CONSECUTIVE PIATETSKI-SHAPIRO PRIMES BASED ON THE HARDY-LITTLEWOOD CONJECTURE

VICTOR ZHENYU GUO AND YUAN YI

Abstract. The Piatetski-Shapiro sequences are of the form $N^{(c)} := ([n^c])_{n=1}^\infty$ with $c > 1, c \notin \mathbb{N}$. In this paper, we study the distribution of pairs $(p, p^\#)$ of consecutive primes such that $p \in N^{(c_1)}$ and $p^\# \in N^{(c_2)}$ for $c_1, c_2 \in (1, 2)$ and give a conjecture with the prime counting functions of the pairs $(p, p^\#)$. We give a heuristic argument to support this prediction based on a model by Lemke Oliver and Soundararajan which relies on a strong form of the Hardy-Littlewood conjecture. Moreover, we prove a proposition related to the average of singular series with a weight of a complex exponential function.

MSC Numbers: 11N05, 11B83.

Keywords: Piatetski-Shapiro sequences, consecutive primes, Hardy-Littlewood conjectures, singular series.

1. Introduction

The Piatetski-Shapiro sequences are sequences of the form

$$N^{(c)} := ([n^c])_{n=1}^\infty \quad (c > 1, c \notin \mathbb{N}).$$

Piatetski-Shapiro [6] proved that if $c \in (1, \frac{12}{11})$ the counting function

$$\pi^{(c)}(x) := |\{\text{prime } p \leq x : p \in N^{(c)}\}|$$

satisfies the asymptotic relation

$$\pi^{(c)}(x) \sim \frac{x^{1/c}}{\log x} \quad \text{as } x \to \infty.$$

The admissible range for c of the above formula has been extended many times and is currently known to hold for all $c \in (1, \frac{243}{235})$ thanks to Rivat and Sargos [7]. Rivat and Wu [8] also showed that there are infinitely many Piatetski-Shapiro primes for $c \in (1, \frac{243}{235})$. We refer the readers to see [3] for more details of the improvements of c. The asymptotic relation is expected to hold for all values of $c \in (1, 2)$. The estimation of Piatetski-Shapiro primes is an approximation of the well-known conjecture that there exist infinitely many primes of the form $n^2 + 1$.

For a better understanding of the distribution of primes, it is natural to study consecutive primes, for example the twin prime conjecture. In this article, to understand the distribution of Piatetski-Shapiro primes, we are interested in the counting function of consecutive primes in Piatetski-Shapiro sequences. Fix real numbers $c_1, c_2 \in (1, 2)$. For every prime p, let $p^\#$ denote the next larger prime. We define the counting function

$$\pi(x; N^{(c_1)}, N^{(c_2)}) := |\{p \leq x : p \in N^{(c_1)} \text{ and } p^\# \in N^{(c_2)}\}|.$$

Our idea is inspired by a breakthrough in 2016 by Lemke Oliver and Soundararajan [4]. Let p_n be the sequence of primes in ascending order. Let $q \geq 3$ and $a := (a_1, \cdots, a_r)$ with $(a_i, q) = 1$ for all $1 \leq i \leq r$. Applying a model based on a modified version of the Hardy-Littlewood
conjecture, Lemke Oliver and Soundararajan [4] investigated the biases in the occurrence of the pattern a in strings of r consecutive primes reduced modulo q. In fact, they analyzed the counting function.

$$\pi(x; q, a) := |\{p_n \leq x : p_{n+i-1} \equiv a_i \mod q \text{ for } 1 \leq i \leq r\}|.$$

The method has been applied to analyze other consecutive sequences. David, Devin, Nam and Schlitt [2] applied Lemke Oliver and Soundararajan’s method to study consecutive sums of two squares. Let $$\mathbb{E} := \{a^2 + b^2 : a, b \in \mathbb{Z}\} := \{E_n : n \in \mathbb{N}\}.$$ By the Hardy-Littlewood conjectures in arithmetic progressions for sum of two squares, they gave a heuristic argument of a conjecture of the counting function

$$|\{E_n \leq x : E_n \equiv a \pmod{q}, E_{n+1} \equiv b \pmod{q}\}|.$$

For any given real numbers $\alpha > 0$ and $\beta \geq 0$, the associated (generalized) Beatty sequence is defined by $$\mathcal{B}_{\alpha,\beta} := (\lfloor \alpha m + \beta \rfloor)_{m \in \mathbb{N}},$$ which is also called the generalized arithmetic progression. Banks and Guo [1] gave a conjecture of the estimation of the counting function

$$\pi(x; \mathcal{B}_{\alpha,\beta}, \mathcal{B}_{\alpha,\beta}^c) := |\{p \leq x : p \in \mathcal{B}_{\alpha,\beta} \text{ and } p^\sharp \in \mathcal{B}_{\alpha,\beta}^c\}|$$ by a heuristic argument based on the method of Lemke Oliver and Soundararajan. In this article, we apply a similar model to give a heuristic argument of the following conjecture.

Conjecture 1.1. For any fixed positive number $\varepsilon > 0$, the counting function (1.1) satisfies that

$$\pi(x; \mathcal{N}(c_1), \mathcal{N}(c_2)) = \frac{x^{1/c_1+1/c_2-1}}{c_1 c_2 \log x} + O\left(\frac{x^{1/c_1+1/c_2-1}}{\log x}^{3/2-\varepsilon}\right),$$

where the implied constant depends only on c_1, c_2 and ε.

In what follows we give a short survey of the breakthrough of Lemke Oliver and Soundararajan’s biases. We will end the introduction by the main proposition and key improvement to this topic.

1.1. The Hardy-Littlewood conjecture

Let \mathcal{H} be a finite subset of \mathbb{Z}, and let $1_\mathcal{P}$ denote the indicator function of the primes. A strong form of the Hardy-Littlewood conjecture for \mathcal{H} asserts that the estimate

$$\sum_{n \leq x} \prod_{h \in \mathcal{H}} 1_\mathcal{P}(n + h) = \mathcal{G}(\mathcal{H}) \int_2^x \frac{du}{(\log u)^{\#\mathcal{H}}} + O(x^{1/2+\varepsilon})$$

holds for every fixed $\varepsilon > 0$, where $\mathcal{G}(\mathcal{H})$ is the singular series given by

$$\mathcal{G}(\mathcal{H}) := \prod_p \left(1 - \frac{|(\mathcal{H} \mod p)|}{p}\right) \left(1 - \frac{1}{p}\right)^{-\#\mathcal{H}}.$$

For their work on primes in short intervals, Montgomery and Soundararajan [5] have introduced the modified singular series

$$\mathcal{G}_0(\mathcal{H}) := \sum_{T \subseteq \mathcal{H}} (-1)^{|\mathcal{H}\setminus T|} \mathcal{G}(T),$$
for which one has the relation
\[\mathcal{G}(\mathcal{H}) = \sum_{T \subseteq \mathcal{H}} \mathcal{G}_0(T). \]

Note that \(\mathcal{G}(\emptyset) = \mathcal{G}_0(\emptyset) = 1 \). The Hardy-Littlewood conjecture (1.2) can be reformulated in terms of the modified singular series as follows:
\[
\sum_{n \leq x} \prod_{h \in \mathcal{H}} \left(1 - \frac{1}{\log n} \right) = \mathcal{G}_0(\mathcal{H}) \int_{2}^{x} \frac{dy}{(\log y)^{|\mathcal{H}|}} + O(x^{1/2+\epsilon}). \quad (1.3)
\]

1.2. A modified Hardy-Littlewood conjecture with congruence conditions. To investigate the distribution of primes in arithmetic progressions, we introduce a modification of the Hardy-Littlewood conjecture with congruence conditions \((\mod q) \) from Lemke Oliver and Soundararajan’s model [4]. For any integer \(q \geq 1 \) and a finite subset \(\mathcal{H} \subset \mathbb{Z} \), define the singular series away from \(q \) by
\[\mathcal{G}_q(\mathcal{H}) := \prod_{p \mid q} \left(1 - \frac{|(\mathcal{H} \mod p)|}{p} \right) \left(1 - \frac{1}{p} \right)^{|\mathcal{H}|}. \]

We require that \(a \pmod{q} \) is such that \((h + a, q) = 1 \) for all \(h \in \mathcal{H} \), then it asserts that
\[
\sum_{n \leq x} \prod_{h \in \mathcal{H}} 1_{\mathbb{P}}(n + h) \sim \mathcal{G}_q(\mathcal{H}) \left(\frac{q}{\varphi(q)} \right)^{|\mathcal{H}|} \frac{1}{q} \int_{2}^{x} \frac{dy}{(\log y)^{|\mathcal{H}|}}. \quad (1.4)
\]

Now similar to \(\mathcal{G}_0 \), define
\[\mathcal{G}_{q,0}(\mathcal{H}) := \sum_{T \subset \mathcal{H}} (-1)^{|\mathcal{H} \setminus T|} \mathcal{G}_q(T), \]
which gives that
\[\mathcal{G}_q(\mathcal{H}) = \sum_{T \subset \mathcal{H}} \mathcal{G}_{q,0}(T). \]

Conditioning \((h + a, q) = 1 \) for all \(h \in \mathcal{H} \), we expect that
\[
\sum_{n \leq x} \prod_{h \in \mathcal{H}} \left(1_{\mathbb{P}}(n + h) - \frac{q}{\varphi(q) \log n} \right) \sim \mathcal{G}_{q,0}(\mathcal{H}) \left(\frac{q}{\varphi(q)} \right)^{|\mathcal{H}|} \frac{1}{q} \int_{2}^{x} \frac{dy}{(\log y)^{|\mathcal{H}|}}. \quad (1.4)
\]

The term \(q/(\varphi(q) \log n) \) is expected to be the probability that \(n + h \) is prime, with the fact that \((n + h, q) = 1 \).

1.3. Lemke Oliver and Soundararajan’s method. Based on a model by assuming a modified version of the Hardy-Littlewood conjecture (1.4), Lemke Oliver and Soundararajan [4] conjectured that
\[\pi(x; q, a) = \frac{\text{li}(x)}{\varphi(q)^r} \left(1 + c_1(q; a) \frac{\log \log x}{\log x} + c_2(q; a) \frac{1}{\log x} + O((\log x)^{-7/4}) \right), \]

where \(c_1(q; a) \) and \(c_2(q; a) \) are explicit constants.

They rewrited the sum of the characteristic function
\[
\sum_{n \leq x} \frac{1}{\mathbb{P}}(n) 1_{\mathbb{P}}(n + h) \prod_{0 < t < h \atop (t + a, q) = 1} (1 - 1_{\mathbb{P}}(n + t))
\]
into a sum related to singular series and achieved that
\[\pi(x; q, (a, b)) \sim \frac{1}{q} \int_2^x \alpha(y)^r \left(\frac{q}{\varphi(q) \log y} \right)^2 D(a, b; y) dy \]
where \(D(a, b; y) \) is a sum depending on the average of singular series. The key point to analyze \(D(a, b; y) \) is a detailed estimation of
\[\sum_{h > 0} \mathcal{G}_{q,0}(\{0, h\}) e^{-h/H}, \]
which was calculated as the main proposition in \[4\].

1.4. Key proposition of this article. To complete the heuristic of Conjecture 1.1, the key point is to analyze the average of singular series with a weight of exponential functions which differs from the case in \[4\]. Let \(\nu(u) = 1 - 1/\log u \). By Lemke Oliver and Soundararajan’s idea \[4\], one can estimate the following expression
\[\sum_{h \equiv r \pmod{q}} (\log h)^{\nu(u)} e^{f(h, u)}. \]
Since the counting function of the Piatetksi-Shapiro sequence requires us to express the fractional part of a function into a sum of exponential sums, we need to estimate
\[\sum_{h \equiv r \pmod{q}} (\log h)^{\nu(u)} e^{f(h, u)}, \quad (1.5) \]
where the function \(f(h, u) \) is “smooth”. The case when the function \(f(h, u) \) is linear was estimated in \[1\], but the method has to be revised to adapt the smooth case (1.5). One can compare the following proposition to Lemma 2.4 in \[1\]. A detailed proof is in Section 4.

Proposition 1.2. Fix \(\theta \in [0, 1] \) and \(\vartheta = 0 \) or 1. Let \(\gamma_1, \gamma_2 \in (0, 1) \) be two real numbers. For all \(j, k \in \mathbb{R} \) and \(u \geq 3 \), let \(c(j, k, u, h) \) be a complex number with \(|c(j, k, u, h)| = 1 \) and \(c(j, k, u, h) = 1 \) if \(j = k = 0 \). We define
\[R_{\theta, \vartheta, j, k}(u) := \sum_{\substack{h \geq 1, 2 \not| k}} h^\theta (\log h)^{\vartheta} e^{f(h, u)} c(j, k, u, h), \]
\[S_{j,k}(u) := \sum_{\substack{h \geq 1, 2 \not| k}} \mathcal{G}_0(\{0, h\}) e^{f(h, u)} c(j, k, u, h). \]

When \(j = k = 0 \) we have the estimates
\[R_{\theta, 0, 0, 0}(u) = \frac{1}{2} \Gamma(1 + \theta)(\log u)^{1+\theta} + O(1), \]
\[R_{\theta, 1, 0, 0}(u) = \frac{1}{2} \Gamma(2 + \theta)(\log u)^{1+\theta} + O(1), \]
\[S_{0,0}(u) = \frac{1}{2} \log u - \frac{1}{2} \log \log u + O(1). \]

On the other hand, if \(k \) is such that \(|k| \geq (\log u)^{-1} \), then
\[\max \{|R_{\theta, \vartheta, j, k}(u)|, |S_{j,k}(u)|\} \ll |k|^{-4}. \]
If \(j, k \) are such that \(|jk| \geq (\log u)^{-1} \), then
\[\max \{|R_{\theta, \vartheta, j, k}(u)|, |S_{j,k}(u)|\} \ll |jk|^{-4}. \quad (1.6) \]
2. Preliminaries

2.1. Notation. We denote by $|t|$ and $\{t\}$ the greatest integer $\leq t$ and the fractional part of t, respectively. We also write $e(t) := e^{2\pi i t}$ for all $t \in \mathbb{R}$, as usual. We make considerable use of the sawtooth function defined by

$$\psi(t) := t - |t| - \frac{1}{2} - \{t\} - \frac{1}{2} \quad (t \in \mathbb{R}).$$

Let \mathbb{P} denote the set of primes in \mathbb{N}. In what follows, the letter p always denotes a prime number, and p^\sharp is used to denote the smallest prime greater than p. In other words, p and p^\sharp are consecutive primes with $p^\sharp > p$. We also put

$$\delta_p := p^\sharp - p \quad (p \in \mathbb{P}).$$

Let $\gamma := e^{-1}, \gamma_1 := c_1^{-1}$ and $\gamma_2 := c_2^{-1}$. Throughout the paper, ε is always a sufficiently small positive number.

For an arbitrary set S, we use 1_S to denote its indicator function:

$$1_S(n) := \begin{cases}
1 & \text{if } n \in S, \\
0 & \text{if } n \notin S,
\end{cases}$$

and let $1_{\mathcal{A}}(n) := 1_{\mathcal{A}(\mathcal{A})}(n)$. Throughout the paper, implied constants in symbols O, \ll and \gg may depend (where obvious) on the parameters $\gamma_1, \gamma_2, \varepsilon$ but are absolute otherwise. For given functions F and G, the notations $F \ll G$, $G \gg F$ and $F = O(G)$ are all equivalent to the statement that the inequality $|F| \leq c|G|$ holds with some constant $c > 0$.

2.2. Technical lemmas. We start by a simple average estimation of singular series.

Lemma 2.1. Let h be a positive integer. We have

$$\sum_{1 \leq t \leq h-1} \mathcal{S}_0(\{0, t\}) \ll h^{1/2 + \varepsilon},$$

$$\sum_{1 \leq t \leq h-1} \mathcal{S}_0(\{t, h\}) \ll h^{1/2 + \varepsilon},$$

$$\sum_{1 \leq t_1 < t_2 \leq h-1} \mathcal{S}_0(\{t_1, t_2\}) = -\frac{1}{2}h \log h + \frac{1}{2}Ah + O(h^{1/2 + \varepsilon}),$$

where $A := 2 - C_0 - \log 2\pi$ and C_0 denotes the Euler-Mascheroni constant.

Proof. See [1, Lemma 2.2].

Recall that

$$\nu(u) = 1 - \frac{1}{\log u} \quad (u > 1).$$

Note that $\nu(u)$ is the same as $\alpha(u)$ in the notation of [4] and $\nu(u) \asymp 1$ if $u \geq 3$.

Lemma 2.2. Let $c > 0$ be a constant, and suppose that f is a function such that $|f(h)| \leq h^c$ for all $h \geq 1$. Then, uniformly for $3 \leq u \leq x$ and a real function $g(u, h) \in \mathbb{R}$ we have

$$\sum_{h \leq (\log x)^3} f(h)\nu(u)^h e(g(u, h)) = \sum_{h \geq 1} f(h)\nu(u)^h e(g(u, h)) + O_c(x^{-1}).$$
Proof. Let $H := -(\log \nu(n))^{-1}$. We write $\nu(u)^h = e^{-h/H}$. By $H \lesssim \log u$ for $u \geq 3$, $h > (\log x)^3$, we conclude that $h/H \gtrsim h^{2/3}$ with $u \leq x$. Hence
\[
\left| \sum_{h > (\log x)^3} f(h)\nu(u)^h e(g(u, h)) \right| \leq \sum_{h > (\log x)^3} h^c e^{-h^{2/3}} \lesssim x^{-1} \sum_{h > (\log x)^3} h^c e^{h^{1/3} - h^{2/3}} \ll_c x^{-1}.
\]

\[\square\]

Lemma 2.3. Assuming the Hardy-Littlewood conjecture (1.3), let $h \lesssim \log^3 x$ and write
\[
f_h(n) := \mathbf{1}_P(n) \mathbf{1}_P(n + h) \prod_{0 < t < h} \left(1 - \mathbf{1}_P(n + t)\right) = \begin{cases} 1 & \text{if } n = p \in P \text{ and } \delta_p = h, \\ 0 & \text{otherwise.} \end{cases}
\]

Let
\[
S_h(x) := \sum_{n \leq x} f_h(n).
\]

For every integer $L \geq 0$ we denote
\[
D_{h,L}(u) := \sum_{A \subseteq \{0, h\}} \sum_{T \subseteq [1, h-1]} (-1)^{|T|} \mathbf{S}_0(A \cup T)(\nu(u) \log u)^{-|T|} \nu(u)^h.
\]

Then
\[
S_h(x) = \sum_{L=0}^{h+1} \int_0^x \nu(u)^{-1} (\log u)^{-2} D_{h,L}(u) \, du + O(x^{1/2+\varepsilon}).
\]

Proof. First, write $\widetilde{\mathbf{1}}_P(n) := \mathbf{1}_P(n) - 1/\log n$, and put
\[
\widetilde{f}_h(n) := \left(\widetilde{\mathbf{1}}_P(n) + \frac{1}{\log n}\right) \left(\widetilde{\mathbf{1}}_P(n + h) + \frac{1}{\log n}\right) \prod_{0 < t < h} \left(1 - \frac{1}{\log n} - \widetilde{\mathbf{1}}_P(n + t)\right).
\]

Recalling that $h \lesssim (\log x)^3$, we have the uniform estimate
\[
f_h(n) = \widetilde{f}_h(n) \left(1 + O\left(\frac{(\log x)^6}{x^{1/2}}\right)\right)
\]
for all $n > x^{1/2}$. Since $f_h(n)$ and $\widetilde{f}_h(n)$ are bounded, it follows that
\[
S_h(x) = \sum_{n \leq x} \widetilde{f}_h(n) + O(x^{1/2+\varepsilon}).
\]

It follows that, up to an error term of size $O(x^{1/2+\varepsilon})$, the quantity $S_h(x)$ equals
\[
\sum_{A \subseteq \{0, h\}} \sum_{T \subseteq [1, h-1]} (-1)^{|T|} \sum_{n \leq x} \left(\frac{1}{\log n}\right)^{2-|A|} \left(1 - \frac{1}{\log n}\right)^{h - 1 - |T|} \prod_{t \in A \cup T} \widetilde{\mathbf{1}}_P(n + t)
\]
(compare to [4, Equations (2.5) and (2.6)].)
By the modified Hardy-Littlewood conjecture (1.3) the estimate
\[
\sum_{n \leq x} (\log n)^{-c} \prod_{t \in \mathcal{H}} \tilde{I}_p(n + t) = \int_{3}^{x} (\log u)^{-c} \left(\sum_{n \leq u} \prod_{t \in \mathcal{H}} \tilde{I}_p(n + t) \right) \, du = \mathcal{G}_0(\mathcal{H}) \int_{3}^{x} (\log u)^{-c - |\mathcal{H}|} \, du + O(x^{1/2 + \varepsilon})
\]
holds uniformly for any constant \(c > 0 \); consequently, up to an error term of size \(O(x^{1/2 + \varepsilon}) \) the quantity \(S_h(x) \) is equal to
\[
\sum_{A \subseteq \{0, h\}} \sum_{\mathcal{T} \subseteq [1, h-1]} (-1)^{|\mathcal{T}|} \mathcal{G}_0(A \cup \mathcal{T}) \int_{3}^{x} (\log u)^{-2 - |\mathcal{T}|} \nu(u)^{h - 1 - |\mathcal{T}|} \, du.
\]
By the definition (2.2), we have
\[
S_h(x) = \sum_{L = 0}^{h+1} \int_{3}^{x} \nu(u)^{-1} (\log u)^{-2} D_{h,L}(u) \, du + O(x^{1/2 + \varepsilon}).
\]

We need the following well known approximation of Vaaler.

Lemma 2.4. For any \(H \geq 1 \) there are numbers \(a_h, b_h \) such that
\[
\left| \psi(t) - \sum_{0 < |h| \leq H} a_h e(h t) \right| \leq \sum_{|h| \leq H} b_h e(h t), \quad a_h \ll \frac{1}{|h|}, \quad b_h \ll \frac{1}{H}.
\]

Proof. See [9].

Lemma 2.5. Let \(g(n) \) be bounded, \(|a_j| \ll 1/|j| \). Then
\[
\sum_{3 < n \leq x} \sum_{1 \leq |j| \leq J} g(n) a_j \left(e(j(n + h + 1)^\gamma) - e(j(n + h)^\gamma) \right) \ll x^{\gamma - 1} \max_{N \leq x} \sum_{1 \leq j \leq J} \left| \sum_{3 < n \leq N} g(n) e(j(n + h)^\gamma) \right|.
\]

Proof. Let
\[
\phi_{j,h}(t) := e\left(j((t + h + 1)^\gamma - (t + h)^\gamma) \right) - 1.
\]
Then
\[
\phi_{j,h}(t) \ll |j|^t \gamma - 1 \quad \text{and} \quad \frac{\partial \phi_{j,h}(t)}{\partial t} \ll |j|^t \gamma - 2,
\]
so we have
\[
\sum_{3 < n \leq x} \sum_{1 \leq |j| \leq J} g(n) a_j \left(e(j(n + h + 1)^\gamma) - e(j(n + h)^\gamma) \right) \ll \sum_{1 \leq j \leq J} |j|^{-1} \max_{3 < n \leq x} \left| \sum_{3 < n \leq x} g(n) \phi_{j,h}(n) e(j(n + h)^\gamma) \right|
\]
\[
\ll \sum_{1 \leq j \leq J} |j|^{-1} \phi_{j,h}(x) \max_{3 < n \leq x} \left| \sum_{3 < n \leq x} g(n) e(j(n + h)^\gamma) \right|
\]
\[
\ll \sum_{1 \leq j \leq J} |j|^{-1} \phi_{j,h}(x) \max_{3 < n \leq x} \left| \sum_{3 < n \leq x} g(n) e(j(n + h)^\gamma) \right|
\]}
\[+ \int_{\sqrt[3]{x}}^{x} \sum_{1 \leq j \leq J} j^{-1} \left| \frac{\partial \phi_{j,h}(u)}{\partial u} \sum_{3 < n \leq u} g(n) e(j(n+h)^{\gamma}) \right| du \]

\[\leq x^{\gamma-1} \max_{\mathbb{N} \leq x} \left| \sum_{3 < n \leq N} g(n) e(j(n+h)^{\gamma}) \right|. \]

Finally, we use the following well-known lemma, which provides a characterization of the numbers that occur in the Piatetski-Shapiro sequence \(\mathcal{N}(c) \).

Lemma 2.6. A natural number \(m \) has the form \(\lfloor n^c \rfloor \) if and only if \(1^{(c)}(m) = 1 \), where \(1^{(c)}(m) := \lfloor -m^\gamma \rfloor - \lfloor -(m+1)^\gamma \rfloor \). Moreover,

\[1^{(c)}(m) = \gamma m^{\gamma-1} + \psi(-(m+1)^\gamma) - \psi(-m^\gamma) + O(m^{\gamma-2}). \]

3. Heristic of Conjecture 1.1

For every even integer \(h \geq 2 \) we denote

\[\pi_h(x; \mathcal{N}(c_1), \mathcal{N}(c_2)) := \left| \{ p \leq x : p \in \mathcal{N}(c_1), \ p^\gamma \in \mathcal{N}(c_2) \ \text{and} \ \delta_p = h \} \right| \]

\[= \sum_{n \leq x} 1^{(c_1)}(n) 1^{(c_2)}(n+h) f_h(n), \]

where

\[f_h(n) := 1_p(n) 1_p(n+h) \prod_{0 < t < h} (1 - 1_p(n+t)) \]

\[= \begin{cases} 1 & \text{if } n = p \in \mathbb{P} \text{ and } \delta_p = h, \\ 0 & \text{otherwise.} \end{cases} \]

Clearly,

\[\pi(x; \mathcal{N}(c_1), \mathcal{N}(c_2)) = \sum_{h \leq (\log x)^3} \pi_h(x; \mathcal{N}(c_1), \mathcal{N}(c_2)) + O \left(\frac{x}{(\log x)^3} \right). \]

Fixing an even integer \(h \in [1, (\log x)^3] \) for the moment, our initial goal is to express \(\pi_h(x; \mathcal{N}(c_1), \mathcal{N}(c_2)) \) in terms of the function \(S_h(x) = \sum_{n \leq x} f_h(n) \)

introduced by Lemke Oliver and Soundararajan [4, Equation (2.5)]. Recall that \(\gamma_1 := c_1^{-1} \in (0, 1) \) and \(\gamma_2 := c_2^{-1} \in (0, 1) \). By Lemma 2.6 and Lemma 2.4, taking \(J := x^{1-\gamma_1+\varepsilon} \) with \(a_j \ll 1/|j| \) and \(b_j \ll 1/J \) we write

\[1^{(c_1)}(n) = \gamma_1 n^{\gamma_1-1} + (\psi(-(n+1)^{\gamma_1}) - \psi(-n^{\gamma_1})) + O(n^{\gamma_1-2}) \]

\[= \gamma_1 n^{\gamma_1-1} + \sum_{1 \leq |j| \leq J} a_j (e(j(n+1)^{\gamma_1}) - e(jn^{\gamma_1})) \]

\[+ O \left(\sum_{0 \leq |j| < J} b_j (e(jn^{\gamma_1}) + e(j(n+1)^{\gamma_1})) \right) + O(n^{\gamma_1-2}). \]
Similarly, taking that $K := x^{1-\gamma+\varepsilon}$ with $a_k \ll 1/|k|$ and $b_k \ll 1/K$ we have

$$1^{(c_2)}(n+h) = \gamma_2(n+h)^{2-1} + (\psi(-(n+h+1)^{2}) - \psi(-(n+h)^{2})) + O(n^{2-2})$$

$$= \gamma_2(n+h)^{2-1} + \sum_{1 \leq |k| \leq K} a_k \left(e(k(n+h+1)^{2}) - e(k(n+h)^{2}) \right)$$

$$+ O \left(\sum_{0 \leq |k| \leq K} b_k \left(e(k(n+h)^{2}) + e(k(n+h+1)^{2}) \right) \right) + O(n^{2-2}).$$

Hence we derive the estimate

$$\pi_h(x; N^{(c_1)}, N^{(c_2)}) = \sum_{h \leq \log x^3} \left(S_1 + S_2 + S_3 + S_4
ight)$$

$$+ O \left(S_5 + S_6 + S_7 + S_8 + S_9 + S_{10} + S_{11} + S_{12} \right) + O \left(\frac{x}{\log^3 x} \right),$$

where

$$S_1 := \sum_{n \leq x} \gamma_1 \gamma_2 n^{\gamma_1-1}(n+h)^{\gamma_2-1} f_h(n);$$

$$S_2 := \sum_{n \leq x} \gamma_1 n^{\gamma_1-1} f_h(n) \sum_{1 \leq |k| \leq K} a_k \left(e(k(n+h+1)^{2}) - e(k(n+h)^{2}) \right);$$

$$S_3 := \sum_{n \leq x} \gamma_2(n+h)^{\gamma_2-1} \sum_{1 \leq |j| \leq J} f_h(n) a_j \left(e(j(n+1)^{\gamma_1}) - e(jn^{\gamma_1}) \right);$$

$$S_4 := \sum_{n \leq x} f_h(n) \left(\sum_{1 \leq |j| \leq J} a_j \left(e(j(n+1)^{\gamma_1}) - e(jn^{\gamma_1}) \right) \right)$$

$$\cdot \left(\sum_{1 \leq |k| \leq K} a_k \left(e(k(n+h+1)^{2}) - e(k(n+h)^{2}) \right) \right);$$

$$S_5 := \sum_{n \leq x} \gamma_1 n^{\gamma_1-1} f_h(n) \sum_{0 \leq |k| \leq K} b_k \left(e(k(n+h)^{2}) + e(k(n+h+1)^{2}) \right);$$

$$S_6 := \sum_{n \leq x} \gamma_2(n+h)^{\gamma_2-1} f_h(n) \sum_{0 \leq |j| \leq J} b_j \left(e(jn^{\gamma_1}) + e(j(n+1)^{\gamma_1}) \right);$$

$$S_7 := \sum_{n \leq x} f_h(n) \left(\sum_{1 \leq |j| \leq J} a_j \left(e(j(n+1)^{\gamma_1}) - e(jn^{\gamma_1}) \right) \right)$$

$$\cdot \left(\sum_{0 \leq |k| \leq K} b_k \left(e(k(n+h)^{2}) + e(k(n+h+1)^{2}) \right) \right);$$

$$S_8 := \sum_{n \leq x} f_h(n) \left(\sum_{0 \leq |j| \leq J} b_j \left(e(-jn^{\gamma_1}) + e(-j(n+1)^{\gamma_1}) \right) \right).$$
\[
\sum_{1 \leq |k| \leq K} a_k \left(e(k(n + h + 1)^{\gamma_2}) - e(k(n + h + 1)^{\gamma_1}) \right);
\]

\[S_9 := \sum_{n \leq x} f_h(n) \left(\sum_{0 \leq |j| \leq J} b_j \left(e(j n^{\gamma_1}) + e(j(n + 1)^{\gamma_1}) \right) \right) \cdot \left(\sum_{0 \leq |k| \leq K} b_k \left(e(k n^{\gamma_2}) + e(k(n + h + 1)^{\gamma_2}) \right) \right); \]

\[S_{10} := \sum_{n \leq x} 1^{(c_1)}(n) n^{\gamma_2 - 2}; \]

\[S_{11} := \sum_{n \leq x} 1^{(c_2)}(n + h) n^{\gamma_1 - 2}; \]

\[S_{12} := \sum_{n \leq x} n^{\gamma_1 + \gamma_2 - 4}. \]

It is easy to see that the contribution from \(S_{10}, S_{11} \) and \(S_{12} \) are negligible. We work on the other sums separately.

3.1. **Estimation of \(S_1 \).** We write \(S_1 = S_{11} + O(S_{12}) \), where

\[S_{11} := \gamma_1 \gamma_2 \sum_{n \leq x} n^{\gamma_1 + \gamma_2 - 2} f_h(n) \]

and

\[S_{12} := \sum_{n \leq x} h n^{\gamma_1 + \gamma_2 - 3} f_h(n). \]

We consider \(S_{11} \). By the definition (2.1) we have

\[S_{11} = \gamma_1 \gamma_2 \int_{J_3}^{x} u^{\gamma_1 + \gamma_2 - 2} d (S_h(u)) + O(\log x). \]

Then by Lemma 2.3, it follows

\[\sum_{h \leq (\log x)^3} S_{11} = \gamma_1 \gamma_2 \sum_{h \leq (\log x)^3} \sum_{L=0}^{h+1} \int_{J_3}^{x} \frac{u^{\gamma_1 + \gamma_2 - 2}}{\nu(u) \log^2 u} D_{h,L}(u) du + O(\log x). \]

By a similar argument in [1, P. 170], we conclude that the contribution of the terms with \(L \geq 3 \) is negligible. Taking in account Lemma 2.2, we have

\[\sum_{h \leq (\log x)^3} S_{11} = \gamma_1 \gamma_2 \sum_{l=1}^{5} \int_{J_3}^{x} \frac{u^{\gamma_1 + \gamma_2 - 2}}{\nu(u) \log^2 u} F_{1,l}(u) du + O(\log x), \quad (3.1) \]

where

\[F_{1,1}(u) := \sum_{h \geq 1} \nu(u)^h; \]
\[\mathcal{F}_{1,2}(u) := \sum_{h \geq 1 \atop 2 \mid h} \mathcal{G}_0 \{ \{0, h\} \} \nu(u)^h; \]

\[\mathcal{F}_{1,3}(u) := \frac{(-1)}{\nu(u) \log u} \sum_{h \geq 1 \atop 2 \mid h} \sum_{1 \leq t < h-1} \mathcal{G}_0 \{ \{0, t\} \} \nu(u)^h; \]

\[\mathcal{F}_{1,4}(u) := \frac{(-1)}{\nu(u) \log u} \sum_{h \geq 1 \atop 2 \mid h} \sum_{1 \leq t < h-1} \mathcal{G}_0 \{ \{t, h\} \} \nu(u)^h; \]

\[\mathcal{F}_{1,5}(u) := \frac{1}{(\nu(u) \log u)^2} \sum_{h \geq 1 \atop 2 \mid h} \sum_{1 \leq t_1 < t_2 < h-1} \mathcal{G}_0 \{ \{t_1, t_2\} \} \nu(u)^h. \]

By Lemma 1.2 we have

\[\mathcal{F}_{1,1}(u) = R_{0,0,0,0}(u) = \frac{1}{2} \log u + O(1) \quad (3.2) \]

and

\[\mathcal{F}_{1,2}(u) = S_{0,0}(u) = \frac{1}{2} \log u - \frac{1}{2} \log \log u + O(1). \quad (3.3) \]

Then combining (3.2) and (3.3), we have the main term

\[\sum_{l=1}^{2} \int_{1}^{x} \frac{u^{\gamma_1 + \gamma_2 - 2}}{\nu(u) \log^2 u} \mathcal{F}_{1,l}(u) \, du = \int_{1}^{x} \frac{u^{\gamma_1 + \gamma_2 - 2}}{\nu(u) \log^2 u} \left(\log u - \frac{1}{2} \log \log u + O(1) \right) \, du \]

\[= \frac{x^{\gamma_1 + \gamma_2 - 1}}{\log x} + O \left(\frac{x^{\gamma_1 + \gamma_2 - 1} \log \log x}{\log^2 x} \right). \]

By Lemma 2.1 and Lemma 1.2, we have

\[\mathcal{F}_{1,3}(u) \ll \frac{1}{\log u} \sum_{h \geq 1 \atop 2 \mid h} h^{1/2+\varepsilon} \nu(u)^h \ll (\log u)^{1/2+\varepsilon} \quad (3.4) \]

and

\[\mathcal{F}_{1,4}(u) \ll (\log u)^{1/2+\varepsilon}, \]

hence for \(l = 3, 4 \) we get that

\[\int_{1}^{x} \frac{u^{\gamma_1 + \gamma_2 - 2}}{\nu(u) \log^2 u} \mathcal{F}_{1,l}(u) \, du \ll \frac{x^{\gamma_1 + \gamma_2 - 1}}{(\log x)^{3/2-\varepsilon}}. \]

By Lemma 2.1, we have

\[\mathcal{F}_{1,5}(u) = \frac{1}{(\nu(u) \log u)^2} \sum_{h \geq 1 \atop 2 \mid h} \left(-\frac{1}{2} h \log h + \frac{1}{2} Ah + O(h^{1/2+\varepsilon}) \right) \nu(u)^h \]

\[= \frac{1}{(\nu(u) \log u)^2} \left(-\frac{1}{2} R_{1,1;0,0}(u) + \frac{1}{2} AR_{1,0;0,0}(u) + O(R_{1/2+\varepsilon/2,0,0,0}(u)) \right) \]

\[\ll 1, \]

then

\[\int_{1}^{x} \frac{u^{\gamma_1 + \gamma_2 - 2}}{\nu(u) \log^2 u} \mathcal{F}_{1,5}(u) \, du \ll \int_{1}^{x} \frac{u^{\gamma_1 + \gamma_2 - 2}}{\nu(u) \log^2 u} \, du \ll \frac{x^{\gamma_1 + \gamma_2 - 1}}{\log^2 x}. \]
Therefore, we conclude that
\[
\sum_{h \leq (\log x)^3 \atop 2 \mid h} S_{11} = \gamma_1 \gamma_2 x^{\gamma_1 + \gamma_2 - 1} \log x + O\left(\frac{x^{\gamma_1 + \gamma_2 - 1}}{\log x} \right).
\]

By a similar method, we have
\[
\sum_{h \leq (\log x)^3 \atop 2 \mid h} S_{12} \ll \frac{x^{\gamma_1 + \gamma_2 - 1}}{\log x^{3/2 - \varepsilon}}.
\]

3.2. Estimation of S_2. After a partial summation, we apply Lemma 2.5 and obtain that
\[
S_2 = \gamma \sum_{3 \leq n \leq x} n^{\gamma_1 - 1} f_h(n) \sum_{1 \leq |k| \leq K} a_k (e(k(n + h)^{\gamma_2}) - e(k(n + h)^{\gamma_2}))
\]
\[
\ll x^{\gamma_2 - 1} \max_{N \leq x} \sum_{1 \leq k \leq K} \sum_{3 \leq n \leq N} n^{\gamma_1 - 1} f_h(n) e(k(n + h)^{\gamma_2}).
\]

We define a complex function $c(k, h)$ such that
\[
\left| \sum_{3 \leq n \leq N} n^{\gamma_1 - 1} f_h(n) e(k(n + h)^{\gamma_2}) \right| = c(k, h) \sum_{3 \leq n \leq N} n^{\gamma_1 - 1} f_h(n) e(k(n + h)^{\gamma_2}).
\]

Note that $|c(k, h)| = 1$ and $c(k, h) = 0$ if $k = 0$. Then by a similar argument to (3.1), we have
\[
\sum_{h \leq (\log x)^3 \atop 2 \mid h} S_2 \ll x^{\gamma_2 - 1} \max_{N \leq x} \sum_{1 \leq k \leq K} \sum_{1 \leq l \leq 5} \int_{3}^{N} \frac{u^{\gamma_1 - 1}}{\nu(u) \log^2 u} F_{2, l}(u) \, du,
\]

where
\[
F_{2,1}(u) := \sum_{h \geq 1 \atop 2 \mid h} \nu(u)^h c(k, h) e(k(u + h)^{\gamma_2});
\]
\[
F_{2,2}(u) := \sum_{h \geq 1 \atop 2 \mid h} \mathcal{G}_0(\{0, h\}) \nu(u)^h c(k, h) e(k(u + h)^{\gamma_2});
\]
\[
F_{2,3}(u) := \frac{(-1)}{\nu(u) \log u} \sum_{h \geq 1 \atop 2 \mid h} \sum_{1 \leq t \leq h - 1} \mathcal{G}_0(\{t, h\}) \nu(u)^h c(k, h) e(k(u + h)^{\gamma_2});
\]
\[
F_{2,4}(u) := \frac{(-1)}{\nu(u) \log u} \sum_{h \geq 1 \atop 2 \mid h} \sum_{1 \leq t \leq h - 1} \mathcal{G}_0(\{t, h\}) \nu(u)^h c(k, h) e(k(u + h)^{\gamma_2});
\]
\[
F_{2,5}(u) := \frac{1}{(\nu(u) \log u)^2} \sum_{h \geq 1 \atop 2 \mid h} \sum_{1 \leq t_1 < t_2 \leq h - 1} \mathcal{G}_0(\{t_1, t_2\}) \nu(u)^h c(k, h) e(k(u + h)^{\gamma_2}).
\]

By Lemma 1.2, we have
\[
\max (F_{2,1}(u), F_{2,2}(u)) \ll |k|^{-4},
\]
provided that $|k| \geq (\log u)^{-1}$, which is sufficient that $u \geq 4$. This gives that

$$x^{\gamma_2 - 1} \max_{N \leq x} \sum_{1 \leq l \leq K} \sum_{1 \leq k \leq K} \int_{\mathbb{R}} u^{\gamma_1 - 1} \frac{F_{2,l}(u)}{\nu(u) \log^2 u} du \ll x^{\gamma_2 - 1} \sum_{1 \leq k \leq K} \left(1 + x^{\gamma_1} (\log x)^{-2} k^{-4}\right) \ll x^{\gamma_1 + \gamma_2 - 1} (\log x)^{-2}.$$

Similar to estimation of (3.4), by Lemma 2.1 and Lemma 1.2 we have

$$\max \left\{ F_{2,3}(u), F_{2,4}(u) \right\} \ll \frac{1}{\log u} \sum_{h \geq 1} h^{1/2 - \epsilon/2} \nu(u)^h c(k, h) e(k (u + h)^{\gamma_2})$$

and

$$F_{2,5}(u) = \frac{1}{(\nu(u) \log u)^2} \sum_{h \geq 1} \left(-\frac{1}{2} h \log h + \frac{1}{2} Ah + O(h^{1/2 + \epsilon})\right)$$

$$\cdot \nu(u)^h c(k, h) e(k (u + h)^{\gamma_2})$$

$$= \frac{1}{(\nu(u) \log u)^2} \left(-\frac{1}{2} R_{1,1;j,k}(u) + \frac{1}{2} AR_{1,0;j,k}(u) + O(R_{1/2 + \epsilon/2,0;j,k}(u))\right)$$

$$\ll (\log u)^{-1} k^{-4}.$$

Combining (3.5) and (3.6), we have

$$x^{\gamma_2 - 1} \max_{N \leq x} \sum_{1 \leq l \leq K} \sum_{1 \leq k \leq K} \int_{\mathbb{R}} u^{\gamma_1 - 1} \frac{F_{2,k}(u)}{\nu(u) \log^2 u} du \ll x^{\gamma_1 + \gamma_2 - 1} (\log x)^{-2}.$$

3.3. Estimation of S_3. Similar to the estimation of S_1, we write $S_3 = S_{31} + O(S_{32})$, where

$$S_{31} := \sum_{n \leq x} \gamma_2 n^{\gamma_2 - 1} \sum_{1 \leq j \leq J} f_h(n) a_j (e(j(n + 1)^{\gamma_1}) - e(jn^{\gamma_1}))$$

and

$$S_{32} := \sum_{n \leq x} hn^{\gamma_2 - 2} \sum_{1 \leq j \leq J} f_h(n) a_j (e(j(n + 1)^{\gamma_1}) - e(jn^{\gamma_1})).$$

We apply the partial summation as Lemma 2.5, then

$$S_{31} \ll x^{\gamma_1 - 1} \max_{N \leq x} \sum_{1 \leq j \leq J} \left| \sum_{3 < n \leq N} n^{\gamma_2 - 1} f_h(n) e(jn^{\gamma_1}) \right|.$$

We define a complex function $c(j, h)$ such that

$$\left| \sum_{3 < n \leq N} n^{\gamma_2 - 1} f_h(n) e(jn^{\gamma_1}) \right| = c(j, h) \sum_{3 < n \leq N} n^{\gamma_2 - 1} f_h(n) e(jn^{\gamma_1}).$$

By the same construction of S_2, we conclude that

$$\sum_{h \leq (\log x)^3} S_{31} \ll x^{\gamma_1 - 1} \max_{N \leq x} \sum_{1 \leq j \leq J} \sum_{l = 1}^{5} \int_{\mathbb{R}} u^{\gamma_1 - 1} \frac{F_{3,l}(u)}{\nu(u) \log^2 u} du.$$
where

\[\mathcal{F}_{3,1}(u) := \sum_{h \geq 1 \atop 2 \mid h} \nu(u)^h c(j, h) e(ju^{n_{1}}); \]

\[\mathcal{F}_{3,2}(u) := \sum_{h \geq 1 \atop 2 \mid h} \mathcal{G}_{0}(\{0, h\}) \nu(u)^h c(j, h) e(ju^{n_{1}}); \]

\[\mathcal{F}_{3,3}(u) := \frac{(-1)}{\nu(u) \log u} \sum_{h \geq 1 \atop 2 \mid h} \mathcal{G}_{0}(\{t, h\}) \nu(u)^h c(j, h) e(ju^{n_{1}}); \]

\[\mathcal{F}_{3,4}(u) := \frac{(-1)}{\nu(u) \log u} \sum_{h \geq 1 \atop 2 \mid h} \mathcal{G}_{0}(\{t, h\}) \nu(u)^h c(j, h) e(ju^{n_{1}}); \]

\[\mathcal{F}_{3,5}(u) := \frac{1}{(\nu(u) \log u)^2} \sum_{h \geq 1 \atop 2 \mid h} \sum_{1 \leq t, \ell \leq h - 1} \mathcal{G}_{0}(\{t_1, t_2\}) \nu(u)^h c(j, h) e(ju^{n_{1}}). \]

Therefore, it follows that

\[\sum_{h \in (\log x)^{3} \atop 2 \mid h} S_{31} \ll x^{n_{1} - 1} \sum_{1 \leq k \leq K} (1 + x^{n_{1}} (\log x)^{-2} k^{-4}) \ll x^{n_{1} + n_{2} - 1} (\log x)^{-2}. \]

Similarly, we know that

\[\sum_{h \in (\log x)^{3} \atop 2 \mid h} S_{32} \ll x^{n_{1} + n_{2} - 1} (\log x)^{-2}. \]

3.4. Estimation of \(S_{4} \)

We apply Lemma 2.5.

\[S_{4} \ll x^{n_{1} - 1} \max_{N \leq x} \sum_{1 \leq j, \ell \leq J} \sum_{3 \leq n \leq N} \left| \sum_{1 \leq k \leq K} a_{i} (e(k(n + h + 1)^{n_{1}}) - e(k(n + h)^{n_{1}})) \right| \]

\[\ll x^{n_{1} + n_{2} - 2} \max_{N \leq x} \sum_{1 \leq j, \ell \leq J} \sum_{1 \leq k \leq K} \sum_{3 \leq n \leq N} f_{h}(n) e(jn^{n_{1}} + k(n + h)^{n_{1}}). \]

By the same method of \(S_{2} \), we have

\[\sum_{h \in (\log x)^{3} \atop 2 \mid h} S_{4} \ll x^{n_{1} + n_{2} - 2} \max_{N \leq x} \sum_{1 \leq j, \ell \leq J} \sum_{1 \leq k \leq K} \left(1 + \int_{4}^{N} \frac{1}{\nu(u) \log^{2} u} (jk)^{-4} du \right) \]

\[+ \int_{3}^{N} \frac{1}{\nu(u) \log^{2} u} \left((\log u)^{-1} (jk)^{-4} + (\log u)^{-2} (jk)^{-4} \right) du \]

\[\ll x^{n_{1} + n_{2} - 2} (JK + x(\log x)^{-2} + x(\log x)^{-3} + x(\log x)^{-4}) \]

\[\ll x^{n_{1} + n_{2} - 1} \left(\frac{1}{(\log x)^{2}} \right). \]
3.5. Estimation of S_5. We show that

\[\sum_{h \leq (\log x)^\frac{3}{2}} S_5 \ll x^{\gamma_1 + \gamma_2 - 1}. \]

(3.7)

The contribution from $k = 0$ of the left-hand side of (3.7) is

\[\ll \sum_{h \leq (\log x)^\frac{3}{2}} \sum_{n \leq x} \gamma_1 n^{\gamma_1 - 1} f_h(n) K^{-1} \ll x^{\gamma_1} K^{-1} \ll x^{\gamma_1 + \gamma_2 - 1 - \varepsilon}. \]

(3.8)

By the same estimation of S_2, the contribution from $k \neq 0$ of the left-hand side of (3.7) is

\[\ll K^{-1} \sum_{h \leq (\log x)^\frac{3}{2}} \sum_{n \leq x} n^{\gamma_1 - 1} f_h(n) \sum_{1 \leq k \leq K} e\left(l(n + h)^{\gamma_2}\right) \ll x^{\gamma_1 + \gamma_2 - 1 - \varepsilon}. \]

3.6. Estimation of S_6. We write $S_6 = S_{61} + O(S_{62})$, where

\[S_{61} := \sum_{n \leq x} \gamma_2 n^{\gamma_2 - 1} f_h(n) \sum_{0 \leq |j| \leq J} b_j \left(e(j n^{\gamma_1}) + e(j (n + 1)^{\gamma_1}) \right) \]

and

\[S_{62} := \sum_{n \leq x} \gamma_2 h n^{\gamma_2 - 2} f_h(n) \sum_{0 \leq |j| \leq J} b_j \left(e(j n^{\gamma_1}) + e(j (n + 1)^{\gamma_1}) \right). \]

We give a brief proof of the bound

\[\sum_{h \leq (\log x)^\frac{3}{2}} S_{61} \ll x^{\gamma_1 + \gamma_2 - 1 - \varepsilon} \]

(3.9)

only, since the bound of

\[\sum_{h \leq (\log x)^\frac{3}{2}} S_{62} \ll x^{\gamma_1 + \gamma_2 - 1 - \varepsilon} \]

can be derived by the same way. By a similar argument of (3.8), the contribution from $j = 0$ of the left-hand side of (3.9) is

\[\ll \sum_{h \leq (\log x)^\frac{3}{2}} \sum_{n \leq x} n^{\gamma_2 - 1} f_h(n) J^{-1} \ll x^{\gamma_2} J^{-1} \ll x^{\gamma_1 + \gamma_2 - 1 - \varepsilon}. \]

Similar to the estimation of S_{31}, the contribution from $j \neq 0$ of the left-hand side (3.9) is

\[\ll J^{-1} \sum_{h \leq (\log x)^\frac{3}{2}} \sum_{n \leq x} n^{\gamma_2 - 1} f_h(n) \sum_{1 \leq j \leq J} e(j n^{\gamma_1}) \ll x^{\gamma_1 + \gamma_2 - 1 - \varepsilon}. \]
3.7. Estimation of S_7 and S_8. We prove that
\[\sum_{h \leq (\log x)^3} S_7 \ll x^{\gamma_1+\gamma_2-1-\varepsilon}. \quad (3.10) \]
The contribution from $k = 0$ of the left-hand side of (3.10) is
\[= b_0 \sum_{h \leq (\log x)^3} \sum_{n \leq x} f_h(n) \left(\sum_{1 \leq j \leq J} a_j (e(j(n + 1)^{\gamma_1}) - e(jn^{\gamma_1})) \right) \]
\[\ll J^{-1} x^{\gamma_1-1} \sum_{h \leq (\log x)^3} \max_{N \leq x} \left| \sum_{3 < n \leq N} f_h(n) e(jn^{\gamma_1}) \right| \ll x^{\gamma_1+\gamma_2-1-\varepsilon}, \]
by the same estimation of S_{31}. The contribution from $k \neq 0$ of the left-hand side of (3.10) is
\[\ll \sum_{h \leq (\log x)^3} \left| \sum_{n \leq x} f_h(n) \left(\sum_{1 \leq j \leq J} a_j (e(j(n + 1)^{\gamma_1}) - e(jn^{\gamma_1})) \right) \right| \]
\[\cdot \left(\sum_{1 \leq k \leq K} b_k e(l(n + h)^{\gamma_2}) \right) \]
\[\ll K^{-1} x^{\gamma_1-1} \sum_{h \leq (\log x)^3} \sum_{1 \leq j \leq J} \max_{N \leq x} \left| \sum_{3 < n \leq N} f_h(n) e(jn^{\gamma_1} + l(n + h)^{\gamma_2}) \right| \]
\[\ll x^{\gamma_1+\gamma_2-1-\varepsilon}, \]
by the same estimation of S_4. The estimation of S_8 is similar.

3.8. Estimation of S_9. We prove that
\[\sum_{h \leq (\log x)^3} S_9 \ll x^{\gamma_1+\gamma_2-1-\varepsilon}. \quad (3.11) \]
The contribution from $j = k = 0$ of the left-hand side of (3.11) is
\[\ll (JK)^{-1} \sum_{h \leq (\log x)^3} \sum_{n \leq x} f_h(n) \ll x^{\gamma_1+\gamma_2-1-\varepsilon}, \]
by the trivial bound. The contribution from $j = 0$ and $k \neq 0$ of the left-hand side of (3.11) is
\[\ll (JK)^{-1} \sum_{h \leq (\log x)^3} \sum_{n \leq x} f_h(n) \sum_{1 \leq l \leq J} e(l(n + h)^{\gamma_2}) \ll x^{\gamma_1+\gamma_2-1-\varepsilon}, \]
by the same estimation of S_2. The contribution from $j \neq 0$ and $k = 0$ of the left-hand side of (3.11) is
\[\ll (JK)^{-1} \sum_{h \leq (\log x)^3} \sum_{n \leq x} f_h(n) \sum_{1 \leq j \leq J} e(jn^{\gamma_2}) \ll x^{\gamma_1+\gamma_2-1-\varepsilon}, \]
by the same estimation of S_{31}. The contribution from $j \neq 0$ and $l \neq 0$ of the left-hand side of (3.11) is

$$\ll (JK)^{-1} \sum_{h \leq (\log x)^3 \atop 2 | h} \left| \sum_{n \leq x} f_h(n) \sum_{1 \leq j, l \leq J} e(j n^{\gamma_1} + l(n + h)^{\gamma_2}) \right| \ll x^{\gamma_1 + \gamma_2 - 1 - \varepsilon},$$

by the same estimation of S_4.

4. PROOF OF THE KEY PROPOSITION

The proof of Proposition 1.6 starts by a similar construction of the proof of [1, Lemma 2.4]. Note that $\nu(u) \asymp 1$ for $u \geq 3$. Let $H := -(\log \nu(n))^{-1}$, which gives that $\nu(u)^h = e^{-h/H}$. Write that

$$\nu(u)^h e(kh) = e^{-h/H_k} \quad \text{with} \quad H_k := \frac{H}{1 - 2\pi i k H}.$$

Since $\Re(h/H_k) = h/H > 0$ for any positive integer h, by the Cahen-Mellin integral it gives that

$$R_{\theta, \vartheta, j, k}(u) = \sum_{h \geq 1} h^\theta (\log h)^\vartheta f(j, k, u, h) e^{-h/H_k}$$

$$= \frac{1}{2\pi i} \int_{4 - i\infty}^{4 + i\infty} \left(\sum_{h \geq 1} \frac{h^\theta (\log h)^\vartheta}{h^s} f(j, k, u, h) \right) \Gamma(s) H_k^s ds,$$

where

$$f(j, k, u, h) := c(j, k, u, h) e(j u^{\gamma_1} + k(u + h)^{\gamma_2} - kh).$$

The case that $j = k = 0$ is the same as [1, Lemma 2.4]. When $k \neq 0$ we have

$$|R_{\theta, 0, j, k}(u)| \leq \frac{1}{2\pi} \int_{4-i\infty}^{4+i\infty} \left(\sum_{h \geq 1} \left| \frac{h^\theta (\log h)^\vartheta}{h^s} \right| \right) |\Gamma(s) H_k^s ds$$

$$\leq \frac{2^\theta}{2\pi} \int_{4-i\infty}^{4+i\infty} |2^{-4}\zeta(4 - \theta)||\Gamma(s) H_k^s| ds$$

$$\leq \frac{2^{\theta - 4}|H_k|^4}{2\pi} \int_{-\infty}^\infty |\zeta(4 - \theta)\Gamma(4 + it)| dt$$

$$\ll |H_k|^4 \left(\frac{H^2}{1 + 4\pi^2 k^2 H^2} \right)^2,$$

which gives that $R_{\theta, 0, j, k}(u) \ll k^{-4}$ if $|k| \geq (\log u)^{-1}$ since $H \asymp \log u$ for $u \geq 3$. The bound for $R_{\theta, 1, j, k}$ is proved similarly by considering $\zeta'(4 - \theta)$.

Secondly, we define

$$T_{j, k}(u) := \sum_{h \geq 1} \mathcal{S}((\{0, h\})) f(j, k, u, h) e^{-h/H_k},$$

for $j, k \in \mathbb{R}$ and $u \geq 3$. Since $\mathcal{S}_0(\{0, h\}) = \mathcal{S}(\{0, h\}) - 1$ for all integers h, and $\mathcal{S}(\{0, h\}) = 0$ if h is odd, it follows that

$$S_{j, k}(u) = T_{j, k}(u) - R_{0, 0, j, k}(u) = T_{j, k}(u) + O(\log u).$$

Hence, to complete the proof of the lemma, it suffices to show that

$$T_{j, k}(u) \ll k^{-4} \text{ if } |k| \geq (\log u)^{-1},$$
since the case that \(j = k = 0 \) is the same as \([1, \text{Lemma 2.4}].\) As in the proof of \([4, \text{Proposition 2.1}],\) we consider the Dirichlet series

\[
F(s) := \sum_{h \geq 1} \mathbb{S}(\{0, h\}) / h^s,
\]

which can be expressed in the form

\[
F(s) = \frac{\zeta(s)\zeta(s + 1)}{\zeta(2s + 2)} \prod_p \left(1 - \frac{1}{(p - 1)^2} + \frac{2p}{(p - 1)^2(p^{s+1} + 1)} \right),
\]

and the final product is analytic for \(\Re(s) > -1.\) Similar to the proof of the first part of the lemma, using the Cahen-Mellin integral with \(k \neq 0 \) we have that

\[
|T_{j,k}(u)| \leq \frac{|H_k|^4}{2\pi} \int_{-\infty}^{\infty} |F(4)\Gamma(4 + it)| \, dt \ll |H_k|^4 = \left(\frac{H^2}{1 + 4\pi^2 k^2 H^2} \right)^2.
\]

Hence \(T_{j,k}(u) \ll k^{-4} \) by a similar argument.

To prove (1.6), we choose

\[
\nu(u)^b e(jkh) = e^{h/H_{j,k}} \quad \text{with} \quad H_{j,k} := \frac{H}{1 - 2\pi i jk H},
\]

and

\[
f(j, k, u, h) := c(j, k, u, h)e(ju^{71} + k(u + h)^{72} - jkh).\]

Everything else follows the same.

5. ACKNOWLEDGEMENT

We thank Prof. Wenguang Zhai and Prof. Jinjiang Li for useful conversations. This work was supported by the National Natural Science Foundation of China (No. 11901447, No. 12271422), the Fundamental Research Funds for the Central Universities (No. xzy012021030) and the Shaanxi Fundamental Science Research Project for Mathematics and Physics (No. 22JSY006).

REFERENCES

[1] W. D. Banks and V. Z. Guo, Consecutive primes and Beatty sequences. J. Number Theory 191 (2018), 158–174.
[2] C. David, L. Devin, J. Nam and J. Schlitt, Lemke Oliver and Soundararajan bias for consecutive sums of two squares Math. Ann. 384 (2022), no. 3-4, 1181–1242.
[3] V. Z. Guo, Almost primes in Piatetski-Shapiro sequences. AIMS Math. 6(2021), no.9, 9536–9546.
[4] R. J. Lemke Oliver and K. Soundararajan, Unexpected biases in the distribution of consecutive primes. Proc. Natl. Acad. Sci. USA 113 (2016), no. 31, E4446–E4454.
[5] H. L. Montgomery and K. Soundararajan, Primes in short intervals. Comm. Math. Phys. 252 (2004), no. 1-3, 589–617.
[6] I. I. Piatetski-Shapiro, On the distribution of prime numbers in the sequence of the form \([f(n)],\) Mat. Sb. 33 (1953), 559–566.
[7] J. Rivat and S. Sargos, Nombres premiers de la forme \([n^c].\) Canad. J. Math. 53 (2001), no. 2, 414–433.
[8] J. Rivat and J. Wu, Prime numbers of the form \([n^c].\) Glasg. Math. J. 43 (2001), no. 2, 237–254.
[9] J. D. Vaaler, Some extremal problems in Fourier analysis. Bull. Amer. Math. Soc. 12 (1985), 183–216.

School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, Shaanxi, China. Email address: guozyv@xjtu.edu.cn

School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, Shaanxi, China. Email address: yuanyi@xjtu.edu.cn