Equivariant extensions of ∗-algebras

Magnus Goffeng

Department of Mathematical Sciences, Division of Mathematics
Chalmers university of Technology and University of Gothenburg

Abstract

A bivariant functor is defined on a category of ∗-algebras and a category of operator ideals, both with actions of a second countable group G, into the category of abelian monoids. The element of the bivariant functor will be G-equivariant extensions of a ∗-algebra by an operator ideal under a suitable equivalence relation. The functor is related with the ordinary Ext-functor for C^*-algebras defined by Brown-Douglas-Fillmore. Invertibility in this monoid is studied and characterized in terms of Toeplitz operators with abstract symbol.

Introduction

Extensions of C^*-algebras by stable C^*-algebras have been thoroughly studied (see [2], [3], [11], [14]) due to their close relation to Toeplitz operators and KK-theory (see [11], [14]). The starting point was the article [3] where an abelian monoid $Ext(A)$ was associated to a C^*-algebra A. This monoid consists of extensions $0 \to K \to E \to A \to 0$ under a certain equivalence relation, here K denotes the ideal of compact operators. The construction can be generalized to a bivariant theory by replacing K with an arbitrary stable C^*-algebra B and one obtains an abelian monoid $Ext(A, B)$. In [14] this construction was put into the equivariant setting although only the invertible elements of $Ext_G(A, B)$ were studied. We will study the full extension monoids.

As is shown in [11], and equivariantly in [14], an odd Kasparov $A-B$-module gives an extension of A by B which induces an additive mapping $KK^1_G(A, B) \to Ext_G(A, B)$. It can be shown, as is done in [14] that this is a bijection to the group $Ext_G^{-1}(A, B) \subseteq Ext_G(A, B)$ of invertible elements. A more straightforward approach is the proof in [11] using the Stinespring representation theorem. As a corollary of this proof, if A is nuclear and separable the Choi-Effros lifting theorem implies that $Ext_G(A, B)$ is a group if G is trivial. This is the main motivation of studying extension theory.

The reason for leaving the category of C^*-algebras is that most cohomology theories behave badly on C^*-algebras and one needs to look at dense subalgebras, see more in [10]. For example, if we use cohomology and Atiyah-Singer index theorem to calculate the index of a Toeplitz operator this is easily done via an explicit integral in terms of the symbol and its derivatives if the symbol is smooth, see more in [7].

With this as motivation we will extend the Ext_G-functor to ∗-algebras which embed into separable C^*-algebras and actions which extend to C^*-automorphisms.
In the first part of this paper we define suitable categories for the first and the second variable of the functor. Then, similarly to the setting with \(C^* \)-algebras, we will construct a bivariant functor \(\mathcal{E}xt_G \) to the category of abelian monoids. In particular there is a natural transformation

\[
\Theta : \mathcal{E}xt_G \rightarrow Ext_G
\]

in the category of abelian monoids. An interesting question to study further is what types of elements are in the kernel of the \(\Theta \)-mapping and if there is some way to make \(\Theta \) surjective?

After that we will move on to study the invertible elements. A rather remarkable result is that the invertible elements are those extensions which arise from a \(G \)-equivariant algebraic \(A \rightarrow \mathcal{J} \)-Kasparov modules. As an example, we will study the case of extensions of the smooth functions on a compact manifold by the Schatten class operators, in this case the \(\Theta \)-mapping turns out to be a surjection. At the end of the paper we describe a certain type of elements in the kernel of the \(\Theta \)-mapping which we will call linear deformations. The linear deformations are analytic in their nature. We end the paper by giving an explicit example of a linear deformation of the ordinary Toeplitz operators on the Hardy space that produces another \(\mathcal{E}xt \)-class but is homotopic to the \(\mathcal{E}xt \)-class defined by the ordinary Toeplitz operators.

1 Definitions and basic properties

To begin with we will define the suitable categories. From here on, let \(G \) be a second countable locally compact group. We will say that the group action \(\alpha : \ G \rightarrow Aut(A) \) acts continuously on the \(C^* \)-algebra \(A \) if \(g \mapsto \alpha_g(a) \) is continuous for all \(a \in A \).

Definition 1.1. Let \(C^*A_G \) denote the category with objects consisting of pairs \((A, A) \) where \(A \) is a separable \(C^* \)-algebra with a continuous \(G \)-action and \(A \) is a \(G \)-invariant dense \(\ast \)-subalgebra. A morphism in \(C^*A_G \) between \((A, A) \) to \((A', A') \) is a \(G \)-equivariant \(\ast \)-homomorphism \(\varphi : A \rightarrow A' \) bounded in \(C^* \)-norm.

As an abuse of notation we will denote an object \((A, A) \) in \(C^*A_G \) by \(A \) and its Latin character \(A \) will denote the ambient \(C^* \)-algebra. Observe that a morphism in \(C^*A_G \) is the restriction of an equivariant \(\ast \)-homomorphism \(\tilde{\varphi} : A \rightarrow A' \) uniquely determined by \(\varphi \). This follows from that if \(\varphi : A \rightarrow A' \) is bounded in \(C^* \)-norm it extends to \(\tilde{\varphi} : A \rightarrow A' \) and since \(\varphi \) is equivariant \(\tilde{\varphi} \) will also be equivariant. Conversely, an equivariant \(\ast \)-homomorphism of \(C^* \)-algebras is always \(C^* \)-bounded. When a linear mapping \(T : A \rightarrow A' \), not necessarily equivariant, between two objects is induced by a bounded mapping \(T : A \rightarrow A' \) we will say that \(T \) is \(C^* \)-bounded.

For a \(C^* \)-algebra \(B \) we will denote its multiplier \(C^* \)-algebra by \(M(B) \) and embed \(B \) as an ideal in \(M(B) \). If \(B \) has a \(G \)-action we will equip \(M(B) \) with the induced \(G \)-action.

Definition 1.2. If \((\mathcal{J}, I) \in C^*A_G \) satisfies that the \(C^* \)-algebra \(I \) is equivariantly stable, that is \(I \otimes K \cong I \) where \(K \) has trivial \(G \)-action, and \(\mathcal{J} \) is an ideal in \(M(I) \) the algebra \(\mathcal{J} \) is called a \(C^* \)-stable \(G \)-ideal. Let \(C^*S_I_G \) denote the full subcategory of \(C^*A_G \) consisting of \(C^* \)-stable \(G \)-ideals.
We will call a morphism $\psi : \mathcal{I} \to \mathcal{I}'$ of C^*-stable G-ideals an embedding of C^*-stable G-ideals if $\psi : \mathcal{I} \to \mathcal{I}'$ is an isomorphism.

Proposition 1.3. For any C^*-stable G-ideal \mathcal{I} there is an equivariant isomorphism $M_2 \otimes \mathcal{I} \cong \mathcal{I}$ inducing an isomorphism $M_2 \otimes \mathcal{I} \cong \mathcal{I}$. The isomorphism is given by the adjoint action of a G-invariant unitary operator $V = V_1 \oplus V_2 : \mathcal{I} \oplus \mathcal{I} \to \mathcal{I}$ between Hilbert modules.

Notice that V being unitary is equivalent to $V_1, V_2 \in \mathcal{M}(\mathcal{I})$ being isometries satisfying

$$V_1V_1^* + V_2V_2^* = 1.$$

Proof. It is sufficient to construct two G-invariant isometries $V_1, V_2 \in \mathcal{M}(\mathcal{I})$ such that $V_1V_1^* + V_2V_2^* = 1$. Then $V := V_1 \oplus V_2$ is a G-invariant unitary. Thus V will be an isomorphism of Hilbert modules so $Ad V : M_2 \otimes \mathcal{I} \to \mathcal{I}$ is an isomorphism and since \mathcal{I} is an ideal $Ad V$ induces a isomorphism $M_2 \otimes \mathcal{I} \cong \mathcal{I}$.

Let K denote a separable Hilbert space with trivial G-action. Choose a unitary $V' : K \oplus K \to K$. Let $V_1', V_2' \in \mathcal{B}(K)$ be defined by $V'(x_1 \oplus x_2) := V_1'x_1 + V_2'x_2$. We may take the isometries V_1 and V_2 to be the image of V_1' and V_2' under the equivariant, unital embedding

$$\mathcal{B}(K) = \mathcal{M}(\mathcal{K}) \hookrightarrow \mathcal{M}(\mathcal{I} \otimes \mathcal{K}) \cong \mathcal{M}(\mathcal{I}).$$

One important class of C^*-stable G-ideals is the class of symmetrically normed operator ideals such as the Schatten class ideals and the Dixmier ideals (see more in [4]) over a separable Hilbert space H with a G-action. In order to get equivariant stability we need to stabilize the Hilbert space with another Hilbert space with trivial G-action. Let H' denote a separable Hilbert space and define

$$\mathcal{L}_H^p := (\mathcal{L}^p(H \otimes H'), \mathcal{K}(H \otimes H'))$$

and analogously for the Dixmier ideal \mathcal{L}_H^{n+}. The G-action on the algebras are the one induced from the G-action on H.

The main study of this paper are equivariant extensions $0 \to \mathcal{I} \to \mathcal{E} \xrightarrow{\phi} \mathcal{A} \to 0$ where \mathcal{I} is a C^*-stable G-ideal and $\mathcal{A} \in C^*A_G$. In particular we are interested in when such extensions admit C^*-bounded splittings of Toeplitz type.

Consider for example the 0th order pseudodifferential extension $\Psi_0^0(M)$ on a closed Riemannian manifold M. This extension is an extension of the smooth functions on the cotangent sphere S^*M by the classical pseudodifferential operators of order -1 given by the short exact sequence

$$0 \to \Psi^{-1}(M) \to \Psi^0(M) \to C^\infty(S^*M) \to 0.$$

The algebra $\Psi^{-1}(M)$ is not C^*-stable, but $\Psi^{-1}(M)$ is dense in $\mathcal{L}^p(L^2(M))$ for any $p > n$, so the pseudo-differential extension fits in our framework after some modifications. The pseudo-differential extension admits an explicit splitting $T : C^\infty(S^*M) \to \Psi^0(M)$ in terms of Fourier integral operators which is not C^*-bounded if $\dim M > 1$. Read more about this in Chapter 18.6 in [3]. In this setting however, the problem can be mended. In [3] a C^*-bounded splitting
is constructed for real analytic manifolds \(M \) in terms of Grauert tubes and Toeplitz operators.

We will abuse the notation somewhat by referring both to the object \(\mathcal{E} \) and the extension by \(\mathcal{E} \). Observe that the definition implies that there exists a commutative diagram with equivariant, exact rows

\[
\begin{array}{ccccccc}
0 & \longrightarrow & \mathfrak{I} & \longrightarrow & \mathcal{E} & \overset{\varphi}{\longrightarrow} & A & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \longrightarrow & I & \longrightarrow & E & \overset{\varphi}{\longrightarrow} & A & \longrightarrow & 0
\end{array}
\]

The \(*\)-homomorphism \(\bar{\varphi} : E \to A \) is the extension of \(\varphi \) to \(E \).

Definition 1.4. Two \(\mathcal{G} \)-equivariant extensions \(\mathcal{E} \) and \(\mathcal{E}' \) of \(\mathcal{A} \) by \(\mathcal{I} \) are said to be isomorphic if there exists a morphism \(\psi : \mathcal{E} \to \mathcal{E}' \) in \(C^* \mathcal{A} \mathcal{G} \) that fits into a commutative diagram

\[
\begin{array}{ccccccc}
0 & \longrightarrow & \mathfrak{I} & \longrightarrow & \mathcal{E} & \overset{\varphi}{\longrightarrow} & A & \longrightarrow & 0 \\
\downarrow & & \downarrow \psi & & \downarrow & & \downarrow & & \\
0 & \longrightarrow & \mathfrak{I} & \longrightarrow & \mathcal{E}' & \overset{\varphi'}{\longrightarrow} & A & \longrightarrow & 0
\end{array}
\]

Because of the five lemma, \(\psi \) is an isomorphism.

Choose a linear splitting \(\tau : \mathcal{A} \to \mathcal{E} \) and identify \(\mathcal{I} \) with an ideal in \(\mathcal{E} \). The mapping \(\tau \) being a splitting of an equivariant mapping \(\mathcal{E} \to \mathcal{A} \) implies that

\[
\tau(ab) - \tau(a)\tau(b), \quad \tau(a^*) - \tau(a)^* \in \mathfrak{I} \quad \text{and} \quad \tau(g.a) - g.\tau(a) \in \mathfrak{I} \quad \forall g \in \mathcal{G}. \tag{2}
\]

Given a \(C^* \)-stable \(\mathcal{G} \)-ideal \(\mathfrak{I} \) we define the \(\mathcal{G} \)-\(* \)-algebra \(\mathcal{C}_\mathfrak{I} := \mathcal{M}(\mathfrak{I})/\mathfrak{I} \) and denote by \(q_\mathfrak{I} : \mathcal{M}(\mathfrak{I}) \to \mathcal{C}_\mathfrak{I} \) the canonical surjection. By the equations (2) and (3) the mapping \(q_\mathfrak{I}\tau : \mathcal{A} \to \mathcal{C}_\mathfrak{I} \) is an equivariant \(*\)-homomorphism. We will call the mapping \(\beta_\mathcal{A} := q_\mathfrak{I}\tau \) the Busby mapping for the extensions \(\mathcal{E} \). A Busby mapping that is \(C^* \)-bounded after composing with \(\mathcal{C}_\mathfrak{I} \to \mathcal{M}(\mathfrak{I})/\mathfrak{I} \) is called bounded. A Busby mapping which can be lifted to a \(C^* \)-bounded \(\mathcal{G} \)-equivariant \(*\)-homomorphism of \(\mathcal{A} \) is called trivial.

For an equivariant \(*\)-homomorphism \(\beta : \mathcal{A} \to \mathcal{C}_\mathfrak{I} \) we can define the \(*\)-algebra

\[
\mathcal{E}_\beta := \{ a \oplus x \in \mathcal{A} \oplus \mathcal{M}(\mathfrak{I}) : \beta(a) = q_\mathfrak{I}(x) \}.
\]

The \(*\)-algebra \(\mathcal{E}_\beta \) is closed under the \(\mathcal{G} \)-action on \(\mathcal{A} \oplus \mathcal{M}(\mathfrak{I}) \) so it is a \(\mathcal{G} \)-\(* \)-algebra. Denote the norm closure of \(\mathcal{E}_\beta \) in \(\mathcal{A} \oplus \mathcal{M}(\mathfrak{I}) \) by \(\mathcal{E}_\beta \). We have an injection \(\mathfrak{I} \to \mathcal{E}_\beta \) and a surjection \(\mathcal{E}_\beta \to \mathcal{A} \). The kernel of \(\mathcal{E}_\beta \to \mathcal{A} \) is \(\mathfrak{I} \), so the sequence \(0 \to \mathfrak{I} \to \mathcal{E}_\beta \to \mathcal{A} \to 0 \) is exact and the arrows are equivariant. The \(*\)-algebra \(\mathcal{E}_\beta \) is a well defined object in \(C^* \mathcal{A} \mathcal{G} \), because Theorem 2.1 of [14] states that the induced \(\mathcal{G} \)-action on \(\mathcal{E}_\beta \) is continuous provided it is continuous on \(\mathfrak{I} \) and on \(\mathcal{A} \).

Proposition 1.5. The equivariant \(*\)-homomorphism \(\beta : \mathcal{A} \to \mathcal{C}_\mathfrak{I} \) determines the extension up to a isomorphism, i.e if \(\mathcal{E} \) has Busby mapping \(\beta \), \(\mathcal{E} \) is isomorphic to \(\mathcal{E}_\beta \).
Proof. Suppose that β is Busby mapping for E. Define $\psi : E \to E_\beta$ as

$$\psi(x) := \varphi(x) \oplus x.$$

Since φ is equivariant, so is ψ. This makes the diagram (1) commutative, thus ψ is an isomorphism of G-equivariant extensions.

The most useful class of G-equivariant extensions are the ones arising from algebraic $A - \mathcal{I}$-Kasparov modules. This is defined as an algebraic generalization of Kasparov modules for C^*-algebras, see more in [11].

Definition 1.6. A G-equivariant algebraic $A - \mathcal{I}$-Kasparov module is a C^*-bounded G-equivariant representation $\pi : A \to \mathcal{M}(I)$ and an almost G-invariant symmetry $F \in \mathcal{M}(I)$ that is almost commuting with $\pi(A)$, that is:

$$g.F - F \in \mathcal{I} \quad \forall g \in G \quad \text{and} \quad [F, \pi(a)] \in \mathcal{I} \quad \forall a \in A.$$

Since F is a grading we can define the projection $P := (F + 1)/2$. The pair (π, F) induces a \ast-homomorphism

$$\beta : A \to C_3, \quad a \mapsto q_3(P\pi(a)P).$$

(4)

The requirement $[F, \pi(a)] \in \mathcal{I}$ together with $g.F - F \in \mathcal{I}$ implies that β is an equivariant \ast-homomorphism.

Let $B_G(A, \mathcal{I})$ denote the set of bounded G-equivariant Busby mappings on A. This is the correct set to study extensions in. By Proposition 1.5 the set of G-equivariant Busby mappings is the same set as the set of isomorphism classes of G-equivariant extensions. But we need some useful notion of equivalence of extensions, or by the previous reasoning an equivalence relation on $B_G(A, \mathcal{I})$. For an object $\mathcal{I} \in C^*SI_G$ we define the almost invariant weakly unitaries

$$U^\text{aw}(\mathcal{I}) := q_3^{-1}\{v \in C_3 : g.v = v, \quad v^*v = vv^* = 1\}.$$

Let the almost invariant unitaries be defined as $U^\text{a}(\mathcal{I}) := U^\text{aw}(\mathcal{I}) \cap U(\mathcal{M}(\mathcal{I}))$.

Definition 1.7. Strong equivalence on $B_G(A, \mathcal{I})$ is the equivalence of Busby mappings by the adjoint $U^{\text{a}}(\mathcal{I})$-action on C_3. Weak equivalence on $B_G(A, \mathcal{I})$ is that of the adjoint $U^\text{aw}(\mathcal{I})$-action on C_3.

Let $E_G(A, \mathcal{I})$ denote the set of strong equivalence classes of $B_G(A, \mathcal{I})$ and let $E^\text{aw}_G(A, \mathcal{I})$ denote the set of weak equivalence classes. Similarly let $D_G(A, \mathcal{I})$ denote the set of strong equivalence classes of trivial Busby mappings and let $D^\text{aw}_G(A, \mathcal{I})$ denote the set of weak equivalence classes of trivial Busby maps.

The isomorphism $\lambda : M_2 \otimes C_3 \to C_3$ induced by Ad from Proposition 1.3 can be used to define the sum of two G-equivariant Busby mappings $\beta_1, \beta_2 \in B_G(A, \mathcal{I})$ as

$$\beta_1 + \beta_2 := \lambda \circ (\beta_1 \oplus \beta_2) : A \to C_3.$$

Proposition 1.8. The binary operation $+$ on $B_G(A, \mathcal{I})$ induces a well defined abelian semigroup structure on $E_G(A, \mathcal{I})$ independent of the choice of the unitary $V = V_1 \oplus V_2$. The set $D_G(A, \mathcal{I})$ is a subsemigroup.
The proof of the above proposition is the same as the proof of Lemma 3.1 in [14] where the semigroup of equivariant extensions of a C^*-algebra is constructed. Two G-equivariant Busby mappings $\beta_1, \beta_2 \in B_G(A, \mathfrak{J})$ are said to be stably equivalent if they differ by trivial Busby mappings. That is, if there exist C^*-bounded, G-equivariant \ast-homomorphisms $\pi_1, \pi_2 : A \to M_2 \otimes C_2$ such that

$$\beta_1 \oplus q_3 \pi_1 \equiv \beta_2 \oplus q_3 \pi_2 : A \to M_2 \otimes C_2.$$

Stable equivalence induces a well defined equivalence relation on $E_G(A, \mathfrak{J})$ and $E^w_G(A, \mathfrak{J}).$

Definition 1.9. We define $\mathcal{E}xt_G(A, \mathfrak{J})$ as the monoid of stable equivalence classes of $E_G(A, \mathfrak{J})$ and $\mathcal{E}xt^w_G(A, \mathfrak{J})$ as the monoid of stable equivalence classes of $E^w_G(A, \mathfrak{J})$. For $G = \{1\}$ we denote the $\mathcal{E}xt$-invariants by $\mathcal{E}xt(A, \mathfrak{J})$ and $\mathcal{E}xt^w(A, \mathfrak{J}).$

The monoids $\mathcal{E}xt_G(A, \mathfrak{J})$ and $\mathcal{E}xt^w_G(A, \mathfrak{J})$ coincide with the semigroup quotients $E_G(A, \mathfrak{J})/D_G(A, \mathfrak{J}),$ respectively $E^w_G(A, \mathfrak{J})/D^w_G(A, \mathfrak{J}).$ It has a zero-element since the class of an element in $D_G(A, \mathfrak{J})$ is zero.

If we are given a G-equivariant extension \mathcal{E} of A we will denote the class in $\mathcal{E}xt_G(A, \mathfrak{J})$ of its G-equivariant Busby mapping β by $[\mathcal{E}]$ or by $[\beta].$

Proposition 1.10. If $\mathfrak{J} = I$ there are isomorphisms

$$\mathcal{E}xt^w_G(A, I) \cong \mathcal{E}xt_G(A, I) \cong \mathcal{E}xt_G(A, I) \equiv \mathcal{E}xt_G(A, I) \cong \mathcal{E}xt^w_G(A, I).$$

Proof. We will prove the existence of the first and the second isomorphism. The proof of the last isomorphism is a special case of the first isomorphism for $A = A.$

To prove the existence of the first isomorphism it is sufficient to show that weakly equivalent G-equivariant Busby mappings are strongly equivalent to stable equivalence. Assume that $\beta_1, \beta_2 \in B_G(A, \mathfrak{J})$ are weakly equivalent via the almost invariant weakly unitary $U \in U^{w\ast}(\mathfrak{J}).$ Then $\beta_1 \oplus 0$ and $\beta_2 \oplus 0$ are weakly equivalent via the almost invariant weakly unitary $U \oplus U^\ast.$ But the operator $U \oplus U^*$ lifts to a unitary $\tilde{U} \in M(M_2 \otimes I)$ since C_2 is a C^*-algebra. In fact $\tilde{U} \in U^a(M_2 \otimes \mathfrak{J})$ since U is almost invariant. Thus $\beta_1 \oplus 0$ and $\beta_2 \oplus 0$ are strongly equivalent. For the proof that $U \oplus U^\ast$ lifts to a unitary, see Proposition 3.4.1 in [2].

The second isomorphism is given by the mapping $\mathcal{E}xt_G(A, I) \to \mathcal{E}xt_G(A, I),$ $[\mathcal{E}] \mapsto [E].$ In terms of the G-equivariant Busby mapping β the mapping is given by $[\beta] \mapsto [\beta],$ since A is dense and β is bounded by assumption this is a surjection and β determines β uniquely.

The constructions of $\mathcal{E}xt_G$ and $\mathcal{E}xt^w_G$ are the same as $\mathcal{E}xt_G$ and $\mathcal{E}xt^w_G$ but with C^*-algebras. These constructions can be found in [3], [11] and [14]. Proposition [14.10] is a mild generalization of Proposition 15.6.4 in [2]. The proof is the same although A does not need to be a C^*-algebra.

Since the two theories are very similar we will focus on $\mathcal{E}xt_G.$ All results stated in this paper are easily verified to also hold for $\mathcal{E}xt^w_G.$

6
2 Functoriality of $\mathcal{E}xt_G$

In this section we will prove that $\mathcal{E}xt_G$ is a functor to the category Mo^{ab} of abelian monoids. We define this category to have objects of abelian monoids and a morphism is an additive mapping $k : M_1 \to M_2$ such that $k(0) = 0$. We know how $\mathcal{E}xt_G$ acts on the objects of C^*A_G and C^*SL_G. What needs to be defined is the action of $\mathcal{E}xt_G$ on the morphisms. We begin by showing that $\mathcal{E}xt_G$ depends covariantly on \mathcal{J}.

Let $\psi : \mathcal{J} \to \mathcal{J}'$ be a morphism of C^*-stable G-ideals. By definition ψ can be extended to an equivariant mapping $\mathcal{M}(I) \to \mathcal{M}(I')$ which induces an equivariant mapping $q_\psi : C_I \to C_{I'}$. Define $\psi_* : E_G(A, \mathcal{J}) \to E_G(A, \mathcal{J}')$ by $\psi_*[\beta] := [q_\psi \circ \beta]$. Clearly, $\psi_*[\beta]$ is independent of the stable equivalence class of $[\beta]$. Hence ψ induces a well defined mapping

$$\psi_* : \mathcal{E}xt_G(A, \mathcal{J}) \to \mathcal{E}xt_G(A, \mathcal{J}').$$

Since ψ_* acting on a trivial extension gives a trivial extension we have a homomorphism of monoids.

Let us move on to proving that $\mathcal{E}xt_G$ depends contravariantly on \mathcal{A}. Let $\varphi : A \to A'$ be a morphism in C^*A_G. Take a G-equivariant Busby mapping β of A'. Then we can define a G-equivariant Busby mapping $\varphi^* \beta := \beta \circ \varphi$ of A. This clearly depends on neither strong equivalence class nor stable equivalence class of the G-equivariant Busby mapping. If β is trivial it follows that $\varphi^* \beta$ is trivial so we have a morphism of monoids

$$\varphi^* : \mathcal{E}xt_G(A', \mathcal{J}) \to \mathcal{E}xt_G(A, \mathcal{J}).$$

We have now proved the following proposition.

Proposition 2.1. The functor $\mathcal{E}xt_G : C^*A_G \times C^*SL_G \to \text{Mo}^{ab}$ is a well defined functor. It is covariant in \mathcal{J} and contravariant in \mathcal{A}.

As noted above, an extension E of the algebra A by \mathcal{J} gives rise to an extension E of A by I. This procedure defines a mapping $E_G(A, \mathcal{J}) \to E_G(A, I)$ which respects stable equivalences.

Let C^*_G denote the category of separable C^*-algebras with a continuous G-action and SC^*_G the full subcategory of equivariantly stable objects in C^*_G. We can define an essentially surjective functor

$$\Gamma_1 : C^*A_G \times C^*SL_G \to C^*_G \times SC^*_G,$$

$$((A, A), (\mathcal{J}, I)) \mapsto (A, I).$$

Its right adjoint is the full and faithful functor

$$\Gamma_2 : C^*_G \times SC^*_G \to C^*A_G \times C^*SL_G$$

$$(A, I) \mapsto ((A, A), (I, I)).$$

Notice that $\Gamma_1 \Gamma_2$ is the identity functor on $C^*_G \times SC^*_G$. Define the functor

$$\mathcal{E}xt_G : C^*_G \times SC^*_G \to \text{Mo}^{ab} \text{ by } \mathcal{E}xt_G := \mathcal{E}xt_G \circ \Gamma_2.$$
Proposition 2.2. The mapping Θ defines a natural transformation

$$\Theta : \text{Ext}_G \to \text{Ext}_G \circ \Gamma_1.$$

Proof. The mapping Θ_A merely extends Busby mappings to the object’s C^*-closure, so Θ_A commutes with composition of morphisms in $C^*_A \times C^*_S \mathcal{I}_G$ since they are just equivariant C^*-bounded $*$-homomorphisms. Thus Θ is a natural transformation. \qed

3 Invertible extensions

Just as in the case of a C^*-algebra one can relate invertibility in the Ext_G-monoid and properties of the splitting. In this section we will study invertibility in Ext_G-monoid in terms of Toeplitz operators.

The main result to be obtained in this section tells us that there is a direct link between algebraic properties in the Ext_G-monoid and analytical properties of the extension. But this tells us nothing about how to construct the inverse or give explicit expressions. We will study this in the case of G being the trivial group and for extensions admitting a C^*-bounded, completely positive splitting. Then these explicit constructions are possible in an ideal $\mathcal{J} \supseteq \mathcal{I}$ such that \mathcal{I} is the linear span of $\{a^*a : a \in \mathcal{J}\}$. In this setting an explicit inverse can be given in $\text{Ext}(A, \mathcal{J})$.

Definition 3.1. A G-equivariant extension which admits a splitting of the form $a \mapsto P \pi(a) P$, for a G-equivariant algebraic $A - \mathcal{J}$-Kasparov module (π, F) and $P = (F + 1)/2$, is called a G-equivariant Toeplitz extension.

We will sometimes identify the Toeplitz extension with the pair (P, π).

Theorem 3.2. An extension $[E] \in \text{Ext}_G(A, \mathcal{J})$ is invertible if and only if $[E]$ can be represented by a G-equivariant Toeplitz extension.

For equivariant extensions of C^*-algebras this statement is proved in [14] (Lemma 3.2) and the case G trivial is well studied in [11] and [2]. Our proof of Theorem 3.2 is based upon the same ideas adjusted to our setting.

Lemma 3.3. Every strong equivalence class of an invertible G-equivariant extension is stably equivalent to a G-equivariant Toeplitz extension.

Proof. Assume that E is a G-equivariant extension of A by \mathcal{J} with equivariant Busby mapping $\beta_1 : A \to C_2$ which is invertible in $\text{Ext}_G(A, \mathcal{J})$. By definition there is a mapping $\beta_2 : A \to C_3$ and a $U \in U^a(M_2 \otimes \mathcal{J})$ such that

$$U^*(\beta_1 \otimes \beta_2)U : A \to M_2 \otimes C_3$$

can be lifted to an equivariant C^*-bounded representation $\pi : A \to M_2 \otimes \mathcal{M}(I)$. Let $P \in M_2 \otimes \mathcal{M}(I)$ denote the almost G-invariant projection $U^* \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} U$. Define

$$\beta'(a) := q_2(P\pi(a)P), \quad \beta''(a) := q_3((1 - P)\pi(a)(1 - P)).$$
For $a \in A$, we have
\[
\beta_1(a) = q_3(UPU^*)(\beta_1(a) \oplus \beta_2(a))q_3(UPU^*) = q_3(Uq(P\pi(a)P)q_3(U^*)) = q_3(U)\beta'(a)q_3(U^*),
\]
which implies that up to strong equivalence β is the Busby mapping of the extension. By the same reasoning β'' is strongly equivalent β_2.

Define $\tau'(a) := P\pi(a)P$ and $\tau''(a) := (1-P)\pi(a)(1-P)$. We express the representation $\pi':=AdU^* \circ \pi$ as follows
\[
\pi'(a) = \begin{pmatrix} U\tau'(a)U^* & \pi_{12}(a) \\ \pi_{21}(a) & U\tau''(a)U^* \end{pmatrix},
\]
Since $q_3\pi' = \beta_1 \oplus \beta_2$, it follows that $\pi_{12}(a), \pi_{21}(a) \in \mathcal{J}$. The calculation
\[
[P, \pi(a)] = U^* \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \pi'(a) U = U^* \begin{pmatrix} 0 & \pi_{12}(a) \\ -\pi_{21}(a) & 0 \end{pmatrix} U \in M_2 \otimes \mathcal{J},
\]
is a consequence of that $M_2 \otimes \mathcal{J}$ is an ideal in $M_2 \otimes I$ and implies that τ defines a G-equivariant Toeplitz extension.

Proof of Theorem 3.2. If $[\mathcal{E}]$ is invertible it is given by a Toeplitz extension by Lemma 3.3. Conversely assume that \mathcal{E} is a G-equivariant Toeplitz extension (π, P) of A. We define $P' := 1-P$, $P_2 := P \oplus P'$, $\tau(a) := P\pi(a)P$ and $\tau'(a) := P'\pi(a)P'$. Then the claim from which the theorem will follow is that the Busby mapping $q_3 \circ \tau'$ defines an inverse to \mathcal{E}. To prove this, we define the almost G-invariant symmetry
\[
U := \begin{pmatrix} P & P' \\ P' & P \end{pmatrix}.
\]
This symmetry satisfies $UP_2U = 1 \oplus 0$. We make the observation that $(\pi \oplus \pi, P_2)$ and $(U\pi \oplus \pi U, P_2)$ defines the same extension because of Proposition 1.5 and that the pair (π, P) are \mathcal{J}-almost commuting. Since
\[
\pi(a) \oplus 0 = UP_2U(\pi(a) \oplus \pi(a))UP_2U
\]
it follows that
\[
[q_3 \circ \tau] + [q_3 \circ \tau'] = [q_3 \circ (P_2(\pi \oplus \pi)P_2)] = [q_3 \circ (UP_2U^2(\pi \oplus \pi)U^2P_2U)] = [q_3 \circ (UP_2U(\pi \oplus \pi)UP_2U)] = [q_3 \circ \pi \oplus 0] = 0.
\]

Suppose that we are in the situation $G = \{e\}$. In this case we are able to calculate an inverse to extensions admitting positive splitting if we enlarge the ideal somewhat. This should be thought of as passing from $\mathcal{L}^u(H)$ to $\mathcal{L}^{2u}(H)$. First we need an abstract notion of this procedure.

Proposition 3.4. Suppose that \mathcal{J} is a C^*-stable G-ideal. The $*$-algebra
\[
\mathcal{J}_3 := l.s.\{x \in I : x^* x \in \mathcal{J} \text{ and } xx^* \in \mathcal{J}\}.
\]
defines a C^*-stable G-ideal $(\mathcal{J}_3, I) \in C^* SIG$. We will call \mathcal{J}_3 the square root of \mathcal{J}.
Proof. Define the two $*$-invariant subsets $J_3^+ := \{ x \in I : x^*x \in \mathcal{J} \}$ and $J_3^- := \{ x \in I : xx^* \in \mathcal{J} \}$. For $x \in J_3^+$ and $a \in \mathcal{M}(I)$, $(xa)^*xa \in \mathcal{J}$ so $xa \in J_3^+$. Since J_3^+ is $*$-invariant, $ax \in J_3^+$. Similarly, if $x \in J_3^-$ and $a \in \mathcal{M}(I)$ we have that $ax(ax)^* \in \mathcal{J}$ so $ax \in J_3^-$ and $xa \in J_3^-$. The $*$-algebra $J_3 \equiv \text{l.s.}(J_3^+ \cap J_3^-)$ so J_3 is an ideal in $\mathcal{M}(I)$. There is an embedding $\mathcal{J} \subseteq J_3$ because J is a $*$-algebra, so J_3 is dense in I.

Theorem 3.5. Let \mathcal{E} be an extension of A by \mathcal{J} admitting a C^*-bounded splitting κ extending to a completely positive contraction $\kappa : A \to \mathcal{M}(I)$. If $i : \mathcal{J} \to J_3$ is the embedding of \mathcal{J} into its square root, $i_*[q_3 \circ \kappa]$ is invertible in $\text{Ext}(A, J_3)$.

Before proving this we need to review the useful construction of the Stinespring representation. This is a standard method for operator algebras and was first introduced by Stinespring in [13].

Theorem 3.6 (Stinespring Representation Theorem). Assume that A is a separable C^*-algebra, I is a stable C^*-algebra and that $\kappa : A \to \mathcal{M}(I)$ is a completely positive mapping such that $\|\kappa\| \leq 1$. Then there exists a $*$-homomorphism $\pi_\kappa : A \to M_2 \otimes \mathcal{M}(I)$ of A such that

$$
\begin{pmatrix}
\kappa(a) & 0 \\
0 & 0
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}
\pi_\kappa(a)
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}.
$$

The $*$-homomorphism π_κ is called a Stinespring representation of κ. For proof see [11].

Lemma 3.7. Assume that $\kappa : A \to \mathcal{M}(I)$ is a completely positive contraction. In the notation above

$$
\{ a \in A : \kappa(a^2) - \kappa(a)^2 \in \mathcal{J} \} = \{ a \in A : [P, \pi_\kappa(a)] \in \mathcal{J}_3 \},
$$

where $P := \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

Proof. We express the representation as follows

$$
\pi(a) = \begin{pmatrix} \kappa(a) & \pi_{12}(a) \\ \pi_{21}(a) & \pi_{22}(a) \end{pmatrix},
$$

where $\pi_{12}(a) = P\pi(a)(1 - P)$ and so on. This implies that $\pi_{12}(a)^* = \pi_{21}(a^*)$. Since π is a representation

$$
\begin{pmatrix}
\kappa(ab) & * \\
* & *
\end{pmatrix}
=
\pi(ab)
=
\pi(a)\pi(b)
=
\begin{pmatrix}
\kappa(a)\kappa(b) + \pi_{12}(a)\pi_{21}(b) & * \\
* & *
\end{pmatrix},
$$

(5)

So

$$
\kappa(ab) - \kappa(a)\kappa(b) = \pi_{12}(a)\pi_{21}(b).
$$

Thus $\kappa(a^2) - \kappa(a)^2 \in \mathcal{J}$ if and only if $\pi_{12}(a)\pi_{21}(a) \in \mathcal{J}$. After polarization we only need to show that this is equivalent to the statement $[P, \pi_\kappa(a)] \in \mathcal{J}_3$ for self adjoint a. But

$$
[P, \pi(a)] =
\begin{pmatrix}
0 & \pi_{12}(a) \\ -\pi_{21}(a) & 0
\end{pmatrix}.
$$
This proves Theorem 3.2, since this implies that \(\kappa \) defines a Toeplitz extension of \(\mathcal{A} \) by \(\mathcal{J} \) and by Theorem 3.2 the element \(i_\ast [\pi_\circ \kappa] \) is invertible in \(\mathcal{E}xt(\mathcal{A}, \mathcal{J}) \).

To see that the square root of a \(C^\ast \)-stable ideal is needed sometimes, consider the example of the Besov space \(\mathcal{A} = \mathcal{B}^1_{p/2} \) on the circle \(S^1 \). This carries a representation \(\pi : \mathcal{A} \rightarrow \mathcal{B}(L^2(S^1)) \) by multiplication as functions. Let \(P \) be the Hardy projection. By [12], if \(a \in L^\infty(S^1) \) it holds that \([P, \pi(a)] \in \mathcal{L}^p(L^2(S^1)) \) if and only if \(a \in \mathcal{A} \). Making a similar decomposition of \(\pi \) as in the proof of Lemma 3.7 one can show that the completely positive mapping \(\tau(a) := P\pi(a)P \) is a splitting of an extension of \(\mathcal{A} \) by \(\mathcal{L}^{p/2} \). Since \(\mathcal{A} \equiv \{ a \in L^\infty(S^1) : [P, \pi(a)] \in \mathcal{L}^p(L^2(S^1)) \} \) it follows that \([\xi_{L^{p/2}} \circ \tau] \in \mathcal{E}xt(\mathcal{A}, \mathcal{L}^{p/2})\) is not invertible by Theorem 3.2. But if \(i : \mathcal{L}^{p/2} \rightarrow \mathcal{L}^p \) denotes the inclusion mapping (which coincides with the mapping constructed in Proposition 3.4) the element \(i_\ast [\xi_{L^{p/2}} \circ \tau] \in \mathcal{E}xt(\mathcal{A}, \mathcal{L}^p) \) is invertible by Theorem 3.2.

4 Example: Extensions of \(C^\infty(M) \) by Schatten ideals

Commutative \(C^\ast \)-algebras have many good properties such as nuclearity and concrete realizations in geometry. The geometric interpretations of extensions of commutative \(C^\ast \)-algebras over a manifold, such as Toeplitz operators and pseudodifferential operators, are motivating for extension theory and allows for very concrete smooth \(* \)-subalgebras to do calculations in.

For example, the one dimensional case \(M = \mathbb{T} \) can be handled in a fairly straightforward fashion by finding an invertible generator for \(\mathcal{E}xt^{-1}(C^\infty(S^1), \mathcal{L}^p) \) for \(p \geq 2 \) precisely as is done for \(C(S^1) \) in Chapter 7 in [6]. To find a set of generators in the general setting will be difficult. But a more abstract approach together with a topological description of \(K \)-homology of smooth manifolds shows that the \(\Theta \)-mapping in fact is a surjection for \(\mathcal{A} = C^\infty(M) \) and \(\mathcal{J} \) being a Schatten ideal or a Dixmier ideal.

For \(p > n \) define \(i^p : \mathcal{L}^{n^+} \rightarrow \mathcal{L}^p \) to be the embedding of \(C^\ast \)-stable ideals induced by the embedding \(\mathcal{L}^{n^+} \rightarrow \mathcal{L}^p \) of operator ideals.

Theorem 4.1. Let \(p > n \). Assume that \(M \) is a compact manifold of dimension \(n \) and \(\mathcal{A} = C^\infty(M) \). Then the mappings

\[
\Theta_{\mathcal{L}^{n^+}}^A : \mathcal{E}xt(\mathcal{A}, \mathcal{L}^{n^+}) \rightarrow \mathcal{E}xt(C(M), \mathcal{K}) = K_1(M) \quad \text{and} \\
\Theta_{\mathcal{L}^p}^A : \mathcal{E}xt(\mathcal{A}, \mathcal{L}^p) \rightarrow \mathcal{E}xt(C(M), \mathcal{K}) \quad \text{are surjective.}
\]

Proof. Using the definition of topological \(K \)-homology, see [11], one sees that a class in \(K_1^{op}(M) \equiv K_1(C(M)) \cong \mathcal{E}xt(C(M), \mathcal{K}) \) can be represented as the...
Fredholm module associated to a 0:th order pseudodifferential operator \(F \) over \(M \) and the representation \(\pi \) being pointwise multiplication of functions on \(L^2(M, E) \) for some vector bundle \(E \). Since \(F \) is of order 0 the commutator \([F, \pi(a)]\) is of order \(-1\) for \(a \in A \). Thus \([F, \pi(a)]\) is \(L^{n+}(L^2(M, E)) \) so \((F, \pi)\) is an \(A - L^{n+}\)-Kasparov module. Therefore \(\text{Ext}(A, L^{n+}) \to \text{Ext}(C(M), K) \) is surjective. A similar argument to the above one implies that \(\Theta^A_{L^p} : \text{Ext}(A, L^p) \to \text{Ext}(C(M), K) \) is surjective.

5 Deformations of Toeplitz extensions

To end this paper we will look at a certain part of the set \(\Theta^{-1}([P, \pi]) \) for a Toeplitz extension \((P, \pi)\). The part of \(\Theta^{-1}([P, \pi]) \) we will study are linear perturbations of the projection \(P \). We will give an example of a smooth family of this type of linear deformations which gives a family of extensions \((P, \pi)\) with \(0 \)-summable extensions \((E, \pi)\) for any \(a \in A \). This example shows that \(\text{Ext} \) is not a homotopy invariant but carries more analytic information than similar bivariant theories.

If \((P, \pi)\) defines an \(\mathcal{J}\)-summable Toeplitz extension we say that \(x \in \text{Ext}(A, \mathcal{J}) \) is a linear deformation of \((P, \pi)\) by \(T \in PIP \) if \(x \) can be represented by an extension with a splitting of the form \(\pi_T : a \mapsto (P + T)\pi(a)(P + T) \). Observe that \(T \in PIP \subseteq I \) implies that \(\Theta(P, \pi) = \Theta(x) \). For \(a, b \in A \) we have that

\[
\tau_T(ab) - \tau_T(a)\tau_T(b) =
\]

\[
= (P + T)\pi(ab)(P + T) - (P + T)\pi(a)(P + T)^2\pi(b)(P + T) =
\]

\[
= \pi(ab)(P + T)^2(P - (P + T)^2) + [P + T, \pi(ab)](P + T)+
\]

\[
+ (P + T)\pi(a)[\pi(b), (P + T)^2](P + T) +
\]

\[
+ [\pi(ab), (P + T)](P + T)^3,
\]

so a sufficient condition for the operator \(T \) to define a linear deformation is that \(T^* - T, T^2 + 2T \in \mathcal{J} \) and \([T, \pi(a)] \in \mathcal{J} \) for all \(a \in A \).

The main example of a linear deformation is when one considers different representatives of Toeplitz extensions via a pseudo-differential operator on a manifold. Assume that \(D \) is a self-adjoint, elliptic pseudo-differential operator on a smooth, compact manifold \(M \) without boundary and let us take \(P \) as the spectral projection onto the positive spectrum of \(D \). The operator \(P \) is a pseudo-differential operator of order 0 so \([P, a] \in \mathcal{L}^p(L^2(M))\) for any \(a \in C^\infty(M) \) and any \(p > n \). Therefore the linear mapping \(\tau(a) := PaP \) defines an \(\mathcal{L}^p\)-summable Toeplitz extension of \(C^\infty(M) \). Let us take one more self-adjoint, elliptic pseudo-differential operator \(K \) of order \(\varepsilon > n/2p \) and consider the order \(-\varepsilon\) operator

\[
T = P(K(1 + K^2)^{-1/2} - 1)P.
\]

The operator \(T \) satisfies the identity

\[
T^2 + 2T = (T + P)^2 - P = -P(1 + K^2)^{-1}P.
\]

So the operator \(T \) satisfies \(T^2 + 2T \in \mathcal{L}^p \) since we choose \(K \) to have order bigger than \(n/2p \). While \(T \) is of order \(-\varepsilon\), \([T, \pi(a)] \in \mathcal{L}^p(L^2(M))\) and \(T \) is self-adjoint since \(K \) is self-adjoint. Therefore the linear mapping \(\tau_T(a) := (P + T)a(P + T) \) defines an extension which is a linear deformation of \(\tau \).
The model case of the above setting is $K = D$. In this case the operator $P + T$ is given by $PD(1 + D^2)^{-1/2}P$. Up to a finite rank operator, we have that $P = \frac{1}{2}(D|D|^{-1} + 1)$ where the compact operator $|D|^{-1}$ can be defined as the inverse of $\sqrt{D^2}$. Since D^*D and defined to be 0 on the finite-dimensional space $\ker(D^*)$. Define the order 0 pseudo-differential operator

$$\tilde{P}_D := \frac{1}{2}(D(1 + D^2)^{-1/2} + 1).$$

Since $t/|t| - t(1 + t^2)^{-1/2} = O(t^{-2})$ as $t \to \infty$ and the order of D is larger than $n/2p$ we have that

$$PD(1 + D^2)^{-1/2}P - \tilde{P}_D \in L^p(L^2(M)).$$

Therefore the linear deformation of τ by $PD(1 + D^2)^{-1/2} - 1)P$ coincides in $\mathcal{E}xt(\mathcal{C}^\infty(M), L^p)$ with the extension defined by the linear mapping $a \mapsto \tilde{P}_Da\tilde{P}_D$.

In general, we can not say more of T than $T \in L^{0/\varepsilon}$ since the pseudo-differential operator $K(1 + K^2)^{-1/2} - 1$ is of order $-\varepsilon$. As a consequence, if $\varepsilon < n/p$ one can not expect that the mappings $q_{L^p} \circ \tau$ and $q_{L^p} \circ \tau_T$ coincide. We will by an example show that the two mappings may even lie in different strong equivalence classes.

Lemma 5.1. Let P be the Hardy projection on S^1 and assume that $T \in \mathcal{K}(H^2(S^1))$ is defined as $Tz^k := \lambda_k z^k$ for some positive sequence $(\lambda_k)_{k \in \mathbb{N}}$ converging to 0. If $a \in \mathcal{C}^\infty(S^1)$ is given by $a(z) := z$ then for any $p \geq 1$ and any unitary $U \in \mathcal{B}(H^2(S^1))$ we have that

$$\|U^*PaPU - (P + T)a(P + T)\|_{L^p(H^2(S^1))} \geq \|T\|_{L^p(H^2(S^1))}.$$

Proof. We will use the notation $e_k(z) := z^k$ for $k \geq 0$ and $f_k := Ue_k$. Our first observation is that

$$(P + T)a(P + T)e_k = (1 + \lambda_{k+1} + \lambda_k + \lambda_k \lambda_{k+1})e_{k+1}. \quad (7)$$

If we set $L = U^*PaPU - (P + T)a(P + T)$ we have that

$$L^*L = S_1 + S_2 - S_3 - S_4$$

where

$$S_1 := U^*Pa^*PaPU,$$

$$S_2 := (P + T)a^*(P + T)^2a(P + T),$$

$$S_3 := (P + T)a^*(P + T)U^*PaPU \quad \text{and}$$

$$S_4 := U^*Pa^*PU(P + T)a(P + T).$$

Using (7) we obtain the following equalities:

$$\langle S_1e_k, e_k \rangle = \|Pa f_k\|^2 = 1,$$

$$\langle S_2e_k, e_k \rangle = \|(P + T)a(P + T)e_k\|^2 = (1 + \lambda_{k+1} + \lambda_k + \lambda_k \lambda_{k+1})^2,$$

$$\langle S_3e_k, e_k \rangle = \langle S_4e_k, e_k \rangle = (1 + \lambda_{k+1} + \lambda_k + \lambda_k \lambda_{k+1}) \langle af_k, f_{k+1} \rangle.$$
Using these calculations the fact that \(\lambda_k, \lambda_{k+1} \geq 0 \) together with the elementary estimate \(|\langle af_k, f_{k+1}\rangle| \leq 1 \) implies that

\[
\langle L^*Le_k, e_k\rangle = 1 + (1 + \lambda_{k+1} + \lambda_k + \lambda_k\lambda_{k+1})^2 - 2(1 + \lambda_{k+1} + \lambda_k + \lambda_k\lambda_{k+1})R(af_k, f_{k+1}) = 1 - |\langle af_k, f_{k+1}\rangle|^2 + \vert [1 - \langle af_k, f_{k+1}\rangle + \lambda_{k+1} + \lambda_k + \lambda_k\lambda_{k+1}]^2 \vert \\
\geq (\lambda_{k+1} + \lambda_k + \lambda_k\lambda_{k+1})^2 \geq |\lambda_k|^2.
\]

After reordering the sequence \(\lambda_k \) into a decreasing sequence, we have that the singular values \(\mu_k(L) \in \mathbb{N} \) satisfies that \(\mu_k(L) \geq \| Le_k \| \geq |\lambda_k| \), so by Lidskii’s theorem

\[
\| U^*PaPU - (P + T)a(P + T) \|_{\mathcal{L}^p(H^2(S^1))}^p = \sum_{k\in\mathbb{N}} \mu_k(L)^p \geq \sum_{k\in\mathbb{N}} |\lambda_k|^p.
\]

Proposition 5.2. For any \(p > 1 \) there is a smooth family \((T_\varepsilon)_{\varepsilon \in (1/2p, 2/p)} \subseteq \mathcal{L}^{2p}(H^2(S^1)) \) such that the linear deformations of the Toeplitz extension on the Hardy space by \(T_\varepsilon \) defines a family \((x_\varepsilon)_{\varepsilon \in (1/2p, 2/p)} \subseteq \mathcal{E}xt(C^\infty(S^1), \mathcal{L}^p) \) where \(x_\varepsilon \neq x_{\varepsilon+1/p} \) for \(\varepsilon \in (1/2p, 1/p) \).

If we would replace the \(\mathcal{E}xt \)-invariant by for instance \(kk \)-theory, see more in [5], one would not be able to separate the elements \(x_\varepsilon \) and \(x_{\varepsilon+1/p} \) since the smooth family \((T_\varepsilon)_{\varepsilon \in [\varepsilon, \varepsilon+1/p]} \) can be used to construct a homotopy between the classification mappings of the extensions \(x_\varepsilon \) and \(x_{\varepsilon+1/p} \).

Proof. Let us start by defining the smooth family \((T_\varepsilon)_{\varepsilon \in (1/2p, 2/p)} \subseteq \mathcal{L}^{2p}(H^2(S^1)) \). We define \(T_\varepsilon \) for each \(\varepsilon \in (1/2p, 2/p) \) in the same way as in Lemma [5] from the sequence

\[
\lambda_{k,\varepsilon} := 1 - |k|^\varepsilon(1 + |k|^2\varepsilon)^{-1/2}.
\]

This choice of \(\lambda_{k,\varepsilon} \) coincides with that in the example above when \(K = |d/d\theta|^\varepsilon \). Since \(\varepsilon \mapsto \lambda_{k,\varepsilon} \) is smooth, so is \(\varepsilon \mapsto T_\varepsilon \). The sequence \((\lambda_{k,\varepsilon})_{k \in \mathbb{Z}} \) behaves asymptotically as \(|k|^{-\varepsilon} \) so \((\lambda_{k,\varepsilon})_{k \in \mathbb{Z}} \in \ell^{2p}(\mathbb{N}) \) since \(\varepsilon > 1/2p \).

When \(\varepsilon \in (1/p, 2/p) \) the sequence \((\lambda_{k,\varepsilon})_{k \in \mathbb{Z}} \) is \(p \)-summable. Therefore \((T_\varepsilon)_{\varepsilon \in (1/p, 2/p)} \subseteq \mathcal{L}^{2p}(H^2(S^1)) \) and \(\tau_{T_\varepsilon} \) is isomorphic to the Toeplitz extension on the Hardy space for \(\varepsilon \in (1/p, 2/p) \). However, when \(\varepsilon < 1/p \) we have that \((\lambda_{k,\varepsilon})_{k \in \mathbb{Z}} \not\in \ell^p(\mathbb{N}) \). The norm estimate of the differences of the Toeplitz extension on the Hardy space and a deformation by \(T_\varepsilon \) in Lemma [5] implies that for any unitary \(U \in \mathcal{B}(H^2(S^1)) \)

\[
U^*PaPU - (P + T_\varepsilon)a(P + T_\varepsilon) \notin \mathcal{L}^p(H^2(S^1)).
\]

Therefore \(\tau \) is not strongly equivalent to \(\tau_{T_\varepsilon} \) for \(\varepsilon \in (1/2p, 1/p) \) and \(x_\varepsilon \neq x_{\varepsilon+1/p} \) for \(\varepsilon \in (1/2p, 1/p) \).
References

[1] P. Baum, R.G. Douglas, K-homology and index theory. Operator algebras and applications, Part I (Kingston, Ont., 1980), pp. 117–173, Proc. Sympos. Pure Math., 38, Amer. Math. Soc., Providence, R.I., 1982.

[2] B. Blackadar, K-theory for Operator Algebras, Cambridge 1998.

[3] L.G. Brown, R.G. Douglas, P.A. Fillmore, Extensions of C*-algebras and K-homology, Ann. of Mathematics 105 (1977), 265 – 324.

[4] A.L. Carey, F. A. Sukochev, Dixmier traces and some applications to non-commutative geometry, arXiv:math/0608375 to appear in Russian Mathematical Surveys (in Russian).

[5] J. Cuntz, R. Meyer, J.M. Rosenberg, Topological and Bivariant K-theory, Birkhäuser 2007.

[6] R.G. Douglas, Banach algebra techniques in the theory of Toeplitz operators, AMS 1972.

[7] E. Guentner, N. Higson, A note on Toeplitz operators, Internat. J. Math. 7 (1996), no. 4, 501–513.

[8] V. Guillemin, Toeplitz operators in n dimensions, Integral Equations Operator Theory 7 (1984), no. 2, 145–205.

[9] L. Hörmander, The analysis of linear partial differential operators. III. Pseudo-differential operators, Springer-Verlag, Berlin, 1994

[10] B.E. Johnson, Cohomology in Banach algebras. Memoirs of the American Mathematical Society, No. 127. American Mathematical Society, Providence, R.I., 1972.

[11] K. Knudsen-Jensen, K. Thomsen, Elements of KK-theory, Birkhäuser 1991.

[12] V.V. Peller, Hankel operators and their applications, Springer Monographs in Mathematics. Springer-Verlag, New York, 2003.

[13] W.F. Stinespring, Positive functions on C*-algebras, Proc. Amer. Math. Soc. 6, (1955), 211–216.

[14] K. Thomsen, Equivariant KK-theory and C*-extensions. K-Theory 19 (2000), no. 3, 219–249.