Phosphonate-substituted zirconium oxo clusters

Matthias Czakler 1 · Ulrich Schubert 1

Received: 3 June 2015 / Accepted: 20 June 2015 / Published online: 2 July 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract The phosphonate-substituted zirconium oxo clusters Zr₆O₂(OBu)₁₂(O₃PPh)₄ and Zr₇O₂(OiPr)₁₂(O₃PCH₂CH₂CH₂Br)₆, with octahedrally coordinated Zr atoms, were synthesized by reaction of zirconium alkoxides with phosphonic acid bis(trimethylsilyl) esters. The basic structural motif are Zr₃O(O₂-OR)₃ units which are connected in different ways.

Graphical abstract

Keywords Zirconium alkoxides · Phosphonate ligands · Structure analysis

Introduction

Many phosphonate-substituted zirconium compounds with 1D, layered 2D, and 3D interconnected structures have been reported [1–3], including coordination polymers with bis- or tetra-phosphonate ligands [4–11]. Surprisingly, no zirconium oxo clusters with phosphonate ligands are known, although zirconium oxo clusters with a variety of other bi- or multidentate ligands have been prepared and zirconia nanoparticles are frequently stabilized by phosphonate groups [12, 13]. In this article, we report the preparation and structural characterization of the first phosphonate-substituted zirconium oxo clusters.

Phosphonate-substituted metal compounds are commonly prepared from the corresponding phosphonic acids or their metal salts. We have recently shown that titanium oxo clusters can be easily obtained from the reaction of titanium alkoxides with phosphonic acid bis(trimethylsilyl) esters [14, 15]. The esters have the advantage of being soluble in organic solvents. Their reaction with alcohol added to the reaction mixture liberates phosphonic acid which substitutes part of the OR groups of Ti(OR)₄ in a relatively fast reaction. Oxo groups are generated in situ either by water originating from esterification of (coordinated or non-coordinated) phosphonic acid or by non-hydrolytic processes.

Results and discussion

Crystals of Zr₆O₂(OBu)₁₂(O₃PPh)₄ (1, Fig. 1) were obtained when Zr(OBu)₄ was reacted with bis(trimethylsilyl)phenylphosphonate in a 2:1 ratio.

The basic structural motif in centrosymmetric 1 are two Zr₃O(µ₂-OBu)₃(OBu)₃ moieties (Zr₃O). They are interconnected with each other through four bridging phenylphosphonate ligands which are arranged up, up, down, down. Each phosphonate ligand binds to two zirconium atoms of one Zr₃O triangle and one zirconium atom of the other Zr₃O triangle and is, therefore, coordinating 3.111 (w.xyz refers to the number of metal atoms to which the phosphonate ligand is coordinated [w], and the
number of metal atoms to which each oxygen is coordinated \([x, y, z]\) [16]). The crystallographic symmetry of 1 is retained in solution since the \(^{31}\text{P}\) NMR spectrum in CD\(_2\)Cl\(_2\) showed only one signal at 6.57 ppm. The expected number of signals with the expected shifts was observed in the \(^1\text{H}\) NMR spectrum.

The most surprising feature of 1 is that all zirconium atoms are octahedrally coordinated. This is remarkable since higher coordination numbers (7–9) are mostly found in zirconium oxo clusters. The structure of 1 is different from that of oxo clusters obtained from reactions of Ti(O\(_i\)Pr\(_4\)) with bis(trimethylsilyl) phosphonates although Ti is also six-coordinated there. M\(_3\)O(\(l_2\)-OR)\(_3\)(OR)\(_3\) units are the basic structural motif in both cases. While two Zr\(_3\)O units are directly connected with each other in 1, the two Ti\(_3\)O units in Ti\(_7\)O\(_2\)(O\(_i\)Pr\(_5\))\(_6\) (R=CH\(_2\)CH\(_2\)CH\(_2\)Cl or benzyl) are connected through a central Ti atom [14]. In the case of titanium, structures Ti\(_4\)(\(l_3\)-O)(\(l_2\)-O\(_i\)Pr)\(_3\)(O\(_i\)Pr)\(_5\)O\(_3\)P\(_3\)L (L = neutral ligand) and dimers thereof were also obtained, where the Ti\(_3\)O unit is capped by a Ti(O\(_i\)Pr)\(_3\)L group.

A zirconium oxo cluster isosstructural to Ti\(_7\)O\(_2\)(O\(_i\)Pr\(_5\))\(_6\) \((O_3Pr)_6\) \(_{12}\) (O\(_2\)Pr\(_5\))\(_6\) viz. Zr\(_5\)O\(_2\)(\(l_2\)-O\(_i\)Pr\(_5\))(O\(_i\)Pr)\(_3\)(O\(_i\)Pr)\(_5\)PCH\(_2\)CH\(_2\)CH\(_2\)Br\(_6\) (2, Fig. 2), was, however, obtained in another experiment, i.e., reaction of Zr(O\(_i\)Pr\(_4\)) with bis(trimethyl)silyl(3-bromopropyl)phosphonate, methacrylic acid, and water. Since water generation by esterification of phosphonic acid (as in the first experiment) is relatively slow, water was deliberately added. Methacrylic acid was added anticipating an oxo cluster with a mixed ligand sphere as had been the case for analogous reactions with Ti(OR)\(_4\) [15, 17]. No mixed ligand cluster was obtained, however, in the reaction of Zr(O\(_i\)Pr\(_4\)).

The symmetry of 2 is retained in solution as only one signal at 30.6 ppm was observed in the \(^{31}\text{P}\) NMR spectrum in C\(_6\)D\(_6\). The \(^1\text{H}\) NMR spectrum shows only two doublets for the isopropoxo CH\(_3\) groups as well as two multiplets of the CH groups. Therefore, all terminal as well as all bridging isopropoxo ligands are symmetry related in solution.

Conclusions

The coordination chemistry of titanium and zirconium, including that of metal oxo clusters, is usually quite different even if the same reaction conditions and
stoichiometric ratios of the reactants are employed. This is due to the different coordination numbers.

The surprising outcome of the work reported in this article is that oxo clusters were obtained in the reaction of M(OR)₄ (M = Ti, Zr) with bis(trimethyl)silylphosphonates where the coordination numbers and geometries of both Ti and Zr were the same. For this reason, the structures of the obtained Zr clusters were the same as those of Ti oxo clusters (for 2) or very closely related (for 1). A possible reason for this feature might be that the M₃O(µ₂-OR)₃(-OR)₃ moiety appears to be a very robust building block, as already postulated earlier [14].

Experimental

All operations were carried out in a moisture- and oxygen-free argon atmosphere using Schlenk techniques. 2-Propanol and 1-butanol were dried by distilling twice from sodium metal. The phosphonates were prepared as previously reported [14, 15]. Zirconium isopropoxide and zirconium n-butoxide were obtained from Sigma-Aldrich and used without further purification.

Zr₆O₂ Cluster

Zr₆O₂ Clusters (1) is obtained as yellow crystals, yield 50 mg (22 %); 1H NMR (CD₂Cl₂, 250 MHz): δ = 0.61–1.07 (m, 36H, CH₃), 1.08–1.86 (m, 48H, CH₂), 3.50–4.38 (m, 24H, CH₂O), 7.30–7.53 (m, 12H, CH), 7.68–8.05 (m, 8H, CH) ppm; 13C NMR (CD₂Cl₂, 62.9 MHz): δ = 19.10 (CH₂CH₃), 34.98, 35.60, 36.08 (CH₂CH₂O), 69.66, 69.92, 70.12 (CH₂), 127.58, 127.82, 130.87, 131.02 (CH) ppm; 31P NMR (CD₂Cl₂, 101.2 MHz): δ = 6.57 ppm.

Zr₇O₂ Cluster

Zr₇O₂ Clusters (2) is obtained as colourless crystals, yield 50 mg (22 %); 1H NMR (CD₂Cl₂, 250 MHz): δ = 0.61–1.07 (m, 36H, CH₃), 1.08–1.86 (m, 48H, CH₂), 3.50–4.38 (m, 24H, CH₂O), 7.30–7.53 (m, 12H, CH), 7.68–8.05 (m, 8H, CH) ppm; 13C NMR (CD₂Cl₂, 62.9 MHz): δ = 19.10 (CH₂CH₃), 34.98, 35.60, 36.08 (CH₂CH₂O), 69.66, 69.92, 70.12 (CH₂), 127.58, 127.82, 130.87, 131.02 (CH) ppm; 31P NMR (CD₂Cl₂, 101.2 MHz): δ = 6.57 ppm.

Table 1: Crystal data and structure refinement details of 1 and 2

Compound	1	2
Emp. formula	C₇₂H₁₅₂O₃₃P₄Zr₆	C₅₄H₁₃₂Br₆O₃₂P₆Zr₇
Mᵣ	2080.94	2585.32
Crystal system	Triclinic	Triclinic
Space group	P ı	P ı
a/pm	1302.35(6)	1330.4(5)
b/pm	1332.92(6)	1885.7(8)
c/pm	1411.35(7)	2076.1(9)
α/°	70.525(3)	72.26(1)
β/°	81.574(3)	84.90(1)
γ/°	80.357(3)	70.27(1)
V/pm³ × 10⁶	2266.3(2)	4669(3)
Z	1	2
Dₐ/g cm⁻³	1.525	1.839
μ/mm⁻¹	0.804	3.491
Crystal size/mm	0.4 × 0.3 × 0.2	0.6 × 0.3 × 0.1
No. measured refl.	54765	126,491
Obs. refl. [I > 2σ(I)]	7188	13,660
θ max/°	27.1	26.0
R [F² > 2σ(F)], wR (F²), S	0.074, 0.231, 1.09	0.054, 0.160, 1.07
Refl./param.	9985/592	19794/1084
Weighting scheme	a = 0.1062P, b = 24.0229	a = 0.0735, b = 25.5728
δ_pmax, min/e × 10⁻⁶ pm⁻³	2.78, −1.30	1.42, −1.67

Equation: \[W = \frac{1}{σ²(F₀) + (a P)^{2} + b P} \]
were obtained after 2 weeks. Yield 20 mg (12 %); 1H NMR (C6D6, 250 MHz): δ = 1.37 (d, 3JH,H = 6.10 Hz, 36H, CH3), 1.59 (d, 3JH,H = 6.24 Hz, 36H, CH3), 1.81–1.95 (m, 12H, CH2P), 2.28–2.41 (m, 12H, CH2CH2P), 3.57 (t, 3JH,H = 6.55 Hz, CH2Br), 4.37 (m, 6H, CH), 4.97 (m, 6H, CH) ppm; 31P NMR (C6D6, 101.2 MHz): δ = 30.58 ppm.

X-Ray structure analyses

All measurements were performed using MoKα radiation (λ = 71.073 pm). Data were collected on a Bruker AXS Smart Apex II four-circle diffractometer with k-geometry at 100 K with ϕ and ω-scans and 0.5° frame width (Table 1). The data were corrected for polarization and Lorentz effects, and an empirical absorption correction (SADABS) was applied. The cell dimensions were refined with all unique reflections. Plus software (Bruker Analytical X-ray Instruments, 2007) was used to integrate the frames. Symmetry was checked with the program PLATON.

The structure was solved by the Patterson method (SHELXS97 [18]). Refinement was performed by the full-matrix least-squares method based on F with anisotropic thermal parameters for all non-hydrogen atoms. Hydrogen atoms were inserted in calculated positions and refined with the corresponding atom. Four of the six crystallographic independent butoxy ligands in 1 were disordered and refined with about 50 % for each position. The same treatment was done for three of the 3-bromopropyl moieties and two isopropoxo ligands in 2. Furthermore, one 3-bromopropyl moiety was refined using three different positions with 42, 36, and 21 % occupancy.

CCDC-1402779 (for 1) and 1402780 (for 2) contain the supplementary crystallographic data. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgments This work was supported by the Fonds zur Förderung der wissenschaftlichen Forschung (FWF), Austria (Project P22915). The X-ray measurements were carried out at the X-ray Center of Vienna University of Technology.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Poojary DM, Bhardwaj C, Clearfield A (1995) J Mater Chem 5:171
2. Vermeulen LA, Fateen RZ, Robinson PD (2002) Inorg Chem 41:2310
3. Costantino F, Sassi P, Geppi M, Taddei M (2012) Cryst Growth Des 12:5462
4. Byrd H, Clearfield A, Poojary D, Reis KP, Thompson ME (1996) Chem Mater 8:2239
5. Alberti G, Vivani R, Murcia Mascarós S (1998) J Mol Struct 470:81
6. Vivani R, Costantino F, Nocchetti M, Gatta GD (2004) J Solid State Chem 177:4013
7. Vivani R, Costantino F, Costantino U, Nocchetti M (2006) Inorg Chem 45:2388
8. Taddei M, Costantino F, Vivani R (2010) Inorg Chem 49:9664
9. Taddei M, Costantino F, Manuali V, Vivani R (2011) Inorg Chem 50:10835
10. Donnadio A, Pica M, Taddei M, Vivani R (2012) J Mater Chem 22:5098
11. Taddei M, Vivani R, Costantino F (2013) Dalton Trans 42:9671
12. Feichtenschlager B, Pabisch S, Peterlik H, Kickelbick G (2012) Langmuir 28:741
13. Lomoschitz CJ, Feichtenschlager B, Moszner N, Puchberger M, Müller K, Abele M, Kickelbick G (2011) Langmuir 27:3534
14. Czakler M, Artner C, Schubert U (2013) Eur J Inorg Chem 5790
15. Czakler M, Artner C, Schubert U (2014) Eur J Inorg Chem 2038
16. Chandrasekhar V, Senapati T, Dey A, Hosain S (2011) Dalton Trans 40:5394
17. Czakler M, Artner C, Schubert U (2014) Monatsh Chem. doi:10.1007/s00706-015-1444-5
18. Sheldrick GM (1997) Program for Crystal Structure Determination. University of Göttingen, Germany