Massive MIMO for Serving Federated Learning and Non-Federated Learning Users

Muhammad Farooq®, Member, IEEE, Tung Thanh Vu®, Member, IEEE, Hien Quoc Ngo®, Senior Member, IEEE, and Le-Nam Tran®, Senior Member, IEEE

Abstract—With its privacy preservation and communication efficiency, federated learning (FL) has emerged as a promising learning framework for beyond 5G wireless networks. It is anticipated that future wireless networks will jointly serve both FL and downlink non-FL user groups in the same time-frequency resource. While in the downlink of each FL iteration, both groups simultaneously receive data from the base station in the same time-frequency resource, the uplink of each FL iteration requires bidirectional communication to support uplink transmission for FL users and downlink transmission for non-FL users. To overcome this challenge, we present half-duplex (HD) and full-duplex (FD) communication schemes to serve both groups. More specifically, we adopt the massive multiple-input multiple-output technology and aim to maximize the minimum effective rate of non-FL users under a quality of service (QoS) latency constraint for FL users. Since the formulated problem is nonconvex, we propose a power control algorithm based on successive convex approximation to find a stationary solution. Numerical results show that the proposed solutions perform significantly better than the considered baselines schemes. Moreover, the FD-based scheme outperforms the HD-based counterpart in scenarios where the self-interference is small or moderate and/or the size of FL model updates is large.

Index Terms—Massive multiple-input multiple-output (MIMO), federated learning (FL), resource allocation, successive convex approximation (SCA).

I. INTRODUCTION

The use of mobile phones and wearable devices enables continuous collection and transfer of data [2], [3], which has been the main driving force behind the explosive increase in data mobile traffic in recent years. Also, due to a constant growing interest in new features and tools, the computational power of these devices is increasing day by day. Thus, in many applications, part of data processing is carried out at user equipment (UE). In this context, questions over the transmission of private information over wireless networks naturally arise. To preserve data privacy, a potential solution is to store data on local servers and move network computation to the edge [4], [5]. In fact, data privacy has drawn significant interest in developing new machine learning techniques that can ensure data privacy and exploit the computational resources of users at the same time. One such a promising technique is known as Federated Learning (FL) which was first introduced in [6]. In a FL process, base station and users do not share the raw data but only the training updates, and hence, the user privacy is preserved. On the other hand, edge computing does not aim to protect data privacy. Specifically, in edge computing, computations are shifted to the edge devices that are placed close to user devices to reduce the computing burden on user devices. Therefore, there is a risk of privacy leakage as already happened in the third-party companies like Google, Facebook in the past [7]. Moreover, modern user devices are now equipped with more powerful computational capabilities with dedicated and integrated processors like Hexagon DSP with Qualcomm Hexagon Vector eXtensions on Snapdragon 835 [8]. Therefore, computing local updates at user devices in FL is entirely possible. Due to the data privacy attribute, FL has been used in a wide range of real-world digital applications e.g., Gboard, FeedVision, functional MRI, FedHealth, etc. [9], [10], [11].

FL has also gained growing attention from the wireless communications research community recently due to its privacy protection and resource utilization features [4], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], mainly from the viewpoint of implementing FL over wireless networks. The deployment of an FL framework has been studied for 5G and beyond networks [12], [13]. Moreover, pioneering studies on FL in wireless communications can be classified as “learning-oriented” or “communication-oriented.” The learning-oriented category aims to improve the learning performance (e.g., training loss, test accuracy) subject to inherent factors in wireless networks such as thermal noise, fading, and estimation errors [15], [16], [17], [18], [19]. Specifically, in [15], Chen et al. considered user selection to minimize the FL training loss function under the presence of network constraints. Amiri and Gündüz in [16] optimized the test accuracy to schedule devices and allocate power across time slots. Sun et al. improved the training efficiency by jointly considering the effects of uplink resource, energy consumption and latency constraints [17]. Bouzini et al. in [18] considered the problem of minimizing the total delay in each round.
of FL process in the case of compute-then-transmit non-orthogonal multiple access (NOMA). In [19], Wu et al. jointly optimized the overall latency for the FL process and the sum energy consumption of the BS and user devices for the NOMA assisted FL. The communication-oriented category, on the other hand, focuses on enhancing the communication performance (e.g., training latency, energy efficiency) in the framework of FL [20], [21], [22]. For example, in [20], Yang et al. considered the problem of minimization of the total energy consumption to train the FL model under a latency constraint. Vu et al. in [21] focused on minimizing the training latency under transmit power and data rate constraints. In [22], Tran et al. investigated the problem of optimizing the communication and computation latencies of mobile devices subject to various trade-offs between the energy consumption, learning time, and learning accuracy parameters. Zeng et al. in [23] investigated the problem of maximizing the energy efficiency of the FL process by designing a joint computation-and-communication resource management scheme. Pham et al. also studied the energy-efficient resource allocation problem for the FL framework under various resource constraints [24]. All above-mentioned works take into account serving only FL UEs. However, it is certain that future wireless networks will need to serve both the FL and non-FL UEs if FL is to be realized, which calls for novel communication designs. We address this fundamental problem in this paper.

As it is foreseen that future wireless networks will include simultaneously both learning and non-learning users, it will be a natural requirement to serve both group of users at the same time. In this regard, our motivation is to provide an answer to this forward-looking use case. The main challenge of the above coexistence is that how to optimize the data rate of non-FL UEs while ensuring a QoS constraint on the execution time of the FL UEs, which has not yet been studied in the existing literature. To understand this design challenge, let us briefly describe a communication round of an FL iteration in the presence of only FL UEs, which consists of four steps: (i) A central server transmits the global update of an ML model to FL UEs; (ii) FL UEs calculate their local model updates based on their local data set; (iii) The local model updates are sent back to the central server; and (iv) The central server calculates the global update by aggregating the received local model updates [25]. It is clear that problems arise when there are non-FL UEs that need to be served in the downlink. First and most importantly, in Step (iii), the base station needs to set up a two-way communication channel to implement the uplink of FL UEs and the downlink of non-FL UEs. Second, efficient resource allocation approaches are required at all the steps to control the inter-user interference among FL UEs and non-FL UEs to satisfy their different service requirements.

There are two types of communication schemes that are possible to serve the two-way communication between the central server and UEs, namely half-duplex (HD) and full-duplex (FD). Each of these communication schemes has its own advantages and disadvantages [26]. The main draw back of the FD scheme is the self-interference (SI) between transmit and receive antennas of the BS can cause significant performance degradation, which does not appear in the HD communication. However, for small or moderate SI, the FD communication can approximately double the spectral efficiency compared to the half duplex (HD) scheme [27]. Both HD and FD schemes are popular in the literature of massive multiple-input multiple-output (MIMO) networks [28], [29], [30]. However, they cannot be straightforwardly applied to the massive MIMO systems that serve both FL and non-FL UEs.

In this paper, we follow the communication-oriented approach and propose a novel network design for jointly serving FL and downlink non-FL UEs1 at the same time. First, we propose a communication scheme using massive MIMO and let each FL communication round be executed in one large-scale coherence time.2 Because of the high array gain, multiplexing gain, and macro-diversity gain, massive MIMO provides a reliable operation of each FL communication round as well as the whole FL process [21]. Here, in the first step of each FL communication round, both groups are jointly served in the downlink by the central server and in the third step, either the HD scheme or the FD scheme is considered to serve the uplink transmission of FL UEs and the downlink transmission of non-FL UEs. Next, we formulate an optimization problem that optimally allocates power and computation resources to maximize the fairness of effective data rates for non-FL UEs, while ensuring a quality-of-service time of each FL iteration for FL UEs. A successive convex approximation algorithm is then proposed to solve the formulated problem. In particular, our contributions are as follows:

- We propose HD and FD communication schemes to jointly serve both FL and non-FL UEs in a massive MIMO network, which has not been studied previously. In the proposed HD scheme, the total system bandwidth is divided equally between the FL and non-FL groups in the uplink of each FL iteration such that both groups are served at the same time in different bandwidths. In the FD communication scheme, both FL UEs and non-FL UEs transmit and receive data in the same time and bandwidth resource under the presence of SI.

- We propose a new performance measure, called the “effective data rate”, which is defined as the amount of data received by the non-FL UEs, per unit latency time taken by FL UEs. Then, we formulate two optimization problems, each of which is dedicated to the HD and FD scheme, to maximize the minimum effective data subject to a QoS constraint on the execution time for FL UEs. The formulated problems are non-convex with a fractional structure of the objective function and non-convex constraints. To solve the formulated problems, we first transform them into a more tractable form where the SCA is more amenable. Then we apply several convex approximations to arrive at iterative algorithms that are numerically shown to converge very fast. Note that the underlying mathematical structure of the formulated problem is unique and different from any existing works that aim to support federated learning using wireless communications. Therefore, the optimization methods in those works cannot be straightforwardly applied to solve the considered problems in this paper.

1The network design for uplink non-FL UEs is open for future works.
2Large-scale coherence time is a time interval where the large-scale fading coefficient remains reasonably invariant.
We provide an extensive set of simulation results to compare the proposed HD-based and FD-based schemes with two baseline schemes: The first baseline scheme makes use of the frequency division multiple access (FDMA) approach to serve each user independently in an allocated bandwidth, while the second baseline scheme considers an equal power allocation (EPA) approach to find the power control. It is observed that the proposed HD and FD schemes provide significantly better solution than two considered baseline schemes. Numerical results also show that the FD scheme is a better choice than the HD scheme when the size of the model updates is large and/or when the SI is small or moderate.

Notations: Bold lower and upper case letters represent vectors and matrices, respectively. The notations \mathbb{R} and \mathbb{C} represent the space of real and complex numbers, respectively. $\|\cdot\|$ represents the Euclidean norm; $|\cdot|$ is the absolute value of the argument. $\mathcal{CN}(0,a)$ denotes a complex Gaussian random variable with zero mean and variance a. X^T and X^H stand for the transpose and Hermitian of X, respectively. The operators $\mathbb{E}\{\cdot\}$ and $\text{Var}\{\cdot\}$ represent expectation and variance of the argument, respectively.

II. System Model and Proposed Transmission Schemes

A. System Model

We consider a massive MIMO system where a BS serves simultaneously non-FL UEs and FL UEs. We assume that the non-FL UEs are only those receiving data in the downlink transmission. Let $\mathcal{L} \triangleq \{1, \ldots, L\}$, and $\mathcal{K} \triangleq \{1, \ldots, K\}$ be the sets of FL UEs and non-FL UEs, respectively. All FL and non-FL UEs are equipped with a single antenna, while the BS has M transmit antennas and M receive antennas.

To serve FL UEs, the BS acts as a central server. There are four main steps in each iteration of a standard FL framework, i.e., global update downlink transmission, local update computation at the UEs, local update uplink transmission, and global update computation at the BS [6], [22], [31]. To serve non-FL UEs, as mentioned above, the BS constantly transmits downlink data to the non-FL UEs at the same time when all four steps of each FL iteration are executed. Thus, the transmission protocol of our considered system can be summarized as the following four steps in each FL iteration:

(S1) The BS sends a global update through the downlink channel to FL UEs. At the same time, non-FL UEs also receive downlink data from the BS.

(S2) The FL UEs update their local training model based on the global update and solve their local learning problems to obtain their local updates. During this time duration, non-FL UEs continue receiving downlink data from the BS.

(S3) The locally computed updates are sent by FL UEs to the BS in the uplink channel while the downlink data is still being sent from the BS to non-FL UEs.

(S4) The BS computes the global update by aggregating the received local updates.

In Step (S3), we need to serve both FL and non-FL UEs. In this regard, there are two types of possible communication schemes: HD and FD. In the HD scheme, the FL and non-FL groups are served in different frequency bands, while in the FD scheme, both groups are served in the same time and frequency resource. During Step (S4), the BS computes its global update after receiving all the local update, the delay of computing the global update is negligible since the computational capability of the central server is much more powerful than that of the UEs. Therefore, the amount of downlink data received by the non-FL UEs during the fourth step is not considered in the rest of the paper. Before proceeding further, we define some frequently used notations in Table I.

Notation	Stands For
β_k	Large-scale fading for non-FL UE k
G_{ℓ}	Channel from BS to FL group in downlink
G_{ω}	Channel from BS to non-FL group in (S1)
t_d	Downlink transmission time for FL group
t_C	Computation time for FL group in (S2)
t_u	Uplink transmission time for FL group
η_d	Power coefficients for FL group in downlink
ξ	Power coefficients for non-FL group in (S1)
η_u	Power coefficients for FL group in uplink
$R_{d,\ell}$	Rate for FL UE ℓ in downlink
$R_{u,k}$	Rate for non-FL UE k in (S1)
$R_{u,\ell}$	Rate for FL UE ℓ in uplink

B. Proposed Transmission Schemes

In this section, we propose transmission strategies to serve both FL and non-FL UEs at the same time in a massive MIMO network. Such scenario of jointly serving both learning and non-learning group of users has not been addressed in the literature previously. In particular, we propose to use a scheme in [21] to support FL iterations as in Fig. 1(a). We assume that each FL iteration is executed within a large-scale coherence time. All the FL UEs start each step of their FL iterations at the same time, and wait for others to finish their steps before starting a new step. We remark that the small-scale fading coefficients remain constant over each small-scale coherence block, and change in the following coherence blocks. The global and local updates in Steps (S1) and (S3) are transmitted in multiple (small-scale) coherence blocks, as shown in Fig. 1(b). Each small-scale coherence interval in Step (S1) or (S3) includes two phases: channel estimation and downlink or uplink transmission. In the following, we will provide details of our proposed transmission protocol for both HD and HD modes at the BS in Step (S3).

1) Step (S1): In this step, the BS wants to send the global updates to all FL UEs via a downlink transmission while simultaneously sending the payload data to all the non-FL UEs.

- Channel estimation: The BS estimates the channels by using uplink pilots received from all the UEs with a time-division-duplexing (TDD) protocol and exploiting channel reciprocity. Let $\sqrt{t_d,p} p_{\ell} \varphi_{\ell} \in \mathbb{C}^{t_d,p \times 1}$, where...
power as done in the literature such as [32, Sec. 3.1.3].

The channel vector between the BS and non-FL UE and φ and ρ \(\bar{d}, \ell \) in the \(\ell \)-th non-FL UE, where \(\rho_p \) is the normalized signal to noise ratio (SNR) of each pilot symbol.

In addition, \(t_{d,p} \) and \(t_1 \) are the corresponding pilot lengths. We assume \(t_{d,p}, t_1, \) and the pilots of non-FL UEs and FL UEs are pairwise orthogonal i.e., \(\varphi^{H}_i \varphi^\ell = 0, \forall \ell \neq \ell \) and \(\varphi^{H}_i \varphi^k = 0, \forall k \neq k \). In other words, pilot contamination is not considered in our paper.

Let \(G_d = [g_{d,1}, \ldots, g_{d,L}] \in \mathbb{C}^{L \times K} \) and \(H_1 = [h_{1,1}, \ldots, h_{1,K}] \in \mathbb{C}^{M \times K} \) be the channel matrices from the BS to the FL and non-FL groups in Step (S1), respectively. Here, \(g_{d,\ell} \) represents the channel vector from the BS to the \(\ell \)-th FL UE, while \(h_{1,k} \) is the channel vector between the BS and non-FL UE \(k \) in Step (S1). We assume Rayleigh fading, i.e., \(g_{d,\ell} \sim \mathcal{CN}(0, \beta_d I_d) \) and \(h_{1,k} \sim \mathcal{CN}(0, \beta_1 I_1) \), where \(\beta_d \) and \(\beta_1 \) represent large-scale fading. The minimum mean square error (MMSE) estimate of \(g_{d,\ell} \) can be written as \(\hat{g}_{d,\ell} = \sigma_d \bar{z}_{d,\ell} \), where \(\bar{z}_{d,\ell} \sim \mathcal{CN}(0, \sigma^2_d) \), and \(\sigma^2_d = \frac{\rho_p \tau_{d,p} \beta_d^2}{\rho_p \tau_{d,p} \beta_d^2 + 1} \). Similarly, the MMSE estimate of \(h_{1,k} \) can be written as \(\hat{h}_{1,k} = \sigma_{1,k} \bar{z}_{1,k} \), where \(\bar{z}_{1,k} \sim \mathcal{CN}(0, \sigma^2_1) \), and \(\sigma^2_1 = \frac{\rho_p \tau_{1,p} \beta_1^2}{\rho_p \tau_{1,p} \beta_1^2 + 1} \). \(G_d = [g_{d,1}, \ldots, g_{d,L}] \), \(H_1 = [h_{1,1}, \ldots, h_{1,K}] \), \(Z_d = [z_{d,1}, \ldots, z_{d,L}] \), \(Z_1 = [z_{1,1}, \ldots, z_{1,K}] \), \(\sigma_d \triangleq [\sigma_d, \ldots, \sigma_d]^{T} \), and \(\sigma_1 \triangleq [\sigma_1, \ldots, \sigma_1]^{T} \). Denote by \(E_d = [e_{d,1}, \ldots, e_{d,L}] \) and \(E_1 = [e_{1,1}, \ldots, e_{1,K}] \) be the channel estimation error matrices of \(G_d \) and \(H_1 \), i.e., \(e_{d,\ell} = \hat{g}_{d,\ell} - g_{d,\ell} \) and \(e_{1,k} = \hat{h}_{1,k} - h_{1,k} \). From the property of MMSE estimation, we have that \(e_{d,\ell} \) and \(e_{1,k} \) are independent, and hence, \(e_{d,\ell} \sim \mathcal{CN}(0, (\beta_d - \sigma^2_d I_d) I_M) \), \(e_{1,k} \sim \mathcal{CN}(0, (\beta_1 - \sigma^2_1 I_K) I_K) \).

We follow the practice of normalizing the transmit power to the noise power as done in the literature such as [32, Sec. 3.1.3].

- **Downlink transmission for both FL and non-FL UEs:** The BS encodes downlink data desired for non-FL UE \(k \) into the symbol \(s_{1,k} \sim \mathcal{CN}(0, I) \), \(\forall k \in K \), and the global training update intended for the FL UE \(\ell \) into symbol \(s_{d,\ell} \sim \mathcal{CN}(0, I) \), \(\forall \ell \in \mathcal{L} \). Note that the global update is the same for all FL UEs but we use different coding schemes for different UEs. The zero-forcing (ZF) precoding scheme is then applied to precede the symbols for FL and non-FL groups. Let \(s_{d,\ell} \triangleq [s_{d,1}, \ldots, s_{d,L}]^{T} \), \(s_1 \triangleq [s_1, \ldots, s_1]^{T} \). With ZF, \(M \geq L + K \) is required, and the signal transmitted at the BS in Step (S1) is given by

\[
x_1 = \sqrt{\rho_d} U_d D^{1/2} s_d + \sqrt{\rho_d} U_1 D^{1/2} s_1,
\]

where \([U_d, U_1] = \sqrt{(M-L-K)} Z (Z^H Z)^{-1} [32, (3.49)] \), with \(Z = [Z_1, Z_1] \). In addition, \(D_{\eta_d} \) and \(D_{\xi_1} \) are diagonal matrices with the elements of \(\eta_d \) and \(\xi_1 \) on their diagonal, respectively, where the \(\ell \)-th element of \(\eta_d \) denoted by \(\eta_{d,\ell} \) and the \(k \)-th element of \(\xi_1 \) denoted by \(\xi_{1,k} \) are the power control coefficients associated with the \(\ell \)-th FL UE and \(k \)-th non-FL UE, respectively. The transmitted power at the BS is required to meet the average normalized power constraint, i.e., \(\mathbb{E}[\|x_1\|^2] \leq \rho_d \), which can be expressed as

\[
\sum_{\ell \in \mathcal{L}} \eta_{d,\ell} + \sum_{k \in K} \xi_{1,k} \leq 1.
\]

The received signal vector collected from all FL UEs is given by

\[
y_d = G_d^H x_1 + n_d = \sqrt{\rho_d} G_d^H U_d D_{\eta_d}^{1/2} s_d + \sqrt{\rho_d} G_d^H U_1 D_{\xi_1}^{1/2} s_1 + n_d,
\]

where \(n_d \sim \mathcal{CN}(0, I_L) \) is the additive noise. Since \(G_d^H U_d = \sqrt{M-L-K} D_{\sigma_d} \) and \(G_d^H U_1 = 0 \), the \(\ell \)-th FL UE receives

\[
y_{d,\ell} = \sqrt{\rho_d} \eta_{d,\ell} (M-L-K) \sigma_{d,\ell} s_d + n_{d,\ell} - \sqrt{\rho_d} e_{d,\ell}^H U_d D_{\eta_d}^{1/2} s_d - \sqrt{\rho_d} e_{d,\ell}^H U_1 D_{\xi_1}^{1/2} s_1.
\]

Following [32, Sec. 3.3.2], the effective SINR at the \(\ell \)-th LF UE is given by

\[
\text{SINR}_{d,\ell}(\eta_d, \xi_1) = \frac{\rho_d \eta_{d,\ell} (M-L-K) \sigma^2_{d,\ell}}{1 + \rho_d \text{Var} \{e_{d,\ell}^H U_d D_{\eta_d}^{1/2} s_d + e_{d,\ell}^H U_1 D_{\xi_1}^{1/2} s_1 \}}.
\]

Since \(\epsilon_{d,\ell} \) is independent of \(U_d D_{\eta_d}^{1/2} s_d \) and \(U_1 D_{\xi_1}^{1/2} s_1 \), we get the closed-form expression for \(\text{SINR}_{d,\ell} \) as

\[
\text{SINR}_{d,\ell}(\eta_d, \xi_1) = \frac{\rho_d \eta_{d,\ell} (M-L-K) \sigma^2_{d,\ell}}{1 + \rho_d (\beta_d - \sigma^2_d) \sum_{i \in \mathcal{L}} \eta_{d,i} + \rho_d (\beta_1 - \sigma^2_1) \sum_{k \in K} \xi_{1,k}}.
\]

Similarly, the received signal vector combined from all the non-FL UEs in Step (S1) is given by

\[
y_1 = H_1^H x_1 + n_1
\]
while each non-FL UE

\[\text{computes its local training update on its local dataset, } \]

\[f_{\ell} \]

\[\text{the local data set and the processing frequency of UE} \]

\[d, \ell \]

\[\text{the effective SINR of the} \]

\[C, \ell \in L \]

\[\rho d \vartheta_{kk}(M - L - K) \sigma_{kk}^2 \]

\[\rho d \vartheta_{kk}(M - L - K) \sigma_{kk}^2 \]

\[= 1 + \rho d \vartheta_{kk}(M - L - K) \sigma_{kk}^2 \]

\[\text{the coherence interval.} \]

\[\eta_{\ell, p} \]

\[\text{where } B \text{ is the bandwidth and } \tau_c \text{ is the coherence interval. The achievable rate of non-FL UE } k \text{ is given by} \]

\[R_{1, k}(n_d, \xi_1) = \frac{\tau_c - \tau_p}{\tau_c} B \log_2 (1 + \text{SINR}_{1, k}(n_d, \xi_1)). \]

\[R_d(n_d, \xi_1) = \min_{\ell \in L} R_{d, \ell}(n_d, \xi_1) \]

\[= \frac{S_d}{R_d(n_d, \xi_1)}. \]

\[D_{1, k}(n_d, \xi_1) = R_{1, k}(n_d, \xi_1) t_d(n_d, \xi_1). \]

2) Step (S2): After receiving the global update, each FL UE \(\ell \) computes its local training update on its local dataset, while each non-FL UE \(k \) keeps receiving its data from the BS.

- Local computing: Each FL UE executes \(N_c \) local computing rounds over its data set to compute its local update. Let \(c_\ell \) (cycles/sample) be the number of processing cycles for a UE \(\ell \) to process one data sample [22]. Denote by \(D_\ell \) (samples) and \(f_\ell \) (cycles/s) the size of the local data set and the processing frequency of UE \(\ell \), respectively. To provide a certain synchronization in this step, we choose \(f_\ell = \frac{D_\ell c_\ell}{D_{\max} c_{\max}} \), where \(D_{\max} = \max_{\ell \in L} D_\ell \), \(c_{\max} = \max_{\ell \in L} c_\ell \), and \(f \) is a frequency control coefficient. The computation time at all the FL UEs of the FL group is the same \(t_C(f) \), which is given by [21], [22]

\[t_C(f) = t_{C, \ell}(f) = \frac{N_c D_\ell c_\ell}{f} = \frac{N_c D_{\max} c_{\max}}{f}, \forall \ell \in L. \]

- Channel estimation for non-FL UEs channel: In Step (S2), the channel estimation is performed similarly to Step (S1) for the non-FL UEs. The MMSE estimate of \(h_{2, k} \) (the channel between the BS and non-FL UE \(k \) in Step (S2) can be written as \(h_{2, k} = \sigma_{2, k} z_{2, k} \), where \(z_{2, k} \sim \mathcal{CN}(0, I_M) \) and \(\sigma_{2, k}^2 = \frac{\rho_k \tau_2 \rho_k^2}{\tau_2 p + K} \), where \(\tau_2, p \geq K \) is the length of pilot sequence in Step (S2).

- Amount of downlink data received at the non-FL group: Similarly to Step (S1), ZF is used at the BS to transmit signals to \(K \) non-FL UEs. Let \(\zeta \in \left[\zeta_{1,1}, \ldots, \zeta_{K} \right] \) be the power control coefficients for non-FL UEs. The transmitted power at the BS is required to meet the average normalized power constraint, which can be expressed as:

\[\sum_{k \in K} \zeta_{2, k} \leq 1. \]

The achievable downlink rate (bps) of non-FL UE \(k \), \(\forall k \in K \), is given by [32, (3.49)]

\[R_{2, k}(\zeta_2) = \frac{\rho_k \zeta_{2, k}(M - K) \sigma_{2, k}^2}{1 + \rho_k \zeta_{2, k}(M - K) \sigma_{2, k}^2} \]

\[\frac{\rho_k \zeta_{2, k}(M - K) \sigma_{2, k}^2}{1 + \rho_k \zeta_{2, k}(M - K) \sigma_{2, k}^2} \]

\[\zeta_{2, k} \in L \]

\[\text{where } \]

\[\log_B(1 + \text{SINR}_{2, k}(\zeta_2)). \]

\[\text{The above equation is similar to } (7) \text{ except that there is no interference induced by FL UEs in Step (S2). Thus, the total amount of downlink data received at non-FL UE } \]

\[D_{2, k}(\zeta_2, f) = R_{2, k}(\zeta_2) t_C(f). \]

3) Step (S3) Using HD:

- Channel estimation: In Step (S3), the channels between the BS and FL UEs are estimated using the MMSE estimation technique similarly to Steps (S1) and (S2). The channel \(g_{u, \ell} \) between the BS and FL UEs \(\ell \) in Step (S3) has an estimate \(\hat{g}_{u, \ell} = \sigma_{u, \ell} z_{u, \ell} \), where \(z_{u, \ell} \sim \mathcal{CN}(0, I_M) \), \(\sigma_{2, k}^2 = \frac{\rho_k \tau_2 \rho_k^2}{\tau_2 p + K} \), and \(\tau_2 \geq L + K \) is the pilot length. The channel \(h_{3, k} \) between the BS and the FL UEs in Step (S3) has an estimate \(\hat{h}_{3, k} = \sigma_{3, k} z_{3, k} \), where \(z_{3, k} \sim \mathcal{CN}(0, I_M) \) and \(\sigma_{3, k}^2 = \frac{\rho_k \tau_3 \rho_k^2}{\tau_3 p + K} \). Here, \(\tau_3 \geq L + K \) is the length of pilot sequence in Step (S3). Let \(Z_u \triangleq \left[z_{u,1}, \ldots, z_{u,L} \right] \), \(Z_3 \triangleq \left[z_{3,1}, \ldots, z_{3,K} \right] \), \(G_u \triangleq \left[g_{u,1}, \ldots, g_{u,L} \right] \), \(G_u = \left[g_{u,1}, \ldots, g_{u,L} \right] \), \(H_3 = \left[h_{3,1}, \ldots, h_{3,K} \right] \), and \(H_3 = \left[h_{3,1}, \ldots, h_{3,K} \right] \). Denote by \(E_u = \left[e_{u,1}, \ldots, e_{u,L} \right] \) and \(E_3 = \left[e_{3,1}, \ldots, e_{3,K} \right] \) be the channel estimate error matrices of \(G_u \) and \(H_3 \), i.e., \(E_u = G_u - G_u \) and \(E_3 = H_3 - H_3 \). Here, \(e_{u, \ell} \sim \mathcal{CN}(0, (\beta_3 - \sigma_{3, k}^2) I_M) \), and \(\beta_3, \sigma_{3, k}^2 \) are independent.

- Uplink transmission of FL UEs: After computing the local update, all FL UEs transmit their local updates to the BS. The signal transmitted from FL UE \(\ell \) is

\[x_{u, \ell} = \sqrt{\rho_k \eta_{u, \ell}} s_{u, \ell}, \]

where \(s_{u, \ell} \sim \mathcal{CN}(0, 1) \) is the data symbol, \(\eta_{u, \ell} \) is the power control coefficient chosen to satisfy the average
transmit power constraint, i.e., $\mathbb{E}\{ |x_{u,\ell}|^2 \} \leq \rho_u$, which can be expressed as
\begin{equation}
\eta_{u,\ell} \leq 1, \quad \forall \ell \in \mathcal{L}.
\end{equation}

The received signal vector at the BS is then given as
\begin{equation}
y_{u,\ell}^{\text{HD}} = \sqrt{\rho_u} \mathbf{G}_u \mathbf{D}_{\eta_u}^{1/2} \mathbf{s}_u + \mathbf{n}_u,
\end{equation}
where $\eta_u = [\eta_{u,1}, \ldots, \eta_{u,L}]^T$ and $\mathbf{n}_u \sim \mathcal{CN}(0, \mathbf{I}_M)$ is the additive noise vector.

After receiving signals from all the UEs, the BS applies a ZF decoding scheme for detecting the FL UEs' symbols. With ZF, signal for user u, ℓ is given by
\begin{equation}
y_{u,\ell}^{\text{HD}} = \sqrt{\rho_u} \mathbf{G}_u \mathbf{D}_{\eta_u}^{1/2} \mathbf{s}_u + \mathbf{u}_{u,\ell}^{H} \mathbf{n}_u
= \sqrt{\rho_u} \mathbf{G}_u \mathbf{D}_{\eta_u}^{1/2} \mathbf{s}_u - \sqrt{\rho_u} \mathbf{G}_u \mathbf{D}_{\eta_u}^{1/2} \mathbf{e}_\ell
+ \mathbf{u}_{u,\ell}^{H} \mathbf{n}_u,
\end{equation}
where $\mathbf{u}_{u,\ell} = \sqrt{(M-L)} \mathbf{Z}_u \mathbf{Z}_u^H \mathbf{Z}_u^{-1} \mathbf{e}_\ell, \ell \in \mathcal{L}$ is the zero-forcing decoding vector. For synchronization, we choose the rates of FL UEs to be the same as the minimum achievable rates in the FL group, i.e.,
\begin{equation}
P_{u,\ell}^{\text{HD}}(\eta_u) = \min_{\ell \in \mathcal{L}} P_{u,\ell}^{\text{HD}}(\eta_u)
= \min_{\ell \in \mathcal{L}} \frac{\tau_c - \tau_{c,p} \frac{B}{2} \log_2 (1 + \text{SINR}^{\text{HD}}_{u,\ell}(\eta_u))}{\tau_c}.
\end{equation}

where $1/2$ appears in the pre-log factor of the rate comes from the fact that the system bandwidth is equally divided between the FL and non-FL groups, and
\begin{equation}
\text{SINR}^{\text{HD}}_{u,\ell}(\eta_u) = \frac{\rho_u \eta_u,\ell (M-L) \sigma_{u,\ell}^2}{1 + \rho_u \text{Var}[\mathbf{u}_{u,\ell}^{H} \mathbf{E}_u \mathbf{D}_{\eta_u}^{1/2} \mathbf{s}_u]}.
\end{equation}

The above equation is then reduced to
\begin{equation}
\text{SINR}^{\text{HD}}_{u,\ell}(\eta_u) = \frac{\rho_u \eta_u,\ell (M-L) \sigma_{u,\ell}^2}{1 + \rho_u \sum_{i \in \mathcal{K}} (\beta_{i} - \sigma_{u,\ell}^2) \eta_{u,i}}.
\end{equation}

Downlink transmission for Non-FL UEs

Denote by $\mathbf{s}_3 = [s_{3,1} \ldots s_{3,K}]^T$ the vector of K symbols intended for K non-FL UEs, and $\mathbf{U}_3 = \sqrt{(M-K)} \mathbf{Z}_3 \mathbf{Z}_3^H \mathbf{Z}_3^{-1}$ the ZF precoding matrix. Then, the transmitted signal from the BS to the non-FL UEs is given by
\begin{equation}
\mathbf{x}_3 = \sqrt{\rho_d} \mathbf{U}_3 \mathbf{D}_{\zeta_3}^{1/2} \mathbf{s}_3,
\end{equation}
where $\zeta_3 = [\zeta_{3,1}, \ldots, \zeta_{3,K}]^T$, and $\zeta_{3,k}$ the power control coefficient allocated for non-FL UE k chosen to meet the average normalized power constraint at the BS, i.e., $\mathbb{E}\{ |x_{3,k}|^2 \} \leq \rho_d$, which can be expressed as:
\begin{equation}
\sum_{k \in \mathcal{K}} \zeta_{3,k} \leq 1.
\end{equation}

For the k-th non-FL UE, the received signal can be written as
\begin{equation}
y_{3,k}^{\text{HD}} = \sqrt{\rho_d} \mathbf{h}_{3,k}^{H} \mathbf{U}_3 \mathbf{D}_{\zeta_3}^{1/2} \mathbf{s}_3 - \sqrt{\rho_d} \mathbf{e}_{3,k}^{H} \mathbf{U}_3 \mathbf{D}_{\zeta_3}^{1/2} \mathbf{s}_3 + n_{3,k}.
\end{equation}

In the above equation, the term $\mathbf{e}_{3,k}$ is independent of $\mathbf{U}_3 \mathbf{D}_{\zeta_3}^{1/2} \mathbf{s}_3$. Thus, under the HD scheme in Step (S3), the effective SINR for the downlink payload for non-FL UE k is
\begin{equation}
\text{SINR}^{\text{HD}}_{3,k}(\zeta_3) = \frac{\rho_d \zeta_{3,k} (M-K) \sigma_{3,k}^2}{1 + \rho_d \text{Var}[\mathbf{e}_{3,k}^{H} \mathbf{U}_3 \mathbf{D}_{\zeta_3}^{1/2} \mathbf{s}_3]}
= \frac{\rho_d \zeta_{3,k} (M-K) \sigma_{3,k}^2}{1 + \rho_d (\beta_k - \sigma_{3,k}^2) \sum_{i \in \mathcal{K}} \zeta_{3,i}}.
\end{equation}

and the achievable downlink rate for non-FL UE k, $\forall k \in \mathcal{K}$, is
\begin{equation}
R_{3,k}^{\text{HD}}(\zeta_3) = \frac{\tau_c - \tau_{c,p} \frac{B}{2} \log_2 (1 + \text{SINR}^{\text{HD}}_{3,k}(\zeta_3))}{\tau_c}.
\end{equation}

Uplink delay

Denote by S_u (bits) the data size of the local training update of the FL group. The transmission time from each FL UE to the BS is the same and given by
\begin{equation}
t_u^{\text{HD}}(\eta_u) = \frac{S_u}{R_{u}^{\text{HD}}(\eta_u)}.
\end{equation}

Amount of downlink data received at the non-FL Group

The amount of downlink data received at the non-FL UE k, $\forall k \in \mathcal{K}$, in Step (S3) using HD is
\begin{equation}
D_{3,k}^{\text{HD}}(\eta_u, \zeta_3) = R_{3,k}^{\text{HD}}(\zeta_3) t_u^{\text{HD}}(\eta_u).
\end{equation}

Before proceeding further, we remark that in Step (S3) using HD, the uplink transmission of FL users and the downlink transmission of non-FL users need to be served at the same time. However, a traditional half-duplex base station only operates in either uplink mode or downlink mode, which raises a challenge for the system design. Therefore, a simple approach is to divide the bandwidth equally for the half-duplex base station to serve each user group in each half of the bandwidth, as done in our paper. However, even with the equal bandwidth allocation, as shall be seen shortly, the problem is already very complicated and challenging to solve. We also remark that looking from an algorithmic viewpoint, our proposed solution for the HD case to be presented in the next section is also applicable to any fixed bandwidth allocation. However, finding the optimal bandwidth allocation will make the resulting problem more intractable, which is out of the scope of the paper and thus will be left for future work.

4) Step (S3) Using FD: Step (S3) involves transmission in both directions. This motivates us to consider the FD communications to serve both groups of UEs simultaneously. Specifically, FL UEs send their local updates to the BS in the uplink channel and at the same time, non-FL UEs receive the downlink data from the BS. The proposed FD scheme is detailed in what follows.
receiver and transmit antennas of the BS which is denoted by $G_{SI} \in \mathbb{C}^{M \times M}$. The elements of matrix G_{SI} are modeled as i.i.d. random variables with a variance being given by $\sigma_{SI}^2 = \beta_{SI} \sigma_0^2$, where β_{SI} represents the path loss from a transmit antenna to a receive antenna of the BS due to their physical antenna separation and σ_0^2 is the power of the residual interference at each BS antenna after the SI suppression, respectively. Similar to the HD scheme, the baseband signal is subjected to the average transmit power constraint (17). The received signal vector at the BS in the FD communication is expressed as

$$y_u^{FD} = \sqrt{\rho_d} G_u D_{\eta_u}^{1/2} s_u + \sqrt{\rho_d} G_{SI} U_3 D_{\zeta}^{1/2} s_3 + n_u,$$

(29)

where $n_u \sim \mathcal{CN}(0, I_M)$ is the vector of additive noise components. Note that SI is caused from transmit antennas of the BS to receiving antennas and thus, the effective noise has an additional SI term caused by the downlink transmission to non-FL UEs. After receiving signals from all the UEs, the BS applies a ZF decoding scheme for detecting the FL UEs’ symbols. The detected signal for the ℓ-th FL UE is given in (30), as shown at the bottom of the page. The SINR for the ℓ-th FL UE in case of FD communications given in (31) can be approximated by

$$\text{SINR}_{u,\ell}^{FD}(\eta_u, \zeta_3) = \frac{\rho_u \eta_u,\ell (M - L) \sigma_{u,\ell}^2}{1 + \rho_d \sigma_{u,\ell}^2 + \rho_d M \beta_{SI} \sigma_{SI,0}^2}.$$

(31)

Proposition 1: The SINR for the ℓ-th FL UE in case of FD communications given in (31) can be approximated by

$$\text{SINR}_{u,\ell}^{FD}(\eta_u, \zeta_3) \approx \text{SINR}_{u,\ell}^{FD}(\eta_u, \zeta_3) = \frac{\rho_u \eta_u,\ell (M - L) \sigma_{u,\ell}^2}{1 + \rho_u \sum_{i \in L} (\beta_{k,i} - \eta_{u,i}) + \rho_d M \beta_{SI} \sum_{j \in K} \zeta_{3,j}}.$$

(32)

Proof: See Appendix A.

For synchronization, we again choose the rates of FL UEs to be the same as the minimum achievable rates in the FL group.

$$R_u^{FD}(\eta_u, \zeta_3) = \min_{\ell \in L} \frac{\tau_c - \tau_{u,p}}{\tau_c} B \log_2 \left(1 + \text{SINR}_{u,\ell}^{FD}(\eta_u, \zeta_3)\right).$$

(33)

The above equation is similar to (20) except that FL UEs make use of the full bandwidth in the FD communication.

- **Downlink transmission for Non-FL UEs:** In FD, non-FL UEs continue receiving data from the BS in the downlink channel in the presence of FL UEs which simultaneously send the local updates to the BS in the uplink channel. Therefore, the received signal at each non-FL UE contains the inter-group interference (IGI) from the group of FL UEs. To approximate the SINR in this case, the transmitted power at the BS is constrained to meet the average normalized power constraint (23) similar to the HD scheme.

The received signal for the k-th non-FL UE can be written as

$$y_{3,k}^{FD} = \sqrt{\rho_d} h_{3,k}^H U_3 D_{\zeta}^{1/2} s_3 + \sqrt{\rho_u} H_{IGI} D_{\eta_u}^{1/2} s_u + n_{3,k},$$

(34)

where $H_{IGI} \in \mathbb{C}^{L \times K}$ is the inter-group channel matrix whose elements are modeled as $h_{IGI,k,l} = \beta_{IGI,k,l} h_{IGI,k,l},$ where $\beta_{IGI,k,l}$ is the large-scale fading and $h_{IGI,k,l} \sim \mathcal{CN}(0, 1)$ is the small-scale fading of the inter-group channel. After the channel estimation, the first term in the above equation can be broken into the estimation term and the error term and thus, the above equation can be rewritten as given in (35), as shown at the bottom of this page. The effective SINR in the downlink payload at non-FL UE k is given by

$$\text{SINR}_{3,k}^{FD}(\eta_u, \zeta_3) = \frac{\rho_u \eta_{3,k} (M - K) \sigma_{3,k}^2}{1 + \rho_u \beta_{3,k} \sum_{j \in K, \beta_{3,j,k}} + \rho_u \sum_{i \in L} \eta_{u,i} \beta_{IGI,k,l}}.$$

(36)

Note that in the above equation, $\beta_{3,k}$ is independent of $U_3 D_{\zeta}^{1/2} s_3$. Moreover, $\sum_{j \in K, \beta_{3,j,k}} \eta_{u,i} \beta_{IGI,k,l}$ simplifies to $\rho_u \sum_{i \in L} \eta_{u,i} \beta_{IGI,k,l}$. Thus, the effective SINR can be rewritten as

$$\text{SINR}_{3,k}^{FD}(\eta_u, \zeta_3) = \frac{\rho_u \eta_{3,k} (M - K) \sigma_{3,k}^2}{1 + \rho_u \beta_{3,k} \sum_{j \in K} \zeta_{3,j} + \rho_u \sum_{i \in L} \eta_{u,i} \beta_{IGI,k,l}}.$$

(37)

Now, the achievable downlink rate for non-FL UE $k, \forall k \in K$, is

$$R_{3,k}^{FD}(\eta_u, \zeta_3) = \frac{\tau_c - \tau_{3,p}}{\tau_c} B \log_2 \left(1 + \text{SINR}_{3,k}^{FD}(\eta_u, \zeta_3)\right).$$

(38)
Uplink delay: Denote by S_u (bits) the data size of the local training update of the FL group. The transmission time from FL UE ℓ to the BS is the same and given by

$$t_{u,\ell}^{FD}(\eta_u, \zeta_3) = \frac{S_u}{R_{u,\ell}^{FD}(\eta_u, \zeta_3)}. \quad (39)$$

The above equation is similar to (27) except that the transmission time now depends on power control coefficients from both FL and non-FL UEs.

Amount of downlink data received at the non-FL group: The amount of downlink data received at all non-FL UE k, $\forall k \in K$, in Step (3) is

$$D_{3,k}^{FD}(\eta_u, \zeta_3) = R_{3,k}^{FD}(\eta_u, \zeta_3) t_u^{FD}(\eta_u, \zeta_3). \quad (40)$$

This equation is also similar to (28) while the only difference is that the downlink rate of k-th non-FL UE and the transmission time of the FL UEs depend on both η_u and ζ_3.

5) **Step (S4)**: After receiving all the local update, the BS (i.e., central server) computes its global update. Since the computational capability of the central server is much more powerful than that of the UEs, the delay of computing the global update is negligible.

III. Problem Formulation and Proposed Solution

The problem of fairness among the non-FL UEs in terms of effective data received is one of the key challenges in wireless communications. In this section we first define a new performance metric which is referred to as the effective data rate of non-FL UEs and then formulate the optimization problems to achieve the max-min fairness of non-FL UEs subject to a QoS constraint on the execution time of FL UEs.

A. Effective Data Rate of Non-FL UEs

From the discussions in the preceding section, the data rate of each non-FL UE is changed for different steps. Thus, it is practically reasonable to use the average data rate accounting for all steps as a representative data rate for the system design purposes. More specifically, the total amount of data received by the k-th non-FL UE in Steps (S1)-(S3) is $D_{1,k} + D_{2,k} + D_{3,k}^{mode}$, where mode $\in \{HD, FD\}$. Also, the time of each step is determined by the FL UEs. It is obvious that the total time of the three steps is $t_d + t_C + t_u^{mode}$. Thus, we define the effective data rate for the k-th non-FL UE as $D_{1,k} + D_{2,k} + D_{3,k}^{mode} \over t_d + t_C + t_u^{mode}$. In the following we use this definition of the effective data rate for non-FL UEs to formulate max-min fairness problems for HD and FD approaches.

B. HD Scheme

1) **Problem Formulation for HD Scheme**: The considered problem for the HD communication scheme can be mathematically expressed as follows:

$$\max_{x^{HD}} \min_{k \in K} \left(D_{1,k}(\eta_d, \zeta_1) + D_{2,k}(f, \zeta_2) + D_{3,k}^{HD}(\eta_u, \zeta_3) \right)$$

$$t_d(\eta_d, \zeta_1) + t_C(f) + t_u^{HD}(\eta_u) \quad (41a)$$

s.t. (1), (13), (17), (23),

$$\eta_{d,\ell}, \quad \zeta_{1,k}, \quad \zeta_{2,k}, \quad \eta_{u,\ell}, \quad \zeta_{3,k} \geq 0, \quad \eta_{d,\ell} \leq 1, \quad (41b)$$

$$f_{\min} \leq f \leq f_{\max}, \quad \forall \ell \quad (41c)$$

$$t_d(\eta_d, \zeta_1) + t_C(f) + t_u^{HD}(\eta_u) \leq t_{QoS} \quad (41d)$$

where $x^{HD} = [\eta_d^T, \zeta_1, f, \zeta_2^T, \eta_u^T, \zeta_3^T]^T$. The constraint (41d) is introduced to ensure that the time taken by the FL UEs is bounded by t_{QoS}.

2) **Solution for HD Scheme**: We now present a solution to (41) based on successive convex approximation (SCA). Our idea is to equivalent transform the sophisticated constraints into simpler ones where convex approximations are easier to find. To this end, using the epigraph form, we first equivalently rewrite (41) as

$$\max_{x^{HD}} \min_{t^{HD}, t_Q} \frac{t^{HD}}{t_Q}$$

s.t. (1), (13), (17), (23), (41b), (41c),

$$t_d(\eta_d, \zeta_1) + t_C(f) + t_u^{HD}(\eta_u) \leq t^{HD}, \quad (42b)$$

$$D_{1,k}(\eta_d, \zeta_1) + D_{2,k}(f, \zeta_2) + D_{3,k}^{HD}(\eta_u, \zeta_3) \geq t^{HD}, \quad \forall k \quad (42c)$$

$$t^{HD} \leq t_{QoS}, \quad (42d)$$

where $x^{HD} = [(x^{HD})^T, t^{HD}, t_Q]^T$. Next, it is straightforward to see that (42) can be further equivalently reformulated as

$$\max_{x^{HD}} \min_{t^{HD}, t_Q} \frac{t^{HD}}{t_Q}$$

s.t. (1), (13), (17), (23), (41b), (41c), (42d),

$$\frac{S_d}{R_d(\eta_d, \zeta_1)} + \frac{N_u D_{max} c_{max}}{f} + \frac{S_u}{R_u(\eta_u)} \leq t^{HD}, \quad (43b)$$

$$R_{1,k}(\eta_d, \zeta_1) + \frac{S_d}{R_d(\eta_d, \zeta_1)} + R_{2,k}(\zeta_2) N_u D_{max} c_{max} \geq t^{HD}, \quad \forall k \quad (43c)$$

It is now clear that (43b) and (43c) are troublesome. We note that (43b) is equivalent to the following set of constraints

$$\frac{S_d}{r_d} + \frac{N_u D_{max} c_{max}}{f} + \frac{S_u}{r_u} \leq t^{HD}, \quad (44a)$$

$$r_d \leq R_d(\eta_d, \zeta_1), \quad \forall \ell \quad (44b)$$

$$r_u \leq R_u(\eta_u), \quad \forall \ell \quad (44c)$$

$$r_d \geq 0, \quad r_u \geq 0. \quad (44d)$$

It is easy to see that (43b) and (44) are equivalent since if $R_{d,\ell}(\eta_d, \zeta_1)$ and $R_{u,\ell}(\eta_u)$ are feasible to (43b), then they are also feasible to (44) and vice versa. We note that (44a) is convex. Intuitively, r_d and r_u are lower-bounds of $R_{d,\ell}(\eta_d, \zeta_1)$ and $R_{u,\ell}(\eta_u)$, respectively, for all $\ell \in \ell$. In the same way, to deal with (43c), we rewrite it as

$$\frac{S_d}{r_d} + \frac{N_u D_{max} c_{max}}{f} + r_{HD} \frac{S_u}{r_u} \geq t^{HD}, \quad \forall k \quad (45a)$$

$$R_{d,\ell}(\eta_d, \zeta_1) \leq r_d, \quad \forall \ell \quad (45b)$$

$$R_{u,\ell}(\eta_u) \leq r_u \quad (45c)$$

$$r_d \leq R_{1,k}(\eta_d, \zeta_1), \quad \forall k \quad (45d)$$

$$r_u \leq R_{2,k}(\zeta_2) \quad \forall k \quad (45e)$$
where \(\hat{r}_d \) and \(\hat{r}_u^\text{HD} \) are respectively seen as upper-bounds of \(R_{d,\ell}(\eta_d, \zeta_1) \) and \(R_{u,\ell}^\text{HD}(\eta_u) \) for all \(\ell \in \mathcal{L} \), and \(r_{1,k} \), \(r_{2,k} \), and \(r_{3,k}^\text{HD} \) the lower-bounds of \(R_{1,k}(\eta_d, \zeta_1) \), \(R_{2,k}(\zeta_2) \) and \(R_{3,k}^\text{HD}(\zeta_3) \). We can now further equivalently express (45a) as

\[
\text{(45f)}
\]

where (45d–45f) are approximated by the following convex constraints

\[
\begin{align}
\text{(50a)} & \quad r_d \leq \hat{R}_{d,\ell}(\eta_d, \zeta_1), \quad \forall \ell \\
\text{(50b)} & \quad r_u^\text{HD} \leq \hat{R}_{u,\ell}^\text{HD}(\eta_u), \quad \forall \ell \\
\text{(50c)} & \quad r_{1,k} \leq \hat{R}_{1,k}(\eta_d, \zeta_1), \quad \forall k \\
\text{(50d)} & \quad r_{2,k} \leq \hat{R}_{2,k}(\zeta_2), \quad \forall k \\
\text{(50e)} & \quad r_{3,k}^\text{HD} \leq \hat{R}_{3,k}^\text{HD}(\zeta_3), \quad \forall k.
\end{align}
\]

To proceed further we note that constraints (46b–46d) and (47b) are of the same type. To deal with these, let us recall the following equality

\[
xy = \frac{1}{4}[(x + y)^2 - (x - y)^2].
\]

Since we need a \textit{convex upper bound} of the term \(xy \), a simple way is to linearize the term \((x - y)^2 \).

\[
xy \leq \frac{1}{4}[(x + y)^2 - 2(x^{(n)} - y^{(n)})^2] - 2(x^{(n)} - y^{(n)})],
\]

where \(x \geq 0, y \geq 0, \) and \(x^{(n)} \) and \(y^{(n)} \) are the values of \(x \) and \(y \) at the \(n \)-th iteration, respectively \([21]\). Thus, using (52) we can approximate (46b–46d) and (47b) by the following convex constraints, respectively.

\[
\begin{align}
\text{(53a)} & \quad \frac{1}{4}[(a_1 + \hat{r}_d)^2 - (a_1^{(n)} - \hat{r}_d^{(n)})^2] + 2(a_1 - \hat{r}_d) \times (a_1^{(n)} - \hat{r}_d^{(n)})] \leq r_{1,k}, \quad \forall k \\
\text{(53b)} & \quad \frac{1}{4}[(a_2 + f)^2 - (a_2^{(n)} - f^{(n)})^2] + 2(a_2 - f) \times (a_2^{(n)} - f^{(n)})] \leq r_{2,k}, \quad \forall k \\
\text{(53c)} & \quad \frac{1}{4}[(a_3^{(n)} - \hat{r}_u^{(n)})^2 - (a_3^{(n)} - \hat{r}_u^{(n)})^2] + 2(a_3^{(n)} - \hat{r}_u^{(n)}) \times (a_3^{(n)} - \hat{r}_u^{(n)})] \leq r_{3,k}^\text{HD}, \quad \forall k \\
\text{(53d)} & \quad \frac{1}{4}[(z^{\text{HD}} + t_Q)^2 - (z^{\text{HD}} - t_Q)^2] + 2(z^{\text{HD}} - t_Q^\text{HD}) \times (z^{\text{HD}} - t_Q^\text{HD}] \leq t^\text{HD}.
\end{align}
\]

We now turn our attention to (45b) and (45c). It is obvious now we need to derive \textit{convex upper bounds} of the rate functions present in these two constraints. To this end we resort to the following inequality

\[
\log(1 + \frac{x}{y}) \leq \log(1 + \frac{x^{(n)}}{y^{(n)}}) + \frac{2x^{(n)}}{x^{(n)} + y^{(n)}} - \frac{x^{(n)}y}{(x^{(n)} + y^{(n)})^2} - \frac{x^{(n)}y}{x^{(n)} + y^{(n)}},
\]

where \(x > 0, y > 0 \) \([33, 76]\). Applying the above inequality we obtain the following inequalities

\[
\begin{align}
\tilde{R}_{d,\ell}(\eta_d, \zeta_1) \leq R_{d,\ell}(\eta_d, \zeta_1), \quad \forall \ell \\
\tilde{R}_{u,\ell}^\text{HD}(\eta_u) \leq R_{u,\ell}^\text{HD}(\eta_u), \quad \forall \ell \\
\tilde{R}_{1,k}(\eta_d, \zeta_1) \leq R_{1,k}(\eta_d, \zeta_1), \quad \forall k \\
\tilde{R}_{2,k}(\zeta_2) \leq R_{2,k}(\zeta_2), \quad \forall k \\
\tilde{R}_{3,k}^\text{HD}(\zeta_3) \leq R_{3,k}^\text{HD}(\zeta_3), \quad \forall k.
\end{align}
\]

where \(\tilde{R}_{d,\ell}(\eta_d, \zeta_1), \tilde{R}_{u,\ell}^\text{HD}(\eta_u), \tilde{R}_{1,k}(\eta_d, \zeta_1), \tilde{R}_{2,k}(\zeta_2), \) and \(\tilde{R}_{3,k}^\text{HD}(\zeta_3) \) are concave lower bounds of \(R_{d,\ell}(\eta_d, \zeta_1), R_{u,\ell}^\text{HD}(\eta_u), R_{1,k}(\eta_d, \zeta_1), R_{2,k}(\zeta_2), \) and \(R_{3,k}^\text{HD}(\zeta_3) \), respectively. The expressions of these lower bounds are given in (75) in Appendix C. Consequently, in light of SCA, (44b), (44c), (45d–45f) are approximated by the following convex constraints

\[
\begin{align}
\text{(55a)} & \quad \tilde{R}_{d,\ell}(\eta_d, \zeta_1) \leq \hat{r}_d, \quad \forall \ell \\
\text{(55b)} & \quad \tilde{R}_{u,\ell}^\text{HD}(\eta_u) \leq \hat{r}_u^\text{HD}, \quad \forall \ell.
\end{align}
\]
where $\tilde{R}_d(\eta_d, \zeta_1)$ and $\bar{R}_d(\eta_d, \zeta_1)$ are convex upper bounds of $R_{d,\ell}(\eta_d, \zeta_1)$ and $R_{d,\ell}(\eta_d, \zeta_1)$, respectively. The detailed expressions of $\tilde{R}_d(\eta_d, \zeta_1)$ and $\bar{R}_d(\eta_d, \zeta_1)$ are given in (76) in Appendix C.

In summary, at iteration $n+1$, problem (43) is approximated by the following convex problem:

$$\max \{ z^{HD} | x^{HD} \in \mathcal{F}^{HD} \},$$

where $\mathcal{F}^{HD} \triangleq \{(1), (13), (17), (23), (41b), (41c), (42d), (44a), (44d), (45g), (46a), (50), (53), (55)\}$. We outline the main steps to solve problem (47) in Algorithm 1.

Remark 1: Algorithm 1 requires a feasible point to start the iterative procedure. In general, it is difficult to find a feasible solution to (47). We now describe a practical way to overcome this issue. It is not difficult to see that randomly generating and properly the variables in x^{HD} can meet (1), (13), (17), (23), (41b), (41c). The remaining variables in x^{HD} can be found by letting the corresponding inequality constraints (47) be binding (i.e., occur with equality). If (42d) is satisfied, then we can use this initial point to start Algorithm 1. When the requirements are high (e.g., when x^{HD} is small), it is likely that (42d) is not met. In such cases, we introduce a slack variable s and replacing (56) by the following problem

$$\max_{s \leq 0, x^{HD}} z^{HD} + \alpha s$$

s.t. $x^{HD} \in \mathcal{F}^{HD} \setminus (42d)$,

$$t^{HD}_Q + s \leq t^{FD}_{QoS}.$$

Intuitively, s represents the violation of (42d) and $\alpha > 0$ is the penalty parameter. It is easy to see that (57c) is met if s is sufficiently small, and thus (57) is always feasible. On the other hand, the maximization of the regularized objective in (57a) will force s to approach 0 when the iterative process progresses. Thus, when Algorithm 1 converges and if $|s|$ is smaller than a pre-determined error tolerance, we take x^{HD*} as the final solution. Otherwise, we say that (41) is infeasible.

C. FD Scheme

1) **Problem Formulation for FD Communication Scheme:**

The considered problem for the FD communication scheme is mathematically stated as

$$\max_{x^{FD}} \min_{k \in K} \left(D_{1,\ell}(\eta_d, \zeta_1) + D_{2,\ell}(f, \zeta_2) + D_{3,\ell}(\eta_d, \zeta_3) \right) / t_d(\eta_d, \zeta_1) + t_C(f) + t_u(\eta_d, \zeta_3),$$

s.t. (1), (13), (17), (23),

$$\eta_{d,t}, \eta_{1,k}, \eta_{2,k}, \eta_{u,t}, \zeta_{3,k} \geq 0, \eta_{d,t} \leq 1,$$

$$f_{\text{min}} \leq f \leq f_{\text{max}}, \forall \ell,$$

$$t_d(\eta_d, \zeta_1) + t_C(f) + t_u(\eta_d, \zeta_3) \leq t^{FD}_{QoS}.$$

where $x^{FD} \triangleq [\eta_d, f, \eta_{1,k}, \eta_{2,k}, \eta_{u,k}]^T$.

2) **Solution for FD Scheme:** The solution for the FD scheme follows closely the derivations of that for the HD scheme. First, we equivalently rewrite (58) as

$$\max_{x^{FD}} t^{FD}_{Q}$$

s.t. (1), (13), (17), (23), (58b), (58c),

$$R_{1,\ell}(\eta_d, \zeta_1) + R_{2,\ell}(f, \zeta_2) + R_{3,\ell}(\eta_d, \zeta_3) \leq t^{FD}_{Q}, \forall k,$$

$$t^{FD}_{Q} \leq t^{FD}_{QoS}.$$

where $x^{FD} = [(x^{FD})^T, t^{FD}_{Q}, t^{FD}_{Q}]^T$, which is then equivalent to

$$\max_{x^{FD}} z^{FD}$$

s.t. (1), (13), (17), (23), (58b), (58c), (59b),

$$a_1 S_d + a_2 N_c D_{max c} + a_3 m_{FD} S_u \geq t^{FD}_{Q}, \forall k,$$

$$R_{1,\ell}(\eta_d, \zeta_1) \leq t^{FD}_{Q}, \forall k,$$

$$R_{6,\ell}(\eta_d, \zeta_3) \leq t^{FD}_{Q}, \forall k.$$
Algorithm 2 Algorithm for Solving (58)

1: Input: Set \(n = 0 \) and choose an initial point \(\hat{x}^{FD(0)} \in \mathcal{F}^{FD} \)
2: repeat
3: Solve (63) to get \(x^{FD(n)} \)
4: \(\hat{x}^{FD(n+1)} \leftarrow x^{FD(n)} \)
5: \(n \leftarrow n + 1 \)
6: until convergence

where \(a_3^{FD(n)} \) and \(r_3^{FD(n)} \) are the values of \(a_3^{FD} \) and \(r_3^{FD} \) at the \(n \)-th iteration, respectively.

To proceed further, we note that the convex approximate constraints of (60h), (60j), (60k), and (60m) are already presented in (50a), (50c), (50d), and (55a), respectively. Also, (60i), (60l), and (60n) are similar to (44c), (45f), and (45c). Thus, following the same steps to obtaining (50b), (50e), and (55b), we can approximate (60), (60l), and (60n) as the following convex constraints

\[
\begin{align*}
\hat{r}_u^{FD} \leq \tilde{R}_{u,k}^{FD}(\eta_u, \zeta_3), & \quad \forall \ell \quad (62a) \\
\tilde{r}_3^{FD} \leq \tilde{R}_{3,k}^{FD}(\eta_u, \zeta_3), & \quad \forall k \quad (62b) \\
\hat{R}_{u,k}^{FD}(\eta_u, \zeta_3) \leq \tilde{r}_u^{FD}, & \quad \forall \ell \quad (62c)
\end{align*}
\]

where \(\tilde{R}_{u,k}^{FD}(\eta_u, \zeta_3) \), \(\tilde{R}_{3,k}^{FD}(\eta_u, \zeta_3) \), and \(\hat{R}_{u,k}^{FD}(\eta_u, \zeta_3) \) are given in (77) and (78) in Appendix C.

At iteration \(n + 1 \), for a given point \(\hat{x}^{FD(n)} \), problem (58) is approximated by the following convex problem

\[
\max \left\{ z^{FD} \mid \hat{x}^{FD(n)} \in \mathcal{F}^{FD} \right\}, \quad (63)
\]

where \(\mathcal{F}^{FD} \triangleq \{(1), (13), (17), (23), (58b), (58c), (59d), (60b), (60c), (53a), (53b), (50a), (50c), (50d), (55a), (61), (62)\} \). We outline the main steps to solve problem (60) in Algorithm 2.

Remark 2: Similar to Algorithm 1, Algorithm 2 requires a feasible point to (60) which is not trivial for finding, especially when the SI is high. To overcome this issue we follow the same procedure as described in Remark 1. Specifically, if scaling randomly generated variables cannot produce a feasible solution, we introduce add a slack variable \(s \) and consider the following problem

\[
\begin{align*}
\max_{0 \leq s \leq \hat{x}^{FD}} z^{FD} + s \quad (64a) \\
\text{s.t.} \quad \hat{x}^{FD} \in \mathcal{F}^{FD}, \quad (59d), \\
\hat{r}_3^{FD} + s \leq \hat{r}_3^{QoS} \quad (64c)
\end{align*}
\]

Then, problem (64) is solved iteratively until convergence. If \(|s| \) is smaller a pre-determined error tolerance, we will take \(\hat{x}^{FD} \) as the final solution. Otherwise, (60) (and thus (58)) is said to be infeasible.

Remark 3: In practical wireless networks, channel estimation is a critical part. In the previous section, we have explained how channels can be estimated in all steps of the proposed system model. Specifically, users send pilot signals to the BS to estimate the channels. We note that the channels are estimated at the BS, not at users. We also note that channel estimation is only required for the BS for beamforming in the downlink channel, and the achievable rate derived in the paper is based on the assumption that channel estimations are not available in the downlink channel since no pilots are sent from the BS. This is a standard approach in massive MIMO using TDD. We remark that in our paper, optimization problems are solved at the BS, and thus, the users do not need to obtain channel information or spend any computing resources. In other words, we adopt a centralized optimization method in this paper. After solving the optimization problems, the BS sends the power coefficients to the UEs through dedicated feedback channels. Importantly, the optimization problems are performed on the large-scale fading time scale which changes slowly with time.

IV. NUMERICAL RESULTS

A. Parameter Setting

We consider a \(D \times D \) m² area where the BS is at the centre, while \(L \) FL UEs and \(K \) non-FL UEs are randomly distributed. The large-scale fading coefficients are modeled in the same manner as [35, Eq. (46)]:

\[
\beta_{\ell}[\text{dB}] = -148.1 - 37.6 \log_{10} \left(\frac{d_{\ell}}{1 \text{ km}} \right) + z_{\ell}, \quad (65)
\]

where \(d_{\ell} \geq 35 \text{ m} \) is the distance between UE \(\ell \) and the BS, \(z_{\ell} \) is a shadow fading coefficient which is modeled using a log-normal distribution having zero mean and 7 dB standard deviation. We set \(N_0 = -92 \text{ dBm}, \eta_{\text{QoS}} = 3 \text{ s}, B = 20 \text{ MHz}, \rho_d = 10 \text{ W}, \rho_u = \rho_p = 0.2 \text{ W}, \tau_{d,p} = \tau_{u,p} = 20, \tau_{S_1,p} = \tau_{S_2,p} = \tau_{S_3,p} = 20, \tau_c = 200, f_{\text{min}} = 0, f_{\text{max}} = 5 \times 10^9 \text{ cycles/s}, D_\ell = D_{\text{max}} = 1.6 \times 10^5 \text{ samples}, c_{\ell} = c_{\text{max}} = 20 \text{ cycles/sample}, N_c = 20, S_d = S_u = 16 \times 10^6 \text{ bits} \) or 16 Mb. The path loss \(\beta_{\text{SI}} \) is taken as \(\beta_{\text{SI}} = 10 \text{ dB} \), where \(\text{PL} = -81.1846 \text{ dB} \) [36]. If not otherwise mentioned, the value of \(\sigma^2_{S_{0,0}}/N_0 \) is set to 20 dB. In Fig. 2, we plot the convergence behavior of proposed algorithms for two random channel realizations. In the remaining figures, the minimum effective rate of non-FL UEs is plotted by averaging it over 100 random channel realizations. Before proceeding further, we remark that there could be considerable amount of FL UEs present compared to the non-FL UEs in many applications of future wireless networks due to the growing interest of machine learning techniques in wireless communication. Thus, the number of FL and non-FL UEs are assumed to be equal for simulations purpose, except where otherwise stated.

B. Results and Discussions

Since we are the first to introduce a system model to support both groups of FL and non-FL users, we are not aware of any existing closely related baseline schemes to benchmark our proposed solutions in this paper. Therefore, we ourselves present two baseline schemes based on equal power allocation (EPA) and frequency-division multiple access (FDMA) methods, and compare them to the proposed solutions. We remark that the EPA and FDMA are well-known approaches in wireless communications, and we merely customize them to fit the considered system model. The purpose is to show the potential gains of optimizing the involving parameters, compared to the two simple heuristic solutions. As an introductory work, we believe that comparing our proposed solutions with these baseline schemes is sufficient enough. The two considered baseline schemes are detailed as follows.

- **BL1**: Steps (S1) and (S3) of this scheme have the same designs as shown in the proposed scheme. In Step
(S3), the uplink transmission for the FL group and the downlink of the non-FL group are executed using a frequency-division multiple access (FDMA) approach for transmission. In particular, we equally allocate the frequency band to all UEs such that each FL UE or non-FL UE has one single bandwidth subband for its transmission. This FDMA scheme is widely used in FL literature (e.g., [20], [37]). The uplink and downlink rates of FL UEs in BL1 are derived in Appendix B. The optimization problem of BL1 has the same mathematical structure as that of the proposed scheme. Therefore, it can be solved by slightly modifying Algorithm 1 using the same approximations.

- **BL2:** The downlink powers to FL and non-FL UEs in Step (S1) are equal, i.e., \(\eta_{d,k} = \frac{1}{L+K}, \forall\ell, k \). The downlink powers to non-FL UEs in Step (S2) and (S3) are also the same, i.e., \(\zeta_{2,k} = \frac{1}{K}, \forall k \). In addition, in Step (S3), each FL UE uses full power, i.e., \(\eta_{u,\ell} = 1, \forall \ell \). The processing frequencies are \(f = \frac{N_iD_{u,\ell}t_{\text{td}} - t_{\text{tu}}}{t_{\text{td}} - t_{\text{tu}}} \).

We first provide the convergence of the proposed scheme in comparison with BL1 and BL2 schemes. The convergence plot is shown in Fig. 2. It can be observed that both algorithms converge in less than 30 iterations for both channel realizations. Further, we note that for both channels, FD-based solution provides a better objective than the HD-based solution when SI is 20 dB as considered in this figure.

Next, in Figs. 3 and 4, we compare the minimum effective rate of the non-FL UEs by the two proposed schemes and the two considered baseline schemes. As seen clearly, both proposed schemes offer a better performance than the baseline counterparts. The figures not only demonstrate the significant advantage of a joint allocation of power and computing frequency over the heuristic scheme BL2, but also show the benefit of using massive MIMO. Thanks to massive MIMO technology, the data rate of each non-FL UE increases when the number of antennas increases, which then leads to a significant increase in the minimum effective data rates.

Moreover, Figs. 3 and 4 also confirm that in each frequency band used for each group, serving all the UEs simultaneously is better than serving them using the EPA approach. Specifically, the proposed approaches outperform BL2 in almost every case. The gap between the proposed schemes and BL1 is even bigger when the number of FL UEs increases. This is because the effective rate of non-FL UE \(k \) can be considered as the weighted rate \(R_k \equiv \frac{R_{k,t} + R_{k,c} + R_{k,c,t}}{1 + K} \), where \(t_{d}, t_{c}, t_{u} \) are the weights associated with \(R_{k,t}, R_{k,c}, \) and \(R_{k,c,t} \), respectively. Here, \(R_{k,c} \) is the dominant term because in Step (S2), all the non-FL UEs are served simultaneously without interference from FL UEs. In BL1, \(R_{u,\ell} \) is very small due to its prelog factor \(\frac{1}{L+K} \), which leads to a large \(t_{u} \). When the weight \(t_{u} \) becomes dominant compared to \(t_{d} \) and \(t_{c} \), \(R_k \) of BL1 is close to \(R_{u,\ell} \) which is much lower than \(R_k \) of the proposed schemes. As \(L \) increases, \(R_{u,\ell} \) decreases further and hence, \(R_k \) also decreases.

We now investigate the effect of high SI on the performance of the FD-based solution to understand when the FD-based algorithm is superior to the HD counterpart. For this purpose, the minimum effective rate of non-FL UEs is plotted in Fig. 5 for different values of \(\sigma^2_{n,0}/N_0 \). We also introduce a hybrid scheme which selects the approach that has the better objective among the two. For low values of SI (i.e., upto 65 dB), the FD-based approach performs better, which is expected and thus, the hybrid scheme is the same as the FD-based scheme.
We introduce a parameter μ in Fig. 6 to compare the performance of both proposed algorithms. We can see clearly in Fig. 5.

In the final numerical experiment, we plot the minimum effective rate of non-FL UEs against the values of $\sigma^2_{\text{SL,0}}/N_0$ in dB. We introduce a parameter $\mu \triangleq \frac{R_{\text{FD}} - R_{\text{HD}}}{R_{\text{HD}}} \times 100$, which defines the gain in percentage of the FD-based solution over the HD-based solution. From Fig. 6, we can observe that as the data size increases, the performance of FD-based scheme decreases very slowly compared to the HD-based scheme. As a result, the gain in percentage of the FD-based scheme over the HD-based scheme, μ, increases with the data size. Thus, we can conclude that for problems with large sizes of FL model updates, the FD-based scheme should be preferred over the HD-based scheme for SI of 20 dB.

V. CONCLUSION

We have presented two communication schemes that can support both the FL and non-FL UEs using massive MIMO technology which has not been considered previously. In particular, we have defined and maximize the effective rate of downlink non-FL UEs in presence of a QoS latency constraint on FL UEs. We have also presented the HD and FD based solutions to the considered problem, specifically during the downlink of each FL iteration, both FL and non-FL UEs continue to be served in the same time-frequency resource. The simulation results have shown that the proposed HD-based and FD-based schemes outperform the considered baseline schemes in all considered scenarios. It has also been shown that the FD-based scheme is superior to the HD-based scheme for the SI of up to 70 dB. The FD-based scheme is also more beneficial than the HD-based scheme in terms of the effective rate achieved by the non-FL UEs in the cases of the model updates of large sizes.

On the other hand, for large values of SI (i.e., beyond 65 dB), the effectiveness of the FD-based approach starts to decrease due to the increased SI between the FL and non-FL groups. Especially, the HD-based scheme outperforms the FD-based approach when the SI is around than 80 dB. Thus, the hybrid scheme is equal to the HD-based scheme for very large SI as can be seen clearly in Fig. 5.

In the final numerical experiment, we plot the minimum effective rate of non-FL UEs for different values of $\sigma^2_{\text{SL,0}}/N_0$ in dB. Thus, we can conclude that for problems with large sizes of FL model updates, the FD-based scheme should be preferred over the HD-based scheme for SI of 20 dB.

APPENDIX A

ACHIEVABLE RATES FOR FD IN STEP (S3)

Uplink Transmission of FL UEs: In this appendix, we simplify (31). Particularly, we need to find two variance terms: $\text{Var}\{u_{u,i}^H E_u D_{\eta_{i,3}}^{1/2} s_u\}$ and $\text{Var}\{u_{u,\ell}^H G_{\text{SL}} U_3 D_{\zeta_{3,3}}^{1/2} s_u\}$. For the first term, we know that Z_u is independent of E_u. Thus, we can state that

$$\text{Var}\{u_{u,i}^H E_u D_{\eta_{i,3}}^{1/2} s_u\} = \sum_{i \in \mathcal{L}} (\beta_i - \sigma^2_{\eta_{i,3}}) \eta_{u,i}, \quad (66)$$

$$\text{Var}\{u_{u,\ell}^H G_{\text{SL}} U_3 D_{\zeta_{3,3}}^{1/2} s_u\}$$

$$= \mathbb{E}\{|u_{u,\ell}^H G_{\text{SL}} U_3 D_{\zeta_{3,3}}^{1/2} s_u|^2\}$$

$$= \mathbb{E}\{u_{u,\ell}^H G_{\text{SL}} U_3 D_{\zeta_{3,3}}^{1/2} s_u s_u^H G_{\text{SL}} U_3 D_{\zeta_{3,3}}^{1/2} U_3^H G_{\text{SL}}^H u_{u,\ell}\}$$

$$= \mathbb{E}\{u_{u,\ell}^H G_{\text{SL}} U_3 D_{\zeta_{3,3}}^{1/2} U_3^H G_{\text{SL}}^H u_{u,\ell}\}$$

$$= \left(\sum_{i \in \mathcal{K}} \zeta_{3,i}\right) \mathbb{E}\{u_{u,\ell}^H G_{\text{SL}} U_3 D_{\zeta_{3,3}}^{1/2} U_3^H G_{\text{SL}}^H u_{u,\ell}\}$$

(a) Min. Effect. Rate of Non-FL UEs VS $S_d = S_u$

(b) Percentage advantage VS $S_d = S_u$

Fig. 5. Minimum Effective Rate of non-FL UEs for different values of $\sigma^2_{\text{SL,0}}/N_0$ in dB.

Fig. 6. Minimum effective rate of non-FL UEs for different values of S_d and S_u. Here $L = K = 5$.

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.
Using law of large numbers, \(\mathbb{E}\{G_{SI}G_{SI}^H\} \approx M\beta_{SI}^2\sigma_{SI,0}^2 \) \\
Therefore, the above equation can be approximated as \\
\[\mathbb{E}\{u_{u,\ell}^H E_u D_n^{1/2} s_u\} = M\beta_{SI}^2\sigma_{SI,0}^2 \sum_{i \in K} \zeta_{3,i} \].

\[\sum_{i \in K} \zeta_{3,i} \] (67)

\[\tau_{3,p} = 1 \text{ and } \text{SINR}^{FDMA}_{3,k}(\eta_u, \zeta_3) \text{ is calculated as} \]

\[\text{SINR}^{FDMA}_{3,k}(\eta_u, \zeta_3) = \frac{\rho \delta_{3,k} M \sigma_{3,k}^2}{1 + \rho \delta_{3,k} M \sigma_{3,k}^2}. \] (73)

The transmission time from each FL UE to the BS and the amount of downlink data received at all non-FL UE \(k, \forall k \in K \) are given by (27) and (28), respectively. The optimization problem in this scheme is

\[\max_{t_u^{FDMA}} \min_{k \in K} \{ D_1(k, \eta_d, \zeta_1) + D_2(f, \zeta_2) + D_3^{FDMA}(\eta_u, \zeta_3) \} \]

\[s.t. (1), (13), (17), (23), (41b), (41c), \]

\[t_d(\eta_d, \zeta_1) + t_c(f) + t_u^{FDMA}(\eta_u) \leq t_{QOs}. \] (74a)

APPENDIX C

EXPRESSIONS OF LOWER AND UPPER BOUNDS OF RATE FUNCTIONS

From (48), the concave lower bounds of \(R_{d,\ell}(\eta_d, \zeta_1), R_{u,\ell}(\eta_u), R_{1,k}(\eta_d, \zeta_1), R_{2,k}(\zeta_2), \) and \(R_{3,k}(\zeta_3) \) are found as given in (75a)-(75e), as shown at the bottom of the page,
Similarly, the concave lower bounds of $\hat{R}_{d,l}(\eta_d, \zeta_1)$ and $\hat{R}_{3,k}(\eta_u, \zeta_3)$ for the FD scheme given in (77), as shown at the top of the page, and the convex upper bound of $R_{u,l}(\eta_u)$ is given in (78), as shown at the top of the page, where $\theta_{FD}^u = 1 + \rho_u \sum_{i \in \mathcal{L}} (\beta_{d,l} - \sigma_{d,l}^2) \eta_{d,i} + \rho_u M \beta_3 \sigma_3^2 \sum_{i \in \mathcal{K}} \xi_{d,i}^{(n)} \theta_{FD}^k$

\[R_{d,l}(\eta_d, \zeta_1) = \frac{\tau_c - \tau_{d,p}}{\tau_c} \log \left(1 + \frac{\psi_{u,l}^{(n)}}{\theta_{FD}^u} \left[\frac{1}{\theta_{d,l}} + \frac{\theta_{FD}^d}{\psi_{u,l}^{(n)}} + \frac{\theta_{FD}^d}{\psi_{u,l}^{(n)}} + \frac{\theta_{FD}^d}{\psi_{u,l}^{(n)}} \right] \right), \] (76a)

\[R_{u,l}(\eta_u) = \frac{\tau_c - \tau_{u,p}}{\tau_c} \log \left(1 + \frac{\psi_{u,l}^{(n)}}{\theta_{FD}^u} + \frac{2 \psi_{u,l}^{(n)}}{\psi_{u,l}^{(n)} + \theta_{FD}^d} + \frac{\theta_{FD}^u}{\psi_{u,l}^{(n)}} - \frac{\theta_{FD}^u}{\psi_{u,l}^{(n)}} \right), \] (76b)

\[R_{3,k}(\eta_u, \zeta_3) = \frac{\tau_c - \tau_{3,p}}{\tau_c} \log \left(1 + \frac{\psi_{3,k}^{(n)}}{\theta_{FD}^3} + \frac{2 \psi_{3,k}^{(n)}}{\psi_{3,k}^{(n)} + \theta_{FD}^k} + \frac{\theta_{FD}^3}{\psi_{3,k}^{(n)}} - \frac{\theta_{FD}^3}{\psi_{3,k}^{(n)}} \right), \] (76c)

\[R_{u,l}(\eta_u) = \frac{\tau_c - \tau_{u,p}}{\tau_c} \log \left(1 + \frac{\psi_{u,l}^{(n)}}{\theta_{FD}^u} + \frac{\theta_{FD}^u}{\psi_{u,l}^{(n)}} - \frac{\theta_{FD}^u}{\psi_{u,l}^{(n)}} \right), \] (77a)

\[R_{u,l}(\eta_u) = \frac{\tau_c - \tau_{u,p}}{\tau_c} \log \left(1 + \frac{\psi_{u,l}^{(n)}}{\theta_{FD}^u} + \frac{2 \psi_{u,l}^{(n)}}{\psi_{u,l}^{(n)} + \theta_{FD}^d} + \frac{\theta_{FD}^u}{\psi_{u,l}^{(n)}} - \frac{\theta_{FD}^u}{\psi_{u,l}^{(n)}} \right), \] (77b)

\[R_{u,l}(\eta_u) = \frac{\tau_c - \tau_{u,p}}{\tau_c} \log \left(1 + \frac{\psi_{u,l}^{(n)}}{\theta_{FD}^u} + \frac{\theta_{FD}^u}{\psi_{u,l}^{(n)}} - \frac{\theta_{FD}^u}{\psi_{u,l}^{(n)}} \right), \] (77c)

\[R_{u,l}(\eta_u) = \frac{\tau_c - \tau_{u,p}}{\tau_c} \log \left(1 + \frac{\psi_{u,l}^{(n)}}{\theta_{FD}^u} + \frac{\theta_{FD}^u}{\psi_{u,l}^{(n)}} - \frac{\theta_{FD}^u}{\psi_{u,l}^{(n)}} \right), \] (78)

REFERENCES

[1] M. Farooq, T. T. Vu, H. Quoc Ngo, and L. Tran, “Serving federated learning and non-federated learning users: A massive MIMO approach,” in Proc. IEEE 23rd Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Jul. 2022, pp. 1–5.

[2] A. Ometov et al., “A survey on wearable technology: History, state-of-the-art and current challenges,” Comput. Netw., vol. 193, Jul. 2021, Art. no. 108074.

[3] T. Gjantsetos, T. Dimitriou, and N. R. Prasad, “People-centric sensing in assistive healthcare: Privacy challenges and directions,” Secur. Comput. Netw., vol. 4, no. 11, pp. 1295–1307, Nov. 2011.

[4] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges, methods, and future directions,” IEEE Signal Process. Mag., vol. 37, no. 3, pp. 50–60, May 2020.

[5] E. Ahmed et al., “Bringing computation closer toward the user network: Is edge computing the solution?” IEEE Commun. Mag., vol. 55, no. 11, pp. 138–144, Nov. 2017.

[6] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas, “Communication-efficient deep learning from decentralized data,” in Proc. Int. Conf. Artif. Intell. Stat. (AISTATS), 2017, pp. 1273–1282.

[7] I. S. Rubinstein and N. Good, “Privacy by design: A counterfactual analysis of Google and Facebook privacy incidents,” Berkeley Tech. Law J., vol. 28, no. 2, p. 1333, Jan. 2023.

[8] We are Making on-Device AI Ubiquitous,” Qualcomm, San Diego, CA, USA, 2018.

[9] S. Abdulrahman, H. Tout, H. Ould-Slimane, A. Mourad, C. Talhi, and M. Guizani, “A survey on federated learning: The journey from centralized to distributed on-site learning and beyond,” IEEE Internet Things J., vol. 8, no. 7, pp. 5476–5487, Apr. 2021.

[10] M. Adehri, R. Razzak, R. M. Patrizi, and F. Saeed, “Federated learning: A survey on enabling technologies, protocols, and applications,” IEEE Access, vol. 8, pp. 140699–140725, 2020.

[11] Y. Chen, X. Qin, J. Wang, C. Yu, and W. Gao, “FedHealth: A federated transfer learning framework for wearable healthcare,” IEEE Intell. Syst., vol. 35, no. 4, pp. 83–93, Jul. 2020.

[12] W. Yang, N. Wang, Z. Guan, L. Wu, X. Du, and M. Guizani, “A practical cross-device federated learning framework over 5G networks,” IEEE Wireless Commun., vol. 29, no. 6, pp. 128–134, Dec. 2020.

[13] D. Shi, L. Li, R. Chen, P. Prakash, M. Pan, and Y. Fang, “Toward energy-efficient federated learning over 5G+ mobile devices,” IEEE Wireless Commun., vol. 29, no. 5, pp. 44–51, Oct. 2022.

[14] W. Y. B. Lim et al., “Federated learning in mobile edge networks: A comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 3, pp. 2031–2063, 3rd Quart., 2020.

[15] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint learning and communications framework for federated learning over wireles networks,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 269–283, Jan. 2021.

[16] M. M. Amiri and D. Gündüz, “Federated learning over wireless fading channels,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3546–3557, May 2020.

[17] J. Sun, Y. Wang, X. Sun, N. Li, and G. Nie, “Time efficient joint optimization federated learning over wireless communication networks,” China Commun., vol. 19, no. 6, pp. 169–178, Jun. 2022.

[18] P. S. Bouzinis, P. D. Diamantoulakis, and G. K. Karagiannidis, “Wireless federated learning (WFL) for 6G networks— Part II: The compute-then-transmit NOMA paradigm,” IEEE Commun. Lett., vol. 26, no. 1, pp. 8–12, Jan. 2022.

[19] Y. Wu, Y. Song, T. Wang, L. Qian, and T. Q. S. Quek, “Non-orthogonal multiple access assisted federated learning via wireless power transfer: A cost-efficient approach,” IEEE Trans. Commun., vol. 70, no. 4, pp. 2853–2869, Apr. 2022.

[20] Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-Bahaei, “Energy efficient federated learning over wireless communication networks,” IEEE Trans. Wireless Commun., vol. 20, no. 3, pp. 1935–1949, Mar. 2021.

[21] T. T. Vu, D. T. Ngo, H. Q. Tran, H. Q. Ngo, M. N. Dao, and R. H. Middleton, “Cell-free massive MIMO for wireless federated learning,” IEEE Trans. Wireless Commun., vol. 19, no. 10, pp. 6377–6392, Oct. 2020.

[22] N. H. Tran, W. Bao, A. Zomaya, M. N. H. Nguyen, and C. S. Hong, “Federated learning over wireless networks: Optimization model design and analysis,” in Proc. IEEE Conf. Intell. Commun. (INFOCOM), Apr. 2019, pp. 1387–1395.

[23] Q. Zeng, Y. Du, K. Huang, and K. K. Leung, “Energy-efficient resource management for federated edge learning with CPU-GPU heterogeneous computing,” IEEE Trans. Wireless Commun., vol. 20, no. 12, pp. 7947–7962, Dec. 2021.
[24] Q. Pham, M. Le, T. Huynh-The, Z. Han, and W. Hwang, “Energy-efficient federated learning over UAV-enabled wireless powered communications,” IEEE Trans. Veh. Technol., vol. 71, no. 5, pp. 4977–4990, May 2022.

[25] T. T. Vu, H. Quoc Ngo, T. L. Marzetta, and M. Matthaiou, “How does cell-free massive MIMO support multiple federated learning groups?” in Proc. IEEE 23rd Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC), Sep. 2021, pp. 401–405.

[26] N. Shende, O. Gurbuz, and E. Erkip, “Half-duplex or full-duplex relaying: A capacity analysis under self-interference,” in Proc. 47th Ann. Conf. Inf. Sci. Syst. (CISS), Mar. 2013, pp. 1–6.

[27] A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, “In-band full-duplex wireless: Challenges and opportunities,” IEEE J. Sel. Areas Commun., vol. 32, no. 9, pp. 1637–1652, Sep. 2014.

[28] H. Q. Ngo and E. G. Larsson, “No downlink pilots are needed in TDD massive MIMO,” IEEE Wireless Commun., vol. 16, no. 5, pp. 2921–2935, May 2017.

[29] E. Sharma, R. Budhiraja, K. Vasudevan, and L. Hanzo, “Full-duplex massive MIMO multi-pair two-way AF relaying: Energy efficiency optimization,” IEEE Trans. Commun., vol. 66, no. 8, pp. 3322–3340, Aug. 2018.

[30] S. Wang, Y. Liu, W. Zhang, and H. Zhang, “Achievable rates of full-duplex massive MIMO relay systems over Rician fading channels,” IEEE Trans. Veh. Technol., vol. 66, no. 11, pp. 9825–9837, Nov. 2017.

[31] C. Ma et al., “Distributed optimization with arbitrary local solvers,” Optim. Methods Softw., vol. 32, no. 4, pp. 813–848, Jul. 2017.

[32] T. L. Marzetta, E. G. Larsson, H. Yang, and H. Q. Ngo, Fundamentals of Massive MIMO. Cambridge, U.K.: Cambridge Univ. Press, 2016.

[33] L. D. Nguyen, H. D. Tuan, T. Q. Duong, H. V. Poor, and L. Hanzo, “Energy-efficient multi-cell massive MIMO subject to minimum user-rate constraints,” IEEE Trans. Commun., vol. 69, no. 2, pp. 914–928, Feb. 2021.

[34] Z. Sheng, H. D. Tuan, A. A. Nasir, T. Q. Duong, and H. V. Poor, “Power allocation for energy efficiency and secrecy of wireless interference networks,” IEEE Trans. Wireless Commun., vol. 17, no. 6, pp. 3737–3751, Jun. 2018.

[35] Z. Gülgün, E. Björnson, and E. G. Larsson, “Is massive MIMO robust against distributed jammers?” IEEE Trans. Commun., vol. 69, no. 1, pp. 457–469, Jan. 2021.

[36] T. T. Vu, D. T. Ngo, H. Q. Ngo, and T. Le-Ngoc, “Full-duplex cell-free massive MIMO,” in Proc. IEEE Int. Conf. Commun. (ICC), May 2019, pp. 1–6.

[37] H. Kim, J. Park, M. Bennis, and S.-L. Kim, “Blockchained on-device federated learning,” IEEE Commun. Lett., vol. 24, no. 6, pp. 1279–1283, Jun. 2020.