THEORETICAL EXAMINATION OF THE LITHIUM DEPLETION BOUNDARY

CHRISTOPHER J. BURKE AND MARC H. PINSONNEAULT
Astronomy Department, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210; cjburke@astronomy.ohio-state.edu, pinson@astronomy.ohio-state.edu

AND

ALISON SILLIS
Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada; asills@physics.mcmaster.ca

Received 2003 September 16; accepted 2003 December 1

ABSTRACT

We explore the sensitivity in open cluster ages obtained by the lithium depletion boundary (LDB) technique to the stellar model input physics. The LDB age technique is limited to open clusters with ages ranging from 20 to 200 Myr. Effective 1 σ errors in the LDB technique due to uncertain input physics are roughly 3% at the oldest age, increasing to 8% at the youngest age. Bolometric correction uncertainties add an additional 10% and 6% error to the LDB age technique for old and young clusters, respectively. Rotation rates matching the observed fastest rotators in the Pleiades affect LDB ages by less than 2%. The range of rotation rates in an open cluster is expected to “smear” the LDB location by only 0.02 mag for a Pleiades-age cluster, increasing to 0.06 mag for a 20 Myr old cluster. Thus, the observational error of locating the LDB (∼7%–10%) and the bolometric correction uncertainty currently dominate the error in LDB ages. For our base case, we formally derive an LDB age of 148 ± 19 Myr for the Pleiades, where the error includes 8%, 3%, and 9% contributions from observational, theoretical, and bolometric correction sources, respectively. A maximally plausible 0.3 mag shift in the I-band bolometric correction to reconcile main-sequence isochrone fits with the observed V—I color for the low-mass Pleiades members results in an age of 126 ± 11 Myr, where the error includes observational and theoretical errors only. Upper main sequence—fitting ages that do not include convective core overshoot for the Pleiades (∼75 Myr) are ruled out by the LDB age technique.

Subject headings: open clusters and associations: general — stars: low-mass, brown dwarfs — stars: pre–main-sequence — stars: rotation

1. INTRODUCTION

Accurate ages for nearby stellar clusters are the basic observational templates that constrain the formation history of our Galaxy and the universe. Unfortunately, theoretical isochrones fitted to the upper main sequence provide absolute ages for the most thoroughly studied young open clusters that are still uncertain by a factor of 2 (Stauffer et al. 2001). The uncertainty mainly results from the dependence of the lifetime of massive stars on the size of their convective cores. Convective core overshoot brings fresh hydrogen-rich material to the core, extending the stellar lifetime on the main sequence. As a result, cluster age estimates are quite sensitive to the degree of convective core overshoot in the theoretical calculations. There is evidence that the inclusion of convective core overshoot results in an improved agreement between theoretical evolution rates and number counts in the Hertzsprung gap and an improved fit to the width of the main-sequence turnoff in open clusters (Andersen, Nordström, & Clausen 1990; Demarque, Sarajedini, & Guo 1994). Thus, theoretical calculations that include convective core overshoot result in an older absolute age scale than theoretical calculations that do not. Calibrating the older convective core overshoot age scale requires an independent technique for determining stellar cluster ages. Lithium depletion age dating is one possibility, and in this paper we discuss the reliability of this technique.

The lithium depletion boundary (LDB) technique is an independent method of determining the age of open clusters with ages that range from 20 to 200 Myr. Proton reactions destroy 7Li near a destruction temperature, \(T_D \approx 2.5 \times 10^6 \) K, easily obtained under stellar conditions. In general, the presence or absence of photospheric lithium determines whether sufficient time has passed for a majority of the stellar material to reach depths in the star where \(T = T_D \). For stars that are fully convective during pre–main-sequence contraction (\(M \leq 0.4 \, M_\odot \)), the convective overturn timescale is much less than the evolutionary timescale, and the entire lithium content is rapidly destroyed when the stellar core temperature, \(T_C \), reaches \(T_D \). Since the rate at which the core temperature increases to the destruction temperature is a strong function of stellar mass, spectral observations of 7Li in fully convective stars during pre–main-sequence contraction is an accurate age diagnostic. Higher mass stars reach the condition \(T_C = T_D \) at an earlier age and higher luminosity than lower mass stars, and the lithium abundance decreases by a factor of 100 over a very narrow luminosity.

LDB ages have been obtained for several young open clusters: the Pleiades, \(\alpha \) Per, IC 2391, and NGC 2547 (Stauffer, Schultz, & Kirkpatrick 1998; Stauffer et al. 1999; Barrado y Navascués, Stauffer, & Patten 1999; Oliveira et al. 2003, respectively). In an independent analysis, Jeffries & Naylor (2000) verified the conclusions of the previous open cluster studies that the LDB ages are \(\sim 1.6 \) times older than upper main sequence—fitting ages without convective core overshoot. Jeffries & Naylor (2000) find that the observational uncertainties (locating the LDB, photometric calibrations, distance, and reddening) are larger than the theoretical uncertainties (choice of model and bolometric corrections) for the Pleiades.
devoted to the significant uncertainties in the theoretical error in the LDB ages is discussed in other calculations in the literature and the final adopted theoretical detail.

Bildsten et al. (1997) provide the most detailed quantitative estimate of the uncertainties in LDB calculations. The Bildsten et al. (1997) analytical lithium depletion model consists of a fully convective polytrope contracting at constant effective temperature. A comparison of their analytical model to detailed numerical calculations results in maximum differences in the LDB ages of 25% from Chabrier, Baraffe, & Plez (1996) and 15% from D’Antona & Mazzitelli (1994), demonstrating the robustness of the LDB technique to uncertain input physics. D’Antona & Mazzitelli (1997) comment on the LDB ages being “practically independent on the details of the models including the opacity.” However, they do not go into quantitative detail.

In this paper we determine the size of errors in the LDB technique that result from theoretical errors in the lithium depletion calculations and uncertainties in the bolometric corrections. We can then determine the dominant error source in the LDB age technique and confirm whether the discrepancy between the upper main sequence–fitting ages and LDB ages is real. Employing the Yale Rotating Stellar Evolution Code (YREC), we compare the lithium depletion calculations using up-to-date input physics with models using older generation equations of state, opacities, and atmospheres, as well as variations in the mixing length and metallicity. The difference in LDB ages that results from employing older generation input physics allows us to ascertain the expected deviations of the LDB ages from up-to-date input physics. In addition, we quantify the effect of stellar rotation and various bolometric correction determinations on LDB ages.

In § 2, we briefly describe the YREC stellar model and determine our reference LDB-luminosity-age relation, obtained with the latest input physics. Section 3 examines the robustness of the LDB to variations in the input physics. Then we discuss the error budget in the LDB ages due to input physics uncertainties in § 4. In § 5, we compare the reference LDB calculations with other calculations in the literature. The error budget in the LDB ages derived from the comparisons with other calculations in the literature and the final adopted theoretical error in the LDB ages is discussed in § 6. Section 7 is devoted to the significant uncertainties in the I-band bolometric correction. In § 8, we summarize our results and derive new LDB ages with improved errors for the open clusters with previous LDB age determinations.

2. REFERENCE MODEL

In this section we describe the lithium depletion calculations and the input physics that define our reference LDB-luminosity-age relation. This reference relation serves as the standard to quantify the uncertainty in LDB ages. We use the YREC (Sills, Pinsonneault, & Terndrup 2000) for all stellar model calculations. For the reference calculation, we select standard, nonrotating, solar-calibrated stellar models with masses that range from 0.065 to 0.30 M_\odot. The upper mass limit ensures full convection during lithium depletion and minimizes the effect of initial conditions. Through accretion and mass loss, a star interacts with its surroundings during the earliest phases of its life. However, any structural changes to the star that may occur as a result of this complex interaction with its surroundings are erased after several Kelvin-Helmholtz timescales. The Kelvin-Helmholtz timescale for our $M = 0.3 M_\odot$ starting model is 1/10 of the time for lithium depletion, making these complications negligible. Stars with $M \leq 0.06 M_\odot$ never reach temperatures high enough to destroy lithium completely (D’Antona & Mazzitelli 1994), and our reference calculations confirm this fact. The above mass limits constrain the validity of the LDB age technique to stellar populations with ages between 20 and 200 Myr. For clusters with ages less than 20 Myr, the uncertain initial conditions, deuterium burning, and adopted zero age (which all occur on timescales of a few times 10^6 yr) become an increasing fraction of the LDB age. For clusters with ages older than 200 Myr, lithium is depleted over a larger width of luminosity and lacks a clearly defined LDB.

Adopting a solar metallicity, $Z = 0.0188$, and the heavy-element mix of Grevesse & Noels (1993), we determine the ratio of the mixing-length parameter to the pressure scale height and helium abundance by calibrating to the solar data, resulting in $\alpha \equiv \ell_\mathbf{m}/H_\mathbf{P} = 1.75$ and $Y = 0.27$, respectively. We use the OPAL equation of state from Rogers, Swenson, & Iglesias (1996) where it is available and the equation of state of Saumon, Chabrier, & Van Horn (1995) otherwise. We investigate the effect of the OPAL 2001 equation of state (Rogers & Nayfonov 2002) on the LDB ages in § 3.2. The low-temperature atmospheres of Hauschildt, Allard, & Baron (1999) provide the pressure at $T = T_\text{eff}$, which we apply as the outer boundary condition.

Physical conditions in low-mass stars fall outside opacity tables employed to model solar-type stars. Figure 1 shows several stellar density profiles as a function of temperature for the low-mass stellar regime applicable to this study. The two
solid lines trace the run of density for the 0.3 \(M_\odot \) reference models at the initial and lithium depletion epochs (lower and upper lines, respectively). The two dashed lines show the density evolution for the 0.065 \(M_\odot \) reference model. The dotted lines represent the various opacity table boundaries. The diagonal dotted line in Figure 1 shows the upper density boundary at \(R = \rho / T_0^2 = 1 \) for the Alexander & Ferguson (1994) low-temperature and Iglesias & Rogers (1996) high-temperature opacities used in the reference calculations. A linear ramp between \(4.0 \leq \log T \leq 4.1 \) provides a smooth transition between the two opacity tables. For the reference model, we supplement the Alexander & Ferguson (1994) low-temperature opacity toward higher densities with the molecular opacity table of Alexander et al. (1983). In Figure 1, the dotted line starting at \(\log T = 4.0 \) with an uneven upper density boundary toward lower temperatures outlines the Alexander et al. (1983) molecular opacity table. A linear ramp toward higher densities over 1 dex starting at the \(R = 1 \) boundary is used to transition smoothly between the Alexander & Ferguson (1994) and Alexander et al. (1983) opacities. A linear extrapolation in density provides the opacity for densities higher than the table boundaries.

The OPAL opacity table (Iglesias & Rogers 1996) and OPAL equation of state (Rogers et al. 1996) share the same \(R = 1 \) boundary shown in Figure 1. For densities higher than the \(R = 1 \) boundary, we apply a linear ramp constant in density to transition to the Saumon et al. (1995) equation of state. The ramp has a width of the final two density values of the OPAL table. The OPAL equation of state also has a low-temperature boundary at \(\log T = 3.75 \). For temperatures below the \(R = 1 \) boundary, we transition to the Saumon et al. (1995) equation of state with a linear ramp starting at \(\log T = 3.80 \).

We update the conductive opacities with the extensive calculations from Potekhin, Chabrier, & Yakovlev (1997) and Potekhin et al. (1999). Their conductive opacity calculations are for a fully ionized single-ion species. We follow the procedure given in Potekhin et al. (1999) to calculate an arbitrary mixture for the conductive opacity by expressing the electron-ion collision frequency as a summation over the Coulomb logarithm factors for the ion species present. We assume singly ionized \(^{16} \text{O} \) for the entire stellar metal content. H and He are assumed to be fully ionized, a valid assumption since in the un-ionized regime, \(\log \rho \leq 0.0 \), \(\log T \leq 4.0 \), conduction is inefficient, and the radiative opacity dominates.

The initial stellar models start at the deuterium-burning birth line (Stahler 1988). We obtain our deuterium birth line by starting a stellar model high up on the Hayashi track and designate the birth line when the core temperature reaches the same core temperature at which deuterium decreases by a factor of 100 in the calculations of D’Antona & Mazzitelli (1994; see their Table 7). Since deuterium burning completes in \(\leq 3\% \) of the time for lithium depletion, our results are insensitive to the adopted initial conditions.

Using the above-mentioned input physics, we calculate a reference relation for the luminosity and age at which lithium is depleted by a factor of 100 from its initial value. The lithium depletion ages are systematically 15% and 6% younger at fixed luminosity for lithium depletion by a factor of 2 and 10, respectively. As we quantify in the following sections, the systematic LDB age difference associated with adopting a different lithium depletion factor is similar in size to errors associated with the input physics uncertainty. Thus, comparisons with other lithium depletion calculations require a common depletion factor.

We find that the LDB age is sensitive to numerical time resolution. Insufficient time resolution results in systematically older lithium depletion ages. Halving the time resolution iteratively until the lithium depletion age varies by less than 1% ensures that the time resolution numerical systematic error is negligible. Doubling the spatial resolution of our reference calculation results in no effect on the derived LDB ages as a function of luminosity. When examining the sensitivity of the LDB ages to changes in the input physics, all LDB age variations are given as deviations from this reference model. The reference LDB-luminosity-age relation is shown in Figure 2. The relation in tabular form is given in Table 1.

3. INPUT PHYSICS UNCERTAINTIES

In this section we determine the error in the LDB-luminosity-age relation that results from uncertainties in the model input physics. We quantify the theoretical uncertainty by varying the input physics of our reference model. The following subsections describe each physical input in turn.

3.1. Mixing Length

Our models employ the mixing-length theory for convective transport (Vitense 1953). As in our reference models, the mixing-length parameter is commonly adjusted to fit the solar data. However, without a physical model for the mixing-length parameter, the solar-calibrated model may not be applicable to stars of a different mass (Ludwig, Freytag, & Steffen 1999). Other studies (Baraffe et al. 1998) adopt the mixing length to be equal to the pressure scale height, \(\alpha = 1.0 \), for the interior calculation in order to match the \(\alpha = 1.0 \) employed in the atmosphere (Hauschildt et al. 1999).

The temperature gradient only becomes sensitive to the adopted mixing-length parameter in the superadiabatic zone of the low-density envelope. The deep interior of the star has vigorous convection characterized by the temperature gradient, \(\nabla = \nabla_{ad} \) (Kippenhahn & Weigert 1990). The over-adiabaticity, \(x = \nabla - \nabla_{ad} \), of the stellar envelope depends on

![Graph](https://via.placeholder.com/150)
Fig. 2.—Reference lithium depletion age as a function of luminosity.
the mixing-length parameter, with a range of powers from $x \propto l_m^{0.0}$ to $l_m^{-1.3}$. Thus, for two stars with the same central temperature, the star with the smaller mixing length will always have a larger temperature gradient, leading to a cooler surface temperature and an older LDB age.

Figure 3 quantifies the effect on the LDB age of reducing the mixing-length parameter from the reference model’s value, $\alpha = 1.75$, to $\alpha = 1.0$. The solid line in Figure 3 shows the difference in age between the reduced–mixing-length LDB-luminosity-age relation and the reference LDB-luminosity-age relation as a percentage of the reference-model LDB age at fixed luminosity. All comparisons between models are at fixed luminosity, since the luminosity of the LDB is the observed quantity. A positive difference means that reducing the mixing-length parameter leads to older LDB ages at fixed luminosity than the reference model.

The mixing-length formalism is a one-dimensional, static approximation of a phenomenon that is intrinsically three-dimensional and time-dependent. Thus, it may not be an accurate representation of convection. Computational limitations prevent a full three-dimensional, parameter-free convection implementation, making it difficult to fully quantify the shortcomings of the mixing-length formalism in determining the LDB ages. Some constraints can be placed by comparing our calculations with other calculations in the literature that implement alternative one-dimensional, static convection treatments. The LDB calculations of D’Antona & Mazzitelli (1994) implement the Canuto & Mazzitelli (1991) convective theory, and D’Antona & Mazzitelli (1997) implement the convection theory outlined in Ventura et al. (1998). Our calculation of enforcing the adiabatic temperature gradient (ξ 3.3), bypassing the convection theory, provides another handle on the effect the convection theory has on LDB ages.

For the remaining variations to the input physics, unless otherwise stated, we recalibrate the mixing length and helium to match the solar data. The recalibration does not significantly affect the LDB calculation. For example, in the case of using a gray atmosphere (see ξ 3.4), the LDB age difference at the highest luminosity would be 4.5% with a recalibration of the mixing length, instead of 5.0% without recalibrating the mixing length.

3.2. Equation of State

The reference models employ the Iglesias & Rogers (1996) equation of state and are supplemented toward lower temperatures and higher densities by the Saumon et al. (1995) equation of state. One alternative equation of state valid in the low-mass regime is the MHD equation of state by Däppen et al. (1988). Unfortunately, the density upper limit, $\log \rho = -2.0$, of the MHD equation of state prevents calculations to the lithium depletion age for $M/M_\odot > 0.175$. For consistency, we recalibrate the mixing-length parameter, $\alpha = 1.75$, and helium abundance, $Y = 0.272$, to match the solar data, using the MHD equation of state. The dashed line in Figure 3 shows the MHD equation-of-state results in older LDB ages, a difference of $\sim 2\%$, over the restricted mass range. This line is offset slightly for clarity.

Table 1

M (M_\odot)	Age (Myr)	log(L/L_\odot)	log(R/R_\odot)	log g	log Γ_{ref}	σ_{BV} (% age)	σ_{HC} (% age)	M_* (mag)
0.30	18.08	-1.39	-0.253	4.42	3.54	8.0	6.0	7.84
0.25	22.53	-1.58	-0.321	4.48	3.53	7.7	6.0	8.37
0.20	29.67	-1.80	-0.406	4.55	3.52	7.0	6.0	8.98
0.175	34.76	-1.92	-0.458	4.60	3.51	6.6	6.0	9.30
0.15	41.53	-2.05	-0.519	4.65	3.51	6.2	6.0	9.64
0.125	51.37	-2.22	-0.593	4.72	3.50	5.6	6.0	10.10
0.10	68.88	-2.44	-0.689	4.82	3.50	4.9	6.0	10.70
0.09	80.89	-2.56	-0.738	4.87	3.49	4.5	6.0	11.04
0.08	99.62	-2.70	-0.796	4.93	3.48	4.0	7.0	11.45
0.07	139.6	-2.91	-0.871	5.03	3.47	3.3	9.1	12.09
0.065	188.8	-3.08	-0.924	5.10	3.45	3.0	10.8	12.64

Note. — Li depleted by a factor of 100 from initial value.
Recently, the OPAL group updated their equation of state. The latest equation of state, OPAL 2001, treats the electrons relativistically, improves the activity expansion method for repulsive interparticle interactions, and covers a larger range in temperature and density (Rogers & Nayfonov 2002). The dot-dashed line in Figure 3 shows the effect on LDB ages of using the OPAL 2001 equation of state. Despite the improved coverage of temperature and density, the table is still inadequate for evolution to the LDB for $M < 0.08 \, M_\odot$. As a side note, evolution to the main sequence is only possible for $M > 0.125 \, M_\odot$ when only the OPAL 2001 equation of state is used.

Uncertainties in the low-density, high-temperature regime covered by the Iglesias & Rogers (1996) calculations have a negligible effect on LDB ages. Using the Saumon et al. (1995) equation of state in place of that of Iglesias & Rogers (1996) results in no change to the LDB age. For completeness, we calculate LDB ages using an older generation equation of state based on the Saha equation with Debye-Hückel corrections (Guenther et al. 1992). The Saha equation of state results in 50\% older LDB ages over a limited mass range, $M \gtrsim 0.2 \, M_\odot$. The calculation becomes numerically unstable for lower masses. Use of the Saha equation of state for a solar model also results in a poor fit to solar oscillation data (Guenther et al. 1992). For the above reasons, the Saha equation of state is too simplistic for realistic calculations and is not included in the overall error budget.

3.3. Opacity

In stellar models, the radiative opacity determines the temperature gradient in regions where energy is transported by radiation and to a lesser degree determines the temperature gradient in superadiabatic convective regions. In the mass range relevant to the LDB, efficient convection transports energy over \sim98\% of the stellar mass. Thus, radiative opacities become important in determining the stellar structure of the remaining 2\% of the stellar mass. Unfortunately, molecular dissociation and ionization greatly complicate the opacity calculations in these outer regions.

As shown in Figure 1, the commonly used low-temperature opacities of Alexander & Ferguson (1994) are insufficient to model the superadiabatic and radiative zones present in the low-mass stars of this study. The diagonal dotted line shows the upper density limit of the Alexander & Ferguson (1994) opacity data. Thus, for the reference models we supplement the Alexander & Ferguson (1994) low-temperature opacity data toward higher densities with the molecular opacities of Alexander et al. (1983), as described in §2. Energy transport of the stellar interior follows the adiabatic temperature gradient, so any changes in the opacities at high temperatures, log $T \gtrsim 4.0$, are inconsequential to the LDB. Thus, only low-temperature opacities are varied in this study. When varying the low-temperature opacity of the envelope, we are unable to use a self-consistent atmosphere that employs the same alternative opacity.

As a limiting case, we show the effect of enforcing the adiabatic temperature gradient throughout the stellar interior, essentially ignoring the mixing-length theory, as the solid line in Figure 4. The superadiabatic region is eliminated, leading to a smaller temperature gradient and a hotter star, which evolves more rapidly.

For alternative low-temperature opacities, we first considered replacements to the more uncertain high-density, $R > 1$, molecular opacities of Alexander et al. (1983). However, the stellar envelope evolves roughly perpendicular to the $R = 1$ opacity boundary (see Fig. 1). Using opacity tables that contain large systematic differences at the $R = 1$ transition region can lead to rapid variations in the entropy structure of the outer envelope. The increase or decrease in the size of radiative and superadiabatic zones can enhance or reduce the rate of evolution, as described in Guillot et al. (1995). Thus, patching two opacity tables together can artificially affect the rate of evolution. Fortunately, our selection of tables in the reference models results in a smooth transition, and the effect on our reference models is negligible. To quantify the effect, we calculate LDB ages with opacities toward higher densities obtained by a linear-in–log space extrapolation of the Alexander & Ferguson (1994) opacities. The difference in LDB ages is less than 1\% over the entire mass range.

The above discussion emphasizes the importance of continued work in the low-temperature opacities for self-consistent calculations over a wider range in density. For the comparisons that follow, we use a single opacity table and perform the linear extrapolation toward higher densities if necessary. The low-temperature opacity table is connected to the high-temperature opacity at log $T = 4.0$, and the high opacity and high density at the boundaries of these opacity tables ensure convective transport of energy. In addition, hydrogen ionization dominates the opacity at the boundary between the high- and low-temperature opacities. Thus, tables of differing metal abundances match well.

Kurucz (1998) provides an alternative opacity calculation in the low-temperature regime. We show its effect on the LDB ages as the dashed line in Figure 4. The opacity data have the same $R = 1$ boundary as the Alexander & Ferguson (1994) opacities and are extrapolated toward higher densities. The mixing length and helium are recalibrated to the solar data, yielding $\alpha = 1.731$ and $Y = 0.272$, respectively. The Kurucz (1998) and Alexander & Ferguson (1994) opacities are very different.
similar, except for log \(T < 3.6 \), where the effects of molecules become important. The opacities of Alexander & Ferguson (1994) are increasingly larger for log \(T < 3.6 \) than those of Kurucz (1998). The lower Kurucz (1998) opacities in the outermost layers lead to a hotter star, which evolves more rapidly.

We compare our reference models with models using the latest opacity calculations of Allard et al. (2001). Figure 4 shows the comparison between the Allard et al. (2001) dusty opacities that include the effects of dust grains on the opacities and the reference calculation; the results are shown as the short-dashed line. The dusty opacity table fully covers the low-temperature regime under investigation here. The solar calibration yields \(\alpha = 1.767 \) and \(Y = 0.272 \). We also calculate LDB ages using the so-called condensed opacities of Allard et al. (2001) that remove grains from the opacity, since they condense out of the photosphere. Since the models are never cool enough for grain formation, neither the dusty nor the condensed opacities appreciably affect the LDB ages.

The opacity tables presented so far have qualitatively similar structure. The opacities have a maximum at \(\log T = 4.4 \), as a result of hydrogen ionization, and sharply decrease toward cooler temperatures, with a minimum at \(\log T \sim 3.3 \). The opacities begin to increase toward even cooler temperatures because of the formation of molecules and collision-induced absorption. In addition, there is an overall increase in the opacities toward higher density. Following advances in more complete line lists, the overall opacity tends to increase. In order to study the effect of higher opacities and the possibility of a change in the qualitative shape to the opacity data, we create an opacity table that is identical to the reference calculation opacities for temperatures greater than \(\log T = 4.0 \). For temperatures less than \(\log T = 4.0 \), the opacities at fixed density are extrapolated toward lower temperatures at a constant value given by the opacity value at \(\log T = 4.0 \) for the corresponding density. Thus, the only structure kept is the increase in opacity for increasing density.

The dot-dashed line in Figure 4 shows the LDB ages that result from using the extreme high opacity table described in the preceding paragraph and a solar-calibrated \(\alpha = 2.096 \) and \(Y = 0.271 \). The higher opacities do increase the superadiabatic temperature gradient, which results in cooler stars. However, there is only a modest increase in the LDB ages. The opacities are currently high enough that the stars are strongly convective all the way to the atmosphere boundary point.

In the opposite opacity extreme, we calculate LDB ages for a zero-metallicity opacity (Stahler, Palla, & Salpeter 1986). The solar calibration results in \(\alpha = 1.50 \) and \(Y = 0.271 \). The significant reduction in the LDB ages for the zero-metallicity opacity is shown as the dotted line in Figure 4. The effective temperature is 20%–30% larger than the reference case. These low and high opacities are obviously extreme and unphysical, but they set limiting cases.

As an additional note on the topic of opacity, we confirm the findings of Chabrier et al. (2000) that conductive energy transport only affects stages of evolution later than the lithium depletion and has no effect on the LDB ages.

3.4. Atmosphere and Boundary Condition

Even though a standard gray atmosphere results in unrealistically high effective temperatures in the mass regime studied here, it provides an extreme case for deviations from the reference calculation, which employs the Hauschildt et al. (1999) atmosphere. For the gray atmosphere, we use the reference calculation’s mixing length and helium. The effect on the lithium depletion relation is shown as the solid line in Figure 5. The LDB age is 5% younger for the highest luminosity and is negligibly different for the lowest luminosity. There are few alternatives to the gray atmosphere and the Hauschildt et al. (1999) atmosphere for modeling low-mass stars.

The LDB ages over all luminosities are negligibly different for the lowest luminosity. There are few constraints on the effect alternative atmospheres can have on the LDB ages.

The Hauschildt et al. (1999) atmosphere limits calculations to solar metallicity. To check the effect of metallicity variations on the LDB ages, we use the gray atmosphere for a non–solar-metallicity calculation. A gray-atmosphere calculation using a metallicity that is increased by 0.1 dex (assuming \(\Delta Y/\Delta Z = 2.0 \)) results in a less than 2% increase in the LDB ages over all luminosities when compared to the gray-atmosphere calculation at solar metallicity.

The atmosphere provides the outer boundary conditions required for the stellar interior calculation. Our reference calculation fixes the boundary condition at an optical depth at which the temperature is equal to the effective temperature. This optical depth is close to \(\tau = \frac{1}{3} \). In their calculation of low-mass stellar models, Baraffe et al. (1998) choose a deeper, \(\tau = 100 \) boundary condition. They prefer the deeper boundary condition to ensure that the interior calculation is in the fully adiabatic regime and to reduce the extrapolation of the opacity data.

It is unclear which of these fitting points is more appropriate. In our case of the shallow \(\tau = \frac{1}{3} \) boundary condition, the potential of a mismatch between the interior and atmosphere opacity data, resulting in abrupt variations to the convective stability criterion or overadiabaticity, exists. Whereas the deeper \(\tau = 100 \) boundary condition reduces this problem, it has a disadvantage, since the atmosphere calculations of Hauschildt et al. (1999) do not include real gas effects in the equation of state.

The mismatch between the interior Saumon et al. (1995) equation of state and Hauschildt et al. (1999)
Rotation affects LDB ages in several ways. The change in kinetic energy of rotation enters the energy generation equation, and rotation provides additional pressure support, which can alter the effective temperature and thus the rate of gravitational contraction. Current observations and theory suggest that the rotation evolution of a star proceeds from a state of efficient angular momentum loss via a disk-locking mechanism, to a state of evolution at nearly constant angular momentum, and then back to a state of efficient angular momentum loss via a stellar wind (Stassun & Terndrup 2003). Because of the complicated rotational evolution of a star, we investigate two limiting cases of evolution at constant angular momentum and evolution with significant amounts of angular momentum loss. As a guide for these two cases, we match the model rotation rates to the observed upper envelope of rotation rates in the Pleiades (Terndrup et al. 2000). The upper envelope of rotation rates is approximated by a linear decrease in \(V \sin i \) from \(V \sin i = 70 \text{ km s}^{-1} \) at \(M = 0.3 \, M_\odot \) to \(V \sin i = 50 \text{ km s}^{-1} \) at \(M = 0.1 \, M_\odot \) (see Fig. 7 of Terndrup et al. 2000). The model rotation rates are extrapolated toward lower masses. We assume \(\sin i = \pi/4 \) to obtain the physical rotation rate.

For evolution without angular momentum loss, rotation rates are matched to the Pleiades rotation rates at an age of 120 Myr. Since the stars evolve at constant angular momentum and spin up as their radii contract, adopting an older age for the Pleiades (self-consistent with the LDB age derived in § 8) would reduce the effect of rotation even further. The no–angular momentum loss evolution results in 2% older ages for the minimum LDB mass and less than 1% older ages for higher masses. Previous claims of 20% older LDB ages result from allowing a rotation rate greater than 200 km s\(^{-1}\) at the Pleiades age for the minimum LDB mass (Burke & Pinsonneault 2000). Such high rotation rates are only observed for solar-mass stars, and our adopted 65 km s\(^{-1}\) rotation rate at the Pleiades age in this study is more appropriate for the lower mass stars relevant to the LDB ages.

Our second limiting case for the rotational evolution examines the effect of efficient angular momentum loss. The stars are forced to evolve at a constant rotational velocity, matched to the Pleiades rotation rates as described in the preceding paragraph, up to an age of 120 Myr and henceforth evolve at constant angular momentum. This results in 2% younger ages for the minimum LDB mass and 6% younger ages for the highest LDB mass.

Open cluster members of a given mass have a wide range of rotation rates, which indicates a variety of evolutionary sequences (Terndrup et al. 2000). Thus, an open cluster of a given age may have a less well-defined LDB as a result of stars with differing rotation rates depleting lithium slightly earlier or later than in our reference case. Our limiting cases for the angular momentum evolution allows us to quantify this rotational “smearing” of the LDB location. The rotational LDB smearing is quantified by calculating the difference in bolometric magnitude of the lithium depletion at a fixed age.
LDB ages as a function of log deviation in quadrature, we arrive at the total to a value of zero at both luminosity extrema. By adding these show in Figures 3–5 as 2 σ errors. For individual error sources that do not extend the full luminosity range, \(-3.0 \leq \log(L/L_\odot) \leq -1.5\), we linearly extrapolate the errors to a value of zero at both luminosity extrema. By adding these deviations in quadrature, we arrive at the total 1 σ error in the LDB ages as a function of \(\log(L/L_\odot)\), shown as the solid line in Figure 8.

5. INDEPENDENT LDB COMPARISONS

Another way to estimate the systematics in the LDB ages is to compare our result with other independent calculations from the literature. As a first comparison, we compare the reference calculation with the Bildsten et al. (1997) analytical model for lithium depletion. The analytical treatment by Bildsten et al. (1997) requires several assumptions. They assume that the temperature gradient follows the adiabatic temperature gradient for a fully ionized gas, \(\nabla_{\text{ad}} = \frac{\chi}{T}\). Since the largest uncertainty in low-mass stellar models arises from determining the effective temperature, Bildsten et al. (1997) treat the effective temperature as a free parameter that is constant during pre–main-sequence contraction. To integrate the lithium destruction over the stellar interior, Bildsten et al. (1997) expand the stellar structure around the central value, and they ignore the change in degeneracy and electron screening as a function of the interior entropy.

Figure 6 shows the percentage age difference at fixed luminosity between the Bildsten et al. (1997) analytical model (their eq. [11]) and our reference calculation for the LDB-age relation. A positive difference means that the analytical model results in older ages at fixed luminosity than the reference calculation. To calculate the analytical-model LDB-age relation, we use the same effective temperature and effective molecular weight, \(\mu_{\text{eff}} \equiv \rho N_A k_B T / P\), at lithium depletion as obtained from the reference calculation and assume a 99% lithium depletion level. The analytical-model results are limited to \(M > 0.08 \, M_\odot\). At the high-luminosity end, the analytical model underestimates the LDB age by \(\sim 5\%\). For \(M \leq 0.1 \, M_\odot\) \([\log(L/L_\odot) \leq -2.2]\), the effects of degeneracy become important, and the analytical model begins to overestimate the age. Thus, the analytical model follows the numerical results within a numerical constant when degeneracy is not important, but to extend the LDB age technique beyond 90 Myr requires a fully numerical calculation.

The comparison with the analytical model demonstrates the robust nature of the LDB age technique. For an additional characterization of the error in LDB ages, we use only full numerical calculations from the literature that treat the relevant physics more accurately. Figure 7 shows the difference in the lithium depletion age at fixed luminosity for several other calculations. The dotted line compares our results with the calculations of Burrows et al. (1997), the short-dashed line is for the comparison with Siess, Dufour, \& Forestini (2000), and the four lines with negative age residuals are for comparisons with models in given D’Antona \& Mazzitelli (1994). The solid line with open squares delineates the comparison with Baraffe et al. (1998), and the open circles show the comparison with the “1998 update” models of D’Antona \& Mazzitelli (1998). With the exception of the calculations from Baraffe et al. (1998), the variations are similar to the trend seen in the internal error budget; the residuals are small at the faint end and increase toward higher masses.

Of the comparisons from the literature, Baraffe et al. (1998) have the input physics most similar to ours. However, the input physics of Baraffe et al. (1998) differs from our reference
calculation three ways: use of only the Saumon et al. (1995) equation of state, adoption of a mixing-length parameter, $\alpha = 1.0$, and the fitting of the outer boundary condition at a deeper optical depth, $\tau = 100$. We test how these three variations to the input physics affect the LDB ages. In our calculations we do not find any effect on the LDB ages as a result of using only the Saumon et al. (1995) equation of state (see § 3.2). Our adoption of a mixing-length parameter, $\alpha = 1.0$, results in older LDB ages (see § 3). Our adoption of the $\tau = 100$ fitting point results in older LDB ages for the youngest clusters and slightly younger LDB ages for older clusters (see § 3.4). The calculations of Baraffe et al. (1998) deviate from our reference calculations in a manner similar to our calculation that adopts the $\tau = 100$ fitting point. However, the LDB ages of Baraffe et al. (1998) at $\log(L/L_\odot) = -2.9$ are 5 σ younger than our expectations based on the internal error budget calculation (Fig. 8).

The input physics of the D’Antona & Mazzitelli (1994) models differs from that of our reference model in its use of the MHD equation of state (Däppen et al. 1988) for densities $\rho < 0.01$ g cm$^{-3}$, the Magni & Mazzitelli (1979) equation of state otherwise, and a gray atmosphere. The four sets of models compared in Figure 7 are combinations of using either the Alexander & Ferguson (1994) or Kurucz (1998) low-temperature opacities and either the mixing-length convection theory or the Canuto & Mazzitelli (1991) convection theory. Overall, the four models result in younger LDB ages. The long-dash–dotted line shows the comparison that is closest to our reference calculation input physics (Alexander & Ferguson 1994 opacity and mixing-length convection theory). Comparing this model with our gray-atmosphere calculation (Fig. 5, solid line) reveals a remaining difference of 10%. Ignoring implementation differences, we infer that the effect of using the Magni & Mazzitelli (1979) equation of state is at most 10%. The long-dash–small-dashed line shows the comparison in which the only change with the previous model is the Kurucz (1998) low-temperature opacity. The largest age difference occurs at $\log(L/L_\odot) = -2.1$, and this mimics our result when using the Kurucz (1998) opacity (Fig. 4, dashed line). The long-dashed line shows the comparison with the D’Antona & Mazzitelli (1994) model that uses the Alexander & Ferguson (1994) opacity and the Canuto & Mazzitelli (1991) convection theory. The short-dash–dotted line shows the difference when using the Kurucz (1998) opacity and the Canuto & Mazzitelli (1991) convection theory. The published data for the previous set of input parameters end at $M = 0.1 M_\odot$. The only change to the input physics relevant to the LDB age technique between D’Antona & Mazzitelli (1997) and D’Antona & Mazzitelli (1994) is the convection treatment (Ventura et al. 1998). As we see in the comparison with D’Antona & Mazzitelli (1997; Fig. 7, open circles), the alternative convection treatment has little effect on the LDB ages.

The dotted line compares our reference calculation to that of Burrows et al. (1997). They employ their own opacity and atmosphere calculations but still have results very similar to those of our reference calculation. The short-dashed line compares our reference calculation to that of Siess et al. (2000). For the atmosphere, they use an analytical fit to the T_eff relation calculated by Plez (1992). Their equation of state is based on the framework outlined in Pols et al. (1995).

6. EXTERNAL ERROR BUDGET

An alternative method to calculate the LDB age uncertainty is to use external comparisons with independent lithium depletion calculations from the literature (see Fig. 7 and § 5). We adopt the absolute value of the deviations shown in Figure 7 as 1 σ errors. We average the individual deviations to arrive at the total 1 σ error shown as the dashed line in Figure 8. The four calculations from D’Antona & Mazzitelli (1994) are not included in the average, since they have been superseded by the more recent D’Antona & Mazzitelli (1997) calculations. For comparisons that do not extend over the entire range of luminosity, we extrapolate by adopting a constant value equal to the comparison endpoints.

The external 1 σ error is larger than the internal 1 σ error (Fig. 8). The larger external error suggests that there are additional systematic deviations in the LDB calculations; either these result from numerical differences between the LDB calculations or our calculations have not fully explored the range of relevant physics. However, reconciling the two error estimates only requires an additional 5% error added in quadrature to the internal error estimate. Since we are interested in the effect of input physics uncertainties on the LDB ages only, for the 1 σ theoretical error in the LDB ages, we adopt the internal 1 σ errors. Adopting the larger external error may include numerical effects into our error budget. For a simple analytical model of the 1 σ theoretical error, we adopt a linear trend in $\log L$, starting at a value of 8% for $\log(L/L_\odot) = -1.5$ and decreasing to 3% for $\log(L/L_\odot) = -3.0$. For luminosities beyond the above luminosity range, we adopt a constant percentage error equal to the endpoint values. The column labeled σ_{day} in Table 1 gives the 1 σ error in the reference LDB age as a function of luminosity based on our simple analytical error model.

Taking into account theoretical errors alone, absolute ages of open clusters accurate to 3% for the oldest clusters, increasing
to 8% for the youngest clusters, using the LDB technique are possible. Our calculations of the errors in the LDB age technique show this to be the most accurate method for determining the ages of open clusters. These small errors emphasize the simplicity of calculating the evolutionary rate of fully convective objects powered only by gravitational energy. Even LDB calculations that ignore essential physics (analytical model of Bildsten et al. 1997, ideal-gas equation of state, and zero metallicity opacities) have 1 σ deviations from our reference calculation that are of the order of 12%. Thus, unless we are ignoring input physics that affects stellar structure of the order of the error associated with treating the gas physics as an ideal gas, our errors are accurate and are not underestimates.

7. BOLOMETRIC CORRECTION

Transformation from a theoretical luminosity or effective temperature to an observable magnitude system requires accurate knowledge of the bolometric correction. A quantitative discussion on the effect of the bolometric correction uncertainty on the derived LDB ages does not exist in the literature. Thus, in this section we briefly characterize this additional error source. There are three methods for bolometric correction determination: empirical, theoretical, and mixed (a theoretical method with empirical constraints). Observations for stars of known distance and wide spectral coverage allow an empirical relation between the bolometric magnitude of a star and its broadband colors (Bessell 1991; Monet et al. 1992). With improved atmospheres, fully theoretical calculations for the bolometric corrections are possible (Hauschildt et al. 1999). A mixture of the theoretical and empirical methods attempts to improve the coverage of bolometric corrections where observations are sparse, by collecting theoretical bolometric calculations and then correcting them empirically (Lejeune, Cuisinier, & Buser 1997).

For our reference bolometric corrections, we choose the theoretical bolometric corrections of Hauschildt et al. (1999). At a fixed effective temperature, Figure 9a shows the comparison between our reference bolometric corrections and four other bolometric correction determinations. The solid line represents the comparison with the mixed theoretical/empirical calculations of Lejeune et al. (1997). The difference is the Lejeune et al. (1997) results minus the bolometric corrections of Hauschildt et al. (1999). The long-dashed line shows the comparison with the theoretical models used by Lejeune et al. (1997) before applying the empirical corrections. The dash-dotted line and short-dashed lines compare the results to empirical relations of Monet et al. (1992) and Bessell (1991), respectively. (b) Percentage difference in the LDB ages at a fixed $\log(L/L_\odot)$ in comparison to the adopted Hauschildt et al. (1999) bolometric corrections. Lines are as in (a).

Figure 9b as 1 σ deviations. Unlike for the input physics variations, it is not clear which bolometric correction is the best choice. Thus, the bolometric correction error budget is more conservative than the theoretical error budget.

In addition, there are two sources of systematic error in the bolometric correction when applied to the LDB age technique. Lithium depletion occurs during the pre–main-sequence contraction phase. Thus, the stars at the LDB have smaller log g values than main-sequence stars. Since empirical bolometric corrections are derived from main-sequence stars, the bolometric corrections are systematically different. Theoretical models used by Lejeune et al. (1997) show that the bolometric corrections roughly vary by 0.05 mag per 0.5 dex change in log g. The reference calculations have ~0.4 dex larger log g values after 1 Gyr. Using bolometric corrections of log $g = 5.0$ for stars that actually have log $g = 4.5$ results in a 2% overestimate of the LDB ages across all luminosities.

The second source of systematic error in the bolometric correction results from the potential for the stellar cluster to differ in metallicity from the empirical stellar templates employed in determining the bolometric correction. Bolometric corrections vary as a function of metallicity, especially for temperatures less than 3000 K. The theoretical models used by Lejeune et al. (1997) predict that a 0.1 dex change in [Fe/H] corresponds to a 4% difference in the resulting LDB ages for the lowest luminosities. The effect is less than 2% toward higher luminosities. These two sources of systematic uncertainty are added in quadrature with the dominant error source based on comparisons between alternative bolometric correction results.
correction determinations, as discussed in the preceding paragraph. The resulting 1σ error is shown as the long-dashed line in Figure 8.

A comparison of theoretical isochrone fits to the observed color-magnitude diagram of the Pleiades is an additional check on the systematic errors that may be present in the I-band bolometric corrections. For the coolest observed Pleiades members, T$_{\text{eff}}$ ~ 3400 K, the isochrone fit is too blue by 0.30 mag in V–I when using the Hauschildt et al. (1999) bolometric corrections. The details of this isochrone fit to the Pleiades using the YREC stellar evolution code is given in Pinsonneault et al. (1998). Such discrepancies are generic to all isochrone fits to open cluster color-magnitude diagrams (Grocholski & Sarajedini 2003). If the I-band bolometric correction is solely responsible for the discrepancy in the color-magnitude diagram, revisions to the bolometric corrections of a similar order could be expected. The correction reduces the LDB ages by 19%–13%, with the larger effect occurring at the low-luminosity/old-age end. Alternatively, the V–I colors of the isochrones can be reconciled with the observations by a reduction of T_{eff} ~ 150 K in the isochrones themselves. Reducing the effective temperatures of the reference calculation by 150 K results in a 12% age reduction for the oldest clusters, decreasing to a 4% age reduction for the youngest clusters. The reduction in LDB ages is for the bolometric correction only and is independent of the effect the cooler temperatures would have on the theoretical LDB ages.

For a simple, analytical 1σ error in the LDB ages resulting from uncertainties in the bolometric correction, we adopt a constant error of 6.0% for log(L/L$_\odot$) > -2.6, increasing linearly to 10% at log(L/L$_\odot$) = -3.0. The column labeled σ_{BC} in Table 1 gives the 1σ error in the reference LDB ages as a function of luminosity. The last column in Table 1 gives the absolute I-band magnitude of the LDB using the bolometric corrections of Hauschildt et al. (1999). We adopt $M_{\text{bol,}\odot}$ = 4.74 and reduce the bolometric correction by 0.04 mag to account for the systematically lower gravity at lithium depletion.

Table 1

Cluster	I$_{\text{LDB}}$	σ_{LDB}	$(m-M)_{\text{hel}}$	σ_{DM}	α	M_I (mag)	σ_{M}	Ageb (Myr)	σ_{obs} (%)	σ_{by} (%)	σ_{BC} (%)	σ_{tot} (%)	σ_{age} (%)
Pleiades	17.86	0.10	5.60	0.10	0.06	0.03	12.20	0.14	148 (126)	8.1	3.2	9.4	13
α Per	17.87	0.15	6.23	0.10	0.17	0.04	11.47	0.18	101 (87)	8.9	4.0	7.1	12
IC 2391	16.22	0.15	5.95	0.10	0.02	0.02	10.25	0.18	55 (48)	8.1	5.4	6.0	11
NGC 2547	18.00	0.25	8.15	0.15	0.05	0.03	9.80	0.29	45 (38)	13.3	6.0	6.0	16

a Unreddened distance modulus.

b Values in parentheses are the LDB ages for a -0.3 mag shift in the I-band bolometric correction (see § 7).

We then calculate the LDB age and errors that result from observational, theoretical, and bolometric correction uncertainties using our reference calculation and error models. The total percentage age error is a sum in quadrature of these three error sources. We derive an LDB age of 148 ± 19 Myr for the Pleiades, Thus, the LDB age technique rules out ages younger than 91 Myr. For the Pleiades, the difference between the LDB age and the upper main-sequence–fitting age without convective core overshoot (70–80 Myr; Mermilliod 1981) is highly significant. Even a maximally plausible 0.30 mag change in the I-band bolometric correction (consistent with reconciling the theoretical isochrone fits to the observed V–I color of the Pleiades) would result in an age of 126 ± 11 Myr for the Pleiades, where the error includes the observational and theoretical uncertainty only (see Table 2). Alternative ages and errors of the other open clusters, adopting the 0.3 mag change in the I-band bolometric correction, are given in parentheses in Table 2.

Our LDB age for the Pleiades is even older than the original LDB age estimate of 125 Myr given in Stauffer et al. (1998). In deriving the Pleiades age, Stauffer et al. (1998) employ the calculations of Baraffe et al. (1998). As discussed in § 5 and 6, the lithium depletion calculations of Baraffe et al. (1998) at the lowest luminosities/oldest ages are younger by 15%. The 15% younger age is a 5σ deviation from our reference model based on our examination of the theoretical errors in the LDB ages. Using identical input physics as close as possible to that of Baraffe et al. (1998), we are unable to reproduce their young LDB ages at the lowest luminosities. Until other independent calculations are available, including an additional 5% error in the LDB ages may be warranted. This systematic error is discussed in § 6 and is not included in our error budget, as it does not materially affect any conclusions.

For the Pleiades, the LDB age technique is dominated by uncertainties in the bolometric correction and the observational LDB location. If the bolometric correction and LDB location error sources are eliminated, then our calculations show that the LDB age technique could provide absolute ages for open clusters accurate to 3% for 200 Myr old clusters, increasing to 8% for 20 Myr old clusters.

We want to thank I. Baraffe, J. Stauffer, and D. Terndrup for useful discussions. This work was supported by NSF grant AST 02-06008.
REFERENCES

Alexander, D. R., & Ferguson, J. W. 1994, ApJ, 437, 879
Alexander, D. R., Johnson, H. R., & Rypma, R. L. 1983, ApJ, 272, 773
Allard, F., Hauschildt, P. H., D., Tamanai, A., & Schweitzer, A. 2001, ApJ, 556, 357
Andersen, J., Nordström, B., & Clausen, J. V. 1990, ApJ, 363, L33
Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. H. 1998, A&A, 337, 403
Barrado y Navascués, D., Stauffer, J. R., & Patten, B. M. 1999, ApJ, 522, L53
Bessell, M. S. 1991, AJ, 101, 662
Bildsten, L., Brown, E. F., Mattnez, C. D., & Ushomirsky, G. 1997, ApJ, 482, 442
Burke, C. J., & Pinsonneault, M. H. 2000, BAAS, 197, 41.10
Burrows, A., et al. 1997, ApJ, 491, 856
Canuto, V. M., & Mazzitelli, I. 1991, ApJ, 370, 295
Chabrier, G., Baraffe, I., Allard, F., & Hauschildt, P. 2000, ApJ, 542, 464
Chabrier, G., Baraffe, I., & Plez, B. 1996, ApJ, 459, L91
D’Antona, F., & Mazzitelli, I. 1994, ApJS, 90, 467
———. 1998, in ASP Conf. Ser. 134, Brown Dwarfs and Extrasolar Planets, ed. R. Rebolo, E. L. Martin, & M. R. Zapatero Osorio (San Francisco: ASP), 442
Da¨ppen, W., Mihalas, D., Hummer, D. G., & Mihalas, B. W. 1988, ApJ, 332, 261
Demarque, P., Sarajedini, A., & Guo, X-J. 1994, ApJ, 426, 165
Grevesse, N., & Noels, A. 1993, in Origin and Evolution of the Elements, ed. N. Prantzos, E. Vangioni-Flam, & M. Cassé (Cambridge: Cambridge Univ. Press), 15
Grocholski, A. J., & Sarajedini, A. 2003, MNRAS, 345, 1015
Guenther, D. B., Demarque, P., Kim, Y.-C., & Pinsonneault, M. H. 1992, ApJ, 387, 372
Guillot, T., Chabrier, G., Gautier, D., & Morel, P. 1995, ApJ, 450, 463
Hauschildt, P. H., Allard, F., & Baron E. 1999, ApJ, 512, 377
Iglesias, C. A., & Rogers, F. J. 1996, ApJ, 464, 943
Jeffries, R. D., & Naylor, T. 2001, in ASP Conf. Ser. 243, From Darkness to Light: Origin and Evolution of Young Stellar Clusters, ed. T. Montmerle, & P. Andrés (San Francisco: ASP), 633
Kippenhahn R., & Weigert, A. 1990, Stellar Structure and Evolution (Berlin: Springer)

Kurucz, R. L. 1998, in IAU Symp. 189, Fundamental Stellar Properties: The Interaction between Observation and Theory, ed. T. R. Bedding, A. J. Booth, & J. Davis (Dordrecht: Kluwer), 217
Lejeune, Th., Cuisinier, F., & Buser, R. 1997, A&A, 125, 229
Ludwig, H.-G., Freytag, B., & Steffen, M. 1999, A&A, 346, 111
Magni, G., & Mazzitelli, I. 1979, A&A, 72, 134
Mermilliod, J.-C. 1981, A&A, 97, 235
Monet, D. G., Dahn, C. C., Vrba, F. J., Harris, H. C., Pier, J. R., Luginbuhl, C. B., & Ables, H. D. 1992, AJ, 103, 638
Oliveira, J. M., Jeffries, R. D., Devey, C. R., Barrado y Navascués, D., Naylor, T., Stauffer, J. R., & Totten, E. J. 2003, MNRAS, 342, 651
Pinsonneault, M. H., Stauffer, J., Soderblom, D. R., King, J. R., & Hanson, R. B. 1998, ApJ, 504, 170
Plez, B. 1992, A&AS, 94, 527
Pols, O. R., Tout, C. A., Eggleton, P. P., & Han, Z. 1995, MNRAS, 274, 964
Potekhin, A. Y., Baiko, D. A., Haensel, P., & Yakovlev, D. G. 1999, A&A, 346, 345
Potekhin, A. Y., Chabrier, G., & Yakovlev, D. G. 1997, A&A, 323, 415
Rogers, F. J., & Nayfonov, A. 2002, ApJ, 576, 1064
Rogers, F. J., Swenson, F. J., & Iglesias, C. A. 1996, ApJ, 456, 902
Saumon, D., Chabrier, G., & Van Horn, H. M. 1995, ApJS, 99, 713
Siess, L., Dufour, E., & Forestini, M. 2000, A&A, 358, 593
Sills, A., Pinsonneault, M. H., & Terndrup, D. M. 2000, ApJ, 534, 335
Stahler, S. W. 1988, ApJ, 332, 804
Stahler, S. W., Palla, F., & Salpeter, E. E. 1986, ApJ, 302, 590
Stassun, K. G., & Terndrup, D. 2003, PASP, 115, 505
Stauffer, J. R., Jeffries, R. D., Martin, E. L., & Terndrup, D. M. 2001, in ASP Conf. Ser. 223, Cool Stars, Stellar Systems and the Sun, ed. R. J. García López, R. Rebolo, & M. R. Zapatero Osorio (San Francisco: ASP), 399
Stauffer, J. R., Schultz, G., & Kirkpatrick, J. D. 1998, ApJ, 499, L199
Stauffer, J. R., et al. 1999, ApJ, 527, 219
Terndrup, D. M., Stauffer, J. R., Pinsonneault, M. H., Sills, A., Yuan, Y., Jones, B. F., Fischer, D., & Krishnamurthi, A. 2000, AJ, 119, 1303
Ventura, P., Zeppieri, A., Mazzitelli, I., & D’Antona, F. 1998, A&A, 334, 953
Vitense, E. 1953, Z. Astrophys., 32, 135