Duminil-Copin, Hugo; Kozłowski, Karol Kajetan; Krachun, Dmitry; Manolescu, Ioan; Tikhonovskaia, Tatiana

On the six-vertex Model’s free energy. (English) Zbl 07606703
Commun. Math. Phys. 395, No. 3, 1383-1430 (2022)

Summary: In this paper, we provide new proofs of the existence and the condensation of Bethe roots for the Bethe Ansatz equation associated with the six-vertex model with periodic boundary conditions and an arbitrary density of up arrows (per line) in the regime \(\Delta < 1 \). As an application, we provide a short, fully rigorous computation of the free energy of the six-vertex model on the torus, as well as an asymptotic expansion of the six-vertex partition functions when the density of up arrows approaches 1/2. This latter result is at the base of a number of recent results, in particular the rigorous proof of continuity/discontinuity of the phase transition of the random-cluster model, the localization/delocalization behaviour of the six-vertex height function when \(a = b = 1 \) and \(c \geq 1 \), and the rotational invariance of the six-vertex model and the Fortuin-Kasteleyn percolation.

MSC:
82Bxx Equilibrium statistical mechanics
60Kxx Special processes
05Cxx Graph theory

Full Text: DOI arXiv

References:
[1] Aizenman, M., Duminil-Copin, H., Warzel, S.: Dimerization and Néel order in different quantum spin chains through a shared loop representation. arXiv:2002.02543 (2020)
[2] Baxter, R.J, Generalized ferroelectric model on a square lattice, Stud. Appl. Math., 50, 1, 51-69 (1971)· doi:10.1002/sapm197150151
[3] Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London (1989) Reprint of the 1982 original
[4] Baxter, R.J; Kelland, SB; Wu, FY, Equivalence of the Potts model or Whitney polynomial with an ice-type model, J. Phys. A, 9, 3, 397-406 (1976) · Zbl 0321.05140 · doi:10.1088/0305-4470/9/3/009
[5] Batchelor, MT; Klümper, A., An analytic treatment of finite-size corrections in the spin-1 antiferromagnetic XXZ chain, J. Phys. A, 23, L189-195 (1990) · doi:10.1088/0305-4470/23/5/002
[6] Bethe, H., Zur Theorie der Metalle. I. Eigenwerte und Eigenfunktionen der linearen Atomkette, Zeitschrift für Physik, 71, 205-226 (1931) · Zbl 57.1587.01 · doi:10.1007/BF01341708
[7] Deguchi, T.; Kondo, A., Introduction to solvable lattice models in statistical and mathematical physics, Classical and Quantum Integrable Systems: Theory and Applications, Chapter 5, 113-151 (2003), Bristol: IOP Publishing, Bristol
[8] Destri, C.; de Vega, H.J, New thermodynamic Bethe ansatz equations without strings, Phys. Rev. Lett., 69, 2313-2317 (1992) · Zbl 0968.82511 · doi:10.1103/PhysRevLett.69.2313
[9] Destri, C.; de Vega, H.J, Unified approach to thermodynamic Bethe Ansatz and finite size corrections for lattice models and field theories, Nuclear Phys. B, 438, 413-454 (1995) · Zbl 1052.82529 · doi:10.1016/0550-3213(94)00547-R
[10] Dorlas, T.C., Samsonov, M.: On the thermodynamic limit of the 6-vertex model. arXiv:0903.2657 (2009)
[11] Dudley, R-M; Gonzalez-Barrios, JM, Metric entropy conditions for an operator to be of trace class, Proc. Am. Math. Soc., 118, 175-180 (1993) · doi:10.1090/S0002-9939-1993-1145418-3
[12] Dugave, M.; Gohmann, F.; Kozlowski, KK, Functions characterizing the ground state of the XXZ spin-\(1/2\) chain in the thermodynamic limit, Symmetry Integr. Geom. Methods Appl. SIGMA, 10, 043 (2014) · Zbl 1291.82021
[13] Duminil-Copin, H.; Sidoravicius, V.; Tassion, V., Continuity of the phase transition for planar random-cluster and Potts models with \((1 \leq q \leq 4) \), Commun. Math. Phys., 349, 1, 47-107 (2017) · Zbl 1357.82011 · doi:10.1007/s00220-016-2759-8
[14] Duminil-Copin, H., Gagnebin, M., Harel, M., Manolescu, I., Tassion, V.: Discontinuity of the phase transition for the planar random-cluster and Potts models with \((q > 4) \). arXiv:1611.09877 (2016)
[15] Duminil-Copin, H.; Gagnebin, M.; Harel, M.; Manolescu, I.; Tassion, V., The Bethe Ansatz for the six-vertex and XXZ models: an exposition, Probab. Surv., 15, 102-130 (2018) · Zbl 1430.60080 · doi:10.1214/17-PS292
[16] Duminil-Copin, H., Harel, M.; Laslier, B., Ray, G.: Logarithmic fluctuations of the height function in square-ice. arXiv:1911.00092 (2019)
[17] Duminil-Copin, H., Kozłowski, K.K., Krachun, D., Manolescu, I., Oulamara, M.: Rotational invariance in critical planar lattice
Duminil-Copin, H., Karrila, A., Manolescu, I., Oulamara, M.: Delocalization of the height function of the six-vertex model.

Faddeev, LD; Sklyanin, EK; Takhtadzhian, LA, Quantum inverse problem method I, Theor. Math. Phys., 40, 2, 688-706 (1979) · Zbl 1138.37331 · doi:10.1007/BF01018718

Gaudin, M.; McCoy, B.; Wu, T., Normalization sum for the Bethe's hypothesis wave functions of the Heisenberg-Ising chain, Phys. Rev. D, 23, 2, 417-419 (1981) · doi:10.1103/PhysRevD.23.417

Glazman, A., Peled, R.: On the transition between the disordered and antiferroelectric phases of the 6-vertex model. arXiv:1909.03436 (2019)

Griffiths, RB, Magnetization curve at zero temperature for the antiferromagnetic Heisenberg linear chain, Phys. Rev., 133, 2A, 768-775 (1964) · doi:10.1103/PhysRev.133.A768

Gohberg, I., Goldberg, S., Krupnik, N.: Traces and determinants of linear operators. In: Operator Theory Advances and Applications, vol. 116. Birkhäuser (2000)

Gaudin, M.; McCoy, B.; Wu, T., Normalization sum for the Bethe's hypothesis wave functions of the Heisenberg-Ising chain, Phys. Rev. D, 23, 2, 417-419 (1981) · doi:10.1103/PhysRevD.23.417

Gusev, E., Weak convergence of wave values in the Heisenberg model, Rep. Math. Phys., 18, 3, 399-410 (1980) · Zbl 0596.60010 · doi:10.1016/0034-4877(80)90101-9

Hulthén, L., Über das Austauschproblem eines Kristalles, Arkiv för matematik, astronomi och fysik, 26A, 11 (1938) · Zbl 64.0894.05

Kitanine, N.; Maillet, J-M; Terras, V., Form factors of the XXZ Heisenberg spin-1/2 finite chain, Nucl. Phys. B, 554, 647-679 (1999) · Zbl 0972.82014 · doi:10.1016/S0550-3213(99)00295-3

Korepin, VE, Calculation of norms of Bethe wave-functions, Commun. Math. Phys., 86, 3, 391-418 (1982) · Zbl 0531.60096 · doi:10.1007/BF01212176

Kozlowski, KK, On condensation properties of Bethe roots associated with the XXZ chain, Commun. Math. Phys., 357, 3, 1009-1069 (2018) · Zbl 1391.82012 · doi:10.1007/s00220-017-3066-8

Lieb, EH, Exact solution of the problem of the entropy of the two-dimensional ice, Phys. Rev. Lett., 18, 692-694 (1967) · doi:10.1103/PhysRevLett.18.692

Lieb, EH, Exact solution of the problem of the entropy of the two-dimensional ice, Phys. Rev. Lett., 19, 108-110 (1967) · doi:10.1103/PhysRevLett.19.108

Lieb, EH, Residual entropy of square ice, Phys. Rev., 162, 1, 162 (1967) · doi:10.1103/PhysRev.162.162

McCoy, BM; Wu, TT, Hydrogen-bonded crystals and the anisotropic Heisenberg chain, Il Nuovo Cim. B, 56, 311-315 (1968) · doi:10.1007/BF02710156

Pauling, L., The structure and entropy of ice and of other crystals with some randomness of atomic arrangement, J. Am. Chem. Soc., 57, 12, 2680-2684 (1935) · doi:10.1021/ja01315a102

Sutherland, B., Exact solution of the problem of the entropy of the two-dimensional model for hydrogen-bonded crystals, Phys. Rev. Lett., 19, 3, 103-104 (1967) · doi:10.1103/PhysRevLett.19.103

Reshetikhin, N.: Lectures on the integrability of the 6-vertex model. arXiv:1010.5031 (2010)

de Vega, HJ; Woynarowich, F., Method for calculating finite size corrections in Bethe Ansatz systems: Heisenberg chains and six-vertex model, Phys. Rev. B, 251, 439-456 (1985) · doi:10.1103/PhysRevLett.104.1046

Yang, CN; Yang, CP, One-dimensional chain of anisotropic spin-spin interactions. I. Proof of Bethe's hypothesis for ground state in a finite system, Phys. Rev., 150, 321-327 (1966) · doi:10.1103/PhysRev.150.321

Yang, CN; Yang, CP, One-dimensional chain of anisotropic spin-spin interactions. II. Properties of the ground state energy per lattice site for an infinite system, Phys. Rev., 150, 327-339 (1966) · doi:10.1103/PhysRev.150.327

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.