigraphy is available (Fig. 12). The Pliensbachian” Toarcian succession and the fossil content have been studied in detail (Goy et al., 2006; Comas-Rengifo et al., 2010 and references therein). The PLB/TOA boundary is recorded in the marlstone/limestone alternations of the Turmiel Fm, which was deposited in an open-marine, external platform environment (Gómez, 1991; Gömez and Goy, 2005). The Almonacid de la Cuba section contains an excellent record of the PLB/TOA, where no evidence of major sedimentary breaks was found. Four ammonite assemblages characterized, respectively, by the presence of Pleuroceras, Canavaria, Dactylioceras (Eodactylites) and Dactylioceras (Orthodactylites) have been distinguished. The base of the Toarcian is located at level CU35.2, based on the first occurrence of Dactylioceras species (Fig. 12).

Based upon comparison of ammonite assemblages in the two sections, a bed-by-bed correlation is possible. The Upper Pliensbachian Beds 15a–15b of the Peniche section are the equivalent of the levels 15–22 of the Almonacid de la Cuba section (Figs. 4a and 12). Level 15c of Peniche is the equivalent of levels 23–28 of Almonacid de la Cuba. Bed 15d of Peniche is the equivalent of levels 29–35 of Almonacid de la Cuba. The Lower Toarcian Bed 15e of Peniche, containing Dactylioceras (Eodactylites) simplex, D. (E.) pseudocommune, D. (E.) polymorphum, Protagromoceras (Paltaripites) cf. paltum, L. aff. ballinense and T. aff. capillatum, is the equivalent of levels 35.2–42 of Almonacid de la Cuba, characterized by D. (E.) simplex, D. (E.) mirabile, D. (E.) polymorphum, Protagromoceras sp. and P. cf. paltum. Level 16a of Peniche is the equivalent of level 46 and younger levels of Almonacid de la Cuba. Level 16c of Peniche, which includes the first record of D. (Orthodactylites) semicelatum, can be correlated with level 62 of Almonacid de la Cuba, which contains the same record.

The Almonacid de la Cuba magnetostratigraphy (Fig. 12) shows the N3 magnetozone also observed in the Iznalloz section (Betic Cordillera, southern Spain; Galbrun et al., 1990) and in the Sierra Palomera and Arínio sections (Iberian Range, Central Spain; Osete et al., 2007). The R2 magnetozone corresponds to the reversed polarity observed in the lower part of the Iznalloz section. R2 and R1 were also recorded in the Breggia section, southern Switzerland (Southern Alps; Horner and Heller, 1983), but the N2 magnetozone was not detected there. The Lower Toarcian is only poorly represented in the Alpine section (the Tenuicostatum Zone is around 30 cm thick) and probably there is a gap at the PLB/TOA (Comas-Rengifo et al., 2010). These authors also report the magnetostratigraphy of the Almonacid de la Cuba section as the most complete record for the PLB/TOA. The 87Sr/86Sr values obtained at Almonacid de la Cuba (Fig. 12) match well with previously published data (McArthur et al., 2000; Hesselbo et al., 2007). Upper Pliensbachian 87Sr/86Sr values generally decrease during the Haskerense Biochron, reaching a first minimum value below 0.70705 in the late portion of this time interval. 87Sr/86Sr values

Table: Comparison of ammonite assemblages

Zones	Calcareous nannofossils	Ostracoda	Dinoflagellate cysts	Benthic foraminifera	Brachiopoda	Belemnites		
NW European Basin-Cantabrian	Portugal	France	Portugal	Assamblage Zone	Zone	Zone	Zone	Region - Zone
Lower Toarcian	Terpuggium							
Upper Pliensbachian	Spiniferatum							
Upper Pliensbachian	Spinitum							
Lower Toarcian	Terpuggium							
Upper Pliensbachian	Spiniferatum							
Upper Pliensbachian	Spinitum							

Figure II. Zonations based upon calcareous nannofossils (Bown and Cooper, 1998; Mattioli and Erba, 1999; Perilli and Comas-Rengifo, 2002; Comas-Rengifo et al., 2004; Perilli et al. 2004; 2010; Mailliot et al., 2007; Mattioli et al., 2013), ostracods (Bodergat, in Cariou and Hantzpergue, 1997), dinoflagellate cysts (Davies, 1985; Fauchonner, in Cariou and Hantzpergue, 1997) and foraminifera (Ruget and Nicollin, in Cariou and Hantzpergue, 1997). Concerning calcareous nannofossils, the zones used for Peniche are shown in grey. Both NJ5b and NJTs5b Subzones defined in NW Europe and Basin-Cantabria area, and in Northern and Central Italy, respectively, can be used at Peniche, as the markers of the two subzones (Crepidolithus impontus and Loharingius sigillatus) are commonly recorded there. Comparison of brachiopod and belemnite zones from various domains (Alméras et al., in Cariou and Hantzpergue, 1997; Combémorin, in Cariou and Hantzpergue, 1997).
Comparisons between Peniche, Almonacid de la Cuba, and the magnetic record of the Karoo volcanic province

The very tight correlation of Peniche to the Almonacid de la Cuba volcanic province sampled along the Lebombo rifted margin (Riley et al., 2004, and references therein), dated to the PLB/TOA, allows discussion of the magnetic record and Sr/Sr Sr isotope ratios (modified from Comas-Rengifo et al., 2010). The Almonacid de la Cuba magnetostratigraphy shows a thick interval of three normal magnetozones (Galbrun et al., 1994) within a reversed normal polarity succession characterized by three normal magnetozones. Duncan et al. (1997) and Horner and Heller (1983), who reported the PLB/TOA slightly increase in the latest part of Hawskerense Biozone, Lower Toarcian. The Sr/Sr Sr isotope ratio shows a reversed normal polarity succession, and the Sr/Sr Sr values are recorded at the base of the Toarcian, and Sr/Sr Sr values recover during the Toarcian Zone.

The younger section of Peniche (Galbrun et al., 1994) and from the Southern Alps (Horner and Heller, 1983) shows a reversed normal polarity succession. This discrepancy is probably due to the presence of highly condensed intervals. The Sr/Sr Sr isotope ratio is not in agreement with data from the intermediate magnetozone N2 sampled along the Lebombo rifted margin sampled along the Lebombo rifted margin (Riley et al., 2004), and from the Southern Alps (Horner and Heller, 1983). The following magnetozone N3 at Almonacid de la Cuba shows a reversed reversal of the magnetic record. This discrepancy is probably due to the presence of highly condensed intervals, which may exist in sections from both the Western Transylvanian Basin and the Southern Alps (Horner and Heller, 1983). The Sr/Sr Sr isotope ratio is not in agreement with data from the intermediate magnetozone N2 studied by Galbrun et al. (1994) and Horner and Heller (1983). The following magnetozone N3 at Almonacid de la Cuba shows a reversed reversal of the magnetic record. The Sr/Sr Sr isotope ratio is not in agreement with data from the intermediate magnetozone N2 studied by Galbrun et al. (1994) and Horner and Heller (1983). The following magnetozone N3 at Almonacid de la Cuba shows a reversed reversal of the magnetic record.

The Sr/Sr Sr isotope ratio is not in agreement with data from the intermediate magnetozone N2 studied by Galbrun et al. (1994) and Horner and Heller (1983). The following magnetozone N3 at Almonacid de la Cuba shows a reversed reversal of the magnetic record. The Sr/Sr Sr isotope ratio is not in agreement with data from the intermediate magnetozone N2 studied by Galbrun et al. (1994) and Horner and Heller (1983). The following magnetozone N3 at Almonacid de la Cuba shows a reversed reversal of the magnetic record.
interpreted the Sabie River Basalt Formation as having been erupted during a period of <0.5 million years, since the sequence lies within this single normal magnetozone.

We tentatively correlate the upper part of the N2 magnetozone of the Almonacid de la Cuba section, where the PLB/TOA lies (base of Mirabile Subzone that is well correlated to Peniche), to the Karoo volcanic rocks dated as 182.7 ± 0.8 Ma ⁴⁰Ar/³⁹Ar (Duncan et al., 1997), also corresponding to the upper part of a magnetic normal chron (Fig. 13). If this correlation holds true, this age would be within error but slightly younger than the 183.6 +1.7/-1.1 Ma measured by Pallfy and Smith (2000) or 183.0 ± 1.5 Ma estimated by Ogg (2004).

The N3 normal magnetozone of the Almonacid de la Cuba section, which is dated to the Tenuicostatum ammonite Zone, Semicelatum Subzone (well correlated to the Semicelatum Subzone of Peniche), might correspond to the thick normal magnetozone in the Sabie River Basalt Formation, if the respective thicknesses were not due to a higher sedimentation rate within the N3 (at Almonacid de la Cuba) or to an increased rate of basalt production (within the Sabie River Basalt Formation).

Protection of the site

Besides the major importance of the Toarcian GSSP, the Peniche Peninsula shows the most significant section for the Lower Jurassic of Portugal (Duarte, 2004), recording ~20 million years of Portuguese geological history. Several papers emphasize the considerable value of this outcrop in terms of geological heritage (Duarte, 2004, 2005; Brilha et al., 2005; Rílo et al., 2010). In fact, Peniche brings together three features that support its importance as a site of high heritage interest: several geological objects and structures show high scientific value with international relevance; the sedimentary geology has a huge potential for educational activities both for academic and industrial purposes. In spite of its high potential for the geological heritage of the Jurassic, the Peniche peninsula is not yet included in any national geological protection system. However, based on a special
report presented to local authorities (Duarte, 2007b), the City Hall of Peniche declared, in April 2007, the locality of Ponta do Trovão as a “Site of City Hall Interest”.

Summary

The Global Boundary Stratotype Section and Point for the base of the Toarcian Stage has been established at the Peniche section (Ponta do Trovão, Lusitanian Basin, Portugal) because it satisfies most of the requirements recommended by the International Commission on Stratigraphy (http://www.stratigraphy.org/).

1. The Pliensbachian/Toarcian boundary (PLB/TOA) at Peniche is included in a continuous section that comprises over 450 m of carbonate-rich sediments.
2. Structural complexity, synsedimentary and tectonic disturbances, metamorphism and strong diagenetic alteration are minimal constraints in this area.
3. At the PLB/TOA, as recorded in a hemipelagic marlstone/limestone alternation unit, no significant vertical facies changes, stratigraphical gaps and hiatuses have been recorded. An increase in clay content is observed above the boundary.
4. The palaeontological record of the Elisa and Mirabile subzones shows abundant and diverse well-preserved macro- and microfossil assemblages. The PLB/TOA is characterized thanks to both primary (ammonites) and auxiliary biostratigraphical markers (calcareous nannofossils, brachiopods and ostracods). The ammonite assemblages of the PLB/TOA mainly contain taxa characteristic of the Mediterranean (Pallarpites, Lioceratoidea) and the Northwest European provinces (Dactylioceras and Tiltoniceras) that allow global correlations. The boundary is identified at Peniche (as well as in other sections) by the mass occurrence of Dactylioceratids and, in particular, by the FO of D. (Eodactylites) pseudocomune and D. (E.) simplex. The ammonite zones and subzones defined at Peniche are assemblage (Oppel) zones based on the co-occurrence of several species of ammonites. Calcareous nannofossils first and last occurrences constitute a valuable secondary proxy for recognition and correlation of the base of the Toarcian. A succession of events is recorded across the PLB/TOA, namely the FOs of B. intermedium, L. velatus, D. ignotus and C. superbus are recorded in Peniche as well as other Tethyan settings.
5. High-resolution stable carbon and oxygen isotopes, and \(^{87}Sr/^{86}Sr\) ratios show distinctive changes just above the PLB/TOA at Peniche, constituting powerful tools for global correlation.
6. No data are currently available for radioisotopic dating or magnetostratigraphy. The requirement of suitability for magnetostratigraphy is available at the Almonacid de la Cuba section (Iberian Range, Spain), which correlates well with Peniche. The N2–R2 magnetozone boundary is recorded just above the PLB/TOA at Almonacid. The precise correlation between the two sections allows indirect correlation of Peniche to the magnetic record of the Karoo Group.
7. Sequence stratigraphy is available for the Pliensbachian and Toarcian series of the Lusitanian Basin. Cyclostratigraphy analysis is available for the Lower Toarcian of Ponta do Trovão.
8. The Peniche area is not yet included in any national geological protection system; nevertheless, the Peniche City Hall has recognized the high geological heritage value of the Jurassic of the Peniche Peninsula and has declared, in 2007, the site of Ponta do Trovão as a «Site of City Hall Interest». A permanent fixed marker (i.e., a golden spike) is going to be placed by the Peniche City Hall.

With this Toarcian GSSP, all international stages of the Lower Jurassic have been officially defined.

The requirements for a GSSP (ICS)	Ponta do Trovão Peniche section (Portugal)
Geological requirements	Adequacy of geological requirements
Exposure over an adequate thickness	Yes
Continuous sedimentation.	Little condensation 20 cm above the boundary
No gaps or condensation close to the boundary	
Sedimentary rate	Thickness: 9 m for the Emaciaatum Zone and 11 m for the Polymorphum Zone. Sedimentary rate at the PLB/TOA: 3.26–3.81 m/Myr
Absence of synsedimentary and tectonic disturbances	Yes
Absence of metamorphism and strong diagenetic alteration	Yes
Biostratigraphical requirements	
Abundance and diversity of well-preserved fossils	Abundant and well preserved ammonites and brachiopods
Absence of vertical facies changes at or near the boundary	No (slight facies variation 20 cm above the boundary)
Favourable facies for long-range biostratigraphical correlations	Yes
Micropalaeontological data	Calcareous nannofossils (well preserved and abundant), ostracods, palyynmorphs, and foraminifera
Other methods	
Radioisotopic dating	No results
Magnetostratigraphy	No results at Peniche; good results in the Almonacad de la Cuba section (Spain) well-correlated to Peniche. Indirect correlation of Peniche to the Karoo magnetic record.
Chemostratigraphy	Hesselbo et al. (2007); Suan et al. (2008a)
Sequence stratigraphy	Duarte et al. (2004b); Duarte (2007a); Pittet et al. (2014)
Cyclostratigraphy	Suan et al. (2008b); Huang and Hesselbo (2014)
Other requirements	
GSSP indicated by a permanent fixed marker	Yes
Physical and logistical accessibility	Yes, very easy accessibility
Free access for research	Yes
Protection of the site	Designated as a “Site of City Hall Interest” since 2007

Acknowledgements

Several scientists have been members of the Toarcian Working Group. We would like to acknowledge all of them. We are also grateful to the ISJS and ICS members who have made valuable comments on
References

Alméras, Y., 1994, Le genre *Soaresiella* nov. (Brachiopoda, Rhynchonellacea, Wellerellidae) dans le Toarcien du Bassin Nord-Lusitanien (Portugal): Docum. Lab. Géol. Lyon. v. 130, pp. 1-20.

Alméras, Y., and Mouterde, R., 1995, Le genre *Arias*, C., and Whatley, R., 2005, Palaeozoogeography of West European Early Jurassic (Pliensbachian-Toarcian) brachiopod faunas (Brachiopoda, Rhynchonellidae, Norellidae) in the French Basins, in *Brachiopods* v. 8, pp. 679-697.

Bideau, S., Masson, D., Fröhlich, S., Marshall, J. D., Boutib, L., Lahsini, S., and Bodin, S., 2013, Definition of the Toarcian Stage in Morocco: palaeoenvironmental implications: *Stratigr. Geol. Corr.*, v. 18(2), pp. 133-152.

Bideau, S., Cariou, E., and Haultpergue, P. (Coord.), 1997, Biostratigraphie du Jurassique de la France: *Bull. Soc. géol. France*, i, pp. 63-68.

Bideau, S., Cariou, E., Contini, D., Dommergues, J. L., Enay, R., Geyssant, J., Mangold, M. L., and Palencia, A., 2010, A Complementary Section for the Proposed Toarcian (Lower Jurassic) Global Stratotype: The Almonacid De La Cuba Section (Spain): *Stratigr. Geol. Corr.*, v. 18(2), pp. 133-152.

Bideau, S., De Bruijne, F., de Raadt, M. J., and van den Boorn, H. T. M., 2010, A Complementary Section for the Proposed Toarcian (Lower Jurassic) Global Stratotype: The Almonacid De La Cuba Section (Spain): *Stratigr. Geol. Corr.*, v. 18(2), pp. 133-152.

Bideau, S., Cariou, E., Contini, D., Dommergues, J. L., Enay, R., Geyssant, J., Mangold, M. L., and Palencia, A., 2010, A Complementary Section for the Proposed Toarcian (Lower Jurassic) Global Stratotype: The Almonacid De La Cuba Section (Spain): *Stratigr. Geol. Corr.*, v. 18(2), pp. 133-152.
Mailliot, S., Mattioli, E., Bartolini, A., Baudin, F., Pittet, B., and Guex, J., Hermoso, M., Minoletti, F., Le Callonnec, L., Jenkyns, H. C., Hesselbo, S. P., Mailliot, S., Mattioli, E., Guex, J., and Pittet, B., 2006, The Early Toarcian
Mailliot, S., Elmi, S., Mattioli, E., and Pittet, B., 2007, Calcareous nannofossil
Hesselbo, S. P., Jenkyns, H. C, Duarte, L. V., and Oliveira, L. C., 2007, Carbon-
Hallam, A., 1994, An outline of Phanerozoic Biogeography: Oxford University
Huang, C., and Hesselbo, S. P., 2014, Pacing of the Toarcian Oceanic Anoxic
Jenkyns, H. C., Jones, C. E., Gröcke, D. R., Hesselbo, S. P., and Parkinson,
Mattioli, E., and Erba, E., 1999, Synthesis of calcareous nannofossil events
Mouginis-Mark, O., and Unwin, London, 262-277 pp.
Rickaby, R. E. M., Renard, R., de Rafélis, M., and Emmanuel, L., 2009,
Alves, C., Mata, J., Madeira, J., Mateus, O., and Moreira, M., 2013, A
Pinto, S., Cabral, M. C., and Duarte, L. V., 2007, Preliminary data on the
do potencial gerador de petróleo e interpretação paleoambiental com base em biomarcadores e isotopos estáveis do carbono da seção Plisbsnaquiano-Toarciano inferior (Jurásico inferior) da região de Peniche (Bacia Lusitânia, Portugal): Bol. Geociências Petróbras, v. 14(2), pp. 207-234.
Oliveira, L. C. V., Dino, R., Duarte, L. V., and Perilli, N., 2007a, Calcareous
nannofossils and palynomorphs from Pliensbachian-Toarcian boundary in Lusitanian Basin, Portugal: Rev. Bras. Paleontol., v. 10, pp. 5-16.
Oliveira, L. C. V., Perilli, N., Duarte, L. V., and Lemos, V. B., 2005, Estratigrafia química (COT, δ13C, δ18O) e nanófossos cálcários na passagem Plisbsnaquiano-Toarciano no perfil de Peniche (Portugal). Resultados preliminares: Pesquisas Geociclicas, v. 32(2), pp. 3-16.
Oliveira, L. C. V., Rodrigues, R., Duarte, L. V., and Lemos, V., 2006, Avaliação do potencial gerador de petróleo e interpretação paleoambiental com base em biomarcadores e isotopos estáveis do carbono da seção Plisbsnaquiano-Toarciano inferior (Jurásico inferior) da região de Peniche (Bacia Lusitânia, Portugal): J. Geociências Petróbras, v. 14, pp. 207-234.
Oliveira, L. C. V., Duarte, L. V., Perilli, N., Rodrigues, R., and Lemos, V. B., 2014, The Jurassic Period: in Gradstein, F., Ogg, J. G., and Smith, A., eds, A Geologic Time Scale 2014: Cambridge Univ. Press, 246 pp.

McArthur, J. M., Donovan, D. T., Thrilwall, M. F., Fouke, B. W., and Mattey, D., 2000, Strontium isotope profile of the Early Toarcian (Jurassic) oceanic anoxic event, the duration of ammonite biozones, and belemnite paleoceanography within the western Tethys: Paleoceanography, v. 15, PA3208, doi: 10.1029/2000PA001435.
Mattioli, E., Planq, J., Boussaha, M., Duarte, L. V., and Pittet, B., 2013, Calcareous nannofossil biostratigraphy: new data from the Lower Jurassic of the Lusitanian Basin: Comunicações Geológicas, v. 100, Especial I, pp. 69-76.
McArthur, J. M., Donovan, D. T., Thrilwall, M. F., Fouke, B. W., and Mattey, D., 2000, Strontium isotope profile of the Early Toarcian (Jurassic) oceanic anoxic event, the duration of ammonite biozones, and belemnite paleoceanography within the western Tethys: Paleoceanography, v. 23, PA3208, doi: 10.1029/2007PA001435.

Mourier, R., 1967, Le Lias du Portugal. Vue d’ensemble et division en zones: Comun. Serv. Geol. Portugal, v. XLII, pp. 209-226.
Mourier, R., Ramalho, M., Rocha, R. B., Ruget, Ch., and Tintant, H., 1972, Le Jurassique du Portugal. Esquisse stratigraphique et zonale: Bol. Soc. Geol. Portugal, v. XVIII, pp. 73-104.
Mourier, R., Demouy, J-L., Meister, C., and Rocha, R. B., 2007, Atlas des fossiles caractéristiques du Lias portugais. IIIa) Domérien (Ammonites): Ciências da Terra, v. 16, pp. 67-111.
Ogg, J. G., 2004, The Jurassic Period: in Gradstein, F., Ogg, J. G., and Smith, A., eds, A Geologic Time Scale 2014: Cambridge Univ. Press, 307-343 pp.

Pinto, S., Cabral, M. C., and Duarte, L. V., 2007, Preliminary data on the
ostracod fauna from the Lower Toarcian of Peniche: Ciências da Terra (UNL), v. 16, pp. 37-43.
Pittet, B., Suan, G., Lenoir, F., Duarte, L. V., and Mattioli, E., 2014, Carbon isotope evidence for sedimentary discontinuities in the lower Toarcian of the Lusitanian Basin (Portugal): Sea level change at the onset of the Oceanic Anoxic Event. Sedim. Geol., v. 303, pp. 1–14.
Riley, T. R., Millar, I. L., Watkeys, M. K., Curtis, M. L., Leat, P. T., Klaussen, M. B., and Fanning, C. M., 2004, U–Pb zircon (SHRIMP) ages for the Lebombo rhyolites, South Africa: refining the duration of Karoo volcanism: J. Geol. Soc. London, v. 161, pp. 547–550.
Rilo, A. R., Duarte, L. V. and Tavares, A., 2010, As falésias calcárias da Rocha, R. B., (coord.), Marques B., Kullberg J. C., Caetano P., Lopes C., Rocha, R. B., Mouterde, R., Soares, A. F., and Elmi, S., 1987, Excursion A – Shenghui, D., and Fen, C., 2000, Jurassic Floras of North China: Rogalska, M., 1974, Division of the Liassic deposits in Poland (except for the Carpathian area) based on microscope examinations: Mém. Bureau Rech. Géol. Min. (1971), v. 75, pp. 201-210.
Ruban, D. A., 2006, Taxonomic diversity dynamics of the Jurassic bivalves in the Caucasus: Regional trends and recognition of global patterns: Palaeoeeoeo., Palaeocl., Palaeocl., v. 239, pp. 63-74.
Shenghui, D., and Fen, C., 2000, Jurassic Floras of North China: in Hall, R. L., and Smith, P. L., eds, Advances in Jurassic Research 2000, GeoResearch Forum 6, Trans Tech Publ., 513-522 pp.
Shopov, V. L., 1970, Bivalvian faunas of the Lower Jurassic in Bulgaria: Bull. Geol. Inst., v. 19, pp. 15-39.
Silva, R. L., Duarte, L. V., Comas-Rengifo, M. I., Mendonça Filho, J. G., and Azerêdo, A. C., 2011, Update of the carbon and oxygen isotopic records of the Early–Late Pliensbachian (Early Jurassic, ~187 Ma): Insights from the organic-rich hemipelagic series of the Lusitanian Basin (Portugal): Chem. Geol., v. 283, pp. 177–184.
Smith, P. L., Tipper, H. W., Taylor, D. G and Guex, J., 1988, A Lower Jurassic ammonite zonation for Canada and the United States: The Pliensbachian: Canada Journ. Earth Sci., v. 25 (9), pp. 1503-1523.
Soares, A. F., Rocha, R. B., Elmi, S., Henriques, M. H., Mouterde, R., Almêras, Y., Ruget, Ch., Marques, J., Duarte, L. V., Carapito, C., and Kullberg, J. C., 1993, Le sous-bassin nord-lusitanien (Portugal) du Trias au Jurassique moyen: histoire d’un “rift avorté”: C. R. Acad. Sci. Paris, v. 317(II), pp. 1659-1666.
Stoyanova-Vergilova, M., 1977, An attempt for belemnite zonal subdivision of the Lower Jurassic sediments in Bulgaria: Godishnik na Sofiiskiya Universitet, v. 70, pp. 161-192.
Suan, G., Mattioli, E., Pittet, B., Mailliot, S. and Lécuyer, C., 2008a, Evidence for major environmental perturbation prior to and during the Toarcian (Early Jurassic) Oceanic Anoxic Event from the Lusitanian Basin, Portugal: Palaeoceanography, v. 23, PA1202, doi:10.1029/2007PA001459.
Suan, G., Pittet, B., Bour, I., Mattioli, E., Duarte L. V., and Mailliot, S., 2008b, Duration of the Early Toarcian carbon isotope excursion deduced from spectral analysis: Consequence for its possible causes: Earth Planet. Sci. Lett., v. 267, pp. 666-679.
Suan, G., Mattioli, E., Pittet, B., Lécuyer, C., Suchéras-Marx, B., Duarte, L. V., Philippe, M., Réggianni, L., and Martinez, F., 2010, Secular environmental precursors to Early Toarcian (Jurassic) extreme climate changes: Earth Planet. Sci. Lett., v. 290, pp. 448–458.
Tchoumatchenko, P. V., 1972, Répartition stratigraphique des brachiopodes du Jurassique inférieur du Balkan central et oriental et du Kraiste (Bulgarie): Bull. Geol. Inst., v. 21, pp. 63-84.
Vijaya, B., 2000, Recognition of Potential Palynoevents in the Jurassic Sequence of India and their Correlation in Australia: in Hall, R. L., and Smith, P. L., eds, Advances in Jurassic Research 2000, GeoResearch Forum 6, Trans Tech Publ., 237-248 pp.
Voros, A., 2002, Victims of the Early Toarcian anoxic event: the radiation and extinction of Jurassic Konnikinidiae (Brachiopoda): Lethaea, v. 35, pp. 345–357.
Westermann, G. E. G., ed., 1992, The Jurassic of the Circum-Pacific: Cambridge Univ. Press, 676 pp.
Westermann, G. E. G., 2000, Marine faunal realms of the Mesozoic: review and revision under the new guidelines for biogeographical classification and nomenclature: Palaeogeo., Palaeoclim., Palaeoecol., v. 163, pp. 49-68.
Wilson, R. C. L., Hiscott, R. N., Willis, M. G., and Gradstein, F. M., 1989, The Lusitanian Basin of West-Central Portugal: Mesozoic and Tertiary tectonic, stratigraphical and subsidence history: Am. Assoc. Petrol. Geol. Mem. 46, pp. 341-362.
Wright, V. P. and Wilson, R. C. L., 1984, A carbonate submarine-fan sequence from the Jurassic of Portugal: J. Sed. Petrol., v. 54, pp. 394-412.

Emanuela Mattioli is full Professor at the University of Coimbra. Her research activity, developed at the MARE - Marine and Environmental Sciences Centre, is mainly focused on integrated stratigraphy analysis, sedimentology and geochemistry of marine carbonate deposits.

Bernard Pittet is Associate Professor at the Department of Earth Sciences, Lyon Observatory, University Lyon 1, France. As sedimentologist, his research interest focused on palaeoenvironmental reconstructions of ancient, both carbonate and siliciclastic sedimentary systems, and their relationship with climate, sea level and palaeoceanography.

Rogério Bordalo da Rocha is Emeritus Professor since 2011 of Geology of Sedimentary Basins at the Faculty of Sciences and Technology in the Universidade NOVA de Lisboa, Portugal. His research focuses on the stratigraphy of the Triassic and Jurassic formations and the biochronostratigraphy and palaeobiology of Invertebrates, especially Lower and Middle Jurassic ammonites of the Lusitanian and Algarve basins.

Luís Vitor Duarte is Associate Professor at the University of Coimbra. His research activity, developed at the MARE - Marine and Environmental Sciences Centre, is mainly focused on integrated stratigraphy analysis, sedimentology and geochemistry of marine carbonate deposits.