Expression of the PlA2 allele of glycoprotein IIIa and its impact on platelet function

Christopher N Floyd¹, Timothy D Warner² and Albert Ferro¹

Abstract

Background: The platelet fibrinogen receptor represents the final common pathway of platelet activation, and is formed from two glycoprotein (GP) subunits (GPIIb/IIIa). Carriage of the mutant PlA2 allele of GPIIIa has been shown to confer an increased risk of cardiovascular events, but published studies have disagreed as to the mechanism for this association.

Objectives: To assess whether carriage of the PlA2 allele conforms to Mendelian patterns of expression and to identify whether carriage of the mutant allele modulates platelet function.

Methods: Expression of the PlA2 allele was assessed in both healthy subjects (n = 25) and patients with known coronary artery disease (n = 90) through the development and validation of a liquid chromatography, tandem mass spectrometry (LC-MS/MS) assay. Platelet function was assessed in the patient cohort in response to multiple agonists, and these data were analysed in the context of the proteomic data.

Results: Expression of the wild-type PlA1 allele and mutant PlA2 alleles was readily quantifiable and conformed to Mendelian patterns in both healthy and patient cohorts. Patients who were homozygous for the mutant PlA2 allele had an increased aggregatory response to adenosine diphosphate, collagen, adrenaline, ristocetin, thrombin receptor-activating peptide 6 and U46619, when assessed using agonist-concentration response curves.

Conclusions: These findings support the hypothesis that carriage of the mutant PlA2 allele mediates an increased risk of cardiovascular events through the modulation of platelet reactivity.

Keywords

Platelets, clinical genetics, mass spectrometry, platelet function testing

Date received: 28 April 2015; revised: 4 August 2015; accepted: 6 August 2015

Introduction

The fibrinogen receptor is the most abundant integrin on the platelet surface, and represents the final common pathway of platelet activation, adhesion and aggregation.¹,² Formed from two glycoprotein (GP) subunits (GPIIb/IIIa), the receptor binds a combination of fibrinogen, von Willebrand factor (vWF) and fibronectin in a process that terminates haemorrhage following vascular injury.³–⁵ The GPIIIa subunit is polymorphic with single amino acid substitutions resulting in a number of stable allelic variants, the PlA1/A2 diallelic antigen system being one of the more heavily studied due to its association with neonatal alloimmunity and an increased risk of cardiovascular events.⁶–⁸ The prevalence of the PlA2 allele varies between ethnic groups, with a frequency of approximately 1% in Oriental populations, rising to 15% in Caucasian populations.⁹–¹⁰

There had been much disagreement as to the extent, and indeed validity, of any association between carriage of the mutant PlA2 allele and cardiovascular disease until recent meta-analyses showed that carriage of the PlA2 allele does indeed confer a moderate increased risk of both myocardial infarction (n = 40,692; OR 1.08, 95% CI 1.02–1.13; p = 0.004) and ischaemic stroke (n = 11,873; OR 1.12, 95% CI 1.03–1.22; p = 0.011).¹¹,¹² Significant
heterogeneity was observed across these analyses, and it is unclear whether this represents the challenge of identifying the contribution of a single polymorphism to a multifactorial, polygenic pathological process\(^{13}\) or variation in an individual’s expression of the PlA1/A2 proteins in heterozygotes. It is not yet known whether expression of the PlA1/A2 proteins obey Mendelian rules or whether subjects identified as genetically heterozygous may in fact have non-uniform patterns of protein expression. A non-uniform pattern of expression would be represented by a heterozygous individual expressing the PlA1/A2 proteins in a ratio that diverges from the 1:1 ratio proscribed by Mendelian rules. If the ratio of expression was found to vary significantly between heterozygous individuals, the utility of genomic techniques to quantify the cardiovascular risk conferred by heterozygous expression would be significantly impaired. If the allele is to realise any potential as a biomarker of cardiovascular disease, either as a standalone test or as part of broader risk stratification, it is vital to understand its proteomic expression.

Uncertainty also remains as to the aetiology of the increased risk conferred by carriage of the PlA2 allele. The mutant allele encodes a single amino acid substitution of proline for leucine adjacent to the ligand binding site,\(^{6}\) and it has therefore been hypothesised that the polymorphism leads to increased platelet reactivity. Studies in static systems have shown no impact of the polymorphism on ligand binding,\(^{14,15}\) although those performed in cell culture under conditions of shear stress have noted enhanced binding to both fibrinogen and vWF.\(^{16,17}\) The response to platelet agonists has similarly found to be mixed.\(^{14,18}\) It has also been suggested that carriage of the PlA2 allele leads to aspirin resistance, a phenomenon that confers increased cardiovascular risk,\(^{19}\) although a recent meta-analysis does not support this hypothesis.\(^{20}\)

In this study, we have developed a liquid chromatography, tandem mass spectrometry (LC-MS/MS) assay to measure the expression of platelet PlA1/A2 peptides in both healthy subjects and patients with cardiovascular disease. The use of a LC-MS/MS assay containing internal reference peptides provides a truly quantitative measure of peptide expression. We hypothesise that the proteomic expression of the PlA1/A2 alleles can be quantified using LC-MS/MS, conforms to Mendelian rules of expression, and that increased cardiovascular risk conferred by carriage of the PlA2 allele is secondary to increased levels of platelet reactivity.

Methods

Subject recruitment

Twenty-five clinically healthy subjects, without personal or family history of a bleeding disorder, and having not consumed any medication for at least 14 days, were recruited as the ‘healthy cohort’ to facilitate the development of the LC-MS/MS assay. Patients with stable coronary artery disease were recruited from Guy’s and St Thomas’ NHS Foundation Trust following an automated search of the TOMCAT clinical database (Phillips) covering the period 6 January 2012 to 11 January 2013. A summary of the recruitment protocol can be seen in Figure 1. Ninety patients were recruited as the ‘patient cohort’, and satisfied the following inclusion criteria: (i) presence of angiographic coronary artery disease and (ii) prescribed daily 75 mg aspirin therapy as their sole anti-platelet agent. Patients were excluded if they had a clinical history suggestive of unstable angina or acute coronary syndrome (ACS) in the previous four months.\(^{21,22}\) Ethical approval for the study was obtained from London-Bloomsbury Research Ethics Committee (Reference: 11/LO/1371). All participants were recruited from King’s College London and Guy’s and St Thomas’ NHS Trust, provided written informed consent to participate in this study, with the consent procedure approved by the ethics committee.

Platelet function testing

Blood was drawn by venipuncture into trisodium citrate (final concentration 0.32%) from an antecubital vein, with samples sent for biochemical and haematological analyses. Whole blood was centrifuged (15 min, 200 \(\times\) g) at room temperature (RT) to obtain platelet-
peptides were quantified with reference to a 200 fmol spike of isotopically distinct synthetic peptides. Analyses were performed sequentially on a Vantage triple stage quadrupole mass spectrometer (Thermo), with regular quality control samples. Data processing was performed using Pinpoint v1.0 (Thermo), and underwent manual interrogation to ensure the presence of appropriate time-aligned transitions of peptide fragmentation.

Statistical methods

All data are expressed as mean ± standard error (SEM), unless otherwise stated. Analyses of unpaired data were performed using Mann-Whitney test, with analyses of categorical data performed using Fisher’s exact test. The Bonferroni method was used to correct for multiple comparisons. Agonist-concentration response curves were plotted and analysed according to a four parameter logistic equation, where the lower and upper boundaries were set at 0 and 100%, respectively. Area under the curve (AUC) values were calculated using the trapezoid rule from the log-concentration response curve. Analyses of pooled data based on genotype were performed using a Friedman test for paired, non-parametric data. Inter-assay agreement of aspirin resistance status used Cohen’s Kappa (κ). All statistical analyses were performed using GraphPad version 4 (Prism), and significance was taken as $p < 0.05$ (two-tailed).

Results

The proteomics of platelet PLAI/A2 expression

Expression of the PLAI/PLA2 alleles was inferred through the presence of the corresponding prototypic peptides (PLAI peptide: DEALPLGSPRC; PLA2 peptide: DEALPPGSPRC). The assignment of genotype based on peptide detection above the LMR enabled healthy subjects to be clearly divided into three groups: expression of only the wild-type peptide (PLAI/PLA2; $n = 16$), expression of only the mutant peptide (PLAI/PLA2; $n = 1$) and expression of both wild-type and mutant peptides (PLAI/PLA2; $n = 8$) (Figure 2). There was no significant difference in the measured expression of PLAI/PLA2 peptides in heterozygous subjects within the healthy cohort.

In the patient cohort, genotyping of subjects based on peptide expression was similarly unequivocal, with 69 patients identified as homozygous for wild-type, two patients homozygous for mutant and 19 patients heterozygous (Table 1). The overall prevalence for carriage of the PLA2 allele was 28% (32% in Caucasian individuals) when the cohorts were combined.
Patients who carried the PlA2 allele did not generally differ significantly from PlA1 homozygotes in either biological/haematological profiles (Table 2) or general characteristics (Table 3). Carriers of the PlA2 allele were noted to have reduced low density lipoprotein (LDL) concentrations when compared to PlA1 homozygotes, but this was not significant following Bonferroni correction for multiple comparisons. Carriage of the PlA2 allele has been previously identified as a mechanism for neonatal thrombocytopenia. Within this adult population, carriers of the PlA2 allele did not have an increased odds ratio for thrombocytopenia (OR 0.82 for platelet count < 150 x 10^9/L, 95% CI 0.21–3.26; p = 0.284).

In heterozygous subjects, no significant differences were observed between expression of the PlA1 and PlA2 peptides in healthy subjects (ratio PlA1/PlA2 1.12 ± 0.01; p = 0.245), but a significant difference was observed in the patients cohort (ratio PlA1/PlA2 1.17 ± 0.02, p = 0.023), the ratio of PlA1/PlA2 expression in heterozygotes being significantly greater in the patient cohort than in the healthy cohort (p = 0.013) (Figure 3).

Table 1. Frequency of PlA2 allele expression.

Ethnicity	Healthy cohort (n = 25)	Patient cohort (n = 90)	Cohorts combined (n = 115)
Caucasian	18.0	12.7	13.9
Asian	2.0	–	0.4

Table 2. Biochemical and haematological profiles based on carriage of PlA2 allele.

Parameter	PlA1/A1 (n = 69)	PlA2 carriers (n = 21)	Significance (p*)
Sodium (mmol/L)	139 ± 0.3	138 ± 0.7	0.372
Potassium (mmol/L)	4.4 ± 0.0	4.4 ± 0.1	0.983
Creatinine (μmol/L)	89 ± 2.7	96 ± 7.4	0.279
HDL cholesterol (mmol/L)	1.4 ± 0.1	1.5 ± 0.1	0.486
LDL cholesterol (mmol/L)	2.2 ± 0.1	1.7 ± 0.1	0.029
HbA1c (mmol/mol)	45 ± 2.3	42 ± 3.3	0.564
Haemoglobin (g/L)	140 ± 0.1	139 ± 0.3	0.809
White blood cells (× 10^9/L)	7.3 ± 0.2	6.6 ± 0.4	0.154
Platelets (× 10^9/L)	199 ± 6.3	189 ± 8.6	0.405

p Significant p values following Bonferroni correction for multiple comparisons.

HbA1c: glycated haemoglobin; HDL: high density lipoprotein; LDL: low density lipoprotein.
platelet reactivity between the genotypes, data for all agonists (with the exception of AA) were pooled using the mean results for each parameter. The rationale for this pooled approach is that if the mutant allele does indeed modulate platelet reactivity through the activity of GPIIIa, then the effect should be observed irrespective of agonist used as the GPIIb/IIIa complex represents the final common pathway of platelet aggregation. This approach identified significant differences between the genotypes for all parameters except EC50, with PIA2 homozygotes demonstrating an increased AUC and Hill slope in addition to the higher maximum aggregation already observed (Table 4).

Table 3. Patient characteristics based on carriage of PIA2 allele.

Parameter	PIA1/A1 (n = 69)	PIA2 carriers (n = 21)	Significance (p*)
Sex			
Male	65 (94%)	19 (90%)	0.621
Female	4 (6%)	2 (10%)	
Age (years)	67.8 ± 1.2	69.0 ± 1.7	0.618
Body mass index (kg/m²)	28.2 ± 0.6	26.8 ± 0.8	0.217
Ethnicity			
Caucasian	65 (94%)	21 (100%)	0.569
Asian	4 (6%)	–	
Smoking status			
Current smoker	4 (6%)	2 (10%)	0.817
Ex-smoker	32 (46%)	9 (43%)	
Never smoker	35 (48%)	10 (47%)	
Blood pressure (mmHg)			
Systolic	137 ± 2.2	140 ± 3.6	0.583
Diastolic	77 ± 1.3	80 ± 2.2	0.313

*Significant p values following Bonferroni correction for multiple comparisons.

Twelve patients were identified as aspirin-resistant by AA-induced LTA (13.3%), of which none were carriers of the PIA2 allele. Fourteen patients were identified as aspirin-resistant by ADP-induced LTA (15.6%), of which two were carriers of the PIA2 allele. Inter-assay agreement on the assignment of aspirin resistance status as identified by ADP-induced LTA was poor (κ = 0.192, 95% CI = 0.064 to 0.447).

Discussion

Meta-analyses have shown that carriage of the PIA2 allele of GPIIIa is a risk factor for myocardial infarction and ischaemic stroke, but there remains uncertainty as to the aetiology of this increased risk.11,12 To date, all published studies have assessed PIA1/A2 status using genetic techniques, with the underlying assumption that subjects labelled as heterozygous had equal expression of the corresponding proteins within their platelets in accordance with Mendelian rules of inheritance. However, with the identification of X-chromosome inactivation in females, imprinting of some autosomal genes and preferential expression of certain single nucleotide polymorphisms, it is clear that Mendelian gene expression is not absolute and that carriage of heterozygous alleles does not always result in equal expression of the proteins they encode.32–34

Here, we have developed an LC-MS/MS assay to enable the absolute quantification of platelet PIA1/A2 peptides and to assess whether Mendelian rules of
expression do indeed apply to this important polymorphism.

Exploration of the performance characteristics of the assay demonstrated that it was 'fit for purpose' to accurately quantify the PlA1/A2 peptides, as measures of both reproducibility and precision conformed to accepted standards. The LMR for both peptides was 20 fmol and, as shown in Figure 2, this facilitated a clear division of genotypes based on the presence of the corresponding peptides. In the healthy cohort, there

Figure 4. Impact of carriage of the PlA2 allele on platelet function as assessed by Optimul.

A-G) Optimul aggregation in response to agonist. Statistical analyses displayed compare PlA1 homozygotes to PlA2 homozygotes for individual agonist concentrations. Individual data points plotted as mean ± SEM. PlA1/A1 (n = 69), PlA1/A2 (n = 19), PlA2/A2 (n = 2)

AA: arachidonic acid; ADP: adenosine diphosphate; SEM: standard error; TRAP-6: thrombin receptor activating peptide 6.
was no significant difference in the expression of PlA1/A2 peptides in heterozygous subjects clearly indicating that expression does indeed obey Mendelian rules within this cohort.

The data for the patient cohort were less clear in regard to obeying Mendelian expression patterns, as there was a reduced expression of the mutant peptide when compared to the wild-type in heterozygous individuals. It has previously been observed that both cardiovascular disease and aspirin therapy can modulate gene expression. It is therefore possible that either, or both, of these mechanisms may be contributing to a down-regulation of the mutant allele in Caucasian patients (0.13), with none of the four Asian patients identified as carriers. Data presented as mean ± SEM.

The prevalence of the PlA2 allele has been previously suggested to be approximately 0.15 in Caucasian populations, based on a study of 200 random Dutch blood donors. Here, we have observed a similar prevalence of the mutant allele in Caucasian patients (0.13), with none of the four Asian patients identified as carriers.

Carriage of the PlA2 allele in the patient cohort gave rise to a demonstrable difference in platelet function as assessed by the Optimul assay, which enabled us to produce a comprehensive assessment of how carriage of the PlA2 allele impacts on platelet function in response to a broad range of agonists. The increase in platelet aggregation for PlA2 homozygotes was shown to be not restricted to a single pathway of platelet activation, but rather was observed all agonists under investigation (other than AA). The demonstrable aspirin-mediated inhibition of platelet COX-1 in all carriers of the PlA2 allele impaired the analysis of how the PlA1/A2 polymorphism may modulate AA-induced aggregation.

The use of Optimul also enabled the plotting of agonist-concentration response curves and the analysis of aggregation responses in their totality rather than solely a comparison of isolated data points. Variation within the patient cohort (including demographics, biochemical/haematological parameters, prescribed medication and co-morbidities) combined with only two PlA2 homozygous subjects meant that analyses of curve parameters were underpowered when considered for each agonist separately. However, the pooling of data for all agonists revealed a significant increase in maximal aggregation, AUC and Hill slope for PlA2 homozygotes.

Table 4. Analysis of agonist-concentration response curves.

Parameter	Genotype	Significance (p)
Maximum aggregation (%)	78 ± 5	0.008*
AUC (Arb)	103 ± 16	0.029*
Hill slope	2.88 ± 1.05	0.012*
logEC50 (Arb)	−5.44 ± 0.50	0.142*

Note: Pooled data for all agonist-concentration response curves generated by Optimul in response to ADP, collagen, adrenaline, ristocetin, U46619 and TRAP-6. Arbitrary units (Arb) presented for logEC50 due to variation in units between agonists. Data presented as mean ± SEM.

*p < 0.05

ADP: adenosine diphosphate; AUC: area under curve; EC50: half-maximum effective concentration; SEM: standard error; TRAP-6: thrombin receptor-activating peptide 6.
indicates substantial issues with most previously published studies investigating the association between aspirin resistance and this polymorphism. The poor inter-assay agreement on aspirin resistance status further highlights the controversies surrounding the precise identification of this phenomenon.

Aside from the findings presented here, this work raises a broader issue about how one should approach the analysis of platelet function within a clinical environment. LTA is the current ‘gold standard’, but in previously published work appears to provide an inaccurate assessment of platelet function for carriers of a common genetic polymorphism. These findings may be the result of differences in assay mechanics when compared to Optimul or possibly represent the limitations of a technique that precludes plotting agonist-concentration response curves for multiple agonists. Further investigation in a healthy population should further categorise of how the choice of platelet function assay may impact on the observed effect of the polymorphism.

Conclusions
Platelet PlA1/A2 peptides are readily quantifiable by LC-MS/MS and appear to obey the rules of Mendelian expression, with homozygosity for the mutant allele appearing to confer a global increase in platelet reactivity. The pairing of proteomic and platelet function data as we have demonstrated here has potential for the future understanding of platelet aggregation responses.

Acknowledgements
The authors would like to acknowledge the technical assistance for the mass spectrometry provided by Proteome Sciences plc.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The work presented here was funded by Guy’s and St Thomas’ Charity (Registered Charity no. 251983).

Ethical approval
Ethical approval for the study was obtained from London-Bloomsbury Research Ethics Committee (Reference: 11/LO/1371).

Guarantor
AF is the guarantor for all the content presented in this paper.

Contributorship
All authors conceived the study question, and CNF was responsible for the data collection. All authors were involved in the design phase, the analysis and the interpretation of the results. CNF drafted the manuscript, and all authors approved the final version.

References
1. Wagner CL, Mascelli MA, Neblock DS, et al. Analysis of GPIIb/IIIa receptor number by quantification of 7E3 binding to human platelets. Blood 1996; 88: 907–914.
2. Floyd CN and Ferro A. The platelet fibrinogen receptor: from megakaryocyte to the mortuary. JRSM Cardiovas Dis 2012; 1–7.
3. Marguerie GA, Plow EF and Edgington TS. Human platelets possess an inducible and saturable receptor specific for fibrinogen. J Biol Chem 1979; 254: 5357–5363.
4. Reiningr AJ. Function of von Willebrand factor in haemostasis and thrombosis. Haemophilia 2008; 14(Suppl 5): 11–26.
5. Pinniger JL and Prunty FT. Some observations on the blood-clotting mechanism; the role of fibrinogen and platelets, with reference to a case of congenital afibrinogenenaemia. Br J Exp Pathol 1946; 27: 200–210.
6. Newman PJ, Derbes RS and Aster RH. The human platelet alloantigens, PlA1 and PlA2, are associated with a leucine33/proline33 amino acid polymorphism in membrane glycoprotein IIIa, and are distinguishable by DNA typing. J Clin Invest 1989; 83: 1778–1781.
7. Newman PJ and Valentin N. Human platelet alloantigens: recent findings, new perspectives. Thromb Haemost 1995; 74: 234–239.
8. Weiss EJ, Bray PF, Tayback M, et al. A polymorphism of a platelet glycoprotein receptor as an inherited risk factor for coronary thrombosis. N Engl J Med 1996; 334: 1090–1094.
9. Lim J, Lal S, Ng KC, et al. Variation of the platelet glycoprotein IIIa Pl(A1/A2) allele frequencies in the three ethnic groups of Singapore. Int J Cardiol 2003; 90: 269–273.
10. Simsek S, Faber NM, Bleeker PM, et al. Determination of human platelet antigen frequencies in the Dutch population by immunophenotyping and DNA (allele-specific restriction enzyme) analysis. Blood 1993; 81: 835–840.
11. Floyd CN, Mustafa A and Ferro A. The PlA1/A2 polymorphism of glycoprotein IIIa Pl(A1/A2) allele frequencies in the three ethnic groups of Singapore. Int J Cardiol 2003; 90: 269–273.
12. Landes E and Chork NJ. Genetic dissection of complex traits. Science 1994; 265: 2037–2048.
13. Corral J, González-Conejero R, Rivera J, et al. HPA-1 genotype in arterial thrombosis–role of HPA-1b polymorphism in platelet function. Blood Coagul Fibrinolysis 1997; 8: 284–290.
14. Bennett JS, Catella-Lawson F, Rut AR, et al. Effect of the Pl(A2) alloantigen on the function of beta(3)-integrins in platelets. Blood 2001; 97: 3093–3099.
16. Vijayan KV, Huang TC, Liu Y, et al. Shear stress augments the enhanced adhesive phenotype of cells expressing the Pro33 isoform of integrin beta3. FEBS Lett 2003; 540: 41–46.

17. Vijayan KV, Liu Y, Sun W, et al. The Pro33 isoform of integrin beta3 enhances outside-in signaling in human platelets by regulating the activation of serine/threonine phosphatases. J Biol Chem 2005; 280: 21756–21762.

18. Michelson AD, Furman MI, Goldschmidt-Clermont P, et al. Platelet GP IIa/IIIa Pl(A) polymorphisms display different sensitivities to agonists. Circulation 2000; 101: 1013–1018.

19. Krasopoulos G, Brister SJ, Beattie WS, et al. Aspirin “resistance” and risk of cardiovascular morbidity: systematic review and meta-analysis. BMJ 2008; 336: 195–198.

20. Floyd CN and Ferro A. The PlA1/A2 polymorphism of glycoprotein IIIa in relation to efficacy of antiplatelet drugs: a systematic review and meta-analysis. Br J Clin Pharmacol 2013; 77: 446–457.

21. Trip MD, Cats VM, van Capelle FJ, et al. Platelet hyperreactivity and prognosis in survivors of myocardial infarction. N Engl J Med 1990; 322: 1549–1554.

22. Ault KA, Cannon CP, Mitchell J, et al. Platelet activation in patients after an acute coronary syndrome: results from the TIMI-12 trial. Thrombolysis in myocardial infarction. J Am Coll Cardiol 1999; 33: 634–639.

23. Cattaneo M, Lecchi A, Zighetti ML, et al. Platelet aggregation studies: autologous platelet-poor plasma inhibits platelet aggregation when added to platelet-rich plasma to normalize platelet count. Haematologica 2007; 92: 694–697.

24. Born GV and Cross MJ. The Aggregation of blood platelets. J Physiol 1963; 168: 178–195.

25. Gum PA, Kottke-Marchant K, Poggio ED, et al. Profile and prevalence of aspirin resistance in patients with cardiovascular disease. Am J Cardiol 2001; 88: 230–235.

26. Lordkipanidze M, Pharand C, Schampaert E, et al. A comparison of six major platelet function tests to determine the prevalence of aspirin resistance in patients with stable coronary artery disease. Eur Heart J 2007; 28: 1702–1708.