Measurements of CP-Violating Amplitudes in the Decay $B^0 \to K^+K^-K^0$

B. Aubert,1 M. Bona,1 D. Boutigny,1 Y. Karyotakis,1 J. P. Lees,1 V. Poireau,1 X. Prudent,1 V. Tisserand,1 A. Zgliczynski,1 J. Garra Tico,2 E. Granges,2 L. Lopez,3 A. Palano,3 G. Eigen,4 B. Stugu,4 L. Sun,4 G. S. Abrams,5 M. Battaglia,5 D. N. Brown,5 J. Button-Shafer,5 R. N. Cahn,5 Y. Groysman,5 R. G. Jacobsen,5 J. A. Kadyk,5 L. T. Kerth,5 Yu. G. Kolomensky,5 G. Kukartsev,5 D. Lopes Pegna,5 G. Lynch,5 L. M. Mir,5 T. J. Orimoto,5 M. T. Ronan,5 K. Tackmann,5 W. A. Wenzel,5 P. del Amo Sanchez,6 C. M. Hawkes,6 A. T. Watson,6 T. Held,7 H. Koch,7 B. Lewandowski,7 M. Pelizaeus,7 T. Schroeder,7 M. Steinike,7 D. Walker,8 D. J. Asgeirsson,9 T. Cuhadar-Donszelmann,9 B. G. Fulsom,9 C. Hearty,9 T. S. Mattsson,9 J. A. McKenna,9 A. Khan,10 M. Saleem,10 L. Teodorescu,10 V. E. Blinov,11 A. D. Bukin,11 V. P. Druzhinin,11 V. B. Golubev,11 A. P. Onuchin,11 S. I. Serednyakov,11 Yu. I. Skovpen,11 E. P. Solodov,11 K. Yu. Todyshiev,11 M. Bondioli,12 S. Curry,12 I. Eschrich,12 D. Kirkby,12 A. J. Lankford,13 P. Lund,12 M. Mandelkern,12 E. C. Martin,12 D. P. Stoker,12 S. Abachi,13 C. Buchanan,13 S. D. Foulkes,14 J. W. Gary,14 F. Liu,14 O. Long,14 B. C. Shen,14 L. Zhang,14 H. P. Paar,15 S. Rahatlou,15 V. Sharma,15 J. W. Berryhill,16 C. Campagnari,16 A. Cunha,16 B. Dahmes,16 T. M. Hong,16 D. Kovalskyi,16 J. D. Richman,16 T. W. Beck,17 A. M. Eisinger,17 C. J. Flacco,17 C. A. Heusch,17 J. Kroseberg,17 W. S. Lockman,17 T. Schall,18 B. A. Schumm,17 A. Seiden,17 D. C. Williams,17 M. G. Wilson,17 L. O. Winstrom,17 E. Chen,18 C. H. Cheng,18 F. Fang,18 D. G. Hiltunen,18 I. Narsky,18 T. Piatenko,18 F. C. Porter,18 R. Andreassen,19 G. Mancinelli,19 B. T. Meadows,19 K. Mishra,19 M. D. Sokoloff,19 F. Blanc,20 P. C. Bloom,20 S. Chen,20 W. T. Ford,20 J. F. Hirschauer,20 A. Kreisel,20 M. Nagel,20 U. Naumenko,20 A. Olivas,20 J. G. Smith,20 K. A. Ulmer,20 S. R. Wagner,20 J. Zhang,20 A. M. Gabareen,21 A. Soffer,21 W. H. Toki,21 R. J. Wilson,21 F. Winklmeier,21 Q. Zeng,21 D. D. Altenberg,22 E. Feltesse,22 A. Hauke,22 H. Jasper,22 J. Merkel,22 A. Petzold,22 B. Spaan,22 K. Wacker,22 T. Brandt,23 V. Kloze,23 M. J. Kobel,23 H. M. Lacker,23 W. F. Mader,23 R. Nogowski,23 J. Schubert,23 K. R. Schubert,23 R. Schwierz,23 J. E. Sundermann,23 A. Volk,23 D. Bernard,24 G. R. Bonneau,24 E. Latour,24 V. Lombardo,24 Ch. Thiebaux,24 M. Verderi,24 P. J. Clark,25 W. Gradl,25 F. Muheim,25 S. Playfer,25 A. I. Robertson,25 Y. Xie,25 M. Andreotti,26 D. Bettoni,26 C. Bozzi,26 R. Calabrese,26 A. Cecchi,26 G. Cibinetto,26 P. Franchini,26 E. Luppi,26 M. Negri,26 A. Petrella,26 L. Piemontese,26 E. Prencipe,26 V. Santoro,26 F. Anulli,27 R. Baldini-Ferroli,27 A. Calcaterra,27 R. de Sangro,27 G. Finocchiaro,27 S. Pacetti,27 P. Patteri,27 I. M. Peruzzi,27 M. Piccolo,27 M. Rama,27 A. Zallo,27 A. Buzzo,28 R. Contrri,28 M. L. Vetere,28 M. M. Macri,28 M. R. Monge,28 S. Passaggio,28 C. Patrignani,28 E. Robutti,28 A. Santroni,28 S. Tosi,28 K. S. Chaisanguanthum,29 M. Morii,29 J. Wu,29 R. S. Dubitzky,30 J. Marks,30 S. Schenk,30 U. Uwer,30 D. J. Bard,31 P. D. Dauncey,31 R. L. Flack,31 J. A. Nash,31 M. B. Nikolich,31 W. Panduro Vazquez,31 M. Tibbetts,31 P. K. Behera,32 X. Chai,32 M. J. Charles,32 U. Mallik,32 N. T. Meyer,32 V. Ziegler,32 J. Cochran,33 H. B. Crawler,33 L. Dong,33 V. Eyges,33 W. T. Meyer,34 S. Prell,33 E. I. Rosenberg,34 A. E. Rubin,34 A. V. Gritsan,34 Z. J. Guo,34 C. K. Lae,34 A. G. Denig,35 M. Fritsch,35 G. Schott,35 N. Arnaud,36 J. Béquilleux,36 M. Davier,36 G. Grosdidier,36 A. Höcker,36 V. Lepeltier,36 F. Le Diberder,36 A. M. Lutz,36 S. Pruvot,36 S. Rodier,36 P. Roudeau,36 H. M. Schune,36 J. Serrao,36 V. Sordini,36 A. Stoicci,36 W. F. Wang,36 G. Wormser,36 D. J. Lange,37 D. M. Wright,37 I. Bingham,38 C. A. Chavez,38 I. J. Forster,38 J. R. Fry,38 E. Gabathuler,38 R. Gamet,38 D. E. Hutchcroft,38 D. J. Payne,38 K. C. Schofield,38 C. Touramanis,38 A. J. Bevan,39 K. A. George,39 F. Di Lodovico,39 W. Menges,39 R. Sacco,39 G. Cowan,40 D. A. Vaal,40 D. A. Franchi,40 D. A. P. van der Marlaan,40 F. Salvatore,40 A. C. Wren,40 D. N. Brown,41 C. L. Davis,41 J. Allison,42 N. R. Barlow,42 R. J. Barlow,42 Y. M. Chia,42 C. L. Edgar,42 G. D. Lafferty,42 T. J. West,42 J. Yi,42 J. Anderson,43 C. Chen,43 A. Jawahery,43 D. A. Roberts,43 G. Simi,43 J. M. Tuggle,43 G. Blaylock,44 C. Dallapiccola,44 S. S. Hertzbach,44 X. Li,44 T. B. Moore,44 E. Salvati,44 S. Sarem,44 R. Cowan,45 D. Dujmic,45 P. F. Fisher,45 K. Koeneke,45 G. Sciolilla,45 S. J. Sekula,45 M. Spitznagel,45 F. Taylor,45 R. K. Yamamoto,45 M. Zhao,45 Y. Zheng,45 S. E. Mclachlin,46 P. M. Patel,46 S. H. Robertson,46 A. Lazzaro,47 F. Palombo,47 J. M. Bauer,48 L. Cremaldi,48 V. Eschenburg,48 R. G. Godang,48 R. Kroeger,48 D. A. Sanders,48 D. J. Summers,48 H. W. Zhao,48 S. Brunet,49 D. Côté,49 M. Simard,49 P. Taras,49
(Dated: June 8, 2021)
We analyze the decay $B^0 \to K^+ K^- K^0$ using 383 million $B \bar{B}$ events collected by the
\bar{B}ABAR detector at SLAC to extract CP violation parameter values over the Dalitz plot.
Combining all $K^+ K^- K^0$ events, we find $A_{CP} = -0.015 \pm 0.077 \pm 0.053$ and $\beta_{eff} = 0.352 \pm 0.076 \pm 0.026$ rad,
corresponding to a CP violation significance of 4.8σ. A second solution near $\pi/2 - \beta_{eff}$ is disfavored
with a significance of 4.5σ. We also report A_{CP} and β_{eff} separately for decays to $\phi(1020)K^0$,
$f_0(980)K^0$, and $K^+ K^- K^0$ with $m_{K^+ K^-} > 1.1$ GeV/c2.

PACS numbers: 13.25.Hw, 12.15.Hh, 11.30.Er

In the Standard Model (SM), the phase in the
Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing ma-
trix is the sole source of CP violation in the quark sec-
tor. Due to interference between decays with and without
mixing, this phase yields observable time-dependent CP
asymmetries in B^0 meson decays. In particular, signif-
ificant CP asymmetries in $\to s\bar{s}s$ decays, such as $B^0 \to
K^+ K^- K^0$ [2], are expected [2, 1]. Deviations from the
predicted CP asymmetry behavior for $B^0 \to K^+ K^- K^0$
are expected to depend weakly on Dalitz plot (DP) po-
sition [2, 3]. Since the $\to s\bar{s}s$ amplitude is dominated
by loop contributions, heavy virtual particles beyond the
SM might contribute significantly [6, 7]. This sensitivity
motivates measurements of CP asymmetries in multiple
$\to s\bar{s}s$ decays [3, 4, 11].

Previous measurements of CP asymmetries in $B^0 \to
K^+ K^- K^0$ have been performed separately for events
with $K^+ K^-$ invariant mass $(m_{K^+ K^-})$ in the B mass
region, and for events excluding the B region, neglecting
interference effects among intermediate states [3, 4, 10].
In this Letter we describe a time-dependent DP analysis
of $B^0 \to K^+ K^- K^0$ decay from which we extract the
values of the CP violation parameters A_{CP} and β_{eff} by
taking into account the complex amplitudes describing
the entire B^0 Dalitz plots. We first extract the
values of the parameters of the amplitude model, and
measure the average CP asymmetry in $B^0 \to K^+ K^- K^0$
over the entire DP. Using this model, we then mea-
Sure the CP asymmetries for the ϕK^0 and $f_0 K^0$ decays, from a “low-mass” analysis of events with
m_{K^+ K^-} < 1.1$ GeV/c2. Finally, we perform a “high-
mass” analysis to determine the average CP asymmetry
for events with $m_{K^+ K^-} > 1.1$ GeV/c2.

The data sample for this analysis was collected with
the
\bar{B}ABAR detector [12] at the PEP-II asymmetry-energy
e$^+ e^-$ collider at SLAC. Approximately $383 \times 10^6 B\bar{B}$
pairs recorded at the $T(4S)$ resonance were used.

We reconstruct $B^0 \to K^+ K^- K^0$ decays by combing
two oppositely-charged kaon candidates with a K^0
reconstructed as $K^0_S \to \pi^+ \pi^- (B^0_{0(\pm)})$ [13], $K^0_S \to \pi^0 \phi$
($B^0_{0(0)}$), or $K^0_L (B^0_{L})$. Each $K^0_L \to \pi^0 \pi^0$ candidate is
formed from two $\pi^0 \to \gamma \gamma$ candidates. Each photon
have $H_\gamma > 50$ MeV and transverse shower shape consistent
with an electromagnetic shower. Both π^0 candidates satisfy
$100 < m_{\gamma \gamma} < 155$ MeV/c2 and yield an invariant mass
m_{\pi^0 + \pi^0} in the range $-20 < m_{\pi^0 + \pi^0} - m_{K^0} < 30$ MeV/c2.
A K^0_L candidate is defined by an unassociated energy de-
posit in the electromagnetic calorimeter or an isolated
signal in the Instrumented Flux Return [8].

For each fully reconstructed B^0 meson (B_{CP}), we use
the remaining tracks in the event to reconstruct the decay
vertex of the other B meson (B_{tag}), and to identify its
flavor q_{tag} [3]. For each event we calculate the difference
$\Delta t = t_{CP} - t_{tag}$ between the proper decay times of the
B_{CP} and B_{tag} mesons, and its uncertainty $\sigma_{\Delta t}$.

We characterize $B^0_{(\pm)}$ and $B^0_{(00)}$ candidates using two
kinematic variables: the beam-energy-substituted mass
m_{ES} and the energy difference ΔE [8]. The signal region
(SR) is defined as $m_{ES} > 5.26$ GeV/c2, and $|\Delta E| < 0.06$
GeV for $B^0_{(\pm)}$, or $-0.12 < \Delta E < 0.06$ GeV for
$B^0_{(00)}$. For $B^0_{(L)}$, the SR is defined by $-0.01 < \Delta E <
0.03$ GeV [8], and the missing momentum for the entire
event is required to be consistent with the calculated K_L^0
laboratory momentum.

The main source of background is continuum $e^+ e^- \to
q\bar{q}$ ($q = u, d, s, c$) events. We use event-shape variables to
nlack the jet-like structure of these events in order to
rmout much of this background [8].

We perform an unbinned maximum likelihood fit to the
selected $K^+ K^- K^0$ events using the likelihood
function defined in Ref. [8]. The probability density function
(PDF), P_i, is given by

$$
P_i = \frac{P(m_{ES}) \cdot P(|\Delta E|) \cdot P_{\text{Low}}}{P_{\text{DP}}(m_{K^+K^-}, \cos \theta_H, \Delta t, q_{tag}) \cdot R(\Delta t, \sigma_{\Delta t})} \quad (1)$$

where $i = (\text{signal, continuum, } B\bar{B} \text{ background})$, and R
is the Δt resolution function [4]. For $B^0_{(i)}$, $P(m_{ES})$ is not
used. P_{Low} is a PDF used only in the low-mass fit, which
depends on the event-shape variables and, for $B^0_{(L)}$ only,
the missing momentum in the event [8]. We characterize
$B^0_{(i)}$ events on the DP in terms of $m_{K^+K^-}$ and $\cos \theta_H$,
the cosine of the helicity angle between the K^+ and the
K^0 in the rest frame of the $K^+ K^-$ system. The DP PDF for signal events is

$$
P_{DP} = d\Gamma \cdot \varepsilon(m_{K^+K^-}, \cos \theta_H) \cdot |J|, \quad (2)$$

where $d\Gamma$ is the time- and flavor-dependent decay rate
over the DP, ε is the efficiency, and J is the Jacobian
of the transformation to our choice of DP coordinates.
The time- and flavor-dependent decay rate is
\[
\frac{d\Gamma}{d\Delta \tau} \propto e^{-|\Delta t|/\tau} \times \left[|A|^2 + |\bar{A}|^2 \right] + g_{ag} 2\text{Im} \left(\xi A A^* \right) \sin \Delta m_d \Delta t - g_{ag} \left(|A|^2 - |\bar{A}|^2 \right) \cos \Delta m_d \Delta t, \tag{3}
\]
where τ and Δm_d are the lifetime and mixing frequency of the B^0 meson, respectively.\(^{14}\) The parameter $\xi = \eta_{CP} e^{-2i\beta}$, where $\beta = \arg(-V_{cb} V_{cb}^*/V_{td} V_{td}^*)$ and V_{td}^* are CKM matrix elements.\(^{11}\) The CP eigenvalue η_{CP} is 1 (-1) for the K^0_d (K^0_s) mode. We define the amplitude \overrightarrow{A} for B^0 decay as a sum of isobar amplitudes\(^{14}\),
\[
\overrightarrow{A}(m_{K^+ K^-}, \cos \theta_H) = \sum_r \overrightarrow{A}_r, \tag{4}
\]
where the minus signs are associated with the \overrightarrow{A}, the parameters c_r and φ_r are the magnitude and phase of the amplitude of component r, and we allow for different isobar coefficients for B^0 and \overline{B}^0 decays through the asymmetry parameters b_r and δ_r.

Our isobar model includes resonant amplitudes ϕ, f_0, $\chi_{00}(1P)$, and $X_0(1550)$\(^{15,16}\); non-resonant terms; and incoherent terms for B^0 decay to $D^{*+} K^+$ and $D_s^- K^+$. For each resonant term, the function f_r is $F_r \times T_r \times Z_r$ describes the dynamical properties, where F_r is the Blatt-Weisskopf centrifugal barrier factor for the resonance decay vertex\(^{17}\), T_r is the resonant mass-line shape, and Z_r describes the angular distribution in the decay\(^{18}\). The barrier factor $F_r = 1/\sqrt{1+(R\bar{q})^2}$ for the ϕ, where \bar{q} is the K^+ momentum in the ϕ rest frame and $R = 1.5$ GeV\(^{-1}\); $F_r = 1$ for the scalar resonances. For ϕ decay $Z_r \sim \bar{q} \cdot \bar{p}$, where \bar{p} is the momentum of the K^0 in the ϕ rest frame, while $Z_r = 1$ for scalar decays. We describe the ϕ, $X_0(1550)$, and $\chi_{00}(1P)$ with relativistic Breit-Wigner line shapes\(^{14}\). For the ϕ and $\chi_{00}(1P)$ parameters we use average measurements\(^{14}\). For the $X_0(1550)$ resonance, we use parameters from our analysis of the $B^+ \to K^+ K^- K^+\bar{K}^-$ decay\(^{15}\). The f_0 resonance is described by a coupled-channel amplitude\(^{19}\), with the parameter values of Ref.\(^{20}\).

We include three non-resonant (NR) amplitudes parameterized as $f_{NR,k} = \exp(-\alpha c^2)$, where the parameter $\alpha = 0.14 \pm 0.01$ GeV\(^2\) is taken from measurements of $B^+ \to K^+ K^- K^+$ decays with larger signal samples\(^{15,16}\). We include a complex isobar coefficient for each component $k = (K^+ K^+, K^+ K^0, K^- K^0)$. PDFs for $q\bar{q}$ background in $B^0 \to K^+ K^- K^0$ are modeled using events in the region $5.2 < m_{ES} < 5.26$ GeV/c\(^2\). The region $0.02 < \Delta E < 0.04$ GeV is used for $B_{(s)}^{0(L)}$. Simulated $B \bar{B}$ events are used to define $B \bar{B}$ background PDFs. We use two-dimensional histogram PDFs to model the DP distributions for $q\bar{q}$ and $B \bar{B}$ backgrounds.

We compute the CP asymmetry parameters for component r from the asymmetries in amplitude (b_r) and phase (δ_r) given in Eq.\(^{11}\). The rate asymmetry is
\[
A_{CP,r} = \frac{|A_r|^2 - |\bar{A}_r|^2}{|A_r|^2 + |\bar{A}_r|^2} = \frac{-2b_r}{1 + b_r^2}, \tag{5}
\]
and $\beta_{eff,r} = \beta + \delta_r$ is the phase asymmetry.

The selection criteria yield 3266 $B^{0}_{(s)}(\to \phi)$, 1611 $B_{(s)}^{0}$, and 27513 $B_{(s)}^{0}$ candidates which we fit to obtain the event yields, the isobar coefficients of the DP model, and the CP asymmetry parameters averaged over the DP. The parameters b_r and δ_r are constrained to be the same for all model components, so in this case $A_{CP,r} = A_{CP}$ and $\beta_{eff,r} = \beta_{eff}$. We find 947 ± 37 $B^{0}_{(s)}$, 144 ± 17 $B_{(s)}^{0}$, and 770 ± 71 $B_{(s)}^{L}$ signal events. Isobar coefficients and fractions are reported in Table \(^{11}\) and CP asymmetry results are summarized in Table \(^{11}\). The fraction F_r for resonance r is computed as in Ref.\(^{15}\). Note that there is a $\pm \pi$ rad ambiguity in the $\chi_{00}(1P) K^+$ phase.

Table I: The isobar amplitudes c_r, phases φ_r, and fractions F_r from the fit to the full $K^+ K^- K^0$ DP. The three NR components are combined for the fraction calculation. Errors are statistical only. Because of interference, $\sum F_r \neq 100%$.

Isobar Mode	Amplitude c_r	Phase φ_r (rad)	F_r (%)
$X_0(1550) K^+$	0.0885 \pm 0.0010	-0.016 ± 0.234	12.5 \pm 1.3
$f_0 K^+$	0.622 \pm 0.046	-0.14 ± 0.14	40.2 \pm 9.6
$X_0(1550) K^+$	0.114 \pm 0.018	-0.47 ± 0.20	4.1 \pm 1.3
$(K^+ K^-)^{NR} K^+$	1 (fixed)	0 (fixed)	
$(K^+ K^-)^{(NR)} K^-$	0.33 \pm 0.07	1.95 \pm 0.27	112.0 \pm 14.9
$(K^- K^0)^{(NR)} K^+$	0.31 \pm 0.08	1.34 \pm 0.37	
$\chi_{00}(1P) K^0$	0.0306 \pm 0.0049	-0.34 ± 0.54	3.0 \pm 1.2
$D^+ K^+$	1.11 \pm 0.17		3.6 \pm 1.5
$D^0 K^+$	0.76 \pm 0.14		1.8 \pm 0.6

In Fig.\(^{11}\) we plot twice the change in the negative logarithm of the likelihood as a function of β_{eff}. We find that the CP-conserving case of $\beta_{eff} = 0$ is excluded at 4.8σ (5.1σ), including statistical and systematic errors (statistical errors only). Also, the interference between CP-even and CP-odd amplitudes leads to the exclusion of the β_{eff} solution near $\pi/2 - \beta$ at 4.5σ (4.6σ).

![FIG. 1: The change in twice the negative log likelihood as a function of β_{eff} for the fit to the whole DP.](image.png)
We also measure CP asymmetry parameters for events with $m_{K^+K^-} < 1.1 \text{ GeV}/c^2$. In this region, we find $1359 B_{(s)}^0, 348 B_{(0)}^0, \text{and } 7481 B_{(s)}^0$ candidates. The fit yields $282 \pm 20, 37 \pm 9$ and 266 ± 36 signal events, respectively. The most significant contributions in this region are from ϕK^0 and $f_0 K^0$ decays, with a smaller contribution from the low-mass tail from non-resonant decays. In this fit we vary the amplitude asymmetries b_γ and d_γ for the ϕ and f_0, while the other components are fixed to the SM expectations of $\beta_{\text{eff}} = 0.370 \text{ rad}$ and $A_{CP} = 0$ [21]. We also vary the isobar coefficient for the ϕ, while fixing the others to the results from the whole DP fit. There are two solutions with likelihood difference of only $\Delta \log L = 0.1$. Solution (1) is consistent with the SM, while in Solution (2) β_{eff} for the f_0 differs significantly from the SM value (Table III). The solutions also differ significantly in the values of the ϕ isobar coefficient. There is also a mathematical ambiguity of $\pm \pi \text{ rad}$ in the solution for φ_ϕ. This ambiguity is present for both solutions. The fit correlation between the ϕ and f_0 in d_γ is 0.71 [22].

Finally, we perform a fit to extract the average CP asymmetry parameters in the high-mass region. In the 2384 $B_{(s)}^0, 1406 B_{(0)}^0, \text{and } 20032 B_{(s)}$ selected events with $m_{K^+K^-} > 1.1 \text{ GeV}/c^2$, we find signal yields of $673 \pm 31, 87 \pm 14$ and 462 ± 56 events, respectively; the CP asymmetry results are shown in Table III. We find that for this fit the CP-conserving case of $\beta_{\text{eff}} = 0$ is excluded at 5σ, including statistical and systematic errors.

Figure 2 shows distributions of the DP variables $m_{K^+K^-}$ and $\cos \theta_H$ obtained using the method described in [23]. Figure 3 shows the Δt-dependent asymmetry between B^0 and \bar{B}^0-tagged events.

Systematic errors on the CP-asymmetry parameters are listed in Table III. The fit bias uncertainty includes effects of detector resolution and possible correlations among the fit variables determined from full-detector simulations. We also account for uncertainties due to the isobar model: experimental precision of resonance parameter values; alternate $X_0(1550)$ parameter values [16]; and, in the low- and high-mass fits, the statistical uncertainties on the isobar coefficients determined in the fit to the whole DP. Other uncertainties common to many $B\bar{B}$ time-dependent analyses, including those due to fixed PDF parameters, and possible CP asymmetries in the $B\bar{B}$ background are also taken into account [24].

Uncertainties due to fixed PDF parameters are evaluated by shifting the fixed parameters and refitting the data. As a cross-check, we perform the analysis using $B_{(s)}^0$ alone and find results consistent with those in Table III. The summary of the systematic errors on the CP asymmetry parameter values are shown in Table III. We find that for this fit the CP-conserving case of $\beta_{\text{eff}} = 0$ is excluded at 5σ, including statistical and systematic errors.

Table II: The CP-asymmetries for $B^0 \rightarrow K^+K^-K^0$ for the entire DP, in the high-mass region, and for ϕK^0 and $f_0 K^0$ in the low-mass region. The first errors are statistical and the second are systematic. The solutions (1) and (2) from the low-mass fit are discussed in the text.

Source	Whole DP	High-mass	ϕK^0	$f_0 K^0$
A_{CP}	$-0.015 \pm 0.077 \pm 0.053$	$0.352 \pm 0.076 \pm 0.026$	$-0.08 \pm 0.18 \pm 0.04$	$11 \pm 0.14 \pm 0.06$
β_{γ}	$0.436 \pm 0.087 \pm 0.032$	$0.41 \pm 0.23 \pm 0.07$	$0.14 \pm 0.15 \pm 0.05$	0.10 ± 0.13
β_{eff}	-0.11 ± 0.18	0.10 ± 0.13	-0.20 ± 0.31	3.09 ± 0.19
In summary, in a sample of 383×10^6 $B\bar{B}$ meson pairs we simultaneously analyze the DP distribution and measure the time-dependent CP asymmetries for $B^0 \rightarrow K^+K^-K^0$ decays. The values of β_{eff} and A_{CP} are consistent with the SM expectations of $\beta \simeq 0.370$ rad, $A_{\mathrm{CP}} \simeq 0$ [21]. The significance of CP violation is 4.8σ, and we reject the solution near $\pi/2 - \beta$ at 4.5σ. We also measure CP asymmetries for the decays $B^0 \rightarrow \phi K^0$ and $B^0 \rightarrow f_0 K^0$, where we find β_{eff} lower than the SM expectation by about 2σ. The CP parameters in the high-mass region are compatible with SM expectations, and we observe CP violation at the level of 5.1σ.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BaBar. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.

* Deceased
† Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
‡ Also with Università della Basilicata, Potenza, Italy
§ Also with Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
¶ Also with IPPP, Physics Department, Durham University, Durham DH1 3LE, United Kingdom

[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[2] Use of charge conjugate reactions is implied throughout.

[3] Belle Collaboration, K.-F. Chen et al., Phys. Rev. Lett. 98, 031802 (2007).
[4] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 94, 161803 (2005).
[5] M. Beneke, Phys. Lett. B 620, 143 (2005);
H.-Y. Cheng, C.-K. Chua and A. Soni, arXiv:0704.1049 [hep-ph].
[6] G. Buchalla et al., JHEP 0509, 074 (2005).
[7] Y. Grossman and M. P. Worah, Phys. Lett. B 407, 61 (1997); M. Ciuchini et al., Phys. Rev. Lett. 79, 978 (1997).
[8] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 71, 091102 (2005).
[9] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 98, 031801 (2007); 94, 041802 (2005).
[10] Belle Collaboration, K.-F. Chen et al., Phys. Rev. D 72, 012004 (2005).
[11] ϕ and f_0 refer to the $\phi(1020)$ and $f_0(980)$, respectively.
[12] BABAR Collaboration, B. Aubert et al., Nucl. Instr. Meth. A 479, 1 (2002).
[13] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 93, 181805 (2004).
[14] Particle Data Group, W.-M. Yao et al., J. Phys. G 33, 1 (2006).
[15] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 74, 032003 (2006).
[16] Belle Collaboration, A. Garmash et al., Phys. Rev. D 71, 092003 (2005).
[17] J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics, (J. Wiley, New York, 1952).
[18] C. Zemach, Phys. Rev. 133, B1201 (1964).
[19] S. M. Flatté, Phys. Lett. B 63, 224 (1976).
[20] BES Collaboration, M. Ablikim et al., Phys. Lett. B 607, 243 (2005).
[21] E. Barberio et al., arXiv:0704.3575 [hep-ex] and online update at http://www.slac.stanford.edu/xorg/hfag.
[22] See EPAPS Document No. E-PRLTAO-99-076741 for additional correlations. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.
[23] M. Pivk and F. R. Le Diberder, Nucl. Instr. Meth. A 555, 356 (2005).
[24] O. Long et al., Phys. Rev. D 68, 034010 (2003).