The Neuroprotective Potentiality of Flavonoids on Alzheimer’s Disease

Antonella Calderaro 1, Giuseppe Tancredi Patanè 1, Ester Tellone 1,*, Davide Barreca 1,*, Silvana Ficarra 1, Francesco Misiti 2 and Giuseppina Laganà 1

1 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
2 Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, V. S. Angelo, Loc. Folcara, 3043 Cassino, Italy
* Correspondence: ester.tellone@unime.it (E.T.); davide.barreca@unime.it (D.B.)

Abstract: Alzheimer’s disease (AD), due to its spread, has become a global health priority, and is characterized by senile dementia and progressive disability. The main cause of AD and other neurodegenerations (Huntington, Parkinson, Amyotrophic Lateral Sclerosis) are aggregated protein accumulation and oxidative damage. Recent research on secondary metabolites of plants such as polyphenols demonstrated that they may slow the progression of AD. The flavonoids’ mechanism of action in AD involved the inhibition of acetylcholinesterase, butyrylcholinesterase, Tau protein aggregation, β-secretase, oxidative stress, inflammation, and apoptosis through modulation of signaling pathways which are implicated in cognitive and neuroprotective functions, such as ERK, PI3-kinase/Akt, NFkB, MAPKs, and endogenous antioxidant enzymatic systems. This review focuses on flavonoids and their role in AD, in terms of therapeutic potentiality for human health, antioxidant potential, and specific AD molecular targets.

Keywords: flavonoids; neuroprotection; quercetin; myricetin; epicatechin-3-gallate; naringenin; cyanidin 3-o-glucoside; apigenin; genistein; gossypetin

1. Introduction

Alzheimer’s disease (AD) is the most common cause of senile dementia associated with progressive disability. The inherited disease, in an autosomal dominant way, generally leads to a lethal outcome after about 5–10 years from the onset of the first symptoms [1]. Its pathology is complex, characterized by a decline in memory that, in its most common form, arises after 60 years of age. More rarely, the symptomatology can begin between 40 and 50 years, and in this case, the disease has a very rapid progression [2]. Generally, the early-onset form, called “familial”, is related to specific mutations in the genes encoding presenilin1 (PS1) and 2 (PS2) and amyloid precursor protein (APP), while sporadic late-onset disease is associated with mutations in the gene encoding apolipoprotein E (ApoE), and includes several environmental risk factors. [3]. The exact etiology of AD is not yet known, but several mechanisms have been described, including cholinesterase deficiency and generation of oxidative stress [4,5]. The histological features of AD are the extracellular deposits of the amyloid beta peptide (Aβ), in the form of neuritic plaques. The intraneuronal neurofibrillary tangles (NFTs) constitute aggregates of hyperphosphorylated Tau protein [6]. The symptomatology is characterized by an initial difficulty with language, concentration, and orientation that evolves into motor difficulties and personality changes, leading to a serious impact on public health and a strong burden on the field of health [7]. To date, approximately 50 million cases of AD have been estimated in the world (this number will more than double by 2050) and it is predicted to double every 5 years. Several drugs have been selected to combat the disease, but unfortunately, due to the different natures of the pathological targets related to the progression of AD, none of these modify the...
disease; they confer only milder management and transient symptoms. Further studies are needed to better characterize the risk factors that predispose one to the progression of AD, and to identify drugs to counteract the evolution of the disease and/or defend against its development. In this context, diet and natural products are show great promise in helping to reduce the development of neurodegenerative diseases [8–16]. In fact, unlike synthetic products, which possess serious side effects, the use of natural compounds can be a good alternative therapy. The purpose of this review is to describe the state of the art of current knowledge on AD and on the biochemical targets that trigger its pathological progression, as well as to highlight the potential protective association of flavonoids for the purpose of reversing the age-related decline caused by AD.

2. Oxidative Stress and Alzheimer

 Oxidative stress is defined as an imbalance between oxidants and antioxidants that causes a rise in oxidant levels [17]. According to the amyloid cascade hypothesis, accumulation of non-soluble amyloid β peptides in the Central Nervous System (CNS) is the primary cause that initiates a pathogenic cascade, leading to the complex multilayered pathology and clinical manifestation of the disease. It is, therefore, not surprising that the search for mechanisms underlying cognitive changes observed in AD has focused on the brain and Aβ-inducing oxidative stress. However, since Aβ depositions can be found in normal, non-demented elderly people and in many other pathological conditions, the amyloid cascade hypothesis was modified to claim that intraneuronal accumulation of soluble Aβ oligomers, rather than monomer or insoluble Aβ fibrils, is the first step of a fatal cascade in AD (Figure 1). Oxidative stress was initially proposed to be a major factor in AD in 1986 [18]. Overwhelming evidence exists that the cells in the Alzheimer’s brain undergo abnormally high levels of oxidative stress, and that those amyloid plaques are a focus of cellular and molecular oxidation [19]. Aβ peptides trigger oxidative stress in the brain [20,21]. In addition to mediating Aβ-induced cytotoxicity, numerous studies have suggested that oxidative stress promotes the production of Aβ. It has been demonstrated that defects in the antioxidant defense system caused elevated oxidative stress [22,23]. Previous studies have shown that oxidative stress decreases the activity of alpha-secretase while promoting the activation of a cascade of redox-sensitive cell signal pathways, including JNK, which promotes the expression of BACE1 and PS1, and eventually β- and γ-secretase, enzymes critical for the generation of Aβ from APP [24,25]. Notably, the oxidative damage appears to become pronounced following the interaction of the sulfur-free radical with methionine 35 in the Aβ peptide [26]. The brain in AD appears to sustain more oxidative damage than normal, with low levels of antioxidants [27,28].

 Therefore, while the brain membrane phospholipids are composed of polyunsaturated fatty acids, this organ is particularly vulnerable to free radical attacks. Plasma levels of thiobarbituric acid are high in the early stages of AD [29]; lipid hydroperoxides are the unstable products of lipid peroxidation, and they undergo non-enzymatic decomposition to generate aldehydes such as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). High blood hydroperoxide levels are associated with mild cognitive impairment (MCI) and AD [30].

 Proteins are major targets of reactive oxygen species (ROS). Protein oxidative modifications can induce unfolding or conformational changes that can lead to the loss of specific protein function [31] and the formation of cross-linked protein aggregates, which are resistant to removal by proteasomes. Increased reactive oxygen species production and oxidative modification of brain proteins are significant in AD pathogenesis [32]. Carbonyl formation of 3-nitrotyrosine (3-NT) is an important marker of protein oxidation. Protein carbonyls and 3-NT levels were increased in the frontal cortex of individuals with MCI, mild AD, and AD [33].
Nucleic acid damage also occurs early in AD. Significantly elevated levels of 8OHG and 4,6-diamino-5-formamidopyrimidine have been reported in post-mortem MCI brains relative to the age-matched controls [34]. In addition to oxidative damage, reduced antioxidant defenses have been reported in MCI and early AD [35–37]. Plasma glutathione levels and antioxidant enzymes, such as glutathione peroxidase, catalase, and superoxide dismutase (SOD), are significantly decreased in early AD [29,38].

Aside from its presence in CNS, Aβ can be detected in platelets [39] and blood [40], where it interacts with red blood cells (RBC). Previous studies [41–43] suggest that Aβ-induced oxidative stress alters RBC metabolism.

3. Flavonoids

Recent studies have tested the power of natural compounds derived from plants against AD. Among these, flavonoids are ubiquitous compounds of plants, produced by plants for growth and defense against all kinds of stress, including cold tolerance. More than 6000 different flavonoids have been identified, the primary sources of which are apples, red fruits, onions, citrus fruits, nuts, and beverages such as tea, coffee, beer, and red wine. These compounds, derived from phenol, are particularly interesting for their ability to cross the blood–brain barrier and for their multi-target activity. Several studies have described flavonoids to exhibit relevant biologic activities involving the neuronal antioxidants, as well as anti-amyloidogenic properties, acting as metal chelators, showing anti-inflammatory properties, and ameliorating cognition and neuroprotection [44–52]. All of these capabilities are critical to counteract neurodegeneration, as they help to safeguard the number and efficiency of neurons as well as the integrity of their synaptic connections. Epidemiological studies have highlighted a direct relationship between diets rich in flavonoids, reduced risk of dementia, and potential for improved symptomatology in patients with AD [53,54].

Several subclasses of flavonoids have been identified; all are present in the human diet, as they are very abundant in vegetables, fruits, and some beverages [55]. In general, we can find flavonoids in all parts of plants, since they are produced by the plant itself for its growth and defense against all kinds of stress, including cold tolerance [56,57].

3.1. Chemical Structure and Flavonoids Classification

From a chemical point of view, flavonoids consist of two benzene rings, called A and B, linked via a third pyranosic ring C. Flavonoids can be divided into a variety of subclasses that differ in terms of the structural characteristics of the B ring and the degree
of hydroxylation and glycosylation of the third ring. Typically, ring B binds in position 2 on
ring C, but can also bind in position 3 or 4. We can, therefore, distinguish the isoflavones in
which the B ring binds in position 3 of the C ring and the neoflavonoids in which the B ring
binds in position 4 of the C ring (Figure 2). The group of flavonoids in which the B ring
is linked in position 2 of the C ring can be further divided into six subgroups, according
to the structural peculiarities of the C ring: flavones, flavonols, flavanones, flavanonols,
flavanols, catechins, and anthocyanins [58]. Finally, the flavonoids in which the C ring is
open are called chalcones.

![Figure 2. Schematic representation of the basic structures of flavonoid subclasses.](image)

In general, since all flavonoids contain the same core scaffold, the functional differ-
ences between the various groups and subgroups are mainly due to the different sub-
stituent groups. These are weak polybasic acids of a polyphenolic nature, characterized
by varying degrees of hydroxylation, methoxylation, glycosylation or glucuronidation,
and this contributes to the great variety of biological properties of this large group of
polyphenols [59,60]. In fact, a different side chain can significantly influence the activity
of flavonoids on the same molecular target, and the total number of hydroxyl groups is
important for the enhancement of antioxidant activity, free radical scavenging, and metal
ion chelation [61–64].

3.2. Biological Activities of Flavonoids

Flavonoids are a wide group of secondary metabolites characterized by many in-
teresting biological potentials, both in vitro and in vivo (such as anticancer, antioxidant,
antiaging, anti-inflammatory, antimicrobial, and immunomodulatory activities, along with
modulation of the activity of key metabolic enzymes, cytoprotective and cardioprotective
potentials, and inhibition of cellular proliferation, for example) and, in the last decades,
they have emerged as a promising agents for neuroprotection [58,65–68]. In a recent epi-
demiologic study, Shishtar et al. [69] analyzed long-term dietary flavonoid intake and risk
of Alzheimer’s disease and related dementias in the Framingham Offspring Cohort, with a
total of 5209 participants aged 28–62 years in the original cohort. The intake effects of six
classes of dietary flavonoid (flavonols, flavones, flavanones, flavan-3-ols, anthocyanins, and
flavonoid polymers) and the risk of Alzheimer’s disease and related dementias (ADRD)
and Alzheimer’s disease (AD) alone were analyzed based on the data from the Framingham
Heart Study Offspring Cohort. Participants were ADRD-free with a valid FFQ at baseline.
Flavonoid intakes were updated at each exam in order to represent the cumulative average
intake across the five exams, and were expressed as percentile categories of intake to handle
their nonlinear relation with ADRD and AD. After multivariate and dietary adjustments,
individuals with the highest intakes of flavonols, anthocyanins, and flavonoid polymers had a lower risk of ADRD relative to individuals with the lowest intakes. A similar trend was found also in AD for flavonols and anthocyanins, but not for flavonoid polymers, showing a direct correlation between higher long-term dietary intake of flavonoids and the risks of ADRD and AD onset in American adults.

Flavonoids are widely distributed in the plant kingdom, and are characterized by chemical structures with the presence of several substituents that allow them to assume particular activities and exert beneficial effects for the wellness of organisms, as well as for their potential for therapeutic utilization. This does not indicate that every type of flavonoid is able to show biological potential, but only that those with particular characteristics can be employed for specific roles. For instance, one of the well-known and best-studied activities of flavonoids is its antioxidant activity, which is linked to the number of hydroxyl groups on the B ring. Generally, a greater number of free hydroxyl groups corresponds to a greater scavenging effect, but their location in the skeleton of flavonoids is a crucial structural element. These hydroxyl groups, through the donation of hydrogen atoms and electrons to radical species, favor the repair of the damage caused by ROS and reactive nitrogen species (RNS), reducing their degree of reactivity [70,71]. This mechanism leads to the generation of a relatively more stable flavonoid radical, which significantly reduces the oxidative stress triggered by the interrupting free radicals. At the level of the cell membrane, there is a chain reaction of propagation of peroxylic radicals between the molecules of polyunsaturated fatty acids and other intermediates [72,73]. The scavenger action of flavonoids on ROS and RNS is important because the ROS/RNS balance is directly connected with the redox state of the cell, which is also influenced by the presence of metal ions. In addition to the direct action on free radicals, experimental data demonstrate specific chelating properties of flavonoids against transition metals, mainly iron and copper ions [74–76]. Ferrous and/or copper ions represent a danger because they tend to react through the Fenton reaction, with hydrogen peroxide generating hydroxyl radicals, a very reactive species which rapidly oxidizes surrounding molecules, triggering the oxidative stress cascade. Chelating activity further enhances the ability of flavonoids to protect against oxidative stress, since the chelate metal ions may not participate in the generation of ROS through the Fenton reaction and because the chelates have a more powerful scavenger action against ROS than free flavonoids [77–79]. The chelating activity of flavonoids is considered a key mechanism for the biological activity of flavonoids, because metallocomplexes affect several biochemical properties, such as lipophilicity, membrane transport, and interaction with biomolecules [80–82]. In a second antioxidant mechanism, flavonoids do not act directly on ROS, but “indirectly” interact with some proteins involved in the gene expression regulation pathway. They upregulate the endogenous antioxidant capacity of the cell, and inhibit others involved in redox balance and inflammatory processes, such as cyclooxygenase, lipoxygenase, xanthine oxidase, NADH oxidase, and myeloperoxidase [83–89]. Therefore, the mechanisms we have described suggest not only a direct involvement of the flavonoid molecule, but also of metabolites that result from its oxidation and the formation of flavonoid–metal complexes [90].

3.3. Flavonoids in Neurodegeneration

The ability of flavonoids to cross the blood–brain barrier suggests that these compounds can feasibly have a direct effect on the brain. Numerous studies have documented the bioactivity of flavonoids against neurodegenerative disorders such as AD, Parkinson’s, Huntington’s, and other neurological disorders [51,58,64–69,91–93]. Regarding AD treatment, there is still no significantly efficient drug that can reduce the progression or improve the outcome of the disease [94,95]. The search for natural substances for the treatment of AD is considered key to brain health, because these compounds are often easily isolated and possess well-documented biomechanisms and safety profiles [96,97]. In addition, their abundance in vegetables and fruits has made them a major part of the human diet.
3.4. Potential Role of Flavonoids in AD Therapy

Flavonoids, including epicatechin-3-gallate, gossypetin, naringerin, quercetin, and myricetin are reported to block β-amyloid and Tau aggregation, scavenge free radicals, and sequester metal ions at clinically low concentrations [98,99]. In order to better understand flavonoids’ role in AD treatment, the pharmacological effects of some compounds from the six subclasses are described (see Figure 3).

Figure 3. Schematic effects of described flavonoids on molecular targets of AD.

Quercetin is a polyhydroxyflavonoid that belongs to the subclass of flavonols. Its chemical name is 3,3,4,5,7-pentahydroxyflavone, and the molecule contains five-OH groups, in positions 3, 3′, 5, 7 and 4′, which are crucial for potential biochemical–pharmacological activities. Quercetin is a natural antioxidant, widely used in healthcare for its beneficial role. Quercetin is found in flowers and fruits of edible plants; onions, apples, cherries, berries, asparagus, and red leaf lettuce have the highest levels, while tomatoes, peas, and broccoli have lower levels [92,93]. Experimental studies have shown the existence of an inverse correlation between dietary quercetin intake and risk of senile dementia. Specifically, experimental studies have identified various quercetin targets of neuronal protection that contribute to reducing the main neuronal lesions present in the brains of AD patients. Among them are hyperphosphorylation of the Tau protein, the deposition of beta amyloid, oxidative stress, inflammation, and apoptotic processes [100,101].

More specifically, Tau phosphorylation is under the control of several distinct kinases, such as Erk, Akt, p38, AMP activated protein kinase (AMPK), glycogen synthase kinase 3 beta (GSK3β), cyclin-dependent kinase 5 (cdk5), and protein phosphatase 2A (PP2A) [102,103]. Through molecular dynamic simulation studies carried out according to the molecular docking results, Zu et al. identified MAPK as core target of quercetin. Jiang et al. demonstrated the anti-apoptotic role of quercetin via MAPKs and PI3K/Akt/GSK3β signaling pathways by preincubating HT22 cells with 5 μmol/L of the drug for 12 h [103,104]. MAPK is a heterotrimeric Ser/Thr kinase; its activation contributes to the hyperphosphorylation of Tau in neurons. It also checks Aβ metabolism, and is involved in cell proliferation, apoptosis, and inflammatory responses [105]. Thus, MAPK pathway inhibition can significantly improve synaptic plasticity, memory, and cognitive functions, and can be considered a valid target against AD progression [106]. GSK3β, a Ser/Thr kinase that connects numerous signaling pathways in the cell, including inflammatory responses, is another strategic target for neuroprotection. GSK3β connects numerous signaling pathways in the cell. It is a downstream enzyme of the PI3K/Akt signaling pathway, and is considered the main factor responsible for the phosphorylation of the Tau protein in AD [107]. Quercetin acts on GSK3β, decreasing the kinase activity, and therefore, quercetin indirectly has an anti-hyperphosphorylation of Tau protein action that helps to strengthen its neuroprotective
effects [104]. Bao et al. have demonstrated that pretreatment for 2 h of rat pheochromocytoma PC-12 cell line with 500 μM quercetin attenuates H2O2-induced p53 expression, and also significantly reduces apoptosis and caspase 3 activation [108]. p53 regulates the action of nitric oxide synthase (NOS) and represses the transcription of peroxisome proliferator-activated receptor-γ coactivator (PGC-1α), one of the most powerful stimulators of mitochondrial biogenesis and respiration [109,110]. In AD, the decrease in the expression of PGC-1α is one of the causes related to the progression of the disease, as it is linked to the increase in the generation of the peptide Aβ [109,110]. In addition, the quercetin action on p53 affects the oxidative stress decrease, because p53 is a significant activator of the ROS-mediated apoptotic pathway [111,112]. A total of 50 μM quercetin, after 4 h of HepG2 cells incubation, has been shown to restore cellular redox homeostasis through its significant scavenger activity against ROS. Feeding the C57BL/6 mice with a 1% quercetin diet for 20 weeks increased the level of glutathione (GSH) and the expression of certain antioxidant enzymes, including SOD, catalase (CAT), and glutathione peroxidase (GPx), in hippocampal neurons [113–116].

Hung et al. demonstrated that quercetin (10mM) pretreatment of human umbilical vein endothelial cells (HUVECs) suppressed the nuclear factor-κB (NF-κB) signal, suggesting that the drug is a powerful antiatherosclerotic [117]. In addition, quercetin is a strong inhibitor of two important key enzymes involved in the pathology of AD, namely acetylcholinesterase (AChE) and butyrylcholinesterase (BchE) [118,119]. AChE and BChE contribute to hydrolytic degradation of acetylcholine (ACh), an important neurotransmitter that coordinates the excitability and activation of groups of neurons in the brain, and also influences its transmission and synaptic plasticity [120]. In the brain, a decrease in ACh corresponds to a slowdown in communication between neurons. Quercetin, through its OH groups of the phenyl ring, forms hydrogen bonds with specific amino acids in the active site of the AChE [121]. Inhibition of AChE and BChE facilitates communication between nerves and increases the activity of cholinergic pathways in the brain, relieving symptoms of memory loss [122]. In the brain, BChE also appears to play a role in the transformation of dangerous amyloid plaques to the pathogenic structures present in dementia and AD [123,124]. In Figure 4, a schematic representation of the main activities of quercetin is depicted.

Naringenin is the aglycon of naringin, and belongs to the subclass of flavanones. It is abundant in citrus fruits (especially grapefruits, to which it gives the characteristic bitter taste), as well as vegetables, and especially in grapes, tomatoes, and cherries. Naringenin can be found in two forms. One is characterized by a bond with a sugar on C7, and one derives from the action of specific enzymes which are able to cleave this glycosidic bond by releasing the aglycone [125,126]. Both forms have antioxidant activity, but naringenin has a more powerful scavenging action than its precursor naringin, because the presence of sugar in the latter causes a steric hindrance that impairs activity [127]. Naringenin (400 mM) improved learning and spatial memory in PC12 cells of rats with AD through the regulation of the PI3K/Akt/GSK-3K pathway and by reducing the hyper-phosphorylation of TAU.

Figure 4. Schematic effects of quercetin on molecular targets of AD.
intracellular mechanism that allows this neuroprotective action is related to the inhibition of caspase 3 activity, the activation of PI3K/Akt, and the modulation of the signaling pathway GSK3β, which plays a crucial role in neuronal survival [128–130]. The inhibition of caspase 3 also affects programmed cell death; in fact, the block of neuroapoptosis is also caused by the decreased levels of malondialdehyde and hippocampal nitrite found in socially defeated rat pups treated with naringenin (50–100 mM) [131]. Naringenin significantly regulates the (NF-kB) signaling pathway, which is implicated in inflammatory processes, and decreases tumor necrosis factor-α (TNF-α) as well as interleukin (IL)-6 and IL-1β [131]. The reduced expression of NF-kB is induced by naringenin through a significant decrease in phosphorylation and nuclear translocation of P65, a subunit of NF-kB, as well as by an increase in sirtuin 1 (SIRT1) levels in the hippocampus [132–135]. The inflammatory pathway is also repressed by the interaction of naringenin with other molecular targets, including inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) e MAPK. iNOS and COX-2 are both inhibited in a concentration-dependent manner, while Zhang et al. demonstrated that naringenin (100 mM) inhibited MAPK signaling pathway activation by suppressing the phosphorylation of JNK and ERK1/2 in BV-2 cells [136]. Numerous studies have reported the antioxidant properties of polyphenols; it has been shown that GSH activity, one of the most efficient endogenous antioxidants, is improved by naringenin. Additionally, an increase in SOD, CAT, GPx, and glutathione reductase (GR) activity, in addition to a decrease in hydrogen peroxide (H₂O₂) and protein carbonyls levels, have been demonstrated [137–140]. In Figure 5, a schematic representation of the main activities of naringenin is depicted.

Figure 5. Schematic effects of naringenin on molecular targets of AD.

Epigallocatechin-3-gallate (EGCG), an ester of epigallocatechin and gallic acid, is the main bioactive polyphenol found in solid green tea extract [141,142]. EGCG has been reported to bypass the blood–brain barrier (BBB) and exert potent neuroprotective properties against AD, in a wide range of cell models [143]. Several works have shown that EGCG (5-15 mg/kg) reduces the accumulation of β amyloid able to interfere with the formation of β-sheets, the process involved in amyloid formation cascade [144,145]. EGCG promotes the non-amyloidogenic process by promoting a secrecetase cleavage and inhibiting β and γ secretase, by way of suppression of the ERK/NFkB pathway [146,147]. Sonawane et al. demonstrated the EGCG’s potential for dissolving pre-formed Tau filaments and oligomers in a time- and concentration-dependent manner; the IC50 for Tau aggregation by EGCG was found to be 64.2 μM [148]. Ehrnhoefer et al. have demonstrated that EGCG can convert mature Aβ fibrils into smaller forms free of toxicity, redirecting polypeptide aggregation into off-pathway protein assemblies [145]. In APP-C99-overexpressed cultured MC65 cells, EGCG (5–20 μM) is also able to suppress Aβ-induced neurotoxicity through GSK3β activation and inhibition of c-Abl/FE65 nuclear translocation [149]. In addition, it attenuates oxidative stress and mitochondrial impairment, and restores intracellular antioxidant levels in different neuronal cell lines and AD models [150]. More specifically, in EOC 13.31 microglial cell lines, EGCG (5–20 μM) suppresses the expression of TNFα, iNOS, IL-1β, and IL-6, and it inhibits the activation of the NF-Kβ and MAPK signal, but
increases the synthesis of GSH. Chi et al. demonstrated significant protection of EGCG (22.5–90 µM) against oxidative damage caused by H2O2 to chicken lymphocytes. After preincubation with EGCG, the compound restored H2O2’s harmful effects, suppressing the increase of ROS and restoring the antioxidant system by mRNA expression of SOD, CAT, and GPx [151]. EGCG enhances cholinergic neurotransmission through inhibition of AChE and BChE. ACh content was significantly elevated in a dose-dependent manner, which ultimately led to an improvement in the learning and memory function of AD rats [152]. In Figure 6 a schematic representation of the main activity of epigallocatechin-3-gallate is depicted.

Myricetin is a natural flavanol widely distributed in several vegetables and fruits, mainly including blackcurrant teas, red wines, and medical herbs [153–156]. Myricetin, mainly in the form of glycoside (O-glycosides), is also known as hydroxy quercetin because of its quercetin-like structure [157,158], from which it differs by one extra hydroxyl at the 5’-OH of the B ring. The compound has a wide range of beneficial effects on human health, including antihypertensive, antiallergic, analgesic, anti-inflammatory, immunomodulatory, antiproliferative, and aggregation activities [158–160]. Several studies have indicated the neuroprotective properties of myricetin, which are expressed through different molecular targets. Ramezani et al. have shown that intraperitoneal injection of myricetin, at a dose of 5 or 10 mg/kg over 21 days, improves learning and memory in rat models with AD [161]. Myricetin exhibits antiamyloidogenic activities; it reduces the formation of ordered Aβ aggregation through the formation of H-bonds between its hydroxyl group and the carbonyl group on the surface of the β sheet [162–164]. In this way, myricetin weakens the interstrand hydrogen bonds, inhibits the extension of fibrils of Aβ, and prevents Aβ from undergoing toxic changes [164–166]. Antiamyloidogenic activity is also supported by the compound’s ability to interact with α and β-secretase. In more detail, in cultured rat primary cortical neurons, myricetin (10 µM) has been shown to increase the α-secretase (ADAM10) level and enzyme activity, while it inhibits the activity of β-secretase (BACE-1) with an IC50 of 2.8 µM [167,168]. Chakraborty et al. have shown that an H-bond is created between the hydroxyl group in position C7 of the A ring of myricetin and the dyad of Asp 32 and 228 of BACE-1; in this way, the enzymatic activity is strongly reduced [168]. Moreover, myricetin shows significant antioxidant and free radical scavenging effects [156,157,159,169]. It has been reported that in murine models, myricetin (40 and 80 µM) can inhibit oxidative stress generation of ROS and myeloperoxidase, and depletion of glutathione and ATP. However, it restores the levels and activity of the main antioxidant enzymes, such as SOD, CAT, and GSHpox in animal models [159,170,171]. Treatment with 80 µM myricetin for 3 h increased cell viability to 81% ± 4.2% of isolated cardiomyocytes intoxicated with 20 µg/mL aluminum phosphide (AlP) [171]. The antioxidant power of myricetin is attributable to the pyrogallol group. The molecule tends to react with free radicals to form radical semiquinones; this ability helps to interrupt the chain of reactions triggered by ROS [172–174]. In addition, the compound has chelating properties on metal ions such as Cu^{2+} and Fe^{2+}; this, on the one hand, strongly enhances its antioxidant activity, because the Fenton reaction is inhibited and, consequently, the ROS generation is reduced. On the other
hand, myricetin acts directly on Aβ complexes, reducing their toxicity through the reduction in metal ions that can interact with them [175–177]. Myricetin inhibits lipopolysaccharide (LPS)-induced neuroinflammation, as it reduces the levels of proinflammatory mediators, including IL, NF-κB, TNFα, iNOS and COX2, in the microglia BV2 cell line. [178] Finally, other myricetin-like polyphenols, including gossypetin, also has inhibitory abilities against AChE [179,180]. In Figure 7, a schematic representation of the main activity of myricetin is depicted.

Figure 7. Schematic effects of myricetin on molecular targets of AD.

Gossypetin (3,5,7,8,3′,4′-hexahydroxy flavone) is a flavonol isolated from the flowers and the calyx of Hibiscus sabdariffa. Gossypetin has been shown to exert antioxidant, antimitogenic, antimicrobial, and anti-atherosclerotic activities [181–184]. Chen et al. [183], in murine macrophage cell line J774A.1, demonstrated that gossypetin (1–1000 μM) has inhibitory effects on both lipid peroxidation and lipoprotein oxidation, attenuating the formation of foam cells and lipid accumulation through PPAR pathways. The drug improves cholesterol removal from macrophages and delays atherosclerosis [183]. In addition, Lin et al. [184] demonstrated that gossypetin (0.1–0.5 μM) has inhibitory effects on abnormal vascular smooth muscle cell proliferation and migration, which could lead to the containment of atherosclerosis and other cardiovascular illnesses [184]. Inhibition of AChE and BChE activity, key enzymes in brain-related disorders, further emphasizes the therapeutic benefit of gossypetin for the treatment of AD [180,185].

Genistein (4′,5′,7-trihydroxyisoflavone) is an isoflavone distributed in several vegetables such as legumes, green peas, and peanuts, and is predominantly extracted from the Glycine max soybean [186,187]. Several researches point out genistein potential therapeutic role to delay the onset of Alzheimer’s dementia through the improve of cognitive function and synapse development [188]. In this context, Safahani et al. demonstrated that genistein supplementation modulates dopaminergic and cholinergic function, helping with memory recovery and neuroprotection in rats [189]. Genistein (10 mg/kg) protects against AD progression by reducing the production and deposition of Aβ aggregates, as well as the hyperphosphorylation of the Tau protein, in rat models [188,190,191]. Genistein protects against AD progression by reducing the generation and aggregation of Aβ. Seong et al. showed that the inhibitory activity (%) of genistein against the extent of Aβ25–35 self-aggregation, after 24 h of incubation, decreased by 34.90% when co-treated with 100 μM genistein [192]. In rat hippocampal neurons, the drug (0.375 μg/mL) downregulated pree-nilin levels, increased α secretase while decreasing β secretase and BACE1 activity, and, last but not least, modulated the PPARγ receptor to upregulate ApoE production [193–196]. In vitro genistein (0.391 mM) has been effectively proved to reduce oxidative stress, due to its high antioxidant power and potent ROS scavenger ability [197].

The antioxidant effects of genistein are associated with AMPK activation and the drug’s binding with estrogen receptor α (ERα), both of which promote the expression of antioxidant enzymes such as SOD, CAT, and GPx [198–200]. Moreover, in RAW 264.7 cell model, genistein (20 mM) prevents neuro-inflammation by regulating gene transcription of cytokines, such as TNFα, IL-1β, IL-6, and IL-12 [201,202]. Finally, Fang et al., 2014, demonstrated the inhibitory activity of AChE by two genistein derivatives, highlighting the therapeutic potentiality of this isoflavone [203].
Apigenin (4′,5,7-trihydroxyflavone) formally belongs to the flavone subclass, and is widely distributed in the plant kingdom, present principally in chamomile flowers, and in lower concentrations in vegetables, citrus fruits, herbs, and plant-based beverages (tea, beer, and wine) [204]. In a rat model of AD, apigenin (50 mg/kg) significantly reduced the hyperphosphorylation of tau levels in the hippocampus, decreasing the expression of GSK-3β, suppressing BACE1 expression, and supporting an anti-amyloidogenic activity [205]. The drug (25 μM in human THP-1 monotypic cells) inhibits the production of IL-6 and IL-1β by modulating the MAPK/ERK and PI3-K/Akt signal transduction pathways associated with neuronal survival blocking [206–208]. Apigenin decreases ROS levels and significantly increases GSH levels, improving the cellular antioxidant defense system [209,210].

Cyanidin 3-O-glucoside belongs to the anthocyanins class; it is present in plants such as berries and soybean fruits, where it is responsible for the red, purple, and blue pigments. Cyanidin has been reported to act as neuroprotector in several disorders, such as AD, Parkinson’s disease, and multiple sclerosis [211–215]. The anti-AD effect is evidenced in the inhibition of Aβ amyloid accumulation. Cyanidin could directly interact with Aβ peptide through hydrogen bonds responsible for Aβ aggregation and fibrils formation [216]. In addition, Thummayot et al. (2014, 2016) demonstrated that, in human neuroblastoma (SK-N-SH) cells, cyanidin (20 μM) decreases Aβ-induced apoptosis of SK-N-SH cells by decreasing the expression levels of several proteins. This facilitates the release of the pro-apoptotic factors required for caspase cascade activation [217,218]. The neuroprotective effects of cyanidin may also be mediated via inhibition of oxidative stress and pro-inflammatory cytokines release. The compound is a scavenger of radical activity, a strong inhibitor of intracellular ROS generation, and an enhancer of the cellular antioxidant system. It has been demonstrated that pretreatment of the cells with cyanidin improved the expression of antioxidant enzymes, namely SOD, CAT, and GPx [219–221]. Moreover, Kaewmool et al. showed that, in LPS-stimulated BV2 microglia, cyanidin (2.5–10 mM) inhibits the signaling pathways NF-κB and p38, while MAPK suppresses the production of interleukin-1β (IL-1β) and interleukin-6 (IL-6) and subregulates the gene expressions of iNOS and COX-2 in BV2 cells [222]. In Table 1, the reported data from the in vitro and in vivo studies are described.

Unfortunately, there is still a lack of translational research and clinical evidence for these promising compounds, and we found only one clinical trial, which began in 2022 and will finish in 2024, studying the efficacy and safety of the Flos Gossypii flavonoid tablet in the treatment of Alzheimer’s disease [223]. A total of 240 patients (male and female), aged between 50 to 85 years old, who meet the diagnostic criteria of “likely AD dementia” of the National Institute on Aging—Alzheimer’s Disease Association, are primary school graduates/graduates and above, and have the ability to complete the cognitive ability test and other tests specified in the program will be enrolled. The study proposed a multicenter, randomized, double-blind, placebo-controlled, parallel method to recruit AD patients in order to confirm the efficacy and safety of the Flos Gossypii Flavonoid Tablet. This Phase II clinical trial aims to demonstrate the efficacy and safety of the Flos Gossypii Flavonoid Tablet in the treatment of mild to moderate Alzheimer’s disease (marinus sea deficiency/brain collateral stasis syndrome). The study will monitor changes in AD patients’ general cognitive and daily living activities, different cognitive domain functions, and symptom gravity. The Primary Outcome Measure is the assessment of the Alzheimer’s Disease Scale—Cognitive section (ADAS-cog/11) based on the change from baseline ADAS-cog scores to those at Week 26. It also checks the differences between the low-dose and high-dose groups in the changes in ADAS cog/11 scores (relative to baseline) at weeks 13 and 26, when compared to the placebo group. Seven components will be utilized for the assessment of ADAS-cog cognitive function: word recall, instruction, structural practice, naming, conceptual practice, orientation, and word recognition. The total score ranges from 0 to 70, with lower scores representing milder disease progression. The secondary outcomes include: mini-mental state examination, Alzheimer’s disease cooperative study—activities of daily living, clinician interview-based impression of severity, neuropsychiatric inventory, and dementia syndrome classification scale.
Table 1. Preclinical studies of flavonoids and their neuroprotective role against Alzheimer’s disease.

Flavonoids	Molecular Targets	Model	Dose	References
Quercetin	Regulates MAPK signaling	HT22 cells	5 µmol/L	[103]
	Decreases phosphorylation of Tau protein			
	Reduces apoptosis and caspase 3 activation	PC-12 cell line	500 µM	[108]
	Restores antioxidant cellular defenses	Gerbili’s CA1 pyramidal neurons, HepG2 cells, C57BL/6j mice	20 mg/kg, 50 µM 1% quercetin diet	[113–116]
Naringerin	Decreases phosphorylation of Tau protein	PC12 cells	400 µM	[128–130]
	Reduces apoptosis and caspase 3 activation	Rat pups	50–100 mM	[128–131]
	Decreases the inflammatory pathway	Male rats, glial cells	20 mg/kg/day, 0.1–0.3 µmol/L	[132–135]
	Regulates the MAPK signaling pathway	BV-2 microglial cell line	100 mM	[136]
	Improves the antioxidant system	C57BL/6j mice	25–100 mg/kg	[137–140]
Epigallocatechin-3-gallate	Reduces the accumulation of b amyloid	mice P8 (SAMP8), SweAPP N2 a cells, mouse model, MC65 cells	5–15 mg/kg/day, 20 mM, 1–3 mg/kg, 5–20 µM	[144–148]
	Restores antioxidant cellular defenses	EOC 13.31 microglial cell line, chicken lymphocytes	5–20 µM, 22.5–90 µM	[149,150]
Myricetin	Improves learning and memory	Rat models	5 or 10 mg/kg	[160]
	Decreases Ab aggregation			
	Regulates a and b secretase activity	rat primary cortical neurons	10 µM	[166]
	Inhibits oxidative stress	Murine models	40–80 µM	[158,169,170]
Gossypetin	Inhibits lipid peroxidation	Murine macrophage cell line J77A.1	1–1000 µM	[182]
	Fights against Atherosclerosis	vascular smooth muscle cells	0.1–0.5 µM	[183]
Genistein	Reduces the production and deposition of Ab aggregates	Rat model	10 mg/kg	[187–189]
	Prevents Tau hyperphosphorylation	Rat model	10 mg/kg	[190]
	Regulates a and b secretase activity	Rat hippocampal neurons	0.375 µg/mL	[194]
	Prevents neuro-inflammation	RAW 264.7 cell model	20 µM	[199]
Apigenin	Reduces Tau hyperphosphorylation	Rat model	50 mg/kg	[203]
	Inhibits the production of IL-6 and IL-1b	Human THP-1 monotypic cells	25 µM	[204–206]
	Regulates NF-κB and p38 MAPK signaling pathways	LPS-stimulated BV2 microglia	2.5–10 mM	[220]
Cyanidin				

References:
- [103], [104], [108], [113–116], [118,119], [128–130], [128–131], [132–135], [136], [137–140], [144–148], [149,150], [156–160], [162–166], [158,169,170], [166], [182], [183], [187–189], [190], [194], [199], [203], [204–206], [220].
4. Conclusions

This review provides evidence that flavonoids have potential for treating AD, and are considered drug candidates for future clinical research. Although precise mechanisms are still unclear, flavonoids regulate several important physiological responses, which may contribute to neuroprotective effects in AD. The advantage of flavonoids over conventional targeting drugs is the possibility of administering these molecules as food supplements. Supplementation with flavonoids could allow for early protection, even at a young age. They can also be used without the need for a preclinical diagnosis, due to their low toxicity. Certainly, further long-term dietary intervention studies indicating the dosage and the times of drug assumption may contribute to fully evaluating the effectiveness of flavonoids as agents for the management of AD. It will be important to incorporate bioavailability and metabolism into experimental planning at all stages of preclinical research, in order to better clarify such mechanisms in vivo.

Author Contributions: A.C., G.L., G.T.P., F.M. and S.F. performed the literature review and drafted the paper; D.B. critically revised the paper and provided funding; D.B., F.M. and E.T. conceived the study and critically revised the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

Alzheimer disease (AD);
Presenilin1 (PS1);
Presenilin 2 (PS2);
Amyloid Precursor Protein (APP);
Apolipoprotein E (ApoE);
Amyloid beta peptide (Aβ);
Intraneuronal Neurofibrillary Tangles (NFTs);
Central Nervous System (CNS);
malondialdehyde (MDA);
4-hydroxynonenal (4-HNE);
Mild Cognitive Impairment (MCI);
Reactive Oxygen Species (ROS);
Carbonyl formation 3-nitrotyrosine (3-NT);
superoxide dismutase (SOD);
red blood cells (RBC);
Reactive Nitrogen Species (RNS);
AMP Activated Protein Kinase (AMPK);
Glycogen Synthase Kinase 3 beta (GSK3β);
cyclin-dependent kinase 5 (cdk5);
Protein Phosphatase 2A (PP2A);
nitric oxide synthase (NOS);
Peroxisome proliferator-activated receptor-γ coactivator (PGC-1α);
glutathione (GSH);
catalase (CAT);
glutathione peroxidase (GPx);
Acetylcholinesterase (AchE);
Butyrylcholinesterase (BchE);
Acetylcholine (ACh); nuclear factor-kB (NF-kB); tumor necrosis factor-α (TNF-α); interleukin (IL); sirtuin 1 (SIRT1); inducible nitric oxide synthase (iNOS); cyclooxygenase 2 (COX-2); glutathione reductase (GR); hydrogen peroxide (H$_2$O$_2$); Epigallocatechin-3-gallate (EGCG), blood–brain barrier (BBB).

References

1. Vermunt, L.; Sikkes, S.A.M.; van den Hout, A.; Handels, R.; Bos, I.; van der Flier, W.M.; Kern, S.; Ousset, P.-J.; Maruff, P.; Skoog, I.; et al. Duration of preclinical, prodromal, and dementia stages of Alzheimer’s disease in relation to age, sex, and APOE genotype. *Alzheimers Dement.* 2019, 15, 888–898. [PubMed]

2. Bateman, R.J.; Xiong, C.; Benzinger, T.L.S.; Fagan, A.M.; Goate, A.; Fox, N.C.; Marcus, D.S.; Cairns, N.J.; Xie, X.; Blazey, T.M.; et al. Dominantly Inherited Alzheimer Network. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. *N. Engl. J. Med.* 2012, 367, 795–804. [PubMed]

3. Ondrejka-VELLOSO, J.C.; Gonçalves, M.C.B.; Naaldijk, Y.; Oliveira-Giacomelli, A.; Pillat, M.M.; Ulrich, H. Pathophysiology in the comorbidity of bipolar disorder and Alzheimer’s disease: Pharmacological and stem cell approaches. *Prog. Neuro-Psychopharmac. Biol. Psych.* 2018, 80, 34–53.

4. Kamal, Z.; Ullah, F.; Ayaz, M.; Sadiq, A.; Ahmad, S.; Zeb, A.; Hussain, A.; Imran, M. Anticholinesterase and antioxidant investigations of crude extracts, subsequent fractions, saponins and flavonoids of Atriplex laciniata L.: Potential effectiveness in Alzheimer’s and other neurological disorders. *Biol. Res.* 2015, 48, 21.

5. Ullah, F.; Ayaz, M.; Sadiq, A.; Hussain, A.; Ahmad, S.; Imran, M.; Zeb, A. Phenolic, flavonoid contents, anticholinesterase and antioxidant evaluation of Iris germanica var; florentina. *Nat. Prod. Res.* 2016, 30, 1440–1444.

6. Duyckaerts, C.; Delateur, B.; Potier, M.-C. Classification and basic pathology of Alzheimer disease. *Acta Neuropathol.* 2009, 118, 5–36.

7. McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R.; Jr; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. *Alzheimers Dement.* 2011, 7, 263–269.

8. Rakesh, G.; Szabo, S.T.; Alexopoulos, G.S.; Zannas, A.S. Strategies for dementia prevention: Latest evidence and implications. *Ther. Adv. Chronic. Dis.* 2017, 8, 121–136.

9. Hu, N.; Yu, J.-T.; Tan, L.; Wang, Y.-L.; Sun, L.; Tan, L. Nutrition and the risk of Alzheimer’s disease. *BioMed. Res. Int.* 2013, 2013, 524820.

10. Tellone, E.; Galtieri, A.; Russo, A.; Ficarra, S. Protective effects of the caffeine against neurodegenerative diseases. *Curr. Med. Chem.* 2019, 25, 5137–5151.

11. Talarek, S.; Listos, J.; Barreca, D.; Tellone, E.; Sureda, A.; Nabavi, S.F.; Braidy, N.; Nabavi, S.M. Neuroprotective effects of honokiol: From chemistry to medicine. *Biofactors* 2017, 43, 760–769. [CrossRef] [PubMed]

12. Barreca, D.; Currò, M.; Bellocco, E.; Ficarra, S.; Laganà, G.; Tellone, E.; Laura Giunta, M.; Visalli, G.; Caccamo, D.; Galtieri, A.; et al. Neuroprotective effects of phloretin and its glycosylated derivative on rotenone-induced toxicity in human SH-SYSY neuronal-like cells. *Biofactors* 2017, 43, 549–557. [CrossRef]

13. Tellone, E.; Galtieri, A.; Russo, A.; Ficarra, S. How does resveratrol influence the genesis of some neurodegenerative diseases? *Neural Regen Res.* 2017, 11, 86–87. [PubMed]

14. Carelli-Alinovi, C.; Ficarra, S.; Russo, A.M.; Giunta, E.; Barreca, D.; Galtieri, A.; Misiti, F.; Tellone, E. Involvement of acetylcholinesterase and protein kinase C in the protective effect of caffeine against β-amyloid-induced alterations in red blood cells. *Biochimie* 2016, 121, 52–59. [CrossRef] [PubMed]

15. Tellone, E.; Galtieri, A.; Russo, A.; Giardina, B.; Ficarra, S. Resveratrol: A Focus on Several Neurodegenerative Diseases. *Oxidative Med. Cell Longev.* 2015, 2015, 392169. [CrossRef]

16. Jones, D.P. Redefining oxidative stress. *Antioxid. Redox Signal.* 2006, 8, 1865–1879. [CrossRef]

17. Halliwell, B. Antioxidants and human disease: A general introduction. *Nutr. Rev.* 1997, 55, S44–S49. [CrossRef]

18. Smith, M.A.; Harris, P.L.R.; Sayre, L.M.; Perry, G. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. *Proc. Natl Acad. Sci. USA* 1997, 94, 9866–9868. [CrossRef]

19. Butterfield, D.A.; Boyd-Kimball, D. Amyloid beta-peptide (1–42) contributes to the oxidative stress and neurodegeneration found in Alzheimer disease brain. *Brain Pathol.* 2004, 14, 426–432. [CrossRef]

20. Pratico, D.; Delanty, N. Oxidative injury in diseases of the central nervous system: Focus on Alzheimer’s disease. *Am. J. Med.* 2000, 109, 577–585. [CrossRef]
21. Li, F.; Calingasan, N.Y.; Yu, F.; Mauck, W.M.; Toidze, M.; Almeida, C.G.; Takahashi, R.H.; Carlson, G.A.; Flint Beal, M.; Lin, M.T.; et al. Increased plaque burden in brains of APP mutant MnSOD heterozygous knockout mice. *J. Neurochem.* 2004, 89, 1308–1312. [CrossRef] [PubMed]

22. Nishida, Y.; Yokota, T.; Takahashi, T.; Uchihara, T.; Jishage, K.-I.; Mizusawa, H. Deletion of vitamin E enhances phenotype of Alzheimer disease model mouse. *Biochem. Biophys. Res. Comm.* 2006, 350, 530–536. [CrossRef] [PubMed]

23. Tamagno, E.; Bardini, P.; Abbili, A.; Vitali, A.; Borghi, R.; Zaccheo, D.; Pronzato, M.A.; Danni, O.; Smith, M.A.; Perry, G.; et al. Oxidative stress increases expression and activity of BACE in NT2 neurons. *Neurobiol. Dis.* 2002, 10, 279–288. [CrossRef] [PubMed]

24. Fukumoto, H.; Cheung, B.S.; Hyman, B.T.; Irizarry, M.C. Alzheimer disease. *Arch. Neurol.* 2002, 59, 1381–1389. [CrossRef] [PubMed]

25. Carelli-Alinovi, C.; Misiti, F. Methionine 35 sulphoxide reduces toxicity of Aβ in red blood cell. *Eur. J. Clin. Investig.* 2017, 47, 314–321. [CrossRef] [PubMed]

26. Lovell, M.A.; Ehmann, W.D.; Mattson, M.P.; Markesbery, W.R. Elevated 4-hydroxynonenal in ventricular fluid in Alzheimer’s disease. *Neurobiol. Aging* 1997, 18, 457–461. [CrossRef]

27. Zaman, Z.; Roche, S.; Fielden, P.; Frost, P.G.; Niriella, D.C.; Cayley, A.C. Plasma concentrations of vitamins A and E and carotenoids in Alzheimer’s disease. *Age Aging* 1992, 21, 91–94. [CrossRef]

28. Puertas, M.C.; Martinez-Martos, J.M.; Cobo, M.P.; Carrera, M.P.; Mayas, M.D.; Ramirez-Exposito, M.J. Plasma oxidative stress parameters in men and women with early stage Alzheimer type dementia. *Exp. Gerontol.* 2012, 47, 625–630. [CrossRef]

29. Cervellati, C.; Romani, A.; Seripa, D.; Cremonini, E.; Bosi, C.; Magon, S.; Bergamini, C.M.; Valacchi, G.; Pilotto, A.; Zuliani, G. Systemic oxidative stress and conversion to dementia of elderly patients with mild cognitive impairment. *Biomed. Res. Int.* 2014, 2014, 309507. [CrossRef]

30. Dean, R.T.; Fu, S.; Stocker, R.; Davies, M.J. Biochemistry and pathology of radical-mediated protein oxidation. *Biochem. J.* 1997, 324, 1–18. [CrossRef]

31. Retz, W.; Gesell, W.; Munch, G.; Rosler, M.; Riederer, P. Free radicals in Alzheimer’s disease. *J. Neural. Transm. Suppl.* 1998, 54, 221–236. [PubMed]

32. Aksenova, M.V.; Aksenov, M.Y.; Payne, R.M.; Trojanowski, J.Q.; Schmidt, K.L.; Carney, J.M.; Butterfield, D.A.; Markesbery, W.R. Oxidation of cytosolic proteins and expression of creatine kinase BB in frontal lobe in different neurodegenerative disorders. *Dement. Geriatr. Cogn. Disord.* 1999, 10, 158–165. [PubMed]

33. Arslan, J.; Jamshed, H.; Qureshi, H. Early Detection and Prevention of Alzheimer’s Disease: Role of Oxidative Markers and Natural Antioxidants. *Front. Aging Neurosci.* 2020, 12, 231. [CrossRef] [PubMed]

34. Rinaldi, P.; Polidori, M.; Metastasio, A.; Mariani, E.; Mattioli, P.; Cherubini, A.; Catani, M.; Cecchetti, R.; Senin, U.; Mecocci, P. Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer’s disease. *Neurobiol. Aging* 2003, 24, 915–919. [CrossRef] [PubMed]

35. Baldeiras, I.; Santana, I.; Proença, M.T.; Garruco, M.H.; Pascoal, R.; Rodrigues, A.; Duro, D.; Oliveira, C.R. Oxidative damage and progression to Alzheimer’s disease in patients with mild cognitive impairment. *J. Alzheimers Dis.* 2010, 21, 1165–1177. [CrossRef]

36. Chico, L.; Simoncini, C.; Gerfo, A.L.; Rocchi, A.; Petrozzi, A.; Carlesi, C.; Volpi, L.; Tognoni, G.; Siciliano, G.; Bonuccelli, U. Oxidative stress and APO E polymorphisms in Alzheimer’s disease and in mild cognitive impairment. *Free Radic. Res.* 2013, 47, 569–576. [CrossRef]

37. Torres, L.L.; Quaglio, N.B.; de Souza, G.T.; Garcia, R.T.; Dati, L.M.M.; Moreira, W.L.; Loureiro, A.P.D.M.; de Souza-Talarico, J.N.; Smid, J.; Porto, C.S.; et al. Peripheral oxidative stress biomarkers in mild cognitive impairment and Alzheimer’s disease. *J. Alzheimers Dis.* 2011, 26, 59–68. [CrossRef]

38. Chen, M.; Inestrosa, G.S.; Ross, H.L.; Fernandez, H.L. Platelets are the primary source of amyloid β-peptide in human blood. *Biochem. Biophys. Res. Commun.* 1995, 213, 96–103. [CrossRef]

39. Seubert, P.; Vigo-Pelfrey, C.; Esch, F.; Lee, M.; Dovey, H.; Davis, D.; Sinha, S.; Schioosmacher, M.; Whaley, J.; Swindlehurst, C.; et al. Isolation and quantification of soluble Alzheimer’s β-peptide from biological fluids. *Nature* 1992, 359, 325–327. [CrossRef]

40. Clementi, M.E.; Giardina, B.; Colucci, D.; Galtieri, A.; Misiti, F. Amyloid-β peptide affects the oxygen dependence of RBC metabolism: A role for caspase 3. *Int. J. Biochem. Cell Biol.* 2007, 39, 727–735. [CrossRef]

41. Carelli-Alinovi, C.; Pirolle, D.; Giardina, B.; Misiti, F. Protein kinase C mediates caspase 3 activation: A role for erythrocyte morphology changes. *Clin. Hemorheol. Microcirc.* 2015, 59, 345–354. [CrossRef] [PubMed]

42. Jabir, N.R.; Khan, F.R.; Tabrez, S. Cholinesterase targeting by polyphenols: A therapeutic approach for the treatment of Alzheimer’s disease. *CNS Neurosci Ther.* 2018, 24, 753–762. [CrossRef] [PubMed]

43. Havsteen, B.H. The biochemistry and medical significance of the flavonoids. *Pharmacol. Ther.* 2002, 96, 67–202. [PubMed]

44. Grosso, C.; Valentão, P.; Ferreres, F.; Andrade, P. The use of flavonoids in central nervous system disorders. *Curr. Med. Chem.* 2013, 20, 4694–4719. [CrossRef] [PubMed]

45. Kelsey, N.A.; Wilkins, H.M.; Linseman, D.A. Nutraceutical antioxidants as novel neuroprotective agents. *Molecules* 2010, 15, 7792–7814. [CrossRef]

46. Li, J.K.; Jiang, Z.T.; Li, R.; Tan, J. Investigation of antioxidant activities and free radical scavenging of flavonoids in leaves of Polygonum multiflorum Thumb. *China Food Addit.* 2012, 2, 69–74.
74. Horniblow, R.D.; Henesy, D.; Iqbal, T.H.; Tselepis, C. Modulation of iron transport, metabolism and reactive oxygen status by quercetin-iron complexes in vitro. *Mol. Nutr. Food Res.* 2016, 61, 1600692. [CrossRef] [PubMed]
75. Milicevic, A.; Raos, N. Modelling of Protective Mechanism of Iron(II)-polyphenol Binding with OH-related Molecular Descriptors. *Crust. Chem. Acta* 2016, 89, 89. [CrossRef]
76. Symonowicz, M.; Kolanek, M. Flavonoids and their properties to form chelate complexes. *Biotechnol Food Sci.* 2012, 76, 35–41.
77. Cherrak, S.A.; Mokhtari-Soulimane, N.; Berroukeche, F.; Bensenane, B.; Cherbonnel, A.; Merzouk, H.; Elhabiri, M. In Vitro Antioxidant versus Metal Ion Chelating Properties of Flavonoids: A Structure-Activity Investigation. *PLoS ONE* 2016, 11, e0165575. [CrossRef]
78. Perez, C.A.; Wei, Y.; Guo, M. Iron-binding and anti-Fenton properties of baicalein and baicalin. *J. Inorg. Biochem.* 2009, 103, 326–332. [CrossRef]
79. Kim, Y.A.; Tarahovsky, Y.S.; Yangolnik, E.A.; Kuznetsova, S.M.; Muzafarov, E.N. Integration of Quercetin-Iron Complexes into Phosphatidylcholine or Phosphatidylethanolamine Liposomes. *Appl. Biochem. Biotech.* 2015, 176, 1904–1913. [CrossRef]
80. Kostyuk, V.A.; Potapovich, A.; Vladykovskaya, E.; Korkina, L.; Afanas’ev, I. Influence of Metal Ions on Flavonoid Protection against Asbestos-Induced Cell Injury. *Arch. Biochem. Biophys.* 2001, 385, 129–137. [CrossRef]
81. Lee-Hilz, Y.Y.; Boerboom, A.M.J.; Westphal, A.H.; van Berkel, W.J.; Aarts, J.M.; Rietjens, I.M. Pro-oxidant activity of flavonoids induces epru-mediated gene expression. *Chem. Res. Toxicol.* 2006, 19, 1499–1505. [CrossRef] [PubMed]
82. Speisky, H.; Shahidi, F.; Costa de Camargo, A.; Fuentes, J. Revisiting the oxidation of flavonoids: Loss, conservation or enhancement of their antioxidant properties. *Antioxidants* 2022, 11, 133. [CrossRef] [PubMed]
83. Nagao, A.; Seki, M.; Kobayashi, H. Inhibition of xanthine oxidase by soy isoflavones: Evidence of isoflavones as redox inhibitors. *Arch. Biochem. Biophys.* 2007, 461, 176–185. [CrossRef] [PubMed]
84. Ribeiro, D.; Freitas, M.; Tomé, S.M.; Silva, A.M.S.; Laufer, S.; Lima, J.L.F.C.; Fernandes, E. Flavonoids Inhibit COX-1 and COX-2 enzymes and cytokine/chemokine production in human whole blood. *Inflammation* 2014, 38, 858–870. [CrossRef] [PubMed]
85. Costa, L.G.; Garrick, J.M.; Roque, P.J.; Pellacani, C. Mechanisms of neuroprotection by quercetin: Counteracting oxidative stress andmore. *Oxidative Med. Cell. Long.* 2016, 2016, 2986796.
86. Attr, A. Current and future treatments in Alzheimer’s disease. *Semin. Neurol.* 2019, 39, 227–240. [CrossRef] [PubMed]
87. Storr, T. Multifunctional compounds for the treatment of Alzheimer’s disease. *Can. J. Chem.* 2021, 99, 1–9. [CrossRef]
88. Elmann, A.; Kohen, R.; Kanner, J. Polyphenols activate nrf2 in astrocytes via h2o2, semiquinones, and quinones. *Free Radic. Biol. Med.* 2011, 51, 2319–2327. [CrossRef] [PubMed]
89. Lee-Hilz, Y.Y.; Boerboom, A.M.J.; Westphal, A.H.; van Berkel, W.J.; Aarts, J.M.; Rietjens, I.M. Pro-oxidant activity of flavonoids induces epru-mediated gene expression. *Chem. Res. Toxicol.* 2006, 19, 1499–1505. [CrossRef] [PubMed]
90. Speisky, H.; Shahidi, F.; Costa de Camargo, A.; Fuentes, J. Revisiting the oxidation of flavonoids: Loss, conservation or enhancement of their antioxidant properties. *Antioxidants* 2022, 11, 133. [CrossRef] [PubMed]
91. Mahesha, H.; Singh, S.A.; Rao, A.A. Inhibition of lipoygenase by soy isoflavones: Evidence of isoflavones as redox inhibitors. *Arch. Biochem. Biophys.* 2007, 461, 176–185. [CrossRef] [PubMed]
92. Ribeiro, D.; Freitas, M.; Tomé, S.M.; Silva, A.M.S.; Laufer, S.; Lima, J.L.F.C.; Fernandes, E. Flavonoids Inhibit COX-1 and COX-2 enzymes and cytokine/chemokine production in human whole blood. *Inflammation* 2014, 38, 858–870. [CrossRef] [PubMed]
93. Nagao, A.; Seki, M.; Kobayashi, H. Inhibition of xanthine oxidase by soy isoflavones: Evidence of isoflavones as redox inhibitors. *Arch. Biochem. Biophys.* 2007, 461, 176–185. [CrossRef] [PubMed]
94. Ribeiro, D.; Freitas, M.; Tomé, S.M.; Silva, A.M.S.; Laufer, S.; Lima, J.L.F.C.; Fernandes, E. Flavonoids Inhibit COX-1 and COX-2 enzymes and cytokine/chemokine production in human whole blood. *Inflammation* 2014, 38, 858–870. [CrossRef] [PubMed]
95. Mahesha, H.; Singh, S.A.; Rao, A.A. Inhibition of lipoygenase by soy isoflavones: Evidence of isoflavones as redox inhibitors. *Arch. Biochem. Biophys.* 2007, 461, 176–185. [CrossRef] [PubMed]
96. Ribeiro, D.; Freitas, M.; Tomé, S.M.; Silva, A.M.S.; Laufer, S.; Lima, J.L.F.C.; Fernandes, E. Flavonoids Inhibit COX-1 and COX-2 enzymes and cytokine/chemokine production in human whole blood. *Inflammation* 2014, 38, 858–870. [CrossRef] [PubMed]
97. Nagao, A.; Seki, M.; Kobayashi, H. Inhibition of xanthine oxidase by flavonoids. *Biosci. Biotechnol. Biochem.* 1999, 63, 1787–1790. [CrossRef] [PubMed]
98. Bohmont, C.; Aaronson, L.M.; Mann, K.; Pardini, R.S. Inhibition of mitochondrial NADH oxidase, succinoxidase, and ATPase by naturally occurring flavonoids. *J. Nat. Prod.* 1987, 50, 427–433. [CrossRef] [PubMed]
99. Kejik, Z.; Kaplánek, R.; Masarík, M.; Babula, P.; Matkowski, A.; Filipenský, P.; Veselá, K.; Gburek, J.; Sýkora, D.; Martásek, P.; et al. Iron Complexes of Flavonoids-Antioxidant Capacity and beyond. *Int. J. Mol. Sci.* 2021, 22, 646. [CrossRef] [PubMed]
100. Spencer, J.P.; Vafeiadou, K.; Williams, R.J.; Vauzour, D. Neuroinflammation: Modulation by flavonoids and mechanisms of action. *Mol. Asp. Med.* 2012, 33, 83–97. [CrossRef] [PubMed]
101. Babaei, F.; Mirzababaei, M.; Nassiri-Asl, M. Quercetin in food: Possible mechanisms of its effect on memory. *J. Food Sci.* 2018, 83, 2280–2287. [CrossRef] [PubMed]
102. Costa, L.G.; Garrick, J.M.; Roque, P.J.; Pellacani, C. Mechanisms of neuroprotection by quercetin: Counteracting oxidative stress andmore. *Oxidative Med. Cell. Long.* 2016, 2016, 2986796.
103. Weinreb, O.; Mandel, S.; Amit, T.; Youdim, M.B. Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases. *Natur. Biochem.* 2004, 15, 506–516. [CrossRef] [PubMed]
104. Khan, A.; Ali, T.; Rehman, S.U.; Khan, M.S.; Alam, S.I.; Ikram, M.; Muhammad, T.; Saeed, K.; Badshah, H.; Kim, M.O. Neuroprotective effect of quercetin against the detrimental effects of LPS in the adult mouse brain. *Front. Pharmacol.* 2018, 9, 1–16. [CrossRef] [PubMed]
105. Sandhir, R.; Mehrotra, A. Quercetin supplementation is effective in improving mitochondrial dysfunctions induced by 3-nitropropionic acid: Implications in Huntington’s disease. *Bioch. Biophys. Acta* 2013, 1832, 421–430. [CrossRef] [PubMed]
106. Hébert, S.S.; Papadopoulo, A.S.; Smith, P.; Galas, M.C.; Planel, E.; Silahtaroglu, A.N.; Sergeant, N.; Buée, L.; De Strooper, B. Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. *Hum. Mol. Genet.* 2010, 19, 3959–3969. [CrossRef] [PubMed]
107. Sergeant, N.; Bretteville, A.; Hamdane, M.; Caillet-Boudin, M.L.; Grognet, P.; Bombois, S.; Blum, D.; Delacourt, A.; Pasquier, F.; Vanmechelen, E.; et al. Biochemistry of tau in Alzheimer’s disease and related neurological disorders. *Expert Rev. Proteom.* 2008, 5, 207–224. [CrossRef] [PubMed]
103. Zu, G.; Sun, K.; Li, L.; Zu, X.; Han, T.; Huang, H. Mechanism of quercetin therapeutic targets for Alzheimer disease and type 2 diabetes mellitus. Nat. Sci. Rep. 2021, 11, 22959. [CrossRef] [PubMed]

104. Jiang, W.; Luo, T.; Li, S.; Zhou, Y.; Shen, X.Y.; He, F.; Xu, J.; Wang, H.Q. Quercetin protects against okadaic acid-induced injury via MAPK and PI3K/Akt/GSK3β signaling pathways in HT22 hippocampal neurons. PLoS ONE. 2016, 11, e0152371. [CrossRef] [PubMed]

105. Vingtdeux, V.; Giliberto, L.; Zhao, H.; Chandakkar, P.; Wu, Q.; Simon, E.M.; Lobo, J.; Ferruzzi, M.G.; Davies, P.; et al. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-beta peptide metabolism. J. Biol. Chem. 2010, 285, 9100–9113. [CrossRef]

106. Samuels, I.S.; Karlo, J.C.; Faruzzi, A.N.; Pickering, K.; Herrup, K.; Sweatt, J.D.; Saitta, S.C.; Landreth, G.E. Deletion of ERK2 mitogen-activated protein kinase identifies its key roles in cortical neurogenesis and cognitive function. J. Neurosci. 2008, 28, 6983–6995. [CrossRef]

107. Hu, S.; Cui, W.; Mak, S.; Tang, J.; Choi, C.; Pang, Y.; Han, Y. Bis(propyl)-cognitin protects against glutamate induced neurotoxicity via concurrent regulation of NO, MAPK/ERK and PI3-K/Akt/GSK3β pathways. Neurochem. Int. 2013, 62, 468–477. [CrossRef]

108. Bao, D.; Wang, J.; Pang, X.; Liu, H. Protective effect of quercetin against oxidative stress-induced cytotoxicity in rat pheochromocytoma (PC-12) cells. Molecules 2017, 22, 1122. [CrossRef]

109. St-Pierre, J.; Drori, S.; Uldry, M.; Silvaggi, J.M.; Rhee, J.; Jäger, S.; Handschin, C.; Zheng, K.; Lin, J.; Yang, W.; et al. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 2006, 127, 397–408. [CrossRef]

110. Qin, W.; Haroutunian, V.; Katsel, P.; Cardozo, C.P.; Ho, L.; Buxbaum, J.D.; Pasinetti, G.M. PGC-Ialpha expression decreases in the Alzheimer disease brain as a function of dementia. Arch. Neurol. 2009, 66, 352–361. [CrossRef]

111. Sen, N.; Satija, Y.K.; Das, S. PGC-1a, a Key Modulator of p53, Promotes cell survival upon metabolic stress. J. Biol. Chem. 2006, 281, 20919–20928. [CrossRef] [PubMed]

112. Vigneron, A.; Vousde, K.H. p53, ROS and senescence in the control of aging. Aging 2010, 2, 471–474. [CrossRef] [PubMed]

113. Chen, B.H.; Park, J.H.; Ahn, J.H.; Cho, J.H.; Kim, I.H.; Lee, J.C.; Won, M.H.; Lee, C.H.; Hwang, I.K.; Kim, J.D.; et al. Pretreated quercetin protects gerbil hippocampal CA1 pyramidal neurons from transient cerebral ischemic injury by increasing the expression of antioxidant enzymes. Neuronal Regen. Res. 2012, 17, 220–227. [PubMed]

114. Prasad, J.; Bithaluru, I.; Sharma, A.K.; Dutta, P.; Prasad, D.; Singh, S.B. Quercetin reverses hypobaric hypoxia-induced hippocampal neurodegeneration and improves memory function in the rat. High Alt. Med. Biol. 2013, 14, 383–394. [CrossRef] [PubMed]

115. Kobori, M.; Takahashi, Y.; Akimoto, Y.; Sakurai, M.; Matsunaga, L.; Nishimuro, H.; Ippoushi, K.; Oike, H.; Ohnishi-Kameyama, M. Chronic high intake of quercetin reduces oxidative stress and induces expression of the antioxidant enzymes in the liver and visceral adipose tissues in mice. J. Funct. Foods. 2015, 15, 551–560. [CrossRef]

116. Belen Granado-Serrano, A.; Angeles Martin, M.; Bravo, L.; Goya, L.; Ramos, S. Quercetin modulates Nrf2 and glutathione-related defenses in HepG2 cells: Involvement of p38. Chem. Biol. Interact. 2012, 195, 154–164. [CrossRef]

117. Hung, C.H.; Chan, S.H.; Chu, P.M.; Tsai, K.L. Quercetin is a potent anti-atherosclerotic compound by activation of SIRT1 signaling under oxLDL stimulation. Mol. Nutr. Food Res. 2015, 59, 1905–1917. [CrossRef] [PubMed]

118. Khan, M.T.; Orhan, I.; Senol, F.S.; Kartal, M.; Sener, B.; Dvorská, L.; Muriel, P.; Sendin, E.; Muriel, P. Naringenin and the liver. In Liver Pathophysiology; Elsevier: Amsterdam, The Netherlands, 2017; pp. 633–651. [CrossRef] [PubMed]

119. Perry, E.K.; Perry, R.H.; Blessed, G.; Tomlinson, B.E. Changes in brain cholinesterases in senile dementia of Alzheimer type. Neuroapthol. Appl. Neuropathol. 1978, 4, 273–277. [CrossRef] [PubMed]

120. Nordberg, A.; Ballard, C.; Bullock, R.; Darreh-Shori, T.; Somogyi, M. A review of butyrylcholinesterase as a therapeutic target in Alzheimer disease brain as a function of dementia. Arch. Neurol. 2009, 66, 352–361. [CrossRef] [PubMed]

121. Ademosun, A.O.; Oboh, G.; Bello, F.; Ayeni, P.O. Antioxidative properties and effect of quercetin and its glycosylated form (rutin) under oxLDL stimulation. Chem. Biol. Interact. 2015, 212, 22959. [PubMed] [CrossRef]

122. Mehta, M.; Adem, A.; Sabbagh, M. New acetylcholinesterase inhibitors for Alzheimer's disease. Prim. Care. Companion CNS Disord. 2012, 14, 728983. [CrossRef]

123. Mehta, M.; Adem, A.; Sabbagh, M. New acetylcholinesterase inhibitors for Alzheimer’s disease. Int. J. Alzheimers Dis. 2012, 2012, 728983. [CrossRef]

124. Mehta, M.; Adem, A.; Sabbagh, M. New acetylcholinesterase inhibitors for Alzheimer’s disease. Int. J. Alzheimers Dis. 2012, 2012, 728983. [CrossRef]

125. Guillotez, A.L.; Mesulam, M.M.; Smiley, J.F.; Mash, D.C. Butyrylcholinesterase in the life cycle of amyloid plaques. Ann. Neurol. 1997, 42, 909–918. [CrossRef] [PubMed]

126. Darvesh, S.; Cash, M.K.; Reid, G.A.; Martin, E.; Mitnitski, A.; Geula, C. Butyrylcholinesterase is associated with β-amyloid plaques in the transgenic APPSWE/PSEN1dE9 mouse model of Alzheimer Disease. J. Neuropathol. Exp. Neurol. 2012, 71, 2–14. [CrossRef] [PubMed]

127. Al-Ghamdi, N.A.M.; Virk, P.; Hendi, A.; Awad, M.; Elobeid, M. Antioxidant potential of bulk and nanoparticles of naringenin against cadmium-induced oxidative stress in Nile tilapia, Oreochromis niloticus. Green Process. Synth. 2021, 10, 392–402. [CrossRef]

128. Zhang, N.; Hu, Z.; Zhang, Z.; Liu, G.; Wang, Y.; Ren, Y.; Wu, X.; Geng, F. Protective Role of Naringenin Against A 25-35-CAused Damage via ER and PI3K/Akt-Mediated Pathways. Cell. Mol. Neurobiol. 2018, 38, 549–557. [CrossRef]
129. Liu, P.; Cheng, H.; Roberts, T.M.; Zhao, J.J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov. 2009, 8, 627–644. [CrossRef]
130. Brunet, A.; Datta, S.R.; Greenberg, M.E. Transcription-dependent and-independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr. Opin. Neurobiol. 2001, 11, 297–305. [CrossRef]
131. Hua, E.Z.; Ying, J.; Zhang, J.; Wang, X.F.; Hu, Y.H.; Liang, Y.P.; Liu, Q.; Xu, G.H. Naringenin pre-treatment inhibits neuroapoptosis and ameliorates cognitive impairment in rats exposed to isoflurane anesthesia by regulating the PI3/Akt/PTEN signalling pathway and suppressing NF-κB-mediated inflammation. Int. J. Mol. Med. 2016, 38, 1271–1280. [CrossRef]
132. Vafeiadou, K.; Vauzour, D.; Lee, H.Y.; Rodriguez-Mateos, A.; Williams, R.J.; Spencer, J.P. The citrus flavanone naringenin inhibits inflammatory signalling in glial cells and protects against neuroinflammatory injury. Arch. Biochem. Biophys. 2009, 484, 100–109. [CrossRef]
133. Santa-Cecilia, F.V.; Socías, B.; Ouidja, M.O.; Sepulveda-Diaz, J.E.; Acuna, L.; Silva, R.L.; Michel, PP.; Del-Bel, E.; Cunha, T.M.; Raisman-Vozari, R. Doxycycline suppresses microglial activation by inhibiting the p38 MAPK and NF-κB signalling pathways. Neurotox. Res. 2016, 29, 447–459. [CrossRef] [PubMed]
134. Sarubbo, F.; Ramis, M.; Kienzer, C.; Aparicio, S.; Esteban, S.; Miralles, A.; Moranta, D.J. Chronic silymarin, quercetin and naringenin treatments increase monoamines synthesis and hippocampal Sirt1 levels improving cognition in aged rats. J. Neuroimmune Pharmacol. 2018, 13, 24–38. [CrossRef] [PubMed]
135. Gao, J.; Wang, W.-Y.; Mao, Y.-W.; Grà, J.; Guan, J.-S.; Pan, L.; Mak, G.; Kim, D.; Su, S.C.; Tsai, L.H. A novel pathway regulates memory and plasticity via sirt1 and mir-134. Nature 2010, 466, 1105–1109. [CrossRef]
136. Zhang, B.; Wei, Y.Z.; Wang, Q.Q.; Li, D.D.; Shi, J.S.; Zhang, F. Targeting MAPK pathways by naringenin modulates microglia M1/M2 polarization in lipopolysaccharide-stimulated cultures. Front. Cell Neurosci. 2019, 12, 531. [CrossRef] [PubMed]
137. Mani, S.; Sekar, S.; Barathidasan, R.; Miralles, A.; Moranta, D.J. Chronic silymarin, quercetin and naringenin treatments increase monoamines synthesis and hippocampal Sirt1 levels improving cognition in aged rats. J. Neuroimmune Pharmacol. 2018, 13, 24–38. [CrossRef] [PubMed]
138. Singh, M.; Arseneault, M.; Sanderson, T.; Murthy, V.; Ramassamy, C. Challenges for research on polyphenols from foods in Alzheimer transgenic mice. Alzheimer’s disease: Bioavailability, metabolism, and cellular and molecular mechanisms. (2014, 52, 15–25. [CrossRef] [PubMed]
139. Chang, X.; Rong, C.; Chen, Y.; Yang, C.; Hu, Q.; Mo, Y.; Zhang, C.; Gu, X.; Zhang, L.; He, W.; et al. (-)-Epigallocatechin-3-gallate regulates amyloidogenic polypeptides into unstructured, off-pathway oligomers. Exp. Cell Res. 2015, 334, 136–145. [CrossRef] [PubMed]
140. Ehrnhoefer, D.E.; Bieschke, J.; Boeddrich, A.; Herbst, M.; Engemann, S.; Pastore, A.; Wanker, E.E. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat. Struct. Mol. Biol. 2009, 16, 8807–8814. [CrossRef] [PubMed]
141. Rezai-Zadeh, K.; Shytle, D.; Sun, N.; Mori, T.; Hou, H.; Jeanniton, D.; Ehrhart, J.; Townsend, K.; Zeng, J.; Morgan, D.; et al. Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J. Neurosci. 2005, 25, 8807–8814. [CrossRef]
142. Lee, Y.K.; Yuk, D.Y.; Lee, J.W.; Lee, S.Y.; Ha, T.Y.; Oh, K.W.; Yun, Y.P.; Hong, J.T. (-)-Epigallocatechin-3-gallate prevents lipopolysaccharide-induced elevation of beta-amyloid generation and memory deficiency. Brain Res. 2009, 1250, 164–174. [CrossRef]
143. Liu, P.; Cheng, H.; Roberts, T.M.; Zhao, J.J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov. 2009, 8, 627–644. [CrossRef]
144. Brunet, A.; Datta, S.R.; Greenberg, M.E. Transcription-dependent and-independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr. Opin. Neurobiol. 2001, 11, 297–305. [CrossRef]
145. Hua, E.Z.; Ying, J.; Zhang, J.; Wang, X.F.; Hu, Y.H.; Liang, Y.P.; Liu, Q.; Xu, G.H. Naringenin pre-treatment inhibits neuroapoptosis and ameliorates cognitive impairment in rats exposed to isoflurane anesthesia by regulating the PI3/Akt/PTEN signalling pathway and suppressing NF-κB-mediated inflammation. Int. J. Mol. Med. 2016, 38, 1271–1280. [CrossRef]
146. Vafeiadou, K.; Vauzour, D.; Lee, H.Y.; Rodriguez-Mateos, A.; Williams, R.J.; Spencer, J.P. The citrus flavanone naringenin inhibits inflammatory signalling in glial cells and protects against neuroinflammatory injury. Arch. Biochem. Biophys. 2009, 484, 100–109. [CrossRef]
147. Lee, Y.K.; Yuk, D.Y.; Lee, J.W.; Lee, S.Y.; Ha, T.Y.; Oh, K.W.; Yun, Y.P.; Hong, J.T. (-)-Epigallocatechin-3-gallate prevents lipopolysaccharide-induced elevation of beta-amyloid generation and memory deficiency. Brain Res. 2009, 1250, 164–174. [CrossRef]
148. Sonawane, S.K.; Chidambaram, H.; Boral, D.; Gorantla, N.V.; Balmik, A.A.; Dangi, A.; Ramasamy, S.; Marelli, U.K.; Chinnathambi, S. EGCG impeded human tau aggregation and interacts with tau. Sci. Rep. 2020, 10, 12579. [CrossRef]
149. Lin, C.L.; Chen, T.F.; Chiu, M.J.; Way, T.D.; Lin, J.K. Epigallocatechin gallate (EGCG) suppresses beta-amyloid-induced neurotoxicity through inhibiting c-Abl/FE65 nuclear translocation and GSK3 beta activation. Neurobiol. Aging 2009, 30, 81–92. [CrossRef]
150. Wei, J.C.C.; Huang, H.C.; Chen, W.J.; Huang, C.N.; Peng, C.H.; Lin, C.L. Epigallocatechin gallate attenuates amyloid b-induced inflammation and neurotoxicity in EOC 13.31 microglia. Eur. J. Pharmacol. 2016, 770, 16–24. [CrossRef]
151. Chi, X.; Ma, X.; Li, Z.; Zhang, Y.; Wang, Y.; Yuan, L.; Wu, Y.; Xu, W.; Hu, S. Protective Effect of Epigallocatechin-3-Gallate in Hydrogen Peroxide-Induced Oxidative Damage in Chicken Lymphocytes. Oxidative Med. Cell. Longev. 2020, 2020, 7386239. [CrossRef]
177. Korshavn, K.J.; Jang, M.; Kwak, Y.J.; Kochi, A.; Vertuani, S.; Bhunia, A.; Manfredini, S.; Ramamooorthy, A.; Lim, M.H. Reactivity of Metal-Free and Metal-Associated Amyloid-β with Glycosylated Polyphenols and Their Esterified Derivatives. *Sci. Rep.* 2015, 5, 17862. [CrossRef] [PubMed]

178. Jang, J.H.; Lee, S.H.; Jung, K.; Yoo, H.; Park, G. Inhibitory Effects of Myricetin on Lipopolysaccharide-Induced Neuroinflammation. *Brain Sci.* 2020, 10, 32. [CrossRef] [PubMed]

179. Kou, X.; Liu, X.; Chen, X.; Li, J.; Yang, X.; Fan, J.; Yang, Y.; Chen, N. Ampelopsin attenuates brain aging of D-gal-induced rats through miR-34a-mediated SIRT1/mTOR signal pathway. * Oncotarget 2016, 7, 74464–74495. [CrossRef] [PubMed]

180. Patel, D.K.; Patel, K. P-MD05 protects neuroprotective effects of gossypetin in Alzheimer’s disease: Therapeutic approaches to evaluate the acetylcholinesterase and butyl cholinesterase inhibitory potential. *Clin. Neurophysiol.* 2021, 132, e97–e98. [CrossRef]

181. Francis, A.R.; Shetty, T.K.; Bhattacharyya, R.K. Modulating effect of plant flavonoids on the mutagenicity of N-methyl-N'-nitro-N-nitrosoguanidine. *Carcinogenesis* 1989, 10, 1953–1955. [CrossRef]

182. Miceli, N.; Trovato, A.; Dugo, P.; Cacciola, F.; Donato, P.; Marino, A.; Bellinghieri, V.; La Barbera, T.M.; Güvenç, A.; Taviano, M.F. Comparative analysis of flavonoid profile, antioxidant and antimicrobial activity of the berries of *Juniperus communis* L. var. communis and *Juniperus communis* var. saxatilis Pall. from Turkey. *J. Agric. Food Chem.* 2009, 57, 6570–6577. [CrossRef]

183. Chen, J.H.; Tsai, C.W.; Wang, C.P.; Lin, H.H. Anti-atherosclerotic potential of gossypetin via inhibiting LDL oxidation and foam cell formation. *Toxicol. Appl. Pharmacol.* 2013, 272, 313–324. [CrossRef] [PubMed]

184. Lin, H.H. In Vitro and In Vivo Atheroprotective Effects of Gossypetin against Endothelial Cell Injury by Induction of Autophagy. *Chem. Res. Toxicol.* 2015, 28, 202–215. [CrossRef] [PubMed]

185. Hillhouse, B.; Ming, D.S.; French, C.; Towers, G.H. Acetylcholine Esterase Inhibitors in *Rhodiola rosea*. *Pharm. Biol.* 2004, 42, 68–72. [CrossRef]

186. Zubik, L.; Meydani, M. Bioavailability of soybean isoflavones from aglycone and glucoside forms in American women. *Am. J. Clin. Nutr.* 2003, 77, 1459–1465. [CrossRef] [PubMed]

187. Dixon, R.A.; Ferreira, D. Genistein. *Phytochemistry* 2002, 60, 205–211. [CrossRef]

188. Bagheri, M.; Joghataei, M.T.; Mohseni, S.; Roghani, M. Genistein ameliorates learning and memory deficits in amyloid (1–40) rat model of Alzheimer’s disease. *Neurobiol. Learn. Mem.* 2011, 95, 270–276. [CrossRef]

189. Safahani, M.; Amani, R.; Aligholi, H.; Sarkaki, A.; Badavi, M.; Zand Moghaddam, A.; Haghighizadeh, M.H. Effect of different doses of soy isoflavones on spatial learning and memory in ovariectomized rats. *Basic Clin. Neurosci.* 2011, 2, 12–18.

190. Zeng, H.; Chen, Q.; Zhao, B. Genistein ameliorates β-amyloid peptide (25–35) -induced hippocampal neuronal apoptosis. *Free Radic. Bio. Med.* 2004, 36, 180–188. [CrossRef]

191. Petry, F.D.S.; Hoppe, J.B.; Klein, C.P.; Dos Santos, B.G.; Hözer, R.M.; Matti, N.; Minarro, J.; Borras, C.; Garcia-Verdugo, J.M.; et al. Clearing amyloid-beta through PPARgamma/ApoE activation by genistein is associated with AMP-activated protein kinase activation and PTEN induction in prostate cancer cells. *Biochim. Biophys. Acta* 2012, 1821, 1953–1955. [CrossRef]

192. Suzuki, K.; Koike, H.; Matsui, H.; Ono, Y.; Hasumi, M.; Nakazato, H.; Okugi, H.; Sekine, Y.; Oki, K.; Ito, K.; et al. Genistein, a soy isoflavone, induces glutathione peroxidase in the human prostate cancer cell lines LNCaP and PC-3. *Int. J. Cancer* 2002, 99, 846–852. [CrossRef]

193. Youn, K.; Park, J.H.; Lee, S.; Lee, J.; Yun, E.Y.; Jeong, W.S.; Jun, M. BACE1 inhibition by genistein: Biological evaluation, kinetic analysis, and molecular docking simulation. *J. Med. Food* 2018, 21, 416–420. [CrossRef] [PubMed]

194. Okumura, N.; Yoshida, H.; Nishimura, Y.; Murakami, M.; Kitagishi, Y.; Matsuda, S. Genistein downregulates presenilin 1 and ubiquilin 1 expression. *Mol. Med. Rep.* 2012, 5, 559–561. [CrossRef]

195. Bonet-Costa, V.; Herranz-Perez, V.; Blanco-Gandia, M.; Mas-Bargues, C.; Ingles, M.; Garcia-Tarraga, P.; Rodriguez-Arias, M.; Minarro, J.; Borras, C.; Garcia-Verdugo, J.M.; et al. Clearing amyloid-beta through PPARgamma/ApoE activation by genistein is a treatment of experimental Alzheimer’s disease. *J. Alzheimer’s Dis.* 2016, 51, 701–711. [CrossRef] [PubMed]

196. Youn, K.; Park, J.H.; Lee, S.; Lee, J.; Yun, E.Y.; Jeong, W.S.; Jun, M. BACE1 inhibition by genistein: Biological evaluation, kinetic analysis, and molecular docking simulation. *J. Med. Food* 2018, 21, 416–420. [CrossRef] [PubMed]

197. Kladna, A.; Berczy’nski, P.; Kruk, I.; Piechowska, T.; Aboul-Enein, H.Y. Studies on the antioxidant properties of some phytostrogens. *Luminescence* 2016, 31, 1201–1206. [CrossRef]

198. Suzuki, K.; Koike, H.; Matsui, H.; Ono, Y.; Hasumi, M.; Nakazato, H.; Okugi, H.; Sekine, Y.; Oki, K.; Ito, K.; et al. Genistein, a soy isoflavone, induces glutathione peroxidase in the human prostate cancer cell lines LNCaP and PC-3. *Int. J. Cancer* 2002, 99, 846–852. [CrossRef]

199. Park, C.E.; Yun, H.; Lee, E.B.; Min, B.I.; Bae, H.; Choe, W.; Kang, I.; Kim, S.S.; Ha, J. The antioxidant effects of genistein are associated with AMP-activated protein kinase activation and PTEN induction in prostate cancer cells. *J. Med. Food* 2010, 13, 815–820. [CrossRef]

200. Borrás, C.; Gambini, J.; Gómez-Cabrera, M.C.; Sastre, J.; Pallardó, F.V.; Mann, G.E.; Viña, J. Genistein, a soy isoflavone, up-regulates expression of antioxidant genes: Involvement of estrogen receptors, ERK1/2, and NFkappaB. *FASEB J.* 2006, 20, 2136–2138. [CrossRef]

201. Verdrengh, M.; Jonsson, I.M.; Holmdahl, R.; Tarkowski, A. Genistein as an antiinflammatory agent. *Inflamm. Res.* 2003, 52, 341–346. [CrossRef]

202. Blay, M.; Espinel, A.E.; Delgado, M.A.; Baiges, I.; Bladé, C.; Arola, L.; Salvadó, J. Isoflavone effect on gene expression profile and biomarkers of inflammation. *J. Pharm. Biomed. Anal.* 2010, 51, 382–390. [CrossRef]
203. Fang, J.; Wu, P.; Yang, R.; Gao, L.; Li, C.; Wang, D.; Wu, S.; Liu, A.L.; Du, G.H. Inhibition of acetylcholinesterase by two genistein derivatives: Kinetic analysis, molecular docking and molecular dynamics simulation. *Acta Pharm. Sin. B* **2014**, *4*, 430–437. [CrossRef]

204. McKay, D.L.; Blumberg, J.B. A review of the bioactivity and potential health benefits of chamomile tea (*Matricaria recutita* L.). *Phytother. Res.* **2006**, *20*, 519–530. [CrossRef]

205. Alsadat, A.M.; Nikbakht, F.; Nia, H.H.; Golab, F.; Khadem, Y.; Barati, M.; Vazifekhah, S. GS-3β as a target for apigenin-induced neuroprotection against Aβ 25–35 in a rat model of Alzheimer’s disease. *Neuropathol. Appl. Neurobiol.* **2021**, *90*, 102200. [CrossRef]

206. Zhang, X.; Wang, G.; Gurley, E.C.; Zhou, H. Flavonoid apigenin inhibits lipopolysaccharide-induced inflammatory response through multiple mechanism in macrophages. *PLoS ONE* **2014**, *9*, e107072. [CrossRef]

207. Tong, L.; Balazs, R.; Soiampornkul, R.; Thangnigon, W.; Cotman, C.W. Interleukin-1β impairs brain derived neurotrophic factor-induced signal transduction. *Neurobiol. Aging* **2008**, *29*, 1380–1393. [CrossRef]

208. Dourado, N.S.; Souza, C.D.S.; de Almeida, M.M.A.; Bispo da Silva, A.; Dos Santos, B.L.; Silva, V.D.A.; De Assis, A.M.; da Silva, J.S.; Souza, D.O.; Costa, M.F.D.; et al. Neuroinflammatory and neuroprotective effects of the flavonoid apigenin in in vitro models of neuroinflammation associated with Alzheimer’s disease. *Front. Aging Neurosci.* **2020**, *12*, 119. [CrossRef]

209. Wang, N.; Yi, W.J.; Tan, L.; Zhang, J.H.; Xu, J.; Chen, Y.; Qin, M.; Yu, S.; Guan, J.; Zhang, R. Apigenin attenuates streptozotocin-induced pancreatic β cell damage by its protective effects on cellular antioxidant defense. *In Vitro Cell Dev. Biol. Anim.* **2017**, *53*, 554–563. [CrossRef]

210. Sánchez-Marzo, J.; Pérez-Sánchez, A.; Ruiz-Torres, V.; Martínez-Tebar, A.; Castillo, J.; Herranz-López, M.; Barrajón-Catalán, E. Antioxidant and Photoprotective Activity of Apigenin and its Potassium Salt Derivative in Human Keratinocytes and Absorption in Caco-2 Cell Monolayers. *Int. J. Mol. Sci.* **2019**, *20*, 2148. [CrossRef]

211. Yamakawa, M.Y.; Uchino, K.; Watanabe, Y.; Adachi, T.; Nakashima, M.; Ichino, H.; Hongo, K.; Mizobata, T.; Kobayashi, S.; Nakashima, K.; et al. Anthocyanin suppresses the toxicity of Aβ deposits through diversion of molecular forms in in vitro and in vivo models of Alzheimer’s disease. *Nutr. Neurosci.* **2016**, *19*, 32–42. [CrossRef]

212. Tarozzi, A.; Morroni, F.; Merlicco, A.; Bolondi, C.; Tetti, G.; Falconi, M.; Cantelli-Forti, G.; Hrelia, P. Neuroprotective effects of cyanidin 3-O-glucopyranoside on amyloid beta (25–35) oligomer-induced toxicity. *Neurosci. Lett.* **2011**, *50*, 1683–1689. [CrossRef] [PubMed]

213. Shih, P.H.; Wu, C.H.; Yeh, C.T.; Yen, G.C. Protective effects of anthocyanins against amyloid β-peptide-induced damage in neuro-2A cells. *J. Agric. Food Chem.* **2010**, *58*, 32–42. [CrossRef] [PubMed]

214. Strathearn, K.E.; Yousef, G.G.; Grace, M.H.; Roy, S.L.; Tambe, M.A.; Ferruzzi, M.G.; Wu, Q.L.; Simon, J.E.; Lila, M.A.; Rochet, J.C. Neuroprotective effects of anthocyanin- and proanthocyanidin-rich extracts in cellular models of Parkinson’s disease. *Brain Res.* **2014**, *1555*, 60–77. [CrossRef] [PubMed]

215. Wang, W.; Zhu, G.; Wang, Y.; Li, W.; Yi, S.; Zhang, W.; Fan, L.; Tang, J.; Chen, R. Multi-Omics Integration in Mice with Parkinson’s Disease and the Intervention Effect of Cyanidin-3-O-Glucoside. *Front. Aging Neurosci.* **2022**, *14*, 877078. [CrossRef] [PubMed]

216. Pike, C.J.; Walencewicz-Wasserman, A.J.; Kosmoski, J.; Cribbs, D.H.; Glabe, C.G.; Cotman, C.W. Structure-activity analyses of beta-amylloid peptides: Contributions of the beta 25–35 region to aggregation and neurotoxicity. *J. Neurochem.* **1995**, *64*, 253–265. [CrossRef]

217. Thummayot, S.; Tocharus, C.; Pinkaew, D.; Viwatpinoyo, K.; Sringarm, K.; Tocharus, J. Neuroprotective effect of purple rice extract and its constituent against amyloid beta induced neuronal cell death in SK-N-SH cells. *Neurotoxicology* **2014**, *45*, 149–158. [CrossRef]

218. Thummayot, S.; Tocharus, C.; Sukasamran, A.; Tocharus, J. Neuroprotective effects of cyanidin against Ab-induced oxidative and ER stress in SK-N-SH cells. *Neurochem. Int.* **2016**, *101*, 15–21. [CrossRef]

219. Behl, C.; Moosmann, B. Antioxidant neuroprotection in Alzheimer’s disease as preventive and therapeutic approach. *Free Radic. Biol. Med.* **2002**, *33*, 182–191. [CrossRef]

220. Essa, M.M.; Vijayan, R.K.; Castellano-Gonzalez, G.; Memon, M.A.; Braidy, N.; Guillemin, G.J. Neuroprotective effect of natural products against Alzheimer’s disease. *Neurochem. Res.* **2012**, *37*, 1829–1842. [CrossRef]

221. Leong, P.K.; Chiu, P.Y.; Chen, N.; Leung, H.; Ko, K.M. Schisandrin B elicits a glutathione antioxidant response and protects against apoptosis via the redox-sensitive ERK/Nrf2 pathway in AML12 hepatocytes. *Free Radic. Res.* **2011**, *45*, 483–495. [CrossRef]

222. Kaewmool, C.; Udomruk, S.; Phitak, P.; Pothacharoen, P.; Kongtawelert, P. Cyanidin-3-O-Glucoside Protects PC12 Cells Against Neuronal Apoptosis Mediated by LPS-Stimulated BV2 Microglial Activation. *Neurotoxics Res.* **2020**, *37*, 111–125. [CrossRef]

223. ClinicalTrials.gov Identifier: NCT05269173; Efficacy and Safety of Flos Gossypii Flavonoids Tablet in the Treatment of Alzheimer’s Disease—Full Text View—ClinicalTrials.gov. Available online: https://www.clinicaltrials.gov/ct2/show/NCT05269173 (accessed on 17 October 2022).