Posaconazole-Induced Apparent Mineralocorticoid Excess

Amar Pandit1 and Johannes Schlondorff1

1Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA

Correspondence: Amar Pandit, Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA. E-mail: dramarpandit@gmail.com

Received 14 August 2020; revised 15 September 2020; accepted 15 September 2020; published online 1 October 2020

Kidney Int Rep (2020) 5, 2379–2382; https://doi.org/10.1016/j.ekir.2020.09.025

© 2020 International Society of Nephrology. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

INTRODUCTION

Posaconazole is an extended-spectrum triazole antifungal used quite frequently in the treatment of invasive fungal infections and for prophylaxis against such fungal infections in special populations like those with hematologic malignancies and neutropenia.1 We demonstrate a state of apparent mineralocorticoid excess (AME) induced by posaconazole and consequent hypokalemia, metabolic alkalosis, and hypertension in a patient with acute myeloid leukemia.

CASE PRESENTATION

A 68-year-old Sudanese woman with a past medical history of hypertension and relapsed hepatitis B infection was admitted for management of relapsed acute myeloid leukemia (AML-M2). Over the nearly 2-month-long admission, she had been treated at various time points with cytarabine, etoposide, hydroxyurea, mitoxantrone, and lenalidomide. She had developed neutropenic sepsis secondary to multidrug-resistant Escherichia coli bacteremia, thigh myositis, and diarrhea secondary to Clostridium difficile infection. She was treated with ceftazidime and avibactam and oral vancomycin, following which her symptoms abated. She was also receiving prophylactic antimicrobials including acyclovir 400 mg twice daily and posaconazole 300 mg daily in the setting of neutropenia and tenofovir disoproxil for treatment of hepatitis B infection. She was maintained on her outpatient antihypertensive regimen of losartan 100 mg daily and metoprolol succinate 100 mg daily. Her systolic blood pressure, which had been about 120 to 130 mm Hg on admission, was noted to be raised to about 160 to 170 mm Hg despite being on the same dose of antihypertensives. Physical examination revealed moderate pallor and trace bilateral lower extremity edema.

About 3 weeks into her admission, she was found to be hypokalemic (potassium levels as low as 2.6 mEq/L), which persisted despite receiving large doses of intravenous and oral potassium supplements. She also developed alkalosis, with bicarbonate levels having increased from an admission value of 27 mEq/L to a peak value of 39 mEq/L and a venous pH of 7.52 (Table 1). Renal function was normal, and she had pancytopenia. Urine studies revealed potassium wasting with a random urine potassium/creatinine of 151 mEq/mg. Laboratory data are presented in Table 1.

The triad of hypokalemia, metabolic alkalosis, and worsening hypertension led us to suspect a hypermineralocorticoid state. Investigations targeted toward determination of the cause of this hypermineralocorticoid state revealed the following. A computed tomography of the abdomen and pelvis ruled out adrenal tumors. A normal 24-hour urine-free cortisol (UFF) made Cushing’s syndrome unlikely. Serum aldosterone level and plasma renin activity were suppressed, which led us to suspect a state of AME. This was confirmed with low 24-hour urine-free cortisol (UFC) and a UFF/UFC ratio of 0.89 (normal, 0.4–0.5).

OUTCOME

Spironolactone was started, and the dose was escalated to 100 mg a day with resolution of electrolyte abnormalities. Posaconazole was discontinued after neutropenia resolved, and neither hypokalemia nor metabolic alkalosis recurred after discontinuation of spironolactone.

DISCUSSION

Hypokalemia could have been attributed to many potential etiologic factors in this patient. Gastrointestinal loss in the setting of diarrhea could certainly have
A Pandit and J Schlondorff: Posaconazole-Induced AME

24-Hour urine-free cortisol, 2025 ml
Random urine: osmolality, mOsm/kg 415
Random urine: chloride, mEq/l 149
Random urine: Na, mEq/l 117

Plasma renin activity, ng/ml/h 0.05

Aldosterone, ng/dl 2

Venous blood PCO2, m mH g 4
Venous blood pH 7.52
Venous blood Pco2, mm Hg 46
Aldosterone, ng/dl 2

Plasma renin activity, ng/ml/h 0.06 (normal, 0.25–5.82)
Random urine: Na, mEq/l 117
Random urine: K, mEq/l 50
Random urine: creatinine, mg/dl 33
Random urine: chloride, mEq/l 149
Random urine: osmolality, mOsm/kg 415
24-Hour urine volume 2025 ml
24-Hour urine-free cortisol, μg 13 (normal, 4–50)
24-Hour urine-free cortisone, μg 14.6 (normal, 23–195)
Urine-free cortisol-to-urine-free cortisone ratio 0.89 (normal, 0.4–0.5)

Table 1. Laboratory values

Test	Results
Hemoglobin, g/dl	7
White blood cells, per μl	1200
Platelets, x 10^9/μl	17
Sodium, mEq/l	140
Potassium, mEq/l	2.6
Chloride, mEq/l	93
Bicarbonate, mEq/l	35
Blood urea nitrogen, mg/dl	11
Creatinine, mg/dl	0.8
Calcium, mg/dl	8.4
Inorganic phosphorus, mg/dl	3.0
Magnesium, mg/dl	1.6
Albumin, g/dl	2.1
Venous blood pH	7.52
Venous blood Pco2, mm Hg	46

Inhibition of 11-βHSD2 can cause unrestrained stimulation of MR (Figure 2) by cortisol leading to a syndrome of AME. Inherited forms of the disease are associated with very low activity of the enzyme and a very high UFF/UFE ratio (i.e., 5–20). Acquired AME caused by glycyrrhetinic acid in licorice and by carbenoxolone is associated with only partial inhibition of 11-βHSD2, and hence UFF/UFE ratios are not very high. Mild elevation of the UFF/UFE ratio in our patient (0.89) was indicative of acquired inhibition of 11-βHSD2.

Studies on patients taking posaconazole 300 mg for prophylaxis observed hypertension in 11% and hypokalemia in 22%. Hypokalemia was attributed to vomiting and diarrhea in some, especially in the setting of a hematologic malignancy. Thompson et al. demonstrated clinically significant inhibition of 11-βHSD2 as the cause of AME induced by posaconazole. They also demonstrated resolution of dyselectrolytemia after cessation of posaconazole and lack of recurrence with a lower dose of posaconazole (100 mg daily).

In vitro studies by Beck et al. demonstrated inhibition of 11-βHSD2 by posaconazole (moderate) and itraconazole (more potent), with little effect on the type 1 isoform. They attributed this relatively specific inhibition of 11-βHSD2 to the relatively largeazole scaffold size in the structurally related posaconazole and itraconazole.

Beck et al. also reported the 50% inhibitory concentration of posaconazole for 11-βHSD2 as 460 ± 98 nM. This is lower than the recommended posaconazole trough level of >700 ng/mL for prophylaxis and >1000 to 1250 ng/mL for treatment of fungal infections, indicating potential for inhibition of this enzyme even at usual clinical doses. However, not every individual who gets posaconazole develops dyselectrolytemia, and this raises the possibility of a genetic predisposition for this syndrome.

Hypokalemia and hypertension have been reported with the use of itraconazole but not with other azole...
antifungals. In a recent study, Beck et al. demonstrated lack of 11-βHSD2 inhibition by fluconazole, isavuconazole, and voriconazole. Boughton et al. also detected elevated levels of 11-deoxycorticosterone (11-DOC) and 11-deoxycortisol, which they attributed to inhibition of 11β-hydroxylase (CYP11B1), akin to the inherited condition congenital adrenal hyperplasia. Beck et al. demonstrated potent inhibition of CYP11B1 by posaconazole, moderate inhibition by itraconazole, and very weak inhibition by voriconazole, fluconazole, and isavuconazole. CYP11B1 is an enzyme that is stimulated by adrenocorticotropic hormone and catalyzes conversion of 11-DOC to corticosterone and 11-deoxycortisol to cortisol. 11-DOC and 11-deoxycortisol have moderate activity at the MR, and a buildup of these metabolic intermediates caused by inhibition of CYP11B1 can lead to excessive activation of the MR. This would make the condition potentially responsive to adrenocorticotropic hormone suppression by exogenously administered glucocorticoids. We did not check the serum steroid profile for this patient; however, it is likely that the hypertension and

Figure 1. Under normal circumstances aldosterone exerts its effect on the principal cells in the distal tubule and cortical collecting duct by binding to a cytoplasmic mineralocorticoid receptor (the receptor is translocated to the nucleus after binding to aldosterone). The effects are increased activity and number of epithelial sodium channels (ENaC) and increased activity of the basolateral Na-K ATPase channels. Cortisol is converted to cortisone by the action of 11β-hydroxysteroid dehydrogenase 2 (11-βHSD2), thereby preventing action on the mineralocorticoid receptor (MR). N, nucleus.

Figure 2. Posaconazole inhibits 11β-hydroxysteroid dehydrogenase 2 (11-βHSD2), and cortisol is now available to bind to the mineralocorticoid receptor (MR). Because there is more cortisol than aldosterone, there is amplification of MR action causing increase in activity and number of epithelial sodium channels (ENaC) and Na-K ATPase channels. Excess uptake of sodium leads to hypertension and creates increased electronegativity causing K⁺ and H⁺ losses and leading to hypokalemia and alkalosis (not shown in this figure). N, nucleus.
dyselectrolytemias were caused by accumulation of 11-DOC and 11-deoxycortisol in addition to inhibition of 11βHSD2.

AME induced by posaconazole can be treated with an aldosterone receptor antagonist (i.e., either spironolactone or eplerenone) or with the epithelial sodium channel blockers amiloride or triamterene. However, MR antagonists have the theoretical advantage over epithelial sodium channel inhibitors of inhibiting epithelial sodium channel–independent aldosterone actions.

In conclusion, we demonstrated clinically significant inhibition of 11-βHSD2 by posaconazole resulting in hypokalemia, metabolic alkalosis, and hypertension. Individuals taking posaconazole should be monitored for these dyselectrolytemias on a regular basis. Treatment requires either cessation of posaconazole, dose reduction, or the use of an MR antagonist (spironolactone, eplerenone) (Table 2).

Table 2. Teaching points

1. Posaconazole is being increasingly used for treatment and prophylaxis against invasive fungal infections.
2. Posaconazole (and itraconazole) can cause inhibition of 11β-hydroxysteroid dehydrogenase 2 in the principal cells and induce a state of apparent mineralocorticoid excess leading to hypokalemia, metabolic alkalosis, and new-onset or worsening of chronic hypertension.
3. Posaconazole and itraconazole can also cause inhibition of CYP11B1 (11β-hydroxylase) leading to accumulation of 11-deoxycorticosterone and 11-deoxycortisol, which have moderate agonist action on the mineralocorticoid receptor and can contribute to the hypertension and dyselectrolytemias.
4. Patients on posaconazole should be monitored for hypokalemia, hypertension, and metabolic alkalosis.
5. Management of such individuals includes either cessation of posaconazole (if feasible, and switching to another antifungal), decreasing the dose of posaconazole, or initiation of a mineralocorticoid receptor antagonist like spironolactone or eplerenone.

DISCLOSURE
All the authors declared no competing interests.

SUPPLEMENTARY MATERIAL
Supplementary File (PDF)
Supplementary References.

REFERENCES
1. Moore JN, Healy JR, Kraft WK. Pharmacologic and clinical evaluation of posaconazole. Expert Rev Clin Pharmacol. 2015;8:321–334.
2. Palermo M, Delitala G, Mantero F, et al. Congenital deficiency of 11β-hydroxysteroid dehydrogenase (apparent mineralocorticoid excess syndrome): diagnostic value of urinary free cortisol and cortisone. J Endocrinol Invest. 2001;24:17–23.
3. Funder JW, Pearce PT, Smith R, Smith AI. Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science. 1988;242:583–585.
4. Edwards CR, Stewart PM, Burt D, et al. Localisation of 11 beta-hydroxysteroid dehydrogenase–tissue specific protector of the mineralocorticoid receptor. Lancet. 1988;2:986–989.
5. Merck & Co, Inc. Posaconazole package insert. Whitehouse Station, NJ: Merck & Co, Inc; 2014.
6. Thompson GR, Chang D, Wittenberg RR, et al. In vivo 11β-hydroxysteroid dehydrogenase inhibition in posaconazole-induced hypertension and hypokalemia. Antimicrob Agents Chemother. 2017;61, e00760.
7. Beck KR, Bächler M, Vuorinen A, et al. Inhibition of 11β-hydroxysteroid dehydrogenase 2 by the fungicides itraconazole and posaconazole. Biochem Pharmacol. 2017;130:93–103.
8. Dolton MJ, Ray JE, Marriott D, McLachlan AJ. Posaconazole exposure-response relationship: evaluating the utility of therapeutic drug monitoring. Antimicrob Agents Chemother. 2012;56:2806–2813.
9. Denolle T, Azizi M, Massart C, Zennaro MC. Itraconazole: a new drug-related cause of hypertension. Ann Cardiol Angeiol. 2014;63:213–215.