Au(Ag)-Sn-Sb-Pb minerals in association with placer gold from Rumoi province of Hokkaido, Japan: a description of two new minerals (rumoiite and shosanbetsuite)

Daisuke NISHIO-HAMANE* and Katsuyuki SAITO**

*Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
**Minatomachi, Rumoi, Hokkaido 077-0046, Japan

Au(Ag)-Sn-Sb-Pb minerals occurring in association with gold, rumoiite (AuSn2), shosanbetsuite (Ag3Sn), yuanjiangite (AuSn), aurostibite (AuSb2), and anyuiite (AuPb2), were found from the Shosanbetsu River (the former three), Shosanbetsu village and the Ainusawa River (the latter two), Haboro town, Rumoi province, Hokkaido, Japan. Rumoiite (IMA No. 2018-161) and shosanbetsuite (IMA No. 2018-162) have been approved as new minerals by the International Mineralogical Association, the Commission on New Minerals, Nomenclature and Classification (IMA-CNMNC) and named after the locality. Both minerals show anhedral shape at less than 5 µm and occur in close association with one another, yuanjiangite, and native lead in spherical aggregates in placer gold. The densities of rumoiite and shosanbetsuite based on their empirical formulae and powder diffraction data were calculated to be 10.1 and 11.1 g/cm³, respectively. The empirical formulae of rumoiite and shosanbetsuite were (Au0.95Ag<0.01)Σ0.96(Sn1.93Sb0.08Pb0.02Bi0.01)Σ2.04 (basis of 3 apfu) and (Ag2.46Au0.54)Σ2.99(Sn0.97Sb0.01Pb0.01Bi0.01)Σ1.01 (basis of 4 apfu), respectively. Rumoiite is orthorhombic, Pbca, with lattice parameters a = 6.9088(7) Å, b = 7.0135(17) Å, c = 11.7979(19) Å and V = 571.6(3) Å³ (Z = 8). Shosanbetsuite is orthorhombic, Pmmn, with lattice parameters a = 5.986(8) Å, b = 4.779(3) Å, c = 5.156(6) Å and V = 147.5(3) Å³ (Z = 2). Rumoiite and shosanbetsuite correspond to the synthetic AuSn2 and Ag3Sn phases, respectively. The chemical compositions for aurostibite, anyuiite, yuanjiangite, and native lead are also reported in this paper. Hydrothermal activity in ultramafic rocks after the formation of gold (electrum) grains may have been involved in the occurrence of Au(Ag)-Sn-Sb-Pb minerals.

Keywords: Rumoiite, Shosanbetsuite, Yuanjiangite, Aurostibite, Anyuiite, Placer gold

INTRODUCTION

Platinum-group minerals (PGM) are composed not only of alloys but also of a wide variety of compounds containing various elements, and the total PGM exceeds 160 species. Volatile elements such as Sn, Sb, and Pb are often associated with PGM, and at least 46 PGM species containing such elements are known. This diversity means that PGM have frequent encounters with such volatile elements at their formation site. Therefore, it is possible that gold (electrum), which often occurs simultaneously with PGM, should have a similar opportunity. Although gold is less reactive, five gold compound minerals that contain Sn, Sb, and Pb have been identified to date, and these are occasionally found in placer PGM deposits: anyuiite (AuPb2), aurostibite (AuSb2), hunchunite (Au2Pb), novodneprite (AuPb3), and yuanjiangite (AuSn) (e.g., Razin and Sidorenko, 1989; Chen et al., 1994; Sandimirova et al., 2014; Litvinenko 2017; Svetlitskaya and Nevolko, 2017). Anyuiite and novodneprite also occur as nanoscaled inclusions in peridotite olivine (Ferraris and Lorand, 2015). In addition to those minerals, some unnamed Au(Ag)-Sn minerals have been reported from placer PGM deposits in the Ol’khovaya-1 River and the Bimika River, Russia (Sandimirova et al., 2014; Litvinenko 2017). These unnamed minerals with the compositions of AuSn2 and Ag3Sn were associated with placer gold from both localities. A AuSn2 mineral associated with placer gold was also discovered from the Boiron River, Switzerland before it was found in Russia (Meisser and Brugger, 2000). However, these minerals have not
yet been formally established as mineral species.

In Japan, placer PGM deposits are known in Hokkaido and Kumamoto Prefecture (e.g., Suzuki, 1950; Nishio–Hamane et al., 2019). Although various PGM with volatile elements, including the new minerals of minakawaithe, RhSb and michitoshiite–(Cu), Rh(Cu1–xGex) 0 < x ≤ 0.5, occur in the deposits in Kumanomo (Nishio–Hamane et al., 2019; Tanaka et al., 2020), this locality is unsuitable for an investigation of the diversity of gold compounds because of the quite rare occurrence of placer gold. In contrast, the PGM placer deposits in Hokkaido are almost always accompanied by much placer gold (e.g., Suzuki, 1950). To date, placer PGM and gold in Hokkaido have been obtained mainly around the serpentinite area (Matsumoto, 1928; Aoyama, 1936; Suzuki, 1950; Mertie, 1969; Urashima et al., 1972, 1974, 1976; Nakagawa et al., 1991; Matsubara, 1992; Nakagawa and Ohta, 1993), while the author (K.S.) found that these are also available from placer deposits in the Rumoi province, Hokkaido, Japan. In this area, sedimentary rocks derived from the Teshio Mountains which consists partly of ultramafic rocks (e.g., Hata, 1961). During a mineralogical investigation for placer PGM and gold, we revealed that the PGM deposits in the Rumoi province are composed of various minerals (e.g., Nishio–Hamane and Saito, 2019). Our series of studies eventually discovered Au(Ag)–Sn–Sb–Pb minerals, including previously unidentified AuSn2 and Ag3Sn, in association with placer gold from the Rumoi province.

We have examined the AuSn2 and Ag3Sn minerals and successfully identified both to be new minerals. These two new minerals were found at the Shosanbetsu River, Minamichiyoda, Shosanbetsu Village, Rumoi province, Hokkaido, Japan. These new AuSn2 and Ag3Sn minerals have been named rumoiite (IMA No. 2018–161) and shosanbetsuite (IMA No. 2018–162), respectively after the type locality. Both the mineral and name have been approved by the International Mineralogical Association, the Commission on New Minerals, Nomenclature and Classification (IMA–CNMNC). The type specimens have been deposited in the collections of the National Museum of Nature and Science, Japan, with the specimen numbers NSM–M46178 (holotype) and M46179 (co-type). Here, we report Au(Ag)–Sn–Sb–Pb minerals in association with placer gold, including the new minerals rumoiite and shosanbetsuite, in the placer deposit from the Rumoi province, Hokkaido, Japan.

OCCURRENCE

The Rumoi province is composed of eight local govern-ments: Mashike town, Rumoi city, Obira town, Tomamae town, Haboro town, Shosanbetsu village, Enbetsu town, and Teshio town from south to north. Most of the area is composed of Cretaceous, Neogene, and Quaternary sedimentary rocks (e.g., Matsuno and Kino, 1960; Yamaguchi and Matsumo, 1963). Neogene sedimentary rocks from Haboro to Shosanbetsu are the most widely distributed and divided into the Haboro, Sankebetsu, Chikubetsu, Kotanbetsu, Chiepotsunai, and Enbetsu Formations from the lower to higher level, which consist of conglomerate, sandstone, and mudstone with fossils, coal, and lignite. The largest is the Kotanbetsu Formation with a thickness of several thousand meters. Although the distribution of ultramafic rocks is absent, serpentinite pebble in conglomerates and sandstones including chromite are also known, so that placer PGM and gold are considered to occur secondarily from such stratum (e.g., Suzuki, 1950; Hata, 1961). It is also suggested that they were originally derived from the Teshio Mountains (Hata, 1961).

Placer in this study were collected from Shosanbetsu river in Shosanbetsu village (44°31′21″N, 141°46′51″E) and the Ainusawa River in Haboro town (44°19′08″N, 141°54′09″E). Sand trapped in grassroots and rock crevices was passed through a sluice box to make heavy sand and then panned with a curved plate to collect samples. The heavy sand from both rivers consists mainly of chromite, magnetite, ilmenite, gold, and PGM. Small amounts of zircon, andradite, enstatite, and cassiterite can be found in heavy sand. Au(Ag)–Sn–Sb–Pb minerals occurred in association with gold. Rumoiite (AuSn2), shosanbetsuite (Ag3Sn), yuanjiangite (AuSn), aurostibite (AuSb2), and anyuiite (AuPb2) were conclusively found from the Shosanbetsu River (the former three) and the Ainusawa River (the latter two). PGM mainly occurs as alloy composed of the iridium–subgroup platinum-group elements (IPGE: Ru, Os, and Ir), and PGM that consists of the palladium–subgroup platinum-group elements (PPGE: Rh, Pd, and Pt) scarcely occur. Sn–, Sb–, and Pb–bearing minerals are also accompanied by PGM, which are currently under consideration and will be reported elsewhere.

APPEARANCES

Rumoiite, shosanbetsuite, and yuanjiangite

The placer gold from the Shosanbetsu River shows a flat elliptical to granular shape, and the maximum grain size is ~ 5 mm and 200 µm thick or less. The placer gold commonly shows an internal core–rim texture, and the rim with a thickness of several micrometers is richer in gold component than the core. One gold grain with small black spots on the surface was identified among the grains, and a spherical aggregate appeared from the cut
The spherical aggregate has a diameter of ~ 400 µm, and there is a 20–µm–thick silver–rich rim at the boundary with gold. Inside, the spherical aggregate consists of yuanjiangite, native lead, rumoiite, and shosanbetsuite. Spherical to elliptical yuanjiangite particles of 5 µm or less are scattered in the spherical aggregate, and the gaps are filled with anhedral native lead, rumoiite, and shosanbetsuite. Yuanjiangite occurs around yuanjiangite, and its distribution is concentrated in a narrow range. The thickness of shosanbetsuite is also ~ 4 µm at a maximum. Yuanjiangite and shosanbetsuite are rarely encountered together, although both come into contact with yuanjiangite and native lead. Such texture and mineral assemblage are almost entirely common with placers obtained from the Ol’khovaya–1 River, Kamchatka, Russia (Sandimirova et al., 2014), although the name of the mineral is not specified in the literature.

The physical and optical properties of yuanjiangite were obtained using synthetic AuSn2 prepared by melting the mixture and then cooling it. Yuanjiangite exhibits a metallic luster with silver white color, and the streak is gray colored. Yuanjiangite is brittle with a Mohs hardness of 2 ½. The density of yuanjiangite (10.1 g/cm³) was calculated using the empirical formula and powder XRD (pXRD) data. Yuanjiangite has a white color under the microscope in reflected light, and pleochroism is weak to very weak as a variation from white to slightly bluish white. Anisotropy is strong to moderate as blue to brownish yellow. The reflectance spectrum for yuanjiangite was measured in air relative to Al standard using the photometry system with a grating monochromator (JASCO V570; Table 1).

The physical and optical properties of yuanjiangite were also measured using Ag3Sn synthesized in the same way. Shosanbetsuite shows metallic silver white color with gray streaks and is brittle, with a Mohs hardness of 2½. The density of yuanjiangite (11.1 g/cm³) was calculated using the empirical formula and pXRD data. Shosanbetsuite has a white color under the microscope in reflected light. Pleochroism and anisotropy are weak to very weak as a variation from white to slightly bluish white. The reflectance spectrum for shosanbetsuite is shown in Table 1.

Table 1. Reflectance of rumoiite and shosanbetsuite using Al standard in air

λ (nm)	Rumoiite R (%)	Shosanbetsuite R (%)
400	70.4	40.1
420	71.6	43.1
440	72.7	46.4
460	74.1	49.2
470	75.6	50.3
480	76.4	51.4
500	77.1	53.3
520	77.5	55.1
540	77.9	56.6
546	78.1	57.2
560	78.2	58.0
580	78.6	59.3
589	78.7	59.8
600	78.7	60.5
620	78.9	61.5
640	78.8	62.5
650	78.7	63.0
660	78.6	63.6
680	78.0	64.6
700	80.9	65.8

Aurostibite and anyuiite

The placer gold from the Ainusawa River is also flat, elliptical to granular, with a maximum grain size of ~ 10 mm and 200 µm thick or less. It commonly has core–rim texture, with rims a few micrometers thick and richer in gold content than the core. Among the placer gold grains, grains with ash–steel–colored patches were found (Fig. 2). The maximum patch is ~ 300 µm, and multiple patches are distributed on the surface of gold placer within a range of ~ 1.5 mm. Inside, the patch consists of aurostibite and...
anyuite, both of which are irregular grains of 20 µm or less. Although the name of the mineral is not specified, minerals with chemical compositions that correspond to anyuite and aurostibite have been found on the surface of placer gold from the Of’khovaya-1 River, Kamchatka, Russia (Sandimirova et al., 2014; Svetlitskaya and Nevolko, 2017).

CHEMICAL COMPOSITION

Chemical analyses were conducted using scanning electron microscopy (SEM; JEOL JSM-100) equipped with energy dispersive X-ray spectroscopy (EDS; 15 kV, 0.8 nA, 1 µm beam diameter) at the Institute for Solid State Physics of the Tokyo University. The ZAF method was used for data correction, and the standards used were pure metals (Au, Ag, Sn, Sb, Pb, and Bi) and HgTe. We used AuM, AgL, SnL, SbL, PbL, BiM, and HgM lines for quantitative analysis. The chemical data for placer gold and Au(Ag)-Sn-Sb-Pb minerals in association with placer gold are summarized in Tables 2 and 3. The gold placers including Au(Ag)-Sn-Sb-Pb minerals are electrum with Au rich rim (Table 2).

Rumoite, shosanbetsuite, yuanjiangite

Table 3 shows the chemical data for rumoite, shosanbetsuite, yuanjiangite, and native lead. Rumoite is mainly composed of Au and Sn, with a small amount of Sb, Pb, and Bi. Ag is rarely included. The empirical formula calculated on the basis of 3 apfu is \((\text{Au}_{0.95}\text{Ag}_{0.01})_{0.96}(\text{Sn}_{1.93}\text{Sb}_{0.08}\text{Pb}_{0.02}\text{Bi}_{0.01})_{2.04}\). The simplified and ideal formulae of rumoite are common and written as \(\text{AuSn}_2\), which requires Au 45.34 wt% and Sn 54.66 wt%, a total of 100 wt%. Shosanbetsuite consists mainly of Ag and Sn.

Table 2. Chemical composition of gold (electrum) grains including Au(Ag)-Sn-Sb-Pb minerals

	Shosanbetsuite river	Ainusawa river		
	Core (n = 6)	Rim (n = 7)	Core (n = 5)	Rim (n = 4)
	wt% Mean (Min.-Max)	wt% Mean (Min.-Max)	wt% Mean (Min.-Max)	wt% Mean (Min.-Max)
Ag	15.14 (14.02-16.36)	1.11 (0.29-2.15)	37.95 (31.01-43.55)	5.16 (2.06-10.53)
Au	84.44 (83.49-85.29)	100.58 (99.03-102.02)	61.58 (56.00-67.28)	95.72 (88.36-99.44)
Hg	0.59 (0.02-1.04)	0.39 (0-0.81)	0.34 (0.10-0.86)	0.42 (0.10-0.78)
Total	100.17	102.08	99.88	101.30
basis of	Σ = 1	Σ = 1	Σ = 1	Σ = 1
	apfu	apfu	apfu	apfu
Au	0.75	0.98	0.47	0.91
Ag	0.25	0.02	0.53	0.09
Hg	0.01	0.00	0.00	0.00
Σ	1	1	1	1
with a substantial amount of Au, and only a few Sb, Pb and Bi are included. The empirical formula calculated on the basis of 4 apfu is (Ag₂.₄₆Au₀.₅₄)\(\Sigma\)₂.₉₉(Sn₀.₉₇Sb₀.₀₁Pb₀.₀₁Bi₀.₀₁)\(\Sigma\)₁.₀₁, and the simplified formula of shosanbetsuite is (Ag,Au)₃Sn. The ideal formula is Ag₃Sn, which requires Ag 57.68 wt% and Sn 42.32 wt%, a total of 100 wt%. Yuanjiangite is also composed of Au and Sn, while the content of other elements is low. The empirical formula calculated on the basis of 2 apfu is (Au₀.₉₅Ag₀.₀₃)\(\Sigma\)₀.₉₈(Sn₀.₉₉Pb₀.₀₁Bi₀.₀₁Sb<₀.₀₁)\(\Sigma\)₁.₀₂, and the simplified and ideal formulae are common and written as AuSn. Native lead occurred with each compound was also analyzed, the composition of which is predominantly Pb with small amounts of Sn and Sb, and Au and Ag are rarely included. The empirical formula of native lead calculated on the basis of 1 apfu is (Pb₀.₉₂Sn₀.₀₅Sb₀.₀₂Bi₀.₀₁Ag₀.₀₁Au₀.₀₁)\(\Sigma\)₂.₀₂. The compositional trend of each mineral in this study is similar to those reported earlier. Rumoiite does not readily dissolve Ag, as with the previously reported AuSn₂ mineral from the Boiron and Ol’khovaya–1 Rivers (Meisser and Brugger, 2000; Sandimirova et al., 2014). On the other hand, shosanbetsuite has some Au, which was also observed in the previously reported Ag₃Sn mineral from the Ol’khovaya–1 River (Sandimirova et al., 2014). Yuanjiangite and native lead in association with

Table 3. Chemical compositions of Au(Ag)-Sn-Sb-Pb minerals
Rumoiite (n = 10)
wt% Mean (Min.-Max)
Ag
Sn
Sb
Au
Pb
Bi
Total
basis of
apfu
Ag
Au
Sb
Sn
Pb
Bi
\(\Sigma\)

Ainosawa river
Aurostibite (n = 12)
wt% Mean (Min.-Max)
Ag
Sn
Sb
Au
Pb
Bi
Total
basis of
apfu
Ag
\(\Sigma\)
Sn
Sb
Pb
Bi
\(\Sigma\)
the AuSn₂ and Ag₃Sn minerals were also reported in placer gold from the Ol’khovaya–1 River (Sandimirova et al., 2014), where yuanjiangite was close to pure and the native lead also contained only a small amount of Sn.

Aurostibite, anyuiite

Table 3 also shows the chemical data for aurostibite and anyuiite. Aurostibite is mainly composed of Au and Sb, with a substantial amount of Sn and Pb, while the Ag and Bi content is very low. The empirical formula of aurostibite calculated on the basis of 3 apfu is \(\text{Au}_{1.01}^{\Sigma 0.01} \text{Sb}_{1.42}^{\Sigma 2.55} \text{Sn}_{0.34}^{\Sigma 0.64} \text{Pb}_{0.20}^{\Sigma 0.40} \text{Bi}_{0.01}^{\Sigma 0.02} \), and the simplified formula can be shown as \(\text{Au}^{\Sigma 1.03} \text{(Sb,Sn,Pb)}_{2} \). Aurostibite forms a partial solid solution with rumoiite (AuSn₂) and anyuiite (AuPb₂). Anyuiite consists mainly of Au and Pb, with a substantial amount of Sb, while Ag, Sn, and Bi are rarely included. The empirical formula calculated on the basis of 5 apfu is \(\text{Au}_{1.01}^{\Sigma 0.01} \text{Pb}_{1.51}^{\Sigma 2.55} \text{Sb}_{0.46}^{\Sigma 0.64} \text{Sn}_{0.01}^{\Sigma 0.02} \text{Bi}_{0.01}^{\Sigma 0.02} \), and thus the simplified formula is \(\text{Au}^{\Sigma 2.02} \text{(Pb,Sb)}_{2} \). Aurostibite and anyuiite have the same stoichiometry but different structures, which is probably why they occurred as separate phases, although they have a small solid solution to each other.

The occurrence of aurostibite and anyuiite has also been observed in placer from the Ol’khovaya–1 River, Russia (Sandimirova et al., 2014). Although both minerals showed some Sb-Pb substitution, Svetlitskaya and Nevolko (2017) suggested an immiscible gap between them and it seems to be not complete solid solution.

CRYSTALLOGRAPHY FOR RUMOIITE AND SHOSANBETSUITE

Single-crystal X-ray studies could not be performed due to the small grain size. Therefore, the crystallography was studied by the pXRD method. Subsequent to the previous chemical analyses, a small fragment (100 × 80 × 60 μm) consisting of polycrystalline material for pXRD was separated from a thin section. The sample was placed on Kapton tape and pXRD data were collected using a synchrotron X-ray source on the NE1 beam line at the Photon Factory Advanced Ring (PF-AR) of the High Energy Accelerator Research Organization (KEK), Japan. This source provided a 50 μm diameter collimated beam of monochromatized X-ray (\(\lambda = 0.417 \text{ Å} \)). The pXRD spectra were collected using the Debye–Scherrer method, recorded via an imaging plate detector, and then converted to conventional one-dimensional profiles using the IPAnalyzer and PIndexer software packages by Seto et al. (2010). Figure 3 shows the pXRD pattern with all diffraction data and unit cell calculations of yuanjiangite and native lead shown in the Supplemental Tables S1 and S2 (available online from https://doi.org/10.2465/jmps.210829). Although the pXRD pattern includes some unidentified peaks, rumoiite, shosanbetsuite, yuanjiangite, and native lead can be indexed.

The measurement data for rumoiite are summarized in Table 4. The seven strongest lines of rumoiite in the pXRD pattern \([d \text{ in } \text{Å} (I/I_{0}) \text{ } hkl] \) were 4.543(42) 111, 3.098(100) 210, 2.949(69) 004, 2.711(37) 104, 2.243(39) 204, 2.128(46) 115 and 1.757(51) 314. Based on these data, rumoiite can be indexed to the orthorhombic Pbca space group (No.61). The unit cell parameters, as refined from the powder data, are \(a = 6.9088(7) \text{ Å}, b = 7.0135(17) \text{ Å}, c = 11.7979(19) \text{ Å} \) and \(V = 571.6(2) \text{ Å}^{3} \) (Z = 8). The \(a:b:c \) ratio calculated from the unit cell parameters (pXRD data) is 0.985:1:1.682. Rumoiite is identical with the synthetic AuSn₂ phase. The structure consists of slightly dis-
torted AuSn₆ octahedra and a Sn–Sn dumbbell, and this is also considered as an intergrowth structure of pyrite and marcasite related slabs (Kripyakevich, 1975; Rodewald et al., 2006). Due to the similarity of the crystal structure, a partial solid solution with the pyrite-structured aurostibite may occur.

Shosanbetsuite does not have many peaks with substantial intensity due to structural restrictions, although seven peaks were observed (Table 4). The peaks of shosanbetsuite in the pXRD pattern \[d \text{ in } \text{Å}(I/I_0)\ hkl\] were observed at 2.592(11) 201, 2.576(8) 002, 2.388(29) 211, 2.275(78) 012, 1.757(70) 221 and 1.356(68) 231, 032. Based on these data, shosanbetsuite can be indexed to the orthorhombic \(Pmmn\) space group \((#59)\). The unit cell parameters as refined from the powder data are \(a = 5.986(8)\,\text{Å}, b = 4.779(3)\,\text{Å}, c = 5.156(6)\,\text{Å}\) and \(V = 147.5(3)\,\text{Å}^3\) (Z = 2). The \(a:b:c\) ratio calculated from the unit cell parameters (pXRD data) is 1.253:1:1.079. Shosanbetsuite is also identical with the synthetic Ag₃Sn phase that has the \(\beta\)-Cu₃Ti-type structure, in which Ag and Sn are ordered in relation to the \(hcp\) structure by an orthorhombic distortion of the hexagonal unit cell (e.g., Fairhurst and Cohen, 1972). This structural distortion was observed by the splitting of major peaks in the pXRD pattern (Fig. 3).

DISCUSSION

Pb, Sn, and Sb are constituent elements of solder and are sometimes used to join gold-plated copper electrodes in electronic devices. However, even if such contaminants are introduced, the solder never turned to placer gold after the electrodes were welded. If there were, it would be a lead grain with gold or copper inside. However, there are no factories or disposal sites along the river, and no obvious artifacts of lead (such as shotguns or fishing weights) were also found. Therefore, the Au(Ag)-Sn-Sb-Pb minerals identified are not contaminated with man-made grains but do occur by reactions in nature. Chemical reactions in low-temperature environments

Table 4. The pXRD data for rumoiite and shosanbetsuite

	Rumoiite		Shosanbetsuite				
\(I/I_0^*\)	\(h k l\)	\(d_{obs}\) (Å)	\(d_{calc}\) (Å)	\(I/I_0^*\)	\(h k l\)	\(d_{obs}\) (Å)	\(d_{calc}\) (Å)
42	111	4.543	4.542	11	201	2.592	2.589
34	112	3.775	3.779	8	002	2.576	2.578
2	200	3.452	3.454	29	020	2.388	2.390
3	021	3.364	3.361	100	211	2.275	2.276
100	210	3.098	3.099	78	012	2.267	2.269
24	211	2.998	2.997	70	221	1.757	2.756
69	004	2.949	2.950	68	231,032	1.356	1.357,1.355
26	122	2.763	2.763				
11	212	2.744	2.743				
37	104	2.711	2.713				
5	023	2.619	2.617				
4	114	2.529	2.530				
2	213	2.433	2.434				
29	221	2.409	2.409				
39	204	2.243	2.243				
32	214	2.136	2.137				
46	115	2.128	2.128				
25	223	2.086	2.086				
17	132	2.074	2.073				
24	312	2.052	2.051				
3	025	1.958	1.958				
4	133	1.931	1.930				
24	231	1.912	1.911				
4	224	1.889	1.890				
9	215	1.876	1.877				
4	232	1.840	1.830				
14	322	1.827	1.826				
2	304	1.815	1.815				
18	134	1.771	1.771				
51	314	1.757	1.757				
7	026	1.715	1.715				
16	225	1.702	1.703				
7	216	1.660	1.660				
1	331	1.625	1.625				
2	315	1.604	1.604				
1	117	1.594	1.595				
2	332	1.581	1.581				
5	240	1.564	1.564				
20	421	1.537	1.536				
10	027	1.519	1.519				
15	217	1.481	1.481				
11	136	1.471	1.470				
6	316	1.463	1.463				
14	423	1.442	1.442				
9	227	1.391	1.391				
10	244	1.380	1.381				

* Intensities are standardized within each mineral.
such as rivers are unlikely, and sedimentary rocks containing gold grains are also rarely metamorphosed. In overseas examples, Au(Ag)-Sn-Sb-Pb minerals in placer gold are occasionally found in PGM placer deposits where ultramafic rocks are distributed (Table 5). In such cases, a large amount of PGM is typically accompanied by placer gold, such as in the Rumoi province (Nishio et al., 2017), and Sandimirova et al. (2014) suggest hydrothermal alteration in ultramafic rocks resulted in their formation. Although the placer gold and PGM found in the Rumoi area are derived from sedimentary rocks, it is considered that the sediments that were the source of the sedimentary rocks were supplied by uplift of the Teshio Mountains, where ultramafic rocks remain, even at present (e.g., Suzuki, 1950; Hata, 1961). Au(Ag)-Sn-Sb-Pb minerals including rumoite and shosanbetsuite in this study may also have been formed by hydrothermal alteration in ultramafic rocks. Although the composition of the fluid and the conditions under which hydrothermal alteration occurs are still under discussion, mineral assembly suggests that there may be at least two environments rich in Pb-Sn and Pb-Sb. It is well known that the PGM grains from worldwide including Hokkaido undergo modification after grain formation (e.g., Stumpf and Tarkian, 1976; O’Driscoll and González-Jiménez, 2016); therefore, gold (electrum) grains, which often simultaneously occur with PGM, are likely to be similarly modified.

ACKNOWLEDGMENTS

The authors thank Hirotada Gotou for support with the initial XRD investigation using PSPC. The pXRD data were acquired at KEK (Proposal No. 2017G584).

SUPPLEMENTARY MATERIALS

Color version of Figures 1–3 and Supplementary Tables S1 and S2 are available online from https://doi.org/10.2465/jmps.210829.

REFERENCES

Aoyama, S. (1936) A New mineral “Ruthenosmiridium”. The Science reports of the Tohoku Imperial University. Series 1, Mathematics, Physics, Chemistry, Anniversary Volume dedicated to Professor Kotaro Honda, 527-547.

Chen, L., Tang, C., Zhang, J. and Liu, Z. (1994) Yuanjiangite - A new auriferous and stanniferous mineral. Acta Petrologica et Mineralogica, 13, 232-238 (in Chinese with English abstract).

Dunin-Barkovskaya, E.A., Aripov, U.K., Tsoy, L.A. and Kim, M.A. (2005) Mineralogical features and ore-forming conditions of gold-bearing deposits of Uzbekistan. Geochemistry, Mineralogy and Petrology, 43, 69-74.

Dyusembaeva, K.S. (2006) Novodneprite AuPb3 - a new mineral from Novodneprvosk deposit (Northern Kazakhstan). Doklady National’noy Akademii Nauk Respubliki Kazakhstan, 5, 46-50 (in Russian with English abstract).

Farhurst, C.W. and Cohen, J.B. (1972) The crystal structures of two compounds found in dental amalgam: Ag2Hg3 and Ag5Sn. Acta Crystallographica, B28, 371-378.

Ferraris, C. and Lorand, J.P. (2015) Novodneprite (AuPb3), anyuiite [Au(Pb,Sb)2] and gold micro- and nano-inclusions within deformed mantle-derived olivine from the Lherz peridotite (Pyrenees, France): an HRTEM-AEM-EELS study. Physics and Chemistry of Minerals, 42, 143-150.

Graham, A.R. and Kaiman, S. (1952) Aurostibite, AuSb2: a new mineral in the pyrite group. American Mineralogist, 37, 461-469.

Hata, M. (1961) Explanatory text of the geological map of Japan Scale, 1:50,000 Hatsuura (Asahikawa-25). pp. 60, Geological Survey of Japan (in Japanese with English abstract).

Kalinin, A.A. (2021) Tellurium and selenium mineralogy of gold deposits in Northern Fennoscandia. Minerals, 11, 574.

Kripyakevich, P.I. (1975) Intermetallic hybrid of structures of pyrite and marcasite (to description of structure AuSn2). Kristallografiya, 20, 276-279.

Mineral	Composition	Occurrence (reference)
Rumoite	AuSn2	PGM placer deposit (1, 2, 3), gold placer deposit (4)
Shosanbetsuite	Ag3Sn	PGM placer deposit (1, 2, 3)
Yuanjiangite	AuSn	PGM placer deposit (1, 2, 3, 5), hydrothermal gold deposit (6)
Anyuite	AuPb2	PGM placer deposit (1, 2, 7, 8), peridotite (9)
Novodneprite	AuPb3	PGM placer deposit (2, 7, 8), gold placer deposit (10), peridotite (9)
Hunchunite	Au2Pb	PGM placer deposit (2, 8), gold placer deposit (11), hydrothermal gold deposit (12)
Aurostibite	AuSb2	PGM placer deposit (1, 2), hydrothermal gold deposit (13), hydrothermal Pb-Zn deposit (14)

1, this study; 2, Sandimirova et al. (2014); 3, Litvinenko (2017); 4, Meisser and Brugger (2000); 5, Chen et al. (1994); 6, Dunin-Barkovskaya et al. (2005); 7, Razin and Sidorenko (1989); 8, Svetlitskaya and Nevolko (2017); 9, Ferraris and Loran (2015); 10, Dyusembaeva (2006); 11, Wu et al. (1992); 12, Kalinin (2021); 13, Graham and Kaiman (1952); 14, Tarkian and Breskovska (1989).
Razin, L.V. and Sidorenko, G.A. (1989) Anyuiite AuPb2O.

Matsumura, S. (1992) Chemical Compositions of Placer Gold and Platinum-group element Alloys from Nakatonbetsu, Hokkaido, Japan. Memoirs of the National Science Museum, 25, 17-22.

Matsumoto, A. (1928) Placer gold and platinum-group minerals from Hokkaido. Journal of the Mining Institute of Japan, 44, 737-745 (in Japanese).

Matsuno, K. and Kino, Y. (1960) Explanatory text of the geological map of Japan Scale, 1:50,000 Chikubetsu-Tanko (Asahikawa-36). pp. 40, Hokkaido Development Agency (in Japanese with English abstract).

Meisser, N. and Brugger, J. (2000) Alluvial native gold, tetraauricupride and AuSn2 from western Switzerland. Schweizerische Mineralogische und Petrographische Mitteilungen, 80, 291-298.

Mertie, J.B. (1969) Economic geology of the platinum metals. Geological Survey Professional Paper, 630, 1-120.

Nakagawa, M., Kino, Y. (1966) Explanatory text of the geological map of Japan Scale, 1:50,000 Chikubetsu-Tanko (Asahikawa-36). pp. 40, Hokkaido Development Agency (in Japanese with English abstract).

Nishio, M. and Ohta, E. (1993) Placer platinum. Economic Geology, 71, 1451-1460.

Nakagawa, M. and Ohta, E. and Kurosawa, K. (1991) Platinum group minerals. In Highly Siderophile and Group Elements in the Platinum Group (Harvey, J. and Day, J.M.D. Eds.). Reviews in Mineralogy and Geochemistry, 81, Mineralogy and Petrology, 40, 137-144.

Mertie, J.B. (1969) Economic geology of the platinum metals. Geological Survey Professional Paper, 630, 1-120.

Matsubara, S. (1992) Chemical Compositions of Placer Gold and Platinum-group minerals from Hokkaido. Journal of the Mining Institute of Japan, 44, 737-745 (in Japanese).

Matsuno, K. and Kino, Y. (1960) Explanatory text of the geological map of Japan Scale, 1:50,000 Chikubetsu-Tanko (Asahikawa-36). pp. 40, Hokkaido Development Agency (in Japanese with English abstract).

Meisser, N. and Brugger, J. (2000) Alluvial native gold, tetraauricupride and AuSn2 from western Switzerland. Schweizerische Mineralogische und Petrographische Mitteilungen, 80, 291-298.

Mertie, J.B. (1969) Economic geology of the platinum metals. Geological Survey Professional Paper, 630, 1-120.

Nakagawa, M., Ohta, E. and Kurosawa, K. (1991) Platinum-group minerals from the Mukawa serpentinite, southern Kamui-kotan belt, Japan. Mining Geology, 41, 329-335.

Nakagawa, M. and Ohta, E. (1993) Placer platinum-group minerals from ophiolite in Hokkaido. Professor Jiro ISHI Memorial Volume, 133-141 (in Japanese).

Nishio-Hamane, D. and Saito, K. (2019) Minerals from gold and PGM placer deposits from the Rumoi area in Hokkaido, Japan. 2019 Annual Meeting of Japan Association of Mineralogical Sciences, R1P-08, https://confr.atlas.jp/guide/event/jams2019/subject/R1P-08/detail (in Japanese with English Abstract).

Nishio-Hamane, D., Tanaka, T. and Shinmachi, T. (2019) Minakawaite and platinum-group minerals in the placer from the clinopyroxenite area in serpentinite mélange of Kurosegawa belt, Kumamoto Prefecture, Japan. Journal of Mineralogical and Petrological Sciences, 114, 252-262.

O’Driscoll, B. and Gonzalez-Jimenez, J.M. (2016) Petrogenesis of the Platinum-Group Minerals. In Highly Siderophile and Strongly Chalcophile Elements in High-Temperature Geochemistry and Cosmochemistry (Harvey, J. and Day, J.M.D. Eds.). Reviews in Mineralogy and Geochemistry, 81, Mineralogical Society of America, Chantilly, VA, 489-578.

Razin, L.V. and Sidorenko, G.A. (1989) Anyuiite AuPb2 - A new intermetallic of gold and lead. Mineralogiceskij Zhurnal, 11, 88-96 (in Russian with English abstract).

Rodewald, U., Hoffmann, R., Wu, Z. and Pöttgen, R. (2006) Structure refinement of AuSn2. Zeitschrift für Naturforschung, 61b, 108-110.

Sandimirova, E.I., Sidorov, E.G., Chubarov, V.M., Ibragimova, E.K. and Antonov, A.V. (2014) Native metals and intermetallic compounds in heavy concentrate halos of the Ol’khovaya-1 River, Kamchatsky Mys Peninsula, eastern Kamchatka. Geology of Ore Deposits, 56, 657-664.

Seto, Y., Nishio-Hamane, D., Nagai, T. and Sata, N. (2010) Development of a software suite on X-ray diffraction experiments. The Review of High Pressure Science and Technology, 20, 269-276 (in Japanese with English abstract).

Stumpf, E.F. and Tarkian, M. (1976) Platinum genesis; new mineralogical evidence. Economic Geology, 71, 159-163. https://doi.org/10.1180/mgm.2020.5.269-276.

Tarkian, M. and Breskovska, V. (1976) Platinum genesis; new mineralogical evidence. Economic Geology, 71, 159-163. https://doi.org/10.1180/mgm.2020.5.269-276.

Tarkian, M. and Breskovska, V. (1976) Platinum genesis; new mineralogical evidence. Economic Geology, 71, 159-163. https://doi.org/10.1180/mgm.2020.5.269-276.

Urashima, Y., Wakabayashi, T., Masaki, T. and Terasaki, Y. (1972) Ruthenium, a new mineral from Horokanai, Hokkaido, Japan. Mineralogical Journal, 7, 438-444.

Urashima, Y., Masaki, T. and Terasaki, Y. (1974) The Review of High Pressure Science and Technology, 20, 269-276 (in Japanese with English abstract).

Urashima, Y., Wakabayashi, T., Masaki, T. and Terasaki, Y. (1974) Ruthenium, a new mineral from Horokanai, Hokkaido, Japan. Mineralogical Journal, 7, 438-444.

Urashima, Y., Wakabayashi, T. and Masaki, T. (1976) Osman ruthenium and platinum alloys from Horokanai, Hokkaido, Japan. Science Reports of Kagoshima University, 25, 165-171 (in Japanese with English abstract).

Wu, S., Yang, Y. and Song, Q. (1992) A new gold mineral - hunchunite (Au3Pb). Acta Mineralogica Sinica, 12, 319-322 (in Chinese with English abstract).

Yamaguchi, S. and Matsuno, K. (1963) Explanatory text of the geological map of Japan Scale, 1:50,000 Sankei (Asahikawa-34). pp. 50, Geographical Survey of Japan(in Japanese with English abstract).

Manuscript received August 29, 2021
Manuscript accepted December 25, 2021

Manuscript handled by Koichi Momma