Original article

Prevalence of the Alternaria blight of cumin (Cuminum cyminum L.) in Bangladesh: Morphology, phylogeny and pathogenic variation of Alternaria spp.

Md. Abdul Waduda, Sukalpa Dasb, Md. Atiqur Rahman Khokonc,⇑

⇑Corresponding author.
E-mail address: atiq.ppath@bau.edu.bd (Md. Atiqur Rahman Khokon).

1. Introduction

Cumin (Cuminum cyminum L.) belongs to the family Apiaceae (Umbelliferae) and is believed to be the native of the Mediterranean and near eastern regions of the globe (Nabhan, 2014). It is widely cultivated in Uzbekistan, Tajikistan, Turkey, Morocco, Egypt, India, Syria, Mexico, Pakistan and Chile (Azeez et al., 2008). It grows best on well drained sandy loam to loamy soil with a pH range of 6.8 to 8.3 (Weiss, 2002). Cumin seeds are used as spice in culinary for flavoring soups, sauces, pickles and for seasoning breads and cakes. Cumin is an important ingredient in Bangladeshi cuisine. To meet the internal demand, a huge amount of cumin is imported every year in Bangladesh in expense of costly foreign exchange. In 2019–20, about 27,000 to 28,000 tons of cumin was imported in Bangladesh (The Financial Express, 2020). Therefore, cultivation of cumin in Bangladesh might reduce its dependency on other countries. Despite having congenial climatic and edaphic conditions, commercial cultivation of cumin is not well adopted in Bangladesh due to many socio-economic reasons including the lack of appropriate germplasm and adequate scientific information regarding the infestation of different pathogens.

Production of cumin is seriously affected by the infection of Alternaria blight caused by Alternaria spp. The disease appears in a devastating form every year in the most cumin-growing areas in Bangladesh.
the world and can cause up to 80% of yield loss (Gemawat and Prasad, 1972). Initially, blight affected plants show minute whitish to black isolated necrotic areas on the aerial parts, especially on tips of young leaves leading to the death of the whole plant or the affected parts (Uppal et al., 1938; Sharma, 2010). Diseased seeds are small, de-shaped, shriveled, light weight and black in colour (Gemawat and Prasad, 1972). High humidity during flowering and fruit setting, the most vulnerable stage of the growth of the crop, is conducive for the development of Alternaria blight in cumin (Uppal et al., 1938; Patel et al., 1957; Gemawat and Prasad, 1971). Correct species identification is an imperative for designing successful management approaches against any plant pathogen. Different species and isolates of Alternaria vary in radial mycelial growth, conidia structure, colony character, sporulation and pathogenic capability (Ansari et al., 1989; Patni et al., 2005; Kaur et al., 2007). For delimiting the species of fungal pathogens and to study their diversity, molecular tools are being used increasingly including other morphological characters (Benali et al., 2011). To the best of our knowledge, there is no extensive study conducted so far in Bangladesh about the prevalence of the Alternaria blight of cumin and its causal organisms.

The present study was undertaken 1) to know the prevalence of the Alternaria blight of cumin in Bangladesh 2) to study the feasibility of introducing some advanced lines of cumin, better adapted against the Alternaria blight, in Bangladesh 3) to identify and characterize species of fungus associated with the Alternaria blight of cumin in Bangladesh using morphological and molecular features 4) to discriminate the pathogenicity of the isolates of fungus associated with the Alternaria blight of cumin collected from different locations of Bangladesh.

2. Materials and methods

Assessment of germination and yield parameters

The experiment was conducted at five sub-centers under Spices Research Centre (SRC) of Bangladesh Agricultural Research Institute situated in different Agro-ecological Zones (AEZ) in Bangladesh (Tables 1 & 2). The experiment was laid out in a randomized complete block design (RCBD) with four replications during November 2019 to March 2020. Standard procedures of cultivating cumin were followed for the land preparation and subsequent intercultural operations (Verma et al., 2018). Four advanced cumin lines viz. CN026, CN028, CN031 and CN038 were used in the experiment. One hundred seeds of each cumin line were sown in each location and percentage of germination was determined by calculating the number of plants grown. For assessing the field performance of four cumin lines, mean of yield parameters of five locations were used (Table 6).

Incidence and Severity of the disease

The incidence and severity of Alternaria blight were recorded for three times starting from the fifty five days after emergence (DAE) of cumin seedlings at the interval of 10 days. For determining disease severity, ten plants were randomly selected from each plot of all locations and percent disease index (PDI) was calculated.

\[
\text{PDI} = \left(\frac{\text{Sum of all disease rating}}{\text{Total no. of plants per unit area}} \right) \times 100
\]

Serial No.	Location	*AEZ	Isolate Code	GenBank Accession number
1	Bogura	3	BoCA1 (MN989187)	
2	Bogura	3	BoCA4 (MN909188)	
3	Bogura	3	BoCA5 (MN989189)	
4	Bogura	3	BoCA8 (MN989190)	
5	Bogura	3	BoCA11 (MN989191)	
6	Bogura	3	BoCA12 (MN989192)	
7	Magura	11	MaCA2 (MN989193)	
8	Magura	11	MaCA3 (MN989194)	
9	Magura	11	MaCA6 (MN989195)	
10	Faridpur	12	FaCA3 (MN989196)	
11	Lalmonirhat	2	LaCA1 (MN989197)	
12	Lalmonirhat	2	LaCA3 (MN989198)	
13	Bogura	3	BoCA6 (MN989199)	
14	Bogura	3	BoCA3 (MN989200)	
15	Bogura	3	BoCA2 (MN989213)	
16	Bogura	3	BoCA9 (MN989214)	
17	Bogura	3	BoCA10 (MN989215)	
18	Bogura	3	BoCA3 (MN989216)	
19	Gazipur	8	GaCA1 (MN989217)	
20	Gazipur	8	GaCA5 (MN989218)	
21	Magura	11	MaCA1 (MN989219)	
22	Faridpur	12	FaCA4 (MN989220)	
23	Lalmonirhat	2	LaCA2 (MN989221)	

* Agro-ecological Zones (AEZ).
Extraction of genomic DNA

Fungal DNA was extracted following the modified CTAB method (Doyle and Doyle, 1987). The dried mycelia were ground into powder in liquid nitrogen. The homogenized mycelia were transferred to an eppendorf and CTAB extraction buffer was added. The sample was incubated at 65 °C for 30 min in a hot water bath and centrifuged at 10000 rpm for 10 min. Equal volume of Phenol:Chloroform:isoamylalcohol (25:24:1) were mixed and centrifuged at 10000 rpm for 10 min. Equal volume of Phenol:Chloroform:isoamylalcohol was added. The sample was incubated at 65 °C for 30 min in a hot water bath and centrifuged at 10000 rpm for 10 min. The supernatant and equal volume of ice-cold isopropanol was added. The sample was incubated at −20 °C for 1.30 h and followed by centrifugation at 13000 rpm for 15 min. The DNA pellet left at the bottom was washed with 70% ethanol, air-dried and dissolved in TE buffer. The DNA stock solution was stored at −20 °C.

PCR amplification

The internal transcribed spacer (ITS) region of the ribosomal DNA (rDNA) of 23 isolates were amplified using primer set ITS1 (5′-TCCGATATGGAACTTCGCCC-3′) and ITS4 (5′-TCCTCCGCTTATT GATATGC-3′) (White et al., 1990). The amplification reaction for the simplex PCR consisted of a volume of 25 μl PCR mix that was made up by adding 12.5 μl ready to use master mix (Promega, Madison, WI, USA), 9.5 μl nuclease-free water, 1 μl of each 10 μM forward and reverse primer, and 1 μl of the respective isolate's DNA. PCR cycle for ITS sequence amplification consisted of initial denaturation (94 °C for 5 min) followed by 35 cycles of denaturation (94 °C for 30 sec), annealing (56 °C for 30 sec), extension (72 °C for 1.0 min 30 sec) and a final extension of 10 min at 72 °C.

Gel electrophoresis

After DNA amplification, a 10 μl of PCR product from each sample was loaded into 1% agarose gel and stained with Ethidium Bromide (0.5 mg/ml). Electrophoresis was conducted in the Tris-Borate-EDTA (TBE) buffer at 80 V for 45 min. DNA bands were visualized and photographed under UV light by GelView Master (Dynamica Scientific Ltd.). The length of each amplified DNA fragment was compared with a 1 kb DNA ladder (Promega, Madison, WI, USA).

Phylogenetic analyses

The sequences of Alternaria spp. used in the phylogenetic analyses were downloaded from the NCBI Genbank based on the highest match of Nucleotide Basic Local Alignment Search Tool (BLASTN) results against the isolates of Alternaria spp. identified in this study. Evolutionary analyses were conducted in MEGA7 (Kumar et al., 2016). The evolutionary history was inferred using the Neighbor-Joining method (Saitou and Nei, 1987). The evolutionary distances were computed using the Maximum Composite Likelihood method (Tamura et al., 2004) and are in the units of the number of base substitutions per site. All positions containing gaps and missing data were eliminated. A bootstrap analysis using 1000 replications of the sequence data was carried out (Felsenstein, 1985).

Pathogenic variability

Pathogenicity of all the isolates of Alternaria spp. was tested on the cumin line CN026 grown on sterilized soil in pots by the spray inoculation technique (Dhingra and Sinclair, 1995). This line was selected for the experiment because it showed better adaptability in the climatic conditions of Bangladesh in terms of germination capacity, yield, incidence and severity of Alternaria blight of cumin. Each pot received 10–15 seeds of the cumin line (Shekhawat et al., 2013). The concentration of the spores was maintained at 1 × 10⁷ ml⁻¹ during inoculation. Forty to fifty days old plants were inoculated by spraying the conidial suspension with a hand-held atomizer. The inoculated plants were kept in a humid chamber for 24 h before transferring to a cage house. High humidity was maintained throughout the disease development period by frequent irrigations. Experiments were conducted in Completely Randomized Design (CRD). Each treatment was replicated three times. The disease intensity was calculated with the help of a disease rating scale (**°Jat, 2013). Re-isolation was done by collecting the infected plant parts after 10 days of inoculation. The isolated cultures were compared with the original one to confirm the pathogenicity.

2.1. Statistical analysis

Statistical analyses were done by R statistical software (http://www.R-project.org). ANOVA was performed on germination, yield and yield contributing characters of cumin lines, disease incidence and disease severity, radial mycelia growth, length and breadth of conidia, beak length, and number of vertical and horizontal septa by the Agricolae R package and AOV function (R Core Team, 2020).
3. Results

Germination percentage and yield parameters of cumin lines: One of the objectives of this study was to introduce some advanced lines of cumin in Bangladesh. To achieve this objective, germination capacity and different yield parameters of four cumin lines were assessed. The overall germination percentage of four lines varied significantly at different locations (Table 3). The highest (80.12%) germination was recorded at SRC, Bogura and the lowest (64.06%) was at SRC, Lalmanirhat. Significant variation in the germination percentage was observed in the four cumin lines (Table 4). The cumin lines CN026 and CN038 had significantly higher germination than the other two lines. The interaction effect of the cumin lines and locations on the germination percentage was significant (Table 5). All of the four cumin lines had higher germination at SRC, Bogura. The highest germination was recorded in the CN026 (85.00%) and CN038 (82.75%) at SRC, Bogura.

Table 3
The germination (%) of cumin seeds in different locations.

Location	Germination (%)
SRC, Bogura	80.12 a
SRC, Gazipur	75.06b
SRC, Lalmanirhat	64.06 e
SRC, Magura	72.81c
SRC, Faridpur	69.87 d
CV (%)	4.088

Table 4
The germination (%) of different cumin lines.

Cumin line	Germination (%)
CN026	75.20 a
CN028	71.10b
CN031	69.30b
CN038	73.95 a
L.S.	
CV (%)	4.088

Table 5
The germination (%) of different cumin lines in different locations.

Location	Cumin line	Germination (%)
SRC, Bogura	CN026	85.00 a
	CN028	77.50 bc
	CN031	75.25b-e
	CN038	82.75 a
SRC, Gazipur	CN026	78.00b
	CN028	74.75b-e
	CN031	73.25 d-f
	CN038	74.25b-e
SRC, Lalmanirhat	CN026	65.25 h-j
	CN028	64.75 ij
	CN031	63.25 j
	CN038	63 j
SRC, Magura	CN026	76.25b-d
	CN028	70 fg
	CN031	69 gb
	CN038	76.00b-d
SRC, Faridpur	CN026	71.50 e-g
	CN028	68.50 g-i
	CN031	65.75 h-j
	CN038	73.75c-f
L.S.		
CV (%)	4.089	

Table 6
Yield parameters of different cumin lines.

Cumin line	Plant height (cm)	Primary Branch/plant (no.)	Umbel/plant (No.)	Umbel let/umbel (No.)	Seeds/umbel let (No.)	1000 seed wt. (g)	Yield (kg/ha)
CN026	51.30 a	5.17 a	95.46 a	6.19 a	5.75 a	5.82 a	592.85 a
CN028	44.53 ab	4.83 ab	83.88 ab	5.05 abc	5.03 ab	5.10 ab	450.60 abc
CN031	42.75 bc	68 abc	79.97 a-d	5.23b	4.67 ab	4.83 abc	279.34 cde
CN038	38.98b-e	4.50 a-d	81.44 abc	4.50 bc	4.59 ab	4.33 bc	485.31 ab
L.S.							
CV (%)	6.48	7.42	13.22	9.41	8.45	9.67	24.42

Table 7
The incidence and severity of Alternaria blight of cumin in different locations.

Location	Disease incidence (%)	Disease severity (%)				
	55 DAE	65 DAE	75 DAE	55 DAE	65 DAE	75 DAE
SRC, Bogura	30.14 e	75.73c	91.60b	48.96c	69.71c	79.90b
SRC, Gazipur	44.56b	77.93 bc	94.20 ab	52.81b	77.12 a	85.80 a
SRC, Lalmanirhat	43.22c	77.82 bc	97.73 a	55.31 a	78.74 a	87.97 a
SRC, Magura	38.05 d	79.34b	97.71 a	53.33 ab	73.27b	85.41 a
SRC, Faridpur	46.03 a	83.89 a	97.77 a	55.01 ab	69.86c	82.28b
L.S.						
CV (%)	4.025	4.155	6.297	6.653	4.675	5.039

Spice Research Centre (SRC); Days after Emergence (DAE) **1% level of probability; * 5% level of probability; Means followed by the same letter in a column did not differ significantly.
The incidence and severity of Alternaria blight of cumin in different lines in different locations. The incidence and severity of Alternaria blight of cumin in different lines. Parameters with lower incidence and severity of being affected by desh as it had shown higher germination capacity and better yield. Cumin line CN026 was a better candidate to be adapted in Bangladesh. The data obtained in this experiment suggested that the incidence and severity of the disease at Bogura at all intervals of time was significant at all DAE. The cumin line CN026 had the lowest incidence and severity at 55 and 65 DAE (Table 8). The incidence and severity of the disease was statistically similar at 75 DAE. At 55 DAE, the highest severity of the disease was seen at Faridpur (55%), but at 65 and 75 DAE, Lalmonirhat had the highest severity of 79% and 88%, respectively. The lowest severity of the disease was observed at Bogura at all intervals of time. The incidence and severity of Alternaria blight varied significantly among the four cumin lines at 55 and 65 DAE (Table 8). The incidence and severity of the disease was the highest for the line CN031 and the lowest for the CN026 at all DAE, however, at 75 DAE the difference was non-significant. The interaction effect of locations and cumin lines on the severity of the disease was significant. The interaction effect of locations and cumin lines on the severity of the disease was statistically similar at 75 DAE. At 55 DAE, the difference was non-significant at 75 DAE (Table 9).

Table 8

Cumin line	Disease incidence (%)	Disease severity (%)				
	55 DAE	65 DAE	75 DAE	55 DAE	65 DAE	75 DAE
CN026	39.52b	76.09c	95.01	47.96c	70.39b	82.93
CN028	40.18 ab	80.04 ab	95.96	55.04 ab	74.99 a	85.33
CN031	41.05 a	81.56 a	96.69	56.01 a	75.47 a	84.82
CN038	40.85 a	78.09 bc	95.62	53.36b	74.11 a	84.02
LS	*	NS	NS	*	*	NS
CV (%)	4.0246	4.155	6.297	6.653	4.675	5.039

Table 9

Location Cumin line	Disease severity (%)	Disease severity (%)					
	55 DAE	65 DAE	75 DAE	55 DAE	65 DAE	75 DAE	
SRC, Bogura	CN026	25.58 i	71.21 h	91.22	40.37 h	62.47 h	74.37e
	CN028	31.32 h	79.26-f	92.12	51.47 d-g	71.37 d-g	84.37 ab
	CN031	32.16 h	83.61 a-d	92.60	53.82b-f	76.85 a-c	77.75 de
	CN038	31.47 h	77.66 e-g	90.85	50.17 e-g	68.75 fg	83.10 a-d
SRC, Gazipur	CN026	44.75 cd	70.98 h	94.07	48.12 g	73.87b-e	82.72 a-d
	CN028	44.98 cd	78.26 ef	94.40	52.62 a-c	76.62 a-c	85.85 ab
	CN031	44.34 cd	80.08b-f	97.10	53.72b-f	78.25 ab	88.25 a
	CN038	44.16 cd	73.61 gh	91.22	56.75 a-c	79.75 a	86.38 ab
SRC, Lalmonirhat	CN026	43.15 d	76.64 fg	94.07	50.00 fg	76.85 a-c	88.10 a
	CN028	45.63 bc	77.29 g	94.40	55.10 a-c	81.27 a	87.17 ab
	CN031	43.33 cd	80.22b-f	97.10	59.52 a	80.00 a-b	88.25 a
	CN038	40.77 e	77.12 fg	98.12	56.62 a-c	76.85 a-c	88.37 a
SRC, Magura	CN026	40.02 ef	82.28 a-e	97.35	51.25 d-g	71.12 d-g	83.87 bc
	CN028	47.60 ab	84.42 ab	98.00	58.00 ab	74.74b-d	86.50 ab
	CN031	47.91 ab	83.95 a-c	97.60	57.25 a-c	72.87c-f	87.25 ab
	CN038	40.24 ef	77.13 fg	98.12	53.73b-f	74.35b-d	84.00 a-c
SRC, Faridpur	CN026	38.34 fg	79.32c-f	96.86	50.07 fg	67.62 g	82.20 b-d
	CN028	37.10 g	80.98 a-f	97.64	58.00 ab	71.35 d-g	82.75 a-d
	CN031	36.49 g	79.92b-f	98.23	55.75 a-d	69.37 e-g	85.96 ab
	CN038	48.61 ab	84.94 a	98.12	49.50 fg	70.47 d-g	78.22c-e
LS	*	*	NS	*	*	NS	
CV (%)	4.022	4.155	6.297	6.653	4.675	5.039	

Days after Emergence (DAE): *1% level of probability; * 5% level of probability; NS = Non significant; Means followed by the same letter in a column did not differ significantly.

RNA and DNA were extracted from the fungal isolates using the CTAB method. The preliminary fingerprinting of the twenty three isolates using the primers ITS1 and ITS4 confirmed these isolates as fungi (Fig. 1). The PCR amplification yielded DNA fragments of approximately 570 bp for all isolates that is the characteristic band size of Alternaria spp. The PCR products were sequenced bi-directionally and BLASTN search was conducted. The fungal isolates were found in match with the GenBank accessions of A. alternata, A. tenuissima, A. burnsi and A. gaisen. The phylogenetic tree constructed with the sequence data of twenty three isolates and the corresponding accessions of GenBank revealed the isolates as different species of Alternaria (Fig. 1 and Table 2). Twelve isolates out of twenty three (isolate no. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) had been found in homology with the GenBank accessions of A. alternata, nine (isolate no. 15, 16, 17, 18, 19, 20, 21, 22, 23) with A. tenuissima, one (isolate no. 13) with A. burnsi, one (isolate no. 14) with A. gaisen (Table 1). The findings suggested that A. alternata and A. tenuissima were the most prevalent species in causing the Alternaria blight in cumin among the sampled locations. A. alternata and A. tenuissima were detected in all locations whereas A. gaisen and A. burnsi were detected in Bogura only. The colony characters of the isolates revealed that the isolates molecularly identified as A. alternata, A. tenuissima, A. burnsi and A. gaisen had diverse up-side and reverse side color with distinct appearance, texture and margin of the colony (Table 10).
Morphological variation of *Alternaria* spp.: The isolates significantly varied in radial mycelial growth (Table 11). The radial mycelial growths of the isolates were measured from four to eleven days after inoculation (DAI) on PDA media. Maximum growth (39.03 mm) was recorded in the MaCA3 which was followed by

Table 10

SL No.	Isolate code	Location	Colony characters	Up side of colony	Reverse side colony	Pathogen isolated
1	BoCA1	Bogura	Umbronate, velveti, White, irregular margin	Olive green	Dark black	*Alternaria* alternata
2	BoCA4	Bogura	Umbronate, velveti, Whitish, irregular margin	Green	Light green	
3	BoCA5	Bogura	Umbronate, velveti, White, regular margin	Whitish black	Light brown	
4	BoCA8	Bogura	Umbronate, velveti, Olive white, regular margin	Olive white	Brownish white or light brown	
5	BoCA11	Bogura	Whitish, regular margin	Olive green	Dark black	
6	BoCA12	Bogura	Umbronate, cottony and whitish regular margin	Green	Light black	
7	MaCA2	Magura	Umbronate, velveti, Blackish white, irregular margin	Whitish olive green	Brown	
8	MaCA3	Magura	Umbronate, velveti, White, regular margin	Greenish white	Black	*A. burnsii*
9	MaCA4	Magura	Umbronate, velveti, White, regular margin	Greenish white	Dark black	*A. gaisen*
10	FaCA3	Faridpur	Rugose, velveti, Whitish olive, irregular margin	Greenish white	Blackish white	
11	LaCA1	Lalmonirhat	Umbronate, velveti, Whitish, regular margin	Blackish white	Light black	*A. tenuissima*
12	LaCA3	Lalmonirhat	Greenish white, irregular margin	Greenish ash	Blackish white	
13	BoCA6	Bogura	Umbronate, cottony, Olive white, regular margin	Olive green	Dark black	*A. tenuissima*
14	BoCA3	Bogura	Umbronate, velveti, White, irregular margin	Green	Black	
15	BoCA2	Bogura	Brown, irregular margin	Blackish ash	Dark black	*A. tenissima*
16	BoCA9	Bogura	Velveti, White, irregular margin	Greenish white	Dark black	
17	BoCA10	Bogura	Rugose, velveti, White, regular margin	Greenish white	Light brown	
18	BoCA13	Bogura	Whitish, regular margin	Blackish white	Black	
19	GaCA1	Gazipur	Umbronate, cottony, Greenish white, regular margin	Green	Dark black	
20	GaCA5	Gazipur	Cottony, White, regular margin	Olive green	Black	
21	MaCA1	Magura	Ash, regular margin	Greenish white	Dark black	
22	FaCA4	Faridpur	Rugose, velveti, Greenish white, irregular margin	Dark green	Black	
23	LaCA2	Lalmonirhat	Umbronate, velveti, Blackish white, regular margin	Dark black	Black	
Radial mycelial growth of different isolates of Alternaria spp. on culture medium collected from different locations of Bangladesh.

Isolate code	Radial mycelial growth (mm) at different days after inoculation (DAI)							
	4	5	6	7	8	9	10	11
BoCA1	19.33 hi	22.12 i	25.33 e-i	29.25 d-h	30.58 i-f	32.67 hi	34.83 e-h	37.17 d-i
BoCA4	20.92 a-e	24.25 ab	25.45 d-h	28.56 i-f	29.80 i	31.42 jk	35.92 bcd	37.83 b-f
BoCA5	20.80 b-e	22.50 e-h	25.67-g	29.42 d-g	31.67 de	34.08 c-f	35.77 b-e	37.08 d-i
BoCA8	19.47 ghi	22.67 d-g	25.25 e-i	29.50 c-f	31.58 def	32.75 hi	34.67 f-i	36.42 h-j
BoCA11	20.60 f-c	23.25 b-e	27.05 b	30.79 ab	32.92 abc	34.17 c-f	35.56 c-f	38.80 abc
BoCA12	21.60 ab	23.72 bcd	25.21 e-j	29.25 d-h	32.44 bcd	34.87 bc	36.63 b	37.63 b-g
MaCA2	21.42 abc	23.25 b-e	26.06 b-f	29.50 b-e	32.33 bcd	33.75 efg	35.42 d-f	38.07 c-e
MaCA3	20.27 d-h	23.42 b-e	26.58 bc	29.55 c-f	33.17 ab	36.00 a	37.76 a	39.03 a
MaCA4	20.75 b-f	23.42 b-e	26.33 bcd	30.08 bcd	32.08 cde	33.50 fgh	35.50 c-f	36.92 e-j
FaCA3	20.62 f-c	22.83 d-g	26.13 b-f	29.00 L	28.23 j	29.20 L	30.83 k	33.02 k
LaCA1	21.33 abc	23.50 b-e	26.63 bc	30.47 bc	32.13 b-e	34.67 b-e	36.33 bc	37.50 d-h
LaCA3	21.83a	23.39 b-e	25.17 f-j	28.47 g-j	30.49 ghi	33.90 def	36.03 bcd	38.07 a-e
BoCA6	21.17 a-d	25.00 a	28.17 a	31.67 e	33.88 a	35.60 ab	37.67 a	39.25 a
BoCA3	20.42 c-g	21.97 ghi	24.46 ijk	29.02 e-i	33.00 bc	34.17 c-f	35.93 bcd	37.25 d-i
BoCA2	19.50 ghi	21.45 hi	23.88 k	27.13 kl	31.25 efg	32.92 ghi	35.83 bcd	38.92 abj
BoCA9	20.84 a-e	23.25 b-e	26.08 b-f	29.67 cde	31.17 e-h	33.88 a	35.60 ab	37.67 a
BoCA10	20.08 e-h	21.92 ghi	24.67 h-k	28.05 ijk	30.52 ghi	32.58 hi	35.67 b-e	38.17 d-f
BoCA13	20.42 g-c	23.08 f-e	25.08 g-j	29.08 d-h	31.83 de	34.08 c-f	35.01 d-h	37.57 d-h
GaCA1	20.85 a-e	24.08 abc	26.92 b	30.48 bc	33.67 a	34.77 bcd	36.13 bc	36.92 e-j
GaCA5	19.92 e-h	22.83 d-g	25.17 f-j	27.48 jkl	29.72 i	30.57 k	33.06 o	35.87 j
MaCA4	19.75 f-c	22.58 efg	25.00 e-j	28.33 h	30.52 ghi	32.17 i	34.33 h	36.08 i
FaCA4	18.83 i	21.17 l	24.25 jk	27.50 jkl	30.18 h	33.35 fgh	35.02 d-h	36.58 g-j
LaCA2	20.25 d-h	23.39 b-e	26.12 b-e	28.53 f-i	31.10 e-h	32.77 hi	34.51 ghi	36.83 f-i
LS:	**	**	**	**	**	**	**	**
CV (%)	3.05	2.79	2.30	2.13	2.02	1.74	1.67	1.94

**1% level of probability; Means followed by the same letter in a column did not differ significantly.

the BoCA11, MaCA2 and LaCA3 at eleven DAI and the minimum (33.02 mm) was observed in the FaCA3. In addition to these, color, size and shape of the conidia with their spore production capacity were found varied significantly among the stains (Table 12). When cumin plants were inoculated with the spore suspensions of the Alternaria isolates, infection started as minute necrotic lesions on the advanced lines of cumin plants were inoculated with the spore suspensions of the Alternaria blight. Gemawat and Prasad (1971) has reported that high humidity (90% and above) for about 3 days, temperature between 23 and 28 °C, rainfall, hours of sunlight and wind speed played important roles in the development of the cumin blight caused by A. burnsii. Sharma and Pandey (2013) has also noted that the maximum temperature between 29 and 35.5 °C and the minimum temperature between 9.6 and 19.7 °C, average relative humidity of more than 60% in the morning and 28% in the afternoon, wind speed of 2.1–4.8 km/hour and bright hours of sunshine were favorable for the development of the Alternaria blight of cumin. Singh and Shukla (1986) observed that the infection by A. alternata is favored by the temperature of 28.7 °C to 32.2 °C and the relative humidity of 74%. Higher incidences and severity of the Alternaria blight were reported from the higher elevations also (Lenne, 1991).

As Bangladesh has the climatic factors favorable for the development of Alternaria blight, the findings of this experiment outlined the importance of identifying the causal organism, use of the selective cultivars, careful selection of the location and timeliness of undertaking control measures for the safe cultivation of cumin to avoid the disease. In this experiment, four advanced lines of cumin were tested in five different locations to observe their germination capacity, yield performance and their propensity of being infected by Alternaria blight. In all locations, the line CN026 showed the highest germination capacity and yield with the lowest incidence and severity of the Alternaria blight that proved its better adaptability in the climatic conditions of Bangladesh. The primary means for identification of Alternaria species are morphological traits that include the appearance, texture, margin, color of the upsides & reverse sides of colonies, properties of coni-
dia and pattern of sporulation (Simmons, 2007). However, molecular methods have been suggested by researchers to complement the morphology based approaches (Kang et al., 2001). On the basis of the band size of the PCR products, DNA sequence analysis and phylogenetic study, four species of Alternaria were identified in the present work. In the order of prevalence, these were A. alternata, A. tenuissima, A. burnsii and A. gaisen. Sharma et al., (2013) found that the band size of PCR products of Alternaria spp of cauliflower and mustard was 550 to 600 bp in India. Zheng et al. (2015) also identified the Alternaria spp. of potato in China following the similar molecular methods. The analysis of the observed morphological traits and the molecular characters indicated the diversity of Alternaria isolates of cumin in Bangladesh. Uppal et al. (1938) and Shakir el al. (1995) identified A. burnsii as the pathogen for causing Alternaria blight of cumin in India and Pakistan, respectively. On the other hand, A. alternata was found to be associated with Alternaria blight of cumin in Turkey (Özer and Bayraktar, 2016). However, this is the first report of A. alternata causing Alternaria blight of cumin in Bangladesh. In this experiment, a considerable amount of morphological, cultural and pathogenic variability were recorded among the different isolates of A. alternata, A. burnsii, A. gaisen and A. tenuissima. All Alternaria strains obtained from five locations of Bangladesh were found to have separated in different phylogenetic groups. Likewise, pathogenic variability among the isolates was also observed. There are 30 AEZ in Bangladesh based on physiographic, soil, hydrological and agro-climatic characteristics (Bangladesh Agricultural Research Council, 2005). The locations from where samples were collected are situated in different AEZ. Navas et al. (2001) reported that ecological factors or the size of the area of origin of the populations might also be involved in the production of such variation. In this experiment, A. alternata was found as the most virulent species. In an experiment, Zheng et al. (2015) had also observed that among the three species of Alternaria, A. alternata was more virulent than A. tenuissima and A. solani to cause foliar diseases of potato in China.

To the best of our knowledge, this is the first extensive study regarding the prevalence of the Alternaria blight of cumin in Bangladesh. In this work, a promising line of cumin (CN026) was selected as having the better resilience against the incidence and severity of the Alternaria blight with higher germination and yield potential. The causal organisms of the Alternaria blight were also identified using molecular and morphological tools. All of these findings have formed the foundation of further research that might

Isolate code	Characteristics of conidia	Mean length of conidia (μm)	Mean breadth of conidia (μm)	Mean beak length of conidia (μm)	Number of vertical septa	Number of horizontal septa	Number of spores/ml (x10^6)	
BoCA1	Clavate to obclavate	Brown	52.93 ab	20.37 efg	7.75 hijk	0.94 e-i	1.68 j	2.38 e
BoCA4	Obclavate	Light brown	46.64 ef	22.80 a-d	8.24 ghij	0.77 hi	2.36 d	3.62 a
BoCA5	Obclavate to ovoid	Brown	46.18 ef	20.34 efg	6.98 k	0.78 hi	2.44c-g	2.26 ef
BoCA8	Clavate	Dark brown	56.09 ab	24.19 a	8.39 fgh	1.18c-h	2.95 ab	1.51 g
BoCA11	Obclavate	Light brown	44.90 fg	17.13 ij	9.86 bcd	0.60 ij	2.40c-h	2.83 d
BoCA12	Obclavate	Brown	42.10 ghi	19.45 fgh	8.32 fghi	0.88f-i	2.48b-g	1.39 gh
MaCA2	Obclavate	Light brown	50.87 bc	23.32 ab	9.85 bcd	1.20c-h	2.30f-i	3.36 ab
MaCA3	Obclavate to clavate	Dark brown	38.90 jk	19.97 efg	10.12 abc	1.03 d-i	1.83 ij	1.58 g
MaCA4	Obclavate	Dark brown	44.51 fgh	21.50 cde	7.04 jk	1.50 abc	2.33 e-h	0.953 ij
FaCA3	Obclavate	Dark brown	47.46 def	19.32 fgh	10.59 ab	1.30c-f	2.80 a-e	1.33 gh
LaCA1	Obclavate	Dark brown	41.10 hj	21.04 def	9.61 cde	1.93 a	2.70 a-f	2.46 e
LaCA3	Obclavate to obclavate	Dark brown	44.11 fgh	19.86 e-h	9.24 cdef	1.60 abc	3.10 a	2.31 ef
BoCA6	Obclavate to obclavate	Light brown	48.45 cde	16.66 ij	10.19 abc	0.67 i	2.88 abc	2.04f
BoCA3	Ovoid	Light brown	37.67 jk	20.38 efg	7.41 ikj	0.59 ij	1.79 j	2.24 ef
BoCA2	Obclavate	Light brown	37.20 k	21.51 cde	8.66 e-h	0.82 ghij	1.93 hjij	0.86 j
BoCA9	Obclavate to ovoid	Light brown	50.42 bcd	22.40 a-d	10.97 a	1.26c-g	2.86 abc	2.89 cd
BoCA10	Obclavate to ovoid	Light brown	54.75 a	23.18 abc	7.99 hij	1.36 cde	3.02 a	2.83 d
BoCA13	Obclavate	Brown	47.48 def	23.57 a	8.70 e-h	1.91 ab	2.74 a-f	3.12 bc
GaCA5	Obclavate	Brown	38.01 jk	18.11 hi	9.25 cdef	0.60 ij	2.13 g-j	1.18 hi
MaCA1	Obclavate	Light brown	48.57 cde	23.16 abc	6.92 k	1.18c-h	2.70 a-f	3.21b
FaCA4	Obclavate	Light brown	42.41 gh	15.86 j	9.02 d-g	0.17 j	2.47c-g	1.38 gh
LaCA2	Oblavate	Dark brown	51.23 bc	19.24 gh	10.11 abc	0.93 e-i	2.83 a-d	2.38 e

L.S.: 4.59 5.29 6.62 25.73 11.58 7.34

CV (%): 4.59 5.29 6.62 25.73 11.58 7.34

1% level of probability; Means followed by the same letter in a column did not differ significantly.
help in designing successful management options against the Alternaria blight of cumin leading to its increased cultivation and production in Bangladesh.

Declaration of Competing Interest

The author declare that there is no conflict of interest.

Acknowledgements

This work was a part of PhD research of the first author financially supported by the World Bank funded National Agricultural Technology Program, Phase – II (NATP - 2) Project in Bangladesh.

Funding

This study was funded by World Bank sponsored National Agricultural Technology Program, Phase – II (NATP - 2) Project in Bangladesh.

References

Ansari, N.A., Khan, M.W., Muheet, A., 1989. Effect of some factors on growth and sporulation of Alternaria brassicae causing Alternaria blight of rapeseed and mustard. Acta Botanica Indica 17, 49–53.

Anej, K.R., 2004. Experiment in microbiology, plant pathology and biotechnology. New International (P) Limited Publisher, India, pp. 121–128.

Azeem, S. V.A., Champakam, B., Zachariah, T.J., 2008. Cumin. In: Parthasarathy eds.: Chemistry of Spices. CAB International, Wallingford, UK. This review article deals with botany, distribution and medicinal properties of cumin, and with the chemistry of cumin oil. Bangladesh Agricultural Research Council. 2005. Dhaka.

Benali, S., Mohamed, B., Eddine, H.J., Neema, C., 2011. Advances of molecular markers application in plant pathology research. Eur. J. Sci. Res. 50, 110–123.

Chester, K.S., 1959. How sick the plant? In: Plant Pathology an advanced treatise (Eds. J.G. Horshfall and A.E. Diamond). Academic Press, New York. 1, 199-242.

Dhingra, O.B., Sinclair, J.B., 1995. Basic Plant Pathology Methods. 2nd Edition, CRC Press, Boca Raton Florida, USA.

Doyle, J.J., Doyle, J.L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15.

Felsenstein, J., 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 39,783-791.

Gemawat, P.D., Prasad, N., 1971. Epidemiological studies on Alternaria blight of Cuminum cyminum. Indian. J. Mycol. Pl. Pathol. 2, 65–75.

Gemawat, P.D., Prasad, N., 1972. Epidemiological studies on Alternaria blight of cumin. Indian. J. Mycol. Pl. Path. 2 (1), 65–75.

ISTA., International Seed Testing Association. 1976.

Jat, V.D., 2015. Effect of Culture Dilute of Blight Pathogen [Alternaria alternata (Fr.) Keissler] on Coriander and its Management. M. Sc. thesis, Sri Karan Narendra Agriculture University, Jodhpur, India.

Kang, J.C., Crous, P.W., Schoch, C.L., 2001. Species concepts in the Cylindrocladium floridanum and Cy. spathiphylli complexes (Hypocreaceae) based on multi-allelic sequence data, sexual compatibility and morphology. Systematic and Applied Microbiology. 24, 307–14.

Kaur, S., G., Singh , Banga ,S.S., 2007. Documenting variation in Alternaria brassicae within local population of Coriander and its Management. M. Sc. thesis, Sri Karan Narendra Agriculture University, Jodhpur, India.

Kumar S., Stecher, G., Tamura, K., 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets.Molecular Biology and Evolution. 33.

Lennie, J.M., 1991. Diseases and pests of sweetpotatoes: South East Asia, the pacific and East Africa. Nature Research Institute Bulletin, No, p. 46.

Nabhan, G.P., 2014. My library My History Books on Google Play Cumin, Camels, and Caravans: A Spice Odyssey. Univ of California Press. ISBN 978-0-520-26720-6. p. 234.

Nasreen, N.E., Meah, M.B., Tumpa, F.H., Hossain, M.A., 2017. Effect of Media Composition on Vegetative and Reproductive Growth of Alternaria brassicola and Bipolaris sorokiniana. Curr. Agri. Res. 5(3), 266–278.

Navas, A., Castagno-Sereno, P., Blazquez, J., 2001. Genetic structure and diversity within local population of Meloidogyne (Nematoda: Meloidogynidae). Nematology. 3, 243–253.

Ozer, G., Bayraktar, H., 2015. Determination of fungal pathogens associated with Cuminum cyminum in Turkey. Plant Protect. Sci. 51, 74–79.

Patel, P.N., Prasad, N., Mathur, R.L., Mathur, B.L., 1957. Fusarium wilt of cumin. Curr. Sci. 26, 181–182.

Patni, C.S., Kolte, S.J., Awashti, R.P., 2005. Cultural variability of Alternaria brassicae. causing Alternaria blight of mustard. Ann. Plant Physiol. 19, 231–242.

R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.r-project.org/index.html.

Rilfa, A., 1969. A revision of the genus Trichoderma. Mycological Papers. 116, 1–56.

Saitou, N., Nei, M., 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.
Shakir, A.S., Mirza, J.H., Sahi, S.T., Ansar, M., 1995. First report of *Alternaria burnsii*, the causal organism of cumin blight in Pakistan. Pakistan J. Phytopathol. 7 (2), 219.

Sharma, S., 2010. Studies on cumin blight incited by *Alternaria burnsii* (Uppal Patel and Kamat) and its management. M. Sc. thesis, Anand Agricultural University, Anand, India.

Sharma, S., Pandey, R.N., 2013. Survival, epiderminology and management of *Alternaria* blight of cumin in Gujarat. Bioinfolet. 10 (2B), 639–642.

Shekhawat, N., Trivedi, A., Sharma, S.K., Kumar, A., 2013. Cultural, morphological and pathogenic variability in *Alternaria burnsii* causing blight of cumin. J. Mycol. Pl. Path. 43 (1), 80–83.

Simmons, E.G., 2007. *Alternaria*. An Identification Manual. CBS Biodiversity Series No. 6. CBS Fungal Biodiversity Centre, Utrecht, the Netherlands. pp. 775.

Singh, M., Shukla, T.N., 1986. Epidemiology of *Alternaria* leaf spot and fruit rot of brinjal. Indian Phytopathol. 39, 119–120.

Singh, S., Trivedi, A., Mathur, K., Padamini, R., 2015. Assessment of yield loss of cumin (Cuminum cyminum) caused by *Alternaria* leaf blight and pathogen recovery from infected seeds. Indian Phytopathol. 68 (3), 350–352.

Tamura, K., Nei, M., Kumar, S., 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. (USA), 101, 11030–11035.

Verma, A.K., Singh, R., Choudhary, S., Lal, C., 2018. Cultivation of dollar earning cumin crop for higher income. Acta Scientifc Agriculture. 2 (3), 46–48.

White, T.J., Bruns, T., Lee, S., Taylor, J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego. pp. 315–322.