Loosely Synchronized Search for Multi-agent Path Finding with Asynchronous Actions

Zhongqiang Ren¹, Sivakumar Rathinam² and Howie Choset¹

Abstract—Multi-agent path finding (MAPF) determines an ensemble of collision-free paths for multiple agents between their respective start and goal locations. Among the available MAPF planners for workspace modeled as a graph, A*-based approaches have been widely investigated due to their guarantees on completeness and solution optimality, and have demonstrated their efficiency in many scenarios. However, almost all of these A*-based methods assume that each agent executes an action concurrently in that all agents start and stop together. This article presents a natural generalization of MAPF with asynchronous actions (MAPF-AA) where agents do not necessarily start and stop concurrently. The main contribution of the work is a proposed approach called Loosely Synchronized Search (LSS) that extends A*-based MAPF planners to handle asynchronous actions. We show LSS is complete and finds an optimal solution if one exists. We also combine LSS with other existing MAPF methods that aims to trade-off optimality for computational efficiency. Numerical results are presented to corroborate the performance of LSS and the applicability of the proposed method is verified in the Robotarium, a remotely accessible swarm robotics research platform.

I. INTRODUCTION

Multi-agent path finding (MAPF), as its name suggests, computes a set of collision-free paths for multiple agents from their respective starts to goal locations. Most MAPF methods [20] describe the workspace as a graph, where vertices represent possible locations of agents and edges are actions that move agents between locations. Conventional MAPF planners [5], [20], including our own [22], typically consider the case where each agent executes an action concurrently in that all agents start and stop together. The requirement of such synchronized actions among agents limits the application of MAPF planners to scenarios where agents move with different speeds. This paper considers a natural generalization of the MAPF with asynchronous actions (MAPF-AA) where agents do not necessarily start and stop concurrently. We refer to this generalization as MAPF with asynchronous actions (MAPF-AA). In MAPF-AA, different actions by agents may require different time durations to complete. See Fig. 1 for a toy example.

Among MAPF planners, A*-based ones, such as HCA* [18], EPEA* [6], M* [22], have been extensively investigated. These planners provide guarantees on solution completeness and optimality, and outperform other types of MAPF planners in certain scenarios [5]. However, existing A*-based methods rely on the assumption of synchronous

¹ Zhongqiang Ren and Howie Choset are with Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA.
² Sivakumar Rathinam is with Texas A&M University, College Station, TX 77843-3123.
II. Prior Work

MAPF algorithms tend to fall on a spectrum from decentralized to centralized, trading off completeness and optimality for scalability. Finding an optimal solution for MAPF is NP-hard [25]. On one side of this spectrum, decentralized methods such as [21], [9], plan paths for agents in their individual search spaces and can be leveraged to solve similar problems to MAPF-AA. These approaches scale well but can hardly guarantee completeness and optimality. On the other side of the spectrum, centralized methods [19] plan in the joint configuration space of agents, which guarantees optimality but scales poorly. In the middle of the spectrum, methods like M* [22], Conflict-based Search (CBS) [16], etc., begin by planning each agent an individual optimal path in a decoupled manner and couples agents for planning only when needed to resolve collisions. These methods guarantee optimality while bound the search space and thus scale relatively well. This work limits its focus to planners with solution optimality guarantees.

In recent years, many variants of MAPF have been proposed, which span another spectrum from conventional MAPF [20] to multi-agent motion planning (MAMP) [3], [17], a generalized version of MAPF where the motion of agents are planned in continuous space and time. While being general to many applications, MAMP can be computationally expensive due to motion constraints, high degree-of-freedom of each agent, etc. Within the spectrum, many different variants of MAPF have been proposed, each focus on relaxing different aspects of MAPF, such as shape of agents [8], different moving speeds [23], [1], multiple objectives [14], motion delays [10], etc. A similar problem of MAPF-AA has been considered in [23], [1]. In this work, we choose continuous-time CBS (CCBS) [1] as a baseline for our experiments.

Among planners that solve conventional MAPF to optimality, there is no single planner that outperforms all others in all settings [5]. To fuse the benefits of different MAPF planners, Meta-agent CBS (MA-CBS) [15] combines CBS with A*-based methods and has been shown to improve the performance. However, due to the lack of any A*-based planner for MAPF-AA, we are not aware of any extension of MA-CBS for MAPF-AA that combines the benefits of both A*-based and CBS-based methods. This work also fills this gap and our numerical results show that such fusion enhances the success rates of CCBS, the state-of-the-art, up to 12%.

III. Problem Description

Let index set \(I = \{1, 2, \ldots, N\} \) denote a set of \(N \) agents. All agents move in a workspace represented as a finite graph \(G = (V, E) \) where the vertex set \(V \) represents the possible locations of agents and the edge set \(E = V \times V \) denotes the set of all possible actions that can move an agent \(i \) between any two adjacent vertices in \(V \). An edge between \(u, v \in V \) is denoted as \((u, v) \in E\). In this work, we use a superscript \(i \in I \) over a variable to represent the agent to which the variable belongs (e.g. \(v^i \in V \) means a vertex corresponding to agent \(i \)). Let \(v^i_f, v^i_o \in V \) denote the start and goal vertices of agent \(i \) respectively.

All agents share a global clock and start their motion at \(v^i_o \) from time \(t = 0 \). For each edge \(e \in E \), let \(D^i(e) \in \mathbb{R}^+ \) denote the duration for agent \(i \) to go through edge \(e \). Note that, for the same edge \(e \in E \), durations \(D^i(e) \) for two different agents \(i, j \in I \) can be different. When agent \(i \) goes through \((v^i_1, v^i_2) \in E \) between times \((t_1, t_1 + D^i(v^i_1, v^i_2))\), agent \(i \) occupies: (1) vertex \(v^i_1 \) at time \(t = t_1 \), (2) vertex \(v^i_2 \) at time \(t = t_1 + D^i(v^i_1, v^i_2) \) and (3) both \(v^i_1 \) and \(v^i_2 \) for any time point within the open interval \((t_1, t_1 + D^i(v^i_1, v^i_2))\). Any two agents \(i, j \in I \) are in conflict if they both occupy a same vertex at any time.

Let \(\pi^i(v^i_1, v^i_f) \) denote a path that connects vertices \(v^i_1 \) and \(v^i_f \) via a sequence of vertices \((v^i_1, v^i_2, \ldots, v^i_f)\) in \(G \), where any two vertices \(v^i_k \) and \(v^i_{k+1} \) are connected by an edge \((v^i_k, v^i_{k+1}) \in E \). Let \(g(\pi^i(v^i_1, v^i_f)) \) denote the cost value associated with the path, which is defined as the sum of duration of edges along the path, i.e. \(g(\pi^i(v^i_1, v^i_f)) = \Sigma_{k=1,2,\ldots,l-1} D^i(v^i_k,v^i_{k+1}) \). Without loss of generality, to simplify the notations, we also refer to a path \(\pi^i(v^i_0,v^i_f) \) for agent \(i \) between its start and goal as simply \(\pi^i \). Let \(\pi = (\pi^1,\pi^2,\ldots,\pi^N) \) represent a joint path for all the agents. Its cost is defined as the sum of the individual path costs over all the agents, i.e., \(g(\pi) = \Sigma_i g^i(\pi^i) \).

The objective of the multi-agent path finding with asynchronous actions (MAPF-AA) is to find a conflict-free joint path \(\pi \) connecting \(v^i_0,v^i_f \) for all agents \(i \in I \) such that \(g(\pi) \) is minimum.

IV. Loosely Synchronized Search

A. Notation and State Definition

Let \(\mathcal{G} = (\mathcal{V}, \mathcal{E}) = G \times G \times \cdots \times G \) denote the joint graph which is the Cartesian product of \(N \) copies of \(G \), where each \(v \in \mathcal{V} \) represents a joint vertex and \(e \in \mathcal{E} \) represents a joint edge that connects a pair of joint vertices. The joint vertex corresponding to the starts and goals of agents is \(v_o = (v^1_o, v^2_o, \ldots, v^N_o) \) and \(v_f = (v^1_f, v^2_f, \ldots, v^N_f) \) respectively.

In this work, a search state \(s = (s^1, s^2, \ldots, s^N) \) is defined to be a set of individual states \(s^i, \forall i \in I \) where each \(s^i \) is a tuple of four components:

- \(v(s^i) \in V \), an (individual) vertex in \(G \);
- \(p(s^i) \in V \), the parent vertex of \(v(s^i) \), from which \(v(s^i) \) is reached;
- \(t(s^i) \), the timestamp of \(v(s^i) \), representing the arrival time at \(v(s^i) \) from \(p(s^i) \);
- \(t(p(s^i)) \), the individual timestamp of \(p(s^i) \), representing the departure time from \(p(s^i) \) to \(v(s^i) \).

Intuitively, \(s^i = (v(s^i), p(s^i), t(s^i), t(p(s^i))) \) describes the location of agent \(i \) within time interval \([t(p(s^i)), t(s^i)]\) with a pair of vertices \((p(s^i), v(s^i))\). For the initial state, we define \(p(s^i_o) = v(s^i_o) = v^i_o \) and \(t(s^i_o) = t(p(s^i_o)) = 0, \forall i \in I \). Given

\[1\] We do not consider the case where edges criss-cross each other since this case can be handled by adding an additional vertex at the location where two edges criss-cross.
two individual states s_1', s_2' of agent i, we say $s_1' = s_2'$ if each of the four elements in s_1' is equal to the counterpart in s_2'. For two states s_1 and s_2, $s_1 = s_2$ if and only if $s_1' = s_2'$, $\forall i \in I$; otherwise, s_1 and s_2 are different states.

Following the definition of a conflict in Sec. III, given a state s, let $\Psi(s) \subseteq I$ represent a conflict checking function that checks the state s for all pairs of agents $i, j \in I$ and returns a set of agents that are in conflict. $\Psi(s)$ returns an empty set if no agent is in conflict in state s.

B. Algorithm Overview

As in the well-known A^* algorithm [7], every state s identifies a partial solution (path) $\pi(v_o, v(s))$ from v_o to $v(s)$ and let $g(s)$ represent the cost of that partial solution. At any time of the search, let OPEN denote the priority queue instead of letting all agents plan their next actions in each time of the search, let OPEN denote the priority queue containing candidate states, which are prioritized by their f-values $f(s) := h(s) + g(s)$, where $h(s)$ is the heuristic value that underestimates the cost-to-goal at s.

Algorithm 1 Pseudocode for A^*, LS-A^*

1: add initial state s_o to OPEN
2: while OPEN not empty do \hspace{1cm} \triangleright \text{Main search loop}
3: \hspace{2cm} $s_k \leftarrow$ OPEN.pop()
4: \hspace{2cm} if $v(s_k) = v_f$ then
5: \hspace{3cm} return Reconstruct(s_k)
6: \hspace{2cm} $S_{ngh} \leftarrow GetNgh(s_k)$
7: \hspace{2cm} // LS-A^* differs from A^* in GetNgh(s_k)
8: \hspace{2cm} for all $s_l \in S_{ngh}$ do
9: \hspace{3cm} if $\Psi(s_l) \neq \emptyset$ then
10: \hspace{4cm} continue
11: \hspace{3cm} if Compare(s_l) then \hspace{1cm} false = discard s_l
12: \hspace{3cm} // LS-A^* differs from A^* in Compare(s_l)
13: \hspace{4cm} $f(s_l) \leftarrow g(s_l) + h(s_l)$
14: \hspace{4cm} add s_l to OPEN
15: \hspace{4cm} parent(s_l) $\leftarrow s_k$
16: return Failure

As shown in Algorithm 1, Loosely Synchronized A^* (LS-A^*) begins by adding initial state s_o to OPEN. In each iteration (from line 2), the state s_k with the minimum f-value is popped from OPEN. Then $v(s_k)$ is compared with v_f and if s_k visits v_f (i.e., $v(s_k) = v_f$), then a conflict-free solution is identified and reconstructed by iteratively tracking the parent of states from s_k to s_o. Otherwise, neighbors are generated from s_k (line 6) by GetNgh(s_k), a procedure that generates a set of neighboring states (successors) of s_k (Sec. IV.C). For each generated neighbor s_l, if s_l leads to conflicts (line 8), s_l is discarded. Otherwise, s_l is verified in Compare(s_k) (Sec. IV.D), to decide whether s_l should be kept. If s_l is kept, then the corresponding f, g, h values of s_l are updated and s_l is inserted into OPEN. When OPEN depletes, the algorithm reports failure and there is no solution for the problem.

C. Neighbor Generation

The first key difference between LS-A^* and A^* is that, instead of letting all agents plan their next actions in each planning step as in A^*, LS-A^* uses timestamps of agents in a state to decide which agent(s) should plan the next action. The entire procedure can be described in four steps.

Step (1) The minimum timestamp $t_{min}(s_k)$ and the second minimum timestamps among all agents within s_k are computed:

\begin{align}
 t_{min}(s_k) &= \min_{i \in I} t(s_k^i). \quad (1) \\
 t_{min2}(s_k) &= \min \{ t(s_k^i) \mid t(s_k^i) \neq t_{min}(s_k), i \in I \}. \quad (2)
\end{align}

Note that, for any state s_k, $t_{min}(s_k)$ always exists but $t_{min2}(s_k)$ may not exist (if all timestamps are the same).

Step (2) The subset of agent(s) $I_{t_{min}}(s_k) \subseteq I$ with timestamp(s) equal to $t_{min}(s_k)$ is computed:

\begin{align}
 I_{t_{min}}(s_k) &= \arg \min_{i \in I} t(s_k^i). \quad (3)
\end{align}

$I_{t_{min}}(s_k)$ describes the subset of agents in s_k that is allowed to plan their next actions.

Step (3) We call an individual state s_k^i generated from s_k an individual neighbor of s_k and let $S_{ngh}^i(s_k^i)$ represent a set of individual neighbors of s_k^i. In this step, $S_{ngh}^i(s_k^i)$ is computed for each agent $i \in I$, given state s_k:

- For $i \notin I_{t_{min}}(s_k^i)$, agent i is not allowed to plan actions and $S_{ngh}^i(s_k^i)$ contains only a copy of s_k^i.
- For $i \in I_{t_{min}}(s_k^i)$, agent i plans actions, including both wait and move actions, and $S_{ngh}^i(s_k^i)$ contains totally $[\text{Adj}(v(s_k^i))] + 1$ individual neighbors, where $\text{Adj}(u), u \in V$ represents the set of adjacent (individual) vertices of u in graph G.

Specifically, for action that moves agent i, for each vertex $u \in \text{Adj}(v_k^i)$, a corresponding individual state $s_k^i = \{v(s_k^i), p(s_k^i), t(s_k^i), t(p(s_k^i))\}$ is generated by

\begin{align}
 v(s_k^i) &= u \quad (4) \\
 p(s_k^i) &= v_k^i \quad (5) \\
 t(s_k^i) &= t(s_k^i) + D^i(v(s_k^i), v(s_k^i)) \quad (6) \\
 t(p(s_k^i)) &= t(s_k^i) \quad (7)
\end{align}

where $D^i(v(s_k^i), v(s_k^i))$ denote the duration for agent i to move through edge $(v(s_k^i), v(s_k^i))$. Then, the generated s_k^i is added to $S_{ngh}^i(s_k^i)$. For action that makes agent i wait, an individual state s_k^i is generated by

\begin{align}
 v(s_k^i) &= v_k^i \quad (8) \\
 t(s_k^i) &= t(s_k^i) + D_{wait}^i \quad (9)
\end{align}

while $p(s_k^i)$ and $t(p(s_k^i))$ are generated by Equation (5) and Equation (7) respectively. Here D_{wait}^i denotes the amount of wait time and is computed as:

- If $t_{min2}(s_k)$ exists
 \begin{equation}
 D_{wait}^i = t_{min2}(s_k) - t_{min}(s_k), \quad (10)
 \end{equation}
- Otherwise (all agents in s_k have the same timestamps and $t_{min2}(s_k)$ does not exist),
 \begin{equation}
 D_{wait}^i = \min_{i \in I, e \in E} D^i(e). \quad (11)
 \end{equation}

Step (4) S_{ngh} is computed by taking combination of S_{ngh}^i over all agents $i \in I$.
\[S_{\text{ ngh}} = \{(s_1^1, s_1^2, \ldots, s_1^N) \mid s_i^j \in S_{\text{ ngh}}, \forall i \in I\}. \quad (12) \]

Remarks In Get Ngh, wait action plays a key role in "synchronizing" subset of agents with Equation (10). The wait action guarantees that, for each joint vertex \(u \in V \), after rounds of neighbor generation, there exists a state \(s \) with \(v(s) = u \) and \(t_{\text{min}}(s) = I \) (Lemma 1 in Sec. [V]. In such a state \(s \), all timestamps of agents are the same and the algorithm needs to consider the actions of all agents together. We term such a state a synchronized state:

Definition 1: A state \(s \) is a synchronized state, if \(t(s^i) = t(s^j), \forall i, j \in I, i \neq j \).

In LSS, a state is either synchronized or asynchronized. As we will see in Sec. [VI], the existence of synchronized states guarantees the completeness (not the optimality) of LS-A*.

D. State Comparison

Different from A*, where a scalar \(g \)-value is used to compare states, in LS-A*, comparing states based solely on their \(g \)-values may not be enough: timestamps of agents in a state \(s_k \) are relevant to potential conflicts along future paths from \(s_k \). Thus, the timestamps of all agents in a state, which can be formulated as a vector, need to be properly handled for state comparison. This leads to the usage of dominance [4] that compares two vectors.

Definition 2 (Strict Dominance): For any two states \(s_1 \) and \(s_2 \) with the same joint vertex (i.e. \(v(s_1) = v(s_2) \)), \(s_1 \) strictly dominates \(s_2 \), (notationally \(s_k \succ s_i \)), if \(t(s_1^i) < t(s_2^i), \forall i \in I \).

In Sec. [VI] we discuss the usage of other types of dominance. For now, with strict dominance in hand, we introduce the Compare procedure, as shown in Algorithm 2. At each joint vertex \(v \in V \), a set of non-dominated states \(v(v) \) at \(v \) is maintained. Initially, \(v(v) = \emptyset, \forall v \in V \setminus \{v_0\} \) and \(v(v_0) \) contains only the initial state \(s_0 \). During the search, when a state \(s_l \) is generated, to decide if \(s_l \) should be pruned or not, \(s_l \) is compared with every states in \(v(v(s_l)) \). If \(s_l \) is strictly dominated, \(s_l \) is discarded. Otherwise, \(s_l \) is added to \(v(v(s_l)) \) and added to OPEN.

Algorithm 2 Pseudocode for compare(s_l)

1: for all \(s_k \in \alpha(v(s_l)) \) do
2: if \(s_k \succ s_l \) or \(s_k = s_l \) then
3: return false \(\triangleright \) should be discarded
4: add \(s_l \) to \(v(v(s_l)) \)
5: return true \(\triangleright \) should be added to open list

V. ANALYSIS

In this section, we list the key lemmas and show LS-A* is complete and optimal: LS-A* either computes an optimal solution or reports failure if no one exists. Detailed proof can be found in the full version of this work [13].

Corollary 1: Let \(s_l \) represent a neighbor state generated from \(s_k \), then \(t_{\text{min}}(s_l) > t_{\text{min}}(s_k) \).

This corollary comes from the construction of Get Ngh(s_k) (In Eqn. [9] durations are always strict positive).

Lemma 1: For a state \(s \), there exists a descendant state \(s_l \) from \(s \) with \(v(s_l) = v(s) \) and \(s_l \) is a synchronized state.

Corollary 2: If state \(s \) is a synchronized state, then Get Ngh(s) expands \(\{ \text{joint vertex } v(s) \} \) in \(G \); let \(S_{\text{ ngh}}(s) \) denote the set of neighbor states returned by Get Ngh(s), for every adjacent joint vertex \(u \) of \(v(s) \) in \(G \), there exists a neighbor state \(s_l \in S_{\text{ ngh}}(s) \) such that \(v(s_l) = u \).

Lemma 2: For each joint vertex \(v_k \in V \), there exists only a finite number of states \(s \) with \(v(s) = v_k \).

Theorem 1: LS-A* is complete.

Corollary 3: For two states \(s_k \) and \(s_l \) with \(v(s_k) = v(s_l) \), if \(s_k \) strictly dominates \(s_l \), \(s_l \) cannot not lead to a solution with smaller cost than \(s_k \).

Corollary 4: Given a state \(s_k \) and a neighbor state \(s_l \) generated from Get Ngh(s_k), agent \(i \in I \) occupies both \(v(s_k^i) \) and \(p(s_k^i) \) for any time between \(t_{\text{min}}(s_k) \) and \(t_{\text{min}}(s_l) \).

Lemma 3: When generating neighbors for a state \(s \), for any agent \(i \in I_{\text{min}}(s) \), waiting for an amount of time in \((0, D_{\text{wait}}(s)) \) does not lead to any solution with smaller cost.

Theorem 2: If there are solutions, LS-A* finds the one with the minimum \(g \)-value.

VI. DISCUSSION AND EXTENSIONS

A. Switch Between Dominance Rules

The aforementioned Get Ngh procedure and strict dominance guarantee the existence of a synchronized state at each joint vertex. After a synchronized state \(s \) at \(v(s) \) is generated and added into OPEN, for any descendant states \(s_l \) with \(v(s_l) = v(s) \), however, the algorithm can switch to a pruning rule with relaxed conditions instead on relying on strict dominance. This is helpful since more states, that are not part of an optimal solution, can be pruned. The relaxed conditions are defined through weak dominance [12] as follows:

Definition 3 (Weak Dominance): For any two states \(s_1 \) and \(s_2 \) with the same joint vertex (i.e. \(v(s_1) = v(s_2) \)), \(s_1 \) weakly dominates \(s_2 \), if \(t(s_1^i) \leq t(s_2^i), \forall i \in I \).

With both the dominance rules, the algorithm can switch between them to decide whether a state \(s_k \) should be pruned or not. If a synchronized state \(s_l \) with \(v(s_l) = v(s_k) \) has already been generated and inserted into OPEN during the search, then \(s_k \) is compared with every state in \(\alpha(v(s_k)) \) with weak dominance. Otherwise (which means no synchronized state has been generated at \(v(s_k) \)), \(s_k \) is compared with every state in \(\alpha(v(s_k)) \) with strict dominance. Switching between the two dominance rules do not affect the proof, and thus the properties of LS-A* still hold.

B. Combination with other algorithms

To demonstrate the generality of the proposed LSS, we combine LSS with M* and rM* [22] (two A*-based algorithms for conventional MAPF) and propose LS-M* and LS-rM* for MAPF-AA. In addition, we also extend MA-CBS [15], [2] to combine the advantages of both CBS-based and A*-based planners. More details can be found in [13].

\(^2\)A node in a graph is expanded if all of its neighbor nodes are generated (visited). See [11] for more details.
VII. Numerical Results

All the algorithms were implemented in Python and tested on a computer with an Intel Core i7 CPU and 16 GB RAM. We selected maps (grids) from [20] and generated an undirected graph by making each grid four-connected. The run time limit for each test instance is five minutes. We report the performance of the proposed LSS approach with the following experiments. First, we compare LS-A* and “naive-A*” (explained in Sec. VII-A) with different durations to verify whether LS-A* saves computational effort when actions are asynchronous. Second, we verify the performance of MACBS, using LS-rM* as the underlying meta-agent planner, by varying the merging threshold B. Finally, we tested LS-rM* with varying heuristic inflation rates to learn how LS-rM* trades off between optimality and search efficiency.

A. Naive A* and LS-A*

Naive-A* assumes the existence of a common time unit τ and a maximum possible time T, and discretizes the time dimension into a finite number of time steps $\{0, 1, \ldots, T/\tau\}$. This discretization guarantees that the actions of all agents begin/end concurrently. Naive-A* conducts $A*$ search in a time-augmented graph by visiting all possible time steps. In our tests, the durations of edges were implemented as $D^i(e) = d^i$, where d^i is a random integer sampled from $[1, K]$, with $K = 10, 100, 1000$, representing the “degree” of asynchronous actions. Note that, different agents i, j can have $d^i \neq d^j$. We fixed the number of agents with $N = 2$ and ran tests in a 16×16 obstacle-free grid.

From Table II, LS-A* outperforms naive-A* in terms of number of states expanded as well as run time on average regardless of K. Additionally, when K varies, LS-A* remains steady against those two metrics. The results show the benefits of LS-A* as it avoids too fine a discretization of the time dimension.

B. Meta-agent Conflict-based Search

Table IC shows the results of the improved MA-CBS [2], which uses SIPP and LS-rM* as low level planners, with a merging threshold $B \in \{0, 1, 10, 100, \infty\}$. When the number of “internal” conflicts between a pair of agents exceeds B, those two agents are merged as a meta-agent. Note that when $B = 0$, MA-CBS is the same as LS-rM* since all agents are always merged as one meta-agent, and when $B = \infty$, MA-CBS is the same as CCBS [1] since all agents are never merged. Here, durations are set in the same way as in VII-A with $K = 100$. We select three grids from different categories (room, maze, game map) from [20] and report the success rates of finding a solution within the time limit, as well as average run times (over all instances, both solved and unsolved) for a different number of agents $N \in \{2, 4, 8, 12, 16, 20\}$. The best performance for each N is highlighted in bold text.

MA-CBS shows its benefits over CCBS and the maximum improvement is achieved in room and maze-like grids (the first and second maps) with $N = 8, B = 100$, where success rates are both enhanced by 12% and the average run time is shortened. It is also worthwhile to note that the selection of B remains an open question, as different B can affect the performance of the algorithm in various environments.

C. Heuristic Inflation

For $A*$-based algorithms, a well-known technique that trades off between bounded sub-optimality and search efficiency is using inflated heuristics [11]: $f = g + w \cdot h$, where $w \geq 1$ is the inflation rate. In general, $w > 1$ makes $A*$ find a bounded sub-optimal solution faster. As shown in Fig. 3, we plotted the success rates and run time of LS-rM* by varying the inflation rate $w \in \{1,1.2,1.5\}$. We also show the results of LS-M* and LS-rM* without inflation i.e. $w = 1.0$ as baselines. It is obvious that heuristic inflation helps in improving success rates and average run times in all grids tested.

D. Real Robot Test

We verify the proposed inflated LS-rM* in the Roborarium [24], a remotely accessible swarm robotics research platform, by simulating and executing the planned paths, as shown in the video.

VIII. Conclusion

We proposed an approach named Loosely Synchronized Search that can convert $A*$-based planners to a version that can solve the multi-agent path finding (MAPF) problem with asynchronous actions. We proved the theoretical properties of LSS and presented extensive numerical results to verify its performance against the state of the art MAPF algorithms. Possible future work includes applying LSS with other $A*$- based algorithms, such as EPEA* [6], or further extend LSS to other variants of MAPF.

REFERENCES

[1] Anton Andreychuk, Konstantin Yakovlev, Dor Atzmon, and Roni Stern. Multi-agent pathfinding with continuous time. In International Joint Conference on Artificial Intelligence (IJCAI), pages 39–45, 2019.
[2] Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, David Tolpin, Oded Betzalel, and Eyal Shimony. Icbs: improved conflict-based search algorithm for multi-agent pathfinding. In Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.
[3] Liron Cohen, Tansel Uras, TK Satish Kumar, and Sven Koenig. Optimal and bounded-suboptimal multi-agent motion planning. In Twelfth Annual Symposium on Combinatorial Search, 2019.
[4] Matthias Ehrgott. Multicriteria optimization, volume 491. Springer Science & Business Media, 2005.
[5] Ariel Felner, Roni Stern, Solomon Eyal Shimony, Eli Boyarski, Meir Goldenberg, Guni Sharon, Nathan Sturtevant, Glenn Wagner, and Pavel Surynek. Search-based optimal solvers for the multi-agent pathfinding problem: Summary and challenges. In Tenth Annual Symposium on Combinatorial Search, 2017.
[6] Meir Goldenberg, Ariel Felner, Roni Stern, Guni Sharon, Nathan Sturtevant, Robert C Holte, and Jonathan Schaeffer. Enhanced partial expansion a. Journal of Artificial Intelligence Research, 50:141–187, 2014.
[7] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics, 4(2):100–107, 1968.

https://drive.google.com/file/d/1EX5cC2A60UCmYX3BD3zdIADoA9sMuH/view?usp=sharing
TABLE I

NUMERICAL RESULTS OF MA-CBS WITH DIFFERENT MERGING THRESHOLD B.

Grids	B	\(N=2\)	\(N=4\)	\(N=8\)	\(N=12\)	\(N=16\)	\(N=20\)
(32x32)	0 (LS-rM*)	1.00 (0.17)	0.84 (50.9)	0.40 (183.3)	0.04 (288.3)	0 (-)	0 (-)
	1	1.00 (0.20)	0.84 (53.0)	0.44 (170.6)	0.08 (276.11)	0 (-)	0 (-)
	10	1.00 (0.019)	\(0.92 \ (28.9)\)	0.60 (122.5)	0.20 (241.1)	0 (-)	0 (-)
	100	1.00 (0.019)	0.92 (29.3)	\(0.68 \ (99.0)\)	\(0.28 \ (227.3)\)	0.04 (294.3)	0 (-)
\(\infty\) (CCBS)	\(1.00 \ (0.005)\)	0.88 (36.0)	0.56 (138.5)	0.24 (232.3)	0.04 (290.6)	0 (-)	0 (-)

Grids	B	\(N=2\)	\(N=4\)	\(N=8\)	\(N=12\)	\(N=16\)	\(N=20\)
(32x32)	0 (LS-rM*)	1.00 (0.11)	0.84 (78.9)	0.08 (278.8)	0 (-)	0 (-)	0 (-)
	1	1.00 (0.15)	0.84 (57.9)	0.08 (278.7)	0 (-)	0 (-)	0 (-)
	10	1.00 (0.08)	0.88 (45.6)	0.12 (265.8)	0 (-)	0 (-)	0 (-)
	100	1.00 (0.06)	0.92 (25.2)	\(0.32 \ (217.3)\)	\(0.04 \ (293.7)\)	0 (-)	0 (-)
\(\infty\) (CCBS)	\(1.00 \ (0.03)\)	\(0.92 \ (24.5)\)	0.24 (241.9)	0 (-)	0 (-)	0 (-)	

TABLE II

AVERAGE NUMBER OF STATES EXPANDED AND RUN TIME FOR NAIVE-A* AND LS-A* WITH DIFFERENT DURATION FUNCTIONS.

K	\(N=10\)	\(N=100\)	\(N=1000\)
Naive-A*	542.9 (0.15)	3148.3 (3.20)	10839.0 (55.16)
LS-A*	365.8 (0.09)	453.3 (0.08)	449.9 (0.08)

Fig. 2. Average success rates of A*-based algorithms for finding optimal solution within one minute.