Running title:

Enzyme activity QTL in a tomato IL population

Corresponding author:

Marie-Caroline Steinhauser
Max Planck Institute of Molecular Plant Physiology,
Am Muehlenberg 1,
14476 Potsdam-Golm, Germany

Tel: (49)331 567 8112
Fax: (49)331 567 8134
Email: msteinhauser@mpimp-golm.mpg.de

Research category:

Biochemical Processes and Macromolecular Structures
Identification of Enzyme Activity Quantitative Trait Loci in a *Solanum lycopersicum* x *Solanum pennellii* introgression line population

Marie-Caroline Steinhauser¹,*; Dirk Steinhauser¹, Yves Gibon¹,², Marie Bolger¹, Stéphanie Arrivault¹, Björn Usadel¹, Dani Zamir³, Alisdair R. Fernie¹, Mark Stitt¹

¹ Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany

² Present address: INRA Bordeaux, University of Bordeaux, UMR1332 Fruit Biology and Pathology, F-33883 Villenave d'Ornon, France

³ The Hebrew University of Jerusalem, Faculty of Agriculture, P.O. Box 12, Rehovot 76100 Israel

* Corresponding author.

Key Words: Tomato, *Solanum lycopersicum*, *Solanum pennellii*, enzyme activities, introgression lines, QTL

Financial Source:
This research was supported by the Max Planck Society and the EU SOL Integrated Project FOOD-CT-2006-016214.
Abstract

Activities of 28 enzymes from central carbon metabolism were measured in pericarp tissue of ripe tomato fruits from field trials with an introgression line (IL) population generated by introgressing segments of the genome of the wild relative Solanum pennellii (LA0716) into the modern tomato cultivar S. lycopersicum `M82´. Enzyme activities were determined using a robotized platform in optimized conditions, where the activities largely reflect the level of the corresponding proteins. Two experiments were analyzed from years with markedly different climate conditions. A total of 27 quantitative trait loci (QTL) were shared in both experiments. Most resulted in increased enzyme activity when a portion of the S. lycopersicum genome was substituted with the corresponding portion of the genome of S. pennellii. This reflects the change in activity between the two parental genotypes. The mode of inheritance was studied in a heterozygote IL population. A similar proportion of QTL (~30%) showed additive, recessive, and dominant modes of inheritance, with only 5% showing overdominance. Comparison with the location of putative genes for the corresponding proteins indicates a large role of trans-regulatory mechanisms. These results point to the genetic control of individual enzyme activities being under the control of a complex program that is dominated by a network of trans-acting genes.
Introduction

The cultivated tomato *Solanum lycopersicum* is the second most consumed non-cereal crop worldwide. Tomatoes are consumed raw, cooked, or in a variety of processed products. It is therefore important to understand the synthesis and storage of metabolites that affect nutritional or gustative qualities of tomato fruits. In addition, tomato is an important model for studies of fruit physiology and development, and for quantitative genetics (Tanksley et al., 1995; Giovannoni, 2001; Zamir, 2001; Mueller et al., 2005; Lippman et al., 2007).

Modern tomato cultivars have limited genetic variability due to natural and artificial selection during domestication and evolution (Rick, 1976). Wild species are an especially rich source of desirable genetic diversity. Several inbred lines have been generated following the crossing of *S. lycopersicum* with wild relatives from the so-called “*esculentum* complex” (Knapp et al., 2004), including a set of 76 introgression lines (ILs) derived from a *S. lycopersicum* `M82` x *S. pennellii* cross (Eshed and Zamir, 1994; cf. Mueller et al., 2005). Each of these lines contains a small introgressed region of the *S. pennellii* genome, containing an estimated 200-1000 genes (Kamenetzky et al., 2010) in a genetic background that otherwise derives from *S. lycopersicum*. The 76 ILs cover the entire *S. pennellii* genome. This IL population has been subjected to extensive agronomic, physiological, and molecular phenotyping (Lippman et al., 2007). Quantitative trait loci (QTL) have been detected that affect morphology and yield (Semel et al., 2006), fruit coloration (Liu et al., 2003), metabolite levels (Causse et al., 2004; Fridman et al., 2004; Baxter et al., 2005; Schauer et al., 2006), volatile metabolites (Tieman et al., 2006) and antioxidants (Rousseaux et al., 2005). Tomato is a model for quantitative genetics
(Tanksley et al., 1995) and one of the first examples of a crop plant that has benefited significantly from exotic germplasm introgression (Zamir, 2001; Lippman et al., 2007).

There have been numerous studies of natural variation on the levels of individual metabolites in tomato fruit (Causse et al., 1995; Eshed and Zamir, 1995; Fridman et al., 2000; Zamir, 2001; Fridman et al., 2002; Causse et al., 2004; Fridman et al., 2004; Lippman et al., 2007). Metabolite profiling (Fiehn et al., 2000; Sumner et al., 2003; von Roepenack-Lahaye et al., 2004; Kopka, 2006) has been used to detect hundreds of metabolite QTL in inbred tomato populations (Schauer et al., 2006; Zanor et al., 2009; Do et al., 2010). Similar approaches have been applied to map metabolite QTL in other species, like Arabidopsis (Kliebenstein et al., 2002; Kliebenstein et al., 2006; Keurentjes et al., 2008; Lisec et al., 2008; Rowe et al., 2008). Metabolite profiling has also been applied to analyze changes during tomato fruit development (Carrari et al., 2006) and to survey phenotypic diversity in wild relatives of tomato (Schauer et al., 2005). Networks obtained by combining transcript and metabolite profiles have been used to explore metabolic programs that underlie tomato fruit development (Carrari and Fernie, 2006) and to shortlist genes that may regulate fruit composition (Mounet et al., 2009).

Inbred lines can also be used to study the mode of inheritance of metabolic traits. For this, each IL is backcrossed to the cultivated parent *S. lycopersicum* `M82`, giving a set of heterozygote introgression lines (ILHs) that contain one copy of the *S. pennellii* introgressed section. Using gas chromatography – mass spectrometry (GC/MS) - based metabolite profiling, Schauer et al. (2008) investigated the mode of inheritance of 332 metabolite QTL and found that over half of the metabolic QTL (174 of 332) were dominantly inherited. Most of the remainder were additively (61 of 332) or recessively (80 of 332) inherited, with a negligible number displaying the characteristics of overdominant inheritance.
Metabolites are synthesized and degraded in reactions that are catalyzed by enzymes. It can therefore be expected that genetic diversity in enzyme activity will contribute to phenotypes that are linked to metabolic composition. One specific example is LIN5, which encodes a cell wall invertase, and is a locus for a QTL that positively affects tomato fruit sugar content, and hence the important producer trait ‘solids’ (Fridman et al., 2004; Schauer et al., 2006).

It might be anticipated that the genetic architecture that determines the levels of enzyme activities may be simpler than the networks that determine the level of a metabolite, at least in primary metabolism. Enzyme activities will depend on cis-variation that influences the structure and properties of the protein, and cis- and trans-variation that affects the rate of expression and degradation. Metabolite levels will additionally depend on complex interactions between many enzymes in metabolic networks (Sulpice et al., 2010).

There have been relatively few large-scale studies of the variation in enzyme activities. This is partly for technical reasons, because it is a challenge to perform high-throughput assays for a large number of enzymes. Available evidence indicates that enzyme activities exhibit considerable natural genetic variation. However, most previous studies have been restricted to only a small number of enzymes. In a maize inbred population, a QTL for sucrose phosphate synthase and invertase activity co-locate with structural genes for these enzymes (Prioul et al., 1999; Causse et al., 2004; Thevenot et al., 2005). Sergeeva et al. (2006) found organ specific variation in activity for invertase and other enzymes in Arabidopsis. In a study of six enzymes from primary metabolism and four enzymes from secondary metabolism in an Arabidopsis recombinant inbred line (RIL) population, Mitchell-Olds and Pedersen (1998) detected several enzyme activity QTL that co-localized with structural genes, and a trans-QTL (i.e., a QTL that does not co-locate with a structural...
gene) for three glycolytic enzymes. The latter might represent a joint regulator of the three enzymes.

We have established a robot-based platform to determine the activities of over 30 enzymes from central metabolism *in vitro* in optimized conditions (Gibon et al., 2004; Steinhauser et al., 2010; Sulpice et al., 2010). Changes in measured activity in such conditions broadly reflect changes in the amount of protein for that enzyme (Piques et al., 2009). This platform was initially used to analyze changes in enzyme activity during physiological transitions (e.g. Gibon et al., 2004). It has also been used to profile 35 enzyme activities across 100 Arabidopsis accessions (Sulpice et al., 2010). The information about variation in enzyme activities was combined with information about biomass and metabolites to explore network structures in metabolism, and the connectivity between metabolism and growth. This robotized platform has already been used to map enzyme activity QTL in IL populations. In a study of 15 enzymes from central C and N metabolism in a Ler × Cvi Arabidopsis RIL population, a total of 15 enzyme activity QTL were detected (Keurentjes et al., 2008). The majority was in *trans* to structural genes, but five QTL co-located with structural genes for the corresponding enzyme, of which three also showed a strong correlation with transcript levels from the structural gene. This platform has also been used to map the genetic determinants of 10 enzymes from central C and N metabolism in maize using an intermated breeding population, which gives a much higher genetic resolution than conventional IL populations (Zhang et al., 2010). This study detected a total of 73 enzyme activity QTL, which explained the majority of the genetic variance in each enzyme activity. The QTL were almost all in *trans* to structural genes for the respective proteins.

We recently reported the optimization of this enzyme analysis platform for tomato fruit pericarp tissue, and its use to investigate connectivity between enzyme activities during
the development of *S. lycopersicum* and *S. pennellii* fruits (Steinhauser et al., 2010). We now report the mapping of QTL for 28 enzymes in the *S. lycopersicum* `M82` × *S. pennellii* introgression line population. We analyzed two independent field experiments from years with drastic differences in the climate conditions. In total, 27 enzyme activity QTL overlapped in the two years. In addition, the mode of inheritance was studied in a heterozygote IL population, and the location of the QTL was compared with the location of putative structural genes in the tomato genome.

Results

Enzyme activity assays and choice of biological material

Our initial investigations of enzyme activity changes during tomato fruit development revealed species-specific differences at late fruit development stages between *S. lycopersicum* `M82` and *S. pennellii* (Steinhauser et al., 2010), which are the crossing parents for a widely used tomato IL population (Eshed and Zamir, 1994). Importantly, we documented that enzyme activities are stable in both genotypes during late development stages, providing a good basis for an analysis of fruit enzyme activity QTL in the *S. lycopersicum* `M82` × *S. pennellii* IL population.

Enzyme activities were determined in fruits harvested from two independent field experiments, run in 2003 and 2004. These two years were characterized by very different climate conditions; 2003 was warmer and drier than average, while 2004 was wet and cool (records of the Western Galilee Experimental Station, Akko, Israel). It was previously shown that the addition of the 2004 harvest strongly reduces the number of metabolite
QTL that are found in multiple years (cf. Schauer et al., 2006; Schauer et al., 2008). We therefore expected that comparison of these two experiments would allow us to identify robust enzyme activity QTL with strong phenotypic effects.

A list of the analyzed enzymes, their abbreviations and pathway assignments is provided as Supplemental Table S1; the number of samples analyzed per genotype and assay is given in Supplemental Data S1. The population analyzed within this study comprised 76 introgression lines (cf. Mueller et al., 2005) (Tomato IL map 6.5 and 6.9), an additional sub-line (IL-7-4-2), and the reference genotype *S. lycopersicum* `M82`, resulting in a total of 78 genotypes. We also investigated lines or sub-lines back-crossed to the reference genotype, i.e. heterozygote ILs (ILHs, cf. Semel et al., 2006).

Enzyme activity measurements and data analysis

For 2003, a total of 413 fruit samples (corresponding to 75 introgression lines, the additional sub-line, and the parental control `M82`) were analyzed for 28 enzyme activities (Supplemental Data S1). The line IL-3-3 was not included due to limited sample material. Out of 11,564 performed assays 8,472 (73.3%) resulted in enzyme activity determinations, of which 279 (3.3%) values were identified as outliers and removed. The remaining 8,193 enzyme activity measurements allowed calculation of 1,723 (78.9% of the entire population: 78 x 28 = 2,184) mean-average values based on at least three replicates per genotype and assay (Figure 1A; Supplemental Data S2). A large portion (35%) of the missing mean-average values were for ADP-glucose pyrophosphorylase (AGP; n = 57), glucokinase (GlcK; n = 56), and succinyl CoA ligase (SCS; n = 48), which had low activities in ripe fruits of the reference genotype `M82` (Steinhauser et al., 2010). The total content of amino acids, proteins, fructose, glucose, and sucrose (afterwards metabolites)
were also analyzed, resulting in 1,871 out of 2,065 (90.6%) determined metabolite data points and 379 (97.2% of the entire population: $78 \times 5 = 390$) considered mean-average values supported by at least three replicates per genotype and metabolite (Supplemental Data S2).

For the relatively cold year 2004, 583 samples corresponding to 75 introgression lines, the additional sub-line, and the parental control `M82` were analyzed (Supplemental Data S1). Due to poor germination, line IL-3-1 was not included. Out of 16,324 individual assays performed, 9,911 (60.7%) resulted in enzyme activity determinations, of which 362 (3.7%) values were identified as outliers and removed. On the basis of the resulting 9,549 enzyme activity determinations, 1,714 (78.5% of 2,184) mean-average values based on at least three replicates per genotype and enzyme assay were available for further analyses (Figure 1B; Supplemental Data S2). Many of the missing values were again for SCS ($n = 73$). For metabolite analyses 2,736 out of 2,915 (93.9%) measurements provided values for metabolite pool sizes, resulting in 370 out of 390 (94.9%) mean-average values (Supplemental Data S2).

In addition, 636 samples derived from 69 heterozygous introgression lines (ILHs) were analyzed for the field experiment in 2004 (Supplemental Data S1). Out of 17,612 individual assays performed, 10,604 (60.2%) resulted in enzyme activity determinations, of which 475 (4.5%) outlying values were removed. The remaining 10,129 enzyme activity determinations allowed estimation of 1,670 (77.5% of 2,156 w/o `M82`) mean-average values (Figure 1C; Supplemental Data S2). Similarly to the ILs for the 2004 field experiment, SCS ($n = 62$) again comprises a large portion of the missing mean-average values. Metabolite analyses resulting in 3,008 out of 3,180 (94.6%) determined metabolite pool sizes, allowing estimation of 344 out of 345 (99.7%) mean-average values (Supplemental Data S2).
Heritability and variation in enzyme activity

We first investigated what proportion of phenotypic variation is attributable to genetic variation among individuals. To do this, we estimated the broad sense heritability (H^2) as described in Semel et al. (2006). The resulting values were classified as follows (cf. Schauer et al., 2008): $H^2 \leq 20\%$ are considered as low, $20\% < H^2 \leq 40\%$ are considered as intermediate, and $H^2 > 40\%$ as strong heritability (Table 1; Supplemental Table S2).

For the year 2003, 2 (7\%) enzymatic traits, ShkDH and UGP showed high, 10 (36\%) intermediate, and 16 (57\%) low heritability. Overall, considering all the enzymatic traits, the heritability in 2003 is low ($H^2 = 18\%$) (Table1). For the year 2004, no enzymatic trait showed high, 8 (29\%) intermediate, and 20 (71\%) low heritability. Again, considering all the enzymatic traits the heritability in 2004 is low ($H^2 = 14\%$) (Table1). Across both years, no enzymatic trait shows high heritability. UGP is at the upper limit of intermediate heritability with $H^2 = 39\%$, another 10 (36\%) enzymatic traits have an intermediate and 18 (64\%) have a low heritability. When the enzymes are grouped according to their pathway assignment (Supplemental Table S1), each group showed a low average heritability except for amino acid metabolism which has, on average, an intermediate heritability.

Metabolite traits for the 2003 field experiment showed, on average, an intermediate heritability ($H^2 = 21\%$) with 3 (60\%) and 2 (40\%) individual traits having intermediate and low heritability, respectively (Supplemental Table S2). For the 2004 field experiment, 1 (20\%) and 4 (80\%) metabolite traits showed intermediate and low heritability with a low average heritability ($H^2 = 11\%$; Supplemental Table S2). Similarly, the heritability of metabolite traits across both field experiments is also on average low ($H^2 = 16\%$). No metabolite trait revealed strong, 3 (60\%) showed intermediate, and 2 (40\%) showed low
heritability. Schauer et al. (2008) profiled a wider range of metabolites in the same biological material, including some covered in the present study. In their analyses and based on the average heritability of the field experiments 2003 and 2004, 9 (12%), 48 (64%), and 18 (24%) metabolite traits revealed strong, intermediate, and low heritability, respectively, with an average intermediate heritability of 28% (Schauer et al., 2008). We also inspected the heritability of metabolites that are substrates or products of the enzymes that were measured in our study. Overall, 8 (50%) have an intermediate, 4 (25%) a high, and further 4 (25%) a low heritability (Supplemental Table S3).

QTL mapping

To identify introgressions which potentially harbour a QTL, t-tests were first performed separately on the IL datasets of 2003 and 2004. This analysis was restricted to traits supported by 3 or more replicates in a given IL ($n \geq 3$). Lines where the material was not available in one year were initially included in the analysis for the other year (Figure 2). Thus, for the 2003 dataset <3 samples were available for IL-3-1 and IL-6-2-2, which prevented QTL detection in these lines. SCS activities could not be reliably determined in the parental line `M82´, which prevented QTL detection for SCS (Supplemental Data S1). For the 2004 dataset <3 samples were available for the lines IL-3-1, IL-1-1, IL-1-4, and IL-6-2-2 (Supplemental Data S1). The t-test results were grouped according to the estimated probabilities ($P < 0.01$, $P < 0.05$, $P \geq 0.05$, not measured (n/a)) and the direction of observed phenotypic effect. The direction of change of a QTL, i.e. positive or negative illustrated by the sign, was defined as the level in the IL compared to the level in `M82´, and therefore indicates the impact of the S. pennellii introgression.
From a total of 1666 mean-averaged \((n \geq 3)\) enzyme activities in the IL dataset for 2003, 76 (4.6\%) and 193 (11.6\%) QTL were identified at \(P < 0.01\) and \(P < 0.05\), respectively (Figure 2, Supplemental Table S2). There are more positive than negative QTL (Figure 2). Of the significant QTL at \(P < 0.05\), 117 (60.6\%) are positive and 76 (39.4\%) are negative.

At \(P < 0.01\), 47 (61.8\%) are positive and 29 (38.2\%) are negative. For the 2004 dataset, a total of 143 (8.5\%; \(P < 0.01\)) and 274 (16.3\%; \(P < 0.05\)) QTL were identified out of 1686 mean-averaged \((n \geq 3)\) enzyme activities (Figure 2). Of the significant QTL at \(P < 0.05\), 240 (87.6\%) are positive and 34 (12.4\%) are negative. At \(P < 0.01\), 129 (90.2\%) are positive and 14 (9.8\%) are negative (Figure 2, Supplemental Table S2).

With respect to metabolites, out of 340 mean-averaged \((n \geq 3)\) values for the 2003 dataset, 71 (20.9\%) and 29 (8.5\%) metabolite QTL were detected at significance level of \(P < 0.05\) and \(P < 0.01\). Of these, 45 (63.4\%, \(P < 0.05\)) and 19 (65.5\%, \(P < 0.01\)) are positive and 26 (36.6\%, \(P < 0.05\)) and 10 (34.5\%, \(P < 0.01\)) are negative (Supplemental Figure S1 and Data S2). Accordingly, for the 2004 IL dataset, out of 365 possible metabolite comparisons 110 (30.1\%) and 58 (15.9\%) metabolite QTL were detected at significance level of \(P < 0.05\) and \(P < 0.01\), of which 103 (93.6\%, \(P < 0.05\)) and 54 (93.1\%, \(P < 0.01\)) were positive and only 7 (6.4\%, \(P < 0.05\)) and 4 (6.9\%, \(P < 0.01\)) were negative, respectively (Supplemental Figure S1 and Data S2).

QTL conserved across both years

As the climate in 2003 and 2004 was rather different, QTL that are found in both experiments can be considered as robust candidates for further analysis. Due to limited sample material for some ILs and missing enzyme activity determinations (see above), the overlap analyses were only possible for 27 enzyme activity and 5 metabolite traits in 72 ILs.
Further, we only considered genotype-trait instances with ≥ 3 replicated measurements for both field experiments. This gave a combined data set of 1,406 (65.2%) out of 2,156 enzyme activity comparisons and 359 (93.3%) out of 385 metabolite comparisons (Supplemental Data S3).

The overlap analysis revealed that 777 (55.3%) of the genotype-enzyme activity instances revealed consistent changes in the same direction in both years 2003 and 2004 (Figure 3; Supplemental Data S3). Of these changes, 27 and 8 were significant at $P < 0.05$ and $P < 0.01$, respectively, in both years. Of the positive enzyme activity QTL, 24 were significant at $P < 0.05$, and 7 at $P < 0.01$ in both years. Of the negative enzyme activity QTL, 3 were significant at $P < 0.05$, and 1 at $P < 0.01$ (Supplemental Data S3). Interestingly, 5 significant ($P < 0.05$ in both years) traits were negative in 2003 and positive in 2004 and 1 significant trait ($P < 0.05$ in both years) was positive in 2003 and negative in 2004 (Figure 3; Supplemental Data S3). While no negative overlapping metabolite QTL was identified for the two years, 31 ($P < 0.05$) and 5 ($P < 0.01$) positive overlapping QTLs were identified out of 223 (62.1%) genotype – metabolite instances with consistent phenotypic effects (Supplemental Figure S2 and Data S3). Two metabolite QTL ($P < 0.05$) displayed an opposite behaviour among the two field experiments (negative in 2003 and positive in 2004, Supplemental Figure S2 and Data S3).

To further statistically evaluate the identified QTL, two-way factorial ANOVA was performed on the combined data set. Overlapping QTL were considered confirmed if they showed both a significant genotype effect at $P_G < 0.01$ and a non-significant genotype x environment interaction ($P_{GxE} \geq 0.01$). While the majority of overlapping enzyme activity and metabolite QTL were confirmed, 1 enzyme activity (NAD-MDH in IL-5-4) and 4 metabolite QTL (all for total protein, in IL-4-4, IL-5-2, IL-8-1, IL-12-3) need to be interpreted with caution as they also displayed a significant genotype–environment interaction (Table
Three further QTL (FruK in IL-4-4, glucose in IL-5-1, and sucrose in IL-8-3-1) revealed genotype effects that were above the chosen threshold of $P_G < 0.01$, but were significant at $P_G < 0.05$ (Table 3; Supplemental Data S3).

It should be noted that our analysis attributes QTL to the genomic regions denoted by IL. In two cases, a pair of QTL is detected in neighboring IL, in which there is some overlap between the introgressed regions (TPI in IL-1-2 and IL-1-3; PPI-PFK at IL-2-4 and IL-2-5). The QTL pair may reflect a single QTL in the region of overlap. However, IL that resolve the region of overlap would be needed to test this possibility. To avoid unsupported assumptions, the analyses in the following sections were performed using QTL mapped to the IL available for our study.

Mode of inheritance

We next investigated the mode-of-inheritance of the enzyme activity QTL. This analysis was performed on the 2004 field trial, which included a set of heterozygote introgression lines (ILHs). This hybrid population was obtained by crossing every individual introgression line to the reference parent `M82` (for a detailed description see Semel et al., 2006). We assembled a dataset of the genotypes in which at least three sample replicates were available for both the IL and corresponding ILH, resulting in 66 homo- and heterozygote introgressions (cf. Supplemental Data S1). In an initial analysis, we compared the phenotypic effects of the corresponding homo- (IL) and heterozygote (ILH) lines to each other and the reference genotype `M82` using t-tests (Supplemental Data S2). If either the IL or the ILH was significantly different at $P < 0.05$ to `M82` the introgression was considered to harbor a QTL. This analysis yielded 351 putative enzyme activity QTL (24.6%; out of the 1428 comparisons with $n \geq 3$ for the IL and ILH line) and 139 putative
metabolite QTL (42.2%; out of 329 valid comparisons) (Supplemental Data S3). As only
data from a single harvest were available for the ILH population, we also applied much
more stringent filter criteria based on the ANOVA for the joint 2003 / 2004 IL dataset
(Supplemental Data S3; for details see Material and Methods). This yielded 92 enzyme
activity QTL and 57 metabolite QTL.

To assess the mode of inheritance, we classified the identified QTL according to Semel et
al. (2006) in four broad categories: recessive, additive, dominant, and overdominant. The
direction of the phenotypic effect of the *S. pennellii* allele compared to `M82` is depicted by
its sign (positive for increased, negative for decreased). Even though this approach was
applied to the entire list of QTL (Supplemental Data S3) we restricted our assessment to
robust QTL, filtered as described above (Supplemental Data S3). In this robust set, the
vast majority (82 of 92) of the enzyme activity QTL (Figure 4) and all of the 57 metabolite
QTL revealed positive effects (Supplemental Figure S3).

Of the 92 robust enzyme activity QTL, 4 revealed overdominant, 31 dominant, 29 additive
and 26 recessive inheritance. Two loci apparently harbor two QTL, as the IL and ILH are
significant but in opposite directions, namely one overdominant and one recessive (Figure
4, Table 4). Thus, while a similar number of dominant, additive, and recessive QTL were
identified, the portion of overdominant enzyme activity QTL is low. Of the 57 robust
metabolite QTL 23 showed dominant, 21 additive, and 12 recessive effects while 1
introgression apparently harbored two QTL (Supplemental Data S3). For both enzyme
activity and metabolite traits, the number of introgressions giving dominant or additive
inheritance is similar to or larger than those conferring recessive inheritance. This is also
the case when all QTL identified for the joint dataset are considered (Supplemental Data
S3). Analysis by chi-square and Fisher's exact test of the distribution of the individual
mode of inheritance revealed no clear and significant differences at the level of both
positive and negative effects with respect to the pathway assignment of corresponding enzyme traits (Table 4; cf. Figure 4 and Supplemental Figure S3). Similarly, the distribution of the mode of inheritance of sets of enzymes that are assigned to different pathways is not significantly different (Table 4). Interestingly, the distribution of mode of inheritance for enzyme activity QTL mirrors the situation for metabolite QTL identified on the same sample material using GC/MS-based metabolite profiling, described by Schauer et al. (2008) (see Discussion).

Mapping of structural genes

We next asked how often enzyme activity QTL co-locate with a structural gene that putatively encodes the enzyme function. To do this, we identified protein sequences from the iTAG2.3 tomato genome release. The results were aligned against the *S. lycopersicum* and *S. pennellii* genomes and finally mapped using EXPN1992 (Mueller et al., 2005). Due to the incomplete physical marker information it was not possible to map all the resulting sequences precisely to the physical map. Loci that map within 100-1000 Kb of the introgressed segment and thus might be in the locus are depicted and corresponding results are summarized in Supplemental Data S4. A structural gene that putatively encodes the corresponding enzyme activity could be mapped to the corresponding introgression locus for 9 (33%) of the 27 robust QTL (see above; Table 3). For the remaining 18 (67%) QTL, no corresponding structural gene mapped to the IL locus or its close proximity (Supplemental Data S4). There would be 8 (32%) *cis*- and 17 (68%) *trans*-QTL if the QTL pairs for TPI in IL-1-2 and IL-1-3 and for PPI-PFK on IL-2-4 and IL-2-5 are due to single QTL in the region of overlap between the neighboring IL.
A QTL for NAD-MDH in IL-1-2 co-locates with a structural gene for this enzyme revealed by our mapping analysis. QTL for PPi-PFK were detected in IL-2-4 and in the neighboring, and partly overlapping, IL-2-5. Causse et al. (2004) mapped *Pfpb* (encoding PPi-PFK) to this genomic region. Our analyses confirm the presence of this gene in the close vicinity of this locus (100-1000 Kbases from the marker), locating it in the region of overlap of IL-2-4 with IL-2-5. A QTL for NAD-GIDH in IL-3-2 co-locates with a gene encoding glutamate dehydrogenase revealed by our mapping. IL-4-1 contains a QTL for PEPC. Causse et al. (2004) mapped *LePPC3* (encoding PEPC) to bin 4-B, a region in IL-4-1 that does not overlap with any other IL, and this mapping is confirmed by our analyses. IL-4-4 contains QTL for NAD-GAPDH, UGP, and FruK. Interestingly, a significant increase in the expression of the transcripts for fructokinase 2 and NAD-GAPDH in IL-4-4 was reported by Baxter et al. (2005). Causse et al. (2004) mapped *Fk(1)* (fructokinase-like gene) to this locus. Our co-localization analyses could not confirm this, but did identify a NAD-GAPDH-encoding gene within this locus. We mapped potential fructokinases candidates to chromosomes 2, 3, 5, 6, 9, 10, and 11. It is however possible that an as yet unsequenced fructokinase gene is located in the genomic region corresponding to IL-4-4. The IL-7-4 contains QTL for ATP-PFK and PPi-PFK. Our mapping analyses indicate the presence of structural genes for both of these enzymes in this genomic region. IL-10-3 contains a QTL for invertase, and our mapping analyses indicate the presence of 5 potential structural genes for invertase in this genomic region. While a QTL for TPI in IL-1-3 putatively co-located with a structural gene encoding the chloroplastic triose-P isomerase reported by Causse et al. (2004), our analyses using the available whole genome information indicates that while this gene is localized on the chromosome 1, it does not map to IL-1-3. IL-3-4 contains a QTL for NAD-GAPDH. Our analyses indicate that a gene encoding for GAPDH is located close to this locus, but is not co-located. Similarly, IL-10-1 contains a QTL for
NAD-GAPDH. While our analysis of genome sequence data revealed a gene encoding for GAPDH in close proximity, it is not exactly at this locus.

Summarizing, co-location of an enzyme activity QTL and a structural gene was found in 9 instances; PPI-PFK for IL-2-4 / IL-2-5 and IL-7-4, NAD-GlDH for IL-3-2, PEPC for IL-4-1, NAD-GAPDH for IL-4-4, ATP-PFK for IL-7-4, NAD-MDH for IL-1-2, and invertase for IL-10-3. In some other cases, a gene is located in the vicinity but probably not in the introgressed region (NAD-GAPDH for IL-3-4 and IL10-1, TPI for IL-1-3).

Given the large size of the introgressed *S. pennellii* segments, some of the identified co-locations are likely to be fortuitous. Using a strategy similar to Lisec et al. (2008), we estimated that the most likely number for spurious co-locations is about 4 (Supplemental Figure S4), and even 7 co-locations could well be expected by chance. Nevertheless, the observed number of co-locations (9) is significantly more than expected by chance (0.01<P<0.001).

We also assessed whether the co-located QTL contained any notable differences between the sequences of the structural genes in the two parent species. Sequences were aligned to identify SNPs that cause a change in the protein sequence, potential splice site changes and InDels. While we found several SNPs in potentially co-located genes, we found a similar frequency for structural genes that are not co-located with a QTL (Supplemental Data 5). There was no excess of potentially important SNPs in co-locating genes, indeed, the most likely candidates for potentially deleterious changes, such as a SNP in a splice acceptor site, were found in genes that did not co-locate with a QTL. However, these observations have to be considered preliminary due to the provisional status of the *S. pennellii* genome and because our analyses involve a comparison to the `Heinz` cultivar rather than `M82` cultivar.
We asked whether the mode of inheritance was different for QTL that were clearly in trans to known structural genes, and QTL that may co-locate with a structural gene. For the cis-QTL, 1 showed a positive dominant, 3 a positive additive, 3 a positive recessive and 1 a negative/recessive inheritance modes (Supplemental Data S3). The mode of inheritance for trans-QTL included 3 positive dominant, 6 additive (5+; 1-), 4 recessive (3+, 1-), and 1 overdominant / recessive (Supplemental Data S3). Due to missing data for the ILH lines the mode of inheritance could not be determined for 1 cis- and 4 trans-QTL (Supplemental Data S3). Statistical analysis by Fisher’s exact test of the distribution of the individual mode of inheritance with respect to cis- and trans- enzyme activity QTL revealed no significant differences in the mode of inheritance (not shown).

Co-location of enzyme activity QTL and metabolite QTL

Schauer et al. (2006) determined metabolite QTL in the same material as we used for measurements of enzyme activities. We compared the two data sets to identify co-locations of enzyme activity QTL and QTL for metabolites which are in the same pathways or directly downstream of the pathways in which the enzyme operates. This is summarized in Supplemental Data S4. Based on this analysis we identified 7 enzyme activity QTL that co-locate with metabolite QTL associated to the same or closely connected pathway (Supplemental Data S4).

One example is summarized in Figure 5, where Schauer et al. (2006) have already identified IL-4-4 as a ‘pathway QTL’, based on it showing changes in several metabolites including sucrose, glucose, fructose, fructose 6-phosphate, glycerate 3-phosphate, citrate, isocitrate, aspartate, glutamate and succinate. Metabolite analysis using enzyme assays conducted in the current study revealed two further metabolite QTL (overlapping for both
the 2003 and 2004 field experiment) for total amino acids and total protein. The protein QTL showed a significant genotype x environment interaction (Supplemental Data S3). IL-4-4 also contains enzyme activity QTL for fructokinase and UGP, which are involved in sugar metabolism, and the glycolytic enzyme NAD-GAPDH (Figure 5; Supplemental Data S3).

Further putative co-locations of enzyme activity and metabolite QTL were found for PPI-PFK and TPI enzyme activity with glucose and aspartate in IL-2-4, for NAD-GAPDH with fructose 6-phosphate, alanine and total amino acids in IL-3-4, for AspAT and NAD-MDH with glucose 6-phosphate and glycerate 3-phosphate (data for one year only) in IL-7-1, and for TPI activity and glycerate 3-phosphate in IL-7-2 (Supplemental Data S3 and S4).

Discussion

Johannsen (1911) and East (1910) established in the early twentieth century that quantitative variation results from the combination of multiple segregating genes and environmental factors. However, unraveling the number of loci responsible for a particular trait is still challenging. Breeders focus on the identification of a small number of loci with large effects, such as the major fruit weight quantitative trait locus fw2.2 (Alpert and Tanksley, 1996) or genotypes showing an increased Brix index (Fridman et al., 2002; Fridman et al., 2004).

To identify robust enzyme activity quantitative traits that are not strongly dependent on environmental factors, this study used two separate field experiments with the S. lycopersicum x S. pennellii tomato introgression line population (Eshed and Zamir, 1994)
that were performed in years with very different climate conditions. Fruit material was harvested when more than 80% of the introgression lines displayed fully ripe fruits. We showed in a previous study that enzyme activities are relatively stable in the later stages of fruit development in *S. lycopersicum* and *S. pennellii* (Steinhauser et al., 2010).

Heritability of enzyme activity traits

The heritability of a trait is the proportion of phenotypic variation attributable to additive genetic effects. Our analysis of enzyme activity traits within the tomato IL population revealed that a majority of enzyme traits showed intermediate to low heritability (Table 1). Interestingly, a recently published metabolite profiling study on the same sample material (Schauer et al., 2008) revealed that metabolite traits, especially when limited to the products or substrates of enzymes analyzed in this study (Supplemental Table S3), displayed largely intermediate heritability. Consequently, enzymes showed lower heritability than metabolites, even though we might expect them to be closer to the gene expression when considering the flow of genetic information from the genotype to the phenotype.

Keurentjes and co-worker (2008) analyzed enzyme activity and metabolite traits on seedling samples of an *Arabidopsis thaliana* RIL population. Out of 18 analyzed enzyme traits, 5 showed low, 7 intermediate, and a further 6 strong heritability. In comparison, from the 11 metabolite traits, none displayed low, 3 intermediate, and 8 a strong heritability. Thus, as in our study, metabolite traits revealed in general a higher heritability than enzyme activity traits. One possible explanation might be that there is more inherent variability in enzyme activities than metabolites. It could be argued that levels of metabolites will be highly regulated, while enzyme activities can show more variation,
because changes in one enzyme can be compensated by changes of other enzymes. Further, many of the metabolites investigated in these studies are products, which may accumulate with time. An alternative explanation would be that there is more technical variation in measurements of enzyme activities than metabolite levels. However, Zhang et al. (2010) described the heritability of 10 enzyme activity traits in expanding leaves of the maize IBM mapping population grown in greenhouse, measured using the same analytic platform as the one used in the present study. One enzyme showed intermediate heritability and the other 9 all displayed a strong heritability. Even though metabolite traits were not been investigated in Zhang et al. (2010), it illustrates that heritability of enzyme traits can be quite high under some conditions. Zhang et al. (2010) used greenhouse-grown material, whereas the present study used material from field experiments. Further, in Zhang et al. (2010) and Keurentjes et al. (2008) each sample was pooled from several leaves or rosettes, whereas our analysis is based on material from a single tomato fruit.

Identification of environmentally robust enzyme activity QTLs

It was previously published that mutations with major effects occur most often in domesticated or artificially disturbed population (Lande, 1983). This supports the use of inbred populations between a non- and domesticated population (Eshed and Zamir, 1994) to identify traits with strong and repeatable phenotypes, however we still do not know whether the number of loci responsible for most genetic variation is small or large (Barton and Turelli, 1989).

In our analysis, 467 enzymatic QTL were detected in two experiments in differing conditions (193 in 2004 and 274 in 2003). These years were characterized by very different environmental conditions. To identify robust QTL, we searched for QTL that were
shared in both years. A robust set of 27 QTL were shared in both years (24 positive and 3 negative). Of these, 15 QTL are for enzymes from the glycolysis/gluconeogenesis pathway. Three glycolysis/gluconeogenesis pathway enzymes have 4 or 5 QTLs: NAD-GAPDH (4), PPi-PFK (4) and TPI (5). This contrasts with enzymes from other pathways, which have zero, or 1-2 QTL.

In both of the individual years, there was a large excess of positive (i.e. the trait was changed in the direction of *S. pennellii*) over negative (i.e. the trait was changed in the direction of M82) QTL. Also, of the 27 robust QTL shared in both years, 24 were positive and only 3 were negative. It was previously reported for morphological traits that alleles that derive from the *S. pennellii* parent tend to affect the trait in the direction of the *S. pennellii* value (Semel et al., 2006). This trend was partly confirmed for metabolic traits. However, it is not a universal rule, as several amino acids increased in the ILs but were lower in *S. pennellii* than `M82` (Schauer et al., 2006; Schauer et al., 2008). The behaviour of enzyme activities at the ripe stage of development in *S. lycopersicum* and *S. pennellii* was described in Steinhauser et al. (2010). While in the glycolysis and tricarboxylic acid pathway enzyme activities are generally higher in *S. pennellii* than *S. lycopersicum `M82`, in other pathways the opposite behaviour is seen. For the population described in this work most of the enzyme activity QTLs were in glycolysis and the tricarboxylic acid pathway, and showed increased activity in the ILs compared to M82, mirroring the changes in *S. pennellii*.

Mode of inheritance of enzyme activity traits associated to primary metabolism

Recently, there has been increasing interest in the mode of inheritance of traits, with the objective of improving breeding qualities. Biomass traits sometimes show hybrid vigour or
heterosis in the F1 when cultivated and/or wild-species are crossed (Rice, (Li et al., 2008); Arabidopsis, (Meyer et al., 2004); Maize, (Springer and Stupar, 2007)). Such enhancement compared to the behaviour of the parents is considered to be an outcome orchestrated by partial-to-complete dominance, over-dominance, and epistasis (Lippman and Zamir, 2007; Li et al., 2008). While epistasis is difficult to assign (Rieseberg et al., 1999) the mode of inheritance of a trait can be more precisely studied. For this purpose introgression lines can be used as a tool to reveal the mode of inheritance of specific traits. Thus, comparison of the recipient genotype, with pairs of ILs and ILHs allows the determination of the mode of inheritance of a trait for each introgressed segment and, in particular, reveals if a heterotic response can be generated by the dominance or overdominance of one or more independent QTL, either alone or in association with possible epistatic effects with the remainder of the genome.

In general, the mode of inheritance of the enzyme activities is fairly well distributed between dominant (34%), additive (32%), and recessive (28%) modes, with only a minority (4%) showing overdominance (Table 4). This resembles the inheritance of those metabolic traits measured by Schauer et al. (2008) that are the closest to the enzymatic traits measured (sub-categories: organic acids, sugars, sugar alcohols and phosphates), where 50% showed dominance, 19% were additive, 26% were recessive, and 9% showed overdominance.

It might have been expected that enzymes would show a simpler genetic determination than metabolites. As outlined in the Introduction, whereas enzyme activities will depend on cis-variation that influences protein structure and properties, and cis- and trans-variation that affects the rate of expression and degradation of the protein, metabolite levels will also depend on complex interactions between many enzymes in metabolic networks (Sulpice et al., 2010). On the other hand, it could be argued that levels of metabolites will
be more highly regulated, because changes in the activity or expression of one enzyme can be compensated by changes in the expression or activity of other enzymes. The similar modes of inheritance indicate that the genetic architecture affecting enzyme activities and metabolites is not that different in complexity. This may be in part because the majority of the QTL that determine enzyme activities act in trans and, thus, via a regulatory network that may already be highly complex (see below for further discussion). Further (see above), for both enzyme activities and metabolites an introgressed genomic segment has a similar qualitative effect on the trait to that seen between the recipient (S. lycopersicum `M82`) and the donor (S. pennellii) genotype.

Co-location of enzyme activity and metabolite QTLs with structural gene

This is the most extensive enzyme activity QTL study to date in terms of number of enzymes covered ($n = 28$). However, three other substantial studies are also available. Mitchell-Olds and Pedersen (1998) analyzed 10 enzyme activities in an Arabidopsis RIL population, Keurentjes et al. (2008) measured 15 enzyme activities in a population of 160 Arabidopsis RIL lines, and Zhang et al. (2010) measured 10 enzyme activities in 94 intermated recombinant inbred maize lines.

Based on these studies, a picture is emerging about the role of cis- and trans-regulation in the genetic determination of the activities of enzymes in central metabolism. In Mitchell-Olds and Pedersen (2008), while three activity QTL co-localized close to putative structural genes, at least three trans-QTL were detected. In Keurentjes et al. (2008), the majority of the 15 detected enzyme activity QTL were in trans to structural genes; only 5 QTL co-located with structural genes for the corresponding enzyme. Of these, three showed a strong correlation with transcript levels from the structural gene, whereby two of these
were particularly strong QTL. In the study of Zhang et al. (2010) with an intermated maize RIL population, the vast majority (70 of 73) of the QTL were in \textit{trans} to structural genes for the corresponding enzymes. In the present study, the majority (18 of 27) of the robust enzyme activity QTL are in \textit{trans} to putative structural genes. Two enzyme activity QTL co-located with an expression QTL reported in a separate study by Baxter et al. (2005) and of these, one was for a gene in \textit{trans} to structural genes, while one might be in \textit{cis}.

The picture emerging from these studies is that most of the major genetic determinants of enzyme activity act in \textit{trans}, with \textit{cis}-regulation only occurring in a minority of cases. Two important technical issues will affect the validity of this conclusion. First, depending on extent of the replication, the precision of the technical analysis and the power of the genetic population, the detected QTL represent only a small number of the total number of loci that genetically determine the activity of the enzyme in question. In this sense, the study of Zhang et al. (2010) is the most exhaustive study to date, as the intermated mapping population allowed very fine mapping and the detection of multiple QTL per enzyme, accounting for over half of the total genetic variance for the activity of most of the enzymes. Zhang et al. (2010) actually detected the lowest contribution of \textit{cis}-regulation. In the other studies, none or only 1-4 QTL were detected per enzyme. Nevertheless, these are likely to be the major QTL, and therefore instructive for learning about the relative importance of \textit{cis}- and \textit{trans}-regulation. Second, as introgressions contain many genes, fortuitous co-location cannot be excluded. In their study with an intermated RIL population, in which loci were defined to genomic regions containing 20-30 genes, Zhang et al. (2010) estimated that 50% of the co-locations of QTL might still be fortuitous. The estimated proportion of spurious co-locations was even higher in the \textit{S. lycopersicum} x \textit{S. pennellii} tomato introgression line population. This is probably because in this population, as in other conventional IL populations, the size of the introgressed genomic sectors, and hence
the number of genes per designed genomic sector, is >10 or more times higher. Thus, it is likely that the frequency of cis-QTL is still overestimated in our and most other published studies. The emerging picture is that enzyme activities are largely regulated in trans-QTL, with a small contribution from cis-QTL, whose importance will vary from case to case.

In this study, as in Keurentjes et al. (2008) and Zhang et al. (2010), enzyme activities were measured using optimized assays with saturating substrate concentrations. We have shown elsewhere that there is a good agreement between the enzyme activities measured in this way and protein abundance as estimated by mass spectrometry (Piques et al., 2009). The likely causes for trans-regulation are the effects of transcription factors or differential enzyme degradation (e.g. through proteasome and ubiquitination pathways). The comparatively rare cis-effects detected using this enzyme activity platform are likely to be non-synonymous polymorphisms that modify transcription, translation, the enzymatic properties of the protein, or the stability of the mRNA or protein. Since the assay contains saturating concentrations of substrates, cis- or trans-effects are unlikely to be caused by allosteric regulation of the enzyme activity (changes in binding properties or in genes affecting the levels of allosteric inhibitors, respectively). It is also unlikely that changes in enzyme activity due to phosphorylation or redox regulation are retained, because the extraction and assay were not performed in the presence of protein phosphatase inhibitors or conditions that would maintain the in vivo redox form of the enzyme (see Hendriks et al., 2003).

Finally, some enzyme activity QTL in tomato may be part of a “network QTL”, where several elements of a metabolic network are affected by expression QTL, enzyme activity QTL, or metabolite QTL. For example the genomic region denominated by IL-4-4, contains 3 positive enzyme activity QTL for the enzymes in the glycolysis/gluconeogenesis pathway (NAD-GAPDH, UGP and FruK). For two of these enzymes, Baxter et al. (2005) reported
increased levels of the corresponding transcripts (NAD-GAPDH, fructokinase). Further, Schauer et al. (2006) described positive metabolite QTL at this same locus for fructose, sucrose, glucose, fructose-6-P, glycerate-3-P, citrate, isocitrate, aspartate, glutamate, and succinate, including metabolites that are direct substrates or products of NAD-GAPDH, UGP and FruK, or metabolites further upstream or downstream in the glycolysis/gluconeogenesis pathway.

In summary, we have mapped 27 robust enzyme activity QTL for enzymes from central carbon metabolism in an IL population generated from the cultivar *S. lycopersicum `M82´* and its wild relative *S. pennellii* IL population. In all cases, the change in enzyme activity in the IL qualitatively resembles the change in activity seen between *S. pennellii* and `M82´. In the vast majority of cases the mode of inheritance is dominant, additive, or recessive with only a very low frequency of overdominance, resembling the mode of inheritance of metabolites in the same population. Further, in the majority of cases the QTL are in *trans* to structural genes for that enzyme. Together with studies in Arabidopsis and maize, these results point to individual enzyme activities being under the genetic control of a complex program that is dominated by a network of *trans*-acting genes.
Materials and Methods

Materials

Inorganic compounds were purchased from Merck (Darmstadt, Germany), organic compounds from Sigma (Taufkirchen, Germany), except ethanol (Merck) and NAD+, NADH, NADP+, NADPH, phosphoenolpyruvate (Roche, Mannheim Germany). Enzymes were purchased from Roche except phosphoglycerokinase and glycerokinase (Sigma-Aldrich). The UMP-kinase, a clone provided by Octavian Barzu (Institut Pasteur, Paris, France), was overexpressed and purified as described in Serina et al. (1995).

Plant growth and material

Enzyme activity measurements were performed on fruit pericarp tissue from field-grown tomato *Solanum lycopersicum* `M82´ x *Solanum pennellii* introgression line population comprising 76 genotypes (Eshed and Zamir, 1994) (cf. Mueller et al., 2005) (Tomato IL map 6.5 and 6.9). The line IL-7-4-2, harboring a genomic sub-segment of IL-7-4 was additionally included. For QTL analysis fruit samples of homozygote introgression lines (ILs) and the reference genotype `M82´ were obtained from two independent field experiments in 2003 and 2004 (Semel et al., 2006). Samples of heterozygote ILs (ILHs), the lines of the respective IL backcrossed to the *S. lycopersicum* `M82´ parent, were additionally received for the field experiment in 2004.

For both experiments plants were first propagated under greenhouse conditions for 35 to 40 days and then field-grown in a completely randomized design at the Western Galilee Experimental Station (Akko, Israel) under conditions described (Schauer et al., 2006; Semel et al., 2006). Because of poor germination behavior (IL-3-1, ILH-2-4, ILH-3-4, ILH-
6-2, ILH-6-2-2, ILH-6-4, ILH-7-2, and ILH-7-4-2) and limited sample material (IL-3.3, ILH-9-3-2) ten ILs could not be included in some or all analyses. Morphological, reproductive and metabolite traits have been described previously for this tomato IL population (Schauer et al., 2006; Semel et al., 2006; Schauer et al., 2008).

All tomato fruits were harvested when 80 to 100% of the tomatoes revealed red coloration (Eshed and Zamir, 1995). Fruits were cut with a scalpel blade into two parts, peeled and separated from the placental tissue. All analyses were performed on the fleshy part of the tomato, the skinned pericarp which is the major edible part of a tomato fruit. The sample material used in this study is precisely the same as used to analyze metabolite QTLs (Schauer et al., 2006; Schauer et al., 2008).

Enzyme and metabolite assays

For enzyme assays, sample extraction, handling and enzyme activity determination were performed exactly as described in Steinhauser et al. (2010). Additionally, metabolites were extracted using ethanol from frozen and ground sample tissue (Geigenberger et al., 1999). The soluble sugars sucrose, glucose, and fructose were measured in ethanolic extracts as described (Geigenberger and Stitt, 2000) with volumes adapted to microplate format using a microplate spectrophotometer. Total amino acid content was determined in ethanolic extracts by the fluorescamine method (Bantan-Polak et al., 2001). Total protein content was assayed from the remaining pellet of ethanolic extracts with the Bio-Rad Bradford reagent (Bio-Rad Laboratories) according to the manufacturer's instructions.

Graphical visualization and heat maps
All graphs were created using Sigma Plot 10 (Systat Software Inc., San Jose, CA, USA) or
the R statistical framework (version 2.9.1, R Development Core Team 2009). For heat map
visualization enzyme activity effects are expressed as log_2-transformed ratios based on
the mean-average in each tomato IL to the mean of the reference genotype S. lycopersicum `M82`. The mean-average enzyme activity patterns of the heterozygote and
homozygote ILs and their respective reference genotype `M82` were visualized as a two-
dimensional polar coordinate plot according to Swanson-Wagner et al. (2006).

Statistical analyses

All statistical analyses were implemented and performed, if not otherwise stated, according
to Sokal and Rohlf (1995) with R (version 2.9.1); or available R functions were used. To
identify robust effects on enzyme activities, one-dimensional outliers were detected using
a boxplot approach performed with standard parameters as implemented in R. Data points
which lie beyond the extremes of the whiskers (lower whisker Q_{0.25} - 1.5 * IQR and upper
whisker Q_{0.75} + 1.5 * IQR, with Q_{0.25} and Q_{0.75} are the continuous sample quantiles for 0.25
and 0.75 probability, respectively, and the interquartile range given as the difference of
both quantiles, IQR = Q_{0.75} - Q_{0.75}) were labeled as outliers: In case of more than six
replicates for a combination of genotype and enzyme / metabolite, identified outliers were
completely removed (multiple outlier removal); if less or equal than six replicates were
available the most deviant data point from median was removed (single outlier removal).
For all further statistical analyses only combinations of genotypes and enzymes /
metabolites were considered with at least three replicates per year.

The homogeneity of variance across groups was analyzed with Levene's test on the basis
of the absolute deviations from the group medians. The two-sample t-test for the difference
in mean was performed two-sided with equal or unequal variance estimated by Levene’s test. Two-way factorial analysis of variance (ANOVA) was performed with genotype (G), environment (E) and genotype x environment (G x E) interaction as factors. The percentage of variation due to each factor was computed as described (Prudent et al., 2009). The coefficient of variation (CV) was calculated as the ratio of the standard deviation to the mean and expressed as percentage. Chi-square (χ^2) and Fisher exact test (F) were performed to test for independence of count data.

Trait analyses

The heritability H^2 was calculated for each trait and year using one-way factorial ANOVA and the genetic variation expressed as percentage from total variation (genetic x environment) by $H^2 = \sigma^2_G / \sigma^2_{G+E} \times 100$. Additionally, the parametric Pearson’s product moment (r) and non-parametric Spearman’s rank order correlation (r_s) were computed for each trait and year across the ILs.

QTL mapping

QTL mapping for each independent field experiment was performed using t-test by comparing the measurements of each introgression line to those of the reference genotype *S. lycopersicum `M82´* for each enzyme / metabolite and year separately. The P-values were grouped in (I) non-significant differences with $P \geq 0.05$, the introgression contains no QTL, and (II) significant differences ($P < 0.05$ and $P < 0.01$), the introgression was considered harboring a QTL in the respective year. Additionally, each group was further subdivided regarding the direction of change in (I) negative QTL, where the mean-average
value of the IL is lower than `M82´ ($\bar{\Omega}_{IL} < \bar{\Omega}_{M82}$), and (II) positive QTL, where the mean-
average value of the IL is equal or higher compared to `M82´ ($\bar{\Omega}_{IL} \geq \bar{\Omega}_{M82}$).

To identify overlapping QTLs in both field experiments the t-test derived P-values were
filtered according (I) $P < 0.05$ and (II) $P < 0.01$ in conjunction with a consistent change in
direction (i.e. in both years $\bar{\Omega}_{IL} < \bar{\Omega}_{M82}$ or $\bar{\Omega}_{IL} > \bar{\Omega}_{M82}$) for both years, respectively. Thus,
introgressions which reveal significant differences of at least $P < 0.05$ in both years
together with observed mean-average changes in the same direction, i.e. both lower or
higher, were considered as harboring an environmental-independent QTL. Additionally, a
two-way factorial ANOVA as described above was performed to evaluate identified
overlapping QTLs. Overlapping QTLs revealing a non-significant ($P_G \geq 0.01$) genotype
effect or a significant genotype x environment interaction ($P_{GxE} < 0.01$) were marked as
weak or questionable QTLs, respectively.

As sample material of homozygote (ILs) and heterozygote (ILHs) introgression lines were
available for the field experiment in 2004 a refined QTL mapping within this year was
conducted. For this, each IL and corresponding ILH were compared by t-test among each
other and to the reference genotype *S. lycopersicum* `M82`. If either of them, the IL or the
ILH was significantly different at $P < 0.05$ to `M82`, the introgression was evaluated as to
harbor a QTL. For stringent downstream analysis (e.g. mode of inheritance) the list of
identified QTLs in 2004 was filtered: Only those QTLs were further considered that
revealed a significant genotype ($P_G < 0.01$) and non-significant genotype x environment
interaction ($P_{GxE} \geq 0.01$) effect, estimated using ANOVA on the basis of the IL
measurements in 2003 and 2004, as well as displayed mean-average changes in the
same direction for both years.
Mode of inheritance analysis

The phenotypic effect of a QTL was considered to be the effect of the significant line, either IL or ILH, and was expressed as percentage to the reference genotype ‘M82’ and by using the sign to indicate positive (+, increasing) and negative (-, decreasing) QTLs, i.e. the direction of the observed effect. In case of significant effects within the same direction (+/+ or -/-) for both, the IL and the respective ILH the higher value was considered to be the QTL phenotypic effect. A QTL was considered to harbor two QTLs, namely one increasing and another decreasing, if both, the IL and the respective ILH revealed significant effects but in opposite direction (+/- or -/+).

The mode of inheritance for a QTL under investigation was classified according to the decision tree proposed by Semel et al. (2006) implemented in R and defined for the *S. pennellii* allele. Briefly, a QTL was considered as recessive (R), if the ILH was significantly different from the IL but not from M82, as additive (A) if the ILH differed from both parents or did not differ from either of them, and as dominant (D) if the ILH differed from M82 but not from the IL. If the ILH phenotype was significantly higher or lower than either parent, the QTL was considered to be positively or negatively over-dominant (+ODO and -ODO), respectively.

Gene mapping

For each IL where an enzyme QTL was identified, we first mapped the genetic markers that defined this IL to the physical map. To this aim marker sequences were extracted from the SOL Genomics Network website (SGN, Mueller et al., 2005) and aligned to the *S. lycopersicum* genome (release 2.31) using BLASTN program. In a next step protein sequences were extracted from Swiss-Prot and TAIR database for the given enzyme
function. These sequences were aligned against the *S. lycopersicum* genome to identify potential coding sequences using BLAST and exonerate software (Slater and Birney, 2005). In addition, the iTAG2 annotation from SGN (Mueller et al., 2005) was queried using enzyme name keywords as well as Swiss-Prot identifiers to extract corresponding *S. lycopersicum* gene models. The corresponding candidate genes to a given enzyme QTL are provided as Supplemental Data S4.

Colocation simulation

To assess the number of co-locations that might occur by chance, a strategy similar to that of Lisec et al. (2008) was adopted. All considered enzymes and their location on the different ILs were first determined based on the tomato genome release (ITAG2.3, http://solgenomics.net/organism/solanum_lycopersicum/genome). If multiple isoforms (e.g. tandem duplications) were located on the same IL, they were counted as one enzyme for the sake of the simulation, as a separation would require a better resolution for the QTL locations. This gave a total of 27 QTL for 13 different enzymes. 27 QTL (i.e. ILs) for the 13 different enzymes were randomly drawn from the pool of 72 ILs that were studied in both years. The sampling was performed without replacement for each enzyme. The whole procedure was repeated 100,000 times and this empirical co-location distribution was compared to the observed 9 co-locations.

Assessment of gene families

The ITAG2.3 annotation was searched to find candidate genes for all 13 enzymes within the QTL. The candidate genes were extracted from the *Solanum lycopersicum* genome.
release version 2.41 and aligned to the respective version of the pre-draft *Solanum pennellii* genome version. Using the predicted cDNA of iTAG2.3 as a guide splice sites, the reading frames were detected using gmap (Wu and Watanabe, 2005). SNPs causing amino acid changes in the protein as well as indels and splice junction changes were recorded after a manual assessment.
Supplemental material

Supplemental Data S1. Overview of processed samples per genotype and mean-average values per genotype and assay.

Supplemental Data S2. Mean-average values and t-test statistics of maximal enzyme activities and metabolite pool sizes, determined on tomato fruit pericarp tissue harvested at ripe stage of fruit development, of *S. pennellii* introgression lines compared to the reference genotype *S. lycopersicum* `M82`.

Supplemental Data S3. Overview of QTL mapping and mode of inheritance statistics for maximal enzyme activities and metabolite pool sizes, determined on tomato fruit pericarp tissue harvested at ripe stage of fruit development, for the *S. lycopersicum* x *S. pennellii* introgression line population.

Supplemental Data S4. Co-localization analyses of enzyme activity, metabolite, and expression QTLs with structural genes.

Supplemental Data S5. Analysis of polymorphisms in structural genes that potentially co-locate with enzyme activity QTL and of small gene families where no co-located QTL was found.

Supplemental Table S1. Overview of the optimized enzyme assays, their EC number, the abbreviations used in this work and the pathway they belong to.
Supplemental Table S2. Trait heritability of metabolite traits in the *S lycopersicum* `M82´ x *S. pennellii* introgression line population.

Supplemental Table S3. Trait heritability of selected metabolite traits in the *S lycopersicum* `M82´ x *S. pennellii* introgression line population, analyzed using GC/MS-based metabolite profiling by Schauer et al. (2008).

Supplemental Figure S1. Distribution of *P*-values derived from *t*-test analyses of metabolites observed in the homozygote introgression lines for the field trials (A) 2003 and (B) 2004.

Supplemental Figure S2. Scatter plot of the *P*-value distribution derived from *t*-test analyses of metabolites observed in the homozygote introgression lines for the field trials 2003 and 2004.

Supplemental Figure S3. Two-dimensional polar plot representation of the mode of inheritance and associated *P*-value of detected metabolite QTLs estimated using the phenotypic effects in the homozygote (ILs) and heterozygote (ILHs) introgression lines and the parental control `M82´.

Supplemental Figure S4. Estimation of the frequency of spurious collocations of enzyme activity QTL and structural genes for that enzyme.
Acknowledgements

This research was supported by the German-Israeli Foundation, the EU commission (EU-SOL) and the Max Planck Society. We acknowledge the International Tomato Genome Sequencing Consortium for making tomato genome sequence data available.
Alpert KB, Tanksley SD (1996) High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: a major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci U S A 93: 15503-15507

Bantan-Polak T, Kassai M, Grant KB (2001) A comparison of fluorescamine and naphthalene-2,3-dicarboxaldehyde fluorogenic reagents for microplate-based detection of amino acids. Anal Biochem 297: 128-136

Barton NH, Turelli M (1989) Evolutionary quantitative genetics: how little do we know? Annu Rev Genet 23: 337-370

Baxter CJ, Sabar M, Quick WP, Sweetlove LJ (2005) Comparison of changes in fruit gene expression in tomato introgression lines provides evidence of genome-wide transcriptional changes and reveals links to mapped QTLs and described traits. J Exp Bot 56: 1591-1604

Carrari F, Baxter C, Usadel B, Urbanczyk-Wochniak E, Zanor MI, Nunes-Nesi A, Nikiforova V, Centero D, Ratzka A, Pauly M, Sweetlove LJ, Fernie AR (2006) Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiol 142: 1380-1396

Carrari F, Fernie AR (2006) Metabolic regulation underlying tomato fruit development. J Exp Bot 57: 1883-1897

Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevalier C, Lemaire-Chamley M, Rothan C (2004) A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J Exp Bot 55: 1671-1685

Causse M, Rocher J, Henry A, Charcosset A, Prioul J, de Vienne D (1995) Genetic dissection of the relationship between carbon metabolism and early growth in maize, with emphasis on key-enzyme loci. Molecular Breeding 1: 259-272

Do PT, Prudent M, Sulpice R, Causse M, Fernie AR (2010) The influence of fruit load on the tomato pericarp metabolome in a Solanum chmielewskii introgression line population. Plant Physiol 154: 1128-1142

East EM (1910) A Mendelian Interpretation of Variation that is Apparently Continuous. The American Naturalist 44: 65-82

Eshed Y, Zamir D (1994) Introgressions from Lycopersicon Pennellii Can Improve the Soluble Solids Yield of Tomato Hybrids. Theoretical and Applied Genetics 88: 891-897

Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141: 1147-1162

Fiehn O, Kopka J, Dormann P, Altmann T, Trethwey RN, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18: 1157-1161

Fridman E, Carrari F, Liu YS, Fernie AR, Zamir D (2004) Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305: 1786-1789

Fridman E, Liu YS, Carmel-Goren L, Gur A, Shoresh M, Pleban T, Eshed Y, Zamir D (2002) Two tightly linked QTLs modify tomato sugar content via different physiological pathways. Mol Genet Genomics 266: 821-826

Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci U S A 97: 4718-4723

Geigenberger P, Muller-Rober B, Stitt M (1999) Contribution of adenosine 5'-diphosphoglucose pyrophosphorylase to the control of starch synthesis is decreased by water stress in growing potato tubers. Planta 209: 338-345

Geigenberger P, Stitt M (2000) Diurnal changes in sucrose, nucleotides, starch synthesis and AGPS transcript in growing potato tubers that are suppressed by decreased expression of sucrose phosphate synthase. Plant Journal 23: 795-806

Gibon Y, Blaesing OE, Hannemann J, Carillo P, Hohne M, Hendriks JHM, Palacios N, Cross J, Selbig J, Stitt M (2004) A robot-based platform to measure multiple enzyme activities in...
Arabidopsis using a set of cycling assays: Comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell 16: 3304-3325

Giovannoni J (2001) Molecular Biology of Fruit Maturation and Ripening. Annu Rev Plant Physiol Plant Mol Biol 52: 725-749

Hendriks JH, Kolbe A, Gibon Y, Stitt M, Geigenberger P (2003) ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species. Plant Physiol 133: 838-849

Johannsen W (1911) The Genotype Conception of Heredity. The American naturalist 45: 129-159

Kamenetzky L, Asis R, Bassi S, de Godoy F, Bermudez L, Fernie AR, Van Sluys MA, Vrebalov J, Giovannoni JJ, Rossi M, Carrari F (2010) Genomic analysis of wild tomato introgressions determining metabolism- and yield-associated traits. Plant Physiol 152: 1772-1786

Keurentjes JJ, Sulpice R, Gibon Y, Steinhauser MC, Fu J, Koornneef M, Stitt M, Vreugdenhil D (2008) Integrative analyses of genetic variation in enzyme activities of primary carbohydrate metabolism reveal distinct modes of regulation in Arabidopsis thaliana. Genome Biol 9: R129

Kliebenstein DJ, Pedersen D, Barker B, Mitchell-Olds T (2002) Comparative analysis of quantitative trait loci controlling glucosinolates, myrosinase and insect resistance in Arabidopsis thaliana. Genetics 161: 325-332

Lande R (1983) The response to selection on a major and minor mutations affecting a metrical trait. Heredity 50: 47-65

Li L, Lu K, Chen Z, Mu T, Hu Z, Li X (2008) Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids. Genetics 180: 1725-1742

Meyer RC, Torjek O, Becher M, Altmann T (2004) Heterosis of biomass production in Arabidopsis. Establishment during early development. Plant Physiol 134: 1813-1823

Mitchell-Olds T, Pedersen D (1998) The molecular basis of quantitative genetic variation in central and secondary metabolism in Arabidopsis. Genetics 149: 739-747

Mounet F, Moing A, Garcia V, Petit J, Maucourt M, Deborde C, Bernillon S, Le Gall G, Colquhoun I, Defernez M, Giraudel JL, Rolin D, Rothan C, Lemaire-Chamley M (2009) Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development. Plant Physiol 149: 1505-1528

Mueller LA, Solow TH, Taylor N, Skwarecki B, Buels R, Binns J, Lin C, Wright MH, Ahrens R, Wang Y, Herbst EV, Keyder ER, Menda N, Zamir D, Tanksley SD (2005) The SOL Genomics Network: a comparative resource for Solanaceae biology and beyond. Plant Physiol 138: 1310-1317

Piques M, Schulze WX, Hohne M, Usadel B, Gibon Y, Rohwer J, Stitt M (2009) Ribosome and transcript copy numbers, polysome occupancy and enzyme dynamics in Arabidopsis. Mol Syst Biol 5: 314
Thevenot C, Simond-Cote E, Reyss A, Manicacci D, Trouverie J, Le Guilloux M, Ginhoux V, Sidicina F, Prioul JL (2005) QTLs for enzyme activities and soluble carbohydrates involved in starch accumulation during grain filling in maize. J Exp Bot 56: 945-958

Tieman D, Taylor M, Schauer N, Fernie AR, Hanson AD, Klee HJ (2006) Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proc Natl Acad Sci U S A 103: 8287-8292

von Roepenack-Lahaye E, Degenkolb T, Zerjeski M, Franz M, Roth U, Wessjohann L, Schmidt J, Scheel D, Clemens S (2004) Profiling of Arabidopsis secondary metabolites by capillary liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry. Plant Physiol 134: 548-559

Wu TD, Watanabe CK (2005) GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21: 1859-1875

Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2: 983-989

Zanor MI, Rambla JL, Chaib J, Steppa A, Medina A, Granell A, Fernie AR, Causse M (2009) Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. J Exp Bot 60: 2139-2154

Zhang N, Gibon Y, Gur A, Chen C, Lepak N, Hohne M, Zhang Z, Kroon D, Tschoep H, Stitt M, Buckler E (2010) Fine quantitative trait loci mapping of carbon and nitrogen metabolism enzyme activities and seedling biomass in the maize IBM mapping population. Plant Physiol 154: 1753-1765
Table 1. Trait heritability of enzyme activity traits in the *S. pennellii* introgression line population. The coefficient of variation (CV) in percentage within and among the lines as well as the heritability (H^2) for each enzyme activity trait is presented for the two independent field trials 2003 and 2004. For each trait the mean-average CV (*ØCV*) exhibits the average of CV values obtained for each introgression line (IL); the CV among lines was computed using the mean enzyme activities among the lines. The column Ø and CV shows the average heritability and the corresponding CV, respectively. The class (CL) exhibits a grouping of the average H^2 values with:

- low ($H^2 \leq 20$),
- intermediate ($20 < H^2 \leq 40$), and high ($H^2 > 40$) heritability. Pearson’s (r) and Spearman’s (r_s) correlation and its significance (* - $P < 0.05$; ** - $P < 0.01$) of enzyme activity levels in the ILs between the two field trials are also displayed.

Enzymes	IL 2003 ØCV [within]	IL 2003 CV [among]	H^2	IL 2004 ØCV [within]	IL 2004 CV [among]	H^2	ØCV	CV	CL	Correlation
ShkDH	34	37	41	49	35	18	29.5	54	↔	0.42** 0.27*
AspAT	42	24	1	41	30	19	10	123	↓	0.17 0.24*
AlaAT	37	31	30	59	42	13	21.4	58	↔	0.02 0.18
NAD-GIDH	55	48	31	65	47	17	24.1	41	↔	0.1 0.05
NAD-GAPDH	29	26	32	35	27	27	29.7	12	↔	0.5** 0.41**
TPI	40	30	22	41	27	14	17.9	32	↓	0.27* 0.32**
G6PDH	49	38	22	51	34	12	16.9	42	↓	0.04 0.14
PGK	60	30	0	46	24	3	1.4	141	↓	0.02 -0.03
PEPC	60	46	16	55	32	7	11.4	51	↓	0.02 0.04
PPI-PFK	37	36	34	56	47	32	32.9	5	↔	0.31** 0.42**
NADP-GAPDH	46	26	0	52	35	10	5	141	↓	0.12 0.12
Aldolase	62	42	7	54	39	0	3.3	141	↓	0.03 -0.08
PK	28	29	32	51	32	7	19.6	91	↓	0.19 0.18
ATP-PFK	44	33	18	47	36	21	19.5	10	↓	0.32** 0.24*
GicK	71	44	10	60	40	12	11.1	8	↓	0.16 0.1
PGM	26	25	36	36	28	21	28.5	39	↔	0.01 0.15
PGI	28	24	30	34	21	13	21.4	56	→	0.34** 0.24*
SuSy	56	34	0	56	40	17	8.3	141	↓	0.01 -0.04
UGP	23	24	42	20	17	36	38.7	10	↔	0.32** 0.41**
Invertase	57	41	20	48	37	21	20.2	3	↔	0.29* 0.34**
FruK	55	33	2	60	37	4	2.8	51	↓	0.27* 0.13
SPS	37	24	10	29	21	19	14.5	44	↓	0.25* 0.3**
AGP	71	72	13	62	40	0	6.6	141	↓	0.07 0.08
Aconitase	41	35	26	60	46	11	18.7	56	↓	0.05 0.09
NAD-MDH	44	35	18	44	37	25	21.9	23	↔	0.37** 0.33**
Fumarase	58	42	9	61	29	0	4.7	141	↓	0.15 0.06
NADP-IcDH	63	49	7	65	49	21	13.8	69	↓	0.11 0.14
SCS	71	58	3	67	68	0	1.7	141	↓	0 0.09
Average	47	36	18	50	36	14	16.3	67	↓	0.18 0.18
Table 2. Overview of enzyme activity QTLs identified, overlapping for both harvests 2003 and 2004 on the basis of individual introgression lines. Negative QTLs are colored red and positive QTLs are blue. A darker coloration reflects QTLs at $P < 0.01$; a lighter coloration QTLs with $P < 0.05$. Cells labeled with the character S represent QTLs overlapping with structural genes. Only introgression lines considered to harbor a QTL or variables which resulted in traits identified are depicted in this table. Pathway abbreviation: amino acid metabolism (AAM), glycolysis/glucolysis/gluconeogenesis (GGP), sucrose and starch metabolism (SSM), and tricarboxylic acid cycle (TCA). All QTL are defined with reference to IL that were available for this study. The two QTL for TPI in IL-1-2 and IL-1-3 and the two QTL for PPi-PFK in IL-2-4 and IL-2-5 might be due to single QTL in the region of overlap between the adjacent IL.

AAM	GGP	GGP/SSM	SSM	TCA								
ShkDH	NAD-GIDH	NAD-GAPDH	TPI	PEPC	PPi-PFK	ATP-PFK	PGM	PGI	UGP	FruK	Invertase	NAD-MDH
IL-1-2	S	2										
IL-1-3		1										
IL-2-4	S	2										
IL-2-5	S	1										
IL-3-2	S	1										
IL-3-4	S	1										
IL-4-1	S	1										
IL-4-2	S	1										
IL-4-4	S	3										
IL-5-2	S	1										
IL-5-4	S	1										
IL-7-2	S	2										
IL-7-4	S	1										
IL-7-4-1	S	1										
IL-9-2	S	1										
IL-10-1	S	1										
IL-10-3	S	1										
IL-11-3	S	2										
IL-12-3	S	3										

2 1 4 5 1 4 1 1 1 2 1 2 2 2
3 15 2 5 2 27
Table 3. ANOVA, t-test and mode of inheritance for 27 putative enzyme activity QTLs overlapping in both field experiments 2003 and 2004. The enzyme activity QTLs (aQTLs) are sorted according genotype and enzyme activity trait analyzed. The ANOVA results depict the percentage variation for the factors genotype (G), environment (E), and genotype x environment interaction (GxE). An introgression was considered harboring a QTL if a significant genotype ($P_G < 0.01$) and non-significant genotype x environment interaction ($P_{GxE} \geq 0.01$) was observed. The results of t-test analyses show the phenotypic response as agronomical percentage value for the field experiment in 2003 (‘R(IL) 2003’) and 2004 (‘R(IL) 2004’). QTLs were considered if significant changes at $P < 0.05$ in the same direction were observed for both field experiments. The response of the respective heterozygote ILs (‘R(ILH) 2004’) and associated P-values from t-test analysis compared to M82 are displayed. The mode of inheritance was computed and classified as described (Semel et al., 2006) with R – recessive, A – additive, D – dominant, and ODO overdominant effects. The sign indicates the direction of the observed phenotypic effect of the *S. pennelli* allele introgressed into the *S. lycopersicum `M82´* genome. All significant changes are depicted as * - $P < 0.05$ and ** - $P < 0.01$ in each cell.

Genotype Enzyme	ANOVA: IL 2003/2004	t-test: IL 2003/2004	Inheritance (IL/ILH 2004)										
	% (G)	% (E)	% (GxE)	QTL (P<.01)	R(IL) 2003	R(IL) 2004	QTL (P<.05)	R(ILH) 2004	P(IL/H) 2004	Mode (P<.05)			
IL-1-2 TPI	32**	4	0	aQTL	61*	68**	aQTL	35*	0.129	D+			
	21**	20**	7*	aQTL	123*	49*	aQTL	10	0.147	A+			
NAD-MDH	22**	6	3	aQTL	94*	58*	aQTL	65**	0.854	D+			
IL-1-3 TPI	36**	3	0	aQTL	52*	76**	aQTL	92	0.516	A+			
NAD-GAPDH	52**	10**	0	aQTL	99**	164**	aQTL	14	0.023	R+			
IL-2-4 TPI	46**	14**	1	aQTL	102**	124**	aQTL	33	0.012	R+			
PPI-PFK	40**	6*	0	aQTL	89**	80**	aQTL	17	0.028	R+			
NAD-GIDH	56**	0	0	aQTL	204**	142**	aQTL	92	0.516	A+			
IL-3-4 NAD-GAPDH	19**	9*	0	aQTL	53*	38*	aQTL	4	0.09	A+			
IL-4-1 PEPC	36**	0	1	aQTL	176**	104**	aQTL	109**	0.942	D+			
IL-4-2 PGI	29**	1	1	aQTL	-23*	-36**	aQTL	15	0.044	R-			
NAD-GAPDH	40**	6*	0	aQTL	89**	80**	aQTL	17	0.028	R+			
UGP	28**	20**	1	aQTL	44*	36*	aQTL	17	0.158	A+			
FruK	14*	17**	1	aQTL	136*	94*	aQTL	4	0.09	A+			
IL-5-2 PPI-PFK	24**	14**	0	aQTL	48*	96*	aQTL	12	0.023	R+			
IL-5-4 NAD-MDH	27**	26**	10**	aQTL	144**	72**	aQTL	39	0.262	A+			
IL-7-2 TPI	39**	2	2	aQTL	55*	105**	aQTL	40	0.012	R+			
NAD-MDH	36**	14**	4	aQTL	127*	101*	aQTL	-40	0.012	R+			
ATP-PFK	23**	7	0	aQTL	63*	60*	aQTL	17	0.324	A+			
IL-7-4-1 NAD-GAPDH	20**	12**	1	aQTL	38*	44**	aQTL	-36*	0.030	ODO/-R+			
ShkDH	15**	29**	1	aQTL	52*	53*	aQTL	-37	0.003	R+			
IL-10-1 NAD-GAPDH	36**	14**	4	aQTL	42*	75**	aQTL	17					
Invertase	31**	1	1	aQTL	-54*	-64**	aQTL	34	0.009	R-			
IL-11-3	ShkDH	Invertase	20**	26**	9*	aQTL	73**	142**	aQTL	7	0.057	A+	
---------	-------	-----------	-------	-------	---	-------	-------	-------	-------	---	-------	----	
IL-12-3	TPI	26** 4 0	aQTL	26**	3 0	aQTL	61**	36**	aQTL	-19	0.551	A-	
	PGM	17** 40**	aQTL	17**	36**	3	aQTL	47*	67*	aQTL	52*	0.716	D+
	UGP	17** 36**	aQTL	17**	36**	3	aQTL	36*	32**	aQTL	3	0.099	A-

| 1133 | 1134 |
Table 4. Qualitative distribution of the mode of inheritance of enzyme activity QTLs grouped according to metabolic pathway to which the measured enzymes are assigned. The numbers in brackets shows the percentage of the mode of inheritance among all detected QTLs in that pathway group. The signs that precede the mode of inheritance indicate increasing (+) or decreasing (-) effects compared to the parental control `M82`. The columns $P(\chi^2)$ and $P(F)$ display the P-values observed using chi-square and Fisher’s exact test, respectively, to evaluate the independence of the distribution among the pathway groups for each mode (row-wise assessment). The row $P(\chi^2)$ | $P(F)$ shows the P-values obtained using chi-square and Fisher’s exact test to evaluate the independence of the distribution of the mode of inheritance for each pathway group (column-wise assessment; regardless of their change in direction, i.e. positive or negative).

Mode	Total	AAM (4 traits)	GGP (10 traits)	GGP	SSM (4 traits)	SSM (5 traits)	TCA (5 traits)	$P(\chi^2)$	$P(F)$
+Overdominant	1	4	1 (10)	0	0	0	0	0.08	0.22
-Overdominant	3	0 (0)	2 (4)	1 (8)	0	0	0	0.69	0.76
+Dominant	31	31	1 (10)	21 (45)	3 (25)	2 (15)	4 (40)	0.11	0.12
-Dominant	0	31	0	0	0	0	0	n/a	n/a
+Additive	28	29	3 (30)	12 (26)	4 (33)	6 (46)	3 (30)	0.72	0.7
-Additive	1	0	0	0	1 (8)	0	0	0.19	0.49
+Recessive	22	26	5 (50)	8 (17)	3 (25)	3 (23)	3 (30)	0.27	0.27
-Recessive	4	0	2 (4)	1 (8)	1 (8)	0	0	0.79	0.79
ODO+/R-	2	2	0	0	0	0	0	n/a	n/a
ODO-/R+	0	2	0	2 (4)	0	0	0	0	0

$P(\chi^2)$ | $P(F)$ | 0.31 | 0.22 | 0.09 | 0.07 | 0.87 | 0.73 | 0.3 | 0.35 | 0.93 | 1

Total | 92 | 10 | 47 | 12 | 13 | 10 |
Figure legends

Figure 1. Heat map visualization of log$_2$-tranformed enzyme activity ratios of the *Solanum pennellii* introgression line population for independent field experiments performed in (A) 2003 and (B, C) 2004 for (A, B) homozygote and (C) heterozygote lines compared to the parental control `M82`. The introgression lines (ILs) are represented by rows and sorted according to the chromosome depicted as a color-coded row sidebar. The last row represents the parental control. The columns represent the individual measured enzyme activities sorted according to their metabolic pathway assignment depicted as color-coded column sidebar. The effects are expressed as log$_2$-transformed ratios based on mean-average in each IL to the mean of the parental control in the respective field experiment. The strength of the effects are color-coded according to the top color bar with red colors reflect decreasing (-, negative) and blue colors increasing (+, positive) effects. Missing values are represented by grey color. QTLs detected using t-tests at a significance level of $P < 0.05$ are marked as follows: `+' = positive QTL and `-` = negative QTL. Heat map cells labeled with the character `°` reflect data with less than three replicates; thus, a QTL assessment using t-test was not conducted for those combinations of IL and enzyme.

Figure 2. Distribution of P-values derived from t-test analyses of enzyme activities observed in the homozygote introgression lines (ILs) for the field trials (A) 2003 and (B) 2004. Blue colored sectors represent the number of positive traits, i.e. the introgression revealed higher values than the parental control `M82`. Red colored pie sectors reflect negative traits where the observed value in the introgression is lower compared to parental control. Grey sectors depict the portion of t-tests that were not conducted as less than
three replicates were available with respect to genotype and enzyme activity. The observed P-values are grouped accordingly as depicted in the figure with: (i) dark red / dark blue color - significant portion in range of $0 \leq P < 0.01$, (ii) red / blue - significant portion in range of $0.01 \leq P < 0.05$, and faded light red / faded light blue - not significant portion of $P \geq 0.05$.

Figure 3. Scatter plot of the P-value distribution derived from t-test analyses of enzyme activities observed in the homozygote introgression lines (ILs) for the field trials 2003 and 2004. The P-values were computed separately by t-tests and traits considered significant at $P < 0.05$. Observed positive (+, increasing effects) or negative (-, decreasing effects) traits compared to the parental control `M82`are reflected by the sign of the P-values. To aid visualization P-values were inverted and log$_{10}$-transformed to separate significant from non-significant effects on enzyme activities. The significance levels of $P < 0.05$ and $P < 0.01$ are depicted as solid and dotted lines, respectively. Traits are represented by colored shapes as depicted in the figure legend with: (i) yellow-colored squares – positive significant traits ($P < 0.05$) in both independent trials, (ii) cyan-colored squares – negative significant traits ($P < 0.05$) in both trials, (iii) magenta-colored circles – positive significant in one trial and negative significant in the other trial, (iv) blue-colored lower triangles – significant traits in the experiment 2004, (v) red-colored upper triangle significant traits in the trial 2003, (vi) grey-colored circles – no significant traits in any of the two independent field trials. Data with less than three replicates in any of the trials with respect to genotype and enzyme activity as well as ILs analyzed only in one trial were excluded.
Figure 4. Two-dimensional polar plot representation of the mode of inheritance and associated P-value of detected enzyme activity QTLs estimated using the phenotypic effects in the homozygote (ILs) and heterozygote (ILHs) introgression lines and the parental control `M82´ based on the field trial 2004. Traits positioned on the dashed black lines exhibit enzyme activity mean differences of one genotype which is exactly in the middle between the genotypes with low and high phenotypic effects. Traits exhibiting clear additive (A) or over-dominant (ODO) effects are located on the horizontal and vertical lines, respectively. The distance to the center (radius) reflects the P-value associated with a trait estimated using ANOVA of the corresponding homozygote IL data measured for both, the 2003 and 2004 trials. The shape of the plotted traits corresponds to the metabolic pathway an enzyme is assigned as depicted in the figure legend. The color of each shape (see figure legend) corresponds to the mode of inheritance of the trait classified using a decision tree suggested by Semel et al. (2006). Only traits are visualized which were detected and evaluated using both, t-test analyses on the IL / ILH data from 2004 and ANOVA on IL data from 2003 and 2004 (see Material and Methods, Supplemental Data S3).

Figure 5. QTLs for *S. pennellii* introgression line IL-4-4 mapped onto a simplified scheme of the glycolysis pathway including associated reactions. Positive metabolic QTLs are depicted with a blue background and positive enzyme activity QTLs by blue colored arrows. Dark blue colored QTLs reflect significant differences with $P < 0.01$, light blue coloration with $P < 0.05$. A white box indicates metabolic traits with no significant differences; grey boxes depict non-measured metabolic traits (cf. Schauer et al., 2006). EC numbers in italic stands for non-measured enzyme activities QTLs.
Figure 1. Heat map visualization of log₂-transformed enzyme activity ratios of the *Solanum pennellii* introgression line population for independent field experiments performed in (A) 2003 and (B, C) 2004 for (A, B) homozygote and (C) heterozygote lines compared to the parental control `M82`. The introgression lines (ILs) are represented by rows and sorted according to the chromosome depicted as a color-coded row sidebar. The last row represents the parental control. The columns represent the individual measured enzyme activities sorted according to their metabolic pathway assignment depicted as color-coded column sidebar. The effects are expressed as log₂-transformed ratios based on mean-average in each IL to the mean of the parental control in the respective field experiment. The strength of the effects are color-coded according to the top color bar with red colors reflect decreasing (-, negative) and blue colors increasing (+, positive) effects. Missing values are represented by grey color.

QTLs detected using *t*-tests at a significance level of *P* < 0.05 are marked as follows: '+' = positive QTL and '-' = negative QTL. Heat map cells labeled with the character '°' reflect data with less than three replicates; thus, a QTL assessment using *t*-test was not conducted for those combinations of IL and enzyme.
Figure 2. Distribution of *P*-values derived from *t*-test analyses of enzyme activities observed in the homozygote introgression lines (ILs) for the field trails (A) 2003 and (B) 2004. Blue colored sectors represent the number of positive traits, i.e. the introgression revealed higher values than the parental control `M82`. Red colored pie sectors reflect negative traits where the observed value in the introgression is lower compared to parental control. Grey sectors depict the portion of *t*-tests that were not conducted as less than three replicates were available with respect to genotype and enzyme activity. The observed *P*-values are grouped accordingly as depicted in the figure with: (i) dark red / dark blue color - significant portion in range of $0 \leq P < 0.01$, (ii) red / blue - significant portion in range of $0.01 \leq P < 0.05$, and faded light red / faded light blue - not significant portion of $P \geq 0.05$.
Figure 3. Scatter plot of the P-value distribution derived from t-test analyses of enzyme activities observed in the homozygote introgression lines (ILs) for the field trails 2003 and 2004. The P-values were computed separately by t-tests and traits considered significant at $P < 0.05$. Observed positive (+, increasing effects) or negative (-, decreasing effects) traits compared to the parental control ‘M82’ are reflected by the sign of the P-values. To aid visualization P-values were inverted and log$_{10}$-transformed to separate significant from non-significant effects on enzyme activities. The significance levels of $P < 0.05$ and $P < 0.01$ are depicted as solid and dotted lines, respectively. Traits are represented by colored shapes as depicted in the figure legend with: (i) yellow-colored squares – positive significant traits ($P < 0.05$) in both independent trails, (ii) cyan-colored squares – negative significant traits ($P < 0.05$) in both trails, (iii) magenta-colored circles – positive significant in one trail and negative significant in the other trail, (iv) blue-colored lower triangles – significant traits in the experiment 2004, (v) red-colored upper triangle significant traits in the trail 2003, (vi) grey-colored circles – no
significant traits in any of the two independent field trails. Data with less than three replicates in any of the trails with respect to genotype and enzyme activity as well as ILs analyzed only in one trail were excluded.
Figure 4. Two-dimensional polar plot representation of the mode of inheritance and associated P-value of detected enzyme activity QTLs estimated using the phenotypic effects in the homozygote (ILs) and heterozygote (ILHs) introgression lines and the parental control `M82` based on the field trail 2004. Traits positioned on the dashed black lines exhibit enzyme activity mean differences of one genotype which is exactly in the middle between the genotypes with low and high phenotypic effects. Traits exhibiting clear additive (A) or over-dominant (ODO) effects are located on the horizontal and vertical lines, respectively. The distance to the center (radius) reflects the P-value associated with a trait estimated using ANOVA of the corresponding homozygote IL data measured for both, the 2003 and 2004 trails. The shape of the
plotted traits corresponds to the metabolic pathway an enzyme is assigned as depicted in the figure legend. The color of each shape (see figure legend) corresponds to the mode of inheritance of the trait classified using a decision tree suggested by Semel et al. (2006). Only traits are visualized which were detected and evaluated using both, t-test analyses on the IL / ILH data from 2004 and ANOVA on IL data from 2003 and 2004 (see Material and Methods, Supplemental Data S3).
Figure 5. QTLs for *S. pennellii* introgression line IL-4-4 mapped onto a simplified scheme of the glycolysis pathway including associated reactions. Positive metabolic QTLs are depicted with a blue background and positive enzyme activity QTLs by blue colored arrows. Dark blue colored QTLs reflect significant differences with $P < 0.01$, light blue coloration with $P < 0.05$. A white box indicates metabolic traits with no significant differences; grey boxes depict non-measured metabolic traits (cf. Schauer et al. 2006). EC numbers in italic stands for non-measured enzyme activities QTLs.