Thompson Sampling for Learning Parameterized Markov Decision Processes

Aditya Gopalan & Shie Mannor

COLT, Paris, July 2015
Online Reinforcement Learning

s_1
s_2
s_3

s_n
Online Reinforcement Learning

s_1

s_2

s_3

s_n

a_1

a_2
Online Reinforcement Learning

\[p(s, a_1, s') \]

\[p(s, a_2, s') \]
Online Reinforcement Learning

\[r(s, a_1, s') \]

\[r(s, a_2, s') \]
Online Reinforcement Learning

\[S_1 \]
Online Reinforcement Learning

5

s2
Online Reinforcement Learning
Online Reinforcement Learning

S_2

-1
Online Reinforcement Learning

\[S_6 \]
Online Reinforcement Learning
Online Reinforcement Learning

s_3
Online Reinforcement Learning

S_4
Online Reinforcement Learning

s_8

50
Online Reinforcement Learning

S_7
Online Reinforcement Learning

S_{11}

5
Online Reinforcement Learning

S_{10}

20
Online Reinforcement Learning

Net reward

\[= 5 + 0 + (-1) + (-1) + 3 + 1 + 0 + 2 + 50 + (-100) + 5 + 20 + 50 = 34 \]
Online Reinforcement Learning

- Play actions to maximize \(\sum_{t=1}^{T} r(s_t, A_t, s_{t+1}) \)

 equivalently, minimize regret

\[
\sum_{t=1}^{T} r(s_t, a^*(s_t), s_{t+1}) - \sum_{t=1}^{T} r(s_t, A_t, s_{t+1})
\]

- Interesting case: Parameterized MDPs: \(p_{\theta^*}(\cdot) \) and \(r_{\theta^*}(\cdot) \)
 where \(\theta^* \in \Theta \)
 - # states, # actions could be large but \(\Theta \) “small”
 - Parameterization can help generalize!
Imagine ‘fictitious’ prior distribution over parameters Θ
Thompson Sampling

Sample a parameter

\[\mu \sim \text{Prior} \]
Thompson Sampling

Play **greedily** wrt μ

(in our case: Play optimal policy for MDP via Value Iteration, Policy Iteration, Linear Programming, …)
Observe state transitions, rewards & Update prior to posterior (Bayes’ Theorem), and REPEAT

\[\mathbb{P} [\cdot] \rightarrow \mathbb{P} [\cdot \mid \text{observations}] \]
For ergodic MDP parameterizations, and under suitably “nice” priors on \(\Theta \), with probability at least \((1 - \delta)\), TSMDP gives regret bounded by

\[B + C \log(T) \]

in \(T \) rounds, where \(B \) depends on \(\delta, \Theta \) and the prior, \(C \) depends only on \(\Theta \), the true model \(\theta^* \) and, more importantly, the “effective dimension” of \(\Theta \).
Main Result

[G.-Mannor’15] For ergodic MDP parameterizations, and under suitably “nice” priors on Θ, with probability at least $(1 - \delta)$, TSMDP gives regret bounded by

$$B + C \log(T)$$

in T rounds, where B depends on δ, Θ and the prior, C depends only on Θ, the true model θ^* and, more importantly, the “effective dimension” of Θ.

- Implication: Provably rapid, problem-dependent learning when effective dimensionality of MDP is small.
Related Work

- Bayesian Regret [Osband-Russo-Van Roy 2013]

\[
\mathbb{E}_{\text{Bayes}} [R_T] = O \left(\sqrt{d_K d_E T} \right)
\]

where \(d_K = \) Kolmogorov dimension of parameterization

\(d_E = \) Eluder dimension of parameterization

- But (a) Bayesian setting, and (b) \(\sqrt{T}\) regret growth
Techniques

• Fairly general technique relying on analyzing posterior concentration via **marginal KL divergences**

• Set up “game” involving play counts of suboptimal policies

• Each suboptimal policy “dies” when its stopping condition is met

• Value of game = Regret scaling C
A “Distance” Measure

- Marginal KL-Divergence in the parameter space:

\[D_c(\theta^* || \theta) := \sum_{s_1 \in S} \pi_{s_1}^{(c)} \sum_{s_2 \in S} p_{\theta^*}(s_1, c(s_1), s_2) \log \frac{p_{\theta^*}(s_1, c(s_1), s_2)}{p_{\theta}(s_1, c(s_1), s_2)} \]

\[= \sum_{s_1 \in S} \pi_{s_1}^{(c)} \text{KL} \left(p_{\theta^*}(s_1, c(s_1), \cdot) || p_{\theta}(s_1, c(s_1), \cdot) \right) \]

for any deterministic policy \(c \)

- Encodes to what degree applying policy \(c \) can “resolve” parameter \(\theta \) from parameter \(\theta^* \)