Characterization of the Complete Mitochondrial Genome of *Cerura menciana* and Comparison with Other Lepidopteran Insects

Lishang Dai, Cen Qian, Congfen Zhang, Lei Wang, Guoqing Wei, Jun Li, Baojian Zhu*, Chaoliang Liu*

College of Life Science, Anhui Agricultural University, Anhui, Hefei, P.R. China

* zhubaojian@ahau.edu.cn (BJ); clliu@ahau.edu.cn (CL)

Abstract

The complete mitochondrial genome (mitogenome) of *Cerura menciana* (Lepidoptera: Notodontidae) was sequenced and analyzed in this study. The mitogenome is a circular molecule of 15,369 bp, containing 13 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes and an A+T-rich region. The positive AT skew (0.031) indicated that more As than Ts were present. All PCGs were initiated by ATN codons, except for the cytochrome c oxidase subunit 1 (cox1) gene, which was initiated by CAG. Two of the 13 PCGs contained the incomplete termination codon T or TA, while the others were terminated with the stop codon TAA. The A+T-rich region was 372 bp in length and consisted of an 'ATAGA' motif followed by an 18 bp poly-T stretch, a microsatellite-like (AT)8 and a poly-A element upstream of the trnM gene. Results examining codon usage indicated that Asn, Ile, Leu2, Lys, Tyr and Phe were the six most frequently occurring amino acids, while Cys was the rarest. Phylogenetic relationships, analyzed based on the nucleotide sequences of the 13 PCGs from other insect mitogenomes, confirmed that *C. menciana* belongs to the Notodontidae family.

Introduction

The insect mitochondrial DNA (mtDNA) is a circular DNA molecule, 14–19 kb in size [1]. It contains seven NADH dehydrogenase genes (*nad1-nad6* and *nad4L*), three cytochrome c oxidase genes (*cox1-cox3*), two ATPase genes (*atp6* and *atp8*), one cytochrome b (*cob*) gene, two ribosomal RNA genes (*rrnL* and *rrnS*), 22 transfer RNA (tRNA) genes and an adenine (A) + thymine (T) -rich region containing some initiation sites for transcription and replication of the genome [2,3]. MtDNA is maternally inherited and is subject to little if any sequence recombination, and is thus, useful for identifying species and characterizing population genetic structure and molecular evolution [4–7].
The order Lepidoptera contains more than 160,000 described species, classified into 45–48 superfamilies [8]. The superfamily Noctuoidea is the largest with about 42,400 species [4,9]. Despite this huge species diversity, information on the mitochondrial genome (mitogenome) of the Noctuoidea is very limited (Table 1). The moth, Cerura menciana (Notodontidae) is a pest of plants such as Salix chaenomeloides and S. babylonica, with two or three generations annually, distributed throughout northeastern China. Previous studies have investigated aspects of host preference and the natural enemies of C. menciana [10,11]. Characterization of the mitogenome of C. menciana will facilitate further insight into the evolutionary relationships of lepidopteran insects, especially in gene rearrangements. In this study, we characterize the complete mitogenome sequence of C. menciana and compared this with the mitogenome of other lepidopteran species.

Materials and Methods

Experimental insects and DNA extraction

C. menciana larvae of both sexes were collected from willow trees within the campus of Anhui Agricultural University, Hefei city, China. The owner of the land gave permission to conduct the study on this site and the work did not involve endangered or protected species. Total genomic DNA was extracted from larvae using the Aidlab Genomic DNA Extraction Kit (Aidlab Co., Beijing, China) according to the manufacturer’s instructions. DNA was examined on a 1% agarose gel and used for PCR amplification of the complete mitogenome.

PCR amplification, cloning and sequencing

To amplify the whole mitogenome of *C. menciana*, we designed thirteen pairs of universal primers according to published mitogenomes from other Notodontidae insects, which were

Subfamily	Family	Species	Size (bp)	Accession number	Reference
Noctuoidea	Noctuidae	Spodoptera litura	15,383	KF701043	[23]
		Agrotis ipsilon	15,377	KF163965	[37]
Lymantriidae	Lymantria	dispar	15,569	NC_012893	Unpublished
Erebididae	Hyphantria cunea		15,481	GU592049	[38]
Notodontidae	Amata formosae		15,463	KC513737	[4]
	Ochrogaster lunifer		15,593	AM946601	[5]
Bombycoidea	Bombycidae	Phalera flavescens	15,659	JF440342	[24]
		C. menciana Moore	15,369	This study	
		Bombyx mori	15,643	NC_002355	Unpublished
Satumiidae	Actias selene		15,236	NC_018133	[21]
		Antheraea pernyi	15,566	AY242996	[29]
	Eriogyna pyretorum		15,327	FJ685653	[1]
Pyraloidea	Crambidae	Tyspanodes hyspalis	15,329	NC_025569	[39]
	Pyralidae	Lista haraludalis	15,213	NC_024535	[40]
Tortricoidea	Tortricidae	Cydia pomonella	15,253	JX407107	[41]
		Grapholitha dimorpha	15,831	KJ671625	[42]
Gelechioidea	Oecophoridae	Endrosis sarcitrella	15,317	KJ508037	[43]
Papilionoidea	Papilionidae	Luehdorfia taibai	15,553	KC952673	[44]
	Nymphalidae	Apatura ilia	15,242	NC_016062	[45]

doi:10.1371/journal.pone.0132951.t001
then synthesized by SangonBiotech Co., Shanghai, China (Table 2). All PCRs were performed in a 50 μL reaction volume, including 35 μL sterilized distilled water, 5 μL 10 x Taq buffer (Mg2+ plus), 4 μL dNTP (25 mM), 1.5 μL DNA, 2 μL each primer (10 μM) and 0.5 μL (1 unit) Taq (Aidlab Co., Beijing, China). The PCR was performed under the following conditions: an initial denaturation at 94°C for 4 min followed by 35 cycles of 30 s at 94°C, 40 s at 49–58°C (depending on primer combination), 1–3 min (depending on putative length of the fragments) at 72°C, and a final extension step of 72°C for 10 min.

PCR products were separated on a 1% agarose gel and purified using a DNA gel extraction kit (Transgen Co., Beijing, China). The purified PCR fragments were ligated into the T-vector (TaKaRa Co., Dalian, China) and then transformed into Escherichia coli DH5α. Recombinants were cultured overnight at 37°C in Luria-Bertani (LB) solid medium containing Ampicillin (AMP), isopropylthiogalactoside (IPTG) and 5-bromo-4-chloro-3-indolyl-D-galactopyranoside (X-Gal). White colonies carrying insert DNA were selected, grown overnight in liquid media, and then sequenced at least three times by Invitrogen Co. Ltd. (Shanghai, China).

Sequence assembly and gene annotation

The final consensus sequence of the mtDNA of C. menciana was performed using the SeqMan II program from the Lasergene software package (DNAStar Inc., Madison, USA). Sequence

Primer pair	Primer sequence (5′→3′)
F1	TAAAAATAAGCTAATTATAAGCTT
R1	TATTTAAATCTATAATTTAATGGA
F2	AAATGGAAATTATCTTAATATTAT
R2	AAATTTATTGTTCTATTAAG
F3	TTCAATTATTCTGAAATATTAT
R3	CATATAATTAAATCTTAACTATA
F4	TGAAGTGATAAGTTATTTATTT
R4	ATATTTAATGGAATTTACCTAA
F5	TGACTGACTTAACTTTATTTAT
R5	CGTTGTCAGCTTTAGTTCAAT
F6	CCTATTGTCTAAAGTGAAT
R6	TGTTATTCTCTGGACTTATATA
F7	TAATGATAATCTGCTGTATG
R7	ATCAATATCTCCAAATAATTAT
F8	ACTAAAAACTCCAAGAAAA
R8	TCATAATCAAATCTCAGGTCAAT
F9	GAAATATGGGAGATTAAATTC
R9	TGAGTTGAAATTATCTTAATG
F10	CGAAAATTAATCCTCTGCTCCT
R10	CTTCGAGCTATTCATGATG
F11	CGTTTAAATTGTTAATAGGA
R11	ATATGTACATATTGCCCTG
F12	CTGTCAGTCGATGTTGAA
R12	ATTTTTAATTTATAGGTC
F13	TATAGGGGATCTTATCCTG
R13	ACTTTATTTACCTATACGAA

doi:10.1371/journal.pone.0132951.t002
annotation was performed using the online blast tools in NCBI website (http://blast.ncbi.nlm.nih.gov/Blast).

The nucleotide sequences of the PCGs were initially translated into putative proteins on the basis of the invertebrate mtDNA genetic code. These exact initiation and termination codons were identified in ClustalX version 2.0 using reference sequences from other lepidopteran insects. To describe the base composition of nucleotide sequences, we calculated composition skewness as described by Junqueira [12]:

\[
\text{AT skew} = \frac{A - T}{A + T}, \quad \text{GC skew} = \frac{G - C}{G + C}.
\]

The Relative Synonymous Codon Usage (RSCU) values were calculated using MEGA 5.0 [13]. The overlapping regions and intergenic spacers between genes were counted manually. The tRNA genes were verified using either program tRNAscan-SE Search with the default settings [14] or by manually identifying sequences with the appropriate anticodon capable of folding into the typical cloverleaf secondary structure. Tandem repeats in the A+T-rich region were found with the Tandem Repeats Finder program (http://tandem.bu.edu/trf/trf.html) [15].

Phylogenetic analysis
Twenty lepidopteran mitogenomes were downloaded from GenBank to illustrate the phylogenetic relationships among lepidoptera insects. The mitogenomes of *Drosophila incompta* (NC_025936) [16] and *Anopheles gambiae* (NC_002084) [17] were downloaded and used as outgroups. The multiple alignments of the 13 PCG concatenated nucleotide sequences of these lepidopteran mitogenomes was conducted using ClustalX version 2.0. The phylogenetic analysis was performed using Maximum Likelihood (ML) method with the MEGA 5.0 program [13].

Results and Discussion
Genome structure, organization and composition
We report that the complete mitogenome of *C. menciana* is a circular molecule of 15,369 bp in size (Fig 1). This is within the range for similar organisms: 15,236 in *Actias selene* to 15,831 in *Grapholita dimorpha*. The mitogenome contains the typical gene content observed in metazoan mitogenomes: containing 22 tRNA genes, 13 PCGs (*nad1*-6, *nad4L*, *cox1*-3, *cob*, *atp6* and *atp8*), two rRNAs (*rrnS* and *rrnL*), and an A+T-rich region (Table 3). Gene order and orientation of *C. menciana* was *trnM-trnI-trnQ*, which differs from the ancestral order *trnI-trnQ-trnM* [18]. The nucleotide composition is highly A+T biased (A: 41.28%, T: 38.78%, G: 7.61%, C: 12.32%; Table 4). This is within the range for similar species (A+T bias of 77.84% in *Ochro- gaster lunifer* and 81.59% in Chinese *Bombyx mandarina*). The positive AT skew we observed (0.031) indicates the occurrence of more As than Ts, similar to other lepidopterans, including *Lymantria dispar* (0.016), *Hyphantria cunea* (0.010), *O. lunifer* (0.030), Chinese *B. mandarina* (0.057). Lepidopteran mitogenomes exhibit negative GC skewness ranging in size from -0.172 to -0.318 (Table 4). The GC skewness of *C. menciana* mitogenome rRNA was far lower than this range (-0.416; Table 4), indicating a particularly heavy bias toward Cs and against Gs in the rRNA. This phenomenon is known from other lepidopteran insects [1,19–21].

Protein-coding genes and codon usage
We found that the 13 Protein-Coding Genes of *C. menciana* were 11,190 bp in length and accounted for 72.81% of the whole mitochondrial genome. Nine of these PCGs (*nad2*, *cox1*, *cox2*, *atp8*, *atp6*, *cox3*, *nad3*, *nad6* and *cob*) were coded by the H-strand, while the remaining four PCGs (*nad5*, *nad4*, *nad4L* and *nad1*) were coded by the L-strand. The AT skew was positive (0.038) indicating the occurrence of more As than Ts. All PCGs started with the canonical
putative start codons ATN except for the cox1 gene which started with CGA instead, similar to other lepidopterans [22,23]. Ten genes shared complete termination codon TAA, while three genes used incomplete stop codons (a single T for cox1 and cox2, TA for nad4). The single T as a stop codon for cox1 and cox2 has been reported in the majority of the sequenced lepidopteran mitogenomes, and even in some mammalian mitochondrial genes [20,22].

A comparison of the codon usage of eight mitochondrial genomes from the Lepidoptera reveals they are divided into five superfamilies: four species belonging to Noctuoidea, and four belonging to Bombycoidea, Pyraloidea, Tortricoidea, and Papilionoidea (Fig 2). Our results indicated that Asn, Ile, Leu2, Lys, Tyr and Phe were the six most frequently present amino acids, while Cys was rare. Codon distributions of four species in Noctuoidea are consistency and each amino acid has equal content in different species (Fig 3). All codons were present in the PCGs of the C. menciana mitogenome (Fig 4). This was similar to L. dispar, A. selene and Tyspanodes hypsalis, but differed from A. epsilon, H. cunea, C. pomonella and Luehdorfia taibai,

Cerura menciana Moore
Mitochondrial Genome
15,369 bp
which lacked the codons GCG\&GGC, GCG\>G, GCG, CGG\&CAG\>G, respectively. Codons with a high GC content are abandoned in other some lepidopteran insects [4,24].

Ribosomal RNA and transfer RNA genes

The \textit{rrnL} and \textit{rrnS} gene in \textit{C. menciana} were located between \textit{trnL1} (CUN) and \textit{trnV}, and between \textit{trnV} and the A+T-rich region, respectively. The \textit{rrnL} was 1358 bp while \textit{rrnS} was 779 bp. The A+T content of the two rRNA genes totaled 83.81%, which is within the previously

\begin{table}
\centering
\begin{tabular}{llllllll}
\hline
Gene & Direction & Location & Size & Anticodon & Start codon & Stop codon & Intergenic Nucleotides * \\
\hline
\textit{trnM} & F & 1–68 & 68 & CAT & --- & --- & 0 \\
\textit{trnL} & F & 69–134 & 66 & GAT & --- & --- & -3 \\
\textit{trnQ} & R & 132–200 & 69 & TTG & --- & --- & 57 \\
\textit{nad2} & F & 258–1271 & 1014 & --- & ATT & TAA & 17 \\
\textit{trnW} & F & 1289–1361 & 73 & TCA & --- & --- & -8 \\
\textit{trnC} & R & 1354–1422 & 69 & GCA & --- & --- & 2 \\
\textit{trnY} & R & 1425–1490 & 66 & GTA & --- & --- & 5 \\
\textit{cox1} & F & 1496–3026 & 1531 & --- & CGA & T & 0 \\
\textit{rrnL2(UUR)} & F & 3027–3093 & 67 & TAA & --- & --- & 0 \\
\textit{cox2} & F & 3094–3775 & 682 & --- & ATG & T & 0 \\
\textit{trnK} & F & 3776–3846 & 71 & CTT & --- & --- & -1 \\
\textit{trnD} & F & 3846–3911 & 67 & GTC & --- & --- & 0 \\
\textit{atp8} & F & 3912–4070 & 159 & --- & ATC & TAA & -7 \\
\textit{atp6} & F & 4064–4741 & 678 & --- & ATG & TAA & -1 \\
\textit{cox3} & F & 4741–5529 & 789 & --- & ATG & TAA & 2 \\
\textit{trnG} & F & 5532–5597 & 66 & TCC & --- & --- & 0 \\
\textit{nad3} & F & 5598–5951 & 354 & --- & ATC & TAA & 53 \\
\textit{trnA} & F & 6005–6074 & 70 & TGC & --- & --- & -1 \\
\textit{trnR} & F & 6074–6137 & 64 & TCG & --- & --- & 3 \\
\textit{trnN} & F & 6141–6205 & 65 & GTT & --- & --- & 1 \\
\textit{rrnL1(AGN)} & F & 6207–6276 & 70 & GCT & --- & --- & 1 \\
\textit{tmE} & F & 6278–6345 & 68 & TTC & --- & --- & -2 \\
\textit{trnF} & R & 6344–6410 & 67 & GAA & --- & --- & -2 \\
\textit{nadS} & R & 6409–8152 & 1744 & --- & ATT & TAA & -2 \\
\textit{trnH} & R & 8151–8216 & 66 & GTG & --- & --- & -2 \\
\textit{nad4} & R & 8215–9557 & 1339 & --- & ATA & TA & -4 \\
\textit{nad4L} & R & 9554–9841 & 288 & --- & ATT & TAA & 14 \\
\textit{tmT} & F & 9856–9920 & 65 & TGT & --- & --- & 0 \\
\textit{trnP} & R & 9921–9985 & 65 & TGG & --- & --- & 8 \\
\textit{nad6} & F & 9994–10,524 & 531 & --- & ATT & TAA & 13 \\
\textit{cob} & F & 10,539–11,687 & 1149 & --- & ATG & TAA & 4 \\
\textit{rrnS2(UCN)} & F & 11,692–11,758 & 67 & TGA & --- & --- & 18 \\
\textit{nad1} & R & 11,777–12,716 & 940 & --- & ATT & TAA & 7 \\
\textit{trnL1(CUN)} & R & 12,724–12,794 & 71 & TAG & --- & --- & 0 \\
\textit{rrnL} & R & 12,795–14,152 & 1358 & --- & --- & --- & 0 \\
\textit{trnV} & R & 14,153–14,219 & 67 & TAC & --- & --- & 0 \\
\textit{rrnS} & R & 14,220–14,998 & 779 & --- & --- & --- & 0 \\
A+T-rich Region & F & 14,999–15,370 & 372 & --- & --- & --- & — \\
\hline
\end{tabular}
\caption{Summary results for characteristics of the mitogenome of \textit{C. menciana.}}
\end{table}

\textit{doi:10.1371/journal.pone.0132951.t003}
Table 4. Composition and skewness in different Lepidopteran mitogenomes.

Species	Size (bp)	A%	G%	T%	C%	A+T %	AT skewness	GC skewness
Whole genome								
C. menciana	15,369	41.28	7.61	38.78	12.32	80.06	0.031	-0.236
A. ipsilon	15,377	40.38	7.71	40.87	11.04	81.25	-0.006	-0.178
L. dispar	15,569	40.58	7.57	39.30	12.55	79.88	0.016	-0.248
H. cunea	15,481	40.58	7.55	39.81	12.06	80.39	0.010	-0.230
A. formosae	15,453	38.67	7.53	40.83	12.98	79.49	-0.027	-0.266
O. lunifer	15,593	40.09	7.56	37.75	14.60	77.84	0.030	-0.318
P. flavescens	15,659	40.07	7.87	40.80	11.26	80.87	-0.009	-0.177
B. mandarina	15,682	43.11	7.40	38.48	11.01	81.59	0.057	-0.196
A. selene	15,236	38.54	8.05	40.37	13.03	78.91	-0.023	-0.236
A. peryi	15,566	39.22	7.77	40.94	12.07	80.16	-0.021	-0.216
E. pyreorum	15,327	39.17	7.63	41.65	11.55	80.82	-0.031	-0.204
T. hypsalis	15,329	40.01	7.67	41.42	10.92	81.41	-0.017	-0.175
L. haraldusalis	15,213	40.47	7.66	41.04	10.83	81.52	-0.007	-0.172
C. pomonella	15,253	39.92	7.88	40.21	11.99	80.13	-0.004	-0.207
G. dimorpha	15,831	39.99	7.77	40.85	11.39	80.84	-0.011	-0.189
L. taibai	15,553	40.37	7.39	41.10	11.14	81.46	-0.009	-0.202
A. ilia	15,242	39.77	7.75	40.68	11.80	80.45	-0.011	-0.207
PCG								
C. menciana	11,190	40.68	8.40	37.72	13.20	78.42	0.038	-0.222
A. ipsilon	11,226	39.69	8.44	40.14	11.72	79.83	-0.006	-0.163
L. dispar	11,227	39.67	8.44	38.16	13.73	77.83	0.019	-0.239
H. cunea	11,198	39.98	8.35	38.61	13.06	78.59	0.017	-0.220
A. formosae	11,217	38.18	8.28	39.62	13.92	77.80	-0.019	-0.254
O. lunifer	11,266	32.47	12.08	43.26	12.19	75.73	-0.142	-0.004
P. flavescens	11,206	39.40	8.90	39.56	12.15	78.96	-0.002	-0.154
B. mandarina	11,196	42.83	8.26	37.04	11.87	79.87	0.072	-0.179
A. selene	11,231	37.93	8.74	39.44	13.89	77.37	-0.020	-0.228
A. peryi	11,204	39.22	7.77	40.94	12.07	80.16	-0.021	-0.216
E. pyreorum	11,228	33.18	10.50	46.23	10.09	79.41	-0.164	0.020
T. hypsalis	11,188	39.31	8.46	40.66	11.57	79.97	-0.017	-0.155
L. haraldusalis	11,193	39.88	8.47	40.16	11.49	80.04	-0.003	-0.151
C. pomonella	11,199	39.55	8.69	39.00	12.76	78.55	0.007	-0.190
G. dimorpha	11,232	35.51	8.81	39.18	12.49	78.69	0.004	-0.173
L. taibai	11,178	39.56	8.26	40.18	12.01	79.74	-0.008	-0.185
A. ilia	11,148	39.41	8.41	39.49	12.69	78.89	-0.001	-0.203
tRNA								
C. menciana	1472	42.12	7.81	40.01	10.05	82.13	0.026	-0.125
A. ipsilon	1465	41.23	8.12	40.48	10.17	81.71	0.014	-0.112
L. dispar	1459	41.60	7.95	39.48	10.97	81.08	0.026	-0.160
H. cunea	1463	41.83	7.86	39.99	10.32	81.82	0.022	-0.135
A. formosae	1457	40.43	7.96	40.36	11.26	80.78	0.001	-0.172
O. lunifer	1666	41.78	7.32	39.86	11.04	81.63	0.023	-0.202
P. flavescens	1474	41.66	7.80	40.64	9.91	82.29	0.012	-0.119
B. mandarina	1472	41.78	7.81	39.95	10.46	81.73	0.022	-0.145
A. selene	1459	40.37	8.16	40.23	11.24	80.60	0.002	-0.159
A. peryi	1459	39.22	7.77	40.94	12.07	80.16	-0.021	-0.216

(Continued)
Table 4. (Continued)

Species	Size (bp)	A%	G%	T%	C%	A+T %	ATskewness	GCskewness
E. pyretorum	1424	42.59	10.61	39.35	7.45	81.94	0.039	0.174
T. hypsalis	1456	40.73	7.90	41.35	10.03	82.07	-0.008	-0.119
L. haraldusalis	1451	41.08	7.86	41.42	9.65	82.49	-0.004	-0.102
C. pomonella	1451	41.14	7.93	40.32	10.61	81.46	0.010	-0.145
G. dimorpha	1451	41.01	8.06	40.52	10.41	81.53	0.006	-0.127
L. taibai	1440	41.39	7.85	40.90	9.86	82.29	0.006	-0.113
A. ilia	1433	40.61	8.30	40.96	10.12	81.58	-0.004	-0.099
C. menciana	2137	42.82	4.73	40.99	11.46	83.81	0.022	-0.416
A. ipsilon	2162	41.58	5.00	43.57	9.85	85.15	-0.023	-0.327
L. dispar	2150	42.79	4.79	41.81	10.60	84.60	0.012	-0.377
H. cunea	2234	40.08	4.92	42.75	10.25	84.83	-0.008	-0.351
A. formosae	2163	38.93	4.72	44.85	11.51	83.77	-0.071	-0.418
O. lunifer	2157	41.96	4.82	40.19	13.03	82.15	0.022	-0.460
P. flavescens	2198	41.31	4.73	44.04	9.92	85.35	-0.032	-0.354
B. mandarina	2134	43.86	4.78	41.05	10.31	84.91	0.028	-0.366
A. selene	2126	39.93	4.99	43.79	11.29	83.73	-0.046	-0.387
A. peryni	2144	39.22	7.77	40.94	12.07	80.16	-0.021	-0.216
E. pyretorum	2116	41.16	4.82	43.38	10.63	84.55	-0.026	-0.376
T. hypsalis	2156	42.02	4.92	43.09	9.97	85.11	-0.013	-0.339
L. haraldusalis	2121	42.20	4.67	43.33	9.81	85.53	-0.013	-0.355
C. pomonella	2147	40.48	5.03	43.92	10.57	84.40	-0.041	-0.355
G. dimorpha	2181	41.13	4.95	43.83	10.09	84.96	-0.032	-0.342
L. taibai	1805	42.16	5.37	41.83	10.64	83.99	0.004	-0.329
A. ilia	2109	40.11	4.98	44.86	10.05	84.97	-0.056	-0.337
A+T-rich region								
C. menciana	372	44.35	2.42	50.00	3.23	94.35	-0.060	-0.143
A. ipsilon	332	46.08	1.51	48.80	3.61	94.88	-0.029	-0.410
L. dispar	435	40.58	7.57	39.30	12.55	79.88	0.016	-0.248
H. cunea	357	45.66	1.12	49.30	3.92	94.96	-0.038	-0.556
A. formosae	482	42.95	2.90	49.79	4.36	92.74	-0.074	-0.201
O. lunifer	319	44.5	1.6	48.9	5.0	93.4	-0.047	-0.524
P. flavescens	541	42.14	2.22	49.72	5.91	91.87	-0.083	-0.454
B. mandarina	484	46.49	2.69	47.93	2.89	94.42	-0.015	-0.036
A. selene	339	43.07	5.90	44.84	6.19	87.91	-0.020	-0.024
A. peryni	552	39.22	7.77	40.94	12.07	80.16	-0.021	-0.216
E. pyretorum	358	42.18	2.51	50.00	5.31	92.18	-0.085	-0.358
T. hypsalis	350	43.43	1.14	52.00	3.43	95.43	-0.090	-0.501
L. haraldusalis	310	45.81	0.97	50.32	2.90	96.13	-0.047	-0.499
C. pomonella	351	43.30	1.14	52.42	3.13	95.73	-0.095	-0.466
G. dimorpha	848	41.63	1.30	54.83	2.24	96.46	-0.137	-0.266
L. taibai	939	45.15	1.70	49.41	3.73	94.57	-0.045	-0.374
A. ilia	403	42.93	3.23	49.63	4.22	92.56	-0.072	-0.133

doi:10.1371/journal.pone.0132951.t004
range (80.16% in *Antheraea pernyi* to 85.53% in *Lista haraldusalis*; Table 3). The AT skew was positive (0.022), while the GC skew was negative (-0.416), similar to that reported for other sequenced lepidopteran mitogenomes [5,25].

The *C. menciana* mitogenome harbored 22 tRNA genes, ranging from 64 bp (*trnR*) to 73 bp (*trnW*). Fourteen genes were encoded on the H-strand with the rest on the L-strand (Table 3). The tRNA genes were also highly A+T biased (82.13%) and exhibited positive AT-skew (0.026; Table 4). All the tRNAs could be folded into the expected secondary cloverleaf structures except the *trnS1* (AGN) gene (Fig 5). In the *trnS1* (AGN) gene; its dihydrouridine (DHU) arm simply forms a loop, as is often found in several other insect mitogenomes [26–28]. Ten unmatched base pairs of G-U occurred in *C. menciana* mitochondrial tRNA genes. In addition, the *trnA* contained a U-U mismatch in the acceptor stem. All of mismatches were located in the acceptor, DHU and anticodon stems. The mismatches were scattered among 10 of the 22 *C. menciana* tRNA genes, including *trnA, trnC, trnQ, trnG, trnL1 (CUN), trnL2 (UUR), trnF, trnP, trnS1 (AGN) and trnV* (Fig 5). All of the secondary structures were drawn by the RNAs-structure program.

Overlapping and intergenic spacer regions

Eleven overlapping sequences with a total length of 33 bp were identified in the *C. menciana* mitogenome. These sequences varied in length from 1 bp to 8 bp with the longest overlapping region present between *trnW* and *trnC* (Table 3). Other overlap regions included 7 bp between *atp8* and *atp6*, 4 bp between *nad4* and *nad4L*, 3 bp between the *trnl* and *trnQ*, with all other
overlapping sequences shorter than 3 bp (Table 3). The 7-bp overlap between atp8 and atp6 is common in many Lepidoptera mitogenomes [29,30].

The intergenic spacers of C. menciana mitogenomes, spread over 15 regions and ranged in size from 1 bp to 57 bp with a total length of 205 bp. The longest spacer (57 bp) was extremely A+T rich and occurred between trnQ and nad2. Intergenic spacers in C. menciana were shorter than those in O. lunifer (371 bp over 20 regions) but longer than those in A. selene (137 bp over...

Fig 3. Codon distribution in members of the Lepidoptera. CDP'd = codons per thousand codons.

doi:10.1371/journal.pone.0132951.g003
Fig 4. The Relative Synonymous Codon Usage (RSCU) of the mitochondrial genome of five superfamilies in the Lepidoptera. Codon families are plotted on the X axis. Codons indicated above the bar are not present in the mitogenome.

doi:10.1371/journal.pone.0132951.g004
Fig 5. Putative secondary structures of the 22 tRNA genes of the C. menciana mitogenome.

doi:10.1371/journal.pone.0132951.g005
13 regions) [5,21]. The 18 bp spacer region between trnS2 (UCN) and nad1 contained the ‘ATACTAA’ motif. This 7 bp motif is a common feature amongst the 11 species of different families we selected, indicating that this region is conserved and present in most insect mtDNAs (Fig 6A).

The A+T-rich region

The 372 bp (14,999–15,370 nt) A+T-rich region was located between the rrnS and trnM genes. This region is longer in C. menciana than in A. ipsilon (332 bp), H. cunea (357 bp), A. selene (339 bp), O. lunifer (319 bp), Eriogyna pyretrum (358 bp), T. hypsalis (350 bp), L. haraldusalis (310 bp) and Cydia pomonella (351 bp), but shorter than L. dispar (435 bp), Amata formosae (482 bp), Phalera flavescens (541 bp), A. pernyi (552 bp) and Apatura ilia (403 bp). The A+T-rich region harbors the highest A+T content (94.35%), most negative AT skew (-0.060) and most negative GC skew (-0.143). The presence of multiple tandem repeat elements has been reported to be a characteristic of the insect A+T-rich region [31]. For example, in M. separate, the A+T-rich region contains a duplicate 51 bp repeat element that occurs twice [8], while in Cnaphalocrocis medinalis there is a duplicated 25 bp repeat element and in Chilo suppressalis a duplicated 31 bp repeat element [32]. We found no conspicuous long repeats in the A+T-rich region of C. menciana. We did find several short repeating sequences scattered throughout the entire region, including the motif ‘ATAGA’ followed by an 18 bp poly-T stretch, a microsatellite-like (AT)$_6$ and a poly-A element upstream of trnM gene (Fig 6B). These sequences are
similar to those found in the genomes of other lepidopteran insects [21,33–35]. In addition, the presence of extra tRNA-like structures in the A+T-rich region has been reported in the lepidopteran insects, such as Chinese B. mandarina [31]. In this study, however, we did not detect a tRNA-like structure in the C. menciana A+T-rich region.

Phylogenetic relationships

We reconstructed the phylogenetic relationships among the seven superfamilies of lepidopteran using Maximum Likelihood (ML) method based on concatenated nucleotide sequences of the 13 PCGs. The resulting phylogenetic tree revealed that different species from the same family clustered together (Fig 7). The phylogenetic analyses also showed that C. menciana was most closely related to P. flavescent of the Notodontidae family. Noctuoidea is closely related to Bombycoidea and Geometroidea, but Hepialoidea was a sister group to the other superfamilies. This result is consistent with that described in previous research [4,36]. Further studies using larger sample sizes are needed to confirm these phylogenetic relationships.

Acknowledgments

We are grateful to Dr. Qiuning Liu for providing the experimental insects in this experiment. We would like to thank the native English speaking scientists of Elixigen Company for editing our manuscript.
Author Contributions
Conceived and designed the experiments: LSD CLL. Performed the experiments: LSD CQ. Analyzed the data: LW GQW. Contributed reagents/materials/analysis tools: JL CFZ. Wrote the paper: LSD BJZ.

References
1. Jiang ST, Hong GY, Yu M, Li N, Yang Y, Liu YQ, et al. (2009) Characterization of the complete mitochondrial genome of the giant silkworm moth, *Eriogyna pyretorum* (Lepidoptera: Saturniidae). Int J Biol Sci 5: 351–365. PMID: 19471586
2. Shadel GS, Clayton DA (1993) Mitochondrial transcription initiation: Variation and conservation. J Biol Chem 268: 16083–16086 PMID: 8344889
3. Cameron SL (2014) Insect mitochondrial genomics: implications for evolution and phylogeny. Annu Rev Entomol 59: 95–117. doi: 10.1146/annurev-ento-011613-162007 PMID: 24160435
4. Lu HF, Su TJ, Luo AR, Zhu CD, Wu CS (2013) Characterization of the complete mitochondrial genome of diurnal moth *Amata emma* (Butler) (Lepidoptera: Erebidae) and its phylogenetic implications. PLOS One 8 (9): e72410. doi: 10.1371/journal.pone.0072410 PMID: 24069145
5. Salvato P, Simonato M, Battisti A, Negrisolo E (2008) The complete mitochondrial genome of the bag-shelter moth *Ochrogaster lunifer* (Lepidoptera, Notodontidae). BMC genomics 9: 331. doi: 10.1186/1471-2164-9-331 PMID: 18627592
6. Abascal F, Posada D, Knight RD, Zardoya R (2006) Parallel evolution of the genetic code in arthropod mitochondrial genomes. PLOS Biol 4: 711–718.
7. Gissi C, Iannelli F, Pesole G (2008) Evolution of the mitochondrial genome of metazoa as exemplified by comparison of congeneric species. Heredity 101: 301–320. doi: 10.1038/hdy.2008.62 PMID: 18612321
8. Hao JS, Sun QQ, Zhao HB, Sun XY, Gai YH, Yang Q (2012) The complete mitochondrial genome of *Ctenoptilum vasava* (Lepidoptera: Hesperiidae: Pyrginae) and its phylogenetic implication. Comp Func Genom. doi: 10.1155/2012/328049
9. Speidel W, Naumann C (2004) A survey of family-group names in noctuid moths (Insecta: Lepidoptera). Syst Biodiver 2: 191–221.
10. Zheng P, Ban J, Yang Y, Wang M, Wu B, Tan H (2009) Parasitic enemy insects of *Cerura menciana* Moore. Journal of Inner Mongolia Forestry Science & Technology 35: 45–47.
11. Chen HJ, Heng J, Chun TX, Xiang WC, Gang JD, Li Q, et al. (2006) Preliminary report on “biological missile” controlling *Cerura menciana* Moore. Xinjiang Agricultural Sciences 43: 224–227
12. Junqueira AC, Lessinger AC, Torres TT, Da FR, Vettore AL, Arruda P, et al. (2004) The mitochondrial genome of the blowfly *Chrysomya chloropyga* (Diptera: Calliphoridae). Gene 339: 7–15. PMID: 15363841
13. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGAS: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739. doi: 10.1093/molbev/msr121 PMID: 21546353
14. Lowe TM, Eddy SR (1997) TRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25: 955–964. PMID: 9023104
15. Benson G (1999) Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Res 27: 573–580. PMID: 9862982
16. Re FCD, Wallau L, Robe LJ (2014) Characterization of the complete mitochondrial genome of flower-breeding *Drosophila incompata* (Diptera, Drosophilidae). Genetica 142: 525–535. doi: 10.1007/s10709-014-9799-9 PMID: 25416157
17. Beard CB, Mills D, Collins FH (1993) The mitochondrial genome of the mosquito *Anopheles gambiae*: DNA sequence, genome organization, and comparisons with mitochondrial sequences of other insects. Insect Mol Biol 2: 103–124. PMID: 9087549
18. Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27: 1767–1780. PMID: 10101183
19. Dai LS, Zhu BJ, Liu QN, Wei GQ, Liu CL (2013) Characterization of the complete mitochondrial genome of *Bombyx mori* strain H9 (Lepidoptera: Bombycidae). Gene 519: 326–334. doi: 10.1016/j.gene.2013.02.002 PMID: 23544477
20. Liu QN, Zhu BJ, Dai LS, Liu CL (2013) The complete mitogenome of *Bombyx mori* strain Dazao (Lepidoptera: Bombycidae) and comparison with other lepidopteran insects. Genomics 101: 64–73. doi: 10.1016/j.ygeno.2012.10.002 PMID: 23070077
21. Liu QN, Zhu BJ, Dai LS, Wei GQ, Liu CL (2012) The complete mitochondrial genome of the wild silkmoth, *Actias selene*. Gene 505: 291–299. doi: 10.1016/j.gene.2012.06.003 PMID: 22688122

22. Dai LS, Zhu BJ, Qian C, Zhang CF, Li J, Wang L, et al. (2014) The complete mitochondrial genome of the diamondback moth, *Plutella xylostella* (Lepidoptera: Plutellidae). Mitochondrial DNA. doi: 10.3109/19401736.2014.953116

23. Liu QN, Zhu BJ, Dai LS, Wang L, Qian C, Wei GQ, et al. (2014) The complete mitochondrial genome of the common cutworm, *Spodoptera litura* (Lepidoptera: Noctuidae), Mitochondrial DNA. doi: 10.3109/19401736.2013.873934

24. Sun QQ, Sun XY, Wang XC, Gai YH, Hu J, Zhu CD, et al. (2012) Complete sequence of the mitochondrial genome of *Antheraea pernyi* (Lepidoptera: Bombycidae). Sci China C Life Sci 51: 693–701. doi: 10.1007/s11427-008-0097-6 PMID: 18677957

25. Luo J, Li P, You P (2014) The complete mitochondrial genome of *Tyspanodes hypsalis* (Lepidoptera: Crambidae). Mitochondrial DNA. doi:10.3109/19401736.2013.861427

26. Xin J, Hong GY, Wang AM, Cao YZ, Wei ZJ (2010) Complete nucleotide sequence and organization of the mitogenome of the endangered *Eumenis autonoe* (Lepidoptera: Nymphalidae). Afr. J. Biotechnol 9: 735–742. doi:10.1016/j.gene.2012.06.003 PMID: 22688122

27. Yang L, Wei ZJ, Hong GY, Jiang ST, Wen LP (2008) The complete nucleotide sequence of the mitochondrial genome of *Phthionandria atrilineata* (Lepidoptera: Geometridae). Mol Biol Rep 36: 1441–1449. doi: 10.1007/s11033-008-9334-0 PMID: 1866255

28. Yin J, Wang AM, Hong GY, Cao YZ, Wei ZJ (2011) Complete mitochondrial genome of *Chilo suppressalis* (Walker) (Lepidoptera: Crambidae). Mitochondrial DNA 22: 41–43. doi: 10.3109/19401736.2011.605126 PMID: 21864029

29. Liu YQ, Li YP, Pan MH, Dai FY, Zhu X, Lu C, et al. (2008) The complete mitochondrial genome of the Chinese oak silkmoth, *Antheraea pernyi* (Lepidoptera: Saturniidae). Acta Biochim Biophys Sin 40: 694–703.

30. Zhu BJ, Liu QN, Dai LS, Wang L, Sun Y, Lin KZ, et al. (2013) Characterization of the complete mitochondrial genome of *Diaphania pyloalis* (Lepidoptera: Pyralidae). Gen. gene.2013.06.035 PMID: 23810944

31. Zhang DX, Hewitt GM (1997) Insect mitochondrial control region: a review of its structure, evolution and usefulness in evolutionary studies. Biochem Syst Evol 25: 99–120.

32. Chai HN, Du YZ, Zhai BP (2012) Characterization of the Complete Mitochondrial Genomes of *Cnaphalocrocis medinalis* and *Chilo suppressalis* (Lepidoptera: Pyralidae). Int J Biol Sci 8 (4): 561–579. doi:10.7150/ijbs.3540 PMID: 22532789

33. Park JS, Cho Y, Kim MJ, Nam SH, Kim I (2012) Description of complete mitochondrial genome of the black-veined white, *Aporia crataegi* (Lepidoptera: Papilionoidae), and comparison to papilionoid species. J Asia Pac Entomol 15: 331–341

34. Yukihiro K, Sezutsu H, Itoh M, Shimizu K, Banno Y (2002) Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkworm, *Bombyx mandarina* (Lepidoptera: Bombycidae). Mol Biol Evol 19, 1385–1389. doi:10.1093/molbev/19.6.1385 PMID: 12140251

35. Liao F, Wang L, Wu S, Li YP, Zhao L, Huang GM, et al. (2010) The complete mitochondrial genome of *Cydia pomonella* (Lepidoptera: Tortricidae). Mitochondrial DNA 21: 160–169. doi:10.3109/19401736.2010.503242 PMID: 20958224

36. Wu J, Li W, Wei SJ (2013) The complete mitochondrial genome of the pink stem borer, *Sesamia inferens* (Lepidoptera: Noctuidae). Mitochondrial DNA. doi:10.3109/19401736.2013.837904

37. Wu J, Cui WX, Wei SJ (2013) Characterization of the complete mitochondrial genome of the black cutworm *Agrotis ipsilon* (Lepidoptera: Noctuidae). Mitochondrial DNA. doi:10.3109/19401736.2011.605126 PMID: 21864029

38. Liao F, Wang L, Wu S, Li YP, Zhao L, Huang GM, et al. (2010) The complete mitochondrial genome of the fall webworm, *Hyphantria cunea* (Lepidoptera: Arctiidae). Int J Biol Sci 6: 172–186. PMID: 20376208

39. Wang J, Li P, You P (2014) The complete mitochondrial genome of *Tyspanodes hypsalis* (Lepidoptera: Crambidae). Mitochondrial DNA 15: 1–2.

40. Ye F, Yu HL, Li PF, You P (2014) The complete mitochondrial genome of *Lista haraldusalis* (Lepidoptera: Pyralidae). Mitochondrial DNA. doi: 10.3109/19401736.2013.861427

41. Shi BC, Liu W, Wei SJ (2013) The complete mitochondrial genome of the codling moth *Cydia pomonella* (Lepidoptera: Tortricidae). Mitochondrial DNA 24: 37–39. doi: 10.3109/19401736.2012.716054 PMID: 22978261
42. Niu FF, Fan XL, Wei SJ (2014) Complete mitochondrial genome of the Grapholita dimorpha Komai (Lepidoptera: Tortricidae). Mitochondrial DNA 19: 1–2

43. Timmermans MJ, Lees DC, Simonsen TJ (2014) Towards a mitogenomic phylogeny of Lepidoptera. Mol Phylogenet Evol 79: 169–178 doi: 10.1016/j.ympev.2014.05.031 PMID: 24910155

44. Xing LX, Li PF, Wu J, Wang K, You P (2014) The complete mitochondrial genome of the endangered butterfly Luehdorfia taihui Chou (Lepidoptera: Papilionidae). Mitochondrial DNA 25: 122–123. doi: 10.3109/19401736.2013.800506 PMID: 23795835

45. Chen M, Tian LL, Shi QH, Cao TW, Hao JS (2012) Complete mitogenome of the Lesser Purple Emperor Apatura ilia (Lepidoptera: Nymphalidae: Apaturinae) and comparison with other nymphald butterflies. Zool Res 33: 191–201. doi: 10.3724/SP.J.1141.2012.02191 PMID: 22467396