SUPPLEMENTAL MATERIAL
Table S1. Adult rat cardiomyocyte isolation buffer composition.

10X KHB Stock Solution (Total volume= 1L)	Molarity (mM)	Amount (g)
NaCl	1180	68.9
KCl	48	3.5
HEPES	250	59.7
MgSO$_4$	12.5	1.4
K$_2$HPO$_4$	12.5	2.1
Adjust pH to 7.4 with 4M NaOH (~20mL), store at 4°C		

KHB Solution, 500 mL	Amount
10X KHB	50 mL
Glucose	0.99 g
Taurine	0.31 g
Add H$_2$O to bring volume to 500mL; pH should be ~7.35	

Solution A	Amount
KHB solution	375 mL (10 mM)
BDM	0.375 g
Oxygenate with 100% O$_2$ and warm to 37°C	

Solution B, 50mL	Amount
Solution A	50 mL
BSA	0.5 g
0.1 M CaCl$_2$ (Ca$^{++}$=0.1 mM)	50 µL

Solution E, 50mL	Amount
Solution A	50 mL
BSA	0.05 g
Collagenase type II (263 units/mg)	35 mg
Hyaluronidase (Type I-S)	10 mg
0.1 M CaCl$_2$ stock	12.5 µL
Mix well	

CaCl$_2$ Stock, 0.1M	Amount
CaCl$_2$	7.35 g
H$_2$O	500 mL
Then store at 4°C	
Table S2. siRNAs Sequences.

siRNA	Sequence
siRb1	CCAGUACCAAAGUUGAUATT
siMeis2	CCACGAUGAUGCAACCUCATT
Cel-miR-67	UCACAAACCUCUUAGAAAGGUAGA
Table S3. Homology analysis of siRb1 with rat genome.

Description	Max score	Total score	Query cover	E value	Ident	Accession
Rattus norvegicus retinoblastoma 1 (Rb1), mRNA	38.2	38.2	100%	0.006	100%	NM_017045.1
Rattus norvegicus mRNA for retinoblastoma protein, partial sequence	38.2	38.2	100%	0.006	100%	D25233.1
Rattus norvegicus Y Chr BAC RNECO-131C03 (Amplicon Express Rat SHR-Akr (EcoR1 Digest) BAC library) complete sequence	28.2	78.8	94%	5.4	100%	AC246525.4
Rattus norvegicus BAC CH230-6C14 () complete sequence	28.2	80.8	100%	5.4	100%	AC094946.6
Rattus norvegicus BAC CH230-12M22 () complete sequence	28.2	186	94%	5.4	100%	AC141398.4
Rattus norvegicus 2 BAC CH230-7P18 (Children's Hospital Oakland Research Institute) complete sequence	28.2	80.8	100%	5.4	100%	AC095504.7
Rattus norvegicus Y Chr BAC RNECO-145B11 (Amplicon Express Rat SHR-Akr (EcoR1 Digest) BAC library) complete sequence	28.2	54.5	73%	5.4	100%	AC240959.5
Rattus norvegicus TL0AE76YE18 mRNA sequence	28.2	28.2	73%	5.4	100%	FQ231233.1
Rattus norvegicus TL0ACA17YL01 mRNA sequence	28.2	28.2	73%	5.4	100%	FQ217794.1
Rattus norvegicus TL0ADA42YK07 mRNA sequence	28.2	28.2	73%	5.4	100%	FQ220503.1

Homology analysis of siRb1 with rat genome: Table represents the significance base top 10 homology results, which demonstrates the specific and 100% identity of siRb1 with rat Rb1 gene with a significant p-value ($p=0.002$).
Table S4. Homology analysis of siMeis2 with rat genome.

Description	Max score	Total score	Query cover	E value	Ident	Accession
PREDICTED: Rattus norvegicus Meis homeobox 2 (Meis2), transcript variant X13, mRNA	38.2	38.2	100%	0.007	100%	XM_006234755.3
PREDICTED: Rattus norvegicus Meis homeobox 2 (Meis2), transcript variant X12, mRNA	38.2	38.2	100%	0.007	100%	XM_006234754.3
PREDICTED: Rattus norvegicus Meis homeobox 2 (Meis2), transcript variant X11, mRNA	38.2	38.2	100%	0.007	100%	XM_006234753.3
PREDICTED: Rattus norvegicus Meis homeobox 2 (Meis2), transcript variant X10, mRNA	38.2	38.2	100%	0.007	100%	XM_006234752.3
PREDICTED: Rattus norvegicus Meis homeobox 2 (Meis2), transcript variant X9, mRNA	38.2	38.2	100%	0.007	100%	XM_006234751.3
PREDICTED: Rattus norvegicus Meis homeobox 2 (Meis2), transcript variant X8, mRNA	38.2	38.2	100%	0.007	100%	XM_006234750.3
PREDICTED: Rattus norvegicus Meis homeobox 2 (Meis2), transcript variant X7, mRNA	38.2	38.2	100%	0.007	100%	XM_006234749.3
PREDICTED: Rattus norvegicus Meis homeobox 2 (Meis2), transcript variant X6, mRNA	38.2	38.2	100%	0.007	100%	XM_006234748.3
PREDICTED: Rattus norvegicus Meis homeobox 2 (Meis2), transcript variant X5, mRNA	38.2	38.2	100%	0.007	100%	XM_006234747.3
Homology analysis of siMeis2 with rat genome

Table represents the significance base top 17 homology results, which demonstrates the specific and 100% query coverage of siMeis2 with rat Meis2 gene (variants) with a significant p-value ($p=0.002$).

Predicted Gene	Alignment Score	Coverage	p-value	100% Query Coverage	Accession
PREDICTED: Rattus norvegicus Meis homeobox 2 (Meis2), transcript variant X4, mRNA	38.2	100%	0.007	100%	XM_006234746.3
PREDICTED: Rattus norvegicus Meis homeobox 2 (Meis2), transcript variant X3, mRNA	38.2	100%	0.007	100%	XM_006234745.3
PREDICTED: Rattus norvegicus Meis homeobox 2 (Meis2), transcript variant X2, mRNA	38.2	100%	0.007	100%	XM_006234744.3
PREDICTED: Rattus norvegicus Meis homeobox 2 (Meis2), transcript variant X1, mRNA	38.2	100%	0.007	100%	XM_006234743.3
Rattus norvegicus Meis homeobox 2 (Meis2), mRNA	38.2	100%	0.007	100%	NM_001107758.1
Rattus norvegicus serine/arginine repetitive matrix 2 (Srrm2), mRNA	28.2	73%	7.1	100%	NM_001277154.1
PREDICTED: Rattus norvegicus cytidine monophospho-N-acetylneuraminic acid hydroxylase (Cmah), transcript variant X7, mRNA	26.3	68%	28	100%	XM_017600609.1
PREDICTED: Rattus norvegicus cytidine monophospho-N-acetylneuraminic acid hydroxylase (Cmah), transcript variant X6, misc_RNA	26.3	68%	28	100%	XR_001841737.1
Table S5. List of antibodies used in the study.

Antibody	Catalog #	Company
Rabbit anti-β-actin	A1978	Sigma-Aldrich
Rabbit anti-GAPDH	G9545	Sigma-Aldrich
Rabbit anti-aurora B	A5102	Sigma-Aldrich
Mouse anti- cardiac troponin-T	MA5-12960	Thermo Scientific
Rabbit-anti-Rb1	10048-2-Ig	Proteintech
Rabbit anti-cardiac troponin-I	sc-15368	Santa Cruz Biotechnology
Goat-anti-Meis1/2	Sc-10599	Santa Cruz Biotechnology
Rabbit anti-VEGF	sc-152	Santa Cruz Biotechnology
Rabbit-anti-Bax	2772S	Cell Signaling Technology
Rabbit anti-β-catenin	9562S	Cell Signaling Technology
Rabbit anti-p16	ab51243	Abcam
Mouse-anti-Histone H3	Ab6002	Abcam
Mouse anti-Ki67	550609	BD Pharmingen
ECL anti-mouse-HRP	NA931V	GE Healthcare
ECL anti-rabbit-HRP	NA9340V	GE Healthcare
Goat anti-mouse Alexa fluor 488	A11029	Life Technologies
Goat anti-mouse Alexa fluor 594	A11005	Life Technologies
Goat anti-rabbit Alexa fluor 488	A11008	Life Technologies
Goat anti-rabbit Alexa fluor 594	A11037	Life Technologies
Table S6. RT PCR primer sequences.

Gene	5’ to 3’
Rb1	Forward: GTCTGCCAACAACCCACAAACAA
Rb1	Reverse: ATCCTTCGATGTCAAAGCGC
Meis2	Forward: TGATAACTTCTGCCACCGGT
Meis2	Reverse: GGTGGCATCATCGTGGTCTC
Aurora B	Forward: CAGGGAGAGCTGAAGATTGC
Aurora B	Reverse: ACTGTGGCTAGGGCTCTCAA
Cyclin D1	Forward: CCTGGACCGTTTCTTGTC
Cyclin D1	Reverse: CCATTGAGCCTGTTTACCA
E2F2	Forward: GGCAGACAGTCTACCAAGG
E2F2	Reverse: CAAGGGGACAAGGGATGGTG
E2F3	Forward: CGAGAGTGCCATCAGTACC
E2F3	Reverse: ACTCTTGGTGAGCAGACCG
VEGF	Forward: CTCTCTCCGAGTGACGGT
VEGF	Reverse: CTCTCTCCGAGTGACGGT
IL6	Forward: CCCTCTCCTCCTCAGTACCA
IL6	Reverse: TCTGACAGTGATCATCGCT
β-actin	Forward: ACCCTAAGGCCAACCGTGAAA
β-actin	Reverse: GTAGCAGAGGCTACAGG
A day wise analysis demonstrates the 59.58±2.38% ACM survival on day 7 after the Lipofectamine 2000 treatment. N= 3 rats, n= 6 experimental replicates each.
Figure S2. Transfection efficacy.

Representative immunostaining images following Dy546 labeled siRNA-cel-67 transfection of ACM. 69.12% of ACMs were positive for Dy546-siR-cel-67 at 24hrs following transfection, whereas, 34.10% ACM were positive for Dy546-siR-cel-67 on day 7. Panels in white rectangles represent respective enlarged sections. Bar graph represents the percent of ACM, transfected with Dy546-siR-cel-67. N= 3 rats, n= 4 experimental replicates each, and n= 3 images each. DAPI= 4′,6-diamidino-2-phenylindole. Scale bar=200 µm.
Figure S3. Transfection efficacy following siUbc transfection.

Representative bright field images at different time points for siUbc transfection of ACMs. Bar graph represents the percent of live ACM, after siUbc transfection at different time points. Only 20% ACMs survive at 72hrs post siUbc transfection. *= p-value ≤0.05. P value ≤0.05 was considered statistically significant. N= 6 rats, n= 8 experimental replicates each, and n= 10 images each. Scale bar=200 µm.
Figure S4. Simultaneous inhibition of Rb1 and Meis2 is necessary for ACM proliferation.

(a) Quantification of DNA synthesis marker, EdU incorporated ACMs on Day 6 after siRNA transfection as depicted. siRNA-cocktail transfection shows superior induction of ACM proliferation compared to the individual Rb1 or Meis2 knockdown approach. (b) Quantification of EdU incorporated ACMs transfected with all combinations of three independent sets of siRNAs against each Rb1 and Meis2. Rb1(V1)+Meis2(V1) is referred to as “siRNA-cocktail” in this manuscript gave the highest amount of induced ACM proliferation. All the experiments were performed using ACM, isolated from rats (~12 weeks old). N= 3 rats, n= 6 experimental replicates each. EdU= 5-ethynyl-2'-deoxyuridine, V= version. *=p value ≤0.05; #= p value=0.054; $=p value >0.05.
Figure S5. Nucleation analysis of ACM.

Time course nucleation analysis reveals the state of nuclei in ACM during the course of experiments. It further demonstrates (a) significant increase in number of mono-nuclear ACM, and (b) significant decrease in number of bi-nucleated ACM in siRNA-cocktail transfected group on and after day 6 when compared to control, whereas we did not find any difference in number of multi-nucleated ACM between siRb1+siMeis2 transfected group and control (c). N= 3 rats and n= 8 experimental replicates. *= p-value ≤0.05. P value ≤0.05 was considered statistically significant.
Figure S6. Time course of ACM proliferation upon simultaneous inhibition of *Rb1* and *Meis2*.

(a,b) Immunostaining shows induction of ACM proliferation on Day 6 after siRNA-cocktail transfection. ACMs were marked by Troponin (green), DNA synthesis was marked by EdU (red), whereas, nuclei were marked by DAPI (blue). All the experiments were performed using ACM, isolated from rats (~12 weeks old). N= 3 rats, n= 8 experimental replicates each, and n= 10 images each. Scale bar=100 µm. EdU= 5-ethynyl-2’-deoxyuridine. * = p-value ≤0.05. *P* value ≤0.05 was considered statistically significant.
Figure S7. Simultaneous inhibition of Rb1 and Meis2 leads to ACM cell cycle progression.

Immunostaining shows co-localization of cardiac-specific nuclear marker Nkx2.5 and EdU in ACM in the siRNA-cocktail treated group. 26.05±1.28% of ACM were positive for both, EdU as well as Nkx2.5 in siRNA-cocktail transfected groups. White arrows indicate the co-localization of EdU with Nkx2.5 in mono-nucleated ACM. Yellow arrows indicate the ACM with Nkx2.5 without EdU. Arrowheads are indicating the EdU positive noncardiomyocytes, which are not showing the Nkx2.5. N= 3 rats and n= 5 experimental replicates each. TnI= Troponin I, EdU= 5-ethynyl-2’-deoxyuridine, DAPI= 4’,6-diamidino-2-phenylindole, NKx2.5= NK2 Homeobox 5. Scale bar=100 µm.
Figure S8. Simultaneous inhibition of *Rb1* and *Meis2* leads to ACM mitosis.

Immunostaining shows co-localization of mitosis marker (PH3; red) and DNA synthesis marker (EdU; far red) in TnI labeled ACMs from the siRNA- cocktail transfected groups. Arrows indicate the co-localization of Edu and PH3 in mono-nucleated ACM, whereas, the arrowhead indicates the bi-nucleated ACM, which shows EdU but not the PH3. N= 3 rats and n= 6 experimental replicates each. TnI= Troponin I, EdU= 5-ethyl-2'-deoxyuridine, DAPI= 4',6-diamidino-2-phenylindole, PH3= phosphor histone 3. Scale bar=100 µm.
Figure S9. Simultaneous inhibition of Rb1 and Meis2 improves ACM survivability.

(a,b) Immunostaining shows a significantly lower TUNEL positive ACMs after day 3 in the siRNA-cocktail transfected group when compared to control. ACMs were marked by Troponin (green), cell survivability was analyzed through TUNEL assay (red), whereas, nuclei were marked by DAPI (blue). Arrows indicate the TUNEL $^+$ ACMs. Panels in white rectangles represent respective enlarged sections. (c) Immunoblot for apoptotic marker Bax from the cell lysate of ACMs, per depicted groups. (d) The densitometric analysis shows a significant downregulation in Bax expression in the siRNA-cocktail transfected group compared to control. (e) TUNEL assay for Individual Rb1 or Meis2 knockdowns compared to siRNA-cocktail. All the experiments were performed in triplicate using ACMs, isolated from rat (~12 weeks old). N= 3 rats, n= 3 experimental replicates each, and n= 10 images each. TnI= Troponin I, TUNEL= Terminal deoxynucleotidyl transferase dUTP nick end labeling, DAPI= 4',6-diamidino-2-phenylindole. Scale bar=100 µm *= p-value ≤0.05. P value ≤0.05 was considered statistically significant.
Figure S10. Expression analysis of cell cycle associated genes in ACMs after simultaneous inhibition of \textit{Rb1} and \textit{Meis2}.

(a) RT-PCR expression analysis is showing a significant increase in the expression of E2F2, E2F3, Cyclin D1, and Aurora B; whereas, \textit{Rb1}, \textit{Meis2}, and IL6 are down-regulated in the siRNA-cocktail transfected group when compared to control. (b) Representative immunoblots for β-catenin and p16 expression. Immunoblotting was performed with cell lysate from ACMs, transfected with siRNA-cocktail and control. (c,d) Densitometric analysis showed regulation in the expression of cell cycle regulators in the siRNA-cocktail transfected group in comparison to control. All the experiments were performed in triplicate using ACMs, isolated from adult rats (~12 weeks old). N= 3 rats, n= 3 experimental replicates each, and n= 10 images each. Results are presented as mean±SEM; * = \(p\)-value ≤0.05. \(P\) value ≤0.05 was considered statistically significant.
Figure S11. Improved ACMs survivability after hydrogel mediated delivery of \textit{siRb1} and \textit{siMeis2} in adult animals post-MI.

(a,b) Immunostaining images are showing a significant decrease in TUNEL positive ACMs in the siRNA-cocktail treated group versus controls. Panels in yellow rectangles represent respective enlarged sections. N= 4 rats per group, n= 5 non-serial sections were imaged each, and n= 5 separate regions quantified each. Scale bar=50 µm. WGA= Wheat germ agglutinin, TUNEL= Terminal deoxynucleotidyl transferase dUTP nick end labeling, DAPI= 4',6-diamidino-2-phenylindole. Results are presented as mean±SEM; * = \textit{p}-value ≤0.05. \textit{P} value ≤0.05 was considered statistically significant.
Figure S12. Expression of cell cycle associated genes after hydrogel mediated delivery of siRb1 and siMeis2 in adult animals post-MI.

(a,b) RT-PCR analysis shows an increased expression of E2F2, E2F3, Aurora B, and VEGF; whereas, Rb1, Meis2, and IL6 are down-regulated in the siRNA-cocktail group compared to controls. RT-PCR was performed with total RNA isolated from heart tissues of adult rats from different groups (~12 weeks old). N= 4 rats per group and n= 6 experimental replicates each. Expression analysis was performed on day 21 after MI. Results are presented as mean±SEM; * = p-value ≤0.05. P value ≤0.05 was considered statistically significant.
Figure S13. Western blot analysis of cell cycle associated genes after hydrogel mediated delivery of siRb1 and siMeis2 in adult animals post-MI.

(a) Representative immunoblots for Rb1, Meis2, p16, and VEGF. Immunoblotting was performed using tissue lysates, from heart tissues of adult rats from different groups (~12 weeks old, N= 4 rats per group, and n= 3 experimental replicates each). (b,c) Densitometry analysis showed differential expression of proteins among the three groups. N= 3 rats per group and n= 3 experimental replicates each. Expression analysis was performed on day 21 after MI. Results are presented as mean±SEM; * = p-value ≤0.05. P value ≤0.05 was considered statistically significant.
Figure S14. Effects of *siRb1* and *siMeis2* knockdown on Endothelial and Fibroblast cells.

(a) Quantification of antibody labeling against a cellular marker for proliferation, Ki67, within cardiac fibroblasts showing no difference of increased proliferation on Day 6 after siRNA transfection as depicted. (b,c) Similar results were obtained when using either isolated cardiac endothelial cells (b) or HUVEC cells (c). (d) siRNA-cocktail transfection of NRCMs results in an enhancement of endogenous proliferation rate, showing a selective effect of Rb1 and Meis2 on the control of ACM senescence. N= 6 rats, n= 8 experimental replicates each. HUVEC= Human Umbilical Vein Endothelial Cells. *= p-value ≤0.05.
Figure S15. Cardiac function analysis at baseline with hydrogel injection.

Bar graph shows no significant difference in ejection fraction, fractional shortening, and cardiac output between the hydrogel alone intramyocardial injected group and the PBS injected control group at day 21. N= 6 rats per group. EF= ejection fraction, FS= fractional shortening, CO= cardiac output. #= p-value ≥0.05. P value ≤0.05 was considered statistically significant. EF; ejection fraction: FS; fractional shortening: CO; and cardiac output.
Figure S16. Cardiac function analysis with strain echocardiography after injury.

(a) A schematics overview of six segments of the myocardial wall, highlighting the segments, anticipated to be at the infarcted area. (b) Representative echocardiographic image for radial and longitudinal strain after MI in hydrogel-siRNA-cocktail treated groups. (c) The bar graph shows a significantly improved Radial velocity in hydrogel-siRNA-cocktail treated groups versus controls at day 21 post-MI. N= 6 rats per group. NT= no treatment. *= p-value ≤0.05. P value ≤0.05 was considered statistically significant.
Figure S17. Real-time imaging of proliferating ACMs after \textit{Rb1} and \textit{Meis2} knockdown.

Bright field images captured with live cell imaging with Incucyte® Live Cell Analysis System. Each row shows a cytokinesis event captured between days 3 and 6 post siRNA-cocktail transfection. Red arrows are showing the appearance of dividing ACMs. Yellow arrowheads are pointing at a non-dividing cell. \(N=3\) rats, \(n=8\) experimental replicates each (~12 weeks old). Scale bars=200 µm.
Figure S18. Homology analysis of siRb1 with rat genome.

(a) Homology alignment for siRb1 with rat genome (b) demonstrate the specific binding of siRNA with rat Rb1 gene.
Figure S19. Homology analysis of siMeis2 with rat genome.

(a) Homology alignment for siMeis2 with rat genome (b) demonstrate the specific binding of siRNA with rat Meis2 gene.
Supplemental Video Legend:

Video S1. Live cell video of a beating ACM on day 7. ACMs retain their physiological characteristics up until day 7, as shown by beating ACM. N= 3 rats. Best viewed with Windows Media Player.