Joint hypermobility is a common but often poorly recognised connective tissue condition. Individuals with hypermobility are overrepresented among those with panic or anxiety disorders. Hypermobility is also linked to stress-sensitive psychosomatic disorders including irritable bowel syndrome, fibromyalgia and chronic fatigue and is associated with hypersensitivity to nociceptive stimuli. Additionally, individuals with hypermobility often exhibit autonomic abnormalities, typically postural tachycardia syndrome, where there is enhanced cardiovascular reactivity and a phenomenal overlap with anxiety disorders. Thus, direct and indirect evidence links hypermobility to anxiety and stress-sensitive medical disorders. Within a programme of research motivated to detail the theoretical contribution of central autonomic control to emotion regulation and psychiatric disorders, we performed a voxel-based morphometry (VBM) study of brain magnetic resonance imaging (MRI) scans in participants with and without hypermobility, none of whom had an anxiety disorder.

Method

High-resolution (0.9 mm isotropic voxels) structural brain MRI scans (192 sagittal slices, repetition time 11.4 ms, echo time 4.4 ms, inversion time 300 ms) were acquired using a Siemens Avanto 1.5 T scanner (Siemens, Erlangen, Germany) from 72 volunteers, free from clinical anxiety. The participants’ characteristics are shown in online Table DS1. Objective measures of hypermobility, anxiety and interoceptive sensitivity (subjective awareness of internal bodily physiological responses) were acquired using the Beighton scale, Beck Anxiety Inventory (BAI) and Porges Body Perception Questionnaire (PBPQ) respectively. Regional brain volumes were quantified using VBM incorporating diffeomorphic registration (DARTEL) within SPM8 (http://www.fil.ion.ucl.ac.uk/spm/). Voxel-wise comparisons of spatially normalised grey-matter volume maps of the hypermobile and non-hypermobile groups were performed within a general linear model treating age, gender, handedness and whole brain volume as potentially confounding covariates. Main effects of group, and group interactions with hypermobility score, were reported for all brain clusters of 10 contiguous voxels with significance threshold \(P < 0.001 \) uncorrected. Left and right amygdala were defined a priori regions of interest, using 8 mm spheres centred on coordinates \((-27, -1, -19)\) and \((-24, -2, -19)\), based on reported associations between amygdala and anxiety (see e.g. Hayano et al.).

Results

Thirty-six participants scored 1 or more on the Beighton scale (the hypermobile group). There was no significant group difference in age, gender or handedness. Bilateral amygdala volume was significantly greater in the hypermobile group than in the non-hypermobile group, meeting both uncorrected \(P < 0.001 \) and small-volume corrected FWE thresholds (right amygdala \(P = 0.014 \); left amygdala \(P = 0.021 \)) (Fig. 1, online Table DS2). Cohen’s \(d \) effect sizes were large for the amygdala bilaterally (left 0.80, right 0.85). Other group volumetric differences are reported in online Table DS2 and included regions within anterior cingulate and parietal cortices.

Within the hypermobile group, degree of hypermobility correlated positively with the volume of left lateral occipital cortex and negatively with right superior temporal cortex and bilateral inferior parietal cortices (online Fig. DS1, Table DS2). Interestingly, this group scored significantly higher for interoceptive sensitivity (mean PBPQ scores: non-hypermobile 88.4, s.d. = 31.0; hypermobile 104.3, s.d. = 32.2; \(t_{(170)} = 2.13, P = 0.018 \)) and showed a trend towards higher anxiety (non-hypermobile 6.47, s.d. = 7.0; hypermobile 9.31, s.d. = 9.7; \(t_{(170)} = 1.42, P = 0.08 \)). The relationship between hypermobility and interoceptive sensitivity persisted after controlling for anxiety differences \((P = 0.041) \). There was no significant group difference in resting heart rate, standard deviation of interbeat interval, or high (parasympathetic) or low (predominantly sympathetic) frequency components of heart rate variability.

Discussion

We observed structural differences in key emotion-processing brain regions. Notably, the effect size of this amygdala volume difference was comparable to, or greater than, observations from volumetric studies of clinical psychiatric populations. The hypermobile group also displayed decreased volume within other regions implicated in emotional arousal and attention (anterior cingulate, parietal lobe). Moreover, the degree of hypermobility

Summary

Joint hypermobility is overrepresented among people with anxiety and can be associated with abnormal autonomic reactivity. We tested for associations between regional cerebral grey matter and hypermobility in 72 healthy volunteers using voxel-based morphometry of structural brain scans. Strikingly, bilateral amygdala volume distinguished those with from those without hypermobility. The hypermobility group scored higher for interoceptive sensitivity yet were not significantly more anxious. Our findings specifically link hypermobility to the structural integrity of a brain centre implicated in normal and abnormal emotions and physiological responses. Our observations endorse hypermobility as a multisystem phenotype and suggest potential mechanisms mediating clinical vulnerability to neuropsychiatric symptoms.

Declaration of interest

None.

Brain structure and joint hypermobility: relevance to the expression of psychiatric symptoms

J. A. Eccles, F. D. C. Beacher, M. A. Gray, C. L. Jones, L. Minati, N. A. Harrison and H. D. Critchley
acceleration compensates for dysfunctional vasoconstriction tachycardia syndrome, which commonly occurs with hypermobility exaggerated cardiovascular arousal responses. Moreover, in postural group. Heightened interoceptive awareness is coupled to representation of internal bodily signals within the hypermobile interoceptive sensitivity also points to a more finely tuned sensory or basal physiology (no difference was observed in cardiovascular hypermobile group only trended toward higher anxiety scores) in brain structure were not due to overt psychopathology (the hypermobile group showed structural differences within anterior cingulate cortex, a central driver of autonomic arousal and a region implicated in the cognitive control of pain and negative emotions. Enhanced interoceptive sensitivity also points to a more finely tuned sensory representation of internal bodily signals within the hypermobile group. Heightened interoceptive awareness is coupled to exaggerated cardiovascular arousal responses. Moreover, in postural tachycardia syndrome, which commonly occurs with hypermobility (and may have a common basis in collagen variants), heart rate acceleration compensates for dysfunctional vasoconstriction giving rise to physiological symptoms (e.g. palpitations and light-headedness) that are shared with panic and anxiety states. Such deregulated responses are likely to affect neural processes supporting emotional feelings. Differences in the structural integrity of temporal and parietal cortices may underlie wider behavioural phenotypical expression of hypermobility: abnormalities in superior temporal cortex are also seen in autism. Inferior parietal cortex can affect proprioceptive awareness and hypermobility is itself linked to dyspraxia. Our findings suggest that processes compromising function in neuro-developmental conditions may occur in individuals with hypermobility, putatively enhancing vulnerability to stress and anxiety. Limitations to our study include the use of a non-clinical sample; interestingly, neuroimaging studies of clinical anxiety groups rarely report enlarged amygdala, suggesting that hypermobility is a distinct phenotype or that amygdala enlargement might be protective in our non-clinical group. Additionally, we used an inclusive definition of hypermobility, although the categorisation of this condition remains debatable. To conclude, we present the first neuroimaging study of hypermobility that also examines autonomic and interoceptive indices. The observed differences in the structural integrity of specific emotional brain regions provide a starting point for future research into constitutional vulnerabilities to common psychiatric symptoms that have the potential to inform more individually tailored therapeutic approaches.

Fig. 1 (a) Regions of grey-matter volume difference in hyper-mobile participants compared with the non-hypermobile group (white areas, threshold P < 0.001 uncorrected). (b) Significant group differences in right and left amygdala volumes.

Funding
This work was funded by a Wellcome Trust programme grant (no. 074803) to H.D.C. J.A.E is supported by the National Institute for Health Research and N.A.H. by the Wellcome Trust.

References
1. Grahame R. Hypermobility: an important but often neglected area within rheumatology. Nat Clin Pract Rheumatol 2008; 4: 522–4.
2. Garcia Campayo J, Asso E, Alida M, Andres EM, Sobradel N. Association between joint hypermobility syndrome and panic disorder: a case-control study. Psychosomatics 2010; 51: 55–61.
3. Mathias CI, Low DA, Iodice V, Owens AP, Kirbis M, Grahame R. Postural tachycardia syndrome – current experience and concepts. Nat Rev Neurol 2011; 8: 22–34.
4. Critchley HD. Psychophysiology of neural, cognitive and affective integration: fMRI and autonomic indicators. Int J Psychophysiol 2009; 73: 88–94.
5. Paulus MP, Stein MB. An insular view of anxiety. Biol Psychiatry 2006; 60: 383–7.
6. Beighton P, Solomon L, Soskolne CL. Articular mobility in an African population. Ann Rheum Dis 1973; 32: 413–8.
7. Beck AT, Epstein N, Brown G, Steer RA. An inventory for measuring clinical anxiety: psychometric properties. J Consult Clin Psychol 1988: 56: 893–7.
8. Porges S. Body Perception Questionnaire. Laboratory of Developmental Assessment, University of Maryland, 1993.
9. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage 2007; 38: 95–113.
10. Hayano F, Nakamura M, Asami T, Uehara K, Yoshida T, Roppongi T, et al. Smaller amygdala is associated with anxiety in patients with panic disorder. Psychiatr Clin Neuropsych 2009; 63: 266–76.
11. Boddaert N, Chabane N, Gervais H, Good CD, Bourgeois M, Plumet MH, et al. Superior temporal sulcus anatomical abnormalities in childhood autism: a voxel-based morphometry MRI study. Neuroimage 2004; 23: 364–9.
12. Tracey I, Bushnell MC. How neuroimaging studies have challenged us to rethink pain: is chronic pain a disease? J Pain 2009; 10: 1113–20.
13. Herbert BM, Pollatos O, Flor H, Eck P, Schandy R. Cardiac awareness and autonomic cardiac reactivity during emotional picture viewing and mental stress. Psychophysiology 2010; 47: 342–54.
14. Remvig L, Jensen DV, Ward RC. Are diagnostic criteria for general joint hypermobility and benign joint hypermobility syndrome based on reproducible and valid tests? A review of the literature. J Rheumatol 2007; 34: 798–803.
Brain Structure and joint hypermobility: relevance to the expression of psychiatric symptoms. Eccles et al, British Journal of Psychiatry

Fig. DS1 Scatter plots demonstrating grey matter volume correlations with degree of hypermobility (Beighton score) (a) Left lateral occipital volumes are positively correlated ($r^2 0.229$) with degree of hypermobility. Degree of hypermobility is negatively correlated with the volume of the following grey matter regions: (b) right superior temporal gyrus ($r^2 0.434$), (c) right inferior parietal lobe ($r^2 0.406$), (d) left inferior parietal lobe ($r^2 0.404$).
Table DS1 Characteristics of study subjects (n=72). There were no significant associations between hypermobility status age, sex or handedness.

	Overall	No hypermobility	Hypermobility			
	Range	Mean	Range	Mean	Range	Mean
Age	19 - 54	29.31	19-54	29.9	19 - 50	28.7
	n	%	n	%	n	%
Sex	Male	27	17	47.2%	10	27.8%
	Female	45	19	52.8%	26	72.2%
		37.5%	19	47.2%	10	27.8%
		62.5%	19	52.8%	26	72.2%
Handedness	Right	65	31	86.1%	34	94.4%
	Left	7	5	13.9%	2	5.6%
		90.3%	5	13.9%	2	5.6%
		9.7%				
Table DS2 Regional differences in grey matter volumes by hypermobility group and by correlation with degree of hypermobility (Beighton score). Statistical threshold p<0.001 uncorrected; extent threshold 10 contiguous voxels.

Region	Co-ordinates	Cluster size (# voxels)	Z Value of peak
Grey matter regions of group difference			
Hypermobile > non-hypermobile			
R Amygdala	22, -5, -20	1180	3.77
L Amygdala	-27, -6, -21	406	3.64
SMA	-6, -3, -61	234	3.68
Motor cortex	41, -14, 58	208	3.59
Non hypermobile> hypermobile			
R Anterior cingulate cortex	13, 33, 27	55	3.93
L Parietal cortex	-16, -53, 55	215	3.92
Grey matter regions correlated with Beighton score			
positive correlation			
L lateral occipital complex	-23, -85, 1	494	4.6
negative correlation			
R superior temporal gyrus	66, -6, 1	5008	5.16
R inferior parietal region	59, -33, 32	1424	4.27
L inferior parietal region	-46, -44, 45	1102	4.21
Brain structure and joint hypermobility: relevance to the expression of psychiatric symptoms
Jessica A. Eccles, Felix D. C. Beacher, Marcus A. Gray, Catherine L. Jones, Ludovico Minati, Neil A. Harrison and Hugo D. Critchley
BJP 2012, 200:508-509.
Access the most recent version at DOI: 10.1192/bjp.bp.111.092460

Supplementary Material
Supplementary material can be found at:
http://bjp.rcpsych.org/content/suppl/2012/04/16/bjp.bp.111.092460.DC1

References
This article cites 13 articles, 2 of which you can access for free at:
http://bjp.rcpsych.org/content/200/6/508#BIBL

Reprints/permissions
To obtain reprints or permission to reproduce material from this paper, please write to permissions@rcpsych.ac.uk

You can respond to this article at
/letters/submit/bjprcpsych;200/6/508

Downloaded from
http://bjp.rcpsych.org/ on August 16, 2017
Published by The Royal College of Psychiatrists

To subscribe to The British Journal of Psychiatry go to:
http://bjp.rcpsych.org/site/subscriptions/