Radiation Protection in the World

ALARA 原則の実用的な実装における合理性に関するフランス放射線防護学会（SFRP）と国際放射線防護学会（IRPA）のワークショップの要約

Summary of SFRP-IRPA Workshops on the Reasonableness in the Practical Implementation of the ALARA Principle

Jean-François LECOMTE,*1
Amber BANNON,*2 Yann BILLARAND,*1
Peter BRYANT,*2 Marie-Claire CANTONE,*3
Roger COATES,*2, 4 John CROFT,*2
Stéphane JEAN-FRANÇOIS,*5
Bernard Le GUEN,*1, 4 Caroline SCHIEBER,*1
and Thierry SCHNEIDER *1

要旨—放射線防護の最適化の原則（すなわち ALARA の原則）の実用的な実装は、IRPA の枠組みの中で、SFRP の主導で 2017 年 2 月と 2018 年 10 月にパリ（フランス）で開催された 2 つのワークショップの主題であった。本稿は、これら 2 つのワークショップの議論と結論をまとめたものである。原子力産業、医療行為、現在被ばく状況の 3 つの分野で合理性を含めて探索された。すべての分野で、最適化は依然として課題であり、経験上、最適化はすべての情報に基づいた関係者と合理的に妥協

Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry; 2–11–1 Iwado kita, Komae-shi, Tokyo 201–8511, Japan.

E-mail: marie.cantone@unimi.it

*1 ASSOCIATION CANADIENNE DE RADIOPROTECTION (ACRP); PO Box 83 Carleton Place, Ontario CANADA K7C 3P3.
E-mail: stephanejf@radioprotection.qc.ca

*5 ASSOCIATION CANADIENNE DE RADIOPROTECTION (ACRP); PO Box 83 Carleton Place, Ontario CANADA K7C 3P3.
E-mail: stephanejf@radioprotection.qc.ca

*1 SOCIÉTÉ FRANÇAISE DE RADIOPROTECTION (SFRP); BP 72, 92263 Fontenay-aux-Roses Cedex.
E-mail: jean-francois.lecomte@irsn.fr; yann.billarand@irsn.fr; bernard.le-guen@edf.fr; caroline.schieber@cepn.asso.fr; thierry.schneider@cepn.asso.fr

*2 THE SOCIETY FOR RADIOLOGICAL PROTECTION; DS 009, Dartington Hall, Devon, TQ9 6EN.
E-mail: amber.bannon@environment-agency.gov.uk; peter.bryant@edf-energy.com; roger@rhcoates.co.uk; john.croft3@ntlworld.com

*3 ASSOCIAZIONE ITALIANA DI RADIOPROTEZIONE (AIRP); Via Roma, 79–56011 presso il Museo di Storia Naturale–CALCI (PI).
E-mail: marie.cantone@unimi.it

*4 INTERNATIONAL RADIATION PROTECTION ASSOCIATION (IRPA).
E-mail: roger@rhcoates.co.uk; bernard.le-guen@edf.fr

*5 ASSOCIATION CANADIENNE DE RADIOPROTECTION (ACRP); CANADIAN RADIATION PROTECTION ASSOCIATION (CRPA); PO Box 83 Carleton Place, Ontario CANADA K7C 3P3.
E-mail: stephanejf@radioprotection.qc.ca

E-mail: stephanejf@radioprotection.qc.ca
を図るために審議プロセスを経て実施されることが知られている。この課題はケーススタディに基づいた3つのワークショップ各分野に1つ以上によってさらに検討された。費用対効果分析などの古典的なツールの使用を補完するものとして、最適化原則の実装は、広く行き渡った状況においてベストな防護を達成するために満たすべき課題を明確に特定することを意味する、という考えが出ている。これらの課題は、被ばく状況のタイプごとに特有のものであり、場合によって特定の状況に特有のものであるかもしれない。このプロセスは、関与するステークホルダー（利害関係者）及び意思決定者も適切に特定すべきであるし、彼らがどのように関与するかを決定するべきである。意識の向上、エンパワーメント（力付け）、そして、またはトレーニングを含む積極的なプロセスが必要かもしれない。この考察はさらに進展させていくに値する。

キーワード：合理性 / 放射線防護 / 最適化 / ALARA

1. 緒論
“合理的に達成可能な限り低く”（ALARA）として知られる最適化の原則は、放射線防護システムの基礎（IRCP 2007）であるともに RADIOPROTECTION (SCHNEIDER et al., 2017; BOURGUIGNON et al., 2017; YEUNG 2019) で SFRP が継続して取り組んできた大きな課題である。

ALARA の原則の実用的な実装に関する IRPA の枠組みの中で、SFRP の主導で 2つのワークショップが開催された。この新たな取り組みは、放射線防護体系の進化に関するものであり IRPA のからの要請を受けて開始された。2つのワークショップはそれぞれ 2017 年 2 月と 2018 年 10 月にパリで開催された。各会合には、数か国及び複数の国際機関（IRPA、ICRP、NEA、WHO、EAN）から約 30 人の参加者一専門家、規制当局、事業者一が集まった。

第 1 回ワークショップの目的は、さまざまな分野（原子力、医療、ラドン、汚染地域、事故後の状況）における現在の ALARA アプローチからのフィードバックの経験を共有すること、そしてより具体的には、意思決定プロセスを支援するツールの役割、ステークホルダー（利害関係者）の関与、ならびに最適化プロセスを合理的に終了させることを可能にする倫理的及び社会的価値に挑戦することであった。

原子力分野では、ICRP 60 (ICRP 1991) の適用以降、労働者の集団線量は大幅に減少しているが、個人線量の分布の不均衡と、より困難な経済状況に対応するためには依然として警戒が必要である。社会と環境への配慮の高まりを背景に、一般市民に対しては、放射線防護の最適化ではなく、影響（放出）を最小限に抑える傾向がある。

医療分野では、被ばくの主な目的は診断または治療の質であり、これは患者の被ばく、さらに場合によっては医療従事者の被ばくをさらに最適化することによって達成できるはずである。リファラ（指示者）と施設者の責任を共有して医療行為の正当化に重点が置かれている。一方で技術の継続的な進化、そして他方で患者とステークホルダー（医療スタッフ、病院管理者、患者…）の関与が、依然として重要な課題である。

ラジウム（汚染された場所）またはラドンに関する状況、あるいは事故後の状況では、被ばくの管理は線源についてよりもむしろ被ばくの経路によって行われている。個々の行動は被ばくレベルに影響を及ぼし、線量より生活の質が問題となるかもしれない。最適化プロセスの結果は状況の状態に依存する。そのため、社会的及び倫理的な配慮を考慮することが非常に重要となる。

すべての分野で、最適化は依然として課題である。経験上、最適化はすべての情報に基づいた関係者と合理的に妥協を図るために審議プロセスを経て実施されることが知られている。この第 1 回セミナーの全体まとめは、以前の RADIOPROTECTION 誌に掲載された (SCHNEIDER et al., 2017)。

この最初のセミナーの後、さらに議論をすすめることが望まれた。2018 年 10 月にパリで第 2 回ワークショップが開催され、実際の事例に焦点が当てられた。第 1 回ワークショップで調査された 3 つの領域—原子力産業、医療行為及び現存被ばく状況—に関連して 3 つの一連のケーススタディが発表された。それらは、ステークホルダーの関与により、合理性の探究が ALARA の原則の実用的な実装においてどのように行われ得るかを示すことを意図している。

2. 3つの分野におけるケーススタディ：原子力、医療、及び現存被ばく状況
原子力分野では、フランスの事業者である EDF* とその下請業者の 1 社である Comex/ONET 社が、強力なインターネットを有する両者の間の効率的な関係構築については合同で発表を行った。この関係により、フランス原子力発電所の加温器の加熱システム交換時に作業者が受ける放射線被ばくを繰り返し減少させることができ
た。この分野では、多くの場合、対話とエンジンメシ
ト（関与）は、契約、文書化された手順、及び下から
上への階層を結びつける ALARA プログラムの中で形式
化されている。これはまた、放射化学子の発電
所**における線量測定性能を向上させるための関係者
全員の行動に関するスペンフェからの発表においても示
された。3 番目のケーススタディは、すべての危険（ハザード）に対してより一般的に開発された ALARP の概念（As
Low As Reasonably Practicable, 合理的に実施できる限り
低く）の国の放射化学子部門での適用における国の経験
に関連するものであった。このケーススタディは、いく
つかの例により、不規範的（法的に認められていない）
規制が合理性を求めてどのようにトーンを揺えることが
できるか、そして場合によっては、保守の対応がいかに
して最適解を適用するのではなく被ばくの最小化をもた
らす可能性があるかを示した。最後に、事業者と当局間
で放射線ハザードについて対話し理解を進める必要
性が示された。

医療分野では、医用画像による線量を最適化するため
の協同プロセスの 2 つの成功例が発表された。1つ目は、
ケベック州（カナダ）の病院から病院へと移動し、放射
線防護教育を広める、その結果として全国的な線量測定の
改善を進めている学術的な専門家チームによる発表で
あった。2つ目はギリシャ、コンスタントルポスの公立
病院の CT 部門のスタッフ全員の参加おかげで、最適
化プロセスの実装を効果的に進めることに成功した。これ
に伴う、イタリアの参加者が被ばくにおけるノイズ
とシグナルのバランスをとることによって大動脈 CT 血
管造影の画像を最適化するアルゴリズムについて発表し
た。製造業者間の競争が、被ばく低減に寄与する装置
の設計を推進するという報告もあった。

現存被ばく状況では、放射能や放射線防護を通常は認
識していない地元のステーカホルダー（すなわち、公衆
の一員、専門家、保健担当など）が主導的なステーカホル-
ダー、さらには意思決定者にもなるため、最適化プロセ
スでは倫理的、社会的配慮が大きな問題となる。このよ
うな状況では、最適化プロセスは周辺の状況を応じて
ケースバイケースで行われる。ワークショップの 1 つ目
のケーススタディは、スイスの時計メーカーが放射性
の遺産を管理するためのラジウム処置計画に関するもので
あった。ラジウムの痕跡（汚染）が、在宅勤務の元従業
員の住宅で発見されたのである。参考レベルの選択は、
当局が成功裏に主導し、修復の規模を決定するにあたっ
て重要なポイントとなった。修復にあたった作業員の訓
練も非常に重要であった。2 つ目のケーススタディは、
チェコ共和国がラドンの国家アクションプランと省エネ
政策をよりよく一致させる、そして、住宅や公共の利益
のある建物において室内空気の質をより良くするという
課題に関連するものであった。3 つ目のケーススタディ
では、ベルギーの放射線防護当局が、消費者防護とコス
トのより妥当な妥協点を明らかにし、かつ、水管理にお
ける社会的信頼を確保しつつ、飲用水管理の合理的な基
準を設定するためのアプローチを提示した。こうしたさ
まざまに異なる状況に際して、放射線防護の専門家と地
元のステーカホルダーとの間の対話を形成した 4 つの重
要な質問を以下に示す。

- 数値（被ばく線量の数値）とその意味。
- 経済的要因の重要性。
- 最適化プロセスにおける責任はどこにあるか、リー
ダーシップはどこがっているか、そして
- 社会的及び倫理的な配慮を考えたうえでの放射線防
護の取り組みと全体的な生活の質との関係。

非電離放射線 (NIR) に関連した特定のケーススタディ
もまた発表されたが、NIR 発生源の多様性、NIR の影響
に伴う不確実性、NIR に高い感受性のある人々、及び白
血病クラスターに関する異論などの背景のもと、最適化
原則の実行には困難がともなうことが示された。

3. 合理性についての議論

3 つのワーキンググループ（WG）が作られ、ステー
カホルダー関与のもと最適化プロセスを実装するにあ
たっての問題点がさらに検討された。議論の最後に、
問題点のうちの 3 つは第 1 回ワークショップの結論
(SCHNEIDER et al., 2017) と一致していることが示され、
以下の追加事項が強調された。

3.1 原子力分野にて

原子力分野を取り扱った WG は、継続的な改善のプロ
セスにおいて、線量だけではなく全体としてさまざまな
危険（ハザード）を最適化するためのホリスティック
（全体論的）アプローチを提唱した。このようなアプローチ
では、複数の専門領域をもつチーム（従来のリス
3.2 医療分野にて

医療分野では、対応する WG によると、合理性を達成するための重要な要素は、教育、トレーニング、及び放射線防護文化を展開することである。しかし、患者を関与させることは必ずしも容易ではない。患者団体と協調することは有用かもしれない。装置の使用（最適化された画像の探索）における ALADA（As Low As Diagnostically Achievable、診断上達成可能な限り低）の概念は、費用便益分析と品質管理システムとの間の適切なバランスにより新しいとしてより最適化された装置が必要であることが示されるまで奨励された。医療分野での職業被ばくは、いくつかの実践（たとえば、インター・ベンシャル・ラジオロジー（血管内治療）や手術または放射性薬剤を除いて一般的に低い。）によっては、眼の水晶体に線量限度を適用することが難しい場合がある。臨床的かつ公平なアプローチもまた推奨された。医療倫理に焦点を当てることも医療トレーニングにおいて強調されている。

知識の普及を進めるために IRPA にいくつかの提案も行った。

・ IRPA ウェブサイト上に専用ページを作成し、他の組織（WHO, IAEA/RPOP, IOMP, ICRP/C3）のウェブサイトにリンクを張る。

・ ガイドラインの翻訳と促進。

・ 特に患者向けの教育的なチラシの作成と配布。

・ 特定の医師のトレーニングの促進。

・ 医学会議におけるケーススタディを紹介する講義の提案。

・ 努力と改善を示す科学誌における記事の提案。

3.3 現存被ばく状況にて

対応する WG によって指摘されているように、現行被ばく状況の範囲は多様であり、物理を含む着用状況（たとえば汚染された場所）もある。いずれにせよ、WG により、公衆によるある種の状況の受容に到達する必要性。したがって対話を行うことの重要性が強調された。ほとんどの場合、公衆の放射線に対する潜在的な恐れがある。その恐れは一般に、自然のもの（たとえばラドン）に対するよりも人為的な発生源（放射性目的のために使用されるラジウム等）に対して強い。

メッセージは明確かつ明白であるべきである。状況は進展する可能性があるため、進展をよりよく予測するために状況は説明されるべきである。当局の役割は、信頼を構築または回復するために不可欠である。時にはス
テークホルダーが情報に基づいた決定を下すことができるように、十分な情報とスキルを提供することによってエンパワーメント（力を付け）が必要とされる。これは人々が彼ら自身の防護（セルフヘルプ防護）に関わっているときに、たとえば、ラドン被ばくに対して、または事故後の状況などにおいて、特に必要となる。後者の状況については、「平常時」における情報と準備は、クラッシュ（危機）時に役立つ可能性がある。

汚染のケースでは、「受容できる」レベルの放射線被ばくは存在しない。一般公衆の人々からすれば、放射能は避けていたから、だから、すぐすべきであるということになる。しかし、ゼロリスクは存在せず、汚染サイトの完全なクリーニングはしばしば実行不可能である。定量的アプローチは専門家によって好まされるものであるが、一方で、一般公衆は大抵の場合定性的または比較的な議論をより理解する。経験により、何が合理的であるかについて合意に達するための議論を行うことが望ましいかもしれないことがわかれている。他のリスクとの比較は役に立つかもしれないが、トッピックである可能性もある。たとえば、状況が論争されているとき、そのような比較は他のリスクに対して放射線学的リスクをささいなものとすることとして見られるかもしれない。

しきい値は、多くの場合、安全と危険の境界として間違って見なされている。1 mSv/年が公衆被ばくの参考レベルとして使用されることが多い一方で、現存被ばく状況に対してはICRPが推奨する範囲の下限値（1–20 mSv/年）である。このような値は参考レベルであるが、実際にはむしろアクションレベルとして使用される。それは実効線量で表現されているが、実効線量の概念は個人のリスクの反映を意味しない。

現存被ばく状況において問題となっているのは、質の高い生活を得ることまたは取り戻すことである。その場合、最適化の原則は、ALARA（As Low As Qualitatively Achievable、定性的に達成可能な限り低く）と呼ばれるかもしれない。これは柔軟なアプローチにより達成可能である。当局は、基本的な規則が何であるか、何をするかしないか、何のリソースが利用可能なか、及びそれらはどのように割り当てられるかについて明確にすべきである。このアプローチでは、誰がそのコストを支払うのかという疑問がきわめて重要であることが最後に指摘された。

3.4 他の検討事項
ワークショップでの議論は、上記のように原子力、医療、現存被ばくといった異なる分野に焦点が当てられた。各々の分野からの真のそして特有の教訓があることは明らかである。さらに重要な共通テーマがいくつか出ており、これらはさらなる関心をもたらすに値する。

特に、職業被ばくと医療被ばくには類似点がある。医療分野では、雇用されている者は放射線について広く知識を持っている。ALARAプロセスの重要な側面は彼ら及び彼らの患者にとっての放射線の安全性文化、重要性と非常に俊やかであり、以下に示すように組織により深く組み込まれている。

・被ばくに関与したすべての関係者の関わり合い。
・適切な教育とトレーニングの実施。
・公開と挑戦を可能にする職場環境の維持。
・経験からの学習と共有。
・管理の強いコミットメントの喚起。
・ALARAを検討する枠組みを提供するための統合された管理システムの構築。

加えて、たとえば、原子力施設における大掛かりな工学的介入や医療被ばくにおけるCT及び治療線量などのような主要領域に集中して特定の注意を払うことにより、もっとも高い被ばく状況（個人線量と集団線量の両方を考慮して）に焦点を当てる必要性を認識している。

対象的に、一般公衆がALARAプロセスの中心となる場合、特に放射線源の存在が邪魔だった議論の源になったりする場合には、原動力は大きく異なる可能性がある。このような場合、主な関係集団は（少なくともプロセスの開始時には）放射線について十分に理解している可能性は低く、多くの場合、関係集団の信頼の欠如した「高温ストレス」環境で状況は進行する。従って、それらの状況に伴う他のリスクや懸念の中で、放射線リスクと放射線環境についてのより深く共有された理解に向けあって進むことを含む、共働のプロセスにもっと焦点を当てる必要がある。これらの課題に対する対処の前後で役立つ可能性のあるステークホルダー関与の経験が増えている。実際、長期にわたる継続的なアプローチが必要な状況では、「社会的放射線防護文化」を発展させるために協働することが大きな助けになり得ることは明らかである。

しかしながら、たとえば環境への放出を含むいくつかの公衆被ばく状況では、真の最適化よりもむしろ最小化に重点が置かれているということが明らかになっており。経済的要因に意味のある重みを与えることを踏まえる、「合理的」というよりは「できる限り低く」に過きを置きすぎたため、「合理性」の概念が意思決定プロセスで
失われたり、有用ではないと考えられてきていることが懸念されている。

ワークショップにより、社会にとって「お金に見合う価値」の考慮以上により多くの価値観を考慮する必要性の認識が高まっていることが示された。尊厳の倫理的価値（ステークホルダー関与の確保）、慎重さ（適切な安全の確保）、及び恩恵（社会のための資源のベストな利用を確保することを広く解釈される）のバランスを確保する方法を含む議論の必要性が認識されてつつある。興味深いことに、man-Svの金銭的価値を定義する「アルファ値」を使用した以前の費用便益分析の検討では、この要因に対処することを目的としていた。費用便益分析はまだ役割を果たすことができるが、経験上、この分析では何が「合理的」であるかの全面的な判断への支配的な情報では必ずしもないことことが示されている。金銭に対する合理的な価値観の目的を含む、より広いアプローチを提供することは、依然として困難である。

彼ぼくの最適化は判断を必要とするプロセスであり、そして一つの公式が結果を導くわけではないことは今受入れられている。それ以下では最適化を考慮するための要件はないと考えられるが、最小さい価値があるべきであることとするいくつかの提案がある。このアプローチはまだ広く支持されているわけではない。大半の専門家は、我々は常に「合理的」であろうとすべきであり、実際に「合理的」であると見なされるべきであると考えている。しかし、「これまでよりも低い線量」を提供する傾向があるように思われるものに対して、広範な懸念がある。それほど重要ではない彼ぼくに釣り合った検討を行いながらも、より高い線量に焦点を当てるべきであるというこことについて、関係する団体全てからより広い認知を得る必要がある。職業彼ぼく及び医療彼ぼくにおいても低い彼ぼくについては、すべてのハザードにまたがる効果的な安全文化の開発と支援に焦点を合わせるべきである。公衆彼ぼくについては、関係するすべてのステークホルダーとの慎重で共感的な関係を代わるものはいないが、社会の資源を適切に配分する必要性も認識されてい

4. 結論／展望

今回（2回目）のワークショップ（SFRP 2018）では、実践的なケーススタディに基づいて最初のワークショップ（SFRP 2017）の結論を確認し精査した。すべての分野において最大値は依然として課題であり、最適化はすべての関係集団と合理的な妥協を図るための討議的なプロセスを通じて実施されていることを経験は示している。各々のケースは個別のケースである。

3つのWG内で行われた熱考によれば、頭字語 ALARA の「R」すなわち、合理性、reasonable の R は、状況に応じて特定された方法で解釈することが可能であると考えられる。原子力分野では、合理性がいくつかのハザードに対する防護同志での良いバランスの問題であり、R は全体論的（Holistically）の H になるかもしれない。医療分野では、適切な診断のために良好な画像を取得する能力が依然として患者彼ぼくの最大値のための課題であり、ALARA の R は診断的（Diagnostics）の D になるかもしれない。ラドン彼ぼく、遺産サイトまたは事故後の状況などの現在彼ぼく状況では、広く行き渡った状況においてすべての個人にとってまとまった生活の質を維持または取り戻すことの重要性を示すためには、定性的（Qualitatively）の Q になるかもしれない。ただし、このような解釈は特定の状況では役立つかもしれないが、すべての状況で共通の推進要因である合理性の概念に代わるものではない。

2つのワークショップの熱考から、費用対効果分析などの古典的なツールの使用を補完することとして、最適化原則の実装は、広く行き渡った状況においてベストな防護を達成するために満すべき課題を明確に特定することを意味する、という考えが出てくる。これらの課題は、彼ぼく状況のタイプごとに特有のものであり、場合によっては特定の状況に特有のものであるかもしれません。このプロセスは、最適化プロセスに関してステークホルダー及び意思決定者も適切に特定すべきであるし、彼らがどのように関与するかを決定することがある。意象の向上、エンパワーメント（力付け）、そしてまたはトレーニングを含む積極的なプロセスが必要かもしれない。この考察はさらに進展させていくに値する。

2つのワークショップの要約は、IRPA 15でのコミュニケーション及び論文と同様に IRPA 加盟学会を通じて広められることが期待されている。さらに、放射線防護を担当する主な国際機関（ICRP, IAEA, WHO, NEAなど）が参加する、合理性の課題に関するワークショップがパリで予定されている。

参考文献

1) M. BOURGUIGNON, P. BÉRARD, JM. BERTHO, J. FARAH, C. MERCAT and Radioprotection Editorial Board.2017; Radioprotection; what’s next? Radioprotection 52 (1), 21–28. DOI:10.1051/radiopro/2017006
2) IAEA. 2011. Workforce planning for new nuclear power programmes. IAEA Nuclear Energy Series No. NG-T-3.10, Vienna.

3) ICRP. 1991. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP 21 (1–3).

4) ICRP. 2007. The 2007 recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2–4).

5) T. SCHNEIDER, JF. LECOMTE, C. SCHIEBER, S. ANDRESZ, V. CHAMBRETTE, Le GUEN B and L. VAILLANT L; 2017. Synthesis of reflections and conclusions of the SFRP-IRPA workshop on the reasonableness in the practical implementation of the ALARA principle, Radioprotection, 52 (4), 259–263 (2017).

6) SFRP. 2017. Link to the 1st workshop on the SFRP website: https://www.sfrp.asso.fr/manifestations/manifestations/irpa-workshop-on-reasonableness-in-the-implementation-on-the-alara-principle-.html,9,38,0,0,2823

7) SFRP. 2018. Link to the 2nd workshop on the SFRP website: https://www.sfrp.asso.fr/manifestations/manifestations/2nd-irpa-workshop-on-reasonableness-in-the-implementation-on-the-alara-principle-.html,9,38,0,0,3102

8) Yeung AWK. 2019. The “As Low As Reasonably Achievable” (ALARA) principle: a brief historical overview and a bibliometric analysis of the most cited publications. Radioprotection, 54 (2), 103–109. DOI 10.1051/radiopro/2019016

謝　辞
著者は、2017年と2018年にパリで開催された2つのワークショップのすべての参加者がワークショップへの彼らの貢献とこの記事への推奨について感謝します。

* EDF（Electricité de France）、フランス電力会社
** スペインのバレンシア州バレンシア県コフレンテスにある原子力発電所
***「インテリジェントカスタマー」は、国際原子力機関（IAEA）によって次のように定義されている。「インテリジェントカスタマーとして、原子力安全の観点から、施設の管理者は何か要請されているかを知り、請負業者のサービスの必要性を完全に理解し、要件を特定し、作業を監督し、実施前、最中、後のアウトプットを技術的にレビューすべきである。」