Decadal changes and delayed avian species losses due to deforestation in the northern Neotropics

How avifauna respond to the long-term loss and fragmentation of tropical forests is a critical issue in biodiversity management. We use data from over 30 years to gain insights into such changes in the northernmost Neotropical rainforest in the Sierra de Los Tuxtlas of southern Veracruz, Mexico. This region has been extensively deforested over the past half-century. The Estación de Biología Tropical Los Tuxtlas, of the Universidad Nacional Autónoma de México (UNAM), protects a 640 ha tract of lowland forest. It became relatively isolated from other forested tracts between 1975 and 1985, but it retains a corridor of forest to more extensive forests at higher elevations on Volcán San Martín. Most deforestation in this area occurred during the 1970s and early 1980s. Forest birds were sampled on the station and surrounding areas using mist nets during eight non-breeding seasons from 1973 to 2004 (though in some seasons netting extended into the local breeding season for some species). Our data suggested extirpations or declines in 12 species of birds subject to capture in mist nets. Six of the eight species no longer present were captured in 1992-95, but not in 2003-2004. Presence/absence data from netting and observational data suggested that another four low-density species also disappeared since sampling began. This indicates a substantial time lag between the loss of habitat and the apparent extirpation of these species. Delayed species loss and the heterogeneous nature of the species affected will be important factors in tropical forest management and conservation.
David W. Shaw¹,², Patricia Escalante³, John H. Rappole⁴, Mario A. Ramos⁵, Richard J. Oehlenschlager⁶, Dwain W. Warner⁵, and Kevin Winker¹

¹ University of Alaska Museum, 907 Yukon Drive, Fairbanks, Alaska 99775 USA.
² Current Address: 1540 Jones Road, Fairbanks Alaska 99709 USA.
³ Colección Nacional de Aves, Instituto de Biología, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Copilco, Coyoacan, A. P. 70-233 Mexico, Distrito Federal. C. P. 14510 MEXICO.
⁴ Smithsonian’s National Zoological Park, Conservation and Research Center, 1500 Remount Road, Front Royal, VA 22630 USA.
⁵ Deceased.
⁶ Science Museum of Minnesota, 120 W. Kellogg Blvd. St. Paul, MN 55102 USA.

Corresponding Author:
Kevin Winker
University of Alaska Museum
907 Yukon Drive
Fairbanks, AK 99775
kevin.winker@alaska.edu
907-474-7027
INTRODUCTION

Deforestation is one of the main threats to biodiversity conservation. Forest loss and fragmentation have caused declines or local extinctions among animal species at many locations (Turner, 1996; Fahrig, 2003; Dirzo & Raven, 2003). Local population declines and extirpations may be the most important leading indicators of biodiversity loss (Ceballos & Ehrlich, 2002; O'Grady et al., 2004). Bird losses have been documented in many forest systems (e.g., Willis, 1974, 1979; Leck, 1979; Karr, 1982; Bierregaard & Lovejoy, 1989; Kattan, Halvarez-Lopez, & Giraldo, 1994; Robinson, 1999; Sodhi, Liow, & Bazzaz, 2004; Ferraz et al., 2007; Patten, Gómez de Silva, & Smith-Patten, 2010; Laurance et al., 2011). Perhaps nowhere has this phenomenon been more noticeable than among tropical forests, where species losses have been documented in numerous taxonomic groups (e.g., Zimmerman & Bierregaard, 1986; Powell & Powell, 1987; Malcolm, 1988; Pahl, Winter, & Heinsohn 1988; Becker, Moure, & Peralta, 1991; Daily & Ehrlich, 1995; Brook, Sodhi, & Ng, 2003, Dirzo & Raven, 2003, Stuart et al. 2004; Robinson & Sherry, 2012). Species losses can occur at the landscape or patch levels and depend on the intensity of the change in forest cover, the distance to and size of other forest fragments, shape and size of the fragment, and other factors (Robbins, 1980; Lovejoy et al., 1984, 1986, Rolstad, 1991; Andrén, 1994; Faaborg et al., 1995; Lees & Peres, 2006; Barlow et al., 2006; Patten & Smith-Patten, 2011; Robinson & Sherry 2012). Tropical forest species, which often occur in small, low-density populations, may be particularly vulnerable to extirpation (Terborgh & Winter 1980; Pimm, Jones, & Diamond, 1988; Stotz et al., 1996).

Relatively few studies have assessed changes through decades, however (Ewers & Didham, 2006). And although deforestation and fragmentation can occur over a short period, some time may pass before species begin to disappear from an affected area.
(Leigh, 1975, 1981; Karr, 1982, Tilman et al., 1994; Brooks, Pimm, & Oyugi, 1999). Thus, to fully document the impact of deforestation on a forest community, a site must be studied for a substantial period of time after habitat alteration has occurred. Detailing the process of local population decline and extirpation over time provides invaluable information about species’ abilities to cope with habitat fragmentation. It also informs us about how community composition itself may be resistant to change, its degree of resilience following change, and how or if it stabilizes following this disturbance.

Studies of species losses in birds have used a variety of methods, including comparing species richness in different-sized fragments (Willis, 1979; Nemark, 1991; Blake, 1991), comparison of species composition at a site pre- and post-fragmentation (Willis, 1974; Leck, 1979; Bierregaard & Lovejoy, 1989; Kattan, 1994; Patten & Smith-Patten, 2011), and experimental fragmentation (Lovejoy et al., 1986; Bierregaard & Lovejoy, 1988, 1989; Ferraz et al., 2003, 2007; Laurance et al., 2011), and have often included scattered survey data prior to fragmentation (Willis, 1974; Leck, 1979; Kattan, Halvarez-Lopez, & Giraldo, 1994; Robinson, 1999; Patten, Gómez de Silva, & Smith-Patten, 2010; Patten & Smith-Patten, 2011). Many of these studies have relied on qualitative visual and audio survey techniques, with multiple observers, though such techniques can allow cryptic and low-density species to be overlooked (Whitman, Hagan, & Brokaw, 1997). Additionally, observer skills and intensity of sampling may vary among surveys.

Mist netting offers the most consistent and quantitative method available to sample birds among years (Rappole, Winker, & Powell, 1998). However, mist nets have documented weaknesses; the most relevant is the limited stratum and size of birds they can effectively sample (Remsen & Good, 1996; Whitman, Hagan, & Brokaw, 1997; Rappole, Winker, & Powell, 1998). This is particularly noticeable in structurally diverse
habitats such as tropical rainforests, where probability of detection using mist nets is
unknown for most species. Mist net studies in the Neotropics are therefore biased
toward understory, small- to mid-sized passerines. While mist nets, unlike other
methods, are less prone to observer bias and variability, we augmented our analyses of
netting data that suggested species losses with presence-absence observational data
(daily checklists in later years); this becomes particularly important for low-density
species and for those not readily captured.

The Sierra de Los Tuxtlas of southern Veracruz, Mexico provides a textbook case
of deforestation. This small range of volcanic mountains is home to the northernmost
Neotropical rainforest (Pennington & Sarukhan, 1968; Dirzo & Miranda, 1991). The
region has lost more than 90% of its forests in the past century, with the majority of that
loss occurring in the lowlands over the past fifty years (Dirzo & Garcia, 1992; Rappole,
Powell, and Sader, 1994; Winker, 1997). Our study compares eight seasons of mist net
sampling from Los Tuxtlas over the course of more than thirty years. This allows us to at
least partly answer the question of how species composition and relative abundance
changed in and around a conserved core of local rainforest habitat on a decadal scale.

METHODS

The Sierra de Los Tuxtlas is located in southern Veracruz, Mexico, 90 km
southeast of Veracruz city. This range of mountains lies in the northwestern portion of
the Isthmus of Tehuantepec and is isolated from the Sierra Madre Oriental by extensive
lowlands. Los Tuxtlas encompass approximately 4,200 km², and the range is dominated
by Volcán San Martín and Volcán Santa Marta, each reaching more than 1,500 m
elevation. The Gulf of Mexico lies a short distance from the mountains to the north and
east. The northernmost Neotropical evergreen rainforest formerly dominated the habitat
in the region (Andrle, 1966; Pennington & Sarukhan, 1968; Dirzo & Miranda, 1991), but
due to deforestation it is now a mosaic with a high percentage of pasture, cropland, fencerows, and isolated trees (pers. obs.; Dirzo & Garcia 1992; Estrada, Coates-Estrada, & Merritt 1997). Andrle (1966) estimated that 50% of the region was forested in 1962. By 1975 Rappole & Warner (1980) estimated that a third of the forests still stood. Just 15% of forest remained in 1986 (Winker, Rappole, & Ramos, 1990; Dirzo & Garcia, 1992), and in 1994 only 7-10% of the region was forested (Winker, 1997). Remaining forest occurs primarily in the highlands, and below 500 m forest is scarce (Rappole, Powell, & Sader, 1994; Mendoza, Fay, & Dirzo, 2005; Figs. 1, 2, S1).

The climate in Los Tuxtlas is warm and wet, with a mean annual temperature of 25 C, and annual precipitation is 4,500-4,900 mm, with a short dry season from March-May (Soto & Gama 1997). Canopy heights in primary forest range from 30-35 m (Ibarra-Manriquez et al., 1997). Second growth areas generally have variable canopy heights from 3-20 m (pers. obs.).

In 1967 the Universidad Nacional Autónoma de México established the Estación de Biología Los Tuxtlas, protecting a 640-ha tract of lowland rainforest (González-Soriano, Dirzo, & Vogt, 1997). Over the following decades this site became largely isolated from other tracts of forest, although a corridor of forest remains, connecting to the more extensive upland forests on Volcán San Martín (Dirzo & Garcia, 1992; Fig. 2).

The first intensive sampling of birds in the region began in 1973, and data from that effort are included here (see Winker, 1997).

During the non-breeding seasons of 1973-74 and 1974-75 Oehlenschlager, Ramos, Rappole, and Warner conducted the first intensive mist-netting efforts in the area. Sites extended through what was then contiguous rainforest from the biological station eastward to the coast (Fig. 3). In 1986, Rappole, Ramos, and Winker operated mist nets at the biological station, and Winker and Escalante continued work there from 1992 to
1994. In 2003-04 as part of a study of migrant birds, Shaw operated mist nets at the
same location as Winker and Escalante’s work in the 1990s. This study was approved by
the University of Alaska Fairbanks IACUC (approval numbers: #00-33 & #04-03).
Fieldwork occurred primarily during the non-breeding season. Effort was made to
equally sample the available forest types throughout the study period, although, in order
to do this, habitat changes precluded using the same sites across all years (see Winker
1995; Fig. 3). Field effort as gauged by net hours also varied among years (Table 1).
Our earliest sampling occurred over a wider area than later seasons (Fig. 3).
During the earliest sampling, large tracts of contiguous forest consisting of various
microhabitats dominated the region and were sampled accordingly (Fig. 3). This broader
expanse of forest likely provided habitat to more species than the current distribution of
forest. This increased detection probabilities for some species such as *Schiffornis
turdina*, which was rare even during our earliest sampling. Two general types of forest
were present after fragmentation: primary forest and acahual (second growth). Because
our sampling was forest-oriented, our efforts tracked the distribution of these habitats.
Primary rainforest and second growth habitats were sampled in all efforts. We were
unable to separate capture data by site for the early sampling periods; our findings
therefore include data from the somewhat larger area from the station east to the coast.
Our sampling was also uneven with respect to season, with wet and dry season sampling
being unevenly distributed among years; we attempt to account for this, especially in
relation to seasonal movements, when considering the results. This sampling
heterogeneity leads us to be cautious and conservative in our analyses and
interpretations. Importantly, however, the same site (18° 34’50”N, 95° 04’20”W) and net
lanes were used in the 1992-2004 efforts (sample periods 4-8 in Table 1).

Only resident species were used in our analyses due to seasonal migration and the
high levels of variance in abundance this causes among obligate migrants. Changes in
relative abundance were detected by comparing capture rates (birds per 1000 net hours)
from each year of sampling. Through visual inspection of data (Appendix) we chose
species absent in later samples and those with trends of apparently declining or
increasing rates of capture for more detailed analyses. Neither gaps nor monotonic
changes were necessary for inclusion, just suggestion of a possible trend. We did this
instead of applying statistical tests across all 122 species to minimize Type I and Type II
tests either by applying a very large number of tests or a conservative correction (e.g.,
Bonferroni). Presence/absence patterns and observational data (daily checklists in later
years) were also considered to provide insight into changes in abundance in low-density
species that did not have sufficient samples for statistical testing. Species were
considered for examination for presence/absence if they had not been captured since at
least 1986-87. Vagrants, defined as those rarely encountered species whose ranges do
not normally include the Sierra de Los Tuxtlas, were excluded (Winker et al., 1992;
Howell & Webb, 1995). Only first-time captures (within a season) were used in statistical
analyses. Ordinary least squares regression was used to detect changes in abundance for
selected species. We looked for newly appearing species using presence/absence netting,
observational, and specimen data. Daily checklists were used to augment mist-net data
as a check to determine whether absence from the mist-net data was indicative of reality.
Species showing statistically significant declines and those not captured or
observed in later sampling periods were categorized by preferred habitat (edge, forest, or
semi-open), food preference (fruit/nectar or insects), elevational range, and whether Los
Tuxtlas was at the periphery or core of its geographic range (Howell & Webb, 1995).
These characteristics were used to assess whether certain traits of the species increased
their vulnerability to local extirpation.
RESULTS

During this study we accumulated 165,083 net hours, equivalent to 37.7 net years if netting with a single net occurred twelve hours per day (Table 1). A species accumulation curve for a representative year (1992) with below-average net hours (12,605; mean = 20,220) showed that the avifauna was effectively fully sampled during most field seasons (Fig. S2, though in documenting a species’ absence it is the among-season, aggregate sampling that is important). In total, 122 nonmigratory species were captured (Appendix).

Seven species showed statistically significant declines during the sampling period: *Phaethornis striigularis*, *Xenops minutus*, *Glyphorynchus spirurus*, *Onychorhynchus coronatus*, *Myiobius sulphureipygius*, *Henicorhina leucosticta*, and *Eucometis penicillata* (Table 2). Of these taxa, four were captured throughout the sampling period: *P. striigularis*, *X. minutus*, *E. penicillata*, and *H. leucosticta*. *G. spirurus* was last captured in 1975, *O. coronatus* in 1986, and *M. sulphureipygius* in 1994, the last season of autumn netting. Four other species were captured in substantial numbers during early sampling periods but were not captured in later years: *Lepidocolaptes souleyetii*, *Ornithion semiflavum*, *Leptopogon amaurocephalus*, and *Coereba flaveola* (the latter may be an intratropical migrant in this region; Ramos, 1983); however, these species failed to show statistically significant declines in linear regression analyses, perhaps due to nonlinear declines. *L. souleyetii* was last captured in 1993-94, and the others were last captured in 1994-95. One species, *Hylomanes momotula*, was captured from 1986-1995 but not in the 1970s or in 2003-04. Though there were no captures in the 1970s, one individual was collected on 17 May 1974 a few km northeast of the station. A similar pattern occurred in *Anabacerthia variegaticeps*, with captures occurring only in the 1990s. Only two species (*Trogon collaris* and *Xiphorhynchus flavigaster*) showed
significant increases during the study period.

Presence/absence mist-net capture data for low-density species not captured after 1986-87 could be interpreted as suggesting that an additional 23 taxa were extirpated during the study (Table 3). However, we know from observational data that not all of these species were absent. These taxa included rarely captured species that are too large for effective mist-net capture or that prefer the forest canopy (e.g., *Micrastur ruficollis*, *Cotinga amabilis*), mixed/open habitat specialists (e.g., *Thraupis abbas* and *T. episcopus*), a small-stream specialist (*Chloroceryle aenea*), and highland species (e.g., *Myadestes unicolor*) that are either not prone to capture in mist nets or at our site.

Species such as *Tityra inquisitor*, both *Thraupis* tanagers, and others were known to be present on the site or nearby but were not captured in later sampling periods. Four species of hummingbirds are included in Table 3, but due to inconsistent capture probabilities of low-density hummingbird species and non-definitive observational data with respect to accurate identification, we provide no hypotheses regarding their possible extirpation or persistence at the site; further work focusing on these species is warranted. There were six other species not in Tables 2 or 3 in which mist net data alone might suggest declines or absences (Appendix) during the entire study but which were present throughout from observational data; netting is not an effective sampling tool for these taxa because of body size or forest stratum occupied (e.g., *Glaucidium brasilianum*, *Ciccaba virgata*, and *Celeus castaneus*) or because forest understory is not preferred habitat (e.g., *Pitangus sulphuratus*, *Myiozetetes similis*, and *Volatinia jacarina*; Appendix). The first three of these species require more focused study to determine abundances and possible declines.

Four lower-density species have likely been extirpated: *Taraba major*, *Formicarius analis*, *Grallaria guatimalensis*, and *Schiffornis turdina* (Table 3). One
low-density species that might seem to have been extirpated from our data, *Elaenia flavogaster*, is likely an intratropical migrant here (pers. obs.; Howell & Webb, 1995; Table 3). Several species were captured only in later sampling periods (Appendix) but were observed or collected throughout, suggesting that there were no additions to the biological station’s resident avifauna during the study.

Based on all available data during the study (netting and observational data), a minimum of 11 species of birds appear to have been extirpated from the biological station over the past three decades. This translates into an average loss of 3.7 species per decade or a local loss of 2.0% of the entire Los Tuxtlas avifauna (561 spp.; Schaldach & Escalante, 1997), 4.1% of the resident avifauna (269 spp.; Schaldach & Escalante, 1997), or 9.0% of the resident species captured in our study (122 spp.; Appendix). All 16 species showing significant declines or no longer present on the site prefer some degree of forest cover (Table 4). Three species are edge specialists: *O. semiflavum, O. mexicanus*, and *C. flaveola*. Eleven prefer closed canopy forest: *P. striigularis, H. momotula, X. minutus, G. spirurus, F. analis, G. guatimalensis, L. amaurocephalus, M. sulphureipygius, S. turdina, H. leucosticta*, and *E. penicillata*. *T. major* prefers primary forest edge, second growth, and riparian thickets, while *L. souleyetii* prefers semi-open or partly cleared forest.

Eleven of 16, or 68.8%, of the species showing declines or extirpations in this study are insectivores, whereas among all species captured 41% are insectivores. This trend was not significant, however (G-test with Williams’ correction, *P > 0.1*).

The Sierra de Los Tuxtlas is the northernmost limit of the ranges of 13 of the 16 species showing declines. *G. guatimalensis* and *H. leucosticta* are the only species with a distribution extending substantially to the north and west of the study site. The field site is well within the elevational limits for all 16 species (Table 4).
The two species that significantly increased in abundance over the sample period (Table 4) both occur here at the core of their ranges, elevational distributions, and in their preferred forest habitat. *T. collaris* is a frugivore, and *X. flavigaster* is an insectivore.

DISCUSSION

Although the absence of a species is not a clear indication of extirpation, our sampling effort, despite its heterogeneity, does suggest that at minimum a species’ absence indicates a decline. It is possible that some of the species now apparently gone from the station may persist in other, unsampled fragments. If the data presented here and our interpretations of them are accurate, the extirpation of species from the Estación de Biología Los Tuxtlas has been ongoing since its isolation. Such an “extinction debt” is a recognized component of deforestation, and models of empirical data show that in birds this occurs across decades, but the species affected and the mechanisms of species loss remain poorly understood (Tilman et al., 1994; Ewers & Didham, 2003, Robinson & Sherry, 2012). Since 1973, 16 species susceptible to capture in mist nets have either become locally extirpated or are showing significant declines in abundance. The total number of losses and declines is undoubtedly higher than presented, because species not regularly captured in mist nets, such as large-bodied and canopy species, were not adequately surveyed. Species known to have been extirpated from Los Tuxtlas include *Sarcoramphus papa, Harpia harpyja*, and *Ara macao*. Patten, Gómez de Silva, & Smith-Patten (2010) also documented the extirpation of the latter two in Chiapas, Mexico. Many additional species have also been categorized as endangered or threatened in the Sierra de Los Tuxtlas (see Winker, 1997).

Our estimate of the average rate of avian losses from the station of 3.7 species per decade may not be directly comparable to other studies due to differences in habitat and
sampling, but it is similar to the rate of loss observed at Barro Colorado Island by Robinson (1999) of 3.3 species per decade. Our estimate, however, includes only those taxa captured in mist nets, whereas Robinson’s work included all species detected through observation.

Of the eight species with data sufficient for statistical analysis that showed local extirpation, six were lost between 1992 and 2004 (on the same site), suggesting a continuing extirpation of species from the station. Bierregaard & Lovejoy (1988, 1989) found that as surrounding habitat was lost, species richness in remaining fragments increased as individuals displaced from surrounding areas found their way to remaining forest patches. This increased richness was limited by the lifespan of the individual birds (Bierregaard & Lovejoy 1988, 1989). Unlike these studies, in which forest patches were suddenly and completely isolated, the forest of the Estación de Biología Los Tuxtlas was isolated gradually. Because extirpation seems to be continuing, we expect declines and extirpations to continue for some time at the station, even if no further deforestation occurs in the region (Willis, 1974; Brooks, Pimm, & Oyugi, 1999, Robinson, 1999; Ferraz et al., 2003).

Mechanisms for tropical bird species losses due to deforestation and fragmentation probably include factors such as greater specialization as compared to temperate birds, reduced dispersal abilities, lower population densities, and patchy distributions (Robinson et al., 2004; Stratford & Robinson, 2005; Moore et al., 2008; Rompré et al., 2007). Our assessment of possible causes for the loss of these species reveals no definite patterns, however, other than the predominant requirement of forested habitat. On Barro Colorado Island in Lake Gatún, Panama, maturation of habitat and loss of open areas was responsible for the decline in the island’s avifauna (Willis, 1974; Karr, 1982). This is unlikely to be the case in Los Tuxtlas. Despite major
degradation of surrounding forests, the station has remained primary forest with areas of second growth. A loss of sapling and seedling species has been described (Dirzo & Miranda, 1990), but the overall structure of the forest appears to have remained fairly stable. Vetter et al. (2011) found in a meta-analysis of 30 studies that the effects of fragmentation are not subject to simple generalities, and that they are highly site specific. Patten & Smith-Patten (2011) pointed to the need to understand extirpations at local scales because responses can differ from predictions made at larger scales.

Los Tuxtlas is at the northernmost extent of the ranges of 13 of the 16 species we found to be declining or extirpated (Tables 3 and 4). Evidence is mixed as to whether populations at the periphery of a species’ range are more vulnerable to extirpation (Terborgh & Winter, 1980; Kattan, Halvarez-Lopez, & Giraldo, 1994; Johnson, 1998). Los Tuxtlas is at the edge of all species’ geographic ranges endemic to Neotropical rainforest, so it is not clear why this subset might be more subject to this phenomenon. The elevational distribution of each of these species encompasses sea level to 750 m or more (Howell & Webb, 1995), and we consider this factor unlikely to be responsible for the vulnerability of these particular taxa.

Although insectivores showed a trend toward being disproportionately affected in our study, it was not significant. Elsewhere insectivores have been shown to be particularly vulnerable to severe habitat change (e.g., Kattan, Halvarez-Lopez, & Giraldo, 1994; Canaday, 1996; Johnson & Winker, 2010; Vetter et al., 2011). Additionally, deforestation can negatively impact species found in multi-species foraging flocks (Van Houtan et al., 2006), which are important to many birds of tropical rainforest communities (Willis, 1966; Morton, 1973; Buskirk, 1976; Rappole et al., 1983). Rappole & Morton (1985) noted that X. minutus, one of the species showing a significant decline in our study (Table 2) was a regular member of mixed flocks in the Sierra de Los Tuxtlas.
We considered large-scale range shifts, perhaps from climate change, as a possible cause for species loss, but this seems unlikely. At least some of the species lost in our study appear to have persisted in the southern portion of Los Tuxtlas near Volcán Santa Marta at least into the mid-1990s (Winker, pers. obs.). If range shifts were the cause, species would likely have disappeared region-wide and we would not expect only forest-related species to be affected. Habitat loss and degradation seem to be the best explanations for the losses observed, but exactly how these changes affected each species remains unknown.

Another possible influence on mist-net captures, particularly in the most recent, late winter/spring sampling periods, would be seasonal intra-tropical and elevational movements in some of the study species (Ramos, 1983, 1988). There is evidence that *C. flaveola* and *E. flavogaster* move seasonally within the tropics, seemingly to breed in Los Tuxtlas then departing (Ramos & Rappole, pers. obs.). Vega Rivera (1982) found probable elevational movements in *M. sulphureipygius*. The extirpations of seven of the 16 species are particularly notable. *C. flaveola* is a widely distributed species known to thrive in manipulated habitats such as gardens and forest edges and is a generalist frugivore and nectarivore (pers. obs.; Howell & Webb, 1995). This is not a species we would expect to decline due to forest fragmentation; both its habitat and food preferences are well suited to survival in a mosaic landscape, and it is known to persist in a fragmented landscape elsewhere in northern Middle America (Johnson & Winker, 2010). Intratropical migrations of *C. flaveola* may partially explain the changing capture rates in this species (Ramos & Rappole, pers. obs.). *O. semiflavum* and *L. amaurocephalus* are both edge specialists; thus, limited fragmentation, creating an increase in edges, might *a priori* seem to benefit these species. Though the habitat protected by the station has remained relatively static, the intensity of lowland
Deforestation in Los Tuxtlas as a whole (Fig. 1) may be too extensive even for these edge specialists. *L. souleyetii* prefers open forest and partially cleared areas (Howell & Webb, 1995). The habitat surrounding the station during the 1980s and 1990s was dominated by pasture scattered with isolated trees. In our later field seasons there was a noticeable decline in the number of isolated trees and fences constructed of living trees (Winker, pers. obs.). This loss may account for the extirpation of *L. souleyetii*. *G. spirurus* apparently disappeared from the station between the 1970s and 1986, the first of the documented extirpations. The majority of deforestation across the region took place during this period. This previously abundant species disappeared from our data in just over a decade. Interestingly, on the slopes of neighboring Volcán Santa Marta the species was present at least into the 1990s and probably still persists there (Winker, pers. obs.). Also, Estrada, Coates-Estrada, & Merritt (1997) had observational data of the species’ presence in the station area in 1990-1992, indicating at least a decline if not extirpation (Table 2). In Brazil, *G. spirurus* persisted in experimentally isolated fragments well after isolation (Stouffer & Bierregaard 1995), and the species persists in highly fragmented forest in southern Belize (Johnson & Winker, 2010). *H. momotula* was collected but not netted in 1974, was captured in substantial numbers during 1986 and 1992-94, but was absent in the last two seasons of sampling. This pattern is mysterious. This species has an elevational range extending to 1500 m and may persist in the forests of the upper slopes of Volcán San Martín. If so, we speculate that the station may serve as a sink for this species, where habitat is insufficient for a self-sustaining population but may occasionally be colonized by dispersing individuals (see also Winker et al., 1997). Continued sampling may provide more insight into its abundance patterns. It illustrates the need for improved understanding of species-specific dispersal behavior within and among forest fragments (e.g., Van Houtan et al., 2007; Moore et al., 2008; Ibarra-
Macias, Robinson, & Gaines 2011), which may be an important driver for patterns such as those we observed.

Two other studies provide comparative value to our results. The four species we consider likely extirpated (Taraba major, Formicarius analis, Grallaria guatimalensis, and Schifrnons turdina) were not detected in the much broader census surveys of Estrada, Coates-Estrada, & Merritt (1997) in 1990-1992. Patten, Gómez de Silva, & Smith-Patten (2010) conducted the geographically closest long-term study to ours in their analysis of avian declines at Palenque, Chiapas, Mexico. Their results showed only three species that overlapped our results. They found Eucometis penicillata extirpated (to our decline) and two others that declined as our populations did (Xenops minutus and Leptopogon amaurocephalus). Indeed, the species-level heterogeneity between our studies is noteworthy. A key similarity between our studies, however, is the importance of forest in explaining declines and extripations (Patten & Smith-Patten, 2011).

Our analyses suggest that the Estación de Biología Tropical Los Tuxtlas is too small to maintain its full, historic complement of bird species. If deforestation accelerated region-wide, eliminating other forest refugia, the station alone (640 ha) would be unable to maintain the historical avian diversity of the region or to provide source populations for restored forest habitats for many of its present bird species. Given the scale of deforestation in the region, it is surprising that there are not more species showing declines. Indeed, we may consider it good news that important forest seed dispersers such as Habia tanagers (Puebla & Winker, 2004) did not show significant declines. The overall size of the remaining forests, particularly in the highlands, may be ameliorating the effects of lowland deforestation. However, increasing or continued isolation of the station will probably limit recolonization from elsewhere, and species losses will likely continue.
In our study, although several species seemed to quickly succumb to local and regional deforestation, others showed delayed declines and extirpations, a phenomenon also known to happen at larger scales (Tilman et al., 1994, Pimm et al., 2006). Moreover, the effects of deforestation were remarkably heterogeneous among forest-related species, with no single clear pattern of why some species experienced declines or extirpation. Our long-term data suggest that predicting which species will be most affected by deforestation in the northern Neotropics, and thus effectively working to ameliorate the effects of forest loss, will be particularly challenging. Nevertheless, as similar long-term datasets accrue, subtle patterns may reveal how species-specific responses reflect underlying commonalities that can be exploited for effective management and conservation.

ACKNOWLEDGMENTS

We thank the many field assistants who have helped us over the years and those who have provided and helped obtain permits to conduct this research. R. Barry, A. Powell, S. Pimm, M. Patten, and three anonymous reviewers provided excellent advice and comments.

LITERATURE CITED

Andrén H. 1994. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. *Oikos* 71:355-366.

Andrle RF. 1966. North American migrants in the Sierra de Tuxtla of southern Veracruz, Mexico. *Condor* 68:177-184.

Barlow J, Peres CA, Henriques LMP, Stouffer PC, Wunderle JM. 2006. The responses of understorey birds to forest fragmentation, logging and wildfires: An Amazonian synthesis. *Biological Conservation* 128:182-192.

Becker P, Moure JS, Peralta FJA. 1991. More about euglossine bees in
Amazonian forest fragments. *Biotropica* 23:586-591.

Bierregaard RO, Lovejoy TE. 1988. Birds in Amazonian forest fragments: Effects of insularization. Pages 1564-1579 in: *Acta XIX Congressus Internationalis Ornithologici* (H. Oellet, ed.). University of Ottawa Press, Ottawa, Canada.

Bierregaard RO, Lovejoy TE. 1989. Effects of forest fragmentation on Amazonian understory bird communities. *Acta Amazonica* 19:215-241.

Blake JG. 1991. Nested subsets and the distribution of birds in isolated woodlots. *Conservation Biology* 5:58-86.

Brook BW, Sodhi NS, Ng PKL. 2003. Catastrophic extinctions follow deforestation in Singapore. *Nature* 424:420-423.

Brooks TM, Pimm SL, Oyugi JO. 1999. Time lag between deforestation and bird extinction in tropical forest fragments. *Conservation Biology* 13:1140-1150.

Buskirk WH. 1976. Social systems in a tropical forest avifauna. *American Naturalist* 110:293-310.

Canaday C. 1996. Loss of insectivorous birds among a gradient of human impact in Amazonia. *Biological Conservation* 77:63-77.

Ceballos G, Ehrlich PR. 2002. Mammal population losses and the extinction crisis. *Science* 296:904-907.

Daily GC, Ehrlich PR. 1995. Preservation of biodiversity in small rainforest patches: rapid evaluations using butterfly trapping. *Biodiversity and Conservation* 4: 35-55.

Dirzo R, Garcia MC. 1992. Rates of deforestation in Los Tuxtlas, a Neotropical area in southeast Mexico. *Conservation Biology* 6:84-90.

Dirzo R, Miranda A. 1990. Contemporary Neotropical defaunation and forest structure, function, and diversity, a sequel to John Terborgh. *Conservation Biology* 4:444-
Dirzo R, Miranda A. 1991. Altered patterns of herbivory and diversity in the forest understory: a case study of the possible consequences of contemporary defaunation. Pages 273-287 in: *Plant-Animal Interactions: Evolutionary ecology in tropical and temperate regions* (Price PW, Lewinsohn TM, Fernandes GW, Benson WW, eds.). Wiley and Sons, Inc., New York.

Dirzo R, Raven PH. 2003. Global state of biodiversity and loss. *Annual Review of Environment and Resources* 28:137-167.

Estrada A, Coates-Estrada R, Merritt Jr DA. 1997. Anthropogenic landscape changes and avian diversity at Los Tuxtlas, Mexico. *Biodiversity and Conservation* 6:19-43.

Ewers RM, Didham RK. 2006. Confounding factors in the detection of species responses to fragmentation. *Biological Reviews* 81:117-142.

Faaborg J, Brittingham M, Donovan T, Blake J. 1995. Habitat fragmentation in the temperate zone. Pages 357-380 in: *Ecology and management of Neotropical migratory birds: a synthesis and review of the critical issues* (Finch DM, Martin TE, eds.). Oxford University Press, Cambridge, United Kingdom.

Fahrig L. 2003. Effects of habitat fragmentation on biodiversity. *Annual Review of Ecology Evolution and Systematics* 34:487-515.

Ferraz G, Russell GJ, Stouffer PC, Bierregaard RO, Pimm SL, Lovejoy TE. 2003. Rates of species loss from Amazonian forest fragments. *Proceedings of the National Academy of Sciences* USA 100:14069-14073.

Ferraz G, Nichols JD, Hines JE, Stouffer PC, Bierregaard RO, Lovejoy TE. 2007. A large-scale deforestation experiment: Effects of patch area and isolation on Amazon birds. *Science* 315:238-241.

González-Soriano E, Dirzo R, Vogt RC, eds. 1997. *Historia Natural de Los Tuxtlas.*
Universidad Nacional Autónoma de México, México, D.F.

Howell S, Webb S. 1995. *A guide to the birds of Mexico and northern Central America.* Oxford University Press, New York.

Ibarra-Macías A, Robinson WD, Gaines MS. 2011. Experimental evaluation of bird movements in a fragmented Neotropical landscape. *Biological Conservation* 144:703-712.

Ibarra-Manríquez G, Martinez-Ramos M, Dirzon R, Núñez-Farfán J. 1997 La vegetación. Pages 61–74 in *Historia Natural de Los Tuxtlas* (González-Soriano E, Dirzo R, Vogt RC, Eds). Universidad Nacional Autónoma de México, México, D.F.

Johnson AB, Winker K. 2010. Short-term hurricane impacts on a Neotropical community of marked birds. *PLoS ONE* 5:e15109.

Johnson CN. 1998. Species extinction and the relationship between distribution and abundance. *Nature* 394:272-274.

Kattan GH, Halvarez-Lopez H, Giraldo M. 1994. Forest fragmentation and bird extinctions: San Antonio eighty years later. *Conservation Biology* 8:138-146.

Karr JR. 1982. Population variability and extinction in a tropical land-bridge island. *Ecology* 63:1975-1978.

Laurance WF, et al. 2011. The fate of Amazonian forest fragments: A 32-year investigation. *Biological Conservation* 144:56-67.

Leck CF. 1979. Avian extinctions in an isolated tropical wet-forest preserve, Ecuador. *Auk* 96:343-352.

Lees AC, Peres CA. 2006. Rapid avifaunal collapse along the Amazonian deforestation frontier. *Biological Conservation* 133:198-211.

Leigh EG, Jr. 1975. Population fluctuations, community stability, and environmental variability. Pages 52-73 in: *Ecology and evolution of communities* (Cody ML,
Leigh EG, Jr. 1981. The average lifetime of a population in a varying environment. *Journal of Theoretical Biology* 90:213-239.

Lovejoy TE, Rankin JM, Bierregaard RO, Brown KS, Jr., Emmons LH, Van Der Voort ME. 1984. Ecosystem decay of Amazon forest remnants. Pages 295-325 in: *Extinctions* (Nitecki MH, ed.). University of Chicago Press, Chicago, Illinois.

Lovejoy TE, Bierregaard RO, Rylands AB, Malcolm JR, Quintela CE, Harper LH, Brown KS, Powell AH, Powell GVN, Schubart HOR, Hays MB. 1986. Edge and other effects of isolation on Amazon forest fragments. Pages 257-285 in: *Conservation biology: The science of scarcity of diversity* (Soule ME, ed.). Sinauer Associates, Sunderland, Massachusetts.

Malcolm JR. 1988. Small mammal abundances in isolated and non-isolated primary forest reserves near Manaus, Brazil. *Acta Amazonica* 18: 67-83.

Mendoza E, Fay J, Dirzo R. 2005. A quantitative analysis of forest fragmentation in Los Tuxtlas, southeast Mexico: patterns and implications for conservation. *Revista Chilena de Historia Natural* 78:451-467.

Moore RP, Robinson WD, Lovette IJ, Robinson TR. 2008. Experimental evidence for extreme dispersal limitation in tropical forest birds. *Ecology Letters* 11: 960-968.

Morton ES. 1973. On the evolutionary advantages and disadvantages of fruit eating in tropical birds. *American Naturalist* 107:8-22.

Nemark WD. 1991. Tropical forest fragmentation and the local extinction of understory birds in the eastern Usambara Mountains, Tanzania. *Conservation Biology* 5:67-78.

O’Grady JJ, Reed DH, Brook BW, Frankham R. 2004. What are the best correlates of predicted extinction risk? *Biological Conservation* 118:513-520.
Pahl LI, Winter JW, Heinsohn G. 1988. Variation in responses of arboreal marsupials to fragmentation of tropical rainforest in north eastern Australia. *Biological Conservation* 46:71-82.

Patten MA, Gomez de Silva H, Smith-Patten BD. 2010. Long-term changes in the bird community of Palenque, Chiapas, in response to rainforest loss. *Biodiversity and Conservation* 19:21-36.

Patten MA, Smith-Patten BD. 2011. Predictors of occupancy trend across spatial scale. *Conservation Biology* 6:1203-1211.

Pennington TD, Sarukhan J. 1968. *Arboles Tropicales de Mexico*. Instituto Nacional de Investigaciones Forestales, D.F., Mexico.

Pimm SL, Jones HH, Diamond J. 1988. On the risk of extinction. *American Naturalist* 132:757-785.

Pimm SL, Raven P, Peterson A, Şekercioğlu Ç, Ehrlich PR. 2006. Human impacts on the rates of recent, present, and future bird extinctions. *Proceedings of the National Academy of Sciences USA* 103:10941-10946.

Powell AH, Powell GVN. 1987. Population dynamics of male euglossine bees in Amazonian forest fragments. *Biotropica* 19: 176-179.

Puebla F, Winker K. 2004. Dieta y dispersión de semillas de dos especies de tangara *(Habia)* en dos tipos de vegetación en Los Tuxtlas, Veracruz, México. *Ornitología Neotropical* 15:53-64.

Ramos MA. 1983. *Seasonal movements of bird populations at a Neotropical study site in southern Veracruz, Mexico*. Ph.D. dissertation. University of Minnesota, Minneapolis.

Ramos MA. 1988. Eco-evolutionary aspects of bird movements in the northern Neotropical region. Pages 251-293 in: *Acta XIX Congressus Internationalis*
Rappole JH, Warner DW. 1980. Ecological aspects of migrant bird behavior in Veracruz, Mexcio. Pages 353-393 in: Migrant Birds in the Neotropics: Ecology, Behavior, Distribution, and Conservation, (Keast A, Morton ES, eds.). Smithsonian Institution Press, Washington, D.C.

Rappole JH, Morton ES, Lovejoy TE, III, Ruos JL. 1983. Nearctic avian migrants in the Neotropics. United States Fish and Wildlife Service, Washington D.C.

Rappole JH, Powell GVN, Sader SA. 1994. Remote-sensing assessment of tropical habitat availability for a Nearctic migrant: the Wood Thrush. Pages 91-103 in: Mapping the diversity of nature (Miller RI, ed.). Chapman and Hall, London.

Rappole JH, Winker K, Powell GVN. 1998. Migratory bird habitat use in southern Mexico: mist nets versus point counts. Journal of Field Ornithology 69:635-643.

Remsen JV Jr., Good DA. 1996. Misuse of data from mist-net captures to assess relative abundance in bird populations. Auk 113: 381-398.

Robbins CS. 1980. Effect of forest fragmentation on breeding bird populations in the piedmont of the mid-Atlantic region. Atlantic Naturalist 33:31-36.

Robinson WD. 1999. Long-term changes in the avifauna of Barro Colorado Island, Panama, a tropical forest isolate. Conservation Biology 13:85-97.

Robinson WD, Sherry TW. 2012. Mechanisms of avian population decline and species loss in tropical forest fragments. Journal of Ornithology 153:S141-S152.

Robinson WD, Angehr GR, Robinson TR, Petit LJ, Petit DR, Brawn JD. 2004. Distribution of bird diversity in a vulnerable Neotropical landscape. Conservation Biology 18:510-518.

Rolstad J. 1991. Consequences of forest fragmentation for the dynamics of bird
populations: conceptual issues and the evidence. *Biological Journal of the Linnean Society* 42:149-163.

Rompré G, Robinson WD, Desrochers A, Angehr G. 2007. Environmental correlates of avian diversity in lowland Panama rainforests. *Journal of Biogeography* 34:802-815.

Schaldach W, Escalante P. 1997. Lista de Aves. Pages 571-573 in: *Historia Natural de Los Tuxtlas* (González-Soriano E, Dirzo R, Vogt RC, eds.). Universidad Nacional Autonoma de Mexico. D.F., Mexico.

Sodhi NS, Liow LH, Bazzaz FA. 2004. Avian extinctions from tropical and subtropical forests. *Annual Review of Ecology Evolution and Systematics* 35:323-345.

Soto M, Gama L. 1997. Climas. Pages 7-23 In: *Historia Natural de Los Tuxtlas* (González-Soriano E, Dirzo R, Vogt RC, eds.). Universidad Nacional Autonoma de Mexico. D.F., Mexico.

Stotz DF, Fitzpatrick JW, Parker TA, Moskovits DK. 1996. *Neotropical birds: ecology and conservation*. University of Chicago Press, Chicago.

Stouffer PC, Bierregaard RO. 1995. Effects of forest fragmentation on understory insectivorous birds. *Ecology* 76:2429-45.

Stratford JA, Robinson WD. 2005. Gulliver travels to the fragmented tropics: geographic variation in mechanisms of avian extinction. *Frontiers in Ecology and the Environment* 3:85-92.

Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW. 2004. Status and trends of amphibian declines and extinctions worldwide. *Science* 306:1783-1786.

Terborgh J, Winter B. 1980. Some causes of extinction. Pages 119-133 In: *Conservation biology: an evolutionary-ecological perspective* (Soule ME, Wilcox BA, eds.).
Sinauer Associates, Sunderland, Massachusetts.

Tilman D, May RM, Lehman CL, Nowak MA. 1994. Habitat destruction and the extinction debt. *Nature* 371:65-66.

Turner IM. 1996. Species loss in fragments of tropical rain forest: a review of the evidence. *Journal of Applied Ecology* 33:200-209.

Van Houtan KS, Pimm SL, Bierregaard RO, Jr., Lovejoy TE, Stouffer PC. 2006. Local extinctions in flocking birds in Amazonian forest fragments. *Evolutionary Ecology Research* 8:129-148.

Van Houtan KS, Pimm SL, Halley JM, Bierregaard RO Jr., Lovejoy TE. 2007. Dispersal of Amazonian birds in continuous and fragmented forest. *Ecology Letters* 10:219-229.

Vega Rivera JH. 1982. Aspectos biologicos de *Myiobius sulphureipygius* (Aves: Tyrannidae) en el area de Santa Marta region de “Los Tuxtlas,” Veracruz, Mexico. Professional thesis. Universidad Nacional Autonoma de Mexico.

Vetter D, Hansbauer MM, Végvári Z, Storch I. 2011. Predictors of forest fragmentation sensitivity in Neotropical vertebrates: a quantitative review. *Ecography* 34:1-8.

Whitman AA, Hagan JM III, Brokaw NVL. 1997. A comparison of two survey techniques used in a subtropical forest. *Condor* 99:955-965.

Willis EO. 1966. The role of migrant birds at swarms of army ants. *Living Bird* 5:187-231.

Willis EO. 1974. Populations and local extinctions of birds on Barro Colorado Island, Panama. *Ecological Monographs* 44:153-169.

Willis EO. 1979. The composition of avian communities in remanescent woodlots in southern Brazil. *Papeis Avulsos de Zoolgia* 33:1-25.

Winker K. 1995. Habitat selection in woodland Nearctic-Neotropic migrants on the...
Isthmus of Tehuantepec. I. Autumn migration. *Wilson Bulletin* 107:26-39.

Winker K. 1997. Introduction to the birds of Los Tuxtlas. Pages 535-541 in: *Historia Natural de Los Tuxtlas* (González-Soriano E, Dirzo R, Vogt RC, Eds.). Universidad Nacional Autonoma de Mexico. D.F., Mexico.

Winker K, Rappole JH, Ramos MA. 1990. Population dynamics of the Wood Thrush (*Hylocichla mustelina*) on its wintering grounds in southern Veracruz, Mexico. *Condor* 92:444-460.

Winker K, Oehlenschlager RJ, Ramos MA, Zink RM, Rappole JH, Warner DW. 1992. Avian distribution and abundance records for the Sierra de Los Tuxtlas, Veracruz, Mexico. *Wilson Bulletin* 104:699-718.

Winker K, Escalante P, Rappole JH, Ramos MA, Oehlenschlager RJ, Warner DW. 1997. Periodic migration and lowland forest refugia in a sedentary Neotropical bird, Wetmore’s bush-tanager. *Conservation Biology* 11:692-697.

Zimmerman BL, Bierregaard RO. 1986. Relevance of the equilibrium theory of island biogeography and species-area relations to conservation with a case from Amazonia. *Journal of Biogeography* 13:133-143.
Figure captions

Figure 1. Comparative views of the Sierra de Los Tuxtolas from an artificially colorized 1979 Landsat image (top) and a 2010/11 Google Earth image (bottom) showing the extent of deforestation in the region. Remaining forest has become concentrated at higher elevations on the slopes of the region’s three volcanoes, San Martín, Santa Marta, and San Martín Pajápan (the forested areas remaining, from left to right).

Figure 2. Satellite view of Volcán San Martín, the northernmost volcano in the Sierra de Los Tuxtolas, showing the distribution of forests (dark areas). The study area is indicated by the white box, which corresponds to the area in Fig. 3 (image from Google Earth, 2010).

Figure 3. Maps of the study area in the northern lowlands of the Sierra de Los Tuxtolas (this is the area in the white box in Fig. 2) showing a rough outline of all forests types (dark gray areas) in 1979 (top, from Landsat image), in 2005 (bottom, from GoogleEarth), and netting sites (black polygons). Numbers indicate field season(s) site was used and correspond to rows in Table 1.

Figure S1. A series of satellite images depicting deforestation in Los Tuxtolas, focusing in on the volcanoes Santa Marta (left) and San Martín Pajápan (right), starting with a 1973/4 Skylab image (upper left) and progressing through a series of Landsat images, from 1999 (upper right), 2003 (lower left), and 2011 (lower right).

Figure S2. Species accumulation curve for a representative year with below average net
hours (1992, 12,605 net hours).
Sample effort and periods during eight nonbreeding seasons across three decades in the Sierra de Los Tuxtlas, Veracruz, Mexico.

Sample effort and periods during eight nonbreeding seasons across three decades in the Sierra de Los Tuxtlas, Veracruz, Mexico.
Table 1. Sample effort and periods during eight nonbreeding seasons across three decades in the Sierra de Los Tuxtlas, Veracruz, Mexico.

Nonbreeding season	Net hours	Sampling period
1) 1973-74	33,976	15 Aug-26 May
2) 1974-75	36,512	7 Aug-29 May
3) 1986-87	4,310	17 Nov-16 Jan
4) 1992-93	12,605	5 Sep-15 Nov
5) 1993-94	41,142	25 Aug-20 May
6) 1994-95	22,509	15 Aug-15 Nov
7) 2002-03	8,395	21 Feb-27 Apr
8) 2003-04	2,312	5 Apr-29 Apr
Table 2 (on next page)

Outcomes of regression analyses for 14 species showing changes in abundance (capture rates; captures and rates are given in the Appendix) and those not detected in the later sampling periods. Those P-values presented in bold are significant at alpha = 0.0

Outcomes of regression analyses for 14 species showing changes in abundance (capture rates; captures and rates are given in the Appendix) and those not detected in the later sampling periods. Those P-values presented in bold are significant at alpha = 0.05.
Table 2. Outcomes of regression analyses for 14 species showing changes in abundance (capture rates; captures and rates are given in the Appendix) and those not detected in the later sampling periods. Those P-values presented in bold are significant at $\alpha = 0.05$.

Species	F	P	R^2	Last captured
Phaethornis striigularisc	6.337	**0.045**	0.514	2002-03
Hylomanes momotulaa	0.210	0.890	0.003	1994-95
Trogon collarisb	7.041	**0.038**	0.540	n/a
Xiphorhynchus flavigasterb	6.941	**0.039**	0.536	n/a
Xenops minutusc	7.578	**0.033**	0.558	2003-04
Glyphorynchus spirurusc,d	7.529	**0.034**	0.557	1974-75
Lepidocolaptes souleyetid	3.265	0.121	0.352	1992-93
Ornithion semiflavumd	0.327	0.588	0.052	1994-95
Leptopogon amaurocephalusd	2.814	0.144	0.319	1994-95
Onychorhynchus coronatusc,d	6.861	**0.040**	0.533	1986-87
Myiobius sulphureipygiusc,d	10.555	**0.019**	0.629	1994-95
Henicorhina leucostictac,d	6.740	**0.041**	0.529	2003-04
Coereba flaveolad	2.164	0.192	0.265	1994-95
Eucometis penicillatac	18.725	**0.005**	0.757	2002-03

a Species captured 1986-1995. See text.
Species showing an increase in abundance.
Species showing a significant decline.
Species not captured in later sampling periods.
Table 3 (on next page)

Species not captured or observed from 1992-2004, seasons captured (from Appendix), presence on the field site in later sampling periods, and comments.

Species not captured or observed from 1992-2004, seasons captured (from Appendix), presence on the field site in later sampling periods, and comments.
Table 3. Species not captured or observed from 1992-2004, seasons captured (from Appendix), presence on the field site in later sampling periods, and comments.

Species	Seasons Captured	Presence	Comments
Micrastur ruficollis	1	Y	observed
Crypturellus boucardi	3	Y	observed
Heliomaster longirostris	1	?	hummingbird
Florisuga mellivora	1	?	hummingbird
Chlorostilibon canivetii	2	?	hummingbird
Hylocharis eliciae	1, 2	?	hummingbird
Chloroceryle aenea	1, 2	Y	small streams
Dryocopus lineatus	2	Y	observed
Synallaxis erythrothorax	2	Y	observed
Taraba major	2	N	forest understory
Formicarius analis	1	N	forest understory
Grallaria guatimalensis	1, 3	N	forest understory
Tityra inquisitor	1	Y	observed, canopy
Cotinga amabilis	1	?	canopy
Schiffornis turdina	1	N	forest understory
Polioptila plumbea	1	Y	observed
Myadestes unicolor	1	Y	highlands
Euphonia affinis	2	?	none
Species	Count	Sex	Observed
----------------------	-------	-----	----------
Thraupis abbas	1	Y	observed
Thraupis episcopus	2	Y	observed
Saltator atriceps	1, 2	Y	observed
Molothrus aeneus	1	Y	observed
Table 4 (on next page)

Habitat, foraging preference, elevational range, and position within geographical distribution for 18 species of birds at the Estación de Biología Los Tuxtlas (from Howell and Webb, 1995).

Habitat, foraging preference, elevational range, and position within geographical distribution for 18 species of birds at the Estación de Biología Los Tuxtlas (from Howell and Webb, 1995).
Table 4. Habitat, foraging preference, elevational range, and position within geographical distribution for 18 species of birds at the Estación de Biología Los Tuxtlas (from Howell and Webb, 1995).

Species	Habitat preference	Foraging guild	Elevational distribution (m)	Geographic distribution
Phaethornis striigularis	forest	nectarivore	0-1500	periphery
Hylomanes momotula	forest	frugivore	0-1500	periphery
Trogon collaris	forest	frugivore	0-2400	core
Xenops minutus	forest	insectivore	0-1000	periphery
Xiphorhynchus flavigaster	forest	insectivore	0-1500	core
* Glyphorynchus spirurus*	forest	insectivore	0-1200	periphery
Lepidocolaptes souleyetii	semi-open	insectivore	0-1500	periphery
Taraba major	forest	insectivore	0-1600	periphery
Formicarius analis	forest	insectivore	0-750	periphery
Grallaria guatimalensis	forest	insectivore	50-3500	core
Ornithion semiflavum	edge	insectivore	0-1500	periphery
Leptopogon amaurocephalus	edge	insectivore	0-1300	periphery
Onychorhynchus coronatus	forest	insectivore	0-1200	periphery
Myiobius sulphureipygius	forest	insectivore	0-1000	periphery
Schiffornis turdina	forest	frugivore	0-750	periphery
Henicorhina leucosticta	forest	insectivore	0-1300	core
Coereba flaveola	edge	frugivore	0-1000	periphery
Eucometis penicillata	forest	frugivore	0-750	periphery
* Presence/Absence data suggest species is extirpated.
Figure 1

Comparative views of the Sierra de Los Tuxtlas from an artificially colorized 1979 Landsat image (top) and a 2010/11 Google Earth image (bottom) showing the extent of deforestation in the region. Remaining forest has become concentrated at higher elevations on the slopes of the region’s three volcanoes, San Martín, Santa Marta, and San Martín Pajápan (the forested areas remaining, from left to right).
Figure 2

Satellite view of Volcán San Martín, the northernmost volcano in the Sierra de Los Tuxtlas, showing the distribution of forests (dark areas). The study area is indicated by the white box, which corresponds to the area in Fig. 3 (image from Google Earth, 2010).
Figure 3

Maps of the study area in the northern lowlands of the Sierra de Los Tuxtlas (this is the area in the white box in Fig. 2) showing a rough outline of all forests types (dark gray areas) in 1979 (top, from Landsat image), in 2005 (bottom, from GoogleEarth) and netting sites (black polygons). Numbers indicate field season(s) site was used and correspond to rows in Table 1.
