Higher Algebraic K-theory for Twisted Laurent Series Rings Over Orders and Semisimple Algebras

Aderemi Kuku

Abstract Let R be the ring of integers in a number field F, Λ any R-order in a semisimple F-algebra Σ, α an R-automorphism of Λ. Denote the extension of α to Σ also by α. Let $\Lambda_\alpha[T]$ (resp. $\Sigma_\alpha[T]$) be the α-twisted Laurent series ring over Λ (resp. Σ). In this paper we prove that (i) There exist isomorphisms $\mathbb{Q} \otimes K_n(\Lambda_\alpha[T]) \cong \mathbb{Q} \otimes G_n(\Lambda_\alpha[T])$ for all $n \geq 1$. (ii) $G^\text{pr}_n(\Lambda_\alpha[T], \hat{\mathbb{Z}}_l) \cong G_n(\Lambda_\alpha[T], \hat{\mathbb{Z}}_l)$ is an l-complete profinite Abelian group for all $n \geq 2$. (iii) $\text{div} G^\text{pr}_n(\Lambda_\alpha[T], \hat{\mathbb{Z}}_l) = 0$ for all $n \geq 2$. (iv) $G_n(\Lambda_\alpha[T]) \longrightarrow G^\text{pr}_n(\Lambda_\alpha[T], \hat{\mathbb{Z}}_l)$ is injective with uniquely l-divisible cokernel (for all $n \geq 2$). (v) $K_{-1}(\Lambda), K_{-1}(\Lambda_\alpha[T])$ are finitely generated Abelian groups.

Keywords K-theory · Twisted Laurent series rings · Semisimple algebras · Orders · Virtually infinite cyclic group

Mathematics Subject Classifications (2000) 19D35 · 16S35 · 16H05 · 16S34

1. Introduction

Let R be the ring of integers in a number field F. The initial motivation for this work was a desire to obtain results on higher K-theory of the groupring RV of a virtually infinite cyclic group of the form $V = G \rtimes_\alpha T$, where G is a finite group, α...
an automorphism of G and the action of the infinite cyclic group $T = (t)$ on G is given by $\alpha(g) = t g t^{-1}$ for all $g \in G$.

Note that understanding the K-theory of RV is fundamental to the Farrell-Jones conjecture which asserts that K-theory of an arbitrary discrete group H should have as “building blocks” the K-theory of virtually cyclic subgroups of H (see [8]). A group V is virtually cyclic if it is either finite or virtually infinite cyclic (i.e., contains a finite index subgroup that is infinite cyclic). For results on higher K-theory of groupings of finite groups see [15, chapter 7] and associated references. There are two types of virtually infinite cyclic groups — one type of the form $V = G \cong T$ as described above and the other of the form $V = G_0 \ast H G_1$, where the groups G_0, G_1, H are finite and $[G_0 : H] = [G_1 : H] = 2$. For some results on higher K-theory of both types of groups see [15, 7.5] or [16]. In this paper, we obtain results on higher K-theory of twisted Laurent series ring that translate into results on groupings RV, $V = G \cong T$, as we now explain.

If α is an automorphism of a finite group G, we also denote by α the automorphism induced on RG by α and observe that for $V = G_\alpha \cong T$, $RV = (RG)_\alpha (T) = (RG)_\alpha [t, t^{-1}]$ is the α-twisted Laurent series ring over the group RG. Now, RG is an R-order in the semi-simple F-algebra FG and so, we endeavour in this paper to obtain general results on higher K-theory of $\Lambda_\alpha (T)$ where Λ is an arbitrary R-order in a semi-simple F-algebra Σ so that results on $(RG)_\alpha (T)$ become examples and applications of our results.

Note also that an automorphism of Λ extends to an F-automorphism of Σ which we also denote by α. We also study higher K-theory of $\Sigma_\alpha (T)$ and prove in Theorem 1(b) that there exist isomorphisms

$$\mathbb{Q} \otimes K_n(\Lambda_\alpha (T)) \simeq \mathbb{Q} \otimes G_n(\Lambda_\alpha [T]) \simeq \mathbb{Q} \otimes K_n(\Sigma_\alpha [T])$$

for all $n \geq 2$. Hence $\mathbb{Q} \otimes K_n(RV) \simeq \mathbb{Q} \otimes G_n(RV) \simeq \mathbb{Q} \otimes K_n(FV)$ for all $n \geq 2$. Since we have shown in Theorem 1(a) that $G_n(\Lambda_\alpha [T])$ is a finitely generated Abelian group for all $n \geq 1$, it follows that $K_n(\Lambda_\alpha [T]), K_n(\Sigma_\alpha [T])$ and hence $K_n(RV), K_n(FV)$ have finite torsion-free ranks for all $n \geq 2$.

We next investigate under what conditions $G_n(\Lambda_\alpha [T])$ could actually be a finite group and show in Theorem 6 that when F is a totally real number field with ring of integers R and Λ any R-order in a semi-simple F-algebra, then $G_{2(m+1)}(\Lambda_\alpha [T])$ is finite for all odd $m \geq 1$. Hence $G_{2(m+1)}(RV)$ is finite.

In Section 3, we study profinite higher K-theory of $\Lambda_\alpha [T]$ and prove that $G^p_n(\Lambda_\alpha [T], \hat{\mathbb{Z}}_l) = G_n(\Lambda_\alpha [T], \hat{\mathbb{Z}}_l)$ are l-complete profinite Abelian groups; $\delta G^p_n(\Lambda_\alpha [T], \hat{\mathbb{Z}}_l) = 0$; and that the map $G_n(\Lambda_\alpha [T]) \rightarrow G^p_n(\Lambda_\alpha [T], \hat{\mathbb{Z}}_l)$ is injective with uniquely divisible cokernel. Corresponding results follow when we replace $\Lambda_\alpha [T]$ by RV.

In a final section, we prove that if F is an algebraic number field with ring of integers R and Λ any R-order in a semi-simple F-algebra Σ, then $K_{-1}(\Lambda)$ and $K_{-1}(\Lambda_\alpha [T])$ are finitely generated Abelian groups; $NK_{-1}(\Lambda, \alpha) = 0$ and $K_{-1}(\Lambda[t]) \simeq K_{-1}(\Lambda)$. That $K_{-1}(\Lambda)$ and $K_{-1}(\Lambda_\alpha [T])$ are finitely generated for arbitrary R-orders Λ generalizes similar results by D. Carter for $K_{-1}(RG)$ $(G$ a finite group, see [4]) resp. by Farrell/Jones for $K_{-1}(\mathbb{Z}V)$ (see [9]).

Notes on notation If α is an automorphism of a ring A, we shall write $A_\alpha [T] = A_\alpha [t, t^{-1}]$ for the α-twisted Laurent series ring over A. Note that additively $A_\alpha [T] = \bigoplus重心 Springer
\(A_\alpha[t, t^{-1}] \) with multiplication given by \((at^i) \cdot (bt^j) = a\alpha^{-1}(b)t^{i+j} \) for \(a, b \in A \). \(A_\alpha[t] \) (resp. \(A_\alpha[r^{-1}] \)) is the subring of \(A_\alpha[T] \) generated by \(A \) and \(t \) (resp. \(A \) and \(t^{-1} \)). Call \(A_\alpha[t] \) the \(\alpha \)-twisted polynomial ring over \(A \). We also have inclusion maps \(i^+: A \to A_\alpha[T], i^+: A \to A_\alpha[t] \) and \(i^-: A \to A_\alpha[T] \).

The augmentation map \(\varepsilon: A_\alpha[t] \to A \) induces a group homomorphism \(\varepsilon_\alpha: K_n(A_\alpha[t]) \to K_n(A) \) and we put \(NK_n(A, \alpha) := \ker \varepsilon_\alpha \). Since \(\varepsilon \) is split by \(i^+ \), we have \(K_n(A_\alpha[t]) \cong K_n(A) \oplus NK_n(A, \alpha) \).

If \(B \) is an additive Abelian group and \(m \) is a positive integer, we shall write \(B/m \) for \(B/mB \) and \(B[m] \) for the set of elements \(x \) of \(B \) such that \(mx = 0 \). We write \(\text{div} B \) for the subgroup of divisible elements of \(B \). If \(l \) is a rational prime, we write \(B_l \) for the \(l \)-primary subgroup of \(B \). Note that \(B_l = \bigcup B[F] = \varprojlim B[F] \).

2. Higher K-theory of \(\Lambda_\alpha[T], \Sigma_\alpha[T] \) (\(\Lambda \) Arbitrary Orders)

2.1. \(K_n(\Lambda_\alpha[T]), G_n(\Lambda_\alpha[T]), K_n(\Sigma_\alpha[T]) \)

2.1.1 Let \(R \) be the ring of integers in a number field \(F \), \(\Lambda \) any \(R \)-order in a semi-simple \(F \)-algebra \(\Sigma \), \(\alpha \) an \(R \)-automorphism of \(\Lambda \). Then \(\alpha \) can be extended to an \(F \)-automorphism of \(\Sigma \) (since \(\Sigma = \Lambda \otimes_R F \)). The aim of this section is to prove the following theorem.

Theorem 1 Let \(F \) be an algebraic number field with ring of integers \(R \), \(\Lambda \) any \(R \)-order in a semi-simple \(F \)-algebra \(\Sigma \), \(\alpha \) an \(R \)-automorphism of \(\Lambda \). Denote the extension of \(\alpha \) to \(\Sigma \) also by \(\alpha \). Let \(\Lambda_\alpha[T] \) (resp. \(\Sigma_\alpha[T] \)) be the \(\alpha \)-twisted Laurent series ring over \(\Lambda \) (resp. \(\Sigma \)). Then we have

(a) \(G_n(\Lambda_\alpha[T]) \) is a finitely generated Abelian group for all \(n \geq 1 \).
(b) \(\text{There exist isomorphisms:} \)

\[
\mathbb{Q} \otimes K_n(\Lambda_\alpha[T]) \cong \mathbb{Q} \otimes G_n(\Lambda_\alpha[T]) \cong \mathbb{Q} \otimes K_n(\Sigma_\alpha[T])
\]

for \(n \geq 2 \).

Before proving Theorem 1 we state the following consequence of the result.

Corollary 1 Let \(V = G \rtimes_{\alpha} T \) be the virtually infinite cyclic subgroup where \(G \) is a finite group, \(\alpha \in \text{Aut}(G) \) and the action of \(T \) on \(G \) is given by \(\alpha(g) = t g t^{-1} \), for all \(g \in G \). Then,

(a) \(G_n(RV) \) is a finitely generated Abelian group for al \(n \geq 1 \).
(b) \(\mathbb{Q} \otimes K_n(RV) \cong \mathbb{Q} \otimes G_n(RV) \cong \mathbb{Q} \otimes K_n(FV) \) for all \(n \geq 2 \).

The proof of Theorem 1(b) will proceed in several steps (see Theorems 3, 4, 5 below). However, we first recall the following result: Theorem 2.

Theorem 2 ([15, Theorem 7.3.2] or [16]) Let \(R \) be the ring of integers in a number field \(F \), \(\Lambda \) any \(R \)-order in a semi-simple \(F \)-algebra \(\Sigma \). If \(\alpha: \Lambda \to \Lambda \) is an \(R \)-automorphism, then there exists an \(R \)-order \(\Gamma \subset \Sigma \), such that

1. \(\Lambda \subset \Gamma \);
2. \(\Gamma \) is \(\alpha \)-invariant;
3. \(\Gamma \) is (right) regular ring. In fact \(\Gamma \) is (right) hereditary.
Theorem 3 Let \(R \) be the ring of integers in a number field \(F \), \(\Lambda \) any \(R \)-order in a semi-simple \(F \)-algebra, \(\alpha : \Lambda \to \Lambda \) and \(\Gamma \)-automorphism of \(\Lambda \), \(\Gamma \) an \(\alpha \)-invariant order containing \(\Lambda \) as in Theorem 2, \(\Lambda_\alpha[T] \) (resp. \(\Gamma_\alpha[T] \)) the \(\alpha \)-twisted Laurent series ring over \(\Lambda \) (resp. \(\Gamma \)). \(\varphi : \Lambda_\alpha[T] \to \Gamma_\alpha[T] \) the map induced by the inclusion \(\Lambda \to \Gamma \). Then the induced homomorphisms \(\varphi_n : K_n(\Lambda_\alpha[T]) \to K_n(\Gamma_\alpha[T]) \) has torsion kernel and cokernel. Hence for all \(n \geq 2 \) we have \(\mathbb{Q} \otimes K_n(\Lambda_\alpha[T]) \simeq \mathbb{Q} \otimes K_n(\Gamma_\alpha[T]) \).

Proof There exists a positive integer \(s \) such that \(s\Gamma \subset \Lambda \) (see [18] or [15]). Put \(q = s\Gamma \). Then \(q \) is an ideal of \(\Gamma \) and \(\Lambda \). Put \(B = \Lambda/q, B' = \Gamma/q \). Then we have cartesian squares

\[
\begin{array}{ccc}
\Lambda & \longrightarrow & \Gamma \\
\downarrow & & \downarrow \\
B & \longrightarrow & B'
\end{array}
\]

and

\[
\begin{array}{ccc}
\Lambda_\alpha[T] & \longrightarrow & \Gamma_\alpha[T] \\
\downarrow & & \downarrow \\
B_\alpha[T] & \longrightarrow & B'_\alpha[T].
\end{array}
\]

So, by [5] and [19], we have a long exact sequence

\[
\cdots \to K_{n+1}(B'_\alpha[T]) \left(\frac{1}{s} \right) \to K_n(\Lambda_\alpha[T]) \left(\frac{1}{s} \right) \to K_n(\Gamma_\alpha[T]) \left(\frac{1}{s} \right) \oplus K_n(B_\alpha[T]) \left(\frac{1}{s} \right) \to K_n(B'_\alpha[T]) \left(\frac{1}{s} \right) \to \cdots
\]

(3)

Now, \(\Gamma, B, B' \) are quasi-regular rings, so are \(\Gamma_\alpha[T], B_\alpha[T] \) and \(B'_\alpha[T] \) (see [9]). If we write \(A \) for \(B_\alpha[T] \) or \(B'_\alpha[T] \), \(JA \) for the Jacobson’s radical of \(A \), then by [19] \(K_n(A, JA) \) is \(s \)-torsion since \(s \) annihilates \(A \) and so from the relative sequence

\[
\cdots \to K_n(A, JA) \to K_n(A) \to K_n(A/JA) \to \cdots
\]

we have \(K_n(A) \left(\frac{1}{s} \right) \simeq K_n(A/JA) \left(\frac{1}{s} \right) \). We now claim that \(K_n(A) \left(\frac{1}{s} \right) \simeq K_n(A/JA) \left(\frac{1}{s} \right) \) is torsion.

Proof of the claim Note that \(A/JA \simeq (A'/JA')_\alpha[T] \) is a regular ring (see [9]) where \(A'/JA' \) is a finite semi-simple ring which is a finite direct product of matrix algebras over finite fields. Hence \(K_n((A'/JA')_\alpha[T]) \) is a finite direct sum of \(K \)-groups of the form \(K_n((F_i)_\alpha[T]) \) where \(F_i \) is a finite field. Also, \((F_i)_\alpha[T] \) is a regular ring and so \(K_n((F_i)_\alpha[T]) \simeq G_n((F_i)_\alpha[T]) \).

\(\square \) Springer
Now, for each F_i, we have by [15, Theorem 7.5.3(iii)] or [16], that there exists a long exact sequence

$$
\cdots \to G_n(F_i) \to G_n(F_i) \to G_n((F_i)_\alpha[T]) \to G_{n-1}(F_i) \to G_{n-1}(F_i) \to \cdots
$$

(4)

where each $G_n(F_i)$ is a finite Abelian group for $n \geq 2$ — by [15, Theorem 7.1.12] or by Quillen’s result. So, from Eq. 4 above, $G_n((F_i)_\alpha[T])$ is finite for all $n \geq 2$, i.e. $K_n((F_i)_\alpha[T])$ is a finite Abelian group. Hence $(K_n((A'/JA')_\alpha[T]))$ is a finite direct sum of Abelian groups of the form $K_n(F_i)_\alpha[T]$ is a finite group. Hence $K_n((A'/JA')_\alpha[T])(\frac{1}{2})$ is torsion. So, for $A = B_\alpha(T)$ or $B'_\alpha[T]$, $K_n(A)(\frac{1}{2}) \simeq K_n((A/JA)(\frac{1}{2}))$ is torsion and $\mathbb{Q} \otimes K_n(A)(\frac{1}{2}) = 0$.

So, by tensoring the Mayer-Vietoris exact sequence Eq. 3 with \mathbb{Q} we get an isomorphism

$$
\mathbb{Q} \otimes K_n(\Lambda_\alpha[T]) \simeq \mathbb{Q} \otimes K_n(\Gamma_\alpha[T])
$$

for all $n \geq 2$. \hfill \Box

Theorem 4 Let R, F, Λ, α; Γ, $\Lambda_\alpha[T]$, $\Gamma_\alpha[T]$ be as in Theorem 3. Let $\varphi_n : G_n(\Gamma_\alpha[T]) \to G_n(\Lambda_\alpha[T])$ be the homomorphism induced by the exact functor $\mathcal{M}(\Gamma_\alpha[T]) \to \mathcal{M}(\Lambda_\alpha[T])$ given by ‘restriction of scalars’. Then for all $n \geq 2$, φ_n has finite kernel and torsion cokernel and hence induces an isomorphism

$$
\mathbb{Q} \otimes G_n(\Gamma_\alpha[T]) \simeq \mathbb{Q} \otimes G_n(\Lambda_\alpha[T])
$$

Proof First note that the exact functor $\mathcal{M}(\Gamma) \to \mathcal{M}(\Lambda)$ given by ‘restriction of scalars’ yields group homomorphisms $\delta_n : G_n(\Gamma) \to G_n(\Lambda)$. Now, by replacing the maximal order Γ in the proof of [15, Theorem 7.2.3, p. 146] or [16] with the α-invariant order Γ containing Λ, as in Theorem 2, we have that for all $n \geq 1$, $\delta_n : G_n(\Gamma) \to G_n(\Lambda)$ has finite kernel and cokernel. The proof in [15, Theorem 7.2.3] works for this Γ also. Now from [15, Theorem 7.5.3(b)] or [16], we have the following horizontal exact sequence and hence a commutative diagram

$$
\begin{array}{cccccc}
G_n(\Gamma) & \xrightarrow{1-\alpha_\epsilon} & G_n(\Gamma) & \xrightarrow{\delta_n} & G_n(\Gamma_\alpha[T]) & \xrightarrow{\varphi_n} & G_{n-1}(\Gamma) & \xrightarrow{1-\alpha_\epsilon} & G_{n-1}(\Gamma) \\
\downarrow \delta_n & & \downarrow \delta_n & & \downarrow \varphi_n & & \downarrow \delta_{n-1} & & \downarrow \delta_{n-1} \\
G_n(\Lambda) & \xrightarrow{1-\alpha_\epsilon} & G_n(\Lambda) & \xrightarrow{\delta_n} & G_n(\Lambda_\alpha[T]) & \xrightarrow{\varphi_n} & G_{n-1}(\Lambda) & \xrightarrow{1-\alpha_\epsilon} & G_{n-1}(\Lambda)
\end{array}
$$

(5)

By taking kernels and cokernels of vertical arrows in Eq. 5, we have a top (resp. bottom) horizontal exact sequence consisting of kernels (resp. cokernels) of the vertical maps. Since we saw above that δ_n has finite kernels and cokernels, we then have that $\phi_n : G_n(\Gamma_\alpha[T]) \to G_n(\Lambda_\alpha[T])$ has finite kernel and cokernel for each $n \geq 2$. Hence $\mathbb{Q} \otimes G_n(\Gamma_\alpha[T]) \simeq \mathbb{Q} \otimes G_n(\Lambda_\alpha[T])$. But $\Gamma_\alpha[T]$ is regular. Hence

$$
\mathbb{Q} \otimes K_n(\Gamma_\alpha[T]) \simeq \mathbb{Q} \otimes G_n(\Lambda_\alpha[T]).
$$
Theorem 5 Let \(R, F, \Sigma, \Lambda, \alpha, T \) be as in Theorem 1. Then for all \(n \geq 2 \), the map \(\theta_n : G_n(\Lambda_\alpha[T]) \rightarrow G_n(\Sigma_\alpha[T]) \) induced by the canonical map \(\Lambda_\alpha[T] \rightarrow \Sigma_\alpha[T] \) has finite kernel and torsion cokernel. Hence
\[
\mathbb{Q} \otimes G_n(\Lambda_\alpha[T]) \simeq \mathbb{Q} \otimes G_n(\Sigma_\alpha[T]) \simeq \mathbb{Q} \otimes K_n(\Sigma_\alpha[T]).
\]

Proof Note that the canonical (inclusion) map \(\Lambda \rightarrow \Sigma \) induces a group homomorphism \(\rho_n : G_n(\Lambda) \rightarrow G_n(\Sigma) \simeq K_n(\Sigma) \) (note that \(G_n(\Sigma) \simeq K_n(\Sigma) \) since \(\Sigma \) is regular).

Now, by [15, Theorem 7.5.3(b)] or [16], we have the following horizontal exact sequences and hence a commutative diagram
\[
\begin{array}{ccccccccc}
G_n(\Lambda) & \xrightarrow{1-\alpha_n} & G_n(\Lambda) & \xrightarrow{\rho_n} & G_n(\Lambda_\alpha[T]) & \xrightarrow{\delta_n} & G_n-1(\Lambda) & \xrightarrow{\rho_{n-1}} & G_n-1(\Lambda) \\
\downarrow{\rho_n} & & \downarrow{\rho_n} & & \downarrow{\delta_n} & & \downarrow{\rho_{n-1}} & & \downarrow{\rho_{n-1}} \\
G_n(\Sigma) & \xrightarrow{1-\alpha_n} & G_n(\Sigma) & \xrightarrow{\theta_n} & G_n(\Sigma_\alpha[T]) & \xrightarrow{\beta_n} & G_n-1(\Sigma) & \xrightarrow{\beta_n} & G_n-1(\Sigma) \\
\end{array}
\]

(6)

Now, from the commutative diagram
\[
\begin{array}{ccc}
G_n(\Lambda) & \xrightarrow{\rho_n} & G_n(\Sigma) \\
\downarrow{\delta_n} & & \downarrow{\beta_n} \\
K_n(\Gamma) & & \\
\end{array}
\]

(7)

we have
\[
0 \rightarrow \ker \delta_n \rightarrow \ker \beta_n \rightarrow \ker \rho_n \rightarrow \coker \delta_n \rightarrow \coker \beta_n \rightarrow \coker \rho_n \rightarrow 0
\]

Now, by the proof of Theorem 4, \(\ker \delta_n \) and \(\coker \delta_n \) are finite. Also by [15, Theorem 7.2.2] or [12], \(\ker \beta_n \) is finite and \(\coker \beta_n \) is torsion for all \(n \geq 2 \). Hence from diagram Eq. 7 above, \(\ker \rho_n \) is finite and \(\coker \rho_n \) is torsion for all \(n \geq 2 \). It then follows from the diagram Eq. 6 above that \(\ker \theta_n \) is finite and \(\coker \theta_n \) is torsion.

Proof of Theorem 1 (a) From [15, Theorem 7.5.3(b)] or [16], we have an exact sequence
\[
G_n(\Lambda) \xrightarrow{1-\alpha_n} G_n(\Lambda) \rightarrow G_n(\Lambda_\alpha[T]) \rightarrow G_n-1(\Lambda) \xrightarrow{1-\alpha_n} G_n-1(\Lambda)
\]

Also by [15, Theorem 7.1.13] or [10] \(G_n(\Lambda) \) is a finitely generated Abelian group for all \(n \geq 1 \). Hence \(G_n(\Lambda_\alpha[T]) \) is finitely generated for all \(n \geq 2 \). (b) That \(\mathbb{Q} \otimes K_n(\Lambda_\alpha[T]) \simeq \mathbb{Q} \otimes G_n(\Lambda_\alpha[T]) \) follow from Theorem 2 i.e. \(\mathbb{Q} \otimes K_n(\Lambda_\alpha[T]) \simeq \mathbb{Q} \otimes K_n(\Sigma_\alpha[T]) \) and Theorem 3 i.e. \(\mathbb{Q} \otimes G_n(\Lambda_\alpha[T]) \simeq \mathbb{Q} \otimes K_n(\Sigma_\alpha[T]) \).

Remark 1 Since by Theorem 1(a), \(G_n(\Lambda_\alpha[T]) \) is finitely generated Abelian group for all \(n \geq 2 \), it follows that \(K_n(\Lambda_\alpha[T]) \) and \(K_n(\Sigma_\alpha[T]) \) have finite torsion free rank just like \(G_n(\Lambda_\alpha[T]) \).

Hence if \(V = G \rtimes_\alpha T \) is a virtually infinite cyclic group, then \(K_n(RV) \), \(K_n(FV) \) have finite torsion-free rank for \(n \geq 2 \).

\(\square \) Springer
2.2. Finiteness of $G_{2(m+1)}(\Lambda_a[T])$

In this subsection, we investigate under what circumstances $G_n(\Lambda_a[T])$ could actually be a finite group. We prove below (see Theorem 6) that if F is a totally real field, then the group $G_{2(m+1)}(\Lambda_a[T])$ is finite for all odd positive integers m. We state this formally:

Theorem 6 Let R be the ring of integers in a totally real number field F, Λ an R-order in a semi-simple F-algebra, $\alpha : \Lambda \to \Lambda$ and R-automorphism. Then for all odd positive integers m, $G_{2(m+1)}(\Lambda_a[T])$ is a finite group. Hence in the notation of Theorem 1, $G_{2(m+1)}(RV)$ is finite.

The proof of Theorem 6 will make use of the following:

Theorem 7 Let F be a number field with ring of integers R, Λ and R-order in a semi-simple F-algebra Σ. Then (a) For all $n \geq 1$, $G_{2n}(\Lambda)$ is a finite group. (b) If F is totally real, then $G_{2m+1}(\Lambda)$ is also finite for all odd $m \geq 1$.

Proof Part (a) is proved in [15] and [14]. See [15, Theorem 7.2.7].

If F is a totally real number field with ring of integers O_F, a similar proof works. We only have to show that $K_{2m+1}(\Gamma)$ is finite if Γ is a maximal order in a central division algebra D over a totally real number field F with ring of integer O_F. Let the dimension of D over F be s^2. We know from [15, Theorem 7.1.11] or [11] that $K_{2m+1}(\Gamma)$ is finitely generated. We only need to show that $K_{2m+1}(\Gamma)$ is torsion. Let $\text{tr} : K_{2m+1}(\Gamma) \to K_{2m+1}(O_F)$ be the transfer map and $i : K_{2m+1}(O_F) \to K_{2m+1}(\Gamma)$ the map induced by the inclusion map $O_F \to \Gamma$. Let $x \in K_{2m+1}(\Gamma)$. Then $i \circ \text{tr}(x) = x^{s^2}$. But $K_{2m+1}(\Gamma)$ is finite since it is also finitely generated. (See [2] for the proof that $K_{2m+1}(O_F)$ is torsion).

Proof of Theorem 6 Assume that m is an odd positive integer. The we have an exact sequence

$$\cdots \to G_{2m+2}(\Lambda) \xrightarrow{1-a_n} G_{2m+2}(\Lambda) \xrightarrow{\beta} G_{2m+2}(\Lambda_a[T]) \xrightarrow{\gamma} G_{2m+1}(\Lambda) \to \cdots$$

where $G_{2m+2}(\Lambda)$ is finite by Theorem 7(a) and $G_{2m+1}(\Lambda)$ is finite by Theorem 7(b). So $G_{2m+2}(\Lambda_a[T])/\text{Im} \beta \cong \text{Im} \gamma$.

But $\text{Im} \beta$ is finite and $\text{Im} \gamma$ is also finite as a subgroup of the finite group $G_{2m+1}(\Lambda)$. Note that $\text{Im} \beta$ is finite as a homomorphic image of the finite group $G_{2m+2}(\Lambda)$. Hence $G_{2m+2}(\Lambda_a[T])$ is finite for all odd positive integers m.

3. Mod-l^s and Profinite Higher K-theory of $\Lambda_a(T)$

3.1. Mod-l^s Theory

3.1.1 Let C be an exact category, l a rational prime, s a positive integer, M_{p+1}^n the $(n+1)$-dimensional mod-l^s-space, i.e. the space obtained from S^n by attaching an $(n+1)$-cell via a map of degree l^s (see [3, 15, 17]).

$\text{ Springer}
If X is an H-space, let $[M^n_{p+1}, X]$ be the set of homotopy classes of maps from M^n_{p+1} to X. We shall write $\pi_{n+1}(X, \mathbb{Z}/l^n)$ for $[M^n_{p+1}, X]$. If C is an exact category and we put $X = BQC$, we write $K_n(C, \mathbb{Z}/l^n)$ for $\pi_{n+1}(BQC)$, we write $K_n(C, \mathbb{Z}/l^n)$ for $\pi_{n+1}(C, \mathbb{Z}/l^n)$ and $K_0(C, \mathbb{Z}/l^n)$ for $K_0(C) \otimes \mathbb{Z}/l^n$. We shall refer to $K_n(C, \mathbb{Z}/l^n)$ as mod-l^n K-theory of C.

3.2.1 From [15, 8.1.2] or [13], we have an exact sequence

$$K_n(C) \xrightarrow{l^n} K_n(C) \xrightarrow{\rho} K_n(C, \mathbb{Z}/l^n) \xrightarrow{\beta} K_{n-1}(C) \rightarrow K_{n-1}(C)$$

and hence a short exact sequence for all $n \geq 2$

$$0 \rightarrow K_n(C)/l^n \rightarrow K_n(C, \mathbb{Z}/l^n) \rightarrow K_n(C)[l^n] \rightarrow 0$$

where $K_n(C)[l^n] = \{ x \in K_n(C) \mid l^n x = 0 \}$.

Example 1

(i) Let A be a ring with identity and $\mathcal{P}(A)$ the category of finitely generated projective A-modules. We write $K_n(A, \mathbb{Z}/l^n)$ for $K_n(\mathcal{P}(A), \mathbb{Z}/l^n)$. We are interested in $A = \Lambda_\omega(T)$. Note that $K_n(A, \mathbb{Z}/l^n)$ is also $\pi_n(BGL(A)^+, \mathbb{Z}/l^n)$.

(ii) Let A be a Noetherian ring and $\mathcal{M}(A)$ the category of finitely generated A-modules. We write $G_n(A, \mathbb{Z}/l^n)$ for $K_n(\mathcal{M}(A), \mathbb{Z}/l^n)$.

(iii) Let Y be a scheme, $C = \mathcal{P}(Y)$ the category of locally free sheaves of O_Y-modules of finite rank. We write $K_n(X, \mathbb{Z}/l^n)$ for $K_n(\mathcal{P}(Y), \mathbb{Z}/l^n)$ and observe that for $Y = \text{Spec}(A)$, A a commutative ring, we recover $K_n(A, \mathbb{Z}/l^n)$ as in (i).

(iv) Let Y be a Noetherian scheme and $\mathcal{M}(Y)$ the category of coherent sheaves of O_Y-modules. We write $G_n(Y, \mathbb{Z}/l^n)$ for $K_n(\mathcal{M}(Y'), \mathbb{Z}/l^n)$ and when $Y = \text{Spec}(A)$, where A is commutative, then we recover $G_n(A, \mathbb{Z}/l^n)$ as in (ii) above.

(v) It follows from Section 3.1.2 that we have exact sequences

$$0 \rightarrow K_n(\Lambda_\omega[T])/l^n \rightarrow K_n(\Lambda_\omega[T], \mathbb{Z}/l^n) \rightarrow K_n(\Lambda_\omega[T])[l^n] \rightarrow 0$$

and

$$0 \rightarrow G_n(\Lambda_\omega[T])/l^n \rightarrow G_n(\Lambda_\omega[T], \mathbb{Z}/l^n) \rightarrow G_n(\Lambda_\omega[T])[l^n] \rightarrow 0$$

3.2.2 Profinite Higher K-theory

3.2.1 Let C be an exact category, l a rational prime, s a positive integer $M^n_{p+1} = \lim_{s \to \infty} M^n_{p+1}$. We define the profinite K-theory of C by $K^n_{pr}(C, \mathbb{Z}_l) := [M^n_{p+1}, BQC]$. We write $K_n(C, \mathbb{Z}_l)$ for $\lim_{s \to \infty} K_n(C, \mathbb{Z}/l^n)$.

For more details on these constructions and their properties, see [15, Chapter 8] or [13].

© Springer
Example 2

(i) For $\mathcal{C} = \mathcal{P}(A)$ as in Example 1(i), we shall write $K_n^{pr}(A, \hat{\mathbb{Z}}_d)$ for $K_n^{pr}(\mathcal{P}(A), \hat{\mathbb{Z}}_d)$ and $K_n(A, \hat{\mathbb{Z}}_d)$ for $K_n(\mathcal{P}(A), \hat{\mathbb{Z}}_d)$.

(ii) For $\mathcal{C} = \mathcal{M}(A)$ as in Example 1(ii), we shall write $G_n^{pr}(A, \hat{\mathbb{Z}}_d)$ for $K_n^{pr}(\mathcal{M}(A), \hat{\mathbb{Z}}_d)$ and $G_n(A, \hat{\mathbb{Z}}_d)$ for $K_n(\mathcal{M}(A), \hat{\mathbb{Z}}_d)$.

(iii) For $\mathcal{C} = \mathcal{P}(Y)$ as in Example 1(iii) we shall write $K_n^{pr}(Y, \hat{\mathbb{Z}}_d)$ for $K_n^{pr}(\mathcal{P}(Y), \hat{\mathbb{Z}}_d)$ and $K_n(Y, \hat{\mathbb{Z}}_d)$ for $K_n(\mathcal{P}(Y), \hat{\mathbb{Z}}_d)$.

(iv) For $\mathcal{C} = \mathcal{M}(Y)$ as in Example 1(iv), we shall write $G_n^{pr}(Y, \hat{\mathbb{Z}}_d)$ for $K_n^{pr}(Y, \hat{\mathbb{Z}}_d)$ and $G_n(Y, \hat{\mathbb{Z}}_d) = K_n(\mathcal{M}(Y), \hat{\mathbb{Z}}_d)$.

Remark 2 From the results obtained earlier by this author for general exact categories, (see [15, Chapter 8] or [13]) we can already deduce the following for $\mathcal{P}(\Lambda_a[T])$ and $\mathcal{M}(\Lambda_a[T])$.

(i) From [15, Lemma 8.2.1], we have the following exact sequences for $n \geq 1$.

(a) $0 \rightarrow \lim_{\leftarrow s} K_{n+1}(\Lambda_a[T], \mathbb{Z}/p) \rightarrow K_n^{pr}(\Lambda_a[T], \hat{\mathbb{Z}}_d) \rightarrow K_n(\Lambda_a[T], \hat{\mathbb{Z}}_d) \rightarrow 0$.

(b) $0 \rightarrow \lim_{\leftarrow s} G_{n+1}(\Lambda_a[T], \mathbb{Z}/p) \rightarrow G_n^{pr}(\Lambda_a[T], \hat{\mathbb{Z}}_d) \rightarrow G_n(\Lambda_a[T], \hat{\mathbb{Z}}_d) \rightarrow 0$.

(ii) From [15, Theorem 8.2.2] we have for all $n \geq 2$.

(a) $\lim_{\leftarrow s} K_n^{pr}(\Lambda_a[T], \hat{\mathbb{Z}}_d)[p] = 0$; $\lim_{\leftarrow s} K_{n+1}(\Lambda_a[T], \mathbb{Z}/p) = \text{div } K_n^{pr}(\Lambda_a[T], \hat{\mathbb{Z}}_d)$;

(b) $\lim_{\leftarrow s} G_n^{pr}(\Lambda_a[T], \hat{\mathbb{Z}}_d)[p] = 0$; $\lim_{\leftarrow s} G_{n+1}(\Lambda_a[T], \mathbb{Z}/p) = \text{div } G_n^{pr}(\Lambda_a[T], \hat{\mathbb{Z}}_d)$.

(iii) From [15, Lemma 8.2.2] or [13], we have

(a) $\lim_{\leftarrow s} K_n^{pr}(\Lambda_a[T], \hat{\mathbb{Z}}_d)/p \simeq K_n(\Lambda_a[T], \hat{\mathbb{Z}}_d)$;

(b) $\lim_{\leftarrow s} G_n^{pr}(\Lambda_a[T], \hat{\mathbb{Z}}_d)/p \simeq G_n(\Lambda_a[T], \hat{\mathbb{Z}}_d)$.

3.3. Some Computations

3.3.1 The aim of this subsection is to prove Theorem 8 below. Before stating the result, we first explain the construction of map φ in Theorem 8(c) below.

Note that for any exact category \mathcal{C}, the natural map $M_{l_{\infty}}^{n+1} \rightarrow S^{n+1}$ induces a map

$$[S^{n+1}, BQC] \xrightarrow{\varphi} [M_{l_{\infty}}^{n+1}, BQC], \quad \text{i.e.,}$$

$$K_n(\mathcal{C}) \xrightarrow{\varphi} K_n^{pr}(\mathcal{C}, \hat{\mathbb{Z}}_d).$$

So when $\mathcal{C} = \mathcal{M}(\Lambda_a[T])$ we have a map

$$\varphi : G_n(\Lambda_a[T]) \rightarrow G_n^{pr}(\Lambda_a[T], \hat{\mathbb{Z}}_d).$$
Theorem 8 Let \(R \) be the ring of integers in a number field \(F \), \(\Lambda \) any \(R \)-order in a semi-simple \(F \)-algebra \(\Sigma \), \(\alpha : \Lambda \to \Lambda \) an \(R \)-automorphism of \(\Lambda \), \(\Lambda_a[T] \) the \(\alpha \)-twisted Laurent series ring over \(\Lambda \). Then, for all \(n \geq 2 \):

(a) \(\text{div } G^{pr}_n(\Lambda_a[T], \hat{\mathbb{Z}}_l) = 0. \)

(b) \(G^{pr}_n(\Lambda_a[T], \hat{\mathbb{Z}}_l) \cong G_n(\Lambda_a[T], \hat{\mathbb{Z}}_l) \) is an \(l \)-complete profinite Abelian group.

(c) The map \(G_n(\Lambda_a[T]) \to G^{pr}_n(\Lambda_a[T], \hat{\mathbb{Z}}_l) \) is injective with uniquely \(l \)-divisible cokernel.

Proof (a) From Remark 2(ii)(b), we have

\[
\lim_{s}^{1} G_{n+1}(\Lambda_a[T], \mathbb{Z}/l^s) = \text{div } G^{pr}_n(\Lambda_a[T], \hat{\mathbb{Z}}_l), \tag{8}
\]

for all \(n \geq 2 \). Now, by Theorem 1(a) \(G_n(\Lambda_a[T]) \) is finitely generated for all \(n \geq 1 \). Hence \(G_n(\Lambda_a[T], \mathbb{Z}/l^s) \) is finite for all \(n \geq 1 \). In particular, \(G_{n+1}(\Lambda_a[T], \mathbb{Z}/l^s) \) is finite for all \(n \geq 2 \) and so \(\lim_{s} G_{n+1}(\Lambda_a[T], \mathbb{Z}/l^s) = 0 \) for all \(n \geq 2 \). Hence from Eq. 8, \(\text{div } G^{pr}_n(\Lambda_a[T], \hat{\mathbb{Z}}_l) = 0 \) for all \(n \geq 2 \).

(b) We saw in (a) above that \(G_n(\Lambda_a[T], \mathbb{Z}/l^s) \) is a finite group for all \(n \geq 1 \). Hence in the exact sequence

\[
0 \to \lim_{s}^{1} G_{n+1}(\Lambda_a[T], \mathbb{Z}/l^s) \to G^{pr}_n(\Lambda_a[T], \hat{\mathbb{Z}}_l) \to G_n(\Lambda_a[T], \hat{\mathbb{Z}}_l) \to 0
\]

we have \(\lim_{s}^{1} G_{n+1}(\Lambda_a[T], \mathbb{Z}/l^s) = 0 \). Hence,

\[
G^{pr}_n(\Lambda_a[T], \hat{\mathbb{Z}}_l) \cong G_n(\Lambda_a[T], \hat{\mathbb{Z}}_l). \tag{9}
\]

Now, by Remark 2(ii)(b),

\[
G^{pr}_n(\Lambda_a[T], \hat{\mathbb{Z}}_l)/l^s \cong G_n(\Lambda_a[T], \hat{\mathbb{Z}}_l). \tag{10}
\]

So, from Eqs. 9 and 10 \(G^{pr}_n(\Lambda_a[T], \hat{\mathbb{Z}}_l)/l^s \cong G_n(\Lambda_a[T], \hat{\mathbb{Z}}_l) \) i.e. \(G^{pr}_n(\Lambda_a[T], \hat{\mathbb{Z}}_l) \cong G_n(\Lambda_a[T], \hat{\mathbb{Z}}_l) \) is \(l \)-complete. It is profinite since \(G_n(\Lambda_a[T], \hat{\mathbb{Z}}_l) = \lim_{s} G_n(\Lambda_a[T], \mathbb{Z}/l^s) \) where each \(G_n(\Lambda_a[T], \mathbb{Z}/l^s) \) is a finite group.

(c) Since for all \(n \geq 1 \), \(G_n(\Lambda_a[T]) \) is a finitely generated Abelian group (see 2.1.1(a)), it follows that \(G_n(\Lambda_a[T]) \) is a finite group for each \(n \). Hence \(G_n(\Lambda_a[T]) \) has no non-trivial divisible subgroups. Hence by [15, Corollary 8.2.1] or [13], kernel and cokernel of \(\phi \) are uniquely \(l \)-divisible. But \(G_n(\Lambda_a[T]) \) is finitely generated and so, \(\ker \phi = \text{div } \ker \phi = 0 \), as subgroups of \(G_n(\Lambda_a[T]) \). \(\square \)

4. \(K_{-1}(\Lambda), K_{-1}(\Lambda_a[T]), \Lambda \) Arbitrary Orders

4.1. Finite Generation of \(K_{-1}(\Lambda), K_{-1}(\Lambda_a[T]) \).

Let \(R \) be the ring of integers in a number field \(F \), \(\Lambda \) any \(R \)-order in a semi-simple \(F \)-algebra \(\Sigma \), \(\alpha : \Lambda \to \Lambda \) and \(R \)-automorphism of \(\Lambda \), \(\Lambda_a[T] \), the \(\alpha \)-twisted Laurent polynomial ring over \(\Lambda \). We prove in this section that \(K_{-1}(\Lambda) \) and \(K_{-1}(\Lambda_a[T]) \) are finitely generated Abelian groups for arbitrary \(R \)-orders \(\Lambda \) in semi-simple \(F \)-algebras. Note that the proof in [9] by Farrell/Jones is for \(\Lambda = \mathbb{Z}G \), \(G \) a finite group.
Also D. Carter shows in [4] that \(K_{-1}(RG) \) is finitely generated and here we show that this result also holds more generally for arbitrary orders.

Finally we prove also that \(NK_{-1}(\Lambda, \alpha) = 0 \) and so, \(K_{-1}(\Lambda, [t]) \simeq K_{-1}(\Lambda) \).

Theorem 9 Let \(F \) be an algebraic number field with ring of integers \(R \), \(\Lambda \) any \(R \)-order in a semi-simple \(F \)-algebra \(\Sigma \), \(\alpha : \Lambda \to \Lambda \) an \(R \)-automorphism of \(\Lambda \), \(\Lambda_{\alpha}[T] \) the \(\alpha \)-twisted Laurent series ring over \(\Lambda \). Then

(a) \(K_{-1}(\Lambda) \) is a finitely generated Abelian group.
(b) \(K_{-1}(\Lambda_{\alpha}[T]) \) is a finitely generated Abelian group.
(c) \(K_{-1}(\Lambda) \simeq K_{-1}(\Lambda_{\alpha}[T]) \).

Proof (a) Let \(\Gamma \) be a maximal \(R \)-order containing \(\Lambda \). Then, there exists a positive integer \(s \) such that \(s\Gamma \subseteq \Lambda \). Then \(q = s\Gamma \) is an ideal of \(\Lambda \) and \(\Gamma \). Put \(B = \Lambda/q \), \(B' = \Gamma/q \). Then we have a cartesian square

\[
\begin{array}{ccc}
\Lambda & \longrightarrow & \Gamma \\
\downarrow & & \downarrow \\
B & \longrightarrow & B'
\end{array}
\]

and hence a Mayer-Vietoris sequence

\[
\cdots \to K_1(B') \to K_0(\Lambda) \to K_0(\Gamma) \oplus K_0(B) \to K_0(B') \\
\to K_{-1}(\Lambda) \to K_{-1}(\Gamma) \oplus K_{-1}(B) \to \cdots \tag{11}
\]

Now by [1, Prop. 10.1, p. 685], \(K_{-i}(A) = 0 \) for \(i \geq 1 \) and any quasi-regular ring \(A \). Note that \(B, B' \) are finite rings and hence quasi-regular. Also \(\Gamma \) is quasi-regular. Hence for \(A = B, B' \) or \(\Gamma, K_{-i}(A) = 0 \) for \(i \geq 1 \). So the sequence Eq. 11 becomes

\[
\cdots \to K_0(\Lambda) \to K_0(\Gamma) \oplus K_0(B) \to K_0(B') \to K_{-1}(\Lambda) \to 0. \tag{12}
\]

To show that \(K_{-1}(\Lambda) \) is finitely generated it suffices from Eq. 12 to show that \(K_0(B') \) is finitely generated. Now \(B' \) is a finite Artinian ring and so, by [1, p. 465], \(K_0(B') \simeq K_0(B'/JB') \) where \(JB' \) = radical of \(B' \). But \(B'/JB' \) is a finite semi-simple ring and so, \(K_0(B') \simeq K_0(B'/JB') \) is a finite direct sum of \(K_0 \) of (finite) fields each of which is isomorphic to \(\mathbb{Z} \). Hence \(K_0(B') \) is a (free) Abelian group of finite rank and hence is finitely generated. Hence \(K_{-1}(\Lambda) \) is finitely generated.

(b) Let \(\Gamma \) be an \(\alpha \)-invariant order containing \(\Lambda \) as in Corollary 1. Let \(s \) be a positive integer such that \(s\Gamma \subseteq \Lambda \) and put \(q = s\Gamma \), \(B = \Lambda/q \), \(B' = \Gamma/q \). Then we have cartesian squares

\[
\begin{array}{ccc}
\Lambda & \longrightarrow & \Gamma \\
\downarrow & & \downarrow \\
B & \longrightarrow & B'
\end{array}
\]

\(\diamond \) Springer
and
\[\Lambda_\alpha[T] \longrightarrow \Gamma_\alpha[T]\]
\[\downarrow \quad \downarrow\]
\[B_\alpha[T] \longrightarrow B'_\alpha[T]\]
and hence a Mayer-Vietoris sequence
\[
\cdots \longrightarrow K_0(\Lambda_\alpha[T]) \longrightarrow K_0(\Gamma_\alpha[T]) \oplus K_0(B_\alpha[T]) \\
\longrightarrow K_0(B'_\alpha[T]) \longrightarrow K_{-1}(\Lambda_\alpha[T]) \longrightarrow 0.
\]
where \(\Gamma_\alpha[T], B_\alpha[T]\) and \(B'_\alpha[T]\) are quasi-regular (see [9]). If \(A = \Gamma_\alpha[T], B_\alpha[T]\) or \(B'_\alpha[T]\) and \(T^n\) is the free Abelian group of rank \(n\). Then by [1, Prop. 10.1], \(K_{-n}(A) = 0\) for \(n \geq 1\).

Also, by Serre’s theorem \(K_0(A) \rightarrow K_0(A[T^n])\) is an epimorphism (see [7]). Since \(K_{-n}(A)\) is a direct summand of the cokernel of \(K_0(A) \rightarrow K_0(A[T^n])\) we have \(K_{-n}(A) = 0\) for \(n \geq 1\). So from the exact sequence Eq. 11, we have \(K_{-n}(\Lambda_\alpha[T]) = 0\) for \(n \geq 2\) and \(K_0(B'_\alpha[T]) \longrightarrow K_{-1}(\Lambda_\alpha[T])\) is an epimorphism.

By mapping the Mayer-Vietoris sequence associated with the cartesian square Eq. 11 to the Mayer-Vietoris sequence associated with square Eq. 12, we have a commutative square
\[
\begin{array}{ccc}
K_0(B') & \longrightarrow & K_{-1}(\Lambda) \\
\downarrow & & \downarrow \\
K_0(B'_\alpha[T]) & \longrightarrow & K_{-1}(\Lambda_\alpha[T]).
\end{array}
\]
To prove that \(K_{-1}(\Lambda) \longrightarrow K_{-1}(\Lambda_\alpha[T])\) is an epimorphism, it suffices to prove that \(K_0(B') \longrightarrow K_0(B'_\alpha[T])\) is an epimorphism in the commutative diagram
\[
\begin{array}{ccc}
K_0(B') & \longrightarrow & K_0(B'_\alpha[T]) \\
\downarrow & & \downarrow \\
K_0(B'/JB') & \longrightarrow & K_0((B'/JB')_\alpha[T])
\end{array}
\]
where the vertical maps are isomorphisms. Also by [7, Theorem 27], the map \(K_0(B'/JB') \longrightarrow K_0((B'/JB')_\alpha[T])\) is an epimorphism. Hence \(K_0(B') \longrightarrow K_0(B'_\alpha[T])\) is an epimorphism. So \(K_{-1}(\Lambda) \longrightarrow K_{-1}(\Lambda_\alpha[T])\) is an epimorphism. Since by (a), \(K_{-1}(\Lambda)\) is finitely generated, then \(K_{-1}(\Lambda_\alpha[T])\) is also finitely generated.

(c) By definition, \(K_{-1}(\Lambda_\alpha[T]) \simeq K_{-1}(\Lambda) \oplus NK_{-1}(\Lambda, \alpha).\) So it suffices to show that \(NK_{-1}(\Lambda, \alpha) = 0.\)

Let \(\Lambda, \Gamma, B = \Lambda/q, B' = \Gamma/q\) be as in the proof of (a) (b). Then we have two cartesian squares
\[
\begin{array}{ccc}
\Lambda & \longrightarrow & \Gamma \\
\downarrow & & \downarrow \\
B & \longrightarrow & B'
\end{array}
\]
and
\[\begin{array}{ccc}
\Lambda_\alpha[t] & \longrightarrow & \Gamma_\alpha[t] \\
\downarrow & & \downarrow \\
B_\alpha[t] & \longrightarrow & B'_\alpha[t]
\end{array} \] \tag{18}

where $\Gamma_\alpha[t]$, $B_\alpha[t]$ and $B'_\alpha[t]$ are quasi-regular as well as Γ, B, B'. Hence we have Mayer-Vietoris sequences
\[\cdots \rightarrow K_0(\Lambda_\alpha[t]) \rightarrow K_0(\Gamma_\alpha[t]) \oplus K_0(B_\alpha[t]) \rightarrow K_0(B'_\alpha[t]) \rightarrow K_{-1}(\Lambda_\alpha[t]) \rightarrow \cdots \] \tag{19}

and
\[\cdots \rightarrow K_0(\Lambda) \rightarrow K_0(\Gamma) \rightarrow K_0(B) \rightarrow K_0(B') \rightarrow K_{-1}(\Lambda) \rightarrow \cdots \] \tag{20}

where for $A = \Gamma$, B, B', $\Gamma_\alpha[t]$, $B_\alpha[t]$, $B'_\alpha[t]$, $K_{-i}(A) = 0$ for $i \geq 1$ (see [1, Prop. 10.1]). By mapping Eqs. 19 to 20 and taking kernels, we have that
\[NK_{-1}(\Lambda, \alpha) = \text{coker}(NK_0(\Gamma, \alpha) \oplus NK_0(B, \alpha) \rightarrow NK_0(B', \alpha)). \]

So it suffices to show that $NK_0(B', \alpha) = 0$. Since $B', B'_\alpha[t]$ are quasi-regular, the result follows from [6, Lemma 2.4]. So $NK_{-1}(\Lambda, \alpha) = 0$ and hence $K_{-1}(\Lambda[t]) \simeq K_{-1}(\Lambda)$. □

Corollary 2 Let R be the ring of integers in a number field F, $V = G \rtimes_\alpha T$ a virtually infinite cyclic group where G is a finite group and the action of the infinite cyclic group T on G is given by $\alpha(g) = tgt^{-1}$ for all $g \in G$. Then $K_{-1}(RV)$ is a finitely generated Abelian group.

Corollary 3 Let α be an automorphism of a finite group G, R the ring of integers in a number field F. Denote the induced automorphism on RG also by α. Then $K_{-1}(RG) \simeq K_{-1}((RG)_\alpha[t])$ is a finitely generated Abelian group.

Acknowledgements Part of the work reported in this article was done while I was visiting University of Bielefeld, Germany and IHES, Paris. It was concluded and written up while I was visiting the Max-Planck-Institut für Mathematik, Bonn, Germany. I like to thank the three institutions for hospitality and financial support.

References

1. Bass, H.: Algebraic K-theory. W.A. Benjamin, Menlo Park (1968)
2. Borel, A.: Stable real cohomology of arithmetic groups. Ann. Sci. École Norm. Sup. 7(4), 235–272 (1984)
3. Browder, W.: Algebraic K-theory with Coefficients \mathbb{Z}/p. Lecture Notes in Mathematics, vol. 657, pp. 40–84. Springer, Berlin (1978)
4. Carter, D.W.: Localization in lower algebraic K-theory. Comm. Algebra 8(7), 603–622 (1980)
5. Charney, R.: A Note on Excision in K-theory. Lecture Notes in Mathematics, vol. 1046, pp. 47–48. Springer, Berlin (1984)
6. Conolly, F., Prassidis, S.: On the exponents of NK groups of virtually infinite cyclic groups. Car. Math. Bull. 45(2), 180–195 (2002)
7. Farrell, F.T., Hsiang, W.C.: A formula for $K_1(Ro[T])$. Applications of Categorical Algebra. Proceedings of Symposia in Pure Mathematics, vol. 17, pp. 192–218. American Mathematical Society, Providence (1970)
8. Farrell, F.T., Jones, L.E.: Isomorphisms conjectures in algebraic K-theory. J. Amer. Math. Soc. 6, 249–297 (1993)
9. Farrell, F.T., Jones, L.E.: The lower algebraic K-theory of virtually infinite cyclic groups. K-Theory 9, 13–30 (1995)
10. Kuku, A.O. K-theory of grouprings of finite groups over maximal orders in division algebras. J. Algebra 91(1), 18–31 (1985)
11. Kuku, A.O.: K_n, SK_n of integral group rings and orders. Contemp. Math. AMS 55, 333–338 (1986)
12. Kuku, A.O.: Ranks of K_n and G_n of orders and grouprings of finite groups over integers in number fields. J. Pure Appl. Algebra 138, 39–44 (1999)
13. Kuku, A.O.: Profinite and continuous higher K-theory of exact categories, orders and grouprings. K-theory 22, 367–392 (2001)
14. Kuku, A.O.: Finiteness of higher K-groups of orders and group rings. K-Theory 36, 51–58 (2005)
15. Kuku, A.O.: Representation Theory and Higher Algebraic K-theory. Chapman and Hall, London (2007)
16. Kuku, A.O., Tang, G.: Higher K-theory of grouprings of virtually infinite cyclic groups. Math. Ann. 323, 711–725 (2003)
17. Neisendorfer, J.: Primary homotopy theory. Mem. Amer. Math. Soc. 232, (1980)
18. Reiner, I.: Maximal Orders. Academic Press, London (1975)
19. Weibel, C.: Mayer-Vietoris sequences and mod-p-K-Theory. Lecture Notes in Mathematics, vol. 966, pp. 390–407. Springer, Berlin (1982)