The Influence of Temperature on the Properties of ZrW$_2$O$_8$

SEYER N. KULKOV • Tomsk State University, Institute of Strength Physics and Materials Science SB RAS, Russia • kulkov@ms.tsc.ru

ELENA S. DEDOVA • Tomsk State University, Institute of Strength Physics and Materials Science SB RAS, Russia • ldedova@yandex.ru

FERNANDO PEDRAZA • University of La Rochelle, France • fpedraza@univ-fr.fr

JÁNOS ERDÉLYI • University of Miskolc, Dep. of Ceramics and Silicate Engineering, Hungary • erdelyijjanos@hdsnet.hu

Received: 21. 06. 2014. • Érkezett: 2014. 06. 21. • http://dx.doi.org/10.14382/epitoanyag.jsbcm.2014.7

Abstract

A single-phase ZrW$_2$O$_8$ was prepared by the hydrothermal route via decomposition of ZrW$_2$O$_7$(OH$_{1.5}$Cl$_{0.5}$)$_2$·2H$_2$O at 843 K. TEM, in situ high-temperature XRD and TG-DTA analyses of the ZrW$_2$O$_8$ synthesized were performed. The morphology of the material was represented as elongated particles with an intrinsic block structure. The stability fields of ZrW$_2$O$_8$ were determined. The ZrW$_2$O$_8$ demonstrated a negative thermal expansion behavior from 298 to 1023 K.

Keywords: Zirconium tungstate; Hydrothermal synthesis; Negative thermal expansion coefficient.

I. Introduction

Designing and developing highly-effective materials that remain stable under extreme conditions are among the primary tasks of modern materials science. One potential solution of this problem lies in the development of composite materials with an appropriate matrix and filler. The use of ceramics as a matrix is reasonable as they possess high mechanical strength, hardness and wear resistance while retaining its properties under high temperatures [1–6]. However, ceramics are known to display low toughness making them brittle enough for specific applications. Therefore, the introduction of internal stresses at the filler/matrix interface allows strengthening of the overall composite structure. Such internal stresses can be introduced through a filler that has a negative thermal expansion behavior (NTE) due to the opposite thermal expansion values of the source filler and matrix materials.

There is a class of materials with a negative thermal expansion behavior. More often than not, the contraction of such materials is small, anisotropic and appears in a narrow temperature range. In this respect, zirconium tungstate is a promising material due to a negative isotropic thermal expansion coefficient (CTE) $\alpha = -8.6 \times 10^{-6}$ K$^{-1}$ within a wide temperature range from 0 to 1050 K [7].

The unique nature of its thermal behavior is explained by the presence of rigidly connected ZrO$_6$ octahedrons and WO$_4$ tetrahedrons in the structure which can rotate relative to one another at an angle of θ with increasing temperature, thereby initiating shrinkage of the material [8]. Variations in the volume concentration of zirconium tungstate would thus enable both to cause internal stresses in ceramic composites, and to make materials with a negative, positive or near zero thermal expansion.

It is known that the method of synthesis has an impact on material behavior under different influences, including an increase in temperature. The hydrothermal method allows for the synthesis of highly-homogeneous powders with small particle size. Zirconium tungstate synthesis using a hydrothermal route is based on the decomposition of the precursor ZrW$_2$O$_7$(OH$_{1.5}$Cl$_{0.5}$)$_2$·2H$_2$O at relatively low temperatures [9]. At present, there is nevertheless a lack of research on the properties of zirconium tungstate powder obtained using a hydrothermal route when heated. The objective of the work is to investigate the influence of temperature on the properties of ZrW$_2$O$_8$.

2. Materials and experimental procedure

As source components, Na$_2$WO$_4$·2H$_2$O (p.a.), ZrOCl$_2$·8H$_2$O (puriss.) and HCl (puriss.) were used to make the precursor. Aqueous solutions of Na$_2$WO$_4$·2H$_2$O (0.5 mol/L), ZrOCl$_2$·8H$_2$O (0.25 mol/L), HCl (8 mol/L) were thoroughly mixed and moved to a Teflon-lined stainless steel autoclave. The hydrothermal reaction was conducted at 433 K for 36 hours. The product obtained was rinsed repeatedly with distilled water and dried at 383 K. To synthesize a monophasic ZrW$_2$O$_8$ powder, the synthesized precursor was annealed at 843 K for an hour in air.

The thermal conditions were chosen according to the results reported in [9]. High-temperature in situ XRD analyses of the powder were conducted using a Bruker D8 diffractometer with filtered CuKα radiation and conducted at the Borekov Institute of Catalysis SB RAS. Particle form and size analyses were conducted with JEM-2100 transmission electron microscope (TEM). The particle distribution was determined using randomly-cross-section method on TEM photos.
3. Results and discussion

After the overall synthesis, the observations of the morphology of zirconium tungstate using a transmission electron microscopy showed that ZrW₂O₈ powder consisted of elongated particles with an intrinsic blocky structure (Fig. 1). The average block size varied from 20 nm to 50 nm. The distribution of elongated particles by size (longitudinal and lateral) had a unimodal nature. The average lateral size of the elongated particles was from 30 nm to 700 nm, and the average longitudinal size varied from 0.5 µm to 5.0 µm. The EDAX analysis demonstrated that the quantitative atom ratio (O ≈ 60 at.%, W ≈ 13 at.%, Zr ≈ 27 at.% ±2%) in the material obtained corresponded to the stoichiometry of ZrW₂O₈ compound (Zr:W = 1:2) [7]. The analysis of reflections observed in the micro-diffraction image indicates the formation of cubic structures.

The investigations of phase transformation in a material at increasing temperature were performed in situ. The results of high-temperature in situ XRD observations are presented in Fig. 2. When ZrW₂O₈ is heated from room temperature to 423 K, a gradual decrease in the reflection intensity is observed in XRD pattern from surfaces (1 1 1), (2 2 1) and (3 1 0) up to its complete disappearance at temperatures beyond 473 K. According to [7, 9, 10], the disappearance of such peaks results from the transition from a low-temperature α – ZrW₂O₈ (P2₁3) to a high-temperature modification β – ZrW₂O₈ (Pa3) induced by an increase in symmetry of a space group. An increase to 873 K leads to the appearance of weak diffraction lines corresponding to tungsten oxide and zirconium oxide. A further increase in temperature to 1023 K led to an increase in the peak intensity of WO₃, the appearance of ZrO₂ lines and a decrease in ZrW₂O₈ reflections.

The dependence between the temperature and the total intensity (∑I) of all X-ray reflexes is presented in Fig. 3. A gradual decrease in the peak intensity is observed with increasing temperature up to 473 K, followed by a sharp increase to 873 K. This behavior is consistent with the phase transition observed in the XRD pattern.

The dependence between the temperature and the cubic lattice parameter of ZrW₂O₈ is shown in Fig. 4. A decrease in the lattice parameter is observed up to 473 K, followed by a sharp increase to 873 K. This behavior is consistent with the phase transition observed in the XRD pattern.
The dependence of the total intensity (ΣI) of all X-ray reflections on temperature, based on the results of XRD analysis, is shown in Fig. 3. The curve can be unambiguously divided into 3 stages. As the temperature increases to 473 K, the total intensity decreases (stage 1). As the temperature increases from 473 K to 823 K (stage 2), the values of ΣI vary within the margins of experimental error. A further increase in temperature to 1023 K (stage 3), results in an increase in the total reflex intensity. The inflexion points where the slopes changed corresponded to 473 K and 823 K. According to the X-ray diffraction data, the decline in the total intensity in stage 1 was initiated by an $\alpha \rightarrow \beta$ transition and, as a consequence, by the disappearance of some reflections. At stage 2, there is only a high-temperature β-ZrW$_2$O$_8$. The increase in the total intensity at stage 3 can be explained by a pre-transitional phenomenon for forming new structures. Atoms in the zirconium tungstate structure begin to rearrange themselves in order to form sublattices of tungsten and zirconium oxides. Presumably, this movement of atoms precedes the decomposition of zirconium tungstate. It is known [7, 9, 10, 11] that zirconium tungstate loses its thermal stability and decomposition into ZrO$_2$ and WO$_3$ occur at temperatures above 1050 K. According to the XRD analyses, weak lines of WO$_3$ and ZrO$_2$ were observed on diffraction patterns above 873 K. The intensity of the lines grew as the temperature is increased to 1023 K (Fig. 3).

The dependence of the cubic lattice parameter of ZrW$_2$O$_8$ on temperature is shown in Fig. 4. As seen in the graph, the lattice parameter decreased with an increase in temperature from 298 K to 1023 K, indicating a negative thermal expansion. Two segments with different slopes in relation to the x-axis can be outlined in the dependence. Changes in CTE occur at 473 K, which corresponds to the $\alpha \rightarrow \beta$ transition. For each segment, the coefficient of thermal expansion was calculated at the following values of temperature: $\alpha = -9.4 \times 10^{-6}$ K$^{-1}$ from 298 K to 473 K, $\alpha = -3.8 \times 10^{-4}$ K$^{-1}$ from 473 K to 1023 K.

4. Conclusion

This paper studied the influence of temperature on the properties of zirconium tungstate powder obtained using a hydrothermal route. It shows that 800 K is the limit until which zirconium tungstate retains its crystal structure. A subsequent increase in temperature is accompanied by changes in ZrW$_2$O$_8$ structure induced by the appearance of WO$_3$ and ZrO$_2$ phase nuclei which precedes the decomposition of ZrW$_2$O$_8$ into two constituent oxides at temperatures above 1000 K. The phase transition from the low-temperature (α) to high-temperature (β) modification of cubic zirconium tungstate occurs at temperatures above 1050 K. As seen in the graph, the lattice parameter decreased with an increase in temperature from 298 K to 1023 K, indicating a negative thermal expansion.

5. Acknowledgements

This work was supported by the grants ISPMS SB RAS III.23.2.3. Authors thank Tatiana Yu. Kardash from Boreskov Institute of Catalysis SB RAS, shared use center “NANOTECH”.

References

[1] Buyakova, S. P. – Promakhov, V. V. – Kullov, S. N.: Thermal tests and their effect on the micro- and macrostructure of nanocrystalline ZrO$_2$. Powder Metallurgy and Metal Ceramics. 2012, V. 54 (5–6), pp. 267–272. http://dx.doi.org/10.1007/s11106-012-9427-0

[2] Kocsera, I. – Gómze, A. L.: Friction properties of clay compounds. Applied Clay Science, 2010, V. 48 (3), pp. 425 – 430. http://dx.doi.org/10.1016/j.claysci.2010.01.017

[3] Gómze, A. L. – Gómze, L. N.: Alumina-based hetero-modulus ceramic composites with extreme dynamic strength – phase transformation of Si$_3$N$_4$ during high speed collisions with metallic bodies. Építőanyag. 2009/2. V 61 (2). http://dx.doi.org/10.14382/epitoanyag.jsbcm.2009.7

[4] Chu, H. L. – Wang, C. L. – Lee, H. E. – Sie, Y. Y. – Chen, R. S. – Hwang, W. S. – Wang, M. C.: Effect of sintering process parameters on the properties of 3Y-PSZ ceramics. 2013 IOP Conf. Ser.: Mater. Sci. Eng. 47 012005 http://dx.doi.org/10.1088/1757-899X/47/1/012005

[5] Ainabayev, A. – Arkhipov, M. – Baideldinova, A. – Omarova, K. – Ksandopolu, G.: Out-of-Furnace Synthesis of High-Temperature Ceramic Materials in the Revolving Reactor, 2013 IOP Conf. Ser.: Mater. Sci. Eng. 47 012044 http://dx.doi.org/10.1088/1757-899X/47/1/012044

[6] Ershova, N. I. – Kelina, I. Yu.: High-temperature wear-resistant materials based on silicon nitride, Építőanyag, 2009/2. V 61 (2). http://dx.doi.org/10.14382/epitoanyag.jsbcm.2009.6

[7] Mary, T. A. – Evans, J. S. O. – Vogt, T. – Sleight, A. W.: Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW$_2$O$_8$. Science. 1996, V. 272, pp. 90–92. http://dx.doi.org/10.1126/science.272.5258.90

[8] Pryde, A. K. A. – Hammonds, K. D. – Dove, M. T. – Heine, V. – Gale, J. D. – Warren, M. C.: Origin of the negative thermal expansion in ZrW$_2$O$_8$ and Zr$_2$V$_2$O$_7$. J. Phys. Condens. Matter. 1996, V. 8, pp. 10973–10982. http://dx.doi.org/10.1088/0953-8984/8/50/023

[9] Kullov, S. N. – Dedova, E. S. – Gubanov, A. I.: Investigation of phase transformation during the synthesis of zirconium tungstate. Russian Physics Journal. 2013, V. 56 (12/2), pp. 151–155.

[10] Evans, J. S. O. – David, W. I. F. – Sleight, A. W.: Structural investigation of the negative-thermal-expansion materials ZrW$_2$O$_8$. Acta Crystallographica. 1999, V. 330, pp. 333–340. http://dx.doi.org/10.1107/S0108768198016966

[11] Evans, J. S. O.: Negative thermal expansion materials. The Royal Society of Chemistry, Dalton Trans. 1999, pp. 3317–3326. http://dx.doi.org/10.1039/A904297K