Effects of maternal taurine supplementation on maternal dietary intake, plasma metabolites and fetal growth and development in cafeteria diet fed rats

Arzu Kabasakal Cetin, Tugba Alkan Tug, Atila Gulec, Asli Akyol Corresp.

1 Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Ankara, Türkiye

1 Corresponding Author: Asli Akyol
Email address: asli.akyol@hacettepe.edu.tr

Background: Maternal obesity may disrupt the developmental process of the fetus during gestation in rats. Recent evidence suggests that taurine can exert protective role against detrimental influence of obesogenic diets. This study aimed to examine the effect of maternal cafeteria diet and/or taurine supplementation on maternal dietary intake, plasma metabolites, fetal growth and development. Methods: Female Wistar rats were fed a control (CON) diet, CON supplemented with 1.5% taurine in drinking water (CONT), cafeteria diet (CAF) or CAF supplemented with taurine (CAFT) from weaning. After 8 weeks all animals were mated and maintained on the same diets during pregnancy and lactation. Results: Dietary intakes were significantly different between the groups. Both CAF and CAFT fed dams consumed less water in comparison to CON and CONT dams. Taurine supplementation only increased plasma taurine concentrations in CONT group. Maternal plasma adiponectin concentrations increased in CAF and CAFT fed dams compared to CON and CONT fed dams and there was no effect of taurine. Hyperleptinemia was observed in CAF fed dams but not in CAFT fed dams. Malondialdehyde was significantly increased only in CAF fed dams. Litter size, sex ratio and birth weight were similar between the groups. There was an increase in neonatal mortality in CONT group. Discussion: This study showed that maternal taurine supplementation exerted modest protective effects on cafeteria diet induced maternal obesity. The increased neonatal mortality CONT neonates indicates possible detrimental effects of taurine in the setting of normal pregnancy. Therefore, future studies should investigate the optimal dose of taurine supplementation and long term potential effects on the offspring.
Effects of Maternal Taurine Supplementation on Maternal Dietary Intake, Plasma Metabolites and Fetal Growth and Development in Cafeteria Diet Fed Rats

Arzu Kabasakal Cetin¹, Tugba Alkan Tug¹, Atila Gulec¹, Asli Akyol¹

¹ Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Sihhiye, Ankara, Turkey

Corresponding Author:
Asli Akyol
Email address: asli.akyol@hacettepe.edu.tr
Abstract

Background: Maternal obesity may disrupt the developmental process of the fetus during gestation in rats. Recent evidence suggests that taurine can exert protective role against detrimental influence of obesogenic diets. This study aimed to examine the effect of maternal cafeteria diet and/or taurine supplementation on maternal metabolic health and offspring growth at weaning.

Methods: Female Wistar rats were fed a control (CON) diet, CON supplemented with 1.5% taurine in drinking water (CONT), cafeteria diet (CAF) or CAF supplemented with taurine (CAFT) from weaning. After 8 weeks all animals were mated and maintained on the same diets during pregnancy and lactation.

Results: Dietary intakes were significantly different between the groups. Both CAF and CAFT fed dams consumed less water in comparison to CON and CONT dams. Maternal plasma taurine concentrations decreased in CAF fed dams and normalised by taurine supplementation in CAFT group. Maternal plasma adiponectin concentrations increased in CAF and CAFT fed dams compared to CON and CONT fed dams and there was no effect of taurine. Hyperleptinemia was observed in CAF fed dams but not in CAFT fed dams. Malondialdehyde was significantly increased only in CAF fed dams. Litter size, sex ratio and birth weight were similar between the groups. There was an increase in neonatal mortality in CONT group.

Discussion: This study showed that maternal taurine supplementation exerted modest protective effects on cafeteria diet induced maternal obesity. The increased neonatal mortality CONT neonates indicates possible detrimental effects of taurine in the setting of normal pregnancy. Therefore, future studies should investigate the optimal dose of taurine supplementation and long term potential effects on the offspring.

Keywords: Taurine, cafeteria diet, pregnancy, obesity, rats
Introduction

Obesity has become a significant public health problem due to its increasing prevalence at an alarming rate (Ng et al., 2013). Lifestyle changes, including increased energy intake and decreased physical activity are considered as the main contributors of this outcome (Popkin, 2015). The rate of obesity and overweight in women of child-bearing age is also increasing (Fisher et al., 2013). Previous studies suggested that children born to mothers with maternal obesity are at higher risk for unfavorable birth outcomes and health problems (Nagl et al., 2017; Ayonrinde et al., 2017). The identification of obesity related complications during pregnancy and developing effective interventions as early as possible to prevent the development of childhood obesity is vital (Blake-Lamb et al., 2016). For this purpose, animal models of obesity are crucial to examine the mechanisms involved in the progression of obesity.

Through the developmental origins of health and disease paradigm, accumulating evidence suggest that maternal obesity or overnutrition during pregnancy results in the development of components of metabolic syndrome in the offspring (Desai et al., 2014; Raipuria et al., 2015; Dias-Rocha et al., 2018). In particular, offspring born to dams fed a hyper-energetic cafeteria diet during gestation and/or lactation exhibited increased body weight (Benkalfat et al., 2011), reduced muscle force (Bayol et al., 2009), altered hepatic gene expression in insulin signaling pathway (Daniel et al., 2014) and different behavioral parameters (Speight et al., 2017). Studies reported that these effects could be reversed by specific interventions such as increasing maternal physical activity (Son et al., 2019) or including bioactive food components to obesogenic diets (Sheen et al., 2018).

Taurine, 2-aminoethane sulfonic acid, is involved in various metabolic pathways both in human and rodents (Nielsen et al., 2017). It serves crucial functions in biological processes that are related with detoxification, membrane integrity, bile acid conjugation, calcium levels and regulation of osmosis (Ince et al., 2017). Recently, few studies reported that taurine may exert a protective influence on oxidative stress induced by different disruptors in rodent (Rashid, Das &Sil, 2013; Zheng et al., 2017). More specifically, one study reported that offspring exposed to a maternal obesogenic diet with taurine supplementation during pregnancy and lactation had partially recovered pro-inflammatory hepatic profile (Li et al., 2013). Similar rescuing effect of taurine was also observed in maternal fructose-induced obesity (Li et al., 2015) and low protein diet models (Larsen et al., 2017).

The cafeteria diet is a robust model of inducing dietary obesity in laboratory animals, promoting exacerbated hyperphagia and inflammation in a pronounced level (Sampey et al., 2011; Oliva et al., 2019). To date few studies have investigated the possible protective role of taurine within obesogenic diet models on pregnancy outcomes in rats. Therefore, the aim of this study was to examine whether taurine given with cafeteria diet prior to gestation, during gestation and lactation exerts any protective effects on dietary intakes, plasma circulating metabolites, amino acid profile and fetal growth and development until weaning.
Materials & Methods

Animals and diets

The experiments were performed under the license from the Ethics Committee of Hacettepe University, Ankara, Turkey, number: 2015/01. Animals were obtained from Laboratory Animals Research and Application Centre. All animals were housed individually in plastic cages and subjected to a 12 h light-dark cycle at a temperature of 20–22 °C and 45% humidity. The animals were housed on wood shavings and had ad libitum access to food and water at all times. Animal care, feeding and maintaining of housing conditions were performed and checked by researchers and animal house personnel. After one week of habituation period, Virgin female Wistar rats (aged 4 weeks) were randomly allocated to be fed either a control chow diet (CON; n=6), control chow diet supplemented with 1.5% taurine in drinking water (Li et al., 2013; Li et al., 2015) (CONT; n=7), cafeteria diet (CAF; n=7) or cafeteria diet supplemented with 1.5% taurine in drinking water (CAFT; n=7) for 8 weeks. In total, 27 female Wistar rats were used.

Experimenters were not blind to treatment. Animals were then paired with a Wistar stud male and mating was confirmed by the appearance of a semen plug. The male rat was removed as soon as detecting semen plug. Animals continued to consume the same diets during pregnancy and lactation. Cafeteria diet consisted of control chow diet (% 6 fat, %71 carbohydrate, %23 protein, energy 2800 kcal/kg, Kalecik, Kırıkkale, Turkey) with a random selection of highly energetic and palatable human foods. Data related to cafeteria diet were collected as previously described in Buyukdere et al., 2019 and Akyol et al., 2009. Briefly, the highly energetic and palatable human foods include biscuits, potato and corn crisps, milk chocolate, metro chocolate bar, kashar cheese, jelly candy, chocolate cake and peanuts. Four of these foods were given in a cup on the cage floor daily in excess quantities. In order to maintain variety two of these foods were replaced with new ones daily. Hence, rats did not have the same foods for more than two consecutive days at a time. All components of the cafeteria diet, including chow and water were individually weighed in and out of the cage between 09.00 and 10.00 hours daily. Daily intakes of energy and macronutrients were calculated from the manufacturers’ data, after allowing for weight changes due to drying of foods, as described previously (Akyol, Langley-Evans & McMullen, 2009). The animals were weighed daily during pre-mating, mating, birth and gestation periods. Weight loss of more than 15% of body weight, reduction in abilities of consuming diets and water or inability to walk properly were established as criteria for excluding animals prior to the planned end of the experiment but all of the animals successfully completed the study period. Thus, all analyses were performed through CON; n=6, CONT; n=7, CAF; n=7 and CAFT; n=7.

At birth, the birth weight, sex ratio and litter size were recorded. Litters were then culled to a maximum of eight pups (four males and four females, where possible). Body weights of all animals were recorded daily. Neonatal mortality was evaluated relative to born litter size at birth and calculated by dividing number of dead pups to litter size (Li et al., 2013; Li et al., 2015). At the end of lactation, mothers and three male and three female offspring from each litter were culled using CO₂ asphyxia after overnight fasting. CO₂ asphyxia was applied by CO₂ euthanasia
apparatus found in rat’s home cages. Surviving animals were not allowed to see the procedure. Animals were exposed to 5.6 L/min CO$_2$ until complete cessation of breathing is observed for a minimum of 5 minutes. Cervical dislocation was performed to assure euthanasia. Body cavities of animals were opened and blood samples were taken by cardiac puncture and, major organs (liver, kidneys, heart, gonadal and peri-renal adipose tissues) were dissected separately and weighed. The remaining offspring used in a different study. Figure 1 shows the study design. The study protocol was registered at The Scientific And Technological Research Council of Turkey, number 115S538.

Plasma Analyses

All blood samples were collected into heparinized capillary tubes and stored on ice until centrifuged in a hematocrit centrifuge. Plasma was collected and stored at -80 °C until required for analysis. Maternal plasma metabolite analyses were performed on fasting samples collected at weaning. Plasma leptin, adiponectin and insulin-like growth factor I (IGF-I) (R&D Systems, Inc., Minneapolis, MN 55413, USA), insulin (Raybiotech, 3607 Parkway Lane, Suite 100 Norcross, GA 30092), total cholesterol and triglyceride (Hangzhou Eastbiopharm Co., Ltd., Blue Ocean International Times Mansion, No.39 Yile road), c-peptide and HbA1C (Elabscience, Catalog No: E-EL-R0032) were measured by rat specific enzyme-linked immunosorbent assay. Plasma glucose and malondialdehyde were measured using commercially sourced assay kits (Cayman Chemical, 1180 E. Ellsworth Rd. Ann Arbor, MI, USA). Plasma taurine concentrations were analyzed using a Shimadzu LC-30 UHPLC system with auto sampler. Plasma amino acid analyses were performed using a GC amino acid kit (EZ:faast; Phenomenex, Torrance, CA, USA) (*Badawy, Morgan & Turner, 2008*). All assays were performed according to manufacturer’s instructions and intra- and inter-assay coefficients of variation were <10%.

Statistical Analyses

All data were analyzed using the Statistical Package for Social Sciences (version 16; SPSS, Inc., Chicago, IL, USA). Data were tested for normality using Shapiro-Wilks normality test and visual analytical methods (histograms, probability plots). Data that did not meet the criteria required for parametric analysis were transformed to achieve normal distribution and equal variance. A general linear model analysis of variance (ANOVA) (fixed factors, maternal diet) was used for normally distributed data. Repeated-measures ANOVA was performed to compare the mean differences between groups in those parameters measured at different time points (for example, weekly body weights and energy intakes). The effect of maternal diet on fetal outcomes was assessed using a general linear model analysis of variance (ANOVA) (fixed factors, maternal diet and sex). Post hoc testing (Tukey’s test) was applied for the significant main effects of the diet. Data that were not been normally distributed analysed using the non-parametric Kruskal-Wallis test and comparisons between two groups were performed Mann-Whitney U-test. The proportion of neonatal deaths per litter was analyzed via Chi-square test. Values are expressed as mean values with their standard errors. p < 0.05 was considered statistically significant. Power
analysis indicated that 6 animals per group was sufficient to detect a minimum 12% energy intake difference with a power of 80% and alpha 0.05 (Akyol, Langley-Evans & McMullen, 2009). The study data is submitted as a supplementary file.

Results

During pre-gestational period energy intakes of dams did not differ between groups (P=0.062) (Table 1). CAF and CAFT fed animals had significantly higher intakes of fat (P<0.001), and Na (P<0.001), and significantly lower intakes of protein (P<0.001). While carbohydrate intake of CAF and CAFT fed animals was significantly lower than CONT fed animals (P<0.05), CAF fed animals exhibited a similar carbohydrate intake in comparison to CON fed animals (P=0.105).

There were no statistically significant differences in energy intake between the groups during gestation and lactation (P>0.05). CAF and CAFT had significantly higher fat (P<0.001) and Na (P<0.001), and significantly lower protein (P<0.001) and carbohydrate (P<0.001) intake during gestation (Table 1). Alike pre-gestational and gestational periods, fat (P<0.001) intake was significantly higher in CAF and CAFT whereas protein (P<0.001) and carbohydrate (P<0.001) intakes were significantly lower during the lactation period. A significant interaction between diet and study weeks also influenced fat and protein intake during gestation and lactation (P<0.05).

Since taurine was added to drinking water in CONT and CAFT, water intake of animals was also recorded (Figure 2(a)). During the pre-gestational period CAF (28.01±0.82 g/day) and CAFT (27.81±0.82 g/day) consumed significantly lower amount of water than CON (41.31±0.88 g/day) and CONT (45.77±0.82 g/day) (P<0.001). During the gestation and lactation periods a similar pattern was observed in groups as CAF (Gestation: 29.72±1.44 g/day, lactation: 42.16±2.94 g/day) and CAFT (Gestation: 29.85±1.44 g/day, lactation: 42.07±2.94 g/day) consumed significantly lower amount of water in comparison to CON (Gestation: 51.54±1.56 g/day, lactation: 94.84±3.18 g/day) and CONT (Gestation: 55.15±1.44 g/day, lactation: 101.89±2.94 g/day) (P<0.001). Estimated taurine intake of CAFT dams (2.52±0.19 mg/g body weight/day) was significantly lower than CONT dams (3.95±0.19 mg/g body weight/day) during the pre-gestational period (P<0.001) (Figure 2(b)). During the gestation and lactation periods a similar pattern was observed in CAFT group (Gestation: 1.68±0.14 mg/g body weight/day, lactation: 2.86±0.28 mg/g body weight/day) as estimated taurine consumption of CAFT dams was significantly lower than CONT dams (Gestation: 3.11±0.14 mg/g body weight/day, lactation: 5.47±0.28 mg/g body weight/day) (P<0.001).

The body weights of the dams did not vary significantly at the beginning of the experiment. All animals gained weight during the pre-pregnancy and pregnancy periods (Figure 3). A significant interaction between diet and study weeks influenced average body weights during pre-gestational period (CON: 168.05±1.69 g, CONT: 179.99±1.69 g, CAF: 178.77±1.57 g and CAFT: 175.62±1.57 g; interaction between diet*study weeks P=0.002). During the pregnancy period, all groups exhibited similar gestational body weights (CAF: 272.08±4.78 g, CAFT: 268.21±4.78 g, CON: 252.22±5.16 g, CONT: 267.88±4.78 g, P=0.369). Weight gain
slowed in rats fed the CAFT (243.48±4.58 g) diet during lactation in comparison with those fed the CONT (276.14±4.58 g) (P=0.035). Both CAF and CAFT groups exhibited weight loss during lactation.

Dietary treatment during pre-gestational, gestational and lactation periods significantly influenced maternal liver, kidney and adipose tissue weights at the end of the lactation period (Table 2). Taurine addition to cafeteria diet or chow diet did not alter liver weight between CON and CONT or CAF and CAFT. However, CAF and CAFT had significantly lower liver weights than CON and CONT (P<0.001). Both of the right and left kidney weights exhibited a similar pattern as CAF and CAFT had significantly lower kidney weights than CON and CONT (P<0.05). Fat depot mass data indicated that taurine addition to cafeteria diet did not exert a protective effect on gonadal and peri-renal fat mass since CAF and CAFT had significantly heavier values than CON and CONT (P<0.001) and there were no significant difference between CAF and CAFT groups.

Maternal plasma glucose, insulin, IGF-1, C-peptide, cholesterol and triglyceride were unaffected by dietary treatment at the end of the lactation (Table 3). CONT, CAF and CAFT displayed higher levels of HbA1c than CON. Leptin was significantly higher in CAF compared to CON and CONT whereas it was similar to all other three groups in CAFT. Adiponectin was significantly higher in CAF and CAFT than CON and CONT. Malondialdehyde was significantly higher only in CAF in comparison to CON and CONT. Maternal plasma taurine was increased in CONT compared to CON, CAF and CAFT (Table 4). Also, taurine was significantly lower in CAF than CON and CONT and CAFT. CAF and CAFT exhibited higher levels of serine and lower levels of tyrosine than CON. Phenylalanine was lower and aspartic acid higher in CAFT than CON.

Litter size (CON: 11.00±1.19, CONT: 10.43±1.11, CAF: 9.57±1.11, CAFT: 9.57±1.11, P=0.775) and sex ratio (male:female) (CON: 0.76±0.49, CONT: 1.22±0.46, CAF: 1.56±0.46, CAFT: 1.79±0.46, P=0.464) were similar between the study groups. Similarly, birth weights of pups did not differ between groups (p=0.532) but male offspring’s birth weights were higher than female offspring (CON male: 5.87±0.13 g, female: 5.40±0.10 g; CONT male: 5.70±0.11 g, female: 5.36±0.11 g; CAF male: 5.64±0.11 g, female: 5.30±0.12 g and CAFT male: 5.64±0.12 g, female: 5.37±0.11 g, P<0.001). Maternal taurine supplementation significantly increased the proportion of neonatal deaths per litter only in the CONT group and sex of the animals had no effect on this outcome (CONT: 12.3% versus CON: 3.0%, CAF: 4.5% and CAFT: 1.5%, P=0.023). Those offspring died during the first week of lactation.

Offspring weight gain was significantly influenced by maternal diet (P<0.001) and study weeks (P<0.001) during lactation but there was no effect of sex (Figure 4). Maternal diet and study weeks exhibited a significant interaction (P<0.001). Although birth weight did not vary between the groups, this situation disappeared over time and CAF and CAFT offspring displayed lower body weights in comparison to CON and CONT offspring in both genders (CON, male: 19.00±0.60 g, female: 18.88±0.47 g; CONT, male: 20.31±0.55 g, female: 20.44±0.50 g; CAF, male: 16.91±0.50 g, female: 16.95±0.53 g; CAFT male: 16.34±0.48 g, female: 16.56±0.49 g,
P<0.001). In addition, maternal diet significantly influenced liver, brain, kidney and heart weights of offspring in terms of percentage of body weight in both genders at the end of lactation (Table 5). Fetal exposure to cafeteria diet led to lower liver and kidney weights compared with CON and CONT groups (P<0.001). Liver and kidney weights of CAFT offspring exhibited similar patterns like CAF offspring (P<0.001). However, CAFT offspring had significantly heavier brain weight than CON (P=0.004) and CONT offspring (P=0.001). Offspring that were exposed to maternal cafeteria diet exhibited heavier heart weights in comparison to CON and CONT groups (P<0.001). Furthermore, a reduction in heart weight was observed in the offspring of CAFT (P=0.011).

Discussion

The influence of maternal dietary strategies to prevent the development of chronic diseases on the developing offspring is relatively unknown in contrast to the more direct inferences of neonatal health. Few animal studies support the notion that taurine supplementation may trigger differences in metabolic functions and physiology (Rashid, Das & Sil, 2013; Zheng et al., 2017). However, it is not clear whether such effects can continue on throughout pre-pregnancy, pregnancy and lactation. The maternal metabolic health during these periods is an important determinant of health status of offspring. Both animal and human studies revealed that gestation period does not terminate with birth but with end of lactation (Stuebe AM & Rich-Edwards JW, 2009) Hence, the primary aim of this study was to compare the effect of a maternal cafeteria diet with taurine supplemented cafeteria diet in terms of pre-pregnancy nutritional status, pregnancy progression, outcomes and fetal growth and development throughout lactation. In this regard, firstly, the present study showed significant nutritional and metabolic changes in dams in response to a maternal cafeteria diet at weaning. More specifically, maternal taurine supplementation reversed some of these changes at a modest level through preventing maternal hyperleptinemia, reducing malondialdehyde and increased plasma taurine levels. Furthermore, increased neonatal mortality was observed in taurine supplemented-control group.

Previous studies reported that ingestion of the cafeteria diet before pregnancy led to hyperphagia and increased energy intake (Akyol, Langley-Evans & McMullen, 2009; Crew, Waddell & Mark, 2016; Sanchez-Blanco et al., 2016). Unlike this finding, energy intake of cafeteria fed dams did not differ from other groups prior to gestation in this study. One explanation might become the expression of the data as energy intake was normalized to body weight in the current study. Furthermore, it was suggested that providing more food items (for example 40 highly palatable energy-dense human food) made the cafeteria diet more successful at sustained hyperphagia and greater weight gain (George et al., 2019). Gugusheff et al. (2016) reported similar energy intakes between cafeteria and control dams throughout pre-gestation and gestation periods which may be associated with presenting less food items in cafeteria diet. Also, energy intake of cafeteria fed dams did not differ from other groups during gestation in the current study. Similarly, one study reported that energy intakes of cafeteria fed dams were similar to other groups (Ferro Cavalcante et al., 2014) whereas other studies showed higher...
energy intakes during gestation in cafeteria group (Akyol, Langley-Evans & McMullen, 2009; Sanchez-Blanco et al., 2016; Vithayathil et al., 2018). The present study demonstrated that energy intake was not different between groups during lactation, which has been reported previously (Ferro Cavalcante et al., 2014), but not in all studies (Bayol, Farrington & Stickland, 2007; Speight et al., 2017; Vithayathil et al., 2018). These contradictory results may be due to type of foods used in the cafeteria diet, differences in the duration and timing of intervention. Cafeteria diet is an unbalanced diet with a higher percentage of total energy coming from fat and a lower percentage coming from carbohydrates and proteins compared to control diet (Sampey et al., 2011). Thus, both CAF and CAFT groups consumed lower protein and carbohydrate and remarkably greater fat compared to CON and CONT groups. Overall, taurine supplementation did not affect food consumption, energy intake and food preferences during gestation and lactation. This is consistent with the findings of previous studies (Li et al., 2013; Li et al., 2015).

Since the total energy intake of dams fed the cafeteria diet was similar to dams fed the control diet throughout pre-gestation, gestation and lactation, total body weights did not differ between cafeteria and control groups at the end of lactation. Some studies reported that consumption of cafeteria diet during 8 weeks before gestation might be failed to trigger significant weight gain (Jacobs et al., 2014; Rossetti et al., 2020). Rossetti et al. (2020) indicated that they maintained feeding cafeteria diet until 14th week of the experiment before mating in order to detect significantly increased body weights in CAF group. Therefore, differences in the duration may lead to contradictory results regarding pre-gestational body weights. Also, at mating no significant differences were observed regarding body weight between groups but previous data showed that at day 20 of gestation cafeteria diet fat dams had greater body fat accumulation which is an essential component of obesity (Akyol et al., 2009). In a previous study, profound adiposity was showed although no difference was observed in terms of body weight between cafeteria and control groups (Buyukdere, Gulec & Akyol, 2019). Furthermore, the organ weight data at the end of lactation showed that CAF and CAFT animals had significantly increased gonadal and peri-renal fat depots (72% increase in gonadal fat and 77% in peri-renal fat in CAF). Therefore, it can be suggested that cafeteria diet led to increased adiposity at the end of eight weeks of pre-gestational feeding and this model produced an efficient model of maternal obesity.

Ingestion of cafeteria diet resulted in weight loss during lactation and this was not influenced by taurine supplementation. This can be explained by suggesting that dams fed the cafeteria diet during lactation could invest more energy to milk production and hence their milk could be richer than that the produced by the chow diet-fed lactating rats (Bayol, Farrington & Stickland, 2007). Indeed, it was demonstrated that milk from cafeteria diet-fed dams contained higher concentration of fat and lower concentration of protein when compared to controls. This may explain the reduced growth rate of the offspring of cafeteria diet fed dams (Pomar et al., 2017). It can be suggested that maternal ingestion of cafeteria diet affected the offspring in a similar setting to the effects of a low protein diet. Lower protein content of the maternal diet could lead to lower body weight at weaning (Bayol, Farrington & Stickland, 2007; Pomar et al.,
In the present study, both male and female CAF and CAFT offspring were leaner than CON and CONT offspring at weaning. In studies conducted with low protein diet models supplementation with taurine did not prevent growth retardation of the offspring during lactation (Boujendar et al., 2002; Merezak et al., 2014). However, another study reported that weaning weights of offspring exposed to obesogenic diet supplemented with taurine was similar to control offspring (Li et al., 2015). Different dietary exposure models could lead to differential effects on fetal growth and development as protein content of obesogenic diet models exhibited distinct levels of protein.

Despite weight loss during lactation, cafeteria diet fed dams exhibited markedly increased adiposity at the end of lactation. Although CAFT group had lower gonadal and peri-renal fat depots than CAF group; this did not reach to statistical significance in the current study. Thus, taurine supplementation did not decrease gonadal and peri-renal fat pad weights. Supplementation of 5% (wt/wt) taurine (estimated taurine intake 3 mg/g body weight/day and 11 mg/g body weight/day respectively) was shown to prevent tissue fat accumulation and obesity with increased energy expenditure (Tsuboyama-Kasaoka et al., 2006; Lin et al., 2013), while high fat diet induced obesity in mice could not be prevented by 1% taurine treatment (estimated taurine intake 1.7 mg/g body weight/day) (Murakami, Kondo & Nagate, 2000). This difference between the studies can be attributable to supplementation dosage and amount of estimated taurine intake. In the current study, estimated taurine intake of CAFT dams was 2.4 mg/g body weight/day. This result may suggest that higher amount of taurine is required to observe anti-obesogenic effects.

Plasma taurine levels were shown to decrease in obesity since taurine synthesis in white adipose tissue is reduced (Tsuboyama-Kasaoka et al., 2006). Also, Rosa et al. (2014) reported that obese women had lower plasma taurine levels than normal weight control group. However, Li et al. (2013 and 2015) indicated that dams fed with maternal obesogenic diets displayed similar plasma taurine concentrations to control dams. These differences might be due to the degree of fat deposition. CAF fed dams exerted decreased plasma taurine levels in this study. Most studies demonstrated that taurine supplementation improved plasma taurine levels in the setting of diet induced obesity (Tsuboyama-Kasaoka et al., 2006; Li et al., 2013; Li et al., 2015).

In addition, taurine supplementation resulted in a marked elevation of taurine concentrations in CONT and CAFT dams in the current study.

Many studies have attempted to investigate the influence of maternal cafeteria diet on plasma glucose, insulin, triglyceride and total cholesterol levels. Some have found no differences in glucose and insulin (Crew, Waddell & Mark, 2016; Crew et al., 2018), triglyceride (Mucellini et al., 2014) and total cholesterol (Jacobs et al., 2014) concentrations as observed in the present study, while others have reported higher glucose and insulin (Holemans et al., 2004; Bouanane et al., 2009) cholesterol (Mucellini et al., 2014) and triglyceride (Chen et al., 2008) concentrations in cafeteria fed dams. The above-cited studies have some differences in the duration and timing of intervention. Therefore, it becomes very difficult to reach a clear conclusion. In the present study, the concentrations of these plasma metabolites were determined...
at the end of lactation. Therefore, it is crucial to assess the influence of both cafeteria diet and taurine supplementation on these metabolic parameters during pregnancy in future studies.

Previous reports have shown that plasma leptin concentrations of cafeteria diet-fed dams increased in proportion to body fat mass (Chen et al., 2008; Bouanane et al., 2009; Jacobs et al., 2014). While CAF dams displayed higher plasma leptin concentrations in comparison to control dams, CAFT dams did not display hyperleptinemia in the current study. Similarly, in one study increased plasma leptin levels were observed in maternal obesogenic diet group but not in taurine supplemented group although there was no significant effect of taurine (Li et al., 2013). Kim et al. (2012) reported that leptin levels were significantly lower in taurine supplemented group despite similar body weight and epididymal fat mass to control groups. They suggested that additional studies are needed to elucidate the possible effect of taurine on leptin signaling in adipose tissue (Kim et al., 2012). This result is consistent with another report which showed that long term taurine supplementation did not reduce fat tissue but decreased mRNA expression levels of leptin in white adipose tissue (Kim et al., 2019). Decreased circulating adiponectin levels have been demonstrated in high fat and cafeteria diet induced murine models of obesity (Chaolu et al., 2011; Suárez-García et al., 2017). Interestingly, plasma adiponectin concentrations of both CAF and CAFT groups were markedly greater than CON and CONT groups in the present study. Some studies have shown that body weight reduction resulted in increased adiponectin levels in obesity (Yang et al., 2001; Esposito et al., 2003). Therefore, weight loss of CAF and CAFT groups during lactation may have lead to higher adiponectin levels in comparison to CON and CONT groups.

Obesity is an independent risk factor for lipid peroxidation and malondialdehyde is one of the most frequently used indicators of lipid peroxidation (Yesilbursa et al., 2005; Marseglia et al., 2014). High fat and cafeteria diet induced obesity in rats led to elevated malondialdehyde levels in liver in different studies (Noeman, Hamooda & Baalash, 2011; Abd Elwahab et al. 2017). Similarly, the present study demonstrated that CAF dams had increased plasma malondialdehyde concentrations. Plasma malondialdehyde levels of CAFT dams did not differ from CON and CONT dams, which indicated a partial normalization of the malondialdehyde levels in response to taurine supplementation. It was reported that taurine administration mitigated hepatic oxidative stress through reduction of malondialdehyde levels in the liver of cafeteria fed rats (Abd Elwahab et al. 2017). Also, Ogasawara et al. (1994) reported that taurine inhibited the production of oxidized low density lipoprotein by reacting with malondialdehyde.

Lower energy contribution of protein in the cafeteria diet may induce nitrogen sparing mechanisms including higher intestinal absorption of amino acids and excretion of less urinary and fecal nitrogen (Esteve et al., 1993; Oliva et al., 2017). In addition, oxidation of amino acids and urea excretion can decrease (Sabater et al., 2014; Oliva et al., 2017). These mechanisms led to amino acid imbalance and alterations of amino acid concentrations (Llado et al., 1995; Sabater et al., 2014). In the current study, both CAF and CAFT dams displayed higher levels of serine and lower levels of tyrosine compared with control dams. Previous studies reported the effects of cafeteria diet on plasma amino acid concentrations with contradictory results (Salvadó,
Segués & Arola, 1991; Lladó et al., 1995; Pomar et al., 2019). Offspring suckled by cafeteria diet fed dams exhibited higher circulating levels of serine due to increased hepatic gluconeogenesis (Pomar et al., 2019). However, Salvadó, Segués & Arola, (1991) demonstrated that serine concentrations was lower in the pups exposed to maternal cafeteria diet during lactation than in the control pups. The low serine concentrations of the pups exposed to maternal cafeteria diet were related to contribution of this amino acid to glucose synthesis in the suckling offspring. Also, serine was associated with increased growth rate in the pups exposed to maternal cafeteria diet. The amino acid imbalance observed in this study could be related with a possible maternal trade-off to improve growth and development during suckling period.

In the current study no difference was observed in litter size and sex ratio between groups. This is consistent with previous reports (Bayol et al., 2005; Li et al., 2013; Li et al., 2015; Vithayathil et al., 2018). Many studies reported conflicting results about the birth weights of pups exposed to maternal cafeteria diets. Some have found no differences in birth weights (Bayol et al., 2005; Chen et al., 2008; Speight et al., 2017; Kalem et al., 2018) whereas others have reported higher birth weights (Bayol, Farrington & Stickland, 2007; Sanchez-Blanco et al., 2016; Vithayathil et al., 2018; Cardanes-Perez et al., 2018). Also, a meta regression analysis of animal models investigating the effect of maternal obesogenic diet exposure on birthweight demonstrated that this exposure had no effect on birthweight (Ribaroff et al., 2017). Akyol et al., (2009) reported that exposure to maternal cafeteria diet led to fetal growth restriction, but they showed increased birth weights in their further study (Akyol et al., 2011). These differences might occur due to using different food items in cafeteria diet and duration and time of exposure.

Similar to the results of this study, it was reported that maternal taurine supplementation had no effect on birth weights (Li et al., 2013). In addition to these outcomes, rise in neonatal mortality was observed in CONT offspring. Similarly, other reports showed that taurine supplementation in the setting of normal pregnancy resulted in increased neonatal mortality (Li et al., 2013; Li et al., 2015). There are limited data on possible unfavorable effects of taurine in normal pregnancies and underlying mechanisms have not been elucidated, clearly. Boujendar et al. (2002) reported that taurine provided in dams fed a control diet induced fetal hypoglycaemia and decreased pancreatic and postnatal body weights. Although taurine supplementation in vivo exerted protective effects on pancreatic islets of the offspring from low protein diet fed dams against cytokine toxicity, islet sensitivity of control animals has been increased and pancreatic development was impaired (Boujendar et al., 2002; Merezak et al. 2004). These results demonstrated that the effects of taurine supplementation on pregnancy outcomes were closely associated with maternal nutritional background. Future studies should investigate the possible toxicity of taurine supplementation in control pregnancy outcomes. In fact, one limitation of this study could be giving taurine supplementation during pre-gestation since this design complicates translating the current approach and outcomes to human pregnancy. Instead, taurine supplementation could have been administered after mating but this procedure might have masked the potential regressive influence of taurine on obesity development. Therefore, in
addition to possible toxicity of taurine supplementation in control pregnancy outcomes, a further investigation can examine addition of taurine supplement after conception in a similar setting.

Exposure to maternal high fat diet during gestation may alter the development of various organs and affect several organ systems. These effects differ by the animal model, timing and duration of the high fat diet exposure as well as the offspring’s gender (Williams et al., 2014). Previously it has been reported that offspring exposed to maternal obesogenic diet exhibited increased relative heart weight at weaning (Blackmore et al., 2014). This study demonstrated that exposure to maternal cafeteria diet resulted in increased relative heart weight in both male and female CAF offspring at weaning. Taurine supplementation to cafeteria diet normalized relative heart weight. It was shown that taurine supplementation reduced heart weight in hypertensive rats and was associated with decreased cardiac hypertrophy by displaying antioxidant activity (Chahine et al., 2010). Also, both CAFT male and female offspring displayed increased brain weight at weaning. It has been suggested that taurine deficiency might cause decreased proliferation of neural progenitor cell and smaller brain weight in mouse (Shivaraj et al., 2012).

In a study of IUGR rats has been reported that prenatal taurine supplementation resulted in increased brain weight above IUGR levels by reducing apoptosis in fetal rat cerebral cells and promotes cerebral cell regeneration (Liu, Liu & Chen, 2011).

Conclusions

In conclusion, present data suggest that maternal cafeteria diet led to increased adiposity and malondialdehyde levels, hyperleptinemia and decreased plasma taurine levels. Maternal taurine supplementation did not prevent adiposity but partially normalized cafeteria-induced maternal metabolic dysfunction. Also, taurine supplemented cafeteria diet exerted favorable effects on heart and brain weights of the offspring. The reason why taurine did not have profound protective effects on these metabolic disturbances can be attributable to the amount of taurine consumed by rats. Furthermore, it was showed that taurine supplementation resulted in increased neonatal mortality in control pregnancies, which might be associated with maternal nutritional background. While a few other studies investigated the effects of maternal taurine supplementation on metabolic disturbances induced by high fructose and high fat obesogenic diets (Li et al., 2013; Li et al., 2015), this study reported the influences of taurine supplementation in a model of maternal cafeteria diet for the first time. The long-term effects of maternal taurine supplementation on offspring and adverse maternal effects in normal pregnancies must be further investigated.

Acknowledgements

Conflicts of Interest

None

Author contribution: A.A. designed and conducted the study. A.K.C. and A.G. performed animal experiments and collected data. A.K.C. and A.G. made laboratory analysis. A.A. and
A.K.C. did statistical analyses. A.K.C. helped draft the manuscript and interpretation of the data. All authors read and approved the final manuscript.

Ethical Standards

The authors assert that all procedures contributing to this work comply with the ethical standards of the relevant national guides on the care and use of laboratory animals (rats) and has been approved by the institutional committee (Hacettepe University).

References

Abd Elwahab AH, Ramadan BK, Schaalan MF, Tolba AM. 2017. A novel role of SIRT1/FGF-21 in taurine protection against cafeteria diet-induced steatohepatitis in rats. *Cellular Physiology and Biochemistry: International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology* **43**(2):644-59 DOI: 10.1159/000480649.

Akyol A, Langley-Evans SC, McMullen S. 2009. Obesity induced by cafeteria feeding and pregnancy outcome in the rat. *British Journal of Nutrition* **102**:1601-10 DOI: 10.1017/S0007114509990961.

Akyol A, McMullen S, Langley-Evans SC. 2012. Glucose intolerance associated with early-life exposure to maternal cafeteria feeding is dependent upon post-weaning diet. *British Journal of Nutrition* **107**(7):964-78 DOI: 10.1017/S0007114511003916.

Ayonrinde OT, Oddy WH, Adams LA, Mori TA, Beilin LJ, de Klerk N, Olynyk JK. 2017. Infant nutrition and maternal obesity influence the risk of non-alcoholic fatty liver disease in adolescents. *Journal of Hepatology* **67**: 568-576 DOI: 10.1016/j.jhep.2017.03.029.

Badawy AA, Morgan CJ, Turner JA. 2008. Application of the phenomenex EZ:faast trade mark amino acid analysis kit for rapid gas-chromatographic determination of concentrations of plasma tryptophan and its brain uptake competitors. *Amino Acids* **34**:587–596 DOI: 10.1007/s00726-007-0012-7.

Bayol SA, Simbi BH, Stickland NC. 2005. A maternal cafeteria diet during gestation and lactation promotes adiposity and impairs skeletal muscle development and metabolism in rat offspring at weaning. *The Journal of Physiology* **567**(Pt3):951-61 DOI: 10.1113/jphysiol.2005.088989.

Bayol SA, Farrington SJ, Stickland NC. 2007. A maternal ‘junk food’diet in pregnancy and lactation promotes an exacerbated taste for ‘junk food’and a greater propensity for obesity in rat offspring. *British Journal of Nutrition* **98**(4):843-51 DOI: 10.1017/S0007114507812037.

Bayol SA, Macharia R, Farrington SJ, Simbi BH, Stickland NC. 2009. Evidence that a maternal "junk food" diet during pregnancy and lactation can reduce muscle force in offspring. *European Journal of Nutrition* **48**:62-5 DOI: 10.1007/s00394-008-0760-5.
Benkalfat NB, Merzouk H, Bouanane S, Merzouk SA, Bellenger J, Gresti J, Tessier C, Narce M. 2011. Altered adipose tissue metabolism in offspring of dietary obese rat dams. *Clinical Science* 121(1):19-28 DOI: 10.1042/CS20100534.

Blackmore HL, Niu Y, Fernandez-Twinn DS, Tarry-Adkins JL, Giussani DA, Ozanne SE. 2014. Maternal diet-induced obesity programs cardiovascular dysfunction in adult male mouse offspring independent of current body weight. *Endocrinology* 155(10):3970-3980 DOI: 10.1210/en.2014-1383.

Blake-Lamb TL, Locks LM, Perkins ME, Woo Baidal JA, Cheng ER, Taveras EM. 2016. Interventions for Childhood Obesity in the First 1,000 Days. A Systematic Review. *American Journal of Preventive Medicine* 50:780-789 DOI: 10.1016/j.amepre.2015.11.010.

Bouanane S, Benkalfat NB, Baba Ahmed FZ, Merzouk H, Mokhtari NS, Merzouk SA, Gresti J, Tessier C, Narce M. 2009. Time course of changes in serum oxidant/antioxidant status in overfed obese rats and their offspring. *Clinical Science (London, England : 1979)* 116(8):669-80 DOI: 10.1042/CS20080413.

Boujendar S, Reusens B, Merezak S, Ahn MT, Arany E, Hill D, Remacle C. 2002. Taurine supplementation to a low protein diet during foetal and early postnatal life restores a normal proliferation and apoptosis of rat pancreatic islets. *Diabetologia* 45(6):856-66 DOI: 10.1007/s00125-002-0833-6.

Buyukdere Y, Gulec A, Akyol A. 2019. Cafeteria diet increased adiposity in comparison to high fat diet in young male rats. *PeerJ* 5;7:e6656 DOI: 10.7717/peerj.6656.

Cardenas-Perez RE, Fuentes-Mera L, de la Garza AL, Torre-Villalvazo I, Reyes-Castro LA, Rodriguez-Rocha H, Garcia-Garcia A, Corona-Castillo JC, Tovar AR, Zambrano E, Ortiz-Lopez R, Saville J, Fuller M, Camacho A. 2018. Maternal overnutrition by hypercaloric diets programs hypothalamic mitochondrial fusion and metabolic dysfunction in rat male offspring. *Nutrition & Metabolism* 15(1):38 DOI: 10.1186/s12986-018-0279-6.

Chahine R, Hanna J, Bassil C, Rihana N, Mounayr A, Greige H. 2010. Beneficial effect of taurine in spontaneous hypertensive rats: Implication of its antioxidant activity. *African Journal of Pharmacy and Pharmacology* 4(12):874-877.

Chaolu H, Asakawa A, Ushikai M, Li YX, Cheng KC, Li JB, Zoshiki T, Terashi M, Tanaka C, Atsuchi K, Sakoguchi T, Tsai M, Amitani H, Horiuchi M, Takeuchi T, Inui A. 2011. Effect of exercise and high-fat diet on plasma adiponectin and nesfatin levels in mice. *Experimental and Therapeutic Medicine* 2(2):369-73 DOI: 10.3892/etm.2011.199.

Chen H, Simar D, Lambert K, Mercier J, Morris MJ. 2008. Maternal and postnatal overnutrition differentially impact appetite regulators and fuel metabolism. *Endocrinology* 149(11):5348-56 DOI: 10.1210/en.2008-0582.

Crew RC, Waddell BJ, Mark PJ. 2016. Maternal obesity induced by a 'cafeteria' diet in the rat does not increase inflammation in maternal, placental or fetal tissues in late gestation. *Placenta* 39:33-40 DOI: 10.1016/j.placenta.2016.01.002.
Crew RC, Waddell BJ, Maloney SK, Mark PJ. 2018. Diet-induced obesity reduces core body temperature across the estrous cycle and pregnancy in the rat. *Chronobiology International* 35(8): 1077-87 DOI: 10.1080/07420528.2018.1458035

Daniel ZC, Akyol A, McMullen S, Langley-Evans SC. 2014. Exposure of neonatal rats to maternal cafeteria feeding during suckling alters hepatic gene expression and DNA methylation in the insulin signalling pathway. *Genes and Nutrition* 9(1):365 DOI: 10.1007/s12263-013-0365-3.

Desai M, Jellyman JK, Han G, Beall M, Lane RH, Ross MG. 2014. Maternal obesity and high-fat diet program offspring metabolic syndrome. *American Journal of Obstetrics and Gynecology* 211(3):237.e1-237.e13 DOI: 10.1016/j.ajog.2014.03.025.

Dias-Rocha CP, Almeida MM, Santana EM, Costa JCB, Franco JG, Pazos-Moura CC, Trevenzoli IH. 2018. Maternal high-fat diet induces sex-specific endocannabinoid system changes in newborn rats and programs adiposity, energy expenditure and food preference in adulthood. *Journal of Nutritional Biochemistry* 51:56-68 DOI: 10.1016/j.jnutbio.2017.09.019.

Esposito K, Pontillo A, Di Palo C, Giugliano G, Masella M, Marfella R, Giugliano D. 2003. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. *JAMA* 289(14):1799-804 DOI: 10.1001/jama.289.14.1799.

Esteve M, Rafecas I, Fernández-López JA, Remesar X, Alemany M. 1993. Dietary amino acid balances in young Wistar rats fed a cafeteria diet. *Biochemistry and Molecular Biology International* 29(6):1069-81.

Ferro Cavalcante TC, Marcelino da Silva AA, Lira MC, do Amaral Almeida LC, Marques AP, do Nascimento E. 2014. Early exposure of dams to a westernized diet has long-term consequences on food intake and physiometabolic homeostasis of the rat offspring. *International Journal of Food Sciences and Nutrition* 65(8):989-93 DOI: 10.3109/09637486.2014.950208.

Fisher SC, Kim SY, Sharma AJ, Rochat R, Morrow B. 2013. Is obesity still increasing among pregnant women? Prepregnancy obesity trends in 20 states, 2003-2009. *Preventive Medicine* 56:372-8 DOI: 10.1016/j.ypmed.2013.02.015.

George G, Draycott SAV, Muir R, Clifford B, Elmes MJ, Langley-Evans SC. 2019. The impact of exposure to cafeteria diet during pregnancy or lactation on offspring growth and adiposity before weaning. *Scientific Reports* 9(1):14173 DOI: 10.1038/s41598-019-50448-x.

Gugusheff JR, Bae SE, Rao A, Clarke IJ, Poston L, Taylor PD, Coen CW, Muhlhausers BS. 2016. Sex and age-dependent effects of a maternal junk food diet on the mu-opioid receptor in rat offspring. *Behavioral Brain Research* 15(301):124-31 DOI: 10.1016/j.bbr.2015.12.027.

Holemans K, Caluwaerts S, Poston L, Van Assche FA. 2004. Diet-induced obesity in the rat: a model for gestational diabetes mellitus. *American Journal of Obstetrics and Gynecology* 190(3):858-65 DOI: 10.1016/j.ajog.2003.09.025.

Ince S, Arslan-Acaroz D, Demirel HH, Varol N, Ozyurek HA, Zemheri F, Kucukkurt I. 2017. Taurine alleviates malathion induced lipid peroxidation, oxidative stress, and proinflammatory cytokine gene expressions in rats. *Biomedicine & Pharmacotherapy* 96:263-268. DOI: 10.1016/j.biopha.2017.09.141.
Jacobs S, Teixeira DS, Guilherme C, da Rocha CF, Aranda BC, Reis AR, de Souza MA, Franci CR, Sanvitto GL. 2014. The impact of maternal consumption of cafeteria diet on reproductive function in the offspring. *Physiology & Behavior* **129:**2806 DOI: [10.1016/j.physbeh.2014.03.003](https://doi.org/10.1016/j.physbeh.2014.03.003)

Kalem Z, Namli Kalem M, Anadol E, Bakirarar B, Yilmaz C, Elmas C, Yalcinkaya P, Ruso H, Gurgan T. 2018. Maternal Nutrition and Reproductive Functions of Female and Male Offspring. *Reproduction* **156**(4):353-64 DOI: [10.1530/REP-18-0070](https://doi.org/10.1530/REP-18-0070).

Kim KS, Oh DH, Kim JY, Lee BG, You JS, Chang KJ, Chung HJ, Yoo MC, Yang HI, Kang JH, Hwang YC, Ahn KJ, Chung HY, Jeong IK. 2012. Taurine ameliorates hyperglycemia and dyslipidemia by reducing insulin resistance and leptin level in Otsuka Long-Evans Tokushima fatty (OLETF) rats with long-term diabetes. *Experimental & Molecular Medicine* **44**(11):665-73 DOI: [10.3858/emm.2012.44.11.075](https://doi.org/10.3858/emm.2012.44.11.075).

Kim KS, Jang MJ, Fang S, Yoon SG, Kim IY, Seong JK, Yang HI, Hahm DH. 2019. Anti-obesity effect of taurine through inhibition of adipogenesis in white fat tissue but not in brown fat tissue in a high-fat diet-induced obese mouse model. *Amino Acids* **51**(2):245-54 DOI: [10.1007/s00726-018-2659-7](https://doi.org/10.1007/s00726-018-2659-7).

Larsen LH, Sandø-Pedersen S, Ørstrup LKH, Grunnet N, Quistorff B, Mortensen OH. 2017. Gestational Protein Restriction in Wistar Rats; Effect of Taurine Supplementation on Properties of Newborn Skeletal Muscle. *Advances in Experimental Medicine and Biology* **975**:413-433 DOI: [10.1007/978-94-024-1079-2_34](https://doi.org/10.1007/978-94-024-1079-2_34).

Li M, Reynolds CM, Sloboda DM, Gray C, Vickers MH. 2013. Effects of taurine supplementation on hepatic markers of inflammation and lipid metabolism in mothers and offspring in the setting of maternal obesity. *PLoS One* **8**:e76961 DOI: [10.1371/journal.pone.0076961](https://doi.org/10.1371/journal.pone.0076961).

Li M, Reynolds CM, Sloboda DM, Gray C, Vickers MH. 2015. Maternal taurine supplementation attenuates maternal fructose-induced metabolic and inflammatory dysregulation and partially reverses adverse metabolic programming in offspring. *Journal of Nutritional Biochemistry* **26**:267-76 DOI: [10.1016/j.jnutbio.2014.10.015](https://doi.org/10.1016/j.jnutbio.2014.10.015).

Lin S, Hirai S, Yamaguchi Y, Goto T, Takahashi N, Tani F, Mutoh C, Sakurai T, Murakami S, Yu R, Kawada T. 2013. Taurine improves obesity-induced inflammatory responses and modulates the unbalanced phenotype of adipose tissue macrophages. *Molecular Nutrition and Food Research* **57**(12):2155-65 DOI: [10.1002/mnfr.201300150](https://doi.org/10.1002/mnfr.201300150).

Liu J, Liu L, Chen H. 2011. Antenatal taurine supplementation for improving brain ultrastructure in fetal rats with intrauterine growth restriction. *Neuroscience* **181**:265-270 DOI: [10.1016/j.neuroscience.2011.02.056](https://doi.org/10.1016/j.neuroscience.2011.02.056).

Lladó I, Picó C, Palou A, Pons A. 1995. Protein and amino acid intake in cafeteria fed obese rats. *Physiology & Behavior* **58**(3):513-9 DOI: [10.1016/0031-9384(95)00081-s](https://doi.org/10.1016/0031-9384(95)00081-s).

Marseglia L, Manti S, D'Angelo G, Nicotera A, Parisi E, Di Rosa G, Gitto E, Arrigo T. 2014. Oxidative stress in obesity: a critical component in human diseases. *International Journal of Molecular Sciences* **16**(1):378-400 DOI: [10.3390/ijms16010378](https://doi.org/10.3390/ijms16010378).
Merezak S, Reusens B, Renard A, Goosse K, Kalbe L, Ahn MT, Tamarit-Rodriguez J, Remacle C. 2004. Effect of maternal low-protein diet and taurine on the vulnerability of adult Wistar rat islets to cytokines. Diabetologia 47(4):669-75 DOI: 10.1007/s00125-004-1357-z.

Mucellini AB, Goularte JF, de Araujo da Cunha AC, Caceres RC, Noschang C, da Silva Benetti C, Silveira PP, Sanvitto GL. 2014. Effects of exposure to a cafeteria diet during gestation and after weaning on the metabolism and body weight of adult male offspring in rats. British Journal of Nutrition 111(8):1499-506 DOI: 10.1017/S0007114513003838.

Murakami S, Kondo Y, Nagate T. 2000. Effects of long-term treatment with taurine in mice fed a high-fat diet: improvement in cholesterol metabolism and vascular lipid accumulation by taurine. Advances in Experimental Medicine and Biology 483:177-86 DOI: 10.1007/0-306-46838-7_19.

Nagl M, Lehnig F, Stepan H, Wagner B, Kersting A. 2017. Associations of childhood maltreatment with pre-pregnancy obesity and maternal postpartum mental health: a cross-sectional study. BMC Pregnancy Childbirth 17:391 DOI: 10.1186/s12884-017-1565-4.

Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Ababati C, Abera SF, Abraham JP, Abu-Rmeileh NM, Achoki T, AlBuHairan FS, Alemu ZA, Alfonso R, Ali MK, Ali R, Guzman NA, Ammar W, Anwar P, Banerjee A, Barquera S, Basu S, Bennett DA, Bhutta Z, Blore J, Cabral N, Nonato IC, Chang JC, Chowdhury R, Courville KJ, Criqui MH, Cundiff DK, Dabhadkar KC, Danda L, Davis A, Dayama A, Dharmanatne SD, Ding EL, Durrani AM, Esteghamati A, Farzadfar F, Fay DF, Feigin VL, Flaxman A, Forouzanfar MH, Goto A, Green MA, Gupta R, Hafezi-Nejad N, Hankey GJ, Harwood HC, Havmoeller R, Hay S, Hernandez L, Hesseini A, Idrisov BT, Ikeda N, Islami F, Jahangir E, Jassal SK, Jean SH, Jeffrey M, Jonas JB, Kabagambe EK, Khalifa SE, Kengne AP, Khader YS, Khand YH, Kim D, Kimokoti RW, Kinge JM, Kokubo Y, Kosen S, Kwan G, Lai T, Leinsalu M, Li Y, Liang X, Liu S, Logroscino G, Lotufo PA, Lu Y, Ma J, Mainoo NK, Mensah GA, Merriman TR, Mokdad AH, Moschandreas J, Naghavi M, Naheed A, Nand D, Narayan KM, Nelson EL, Neuhauser ML, Nisar MI, Okhuto T, Otso SO, Pedroza A, Prabhakaran D, Roy N, Sampson U, Seo H, Sepanlou SG, Shibuya K, Shiri R, Shiu I, Singh GM, Singh JA, Skirbekk V, Stapelberg NJ, Sturua L, Sykes BL, Tobias M, Tran BX, Trasande L, Toyoshima H, van de Vijver S, Vasankari TJ, Veerman JL, Velasquez-Melendez G, Vlassov VV, Vollset SE, Vos T, Wang C, Wang X, Weiderpass E, Werdecker A, Wright JL, Yang YC, Yatsuya H, Yoon J, Yoon SJ, Zhao Y, Zhou M, Zhao S, Lopez AD, Murray CJ, Gakidou E. 2014. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384: 766-81 DOI: 10.1016/S0140-6736(14)60460-8.

Nielsen CU, Bjerg M, Ulaganathan N, Holm R. 2017. Oral and intravenous pharmacokinetics of taurine in sprague-dawley rats: the influence of dose and the possible involvement of the proton-coupled amino acid transporter, PAT1, in oral taurine absorption. Physiological Reports 5(19):e13467 DOI: 10.14814/phy2.13467.
Noeman SA, Hamooda HE, Baalash AA. 2011. Biochemical study of oxidative stress markers in the liver, kidney and heart of high fat diet induced obesity in rats. *Diabetology & Metabolic Syndrome* 3(1):17 DOI: 10.1186/1758-5996-3-17.

Ogasawara M, Nakamura T, Koyama I, Nemoto M, Yoshida T. 1993. Reactivity of taurine with aldehydes and its physiological role. *Chemical & Pharmaceutical Bulletin* 41(12):2172–2175 DOI: 10.1248/cpb.41.2172.

Oliva L, Aranda T, Caviola G, Fernández-Bernal A, Alemany M, Fernández-López JA, Remesar X. 2017. In rats fed high-energy diets, taste, rather than fat content, is the key factor increasing food intake: a comparison of a cafeteria and a lipid-supplemented standard diet. *PeerJ* 5:e3697 DOI: 10.7717/peerj.3697.

Oliva L, Alemany M, Remesar X, Fernández-López JA. 2019. The Food Energy/Protein Ratio Regulates the Rat Urea Cycle but Not Total Nitrogen Losses. *Nutrients* 11(2):316 DOI: 10.3390/nu11020316.

Pomar CA, van Nes R, Sánchez J, Picó C, Keijer J, Palou A. 2017. Maternal consumption of a cafeteria diet during lactation in rats leads the offspring to a thin-outside-fat-inside phenotype. *International Journal of Obesity* 41(8):1279-1287 DOI: 10.1038/ijo.2017.42.

Pomar CA, Kuda O, Kopecky J, Rombaldova M, Castro H, Picó C, Sánchez J, Palou A. 2019. Alterations in plasma acylcarnitine and amino acid profiles may indicate poor nutrition during the suckling period due to maternal intake of an unbalanced diet and may predict later metabolic dysfunction. *FASEB Journal : Official Publication of The Federation of American Societies for Experimental Biology* 33(1):796-807 DOI: 10.1096/fj.201800327RR.

Popkin BM. Nutrition Transition and the Global Diabetes Epidemic. 2015. *Current Diabetes Reports* 15:64 DOI: 10.1007/s11892-015-0631-4.

Raipuria M, Hardy GO, Bahari H, Morris MJ. 2015. Maternal obesity regulates gene expression in the hearts of offspring. *Nutrition, Metabolism, and Cardiovascular Diseases* 25:881-8 DOI: 10.1016/j.numecd.2015.05.011.

Rashid K, Das J, Sil PC. 2013. Taurine ameliorate alloxan induced oxidative stress and intrinsic apoptotic pathway in the hepatic tissue of diabetic rats. *Food and Chemical Toxicology* 51:317-29 DOI: 10.1016/j.fct.2012.10.007.

Riberoff GA, Wastnedge E, Drake AJ, Sharpe RM, Chambers TJG. 2017. Animal models of maternal high fat diet exposure and effects on metabolism in offspring: a meta-regression analysis. *Obesity Reviews* 18(6):673-686 DOI: 10.1111/obr.12524.

Rosa FT, Freitas EC, Deminice R, Jordão AA, Marchini JS. 2014. Oxidative stress and inflammation in obesity after taunine supplementation: a double-blind, placebo-controlled study. *European Journal of Nutrition* 53(3):823-30 DOI: 10.1007/s00394-013-0586-7.

Rossetti MF, Schumacher R, Gastiazoro MP, Lazzarino GP, Andreoli MF, Stoker C, Varayoud J, Ramos JG. 2020. Epigenetic Dysregulation of Dopaminergic System by Maternal Cafeteria Diet During Early Postnatal Development. *Neuroscience* 1(424):12-23 DOI: 10.1016/j.neuroscience.2019.09.016.
Sabater D, Agnelli S, Arriarán S, Fernández-López JA, Romero Mdel M, Alemany M, Remesar X. 2014. Altered nitrogen balance and decreased urea excretion in male rats fed cafeteria diet are related to arginine availability. *BioMed Research International* **2014**:959420. DOI: 10.1155/2014/959420.

Salvadó MJ, Segués T, Arola L. 1991. Postnatal development of plasma amino acids in hyperphagic rats. *Annals of Nutrition and Metabolism* **35**(4): 242-248 DOI: 10.1159/000177652.

Sampey BP, Vanhoose AM, Winfield HM, Freemerman AJ, Muehlbauer MJ, Fueger PT, Newgard CB, Makowski L. 2011. Cafeteria diet is a robust model of human metabolic syndrome with liver and adipose inflammation: comparison to high-fat diet. *Obesity (Silver Spring)* **19**:1109-17 DOI: 10.1038/oby.2011.18.

Sánchez-Blanco C, Amusquivar E, Bispo K, Herrera E. 2016. Influence of cafeteria diet and fish oil in pregnancy and lactation on pups' body weight and fatty acid profiles in rats. *European Journal of Nutrition* **55**(4):1741-53 DOI: 10.1007/s00394-015-0992-0.

Sheen JM, Yu HR, Tain YL, Tsai WL, Tiao MM, Lin IC, Tsai CC, Lin YJ, Huang LT. 2018. Combined maternal and postnatal high-fat diet leads to metabolic syndrome and is effectively reversed by resveratrol: a multiple-organ study. *Scientific Reports* **8**(1):5607 DOI: 10.1038/s41598-018-24010-0.

Shivaraj MC, Marcy G, Low G, Ryu JR, Zhao X, Rosales FJ, Goh EL. 2012. Taurine induces proliferation of neural stem cells and synapse development in the developing mouse brain. *PLoS One* **7**(8): e42935 DOI: 10.1371/journal.pone.0042935.

Son JS, Liu X, Tian Q, Zhao L, Chen Y, Hu Y, Chae SA, de Avila JM, Zhu MJ, Du M. 2019. Exercise prevents the adverse effects of maternal obesity on placental vascularization and fetal growth. *The Journal of Physiology* **597**(13):3333-3347 DOI: 10.1113/JP277698.

Speight A, Davey WG, McKenna E, Voigt JW. 2017. Exposure to a maternal cafeteria diet changes open-field behaviour in the developing offspring. *International Journal of Developmental Neuroscience* **57**:34-40 DOI: 10.1016/j.ijdevneu.2016.12.005.

Stuebe AM, Rich-Edwards JW. 2009. The reset hypothesis: lactation and maternal metabolism. *American Journal of Perinatology* **26**(1):81-8 DOI: 10.1055/s-0028-1103034.

Suárez-García S, Del Bas JM, Caimari A, Escorihuela RM, Arola L, Suárez M. 2017. Impact of a cafeteria diet and daily physical training on the rat serum metabolome. *PLoS One* **12**(2):e0171970 DOI: 10.1371/journal.pone.0171970.

Tsuboyama-Kasaoka N, Shozawa C, Sano K, Kamei Y, Kasaoka S, Hosokawa Y, Ezaki O. 2006. Taurine (2-aminoethanesulfonic acid) deficiency creates a vicious circle promoting obesity. *Endocrinology* **147**(7):3276-84 DOI: 10.1210/en.2005-1007.

Vithayathil MA, Gugusheff JR, Ong ZY, Langley-Evans SC, Gibson RA, Muhlhausler BS. 2018. Exposure to maternal cafeteria diets during the suckling period has greater effects on fat deposition and Sterol Regulatory Element Binding Protein-1c (SREBP-1c) gene expression in rodent offspring compared to exposure before birth. *Nutrition & Metabolism* **15**:17 DOI: 10.1186/s12986-018-0253-3.
Williams L, Seki Y, Vuguin PM, Charron MJ. 2014. Animal models of in utero exposure to a high fat diet: a review. Biochimica et Biophysica Acta 1842(3):507-519
DOI: 10.1016/j.bbadis.2013.07.006.

Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, Chen CL, Tai TY, Chuang L.M. 2001. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. The Journal of Clinical Endocrinology and Metabolism 86(8):3815-9
DOI: 10.1210/jcem.86.8.7741.

Yesilbursa D, Serdar Z, Serdar A, Sarac M, Coskun S, Jale C. 2005. Lipid peroxides in obese patients and effects of weight loss with orlistat on lipid peroxides levels. International Journal of Obesity 29(1):142-5 DOI: 10.1038/sj.ijo.0802794.

Zheng Y, Qu H, Wang D, Li S, Zhang C, Piao F. 2017. Protection of Taurine Against Arsenic-Induced DNA Damage of Mice Kidneys. Advances in Experimental Medicine and Biology 975:917-927 DOI: 10.1007/978-94-024-1079-2_73.
Figure 1

Study design

Control diet (CON); control diet with 1.5% taurine in drinking water (CONT); cafeteria diet (CAF); cafeteria diet with 1.5% taurine in drinking water (CAFT). Values for n show the number of successful pregnancies in each group.
Figure 2

Maternal water and taurine intakes

(a) Water intake before and during pregnancy in rats fed a CON, control chow diet; CONT, control chow diet supplemented with taurine; CAF, cafeteria diet; CAFT, cafeteria diet supplemented with taurine. Values are means, with standard errors represented by vertical bars, for n=6 (CON); n=7 (CONT, CAF and CAFT). Water intake during the pre-gestational period was significantly lower in the CAF and CAFT fed animals (effect of diet, P<0.001). Water intake during the gestational period was significantly lower in the CAF and CAFT fed animals (effect of diet and study weeks, P<0.001). Water intake during the lactation period was significantly lower in the CAF and CAFT fed animals (effect of diet, P<0.001; study weeks P<0.001; interaction between diet*study weeks, P<0.001). (b) Taurine intake (mg/g body weight/day) before and during pregnancy in rats fed a CONT, control chow diet supplemented with taurine; CAFT, cafeteria diet supplemented with taurine. Values are means, with standard errors represented by vertical bars, for n=7 (CONT and CAFT). Taurine intake during the pre-gestational period was significantly lower in the CAFT fed animals (effect of diet, P<0.001). Taurine intake during the gestational period was significantly lower in the CAFT fed animals (effect of diet and study weeks, P<0.001). Taurine intake during the lactation period was significantly lower in the CAFT fed animals (effect of diet, P<0.001; study weeks P<0.001; interaction between diet*study weeks, P<0.001) a,b Mean values with unlike superscript letters were significantly different (P<0.001)
Manuscript to be reviewed

(a)

Water intake (g/d)

Pre-gestation | Gestation | Lactation

Study weeks

- CON - CONT - CAF - CAFT

(b)

Taurine intake (mg/g/day)

Pre-gestation | Gestation | Lactation

Study weeks

- CONT - CAFT
Figure 3

Body weight changes before and during pregnancy

CON, control chow diet; CONT, control chow diet supplemented with taurine; CAF, cafeteria diet; CAFT, cafeteria diet supplemented with taurine. Values are means, with standard errors represented by vertical bars, for n=6 (CON); n=7 (CONT, CAF and CAFT). A significant interaction between diet and study weeks influenced body weight during pre-gestational period (interaction between diet*study weeks, P=0.002). Body weight during the gestational period did not differ between groups (effect of diet, P=0.369; study weeks, P<0.001). Body weight during the lactation period was significantly lower in the CAFT fed animals than CONT fed animals (effect of diet, P=0.035; interaction between diet*study weeks, P<0.001). Mean values with unlike superscript letters were significantly different (P<0.001).
A line graph illustrates the change in body weight (g) over study weeks. The x-axis represents study weeks, ranging from -7 to 6. The y-axis represents body weight in grams, ranging from 0 to 350. Four different groups are depicted: CON, CONT, CAF, and CAFT. The graph shows a trend of increasing body weight over time, with specific markers indicating significant differences between groups. The letter 'a' or 'b' denotes statistical significance, with 'a' and 'b' indicating different levels of significance. There is also a note marked with an asterisk (*) indicating a specific point of interest or significance.
Figure 4

Body weight changes of offspring during lactation period

CON, rats fed the control chow diet before and during pregnancy; CONT, rats fed the control chow diet supplemented with taurine before and during pregnancy; CAF, rats fed the cafeteria diet before and during pregnancy; CAFT, rats fed the cafeteria diet supplemented with taurine before and during pregnancy. (a) Body weight changes of male offspring during lactation period. (b) Body weight changes of female offspring during lactation period. Values are means, with standard errors represented by vertical bars, for n=18 (CON, males), n=28 (CON, female), n=20 (CONT, male), n=25 (CONT, female), n=25 (CAF, male), n=22 (CAF, female), n=27 (CAFT, male) and n=26 (CAFT, female). Body weight was significantly influenced by maternal diet (P<0.001), study weeks (P<0.001) and interaction of maternal diet and study weeks (P<0.001). Body weight during the lactation period was significantly lower in CAF and CAFT offspring than CON and CONT offspring (effect of diet, P<0.001). Mean values with unlike superscript letters were significantly different (P<0.001)
Table 1 (on next page)

Average daily maternal intakes of energy and nutrients per body weight during the pre-gestational, gestational and lactation periods

Mean values with their standard errors, n=6 (CON), n=7 (CONT, CAF and CAFT). CON, control chow diet; CONT, control chow diet supplemented with taurine; CAF, cafeteria diet; CAFT, cafeteria diet supplemented with taurine. † Diet and study weeks significantly influenced fat intake during pre-gestation (Diet, P<0.001; study weeks, P<0.001), gestation (Diet, P<0.001; study weeks, P=0.001) and lactation (Diet, P<0.001; study weeks, P<0.001). A significant interaction between diet and study weeks also influenced fat intake during pre-gestation, gestation and lactation (P<0.05). § Diet and study weeks significantly influenced protein intake during pre-gestation (Diet, P<0.001; study weeks, P<0.001), gestation (Diet, P<0.001; study weeks, P<0.001) and lactation (Diet, P<0.001; study weeks, P<0.001). A significant interaction between diet and study weeks also influenced protein intake during gestation and lactation (P<0.05). ‡ Diet and study weeks significantly influenced carbohydrate intake during pre-gestation (Diet, P=0.001; study weeks, P<0.001), gestation (Diet, P<0.001; study weeks, P<0.001) and lactation (Diet, P<0.001; study weeks, P<0.001). A significant interaction between diet and study weeks also influenced carbohydrate intake during gestation and lactation (P<0.01). ¥ Diet and study weeks significantly influenced sodium intake during pre-gestation (Diet, P<0.001; study weeks, P<0.001) and gestation (Diet, P=0.008; study weeks, P=0.021). A significant interaction between diet and study weeks also influenced sodium intake during pre-gestation (interaction between diet*study weeks, P<0.05). A significant interaction between diet and study weeks influenced sodium intake during lactation (interaction between diet*study weeks, P<0.05). a,b,c Mean values with unlike superscript letters were significantly different (P<0.05).
Table 1. Average daily maternal intakes of energy and nutrients per body weight during the pre-gestational, gestational and lactation periods

Period	Group	Dietary intake				
		Energy (kJ/g/d)	Fat (g/g/d)†	Protein (g/g/d)§	Carbohydrate (g/g/d)‡	Na (mg/g/d)¥
Pre-gestational	CON	1.357±0.060	0.002±0.001a	0.019±0.001a	0.058±0.003a,b	0.209±0.011a
intakes (weeks -7 to 0)	CONT	1.395±0.056	0.002±0.001a	0.019±0.001a	0.059±0.002b	0.215±0.011a
	CAF	1.566±0.056	0.016±0.001b	0.010±0.001b	0.049±0.002a,c	0.293±0.011b
	CAFT	1.503±0.056	0.016±0.001b	0.010±0.001b	0.045±0.002c	0.285±0.011b
Gestational	CON	1.184±0.057	0.002±0.001a	0.016±0.000a	0.050±0.002a	0.182±0.013a,b
intakes (weeks 1 to 3)	CONT	1.127±0.053	0.002±0.001a	0.016±0.000a	0.048±0.002a	0.173±0.012a
	CAF	1.259±0.053	0.013±0.001b	0.008±0.000b	0.037±0.002b	0.220±0.012b
	CAFT	1.185±0.053	0.013±0.001b	0.007±0.000b	0.037±0.002b	0.227±0.012b
Lactation	CON	2.368±0.141	0.004±0.002a	0.033±0.002a	0.101±0.005a	0.364±0.039
intakes (weeks 4 to 6)	CONT	2.100±0.130	0.003±0.001a	0.029±0.001a	0.089±1.004a	0.323±0.036
	CAF	2.091±0.130	0.023±0.001b	0.014±0.001b	0.54±0.004b	0.424±0.036
	CAFT	2.379±0.130	0.023±0.001b	0.015±0.001b	0.68±0.004b	0.459±0.036
Mean values with their standard errors, n=6 (CON), n=7 (CONT, CAF and CAFT). CON, control chow diet; CONT, control chow diet supplemented with taurine; CAF, cafeteria diet; CAFT, cafeteria diet supplemented with taurine.

† Diet and study weeks significantly influenced fat intake during pre-gestation (Diet, P<0.001; study weeks, P<0.001), gestation (Diet, P<0.001; study weeks, P=0.001) and lactation (Diet, P<0.001; study weeks, P<0.001). A significant interaction between diet and study weeks also influenced fat intake during pre-gestation, gestation and lactation (P<0.05).

§ Diet and study weeks significantly influenced protein intake during pre-gestation (Diet, P<0.001; study weeks, P<0.001), gestation (Diet, P<0.001; study weeks, P<0.001) and lactation (Diet, P<0.001; study weeks, P<0.001). A significant interaction between diet and study weeks also influenced protein intake during gestation and lactation (P<0.05).

‡ Diet and study weeks significantly influenced carbohydrate intake during pre-gestation (Diet, P=0.001; study weeks, P<0.001), gestation (Diet, P<0.001; study weeks, P<0.001) and lactation (Diet, P<0.001; study weeks, P<0.001). A significant interaction between diet and study weeks also influenced carbohydrate intake during gestation and lactation (P<0.01).

¥ Diet and study weeks significantly influenced sodium intake during pre-gestation (Diet, P<0.001; study weeks, P<0.001) and gestation (Diet, P=0.008; study weeks, P=0.021). A significant interaction between diet and study weeks also influenced sodium intake during pre-gestation and lactation (P<0.05).
a,b,c Mean values with unlike superscript letters were significantly different (P<0.05).
Maternal organ weight and fat depot mass

Mean values with their standard errors, n=6 (CON), n=7 (CONT, CAF and CAFT). CON, control chow diet; CONT, control chow diet supplemented with taurine; CAF, cafeteria diet; CAFT, cafeteria diet supplemented with taurine. * Diet significantly influenced liver weight (P<0.001, ANOVA). § Diet significantly influenced right kidney weight (P<0.001, Kruskal-Wallis). ‡ Diet significantly influenced left kidney weight (P<0.001, Kruskal-Wallis). ¥ Diet significantly influenced gonadal fat mass (P<0.001, ANOVA). ¶ Diet significantly influenced peri-renal fat mass (P<0.001, ANOVA). a,b Mean values with unlike superscript letters were significantly different (P<0.05).
Table 2. Maternal organ weight and fat depot mass

Group	Liver*	Heart	Right kidney§	Left kidney‡	Gonadal fat¥	Peri-renal fat¶
CON	10.99±0.59^a	0.72±0.03	1.13±0.05^a	1.05±0.04^a	1.67±0.52^a	0.58±0.22^a
CONT	11.39±0.55^a	0.76±0.03	1.15±0.04^a	1.11±0.04^a	1.67±0.48^a	0.58±0.20^a
CAF	8.58±0.55^b	0.77±0.03	0.82±0.04^b	0.76±0.04^b	5.92±0.48^b	2.53±0.22^b
CAFT	8.12±0.55^b	0.74±0.03	0.87±0.04^b	0.82±0.04^b	4.42±0.48^b	2.10±0.24^b

Mean values with their standard errors, n=6 (CON), n=7 (CONT, CAF and CAFT). CON, control chow diet; CONT, control chow diet supplemented with taurine; CAF, cafeteria diet; CAFT, cafeteria diet supplemented with taurine.

* Diet significantly influenced liver weight (P<0.001, ANOVA).
§ Diet significantly influenced right kidney weight (P<0.001, Kruskal-Wallis).
‡ Diet significantly influenced left kidney weight (P<0.001, Kruskal-Wallis).
¥ Diet significantly influenced gonadal fat mass (P<0.001, ANOVA).
¶ Diet significantly influenced peri-renal fat mass (P<0.001, ANOVA).

^{a,b} Mean values with unlike superscript letters were significantly different (P<0.05).
Table 3 (on next page)

Concentrations of biochemical parameters in maternal plasma

Mean values with their standard errors, n=6 (CON), n=7 (CONT, CAF and CAFT). CON, control chow diet; CONT, control chow diet supplemented with taurine; CAF, cafeteria diet; CAFT, cafeteria diet supplemented with taurine. ¶ Diet significantly influenced maternal plasma HbA1c levels (P=0.02, Kruskal-Wallis) * Diet significantly influenced maternal plasma leptin levels (P=0.047, ANOVA). † Diet significantly influenced maternal plasma adiponectin levels (P<0.001, Kruskal-Wallis). § Diet significantly influenced maternal plasma malondialdehyde levels (P=0.02, ANOVA). a,b Mean values with unlike superscript letters were significantly different (P<0.05, ANOVA).
Biochemical Parameter	Study Groups			
	CON	CONT	CAF	CAFT
Glucose (mg/dL)	130.56±11.23	159.41±10.40	123.78±11.23	121.74±10.40
Insulin (µU/mL)	41.34±4.77	30.51±4.41	26.06±4.77	27.79±4.41
IGF-1 (ng/mL)	745.21±170.80	963.88±158.13	1358.57±170.80	773.23±158.13
C-peptide (ng/mL)	2.22±0.23	5.36±1.21	4.67±1.23	7.07±1.21
HbA1c¶ (ng/mL)	12.06±1.80\(^a\)	20.84±1.81\(^b\)	27.19±1.80\(^b\)	20.30±1.85\(^b\)
Cholesterol (mmol/L)	2.89±0.15	2.57±0.14	2.76±0.15	2.59±0.14
Triglycerides (mmol/L)	1.49±0.18	1.56±0.19	1.55±0.19	1.31±1.18
Leptin (ng/mL)*	0.55±0.09\(^a\)	0.63±0.09\(^a\)	0.93±0.09\(^b\)	0.76±0.09\(^a,b\)
Adiponectin (µg/mL)†	3.09±1.58\(^a\)	3.52±1.46\(^a\)	11.53±1.58\(^b\)	15.73±1.58\(^b\)
Malondialdehyde (µM)§	11.76±4.48\(^a\)	21.74±4.15\(^a\)	32.69±4.48\(^b\)	16.86±4.15\(^a\)
Mean values with their standard errors, n=6 (CON), n=7 (CONT, CAF and CAFT). CON, control chow diet; CONT, control chow diet supplemented with taurine; CAF, cafeteria diet; CAFT, cafeteria diet supplemented with taurine.

¶ Diet significantly influenced maternal plasma HbA1c levels (P=0.02, Kruskal-Wallis)

* Diet significantly influenced maternal plasma leptin levels (P=0.047, ANOVA).

† Diet significantly influenced maternal plasma adiponectin levels (P<0.001, Kruskal-Wallis).

§ Diet significantly influenced maternal plasma malondialdehyde levels (P=0.02, ANOVA).

a,b Mean values with unlike superscript letters were significantly different (P<0.05, ANOVA).
Table 4 (on next page)

Concentrations of amino acids in maternal plasma

Mean values with their standard errors, n=6 (CON), n=7 (CONT, CAF and CAFT). CON, control chow diet; CONT, control chow diet supplemented with taurine; CAF, cafeteria diet; CAFT, cafeteria diet supplemented with taurine. * Diet significantly influenced plasma aspartic acid concentrations (P<0.001, ANOVA) † Diet significantly influenced plasma phenylalanine concentrations (P=0.045, ANOVA) § Diet significantly influenced plasma serine concentrations (P<0.001, ANOVA) ‡ Diet significantly influenced plasma tyrosine concentrations (P=0.008, Kruskal-Wallis) ¶ Diet significantly influenced plasma taurine concentrations (P<0.001, Kruskal-Wallis) a,b,c Mean values with unlike superscript letters were significantly different (P<0.05)
Table 4. Concentrations of amino acids in maternal plasma (mean values with their standard errors, n=6-7)

Amino acids (µmol/L)	CON	CONT	CAF	CAFT
Alanine	1395.82±123.51	1286.27±114.35	1389.92±123.51	1196.91±114.35
Asparagine	104.54±8.01	81.49±7.42	85.43±8.01	82.59±7.42
Aspartic acid*	884.70±93.41a	931.75±86.48a	1226.15±93.41ab	1473.46±86.48b
Phenylalanine†	1047.72±70.25a	943.44±65.04ab	831.10±70.25ab	775.27±65.04b
Glycine	721.94±58.33	774.16±53.99	723.66±58.33	589.13±53.99
Glutamic acid	370.66±65.59	362.06±60.73	436.48±65.59	483.81±60.73
Glutamine	328.56±84.10	276.20±77.86	383.76±84.10	306.11±77.86
Histidine	148.90±15.34	149.09±14.21	138.04±15.34	165.70±14.21
Isoleucine	177.64±14.63	152.56±13.54	147.57±14.63	146.25±13.54
Lysine	1845.06±166.31	1911.47±153.97	1826.96±166.31	2216.45±153.97
Leucine	358.83±27.33	308.95±25.30	269.25±27.33	272.11±25.30
Methionine	201.70±28.16	205.31±26.07	164.34±28.16	169.19±26.07
Ornithine	306.06±49.88	313.74±46.18	261.22±49.88	181.25±46.18
Proline	283.99±22.29	264.72±20.64	319.95±22.29	299.37±20.64
Serine§	623.55±124.60a	548.92±115.36a	1288.82±124.60b	1277.52±115.36b
Cystine	24.24±4.34	26.32±5.02	16.80±3.89	16.63±3.55
Table 4. Concentrations of amino acids in maternal plasma (mean values with their standard errors, n=6-7) (cont.)

Amino acids (µmol/L)

...
Mean values with their standard errors, n=6 (CON), n=7 (CONT, CAF and CAFT). CON, control chow diet; CONT, control chow diet supplemented with taurine; CAF, cafeteria diet; CAFT, cafeteria diet supplemented with taurine.

* Diet significantly influenced plasma aspartic acid concentrations (P<0.001, ANOVA)
† Diet significantly influenced plasma phenylalanine concentrations (P=0.045, ANOVA)
§ Diet significantly influenced plasma serine concentrations (P<0.001, ANOVA)

	CON	CONT	CAF	CAFT
Tyrosine‡	147.64±9.42a	127.09±8.72a	103.73±9.42b	98.54±8.72b
Threonine	496.53±44.89	405.01±41.56	414.88±44.89	435.25±41.56
Tryptophan	139.10±16.31	169.02±15.10	107.18±16.31	121.74±15.10
Valine	354.81±29.85	327.37±27.64	275.34±29.85	299.11±27.64
Cystathionine	22.96±2.96	26.11±2.96	18.69±2.96	21.07±2.74
Alpha-aminoadipic acid	967.51±374.54	327.64±346.75	2338.30±374.54	555.52±346.75
Taurine¶	287.16±44.49a	473.24±41.19c	151.83±44.49b	291.16±41.19a
‡ Diet significantly influenced plasma tyrosine concentrations (P=0.008, Kruskal-Wallis)
¶ Diet significantly influenced plasma taurine concentrations (P<0.001, Kruskal-Wallis)
a,b,c Mean values with unlike superscript letters were significantly different (P<0.05)
Table 5 (on next page)

Organ weight of offspring at the end of lactation (% body weight)

Mean values with their standard errors, n=12 (CON, males), n=22 (CON, female), n=14 (CONT, male), n=17 (CONT, female), n=18 (CAF, male), n=15 (CAF, female), n=20 (CAFT, male) and n=19 (CAFT, female). CON, control chow diet; CONT, control chow diet supplemented with taurine; CAF, cafeteria diet; CAFT, cafeteria diet supplemented with taurine. * Maternal diet significantly influenced liver weight (P<0.001). † Maternal diet significantly influenced brain weight (P=0.001). ‡ Maternal diet significantly influenced right kidney weight (P<0.001). ¥ Maternal diet and sex of the animals significantly influenced left kidney weight (Maternal Diet, P<0.001; Sex, P<0.05). § Maternal diet significantly influenced heart weight (P<0.001).
Table 5. Organ weight of offspring at the end of lactation (% body weight)

Sex	Group	Liver *	Brain†	Right kidney‡	Left kidney¥	Heart§
Male	CON	4.31±0.11^a	3.58±0.13^a	0.66±0.02^a	0.62±0.02^a	0.51±0.02^a
	CONT	3.91±0.11^b	3.57±0.12^a	0.59±0.02^a	0.55±0.02^a	0.51±0.02^a
	CAF	3.43±0.10^c	3.87±0.11^{a,b}	0.55±0.02^b	0.51±0.02^b	0.57±0.01^b
	CAFT	3.45±0.10^c	4.08±0.10^b	0.56±0.02^b	0.52±0.02^b	0.51±0.01^a
Female	CON	4.25±0.09^a	3.59±0.10^a	0.65±0.01^a	0.61±0.02^a	0.51±0.01^a
	CONT	3.95±0.09^b	3.51±0.11^a	0.63±0.02^a	0.61±0.02^a	0.53±0.02^a
	CAF	3.47±0.10^c	3.64±0.12^{a,b}	0.56±0.02^b	0.54±0.02^b	0.55±0.02^b
	CAFT	3.49±0.09^c	3.85±0.10^b	0.58±0.02^b	0.56±0.02^b	0.53±0.02^a

Mean values with their standard errors, n=12 (CON, males), n=22 (CON, female), n= 14 (CONT, male), n=17 (CONT, female), n=18 (CAF, male), n=15 (CAF, female), n=20 (CAFT, male) and n=19 (CAFT, female). CON, control chow diet; CONT, control chow diet supplemented with taurine; CAF, cafeteria diet; CAFT, cafeteria diet supplemented with taurine.

* Maternal diet significantly influenced liver weight (P<0.001, ANOVA).
† Maternal diet significantly influenced brain weight (P=0.001, ANOVA).
‡ Maternal diet significantly influenced right kidney weight (P<0.001, ANOVA).
¥ Maternal diet and sex of the animals significantly influenced left kidney weight (Maternal Diet, P<0.001; Sex, P<0.05, ANOVA).
§ Maternal diet significantly influenced heart weight (P<0.001, ANOVA).