Quantum K-theory of flag varieties via non-abelian localization

Xiaohan Yan

University of California, Berkeley

1/24/2022
Outline

1. Introduction
2. Preliminaries
3. Grassmannian Case
4. Flag Variety Case
5. Applications
Some background

The study of a K-theoretic analogue of the quantum cohomology, namely the quantum K-theory, was initiated at the beginning of this century.

- Givental *On the WDVV equation in quantum K-theory*
- Lee *Quantum K-theory. I. Foundations*
- Givental-Lee *Quantum K-theory on flag manifolds, finite-difference Toda lattices and quantum groups*
About a decade later, relations of such invariants to integrable systems and representation theory were explored.

- Okounkov *Lectures on K-theoretic computations in enumerative geometry*
- Aganagic-Okounkov *Elliptic stable envelopes*
Main result (non-rigorous formulation)

The permutation-invariant big \mathcal{J}-function, which is a generating function of the invariants, plays a crucial role in the theory.

- $X = \text{Flag}(v_1, \cdots, v_n; N)$: the flag variety ($v_1 < \cdots < v_n < N$),
- V_i: tautological bundles of X ($1 \leq i \leq n$), P_{ij}: K-theoretic Chern roots of V_i ($1 \leq i \leq n, 1 \leq j \leq v_i$),
- $Q_i (1 \leq i \leq n)$: Novikov variables of X corresponding to the determinant bundles of V_i.

Theorem (X.Y.)

The image of the big \mathcal{J}-function of X is covered by the orbit of $\tilde{\mathcal{J}}$ with respect to a family of pseudo-finite-difference operators, where

$$
\tilde{\mathcal{J}} = (1 - q) \sum_{d_{ij} \geq 0} \prod_{i,j} Q_{ij}^{d_{ij}} \frac{\prod_{i=1}^{n} \prod_{1 \leq r \leq s \leq v_i} \prod_{l=1}^{d_{is} - d_{ir}} (1 - y \frac{P_{is}}{P_{ir}} q^l)}{\prod_{i=1}^{n} \prod_{1 \leq r \leq v_i} \prod_{l=1}^{d_{is} - d_{i+1,r}} (1 - \frac{P_{is}}{P_{i+1,r}} q^l)}.
$$
Questions

- Permutation-invariant big \mathcal{J}-function?
- Pseudo-finite-difference operators??
- Why \tilde{J}???
The main theorem can be regarded as a reconstruction theorem of the big J-functions of flag varieties, generalizing the result of Givental [3] where the target variety is required to have its K-ring generated by line bundles (e.g. toric varieties and complete flag varieties).

Reconstruction of a different flavor is provided in Iritani-Milanov-Tonita [7], where the big quantum K-ring is recovered from the small J-function through analysis of q-shift operators.
Assume X is a smooth projective variety and $d \in H_2(X; \mathbb{Z})$.

Definition

$\overline{M}_{g,m}(X, d)$ is the moduli of stable maps $f : (C; p_1, \cdots, p_m) \to X$ of homological degree d and genus g with m marked points.

- **Stability**: C connected, nodal and projective;
 p_1, \cdots, p_m smooth points on C;
 $|\text{Aut}(f, (C; p_1, \cdots, p_m))| < \infty$.

- **Equivalence**: $(f, (C; p_1, \cdots, p_m)) \sim (f', (C'; p'_1, \cdots, p'_m)) \iff \exists \varphi : (C; p_1, \cdots, p_m) \xrightarrow{\sim} (C'; p'_1, \cdots, p'_m)$ with $f' \circ \varphi = f$.

S_m acts naturally on $\overline{M}_{g,m}(X, d)$ by permuting the marked points.
With the virtual structure sheaf defined by Lee [8], one can define **K-theoretic permutation-invariant correlators** (of genus 0):

Definition

\[
\langle aL_1^k, \cdots, aL_m^k \rangle^{S_m}_{0,m,d} = \chi^{S_m}(\overline{\mathcal{M}}_{0,m}(X,d), \mathcal{O}^{\text{virt}} \otimes \bigotimes_{l=1}^{n} \text{ev}_l^*(a)L_l^k),
\]

where \(a \in K(X) \), \(\text{ev}_l : \overline{\mathcal{M}}_{0,m}(X,d) \to X \) is the evaluation map at the \(l \)-th marked point, and \(L_l \) is the universal cotangent bundle at the \(l \)-th marked point over the moduli space.

\(S_m \) in the above construction may be replaced by any subgroup.
Let \(\{ \phi_\alpha \} \) be an additive basis of \(K(X) \) and \(\{ \phi^\alpha \} \) be its dual basis.

The **K-theoretic permutation-invariant big \(J \)-function** is defined by

Definition

\[
J^X(t; q) = 1 - q + t(q) + \sum_{m,d,\alpha} Q^d \phi^\alpha \frac{\phi_\alpha}{1 - qL_0}, t(L_1), \cdots, t(L_n) \rangle_{0,m+1,d}^{S^m}
\]

where \(Q^d = \prod_i Q_i^{d_i} \) with \(\{ Q_i \} \) are the Novikov variables, and Laurent polynomial \(t = t(q) = \sum_k t_k q^k \) is the input (with coefficients \(t_k \in K(X)[[Q_1, \cdots, Q_n]] \)).
Loop space formalism

Denote

\[\mathcal{K} = \mathcal{K}(X)[[Q_1, \cdots, Q_n]](q^{\pm 1}) \]
\[\mathcal{K}_+ = \mathcal{K}(X)[[Q_1, \cdots, Q_n]][q, q^{-1}] \]
\[\mathcal{K}_- = \{ f \in \mathcal{K} | f(0) \neq \infty, f(\infty) = 0 \} \]

Fact

\[\mathcal{K} = \mathcal{K}_+ \oplus \mathcal{K}_- \] is a **Lagrangian polarization** under the symplectic pairing

\[\Omega(f, g) = \text{Res}_{q \neq 0, \infty} \langle f(q^{-1}), g(q) \rangle \frac{dq}{q} \]

where \(\langle \cdot , \cdot \rangle \) is the **K-theoretic Poincaré pairing**.
Loop space formalism

Under this polarization,

\[\mathcal{J}^X : t \mapsto 1 - q + t(q) + \sum_{m,d,\alpha} Q^d \phi^\alpha \left< \frac{\phi^\alpha}{1 - qL_0}, t(L_1), \ldots, t(L_n) \right>_{S_m}^{0,m+1,d} \]

is a map from \(\mathcal{K}_+ \) to \(\mathcal{K} \).

Fact

The image \(\mathcal{L}^X \) of \(\mathcal{J}^X \) is an overruled cone in \(\mathcal{K} \).

\(\mathcal{J}^X(0) \in \mathcal{L}^X \) is called the **small \(J \)-function**.
Fact ([6][3][5])

Let D be any Laurent polynomial. Then,

- ruling spaces of \mathcal{L}^X are invariant under operators like $e^{D(Pq^{Q\partial Q},Q,q)}$;
- \mathcal{L}^X is invariant under operators like $e^{\sum_{k>0} \frac{\psi^k(D(Pq^kQ\partial Q,Q,q))}{k(1-q^k)}}$.

Here P represent line bundles and Q represent the Novikov variables associated to P.

We denote by \mathcal{P} the group generated by operators above. \mathcal{L}^X is preserved by \mathcal{P}.
Recall our questions:

- Permutation-invariant big \mathcal{J}-function?
- Pseudo-finite-difference operators??
- Why $\tilde{\mathcal{J}}$??
Recall our questions:

- Permutation-invariant big \mathcal{J}-function?
- Pseudo-finite-difference operators??
- Why $\tilde{\mathcal{J}}$??

One-line answer:

- Abelian/Non-Abelian Correspondence ("Non-abelian localization")

We obtain $\tilde{\mathcal{J}}$, the "starting" point to generate the overruled cone \mathcal{L}^X of the flag variety (the non-abelian quotient), from a twisted quantum K-theory of Y, the (abelian quotient) associated to X.
The abelian quotient Y

We regard the flag variety X as a GIT quotient of vector space

$$X = R//G = \text{Hom}(\mathbb{C}^{v_1}, \mathbb{C}^{v_2}) \oplus \cdots \oplus \text{Hom}(\mathbb{C}^{v_n}, \mathbb{C}^N) // \text{GL}(v_1) \times \cdots \times \text{GL}(v_n).$$

Then the associated **abelian quotient** Y is defined as

$$Y = R//S = \text{Hom}(\mathbb{C}^{v_1}, \mathbb{C}^{v_2}) \oplus \cdots \oplus \text{Hom}(\mathbb{C}^{v_n}, \mathbb{C}^N) // (\mathbb{C}^\times)^{v_1} \times \cdots \times (\mathbb{C}^\times)^{v_n}.$$

Here $S \subseteq G$ is the maximal torus.
The abelian quotient Y

We regard the flag variety X as a GIT quotient of vector space

$$X = R//G = \text{Hom}(\mathbb{C}^{v_1}, \mathbb{C}^{v_2}) \oplus \cdots \oplus \text{Hom}(\mathbb{C}^{v_n}, \mathbb{C}^N)//GL(v_1) \times \cdots \times GL(v_n).$$

Then the associated abelian quotient Y is defined as

$$Y = R//S = \text{Hom}(\mathbb{C}^{v_1}, \mathbb{C}^{v_2}) \oplus \cdots \oplus \text{Hom}(\mathbb{C}^{v_n}, \mathbb{C}^N)//(\mathbb{C}^\times)^{v_1} \times \cdots \times (\mathbb{C}^\times)^{v_n}.$$

Here $S \subset G$ is the maximal torus.

The torus $T = (\mathbb{C}^\times)^N$ acts naturally on both X and Y by acting on \mathbb{C}^N. We denote the characters by $\Lambda_1, \cdots, \Lambda_N$.
Example

When $X = \text{Fl}(1,2;3),$

$$Y = \text{Hom}(\mathbb{C}, \mathbb{C}^2) \oplus \text{Hom}(\mathbb{C}^2, \mathbb{C}^3)//\mathbb{C}^\times \times (\mathbb{C}^\times)^2.$$

![Diagram](image)

We denote by P_{11}, P_{21}, P_{22} the tautological bundles of Y. These bundles generate the K-ring of Y.

Xiaohan Yan (UCB)
Quantum K-theory of flag varieties
1/24/2022
In general, the picture of Y is a tower of fiber bundles

$$
(\mathbb{C}P^{v_2-1})^{v_1} \to Y
$$

$$
\cdots
$$

$$
(\mathbb{C}P^{v_n-1})^{v_{n-2}} \to F_{n-2}
$$

$$
(\mathbb{C}P^{v_n-1})^{v_{n-1}} \to F_{n-1}
$$

$$
(\mathbb{C}P^{N-1})^{v_n}.
$$

We denote by P_{ij} the **tautological bundle** $\mathcal{O}(-1)$ on the j-th copy of $\mathbb{C}P^{v_{i+1}-1}$ in the i-th level ($1 \leq i \leq n$, $1 \leq j \leq v_i$).

We denote by $\{Q_{ij}\}_{i=1}^{n}^{v_i}_{j=1}$ the corresponding **Novikov variables** of Y.
The abelian quotient Y

\[R^s(G)/S \xrightarrow{\iota} Y = R^s(S)/S \]

\[X = R^s(G)/G \]

where $R^s(G)$ and $R^s(S)$ stands for the stable locus of the G- and S-action respectively.

Fact

We have the following relations of the tautological bundles

\[\iota^* \bigoplus_{k=1}^{v_i} P_{ik} = q^* V_i. \]
Grassmannian case: main result (rigorous formulation)

For the case of grassmannian $X = \text{Gr}(\nu, N)$, we simplify our notations as follows.

- V: the (only) tautological bundle of X;
- P_1, \cdots, P_{ν}: the tautological bundles of $Y = (\mathbb{C}P^{N-1})^{\nu}$;
- Q and $Q_i (1 \leq i \leq \nu)$: the Novikov variables of X and Y respectively.

Theorem (Main theorem)

The orbit of $\tilde{j}^{tw, Y}$ under the group \mathcal{P}^W of Weyl-group-invariant pseudo-finite-difference operators covers \mathcal{L}^X under the specialization $Q_i = Q$ and $y = 1$, where

$$\tilde{j}^{tw, Y} = \sum_{0 \leq d_1, \ldots, d_{\nu}} \prod_{i=1}^{\nu} Q_i^{d_i} \frac{\prod_{1 \leq i < j \leq \nu} \prod_{m=1}^{d_i - d_j} (1 - yq^m P_i/P_j)}{\prod_{i=1}^{\nu} \prod_{m=1}^{d_i} (1 - q^m P_i)^N}.$$
Grassmannian case: main result (rigorous formulation)

In fact, we prove the T-equivariant version of the above theorem.

Theorem (Main theorem’, Givental-X.Y.)

The orbit of $\tilde{J}^{tw,Y}$ under the group P^W of Weyl-group-invariant pseudo-finite-difference operators cover the image L^X of the T-equivariant permutation-invariant big J-function of X under the specialization $Q_i = Q$ and $y = 1$, where

\[
\tilde{J}^{tw,Y} = \sum_{0 \leq d_1, \ldots, d_v} \prod_{i=1}^v Q_i^{d_i} \frac{\prod_{1 \leq i,j \leq v}^{d_i-d_j} \prod_{m=1}^{d_i} (1 - yq^m P_i/P_j)}{\prod_{i=1}^v \prod_{j=1}^N \prod_{m=1}^{d_i} (1 - q^m P_i/\Lambda_j)}.
\]

Taking $\Lambda_i \to 1$ gives us the previous theorem back.
The theorem has two aspects:

- elements in the orbit of $\tilde{J}_{tw, Y}$ lie on L^X;
- all points on L^X appear in the orbit $\tilde{J}_{tw, Y}$.

Xiaohan Yan (UCB)
Quantum K-theory of flag varieties
1/24/2022
The theorem has two aspects:

- elements in the orbit of $\tilde{J}^{tw,Y}$ lie on L^X;
- all points on L^X appear in the orbit $\tilde{J}^{tw,Y}$. → save for later
Idea: abelian/non-abelian correspondence

elements in the orbit of \(\tilde{J}^{tw,Y} \) lie on the image of big \(J \)-function of \(X \)

\[\uparrow \]

\(\tilde{J}^{tw,Y} \) lies on the image of big \(J \)-function of \(X \)

\[\uparrow \]

\(\tilde{J}^{tw,Y} \) lies on the image of big \(J \)-function of \(Y \) twisted by \(g/\mathfrak{s} \)

\[+ \]

big \(J \)-function of \(Y \) twisted by \(g/\mathfrak{s} \) “=” big \(J \)-function of \(X \)
Idea: abelian/non-abelian correspondence

elements in the orbit of $\tilde{J}_{tw,Y}$ lie on the image of big J-function of X

\uparrow

$\tilde{J}_{tw,Y}$ lies on the image of big J-function of X

\uparrow

$\tilde{J}_{tw,Y}$ lies on the image of big J-function of Y twisted by g/s

\uparrow

big J-function of Y twisted by g/s “=” big J-function of X

\uparrow

(Fixed point localization)
(Classical) Abelian/non-abelian correspondence

\[R^s(G)/S \xleftarrow{i} Y = R^s(S)/S \]
\[X = R^s(G)/G \]

Fact ([10])

Let \(\sigma \in H^*_T(X) \) and \(\tilde{\sigma} \in H^*_T(Y) \) such that \(i^*\tilde{\sigma} = q^*\sigma \). Then,

\[
\frac{1}{|W|} \int_Y \omega \tilde{\sigma} = \int_X \sigma,
\]

where \(\omega = \text{Eu}(g/\mathfrak{s}) \).
Quantum abelian/non-abelian correspondence

Previous works using this idea:

- Bertram-Ciocan-Fontanine-Kim *Two proofs of a conjecture of Hori and Vafa, Gromov-Witten invariants for abelian and nonabelian quotients*
- Ciocan-Fontanine-Kim-Sabbah *The abelian/nonabelian correspondence and Frobenius manifolds*
- Webb *The abelian-nonabelian correspondence for l-functions*
- Wen *K-theoretic l-functions of V//_θ G and applications*
- González-Woodward *Quantum Witten localization and abelianization for qde solutions, Quantum Kirwan for quantum K-theory*
Idea: fixed point localization

$\tilde{J}_{tw,Y}$ lies on the image of big J-function of Y twisted by g/s

+ big J-function of Y twisted by g/s “=” big J-function of X
Idea: fixed point localization

\[\tilde{f}^{tw, Y} \text{ lies on the image of big } J \text{-function of } Y \text{ twisted by } g/\mathbb{C} \]

+

big \(J \)-function of \(Y \) twisted by \(g/\mathbb{C} \) “=” big \(J \)-function of \(X \)

This may be proved by a recursive characterization of big \(J \)-functions based on fixed point localization.
Assume that M has isolated fixed points under a torus action by T, and that the fixed points are connected by isolated one-dimensional T-orbits. Any q-rational function $f \in \mathcal{K}$ has the expansion

$$f = \sum_{a \in \mathcal{F}} f_a \phi^a$$

where $\{\phi^a\}_{a \in \mathcal{F}}$ are fixed point classes. Then, the following characterization of big \mathcal{J}-function holds [2]:

Fact

f represents a value of \mathcal{L}^M if and only if it satisfies Conditions (i) and (ii).
(i) f_a, when expanded as meromorphic functions with **poles only at roots of unity**, lies in L^{pt}, the cone of the permutation-invariant quantum K-theory for point target space with coefficient ring $K(M)[[Q]]$.

(ii) Outside $0, \infty$ and roots of unity, f_a has **poles only at values of the form** $\lambda^{1/m}$ with λ a T-character of the tangent space $T_a M$ and m a positive integer, and the residues satisfy the recursion relations

$$\text{Res}_{q=\lambda^{1/m}} f_a(q) \frac{dq}{q} = \frac{Q^{mD}}{m} \frac{\text{Eu}(T_a M)}{\text{Eu}(\overline{M}_{0,2}(M, mD))} f_b(\lambda^{1/m}).$$
\(\tilde{J}^{tw,Y} \) is on twisted theory of \(Y \)

Proposition

\(\tilde{J}^{tw,Y} \) represents a value of the \((\text{Eu, } y^{-1}g/s)\)-twisted big \(J \)-function of the abelian quotient \(Y \).
\(\tilde{J}^{tw,Y} \) is on twisted theory of \(Y \)

Proposition

\(\tilde{J}^{tw,Y} \) represents a value of the \((\text{Eu}, y^{-1}\mathfrak{g}/\mathfrak{s})\)-twisted big \(\mathcal{J} \)-function of the abelian quotient \(Y \).

- One can directly check the recursion relations needed by the twisted theory.
- Alternatively, one could use the Quantum Adams-Riemann-Roch theorem [4] which describes the twisted big \(\mathcal{J} \)-function in terms of the untwisted big \(\mathcal{J} \)-function.
Twisted big \mathcal{J}-function of Y “=” big \mathcal{J}-function of X

Quantum K-theory of $Y = R//S$ twisted by $y^{-1}g/s$

$$\text{Res}_{q=\lambda^{1/m}} f_a(q) \frac{dq}{q} = \prod_i Q_i^{mD_i} m \frac{\text{Eu}(T_a Y)}{\text{Eu}(y^{-1}g/s)|_a} \frac{\text{Eu}((y^{-1}g/s)_{0,2,mD})|_\phi}{\text{Eu}(T_\phi Y_{0,2,mD})} f_b(\lambda^{1/m}).$$

\[\Downarrow\]

Under the limit $Q_i = Q, y = 1$

\[\Downarrow\]

Quantum K-theory of $X = R//G$

$$\text{Res}_{q=\lambda^{1/m}} f_a(q) \frac{dq}{q} = Q^{m \sum_i D_i} m \frac{\text{Eu}(T_a X)}{\text{Eu}(T_\phi X_{0,2,m \sum_i D_i})} f_b(\lambda^{1/m}).$$

In other words, we check the recursion coefficients of the two theories coincide, under the specialization $Q_i = Q, y = 1$.
Remarks

Generating functions of quantum K-theory invariants of *symplectic* quiver varieties defined by quasi-map compactifications appear in the study of quantum integrable systems and representation theory. One often needs such functions to be balanced [11, 9] in order to apply rigidity arguments.

For the case of $T^* Gr(\nu, N)$, one may consider $I =$

$$
\sum_{0 \leq d_i} Q^{\sum_i d_i} \frac{\prod_{i \neq j}^{1 \leq i, j \leq \nu} \prod_{m=1}^{d_i-d_j} (1 - q^m P_i/P_j)}{\prod_{i \neq j}^{1 \leq i, j \leq \nu} \prod_{m=0}^{d_i-d_j-1} (1 - \hbar q^m P_i/P_j)} \prod_{i=1}^{\nu} \prod_{j=1}^{N} \prod_{m=0}^{d_i-1} (1 - \hbar q^m P_i/\Lambda_j) \prod_{i=1}^{\nu} \prod_{j=1}^{N} \prod_{m=1}^{d_i} (1 - q^m P_i/\Lambda_j),
$$

where \hbar denotes the equivariant parameter of an extra fiberwise \mathbb{C}^\times-action on $T^* Gr(\nu, N)$.
Question: Can I be realized in terms of the language we introduced earlier?
Remarks

- Question: Can I be realized in terms of the language we introduced earlier?
- Yes, but after certain *twistings*.

Fact

Let $X = Gr(\nu, N)$. Then $I/\text{Eu}(TX)$ lies on the image $\mathcal{L}_{\text{Eu},TX}$ of the big J-function of X twisted by its tangent bundle.

This may be proved using the same method.
Note however that $I =$

$$
\sum_{0 \leq d_i} Q^{\sum_i d_i} \frac{\prod_{i \neq j}^{1 \leq i, j \leq \nu} \prod_{m=1}^{d_i - d_j} (1 - q^m P_i / P_j)}{\prod_{i \neq j}^{1 \leq i, j \leq \nu} \prod_{m=0}^{d_i - d_j - 1} (1 - \hbar q^m P_i / P_j)} \frac{\prod_{i=1}^{\nu} \prod_{j=1}^{N} \prod_{m=0}^{d_i - 1} (1 - \hbar q^m P_i / \Lambda_j)}{\prod_{i=1}^{\nu} \prod_{j=1}^{N} \prod_{m=1}^{d_i} (1 - q^m P_i / \Lambda_j)},
$$

is not the small J-function in the twisted theory. In other words, under the polarization $\mathcal{K} = \mathcal{K}_+ \oplus \mathcal{K}_-$, $I = 1 - q + t + \mathcal{K}_-$ with $t \neq 0$.

This is due to the possible \hbar-terms in the denominator.
Flag variety case: notations

Recall that

\[X = \text{Hom}(C^{v_1}, C^{v_2}) \oplus \cdots \oplus \text{Hom}(C^{v_n}, C^N)/GL(v_1) \times \cdots \times GL(v_n) \]

\[Y = \text{Hom}(C^{v_1}, C^{v_2}) \oplus \cdots \oplus \text{Hom}(C^{v_n}, C^N)/(C^\times)^{v_1} \times \cdots \times (C^\times)^{v_n} \]
New flavor in the flag variety case

Recall that in grassmannian case,

- T-fixed points of X are the coordinate subspaces and are isolated;
- T-fixed points of $Y = (\mathbb{C}P^{N-1})^v$ are also isolated.
Recall that in grassmannian case,

- T-fixed points of X are the coordinate subspaces and are isolated;
- T-fixed points of $Y = (\mathbb{C}P^{N-1})^v$ are also isolated.

In flag variety case, however,

- T-fixed points of X are the standard flags and are still isolated;
- but T-fixed points of Y are no longer isolated!

For simplicity of notations, we will mainly consider the case $X = \text{Fl}(1, 2; 3)$. The method carries over to all partial flag varieties entirely.
New flavor in the flag variety case

Example

For $X = Fl(1, 2; 3)$, Y is a \mathbb{CP}^1-bundle over $\mathbb{CP}^2 \times \mathbb{CP}^2$.

- $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $D = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ are isolated T-fixed points of Y;

- $B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$ and $C = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ are non-isolated T-fixed points of Y. In fact, the fixed point component containing B and C is isomorphic to \mathbb{CP}^1:

\[
\left\{ \begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \mid a, b \in \mathbb{C} \text{ not both zero} \right\}.
\]
A (very sketchy) picture is shown below:
New idea

We will have to address the issue of “non-isolated recursion”.

New idea

We will have to address the issue of “non-isolated recursion”.

The most direct idea is to enlarge the torus action on Y. We enlarge $T \rightarrow \tilde{T}$

- $\tilde{T} = T \times (\mathbb{C}^\times)^2$ with the extra action scaling the two entries of $\text{Hom}(\mathbb{C}, \mathbb{C}^2)$ (i.e. rotating the fibers $\mathbb{C}P^1$).
- We denote by Λ_4, Λ_5 the equivariant parameters of the extra action.
- Now, A, B, C, D are all isolated fixed points of \tilde{T}-action.
Main result: flag variety case

We may follow the same idea of Grassmannian case. Under the action of the enlarged torus \tilde{T}, we have

Theorem (Main theorem, X.Y.)

The orbit of $\tilde{J}^{tw,Y}$ under the group of Weyl-group-invariant pseudo-finite-difference operators covers the entire image L^X of the big J-function of X under the specialization $\Lambda_4 = \Lambda_5 = 1$, $Q_{ij} = Q_i$ and $y = 1$, where

$$\tilde{J}^{tw,Y} = (1 - q) \sum_{d_{ij} \geq 0} \prod Q_{ij}^{d_{ij}} \cdot \frac{\prod_{l=1}^{d_{21} - d_{22}} (1 - y \frac{P_{21}}{P_{22}} q^l) \prod_{l=1}^{d_{22} - d_{21}} (1 - y \frac{P_{22}}{P_{21}} q^l)}{\prod_{s=1}^{2} \prod_{l=1}^{d_{11} - d_{2s}} (1 - \frac{P_{11}}{P_{2s} \Lambda_{s+3}} q^l) \cdot \prod_{r=1}^{2} \prod_{s=1}^{3} \prod_{l=1}^{d_{2r}} (1 - \frac{P_{2r}}{\Lambda_s} q^l)}.$$
Consider the 1-dim \tilde{T}-orbit AD as an example.

Step 1: $\tilde{J}^{tw,Y}|_A$ satisfies the recursion relations of the \tilde{T}-equivariant $(E_u, y^{-1}g/s)$-twisted big J-function of Y;

Step 2: Under the specialization $\Lambda_4 = \Lambda_5 = 1$, $Q_i = Q$ and $y = 1$, the twisted recursion along AD of Y descends correctly to the expected recursion along AD of X.
Idea

Consider the 1-dim \tilde{T}-orbit AD as an example.

Step 1: $\tilde{J}^{tw,Y}|_A$ satisfies the recursion relations of the \tilde{T}-equivariant $(E_u, y^{-1}g/s)$-twisted big J-function of Y;

Step 2: Under the specialization $\Lambda_4 = \Lambda_5 = 1$, $Q_i = Q$ and $y = 1$, the twisted recursion along AD of Y descends correctly to the expected recursion along AD of X.

- But are we done?
NO!! Both AD and AB contributes to the residue of of $\tilde{j}^{tw, Y}|_A$ at the pole $q = (\frac{\Lambda_2}{\Lambda_1})^{1/m}$ as $\Lambda_4, \Lambda_5 \to 1$.
Non-isolated recursion

Essentially, we are showing that the total non-isolated recursion from the component BC vanishes as $\Lambda_4 = \Lambda_5 = 1$, $Q_i = Q$ and $y = 1$.
Essentially, we are showing that the total non-isolated recursion from the component BC vanishes as $\Lambda_4 = \Lambda_5 = 1$, $Q_i = Q$ and $y = 1$.

For partial flag varieties in general, at a isolated fixed point (like A), we prove the vanishing of recursion from the “degenerate” orbits (like AB) following this same idea:

- complete it into non-isolated recursion from a fixed-point component (like BC) by taking balanced broken orbits (like ADC) into consideration;
- prove that both the total non-isolated recursion and the added terms, which themselves are “lower non-isolated recursions”, vanish.
A special case of the main theorem:

Corollary

\[J^X = (1 - q) \sum_{d_{ij} \geq 0} \prod_i Q_i^{\sum_j d_{ij}} \frac{\prod_{i=1}^n \prod_{1 \leq r, s \leq v_i}^{1 \neq s} \prod_{l=1}^{d_{ir} - d_{ir}} (1 - \frac{P_{is}}{P_{ir}} q^l)}{\prod_{i=1}^n \prod_{1 \leq r \leq v_i+1}^{1 \leq s \leq v_i} \prod_{l=1}^{d_{is} - d_{is+1,r}} (1 - \frac{P_{is}}{P_{i+1,r}} q^l)} \]

represents a value of the big \(J \)-function of \(X \).

This is actually the small \(J \)-function.
Similar to the grassmannian case, we may consider balanced generating functions I^X of K-theoretic quasi-map invariants of T^*X.

Denote by J^X_d the coefficient of Q^d in the small J-function J^X. Then, $I^X = \sum_d Q^d I^X_d$ takes the form

$$I^X_d = J^X_d \cdot \frac{\prod_{i=1}^n \prod_{1 \leq s \leq v_i} \prod_{1 \leq r \leq v_{i+1}} \prod_{l=0}^{d_{is} - d_{i+1,r} - 1} (1 - \hbar \frac{P_{is}}{P_{i+1,r}} q^l)}{\prod_{i=1}^n \prod_{r \neq s} \prod_{l=0}^{d_{ir} - d_{ir} - 1} (1 - \hbar \frac{P_{is}}{P_{ir}} q^l)}$$

In fact, we have

Fact

$I/\text{Eu}(TX)$ represents a point on the image $L^{\text{Eu},TX}$ of the big J-function of X twisted by its tangent bundle.
Surjectivity argument

Recall the theorem has two aspects:

- elements in the orbit of $\tilde{J}^{tw, Y}$ lie on L^X;
- all points on L^X appear in the orbit of $\tilde{J}^{tw, Y}$. → do this now
Surjectivity argument

Recall the theorem has two aspects:
- elements in the orbit of $\tilde{J}^{tw,Y}$ lie on L^X;
- all points on L^X appear in the orbit of $\tilde{J}^{tw,Y}$. → do this now

Idea:
- We use the invariance of L^X under pseudo-finite-difference operators to generate a family on it from $\tilde{J}^{tw,Y}$.
- We want to show that the projection of this family to \mathcal{K}_+ covers the entire \mathcal{K}_+: this is correct mod Q by quantum K-theory of point target space, and is thus correct with Q by Formal Implicit Function Theorem (Nakayama’s Lemma).
Recently, the level structures are introduced to quantum K-theory, inspiring new progress in the field.

- Ruan-Zhang *The level structure in quantum K-theory and mock theta functions*
- Ruan-Wen-Zhou *Quantum K-theory of toric varieties, level structures, and 3d mirror symmetry*
Level structure

Definition

Let E be a vector bundle on X and l be an integer. The level structure (E, l) is defined as the modification

$$\mathcal{O}^\text{virt} \rightarrow \mathcal{O}^\text{virt} \otimes \det^{-l}(ft_* \ ev^* \ E)$$

to the virtual structure sheaf.

We consider the quantum K-theory of flag varieties with level structures.
Level structure

Using similar techniques as before, we can prove the following

Proposition

Write \(J^X = \sum_{d \geq 0} Q^d J_d^X \) as before, then the q-rational function

\[
J^{X,V_i,l} = \sum_{d \geq 0} Q^d \cdot \left[\prod_{i=1}^{v_i} P_{i,s}^{d_{i,s} \left(d_{i,s}-1\right)} \right]^l \cdot J_d^X
\]

represents a point on the overruled cone \(\mathcal{L}^{X,V_i,l} \) of \(X \) with level structure \((V_i, l) \).

Moreover, this is the small \(J \)-function as \(|l| \) is small.
A correspondence between level-twisted big \mathcal{J}-functions of dual grassmannians was observed in [1]. This may be generalized to the case of flag varieties as follows.

Consider the flag varieties

$$X = \text{Flag}(v_1, v_2, \ldots, v_n; N)$$

and

$$X' = \text{Flag}(N - v_n, N - v_{n-1}, \ldots, N - v_1; N).$$

There is a T-equivariant isomorphism which is explicitly given by

$$0 \subset V_1 \subset V_2 \subset \ldots \subset V_n \subset \mathbb{C}^N \leftrightarrow 0 \subset (V_n)^\perp \subset (V_{n-1})^\perp \subset \ldots \subset (V_1)^\perp \subset (\mathbb{C}^N)^*.$$

Both X and X' have n tautological bundles, and we name them V_i and V'_i respectively.
The following fact is not hard to prove.

Fact

\[\mathcal{L}^{X,V_i,l} = \mathcal{L}^{X',(V'_i)^\vee,-l}. \]

Therefore, combining the fact with what we have proved above, we have

Corollary

When \(|l|\) is small,

\[j^{X,V_i,l} = j^{X',(V'_i)^\vee,-l}. \]
Thank you!!!
H. Dong and Y. Wen.
Level correspondence of K-theoretic \(l \)-functions in grassmannian duality.

A. Givental.
Permutation-equivariant quantum K-theory II. Fixed point localization.

A. Givental.
Permutation-equivariant quantum K-theory VIII. Explicit reconstruction.

A. Givental.
Permutation-equivariant quantum K-theory XI. Quantum Adams-Riemann-Roch.

A. Givental.
Permutation-equivariant quantum K-theory X. Quantum Hirzebruch-Riemann-Roch in genus 0.

SIGMA Symmetry Integrability Geom. Methods Appl., 16:Paper No. 031, 16, 2020.

A. Givental and V. Tonita.
The Hirzebruch-Riemann-Roch theorem in true genus-0 quantum K-theory.

In *Symplectic, Poisson, and noncommutative geometry*, volume 62 of *Math. Sci. Res. Inst. Publ.*, pages 43–91. Cambridge Univ. Press, New York, 2014.

H. Iritani, T. Milanov, and V. Tonita.
Reconstruction and convergence in quantum K-theory via difference equations.
Int. Math. Res. Not. IMRN, 2015(11):2887–2937, 2014.

Y.-P. Lee.
Quantum K-theory. I. Foundations.
Duke Math. J., 121(3):389–424, 2004.

H. Liu.
Self-duality in quantum K-theory.

S. Martin.
Symplectic quotients by a nonabelian group and by its maximal torus.

A. Okounkov.
Lectures on K-theoretic computations in enumerative geometry.
In *Geometry of moduli spaces and representation theory*, volume 24 of *IAS/Park City Math. Ser.*, pages 251–380. Amer. Math. Soc., Providence, RI, 2017.