Another explanation for the low allergy rate in the rural Alpine foothills
Matthias Wjst*

Address: Institut für Epidemiologie GSF – Forschungszentrum für Umwelt und Gesundheit Ingolstädter Landstrasse 1 D-85758 Neuherberg / Munich Germany
Email: Matthias Wjst* - m@wjst.de
* Corresponding author

Abstract
A low allergy rate in coal and wood heated homes has been described in the small villages in the Alpine foothills and subsequently found to be associated with the farming environment. This was interpreted within the framework of the hygiene hypothesis but there are also alternative explanations. Lower air pollution could be one reason, which is, however, unlikely since the differences between the Bavarian countryside and the Munich municipal area were only weak. There could be genetic differences between the urban and rural population by previous isolation or by self-selection. The potential drop-out of allergy genes, however, will also not explain the absent increase of allergies in two generations. More likely, other lifestyle factors are important. Dietary habits are different in farmers and a less frequent vitamin D supplementation of newborns (otherwise expected to be allergy promoting) has been shown recently. The underlying cause for the "non-allergic farm child" remains speculative until the transfer of any farm-associated factor is leading to a similar risk reduction in the general population.

Introduction
Allergy prevalence has been on the rise worldwide and nearly hundred years after coining "Allergie" in the "Münchner Medizinische Wochenschrift" [1] the causal risk factors are still unknown.

At the end of the 1980s, air pollution related effects were thought to be responsible for the allergy epidemic. It turned out, however, that at least traffic related combustion was not the main culprit in the Munich municipal area, neither based on the inner city distribution of pollutants [2] nor by comparison with a control region in Upper Bavaria. In this study, located in the South of Munich on the Alpine foothills, I examined nearly two thousand fourth-grade children between October 1989 and July 1990 in more than 50 villages. I already noted at that time a relationship between the farm odour in some of the small classrooms and the nearly absence of any positive skin prick test (the "Ostallgäu" phenomenon). A protective effect of coal heating was eventually published six years later [3] but received little attention as the public interest focused mainly on East- and West German air pollution differences [4]. It was only in 1999 where a long series of studies in the farming environment started [5-12] which lead to the current version of the hygiene hypothesis that allergy develops where the natural high endotoxin level on farms is absent. Endotoxin has already been described in a study in 2000 as the main component protecting against allergic sensitisation [13].
Problems with the hygiene hypothesis
The hygiene hypothesis is based on the initial observation of "unhygienic" siblings by Golding and Peters 1986 [14]. After more than one decade of research [15], however, Strachan concluded that "an inverse association between infection and allergy has not been confirmed directly by epidemiological studies. The available data are either inconsistent or inconclusive" [16]. This view is supported by several other authors [17-19] as the adaptive immune system "with an array of potential interactions ... is reduced to a single level" [20]. Although even a patent has been filed on components of stable air to treat allergy [21], a task force of the European Academy of Allergology and Clinical Immunology (EAACI) arrived at the opinion that "there is no recently published evidence in favour of a clinical use of so-called bacterial extracts against asthma and allergic diseases." [22]

During the discussion of factors related to hygiene it seemed to be largely neglected, that (viral) infection may even enhance allergic disease [23]. Also the inverse association of hepatitis antibodies and allergy found in Italian military students [24] has not been reproduced in consecutive studies [25-27]. The protection against allergic disease by mycobacteria [29] could also not be reproduced in the following dozen studies [28]. The support for the hygiene hypothesis therefore remains weak.

Unfortunately, all farming studies are based on observational and retrospective data given rise to concerns not mentioned in previous reviews [30,31]. The transition of a farming society into the industrial age neither coincides with the main peak of the allergy prevalence in Western countries nor does it match the geographical distribution of the disease.

Is endotoxin to blame?
Although there are well-designed studies describing the immunological action of endotoxin [32-35] there are no quantitative data in humans how the nanogram exposure on the pulmonary epithelium will supersede the gram-wise exposure on the gut mucosa. The number of bacteria on the human body's surface is more than 10 times greater than all his somatic cells [36]. Even if N-acetyl-muramic acid is found to be significantly higher in dust from farm children's mattresses (+20% [37]) or endotoxin units are being increased (+66% [10]), is unclear whether this has any biological meaning [38]. There are many reasons why dust deposition on the floor may not be equal to effective exposure as this involves inhalation, deposition, uptake, processing, preservation and target delivery. In the only study available so far, both asthmatic and non asthmatic probands had the same LPS concentrations in their bronchoalveolar lavage [39].

Even if we assume a relevant target exposure, there are effective mechanism to counteract endotoxin [40,41]. Dose and timing [42], even the origin from different bacteria [43,44] as well as host characteristics [38,45] are being important. Lipopolysaccharides from some bacteria may induce even a Th2 type response [44] where the induction of sensitization is an allergen-specific phenomenon that can not be simply attributed to endotoxin [46]. Epidemiological effects of LPS in dust are often found with extremes of the distribution only, either not significant [47], marginally significant [13,6,48-50], non-linear [10], heterogeneous [51] or even in the opposite direction [52-54].

The main contradiction [55], however, stems from the fact that farming is a frequent risk factor for allergy [56] and asthma [57,58]. This might be the explanation why some studies do not find any association between farming and sensitization [59,60] or even opposite results [61].

Research into the biology of endotoxin had many unexpected turns and "has engendered immense curiosity over the years" according to one of its pioneers [41,62]. "Why should diminished exposure to microorganism result in inadequate priming of T regulatory cells?" [63]. Any different LPS exposure effect in early life than later on as suggested by Martinez [64] is contradicted by studies where inhalation of LPS induces airway inflammatory response and wheezing [65-69]. This airway response was dose-dependent in both, healthy and asthmatic subjects [65], genetically determined [70-72] and may be enhanced by concomitant inhalation of allergen challenge [73]. It is therefore not unexpected that endotoxin exposure is still the main determinant of lung function decline in farmers [74,75].

Are other bacterial components relevant?
With the ubiquitous occurrence of LPS, its association also to non-farm settings [10], or other household factors [76,77] the situation is far from being clear. There might be effects by other bacterial products [37,78] but there are even considerable doubts if bacterial co-factors are responsible for the observed effects. The largest study concluded that "environmental changes affecting the whole of society have promoted an increase in asthma, allergic rhinitis and eczema in both farming and non-farming environments ... whereas the protective effect of growing up on a farm on the risk of asthma appears to be a fairly recent phenomenon" [79]. Similar conclusions are reported in the second largest study where "the percentage of subjects with symptoms of rhinitis or allergic sensitisation was generally lower in subjects who had lived on a farm than in other subjects but the difference was significant only in subjects born after 1961" [80]. In addition also a study from Switzerland reported only a very recent
increase of allergy in children from non-farming households [7]. If we assume that the bacterial universe did not undergo a major change since 1961, direct bacteria-related effects are not very likely.

What else could explain the "non-allergic farm child" effect?

Lower air pollution by industry or car traffic could be one reason. Unfortunately, this explanation is rather unlikely as the absolute difference between the Upper Bavarian countryside and the Munich municipal area was weak [3].

Second, there might be a self-selection mechanism leading to the drop-out of allergic people, otherwise known in epidemiology as "healthy worker" effect. This phenomenon can hardly explain the absent increase of allergies during the last generation [80].

As there is a clear genetic influence on the development of allergy [81,82] there might be different genes and variants in farmers due to previous isolation. This may be assumed from the unexpected finding of longer linkage disequilibrium blocks in a recent comparison of rural and urban communities [83]. Again, this observation does not explain the recent generational increase although we have argued earlier that the reduction of newborn respiratory mortality by antibiotics may have changed our gene pool [84]. Also other environmental exposure may influence the gene pool. It could be shown recently that elevated levels of folic acid during the periconceptional period could select human embryos that carry a mutant MTHFR allele (with adverse effect on later vascular disease) [85]. Any differential exposure in farmers might therefore be important on their particular genetic background.

Fourth, the socioeconomic situation in the Alpine farmers is different compared to the major cities. There might be a lower vaccination rate although there is no evidence that early vaccination can cause later allergy [86-90]. Farmer might use less antibiotics (an effect under extensive research [87,91-94]), however, the antibiotic level in farm dust has been reported to be high [95]. In one study farm children had more siblings, were more likely to be breastfed and to have pets [96]. In another study farm children had again more siblings, were more likely to have a cat or dog, to experience more serious respiratory infections and less likely to have attended daycare [80]. A higher number of siblings is in favour of the traditional hygiene hypothesis [15] but adjustment for family size did not resolve the farming effect. Less daycare attendance even argues against the hygiene hypothesis [97,98].

Do dietary factors play a role?

Finally, food and dietary habits may be different in farmers. For example farmers use less aggressive vitamin supplements (Figure 1, [99]). This observation may be important as vitamin D is widely used in the newborn period to prevent rickets [100] although its main metabolite is known to suppresses dendritic cell function resulting in the inability to mount a sufficient Th1 response [101]. Animal [102,103], genetic [104-106] and epidemiological studies [99,107] now support a role in the development of allergy.

This seems to be particular important as the "non-allergic farm child" effect is observed preferentially in a region only after the general introduction of vitamin D supplementation. The upsurge in allergy and asthma prevalence has been identified as a "post-1960s"-epidemic [80,108] which matches exactly with the time point of a general rickets prophylaxis approach in Bavaria [109]. Furthermore, the farm protection was seen mainly found during the first year of life [30,110] where vitamin D supplementation period is now recommended in Bavaria [111,112].
Farmers consume more local foods and less supplements. The protective effect of farm milk could relate to the avoidance of otherwise fortified milk from supermarkets [113]. Although milk is usually not fortified in the Alpine region, nearly all baby foods contain vitamin supplements. An alternative food related hypothesis has been setup for Crohn's disease [114] where the transition of cold food storage could be leading to different bacterial exposure.

Body height and head circumference, further pieces in the puzzle?

There is also another unpublished observation from our first study 1989 in Upper Bavaria where remote village size was not only associated with less allergic rhinitis but also with decreased body height. An increase in body height is a known effect of vitamin D treatment [115-119]. In a Norwegian study, male farmers were on average 2.3 cm and female farmers 1.4 cm smaller (personal communication E. Omenaas 2005 [120]). A more recent German study [121] showed birth weight to be positively associated with later allergic sensitization while in British babies the head circumference was associated with the development of high IgE levels [122-125]. Do vitamin D supplements explain this association?

Relationship between hygiene and vitamin hypothesis

Both, vitamin and hygiene hypotheses are not mutually exclusive. For example there has been a higher frequency of respiratory infections in vitamin D deficient children [126-129], a phenomenon also found in farming children [80]. On a cellular level it is being known that calcitriol pulsed dendritic cells show a blunted response to LPS [130,131], where LPS pulsed IL-12 response [13,132] can override the otherwise blocking effect of calcitriol (giving possibly farming children a higher capacity to tolerate external vitamin D doses). Similar results have been obtained in human monocytic cells where LPS downregulated vitamin D receptor levels and thus inhibited vitamin D action [133].

Conclusion

Many of the clinical and epidemiological observations in the farming populations are neither conclusive nor fully understood. Will further studies in the rural Alpine foothills provide the final answer?

Competing interests

The author(s) declare that they have no competing interests.

Authors' contributions

The author developed the hypothesis presented here, conducted the literature survey, wrote the paper and approved the final version of the manuscript.

Funders

My salary is paid by GSF FE 73922.

Acknowledgements

None.

References

1. Pirquet: Allergie. Münchn Med Wschr 1906, 53:1457.
2. Wiet M, Reitmer P, Dold S, Wulf A, Nicolai T, von Loeffelholz-Colberg EF, von Mutius E: Effect of indoor exposure of children to allergen on the response of respiratory symptoms. Clin Exp Allergy 1999, 312:1448-1450.
3. von Mutius E, Illi S, Nicolai T, Martinez FD: Relation of indoor heating with asthma, allergic sensitisation, and bronchial responsiveness: survey of children in south Bavaria. Bmj 1996, 312:596-600.
4. von Mutius E, Martinez FD, Frittsch M, Dold S, Lena A, von Loeffelfohz-Colberg E: Effect of indoor exposure of children to allergen on the response of respiratory symptoms. Clin Exp Allergy 1999, 312:1448-1450.
5. Braun-Fahrlander C, Gassner M, Grize L, Neu U, Sennhauser FH, von Mutius E: Effect of indoor exposure of children to allergen on the response of respiratory symptoms. Clin Exp Allergy 1999, 312:1448-1450.
6. von Ehrenstein OS, von Mutius E, Illi S, Baumann L, Bohm O, von Kries R: Reduced risk of hay fever and asthma among children of farmers. Clin Exp Allergy 2000, 30:187-193.
7. Gassner-Bachmann M, Wuthrich B: [Farmers' children suffer less from hay fever and asthma]. Dtsch Med Wochenschr 2000, 125:924-931.
8. Riedler J, Braun-Fahrlander C, Eder W, Schreurer M, Waser M, Maisch S, Carr D, Schierl R, Nowak D, von Mutius E: Exposure to farming in early life and development of asthma and allergy: a cross-sectional survey. Lancet 2001, 358:1129-1133.
9. Kilpelainen M, Terho EO, Helenius H, Koskenvuo M: Childhood farm environment and asthma and sensitization in young adulthood. Allergy 2002, 57:1103-1105.
10. Braun-Fahrlander C, Riedler J, Hetz U, Eder W, Waser M, Grize L, Maisch S, Carr D, Gerlach F, Bux A, Laeuper RP, Schierl R, Renz H, Nowak D, von Mutius E: Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med 2002, 347:867-877.
11. Horak FJ, Sudnicka M, Gartner C, Veiter A, Tauber E, Urbanek R, Flohr C, Pascoe D, Williams HC: Atopic dermatitis and the 'hygiene hypothesis': too clean to be true? Br J Dermatol 2005, 152:202-216.
lipo polysaccharide-binding protein and soluble CD14 in bronchoalveolar compartment. Am J Physiol 1996, 270:L376-44.

40. Siggsgard TH: On the hygiene hypothesis: Regulation down, up, or sideways? J Allergy and Clinical Immunology 2005, online 23 March, 2005.

41. Beutler B: SHIP, TGF-beta, and endotoxin tolerance. Immunity 2004, 21:134-135.

42. Langenkamp A, Nagata K, Murphy K, Wu L, Lanzavecchia A, Sallusto F: Kinetics and expression patterns of chemokine receptors in human CD4+ T lymphocytes primed by myeloid or plasmacytoid dendritic cells. Eur J Immunol 2003, 33:474-482.

43. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Brit- telle C, Moran T, Karalisakus R, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirchner BS, Hanauer SB, Nunez G, Cho JH: A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 2001, 411:603-606.

44. Pulendran B, Kumar P, Cutler CW, Mohamadzadeh M, Van Dyke T, Barnet JE: Lipopolysaccharides from distinct pathogens induce different classes of immune responses in vivo. J Immunol 2001, 167:5067-5076.

45. Williams LK, Owby DR, Malariak MJ, Johnson CC: The role of endotoxin and its receptors in allergic disease. Allergy Immunol (Copenh) 2005, 37:52-56.

46. Erwin EA, Wickens K, Custis NJ, Siebers R, Woolfolk J, Barry D, Crane J, Platts-Mills TA: Cat and dust mite sensitivity and tolerance in relation to wheezing among children raised with high exposure to both allergens. J Allergy Clin Immunol 2005, 116:1706-1712.

47. Merchant JA, Nalewai AL, Svensden ER, Kelly KM, Burmeister LF, Stromquist AM, Taylor CD, Thorne PS, Reynolds SJ, Sanderson WT, Ch媳rellis EA: Asthma and farm exposures in a cohort of rural Iowa children. Environ Health Perspect 2005, 113:350-356.

48. Chھrellis EA, Ahrens P, Kueba A, Kelly K, Thorne P, Burmeister L, Merchant J: Asthma prevalence and morbidity among rural Iowa schoolchildren. J Allergy Clin Immunol 2004, 114:66-71.

49. Salam MT, Li YF, Langholz B, Gilliland FD: Early-life environmental risk factors for asthma: findings from the Children's Health Study. Environ Health Perspect 2004, 112:760-765.

50. Schram D, Doekges G, Boeke M, Douwes J, Riedler J, Ublagere E, Mutius E, Budde J, Pershagen G, Nyberg F, Alm J, Braun-Fahrlander C, Waser M, Brunekreef B: Bacterial and fungal components in houses of farm children, Rudolf Steiner school children and reference children - the PARSIFAL Study. Allergy 2005, 60:611-618.

51. Downs SH, Marks GB, Mitakakis TZ, Leuppi JD, Car NG, Peat JK: Having lived on a farm and protection against allergic disease in Australia. Clin Exp Allergy 2001, 31:570-575.

52. Wickens K, Lane JM, Fitzharris PJ, Siebers R, Riley G, Douwes J, Smith T, Crane J: Farm residence and exposures and the risk of allergic diseases in New Zealand children. Allergy 2002, 57:1171-1179.

53. Bolte G, Bischoff W, Borte M, Lehmann I, Wichmann HE, Heinrich J: Early endotoxin exposure and atopic development in infants: results of a birth cohort study. Clin Exp Allergy 2003, 33:770-776.

54. Park JH, Gold DR, Spiegelman DL, Burge HA, Milton DK: House dust endotoxin and wheeze in the first year of life. Am J Respir Crit Care Med 2001, 163:322-328.

55. Liu AH: Endotoxin exposure in allergy and asthma: reconciling a paradox. J Allergy Clin Immunol 2002, 109:379-392.

56. Monso E, Magalora S, Radon K, Danuser B, Iversen M, Weber C, Opravil U, Donham KJ, Nowak D: Respiratory symptoms of obstructive lung disease in European crop farmers. Am J Respir Crit Care Med 2000, 162:1246-1250.

57. Kogevars M, Anto JM, Sunyer J, Tobias A, Kromhout H, Burney P: Occupational asthma in Europe and other industrialised areas: a population-based study. European Community Respiratory Health Survey Study Group. Lancet 1999, 353:1750-1754.

58. Kronqvist M, Johansson E, Pershagen G, Johansson SG, van Hage-Hamsten M: Risk factors associated with asthma and rhino-conjunctivitis among Swedish farmers. Allergy 1999, 54:1142-1149.

59. Vidal C, Boqueg O, Gude F, Rey J, Meijide LM, Fernandez-Merino MC, Fernandez-Quintela A: High prevalence of storage mite sensitization in a general adult population. Allergy 2004, 59:401-405.
Does living on a farm during childhood protect against asthma, allergic rhinitis, and atopy in adulthood?

Clinical and Molecular Allergy 2005, 3:7
http://www.clinicalmolecularallergy.com/content/3/1/7

Page 6 of 7 (page number not for citation purposes)
104. Poon AH, Laprise C, Lemire M, Montpetit A, Sinnett D, Schurr E, Hudson TJ: Association of vitamin D receptor genetic variants with susceptibility to asthma and atopy. Am J Respir Crit Care Med 2004, 170:967-973.

105. Rabie BA, Lazarus R, Silverman EK, Lake S, Lange C, Wijst M, Weiss ST: Association of vitamin D receptor gene polymorphisms with childhood and adult asthma. Am J Respir Crit Care Med 2004, 170:1057-1065.

106. Wijst M: Genetic variants in the vitamin D receptor and childhood asthma. BMC Genetics 2005, 6:2.

107. Milner JD, Stein DM, McCartor R, Moon RY: Early infant multi-vitamin supplementation is associated with increased risk for food allergy and asthma. Pediatrics 2004, 114:27-32.

108. Holt PG, Sly PD, Martinez FD, Weiss ST, Bjorksten B, von Mutius E, Wahn U: Drug development strategies for asthma: in search of a new paradigm. Nat Immunol 2004, 5:659-698.

109. Wijst M: The triple T allergy hypothesis. Clin Dev Immunol 2004, 11:77-85.

110. Radon K, Ehrenstein V, Praml G, Nowak D: Childhood visits to animal buildings and atopic diseases in adulthood: an age-dependent relationship. Am J Ind Med 2004, 46:349-356.

111. Kersting M: Ernährung des gesunden Säuglings, Lebensmittel- und mahlzeitenbezogene Empfehlungen. Monatsschr Kinderheilkd 2001, 149:4-10.

112. Kersting M, Alexy U: Vitamin and mineral supplements for the use of children on the German market: products, nutrients, dosages. Am Nutr Metab 2000, 44:125-128.

113. Barnes M, Cullinan P, Athanassaki P, MacNeill S, Hole AM, Harris J, Kalogeraki S, Chatzinikolaou M, Drakonakis N, Bikaki-Liakou V, Newman Taylor AJ, Bikakis I: Crete: does farming explain urban and rural differences in atopy? Clin Exp Allergy 2001, 31:1822-1828.

114. Hugot JP, Alberti C, Berrebi D, Bingen E, Cezard JP: Crohn’s disease: the cold chain hypothesis. Lancet 2003, 362:1201-1205.

115. Brooke OG, Butters F, Wood C: Intrauterine vitamin D nutrition and postnatal growth in Asian infants. Br Med J (Clin Res Ed) 1981, 283:1024.

116. Sankan aK, Papageorgiou A, Ninan A, Sankaran R: A randomized, controlled evaluation of two commercially available human breast milk fortifiers in healthy preterm neonates. J Am Diet Assoc 1996, 96:1145-1149.

117. Du X, Zhu K, Trube A, Zhang Q, Ma G, Hu X, Fraser DR, Greenfield H: School milk intervention trial enhances growth and bone mineral accretion in Chinese girls aged 10-12 years in Beijing. Br J Nutr 2004, 92:159-168.

118. Burne TH, McGrath JJ, Eyles DW, Mackay-Sim A: Behavioural characterization of Vitamin D receptor knockout mice. Behav Brain Res 2005, 157:299-308.

119. Liu Y, Albertssson-Wikland K, Karlberg J: Long-term consequences of early linear growth retardation (stunting) in Swedish children. Pediatr Res 2000, 47:475-480.

120. Eduard W, Omenaas E, Bakke PS, Douwes J, Heederik D: Atopic and non-atopic asthma in a farming and a general population. Am J Ind Med 2004, 46:396-399.

121. Bolte G, Schmidt M, Maziax W, Keil U, Naspa P, von Mutius E, Weiland SK: The relation of markers of fetal growth with asthma, allergies and serum immunoglobulin E levels in children at age 5-7 years. Clin Exp Allergy 2004, 34:381-388.

122. Leadbetter P, Pearce N, Cheng S, Sears MR, Holdaway MD, Flannery EM, Herbison GP, Beasley R: Relationship between fetal growth and the development of asthma and atopy in childhood. Thorax 1999, 54:905-910.

123. Beasley R, Leadbetter P, Pearce N, Crane J: Is enhanced fetal growth a risk factor for the development of atopy or asthma? Int Arch Allergy Immunol 1999, 118:408-410.

124. Gregory A, Doull I, Pearce N, Cheng S, Leadbetter P, Holgate S, Beasley R: The relationship between anthropometric measurements at birth: asthma and atopy in childhood. Clin Exp Allergy 1999, 29:330-333.

125. Katz KA, Poocok SJ, Strachan DP: Neonatal head circumference, neonatal weight, and risk of hayfever, asthma and eczema in a large cohort of adolescents from Sheffield, England. Clin Exp Allergy 2003, 33:737-745.

126. Beser E, Cakmakci T: Factors affecting the morbidity of vitamin D deficiency: rickets and primary protection. East Afr Med J 1994, 71:358-362.