A SUPERDIMENSION FORMULA FOR $\mathfrak{gl}(m|n)$-MODULES

MICHAEL CHMUTOV, RACHEL KARPMAN AND SHIFRA REIF

Abstract. We give a formula for the superdimension of a finite-dimensional simple $\mathfrak{gl}(m|n)$-module using the Su-Zhang character formula. As a corollary, we obtain a simple algebraic proof of a conjecture of Kac-Wakimoto for $\mathfrak{gl}(m|n)$, namely, a simple module has nonzero superdimension if and only if it has maximal degree of atypicality. This conjecture was proven originally by Serganova using the Duflo-Serganova associated variety.

1. Introduction

The superdimension of a \mathbb{Z}_2-graded vector space $V = V_0 \oplus V_1$ is defined to be

$$\text{sdim } V := \dim V_0 - \dim V_1.$$

It was conjectured in 1994 by Kac and Wakimoto that the superdimension of a finite-dimensional simple module of a basic Lie superalgebra \mathfrak{g} is nonzero if and only if the atypicality is maximal [KW]. This conjecture was supported by a theorem stating that the evaluation of the so-called Bernstein-Leites (super)character is nonzero exactly under this condition. At the time, there was no character formula for Lie superalgebras, and it was not known precisely how the Bernstein-Leites character was related to the actual character of the module. The conjecture was finally proved by Serganova but without giving a formula for the superdimension [S3].

Major progress has been made since then on the character theory for basic Lie superalgebras. In 1996, Serganova gave a general character formula for finite dimensional irreducible representations of $\mathfrak{gl}(m|n)$ in terms of generalized Kazhdan-Lusztig polynomials [S1, S2]. Brundan, in 2003, gave an explicit algorithm for computing these generalized Kazhdan-Lusztig polynomials [B]. In 2007, Su and Zhang used Brundan’s algorithm to prove a character formula which consists of a finite alternating sum of Bernstein-Leites characters (see Theorem 2).

In this paper we use the Su-Zhang character formula to give a formula for the superdimension of a simple finite dimensional $\mathfrak{gl}(m|n)$-module $L(\Lambda)$ with highest weight Λ. When Λ is of maximal atypicality, the formula consists of a product of two positive terms. The first term, denoted by s_Λ, is the maximal number of monomials that can appear in a Kazhdan-Lusztig polynomial $K_{\Lambda, \mu}$ for any weight μ. As shown by Su and Zhang, this number can be computed easily using Brundan’s algorithm (see Equation (3.1)). The second term is equal to the dimension of a simple module of a Lie algebra isomorphic to $\mathfrak{gl}(|m-n|)$. Using the dimension formula for simple Lie algebras, we obtain:

Theorem 1. Let Γ_Λ be a maximal set of isotropic roots which are mutually orthogonal and orthogonal to $\Lambda + \rho$ and let M_Λ^+ be the set of even positive roots of \mathfrak{g} orthogonal to Γ_Λ. Then

$$|\text{sdim } L(\Lambda)| = \left\{ \begin{array}{ll} s_\Lambda \prod_{\alpha \in M_\Lambda^+} \frac{\langle \Lambda + \rho, \alpha^\vee \rangle}{\langle \Lambda + \rho - \rho_\Lambda^{\alpha^\vee}, \alpha^\vee \rangle} & \text{if } \Lambda \text{ of maximal atypicality} \\ 0 & \text{otherwise} \end{array} \right.$$

where $\rho_\Lambda^{\alpha} = \frac{1}{2} \sum_{\alpha \in M_\Lambda^+} \alpha$.

It would be interesting to give a geometric proof for Theorem 1 and extend the result to representations of other types of Lie superalgebras.
2. Preliminaries

Let \mathfrak{g} denote the Lie superalgebra $\mathfrak{gl}(m|n)$, and without loss of generality assume $m \geq n$. Let \mathfrak{h} denote the Cartan subalgebra of \mathfrak{g}. We use the standard notation for the odd and even roots, namely

$$\Delta_0 = \{\epsilon_i - \epsilon_j \mid 1 \leq i \neq j \leq m\} \cup \{\delta_i - \delta_j \mid 1 \leq i \neq j \leq n\}$$

$$\Delta_1 = \{\epsilon_i - \delta_j, \delta_j - \epsilon_i \mid 1 \leq i \leq m, 1 \leq j \leq n\}.$$

We normalize the bilinear form on \mathfrak{h}^* so that for all i, j we have $(\epsilon_i, \epsilon_j) = \delta_{i,j}$, $(\epsilon_i, \delta_j) = -\delta_{i,j}$, and $(\epsilon_i, \delta_j) = 0$ where $\delta_{i,j}$ is the Kronecker delta function.

We fix our choice of simple roots to be the standard one, that is

$$\{\epsilon_1 - \epsilon_2, \ldots, \epsilon_{m-1} - \epsilon_m, \epsilon_m - \delta_1, \delta_1 - \delta_2, \ldots, \delta_{n-1} - \delta_n\}.$$

Let Δ_0^+ and Δ_1^+ be the corresponding sets of even and odd positive roots, respectively. Let Q^+ denote the set of positive roots of \mathfrak{g}. Let p denote the parity function on the roots of \mathfrak{g}, and extend p to Q^+ in the natural way. We shall use the standard partial order on \mathfrak{h}^* defined by $\lambda \geq \mu$ if $\lambda - \mu \in Q^+$. Let $p = \frac{1}{2} \sum_{\alpha \in \Delta_0^+} \alpha - \frac{1}{2} \sum_{\alpha \in \Delta_1^+} \alpha$. For $\mu \in \mathfrak{h}^*$, we say that μ is dominant (resp. strictly dominant) if $\frac{2(\mu, \alpha)}{(\alpha, \alpha)} \geq 0$ (resp. $\frac{2(\mu, \alpha)}{(\alpha, \alpha)} > 0$) for all $\alpha \in \Delta_0^+$. Let R and \tilde{R} be the Weyl denominator and superdenominator, respectively, that is

$$R = \frac{\prod_{\alpha \in \Delta_0^+} (1 - e^{-\alpha})}{\prod_{\alpha \in \Delta_1^+} (1 + e^{-\alpha})}$$

and

$$\tilde{R} = \frac{\prod_{\alpha \in \Delta_0^+} (1 - e^{-\alpha})}{\prod_{\alpha \in \Delta_1^+} (1 - e^{-\alpha})}.$$

A root of a Lie superalgebra is isotropic if it is orthogonal to itself. The isotropic roots of $\mathfrak{gl}(m|n)$ are precisely the odd roots. For a Lie superalgebra \mathfrak{a}, we define the defect of \mathfrak{a}, denoted $\text{def } \mathfrak{a}$, to be the size of a maximal set of isotropic positive roots which are mutually orthogonal. For $\mathfrak{g} = \mathfrak{gl}(m|n)$, with $m \geq n$, we have $\text{def } \mathfrak{g} = n$.

Let $L(\Lambda)$ be a simple finite-dimensional representation of highest weight Λ. Note that Λ is a dominant weight, and since we chose the standard set of simple roots, $\Lambda + \rho$ is strictly dominant. Let Γ_Λ be a maximal set of isotropic roots, which are orthogonal to each other and to $\Lambda + \rho$. Since $\Lambda + \rho$ is strictly dominant, this set is unique. The atypicality of Λ is defined to be $r = |\Gamma_\Lambda|$. We set M_Λ to be the set of even roots of \mathfrak{g} orthogonal to Γ_Λ, and let \mathfrak{g}_Λ be the Lie algebra with root system M_Λ. Note that if $r = n$, $\mathfrak{g}_\Lambda \cong \mathfrak{gl}(m-n)$. Denote $M_\Lambda^+ := M_\Lambda \cap \Delta_0^+$, $\rho_\Lambda^0 = \frac{1}{2} \sum_{\alpha \in M_\Lambda^+} \alpha$ and $R_\Lambda := \prod_{\alpha \in M_\Lambda^+} (1 - e^{-\alpha})$. We denote the simple \mathfrak{g}_Λ module of highest weight μ by $L_\Lambda(\mu)$. We use the same notation for a weight $\lambda \in \mathfrak{h}$ and its restriction to $\mathfrak{g}_\Lambda \cap \mathfrak{h}$.

Given a weight space decomposition $L(\Lambda) = \bigoplus_{\mu \in Q^+} L_{\Lambda-\mu}$, the character and supercharacter of $L(\Lambda)$ are given by

$$\text{ch } L(\Lambda) = \sum_{\mu \in Q^+} (\dim L_{\Lambda-\mu}) e^{\Lambda-\mu}, \quad \text{sch } L(\Lambda) = \sum_{\mu \in Q^+} (-1)^{p(\mu)} (\dim L_{\Lambda-\mu}) e^{\Lambda-\mu}.$$

Note that these characters yield functions on \mathfrak{h}, defined by $e^\lambda(h) = e^{\Lambda(h)}$ for $h \in \mathfrak{h}$ and $\lambda \in \mathfrak{h}^*$. For f a function on \mathfrak{h}^*, let $f|_0$ denote evaluation at 0. We have

$$\text{ch } L(\Lambda)|_0 = \dim L(\Lambda) \quad \text{and} \quad \text{sch } L(\Lambda)|_0 = s \dim L(\Lambda).$$

The Weyl group W acts on the space \mathcal{E} of rational functions in e^λ, $\lambda \in \mathfrak{h}$, by $w e^\lambda = e^{w\lambda}$. Let ℓ denote the length function of W. For $W' \subseteq W$ and $X \in \mathcal{E}$, we denote

$$\mathcal{F}_{W'}(X) = \sum_{w \in W'} (-1)^{\ell(w)} w(X).$$
3. Proof of Theorem 1

The Su-Zhang character formula gives the character of a finite-dimensional irreducible g-module \(L(\Lambda) \). We use this formula to derive a formula for the supercharacter, which we evaluate at zero to find the superdimension of \(L(\Lambda) \).

3.1. The Su-Zhang Character Formula. To state the Su-Zhang formula, we need additional notation. In particular, we shall introduce two subsets of the Weyl group \(W \) of \(g \), denoted \(S_\Lambda \) and \(C_r \).

We denote the elements of \(\Gamma_\Lambda \) by \(\{\beta_1, \ldots, \beta_r\} \) where \(\beta_k = \epsilon_k - \delta_{jk} \), and \(j_1 < j_2 < \cdots < j_r \). Note that this notation imposes an order on \(\Gamma_\Lambda \). We embed \(\text{Sym}_r \) in the Weyl group \(W \) of \(g \) by sending the transposition \((k, \ell) \in \text{Sym}_r \) to the product of reflections \(s_{\epsilon_k} s_{\epsilon_\ell} s_{\delta_{jk}} s_{\delta_{\ell k}} \). Thus \((k, \ell) \) maps to an element of \(W \) which interchanges \(\beta_k \) and \(\beta_\ell \). Note that for \(\mu \in \Lambda - \mathbb{Z} \Gamma_\Lambda \) and \(\sigma \in \text{Sym}_r \), we have \(\sigma(\mu + \rho) \in \Lambda + \rho - \mathbb{Z} \Gamma_\Lambda \).

To define \(S_\Lambda \), we recall the weight diagram construction introduced in [BS]. We write

\[
\Lambda + \rho = \sum_{i=1}^{m} a_i \epsilon_i - \sum_{j=1}^{n} b_j \delta_j.
\]

To construct the weight diagram of \(\Lambda + \rho \), we assign a symbol to each integer \(k \), according to the rule

\[
\begin{align*}
> & \quad \text{if } k \in \{a_1, \ldots, a_m\}, \ k \not\in \{b_1, \ldots, b_n\} \\
< & \quad \text{if } k \not\in \{a_1, \ldots, a_m\}, \ k \in \{b_1, \ldots, b_n\} \\
\times & \quad \text{if } k \in \{a_1, \ldots, a_m\}, \ k \in \{b_1, \ldots, b_n\} \\
\circ & \quad \text{if } k \not\in \{a_1, \ldots, a_m\}, \ k \not\in \{b_1, \ldots, b_n\}
\end{align*}
\]

We number the \(\times \)'s from left to right. For example, if

\[
\Lambda + \rho = 6\epsilon_1 + 5\epsilon_2 + 3\epsilon_3 + 2\epsilon_4 + \epsilon_5 - \delta_1 - 3\delta_2 - 6\delta_3 - 8\delta_4,
\]

then the corresponding weight diagram is

\[
\begin{array}{cccccccc}
\cdots & \times_1 & > & \times_2 & \circ & > & \times_3 & \circ & < & \cdots \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{array}
\]

For \(k \leq \ell \), we say that \(\beta_k \) and \(\beta_\ell \) are strongly connected if for every \(k < i \leq \ell \), the number of entries \(\circ \) between \(\times_k \) and \(\times_i \) in the weight diagram for \(\Lambda + \rho \) is less than or equal to the number of entries \(\times \) between \(\times_k \) and \(\times_i \). In the example above, \(\beta_1 \) and \(\beta_2 \) are strongly connected, as are \(\beta_1 \) and \(\beta_3 \); however, \(\beta_2 \) and \(\beta_3 \) are not strongly connected. For each \(1 \leq s \leq r \), let \(\max^A_s \) be the largest \(t \leq r \) such that \(\beta_s \) and \(\beta_t \) are strongly connected.

Definition 1. Let

\[
S^A := \{\sigma \in \text{Sym}_r \mid \sigma^{-1}(s) < \sigma^{-1}(t) \text{ if } s < t \text{ and } \beta_s \text{ and } \beta_t \text{ are strongly connected}\}.
\]

By [SZ1] 3.18, we obtain

\[
(3.1) \quad s_\Lambda := |S_\Lambda| = \frac{r!}{\prod_{s=1}^{r} (\max^A_s - s + 1)}.
\]

Definition 2. Let \(C_r \) be the set of cyclic permutations of order \(r \), that is, all permutations of the form

\[
\pi = (1, \ldots, i_1)(i_1 + 1, \ldots, i_1 + i_2) \cdots (i_1 + \ldots + i_{t-1} + 1, i_1 + \ldots + i_{t-1} + 2, \ldots, r)
\]
where \(i_1, \ldots, i_t \in \mathbb{N} \) and \(i_1 + \ldots + i_t = r \). For \(\pi \in C_r \), we define

\[
\binom{r}{\pi} = \frac{r!}{i_1!i_2!\cdots i_t!}.
\]

We define the operation \(\dagger \) for \(\lambda \in \Lambda + \rho - N \Gamma_\Lambda \) by setting \(\mu = \lambda \dagger \) to be the maximal weight in \(\Lambda + \rho - N \Gamma_\Lambda \) where the coefficients of \(\delta_{j_k} \) in \(\mu \) are weakly increasing or, equivalently, the coefficients of \(\epsilon_{j_k} \) in \(\mu \) are weakly decreasing (with the notation of [SZ1], \(\lambda \dagger = (\lambda + \rho)_{\dagger} - \rho \)).

For \(\lambda, \mu \in \Lambda + \rho - Z \Gamma_\Lambda \), let \(\lambda - \mu = \sum_{i=1}^{r} c_i \beta_i \). We define \(|\lambda - \mu| \) by \(|\lambda - \mu| := \sum_{i=1}^{r} |c_i| \).

With the notation above, we have:

Theorem 2. [SZ1] Theorem 4.9] The character of a finite dimensional simple \(g \)-module with highest weight \(\Lambda \) is given by

\[
\text{ch} \ L(\Lambda) = \sum_{\sigma \in S^\Lambda, \pi \in C_r} \frac{1}{r!} \binom{r}{\pi} (-1)^{\lambda + \rho - \pi(\sigma(\lambda + \rho))_{\dagger}} \cdot e^{-\rho} R^{-1} \cdot F_{W} \left(\frac{e^{\pi(\sigma(\lambda + \rho))_{\dagger}}}{\prod_{\beta \in \Gamma_\Lambda} (1 + e^{-\beta})} \right)
\]

We transform this character formula to a formula for the supercharacter. For \(\nu \in \mathfrak{h}^* \) let

\[
\chi(\nu) := e^{-\rho} R^{-1} \cdot F_{W} \left(\frac{e^{\nu}}{\prod_{\beta \in \Gamma_\Lambda} (1 + e^{-\beta})} \right).
\]

Expanding each term \(\frac{1}{1 - e^{-\beta}} \) as a geometric series, and changing signs as appropriate, we obtain

\[
\text{sch} \ L(\Lambda) = \sum_{\sigma \in S^\Lambda, \pi \in C_r} \frac{1}{r!} \binom{r}{\pi} (-1)^{\ell(\sigma)} \chi(\pi(\sigma(\lambda + \rho))_{\dagger})_{\dagger}.
\]

3.2. Evaluation.

We now compute the superdimension of \(L(\Lambda) \) by evaluating the formula for the supercharacter in (3.2). We first show that many of the terms evaluate to the same number.

Lemma 1. For any \(\mu \in \Lambda - Z \Gamma_\Lambda \) with \(\mu + \rho \) \(M_\Lambda \) -dominant, \(\chi(\lambda + \rho)|_{0} = \chi(\mu + \rho)|_{0} \).

Proof. Let \(W_\Lambda \) be the subgroup of \(W \) generated by roots from \(M_\Lambda \) and let \(W_1 \) be a set of left coset representatives, so that \(W = W_1 W_\Lambda \). We have

\[
\chi(\mu + \rho) = e^{-\rho} R^{-1} \cdot F_{W_1} \left(\frac{F_{W_\Lambda}(e^{\mu + \rho})}{\prod_{\beta \in \Gamma_\Lambda} (1 + e^{-\beta})} \right).
\]

Since \(\Lambda \) is dominant, \(\mu + \rho - \rho_\Lambda^0 \) is \(M_\Lambda \) -dominant, the Weyl character formula implies

\[
F_{W_\Lambda}(e^{\mu + \rho}) = e^{\rho_\Lambda} R_\Lambda \cdot \text{ch} \ L_\Lambda(\mu + \rho - \rho_\Lambda^0).
\]

Since \(e^{-\rho} R^{-1} \) is \(W_1 \) -anti-invariant, we have

\[
\chi(\mu + \rho) = \sum_{w \in W_1} w \left(e^{-\rho} R^{-1} \cdot e^{\rho_\Lambda} R_\Lambda \cdot \text{ch} \ L_\Lambda(\mu + \rho - \rho_\Lambda^0) \right).
\]

The number of zeros minus the number of poles of the term \(e^{-\rho} R^{-1} \cdot e^{\rho_\Lambda} R_\Lambda \cdot \prod_{\beta \in \Gamma_\Lambda} (1 - e^{-\beta})^{-1} \) at 0 is \((m-r)(n-r) \). Indeed \(|\Delta_0^+| = \frac{n(n-1)+m(m-1)}{2} \), \(|\Delta_0^-| = mn \), \(|M_\Lambda^+| = \frac{(m-r)(m-r-1)+2(n-r)(n-r-1)}{2} \), and \(|\Gamma_\Lambda| = r \). Since \((m-r)(n-r) \geq 0 \), we can evaluate \(\chi(\mu + \rho) \) term by term, that is

\[
\chi(\mu + \rho)|_{0} = \sum_{w \in W_1} w \left(e^{-\rho} R^{-1} \cdot e^{\rho_\Lambda} R_\Lambda \right) \cdot \text{ch} \ L_\Lambda(\mu + \rho - \rho_\Lambda^0)|_{0}.
\]
A SUPERDIMENSION FORMULA FOR $\mathfrak{gl}(m|n)$-MODULES

\[\text{Since } \Lambda - \mu \text{ is orthogonal to } M_{\Lambda}, \text{ we get that} \]
\[\text{ch } L_{\Lambda}(\Lambda + \rho - \rho_{\Lambda}^0) = e^{\Lambda - \mu} \text{ch } L_{\Lambda}(\mu + \rho - \rho_{\Lambda}^0). \]

Since $e^{\Lambda - \mu}$ is orthogonal to M_{Λ}, we have that
\[\text{ch } L_{\Lambda}(\Lambda + \rho - \rho_{\Lambda}^0) = e^{\Lambda - \mu} \text{ch } L_{\Lambda}(\mu + \rho - \rho_{\Lambda}^0). \]

We use the following theorem of Kac and Wakimoto to compute $\chi(\Lambda + \rho)|_0$ (note with the notation of [KW], $\chi(\Lambda + \rho) = j_{\Lambda} \text{ch}_{\Lambda}$).

Theorem 3. [KW, Theorem 3.3] One has
\[|\chi(\Lambda + \rho)|_0| \begin{cases} n! \dim L_{\Lambda}(\Lambda + \rho - \rho_{\Lambda}^0) & r = \text{def } g \\ 0 & \text{otherwise.} \end{cases} \]

Since $(\pi(\sigma(\Lambda + \rho))|_0)$ is contained in $\Lambda + \rho - Z_{\Gamma_{\Lambda}}$ for every $\pi \in C_r$ and $\sigma \in S_\Lambda$, Lemma 1 implies that each term $\chi((\pi(\sigma(\Lambda + \rho))|_0)|_0$ is equal to the constant $\chi(\Lambda + \rho)|_0$. Hence, if $r \neq \text{def } g$, the formula evaluates to 0, completing the proof for this case. If $r = \text{def } g = n$, we have
\[\text{sdim } L(\Lambda) = \pm \sum_{\sigma \in S_\Lambda, \pi \in C_r} \frac{1}{r!} \bigg(\frac{r}{\pi} \bigg) (-1)^{\ell(\pi)} n! \dim L_{\Lambda}(\Lambda + \rho - \rho_{\Lambda}^0). \]

By the dimension formula for simple Lie algebras we have
\[\dim L_{\Lambda}(\Lambda + \rho - \rho_{\Lambda}^0) = \prod_{\alpha \in M_{\Lambda}^+} \frac{\langle \Lambda + \rho, \alpha^\vee \rangle \langle \Lambda + \rho - \rho_{\Lambda}^0, \alpha^\vee \rangle}{\langle \Lambda + \rho, \alpha^\vee \rangle}. \]

To complete the proof of the Theorem it remains to prove the following lemma.

Lemma 2. For $r > 0$, we have
\[\sum_{\pi \in C_r} \bigg(\frac{r}{\pi} \bigg) (-1)^{\ell(\pi)} = 1. \]

Proof. The parity of a permutation $\pi \in \text{Sym}_r$ is r plus the number of cycles of π. Splitting the sum on the left hand side based on the number of cycles we perform the following calculation using generating functions, where $[x^r]$ is the operator that takes the coefficient of x^r of a power series.

\[\sum_{\pi \in C_r} \bigg(\frac{r}{\pi} \bigg) (-1)^{\ell(\pi)} = \sum_{t \geq 1} \frac{r!}{r_1! \ldots r_t!} (-1)^{r+t} \]
\[= (-1)^r r! \sum_{t \geq 1} [x^r] (1 - e^x)^t \]
\[= (-1)^r r! [x^r] \left(\sum_{t \geq 1} (1 - e^x)^t \right) \]
\[= (-1)^r r! [x^r] \left(\frac{1 - e^x}{1 - (1 - e^x)} \right) \]
\[= (-1)^r r! [x^r] (e^{-x} - 1) \]
\[= 1 \]

4. Examples

Let us illustrate our formula with a few examples. We use the vector notation for the weights of \mathfrak{g}, namely
\[(a_1, \ldots, a_m \mid b_1, \ldots, b_n) := \sum_{i=1}^m a_i \epsilon_i - \sum_{i=1}^n b_i \delta_i. \]
Note that $a_i = b_j$ means that $\epsilon_i - \delta_j \in \Gamma_A$. Shifting the highest weight of a \mathfrak{g}-module by $\text{str} := (1, \ldots, 1|1, \ldots, 1)$ does not change the superdimension of the module. Similarly, shifting the highest weight of a \mathfrak{g}_A-module by $\text{tr} := \sum_{i \in M} \epsilon_i, M = \{ i \mid \epsilon_i - \delta_j \notin \Gamma(\Lambda) \forall j \}$ does not change the dimension. Thus, the computations below are done up to a multiple of str and tr.

4.1. **The trivial representation.** The highest weight of the trivial representation is $\Lambda = 0$, so

$$\Lambda + \rho = (m, m-1, \ldots, 2, 1|1, 2, \ldots, n)$$

and $s_A = 1$. We have that $M_A = \{ \epsilon_i - \epsilon_j \mid 1 < i, j \leq m - n \}$ and $\rho - \rho_A^0 = 0$. Thus, our formula gives that the superdimension of the trivial representation is equal to the dimension of the trivial representation of \mathfrak{g}_A which is 1 as desired.

4.2. **The natural representation.** Let V be the natural representation of \mathfrak{g}. Let us show that our formula gives $|s\dim(V)| = m - n$.

The highest weight of V is $\Lambda = \epsilon_1$, so we have $\Lambda + \rho = (m + 1, m - 1, \ldots, 1|1, 2, \ldots, n)$, and $s_A = 1$. Then the atypicality is n for $m > n$, and $n - 1$ for $m = n$. In the latter case, we have $r \neq n$, and so our formula gives 0 for the superdimension, as desired.

For $m > n$, $M_A = \{ \epsilon_i - \epsilon_j \mid i, j \leq m - n \}$, and we have $\Lambda + \rho - \rho_A^1 = \epsilon_1$. However, this is the highest weight of the natural representation of $M_A \cong \mathfrak{g}((m-n))$, and we get $|s\dim V| = \dim L_{Lm}(\epsilon_1) = m - n$.

4.3. **The adjoint representation.** Let V be the irreducible component of the adjoint representation of \mathfrak{g} corresponding to $\mathfrak{sl}(m|n)$ for $m > n$, and to $\mathfrak{psl}(n|n)$ for $m = n$. Then

$$|s\dim(V)| = m^2 + n^2 - 2mn - 1 - \delta_{mn}$$

The highest weight of V is the highest root $\Lambda = \epsilon_1 - \epsilon_n$ and

$$\Lambda + \rho = (m + 1, m - 1, \ldots, 2, 1|1, 2, \ldots, n - 1, n + 1).$$

For $m = n$, $s_A = 2$ and $M_A = \emptyset$. We obtain $|s\dim(V)| = 2$. For $m = n + 1$, we have $|\Gamma_A| = n - 1$. So $r < \text{def} \mathfrak{g}$, and our formula gives 0. Finally, for $m > n + 1$, $s_A = 1$ and

$$M_A = \{ \epsilon_i - \epsilon_j \mid i, j \in \{ 1, 2, \ldots, m - n - 1 \} \cup \{ m - n + 1 \} \}.$$

Thus $\Lambda + \rho - \rho_A^0 = \epsilon_1 - \epsilon_{m-n+1}$ which is the highest weight of the adjoint representation of \mathfrak{g}_A and we get that $|s\dim(V)| = (m - n)^2 - 1$ as required.

References

[B] J. Brundan, *Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra $\mathfrak{gl}(m|n)$*, J. Amer. Math. Soc. 16 (2003), no. 1, 185–231.

[BS] J. Brundan, C. Stroppel, *Highest weight categories arising from Khovanov’s diagram algebra I: Cellularity*, Mosc. Math. J. 11 (2011), no. 4, 685–722

[KW] V.G. Kac and M. Wakimoto, *Integrable highest weight modules over affine superalgebras and number theory*, Lie theory and geometry, edited by J.-L. Brylinski et al., Progr. Math. 123, Birkhuser, Boston, MA, (1994) 415–456.

[S1] V. Serganova, *Kazhdan-Lusztig polynomials and character formula for the Lie superalgebra $\mathfrak{gl}(m|n)$*, Selecta Math. (N.S.) 2 (1996), no. 4, 607–651.

[S2] V. Serganova, *Characters of irreducible representations of simple Lie superalgebras*, Proceedings of the International Congress of Mathematicians, vol. II, 1998, Berlin, Doc. Math., J. Deutsch. Math.-Verein. (1998) 583–593.

[S3] Vera Serganova, *On the superdimension of an irreducible representation of a basic classical Lie superalgebra*, Supersymmetry in mathematics and physics, Lecture Notes in Math., vol. 2027, Springer, Heidelberg, 2011, pp. 253-273. MR 2906346 (2012m:17014).

[SZ1] Y. Su, R.B. Zhang, *Character and dimension formulae for general linear superalgebra*, Advances in Mathematics 211 (2007) 1–33.