저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

- 귀하는 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건을 명확하게 나타내야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer
Profiling cancer-associated genetic alterations and molecular classification of cancer in Korean gastric cancer patients

Yoonjung Kim
Department of Medicine
The Graduate School, Yonsei University
Profiling cancer-associated genetic alterations and molecular classification of cancer in Korean gastric cancer patients

Directed by Professor Kyung-A Lee

The Doctoral Dissertation submitted to the Department of Medicine, the Graduate School of Yonsei University in partial fulfillment of the requirements for the degree of Doctor of Philosophy

Yoonjung Kim

December 2016
This certifies that the Doctoral Dissertation of Yoonjung Kim is approved.

Thesis Supervisor: Kyung-A Lee

Thesis Committee Member#1: Jae Yong Cho

Thesis Committee Member#2: Woochang Lee

Thesis Committee Member#3: Jie-Hyun Kim

Thesis Committee Member#4: Jong Rak Choi

The Graduate School
Yonsei University
ACKNOWLEDGEMENTS

I would first like to express my very profound gratitude to my thesis advisor Prof. Kyung-A Lee for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. I would also like to acknowledge my colleagues from Department of Laboratory Medicine, Yonsei University College of Medicine who provided insight and expertise that greatly assisted the research. I am gratefully indebted to Prof. Jae Yong Cho, Woochang Lee, Jie-Hyun Kim and Jong Rak Choi for their valuable comments that greatly improved this thesis. I am also immensely grateful to Saeam Shin and Aerin Kwon for their inspiration and encouragement. I would also like to thank Prof. Mee-Yon Cho and Sung Nam Kim for providing materials for this study. Finally, I would like to thank all of my family for their unconditional love and support. This accomplishment would not have been possible without them.

Thank you.
<TABLE OF CONTENTS>

ABSTRACT ... 1

I. INTRODUCTION ... 4

II. MATERIALS AND METHODS .. 5
 1. Subject selection .. 5
 2. DNA preparation ... 6
 3. Detection of EBV and *H. pylori* infection 7
 4. Configuration of a gastric cancer-related target gene panel for
 Korean gastric cancer patients 7
 5. Targeted sequencing and data analysis 7
 6. Microsatellite Instability (MSI) Assay 9
 7. Statistical Analysis ... 10

III. RESULTS ... 10
 1. Clinical and pathological findings of 107 Korean GC patients ··· 10
 2. Germline variation analysis of hereditary cancer-predisposing
 Syndrome ... 13
 3. Somatic mutation analysis of gastric cancer with a 43 gene cancer
 panel ... 17
 4. Copy number analysis in 107 gastric cancer tissues and
 identification of clinical relevant CNVs 30
 5. Molecular subtype classification and clinical phenotype 33
 6. Prognosis analysis in 107 gastric cancer patients 40

IV. DISCUSSION ... 42

V. CONCLUSION ... 47

REFERENCES .. 49

APPENDICES ... 56
 1. List of 43 gastric cancer related target gene panel 56
2. Overview of all somatic SNVs and indels identified through NGS in GC ... 57

3. Somatic variants of the 43 cancer panel genes in 107 Korean gastric cancers and TCGA data 78

4. Performance of 43 gene pannel through NGS in GC 80

5. Coverage of 43 gene panel through NGS in GC 81

ABSTRACT (IN KOREAN) .. 84

PUBLICATION LIST .. 86
LIST OF FIGURES

Figure 1. Lollipop bar graph representing distribution of mutations across the 39 genes .. 18
Figure 2. Summary of all significant CNAs across 107 gastric tumors ... 31
Figure 3. Summary of somatic mutations in 107 gastric cancer samples according to molecular subtype 39
Figure 4. Kaplan-Meier (a) relapse-free survival (RFS) and (b) gastric cancer-specific survival (GCSS) curves were stratified by molecular subtype of gastric cancer (EBV, MSI, CIN, and GS). Kaplan-Meier (c) RFS and (d) GCSS curves were analyzed by AJCC stage ... 41
Figure 5. Therapeutic implications of somatic genomic alterations in 107 clinical gastric cancer cases 46

LIST OF TABLES

Table 1. Clinicopathological characteristics of patients with gastric cancer ... 11
Table 2. Germline SNPs in TP53, STK11, ALK, APC, MSH2, MLH1, and CDH1 genes of 107 Korean gastric cancer patients .. 14
Table 3. The location-specific recurrence of somatic variants in
the 43 cancer panel genes .. 25
Table 4. Copy number analysis in 107 gastric cancer tissues ···· 30
Table 5. Somatic mutations in each subtype ······················ 34
Table 6. Patient characteristics according to molecular subtype
.. 36
ABSTRACT

Profiling cancer-associated genetic alterations and molecular classification of cancer in Korean gastric cancer patients

Yoonjung Kim

Department of Medicine
The Graduate School, Yonsei University

(Directed by Professor Kyung-A Lee)

Recently, the Cancer Genome Atlas (TCGA) Research Network and Asian Cancer Research Group (ACRG) provided a new classification of gastric cancer to aid the development of biomarkers for targeted therapy and predict prognosis. We studied associations between genetically aberrant profiles of cancer-related genes, environmental circumstances, and histopathological features in 107 paired tumor-normal tissue gastric cancer (GC) samples. We simplified the molecular subtypes of gastric cancer according to the TCGA system. We classified 6.5% of our GC cases as the EBV subtype, 17.7% as the MSI subtype, 13.1% as the CIN subtype, and 62.6% as the GS subtype. The characteristics of each group were comparable with those of TCGA molecular subtypes. The MSI subtype showed a hyper-mutated status and the best prognosis, which was an identical finding with both the TCGA and ACRG classifications. The P619fs*43 in ZBTB20 (P619fs*43, n=5) was detected approximately 20% of MSI group and was limited to the MSI group. However,
the global molecular portrait of several genetic alterations on PIK3CA, JAK2, CD274, and PDCD1LG2 in EBV-infected GC were not consistent with EBV-infected GC from our study. And the proportion of the GS subtype (62.6%) was relatively larger than that in the TCGA cohort (20%). Some of these differences may be related to the ethnic origins of the patients. Especially, targeted sequencing is not sufficient to detect clusters of CNVs on the whole-exome scale and we focused on CNVs correspond possible homozygous deletion or high-level gain.

We did not observe a substantial difference in overall survival ($p = 0.2828$) or relapse-free survival (RFS, $p=0.3329$) among the four GC subtypes, in contrast to the groups classified according to AJCC stage (RFS, $p=0.004$; GCSS, $p=0.009$). \textit{H. pylori} infection (HR: 0.3, $p = 0.0322$) was associated with a favorable factor in Korean patients with gastric cancer. MSI subtype showed the most favorable prognosis in ACRG, TCGA in our data. Therefore, we thought that the predicting prognosis in GC patients might be performed more simply and effectively using both the MSI subtype and AJCC stage.

Genetic alterations of the RTK/RAS/MAPK and PI3K/PTEN/AKT pathways as well as the \textit{MET} gene were detected in 35.5% of GC cases ($n=38/107$). These mutations may facilitate enrollment of GC patients into clinical trials evaluating targeted therapies and provide the basis for developing solid therapeutic approaches in Korean GC patients.

We analyzed the germline genetic alterations to identify the inherited component of GC in the Korean population and found two pathogenic variants (NM_004360.4: c. 2494 G>A, \textit{p.V832M}) in the \textit{CDH1} gene. Our two cases (1.9%) with V832M were 66-year-old and 75-year-old patients

Here, we classified molecular subtypes using a modality with simplified steps and provide a critical starting point for the design of more appropriate clinical
trials based on a comprehensive analysis of genetic alterations in Korean GC patients.

Key words: Gastric cancer, molecular subtyping, germline mutation, somatic mutation
Profiling cancer-associated genetic alterations and molecular classification of cancer in Korean gastric cancer patients

Yoonjung Kim

Department of Medicine
The Graduate School, Yonsei University

(Directed by Professor Kyung-A Lee)

I. INTRODUCTION

Gastric cancer is ranked fifth for cancer incidence and second for cancer deaths, and one in 36 men and 1 in 84 women develop stomach cancer before age 79 \(^1\). The histologic classification of gastric carcinoma has been based on the Lauren \(^2\) and 2010 WHO classification systems, which recognize four histological subtypes \(^3\). Neither the Lauren nor the WHO system is particularly clinically useful, as their prognostic and predictive capabilities cannot adequately guide patient management. New classifications are needed for gastric cancer to provide insights into pathogenesis and the identification of new biomarkers and novel treatment targets \(^4\). Recently, advances in technology and high-throughput analysis have improved our understanding of the genetic basis of gastric cancer. To provide a roadmap for patient stratification and trials of targeted therapies, the Cancer Genome Atlas (TCGA) Research Network has characterized 295 primary gastric adenocarcinomas and proposed the new classification of four different tumor subtypes of Epstein-Barr virus (EBV)-positive, microsatellite instability (MSI), genomically stable (GS), and chromosomal instability (CIN) subtypes. \(^5\). The Asian Cancer Research Group
(ACRG) also provided a new classification for gastric cancer, identifying four subtypes: MSI, MSS/EMT, MSS/TP53 (+), and MSS/TP53 (–). One of the most important aspects of the ACRG classification is that it correlates the molecular subtypes with clinical prognosis.

EBV is a human oncogenic gamma-herpes virus that is ubiquitously distributed; more than 90% of the world population is infected with EBV. EBV is now regarded as a GC-causing infectious agent. The vast majority of gastric cancers arise sporadically, and an inherited component contributes to <3% of gastric cancers. We investigated germline mutations in CDH1, MSH2, MLH1, TP53, APC, and STK11, which are associated with hereditary diffuse gastric cancer, hereditary nonpolyposis colon cancer, Li–Fraumeni syndrome, familial adenomatous polyposis, and Peutz–Jeghers syndrome, respectively. Gastric cancer is a heterogeneous disease characterized by epidemiologic and histopathological differences across countries. Here, we studied associations between the genetic aberrant profiles of cancer-related genes, environmental circumstances (EBV and H. pylori), and histopathological features in Korean gastric cancer patients. We also simplified the molecular subtypes of gastric cancer to help identify novel therapeutic strategies for patients with gastric cancer.

II. MATERIALS AND METHODS

1. Subject selection

We obtained a total of 107 gastric tumor and matched normal tissue samples from Yonsei University Wonju Medical Center Biobank (n=138, 69 paired samples) and Samkwang Medical Laboratory Biobank (n= 76, 38 paired samples). Tumor samples were obtained from patients who had not received
prior chemotherapy or radiotherapy. The gastric cancer tissues consisted of 69 fresh-frozen (FF) paired tumor and non-tumor tissue samples and 38 formalin-fixed paraffin-embedded (FFPE) paired tumor and non-tumor tissue samples. Clinical data, including age, sex, clinical follow-up data, and pathologic reports, were provided from the tissue source institutions. The histologic classification of gastric carcinoma has previously been based on Lauren’s criteria \(^2\) and the 2010 WHO classification system \(^3\). Tumor TNM stage assignment was evaluated for consistency with the 7th Edition of the TNM classification by the American Joint Committee on Cancer (AJCC) \(^21\). Pathologic findings were reviewed by experienced gastrointestinal pathologists (S.K. and M.J.). The study was approved by the Institutional Review Boards of Samkwang Medical Laboratories and Yonsei University Wonju College of Medicine.

2. DNA preparation

DNA was extracted from FFPE tumor and adjacent non-tumor gastric tissues using a QIAamp DNA extraction kit (Qiagen, Hilden, Germany) according to the manufacturer’s protocol. H&E-stained sections from FFPE blocks were reviewed by a board-certified pathologist, and representative sections with tumor content or benign tissue were identified. A G-DEX genomic DNA extraction kit (Intron Biotechnology, Korea) was used for FF tumor and matched normal FF tissues according to the manufacturer’s protocol. The quality and concentration of genomic DNA (gDNA) was evaluated by Nanodrop (ND-1000; Thermo Scientific, DE, USA) and the Agilent 2200 Tape Station system (Agilent Technologies, CA, USA) with Genomic DNA Screen Tape according to the manufacturer’s instructions. The DNA Integrity Number (DIN) for determining the integrity of gDNA was calculated from the electrophoretic trace on the 2200 Tape Station system according to the manufacturer’s instructions. The average value (range) of total DNA concentration in FFPE tissue and FF tissue was 322.7 (12.6 ~ 322.9) ng/μL and
952.8 (76.0 ~ 3756.0) ng/uL, respectively. The average value (range) of DIN in FFPE tissue and FF tissue was 2.9 (1.5 ~ 6.4) and 5.6 (1.4 ~ 8.4), respectively.

3. Detection of EBV and H. pylori infection

EBV infection was detected using the Real-Q EBV quantification kit (Biosewoom, Seoul, Korea) and CFX96 real-time PCR system (Bio-Rad, USA) following the manufacturer’s recommendations.

H. pylori infection was detected using Giemsa stain or PCR amplification and sequencing. Primers for PCR and sequencing were derived from a known sequence of the 23S rRNA gene (GenBank Accession No. U27270), as previously described (sense, 5'-CGT AAC TAT AACGGT CCT AAG-3', positions 2365 to 2385; antisense, 5'-TTA GCT AAC AGA AAC ATC AAG-3', positions 2635 to 2653) 22.

4. Configuration of a gastric cancer-related target gene panel for Korean gastric cancer patients

The cancer panel consisted of genes based on the Mutation Analysis (MutSig 2CV v3.1) results of the Cancer Genome Atlas (TCGA) project (http://gdac.broadinstitute.org/runs/analyses_latest/reports/cancer/STAD-TP/index.html, accessed at 2015.03.30) 5,23 and significantly mutated genes in the Asian Cancer Research Group (ACRG) cohort and SMC-2 cohort in primary gastric cancer tissues 6. Genes associated with new targeted therapy of GC (EGFR, ERBB2, FGFR2, and VEGFR2 (KDR)) and hereditary cancer syndromes (CDH1, MSH2, MLH1, STK11, and TP53) were also included in the cancer panel 13.

5. Targeted sequencing and data analysis
DNA fragments of matched tumor and non-tumor tissues were enriched by solution-based hybridization capture, followed by sequencing with the Illumina HiSeq2500 platform (Illumina, San Diego, CA, USA) with the 2 × 125 bp paired-end read module. gDNA was sheared using an Adaptive Focused Acoustics (AFA)™ with the Covaris Focused-ultrasonicator (Covaris, Inc., Woburn, MA, USA). The quality and quantity of sheared DNA were assessed using the Agilent 2200 Tape Station system with Agilent D1000 ScreenTape (Agilent Technologies, USA) according to the manufacturer’s instructions. Capture probes for the coding exons of 43 genes (Supplementary 1) were generated by Celemics (Seoul, Korea). Purification and clean-up of samples were performed using a DynaMag™-50 Magnet (Thermo Fisher Scientific Inc., Waltham, MA, USA) with Agencourt® AMPure® XP Kit (Beckman Coulter, Brea, CA, USA). NGS library amplification was performed using a KAPA Library Amplification Kit (Kapa Biosystems, Inc., Wilmington, MA, USA) according to the manufacturer’s instructions. Library preparation, hybridization, capture procedure, and sequencing on the Illumina HiSeq2500 genome analyzer were performed by Celemics according to the protocols recommended by the Celemics User Manual Ver 2.1 (http://www.celemics.com/home/).

The generated reads were trimmed and filtered by Trimmomatic 24 and then mapped against the UCSC hg19 Genome Reference Consortium Human Reference 37 (GRCh37) (http://genome.ucsc.edu/) using the Burrows-Wheeler Aligner (BWA) 25. Picard (http://broadinstitute.github.io/picard/), SAMTools 26, and Genome Analysis Toolkit (GATK,https://www.broadinstitute.org/gatk/) 27 were used for post-processing alignments, base quality score recalibration, and short insertion/deletion (indel) realignment. After variant calling, variants were added to the annotation using ANNOVAR (http://www.openbioinformatics.org/annovar/) 28 and Variant Effect Predictor.
We used VarScan 2 (http://varscan.sourceforge.net) for the detection of somatic single-nucleotide variants (SNVs) and indels. We modified the algorithms for assessing copy number aberrations (CNAs), which were developed for NGS protocols based on hybridization-capture methods in the setting of whole-exome sequencing. We replaced the average coverage of exon pull-down regions with average read counts of regions of interest (ROIs). The ratios of the coding exon segment mean depths from tumor samples and matched non-tumor samples were normalized via log₂-transformation. Performance was measured for CNAs (6–7 copies) and at lower sample purities (20%–30%), with an overall sensitivity >80%. We focused primarily on high amplifications and losses in this study (log₂ copy number ratio: >1.5 or <-1.5).

All acquired candidate variations went through post filters recommended by the authors of these tools. Germline variations were extracted with downstream analysis based on the variant allele frequency of <0.001 in the 1000 Genome Project (http://www.1000genomes.org), ESP6500 (http://evs.gs.washington.edu/EVS/), and Exome Aggregation Consortium (ExAC, http://exac.broadinstitute.org/). We extracted somatic mutations with VarScan2 and post-filtered with downstream analysis for altered allele frequency in tumors > 5%, > 50 x coverage, exonic variants, and population frequency 0.005 less than in the 1000 Genome Project, ESP6500, and ExAC databases. We excluded somatic variants detected >2 times in non-tumor tissue. Visual inspection of filtered calls was performed using Integrated Genomics Viewer 2.3 software (IGV; Broad Institute, Cambridge, MA, USA).

6. Microsatellite Instability (MSI) Assay

Microsatellite status was assessed by the mononucleotid repeat markers BAT-25, BAT-26, NR-21, NR-24, and NR-27 in tumor and
corresponding normal tissues. The five markers were co-amplified in multiplex PCRs performed with Solg2X multiplex PCR Smart mix following the manufacturer’s recommendations. The amplified PCR products were analyzed using the ABI 3500Dx system (Applied Biosystems, Foster City, CA, USA) and GeneMarker software (SoftGenetics, PA, USA). Tumors with two or more of the five markers showing instability were judged as high-frequency MSI (MSI-H), and tumors showing instability in only one locus were classified as low-frequency MSI (MSI-L).

7. Statistical Analysis

Fisher’s exact and Chi-squared tests were performed to evaluate differences in the respective proportion of several factors between subgroups. Patient follow-up periods were calculated as time between date of surgery and date of last follow-up (months). Relapse-free survival (RFS) was assessed based on the absence of loco-regional recurrence, distant metastasis, and death from any cause. GC-specific survival (GCSS) was calculated only for patients who died from any GC-related cause. Kaplan-Meier survival curves with log-rank tests were performed to compare RFS and GCSS according to AJCC stage and molecular subtype. Cox proportional hazard models were performed to assess the influence of prognostic factors on RFS. Univariate analyses for age at surgery, AJCC stage, histologic type, lymphatic invasion, venous invasion, perineural invasion, H. pylori infection, and genomic profile were performed. Any factors from the univariate analysis with a p value less than 0.10 were included in the multivariate analysis. All statistical analyses were performed using SPSS 20.0 (SPSS, Chicago, IL, USA) and MedCalc Software (https://www.medcalc.org/). Except for the univariate analysis, a p value less than 0.05 was regarded as significant.
III. RESULTS

Clinical and pathological findings of 107 Korean GC patients

The male to female ratio of gastric cancer patients was 6:3, and the median patient age was 70 years (range, 32-90). Lauren intestinal type, diffuse type, and mixed type accounted for 53.3%, 26.2%, and 19.6% of cases, respectively. In addition, for gastric cancer classified according to the 2010 WHO classification, the tubular type (64.5%) was observed with the highest frequency, while the poorly cohesive type and mixed type accounted for 13.1% and 15.0% of cases, respectively. More than half of the tumors were located in the antrum or antrum body, and about 7.5% were located in the cardia and gastroesophageal junction. Fifty-two cases (48.6%) were Stages III-IV, and 66 (61.7%) were *H. pylori*-positive. The clinicopathological findings of the 107 gastric cancer patients are summarized in Table 1.

Table 1. Clinicopathological characteristics of patients with gastric cancer (n=107)

Characteristics	Number
Age (year)	
Median (range)	70 (32 ~ 90)
Sex	
Female	36 (33.6%)
Male	71 (66.4%)
Lauren class	
Diffuse	28 (26.2%)
Intestinal	57 (53.3%)
Mixed	21 (19.6%)
WHO class	
Mucinous	3 (2.8%)
Tubular 69 (64.5%)
Poorly cohesive 14 (13.1%)
Mixed (Tubular_Poorly cohesive) 16 (15.0%)
Uncommon histologic variants 5 (4.7%)

pT stage

pT Stage	Count
T1a/T1b	9 (8.4%)/15 (14.0%)
T2	11 (10.3%)
T3	38 (35.5%)
T4a/T4b	33 (30.8%)/1 (0.9%)

pN stage

pN Stage	Count
N0/N1/N2/N3	40 (37.4%)/16 (15.0%)/20 (18.7%)/31 (29.0%)

M stage

M Stage	Count
M0/M1	102 (95.3%)/5 (4.7%)

AJCC stage

AJCC Stage	Count
Stages IA/IB	18 (16.8%)/11 (10.3%)
Stages IIA/IIB	13 (12.1%)/13 (12.1%)
Stages IIIA/IIIB/IIIC	17 (15.9%)/11 (10.3%)/19 (17.8%)
Stage IV	5 (4.7%)

Anatomical regions

Anatomical Region	Count
GEJ_Cardia	8 (7.5%)
Fundus_Body	36 (34.3%)
Antrum	54 (50.5%)
Antrum_Body	5 (4.7%)
Pylorus	3 (2.8%)
Diffuse	1 (0.9%)

Epstein-Barr virus infection

Epstein-Barr Virus Infection	Count
Negative	100 (93.5%)
Positive	7 (6.5%)

Microsatellite instability (MSI)

Microsatellite Instability	Count
MSS	88 (82.2%)
MSI-I	4 (3.7%)
MSI-H	15 (14.0%)
H. pylori infection

Negative	41 (38.3%)
Positive	66 (61.7%)

Abbreviations: GEJ, gastroesophageal junction; pT stage, pathological assessment of the primary tumor (pT); pN stage, pathological assessment of the regional lymph nodes (pN)

Germline variation analysis of hereditary cancer-predisposing syndrome

To identify germline mutations, variants were extracted from targeted sequencing using a 43 gene cancer panel on 107 GC tissues. Calls that met all the standards noted herein were retained for downstream analysis, including altered allele frequency > 30%, > 50x coverage, and population frequency less than 0.001 in the 1000 Genome Project, ESP6500, and ExAC databases. These variants were present in both gastric cancer and matched normal tissue. A total of 31 germline variants were observed in **TP53, STK11, ALK, APC, MSH2, MLH1, and CDH1** (Table 2.). Among these, 17 variants, 12 variants, and 2 variants were classified as 'Benign or Likely Benign,' 'VUS,' and 'Likely pathogenic,' respectively. Two likely pathogenic variants (p.V832M) were detected on the **CDH1** gene.
Table 2. Germline SNPs in *TP53*, *STK11*, *ALK*, *APC*, *MSH2*, *MLH1*, and *CDH1* genes of 107 Korean gastric cancer patients

Sample	Chr	START	END	Ref	Alt	Gene	Transcript ID	Amino acid change	Total depth	VAF(%) (1)	VAF(%) (2)	Clinical significance
YMC 53	3	37053562	37053562	C	T	MLH1	NM_000249.3	p.R217C	1397	46.96%	50.40%	VUS
YMC 54	2	29449820	29449820	G	A	ALK	NM_004304.4	p.T1012M	637	48.51%	60.36%	Benign
YMC 55	3	37042521	37042521	T	G	MLH1	NM_000249.3	p.S95A	233	39.06%	30.52%	VUS
YMC 6	3	37067240	37067240	T	A	MLH1	NM_000249.3	p.V384D	578	48.79%	44.85%	Benign
YMC 7	2	29449820	29449820	G	A	ALK	NM_004304.4	p.T1012M	208	55.77%	43.83%	Benign
YMC 66	2	47656972	47656972	C	T	MSH2	NM_000251.2	p.L390F	197	56.85%	52.78%	Benign
YMC 70	2	29449820	29449820	G	A	ALK	NM_004304.4	p.T1012M	755	52.58%	57.85%	Benign
YMC 70	3	37067240	37067240	T	A	MLH1	NM_000249.3	p.V384D	547	51.55%	47.99%	Benign
YMC 13	5	11217777	11217777	A	C	APC	NM_001127511.2	p.K2145Q	151	52.32%	33.74%	Benign
YMC 14	3	37053562	37053562	C	T	MLH1	NM_000249.3	p.R217C	1409	45.71%	51.65%	VUS
Sample	ID	Chromosome	Allele	Gene	Transcript	Mutation	Reference Allele	p.Amino Acid Change	Probability	Interpretation \		
--------	-----	------------	--------	--------	------------	----------	------------------	---------------------	-------------	---------------- \		
YMC 15	2	47656972	C	MSH2	NM_000251.2	p.L390F	1281	46.68%	79.62%	Benign \		
YMC 22	3	37067240	T	MLH1	NM_000249.3	p.V384D	862	99.54%	100%	Benign \		
YMC 22	3	37067240	T	MLH1	NM_000249.3	p.V384D	862	99.54%	100%	Benign \		
YMC 24	5	11217886	G	APC	NM_001127511.2	p.R2507H	1142	47.90%	49.52%	VUS \		
YMC 3	3	37090506	C	MLH1	NM_000249.3	p.Q701K	369	51.49%	41.29%	Benign \		
YMC 28	2	47630344	C	MSH2	NM_000251.2	p.P5Q	231	53.25%	86.79%	VUS \		
YMC 29	16	68867247	G	CDH1	NM_004360.4	p.V832M	1337	52.21%	49.75%	Likely pathogenic \		
YMC 4	3	37089022	C	MLH1	NM_000249.3	p.L582V	364	48.63%	57.47%	VUS \		
YMC 37	3	37053562	C	MLH1	NM_000249	p.R217C	1315	49.20%	49.76%	VUS \		
YMC 37	16	68867247	G	CDH1	NM_004360.4	p.V832M	1498	50.73%	46.41%	Likely pathogenic \		
YMC 5	2	47637371	A	MSH2	NM_000251.2	p.I169V	711	51.34%	45.12%	Likely benign \		
YMC 48	2	47656972	C	MSH2	NM_000251.2	p.L390F	692	51.30%	53.31%	Benign \		
YMC 48	3	37067240	T	MLH1	NM_000249.3	p.V384D	899	43.38%	44.61%	Benign \		
SKW 40	17	7578209	G	TP53	NM_000546.5	p.H214Y	168	39.29%	59.58%	VUS \		
SKW 31	3	37053562	C	MLH1	NM_000249.3	p.R217C	294	55.78%	39.71%	VUS \		

15
Sample	Chromosome	Start	End	Gene	Reference	Mutation	Codon	Precision	Sensitivity	Risk	Conclusion
SKW 41	2	47703564	47703564	G A	MSH2	NM_000251.2	p.M688I	993	52.57%	50.83%	VUS
SKW 38	5	11217654	11217654	G C	APC	NM_001127511.2	p.A1735P	628	45.86%	47.30%	VUS
SKW 21	5	11217389	11217389	A C	APC	NM_001127511.2	p.E850D	147	55.78%	50.93%	Benign
SKW 18	2	29519923	29519923	G A	ALK	NM_004304.4	p.L550F	155	38.06%	55.39%	VUS
SKW 16	16	68856080	68856080	C G	CDH1	NM_004360.4	p.L630V	928	43.74%	40.61%	Benign
SKW 15	16	68856080	68856080	C G	CDH1	NM_004360.4	p.L630V	827	49.33%	71.46%	Benign

Abbreviation: VUS, a variant of unknown significance
Somatic mutation analysis of gastric cancer with a 43 gene cancer panel

To identify driver genes causally linked to tumorigenesis in Korea GCs, variants were extracted from targeted sequencing with a 43 gene cancer panel applied to 107 tumor and matched non-tumor tissues. After mutation calling and stringent filtrations, we identified 317 SNVs on coding sequences that included missense variations (n=164, 54.5%), trunc (nonsense and frameshift) variations (n= 110, 36.5%), in-frame variations (n= 42, 14.0%), and splicing site variations (n=1, 0.3%) (Supplemental Table 2). Somatic variants detected on each gene in each sample were summarized in supplemental table 3. Among the 43 genes, we discovered 39 genes that were mutated in one or more individual samples. Among the 107 samples, TP53 (38.3%), ARID1A (36.4%), CRI (14.0%), APC (11.2%), BCOR (11.2%), CDH1 (10.3%), CIC (9.3%), PIK3CA (9.3%), RHOA (8.4%), ERBB3 (8.4%), ERBB2 (7.5%), CCND1 (6.5%), FBXW7 (6.5%), ALK (5.6%), KRAS (5.6%), and MTOR (5.6%) were identified (Supplemental Table 3). Somatic variants were detected in relatively low frequencies (less than 5%) on the CTNNB1, EGFR, HLA-B, MSH2, PGM5, ZBTB20, IRF2, KDR, LARP4B, MVK, BRAF, PTEN, ACVR1B, CBWD1, FGFR2, JAK2, MEDAG, MLH1, SMAD4, STK11, CD274, MDM2, and MYC genes in this study. We did not detect any somatic variants on the C16orf74, CCNE1, PDCD1LG2, or MET genes (Supplemental Table 3).

The location specific incidences of somatic variants are depicted in Figure. According to the results of lollipop bar chart analysis, p.Gln1334del (n=23/52) in ARID1A, p.Gln1174ThrfsTer8 (n=3/12) in BCOR, p.Glu280del (n=7/7) in CCND1, p.Leu15del (n=5/12) in CDH1, p.Arg2194Ter (n=10/16) in CRI, p.Arg678Gln (n=4/10) in ERBB2, p.Arg385His (n=3/9) in FBXW7, p.Gly13Asp (n=5/6) in KRAS, p.Ile98Val (n=3/6) in PGM5, p.His1047Arg/Tyr (n=5/14) in PIK3CA, p. Arg5Gln/Trp (n=3/9) in RHOA, and p.Pro619LeufsTer43 (n=5/5) in ZBTB20 were recurrently detected in more
than three individual cases. Among 317 somatic variants, 106 (33.4%) were recurrently detected in this study (Table 3 & Figure 1).
Figure 1. Lollipop bar graph representing distribution of mutations across the 39 genes ACVR1B, ALK, APC, ARID1A, BCOR, BRAF, CBWD1, CCND1, CD274, CDH1, CIC, CR1, CTNNB1, EGFR, ERBB2, ERBB3, FBXW7, FGFR2, HLA-B, IRF2, JAK2, KDR, KRAS, LARP4B, MDM2, MEDAG, MLH1, MSH2, MTOR, MVK, MYC, PGM5, PIK3CA, PTEN, RHOA, SMAD4, STK11, TP53, and ZBTB20.
Table 3. The location-specific recurrence of somatic variants in the 43 cancer panel genes

Gene	Variants^a	Mutated samples	% of mutated samples	COMIC counts	COMIC ID
APC	*p.Glu1464ValfsTer8*	5	4.70%	45	COSM1432412; COSM19694; COSM41622; COSM41622; COSM41622; COSM5030795
ARID1A	*p.Asp1850ThrfsTer33*	2	1.90%	27	COSM1341426; COSM133001; COSM1666860; COSM1341408; COSM298325; COSM1578346; COSM133030; COSM51218; COSM1238047
ARID1A	*p.Gln1334del/dup*	23	21.50%	23	-
ARID1A	*p.Gly87del*	2	1.90%	-	(-)
BCOR	*p.Gln1174ThrfsTer8*	3	2.80%	5	COSM1683572; COSM3732385
Gene	Variant	Count	Frequency	ID(s)	
--------	------------------	-------	-----------	-----------------------	
BRAF	p.Pro403LeufsTer8	2	1.90%	COSM1448632; COSM5347158; COSM5347157	
CCND1	p.Glu280del	7	6.50%	COSM931394	
CDH1	p.Leu15del	5	4.70%	(-)	
CR1	p.Arg2194Ter	10	9.30%	COSM301989	
ERBB2	p.Arg678Gln	4	3.70%	COSM978678; COSM436498	
ERBB2	p.Ser310Phe	2	1.90%	COSM48358; COSM1666868	
ERBB2	p.Val842Ile	2	1.90%	COSM14065; COSM1666633	
ERBB3	p.Val104Met	2	1.90%	COSM20710	
FBXW7	p.Arg385His	3	2.80%	COSM117308	
Gene	Mutation	Count	Frequency	ID(s)	
--------	-------------------------------	-------	-----------	----------------	
HLA-B	p.Glu69Val	2	1.90%	COSM4598273	
KRAS	p.Gly13Asp	5	4.70%	COSM532	
LARP4B	p.Thr163HisfsTer47	2	1.90%	COSM1638669; COSM4968611	
MVK	p.Ala141ArgfsTer18	2	1.90%	COSM1241457	
PIK3CA	p.His1047Arg	4	3.70%	COSM775	
PGM5	p.Ile98Val	3	2.80%	COSM1109610	
RHOA	p.Arg5Gln/Trp	3	2.80%	COSM190569; COSM446704; COSM4770224; COSM4770223	
RHOA	p.Thr37Ala/Ile	2	1.90%	COSM5064959; COSM1223700	
RHOA	p.Tyr42Cys	2	1.90%	COSM2849892; COSM4770225	
Gene	Mutation	Count	Frequency	Sample Size	
--------	--------------	-------	-----------	-------------	
TP53	p.Arg248Trp	2	1.90%	56	
TP53	p.Arg342Ter	2	1.90%	151	
TP53	p.Cys275Tyr	2	1.90%	62	
TP53	p.Val173Leu	2	1.90%	65	
ZBTB20	p.Pro619LeufsTer43	5	4.70%	26	

Recurrent mutations observed in at least two samples.
Copy number analysis in 107 gastric cancer tissues and identification of clinical relevant CNVs

Twenty-nine CNVs were identified in the genes *BRAF, C16orf74, CCND1, CIC, ERBB2, FBXW7, FGFR2, HLA-B, KRAS, MET, MYC, PDCD1LG2, PTEN, and TP53* (Table 3 & Figure 2). CNVs in the RTK/RAS/MAPK/ERK signaling pathway were harbored in 10 cases (9.4%). Five samples (4.7%) contained an *ERBB2* amplification, and one sample (0.93%) had an *FGFR2* amplification. CNVs in *KRAS, MET,* and *BRAF* were detected in 2 cases (1.9%), 1 case (0.93%), and 1 case (0.93%), respectively. CNVs in *EGFR* and *VEGFR2* were not detected. CNVs in the cell cycle-related genes *CCND1* and *CCNE1* were detected in 5 cases (4.7%). CNVs in *C16orf74* (4.8%) were the most frequent detected in this study. Only one CNV was detected in each of *PDCD1LG2, HLA-B, CIC, FBXW7, PTEN,* and *TP53,* and two samples harbored *MYC* amplifications (Table 4).
Table 4. Copy number analysis in 107 gastric cancer tissues

Gene	AMP (Log$_2$ CN ratio)	DEL (Log$_2$ CN ratio)	No of CNVs	Case (%)
C16orf74	3 (1.6 ~2.9)	2 (-1.8 ~ -2.0)	5	4.7
CCND1	3 (1.5 ~2.1)		3	2.8
CCNE1	2 (1.9 ~2.0)		2	1.9
CIC	2 (1.8 ~2.2)		2	1.9
ERBB2	5 (1.9~4.3)		5	4.7
FBXW7		1 (-2.0)	1	0.9
FGFR2	1 (3.3)		1	0.9
HLA-B	1 (1.5)		1	0.9
KRAS	2 (2.2)		2	1.9
MET	1 (2.0)		1	0.9
MYC	2 (2.0 ~2.3)		2	1.9
PDCD1L G2	1 (2.5)		1	0.9
PTEN		1 (-2.0)	1	0.9
TP53		1 (-1.6)	1	0.9
BRAF		1(-1.6)	1	0.9
Total	23	6	29	**27.31%**

Abbreviations: AMP, amplification; DEL, deletion; CNV, copy number variations. A total of 17 cases harbored amplifications/deletion of target genes, including 5 cases with more than 2 CNVs.
Figure 2. Summary of all significant CNAs across 107 gastric tumors.

(a) Gains and losses are indicated by red squares and green squares, respectively, in the heatmap, b) Significant ($p < 0.05$) gains and losses are indicated by yellow squares and blue squares, respectively, whereas gray squares indicate genes without significant gain or loss.
Molecular subtype classification and clinical phenotype

We classified molecular subtypes using genomic data according to subtypes derived by TCGA and correlated clinical covariates of 107 gastric cancer patients with those molecular subtypes (Table 4). The EBV subtype (6.5% of GC) was significantly enriched in EBV burden and characterized as diffuse type and uncommon histologic variants histological subtype (Tables 5 & 6). In the EBV subtype, no samples with a TP53 mutation were detected, but mutations of ARID1A (4 cases, 57.1%), CDH1 (3 cases, 42.9%), and PIK3CA (2 cases, 28.6%) were present with a relatively high frequency. Genetic alterations of the JAK2 and PDL2 genes were not detected in the EBV subgroup. Only one case harbored the mutant CD274 (Figure 3 & Tables 5).

The MSI subtype (17.7% of GC) showed instability in one more locus in the MSI assay. The MSI subtype presented with an elevated mutation rate (6.9 per case) and was characterized by alterations of genes involved in mismatch repair. Mutant MSH2 (n=4/5) and 100% of MLH1 mutations (2 cases) were observed in this subtype. Mutations of BCOR (14.3%) ERBB2 (26.3%), KRAS (26.3%), PIK3CA (36.8%), MTOR (15.8%), ERBB3 (26.3%), EGFR (21.1%), MSH2 (21.1%), MLH1 (10.5%), ZBTB20 (26.3%), LARP4B (15.8%), and MVK (21.1%) were significantly present (Table 5). Interestingly, we observed that mutations of ZBTB20 were limited to the MSI group. Somatic mutations in HLA-B as major histocompatibility complex class I genes were detected in 3 cases (15.8%) of the MSI subtype.

The CIN subtype (13.1% of GC) was characterized by gene amplifications and deletions (13.1% of GC) (Figure 3.) and showed intestinal and tubular histological subtypes (Tables 5&6). The CIN subtype was also characterized by relatively a low-somatic mutation rate (1.9 per case) and a
high frequency of TP53 mutations. In the CIN subtype, we observed amplifications of ERBB2 (35.7%), FGFR2 (7.1%), KRAS (7.1%), and MET (7.1%) and somatic mutation of ERBB3 (7.1%). The genetic alterations of ERBB2, FGFR2, KRAS, MET, and ERBB3 were mutually exclusive to the CIN subtype. Therefore, 50.7% of the CIN subtype harbored amplification of genes belonging to the RTK/RAS/MAPK signaling pathway (Figure 3 & Table 5).

The GS subtype (62.6% of GC) was characterized by a lack of EBV infection, MSI, and somatic CNAs. The GS subtype showed the lowest mutation rate (1.6 per case) and the highest frequency of TP53 mutations (44.8%). In the GS subtype, limited mutations of RHOA (9.0%, 6 cases) were detected in the diffuse or mixed histologic type of Lauren's criteria (Figure 3 & Table 5).
Table 5. Somatic mutations in each subtype

Somatic mutations	EBV (n=7)	MSI (n=19)	CIN (n=14)	GS (n=67)	\(p \) value														
	n (%)	n (%)	n (%)	n (%)															
TP53	0 0.0%	5 26.3%	6 42.9%	30 44.8%	0.690														
ARID1A	4 57.1%	14 73.7%	3 21.4%	18 26.9%	0.001														
CR1	0 0.0%	5 26.3%	2 14.3%	8 11.9%	0.334														
APC	2 28.6%	1 5.3%	3 21.4%	6 9.0%	0.148														
BCOR	1 14.3%	9 47.4%	0 0.0%	2 3.0%	0.000														
CDH1	3 42.9%	1 5.3%	0 0.0%	7 10.4%	0.034														
CIC	0 0.0%	5 26.3%	0 0.0%	5 7.5%	0.061														
PIK3CA	2 28.6%	7 36.8%	1 7.1%	0 0.0%	0.000														
ERBB3	0 0.0%	5 26.3%	1 7.1%	3 4.5%	0.037														
RHOA	2 28.6%	1 5.3%	0 0.0%	6 9.0%	0.191														
ERBB2	0 0.0%	5 26.3%	0 0.0%	3 4.5%	0.022														
CCND1	0 0.0%	3 15.8%	2 14.3%	2 3.0%	0.076														
FBXW7	0 0.0%	3 15.8%	2 14.3%	2 3.0%	0.076														
ALK	0 0.0%	3 15.8%	0 0.0%	3 4.5%	0.216														
KRAS	0 0.0%	5 26.3%	0 0.0%	1 1.5%	0.004														
MTOR	0 0.0%	3 15.8%	2 14.3%	1 1.5%	0.028														
CTNNB1	1 14.3%	2 10.5%	1 7.1%	1 1.5%	0.096														
EGFR	0 0.0%	4 21.1%	0 0.0%	1 1.5%	0.016														
HLA-B	0 0.0%	3 15.8%	0 0.0%	2 3.0%	0.129														
MSH2	0 0.0%	4 21.1%	0 0.0%	1 1.5%	0.016														
PGM5	1 14.3%	4 21.1%	0 0.0%	0 0.0%	0.001														
Gene	Cases	%																	
-----------	-------	---	-------	---	-------	---	-------	---	-------	---	-------	---	-------	---	-------	---	-------	---	
ZBTB20*	0	0.0%	5	26.3%	0	0.0%	0	0.0%	0.000	IRF2	0	0.0%	2	10.5%	0	0.0%	2	3.0%	0.431
KDR	0	0.0%	3	15.8%	0	0.0%	1	1.5%	0.062	LARP4B*	0	0.0%	3	15.8%	1	7.1%	0	0.0%	0.012
MVK*	0	0.0%	4	21.1%	0	0.0%	0	0.0%	0.030	BRAF	0	0.0%	3	15.8%	0	0.0%	0	0.0%	0.140
PTEN	0	0.0%	2	10.5%	0	0.0%	1	1.5%	0.223	ACVR1B	0	0.0%	1	5.3%	1	7.1%	0	0.0%	0.138
CBWD1	0	0.0%	0	0.0%	0	0.0%	2	3.0%	1.000	FGFR2	0	0.0%	2	10.5%	0	0.0%	0	0.0%	0.091
JAK2	0	0.0%	1	5.3%	0	0.0%	1	1.5%	0.610	MEDAG	0	0.0%	2	10.5%	0	0.0%	0	0.0%	0.091
MLH1	0	0.0%	2	10.5%	0	0.0%	0	0.0%	0.091	SMAD4	0	0.0%	1	5.3%	0	0.0%	1	1.5%	0.610
STK11	0	0.0%	1	5.3%	1	7.1%	0	0.0%	0.138	CD274	1	14.3%	0	0.0%	0	0.0%	0	0.0%	0.065
MDM2	0	0.0%	1	5.3%	0	0.0%	0	0.0%	0.374	MYC	1	14.3%	0	0.0%	0	0.0%	0	0.0%	0.065

*\(^a\)p value less than 0.05, n; number of case

Fisher’s exact test was performed to evaluate differences in the respective proportions of somatic mutations between subgroups.
Table 6. Patient characteristics according to molecular subtype

	EBV (n=7)	MSI (n=19)	CIN (n=14)	GS (n=67)	P value				
Age	Cases (%)	Cases (%)	Cases (%)	Cases (%)					
≤50	0 (0.0%)	1 (5.3%)	1 (7.1%)	8 (11.9%)					
51 ~60	2 (28.6%)	1 (5.3%)	2 (14.3%)	13 (19.4%)					
61 ~70	1 (14.3%)	3 (15.8%)	4 (28.6%)	17 (25.4%)	0.189				
71 ~80	3 (42.9%)	12 (63.2%)	3 (21.4%)	26 (38.8%)					
>80	1 (14.3%)	2 (10.5%)	4 (28.6%)	3 (4.5%)					
Sex	Cases (%)	Cases (%)	Cases (%)	Cases (%)					
Female	1 (14.3%)	8 (42.1%)	5 (35.7%)	22 (32.8%)	0.608				
Male	6 (85.7%)	11 (57.9%)	9 (64.3%)	45 (67.2%)					
Lauren Class									
Diffuse	3 (42.9%)	2 (10.5%)	1 (7.1%)	22 (32.8%)					
Intestinal	2 (28.6%)	15 (78.9%)	11 (78.6%)	30 (44.8%)	0.047				
Mixed	2 (28.6%)	2 (10.5%)	2 (14.3%)	15 (22.4%)					
WHO Class									
Tubular	2 (28.6%)	17 (89.5%)	13 (92.9%)	37 (55.2%)					
Mucinous	0 (0.0%)	0 (0.0%)	0 (0.0%)	3 (4.5%)					
Poorly cohesive	0 (0.0%)	0 (0.0%)	1 (7.1%)	13 (19.4%)	0.000				
Mixed	1 (14.3%)	1 (5.3%)	0 (0.0%)	14 (20.9%)					
Uncommon	4 (57.1%)	1 (5.3%)	0 (0.0%)	0 (0.0%)					
pT stages									
T1a/ T1b	2 (28.6%)	2 (10.5%)	2 (14.3%)	18 (26.9%)					
T2	1 (14.3%)	3 (15.8%)	1 (7.1%)	6 (9.0%)	0.765				
	1	2	3	4	5	6			
-------	---	---	---	---	---	---			
T3	14.3	9	47.4	6	42.9	22			
T4a/ T4b	42.9	5	26.3	5	35.7	21			
p N stages									
N0	42.9	10	52.6	3	21.4	24			
N1	14.3	3	15.8	2	14.3	10			
N2	14.3	4	21.1	5	35.7	10			
N3	28.6	2	10.5	4	28.6	23			
M stages									
M0	85.7	19	100.0	13	92.9	64			
M1	14.3	0	0.0%	1	7.1%	3			
AJCC Stages									
Stages IA/IB	42.9	4	21.1	2	14.3	20			
Stages IIA/IIB	14.3	9	47.4	3	21.4	13			
Stages IIIA/IIIB/IIIC	28.6	6	31.6	8	57.1	31			
Stage IV	14.3	0	0.0%	1	7.1%	3			
Anatomical regions									
Antrum	14.3	15	78.9	7	50.0	31			
Antrum_Body	14.3	0	0.0%	1	7.1%	3			
Fundus_Body	57.1	4	21.1	2	14.3	26			
GEJ_Cardia	14.3	0	0.0%	3	21.4	4			
Diffuse	0	0.0%	0	0.0%	0	0.0%			
Pylorus	0	0.0%	0	0.0%	1	7.1%			
Lymphatic invasion									
Positive	57.1	17	89.5	11	78.6	44			
Negative	42.9	2	10.5	3	21.4	22			
	Missing	0.0%	0.0%	0.0%	0.0%	1.0%	1.5%		
----------------	---------	------	------	------	------	------	------		
Venous invasion									
Positive	2	28.6%	1	5.3%	2	14.3%	1	14.9%	
Negative	5	71.4%	18	94.7%	12	85.7%	56	83.6%	0.477
Missing	0	0.0%	0	0.0%	0	0.0%	1	1.5%	
Perineural invasion									
Positive	4	57.1%	6	31.6%	6	42.9%	36	53.7%	
Negative	3	42.9%	13	68.4%	8	57.1%	30	44.8%	0.319
Missing	0	0.0%	0	0.0%	0	0.0%	1	1.5%	
H. pylori infection									
Negative	3	42.9%	8	42.1%	5	35.7%	25	37.3%	0.970
Positive	4	57.1%	11	57.9%	9	64.3%	42	62.7%	

Abbreviations: EBV, Epstein-Barr virus; GEJ, gastroesophageal junction; pT stage, pathological assessment of the primary tumor (pT); pN stage, pathological assessment of the regional lymph nodes (pN); MSI, microsatellite instability; Mixed, mixed type with tubular and poorly cohesive; Uncommon, uncommon histologic variants.
Figure 3. Summary of somatic mutations in 107 gastric cancer samples according to molecular subtype.
Prognosis analysis in 107 gastric cancer patients

Among the 107 gastric cancer patients, the date of last follow-up (months), loco-regional recurrence, distant metastasis, and cause of death were obtained from 72 patients. The median follow-up period was 459.5 days, and there were 19 (26.4%) and 12 (16.7%) cases of gastric cancer relapse and gastric cancer-related death, respectively. We conducted a survival analysis but did not observe a substantial difference in overall survival ($p=0.2828$) or relapse-free survival (RFS, $p=0.3329$) among the four GC subtypes (EBV (n=4), MSI (n=7), CIN (n=10), and GS (n=51) (Figures 5(a) & (b)). However, higher AJCC stage was associated with worse prognosis (RFS, $p=0.004$; GCSS, $p=0.009$) than lower AJCC stages I&II (Figures 4 (c) & (d)). In the multivariate analysis, mutant $MTOR$ gene (hazard ratio (HR): 9.9, $p=0.0017$), AJCC stages III&IV (HR: 9.3, $p=0.0395$), mutant $CCND1$ gene (HR: 14.3, $p=0.0265$), and M1 stage (HR: 7.15, $p=0.0306$) were associated with an unfavorable prognosis. $H. pylori$ infection (HR: 0.3, $p=0.0322$) was predicted to be favorable in Korean patients with gastric cancer. Indeed, among 19 cases with gastric cancer relapse or gastric cancer-related death, 11 cases were negative and 8 cases were positive for $H. pylori$ infection. M stage (HR: 5.2, $p=0.0431$) was an independent prognostic indicator of gastric cancer-specific survival in this study.
Figure 4. Kaplan-Meier (a) relapse-free survival (RFS) and (b) gastric cancer-specific survival (GCSS) curves were stratified by molecular subtype of gastric cancer (EBV, MSI, CIN, and GS). Kaplan-Meier (c) RFS and (d) GCSS curves were analyzed by AJCC stage.
IV. DISCUSSION

We analyzed germline mutations with paired normal and tumor GC samples in 107 Korean patients. Two likely pathogenic variants (NM_004360.4: c. 2494 G>A, p.V832M) in the CDH1 gene and 29 non-pathogenic variants in TP53, STK11, ALK, APC, MSH2, and MLH1 were detected. A V832M mutation has been identified in a hereditary diffuse gastric cancer (HDGC) Japanese family and functionally characterized as a pathogenic mutation. It has also been detected in familial lobular breast cancer patients with the wild type BRCA1/2 gene. Recently, a disease-causing mutation of CDH1 was detected in a 44-year-old Korean patient without evidence of GC via genetic screening owing to his family history of GC. The average age of GC patients at diagnosis was 69 years in this study, and our two cases (1.9%) with V832M were diagnosed at age 66 and 75, respectively. Accordingly, genetic screening for germline mutations of CDH1 with a family history of GC could be considered to identify presymptomatic cancer patients for risk-reduction management in high-risk geographical areas.

The location-specific incidence of somatic variants is depicted in Figure 2. According to the results of the lollipop bar chart analysis, the Q1334del/dup (n=23/52) in ARID1A and L15del (n=6/13) in CDH1 were detected at a frequency of 5 ~ 33% of altered alleles in tumor tissue (Table 2 & Supplementary 2). The in-frame indel (Q1334del/dup), which increases the amount of the ARID1A protein in the nucleus and restores its tumor suppressor functions, has also been reported in gastric cancer samples. This SNP were also occasionally reported in COSMIC database (COSMIC v78) and pancreatic cancers. A three-nucleotide deletion c.44_46del TGC (L15del) in exon 1 of CDH1, which is in the signal peptide region of the E-cadherin protein, was identified in Chinese GC patients and not detected in 240 controls and it was also identified endometrial carcinomas. RHOA
belongs to the Rho family, which functions in the regulation of the actin cytoskeleton, and functional evidence indicates that mutant RHOA works in a gain-of-function manner in this gene. An RHOA mutation was observed in 8.4% of GC cases (n=9/107), with mutations in the Arg5, Gly17, Thr37, Tyr42 and Glu64 residues (Table 2 & Supplementary 2). Among these mutations, the Arg5, Gly17, and Tyr42 residues are recurrently detected in GC.

EBV-infected GC comprised 5-10% of all GC cases and the Cancer Genome Atlas project demonstrated that EBV-infected GC is one of four molecular subtypes, and we found that EBV-infected GC grouped as a molecular subtype. As in the EBV-subtype, ARID1A mutations (4 cases, 57.1%) were prevalent, and none of samples with a TP53 were detected. These findings were comparable with TCGA data. Inhibitors of PIK3/Akt/mTOR pathway, JAK2 pathway and PD-1/PD-L1, PD-L2 pathway are considered as potentially applicable targeted therapies in EBV-infected GC. Notably, 80% of EBV-infected GC harbored PIK3CA mutations and amplifications of JAK2, CD274, and PDCD1LG2. However, only 28.6% of EBV-infected GC harbored PIK3CA mutations (n=2/7), and amplifications of JAK2, CD274, and PDCD1LG2 were not detected in this study. In addition, given that genetic alterations of ERBB2 were not detected in the EBV subtype, anti-ERBB2 (HER2) therapy may not be effective for EBV-infected GC. The global molecular portrait of several genetic abnormalities in EBV-infected GC were not consistent with EBV-infected GC our study. Immunomodulatory agents such as lenalidomide, thalidomide, and pomalidomide (LTP) or combination therapies of LTP with alkylating agents and anti-viral agents such as ganciclovir could be worth reviewing for alternative targeted therapy in EBV-infected GC in Korea. Therefore, these genetic abnormalities should be further validated with large scale EBV-infected GC to provide applicable therapeutic options and the basis for clinical trials.
We observed that the MSI subtype was associated with hyper-mutations in genes and was characterized by a more favorable prognosis than the other molecular subtypes. Both TCGA and ACRG classifications also characterized the MSI subtype by the high mutation frequency and best prognosis \(^5,6\). In intestinal-type GC patients, patients with a good prognosis were characterized by a high mutation rate and microsatellite instability. Further, mutations of \(PIK3CA\) (29.4%) and \(KRAS\) (26.5%) were represented in good prognosis subgroup \(^5,6\). In our study, mutations of \(KRAS\) (26.3%) and \(PIK3CA\) (36.8%) were significantly present in the MSI subtype, and we recurrently observed \(KRAS\) G13D (4 cases) and \(PIK3CA\) H1047R mutations (3 cases) (Table 2). \(PIK3CA\) H1047R mutations were also frequently detected in the MSI subtype in a previous study \(^6\). The genetic alteration of \(ZBTB20\) (P619fs*43, n=5) was limited to the MSI group. This SNP (P619fs*43; rs758277701; COSM267785) was also limited to the MSI group in TCGA cohort, and approximately 20% of MSI group harbored P619fs*43 \(^5\). The clinical significance of this variation should be evaluated through further studies.

The proportion of cases in each molecular group of the TCGA cohort and our groups were different, especially in the CIN (13.1% versus 50%) and GS (62.6% versus 20%) molecular subtypes \(^5\). The vast majority of these differences may be related to the ethnic origin of the patients in each cohort, the limitation of technological platforms, and the strategy of classification into each group. Especially, targeted sequencing is not sufficient to detect clusters of CNVs on the whole-exome scale. Therefore, we focused on CNVs corresponding to possible homozygous deletion or high-level gain rather than low confidence events (shallow loss and a low-level gain) which could often be an artifact.

Genetic alterations of the RTK/RAS/MAPK pathway and
PI3K/PTEN/AKT pathway were detected in 35.5% of GC cases (n=38/107) (Figure 5). Receptor tyrosine kinase (RTK) genomic alterations including *ERBB2, EGFR, FGFR, KDR* and *MET* were detected in 21.5% of GC (23 cases). Thirteen samples (12.2% of GC) harbored ERBB2 alterations, 8 contained somatic base substitutions and 5 harbored amplifications, with these events being mutually exclusive. S310F (two cases) and V842I substitutions (two cases) in *ERBB2* were recurrently detected in this study and have been functionally characterized as activating and sensitive to lapatinib in *ERBB2*-negative breast cancers, while the functions of R678Q which was also recurrently detected in this study, related to anti-ERBB2 (HER2)-targeted therapy have not been tested. Four *KDR* substitutions and 5 *EGFR* substitutions were detected, but amplification of *KDR* and *EGFR* were not detected (Figure 5).

Genetic alterations of *PTEN, PIK3CA, KRAS* and *BRAF* were detected in 18.7% of GC cases (n=20/107) (Figure 5). Agents targeting PI3K/AKT pathway are currently in either preclinical or clinical stages. NVP-BKM120 (pan-class I PI3K inhibitor) has showed the increased sensitivity in tumors harboring PIK3CA mutations and the phase I dose-escalation/expansion studies have been performed with solid tumors. Ten cases (9.4%) harbored mutated *PIK3CA*, and *KRAS* G13D co-existed in 4 cases (Figure 5). Effects of co-existence of genetic alterations of *PIK3CA* and *KRAS* on response to therapy are yet to be evaluated. The dual PI3K and STAT3 blockade using NVP-BKM120 and AG490 (STAT3 inhibitor) showed a synergy effect in GC cells harboring mutated *KRAS* by inducing apoptosis.

These biomarkers may facilitate enrollment of GC patients into clinical trials evaluating targeted therapies and provide the basis for developing solid therapeutic approaches in Korean GC patients.
Figure 5. Therapeutic implications of somatic genomic alterations in 107 clinical gastric cancer cases
We did not observe a substantial difference in overall survival ($p=0.2828$) or relapse-free survival (RFS, $p=0.3329$) among our four GC subtypes, which differed from the groups classified according to AJCC stage (RFS, $p=0.004$; GCSS, $p=0.009$). *H. pylori* infection (HR: 0.3, $p=0.0322$) was a favorable factor in Korean patients with gastric cancer. According to a Chinese prospective cohort with 261 gastric cancer patients, *H. pylori* was an independent prognostic factor of cancer-specific survival (HR: 0.485; 95%, confidence interval (CI): 0.265 to 0.889; $p=0.019$) \(^{59}\). The Asian Cancer Research Group (ACRG) subtypes of MSI, MSS/EMT, MSS/TP53 (+), and MSS/TP53 (−) and these molecular subtypes are correlated with clinical prognosis \(^6\). MSI subtype showed the best favorable prognosis in ACRG, TCGA and our data \(^5,6\). However, there was no significant difference between the TP53 (-) group and TP53 (+) group in our study, which were excluded the MSI subtype (data not shown). Therefore, we thought that the predicting prognosis in GC patients might be performed more simply and effectively using both the MSI subtype and AJCC stage \(^{21}\).

V. CONCLUSION

We classified molecular subtypes of gastric cancer according to the TCGA system using a modality with simpler steps than previous studies, and studied associations between the genetic aberrant profiles of cancer-related genes, environmental circumstances (*EBV* and *H. pylori*), and histopathological features in Korean gastric cancer patients. The 43 gene cancer panel consisted of significantly mutated genes from the TCGA and ACRG cohort \(^{5,6,23}\), genes associated with new targeted therapy of GC (*EGFR*, *ERBB2*, *FGFR2*, and *VEGFR2 (KDR)*) and hereditary cancer syndromes (*CDH1*, *MSH2*, *MLH1*, *STK11*, and *TP53*) \(^{13}\). We observed recurrent mutations that could potentially act as driver mutations, and clinically relevant genomic alterations could be used in routine clinical practice to select
therapies and predict prognosis in Korean GCs.

In survival analysis, MSI subtype showed the most favorable prognosis in ACRG, TCGA and our data, however, we did not observe a substantial difference in overall survival \((p=0.2828) \) or relapse-free survival (RFS, \(p=0.3329 \)) among the four GC subtypes. Therefore, we thought that the predicting prognosis in GC patients might be performed more simply and effectively using both the MSI subtype and AJCC stage. And, \(H.\ pylori \) infection (HR: 0.3, \(p=0.0322 \)) was associated with a favorable factor in Korean patients with gastric cancer.

We classified four molecular subtypes using a modality with simplified steps and provide a critical starting point for the design of more appropriate clinical trials based on a comprehensive analysis of genetic alterations in Korean GC patients.
REFERENCES

1. Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, MacIntyre MF, et al. The Global Burden of Cancer 2013. JAMA Oncol 2015;1:505-27.

2. Lauren P. THE TWO HISTOLOGICAL MAIN TYPES OF GASTRIC CARCINOMA: DIFFUSE AND SO-CALLED INTESTINAL-TYPE CARCINOMA. AN ATTEMPT AT A HISTOCLINICAL CLASSIFICATION. Acta Pathol Microbiol Scand 1965;64:31-49.

3. Lauwers GY CF, Graham DY. Gastric carcinoma. In: Bowman FT, Carneiro F, Hruban RH, eds. Classification of Tumours of the Digestive System. Lyon:IARC;2010. In press.

4. Corso S, Giordano S. How Can Gastric Cancer Molecular Profiling Guide Future Therapies? Trends Mol Med 2016;22:534-44.

5. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014;513:202-9.

6. Wang J, Yu K, Ye XS, Do IG, Liu S, Gong L, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med; doi:10.1038/nm.3850.

7. Fukayama M, Ushiku T. Epstein-Barr virus-associated gastric carcinoma. Pathol Res Pract 2011;207:529-37.

8. Parsonnet J, Friedman GD, Vandersteen DP, Chang Y, Vogelman JH, Orentreich N, et al. Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med 1991;325:1127-31.

9. Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M, et al. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med 2001;345:784-9.

10. Fukayama M, Hino R, Uozaki H. Epstein-Barr virus and gastric
carcinoma: virus-host interactions leading to carcinoma. Cancer Sci 2008;99:1726-33.

11. Matsunou H, Konishi F, Hori H, Ikeda T, Sasaki K, Hirose Y, et al. Characteristics of Epstein-Barr virus-associated gastric carcinoma with lymphoid stroma in Japan. Cancer 1996;77:1998-2004.

12. Fitzgerald RC, Hardwick R, Huntsman D, Carneiro F, Guilford P, Blair V, et al. Hereditary diffuse gastric cancer: updated consensus guidelines for clinical management and directions for future research. J Med Genet 2010;47:436-44.

13. McLean MH, El-Omar EM. Genetics of gastric cancer. Nat Rev Gastroenterol Hepatol 2014;11:664-74.

14. Masciari S, Dewanwala A, Stoffel EM, Lauwers GY, Zheng H, Achatz MI, et al. Gastric cancer in individuals with Li-Fraumeni syndrome. Genet Med 2011;13:651-7.

15. van Lier MG, Wagner A, Mathus-Vliegen EM, Kuipers EJ, Steyerberg EW, van Leerdam ME. High cancer risk in Peutz-Jeghers syndrome: a systematic review and surveillance recommendations. Am J Gastroenterol 2010;105:1258-64; author reply 65.

16. Hearle N, Schumacher V, Menko FH, Olschwang S, Boardman LA, Gille JJ, et al. Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clin Cancer Res 2006;12:3209-15.

17. Watson P, Vasen HF, Mecklin JP, Bernstein I, Aarnio M, Jarvinen HJ, et al. The risk of extra-colonic, extra-endometrial cancer in the Lynch syndrome. Int J Cancer 2008;123:444-9.

18. Hirota WK, Zuckerman MJ, Adler DG, Davila RE, Egan J, Leighton JA, et al. ASGE guideline: the role of endoscopy in the surveillance of premalignant conditions of the upper GI tract. Gastrointest Endosc 2006;63:570-80.

19. Bray F, Ferlay J, Laversanne M, Brewster DH, Gombe Mbalawa C,
Kohler B, et al. Cancer Incidence in Five Continents: Inclusion criteria, highlights from Volume X and the global status of cancer registration. Int J Cancer 2015;137:2060-71.

20. Davis PA, Sano T. The difference in gastric cancer between Japan, USA and Europe: what are the facts? what are the suggestions? Crit Rev Oncol Hematol 2001;40:77-94.

21. Washington K. 7th edition of the AJCC cancer staging manual: stomach. Ann Surg Oncol 2010;17:3077-9.

22. Kim JM, Kim JS, Kim N, Kim YJ, Kim IY, Chee YJ, et al. Gene mutations of 23S rRNA associated with clarithromycin resistance in Helicobacter pylori strains isolated from Korean patients. J Microbiol Biotechnol 2008;18:1584-9.

23. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013;499:214-8.

24. Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, Stitt M, et al. RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res 2012;40:W622-7.

25. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754-60.

26. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009;25:2078-9.

27. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010;20:1297-303.

28. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids
29. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 2012;22:568-76.

30. Lonigro RJ, Grasso CS, Robinson DR, Jing X, Wu YM, Cao X, et al. Detection of somatic copy number alterations in cancer using targeted exome capture sequencing. Neoplasia 2011;13:1019-25.

31. Ali SM, Sanford EM, Klempner SJ, Rubinson DA, Wang K, Palma NA, et al. Prospective comprehensive genomic profiling of advanced gastric carcinoma cases reveals frequent clinically relevant genomic alterations and new routes for targeted therapies. Oncologist 2015;20:499-507.

32. Buhard O, Cattaneo F, Wong YF, Yim SF, Friedman E, Flejou JF, et al. Multipopulation analysis of polymorphisms in five mononucleotide repeats used to determine the microsatellite instability status of human tumors. J Clin Oncol 2006;24:241-51.

33. Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 1998;58:5248-57.

34. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Jr., Kinzler KW. Cancer genome landscapes. Science 2013;339:1546-58.

35. Yabuta T, Shinmura K, Tani M, Yamaguchi S, Yoshimura K, Katai H, et al. E-cadherin gene variants in gastric cancer families whose probands are diagnosed with diffuse gastric cancer. Int J Cancer 2002;101:434-41.

36. Suriano G, Mulholland D, de Wever O, Ferreira P, Mateus AR,
Bruyneel E, et al. The intracellular E-cadherin germline mutation V832 M lacks the ability to mediate cell-cell adhesion and to suppress invasion. Oncogene 2003;22:5716-9.

37. Schrader KA, Masciari S, Boyd N, Salamanca C, Senz J, Saunders DN, et al. Germline mutations in CDH1 are infrequent in women with early-onset or familial lobular breast cancers. J Med Genet 2011;48:64-8.

38. Choi HJ, Ki CS, Suh SP, Kim JW. Presymptomatic identification of CDH1 germline mutation in a healthy korean individual with family history of gastric cancer. Ann Lab Med 2014;34:386-9.

39. Guan B, Gao M, Wu CH, Wang TL, Shih Ie M. Functional analysis of in-frame indel ARID1A mutations reveals new regulatory mechanisms of its tumor suppressor functions. Neoplasia 2012;14:986-93.

40. Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 2016;531:47-52.

41. Chen QH, Deng W, Li XW, Liu XF, Wang JM, Wang LF, et al. Novel CDH1 germline mutations identified in Chinese gastric cancer patients. World J Gastroenterol 2013;19:909-16.

42. Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013;497:67-73.

43. Kakiuchi M, Nishizawa T, Ueda H, Gotoh K, Tanaka A, Hayashi A, et al. Recurrent gain-of-function mutations of RHOC in diffuse-type gastric carcinoma. Nat Genet 2014;46:583-7.

44. Wang K, Yuen ST, Xu J, Lee SP, Yan HH, Shi ST, et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. 2014;46:573-82.
45. Jacome AA, Lima EM, Kazzi AI, Chaves GF, Mendonca DC, Maciel MM, et al. Epstein-Barr virus-positive gastric cancer: a distinct molecular subtype of the disease? Rev Soc Bras Med Trop 2016;49:150-7.

46. Jagannath S. Introduction: addressing challenges in multiple myeloma management in an era of new therapeutics. J Natl Compr Canc Netw 2010;8 Suppl 1:S1-3.

47. Jones RJ, Iempridee T, Wang X, Lee HC, Mertz JE, Kenney SC, et al. Lenalidomide, Thalidomide, and Pomalidomide Reactivate the Epstein-Barr Virus Lytic Cycle through Phosphoinositide 3-Kinase Signaling and Ikaros Expression. Clin Cancer Res 2016; doi:10.1158/1078-0432.ccr-15-2242.

48. Ji Jung E, Mie Lee Y, Lan Lee B, Soo Chang M, Ho Kim W. Ganciclovir augments the lytic induction and apoptosis induced by chemotherapeutic agents in an Epstein-Barr virus-infected gastric carcinoma cell line. Anticancer Drugs 2007;18:79-85.

49. Jung EJ, Lee YM, Lee BL, Chang MS, Kim WH. Lytic induction and apoptosis of Epstein-Barr virus-associated gastric cancer cell line with epigenetic modifiers and ganciclovir. Cancer Lett 2007;247:77-83.

50. Bria E, Pilotto S, Simbolo M, Fassan M, de Manzoni G, Carbognin L, et al. Comprehensive molecular portrait using next generation sequencing of resected intestinal-type gastric cancer patients dichotomized according to prognosis. Sci Rep 2016;6:22982.

51. Bose R, Kavuri SM, Searleman AC, Shen W, Shen D, Koboldt DC, et al. Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov 2013;3:224-37.

52. Singh SS, Yap WN, Arfuso F, Kar S, Wang C, Cai W, et al. Targeting the PI3K/Akt signaling pathway in gastric carcinoma: A reality for personalized medicine? World J Gastroenterol 2015;21:12261-73.
53. Maira SM, Pecchi S, Huang A, Burger M, Knapp M, Sterker D, et al. Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor. Mol Cancer Ther 2012;11:317-28.

54. Wu YL, Zhang LI, Trandafir L, Dong T, Duval V, Hazell K, et al. Phase I Study of the Pan-PI3K Inhibitor Buparlisib in Adult Chinese Patients with Advanced Solid Tumors. Anticancer Res 2016;36:6185-94.

55. Ando Y, Inada-Inoue M, Mitsuma A, Yoshino T, Ohtsu A, Suenaga N, et al. Phase I dose-escalation study of buparlisib (BKM120), an oral pan-class I PI3K inhibitor, in Japanese patients with advanced solid tumors. Cancer Sci 2014;105:347-53.

56. Park E, Park J, Han SW, Im SA, Kim TY, Oh DY, et al. NVP-BKM120, a novel PI3K inhibitor, shows synergism with a STAT3 inhibitor in human gastric cancer cells harboring KRAS mutations. Int J Oncol 2012;40:1259-66.

57. Liu YJ, Shen D, Yin X, Gavine P, Zhang T, Su X, et al. HER2, MET and FGFR2 oncogenic driver alterations define distinct molecular segments for targeted therapies in gastric carcinoma. Br J Cancer 2014;110:1169-78.

58. Xie L, Su X, Zhang L, Yin X, Tang L, Zhang X, et al. FGFR2 gene amplification in gastric cancer predicts sensitivity to the selective FGFR inhibitor AZD4547. Clin Cancer Res 2013;19:2572-83.

59. Wang F, Sun GP, Zou YF, Zhong F, Ma T, Li XQ, et al. Helicobacter pylori infection predicts favorable outcome in patients with gastric cancer. Curr Oncol 2013;20:e388-95.
APPENDICES

Supplementary Table 1. List of 43 gastric cancer related target gene panel.

ACVR1B	ALK	APC	ARID1A	BCOR	BRAF	C13orf33 (MEDAG)
C16orf74	CBWD1	CCND1	CCNE1	CDH1	CIC	CR1
CTNNB1	EGFR	ERBB2	ERBB3	FBXW7	FGFR2	HLA-B
IRF2	JAK2	KRAS	LARP4B	MDM2	MET	MLH1
MSH2	MTOR	MVK	MYC	PD-L1 (CD274)	PD-L2 (PDCD1LG2)	PGM5
PIK3CA	PTEN	RHOA	SMAD4	STK11	TP53	VEGFR-2 (KDR)
ZBTB20						
Supplementary Table 2: Overview of all somatic SNVs and indels identified through NGS in GC

Group	Sample	chr	pos	Ref	Alt	Coverage	Alter_Alt_freq (%)	gene_name	Effect	hgvs_transcript	hgvs_protein
GS	SKW2	17	7577124	C	T	685	9%	TP53	missense_variant	ENST00000269305.4:c.814G>T	ENSP00000269305.4: p.Val272Leu
GS	SKW5	9	121567	T	A	359	20%	CBW_D1	missense_variant	ENST00000314367.10:c.980A>T	ENSP00000323433.10: p.Asn327Ile
GS	SKW5	19	42794626	G	A	77	5%	CIC	missense_variant	ENST00000160740.3:c.1706G>A	ENSP00000160740.3: p.Gly569Asp
GS	SKW5	1	20778775	C	T	354	13%	CR1	stop_gained	ENST00000367049.4:c.6580C>T	ENSP00000356016.4: p.Arg2194Ter
GS	SKW6	17	7578406	C	T	294	44%	TP53	missense_variant	ENST00000269305.4:c.524G>A	ENSP00000269305.4: p.Arg175His
GS	SKW13	1	27101441	C	T	80	5%	ARID1A	missense_variant	ENST00000324856.7:c.4723C>T	ENSP00000320485.7: p.Pro1575Ser
GS	SKW13	1	27105930	TG	T	179	5%	ARID1A	frameshift_variant	ENST00000324856.7:c.5548delG	ENSP00000320485.7: p.Asp1850Thr553Ter33
GS	SKW13	9	122002	C	A	85	6%	CBW_D1	missense_variant	ENST00000314367.10:c.932G>T	ENSP00000323433.10: p.Trp311Leu
GS	SKW13	19	42792038	C	A	96	6%	CIC	missense_variant	ENST00000160740.3:c.842C>A	ENSP00000160740.3: p.Ala281Asp
GS	SKW13	4	18534068	G	T	130	5%	IRF2	missense_variant	ENST00000393593.3:c.130C>A	ENSP00000377218.3: p.His44Asn
GS	SKW13	4	18534068	C	A	126	6%	IRF2	missense_variant	ENST00000393593.3:c.128G>T	ENSP00000377218.3: p.Arg43Ile
GS	SKW13	2	47635593	G	T	149	7%	MSH2	missense_variant	ENST00000233146.2:c.265G>T	ENSP00000233146.2: p.Val205His
CI	SKW15	17	7578236	A	G	973	41%	TP53	missense_variant	ENST00000269305.4:c.613T>C	ENSP00000269305.4: p.Tyr205His
Sample	Pool	Genotype	Chromosome	Start Position	End Position	Allele	Variant Type	Transcript	Protein	Description	
--------	------	-----------	-------------	----------------	--------------	--------	--------------	------------	---------	-------------	
GS SKW16 1 20778775 C T 854 7% CR1 stop_gained	ENST0000367049.4:c.6580C>T	CR1 stop_gained	p.Arg2194Ter								
EB SKW12 1 27100181 CG C 520 5% ARID1A In_Frame_variant	ENSP0000324856.7:c.3999_4001delGCA	ARID1A In_Frame_variant	p.Gln1334del								
EB SKW12 16 68771347 CG C 61 8% CDH1 In_Frame_variant	ENSP0000261769.5:c.44_46del1TG	CDH1 In_Frame_variant	p.Leu15del								
EB SKW12 8 12875063 C T 618 9% MYC missense_variant	ENSP00000259523.6:c.131C>T	MYC missense_variant	p.Ala44Val								
CI SKW17 1 20778775 C T 259 12% CR1 stop_gained	ENSP0000367049.4:c.6580C>T	CR1 stop_gained	p.Arg2194Ter								
CI SKW17 10 876899 T A 99 6% LARP4B In_Frame_variant	ENSP0000361445.4:c.5551A>G	LARP4B In_Frame_variant	p.Ala1851Asp								
CI SKW17 1 11190648 T C 188 8% MTO1 missense_variant	ENSP00000326873.7:c.476A>G	MTO1 missense_variant	p.Glu159Val								
CI SKW17 19 1220383 A G 73 5% STK11 stop_gained	ENSP00003628935.4:c.916C>T	STK11 stop_gained	p.Arg306Ter								
MS I SKW18 1 27057936 GC G 750 9% ARID1A frameshift_variant	ENSP000003269305.4:c.916C>T	ARID1A frameshift_variant	p.Phe306Val								
MS I SKW18 17 7577022 G A 847 11% TP53 stop_gained	ENSP00000324856.7:c.1650delC	TP53 stop_gained	p.Glu283Val								
MS I SKW18 12 25398281 C T 780 10% KRA S missense_variant	ENSP000003256078.4:c.38G>A	KRA S missense_variant	p.Glu126Asp								
MS I SKW18 13 31495945 GC G 373 6% MEDAG frameshift_variant	ENSP00000380482.4:c.750delC	MEDAG frameshift_variant	p.Glu250Val								
MS I SKW18 3 37061839 AC A 477 11% MLH1 missense_variant	ENSP00000231790.2:c.927delC	MLH1 missense_variant	p.Glu309Val								
MS I SKW18 3 17895208 A G 615 9% PIK3CA frameshift_variant	ENSP00000263967.3:c.3140A>G	PIK3CA frameshift_variant	p.Glu1047Arg								
MS I SKW20 1 27087467 T G 219 8% ARID1A missense_variant	ENSP00000324856.7:c.2041T>G	ARID1A missense_variant	p.Phe681Val								
MS I SKW20 1 20778775 C T 289 15% CR1 stop_gained	ENSP00000367049.4:c.6580C>T	CR1 stop_gained	p.Arg2194Ter								
MS I SKW20 1 20778775 C T 289 15% CR1 stop_gained	ENSP00000356016.4:c.6580C>T	CR1 stop_gained	p.Arg2194Ter								
MS I	SKW20	6	31323094	C	T	145	8%	HLA-B missense_variant ENST00000412585.2:c.895G>A ENST00000361445.4:c.5497G>A			
-------	--------	------	----------	----	----	-----	----	-------------------------------			
MS I	SKW20	1	11190702	T	C	207	5%	MTO missense_variant ENST00000361445.4:c.5497G>A ENST00000361445.4:c.5497G>A			
CLIN	SKW25	4	153332725	C	A	62	6%	FBXW7 missense_variant ENST00000361445.4:c.5497G>A ENST00000361445.4:c.5497G>A			
CLIN	SKW25	4	153332588	TC	A	64	6%	FBXW7 frameshift_variant ENST00000361445.4:c.5497G>A ENST00000361445.4:c.5497G>A			
MS I	SKW21	X	39913252	TG	T	79	5%	BCO missense_variant ENST00000361445.4:c.5497G>A ENST00000361445.4:c.5497G>A			
MS I	SKW21	6	31324602	T	A	64	8%	HLA-B stop_gained ENST00000361445.4:c.5497G>A ENST00000361445.4:c.5497G>A			
GS	SKW23	1	27106732	C	T	729	19%	ARID1A missense_variant			
GS	SKW23	17	7577547	C	A	295	12%	TP53 stop_gained ENST00000361445.4:c.5497G>A ENST00000361445.4:c.5497G>A			
CLIN	SKW1	17	757655	G	A	678	42%	TP53 stop_gained ENST00000361445.4:c.5497G>A ENST00000361445.4:c.5497G>A			
CLIN	SKW1	11	69465987	AG	A	201	5%	CCN1 frameshift_variant ENST00000361445.4:c.5497G>A ENST00000361445.4:c.5497G>A			
GS	SKW38	2	29451783	AC	A	64	6%	ALK frameshift_variant ENST00000361445.4:c.5497G>A ENST00000361445.4:c.5497G>A			
GS	SKW38	17	7578527	A	G	157	29%	TP53 stop_gained ENST00000361445.4:c.5497G>A ENST00000361445.4:c.5497G>A			
GS	SKW38	1	207787753	C	T	233	16%	CR1 stop_gained ENST00000361445.4:c.5497G>A ENST00000361445.4:c.5497G>A			
GS	SKW38	3	49412913	G	A	177	23%	RHOA stop_gained ENST00000361445.4:c.5497G>A ENST00000361445.4:c.5497G>A			
GS	SKW37	1	27057658	C	T	586	14%	ARID1A stop_gained ENST00000361445.4:c.5497G>A ENST00000361445.4:c.5497G>A			
GS	SKW37	1	27105897	G	T	879	18%	ARID1A stop_gained ENST00000361445.4:c.5497G>A ENST00000361445.4:c.5497G>A			

GS	SKW38	2	29451783	AC	A	64	6%	ALK frameshift_variant ENST00000361445.4:c.5497G>A ENST00000361445.4:c.5497G>A
GS	SKW38	1	207787753	C	T	233	16%	CR1 stop_gained ENST00000361445.4:c.5497G>A ENST00000361445.4:c.5497G>A
GS	SKW38	3	49412913	G	A	177	23%	RHOA stop_gained ENST00000361445.4:c.5497G>A ENST00000361445.4:c.5497G>A
GS	SKW37	1	27057658	C	T	586	14%	ARID1A stop_gained ENST00000361445.4:c.5497G>A ENST00000361445.4:c.5497G>A
GS	SKW37	1	27105897	G	T	879	18%	ARID1A stop_gained ENST00000361445.4:c.5497G>A ENST00000361445.4:c.5497G>A

GS	SKW38	2	29451783	AC	A	64	6%	ALK frameshift_variant ENST00000361445.4:c.5497G>A ENST00000361445.4:c.5497G>A
GS	SKW38	1	207787753	C	T	233	16%	CR1 stop_gained ENST00000361445.4:c.5497G>A ENST00000361445.4:c.5497G>A
GS	SKW38	3	49412913	G	A	177	23%	RHOA stop_gained ENST00000361445.4:c.5497G>A ENST00000361445.4:c.5497G>A
GS	SKW37	1	27057658	C	T	586	14%	ARID1A stop_gained ENST00000361445.4:c.5497G>A ENST00000361445.4:c.5497G>A
GS	SKW37	1	27105897	G	T	879	18%	ARID1A stop_gained ENST00000361445.4:c.5497G>A ENST00000361445.4:c.5497G>A

GS	SKW38	2	29451783	AC	A	64	6%	ALK frameshift_variant ENST00000361445.4:c.5497G>A ENST00000361445.4:c.5497G>A
GS	SKW38	1	207787753	C	T	233	16%	CR1 stop_gained ENST00000361445.4:c.5497G>A ENST00000361445.4:c.5497G>A
GS	SKW38	3	49412913	G	A	177	23%	RHOA stop_gained ENST00000361445.4:c.5497G>A ENST00000361445.4:c.5497G>A
GS	SKW37	1	27057658	C	T	586	14%	ARID1A stop_gained ENST00000361445.4:c.5497G>A ENST00000361445.4:c.5497G>A
GS	SKW37	1	27105897	G	T	879	18%	ARID1A stop_gained ENST00000361445.4:c.5497G>A ENST00000361445.4:c.5497G>A
MS	SKW26	30142909	G	A	352	10%	ALK	missense_variant	ENST0000389048.3:c.617C>T	ENSP0000373700.3: p.Ala206Val	
SKW26	1	27023140	TG	GC	T	55	7%	ARID1A	ln_Frame_variant	ENST0000324856.7:c.258_260delCGG	ENSP0000320485.7: p.Gly87del
SKW26	1	27101116	AC	A	977	14%	ARID1A	frameshift_variant	ENST0000324856.7:c.4403delC	ENSP0000320485.7: p.Prol648fsTer13	
SKW26	X	39933399	GC	G	648	32%	BCO2R	frameshift_variant	ENST0000342274.4:c.1199delG	ENSP0000345923.4: p.Gly400AlafsTer42	
SKW26	7	55231495	G	A	745	19%	EGRF	missense_variant	ENST0000275493.2:c.1701G>A	ENSP0000275493.2: p.Met567Ile	
SKW26	12	56486562	C	A	1305	14%	ERBB3	missense_variant	ENST0000267101.3:c.1141C>T	ENSP0000267101.3: p.Pro381Thr	
SKW26	12	56489493	T	A	2582	17%	ERBB3	missense_variant	ENST0000267101.3:c.1958T>A	ENSP0000267101.3: p.Val653Glu	
SKW26	10	123263394	C	T	1176	16%	FGFR2	frameshift_variant	ENST0000336553.6:c.1076G>A	ENSP0000337665.6: p.Arg359His	
SKW26	12	25398281	C	T	2457	6%	MSH2	frameshift_variant	ENST0000256078.4:c.1462G>A	ENSP0000256078.4: p.Gly13Asp	
SKW26	2	47639587	GA	G	1023	14%	MVK	frameshift_variant	ENST0000233146.2:c.687delA	ENSP0000233146.2: p.Ala230LeufsTer16	
SKW26	12	11003431	G	A	239	15%	STK11	frameshift_variant	ENST0000228510.3:c.1120G>A	ENSP0000228510.3: p.Ala374Thr	
SKW26	19	1221313	GC	G	468	15%	ZBTB20	frameshift_variant	ENST0000357258.3:c.1856delC	ENSP0000357258.3: p.Arg619LeufsTer43	
SKW26	3	114058002	AG	A	1296	16%	ARID1A	frameshift_variant	ENST0000324856.7:c.4689delC	ENSP0000320485.7: p.Met1564Ter	
SKW27	1	27101401	GC	G	183	15%	ARID1A	frameshift_variant	ENST0000324856.7:c.4824delC	ENSP0000324856.7: p.Arg715Ter	
SKW27	16	68772281	C	T	54	7%	CDH1	frameshift_variant	ENST0000261769.5:c.130C>T	ENSP0000261769.5: p.Arg44Cys	
SKW27	9	70972209	G	A	71	6%	PGM5	frameshift_variant	ENST0000396392.1:c.166G>A	ENSP0000337665.6: p.Arg359His	
Gene	Missense Variants	Ensembl	Description								
--------	-------------------	----------	-------------								
CIC	missense_variant	ENST0000167040.3	c.193C>T								
ERBB2	missense_variant	ENST0000167041.5	c.929C>T								
KRAF1	missense_variant	ENST0000167042.4	c.1636C>A								
PIK3CA	missense_variant	ENST0000167043.4	c.385A>T								
TP53	missense_variant	ENST0000342988.3	c.358A>T								
TP53	missense_variant	ENST0000167045.4	c.742C>T								
PRKCA	missense_variant	ENST0000167046.4	c.585G>A								
CR1	missense_variant	ENST0000167047.4	c.44_46delTG								
EGFR	missense_variant	ENST0000167048.4	c.2305G>A								
LAR	frameshift_variant	ENST0000342274.4	c.1534_1536delCA								
ARID1A	frameshift_variant	ENST0000342275.7	c.839_841delAGG								
CCND1	frameshift_variant	ENST0000342276.2	c.2305G>A								
EGFR	frameshift_variant	ENST0000342277.3	c.487delA								
MSH2	frameshift_variant	ENST0000342278.2	c.746delA								
ARID1A	frameshift_variant	ENST0000342279.2	c.3281del								
ARID1A	frameshift_variant	ENST0000342280.2	c.3977dupC								

Gene Symbols:
- CIC
- ERBB2
- KRAF1
- PIK3CA
- TP53
- PRKCA
- CR1
- EGFR
- LAR
- ARID1A
- CCND1
- EGFR
- MSH2
- ARID1A
- ARID1A

Ensembl IDs:
- ENST0000167040.3
- ENST0000167041.5
- ENST0000167042.4
- ENST0000167043.4
- ENST0000342988.3
- ENST0000167045.4
- ENST0000167046.4
- ENST0000167047.4
- ENST0000167048.4
- ENST0000342274.4
- ENST0000342275.7
- ENST0000342276.2
- ENST0000342277.3
- ENST0000342278.2
- ENST0000342279.2
- ENST0000342280.2

Missense Variants:
- c.193C>T
- c.929C>T
- c.1636C>A
- c.385A>T
- c.358A>T
- c.44_46delTG
- c.2305G>A
- c.1534_1536delCA
- c.839_841delAGG
- c.2305G>A
- c.487delA
- c.746delA
- c.3281del
- c.3977dupC
| MS I | SKW41 | X | 39914723 | G | A | 2516 | 34% | BCO R | stop_gained | ENST00000342274.4:c.4537C>T | T
| MS I | SKW41 | 19 | 42794440 | GC | G | 821 | 27% | CIC | frameshift_variant | ENST00000160740.3:c.1526delC | C
| MS I | SKW41 | 19 | 42797375 | GC | G | 648 | 36% | CIC | frameshift_variant | ENST00000160740.3:c.3737delC | C
| MS I | SKW41 | 1 | 20778775 | C | T | 4083 | 17% | CR1 | stop_gained | ENST00000367049.4:c.6580C>T | T
| MS I | SKW41 | 1 | 20778783 | G | T | 3853 | 7% | CR1 | stop_gained | ENST00000367049.4:c.6580C>T | T
| MS I | SKW41 | 17 | 37884008 | C | T | 551 | 34% | ERB2 | missense_variant | ENST00000269571.5:c.3557C>T | T
| MS I | SKW41 | 4 | 15324938 | C | T | 1769 | 28% | FBXW7 | frameshift_variant | ENST00000269571.5:c.3557C>T | T
| MS I | SKW41 | 6 | 31324207 | AG | A | 193 | 6% | HLA-B | frameshift_variant | ENST00000269571.5:c.3557C>T | T
| MS I | SKW41 | 6 | 31324508 | C | CT | 600 | 5% | HLA-B | frameshift_variant | ENST00000269571.5:c.3557C>T | T
| MS I | SKW41 | 12 | 25398281 | C | T | 3172 | 18% | KRA S | frameshift_variant | ENST00000269571.5:c.3557C>T | T
| MS I | SKW41 | 12 | 69230470 | T | C | 3254 | 47% | MD2 | frameshift_variant | ENST00000269571.5:c.3557C>T | T
| MS I | SKW41 | 9 | 70993121 | C | T | 3716 | 6% | PGM5 | stop_gained | ENST00000269571.5:c.3557C>T | T
| MS I | SKW41 | 9 | 70993145 | A | G | 3607 | 12% | PGM5 | missense_variant | ENST00000269571.5:c.3557C>T | T
| MS I | SKW41 | 3 | 17895208 | A | G | 1997 | 21% | PIK3CA | missense_variant | ENST00000269571.5:c.3557C>T | T
| MS I | SKW41 | 3 | 11405800 | AG | A | 1623 | 6% | ZBTB20 | frameshift_variant | ENST00000269571.5:c.3557C>T | T
| MS I | SKW31 | 2 | 30143407 | G | A | 92 | 5% | ALK | frameshift_variant | ENST00000342274.4:c.4537C>T | T

62
MS	SKW31	27105930	TG	T	1752	20%	ARID	frameshift_variant	ENST00000324856.7:c.5548delG	ENSP00000320485.7: p.Asp1850ThrfsTer33
MS	SKW31	42791228	GC	G	270	6%	CIC	frameshift_variant	ENST00000160740.3:c.293delC	ENSP00000160740.3: p.Pro98LeufsTer107
MS	SKW31	37879658	G	A	1353	15%	ERB	missense_variant	ENST00000269571.5:c.2033G>A	ENSP00000269571.4: p.Arg678Gln
MS	SKW31	56493477	C	T	1215	9%	ERB	missense_variant	ENST00000267101.3:c.2885C>T	ENSP00000267101.3: p.Ala962Val
MS	SKW31	89717769	T	TA	1885	26%	CIC	frameshift_variant	ENST00000324856.7:c.5548delG	ENSP00000320485.7: p.Asp1850ThrfsTer33
MS	SKW33	7578535	T	C	720	11%	TP53	missense_variant	ENST00000269305.4:c.395A>G	ENSP00000269305.4: p.Lys132Arg
MS	SKW33	69465987	AG	G	111	5%	CCN	In_Frame_variant	ENST00000227507.2:c.839_841delAGG	ENSP00000227507.2: p.Glu280del
MS	SKW33	56494920	G	358	6%	ERB	In_Frame_variant	ENST00000267101.3:c.3286_3294delTCATCAGAG	ENSP00000267101.3: p.Ser1096_Glu1098del	
MS	SKW45	27105930	TG	T	625	8%	ARID	frameshift_variant	ENST00000324856.7:c.5548delG	ENSP00000320485.7: p.Asp1850ThrfsTer33
MS	SKW45	7577548	C	T	282	13%	TP53	missense_variant	ENST00000269305.4:c.733G>A	ENSP00000269305.4: p.Gly245Ser
MS	SKW45	14048292	AG	A	770	8%	BRAF	frameshift_variant	ENST00000288602.6:c.1208delC	ENSP00000288602.6: p.Pro403LeufsTer18
MS	SKW45	69465987	AG	A	73	8%	CCN	missense_variant	ENST00000227507.2:c.839_841delAGG	ENSP00000227507.2: p.Glu280del
MS	SKW45	68845649	G	A	667	9%	CDH1	In_Frame_variant	ENST00000261769.5:c.895G>A	ENSP00000261769.4: p.Ala299Thr
MS	SKW45	68771347	CG	CT	76	8%	CDH1	missense_variant	ENST00000261769.5:c.44_46delITGC	ENSP00000261769.4: p.Leu15del
MS	SKW45	42791265	G	A	168	11%	CIC	missense_variant	ENST00000160740.3:c.325G>A	ENSP00000160740.3:
Gene	Sample	Chromosome	Position	Allele 1	Allele 2	Length	Type	Description	Reference	
--------	--------	------------	----------	----------	----------	--------	---------------	---	------------	
CIC	SKW45	19	42799097	G	C	205	frameshift_v	variant	ENST0000160740.3:c.4580delC	p.Gly109Arg
CTNB1	SKW45	3	41278163	G	C	746	frameshift_v	variant	ENST0000349496.5:c.2046_2047delCT	
EGF	SKW45	7	55229242	G	T	383	missense_var	iant	ENST0000275493.2:c.1549G>T	
ERBB2	SKW45	17	37881332	G	A	286	missense_var	iant	ENST0000269571.5:c.2524G>A	
ERBB3	SKW45	12	56478854	G	A	638	missense_var	iant	ENST0000269710.3:c.310G>A	
KDR	SKW45	4	55976174	G	T	387	frameshift_v	variant	ENST0000263923.4:c.1111C>A	
MSH2	SKW45	2	47705561	T	TA	589	frameshift_v	variant	ENST0000233146.2:c.2362dupA	
MSH2	SKW45	2	47707887	TA	T	725	frameshift_v	variant	ENST0000233146.2:c.2513delA	
MTRR	SKW45	1	11182095	G	A	360	missense_var	iant	ENST0000361445.4:c.6751C>T	
RHOA	SKW45	3	49412914	T	C	617	missense_var	iant	ENST0000418115.1:c.109A>G	
CR1	SKW44	1	20778775	G	C	193	stop_gained		ENST0000367049.4:c.6580C>T	
IRF2	SKW44	4	18534068	G	C	147	missense_var	iant	ENST0000393593.3:c.122C>G	
APC	YMC69	5	11217900	C	G	238	stop_gained		ENST0000257430.4:c.7709C>G	
PIK3CA	YMC69	3	17893609	G	A	201	missense_var	iant	ENST0000263967.3:c.1633G>A	
TP53	YMC69	17	7577507	T	G	198	missense_var	iant	ENST0000269305.4:c.774A>C	

GS
Gene	Sample	Chromosome	Position	Allele 1	Allele 2	Length	Type	Description	Reference		
CIC	SKW45	19	42799097	G	C	205	frameshift_v	variant	ENST0000160740.3:c.4580delC	p.Gly109Arg	
CTNB1	SKW45	3	41278163	G	C	746	frameshift_v	variant	ENST0000349496.5:c.2046_2047delCT		
EGF	SKW45	7	55229242	G	T	383	missense_var	iant	ENST0000275493.2:c.1549G>T		
ERBB2	SKW45	17	37881332	G	A	286	missense_var	iant	ENST0000269571.5:c.2524G>A		
ERBB3	SKW45	12	56478854	G	A	638	missense_var	iant	ENST0000269710.3:c.310G>A		
KDR	SKW45	4	55976174	G	T	387	frameshift_v	variant	ENST0000263923.4:c.1111C>A		
MSH2	SKW45	2	47705561	T	TA	589	frameshift_v	variant	ENST0000233146.2:c.2362dupA		
MSH2	SKW45	2	47707887	TA	T	725	frameshift_v	variant	ENST0000233146.2:c.2513delA		
MTRR	SKW45	1	11182095	G	A	360	missense_var	iant	ENST0000361445.4:c.6751C>T		
RHOA	SKW45	3	49412914	T	C	617	missense_var	iant	ENST0000418115.1:c.109A>G		
CR1	SKW44	1	20778775	G	C	193	stop_gained		ENST0000367049.4:c.6580C>T		
IRF2	SKW44	4	18534068	G	C	147	missense_var	iant	ENST0000393593.3:c.122C>G		
APC	YMC69	5	11217900	C	G	238	stop_gained		ENST0000257430.4:c.7709C>G		
PIK3CA	YMC69	3	17893609	G	A	201	missense_var	iant	ENST0000263967.3:c.1633G>A		
TP53	YMC69	17	7577507	T	G	198	missense_var	iant	ENST0000269305.4:c.774A>C		
Sample	YMC69	17	7577529	A	G	217	46%	TP53	missense_variant	ENST00000269305.4:c.752T>C	ENSP00000269305.4: p.Ile251Thr
--------	--------	-----	---------	-----	-----	-----	-----	------	-----------------	-----------------------------	--------------------------------
EB	YMC63	5	11217956	C	T	706	17%	APC	missense_variant	ENST00000257430.4:c.8275C>T	ENSP00000257430.4: p.Arg2759Cys
EB	YMC63	9	5463099	T	A	527	26%	CD27	missense_variant	ENST00000381573.4:c.318T>A	ENSP00000381573.4: p.Thr106Gln
EB	YMC63	16	68849539	AT	A	665	5%	CDH1	frameshift_variant	ENST0000261769.5:c.1443delT	ENSP0000261769.5: p.Asn481LysfsTer41
EB	YMC63	3	41266113	C	G	498	35%	CTN	missense_variant	ENST0000349496.5:c.110C>G	ENSP0000349496.5: p.Ser37Cys
GS	YMC62	1	27100181	CG	CA	357	6%	ARID1A	missense_variant	ENST0000324856.7:c.3999_4001delGCA	ENSP0000324856.7: p.Gln1334del
MSI	YMC68	1	27100181	CG	CA	298	7%	ARID1A	In_Frame_variant	ENST0000342274.4:c.3519dupA	ENSP0000342274.4: p.Gln1334del
MSI	YMC68	X	39923086	G	GT	248	8%	BCO2R	frameshift_variant	ENST0000367049.4:c.510delC	ENSP0000367049.4: p.Gln1334del
MSI	YMC68	1	20769697	AC	A	482	7%	CR1	missense_variant	ENST00002669571.5:c.2033G>A	ENSP00002669571.5: p.Arg678Gln
MSI	YMC68	17	37879658	G	A	753	5%	ERB2	missense_variant	ENST00002669571.5:c.2524G>A	ENSP00002669571.5: p.Arg678Gln
MSI	YMC68	17	37881332	G	A	344	6%	ERB2	missense_variant	ENST00002669571.5:c.2033G>A	ENSP00002669571.5: p.Arg678Gln
MSI	YMC68	10	890938	GT	G	235	6%	LAR4P4B	missense_variant	ENST0000316157.3:c.487delA	ENSP0000316157.3: p.Gln1334del
GS	YMC61	1	27100181	CG	CA	466	6%	ARID1A	missense_variant	ENST0000324856.7:c.3999_4001delGCA	ENSP0000324856.7: p.Gln1334del
GS	YMC61	17	7579432	AG	A	215	7%	TP53	missense_variant	ENST0000269305.4:c.254delC	ENSP0000269305.4: p.Gln1334del
GS	YMC59	12	56481922	G	A	622	16%	TP53	stop_gained	ENST0000267101.3:c.850G>A	ENSP0000267101.3: p.Gly284Arg
GS	YMC59	17	7574003	G	A	254	13%	TP53	stop_gained	ENST0000269305.4:c.1024C>T	ENSP0000269305.4: p.Arg342Ter
Sample	ID	Chromosome	Start	End	Gene	Mutation Type	Transcript ID	Protein Effect			
--------	--------	------------	-------	-----	-------	---------------	---------------	----------------			
GS YMC58	16	68842751	TA T	382	22%	CDH1 splicing donor site variant	ENST0000261769.5:c.687+4_687+7delAGTA				
GS YMC58	3	41274899	G A	224	5%	CTNNB1 stop gained	ENST0000349496.5:c.1149G>A				
GS YMC58	7	55248986	G A	127	15%	EGF missense variant	ENST0000275493.2:c.2284G>A				
GS YMC58	3	49413010	G A	306	7%	RHO missense variant	ENST0000418115.1:c.13C>T				
GS YMC58	17	7578212	G A	684	7%	TP53 stop gained	ENST0000269305.4:c.637C>T				
GS YMC58	1	27092833	G T	837	9%	ARID1A stop gained	ENST0000324856.7:c.2854G>A				
GS YMC58	11	69465987	AGAG	A	76	5%	CCND1 In_Frame variant	ENST0000227507.2:c.839_841delAGG			
GS YMC58	17	7577508	T C	177	6%	TP53 stop gained	ENST0000269305.4:c.773A>G				
GS YMC58	5	11217602	G T	411	47%	APC stop gained	ENST0000257430.4:c.4729G>T				
GS YMC58	17	7578413	C T	255	48%	TP53 missense variant	ENST0000257430.4:c.517G>T				
GS YMC58	1	27023140	TG T	53	6%	ARID1A In_Frame variant	ENST0000324856.7:c.258_260delCGG				
GS YMC58	17	7578550	G T	498	54%	TP53 missense variant	ENST0000269305.4:c.380C>T				
GS YMC58	17	7578203	C A	969	13%	TP53 missense variant	ENST0000269305.4:c.646G>T				
MS YMC51	1	27100181	CG C	406	5%	ARID1A In_Frame variant	ENST0000324856.7:c.3899_40delGCA				

66
MS	I	CA	T/A/G	C/T/G	1A	riant	01del GCA	p.Gln1334del
YMC51	1	27105930	TG	T	722	32%	ARID1A frameshift variant	ENST0000324856.7:c.5548del G
YMC51	3	41277260	C	A	355	20%	ARID1A missense variant	ENST0000349496.5:c.1729C>A
YMC51	4	15327363	A	AT	582	33%	CTN1B frameshift variant	ENST0000263981.5:c.247dup A
YMC51	4	55955595	C	G	524	27%	FBXW7 frameshift variant	ENST0000263923.4:c.3350G>C
YMC51	10	909737	C	T	667	35%	KDR frameshift variant	ENST0000316157.3:c.376G>A
YMC51	3	37070348	AC	C	819	32%	LARP4B frameshift variant	ENST0000231790.2:c.1489del C
YMC51	17	7577093	C	T	655	23%	MLH frameshift variant	ENST0000269305.4:c.845G>A
YMC51	17	7572962	GT	G	338	19%	TP53 frameshift variant	ENST0000269305.4:c.1146del C
YMC51	3	11405800	AG	A	315	30%	ZBTB20 frameshift variant	ENST0000357258.3:c.1856del C
YMC50	1	27023715	TG	T	172	13%	ARID1A frameshift variant	ENST0000324856.7:c.827delG
YMC50	1	27097621	CA	C	737	22%	ARID1A frameshift variant	ENST0000324856.7:c.3216del C
YMC50	1	27105930	T	TG	661	23%	ARID1A frameshift variant	ENST0000324856.7:c.5548del G
YMC50	X	39923086	G	GT	673	20%	ARID1A frameshift variant	ENST0000324856.7:c.3216del C
YMC50	1	20778271	T	C	592	21%	BCR frameshift variant	ENST0000342274.4:c.3519dup A
YMC50	7	55240761	C	T	186	19%	CR1 frameshift variant	ENST0000367049.4:c.597T>C
YMC50	3	11405800	AG	A	315	30%	EGF frameshift variant	ENST0000275493.2:c.2005C>T

67
Protein	Accession	Sample	Gene	Chromosome	Coding Region	Description
ERBB3	ENST00000267101.3	YMC50	ERBB3	c.310G>A	missense variant	p.Val104Met
ERBB3	ENST00000267101.3	YMC50	ERBB3	c.2047C>T	missense variant	p.Arg683Trp
FBXW7	ENST00000281708.4	YMC50	FBXW7	c.2047C>T	missense variant	p.Arg683Trp
MVK	ENST00000228510.3	YMC50	MVK	c.2047C>T	missense variant	p.Arg683Trp
PGM5	ENST00000396396.1	YMC50	PGM5	c.2047C>T	missense variant	p.Arg683Trp
PIK3CA	ENST00000263967.3	YMC50	PIK3CA	c.2047C>T	missense variant	p.Arg683Trp
PIK3CA	ENST00000263967.3	YMC50	PIK3CA	c.2047C>T	missense variant	p.Arg683Trp

Protein	Accession	Sample	Gene	Chromosome	Coding Region	Description							
APC	ENST00000257430.4	GS YMC67	APC	c.904C>T	stop gained	p.Arg302Ter							
APC	ENST00000257430.4	GS YMC67	APC	c.466dupA	frameshift variant	p.Arg302Ter							
CR1	ENST0000367049.4	GS YMC67	CR1	c.640A>G	missense variant	p.Asp214Gly							
ERBB2	ENST00000269571.5	GS YMC67	ERBB2	c.929C>T	missense variant	p.Ser310Phe							
ERBB2	ENST00000269571.5	GS YMC67	ERBB2	c.2033G>A	missense variant	p.Arg678Gln							
HLA-B2	ENST00000412585.2	GS YMC67	HLA-B2	c.206A>T	missense variant	p.Glu69Val							
MTO	ENST0000361445.4	GS YMC67	MTO	c.770G>A	missense variant	p.Glu257Val							
TP53	ENST00000324856.7	GS YMC47	TP53	c.3999_401delGCA	missense variant	p.Glu1334del							
Gene	Project	Chromosome	Genomic Location	Mutation Type	Ensembl Gene ID	Ensembl Transcript ID	Reference	Remark					
------	---------	-------------	------------------	------------------------	----------------	----------------------	-----------	--------					
APC	YMC45	5	11217567:5	frameshift Variant	ENST0000257430.4	ENSP0000257430.4	p.Glu1464ValfsTer8						
TP53	YMC45	17	757836	In-Frame Variant	ENST0000269305.4	ENSP0000269305.4	p.Pro177_Arg181del						
ARID1A	YMC43	1	27100181	In-Frame Variant	ENST0000324856.7	ENSP0000320485.7	p.Gln1334del						
RHO A	YMC42	3	49405947	frameshift Variant	ENST00000418151.1	ENSP00000400175.1	p.Glu64Gly						
TP53	YMC42	17	7578413	In-Frame Variant	ENST0000269305.4	ENSP0000269305.4	p.Val173Leu						
CDH1	YMC66	16	68771347	In-Frame Variant	ENST0000261769.5	ENSP0000261769.4	p.Leu15del						
CDH1	YMC66	17	7579437	In-Frame Variant	ENST0000261769.5	ENSP0000261769.4	p.Leu15del						
BCO2R	YMC41	X	39921408	In-Frame Variant	ENST0000324856.7	ENSP0000320485.7	p.Ala84CysTer65						
CDH1	YMC41	16	68771347	In-Frame Variant	ENST0000261769.5	ENSP0000261769.4	p.Leu15del						
TP53	YMC41	17	7577106	In-Frame Variant	ENST0000261769.5	ENSP0000261769.4	p.Pro278Ser						
APC	YMC40	5	11217544:4	frameshift Variant	ENST0000257430.4	ENSP0000257430.4	p.Ser138Gly						
APC	YMC40	5	11217603	frameshift Variant	ENST0000257430.4	ENSP0000257430.4	p.Ser138Gly						
---	---	---	---	---	---	---	---						
9	GS	YMC40	17	7577114	C	T	659	47%	TP53	missense_variant	ENST00000269305.4:c.824G>A	ENST00000324856.7:c.3999_40 GCA	
9	GS	YMC39	1	27100181	CG	GA	C	306	6%	ARID1A	In_Frame_variant	stop_gained	ENST00000324856.7:c.3999_40 GCA
9	MS	YMC38	2	30143174	C	T	71	6%	ALK	missense_variant	ENST00000324856.7:c.4456C>T		
9	MS	YMC38	1	27101174	C	T	219	29%	ARID1A	In_Frame_variant	stop_gained	ENST00000324856.7:c.4456C>T	
9	MS	YMC38	1	27100181	CG	CA	C	151	5%	ARID1A	In_Frame_variant	stop_gained	ENST00000324856.7:c.4456C>T
9	MS	YMC38	3	18534065	CT	G	99	17%	IRF2	frameshift_variant	stop_gained	ENST00000324856.7:c.4456C>T	
9	MS	YMC38	1	3029792	C	A	122	25%	JAK2	missense_variant	ENST00000324856.7:c.4456C>T		
9	MS	YMC38	4	55968082	C	G	226	31%	KDR	missense_variant	ENST00000324856.7:c.4456C>T		
9	MS	YMC38	12	25392821	C	T	264	28%	KARS	missense_variant	ENST00000324856.7:c.4456C>T		
9	MS	YMC38	1	11181147	T	C	387	16%	MTO	missense_variant	ENST00000324856.7:c.4456C>T		
9	MS	YMC38	9	70993145	A	G	371	6%	PGM5	missense_variant	ENST00000324856.7:c.4456C>T		
9	MS	YMC38	3	1789471	T	C	615	42%	PIK3CA	missense_variant	ENST00000324856.7:c.4456C>T		
MS	YMC38	10	89720811	CA	C	142	49%	PTE	frameshift_variant	ENST0000371953.3:c.968delA	ENSP00000361021.3: p.Asn323MetfsTer21		
----	-------	----	-----------	----	----	------	-----	-----	-------------------	---------------------------------	----------------------------------		
GS	YMC37	4	55961110	G	A	788	9%	KDR	stop_gained	ENST00000263923.4:c.2830C>T	ENSP00000263923.4: p.Arg944Ter		
GS	YMC35	5	11217079	T	C	455	22%	APC	missense_variant	ENST00000257430.4:c.1892T>C	ENSP00000257430.4: p.Ile631Thr		
GS	YMC35	18	48604707	G	A	218	31%	SMA	missense_variant	ENST00000342988.3:c.1529G>A	ENSP00000341551.3: p.Gly510Glu		
GS	YMC35	17	7578554	A	G	154	30%	PTE	frameshift_variant	ENST00000269305.4:c.376T>C	ENSP00000269305.4: p.Tyr126His		
GS	YMC34	17	7578190	T	C	827	28%	TP53	missense_variant	ENST00000269305.4:c.659A>G	ENSP00000269305.4: p.Tyr220Cys		
GS	YMC33	16	68845617	A	T	938	20%	CDH1	missense_variant	ENST00000261769.5:c.863A>T	ENSP00000261769.4: p.Asp288Val		
GS	YMC33	4	15324938	C	T	674	13%	TP53	missense_variant	ENST00000263981.5:c.1154G>A	ENSP00000263981.4: p.Arg385His		
GS	YMC33	10	89711875	G	A	428	13%	PTE	frameshift_variant	ENST00000371953.3:c.493G>A	ENSP00000361021.3: p.Gly165Arg		
GS	YMC33	17	7577557	A	G	245	16%	TP53	missense_variant	ENST00000269305.4:c.724T>C	ENSP00000269305.4: p.Cys242Arg		
EB	YMC32	5	11217768	G	A	471	15%	APC	missense_variant	ENST00000257430.4:c.6397A>G	ENSP00000257430.4: p.Asp2133Asn		
EB	YMC32	1	27100181	CG	C	373	6%	ARID1A	In_Frame_variant	ENST00000324856.7:c.3999_4001delGCA	ENSP00000320485.7: p.Gln134del		
EB	YMC32	X	39922966	G	A	437	29%	BCO2	stop_gained	ENST00000324857.4:c.3640C>T	ENSP00000345923.4: p.Gln214Ter		
EB	YMC32	3	17892154	G	A	335	16%	PIK3CA	missense_variant	ENST00000263967.3:c.1030G>A	ENSP00000263967.3: p.Val344Met		
EB	YMC32	3	17893608	G	A	285	14%	PIK3CA	missense_variant	ENST00000263967.3:c.1624G>A	ENSP00000263967.3: p.Glu542Lys		
EB	YMC32	3	49413009	C	T	418	18%	RHO	missense_variant	ENST00000418115.1:c.14G>A	ENSP00000400175.1: p.Arg5Gln		
Genome	YMC31	17	757035	TG	T	804	40%	TP53	frameshift_variant				
--------	-------	----	--------	----	---	------	-----	------	-------------------				
Genome	YMC65	X	39931937	T	G	105	16%	BCO R	missense_variant				
Genome	YMC65	19	42795360	G	T	58	5%	CIC	missense_variant				
Genome	YMC66	4	15324938	C	T	575	7%	FBX W7	missense_variant				
Genome	YMC67	3	49412973	C	T	414	7%	RHO A	missense_variant				
Genome	YMC68	17	7577120	C	T	458	17%	TP53	stop_gained				
Genome	YMC69	5	11217459	C	A	171	5%	APC	missense_variant				
Genome	YMC64	12	56495327	C	T	55	5%	ERB B3	missense_variant				
Genome	YMC30	1	27023484	G	C	179	16%	ARID 1A	In_Frame_variant				
Genome	YMC30	1	27100181	CG	CA	268	6%	ARID 1A	In_Frame_variant				
Genome	YMC30	17	7574003	G	A	109	44%	TP53	stop_gained				
Genome	YMC21	1	27092839	A	G	613	17%	ARID 1A	In_Frame_variant				
Genome	YMC29	1	27105675	GG	AA	169	8%	ARID 1A	In_Frame_variant				
Genome	YMC29	X	39932171	G	A	446	51%	BCO R	stop_gained				
Genome	YMC29	4	18531016	T	C	472	23%	IRF2	missense_variant				
Genome	YMC29	3	17891663	G	A	461	18%	PIK3 CA	missense_variant				
Sample	Case ID	Chromosome	Position	Gene	Change Type	HgNV	Ensembl Accession	Other Information					
--------	---------	-------------	----------	------	-----------------------------	------	------------------	-------------------					
MS I	YMC29	3	17895208	A	731	6%	ENST0000263967.3:c.3140A>G	PIK3CA p.His1047Arg					
MS I	YMC29	3	11405800	A	296	17%	ENST00000357258.3:c.1856delC	ZBTB20 p.Pro619LeufsTer43					
MS I	YMC28	12	52370254	G	59	5%	ENST0000257963.4:c.475C>A	ACVR1B p.Arg159Ser					
MS I	YMC28	14	15324429	A	79	5%	ENST0000263981.4:c.1626G>T	FBXW7 p.Ala542Asn					
MS I	YMC28	14	15333261	T	57	5%	ENST00000281708.4:c.341A>G	ENSP00000281708.3:p.Glu114Gly					
GS	YMC27	17	7577580	T	230	53%	ENST00000269305.4:c.701A>G	TP53 p.Asp121Asn					
GS	YMC26	1	27100181	C	963	33%	ENST0000324856.7:c.3999_401dupGCA	ARID1A In_Frame_variant					
GS	YMC26	16	68844172	G	1289	5%	ENST000021769.5:c.760G>C	CDH1A Frameshift_variant					
GS	YMC25	1	27023193	T	58	5%	ENST000002324856.7:c.300delG	ARID1A Frameshift_variant					
GS	YMC25	16	68771347	C	57	5%	ENST00000261769.4:p.Gln1334del	CDH1A Frameshift_variant					
GS	YMC23	1	27100181	C	268	7%	ENST0000324856.7:c.3999_401dupGCA	ARID1A In_Frame_variant					
MS I	YMC22	2	30142964	A	248	35%	ENST00000263967.3:c.3140A>G	ALK p.His1047Arg					
MS I	YMC22	1	27088769	T	110	39%	ENST00000263967.3:c.3140A>G	ARID1A Frameshift_variant					
MS I	YMC22	1	27100181	G	215	6%	ENST00000263967.3:c.3140A>G	ARID1A Frameshift_variant					
MS I	YMC22	X	39934068	G	335	38%	ENST0000160740.3:c.3344delC	ENSP000002342724.4:c.529_530delAG					
MS I	YMC22	19	42796882	G	169	37%	ENST0000160740.3:c.3344delC	ENSP000002342724.4:c.529_530delAG					
							ENSP000002342724.4:c.529_530delAG	Prol115GlufsTer44					
MS I YMC22	1	20773724											
-------------	----	-----------											
MS I YMC22	12	56477655											
MS I YMC22	10	12331086											
MS I YMC22	2	47657068											
MS I YMC22	12	11001923											
MS I YMC22	9	70993145											
MS I YMC22	3	17892156											
MS I YMC22	3	17895208											
MS I YMC22	3	11405800											
MS I YMC22	9	11001923											
MS I YMC22	5	11217391											
MS I YMC22	5	11217565											
CI YMC19	1	27100181											
CI YMC19	1	11300361											
CI YMC19	17	7577114											
CI YMC18	1	27100181											

Gene	Chr	Ref	Alt	ANNO	Description
CR1	1	G	A	157	38%
ERB	B3	C	T	228	43%
FGF	R2	G	A	383	42%
MSH	2	G	A	235	12%
MVK		GC	G	173	43%
PGM	5	A	G	700	13%
PIK3	CA	A	G	247	39%
PIK3	CA	A	G	247	39%
ZBT		C	T	384	40%
ERB	B2	AG	A	88	22%
APC		C	T	620	10%
APC		T	TA	394	6%
ARID1A	32	CG	CA	160	5%
MTO	R	T	A	74	5%
TP53		C	T	346	73%
ARID1A	32	CG	CA	281	5%

Gene	Chr	Ref	Alt	ANNO	Description
CR1	1	G	A	157	38%
ERB	B3	C	T	228	43%
FGF	R2	G	A	383	42%
MSH	2	G	A	235	12%
MVK		GC	G	173	43%
PGM	5	A	G	700	13%
PIK3	CA	A	G	247	39%
PIK3	CA	A	G	247	39%
ZBT		C	T	384	40%
ERB	B2	AG	A	88	22%
APC		C	T	620	10%
APC		T	TA	394	6%
ARID1A	32	CG	CA	160	5%
MTO	R	T	A	74	5%
TP53		C	T	346	73%
ARID1A	32	CG	CA	281	5%

74
Sample	RefGene ID	Genomic Position	Chromosome	Source	Exon	cDNA Change	protein Change	Gene	Type	Description	Reference
GS YMC17	2	29448360	C T	88	8%	ALK	missense variant	ENST00000389048.3:c.3139G>A			
GS YMC17	17	7578263	G A	396	56%	TP53	stop_gained	ENST00000269305.4:c.586C>T			
GS YMC16	3	49412898	T C	1858	11%	RHO A	missense variant	ENST00000418115.1:c.125A>G			
MS I	YMC15	12	52369259	G GC	290	79%	ACV R1B	frameshift variant	ENST00000257963.4:c.303dupC		
MS I	YMC15	5	11217567	AA GAG	A	130	58%	APC	frameshift variant	ENST00000257430.4:c.4391_4394delAGAG	
MS I	YMC15	1	27100181	CG CA C	207	5%	ARID1A	In_Frame variant	ENST00000324856.7:c.3999_4001delGCA		
MS I	YMC15	7	14048292	AG A A	214	18%	BRAF	frameshift variant	ENST00000288602.6:c.1208delC		
MS I	YMC15	13	31480888	G A	60	7%	MED AG AG AG	frameshift variant	ENST00000380482.4:c.236G>A		
MS I	YMC15	13	31480851	CG C A	60	7%	MED AG AG	frameshift variant	ENST00000380482.4:c.206delG		
MS I	YMC15	12	11001923	GC G	190	26%	MKV	frameshift variant	ENST00000228510.3:c.417delC		
MS I	YMC15	17	7579546	CG C	390	81%	TP53	frameshift variant	ENST00000269305.4:c.140delC		
MS I	YMC14	11	69465027	AG	75	5%	CCN D1	In_Frame variant	ENST00000227507.2:c.839_841delAGG		
MS I	YMC14	1	20778775	C T	601	5%	CR1	stop_gained	ENST00000367049.4:c.6580C>T		
MS I	YMC14	3	41268766	A T	640	6%	CTN NB1	missense variant	ENST00000349496.5:c.1004A>T		
MS I	YMC14	17	7574029	C CG	313	14%	TP53	frameshift variant	ENST00000269305.4:c.997dupC		
GS YMC13	5	11215500	AG A	520	31%	APC	frameshift variant	ENST00000257430.4:c.1273del			
Gene	YMC	Chromosome	Position	Variant	Description	Ensembl	Description	G	Description		
------	-----	------------	----------	---------	-------------	----------	-------------	---	-------------		
ARID1A	YMC13	1	27100181	In_Frame_variant	ENST0000324856.7:c.3999_401delGCA	ENSP00000320485.7:p.Gln1334del					
CIC	YMC13	19	42799299	frameshift_variant	ENST0000160740.3:c.4784delC	ENSP00000320485.7:p.Glu425LysfsTer29					
HLA-B	YMC12	6	31322976	missense_variant	ENST00000412585.2:c.920C>G	ENSP00000399168.2:p.Pro307Arg					
JAK2	YMC12	9	5022119	stop_gained	ENST00000381652.3:c.132C>A	ENSP00000371067.3:p.Tyr44Ter					
TP53	YMC12	17	7578203	missense_variant	ENST00000269305.4:c.646G>T	ENSP00000269305.4:p.Glu224Val					
TP53	YMC11	17	7578493	stop_gained	ENST00000269305.4:c.437G>A	ENSP00000269305.4:p.Tyr147His					
TP53	YMC10	17	37879658	missense_variant	ENST00000269571.5:c.2033G>A	ENSP00000269305.4:p.Glu91Val					
RHOA	YMC10	12	56482341	missense_variant	ENST00000269710.1:c.889C>G	ENSP00000269305.4:p.Pro297Thr					
CCND1	YMC10	3	49412898	missense_variant	ENST00000418115.1:c.125A>G	ENSP00000400175.1:p.Tyr31His					
TP53	YMC9	11	69465987	In_Frame_variant	ENST00000275707.2:c.839_841delAGG	ENSP0000027507.2:p.Ile282Val					
TP53	YMC9	17	7577094	missense_variant	ENST00000269305.4:c.844C>T	ENSP00000269305.4:p.Thr282Ile					
TP53	YMC8	17	7577108	missense_variant	ENST00000269305.4:c.830G>A	ENSP00000269305.4:p.Arg277Trp					
ARID1A	YMC6	1	27023908	In_Frame_variant	ENST0000324856.7:c.1029_1032delAGCTGCCGCGGC	ENSP0000324856.7:p.Ala345_Ala349del					
Gene	Sample	Chr	Start	End	VUS Type	Ensembl Transcript	Ensembl Protein	VUS Description			
------	--------	-----	-------	-----	-----------	-------------------	----------------	-----------------			
ARID1A	YMC5	17	7577124	7577124	In_Frame Variant	ENST00000324856.7:c.3999_4001del GCA	ENSP00000324856.7: p.Gln1334del	In_Frame variant			
ARID1A	YMC4	17	17895208	17895208	In_Frame Variant	ENST00000324856.7:c.3999_4001del GCA	ENSP00000324856.7: p.Gln1334del	In_Frame variant			
ARID1A	YMC4	17	49413010	49413010	In_Frame Variant	ENST00000324856.7:c.3999_4001del GCA	ENSP00000324856.7: p.Gln1334del	In_Frame variant			
CIC	YMC3	19	42799177	42799177	Missense Variant	ENST00000324856.7:c.3999_4001del GCA	ENSP00000324856.7: p.Gln1334del	Missense variant			
CR1	YMC2	1	42799177	42799177	Missense Variant	ENST00000324856.7:c.3999_4001del GCA	ENSP00000324856.7: p.Gln1334del	Missense variant			
KRA S	YMC1	2	7577124	7577124	Missense Variant	ENST00000324856.7:c.3999_4001del GCA	ENSP00000324856.7: p.Gln1334del	Missense variant			
Supplementary Table 3. Somatic variants of the 43 cancer panel genes in 107 Korean gastric cancers and TCGA data

Gene	In this study (n=107)	TCGA, Nature 2014 (n=289)		
	No of case	Case (%)	No of case	Case (%)
TP53	41	38.3%	138	47.8%
ARID1A	39	36.4%	90	31.1%
CR1	16	15.0%	21	7.3%
APC	12	11.2%	42	14.5%
BCOR	12	11.2%	21	7.3%
CDH1	11	10.3%	29	10.0%
CIC	10	9.3%	26	9.0%
PIK3CA	10	9.3%	57	19.7%
ERBB3	9	8.4%	31	10.7%
RHOA	9	8.4%	16	5.5%
ERBB2	8	7.5%	14	4.8%
CCND1	7	6.5%	1	0.3%
FBXW7	7	6.5%	27	9.3%
ALK	6	5.6%	12	4.2%
KRAS	6	5.6%	28	9.7%
MTOR	6	5.6%	23	8.0%
CTNNB1	5	4.7%	19	6.6%
EGFR	5	4.7%	15	5.2%
HLA-B	5	4.7%	20	6.9%
MSH2	5	4.7%	5	1.7%
PGM5	5	4.7%	25	8.7%
ZBTB20	5	4.7%	28	9.7%
IRF2	4	3.7%	15	5.2%
KDR	4	3.7%	13	4.5%
LARP4B	4	3.7%	27	9.3%
MKV	4	3.7%	13	4.5%
BRAF	3	2.8%	16	5.5%
Gene	n	Percentage	n	Percentage
-----------	----	------------	----	------------
PTEN	3	2.8%	23	8.0%
ACVR1B	2	1.9%	11	3.8%
CBWD1	2	1.9%	1	0.3%
FGFR2	2	1.9%	12	4.2%
JAK2	2	1.9%	12	4.2%
MEDAG	2	1.9%	7	2.4%
MLH1	2	1.9%	6	2.1%
SMAD4	2	1.9%	24	8.3%
STK11	2	1.9%	3	1.0%
CD274	1	0.9%	3	1.0%
MDM2	1	0.9%	15	5.2%
MYC	1	0.9%	5	1.7%
C16orf74	0	0.0%	2	0.7%
CCNE1	0	0.0%	5	1.7%
MET	0	0.0%	6	2.1%
PDCD1LG2	0	0.0%	1	0.3%
Supplementary Table 4: Performance of 43 genes panel through NGS in GC

Sample Name	Target Size (bp)	Target base	Mean depth over target region	Uncovered over target	1x~ over target ratio	10x~ over target ratio	20x~ over target ratio	50x~ over target ratio	100x~ over target ratio
YMC 65-tumor	124	7672	618.05	1.73	98.2	97.8	97.5	96.1	94.4
YMC 68-non-tumor	132	0030	1993	%	7%	1%	1%	0%	4%
YMC 28-tumor	124	7435	599.02	1.51	98.4	97.8	97.3	96.3	94.7
YMC 38-tumor	132	8070	41839	%	9%	4%	0%	8%	6%
150601-LKA-1_S10a	124	9187	740.13	1.40	98.6	98.1	97.6	96.8	95.4
150601-LKA-2_S11a	132	4230	33258	%	0%	2%	2%	5%	9%
150601-LKA-3_S12a	124	8944	720.57	1.27	98.7	98.1	97.6	96.8	95.5
Control_gD	132	6774	78848	%	3%	4%	3%	5%	0%
NA	132	1755	71314	%	1%	7%	7%	4%	1%

a genomic DNA from normal control, *b* gDNA from NA12878
Supplementary Table 5: Coverage of 43 genes panel through NGS in GC

Gene	Gene size (bp)	Uncovered bases in target gene	Uncovered bases in total bases (124,132 bp)	Uncovered (%)	1X	10X	20X	50X	100X	
CR1	7470	1666	1.34%	22.30%	77.70%	73.16%	71.07%	68.07%	65.33%	
FGFR2	3207	71	0.06%	2.21%	97.79%	96.69%	96.20%	94.48%	92.98%	
ARID1A	6858	1	0.00%	0.01%	99.99%	96.84%	94.52%	91.51%	88.63%	
MEDAG	912	0	0.00%	0.00%	100.00%	100.00%	98.68%	88.16%	69.52%	
CCND1	888	0	0.00%	0.00%	100.00%	100.00%	100.00%	100.00%	81.42%	
HLA-B	1089	0	0.00%	0.00%	100.00%	100.00%	100.00%	100.00%	94.21%	85.58%
PTEN	1732	0	0.00%	0.00%	100.00%	100.00%	100.00%	100.00%	98.15%	87.64%
CBWD1	1234	0	0.00%	0.00%	100.00%	100.00%	100.00%	96.35%	96.35%	91.90%
STK11	1302	0	0.00%	0.00%	100.00%	100.00%	100.00%	100.00%	100.00%	92.17%
CDH1	2649	0	0.00%	0.00%	100.00%	100.00%	100.00%	100.00%	98.19%	93.85%
BRAF	2301	0	0.00%	0.00%	100.00%	100.00%	100.00%	98.31%	94.00%	94.00%
ACVR1B	1641	0	0.00%	0.00%	100.00%	99.76%	94.45%	94.45%	94.45%	94.45%
ALK	4863	0	0.00%	0.00%	100.00%	100.00%	100.00%	100.00%	100.00%	96.94%
Gene	Count	Mismatch	Repeat	Concordance	Quality	VAF	CI	VAF	CI	
-------	-------	----------	--------	-------------	---------	-----------	------	----------	------	
CIC	7621	0	0.00%	100.00%	100.00%	99.20%	97.35%			
EGFR	3889	0	0.00%	100.00%	98.51%	97.74%	97.74%			
ERBB2	4418	0	0.00%	100.00%	98.80%	98.35%	97.89%			
CCNE1	1233	0	0.00%	100.00%	99.92%	98.13%	98.13%			
MSH2	2805	0	0.00%	100.00%	98.86%					
PGM5	1704	0	0.00%	100.00%	100.00%	100.00%				
APC	8697	0	0.00%	100.00%	99.53%					
BCOR	5268	0	0.00%	100.00%	100.00%					
C16orf74	231	0	0.00%	100.00%	100.00%	100.00%				
CD274	3578	0	0.00%	100.00%	100.00%					
CTNNB1	2346	0	0.00%	100.00%	100.00%					
ERBB3	4160	0	0.00%	100.00%	100.00%					
FBXW7	2631	0	0.00%	100.00%	100.00%					
IRF2	1050	0	0.00%	100.00%	100.00%					
JAK2	3399	0	0.00%	100.00%	100.00%					
KDR	4071	0	0.00%	100.00%	100.00%					
KRAS	687	0	0.00%	100.00%	100.00%					
LARP4B	2217	0	0.00%	100.00%	100.00%					
MDM2	1494	0	0.00%	100.00%	100.00%					
MET	4227	0	0.00%	100.00%	100.00%					
Gene	Count	Low	Low Percent	50.0%	50.0%	50.0%	50.0%	50.0%		
---------	-------	-----	-------------	-------	-------	-------	-------	-------		
MLH1	2271	0	0.00%	100.0%	100.0%	100.0%	100.0%	100.0%		
MTOR	7650	0	0.00%	100.0%	100.0%	100.0%	100.0%	100.0%		
MVK	1191	0	0.00%	100.0%	100.0%	100.0%	100.0%	100.0%		
MYC	1365	0	0.00%	100.0%	100.0%	100.0%	100.0%	100.0%		
PDCD1LG2	822	0	0.00%	100.0%	100.0%	100.0%	100.0%	100.0%		
PIK3CA	3207	0	0.00%	100.0%	100.0%	100.0%	100.0%	100.0%		
RHOA	582	0	0.00%	100.0%	100.0%	100.0%	100.0%	100.0%		
SMAD4	1659	0	0.00%	100.0%	100.0%	100.0%	100.0%	100.0%		
TP53	1263	0	0.00%	100.0%	100.0%	100.0%	100.0%	100.0%		
ZBTB20	2250	0	0.00%	100.0%	100.0%	100.0%	100.0%	100.0%		
ABSTRACT (IN KOREAN)

한국인 위암에서의 암 관련 유전자 분석 및 위암의 분자 생물학적 분류

〈지도교수 이경아〉

연세대학교 대학원 의학과

김윤정

최근 암 게놈 아틀라스 (TCGA) 연구 및 Asian Cancer Research Group (ACRG) cohort에서에서 새로운 위암의 분자 생물학적 분류를 제시하였다. 본 연구에서는 기존 TCGA 분류체계에 사용된 방법에 비해 간소화 방법으로 한국인 위암을 TCGA 분류체계에 따라 분류하고 한국인 위암에서 유의하게 관찰되는 유전자 변이, 향후 표적 치료와 환자 예후 예측에 연관된 유전 변이 및 Hereditary cancer syndromes 관련된 유전자 변이를 관찰하고자 하였다. 이를 위해서 TCGA 및 ACRG 연구의 결과를 토대로 위암에서 유의하게 유전적 변이가 관찰되는 유전자, 표적 치료제의 표적 유전자, 및 Hereditary cancer syndromes에 관련된 유전자를 선택하여 43 cancer panel을 제작하여 차세대 염기서열 검사를 시행하였다.

43 유전자 cancer panel을 이용한 107명의 위암 환자의 genetic alteration 결과와 더불어 환경적 요소 (EBV 감염, H. pylori 감염) 및 MSI 결과를 이용하여 위암의 분자 생물학적 분류하였다. TCGA 시스템에 따라 107명의 위암 환자를 분류하면 전체의 6.5%는 EBV subtype, 17.7%는 MSI subtype, 13.1%는 CIN
subtype 그리고 62.6%가 GS subtype으로 분류되었다. MSI subtype은 TCGA와 ACRG에서 보고된 것과 같이 본 연구에서도 분자생물학적 분류 그룹 중 가장 좋은 예후를 보였다. 약 20%의 MSI subtype에서 ZBTB20 유전자에서 P619fs*43 변이가 관찰되었다. P619fs*43 변이의 경우는 MSI subtype에 한정되어 관찰되는 소견을 보였다. 이 소견으로 TCGA data에서 동일하게 관찰되었다. 기존 연구에서 EBV subtype에서 관찰되는 특정적인 유전자 (PIK3CA, JAK2, CD274 및 PDCD1LG2)의 체세포 변이의 양상이 다소 다르게 관찰되었다. CIN subtype는 전체 위암의 13.1%이고 GS subtype은 62.6%로 기존의 TCGA 분류에서 보고된 CIN subtype보다 상대적으로 작은 수의 환자가 CIN subtype으로 분류되었다.

한국인 위암 환자에서 앞으로의 표적 치료와 환자 예후 등에 관련된 임상적으로 의미 있는 유전적 변이를 관찰하였다. 107 위암 조직 중 38개의 위암 조직에서 RTK/RAS/MAPK, PI3K/PTEN/AKT pathways 및 MET 유전자 유전자 변이가 관찰되었다. 생존율 분석에서는 TCGA 분류체계에 따른 subtype 간의 유의한 차이를 보이지 않았다. 단, H. pylori 감염 여부는 TCGA 체계로 위암 분류 시 영향을 미치지 않았지만 H. pylori 감염된 위암 환자가 감염되지 않은 군에 비해서 좋은 예후를 보였다.

본 연구에서는 기존 TCGA 분류체계에 사용된 방법에 비해서 간소화 방법으로 한국인 위암을 TCGA 분류체계에 따라 분류하였고 TCGA 결과와 상응하는 결과를 보였다.

핵심되는 말: 위암, 분자생물학적 분류, 체세포 변이, 썰매포변이
PUBLICATION LIST