Pediatric hypertension in the Eastern Province of Saudi Arabia

Shaea A. Alkahtani, PhD.

ABSTRACT

The objectives were to compare the levels of blood pressure (BP) between male and female adolescents in the Eastern Province of Saudi Arabia and reference percentiles for Saudi adolescents. A secondary aim was to explore the distribution of BP among the participants based on age and gender.

Methods: This cross-sectional study was conducted among 146 boys and girls attending intermediate and secondary schools in 2 regions (Al-Mallaha and Al-Mubarraz) in the Eastern Province of Saudi Arabia. Weight, random blood glucose, and BP were collected by a team of health educators in the morning of the school day between April and May 2014.

Results: Of the current sample of adolescents originally from the Eastern Province, 30% had systolic blood pressure (SBP) of ≥140 mm Hg and 22% had diastolic blood pressure of ≥90 mm Hg. For girls between 13 and 16 years old, the SBP was greater than the 95th percentile of Saudi national norms. Participants were classified by gender and school stage, and one-way analysis of variance showed significant differences in the means of SBP between intermediate boys (127±2.5 mm Hg) and secondary boys (136±2.1 mm Hg) (p<0.05), and between intermediate boys and intermediate girls (138±1.6 mm Hg) (p<0.01).

Conclusion: The increased level of BP among adolescents originally from the Eastern Province raises the need to update the current BP nomograms, considering possible differences for specific geographic areas across the country. Implementing therapeutic lifestyle management in girls’ schools is recommended.

Saudi Med J 2015; Vol. 36 (6): 713-719 doi: 10.15537/smj.2015.6.10479

From Department of Exercise Physiology, College of Sport Sciences and Physical Activity, King Saud University, Riyadh, Kingdom of Saudi Arabia (Formerly from the University of Dammam, Dammam, Kingdom of Saudi Arabia).

Received 23rd October 2014. Accepted 19th February 2015.

Address correspondence and reprint request to: Dr. Shaea Alkahtani, Department of Exercise Physiology, College of Sport Sciences and Physical Activity, King Saud University, Riyadh, Kingdom of Saudi Arabia. E-mail: shayaedris@hotmail.com
Hypertension is the first risk factor for cardiovascular disease, and causes renal and central nervous system morbidity and mortality. The increased prevalence of pediatric hypertension is associated with increased cardiovascular risk factors among adolescents and adults. Pediatric hypertension can cause progressive tissue damage including heart, kidney, brain, and eye. This can lead to severe complications, including heart failure, pulmonary edema, stroke, and renal failure. Pediatric hypertension is considered an increasing problem in Saudi Arabia. A large national study that selected 16,226 children and adolescents in the 13 regions of Saudi Arabia showed that blood pressure (BP) rose steadily with age in both boys and girls. The average annual increase in systolic blood pressure (SBP) was 1.66 mm Hg for boys and 1.44 mm Hg for girls while the average annual increase in diastolic blood pressure (DBP) was 0.83 mm Hg for boys and 0.77 mm Hg for girls. Understanding regional pediatric hypertension can help to explore causational factors of increasing pediatric hypertension in Saudi Arabia. For example, the south western region of Saudi Arabia is a high-altitude region that may contribute to childhood overweight and obesity. Data from this province confirmed a high level of BP among 1,869 adolescents. Furthermore, this study attributed the increase in hypertension to regional factors as well as familial and behavioral factors. The Eastern Province of Saudi Arabia is a coastal region, and approximately 2-27% of the original population in this region, mainly in Al-Qatif and Al-Hasa, may carry the gene of sickle cell disease (SCD). Of these, up to 1.4% were diagnosed with this disease. Sick cell disease has no direct effect on systemic hypertension although DBP for subjects with SCD was significantly higher compared with healthy subjects. Additionally, a large study observing 195,874 adults found that the prevalence of obesity in the Eastern Province is very high, which meaningfully explained increased hypertension. Several studies also found a high obesity rate among children, adolescents, and young female adults in the Eastern Province of Saudi Arabia, which could increase the predisposition for hypertensive conditions among young people. Regional factors may explain the diversity of levels of BP among Saudi children and adolescents. Thus, the aim of this study was to investigate the prevalence of hypertension among boys and girls who attended intermediate and secondary schools in 2 regions (Al-Qatif and Al-Hasa) in the Eastern Province of Saudi Arabia, in comparison with the Saudi reference norms of BP in children and adolescents.

Methods. The Health Screening Program was conducted by the Saudi Diabetes and Endocrine Association (SDEA) and included several campaigns targeting schools and industrial companies in the Eastern Province of Saudi Arabia. The campaign permission was arranged by the office of the General Secretary, and the study design and ethical approval were revised according to the principles of the Helsinki Declaration. This study was approved by the Scientific Committee of the SDEA, Al-Khobar, Saudi Arabia.

The school screening program is one of these campaigns, which commenced in Al-Qatif (the town of Al-Mallaha) in the Eastern Province of Saudi Arabia. The campaign began with a lecture conducted in the town’s social centre on the 6th of April 2014. On April 8-10, the health educators’ team of the SDEA conducted a cross-sectional diabetes screening campaign for students at a combined, intermediate and secondary, girls’ school and a combined, intermediate and secondary, boys’ school. The measurements included weight, BP, and blood glucose. The total boys and girls in these schools were 191 students. Another similar campaign commenced in the following month starting on the 5th of May at secondary boys’ school in Al-Mubarraz in Al-Hasa. All students were invited, and consent forms were sent to their parents or guardians. A simple random sampling was carried out when students agreed to participate on the study measures.

Based on the criteria of the current study, the sample size was 146 students consisting of 72 boys and 74 girls, which was excerpted from the database of the School Screening Program (Table 1). Selection criteria were as follows: age 13-18 years old; not being diagnosed with any of 3 metabolic risks including triglycerides, BP, and fasting glucose identified according to the ATPIII panel identification, or being under treatments for these metabolic risks; being a non-smoker; and not being diagnosed with kidney failure or heart diseases. All participants were seated in an air-conditioned hall and had 3-5 minutes of rest preceding the measurement. The BP was measured in a sitting position with the arm supported at heart level, using an electronic arm support.

Disclosure. The author has no conflict of interests, and the work was not supported or funded by any drug company.
Hypertension in Saudi adolescents... Alkahtani

sphygmomanometer and an appropriately sized cuff. The cuff was wrapped around the arm smoothly allowing 2 fingers to be placed under the cuff comfortably. The SBP and DBP were recorded digitally, and values appeared on the screen. While old oscillometric devices overestimated BP,12 some newer models produce values equivalent to mercury sphygmomanometry.13 Electronic devices using oscillometric techniques (Omron M3W; HEM-7202-E, OMRON Healthcare Co., Ltd, Kyoto, Japan) were used in the study. This model is recommended to use at rest according to the European Society of Hypertension International Protocol revision 2010.14 In addition, automated oscillometric devices were used in the latest national study of BP in Saudi Arabian children and adolescents.3

According to the Saudi Hypertension Management Society (SHMS),15 the BP of the participants was classified into 3 categories: normal (SBP <120 mm Hg and DBP <80 mm Hg), prehypertension (SBP 120-139 mm Hg and/or DBP 80-90 mm Hg), and hypertension (SBP ≥140 mm Hg and/or DBP ≥90 mm Hg). The BP of the participants, based on age between 13 and 18 years old and gender, was also compared with the Saudi Standard Reference Nomogram.3

Statistical analysis was performed by the IBM SPSS Statistics for Windows version 20.0 (IBM Corp, Armonk, NY, USA). Values were expressed as means ±SEM and/or as percentages. Means of BP across groups classified by gender and school age, and gender were compared by the Student’s t-test. A mixed linear model Analysis of Variance was used to assess the interaction between age and gender. Metabolic variables (weight and blood glucose) were added as a fixed factor to the analysis. Post-hoc analyses were conducted on significant interactions using Tukey’s range test. The limit of statistical significance was set at p<0.05.

Results. Table 2 shows the comparison of BP for the participants based on age and gender with percentiles of Saudi standard reference nomogram. It shows that values of SBP and DBP for all participants were approximately 90th percentile, and SBP for boys age 16 and 18 and girls ages 13-17 were equal to or greater than the 95th percentile.

Table 3 shows the classification of BP for participants based on an adult standard that classifies individuals as normal, prehypertension, and hypertension. It shows that SBP was at a pre-hypertensive level in 53% of participants, and at a hypertensive level in 29%. The DBP was at a level of prehypertension in 32% and
At a level of hypertension in 22% of the participants. Accordingly, 46% of the participants were hypertensive.

Table 4 shows data of SBP, DBP, blood glucose, and body mass, and was classified by age and gender. The main effects of gender and age on SBP were not significant, but the interaction between age and gender was significant $[F [5, 134] = 3.1, p<0.05, \eta^2 = 0.1]$. Post-hoc comparisons using Tukey's test showed that the difference between boys age 14 and girls age 13 tends to be significant ($p=0.056$). When using the Least Significant Difference (LSD) test, there were significant differences between boys age 13 and boys age 17 and 18, and girls age 13, 14, and 15 ($p<0.05$), and between boys age 14 and boys age 16, 17, and 18 ($p<0.01$), and girls age 13 ($p<0.001$), 14, 15, and 17 ($p<0.05$), and between boys age 15 and boys age 18, and girls age 13 ($p<0.05$), and lastly between boys age 18, and girls age 18 ($p<0.05$). The main effects of gender and age on DBP were not significant, and the interaction between age and gender was not significant. Including glucose and body mass in the model of SBP and DBP did not have any further effects. Bivariate correlation between these variables showed an expected strong correlation between SBP and DBP ($p<0.001$), and between body mass and age ($p<0.001$).

When SBP was classified by gender (boys and girls) and school stage (intermediate and secondary), one-way analysis of variance showed significant differences in the means between groups ($F [3, 142] = 5.2, p<0.01$). Post-hoc comparisons using Tukey's test
Hypertension in Saudi adolescents… Alkahtani

showed significant differences between intermediate boys and secondary boys ($p<0.05$), and between intermediate boys and intermediate girls ($p<0.01$), and there was no significant difference found for DBP (Figures 1 & 2). When SBP and DBP were classified by gender, an independent sample t-test showed that SBP and DBP for girls (136±1.7 mm Hg and 78 ±1.3 mm Hg) were higher than boys (132±1.7 mm Hg and 82±1.3 mm Hg), and the difference tended to be significant ($p=0.058$ and $p=0.064$).

Discussion. It was globally reported that the prevalence of pediatric hypertension was 1-5% with increasing prevalence up to 10% in some regions with BP >95th percentile, and the prevalence of prehypertension reaching as more as 30%.1 It was reported that in American children age 3–18 years, the prevalence of prehypertension was 3.4% and the prevalence of hypertension was 3.6%.10 In Saudi children, the prevalence of elevated SBP was 12.4%, and DBP was 7.9%.17 The 2013 Saudi National Survey reported that 40.4% of males and 25.1% of females aged 15–24 were pre-hypertensive, and only 4.2% of males and 2.3% of females were undiagnosed hypertensive.18 The current prevalence of hypertension and prehypertension among adolescents originally from the Eastern Province of Saudi Arabia is substantially above these rates. Values of SBP and DBP for the current participants were ≥90th percentile in the Saudi National Standard Nomogram. A study from the southern western region of Saudi Arabia found that adolescents who had SBP and DBP ≥95th percentile constituted less than 10% of the participants,5 which was lower than the current study.

Regional factors could explain part of the increase in pediatric hypertension in the current study. For this, the current participants were selected from originally Eastern populations. Children with diabetic or diagnosed with kidney failure or heart disease were excluded. Thus, this high level of BP could be attributed to essential hypertension rather than secondary hypertension. Further investigation of the correlation between systematic BP and some common diseases in the region such as SCD is required. The current findings support the assumption of regional diversity of pediatric hypertension in Saudi Arabia. It was reported that Italian pediatric BP tables are not representative for all geographic areas of Italy such as Sardinia Island.19 Likewise, regional differences exist in the prevalence of some risk factors including BP in Sri Lanka.20 There might be a need to update the current Saudi National Standard Nomogram, considering possible differences for some geographic areas of the country.

Female adolescents had a higher level of high BP than boys in the current study, but the difference was not significant. Other studies found that being male is a significant risk factor for developing high BP.5 It is important to note that puberty affects BP,21 and whether intermediate boys at 13 and 14 years old have reached their puberty was not examined. This could explain the lower levels of BP among intermediate boys. In addition, the distribution of SCD in females was greater than males in the Eastern Province.22 The
effect of gender differences on metabolic disorders needs further investigation, which may point to different patterns in different regions. For example, a study from the Western Province reported high levels of prehypertension at 37% and hypertension at 18% among female adults, whereas a study conducted at the University of Dammam, Dammam, Saudi Arabia found that 13.5% of the 370 female students were pre-hypertensive. The current female adolescent generation had higher BP levels compared with the previous generation from the same region. Appropriate non-pharmacological interventions for girls’ schools in the Eastern Province especially Al-Qatif and Al-Hasa are suggested.

Studies from the Eastern Province of Saudi Arabia demonstrated that behavioral reasons can explain most of the increase in hypertension among adolescents and young adults in the region. These factors included physical inactivity, obesity, and eating habits, especially salt intake, high fructose aerated beverages, and energy drink consumption. The random glucose of 3 visits. The definition of pediatric hypertension overestimate the level of BP compared with the average number of measures, and a single visit can significantly that a single visit is not recommended regardless of the level of BP.

One limitation of the current study was that the current measure was taken from a single reading in one visit. Multiple BP determination is more accurate than a single office reading, and the first reading is typically the highest. A minimum of 2 readings with at least one minute interval is suggested, and an additional one or 2 readings may be required if the difference between the first 2 readings is greater than 5 mm Hg. It seems that a single visit is not recommended regardless of the number of measures, and a single visit can significantly overestimate the level of BP compared with the average of 3 visits. The definition of pediatric hypertension has been strongly criticized because it is based on BP measurements at a single time point, and ambulatory measures for children are recommended.

In conclusion, the main finding of this study is that adolescents originally from the Eastern Province had high levels of BP, compared with the Saudi standard reference. There might be a need to use specific regional population nomograms. This requires further multiple-occasional recording of BP routinely in the region. Future study framework should include associated factors such as genes, nutrition, culture, and social background. Moreover, the increased levels of BP among girls suggested implementing appropriate life style interventions to resolve this problem and help prevent adulthood hypertension.

Acknowledgment. This study was made possible due to the efforts of all the health team members involved in the Screening Health Program conducted by the Saudi Diabetes and Endocrine Association, Al-Khobar, Saudi Arabia. Special arrangements made by the school and community representatives were highly appreciated. Appreciation also goes to all the children and their parents for voluntarily participating in the screening program.

References

1. Bassareo PP, Mercuro G. Pediatric hypertension: An update on a burning problem. World J Cardiol 2014; 6: 253-259.
2. Thaker N. Hypertension in children. Apollo Medicine 2011; 8: 248-260.
3. Al Salloum AA, El Mouzan MI, Al Herbish AS, Al Omar AA, Qarashi MM. Blood pressure standards for Saudi children and adolescents. Ann Saudi Med 2009; 29: 173-178.
4. Khalid Mel H. Is high-altitude environment a risk factor for childhood overweight and obesity in Saudi Arabia? Wilderness & environmental medicine. Wilderness Environ Med 2008; 19: 157-163.
5. Mahfouz AA, Shatroor AS, Hassanain MA, Mohamed A, Farheen A. Gender differences in cardiovascular risk factors among adolescents in Asir Region, southwestern Saudi Arabia. J Saudi Heart Assoc 2012; 24: 61-67.
6. Jestaniah W. Epidemiology of sickle cell disease in Saudi Arabia. Ann Saudi Med 2011; 31: 289-293.
7. Abdul-Mohsen MF. Echocardiographic evaluation of left ventricular diastolic and systolic function in Saudi patients with sickle cell disease. J Saudi Heart Assoc 2012; 24: 217-224.
8. Al-Baghlí NA, Al-Ghamdi AJ, Al-Turki KA, El-Zubaier AG, Al-Ameer MM, Al-Baghlí FA. Overweight and obesity in the eastern province of Saudi Arabia. Saudi Med J 2008; 29: 1319-1225.
9. Al Qauhiz NM. Obesity among Saudi Female University Students: Dietary Habits and Health Behaviors. J Egypt Public Health Assoc 2010; 85: 45-59.
10. Al-Saeed WY, Al-Dawood KM, Bukhari IA, Bahnassy A. Prevalence and socioeconomic risk factors of obesity among urban female students in Al-Khobar city, Eastern Saudi Arabia, 2003. Obes Rev 2007; 8: 93-99.
11. Kassi E, Pervanidou P, Kaltzas G, Chrousos G. Metabolic syndrome: definitions and controversies. BMC Med 2011; 9: 45.
12. Vidal E, Murer L, Matteucci MC. Blood pressure measurement in children: which method? Which is the gold standard. J Nephrol 2013; 26: 986-992.
13. Skirton H, Chamberlain W, Lawson C, Ryan H, Young E. A systematic review of variability and reliability of manual and automated blood pressure readings. J Clin Nurs 2011; 20: 602-614.
Clinical Practice Guidelines

Clinical Practice Guidelines must include a short abstract. There should be an Introduction section addressing the objective in producing the guideline, what the guideline is about and who will benefit from the guideline. It should describe the population, conditions, health care setting and clinical management/diagnostic test. Authors should adequately describe the methods used to collect and analyze evidence, recommendations and validation. If it is adapted, authors should include the source, how, and why it is adapted? The guidelines should include not more than 50 references, 2-4 illustrations/tables, and an algorithm.