A CHARACTERIZATION OF THE FINITE MULTIPLICITY
OF A CR MAPPING

YIFEI PAN

1. INTRODUCTION

In this paper, we give a characterization of the finite multiplicity of a CR mapping between real analytic hypersurfaces. The finite multiplicity of a CR mapping was defined algebraically by Baouendi and Rothschild in [BR1] (see the definition below). We will prove that under certain conditions on hypersurfaces the finite multiplicity of a CR mapping is equivalent to that the preimage of the map is finite. More precisely,

Theorem 1. Suppose that M_1, M_2 are real analytic hypersurfaces of essential finite type in \mathbb{C}^n and further M_2 contains no complex variety of positive dimension. Then a smooth CR mapping $f: M_1 \to M_2$ is of finite multiplicity at $z_0 \in M_1$ if and only if $f^{-1}(f(z_0))$ is finite.

The proof of Theorem 1 relies on the real analyticity result of [BR1] and the following Theorem 2 that we shall prove. In [BR1], Baouendi and Rothschild proved that a smooth CR mapping of finite multiplicity from a real analytic hypersurface of essential finite type to another real analytic hypersurface is real analytic. This result with the proof of Theorem 1 implies the following.

Corollary 1. A smooth CR mapping of finite multiplicity between real analytic hypersurfaces of essential finite type is the restriction of a locally proper holomorphic mapping in \mathbb{C}^n.

Theorem 2. Suppose that $f: M_1 \to M_2$ is a smooth CR mapping between real analytic hypersurfaces in \mathbb{C}^n. Suppose further that M_1 is essentially finite and M_2 contains no complex variety of positive dimension. If $f^{-1}(f(z_0)) \setminus \{z_0\}$ is discrete for a point $z_0 \in M_1$, then f extends holomorphically to a neighborhood of z_0 in \mathbb{C}^n.

A simple example shows that the condition that M_2 contains no complex variety of positive dimension is necessary in Theorem 1 and 2.

Corollary 2. Suppose that $f: M_1 \to M_2$ is a smooth CR mapping between real analytic hypersurfaces of finite type of D’Angelo in \mathbb{C}^n. If $f^{-1}(f(z_0)) \setminus \{z_0\}$ is
discrete for a point $z_0 \in M_1$, then f extends holomorphically to a neighborhood of z_0 in \mathbb{C}^n.

A well-known problem in the study of real analyticity of CR mappings is whether every smooth CR mapping between real analytic hypersurfaces of finite type of D'Angelo in \mathbb{C}^n is real analytic.

Corollary 3. Let $f: M_1 \to M_2$ is a smooth CR mapping between real analytic hypersurfaces of finite type of D'Angelo in \mathbb{C}^n. If f is real analytic on $M_1 \setminus \{p\}$, then f is also real analytic at p.

This can be reviewed as a "Removable Singularity Theorem" for the real analyticity of CR mappings. As another corollary of the proof of Theorem 2, one has the following.

Corollary 4. A finite to one smooth CR mapping from a real analytic hypersurface of essential finite type to another real analytic hypersurface is real analytic.

Here a map $f: M_1 \to M_2$ is said to be finite to one if $f^{-1}(q)$ is finite for any $q \in M_2$. The proofs of these results depend on the work of Baouendi-Rothschild [BR1] and Diederich-Fornaess [DF] on real analyticity, the Hopf Lemma of [BR3] and the work of Tumanov [T] on holomorphic extension of CR functions. However, we will directly prove the holomorphic extension of CR mappings whenever their work does not apply. For earlier results, see [L], [Pi], [BJT], [DW], [B], [BB] and [BBR]. Theorem 1 will be proved in Section 2 and Theorem 2 along with its corollaries in Section 3. The work of this paper is in part inspired by a paper of Pincuk [Pi2].

2. Proof of Theorem 1

To prove Theorem 1, we first recall some basic definitions. Let M be a real analytic hypersurface in \mathbb{C}^n containing the origin and defined locally by $\rho(z, \overline{z}) = 0$, $\nabla \rho \neq 0$, $z \in \mathbb{C}^n$, where ρ is a real valued analytic function, $\rho(0) = 0$. As introduced in [BJT], M is said to be essentially finite at 0 if for any sufficiently small $z \in \mathbb{C}^n \setminus \{0\}$ there exists an arbitrarily small $\zeta \in \mathbb{C}^n$ satisfying $\rho(z, \zeta) \neq 0$, $\rho(0, \zeta) = 0$. We point out that if M does not contain any complex variety of positive dimension through 0, then M is essentially finite at 0. Consequently, a real analytic hypersurface of finite type of D'Angelo is essentially finite. The finite multiplicity of a CR mapping is introduced by Baouendi and Rothschild in [BR1] as follows. If $f: M_1 \to M_2$ is a smooth CR mapping between two smooth real analytic hypersurfaces in \mathbb{C}^n, there exist n CR functions f_1, \ldots, f_n defined on M_1 such that $f = (f_1, \ldots, f_n)$. On the other hand if j is a smooth CR function defined on M_1 near 0, there exists a formal holomorphic power series $J(Z) = \sum a_\alpha Z^\alpha$ in n indeterminates, such that $U \in u \to Z(u) \in \mathbb{C}^n$ (U an open neighborhood of 0 in \mathbb{R}^{2n-1}, $Z(0) = 0$) is a parametrization of M_1, then the Taylor series of $j(Z(u))$ at 0 is given by $J(Z(u))$. We can choose holomorphic coordinates Z such that $\rho(Z, 0) = \alpha(Z)Z_n$, $\alpha(0) \neq 0$. With $Z = (z', z_n)$ and $z' = (z_1, \ldots, z_{n-1})$, the mapping f is said to be of finite multiplicity at 0 if

$$
\dim_{\mathbb{C}}O[[z']]/(F(z', 0)) < \infty
$$

where $(F(z', 0))$ is the ideal generated by $F_1(z', 0), \ldots, F_n(z', 0)$, the power series associated to the CR functions f_1, \ldots, f_n and $O[[z']]$ the ring of formal power series in $n-1$ indeterminates and the dimension is taken in the sense of vector spaces.
After a holomorphic change of coordinates near 0, we may assume that M_1 is given by an equation

$$\Re z_n = \psi(z', \overline{z}', \Re z_n), \quad \psi(0) = d\psi(0) = 0$$

with $(z', z_n) \in \mathbb{C}^{n-1} \times \mathbb{C}$. We assume that M_2 is another real analytic hypersurface defined by

$$\Re z_n = \phi(z', \overline{z}', \Re z_n), \quad \phi(0) = d\phi(0) = 0$$

with $(z', z_n) \in \mathbb{C}^{n-1} \times \mathbb{C}$. Let $f = (f', f_n)$ be a CR map from M_1 to M_2 with $f(0) = 0$. We say that f_n is the normal component of f and z_n in the normal direction at 0.

Proof of Theorem 1. We actually prove that if $f: M_1 \to M_2$ is a smooth CR mapping of finite multiplicity between real analytic hypersurfaces of essential finite type, then $f^{-1}(0)$ is finite. By Theorem 1 of [BR1], f is real analytic at 0. Let $F = (F_1(z), ..., F_n(z))$ be the holomorphic extension of f to \mathbb{C}^n near 0. If $f^{-1}(0)$ is not finite, then $S = F^{-1}(0)$ must be a complex variety of positive dimension. By Theorem 4 of [BR2], we have

$$\partial F_n \partial z_n(0) \neq 0. \tag{2}$$

We claim that S lies in M_1. Indeed, by (2),

$$\Re F_n(z) - \phi(F'(z), \overline{F'}(z), \Re F_n(z)) = 0$$

defines a real analytic hypersurface in \mathbb{C}^n which clearly coincides with M_1 near the origin where $F'(z) = (F_1, ..., F_{n-1})$. This proves the claim.

Now we let S' be any complex curve in S parametrized by

$$z(\zeta) = (z_1(\zeta), ..., z_n(\zeta))$$

passing through 0. We claim that $z_n(\zeta) \equiv 0$. Indeed, in the chosen coordinates above, by Lemma (3.7) of [BR1], we have

$$F_n(z) = z_n G(z).$$

By (2), we see $G(0) \neq 0$. On S', it follows $F_n(z(\zeta)) = z_n(\zeta) G(z(\zeta)) = 0$, which implies $z_n(\zeta) = 0$. Therefore, $F_1(z', 0), ..., F_n(z', 0)$ have common zeros near 0 and hence the dimension

$$\dim_{\mathbb{C}} \mathcal{O}[[z']]/(F_1(z', 0), ..., F_n(z', 0))$$

is infinite, a contradiction to the finite multiplicity of f at 0.

As proved above, S lies in M_1 and hence $f^{-1}(0) = F^{-1}(0)$. This means that F is a locally proper holomorphic mapping, which gives a proof of Corollary 1.

Now we prove that under the conditions in Theorem 1 if $f^{-1}(0)$ is finite then f is of finite multiplicity. Indeed, by Theorem 2, whose proof does not depend on Theorem 1, f is real analytic at 0. As before, let F be the holomorphic extension of f. We notice $F_n(z) = 0$ since M_2 contains no complex variety of positive dimension.
and by Theorem 4 of [BR2], \(f \) is of finite multiplicity at 0. This could also proved directly. Indeed, by Theorem 4 of [BR2], (2) holds. As above, this implies that \(F^{-1}(0) \) is finite and therefore \(F \) is locally proper which implies the finite multiplicity of \(f \).

We close this section by an example. Let \(M_1 = \{ \Im z_3 = |z_1|^2 + |z_2|^2 \} \) and \(M_2 = \{ \Im z_3 = |z_1|^2 - |z_2|^2 \} \). Consider \(f = (g, g, 0) \), which is holomorphic in \(\Im z_3 > 0 \) and smooth up the boundary. It is easy to see \(f^{-1}(0) = 0 \) but \(f \) is not finite multiplicity. Note that \(M_2 \) contains a complex curve and both \(M_1, M_2 \) are of essential finite type.

2. Proof of Theorem 2

Following Tumanov [T], we say that a real hypersurface \(M_1 \) is minimal at \(z_0 \) if there is no germ of complex holomorphic hypersurface contained in \(M_1 \) and passing through \(z_0 \). By a theorem of Trepreau [Tr], \(f \) extends holomorphically to one side of \(M_1 \). The main result of [BBR] [BR1] [DF] can be stated as

Theorem. ([BBR][BR1][DF]) Let \(M_1 \) is a real analytic hypersurface that is essentially finite at \(0 \in M_1 \). If \(M_2 \) is another real analytic hypersurface and \(f: M_1 \to M_2 \) is a smooth CR mapping with \(f(0) = 0 \) and \(\frac{\partial f_n}{\partial z_n}(0) \neq 0 \), then \(f \) extends holomorphically to a neighborhood of \(0 \) in \(\mathbb{C}^n \).

The above theorem has many important applications to global proper holomorphic mappings. For example, it was proved in [BR1] [DF] that every proper holomorphic mapping between bounded pseudoconvex domains with real analytic boundaries extends holomorphically across the boundary. In [BR2], Baouendi and Rothschild showed that if the normal component of \(f \) is not flat (i.e., if there exists a number \(k > 0 \) so that \(\frac{\partial^k f_n}{\partial z_n^k}(0) \neq 0 \) in the normal direction at 0 then the condition \(\frac{\partial f_n}{\partial z_n}(0) \neq 0 \) holds automatically. As an application of this result, it was proved in [HP] that the unique continuation property holds for proper holomorphic mappings between bounded domains with real analytic boundaries. This result in turn proves that every proper holomorphic mapping between bounded real analytic domains that is smooth up to the boundary extends holomorphically across the boundary.

In order to prove Theorem 2, we need the following lemmas. First we recall the definition of a correspondence. Let \(\Omega \) be a domain in \(\mathbb{C}^n \) and \(f: \Omega \to \mathbb{C}^n \) be a holomorphic mapping. Denote by \(\Gamma_f \) as the graph of \(f \)

\[
\Gamma_f = \{(z, w): w = f(z), z \in \Omega \}.
\]

Let

\[
B((z_0, w_0), \epsilon) = \{(z, w) \in \mathbb{C}^n \times \mathbb{C}^n: |z - z_0| < \epsilon, |w - w_0| < \epsilon \}.
\]

We say that \(f \) extends as a correspondence to a neighborhood of \((z_0, w_0) \) if there exist \(\epsilon > 0 \) and a pure n-dimensional subvariety

\[
V \subset B((z_0, w_0), \epsilon)
\]

such that

\[
\Gamma_f \cap B((z_0, w_0), \epsilon) \subset V \cap B((z_0, w_0), \epsilon).
\]

Now we state a lemma due to Bedford and Bell [BB].
Let Ω be a bounded domain in \mathbb{C}^n with smooth boundary near $z_0 \in \partial \Omega$, and let $f: \Omega \to \mathbb{C}^n$ be a holomorphic mapping that is C^∞ smooth up to the boundary of Ω near z_0. Then f extends holomorphically to a neighborhood of z_0 in \mathbb{C}^n.

Let M_1 and M_2 be smooth real hypersurfaces in \mathbb{C}^n and let Ω_1, Ω_2 be two domains in \mathbb{C}^n with defining functions r_i for $i = 1, 2$ such that $\nabla r_i \neq 0$ on Ω_i for $i = 1, 2$. Set $\Omega_i^+ = \{z \in \Omega_i : r_i(z) > 0\}$ and $\Omega_i^- = \{z \in \Omega_i : r_i(z) < 0\}$ for $i = 1, 2$.

If $F: \Omega_1^- \to \mathbb{C}^n$ is a holomorphic mapping, we denote by $\text{Jac} F$ the determinant of the Jacobian matrix of F.

As will become clear, in order to prove Theorem 2, one has to only consider the case when w_0 is a minimal but not minimally convex point in the sense of [BR3]. For this matter, we prove the following result.

Lemma 2. Let $f: M_1 \to M_2$ be a smooth CR mapping between smooth real hypersurfaces M_1, M_2 in \mathbb{C}^n. Suppose that f extends holomorphically to an one-sided neighborhood of M_1, say Ω_1^-. Given a point $z_0 \in M_1$, if M_2 contains no non-trivial complex variety through $f(z_0)$ and if $f(z_0)$ is not minimally convex and $f^{-1}(f(z_0)) \setminus \{z_0\}$ is discrete, then f extends holomorphically to a neighborhood of z_0 in \mathbb{C}^n.

We remark that no real analyticity on hypersurfaces is assumed above.

Proof of Lemma 2. Let $F(z): \Omega_1^- \to \mathbb{C}^n$ be the extension of f. First we prove two facts to be used later.

We notice that $F(\Omega_1^-) \not\subset M_2$ since M_2 contains no complex variety of positive dimension. Now we claim that $\text{Jac} F(z) \not\equiv 0$. Indeed, if $\text{Jac} F(z) \equiv 0$ in Ω_1^-, we let μ be the maximal rank of the Jacobian matrix of F in Ω_1^-. We have $0 < \mu < n$ and the set

$$\{z \in \Omega_1^- : \text{Rank} F = \mu\}$$

is an open dense subset of Ω_1^-. By the rank theorem and the fact $F(\Omega_1^-) \not\subset M_2$, we may find a sequence of points $z_k \in \Omega_1^-$ converging to z_0 such that $F(z_k) \not\in M_2$ and for each k the analytic set

$$\{z \in \Omega_1^- : F(z) = F(z_k)\}$$

has an irreducible component $V_k \subset \Omega_1^-$ of dimension $n - \mu > 0$ passing through z_k. Since $F(z_k) \not\in M_2$, it follows that for each k, V_k does not have limit points on M_1. Therefore $\overline{V_k}$ is a closed analytic variety in Ω_1. Now let $z' \in \overline{V_k} \setminus \overline{V_k}$, and we see that

$$f(z') = F(z') = \lim F(z_k) = F(z_0) = w_0$$

This implies that $z' \in f^{-1}(w_0)$. But $f^{-1}(w_0) \setminus \{z_0\}$ is discrete, we see that the sequence of the sets $\overline{V_k}$ clusters on M_1 only at discrete points near z_0. Thus by the generalized continuity principle we conclude that $F(z)$ extends holomorphically to a neighborhood of z_0 in \mathbb{C}^n. As before, it implies that $\text{Jac} F(z) \not\equiv 0$ since F is locally proper.

Using these facts we will prove that F extends holomorphically to a neighborhood of z_0 in \mathbb{C}^n.

When $w_0 \in M_2$ is not a minimally convex point, an important fact is that (see Theorem 7 of [BR4], Theorem 1 of [BR2], [T]) every holomorphic function.
defined on one side of M_2, which admits a distribution limit up to M_2, extends holomorphically to a small open neighborhood of w_0. This fact has been used in [HP] [P].

To be able to prove the holomorphic extension of F when w_0 is not minimally convex, we will construct pieces of proper holomorphic mappings near z_0.

Since $f^{-1}(w_0) \setminus \{z_0\}$ is discrete and $f^{-1}(w_0)$ is closed, we may choose an open neighborhood Ω_1 of z_0 such that

$$\partial \Omega_1 \cap \{f^{-1}(w_0)\} = \emptyset.$$

So we have that $\text{dist}(\partial \Omega_1, \{f^{-1}(w_0)\}) = \delta > 0$.

Now consider

$$V = \{z \in \Omega_1^-, F(z) = w_0\}.$$

Then V is an analytic variety in Ω_1^-. If $\dim V \geq 1$, let V' be an irreducible component of V. Since V only has limit points $f^{-1}(w_0)$ on M_1, by Shiffman’s theorem, V' is an analytic variety in Ω_1. The continuity principle implies that F extends holomorphically to a neighborhood of z_0.

Now we may assume that $\dim V = 0$. This means V is a discrete set in Ω_1^-. We may shrink Ω_1 slightly so that $\partial \Omega_1 \cap V = \emptyset$. Therefore, we have

$$\text{dist}(w_0, F(\partial \Omega_1^- \setminus M_1)) > 0.$$

Then we can choose a very small open neighborhood Ω_2 of w_0 such that

$$(\#) \quad \text{dist}(\partial \Omega_2, F(\partial \Omega_1^- \setminus M_1)) > 0.$$

Since $F(\Omega_1^-) \not\subset M_2$, $F(\Omega_1^-)$ intersects at least one side of M_2. Therefore there are two possibilities as follows. (I) For any small neighborhood Ω_2 of w_0 we have

$$F(\Omega_1^-) \cap \Omega_2^- \neq \emptyset \quad \text{and} \quad F(\Omega_1^-) \cap \Omega_2^+ \neq \emptyset.$$

(II) There is an arbitrarily small neighborhood Ω_2 of w_0 such that

$$F(\Omega_1^-) \subset \overline{\Omega_2^-} \quad \text{or} \quad F(\Omega_1^-) \subset \overline{\Omega_2^+}.$$

We consider the case (I) first, the case (II) can be dealt with similarly.

Consider two nonempty open sets in Ω_1^-:

$$U^+ = F^{-1}(\Omega_2^+) \quad \text{and} \quad U^- = F^{-1}(\Omega_2^-).$$

We claim that the restriction of F to U^+ (resp. U^-) is a proper map from U^+ to Ω_2^+ (resp. Ω_2^-). Indeed, let $F^+ = F|_{U^+}$ and let $K \subset \subset \Omega_2^+$ be a compact subset, we want to prove that $(F^+)^{-1}(K)$ is a compact subset in U^+. If $(F^+)^{-1}(K)$ is not compact in U^+, there exists a point $p \in \partial U^+$ such that $F^+(p) \in K$. Since $K \cap M_2 = \emptyset$, we have $p \not\in M_1$, and by (\#) $p \in \Omega_1^-$. Therefore, there exists a neighborhood O of p, such that $F(O) \subset \Omega_2^+$. Hence p cannot be a boundary point of U^+, a contradiction.

Now we observe that the open set $U^+ \cup U^-$ is, in general, not connected. We make some simple observations that are crucial to what follows in the proof of Lemma 3.
Claim 1: The set $U^+ \cup U^-$ is an open dense set near z_0 in Ω_1^- along M_1. Indeed, if it is not the case, then, for any small neighborhood of z_0, there exists a point $p \in \Omega_1^-$ in that neighborhood, and there exists a small neighborhood O of p contained in Ω_1^- so that $f(O) \subset \partial \Omega_2 \cup M_2$ (since by continuity $F(O) \subset \Omega_2$). This is impossible since $\text{Jac} F(z) \neq 0$ in Ω_1^-.

Claim 2: The open set $U^+ \cup U^-$ has finitely many connected components.

Indeed, if it is not the case, we let U_j be connected components of $U^+ \cup U^-$ for $j = 1, 2, \ldots$. Let $E_j = \partial U_j$ be the boundary of U_j. Since Ω_1^- is bounded, either $\{E_j\}$ accumulates at a neighborhood of an interior point of Ω_1^- where they are disjoint each other, or at a boundary point or both. We prove that neither is possible. Indeed, if E_j accumulates at $p \in \Omega_1^-$ we can assume that $\text{Jac} F(p) \neq 0$ since $\text{Jac} F \neq 0$ and $\{z \in \Omega_1^-, \text{Jac} F(z) = 0\}$ is an analytic variety of complex dimension of $n - 1$. Therefore F is a local biholomorphism in a neighborhood O of p, therefore we may assume $E_j \subset O$ locally near p for all j. On the other hand, we have $F(E_j) \subset \partial \Omega_2 \cup M_2$ for all j, from which we arrive at a contradiction.

If E_j accumulates at $p \in M_1$ we can assume that $\text{Jac} F(p) \neq 0$ since $\{z \in M_1: \text{Jac} F \neq 0\}$ is a dense open subset of M_1. Then the above argument applies since F is a diffeomorphism near p after we extend F smoothly to a neighborhood of p in \mathbb{C}^n.

Now let $\{U_j^+\}_{j=1}^k$ be connected components of U^+, similarly $\{U_j^-\}_{j=1}^l$ for U^-. Let g_j be the restriction of F on U_j^+, and h_j on U_j^-. Therefore $g_j: U_j^+ \rightarrow \Omega_2^+$ and $h_j: U_j^- \rightarrow \Omega_2^-$ are proper holomorphic mappings.

We then consider a proper mapping g from D to G, where the paring (D, G) is either (U_j^+, Ω_2^+) or (U_j^-, Ω_2^-) and g is either g_j or h_j. The graph of g is defined to be

$$\Gamma_g = \{(z, w) \in D \times G, w = g(z)\}.$$

By the Proper Mapping Theorem, g is a covering from $D \setminus g^{-1}(g(V_g))$ to $G \setminus g(V_g)$ of multiplicity m, where

$$V_g = \{z \in D: \text{Jac} g = 0\}.$$

Let G_1, G_2, \ldots, G_m be the local inverses defined on $G \setminus g(V_g)$. Define over $D \times G \setminus g(V_g)$

$$H_i(z, w) = \Pi_{j=1}^m (z_i - (G_j(w))_i).$$

By the removable singularity result of bounded holomorphic functions, H_i extends to be holomorphic on $D \times G$. Denote

$$A_g = \{(z, w) \in D \times G : H_1 = H_2 = \ldots = H_n = 0\}.$$

It is easy to check that $\Gamma_g = A_g$.

Let $\Gamma_{g_j}, \Gamma_{h_j}$ be the graphs of g_j, h_j respectively, and let A_{g_j}, A_{h_j} be associated with g_j, h_j as defined above. We see that the graph of F over $U^+ \cup U^-$ is given by

$$\bigcup_{j=1}^k \Gamma_{g_j} \cup \bigcup_{j=1}^l \Gamma_{h_j},$$

which is equal to

$$\bigcup_{j=1}^k A_{g_j} \cup \bigcup_{j=1}^l A_{h_j}.$$
As we have observed that the open set $U^+ \cup U^-$ is an open dense set along M_1 near z_0 (Claim 1). By the continuity, we conclude that the graph of F over a small one-sided neighborhood of M_1 near z_0 is contained in

$$
\bigcup_{j=1}^k A_{g_j} \cup \bigcup_{j=1}^l A_{h_j}.
$$

Now we want to show that

$$
\bigcup_{j=1}^k A_{g_j} \cup \bigcup_{j=1}^l A_{h_j}
$$

extends to be an analytic variety of pure dimension n in $\mathbb{C}^n \times \mathbb{C}^n$ near (z_0, w_0). Indeed, we notice for each g (either g_i or h_j)

$$
H_i(z, w) = z_i^m + S_{m-1}(w) z_i^{m-1} + \ldots + S_0(w),
$$

where $S_j(w)$ is the j-th symmetric function of $(G_j(w))i$ for $j = 1, \ldots, m$. Since $S_j(w)$ are bounded, and since w_0 is not minimally convex, then $S_j(w)$ extends to be holomorphic in a neighborhood of w_0 in \mathbb{C}^n from either side whenever applicable. Therefore $H_i(z, w)$ extends to be holomorphic to a neighborhood of (z_0, w_0) in $\mathbb{C}^n \times \mathbb{C}^n$, this, in turn, implies that

$$
\bigcup_{j=1}^k A_{g_j} \cup \bigcup_{j=1}^l A_{h_j}
$$

is an analytic variety of pure dimension n in a neighborhood of (z_0, w_0), which implies that F extends to be a correspondence to a neighborhood of z_0. Lemma 1 then gives the holomorphic extension of F at z_0. This completes the proof of Lemma 2 for the case (I). Case (II) can be proved equally.

Proof of Theorem 2. Let $z_0 \in M_1$, $w_0 = f(z_0) \in M_2$. Since M_1 is minimal at z_0, by Treppeau’s Theorem, f extends holomorphically to one side neighborhood of M_1, say Ω_1^-, the extension is denoted by $F(z)$. Therefore $F(z): \Omega_1^- \rightarrow \mathbb{C}^n$ is a holomorphic mapping, such that $F = f$ on M_1. If w_0 is minimally convex, then the complex Hopf Lemma of [BR3] and the theorem of [BR1] and [DF] imply the f extends holomorphically to a neighborhood of z_0 since $\text{Jac}F \neq 0$. When w_0 is not minimally convex then Lemma 2 applies. This completes the proof.

Corollary 2 is a special case of Theorem 2 since a real analytic hypersurface of finite type of D’Angelo is essentially finite and contains no nontrivial complex varieties.

Now we give a proof of Corollary 3.

Proof of Corollary 3. It suffices to prove that $f^{-1}(f(p)) \setminus \{p\}$ is discrete. Let $q \in f^{-1}(f(p)) \setminus \{p\}$ but $q \neq p$. We want to prove that q is an isolated point. Since f is real analytic at q by the assumption, then f extends holomorphically to a neighborhood of q, say the extension as F. By a result of [BR2], the Hopf Lemma holds at q for the normal component of F. Let ρ be a real analytic defining function of M_2 near w_0. By the Hopf Lemma just mentioned at q, it is easy to see, by changes of coordinates at both q and $f(q)$, that $\rho \circ F$ is again a defining function of M_1 near q. Therefore the equation

$$
\{ z \in \mathbb{C}^n : \rho \circ F(z) = 0 \}
$$

defines a real analytic hypersurface near q, which is identical to M_1 near q. This implies that $F^{-1}(f(q))$ is contained in M_1. Since M_1 is of finite type of D’Angelo and $F^{-1}(f(q))$ is a complex analytic variety, we conclude that q is a isolated point in M_1. Theorem 2 then applies at p since $f^{-1}(f(p)) \setminus \{p\}$ is discrete.

In order to prove Corollary 4, we prove the following first.
Lemma 3. Let \(f : M_1 \to M_2 \) be a finite to one smooth CR mapping between smooth real hypersurfaces that extends holomorphically to \(\Omega_1^- \) as \(F \). Given \(z_0 \in M_1 \) and \(f(z_0) = w_0 \in M_2 \). If \(M_2 \) is minimal but not minimally convex at \(w_0 \), then \(f \) extends holomorphically to a neighborhood of \(z_0 \) in \(\mathbb{C}^n \).

Proof. By the proof of Lemma 2, it suffices to prove the following (I) \(F(\Omega_1^-) \not\subset M_2 \), and (II) \(\text{Jac} f(z) \not\equiv 0 \).

Indeed, if \(F(\Omega_1^-) \subset M_2 \) then \(\text{Jac} F(z) \equiv 0 \) in \(\Omega_1^- \). This implies that the Jacobian matrix of the map \(f : M_1 \to M_2 \) considered as a real map of the real manifolds is of maximal rank \(\mu \) such that \(0 < \mu < 2n-1 \). Therefore by the rank theorem, there exists a point \(w' \) near \(w_0 \) such that \(f^{-1}(w') \) is a manifold of dimension \(n - \mu \), a contradiction to finite to one. (II) follows too.

Proof of Corollary 4. First we observe that \(F(\Omega_1^-) \not\subset M_2 \) by the proof of Lemma 3. If \(w_0 \) is not minimal, then, by a unique continuation result for holomorphic mappings in (Theorem 2, [P]), \(F \) does not vanish to infinite order at \(z_0 \) in the normal component. Then \(F \) extends holomorphically to a neighborhood of \(z_0 \). The rest of the proof follows as in Theorem 2 by Lemma 3.

References

[B]. S. Bell, Analytic hypoellipticity of the \(\partial \)-Neumann problem and extendability of holomorphic mappings, Acta. Math. 147 (1981), 109-116.

[BBE]. Bedford and S. Bell, Extension of proper holomorphic mappings past the boundary, Manuscr. Math. 50 (1985), 1-10.

[BBR]. Baouendi, S. Bell, and L. P. Rothschild, Mappings of three dimensional CR manifolds and their holomorphic extension, Duke Math. Jour. 56 (1988), 503-530.

[BJT]. Baouendi, H. Jacobowitz, and Treves, On the real analyticity of CR mappings, Ann. of Math. 122 (1985), 365-400.

[BR]. Baouendi and L.P. Rothschild, Germs of CR maps between real analytic hypersurfaces, Invent Math 93 (1988), 481-500.

[BR]. Baouendi and L. P. Rothschild, Geometric properties of smooth and holomorphic mappings between surfaces in complex spaces, Jour. of Differ. Geom. 31 (1990), 473-499.

[BR]. Baouendi and L. P. Rothschild, A generalized complex Hopf lemma and its applications to CR mappings, Invent Math 111 (1993), 331-348.

[BR]. Baouendi and L. P. Rothschild, Normal forms for generic manifolds and holomorphic extension of CR functions, J. Differ. Geom. 25 (1987), 431-467.

[DF]. Diederich, J. Fornaess, Proper holomorphic mappings between real analytic pseudoconvex domains in \(\mathbb{C}^n \), Math. Ann 282 (1988), 681-700.

[DW]. Diederich and S. Webster, A reflection principle for degenerate real hypersurfaces, Duke Math. J. 47 (1980), 835-843.

[HP]. Juang and Y. Pan, On proper holomorphic mappings between real analytic domains in \(\mathbb{C}^n \), Duke Math. Journal (to appear).

[L]. H. Lewy, On the boundary behavior of holomorphic mappings, Acad. Naz. Linc. 35 (1977), 1-8.

[P]. Y. Pan, Real analyticity of CR homeomorphisms between real analytic hypersurfaces in \(\mathbb{C}^2 \), Proc. A. M. S. 123 (1995), 373-380.

[Pi]. S. Pinchuk, On analytic continuation of biholomorphic mappings, Math. USSR Sb. 27 (1975), 375-392.

[Pi2]. S. Pinchuk, CR transformations of real manifolds in \(\mathbb{C}^n \), Indiana. Math. J. 41 (1992), 1-16.

[T]. A. Tumanov, Extending CR functions on manifolds of finite type to a wedge, Mat. Sbornik 136 (1988), 128-139.

[Tr]. J. Trepreau, Sur le prolongement holomorphe des functions CR definis sur une hypersurfsce reelle de classe \(C^2 \) dans \(\mathbb{C}^n \), Invent. Math. 83 (1986), 583-592.