A 1 : 1 co-crystal of quinol and pyridine

Citation for published version:
Oswald, IDH, Motherwell, WDS & Parsons, S 2004, ’A 1 : 1 co-crystal of quinol and pyridine’ Acta Crystallographica Section E: Structure Reports Online, vol 60, pp. O1967-O1969. DOI: 10.1107/S1600536804024547

Digital Object Identifier (DOI):
10.1107/S1600536804024547

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Acta Crystallographica Section E: Structure Reports Online

Publisher Rights Statement:
Copyright © 2004 International Union of Crystallography; all rights reserved.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
A 1:1 co-crystal of quinol and pyridine

A co-crystal of quinol and pyridine would be expected to form with 1:2 stoichiometry because quinol has two hydrogen-bond donors and pyridine has one hydrogen-bond acceptor which is more basic than phenolic oxygen. We report the structure of a 1:1 co-crystal, viz. quinol–pyridine (1/1), C₆H₆O₂-C₅H₅N, which does not conform to this expectation. Its stability appears to imply that a combination of individually relatively weak C–H···O, C–H···π and π···π stacking interactions are energetically competitive with O···H···N hydrogen bonds. Quinol molecules lie on inversion centres, while pyridine is in a general position.

Comment

Quinol shows a great propensity for forming co-crystals, and it is widely used to stabilize compounds that are susceptible to polymerization. A search of the Cambridge Structural Database (CSD, Version 5.25; Allen & Motherwell, 2002) shows that there are 92 co-crystals of quinol with a range of organic compounds. Of all these structures in the CSD, over half contain hydrogen-bond acceptors, e.g. 1,4-dioxane (Barnes et al., 1990). We have recently reported (Oswald et al., 2004) a series of crystal structures of co-crystals of quinol with pyrazine, piperazine, morpholine, pyridine, piperidine and 4,4'-bipyridine (hereafter referred to as guest molecules). These all have closely related packing motifs in which pairs of quinol and guest molecules are connected via N···H···O or C···H···O interactions.

Amine N atoms are more strongly basic than phenol O atoms and the shortest, and by implication strongest, hydrogen bonds formed in our previous studies were those from a phenol OH donor to an amine or a pyridine N atom. Pyrazine and piperazine, which both have two acceptor sites per molecule, were found to form 1:1 co-crystals with quinol, which contains two strong donor functions. In the co-crystals of quinol with molecules with N, NH or NMe and O, CH or CH₂, respectively in the 1 and 4 positions of a six-membered ring, quinol was found to form hydrogen bonds exclusively to the nitrogen moiety, promoting the formation of quinol–guest co-crystals in a 1:2 ratio. This trend is exemplified by pyridine,
which forms a co-crystal containing quinol and pyridine in 1:2 ratio.

In this paper, we report the crystal structure of a 1:1 co-crystal of quinol and pyridine, (I), which is an exception to the general stoichiometry rules described above. It was obtained by refluxing and then cooling a solution of quinol dissolved in a minimum quantity of pyridine.

Co-crystal (I) crystallizes in space group $P\overline{1}$ and the asymmetric unit consists of one molecule of pyridine in a general position and two half-molecules of quinol (labelled A and B) residing on crystallographic inversion centres (Fig. 1). Primary bond distances and angles are normal and are listed in the deposited CIF.

The shortest and strongest intermolecular interactions in the structure are $O\cdots H\cdots O$ and $O\cdots H\cdots N$ hydrogen bonds (Fig. 2 and Table 1). Quinol molecules A and B alternate along a chain built by $O\cdots H\cdots O$ hydrogen bonds, in which molecule A provides the OH-donor functions, while molecule B acts as the acceptor. The chains run along the [110] direction and form a $C_{2h}(14)$ graph set (Bernstein et al., 1995). Molecule B donates to pairs of pyridine molecules, which lie on either side of the chain. Successive pyridine molecules are related by the 1 operations centred in the middle of the quinol rings. Co-crystal (I) is the only co-crystal in our study that we have observed in which quinol molecules are directly hydrogen bonded to one another.

The only conventional hydrogen-bonding function ‘unsatisfied’ by the $N\cdots H\cdots O$ and $O\cdots H\cdots N$ hydrogen bonding described above is the phenol O atom of molecule A. There is a close contact between this phenol group and a pyridine attached to an adjacent chain (C4S−H4S···O1A = 2.57 Å and 127°).

Inter-chain connections are also formed by π−π stacking between pairs of pyridine molecules. The distance between the atoms in one ring and the mean plane of the other varies in the range 3.532–3.538 (2) Å; the planes are exactly parallel by

Figure 1
Displacement ellipsoid plot of (I), showing the two crystallographically independent quinol molecules (labelled A and B) and the pyridine molecule (labelled S). Ellipsoids are drawn at the 30% probability level.

Figure 2
Strong $O\cdots H\cdots O$ hydrogen bonds connect quinol molecules into chains. Pyridine molecules are connected on either side of the chains by $O\cdots H\cdots N$ hydrogen bonds. π−π Stacking and $C\cdots H\cdots O$ interactions involving the pyridine molecules also link the chains into a layer. The $O\cdots H\cdots O$ and $O\cdots H\cdots N$ hydrogen bonds are shown as heavy dashed lines and the weaker $C\cdots H\cdots O$ interactions as open dashes. This view is along the (112) reciprocal lattice direction.

Figure 3
The layers (see Fig. 2) are connected through $C\cdots H\cdots \pi$ and $C\cdots H\cdots O$ interactions to the layers above and below. XI B is the centroid of the benzene ring (see Table 1). This view is along [010].
symmetry. The symmetry code relating the rings in this interaction is \((2 - x, 1 - y, -z) \).

The C4S–H4S⋯O1A and \(\pi\pi \) stacking interactions connect the chains into a layer parallel to \((1\overline{2}) \). The layers are stacked, with quinol molecules above and below the rather ‘open’ region between the pairs of \(\pi \)-stacked pyridine rings in Fig. 2. The layers are connected in this region by C6S–H6S⋯\(\pi \) and C2S–H2S⋯O1B interactions, where the \(\pi \) acceptor is the aromatic ring from a quinol (molecule B, see Fig. 3). The distance between H6S and the centroid of the benzene ring (X1B) in this interaction is 2.53 Å, with an angle of 162° subtended at the H atom. The weak C2S–H2S⋯O1B interaction measures 2.69 Å, with an angle at H2S of 136°.

C–H⋯O hydrogen bonding is now widely accepted (Desiraju & Steiner, 1999), and weak hydrogen bonding can be exploited in supramolecular chemistry and crystal structure design. For example, C–H⋯O bonds may play a very important role in protein folding (Derewenda et al., 1995). The CH groups in pyridine rings are often observed to act as donor groups in CH⋯acceptor interactions. Related interactions also occur in heterocyclic compounds related to pyridine, for example, in quinol–pyrazine (Oswald et al., 2004). Such interactions are strong enough that they can be used in crystal engineering, as demonstrated, for example, by Bond (2003) in a series of co-crystals of pyrazine with carboxylic acids. \(\pi\pi \) Stacking has also been observed to be competitive with conventional hydrogen bonding in, for example, the 1:2 co-crystal of quinol with 4,4′-bipyridine (Oswald et al., 2004).

That a co-crystal with 1:1 stoichiometry should be obtained from a mixture of quinol and pyridine must imply that the combination of C–H⋯O, \(\pi\pi \) stacking and C–H⋯\(\pi \) interactions is competitive with O–H⋯N hydrogen bonding, even for a relatively basic centre such as pyridine.

Experimental

Starting materials were obtained from Sigma–Aldrich and were used as received. Quinol (0.49 g, 4.45 mmol) was refluxed in a minimum volume of pyridine to dissolve the solid. The solution was allowed to cool to room temperature to produce colourless blocks.

Crystal data

C_{6}H_{5}O_{2}C_{8}H_{7}N	Z = 2
M_r = 189.21	D_r = 1.310 Mg m\(^{-3}\)
Triclinic, \(\beta \)	Mo Ka radiation
a = 5.7545 (5) Å	Cell parameters from 2032 reflections
b = 9.1570 (9) Å	\(\theta = 2.9^\circ \)
c = 9.6247 (9) Å	\(\mu = 0.09 \text{ mm}^{-1} \)
\(a = 89.002 (2) \degree \)	\(T = 150 (2) \text{ K} \)
\(\beta = 76.222 (2) \degree \)	Block, colourless
\(\gamma = 77.478 (2) \degree \)	0.33 × 0.18 × 0.18 mm
V = 479.76 (8) Å\(^{3}\)	

Data collection

Bruker SMART APEX CCD area-detector diffractometer	4349 measured reflections
Cryostream cooler (Cosier & Glazer, 1986)	2248 independent reflections
\(\omega \) scans	1853 reflections with \(I > 2 \sigma(I) \)
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)	\(\theta_{ ext{max}} = 28.7^\circ \)
\(T_{\text{max}} = 0.841, T_{\text{min}} = 0.980 \)	\(h = -7 \rightarrow 7 \)
	\(k = -12 \rightarrow 12 \)
	\(l = -12 \rightarrow 13 \)

Refinement

Refinement on \(F^2 \)	\(R[F^2 > 2\sigma(F^2)] = 0.048 \)
wR(F^2) = 0.120	\(S = 1.04 \)
2248 reflections	135 parameters
H atoms treated by a mixture of independent and constrained refinement	\(w = 1/[\sigma^2(I) + (0.049P)^2 + 0.1588P] \)

where \(P = (F^2 + 2F_c^2)/3 \)

Table 1

Hydrogen-bonding geometry (Å, °).

D–H⋯A	D–H	H⋯A	D⋯A	D–H⋯A
O1A–H1A⋯O1B	0.94 (3)	1.81 (3)	2.792 (16)	168 (2)
O1B–H1B⋯N1S	0.93 (2)	1.79 (2)	2.718 (17)	178 (2)
C2S–H2S⋯O1B	0.95	2.69	3.436 (2)	136
C4S–H4S⋯O1A	0.95	2.57	3.225 (2)	127
C8S–H8S⋯A1B	0.95	2.53	3.45	162

Symmetry codes: (i) \(1 + x, y, z \); (ii) \(1 - x, 1 - y, -z \); (iii) \(1 + x, y, z - 1 \). X1B is the centroid of the benzene ring.

H atoms were placed on C atoms in calculated positions (C–O = 0.95 Å) and allowed to ride on their parent atoms [U_{iso}(H) = 1.2U_{eq}(C)]. Hydroxyl H atoms were located in difference maps and refined freely.

Data collection: SMART (Bruker–Nonius, 2001); cell refinement: SAINT (Bruker–Nonius, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON [Spek (2004) as incorporated in WinGX (Farrugia, 1999)] and enCIFer (Version 1.1; Allen et al., 2004).

The authors thank the EPSRC, The University of Edinburgh and The Cambridge Crystallographic Data Centre for funding.

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.

Allen, F. H. & Motherwell, W. D. S. (2002). Acta Cryst. B58, 407–422.

Barnes, J. C., Paton, J. D. & Blyth, C. S. (1990). Acta Cryst. C46, 1183–1184.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1515–1517.

Bond, A. D. (2003). Chem. Commun. pp. 250–251.

Bruker-Nonius (2001). SMART. Version 5.624. Bruker-Nonius Inc., Madison, Wisconsin, USA.

Bruker-Nonius (2003). SAINT. Version 7. Bruker-Nonius Inc., Madison, Wisconsin, USA.

Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.

Derewenda, Z. S., Lee, L. & Derewenda, U. (1995). The Weak Hydrogen Bond. IUCr Monographs on Crystallography, No. 9. Oxford University Press.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Oswald, I. D. H., Motherwell, W. D. S. & Parsons, S. (2004). Acta Cryst. B60, Submitted.

Sheldrick, G. M. (2001). SHELXTL. Version 6.01. Bruker-Nonius Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

Spek, A. L. (2004). PLATON. Utrecht University, The Netherlands.

The authors thank the EPSRC, The University of Edinburgh and The Cambridge Crystallographic Data Centre for funding.