Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Factors associated with COVID-19 vaccination intentions and attitudes in France
M. Guillon*, P. Kergall
Université de Montpellier, Montpellier Recherche en Economie, Avenue Raymond Dugrand, Montpellier, 34960 Cedex 2, France

ABSTRACT
Objectives: The objective of the study is to investigate the factors associated with COVID-19 vaccination intentions and attitudes in France.
Study design: An online cross-sectional study was conducted among a representative sample of the French population between November 20th and 23rd 2020 (N = 1146).
Methods: Factors associated with the intention to get vaccinated and with COVID-19 vaccine attitudes were estimated using ordered logistic and multinomial logistic regressions, respectively. Independent variables of interest include COVID-19 and vaccine perceptions, trust, endorsement of COVID-19 conspiracy theories and time/risk preferences.
Results: Only 30.5% of our respondents would agree to get vaccinated against COVID-19 during the first semester of 2021 while 31.1% declare being unsure of their vaccination intentions. COVID-19 risk perceptions are associated with vaccination intentions and attitudes. Individual and collective benefits of the vaccine and the concerns over its safety are strongly associated with COVID-19 vaccination intentions and attitudes. Vaccine acceptors are more willing to take risks in the health domain compared with vaccine hesitant respondents which indicates that the COVID-19 vaccine is perceived as a greater health risk than the COVID-19 itself by some respondents. We also find a positive association between future preference and the willingness to get vaccinated.
Conclusion: Awareness campaigns should be conducted to enhance vaccination uptake among vaccine hesitant individuals. These campaigns could highlight the positive benefit-risk balance of the COVID-19 vaccines or the short-term benefits of vaccination and should reassure the public on the safety of the COVID-19 vaccines.

© 2021 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

Introduction
In France, the COVID-19 vaccination campaign has started in January 2021. After the vaccination of high-risk individuals, the vaccination campaign has been scaled-up to the rest of the French population from spring 2021 onward. Despite the low initial COVID-19 vaccination intentions among the French population before the launch of the vaccination campaign (only 53% and 39% of respondents from nationally representative samples of the French adult population were willing to get vaccinated in November and December 2020, respectively) and the growing vaccine hesitancy since the H1N1 influenza pandemic vaccination campaign of 2009–2010 half of the French population had received at least one dose of COVID-19 vaccine at the beginning of summer 2021. Nevertheless, the rhythm of first doses administration is currently slowing down while it is estimated that a 60%–90% level of COVID-19 vaccination uptake is needed to create herd immunity.

Convincing vaccine hesitant populations to get vaccinated against COVID-19 is now crucial to reduce the level of circulation of the virus, to prevent the emergence of variants and to reach herd immunity. In this context, studying the factors associated with the willingness to get vaccinated against COVID-19 appears crucial to design effective awareness campaigns enhancing vaccination uptake. Previous studies have shown that COVID-19 vaccination intentions are lower among women, unemployed and less educated respondents and that they are positively associated with COVID-19 risk perceptions and with the perceived benefit of the vaccine. On the other hand, concerns over the efficacy or the
safety of the vaccine were stated as reasons for not wanting to get vaccinated against COVID-19 in several studies.10,14–16 Lack of trust in vaccine development or testing processes and in scientific research was also found to be prevalent among vaccine hesitant respondents in the United States and Italy,10,17 whereas COVID-19 misinformation or endorsement of COVID-19 conspiracy theories were found to be negatively associated with vaccination intentions.18–20

In France, several studies have investigated the factors associated with COVID-19 vaccination intentions among the general population during or just after the first wave of the epidemic in spring 2020.21–23 These studies, conducted either in representative22,24 or non-representative21,25 samples of the French adult population, have found that vaccination intentions are lower among female, older (>65 years old) and low-income respondents. Respondents declaring to be ‘afraid of the new coronavirus’ or feeling ‘at risk of getting infected by the new coronavirus’ were more likely to declare they will get vaccinated if a vaccine was available in a study conducted among a non-representative sample of the French adult population.21 Being very concerned about getting infected with COVID-19 was found to be negatively correlated with COVID-19 vaccine refusal, i.e., declaring ‘probably not’ or ‘certainly not’ agreeing to get vaccinated against COVID-19. Vaccination history and risk factors of a severe form of COVID-19 were also shown to be significantly associated with vaccine outright refusal (never choosing to get vaccinated whatever the vaccine characteristics) and vaccine hesitancy (choosing to get vaccinated or not depending on the vaccine characteristics) in a discrete choice experiment conducted among a representative working-age population.24 COVID-19 conspiracy beliefs, measured through the level of agreement with nine items such as ‘a vaccine against the coronavirus exists, but it is kept secret by those who have it in order to increase its value’, were also found to be negatively associated with COVID-19 vaccination intentions in a study conducted among a non-representative sample of the French population in spring 2020.25 Finally, a study on COVID-19 vaccination intentions among French healthcare workers found that COVID-19 fear or perceived risk and previous flu vaccination were associated with vaccination intentions.26

Using data of an online survey conducted among a sample representative of the adult population living in France with regard to gender, age, region and socio-professional category between November 20th and 23rd 2020 (N = 1146), we study the factors associated with COVID-19 vaccination intentions in a study conducted among a non-representative sample of the French population in spring 2020.27 We created a three-category vaccine attitude variable based on the continuum of vaccine hesitancy developed by the SAGE Working Group on Vaccine Hesitancy.27 Participants were categorized in the ‘vaccine acceptance’ category if they declared they would get vaccinated in less than three months, in the ‘vaccine hesitancy’ category if they declared they would get vaccinated after three months or if they declared being unsure of whether they would get vaccinated and in the ‘vaccine outright refusal’ category if they declared they would never get vaccinated.

Independent variables of interest

The theoretical framework based on the Health Belief Model (HBM)28 and used to investigate the factors associated with COVID-19 vaccination attitudes and intentions is presented in Fig. 1. The HBM has been widely used in the literature to study vaccination beliefs and behaviours,29,30 including vaccination uptake in epidemic contexts.30–32

The independent variables of interest were assessed by several questions with ordinal responses and factorial analyses were conducted to create scores for the different HBM constructs.

COVID-19 perceived threat

COVID-19 risk perceptions were measured using three one-item variables: the level of agreement with the assertion that ‘experts who say that COVID-19 is dangerous should be believed’ (from 1 – ‘totally disagree’ to 5 – ‘totally agree’), the perceived individual health consequences in case of infection and the perceived health impacts of the COVID-19 epidemic in France (both from 1 – ‘not serious at all’ to 5 – ‘very serious’). A risk perception score was created by averaging the answers to these three items (x = 0.67).

Perceived benefits of COVID-19 vaccination

The perceived efficacy of the COVID-19 vaccine was measured using three items. Participants were asked to rate their level of agreement with the following statements on a scale from 1 (‘totally disagree’) to 5 (‘totally agree’): ‘Getting vaccinated against COVID-19 would be a good way to protect myself against COVID-19’, ‘Getting vaccinated against COVID-19 would be important for the health of others in my community’ and ‘Vaccination against COVID-19 will help end the current pandemic’. A vaccine perceived efficacy score was created by averaging the answers to these three items (x = 0.92).
Perceived barriers to COVID-19 vaccination

COVID-19 vaccine concerns were measured using two items. Participants were asked how much they worried about the side-effects and the rapidity of development of the new COVID-19 vaccine on a scale from 1 (‘not worried at all’) to 5 (‘very worried’). A vaccine concern score was created by averaging the answers to these two items ($\alpha = 0.81$).

On a scale from 1 (‘totally disagree’) to 5 (‘totally agree’), respondents were asked whether they agreed with three assertions stating that they trust the government, the pharmaceutical industry and science to fight the COVID-19 epidemic and to limit its negative effects and with one assertion stating that they trust official information regarding the number of COVID-19 infections, hospitalizations and deaths in France. The answers to these four questions were averaged to create a trust score ($\alpha = 0.78$).

To measure the tendency to endorse COVID-19 conspiracy theories, respondents were asked to rate their level of agreement (from 1 (‘totally disagree’) to 5 (‘totally agree’)) with following three statements chosen based on previous literature.20,21

1. COVID-19 was created in a laboratory to reduce the world’s population.
2. A vaccine against COVID-19 is available for a long time, but it is being kept secret by the pharmaceutical industry to increase its value.
3. The COVID-19 pandemic is part of a global effort to impose compulsory vaccination.

A mean COVID-19 conspiracy score was calculated by averaging the responses to these three questions ($\alpha = 0.84$).

Cues to action

We collected information on experience of COVID-19 symptoms (with or without medical confirmation), experience of close contact(s) with COVID-19 cases, risk factors for a severe form of COVID-19 and vaccination history (frequency of uptake of recommended vaccines and uptake of seasonal flu vaccination over the past three years).

Modifying factors

Respondents’ risk preference was measured by a single question asking them to rate their willingness to take risk in the health domain on a scale from 0 (‘extremely careful’) to 10 (‘extremely adventurous’). The French-validated 7-item short version of the Consideration of Future Consequences Scale33 was used as a measure of future preference ($\alpha = 0.71$).

Individual control factors include socio-economic and demographic characteristics (gender, age, region, matrimonial status, education level, whether the respondent works as a health professional, income and size of the residency city, and perceived health status.

Data analysis

A total of 1146 observations were available after quality checks (see Appendix A for details on quality checks performed and participants discarded). The final sample was slightly reweighted to match French official census statistics for gender, age, region, education level and size of residency city. Factors associated with the intention to get vaccinated were estimated using an ordered logistic model. Factors associated with the vaccine attitude categorization (‘vaccine acceptance’, ‘vaccine hesitancy’ and ‘vaccine outright refusal’) were estimated using multinomial logistic regressions using the ‘vaccine acceptance’ category as the base outcome. All regression analyses were run using Stata®, version 15.

Results

Table 1 presents the summary statistics for the dependent and independent variables used in regression analyses. Among our respondents, 30.5% declare they would probably or definitely agree to get vaccinated against COVID-19 if a vaccine were to be approved in France during the first semester of 2021, whereas 31.1% declare being unsure whether they would be willing to get vaccinated. Regarding the COVID-19 vaccine attitude, 25% of respondents are classified in the ‘vaccine acceptance’ category, 60.6% in the ‘vaccine hesitancy’ category and 14.4% in the ‘vaccine outright refusal’ category.

Table 2 presents the regression analysis results for vaccination intentions and attitudes. Full regression results are available in Table S1 of Appendix B.

Male and respondents with COVID-19 risk factors other than age report a higher willingness to get vaccinated. Previous vaccination history is strongly associated with the intention to get vaccinated against COVID-19. The COVID-19 risk perception score is positively and significantly associated with vaccination intentions. The vaccine perceived efficacy score is strongly and positively associated with the willingness to get vaccinated, whereas the vaccine concern
Table 1
Descriptive statistics.

Characteristic	Mean (SD) [Min; Max]	N (%)
Gender		
Female	637 (55.6%)	
Male	509 (44.4%)	
Age		
20-24	79 (6.9%)	
25-34	175 (15.3%)	
35-44	206 (18.0%)	
45-54	198 (17.3%)	
55-64	195 (17.0%)	
>65	293 (25.6%)	
Region		
Auvergne-Rhône-Alpes	161 (14.0%)	
Bourgogne-Franche-Comté	50 (4.4%)	
Bretagne	60 (5.2%)	
Centre-Val de Loire	41 (3.6%)	
Grand Est	88 (7.7%)	
Hauts-de-France	118 (10.3%)	
Ile-de-France	231 (20.2%)	
Normandie	37 (3.2%)	
Nouvelle-Aquitaine	92 (8.0%)	
Occitanie	93 (8.1%)	
Pays de la Loire	79 (6.9%)	
Provence-Alpes-Côte d’Azur	96 (8.4%)	
Size of residency city		
Less than 10,000 inhabitants	544 (47.5%)	
10,000 inhabitants or more	602 (52.5%)	
Matrimonial status		
Single	202 (17.6%)	
Civil union or married	502 (43.8%)	
In a relationship	287 (25.0%)	
Divorced or separated	133 (11.6%)	
Widow or widower	22 (1.9%)	
Education		
< A level	280 (24.4%)	
A level	277 (24.2%)	
Two-year university diploma	241 (21.0%)	
> Two-year university diploma	348 (30.4%)	
Monthly income		
<1000 euros	86 (7.5%)	
1000–2000 euros	393 (34.3%)	
2000–4000 euros	443 (38.7%)	
>4000 euros	123 (10.7%)	
Not applicable or not wishing to answer	101 (8.8%)	
Health worker		
No	1073 (93.6%)	
Yes	73 (6.4%)	
Perceived health		
Poor or very poor	101 (8.8%)	
Fair	406 (35.4%)	
Good	465 (40.6%)	
Very good	174 (15.2%)	
Risk factors for a severe form of COVID-19		
No risk factor	699 (61.0%)	
65 years old or more	293 (25.6%)	
Other risk factors (chronic diseases, pregnant)	154 (13.4%)	
COVID-19 symptoms		
No symptoms	960 (83.8%)	
Symptoms without medical confirmation	131 (11.4%)	
Symptoms with medical confirmation	55 (4.8%)	
COVID-19 close contact		
No	1046 (91.3%)	
At least once	100 (8.7%)	
Flu vaccination		
No	728 (63.5%)	
At least once in the past three years	418 (36.5%)	
Recommended vaccine		
Never	94 (8.2%)	
Hardly	130 (11.1%)	
Sometimes	226 (19.7%)	
Often	296 (25.8%)	
Always	400 (34.9%)	
COVID-19 vaccination intentions		
I would not agree at all	241 (21.0%)	

(continued on next page)
score is strongly and negatively associated with COVID-19 vaccination intentions. We find a positive and significant association between the trust score and the willingness to get vaccinated. Future preferences are significantly associated with COVID-19 vaccination intentions.

Women are more often vaccine hesitant compared to men. Respondents who got vaccinated against seasonal flu at least once in the last three years and those who more often get vaccinated when recommended are less likely to belong to the ‘vaccine hesitancy’ or ‘vaccine outright refusal’ categories. Respondents who consider their health as very good are more likely to belong to the ‘vaccine outright refusal’ category. The COVID-19 risk perception score is lower among vaccine hesitant respondents than among vaccine acceptors. Respondents in the ‘vaccine hesitancy’ or ‘vaccine outright refusal’ categories tend to have a higher vaccine concern score and a lower vaccine efficacy score than vaccine acceptors. Finally, we find that respondents in the ‘vaccine acceptance’ category declare being more willing to take risks in the health domain compared to vaccine hesitant respondents.

Discussion

Only 30.5% of our respondents would probably or definitely agree to get vaccinated against COVID-19, whereas 31.1% declare being unsure whether they would be willing to get vaccinated. In line with studies available for France,21–23 we find that women have lower COVID-19 vaccination intentions which is problematic as they are overrepresented among caregivers of dependent elderly in France.24 Moreover, given the key role played by women in childhood vaccinations, COVID-19 vaccine hesitancy among women is of worry at the time COVID-19 vaccination is opening to children under 18 in France. Among respondents at risk of a severe form of COVID-19, vaccination intentions are higher for pregnant women and for respondents with chronic diseases but not for respondents older than 65 years. Respondents who frequently get vaccinated also express higher intentions to get vaccinated against COVID-19 and are less likely to be vaccine hesitant. However, the pool of people getting vaccinated against COVID-19 needs to be extended far beyond at-risk individuals and those usually in favour of vaccination to create herd immunity in France.

Similar to Detoc et al.21 or Ward et al.,22 we find higher vaccination intentions and lower COVID-19 vaccine hesitancy among respondents with elevated COVID-19 risk perception. Moreover, the perceived individual and collective benefits of the vaccine and the concerns over its safety are strongly associated with COVID-19 vaccination intentions. The magnitude and level of significance of the associations between the intention and lower COVID-19 vaccine hesitancy vaccine perceptions and COVID-19 vaccination intentions/attitudes are higher than those observed for COVID-19 risk perceptions. This seems to indicate that vaccine perceptions play a greater role in the willingness to get vaccinated than COVID-19 risk perceptions. Similar to results obtained in the United States25 or Italy,17 we also find that distrust in the government, the pharmaceutical industry or science for the management of the COVID-19 epidemic is associated with lower vaccination intentions.

Our results are in line with previous studies using the HBM to investigate vaccination intentions. Indeed, a meta-analysis of studies using the HBM found that risk likelihood, susceptibility, and severity significantly predicted vaccination behaviours26 while we also find that the perceived threat is significantly associated with COVID-19 vaccination intentions. Moreover, the strong associations we find between the perceived efficacy/concerns regarding the COVID-19 vaccines and vaccination intentions/attitudes are consistent with a recent scooping review which highlighted that of the four main HBM constructs, perceived barriers and perceived benefits were the strongest predictors of health-related behavioural changes.36 More specifically, as found for COVID-19 vaccination intentions and attitudes in this study, previous literature on vaccination behaviours during epidemic contexts, such as H1N1 or influenza, highlighted the importance of the perceived barriers31,37 and perceived benefits38,39 of the vaccine on vaccination uptake. Very recently, and in concordance with our results, other studies investigating COVID-19 vaccination intentions using the HBM theoretical framework also emphasized the importance of perceived severity, perceived vaccine benefits and perceived barriers to vaccination on vaccination acceptance.40,41

Taken together, our results on the HBM variables suggest that targeted communication campaigns should be launched to enhance trust in the newly developed vaccines and to increase vaccination uptake among vaccine hesitant populations. Convincing vaccine hesitant populations to get vaccinated against COVID-19 is indeed crucial to reduce the level of circulation of the virus and to prevent the emergence of variants against which the currently available vaccines might be less effective. Given the observed concern over the rapidity of development, these campaigns could explain how the rapid progresses on the COVID-19 vaccines were made possible by unprecedented research efforts and financing (including government financing), by previous scientific knowledge on coronaviruses and on vaccine development for other pathogens and by the rapid genetic sequencing of this new coronavirus that allowed the subsequent development of messenger RNA vaccines. Public health authorities should also
explain that, while accelerated trial procedures allowed for a rapid assessment of COVID-19 vaccines by health technology agencies, safety and efficacy routine checks were performed as scrupulously as done for any other drugs or vaccines seeking market authorisation.

The positive association we find between the propensity to take risks and the willingness to get vaccinated quickly (i.e., in less than three months) is worrisome as it indicates that the COVID-19 vaccine is perceived by some respondents as a greater health risk than the COVID-19 itself. Then, it appears important for information campaigns to underline the positive benefit-risk balance of the COVID-19 vaccines by stressing out the risks associated with a COVID-19 infection and how much these risks can be reduced thanks to vaccination. Such information campaigns will enhance vaccination uptake among both individuals with a low COVID-19 risk perception and those currently perceiving the COVID-19 vaccine as a greater health risk than the COVID-19 itself.

As previously found for flu vaccination or H1N1 influenza vaccination, our regression results also point to a positive association between future preference and COVID-19 vaccination intentions. This indicates that respondents who are more present-oriented are less likely to get vaccinated against COVID-19. To heighten vaccination uptake among present-oriented individuals, information campaigns could stress out the short-term benefits of the COVID-19 vaccination, for example by highlighting how COVID-19 vaccination will allow travelling across Europe and attending large gatherings or events. Reducing the sort-term opportunity cost of the COVID-19 vaccination, for example by offering vaccines at the workplace or at the location of summer holidays, could also enhance vaccination uptake among present-oriented individuals.

Our study is not without limitation. First, the cross-sectional design used in this study does not allow the identification of causal effects. Second, our results regarding the intentions to get vaccinated are not directly comparable to those of previous studies as we included a neutral response modality (‘I would maybe agree to get vaccinated or maybe not’) to this question.

Table 2

Results of regression analyses.

	Vaccination intentions	Vaccine attitude (Ref: Vaccine acceptance)	Vaccine hesitancy	Vaccine outright refusal
	Male	1.471*	0.606*	0.595
		[1.091, 1.984]	[0.374, 0.982]	[0.281, 1.258]
Perceived health	Fair	1.516	0.717	0.576
		[0.816, 2.819]	[0.294, 1.748]	[0.129, 2.568]
	Good	1.274	1.096	2.881
		[0.676, 2.401]	[0.418, 2.872]	[0.637, 13.035]
	Very good	0.928	1.290	7.205*
		[0.464, 1.835]	[0.421, 3.949]	[1.447, 35.876]
COVID-19 risk factors	65 years old and more	1.569	1.123	0.370
		[0.759, 3.245]	[0.359, 3.515]	[0.074, 1.854]
	Other risk factors	1.817*	0.812	0.650
		[1.085, 3.042]	[0.401, 1.645]	[0.211, 2.003]
Flu vaccination	At least once in the past 3 years	2.004***	0.406**	0.209**
		[1.406, 2.857]	[0.236, 0.698]	[0.073, 0.597]
Recommended vaccines	Rarely	1.637	0.262	0.0654***
		[0.885, 3.127]	[0.051, 1.352]	[0.010, 0.413]
	Sometimes	1.915*	0.276	0.0485***
		[1.023, 3.584]	[0.068, 1.116]	[0.009, 0.268]
	Often	3.194***	0.201*	0.0249***
		[1.805, 5.653]	[0.054, 0.753]	[0.005, 0.125]
	Always	3.734***	0.141**	0.0157***
		[2.003, 6.959]	[0.038, 0.528]	[0.003, 0.085]
COVID-19 risk perception	1.342*	0.337**	0.589	
		[1.001, 1.799]	[0.353, 0.818]	
COVID-19 vaccine concern	0.343***	3.668***	5.632***	
score		[0.280, 0.420]	[2.741, 4.908]	
COVID-19 vaccine efficacy	4.848***	0.307***	0.0485***	
score		[3.612, 6.506]	[0.192, 0.492]	
Trust score	1.344*	0.866	0.704	
		[1.067, 1.693]	[0.622, 1.205]	
COVID-19 conspiracy score	1.101	0.864	1.070	
		[0.944, 1.284]	[0.680, 1.098]	
Health risk propensity	1.022	0.890*	0.978	
		[0.968, 1.080]	[0.809, 0.979]	
Consideration of Future	1.267*	1.239	0.946	
Consequences Scale		[1.012, 1.588]	[0.841, 1.826]	
Observations	1146	1146	1146	
Pseudo R-squared	0.377	0.509	0.509	

Results are presented as odd ratios with 95% confidence interval in brackets. An odd ratio between 0 and 1 indicates a negative association. An odd ratio greater than 1 indicates a positive association.

*P < 0.05, **P < 0.01, ***P < 0.001.
whereas previous studies did not. Further studies, preferably using longitudinal designs, should be conducted to study the factors associated with COVID-19 vaccination intentions in France.

Carefully designing targeted vaccination awareness campaigns appears crucial for public decision-makers to enhance vaccination uptake among vaccine hesitant individuals to reach herd immunity in France. These campaigns could output the positive benefit-risk balance of the COVID-19 vaccines, reinvigorate the public on the safety of the vaccine and highlight the short-term benefits of the vaccination.

Author statements

Ethical approval

Given strict anonymity of collected data, the study did not need authorization of the Commission Nationale de l'Informatique et des Libertés (CNIL).

Funding

This research benefited from a funding from the research unit of the authors, Montpellier Recherche en Economie, for data collection. The funding source had no role in study design, data analysis, interpretation of data, nor in the writing of the manuscript or in the decision to submit the article for publication.

Competing interests

None declared.

Data availability

The underlying data used in this article will be shared on reasonable request to the corresponding author.

Appendix. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.puhe.2021.07.035.

References

1. Santé Publique France. COVID-19 Point Épidémiologique hebdomadaire du 03 décembre 2020. 2020. https://www.santepubliquefrance.fr/maladies-et-traumatismes/maladies-et-infections-respiratoires/infection-a-coronavirus/documents/bulletin-national/covid-19-point-epidemiologique-du-3-decembre-2020/.

2. Ifop. Balises d’opinion #119 Questions d’actualité : regards sur la police/éthique. 2020. https://www.ifop.fr/wp-content/uploads/2020/12/117000-Rapport-CN-SR-N119.pdf.

3. Bone A, Guthmann JP, Nicoleau J, Lévy-Bruhl D. Population and risk group uptake of H1N1 influenza vaccine in mainland France 2009-2010: results of a national vaccination campaign. Vaccine 2010 Nov 29;28(51):8157–61. https://doi.org/10.1016/j.vaccine.2010.09.096.

4. Bocquier A, Fressard L, Gallant AJ, Razmussen S, Brown Nicholls LA, Cogan N et al. Towards intervention development to increase the uptake of COVID-19 vaccination among those at high risk: outlining evidence-based and theoretically informed future intervention content. Br J Health Psychol 2020 Nov;25(4):1039–54. https://doi.org/10.1111/bjhp.12686.

5. Dror AA, Eisenbach N, Taiber S, Morozov NG, Mizrachi M, Zigron A, et al. Vaccine hesitancy: the next challenge in the fight against COVID-19. Eur J Epidemiol 2020 Aug;35(8):775–9. https://doi.org/10.1007/s10654-020-00671-y.

6. Williams I, Gallant AJ, Razmussen S, Brown Nicholls LA, Cogan N et al. Intention to vaccinate against COVID-19: implications for public health communication. Lancet Reg Health Eur 2021. https://doi.org/10.1016/j.lanepe.2020.100012.

7. Anderson RM, Vegvari C, Truscott J, Collyer BS. Challenges in creating herd immunity to SARS-CoV-2 infection by mass vaccination. Lancet 2020 Nov 21;396(10263):1614–6. https://doi.org/10.1016/S0140-6736(20)32318-7.

8. Malik AA, McFadden SM, Elharake J, Omer SB. Determinants of COVID-19 vaccine acceptance in the US. EClinicalMedicine 2020 Sep;26:100495. https://doi.org/10.1016/j.eclinm.2020.100495.

9. Rhodes A, Hoq M, Measey MA, Danchin M. Intention to vaccinate against COVID-19 in Australia. Lancet Infect Dis 2020 Sep 14;S1473-3309(20):30724–6. https://doi.org/10.1016/j.lindis.2020.09.024.

10. Paul A, Steptoe A, Fallowfield L. Attitudes towards vaccination and intention to vaccinate against COVID-19: implications for public health communication. Lancet Reg Health Eur 2021. https://doi.org/10.1016/j.lanepe.2020.100012.
32. Mercadante AR, Law AV. Will they, or Won’t they? Examining patients’ vaccine intention for flu and COVID-19 using the Health Belief Model. Res Soc Adm Pharm 2021. https://doi.org/10.1016/j.sapharm.2020.12.012. Published online December 2020:S1551741120312407.

33. Demarque C, Apostolidis T, Chagnard A, Dany L. Adaptation et validation française de l’échelle de perspective temporelle «Consideration of future consequences» (CFC). Bull Psychol 2010:351–60. https://doi.org/10.3917/bupsy.509.0351.

34. Besnard X, Brune M, Couvert N, Roy D. Les proches aidants des seniors et leur ressenti sur l’aide apportée. Résultats des enquêtes «CARE» auprès des aidants (2015-2016. 2019.

35. Brewer NT, Chapman GB, Gibbons FX, Gerrard M, McCaul KD, Weinstein ND. Meta-analysis of the relationship between risk perception and health behavior: the example of vaccination. Health Psychol 2007;26(2):136–45. https://doi.org/10.1037/0278-6133.26.2.136.

36. Sulat JS, Prabandari YS, Sanusi R, Hapsari ED, Santoso B. The validity of health belief model variables in predicting behavioral change: a scoping review. Health Edu 2018;118(6):499–512. https://doi.org/10.1106/HE-05-2018-0027.

37. Scherr CL, Jensen JD, Christy K. Dispositional pandemic worry and the health belief model: promoting vaccination during pandemic events. Published online September / Public Health 2016;27. https://doi.org/10.1093/pubmed/fdw101v12.

38. Nan X, Kim J. Predicting H1N1 vaccine uptake and H1N1-related health beliefs: the role of individual difference in consideration of future consequences. J Health Commun 2014;19(3):376–88. https://doi.org/10.1080/10810730.2013.821552.

39. Alhalaseh I, Fayoumi H, Khalil B. The Health Belief Model in predicting healthcare workers’ intention for influenza vaccine uptake in Jordan. Vaccine 2020;38(46):7372–8. https://doi.org/10.1016/j.vaccine.2020.09.002.

40. Wong MC, Wong EL, Huang J, Cheung AW, Law K, Chong MK, et al. Acceptance of the COVID-19 vaccine based on the health belief model: a population-based survey in Hong Kong. Vaccine 2021;39(7):1148–56. https://doi.org/10.1016/j.vaccine.2020.12.083.

41. Wong LP, Alias H, Wong P-F, Lee HY, AbuBakar S. The use of the health belief model to assess predictors of intent to receive the COVID-19 vaccine and willingness to pay. Hum Vaccine Immunother 2020;16(9):2204–14. https://doi.org/10.1002/hvimm.2020.1790279.

42. Chapman GB, Coups EJ. Time preferences and preventive health behavior: acceptance of the influenza vaccine. Med Decis Making 1999 Jul-Sep;19(3):307–14. https://doi.org/10.1177/0272989X9901900309.

43. Tsutsui Y, Benzion U, Shahrabani S, Din GY. A policy to promote influenza vaccination: a behavioral economic approach. Health Pol 2010 Oct;97(2–3):238–49. https://doi.org/10.1016/j.healthpol.2010.05.008.

44. Nuscheler R, Roeder K. To vaccinate or to procrastinate? That is the prevention question. Health Econ 2016 Dec;25(12):1560–81. https://doi.org/10.1002/hec.3268.