Environmental Research Letters

LETTER

Household, community, sub-national and country-level predictors of primary cooking fuel switching in nine countries from the PURE study

Matthew Shupler*, Perry Hystad, Paul Gustafson, Sumathy Rangarajan, Maha Mushtaha, K G Jayachitra1, Prem K Mony1, Deepa Mohan1, Parthiban Kumar1, Lakshmi PV1, Vivek Sagar1, Rajeev Gupta1, Indu Mohan1, Sanjeev Nair1, Ravi Prasad Varma2, Wei Li2, Bo Hu2, Kai You2, Tatenda Ncube3, Brian Ncube3, Jephat Chifamba3, Nicola West4, Karen Yeates4,5,6, Romaina Iqbal7, Rehman Khawaja7, Rita Yusuf7,8, Afreen Khan7,9, Pamela Seron10,11, Fernando Lanas12, Patricio Lopez-Jaramillo12,5, Paul A Camacho12, Thandi Puoane13, Salim Yusuf14, Michael Brauer1* on behalf of the Prospective Urban Rural Epidemiology (PURE) study

1 School of Population and Public Health, The University of British Columbia, Vancouver, British Columbia, Canada
2 College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States of America
3 Department of Statistics, University of British Columbia, Vancouver, British Columbia, Canada
4 Population Health Research Institute, Hamilton Health Sciences, McMaster University, Hamilton, Ontario, Canada
5 St. John’s Medical College & Research Institute, Bangalore, India
6 Madras Diabetes Research Foundation, Chennai, India
7 School of Public Health, PGIMER, Chandigarh, India
8 Department of Community Medicine, PGIMER, Chandigarh, India
9 Eternal Heart Care Centre and Research Institute, Jaipur, India
10 Health Action By People, Thiruvananthapuram and Medical College, Trivandrum, India
11 Achutha Menon Centre for Health Science Studies, Trivandrum, India
12 Medical Research & Biometrics Center, National Center for Cardiovascular Diseases, Beijing, People’s Republic of China
13 Shunyi District Center for Disease Prevention and Control, Beijing, People’s Republic of China
14 Department of Physiology, University of Zimbabwe, Harare, Zimbabwe
15 Pamoja Tunaweza Research Centre, Moshi, Tanzania
16 Department of Medicine, Queen’s University, Kingston, Ontario, Canada
17 Department of Community Health Science, Aga Khan University Hospital, Karachi, Pakistan
18 School of Life Sciences, Independent University, Dhaka, Bangladesh
19 Universidad de La Frontera, Temuco, Chile
20 Research Department, FOSCAL and Medical School, Universidad de Santander (UDES), Bucaramanga, Colombia
21 Research Department, FOSCAL and Medical School, Universidad Autonoma de Bucaramanga (UNAB), Colombia
22 School of Public Health, University of the Western Cape, Bellville, South Africa

E-mail: mshupler@mail.ubc.ca

Keywords: household air pollution, primary cooking fuel switching, clean cooking, multilevel modeling

Supplementary material for this article is available online

Abstract

Introduction. Switching from polluting (e.g. wood, crop waste, coal) to clean (e.g. gas, electricity) cooking fuels can reduce household air pollution exposures and climate-forcing emissions. While studies have evaluated specific interventions and assessed fuel-switching in repeated cross-sectional surveys, the role of different multilevel factors in household fuel switching, outside of interventions and across diverse community settings, is not well understood. Methods. We examined longitudinal survey data from 24 172 households in 177 rural communities across nine countries within the Prospective Urban and Rural Epidemiology study. We assessed household-level primary cooking fuel switching during a median of 10 years of follow up (~2005–2015). We used hierarchical logistic regression models to examine the relative importance of household, community, sub-national and national-level factors contributing to primary fuel switching. Results. One-half of study households (12 369) reported changing their primary cooking fuels between baseline and follow up surveys. Of these, 61% (7582) switched from polluting (wood, dung, agricultural waste, charcoal, coal, kerosene) to clean (gas, electricity) fuels, 26% (3109) switched between different polluting fuels, 10% (1164) switched from clean to polluting fuels and 3% (522) switched between different clean fuels. Among the 17 830 households...
using polluting cooking fuels at baseline, household-level factors (e.g. larger household size, higher wealth, higher education level) were most strongly associated with switching from polluting to clean fuels in India; in all other countries, community-level factors (e.g. larger population density in 2010, larger increase in population density between 2005 and 2015) were the strongest predictors of polluting-to-clean fuel switching. Conclusions. The importance of community and sub-national factors relative to household characteristics in determining polluting-to-clean fuel switching varied dramatically across the nine countries examined. This highlights the potential importance of national and other contextual factors in shaping large-scale clean cooking transitions among rural communities in low- and middle-income countries.

Introduction

Cooking with polluting stoves and fuels, such as unprocessed solid fuels (wood, animal dung, agricultural waste, coal, charcoal) and kerosene, is currently practiced by approximately 2.5 billion people (40% of the global population) [1, 2]. The use of polluting cooking fuels presents a serious global health risk due to household air pollution (HAP) exposure. Elevated levels of fine particulate matter of diameter <2.5 µm (PM$_{2.5}$) due to HAP (HAP-PM$_{2.5}$) have been linked to respiratory diseases (child pneumonia [3], COPD [4] and lung cancer [5]), adverse pregnancy outcomes [6, 7], cataracts [8], precursors to cardiovascular diseases (CVD), including hypertension [9], and to CVD [10–13]. Exposure to HAP was the second highest environmental risk factor in the Global Burden of Disease 2017 [14], with an estimated 1.64 million attributable deaths [1, 15]. In addition, residential combustion of solid fuels is a major contributor to outdoor air pollution and emissions of climate-forcing agents [16–19], including up to one-third of all global anthropogenic emissions of black carbon [20]. Unsustainable use of wood for cooking may also contribute to local deforestation [21–23]. Deforestation in some areas can increase the travel time needed to collect fuel wood; thus, replacing wood with cleaner sources of energy can potentially offer both fuel and time savings [24, 25].

To reduce HAP-PM$_{2.5}$ exposures below WHO guidelines [26] and achieve improvements in health outcomes, a complete switch from a polluting cooking fuel/stove to a ‘clean’ cooking fuel/stove (e.g. electricity, liquefied petroleum gas (LPG)) is likely to be necessary [27]. Such a switch may lead to substantial health improvements. For example, a recent cohort study in China identified a reduction in risk of major respiratory diseases when households switched from polluting to clean primary cooking fuels [28].

The complexity of fuel switching

Despite a decline in the global proportion of households using polluting cooking fuels, rapid population growth in low- and middle-income countries (LMICs) has maintained the global number of polluting cooking fuel users relatively constant at ~2.5 billion [29].
This study uniquely evaluated the within-household fuel switching across diverse household and community settings in a longitudinal analysis. Understanding fuel switching longitudinally among the same households may suggest new approaches to accelerate clean fuel transitions.

Methods

A multinational, prospective cohort study, the Prospective Urban and Rural Epidemiological (PURE) study was designed to examine how development and urbanization influence lifestyle and, subsequently, chronic disease [56]. PURE encompasses 25 countries, with households clustered in urban and rural ‘communities’ defined by a geographical area (e.g. postal codes, catchment area of health service/clinics, neighborhoods). Rural communities in PURE were defined as small villages at a distance >50 km from urban centers or that lacked easy access to commuter transportation at the time of study commencement, yet were also within a 45 min drive of a laboratory in order to process biological samples [56].

While rural PURE communities were selected on the basis of convenience, household recruitment within communities was randomly conducted to be age/sex representative of adults aged 35–70 in each community [57]. Only rural PURE communities with >10% prevalence of polluting fuel use for cooking at baseline were included in the final analytic sample (figure 2 in Arku et al 2018) [58]. Rural communities in nine countries met the inclusion criterion: two upper-middle-income countries (Chile, South Africa), two lower-middle income countries (China, Colombia) and five low-income countries (Bangladesh, India, Pakistan, Tanzania, Zimbabwe); these classifications were based on World Bank data at study commencement [56].

Rapid growth and improvements in transportation during the decade of follow up (~2005–2015) may have altered the urban/rural classification of rural PURE communities. As such, a measure of the fastest travel time to nearest ‘densely populated area’ in 2015 [59] was used as an alternative metric of the degree of remoteness of rural PURE communities (figure S2 in supplemental information (SI), available online at stacks.iop.org/ERL/14/085006/mmedia). As the densely populated areas are defined differently than the study specific ‘urban centers’ it is possible for ‘densely populated areas’ to be <50 km from ‘rural’ PURE communities.

Study variables

All PURE households completed a Household Questionnaire at baseline (~2005) and follow up (~2015); years of baseline and follow up differed between countries due to rolling recruitment (table S2). The PURE Household Questionnaire included the same question posed to the head of the household at baseline and follow up: ‘Primary fuel used for cooking? (check one only).’ The options included kerosene, charcoal, coal, gas, wood, agriculture/crop, gobar gas, electricity, animal dung, shrub/grass and ‘other’. If the respondent selected ‘other’, they had the option to fill in the fuel type used. Gobar gas is a specific type of biogas produced by anaerobic digestion of animal dung. Biogas could be reported as one of the ‘other’ fuels. For this analysis, fuels were categorized as ‘polluting’ (wood, dung, agricultural waste, charcoal, coal, kerosene) or ‘clean’ (gas—including gobar gas and biogas, electricity).

Variables considered for analysis were based on two criteria: (1) a priori hypothesized relationship with household cooking fuel use and (2) <2% missing values. All individual-level variables were aggregated at a household-level. Continuous variables were all grouped into three equally sized ‘tertiles’ to standardize comparisons (table S2).

Analyses

Data analysis was conducted in RStudio, version 1.1.423 [60]. The relative importance of specific drivers of fuel switching were examined separately for changes from baseline to follow-up of: (1) a polluting fuel at baseline to a clean fuel at follow-up (2) a clean fuel at baseline to a polluting fuel at follow-up and (3) a polluting fuel at baseline to a different type of polluting fuel at follow-up. For each, the odds of fuel switching were calculated for all potential explanatory variables using hierarchical logistic regression, controlling for study design factors (years between baseline/follow up survey administration, clustered sampling design).

For examining polluting-to-clean fuel switching, multinational (nine countries, seven countries excluding China and India) and country-specific (China, India) hierarchical logistic regression models (households nested within communities nested within sub-national regions) were used to account for the likelihood that household fuel decisions were more similar within communities than between communities, and within sub-national regions than between these regions.

The intra-class correlation coefficient (ICC), obtained from the sjstats package [61], was calculated for community and sub-national random effects to compare the proportion of variation in polluting-to-clean primary fuel switching at each geographic level [62]. Household and community-level fixed effects were added separately to evaluate their impact on altering the explained variance [63]. The marginal pseudo-R^2 (referred to as R^2 from this point forward), obtained from the piecewiseSEM package [64], was used to quantify the total variance explained by fixed effects.
Results

Fuel switching percentages
Due to varying periods of recruitment in different countries in the PURE study, baseline and follow up years varied between countries (median: 10 years, IQR: 8–11, range: 3–13) (table S1). Self-reported primary cooking fuel data was available for 27 804 rural households at baseline. Approximately 0.3% and 0.1% of the analytic sample had paraffin and biogas written in as ‘other’ primary fuels, respectively; ‘paraffin’ was combined with ‘kerosene’, and ‘gas’, ‘biogas’ and ‘gobar gas’ were condensed into ‘gas’ fuel type. Households that reported ‘other’ fuels besides paraffin or biogas (0.1%) were excluded.

Approximately 13% of rural households had missing primary cooking fuel data during follow up and were excluded, leaving a final study sample of 24 172 households. A sensitivity analysis comparing the final sample to the entire 27 786 households showed no significant differences in baseline fuel types and SES characteristics (table S3).

The final study sample had the largest number of households recruited in China (N = 11 411 households, 65 communities, 11 sub-national regions) and India (N = 7206 households, 50 communities, 6 sub-national regions), with households in the seven other LMICs (N = 5555) recruited from 69 communities. There was an average of 108 (range: 1–482) households amongst the included PURE rural communities.

Overall, 51% (12 369) of the 24 172 households reported different primary cooking fuels between baseline and follow up (31% switching from polluting to clean fuels, 13% switching from polluting to different polluting fuels, 5% switching from clean to different clean fuels and 2% switching from clean to polluting fuels) (figure 1). There were large country-level differences in proportions of the categories of primary fuel switching (table 1).

The proportion of each fuel type used at baseline and follow up among PURE households in each country, and within sub-national regions in China, India and South Africa, are shown in figures 2(a) and (b), respectively. The largest increases in clean fuel use among PURE households using polluting fuels at baseline occurred in India, China and South Africa (all ~35%), followed by Chile (~25%) and Colombia (~20%). Bangladesh, Pakistan, Tanzania and Zimbabwe had rates ≤10%. Large differences in rates of polluting-to-clean fuel switching occurred among PURE sample households, particularly in China, with eastern regions (Beijing, Jiangsu, Jiangxi, Shandong) having >40% switching to clean fuels, compared to western China (Inner Mongolia, Liaoning, Qinghai, Xinjiang) where rates were <15%. Numerical proportions of cooking fuel types by country and sub-national region are provided in SI (tables S4, S5, respectively).

In China, three western regions had >50% of households switch between polluting fuels: Xinjiang (73%); Qinghai (61%) and Inner Mongolia (57%). In Tanzania, polluting-to-polluting fuel switching was primarily ‘upward’, with one-third of households transitioning from kerosene (13%) or wood (20%) to charcoal. In Bangladesh and western China, polluting-to-polluting fuel switching was largely ‘horizontal’ or ‘downward’; for example, 32% and 17% of polluting-fuel-switching households transitioning from wood to agricultural waste, respectively (tables S4, S5).

Household asset index, highest level of education and household size were generally higher among households using clean primary cooking fuels at baseline, compared to households using polluting primary fuels at baseline, (table S7). Community-level factors (e.g. % polluting fuels in community at baseline, population density) were markedly lower among households transitioning from polluting to clean cooking fuels, compared to switching between types of polluting fuels.

Factors predictive of polluting-to-clean fuel switching at different geographical levels
To model factors predictive of polluting-to-clean fuel switching, 17 830 (74% of study sample) households that reported using polluting fuels at baseline were included. A subset of these households (3226) that did
Table 1. Number of households in each fuel switching category by country (%).

Country	All households	No switch	Polluting to clean	Polluting to polluting	Clean to polluting	Clean to clean
Bangladesh	870	413 (47%)	19 (2%)	401 (46%)	36 (4%)	1 (0%)
Chile	357	238 (67%)	97 (27%)	4 (1%)	18 (5%)	0 (0%)
China	11,411	4,285 (38%)	407 (36%)	2,013 (18%)	691 (6%)	351 (3%)
Colombia	1,927	1,345 (70%)	366 (19%)	73 (4%)	93 (5%)	50 (3%)
India	7,201	3,950 (55%)	2,618 (36%)	362 (5%)	218 (3%)	53 (1%)
Pakistan	414	363 (88%)	1 (0%)	41 (10%)	9 (2%)	0 (0%)
South Africa	1,042	475 (46%)	352 (34%)	64 (6%)	84 (8%)	67 (6%)
Tanzania	495	336 (68%)	23 (5%)	134 (27%)	2 (0%)	0 (0%)
Zimbabwe	455	390 (86%)	35 (8%)	17 (4%)	13 (3%)	0 (0%)
Total	24,172	11,795 (49%)	7,582 (31%)	3,109 (13%)	1,164 (5%)	522 (2%)

not switch to a clean fuel during follow were evaluated in polluting-to-polluting fuel models. For modeling clean-to-polluting fuel switching, 6,342 (26%) households in the study sample that reported using a clean primary cooking fuel at baseline were included.

Among all nine countries, 4% of variability in polluting-to-clean fuel switching was explained by household SES factors; this increased to 13% when adding community-level factors to the model and to 28% when adding in a country-level indicator (table 2). In India, household level factors explained 17% of the variability in polluting-to-clean fuel switching, compared to only 4% in China. In India and China, there was greater variability in fuel switching between regions within the country than within sub-national regions (India: ICC_{sub-national} = 0.60, China: ICC_{sub-national} = 0.56). After controlling for community and household characteristics, the variability in fuel switching between rural communities within the same sub-national region in China (ICC_{community} = 0.18) was greater than that in India (ICC_{community} = 0.02) and the seven other countries combined (ICC_{community} = 0.05), where almost all variability occurred within communities (table 2).

Association of specific factors with polluting-to-clean fuel switching
Across all countries, participants living in communities with the lowest percent of polluting fuel use at baseline, living in larger households, living in communities with the highest 2010 population density and the highest population density increase between 2005 and 2015, and participants with a higher education level and higher amount of household assets had the highest odds of polluting-to-clean fuel switching (figure 3(a)). For example, households in communities in the highest category of 2010 population density (>800 people km^-2) had 1.08 times the odds (95% CI:1.03–1.13) of polluting-to-clean fuel switching, compared with those in the lowest category of population density (1–300 people km^-2), after adjustment for years between survey administration.

In China (figure 3(b)), the strength of the association of community-level factors with clean-to-polluting fuel switching was higher than the nine-country average (figure 3(a)). For example, rural Chinese households in communities in the highest tertile of population density increase between 2005 and 2015 (>100 people km^-2) had 1.29 times the odds (95% CI:1.11–1.50) of polluting-to-clean primary fuel switching, compared with those in the lowest tertile (<30 people km^-2), after adjustment for years between survey administration. However, in India, three of the four factors most strongly associated with polluting-to-clean fuel switching (higher education level, higher household asset index and larger household) were at the household level (figure 3(c)). In the seven other countries (excluding India and China), community-level factors were more strongly associated with polluting-to-clean fuel switching than household-level factors; population density was a slightly stronger independent predictor of polluting-to-clean fuel switching than education level or household assets (figure 3(d)).

Association of specific factors with clean-to-polluting fuel switching
Higher household-level SES was generally more strongly negatively associated with clean-to-polluting switching compared to community-level factors (figure 4). One exception was that households in communities with the largest increase in population density had the highest odds of clean-to-polluting fuel switching. Older PURE participants (aged 55–70) were significantly less likely to switch from polluting to clean fuels and significantly more likely to switch from clean to polluting fuels, compared to participants aged 35–45.

Discussion
This analysis of a diverse population from 177 rural communities across nine LMICs reveals that half (51%) of the study population switched primary cooking fuels in a ~10 year period. The most common form of primary cooking fuel switching was polluting-to-clean switching (31%). A decrease in the proportion of households using polluting fuels was
Figure 2. (a) Self-reported proportions of PURE baseline and follow up primary cooking fuels by PURE households within each country. Notes: Percentages are from the PURE sample and not nationally representative. Country percentages <100% indicate that ‘other’ fuel types were excluded. ‘Clean’ fuels are in green color. (b) Self-reported proportions of PURE baseline and follow up primary cooking fuels for PURE countries with multiple sub-national regions (China, India and South Africa). Notes: Percentages are from the PURE sample and not necessary representative of the full population in each community.
Table 2. Intra-class correlation coefficient (ICC) and R^2 for polluting to clean fuel switching models including household, community, sub-national and (for multinational models) country-level factors.

Level name	Variables	Global model	7 Country model	India model	China model				
		ICC	Fixed effect R^2	ICC	Fixed effect R^2	ICC	Fixed effect R^2	ICC	Fixed effect R^2
Base level	Random effects: community, sub-national	C: 0.05	1%	C: 0.13	0%	C: 0.12	4%	C: 0.17	3%
	Fixed effects: study design variable d	S: 0.54		S: 0.51		S: 0.13		S: 0.62	
Household level	Random effects: community, sub-national	C: 0.14	4%	C: 0.13	5%	C: 0.11	17%	C: 0.18	4%
	Fixed effects: household variables e	S: 0.55		S: 0.51		S: 0.21		S: 0.61	
Community level	Random effects: community, sub-national	C: 0.14	13%	C: 0.05	14%	C: 0.02	31%	C: 0.18	27%
	Fixed effects: household and community variables f	S: 0.48		S: 0.54		S: 0.60		S: 0.56	
Country level	Random effects: community, sub-national	C: 0.17	28%	C: 0.06		N/A	N/A	N/A	N/A
	Fixed effects: household, community variables g and country h	S: 0.36	24%	S: 0.48		N/A	N/A	N/A	N/A

a 7 Country Model includes Bangladesh, Chile, Colombia, Pakistan, South Africa, Tanzania and Zimbabwe.

b ICC represents intra-class correlation at (C) community and (S) sub-national level. ICC(C) represents the variability between communities relative to the total variance between and within communities. ICC(S) represents the variability between sub-national regions relative to the total variance between and within sub-national regions.

c Fixed effects R^2 represents marginal R^2 (percent variability explained by fixed effects in the model).

d Study design variable: years between baseline and follow up survey.

e Household variables: household asset index, highest level of education, % income on food, age, family size, # of members earning income, # of rooms, roof material.

f Community variables: 2010 population, 2005–2015 change in population density, % of households using polluting fuels in community at baseline, travel time to densely populated area.

g Country: In 7 Country Model, country effect only includes binary indicator for South Africa as the six other countries only have one sub-national region from which PURE households were recruited.
observed in India, China, Chile, Colombia, and South Africa, while no overall improvements were observed in Bangladesh, Pakistan or Tanzania, and only minor improvements in Zimbabwe. Notably, this switching occurred without any targeted interventions at the household or community level. Sub-national and community-level factors were strongly positively associated with polluting-to-clean primary fuel switching in all countries, with the degree of association of household SES factors varying by country (highest in India and lowest in China) (table 2).

Community, sub-national and national factors
The community-level enablers of polluting-to-clean switching found in this study (higher population density (2010), change in population density between 2005 and 2015 and lower percent of households using polluting fuels in the community at baseline) are consistent with results of a recent global ecological analysis [65], which found factors such as the political environment, economic development, population size and type of local fuel production to be associated with the proportion of clean cooking fuels used at a country-level. A systematic review of barriers and enablers to clean fuel adoption and sustained use in rural areas identified several macro-level factors that can influence a household’s cooking fuel decision, including financial, tax/subsidy forces, market development and program/policy mechanisms [41].

Although data were not available to explicitly assess the impact of national programs focused on household energy, there were notable country-level differences in the rate of polluting-to-clean fuel

Figure 3. Odds of switching from polluting to clean fuels in (a) all nine countries (b) India (c) China (d) seven countries excluding China and India, ranked by strength of relationship with household and community level factors. ORs represent odds of primary fuel switching among households in the highest tertile of the variable relative to the lowest tertile (see table S2 for tertile cutoff points), controlling for study design variables. Notes: All figures are not on the same scale.

Figure 4. Odds of switching from clean to polluting fuels in all countries, ranked by strength of relationship with household and community level factors. ORs represent odds of primary fuel switching among households in the highest tertile of the variable relative to the lowest tertile (see table S2 for tertile cutoff points), controlling for study design variables.
switching. For example, the net increase in clean fuel-using PURE households in Bangladesh and Pakistan (0%-5%) contrasted dramatically with large improvements in the five regions in India (35%) and 11 regions in China (30%). In multinational analysis, ‘country level’ models explained a higher percentage of variability (R^2) in polluting-to-clean fuel switching (table 2), suggesting that national-level factors were important determinants of fuel switching.

In India, the Pratyaksha Hastaantarit Laabh national program, implemented in 2012, altered the mechanism of subsidized LPG by delivering the subsidy directly to consumers’ bank accounts; 140 million Indian consumers have been enrolled in the cash transfer program [66]. In 2016, the Pradhan Mantri Ujjwala Yojana program was launched to provide free household LPG connections to 50 million consumers by 2019 [66]. In India, very low between-community (ICC$_{\text{community}} = 0.02$) variation in fuel switching (table 2) may be due to national LPG programs that target all households in poor rural communities. Such programs may have minimized community-level differences in clean fuel access within the same region. Evaluation studies are needed to further examine the effect of national programs on LPG use in India.

In China, the proportion of coal use among rural PURE communities was cut in half (30%-15%) between baseline and follow up (figure 2(a)). A rapid increase in the number of stove factories, new policies and increasing coal prices have shifted many regions off of coal (figure 2(b)) [42, 67]. In 2013, the Chinese government launched a National Action Plan on Air Pollution Prevention and Control, consisting of province-specific limits on PM$_{2.5}$ emissions and coal consumption; a 50% reduction in coal consumption between 2013 and 2017 was targeted in the Beijing-Tianjin-Hebei area [68]. The province-specific limits on coal consumption could potentially explain the high between-region variability in the China model (ICC$_{\text{region}} = 0.56$). These and other policies in China focused on outdoor air pollution may have led to increases in household use of clean fuels [69], an approach that may also yield dividends in India where emissions related to residential sources are also major contributors to ambient air pollution [17].

The use of polluting fuels in China is highly correlated with local fuel availability [67]. As regions in western China (e.g. Liaoning) have substantial forest areas, a payment of any amount for clean cooking fuels is less appealing than gathering free biomass fuels [70–72]. In western China, rural PURE communities are especially remote, with four regions (Inner Mongolia, Shaanxi, Xinjiang, Yunnan), having at least half of communities >50 min travel time from a densely populated area. An unreliable supply of cooking fuels because of transportation time/costs could partially explain the importance of community-level factors in clean-to-polluting fuel switching in western China (figure 3(c)).

Household factors
Despite the overall importance of community, sub-national and national factors, we observed a consistent association between household SES indicators (e.g. higher household asset index, education level, household size—figure 3(a)) with switching to cleaner fuels. This observation was consistent with findings from systematic reviews of enablers to clean fuel adoption [52, 53, 73]. Among all household SES variables included in this analysis, increasing household size (number of rooms) was the strongest independent predictor of polluting-to-clean fuel switching in all countries. Participants in the youngest age group (35–45) also had significantly higher odds of switching than participants in the oldest age group (55–70) (figure 3(a)), in line with results from several studies [53, 74, 75].

While the association between increasing household SES and polluting-to-clean fuel switching was evident in all countries, the degree of association varied by country; household SES factors were more predictive of a positive household energy transition in India than China (figures 3(b) and (c), respectively). It is difficult to ascertain whether country-level differences in the significance of household factors may be due to greater remotesness of rural PURE communities in China than India (figure S2), or political, social and structural differences between the two countries. Nonetheless, country-level differences in the significance of household factors demonstrate that contextual factors can impact the importance of household economic standing in the decision to switch to cleaner primary cooking fuels.

Reverse switching: clean to polluting fuels
Household-level SES characteristics were more strongly associated with reverse (clean-to-polluting) fuel switching than community-level factors (figure 4); for example, education level, household size and the household asset index were more strongly (negatively) associated with reverse fuel switching than were factors such as 2010 population density and travel time to closest densely populated area. The stronger association of household-level compared to community-level factors in reverse fuel switching may explain why the ~1200 rural households switching from clean to polluting primary fuels were not concentrated in a particular region (table 1).

Among the nine countries, South Africa experienced the highest rate of clean-to-polluting fuel switching (8%), with ~60% of households switching from electricity to wood and nearly 20% switching from electricity to kerosene fuel. The move away from electricity may be the result of frequent power outages that have occurred in South Africa since 2008 due to increasing electricity demand exceeding the available supply [76, 77].
Strengths and limitations
This study is one of the largest and most geographically diverse to examine rates of primary fuel switching using within-household longitudinal data. While we have identified country as an important predictor of change, we did not attempt to attach this effect to specific policies that were implemented or even to differentiate between potential impacts of national scale policies related to household energy use and overall socioeconomic development that occurred within each country during the duration of our analysis. However, the clustered sampling used in the PURE study allowed for examination of several household, community, sub-national and national-level determinants of fuel switching.

By only considering primary cooking fuels, this study does not account for proliferation of stove stacking, a common phenomenon in which households utilize a polluting cooking fuel in conjunction with a clean cooking fuel to serve their household energy needs [40, 44, 52, 78]. Thus, PURE households reporting use of a primary clean cooking fuel at follow up may use a secondary polluting fuel, thereby reducing the health benefits of using a clean primary fuel [27]. The PURE-Air HAP study [58] involves data collection on secondary fuels/stoves. As such, future analyses within the PURE-Air HAP study can inform the extent of fuel/stove stacking in the PURE cohort.

Questions about the type of stove in which fuels were combusted (e.g. open fire, improved biomass stove) were not contained in the PURE Household Questionnaire. Misclassification of ‘clean’ versus ‘polluting’ fuels/stoves may exist; for example, the findings of polluting to polluting fuel switching in China should be interpreted cautiously as they do not consider potential adoption of improved biomass stoves. While the PURE study was not specifically designed to be nationally representative, these results from a diverse sample of >20 000 households undergoing primary fuel switching are valuable for assessing within and between-country differences in fuel switching between ~2005 and 2015 and establishing potential macro-level pathways to achieve fuel switching.

Impact
As global health policymakers seek to prioritize strategies that most efficiently promote the clean household energy transition, this diverse, multinational analysis identifies broader societal factors associated with urbanization and economic growth as important drivers of the polluting-to-clean cooking fuel transition in rural areas of LMICs. This analysis reinforces calls to consider the community and national context of household energy options [79] and suggests the potential for policies that accelerate ongoing societal trends to transition to gas/electricity to meet household cooking needs.

Acknowledgments
The authors would like to acknowledge the field teams in all PURE countries whom administered all questionnaires at baseline and follow up. Without their extensive efforts, this study would not be possible.

The PURE-AIR study is funded by Canadian Institutes for Health Research (CIHR) [grant #136893]; and by the Office of The Director, National Institutes of Health (NIH). [Award Number DP5OD019850]. The content is solely the responsibility of the authors and does not necessarily represent the official views of CIHR or the NIH.

The PURE study is an investigator-initiated study that is funded by the Population Health Research Institute, the Canadian Institutes of Health Research, Heart and Stroke Foundation of Ontario, Support from Canadian Institutes of Health Research’s Strategy for Patient Oriented Research, through the Ontario SPOR Support Unit, as well as the Ontario Ministry of Health and Long-Term Care and through unrestricted grants from several pharmaceutical companies [with major contributions from AstraZeneca (Canada), Sanofi-Aventis (France and Canada), Boehringer Ingelheim (Germany and Canada), Servier, and GlaxoSmithKline], and additional contributions from Novartis and King Pharma and from various national or local organisations in participating countries.

Bangladesh: Independent University, Bangladesh and Mitra and Associates; Chile: Universidad de la Frontera; China: National Center for Cardiovascular Diseases and ThinkTank Research Center for Health Development; Colombia: Colciencias (grant 6566-04-18062 and grant 6517-777-58228); India: Indian Council of Medical Research; South Africa: The North-West University, SA and Netherlands Programme for Alternative Development, National Research Foundation, Medical Research Council of South Africa, The South Africa Sugar Association, Faculty of Community and Health Sciences.

Role of sponsor: The funders and sponsors had no role in the design and conduct of the study; in the collection, analysis, and interpretation of the data; in the preparation, review, or approval of the manuscript; or in the decision to submit the manuscript for publication.

PURE Project Office Staff, National Coordinators, Investigators, and Key Staff:

Project office (Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Canada): S Yusuf 23 (Principal Investigator).

23 National Coordinator.
S Rangarajan (Program Manager Manager); K K Teo, S S Anand, C K Chow, M O Donnell, A Mente, D Leong, A Smyth, P Joseph, M Duong, O Kurmi, R D Souza, M Walli-Attaei, B Balaji, R Naito, S Islam (Statistician), W Hu (Statistician), C Ramasundarathetti (Statistician), P Sheridan (Statistician), S Bangdivala, L Dyal, A Casanova, M Dehghan (Nutrition Epidemiologist), G Lewis (Associate Program Manager), D Agapay, A Aliberti, N Aoucheva, A Arshad, A Reyes, B Bideri, R Butthoo, S Chin, M Di Marino, R Frances, S Gopal, M Jakymshyn, N Kandy, I Kay, J Lindeman, G McAlpine, E McNeice, M(a) Mushtaha, M(o) Mushtaha, R Patel, D Pattath, S Ramacham, E Ramezani, J Rimac, F Shifaly, J Swallow, M Trottier, S Trottier, R Solano, A Zaki, B Zhang, V Zhang

Bangladesh: O Rahman, R Yusuf, S A K S Ahmed, T Choudhury, M Sinta, A Khan, O Alam, N, Nayeem, S N Mitra, S Islam, F Pasha; **Chile:** F Lanas, P Seron, M J Oliveros, F Cazor, Y Palacios; **China:** Li Wei, Liu Lisheng, Bo Jian, Hu Bo, Yin Lu, Zhao Wenhua, Zhang Hongye, Jia Xuan, Sun Yi, Wang Xingyu, Zhao Xiuxing, Xing Chang, Chen Hui, Chang Xiaohong, Deng Qing, Cheng Xiaoru, Deng Qing, Xie Liya, Liu Zhiguang, Li Juan, Li Jian, Liu Xu, Ren Bing, Sun Yi, Wang Wei, Wang Yang, Yang Jun, Zhai Yi, Zhang Hongye, Zhao Xiuxin, Zhu Manlu, Lu Fanghong, Wu Jianfeng, Li Yindong, Hous Yan, Zhang Liangqing, Guo Baoxia, Liao Xiaoyang, Zhang Shiyi, Bian Rongwen, Tian Xiuzhen, Li Dong, Chen Di, Wu Jianguo, Xiao Yize, Liu Tianlun, Zhang Peng, Dong Changlin, Li Ning, Ma Xiaolan, Yang Yuqing, Lei Rensheng, Fu Minfan, He Jing, Liu Yu, Xing Xiaojie, Zhou Qiang; **Colombia:** P Lopez-Jaramillo, P A Camacho-Lopez, J Otero-Wandurraga, D I Molina, C Cure-Cure, M Perez, E Hernandez, E Arcos, C Narvaez, A Sotomayor, H Garcia, G Sanchez, F Cotes, A Rico, M Duran, C Torres; **India:** P Mony, M Vaz, S Swaminathan, K Shankar, A V Kurpad, K G Jayachitra, N Kumar, H A L Hospital, V Mohan, M Deepa, K Parthiban, M Anitha, S Hemavathy, T Rahulashankiruthiyayan, D Anitha, R M Anjana, R Dhanaeskar and S. Sureshkumar, D Anitha, K Sriydevi, R Gupta, B Panwar, I Mohan, P Rastogi, S Rastogi, R Bhargava, R Kumar, J S Thakur, B Patro, R Mahajan, P Chaudhary, V Raman Kutty, K Vijayakumar, K Ajayan, G Rajaseer, AB Renujini, A Deepu, B Sandhya, S Asha, H S Soumya, R Kumar, M Kaur, P V M Lakshmi, V Sagar; **Pakistan:** R Iqbal, R Khawaja, I Azam, K Kazmi; **South Africa:** I Kruger, A Kruger, P Bestra, H H Voster, A E Schutte, E Wentzel-Viljoen, FC Eloff, H de Ridder, H Moss, J Potgieter, A A Roux, M Watson, G de Wet, A Olckers, J C Jeerling, M Pieters, T Hoekstra, T Puoane, R Swart, E Igumbar, L Tsolekile, K Ndayi, D Sanders, P Naidoo, N Steyn, N Peer, B Mayosi, B Rayner, V Lambert, N Levitt, T Kolbe-Alexander, L Ntyintyane, G Hughes, J Foure, M Muzigaba, S Xapa, N Gohile, K Ndayi, B Jwili, K Ndibaza, B Egbiuje; **Tanzania:** K Yeates, M Oresto, N West **Zimbabwe:** J Chifamba, T Ncube, B Ncube, C Chimhete, G K Neya, T Manenji, L Gwauanza, V Mapara, G Terera, C Mahachi, P Murambiwa, R Mapanga, A Chinhara.

PURE Country Institution Names:

Institution
South Africa
North-West University
Potchefstroom Campus
University of the Western Cape
Department of Dietetics and Nutrition
Private Bag X17, 7535
Bellville, South Africa
Zimbabwe
University of Zimbabwe
College of Health Sciences
Physiology Department
Harare, Zimbabwe
Tanzania
Pamoja Tunaweza Women Center, Moshi, Tanzania
Division of Nephrology, Department of Medicine
Queen’s University
China
National Centre for Cardiovascular Diseases
Cardiovascular Institute and Fuwai Hospital
Chinese Academy of Medical Sciences
Dr Mohan’s Diabetes Specialities Centre, Chennai
Pakistan
Department of Community Health Sciences and Medicine
Aga Khan University
Stadium Road, PO Box 3500
Karachi Pakistan
India, Bangalore
Community Health and Epidemiology
St John’s Research Institute
Bangalore 560034, India
India, Chennai
Madras Diabetes Research Foundation and
Dr Mohan’s Diabetes Specialities Centre, Chennai
India Jaipur
Eternal Heart Care Centre and Research Institute, Jaipur
India, Trivandrum
Health Action by People, THR, Thiruvananthapuram, India
Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695011 India
India, Chandigarh
School of Public Health, Post Graduate Institute of Medical Education and Research, Chandigarh (India)
Bangladesh
Independent University, Bangladesh
Bashundhara, Dhaka
Bangladesh
Colombia
Fundacion Oftalmologica de Santander (FOSCAL)
Floridablanca-Santander, Colombia
Chile
Universidad de La Frontera
Temuco, Chile

The authors have no competing interests to declare.
References
[1] Health Effects Institute 2018 State of Global Air 2018 (https://www.stateofglobalair.org/sites/default/files/sga-2018-report.pdf)
[2] International Energy Agency 2016 World Energy Outlook (Paris: OECD/IEA)
[3] Dherani M, Pope D, Mascarenhas M, Smith K R, Weber M and Bruce N 2008 Indoor air pollution from unprocessed solid fuel use and pneumonia risk in children aged under five years: a systematic review and meta-analysis Bull. World Health Organ. 86 390–8
[4] Kurmi O P, Semple S, Simkhada P, Smith W C S and Ayres J G 2016 Environmental burden of traditional bioenergy use in Developing Countries: a systematic review and meta-analysis Environ. Health Perspect. 124 115063
[5] Kurmi O P, Arya P H, Lam K B H, Sorahan T and Ayres J G 2012 Lung cancer risk and solid fuel smoke exposure: a systematic review and meta-analysis Eur. Respir. J. 40 1228–37
[6] Dutta A et al 2017 Household air pollution and angoriogenic factors in pregnant women: a randomized controlled ethanoldistove intervention Sci. Total Environ. 599–600 2175–81
[7] Amegah A K, Quansah R and Jaakkola J J K 2014 Household air pollution from solid fuel use and risk of adverse pregnancy outcomes: a systematic review and meta-analysis of the empirical evidence PLoS One 9 e119320
[8] Pokhrel A K 2004 Case-control study of indoor cooking smoke exposure and cataract in Nepal and India Int. J. Epidemiol. 34 702–8
[9] Arku R E, Ezzati M, Baumgartner J, Fink G, Zhou B, Hystad P and Brauer M 2018 Elevated blood pressure and household solid fuel use in premenopausal women: analysis of 12 demographic and health surveys (DHS) from 10 countries Environ. Res. 160 499–505
[10] Alexander D et al 2017 Randomized controlled ethanoldistove intervention and blood pressure in pregnant women Am. J. Respir. Crit. Care Med. 195 1629–39
[11] Olopade C O et al 2017 Effect of a clean stove intervention on inflammatory biomarkers in pregnant women in Ibadan, Nigeria: a randomized controlled study Environ. Int. 98 181–90
[12] Yu K et al 2018 Association of solid fuel use with risk of cardiovascular and all-cause mortality in Rural China J. Med. Med. Assoc. 319 1351–61
[13] Hystad P et al 2019 Health effects of household solid fuel use: findings from 11 countries within the prospective urban and rural epidemiology study Environ. Health Perspect. 127 057003
[14] Gakidou E et al 2017 Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the global burden of disease study 2016 Lancet 390 1345–422
[15] Lacey F G, Henze D K, Lee C J, Donkelaar A van and Martin R V 2017 Transient climate and ambient health impacts due to national solid fuel smoke emissions Proc. Natl Acad. Sci. 114 12699–74
[16] GBD MAPS Working Group 2016 Burden of Disease Attributable to Coal-Burning and Other Major Sources of Air Pollution in China Special Report 20 Health Effects Institute
[17] Health Effects Institute 2018 Burden of disease attributable to major air pollution sources in India Special Report 21 Health Effects Institute
[18] Weagle C L et al 2018 Global sources of fire particulate matter: interpretation of PM2.5 chemical composition observed by SPARTAN using a global chemical transport model Environ. Sci. Technol. 52 11670–81
[19] Archer–Nicholls S et al 2016 The regional impacts of cooking and heating emissions on ambient air quality and disease burden in China Environ. Sci. Technol. 50 9416–23
[20] Masera O R, Balis R, Drigo R, Ghiardi A and Ruiz-Mercado I 2015 Environmental burden of traditional bioenergy use Annu. Rev. Environ. Resour. 40 121–50
[21] Nautiyal S 2013 A transition from wood fuel to LPG and its impact on energy conservation and health in the central himalayas, India J. Mt. Sci. 10 898–912
[22] Rehman I H, Ahmed T, Praveen P S, Kar A and Ramanathan V 2011 Black carbon emissions from biomass and fossil fuels in rural India Atmos. Chem. Phys. 11 7289–99
[23] Singh D, Pachauri S and Zeruffi H 2017 Environmental payoffs of LPG cooking in India Environ. Res. Lett. 12 115063
[24] Brooks N, Bhojvaid V, Jeuland M A, Lewis J J, Patange O and Pattanayak S K 2016 How much do alternative cookstoves reduce biomass fuel use? Evidence from North India Resour. Energy Econ. 43 153–71
[25] Northcross A, Shupler M, Alexander D, Olajumulo J, Ibibigani T, Ana G, Ojengbede O and Olopade C O 2016 Sustained usage of bioethanol cookstoves shown in an Urban Nigerian city via new SUMs algorithm Environ. Sustain. Dev. 35 35–40
[26] Shupler M, Balakrishnan K, Ghosh S, Thangavel G, Stroud–Drinkwater S, Adair–Rohani H, Lewis J, Mehta S and Brauer M 2018 Global household air pollution database: kitchen concentrations and personal exposures of particulate matter and carbon monoxide Data in Brief 21 1292–5
[27] Johnson M A and Chiang R A 2015 Quantitative guidance for stove usage and performance to achieve health and environmental targets Environ. Health Perspect. 123 820–6
[28] Chan K H et al 2019 Solid fuel use and risks of respiratory diseases. A cohort study of 280 000 Chinese never-smokers Am. J. Respir. Crit. Care Med. 199 352–61
[29] Rosenthal I et al 2017 Implementation science to accelerate clean cooking for public health Environ. Health Perspect. 125 A3–7
[30] Carrion D, Dwomoh R, Tawiah T, Agyei O, Agbokeyo F, Twumasi M, Mujtaba M, Jack D and Asante K P 2018 Enhancing LPG adoption in Ghana (ELAG): a factorial cluster-randomized controlled trial to enhance LPG adoption and sustained use BMC Public Health 18 689
[31] Pillarissetti A, Vaswani M, Jack D, Balakrishnan K, Bates M N, Arora N K and Smith K R 2014 Patterns of stove usage after introduction of an advanced cookstove: the long-term application of household sensors Environ. Sci. Technol. 48 14525–32
[32] Hanna R and Oliva P 2015 Moving up the energy ladder: the effect of an increase in economic well–being on the fuel consumption choices of the poor in India Am. Econ. Rev. 105 242–6
[33] Jeuland M, Pattanayak S K and Bluffstone R 2015 The economics of household air pollution Annu. Rev. Resour. Econ. 7 81–108
[34] Leach G 1992 The energy transition Energy Policy 20 116–23
[35] Himstra-van der Horst G and Hovoraka J A 2008 Reassessing the ‘energy ladder’: household energy use in maize, Botswana Energy Policy 36 3333–44
[36] Barnes D F, Krutilla K and Hyde W 2005 The Urban Household Energy Transition (Wash. DC: Resour. Future Press)
[37] Gupta G and Kohlin G 2006 Preferences for domestic fuel: analysis with socio-economic factors and rankings in Kolkata, India Ecol. Econ. 57 107–21
[38] Hou B, Liao H and Huang J 2018 Household cooking fuel choice and economic poverty: evidence from a nationwide survey in China Energy Build. 166 319–29
[39] Heltberg R 2004 Fuel switching: evidence from eight developing countries Energy Econ. 26 869–87
[40] Masera O R, Saatkamp B D and Kammen D M 2000 From linear fuel switching to multiple cooking strategies: a critique
and alternative to the energy ladder model World Dev. 28 2083–103

[41] Puzzolo E, Pope D, Stanisstreet D, Rehfuess E A and Bruce N G 2016 Clean fuels for resource-poor settings: a systematic review of barriers and enablers to adoption and sustained use Environ. Res. Lett. 11 040801

[42] Shen G, Lin W, Chen Y, Yue D, Liu Z and Yang C 2015 Factors influencing the adoption and sustainable use of clean fuels and cookstoves in China—A Chinese literature review Renew. Sustain. Energy Rev. 51 741–50

[43] Kowarri R and Zerriffi H 2011 Three dimensional energy profile: a conceptual framework for assessing household energy use Energy Policy 39 7505–17

[44] Ruiz-Mercado I, Masera O, Zamora H and Smith K R 2011 Adoption and sustained use of improved cookstoves Energy Policy 39 7557–66

[45] Barnes B, Rosenbbaum J, Mehta S, Williams K N, Jagoe K and Graham J 2015 Behavior change communication: a key ingredient for advancing clean cooking J. Health Commun. 20 3–5

[46] Thompson L M, Diaz-Artiga A, Weinstein J R and Handley M A 2018 Designing a behavioral intervention using the COM-B model and the theoretical domains framework to promote gas stove use in Rural Guatemala: a formative research study BMC Public Health 18 253

[47] Takama T, Tsephel S and Johnson F X 2012 Evaluating the relative strength of product-specific factors in fuel switching and stove choice decisions in ethiopia. A discrete choice model of household preferences for clean cooking alternatives Energy Econ. 34 1763–73

[48] Kumar P, Dhand A, Tabak R G, Brownson R C and Yadama G N 2017 Adoption and sustained use of cleaner cooking fuels in Rural India: a case control study protocol to understand household, network, and organizational drivers Arch. Public Health Arch. Belg. Sante Publique 75 70

[49] Quinn A K, Bruce N, Puzzolo E, Dickinson K, Sturke R, Jack D W, Mehta S, Shankar A, Sherr K and Rosenthal J P 2018 An analysis of efforts to scale up clean household energy for cooking around the world Energy Sustain. Dev. 46 1–10

[50] Kar A and Zerriffi H 2018 From cookstove acquisition to cooking transition: framing the behavioural aspects of cookstove interventions Energy Res. Soc. Sci. 42 23–33

[51] Mobarak A M, Dwiwedi P, Balili R, Hildemann L and Miller G 2012 Low demand for nontraditional cookstove technologies Proc. Natl Acad. Sci. 109 10815–20

[52] Puzzolo E, Stanisstreet D, Pope D, Bruce N and Rehfuess E 2013 Factors Influencing the Large-Scale Uptake by Households of Cleaners and More Efficient Household Energy Technologies London: EPP Centre

[53] Lewis J and Pattanayak S K 2012 Who adopts improved fuels and cookstoves? A systematic review Environ. Health Perspect. 120 637–45

[54] Grieshop A P, Marshall J D and Kandlikar M 2011 Health and climate benefits of cookstove replacement options Energy Policy 39 7510–20

[55] Song C, Bilbrorow R, Jagger P, Zhang Q, Chen X and Huang Q 2018 Rural household energy use and its determinants in China: how important are influences of payment for ecosystem services versus other factors? Ecol. Econ. 145 148–59

[56] Teo K, Chow C K, Vaz M, Rangarajan S and Yusuf S 2009 The prospective urban rural epidemiology (PURE) study: examining the impact of societal influences on chronic noncommunicable diseases in low-, middle-, and high-income countries Am. Heart J. 158 1–7

[57] Corsi D J et al 2013 Prospective urban rural epidemiology (pure) study: baseline characteristics of the household sample and comparative analyses with national data in 17 countries Am. Heart J. 166 636–46

[58] Arku R E, Birch A, Shuler M, Yusuf S, Hystad P and Brauer M 2018 Characterizing exposure to household air pollution within the prospective urban rural epidemiology (PURE) study Environ. Int. 114 307–17

[59] Weiss D J et al 2018 A global map of travel time to cities to assess inequalities in accessibility in 2015 Nature 553 333–6

[60] R Core Team 2017 R: A Language and Environment for Statistical Computing (Vienna: R Foundation for Statistical Computing)

[61] Ludecke D 2018 Sjsdata: Statistical Functions For Regression Models (Zeno) [https://doi.org/10.5281/zenodo.1284472]

[62] Wu S, Chespi C M and Wong W K 2012 Comparison of methods for estimating the intraclass correlation coefficient for binary responses in cancer prevention cluster randomized trials Contemp. Clin. Trials 33 869–80

[63] Hox J 2002 Multilevel Analysis Techniques and Applications; Multilevel Analysis Techniques and Applications (Mahwah, NJ: Lawrence Erlbaum Associates Publishers)

[64] Lefcheck J S 2016 PiecewiseSEM: piecewise structural equation modelling in r for ecology, evolution, and systematics Methods Ecol. Evol. 7 573–9

[65] McLean E V, Bagchi-Sen S, Atkinson J D, Ravenscroft J, Hewner S and Schindel A 2019 Country-level analysis of household fuel transitions World Dev. 114 267–80

[66] Pillarissetti A, Jamison D T and Smith K R 2017 Household energy diversity and health and finances in Haryana, India: an extended cost-effectiveness analysis Injury Prevention and Environmental Health ed C N Mock et al (Washington, DC: The International Bank for Reconstruction and Development/ The World Bank)

[67] Duan X, Jiang Y, Wang B, Zhao X, Shen G, Cao S, Huang N, Qian Y, Chen Y and Wang L 2014 Household fuel use for cooking and heating in China: results from the first chinese environmental exposure–related human activity patterns survey (CEERHAPS) Appl. Energy 136 692–703

[68] Wang L et al 2018 Taking action on air pollution control in the Beijing–Tianjin–Hebei (BTH) region: progress, challenges and opportunities Int. J. Environ. Res. Public Health 15 306

[69] Zhao B et al 2018 Change in household fuels dominates the decrease in PM 2.5 exposure and premature mortality in China in 2005–2013 Proc. Natl Acad. Sci. 113 12401–6

[70] Quinn A K et al 2016 Association of carbon monoxide exposure with blood pressure among pregnant women in rural ghana: evidence from GRAPHS Int. J. Hyg. Environ. Health 219 176–83

[71] Muller C and Yan H 2018 Household Fuel Use in Rural China Working Papers halshs-01735847 HAL

[72] Chen L, Heerink N and van den Berg M 2006 Energy consumption in Rural China: a household model for three villages in jiangxi province Econ. Syst. 30 407–20

[73] Vigolo V, Sallaku R and Testa F 2018 Drivers and barriers to clean cooking: a systematic literature review from a consumer behavior perspective Sustainability 10 4322

[74] Chan K H, Lam K B H, Kurmi O P, Guo Y, Bennett D, Bian Z, SHERLIEKER P, Chen J, LI L and Chen Z 2017 Trans-generational changes and rural-urban inequality in household fuel use and cookstove ventilation in China: a multi-region study of 0.5 million adults Int. J. Hyg. Environ. Health 220 1370–81

[75] Clark S et al 2017 Adoption and use of a semi-gasifier cooking and water heating stove and fuel intervention in the tibetan plateau, China Environ. Res. Lett. 12 075004

[76] Odihambo N M 2009 Electricity consumption and economic growth in South Africa: a trivariate causality test Energy Econ. 31 635–40

[77] Kimemia D and Annegarn H 2016 Domestic LPG interventions in South Africa: challenges and lessons Energy Policy 93 150–6

[78] Ruiz-Mercado I and Masera O 2013 Patterns of stove use in the context of fuel-device stacking: rationale and implications EcoHealth 12 42–56

[79] Ezzati M and Baumgartner J C 2017 Household energy and health: where next for research and practice? Lancet 389 130–2