Supporting Information

Linkage isomerization in nitrosothiols (RSNOs): The X-ray crystal structure of an S-nitrosocysteine and DFT analysis of its metastable MS\textsubscript{1} and MS\textsubscript{2} isomers

Jun Yi, Philip Coppens, Douglas Powell and George B. Richter-Addo

Table S1. Selected data for structurally characterized non-protein RSNO compounds.

Table S2. Selected data for structurally characterized protein RSNO moieties.

Figure S1. Packing diagram for cySNO-methyl ester.HCl

Figure S2. Crystal structure of cySNO-ethyl ester.HCl

Figure S3. Packing diagram for cySNO-ethyl ester.HCl.

Figure S4. DFT calculated %-orbital contributions for the HOMOs and LUMOs at the 6-311+G(2df,p) level.

Table S3. Comparison of method and basis sets for the geometry optimizations of *cis* cySNO-methyl ester (1).
Compound	N-O (Å)	S-N (Å)	C-S (Å)	S-N-O (°)	C-S-N (°)	\(\phi^a\)	references
S-nitroso-L-cysteine methyl ester hydrochloride (major 53%)	cis	1.172(4)	1.819(3)	1.796(3)	117.0(3)	102.11(17)	1.7(4) this work
S-nitroso-L-cysteine ethyl ester hydrochloride (major 29%)	cis	1.215(11)	1.762(6)	1.706(3)	115.7(5)	106.7(4)	-2.6(11) [1]
S-nitroso-L-cysteine ethyl ester hydrochloride (minor 18%)	trans	1.215(12)	1.762(7)	1.686(3)	114.5(6)	107.8(5)	17(2)
ONSC(Me)\(_2\)CH\(_2\)NHC(O)Me	3°	trans	1.206(2)	1.754(2)	1.829(2)	114.9(2)	99.44(8) 178.5
S-nitroso-N-acetyl-penicillamine\(^b\)	3°	trans	1.199(2)	1.763(2)	1.833(1)	113.99(11)	100.80(7) 176.3
S-nitroso-N-acetyl-penicillamine\(^c\)	3°	trans	1.206(3)	1.762(3)	1.842(2)	114.9(2)	96.56(8) 179.7
Ph\(_3\)CSNO	3°	trans	1.177(6)	1.792(5)	1.867(3)	114.0(4)	102.1(2) 175.7
S-nitrosocaptopril	1°	cis	1.206	1.766	1.800	117.7	103.7 0.68 [5]
tert-decalin1-SNO	3°	trans	1.307	1.744	1.875	179.3	[6]
tert-decalin2-SNO	3°	trans	1.231	1.703	1.815	175.0	[6]
Ar\(_3\)CSNOD\(^d\)	3°	trans	1.205(6)	1.781(5)	1.841(4)	111.4(6)	104.2(3) 179.6
BpqSNO\(^e\) (major 55%)	aryl	cis	1.23(3)	1.85(3)	1.803(10)	103.0(25)	109.4(10) -21.3(28) [8]
BmtSNO\(^f\)	aryl	cis	1.204(4)	1.804(3)	1.770(3)	117.8(2)	101.1(1) 1.1(3) [9]

\(\phi^a\) Defined as the C-S-N-O torsion angle. \(^b\) Crystallized from methanol/water. \(^c\) Crystallized from acetonitrile. \(^d\) Ar = 3,5-bis(2,6-dimethylphenyl)phenyl; the nitroso O-atom is disordered over two positions to give a mixture of anti and syn conformers in a ratio of 0.67:0.33. \(^e\) Bpq = 2,6-di(3,5-diAr)phenyl; Ar = 2,6-diisopropylphenyl. Only major conformation data was reported. \(^f\) Bmt = 4-tert-butyl-2,6[(2,2”,6,6”-tetramethyl-m-terphenyl-2’-yl)methyl]-benzenethiol.

(1) Lee, J.; Yi, G.-B.; Powell, D. R.; Khan, M. A.; Richter-Addo, G. B., *Can. J. Chem.* 2001, 79, 830-840.
(2) Carnahan, G. E.; Lenhert, P. G.; Ravichandran, R., *Acta Crystallogr.* 1978, B34, 2645-2648.
(3) Field, L.; Dilts, R. V.; Ravichandran, R.; Lenhert, P. G.; Carnahan, G. E., *J. Chem. Soc., Chem. Commun.* 1978, 249-250.
(4) Arulamsy, N.; Bohle, D. S.; Butt, J. A.; Irvine, G. J.; Jordan, P. A.; Sagan, J., *J. Am. Chem. Soc.* 1999, 121, 7115-7123.
(5) Bartberger, M. D.; Houk, K. N.; Powell, S. C.; Mannion, J. D.; Lo, K. Y.; Stanler, J. S.; Toone, E. J., *J. Am. Chem. Soc.* 2000, 122, 5889-5890.
(6) Spivey, A. C.; Colley, J.; Sprigens, L.; Hancock, S. M.; Cameron, D. S.; Chihgoth, K. I.; Veitch, G.; Frampton, C. S.; Adams, H., *Org. Biomol. Chem.* 2005, 3, 1942-1952.
(7) Goto, K.; Hino, Y.; Kawashima, T.; Kaminaga, M.; Yano, E.; Yamamoto, G.; Takagi, N.; Nagase, S., *Tetrahedron Lett.* 2000, 41, 8479-8483.
(8) Goto, K.; Hino, Y.; Takahashi, Y.; Kawashima, T.; Yamamoto, G.; Takagi, N.; Nagase, S., *Chem. Lett.* 2001, 1204-1205.
(9) Itoh, M.; Takenaka, K.; Okazaki, R.; Takeda, N.; Tokito, N., *Chem. Lett.* 2001, 1206-1207.
S-Nitrosated Protein	PDB ID	Resoln (Å)	N-O	S-N	C-S	∠S-N-O	∠C-S-N	∠C-C-S	∠C–S–N=O	ref.
tuna Mb¹										
wt (40%)	2NRM	1.09	1.21	1.81	1.77	116	105	113	-4	
wt (30%)		1.20	1.80	1.79	115	99	115	1		
Cimex Np²										
1. wt	1Y21	1.75	1.23	1.71	1.77	121	104	112	-2	
2. A21V	4L20	1.68	1.21	1.83	1.77	117	88	114	178	PDB
3. F64V	4L21	1.65	1.22	1.82	1.78	123	96	114	0	PDB
human Trx³										
1 Cys62	211Y	1.70	1.19	1.76	1.77	121	102	113	1	
Cys69 (33% NO)		1.21	1.80	1.79	119	103	115	1		
2. A Cys69 (50% NO)	2IFQ	1.20	1.20	1.78	1.76	123	102	113	1	
Cys69		1.19	1.80	1.80	112	101	114	152		
3. A Cys69 (60%)	2HXK	1.65	1.21	1.80	1.80	118	101	115	2	
A Cys69 (40%)		1.22	1.81	1.78	118	100	110	-0.4		
A Cys69		1.21	1.81	1.77	119	101	114	1		
B Cys62		1.21	1.81	1.79	118	104	117	-0.6		
B Cys69		1.20	1.80	1.78	118	106	117	3		
C Cys62		1.22	1.80	1.77	118	99	109	5		
C Cys69 (70%)		1.20	1.81	1.83	123	103	116	3		
C Cys69 (30%)		1.23	1.81	1.78	114	103	109	179		
4 Cys62	4OO5	1.54	1.18	1.75	1.78	113	103	114	1	PDB
DDAH-I²										
Cys83	2CI1	1.08	1.47	1.65	1.79	117	102	116	-70	
PTP1B¹										
Cys215	3E0U	2.6	1.31	1.66	1.80	146	153	114	41	
RuBiCO¹										
1 Cys460	4F0H	1.96	1.23	1.65	1.75	121	111	110	73	
2 Cys460	4F0K	2.05	1.26	1.66	1.77	129	102	112	91	
3 Cys460	4F0M	2.25	1.26	1.65	1.76	128	106	108	76	

¹ tuna Mb = blackfin tuna myoglobin; two conformations (A and B; 70%) of -CSNO, and (30%) of the cysteine is not S-nitrosated. ² Cimex NP = Cimex lectularius nitrophorin, NP A21V mutant (4L20) and NP F64V mutant (4L21). ³ human Trx = human thioredoxin. There are three molecules (A, B, C) in the asymmetric unit. The 211Y data was collected from crystals at pH 7.0 (home source); the 2IFQ at pH 9.0 (synchrotron data); and 2HXK at pH 9.0 (home source). Trx C69S/C73S mutant (4OO5). ⁴ DDAH = dimethylarginine dimethylaminohydrolase. ⁵ PTP1B = protein-tyrosine phosphatase 1B. ⁶ RuBiCO = ribulose 1,5 bisphosphate carboxylase/oxygenase, RuBiCO-O₂, derivative (4F0H), RuBiCO-O₂, derivative (4F0K), RuBiCO-H₂O derivative (4F0M).

References: (1) Schreiter, E. R.; Rodriguez, M. M.; Weichsel, A.; Montfort, W. R.; Bonaventura, J., J. Biol. Chem. 2007, 282, 19773-19780. (2) Weichsel, A.; Maes, E. M.; Andersen, J. F.; Valenzuela, J. G.; Shokhireva, T. K.; Walker, F. A.; Montfort, W. R., Proc. Natl. Acad. Sci. USA 2005, 102, 594-599. (3) Weichsel, A.; Brailly, J. L.; Montfort, W. R., Biochemistry 2007, 46, 1219-1227. (4) Frey, D.; Braun, O.; Briand, C.; Vasak, M.; Grutter, M. G., Structure 2006, 14, 901-911. (5) Chen, Y. Y.; Chu, H. M.; Pan, K. T.; Teng, C. H.; Wang, D. L.; Wang, A. H. J.; Khoo, K. H.; Meng, T. C., J. Biol. Chem. 2008, 283, 35265-35272. (6) Stec, B., Proc. Natl. Acad. Sci. USA 2012, 109, 18785-18790.
Figure S1. Packing diagram for the unit cell of cySNO-methyl ester.HCl. The chloride anions were hydrogen bonded with nitrogen atoms from the amine groups with an N–Cl distance of 3.089 Å. The distance between the chloride and sulfur atom is 3.635 Å.
Figure S2. The crystal structure of cySNO-ethyl ester hydrochloride showing the three rotamers with respect to the C–S–N=O moiety. (A) The major cis CSNO component refined with 53% occupancy (\angleC–S–N=O = $-0.4(9)^\circ$; \angleN–C–C–S torsion angle χ_1 = 83.6(3)$^\circ$). (B) The minor cis CSNO component refined with 29% occupancy (\angleC–S–N=O = 3.3(15)$^\circ$; \angleN–C–C–S torsion angle χ_1 = 177.2(2)$^\circ$). (C) The trans CSNO component refined with 18% occupancy (\angleC–S–N=O = 178(2)$^\circ$; \angleN–C–C–S torsion angle χ_1 = 90.6(6)$^\circ$). Thermal ellipsoids are drawn at the 30% level.
Figure S3. The crystal packing of cySNO-ethyl ester hydrochloride in the unit cell. The chloride anions were hydrogen bonded with nitrogen atoms from the amine groups with an N···Cl distance of 3.178 Å. The distance between the chloride and sulfur atom is 3.434 Å.
Figure S4. DFT calculated % orbital contributions for the HOMOs and LUMOs at the 6-311+G(2df,p) level.
Table S3. Comparison of Method and Basis Sets for the Geometry Optimizations of cis cysteine sulfoximine (cysSNO)-methyl ester (1).

Method	Basis set	C–S (Å)	S–N (Å)	N–O (Å)	∠C–S–N (°)	∠S–N–O (°)	∠C–S–N–O (°)	∠N–C–C–S (°)
X-ray[a]		1.797(4)	1.819(4)	1.171(6)	102.1(2)	117.1(3)	1.7(5)	75.4(4)
B3P86	6-31+G(d,p)	1.807	1.806	1.192	102.3	117.8	1.0	60.6
B3P86	6-311+G(2df,p)	1.798	1.786	1.184	102.7	118.4	0.9	60.9
B3P86	6-311++G(3df,3pd)	1.793	1.779	1.184	102.8	118.5	0.9	61.1
B3LYP	6-31+G(d,p)	1.824	1.831	1.194	102.5	117.9	0.8	61.3
B3LYP	6-311+G(2df,p)	1.815	1.813	1.185	102.9	118.5	0.8	61.7
B3LYP	6-311++G(3df,3pd)	1.810	1.805	1.185	103.1	118.5	0.7	61.8

[a] Determined as its hydrochloride salt.