Molecular Discrimination of *Klebsiella oxytoca* using Polymerase Chain Reaction Targeted Polygalacturonase (*pehX*) Gene

Tamara H. Zedan*

Department of Medical and Molecular Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, Iraq

*Corresponding author

A B S T R A C T

This study aimed to molecular diagnosis of *Klebsiella oxytoca* using polymerase chain reaction. A total of 325 samples were collected from different clinical and environmental sources from six main hospitals in Baghdad province which is capital of Iraq. Out of 282 isolates, fifty six isolates (19.9 %) were isolated and identified as *Klebsiella* spp., forty isolates (12.3 %) were isolated and identified as *K. pneumoniae* (36 clinical and 4 environmental), ten isolates (3.5 %) were isolated and identified as *Klebsiella terrigena* (10 clinical only), three isolates (1.1 %) were isolated and identified as *Klebsiella oxytoca* and *Klebsiella ornitholytica* (2 clinical and 1 environmental) for each one. PCR was performed with the primer that target the *pehX*. Result showed that all the *K. oxytoca* isolate gave a clear band with a molecular weight 344 bp in size and this gene was not found in other *Klebsiella* spp. These results suggest that *pehX* genotype might be a useful marker to promote identification of *K. oxytoca* in Iraq, and used as routine protocol in public laboratories in Iraq.

Keywords

Klebsiella oxytoca; Molecular diagnosis; *PehX*

Article Info

Accepted: 26 May 2017
Available Online: 10 June 2017

Introduction

Klebsiella spp. has been first mentioned in 1883 by the German pathologist Karl Friedländer as a causative organism of severe pneumonia. Bacteria of the genus *Klebsiella* was finally described and designated in honor of the German microbiologist Edwin Klebs by Trevisan two years later in 1885 (Weberhofer, 2008). *Klebsiella pneumoniae* (formerly known as Friedländer bacillus) species was also described by Trevisan in 1887 (Zedan et al., 2013).

Klebsiella spp. are gram-negative bacteria, is a significant public health issue which associated with the majority of human infections causing diseases in human including pneumonia, bloodstream infections, urinary tract infections, and soft tissue infections (Kovtunovych et al., 2003), this genus can live in both anaerobe and aerobe environments. This fact also constitutes the reason why *Klebsiella* spp. on the one hand can survive and proliferate in anaerobe environments such as the gut or the urinary tract (Stojowska-Swędrzyńska and Krawczyk, 2016). On the other hand though, *Klebsiella* spp. are also *Enterobacteriaceae* and, consequently, can cause acute respiratory
diseases such as hospital-acquired pneumonia (Ho et al., 2011; Han et al., 2015). This is also the reason for the infections and inflammations of these organs caused by Klebsiella spp. (Podschun and Ullmann, 1998).

Klebsiella pneumonia and Klebsiella oxytoca are the most two common distinguished species within Klebsiella genus, while K. terrigena, K. ornithinolytica and K. planticola are less distinguished (Lowe et al., 2012). K. oxytoca produce extended-spectrum beta-lactamase (ESBL), therefore is increasingly resistant to penicillin and ampicillin, in addition to 10-20% of this specie in Europe is multi-resistant to antibiotics with broad spectrum of activity such as cephalosporin or ceftazidim because of carrying plasmid-borne beta-lactamases genes and class A chromosomal beta-lactamase (Goossens et al., 2015). However, both species pneumonia and oxytoca are useful in agriculture due to their ability in fixing nitrogen (Bao et al., 2013).

Accurate diagnosis among Klebsiella species is one of the most difficult obstacles in distinction in particular when apply phenotypic methods, improve the accuracy and efficiency of identification might be contribute in understanding the epidemiology spreading (Chander et al., 2011). False results could be happen in identification of the K. oxytoca and K. pneumoniae as well (Fielding et al., 2012). Furthermore, going further to identify K. oxytoca needs long process needing extra effort such as pectate degradation (Chander et al., 2011).

The conventional biochemical tests designed for identification of Enterobacteriaceae often fail to differentiate species of Klebsiella (Brisse et al., 2009). K. oxytoca which is closely related to K. pneumoniae, in biochemical differentiation, K. oxytoca and K. pneumoniae are only distinguished by a positive indole-reaction for K. oxytoca and a negative reaction for K. pneumoniae. Indole testing aims at the detection of the enzyme tryptophanase. Tryptophanase catalyzes the reaction from tryptophan to indole, pyruvic acid and ammonia (Abbott, 2007). However, none of these techniques is completely satisfactory, since the sequences used (gyrA, parC, infB, rrs and bla) are not exclusively present in K. oxytoca (Han et al., 2015). As a consequence, cross-reactions between the probe and DNA sequences from other species of the genus Klebsiella, or even other Enterobacteria, are possible. In some assays, sequence determination is needed before an identification can be reached, but sequencing is often considered too technically demanding, time-consuming and expensive (Goossens et al., 2015).

It is important to understand their epidemiology and to control their spread in hospitals (Park et al., 2011). The polymerase chain reaction (PCR) is a more objective and reproducible detection method for K. oxytoca (Pan et al., 2008). Create a PCR-based identification method for K. oxytoca to identify this bacterial strain in a possibly even more sensitive and specific way. The idea was to exploit the pectate degradation capability of K. oxytoca which differentiates this species from all other Klebsiella species. More specifically, it was used a unique sequence of the gene pehX encoding the enzyme polygalacturonase that cleaves a polygalacturonic chain of demethoxylated pectin (Kovtunovych et al., 2003). The pehX gene used to increase the specificity and sensitivity of K. oxytoca identification (Kline et al., 2009). The PCR method was applied for a PCR amplicon of 344 bp that is typical for K. oxytoca (Weberhofer, 2008). This gene was devising a rapid, sensitive and specific test for discrimination of K. oxytoca from other Klebsiella spp. (Park et al., 2011).
The aim of this study was to molecular diagnosis of *Klebsiella oxytoca* by using polymerase chain reaction. The idea was to exploit the pectate degradation capability of *K. oxytoca* which differentiates this species from all other *Klebsiella* species. More specifically, we used a unique sequence of the gene *pehX* encoding the enzyme polygalacturonase that cleaves a polygalacturonic chain of demethoxylated pectin (Stojowska-Swędrzyńska, K. and Krawczyk, B., 2016).

Materials and Methods

Samples collection

This study was carried out in Central Health Laboratory/Ministry of Health/Baghdad/Iraq, during the period from 1/11/2012 to 7/1/2013.

A total of 325 swab samples were aseptically collected, dampened with normal saline in sterile containers and transferred to the laboratory to isolate bacteria. These samples were collected from different Hospitals’ Environment and patients visiting some Hospitals (Ibn Al-baladi, Central Children, Al-kindy, Al-Wasity, Medical city/Educational Lab.) in Baghdad/Iraq.

Isolation and identification of *K. oxytoca*

Samples were cultured on MacConky's agar plate (Oxoid) and cultured plates were incubated overnight at 37 °C. After incubation suspected *Klebsiella* colonies were selected and stored in pure form for further identification.

A number of morphological, physiological and biochemical tests were performed for identifying the bacterial isolates as recommended by Taha (2013). The isolates were confirmed for biotyping by the API 20E system and The VITEK 2 GN ID cards with a VITEK 2 system were also used as a confirmation of characterization.

DNA extraction

The template DNA prepared from 1.5 ml of fresh cultures of bacterial isolates grown at 37°C in Luria-Bertani broth (Green and Sambrook, 2012). DNA was extracted using genomic DNA extraction kit/Geneaid according to the manufacture protocol. The extracted DNA solution was stored at -20 °C.

DNA concentration and purity measurement

The concentration of DNA was measured by Nanodrop spectrophotometer according to the Nanodrop Optizen/Korea manual, DNA purity was measured depending on the ratio of sample absorbance at wave lengths 260 and 280 nm. A ratio of ~1.8 is considered as “pure” DNA (Green and Sambrook, 2012).

Molecular identification using PCR amplification

The extracted DNA was subjected to amplification with a PCR thermal cycler (Applied biosystems/Singapore) and specific primer (Bioneer/Korea) was used to amplify fragment from the *pehX* gene. Each 20 µl reaction mixture for amplification of *pehX* gene contained 2 µl DNA template, forward and reverse primers 1 µl (10 pmol), 12.5 µl of master mix (2x) (MgCl₂ 1.5 mM, Taq polymerase 1 U, each dNTPs 200 µM) and 16 µl DNase Free Water (Bioneer, Korea).

Primers used for PCR were, for *pehX* forward, 5- GAT ACG GAG TAT GCC TTT ACG GTG -3 and, for *pehX* reverse, 5- TAG CCT TTA TCA AGC GGA TAC TGG -3 (Park et al., 2011). The PCR conditions for amplification of the *pehX* gene were as follows: 5 min. of initial denaturation at 94°C,
followed by 30 cycles of 30 s at 94 °C, 1 min at 58 °C and 1 min at 72 °C, with a final extension step at 72 °C for 5 min. The amplified DNA was visualized in a 1.5 % agarose gel containing ethidium bromide (0.5 μg/ml). DNA bands were visualized by UV illumination at 302 nm on a UV transilluminator.

Results and Discussion

Isolation and identification

Two hundred and eighty-two isolates were obtained from three hundred and twenty-five clinical and environmental samples were collected from different hospitals in Baghdad. Fifty-six isolates (19.9 %) were isolated and identified as Klebsiella spp., forty isolates (12.3 %) were isolated and identified as K. pneumoniae, ten isolates (3.5 %) were isolated and identified as Klebsiella terrigena, three isolates (1.1 %) were isolated and identified as Klebsiella oxytoca and Klebsiella ornitholytica for each one, on the basis morphological, physiological and biochemical characteristics (Taha, 2013), and results were confirmed using the API 20E and VITEK 2 system (Robinson et al., 1995).

Two (0.7 %) of these isolates were isolated from clinical sources (urine 1 (33.3 %) and sputum 1 (33.3 %)), 1 (7.1 %) isolates from hospital’s environment.

Molecular identification of K. oxytoca

In order to molecular identification of K. oxytoca isolates DNA was extracted from all isolates of Klebsiella spp. Results showed that the recorded range of DNA concentration was 47.4-123.8 ng/μl and the DNA purity was 1.6-2.0.

The obtained quantities and purity of DNA are fair enough for amplification by PCR. Higher amounts of DNA template increase the risk of generating of Non-specific PCR products. Lower amounts of template reduce the accuracy of the amplification. A pure DNA preparation has expected of 1.8 which are based on the extinction coefficients of nucleic acids at 260 nm and 280 nm (Green and Sambrook, 2012). All Klebsiella spp. isolates (K. pneumoniae, K. terrigena, K. oxytoca and K. ornitholytica) were subjected to molecular identification through PCR amplification of pehX using K peh-F and K peh-R primers which represents specific primers for the PCR amplification of K. oxytoca pehX.

Results showed that the amplified fragments were 344 bp in size as shown in figure (1), which the same size is obtained by Park et al., (2011) when they used the same primer. All (3) K. oxytoca isolates (1.1 %) gave positive results (344 bp bands), and identified as K. oxytoca. It was not obtained amplification from other Klebsiella isolates (K. pneumoniae, K. terrigena and K. ornitholytica). Results of PCR amplification confirmed that all isolates were K. oxytoca.

Figure 1 shows gel electrophoresis for amplification of pehX gene using specific primers of K. oxytoca. Electrophoresis was performed on 1.5 % agarose gel and run with a 70 volt/35 mAmp current for 2 hrs. Lane M is a (100 bp) ladder, Line: 1 – T17 (K. oxytoca clinical isolate), 2 – T116 (K. oxytoca environmental isolate), 3 – T117 (K. oxytoca clinical isolate), 4 – DNA-free negative control, 5 – T12 (K. terrigena clinical isolate), 6 – T43 (K. terrigena clinical isolate), 7 – T47 (K. terrigena clinical isolate), 8 – T61 (K. terrigena clinical isolate), 9 – T3 (K. ornitholytica clinical isolate), 10 – T10 (K. ornitholytica clinical isolate), 11 – T16 (K. ornitholytica environmental isolate), 12 – T78 (K. pneumoniae clinical isolate), 13 – T80 (K. pneumoniae clinical isolate), 14 – T105 (K. pneumoniae clinical isolate).
Fig. 1 Gel electrophoresis for amplification of pehX gene using specific primers of *K. oxytoca*

In common with the findings of Liu *et al.* (2008), they found that *K. pneumoniae* failed to give this band in the PCR inclusion of the pehX primers. The pehX gene provided specific detection of *K. oxytoca* (Turton *et al.*, 2010). Our results agreed with Kovtunovych *et al.*, (2003) who demonstrated that an amplicon of pehX with 344 bp was obtained in all *K. oxytoca* strains. Moreover, they revealed that specific discrimination of *K. oxytoca* from other *Klebsiella* spp. is performed by amplification of a polygalaturonase (pehX) gene, which expressed to an enzyme has the ability to cleave a polygalacturonic chain of demethoxylated pectin. This is a unique capability for *K. oxytoca* amongst the *Klebsiella* spp. If a sequence coding for this specific enzyme is amplified with PCR, proper discrimination of *K. oxytoca* from other *Klebsiella* strains can be achieved (Kovtunovych and Kozyrovskia, 2000).

K. oxytoca, is closely related to *K. pneumoniae*. In biochemical differentiation, *K. oxytoca* and *K. pneumoniae* are only distinguished by a positive indole-reaction for *K. oxytoca* and a negative for *K. pneumoniae* (Chander *et al.*, 2011). Indole testing is also integrated in the 20 reactions in API 20E test. API testing remains a subjective testing method; therefore it was proposed that PCR is a more objective and reproducible detection method for *K. oxytoca* compared to API. PCR is an objective and well-accepted identification method of bacteria and other pathogens (Nucera *et al.*, 2006). It was created a PCR-based identification method for *K. oxytoca*, in order to identify this bacterial strain in a possibly even more sensitive and specific way than API 20E (Weberhofer, 2008). Park *et al.*, (2011) reported that biochemical test API had only one discriminatory test (IND), between *K. pneumoniae* and *K. oxytoca*. It is wholly dependent on the result of the indole test that may be mistake. Therefore, this dependency of biochemical and API on the indole test is
considered to be inappropriate to differentiate between the two species. Chander et al., (2011) recommended to use PCR technique for distinguish between K. pneumoniae and K. oxytoca using the PCR technique. Walckenaer et al., (2008) suggested that a pehX gene amplification could be distinguished K. oxytoca from K. pneumoniae; they used pehX primer which is specific for K. oxytoca, which might be reliable as routine protocol to follow in Iraqi public laboratories.

References

Weberhofer, P. 2008. The Role of Klebsiella oxytoca in Antibiotic-Associated Colitis: Comparison of Polymerase Chain Reaction as a New Detection Method for K. oxytoca to Conventional API 20E Testing. Ph.D. dissertation. University of Graz, College of Medical.

Zedan, T., Al-Jailawi, M. and Jassim, K. 2013. Determination of K1 and K2 capsular serotypes for Klebsiella pneumoniae using magA and k2A genes as specific molecular diagnosis tools. Int. J. of Biol. and Pharm. Res., 4(12): 1283-1288.

Kovtunovych, G., Lytvynenko, T., Negrutska, V., Lar, O., Brisse, S. and Kozyrovsk, N. 2003. Identification of Klebsiella oxytoca using a specific PCR assay targeting the polygalacturonase pehX gene. J. Res. in Microbiol, 154: 587-592.

Stojowska-Swędryńska, K. and Beata Krawczyk, B. 2016. A new assay for the simultaneous identification and differentiation of Klebsiella oxytoca strains. Appl. Microbiol. Biotechnol, 100(23): 10115-10123.

Ho, P., Chow, K., Lai, E., Lau, E. and Cheng, V. 2011. Extended-spectrum-beta-lactamase-positive Escherichia coli mainly adds to, rather than replaces, extended-spectrum-beta-lactamase-negative E. coli in causing bacteraemia in Hong Kong, 2000-2010. J. Antimicrob. Chemother, 67:778-780.

Han, S., Lee S., Lee S., Jeong D. and Kang J. 2015. Aminoglycoside therapy for childhood urinary tract infection due to extended-spectrum β-lactamase-producing Escherichia coli or Klebsiella pneumoniae. BMC Infect. Dis., 15:414. doi: 10.1186/s12879-015-1153-z.

Podschun, R. and Ullmann, U. 1998. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev., 11: 589-603.

Lowe, C., Willey, B., O’Shaughnessy, A., Lee, W., Lum, M., Pike, K., Larocque, C., Dedier, H., Dales, L., Moore, C., McGee, A. and the Mount Sinai Hospital Infection Control Team. 2012. Outbreak of Extended-Spectrum β–Lactamase-producing Klebsiella oxytoca Infections Associated with Contaminated Handwashing Sinks. Emerging infect. dis., 18(8): 1242-1247.

Goossens H., Izdebski R., Fiett J., Urbanowicz P., Baraniak A., Derde LP., Bonten MJ., Carmeli Y., Hryniewicz W., Brun-Buisson C., Brisse S., Gniadkowski M. MOSAR WP2, WP3 and WP5 study groups. 2015. Phylogenetic lineages, clones and β-lactamases in an international collection of Klebsiella oxytoca isolates non-susceptible to expanded-spectrum cephalosporins. J. Antimicrob Chemother., (70):3230-3237.

Bao, G., Zhang, Y., Du, C., Chen, Z., Li, Y., Cao, Z. and Ma, Y. 2013. Genome Sequence of Klebsiella oxytoca M5al, a Promising Strain for Nitrogen Fixation and Chemical Production. Genome Announc., 1(1): e00074-12.

Chander, Y., Ramakrishnan, M., Jindal, N., Hanson, K. and Goyal, S. 2011. Differentiation of Klebsiella pneumoniae and K. oxytoca by multiplex polymerase chain reaction. Int. J. Appl. Res. Vet. Med., 9(2): 138-142.

Fielding, C., Mnabisa, A., Gouws, P. and Morris, T. 2012. Antimicrobial-resistant Klebsiella species isolated from free-range chicken samples in an informal settlement. Arch. Med. Sci., 8(1): 39-42.
Brisse, S., Fevre, C., Passet, V., Issenhuth, J., Tournébize, R., Diancourt, L., Grimont, P. 2009. Virulent Clones of Klebsiella pneumoniae: Identification and Evolutionary Scenario Based on Genomic and Phenotypic Characterization. *J. PLoS ONE*, vol.4 (3):4982.

Abbott S. 2007. Klebsiella, Enterobacter, Citrobacter, Serratia, Plesiomonas, and other Enterobacteriaceae, In Murray PR Jr, et al., (ed), Manual of clinical microbiology, (9th ed.) ASM Press, Washington, DC, 698–715.

Park, J., Hong, K., Lee, H., Choi, S., Song, S., Song, K., Kim, H., Park, K., Song, J. and Kim, E. 2011. Evaluation of three phenotypic identification systems for clinical isolates of Raoultella ornithinolytica. *J. med. Microbiol*, 60:492-499.

Pan, Y., Fang, H., Yang, H., Lin, T., Hsieh, P., Tasi, F., Keynan, Y. and Wang, J. 2008. Capsular polysaccharide synthesis regions in Klebsiella pneumoniae serotype K57 and a new capsular serotype. *J. of Clin. Microbiol*, 46:22-2231.

Kline, K., Falkor, S., Dahlberg, S., Normark, S. and Henrieques-Normark, B. 2009. Bacterial adhesins in host-microbe interactions. *J. Cell. Host. Microbiol*, 5:580- 592.

Taha, S. 2013. In Vivo Antimicrobial Activity of Ethanol Extract of Sumac (*Rhus coriaria*) on Klebsiella pneumoniae. *British J. of Pharmacology and Toxicology*, 4(1): 1-4.

Green, M. and Sambrook, J. 2012. Molecular Cloning: A Laboratory Manual. 4th ed. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press.

Robinson, A., McCarter, Y. and Tetreault, J. 1995. Comparison of Crystal Enteric/Nonfermenter System, API 20E System, and VITEK Automicrobic System for Identification of Gram-Negative Bacilli. *J. of Clin. Microbiol*, 33(2): 364–370.

Liu, Y., Liu, C., Zheng, W., Zhang, X., Yu, J., Gao, Q., Hou, Y and Huang, X. 2008. PCR detection of Klebsiella pneumoniae in infant formula based on 16S-23S internal transcribed spacer. *Int. J. Food Microbiol*, 125(3):230-235.

Turton, J., Perry, C., Elgohari, S. and Hampton C. 2010. PCR characterization and typing of Klebsiella pneumoniae using capsular type-specific, variable number tandem repeat and virulence gene targets. *J. Med. Microbiol.*, 59: 541-547.

Kovtunowych, G. and Kozyrovska, L. 2000. Cloning and structural analysis of the Klebsiella oxytoca VN13 peh gene. *J. Biopolymers and Cell*, 16(5): 356-362.

Nucera, D., Maddox, C., Hoien-Dalen, P. and Weigel, R. 2006. Comparison of API 20E and invA PCR for identification of Salmonella enterica isolates from swine production units. *J. of Clin. Microbiol*, 44(9):3388-3390.

Walckenaer, E., Leflon-Guibout, V. and Nicolas-Chanoine, M. 2008. How to identify Raoultella spp. including R. ornithinolytica isolates negative for ornithine decarboxylase? The reliability of the chromosomal bla gene. *J. Microbiol. Methods*, 75: 405-410.

How to cite this article:

Tamara H. Zedan. 2017. Molecular Discrimination of Klebsiella oxytoca using Polymerase Chain Reaction Targeted Polygalacturonase (pehX) Gene. *Int.J.Curr.Microbiol.App.Sci.* 6(6): 2092-2098. doi: https://doi.org/10.20546/ijcmas.2017.606.248