Disproof of the List Hadwiger Conjecture

János Barát† Gwenaël Joret‡ David R. Wood§

November 2, 2018

Abstract

The List Hadwiger Conjecture asserts that every K_t-minor-free graph is t-choosable. We disprove this conjecture by constructing a K_{3t+2}-minor-free graph that is not $4t$-choosable for every integer $t \geq 1$.

1 Introduction

In 1943, Hadwiger [6] made the following conjecture, which is widely considered to be one of the most important open problems in graph theory; see [26] for a survey\(^1\).

Hadwiger Conjecture. Every K_t-minor-free graph is $(t-1)$-colourable.

The Hadwiger Conjecture holds for $t \leq 6$ (see [3, 6, 17, 18, 28]) and is open for $t \geq 7$. In fact, the following more general conjecture is open.

Weak Hadwiger Conjecture. Every K_t-minor-free graph is ct-colourable for some constant $c \geq 1$.

It is natural to consider analogous conjectures for list colourings\(^2\). First, consider the

\(^1\)MSC: graph minors 05C83, graph coloring 05C15

\(^2\)A list-assignment of a graph G is a function L that assigns to each vertex v of G a set $L(v)$ of colours. G is L-colourable if there is a colouring of G such that the colour assigned to each vertex v is in $L(v)$. G is k-choosable if G is L-colourable for every list-assignment L with $|L(v)| \geq k$ for each vertex v of G. The choice number of G is the minimum integer k such that G is k-choosable. If G is k-choosable then G is also k-colourable—just use the same set of k colours for each vertex. Thus the choice number of G is at least the chromatic number of G. See [32] for a survey on list colouring.

choosability of planar graphs. Erdős et al. [5] conjectured that some planar graph is not 4-choosable, and that every planar graph is 5-choosable. The first conjecture was verified by Voigt [27] and the second by Thomassen [25]. Incidentally, Borowiecki [1] asked whether every K_t-minor-free graph is $(t-1)$-choosable, which is true for $t \leq 4$ but false for $t = 5$ by Voigt’s example. The following natural conjecture arises (see [10, 30]).

List Hadwiger Conjecture. Every K_t-minor-free graph is t-choosable.

The List Hadwiger Conjecture holds for $t \leq 5$ (see [7, 20, 31]). Again the following more general conjecture is open.

Weak List Hadwiger Conjecture. Every K_t-minor-free graph is ct-choosable for some constant $c \geq 1$.

In this paper we disprove the List Hadwiger Conjecture for $t \geq 8$, and prove that $c \geq 4/3$ in the Weak List Hadwiger Conjecture.

Theorem 1. For every integer $t \geq 1$,

(a) there is a K_{3t+2}-minor-free graph that is not $4t$-choosable.

(b) there is a K_{3t+1}-minor-free graph that is not $(4t-2)$-choosable,

(c) there is a K_{3t}-minor-free graph that is not $(4t-3)$-choosable.

Before proving Theorem 1, note that adding a dominant vertex to a graph does not necessarily increase the choice number (as it does for the chromatic number). For example, $K_{3,3}$ is 3-choosable but not 2-choosable. Adding one dominant vertex to $K_{3,3}$ gives $K_{1,3,3}$, which again is 3-choosable [16]. In fact, this property holds for infinitely many complete bipartite graphs [16]; also see [19].

2 Proof of Theorem 1

Let G_1 and G_2 be graphs, and let S_i be a k-clique in each G_i. Let G be a graph obtained from the disjoint union of G_1 and G_2 by pairing the vertices in S_1 and S_2 and identifying each pair. Then G is said to be obtained by *pasting* G_1 and G_2 on S_1 and S_2. The following lemma is well known.

Lemma 2. Let G_1 and G_2 be K_t-minor-free graphs. Let S_i be a k-clique in each G_i. Let G be a pasting of G_1 and G_2 on S_1 and S_2. Then G is K_t-minor-free.

Proof. Suppose on the contrary that K_{t+1} is a minor of G. Let X_1, \ldots, X_{t+1} be the corresponding branch sets. If some X_i does not intersect G_1 and some X_j does not intersect G_2, then no edge joins X_i and X_j, which is a contradiction. Thus, without loss of generality, each X_i intersects G_1. Let $X'_i := G_1[X_i]$. Since S_1 is a clique, X'_i is connected. Thus X'_1, \ldots, X'_{t+1} are the branch sets of a K_{t+1}-minor in G_1. This contradiction proves that G is K_t-minor-free.

Let $K_{r \times 2}$ be the complete r-partite graph with r colour classes of size 2. Let $K_{1, r \times 2}$ be the complete $(r + 1)$-partite graph with r colour classes of size 2 and one colour class of size 1. That is, $K_{r \times 2}$ and $K_{1, r \times 2}$ are respectively obtained from K_{2r} and K_{2r+1} by deleting a matching of r edges. The following lemma will be useful.

Lemma 3 ([8, 29]). $K_{r \times 2}$ is $K_{3r/2+1}$-minor-free, and $K_{1, r \times 2}$ is $K_{3r/2+2}$-minor-free.

Proof of Theorem 1. Our goal is to construct a K_p-minor-free graph and a non-achievable list assignment with q colours per vertex, where the integers p, q and r and a graph H are defined in the following table. Let $\{v_1w_1, \ldots, v_rw_r\}$ be the deleted matching in H. By Lemma 3, the calculation in the table shows that H is K_p-minor-free.

case	p	q	r	H
(a)	$3t+2$	$4t$	$2t+1$	$K_{r \times 2}$ $\lfloor \frac{3r}{2} \rfloor + 1 = 3t + 2 = p$
(b)	$3t+1$	$4t-2$	$2t$	$K_{r \times 2}$ $\lfloor \frac{3r}{2} \rfloor + 1 = 3t + 1 = p$
(c)	$3t$	$4t-3$	$2t-1$	$K_{1, r \times 2}$ $\lfloor \frac{3r}{2} \rfloor + 2 = 3t = p$

For each vector $(c_1, \ldots, c_r) \in [1, q]^r$, let $H(c_1, \ldots, c_r)$ be a copy of H with the following list assignment. For each $i \in [1, r]$, let $L(w_i) := [1, q + 1] \setminus \{c_i\}$. Let $L(u) := [1, q]$ for each remaining vertex u. There are $q + 1$ colours in total, and $|V(H)| = q + 2$. Thus in every L-colouring of H, two non-adjacent vertices receive the same colour. That is, $\text{col}(v_i) = \text{col}(w_i)$ for some $i \in [1, r]$. Since each $c_i \not\in L(w_i)$, it is not the case that each vertex v_i is coloured c_i.

Let G be the graph obtained by pasting all the graphs $H(c_1, \ldots, c_r)$, where $(c_1, \ldots, c_r) \in [1, q]^r$, on the clique $\{v_1, \ldots, v_r\}$. The list assignment L is well defined for G since $L(v_i) = [1, q]$. By Lemma 2, G is K_p-minor-free. Suppose that G is L-colourable. Let c_i be the colour assigned to each vertex v_i. Thus $c_i \in L(v_i) = [1, q]$. Hence, as proved above, the copy $H(c_1, \ldots, c_r)$ is not L-colourable. This contradiction proves that G is not L-colourable. Each vertex of G has a list of q colours in L. Therefore G is not q-choosable. (It is easily seen that G is q-degenerate\(^3\), implying G is $(q+1)$-choosable.)

Note that this proof was inspired by the construction of a non-4-choosable planar graph by Mirzakhani [15].

3 Conclusion

Theorem 1 disproves the List Hadwiger Conjecture. However, list colourings remain a viable approach for attacking Hadwiger’s Conjecture. Indeed, list colourings provide potential routes around some of the known obstacles, such as large minimum degree, and lack of exact structure theorems; see [10, 11, 30, 31].

\(^3\)A graph is d-degenerate if every subgraph has minimum degree at most d. Clearly every d-degenerate graph is $(d + 1)$-choosable.
The following table gives the best known lower and upper bounds on the maximum choice number of K_t-minor-free graphs. Each lower bound is a special case of Theorem 1. Each upper bound (except $t = 5$) follows from the following degeneracy results. Every K_3-minor-free graph (that is, every forest) is 1-degenerate. Dirac [4] proved that every K_4-minor-free graph is 2-degenerate. Mader [14] proved that for $t \leq 7$, every K_t-minor-free graph is $(2t - 5)$-degenerate. Jørgensen [9] and Song and Thomas [21] proved the same result for $t = 8$ and $t = 9$ respectively. Song [22] proved that every K_{10}-minor-free graph is 21-degenerate, and that every K_{11}-minor-free graph is 25-degenerate. In general, Kostochka [12, 13] and Thomason [23, 24] independently proved that every K_t-minor-free graph is $O(t \sqrt{\log t})$-degenerate.

t	3	4	5	6	7	8	9	10	11	⋯	t
lower bound	2	3	5	6	7	9	10	11	13	⋯	$\frac{4}{3}t - c$
upper bound	2	3	5	8	10	12	14	22	26	⋯	$O(t \sqrt{\log t})$

The following immediate open problems arise:

- Is every K_6-minor-free graph 7-choosable?
- Is every K_6-minor-free graph 6-degenerate?
- Is every K_6-minor-free graph 6-choosable?

Acknowledgements

Thanks to Louis Esperet for stimulating discussions.

References

[1] Mieczyslaw Borowiecki. Research problem 172. *Discrete Math.*, 121:235–236, 1993. doi: 10.1016/0012-365X(93)90557-A.

[2] Reinhard Diestel. *Graph theory*, vol. 173 of *Graduate Texts in Mathematics*. Springer, 4th edn., 2010. http://diestel-graph-theory.com/. MR: 2744811.

[3] Gabriel A. Dirac. A property of 4-chromatic graphs and some remarks on critical graphs. *J. London Math. Soc.*, 27:85–92, 1952. doi: 10.1112/jlms/s1-27.1.85. MR: 0045371.

[4] Gabriel A. Dirac. Homomorphism theorems for graphs. *Math. Ann.*, 153:69–80, 1964. doi: 10.1007/BF01361708. MR: 0160203.

[5] Paul Erdős, Arthur L. Rubin, and Herbert Taylor. Choosability in graphs. In *Proc. West Coast Conference on Combinatorics, Graph Theory and Computing*, vol. XXVI of *Congress. Numer.*, pp. 125–157. Utilitas Math., 1980. http://www.renyi.hu/~p_erdos/1980-07.pdf. MR: 593902.
[6] Hugo Hadwiger. Über eine Klassifikation der Streckenkomplexe. *Vierteljschr. Naturforsch. Ges. Zürich*, 88:133–142, 1943. MR: 0012237.

[7] Wenjie He, Wenjing Miao, and Yufa Shen. Another proof of the 5-choosability of K_5-minor-free graphs. *Discrete Math.*, 308(17):4024–4026, 2008. doi: 10.1016/j.disc.2007.07.089. MR: 2418108.

[8] Jaroslav Ivančo. Some results on the Hadwiger numbers of graphs. *Math. Slovaca*, 38(3):221–226, 1988. MR: 977899.

[9] Leif K. Jørgensen. Contractions to K_8. *J. Graph Theory*, 18(5):431–448, 1994. doi: 10.1002/jgt.3190180502. MR: 1283309.

[10] Ken-ichi Kawarabayashi and Bojan Mohar. A relaxed Hadwiger’s conjecture for list colorings. *J. Combin. Theory Ser. B*, 97(4):647–651, 2007. doi: 10.1016/j.jctb.2006.11.002. MR: 2325803.

[11] Ken-ichi Kawarabayashi and Bruce Reed. Hadwiger’s conjecture is decidable. In *Proc. 41st Annual ACM Symposium on Theory of Computing* (STOC ’09), pp. 445–454. ACM, 2009. doi: 10.1145/1536414.1536476.

[12] Alexandr V. Kostochka. The minimum Hadwiger number for graphs with a given mean degree of vertices. *Metody Diskret. Analiz.*, 38:37–58, 1982. MR: 0713722.

[13] Alexandr V. Kostochka. Lower bound of the Hadwiger number of graphs by their average degree. *Combinatorica*, 4(4):307–316, 1984. doi: 10.1007/BF02579141. MR: 0779891.

[14] Wolfgang Mader. Homomorphiesätze für Graphen. *Math. Ann.*, 178:154–168, 1968. doi: 10.1007/BF01350657. MR: 0229550.

[15] Maryam Mirzakhani. A small non-4-choosable planar graph. *Bull. Inst. Combin. Appl.*, 17:15–18, 1996. MR: 1386951.

[16] Kyoji Ohba. Choice number of complete multipartite graphs with part size at most three. *Ars Combin.*, 72:133–139, 2004. MR: 2069052.

[17] Neil Robertson, Daniel P. Sanders, Paul D. Seymour, and Robin Thomas. The four-colour theorem. *J. Combin. Theory Ser. B*, 70(1):2–44, 1997. doi: 10.1006/jctb.1997.1750. MR: 1441258.

[18] Neil Robertson, Paul D. Seymour, and Robin Thomas. Hadwiger’s conjecture for K_6-free graphs. *Combinatorica*, 13(3):279–361, 1993. doi: 10.1007/BF01202354. MR: 1238823.
19] YUFU SHEN, WENJIE HE, GUOPING ZHENG, YANNING WANG, AND LINGMIN ZHANG. On choosability of some complete multipartite graphs and Ohba’s conjecture. *Discrete Math.*, 308(1):136–143, 2008. doi: 10.1016/j.disc.2007.03.059. MR: 2370527.

20] RISTE ŠKREKOVSKI. Choosability of K_5-minor-free graphs. *Discrete Math.*, 190(1–3):223–226, 1998. doi: 10.1016/S0012-365X(98)00158-7. MR: 1639710.

21] ZI-XIA SONG AND ROBIN THOMAS. The extremal function for K_9 minors. *J. Combin. Theory Ser. B*, 96(2):240–252, 2006. doi: 10.1016/j.jctb.2005.07.008. MR: 2208353.

22] ZIXIA SONG. *Extremal Functions for Contractions of Graphs*. Ph.D. thesis, Georgia Institute of Technology, USA, 2004. CiteSeer: 10.1.1.92.1275. MR: 2706190.

23] ANDREW THOMASON. An extremal function for contractions of graphs. *Math. Proc. Cambridge Philos. Soc.*, 95(2):261–265, 1984. doi: 10.1017/S0305004100061521. MR: 0735367.

24] ANDREW THOMASON. The extremal function for complete minors. *J. Combin. Theory Ser. B*, 81(2):318–338, 2001. doi: 10.1006/jctb.2000.2013. MR: 1814910.

25] CARSTEN THOMASSEN. Every planar graph is 5-choosable. *J. Combin. Theory Ser. B*, 62(1):180–181, 1994. doi: 10.1006/jctb.1994.1062. MR: 1290638.

26] BIJARNE TOFT. A survey of Hadwiger’s conjecture. *Congr. Numer.*, 115:249–283, 1996. MR: 1411244.

27] MARGIT VOIGT. List colourings of planar graphs. *Discrete Math.*, 120(1-3):215–219, 1993. doi: 10.1016/0012-365X(93)90579-I. MR: 1235909.

28] KLAUS WAGNER. Über eine Eigenschaft der ebene Komplexe. *Math. Ann.*, 114:570–590, 1937. doi: 10.1007/BF01594196. MR: 1513158.

29] DAVID R. WOOD. On the maximum number of cliques in a graph. *Graphs Combin.*, 23(3):337–352, 2007. doi: 10.1007/s00373-007-0738-8. MR: 2320588.

30] DAVID R. WOOD. Contractibility and the Hadwiger conjecture. *European J. Combin.*, 31(8):2102–2109, 2010. doi: 10.1016/j.ejc.2010.05.015. MR: 2718284.

31] DAVID R. WOOD AND SVANTE LINUSON. Thomassen’s choosability argument revisited. *SIAM J. Discrete Math.*, 24(4):1632–1637, 2010. doi: 10.1137/100796649. MR: 2746713.

32] DOUGLAS R. WOODALL. List colourings of graphs. In *Surveys in combinatorics*, vol. 288 of *London Math. Soc. Lecture Note Ser.*, pp. 269–301. Cambridge Univ. Press, 2001. MR: 1850711.