Chemo-preventive Activities of Common Vegetables’ Volatile Organic Compounds (VOCs)

Ola Lasekan* and Shakirah Azeez
Faculty of Food Science and Technology, University Putra Malaysia, Serdang, Malaysia

Abstract
In the last few years, many research reports on the chemo-preventive activities of vegetables have been published. Vegetables are not only nutrient-dense food source but they are also rich in volatile organic compounds with known bioactivities beneficial to human health. A review of vegetables volatile constituents and their bioactivities is therefore important. It will display an overview and information regarding their role in the improvement of human health. The current status of research on volatile organic compounds in common vegetables and their potential roles in the prevention of various diseases associated with oxidative stress, such as cardiovascular and neurodegenerative diseases are reviewed. The major volatile compounds with roles in cardiovascular and neurodegenerative disease prevention are benzene propane nitrile commonly found in (Broccoli raab), hydroxycinnamates (lettuce), xanthorrhizol (artichoke), dially sulfide (onion and garlic), allicin (onion and garlic), and anthraquinone (rhubarb). The anti-microbial, anti-oxidant, and anti-thrombotic activities of other compounds such as trans-ocimene, β-selinene, fenchone, carotol, and others are also reported.

Keywords: Chemo-preventive activities; vegetables; volatile organic compounds

Practical Application
In recent years, common vegetables have become very attractive for consumers because of their potentially beneficial volatile compounds contained in them. However, the role played by volatile organic compounds in disease prevention has not received the same attention.

Introduction
Vegetables can be said to either directly or indirectly supply all foods for humans. They are edible plant products which can be modified. Their important parts are stems, roots, leaves, flowers and fruits. They are usually categorized on the basis of the plant part that is used for food. Stem vegetables include kohlrabi, celery, and asparagus. Radishes, turnips, carrots, and beets are classified as root vegetables. Leafy vegetables include the cruciferous kale, endives, and lettuce. The flowery parts of vegetables are the broccoli, cauliflower, leeks, artichoke and the Allium genera. The fruits are structures usually containing seeds which develop after fertilization or pollination [1]. Thus, eggplants, cucumbers, beans, squash, bell peppers, corn and tomatoes fall into this category.

Flavor compounds in vegetables are contained in the intact tissues as non-volatile precursors which become volatile by enzymatic actions once the tissue is disrupted by crushing, cutting or shredding. Vegetable volatiles are nitrogen and sulphur compounds, and carboxyls [2]. Vegetables are not only nutrient-dense food sources, but they are also rich sources of bioactive volatile organic compounds (VOCs). VOCs are organic compounds with high vapor pressure at room temperature. VOCs are many, ubiquitous and include naturally occurring chemicals. Most scents or odors are regarded as VOCs. Literature sources have shown that a multitude of bioactive compounds in vegetables have anticarcinogenic properties [3,4]. These nutrient-dense and bioactive volatile foods have the potential to protect against chronic and degenerative diseases including diabetes and cardiovascular diseases [5,6]. The aim of the study is to review the bioactivities of volatile organic constituents of common vegetables in human health.

Materials and Methods

Fruit part of vegetables

Bell Pepper (Capsicum annuum): Capsicum annuum also called bell pepper or sweet pepper are native plants of America, and the fruits are grown for consumption as vegetables, spices, and external medicines [7]. Capsicums are used primarily in food because of their pungency and colour [7]. Apart from capsaicinoids, a secondary metabolite of pepper, which gives pepper its pungency, other volatile constituents include trans-beta-ocimene, limonene, methyl salicylate and linalool (Table 1) [8]. Whole dried pepper fruits have been used as traditional grain protectant in West Africa [9]. Admixture of dry pepper powder and cowpea has been known to cause 46% mortality in adult C. maculates, a common pest of stored legumes. The ethanol extracts of bell pepper have been shown to cause 100% adult mortality in T. confusum after a five days exposure period. Perry, [10] reported the major constituents to be capsicine, capsacin, capsanthine, capsochrome, carotene and carotenoids respectively. Diterpenoid glycosides isolated from the fruit C. annuum exhibited anti-hypertensive effects [11,12].

Cucumber (Cucumis sativus, L.): C. sativus belongs to the same cucurbitaceae family as squash, muskmelon and watermelon. It’s a seasonal vegetable crop native to India [13]. All the parts of this plant (leaf, fruit, seed) have been explored for their therapeutic benefits. Cucumber is widely used for various skin problems and it’s believed to promote cooling, healing, soothing, emollient, and anti-itching effect on irritated skin. The leaves, stems and roots are generally used.
Volatile compounds/phytochemicals	Possible bioactivity	Types of vegetable*	Reference
1 Lactones	Exhibits anti-microbial activity against *B. subtilis, P. vulgaris*	Celery	Siapailene, et al. [85]
2 Trans-Ocimene	Exhibits anti-microbial activity against *B. cereus*		
3 3-Methyl-4-ethylhexane	-ditto-		
4 β-Pinene	Anti-oxidative and hypolipidemic activity		
5 9 (Z)-Octadecenamide	Anti-oxidant properties	Celery	Cheng et al., [92]
6 β-Selinene	Possess acaricidal activity against *D. farina & D. pteronyssinus*		Ou et al., [49]
7 Fenchone	Inhibits reactive oxygen species		
8 Eugenol	Good scavengers of peroxyl radicals		
9 Carvone	-ditto-		
10 Xanthorrhizol (sesquiterpene)	Neuroprotective effect against cisplatin-induced nephrotoxicity	Artichoke	Kim et al., [25]
11 Carotol	Antifungal, herbicidal and anti-microbial		Jasicka-Misiak, et al., [43]; Glisic et al., [46]
12 Daucol	-ditto-		
13 Undecan-2-one	Anti-microbial & nematocidal		Ntalli et al., [45]; Dorman & Deans [47]
15 Sabinene	Anti-microbial against *B. subtilis*		
16 Anethole	Anti-microbial, estrogenic agent and anti-thrombotic agent. Increases milk secretion/promote menstrual flow	Carrot	Kubo et al., [32]
17 p-anisaldehyde (+)-Fenchone	Acaricidal activity		
19 Estragol	-ditto-		Lee, [35]; Parejo et al., 2004b
20 Kaempferol-3-O-rutinoside	Anti-radical scavenging activities		
21 Hydrocycinnamates	Neuroprotective effect such as Alzheimer’s disease		Commenges et al., 2000
22 3-Butenylisothiocyanate	Inhibits the growth of pathogenic bacteria	Lettuce	Jang et al., [25]
23 4-Pentenylethylisothiocyanate	-ditto-		
24 Benzene propane nitrile	Anti-carcinogenic		
25 1H-Indole-3-acetonitrile	-ditto-		
26 Lycopene	Anti-oxidant activity, reduction of cardiovascular disease (CVD)		Kardinaal et al., 1993; Erdman et al., 2005
27 Limonene	Antibacterial		
Table 1: Some volatile constituents of common vegetables and their possible bioactivities.

28	Capsidiol	Bacteriostatic properties
29	Limonene	Antibacterial
30	Trans-β-ocimene	-ditto-
31	Allicin	Anti-carcinogen, anti-mutagen and anti-oxidant
32	Dially sulphide	Inhibition of colon and oesophageal carcinomas
33	4-Methylbutyl isothiocyanate	Anti-oxidant action
34	Phenylethyl isothiocyanate	Chemopreventive properties
35	Incensole, α-Copaene	Anti-inflammatory, Antioxidant & Anticarcinogenic
37	Anthraquinone	Laxative, antimalarial, antineoplastic & in treatment of cancers
38	Dihydroquercetin	Antioxidant activity

as anti-diarrheal, detoxicant and anti-gonorrhoeal agents among the Chinese folks. Cucumber potentials as an antioxidant, anti-wrinkle, antimicrobial, anti-diabetic, and hypolipidemic agents have been well documented.

The presence of cucurbitacin (a triterpenoid substance) in cucumber seed has been attributed to its cytotoxicity and anti-cancer activities. Guha and Sen [14] reported that cucurbitacin also exhibited wide ranges of in-vitro and in-vivo pharmacological effects and is used as purgative, anti-inflammatory and anti-fertility agent. The volatile oils of *C. sativus* have been reported to show antibacterial activity (MIC=0.09-0.5 mg/mL) against both gram-positive and gram-negative bacteria [15], and anti-fungal activity against human pathogen fungi (*C. albicans, C. tropicalis, and C. glabrata*) [16]. Similarly, (E,Z)-2,6-nonadienal and (E)-2-nonenal, the major volatile constituents present in cucumber have been reported to show anti-bacterial activity against human and food borne pathogen bacteria, such as *Bacillus cereus, Escherichia coli, Listeria monocytooges* and *Salmonella typhiriam* [16]. Stratil et al. [17] reported that cucurbitacin D and 23,24-dihydroxycucurbitacin D, isolated from cucumber extracts significantly inhibited tyrosinase and melanin synthesis.
Root part of vegetables

Onions (Allium cepa L): Onion is one of the major vegetable crops grown in the world.

The complex aroma, flavour, and lachrymatory characteristics of onion have been attributed to a variety of sulphur compounds. Allicin and its derivatives are one of the major sulphur-containing volatile compounds in Allium species such as onion, and Allicin is known to have curative as well as potential anti-carcinogenic, anti-mutagenic, and antimicrobial properties (Table 1) [18,19]. It is well known that both oil-soluble and water-soluble organo-sulphur compounds (OSC) are contained in onions, some of which have been shown to be chemo-preventive against carcinogenesis in animal models. Some studies have reported that dially sulphide (DAS) inhibits development of colon carcinomas, oesophageal carcinomas, pulmonary adenomas, and forestomach tumours in rodents when administered prior to carcinogen exposure [20]. However, Fukushima, Takada, Hori, and Wanibuchi [21] observed that water-soluble OSCs have inhibitory effect on rat liver carcinogenesis in second stage growth. S-Allylcysteine, S-propylcysteine, S-ethylcysteine, S-methylcysteine and cysteine, decreased GST-P-positive foci (Glutathione S-transferase placental form), particularly SMC and cysteine which caused significant reduction in the numbers and areas of GST-P-positive foci.

In addition, the World Health Organization supports the use of the onion bulb for the treatment of age-dependent changes in blood vessels and loss of appetite [22].

Furthermore, Mizuho and Shibamoto [23] showed that volatile samples of freeze-dried onions possess potent anti-inflammatory activity as well as a strong antioxidant property. The bioactive compounds in onion have been found to be capable of reducing enzymatic browning and/or oxidoreductase activity [24]. Several researches have shown that sulphydryl (SH or thiol) compounds are good inhibitors of polyphenol oxidase enzyme (PPO), major enzyme responsible for browning activity in fruits and vegetables [25,26]. Hence, onion extracts could be used as natural food ingredients for prevention of browning caused by PPO [27].

Fennel (Foeniculum vulgare): Fennel is a biennial medicinal and aromatic plant belonging to the family Apiaceae (Umbelliferae). It is a highly aromatic and flavourful herb with culinary and medicinal uses. Fennel seeds are anise like in aroma and are used as flavourings in baked goods, meat and fish dishes, ice cream, alcoholic beverages and herb mixtures [28]. Fennel seed extracts have been shown to have potential use in the treatment of glaucoma, as a diuretic and potential drug for hypertension treatment in animal studies. Extensive studies have been done on F. vulgare with the conclusion that the chemo preventive effect of fennel is generally attributed to its essential oil. Although, caution should be taken regarding some of the volatile components, in particular estragole (methylchavicol), which has been associated with the development of malignant tumours in rodents. Karlsen, Svendsen, Chingova, and Zolotovich [29] reported that the major constituents of sweet fennel (var. dulce) and bitter fennel (var. vulgare) include anethole, estragole, and fenchone, and additional 18 compounds extracted in the monoterpen fraction of the fruit vegetable. Alpha-pinene, camphene, beta-pinene, alpha-phellandrene, myrcene, limonene, beta-phellandrene, gamma-terpinene, cis-ocimene, terpinolene, and p-cymene were the minor volatile oil constituents of bitter fennel.

Both sweet and bitter varieties of fennel essential oils contain about 90% trans-anethole, 20% fenchone and small amount of limonene, camphor, alpha-pinene, and other additional minor volatile compounds [30]. The essential oils have been reported to possess anti-inflammatory, antioxidant and pro-oxidant activities [31]. Anethole has been reported to possess antimicrobial activity (Table 1) [32], and an active estrogenic agent, and a safe antithrombotic agent [33]. Rather et al. [34] reported that anethole increases milk secretion, promote menstruation, facilitates birth, and alleviates the symptoms of the male climacteric and increase libido. However, in some studies, it was shown that dienethole and photoanethole are the actual estrogenic agents.

Carrot (Daucus carota sativus): Daucus is a genus belonging to the Apiaceae family and consist of over 500 species widely spread around the world. For a long time, plants from this family have been used as spices or drugs. Carrot essential oils have been reported to have several bioactive properties such as antibacterial, fungicidal, hepatocellular regenerator, general tonic, and stimulant, lowering of high cholesterol, and cicatrization [40]. The oils of some subspecies of Daucus carota have been proven to possess antibacterial activity [41,42].

D. carota is the source of sesquiterpenic alcohols, carotol and daucol, and the sesquiterpene beta-caryophyllene. Carotol, one of the major sesquiterpene alcohols of Daucus carota seeds has a probable biogenesis from cis, trans-farnesol. Previous studies have shown that the chemical composition of Daucus species is more dominated by monoterpene hydrocarbons such as alpha-pinene and sabineene [43]. Jasicka-Misiak et al. [43], isolated the following terpenoids: carotol, beta-caryophyllene, daucol from the volatile components of carrot and tested their antifungal activity on strains of fungi belonging to the Alternaria family and a strain of Acremonium isolated from the surface of carrot seeds. The combination of these three terpenoids produced strong inhibitory effects on mycelium radial growth of Alternaria alternata. Although, it was observed that sesquiterpene beta-caryophyllene failed to have any effect. The activity of carotol was nearly as strong as the commercially available fungicide Funaben T (85%).

Various volatile compounds such as terpenes and varieties of aliphatic hydrocarbons (alcohol, aldehydes and ketones) isolated by hydro distillation of oils from Daucus species have been shown to have direct activity against many bacteria species. This antimicrobial action is attributed to the lipophilic character of their hydrocarbon skeleton and hydrophilic character of their functional group [44]. The ketone (undecan-2-one) has also been proven to possess both antimicrobial and nematocidal activities (Table 1) [45]. Glis’ic, Mišić, Stamenic, Zizovic, Asanin, and Skala [46] also discovered that carotol; the main volatile component isolated from essential oil of carrot fruit is most effective against gram-positive bacteria. Sabineene however exhibited a stronger antimicrobial effect against Bacillus subtilis, which have previously been proven to inhibit growth of Bacillus subtilis by Dorman, and Deans [47].
Flower part of vegetables

Globe Artichoke (Cynara scolymus L.): Many human diseases, including accelerated ageing, cancer, cardiovascular diseases, neurodegenerative diseases and inflammations, are generally linked to increase amount of free radicals [48]. Artichoke is an herbaceous plant native to the Mediterranean Basin. Globe artichoke is mostly used for food. However, various studies have demonstrated the health promoting properties of its extracts. Beta-selinene, one of the volatile constituents found in artichoke, has been reported to exhibit an antioxidant activity [49]. Eugenol and fenchone are also some of the volatile components of artichoke with biological activities (Table 1). Fenchone which is found in fennel leaves possess acaricidal activity against *D. farina* and *D. pteronyssinus* when used as direct contact application. On the other hand, eugenol has been reported to inhibit the reactive oxygen species (ROS) generation, intracellular calcium accumulation, and the subsequent mitochondrial membrane potential collapse [50]. In addition, eugenol inhibits cytochrome C release, and caspase-3 (CCLI) activation induced by oxidized low density lipoprotein (LDL). Another compound found in artichoke is xanthorrhizol, a natural sesquiterpenoid. Xanthorrhizol has been shown to possess protective effect against cisplatin-induced nephrotoxicity [27]. It also exhibits a potent neuroprotective effect on glutamate-induced neurotoxicity and reactive oxygen species (ROS) generation in the murine hippocampal HT22 cell line. H2O2-induced lipid peroxidation in rat brain homogenates was also found to be subdued by xanthorrhizol [51].

Broccoli (Brassica oleracea L., *Italia* group): Broccoli is classified in the *Italia* cultivar group of the species *Brassica oleracea*. It is a high source of vitamin C, and dietary fibre; it also contains multiple nutrients with potent anti-cancer properties, such as diindolylmethane and small amounts of selenium. Epidemiological observations suggested that high intake of fruit and vegetables could be associated with a reduced risk of cancer [3], and cruciferous vegetables, including broccoli, cabbage, cauliflower, and Brussels sprouts, seemed particularly beneficial in preventing carcinogenesis [52]. Researchers have shown that the volatile constituents responsible for these activities were the sulphur containing compounds, such as isothiocyanates (R-NCS) and their glucosinolates precursors [53], and indole-based constituents, such as indole-3-carbinol, 3,3′-di-indolylmethane, and indole-3-acetonitrile [54]. These volatile constituents were found to induce drug-metabolizing enzymes in cell culture and rodent tissue, and their chemopreventive activity was attributed to the increased detoxification of xenobiotic and carcinogens [55,56].

When broccoli cell structure is ruptured during processing, enzyme myrosinase comes into contact with glucoraphanin to form isothiocyanate sulforaphane (SF; 1-isothiocyanato-4-methylsulfinylbutane), and the related nitrile [57]. Sulforaphane has been considered to be the principal component responsible for the cancer prevention of broccoli [58]. Sulforaphane, an aliphatic isothiocyanate, has been isolated from broccoli as the major inducer of Phase II drug-metabolizing enzymes [59,60]. Isothiocyanate sulforaphane (ITCs) has been shown to inhibit tumor genesis which is induced by a wide variety of chemical carcinogens in animal models [61].

Cauliflower (Brassica oleracea Botrytis): Cauliflower like other Brassica family has the capacity to prevent cardiovascular diseases as well as to exert activity against some type of cancers [52]. Violet cauliflower extracts have shown significant antioxidant properties [62]. Pedras, Sarwar, Suchy, and Adio [63] isolated 3 different phytoalexins (secondary metabolites) from cauliflower which contain indolylisulfide and non-sulfur containing indolyl phytoalexin. The cauliflower A, an example of indolylisulfide exhibited the most antifungal activity against *S. sclerotiorum*. Isothiocyanate (ITCs) an enzymatic hydrolysis product of glucosinolates is particularly effective in inhibiting the germination of fungal pathogens: *B. cinerea, R. stolonifer, M. lazea, M. piriformis* and *P. expansum* [64]. Sisti, Amaglani, and Brandi [65] also showed that *B. oleracea* aqueous juice was able to inhibit *C. albicans* growth in a dose-dependent manner. Over 95% inhibition was recorded after 4 h of incubation with 15% juice. Cauliflower is also a good source of sulphur-containing volatiles and ITCs. Epidemiological studies have shown evidences over the years, that diet relatively high in cruciferous vegetable can reduce the risk incidence or progression of cancer.

The leaf part of vegetables

Arugula (Eruca vesicaria subsp. Sativa): Arugula also known as salad rocket is from the same Brassicaceae family as cabbage, broccoli and cauliflower. Several researches have been conducted to identify the main volatile constituents responsible for these protective effects of *Brassicaceae* vegetables [66]. One study identified 4-methylthiobutyl glucosinolate (glucoerucin), while another attributed the effects to the presence of 4-mercaptothyl glucosinolate (glucosatavin) [67]. The major volatile compounds in Arugula include sulphur/nitrogen containing compounds (4-methylthiobutyl isothiocyanate and 5-methylthiopentanenitrile), fatty acids, esters, and also volatile aldehydes [68]. Villatoro-Pulido, Font, Saha, Obregón-Cano, Anter, Muñoz-Serrano [69] also revealed that Arugula extracts and its sulforaphane were able to detoxify the genotoxic activity of hydrogen peroxide with inhibition rates ranging from 0.13-0.93. In addition, a possible association was established between the consumption of arugula and the antioxidant defence system of mammals.

Arugula has been reported to have the following properties: anti-oxidant, diuretic, astringent, anti-inflammatory for colitis, laxative, anti-phlogistic and an aid in digestion [70]. They have also been used as biological controls to inhibit pest development [71]. Lamy et al. [72] reported the chemopreventive potency of arugula extracts in HepG2 cells. They observed that Arugula exhibited anti-genotoxicity by reducing the benzo (a) pyrene-induced genotoxicity in a U-shaped manner, and that the compounds responsible for this chemopreventive activity were identified as isothiocyanate erucin, sulforaphane, erosilin and phenylethyl isothiocyanate. Literature survey reveals that Arugula leaves are anticorrosive, diuretic, stimulant and stomachic while the seed and seed powder have rubefacient and antibacterial properties respectively [73]. Rani et al. [74] also showed that both crude water extract and methanolic extract of Arugula exhibited varying degrees of microbial inhibition. Water extract showed moderate antifungal activity against *Spadicoides stoveri* and *Paecilomyces variotii*, while it showed significant antibacterial activity against *Hafnia alvei* and *Enterobacter agglomerans*.

Water dropwort (Oenanthe javanica): Water dropwort belongs to the family Umbelliferae and it is cultivated in marshy places of Asia and Australia. Water dropwort is known to have antimutagenic effect against aflatoxin B1 and a capacity to remove heavy metals, such as Cadmium [75]. The principal volatile compounds of water dropwort were α-copaene, carophyllene, α-cuprene, and a cembrene-type diterpene, incenseol [76]. Recent studies have shown that incenseol and its acetylated form incensole acetate, exhibits anti-inflammatory effect as well as several CNS-associated activities [77,78]. Similarly, tricyclic sesquiterpene, copaene has been shown to exhibit antioxidant and anti-carcinogenic features [79].
Stem part of vegetables

Celery (Apium graveolens): Celery belongs to the family Umbelliferae and it grows wild in Europe, the Mediterranean region and in Asia, west of the Himalayas. Seeds of the celery plant have been used for thousands of years in Ayurveda medicine. The volatile extracts of celery seeds are used in the perfume and pharmaceutical industries. All parts of this vegetable are known to be a remedy for one or more maladies. It has been reported to have insecticidal, bactericidal [80], and chemostatic effects [81]. The principal volatile constituents of celery are limonene, β-selinene, β-caryophyllene, sedanolde, cis-ocimene, apiole, 3-butylyphthalide, myrcene and 3-butyl-4,5-dihydrophthalade, [82,83]. Jawad, Suvarnalatha, Sankar, and Suresh [84] reported that sesquiterpene lactones from A. graveolens exhibited antimicrobial activity against Bacillus subtilis, Proteus vulgaris, and tested fungi, while Siapailene, Venskutonis, Sarkinas, and Cypiene [85] showed that root extracts which composed more of trans-ocimene, 3-methyl-4-ethylhexane and β-pinne [86] have high activity against B. cereus and Enterococcus faecalis. Celery has been used traditionally to treat many ailments such as rheumatism, rheumatoid arthritis, diuresis, and indigestion [87]. Alcoholic extracts of celery roots have been used to cure urinary disorders such as urinary stone, and used as kidney stimulant and cleanser. Furthermore, several studies have reported that celery seed has been useful for the treatment of urinary calculi, gut diseases, flatulence and gripping pains, reduction of visceral spasm and stimulation of the smooth muscle of the womb. Phthalide is not fully understood. A better knowledge of some variables of VOCs in common vegetable and their potential roles in the prevention of various diseases are reviewed. The volatile organic compounds with roles in health promoting activities in vegetables are Benzene propane nitrile, 1H-Indole-3-acetonitrile, Xanthorrhizol, Thymol, Carvarol, terpenoids, capsacian, and glucosinolates. Although several biological effects based on epidemiological studies can be scientifically explained, the mechanism of action of some effects of the above named compounds is not fully understood. A better knowledge of some variables of VOCs bioavailability, such as the kinetics of absorption, accumulation and elimination, will facilitate the design of such studies. The role of volatile organic compounds in health is still a fertile area of researches.

References

1. Vaughan J, Geissler C (2009) The new Oxford book of food plants. Oxford University Press.
2. Gary T (1999) Flavour chemistry of vegetables. In: Teranish R, Wick EL, Hornstein I, editors, Flavour Chemistry Thirty Years of Progress. New York Kluwer Academic Plenum Publishers: 287-304.
3. Steinnetz KA, Potter JD (1991) Vegetables, fruit, and cancer. I. Epidemiology. See comment in PubMed Commons below Cancer Causes Control 2: 325-357.
4. Dragsted LO, Strube M, Larsen JC (1993) Cancer-protective factors in fruits and vegetables: biochemical and biological background. See comment in PubMed Commons below Cancer Causes Control 2: 325-357.
5. Liu S, Manson JE, Lee IM, Cole SR, Hennekens CH, et al. (2000) Fruit and vegetable intake and risk of cardiovascular disease: the Women’s Health Study. See comment in PubMed Commons below Am J Clin Nutr 72: 922-928.
6. Riboli E1, Norat T (2003) Epidemiologic evidence of the protective effect of fruit and vegetables on cancer risk. See comment in PubMed Commons below Am J Clin Nutr 78: 559S-569S.
7. Osuna-Garcia JA, Wall MM, Waddell CA (1998) Endogenous levels of tocopherols and ascorbic acid during fruit ripening of New Mexican-type chili (Capsicum annuum L.) cultivars. J of Agri and Food Chem 46: 5093-5096.
8. Ibiyaro MF, Agbaje M (1986) Insecticidal activities of piper guineensesschum and Thonn, and capsicum species on the cowpea branched, Callosobruchus maculatus. Insect Sci App 7: 521-524.
9. Buttery RG, Seifert RM, Guadagni DG, Ling LC (1969) Characterization of some volatile constituents of bell peppers. See comment in PubMed Commons below J Agric Food Chem 17: 1322-1327.
10. Perry LM, Metzger J (1980) Medicinal plants of east and southeast Asia: attributed properties and uses. MIT press.
11. Iizumitani Y, Yahara S, Nohara T (1990) Novel acyclic diterpene glycosides, capsianosides AF and IV from Capsicum plants (Solanaceous studies. XVI). Chem and Pharm Bull 38: 1299-1307.
12. Yahara S, Kobayashi N, Iizumitani Y, Nohara T (1991) Studies on the solanaceous plants. 23 new acyclic diterpene glycosides, capsinosides-vi, capsinoside-g and capsinoside-h from the leaves and stems of Capsicum-annuum-L. Chem and Pharm Bull 39: 3258-3260.
13. Kirkbide JH (1993) Biosystematic monograph of the genus Cucumis (Cucurbitaceae): botanical identification of cucumbers and melons. Parkway Publishers, Inc.
A comprehensive review of its traditional use, phytochemistry, pharmacology, and safety.

35. Lee HS (2004) Acaridical activity of constituents identified in Foeniculum vulgare fruit oil against Dermatophagoides spp. (Acari: Pyroglyphidae). See comment in PubMed Commons below J Agric Food Chem 52: 2887-2889.

36. Kwon YS, Choi WG, Kim WJ, Kim WK, Kim MJ, et al. (2002) Antimicrobial constituents of Foeniculum vulgare. See comment in PubMed Commons below Arch Pharm Res 25: 154-157.

37. Ozbek H, UYatnAT, SAýýger H, Bayram I, Tuncer I, et al. (2003) Hepatoprotective effect of Foeniculum vulgare essential oil. See comment in PubMed Commons below Fitoterapia 74: 317-319.

38. Javidinia K, Dastgheib L, MohammadiSamani S, Nasiri A (2003) Anthriscutis activity of Fennel (fruits of Foeniculum vulgare) extract. A double-blind placebo controlled study. See comment in PubMed Commons below Phytotherapy 10: 455-458.

39. Ostad SN, Soodi M, Shariatzadeh M, Khoshndi N, Marzbah H (2001) The effect of fennel essential oil on uterine contraction as a model for dysmenorrhea, pharmacology and toxicology study. See comment in PubMed Commons below J Ethnopharmacol 76: 299-304.

40. Zivovic I, Slamenc M, Orlović A, Skala D (2007) Supercritical carbon dioxide extraction of essential oil from plants with secretory ducts: Mathematical modelling on the micro-scale. The J of Supercritical Fluids 39: 338-346.

41. Staniszewska M, Kula J, Wieczorkiewicz M, Kusewicz D (2005) Essential oils of wild and cultivated carrots—the chemical composition and antimicrobial activity. J of Ess Oil Res 17: 579-583.

42. Rossi PG, Bao L, Luciani A, Panighi J, Desjobert JM, et al. (2007) (E)-Methylisoeugenol and elemicin: antibacterial components of Daucuscarota L. essential oil against Campylobacter jejuni. See comment in PubMed Commons below J Agric Food Chem 55: 7332-7336.

43. Jasicka-Misaiik I, Lipok J, Nowakowska EM, Wiczorek PP, MAýyarnz P, et al. (2004) Antifungal activity of the carrot seed oil and its major sesquiterpene compounds. See comment in PubMed Commons below Phytochemistry 50: 791-796.

44. Bendiabdellah A, El Amine Dib M, Djabou N, Allali H, Tabet B, et al. (2012) Biological activities and volatile constituents of Daucuscarota L. from Algeria. See comment in PubMed Commons below Chem Cent J 6: 48.

45. Ntalli NG, Ferrari F, Giannakou I, Meniskosspiglu-Spiroid U (2011) Synergistic and antagonistic interactions of terpenes against Melolonthina grigna and the nematocidal activity of essential oils from seven plants indigenous to Greece. See comment in PubMed Commons below Pest ManagSci 67: 341-351.

46. Gnilic SB, Milic DR, Stamenic MD, Zivovic IT, Alanin RM, et al. (2007) Supercritical carbon dioxide extraction of carrot fruit essential oil: Chemical composition and antimicrobial activity. Food Chem 105: 346-352.

47. Dorman HJ, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. See comment in PubMed Commons below J ApplMicrobiol 88: 308-316.

48. Moskovic J, Yim MB, Chock PB (2002) Free radicals and disease. See comment in PubMed Commons below Arch Biochem Biophys 397: 354-359.

49. Ou HC, Chou FP, Lin TM, Yang CH, Sheu WHH (2006) Protective effects of eugenol against oxidized LDL-induced cytotoxicity and adhesion molecule expression in endothelial cells. Food and ChemTox 44: 1485-1495.

50. Mizutani T, Satoh K, Nomura H, Nakanishi K (1991) Hepatotoxicity of eugon in mice depleted of glutathione by treatment with DL-buthioninesulfoximine. See comment in PubMed Commons below Res CommunChem PharmacolPharmacol 71: 219-230.

51. Lim CS, Jin DQ, Mok H, Oh SJ, Lee JU, et al. (2005) Antioxidant and antiinflammatory activities of xanthorrhizol in hippocampal neurons and primary cultured microglia. See comment in PubMed Commons below J Neurosci 25: 10313-10318.

52. Beecher DJ, Wong AC (1994) Identification and analysis of the antigens detected by two commercial Bacillus cereus diarrheal enterotoxin immunoassay kits. App and EnvMicrob 60: 4614-4616.

53. Stoewsand GS (1995) Bioactiveorganosulfur phytochemicals in Brassica oleracea vegetables—a review. See comment in PubMed Commons below Food Chem Toxicol 33: 537-543.
54. Wattenberg LW, Loub WD (1978) Inhibition of polycyclic aromatic hydrocarbon-induced neoplasia by naturally occurring indoles. See comment in PubMed Commons below Cancer Res 38: 1410-1413.

55. Bjeldanes LF, Kim JY, Grose KR, Bartholomew JC, Bradford CA (1991) Aromatic hydrocarbon responsiveness in agonists generated from indole-3-carbinol in vitro and in vivo: comparisons with 2, 3, 7, 8-tetrachlorodibenzop-dioxin. Proceedings of the Nat Aca of Sci 88: 9543-9547.

56. Bradford CA, Bjeldanes LF (1991) Modification of carcinogen metabolism by indolylic autolysis products of Brassicaceae. Adv Exp Med Biol 289: 153-163.

57. Matusheski NV, Juwik JA, Jeffery EH (2004) Heating decreases epithiospecifier protein activity and increases sulfophenazine formation in broccoli. See comment in PubMed Commons below Phytochemistry 65: 1273-1281.

58. Fahey JW, Zhang Y, Talalay P (1997) Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. See comment in PubMed Commons below Proc Natl Acad Sci U S A 94: 10367-10372.

59. Zhang Y, Talalay P, Cho CG, Posner GH (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. See comment in PubMed Commons below Proc Natl Acad Sci U S A 89: 2399-2361.

60. Prestera T, Holtzclaw WD, Zhang Y, Talalay P (1993) Chemical and molecular regulation of enzymes that detoxify carcinogens. See comment in PubMed Commons below Proc Natl Acad Sci U S A 90: 2965-2969.

61. Hecht SS (1995) Chemoprevention by isothiocyanates. See comment in PubMed Commons below J Cell Biochem Suppl 22: 195-209.

62. Pizzo-caro F, Ferrari V, Acciarri N, Morelli R, Russo-Volpe S, et al. (2000) Antioxidant and antiradical activities in green and violet cauliflower ecotypes (Brassica oleracea var. botrytis fresh aqueous juice. See comment in PubMed Commons below Food Chem Toxicol 46: 2415-2421.

63. Chopra RN, Nayar SL, Chopra IC (1986) Glossary of Indian Medicinal Plants (Including the Supplement). Curr of Sci and Ind Res, New Delhi.

64. Rani I, Akhund S, Suhail M, Abro H (2010) Antimicrobial Potential of Seed Extract of Erupa Sativa. Pakistanian J of Bot 42: 2949-2953.

65. Seo WH, Baek HH (2005) Identification of characteristic aroma-active compounds from water dropwort (Senanthrejervinaca DC.). See comment in PubMed Commons below J Agric Food Chem 53: 6765-6770.

66. Pattiram PD, Lasekan O, Tan CP, Zaidul ISM (2011) Identification of the aroma-active constituents of the essential oils of water dropwort and kacip Fatimah (Labisia pumila) Int. Food Res J 18: 979-984

67. Moussaieff A, Shohami E, Khashman Y, Fride E, Schmitz, ML, et al. (2007) Incenose acetate, a novel anti-inflammatory compound isolated from Boswellia resin, inhibits nuclear factor-kappa B activation. See comment in PubMed Commons below Mol Pharmacol 72: 1657-1664.

68. Moussaieff A, Rimmerman N, Bregman T, Straker A, Felder CC, et al. (2008) Incenose acetate, an incense component, elicits psychoactive by activating TRPV3 channels in the brain. See comment in PubMed Commons below FASEB J 22: 3024-3034.

69. Turkez H, Togar B, Tatar A (2014) Tricyclic sesquiterpenepeneacpa prevents H2O2 induced neurotoxicity. J Intercult Ethnopharm 3: 21-28.

70. Friedman M, Henika PR, Mandrell RE (2002) Bactericidal activities of plant essential oils and some of their isolated constituents against Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, and Salmonella enterica. J of Food Protection 65: 1545-1560.

71. Saleh MM, Zawving JK, Malingre TM, Bos R (1985) The essential oil of Apium graveolens var. secalinum and its cencarcidial activity. See comment in PubMed Commons below Pharm Weekbl Sci 7: 277-279.

72. Ehiabhi OS, Edet UU, Walker TM, Schmidt JM, Setzer WN et al. (2006) Constituents of Essential Oils of Apium graveolens L., Allium cepa L., and Voacangaelafrica Staph from Nigeria. J of Ess Oil Bearing Plants 9: 126-132

73. Philippe J, Suvamatala G, Sankar R, Suresh S (2002) Kessane in the Indian celery seed oils. J of Ess Oil Res 14: 276-277.

74. Jawad AL, Dhaiber AB, Hussain AM (1985) Preliminary studies on the antimicrobial activity of sesquiterpen lactones extracted from Iraqi Compositae. Part I. J of Bio Sci Res 16: 5-8.

75. Slapaitiene A, Venskutonis PR, Sarkinas A, Cypiene V (2003) Composition and antimicrobial activity of celery (Apiumgraveolens) leaf and root extracts obtained with liquid carbon dioxide. In III WOCMAP Congress on Medicinal and Aromatic Plants-Volume 3: Perspectives in Nat Prod Chem 677: 71-77.

76. Fehr D (1981) Investigations into the aromatic compounds of celery. Part 2. Pharmazie 36: 374-376.

77. Houghton P (1995) Herbal products. 9. Bearberry, dandelion and celery. Pharm J 255: 272-273.

78. Oiye SO, Muroki NM (2002) Use of spices in Foods. J of Food Tech in Africa 7: 39-44.

79. Riddle JM (2004) Kidney and urinary therapeutics in early medieval monastic medicine. See comment in PubMed Commons below J Nephrol 17: 324-328.

80. Momin RA, Nair MG (2001) Mosqitocidal, nematicidal, and antifungal compounds from Apiumgraveolens L. seeds. See comment in PubMed Commons below J Agric Food Chem 49: 142-145.

81. Zhou Y, Taylor B, Smith TJ, Liu ZP, Clench M, et al. (2009) A novel compound from celery seed with a bactericidal effect against Helicobacter pylori. See comment in PubMed Commons below J Pharm Pharmacol 61: 1067-1077.

82. Cheng MC, Ker YB, Yu TH, Lin LY, Peng Ry, et al. (2010) Chemical synthesis of 9(Z)-octadecenamide and its hypolipidemic effect: a bioactive agent found in the essential oil of mountain celery seeds. See comment in PubMed Commons below J Agric Food Chem 58: 1502-1506.

83. Mencherini T, Cau A, Bianco G, Della Loggia R, Aquino RP, et al. (2007) An extract of Apiumgraveolens var. dulce leaves: structure of the major constituent, apiin, and its anti-inflammatory properties. See comment in PubMed Commons below J Pharm Pharmacol 59: 891-897.

84. Shao Y, Chin CK, Ho CT, Ma W, Garrison SA, et al. (1996) Anti-tumor activity of the crude saponins obtained from asparagus. See comment in PubMed Commons below Cancer Lett 120: 31-36.

85. Brandi G (2003) Antifungal activity of Brassica oleracea L. leaf and root extracts. Pharmacol Res 47: 235-238.

86. Ghafoor M, Rehman H, Hashmi KH, sohail M (2010) Antimicrobial, antioxidant and cytotoxic activities of some crude extracts of Apium graveolens L. leaf. Pakistan J of Sci 77: 519-526.

87. Jawad AL, Dhaiber AB, Hussain AM (1985) Preliminary studies on the antimicrobial activity of sesquiterpen lactones extracted from Iraqi Compositae. Part I. J of Bio Sci Res 16: 5-8.

88. Sivasubramanian M, Murugesan R, Anugrahan RP, Ramamurthy R, Gopalakrishnan R (2008) A novel compound from celery seed with a bactericidal effect against Helicobacter pylori. See comment in PubMed Commons below J Pharm Pharmacol 61: 1067-1077.