Updated molecular phylogenetic data for *Opisthorchis* spp. (Trematoda: Opisthorchioidea) from ducks in Vietnam

Thanh Thi Ha Dao 1,2,3, Thanh Thi Giang Nguyen 1,2, Sarah Gabriël 4, Khanh Linh Bui 5, Pierre Dorny 2,3* and Thanh Hoa Le 6

Abstract

Background: An opisthorchiid liver fluke was recently reported from ducks (*Anas platyrhynchos*) in Binh Dinh Province of Central Vietnam, and referred to as "*Opisthorchis viverrini*-like". This species uses common cyprinoid fishes as second intermediate hosts as does *Opisthorchis viverrini*, with which it is sympatric in this province. In this study, we refer to the liver fluke from ducks as "*Opisthorchis* sp. BD2013", and provide new sequence data from the mitochondrial (mt) genome and the nuclear ribosomal transcription unit. A phylogenetic analysis was conducted to clarify the basal taxonomic position of this species from ducks within the genus *Opisthorchis* (Digenea: Opisthorchiidae).

Methods: Adults and eggs of liver flukes were collected from ducks, metacercariae from fishes (*Puntius brevis*, *Rasbora aurotaenia*, *Esomus metallicus*) and cercariae from snails (*Bithynia funiculata*) in different localities in Binh Dinh Province. From four developmental life stage samples (adults, eggs, metacercariae and cercariae), the complete cytochrome *b* (*cob*), nicotinamide dehydrogenase subunit 1 (*nad1*) and cytochrome *c* oxidase subunit 1 (*cox1*) genes, and near-complete 18S and partial 28S ribosomal DNA (rDNA) sequences were obtained by PCR-coupled sequencing. The alignments of nucleotide sequences of concatenated *cob* + *nad1* + *cox1*, and of concatenated 18S + 28S were separately subjected to phylogenetic analyses. Homologous sequences from other trematode species were included in each alignment.

Results: Phylogenetic trees were inferred from concatenated (*cob* + *nad1* + *cox1*) nucleotide sequences and combined 18S + 28S nucleotide sequences of five *Opisthorchis* sp. BD2013 samples and additional reference taxa. Both trees demonstrated the anticipated clustering of taxa within the superfamily Opisthorchioidea, the paraphyly of the genus *Opisthorchis* and the sister-species relationship of *Opisthorchis* sp. BD2013 with *O. viverrini*.

Conclusions: While it is likely that *Opisthorchis* sp. BD2013 is distinct from *O. viverrini*, it is clearly a sister taxon of *O. viverrini* within the limited number of *Opisthorchis* species for which appropriate sequence data are available. The new sequences provided here will assist the diagnosis and the taxonomic clarification of the opisthorchiid species.

Keywords: Mitochondrial gene, Ribosomal transcription unit, *Opisthorchis* sp. BD2013, Opisthorchiid, 18S rDNA, 28S rDNA, Phylogenetic analysis
Background
The family Opisthorchoiidae (Digenea: Opisthorchioidea) consists of 33 genera considered valid including the genera Opisthorchis and Clonorchis, in which O. viverrini, O. felineus and C. sinensis are known to infect humans [1]. Humans become infected by eating uncooked cyprinoid fish containing metacercariae. Opisthorchis viverrini has been reported in Central Vietnam, where Binh Dinh and Phu Yen Provinces are highly endemic for human opisthorchiasis [2–4].

In 2013, Dao et al. [5] found adults of an opisthorchiid species in ducks (Anas platyrhynchos) in areas of Binh Dinh Province where there are many human opisthorchiasis cases. This parasite was then given the working name “Opisthorchis viverrini-like”, because of its close similarity to O. viverrini [5, 6]. Subsequently, there has been a debate about the identity of this worm. Nawa et al. [7] argued that the duck liver fluke not be O. viverrini, but is most likely O. parageminus that was previously reported from ducks in Vietnam [8–10]. However, Dorny et al. [11] considered that their “Opisthorchis viverrini-like” species exhibited some morphological differences from O. parageminus. We now propose to use the working name “Opisthorchis sp. BD2013” instead of the earlier “Opisthorchis viverrini-like”.

Molecular phylogenetic/systematic studies are excellent aids for taxonomy [12–15]. Such studies require homologous sequences from as many taxa as possible within the group of interest. In the genus Opisthorchis, a number of genetic markers from complete mitochondrial sequences and the nuclear ribosomal transcription units including, ITS1, ITS2, 18S rDNA and partial 28S rDNA have been generated for O. viverrini, O. felineus and Clonorchis sinensis. These genetic markers have greatly contributed to molecular diagnostic, epidemiological, phylogenetic and evolutionary studies of the species in Opisthorchiidae and trematodes [3, 13, 16–19]. However, Opisthorchis is a very large genus [7], and molecular data are available for only a few species. Moreover, given difficulties with the morphological taxonomy within the genus, it is not always certain that names assigned to samples are accurate. The only molecular data claimed to be from O. parageminus consist of two sequences recently deposited in GenBank (accession numbers KX258656, KX258657) by Nguyen and Nguyen (otherwise unpublished data). Although their worms came from ducks in Vietnam, no information is available on the morphological basis for the identification. Both of these sequences (mitochondrial partial mt cox1 and nuclear ribosomal ITS2) are very similar to earlier sequences available for Opisthorchis sp. BD2013 published by [5]. Here, we provide additional mitochondrial sequences, i.e. complete cytochrome b (cob), nicotinamide dehydrogenase subunit 1 (nad1) and cytochrome c oxidase subunit 1 (cox1) genes, and near-complete 18S rDNA and partial 28S rDNA sequences in an effort to better resolve the affinities of Opisthorchis sp. BD2013 within the family Opisthorchiidae and the superfamily Opisthorchioidea.

Methods
Opisthorchis sp. BD2013 samples collected from the field
Adult specimens and eggs of Opisthorchis sp. BD2013 were collected from naturally infected domestic ducks (Anas platyrhynchos) originating from 4 localities (Phu Cat, Phu My, An Nhơn and Tuy Phuoc Districts) in Binh Dinh Province of Central Vietnam [6, 20] (Table 1). Each adult worm, unstained or stained with acetic carmine, was morphologically identified by light microscopy [5]. Up to three adult worms from each locality were individually fixed in 70% ethanol, and one or two worms from each locality were separately subjected to genomic DNA extraction and molecular analysis.

Fishes (harbouring metacercariae) and snails (shedding cercariae) were collected from My Tho Lake in the lowlands of Binh Dinh Province [20]. Infected fishes were identified as Puntius brevis, Esomus metallicus, Rasbora aurataenina, and the snail as Bithynia funiculata [20] (Table 1). For molecular analysis, metacercariae and cercariae were individually fixed in RNAlater™ buffer (Qiagen, Texas, USA) at 4 °C. Individual parasites from each intermediate host and each locality were used for extraction of DNA and molecular study.

Eggs were individually collected from the gallbladder of naturally infected ducks by washing and centrifuging the bile ten times in normal saline (0.9% NaCl), then three times in phosphate buffered saline (PBS) before storage at -20 °C until use (Table 1).

Genomic DNA extraction and primers
Total genomic DNA was extracted from individual adults, metacercariae, cercariae or pooled eggs (approximately 2000–3000 eggs) using the GeneJET™ Genomic DNA Purification Kit (Thermo Fisher Scientific Inc., MA, USA), according to the manufacturer’s instructions. A slight modification applied for eggs was to increase the incubation period by 3–4 h after enzymatic lysis. Genomic DNA was eluted in 50 μl of the elution buffer provided in the kit and stored at -20 °C. The DNA concentration was estimated using a GBC UV/visible 911A spectrophotometer (GBC Scientific Equipment Pty. Ltd., Braeside, Australia) and diluted to a working concentration of 50 ng/μl (about 10 ng/μl for DNA from eggs). From this genomic DNA, 2–3 μl was used as template in a PCR of 50 μl volume.

Primers used both for amplification and sequencing of the mitochondrial and nuclear ribosomal genes are listed in Table 2. The primer pair OACOBF/OACO1R
amplified approximately 7.8 kb of mtDNA. Based on the sequence obtained from this amplicon, three primer pairs specific for the individual target protein-coding genes were designed. Primer pairs OACOBF/OACOBR, OAND1F/OAND1R, OACO1F/OACO1R amplified complete cob, nad1 and cox1 genes, respectively. The primer pairs U18SF/U18SR were used for obtaining major fragments of ribosomal 18S and U28SF/U28SR for 28S, respectively [12]. Additional internal primers were designed and used as needed (Table 2).

Amplification of mitochondrial and ribosomal genes

The 7.8 kb mt genomic region

Long PCR reactions were prepared using 25 μl of Fusion High-Fidelity PCR Master Mix (2×) (Thermo Fisher Scientific Inc., Waltham, MA, USA) and 2 μl of each primer (10 pmol/μl), 2 μl DNA template of the adult sample (50 ng/μl), 2 μl DMSO (dimethyl sulfoxide) and 17 μl H2O up to a final volume of 50 μl. All PCRs were performed in an MJ PTC-100 thermal cycler with initiation at 98 °C for 30 s, followed by 35 cycles consisting of denaturation for 10 s at 98 °C, annealing at 56 °C for 30 s, extension at 72 °C for 6 min.

Individual mt and ribosomal DNA genes

PCR reactions of 50 μl were prepared using 25 μl of DreamTaq PCR Master Mix (2×) (Thermo Fisher Scientific Inc., Waltham, MA, USA), 2 μl of each primer (10 pmol/μl), 2 μl DNA template (50 ng/μl for adults; 50 ng/μl for metacercariae; 10–20 ng/μl for cercariae and eggs), 2 μl DMSO (dimethyl sulfoxide) and 17 μl H2O. All PCRs were performed in an MJ PTC-100 thermal cycler with initiation at 94 °C for 5 min, followed by 35 cycles consisting of denaturation for 30 s at 94 °C, annealing at 56 °C for 30 s, extension at 72 °C for 3 min.

Life-cycle stage	Site collected (district)	Host	Scientific name	Sample abbreviation for use in this study
Adult worm	Phu Cat	Duck	Anas platyrhynchos	Opisthorchis sp. BD2013-PC6aduBD
Adult worm	Phu My	Duck	Anas platyrhynchos	Opisthorchis sp. BD2013-PM10aduBD
Adult worm	An Nhon	Duck	Anas platyrhynchos	Opisthorchis sp. BD2013-PC6aduBD
Adult worm	Tuy Phuoc	Duck	Anas platyrhynchos	Opisthorchis sp. BD2013-PM10aduBD
Metacercariae	Phu My	Fish	Puntius brevis	Opisthorchis sp. BD2013-PCmetaBD
Metacercariae	Phu My	Fish	Rasbora aurataenia	Opisthorchis sp. BD2013-PCmetaBD
Metacercariae	Phu My	Fish	Esomus metallicus	Opisthorchis sp. BD2013-PCmetaBD
Cercariae	Phu My	Snail	Bithynia funiculata	Opisthorchis sp. BD2013-PCcercaBD
Eggs	Phu My	Duck	Anas platyrhynchos	Opisthorchis sp. BD2013-PCeggBD

Table 2 Primers for amplification and sequencing of the mitochondrial protein-coding and nuclear ribosomal genes used in this study

Primer name	Sequence (5′–3′)	Target gene	Amplicon by PCR	Length of sequence (bp)	Reference
OACOBF	AGCCGGAGAGTCTTTGTTG	cob	1.4 kb	1110	This study
OACOBR	TGAATCCCAACACCGCTTA				
OACOBR2a	TACGGTTAAGGACGGTTG				
OAND1F	CGTGTGGTGGGCGCAAGATAG	nad1	1.2 kb	903	This study
OAND1R	CACACACAGCTTCCTCAAGT				
OACO1F	GAGGTTTACGTGGTGTGAG	cox1	1.8 kb	1551	This study
OACO1R	CAACCTCTAAGCCACACACG				
OACO1R2a	GGATCCAAAAAGCCTCACG				
U18SF	GCGAATGGCTCATATAATCG	18S	1.8 kb	~ 1790	[12]
U18SR	GGAAACATCGAGGCGCTACTG				
NS2F	GCAAGTCTGGTGCACGCAGCC				
U28SF	CTCAACAGGATTCCCTTAAGCAC	28S	1.3 kb	~ 1100	[12]
U28SR	GTCTTCGCCCCCTATACCAC				

Abbreviations: F forward, R reverse

Internal primer used for sequencing
Sequencing and sequence analyses
PCR products were obtained from at least two individual samples for each template (i.e. adults, metacercariae, cercariae and eggs) originating from different geographical localities. The PCR products (10 μl of each) were examined on a 1% agarose gel, stained with ethidium bromide, and visualized under UV light (Wealtec, Meadowvale Way Sparks, USA).

All the purified or gel-extracted amplicons were subjected to direct sequencing by automated sequencers using amplifying/flanking and internal primers (Table 2) by primer-walking in both directions (Macrogen Inc., Seoul, South Korea). Sequences (two from each sample) were aligned to obtain the final sequence for characterization. All sequences of Opisthorchis sp. BD2013 were identical, regardless of the life-cycle stage or locality.

The concatenated nucleotide and amino acid sequences of three protein-coding genes, i.e., cob + nad1 + cox1, were used to infer the pairwise genetic distances between 10 opisthorchiids (Table 3). These isolates included Opisthorchis sp. BD2013 and the reference sequences from Laos (JF739555), Vietnam (MF287777–MF287779) and Thailand (MF287780–MF287782). The genetic distances were inferred by pair-wise analysis using the MEGA6.0 software, and the number of base substitutions per site was calculated by the most simplified method (uncorrected p-distance) [21].

Phylogenetic analysis
Preparation of DNA sequences
Phylogenetic analysis using three mitochondrial protein-coding (cob, nad1, cox1) and two nuclear ribosomal (18S and 28S rDNA) genes was conducted to examine the taxonomic placement of Opisthorchis sp. BD2013 from ducks within the superfamily Opisthorchioidea. Sequences of trematode species/isolates of the Opisthorchidae, Heterophyidae, Fasciolidae and Schistosomatidae (as the outgroup) were used. Summary data of species/isolates, mainly from the available complete mitochondrial genomes are presented in Table 3. Accession numbers for the target and reference 18S and 28S rDNA sequences are listed in Table 4. For Opisthorchis sp. BD2013, we decided to use only two sequences of adults, and one each from metacercariae, cercariae and eggs for phylogenetic analyses.

Concatenated nucleotide sequences of mt protein-coding genes (cob, nad1, cox1) from adults, metacercariae, cercariae, and eggs of Opisthorchis sp. BD2013, and from additional taxa (available in GenBank; see Table 3) were imported into GENEDOC 2.7 (available at http://iubio.bio.indiana.edu/soft/molbio/ibmpc/genedoc-readme.html) and aligned for phylogenetic analysis. Additionally, the sequences of opisthorchiids were translated (using the echinoderm/flatworm mitochondrial genetic code: translation Table 9 in GenBank), and the deduced amino acid sequences were aligned for pairwise genetic distance analysis.

DNA sequences of 18S rRNA and 28S rRNA genes (listed in Table 4) were aligned separately using GENEDOC 2.7. The sequences were trimmed at both ends to the shortest length of the representative sequences. For 18S rDNA, in this study, the final alignment was 2005 nucleotides (nt) long of which 87 nt positions were trimmed at 5’ end and 114 nt at 3’ end, leaving 1804 characters for analyses. For 28S rDNA, the final alignment was 1449 nt long of which 122 nt positions were trimmed at 5’ end and 123 nt at 3’ end, leaving 1202 characters for analyses. The two sequences were then concatenated as indicated in Table 4, preferably from the same strains/isolates. The concatenated 18S + 28S rDNA sequences representing species/isolates were imported into GENEDOC 2.7 and phylogenetic analysis and tree construction were done by MEGA6.0 [21].

Phylogenetic reconstruction
The alignments of the concatenated nucleotide (cob, cox1, nad1) and 18S +28S sequences, respectively, were trimmed to the length of the shortest sequence and imported into the MEGA 6.06 software [21]. Maximum likelihood (ML) analyses were performed in each case. For DNA sequences, we used the general time-reversible model of evolution with gamma distributed rate heterogeneity and a proportion of invariant sites (GTR + Γ + Ω). This model was given the best Bayesian information criterion score by MEGA. For amino acid sequences, the Jones-Taylor-Thornton (JTT) model with uniform rates and Nearest-Neighbor-Interchange (NNI) method was used. The confidence in each node was assessed using 1000 bootstrap resamplings [21].

Results
Mitochondrial cob, nad1, cox1 and genetic distances among opisthorchid species/sequences
For Opisthorchis sp. BD2013, lengths of the complete cob, nad1 and cox1 genes were 1110, 903 and 1551 nucleotides, respectively. Among opisthorchid species, cob genes ranged in length from 1110 to 1116 nt, and cox1 genes were 1551 to 1563 nt in length. The primer pairs U18SF/U18SR were used for obtaining major fragments of ribosomal 18S and U28SF/U28SR for 28S rDNA.

Nucleotide and amino acid pairwise comparisons of the concatenated mt genes among ten opisthorchid isolates/species are presented in Tables 5 and 6. The concatenated cob + nad1 + cox1 nucleotide sequences of Opisthorchis sp. BD2013 differed at 14.4–14.5% of nucleotide sites and 10.3–10.6% of amino acid positions from the reference sequences of O. viverrini (Vietnam,
Table 3 Summary data for complete mitochondrial genomes of species providing cytochrome b (cob), nicotinamide dehydrogenase subunit 1 (nad1) and cytochrome c oxidase subunit 1 (cox1) used in the phylogenetic analysis including Opisthorchis sp. BD2013 in ducks in Vietnam

Family/Species	Isolates/Strains	Country	GenBank ID	Reference
Opisthorchiidae				
Opisthorchis sp. BD2013	PC6aduBD	Vietnam	MF287762-MF287764	This study
Opisthorchis sp. BD2013	PM10aduBD	Vietnam	MF287765-MF287767	This study
Opisthorchis sp. BD2013	PCmetaBD	Vietnam	MF287768-MF287770	This study
Opisthorchis sp. BD2013	PCCercaBD	Vietnam	MF287771-MF287773	This study
Opisthorchis sp. BD2013	PeggBD	Vietnam	MF287774-MF287776	This study
Opisthorchis viverrini'	na	Laos	JF739555	[19]
	Binh Dinh 1	Vietnam	MF287777-MF287779	This study
	Khon Koen	Thailand	MF287780-MF287782	This study
Opisthorchis felineus	Ust-Tula (Novosibirsk)	Russia	EU921260	[16]
Clonorchis sinensis	Nam Dinh	Vietnam	MF287783-MF287785	This study
	Guangdong	China	JF729303	[19]
	na	South Korea	JF729304	[19]
	Amur - Khabarovsk	Russia	FJ381664	[16]
Metorchis orientalis	Heilongjiang	China	KT239342	[22]
Heterophyidae				
Haplorchis taichui	na	Laos	KF214770	[24]
	Quang Tri 3	Vietnam	MF287786-MF287788	This study
Metagonimus yokogawai	na	South Korea	KC330755	
Fasciolidae				
Fasciola hepatica	Geelong	Australia	AF216697	[25]
Fasciola gigantica	Guangxi	China	KF543342	[26]
	Thua Thien-Hue	Vietnam	MF287789-MF287791	This study
Fasciola sp. (intermediate form)	GHL-Heilongjiang	China	KF543343	[26]
Fasciolopsis buski	Jiangxi	China	KX169163	[27]
	Ha Tay	Vietnam	MF287792-MF287794	This study
Fascioloides magna	Kokolínko	Czech Republic	KU060148	[28]
Schistosomatidae				
Schistosoma haematobiuma	N10 Village	Mali	DQ157222	[29]

*aSequence used as the outgroup
*bSequences of the opisthorchids used for pairwise genetic distance calculation (Tables 5 and 6)

Thailand and Laos isolates) [19]; 17.9–18.2% for nucleotides and 13.3–13.7% for amino acids from C. sinensis (Russia, China, South Korea and Vietnam isolates); 18.1% (nucleotides) and 13.7% (amino acids) from O. felineus (a Russian isolate) [16] and 15.4% (nucleotides) and 11.6% (amino acids) from Metorchis orientalis (China isolate) [23].

Within each opisthorchiid taxon, pairwise genetic distances were small, only 0.4–0.7% for nucleotides and 0.5–0.6% for amino acids within O. viverrini; 0.3–0.6% (nucleotides) and 0.2–0.8% (amino acids) within C. sinensis. Opisthorchis sp. BD2013 in ducks differs from O. viverrini by more than 10%, a figure comparable to those separating species within the genus Opisthorchis and the family Opisthorchiidae (Tables 5 and 6).

Phylogenetic analysis

Phylogenetic reconstruction based on the complete cob + nad1 + cox1 amino acid sequences

A phylogenetic tree was constructed from 25 nucleotide sequences inferred from complete cob + nad1 + cox1 of 13 trematode species belonging to 4 families with...
Schistosoma haematobium of the Schistosomatidae as the outgroup (Table 3, Fig. 1). The superfamily Opisthorchioidea in this study comprises the Heterophyidae and Opisthorchiidae (no appropriate sequences from the third family, Cryptogonimidae, were available), with the strong nodal support of 99%, clearly separate from the family Fasciolidae. The Opisthorchis sp. BD2013 clade was placed as a sister of O. viverrini from...
Table 5 Pairwise genetic distances (%) between Opisthorchis sp. BD2013 sample from ducks in Vietnam and the sequences for O. viverrini, Clonorchis sinensis, O. felineus and Metorchis orientalis of the concatenated mitochondrial genes cob, nad1 and cox1

Species	GenBank ID	1	2	3	4	5	6	7	8	9	10
1 Opisthorchis sp. BD2013 (PM10aduBD/Vietnam)	MF287767	–									
2 O. viverrini (Binh Dinh 1/ Vietnam)	MF287779	14.4	–								
3 O. viverrini (Khon Kaen/ Thailand)	MF287782	14.5	0.4	–							
4 O. viverrini (Laos)	JF739555	14.4	0.5	0.7	–						
5 C. sinensis (Amur-Khabarovsk/Russia)	FJ381664	17.9	18.1	18.1	17.9	–					
6 C. sinensis (Guangdong/ China)	JF279303	18.0	18.1	18.1	17.9	0.4	–				
7 C. sinensis (South Korea)	JF729904	18.2	18.2	18.3	18.0	0.5	0.3	–			
8 C. sinensis (Nam Dinh/ Vietnam)	MF287784	18.0	18.1	18.2	18.0	0.5	0.5	0.6	–		
9 O. felineus (Ust-Tula/ Russia)	EU921260	18.1	18.8	18.9	18.7	15.4	15.6	15.8	15.5	–	
10 Metorchis orientalis (Heilongjiang/China)	KT239342	15.5	13.7	13.7	13.5	17.0	17.2	17.2	17.0	16.8	–

Discussion

In this study, we used two concatenated datasets to infer the molecular phylogenetic position of Opisthorchis sp. BD2013 (formerly named “Opisthorchis viverrini-like” or as O. parageminus by several authors). We did not have samples of O. lobatus [17] and the so-called O. parageminus [8, 9] for analysis in the present study, therefore, we were not able to establish the relationship between Opisthorchis sp. BD2013 and these species.

The genus Opisthorchis is very large [7], but relevant sequence data are limited to only a few species. It was necessary to determine whether Opisthorchis sp. BD2013 from ducks is distinct from O. viverrini, a zoonotic liver fluke known to infect and to cause cholangiocarcinoma in humans [23]. The data presented in this study strongly imply that the two are distinct species. The sister-species relationship demonstrated between Opisthorchis sp. BD2013, and O. viverrini might simply be because O. felineus is the only other member of the genus for which data are available. Opisthorchis felineus renders Opisthorchis paraphyletic in our trees, indicating that much systematic work remains to be done in the

Table 6 Pairwise genetic distances (%) between Opisthorchis sp. BD2013 sample from ducks in Vietnam and O. viverrini, Clonorchis sinensis, O. felineus and Metorchis orientalis of the concatenated mitochondrial amino acid sequence of cob, nad1 and cox1

Nucleotide sequences	Accession No.	1	2	3	4	5	6	7	8	9	10
1 Opisthorchis sp. BD2013 (PM10aduBD/Vietnam)	MF287767	–									
2 O. viverrini (Binh Dinh 1/ Vietnam)	MF287779	10.6	–								
3 O. viverrini (Khon Kaen/ Thailand)	MF287782	10.6	0.5	–							
4 O. viverrini (Laos)	JF739555	10.3	0.6	0.6	–						
5 Clonorchis sinensis (Amur-Khabarovsk/Russia)	FJ381664	13.3	12.4	12.4	12.4	–					
6 C. sinensis (Guangdong/ China)	JF279303	13.5	12.8	12.8	12.8	0.3	–				
7 C. sinensis (South Korea)	JF279304	13.7	12.7	12.7	12.7	0.3	0.2	–			
8 C. sinensis (Nam Dinh/ Vietnam)	MF287784	13.6	12.6	12.6	12.6	0.4	0.8	0.8	–		
9 O. felineus (Ust-Tula/ Russia)	EU921260	13.7	13.8	13.9	13.9	9.3	9.7	9.7	9.5	–	
10 Metorchis orientalis (Heilongjiang/China)	KT239342	11.6	8.8	8.8	8.7	9.8	10.2	10.2	10.1	11.0	–
Fig. 1 Phylogenetic tree for *Opisthorchis* sp. BD2013 (indicated by diamond symbol) and other opisthorchiids and representative trematodes from 4 families, the Opisthorchiidae, Heterophyidae, Fasciolidae and Schistosomatidae (the latter used as an outgroup), based on concatenated nucleotide sequences of complete cytochrome b (cob), nicotinamide dehydrogenase subunit 1 (nad1) and cytochrome c oxidase subunit 1 (cox1) genes. Phylogenetic reconstruction was performed using maximum likelihood analysis with the general time-reversible model with a gamma distributed rate heterogeneity and a proportion of invariant sites (GTR + Γ + I) in the MEGA6.06 software package. Support for each node was evaluated using 1000 bootstrap resamplings [21]. The scale-bar indicates the number of substitutions per site. Accession numbers (where available) are given at the end of each sequence name. Isolates/geographical localities are given in parentheses (if available). Country abbreviation codes (2-letter) are given prior to the accession numbers: AU, Australia; CN, China; CZ, Czech Republic; KR, Korea; LA, Lao PDR; RU, Russia; TH, Thailand; VN, Vietnam.

Fig. 2 Phylogenetic tree for *Opisthorchis* sp. BD2013 (indicated by diamond symbol) and other opisthorchiids and representative trematodes from 4 families, the Opisthorchiidae, Heterophyidae, Fasciolidae and Schistosomatidae (the latter used as the outgroup), based on combined nucleotide sequences of the nuclear small ribosomal subunit (18S rDNA) and large ribosomal subunit (28S rDNA). Phylogenetic reconstruction was performed using maximum likelihood analysis with the general time-reversible model and a gamma distributed rate heterogeneity and proportion of invariant sites (GTR + Γ + I) in the MEGA6.06 software package. Support for each node was evaluated using 1000 bootstrap resamplings [21]. The node for the superfamily (infraorder) Opisthorchioidea is indicated by an arrow. The scale-bar indicates the number of substitutions per site. Accession numbers are given at the end of each sequence name. Isolates or geographical localities and country isolated are given in parentheses (if available).
Opisthorchiidae. A further unresolved question is the relationship between *Opisthorchis* sp. BD2013 and *O. parageninus*. Both were found in ducks in Vietnam, but some morphological differences seem to exist [11]. At this stage, we prefer to leave the question open, pending future morphological and molecular work.

Our previous phylogenetic analysis using short sequences of ITS2 and cox1 revealed close affinities between *O. viverrini*, *O. lobatus* and *Opisthorchis* sp. BD2013 [5]. In the current study, we are unable to resolve the status of *O. lobatus* compared to *Opisthorchis* sp. BD2013 and other opisthorchiids.

Conclusions

Based on mitochondrial *cob* + *nad1* + *cox1* and ribosomal 18S + 28S rRNA sequence analyses, *Opisthorchis* sp. BD2013 was distinct from *O. viverrini*, although the two species are closely related. The genus *Opisthorchis* itself appears as paraphyletic. Data from additional *Opisthorchis* species are vital to create a phylogeny with higher resolution within *Opisthorchis* and the Opisthorchiidae.

Abbreviations

cob: cytochrome b; cox1: cytochrome c oxidase subunit 1; MEGA: Molecular Evolutionary Genetics Analysis; ML: maximum likelihood; mt: mitochondrial; nad1: nicotinamide dehydrogenase subunit 1; rTU: ribosomal transcription unit

Acknowledgments

We express our thanks to colleagues and technicians at the Binh Dinh Provincial station of veterinary services for providing and processing samples and Ms. TK Nguyen and Dr. HTT Doan of the Institute of Biotechnology, Hanoi, Vietnam for contributing to our laboratory work. We would like to express our gratitude to Professor David Blair, College of Science and Engineering, James Cook University, Townsville, Australia for revision and invaluable comments on this paper.

Funding

This work was funded by the Directorate General for Development Cooperation (DGD) Belgium, through the individual PhD Programme (HTH Dao) of the Institute of Tropical Medicine Belgium under the DGD-ITM Framework agreements 3 and 4.

Availability of data and materials

The data sets supporting the alignment and phylogenetic analysis are included in the article. Nucleotide sequences obtained in the present study have been deposited into the GenBank database with the following accession numbers: MF077358–MF077362 (18S rDNA; *Opisthorchis* sp. BD2013); MF110001–MF110005 (28S rDNA; *Opisthorchis* sp. BD2013); MF287762–MF287776 (cob, nad1, cox1; *Opisthorchis* sp. BD2013).

Authors’ contributions

THTD, PD and THL conceived the study, analyses of final data and wrote the manuscript. TGN, KLB and SG conducted field collections, laboratory, and preliminary sequence analyses. All authors read and approved the final manuscript.

Ethics approval and consent to participate

Appropriate permission was obtained from the commune authorities and local households before the collection of parasite specimens from their stocks.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details

1. National Institute of Veterinary Research, 86, Truong Chinh Street, Dong Da District, Hanoi, Vietnam. 2. Department of Biomedical Sciences, Institute of Tropical Medicine, National College 155, B2000 Antwerp, Belgium. 3. Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, 153 Saliuburylaan, B9820, Merelbeke, Belgium. 4. Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, 153 Saliuburylaan, B9820, Merelbeke, Belgium. 5. Department of Parasitology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam. 6. Department of Immunology, Institute of Biotechnology and Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18. Hoang Quoc Viet Rd, Cau Giay, Hanoi, Vietnam.

Received: 16 June 2017 Accepted: 31 October 2017
Published online: 21 November 2017

References

1. Scholz T. Family Opisthorchiidae Looss, 1899. In: Bray RA, Gibson DI, Jones A, editors. Keys to the Trematoda, Vol. 3. Wallinford: CAB international and the Natural History Museum; 2008. p. 9–49.
2. Petney TN, Andrews RH, Sajjuntha W, Wenz-Mücke A, Sithihavrom P. The zoonotic, fish-borne liver flukes *Clonorchis sinensis*, *Opisthorchis felineus* and *Opisthorchis viverrini*. Int J Parasitol. 2013;43(12–13):1031–46.
3. Doan PN, Nawa Y. Clonorchis sinensis and *Opisthorchis* spp. in Vietnam: current status and prospects. Trans R Soc Trop Med Hyg. 2016;110(1):13–20.
4. Dao TT, Bui TV, Abath EN, Gabriël S, Nguyen TT, Huynh QH, et al. *Opisthorchis viverrini* infections and associated risk factors in a lowland area of Binh Dinh Province, Central Vietnam. Acta Trop 2016;157:151–157.
5. Dao TH, Nguyen TG, Victor B, Gabriël S, Dorny P. *Opisthorchis viverrini*-like liver fluke in birds from Vietnam: morphological variability and 18S rDNA sequence confirmation. J Helminthol. 2014;88(4):441–6.
6. Dao HT, Abath EN, Nguyen TT, Tran HT, Gabriël S, Smit S, et al. Prevalence of *Opisthorchis viverrini*-like fluke infection in ducks in Binh Dinh Province, Central Vietnam. Korean J Parasitol. 2016;54(3):357–61.
7. Nawa Y, Doan PN, Thaenikhun U. *Opisthorchis viverrini* an avian liver fluke? J Helminthol. 2015;89(2):255–6.
8. Oshmarin PG. Helminths of animals of Southeast Asia. In: Oshmarin PG, Mamaev VL, Lebedev BI, editors. Trematodes of domesticated and wild birds in the Democratic Republic of Vietnam. Moscow: Nauka; 1970. p. 5–126. (In Russian).
9. Le NT. [Fauna of Vietnam]. Hanoi: Science and Techniques Publishing House. (In Vietnamese); 2000. p. 236–46.
10. Tan ND, Thoai NV, Phuong TH. Development of egg and larvae of *Opisthorchis paragonimus* in environment and in intermediate host. J Vet Sci Techn. 2017;5:58–63. (In Vietnamese with English abstract)
11. Dorny P, Dao T, Victor B, Nguyen T, Gabriël S. Response to manuscript ‘Is *Opisthorchis viverrini* an avian liver fluke?’ J Helminthol. 2015;89(2):257–8.
12. Le TH, Nguyen KT, Nguyen NT, Doan HT, Dung DT, Blair D. The ribosomal transcription units of *Haplorchis pumilio* and *H. taichui* and the use of 28S rDNA sequences for phylogenetic identification of common heterophyids in Vietnam. Parasit Vectors. 2017;10(1):17.
13. Olson PD, Cribb TH, Tkach W, Bray RA, Littlewood DTJ. Phylogeny and classification of the Digenea (*Platyhelminthes*: *Trematoda*). Int J Parasitol. 2003;33:733–55.
14. Kostadinova A, Pérez-del-Olmo A. The systematics of the *Trematoda*. In: Toledo F, Fried B, editors. Digenetic Trematodes. Advances in Experimental Medicine and Biology. New York: Springer Science + Business Media; 2014. p. 21–44.
15. Tkach W, Kudal O, Kostadinova A. Molecular phylogeny and systematics of the *Echinostomatoidea* Looss, 1899 (*Platyhelminthes*: *Digenea*). Int J Parasitol. 2016;46:171–85.
16. Shekhtovtsov SV, Katokhin AV, Kolchanov NA, Mordvinov VA. The complete mitochondrial genomes of the liver flukes Opisthorchis felineus and Clonorchis sinensis (Trematoda). Parasitol Int. 2010;59(1):100–3.

17. Thaenkham U, Nawa Y, Blair D. Confirmation of the paraphyletic relationship between families Opisthorchiidae and Heterophyidae using small and large subunit ribosomal DNA sequences. Parasitol Int. 2011;60(4):521–3.

18. Thaenkham U, Blair D, Nawa Y, Waikagu J. Families Opisthorchiidae and Heterophyidae: are they distinct? Parasitol Int. 2012;61(1):90–3.

19. Cał KO, Liu GH, Song HQ, Wy W, Zou FC, Yan HK, et al. Sequences and gene organization of the mitochondrial genomes of the liver flukes Opisthorchis viverrini and Clonorchis sinensis (Trematoda). Parasitol Res. 2012;110(1):235–43.

20. Dao HT, Dermau V, Gabriél S, Suwanwantarai A, Tetana S, Nguyen GT, Dorny P. Opisthorchis viverrini infection in the snail and fish intermediate hosts in Central Vietnam. Acta Trop. 2017;170:120–5.

21. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9.

22. Na L, Gao JF, Liu GH, Fu X, Su X, Yue DM, et al. The complete mitochondrial genomes of the 'intermediate form' of Fasciola hepatica L. (Platyhelminthes; Trematoda): multiple pathways to cancer. Trends Parasitol. 2012;28(6):395–407.

23. Lee D, Choe S, Park H, Jeon HK, Chai JY, Sohn WM, et al. Complete mitochondrial genome of Haplorchis taichui and comparative analysis with other trematodes. Korean J Parasitol. 2013;51(6):719–26.

24. Le TH, Blair D, McManus DP. Complete DNA. Sequence and gene organization of the mitochondrial genome of the liver fluke, Fasciola hepatica L. (Platyhelminthes; Trematoda). Parasitology. 2001;123(6):609–21.

25. Liu GH, Gasser RB, Young ND, Song HQ, Ai L, Zhu XQ. Complete mitochondrial genomes of the 'intermediate form' of Fasciola and Fasciola gigantica, and their comparison with F. hepatica. Parasit Vectors. 2014;7:150.

26. Ma J, Sun MM, He JJ, Liu GH, Ai L, Chen MX, Zhu XQ. Fasciolopsis buski (Digenea: Fasciolidae) from China and India may represent distinct taxa based on mitochondrial and nuclear ribosomal DNA sequences. Parasit Vectors. 2017;10(1):1101.

27. Ma J, He JJ, Li G, Leontovyč R, Kalýny M, Zhu XQ. Complete mitochondrial genome of the giant liver fluke Fascioloides magna (Digenea: Fasciolidae) and its comparison with selected trematodes. Parasitol Vectors. 2016;9(1):429.

28. Littlewood DT, Lockyer AE, Webster BL, Johnston DA, Le TH. The complete mitochondrial genomes of Schistosoma haematobium and Schistosoma spindale and the evolutionary history of mitochondrial genome changes among parasitic flatworms. Mol Phylogenet Evol. 2006;39(2):452–67.

29. Thaenkham U, Dekumyoy P, Komalamisra C, Sato M, Dung do T, Waikagul J. Families Opisthorchiidae and Heterophyidae: are they distinct? Parasitol Int. 2012;61(1):90–3.

30. Shekhovtsov SV, Katokhin AV, Kolchanov NA, Mordvinov VA. The complete mitochondrial genomes of the liver flukes Opisthorchis felineus and Clonorchis sinensis (Trematoda). Parasitol Int. 2010;59(1):100–3.

31. Cai XQ, Liu GH, Song HQ, CY W, Zou FC, Yan HK, et al. Sequences and gene organization of the mitochondrial genomes of the liver flukes Opisthorchis viverrini and Clonorchis sinensis (Trematoda). Parasitol Res. 2012;110(1):235–43.

32. Thaenkham U, Blair D, Nawa Y, Waikagul J. Families Opisthorchiidae and Heterophyidae: are they distinct? Parasitol Int. 2012;61(1):90–3.

33. Thaenkham U, Nawa Y, Blair D, Pakdee W. Confirmation of the paraphyletic relationship between families Opisthorchiidae and Heterophyidae using small and large subunit ribosomal DNA sequences. Parasitol Int. 2011;60(4):521–3.

34. Thaenkham U, Blair D, Nawa Y, Waikagul J. Families Opisthorchiidae and Heterophyidae: are they distinct? Parasitol Int. 2012;61(1):90–3.

35. Cał KO, Liu GH, Song HQ, Wy W, Zou FC, Yan HK, et al. Sequences and gene organization of the mitochondrial genomes of the liver flukes Opisthorchis viverrini and Clonorchis sinensis (Trematoda). Parasitol Res. 2012;110(1):235–43.