Three combinatorial formulas for type A quiver polynomials and K-polynomials

Ryan Kinser ¹ Allen Knutson ² Jenna Rajchgot* ³

¹University of Iowa
²Cornell University
³University of Michigan

AMS Special Session on Modern Schubert Calculus
Rutgers University, Nov. 14-15, 2015
Type A quiver loci

- A **quiver** Q is a finite directed graph, and a **representation** of Q is an assignment of vector space to each vertex and linear map to each arrow.
- Q is of **type A** if its underlying graph is a type A Dynkin diagram.
- Once the vector spaces K^{d_0}, \ldots, K^{d_n} at the vertices are fixed, the collection of representations is an algebraic variety, denoted by $\text{rep}_Q(d)$. This variety carries the action of a **base change group**:

$$GL(d) := GL(d_0) \times GL(d_1) \times \cdots \times GL(d_n).$$

- These orbit closures are called **quiver loci**.

Example

A representation of an equioriented type A quiver:

$$K^{d_0} \xrightarrow{V_1} K^{d_1} \xrightarrow{V_2} K^{d_2} \cdots \xrightarrow{V_n} K^{d_n}.$$

Here, V_i is a $d_{i-1} \times d_i$ matrix, and $\text{rep}_Q(d)$ is the affine space of all sequences (V_1, \ldots, V_n). The base change group $GL(d)$ acts by:

$$(g_0, g_1, \ldots, g_{n-1}, g_n) \cdot (V_1, \ldots, V_n) = (g_0 V_1 g_1^{-1}, \ldots, g_{n-1} V_n g_n^{-1}).$$
The equioriented setting is well-understood. In particular:

- Orbits are determined by ranks of all products $V_i V_{i+1} \cdots V_j$, $i \leq j$.
- (Zelevinsky '85) The collection of these rank conditions is equivalent to certain Schubert-type rank conditions on an opposite Schubert cell in a partial flag variety. Eg. if Q has three arrows,

$$
(V_1, V_2, V_3) \xrightarrow{\zeta} \begin{bmatrix}
0 & 0 & V_1 & I_{d_0} \\
0 & V_2 & I_{d_1} & 0 \\
V_3 & I_{d_2} & 0 & 0 \\
I_{d_3} & 0 & 0 & 0
\end{bmatrix} \subseteq \begin{bmatrix}
* & * & * & I_{d_0} \\
* & * & I_{d_1} & 0 \\
* & I_{d_2} & 0 & 0 \\
I_{d_3} & 0 & 0 & 0
\end{bmatrix} \cong P \setminus PwB_–.
$$

This map ζ is an equioriented Zelevinsky map.

- (Lakshmibai-Magyar '98) The Zelevinsky map is scheme-theoretic isomorphism which takes each orbit closure to a Schubert variety intersected with an opposite Schubert cell. Consequently, these quiver loci are normal and Cohen-Macaulay with rational singularities, F-split...

- The coordinate rings of equioriented type A quiver loci are naturally multigraded, and there exist multiple combinatorial formulas for their multidegrees and K-polynomials.

Goal: Generalize to all orientations.
A type A quiver is **bipartite** if every vertex is a source or sink:

$$
\begin{align*}
&\quad \quad \ }$
\end{align*}
$$

$GL(d)$-orbits of bipartite type A quivers are completely determined by ranks of particular matrices: given an interval $[i, j] \subseteq Q$, define the matrix

$$
Z_{[i,j]} = \begin{pmatrix}
V_{i+2} & V_{i+1} \\
\vdots & \vdots \\
V_{j-2} & V_{j-1} & V_j \\
V_i & V_{i+1} & \cdots & V_{i+2}
\end{pmatrix}.
$$

Let $r_{[i,j]} := \text{rank } Z_{[i,j]}$, and let r be the array of all $r_{[i,j]}$. Then, two representations in $\text{rep}_Q(d)$ lie in the same $GL(d)$-orbit if and only if they have the same rank array r.
The bipartite Zelevinsky map

Theorem (Kinser-R)

- There is a closed immersion from each representation space of a bipartite type A quiver to an opposite Schubert cell of a partial flag variety.
- This bipartite Zelevinsky map identifies each quiver locus with a Schubert variety intersected with the above opposite Schubert cell.
- Consequently, quiver loci are normal and C-M with rational singularities, F-split, orbit closure containment is determined by Bruhat order.

Example

The image of \((V_1, V_2, V_3, V_4, V_5, V_6)\) under the bipartite Zelevinsky map is:

\[
\begin{pmatrix}
0 & 0 & V_1 & l_{d_0} & 0 & 0 & 0 & 0 \\
0 & V_3 & V_2 & 0 & l_{d_2} & 0 & 0 \\
V_5 & V_4 & 0 & 0 & 0 & l_{d_4} & 0 \\
V_6 & 0 & 0 & 0 & 0 & 0 & l_{d_6} \\
l_{d_1} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & l_{d_3} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & l_{d_5} & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\subseteq \begin{pmatrix} \ast & I \\ I & 0 \end{pmatrix} \cong P \backslash P v_0 B^-.
The maximal torus $T \subseteq \text{GL}(d)$ consisting of matrices which are diagonal in each factor induces a multigrading on $K[\text{rep}_Q(d)]$ which makes the ideals of orbit closures homogeneous:

$$
\begin{align*}
&y_3 &\beta_3 &\alpha_3 &y_2 &\beta_2 &\alpha_2 &y_1 &\beta_1 &\alpha_1 &y_0 \\
&x_3 & & &x_2 & & &x_1 & & &
\end{align*}
$$

Associate an alphabet s^j to the vertex x_j, and an alphabet t^i to the vertex y_i:

$$s^j = s^j_i, s^j_2, \ldots, s^j_{d(x_j)} \quad \text{and} \quad t^i = t^i_1, t^i_2, \ldots, t^i_{d(y_i)}.$$

The coordinate function $f^{\alpha_k}_{ij}$ (picking out (i,j)-entry of M_{α_k}) has degree $t^k_i - s^k_j$, and $f^{\beta_k}_{ij}$ has degree $t^k_i - s^k_j$.

With respect to the natural torus action on the opposite cell $[\begin{bmatrix} * & l_{dy} \\ l_{dx} & 0 \end{bmatrix}]$, the bipartite Zelevinsky map is T-equivariant.
The \textbf{K-theoretic quiver polynomial} $K\mathcal{Q}_r(t/s)$ (resp., \textbf{quiver polynomial} $\mathcal{Q}_r(t-s)$) is the K-polynomial (resp., multidegree) of the quiver locus Ω_r with respect to its embedding in $\text{rep}_Q(d)$ and multigrading above.

Let $A = (a_1, a_2, \ldots)$ and $B = (b_1, b_2, \ldots)$ be alphabets. Denote by $G_w(A; B)$ the \textbf{double Grothendieck polynomial} associated to w: if w_0 the longest element of the symmetric group S_m then

$$G_{w_0}(A; B) = \prod_{i+j \leq m} \left(1 - \frac{a_i}{b_j}\right),$$

and $G_{s_iw}(A; B) = \partial_i G_w(A; B)$ whenever $\ell(s_iw) < \ell(w)$.

The \textbf{double Schubert polynomial} $G_v(A; B)$ of a permutation v is obtained from $G_v(A; B)$ by substituting $1 - \star$ for each variable \star, and then taking lowest degree terms.
The bipartite ratio formulas

- Let r be an array of ranks that determines a bipartite quiver orbit.
- Let $\nu(r)$ be the associated Zelevinsky permutation.
- Let ν_* be the Zelevinsky permutation of the big $GL(d)$-orbit (which has closure $\text{rep}_Q(d)$).

Theorem (Kinser-Knutson-R)

$$K_{Q_r}(t/s) = \frac{\mathcal{G}_{\nu(r)}(t, s; s, t)}{\mathcal{G}_{\nu_*}(t, s; s, t)} \quad \text{and} \quad Q_r(t - s) = \frac{\mathcal{G}_{\nu(r)}(t, s; s, t)}{\mathcal{G}_{\nu_*}(t, s; s, t)}.$$

Main idea of proof.

Use the bipartite Zelevinsky map along with [Woo-Yong '12] on K-polynomials and multidegrees of Kazhdan-Lusztig varieties.
Pipe dreams and lacing diagrams

Consider the dimension vector \(\mathbf{d} = (2, 2, 2, 3, 2, 2, 1) \), so that representations have the form:

\[
\begin{align*}
K^2 & \xrightarrow{V_{\beta_3}} V_{\alpha_3} \\
K^2 & \xrightarrow{V_{\beta_2}} V_{\alpha_2} \\
K^3 & \xrightarrow{V_{\beta_1}} V_{\alpha_1}
\end{align*}
\]

Work with the orbit through:

\[
P = \left(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \right)
\]

This sequence of partial permutations can be visualized with a lacing diagram:
Pipe dreams and lacing diagrams

The Zelevinsky image of the associated quiver locus is a Kazhdan-Lusztig variety which has pipe dreams supported inside the diagram of \(v_0 \) (i.e. the northwest quadrant of \(\begin{bmatrix} * & l_{dy} \\ l_{dx} & 0 \end{bmatrix} \)). For example:

![Pipe Dreams Diagram](image)

Denote by \(\text{Pipes}(v_0, v(r)) \) all pipe dreams of \(v(r) \) supported inside the Rothe diagram for \(v_0 \). Let \(P_* \) be the pipe dream which has a + at position \((i, j)\) if and only if \((i, j)\) lies outside of the “zig-zag” region.

Lemma

Every element of \(\text{Pipes}(v_0, v(r)) \) contains \(P_ \) as a subdiagram, and furthermore \(\text{Pipes}(v_0, v_*) = \{ P_* \} \).*
Theorem (Bipartite Pipe formula, Kinser-Knutson-R)

For any rank array r, we have

$$KQ_r(t/s) = \sum_{P \in \text{Pipes}(v_0, v(r))} (-1)^{|P|-l(v(r))} (1 - t/s)^{P \setminus P^*}$$

and

$$Q_r(t - s) = \sum_{P \in \text{RedPipes}(v_0, v(r))} (t - s)^{P \setminus P^*}.$$

Theorem (Bipartite component formula, Buch-Rimányi, Kinser-Knutson-R)

$$KQ_r(t/s) = \sum_{w \in KW(r)} (-1)^{|w|-l(v(r))} \mathcal{G}_w(t, s)$$

and

$$Q_r(t - s) = \sum_{w \in W(r)} \mathcal{G}_w(t, s).$$
From the bipartite orientation to arbitrary orientation

Associate a bipartite type A quiver to an arbitrarily oriented quiver by inserting vertices and arrows. Let Q be the quiver:

We construct an associated bipartite quiver \tilde{Q} by adding two new vertices w_1, w_3, and two new arrows δ_1, δ_3.
Theorem (Kinser-R)

Let Q be a quiver of type A, and \widetilde{Q} the associated bipartite quiver defined above. Let U be the open set in $\text{rep}_{\widetilde{Q}}(d)$ where the maps over the added arrows are invertible. Then there is a morphism $\pi: U \rightarrow \text{rep}_{Q}(d)$ which is equivariant with respect to the natural projection of base change groups $GL(\widetilde{d}) \rightarrow GL(d)$. Each orbit closure $\overline{O} \subseteq \text{rep}_{Q}(d)$ for an arbitrary type A quiver is isomorphic to an open subset of an orbit closure of $\text{rep}_{\widetilde{Q}}(\widetilde{d})$, up to a smooth factor. Namely, we have

$$\overline{\pi^{-1}(O)} \cong G^* \times \overline{O},$$

where the closure on the left hand side is taken in U.
Substitution to obtain formulas for arbitrary orientation

We can show that the K-polynomial of an orbit closure for Q is obtained from the K-polynomial of its corresponding orbit closure for \tilde{Q} by substitution of variables.
Thank you.