Fermion mixing in an S_3 model with three Higgs doublets

F. González Canales1, A. Mondragón2, M. Mondragón2, U. J. Saldañá Salazar2 and L. Velasco-Sevilla2,3

1 Facultad de Ciencias de la Electrónica, Benemérita Universidad Autónoma de Puebla, Apdo. Postal 157, 72570, Puebla, Pue., México.
2 Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, 01000, México D.F., México.
3 University of Hamburg, II. Institute for Theoretical Physics, Luruper Chaussee 149, 22761 Hamburg, Germany.

Abstract. We present a brief overview of a unified treatment of masses and mixings of quarks and leptons, as a realization of an S_3-flavour permutational symmetry in an extension of the Standard Model. In order to leave S_3 as an exact flavour symmetry two extra Higgs fields, $SU(2)_L$ doublets, are added. In this model, the mass matrices of the fermions are reparametrized in terms of their eigenvalues allowing us to derive exact, explicit analytical expressions for the mixing matrices, V_{CKM} and U_{PMNS}, as functions of the quark and lepton masses, respectively. In both the quark and lepton sectors a χ^2 fit of the theoretical expressions to the experimentally determined values of the mixing angles yields results in excellent agreement with the most recent experimental data on quarks and leptons.

1. Introduction

Family or flavour models offer a way of expressing mixing angles in terms of fermion masses [1–4] in good agreement with phenomenology. Here, we consider fermion mixing in an extension of the Standard Model (SM) with an S_3 family symmetry group and three Higgs fields, electroweak doublets. We include also three right-handed neutrino fields, to implement the seesaw mechanism. In this way, all fermionic and Higgs fields, including the right-handed neutrino fields, have three species and transform under the family symmetry group as the three dimensional representation $1 \oplus 2$ of the permutational group S_3. The S_3 family symmetry strongly constrains the number of free parameters in the fermionic mass matrices and allows us to obtain exact mathematical relations among fermion masses and mixing angles. In section 2, we introduce the S_3 symmetry and briefly comment on its interesting features as a family symmetry. In section 3, we discuss and introduce the construction of this model, which we will denote as S_3-3H. In section 4, we confront the model with the most up to date experimental data. In section 5, we summarize and conclude with some remarks.

2. S_3 as a symmetry of fermion families

The permutational symmetry group of three objects, S_3, is the smallest non-Abelian finite group. The group S_3 has three irreducible representations (irreps): a doublet 2, and two singlets, 1_S.
and 1_A, symmetric and antisymmetric, respectively. The Kronecker products of irreducible representations may be decomposed as a direct sum of irreducible representations

$$1_S \otimes 1_S = 1_S, \quad 1_A \otimes 1_A = 1_S, \quad 1_A \otimes 1_S = 1_A,$$

$$1_S \otimes 2 = 2, \quad 1_A \otimes 2 = 2, \quad \text{and} \quad 2 \otimes 2 = 1_A \oplus 1_S \oplus 2.$$ \hfill (1)

In the SM all gauge interactions are invariant under the permutation of the family index in the fermion fields. If we extend this invariance to the Yukawa sector we are led to introduce two more Higgs fields, $SU(2)_L$ doublets, such that all Yukawa interactions are made invariant under the permutation of the family index in both the fermion and the Higgs boson fields.

In Figure 1 the mass ratios, $\tilde{m}_i^f = m^f_i / m^f_3$, are shown. There, a clear pattern can be observed, which suggests that the structure obtained in the decomposition of the fermion mass matrix is a direct sum of irreducible representations of S_3, namely $3 = 2 \oplus 1$, and is a good representation of the fermion mass hierarchy.

![Figure 1](image.png)

Figure 1. The mass ratios appear naturally ordered, from left to right, from the first family to the third family. An underlying symmetry structure, $2 \oplus 1$, can be clearly seen from here.

3. An S_3-invariant Extension of the Standard Model (S_3-3H)

Models which have S_3 as family symmetry group have been discussed for a long time (see for instance [4] and references therein).

3.1. Assignments between S_3 irreps and families

We assign the first two families, $f_I(L,R)$ and $f_{II}(L,R)$, to the doublet representation, 2, and the third family, $f_{III}(L,R)$, to the symmetric singlet representation, 1_S, of S_3

$$\begin{pmatrix} f_{I}(L,R) \\ f_{II}(L,R) \end{pmatrix} \sim 2; \quad f_{III}(L,R) \sim 1_S,$$

respectively. Here I, II or III is the family index of a left or right-handed fermion field $f_{I}(L,R)$, and $f_{I}(L,R)$ may represent any SM fermion field. We make a similar assignment in the Higgs sector

$$H_D \equiv \begin{pmatrix} H_1 \\ H_2 \end{pmatrix} \sim 2; \quad H_S \sim 1_S,$$ \hfill (2)

where H_i ($i = 1, 2, S$) represents a Higgs $SU(2)_L$ doublet field.
3.2. A weak-basis transformation

After electroweak symmetry breaking, in the symmetry adapted basis, the generic S_3-invariant mass matrix form for Dirac fermions is

$$
\mathcal{M}^f_{S_3} = \begin{pmatrix}
\sqrt{Y^f_2} v_S + Y^f_3 w_1 & Y^f_3 w_1 & \sqrt{2} Y^f_5 w_1 \\
Y^f_3 w_1 & \sqrt{2} Y^f_2 v_S - Y^f_3 w_2 & \sqrt{2} Y^f_5 w_2 \\
\sqrt{2} Y^f_3 w_1 & \sqrt{2} Y^f_5 w_2 & 2 Y^f_1 v_S
\end{pmatrix},
$$

(3)

where the Y^f_i are complex Yukawa couplings and w_1, w_2, and v_S are the real vacuum expectation values of the S_3 doublet components and the S_3 symmetric singlet representation, respectively. In this model, we consider the case where the vacuum expectation values of the S_3 doublet are the same, $w_1 = w_2$. This relation implies that in the minimum of the Higgs potential there is an accidental S_3' symmetry [5,6].

It has been already noticed that a suitable weak-basis transformation of the mass matrices may help to reduce the number of free parameters by introducing a set of zeroes in their entries [7,8]. In our case, a $\pi/4$ rotation in the S_3 doublet subspace is enough to introduce one texture zeroes in the generic S_3-invariant Dirac fermion mass matrix

$$
\mathcal{M}^f_{\text{Hier}} = \begin{pmatrix}
|\mu^f_1| - |\mu^f_2| & |\mu^f_2| & 0 \\
|\mu^f_2| & |\mu^f_1| + |\mu^f_2| & \mu^f_8 \\
0 & \mu^f_8 & |\mu^f_3|
\end{pmatrix},
$$

(4)

where $\mu^f_1 \equiv \sqrt{2} Y^f_2 v_S$, $\mu^f_2 \equiv Y^f_3 w_1$, $\mu^f_3 \equiv 2 Y^f_1 v_S$, and $\mu^f_8 \equiv 2 Y^f_2 w_1$, and we have assumed Hermiticity, which in this case implies a particular value for the phase of the complex Yukawa couplings.

It has been already noticed [9] that the matrix form of Eq. (4) reproduces the four zero Fritzsch-like texture [1,10–13] which, along with the Nearest-Neighbour Interaction (NNI) [14,15] form of the mass matrix, give a good description of the phenomenology of quark and lepton masses and their mixing.

The computation simplifies if we notice that the mass matrix $\mathcal{M}^f_{\text{Hier}}$ can be expressed as $\overline{\mathcal{M}}^f_{\text{Hier}} + 1 \Delta_f$, where $\Delta_f = |\mu^f_1| - |\mu^f_2|$. Notice that the same unitary matrix diagonalizes both the original mass matrix and the shifted one. The expression for the shifted mass matrix is

$$
\overline{\mathcal{M}}^f_{\text{Hier}} = \begin{pmatrix}
0 & |\mu^f_2| & 0 \\
|\mu^f_2| & 2 |\mu^f_2| & \mu^f_8 \\
0 & \mu^f_8 & |\mu^f_3| - \Delta_f
\end{pmatrix},
$$

(5)

4. The quark sector

In the following section we give analytical expressions for the CKM mixing matrix elements as explicit functions of quark mass ratios. For the purpose of illustrating the relations among mixing parameters and mass ratios, we take an approximation where we neglect the ratio of the shift Δ_f over the heaviest (third generation) mass, which is a very small number. The complete analysis of the model, taking into account the full expression, will be presented elsewhere. In this way it is possible to express the elements of the quark mixing matrix V^{th}_{CKM}

$$
V^{th}_{CKM} = \begin{pmatrix}
V^{th}_{ud} & V^{th}_{us} & V^{th}_{ub} \\
V^{th}_{cd} & V^{th}_{cs} & V^{th}_{cb} \\
V^{th}_{td} & V^{th}_{ts} & V^{th}_{tb}
\end{pmatrix},
$$

(6)
as an explicit function of the quark mass ratios [16–18]

\[
V_{ud}^{\text{th}} = \sqrt{\frac{m_u m_d}{D_{1u} D_{1d}}} + \sqrt{\frac{m_u m_d}{D_{1u} D_{1d}}} \left(\sqrt{\frac{1}{D_{1u} D_{1d}}} (1 - \delta_d) \xi_{1}^{u,d} + \sqrt{\delta_d (1 - \delta_d)} \xi_{2}^{u,d} \right) e^{i\phi_1},
\]

\[
V_{us}^{\text{th}} = -\sqrt{\frac{m_u m_d}{D_{1u} D_{1d}}} + \sqrt{\frac{m_u m_d}{D_{1u} D_{1d}}} \left(\sqrt{\frac{1}{D_{1u} D_{1d}}} (1 - \delta_d) \xi_{1}^{u,d} + \sqrt{\delta_d (1 - \delta_d)} \xi_{2}^{u,d} \right) e^{i\phi_1},
\]

\[
V_{ub}^{\text{th}} = \frac{\sqrt{m_u m_d \delta_d}}{D_{2u} D_{2d}} + \sqrt{\frac{m_u m_d}{D_{2u} D_{2d}}} \left(\sqrt{\frac{1}{D_{2u} D_{2d}}} (1 - \delta_d) \xi_{1}^{u,d} - \sqrt{\delta_d (1 - \delta_d)} \xi_{2}^{u,d} \right) e^{i\phi_1},
\]

\[
V_{cb}^{\text{th}} = \frac{\sqrt{m_u m_d \delta_d}}{D_{2u} D_{2d}} + \sqrt{\frac{m_u m_d}{D_{2u} D_{2d}}} \left(\sqrt{\frac{1}{D_{2u} D_{2d}}} (1 - \delta_d) \xi_{1}^{u,d} - \sqrt{\delta_d (1 - \delta_d)} \xi_{2}^{u,d} \right) e^{i\phi_1},
\]

\[
V_{td}^{\text{th}} = \frac{\sqrt{m_u m_d \delta_d}}{D_{3u} D_{3d}} + \sqrt{\frac{m_u m_d}{D_{3u} D_{3d}}} \left(\sqrt{\frac{1}{D_{3u} D_{3d}}} (1 - \delta_d) \xi_{1}^{u,d} - \sqrt{\delta_d (1 - \delta_d)} \xi_{2}^{u,d} \right) e^{i\phi_1},
\]

\[
V_{ts}^{\text{th}} = \frac{\sqrt{m_u m_d \delta_d}}{D_{3u} D_{3d}} + \sqrt{\frac{m_u m_d}{D_{3u} D_{3d}}} \left(\sqrt{\frac{1}{D_{3u} D_{3d}}} (1 - \delta_d) \xi_{1}^{u,d} - \sqrt{\delta_d (1 - \delta_d)} \xi_{2}^{u,d} \right) e^{i\phi_1},
\]

\[
V_{tb}^{\text{th}} = \sqrt{\frac{m_u m_c m_d}{D_{4u} D_{4d}}} + \sqrt{\frac{m_u m_c m_d}{D_{4u} D_{4d}}} \left(\sqrt{\frac{1}{D_{4u} D_{4d}}} (1 - \delta_d) \xi_{1}^{u,d} + \sqrt{\delta_d (1 - \delta_d)} \xi_{2}^{u,d} \right) e^{i\phi_1},
\]

with

\[
\xi_{1}^{u,d} = 1 - \delta_u d - \delta_u d, \quad \xi_{2}^{u,d} = 1 + \tilde{m}_{c,s} - \delta_u d,
\]

\[
D_{1(u,d)} = (1 - \delta_u d)(\tilde{m}_{u,d} + \tilde{m}_{c,s})(1 - \tilde{m}_{u,d}), \quad D_{2(u,d)} = (1 - \delta_u d)(\tilde{m}_{u,d} + \tilde{m}_{c,s})(1 + \tilde{m}_{c,s}),
\]

\[
D_{3(u,d)} = (1 - \delta_u d)(1 - \tilde{m}_{u,d})(1 + \tilde{m}_{c,s}).
\]

In this notation \(\tilde{m}_u = m_u / m_t \), \(\tilde{m}_c = |m_c| / m_t \), \(\tilde{m}_d = m_d / m_b \) and \(\tilde{m}_s = |m_s| / m_b \).

4.1. \(\chi^2 \) analysis for the quark sector

For the \(\chi^2 \) fit we proceed as follows. We construct the \(\chi^2 \) function as

\[
\chi^2 = \frac{(V_{ud}^{\text{th}} - V_{ud})^2}{\sigma_{V_{ud}}^2} + \frac{(V_{us}^{\text{th}} - V_{us})^2}{\sigma_{V_{us}}^2} + \frac{(V_{ub}^{\text{th}} - V_{ub})^2}{\sigma_{V_{ub}}^2} + \frac{(J_{\text{th}} - J)^2}{\sigma_{J}^2},
\]

where the quantities with super-index “th” are the complete expressions for the CKM elements, as given by the \(S_3 \) model, and those without, are the experimental quantities along with their uncertainty,

\[
\begin{align*}
2011: & \quad V_{ud} = 0.97428 \pm 0.00015, \quad V_{us} = 0.2253 \pm 0.007, \\
& \quad V_{ub} = 0.00347 \pm 0.00014, \quad J = (2.91 \pm 0.155) \times 10^{-5},
\end{align*}
\]

\[
\begin{align*}
2012: & \quad V_{ud} = 0.97427 \pm 0.00015, \quad V_{us} = 0.2253 \pm 0.007, \\
& \quad V_{ub} = 0.00351 \pm 0.00015, \quad J = (2.96 \pm 0.18) \times 10^{-5}.
\end{align*}
\]
We present a comparison of fits using the available data known before July 2012 (labelled as 2011) and the up-to-date data presented by the PDG, given the sizeable change in the uncertainty of the mass of the strange quark. Since we assume unitarity of the CKM mixing matrix, we need to fit just to four observables. The theoretical expressions of the parameters of the CKM elements are given in terms of the mass ratios, \(m_i \), hence the minimization of the defined \(\chi^2 \) is a function of \(m_i \), and the parameters \(\delta_u \), \(\delta_d \), and \(\cos \phi_i \). That means, that as a result of the minimization, there is a best fit value for each of those quantities, where \(\chi^2 \) reaches its minimum. For the minimization procedure we used MINUIT. We allow the mass ratios \(m_i \) to take values within their 3\(\sigma \) range, as given in Table 1, whereas \(\delta_u \) and \(\delta_d \), vary freely. Minimization with MINUIT starts with a a seed whose value is close to the minimum of the parameters being considered. Therefore, if the range of variation is large, it is difficult to find a best fit point. On the other hand, to check for global minima, one should remove the limits of the “free” parameters. If we perform the fit leaving completely free the values for \(m_i \), the quality of the fit decreases, and most importantly, it turns out that \(m_u \) is of order 10\(^{-3} \). In Figure 2, we present the \(\chi^2 \) value as a function of \(m_d \), where we have taken \(\phi_1 = \pi/2 \). This is not the most general case but it represents an interesting one\(^1\). For this case the best fit points (BFP) of the parameters \(\delta_d \) and \(\delta_u \) are respectively \(6.05 \times 10^{-2} \) and \(4.09 \times 10^{-2} \). The BFP of the mass ratios \(m_u \), \(m_c \), \(m_d \) and \(m_s \) are respectively \((1.73 \pm 0.75) \times 10^{-5}, (3.46 \pm 0.43) \times 10^{-5}, (1.12 \pm 0.007) \times 10^{-3} \), and \((2.32 \pm 0.84) \times 10^{-2} \). The plot of Figure 2 corresponds to the exact result of the minimization, which allows to use values of the mass ratios \(m_i \) with more precision than the corresponding precision of the experimental/lattice determinations. This explains the change in value of \(\chi^2 \) in the plot, from \(3.4 \times 10^{-4} \) up to \(7.4 \times 10^{-1} \), which is the resulting value when we restrict the values of the BFP of mass ratios to have a precision equal to that of experimental/lattice determinations.

5. The leptonic sector

A similar analysis to the quark sector can be performed in the leptonic one, where a \(Z_2 \) symmetry is also introduced [19–22]. In this case, the masses of the left-handed Majorana neutrinos, \(M_{\nu L} \), are generated by the type I seesaw mechanism. We take the mass matrix of the right-handed neutrinos to be real and diagonal but non-degenerate \(\mathbf{M}_{\nu R} = \text{diag}(M_1, M_2, M_3) \), hence the mass matrix \(\mathbf{M}_{\nu L} \) takes the form [22]

\[
\mathbf{M}_{\nu L} = \begin{pmatrix}
\frac{2(\mu^2)}{M} & \frac{2\lambda(\mu^2)}{M} & \frac{2\nu^2 \mu^2}{M} \\
\frac{2\lambda(\mu^2)}{M} & \frac{2(\nu^2)}{M} & \frac{2\mu^2 \nu^2 \lambda}{M} \\
\frac{2\nu^2 \mu^2}{M} & \frac{2\mu^2 \nu^2 \lambda}{M} & \frac{2(\nu^2)}{M} + \frac{(\nu^2)^2}{M}
\end{pmatrix}, \quad \lambda = \left(\frac{M_2-M_1}{M_1+M_2} \right), \quad \text{and} \quad \mathbf{M} = 2 \frac{M_1 M_2}{M_2+M_1}.
\]

\(^1\) The results of the most general case will be presented elsewhere.
Figure 2. Results of the χ^2 fit for the quark sector as a function of \tilde{m}_d. We have made a fit using only an average of the theoretical determination of m_s, $m_s(2\text{GeV}) = 0.101 \pm 0.011$, in order to assess the impact of the reduction in the uncertainty of m_s. The black vertical lines represent the \tilde{m}_s allowed experimental 1σ region and its central value.

Since we assumed the right-handed neutrino mass matrix \mathbf{M}_{ν_R} to be real, the complex symmetric neutrino mass matrix \mathbf{M}_{ν_L} has one Dirac phase and two Majorana phases which may be factored out of \mathbf{M}_{ν_L} as

$$
\mathbf{M}_{\nu_L} = \mathbf{Q} \mathbf{U}_{\frac{\pi}{2}} \left(\mu_0 \mathbf{I}_{3 \times 3} + \widehat{\mathbf{M}} \right) \mathbf{U}_{\frac{\pi}{2}}^\dagger \mathbf{Q},
$$

(13)

where $\mathbf{Q} = e^{i\theta_2} \text{diag} \{ 1, 1, e^{i\delta_\nu} \}$ with $\delta_\nu = \phi_1 - \phi_2 = \arg \{ \mu'_3 \} - \arg \{ \mu'_5 \}$,

$$
\mathbf{U}_{\frac{\pi}{2}} = \begin{pmatrix}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & 1 & 0
\end{pmatrix}, \quad \mu_0 = \frac{2 |\mu'_2|^2}{|\mathbf{M}|} (1 - |\lambda|), \quad \text{and} \quad \widehat{\mathbf{M}} = \begin{pmatrix}
0 & A & 0 \\
A & B & C \\
0 & C & 2d
\end{pmatrix},
$$

(14)

with $A = \sqrt{2} |\mu'_2||\mu'_5| (1 - |\lambda|)$, $B = \frac{2 |\mu'_2|^2 + |\mu'_5|^2}{|\mathbf{M}|} - \frac{2 |\mu'_5|^2}{|\mathbf{M}|} (1 - |\lambda|)$, $C = \sqrt{2} \frac{|\mu'_2||\mu'_5|}{|\mathbf{M}|} (1 + |\lambda|)$ and $d = \frac{2 |\lambda||\mu'_5|^2}{|\mathbf{M}|}$. As mentioned before, the diagonalization of \mathbf{M}_{ν_L} is reduced to the diagonalization of the real symmetric matrix $\widehat{\mathbf{M}}$ with two texture zeroes of class I [23]. Hence, the matrix \mathbf{M}_{ν_L} is diagonalized by a unitary matrix

$$
\mathbf{U}_\nu = \mathbf{Q'} \mathbf{U}_{\frac{\pi}{2}} \mathbf{O}^{N[i]}_{\nu_L}.
$$

(15)

As in the case of the charged leptons, the matrices \mathbf{M}_{ν_L} and \mathbf{U}_ν can be reparametrized in terms of the neutrino masses, following the procedure outlined in refs. [17, 18, 23, 24]. Then, the mass matrix \mathbf{M}_{ν_L} for a normal [inverted] hierarchy in the mass spectrum takes the form

$$
\mathbf{M}_{\nu_L}^{N[i]} = \begin{pmatrix}
\mu_0 + d & d & \frac{1}{\sqrt{2}} \left(C^{N[i]} + A^{N[i]} \right) \\
d & \mu_0 + d & \frac{1}{\sqrt{2}} \left(C^{N[i]} - A^{N[i]} \right) \\
\frac{1}{\sqrt{2}} \left(C^{N[i]} + A^{N[i]} \right) & \frac{1}{\sqrt{2}} \left(C^{N[i]} - A^{N[i]} \right) & m_{\nu_1} + m_{\nu_2} + m_{\nu_3} - 2 (\mu_0 + d)
\end{pmatrix},
$$

(16)
with $C^{N[1]} = \sqrt{\frac{(2d+\mu_0-m_{\nu_1})(2d+\mu_0-m_{\nu_2})}{2d}}$ and $A^{N[1]} = \sqrt{\frac{(m_{\nu_2}^2 - \mu_0)(m_{\nu_3}^2 - \mu_0)(\mu_0 - m_{\nu_1}^2)}{2d}}$.

The allowed values for the parameters μ_0 and $2d + \mu_0$ are in the following ranges: $m_{\nu_{2[3]}} > \mu_0 > m_{\nu_{3[2]}}$ and $m_{\nu_{3[2]}} > 2d + \mu_0 > m_{\nu_{2[1]}}$.

5.1. The reactor mixing angle

The theoretical expression for the lepton mixing angles as functions of the lepton mass ratios is readily obtained when the theoretical expressions for the modulii of the entries in the PMNS mixing matrix are substituted for $|\langle (V_{PMNS}^\text{th})_{ij}\rangle|$. In a first preliminary analysis for the reactor mixing angle θ_{13}^l and for an inverted neutrino mass hierarchy $(m_{\nu_2} > m_{\nu_1} > m_{\nu_3})$ we obtain

$$\sin^2 \theta_{13}^l \approx \frac{(\mu_0 + 2d - m_{\nu_3}) (\mu_0 - m_{\nu_3})}{(m_{\nu_1} - m_{\nu_3}) (m_{\nu_2} - m_{\nu_3})}.$$

(17)

Now, with the following values for the neutrino masses $m_{\nu_2} = 0.056$ eV, $m_{\nu_1} = 0.053$ eV and $m_{\nu_3} = 0.048$ eV, and the parameter values $\delta_1 = \pi/2$, $\mu_0 = 0.049$ eV and $d = 8 \times 10^{-5}$ eV, we get $\sin^2 \theta_{13}^l \approx 0.029 \rightarrow \theta_{13}^l \approx 9.8^\circ$, in good agreement with the most recent global fits to neutrino oscillation data [25, 26]. A complete analysis, from a χ^2 fit of the exact theoretical expressions for the modulii of the entries of the lepton mixing matrix of the $|\langle (V_{PMNS}^\text{th})_{ij}\rangle|$ to the experimental values will be considered elsewhere.

Conclusions

The introduction of the S_3 family symmetry in the Standard Model was motivated by the need to reduce the number of free parameters in the theory, and was guided by the analysis of the phenomenology of masses and mixings in the quark and lepton sectors. In order to preserve the S_3 family symmetry, two more Higgs doublets have to be introduced in addition to the one of the SM, and thus the concept of flavour is extended to the Higgs sector of the theory. We identified the conditions under which the four-zero Fritzsch-like texture mass matrices are obtained. This allowed us to (i) reduce drastically the number of parameters needed to describe the extended model with three Higgs SU(2)$_L$ doublets, (ii) to find an exact parameterization of the mass matrices in terms of their eigenvalues, and (iii), to compute the mixing angles in both the quark and lepton sectors as functions of mass ratios. We also derived exact formulas for the mixing angles of the CKM and PMNS matrices in terms of quark and lepton mass ratios, which we found to be in excellent agreement with all data on quark and neutrino masses and their mixing.

Acknowledgements

We acknowledge the financial support from the Mexican grants PAPIIT IN113712 and CONACyT-132059. F. González acknowledges the financial support received from PROMEP through a postdoctoral scholarship under contract PROMEP/103.5/12/2548. L. Velasco-Sevilla acknowledges the SFB 676 Fellowship from the University of Hamburg.

References

[1] Fritzsch H and Xing Z 2000 *Prog.Part.Nucl.Phys.* 45 1–81 (Preprint hep-ph/9912358)
[2] Ishimori H, Kobayashi T, Ohki H, Shimizu Y, Okada H et al. 2010 *Prog.Theor.Phys.Suppl.* 183 1–163 (Preprint 1003.3552)
[3] Altarelli G and Feruglio F 2010 *Rev.Mod.Phys.* 82 2701–2729 (Preprint 1002.0211)
[4] Hirsch M, Meloni D, Morisi S, Pastor S, Peinado E et al. 2012 Long author list - awaiting processing (Preprint 1201.5525)
[5] Pakvasa S and Sugawara H 1978 *Phys.Lett.* B73 61
[6] Yahalom R 1984 *Phys.Rev.* D29 536
[7] Branco G, Emmanuel-Costa D and Gonzalez Felipe R 2000 *Phys.Lett.* B477 147–155 (Preprint hep-ph/9911418)
[8] Branco G, Emmanuel-Costa D, Gonzalez Felipe R and Serodio H 2009 Phys. Lett. B670 340–349 (Preprint 0711.1613)

[9] Canales F G, Mondragon A, Salazar U S and Velasco-Sevilla L 2012 (Preprint 1210.0288)

[10] Weinberg S 1977 Trans. New York Acad. Sci. 38 185–201

[11] Fritzsch H 1977 Phys. Lett. B70 436

[12] Fritzsch H 1978 Phys. Lett. B73 317–322

[13] Gupta M and Ahuja G 2011 Int. J. Mod. Phys. A26 2973–2995

[14] Babu K S and Kubo J 2005 Phys. Rev. D71 056006 (Preprint hep-ph/0411226)

[15] Simoes C 2011 J. Phys. Conf. Ser. 335 012031

[16] Mondragón A and Rodríguez-Jáuregui E 2000 Rev. Mex. Fis. 46 5–22 (Preprint hep-ph/0003104)

[17] Mondragón A and Rodríguez-Jáuregui E 2000 Phys. Rev. D61 113002 (Preprint hep-ph/9906429)

[18] Mondragón A and Rodríguez-Jáuregui E 1999 Phys. Rev. D59 093009 (Preprint hep-ph/9807214)

[19] Mondragón A, Mondragón M and Peinado E 2008 J. Phys. A41 304035 (Preprint 0712.1799)

[20] Mondragón A, Mondragón M and Peinado E 2008 AIP Conf. Proc. 1026 164–169 (Preprint 0712.2488)

[21] Mondragón A, Mondragón M and Peinado E 2007 Phys. Rev. D76 076003 (Preprint 0706.0354)

[22] González C F, Mondragón A and Mondragón M 2012 (Preprint 1205.4755)

[23] González Canales F and Mondragón A 2011 J. Phys. Conf. Ser. 287 012015 presented at XIV Mexican School on Particles and Fields, 4-13 November 2010, Morelia México (Preprint 1101.3807)

[24] Barranco J, González Canales F and Mondragón A 2010 Phys. Rev. D82 073010 (Preprint 1004.3781)

[25] Fogli G, Lisi E, Marrone D, Montanino D, Palazzo A et al. 2012 Phys. Rev. D86 013012 (Preprint 1205.5254)

[26] Forero D, Tortola M and Valle J 2012 Phys. Rev. D86 073012 (Preprint 1205.4018)