ON THE SMALLEST LAPLACE EIGENVALUE FOR NATURALLY REDUCTIVE METRICS ON COMPACT SIMPLE LIE GROUPS

EMILIO A. LAURET

Abstract. Eldredge, Gordina and Saloff-Coste recently conjectured that, for a given compact connected Lie group G, there is a positive real number C such that $\lambda_1(G, g) \text{diam}(G, g)^2 \leq C$ for all left-invariant metric g on G. In this short note, we establish the conjecture for the small subclass of naturally reductive left-invariant metrics on a compact simple Lie group.

For an arbitrary compact homogeneous Riemannian manifold (M, g), Peter Li [Li80] proved that
\begin{equation}
\lambda_1(M, g) \geq \frac{\pi^2/4}{\text{diam}(M, g)^2}.
\end{equation}
Here, $\lambda_1(M, g)$ denotes the smallest positive eigenvalue of the Laplace–Beltrami operator on (M, g) and $\text{diam}(M, g)$ is the diameter of (M, g), that is, the maximum Riemannian distance between two points in M. This lower bound has been recently improved by Judge and Lyons [JL17, Thm. 1.3].

In contrast, there is no uniform upper bound for the term $\lambda_1(M, g) \text{diam}(M, g)^2$ among all compact homogeneous Riemannian manifolds. For instance, the product (M_n, g_n) of n-dimensional round spheres of constant curvature one satisfies $\lambda_1(M_n, g_n) = d$ but its diameter clearly goes to infinity when $n \to \infty$.

Eldredge, Gordina and Saloff-Coste have recently claimed the existence of a uniform upper bound valid on a restricted space of homogeneous Riemannian manifolds.

Conjecture 1. [EGS18, (1.2)] Given G a compact connected Lie group, there exists $C > 0$ such that
\begin{equation}
\lambda_1(M, g) \leq \frac{C}{\text{diam}(M, g)^2}
\end{equation}
for all left-invariant metric g on G.

Among many other results, they confirm its validity for $SU(2)$ in [EGS18, Thm. 8.5]. Explicit values of C for $SU(2)$ and $SO(3)$ can be found in [La19, Thm. 1.4].

The main goal of this article is to give a simple and short proof of the validity of the weaker conjecture after restricting to naturally reductive left-invariant metrics on a compact connected simple Lie group G. The reader should not consider this result as a strong evidence of Conjecture 1.

Theorem 2. Let G be a compact connected simple Lie group. There exists $C > 0$ such that
\begin{equation}
\lambda_1(G, g) \leq \frac{C}{\text{diam}(G, g)^2}
\end{equation}
for all naturally reductive left-invariant metric g on G.

Date: May 29, 2019.

2010 Mathematics Subject Classification. Primary 35P15, Secondary 58C40, 53C30.

Key words and phrases. Naturally reductive metric, Laplace eigenvalue, diameter, compact simple Lie group.

This research was supported by grants from CONICET, FONCyT, SeCyT, and the Alexander von Humboldt Foundation (return fellowship).
Proof. It is well known that the space of left-invariant metrics on G is in correspondence with the space of inner products on its Lie algebra \mathfrak{g}. Let K be a closed subgroup of G and let \mathfrak{p} denote the orthogonal complement of \mathfrak{t} in \mathfrak{g} with respect to the Killing form $B_{\mathfrak{g}}$ of \mathfrak{g}. For h a bi-invariant metric on K and α a positive real number, we define the left-invariant metric $g_{h,\alpha}$ on G induced by the inner product on \mathfrak{g} given by

\[(4) \quad g_{a,h}(X_{i} + Y_{i}, X_{j} + Y_{j}) = h(X_{i}, Y_{j}) + \alpha (B_{\mathfrak{g}})(X_{i}, X_{j}) \quad \text{for} \quad X_{i} \in \mathfrak{t}, \ Y_{i} \in \mathfrak{p} \ (i = 1, 2).\]

We recall that $B_{\mathfrak{g}}$ is a negative definite bilinear form on \mathfrak{g}. D’Atri and Ziller proved that any naturally reductive metric on G is isometric to one of the above form for some K, h and α (see [DZ79] Thm. 3]).

Since the term $\lambda_{1}(M, g) \text{diam}(M, g)^{2}$ is invariant under positive scaling of g, we can assume without loosing generality that $\alpha = 1$. We abbreviate $g_{h} = g_{h,1}$.

We consider the sub-Riemannian homogeneous manifold $(G, \mathfrak{p}, -B_{\mathfrak{g}}|_{\mathfrak{p}})$. Any curve on it is restricted to move only in the directions of \mathfrak{p}. It follows that

\[(5) \quad \text{diam}(G, g_{h}) \leq \text{diam}(G, \mathfrak{p}, -B_{\mathfrak{g}}|_{\mathfrak{p}}).\]

If $\mathfrak{t} = \mathfrak{g}$, then $g_{h} = -B_{\mathfrak{g}}$ in the only possibility. If $\mathfrak{t} \neq \mathfrak{g}$, then \mathfrak{p} is bracket generating in \mathfrak{g} since G is simple. Thus, Chow’s Theorem ensures that $\text{diam}(G, \mathfrak{p}, -B_{\mathfrak{g}}|_{\mathfrak{p}}) < \infty$.

We now consider the Riemannian submersion with totally geodesic fibers (see [BBS2] §2.2)) given by

\[(6) \quad (K, h) \longrightarrow (G, g_{h}) \xrightarrow{\pi} (G/K, -B_{\mathfrak{g}}|_{\mathfrak{p}}).\]

If f is an eigenfunction of the Laplace–Beltrami operator Δ_{h} of the base space $(G/K, -B_{\mathfrak{g}}|_{\mathfrak{p}})$ with associated eigenvalue λ, then $f \circ \pi$ is an eigenfunction of the Laplace–Beltrami operator $\Delta_{g_{h}}$ of (G, g_{h}) with associated eigenvalue λ. Consequently,

\[(7) \quad \lambda_{1}(G, g_{h}) \leq \lambda_{1}(G/K, -B_{\mathfrak{g}}|_{\mathfrak{p}}).\]

There is a finite collection \mathcal{K} of closed subgroups of G such that, for any naturally reductive left-invariant metric g on G, there are $K \in \mathcal{K}$, $\alpha > 0$, and h a bi-invariant metric on \mathfrak{t} such that (G, g) is isometric to $(G, h|_{\mathfrak{t}} \oplus \alpha (-B_{\mathfrak{g}})|_{\mathfrak{p}})$ (see [GS10] Cor. 3.7)). The proof follows since the upper bounds in (5) and (7) depends only on K. More precisely, taking

\[(8) \quad C = \max_{K \in \mathcal{K}} \lambda_{1}(G/K, -B_{\mathfrak{g}}|_{\mathfrak{p}}) \text{diam}(G, \mathfrak{p}, -B_{\mathfrak{g}}|_{\mathfrak{p}})^{2},\]

we conclude that (3) holds for all naturally reductive left-invariant metric on G. □

References

[BBS2] L. Bérard-Bergery, J.-P. Bourguignon. Laplacians and Riemannian submersions with totally geodesic fibres. Illinois J. Math. 26:2 (1982), 181–200.

[DZ79] J.E. D’Atri, W. Ziller. Naturally reductive metrics and Einstein metrics on compact Lie groups. Mem. Amer. Math. Soc. 18:215, 1979.

[EGS18] N. Eldredge, M. Gordina, L. Saloff-Coste. Left-invariant geometries on SU(2) are uniformly doubling. Geom. Funct. Anal. 28:5 (2018), 1321–1367. DOI: 10.1007/s00039-018-0457-8

[GS10] C. Gordon, C. Sutton. Spectral isolation of naturally reductive metrics on simple Lie groups. Math. Z. 266:4 (2010), 979–995. DOI: 10.1007/s00209-009-0640-6

[JL17] C. Judge, R. Lyons. Upper bounds for the spectral function on homogeneous spaces via volume growth. Rev. Mat. Iberoam., in press (2018). arXiv:1704.01088v2

[La19] E.A. Lauret. The smallest Laplace eigenvalue of homogeneous 3-spheres. Bull. Lond. Math. Soc. 51:1, (2019), 49–69. DOI: 10.1112/blms.12213

[Li80] P. Li. Eigenvalue estimates on homogeneous manifolds. Comment. Math. Helvetici 55 (1980), 347–363. DOI: 10.1007/BF02566692

INMABB, CONICET AND UNIVERSIDAD NACIONAL DEL SUR, BAHÍA BLANCA, ARGENTINA.

E-mail address: emiliolauret@gmail.com