Supersymmetry and Grand Unification are the two most promising directions for physics beyond the Standard Model. They receive indirect experimental support from the apparent lightness of the Higgs boson, the values of the gauge couplings measured at LEP and elsewhere, and the persistent solar neutrino deficit. Phenomenological constraints and theoretical models constrain predictions in interesting ways. All these ideas may be embedded in string theory, which is shown by newly-discovered dualities to possess previously-unsuspected richness and simplicity.

Invited Rapporteur Talk at the Internal Symposium on
Lepton and Photon Interactions at High Energies
Beijing, August 1995
Beyond the Standard Model

Although the Standard Model (SM) is in perfect agreement with (almost) all experimental data, theorists are not content with it and believe that something must lie beyond it. It is common to categorize the open problems left by the SM into the problem of unification, which motivates the search for a simple gauge theory that contains all the gauge forces, the problem of flavour, namely why there are so many different types of quarks and leptons, and what explains their weak mixing and CP violation, and the problem of mass. This includes not only the question of the origin of the particle masses, to which the SM answer is an elementary Higgs boson, but also why all the SM particle masses are so small, to which one possible answer may be provided by supersymmetry, as we shall discuss in the rest of this talk. All these problems should be resolved in a Theory Of Everything (TOE) which includes gravity and reconciles it with quantum mechanics. Such a theory should also explain the origin of spacetime, why we live in four dimensions and many other fundamental problems of particle physics and cosmology. The only candidate we have for such a TOE is the superstring, which will also be discussed at the end of this talk.

1. Motivations for Supersymmetry

Supersymmetry is a beautiful theory, but the motivations for it to appear at accessible energies are related to the problem of mass mentioned above, namely the origin of the hierarchy of mass scales in physics, and its naturalness in the presence of radiative corrections. The question why \(m_W \) is much less than \(m_{\text{Planck}} \) or \(m_{\text{GUT}} \) can be rephrased as a question: Why is \(G_F \gg G_N \), or even why the Coulomb potential inside an atom is much stronger than the Newtonian potential:

\[
\frac{e^2}{r} \approx G_N \times \frac{m^2}{r}
\]

This hierarchy is valuable to radiative corrections. We say that a theory is natural if the radiative corrections are not much larger than the physical values of observable quantities. For example, the leading one-loop correction to a fermion mass takes the form

\[
\delta m_f = 0 \left(\frac{\alpha}{\pi} \right) m_f \ln \left(\frac{\Lambda}{m_f} \right)
\]

which is not much larger than \(m_f \) for any reasonable cut-off \(\Lambda \approx m_P \).

Naturalness is, however, a problem for an elementary Higgs boson, which in the electroweak sector of the SM must have a mass

\[
m_H = 0 \left(\sqrt{\frac{\alpha}{\pi}} \right)^{0\pm1} \times m_W
\]

The one-loop diagrams shown in Fig. 1 lead to “large” radiative corrections of the form

\[
\delta m^2_H \approx g_{f,W,H}^2 \int_0^\Lambda \frac{d^4 k}{(2\pi)^4} \frac{1}{k^2} = 0 \left(\frac{\alpha}{\pi} \right) \Lambda^2
\]
These are much larger than the physical value \(m_H^2 \) if the cut-off \(\Lambda \), representing the scale at which new physics appears, is of order \(m_P \) or \(m_{\text{GUT}} \).

Supersymmetry solves the naturalness problem of an elementary Higgs boson by virtue of the fact that it has no quadratic divergences and fewer logarithmic divergences than non-supersymmetric theories. The fermion and boson diagrams shown in Fig. 1 have opposite signs, so that their net result is

\[
\delta m_{W,H}^2 \simeq - \left(\frac{g_F^2}{4\pi^2} \right) \left(\Lambda^2 + m_F^2 \right) + \left(\frac{g_B^2}{4\pi^2} \right) \left(\Lambda^2 + m_B^2 \right).
\]

The leading divergences cancel if there are the same numbers of bosons and fermions, and if they have the same couplings \(g_F = g_B \), as in a supersymmetric theory. The residual contribution is small if supersymmetry is approximately valid, i.e., if \(m_B \simeq m_F \):

\[
\delta m_{W,H}^2 \simeq 0 \left(\frac{\alpha}{\pi} \right) \left| m_B^2 - m_F^2 \right|
\]

which is no larger than \(m_{W,H}^2 \) if

\[
\left| m_B^2 - m_F^2 \right| \lesssim 1 \text{ TeV}^2
\]

This property provides the first motivation for supersymmetry at low energies. However, it must be emphasized that this is a qualitative argument which should be regarded as a matter of taste. After all, mathematically an unnatural theory is still renormalizable, even if it requires fine tuning of parameters to obtain the correct physical values. A second supersymmetric miracle is the absence of many logarithmic divergences: for many Yukawa couplings and quartic terms in the effective potential,

\[
\delta \lambda \propto \lambda
\]

which vanishes if the rare coupling \(\lambda = 0 \). This means that couplings between light and heavy Higgses, which could devastate the hierarchy, will not appear via quantum corrections if they are absent at the tree level. The combination of Eqs. (5) and (6) means that if \(m_W \leq m_P \) at the tree level, it stays small in all orders of perturbation theory, solving the naturalness problem and providing a context for attacking the hierarchy problem.

obtained to weigh soft
The minimal supersymmetric extension of the Standard Model (MSSM) is characterized by gauge interactions which are the same as those in the Standard Model (SM), and Yukawa interactions obtained from a cubic superpotential which is an analytic function of the left-handed fields

\[W = \sum_{L,E^c} \lambda_L LE^cH_1 + \sum_{Q,U^c} \lambda_Q QU^cH_2 + \sum_{Q,D^c} \lambda_D QD^cH_1 + \mu H_1H_2 \]

The first three terms give masses to the charged leptons, charge-2/3 quarks and charge-1/3 quarks respectively. Two Higgs doublets are needed in order to preserve the analyticity of \(W \) and to cancel triangle anomalies. This implies the introduction of the fourth term in Eq. (9), which couples the Higgs supermultiplets. The quartic part of the effective scalar potential is determined by the gauge and Yukawa interactions, which leads to the relations between the physical Higgs boson masses to be discussed later.

In addition to the above supersymmetric parts of the effective action, supersymmetry breaking is necessary to obtain \(m_F^2 \neq m_B^2 \), which is usually parametrized by soft mass parameters for scalars \(m_0 \) and gauginos \(M_{1/2} \), as well as soft trilinear and bilinear coefficients \(A_{ijk} \) and \(B_{ij} \). In much the same way as gauge couplings in conventional GUTs, these are subject to renormalization:

\[M_{1/2} \propto \alpha_a, \quad \hat{M}_{0i} - M_{0i} + C_{ia}M_{1/2a}^2 + D_iM_Z^2 \]

where the coefficients \(C_{ia} \) and \(D_i \) are calculable. It is often assumed that the soft supersymmetry breaking parameters are universal at some high renormalization scale \(Q = M_{GUT} \) or \(M_P \):

\[M_{1/2} \mid Q = M_{1/2}, \quad M_{0i}^2 = M_0^2 \]

This assumption protects the low-energy theory against flavour-changing neutral currents (FCNC), but it is not necessarily true. For example, there could be non-trivial renormalization at scales \(M_{GUT} \lesssim Q \lesssim M_P \), so that:

\[(M_0^2)_{\text{5}} \neq (M_0^2)_{\text{10}} \]

in a context of an SU(5) GUT, and/or differences may emerge when the GUT degrees of freedom are integrated out, and/or the input parameters may not be universal at \(Q = M_F \),

\[M_{f_i}^2 = f_i \text{ (moduli)} \]

where “moduli” is a fancy term for vacuum expectation values in a string theory. Some such violations of universality may be consistent with the FCNC constraints, particularly for heavier generations.

If one nevertheless assumes universality, different experimental constraints can be combined to compile the physics reach, both present and future, as in the \((m_0, M_{1/2})\) plane shown in Fig. 2, or the \((\mu, M_{1/2})\) plane shown in Fig. 3. In each case, the diagonally-shaded regions are those excluded by present experimental constraints. Also shown in Fig. 2 are regions excluded by theoretical considerations. Both figures show the mass contours for sparticles that could be studied with future accelerators such as LEP2 or the LHC.
Fig. 2. Present experimental (shaded) and theoretical (bricked) constraints in the $(m_0, m_{1/2})$ plane, assuming universal supersymmetry breaking.

In addition to the search for supersymmetric particles, a promising avenue for probing supersymmetry is the search for supersymmetric Higgs bosons. The two complex Higgs doublets required in the MSSM contain eight real degrees of freedom, of which three are eaten by the W^\pm and the Z^0 to give them their masses, leaving five physical Higgs bosons to be discovered. Three of these (h, H, A) are neutral and two (H^\pm) are charged. At the tree level, all their masses and couplings are specified in terms of two parameters, which may be taken as m_A or m_h and $\tan \beta \equiv v_2/v_1$. These restrictions follow from the supersymmetric form of the Higgs potential, and would imply that $m_h < m_Z$ at the tree level but there are important radiative corrections which depend strongly on the mass of the top quark, which is now known to be large:

\[
\delta m_h^2 \simeq \frac{3g^2}{8\pi^2} \frac{m_t^4}{m_W^2} \ln \left(\frac{m_t^2}{m_{\tilde{t}}^2} \right)
\]

(14)
These raise the upper bound on m_h to as large as 130 GeV, as seen in Fig. 4.

Before the inclusion of these radiative corrections, experimentalists at LEP2 could have been quite sure of finding the lightest neutral supersymmetric Higgs h. Even with these radiative corrections included, they are still able to explore a large fraction of the parameter space, as seen in Fig. 5. We see here the importance of increasing the centre-of-mass energy of LEP2 as high as possible. The search for supersymmetric Higgs bosons at the LHC has also been studied intensively during the past year, and Fig. 6 exhibits the domains of parameter space that may be explored by the ATLAS and CMS detectors using various supersymmetric Higgs signatures. We see from Figs. 5 and 6 that LEP2 and the LHC between them should be able to explore all of the MSSM parameter space, at least if the LEP2 energy reaches 192 GeV as is now being proposed.

2. Possible Experimental Motivations for Supersymmetry

The precision electroweak data from LEP and elsewhere provide two (or three?) tentative indications favouring a supersymmetric world view. One is that they favour a relatively light
Fig. 4. Upper limit on m_h in the MSSM as a function of $\tan \beta$ for zero (dashed) and maximal (solid) mixing, assuming $m_{\tilde{q}} = 1$ TeV.

Fig. 5. Reach for Higgs bosons in the MSSM at LEP2 with a centre-of-mass energy of 192 GeV. The dark shaded regions are excluded theoretically.

Fig. 6. Reach for Higgs bosons in the MSSM at the LHC.
Higgs boson14-17. For several years, global fits have consistently given preferred values $m_H \lesssim 300$ GeV, and are highly consistent with the prediction of the MSSM that $m_h \simeq m_Z \pm 40$ GeV 12,14. Figure 7 shows the χ^2 function for a recent global fit in the SM, which yields16

$$M_H = 76^{+152}_{-50} \text{ GeV}$$

(15)

The χ^2 obtainable in the MSSM is essentially identical13, whilst strongly-interacting Higgs models such as those based on technicolour have much larger χ^2 and are disfavoured19.

The second indication favouring supersymmetry is that measurements of the SM gauge couplings $\alpha_{1,2,3}$ have for some time20,21 favoured supersymmetric GUTs over the minimal non-supersymmetric GUT, which predicts:22

$$\left. \sin^2 \theta_W (m_Z) \right|_{\overline{\text{MS}}} = 0.208 + 0.004(N_H - 1) + 0.006 \ln \left(\frac{400 \text{ MeV}}{\Lambda_{\overline{\text{MS}}}(N_f = 4)} \right)$$
This tendency has been strongly reinforced by the higher-precision data recently provided by LEP. Figure 8 gives an overview of the present theoretical and experimental situation. The qualitative success of GUTs in predicting \(\sin^2 \theta_W \) is impressive: it is only when we blow the vertical scale up by a factor of 10 that we notice a discrepancy with the minimal non-supersymmetric GUT prediction in Eq. (16), and only when we blow it up by a further factor of 10 that we begin to wonder whether the LEP data on \(\sin^2 \theta_W \) may fall below the prediction of a minimal supersymmetric GUT. However, it should be emphasized that supersymmetric GUTs contain many parameters, reducing the precision of their predictions: we shall return to them later.

Another experimental effect which has excited much interest recently, including speculations about supersymmetry, is the possible discrepancy between LEP measurements and the SM predictions for the rates for \(Z^0 \) decays into bottom and charm quarks \(R_b \) and \(R_c \). Some authors have investigated whether this possible discrepancy could be accommodated within the MSSM, if either supersymmetric Higgs bosons or stops and charginos are light, just above the mass ranges excluded by direct searches. It is possible to explain \(R_b \), but it is very difficult to explain the central experimental value of \(R_c \), whose numerical discrepancy with the SM value is even larger, though a smaller number of standard deviations. Many theoretical models share this lack of success in explaining simultaneously \(R_b \) and \(R_c \), and the latter would be very surprising if it were to be confirmed. My present attitude is to wait and see how these experimental discrepancies develop, and not yet to interpret them as evidence for supersymmetry. With the resolution of the hierarchy problem, the indication of a light Higgs boson and the GUT unification of the gauge couplings, we may already have enough motivation for supersymmetry!

3. Grand Unified Theories

Now is the time to delve deeper in the guts of GUTs, reviewing the extent to which they accentuate the hierarchy problem, studying in more detail the correlation they provide between the values of \(\alpha_s(M_Z) \) and \(\sin^2 \theta_W \), and reviewing their predictions for novel phenomena such as
proton decay and neutrino masses.

The hierarchy problem reviewed in Section 2 can be restated as the question: “Why is the electroweak Higgs boson light?” In the context of the minimal $SU(5)$ GUT, this question can be reformulated as: “Why is $m_2 \leq m_3$?”, where the subscripts denote the doublet and triplet components of the five-dimensional Higgs representations. The enormous separation between these masses is done by hand in the minimal $SU(5)$ model:

$$m_3 \neq m_2 \{ \begin{array}{c} +2 \\ -3 \end{array} \} \lambda < 0 |V_{24}|_0 > \begin{cases} 0(M_{\text{GUT}}) \\ 0(M_W) \end{cases}$$ (17)

which requires inelegant and extreme fine-tuning between the bare and $< 24 >$ contributions m_5 and $-2\lambda < 0 |V_{24}|_0 >$ to the doublet mass m_2. An improvement is possible in principle in missing-partner models, in which the triplet Higgs components require large Dirac masses from couplings with other triplet fields, but there are no such partners for the doublet fields, which therefore remain light. This is an elegant idea, but its realization in conventional GUTs is very complicated, requiring several large Higgs representations, such as $SU(5)$:

$$SU(5): \quad 50 + \overline{50} + 75 + \ldots$$

$$SO(10): \quad 3.16 + 2.10 + 3.45 + 54 + 126 + 126$$ (18)

The simplest missing-partner mechanism is that in the flipped $SU(5) \times U(1)$ GUT, in which the GUT Higgses occupy 10 and $\overline{10}$ representations, and the triplet components of the five-dimensional electroweak Higgs representations couple to triplet components of the GUT Higgses to require large Dirac masses. Examples of flipped $SU(5) \times U(1)$ GUTs have been derived in string theory. However, the other potential solutions to the hierarchy problem are problematic in string models: in general, these do not allow bilinear mass terms of the type required in Eq. (17), exotic representations like those in Eq. (18) are not found, and their pattern of couplings may also be difficult to arrange.

We now explore in more detail the supersymmetric GUT relation between $\alpha_s(M_Z)$ and $\sin^2 \theta_W$. When one looks more carefully at the gee-whizz plots of the gauge couplings in the MSSM meeting at a single Grand Unification scale around 10^{16} GeV, one finds a possible minor discrepancy with the minimal supersymmetric GUT as already mentioned in the context of Fig. 8. The supersymmetric GUT prediction for $\sin^2 \theta_W$ can be written in the form:

$$\sin^2 \theta_W(M_Z) \bigg|_{\text{MS}} = 0.2029 + \frac{7\alpha_{em}}{15\alpha_3} + \frac{\alpha_{em}}{20\pi} \left[-3 \ln \left(\frac{m_t}{M_Z} \right) + \frac{28}{3} \ln \left(\frac{m_{\tilde{g}}}{M_Z} \right) - \frac{32}{3} \ln \left(\frac{m_{\tilde{t}}}{M_Z} \right) - \ln \left(\frac{M_A}{M_Z} \right) - 4 \ln \left(\frac{\mu}{M_Z} \right) + \ldots \right]$$ (19)

which involves many supersymmetry-breaking parameters. It is convenient to summarize these in the lumped parameter:

$$T_{\text{SUSY}} \equiv |\mu| \left(\frac{m_{\tilde{W}}^2}{m_{\tilde{g}}^2} \right)^{14/19} \left(\frac{M_A^2}{\mu^2} \right)^{3/38} \left(\frac{m_{\tilde{W}}^2}{\mu^2} \right)^{2/19} \prod_{i=1}^{3} \left(\frac{m_{\tilde{L}}^2}{m_{\tilde{u}}^2} \right)^{3/19} \left(\frac{m_{\tilde{d}}^2}{m_{\tilde{u}}^2} \right)^{3/19}$$ (20)
Fig. 9. Minimal supersymmetric $SU(5)$ GUT predictions for $\alpha_s(M_Z)$.

If one further assumes universality at the Grand Unification scale, then approximately

$$T_{\text{SUSY}} \simeq \mu \left(\frac{\alpha_2}{\alpha_3} \right)^{3/2} \simeq \frac{\mu}{7}$$ \hspace{1cm} (21)$$

It should be noted that $T_{\text{SUSY}} \sim 300$ GeV corresponds to squark masses around 2 TeV. The prediction (19) is to be compared with the experimental value

$$\sin^2 \theta_W(M_Z)_{\text{MS}} = 0.2317 \pm 0.0003 + (5.4 \times 10^{-6}) \ (m_H - 100 \text{ GeV}) + \ldots$$

$$-(3.03 \times 10^{-5}) \ (m_t - 165 \text{ GeV}) + \ldots$$

$$= 0.2312 \pm 0.0003 \ \text{for} \ m_H = 100 \text{ GeV}, \ m_t = 180 \text{ GeV}$$ \hspace{1cm} (22)$$

where the effects of M_H and m_t have been indicated explicitly, but there are additional supersymmetric corrections which may reach the per cent level. This comparison yields

$$\alpha_s(M_Z) > 0.126 \ \text{for} \ T_{\text{SUSY}} < M_Z$$

or

$$> 0.121 \ \text{for} \ T_{\text{SUSY}} < 300 \text{ GeV}$$ \hspace{1cm} (23)$$

as seen in Fig. 9, with an error of about 0.0015.

Before concluding that supersymmetric GUTs favour values of $\alpha_s(M_Z)$ above the present world average, one should recall that there are important uncertainties in this minimal supersymmetric GUT analysis. For one thing, there are in general important GUT threshold effects, which have been evaluated as

$$\delta_{\text{heavy}} = \frac{3}{10\pi} \ \alpha_{\text{GUT}} \ \ln \left(\frac{M_{H_3}}{M_{\text{GUT}}} \right) + \text{(positive terms)}$$ \hspace{1cm} (24)$$

in minimal supersymmetric $SU(5)$ \cite{24,40}, while δ_{heavy} may be negative:

$$\delta_{\text{heavy}} \simeq -4\%$$ \hspace{1cm} (25)$$

in the $SU(5)$ missing doublet model of Eq. (18) \cite{41} and in flipped $SU(5) \times U(1)$ \cite{42}. As shown in Fig. 10, the missing-doublet model is in better agreement with the data on $\sin^2 \theta_W$ and $\alpha_s(M_Z)$ than is the minimal $SU(5)$ model. Moreover, there could easily be modifications
of the unification conditions $\alpha_3 = \alpha_2 = \alpha_1$ due to non-renormalizable interactions scaled by inverse powers of m_P, which might yield an uncertainty

$$\Delta \alpha_s(M_Z) = \pm 0.006$$

In view of all these uncertainties, I take the point of view that supersymmetric GUTs are still in very good shape, whereas it should be repeated that minimal non-supersymmetric GUTs are unquestionably in disagreement with the measured values of $\sin^2 \theta_W$ and $\alpha_s(M_Z)$.

4. Baryon decay

As is well known, in minimal non-supersymmetric $SU(5)$ the preferred nucleon decay modes are:

$$p \to e^+ \pi^0, \hspace{1cm} e^+ \omega, \hspace{1cm} \bar{\nu} \pi^+, \hspace{1cm} \mu^+ K^0, \ldots$$
$$n \to e^+ \pi, \hspace{1cm} e^+ \rho^-, \hspace{1cm} \bar{\nu} \pi^0, \ldots$$

and the best available numerical estimate of the proton lifetime is

$$\tau(p \to e^+ \pi^0) \simeq (1.4 \pm 0.3) \times 10^{32+1} \times \left(\frac{M_{\text{GUT}}}{6 \times 10^{14} \text{ MeV}} \right)^4$$

which is to be compared with the present experimental limit

$$\tau(p \to e^+ \pi^0) > 5.5 \times 10^{32} \text{ y}$$

In view of the trend for higher-energy measurements to find larger values of $\Lambda_{N_f=4}^{\frac{\text{MeV}}{M_S}}$, which could be as large as 400 MeV corresponding to $m_{\text{GUT}} \simeq (4 \text{ to } 8) \times 10^{14}$ GeV, I no longer consider the conflict between Eqs. (28) and (29) to be conclusive. However, minimal non-supersymmetric GUTs are nevertheless excluded by the $\sin^2 \theta_W$ argument discussed above.

The Grand Unification scale m_{GUT} is increased to about 10^{16} GeV in minimal supersymmetric $SU(5)$, yielding a lifetime for proton decay into $e^+ \pi^0$ far beyond the present experimental limit. However, dimension-five operators in this model yield the alternative decays
\[p \to \bar{\nu} K^+ \quad n \to \bar{\nu} K^0 \] for which the present experimental limits are less stringent than Eq. (29)\(^46\)\(^48\)\(^49\). The limit (30) is (barely) compatible with theory for \(M_{X} \lessapprox 10^{16} \text{ GeV} \)\(^49\). Missing-partner models\(^29\),\(^30\) including flipped \(SU(5) \times U(1) \)\(^31\) greatly suppress dimension-five operators, which are no longer a problem. In the specific case of flipped \(SU(5) \times U(1) \), the grand unification scale may be somewhat below \(10^{16} \text{ GeV} \)\(^42\), particularly if one takes the lower end of the presently-allowed range of \(\alpha_s(M_Z) \), in which case \(p \to e^+\pi^0 \) and related decays may occur at observable rates, though with branching ratios different from minimal non-supersymmetric \(SU(5) \)\(^41\). Therefore, the Superkamiokande detector about to start next year may finally be able to reassure us that protons are not forever!

5. Neutrino masses and oscillations

There is no good reason why neutrino masses should vanish, and grand unified theorists certainly expect them to be non-zero. The simplest form of neutrino mass matrix is the seesaw\(^51\)

\[
(\nu_L, \quad \bar{\nu}_R) \begin{pmatrix} m^M & m^D \\ m^D & M^M \end{pmatrix} \begin{pmatrix} \nu_L \\ \bar{\nu}_R \end{pmatrix}
\] (31)

where \(\nu_R \) is a singlet right-handed neutrino field, and

\[
m^D = g_{H\nu} < 0 |H_{\Delta I=1/2}|0 >
\] (32)

is a generic Dirac mass which is of order the charge-2/3 quark mass \(m_{2/3} \) in many models, and \(m^M, M^M \) are \(\Delta I = 1, 0 \) Majorana masses which are expected to be of order \(M_W^2/M_X, M_X \), respectively. When one diagonalizes the matrix (31), one finds mass eigenstates of the generic form

\[
\nu_L + 0 \left(\frac{m_W}{m_X} \right) \bar{\nu}_R : m = 0 \left(\frac{M_W}{M_X} \right)
\]

\[
\nu_R + 0 \left(\frac{m_W}{m_X} \right) \bar{\nu}_L : M = 0 \left(M_X \right)
\] (33)

where “\(M_X \)” should be understood as anywhere between \(m_P \) and \(O(\alpha/\pi)^2 m_{\text{GUT}} \), depending on the model. Generically, (31), (32) and (33) yield the guess that

\[
m_{\nu_i} \sim \frac{m_{2/3}^2}{M_X}
\] (34)

for the three generations \(i = 1, 2, 3 \) of light neutrinos.

There are of course many more complicated models of neutrino masses incorporating more fields and/or more couplings, but this simple see-saw model accommodates in a very natural way the apparent deficit of solar neutrinos\(^33\), and correlates it with the astrophysical wish
for a hot Dark Matter particle. In my view, it is becoming increasingly difficult to retain an astrophysical explanation for the solar neutrino deficit, particularly in view of the strengthening helioseismological constraints on the solar model, including its central temperature. As reviewed here by Winter, the most appealing interpretation of the solar neutrino deficit invokes matter-enhanced neutrino oscillations:

$$\nu_e \rightarrow \nu_\mu \text{ or } \nu_\tau : \Delta m^2 \sim 10^{-5} \text{ ev}^2, \quad \sin^2 2\theta \sim \begin{cases} 10^{-2} \\ 1 \end{cases}$$ \hspace{1cm} (35)$$

Theoretical prejudice and the small values of inter-generational mixing angles observed in the quark sector favour the scenario

$$m_{\nu_e} \ll m_{\nu_\mu} \sim 3 \times 10^{-3} \text{ eV} \ll m_{\nu_\tau}, \quad \sin^2 2\theta_{e\mu} \sim 10^{-2}$$ \hspace{1cm} (36)$$

Scaling the inferred value of m_{ν_μ} by m_t^2/m_c^2 and allowing $M_2/M_3 \sim 1/10$ leads naturally to the guess that

$$m_{\nu_\tau} \sim 7 \text{ eV}$$ \hspace{1cm} (37)$$

as favoured in mixed dark matter models of cosmological structure formation, and

$$\sin^2 2\theta_{\mu\nu} \sim 10^{-0(3)}$$ \hspace{1cm} (38)$$

which may be accessible to the new generation of accelerator neutrino oscillation experiments, CHORUS and NOMAD at CERN, and E803 at Fermilab.

As reviewed here by Winter, there are other suggestions of mass and oscillation effects in atmospheric neutrinos and the LSND experiment, but I prefer to wait and see whether these claims become confirmed.

6. Further Dynamical Ideas

6.1. Electroweak Symmetry Breaking

It has been suggested that the breaking of electroweak symmetry may be driven by renormalization of the soft supersymmetry breaking parameters introduced earlier. This renormalization may resolve the apparent conflict between the preference of the super-Higgs mechanism for generating $m_0^2 > 0$ with the requirement that $m_H^2 < 0$ for the electroweak Higgs mechanism. The dominant renormalization effects are those due to gauge couplings and the top Yukawa coupling, which have opposite signs. If one follows the renormalization down to sufficiently low scales Q, large top Yukawa coupling may drive $m_H^2(Q) < 0$, triggering $m_W \neq 0$. This occurs at a scale Q hierarchically smaller than the input scale, so that

$$m_W/m_p = \exp \left(-0(1) \alpha_t \right) \quad ; \quad \alpha_t = \frac{\lambda_t^2}{4\pi}$$

$$m_t = \lambda_t < H >$$ \hspace{1cm} (39)$$
Typical dynamical calculations3 yield m_t in the range now found by experiment.

6.2. Supersymmetry Breaking

The above mechanism for electroweak symmetry breaking requires soft supersymmetry breaking to be put in \textit{a priori}: It is also possible that the scale of supersymmetry breaking may be determined by quantum effects.6 Consider, for example, a model with no potential at the tree level in some flat direction in the space of moduli, so that it is independent of the generic supersymmetry breaking scale \tilde{m}:

$$\frac{\partial V_{\text{eff}}}{\partial \tilde{m}} = 0$$

One then calculates the quantum corrections to the potential, which include the following terms at the one-loop level:

$$\delta V_{\text{eff}} \ni \left(\sum_B - \sum_F \right) \Lambda^4, \left(\sum_B - \sum_F \right) M^2 \Lambda^2, \left(\sum_B - \sum_F \right) m^4 \ln \frac{m^2}{\Lambda^2}$$

where Λ is a cut-off scale which we may identify with M_P. The first term is absent in any supersymmetric theory, since the numbers of bosons and fermions are equal. The second term may be absent in specific supergravity or superstring models.6,7 Assuming that this is the case,6 the effective potential enables the supersymmetry breaking scale and hence M_W to be determined dynamically.6

Another suggestion is that supersymmetry breaking may occur non-perturbatively in a hidden sector of the theory, triggered by gaugino condensation.6 It is even possible to imagine mechanisms which combine features of both of these scenarios. There are also ideas that, even within a fixed overall scale of supersymmetry breaking, the ratios of supersymmetry breaking parameters, i.e., the internal direction in super-flavour space, may be determined dynamically by radiative corrections.6

6.3. Quark and Lepton Masses

The next step in a programme of determining dynamically all light mass scales is to tackle the fermion mass problem. For example, in many superstring models, the top mass is given by

$$m_t = \lambda_t < H_2 > : \lambda_t = g \times f \text{ (moduli)}$$

where g is the gauge coupling and the moduli (vacuum parameters) may include radii of compactification and other quantities which are to be treated as quantum fields. These moduli are also often undetermined at the tree level. Perhaps these are also determined by quantum corrections, in much the same way as m_W and \tilde{m}. Such a scenario can be developed not only
for determining m_t, but also m_b and m_τ.

7. The Constrained MSSM

It is apparent from the preceding discussion that the MSSM contains many parameters beyond those already present in the SM: $m_0, M_{1/2}, \mu, \tan \beta, A_{ijk}, B_{ij}, \ldots$. In an attempt to reduce the dimensionality of this parameter space, it is desirable to impose necessary (plausible) phenomenological and theoretical constraints, which may include the following:

- **No sparticles seen:** We know from LEP1 that
 \[m_{\tilde{t}}, m_{\tilde{\chi}_\pm} \gtrsim 45 \text{ GeV} \] \hspace{1cm} (43)
 and from the Fermilab $p\bar{p}$ collider that
 \[m_{\tilde{q}}, m_{\tilde{g}} \gtrsim 150 \text{ GeV} \] \hspace{1cm} (44)

- **No Higgs bosons seen:** We know from LEP that
 \[m_{h,A} \gtrsim 50 \text{ GeV} \] \hspace{1cm} (45)

- **Small FCNC:** As mentioned earlier, this occurs naturally if the m_{0_i} are universal, but this assumption is not necessary.

- **$b \rightarrow s\gamma$:** The fact that this decay has been seen at a rate close to that predicted in the SM constrains MSSM parameters. If there are no light sparticles, this constraint places a stringent lower bound on m_{H^\pm}, which may, however, be relaxed if some other sparticles are light.

- **$\mu \rightarrow e\gamma$:** This is not such a stringent constraint at the present time, but might become so in the future.

- **$g_\mu - 2$:** The forthcoming BNL experiment should impose significant constraints on the sparticle spectrum when it achieves its designed sensitivity.

- **Neutron electric dipole moment:** This imposes important constraints on possible CP-violating phase parameters in the MSSM, which depend on the overall sparticle mass scale.

- **Cold Dark Matter density:** The lightest supersymmetric particle is a good candidate for Cold Dark Matter, since R-parity guarantees its stability in many models, and its relic density lies in the desired range
 \[0.1 \gtrsim \Omega_\chi h^2 \gtrsim 1 \] \hspace{1cm} (46)
 for generic values of the parameters. The resulting constraints on the MSSM are quite sensitive to the magnitude of CP violation.
One may add to the above phenomenological constraints some theoretical constraints, which are more speculative and hence more interesting. These include dynamical electroweak symmetry breaking, possibly supplemented by some no-fine-tuning requirement:

$$\frac{\Delta M_W}{M_W} \lesssim \eta_i \frac{\Delta I_i}{I_i}$$

where I_i is some generic input parameter, and η_i parametrizes the amount of fine tuning. The absence of fine tuning was the basic phenomenological motivation for supersymmetry introduced in Section 1, but it is a matter of taste how to quantify it: should η_i be less than 1? 10? 100? 105? This argument certainly favours $m_0, M_{1/2} \lesssim$ a few hundred GeV, as seen in Fig. 11.

One might also postulate the dynamical determination of other scales, such as \tilde{m}, m_t, \ldots as discussed above, or constraints arising from an infrared fixed-point analysis. One may also impose some string-motivated Ansatz for supersymmetry breaking, such as

$$m_{1/2} = A = B = m_3/2, \quad m_0 = 0$$

at the string input scale. This type of game is very exciting and predictive, but one should always remember that

$$\text{Prob (Result)} = \prod_{i=1}^{\infty} \text{Prob (Assumption)}_i$$

After expressing these words of caution, let us now look at some examples of constrained MSSM calculations.

Figure 12 shows an example in which the measured value of m_t favours two possible solutions, one with small tan β and one with large tan β. The large tan β solution has the additional attractive feature that it can accommodate equality between the t and b Yukawa couplings, as favoured in some string models. The two solutions yield different preferred ranges of sparticle masses, as seen in Fig. 12. Another example of a MSSM scenario is shown in Fig. 13, where the possible masses of the sparticle species are plotted as a function of the lightest chargino mass. In this scenario, the right-handed sleptons have only barely escaped detection at LEP1 and the lightest chargino should be discovered at LEP2, as should the lightest
Fig. 12. Results from a constrained MSSM, indicating two preferred regions at small and large \(\tan \beta \), the latter being consistent with equal \(t \)- and \(b \)-quark Yukawa couplings.

Fig. 13. Results for the sparticle spectrum in a constrained MSSM.

8. String Theory

This is the only candidate we have for a Theory of Everything (TOE). It is an apparently consistent quantum theory of gravity, at least at the perturbative level and possibly also non-perturbatively. It provides a framework for tackling the thorny issues of space-time foam, cosmology, the cosmological constant, etc. It also provides a framework for unifying the particle interactions. However, whereas initially it was thought that there might be a unique string model, namely the \(D = 10 \) \(E_8 \) heterotic string, or perhaps only a few models, subsequently many consistent string models have been found. These include a multitude of apparently consistent compactifications of the original heterotic string, but the most general formulation of such models is as heterotic strings directly in four dimensions. These different models may be regarded as different vacua, i.e., solutions of the classical equations for the moduli, of the same underlying string theory. All couplings correspond to expectation values of fields (moduli), for example for the gauge couplings \(g_i \):

\[
g_i^2 = \frac{k_i^2}{< S >} \tag{50}
\]

where the \(k_i \) are Kac-Moody level parameters to which we return later, and \(S \) is a type of
In all this confusing thicket of string models, one can make some generic predictions. For example, the string unification scale at which \(\alpha_i = \alpha_j = \alpha_{\text{graviton}} \) can be predicted

\[
m_{SU} \simeq 5 \times 10^{17} g_{\text{GUT}} \text{ GeV}
\]

There is also a generic prediction for \(m_t \), as mentioned earlier

\[
\lambda_t = g_{\text{GUT}} \times f \text{ (moduli)}
\]

which leads to the qualitative expectation that \(m_t/M_W = O(1) \), with the possibility of dynamical determination discussed earlier.

Among the techniques used in string model building are the compactifications of the \(D = 10 \) heterotic string,\(^{88}\) orbifolds,\(^{88}\) free fermions on the world sheet,\(^{88}\) etc., all of which have been used to produce models with gauge groups of the form \(SU(3) \times SU(2) \times U(1)^n \). Making a string GUT is more problematic, because these typically require adjoint Higgs representations (e.g., the \(\mathbf{24} \) of \(SU(5) \)), which are not available if we maintain space-time supersymmetry and restrict ourselves to the level \(k_i = 1 \). This was a motivation for resuscitating flipped \(SU(5) \times U(1) \), which, as discussed earlier, also has an elegant missing-partner mechanism, a see-saw neutrino mass matrix, and proton decay at a rate which may be accessible to Superkamiokande if \(\alpha_s(M_Z) \) is in the lower half of the range presently allowed by experiment. However, this and other string models lose (or at least weaken) the minimal supersymmetric GUT prediction for \(\sin^2 \theta_W \). For this and other reasons, theorists have been trying to construct supersymmetric \(SU(5) \) and \(SO(10) \) GUTs using higher-level Kac-Moody algebras.\(^{91}\) The models found so far either have more than three generations\(^{92}\) or other additional chiral stuff\(^{93}\), but developments in this quest are very promising and should be watched.

Let us turn finally to a dramatic new development in string theory, which may diminish significantly the apparent proliferation of string models. As discussed here by Rubakov,\(^{94}\) it has recently been realized that gauge theories with extended supersymmetries have amazing duality properties,\(^{95}\) which interrelate strong- and weak-coupling descriptions of the same physics. It has also been realized that string theories possess many such duality properties.\(^{97}\) These include so-called \(T \) duality, of which the simplest example is the equivalence between a string compactified on a loop of radius \(R \) and one compactified on a loop of radius \(1/R \). This symmetry relating different moduli is believed to be elevated to a symmetry at least as large as \(SL(2, Z) \). String theory may also possess an \(S \) duality interrelating strong and weak coupling \(< S > \leftrightarrow 1/ < S > \) in Eq. (50), which may also be elevated to \(SL(2, Z) \).\(^{98}\) Even more excitingly, many examples have been found of string-string dualities, namely equivalences between different types of string, one weakly coupled and one strongly coupled. Figure 14 is a provisional map of some string dualities, which apparently include, for example, an equivalence between the \(D = 10 \) heterotic string compactified on a four-dimensional torus \(T_4 \) and the type IIA string compactified on a \(K_3 \) manifold,\(^{101}\) as well as many others. One of the most striking dualities is that between the heterotic \(SO(32) \) string and the type I \(SO(32) \) string,\(^{100}\) with spinors of the former interpreted as solitons of the latter, and the type IIB string appears
to be self-dual10. There are also duality symmetries100 relating string theories with $D = 11$ supergravity102 and with supermembrane theories103.

This is a rapidly-moving field with many new results being obtained2. It offers the possibility that many different types of string model may simply be re-expressions of the same underlying theory, whose most basic formulation may well lie beyond the concept of string. Any such development could only comfort the belief that we have found the TOE.

9. Conclusions

There are good theoretical and experimental motivations to hope that we are finally on the brink of discovering new physics beyond the Standard Model. Precision data from LEP1 and elsewhere suggest that the Higgs boson is light, in agreement with the prediction of supersymmetry, and may well be accessible to LEP2. The consistency between measurements of $\alpha_s(M_Z)$ and $\sin^2 \theta_W$ and the predictions of supersymmetric GUTs is certainly encouraging, even if it does not yet enable us to determine with any accuracy the scale of supersymmetry breaking. The persistent solar neutrino deficit seems ever more difficult to explain using astrophysics, and may be the harbinger of neutrino masses and oscillations.

The exploration of large new domains of supersymmetry and GUT parameter space is about to start, with the advent of LEP2, a new generation of accelerator neutrino oscillation experiments pioneered by CHORUS and NOMAD, and a new generation of large underground experiments pioneered by Superkamiokande and SNO. Will our luck finally change? Will the next meeting in this series become the first Slepton-Photino Symposium?

References

1. Y.A. Gol’fand and E.P. Likhtman - Pis’ma v Yh.Eksp.Teor.Fiz. 13 (1971) 323; D. Volkov and V.P. Akulov, Phys.Lett. 46B (1973) 109; J. Wess and B. Zumino, Nucl.Phys. B70 (1974) 39; For a review, see P. Fayet and S. Ferrara, Physics Reports 32C (1977) 249.
2. L. Maiani, Proc. Summer School on Particle Physics, Gif-sur-Yvette, 1979 (IN2P3, Paris, 1980), p. 3;
G 't Hooft, “Recent Developments in Field Theories”, eds. G. 't Hooft et al. (Plenum Press, New York, 1980);
E. Witten, *Nucl.Phys.* **B188** (1981) 513;
R.K. Kaul, *Phys.Lett.* **109B** (1982) 19.
3. J. Wess and B. Zumino, *Phys.Lett.* **49B** (1974) 52; J. Iliopoulos and B. Zumino, *Nucl.Phys.* **B76** (1974) 310;
S. Ferrara, J. Iliopoulos and B. Zumino, *Nucl.Phys.* **B77** (1974) 413;
M.T. Grisaru, W. Siegel and M. Rocek, *Nucl.Phys.* **B159** (1979) 420.
4. E. Gildener, *Phys.Rev.* **D14** (1976) 1667;
E. Gildener and S. Weinberg, *Phys.Rev.* **D15** (1976) 3333.
5. For reviews, see: P. Fayet, Unification of the Fundamental Particle Interactions, eds. S. Ferrara, J. Ellis and P. Van Nieuwenhuizen (Plenum Press, New York, 1980), p. 587;
H.-P. Nilles, *Phys.Rev.* **110C** (1984) 1;
H.E. Haber and G.L. Kane, *Physics Reports* **117C** (1985) 75.
6. K. Inoue, A. Kakuto, H. Komatsu and S. Takeshita, *Progr.Theor.Phys.* **68** (1982) 927, and **71** (1984) 348;
J. Polchinski, *Phys.Rev.* **D26** (1982) 3674.
7. J. Ellis and D.V. Nanopoulos, *Phys.Lett.* **110B** (1982) 44;
R. Barbieri and R. Gatto, *Phys.Lett.* **110B** (1982) 311.
8. J. Ellis, J.S. Hagelin, D.V. Nanopoulos and K. Tamvakis, *Phys.Lett.* **B125** (1983) 275.
9. M. Olechowski and S. Pokorski, *Phys.Lett.* **B344** (1995) 201;
N. Polonsky and A. Pomarol, *Phys.Rev.Lett.* **73** (1994) 2292; *Phys.Rev.* **D51** (1995) 6532;
D. Matalliotakis and H.-P. Nilles, *Nucl.Phys.* **B435** (1995) 115;
A. Pomarol and S. Dimopoulos, CERN Preprint CERN-TH/95-114 (1995);
H. Murayama, Berkeley Preprint LBL-36962 (1995).
10. R. Barbieri and L.J. Hall, *Phys.Lett.* **B338** (1994) 212;
R. Barbieri, L.J. Hall and A. Strumia, Berkeley Preprint LBL-36383 (1995);
S. Dimopoulos and L.J. Hall, *Phys.Lett.* **B344** (1995) 185;
S. Dimopoulos and A. Pomarol, CERN Preprint CERN-TH/95-44 (1995), *Phys.Lett.* in press.
11. G. Altarelli et al., The Workshop on Physics at LEP2 - Interim report on the Physics Motivations for an Energy Upgrade of LEP2, CERN Preprint CERN-TH/95-151, PPE/95-78 (1995).
12. Y. Okada, M. Yamaguchi and T. Yanagida, *Progr.Theor.Phys.* **85** (1991) 1;
J. Ellis, G. Ridolfi and F. Zwirner, *Phys.Lett.* **B257** (1991) 83, *Phys.Lett.* **B262** (1991) 477;
H.E. Haber and R. Hempfling, *Phys.Rev.Lett.* **66** (1991) 1815;
R. Barbieri, M. Frigeni and F. Caravaglios, *Phys.Lett.* **B258** (1991) 167;
Y. Okada, M. Yamaguchi and T. Yanagida, *Phys.Lett.* **B262** (1991) 54.
13. CDF Collaboration, F. Abe et al., *Phys.Rev.Lett.* **74** (1995) 2626, and W. Yao, these proceedings;
D0 Collaboration, S. Abachi et al., Phys.Rev.Lett. 74 (1995) 2632, and B. Klima, these proceedings.

14. M. Carena, K. Sasaki and C.E.M. Wagner, Nucl.Phys. B381 (1992) 66; P. Chankowski, S. Pokorski and J. Rosiek, Phys.Lett. B274 (1992) 191; H.E. Haber and R. Hempfling, Phys.Rev. D48 (1993) 4280; M. Carena, J.R. Espinosa, M. Quiros and C.E.M. Wagner, Phys.Lett. B355 (1995) 209; M. Carena, M. Quiros and C.E.M. Wagner, CERN Preprint TH/95-157 (1995); H. Haber, R. Hempfling and A. Hoang, to appear.

15. ATLAS Collaboration Technical Proposal, CERN/LHCC 94-93 (1994); CMS Collaboration Technical Proposal, CERN/LHCC 94-38 (1994) and contributions to by Froidevaux and E. Richter-Was.

16. J. Ellis, G.L. Fogli and E. Lisi, CERN Preprint CERN-TH/95-202 (1995).

17. LEP Electroweak Working Group, CERN Report LEPEWWG/95-01 (1995); M. Swartz, Private communication (1995); P.H. Chankowski and S. Pokorski, hep/ph/9505308; P. Langacker, [hep-ph/9511207].

18. J. Ellis, G.L. Fogli and E. Lisi, Phys.Lett. B333 (1994) 118.

19. J. Ellis, G.L. Fogli and E. Lisi, Phys.Lett. B343 (1995) 282 and references therein.

20. U. Amaldi et al., Phys.Rev. D36 (1987) 1385.

21. G. Costa et al., Nucl.Phys. B297 (1988) 244.

22. W. Marciano and A. Sirlin, Phys.Rev.Lett. 46 (1981) 163.

23. P.B. Renton, rapporteur talk at this Symposium, Oxford Preprint OUNP-95-20 (1995).

24. J. Ellis, S. Kelley and D.V. Nanopoulos, Nucl.Phys. B373 (1992) 55.

25. F. Anselmo, L. Cifarelli, A. Peterman and A. Zichichi, Nuovo Cimento 105A (1992) 1201.

26. A. Djouadi et al., Nucl.Phys. B349 (1991) 48; M. Boulware and D. Finell, Phys.Rev. D44 (1991) 2054; G. Altarelli, R. Barbieri and F. Caravaglios, Phys.Lett. B314 (1993) 357; D. Garcia and J. Sola, Phys.Lett. B357 (1995) 349; X. Wang, J. Lopez and D.V. Nanopoulos, Phys.Rev. D52 (1995) 4116; M. Shifman, Mod.Phys.Lett. A10 (1995) 605; G.L. Kane, R.G. Stuart and J.D. Wells, Univ. Michigan Preprint UM-TH-95-16, [hep-ph/9505207]; J. Erler and P. Langacker, Phys.Rev. D52 (1995) 441; P.H. Chankowski and S. Pokorski, Warsaw University Preprint IFT-UW-95/5.

27. The possibility of a supersymmetric interpretation of the R_b anomaly would be severely compromised by negative results from the ongoing LEP 1.5 searches: J. Ellis, J. Lopez and D.V. Nanopoulos, CERN Preprint TH/95-314 (1995).

28. S. Dimopoulos and H. Georgi, Nucl.Phys. B193 (1981) 150; N. Sakai, Z.Phys. C11 (1981) 153.

29. S. Dimopoulos and F. Wilczek, UC Santa Barbara Preprint “Incomplete Multiplets in Supersymmetric Unified Models” (1981).

30. A. Masiero, D.V. Nanopoulos, K. Tamvakis and T. Yanagida, Phys.Lett. B115 (1982) 380;
31. I. Antoniadis, J. Ellis, J.S. Hagelin and D.V. Nanopoulos, Phys.Lett. B194 (1987) 231.
32. S. Barr, Phys.Lett. B112 (1982) 219;
 J.P. Derendinger, J. Kim and D.V. Nanopoulos, Phys.Lett. B139 (1984) 170.
33. I. Antoniadis, J. Ellis, J.S. Hagelin and D.V. Nanopoulos, Phys.Lett. B205 (1988) 459;,
 B208 (1988) 209 and B231 (1989) 65;
 J. Lopez, D.V. Nanopoulos and K. Yuan, Nucl.Phys. B399 (1993) 654.
34. H. Dreiner, J. Lopez, D.V. Nanopoulos and D. Reiss, Phys.Lett. B216 (1989) 283.
35. S. Dimopoulos, S. Raby and F. Wilczek, Phys.Rev. D24 (1981) 1681;
 W.J. Marciano and G. Senjanovic, Phys.Rev. D25 (1982) 3092;
 L.E. Ibàñez and G.G. Ross, Phys.Lett. 105B (1982) 439;
 M.B. Einhorn and D.R.T. Jones, Nucl.Phys. B196 (1982) 475;
 J. Ellis, S. Kelley and D.V. Nanopoulos, Phys.Lett. B249 (1990) 441 and B260 (1991) 131;
 P. Langacker and M. Luo, Phys.Rev. D44 (1991) 817;
 U. Amaldi, W. de Boer and H. Furstenau, Phys.Lett. B260 (1991) 447;
 F. Anselmo, L. Cifarelli, A. Peterman and A. Zichichi, Nuovo Cimento 104A (1991) 1817.
36. P. Langacker and N. Polonsky, Phys.Rev. D47 (1993) 4028.
37. P. Langacker and N. Polonsky, Phys.Rev. D52 (1995) 3081;
 P. Chankowski, Z. Pluciennik and S. Pokorski, Nucl.Phys. B439 (1995) 23.
38. See, for example, P.H. Chankowski, A. Dabelstein, W. Hollik et al., Nucl.Phys. B417 (1994) 101.
39. L. Clavelli and P. Coulter, Phys.Rev. D51 (1995) 3913 and UAHEP954 [hep-ph/9507261];
 J. Bagger, K. Matchev and D. Pierce, Phys.Lett. B348 (1995) 443;
 P.H. Chankowski, Z. Pluciennik, S. Pokorski and C.E. Vayonakis, Phys.Lett. B358 (1995) 264;
 A. Faraggi and B. Grinstein, Nucl.Phys. B422 (1994) 3;
 R. Barbieri, P. Ciafaloni and A. Strumia, Nucl.Phys. B442 (1995) 461.
40. R. Barbieri and L.J. Hall, Phys.Rev.Lett. 68 (1992) 752.
41. J. Hisano, T. Moroi, K. Tobe and T. Yanagida, Phys.Lett. B342 (1995) 138;
 J. Lopez and D.V. Nanopoulos, CPT-TAMU-29/95 [hep-ph/9508253].
42. J. Ellis, J. Lopez and D.V. Nanopoulos, CERN Preprint CERN-TH/95/260 (1995) [hep-ph/9510246].
43. J. Bagger et al., ref. [22].
44. C.T. Hill, Phys.Lett. 135B (1984) 47;
 Q. Shafi and C. Wetterich, Phys.Rev.Lett. 52 (1984) 875;
 J. Ellis et al., Phys.Lett. 155B (1985) 381;
 M. Drees, Phys.Lett. 158B (1985) 409;
 L.J. Hall and U. Sarid, Phys.Rev.Lett. 70 (1993) 2673.
45. M.B. Gavela, S.F. King, C.T. Sachrajda, G. Martinelli, M.L. Paciello and B. Taglienti,
 Nucl.Phys. B312 (1989) 269.
46. Particle Data Group, Phys.Rev. D50 (1994) 1173.
47. S. Bethke, *Nucl.Phys.* , Proc. Suppl. **39B**, C (1995) 198.
48. N. Sakai and T. Yanagida, *Nucl.Phys.* **B197** (1982) 533.
49. R. Arnowitt and P. Nath, *Phys.Rev.Lett.* **69** (1992) 725;
 P. Nath and R. Arnowitt, *Phys.Lett.* **B287** (1992) 89;
 J.L. Lopez, D.V. Nanopoulos and H, Pois. *Phys.Rev.* **B47** (1993) 46;
 J.L. Lopez, D.V. Nanopoulos, H, Pois and A. Zichichi, *Phys.Lett.* **B299** (1993) 262;
 R. Arnowitt and P. Nath, *Phys.Rev.* D49 (1994) 1479.
50. J. Ellis, J. Hagelin, S. Kelley and D.V. Nanopoulos, *Nucl.Phys.* **B311** (1989) 1.
51. T. Yanagida, Proc. Workshop on the Unified Theory and the Baryon Number in the
 Universe (KEK, Japan, 1979);
 R. Slansky, talk at the Sanibel Symposium, Caltech Preprint CALT-68-709 (1979).
52. For a review, see: G. Gelmini and E. Roulet, UCLA Preprint UCLA/94/TEP/36 (1994).
53. For a review, see: J.N. Bahcall, K. Lande, R.E. Lanou, J.G. Learned, R.G.H. Robertson
 and L. Wolfenstein, IAS, Princeton Preprint IASSNS-AST 95/24 (1995).
54. See, e.g.: J. Ellis, J. Lopez and D.V. Nanopoulos, *Phys.Lett.* **B292** (1992) 189.
55. K. Winter, Rapporteur talk at this Symposium.
56. S.P. Mikheyev and A.Yu. Smirnov, *Nuovo Cimento* **9C** (1986) 17;
 L. Wolfenstein, *Phys.Rev.* **D17** (1978) 2369.
57. Kamiokande Collaboration, Y. Fukuda et al., *Phys.Lett.* **B335** (1994) 237.
58. C. Athanassopoulos et al., *Phys.Rev.Lett.* **75** (1995) 2650;
 J.E. Hill, *Phys.Rev.Lett.* **75** (1995) 2654.
59. L. Ibàñez and G.G. Ross, *Phys.Lett.* **110B** (1982) 215;
 J. Ellis, L. Ibàñez and G.G. Ross, *Phys.Lett.* **113B** (1982) 283 and *Nucl.Phys.* **B221** (1983) 29.
60. J. Ellis, A.B. Lahanas, D.V. Nanopoulos and K.A. Tamvakis, *Phys.Lett.* **134B** (1984) 429.
 An interesting recent development is the construction of supergravity models with both
 gauge and supersymmetry breaking and zero vacuum energy:
 A. Brignole and F. Zwirner, *Phys.Lett.* **B342** (1995) 117;
 A. Brignole, F. Feruglio and F. Zwirner, CERN Preprint TH/95-76 (1995).
61. N.-P. Chang, S. Ouvry and X. Wu, *Phys.Lett.* **51** (1983) 327;
 E. Cremmer, S. Ferrara, C. Kounnas and D.V. Nanopoulos, *Phys.Lett.* **B133B** (1983) 61.
62. J. Ellis, C. Kounnas and D.V. Nanopoulos, *Nucl.Phys.* **B241** (1984) 406 and **B247** (1984) 373.
63. S. Ferrara, C. Kounnas and F. Zwirner, *Nucl.Phys.* **B429** (1994) 589.
64. The interesting suggestion has recently been made that a one-loop quadratic divergence
 present in some string vacuum may be cancelled for some value of the moduli:
 J. Lopez and D.V. Nanopoulos, hep-ph/9510216.
65. Quadratic divergences may also appear in higher-loop order, requiring an extension of
 these ideas:
 J. Bagger, E. Poppitz and L. Randall, hep-ph/9505244.
66. H.-P. Nilles, *Phys.Lett.* **115B** (1982) 193, and *Nucl.Phys.* **B217** (1983) 366.
67. S. Dimopoulos, G.F. Giudice and N. Tetradis, CERN Preprint CERN-TH/95-90 (1995).
68. C. Kounnas, I. Pavel and F. Zwirner, *Phys.Lett.* **B335** (1994) 403.
69. C. Kounnas, I. Pavel, G. Ridolfi and F. Zwirner, *Phys.Lett.* **B354** (1995) 322.
70. W. Yao, Rapporteur talk at this Symposium;
 B. Klima, Rapporteur talk at this Symposium.
71. F.M. Borzumati, M. Olechowski and S. Pokorski, *Phys.Lett.* **B349** (1995) 311;
 G.L. Kane, C. Kolda, L. Roszkowski and J.D. Wells, *Phys.Rev.* **D49** (1994) 6173;
 J.L. Lopez, D.V. Nanopoulos, G.T. Park, *Phys.Rev.* **D48** (1993) 974;
 J.L. Lopez et al., *Phys.Rev.* **D51** (1995) 147;
 J.L. Hewett, *Phys.Rev.Lett.* **70** (1993) 1045;
 V. Barger, M.S. Berger and R.J.N. Phillips, *Phys.Rev.Lett.* **70** (1993) 1368;
 M.A. Diaz, *Phys.Lett.* **B304** (1993) 278.
72. R. Barbieri and L.J. Hall, *Phys.Lett.* **B338** (1994) 212;
 R. Barbieri, L.J. Hall and A. Strumia, [hep-ph/9501334](https://arxiv.org/abs/hep-ph/9501334).
73. BNL E821 Collaboration, B. Lee Roberts, *Z.Phys.* **C56** (1992) S101.
74. J.L. Lopez, D.V. Nanopoulos and X Wang, *Phys.Rev.* **D49** (1994) 366.
75. R. Barbieri, A. Romanino and A. Strumia, Pisa Preprint IFUP-TH-65-95 (1995).
76. J. Ellis, J.S. Hagelin, D.V. Nanopoulos, K.A. Olive and M. Srednicki, *Nucl.Phys.* **B238** (1984) 453.
77. T. Falk, K.A. Olive and M. Srednicki, *Phys.Lett.* **B354** (1995) 99.
78. J. Ellis, K. Enqvist, D.V. Nanopoulos and F. Zwirner, *Mod.Phys.Lett.* **A1** (1986) 57;
 R. Barbieri and G.F. Giudice, *Nucl.Phys.* **B296** (1988) 75;
 For a critique of this criterion, see:
 G.W. Anderson and D.J. Castaño, *Phys.Lett.* **B347** (1995) 300, *Phys.Rev.* **D52** (1995) 1693 and [hep-ph/9509212](https://arxiv.org/abs/hep-ph/9509212).
79. S. Dimopoulos and G.F. Giudice, *Phys.Lett.* **B357** (1995) 573.
80. There is no space here to do justice to this important topic. For recent developments
 and references to previous papers, see:
 M. Lanzagorta and G.G. Ross, CERN Preprint TH/95-161 (1995);
 G.G. Ross, CERN Preprint TH/95-162 (1995).
81. See, for example: J. Lopez and D.V. Nanopoulos, Texas A&M Preprint CTP-TAMU-41/95 (1995);
 For a recent review of supersymmetry breaking scenarios, see T.R. Taylor, [hep-ph/9510281](https://arxiv.org/abs/hep-ph/9510281) (1995).
82. W. de Boer, G. Burkart, R. Ehret, W. Oberschulte-Beckmann, V. Bednyakov and S.G.
 Kovalenko, Karlsruhe Preprint IEKP-KA/95-07 (1995).
83. J.L. Lopez, D.V. Nanopoulos and A. Zichichi, *Phys.Rev.* **D49** (1994) 343; **D52** (1995) 4178.
84. D. Gross, J. Harvey, E. Martinec and R. Rohm, *Nucl.Phys.* **B256** (1985) 253.
85. P. Candelas, G.T. Horowitz, A. Strominger and E. Witten, *Nucl.Phys.* **B258** (1985) 46.
86. K. Narain, *Phys.Lett.* **B169** (1986) 41;
 K. Narain, M. Sarmadi and C. Vafa, *Nucl.Phys.* **B288** (1987) 551.
87. V. Kaplunovsky, *Nucl.Phys.* **B307** (1988) 145;
 I. Antoniadis, J. Ellis, R. Lacaze and D.V. Nanopoulos, *Phys.Rev.* **B268** (1991) 188.
 For recent discussions and references, see:
 K. Dienes and A. Faraggi, *Phys.Rev.Lett.* **75** (1995) 2646;
88. L. Dixon, J.A. Harvey, C. Vafa and E. Witten, Nucl.Phys. B261 (1985) 678; B274 (1986) 285.

89. H. Kawai, D.C. Lewellen and S.H.-H. Tye, Nucl.Phys. B288 (1987) 1; I. Antoniadis, C. Bachas and C. Kounnas, Nucl.Phys. B289 (1987) 87; I. Antoniadis and C. Bachas, Nucl.Phys. B298 (1988) 586.

90. L.E. Ibáñez et al., Phys.Lett. B191 (1987) 282; L.E. Ibáñez et al., Nucl.Phys. B301 (1988) 157; J.A. Casas, E.K. Katehou and C. Muñoz, Nucl.Phys. B317 (1989) 171; A.E. Faraggi, D.V. Nanopoulos and K. Yuan, Nucl.Phys. B335 (1990) 347; A. Font et al., Nucl.Phys. B331 (1990) 421; A.E. Faraggi, Phys.Lett. B278 (1992) 131; Nucl.Phys. B387 (1992) 239, hep-th/9208024.

91. D. Lewellen, Nucl.Phys. B337 (1990) 61; A. Font, L. Ibáñez and F. Quevedo, Nucl.Phys. B345 (1990) 389.

92. G. Aldazabal, A. Font, L. Ibáñez and A.M. Uranga, Madrid Preprint FTUAM-94-28 (1994); S. Chaudhuri, S.-W. Chung and J.D. Lykken, Fermilab Preprint Pub-94-137-T (1994); S. Chaudhuri, S.-W. Chung, G. Hockuly and J.D. Lykken, Fermilab Preprint Pub-94-413-T (1995); G.B. Cleaver, Ohio Preprints OHSTPY-HEP-T-94-007 (1994), 95-003 (1995).

93. G. Aldazabal, A. Font, L. Ibáñez and A.M. Uranga, Madrid Preprint FTUAM-95-27 (1995).

94. V.A. Rubakov, Rapporteur talk at this Symposium.

95. N. Seiberg and E. Witten, Nucl.Phys. B426 (1994) 19, E B430 (1994) 485; For an extension to string theory, see: C. Gomez and E. Lopez, Phys.Lett. B356 (1995) 487; I. Antoniadis, S. Ferrara, E. Gava, K.S. Narain et al., Nucl.Phys. B447 (1995) 35; S. Kachru, A. Klemm, W. Lerche, P. Mayr and C. Vafa, hep-th/9508155.

96. C. Montonen and D.I. Olive, Phys.Lett. 72B (1977) 117; H. Osborn, Phys.Lett. 83B (1979) 321; A. Sen, hep-th/9402002, 9402032.

97. It is impossible here to refer justly to all the exciting new papers in this field. The reader is referred to the following recent reviews:
M.J. Duff, hep-th/9509106; E. Witten, hep-th/9507121; J.H. Schwarz, hep-th/9509148 and 9510086; D.I. Olive, hep-th/9508089; P.K. Townsend, DAMTP Preprint R-95-52 (1995); I. Antoniadis, S. Ferrara, E. Gava, K. Narain et al., CERN Preprint TH/95-257 (1995); J. Polchinski, hep-th/9511157.

98. A. Font, L. Ibáñez, D. Lüst and F. Quevedo, Phys.Lett. B249 (1990) 35; A. Sen, Int.J.Mod.Phys. A9 (1994) 3707.

99. C. Hull and P. Townsend, Nucl.Phys. B438 (1995) 109;
M. Hull, *Nucl.Phys.* B**442** (1995) 47;
A. Sen, hep-th/9504027;
J.A. Harvey and A. Strominger, hep-th/9504047;
C. Vafa and E. Witten, hep-th/9505033.

100. E. Witten, hep-th/9503124;
P. Horava and E. Witten, hep-th/9510209.

101. C. Hull, hep-th/9506194.

102. M.J. Duff, B.E.W. Nilsson and C.N. Pope, *Phys.Lett.* B**129** (1983) 39 and *Physics Reports* **130** (1986) 1;
M.J. Duff and B.E.W. Nilsson, *Phys.Lett.* B**175** (1986) 417;
A. Cadavid, A. Ceresole, R. D’Auria and S. Ferrara, *Phys.Lett.* B**357** (1995) 76.

103. E. Bergshoeff, E. Sezgin and P.K. Townsend, *Phys.Lett.* B**189** (1987) 75 and *Ann.Phys.* **185** (1988) 30;
M.J. Duff, J.T. Liu and R. Minasian, hep-th/9506126.
This figure "fig1-1.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9512335v1
This figure "fig2-1.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9512335v1
This figure "fig3-1.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9512335v1
This figure "fig4-1.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9512335v1
This figure "fig1-2.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9512335v1
This figure "fig2-2.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9512335v1
This figure "fig3-2.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9512335v1
This figure "fig4-2.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9512335v1
This figure "fig1-3.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9512335v1
This figure "fig2-3.png" is available in "png" format from:

http://arxiv.org/ps/hep-ph/9512335v1