Evaluation of hepatic antioxidant capacities of *Spirogyra neglecta* (Hassall) Kützing in rats

Tarika THUMVIJIT 1,2, Waristha THUSCHANA 1, Doungporn AMORNLERDPISON 3, Yuwadee PEERAPORNPSAL 2, Rawiwan WONGPOOMCHAI 1

1 Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
2 Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
3 Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai, Thailand

ABSTRACT

Free radicals are one of the causes of chronic and degenerative diseases. Antioxidants can protect the progression of free radical mediated disorders. The aim of this study was to evaluate the antioxidant activity of *Spirogyra neglecta* (Hassall) Kützing in rats. The rats were divided into 5 groups. Group 1 served as control. Groups 2 and 3 were administered hot water extract of *S. neglecta* at 50 and 200 mg/kg bw, respectively, while groups 4 and 5 were fed 1% and 4% *S. neglecta* mixed diet, resp., for 13 weeks. Antioxidant enzymes were evaluated in livers of the rats. The activities of catalase and glutathione reductase were significantly increased in the group fed 50 mg/kg of the extract, compared with the control group. Glutathione peroxidase activity was also significantly higher in the group fed 50 and 200 mg/kg of the extract. The study suggests that *S. neglecta* may enhance antioxidant systems in the rat liver.

KEY WORDS: antioxidant; green algae; *Spirogyra neglecta* (Hassall) Kützing

Introduction

Reactive oxygen species include the hydroxyl radical, the superoxide anion radical, hydrogen peroxide and various lipid peroxides (Lee & Min, 2004). They are generated in all living organisms. These free radicals can react with various biomolecules in cells, leading to cell damage and death. This phenomenon appears to be a major contributor in chronic and degenerative diseases such as cancer, diabetes, arthritis, and atherosclerosis (Sapakal et al., 2008). Antioxidants can either trap or destroy free radicals and other reactive oxygen species, thus preventing oxidative stress-related diseases (Ak & Gülçin, 2008). The antioxidant system includes endogenous enzymes such as superoxide dismutase, glutathione peroxidase, glutathione reductase and catalase, as well as non-enzymatic antioxidants such as glutathione, ascorbic acid and tocopherol (Sapakal et al., 2008). Consumption of fruit and vegetables rich in natural antioxidants is associated with the prevention of degenerative diseases (Ferrari, 2004; Veerapur et al., 2009).

Algae are a great source of natural compounds that are widely known and consumed in Asian countries. Numerous studies have investigated compounds found in algae for their antibiotic, antiviral, antioxidant, anti-inflammatory and cytotoxic activities (Lordan et al., 2011). *Spirulina* is a blue-green microalga from the Cyanobacterium gender and contains a phycocyanin with pharmaceutical and antioxidant properties (Estrada et al., 2001). Brown algal polyphenols function as antioxidants, antibacterial and anti-fungal compounds (Kuda et al., 2007; Shibata et al., 2006). Seaweeds are known to contain reactive antioxidant molecules, such as ascorbate, glutathione, carotenoids, catechins and polysaccharides (Yuan et al., 2005). Polysaccharides in various algae have been demonstrated to act as free radical scavengers *in vivo* and *in vitro* (Jiao et al., 2011). However, most previous studies have focused on seaweed, blue-green, red and brown algae. There is little information concerning freshwater green algae and their pharmacological and medical application. *Spirogyra* spp. are filamentous freshwater green algae. These algae are consumed as food in northern Thailand. *Spirogyra neglecta* (Hassall) Kützing contains high amounts of protein, carbohydrate, fat, sulfate and dietary fiber (Phinyo et al., 2012). *S. neglecta* is beneficial to the...
environment via removing Pb^{2+} from polluted water (Hussain et al., 2009). It has also pharmacological properties. *S. neglecta* extract can inhibit gastric ulcer formation induced by physical and chemical stress in rats. It also showed hypolipidemic and hypoglycemic abilities in type 2 diabetic rats induced by streptozotocin and high fat diet (Lailerd et al., 2009). The mechanism responsible may be related to *S. neglecta*'s antioxidant properties. The present study thus aimed to determine the in vivo antioxidant effects of *Spirogyra neglecta*.

Materials and methods

Chemicals

β-dihydronicotinamide adenine phosphosinedinucleotide (β-NADPH) was purchased from Oriental Yeast Co., Ltd. (Tokyo, Japan). Cupric chloride (CuCl$_2$) was purchased from BDH (BDH Chemicals Ltd, Poole, England). All other chemicals used were purchased from Sigma-Aldrich Co. (St. Louis, Mo, USA).

Materials

Spirogyra spp. was collected from the cultivation pool of Na Kuha village, Saun Kuen Sub district, Muang District, Phrae Province, Thailand, during October and November 2010. The fresh algae were identified and authenticated according to the morphology both of vegetative cells and sex cells and their habitat by the method of John et al. (2002). The algae were extracted with distilled water at 100°C for 2 h. The hot water extract was filtered with Whatman filter paper no. 1 and lyophilized with a freeze dryer.

Chemical composition analysis

The alga *S. neglecta* was analyzed for total carbohydrate, sulfate, chlorophyll and total phenolic compounds. Carbohydrate was determined by the phenol-H$_2$SO$_4$ method using glucose as the standard (Dubois et al., 1956). Sulfate was measured by the method of Craigie and Wen (1984) using K$_2$SO$_4$ as standard. Total phenolic compounds were determined by the Folin-Ciocalteu method using gallic acid as standard (Emmons et al., 1999). Chlorophyll was determined according to the method described by Proctor (1981).

Animals

Male Wistar rats weighing between 120–150 g were purchased from the National Laboratory Animal Center, Salaya, Nakorn Patom, Thailand. They were housed in the animal care center of the Faculty of Medicine, Chiang Mai University, under controlled environmental conditions of 24°C and 12 h light-dark cycle. The experimental protocol was approved by the Animal Ethics Committee of the Faculty of Medicine, Chiang Mai University.

Experimental protocol

All rats were randomly divided into 5 groups of 6 animals each with treatment groups as follows: Group 1 served as control, receiving distilled water and basal diet, Groups 2 and 3 received 50 and 200 mg/kg body weight of *S. neglecta* extract via intragastric for 13 weeks, respectively, Groups 4 and 5 were fed with *S. neglecta* mixed diets at 1% and 4% for 13 weeks, respectively. All animals were sacrificed at the end of the 13th week by diethyl ether. Liver samples were removed for biochemical analysis. Blood samples were collected to determine liver function enzymes.

Liver function tests

Alanine aminotransferase and aspartate aminotransferase enzymes in serum were measured spectrophotometrically using commercial Olympus kits (Olympus Corp., Tokyo, Japan).

Determination of oxidative stress and antioxidant status in rat livers

Lipid peroxidation

The lipid peroxidation levels in livers were measured in terms of thiobarbituric acid reactive substance (TBARS) according to the method of Fujiwara et al. (2003). The reaction mixture consisted of 10% liver homogenate, 50% trichloroacetic acid and 0.67% thiobarbituric acid aqueous solution. The reaction mixture was heated in a boiling water bath for 10 minutes. The tubes were placed on ice to stop the reaction, n-butanol was added, then mixed and centrifuged at 3,000 rpm for 20 minutes. The supernatant was measured for its absorbance at 532 nm. TBARS generation was calculated based on a standard curve of MDA.

Liver cytosol preparation

Frozen livers were homogenized with ice-cold buffer containing 1.5% KCl and 0.25 mM PMSF using a Polytron homogenizer. The homogenates were centrifuged at 10,000 g for 20 minutes at 4°C. The supernatants were further centrifuged at 100,000 g for 60 minutes at 4°C. The cytosols were stored at −80°C until analysis. The protein content in rat liver cytosols was assayed via the Lowry method.

Glutathione

Glutathione was measured according to the method of Akerboom and Sies (1981) based on the reaction with 5,5’-dithiobis-2-nitrobenzoic acid (DTNB). The amount of glutathione was expressed as nmol/mg protein.

Superoxide dismutase (SOD)

This assay is based on the inhibition of nitroblue tetrazolium (NBT) reduction by superoxide radicals produced by the xanthine/xanthine oxidase system (Sun et al., 1988). The SOD activity was expressed as U/mg protein.

Catalase

Catalase activity was determined by measuring the decomposition of hydrogen peroxide according to the method of Aebi (1984). Catalase activity was expressed as nmol of hydrogen peroxide reduced/min/mg protein.

Glutathione peroxidase (GPx)

GPx activity was determined by NADPH oxidation in a coupled reaction system containing t-butyl hydroperoxide.
Antioxidant capacities of *S. neglecta* in rat livers
Tanika Thunvijit, Waritha Thuanchan, Doungporn Amornlerdpison, Yuwadee Peerapornpisal, Rawiwan Wongpoomchai

Table 1. General appearance and liver weight of *S. neglecta* treated rats.

Groups	Food intake (g/rat/day)	Water intake (ml/rat/day)	Initial body weight (g)	Final body weight (g)	% body weight change absolutes	Liver weight (g)	Relative liver weight (%)
Control	21±3	32±12	101±4	428±10	13.3±2.7	3.0±0.4	
S. neglecta 50 mg/kg	21±4	39±9	100±3	441±42	13.4±1.7	2.9±0.3	
S. neglecta 200 mg/kg	23±4	37±11	100±4	461±43	13.5±1.5	2.9±0.5	
1% *S. neglecta* mixed diet	23±3	33±8	102±4	467±49	12.7±1.3	2.9±0.3	
4% *S. neglecta* mixed diet	22±3	31±8	103±4	435±17	13.1±1.6	3.1±0.4	

Values are means ± SD, n=6

(t-BHA) and oxidized glutathione (Nagalakshmi & Prasad, 2001). GPx activity was expressed as μmol of β-NADPH oxidized/min/mg protein.

Glutathione reductase (GR)

GR activity was determined according to the method of Carlberg and Mannervik (1983) by measuring the amount of NADPH consumed during the conversion of oxidized glutathione (GSSG) to reduced glutathione at 340 nm. GR activity was expressed as nmol of β-NADPH oxidized/min/mg protein.

Statistical analysis

The experimental results are expressed as mean of 6 animals in each group±SD. The statistical significance of differences between groups was analyzed by one way analysis of variance (ANOVA) with LSD for post hoc tests.

Results

The yield of hot water extract of *S. neglecta* was approximately 25%. Total carbohydrate and sulfate in *S. neglecta* were 33.94±1.46% and 1.08±0.01%, respectively. Chlorophyl content in dried *S. neglecta* and hot water extract from *S. neglecta* were 15.44 and 9.91 mg/g and total phenolic compounds were 72.98±14.34 and 151.02±15.39 mg GAE/g, respectively. Table 1 shows body weights and liver weights in *S.neglecta* treated and control groups. The food and water intake in all *S. neglecta* treated groups were not significantly different when compared with the control group. AST and ALT activities were not significantly changed in treatment groups as compared with the control group. No significant differences were observed in glutathione and TBARS levels in either treated group as compared with the control group (Table 2). Antioxidant enzymes were evaluated in livers of the rats. The activities of catalase and GR in the liver were significantly (*p<0.05*) increased only in the 50 mg/kg *S. neglecta* treated group (Figures 1 and 2). GPx activity was significantly (*p<0.05*) increased in livers of rats fed with 50 and 200 mg/kg of *S. neglecta* as compared with controls (Figure 3). SOD was not significantly changed in the treatment groups as compared with the control group (Figure 4).
Antioxidant enzymes play a crucial role in cellular defense oxidative stress. Catalase is an enzyme which converts hydrogen peroxide to water and molecular oxygen, thus preventing the formation of extremely dangerous hydroxyl radicals from hydrogen peroxide. It has long been known that hydroxyl radicals can destroy biomolecules leading to pathological alterations (Limon-Pacheco & Gonsebatt, 2009). Thus induction of catalase activity by *S. neglecta* treatment may result in a decrease in deleterious effects due to hydrogen peroxide. GPx plays an important role in protecting cells from free radicals generated by peroxide decomposition (Limon-Pacheco & Gonsebatt, 2009). GR is a ubiquitous NADPH-dependent enzyme protecting against oxidative damage within the cell by maintenance of appropriate levels of intracellular glutathione (Sapakal et al., 2008). The enhancement of these antioxidant enzyme activities in livers of rats treated with hot water extract of *S. neglecta* indicated that *S. neglecta* may protect against cellular and tissue damage due to hydrogen peroxides, peroxydes and hydroxyl radicals.

The antioxidant potentials of algae in human health have been discussed elsewhere (Cornish & Garbary, 2010). The major groups of antioxidant compounds in macroalgae are phenolic compounds, polyphenols, sulfated polysaccharides, carotenoids and vitamins. Phenolic compounds and polyphenols can chelate metal ions, prevent radical generation and indirectly modulate the activities and alter the expression levels of significant proteins, such as antioxidant and detoxifying enzymes (Ferguson, 2001; Ferguson et al., 2004). Many studies have shown that the sulfated polysaccharides in algae possess various pharmacological activities including antioxidant activities (Jiao et al., 2011). Zhang et al. (2003) reported that polysaccharide fractions from the alga *Porphyra haitanesis* (Rhodephyta) could increase antioxidant enzymes in aging mice. Song et al. (2010) demonstrated the inhibitory effect of polysaccharides extracted from the green alga *Bryopsis plumose* on superoxide radical and DPPH. In this study, we found that the total amount of phenolic compounds, total carbohydrates and sulfate of hot water extract were greater than those of raw materials. This may be one reason why the administration of the hot water extract of *S. neglecta* enhanced antioxidant systems in rat liver. Vitamin E and β-carotene, fat-soluble vitamins, and vitamin C, a heat unstable vitamin, are well-known antioxidants in algae. These antioxidant compounds might be excluded from this study due to the hot water preparation of *S. neglecta* extract. Furthermore, chlorophyl, green pigments found in algae and higher plants, exhibited various biological properties including anticancer and antioxidant activities (Ferruzzi & Blakeslee, 2007). The present study showed that the content of chlorophyl in dried *S. neglecta* was higher than in the hot water extract. This indicated that chlorophyl might not be the important antioxidant substances in *S. neglecta*. Further studies are needed to identify and determine polysaccharides and the other polar compounds of *S. neglecta* and their antioxidant activities.
Acknowledgements

This study was supported by grants from the National Research Council of Thailand (2010–2011) and the Endowment Fund for Medical Research, Faculty of Medicine, Chiang Mai University (2011–2012).

Conflict of interest statement

Authors declare no conflict of interest.

REFERENCES

Aebi H. (1984). Catalase in vitro. Methods Enzymol 105: 121–126.
Ak T, Gülçin L. (2008). Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact 174: 27–37.
Akerboom TP, Sies H. (1981). Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol 77: 373–382.
Carlb erg I, Mannervik B. (1983). Glutathione reductase assay. Methods Enzymol 113: 484–495.
Cornish ML, Gar bary DJ. (2010). Antioxidants from macroalgae: Potential applications in human health and nutrition. Algae 25: 155–171.
Craigie JS, Wen ZC. (1984). Effects of temperature and tissue age on gel strength and composition of agar from Gracilari a tikvahiae (Rhodophyceae). Can J Biol 62: 1665–1670.
Dubois M0, Gilles KA, Hamilton JK, Rebers PA, Smith F. (1956). Colorimetric method for determination of sugar and related substances, Anal Chem 28: 350–356.
Emmons CL, Peterson DM, Paul GL. (1999). Antioxidant capacity of oat (Avena sativa L.) extracts. 2. In vitro antioxidant activity and contents of phenolic and tocol antioxidants. J Agric Food Chem 47: 4894–4898.
Estrada JEP, Bescós PB, Fresno AMV, Estrada PJE. (2001). Antioxidant activity of different fractions of Spirulina platensis protein extract. Il Farmaco 56: 497–500.
Ferguson LR. (2001). Role of plant polyphenols in genomic stability. Mutat Res 475: 89–111.
Ferguson LR, Philpott M, Karunasinghe N. (2004). Dietary cancer and prevention using antimutagens. Toxicology 198: 147–159.
Ferrari CKB. (2004). Functional foods, herbs and nutraceuticals: towards biochemical mechanisms of healthy aging. Biogerontology 5: 275–289.
Ferruzzi MG, Blakeslee J. (2007). Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutr Res 27: 1–12.
Fuj iwar a Y. (2003). Plasma levels of thiobarbituric acid reactive substance (TBARS) of the employee with type 2 diabetes mellitus with multiple lacunar lesions. JOMT 51: 3–10.
Hussain MA, Salleh A, Milow P. (2009). Characterization of the adsorption of the Lead (II) by the nonliving biomass Spiru gyroa neglecta (Has sall) Kützing. Am J Biochem Biotech 8: 75–83.
Jiao G, Yu G, Zhang J, Ewart SE. (2011). Review of chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 9: 196–223.
John DM, Whi ton BA, Brook AJ. (2002). The freshwater algal flora of the British Isles. United Kingdom, University Press. Cambridge UK.
Kuda T, Kunii T, Goto H, Suzuki T, Yano T. (2007). Varieties of antioxidant and antibacterial properties of Ecklonia stolonifera and Ecklonia kurome products harvested and processed in the Noto peninsula, Japan. Food Chem 103: 900–905.
Lai led N, Pongchaidecha A, Amornlerdpison D, Peerapornpisal Y. (2009). Beneficial effects of Spiru gyroa neglecta extract on glycemic and lipemic status in streptozotocin-induced diabetic rats fed a diet enriched in fat. Ann Nutr Metab 55: 709–715.
Lee JKN, Min DB. (2004). Reactive oxygen species, aging, and antioxidative nutraceuticals. Comprehen Rev Food Sci Food Safety 3: 21–33.
Limón-Pacheco J, Gonse bett ME. (2009). The role of antioxidants and antiox ydant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat Res 674: 137–147.
Lordan S, Ross RP, Stanton C. (2011). Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Mar Drugs 9: 1056–1100.
Nag alakshi ni N, Prasad MM. (2001). Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci 160: 291–299.
Peerapornpisal Y, Panyoyai T, Amornlerdpison D. (2012). Antioxidant and anti-inflammatory activities of Spiru gyroa neglecta (Has sall) Kützing. KJKU Sci 40: 228–235.
Phinyo K, Khan ongruch C, Pekko h J, Pumas C, Peerapornpisal Y. (2012). Nutritional values and polysaccharides in Tao Spiru gyroa neglecta (Has sall) Küt zing) from Phare Province. Proceeding, The 2nd MU-Phrae National Research Conference: 50–56.
Proctor JTA. (1981). Staminal conductance changes in leaves of McIntosh apples before and after fruit removal. Can J Bot 59: 50–53.
Sapakal VD, Shikalgar TS, Ghadge RV, Adnaik RS, Naikwade NS, Magdum CS. (2008). In vivo screening of antioxidant profile: A review. J Herb Med Toxicol 2: 1–8.
Shibata T, Hama Y, Miyasaki T, Ito M, Nakamura T. (2006). Extracellular secretion of phenolic substances from living brown algae. J Appl Phycol 18: 787–794.
Song HF, Zhang QB, Zhang ZS, Wang J. (2010). The role of antioxidants and antioxi dant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat Res 674: 137–147.
Srivatsan VS, Ramprasad R, Cai DZ, Sundaram C, Das A, Anand S, Kandasamy K, Natarajan P, Manthiram A. (2008). Ficus racemosa Stem Bark Extract: A potent antioxidant and a probable natural radioprotector. Evid Based Complement Alternat Med 6: 317–324.
Sun Y, Oberley LW, Li Y. (1988). A simple method for clinical assay of superox ide dismutase. Clin Chem 34: 497–500.
Veerapur VP, Prabhakar KR, Pandi lkar VP, Ramakrishna S, Mishra B, Satish Rao SB, Srinivasan KK, Priyadasini KI and Unnikrishnan MK. (2009). Ficus racemosa Stem Bark Extract: A potent antioxidant and a probable natural radioprotector. Evid Based Complement Alternat Med 6: 317–324.
Yuan YY, Bone DE, Carrington MF. (2005). Antioxidant activity of dulse (Palma palmosil) extract evaluated in vitro. Food Chem 91: 485–494.
Zhang Q, Yu P, Li Z, Zhang H, Xu Z, Li P. (2003). Antioxidant activities of sulfated polysaccharide fractions from Porphyra haitanensis. J Appl Phyc 15: 305–310.