Review

Stroke and Systemic Thromboembolism Prevention in People Living With Human Immunodeficiency Virus With Atrial Fibrillation: A Review of Its Implications for Clinical Practice

Pilar Vizcarra, MD,a,b Silvia Guillemi, MD,a,c Oghenowede Eyawo, PhD,a,d Robert S. Hogg, PhD,a
Julio S. Montaner, MD,a,c and Matthew Bennett, MDf,g

a British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
b Department of Infectious Disease, Hospital “Gral. José de San Martín,” La Plata, Buenos Aires, Argentina
c Department of Family Medicine, University of British Columbia, Vancouver, British Columbia, Canada
d Faculty of Health, York University, Toronto, Ontario, Canada
f Vancouver Coastal Health, Vancouver, British Columbia, Canada
g Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada

ABSTRACT

In the last few decades, types of diseases affecting people living with human immunodeficiency virus (PLHIV) have shifted as the population ages, with cardiovascular disease becoming a leading cause of death in this population. Atrial fibrillation (AF) is an increasingly common arrhythmia both in the general population and in PLHIV, with an estimated prevalence of 2% to 3% among PLHIV. Prevention of stroke and systemic thromboembolism (SSE) with antithrombotic therapy is a cornerstone of AF treatment and substantially decreases AF-related morbidity and mortality. Although updated guidelines extensively discuss this issue, they do not address the peculiarities of PLHIV. The role of human immunodeficiency virus (HIV) infection as an independent factor for SSE in individuals with AF and whether the presence of HIV should alter the threshold for SSE thromboprophylaxis are unknown. Nevertheless, a growing body of evidence describes the increasing burden of comorbidities such as hypertension and stroke in PLHIV, which predispose them to AF and SSE. In the absence of

RESUMÉ

Au cours des dernières décennies, les types de maladies qui touchent les personnes vivant avec le virus de l’immunodéficience humaine (PVVIH) ont évolué à mesure que la population vieillit. Les maladies cardiovasculaires deviennent ainsi les principales causes de décès dans cette population. La fibrillation auriculaire (FA) est une arythmie de plus en plus fréquente dans la population générale et chez les PVVIH. On estime que sa prévalence est de 2% à 3% chez les PVVIH. La prévention de l’accident vasculaire cérébral (AVC) et de la thrombembolie systémique (TES) par un traitement antithrombotique constitue la pierre angulaire du traitement de la FA et diminue considérablement la morbidité et la mortalité liées à la FA. Bien que les lignes directrices actualisées traitent en profondeur de cette question, elles ne portent pas sur les particularités des PVVIH. On ignore si l’infection par le virus de l’immunodéficience humaine (VIH) est un facteur indépendant de la TES chez les individus atteints de FA et si la présence du VIH devrait contribuer à modifier le seuil de

After the introduction of combination antiretroviral therapy (ART) for the treatment of human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome, there has been a marked decrease in acquired immunodeficiency syndrome–related morbidity and mortality with a concomitant improvement in the life expectancy of people living with HIV (PLHIV). However, this has been accompanied by a rising incidence of other comorbidities. In particular, cardiovascular disease (CVD) has become a leading cause of death in this population. The shift in the morbidities affecting PLHIV implies that a large portion of their care will be focused on the management of chronic diseases such as CVD.

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, affecting 3% to 6% of the general population. The severity and type of symptoms attributed to
AF vary significantly ranging from no symptoms to debilitating palpitations, presyncope, syncope, nausea, fatigue, or functional limitation. Furthermore, AF is an important risk factor for stroke, increasing the risk by approximately 5-fold.8

There are 3 pillars of AF treatment: stroke and systemic thromboembolism (SSE) prophylaxis, prevention of tachycardia-related cardiomyopathy, and symptom improvement.

Although a growing body of literature exists describing CVD in PLHIV,6,9-11 little is known about the impact of HIV infection and ART on SSE prophylaxis in AF. Moreover, it is unclear whether contemporary AF treatment guidelines can be applied to PLHIV because they are predominantly based on clinical trials that exclude this population. The aim of this review is to summarize the current guidelines for the prevention of SSE in AF and describe key considerations for their implementation in PLHIV receiving ART.

Methods
Manuscripts included in this review were systematically identified from searching PubMed and MEDLINE (via PubMed) including the following key Medical Subject Heading terms: “atrial fibrillation,” “thromboembolism,” “stroke,” “warfarin,” “dabigatran,” “rivaroxaban,” “apixaban,” and “edoxaban” alone or in combination with the terms “antiretroviral agents” or “HIV.” Our search was focused on English and Spanish language articles published from January 2000 to April 2018.

Results
The literature search yielded 1235 abstracts. Additionally, we included 2 current guidelines on ART and 3 on AF treatment. The initial screening resulted in 112 articles. After reviewing full-text articles, we selected 53 relevant studies pertaining to AF epidemiology and SSE prevention; 22 were focused on the general population, and 31 were focused on PLHIV. The study selection process is described extensively in Figure 1. Next, we summarize the results of the review according to relevant subheadings. The characteristics of included full-text articles providing data on AF epidemiology and oral anticoagulation (OAC) in PLHIV are shown in Table 1.

Supplemental Table S1 provides a full-length version of all articles included.

Epidemiology
The estimated incidence of AF in the general population ranges from 4 to 30 per 1000 person-years,1,2 with a lifetime hazard after age 40 years of approximately 25%. This risk increases in older persons and in the presence of heart failure, structural heart disease, hypertension, alcoholism, thyroid disease, diabetes, obesity, and obstructive sleep apnea.

Among PLHIV, Hsu et al.13 described an incidence rate of AF of 3.6 per 1000 person-years in a large cohort of PLHIV from the Veteran Affairs HIV Clinical Case Registry. Moreover, a meta-analysis investigating the predictors for stroke in PLHIV reported a prevalence of AF of 39%.14 Sanders et al.15 performed the first comparison of AF in PLHIV with uninfected controls, yielding a prevalence of AF of 2% in PLHIV. It is expected that the frequency of AF in this population will increase given its strong association with advanced age and traditional CVD risk factors.1,12

Many of the pathogenic mechanisms predisposing to AF result in abnormalities in the atrial structure or electrophysiology. After adjustment for cardiovascular comorbidities, PLHIV with CD4 cell count < 200 cells/mm^3 had between 1.4- and 2-fold higher rates of AF, and those with HIV-RNA viral load > 100,000 copies/mL had 1.7-fold increased risk of incident AF compared with individuals with higher CD4 cell counts and HIV-RNA viral load < 500 copies/mL, respectively.13,15 Purposely ordered manner included residual excess inflammation, endothelial dysfunction, and macrophage activation present in PLHIV. These factors lead to accelerated atherosclerosis and early aging despite ART and viral suppression.13,15,16 Moreover, risk factors for AF in the general population were also associated with AF in PLHIV, such as older age, diabetes, hypertension, chronic obstructive pulmonary disease, coronary artery disease, heart failure, alcoholism, hypothyroidism, and kidney disease.13,15

Hyperhomocysteinemia is an additional risk factor for stroke, particularly in patients with AF.17 Several observational studies found that the mean homocysteine concentration was higher in PLHIV compared with uninfected controls, and among PLHIV, individuals exposed to ART had higher
concentrations than those without ART. However, inclusion criteria were heterogeneous regarding ART use, stage of HIV infection, and comorbidities. Although multifactorial, vitamin B12 and folate deficiencies can cause hyperhomocysteinemia, and these deficiencies are frequent among PLHIV, with a prevalence of up to 40% and 32%, respectively. Vitamin B supplementation significantly reduces homocysteine plasma levels and might reduce the risk of stroke. For PLHIV with AF, measurement of homocysteine plasma levels should be performed, and if raised, assessment and supplementation with vitamin B12 or folate might be beneficial for stroke prevention.

SSE risk and prevention

The estimated risk of SSE in patients with AF is 4% to 6% per year, which vary depending on the presence of certain comorbidities. The Cardiac failure, Hypertension, Age, Diabetes, Stroke, Vascular disease, Age 65-74, and female Sex (CHA2DS2-VASc) scores are commonly used schemas that incorporate the most frequent factors to assess the risk of SSE and guide in a practical decision-making process. The current guidelines for the treatment of AF from the American College of Cardiology and American Heart Association recommend the use of OAC therapy in patients with a prior transient ischemic attack or stroke or CHA2DS2-VASc score of 2 or greater in men or 3 or greater in woman. The Canadian Cardiovascular Society (CCS) recommends patients with AF be stratified using the “CCS algorithm” named “CHADS-65.” Overall, OAC should be prescribed for the prevention of SSE in patients aged 65 years or older with at least 1 CHADS2 factor or in the presence of valvular heart disease. Assessment for bleeding risk is also crucial when considering OAC in patients with AF given the rate of major bleeding with these drugs is 2 to 4 per 100 patient-years.
Subject	Study	Design	Population	Main outcomes	Summary of main findings
Epidemiology of AF and SSE in PLHIV	Sanders 15 (2018)	Cohort study	PLHIV and uninfected controls	AF Prevalence of AF in PLHIV: 2%. OR of AF with a nadir CD4 cell count < 200 cells/mm³: 1.98. Comorbidities associated with increased odds of AF: older age, diabetes, hypertension, and chronic obstructive pulmonary disease.	
	Chau 29 (2017)	Cohort study	PLHIV with AF	SSE HR of SSE by CHA2DS2-VASc score: 1.70 for score 1 (P = 0.28), 1.34 for score ≥ 2 (P = 0.55) vs score 0. CHA2DS2-VASc score did not perform well to predict SSE in PLHIV.	
	Barnes 62 (2017)	Review	PLHIV	CVD High rates of heart failure, AF, and ischemic stroke in PLHIV. Underlying mechanisms include chronic inflammation and vasculopathy. Pulmonary hypertension continues affecting PLHIV.	
	Adhikari 20 (2016)	Cross-sectional	PLHIV	Vitamin B and folic acid levels Prevalence of folic acid deficiency up to 32% in PLHIV, highest in individuals with neuropsychiatric symptoms. Prevalence of vitamin B12 deficiency up to 19%.	
	Klein 27 (2016)	Cohort study	PLHIV	ESLD Prevalence of HCV-HIV coinfection = 19%, HBV-HIV = 5% and HCV-HBV-HIV = 2%. ESLD incidence per 1000 person-years was 11.57 in HCV-HBV-HIV infected vs 1.27 in HIV-monoinfected patients. Little use of antivirals for HBV and HCV infection.	
	D’Ascenzo 14 (2015)	Meta-analysis	PLHIV	Ischemic stroke Incidence of ischemic stroke: 1.78%. CD4 cell count < 200 cells/mm³, HIV-VL, older age, hypertension, smoking, hyperlipidemia, AF, and diabetes were associated with incident stroke.	
	Deminice 18 (2015)	Meta-analysis	PLHIV	Levels of homocysteine, vitamin B12, and folate PLHIV had higher plasma homocysteine and lower folate levels compared with uninfected individuals. PLHIV on ART had higher plasma homocysteine levels compared with PLHIV not on ART.	
	Tsoukas 16 (2014)	Review	PLHIV	Immune senescence, atherosclerosis Chronic inflammation and the immune risk phenotype are responsible for early aging in PLHIV. In addition to traditional CVD risk factors, this contributes to atherosclerosis development.	
	Hsu 13 (2013)	Cohort study	PLHIV	AF Incidence of AF: 3.6/1000 person-years. HR of AF: 1.4 for CD4 cell count < 200 cells/mm³ and 1.7 for HIV-VL > 100,000 copies/mL. Comorbidities associated with incident AF: older age, white race, CAD, heart failure, alcoholism, kidney disease, and hypothyroidism.	
	Elnahar 63 (2012)	Case-control	PLHIV	Risk factors for AF OR of AF for CD4 cell count < 250 cells/mm³: 3.62 (P = 0.017).	
	Franco Moreno 64 (2012)	Case series	PLHIV	VTE Incidence of VTE: 3.5%. Pulmonary embolism was the most frequent form (42.9%). Altered thrombophilia tests results in 71.4% of cases.	
	Hepburn 19 (2004)	Cohort study	PLHIV	Vitamin B12 levels Prevalence of low vitamin 12 levels: 13%. Significant increment in vitamin B12 levels after ART initiation.	
Contemporary ART 41 (2018)	DHHS 41 (2018)	Guidelines	PLHIV	Use of ART ART is recommended for all PLHIV, based on 2 NRTI plus an INSTI for most PLHIV. Different regimens may be needed in certain clinical situations. ART goals include to maintain a suppressed HIV-VL and prevent HIV transmission.	
World Health Organization 42 (2016)	DHHS 41 (2018)	Guidelines	PLHIV	HIV infection treatment and prevention HIV testing should be offered for all people. All PLHIV should be provided with ART. Fixed-dosed tenofovir disoproxil fumarate/lamivudine/emtricitabine/efavirenz is the preferred option for ART initiation. Consider pre-exposure prophylaxis for people at substantial risk of HIV infection.	
Use of warfarin with ART

Author	Year	Study Type	Population	Outcomes
Kumar	2017	Clinical drug interaction study	Healthy volunteers	Drug interactions
Vizcarra et al.	2014	Case report	PLHIV	Bleeding, drug interactions
Good	2015	Case report	PLHIV	INR, drug interactions
Liedke	2012	Case report	PLHIV	INR, drug interactions
Honda	2012	Case series	PLHIV	INR, drug interactions
Anderson	2012	Cohort study	PLHIV on warfarin therapy	INR, drug interactions
Manji	2011	Cohort study	Patients on OAC	TTR
Fulco	2008	Case report	PLHIV on warfarin	INR, drug interactions
Dionisio	2001	Case series	PLHIV	INR, drug interactions

Use of DOACs with ART

Author	Year	Study Type	Population	Outcomes
Perram	2015	Case report	PLHIV	Drug interactions
Corallo	2015	Case report	PLHIV	Bleeding, drug interactions
Lakatos	2014	Case report	PLHIV	Bleeding, drug interactions
Barco	2014	Case report	PLHIV	Drug interactions
Egan	2014	Review	PLHIV on DOACs	Drug interactions
Mueck	2013	Clinical drug interaction study	Healthy volunteers	Drug interactions
Bates	2013	Case report	PLHIV	VTE, drug interactions

AF, atrial fibrillation; ART, antiretroviral therapy; CAD, coronary artery disease; CHADS2, cardiac failure, hypertension, age, diabetes, stroke; CHA2DS2-VASc, congestive heart failure, hypertension, age ≥75, diabetes, stroke, vascular disease, age 65-74, and female sex; CVD, cardiovascular disease; CYP, cytochrome; DOACs, direct oral anticoagulants; ELDL, end-stage liver disease; HIV-VL, HIV-viral load; HR, hazard ratio; INR, international normalized ratio; INSTI, integrase strand transfer inhibitors; LPV/r, lopinavir/ritonavir; NNRTI, non-nucleoside reverse transcriptase inhibitor; NRTI, nucleoside reverse transcriptase inhibitors; NVAF, nonvalvular atrial fibrillation; OAC, oral anticoagulation; OR, odds ratio; PLHIV, people living with human immunodeficiency virus; SSE, stroke and systemic thromboembolism; TTR, time in therapeutic range; VTE, venous thromboembolism.
Table 2. Prevalence of CHA2DS2-VASc and bleeding risk factors in PLHIV

Condition	Prevalence in PLHIV	Prevalence in general population
Congestive heart failure*	7% ±2%	5% ±2%
Hypertension†	33% ±13%	19% ±62%
Age ≥ 65 y†	14% ±15%	14% ±19%
Diabetes mellitus*,	9% ±15%	6% ±9%
Stroke/transient ischemic attack/thromboembolism*	1% ±4%	3% ±4%
Myocardial infarction*	11% ±4%	4% ±6%
Coronary heart disease*	14% ±1%	7% ±4%
Abnormal renal function†	7% ±14%	4% ±1%
Abnormal liver function/hepatitis C infection†	3% ±2%	1% ±1%
TTR‡	31% ±47%	56% ±70%
Alcohol excess†	7% ±35%	3% ±16%

INR, international normalized ratio; CHA2DS2-VASc, congestive heart failure, hypertension, age ≥75, diabetes, stroke, vascular disease, age 65-74, and female sex; PLHIV, people living with HIV; TTR, time in therapeutic range.

* Risk factor for stroke.
† Risk factor for bleeding.
‡ TTR < 60% is considered as labile INR.

The Hypertension, Abnormal renal/liver function, Stroke, Bleeding history or predisposition, Labile international normalized ratio (INR) measurements for patients on warfarin, Elderly (> 65 years), Drugs/alcohol concomitantly (HAS-BLED) estimates bleeding risk before starting anticoagulation. In patients taking OAC, particularly in those with HAS-BLED scores ≥ 3, potential bleeding risk factors should be revised, such as avoidance of nonsteroidal anti-inflammatory drugs/aspirin and alcohol misuse, more strict INR monitoring, careful selection of invasive procedures, and control of hypertension, anemia, or liver disease. With regard to liver function, it is noteworthy that coinfection with hepatitis B or C viruses is considerably prevalent in PLHIV (3%-15% and 10%-30%, respectively). Coinfected patients have accelerated progression to end-stage liver disease and hepatocarcinoma, potentially increasing bleeding risk while on OAC. Specific antiviral therapy for hepatitis C or B viruses should be considered in these patients to prevent deleterious outcomes.

Table 2 summarizes CHA2DS2-VASc and bleeding risk factors frequency in PLHIV and in the general population.

Stroke is more prevalent in PLHIV than in HIV-negative individuals. Nevertheless, it is unclear whether the presence of HIV infection alters the rate of stroke in individuals with AF. Likewise, the ability of available scores to estimate the need of OAC in PLHIV with AF has been scarcely studied. Chau et al. found a rate of 8.1 SSE events per 1000 person-years in PLHIV with CHA2DS2-VASc score ≥ 2, lower than expected for the same score in the general population. This may be explained by the lower mean age of PLHIV with AF vs the general population. Moreover, there was not a gradual increment on SSE rate with increasing CHA2DS2-VASc score, suggesting that it is not well calibrated for PLHIV. HIV-specific factors not considered by the CHA2DS2-VASc score, such as CD4 cell count, HIV-RNA viral load, and ART, may affect the rate of SSE in PLHIV. Until more evidence is available, it appears reasonable to apply the CCS or American College of Cardiology and American Heart Association guidelines to PLHIV with AF.

OACs used for SSE prophylaxis in AF include vitamin K antagonists (VKAs) (eg, warfarin/Coumadin) or direct oral anticoagulants (DOACs), such as direct thrombin inhibitors (eg, dabigatran) and factor X—activated inhibitors (eg, rivaroxaban, apixaban, edoxaban). VKAs have reduced stroke rates vs aspirin or no treatment by 37% and 64%, respectively, and mortality rate by 26% vs control. Furthermore, widely available reversal agents exist in case of severe bleeding. However, activity of VKAs can be affected by many medications and foods, and requires frequent monitoring of INR to ensure time in therapeutic range (TTR).

The efficacy and safety of DOACs on SSE prophylaxis have been compared with VKAs. In randomized controlled trials, dabigatran 150 mg twice daily and apixaban 5 mg twice daily were superior to warfarin, whereas dabigatran 110 mg twice daily, rivaroxaban 20 mg daily, and edoxaban 30 mg or 60 mg daily were noninferior to warfarin. Observational studies supported these results and reported the comparative effectiveness and safety of DOACs. Overall, dabigatran, rivaroxaban, apixaban, and edoxaban demonstrated similar effectiveness in preventing SSE, whereas rivaroxaban treatment was associated with a higher risk of bleeding. DOACs have a predictable effect and do not require blood testing for anticoagulation monitoring. Currently approved DOAC reversal agents are idarucizumab, a humanized monoclonal antibody for reversal of dabigatran, andandexan alfa, a recombinant factor Xa without intrinsic catalytic activity for reversal of apixaban and rivaroxaban. Reversal agents should be administered for major or life-threatening bleeding unresponsive to supportive measures or before urgent procedures associated with high bleeding risk. There is lack of evidence on the administration of DOAC reversal agents with ART or in PLHIV.

Contemporary ART

ART has dramatically altered the natural history of HIV infection, averting associated morbidity, mortality, and transmission. There are sufficient data to offer ART to all PLHIV irrespective of CD4 cell count to achieve utmost and sustained HIV-RNA viral load suppression. Availability of new treatment options modifies therapeutic preferences periodically. Current World Health Organization antiretroviral guidelines recommend first-line regimens consisting of 2 nucleoside reverse transcriptase inhibitors (NRTI) (tenofovir disoproxil fumarate plus emtricitabine or lamivudine) in addition to a non-nucleoside reverse transcriptase inhibitor (NNRTI) (efavirenz) or an integrase strand transfer inhibitor (INSTI) (dolutegravir), prioritizing fixed-dose combinations.

The US Department of Health and Human Services antiretroviral guidelines recommend an initial regimen based on a combination of 2 NRTIs (tenofovir disoproxil fumarate, tenofovir alafenamide, or abacavir plus lamivudine or emtricitabine) and a third active drug from the INSTI family (bictegravir, dolutegravir, or raltegravir) for most PLHIV. Pharmacologically enhanced protease inhibitors (PIs), elvitegravir/cobicistat, and NNRTIs are recommended as third drugs in certain clinical scenarios. Specific factors such as...
viral resistance, comorbidities, toxicity, drug interactions, and adherence can determine alternative first-line regimens.11

Antithrombotic therapy in PLHIV

Current AF guidelines pertaining to antithrombotic therapy do not assess PLHIV as a special population,24,25 and PLHIV are typically excluded from clinical trials evaluating OAC. Therefore, knowledge of antithrombotic therapy in PLHIV stems from observational studies and clinical drug-interaction studies in healthy volunteers. Only 1 article assessed OAC effectiveness in PLHIV with AF.25 In this study, warfarin was not protective for SSE events.29 Although the reason for this challenging finding requires further inquiry, it is suspected to be related to an increased thrombogenic state, diverse stroke etiologies, and difficulties in attaining appropriate warfarin therapy among PLHIV.

Use of warfarin with antiretrovirals

The risk of stroke or bleeding with warfarin therapy directly correlates to the proportion of time within the INR TTR. PLHIV have a substantially lower TTR compared with the general population.43 Cohort studies have shown that the TTR for PLHIV on warfarin therapy was only 47%43 vs 56% to 70%31,36 in the general population. In those with INR outside the target, 50% had subtherapeutic INR and 17% had supratherapeutic INR.44 A subtherapeutic INR exposes the patient to an increased risk of stroke, whereas a supratherapeutic INR increases the bleeding hazard.

Difficulty to attain TTR may be caused by drug–drug interactions and unreported nonadherence. Drug–drug interactions are primarily a result of alterations in warfarin metabolism through increases or decreases in cytochrome P450 (CYP) 2C9 enzyme activity.45 Warfarin dose requirements substantially increase in patients receiving boosted PI and nevirapine, an NNRTI, due to CYP2C9 induction.45,46 On the other hand, efavirenz was associated with warfarin overdosing and bleeding due to CYP2C9 inhibition.44,48 This inhibition of warfarin metabolism can theoretically occur with etravirine, a weak CYP2C9 inhibitor,46 contributing to the INR variability shown by Liedtke et al.46 Warfarin is not expected to interact with NRTI or maraviroc, a drug that antagonizes C-C chemokine receptor type 5 averting infection of the cell by HIV.48,49

Among INSTI, elvitegravir is the only drug that influences CYP450 isoenzymes by inducing the CYP2C9 activity.49,50 Because it is coformulated with cobicistat (a pharmacokinetic enhancer without antiviral activity that is a strong CYP3A4 inhibitor with no effect on CYP2C9), mild opposite effects might be seen. Only 1 case reported by Good et al.51 showed that increased warfarin dosages were necessary when coadministered with elvitegravir/cobicistat, suggesting that CYP2C9 induction by elvitegravir was predominant. Conversely, raltegravir can be safely used with warfarin, as described by Honda et al.50 Recently, a case of a woman who presented with haemorrhages after switching from lopinavir/ritonavir (LPV/r) to dolutegravir was reported. The reason for this bleeding event may have been the displacement of warfarin albumin-binding by dolutegravir or the end in warfarin metabolism induction after stopping LPV/r.52 So far, no data have been reported on the coadministration of bictegravir and warfarin. More frequent monitoring of INR is prudent in PLHIV who are on warfarin and have any ART regimen modification.

Use of DOACs with antiretrovirals

DOACs are metabolized by CYP3A4 and P-glycoprotein transporter (P-gp) with the exception of dabigatran and edoxaban, which are mainly substrates for P-gp.35,36 Next, we discuss pertinent issues of using DOACs with specific antiretroviral agents or drug classes.

Protease inhibitors and cobicistat

The anticoagulant effect of factor X–activated inhibitors is potentiated when coadministered with strong inhibitors of CYP3A4 and P-gp such as ritonavir53 or cobicistat,54 potentially leading to bleeding events. With the exception of tipranavir, other PIs are inhibitors to a lesser extent.41 Evidence of rivaroxaban interacting with PI has been demonstrated. Mueck et al.55 showed a significant increase in rivaroxaban exposure after ritonavir administration in healthy volunteers. Lakatos et al.56 and Corallo et al.57 reported bleeding events related to ritonavir-boosted darunavir and rivaroxaban coadministration. Regarding cobicistat, Yoong et al.58 described a case of extensive bruising after rivaroxaban introduction in a patient with AF. Although no published data are available on the interaction between other factor X–activated inhibitors and PI or cobicistat, it is recommended to avoid their use concomitantly.41

Because of the unique metabolism of dabigatran among DOACs, it can be coadministered with much current ART. Among PIs, Kumar et al.54 found no significant interactions when dabigatran was simultaneously taken with ritonavir in healthy subjects despite being a potent P-gp inhibitor. Barco et al.36 described favourable outcomes with LPV/r and full-dosed dabigatran in a person living with HIV requiring dabigatran peri-AF ablation. Likewise, Perram et al.59 revealed the successful combination of ritonavir-boosted atazanavir with dabigatran. Conversely, it has been shown that simultaneous cobicistat administration significantly increased dabigatran anticoagulant effect by 51% in healthy volunteers.54 To minimize the impact of cobicistat, the authors suggested closely monitoring of dabigatran anticoagulant effect, reduced dabigatran dosing (eg, 75 mg twice daily), separate dosing by at least 4 hours, or monitoring of DOAC levels.54 Therefore, consider avoiding this association in view of its challenging management.41

Non-nucleoside reverse transcriptase inhibitors

The NNRTIs nevirapine, efavirenz, and etravirine share the capacity to induce CYP3A4 potentially leading to the loss of anticoagulant effect of DOACs metabolized that way.41,49,55 Accordingly, Bates et al.60 reported a case in which concurrent nevirapine may have increased the clearance of rivaroxaban, leading to deep venous thrombosis with pulmonary embolism. Weak P-gp inhibitors such as etravirine41 and rilpivirine61 might potentiate the anticoagulant effect of DOACs even though no bleeding events were reported. Because efavirenz or nevirapine do not appreciably affect P-gp, their coadministration with dabigatran and edoxaban is likely to be safe.41 So far, no data regarding the administration of the
	Warfarin*	Dabigatran	Rivaroxaban	Apixaban	Edoxaban
Protease Inhibitors					
Ritonavir	↓	↑**	↑	↑	↑
Lopinavir	↓		↑	↑	↑
Atazanavir	↓	↑	↑	↑	↑
Darunavir	↓	↑	↑	↑	↑
Cobicistat	↑	↑	↑	↑	↑
Non-Nucleoside Reverse Transcriptase Inhibitors					
Nevirapine	↓		↓	↓	
Efavirenz	↑		↓	↓	
Etravirine	↑	↑	↓	↓	↑
Rilpivirine		↑			
Doravirine					
Integrase Strand Transfer Inhibitors					
Raltegravir					
Dolutegravir					
Bictegravir					
Elvitegravir/cobicistat	↓	↑	↑	↑	↑
Nucleoside Reverse Transcriptase Inhibitors					
TDF/FTC					
TAF/FTC					
Abacavir/lamivudine					
CCR5 Antagonist					
Maraviroc					

Interaction Expected	Potential interaction	Do not administer

↓=ART decreases OAC concentration; ↑=ART increases OAC concentration.

*Potentially solved by increasing INR monitoring.

**Co-administrate simultaneously.

Figure 2. Drug interactions between oral anticoagulants and antiretrovirals. ↓ = ART decreases OAC concentration; ↑ = ART increases OAC concentration. *Potentially solved by increasing INR monitoring. **Co-administrate simultaneously. ART, antiretroviral therapy; CCR5, C-C chemokine receptor type 5; FTC, emtricitabine; INR, international normalized ratio; OAC, oral anticoagulant; TAF, tenofovir alafenamide; TDF, tenofovir disoproxil fumarate. Data sources: References 41, 43-60.
novel NNRTI, doravirine, with DOACs have been reported. However, given the lack of induction/inhibition of CYP450 isoenzymes or P-gp by this drug, no significant interactions are expected.

Integrate strand transfer inhibitors

Although not extensively studied, there are no expected interactions between INSTIs and DOACs. However, elvitegravir must be coadministered with a pharmacokinetic booster (cobicistat or ritonavir) to achieve appropriate plasma levels. Therefore, this combination is generally not recommended when prescribing DOACs. 41,49

Other antiretrovirals

NRTIs and maraviroc do not affect DOAC metabolism and can be used concomitantly without expected interactions. 40 It is recommended to avoid factor X–activated inhibitors (rivaroxaban, apixaban) in combination with cobicistat, PIs, or NNRTIs. 31,35 The direct thrombin inhibitor dabigatran can be prudently administered with ritonavir-boosted PIs and NNRTIs. Figure 2 summarizes possible drug–drug interactions.

Conclusions

The focus of HIV-related care has changed substantially over the past decades, with CVD becoming an increasingly prominent cause of death in PLHIV. Although AF risk factors are prevalent in PLHIV, there are limited data regarding AF outcomes and management in this population. Moreover, stroke prediction scores commonly used in the general population, such as the CHA2DS2-VASc, have low accuracy in PLHIV. Until additional literature regarding AF in PLHIV becomes available, the guidelines developed for the general population should be followed with some considerations. PLHIV with AF should have a comprehensive evaluation that includes SSE risk estimation, bearing in mind the lack of validation of available scores in this population. OACs should be prescribed when appropriate, taking into account potential drug–drug interactions. Further research is needed to advance this understanding and define the best approach for AF management in PLHIV.

Disclosures

S.G. has received Speakers Bureau/Honoraria for participation in advisory board meetings with honoraria for Gilead Sciences, ViiV Healthcare. J.S.M.’s Treatment as Prevention research, paid to his institution, has received support from the Public Health Agency of Canada, B.C. Ministry of Health, and US National Institutes of Health (NIDA R01DA036307 and CTN 248). Institutional grants have been provided by Gilead, J&J, Merck, ViiV Healthcare, and a Knowledge Translation Award from the Canadian Institutes of Health Research. J.S.M. has served as an advisor to the federal and BC governments in the last year. For the remaining authors, none were declared.

References

1. Eyawo O, Franco-Villalobos C, Hull MW, et al. Changes in mortality rates and causes of death in a population-based cohort of persons living with and without HIV from 1996 to 2012. BMC Infect Dis 2017;17:1-15.
2. Teerananchai S, Kerr SJ, Amin J, Ruxrungtham K, Law MG. Life expectancy of HIV-positive people after starting combination antiretroviral therapy: a meta-analysis. HIV Med 2017;18:256-66.
3. Marcus JL, Chao CR, Leyden WA, et al. Narrowing the gap in life expectancy between HIV-infected and HIV-uninfected individuals with access to care. J Acquir Immune Defic Syndr 2016;58:248-52.
4. Trickey A, May MT, Vehreschild J, et al. Cause-specific mortality in HIV-positive patients who survived ten years after starting antiretroviral therapy. PLoS One 2016;11:1-16.
5. Smith CJ, Sabin CA, Lundgren JD, et al. Factors associated with specific causes of death amongst HIV-positive individuals in the D:A:D Study. AIDS 2010;24:1537-48.
6. Lakshminarayan K, Solid CA, Collins AJ, Anderson DC, Herzog CA. Atrial fibrillation and stroke in the general Medicare population: a 10-year perspective (1992 to 2002). Stroke 2006;37:1969-74.
7. Kirchhof P, Benussi S, Kotecha D, et al. ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J 2016;37:2893-962.
8. Son MK, Lim NK, Kim HW, Park HY. Risk of ischemic stroke after atrial fibrillation diagnosis: a national sample cohort. PLoS One 2017;12:e0179687.
9. Schrack JA, Althoff KN, Jacobson LP, et al. Accelerated longitudinal gait speed decline in HIV-infected older men. J Acquir Immune Defic Syndr 2015;70:370-6.
10. Cerrato E, Calcagno A, D’Ascenzo F, et al. Cardiovascular disease in HIV patients: from bench to bedside and backwards. Open Heart 2015;2:e000174.
11. Friis-Møller N, Weber R, Reiss P, et al. Cardiovascular disease risk factors in HIV patients — association with antiretroviral therapy. Results from the DAD study. AIDS 2003;17:1179-93.
12. Schnabel RB, Yin X, Gona P, et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet 2015;386:154-62.
13. Hsu JC, Li Y, Marcus GM, et al. Atrial fibrillation and atrial flutter in human immunodeficiency virus-infected persons: Incidence, risk factors, and association with markers of HIV disease severity. J Am Coll Cardiol 2013;61:2288-95.
14. D’Ascenzo F, Quadri G, Cerrato E, et al. A meta-analysis investigating incidence and features of stroke in HIV-infected patients in the highly active antiretroviral therapy era. J Cardiovasc Med 2015;16:839-43.
15. Sanders JM, Stevenson AB, Pawlowski AE, et al. Atrial arrhythmia prevalence and characteristics for human immunodeficiency virus-infected persons and matched uninfected controls. PLoS One 2018;13:1-11.
16. Tsoukas C. Immunosenescence and aging in HIV. Curr Opin HIV AIDS 2014;9:398-404.
17. Poli D, Antonucci E, Cecchi E, et al. Culprit factors for the failure of well-conducted warfarin therapy to prevent ischemic events in patients with atrial fibrillation. Stroke 2005;36:2159-63.
18. Deminice R. Elevated homocysteine levels in human immunodeficiency virus-infected patients under antiretroviral therapy: a meta-analysis. World J Virol 2015;4:147.
19. Hepburn MJ, Dyal K, Runser LA, et al. Low serum vitamin B12 levels in an outpatient HIV-infected population. Int J STD AIDS 2004;15:127-33.

20. Adhikari PR, Chowta M, Ramapuram J, et al. Prevalence of Vitamin B12 and folic acid deficiency in HIV-positive patients and its association with neuropsychiatric symptoms and immunological response. Indian J Sex Transm Dis AIDS 2016;37:178.

21. Spence JD, Yi Q, Hankey GJ. B vitamins in stroke prevention: time to reconsider. Lancet Neurol 2017;16:750-60.

22. Lip GYH, Freedman B, De Caterina R, Potpara TS. Stroke prevention in atrial fibrillation: past, present and future. Thromb Haemost 2017;117:1230-9.

23. Freedman B, Potpara TS, Lip GYH. Novel oral anticoagulants in non-valvular atrial fibrillation. Lancet 2016;388:806-17.

24. January CT, Wann LS, Calkins H, et al. AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation. Circulation. 2019. Jan 28 2019 [Epub ahead of print].

25. Macl L, Cairns J, Leblanc K, et al. Focused Update of the Canadian Cardiovascular Society Guidelines for the Management of Atrial Fibrillation. Can J Cardiol 2016;2016:32:1170-85.

26. Potpara TS, Lip GYH. Novel oral anticoagulants in non-valvular atrial fibrillation. Best Pract Res Clin Haematol 2013;26:115-29.

27. Klein MB, Althoff KN, Jing Y, et al. Risk of end-stage liver disease in HIV-viral hepatitis coinfected persons in North America from the early to modern antiretroviral therapy eras. Clin Infect Dis 2016;53:1160-7.

28. Overton ET, Kitch D, Benson CA, et al. Effect of statin therapy in reducing the risk of serious non-AIDS-defining events and nonaccidental death. Clin Infect Dis 2013;56:1471-9.

29. Chau KHY, Scherzer R, Grunfeld C, Hsue PY, Shlipak MG. CHA 2 DS -VASC Score, warfarin use, and risk for thromboembolic events among HIV-infected persons with atrial fibrillation. J Acquir Immune Defic Syndr 2016;76:90-7.

30. Noseworthy PA, Yao X, Abraham NS, et al. Direct comparison of dabigatran, rivaroxaban, and apixaban for effectiveness and safety in nonvalvular atrial fibrillation. Chest 2016;150:1302-12.

31. Yao X, Abraham NS, Sangaralingham LR, et al. Effectiveness and safety of dabigatran, rivaroxaban, and apixaban versus warfarin in nonvalvular atrial fibrillation. J Am Heart Assoc 2015;4:

32. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med 2009;361:1139-51.

33. Granger C, Alexander J, McMurray J, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med 2011;365:981-92.

34. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med 2011;365:885-91.

35. Giugliano RP, Ruff CT, Braunwald E, et al. Edoxaban versus rivaroxaban in patients with atrial fibrillation. N Engl J Med 2013;369:1134-42.

36. Sjögren V, Byström B, Renlund H, et al. Non-Vitamin K oral anticoagulants are non-inferior for stroke prevention but cause fewer major bleedings than well-managed warfarin: a retrospective register study. PLoS One 2017;12:1-12.

37. Larsen TB, Skjøth F, Nielsen PB, Kjaeldgaard JN, Lip GYH. Comparative effectiveness and safety of non-vitamin K antagonist oral anticoagulants and warfarin in patients with atrial fibrillation: propensity weighted nationwide cohort study. BMJ 2016;353:i3189.

38. Hernandez I, Zhang Y, Saba S. Comparison of the effectiveness and safety of apixaban, dabigatran, rivaroxaban, and warfarin in newly diagnosed atrial fibrillation. Am J Cardiol 2017;120:1813-9.

39. Staerk L, Gerds TA, Lip GYH, et al. Standard and reduced doses of dabigatran, rivaroxaban and apixaban for stroke prevention in atrial fibrillation: a nationwide cohort study. J Intern Med 2018;283:45-55.

40. Almuitairi AR, Zhou L, Gellad WF, et al. Effectiveness and safety of non—vitamin K antagonist oral anticoagulants for atrial fibrillation and venous thromboembolism: a systematic review and meta-analyses. Clin Ther 2017;39:1456-1478.e36.

41. DHHS Panel on Antiretroviral Guidelines for Adults and Adolescents — A Working Group of the Office of AIDS Research Advisory Council (OARAC). Adults and Adolescents Living with HIV Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents Living with HIV Developed by the DHHS Panel on Antiretroviral Guidelines for Adults. Available at: https://aidsinfo.nih.gov/contentfiles/lyguidelines/AdultandAdolescentGL.pdf%0D. Accessed October 18, 2018.

42. World Health Organization. Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection: Recommendations for a Public Health Approach. Second ed. Geneva: World Health Organization, 2016:129.

43. Manji I, Pastakia SD, Do AN, et al. Performance outcomes of a pharmacist-managed anticoagulation clinic in the rural, resource-constrained setting of Eldoret, Kenya. J Thromb Haemost 2011;9:2215-20.

44. Anderson AM, Chane T, Patel M, et al. Warfarin therapy in the HIV medical home model: low rates of therapeutic anticoagulation despite adherence and differences in dosing based on specific antiretrovirals. AIDS Patient Care STDS 2012;26:454-62.

45. Fulco PP, Zingone MM, Higginson RT. Possible antiretroviral therapy-warfarin drug interaction. Pharmacotherapy 2008;28:945-9.

46. Liedtke MD, Vanguri A, Chris Rath R. A probable interaction between warfarin and the antiretroviral TRIO study regimen. Ann Pharmacother 2012;46.

47. Dionisio D, Mininni S, Bartolozzi D, et al. Need for increased dose of warfarin in HIV-1-infected patients treated with warfarin. Int J STD AIDS 2012;23:903-4.

48. Good BL, Gomes DC, Fulco PP. An unexpected interaction between warfarin and cobicistat-boosted elvitegravir. AIDS 2015;29:985-6.

49. Hu W, Wang J, Zeng Z, et al. Edoxaban versus warfarin in patients with atrial fibrillation: a randomized, double-blind, multicenter, noninferiority trial. Am Heart J 2019;21:1-12.

50. Egan G, Hughes CA, Ackman ML. Drug interactions between antithrombotic agents and antiretroviral medications. Ann Pharmacother 2014;48:734-40.

51. Honda H, Gikeda H, Inoue H, et al. Eltrombopag can be used safely in HIV-1-infected patients treated with warfarin. Int J STD AIDS 2012;23:903-4.

52. Pelufo-Pellicer A, López-Montenegro Soria MA. [Toxicity for warfarine switching from lopinavir/ritonavir to darunavir]. Farm Hosp 2017;41:315-6 [in Spanish].
53. Mueck W, Kubitza D, Becka M. Co-administration of rivaroxaban with drugs that share its elimination pathways: Pharmacokinetic effects in healthy subjects. Br J Clin Pharmacol 2013;76:455-66.

54. Kumar P, Gordon LA, Brooks KM, et al. Differential influence of the antiretroviral pharmacokinetic enhancers ritonavir and cobicistat on intestinal P-glycoprotein transport and the pharmacokinetic/pharmacodynamic disposition of dabigatran. Antimicrob Agents Chemother 2017;61:e01201-17.

55. Lakatos B, Stoeckle M, Elzi L, Bartegay M, Marzolini C. Gastrointestinal bleeding associated with rivaroxaban administration in a treated patient infected with human immunodeficiency virus. Swiss Med Wkly 2014;144:1-4.

56. Corallo CE, Grannell L, Tran H. Postoperative bleeding after administration of a single dose of rivaroxaban to a patient receiving antiretroviral therapy. Drug Saf Case Rep 2015;2:1-4.

57. Yoong D, Naccarato M, Gough K. Extensive bruising and elevated rivaroxaban plasma concentration in a patient receiving cobicistat-boosted elvitegravir. Ann Pharmacother 2017;51:713-4.

58. Barco S, Coppens M, van den Dool EJ, et al. Successful co-administration of dabigatran etexilate and protease inhibitors ritonavir/lopinavir in a patient with atrial fibrillation. Thromb Haemost 2014;112:836-8.

59. Perrami J, Joseph J, Holloway C. Novel oral anticoagulants and HIV: dabigatran use with antiretrovirals. BMJ Case Rep 2015;2015; bcr2015211651-bcr2015211651.

60. Bates D, Dalton B, Gilmour J, Kapler J. Venous thromboembolism due to suspected interaction between rivaroxaban and nevirapine. Can J Hosp Pharm 2013;66:125-9.

61. Product Information FDA. EDURANT (rilpivirine) [Tablets]. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/202022s000lbl.pdf. Accessed May 15, 2019. Published 2011.

62. Barnes RP, Lacson JC, Bahrami H. HIV infection and risk of cardiovascular diseases beyond coronary artery disease. Curr Atheroscler Rep 2017;19:20.

63. Elnahar Y, Daoko J, Al-Dehneh A, et al. Risk factors for the development of atrial fibrillation in HIV infected patients. J Atr Fibrillation 2012;4:404.

64. Franco Moreno AI, de Ancos Aracil CL, Cabello Clotet N, San Martín López JV. [Venous thromboembolism in patients with HIV: A case series]. Enferm Infecc Microbiol Clin 2012;30:216-7 [in Spanish].

65. Berge T, Lyngbakken MN, Ihle-Hansen H, et al. Prevalence of atrial fibrillation and cardiovascular risk factors in a 63-65 years old general population cohort: the Akershus Cardiac Examination (ACE) 1950 study. BMJ Open 2018;8:e021704.

Supplementary Material
To access the supplementary material accompanying this article, visit CJC Open at https://www.cjcopen.ca/ and at https://doi.org/10.1016/j.cjco.2019.06.002.