Theoretical and Numerical Aspects of a Third-order Three-point Nonhomogeneous Boundary Value Problem

A. L. M. MARTINEZ¹*, M. R. A. FERREIRA² and E. V. CASTELANI³

Received on December 03, 2018 / Accepted on February 21, 2019

ABSTRACT. In this paper we are considering a third-order three-point equation with nonhomogeneous conditions in the boundary. Using Krasnosel’skii’s Theorem and Leray-Schauder Alternative we provide existence results of positive solutions for this problem. Nontrivials examples are given and a numerical method is introduced.

Keywords: numerical solutions, third-order, boundary value problem, Krasnosel’skii’s Theorem.

1 INTRODUCTION

Multi-point boundary value problems there has been attention of several studies mainly focused on the existence of solutions with qualitative and quantitative aspects, we recommend [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15] and the references therein. It is well known that the Krasnosel’skii’s fixed point theorem, Avery-Peterson and Leggett-Williams theorems are massively used in this line.

In this paper, motived by [13], we discuss the existence of a positive solution for the third-order boundary value problem:

\[u''' + f(t, u, u') = 0, \quad 0 < t < 1, \]
\[u(0) = u'(0) = 0, \quad u'(1) - \alpha u'(\eta) = \lambda, \]

where \(\eta \in (0, 1), \alpha \in [0, \frac{1}{\eta}) \) are constants and \(\lambda \in (0, \infty) \) is a parameter. Essentially, we combine Leray-Schauder Alternative and Krasnosel’skii’s theorem to show the existence of a positive solution for (1.1)-(1.2) without supposing superlinearity on \(f \). Numerical solutions are poorly

*Corresponding author: André L. M. Martinez – E-mail: andrelmmartinez@yahoo.com.br – https://orcid.org/0000-0003-1888-648X
¹Departamento Acadêmico de Matemática, Universidade Tecnológica Federal do Paraná, Cornélio Procópio, Paraná, Brazil – E-mail: andrelmmartinez@yahoo.com.br
²Colegiado de Matemática, Universidade Estadual do Norte do Paraná, Cornélio Procópio, Paraná, Brazil – E-mail: marceloraferreira@gmail.com
³Departamento de Matemática, Universidade Estadual de Maringá, Maringá, Paraná, Brazil – E-mail: evcastelani@uem.br
explored, thus we complement this work presenting a numerical study for (1.1)-(1.2) based on Banach’s Contraction Principle.

2 BACKGROUND MATERIAL

We begin this section by stating the following results.

Theorem 1. Let E be a Banach space, $C \subseteq E$ a closed and convex set, Ω an open set in C and $p \in \Omega$. Then each completely continuous mapping $T : \Omega \to C$ has at least one of the following properties:

(A1) T has a fixed point in Ω.

(A2) There are $u \in \partial \Omega$ and $\lambda \in (0, 1)$ such that $u = \lambda T(u) + (1 - \lambda)p$.

Theorem 2. Let E be a Banach space and let $K \subseteq E$ be a cone in E. Assume Ω_1, Ω_2 are bounded open subsets of E with $0 \in \Omega_1$, $\overline{\Omega}_1 \subset \Omega_2$, and let $T : K \cap (\overline{\Omega}_2 \setminus \Omega_1) \to K$ be a completely continuous operator such that, either

(B1) $\|Tu\| \leq \|u\|, u \in K \cap \partial \Omega_1$, and $\|Tu\| \geq \|u\|, u \in K \cap \partial \Omega_2$, or

(B2) $\|Tu\| \geq \|u\|, u \in K \cap \partial \Omega_1$, and $\|Tu\| \leq \|u\|, u \in K \cap \partial \Omega_2$.

Then T has a fixed point in $K \cap (\overline{\Omega}_1 \setminus \Omega_1)$.

The first theorem is a well-known Leray-Schauder alternative and the second theorem is due to Krasnoselskii, see [1].

Let us set an auxiliary problem that will be useful in our context.

$$u''' + f(t, x, x') = 0, \quad 0 < t < 1, \quad (2.1)$$

$$u(0) = u'(0) = 0, \quad u'(1) - \alpha u'(\eta) = \lambda. \quad (2.2)$$

Related to this problem we have an important lemma.

Lemma 3. Let $x \in C^1[0, 1] := \{ x \in C^1[0, 1], t \in [0, 1] \},$ then we have a unique solution for (2.1)-(2.2). Moreover, this solution is expressed by

$$u(t) = \int_0^1 G(t, s)f(s, x(s), x'(s))ds + \frac{\alpha t^2}{2(1 - \alpha \eta)} \int_0^1 G_1(\eta, s)f(s, x(s), x'(s))ds + \frac{\lambda t^2}{2(1 - \alpha \eta)}, \quad (2.3)$$

where G is the Green’s function:

$$G(t, s) = \frac{1}{2} \left\{ \begin{array}{ll}
(2t - t^2 - s)s, & s \leq t \\
(1 - s)t^2, & t \leq s
\end{array} \right. \quad (2.4)$$
and

\[G_1(t, s) = \frac{\partial G(t, s)}{\partial t} = \begin{cases} (1-t)s, & s \leq t \\ (1-s)t, & t \leq s \end{cases}. \] (2.5)

Proof. If \(u(t) \) is solution of (2.1), we can suppose that

\[u(t) = -\frac{1}{2} \int_0^t (t-s)^2 f(s, x, x') ds + At^2 + Bt + C. \]

From condition (2.2), we have \(B = C = 0 \) and

\[
A = \frac{1}{2(1-\alpha \eta)} \int_0^1 (1-s)f(s, x, x') ds - \frac{\alpha}{2(1-\alpha \eta)} \int_0^\eta (\eta-s)f(s, x, x') ds + \frac{\lambda}{(1-\alpha \eta)} \int_0^\eta (\eta-s) ds.
\]

Thus (2.1)-(2.2) has a unique solution. Furthermore \(u(t) = -\frac{1}{2} \int_0^t (t-s)^2 f(s, x, x') ds + \frac{t^2}{2(1-\alpha \eta)} \int_0^1 (1-s)f(s, x, x') ds \)

\[
- \frac{\alpha t^2}{2(1-\alpha \eta)} \int_0^\eta (\eta-s)f(s, x, x') ds + \frac{\lambda t^2}{2(1-\alpha \eta)}
\]

\[= -\frac{1}{2} \int_0^t (t-s)^2 f(s, x, x') ds + t^2 \frac{1}{2} \int_0^1 (1-s)f(s, x, x') ds \]

\[+ \frac{\alpha \eta t^2}{2(1-\alpha \eta)} \int_0^1 (1-s)f(s, x, x') ds - \frac{\alpha t^2}{2(1-\alpha \eta)} \int_0^\eta (\eta-s)f(s, x, x') ds + \frac{\lambda t^2}{2(1-\alpha \eta)} \]

\[= \frac{1}{2} \int_0^t (-t^2 + 2st - s^2) f(s, x, x') ds + \frac{1}{2} \int_0^t (1-s)t^2 f(s, x, x') ds \]

\[+ \frac{1}{2} \int_0^1 (1-s)^2 f(s, x, x') ds + \frac{\alpha t^2}{2(1-\alpha \eta)} \int_0^\eta (1-s) f(s, x, x') ds \]

\[+ \frac{\alpha \eta t^2}{2(1-\alpha \eta)} \int_0^1 (1-s) \eta f(s, x, x') ds - \frac{\alpha t^2}{2(1-\alpha \eta)} \int_0^\eta (\eta-s)f(s, x, x') ds + \frac{\lambda t^2}{2(1-\alpha \eta)} \]

\[= \frac{1}{2} \int_0^t (2t-t^2-s) f(s, x, x') ds + \frac{1}{2} \int_0^1 (1-s)t^2 f(s, x, x') ds \]

\[+ \frac{\alpha t^2}{2(1-\alpha \eta)} \left(\int_0^\eta (1-\eta) f(s, x, x') ds + \int_0^\eta \eta (1-s) f(s, x, x') ds \right) + \frac{\lambda t^2}{2(1-\alpha \eta)} \]

\[= \int_0^1 G(t, s) f(s, x, x') ds + \frac{\alpha t^2}{2(1-\alpha \eta)} \int_0^1 G_1(s, x, x') ds + \frac{\lambda t^2}{2(1-\alpha \eta)}. \]

\[\square \]

Defining \(x(t) = u(t) \) in Lemma 3 is easy to see that the solution of (1.1)-(1.2) can be expressed as fixed point of the operator \(T : C^1[0, 1] \rightarrow C^1[0, 1] \) defined by:

\[Tu(t) = \int_0^t G(t, s) f(s, u, u') ds + \frac{\alpha t^2}{2(1-\alpha \eta)} \int_0^1 G_1(s, x, x') ds + \frac{\lambda t^2}{2(1-\alpha \eta)}. \] (2.6)
Remark 4. Related to G and G_1 we have useful properties that will be used in the next section.

- For all $(t, s) \in [0, 1] \times [0, 1]:$

 $$0 \leq G_1(t, s) \leq (1 - s)s$$

- For all $(t, s) \in [0, 1] \times [0, 1]:$

 $$G(t, s) \leq G_1(1, s) = \frac{1}{2}(1 - s)s$$

3 POSITIVE SOLUTIONS

Let $E = \{ u \in C^1[0, 1] : u(0) = 0 \}$, where $C^1[0, 1]$ be the Banach space of continuously differentiable functions in $[0, 1]$ equipped with

$$\| u \|_E = \max \{ \| u \|_\infty, \| u' \|_\infty \}.$$

Remark 1. If $u \in E$ then Tu satisfies $Tu(0) = 0$. Besides $\|(Tu)'\|_\infty \geq \|Tu\|_E$.

In order to prove the existence we need to consider some basic assumptions.

$(H1)$ There exist positive constants A, B and β such that

- $$\max_{(s, v_1, v_2) \in [0, 1] \times [-\beta, \beta] \times [-\beta, \beta]} \{ \| f(s, v_1, v_2) \| \} \leq \beta \frac{(1 - \alpha \eta)6B}{1 + \alpha(1 - \eta)}$$

- $$\lambda \leq A \beta (1 - \alpha \eta)$$

- $$A + B \leq 1.$$

Lemma 2. Suppose that $(H1)$ holds. Thus the problem (1.1)-(1.2) has a solution $u^* \in E$ with $\|u^*\|_E \leq \beta$.

Proof. Let us consider the Theorem 1 with $p = 0$ and $\Omega = \{ u \in E : \|u\|_E < \beta \}$.

We claim that T is continuous and completely continuous. In fact, the continuity follows immediately from the Lebesgue dominated convergence theorem and noting that

$$|T(u)(t) - T(u_n)(t)| \leq \int_0^1 G(t, s) \left| f(s, u(s), u'(s)) - f(s, u_n(s), u'_n(s)) \right| ds +$$

$$+ \frac{\alpha^2}{2(1 - \alpha \eta)} \int_0^1 G_1(\eta, s) \left| f(s, u(s), u'(s)) - f(s, u_n(s), u'_n(s)) \right| ds$$

$$\leq \int_0^1 G_1(1, s) \left| f(s, u(s), u'(s)) - f(s, u_n(s), u'_n(s)) \right| ds.$$
with \(u, u_0 \in E \). To show complete continuity we will use the Arzela-Ascoli's theorem. Let \(\Omega \subseteq E \) be bounded, in other words, there exists \(\Lambda_0 > 0 \) with \(\| u \| \leq \Lambda_0 \) for each \(u \in \Omega \). Now if \(u \in \Omega \) we have

\[
| (Tu)'(t) | = \left| \int_0^1 G_1(t,s)f(s,u,u')ds + \frac{\alpha t}{1-\alpha \eta} \int_0^1 G_1(\eta,s)f(s,u,u') + \frac{\lambda t}{1-\alpha \eta} \right| \\
\leq \int_0^1 |G_1(t,s)f(s,u,u')ds| + \frac{\alpha t}{1-\alpha \eta} \int_0^1 |G_1(\eta,s)f(s,u,u')| + \frac{\lambda t}{1-\alpha \eta} \\
\leq \max_{t \in [0,1]} \frac{1-\alpha \eta + \alpha t}{1-\alpha \eta} \int_0^1 |(1-s)f(s,u,u')ds| + \frac{\lambda t}{1-\alpha \eta} \\
\leq \frac{1+\alpha\left(-\eta+1\right)}{1-\alpha \eta} \int_0^1 |(1-s)f(s,u,u')ds| + \frac{1}{1-\alpha \eta} \\
\leq \frac{1+\alpha\left(-\eta+1\right)}{1-\alpha \eta} \int_0^1 |f(s,v_1,v_2)| + \frac{\lambda}{1-\alpha \eta} \\
\leq \frac{1+\alpha\left(-\eta+1\right)}{1-\alpha \eta} \max |f(s,v_1,v_2)| + \frac{\lambda}{1-\alpha \eta} \\
\leq \frac{1}{1-\alpha \eta} \left[\frac{1+\alpha(1-\eta)}{6} \max |f(s,v_1,v_2)| + \frac{\lambda}{1-\alpha \eta} \right] \\
\leq \frac{1}{1-\alpha \eta} \left[\frac{1+\alpha(1-\eta)}{6} \beta(1-\alpha \eta)6B + A \beta(1-\alpha \eta) \right] \\
\leq \beta A + \beta B \leq \beta.
\]

Therefore, \(\| u \| \leq \beta \) and (A2) in Theorem 1 cannot occur. Thus (A1) holds and there is \(u^* \in E \) such that \(\| u^* \| \leq \beta \).

Theorem 3. Suppose that (H1) holds and \(f(s,u,v) \geq 0, \forall (s,u,v) \in [0,1] \times [-\beta,\beta] \times [-\beta,\beta] \).
Then (1.1)–(1.2) has at least one positive solution \(u^* \in E \).

Proof. We start the proof defining the cone \(K \subseteq E \) by

\[
K = \{ u \in E : u \geq 0, u(0) = 0, u'(0) = 0 \}.
\]

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
From \((H1)\) and the definition of \(G\) and \(G_1\), we have that \(T\) applies \(K\) in \(K\). As seen in the last result, \(T\) is completely continuous.

We shall apply Theorem 2. Thus, we will define \(\Omega_1 = \{ u \in E; \|u\|_E < \beta \}\), \(\Omega_2 = \{ u \in E; \|u\|_E < \alpha \}\) and we will show that the following conditions are true for all \(u \in K\):

\[(a)\] if \(\|u\|_E = \alpha\) then \(\|Tu\|_E \leq \alpha\);

\[(b)\] if \(\|u\|_E = \beta\) then \(\|Tu\|_E \geq \beta\).

In fact, the demonstration of \((a)\) is similar to the proof of the Lemma 2. To prove \((b)\) is necessary to verify that there is \(\gamma > 0\) with \(\|Tu\|_E \geq \|u\|_E\), \(\forall u \in K \cap \partial \Omega_3\), where \(\Omega_3 = \{ u \in E; \|u\|_E < \gamma \}\).

Let us assume that the inequality is false, that is, for every \(\gamma\) such that \(\beta > \gamma > 0\) there exists \(u \in E\) with \(\|u\|_E = \gamma\) and \(\|Tu\|_E < \gamma\). Thus for all \(n \in \{1,2,\cdots\}\) with \(\frac{1}{n} < \alpha\), we can find \(u_n \in K\) such that

\[\|u_n\|_E = \frac{1}{n} \quad \text{and} \quad \|Tu_n\|_E < \frac{1}{n}.\]

Then \(\|u_n\|_E \rightarrow 0\) and \(\|Tu_n\|_E \rightarrow 0\), when \(n \rightarrow \infty\). Being \(T\) continuous, we have \(\|T0\|_E = 0\). On the other hand, using \((H1)\) and the definition of \(G\) and \(G_1\) we have

\[\|T0\|_\infty \geq \max_{t \in [0,1]} \left\{ \frac{\lambda t^2}{2(1-\alpha n)} \right\},\]

\[\geq \frac{\lambda}{2(1-\alpha n)} > 0\]

which is a contradiction. Therefore we have the result. \(\Box\)

Remark 4. Note that the most important step in the proof of Theorem 3 is to impose conditions to conclude that 0 is not fixed point of \(T\).

Example 3.1. Let us consider (1.1)-(1.2) with

\[f(t,u,v) = \frac{1}{4}t + u^2 + v^2\]

\[\eta = \frac{1}{10}, \quad \alpha = \frac{1}{3}, \quad \lambda = \frac{1}{4}\]

Choosing the constants

\[\beta = 10, \quad A = 0.54, \quad B = 0.45,\]

we can easily verify that in these conditions the hypotheses \((H1)\) are satisfied.
Example 3.2. Let us define

\[f(t, u, v) = \frac{1}{4}t + \sin(u) + \frac{1}{4}\cos(v) \]

\[\eta = \frac{1}{9}, \; \alpha = \frac{1}{6}, \; \lambda = \frac{14}{10} \]

As before, choosing the constants

\[\beta = 2, \; A = 0.75, \; B = 0.2, \]

we can verify that (H1) is satisfied.

4 NUMERICAL SOLUTIONS

In this section we show the existence and uniqueness for (1.1)-(1.2) using Banach Fixed Point Theorem. This approach is classical but very important to define numerical methods for our problem. Let us consider the iterative sequence

\[u^{k+1} = T(u^k) \]

and the basic assumptions

(H2) \[|f(s, u, u') - f(s, v, v')| \leq A \max \{|u(s) - v(s),|u'(s) - v'(s)|\} \]

(H3) \[-\frac{r^2 + r}{2} + \frac{\alpha \eta (-\eta + 1)}{2(1-\alpha \eta)} \leq \frac{1}{A}. \]

Theorem 1. Suppose that (H1), (H2) and (H3) are satisfied. Then (1.1)- (1.2) has a unique solution \(u \) with \(||u||_E \leq \beta \). Moreover, \(u^{k+1} = T(u^k) \rightarrow u \).

Proof. Let us consider \(u, v \in \Omega \) with \(||u||_E \leq \beta \) and \(||v||_E \leq \beta \). Then

\[||Tu - Tv||_E = ||(Tu - Tv)'||_\infty \]

\[= \left| \int_0^1 G_1(t,s)[f(s, u, u') - f(s, v, v')]ds + \frac{\alpha t}{1-\alpha \eta} \int_0^1 G_1(t,s)[f(s, u, u') - f(s, v, v')]ds \right| \]

\[\leq A \max_s \{|u(s) - v(s),|u'(s) - v'(s)|\} \left(\int_0^1 G_1(t,s)ds + \frac{\alpha t}{1-\alpha \eta} \int_0^1 G_1(\eta, s)ds \right) \]

\[\leq A \max_s \{|u(s) - v(s),|u'(s) - v'(s)|\} \left(-\frac{r^2 + r}{2} + \frac{\alpha \eta (-\eta + 1)}{2(1-\alpha \eta)} \right) \]

Using (H3) we obtain

\[\leq A \max_s \{|u(s) - v(s),|u'(s) - v'(s)|\} \frac{1}{A} \]

\[\leq \max_s \{|u(s) - v(s),|u'(s) - v'(s)|\} = ||u - v||_E \]

Motivated by the last result we can define Algorithm 1.

In sequence we are presenting some examples in order to establish the effectiveness of Algorithm 1. In tables, \(\varepsilon^k_u \) denotes \(||u^k - u^*||_\infty \) where \(u^* \) is the exact solution, \(\varepsilon^k \) denotes \(||u^{k+1} - u^k||_\infty \) and \(\varepsilon^k = \frac{||u^{k+1} - u^k||_\infty}{||u^{k+1}||_\infty} \). Still, “It” denotes “iteration”.

Tend. Mat. Apl. Comput., 20, N. 3 (2019)
Algorithm 1 Fixed-Point

1: Define an uniformly distributed mesh \(\{x_j\} \) in \([0, 1]\)
2: Define an initial approximation \(u_j^0 = u^0(x_j) \)
3: for \(k = 0, 1, 2, \ldots \), do
4: Compute \(u_j^k \) using finite differences
5: Compute \(u_j^{k+1} \) using
 \[u^{k+1} = T(u^k) \text{ and Trapezoidal Rule} \]
6: Test the convergence
7: end for

Example 4.1. In this example, we consider

\[f(x, u, u') = -u' \]
\[\eta = \frac{\pi}{4}, \alpha = \frac{1}{10}, \lambda = 0.770760306689242 \]

The analytical solution is \(u^*(x) = 1 - \cos(x) \). The Table 1 contains results of application in Example 4.1.

We can make additional tests. From Theorem 3 we have a solution for Examples 3.1 and 3.2 but in both case, we do not know which they are. Let us apply Algorithm 1 in these problems. For this purpose, we can consider the condition

\[\frac{\|u^{k+1} - u^k\|}{\|u^{k+1}\|_\infty} < 10^{-4} \]

as stopping criterion for the algorithm. The results for these examples are presented in Table 2 and 3, respectively. The illustrations of these results are given in Figure 1 and 2.
Table 1: Algorithm 1 considering Example 4.1.

It	ε^k_{iu}	ε^k	\bar{e}^k
1	0.104585227251908	0.355112466879952	1.000000000000000
2	0.072538564385106	0.03204662866802	0.082773878760819
3	0.069264937033799	0.003273627351307	0.008384612437847
4	0.068925441261629	0.000339495772170	0.000868781674432
5	0.068890166416009	0.00035274845620	0.00090261428243

Table 2: Algorithm 1 considering Example 3.1.

It	ε^k_{iu}	ε^k	\bar{e}^k
1	-	0.168278823890335	1.000000000000000
2	-	0.007563461402919	0.043012756518181
3	-	0.000744660869474	0.004216964422657
4	-	0.000077049209989	0.000436134198292

Table 3: Algorithm 1 considering Example 3.2.

It	ε^k_{iu}	ε^k	\bar{e}^k
1	-	0.740971458506793	1.000000000000000
2	-	0.010141509530254	0.013876702158219
3	-	0.000276799190473	0.000378602975785
4	-	0.000007307338952	0.000009995000056

Figure 1: Numerical solution obtained from Example 1 using Algorithm 1.

Figure 2: Numerical solution obtained from Example 2 using Algorithm 1.
RESUMO. Neste artigo, consideramos uma equação com três pontos de fronteira de terceira ordem com condições de contorno não homogêneas. Com uso do Teorema de Krasnoselskii e da Alternativa de Leray-Schauder, apresentamos resultados de existência para soluções positivas. Exemplos não triviais são fornecidos e um método numérico é introduzido.

Palavras-chave: soluções numéricas, terceira-ordem, problema de valor de contorno, Teorema de Krasnoselskii.

REFERENCES

[1] R.P. Agarwal, M. Meehan & D. O’Regan. “Fixed point theory and applications”, volume 141. Cambridge university press (2001).

[2] D. Anderson. Multiple Positive Solutions for a Three-Point Boundary Value Problem. *Mathematical and Computer Modelling*, 27(6) (1998), 49–57.

[3] D.R. Anderson. Green’s function for a third-order generalized right focal problem. *Journal of Mathematical Analysis and Applications*, 288(1) (2003), 1–14. doi:10.1016/S0022-247X(03)00132-X.

[4] D.R. Anderson & J.M. Davis. Multiple Solutions and Eigenvalues for Third-Order Right Focal Boundary Value Problems. *Journal of Mathematical Analysis and Applications*, 267(1) (2002), 135–157. doi:10.1006/jmaa.2001.7756. URL http://linkinghub.elsevier.com/retrieve/pii/S0022247X0197756X.

[5] A. Boucherif & N. Al-Malki. Nonlinear three-point third-order boundary value problems. *Applied Mathematics and Computation*, 190(2) (2007), 1168–1177. doi:10.1016/j.amc.2007.02.039. URL http://linkinghub.elsevier.com/retrieve/pii/S0096300307001476.

[6] H. Chen. Positive solutions for the nonhomogeneous three-point boundary value problem of second-order differential equations. *Math. Comput. Modelling*, 45(7-8) (2007), 844–852. doi:10.1016/j.mcm.2006.08.004. URL http://dx.doi.org/10.1016/j.mcm.2006.08.004.

[7] Z.B. Fei & Xiangli. Existence of triple positive solutions for a third order generalized right focal problem. *Math. Inequal. Appl*, 9(3) (2006), 2006.

[8] J. Graef & B. Yang. Multiple Positive Solutions to a Three Point Third Order Boundary Value Problem. *Discrete and Continuous Dynamical Systems*, 2005 (2005), 337–344.

[9] Y. Lin & M. Cui. A numerical solution to nonlinear multi-point boundary value problems in the reproducing kernel space. *Mathematical Methods in the Applied Sciences*, 34(1) (2011), 44–47. doi: 10.1002/mma.1327.

[10] Z. Liu & F. Li. On the existence of positive solutions of an elliptic boundary value problem. *Chinese Ann. Math. Ser. B*, 21(4) (2000), 499–510. doi:10.1142/S0252959900000492. URL http://dx.doi.org/10.1142/S0252959900000492.
[11] R. Ma. Existence Theorems for a Second Order m-Point Boundary Value Problem. *Journal of Mathematical Analysis and Applications*, 211(2) (1997), 545–555. doi:10.1006/jmaa.1997.5416. URL http://www.sciencedirect.com/science/article/pii/S0022247X97954160.

[12] Y.H. Ma & R.Y. Ma. Positive solutions of a singular nonlinear three-point boundary value problem. *Acta Math. Sci. Ser. A Chin. Ed.*, 23(5) (2003), 583–588. doi:10.1016/j.jmaa.2004.10.029.

[13] Y. Sun. Positive solutions for third-order three-point nonhomogeneous boundary value problems. *Applied Mathematics Letters*, 22(1) (2009), 45–51. doi:10.1016/j.aml.2008.02.002. URL http://linkinghub.elsevier.com/retrieve/pii/S0893965908000827.

[14] Q.L. Yao. The existence and multiplicity of positive solutions for a third-order three-point boundary value problem. *Acta Mathematicae Applicatae Sinica*, 19(1) (2003), 117–122. doi:10.1007/s10255-003-0087-1.

[15] H. Yu, L. Haiyan & Y. Liu. Multiple positive solutions to third-order three-point singular semipositone boundary value problem. *Proceedings Mathematical Sciences*, 114(4) (2004), 409–422.