Unilateral absence of the internal carotid artery associated with anterior communicating artery aneurysms: Systematic review and a proposed management algorithm

Aktham O. Al-Khafaji¹, Zahraa F. Al-Sharshahi², Ryan P. Lee³, Zahraa A. Alsubahawi¹, Ali A. Dolachee⁴, Samer S. Hoz²

¹College of Medicine, University of Baghdad, Baghdad, Iraq, ²Department of Neurosurgery, Neurosurgery Teaching Hospital, Baghdad, Iraq, ³Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA, ⁴Department of Surgery, College of Medicine, University of Al-Qadisiyah, Diwaniyah, Iraq.

E-mail: Aktham O. Al-Khafaji - akthamalkhafaji@gmail.com; Zahraa F. Al-Sharshahi - zahraaalsharshahi@rcsi.com; Ryan Patrick Lee - ryan.p.lee@jhmi.edu; *Zahraa A. Alsubahawi - zahraameen9@yahoo.com; Ali A. Dolachee - ali.adnan@qu.edu.iq; Samer S. Hoz - hozsamer2055@gmail.com

Background: Absence or hypoplasia of the internal carotid artery (ICA) is a rare congenital anomaly that is mostly unilateral and highly associated with other intracranial vascular anomalies, of which saccular aneurysm is the most common. Blood flow to the circulation of the affected side is maintained by collateral pathways, some of which include the anterior communicating artery (Acom) as part of their anatomy. Therefore, temporary clipping during microsurgery on Acom aneurysms in patients with unilateral ICA anomalies could jeopardize these collaterals and place the patient at risk of ischemic damage. In this paper, we review the literature on cases with a unilaterally absent ICA associated with Acom aneurysms and provide an illustrative case.

Methods: We combined our experience of one case of a unilaterally absent ICA associated with an Acom aneurysm with the 33 existing publications on the same subject in the literature, for a total of 40 cases. We provide a detailed systematic literature review of this association of vascular anomalies, exploring different aspects regarding the collateral pathways and how they impact management strategies and propose a management algorithm to deal with such association.

Results: The mean age was 48.2 ± 16.5 years. The aneurysmal rupture was the most common presentation (75%). Agenesis was observed in 70% of patients, followed by hypoplasia (20%) and, finally, aplasia (10%). Lie Type A was the most common pattern of collaterals (50%), with Types B and D being of almost equal proportions. Most aneurysms were located at the A1-Acom junction contralateral to the anomalous side (Fisher’s Exact test; P = 0.03). One case of temporary clipping was reported in the literature.

Conclusion: Acom aneurysms in patients with unilateral ICA anomalies, given they are more commonly present contralaterally, could be of acquired etiology, warranting periodic screening in asymptomatic patients. Temporary clipping might be safe in patients with Type D collateral pattern, while those with Types A or B may require intraoperative rupture risk assessment and a tailored management plan to avoid disrupting collateral flow and causing ischemia.

Keywords: Absence, Aneurysm, Anterior communicating artery, Hypoplasia, Internal carotid artery, Unilateral
INTRODUCTION

Congenital anomalies of the internal carotid artery (ICA) is an umbrella term encompassing three developmentally distinct, although interchangeably termed, conditions affecting the ICA, namely, agenesis, aplasia, and hypoplasia. These anomalies are extremely rare, affecting <0.01% of the population with as few as 200 reported cases in the literature. They occur either unilaterally or much less commonly bilaterally with a reported ratio up to 3:1.

Agenesis refers to the complete absence of an artery or its primordium, while aplasia is used to describe an undeveloped ICA with the presence of some of its primordia, such as remnant vessel segments, or a sign of its presence such as a patent ipsilateral carotid canal. These two terms are often collectively referred to in the literature as congenital absence of the ICA. In a subtle yet important contrast, hypoplasia describes an artery that is present but underdeveloped. These anomalies rarely cause symptoms when present in isolation. This observation implies the provision of sufficient collateral blood flow, served in most cases by the contralateral ICA and the vertebrobasilar system through the circle of Willis, or less commonly by persistent primitive pathways (i.e., intercavernous anastomosis) or transcranial collaterals from the external carotid artery (ECA). Hence, the risk lies not in the ICA anomalies themselves, but rather in other cerebrovascular abnormalities reported to be associated with them. Of those abnormalities, intracranial aneurysms project the heaviest burden, with a much higher reported prevalence averaging at about 27.8% compared to an incidence rate of 2–4% in the general population.

The anterior communicating artery (Acom) is reported to be the most common location for intracranial aneurysms associated with congenital ICA anomalies. This artery also happens to be part of the anatomy of a major pathway in two of the six patterns of collateral blood flow described by Lie. Thus, neurosurgeons are faced with a dilemma when managing patients with Acom aneurysms associated with a unilaterally absent ICA, as both microsurgical and endovascular management could compromise the artery, leading to loss of this collateral pathway, and an ensuing vascular insufficiency and iatrogenic ischemia in the affected side.

In this article, we provide a detailed, systematic review of the available literature on the unilateral absence of the ICA associated with Acom aneurysms. Clinical aspects of the available cases are abstracted, statistically analyzed and discussed in regards to their etiology, the possible collateral pathways, and their impact on treatment options. The available data are also used to propose a management algorithm for dealing with such conditions.

Illustrative case

A 51-year-old man with a history of hypertension was referred to the Neurosurgical Teaching Hospital in Baghdad after complaints of sudden, severe headache associated with nausea and forceful vomiting. Physical examination showed intact consciousness and normal vital signs. Pupillary examination showed bilaterally equal and reactive pupils of normal size (about 3 mm) and round shape. Cranial nerves examination was unremarkable. The patient had severe neck stiffness and left hemiparesis (muscle power was 3/5).

Non-contrast computed tomography (CT) scan revealed diffuse thick subarachnoid hemorrhage (SAH) with mild ventricular dilatation. CT angiogram (CTA) shown in Figure 1 revealed a dome-shaped, wide-neck aneurysm arising from the left A1-Acom junction with right-anterior-superior projection. The right ICA was not visualized down to its origin from the common carotid artery (CCA); both the right anterior cerebral artery (ACA) and the middle cerebral artery (MCA) connected to the contralateral ICA through the left A1-Acom pathway. There was no connection between the right posterior communicating artery (Pcom) and the right MCA. Revision of the plain CT scan using bone window.
revealed an absent carotid canal. Due to the high cost and unavailability of endovascular treatment facilities, the wide neck of the aneurysm, and the need to avoid antplatelets in the setting of rupture, we were not in favor of endovascular options in this patient and instead opted for surgery.

Microsurgical treatment was performed through a left pterional trans-sylvian approach. During surgery, absence of the right ICA was visually confirmed, and the left A1-Acom complex showed vasospasm. In addition, the aneurysm neck was very wide and its manipulation was difficult without temporary clipping of the left A1, a procedure that would risk blood flow to the right ACA and MCA. Intraoperatively, the aneurysm showed a punctate source of bleeding. A low-voltage bipolar cautery, set at 5–7, was used to shrink the bleeding source. Once bleeding has been controlled, the aneurysm was secured with muscle wrapping. Using low-voltage bipolar cautery to repair vascular injuries or to shrink punctate bleeding is a common practice in cerebrovascular surgery. After surgery, the patient’s muscle power improved, he had no further complications, and was discharged on day 7 postoperatively. The lesion remained stable on follow-up imaging.

LITERATURE REVIEW

Methods

A systematic online literature search was performed on the April 14, 2020, for reports on unilateral congenital ICA anomalies associated with Acom aneurysms. PubMed (Medline 1966–2020) and Google Scholar were used for the review, and the search algorithm was as follows: “((Acom) OR (ACoA) OR (ACoMA) OR (anterior communicating artery)) AND ((aneurysm) OR (intracranial aneurysm [MeSH])) AND (unilateral) AND (((ica) OR (internal carotid artery) OR (carotid artery, internal [MeSH])) AND ((aneurysm) OR (absence) OR (aplasia) OR (agenesis) OR (hypoplasia)))).” An additional filter was applied for articles published on humans. The search returned 526 peer-reviewed manuscripts. A systematic abstract screening was performed, and only articles that reported on unilateral congenital ICA anomalies with associated Acom aneurysms were included for final analysis. In addition, the reference list of each article was screened for additional articles. All non-English literature was translated.

The gender, age, presenting signs/symptoms, type, side of the ICA anomaly, and Lie classification for collateral pattern were recorded for each case. Concerning the Acom aneurysm, the side (of its junction with A1), whether it was ruptured or not at presentation, course of treatment, and outcome was recorded. Statistical work was done using IBM Statistical Package for the Social Sciences version 26. Continuous variables were tested for the difference using independent samples t-test. Categorical variables were tested for correlation using Fisher’s Exact test. The significance level was set at \(P < 0.005 \).

RESULTS

Our review yielded a total of 33 articles reporting 39 cases of unilateral ICA anomalies associated with Acom aneurysms, aside from the case we present in this article. A table summary of the review is provided in the [Appendix Table 1].

The mean age of patients at presentation was 48.2 ± 16.5 years. Twenty-one (52.5%) of the patients were females, and 29 (72.5%) of cases had a left-sided anomaly of the ICA. Of the aforementioned anomalies, agenesis was most common (70%), followed by hypoplasia (20%). There was no significant difference in age at presentation between males and females (\(P = 0.84 \)) or the types of anomalies (\(P = 0.67 \)). Half of all cases had a Lie Type A collateral pattern, with the remaining half having either Types B or D patterns in almost equal proportions (22.5% and 20%, respectively).

Thirty (75%) of the patients presented with signs of SAH; namely, sudden severe headache with or without nausea and vomiting (three of which were due to ruptured aneurysms other than the Acom aneurysm), while the remaining cases had different presentations (three chronic headache, two incidental, one dysarthria, one seizures and microcephaly, one progressive hearing loss, one numbness, and one unavailable data). Additional vascular anomalies were reported in nine patients; those included absence of the CCA, ECA, and vertebral artery, “cross-over” duplication of the MCA, moyamoya phenomena, and arachnoid cyst. Surgically treated patients had a significantly better outcome compared to non-operative treated patients (Fisher’s Exact test, \(P = 0.004 \)).

The demographic data of the study group, as well as characteristics of the Acom aneurysms, are summarized in [Tables 1 and 2], respectively. [Table 3] demonstrates the correlation between the laterality of the ICA anomaly and that of the Acom aneurysm.

DISCUSSION

Given the low prevalence of congenital ICA anomalies, the available literature is mainly related to their epidemiology. There has not been much discussion on details of management and follow-up for these patients, particularly for the special circumstance of association with Acom aneurysms. Hence, our review suffers from an inherent lack of clinical data on surgical and long-term follow-up details, and we are therefore forced to depend on anecdotal evidence and single incidental reports from the literature in providing
recommendations for the management of such patients. In our case, the bleeding point was cauterized, and the aneurysm was muscle wrapped. This management strategy was also adopted by Burmester and Stender. However, other management options, including clipping, and endovascular coiling, should all be considered by the surgeon when faced with such lesions.

Patterns of collateral flow in unilateral absence of the ICA

In his original 1968 thesis, Lie describes six patterns of collateralization to supply blood to the hemisphere affected by ICA agenesis, aplasia, or severe hypoplasia. Types C and E describe the patterns in bilateral ICA anomalies. Type F, characterized by unilateral or bilateral “rete mirabile;” a web-like mesh of thin arteries at the skull base connecting and supplying the anomalous ICA(s) through the ECA(s), has not been documented to be associated with Acom aneurysms. Therefore, the three above-mentioned types were not considered in the context of this study and are henceforth not discussed.

In Type A, the ACA of the affected side is supplied by the contralateral ICA through the contralateral A1 and Acom, while the MCA of the affected side is supplied by the posterior circulation through an enlarged ipsilateral Pcom. In type B, both the ACA and MCA of the affected side are supplied by the contralateral ICA through the contralateral A1 and Acom. Type D describes a “trans-cavernous” pattern of collateralization, in which an embryonic remnant vessel originating from the cavernous portion of the normal ICA persists. This remnant vessel reconstitutes blood flow either by anastomosing with the cavernous portion of the affected ICA (a pattern we refer to as D1), or by directly supplying the MCA of the affected side (D2).

Of particular interest, we observed that patients with Lie Type D collateral pattern, the rarest type in unilateral anomalies, displayed a much higher affinity for Acom aneurysms compared to other types. Of the total 20 cases of ICA anomaly with type D pattern reported in the literature, eight of them had saccular intracranial aneurysms, and all of them had an Acom aneurysm (sole in six cases, associated with other aneurysms in one case).

Etiology of Acom aneurysms associated with unilateral absence or hypoplasia of ICA

Although the exact etiological factors causing intracranial saccular aneurysms in patients with anomalies of the ICA are not well studied, several articles propose two main possible mechanisms. The congenital theory implies the coexistence of the aneurysm alongside the ICA anomaly since fetal life. In contrast, the acquired theory implicates the changes in blood flow brought about by the abnormal flow vectors within the collateral pathways as a cause for the development of the aneurysms. The data we reviewed seems to support the latter acquired etiology as a more plausible cause, at least in the particular case of Acom aneurysms. For one, the

Table 1: Demographic data of the cases of ICA anomalies associated with Acom aneurysms.

Anomaly	#	Age (years)	Sex	Side of anomaly	Lie classification							
		Mean	SD	M	F	Un.	Lt	Rt	A	B	D	Un.
Agenesis	28	49.9	15.7	10	16	2	20	8	17	6	4	1
Aplasia	4	45	17.6	1	2	1	2	2	1	0	3	-
Hypoplasia	8	44.3	19.9	5	3	-	6	2	2	3	1	2
Total	40	48.2	16.5	16	21	3	29	11	20	9	8	3

SD: Standard deviation, Un.: Unavailable data, M: Male, F: Female, Lt: Left, Rt: Right

Table 2: Characteristics of Acom aneurysms in the study patients.

Aneurysmal characteristics					
Lateralization	Lt.	Rt.	Un.		
11	22	7			
Rupture	Yes	No	Un.		
30	9	1			

Management	Clipping	Coiling	Muscle wrapping	Conservative	Un.
	23	1	3	7	6

Outcome	Good	Poor	Un.
	27	5	8

Un.: Unavailable data, Lt: Left, Rt: Right

Table 3: Association between the side of ICA anomalies and Acom aneurysms.

ICA anomaly lateralization	Aneurysmal lateralization	Left	Right	Total
Left	5	19	24	
Right	6	3	9	
Total	11	22	33	

P=0.03, Fisher’s Exact test. Seven cases were excluded due to missing data.
mean age at presentation was 48 years, making an acquired etiology more probable. Second, a majority of the cases had the Acom aneurysm at a side opposing that of the ICA anomaly, as shown in [Table 3], which supports the theory that altered blood flow vectors in the enlarged contralateral circulation constitute stress on the vessel wall, leading to the development of aneurysms.

Need for periodic aneurysm screening

Despite the rarity of ICA absence or hypoplasia, which are estimated to be prevalent in <0.01% of the population, the prevalence of intracranial saccular aneurysms in association with them (ranging from 25 to 67%) is much higher compared to that of the normal general population (2–4%).[1,25,53] Some articles suggest screening for intracranial aneurysms in individuals with a higher risk than that of the general population, such as those with positive family history or autosomal dominant polycystic kidney disease.[6,44] The above-mentioned points, alongside the proposition of the aneurysms being of an acquired nature within this context, may support periodic screening of such patients to detect the development of new aneurysms.

Magnetic resonance angiography (MRA) might be preferable in this setting over catheter or CT angiography, given its non-invasive, non-ionizing properties, and good sensitivity profile. The previous studies support the suggestion that MRA is a valid screening tool for intracranial aneurysms, as recent advances have significantly improved its sensitivity and specificity.[6] Despite that, it is recognized that there is an uncertainty concerning the cost-effectiveness of MRA periodic screening and that there is an occurrence of false-positive and false-negative aneurysm detection on MR angiograms, especially for small aneurysms.[16,45] In cases, where there is a particularly high suspicion for the presence of an aneurysm, more sensitive imaging tools like CTA might be a better option.

Preservation of collateral flow during microneurosurgery

Temporary clipping is often employed during microvascular clipping of intracranial aneurysms, either in an elective manner to acquire proximal or distal control of vessels to facilitate the manipulation of the aneurysm complex, or as a rescue measure to control bleeding caused by intraoperative rupture (IOR) of the aneurysm. For Acom aneurysms, the temporary clipping usually involves the A1 segment of the ipsilateral ACA. Temporary clipping is not associated with additional risk of delayed cerebral infarction or delayed ischemic neurological deficits in patients with bilaterally normal ICA formation.[11] However, these findings might not apply to patients suffering from aneurysms associated with unilateral congenital ICA anomalies. Given the anatomical relation of Acom aneurysms to the collateral pathways in several of the patterns described by Lie and illustrated in [Figure 2], temporary clipping during microsurgery of these aneurysms could be of particular concern.

For Type D1, blood flow is re instituted to the affected ICA at its cavernous portion far from the Acom, and as such, no special considerations need to be taken when managing such a combination. On the other hand, the contralateral A1 segment and Acom constitute a major collateralization pathway in ICA anomaly patients with Type A, B, and D2 patterns.

In Type A, the collateral pathway supplies the ACA, while the MCA is supplied by the posterior circulation through an enlarged ipsilateral Pcom. Disruption of the A1-Acom pathway by temporary clipping in such patients would compromise blood flow to the affected side ACA, sparing the MCA. Bhaskar et al.[5] reported a case with such conditions who presented with signs of aneurysmal rupture. IOR occurred during microsurgical clipping, and temporary clipping of the unaffected side A1 segment for 5 min was done. The aneurysm was clipped, and the patient recovered without

Figure 2: Figure artistic depiction of the anatomical position of ACOM aneurysm in normal and unilateral congenitally absent ICAs and its relation to collateral blood flow patterns. CICA: Cavernous internal carotid artery, SCICA: Supraciloid internal carotid artery, A1, A2: Segments 1 and 2 of the anterior cerebral artery, ACOM: Anterior communicating artery, MCA: Middle cerebral artery, BA: Basilar artery, PCA: Posterior cerebral artery, PCOM: Posterior communicating artery, EPCOM: Enlarged posterior communicating artery, TCA: Transcavernous anastomosis.
complications. At the 6-month follow-up appointment, the patient had no neurological deficits. The absence of postoperative complications could be attributed to the short duration of temporary clipping. It has been shown that temporary clipping for <20 min under induced hypertension and mild hypothermic technique is an acceptable practice that causes no additional risk of delayed cerebral infarction.\[^{19}\] In addition, electrophysiological intraoperative monitoring and propofol burst suppression may help ameliorate the risk of hypoperfusion injury and ischemia.\[^{23}\] However, those studies were conducted in the context of bilaterally intact ICAs. Based on the above-mentioned case report, it can be assumed that temporary clipping can be employed in such patients, at least in an emergency context, to stop bleeding from IOR. The same can be said of Type D2 pattern cases, as the anatomy is similar in the context of collateral flow to the affected side ACA through the contralateral A1-Acom pathway.

In contrast, Type B, in which the collateral pathway supplies blood flow to both the ipsilateral ACA and MCA, the anatomy implies that disruption of these collaterals would cutoff all blood supply to a major portion of the affected hemisphere. Based on the above flow patterns for Types A, B, and D2, it is a reasonable practice to assess the risk of IOR before intervention and determine the course of action accordingly.

Endovascular intervention is a very viable initial treatment option for intracranial aneurysms, both ruptured and unruptured.\[^{20,34}\] However, there is still some concern regarding its use in aneurysms with difficult morphological features and the frequent need for antiplatelet therapy, most notably with flow diversion. This often prohibits its use in ruptured cases.\[^{42}\] In addition, endovascular treatment entails higher costs compared to clipping, and its facilities are not widely available, particularly in developing countries. In this review, we only found one case of Acom aneurysm associated with ICA hypoplasia treated by endovascular coiling.\[^{21}\] For high-risk patients, endovascular coiling might be considered as an alternative to microsurgery as it has an overall lower risk of rupture and does not require temporary clipping.\[^{15}\]

Based on all data discussed above, we have devised a simple algorithm for the management of patients presenting with unilateral absence or severe hypoplasia of the ICA in the context of associated aneurysms, as shown in Figure 3.

Figure 3: Proposed outline for anterior circulation aneurysm-contextual management of patients presenting with unilateral congenital ICA anomalies. *For ICA anomalies with no associated aneurysms, we propose periodic screening, preferably using MRA as a non-invasive safe method. **Generally, ruptured aneurysms have a higher risk of IOR compared to unruptured aneurysms. High risk group (unruptured aneurysms): large (for clipping) or very small (for coiling) size, anteriorly directed dome, irregular shape with daughter cysts, high aspect ratio. High risk group (ruptured aneurysms): High modified Fisher's or Hunt and Hess grade, rebleeding before intervention.*
Some studies have suggested that ruptured Acom aneurysms have the greatest risk for re-rupture during microsurgery among all aneurysmal sites.\(^{15}\) This pre-imposed risk necessitates checking for other factors that increase the risk of IOR and thus emergency temporary clipping in patients with anomalous ICA and anterior circulation. Overall, ruptured aneurysms have a higher risk of IOR compared to unruptured aneurysms. The specific risk of IOR during microsurgical clipping for unruptured aneurysms can be assessed in the context of the surgeon’s experience on factors such as large (for clipping) or very small (<4 mm – for coiling) size, anteriorly directed dome, irregularly-shaped aneurysms with Murphy’s teats (daughter cysts), and a high aspect ratio.\(^{10,17,32,35,46}\) Additional factors for assessing IOR risk in ruptured aneurysms include high modified Fisher’s or Hunt and Hess grades and rebleeding before intervention.\(^{39}\) If the surgeon deems the case to have a high risk for IOR during microsurgery, then endovascular coiling should be considered, particularly in patients with Lie Types A, B, and D2 collateral patterns.

CONCLUSION

Intracranial saccular aneurysms are a common finding in patients with unilateral congenital anomalies of the ICA and could be of acquired etiology in such patients. Periodic screening for patients with these congenital anomalies for the development of aneurysms could be warranted. Acom aneurysms in association with Lie Type D1 collateral pattern can be managed as in patients with bilaterally normal ICAs. Acom aneurysms associated with Lie Types A, B, or D2 collateral patterns might require special considerations during microsurgical clipping, as the application of temporary clips could compromise collateral blood flow and cause ischemic damage. Endovascular therapy should be more strongly considered in those cases.

Declaration of patient consent

Patient's consent not required as patients identity is not disclosed or compromised.

Financial support and sponsorship

Publication of this article was made possible by the James I. and Carolyn R. Ausman Educational Foundation.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Afifi AK, Godersky JC, Menezes A, Smoker WR, Bell WE, Jacoby CG. Cerebral hemiatrophy, hypoplasia of internal carotid artery, and intracranial aneurysm: A rare association occurring in an infant. Arch Neurol 1987;44:232-5.

2. Armand JP, Douset V, Viaud B, Huot P, Chehab Z, Dos ES, et al. Agenesis of the internal carotid artery associated with an aneurysm of the anterior communicating artery. J Neuroradiol 1996;23:164-7.

3. Baek GS, Koh EJ, Lee WJ, Choi HY. Congenital hypoplasia of internal carotid artery accompanying with cerebral aneurys. J Korean Neurosurg Soc 2007;41:343-6.

4. Bernini FP, Cioffi FA, Muras I, Rinaldi F, Vaino R. Agenesis of the right internal carotid artery associated with an aneurysm of the anterior communicating artery. Case report. Acta Neurochir (Wien) 1980;54:257-63.

5. Bhaskar S, Singh S, Shivender S, Singh A. Agenesis of internal carotid artery with anterior communicating artery aneurysm. Neurol India 2012;60:547.

6. Brown RD, Huston J, Hornung R, Foroud T, Kallmes DF, Kleindorfer D, et al. Screening for brain aneurysm in the familial intracranial aneurysm study: Frequency and predictors of lesion detection. J Neurosurg 2008;108:1132-8.

7. Burmester K, Stender A. 2 cases of unilateral aplasia of the internal carotid artery in simultaneous aneurysm formation in the anterior area of the circle of Willis. (On the problem of the combination of saccular aneurysms of the cerebral arteries with other abnormalities). Acta Neuroch (Wien) 1961;9:367-78.

8. Chen J, Raden M, Lin C. Congenital absence of the internal carotid artery with intercavernous anastomosis. Radiol Case Rep 2019;14:1021-6.

9. Chen L, Liu JM, Zhou D. Congenital absence of the right common carotid artery, internal carotid artery and external carotid artery associated with anterior communicating artery aneurysm: A rare case. Neurol Sci 2008;29:485-7.

10. Chowdhury T, Cappellani RB, Sandu N, Schaller B, Daya J. Perioperative variables contributing to the rupture of intracranial aneurysm: An update. Sci World J 2013;2013:396404.

11. Clarós P, Bandos R, Gilea I, Clarós A, Capdevila A, Rodríguez JG, et al. Major congenital anomalies of the internal carotid artery: Agenesis, aplasia and hypoplasia. Int J Pediatr Otorhinolaryngol 1999;49:69-76.

12. Cohen MM, Kristiansen K. Association of aneurysm with anomalies of the arteries at the base of the brain. Zentralbl Gesamte Neurol Psychiatry 1957;143:11.

13. Czarnecki EJ, Silbergleit R, Mehta BA, Sanders WP. Absence of the supraclinoid internal carotid artery in association with intracranial aneurysms. Neuroradiology 1998;40:11-4.

14. Demirgil B, Tuççu B, Gümüşlu Ö, Postaç iç, Güml m, Tanriverdi O. Agenesis of the left internal carotid artery: An update. Sci World J 2013;2013:396404.

15. Elijovich L, Higashida RT, Lawton MT, Duckwiler G, Giannotta S, Johnston SC. Predictors and outcomes of intraoperative rupture in patients treated for ruptured intracranial aneurysms: The carat study. Stroke 2008;39:1501-6.

16. Gibbs GF, Huston J, Bernstein MA, Riederer SJ, Brown RD. Improved image quality of intracranial aneurysms: 3.0-T versus 1.5-T time-of-flight MR angiography. Am J Neuroradiol 2004;25:84-7.

17. Goertz L, Hamisch C, Tentschak S, Kabbasch C, von Spreckelsen N, Stavrinou P, et al. Impact of aneurysm shape on
intraoperative rupture during clipping of ruptured intracranial aneurysms. World Neurosurg 2018;118:e806-12.

18. Horie N, Tsutsumi K, Kaminogo M, Morikawa M, Kitagawa N, Nagata I. Agenesis of the internal carotid artery with transcranial anastomosis presenting with an anterior communicating artery aneurysm: a case report and review of the literature. Clin Neurourol Neurosurg 2008;110:622-6.

19. Huber G. Intracranial carotid anastomosis and partial aplasia of an internal carotid artery. Neuroladogy 1980;20:207-12.

20. Ishihara H, Ishihara S, Nimi J, Neki H, Kakehi Y, Uemiya N, et al. Risk factors and prevention of guiding catheter-induced vasospasm in neuroendovascular treatment. Neurol Med Chir (Tokyo) 2015;53:261-5.

21. Itokawa H, Moriya M, Fujimoto M, Kato A, Okamoto N, Noda M, et al. A giant anterior communicating artery aneurysm associated with hypoplasia of the unilateral internal carotid artery. J Neuroendovasc Ther 2009;3:17-23.

22. Keedy A. An overview of intracranial aneurysms. McGill J Med 2006;9:141-6.

23. Kim SM, Kim SH, Seo DW, Lee KW. Intraoperative neurophysiologic monitoring: Basic principles and recent update. J Korean Med Sci 2013;28:1261-9.

24. Kunishio K, Yama moto Y, Sunami N, Asari S. Agenesis of the left internal carotid artery with transcranial anastomosis associated with anterior communicating artery aneurysms. Asian J Neurosurg 2017;12:801-3.

25. Kunishio K, Yamamoto Y, Sunami N, Asari S. Agenesis of the left internal carotid artery, common carotid artery, and main trunk of the external carotid artery associated with multiple cerebral aneurysms. Surg Neurol 1987;27:177-81.

26. Lagarde C, Vigouroux R, Perrouty P. Terminal agenesis of internal carotid, aneurysm of anterior communicating; radiologic documents. Radiol Electroc Arch Electr Medicale 1957;38:939-41.

27. Lee JH, Oh CW, Lee SH, Han DH. Aplasia of the internal carotid artery. Acta Neurochir (Wien) 2003;145:117-25.

28. Lhermitte F. Hypoplasia of the internal carotid artery. Acta Neurochir (Wien) 1987;84:73-6.

29. Lie T. Congenital Anomalies of the Carotid Arteries. Including the Carotid-Basilar and Carotid-Vertebral Anastomoses. An Angiographic Study and a Review of the Literature. Amsterdam: Excerpta Medica; 1968.

30. Malinova V, Schatlo B, Voit M, Suntheim P, Rohde V, Mielke D. The impact of temporary clipping during aneurysm surgery on the incidence of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. J Neurosurg 2017;129:84-90.

31. Matsukawa H, Uemura A, Fujii M, Kamo M, Takahashi O, Sumiyoshi S. Morphological and clinical risk factors for the rupture of anterior communicating artery aneurysms. J Neurosurg 2013;118:978-83.

32. Midkiff RB, Boykin MW, McFarland DR, Bauman JA. Agenesis of the internal carotid artery with intercavernous anastomosis. Am J Neuroradiol 1995;16:1356-9.

33. Molyneux A, Kerr R, International Subarachnoid Aneurysm Trial (ISAT) Collaborative Group. International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: A randomised trial. J Stroke Cerebrovasc Dis 2002;11:304-14.

34. Nader-Sepahi A, Casimiro M, Sen J, Kitchen ND. Is aspect ratio a reliable predictor of intracranial aneurysm rupture? Neurosurgery 2004;54:1343-8.

35. Naito T, Mikami Y, Nabo uka J, Yoshimoto I, Oshima H. Agenesis of internal carotid artery associated with aneurysm of anterior communicating artery (author's transl). No Shinkei Geka 1977;5:593-6.

36. Nakai H, Kawata Y, Aizawa S, Tanaka T, Yonemaya Y. Unilateral agenesis of the internal carotid artery in a patient with ruptured aneurysm of the anterior communicating artery: a case report. No Shinkei Geka 1992;20:893-8.

37. Ogilvy CS, Carter BS, Kaplan S, Rich C, Crowell RM. Temporary vessel occlusion for aneurysm surgery: Risk factors for stroke in patients protected by induced hypothermia and hypertension and intravenous mannitol administration. J Neurosurg 1996;84:785-91.

38. Oppong MD, Pierscianek D, Ahmadipour Y, Dinger TF, Dammann P, Wrede KH, et al. Intraoperative aneurysm rupture during microsurgical clipping: Risk re-evaluation in the post-international subarachnoid aneurysm era. World Neurosurg 2018;119:e349-56.

39. Orakdogen M, Berkman Z, Ershahin M, Biber N, Somay H. Agenesis of the left internal carotid artery associated with anterior communicating artery aneurysm: Case report. Turk Neurosurg 2007;17:273-6.

40. Petrela M, Kurti X, Xhumari A, Leka LI, Anastasi V, Vreto G. Cross-over duplication of middle cerebral artery, agenesis of internal carotid artery and saccular aneurysms. Acta Neurochir (Wien) 1987;84:73-6.

41. Pierot L, Wakhloo AK. Endovascular treatment of intracranial aneurysms: Current status. Stroke 2013;44:2046-54.

42. Quint DJ, Boulos RS, Spera TD. Congenital absence of the cervical and petrous internal carotid artery with intercavernous anastomosis. Am J Neuroradiol 1989;10:435-9.

43. Rinkel GJ. Intracranial aneurysm screening: Indications and advice for practice. Lancet Neurol 2005;4:122-8.

44. Ruiigrok YM, Buskens E, Rinkd GJ. Attributable risk of common and rare determinants of subarachnoid hemorrhage. Stroke 2001;32:1173-5.

45. Schuette AJ, Hui FK, Spiootta AM, Obuchowski NA, Gupta R, Moskowitz SI, et al. Endovascular therapy of very small aneurysms of the anterior communicating artery: Five-fold increased incidence of rupture. Neurosurgery 2011;68:731-7.

46. Shigemori M, Kojo N, Miyagi J, Watanabe M, Kuramoto S. Agenesis of the left internal carotid artery associated with aneurysm of the anterior communicating artery. Neurol Med Chir (Tokyo) 1980;20:73-9.

47. Shukla SK, Parashar S, Saxena S. Congenital Absence of unilateral internal carotid artery with an intracerebral aneurysm. Asian J Neurosurg 2018;13:774-6.

48. Suyama K, Mizota S, Minagawa T, Hayashi K, Miyazaki H, Nagata I. A ruptured anterior communicating artery aneurysm associated with internal carotid artery agenesis and a middle cerebral artery anomaly. J Clin Neurosci 2009;16:585-6.
50. Tanaka Y, Masuzawa T, Kitano I, Matsumoto T. Hypoplasia of the left internal carotid artery associated with anterior communicating aneurysm, intercarotid anastomosis and left rete carotidis. No To Shinkei 1996;48:170-4.

51. Tangchai P, Khaoborisut V. Agenesis of internal carotid artery associated with aneurysm of contralateral middle cerebral artery. Neurology 1970;20:809.

52. Teal JS, Rumbaugh CL, Bergeron RT, Segali HD. Congenital absence of the internal carotid artery associated with cerebral hemiatrophy, absence of the external carotid artery, and persistence of the stapedial artery. Am J Roentgenol 1973;118:534-45.

53. Tracy PT. Unusual intercarotid anastomosis associated with anterior communicating artery aneurysm: Case report. J Neurosurg 1987;67:765-7.

54. Tsuruta J. A case of complete absence of the left internal carotid artery associated with an aneurysm of the anterior communicating artery. No Shinkei Geka 1977;5:895-900.

55. Waga S, Okada M, Kojima T. Saccular aneurysm associated with absence of the left cervical carotid arteries. Neurosurgery 1978;3:208-12.

56. Wani A, Behari S, Lyndoh B, Jaiswal A, Sahu R, Jain V. Multiple aneurysms associated with agenesis of internal carotid artery. Turk Neurosurg 2011;21:83-5.

57. Wong GK, Yu SC, Antonio GE, Poon WS. A rare anatomic variant of a solitary internal carotid artery associated with moyamoya phenomenon of the middle cerebral artery. Am J Neuroradiol 2006;27:2012-3.

58. Yoshida Y, Tochinai H, Murakami M, Murakami T, Saiki I, Kanaya H. A case of absence of the left internal carotid artery associated with aneurysm of the anterior communicating artery. No Shinkei Geka 1988;16:1089-94.

59. Zink WE, Komotar RJ, Meyers PM. Internal carotid aplasia/hypoplasia and intracranial saccular aneurysms: Series of three new cases and systematic review of the literature. J Neuroimaging 2007;17:141-7.

How to cite this article: Al-Khafaji AO, Al-Sharshahi ZF, Lee RP, Alsubaihawi ZA, Dolachee AA, Hoz SS. Unilateral absence of the internal carotid artery associated with anterior communicating artery aneurysms: Systematic review and a proposed management algorithm. Surg Neurol Int 2020;11:221.
Appendix Table 1: A table summary of the systematic review performed in this article.

N.	First author	Year	Patient age/gender	Presentation	ICA anomaly	Lie classification (collateral flow)	Acom aneurysm	Outcome	Notes	
1	Cohen and Kristiansen	1957	-	-	Lt.	-	Yes	Musc le wrapping	Good	Rt. frontal craniotomy, rt. frontal pole resection, wrapping with muscle Patient improved and went on living healthily
2	Lagarde et al.	1957	42 y/M	Sudden “raging” headache, projectile vomiting, LOC	Rt.	Type B	Yes	Muscle wrapping	Good	Rt. frontal craniotomy, partial rt. frontal pole resection, wrapping with muscle Patient improved and went on living healthily
3	Burmester and Stender	1961	43 y/M	Sudden “violent” headache	Lt.	Type B	Yes	Muscle wrapping	Good	Rt. frontal craniotomy, partial rt. frontal pole resection, wrapping with muscle Patient improved and went on living healthily
4	Lhermitte	1968	63 y/F	Sudden severe headache, vomiting	Lt.	-	Yes	-	Poor	+ Multiple small aneurysms of rt. ICA
5	Teal et al.	1973	66 y/F	Incidental, admitted after FFH	Lt.	Type A	No	None	Poor	+ Absent supraoptic rt. ACA Patient died 3 days post subacute SHD evacuation
6	Naito et al.	1977	48 y/M	Lt.-sided numbness and LL weakness	Lt.	Type A	Yes	Clipping	Good	+ Absent Lt. CCA and ECA Unieventual clipping: Fronto-temporal craniotomy
7	Waga et al.	1978	60 y/F	Severe frontal headache, N/V	Lt.	Type A	Yes	Clipping	-	+ Lt. vertebral artery agenesis Pt. refused surgery, improved afterwards and is well
8	Bernini et al.	1980	38 y/F	Sudden severe headache, vomiting, left hemiparesis	Rt.	Type A	Yes	Conservative	Good	+ Autosomal dominant polycystic kidney disease Pt. died on day 2 postoperative after severe secondary hemorrhage and respiratory failure
Appendix Table 1: (Continued)

Report	Case	Outcome	Notes						
10	Shigemori et al.,[47] 1988	48 y/F	Sudden severe headache, vomiting	Lt. agenesis	Type A	Lt. junc.	Yes	Clipping	Good
11	Afifi et al.,[1] 1987	4 m/F	Microcephaly, seizures	Lt. hypoplasia	-	Rt. junc.	No	Clipping	Good
12	Kunishio et al.,[25] 1987	70 y/M	Sudden severe headache	Lt. agenesis	Type A	Rt. junc.	No	None	-
13	Petrela et al.,[41] 1987	53 y/F	Sudden severe headache, vomiting	Rt. agenesis	Type A	Lt. junc.	Yes	Clipping	Good
14	Tracy[53] 1987	34 y/M	Acute-onset dizziness, brief LOC, intermittent headaches	Rt. aplasia	Type D	Lt. junc.	Yes	Clipping	Good
15	Yoshida et al.,[58] 1988	67 y/F	Sudden severe headache, LOC	Lt. agenesis	Type B	-	Yes	Conservative	Good
16	Quint et al.,[43] 1989	60 y/F	Lt.-sided headache and decreased visual acuity	Rt. aplasia	Type D	Lt. junc.	No	Conservative	Poor
		65 y/F	Sudden severe headache	Lt. agenesis	Type D	Lt. junc.	Yes	Clipping	Good
17	Nakai et al.,[37] 1992	27 y/F	Sudden severe headache, vomiting	Rt. Agenesis	Type B	-	Yes	-	-

Notes:
- Unilateral absence of the internal carotid artery associated with anterior communicating artery aneurysms
- **Acom aneurysm**
 - Site: Site of the aneurysm
 - Ruptured: Whether the aneurysm was ruptured
 - Mgmt.: Management of the aneurysm
- **Lie classification (collateral flow):** Classification of the aneurysm based on the collateral flow
- **Outcome:** Outcome of the treatment
- **Notes:** Additional notes on the case.
Appendix Table 1: Unilateral absence of the internal carotid artery associated with anterior communicating artery aneurysms

Case	N.	First author	Year	Patient age/gender	Presentation	ICA anomaly	Lie classification (collateral flow)	Site	Ruptured	Acom aneurysm	Outcome	Notes
18	Armand et al. [2]	1996	18 y/F	Sudden severe headache	Lt. agenesis	Type B	Lt. junc.	Yes	-	Yes	Good	-
19	Tanaka et al. [50]	1996	45 y/M	Sudden severe headache, DLoC	Lt. agenesis, DLoC hypoplasia	Type D	Rt. junc.	No	-	+ Lt. rete carotid	Good	-
20	Czarnecki et al. [13]	1998	45 y/M	Progressive hearing loss	Lt. agenesis	Type B	Rt. junc.	Yes	-	Yes	Good	-
21	Lee et al. [27]	2003	55 y/M	Sudden severe headache, DLoC	Lt. agenesis	Type A	L.t. junc.	Yes	-	Yes	Clipping	Good
22	Wong et al. [57]	2006	81 y/F	Sudden LOC	Lt. agenesis, general weakness, DLoC	Type A	Rt. junc.	No	-	Yes	Clipping	Good
23	Orakdöğen et al. [40]	2007	43 y/F	Sudden severe headache, transient weakness, DLoC	Lt. agenesis	Type A	Lt. junc.	Yes	-	Yes	Clipping	Good

(Contd...)
Appendix Table 1: (Continued)

Report	Case	Outcome	Notes				
24 Baek *et al.*, [3] 2007 58 y/M	Dysarthria, general weakness	Lt. hypoplasia	Type B	Rt. junc. No	Clipping	Good	
				+ Lt. A1 ACA aneurysm (rt. projection) Direct clipping of Acom aneurysm: rt. pterional approach Direct clipping of A1 aneurysm via lt. pterional approach 2wks later, weak nearby arterial walls reinforced with cotton sheets and fibrin glue. Good recovery			
25	38 y/F	Sudden severe headache	Lt. hypoplasia	Type A	Rt. junc. Yes	Clipping	Good
				Direct clipping + weak nearby arterial walls reinforced with cotton sheets and fibrin glue. Good recovery			
26	18 y/F	Sudden severe headache, vomiting	Lt. agenesis	Type A	Rt. junc. Yes	None	Poor
				+ Absent rt. CCA and ECA Pt. died 10 days after refusing surgery			
27	55 y/F	None, incidental	Lt. agenesis	Type D	Rt. junc. No	Clipping	Good
				Uneventful clipping: lt. fronto-temporal craniotomy discharged 1wk later			
28	62 y/M	Continual severe headache	Lt. hypoplasia	Type A	Rt. junc. No	Coiling	Good
				Irregular large aneurysm 27 coils, 419cm total 2 caths used for framing, 18 microcath for intrasellar, 10 microcatheter for suprasellar portion no complications at 3y follow-up			
				+ Anomalouos lt. MCA from the contralateral ICA			
29	69 y/F	Sudden severe headache	Lt. agenesis	Type D	Rt. junc. Yes	Clipping	Good
				Uneventful clipping: rt. fronto-temporal craniotomy			

(Contd...)
Report	Case										
N.	First author	Year	Patient age/gender	Presentation	ICA anomaly	Lie classification (collateral flow)	Acom aneurysm	Outcome	Notes		
30	Wani et al.	2011	48 y/M	Sudden severe headache, vomiting, DLoC	Lt. agenesis	Type A	Rt. junc.	No	Clipping	Good	+ ruptured rt. paraclinoid aneurysm. Uneventful clipping: rt. pterional transsylvian approach. For paraclinoid aneurysm: ant. clinoid drilling, ICA mobilization, clipping with fenestrated clip.
31	Bhaskar et al.	2012	32 y/M	Sudden severe headache, brief LOC	Lt. agenesis	Type A	Rt. junc.	Yes	Clipping	Good	2 Acom aneurysms. Clipping by rt. pterional craniotomy, transsylvian approach, intraoperative rupture, temporary clipping of rt. A1 for 5 min. Patient is well at 7m follow-up.
32	Kumagai et al.	2017	47 y/M	Lt.-sided numbness	Lt. agenesis	Type D	Rt. junc.	No	Clipping	Good	Uneventful clipping: frontal craniotomy, interhemispheric approach.
33	Shukla et al.	2018	60 y/M	Chronic headache	Lt. agenesis	Type A	Rt. junc.	No	Follow-up	Good	No complaints, under follow-up.
34	Al-Khafaji	2020	51 y/M	Sudden severe headache, nausea and violent	Rt. agenesis	Type B	Lt. junc.	Yes	Cautery and Muscle wrapping	Good	Lt. pterional transsylvian approach; vasospasm and wide-neck made clipping difficult without proximal control by temporary clipping; resorted to cautery of bleeding part and muscle wrapping instead.

The only two cases of large (more than 10 mm largest diameter) Acom aneurysms associated with ICA anomaly reported in the literature.