A note on volume thresholds for random polytopes

Debsoumya Chakraborti∗ Tomasz Tkocz† Beatrice-Helen Vritsiou‡

1st November 2020

Abstract

We study the expected volume of random polytopes generated by taking the convex hull of independent identically distributed points from a given distribution. We show that, for log-concave distributions supported on convex bodies, we need at least exponentially many (in dimension) samples for the expected volume to be significant, and that super-exponentially many samples suffice for κ-concave measures when their parameter of concavity κ is positive.

2020 Mathematics Subject Classification. Primary 52A23; Secondary 52A22, 60D05;

Key words. random polytopes, convex bodies, log-concave measures, volume threshold, high dimensions.

1 Introduction

Let X_1, X_2, \ldots be independent identically distributed (i.i.d.) random vectors uniform on a set K in \mathbb{R}^n. Let

$$K_N = \operatorname{conv}\{X_1, \ldots, X_N\}. \quad (1)$$

We are interested in bounds on the number N of points needed for the volume $|K_N|$ of K_N to be asymptotic in expectation to the volume $|\operatorname{conv} K|$ of the convex hull of K as $n \to \infty$. In the pioneering work [12], Dyer, Füredi and McDiarmid established sharp thresholds for the vertices of the cube $K = \{-1,1\}^n$, as well as for the solid cube $K = [-1,1]^n$. More precisely, they showed that for every $\varepsilon > 0$,

$$\frac{\mathbb{E}|K_N|}{2^n} \xrightarrow{n \to \infty} \begin{cases} 0, & \text{if } N \leq (\nu - \varepsilon)^n \\ 1, & \text{if } N \geq (\nu + \varepsilon)^n \end{cases}, \quad (2)$$

where for $K = \{-1,1\}^n$, we have $\nu = 2/\sqrt{e} = 1.213...$ and for $K = [-1,1]^n$, we have $\nu = 2\pi e^{-\gamma-1/2} = 2.139...$ (see also [13]). For further generalisations establishing sharp exponential thresholds see [16] (in a situation when the X_i are not uniform on a set but have i.i.d. components compactly supported in an interval).

The case of a Euclidean ball is different. Pivovarov showed in [22] (see also [7]) that when

$$K = B_2^n = \{x \in \mathbb{R}^n, \sum x_i^2 \leq 1\},$$

the threshold is superexponential, that is for every $\varepsilon > 0$,

$$\frac{\mathbb{E}|K_N|}{|K|} \xrightarrow{n \to \infty} \begin{cases} 0, & \text{if } N \leq e^{(1-\varepsilon)\frac{1}{2n} \log n} \\ 1, & \text{if } N \geq e^{(1+\varepsilon)\frac{1}{2n} \log n} \end{cases}. \quad (3)$$

∗Carnegie Mellon University; Pittsburgh, PA 15213, USA. Email: dchakrab@andrew.cmu.edu.
†Carnegie Mellon University; Pittsburgh, PA 15213, USA. Email: ttkocz@math.cmu.edu. Research supported in part by the Collaboration Grants from the Simons Foundation and NSF grant DMS-1955175.
‡University of Alberta; Edmonton, AB T6G 2G1, Canada. Email: vritsiou@ualberta.ca.
He additionally considered the situation when the X_i are not uniform on a set but are Gaussian.

In recent works [7, 8], the authors study the case of the X_i having rotationally invariant densities of the form const\((1 - \sum x_i^2)^\beta \mathbf{1}_{B_2}, \beta > -1 \). This is the so-called Beta model of random polytopes attracting considerable attention in stochastic geometry. In particular, $\beta = 0$ corresponds to the uniform distribution on the unit ball and the limiting case $\beta \to -1$ corresponds to the uniform distribution on the unit sphere. As established in [7], the threshold here is as follows: for every constant $\epsilon \in (0, 1)$ and sequences $N = N(n)$, $-1 < \beta = \beta(n)$, we have

\[
\frac{E[K_N]}{|B_2^n|} \xrightarrow{n \to \infty} \begin{cases}
0, & \text{if } N \leq e^{(1-\epsilon)(\frac{2}{\epsilon^2} + \beta) \log n} \\
1, & \text{if } N \geq e^{(1+\epsilon)(\frac{2}{\epsilon^2} + \beta) \log n} \end{cases}
\]

(4)

which was further refined in [8]: for every positive constant c, the limit is e^{-c} if N grows like $e^{(\frac{2}{\epsilon^2} + \beta) \log n}$ as $n \to \infty$.

We would like to focus on establishing general bounds for some large natural families of distributions. Specifically, suppose that for each dimension n, we are given a family $\{\mu_{n,i}\}_{i \in I_n}$ of probability measures such that each $\mu_{n,i}$ is supported on a compact set $V_{n,i}$ in \mathbb{R}^n. We would like to find the largest number N_0 and the smallest number N_1 (in terms of n and some parameters of the family) such that for every $\mu_{n,i}$ from the family, $\frac{E[K_{V_{n,i}}]}{|\text{conv}V_{n,i}|} = o(1)$ for $N \leq N_0$ and $\frac{E[K_{V_{n,i}}]}{|\text{conv}V_{n,i}|} = 1 - o(1)$ for $N \geq N_1$ as $n \to \infty$. (K_N is a random polytope given by (1) with X_1, X_2, \ldots being i.i.d. drawn from $\mu_{n,i}$).

For instance, the examples of the cube and the ball suggest that the family of uniform measures on convex bodies, N_0 is exponential and N_1 is super-exponential in n.

In fact, the latter can be quickly deduced from a classical result by Groemer from [17], combined with the thresholds for Euclidean balls established by Pivovarov in [22]. Groemer’s theorem says that for every $N > n$, we have

\[
E[|\text{conv}\{X_1, \ldots, X_N\}|] \geq E[|\text{conv}\{Y_1, \ldots, Y_N\}|],
\]

where the X_i are i.i.d. uniform on a convex set K and the Y_i are i.i.d. uniform on a Euclidean ball with the same volume as K. We thus get from (3) that

\[
\frac{1}{|K|}E[|\text{conv}\{X_1, \ldots, X_N\}|] = 1 - o(1),
\]

(5)

as long as $N \geq e^{(1+\epsilon)\frac{2}{\epsilon^2} \log n}$.

In this work, we shall establish an exponential bound on N_0 for the family of log-concave distributions on convex sets and extend (5) to the family of the so-called κ-concave distributions.

Acknowledgements. We would like to thank Alan Frieze for many helpful discussions. We are indebted to an anonymous referee for carefully reading our manuscript and for a very helpful report significantly improving the paper.

2 Results

Recall that a Borel probability measure μ on \mathbb{R}^n is κ-concave, $\kappa \in [-\infty, \frac{1}{\lambda}]$, if for every $\lambda \in [0, 1]$ and every Borel sets A, B in \mathbb{R}^n, we have

\[
\mu(\lambda A + (1 - \lambda)B) \geq \left(\lambda \mu(A)^\kappa + (1 - \lambda)\mu(B)^\kappa\right)^{1/\kappa}.
\]
(for background on \(\kappa \)-concave measures see e.g. [9, 10] or Section 2.1.1 in [11]). We say that a random vector is \(\kappa \)-concave if its law is \(\kappa \)-concave. For example, vectors uniform on convex bodies in \(\mathbb{R}^n \) are \(1/n \)-concave by the Brunn-Minkowski inequality. The right hand side increases with \(\kappa \), so as \(\kappa \) increases, the class of \(\kappa \)-concave measures becomes smaller. It is a natural extension of the class of log-concave random vectors, corresponding to \(\kappa = 0 \), with the right hand side in the defining inequality understood as the limit \(\kappa \to 0^+ \). Many results for convex sets have analogues for concave measures (for instance, see [4, 5, 6, 14, 18]).

Consider \(\kappa \in (0, 1/n) \). By Borell’s theorem from [9], a \(\kappa \)-concave random vector is supported on a convex body, has a density and its density is a \(1/\kappa \)-concave function, that is of the form \(h^\beta \) for a concave function \(h \) with \(\beta = \frac{1}{1-\kappa} \). The notion of \(\kappa \)-concavity was introduced and studied by Borell in [9, 10], which are standard references on this topic.

We also recall that a random vector \(X \) in \(\mathbb{R}^n \) is isotropic if it is centred, that is \(\mathbb{E}X = 0 \) and its covariance matrix \(\text{Cov}(X) = [\mathbb{E}X_iX_j]_{i,j \leq n} \) is the identity matrix. The isotropic constant \(L_X \) of a log-concave random vector \(X \) which is isotropic and has density \(f \) on \(\mathbb{R}^n \) is defined as \(L_X = (\text{ess sup}_{\mathbb{R}^n} f)^{1/n} \) (see e.g. [11]). By Borell’s theorem, every log-concave random vector in \(\mathbb{R}^n \) is supported on an affine subspace of \(\mathbb{R}^n \) and has a density with respect to Lebesgue measure on that subspace.

Our first main result suggests a necessary condition on \(N \) (in the form of a lower bound for \(N \) exponential in the dimension \(n \)) so that \(\mathbb{E}|K_N| \) will be significant in the case of symmetric log-concave distributions supported in convex bodies. We recall that a measure \(\mu \) on \(\mathbb{R}^n \) is symmetric (sometimes also called even) if \(\mu(A) = \mu(-A) \) for every \(\mu \)-measurable set \(A \) in \(\mathbb{R}^n \).

Theorem 1. Let \(\mu \) be a symmetric log-concave probability measure supported on a convex body \(K \) in \(\mathbb{R}^n \). Let \(X_1, X_2, \ldots \) be i.i.d. random vectors distributed according to \(\mu \). Let \(K_N = \text{conv}\{X_1, \ldots, X_N\} \). There are universal positive constants \(c_1, c_2 \) such that if \(N \leq e^{n/\beta L^2_\mu} \), then

\[
\frac{\mathbb{E}|K_N|}{|K|} \leq e^{-c_2 n/L^2_\mu},
\]

where \(L_\mu \) is the isotropic constant of \(\mu \).

Our second main result provides a sufficient condition on \(N \) so that \(\mathbb{E}|K_N| \) will be significant in the case of \(\kappa \)-concave distributions.

Theorem 2. Let \(\mu \) be a symmetric \(\kappa \)-concave measure on \(\mathbb{R}^n \) with \(\kappa \in (0, 1/n) \), supported on a convex body \(K \) in \(\mathbb{R}^n \). Let \(X_1, X_2, \ldots \) be i.i.d. random vectors uniformly distributed according to \(\mu \). Let \(K_N = \text{conv}\{X_1, \ldots, X_N\} \). There is a universal constant \(C \) such that for every \(\omega > C \), if \(N \geq e^{\frac{1}{2}(\log n + 2 \log \omega)} \), then

\[
\frac{\mathbb{E}|K_N|}{|K|} \geq 1 - \frac{1}{\omega}.
\]

3 Floating bodies

It turns out that the following quasi-concave function plays a crucial role in estimates for the expected volume of the convex hull of random points (see [2, 3, 12]): for a random vector \(X \) in \(\mathbb{R}^n \) define

\[
q_X(x) = \inf\{P(X \in H) : H \text{ half-space containing } x\}, \quad x \in \mathbb{R}^n.
\]
It is clear that \(q(\lambda x + (1 - \lambda)y) \geq \min\{q(x), q(y)\} \), because if a half-space \(H \) contains \(\lambda x + (1 - \lambda)y \), it also contains \(x \) or \(y \). Consequently, superlevel sets
\[
L_{q, \delta} = \{ x \in \mathbb{R}^n, q_X(x) \geq \delta \}
\]
of this function are convex. Another way of looking at these sets is by noting that they are intersections of half-spaces: \(L_{q, \delta} = \bigcap\{ H : H \text{ is a half-space, } \mathbb{P}(X \in H) > 1 - \delta \} \).
When \(X \) is uniform on a convex set \(K \), they are called convex floating bodies (\(K \setminus L_{q, \delta} \) is called a wet part). The function \(q_X \) in statistics is called the Tukey or half-space depth of \(X \). The two notions have been recently surveyed in [21].

A key lemma from [12] relates the volume of random convex hulls of i.i.d. samples of \(X \) to the volume of the level sets \(L_{q, \delta} \). Bounds on the latter are obtained by a combination of elementary convexity arguments and deep results from asymptotic convex geometry (notably, Paouris’ reversal of the \(L_p \)-affine isoperimetric inequality due to Lutwak, Yang and Zhang). We shall present these and all the necessary background material in Section 4. Section 5 is devoted to our proofs.

4 Auxiliary results

4.1 Log-concave and \(\kappa \)-concave measures

Theorem 4.3 from [10] provides in particular the following stability of \(\kappa \)-concavity with respect to taking marginals: if \(\kappa \in (0, \frac{1}{n}) \) and \(f \) is the density of a \(\kappa \)-concave random vector in \(\mathbb{R}^n \), then
\[
\text{the marginal } x \mapsto \int_{\mathbb{R}^{n-1}} f(x, y) \, dy \text{ is a } \frac{\kappa}{1 - \kappa} \text{-concave function.} \tag{8}
\]
We will also need the following basic estimate: if \(g : \mathbb{R} \to [0, +\infty) \) is the density of a log-concave random variable \(X \) with \(\mathbb{E}X = 0 \) and \(\mathbb{E}X^2 = 1 \), then
\[
\frac{1}{2\sqrt{3e}} \leq g(0) \leq \sqrt{2} \tag{9}
\]
(see e.g. Chapter 10.6 in [1]).

4.2 Central lemma

The idea of using floating bodies to estimate volume of random polytopes goes back to [3]. The following is a key lemma from [12] (called by the authors “central”) about asymptotically matching upper and lower bounds for the volume of the random convex hull.

Lemma 3 ([12]). Suppose \(X_1, X_2, \ldots \) are i.i.d. random vectors in \(\mathbb{R}^n \). Let \(K_N = \text{conv}\{X_1, \ldots, X_N\} \) and define \(q = q_X \), by (6). Then for every Borel subset \(A \) of \(\mathbb{R}^n \), we have
\[
\mathbb{E}|K_N| \leq |A| + N \cdot \left(\sup_{A^c} q \right) |A^c \cap \{ x \in \mathbb{R}^n, q(x) > 0 \}| \tag{10}
\]
and, if additionally \(\mu \) assigns zero mass to every hyperplane in \(\mathbb{R}^n \), then
\[
\mathbb{E}|K_N| \geq |A| \left(1 - 2 \left(\frac{N}{n} \right) \left(1 - \inf_{A} q \right)^{N-n} \right) \tag{11}
\]
(The proof therein concerns only the cube, but their argument repeated verbatim justifies our general situation as well – see also [16].)
4.3 Bounds related to the function \(q \)

Lemma 3 is applied to level sets \(L_{q,\delta} \) of the function \(q \) (see (7)). We gather here several remarks concerning bounds for the volume of such sets. For the upper bound, we will need the containment \(L_{q,\delta} \subset cZ_\alpha(X) \), where \(c \) is a universal constant and \(Z_\alpha \) is the centroid body (defined below). This was perhaps first observed in Theorem 2.2 in [28] (with a reverse inclusion as well). We recall an argument below.

Remark 4. Plainly, for the infimum in the definition (6) of \(q_X(x) \), it is enough to take half-spaces for which \(x \) is on the boundary, that is

\[
q_X(x) = \inf_{\theta \in \mathbb{R}^n} \mathbb{P}(\langle X - x, \theta \rangle \geq 0),
\]

where \(\langle u, v \rangle = \sum u_i v_i \) is the standard scalar product in \(\mathbb{R}^n \). Of course, by homogeneity, this infimum can be taken only over unit vectors. We also remark that by Chebyshev’s inequality,

\[
\mathbb{P}(\langle X - x, \theta \rangle \geq 0) \leq e^{-\langle \theta, x \rangle} E_e^{\langle \theta, X \rangle}.
\]

Consequently,

\[
q_X(x) \leq \exp \left(- \sup_{\theta \in \mathbb{R}^n} \left\{ \langle \theta, x \rangle - \log E_e^{\langle \theta, X \rangle} \right\} \right)
\]

and we have arrived at the Legendre transform \(\Lambda^*_X \) of the log-moment generating function \(\Lambda_X \) of \(X \),

\[
\Lambda_X(x) = \log E_e^{\langle x, X \rangle} \quad \text{and} \quad \Lambda^*_X(x) = \sup_{\theta \in \mathbb{R}^n} \{ \langle \theta, x \rangle - \Lambda_X(\theta) \}.
\]

Thus, for every \(\alpha > 0 \), we have

\[
\{ x \in \mathbb{R}^n, \ q_X(x) > e^{-\alpha} \} \subset \{ x \in \mathbb{R}^n, \ \Lambda^*_X(x) < \alpha \}. \tag{13}
\]

Remark 5. The level sets \(\{ \Lambda^*_X < \alpha \} \) have appeared in a different context of the so-called optimal concentration inequalities introduced by Latala and Wojtaszczyk in [19]. Modulo universal constants, they turn out to be equivalent to centroid bodies playing a major role in asymptotic convex geometry (see [20, 23, 24, 25, 26]). Specifically, for a random vector \(X \) in \(\mathbb{R}^n \) and \(\alpha \geq 1 \), we define its \(L_\alpha \)-centroid body \(Z_\alpha(X) \) by

\[
Z_\alpha(X) = \{ x \in \mathbb{R}^n, \sup \left\{ \langle x, \theta \rangle, \ E |\langle X, \theta \rangle|^\alpha \leq 1 \right\} \leq 1 \}
\]

(equivalently, the support function of \(Z_\alpha(X) \) is \(\theta \mapsto (E |\langle X, \theta \rangle|^\alpha)^{1/\alpha} \)). By Propositions 3.5 and 3.8 from [19], if \(X \) is a symmetric log-concave random vector \(X \) (in particular, uniform on a symmetric convex body),

\[
\{ \Lambda^*_X < \alpha \} \subset 4e Z_\alpha(X), \quad \alpha \geq 2. \tag{14}
\]

(A reverse inclusion \(Z_\alpha(X) \subset 2^{1/\alpha} e \{ \Lambda^*_X < \alpha \} \) holds for any symmetric random vector, see Proposition 3.2 therein.)

We shall need an upper bound for the volume of centroid bodies. This was done by Paouris (see [25]). Specifically, Theorem 5.1.17 from [11] says that if \(X \) is an isotropic log-concave random vector in \(\mathbb{R}^n \), then

\[
|Z_\alpha(X)|^{1/n} \leq C \sqrt{\frac{\alpha}{n}}, \quad 2 \leq \alpha \leq n, \tag{15}
\]

where \(C \) is a universal constant.
Remark 6. Significant amount of work in [12] was devoted to showing that, for the cube, inclusion (13) is nearly tight (for correct values of α, using exponential tilting of measures typically involved in establishing large deviation principles). We shall take a different route and put a direct lower bound on q_X described in the following lemma. Our argument is based on property (8).

Lemma 7. Let $\kappa \in (0, \frac{1}{n})$. Let X be a symmetric isotropic κ-concave random vector supported on a convex body K in \mathbb{R}^n. Then for every unit vector θ in \mathbb{R}^n and $a > 0$, we have

$$
\mathbb{P}(\langle X, \theta \rangle > a) \geq \frac{1}{16} \kappa \left(1 - \frac{\alpha}{h_K(\theta)} \right)^{1/\kappa},
$$

where $h_K(\theta) = \sup_{y \in K} \langle y, \theta \rangle$ is the support function of K. In particular, denoting the norm given by K as $\| \cdot \|_K$, we have

$$
q_X(x) \geq \frac{1}{16} \kappa \left(1 - \| x \|_K \right)^{1/\kappa}, \quad x \in K.
$$

Proof. Consider the density g of $\langle X, \theta \rangle$. Let $b = h_K(\theta)$. Note that g is supported in $[-b, b]$. By (8), $g^{1/\kappa}$ is concave, thus on $[0, b]$ we can lower-bound it by a linear function whose values agree at the end points,

$$
g(t) \leq g(0) \left(1 - \frac{t}{b} \right), \quad t \in [0, b].
$$

This gives

$$
\mathbb{P}(\langle X, \theta \rangle > a) = \int_a^b g(t) dt \geq g(0) \int_a^b \left(1 - \frac{t}{b} \right)^{1/\kappa} dt = \kappa g(0) \left(1 - \frac{a}{b} \right)^{1/\kappa}.
$$

Since $\langle X, \theta \rangle$ is in particular log-concave, by (9), we have $\frac{1}{2\sqrt{2\pi}} \leq g(0) \leq \sqrt{2}$. Moreover, by isotropicity,

$$
1 = \mathbb{E} \langle X, \theta \rangle^2 = \int_{-b}^b t^2 g(t) dt \leq b^2 \int_{-b}^b g(t) dt = b^2.
$$

Thus, say $g(0)b > \frac{1}{16}$ and we get (16). To see (17), first recall (12). By symmetry, $\mathbb{P}(\langle X - x, \theta \rangle \geq 0) = \mathbb{P}(\langle X, \theta \rangle \geq \| \langle x, \theta \rangle \|)$, so we use (16) with $a = \| \langle x, \theta \rangle \|$ and note that by the definition of h_K, $\left(\frac{\langle x, \theta \rangle}{h_K(\theta)} \right) \leq h_K(\theta), \quad \frac{\langle x, \theta \rangle}{h_K(\theta)} \leq \| x \|_K$. □

5 Proofs

5.1 Proof of Theorem 1

Since the quantity $\frac{\mathbb{E}|K_N|}{|K|}$ does not change under invertible linear transformations applied to μ, without loss of generality we can assume that μ is isotropic. Let $q = q_X$ be defined by (6). Fix $\alpha > 0$ and apply (10) to the set $A = \{ x, \ q(x) > e^{-\alpha} \}$. We get

$$
\frac{\mathbb{E}|K_N|}{|K|} \leq \frac{|A|}{|K|} + Ne^{-\alpha}
$$

(we have used $\{ x, \ q(x) > 0 \} \subset K$ to estimate the last factor in (10) by 1). Combining (13), (14) and (15),

$$
|A| \leq |4eZ_{\alpha}(X)| \leq \left(4eC \sqrt{\frac{\alpha}{n}} \right)^n.
$$
Moreover, by the definition of the isotropic constant of μ,

$$1 = \int_K d\mu \leq L_n^\alpha |K|.$$

Thus,

$$\frac{|A|}{|K|} \leq \left(4eCL\mu \sqrt{\frac{\alpha}{n}} \right)^n.$$

We set α such that $4eCL\mu \sqrt{\frac{\alpha}{n}} = e^{-1}$ and adjust the constants to finish the proof. \hfill \square

5.2 Proof of Theorem 2

As in the proof of Theorem 1, we can assume that μ is isotropic. Let $q = q\mathcal{X}_n$ be defined by (6). Consider $0 < \beta < 1$ (to be fixed shortly). By (11) which we apply to the set $A = \{x \in K, \ q(x) > \beta^{1/\kappa}\}$, we have

$$E|K|N|K| \geq |A| |K| \left(1 - 2\frac{n}{N} \left(1 - \beta^{1/\kappa} \right)^{N-n} \right).$$

(The extra assumption needed in (11) is satisfied: by Borell’s theorem from [9], μ has a density on its support which by our assumption is n-dimensional, hence $\mu(H) = 0$ for every hyperplane H in \mathbb{R}^n.) By the lower bound on q from (17),

$$A \supset \{x \in \mathbb{R}^n, \ ||x||_K \leq 1 - (16\kappa^{-1})^{\kappa}\beta\},$$

hence, as long as $(16\kappa^{-1})^{\kappa}\beta < 1$,

$$\frac{|A|}{|K|} \geq 1 - (16\kappa^{-1})^{\kappa}\beta \geq 1 - n(16\kappa^{-1})^{\kappa}\beta \geq 1 - 32n\beta.$$

We choose β such that $32n\beta = 1/e^\omega$ and crudely deal with the second term,

$$\left(\frac{n}{N} \right) \left(1 - \beta^{1/\kappa} \right)^{N-n} \leq N^n e^{-\beta^{1/\kappa}(N-n)},$$

which is nonincreasing in N as long as $N \geq n\beta^{-1/\kappa}$. This holds for ω large enough if, say $N \geq n^{1/\kappa}\omega^{2/\kappa}$. Then we easily conclude that the dominant term above is $e^{-\beta^{1/\kappa}N}$ which yields, say

$$E|K|N|K| \geq \left(1 - \frac{1}{2\omega} \right) \left(1 - 2e^{-\omega^{2/\kappa}} \right) \geq 1 - \frac{1}{\omega},$$

provided that n and ω are large enough. \hfill \square

6 Final remarks

Remark 8. Groemer’s result used in (5) for uniform distributions has been substantially generalised by Paouris and Pivovarov in [27] to arbitrary distributions with bounded densities. We remark that in contrast to (5), using the extremality result of the ball from [27] does not seem to help obtain bounds from Theorem 2 for two reasons. For one, it concerns bounded densities and rescaling will cost an exponential factor. Moreover, for the example of β-polytopes from [7], we have that they are generated by κ-concave measures with $\kappa = \frac{1}{\beta+n}$ and the sharp threshold for the volume is of the order $n^{(\beta+n/2)}$ (see (3)). The ball would give that $N_1 = n^{(1+\epsilon)n/2}$ points is enough.
Remark 9. The example of beta polytopes from (3) shows that the bound on N in Theorem 2 has to be at least of the order $n^{\beta_2+n/2} = n^{1+n/2} \geq n^{1/2}$. Our bound $n^{1/2}$ is perhaps suboptimal. It is not inconceivable that as in the uniform case, the extremal example is supported on a Euclidean ball.

Remark 10. It is reasonable to ask about sharp thresholds like the ones in (2), (3) and (4) for other sequences of convex bodies, say simplices, cross-polytopes, or in general ℓ_p-balls. This is a subject of ongoing work. We refer to [15] for recent results establishing exponential nonsharp thresholds for a simplex (i.e. with a gap between the constants for lower and upper bounds).

References

[1] Artstein-Avidan, S., Giannopoulos, A., Milman, V., Asymptotic geometric analysis. Part I. Mathematical Surveys and Monographs, 202. American Mathematical Society, Providence, RI, 2015.

[2] Bárány, I., Random polytopes, convex bodies, and approximation. Stochastic geometry, 77–118, Lecture Notes in Math., 1892, Springer, Berlin, 2007.

[3] Bárány, I., Larman, D. G., Convex bodies, economic cap coverings, random polytopes. Mathematika 35 (1988), no. 2, 274–291.

[4] Bobkov, S., Large deviations and isoperimetry over convex probability measures with heavy tails. Electron. J. Probab. 12 (2007), 1072–1100.

[5] Bobkov, S., Convex bodies and norms associated to convex measures. Probab. Theory Related Fields 147 (2010), no. 1-2, 303–332.

[6] Bobkov, S. G., Madiman, M., Reverse Brunn-Minkowski and reverse entropy power inequalities for convex measures, J. Funct. Anal. 262 (2012), no. 7, 3309–3339.

[7] Bonnet, G., Chasapis, G., Grote, J., Temesvari, D., Turchi, N., Threshold phenomena for high-dimensional random polytopes, Commun. Contemp. Math. 21 (2019), no. 5, 1850038, 30 pp.

[8] Bonnet, G., Kabluchko, Z., Turchi, N., Phase transition for the volume of high-dimensional random polytopes, preprint: arXiv:1911.12696.

[9] Borell, C., Convex measures on locally convex spaces. Ark. Mat. 12 (1974), 239–252.

[10] Borell, C., Convex set functions in d-space, Period. Math. Hungar. 6 (2) (1975) 111–136.

[11] Brazitikos, S., Giannopoulos, A., Valettas, P., Vritsiou, B.-H., Geometry of isotropic convex bodies. Mathematical Surveys and Monographs, 196. American Mathematical Society, Providence, RI, 2014.

[12] Dyer, M. E., Füredi, Z., McDiarmid, C., Volumes spanned by random points in the hypercube. Random Structures Algorithms 3 (1992), no. 1, 91–106.

[13] Finch, S., Sebah, P., Comment on “Volumes spanned by random points in the hypercube”. Random Structures Algorithms 35 (2009), no. 3, 390–392.

[14] Fradelizi, M., Guédon, O., Pajor, A., Thin-shell concentration for convex measures. Studia Math. 223 (2014), no. 2, 123–148.
[15] Frieze, A., Pegden, W., Tkocz, T., Random volumes in d-dimensional polytopes, *Discrete Anal.* 2020, Paper No. 15, 17 pp.

[16] Gatzouras, D., Giannopoulos, A., Threshold for the volume spanned by random points with independent coordinates. *Israel J. Math.* 169 (2009), 125–153.

[17] Groemer, H., On the mean value of the volume of a random polytope in a convex set. *Arch. Math. (Basel)* 25 (1974), 86–90.

[18] Guédon, O., Kahane-Khinchine type inequalities for negative exponent. *Mathe-
matika* 46 (1999), no. 1, 165–173.

[19] Latala, R., Wojtaszczyk, J. O., On the infimum convolution inequality. *Studia Math.* 189 (2008), no. 2, 147–187.

[20] Lutwak, E., Zhang, G., Blaschke-Santaló inequalities. *J. Differential Geom.* 47 (1997), 1–16.

[21] Nagy, S., Schütt, C., Werner, E. M., Halfspace depth and floating body, *Statistics Surveys*, Vol. 13 (2019) 52–118.

[22] Pivovarov, P., Volume thresholds for Gaussian and spherical random polytopes and their duals. *Studia Math.* 183 (2007), no. 1, 15–34.

[23] Paouris, G., On the ψ_2-behavior of linear functionals on isotropic convex bodies. *Studia Math.* 168 (2005), 285–299.

[24] Paouris, G., Concentration of mass and central limit properties of isotropic convex bodies. *Proc. Amer. Math. Soc.* 133 (2005), 565–575.

[25] Paouris, G., Concentration of mass in convex bodies. *Geom. Funct. Analysis* 16 (2006), 1021–1049.

[26] Paouris, G., Small ball probability estimates for log-concave measures. *Trans. Amer. Math. Soc.* 364 (2012), 287–308.

[27] Paouris, G., Pivovarov, P., A probabilistic take on isoperimetric-type inequalities. *Adv. Math.* 230 (2012), no. 3, 1402–1422.

[28] Paouris, G., Werner, E., Relative entropy of cone measures and L_p centroid bodies. *Proc. Lond. Math. Soc. (3)* 104 (2012), no. 2, 253–286.