Delineation of flash flood hazard zones based on morphometric parameters using GIS technique in upper Lematang sub-watershed

A Dinata, F Dhiniati and L E Diansari

Civil Engineering Study Program, College of Technology Pagaralam, 75 Masik Siagim Street – 31521, Pagar Alam City, South Sumatera, Indonesia

Corresponding author: alhariadinata@yahoo.co.id

Abstract. The hilly and mountainous topography with high annual rainfall triggered a flash flood in the upper Lematang sub-watershed. The impact caused not only damaged infrastructure, agriculture land, and even fatalities. This research aimed to conduct flash flood hazard zoning based on morphometric parameters using the GIS technique. By extracting the DEM data, it is generated to a slope map, flow direction, flow accumulation, stream order, and watershed boundary. The data were then evaluated to obtain the morphometric parameters. Parameters analyzed using the PCA approach to get the correlation between parameters related to flash flood hazards. Of the 12 parameters, the KMO value is 0.66, and a significant level is 0.001 <0.05 with a sufficient level of intercorrelation. The result of PCA analysis, two factors were obtained with an eigenvalue > 1, and the cumulative percentage of the two factors was able to explain data variations of 87.49%. Finally, using 12 parameters, the upper Lematang sub-watershed area had 48.79% very-high hazard zones of a flash flood, 16.48% high zones, 20.28% moderate zones, and 0.97% low zones, and 13.48% very-low zones. The results of this study can be used in mitigation activities as well as for integrated watershed management.

1. Introduction

The occurrence of a flash flood was a natural phenomenon that occurred in many parts of the worldwide. It was also one of the threats to human safety, damaging the environment and the infrastructure in its path [1]. The definition of a flash flood was the sudden release of large volumes of water because the soil was saturated with water for a short time in minutes to several hours, accompanied by the heavy rain [2].

Analysis of watershed morphometric is measured watershed parameters, including linear aspects, area, and relief, to facilitate the understanding of the geomorphological characteristics, hydrological conditions in responding to climate change, and land-use [3–6].

Utilizing Geographic Information System (GIS) was a helpful tool in evaluating watershed morphometric parameters. Flash flood hazard zonation mapping was necessary for disaster mitigation activities and watershed management information. PCA is a Measure of Sampling Adequacy (MSA) method which is widely used in studies of hydrology, geomorphology and watershed management [7–9]. Thus, this research focused on the flash flood hazard zoning by evaluating morphometric parameters using GIS techniques in the upper Lematang sub-watershed with Principal Component Analysis (PCA) approach.
2. Material and methods

2.1. Study area
Based on hydrologic conditions, the study area was in the upper Lematang sub-watershed with 4,008.9 km². It was a watershed part of the Musi river basin and based on geographic conditions located between 30°30'33.06" S – 40°22'33.37" S and between 103°00'58.48" E - 103°05'53.97" (Figure 1).

![Figure 1. Study area](image)

2.2. Data
This study's data use topographic data on a scale of 1: 50,000 sourced from the Geospatial Information Agency (BIG), Indonesia. The topographic map was created DEM data with a pixel size 25m x 25m processed using the DEM hydro-processing tool in software ILWIS 3.3. Further, the data DEM was generated into slope data, flow direction, flow accumulation, stream order, and sub-watershed boundaries. To obtain the morphometric parameters, including linear aspects, area aspects, and relief aspects, the using equations were calculated, as shown in (Table 1).

Tabel 1. Morphometric parameters equations from linear aspects, areal aspects, and relief aspects

No	Morphometric parameters	Formula	Source
1	Stream order (U)	Hierarchical rank (analysis by software ILWIS 3.3)	[10]
2	Stream number (Nu)	Nu= N1+ N2+...+Nn	[10]
3	Stream length (Lu)	Lu= L1+ L2+...+Ln (km)	[10]
4	Bifurcation ratio (Rb)	Rb= Nu/Nu+1	[10]
5	Mean bifurcation ratio (Rbm)	Rbm = average of bifurcation ratios of all orders	
6	Length of overland flow (Lo)	Lo= 1/2 D2d	[11]
7	Basin Length (Lb)	Lb=1.312(A)0.568	[12]
8	Main river length (Lrm)	Analysis by software ILWIS 3.3 (km)	
9	Area (A)	Analysis by software ILWIS 3.3 (km2)	
10	Perimeter (P)	Analysis by software ILWIS 3.3 (km)	
11	Drainage density (Dd)	Dd= Lb/A (km/km2)	[11,13]
12	Drainage texture (Dt)	Dt= Nu/P	[11]
13	Stream frequency (Fs)	Fs= Nu/A	[11,13]
14	Elongation ratio (Re)	Re=1.128 √A/Lb	[12]
15	Basin relief (R)	R=H-h Where, H= The maximum height in each sub-watershed, h= The Minimum height in each sub-watershed	[14]
16	Relief ratio (Rr)	Rr= H/Lb	[12]
17	Ruggedness number (Rn)	Rn= Dd(R/1000)	[15]

2.3. Principal component analysis (PCA)

PCA was statistical analysis used to reduce a set of variables by declaring the origin variable as a linear combination of factors so that the factors were able to explain the variance of data explained by the originating variable [8,16]. The general form of the equation was.

\[Z_{ij} = b_1 f_{2j} + b_2 f_{2j} + b_3 f_{3j} + ... b_m f_{mj} + e_{ij} \] (1)

Z was the measured variable, b was the loading factor, f was the score factor, i was the number factor, j was the number of data samples, m was the total number of variables, and e was residual. Of the 18 morphometric parameters were evaluated, 16 parameters were used in factor analysis to identify the structure of the parameters that form it and saw the most significant factors as characteristic hydrologic conditions in each sub-watershed. The data is then interpreted using the Kaiser Mayer Olkin (KMO) correlation matrix. The criteria of KMO score were 0.90s (very good), the 0.80s (good), the 0.70s (good enough), the 0.60s (enough), the 0.50s (very bad), and < the 0.50s (The analysis could not be continued) [17]. Subsequent testing with Barlett’s Test of Sphericity method saw the value of the significance level of < 0.05 [18]. The next step was to factor the parameters to extract the main factor using an eigenvalue > 1 [17]. All stages of the analysis performed using the Jamovi 1.2.22 application.

2.4. Flash flood hazard zonation

In this research, the parameter used was based on the PCA analysis result by show the parameters' correlation values. Zoning of flash flood hazard used a scale of 1 – 5 for all sub-watershed morphometric parameters. The scale values were summed in each sub-watershed and ranked into five flash flood hazard zones (Very high, high, moderate, low, and very low).

3. Result and discussion

3.1. Morphometric parameters of upper Lematang sub-watershed

The maximum height of the upper Lematang sub-watershed with a value of 2,825 masl in the Dempo mountain region, and the minimum height was 36.1 masl. The results of DEM data extraction using
ILWIS 3.3 software obtained slope maps, which are mostly dominated by slope with a flat class with a percentage of 45.51% with a steep level - a very steep total of 22.59%. The flow direction is dominated to the north direction (360°) with 20.15%, and the east direction (90°) percentage of 20.53%. Stream orders consisted of orders 1-6 with a total stream number of 679, and delineation results are obtained 15 sub-watersheds, as shown in (Figure 2).

![Figure 2](image-url)

Figure 2. (a) DEM map, (b) Slope in percent map, (c) Aspects map, and (d) stream orders map

3.1.1. Linear aspects. The calculation results (Table 2). Stream orders \((U)\) is a hierarchical rank [10]. The stream orders of the upper Lematang sub-watershed consisted of order 1 - 6. Stream number \((Nu)\) was the number of stream orders in each sub-watershed. The values of \(Nu\) ranged from 3 - 125. Stream length \((Lu)\) was the total stream length of all orders in each sub-watershed. The values of \(Lu\) ranged from 20.13 km - 501.94 km. Bifurcation ratio \((Rb)\) was a value determined based on each order's
number of river paths. The higher the Rb value, the region had a rock layer with steep slopes and the distance between narrow valleys bounded by steep walls [10]. The mean bifurcation ratio (Rbm) was the average value of Rb. There were 13 sub-watersheds with the Rbm value < 3, which indicated that the increase in flood water was fast, and the decline was slow. The Rbm values range 3 - 5 were found in SW8 and SW11, which meant the rising and falling water level was not too fast. The length of overland flow (Lof) in each sub-watershed was low. The values of Lof 0.26 – 0.46 except SW10 with the value 1.11. That caused the flow increasingly towards the channel, thus potentially for flash floods. The basin length (Lb) was the maximum length of the watershed or sub-watershed measured parallel to the main river. The value of the fifteenth Lb of the sub-watershed ranged from 4.58 - 58.50.

Table 2. Linear aspects

Sub-watershed	Morphometric parameters				
	Nu	Lu	Rbm	Lof	Lb
SW1	21.00	92.37	1.10	0.27	24.54
SW2	19.00	85.43	1.72	0.26	24.03
SW3	65.00	279.94	2.00	0.34	39.95
SW4	93.00	311.37	2.84	0.30	45.46
SW5	51.00	213.08	1.67	0.36	33.39
SW6	63.00	227.15	2.18	0.32	36.74
SW7	33.00	147.46	2.37	0.37	26.52
SW8	61.00	200.14	3.47	0.43	28.96
SW9	29.00	103.80	1.61	0.41	20.63
SW10	3.00	20.13	2.00	1.11	4.58
SW11	67.00	267.89	4.37	0.28	44.07
SW12	23.00	76.64	2.11	0.26	22.13
SW13	125.00	501.94	2.20	0.31	58.50
SW14	13.00	35.93	1.34	0.46	10.48
SW15	13.00	42.40	1.13	0.38	12.80

3.1.2. Areal aspects. Calculation results (Table 3). Area (A) was an area, and perimeter (P) was a perimeter of sub-watershed. The DEM analysis results, 15 sub-watersheds were obtained with an area ranging from 9.03 km2 – 800.84 km2, and a perimeter was ranging 14.48 km – 199.11 km. Drainage density (Dd) was the ratio between the total river length of each order to the sub-watershed area. The higher the river's density, the more water was accommodated in the river [11,13]. The ratio of Dd in each sub-watershed was between 0.51 - 0.93. The value of Dd for all sub-watersheds classified as low except SW10 with a moderate density level of 2.23. It indicated the condition of subsurface materials was waterproof, dense vegetation and mountainous relief. Stream frequency (Fs) was the number of river segments in all orders in a watershed divided by the watershed [13]. The value of Fs in each sub-watershed was low. It indicates that low permeability, low infiltration capacity, and water-resistant rocks, so that surface flow becomes high in each sub-watershed. Drainage texture (Dt) and drainage texture ratio (Rt) were crucial in the morphometric analysis and the value of it in each sub-watershed depending on lithology, infiltration capacity, and relief aspects [19]. A high Rt value indicated the potential for erosion hazard and high surface runoff. The value of Rt in sub-watersheds was low < 1, it indicated that the amount of erosion and surface runoff was small. The elongation ratio (Re) was a sub-watershed form factor obtained from the elongation ratio, which was defined as the ratio of the diameter of a circle with the same area as the length of the sub-watershed. For various types of climate and geology, The value of Re generally ranging from 0.6 - 1.0. It was typical for values close to 1 that the sub-basin had very low relief, while the values of 0.6 - 1.0 had the mountain ridges and hills with steep slopes [10]. The value of Re on each sub-watershed ranged from 0.55 - 0.74, and it indicated that the sub-watershed has mountainous relief and hills with steep slopes.
Table 3. Areal aspects

Sub-watershed	Morphometric parameters						
	A	P	Dd	Dt	Rt	Fs	Re
SW1	173.57	88.58	0.53	0.06	0.24	0.12	0.61
SW2	167.18	89.66	0.51	0.06	0.21	0.11	0.61
SW3	409.19	98.17	0.68	0.11	0.66	0.16	0.57
SW4	513.72	149.02	0.61	0.11	0.62	0.18	0.56
SW5	298.41	107.67	0.71	0.12	0.47	0.17	0.58
SW6	353.09	117.44	0.64	0.11	0.54	0.18	0.58
SW7	198.86	83.10	0.74	0.12	0.40	0.17	0.60
SW8	232.29	93.55	0.86	0.23	0.65	0.26	0.59
SW9	127.81	98.56	0.81	0.18	0.39	0.23	0.62
SW10	9.03	14.48	2.23	0.74	0.21	0.33	0.74
SW11	486.36	148.63	0.55	0.08	0.45	0.14	0.56
SW12	144.63	69.22	0.53	0.08	0.33	0.16	0.61
SW13	800.84	193.11	0.63	0.10	0.65	0.16	0.55
SW14	38.79	50.31	0.93	0.31	0.26	0.34	0.67
SW15	55.15	42.83	0.77	0.18	0.30	0.24	0.65

3.1.3. Relief aspects. Basin relief (R) was the height difference between the maximum and minimum heights. R-value of the fifteenth sub-watersheds ranged from 59 masl - 2457.1 masl. Relief ratio (Rr) was the ratio of R to sub-watershed length [12]. The value of Rr ranged from 3.53 – 98.19. The Ruggedness number (Rn) of the fifteenth sub-watersheds ranged from 0.04 – 1.76. The high Rn value indicated the terrain structure’s complexity associated with watershed relief and drainage density, which showed that the sub-watershed is vulnerable to erosion [8].

Table 4. Relief aspects

Sub-watershed	Morphometric parameters		
	R	Rr	Rn
SW1	131.40	5.35	0.07
SW2	300.00	12.49	0.15
SW3	2102.00	52.62	1.44
SW4	2325.50	51.15	1.41
SW5	2307.10	69.09	1.65
SW6	2457.10	66.88	1.58
SW7	1941.70	73.23	1.44
SW8	2041.70	70.49	1.76
SW9	2025.50	98.19	1.64
SW10	202.00	44.10	0.45
SW11	1178.70	30.40	1.11
SW12	78.20	3.53	0.05
SW13	1778.20	50.31	0.93
SW14	55.15	42.83	0.77
SW15	63.80	4.99	0.05

3.2. Factor analysis (FA)

3.2.1. Correlation matrix. Before conducting stage analysis of the FA, the parameters were analyzed using the Pearson correlation matrix to make it easier to understand the correlation between
morphometric parameters. Based on the value of the correlation coefficient (r^2) if, $r^2 > 0.9$ meant the parameter had a strong correlation, $r^2 > 0.75$ good correlation, $r^2 > 0.6$ moderate correlation, and $r^2 < 0.5$ bad correlation [8]. The results of the analysis of the relationship between parameters (Table 5). Area (A) correlated strongly with Nu, Lu, and Lb and correlates well with parameter Rt and Re. Nu correlated strongly with Lu and Lb and correlated well with Rt and Re. Lu correlated strongly with Rt and Re. Lb correlated strongly with Re. Parameter of RL and Rbm had a bad correlation to all parameters. Lof correlated strongly with Dd and Dt and correlated well with Fs and Re. Dd correlated strongly with Dt and correlated well with Fs and Re. Rt correlated well with R. Fs correlated well with Re. The value of inverse correlation (-) meant an increase in the value of a parameter made the value of other parameters to decrease and vice versa. While the direct correlation (+) meant an increase in the parameter's value, it made other parameters increase in the correlated parameters.

Table 5. Correlation matrix of 15 morphometric parameters

	A	Nu	Lu	RL	Rbm	Lof	Lb	Dd	Dt	Rt	Fs	Re	R	Rr	Rn
A	1.00														
Nu	0.97	1.00													
Lu	0.99	0.99	1.00												
RL	0.05	0.03	0.00	1.00											
Rbm	0.47	0.50	0.47	0.43	1.00										
Lof	-0.42	-0.38	-0.37	-0.12	-0.09	1.00									
Lb	0.98	0.95	0.96	0.06	0.50	-0.55	1.00								
Dd	-0.42	-0.38	-0.37	-0.12	-0.09	1.00	-0.55	1.00							
Dt	-0.47	-0.41	-0.42	-0.09	-0.10	0.99	-0.60	0.99	1.00						
Rt	0.78	0.88	0.85	-0.10	-0.52	-0.31	0.81	-0.31	-0.34	1.00					
Fs	-0.51	-0.37	-0.43	0.00	-0.14	0.75	-0.62	0.75	0.83	-0.22	1.00				
Re	-0.81	-0.80	-0.80	-0.09	-0.42	0.81	-0.91	0.81	0.85	-0.73	0.76	1.00			
R	0.58	0.69	0.67	0.01	0.39	-0.23	0.65	-0.23	-0.29	0.78	-0.21	-0.65	1.00		
Rr	0.14	0.27	0.26	0.13	0.24	0.14	0.20	0.14	0.08	0.41	0.09	-0.22	0.84	1.00	
Rn	0.44	0.57	0.55	0.01	0.36	-0.08	0.50	-0.08	-0.14	0.72	-0.07	-0.51	0.97	0.92	1.00

3.2.2. Interpretation of parameters morphometric. From the results of the correlation analysis of morphometric parameters (Table 5), parameters that had a good - strong relationship was A, Nu, Lu, Lof, Lb, Dd, Dt, Fs, Re, R, Rr, and Rn. From the thirteen parameters, data interpretation was carried out using KMO and Bartlett's Test which aimed to measure the level of correlation between parameters regarding whether or not FA was appropriate. Based on the test results, FA could not be continued because the lowest Measure of Sampling Adequacy (MSA) value of 0.21 was found in the Rr parameter and the overall KMO value was 0.45. MSA values ranged from 0 - 1 and this test was used to assess the intercorrelation between parameters [20]. Furthermore, to increase the correlation between parameters, the Rr parameter was omitted and the analysis results obtained the lowest MSA value of 0.53, the overall KMO value was 0.66 with a significant 0.001 <0.005 (Table 6). Based on these values, the FA analysis was feasible to do.
Table 6. KMO Measure of Sampling Adequacy and Bartlett's Test of Sphericity of morphometric parameters in the upper Lematang sub-watershed.

Morphometric parameters	A	Nu	Lu	Lof	Lb	Dd	Dt	Rt	Fs	Re	R	Rn	KMO	Bartlett's Test
MSA	0.60	0.78	0.70	0.70	0.65	0.66	0.64	0.62	0.54	0.77	0.63	0.53	0.54	0.77

3.2.3. Principal component analysis (PCA). Using eigenvalue <1, there were two main component factors and extracted well and truly perfectly represent the problem. The result of the rotated component loadings of morphometric parameters using maximum variance (Table 7). The first factor consisted of Rt, Nu, Lu, R, A, Lb, and Rn with eigenvalue 7.78, and 64.84% explained these parameters' variance. The second factor consisting of Dt, Dd, Lof, Fs, and Re with eigenvalue 2.72 and 22.64% was able to explain these parameters' variance. Overall the two factors were able to explain the diversity of data by 87.49%.

Table 7. Rotated component loadings of morphometric parameters.

Parameters	Component	
	1	2
Rt	0.92	-0.16
Nu	0.91	-0.29
Lu	0.90	-0.30
R	0.87	-0.06
A	0.83	-0.38
Lb	0.83	-0.51
Rn	0.81	0.10
Dt	-0.18	0.97
Dd	-0.13	0.96
Lof	-0.14	0.96
Fs	-0.17	0.85
Re	-0.66	0.74

| Eigenvalue | 7.78 | 2.72 |

| % of Variance | 64.84 | 22.64 |
|Cumulative % | 64.84 | 87.49 |

3.3. Flash flood hazard zonation
From the results of the analysis of the PCA approach, obtained parameters that had a strong correlation—very strong consisting of parameters Rt, Nu, Lu, R, A, Lb, Rn, Dt, Dd, Lof, Fs, and Re. Based on the results of the FA, in delineating the hazards of flash floods using these 12 parameters. Furthermore, to get a flash flood hazard class, each parameter in each sub-watershed was explained using a scale of 1-5 then summed and created a flash flood hazard zone based on the scale of the hazard level (Table 8). The results of the calculation there were 4 sub-watersheds (SW3, SW4, SW8, and SW13) had a very high level of flash flood hazard zones, 3 sub-watersheds (SW5, SW6, dan SW10) had a high level of flash flood hazard zones, 3 sub-watersheds (SW7, SW9, and SW11) had a moderate flood hazard zones, 1 sub-watershed (SW14) had a low-level flash flood hazard zone, and 3 sub-watersheds (SW2, SW12, and SW15) had a very low level of flash flood hazard zone (Figure 3).
Table 8. The level of flash flood hazard in 15 sub-watersheds

Sub-watershed	A	Nu	Lu	Lof	Lb	Dd	Dt	R	Fs	Re	Rn	R	Sum	Hazard level	
SW1	2	1	1	2	1	1	1	2	1	1	1	15		Very low	
SW2	1	1	1	1	2	1	1	1	2	1	1	14		Very low	
SW3	3	3	3	1	4	1	1	5	2	1	5	5	34		Very high
SW4	4	4	4	1	4	1	1	5	2	1	4	5	36		Very high
SW5	2	2	3	1	3	1	1	3	2	1	5	5	29		High
SW6	3	3	3	1	3	1	1	4	2	1	5	5	32		High
SW7	2	2	2	1	3	1	1	3	2	2	5	4	28		Moderate
SW8	2	3	2	2	3	2	2	5	4	2	5	5	37		Very high
SW9	1	2	1	1	2	1	1	3	2	1	3	5	25		Moderate
SW10	1	1	1	1	5	1	1	5	5	2	1	5	33		High
SW11	4	3	3	1	4	1	1	3	1	2	2	3	27		Moderate
SW12	1	1	1	1	2	1	1	2	2	1	1	16		Very low	
SW13	5	5	5	1	5	1	1	5	1	1	4	4	38		Very high
SW14	1	1	1	2	1	2	1	5	4	1	1	22		Low	
SW15	1	1	1	1	1	1	1	2	3	1	1	17		Very low	

Figure 3. Map of flash flood hazard zones in upper Lematang sub-watersheds
4. Conclusions
The quantitative analysis of the morphometric parameters of the upper Lematang sub-watershed obtained 15 parameters consisting of \(Nu, Lu, Rbm, Lof, A, P, Lb, Dd, Dt, Rt, Fs, Re, R, Rr,\) and \(Rn\). From the 15 parameters, the analysis results using the PCA approach using eigenvalue > 1 obtained two factors that were directly related to the flash flood hazard. The first factor consisted of \(Rt, Nu, Lu, R, A, Lb,\) dan \(Rn\) parameters with strong-very strong correlation (0.81 – 0.92). The second factor had a fairly strong-very strong correlation with values ranging from 0.74 - 0.97 consisting of \(Dt, Dd, Lof, Fs,\) and \(Re\) parameters. These two factors were able to explain the diversity of data by 87.49%. Finally, using the 12 parameters, a ranking was made based on a scale of 1-5 on each morphometric parameter, and then it was added up in each sub-watershed. Based on it summed result, a very high zone of flash flood hazard was found in the SW3, SW4, SW8, and SW13 sub-watersheds, the high zones were in the SW5, SW6, and SW10 sub-watersheds. The moderate zones were in the SW7, SW9, and SW11 sub-watersheds, the low zone was in the SW14 sub-watershed, and the very-low zones were in the SW1, SW2, SW12, and SW15 sub-watersheds.

References
[1] Elnazer A A, Salman S A and Asmoay A S 2017 Flash flood hazard affected Ras Gharib city, Red Sea, Egypt: a proposed flash flood channel Natural Hazards 89 1389–400
[2] Iosub M, Minea I, Chelariu O E and Ursu A 2020 Assessment of flash flood susceptibility potential in Moldavian Plain (Romania) Journal of Flood Risk Management 1–12
[3] Tewari N K, Misra A K and Sharma A 2019 Assessment of geomorphological and hydrological variations in Bhagirathi River Drainage sub-basin with the help of morphometric studies Journal of Taibah University for Science 13 1006–13
[4] Adnan M S G, Dewan A, Zannat K E and Abdullah A Y M 2019 The use of watershed geomorphic data in flash flood susceptibility zoning: a case study of the Karnaphuli and Sangu river basins of Bangladesh Natural Hazards 99 425–48
[5] Mahala A 2020 The significance of morphometric analysis to understand the hydrological and morphological characteristics in two different morpho-climatic settings Applied Water Science 10
[6] Rai P K, Mohan K, Mishra S, Ahmad A and Mishra V N 2017 A GIS-based approach in drainage morphometric analysis of Kanhar River Basin, India Applied Water Science 7 217–32
[7] Arefin R and Alam J 2020 Morphometric study for water resource management using principal component analysis in Dhaka City, Bangladesh: a RS and GIS approach Sustainable Water Resources Management 6
[8] Meshram S G and Sharma S K 2017 Prioritization of watershed through morphometric parameters: a PCA-based approach Applied Water Science 7 1505–19
[9] Sajadi P, Singh A, Mukherjee S, Sang Y F, Chapi K and Salari M 2020 Drainage network extraction and morphometric analysis in an Iranian basin using integrating factor analysis and geospatial techniques Geocarto International 0 1–30
[10] Strahler A 1964 Part II. Quantitative geomorphology of drainage basins and channel networks. Handbook of Applied Hydrology. McGraw-Hill, New York, 4–39.
[11] Horton R E 1945 Erosion development in stream and their drainage basins Geological Society Of America Bulletin 56 275–370
[12] Schumm S A 1956 Geological Society of America Bulletin Evolution Of Drainage Systems And Slopes In Badlands At Perth Amboy , New Jersey Geological Society Of America Bulletin 67 597–646
[13] Horton R E 1932 Drainage-basin characteristics Eos, Transactions American Geophysical Union 13 350–61
[14] Strahler A N 1952 Hypsometric (area-altitude) analysis of erosional topography Bulletin of the Geological Society of America 63 1117–42
[15] Melton M A 1957 An Analysis of the Relations Among Elements of Climate, Surface Properties,
Acknowledgments
The researchers highly appreciate the chairman of the College of Technology Pagaralam for all the support and facilities that have been provided in completing this research.