Diversity-Oriented Synthesis of Heterocycles and Macrocycles by Controlled Reactions of Oxetanes with α-Iminocarbenes

Alejandro Guarnieri-Ibáñez, Florian Medina, Céline Besnard, Sarah L. Kidd, David R. Spring, Jérôme Lacour

Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
Laboratory of Crystallography, University of Geneva, Geneva, Switzerland.
Department of Chemistry, University of Cambridge, Cambridge, UK.
Alejandro.Guarnieri@unige.ch

N-Sulfonyl-1,2,3-triazoles are known to decompose under metal catalyzed reaction conditions leading to electrophilic α-imino carbenes. These intermediates undergo many original processes, from cyclopropanations to ylide forming reactions and subsequent transformations.

Herein, we report the Rh(II)-catalyzed reaction of sulfonyl triazoles 1 with oxetanes 2. Depending on reaction conditions or substrate selection, 2-imino tetrahydrofurans 3, 13-membered sulfonimidates 4 and 15-membered aza-macrocycles 5 are generated selectively via formal [1+4], [5+4+4] and [3+4+4+4] condensations of α-imino carbenes and oxetanes, respectively. Straightforward syntheses of spiro N-heterocycles such as indoline 6 and tetrahydroquinoline 7 are achieved by means of Buchwald-Hartwig and Pictet-Spengler cyclizations, completing effectively the product diversity.

[1] (a) B. Chattopadhyay, V. Gevorgyan, Angew. Chem. Int. Ed., 2012, 51, 862. (b) H. M. L. Davies, J. S. Alford, Chem. Soc. Rev., 2014, 43, 5151.
[2] (a) S. Chuprakov, S. W. Kwok, L. Zhang, L. Lercher, V. V. Fokin, J. Am. Chem. Soc. 2009, 131, 18034. (b) N. Grimster, L. Zhang, V. V. Fokin, J. Am. Chem. Soc. 2010, 132, 2510.
[3] (a) F. Medina, C. Besnard, J. Lacour, Org. Lett. 2014, 16, 3232. (b) J. Pospech, R. Ferraccioli, H. Neumann, M. Beller, Chem. Asian J., 2015, 10, 2624.
[4] A. Guarnieri-Ibáñez, F. Medina, C. Besnard, S. L. Kidd, D. R. Spring, J. Lacour, Chem. Sci. 2017, 8, 5713.