Understanding Passive Layer Formation for Further Corrosion Management in Gas Production Pipes

R. K. Santoso1,2, S. D. Rahmawati1, A. Gadesa1, D. Wahyuningrum2

1Petroleum Engineering Study Program, InstitutTeknologi Bandung, Indonesia
2Chemistry Study Program, Institut Teknologi Bandung, Indonesia

Abstract. Corrosion is a critical issue during the development of a gas field, especially wet gas or retrograde gas field. Corrosion affects the management system of a field and further impacts the amount of investment. Therefore, accurate prediction of corrosion rate is needed to plan an effective preventive action before going further to the development phase. One of the important parameters that should be noticed to create an accurate prediction is the formation of the passive layer. In CO\textsubscript{2}-H\textsubscript{2}S environment, there will be three possibilities of passive layer: FeS, FeCO\textsubscript{3} or no passive layer. In this study, we create mathematical models to determine the formed passive layer in each segment of the gas production tubing and pipeline. The model is built using Faraday’s Law and Thermodynamic approach to account the passive layer formation at different temperature, pH, corrosion rate and partial pressure of CO\textsubscript{2} and H\textsubscript{2}S. From the simulation, it was found that there were three boundary conditions: no scale-FeS boundary, no scale-FeCO\textsubscript{3} boundary and FeS-FeCO\textsubscript{3} boundary. The first two boundaries evolved over a time as the concentration of Fe2+ ions was increasing. However, FeS-FeCO\textsubscript{3} boundary remained steady as it was not affected by the addition of Fe2+ ions. Using sample case study, few variations were noticed at production pipeline and tubing. It was caused by the gas composition, which contained high CO\textsubscript{2} and very low H\textsubscript{2}S. Boundary conditions only changed slightly over two days period.

1. Introduction

Corrosion is defined as the destructive result of chemical reaction between a metal or metal alloy and its environment [18]. It occurs when a metal or metal alloy meets corrosive agents in aqueous solution at certain pressure and temperature. In gas field, corrosion is usually caused by CO\textsubscript{2} gas (sweet corrosion) and H\textsubscript{2}S gas (sour corrosion). The existence of corrosion in production system could affect the amount of production and lead to safety issues. Therefore, early prevention of corrosion is needed before bringing a gas field into production.

In order to plan an effective corrosion management, one should first understand the fluid characteristic and environment condition (ambient temperature, location, etc) of a gas field. Moreover, an accurate prediction of future corrosion phenomenon is also critical. It can be assessed by creating a model that describes the corrosion phenomenon of a field accurately. Many corrosion models have been published so far by researchers [2] [12] [27] [35] [62] [65] [68] [72] and well-known companies to estimate the future corrosion rate in a production system. From all those models, a critical parameter that influences the assumptions inside the models and determines the success of the prediction is the type of passive layer.
Passive layer is known as the corrosion reaction product, formed on the surface of a metal or metal alloy where corrosion reaction occurs. The existence of passive layer could be helpful to protect the metal from further corrosion or harmful because it can block the gas flow. The type of passive layer is determined by the gas composition and thermodynamic condition (pressure and temperature) of production system. As the type of passive layer in a system determines the development of any corrosion models and accuracy in prediction of the future corrosion phenomenon, it is critical to have a mathematical model that can predict the type of passive layer in a gas production system.

As a part of our big research in creating a new corrosion-erosion model that is applicable in any environmental conditions of gas fields, we first developed a mathematical model to predict the type of passive layer using Faraday’s law and thermodynamics approach. This model could simulate the formed passive layer based on the partial pressure of CO$_2$ and H$_2$S in gas production system. The model was applicable in vertical, incline and horizontal flow condition. We also used sample case study from to perform our model calculations.

2. Mathematical Model
The prediction model is built using Faraday’s law and thermodynamic approach. Faraday’s law is used to estimate the amount of Fe^{2+} ion in half-cell reaction. Thermodynamic approach is utilized then as the main foundation to create the model. The model is divided into three parts: no scale-mackinawite (FeS) boundary equation, no scale-siderite (FeCO$_3$) boundary equation and mackinawite-siderite boundary equation. We also assume that

- corrosion occurs uniformly in a specific segment of production pipe
- water is uniformly distributed in a specific segment of production pipe
- reaction has reached its equilibrium condition at certain pressure and temperature

2.1. No Scale-Mackinawite Boundary
In H$_2$S environment, there is a possible formation of mackinawite scale on the surface of the metal or metal alloy. This scale can be formed if the solubility limit of mackinawite is surpassed. The solubility of mackinawite can be expressed as

$$Fe^{2+}_{(aq)} + S^{2-}_{(aq)} \leftrightarrow FeS(s) \quad (1)$$

Therefore, the solubility limit can be represented using solubility product constant of mackinawite

$$K_{sp_{FeS}} = [Fe^{2+}][S^{2-}] \quad (2)$$

The amount of Fe^{2+} ion in solution is related to the amount of metal loss (corrosion rate). Thus, $[Fe^{2+}]$ can be estimated using

$$[Fe^{2+}] = \frac{CR \times A \times \rho_{metal} \times \Delta t}{MW_{metal} \times HU \times V_{pipe}} \quad (3)$$

where
- CR : corrosion rate, L T$^{-1}$
- A : inner pipe area, L2
- ρ_{metal} : metal density, M L$^{-3}$
- MW_{metal} : molecular weight of metal
- HU : liquid hold up, fraction
- V_{pipe} : pipe inner volume, L3
- Δt : exposure time, T

Based on ASTM G102 [1], in half-cell reaction, molecular weight of a metal is determined using (equivalent molecular weight)
$$MW_{metal} = \frac{1}{\sum_{i=1}^{n} \left(\frac{f_i}{a_i/n_i} \right)}$$

where

- f_i : mass fraction of an atom, fraction
- a_i : molecular weight of an atom
- n_i : valence

The boundary condition to differentiate the area of no-scale and mackinawite can be calculated using

$$Ksp_{FeS} = \frac{\left(CR \times A \times \rho_{metal} \times \Delta t \right) \times k_{1H_2S} \times k_{2H_2S} \times k_{3H_2S} \times P_{H_2S}}{\left[H^+ \right]_{aq}}$$

The value of K_{1H_2S} can be estimated using several empirical correlations: Weiss, 1970; Willhelm et al., 1977; Roberts, 1985; Carroll & Mather, 1989; Suleimenov & Krupp, 1994; De Bruyn et al., 1995; Rinker & Sandall, 2000; Nordsveen et al., 2003; Fernández-Prini et al., 2003; and Sander et al., 2011. The value of K_{2H_2S} can be estimated using several empirical correlations: Wright & Maass, 1932; Ringborn, 1953; Pohl, 1962; Ellis & Golding, 1967; Tsonopoulos et al., 1976; Rao & Hepler, 1977; Broderius et al., 1977; Millero, 1986; Kharaka et al., 1989; and Suleimenov & Seward, 1997. The value of K_{3H_2S} can be estimated using several empirical correlations: Ringborn, 1953; Maronny, 1959; Muhammad & Sundarahm, 1961; Pohl, 1962; Kolthoff, 1969; Giggenbach, 1971; Ellis & Giggenbach, 1971; Stephens and Cobble, 1971; Kharaka et al., 1989; and Flaschka et al., 1991. The value of $K_{sp_{FeS}}$ can also be estimated using several empirical equations: Berner, 1967; Doyle, 1968; Tewari et al., 1978; Mors et al., 1987; Davison, 1991; Bagander & Carman, 1994; Davison et al., 1999; Bening et al., 2000; Rickard, 2006; and Sun et al., 2008.

2.2. No-Scale-Siderite Boundary

In CO$_2$ environment, siderite will be formed as the passive layer. The solubility of siderite can be expressed as

$$Fe^{2+}_{(aq)} + CO^2_{3-(aq)} \leftrightarrow FeCO_{3(s)}$$

Therefore, the solubility limit can be mathematically expressed as

$$Ksp_{FeCO_3} = \left[Fe^{2+} \right] \left[CO^2_{3-} \right]$$

The correlation to identify the area of no-scale and siderite can be expressed mathematically as

$$Ksp_{FeCO_3} = \frac{\left(CR \times A \times \rho_{metal} \times \Delta t \right) \times k_{1CO_2} \times k_{2CO_2} \times k_{3CO_2} \times P_{CO_2}}{\left[H^+ \right]_{aq}^2}$$

The value of K_{1CO_2} can be estimated using several empirical correlations: Bohr, 1899; Weiss, 1974; Wilhelm et al., 1977; Edwards et al., 1978; Oddo & Tomson, 1982; Yoo et al., 1986; Crovett, 1991; Zheng et al., 1997; Fernández-Prini et al., 2003; and Sander et al., 2011. The value of K_{2CO_2} can be

2.3. Mackinawite-Siderite Boundary

The solubility limit for mackinawite and siderite is simply expressed as the ratio of K_{sp}^{FeS} and $K_{sp}^{FeCO_3}$ [52].

$$K_{sp}^{FeS/FeCO_3} = \frac{k_{1HS} \times k_{2HS} \times k_{3HS} \times P_H^S}{k_{1CO_2} \times k_{2CO_2} \times k_{3CO_2} \times P_{CO_2}}$$

3. Model Implementation

The model is used to predict the type of passive layer in gas pipes through hydrogen sulfide partial pressure vs carbon dioxide partial pressure in log-log plot [52]. The execution step for the model follows the algorithm in Figure 1.

![Algorithm for Execution](image)

The critical parameters during the model’s execution are pressure, temperature, composition and pH changing in each partition of the pipe. One should measure those parameters accurately to obtain good predictions.

4. Case Study

To perform the model’s simulation, we used an example of wet gas field composition. Its fluid is characterized by the significant amount of CO$_2$. The detail fluid’s composition of the case study can be seen at Table 1. The production data is shown at Table 2.
Table 1. Gas Composition Data

Composition	Mole (%)
1 Hydrogen Sulfide (H$_2$S)	0.05
2 Carbon Dioxide (CO$_2$)	31.67
3 Nitrogen (N$_2$)	0.33
4 Methane (C$_1$)	56.92
5 Ethane (C$_2$)	0.11
6 Propane (C$_3$)	0.03
7 Water (H$_2$O)	10.90

Table 2. Production Data

Parameter	Value	Unit
Production Tubing		
1 Reservoir Pressure	1100	psig
2 Reservoir Temperature	325	F
3 Tubing Length	8152.9	ft
4 Tubing Internal Diameter	6.625	inch
5 Inclination (from Vertical)	0	degree
6 Wellhead Pressure	500	psig
7 Wellhead Temperature	255.3	F
8 Ambient Temperature	85	F
9 Gas Rate	57.13	MMSCFD
10 Tubing Material (Assumed)	API 5L-X 65	-
Production Flowline		
1 Wellhead Pressure	500	psig
2 Wellhead Temperature	255.3	F
3 Ambient Temperature	85	F
4 Flowline Length	1875.4	ft
5 Flowline Outer Diameter	8	inch
6 Inclination (from Horizontal)	0	degree
7 Outlet Pressure	402.28	psig
8 Outlet Temperature	249.0	F
9 Gas Rate	57.13	MMSCFD
10 Tubing Material (Assumed)	API 5L-X 65	-

In this study, we assumed steady rate for two days period. We generated the pressure and temperature along tubing and flowline using commercial software with Beggs-Brill correlation for vertical and horizontal flow and black-oil model. The corrosion rate value was also assumed to be steady for two days, even there was passive layer on the surface of the metal. The corrosion rate was calculated using...
deWaard (1995) model. In the proposed model, we calculated all constant using the newest empirical correlation, for instance to calculate the value of $K_{1 H_2 S}$ we used Sander et al. (2011).

5. Results and Discussions

From the simulation using commercial software, the pressure and temperature profile in production tubing and flowline are shown at Figure 2.

![Figure 2. Pressure and Temperature Profile in: Tubing Flow (a) and Flowline Flow (b)](image)

Based on the environment condition in tubing and flowline, the corrosion rate can be seen at Figure 3.

![Figure 3. Tubing’s Corrosion Rate Profile (a) and Flowline’s Corrosion Rate Profile (b)](image)

Corrosion rate occurs worst at tubing because it has bigger pressure and temperature than in flowline. Based on the deWaard prediction, corrosion rate has its biggest value at the outlet location of the pipes. Using the input of corrosion rate and environmental condition, the proposed model can be executed. It can be recognized that there are three boundaries, so that there are three regions [52]: no-scale, mackinawite and siderite region. The arrangement of the boundaries does not change at various conditions, only the value of the boundaries will be different at different conditions. For boundary profile in tubing and flowline, it can be seen at Figure 4.
At each segment, no scale-mackinawite and no scale-siderite boundaries change over time. As time goes longer, the value of those boundaries become smaller. It is caused by the addition of Fe^{2+} ion in the solution (In Equation 5 and 8, P_{H_2S} and P_{CO_2} are reciprocal with the amount of Fe^{2+} ion). However, mackinawite-siderite boundary remains constant since it does not depend on the amount of Fe^{2+} ion.

It can also be seen that at Figure 4, the no scale-mackinawite and no scale-siderite boundary lie on negative side of log-log plot. It means that no scale condition could only occur at low operating pressure or low composition of H_2S and CO_2. Since the operating pressure of the pipe is relatively high, there is no doubt that scale is formed. Moreover, the existence of big amount of CO_2 makes it sure that siderite layer is formed.

When the whole segments at Figure 4 are compared, it can be seen that there is only small change in boundary and operating point values. It is caused by the significant amount of CO_2 in the stream, for about 30%. Therefore, it can be guaranteed that only siderite layer will exist over time in all segments of the production pipes.

Finally, for the case study, we can say that to calculate the corrosion rate, one should involve the existence of siderite passive layer. It is also needed to be noticed that siderite build-up is possible to occur in the future.

6. Conclusion

From the discussion above, it can be concluded that a new boundary model to determine the type of passive layer that is formed inside the gas production pipes has been successfully developed. The model is built using Faraday’s law and thermodynamic approach. The novelty of this study is the easy prediction of type of passive layer using the model. By only plugging in the working pressure and temperature at certain position to the boundary map, one can easily know the type of the passive layer formed at certain time.

In the model, no scale-mackinawite and no scale-siderite boundary are influenced by pressure, temperature, pH, partial pressure of carbon dioxide or hydrogen sulfide and concentration of Fe^{2+} ion (corrosion rate value). Therefore, these boundaries will evolve over time. However, mackinawite-siderite boundary only depends on pressure, temperature and partial pressure of carbon dioxide and hydrogen sulphide. Thus, this boundary will not change over time.

From the case study, it can be concluded that there will be only siderite passive layer formed on the inner surface of the pipes. It is caused by the huge amount of carbon dioxide in the flow.

Acknowledgement

This research was funded by DIKTI 2016.
References

[1] 1989 ASTM G 102 (Philadelphia: American Society for Testing and Materials) p 416-422
[2] Andrzej Anderko and Robert D. Young 1999 Corrosion 99 No. 31 (Houston: NACE International) p 1-19
[3] Bågander, L.E.; and Carman, R. In-situ determination of the apparent solubility product of amorphous iron sulphide. Applied Geochemistry, 1994, 9, 379–386.
[4] Barnes, H. I.; Helgeson, H. C.; and Ellis, A. J. Handbook of Physical Constants-Revised Edition. The Geological Society of America Memoir 97, 1966.
[5] Benning, L. G.; Wilkin, R. T.; and Barnes, H. L. Reaction pathways in the Fe-S below 100 °C. Chem. Geol. 2000, 167, 25-51.
[6] Berner, R. A. Thermodynamic stability of sedimentary iron sulfides. Am. J. Sci. 1967, 265, 773-785.
[7] Bénézeth, P.; Dandurand, J. L.; and Harrichoury, J. C. Solubility product of siderite (FeCO3) as a function of temperature (25–250 °C). Chemical Geology Volume 265, Issues 1–2, 15 July 2009, Pages 3–12.
[8] Bohr, C. Definition und Methode zur Bestimmung der Invasionsund Evasionscoefficienten bei der Auflösung von Gasen in Flüssigkeiten. Werthe der genannten Constanten sowie der Absorptionscoefficienten der Kohlensäure bei Auflösung in Wasser und in Chlornatriumlösungen, Wied. Ann., 1899, 68, 500–525.
[9] Braun, R.D. Solubility of iron(II) carbonate at temperatures between 30 and 80°. Talanta 38, 1991, 205–211.
[10] Bruno, J.; Wersin, P.; and Stumm, W. On the influence of carbonate in mineral dissolution: II. The solubility of FeCO3(s) at 25 °C and 1 atm total pressure. Geochim. Cosmochim. Acta. 1992, 56, 1149–1155.
[11] Broderius, S. J.; and Smith Jr., L. L. Direct Determination and Calculation of Aqueous Hydrogen Sulfide. Department of Entomology, Fisheries, and Wildlife: St. Paul, Minnesota, 1977.
[12] Carlos A. Palacios, Corpoven S. A., Valoy Chaudary 1996 Fourth Latin American and Caribbean Petroleum Engineering Conference No. SPE 36127 (Port of Spain: Society of Petroleum Engineers, Inc.) p 501-511
[13] Carroll, J.; and Mather, A. E. The solubility of hydrogen sulfide in water from 0 to 90 °C and pressures to 1 MPa. Geochim. Cosmochim. Acta 1989, 53, 1163-1170.
[14] Crovettro, R. Evaluation of solubility data for the system CO2-H2O from 273 K to the critical point of water, J. Phys. Chem. Ref. Data, 1991, 20, 575–589.
[15] Davison, W. The solubility of iron sulfides in synthetic and natural waters at ambient temperature. Aquatic Sciences, 1991, 53, 309–329.
[16] Davison, W.; Phillips, N.; and Tabner, B.J. Soluble iron sulfide species in natural waters: reappraisal of their stoichiometry and stability constants. Aquatic Sci., 1999, 61, 23–43.
[17] De Bruyn, W. J.; Swartz, E.; Hu, J. H.; Shorter, J. A.; Davidovits, P.; Worsnop, D. R.; Zahniser, M. S.; and Kolb, C. E. Henry’s law solubilities and ‘Setchenow coefficients for biogenic reduced sulfur species obtained from gas-liquid uptake measurements. J. Geophys. Res., 1995b, 100D, 7245–7251.
[18] Denny A. Jones 1996 Principles and Prevention of Corrosion 2nd edition (New Jersey: Prentice-Hall, Inc.) p 5
[19] Dickson, A.G.; and Millero, F.J. A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res., 1987, 34, 1733-1743.
[20] Doyle, R. W. Identification and solubility of iron sulfide in anaerobic lake sediment. Am. J. Sci. 1968, 266, 980-984.
[21] Edwards, F. H.; Newell, R. G.; and Prausnitz, J. M. Vapor liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes, AIChE J., 1978, 24, 966–976.
[22] Ellis, A. J.; and Golding, R. M. Spectrophotometric determination of acid dissociation constant of hydrogen sulfide. J. Chem. Soc. 1959, 127-130.
[23] Ellis, A. J.; and Giggenbach, W. Hydrogen sulfide ionization and sulfur hydrolysis in high temperature solution. Geochim Cosmochim. Acta 1971, 35, 247-260.
[24] Fernández-Prini, R.; Alvarez, J. L.; and Harvey, A. H. Henry’s constants and vapor-liquid distribution constants for gaseous solutes in H2O and D2O at high temperatures, J. Phys. Chem. Ref. Data, 2003, 32, 903–916.
[25] Flaschka, H. A.; Barnard, A. J.; and Jr. Starrock, P. E. Quantitative Analytical Chemistry, 2nd Edition; Willard Grant Press: Boston, MA, 1980.
[26] Greenberg, J. and Tomson, M. Precipitation and dissolution kinetics and equilibria of aqueous ferrous carbonate vs temperature. Appl. Geochem. 1992, 7, 185–190.
[27] G. H. Al-Aithan, F. M. Al-Mutahar, J. R. Shadley, S. A. Shirazi, E. F. Rybicick and K. P. Roberts 2014
Corrosion 2014 No. 3854 (San Antonio: NACE International) p 1-15
[28] Giggenbach, W. Optical spectra of highly alkaline sulfide solutions and the second dissociation constant of hydrogen sulfide. Inorg. Chem. 1971, 10, 1333-1338.
[29] Goyet, C.; and Poisson, A. New determination of carbonic acid dissociation constants in seawater as a function of temperature and salinity. Deep-Sea Res., 1989, 36, 1635-1654.
[30] Hansson, I. A new set of acidity constants for carbonic acid and boric acid in seawater. Deep-Sea Res., 1973, 20, 461 478.
[31] Hogfeldt, E.; IUPAC. Stability Constants of Metal-Ion Complexes, Part A: Inorganic Ligands; Pergamon Press: Oxford, U.K., 1982.
[32] Jensen, D. L.; Boddum, J. K.; Tjell, J. C.; and Christensen, T. H. The solubility of rhodochrosite (MnCO₃) and siderite (FeCO₃) in anaerobic aquatic environments. Applied Geochemistry 17 (2002) 503–511.
[33] Johansson, O.; and Wedborg, M. On the evaluation of potentiometric titrations of seawater with hydrochloric acid. Oceanologica Acta., 1982, 5, 209-218.
[34] Kharaka, Y. K.; Perkins, E. H.; Gunter, W. D.; Debral, J. D.; and Bamford, C. H. Solmineq 88: A Computer Program for Geochemical Modeling of Water Rock Interactions; Alberta Research Council: Menlo Park, CA, 1989.
[35] Koltzoff, I. M.; Sandell, E. B.; Meehan, E. J.; and Bruckenstein, S. Quantitative Chemical Analysis, 4th Edition; Macmillan: London, 1969.
[36] Latimer, W.M. The oxidation states of the elements and their potentials in aqueous solutions. Prentice Hall Chemistry Series. 1952. Prentice Hall, Englewood Cliffs, NJ.
[37] Maronny, G. Constants de dissociation de l’hydrogen sulfure. Electrochim. Acta 1959, 1, 58-69.
[38] Mehrbach, C. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr., 1973, 18, 897-907.
[39] Millero, F.J. The thermodynamics of the carbonic acid system in seawater. Geochim. Cosmochim. Acta, 1979, 43, 1651-1661.
[40] Millero, F. J. The thermodynamics and kinetics of the hydrogen sulfide system in natural waters. Mar. Chem. 1986, 18, 121-147.
[41] Muhammad, S. S.; and Sundararam, E. V. The spectrophotometric determination of the dissociation constants of hydrogen sulfide. J. Aci. Ind. Res. 1961, sect. B 20, 16-18.
[42] Morse, J. W.; Millero, F. J.; Cornwell, J. C.; and Richard, D. The chemistry of the hydrogen sulfide and iron sulfide systems in natural waters. Earth Sci. Rev. 1987, 24, 1-42.
[43] Nordsveen, M.; Nesic, S.; Nyborg, R.; and Stangeland, A. A mechanistic model for carbon dioxide corrosion of mild steel in the presence of protective iron carbonate films Part 1: theory and verification. Corrosion 2003, 59, 443-457.
[44] Oddo, J. E.; and Tomson, M.B. Simplified Calculation of CaCO₃ Saturation at High Temperatures and Pressure in Brine Solutions, J. of Petroleum Technology, 1982, pp.1583-1590.
[45] Plath, D. C.; Johnson, K. S.; and Pytkowicz, R. M. The solubility of calcite--probably containing magnesium--in seawater. Marine Chemistry, 1980, 10, 9-29.
[46] Pohl, H. A. Solubility of iron sulfides. J. Chem. Eng. Data 1962, 7, 295-306.
[47] Prieto, F. J. M.; and Millero, F. J. The values of pK₁ + pK₂ for the dissociation of carbonic acid in seawater. Geochimica et Cosmochimica Acta Vol. 66, 2002, No. 14, pp. 2529–2540.
[48] Ptacek, C.J.; and Blowe, D.W. Influence of Siderite on the pore-water chemistry of inactive mine-tailings impoundments. In: Alpers, C.N., Blowe, D.W. (Eds.), Environmental Geochemistry of Sulfide Oxidation. 1994, American Chemical Society, Washington, DC, pp. 172–189. (Chapter 13).
[49] Ptacek, C.J.; and Reardon, E.J. Solubility of siderite (FeCO₃) in concentrated NaCl and Na₂SO₄ solutions at 25 °C. Water-Rock Interaction, 1993, 181–183.
[50] Rao, S. R.; and Hepler, L. G. Equilibrium constants and thermodynamics of ionization of aqueous hydrogen sulfide. Elsevier Scientific Publishing Company: Amsterdam, 1977, 293-299.
[51] Reiterer, F.; Johannes, W.; and Gamsjager, H. V. Semimicro determination of solubility constants: copper(II) carbonate and iron(II) carbonate. Mikrochim. Acta., 1981, 1, 63–72.
[52] Richard Woollam, Kavitha Tummala, Jose Vera and Sandra Hernandez. 2011 Corrosion 2011 No. 11076 (Houston: NACE International) p 1-14
[53] Rickard, D. The solubility of FeS. Geochimica et Cosmochimica Acta., 2006, 70, 5779–5789.
[54] Ringborn, A. Solubility of Sulfides, A Report to the Analytical Section of IUPAC, 1953.
[55] Rinker, E. B.; and Sandall, O. C. Physical solubility of hydrogen sulfide in several aqueous solvents, Can. J. Chem. Eng., 2000, 78, 232–236.
[56] Roberts, B. E. Vapor liquid equilibrium calculations for dilute aqueous solutions of CO2, H2S, NH3 and NaOH to 300 °C. Can. J. Chem. Eng. 1985, 63, 294-300.

[57] R. K. Santoso, I. Fauzi and S. D. Rahmawati 2015 SPE Asia Pacific Oil and Gas Conference and Exhibition No. SPE 176192 (Bali: Society of Petroleum Engineers, Inc.) p 1-17

[58] Roy, R. N.; Roy, L. N.; Vogel, K. M.; Porter-Moore, C.; Pearson, T.; Good, C. E.; Millero, F. J.; and Campbell, D. M. The dissociation constants of carbonic acid in seawater at salinities 5 to 45 and temperatures 0 to 45°C. Mar. Chem. 1993, 44, 249–267.

[59] Sander, S. P.; Abbatt, J.; Barker, J. R.; Burkholder, J. B.; Friedl, R. R.; Golden, D. M.; Huie, R. E.; Kolb, C. E.; Kurylo, M. J.; Moortgat, G. K.; Orkin, V. L.; and Wine, P. H. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10-6, 2011, Jet Propulsion Laboratory, Pasadena, available at: http://jpldataeval.jpl.nasa.gov (last access: 22 June 2016).

[60] Sander, R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos. Chem. Phys., 2015, 15, 4399–4981.

[61] Singer, P.C.; and Stumm, W. The solubility of ferrous iron in carbonate-bearing waters. J. Am. Water Works Assoc. 1970, 62, 198–202.

[62] Smith, H.J. Equilibrium in the system: ferrous carbonate, carbon dioxide and water. J. Am. Chem. Soc. 1918, 40, 879–883.

[63] S. Nesic, S. Wang, H. Fang, W. Sun and K. K-L. Lee 2008 Corrosion 2008 Conference and Expo No. 08535 (Houston: NACE International) p 1-16

[64] Suleimenov, O. M.; and Krupp, R. E. Solubility of hydrogen sulfide in pure water and in NaCl solutions, from 20 to 320 °C and at saturation pressures. Geochim. Cosmochim. Acta 1994, 58, 2433-2444.

[65] Suleimenov, O. M.; and Seward, T. M. A spectrophotometric study of hydrogen sulfide ionization in aqueous solutions to 350 °C. Geochim. Cosmochim. Acta 1997, 61, 5187-5198.

[66] Sun, W.; Nesic, S.; Young, D.; and Woollam, R. C. Equilibrium Expressions Related to the Solubility of the Sour Corrosion Product Mackinawite. Ind. Eng. Chem. Res. 2008, 47, 1738-1742.

[67] Stephens, H.P.; and Cobble, J.W. Thermodynamic properties of the aqueous sulfide and bisulfide ions and the second ionization constant of hydrogen sulfide over extended temperatures. Inorg. Chem., 1971, 10: 619–625.

[68] Tewari, P.H.; Wallace, G.; and Campbell, A.B. The solubility of iron sulphides and their role in mass transport in Girdler- Sulphide heavy water plants. Report of the Atomic Energy Canada AECL-5960, 1978, 1–34.

[69] T. Shibata 1996 Corrosion November 1996 813

[70] Tsieonopoulos, C.; Coulson, D. M.; and Inman, L. B. Ionization Constants of Water Pollutants. J. Chem. Eng. Data, 1976, 21 (2), pp 190–193

[71] Weiss, R. F. Carbon dioxide in water and seawater: The solubility of a non-ideal gas, Mar. Chem., 1974, 2, 203–215.

[72] Weiss, R. F. The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Res. 1970, 17, 721-735.

[73] Wei Sun and Srdjan Nesic 2007 Corrosion 2007 Conference and Expo No. 07655 (Houston: NACE International) p 1-26

[74] Wilhelm, E.; Battino, R.; and Wilcock, R. J. Low-pressure solubility of gases in liquid water, Chem. Rev. 1977, 77, 219–262.

[75] Wright, R. H.; and Maass, O. The solubility of hydrogen sulfide in water from the vapour pressures of the solutions. Can. J. Res. 1932, 6, 94-101.

[76] Yoo, K. P.; Lee, S. Y.; and Lee, W. H. Ionization and Henry’s law constants for volatile, weak electrolyte water pollutants, Korean J. Chem. Eng., 1986, 3, 67–72.

[77] Zheng, D. Q.; Guo, T. M.; and Knapp, H. Experimental and modeling studies on the solubility of CO2, CHClF2, CHF3, C2H6F2 and C3H8F2 in water and aqueous NaCl solutions under low pressures, Fluid Phase Equilib., 1997, 129, 197–209.