Measurement of the Estradiol Concentration in Cerebrospinal Fluid from Infants and Its Correlation with Serum Estradiol and Exosomal MicroRNA-126-5p

Masahiro Ishii, a, # Ayako Senju, a, # Ami Oguro, b Masayuki Shimono, a Shunsuke Araki, a Koichi Kusuhara, a Kouichi Itoh, c Mayumi Tsuji, d and Yasuhiro Ishihara* , b

a Department of Pediatrics, School of Medicine, University of Occupational and Environmental Health; 1–1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807–8555, Japan; b Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University; 1–7–1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739–8521, Japan; c Laboratory for Pharmacotherapy and Experimental Neurology, Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University; 1314–1 Shido, Sanuki, Kagawa 769–2193, Japan; and d Department of Environmental Health, School of Medicine, University of Occupational and Environmental Health; 1–1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807–8555, Japan.

Received July 7, 2020; accepted September 29, 2020

Estradiol has an important role in the brain, such as in neuronal development and protection, but estradiol levels in the human brain have not been well investigated. In this study, we measured the estradiol concentration in the cerebrospinal fluid (CSF) of infants to reveal the relationships between the estradiol concentrations in the serum and the CSF and further determined exosomal microRNAs in serum. Estradiol in the CSF was strongly correlated with serum estradiol and moderately correlated with miR-126-5p in the serum exosomes. This report is the first to determine the estradiol concentration in CSF from infants and showed that the levels of miR-126-5p as well as serum estradiol can be candidates to predict brain estrogen status.

Key words estradiol; cerebrospinal fluid; microRNA; infant

INTRODUCTION

Estradiol is a sex steroid hormone synthesized in and secreted from peripheral endocrine glands that has an important role in reproduction. Recently, the brain was shown to possess an inherent endocrine system and synthesize steroid hormones. Estradiol was reported to induce dendritic growth and synaptogenesis.1) Estradiol also modulates long-term depression and spinogenesis in hippocampal principal neurons.2) We previously showed the protective effects of estradiol on several neuronal damages using hippocampal slices isolated from rats in the developmental stage.3) Therefore, estradiol is a multifunctional molecule, especially in the developing brain.

Given the important roles of estradiol in the brain, it is important to determine or extrapolate the brain estradiol levels. Caruso et al. determined the estrogen levels in the plasma and cerebrospinal fluid (CSF) in adult rats and reported a positive relationship of the estradiol levels in the plasma and in the CSF of female rats.4) However, in humans, few reports have measured CSF estrogen levels except for one study on adult females by Kawwass et al.5) According to their report, estradiol levels in the CSF were approximately 20% of those in the serum. Brain estrogen can be derived from peripheral steroidogenic organs via the bloodstream and from de novo synthesis at specific brain regions from steroid precursors or cholesterol. Thus, peripheral steroid hormones might affect the levels of estradiol in the CSF. In addition, growing evidence has shown that the levels of several microRNAs are correlated with estradiol contents.6) In this study, we measured the estradiol levels in the CSF of infants and then assessed the correlation with not only serum estradiol levels but also microRNAs in serum exosomes to predict brain estradiol levels from peripheral measurements.

MATERIALS AND METHODS

Subjects and Sample Collection This study was approved by the review boards of the University of Occupational and Environmental Health (H30-083), the Kitakyushu General Hospital (H30-8-2) and Hiroshima University (E-1402). Children from 1 to 4 years of age with febrile seizures were recruited at the Hospital of the University of Occupational and Environmental Health and the Kitakyushu General Hospital between November 2018 and September 2019. The final number of subjects for analysis was 8 children, 2 boys and 6 girls. Blood and CSF samples were collected within several hours after arrival at the hospitals. CSF samples were obtained by lumbar puncture and serum was separated from blood by centrifugation. Isolated serum and CSF were frozen and stored before use.

Quantification of 17β-Estradiol in the Serum and the CSF The estradiol contents in the serum and CSF were measured by Aska Pharma Medical Co., Ltd., (Kawasaki, Japan) using liquid chromatography-tandem mass spectrometry (LC-MS/MS).7)

Exosomal RNA Extraction and Real-Time PCR RNA in serum exosomes was isolated from 500 µL of human serum by using an exoRNeasy Serum/Plasma Midi Kit according to the manufacturer’s protocol (Qiagen, Hilden, Germany). A synthetic cel-miR-39 microRNA mimic was added to each sample to serve as a spike-in control for monitoring microRNA purification and amplification. RNA concentration...
was determined by a Nanodrop 1000 system (Thermo Scientific, Waltham, MA, U.S.A.), and cDNA was synthesized using a miScript II RT Kit (Qiagen). MicroRNAs were measured by miScript CYBR Green PCR Kit with miScript Primer Assays for human miR-27b-3p (MS00031668, Qiagen), miR-126-5p (MS00006636, Qiagen), miR-148a-3p (MS00003556, Qiagen) and cel-miR-39 (MS00019789, Qiagen). Cp values for each microRNA were divided by those for cel-miR-39 to calculate the relative microRNA levels, which were represented as AU. 8)

Statistical Analysis Correlation analysis was performed by using the Spearman rank correlation coefficient.

RESULTS AND DISCUSSION

The average estradiol concentration in the serum was 857 ± 303 fg/mL and that in the CSF was 11.0 ± 2.6 fg/mL, indicating that the estradiol concentration in the serum is approximately 80 times higher than that in the CSF in infants. A significant positive correlation was found between the estradiol levels in the serum and the CSF (Fig. 1, Spearman rank correlation coefficient was $0.83, p = 0.0093$). Estradiol is mainly synthesized in ovarian granulosa cells and is released into the bloodstream in adult females, while several tissues, such as the adrenal cortex, ovary, testis and brain, can contribute to estradiol concentration in the blood in infants. Peripheral estradiol was reported to be transported to the brain through the blood–brain barrier (BBB) in rats because of its hydrophobicity. 9) In contrast, estradiol is actively synthesized in the brain, especially the hippocampus. Rat hippocampal estradiol levels were shown to be 6 times higher than those in the plasma. 10) In this study, although the CSF concentration of estradiol was much lower than that in the serum, the concentration of estradiol in the CSF was highly correlated with that of the serum. Thus, a portion of estradiol in the blood is considered to be transported constantly to the brain through mechanisms such as permeabilization of the BBB, although certain regulation of estradiol transport can be presented. Estradiol concentrations in CSF of women at the average age of 25.6 years were 76 pg/mL, 5) which are much higher than CSF estradiol levels in infant measured in this study. Blood estradiol concentrations in adult females are higher than those in infants. Therefore, these knowledge also support that a part of estradiol in the blood is transferred to the brain.

We used serum and CSF residues from infants with febrile seizures after several clinical laboratory tests in this study. We and other investigators reported that seizures can cause temporary BBB leakage. 11,12) This change could affect estradiol transport between the peripheral blood and the central nervous system (CNS), although it is difficult to recruit healthy voluntary infants for the collection of CSFs.

Estimation of brain estradiol has become important because increasing evidence shows that brain estradiol is involved in normal neuronal development as well as neuronal protection by harmful stimuli such as stroke or convulsion. 7,13,14) A previous report showed that miR-27b-3p, miR-126-5p and miR-148a-3p in serum exosomes are involved in the systemic estradiol concentration using samples from premenopausal women and monozygotic postmenopausal twins after estrogenic hormone replacement therapy. 6) Therefore, we measured the levels of miR-27b-3p, miR-126-5p and miR-148a-3p in the exosomes from infant serum and then compared the levels with the estradiol concentrations in the serum and the CSF presented in Fig. 1.

miR-27b-3p and miR-148a-3p were not detected in any of the samples by real-time PCR, suggesting that these microRNAs rarely exist in exosomes from the serum of infants with febrile seizure. The levels of miR-126-5p were significantly correlated with the estradiol levels in the serum and showed the tendency of positive correlation to the estra-
diol levels in the CSF (Figs. 2A, B, Spearman rank correlation coefficients were 0.76 and 0.65, and p values were 0.028 and 0.0082, respectively). miR-126 is expressed in vascular endothelial cells\(^5\) and estradiol was reported to upregulate miR-126-3p expression via increased expression of a transcription factor, Ets-1 in vascular endothelial cells.\(^6\) Therefore, these findings might explain the positive correlation between serum estradiol levels and miR-126-5p contents.

CONCLUSION

We determined for the first time the estradiol concentration in CSF from infants. The estradiol concentration in the CSF was strongly correlated with serum estradiol concentration and moderately correlated with miR-126-5p in the serum exosomes. These novel findings could be useful to predict brain estrogen status from peripheral measurements.

Acknowledgments This work was financially supported by the Food Science Institute Foundation (Ryoushoku-kenkyu-kai), 2018A02 and Hiroshima University (Y.I.) and Tokushima Bunri University (K.I.).

Conflict of Interest The authors declare no conflict of interest.

REFERENCES

1) Haraguchi S, Sasahara K, Shikimi H, Honda S, Harada N, Tsutsui K. Estradiol promotes purkinje dendrite growth, spinoogenesis, and synaptogenesis during neonatal life by inducing the expression of BDNF. *Cerebellum*, **11**, 416–417 (2012).

2) Mukai H, Isurugizawa T, Murakami G, Kominami S, Ishii H, Ogui-Ikeda M, Takata N, Tanabe N, Furukawa A, Hojo Y, Ooishi Y, Morrison JH, Janssen WG, Kominami S, Harada N, Kimoto I, Kawato S. Adult male rat hippocampus synthesizes estradiol from pregnenolone by cytochromes P45017alpha and P450 aromatase localized in neurons. *Proc. Natl. Acad. Sci. U.S.A.*, **101**, 865–870 (2004).

3) Ishihara Y, Sakurai H, Oguro A, Tsuji M, Vogel CFA, Yamazaki T. Estradiol promotes purkinje dendritic growth, spinogenesis, and synaptogenesis during neonatal life by inducing the expression of BDNF. *Cerebellum*, **11**, 416–417 (2012).

4) Caruso D, Pesaresi M, Abbiati F, Calabrese D, Giatti S, Garcia-Segura LM, Melcangi RC. Comparison of plasma and cerebrospinal fluid levels of neuroactive steroids with their brain, spinal cord and peripheral nerve levels in male and female rats. *Psychoneuroendocrinology*, **38**, 2278–2290 (2013).

5) Kawwass JF, Sanders KM, Loucks TL, Rohan LC, Berga SL. Increased cerebrospinal fluid levels of GABA, testosterone and estradiol in women with polycystic ovary syndrome. *Hum. Reprod.*, **32**, 1450–1456 (2017).

6) Kangas R, Tormakangas T, Fey V, Pursiheimo J, Minalaainen I, Alen M, Kaprio J, Sipila S, Saamanen AM, Kovanen V, Laakonen EK. Aging and serum exomiR content in women-effects of estrogenic hormone replacement therapy. *Sci. Rep.*, **7**, 42702 (2017).

7) Ishihara Y, Itoh K, Tanaka M, Tsuji M, Kawamoto T, Kawato S, Vogel CFA, Yamazaki T. Potentiation of 17beta-estradiol synthesis in the brain and elongation of seizure latency through dietary supplementation with docosahexaenoic acid. *Sci. Rep.*, **7**, 6268 (2017).

8) Marabita F, de Candia P, Torri A, Tegner J, Abrignani S, Rossi RL. Normalization of circulating microRNA expression data obtained by quantitative real-time RT-PCR. *Brief. Bioinform.*, **17**, 204–212 (2016).

9) Pardridge WM, Mietus LP, Transport of steroid hormones through the rat blood-brain barrier. Primary role of albumin-bound hormone. *J. Clin. Invest.*, **64**, 145–154 (1979).

10) Hojo Y, Hattori TA, Enami T, Furukawa A, Suzuki K, Ishii HT, Mukai H, Morrison JH, Janssen WG, Kominami S, Harada N, Kimoto I, Kawato S. Adult male rat hippocampus synthesizes estradiol from pregnenolone by cytochromes P450alpha and P450 aromatase localized in neurons. *Proc. Natl. Acad. Sci. U.S.A.*, **101**, 865–870 (2004).

11) Danjo S, Ishihara Y, Watanabe M, Nakamura Y, Itoh K. Pentylentetrazole-induced loss of blood-brain barrier integrity involves excess nitric oxide generation by neuronal nitric oxide synthase. *Brain Res.*, **1530**, 44–53 (2013).

12) Mendes NF, Pansani AP, Carmanhaes ER, Tange P, Meireles JV, Ochikubo M, Chagas JR, da Silva AV, Monteiro de Castro G, Le Sueur-Maluf L. The blood–brain barrier breakdown during acute phase of the pilocarpine model of epilepsy is dynamic and time-dependent. *Front. Neural.*, **10**, 382 (2019).

13) McCarthy MM. Estradiol and the developing brain. *Physiol. Rev.*, **88**, 91–134 (2008).

14) Ishihara Y, Fujitani N, Sakurai H, Takemoto T, Ikeda-Ishihara N, Mori-Yasunoto K, Nehira T, Ishida A, Yamazaki T. Effects of sex steroid hormones and their metabolites on neuronal injury caused by oxygen–glucose deprivation/reoxygenation in organotypic hippocampal slice cultures. *Steroids*, **113**, 71–77 (2016).

15) Hojo Y, Hattori TA, Enami T, Furukawa A, Suzuki K, Ishii HT, Mukai H, Morrison JH, Janssen WG, Kominami S, Harada N, Kimoto I, Kawato S. Adult male rat hippocampus synthesizes estradiol from pregnenolone by cytochromes P450alpha and P450 aromatase localized in neurons. *Proc. Natl. Acad. Sci. U.S.A.*, **101**, 865–870 (2004).

16) Danjo S, Ishihara Y, Watanabe M, Nakamura Y, Itoh K. Pentylentetrazole-induced loss of blood-brain barrier integrity involves excess nitric oxide generation by neuronal nitric oxide synthase. *Brain Res.*, **1530**, 44–53 (2013).

17) Mendes NF, Pansani AP, Carmanhaes ER, Tange P, Meireles JV, Ochikubo M, Chagas JR, da Silva AV, Monteiro de Castro G, Le Sueur-Maluf L. The blood–brain barrier breakdown during acute phase of the pilocarpine model of epilepsy is dynamic and time-dependent. *Front. Neural.*, **10**, 382 (2019).

18) McCarthy MM. Estradiol and the developing brain. *Physiol. Rev.*, **88**, 91–134 (2008).

19) Ishihara Y, Fujitani N, Sakurai H, Takemoto T, Ikeda-Ishihara N, Mori-Yasunoto K, Nehira T, Ishida A, Yamazaki T. Effects of sex steroid hormones and their metabolites on neuronal injury caused by oxygen–glucose deprivation/reoxygenation in organotypic hippocampal slice cultures. *Steroids*, **113**, 71–77 (2016).

20) Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN. The endothelial-specific transcription factor Ets-1/miR-126 expression: The possible mechanism for attenuation of atherosclerosis. *J. Clin. Endocrinol. Metab.*, **102**, 594–603 (2017).