Output feedback sliding mode control based on adaptive sliding mode disturbance observer

Chen Yunjun¹,², Jiang Chao¹,², Dong Jiuzhi³ and Zhao Zhanshan⁴

Abstract
In this paper, an adaptive sliding mode disturbance observer is designed to counteract the disturbance actively. By designing the adaptive laws, the assumptions on the disturbance are relaxed in the proposed observer, its first derivative upper bound is considered to be unknown. Based on the proposed disturbance observer, an output feedback sliding mode controller is constructed for the continuous-time linear systems with unknown external disturbance. The proposed controller incorporates only the system output information and has less chattering of the control input. The feasibility of the proposed strategy is shown by numerical simulations.

Keywords
Output feedback control, sliding mode disturbance observer, adaptive control, dynamic sliding surface

Date received: 13 November 2021; accepted: 26 June 2022

Sliding mode control (SMC) has attracted the attention of many researchers because of its robustness to disturbances and design simplicity.¹⁻⁴ In the area of SMC systems, many of the theoretical developments assume that the system state vector is available.⁵⁻⁷ In most practical situations, it is unrealistic or prohibitively expensive to measure the full state information, and only the output information can be physically measured.⁸⁻¹⁰ Generally, there are static and dynamic output feedback SMC strategies to work around this limitation.¹¹ The static output feedback SMC design problem is studied for a delay system.¹² Song et al.¹³ address the static output-feedback sliding mode control (SMC) problem for a class of uncertain control systems. In order to improve the control performance of static output feedback SMC, the dynamic output feedback SMC can be designed with a compensator. The additional integral term is introduced in the sliding surface, which can provide one more degree of freedom.¹⁴ An asynchronous output feedback sliding controller is proposed for a class of Markovian jump systems.¹⁵ In the aforementioned results for output feedback SMC, the disturbance rejection problem is ignored, which leads to the chattering phenomenon in the system.

Recently, the observer-based method is utilized to eliminate disturbance and reduce chattering.¹⁶,¹⁷ Su et al.¹⁸ present a disturbance observer where the bounds on disturbance derivative are assumed to be known. A new form of the combined observer-controller is designed to provide estimated data of unknown disturbance and unmeasured states in the control law.¹⁹ Lee²⁰ proposed a composite control technique by combining a nonlinear disturbance observer. A fixed-time observer has been put forward, which possessed a better approximation to external disturbances.²¹ However, in the above works the disturbance observer was considered with the assumption of the known maximum upper bound of disturbance. In some practical applications, it is difficult to acquire the disturbance upper bound directly, especially combined with the sliding mode algorithm, too large upper bound will aggravate the chattering phenomenon of the system, and too small upper bound will lead to the instability of the system.

¹Tanjin Key Laboratory of Intelligent Control of Electrical Equipment, Tianjng University, Tianjin, China
²School of Control Science and Engineering, Tiangong University, Tianjin, China
³School of Mechanical Engineering, Tianjng University, Tianjin, China
⁴School of Computer Science and Technology, Tianqng University, Tianjin, China

Corresponding author:
Chen Yunjun, Tanjin Key Laboratory of Intelligent Control of Electrical Equipment, School of Control Science and Engineering, Tianjng University, 399 Binshuixi Road, Tianjin 300387, China.
Email: chenyj309@126.com
The sliding mode disturbance observer with adaptive control is proposed to relax the restriction on disturbance. The adaptive control is introduced in the sliding mode disturbance observer that use the adaptive method to ensure the control gain is as small as possible whereas sufficient to eliminate the disturbances or uncertainties.22 Negrete-Chávez and Moreno23 develop an adaptive second-order SMC to interference disturbances. An adaptive scheme based on equivalent control input,24 inverted pendulum on a cart model. The proposed control approaches is illustrated by an example.

When matched uncertainty alone is present, it is sufficient to consider the nominal linear system representation when designing the switching function. The sliding motion depends on the choice of the sliding surface, the precise effect is not readily apparent. Therefore, we need to transform the system into a suitable regular form.

Assume $\text{rank}(CB) = \text{rank}(B) = m$, thus, there exists a non-singular matrix $T \in \mathbb{R}^{n \times n}$ such that $TB = [0 \ B_2]^T$, $CT^{-1} = [0_{q \times (n-q)} \ C_2]$ ($C_2 \in \mathbb{R}^{q \times q}$). Partition T as follows

$$
T = \begin{bmatrix}
T_1 \\
T_2
\end{bmatrix} \begin{bmatrix}
\begin{array}{c}
m1 \\
\vdots \\
m3
\end{array}
\end{bmatrix}, \quad T_1 = \begin{bmatrix}
T_{11} \\
T_{12} \\
T_{13}
\end{bmatrix} \begin{bmatrix}
m1 \\
m2 \\
m3
\end{bmatrix},
$$

where $m_1 \geq 0$, $m_2 \geq 0$, $m_3 \geq 0$, and $m_1 + m_2 + m_3 = n - m$.

Under the coordinate transformation $\bar{x}(t) = Tx(t)$, system (1) is transformed into the following regular form

$$
\dot{\bar{x}}(t) = A\bar{x}(t) + B[u(t) + d(t)] \quad (2)
$$

$$
y(t) = C\bar{x}(t) \quad (3)
$$

where $\bar{x}(t) = \begin{bmatrix}
\bar{x}_1(t) \\
\bar{x}_2(t)
\end{bmatrix}$, $A = TAT^{-1} = \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}$, $B = TB = [0 \ B_2]^T$, $C = CT^{-1} = [0_{q \times (n-q)} \ C_2]$, $\bar{x}_1(t) \in \mathbb{R}^{n-m}$, $\bar{x}_2(t) \in \mathbb{R}^{m}$, $B_2 \in \mathbb{R}^{m \times m}$ and $C_2 \in \mathbb{R}^{q \times q}$. Let $C_1 = [0_{(q-m) \times (n-q)} \ I_{q-m}]$, substituting A, B and C into (2) and (3), then system (1) is further written as

$$
\dot{\bar{x}}_1(t) = A_{11}\bar{x}_1(t) + A_{12}\bar{x}_2(t) \quad (4)
$$

$$
\dot{\bar{x}}_2(t) = A_{21}\bar{x}_1(t) + A_{22}\bar{x}_2(t) + B_2[u(t) + d(t)] \quad (5)
$$

$$
y(t) = C_2 \begin{bmatrix}
C_1\bar{x}_1(t) \\
\bar{x}_2(t)
\end{bmatrix} \quad (6)
$$

\textbf{Proposed method}

\textbf{Design of dynamic sliding surface}

The dynamic sliding surface is designed as

$$
s(t) = [-w_1, I_m]C_2^{-1}y(t) + w_3\nu(t) \quad (7)
$$

An additional integral term $\nu(t)$ is introduced in the sliding surface, which can provide one more degree of freedom. $\nu(t)$ is defined as follows

$$
\nu(t) = \int_0^t e^{\nu(t-s)}[w_2, \Phi]\Phi^{-1}y(s)ds \quad (8)
$$

and $w_1 \in \mathbb{R}^{n \times (q-m)}$, $w_2 \in \mathbb{R}^{(n-m) \times (q-m)}$, $w_3 \in \mathbb{R}^{(n-m) \times (n-m)}$ are the sliding surface

\textbf{Preliminaries}

Consider the following linear system with matched external disturbance

$$
\dot{x}(t) = Ax(t) + Bu(t) + d(t)
$$

$$
y(t) =Cx(t) \quad (1)
$$

where $x(t) \in \mathbb{R}^n$ is the state vector, $u(t) \in \mathbb{R}^m$ is the control input, $y(t) \in \mathbb{R}^q$ is the output vector, and $m \leq q < n$. $d(t)$ is the unknown disturbance. $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{q \times n}$ are given constant matrices.
The derivative with respect to (8)

\[\dot{v}(t) = w_3 \int_0^{w_3} e^{w_3(x-x)} [\Phi] \dot{C}_2^{-1} \dot{y}(t) dx + [w_2, \Phi] \dot{C}_2^{-1} \dot{y}(t) \]

where \(I \) is identity matrix. Hence, we have \(F_2 = G_x^{-1}(I - G_1 F_1) \). Define \(F_3 = -F_2 G_x^{-1} G_1 = F_2 (I - G_1^{-1})^{-1} F_2^T \). Applying Schur complement on (16) obtain \(F_1 - G_1^{-1} > 0 \), then

\[
F = H_2 H_1^{-1} =
\begin{bmatrix}
F_1 & I \\
F_2 & 0
\end{bmatrix}
\begin{bmatrix}
I & G_1 \\
0 & G_2^T
\end{bmatrix}
\]

\[
=
\begin{bmatrix}
F_1 & (I - G_1) G_2^T \\
F_2 & -F_2 G_x^{-1} G_1
\end{bmatrix}
\]

\[
=
\begin{bmatrix}
F_1 & F_2^T \\
F_2 & F_3
\end{bmatrix}
> 0
\]

hence exist a positive definite symmetric matrix \(F > 0 \) such that

\[
H_1^T Q H_1^{-1} = A^T H_2 H_1^{-1} + H_1^T H_2 A
\]

\[
= A^T F + FA
\]

\[
< 0
\]

The new sliding motion (14) is asymptotically stable. □

Design of sliding mode controller

In this subsection, the control method based on output feedback sliding mode with power term is proposed.

Define the generalized inverse matrix of \(C_1 \) is \(C_1^* \) and \(\zeta_1 = \text{null}(C_1) \) satisfying that \(\zeta_1 C_1^* = 0 \), generalized inverse matrix of \(\zeta_1 \) is \(\zeta_1^* \), then equation \(C_1^* C_1 + \zeta_1^* \zeta_1 = I_{n-m} \) holds. Since \(A \) is Hurwitz matrix, then exist \(\xi > 0 \) and \(P > 0 \) subject to

\[
A^T P + PA + 2\xi P < 0
\]

Denote \(\xi \) as the largest positive scalar such that (17) is feasible. Utilize Cholesky factorization for \(P \) to get

\[
P = P_1 \Theta^T =
\begin{bmatrix}
P_{11} & 0 \\
P_{21} & P_{22}
\end{bmatrix}
\begin{bmatrix}
P_{11} & 0 \\
P_{21} & P_{22}
\end{bmatrix}^T.
\]

Remark 1. Inequality (17) holds which can be explained as follows:

Consider the Lyapunov function for the new sliding motion (14): \(V = x^T P x \)

\[
\dot{V} = x^T P Ax + x^T A^T P x
\]

\[
= x^T (PA + A^T P) x
\]

\[
\leq (PA + A^T P) x^2
\]

Since \(A \) is Hurwitz matrix and \(P > 0, \xi > 0 \), hence \(\dot{V} < 0, PA + A^T P < 0 \). There exists \(\xi > 0 \) for \((PA + A^T P) + 2\xi P < 0 \) holds.
Proposition 2. Define \(\tau > 0, \varrho > 0, k_1 + k_2 > 1 \)

\[\text{comma h}_1 > 1, 1 > h_2 > 0, \] then the following output feedback sliding mode controller is proposed:

\[
\dot{u}(t) = -B_2^{-1}[\varpi(t) + \varphi_1(t)(k_1, \text{sgn}^n)(s(t)) + k_2 \text{sgn}^n(s(t))] + w_4w_3v(t) - (A_{23} - w_1C_1A_{11})C_1^T \varphi_2(t) + w_4\Phi \hat{x}_2(t) - \hat{d} \\
+ (A_{23} - w_1C_1A_{11})C_1^T \varphi_2(t) + w_4\Phi \hat{x}_2(t) - \hat{d} \\
+ (A_{22} - w_1C_1A_{12} + w_4\Phi) \hat{x}_2(t) - \hat{d}
\]

(18)

where \(\varphi_1(t) = \psi_0(\dot{\vartheta}_1(t) + q) \) and \(\psi_0 = \|A_{23} - w_1C_1A_{11})C_1^T \| \). \(\dot{\vartheta}_1(t) \) can be obtained through \(\dot{\vartheta}_1(t) = -\xi \dot{\vartheta}_1(t) + e_1 \|s(t)\| \), coefficient \(e_1 = \|P_1^T\Phi\| \) and \(\Phi = [A_{12} \; \Phi]^T \). \(\hat{d} \) is the estimation of the disturbance. Then, the system (2) – (3) can reach the sliding surface.

Proof. The first derivative of the sliding mode surface is given as

\[
\dot{s}(t) = \dot{\hat{x}}_2(t) - w_1C_1\hat{x}_1(t) + w_4\varphi(t) \\
= A_{23}\hat{x}_1(t) + A_{22}\hat{x}_2(t) + B_2[u(t) + d(t)] + w_1C_1[A_{11}\hat{x}_1(t) + A_{12}\hat{x}_2(t)] + w_4[\varphi(t) + W_2C_1\hat{x}_1(t)] \\
[(A_{23} - w_1C_1A_{11})\hat{x}_1(t) + w_4w_2C_1\hat{x}_1(t)] \\
(A_{22} - w_1C_1A_{12} + w_4\Phi) \hat{x}_2(t) + w_4w_3v(t) + B_2[u(t) + d(t)]
\]

(19)

In order to prove that \(s(t) \) can converge to 0, define the Lyapunov function \(V_s(t) = \frac{1}{2}s^T(t)s(t) \), its derivative can be determined and substituted (19) into \(\dot{V}_s(t) \) as

\[
\dot{V}_s(t) = \dot{s}^T(t)[(A_{23} - w_1C_1A_{11})\hat{x}_1(t) + w_4w_2C_1\hat{x}_1(t)] \\
(A_{22} - w_1C_1A_{12} + w_4\Phi) \hat{x}_2(t) + w_4w_3v(t) + B_2[u(t) + d(t)] \\
= s^T(t)[(A_{23} - w_1C_1A_{11})C_1^T \varphi_2(t) + w_4w_2C_1\hat{x}_1(t)] \\
(A_{22} - w_1C_1A_{12} + w_4\Phi) \hat{x}_2(t) + w_4w_3v(t) + B_2[u(t) + d(t)] \\
= -\tau \|s(t)\|^2 + \|\varphi(t)\|^2 - (k_1 + k_2)\psi(t) \\
+ s^T(t)B_2(d(t) - k_2 \text{sgn}(B_2^T s(t))) \\
\leq -\tau \|s(t)\|^2 + \chi(t) \|s(t)\| + (d(t) - \hat{d}) \|B_2^T s(t)\|
\]

(20)

Substituting (18) into (20), one obtains

\[
\dot{V}_s(t) \leq -\tau \|s(t)\|^2 - \psi_0((k_1 + k_2)\|s(t)\| \\
+ \psi_0(s(t))\|P_{11}^T \hat{x}_1(t) + P_{21}^T \varphi(t)\| \\
+ s^T(t)B_2(d(t) - k_2 \text{sgn}(B_2^T s(t))) \\
\leq -\tau \|s(t)\|^2 + \chi(t) \|s(t)\| + (d(t) - \hat{d}) \|B_2^T s(t)\|
\]

(21)

where \(\chi(t) = \psi_0 \|P_{11}^T \hat{x}_1(t) + P_{21}^T \varphi(t)\| - (k_1 + k_2)\psi(t) \). Obviously, \(-\tau \|s(t)\|^2 < 0, \) and assume \(d - \hat{d} = 0 \) holds. In order to ensure that \(V_s(t) < 0 \) holds, we need to discuss the positive and negative of \(\chi(t) \).

Substituting (10) into (4) and (9) yields \(\dot{V}(t) = AX(t) + \Phi_s(t) \). Define new Lyapunov function \(V_s(t) = \sqrt{X^T(t)PX(t)}, \) and derivative of \(V_s \) as follows

\[
\dot{V}_s(t) = \frac{\sqrt{X^T(t)AX(t) + 2X^T(t)PX(t)}}{2X^T(t)PX(t)} \\
\]

(22)

Substituting \(P = P_1^T \), \(V_s(t) = \sqrt{X^T(t)PX(t)} = \|P_{11}^T X(t)\|, \|P_{21}^T X(t)\| = \|P_{11}^T\| \) and (17) into (22), then

\[
\dot{V}_s(t) \leq -\frac{2\xi X^T(t)PX(t) + 2 \|P_{11}^T X(t)\| \|P_{21}^T \Phi\| \|s(t)\|}{2X^T(t)PX(t)} \\
\leq -\xi V_s(t) + e_1 \|s(t)\|
\]

(23)

Define \(e(t) = V_s(t) - \dot{\vartheta}_1(t) \) and \(e(0) \) as the initial value of \(e(t) \). Combining \(\dot{\vartheta}_1(t) = -\xi \dot{\vartheta}_1(t) + e_1 \|s(t)\| \) with (23), we have

\[
e(t) \leq -\xi e(t)
\]

(24)

Integrating the formula (24) yields \(e(t) \leq e^{-\xi t}e(0) \). Combining \(e(t) = V_s(t) - \dot{\vartheta}_1(t) \), one obtains \(V_s(t) \leq \dot{\vartheta}_1(t) + e^{-\xi t}e(0) \). Substitute \(P_1^T \) and \(X(t) \) into the equation \(V_s(t) = \|P_{11}^T X(t)\| \), then

\[
V_s(t) = \sqrt{\|P_{11}^T \hat{x}_1(t) + P_{21}^T \varphi(t)\|^2 + \|P_{21}^T \varphi(t)\|^2}
\]

(25)

Hence \((k_1 + k_2) \|P_{11}^T \hat{x}_1(t) + P_{21}^T \varphi(t)\| \leq (k_1 + k_2) V_s(t) \). Combining \(k_1 + k_2 > 1 \) with \(\chi(t) = \psi_0 \|P_{11}^T \hat{x}_1(t) + P_{21}^T \varphi(t)\| - (k_1 + k_2)\psi(t) \) one obtains

\[
\chi(t) \leq \psi_0(k_1 + k_2) \leq \psi_0(k_1 + k_2) V_s(t) - (k_1 + k_2)\psi(t) \\
\leq \psi_0(k_1 + k_2) \leq \psi_0(k_1 + k_2) \leq \psi_0(k_1 + k_2) \leq \psi_0(k_1 + k_2) \leq \psi_0(k_1 + k_2)
\]

(26)

Since \(V_s(t) \leq \dot{\vartheta}_1(t) + e^{-\xi t}e(0) \) and \(\varphi_1(t) = \psi_0(\dot{\vartheta}_1(t) + q) \) are known, then

\[
\chi(t) \leq \psi_0(k_1 + k_2) e^{-\xi t}e(0) - q
\]

(27)

In the following, both the cases \(e(0) > 0 \) and \(e(0) \leq 0 \) will be discussed.

If \(e(0) > 0 \), since \(e(t) \leq e^{-\xi t}e(0) \) at \(t = 0 \), thus \(e(t) \leq e(0) \) and \(\chi(t) \leq \psi_0(e(0) - q) \). Assume \(e(0) > q \), there exists \(t > 0 \) such that \(e(t) \geq q \) in \(t \in [0, \; T_1] \) and \(e(t) \leq q \) in \(t > T_1 \). When \(t \in [0, \; T_1] \), then
The coefficients $c_{1d}, c_{2d}, \alpha_{1d}, \alpha_{2d}$ are positive constants with $\alpha_{1d} < 1, \alpha_{2d} > 1$. v_2 will be introduced later.

Proposition 3. Consider the following sliding surface s_d

$$s_d(t) = \dot{e}_a(t) + c_{1d}dsgn(e_a(t))|e_a(t)|^{\alpha_{1d}} + c_{2d}dsgn(e_a(t))|e_a(t)|^{\alpha_{2d}}$$ \hspace{1cm} (34)

If v_2 satisfies the following equation

$$v_2(t) = -(k_d(t) + \eta_d)s_d(s_d(t)), v_2(0) = 0$$ \hspace{1cm} (35)

where η_d is a positive constant. $k_d(t) > d_1$, $d_1 > |B_2\dot{d}|$ and $d_0 > |B_2d|$. d and \dot{d} are disturbance and its derivatives, d_1 and d_0 are the upper bounds of $|B_2\dot{d}|$ and $|B_2d|$, respectively. e_a converges to origin in finite time and the estimation of the disturbance as follows

$$v_2(t) = B_2\dot{d}$$ \hspace{1cm} (36)

Proof. Consider the derivative of e_a in equation (32) as follows

$$\dot{e}_a(t) = v_2(t) - c_{1d}dsgn(e_a(t))|e_a(t)|^{\alpha_{1d}} - c_{2d}dsgn(e_a(t))|e_a(t)|^{\alpha_{2d}} - B_2\dot{d}(t)$$ \hspace{1cm} (37)

Substitute (37) into (34) one obtains

$$s_d(t) = v_2(t) - B_2\dot{d}(t)$$ \hspace{1cm} (38)

Differentiating the above equation (38) and combining with equation (35) yields

$$\dot{s}_d(t) = \dot{v}_2(t) - B_2\dot{\dot{d}}(t)$$

$$\dot{s}_d(t) = - (k_d(t) + \eta_d)s_d(s_d(t)) - B_2\dot{d}(t)$$ \hspace{1cm} (39)

Consider the Lyapunov function $V_d(t) = \frac{1}{2}s_d^2(t)$, then $V_d(t)$ derivative is as follows

$$\dot{V}_d(t) = s_d(t)\dot{s}_d(t)$$

$$\dot{V}_d(t) = -(k_d(t)s_d(t) - \eta_d|s_d(t)| - B_2\dot{d}(t)s_d(t)$$ \hspace{1cm} (40)

Since η_d is a positive constant and $k_d(t) > d_1 > |B_2\dot{d}(t)|$, then (40) can be written as follows

$$\dot{V}_d(t) = s_d(t)\dot{s}_d(t) \leq - \eta_d|s_d(t)|$$ \hspace{1cm} (41)

The $s_d(t)$ will converges to zero in finite time, by utilizing equation (34) one gets

$$\dot{v}_2(t) = -(k_d(t)s_d(t) - \eta_d|s_d(t)| - c_{1d}dsgn(e_a(t))|e_a(t)|^{\alpha_{1d}} - c_{2d}dsgn(e_a(t))|e_a(t)|^{\alpha_{2d}}$$ \hspace{1cm} (42)

By considering Lemma 1, the equilibrium of (42) as $e_a(t) = 0$ is finite time stable.
Consider the estimation error of disturbance as follows
\[e_d(t) = B_2d(t) - B_2\hat{d} \] \hfill (43)

Both (36) and (38) are satisfied, \(e_d(t) \) will converge to origin in finite time.

This implies that if \(k_d(t) > d_1 \) is satisfied, the proposed disturbance observer can estimate the disturbance \(d(t) \) in finite time.

Design adaptation structure

In this subsection, two adaptation structures are designed, and the assumptions on the disturbance are relaxed in the proposed observer. As is capable of seeing from the proof in the above subsection, the adaptive gain \(k_d(t) \) must satisfy \(k_d(t) > d_1 \) to ensure the system sliding takes place, in which case reachability condition is achieved and sliding motion takes place on \(s_d = \hat{s}_d = 0 \). In other words, unknown disturbance or uncertainty should be completely eliminated, that is \(|u_{eq}(t)| = |d_1| \).

In the first adaptive structure, similar to general adaptive control, it is assumed that \(d_1 \) is known and \(d_0 \) is unknown. The second adaptive strategy is designed which assumes that both \(d_1 \) and \(d_0 \) are unknown, the assumptions on the disturbance are more relaxed.

Consider utilizing a low pass filter to filter the switching signal to obtain a close approximation. Here, the \(\text{sgn}(s_d) \) should take on the average value. Then if \(\hat{u}_{eq}(t) \) satisfies
\[\dot{\hat{u}}_{eq}(t) = \frac{1}{l} (-k_d(t) + \eta \text{sgn}(s_d) - \hat{u}_{eq}(t)) \] \hfill (44)

where \(l > 0 \) is a time constant, then \(\hat{u}_{eq}(t) \) almost completely approximates \(u_{eq}(t) \). In order to eliminate the influence of the initial conditions of the filter, assume exist \(0 < v_1 < 1 \) and \(v_0 > 0 \) such that
\[||\hat{u}_{eq}(t)|| - |u_{eq}(t)| < v_1|u_{eq}(t)| + v_0 \] \hfill (45)

holds. The adaptive algorithm of the control gain is driven by using the equivalent control. Through the following inequality, we introduce the concept of ‘safety margin’
\[k_d(t) > \frac{1}{\mu} |\hat{u}_{eq}(t)| + v \] \hfill (46)

where \(0 < \mu < 1 \) and \(v > 0 \) are design parameters such that
\[\frac{1}{\mu} |\hat{u}_{eq}(t)| + \frac{v}{2} > |u_{eq}(t)| \] \hfill (47)

holds. Define error variable \(e_z(t) \) as follows
\[e_z(t) = k_d(t) - \frac{1}{\mu} |\hat{u}_{eq}(t)| - v \] \hfill (48)

which shows that if \(e_z(t) = 0 \), then \(k_d(t) > d_1 \), that is, the system will maintain sliding motion. Define adaptive scheme
\[\dot{k}_d(t) = -g(t)\text{sgn}(s_d) \] \hfill (49)

where \(g(t) \) is auxiliary scalar, it has the following form
\[g(t) = f_0 + f(t) \] \hfill (50)

where \(f_0 \) is a positive scalar and \(f(t) \) is elaborated later.

In this paper, according to whether \(d_1 \) is known, \(f(t) \) will execute different choices. In the next work, we will discuss two situations: \(d_1 \) is known and \(d_1 \) is unknown.

Case 1:

Assuming \(d_1 \) is known but \(d_0 \) is unknown. Define
\[e_z(t) = \frac{\alpha d_1}{\mu} - f(t) \] \hfill (51)

\[\dot{f}(t) = \beta|e_z(t)| + f_0 \sqrt{\beta}\text{sgn}(e_z(t)) \] \hfill (52)

where \(\beta > 0 \), and \(\alpha > 1 \) is designed to ensure \(|\hat{u}_{eq}(t)| < \alpha d_1 \).

Proposition 4. As described above, the problem of maintaining sliding is converted to how to yield \(e_z(t) \rightarrow 0 \) in finite time; how to allow \(g(t) \) and \(k_d(t) \) to be bounded. In the following, we will verify the situation where \(d_1 \) is known.

Proof. Consider following Lyapunov function
\[V(t) = \frac{1}{2} e_z^2(t) + \frac{1}{2\beta} e_z^2(t) \] \hfill (53)

It follows from (53) that
\[e_z(t)|e_z(t)| \leq -f_0|e_z(t)| + \left(e_z(t) - \frac{\alpha d_1}{\mu} \right)|e_z(t)| \]
\[+ \frac{\alpha d_1}{\mu}|e_z(t)| \leq -f_0|e_z(t)| + e_z(t)|e_z(t)| \] \hfill (54)

\[e_z(t)|e_z(t)| \beta = -e_z(t)|e_z(t)| - \frac{f_0|e_z(t)|}{\sqrt{\beta}} \] \hfill (55)

The derivative with respect to (53) and integrate with (54) and (55), one obtains
\[
\dot{V}(t) = e_k \dot{\epsilon}_k + \frac{e_k \dot{\epsilon}_k}{\beta} \\
\leq -f_0 |\epsilon_k(t)| - f_0 |\epsilon_t(t)| \sqrt{\beta} \\
\leq -\sqrt{2} f_0 \left(\frac{|\epsilon_k(t)|}{\sqrt{2}} + \frac{|\epsilon_t(t)|}{\sqrt{2}\beta} \right) \\
\leq -f_0 \sqrt{2V(t)}
\]

Then \(\epsilon_k(t) = \epsilon_k(0) e^{-\frac{t}{\mu}} \) is uniformly bounded, consequently \(\dot{\epsilon}_k(t) \) is established, (56) can be rewritten as

\[
\dot{V}(t) = e_k \dot{\epsilon}_k(t) + \frac{e_k \dot{\epsilon}_k(t)}{\beta} \\
\leq -f_0 |\epsilon_k(t)| + e_t(t)|\epsilon_k(t)| - \frac{e_k \dot{\epsilon}_k(t)}{\beta} \\
\leq -f_0 |\epsilon_k(t)| + e_t(t)|\epsilon_k(t)| - e_k(t)|\epsilon_k(t)| \\
\leq -f_0 |\epsilon_k(t)|
\]

Define \(V_0 \) to be the initial value of \(V(t) \) and \(t_0 \) to be the time taken for \(V(t) \) to converge to zero, and hence integrating both sides yields \(t_0 < \sqrt{\frac{\alpha \beta}{\mu}} \), which shows that \(\epsilon_k(t) \) and \(\epsilon_t(t) \) will converge to origin in finite time. Then \(k_A(t) > d_l \) will be guaranteed and the reachability condition is satisfied. Obviously \(\epsilon_t(t) \) is bounded, hence \(f(t) \) and \(s(t) \) is bounded.

Case 2:
Assuming that both \(d_l \) and \(d_0 \) are unknown. Define

\[
\dot{j}(t) = \begin{cases}
\beta |\epsilon_k(t)| & \text{if } |\epsilon_k(t)| > \epsilon_0 \\
0 & \text{otherwise}
\end{cases}
\]

(57)

where \(\epsilon_0 \) is a design constant which to eliminate the noise signal in the system.

Proposition 5. Both \(d_l \) and \(d_0 \) are unknown, if \(v \) is chosen to satisfy

\[
4\epsilon_0^2 + \frac{4}{v^2} + \frac{\alpha d_l}{\mu}\right)^2 < 1
\]

(58)

then \(|\epsilon_k(t)| < \frac{\epsilon_0}{\sqrt{2}} \) is realized in finite time and the sliding motion is guaranteed.

Proof. Consider the Lyapunov function from (53)

\[
e_k \dot{\epsilon}_k \leq -f_0 |\epsilon_k(t)| + e_t(t)|\epsilon_k(t)|
\]

(59)

Suppose \(f(0) = 0 \), from (57) one obtains \(\dot{j}(t) \geq 0 \), then \(f(t) \geq 0 \) holds. Since \(e_t(t) = \frac{\alpha d_l}{\mu} - j(t) \), then \(e_t(t) \leq \frac{\alpha d_l}{\mu} \) is satisfied. In (57), if \(|\epsilon_k(t)| > \epsilon_0 \) with (55), \(\dot{\epsilon}_t(t) = -j(t) = -\beta |\epsilon_k(t)| \) is established, (56) can be rewritten as

\[
\dot{V}(t) = e_k \dot{\epsilon}_k(t) + \frac{e_k \dot{\epsilon}_k(t)}{\beta} \\
\leq -f_0 |\epsilon_k(t)| + e_t(t)|\epsilon_k(t)| - \frac{e_k \dot{\epsilon}_k(t)}{\beta} \\
\leq -f_0 |\epsilon_k(t)| + e_t(t)|\epsilon_k(t)| - e_k(t)|\epsilon_k(t)| \\
\leq -f_0 |\epsilon_k(t)|
\]

If \(|\epsilon_k(t)| < \epsilon_0 \) with \(e_t(t) < 0 \), then \(\dot{V}(t) \leq -f_0 |\epsilon_k(t)| \). Since \(e_t(t) \leq \frac{\alpha d_l}{\mu} \), then outside of the interval

\[
\mathbb{E} = \left\{ (\epsilon_k, e_t) : |\epsilon_k| < \epsilon_0, 0 \leq e_t < \frac{\alpha d_l}{\mu} \right\}
\]

and in the solution domain subject to \(\dot{V} \leq -f_0 |\epsilon_k(t)| \). Draw the smallest ellipse \(F \) with the origin as the center to enclose the \(\mathbb{E} \), then \(F = \{ (\epsilon_k, e_t) : V(\epsilon_k, e_t) < r \} \), where \(r > 0 \) represents the ‘radius’ of the ellipse, and \(r = \frac{\epsilon_0}{\sqrt{2}} + \frac{1}{2\epsilon_0} \left(\frac{\alpha d_l}{\mu} \right)^2 \). Choose the appropriate \(v \) to satisfy (58), the sliding motion will be guaranteed.

Since \(\mathbb{E} \subset F \) and outside of \(F \) in the solution domain, \(\dot{V}(t) \leq 0 \) holds, hence \(F \) is an invariant set. If the \(V(\epsilon_k, e_t) \) enters \(F \), then \(V(\epsilon_k, e_t) \) will not be able to leave \(F \) and from (58), \(|\epsilon_k(t)| < \frac{\epsilon_0}{\sqrt{2}} \) is satisfied. If the \(V(\epsilon_k, e_t) \) does not enter \(F \), then from the above discussion \(\dot{V} \leq -f_0 |\epsilon_k(t)| \) and \(\int_0^T f_0 |\epsilon_k(t)| dt \leq V(0) \) are satisfied. Since \(V(\epsilon_k, e_t) \) is bounded, then \(\epsilon_k(t), e_t(t) \) and \(\dot{\epsilon}_k(t), \dot{\epsilon}_t(t) \) are bounded, hence \(\epsilon_k(t) \) is uniformly continuous, that is, \(\epsilon_k(t) \rightarrow 0 \) when \(t \rightarrow \infty \). It shows that there exists \(t_0 \) such that \(|\epsilon_k(t)| < \frac{\epsilon_0}{\sqrt{2}} \) for \(t > t_0 \). Hence, \(|\epsilon_k(t)| < \frac{\epsilon_0}{\sqrt{2}} \) has always been established in finite time.

Since the \(|\epsilon_k(t)| < \frac{\epsilon_0}{\sqrt{2}} \) holds, therefore \(|\epsilon_k(t)| = |k_A(t) - \frac{1}{\mu} |\dot{u}_{eq}(t)| - v| < \frac{\epsilon_0}{\sqrt{2}} \) from (48), that is \(k_A(t) - \frac{1}{\mu} |\dot{u}_{eq}(t)| - v > -\frac{\epsilon_0}{\sqrt{2}} \), and from (47), one obtains

\[
k_A(t) > \frac{1}{\mu} |\dot{u}_{eq}(t)| + \frac{v}{\sqrt{2}} > |\dot{u}_{eq}(t)| > d_l
\]

(61)

Hence reachability condition is satisfied and the system will maintain sliding motion. Since \(\epsilon_k(t) \) and \(\epsilon_t(t) \) are bounded, consequently \(j(t) \) and \(g(t) \) remains bounded. From (45)

\[
|k_A(t)| < |\epsilon_k(t)| + \frac{1}{\mu} |\dot{u}_{eq}(t)| + v
\]

(62)

obviously \(k_A(t) \) is bounded, and the proof is complete.

Remark 2. The method proposed in this paper can be improved by some new fuzzy systems, at the same time, the ASMDO does not require knowledge of the disturbance and its first derivative, hence it can better estimate the disturbances in these systems.

Remark 3. The control strategy of this paper can be used to deal with the problem of energy/voltage management in photovoltaic (PV)/battery systems and interval type-3 fuzzy logic systems. The sliding mode disturbance observer can be used to eliminate the influence of the variation of temperature, radiation, and output load on the system, and effectively guarantee better disturbance rejection performance of the controller.

Simulation example
A practical example is provided in this section to illustrate the efficiency of the obtained result. Consider an inverted pendulum on a cart model given in Edwards and Spurgeon and the linearization model is as follows.
The non-singular matrix T can be found as

$$ T = \begin{bmatrix} 0 & 0 & 3.1498 & 1.0000 \\ -3.0000 & 0 & 0 & 0 \\ 0 & 2.0000 & 0 & 0 \\ 0 & 0 & -2.0000 & 0 \end{bmatrix} $$

then we can obtain the following transformed regular form

$$ A = \begin{bmatrix} -0.1454 & 0 & 15.4438 & -0.2284 \\ 0 & 0 & 1.5000 & 3.1498 \\ 2.0000 & 0 & 0 & 1.9333 \\ -0.0182 & 0 & 1.9333 & -2.0159 \end{bmatrix} $$

$$ \dot{A} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ -0.6410 & 0 & 0 & 0 \end{bmatrix} $$

Choose Φ and G_2 as follows

$$ \Phi = \begin{bmatrix} -0.005 & -0.005 \\ 0.2 & 0 \end{bmatrix} $$

$$ G_2 = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 10 \end{bmatrix} $$

Use the LMI toolbox to obtain these parameter matrices w_1, w_2, w_3, w_4

$$ w_1 = \begin{bmatrix} 0 & 0.0779 \end{bmatrix} $$

$$ w_2 = \begin{bmatrix} 0.0294 & -1.9900 \\ 0.0913 & -0.9198 \\ -0.1462 & 2.3990 \end{bmatrix} $$

$$ w_3 = \begin{bmatrix} -0.1988 & 1.5439 & 1.3524 \\ 0.3063 & -0.1739 & 0.8509 \\ 19.5966 & -2.0623 & -3.6779 \end{bmatrix} $$

$$ w_4 = \begin{bmatrix} -16.2153 & 1.6530 & 0.4266 \end{bmatrix} $$

The controller (18) parameters are selected as $\tau = 1.8, k_1 = 2, k_2 = 2, h_1 = 3, h_2 = 0.2, \xi = 0.028, \varphi = 0.48$. The initial condition is $\bar{x}(0) = [0.1 \ 0.01 \ 0.2 \ 0.15]$. This system is simulated with disturbance: $\delta(t) = 2 \sin(2t) + 2 \cos(2t)$. The parameters of the sliding mode disturbance observer are selected as $c_{id} = c_{id} = 2, \alpha_{id} = 0.5, \alpha_{id} = 3, \eta_{id} = 0.01$. The disturbance is set to $B_2 \delta(t) = [2 \sin(\pi t) + 0.15 \cos(2\pi t)]$. The parameters of adaptive schemes are chosen as $d_1 = 1, \mu = 0.99, f_0 = 0.6, e_0 = 0.01, \nu = 0.18, l = 0.01$, and starting with zero initial conditions.

Figures 1 and 2 are the control input of the system obtained from Zhang et al.11 and (18), respectively. Obviously, the proposed controller possesses less chattering. The fluctuation of the control input from 0 to 6 s is caused by the system states $\dot{x}_1(t)$ and $\dot{x}_2(t)$ in the controller (18). It can be seen from Figure 4 that when the system state tends to be stable, the input of the controller will also tend to stable. The fluctuation of control input after 6 s is caused by $k_1 \text{sgn}^h(\delta(t)) + k_2 \text{sgn}^{l^2}(\delta(t))$ in the controller (18). Figure 3 shows that after the sliding surface converges to 0, there is a slight fluctuation around zero, which causes the $\text{sgn}(\delta)$ in the controller to switch between -1 and 1, thus generating the fluctuations in Figure 2. Figure 4 depicts that system state by Zhang et al.11 and (18), respectively. Obviously, the system states obtained with the proposed controller have less overshoot and faster convergence performance.
The coefficient of additional term $k_1 + k_2 > 1$ located in denominator, although the item is omitted in t_e, actually, it must enable the system to converge faster.

Figure 5 is evolutions of disturbance and its estimation in controller. Compared with Hwang et al., the estimation of disturbance can faster track its true value in finite time under the proposed observer (33). Figures 6 and 7 shown that the adaptive gain $k_d(t)$ still closely follows $B_2\tilde{d}(t)$. As in (48), $k_d(t)$ converges to a safety margin which depends on the parameters μ and v. $k_d(t)$ is always above $B_2\tilde{d}(t)$, the sliding motion will be maintained and the conditions on disturbance bounds are relaxed, the proposed ASMDO does not require information about the bound on the disturbances and their derivatives.

Conclusion

This paper has addressed a disturbance observer-based control method for continuous-time linear systems with unknown external disturbance. Based on a novel adaptive sliding mode disturbance observer, the output feedback sliding mode controller has been designed, which guarantees that reachability condition holds strictly. In the absence of upper bound information of the disturbance and its first derivative, the restrictive restraints on disturbance have been relaxed by designing the adaptive laws. It is worth mentioning that the estimation of disturbance can track its true value in finite time under the proposed observer. An inverted pendulum on a cart model has been exploited to illustrate the effectiveness of the proposed controller and observer. Simulation results show that the convergence performance of the controller can be further improved, and the finite time control observer-based method will be studied in future.
Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported in part by the Natural Science Foundation of Tianjin under Grant Number: 19JCTPJC48600.

ORCID iD
Chao Jiang https://orcid.org/0000-0002-3026-9524

References
1. Xu Q. Digital integral terminal sliding mode predictive control of piezoelectric-driven motion system. IEEE Trans Ind Electron 2016; 63(6): 3976–3984.
2. Sun G, Ma Z and Yu J. Discrete-time fractional order terminal sliding mode tracking control for linear motor. IEEE Trans Ind Electron 2018; 65(4): 3386–3394.
3. Zuo Z and Lin T. Distributed robust finite-time nonlinear consensus protocols for multi-agent systems. Int J of Syst Sci 2016; 47(6): 1366–1375.
4. Balootaki MA, Rahmani H, Moeinkhah H, et al. On the synchronization and stabilization of fractional-order chaotic systems: Recent advances and future perspectives. Phys A Stat Mech Appl 2020; 551: 124203.
5. Yu X and Man Z. Model reference adaptive control systems with terminal sliding modes. Int J Control 1996; 64(6): 1165–1176.
6. Yu X, Feng Y and Man Z. Terminal sliding mode control – an overview. IEEE Open J Ind Electron Soc 2021; 2: 36–52.
7. Lee J, Chang PH and Jin M. Adaptive integral sliding mode control with time-delay estimation for robot manipulators. IEEE Trans Ind Electron 2017; 64(8): 6796–6804.
8. Edwards C and Spurgeon S. Sliding mode control: theory and applications. New York, NY: CRC Press, 1998.
9. Zhang J and Xia Y. Design of static output feedback sliding mode control for uncertain linear systems. IEEE Trans Ind Electron 2010; 57(6): 2161–2170.
10. Chang JL. Static output feedback sliding mode controller design for minimum phase uncertain systems. IMA J Math Control Inf 2015; 32(3): 485–495.
11. Zhang J, Shi D and Xia Y. Design of sliding mode output feedback controllers via dynamic sliding surface. Automatica 2021; 124: 109310.
12. Seuret A, Edwards C, Spurgeon SK, et al. Static output feedback sliding mode control design via an artificial stabilizing delay. IEEE Trans Automat Contr 2009; 54(2): 256–265.
13. Song J, Wang Z and Niu Y. Static output-feedback sliding mode control under round-robin protocol. Int J Robust Nonlinear Control 2018; 28(18): 5841–5857.
14. Lai NO, Edwards C and Spurgeon SK. On output tracking using dynamic output feedback discrete-time sliding-
mode controllers. *IEEE Trans Automat Contr* 2007; 52(10): 1975–1981.

15. Du C, Yang C, Li F, et al. A novel asynchronous control for artificial delayed Markovian jump systems via output feedback sliding mode approach. *IEEE Trans Syst Man Cybern Syst* 2019; 49(2): 364–374.

16. Chen WH, Yang J, Guo L, et al. Disturbance-observer-based control and related methods—an overview. *IEEE Trans Syst Man Cybern Syst* 2019; 49(2): 364–374.

17. Wang J, Luo X, Wang L, et al. Integral sliding mode control using a disturbance observer for vehicle platoons. *IEEE Trans Ind Electron* 2020; 67(8): 6639–6648.

18. Su J, Yang J and Li S. Continuous finite-time anti-disturbance control for a class of uncertain nonlinear systems. *Trans Inst Meas Contr* 2014; 36(3): 300–311.

19. Alinaghi Hosseinabadi P, Ordys A, Soltani Sharif Abadi A, et al. State and disturbance observers-based chattering-free fixed-time sliding mode control for a class of high-order nonlinear systems. *Adv Control Appl* 2021; 3(3): e81.

20. Lee D. Nonlinear disturbance observer-based robust control of attitude tracking of rigid spacecraft. *Nonlinear Dyn* 2017; 88(2): 1317–1328.

21. Gao Z and Ge G. Fixed-time formation control of AUVs based on a disturbance observer. *Acta Autom Sin* 2019; 45(6): 1094–1102.

22. Plestan F, Shtessel Y, Brégeault V, et al. New methodologies for adaptive sliding mode control. *Int J Control* 2010; 83(9): 1907–1919.

23. Negrete-Chávez DY and Moreno JA. Second-order sliding mode output feedback controller with adaptation. *Int J Adapt Control Signal Process* 2016; 30(8–10): 1523–1543.

24. Utkin VI and Poznyak AS. Adaptive sliding mode control with application to super-twist algorithm: Equivalent control method. *Automatica* 2013; 49(1): 39–47.

25. Roy S, Baldi S and Fridman LM. On adaptive sliding mode control without a priori bounded uncertainty. *Automatica* 2020; 111: 108650.

26. Abadi ASS, Hosseinabadi PA and Mekhilef S. Fuzzy adaptive fixed-time sliding mode control with state observer for a class of high-order mismatched uncertain systems. *Int J Control Autom Syst* 2020; 18(10): 2492–2508.

27. Tan CP, Yu X and Man Z. Terminal sliding mode observers for a class of nonlinear systems. *Automatica* 2010; 46(8): 1401–1404.

28. Mobayan S and Javadi S. Disturbance observer and finite-time tracker design of disturbed third-order nonholonomic systems using terminal sliding mode. *J Vib Control* 2017; 23(2): 181–189.

29. Hwang S, Park JB and Joo YH. Disturbance observer-based integral fuzzy sliding-mode control and its application to wind turbine system. *IET Control Theory Appl* 2019; 13(12): 1891–1900.

30. Utkin VI. *Sliding modes in control and optimization*. Berlin: Springer-Verlag, 1992.

31. Mohammadzadeh A and Kumbasar T. A new fractional-order general type-2 fuzzy predictive control system and its application for glucose level regulation. *Appl Soft Comput* 2020; 91: 106241.

32. Mohammadzadeh A and Rathinasamy S. Energy management in photovoltaic/battery hybrid systems: a novel type-2 fuzzy control. *Int J Hydrogen Energy* 2020; 45(41): 20970–20982.

33. Mosavi A, Qasem SN, Shokri M, et al. Fractional-order fuzzy control approach for photovoltaic/battery systems under unknown dynamics, variable irradiation and temperature. *Electronics* 2020; 9(9): 1455.

34. Liu Z, Mohammadzadeh A, Turabieh H, et al. A new online learned interval type-3 fuzzy control system for solar energy management systems. *IEEE Access* 2021; 9: 10498–10508.