Experimental nonclassicality in a causal network without assuming freedom of choice

Emanuele Polino,1 Davide Poderini,1, 2 Giovanni Rodari,1 Iris Agresti,1 Alessia Suprano,1 Gonzalo Carvacho,1 Elle Wolfe,3, ∗ Askery Canabarro,2, 4 George Moreno,2, 5 Giorgio Milani,1 Robert W. Spekkens,3 Rafael Chaves,2, 6 † and Fabio Sciarrino1, ‡
1 Dipartimento di Fisica - Sapienza Università di Roma, P.le Aldo Moro 5, I-00185 Roma, Italy
2 International Institute of Physics, Federal University of Rio Grande do Norte, 59078-970, P. O. Box 1613, Natal, Brazil
3 Perimeter Institute for Theoretical Physics, 31 Caroline St. N, Waterloo, Ontario, N2L 2Y5, Canada
4 Grupo de Física da Matéria Condensada, Núcleo de Ciências Exatas - NCEex, Campus Arapiraca, Universidade Federal de Alagoas, 57309-005, Arapiraca, AL, Brazil
5 Departamento de Computação, Universidade Federal Rural de Pernambuco, 52171-900, Recife, Pernambuco, Brazil
6 School of Science and Technology, Federal University of Rio Grande do Norte, Natal, Brazil

In a Bell experiment, it is natural to seek a causal account of correlations wherein only a common cause acts on the outcomes. For this causal structure, Bell inequality violations can be explained only if causal dependencies are modelled as intrinsically quantum. There also exists a vast landscape of causal structures beyond Bell that can witness nonclassicality, in some cases without even requiring free external inputs. Here, we undertake a photonic experiment realizing one such example: the triangle causal network, consisting of three measurement stations pairwise connected by common causes and no external inputs. To demonstrate the nonclassicality of the data, we adapt and improve three known techniques: (i) a machine-learning-based heuristic test, (ii) a data-seeded inflation technique generating polynomial Bell-type inequalities and (iii) entropic inequalities. The demonstrated experimental and data analysis tools are broadly applicable paving the way for future networks of growing complexity.

I. INTRODUCTION

Bell’s theorem [1], more than any other result, elucidates the manner in which quantum theory necessitates a departure from a classical worldview [2, 3]. Recently, it has been realized that it can be understood as a no-go result for providing a satisfactory account of quantum correlations using a classical causal model [4–7]. Under this reframing, violating a Bell inequality can be understood as attesting to the necessity of using an intrinsically quantum notion of a causal model to achieve a causal account of the correlations [5, 6, 8–13], and thus as witnessing nonclassicality. Furthermore, it becomes clear that such an analysis can be generalized to causal structures that are distinct from the Bell scenario [5, 14–26].

Such generalizations are highly relevant to the problem of developing quantum technologies. In the context of the Bell scenario alone, the possibility of witnessing nonclassicality has applications ranging from quantum cryptography [27] to self-testing [28] and communication complexity problems [29], as well as device-independent information processing [30, 31], where the processing can be accomplished while relaxing what needs to be known about the inner workings of the devices. Given that tasks such as these are also of interest in arbitrary quantum networks [32–34], which can have complex topologies, it is evident that there is a need for new data analysis tools appropriate for witnessing nonclassicality in generic causal structures (see review in Ref.[25]). Moreover, so far, all the demonstrations of quantum nonlocality, in the Bell scenario (Fig.1(a)) or in complex networks, relied on the use of external inputs, variables whose values can be freely chosen by the experimenter and which serve to switch between different measurement settings [35–39]. The free choice of measurements lies at the basis of Bell’s theorem [40] and in experimental demonstrations, this freedom has to be assumed, or at best made be as plausible as possible [41, 42]. By contrast, quantum networks with several independent sources allow the demonstration of nonclassicality without the need for external freely chosen inputs, replacing the freedom of choice assumption with the assumption of independence of the sources [5, 19, 43–45].

In spite of its significance, this challenge remains largely unexplored, especially from the experimental perspective. This work is a contribution to this effort. We undertake the experimental investigation of a causal structure that has attracted growing attention [5, 15, 16, 18, 19, 22, 23, 43, 46–55]: the “triangle scenario”, depicted in Fig. 1(b). Here, three distant parties each receives a share from two out of three independent sources, and in stark contrast to the Bell scenario, each party implements a single measurement on the systems in its lab, rather than having the freedom to choose among a set of incompatible measurements.

Using a versatile photonic setup with three independent sources (one sharing entanglement and two sharing classical correlations) and the feedforward of classical information by means of fast optical switches, we provide the first experimental demonstration of classically unrealizable correlations in the triangle structure without the use of external inputs. Importantly, witnessing nonclassicality in this new kind of causal structure goes beyond the standard Bell

Corresponding authors:
∗ ewolfe@perimeterinstitute.ca
† rafael.chaves@ufrn.br
‡ fabio.sciarrino@uniroma1.it
inequality violation and requires a radically different approach. In the course of doing so, we have enhanced some of the existing tools for testing nonclassicality in generic causal structures both from the experimental and the theoretical perspectives. These enhancements are in the service of making the tools applicable to generic causal structures and arbitrary data, thus paving the way for future experiments in causal networks of growing size and complexity.

II. RESULTS

A. Beyond Bell’s theorem

Leveraging Bell’s theorem, Fritz [5] showed the existence of a distribution in the triangle scenario that is realizable quantumly but not classically. Fritz’s result is best understood as a quantum no-go theorem akin to Bell’s 1964 no-go theorem [1] or the tripartite Greenberger-Horn-Zeilinger (GHZ) argument [56]. As with the distributions described in those works, Fritz’s distribution has the feature that certain variables are perfectly correlated, something that is predicted by quantum theory to be possible in principle, but which can never be realized in a real experiment given the unavoidable presence of noise.

It was Clauser, Horne, Shimony, and Holt (CHSH) who first demonstrated how to turn Bell’s argument into an experimental test, by deriving noise-robust inequalities [57]. Similarly, in the tripartite Bell scenario (Fig. 1(c)), the step from the GHZ argument to the possibility of a noise-robust test was achieved by Mermin’s inequality [58]. In the case of the triangle scenario, classical causal compatibility inequalities have also been derived [48] but these unfortunately require a degree of sensitivity higher than can reasonably be achieved in current experimental tests. Note that the inequalities derived in Ref. [51], by contrast, are not noise-robust because they apply only to distributions exhibiting perfect correlations between certain variables, analogously to Bell’s 1964 inequality. New techniques are therefore required to witness nonclassicality in the triangle scenario for the sort of experimental data achievable at present.

Developing new data analysis techniques is also motivated by considerations of utility. If all one seeks to do is to demonstrate the existence of nonclassicality in a given causal structure, then it is clearly sufficient to implement a dedicated experiment that targets a specific distribution and to test an inequality that is known to be able to witness nonclassicality for the targeted distribution. If, on the other hand, one seeks to use nonclassicality in a given causal structure as a resource for various information-processing tasks, then it is clearly of greater utility to have a test that is able to witness nonclassicality for any distribution that is not classically realizable in the given causal structure.

In some cases, this higher bar can be met by determining all of the classical causal compatibility inequalities associated to a given causal structure and testing for violations of any of these [2]. Unfortunately, however, such a complete characterization soon becomes out of reach, even for seemingly simple scenarios [2, 59]. In order to be able to witness nonclassicality on arbitrary data, therefore, it is better to seek a “satisfiability” algorithm, which takes as its input a concrete example of data, and answers the question of classical realizability for that data alone, and in the case of a negative answer, identifies an inequality that is optimized for witnessing its nonclassicality.

We here propose a data-seeded algorithm of this sort that can be used for a generic causal structure. This is achieved by leveraging the fact that the inflation technique for causal inference [18] can reduce the satisfiability problem to a linear program. We also pursue a second route to witnessing nonclassicality on generic data. In this approach, one foregoes deriving inequalities altogether and one simply performs a statistical hypothesis test where the hypothesis is the compatibility of the data with a classical causal model for the given causal structure. Specifically, one implements a variation of the parameters of the model—some of which make explicit reference to the hidden (i.e., unobserved) variables—to try and find the best fit to the data, and one considers the hypothesis falsified at some level of confidence when no good fit can be found. We here show that such hypothesis testing on experimental data can be made feasible for causal networks using the machine learning technique developed in [52] where the topology of the causal network is mapped to the topology of a neural network. Finally, suitably mapping the triangle network to a generalization of Bell’s scenario that incorporates the possibility of measurement dependence (i.e., that abandons the free choice assumption), we also witness the nonclassicality of the data by using an entropic approach, recently introduced in [44].

Note that for the triangle scenario, our goal is to witness nonclassicality of the experimentally realized distribution assuming only that the causal relations among the three measurement nodes and sources are those described by the triangle scenario. If one were to avail oneself of additional assumptions, in particular, assumptions regarding the causal relations among variables within a given laboratory, then one could witness nonclassicality of our experimental data using standard Bell inequalities. Since such additional assumptions do not hold for all setups that can realize a distribution exhibiting a quantum-classical gap, an analysis which leveraged these additional causal assumptions would not achieve the goal of being applicable to arbitrary data.

B. The causal modeling perspective on Bell’s theorem

Bell’s theorem can be seen as a particular instance of a causal inference problem where for a given hypothesis about the causal structure of the experiment, one inquires whether a classical causal model is able to reproduce the observations [4, 6]. In a Bell experiment, a source distributes physical systems between two distant observers—Alice and Bob—, they choose the values of their setting variables, denoted by x and y respectively (these determine which of a set of incompatible measurements is implemented at each lab),
Bell’s theorem [1] asserts that the quantum description can lead to an observable distribution that fails to have a classical explanation in terms of the causal model (1).

C. The triangle scenario

Among the simplest quantum networks beyond the paradigmatic Bell causal structure is the triangle scenario of Fig. 1(b). It is distinguished from the tripartite Bell scenario (depicted in Fig. 1(c)) by the fact that the distant parties are not connected by a 3-way source, but by three 2-way sources.

In the triangle scenario, the correlations that admit a classical realization, i.e., those that are compatible with a classical causal model with the structure of Fig. 1(b), can be written as:

$$p(a,b,c) = \sum_{\lambda_{AB},\lambda_{BC},\lambda_{AC}} p(\lambda_{AB})p(\lambda_{BC})p(\lambda_{AC})$$

$$p(a|\lambda_{AB},\lambda_{AC})p(b|\lambda_{AB},\lambda_{BC})p(c|\lambda_{AC},\lambda_{BC}).$$

By contrast, the correlations which admit of a quantum realization in the triangle network are given by

$$p_Q(a,b,c) = \text{Tr}(\rho_{AB} \otimes \rho_{AC} \otimes \rho_{BC} \cdot M^A_\lambda \otimes M^B_\lambda \otimes M^C_\lambda),$$

where ρ_{AB} denotes the density operator of the state shared between the nodes $\{A,B\}$ (likewise for ρ_{AC} and ρ_{BC}), while $\{M^A_\lambda\}_\lambda$ denotes a POVM on the subsystem in station A (similarly for $\{M^B_\lambda\}_\lambda$ and $\{M^C_\lambda\}_\lambda$).
Figure 2. **Experimental implementation of the triangle network.** The source ρ_{AB} generates polarization-entangled photon pairs in the singlet state $|\Psi^-\rangle$, by pumping with a continuous wave UV laser a periodically poled potassium titanyl phosphate (ppKTP) crystal. Conversely, Λ_{AC} (Λ_{BC}) produces classically correlated states $\{(00)(00)+(11)(11)/2\}$ obtained by splitting the output signal of two single-photon avalanche photodiodes subjected to environmental light noise. In nodes A and B, to implement the measurements needed to reconstruct the probability distribution $p(a,b,c)$, the photons from the source ρ_{AB} are collected by the input single-mode fiber (SMF) of a 5ns rise-time optical switch. In Fritz-like distributions, the measurement result a_0 (b_0) on part of the source Λ_{AC} (Λ_{BC}) determines the observable to be measured on the photon coming from ρ_{AB}, leading to outcomes a_1 (b_1).

In our implementation, this is achieved by appropriately driving the optical switches through a specially designed electronic driver which receives signals coming from Λ_{AC} (Λ_{BC}) and drives the output port of the optical switch based on the results a_0 (b_0). The bit a_1 (b_1) is obtained by performing a polarization measurement on the photons produced by the ppKTP source through a half-waveplate (HWP) and a polarizing beam splitter (PBS), implemented in fiber. In node C, c_0 and c_1 are measured independently by directly feeding the electrical signals produced by Λ_{AC} and Λ_{BC} into a time to digital converter (TDC).

Recently, it has been theoretically and experimentally demonstrated that a quantum triangle network with a setting variable at each station can give rise to nonclassical correlations [63]. This result, however, employs measurement choices for each of the observers. Here, we go a significant step beyond, showing that nonclassical correlations can emerge even without any freedom of choice.

D. The Fritz distribution

In Fritz’s example [64] of a distribution $p_{\mathcal{Q}}(a,b,c)$ that is not classically realizable, a, b and c are 4-valued variables, each of which is conceptualized as a pair of binary variables, $a = (a_0,a_1)$, $b = (b_0,b_1)$ and $c = (c_0,c_1)$. Moreover, one can decompose the quantum system \mathcal{A} as $\mathcal{A} = (A_0,A_1)$, where A_0 is the subsystem appearing in ρ_{AC} and A_1 is the subsystem appearing in ρ_{AB}; analogously for $\mathcal{B} = (B_0,B_1)$ and $\mathcal{C} = (C_0,C_1)$. The example is realized by taking the three POVMs in $M_{\mathcal{Q}}$ in Eq. (4) to have the following form:

\[
\begin{align*}
M^{C_0C_1}_{(c_0,c_1)} &= M^{C_0}_{c_0} \otimes M^{C_1}_{c_1}, \\
M^{A_0A_1}_{(a_0,a_1)} &= M^{A_0}_{a_0} \otimes M^{A_1}_{a_1|a_0}, \\
M^{B_0B_1}_{(b_0,b_1)} &= M^{B_0}_{b_0} \otimes M^{B_1}_{b_1|b_0},
\end{align*}
\]

where $\{M^{C_0}_{c_0}\}_{c_0}$, $\{M^{C_1}_{c_1}\}_{c_1}$, $\{M^{A_0}_{a_0}\}_{a_0}$, $\{M^{A_1}_{a_1}\}_{a_1}$ and $\{M^{B_0}_{b_0}\}_{b_0}$ are all measurements of the σ_z Pauli observable, $\{M^{A_1}_{a_1|a_0}\}_{a_1}$ corresponds to one of the two Pauli observables among $\{\sigma_x,\sigma_z\}$ depending on the value of a_0, and $\{M^{B_1}_{b_1|b_0}\}_{b_1}$ corresponds to one of the two observables among $\{\sigma_x,\sigma_z\}/\sqrt{2},(\sigma_y-\sigma_z)/\sqrt{2}\}$ depending on the value of b_0.

In Fritz’s description of a genuinely quantum distribution in the triangle scenario, the state ρ_{AB} is taken to be, for example, a singlet state $|\Psi^-\rangle = (|01\rangle - |10\rangle)/\sqrt{2}$; while ρ_{AC} and ρ_{BC} are maximally entangled states $\{(00)+(11)/\sqrt{2}\}$. However, since all the measurements on ρ_{AC} and ρ_{BC} are of σ_z, it is sufficient to take these to be a classically corre-
lated state, namely:
\[\Lambda_{AC} = \Lambda_{BC} = (|00\rangle\langle00| + |11\rangle\langle11|)/2. \quad (6) \]

As noted in Ref. [5], to see that Fritz’s distribution is not classically realizable, it suffices to make a connection to a Bell scenario between Alice and Bob. Note that the variables \(a_0\) and \(b_0\) determine the measurements that are implemented on \(A_1\) and \(B_1\). In this respect, they are akin to measurement settings \(x\) and \(y\) in the usual scenario. However, because \(a_0\) and \(b_0\) are outputs in the triangle scenario, they could in principle depend on the common source between Alice and Bob. In the usual Bell scenario, of course, if the setting variable \(x\) (or \(y\)) is correlated with \(\lambda_{AB}\), one cannot derive the Bell inequalities. The assumption that \(x\) and \(y\) are not correlated with \(\lambda_{AB}\) is termed measurement independence (or freedom of choice) and is a consequence of the hypothesis that the causal structure for the usual Bell scenario is that of Fig. 1(a).

For the Fritz distribution in the triangle scenario, one can still infer that \(a_0\) and \(\lambda_{AB}\) are uncorrelated, but now this follows from the fact that \(a_0\) is perfectly correlated with the outcome \(c_0\), which is causally disconnected from \(\lambda_{AB}\). Similarly, the lack of correlation between \(b_0\) and \(\lambda_{AB}\) is inferred from the perfect correlation between \(b_0\) and \(c_1\) and the fact that \(c_1\) is causally disconnected from \(\lambda_{AB}\). If one considers the conditional distribution \(p(a_1, b_1|a_0, b_0)\) that is obtained by making the appropriate Bayesian inversion on a distribution \(p(a, b, c)\) that is classically realizable in the triangle scenario, then given the independence of \(a_0\) (and \(b_0\)) from \(\lambda_{AB}\), this conditional distribution should satisfy the standard Bell inequalities. The fact that the measurements in Fritz’s example have been chosen to ensure that the conditional \(p_Q(a_1, b_1|a_0, b_0)\) violates a standard Bell inequality implies that the distribution \(p_Q(a, b, c)\) is not classically realizable in the triangle scenario.

Any experiment that aims to realize the Fritz distribution in the triangle scenario has the goal of realizing the ideal states and measurements specified above, but due to the inevitability of noise, the states and measurements that are actually implemented are necessarily noisy versions of these. This implies that the correlations between \(a_0\) and \(c_0\) and between \(b_0\) and \(c_1\) will not be perfect, which in turn blocks the inference from the classical realizability of \(p(a, b, c)\) in the triangle scenario to the classical realizability of \(p(a_1, b_1|a_0, b_0)\) in the standard Bell scenario. As such, to witness nonclassicality in such an experiment, one must go beyond the techniques that witness nonclassicality in a standard Bell experiment.

It is worth reiterating here a point made in the beginning of subsection ”Beyond Bell’s theorem”, that our goal is to witness nonclassicality using a data analysis technique that assumes only the causal structure of the triangle scenario. If we associate a laboratory with each of the nodes in the causal structure, then even though our particular experiment involves specific causal relations between systems within the laboratories, the data analysis cannot make use of this extra structure. In other words, we seek a data analysis technique that can witness nonclassicality with-out assuming any such extra structure. This is the sort of assumption that is appropriate for the device-independent paradigm, wherein the experimental devices are presumed to be supplied by an adversary. All that is presumed to be guaranteed is that the causal relations among the laboratories are the ones specified by the triangle scenario. If one could avail oneself of the extra structure that is present in the experiment but not part of the description of the triangle scenario, then standard Bell inequalities would be sufficient to witness nonclassicality. For instance, if one could assume that Alice’s output \(a_0\) was a faithful copy of the classical randomness she shares with Charlie and that Bob’s output \(b_0\) was a faithful copy of the classical randomness he shares with Charlie, then one could infer that neither \(a_0\) nor \(b_0\) could depend on \(\Lambda_{AB}\) and consequently having \(p(a_1, b_1|a_0, b_0)\) violate a Bell inequality would be sufficient to witness nonclassicality. As a second example, if one could assume that the pair of variables \(c_0\) and \(c_1\) that are outputs of Charlie’s laboratory are such that \(c_0\) depends only on the source shared with Alice and \(c_1\) depends only on the source shared with Bob, then the causal structure being assumed is equivalent to a 4-party line-like structure rather than a triangle scenario. In this case, the full set of Bell inequalities for the conditional distribution \(p(a, b, c_1|c_0)\) (where \(a = (a_0, a_1)\) and \(b = (b_0, b_1)\)) are the necessary and sufficient conditions for classicality [65].

In order to be able to witness the nonclassicality of our data assuming only the triangle causal structure, therefore, we cannot rely on standard Bell inequalities. This is why we must have recourse to new data-analysis techniques, such as those presented in subsections ”Bounding measurement dependence and violating an entropic inequality for the triangle network”, ”Violation of a causal compatibility inequality” and ”Bounding measurement dependence and violating an entropic inequality for the triangle network”.

E. Experimental Setup

In our experimental implementation, we used the polarization degrees of freedom of a pair of photons as the two qubits distributed by the source shared between \(A\) and \(B\), with the \(\sigma_\pm\) eigenstates corresponding to the \(\{|H\rangle, |V\rangle\}\) basis of linear polarization. We investigated quantum correlations arising in the triangle network where we aim to have the source between \(A\) and \(B\) prepare the singlet state. Meanwhile, for the source shared by \(A\) and \(C\) and the source shared by \(B\) and \(C\), we aim to have these prepare the classically correlated state of Eq. (6).

Recent years have seen the first experimental implementations of causal structures with a number of independent sources [63, 66–68]. In our implementation, the pair of photons associated to the source between \(A\) and \(B\) are at a wavelength of 810nm, and are generated through spontaneous parametric down-conversion in a ppKTP nonlinear crystal pumped with a 405nm UV CW-laser, placed inside a Sagnac interferometric geometry [69, 70], depicted in the box labelled \(\rho_{AB}\) in Fig. 2. To implement the classically cor-
related sources Λ_{AC} and Λ_{BC}, electrical pulses randomly generated by the shot-noise of distant pairs of single-photon detectors are locally split (boxes labelled Λ_{AC} and Λ_{BC} in Fig. 2); then they are sent to the stations A, C and B, C, respectively, by means of 20m-long electrical cables. Detection of such signals gives values for the bits a_0, b_0, c_0, c_1.

Note that this electrical signal sets up classical correlations (i.e., shared randomness) between Charlie and Alice (Bob), and this is a faithful implementation of the state in Eq. (6).

Due to the probabilistic nature of photon generation and random shot-noise events from detectors, justifying the independence of different sources turns out to be very demanding. This is the reason why the first experimental realization of quantum networks [41, 71, 72] actually involved a single laser source, thereby requiring a device-dependent justification for the supposed independence of the generated quantum states that relies on the knowledge of the inner process of photon generation. Using spatially separated non-synchronized sources, of different natures, enforces the independence of the sources, also having direct applications in quantum communication protocols. Note, however, that the independence of the sources still remains an assumption, considering that this assumption can always be violated by superdeterministic models[73].

To experimentally achieve the implementation of the separable measurement operators as in Eq. (5), the electrical signals arriving at A and B determine the state of ultra-fast optical switches (Nano Speed Ultra-Fast 1x2 by company Photonwares with a switching time equal to ~ 8ns) that affect the measurements on the photons coming from ρ_{AB}. More specifically, based on which one of the two signals arrives in A (B) from Λ_{AC} (Λ_{BC}), the switch will send the photon from ρ_{AB} to two fibers connected to the measurement setups implementing the different polarization measurements. The measurement of the photons is performed by polarization controllers defining the measurement basis followed by in-fiber polarizing beam splitters (PBS) and single photon detectors. Finally, the four detectors in A (B) are electronically connected to a time-to-digital converter, located in the measurement station. The signal from the photon counting, together with the signal from source Λ_{AC} (Λ_{BC}) generate the 4-valued outcome a (b). Conversely, in station C the 4-valued outcome c is given by the two classical signals from Λ_{AC} and Λ_{BC}. Note that the electronic signals generated by the detectors are sent to three separated time-to-digital converters, one for each measurement station A, B, C, and the recorded events are sent for data processing to a computer located outside the laboratory.

We record experimental events by first choosing a small window $w_1 \sim 4.1$ns, to filter in the signals produced simultaneously from the same source Λ_i. This allows us to account mostly for 2-fold events which are due to the same entangled pair, or the same split signal, thus filtering out most of the experimental noise due to the detectors’ dark counts and residual environmental light. The 6-fold coincidence events
are finally computed by employing a time window equal to \(w_2 \sim 20 \mu s \) inside which an event is defined by the arrival of three two-fold coincidences (see Supplementary Note 1 for more details on data analysis). Such a choice of value for the 6-fold coincidence window represents a compromise between two different requirements. On one side, we want to make such a window as narrow as possible to approximately achieve simultaneity, with respect to both the generation and the measurements, which in principle could lead to an implementation directly addressing the locality loophole. On the other, a broader window is necessary to detect a large enough number of 6-fold coincidences, enhancing the events’ rate and thus leading to sufficiently small errors on the measured probabilities in smaller measurement times.

In this demonstration, we do not attempt to achieve space-like separation between the registration of the outcomes \(a, b \) and \(c \). Achieving such a separation would provide the strongest possible justification for the lack of causal influences between the outcomes \(a, b \) and \(c \). It is important to note, however, that it would still not justify the lack of a 3-way common cause.

Furthermore, due to the low efficiencies of the single photon detectors (\(\eta \sim 0.5 \)) and the fact that the threshold values required for closing the detector loophole in the triangle scenario are not yet known, we rely on the fair-sampling assumption. On this point, we note that even for the much simpler case of the Bell scenario, closing the detector loophole required decades of effort.

F. Experimental Results

As stated above, in order to realize the Fritz distribution, it is sufficient to share entanglement only between Alice and Bob’s measurement stations, since Alice and Charlie as well as Bob and Charlie can merely share classical correlations. Moreover, using such classical sources (in our case, a doubled electronic signal) makes it possible to experimentally achieve correlations between Alice and Charlie and between Bob and Charlie that can be almost perfect for the duration of the experiment. Recall that perfect correlation is required for the logic of Fritz’s argument to go through, but demonstrating perfect correlations can never be done in an experiment and, importantly, demonstrating nonclassicality in the triangle network in the manner described by Fritz would boil down to violating a standard Bell inequality (sometimes referred to as disguised network nonlocality [74]). So, we did not use this approach here, as it is the goal of our work to introduce and validate data analysis techniques that would be applicable for any example of a quantum-classical gap in the triangle scenario, including gaps based on distributions that, unlike Fritz’s, could be noisy. Fig. 3 provides a comparison between the theoretical Fritz distribution reported in panel 3a, obtainable with noiseless states and measurement operators, and the experimentally achieved one reported in panel 3b. The latter one was reconstructed from \(\sim 1.4 \cdot 10^6 \) events collected in \(\sim 10 \) hours of data taking, achieving a 6-fold coincidence rate of \(\sim 38.7 \) Hz (see Supplementary Note 2 for the complete distribution).

Even with our approach, employing ultra-fast optical switches and classical correlations shared between \(A \) and \(C \) and between \(B \) and \(C \), the measurement outcomes on the state \(\Lambda_{AC} \) are not perfectly correlated, nor those on \(\Lambda_{BC} \), contrary to the ideal Fritz distribution: specifically, the probability of anti-correlation in each case is found to be \(p_{\text{anticorr}} = 3 \cdot 10^{-5} \). As argued, it is the practical impossibility of achieving perfect correlations which necessitates implementing a hypothesis test for compatibility or a test of causal compatibility inequalities. In what follows, we will focus on three possible avenues: machine learning techniques [52, 75, 76], the inflation method [13, 18, 48, 77] and finally, recently derived entropic inequalities [44].

G. Excluding the hypothesis of classicality with machine learning

We follow the approach in [52], the central idea of which is to encode the structure of the causal network under test in the topology of a neural network. Consider the triangle network with quaternary outputs as depicted in Fig. 1(b), where three sources \(\lambda_{AB}, \lambda_{BC} \) and \(\lambda_{AC} \) send information to three parties, Alice, Bob, and Charlie, each receiving, respectively, the pairs \((\lambda_{AB}, \lambda_{AC}) \), \((\lambda_{AB}, \lambda_{BC}) \) and \((\lambda_{AC}, \lambda_{BC}) \), as schematically shown in Fig. 4 (a). After locally processing the inputs, they flag a number \(a,b,c \in \{0,1,2,3\} \), by sampling the probability distributions \(p(a|\lambda_{AB},\lambda_{AC}) \), \(p(b|\lambda_{AB},\lambda_{BC}) \) and \(p(c|\lambda_{BC},\lambda_{AC}) \) respectively. In the machine learning algorithm, the input layers to the multilayer perceptrons (MLPs) are composed of the independent uniformly distributed random numbers in the unit interval, i.e. \(\lambda_{AB}, \lambda_{BC}, \lambda_{AC} \in [0,1] \), with the restriction in the flow of information mirroring the causal structure of the triangle network: The \(A \)-block of the hidden layer receives random numbers \(\lambda_{AB}, \lambda_{AC} \), the \(B \)-block receives \(\lambda_{AB}, \lambda_{BC} \) and the \(C \)-block receives \(\lambda_{BC}, \lambda_{AC} \). Therefore, individual inputs belong to \(\mathbb{R}^2 \) (i.e. they have length 2).

For the training, we provide batches of \((N_{\text{batch}},2) \) dimension for the corresponding MLP for each of the three blocks.

If a certain probability distribution \(p(a,b,c) \) is compatible with a classical causal model on the triangle causal structure, then a set of three independent neural networks mimicking the topology of the triangle should be able to reproduce the distribution. By numerically sampling over different values of the random numbers \(\lambda_{AB}, \lambda_{BC} \) and \(\lambda_{AC} \) one can construct the approximation \(\hat{p}(a,b,c) \) by averaging the Cartesian product of the output conditional probabilities corresponding to each party. See Methods for more details.

In turn, if the distribution under test is nonclassical, the neural network will be unable to mimic the distribution perfectly, producing considerable errors. To quantify how much the machine model can approximate the target/experimental distribution, we employ the element-wise mean square error (MSE), also termed as L2-norm error, between \(p(a,b,c) \) and \(\hat{p}(a,b,c) \). This is given by
Figure 4. Neural network for the triangle network. (a) Neural Network capable of reproducing distributions compatible with the triangle configuration, where number of layers varies from 3 to 6 and number of neurons is either 16 or 32, yielding 8 distinct architectures. The three sources λ_{AB}, λ_{BC} and λ_{AC} send information to three parties, Alice, Bob, and Charlie, each receiving, respectively, the pairs $\{\lambda_{AB}, \lambda_{AC}\}$, $\{\lambda_{AB}, \lambda_{BC}\}$ and $\{\lambda_{AC}, \lambda_{BC}\}$. (b) The minimum mean square error (MSE) distance achieved by the machine as function of the visibility for the experimental data (solid line) and the comparison with the same distance for theoretical Fritz distribution (dashed line). For distinct visibility values, a different ML architecture is the optimum one, strengthening the advantage of using an assembly of oracles. See Methods and Supplementary Note 3 for specific details.

$$\text{MSE} = \frac{1}{N} \| p(a,b,c) - \hat{p}(a,b,c) \|_2$$ and can be understood as a measure of nonclassicality [76]. By repeated iterations, the neural network can be optimized in order to minimize this distance, since it should be close to zero if the target distribution has a classical model that the machine manages to approximate. Clearly, however, even if the distribution is compatible with the triangle network, due to numerical precision and the finite size of the neural network, the distance will never be exactly zero. To address this issue, we mix our experimental probability $p(a,b,c)$ with the flat distribution $p_f(a,b,c) = 1/64$, which is compatible with the triangle structure, so that the machine is asked to retrieve the best possible model for the mixed distribution $\hat{p} = v p + (1-v) p_f$. If p has no classical explanation, then we expect that, as one increases the weight v of p in the mixed distribution \hat{p}, there is a range of values wherein a classical model of \hat{p} remains possible and MSE is very small, but that there exists a threshold value beyond which MSE begins to increase, and the machine cannot make an almost perfect approximation anymore.

As shown in Fig. 4 (b), only below a certain threshold value around $v_{\text{crit}} = 1/\sqrt{2}$ [52], can the machine learn \hat{p} while it fails to do so for higher values of v. This analysis gives a strong indication of the nonclassicality of p, but given that there is no guarantee that the machine finds the optimal parameters, it does not guarantee it. To overcome this limitation, in the following we present two alternative techniques.

H. Violation of a causal compatibility inequality

In order to demonstrate the nonclassicality of the experimental data relative to the triangle causal network, we seek to identify some causal inequalities which must be satisfied by all distributions compatible with the classical triangle network but which are violated by our experimental statistics. To this end, we turn to the inflation technique for causal inference introduced in Ref. [18].

As detailed in the Methods, the inflation technique relates compatibility with a given causal structure G to feasibility of a linear program (LP). If the LP related to an inflation of G (see Fig. 5(a)) is found to be infeasible, then evidently p is incompatible with G. In our case, G is taken to be the classical triangle scenario causal structure depicted in Fig. 1(b).

In the case of infeasibility, the algorithm returns an infeasibility witness, in the form of an inequality. In this way, we can find a causal compatibility inequality tailored to the specific experimental data we obtained. Using the second order inflation of the triangle network shown in Fig. 5(a), one can derive causal compatibility inequalities (satisfied by all triangle-compatible $p(a,b,c)$) of the form

$$V = \sum_{a_1b_1c_1 \in \{0,1,2,3\}^6 \times 6} \sum_{a_2b_2c_2 \in \{0,1,2,3\}^6} y_{a_1b_1c_1a_2b_2c_2} p(a_1,b_1,c_1) p(a_2,b_2,c_2) \geq 0, \quad (7)$$

where the y are real coefficients.

As further detailed in the Methods, the LP of the inflation technique may be specially adapted to yield elegant looking causal compatibility inequalities; namely, where sets of monomials are each associated to a single (i.e., uniform) coefficient. Working with such an adapted LP can be orders of magnitude less computationally demanding as compared to the unadapted LP. However, it may be the case that despite a given distribution leading to infeasibility in the unadapted primal LP, there may not exist any inequality with restricted coefficients capable of witnessing that fact. As such, one is motivated to carefully select a coefficient restriction which matches the specifically-targeted distribution: one should only impose that a pair of mono-
Inflation technique for the triangle network. (a) The second order inflation graph of the triangle network. Such an inflation doubles the number of latent variables relative to the triangle scenario, having six latent variables \(\{\lambda_{AB}, \lambda_{AC}, \lambda_{BC}\}\). The inflation quadruples the number of observable random variables of the triangle scenario, having twelve observable random variables \(\{a^{(1)}, b^{(1)}, c^{(1)}, a^{(2)}, b^{(2)}, c^{(2)}, a^{(3)}, b^{(3)}, c^{(3)}, a^{(4)}, b^{(4)}, c^{(4)}\}\). Distributions compatible with this inflated structure satisfy symmetry properties, and have marginals corresponding to products of triangle-compatible distributions. This can be exploited to derive suitable causal compatibility inequalities that are violated by the experimental data. (b) This plot depicts the \(64 \times 64\) coefficients \(y_{a_1b_1c_1a_2b_2c_3}\) for a quadratic inequality of the form of Eq. (7) such that the left-hand side is nonnegative on all distributions compatible with the classical triangle scenario, but which evaluates to the negative number \(V_{\text{exp}} = -0.02436 \pm 0.00016\) on our experimental data. The \(x\)-axis ranges over the values of \((a_1, b_1, c_1)\) while the \(y\)-axis ranges over the values of \((a_2, b_2, c_2)\), and the color at a given point denotes the value of \(y_{a_1b_1c_1a_2b_2c_3}\) according to the mapping set out in the legend.

I. Bounding measurement dependence and violating an entropic inequality for the triangle network

Another approach that can be used to robustly demonstrate the nonclassicality of the generated data is to map the triangle network into a modification of the Bell scenario, in a similar way to Fritz’s original proof of nonclassicality in the triangle scenario. In this modification, any amount of measurement dependence is in principle allowed between the hidden variable and the measurement settings. Consequently, even though the scenario is related to Bell’s, the nonclassicality exhibited necessarily goes beyond that which one finds in Bell’s scenario because in the latter measurement dependence allows for a classical account of any correlations. Indeed, in a Bell scenario where causal influences between the source and the measurement settings are allowed, some amount of measurement independence...
Figure 6. Inflation inequality violation vs 6-fold coincidence window. Values of violation of the causal compatibility inequality, which has been optimized over the experimental data corresponding to the blue point (a window \(w_2 \sim 20\,\mu s \)), as a function of the 6-fold coincidence window \(w_2 \). The red shadowed area represents the statistical error on the computed value of \(V_{\text{exp}} \), estimated employing Monte Carlo methods. The blue shadowed region \(\mathcal{L} \) indicates the values obtainable by a classical causal model.

has to be assumed in order to witness nonclassicality from the data \([60, 78, 79]\); otherwise, any violation of a Bell inequality can be explained by classical local models \([80]\).

In the modified scenario, one can use entropic inequalities to put an upper bound on the amount of measurement dependence, as demonstrated in \([44]\). The modification can be understood as a two-step departure from Bell’s scenario. In the first step, depicted in Fig. 7(a), one allows there to be a common cause not only on the pair of outcome variables, but on all four of the observed variables, meaning that a given outcome variable shares a common cause with the setting variable at the opposite wing; this is a relaxation of the assumption of freedom of choice \([41, 60, 61, 81]\). In the second step, one introduces additional observed variables \(c_0c_1 \) and a variable \(\lambda_{AC} \) that is a common cause to Alice’s setting and outcome \((a_0, a_1) \) and \(c_0c_1 \), as well as a variable \(\lambda_{BC} \) that is a common cause to Bob’s setting and outcome \((b_0, b_1) \) and \(c_0c_1 \) (see Fig. 7(b)).

Referring to the DAG of the triangle network shown in Fig. 2, we map the measurement settings of the two stations \(A \) and \(B \) of the Bell scenario to the variables \(a_0 \) and \(b_0 \), and the measurement outcomes are mapped to the variables \(a_1 \) and \(b_1 \). It is clear, therefore, that if one lumps \(a_0 \) and \(a_1 \) together, and similarly for \(b_0 \) and \(b_1 \), the modified Bell scenario can be seen to have the form of the triangle network.

In this modified Bell scenario, shown in Fig. 7(b), one can lower bound the measurement dependence, quantified via the mutual information \(I(\lambda_{AB}:a_0,b_0) \) between the source \(\lambda_{AB} \) and the measurement settings \(a_0 \) and \(b_0 \), relating it with the violation of the CHSH inequality \([61, 82]\). Further, employing the entropic approach \([8, 46, 83, 84]\), this mutual information can also be upper bounded by an entropic function that involves only observable variables and so can be extracted directly from the experimental data. Combining both the upper and lower bounds on \(I(\lambda_{AB}:a_0,b_0) \), one arrives at a Bell inequality blending probabilities and ent-
by 340 standard deviations and thereby demonstrating nonclassicality.

III. DISCUSSION

The triangle scenario has particular novelty as a means of witnessing nonclassicality insofar as there is no known way to obtain classical causal compatibility inequalities for it from standard Bell inequalities. This is in contrast to the two other causal structures distinct from the Bell scenario that have been experimentally investigated previously, namely, the instrumental scenario [24] and the bilocality scenario [66, 68, 71, 72, 85, 86]. In the case of the instrumental scenario, it suffices to process the Bell inequalities by forcing equality between the value of the setting variable at one wing and the value of the outcome variable at the opposite wing [87]. In the case of the bilocality scenario, by post-selecting on the outcome of the measurement that accesses both sources, the other two measurements can be proven to satisfy the Bell inequalities in a classical causal model (via an analogue of entanglement-swapping) [16, 17]. Such short-cuts to deriving noise-robust causal compatibility inequalities, however, are not available in the triangle scenario.

Another peculiar aspect of the triangle scenario is the possibility to show new forms of nonclassicality that do not require the use of external inputs freely chosen by the experimenter, but instead rely on the assumption of independence of the sources, as shown by Fritz [5]. In this work, we realized for the first time a triangle network without external inputs, proving the emergence of nonclassicality in this new regime, up to detection and locality loopholes. This has been possible by employing fast feed-forward of measurement in an optical setup comprising an entangled photon source and two sources of classical correlations. In order to demonstrate the nonclassicality of the experimental data, we had to extend pre-existing data analysis techniques, making them suitable to detect nonclassicality in noisy distributions.

The data analysis techniques we have presented here are also distinguished insofar as they have the capacity to witness nonclassicality for any distribution that might arise in an experiment, whereas previous experiments witnessing nonclassicality in causal structures beyond Bell have used tools that can only witness the nonclassicality of limited classes of target distributions. This approach thus extends data-seeded techniques previously limited to the standard bipartite Bell scenario [2, 3, 88, 89] to the realm of more complex causal networks.

The employed data analysis techniques and aspects of our photonic setup provide a scalable platform in which nonclassicality can be witnessed in networks of growing size and of arbitrary topology. In particular, the implemented measurements are based on local wirings, i.e., separable measurements with classical feedbacks, making the approach scalable. Furthermore, it is widely speculated that the triangle scenario may admit distributions which imply a no-go result whose logic is entirely independent of that of Bell’s theorem [19, 90]. These are likely to require entangled measurements as well as three sources of entanglement, and consequently, integrating such measurements and sources into our set-up may open the way to experimentally targeting distributions which are thought to exhibit these new types of nonclassicality.

Finally, this work can also pave the way for future applications in quantum communications involving several sources and measurement stations.

IV. METHODS

A. Details on the machine learning implementation

The number of samples we sum over, i.e., the batch size, is $N_{\text{batch}} = 10000$. We decided to vary the architecture of the neural network using different number of layers ($n_{\text{layers}} = [3, 4, 5, 6]$) and number of neurons ($n_{\text{neurons}} = [16, 32]$), accounting for an assembly of 8 neural networks independently trained, in order to obtain better approximations by taking the minimum or the average of the predictions. The ensemble of networks also reduces the probability of being trapped in optimization local minima and enhances the relative expressive power of the method in comparison to a single architecture; see Fig. 4 (a). As pointed out in Ref. [52], ideal values for parameters and hyper-parameters vary for distinct triangle scenarios, therefore the strength of the ensemble approach also varies. The reader is referred to the Supplementary Note 3 for more specific details.
B. Details on the Inflation Technique

At its core, the inflation technique at n^{th} order shows that

- **IF:** A distribution p is compatible with a given classical causal structure \mathcal{G}

- **THEN:** For the n^{th} order inflation graph \mathcal{G}' induced by \mathcal{G} there must exist some larger distribution p' pertaining to the observable nodes in \mathcal{G}' such that

 1. p' possesses certain symmetry properties related to automorphisms of \mathcal{G}', and
 2. the distribution $p^\otimes n$ — defined as n identical but independently distributed (I.I.D.) copies of p — arises as a marginal distribution of p'.

These conditions implicitly define a linear program (LP). In the Supplementary Note 4, we elaborate on the required marginal symmetry properties which must be satisfied by distributions compatible with the second order inflation graph depicted in Fig. 5(a).

Farkas’ duality lemma tells us how to extract a certificate of infeasibility whenever a LP is infeasible [91]. Note that Farkas’ lemma applies to convex optimization in general [92]; linear programming is just a special case. For the primal LP defined by second order inflation, the certificate of infeasibility is a dual vector y such that $y \cdot p^\otimes 2 \geq 0$ holds for all instances of $p^\otimes 2$ which make the primal LP feasible. Given such a dual vector y, one certifies the infeasibility of $p_{\text{nonclassical}}^\otimes 2$ — i.e., one certifies the incompatibility of $p_{\text{nonclassical}}$ with a classical causal model with the structure \mathcal{G} — whenever one finds that $y \cdot p_{\text{nonclassical}}^\otimes 2 < 0$. Hence, the certificate y yields a quadratic polynomial inequality satisfied by all distributions p which are compatible with \mathcal{G}.

We employed the “hierarchy” version of inflation defined in Ref. [77] due to its computationally efficient and data-agnostic implementation.

The second order inflation graph of the classical triangle network is depicted in Fig. 5(a), and the p' which is positied to exist would pertain to the twelve observable random variables depicted in Fig. 5(a), namely $\{a^{(1)}, b^{(1)}, c^{(1)}, a^{(2)}, b^{(2)}, c^{(2)}, a^{(3)}, b^{(3)}, c^{(3)}, a^{(4)}, b^{(4)}, c^{(4)}\}$.

The LP implied by inflation is as follows. The condition for the existence of p' can be understood as a collection of very many inequality constraints (every probability which makes up p' must be nonnegative) along with one equality constraint (the sum of all probabilities comprising p' totals unity). The symmetry requirements of p' can be understood as equality constraints relating the various probabilities comprising p'. Finally, the requirement that $p^\otimes 2$ is a marginal of p' can be understood as equating $p^\otimes 2$ evaluated at a particular set of values for its arguments to a sum over all those probabilities of p' which agree on these values. In other words, if p is compatible with \mathcal{G}, then some collection of equality and inequality constraints are simultaneously satisfiable; i.e., some LP should be feasible.

The Farkas infeasibility certificate of the LP defined by inflation constitutes quadratic inequalities which are satisfied by all triangle-compatible distributions but violated by the nonclassical distribution whose triangle-incompatibility is witnessed by inflation. See Supplementary Note 4 for an explicit walk-through of the inflation technique in full detail.

C. Adapting polytope membership LPs to yield symmetric inequalities

It can be insightful to compare the LP defined by inflation to the more familiar LP associated with Bell nonlocality. In Bell nonlocality, a family of conditional probability distributions (a.k.a. a “correlation”) is said to admit a local hidden variable model (LHVM) if and only if corresponding vector of all conditional probabilities lies within the local polytope. When a correlation does not admit a LHVM explanation, then we can always find a separating hyperplane (typically a facet of the local polytope) such that the vector of conditional probabilities associated with the given correlation lies strictly to one side of the hyperplane whereas all LHVM-explainable correlations correspond to vectors of conditional probabilities in or on the other side of the hyperplane. Thus, hyperplanes which distinguish all LHVM-explainable vectors from some other are equivalent to Bell inequalities; these hyperplanes which correspond to facets of the local polytope are equivalent to facet-defining Bell inequalities.

The picture is quite similar when thinking about the LP associated with inflation. Instead of vectors of conditional probabilities, however, we are considering vectors whose elements are products of unconditional probabilities, i.e., vectors of probability monomials. The LP of inflation similarly defines a polytope: a vector of monomials is in the polytope iff the primal LP is feasible; the objective of the dual LP is to return a separating hyperplane such that

1. the given vector of monomials is as far from the hyperplane as possible, and
2. such that all vectors which would make the primal LP feasible lie on or on the other side of the hyperplane.

Without loss of generality, a polytope may be defined in terms of its extremal points. Let $M_{d,n}^d$ be a $d \times n$ matrix whose n columns correspond to the extremal points of the polytope, each of which is a vector in dimension d, and where we have introduced a notation of marking an object’s dimension in superscript for pedagogical clarity in what follows. A vector v^d lies within the polytope (technically, the LP formulations here apply to both bounded polytopes and unbounded polycones) if and only if

$$\exists x^n \quad \text{such that} \quad M_{d,n}^d \cdot x^n = v^d, \quad (10)$$

$$\text{where} \quad x^n \geq 0^n.$$

We can relax the satisfiability LP of Eq. (10) into an optimization problem which measures the degree of primal infeasibility. One natural measure of the infeasibility of
Eq. (10) is defined by the following optimization problem:

\[
\begin{align*}
\max_{x^n, s^n} & \quad -1^n \cdot s^n \\
\text{such that} & \quad M^{d,n} (x^n - s^n) = v^d, \\
\end{align*}
\]

(11)

where \(x^n \geq 0^n \) and \(s^n \geq 0^n \).

Note that if the LP of Eq. (10) can be satisfied, then the objective in Eq. (11) can be reach up to 0; conversely, if the objective in Eq. (11) is strictly negative over all variables which satisfy that LP’s conditions, then the LP in Eq. (10) is evidently infeasible. The formal dual to the above LP can then be used to extract optimal separating hyperplanes. The astute reader may notice that even the reformulated which satisfy that LP’s conditions, then the LP in Eq.(10) then symmetrized inequality \(y^d \). Given a vector \(v^d \) in the row space of the matrix, we can apply the same twirling to obtain \(v^d \), essentially projecting the vector to the symmetric subspace of the group. We now can obtain a separating hyperplane \(y^d \) by applying the dual formulation of the LP in this symmetric subspace. To convert this hyperplane in the symmetric subspace to a hyperplane in the full row space we de-twirl: namely, each row in a given orbit is uniformly associated with the coefficient of that orbit in the symmetric subspace.

There is no loss of generality whatsoever in using this symmetry-adapted version of the LP if the target vector \(v^d \) is also invariant under the group. So, in general, the most efficient way to exploit inherent symmetries in linear programming is to identify the largest symmetry group (acting on both row and column spaces) which leaves both \(M^{d,n} \) and \(v^d \) invariant.

For more information regarding exploiting symmetry in linear programming see Refs. [94–97].

D. Robustness to noise added by varying 2-fold coincidence window

We study the behavior of the nonlocality tests over the addition of noise due to the enlargement of the two-fold coincidence window \(w_2 \). Increasing such a window causes the increase of accidental counts, affecting both the events from the entangled source and those relative to classically correlated signals. From a practical point of view, such noise acts substantially as a white noise on the correlations, that is event pairs which are uniformly and randomly distributed. Considering such effects, we do expect that at some point, increasing the noise, our witnesses will not be able to detect a nonclassical behaviour anymore. This is, in fact, the case. We show the curve of the violation of the inequality, Eq. 7 and Fig. 5(b) inferred by means of the inflation technique, as a function of the 2-fold window \(w_2 \) in Fig. 8. The same study is performed with the value of the violation of the entropic inequality in Eq. (8) as shown in Fig. 9.

DATA AVAILABILITY

The data that support the findings of this study are available in the Supplementary Information and from the corresponding author upon request.
Figure 8. Robustness of the inflation inequality to experimental noise. In this plot we show the achieved value for the inequality from inflation technique, as function of the two-fold coincidence window w_1. As expected, since this increases uncorrelated 2-fold events, the measured correlations become "local" for large enough windows. The leftmost point corresponds to the result reported in subsection "Bounding measurement dependence and violating an entropic inequality for the triangle network", i.e. a window $w_1 \sim 4.1\,\text{ns}$, the plotted error bars are calculated through Monte Carlo technique assuming Poissonian statistics and are smaller than the size of the points. The blue shadowed region L indicates the values obtainable by a classical causal model.

Figure 9. Robustness of the entropic technique to experimental noise. Values of the quantity E_{exp}, as defined in Eq. (8), as function of the two-fold coincidence window w_1. If $w_1 > 25\,\text{ns}$, due to the noise, the entropic witness is not able to detect nonclassicality, resulting in a strictly positive value of the quantity E_{exp}. The leftmost point corresponds to the result reported in subsection "Bounding measurement dependence and violating an entropic inequality for the triangle network", i.e. a window $w_1 \sim 4.1\,\text{ns}$, the plotted error bars are calculated through Monte Carlo technique assuming Poissonian statistics and are smaller than the size of the points.

CODE AVAILABILITY

All the custom code developed for this study is available from the corresponding author upon request.

REFERENCES

[1] J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physics Physique Fizika 1, 195 (1964).
[2] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419 (2014).
[3] V. Scarani, Bell nonlocality (Oxford University Press, 2019).
[4] C. J. Wood and R. W. Spekkens, “The lesson of causal discovery algorithms for quantum correlations Causal explanations of Bell-inequality violations require fine-tuning,” New J. Phys. 17, 033002 (2015).
[5] T. Fritz, “Beyond Bell’s theorem II: Scenarios with arbitrary causal structure,” Comm. Math. Phys. 341, 391 (2016).
[6] H. M. Wiseman and E. G. Cavalcanti, “Causarum Investigatio and the two Bell’s theorems of John Bell,” in Quantum [Un] Speakables II (Springer, 2017) pp. 119–142.
[7] D. Schmid, J. H. Selby, and R. W. Spekkens, “Un-scrambling the omelette of causation and inference: The framework of causal-inferential theories,” arXiv:2009.03297 (2020).
[8] R. Chaves, C. Majenz, and D. Gross, “Information-theoretic implications of quantum causal structures,” Nature comm. 6, 1 (2015).
[9] E. G. Cavalcanti and R. Lal, “On modifications of Reichenbach’s principle of common cause in light of Bell’s theorem,” J. Phys. A. 47, 424018 (2014).
[10] F. Costa and S. Shrapnel, “Quantum causal modelling,” New J. Phys. 18, 063032 (2016).
[11] J.-M. A. Allen, J. Barrett, D. C. Horsman, C. M. Lee, and R. W. Spekkens, “Quantum common causes and quantum causal models,” Phys. Rev. X 7, 031021 (2017).
[12] J. Barrett, R. Lorenz, and O. Oreshkov, “Quantum Causal Models,” (2019), arXiv:1906.10726 [quant-ph].
[13] E. Wolfe, A. Pozas-Kerstjens, M. Grinberg, D. Rosset, A. Acín, and M. Navascués, “Quantum inflation: A general approach to quantum causal compatibility,” Phys. Rev. X 11, 021043 (2021).
[14] B. Yurke and D. Stoler, “Einstein-Podolsky-Rosen effects from independent particle sources,” Phys. Rev. Lett. 68, 1251 (1992).
[15] J. Henson, R. Lal, and M. F. Pusey, “Theory-independent limits on correlations from generalized Bayesian networks.”
New J. Phys. 16, 113043 (2014).

[16] C. Branciard, D. Rosset, N. Gisin, and S. Pironio, “Bilocal versus nonbilocal correlations in entanglement-swapping experiments,” Phys. Rev. A 85, 032119 (2012).

[17] C. Branciard, N. Gisin, and S. Pironio, “Characterizing the nonlocal correlations created via entanglement swapping,” Phys. Rev. Lett. 104, 170401 (2010).

[18] E. Wolfe, R. W. Spekkens, and T. Fritz, “The Inflation Technique for Causal Inference with Latent Variables,” J. Causal Inference 7 (2019).

[19] M.-O. Renou, E. Baumer, S. Borieri, N. Brunner, N. Gisin, and S. Beigi, “Genuine quantum nonlocality in the triangle network,” Phys. Rev. Lett. 123, 140401 (2019).

[20] A. Pozas-Kerstjens, R. Rabelo, L. Rudnicki, R. Chaves, D. Cavalcanti, M. Navascués, and A. Acín, “Bounding the sets of classical and quantum correlations in networks,” Phys. Rev. Lett. 123, 140503 (2019).

[21] M. Navascués, E. Wolfe, D. Rosset, and A. Pozas-Kerstjens, “Genuine network multipartite entanglement,” Phys. Rev. Lett. 125, 240505 (2020).

[22] A. Kela, K. Von Prillwitz, J. Åberg, R. Chaves, and D. Gross, “Semidefinite Tests for Latent Causal Structures,” IEEE Trans. Info. Theo. 66, 339 (2020).

[23] N. Gisin, “Entanglement 25 years after quantum teleportation testing joint measurements in quantum networks,” Entropy 21, 325 (2019).

[24] R. Chaves, G. Carvacho, J. Agresti, V. Di Giulio, L. Aolita, S. Giacomini, and F. Sciarrino, “Quantum violation of an instrumental test,” Nature Phys. 14, 291 (2018).

[25] A. Tavakoli, A. Pozas-Kerstjens, M.-O. Renou, et al., “Bell nonlocality in networks,” Reports on Progress in Physics (2021).

[26] V. Gebhart, L. Pezzè, and A. Smerzi, “Genuine multipartite nonlocality with causal-diagram postselection,” Phys. Rev. Lett. 127, 140401 (2021).

[27] S. Pirandola, U. L. Andersen, L. Banchi, M. Berta, D. Bunandar, R. Colbeck, D. Englund, T. Gehring, C. Lupo, C. Ottaviani, et al., “Advances in quantum cryptography,” Adv. Opt. Photon., 1012 (2020).

[28] I. Šupić and J. Bowles, “Self-testing of quantum systems: a review,” Quantum 4, 337 (2020).

[29] Č. Brukner, M. Żukowski, J.-W. Pan, and A. Zeilinger, “Bell’s Inequalities and Quantum Communication Complexity,” Phys. Rev. Lett. 92, 127901 (2004).

[30] A. Acín, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani, “Device-independent security of quantum cryptography against collective attacks,” Phys. Rev. Lett. 98, 230501 (2007).

[31] A. Acín and L. Masanes, “Certified randomness in quantum physics,” Nature 540, 213 (2016).

[32] S. Wehner, D. Elkouss, and R. Hanson, “Quantum internet: A vision for the road ahead,” Science 362, eaam9288 (2018).

[33] H. J. Kimble, “The quantum internet,” Nature 453, 1023 (2008).

[34] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932 (1998).

[35] T. Scheidl, R. Ursin, J. Kofler, S. Ramelow, X.-S. Ma, T. Herzet, L. Ratschbacher, A. Fedrizzi, N. K. Langford, T. Jennewein, et al., “Violation of local realism with freedom of choice,” Proc. Nat. Acad. Sci. 107, 19708 (2010).

[36] G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s inequality under strict Einstein locality conditions,” Phys. Rev. Lett. 81, 5039 (1998).

[37] L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, et al., “Strong loophole-free test of local realism,” Phys. Rev. Lett. 115, 250402 (2015).

[38] M. Giustina, M. A. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J.-A. Larsson, C. Abellán, et al., “Significant-loophole-free test of Bell’s theorem with entangled photons,” Phys. Rev. Lett. 115, 250401 (2015).

[39] B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Tamimiau, and R. Hanson, “Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres,” Nature 526, 682 (2015).

[40] G. Hooft, “The free will postulate in quantum mechanics,” arXiv:quant-ph/0701097 (2007).

[41] BIG Bell Test Collaboration and others, “Challenging local realism with human choices,” Nature 557, 212 (2018).

[42] D. Rauch, J. Handsteiner, A. Hochrainer, J. Gallicchio, A. S. Friedman, C. Leung, B. Liu, L. Bulla, S. Ecker, F. Steinlechner et al., “Cosmic Bell test using random measurement settings from high-redshift quasars,” Phys. Rev. Lett. 121, 080403 (2018).

[43] P. Abiuso, T. Kriváč, E.-C. Boghiu, M.-O. Renou, A. Pozas-Kerstjens, and A. Acín, “Single-photon nonlocality in quantum networks,” Phys. Rev. Res. 4, L012041 (2022).

[44] R. Chaves, G. Moreno, E. Polino, D. Poderini, I. Agresti, A. Suprano, M. R. Barros, G. Carvacho, E. Wolfe, A. Canabarro, et al., “Causal networks and freedom of choice in bell’s theorem,” PRX Quantum 2, 040323 (2021).

[45] S. Borieri, A. Girardin, B. Ull, P. Lypka-Bartosik, N. Brunner, and P. Sekatski, “Towards a minimal example of quantum nonlocality without inputs,” arXiv:2009.03297 (2022).

[46] R. Chaves, L. Luft, and D. Gross, “Causal structures from entropic information geometry and novel scenarios,” New J. Phys. 16, 043001 (2014).

[47] B. Steudel and N. Ay, “Information-theoretic inference of common ancestors,” Entropy 17, 2304 (2015).

[48] T. C. Fraser and E. Wolfe, “Causal compatibility inequalities admitting quantum violations in the triangle structure,” Phys. Rev. A 98, 022113 (2018).

[49] M. F. Pusey, “Quantum correlations take a new shape,” Physics 12, 113043 (2019).

[50] T. Kraft, S. Desigorne, C. Ritz, N. Brunner, O. Gühne, and M. Huber, “Quantum entanglement in the triangle network,” Physical Review A 103, L060401 (2021).

[51] I. Šupić, J.-D. Bancal, and N. Brunner, “Quantum Nonlocality in Networks Can Be Demonstrated with an Arbitrarily Small Level of Independence between the Sources,” Phys. Rev. Lett. 125, 240403 (2020).

[52] T. Kriváč, Y. Cai, D. Cavalcanti, A. Tavakoli, N. Gisin, and N. Brunner, “A neural network oracle for quantum nonlocality problems in networks,” npj Quant. Inf. 6 (2020).

[53] M.-O. Renou, Y. Wang, S. Borieri, S. Beigi, N. Gisin, and N. Brunner, “Limits on correlations in networks for quantum and no-signaling resources,” Phys. Rev. Lett. 123, 070403 (2019).
[54] E. Bäumer, N. Gisin, and A. Tavakoli, “Demonstrating the power of quantum computers, certification of highly entangled measurements and scalable quantum nonlocality,” npj Quantum Information 7, 117 (2021).

[55] P. Sokatski, S. Boreiri, and N. Brunner, “Partitional self-testing and randomness certification in the triangle network,” (2022).

[56] D. M. Greenberger, M. A. Horne, and A. Zeilinger, “Going beyond Bell’s theorem,” in Bell’s theorem, quantum theory and conceptions of the universe (Springer, 1989) pp. 69–72.

[57] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880 (1969).

[58] N. D. Mermin, “Extreme quantum entanglement in a superposition of macroscopically distinct states,” Phys. Rev. Lett. 65, 1838 (1990).

[59] D. Geiger and C. Meek, “Quantifier elimination for statistical problems,” in Proc. 15th Conf. on Uncertainty in Artificial Intelligence (Morgan Kaufmann Publishers Inc., 1999) pp. 226–235.

[60] M. J. Hall, “Relaxed bell inequalities and kochen-specker theorems,” Physical Review A 84, 022102 (2011).

[61] R. Chaves, R. Kueng, J. B. Brask, and D. Gross, “Unifying framework for relaxations of the causal assumptions in Bell’s theorem,” Phys. Rev. Lett. 114, 140403 (2015).

[62] J. Pearl, Causality (Cambridge University Press, 2009).

[63] A. Suprano, D. Poderini, E. Polino, I. Agresti, G. Carvacho, A. Canabarro, E. Wolfe, R. Chaves, and F. Sciarrino, “Experimental genuine tripartite nonlocality in a quantum triangle network,” PRX Quantum 3, 030342 (2022).

[64] T. Fritz, “Beyond Bell’s theorem: correlation scenarios,” New J. Phys. 14, 103001 (2012).

[65] R. J. Evans, “Graphs for margins of Bayesian networks,” Scandinavian J. Stat. 43, 625 (2016).

[66] Q.-C. Sun, Y.-F. Jiang, B. Bai, W. Zhang, H. Li, X. Jiang, J. Zhang, L. You, X. Chen, Z. Wang, et al., “Experimental demonstration of non-bilocality with truly independent sources and strict locality constraints,” Nature Photonics 13, 687 (2019).

[67] D. Poderini, I. Agresti, G. Marchese, E. Polino, Ti. Giordani, A. Suprano, M. Valeri, G. Milani, N. Spagnolo, G. Carvacho, et al., “Experimental violation of non-locality in a star quantum network,” Nature comm. 11, 1 (2020).

[68] G. Carvacho, E. Roccia, M. Valeri, F. B. Basset, D. Poderini, C. Pardo, E. Polino, L. Carosini, M. B. Rota, J. Neuworth, et al., “Quantum violation of local causality in an urban network using hybrid photonic technologies,” Optica 9, 572 (2022).

[69] T. Kim, M. Fiorentino, and F. N. Wong, “Phase-stable source of polarization-entangled photons using a polarization Sagnac interferometer,” Phys. Rev. A 73, 012316 (2006).

[70] A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Optics Express 15, 15377 (2007).

[71] G. Carvacho, F. Andreoli, L. Santodonato, M. Bentivegna, R. Chaves, and F. Sciarrino, “Experimental violation of local causality in a quantum network,” Nature comm. 8, 1 (2017).

[72] D. J. Saunders, A. J. Bennet, C. Branciard, and G. J. Pryde, “Experimental demonstration of nonbilocality quantum correlations,” Science Advances 3, e1602743 (2017).

[73] S. Hossenfelder and T. Palmer, “Rethinking superdeterminism,” Frontiers in Physics 8, 139 (2020).

[74] A. Tavakoli, P. Skrzypczyk, D. Cavalcanti, and A. Acín, “Nonlocal correlations in the star-network configuration,” Phys. Rev. A 90, 062109 (2014).

[75] K. Bharti, T. Haug, V. Vedral, and L.-C. Kwek, “Machine learning meets quantum foundations: A brief survey,” AVS Quantum Science 2, 034101 (2020).

[76] A. Canabarro, S. Brito, and R. Chaves, “Machine learning nonlocal correlations,” Phys. Rev. Lett. 122, 200401 (2019).

[77] M. Navascués and E. Wolfe, “The Inflation Technique Completely Solves the Causal Compatibility Problem,” J. Causal Inference 8, 70 (2020).

[78] J. Barrett and N. Gisin, “How much measurement independence is needed to demonstrate nonlocality?” Physical review letters 106, 100406 (2011).

[79] G. Putz, D. Rosset, T. J. Barnea, Y.-C. Liang, and N. Gisin, “ Arbitrarily small amount of measurement independence is sufficient to manifest quantum nonlocality,” Phys. Rev. Lett. 113, 190402 (2014).

[80] C. H. Brans, “Bell’s theorem does not eliminate fully causal hidden variables,” International Journal of Theoretical Physics 27, 219 (1988).

[81] M. J. Hall, “Local deterministic model of singlet state correlations based on relaxing measurement independence,” Phys. Rev. Lett. 105, 250404 (2010).

[82] M. J. Hall and C. Branciard, “Measurement-dependence cost for Bell nonlocality Causal versus retrocausal models,” Phys. Rev. A 102, 052228 (2020).

[83] R. Chaves, L. Luft, T. O. Maciel, D. Gross, D. Janzing, and B. Schölkopf, “Inferring latent structures via information inequalities,” arXiv:1407.2256 (2014).

[84] T. Fritz and R. Chaves, “Entropic inequalities and marginal problems,” IEEE Trans. Info. Theo. 59, 803 (2012).

[85] Z.-D. Li, Y.-L. Mao, M. Weiennmann, A. Tavakoli, H. Chen, L. Feng, S.-J. Yang, M.-O. Renou, D. Trillo, T. P. Le, et al., “Testing real quantum theory in an optical quantum network,” Phys. Rev. Lett. 128, 040402 (2022).

[86] D. Wu, Y.-F. Jiang, X.-M. Gu, L. Huang, B. Bai, Q.-C. Sun, X. Zhang, S.-Q. Gong, Y. Mao, H.-S. Zhong, et al., “Experimental refutation of real-valued quantum mechanics under strict locality conditions,” Physical Review Letters 129, 140401 (2022).

[87] T. Van Himbeeck, J. B. Brask, S. Pironio, R. Ramanaathan, A. B. Sainz, and E. Wolfe, “Quantum violations in the Instrumental scenario and their relations to the Bell scenario,” Quantum 3, 186 (2019).

[88] M. B. Elliott, “A linear program for testing local realism,” arXiv preprint arXiv:0905.2950 (2009).

[89] Y. Zhang, S. Glancy, and E. Knill, “Asymptotically optimal data analysis for rejecting local realism,” Physical Review A 84, 062118 (2011).

[90] N. Gisin, J.-D. Bancal, Y. Cai, P. Remy, A. Tavakoli, E. Z. Cruzeiro, S. Popescu, and N. Brunner, “Constraints on nonlocality in networks from no-signaling and independence,” Nature comm. 11, 2378 (2020).

[91] E. D. Andersen, “Certificates of Primal or Dual Infeasibility for Linear Programming,” Comp. Optim. Appl. 20, 171 (2001).

[92] N. Dinh and V. Jeyakumar, “Farkas’ lemma: three decades of generalizations for mathematical optimization,” TOP 22, 1 (2014).
ACKNOWLEDGEMENTS

The authors thank Tamás Kriváchy for discussions about the ML implementation. This work was supported by The John Templeton Foundation via the grant Q-CAUSAL No 61084, via The Quantum Information Structure of Spacetime (QISS) Project (qiss.fr) (the opinions expressed in this publication are those of the author(s) and do not necessarily reflect the views of the John Templeton Foundation) Grant Agreement No. 61466 and via QISS2 Grant Agreement No. 62312, by MIUR via PRIN 2017 (Progetto di Ricerca di Interesse Nazionale): project QUSHIP (2017SRNBK), by the Regione Lazio programme “Progetti di Gruppi di ricerca” legge Regionale n. 13/2008 (SIN-FONIA project, prot. n. 85-2017-15200) via LazioInnova spa and by the ERC Advanced Grant QU-BOSS (Grant agreement no. 884676). RC and AC acknowledge the Serapilheira Institute (Grant No. Serra-1708-15763), the Brazilian National Council for Scientific and Technological Development (CNPq) via the National Institute for Science and Technology on Quantum Information (INCT-IQ) and Grants 307295/2020-6 and No. 311375/2020-0, the Brazilian agencies MCTIC and MEC. Research at Perimeter Institute is supported in part by the Government of Canada through the Department of Innovation, Science and Industry Canada and by the Province of Ontario through the Ministry of Colleges and Universities.

AUTHOR CONTRIBUTIONS

E.P., D.P., G.R., I.A., G.C., F.S., E.W., R.S., A.C., and R.C. developed the project. E.P., D.P., I.A., A.S., G.Mi., G.C. and F.S. devised the experiment. E.P., D.P., G.R., I.A., A.S., G.Mi., G.C. and F.S. performed the experiment. E.P., D.P., G.R., I.A., A.S., G.C., F.S., E.W., R.S., A.C., G.Mo. and R.C. performed data analysis and modeling. E.W. and R.S. developed the theoretical tools of the inflation technique; A.C., G.Mo. and R.C. developed the theoretical tools of machine learning; all authors discussed the results and contributed to the writing of the manuscript.

COMPETING INTERESTS

The authors declare no competing interest.
Supplementary Information for
Experimental nonclassicality in a causal network without assuming freedom of choice

Emanuele Polino,1 Davide Poderini,1 Giovanni Rodari,1 Iris Agresti,1 Alessia Suprano,1 Gonzalo Carvacho,1 Elie Wolfe,2,* Askery Canabarro,3,4 George Moreno,3,4 Giorgio Milani,1 Robert W. Spekkens,2 Rafael Chaves,5,† and Fabio Sciarrino1,‡

1 Dipartimento di Fisica - Sapienza Università di Roma, P.le Aldo Moro 5, I-00185 Roma, Italy
2 Perimeter Institute for Theoretical Physics, 31 Caroline St. N, Waterloo, Ontario, N2L 2Y5, Canada
3 International Institute of Physics, Federal University of Rio Grande do Norte, 59078-970, Natal, RN, Brazil
4 Grupo de Física da Matéria Condensada, Núcleo de Ciências Exatas - NCEx, Campus Arapiraca, Universidade Federal de Alagoas, 57309-005, Arapiraca, AL, Brazil
5 International Institute of Physics & School of Science and Technology, Federal University of Rio Grande do Norte, 59078-970, P. O. Box 1613, Natal, Brazil

*eolwe@perimeterinstitute.ca
†rchaves@iip.ufrn.br
‡fabio.sciarrino@uniroma1.it
Supplementary Note 1. DATA ANALYSIS

The data acquisition was performed using three independent time-to-digital converters (TDC) with a resolution of \(\approx 81\) ps. The TDCs, one for each measurement station, were synchronized using a shared random signal, acting as time reference. The synchronization was performed in real time, via dedicated software running in a separated machine which received data from the three nodes on the local network. After the synchronization, the data coming from the TDCs are filtered to retain only the events corresponding to a two-fold coincidence detection between events coming from the same source. Such events are then saved to disk for further analysis and post processing. The time window in which two events are considered coincident is \(\approx 4.1\) ns, this allows to filter out most noise sources affecting the measurement. The array of two-fold coincidences obtained is further analyzed to count coincidence events among all the three parties. A six-fold event extracted in this way is a set of three two-fold events that can be considered coincident in a given window, larger than the one used to extract two-fold coincidences. When more than three two-fold coincidences are found in the same time window, the additional events are discarded. More specifically, when more than one coincidence from a same source are found within the window interval, we select only the first detected. Selecting the first coincidence represents an arbitrary and unbiased choice, that is a useful convention for resolving possible ambiguities in the definition of six-fold events.
Supplementary Note 2. EXPERIMENTAL FRITZ DISTRIBUTION

We show the experimental frequencies corresponding to the terms of Fritz distribution in Supp. Fig. 1-a, in comparison with the ideal values (Supp. Fig. 1-b). The overall statistics is composed of $\sim 10^6$ events.

Supplementary Figure 1. Experimental Fritz distribution. a) Theoretical Fritz distribution considering ideal noiseless singlet states. b) Experimental distribution measured in an experimental run.

Supplementary Note 3. NEURAL NETWORK ORACLES

Given a causal structure and a distribution over the observed outputs, we used an ensemble of neural networks to determine whether the distribution could have been reproduced by using exclusively local resources. The general idea is to encode the causal structure into neural networks and request them to reproduce the target distribution. Both the assumed causal structures and a feedforward neural networks can have their information flow determined by a directed acyclic graph (DAG). Therefore, we train diverse neural networks taking into consideration the causal structure to reproduce the target distribution.

Consider the scenario in which three sources ($\lambda_{AB}, \lambda_{AC}, \lambda_{BC}$), send information either via a classical or quantum channel to three parties, Alice (A), Bob (B), and Charlie (C) with the following constrained flow of information: each source only sends information to two parties of the three, constituting a triangle network with quaternary (four possible flag numbers) outputs and no inputs, as described in the main text. In this manner, Alice, Bob and Charlie receives, respectively, the pairs $\lambda_A = \{\lambda_{AB}, \lambda_{AC}\}$, $\lambda_B = \{\lambda_{AB}, \lambda_{BC}\}$ and $\lambda_C = \{\lambda_{AC}, \lambda_{BC}\}$. Therefore, individual inputs $\in \mathbb{R}^2$ (they have length 2). For training, we provide batches of $(N_{\text{batch}}, 2)$ dimension for the corresponding MLP for each party.

The parties process their inputs by means of arbitrary local response functions, characterized by the conditional probabilities $p(a|\lambda_{AB}, \lambda_{AC})$, $p(b|\lambda_{AB}, \lambda_{BC})$ and $p(c|\lambda_{AC}, \lambda_{BC})$, where $a, b, c \in \{0, 1, 2, 3\}$ are the flag numbers by the parties A, B, C, respectively. Although any other distribution can be reabsorbed by the established parties’ response functions $p_X(x|\lambda_{xy}, \lambda_{xz})$, for the classical setup one can assume that the sources send a random variable taken from an uniform distribution in the unit interval, i.e. $\lambda_{AB}, \lambda_{BC}, \lambda_{AC} \in [0, 1]$.
Therefore, given these constraints and the assumption that each source is independent, such a scenario is well characterized by the probability distribution \(p(a,b,c) \) over the random variables of the outputs [1], which be written as:

\[
p(a,b,c) = \int \int \int_{0}^{1} p(a|\lambda_{AB},\lambda_{AC})p(b|\lambda_{AB},\lambda_{BC})p(c|\lambda_{AC},\lambda_{BC})d\lambda_{AB}d\lambda_{AC}d\lambda_{BC}.
\] (1)

The aim in the machine learning (ML) part of this work is to construct neural networks capable of approximating distributions given by Eq. 1. Amid the myriad of ML algorithms that exist nowadays, feedforward neural networks are the one to emulate a directed acyclic graph (DAG) corresponding to a causal structure. This symmetry between causal structure and neural network is a powerful trait making the method applicable, a priori, to any causal structure [1].

For each party (A,B,C), the corresponding response function will be incorporated by means of a fully connected multilayer perceptron (MLP). However, in principle, more advanced neural networks architectures could be used as well, such as convolutional neural networks (CNNs), recurrent neural networks (RNNs) and so on, but this would require a dedicated investigation that would be far beyond the scope of this paper, although the implementation of an ensemble of MLPs is already a natural advance of the inaugural method shown in Ref. [1].

From the machine learning perspective, the input layers to the MLPs are composed of the independent uniformly distributed random numbers in the unit interval, i.e. \(\lambda_{AB},\lambda_{BC},\lambda_{AC} \in [0,1] \), with the restriction in the flow of information imposed by the triangle network: each source only sends information to two parties of the three. In this manner, Alice receives \((\lambda_{AB},\lambda_{AC}) \). Bob receives \((\lambda_{AB},\lambda_{BC}) \) and Charlie receives \((\lambda_{BC},\lambda_{AC}) \). Therefore, individual inputs \(\in \mathbb{R}^2 \) (they have length 2). For training, we provide batches of \((N_{\text{batch}},2) \) dimension for the corresponding MLP for each party. The output layers retrieve the corresponding probabilities conditioned on the respective inputs: \(p(a|\lambda_{AB},\lambda_{AC}) \), \(p(b|\lambda_{AB},\lambda_{BC}) \) and \(p(c|\lambda_{AC},\lambda_{BC}) \). In this step, we use a softmax activation function so that the outputs are three normalized vectors \(\in \mathbb{R}^4 \) (length 4).

We then evaluate the neural network for \(N_{\text{batch}} \) sample values of random variables \((\lambda_{AB},\lambda_{AC},\lambda_{BC}) \) in order to approximate the joint probability distribution Eq. 1, averaging the Cartesian product of the conditional probabilities \((\in \mathbb{R}^4) \),

\[
\hat{p}(a,b,c) = \frac{1}{N_{\text{batch}}} \sum_{i=1}^{N_{\text{batch}}} p(a|\lambda_{ABi},\lambda_{ACi})p(b|\lambda_{ABi},\lambda_{BCi})p(c|\lambda_{ACi},\lambda_{BCi}),
\] (2)

yielding the approximated joint probability distribution \(\hat{p}(a,b,c) \in \mathbb{R}^{64} \) with the following index ordering: \([0,1,2,3] \times [0,1,2,3] \times [0,1,2,3] \rightarrow [000,001,002,\ldots,333] \). In this manner, the method is order sensitive. This step formally differs from the Monte Carlo approximation in Ref. [1], however, in practice, they yield the same result for the examples we tested.

The approximation of \(p(a,b,c) \) is achieved by setting a loss function quantifying the discrepancy between the target distribution \(p(a,b,c) \) and the neural network’s constructed output \(\hat{p}(a,b,c) \). A natural candidate is therefore the relative Kullback–Leibler divergence,

\[
KL(p,\hat{p}) = \sum_{abc} p(a,b,c) \log \left(\frac{p(a,b,c)}{\hat{p}(a,b,c)} \right).
\] (3)

In fact, any differentiable discrepancy measure between \(p \) and \(\hat{p} \) works (for instance, the MSE (\(l^2 \)-norm), the MAE (\(l^1 \)-norm), Euclidean distance, and so on). However, the KL seems to be the best on the practical side (faster and better convergence), a point also registered in Ref. [1].
As already mentioned, for an individual neural network forming the committee, we used a similar approach as in [1]. The ensemble of neural networks, which can be imagined as an assembly of oracles, provides a certificate that a distribution is local once it is learned. In other words, if a target distribution is inside the local set, then a sufficiently expressive neural network should be able to learn the appropriate response functions and reproduce it. As the "right" expressivity is not known \textit{a priori}, we decided to use the ensemble approach, in which we train diverse neural networks with distinct number of layers and neurons. For distributions outside the local set, we should see that the machine cannot approximate well the given target, no matter the expressivity power we employ for the neural network. So, the ensemble is a good indication (not a definite proof) of this impossibility. Altogether, this gives us a criterion for deciding whether a target distribution is inside the local set or not.

Heuristically, it means that, by construction, the neural network can learn the local responses of the parties to their inputs. Notwithstanding, if a given target is surely outside the local set (quantum channels are permitted from the sources to the parties), then by adding noise according to a convex sum we should see a clear transition in function of visibility in the learner’s behavior when entering the set of local correlations, as demonstrated in the main text. The distance between the target and learned distributions can be computed in a number of ways. However, the element-wise mean square error (MSE) also known as l_2-norm error between $p(a,b,c)$ and $\tilde{p}(a,b,c)$, is a better guide to the eyes for identifying the transition.

The advantage of using multiple neural networks architectures is well perceived by examining Supp. Tab. 1. Note that for distinct visibility values, a different neural network architecture yields the best MSE distance, strengthening the advantage of using an assembly of oracles.
Visibility (v)	Optimum Architecture
0.00	5 layers, 16 neurons
0.05	4 layers, 16 neurons
0.10	5 layers, 16 neurons
0.15	4 layers, 16 neurons
0.20	5 layers, 32 neurons
0.25	4 layers, 32 neurons
0.30	6 layers, 32 neurons
0.35	4 layers, 32 neurons
0.40	3 layers, 32 neurons
0.45	3 layers, 32 neurons
0.50	3 layers, 32 neurons
0.55	6 layers, 32 neurons
0.60	3 layers, 16 neurons
0.65	5 layers, 16 neurons
0.70	5 layers, 32 neurons
0.75	6 layers, 16 neurons
0.80	3 layers, 32 neurons
0.85	3 layers, 32 neurons
0.90	5 layers, 16 neurons
0.95	3 layers, 32 neurons
1.00	5 layers, 16 neurons

Supplementary Table 1. The corresponding best architecture yielding the minimum MSE distance for each visibility value v.
Supplementary Note 4. CAUSAL COMPATIBILITY INEQUALITY FROM THE INFLATION TECHNIQUE

Supplementary Figure 3. The causal structure of the classical triangle network, a falsified hypothesis for explaining our experimental statistics.

Here’s how the second order inflation test works for the triangle network. Suppose that a distribution \(p(a,b,c) \) is compatible with the triangle causal structure in Fig. 3, in the sense of

\[
p(abc) = \sum_{\lambda_{AB} \lambda_{AC} \lambda_{BC}} p(a|\lambda_{AB},\lambda_{AC}) p(b|\lambda_{AB},\lambda_{BC}) p(c|\lambda_{AC},\lambda_{BC}) p(\lambda_{AB}) p(\lambda_{AC}) p(\lambda_{BC}).
\]

(4)

Now, imagine (gedankenexperiment) recycling the same causal components to create some hypothetically observable distribution \(p'(a^{(1)},b^{(1)},c^{(1)},a^{(2)},b^{(2)},c^{(2)},a^{(3)},b^{(3)},c^{(3)},a^{(4)},b^{(4)},c^{(4)}) \) compatible with the second order inflation graph of the triangle scenario, depicted in Fig. 4. Relative to the inflation graph, compatibility means

\[
p'(a^{(1)},b^{(1)},c^{(1)},a^{(2)},b^{(2)},c^{(2)},a^{(3)},b^{(3)},c^{(3)},a^{(4)},b^{(4)},c^{(4)}) = \sum_{\lambda_{AB}^{(1)} \lambda_{AC}^{(1)} \lambda_{BC}^{(1)} \lambda_{AB}^{(2)} \lambda_{AC}^{(2)} \lambda_{BC}^{(2)} \lambda_{AB}^{(3)} \lambda_{AC}^{(3)} \lambda_{BC}^{(3)} \lambda_{AB}^{(4)} \lambda_{AC}^{(4)} \lambda_{BC}^{(4)}} p'(\mu_1,\mu_2) p'(\mu_1,\mu_2) p'(\mu_1,\mu_2) p'(\mu_1,\mu_2) p(\lambda_{AB}) p(\lambda_{AC}) p(\lambda_{BC}).
\]

(5)

By “recycling causal components” we mean that the functional dependence of every variable on its parents in Fig. 4 is presumed to be the same functional dependence as the analogous variable’s functional dependence on its parents in Fig. 3. The Fig. 3 analog of each individual variable in Fig. 4 is obtained by dropping the superscript \(\text{copy index} \). Hereafter, when describing random variables being assigned particular values we place the name of the variable in underscript and the value it takes in overscript.

That is,

\[
p'(\mu_1,\mu_2) = p'(\mu_1,\mu_2) = p'(\mu_1,\mu_2) = p'(\mu_1,\mu_2) = p(\lambda_{AB}) p(\lambda_{AC}) p(\lambda_{BC}).
\]

(6)

Now, Eq. (6) holds whenever \(p(abc) \) is compatible with the triangle causal structure. Naturally, in our case, Eq. (6)
Supplementary Figure 4. The second order inflation graph of the triangle network.

by itself is not operationally testable. We only have access to the observed distribution \(p(abc) \); if we had access to the underlying functional dependencies such as \(p(a|\lambda_{AB}, \lambda_{AC}) \) we wouldn’t be bother with inflation, as we would then be able to access the (in)compatibility of \(p(abc) \) by means of Eq. (4) alone. The key insight is to extract easily testable implications of Eq. (6) which follow merely from the (non)existence of suitable functional dependencies. The two implications of Eq. (6) which we elect to incorporate into our linear program feasibility test are marginalization and symmetry.

The marginalization condition is that

\[
p'(v_1, v_2, v_3, v_{10}, v_{11}, v_{12}) := \sum_{v_4, v_5, v_6, v_7, v_8, v_9} p'(v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}, v_{11}, v_{12}) = p(v_1, v_2, v_3) p(v_{10}, v_{11}, v_{12})
\]

which we express as \(M \cdot p' = p^\otimes 2 \),

where \(M \) is a zero/one valued marginalization matrix; it encodes the appropriate linear combinations of probabilities of \(p' \) to make up the marginal probabilities. Accordingly, Eq. (7) is a matrix equality constraint, or 4\(^6\) different equality constraints corresponding to the 4\(^6\) rows of \(M \), as the cardinality of all observable variables in our triangle network is 4.

The symmetry condition follows from the fact that the copy indices are dummy indices. That is, since \(p' (\mu) = p'(\mu) \)

and so on, it follows that \(p' \) must be invariant under the relabellings

\[
\begin{array}{c|c|c|c}
\pi_1 & \pi_2 & \pi_3 \\
\hline
\lambda_{AB}^{(1)} & \lambda_{AB}^{(2)} & \lambda_{AB}^{(1)} & \lambda_{AB}^{(2)} \\
a^{(1)} & a^{(2)} & a^{(1)} & a^{(2)} \\
a^{(3)} & a^{(4)} & a^{(3)} & a^{(4)} \\
b^{(1)} & b^{(3)} & c^{(1)} & c^{(2)} \\
b^{(3)} & b^{(4)} & c^{(3)} & c^{(4)} \\
\end{array}
\]

which generates an order-8 symmetry group. For maximum clarity, the cumulative effect of the symmetry implications of
Eq. (6) are

\[p'(v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}, v_{11}, v_{12}) = p'(v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}, v_{11}, v_{12}) \]

As a linear program, we essentially have

\[\exists_{p'|p' \geq 0}: M \cdot p' = p^{\otimes 2} \quad \text{and} \quad G_\pi \circ p' = p', \]

where \(G_\pi \circ \) is the group twirling operation, i.e. the projection onto the symmetric subspace of the group.

We can simplify the linear program (10) by replacing the invariance of \(p' \) under symmetry with the statement that \(p^{\otimes 2} \) is recovered by marginalizing the twirled version of \(p' \), that is, \(M \cdot (G_\pi \circ p') = p^{\otimes 2} \). For that matter, we can just as well apply the left action of the twirling operator on the marginalization matrix, i.e.

\[(G_\pi^{-1} \circ M) \cdot p' \coloneqq \left(G_\pi \circ M^T \right)^T \cdot p' = M \cdot (G_\pi \circ p') \]

and hence we can equivalently express the linear program (10) as

\[\exists_{p'|p' \geq 0}: \left(G_\pi^{-1} \circ M \right) \cdot p' = p^{\otimes 2} \]

which has the advantage of being easily dualized, i.e. the dual of LP (12) is

\[\text{\#}_{y/|y|} (G_\pi^{-1} \circ M) \geq 0 : \quad y \cdot p^{\otimes 2} < 0. \]

Indeed, the existence of a \(y \) vector which yields both \((G_\pi^{-1} \circ M) \cdot y \geq 0 \) and \(y \cdot p^{\otimes 2} < 0 \) constitutes a certificate of infeasibility for LP (12) by Farkas’ duality lemma [2]. Accordingly, we discover the polynomial inequality which witnesses the incompatibility of \(p \) with the classical triangle network by explicitly minimizing \(y \cdot p^{\otimes 2} \) subject to the constraints \((G_\pi^{-1} \circ M) \cdot y \geq 0 \).

In Supp. Tab. 2 we show the coefficients \(y \) pertaining to the products of probabilities generating the causal compatibility inequality. The coefficient is zero unless explicitly specified otherwise in Supp. Tab. 2.

SUPPLEMENTARY REFERENCES

[1] T. Kriváčy, Y. Cai, D. Cavalcanti, A. Tavakoli, N. Gisin, and N. Brunner, “A neural network oracle for quantum nonlocality problems in networks,” npj Quant. Info. 6, 70 (2020).

[2] E. D. Andersen, “Certificates of Primal or Dual Infeasibility in Linear Programming,” Comp. Optim. Appl. 20, 171 (2001).
Supplementary Table 2. Tabular representation of the causal inequality. This table specified the coefficients relative to the pairs of multiplied probabilities that give rise to the polynomial causal inequality. All unspecified coefficients are taken to be zero.

	202021	202131	233000	233110	312021	312131	323000	323110
-1→	023010	031002	031012	033010	031023	032010	032013	032020
	123100	133010	133100	203010	203100	212001	212011	212101
	212111	212112	212113	212130	212300	213200	213201	213202
2→	222121	223020	223030	223120	223130	225200	225210	232031
	232121	300223	300201	302011	302032	311022	311032	311202
3→	311212	313021	313031	313032	313033	313202	313302	313303
	313304	313305	313306	313307	313308	313309	313310	313311

1 →

	221013	221032	221033	221034	221035	221036	221037	221038
	222000	222001	222002	222003	222004	222005	222006	222007
	222008	222009	222010	222011	222012	222013	222014	222015
	222016	222017	222018	222019	222020	222021	222022	222023
	222024	222025	222026	222027	222028	222029	222030	222031
	222032	222033	222034	222035	222036	222037	222038	222039

10
312122	312123	312130	312132	312201	312211	312301	312311	313020	313021	313022	313023	
313030	313031	313032	313033	313120	313121	313122	313123	313130	313131	313132	313133	313200
313210	313220	313230	313300	313310	320000	320001	320003	320010	320011	320012	320013	320023
320033	320100	320101	320102	320103	320110	320111	320112	320123	320133	320203	320213	
320223	320233	320303	320313	321001	321002	321003	321010	321011	321012	321013	321022	321032
321100	321101	321102	321103	321110	321111	321112	321113	321122	321123	321222	321232	322000
322001	322002	322003	322010	322011	322012	322013	322100	322101	322102	322103	322110	322111
322112	322113	322201	322211	322221	322231	322301	322311	322321	322331	323002	323003	323010
323011	323012	323013	323100	323101	323102	323103	323111	323112	323113	323220	323230	323320
330000	330001	330002	330003	330010	330011	330012	330013	330023	330033	330100	330101	330102
330103	330110	330111	330112	330113	330123	330133	330203	330213	330223	330233	330303	330313
330323	331000	331001	331002	331003	331010	331011	331012	331013	331022	331032	331100	331101
331102	331103	331110	331111	331112	331113	331122	331123	331222	331232	331322	332000	332001
332002	332003	332010	332011	332012	332013	332100	332101	332102	332103	332110	332111	332112
332113	332201	332211	332221	332231	332301	332311	332321	332331	333000	333001	333002	333003
333011	333012	333013	333101	333102	333103	333110	333111	333112	333113	333220	333230	333320
333330												