HIV incidence among people who inject drugs in the Middle East and North Africa: mathematical modelling analysis

Ghina R Mumtaz1,2, Susanne F Awad1, Ali Feizzadeh3, Helen A Weiss4, and Laith J Abu-Raddad1,5,6

Corresponding author: Ghina Mumtaz, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK. Tel: +(961) 7166-1176. (ghina.mumtaz@gmail.com) and Laith J Abu-Raddad, Weill Cornell Medicine - Qatar, Qatar Foundation - Education City, P.O. Box 24144, Doha, Qatar. Tel: +(974) 4492-8321. (lja2002@qatar-med.cornell.edu)

Abstract

Introduction: Emerging HIV epidemics have been documented among people who inject drugs (PWID) in the Middle East and North Africa (MENA). This study estimates the HIV incidence among PWID due to sharing needles/syringes in MENA. It also delineates injecting drug use role as a driver of the epidemic in the population, and estimates impact of interventions.

Methods: A mathematical model of HIV transmission among PWID was applied in seven MENA countries with sufficient and recent epidemiological data and HIV prevalence ≥1% among PWID. Estimations of incident and/or prevalent infections among PWID, ex-PWID and sexual partners of infected current and ex-PWID were conducted.

Results: The estimated HIV incidence rate for 2017 among PWID ranged between 0.7% per person-year (ppy) in Tunisia and 7.8% ppy in Pakistan, with Libya being an outlier (24.8% ppy). The estimated number of annual new infections was lowest in Tunisia (n = 79) and Morocco (n = 99), and highest in Iran and Pakistan (approximately n = 6700 each). In addition, 20 to 2208 and 5 to 837 new annual infections were estimated across the different countries among sexual partners of PWID and ex-PWID respectively. Since epidemic emergence, the number of total ever acquired incident infections across countries was 706 to 90,015 among PWID, 99 to 18,244 among sexual partners of PWID, and 16 to 4360 among sexual partners of ex-PWID. The estimated number of prevalent infections across countries was 341 to 23,279 among PWID, 119 to 16,540 among ex-PWID, 67 to 10,752 among sexual partners of PWID, and 12 to 2863 among sexual partners of ex-PWID. Increasing antiretroviral therapy (ART) coverage to the global target of 81% – factoring in ART adherence and current coverage – would avert about half of new infections among PWID and their sexual partners. Combining ART with harm reduction could avert over 90% and 70% of new infections among PWID and their sexual partners respectively.

Conclusions: There is considerable HIV incidence among PWID in MENA. Of all new infections ultimately due to injecting drug use, about 75% are among PWID and the rest among sexual partners. Of all prevalent infections ultimately attributed to injecting drug use as epidemic driver, about half are among PWID, 30% among ex-PWID and 20% among sexual partners of PWID and ex-PWID. These findings call for scale-up of services for PWID, including harm reduction as well as testing and treatment services.

Keywords: HIV; people who inject drugs; Middle East and North Africa; incidence; prevalence; mathematical modelling; intervention

Additional Supporting Information may be found online in the Supporting information tab for this article.
The Middle East and North Africa (MENA), which we define to include 24 countries from Morocco in the West to Afghanistan and Pakistan in the East, is one of few regions where the number of new HIV infections is increasing [3]. The vast majority of these infections seem to be occurring among KPs, including people who inject drugs (PWID) and their sexual partners [3]. Emerging HIV epidemics have been recently documented among PWID in one-third of MENA countries, with a risk environment suggesting potential for further HIV spread [4,5]. As a central population to the epidemic in several countries [4], PWID are a priority population if the Fast-Track targets are to be achieved in this region [2].

PWID remain, globally and overall more so in MENA, one of the hardest-to-reach and most stigmatized KPs, which impedes the collection of epidemiological data (both risk group size estimates and biological measures) to track PWID through the HIV cascade and inform policy [2,6-8]. Despite noticeable progress in the collection of HIV prevalence data in MENA, HIV incidence data remain scarce among all populations groups [4]. Among PWID, only three cohort-type HIV incidence studies have been conducted; in Afghanistan [9], Pakistan [10] and Iran [11], and all indicated substantial incidence [4]. Quantifying HIV incidence among PWID in MENA is urgently needed to provide baseline data to track progress towards UNAIDS target of reducing the number of new HIV infections among young people and adults by 75% by 2020 [2].

In this study, we use mathematical modelling to estimate, at country-level in MENA, HIV incidence among PWID due to non-sterile drug injections. We also estimate HIV incidence among their sexual partners due to heterosexual sex with infected PWID, and delineate the role of injecting drug use as a driver (that is the factor behind direct and onward transmission) of the HIV epidemic in the population. Our approach is comprehensive and aims to explore and quantify the different HIV transmission pathways in the population that are initiated by injecting drug use.

Specific objectives are to estimate: (1) the number of incident HIV infections among PWID and their sexual partners, (2) the total number of HIV infections that were acquired among PWID and their sexual partners since the emergence of the PWID HIV epidemic, (3) the number of HIV infections among ex-PWID and their sexual partners, where ex-PWID are individuals who acquired HIV infection while injecting but have stopped injecting in the past year, and hence could be missed by programmes targeting current drug users, and (4) the impact of select interventions on HIV incidence among PWID and their sexual partners.

2 | METHODS

This study included seven MENA countries with sufficient epidemiological data and a current HIV prevalence ≥1% among PWID [4]. These are Afghanistan, Egypt, Iran, Libya, Morocco, Pakistan, and Tunisia. The remaining 16 MENA countries have either zero or unknown HIV prevalence among PWID [4], and hence estimations of incidence were not possible in these countries.

2.1 | Description of the model

We adapted the Kwon et al. mathematical model of parenteral HIV transmission among PWID to estimate HIV incidence [12].

This is a cohort-type model that assumes that sharing of needles/syringes occurs in groups of specific size, where PWID share in random order, and where each PWID injects once per sharing event. HIV transmissions through sharing needles/syringes can then occur in groups containing an infected person.

The model uses input data on HIV prevalence, number of times a needle/syringe is reused, and levels of effective syringe cleaning to estimate number of HIV transmissions per sharing event. The model then estimates HIV incidence in the total PWID population using data on size of the PWID population, frequency of injecting, and levels of sharing. We extended the model by adjusting for the effect of ART (ART efficacy and country-specific coverage levels in Tables 1 and 2 respectively) and allowing heterogeneity in injecting risk behaviour. We also allowed the number of times a needle/syringe is reused to be a function of the sharing group size (model structure and equations in Additional file 1).

To account for heterogeneity in risk behaviour, we assumed that the size of the sharing group in each country follows a gamma distribution. This is a widely used probability distribution to model heterogeneity in diverse biological, ecological and physical phenomena. Since the gamma distribution is right skewed, it assumes that the majority of the PWID population share injections in smaller groups whereas a small fraction shares in larger groups (such as at shooting galleries), as suggested by behavioural and qualitative studies [4,8]. In the absence of clear data to parameterize this variability in injecting risk behaviour, the parameters of the gamma distribution were informed by available data on the variability in sexual risk behaviour and networking, and assumed that the variance of the gamma distribution is equal to its mean [13].

We extended the model to include onward transmission to sexual partners of PWID whereby infected PWID may transmit the infection to their heterosexual sexual partners through unprotected sex. The number of incident infections among sexual partners of PWID was estimated using input data on the proportion of PWID who had a sexual partner in the last year, HIV prevalence among PWID and among their sexual partners, and the annual number of unprotected coital acts per partnership (Additional file 1).

2.2 | Data sources

The model parameters were based on recent empirical HIV natural history and epidemiology data (Table 1). Whenever available, country-specific parameter values were used, as informed mainly by a recent systematic review of HIV and PWID in MENA [4]. One example is HIV prevalence data where we used, for each MENA country, the most recent representative HIV prevalence among PWID as identified through the review [4]. Data from integrated bio-behavioural surveillance surveys were preferred over prevalence data generated through other convenience cross-sectional studies. National-level estimates from these studies, when available, were used. In countries with specific location (such as city-based) prevalence measures, the mean HIV prevalence was calculated across these measures. In four out of the seven countries included in our study (Afghanistan, Iran, Pakistan and Tunisia), HIV prevalence data came from multiple cities/provinces, and in two of these countries (Iran and Pakistan), the studies had a national coverage with 10 to 16 cities/provinces included [4].
Table 1. Model assumptions in terms of parameter values

Parameter	Value	Source
Biological parameters		
Transmission probability per unsterile injection	0.007	Systematic review and meta-analysis [39] and long-term cohort study [40]
Transmission probability per unprotected coital act (non-commercial)	0.003	Systematic review and meta-analysis [41]
Efficacy of ART in reducing HIV transmission	0.96	Clinical trial of treatment for prevention and other observational data [42,43]
Effectiveness of ART in reducing HIV transmission	0.69	Calculated as the product of ART efficacy and adherence
Epidemiology parameters		
Total number of PWID	See Table 2	MENA PWID data [4,44-48]
ART coverage	See Table 2	UNAIDS country estimates for ART coverage among all people living with HIV/AIDS in 2015 [49]
HIV prevalence among PWID	See Table 2	Bio-behavioural survey in Iran [50], consistent with similar modelling work in the region [29]
HIV prevalence among sexual partners	One-third of HIV prevalence in PWID	
Natural history parameters		
Natural mortality rate per year	0.020	Cohort studies [51,52]
HIV disease mortality rate per year	0.091	UNAIDS data compilation [53] and cohort studies [54-56]
Behavioural parameters		
Adherence of PWID to ART	0.72	Systematic review and meta-analysis [57]
Stopping injection rate per year	Lib: 0.04, All countries: 0.10	MENA PWID data [4]
Number of years of injecting after seroconversion	Lib: 6.8 years, All countries: 4.7 years	Estimated from the natural mortality rate, HIV disease mortality rate and stopping injection rate
Average size of sharing group (# of sharing partners)	Ira: 3, Pak: 2, Others: 3	Iran and Pakistan: model fitting to epidemiological data
Proportion of PWID who inject daily	0.50	Iran and Pakistan: country-specific epidemiological data [4]
Number of injections per PWID per day among those who inject daily	Ira: 3.3, Pak: 2.2, Others: 2.2	Others: median of all MENA measures [4]
Average time between two subsequent injections for PWID who inject less frequently than daily	14 days	Global survey data [12,58]
Average frequency of injecting per PWID per year	Ira: 602, Pak: 402, Others: 402	Calculated as a weighted average of daily and non-daily injectors [12]
Proportion of PWID who share injections	Afg: 0.29, Egy: 0.40, Ira: 0.31, Lib: 0.45, Mor: 0.35, Pak: 0.60, Tun: 0.30	MENA PWID data [4]
Proportion of the injections that are shared for PWID who share injections	Egy: 0.62, Ira: 0.28, Mor: 0.52, Pak: 0.40, others: 0.40	Egypt, Iran and Pakistan: country-specific epidemiological data [4]
Average number of times a shared needle/syringe is used before disposal	Equal to the size of the sharing group, with a maximum value of 10	Others: calculated using other MENA measures [4]
Libya is the only country where a high quality integrated bio-behavioral survey was conducted in only one city, Tripoli, whereas two cities contributed to the prevalence in Egypt and Morocco [4] (Table 2).

Country-specific parameter values were complemented by global and MENA-wide aggregate data [4], as needed (Table 1). Model fitting was used to derive one parameter, the average size of the sharing group (mean of the gamma distribution). We used a deterministic compartmental model [14] to fit the trend in HIV prevalence in two countries with sufficient trend data (Iran and Pakistan) [4], and then used the estimated incidence rate and the adapted Kwon et al. model to fit the value of the sharing group size (Table 1). Fitting was implemented by minimizing the residual sum of squares between all data points and model predictions [15].

2.3 Plan of analysis

We conducted, in each of the seven countries included, the following estimations that capture the different HIV transmission pathways arising from injecting drug use in the population (Figure 1A). They include estimates of incident and/or prevalent infections among PWID, ex-PWID, and sexual partners of infected current and ex-PWID. We estimated incidence due to heterosexual sex between infected PWID and their partners. HIV incidence was defined as the number of new infections per year, and incidence rate the number of new infections per susceptible person per year.

2.3.1 Current year estimations

The model was applied at country-level to estimate HIV incidence and rate among PWID for the current year. Estimated incidence among PWID was compared to the number of incident HIV infections in the total population as estimated by UNAIDS Spectrum model [16]. The number of incident infections among sexual partners of PWID and of ex-PWID living with HIV for the current year was estimated. Separate parameterization and estimations were made for regular and non-regular sexual partners, with their sum reported in the results.

2.3.2 Analysis of past infections

We estimated the number of HIV infections that have ever been acquired among PWID in each country (past infections; that is infections that occurred before the current year) by retracing the course of the HIV epidemic among PWID starting from the year of epidemic emergence, informed by epidemiological data [4] (Table 2). We started with 1% HIV prevalence among PWID at the start of the epidemic HIV transmission and, in each country, ran the model the number of times equal to years since HIV epidemic emergence. HIV prevalence in each year was recalculated by adding the number of incident infections in this year to the number of prevalent infections from previous years, while adjusting for PWID who (a) stopped injecting, or (b) died from “natural” mortality (all causes, including overdose), or (c) died from HIV disease mortality.

Iterating this process over time provides an estimate for HIV prevalence in the last year. As the observed HIV prevalence tended to be higher than the estimated prevalence in the last year, we increased the level of risk behaviour in the first iteration, accounting for higher risk behaviour in earlier years of the epidemic, and used linear interpolation to reach observed HIV prevalence levels at the last year. A sensitivity analysis was conducted in one country, Iran, assuming an exponential, rather than linear, decrease in injecting risk behaviour over time. In Libya, the measured HIV prevalence (87%...
Table 2. HIV infection estimations among people who inject drugs and their heterosexual sex partners in the Middle East and North Africa

Country	Afghanistan	Egypt	Iran	Libya	Morocco	Pakistan	Tunisia	
HIV PWID epidemic characteristics								
Total number of PWID	n	18,820	90,809	1,85,000	4446	3000	117,632	11,000
Date of HIV epidemic emergence among PWID	Year	2009	2008	2001	2000	2008	2004	2009
HIV epidemic state among PWID	Level-trend	Concentrated - Emerging	Concentrated - Emerging	Concentrated - Established	Concentrated - Unknown	Concentrated - Emerging	Concentrated - Emerging	Low-level
Most recent representative HIV prevalence	% (95% CI)	4.4 (3.3 to 5.7)	7.2 (5.2 to 9.6)	15.1 (13.7 to 16.6)	87.1 (81.5 to 91.9)	11.5 (9 to 14.5)	27.2 (26.0 to 28.5)	3.1 (3.1 to 1.9)
HIV incidence in the total population	n (range)	1000 (500 to 2700)	1500 (1000 to 2800)	7100 (4400 to 16,000)	No data	1200 (1000 to 1600)	17,000 (12,000 to 30,000)	500 (200 to 500)
Number of PLHIV	n	6900	11,000	73,000	No data	24,000	100,000	2600
ART coverage among PLHIV	%	5.3	18.7	8.7	No data	16.7	36.7	6.1
Current year estimations of:								
HIV incidence rate in PWID	% ppy (95% UI)^c	1.2 (0.8 to 2.4)	3.8 (2.1 to 6.6)	4.4 (2.3 to 7.1)	248 (13.3 to 41.3)	3.7 (2.0 to 6.3)	7.8 (4.3 to 13.4)	0.7 (0.4 to 1.4)
HIV incidence in PWID	n (95% UI)^c	214 (124 to 446)	3217 (1639 to 5847)	6773 (3328 to 11,842)	142 (73 to 262)	99 (49 to 175)	6679 (3369 to 11,997)	79 (41 to 152)
Contribution of PWID to total incidence	% (95% UI)^c	21.4 (12.4 to 44.6)	NA	95.4 (46.9 to 100)	No data	8.2 (4.1 to 14.6)	39.3 (19.8 to 70.6)	15.9 (8.2 to 30.4)
HIV incidence in sexual partners of infected current PWID	n (95% UI)^c	62 (33 to 109)	442 (226 to 787)	1977 (1112 to 3218)	193 (109 to 311)	20 (11 to 35)	2208 (1239 to 3566)	22 (10 to 42)
HIV incidence in sexual partners of infected ex-PWID	n (95% UI)^c	15 (9 to 26)	87 (49 to 148)	720 (441 to 1095)	No data	5 (3 to 8)	837 (521 to 1261)	6 (3 to 11)
Estimated total number of incident HIV infections, since epidemic emergence, among:								
PWID	n	1753	12,257	82,069	No data	706	90,015	764
Sexual partners of infected current PWID	n	331	1892	17,369	No data	99	18,244	125
Sexual partners of infected ex-PWID	n	54	301	4360	No data	16	4338	21
(17]) was not consistent with reported levels of current risk behaviour and hence, estimations of past exposures were not possible. The past infections model was also used to estimate the number of incident cases that ever happened among sexual partners of infected current and ex-PWID since HIV epidemic emergence. The prevalent number of infected current/ex-PWID, and their partners were estimated.

2.3.3 Uncertainty analysis

Multivariate uncertainty analysis was conducted to specify the range of uncertainty in the estimated HIV incidence for the current year among PWID and their sexual partners. Two sets of uncertainty analyses were conducted, one where model parameters were varied within 25% of their point estimates, as a reasonable variation based on existing similar modelling studies [18,19], and another more conservative analysis with 50% variation around model parameters values. In both, HIV prevalence was varied within its measured 95% confidence interval (Table 2). We implemented 10,000 runs using Monte Carlo sampling from uniform probability distributions for the uncertainty in parameters. 95% uncertainty intervals (UI) for the estimates were determined.

2.3.4 Impact of interventions

We examined the effect of select interventions targeted at PWID: (1) Reducing current sharing of needles/syringes by 25%, 50%, and 75% on HIV incidence among PWID. (2) Introducing opioid substitution therapy (OST) resulting in 10% reduction in the number of PWID and a 10%, 20%, or 30% reduction in the frequency of injecting, on HIV incidence among PWID. (3) Expanding ART coverage among PWID based on most recent test-and-treat World Health Organization (WHO) guidelines [20,21] to reach coverage levels of 25%, 50%, and the global target of 81% [3], on HIV incidence among PWID and their sexual partners, and (4) Increasing current condom use by 25%, 50%, and 75% on HIV incidence among sexual partners. Of note, that the impact of ART is dependent on adherence and existing coverage levels in each country.

We also examined the impact of two packages that include a combination of the above-mentioned interventions. These packages bracket the realm of plausibility for interventions within the MENA context and have been reached, at least in part, in other regions, such as the impressive scale-up of ART in resource-limited settings in sub-Saharan Africa. The less optimistic scenario includes reducing sharing by 25%, reducing the number of PWID by 10% and the frequency of injecting by 10% (effect of OST), increasing ART coverage to 50%, and increasing condom use by 25%. The more optimistic scenario includes reducing sharing by 75%, reducing the number of PWID by 10% and the frequency of injecting by 30%, increasing ART coverage to 81%, and increasing condom use by 75%.

3 RESULTS

The size of the sharing group as estimated through model fitting was two in Pakistan and three in Iran (Table 1). We used
a sharing group size of three for the remaining countries, as a rounded-up average of our estimates in Pakistan and Iran. This sharing group size is in line with both, the global literature [12] and behavioural data from MENA [22,23].

Results of all main estimations of HIV incidence among PWID and their sexual partners are in Table 2. Table 2 features also results of the uncertainty analysis with 25% variation around model parameters, whereas the impact of a 50% variation on our estimations can be found in Additional File 1, Table 2. The estimated incidence rate among PWID was lowest in Tunisia and Afghanistan at 0.7% (95% UI: 0.4% to 1.4%) and 1.2% (95% UI: 0.8% to 2.4%) per person-year (ppy) respectively, and highest in Pakistan at 7.8% ppy (95% UI: 4.3% to 13.4%). Libya, at an HIV prevalence of 87% among PWID [17], was an outlier with an estimated incidence rate of 24.8% ppy (95% UI: 13.3% to 41.3%). The incidence rate in remaining countries was around 4% ppy. The estimated number of incident infections for the current year was lowest in Tunisia (n = 79) and Morocco (n = 99), and highest in Iran and Pakistan (around 6700 each). These PWID incident infections represent over 90% of all incident cases in the total population in Iran, 39% in Pakistan, 16% to 21% in Tunisia and Afghanistan, and 8% in Morocco. In addition, 20 to 2208 and 5 to 837 new infections were estimated at country-level among sexual partners of current and ex-PWID for this year respectively (Table 2).

In total, we estimated that about 82,000 to 90,000 infections happened among PWID since the start of the PWID HIV epidemic in Iran and Pakistan each; over 12,250 happened in Egypt; 1753 happened in Afghanistan; and over 760 happened in Morocco and Tunisia each (Table 2). Similarly, up to 18,244 and 4360 HIV infections were among sexual partners of current and ex-PWID respectively, in each of Iran and Pakistan since the start of the PWID HIV epidemic. After accounting for stopping injection and mortality, we estimated that there are currently, at country-level, 347 to 32,279 prevalent HIV infections among current PWID, 119 to 16,540 among ex-PWID, and 67 to 10,752 and 12 to 2863 among sexual partners of current and ex-PWID respectively. The lowest numbers of prevalent infections were in Morocco and Tunisia, while the highest were in Iran and Pakistan (Table 2). Sensitivity analysis indicated a minor impact of the change in the distribution of injecting risk behaviour over the course of the HIV epidemic on these findings (Additional File, Table 3).

The impact of interventions on HIV incidence among PWID and/or their sexual partners is in Table 3 and Figures 2 and 3. Reducing sharing by 25%, 50% and 75% respectively was associated with a similar proportional reduction in the number of incident infections among PWID. Reducing sharing by 25% would avert 20 to 53 infections per year in Afghanistan, Libya, Morocco and Tunisia; over 800 infections in Egypt; and about 1700 infections in Iran and Pakistan each. A reduction in sharing by 75% would avert over 5000 infections per year in each of Iran and Pakistan (Table 3).

Introducing OST programmes with various coverage levels was found to lead to 19% to 37% reduction in the number of incident infections among PWID. A reduction in injecting frequency by 30% and in the number of PWID by 10%, as a result of OST, would avert up to 80 infections per year in

Figure 1. HIV transmission pathways in the population arising from injecting drug use. Panel (A) displays the various HIV transmission pathways that are due to injecting drug use, starting among people who inject drugs (PWID) and percolation of infection to the wider non-injecting community – mainly sexual partners of current and ex-PWID. The blue oval refers to the PWID population, while the white space around it refers to the general population. Black arrows refer to transmission chains. Panels (B) and (C) provide one example from Pakistan for the number of incident (B) and prevalent (C) infections that are caused by these transmission pathways and that affect the different members of the injecting and non-injecting communities.
Afghanistan, Libya, Morocco and Tunisia; over 1100 infections in Egypt; and about 2500 infections in each of Iran and Pakistan (Table 3).

Increasing ART coverage to 25%, 50% and 81% of all infected PWID would reduce incidence among PWID and their sexual partners at country-level by 5% to 14%, 12% to 32% and 40% to 54% respectively (Table 3, Figure 2). In all seven countries combined, 50% ART coverage would result in 5100 and 1400 infections averted per year among PWID and their sexual partners respectively (Figure 2). Increasing condom use by 25%, 50% and 75% would result in 11%, 21% and 32% reduction in the number of annual infections among sexual partners of PWID (Table 3).

Finally, implementing the less optimistic intervention package would avert 57% (n = 40 to 3906 at country-level) and 43% (n = 6 to 978) of incident infections per year among PWID and their sexual partners respectively, while the more optimistic scenario would avert 93% (n = 73 to 6272) and 71% (n = 13 to 1576) of these infections respectively (Table 3, Figure 3).

4 | DISCUSSION

A relatively high HIV incidence rate among PWID was found in most MENA countries with at least 1% prevalence among PWID (range: 4% to 8% ppy), supporting recent analyses indicating concentrated and at times rapidly growing HIV epidemics among PWID [4]. A lower incidence rate of about 1% ppy was estimated in Afghanistan, where epidemiological data points to a nascent localized HIV epidemic among PWID [4], and in Tunisia where the PWID HIV epidemic appears to be at low level [4]. Libya stood out with an estimated incidence rate of 25% ppy. This reflects the very high 87% HIV prevalence among PWID found in the best study in this country – one of the highest prevalence ever reported among PWID.
Figure 2. Effect of expanding antiretroviral therapy coverage (ART) on HIV incidence among people who inject drugs (PWID) and their heterosexual sex partners in the Middle East and North Africa (MENA). The graphs display, at various ART coverage levels, the number of new HIV infections and the number of infections averted in comparison with baseline (current year) estimations of HIV incidence among PWID and their heterosexual sex partners.

Figure 3. Effect of two comprehensive intervention packages on HIV incidence among people who inject drugs (PWID) (A) and their heterosexual sex partners (B) in all seven Middle East and North Africa (MENA) countries. The package with the less optimistic scenario includes reducing sharing by 25%, reducing the number of PWID by 10% and reducing injecting frequency by 10% (effect of opioid substitution therapy), increasing ART coverage to 50%, and increasing condom use by 25%. The package with the more optimistic scenario includes reducing sharing by 75%, reducing the number of PWID by 10% and reducing injecting frequency by 30%, increasing ART coverage to 81%, and increasing condom use by 75%. The graphs display the number of new HIV infections and the number of infections averted in comparison with baseline (current year) estimations of HIV incidence among PWID and their heterosexual sex partners.
globally, a figure difficult to interpret and generalize for all of Libya in view of the limited data in this country [4,17].

Our estimates of HIV incidence among PWID are overall consistent with our epidemiological understanding of the HIV epidemic among PWID in each country [4], and are congruent with the estimated size of the epidemic in the whole population per UNAIDS Spectrum estimates [16]. For example, PWID contributed the vast majority of HIV infections in Iran, a country with an established HIV epidemic among PWID [4,5,14] and where injecting drug use is the main driver of the epidemic at the national level [4,24]. Similarly, a small contribution of PWID to total incidence was found in Tunisia and Morocco; two countries where the HIV epidemic is mainly focused among men who have sex with men (MSM) and commercial sex networks respectively [25-29].

We also found that a substantial number of HIV infections in the general population are linked to infections among PWID, due to individuals who acquired the infection in the past through drug injection, but are no longer injecting, and due to onward transmission to sexual partners. We estimated that about 30% of incident HIV infections that are due to injecting drug use are among sexual partners of current/ex-PWID, and about half of prevalent infections are among ex-PWID and sexual partners of current/ex-PWID (Figure 1B and C). Figure 1 highlights how injecting drug use drives HIV transmission not only among current PWID but also among individuals with no or no recent injecting drug use. Our findings agree with recent Mode of Transmission analyses in the region that estimated a substantial number of HIV infections among sexual partners/spouses of persons engaging in HIV-high-risk behaviour such as PWID, clients of female sex workers and MSM [24,27,29].

Despite the growing epidemics among PWID, the HIV response remains limited in MENA. By 2014, needle and syringe exchange programmes (NSP) were available in nine countries, and OST in five [30]. MENA has the lowest ART coverage globally at a median of 17% in 2015 [31], and could not reach the 2015 mid-term regional objective of 50% coverage under WHO’s initiative to end MENA’s HIV treatment crisis [32]. The treatment cascade among PWID seems to suggest an even harsh reality [33]. The striking gap between regional figures and the 90-90-90 target is of great concern, especially since the epidemic in this region is strongly driven by injecting drug use. The punitive legal environment, stigma around HIV testing, and fear of discrimination are all challenges that hamper uptake of treatment by PWID [3]. These challenges need to be addressed to scale-up testing, access to ART, and retention in care. We estimated that increasing ART coverage to the global target of 81% (90% of 90%), would alone avert 30% of incident infections among PWID and their sexual partners. Combining ART scale-up with harm reduction – including NSP, OST and condom distribution – as part of an optimistic package would avert over 90% and 70% of infections among PWID and their sexual partners respectively (Figure 1). Furthermore studies and considerations – including a discussion dialogue with programme managers, NGOs, affected communities, and other stakeholders – are needed to assess implementation and coverage of these and other interventions, as well as potential barriers and challenges within the MENA context, to reach the desired targets.

There were several limitations in our study. Though we used an elaborate mathematical model structure, our results may depend on the model structure used. For example, we did not account for sexual transmission of HIV among PWID, for anal sex with same-sex partners, and for further onward transmission beyond the direct spouses/sexual partners. This implies that the impact of PWID as drivers of HIV infection in the population is even larger than what we have estimated with our model. The model also assumes essentially a static structure of injecting groups and does not strictly factor in the full dynamics of partnership formation and dissolution.

Furthermore, estimations were possible in only seven MENA countries with sufficient epidemiological data indicating HIV transmission among PWID. In a number of countries, there are no data about HIV prevalence in PWID, and these countries were naturally not included in our analysis. In others such as Lebanon and Jordan, some studies have been conducted but, in the samples collected, there were no HIV-positive cases. While there might be hidden HIV epidemics among PWID, or some small background transmission, these were not captured by available studies. This, however, may also truly reflect that HIV has not yet been sufficiently introduced to PWID networks to start epidemic transmission in these countries.

We also assumed that available HIV bio-behavioural data in each included country is representative of the epidemic at national level and also assumed that current HIV prevalence is the same as most recent representative HIV prevalence. However, these assumptions are only approximately valid. In countries where HIV prevalence data came from only a few geographical localities, our estimates can be biased if these available data are not representative of HIV prevalence among PWID at the national level. For example, in Libya, the HIV prevalence data came from one city, Tripoli [41], and the scale of the epidemic in other parts of Libya is unknown. Similarly, HIV prevalence in each of Cairo and Alexandria was 7%, but no other localities in Egypt were covered by the IBBSS [58]. In Morocco, we used average HIV prevalence of two cities where studies were conducted, and estimated an incidence rate of 3.7% ppy. Running our model separately in the two localities generated an incidence of 0.1% ppy in Tanger and 7.4% ppy in Nador, highlighting the diversity of the epidemic within Morocco (data not shown). There is however solid epidemiological evidence that the HIV PWID epidemic in both Iran and Pakistan has reached high levels at the national level [4].

Also, as with all modelling work, the robustness of our findings depends on the quality of input data. While we used the best-available data in the region, including many quality integrated bio-behavioural surveillance surveys (IBBSS) [4], the availability and quality of data varied between countries, and there were no MENA-specific data on some parameters. Noticeable decrease in Global Fund funding for the conduct of IBBSS in the region, as well as rising conflicts with competing national priorities in several countries, have contributed to some of these data gaps. To accommodate for the uncertainty in input parameters, we conducted uncertainty analyses with wide ranges for parameters.

Despite these limitations, this study fills an important gap in estimating HIV infection levels in MENA. HIV-related estimates in MENA are typically produced through established
We estimated substantial HIV incidence among PWID in MENA. This is mainly because some of the largest countries, such as Iran and Pakistan, are affected by HIV PWID epidemics with high HIV prevalence. In several countries, PWID were found to contribute dominantly to HIV incidence. Concerted efforts are needed to bypass persistent barriers from governments, society, and health systems to improve service delivery to PWID and their retention throughout the cascade [6]. Comprehensive programmes that include ART, NSP, OST, voluntary testing and counselling, and prevention of sexually transmitted infections should be established and extended to include settings of vulnerability such as prisons [38].

We further estimated that for each currently infected PWID there is one other HIV-infected person in the general population who acquired the infection through PWID dynamics, either as an ex-PWID or as a sexual partner of current/ex-PWID (Figure 1). Innovative, context-sensitive approaches are needed to reach these populations who are usually missed by programmes targeted at PWID, and a large fraction of whom are women, for appropriate interventions and linkage to care.

HIV surveillance among PWID must be expanded in MENA, mainly through the conduct of repeated rounds of IBBSS. Inclusion of sexual partners of PWID should be considered, as well as population size estimations. Generating such epidemiological data will help monitor HIV epidemics, improve quality of input data for estimation studies, guide policy and programmes, and track PWID through the HIV treatment cascade.

AUTHORS’ AFFILIATIONS

1Infectious Disease Epidemiology Group, Weill Cornell Medicine - Qatar, Cornell University, Doha, Qatar; 2Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK; 3Regional Support Team for the Middle East and North Africa, Joint United Nations Programme on HIV/AIDS, Cairo, Egypt; 4MRC Tropical Epidemiology Group, Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK; 5Department of Healthcare Policy and Research, Weill Cornell Medicine, Cornell University, NY, USA; 6College of Public Health, Hamad bin Khalifa University, Doha, Qatar

COMPETING INTERESTS
The authors have no competing interests to declare.

AUTHORS’ CONTRIBUTIONS

GM contributed to the conception of the study, conceived and generated simulations, conducted analyses and wrote the first draft of the manuscript. SFA contributed to the coding and simulations. HAW contributed to the conception and design of the study. LJA conceived the study and simulations, and contributed to analyses. All authors have read and agreed with the final version of the manuscript.

ACKNOWLEDGMENTS

This publication was made possible by NPRP grant number (NPRP 9-040-3-008) from the Qatar National Research Fund (a member of Qatar Foundation). Infrastructure support was provided by the Biostatistics, Epidemiology, and Biomathematics Research Core at the Weill Cornell Medicine in Qatar. The statements made herein are solely the responsibility of the authors and the funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

The authors acknowledge Gabriele Riedner, regional advisor HIV/AIDS/Sexually Transmitted Infections & Hepatitis, World Health Organization Office of the Eastern Mediterranean; and Jounana Hermez, technical officer, HIV/AIDS and Sexually Transmitted Diseases, World Health Organization Office of the Eastern Mediterranean, for their support in obtaining data input for the model.
REFERENCES

1. UNAIDS. 90-90-90 An ambitious treatment target to help the AIDS epidemic. Joint United Nations Programme on HIV/AIDS, Geneva, Switzerland. 2014. Available from: http://www.unaids.org/sites/default/files/media_asset/90-90-90_en_0.pdf

2. UNAIDS. Fast-Track commitments to end AIDs by 2030. Joint United Nations Programme on HIV/AIDS, Geneva, Switzerland. 2016 (cited 2018 Mar 19). Available from: http://www.unaids.org/sites/default/files/media_asset/fast-track-commitments_en.pdf

3. UNAIDS. Prevention Gap Report. Joint United Nations Programme on HIV/AIDS, Geneva, Switzerland. 2016 (cited 2018 Mar 19). Available from http://www.unaids.org/sites/default/files/media_asset/2016-prevention-gap-report_en.pdf

4. Mintz GR, Weiss HA, Thomas SL, Rieome S, Setayesh H, Redner G, et al. HIV among people who inject drugs in the Middle East and North Africa: systematic review and data synthesis. PLoS Med. 2014;11(6):e1001663. Epub 2014/06/18. https://doi.org/10.1371/journal.pmed.1001663. PubMed PMID: 24937136; PubMed Central PMCID: PMC4061009.

5. Mintz GR, Weiss HA, Vickerman P, Larke N, Abu-Raddad LJ. Using hepatitis C prevalence to estimate HIV epidemic potential among people who inject drugs in the Middle East and North Africa. AIDS. 2015;29(13):1701–10. https://doi.org/10.1097/QAD.0000000000000761. PubMed PMID: 26372281; PubMed Central PMCID: PMC4514175.

6. Pierier DJ, Legier K, Agustian E, Johnston LG, Mills S, et al. Strategic information is everyone’s business: perspectives from an international stakeholder meeting to enhance strategic information data along the HIV Cascade for people who inject drugs. Harm Reduct J. 2015;12:41. https://doi.org/10.1186/s12954-015-0073-y. PubMed PMID: 26471018; PubMed Central PMCID: PMC4608293.

7. Abu-Raddad L, Akala FA, Semini I, Riedner G, Wilson D, Tawil O. Policy Notes. Characterizing the HIV/AIDS epidemic in the Middle East and North Africa: time for strategic action. Middle East and North Africa HIV/AIDS Epidemiology Synthesis Project. World Bank/UNAIDS/WHO Publication. Washington DC: The World Bank Press; 2010.

8. Abu-Raddad L, Akala FA, Semini I, Riedner G, Wilson D, Tawil O. Characterizing the HIV/AIDS epidemic in the Middle East and North Africa: time for strategic action. Middle East and North Africa HIV/AIDS Epidemiology Synthesis Project. World Bank/UNAIDS/WHO Publication. 2010 (cited 2018 Mar 19). Available from: http://www.wds.worldbank.org/external/default/WDSContentServer/WDSP/IB/2010/06/04/0003303086_20100604011533/Rendered/PDF/548890PUBOPE111C1D0islosed061312010.pdf. Washington DC: The World Bank Press; 2010.

9. Todd CS, Nasir A, Stanekzai MR, Fiekert K, Sipsma HL, Vlahov D, et al. The epidemiology of HIV infection in Morocco: systematic review and data synthesis. Int J STD AIDS. 2013;24(7):507–16. Epub 2013/08/24. https://doi.org/10.1177/0956462413502261. PubMed PMID: 24445372; PubMed Central PMCID: PMC3921267.

10. Mintz GR, Hilmi N, McFarland W, Kaplan RL, Akala FA, Semini I, et al. Are HIV epidemics among men who have sex with men emerging in the Middle East and North Africa? a systematic review and data synthesis. PLoS Med. 2010;8(8):e1000444. Epub 2011/08/11. https://doi.org/10.1371/journal.pmed.1000444. PubMed PMID: 21829292; PubMed Central PMCID: PMC3149074.

11. Mintz GR, Kouyoumjian SP, Hilmi N, Zidouh A, El Rhilani H, Alami K, et al. The distribution of new HIV infections by mode of exposure in Morocco. Sex Transm Infect. 2013/09/28 2013;89 Suppl 3:i49–56. Epub 2013/02/18. https://doi.org/10.1136/sextrans-2012-050844. PubMed PMID: 23413401; PubMed Central PMCID: PMC3841748.

12. Kouyoumjian SP, Mintz GR, Hilmi N, Zidouh A, El Rhilani H, Alami K, et al. The epidemiology of HIV infection in Morocco: systematic review and data synthesis. Int J STD AIDS. 2013;24(7):507–16. Epub 2013/08/24. https://doi.org/10.1177/0956462413477971. PubMed PMID: 23970764; PubMed Central PMCID: PMC3764773.

13. Bemmami A, Latifi A, El Kettani A, Maaroufi A, Guezzar F, Alami K, et al. National and Souss Massa Draa: HIV modes of transmission analysis in Morocco. Morrocco Ministry of Health & Joint United Nations Programme on HIV/AIDS; 2014 March.

14. Harm Reduction International. The global state of harm reduction 2014. 2014 (cited 2018 Mar 19). Available from: http://www.hrw.org/sites/default/files/reports/2015/02/GHR2014.pdf

15. UNAIDS. Global AIDS update 2016. Joint United Nations Programme on HIV/AIDS, Geneva, Switzerland. 2016 (cited 2018 Mar 19). Available from: http://www.unaids.org/sites/default/files/media_asset/global-AIDS-update-2016_en.pdf

16. World Health Organization Regional Office for the Eastern Mediterranean. From HIV testing to lifelong care and treatment - Access to the continuum of HIV care and treatment in the Eastern Mediterranean Region. Progress report 2014, 2016 (cited 2018 Mar 19). Available from: http://applications.emro.who.int/dsaf/EMRO/PUB_2016_EN_18914.pdf

17. World Health Organization. Regional database on HIV/AIDS, WHO Regional Office for the Eastern Mediterranean. 2017. Available from: https://doi.org/10.1016/S2352-3018(16)

18. Gouws E, Cuchi P. On behalf of the International Collaboration on Estimating HIV Incidence by Modes of Transmission (including Laith J, Abu-Raddad and Ghina R, Mintz). Focusing the HIV response through estimating the major modes of HIV transmission: a multi-country analysis. Sex Transm Infect. 2012;88 Suppl 2:76–85. https://doi.org/10.1136/sextrans-2012-050719.

19. Mintz GR, Redner G, Abu-Raddad LJ. The emerging face of the HIV epidemic in the Middle East and North Africa. Curr Opin HIV AIDS. 2014;9(2):183–91. https://doi.org/10.1097/COA.0000000000000038. PubMed PMID: 24445372; PubMed Central PMCID: PMC3921267.

20. Mintz GR, Hilmi N, McFarland W, Kaplan RL, Akala FA, Semini I, et al. Are HIV epidemics among men who have sex with men emerging in the Middle East and North Africa? a systematic review and data synthesis. PLoS Med. 2010;8(8):e1000444. Epub 2011/08/11. https://doi.org/10.1371/journal.pmed.1000444. PubMed PMID: 21829292; PubMed Central PMCID: PMC3149074.

21. Mintz GR, Kouyoumjian SP, Hilmi N, Zidouh A, El Rhilani H, Alami K, et al. The distribution of new HIV infections by mode of exposure in Morocco. Sex Transm Infect. 2013/09/28 2013;89 Suppl 3:i49–56. Epub 2013/02/18. https://doi.org/10.1136/sextrans-2012-050844. PubMed PMID: 23413401; PubMed Central PMCID: PMC3841748.

22. Kouyoumjian SP, Mintz GR, Hilmi N, Zidouh A, El Rhilani H, Alami K, et al. The epidemiology of HIV infection in Morocco: systematic review and data synthesis. Int J STD AIDS. 2013;24(7):507–16. Epub 2013/08/24. https://doi.org/10.1177/0956462413477971. PubMed PMID: 23970764; PubMed Central PMCID: PMC3764773.

23. Bemmami A, Latifi A, El Kettani A, Maaroufi A, Guezzar F, Alami K, et al. National and Souss Massa Draa: HIV modes of transmission analysis in Morocco. Morrocco Ministry of Health & Joint United Nations Programme on HIV/AIDS; 2014 March.

24. Harm Reduction International. The global state of harm reduction 2014. 2014 (cited 2018 Mar 19). Available from: http://www.hrw.org/sites/default/files/reports/2015/02/GHR2014.pdf

25. UNAIDS. Global AIDS update 2016. Joint United Nations Programme on HIV/AIDS, Geneva, Switzerland. 2016 (cited 2018 Mar 19). Available from: http://www.unaids.org/sites/default/files/media_asset/global-AIDS-update-2016_en.pdf

26. World Health Organization Regional Office for the Eastern Mediterranean. From HIV testing to lifelong care and treatment - Access to the continuum of HIV care and treatment in the Eastern Mediterranean Region. Progress report 2014, 2016 (cited 2018 Mar 19). Available from: http://applications.emro.who.int/dsaf/EMRO/PUB_2016_EN_18914.pdf

27. World Health Organization. Regional database on HIV/AIDS, WHO Regional Office for the Eastern Mediterranean. 2017. Available from: https://doi.org/10.1016/S2352-3018(16)
30087-X. PubMed PMID: 27470028; PubMed Central PMCID: PMCPMC5056319.
35. UNAIDS. Methods for deriving UNAIDS estimates. Joint United Nations Programme on HIV/AIDS, Geneva, Switzerland. 2016.
36. Heijnen M, Muntaz GR, Abu-Raddad L.J. Status of HIV and hepatitis C virus infections among prisoners in the Middle East and North Africa: review and synthesis. Journal of the International AIDS Society. 2016;19(1):20673. https://doi.org/10.7448/IAS.19.1.20673. PubMed PMID: 27237131; PubMed Central PMCID: PMCPMC4884676.
37. Naisiririnmesh B, Trace M, Roberts M. The rise of harm reduction in the Islamic Republic of Iran. Briefing Paper Eight, for the Beckley Foundation, Drug Policy Program. 2005.
38. Beyrer C, Malinovska-Sempuch K, Kamarulzaman A, Kazatchkine M, Sidibe M, Strathdee SA. Time to act: a call for comprehensive responses to HIV among injecting drug users in Tanger and Nador, Morocco. Kingdom of Morocco Ministry of Health and National STI/AIDS Programme, Joint United Nations Programme on HIV/AIDS, and Gloal Fund Unit, Rabat, Morocco. 2012.
39. UNAIDS. Methods for deriving UNAIDS estimates. Joint United Nations Programme on HIV/AIDS, Geneva, Switzerland. 2016.
40. Jacobson JO, Saidel TJ, Loo V. Estimating the size of key affected populations: a prospective cohort analysis. Lancet. 2010;375(9731):2092–8. https://doi.org/10.1016/S0140-6736(10)61779-6. PubMed PMID: 20353736; PubMed Central PMCID: PMC2922041.
41. Johnston GL. HIV integrated behavioral and biological surveillance surveys-injecting drug users in Tanger and Nador, Morocco. Kingdom of Morocco Ministry of Health and National STI/AIDS Programme, Joint United Nations Programme on HIV/AIDS, and Glocal Fund Unit, Rabat, Morocco. 2012.
42. Afghanistan National AIDS Control Program. Global AIDS Response Progress Report, Kabul, Afghanistan. 2014.
43. Jacobson JO, Saidel TJ, Loo V. Estimating the size of key affected populations at elevated risk for HIV in Egypt. 2014. Partnership for Epidemic Analysis. 2015.
44. Pakistan National AIDS Programme and UNAIDS Asia-Pacific Regional Support Team. Populations estimation exercise based on an extrapolation of data from 2011. Bangkok, Thailand. 2015.
45. Tunisia National AIDS Control Program. Global AIDS response progress report, Tunis, Tunisia. 2014.
46. AIDSinfo Online Database. Coverage of people receiving anti-retroviral therapy. 2015. [cited 2018 Mar 19]. Available from https://www.aidsinfoonline.org
47. AliPour A, Haghdoost AA, Sajadi L, Zolala F. HIV prevalence and related risk behaviours among female partners of male injecting drugs users in Iran: results of a bio-behavioural survey. 2010. Sex Transm Infect. 2011;87 Suppl 3:i41–4. https://doi.org/10.1136/sti.trans-2013-051201. PubMed PMID: 23045986; PubMed Central PMCID: PMCPMC3484173.
48. Vicente J, Chiswick A, Bell J, Busuttil A, Wilson A, Povey S, et al. Pre-AIDS deaths in HIV infection related to intravenous drug use. QJM. 1997;90(10):617–29. PubMed PMID: 9415343.
49. Hickman M, Carnwath Z, Maddern P, Farrell M, Rooney C, Ashcroft R, et al. Drug-related mortality and fatal overdose risk: pilot cohort study of heroin users recruited from specialist drug treatment sites in London. J Urban Health. 2002;80(2):274–87. https://doi.org/10.1093/jurban/jtg030. PubMed PMID: 12791803; PubMed Central PMCID: PMCPMC3456282.
50. UNAIDS. UNAIDS reference group on estimates, modelling and projections. 2007.
51. Morgan D, Whitworth J. The natural history of HIV-1 infection in Africa. Nat Med. 2001;7(2):143–5. PubMed PMID: 11175832.
52. Baeten JM, Richardson BA, Louvroy L, Rakwar JP, Mandaliya K, Bwayo JJ, et al. Female-to-male infectivity of HIV-1 among circumcised and uncircumcised Kenyan men. J Infect Dis. 2005;191(4):546–53. PubMed PMID: 15655778.
53. Wawer MJ, Gray RH, Sewankambo N, Serwadda D, Li X, Laeyendecker O, et al. Rates of HIV-1 transmission per coital act, by stage of HIV-1 infection, in Rakai, Uganda. J Infect Dis. 2005;191(9):1403–9. PubMed PMID: 15808979.
54. Morgan D, Whitworth J, Obes C. implications for transmission among injection drug users. J Acquir Immune Defic Syndr. 2008;49(4):575–83. https://doi.org/10.1097/QAI.0b013e31816c2d84. PubMed PMID: 25331268; PubMed Central PMCID: PMCPMC3479316.
55. Hindberg M, Hope V, Brady T, Madden P, Jones S, Honor S, et al. Hepatitis C virus (HCV) prevalence, and injecting risk behaviour in multiple sites in England in 2004. J Viral Hepatitis. 2007;14(9):645–52. https://doi.org/10.1111/j.1365-2893.2007.00855.x. PubMed PMID: 17697017.
56. Abdala N, Gleghorn AA, Carney JM, Heimer R. Can HIV-1-contaminated syringes be disinfected? Implications for transmission among injection drug users. J Acquir Immune Defic Syndr. 2002;28(5):498–499. PubMed PMID: 11744839.
57. Siegel JE, Weinstein MC, Fineberg HV. Bleach programs for preventing AIDS among i.v. drug users: modeling the impact of HIV prevalence. Am J Public Health. 1991;81(3):1273–9. PubMed PMID: 19285225; PubMed Central PMCID: PMCPMC1405310.
58. Corson S, Greenhalgh D, Taylor A, Palmateer N, Goldberg D, Hutchinson S. Modelling the prevalence of HCV among people who inject drugs: an investigation into the risks associated with injecting paraphernalia sharing. Drug Alcohol Depend. 2013;133(1):172–9. https://doi.org/10.1016/j.drugalcop.2013.05.014. PubMed PMID: 23791029.
59. Taylor A, Goldberg D, Hutchinson S, Cameron S, Gore SM, McMenamin J, et al. Prevalence of hepatitis C virus infection among injecting drug users in Glasgow 1990-1996: are current harm reduction strategies working? J Infect. 2000;40(2):176–83. PubMed PMID: 10841096.

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Additional file 1. Mathematical models’ description.