Aberrations in how people form expectations about reward and how they respond to receiving rewards are thought to underlie depression. Indeed, there is considerable face validity to the relationship between depression and reward-related processes. Disruptions in reward processing phases such as anticipation, decision, action, and consumption are thought to map onto distinctive depressive symptoms—anticipatory anhedonia (loss of interest in previously pleasant activities), impaired decision making, low energy, and consummatory anhedonia (inability to experience pleasure), respectively (1) (see Figure S1A for an example and detailed description). These reward processes are instantiated in a network encompassing the ventral striatum, the anterior cingulate cortex, and the orbital prefrontal cortex (2). Importantly, work from animal models has shown that lesions in these areas produce anhedonic phenotypes that are characteristic of depression (3,4). Finally, meta-analytic evidence from functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) studies also shows that altered neural signals in these brain areas acquired during reward tasks are associated with depression (1,5,6). As we review below, the most commonly used task in fMRI studies of reward processing is the monetary incentive delay (MID) task (7), illustrated in Figure S1B. The MID task allows assessment of neural activity related to anticipation or feedback of losses or gains in contrast to neutral trials.

Obviously, the mapping of reward processing onto depressive symptoms could have important implications. It would be clinically useful if tasks that measure reward processing abnormalities (RPAs) could predict onset of depression. Similarly, if RPAs were causally involved, then modifying these abnormalities could help prevent or treat depression. Given this potential, we scrutinized evidence of this relationship and the theoretical claims that underlie it. Therefore, we build on previous reviews that have quantified cross-sectional associations; evaluating the literature in the framework provided by classical work on causality (8) and contemporary approaches to prediction (9). First, we examine the meta-analytic evidence for a cross-sectional association between RPAs and depression. Second, we conduct a new meta-analysis of the longitudinal associations between RPAs and depression. Third, we review evidence on the impact that manipulating reward processing has on depression. Fourth, we consider the challenges of measuring symptoms of depression and reward processing and provide suggestions to address these challenges. Finally, we highlight the conceptual challenges to the purported relationship between RPAs and depression and provide suggestions for improved theoretical framing of future study designs.
CROSS-SECTIONAL ASSOCIATIONS

RPAs must co-occur with depression in the same individuals if they are to be causes or predictors of the disease. In this section, we critically review meta-analyses of this relationship.

Functional Magnetic Resonance Imaging

Coordinate-based meta-analyses test the consistency of the neural location of findings across studies, typically with an approach called activation likelihood estimation (10). Three such meta-analyses have examined cross-sectional differences in reward processing between healthy volunteers and individuals with depression or at high risk of depression (1,5,6). These studies along with their characteristics are presented in Figure 1. While these three analyses included different sets of studies and identified consistent differences in reward-related activity related to depression in a diverse set of regions, they all identified reduced response to reward in the ventral striatum or caudate. Yet, these studies did not provide estimates of the strength of this association. Furthermore, these studies tested only one direction of effect at a time and did not include null effects or effects in the opposite direction, possibly introducing a positive bias.

Electroencephalogram

In EEG studies, reward processing is assessed by contrasting the signal in response to reward feedback with neutral or loss feedback. Depending on the contrast used, this is called the feedback-related negativity or the reward positivity (RewP). Keren et al. (1) meta-analyzed 12 studies that have compared the feedback-related negativity/RewP signal between participants with depression and healthy participants and found a mean effect size (Cohen’s d) of .38 (95% confidence interval [CI] = [.12, .64]) across age ranges and a mean effect size of .50 (95% CI = [.15, .85]) in 6 studies on children and adolescents. To give a sense of the potential discriminative capability of this association, we calculated the area under the receiver operating characteristic curve (AUC) [see Box S1 for definition and interpretation of AUC; see Salgado et al. (11) for calculation] for these estimates and found that they correspond to an AUC of .61 (95% CI = [.53, .68]) across age ranges and to an AUC of .64 (95% CI = [.54, .72]) in children and adolescents. An AUC of .64 is lower than the performance of even a brief screening questionnaire such as the 2-item Patient Health Questionnaire, which has an AUC of .90 or .88 in younger subjects (12).

In combination, the cross-sectional fMRI and EEG studies to date show that there is a small but consistent difference in reward processing in individuals with depression. The low magnitude of the association means that it would not be a good tool for diagnosing depression but still admits the possibility of a causal relationship.

LONGITUDINAL ASSOCIATION

RPAs must precede depression if they are to be a cause of it. Moreover, RPAs could be a prognostic biomarker if they predicted changes in symptoms. Here we conducted a set of preregistered random effects meta-analyses of longitudinal fMRI and EEG studies (113–35; see also Supplement) to quantify the correlation between neural signals of reward processing and subsequent changes in depression symptoms (see Tables S2–S5 for information extracted from these articles). We imputed nonsignificant unreported effects without introducing bias via iterative maximum likelihood estimation as implemented in the MetaNSUE method (36). We took the strongest striatal or RewP effect from each study, considering observational and treatment studies separately. We found that both striatal fMRI signals ($r = -.10$, 95% CI = [−.18, −03], $p = .0074$) and RewP ($r = -.18$, 95% CI = [−.30, −04], $p = .011$) are inversely related with changes in depressive symptoms in observational studies (Table 1; see Table S6 for results from treatment studies and Figures S2–S7 for additional forest plots). These estimates are upwardly biased estimates because we used the strongest striatal or RewP effect from each study, combining both region-of-interest and voxel-level results. We also tested a set of global hypotheses in which we took the strongest correlation across the entire brain from each study. We analyzed the absolute value of these correlations because we included activations, connectivity, and psychophysiological interactions. The purpose of these global hypotheses is to define the upper bounds of the relationship between neural reward processing signals and changes in depression symptoms. Based on this, the upper bound for the relationship is .17 (95% CI = [.09, .25]) for observational fMRI studies, with predictions using EEG in a similar range ($r = .20$, 95% CI = [.04, .35]). These associations are large enough to be of mechanistic interest but correspond to AUCs of .60 (95% CI = [.55, .65]) for fMRI and .61 (95% CI = [.50, .70]) for EEG and therefore are unlikely to be useful for prognosis on their own.

There are some limitations to these meta-analyses that may have led to an overestimation of the relationship between RPAs and depression. In particular, only two studies provide out-of-sample tests of prediction accuracy (19,28) (Table S4); the others should be considered tests of within-sample association and would overestimate predictive performance as defined in Box S2. Open science practices improve reliability and reduce positive bias in published reports (37,38), but they are not yet broadly adopted and were not observed in the reviewed studies (Table S5). Finally, we were able to find only a small number of relevant studies and cannot exclude the possibility of study selection bias.

Implications of Measurement Error for Estimating the Relationship Between Reward Processing and Depression

Here we demonstrate that our current ability to estimate the correlation between RPAs and change in depression is affected by measurement error, operationalized as the reliability of a measure. Importantly, measurement error has profound implications for sample size required for future studies. To assess the degree of measurement error in studies reviewed in the previous section, we estimated the reliability of past fMRI studies of reward in a random-effects meta-analysis of test–retest reliability across the 9 reward-related fMRI analyses (39–45) from Elliott et al. (39) (median $n = 25$, interquartile range = 5; median test–retest interval = 14 days, interquartile range = 20 days) (Table S7). We found the test–retest reliability to be .44 (95% CI = [.28, .58]). Using these estimates, we conducted a power analysis for future studies as a function of
future fMRI reward signal reliability. We compute the expected future observed effect size in two steps. First, previous effect sizes need to be reliability corrected by dividing the effect size by the reliability of the measures used in these studies. Then, to obtain the expected observed effect size in a future study, the reliability-corrected effect size needs to be multiplied by the anticipated reliability (see Supplemental Methods for more details). Figure 3 demonstrates how expected effect sizes and, as a result, required sample sizes are affected by past reliability (x-axis) as well as assumed future reliabilities. The figure also makes clear why investing in improving fMRI reliability in future studies is crucial (see shifts in required sample sizes given different future reliabilities).

Our meta-analysis focused on univariate analyses to facilitate comparisons across studies, but multivariate methods are a promising approach to improve reliability (46,47). These methods may pool information across multiple regions, multiple phases of reward processing (14,31), multiple modalities, or all of the above (34). There are many approaches in machine learning to combine multiple predictors (48), including regularized regression, random forests, and deep learning, but application to prediction of future disease severity remains rare. The analogy to similar approaches in genetics may help explain this; just as single nucleotide polymorphisms have proven to have small individual effects, but polygenic risk scores have proven to be useful for prediction (49), so could neural predictors of disease severity benefit from multivariate approaches.

In sum, there is evidence that reward processing signals correlate with changes in depression symptoms. This correlation is consistent with the hypothesized mechanism of RPAs causing anhedonia and depression.

MANIPULABILITY

If RPAs cause depression, then altering the reward processing network should alter the clinical phenotype and course of depression. Manipulating reward stimuli changes ventral

Table 1. Summary of Longitudinal Meta-analytic Hypotheses

Modality	Specificity	Design	k	r [95% CI]	z	p	F2	Worst r	Worst z	Worst p
fMRI	Striatum	Obs.	9	−.10 [−.18, −.03]	−2.64	.0074	4.57%	.08	−2.24	.025
EEG	RewP	Obs.	5	−.18 [−.30, −.04]	−2.63	.011	74.41%	−.11	−2.07	.038
fMRI	Global	Obs.	13	.17 [.09, .25]	4.30	.011	51.45%	.15	3.76	
EEG	Global	Obs.	5	.20 [.04, .35]	2.54	81.46%	.12	2.19		

The global results are best-case analyses taking the absolute value of the strongest effect from any reward-related analysis to define the upper bounds of the relationship between reward processing and future changes in depression. No p values are given for global results because significant difference from 0 is trivial after taking the absolute value. The results shown here are from observational studies; results from treatment studies are shown in Table S6. The least significant results from a leave-one-out analysis are shown in the “worst” columns. The results of the leave-one-out analysis indicate that these correlations would be reduced, but still likely different from 0, if the most significant study were removed from the analysis in each case.

CI, confidence interval; EEG, electroencephalogram; fMRI, functional magnetic resonance imaging; Obs., observational; RewP, reward positivity.
the possibility of a causal relationship. Manipulations of the reward processing system, supporting evidence for the manipulability of depression symptoms via sertraline on depressive symptoms (14). This provides some serotonergic systems in 222 adults found that an fMRI-derived blind trial of sertraline (which targets both dopaminergic and placebo (71). Only one study has reported mediation; a double-blind crossover trial in 36 patients with treatment-resistant depression, Lally et al. (67) demonstrated that the 95% confidence interval. The results in lighter blue [from Jin et al. (28)] represent unreported null effects where the effect size was imputed via the MetaNSUE method. Demographics reported for the entire study population, not for the subgroup on which the displayed correlation is based. excl., excluding; MDD, major depressive disorder; Obs., observational.

Figure 2. Forest plot for random effects meta-analysis of observational functional magnetic resonance imaging (fMRI) studies reporting a striatal effect for the correlation with change in depressive symptoms. Across these studies (15,16,21,25,28,32,35), predominantly conducted in adolescents, we found that the mean effect size for similar studies was −0.10 (95% confidence interval = [−0.18, −0.03]). In the figure, the size of the marker corresponds to study sample size. The error bars indicate the 95% confidence interval. The results in lighter blue [from Jin et al. (28)] represent unreported null effects where the effect size was imputed via the MetaNSUE method. 1Demographics reported for the entire study population, not for the subgroup on which the displayed correlation is based. excl., excluding; MDD, major depressive disorder; Obs., observational.

Great Expectations: Reward and Depression

Table S1. Across these tasks, at least 69 different task combinations were used, 54 of them only once. The most commonly used task, only prediction (measured as neural activity during the feedback period) of reward is applied to analyses that contrast it with a neutral condition, a loss condition, or even just baseline activity. In the fMRI studies reviewed in the meta-analyses of reward processing in different ways. For example, the MID task in 10 studies. Which have been used no more than twice (Figure S9 and Table S1). Across these tasks, at least 69 different task-contrast combinations were used, 54 of them only once. The most commonly reported was the gain anticipation versus neutral anticipation contrast for the MID task in 10 studies. Given such a large space of potential tasks, contrasts, and analytical approaches, it is impossible to know whether the

**Striatum activity as well as subjective ratings of momentary mood (50,51). However, evidence that manipulating the reward processing system changes clinical symptoms of depression has been largely elusive. The ideal evidence would come from a randomized, placebo-controlled trial where the intervention is shown to cause a change in reward processing and, consequently, a change in behavior. Statistically, this amounts to a mediation. Most studies that use pharmacological manipulations have so far demonstrated primarily that interventions perturb the reward system. Such interventions are typically designed as acute-dose trials of a drug and have included serotonergic (52,53), dopaminergic (31,54–59), cannabidergic (60,61), glutamatergic, and opioidergic (62) manipulations. There is also preliminary evidence from small, open-label trials that deep brain stimulation of the nucleus accumbens treats depressive symptoms (63–66) and normalizes nucleus accumbens responses to reward (66). Several treatment trials have shown that changes in the reward system correlate with changes in depressive symptoms. In a placebo-controlled, double-blind crossover trial in 36 patients with treatment-resistant depression, Lally et al. (67) demonstrated that ketamine specifically lowered anhedonia and showed that increases in striatal glucose use correlated with changes in anhedonia. EEG markers of reward processing have also been shown to correlate with changes in depression and anxiety symptoms during treatment with cognitive behavioral therapy (n = 34) and selective serotonin reuptake inhibitors (n = 29) (29). Other small studies have found correlations with treatment response to pharmacological interventions (n = 15) (68) and psychotherapy (n = 15 in each study) (69,70). On the other hand, there is at least one example of a pharmacological intervention (a κ-opioid antagonist) that increased striatal response to reward but did not change symptoms relative to placebo (71). Only one study has reported mediation; a double-blind trial of sertraline (which targets both dopaminergic and serotonergic systems) in 222 adults found that an fMRI-derived index of striatal reward processing mediated the effect of sertraline on depressive symptoms (14). This provides some evidence for the manipulability of depression symptoms via manipulations of the reward processing system, supporting the possibility of a causal relationship.

Measurement Challenges

Measurement of Reward Processing

Several experimental approaches have been developed to isolate components such as anticipation and consumption of reward. Many behavioral tasks correlate poorly with self-report measures owing to low reliability and measurement of different entities (72). In addition, some widely used neuroimaging tasks, such as the MID (7,73), lack a behavioral output. Interpreting blood oxygen level–dependent (BOLD) signal in the absence of behavior is fraught with ambiguities; a reduced BOLD signal could be a deficit or a compensatory mechanism.

Most studies employ tasks that measure only some of the key components of reward processing. For example, in the MID, the most commonly used task, only prediction (measured as neural activity during the anticipatory period) and experience (measured as neural activity during the feedback period) of reward are probed (Figure 1), while other important phases such as decision and effort are left out (74). This means that key components of the reward system are not probed in the same individuals, and therefore inferences drawn about reward processing may be biased or partial. Computational modeling [as in (50,75)] of all the phases of reward, potentially across multiple tasks within the same individuals, would allow a more thorough phenotyping of the reward system (76,77).

Multiplicity of Measurement

Different neuroimaging studies define the same phase of reward processing in different ways. For example, the label reward anticipation is applied to analyses that contrast it with a neutral condition, a loss condition, or even just baseline activity. In the fMRI studies reviewed in the meta-analyses described above (1,5,6), we found 19 different tasks, 14 of which have been used no more than twice (Figure S9 and Table S1). Across these tasks, at least 69 different task-contrast combinations were used, 54 of them only once. The most commonly reported was the gain anticipation versus neutral anticipation contrast for the MID task in 10 studies. Given such a large space of potential tasks, contrasts, and analytical approaches, it is impossible to know whether the
Great Expectations: Reward and Depression

Figure 3. Impact of functional magnetic resonance imaging (fMRI) test-retest reliability on expected effect size and required sample size of future studies. The figure depicts the dependence of the effect size to be expected in future studies (y-axis on the left) and the sample size of future studies (y-axis on the right) on the reliability of past studies (x-axis) and the expected reliability of future studies (color-coded lines). The reliability of past studies is derived from references (39–45), and the minimum and maximum values bound the x-axis. The following 3 cases are illustrated. Dotted line: If previous studies had a low reliability (.28) and our planned study will have a reliability of .80, we would expect to observe a correlation between reward processing and change in depressive symptoms of -.29 (95% confidence interval [CI] = [-.52, -.02]) and would expect a required sample size of 92 to have 80% power to detect. Solid line: If previous studies had a reliability of .44 and our planned study will increase this to .70, we would expect an observed correlation of -.16 (95% CI = [-.31, -.01]), requiring a sample size of 297. Dashed line: If previous studies had a reliability of .57 and our planned study will have a reliability of .60, we would expect an observed correlation of -.11 (95% CI = [-.21, -.01]), requiring a sample size of 690. For this figure, we assume a depressive symptom measurement reliability of .77 (95% CI = [.67, .84]) based on 8 studies (Table S8). If depressive symptom measurement reliability is improved in the planned study, the above observed effect sizes would be proportionally higher (Figure S8).

Expected observed correlation between reward processing and change in depressive symptoms

Sample size, n	IMR reliability in planned study
1337	0.4
783	0.5
347	0.6
194	0.7
123	0.8
85	0.9

Power to detect a correlation between reward processing and depression, change in depressive symptoms of .29 (95% confidence interval [CI] = [-.52, -.02]) and would expect a required sample size of 92 to have 80% power to detect with a two-sided test for Pearson correlation difference from .0. Solid line: If previous studies had a reliability of .44 and our planned study will increase this to .70, we would expect an observed correlation of −.16 (95% CI = [−.31, −.01]), requiring a sample size of 297. Dashed line: If previous studies had a reliability of .57 and our planned study will have a reliability of .60, we would expect an observed correlation of −.11 (95% CI = [−.21, −.01]), requiring a sample size of 690. For this figure, we assume a depressive symptom measurement reliability of .77 (95% CI = [.67, .84]) based on 8 studies (Table S8). If depressive symptom measurement reliability is improved in the planned study, the above observed effect sizes would be proportionally higher (Figure S8).

CONCEPTUAL CHALLENGES

For a promising and well-studied topic such as RPA and depression, there are surprising gaps in our theoretical framework about its origins, directions of effect, and specificity. We discuss these below along with proposals for solutions.

Origins of RPAs and Depression

So far, we have focused on the possibility of a causal relationship between RPAs and depression, but we have not considered the origins of RPAs themselves. The associations between depression and reward processing described above could be due to genes, environment, or their interplay. Small preliminary twin studies have suggested that striatal responses to reward and risk are moderately heritable (86,87). Animal and human studies have demonstrated that stress can reduce striatal reward responses (88–93). The relationship may be more complicated in that a genetic predisposition to RPAs may represent a vulnerability to depression when exposed to a stressful environment (23,30,94). An immediate research need is a twin study to test the genetic and environmental origins of the covariation between depression and reward processing.

Development is another important factor to consider in the origins of RPAs and depression. A dramatic rise in new depression cases occurs during adolescence (95), coinciding with a period of time when, normatively, adolescents are apparently more sensitive to rewards (96). Moreover, there is some meta-analytic evidence (1) to suggest that RPAs in depression may be more pronounced in adolescents compared with adults. Yet, with notable exceptions (15,97,98), rarely are specific theories being proposed about the interplay of development with reward processing and depression. It is even rarer to see any robust tests of such theories (15). For example, one possibility is that neural reward responsiveness contrasts and analyses used in any given article are the only analyses done or whether they are the result of searching that space for a significant finding (78,79). This may lead meta-analyses like those above to overestimate the magnitude of the relationship between reward processing and depression.

Measurement of the Clinical Phenotype

Diagnosis of major depressive disorder is based on self-report of subjective symptoms (80), which presents several challenges as previously discussed (81,82). In particular, there are inherent problems with self-reported anhedonia, in particular consummatory anhedonia, or the lack of enjoyment when experiencing a reward. In our introductory example (Figure S1A), the child, sitting in a research laboratory, would be asked about her experience of consuming the chocolate. This requires forming the mental representation of a past event and attaching value to it, a different process than that of actual consummation and in some ways more related to the process of predicting the value of a future reward based on past experiences rather than reporting on the actual experience. This is especially problematic because patients with depression may have different recall biases compared with healthy volunteers (83). Ecological momentary assessment may allow experiences rather than reporting on the actual experience. This is especially problematic because patients with depression may have different recall biases compared with healthy volunteers (83). Ecological momentary assessment may allow ecological momentary assessment may allow for a signifi-
may be an important depression-related diathesis that interacts with other genetic and environmental factors at sensitive developmental stages such as puberty.

Direction of Relationship

The direction of the relationship between RPAs and depression is critical, yet studies rarely assess it (Figure 4). The majority of longitudinal studies of the relationship between reward processing and depression have examined the hypothesis that RPAs precede depression, but other plausible models are not as commonly considered. Depression could precede RPAs and the causal relationship could in fact be the reverse. Indeed, it could be that depression affects reward anticipation or enjoyment and that this is responsible for some of the downstream effects of depression such as social isolation. Another possibility is the existence of a shared risk factor causing both depression and RPAs. In such a case, the relationship between the two would be of little consequence for intervention or prediction. Finally, clinicians, particularly in the behavioral activation literature, often invoke a recursive relationship between RPAs and depression. Ideally, these explanatory models (Figure 4) should be tested against each other (see Box S2).

However, we are not aware of data collected with sufficient temporal density and applying the necessary modeling to demonstrate the superiority of any of these models.

An alternative focus is necessary, for example, testing whether baseline neural reward signals improve the prediction of future depression beyond what other inexpensive and commonly available symptom measures and demographic factors contribute, termed incremental validity (Box S2). In this case, it might not matter whether there is a common latent cause of RPAs and depression; RPAs could still be a predictor of depression if they respond more quickly to changes in that latent factor. In evaluating both explanatory models and predictions, stronger evidence is provided by preregistered hypotheses and analytical plans (99).

Specificity

If RPAs are not specifically related to depression, they are less likely to be a specific cause of depression or a specific clinical predictor. There are several alternative hypotheses that have only partially been tested. First, within depression there is some evidence that RPAs are specifically related to anhedonia. Three studies have found that anhedonia, but not low mood, is related to RPAs (16,84,100). Yet comparing anhedonia with other plausible symptoms, such as loss of energy and fatigue, has yet to be done. Moreover, studies do not take comorbidity between depression and other disorders into account. It is possible that within depression the distribution of symptoms from other disorders (e.g., social anxiety symptoms, particularly in adolescents) moderates the association between depression and reward processing (96).

Second, anhedonia (and reduced striatal BOLD signal during reward anticipation) is present in other common mental disorders, including schizophrenia and attention-deficit/hyperactivity disorder (ADHD) (101,102). In some studies of
schizophrenia, this signal has been accounted for by depression comorbidity (103); in ADHD, this reduction was observed only in adult samples but not in youth samples (43). In a recent study from our group, reduction in striatal activity was observed only in adult samples but not in youth samples (43). In a recent study from our group, reduction in striatal activity was observed only in adult samples but not in youth samples (43).

Conclusions

Neural RPAs are currently unsuited for use as clinical predictors of depression, but improved measures of neural signals of reward processing and multivariate analyses may change this in the near future. There is evidence to support a causal relationship between RPAs and depression, with weak temporal association and evidence for manipulability. We have made general suggestions for improving the measurement of reward processing and depression, and we have proposed experimental designs (Table 2) for addressing some of the conceptual challenges we observed in the literature. Not all these suggestions are applicable to every study of reward processing and depression, but we hope that they will be a useful guide to the design of future studies.

ACKNOWLEDGMENTS AND DISCLOSURES

This research was supported in part by the Intramural Research Program of the National Institute of Mental Health National Institutes of Health (NIH) (Grant No. ZIA-MH002957-01 [to AS]). This work used the computational resources of the NIH HPC (high-performance computing) Biowulf cluster (http://hpc.nih.gov). The funder had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, and approval of the manuscript; or decision to submit the manuscript for publication. The views expressed in this article do not necessarily represent the views of the National Institutes of Health, the

Models	Implications	State of Field
RPAs precede depression	Must be true if RPAs are a cause of depression, could be candidate treatment target. Even if not causal, RPAs could be a marker.	Most commonly examined direction with some evidence to support it (see Longitudinal Association).
Depression precedes RPAs	If true, RPAs cannot be a cause of depression, but could contribute to downstream effects of depression.	Surprisingly rarely tested model, but just as plausible as the opposite.
Shared common origins	RPAs would not be an effective treatment target or a cause. But depending on timing of occurrence, RPAs could be a marker.	Untested model, but just as plausible as either RPAs preceding depression or vice-versa.
Recursive associations	RPAs potentially useful either as a marker or treatment target.	Untested, yet clinically oft invoked model of the relationship between RPAs and depression.

Figure 4. Schematic depiction of potential relationships between depression (Dep) and reward processing abnormalities (RPAs). The most commonly tested model is that RPAs precede depression, but plausible alternatives such as the reverse of this relationship or a common origin receive little attention. The recursive associations model is frequently cited in the behavioral analysis literature (106-108) but has not been thoroughly tested. Datasets from many of the studies cited in the “Longitudinal Association” section could be used to assess the relative strengths of RPAs preceding depression versus depression preceding RPAs. In the schematics, “origins” indicates an unspecified combination of genetic and environmental factors. This is by no means a depiction of every possible model; mediating and moderating relationships, for example, are not depicted.
Department of Health and Human Services, or the United States Government.

The authors report no biomedical financial interests or potential conflicts of interest.

All data collated for this study are available at https://ostf.io/whvam/. All codes for analyses in this study are available at https://github.com/nimh-cmpscPsy/great_expectations.

ARTICLE INFORMATION

From the Section on Clinical and Computational Psychiatry (Comp’9), (DMN, HK, GO, SJM, JD, CCC, LSG, CW, SK, AS), National Institute of Mental Health, National Institutes of Health; Machine Learning Team (CYZ), Functional Magnetic Resonance Imaging Facility, National Institutes of Health; and Social and Behavioral Science Branch (PV-R), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; and Department of Psychology (NP), University of Otago, Dunedin, New Zealand.

Address correspondence to Argyris Stringaris, M.D., Ph.D., FRCPsych, at argyris.stringaris@nih.gov.

Received Mar 2, 2020; revised May 20, 2020; accepted Jun 10, 2020.

Supplemental material cited in this article is available online at https://doi.org/10.1016/j.biopsych.2020.06.012.

REFERENCES

1. Keren H, O’Callaghan G, Vidal-Ribas P, Buzzell GA, Brotman MA, Leibenluft E, et al. (2018): Reward processing in depression: A conceptual and meta-analytic review across fMRI and EEG studies. Am J Psychiatry 175:1111–1120.

2. Haber SN (2011): Neuroanatomy of reward: A view from the ventral striatum. In: Gottfried JA, editor. Neurobiology of Sensation and Reward. Boca Raton, FL: CRC Press/Taylor & Francis, 235–261.

3. Ferenczi EA, Zalocusky KA, Liston C, Grosenick L, Warden MR, Amatya D, et al. (2016): Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior. Science 351:aae9698.

4. Alexander L, Gaskin PLR, Sawiak SJ, Fryer TD, Hong YT, Cockcroft GJ, et al. (2019): Fractionating blunted reward processing characteristic of anhedonia by over-activating primate subgenual anterior cingulate cortex. Neuron 101:307–320.e6.

5. Ng TH, Alloy LB, Smith DV (2019): Meta-analysis of reward processing in major depressive disorder: Initial discovery and independent sample replication. Mol Psychiatry 24:1856–1867.

6. Zhang W-N, Chang S-H, Guo L-Y, Zhang K-L, Wang J (2013): The neurocircuitry of reward processing predicts response to psychotherapy in major depressive disorder. Neuropsychopharmacology 42:831–843.

7. Queirazza F, Fouragnan E, Steele JD, Cavanagh J, Philaistides MG (2019): Neural correlates of weighted reward prediction error during reinforcement learning classify response to cognitive behavioral therapy in depression. Sci Adv 5:eaav4962.

8. Mackin DM, Kotov R, Perlman G, Nelson BD, Goldstein BL, Hajcak G, Klein DN (2019): Reward processing and future life stress: Stress generation pathway to depression. J Abnorm Psychol 128:305–314.

9. Luo Y, Jiang H, Chen X, Zhang Y, You X (2019): Temporal dynamics of hedonic and eudaimonic reward processing: An event-related potentials (ERPs) study. Int J Psychophysiol 137:63–71.

10. Laird AR, Fox PM, Price CJ, Glahn DC, Uecker AM, Lancaster JL, et al. (2005): ALE meta-analysis: Controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp 25:155–164.

11. Salgado JD (2018): Transforming the area under the normal curve (AUC) into Cohen’s d, Pearson’s rpb, odds-ratio, and natural log odds-ratio: Two conversion tables. Eur J Psychol Appl Leg Context 10:35–47.

12. Kroenke K, Spitzer R, Williams J (2003): The Patient Health Questionnaire-2: Validity of a two-item depression screener. Med Care 41:1284–1292.

13. Barch DM, Whalen D, Gilbert K, Kelly D, Kappenman ES, Hajcak G, Luby JL (2019): Neural indicators of anhedonia: Predictors and mechanisms of treatment change in a randomized clinical trial in early childhood depression. Biol Psychiatry 85:863–871.
Great Expectations: Reward and Depression

31. Admon R, Nickerson LD, Dillon DG, Holmes AJ, Bogdan R, Kumar P, et al. (2015): Dissociable cortico-striatal connectivity abnormalities in major depression in response to monetary gains and penalties. Psychol Med 45:121–131.

32. Tezcer EH, Fuligni AJ, Lieberman MD, Galván A (2014): Neural sensitivity to eudaimonic and hedonic rewards differentially predict adolescent depressive symptoms over time. Proc Natl Acad Sci U S A 111:6600–6605.

33. Bress JN, Fot D, Kotov R, Klein DN, Hajack G (2013): Blunted neural response to rewards prospectively predicts depression in adolescent girls. Psychophysiology 50:74–81.

34. Langenecker SA, Klump H, Peters AT, Crane NA, DelDonno SR, Bessette KL, et al. (2019): Multidimensional imaging techniques for prediction of treatment response in major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 91:38–48.

35. Rutledge RB, Skandali N, Dayan P, Dolan RJ (2014): A computational model of reward processing in humans. Nature 498:450–453.

36. Albajes-Eizagirre A, Solanes A, Radua J (2019): Meta-analysis of non-social factors in social anxiety disorder. Biol Psychiatry 85(8):620–628.

37. Hasler BP, Casement MD, Sitnick SL, Shaw DS, Forbes EE (2017): Validation of the BIS/BAS questionnaire: a meta-analysis. J Clin Psychol 73:1142–1157.

38. Allen C, Mehler DMA (2019): Open science challenges, benefits, and tips in early career and beyond. PLoS Biol 17:e1260246.

39. Elliott ML, Knodt AR, Ireland D, Morris ML, Poultton R, Ramaksha S, et al. (2020): What is the test-retest reliability of common task- and neural model of momentary subjective well-being. Proc Natl Acad Sci U S A 117:12522–12527.

40. Chase HW, Fournier JC, Greenberg T, Almeida JR, Stift R, et al. (2019): Open science challenges, benefits, and tips in early career and beyond. PLoS Biol 17:e1260246.

41. Noose BA, Alter G, Banks GC, Borsboom D, Bowman SD, Breckler SJ, et al. (2015): Promoting an open research culture. Science 348:1422–1425.

42. Allen C, Mehler DMA (2019): Open science challenges, benefits, and tips in early career and beyond. PLoS Biol 17:e1260246.

43. Elliott ML, Knodt AR, Ireland D, Morris ML, Poultton R, Ramaksha S, et al. (2020): What is the test-retest reliability of common task- and neural model of momentary subjective well-being. Proc Natl Acad Sci U S A 117:12522–12527.

44. Schlagenhauf F, Juckel G, Koslowski M, Kahnt T, Knutson B, et al. (2018): Test-retest reliability of task-based and resting-state blood oxygen level dependence and cerebral blood flow measures. PLoS One 13:e206583.

45. Plichta MM, Scheres A (2014): Ventral-striatal responsiveness during reward anticipation in ADHD and its relation to trait impulsivity in the healthy population: A meta-analytic review of the fMRI literature. Neurosci Biobehav Rev 38:125–134.

46. Slagenaehof G, Juckel G, Koslowski M, Kahnt T, Knutson B, Demblier T, et al. (2008): Reward system activation in schizophrenic patients switched from typical neuroleptics to olanzapine. Psychopharmacology (Berl) 196:673–684.

47. Keren H, Chen G, Benson B, Ernst M, Leibenluft E, Fox NA, et al. (2018): Is the encoding of reward prediction error reliable during development? NeuroImage 178:268–276.

48. Admon R, Nickerson LD, Dillon DG, Holmes AJ, Bogdan R, Kumar P, et al. (2015): Dissociable cortico-striatal connectivity abnormalities in major depression in response to monetary gains and penalties. Psychol Med 45:121–131.

49. Bogdan R, Baranger DAA, Agrawal A (2018): Polygenic risk scores in addiction. Trends Neurosci 41:353–367.

50. Rutledge RB, Skandali N, Dayan P, Dolan RJ (2014): A computational and neural model of momentary subjective well-being. Proc Natl Acad Sci U S A 111:12252–12257.

51. Vinckier F, Rigoux L, Oudiette D, Pessiglione M (2018): Neurocomputational account of how mood fluctuations arise and affect decision making. Nat Commun 9:1708.

52. McCabe C, Mishor Z, Cowen PJ, Harmer CJ (2010): Diminished neural processing of aversive and rewarding stimuli during selective serotonin reuptake inhibitor treatment. Biol Psychiatry 67:439–445.

53. Akbari A, Seeringer A, Grön G, Walter M, Stierlin S, et al. (2019): Antidepressant-related sexual dysfunction: A placebo-controlled fMRI study on healthy males under subchronic paroxetine and bupropion. Neuropsychopharmacology 36:1837–1847.

54. Pessiglione M, Seymour B, Fiandan G, Dolan RJ, Frith CD (2006): Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 442:1042–1045.

55. Grad H, Wiegens M, Metzger CD, Walter M, Grön G, Abler B (2015): Erotic stimulus processing under amisulpride and reboxetine: A placebo-controlled fMRI study in healthy subjects. Int J Neuropsychopharmacol 18:pyu004.

56. Ikeda Y, Funayama T, Tateno A, Fukayama H, Okubo Y, Suzuki H (2019): Bupropion increases activation in nucleus accumbens during anticipation of monetary reward. Psychopharmacology (Berl) 236:3605–3665.

57. Rutledge RB, Skandali N, Dayan P, Dolan RJ, Frith CD (2006): Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 442:1042–1045.

58. Bolke EA, Metha MA, O’Daly O, Zelaya F, Zatterdine N, Keren H, et al. (2019): Modulation of anterior cingulate cortex reward and penalty signalling in medication-naïve young-adult subjects with depressive symptoms following acute dose lurasidone. Psychol Med 49:1365–1377.

59. Rutledge RB, Skandali N, Dayan P, Dolan RJ, Frith CD (2006): Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 442:1042–1045.

60. Rutledge RB, Skandali N, Dayan P, Dolan RJ, Frith CD (2006): Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 442:1042–1045.

61. Rutledge RB, Skandali N, Dayan P, Dolan RJ, Frith CD (2006): Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 442:1042–1045.

62. Rutledge RB, Skandali N, Dayan P, Dolan RJ, Frith CD (2006): Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 442:1042–1045.

63. Rutledge RB, Skandali N, Dayan P, Dolan RJ, Frith CD (2006): Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 442:1042–1045.
Great Expectations: Reward and Depression

69. Dichter GS, Felder JN, Petty C, Bizzell J, Ernst M, Smoski MJ (2009): The effects of psychotherapy on neural responses to rewards in major depression. Biol Psychiatry 66:886–897.

70. Mori A, Okamoto Y, Okada G, Takagaki K, Jininn R, Takamura M, et al. (2016): Behavioral activation can normalize neural hypo-activation in subthreshold depression during a monetary incentive delay task. J Affect Disord 189:254–262.

71. Krystal AD, Pizzagalli DA, Smoski M, Mathew SJ, Nurnberger J, Lisany SH, et al. (2020): A randomized proof-of-mechanism trial applying the “fast-fail” approach to evaluating <i>ω</i>-opioid antagonism as a treatment for anhedonia. Nat Med 26:760–768.

72. Dang J, King KM, Inzlicht M (2020): Why are self-report and behavioral measures weakly correlated? Trends Cogn Sci 24:267–289.

73. DelDonno SR, Karstens AJ, Cerny B, Kling LR, Jenkins LM, Dang J, King KM, Inzlicht M (2020): Why are self-report and behavioral measures weakly correlated? Trends Cogn Sci 24:267–289.

74. Huys QJ, Pizzagalli DA, Bogdan R, Dayan P (2013): Mapping anhedonia onto reinforcement learning: A behavioural meta-analysis. Biol Mood Anxiety Disord 3:12.

75. Glazer JE, Kelley NJ, Pornpattananangkul N, Mittal VA, Nusslock R, Huys QJ, Pizzagalli DA (2013): Mapping anhedonia onto reinforcement learning: A behavioural meta-analysis. Biol Mood Anxiety Disord 3:12.

76. DelDonno SR, Karstens AJ, Cerny B, Kling LR, Jenkins LM, Dang J, King KM, Inzlicht M (2020): Why are self-report and behavioral measures weakly correlated? Trends Cogn Sci 24:267–289.

77. Hamilton JP, Gotlib IH (2008): Neural substrates of increased memory processing and consummatory phases of reward processing. Neuroscience 159:1287–1295.

78. DelDonno SR, Karstens AJ, Cerny B, Kling LR, Jenkins LM, Dang J, King KM, Inzlicht M (2020): Why are self-report and behavioral measures weakly correlated? Trends Cogn Sci 24:267–289.

79. DelDonno SR, Karstens AJ, Cerny B, Kling LR, Jenkins LM, Dang J, King KM, Inzlicht M (2020): Why are self-report and behavioral measures weakly correlated? Trends Cogn Sci 24:267–289.

80. American Psychiatric Association (2013): Diagnostic and Statistical Manual of Mental Disorders (DSM-5). Washington, DC: American Psychiatric Association Publishing.

81. Rice SJ, Pizzagalli DA, Sproule BA, Kennedy SH (2016): Assessing anhedonia in depression: Potentials and pitfalls. Neurosci Biobehav Rev 65:21–35.

82. Pizzagalli DA (2014): Differential effects of acute stress on anticipatory and consummatory phases of reward processing. Neuroscience 266:1–12.

83. Ironside M, Kumar P, Kang M-S, Pizzagalli DA (2018): Brain mechanisms mediating effects of stress on reward sensitivity. Curr Opin Behav Sci 22:106–113.

84. Stanton CH, Holmes AJ, Chang SWC, Joormann J (2019): From stress to anhedonia: Molecular processes through functional circuits. Trends Neurosci 42:23–42.

85. DelDonno SR, Karstens AJ, Cerny B, Kling LR, Jenkins LM, Dang J, King KM, Inzlicht M (2020): Why are self-report and behavioral measures weakly correlated? Trends Cogn Sci 24:267–289.

86. DelDonno SR, Karstens AJ, Cerny B, Kling LR, Jenkins LM, Dang J, King KM, Inzlicht M (2020): Why are self-report and behavioral measures weakly correlated? Trends Cogn Sci 24:267–289.

87. DelDonno SR, Karstens AJ, Cerny B, Kling LR, Jenkins LM, Dang J, King KM, Inzlicht M (2020): Why are self-report and behavioral measures weakly correlated? Trends Cogn Sci 24:267–289.

88. DelDonno SR, Karstens AJ, Cerny B, Kling LR, Jenkins LM, Dang J, King KM, Inzlicht M (2020): Why are self-report and behavioral measures weakly correlated? Trends Cogn Sci 24:267–289.

89. DelDonno SR, Karstens AJ, Cerny B, Kling LR, Jenkins LM, Dang J, King KM, Inzlicht M (2020): Why are self-report and behavioral measures weakly correlated? Trends Cogn Sci 24:267–289.

90. DelDonno SR, Karstens AJ, Cerny B, Kling LR, Jenkins LM, Dang J, King KM, Inzlicht M (2020): Why are self-report and behavioral measures weakly correlated? Trends Cogn Sci 24:267–289.

91. DelDonno SR, Karstens AJ, Cerny B, Kling LR, Jenkins LM, Dang J, King KM, Inzlicht M (2020): Why are self-report and behavioral measures weakly correlated? Trends Cogn Sci 24:267–289.