THE NOTION OF CATEGORY OVER AN ALGEBRAIC STACK

DENNIS GAITSGORY

Abstract. The goal of this note is to spell out the (apparently well-known and intuitively clear) notion of an abelian category over a stack. In the future we will discuss the (much less evident) notion, when instead of an abelian category one considers a triangulated one.

1. Let \mathcal{C} be a \mathbb{C}-linear abelian category. We will assume that \mathcal{C} is closed under inductive limits, i.e., that the tautological embedding $\mathcal{C} \to \text{Ind}(\mathcal{C})$ admits a right adjoint $\text{limInd} : \text{Ind}(\mathcal{C}) \to \mathcal{C}$, and that the latter functor is exact. In particular, it makes sense to tensor objects of \mathcal{C} by vector spaces.

2. The affine case. Let A be a commutative algebra. We say that \mathcal{C} is A-linear if we are given a map $A \to Z(\mathcal{C})$, i.e., if A acts functorially on every Hom(X,Y) for $X,Y \in \mathcal{C}$. We shall also say that in this case \mathcal{C} "lives over $S = \text{Spec}(A)$".

We claim that we have a well-defined functor of tensor product

$$M,X \mapsto M \otimes_A X : A\text{-mod} \times \mathcal{C} \to \mathcal{C} :$$

If $M = A^I$ for some index set I, then $M \otimes_A X := X^I$, and if $M = \text{coker}(A^I \to A^J)$, then

$$M \otimes_A X := \text{coker}(X^I \to X^J),$$

where the (i,j)-entry of the matrix $X^I \to X^J$ is given by the action of the (i,j)-entry of the matrix $A^I \to A^J$.

Lemma 3. The above definition is independent of the presentation of M as a quotient.

By construction, the functor of tensor product commutes with inductive limits with respect to both M and X, and is right-exact. In addition, we have:

Lemma 4.

(a) If M is flat, then the functor $X \mapsto M \otimes_A X$ is exact.

(b) If $0 \to M_1 \to M_2 \to M_3 \to 0$ is a short exact sequence of A-modules with M_3 flat, then the sequence

$$0 \to M_1 \otimes_A X \to M_2 \otimes_A X \to M_3 \otimes_A X \to 0$$

is also short exact.

(c) If M is projective and finitely generated, and M^\vee is the dual module, then the above functor admits left and right adjoints, both given by $X \mapsto M^\vee \otimes_A X$.

\footnote{In what follows by an inductive limit we will mean a limit taken over a small filtering category}
Proof. First, let us note that if M is a projective module given by an idempotent of A for some set I, then $M \otimes_A X$ is given by the corresponding idempotent of M^I. This implies that the functor of tensor product with a projective A-module is exact. This implies point (a), since every flat A-module can be represented as an inductive limit of projective ones.

Similarly, for point (b) we can assume that M_3 is projective, in which case the short exact sequence splits and the assertion is obvious.

Point (c) is immediate, since we have the adjunctions maps

$$X \to M^Y \otimes_A (M \otimes_A X) \simeq M \otimes_A (M^Y \otimes X)$$

and

$$M^Y \otimes_A (M \otimes_A X) \simeq M \otimes_A (M^Y \otimes X) \to X$$

that satisfy the necessary conditions.

Finally, we have:

Proposition 5. Assume that A' is a faithfully-flat algebra over A. Then $A' \otimes_A X \neq 0$ if $X \neq 0$.

Proof. (Drinfeld)

Lemma 6. If A' is a faithfully flat algebra over A, then the quotient A'/A is A-flat.

Clearly, the lemma implies Proposition 5, by Lemma 4(b).

Proof. (of the Lemma)

It is enough to show that $A'/A \otimes_A A'$ is A'-flat. But

$$A'/A \otimes_A A' \simeq \text{coker}(A' \to A' \otimes_A A'),$$

and the latter is a split injection.

We shall say that $X \in \mathcal{C}$ is flat over A (or S) if the functor $M \mapsto M \otimes_A X : A\text{-mod} \to \mathcal{C}$ is exact.

7. Change of rings. Let $f : \text{Spec}(A') = S' \to S = \text{Spec}(A)$ is a morphism of affine schemes, corresponding to a homomorphism of algebras $A \to A'$. There exists a universal A'-linear category \mathcal{C}', which admits an A-linear functor $\mathcal{C} \to \mathcal{C}'$. We will denote this category by $\mathcal{C} \times_S S'$, and it is constructed as follows:

Objects of \mathcal{C}' are objects $X \in \mathcal{C}$, endowed with an additional action of A', such that the two actions of A (one coming from $A \to A'$, and another from $A \to \text{End}(M)$, coincide. Morphisms in \mathcal{C}' are arrows $X_1 \to X_2$ in \mathcal{C} that commute with the the A'-action.

The functor $\mathcal{C} \to \mathcal{C}'$ is given by $X \mapsto A' \otimes_A X$, and it will be denoted by f^*. This functor is the left adjoint to the forgetful functor $f_* : \mathcal{C}' \to \mathcal{C}$.

Set $S'' = S' \times_S S'$, and let \mathcal{C}'' denote the corresponding base-changed category over S''. One naturally defines the category of descent data on \mathcal{C}' with respect to S''. We will denote it by $\text{Desc}_{S''}(\mathcal{C}')$, and we have a natural functor $\mathcal{C} \to \text{Desc}_{S''}(\mathcal{C}')$.

Proposition 8. Suppose that S' is faithfully-flat over S. Then $\mathcal{C} \to \text{Desc}_{S''}(\mathcal{C}')$ is an equivalence.
Proof. This is proved by the usual argument, using Lemma 5.

9. Stacks: approach I. Let \(Y \) be a stack (algebraic in the faithfully flat sense), for which the diagonal morphism \(Y \to Y \times Y \) is affine. This is equivalent to demanding that any morphism \(S \to Y \), with \(S \) an affine scheme, is affine. We are going to introduce the notion of sheaf of abelian categories over \(Y \). In particular, we will obtain a notion of category over a separated scheme.

Let \(\text{Sch}^{aff}_Y \) be the category of affine schemes over \(Y \), endowed with the faithfully flat topology. A sheaf of categories \(\mathcal{C}^{sh} \) over \(Y \) is the following data:

- For each \(S = \text{Spec}(A) \in \text{Sch}^{aff}_Y \), a category \(\mathcal{C}_S \) over \(S \).
- For \(f : S_2 \to S_1 \in \text{Sch}^{aff}_Y \), an \(S_1 \)-linear functor \(f^* : \mathcal{C}_{S_1} \to \mathcal{C}_{S_2} \), which induces an equivalence \(\mathcal{C}_{S_1} \times S_2 \to \mathcal{C}_{S_2} \).
- For two morphisms \(S_3 \to S_2 \to S_1 \in \text{Sch}^{aff}_Y \) an isomorphism of functors \(g^* \circ f^* \sim (f \circ g)^* \), such that the natural compatibility axiom for 3-fold compositions holds.

Given a sheaf of categories \(\mathcal{C}^{sh} \) over \(Y \) one can form a single category, denoted \(\Gamma(Y, \mathcal{C}^{sh}) \) or \(\mathcal{C}_Y \) (or simply \(\mathcal{C} \), where no confusion is likely to occur) as follows:

Let \(S \to Y \) be a faithfully flat cover. We define the category \(\mathcal{C}_Y \) to be the category of descent data of \(\mathcal{C}_S \) with respect to the two maps \(S \times S \to S \). Proposition 8 insures that \(\mathcal{C}_Y \) is well-defined, i.e., is canonically independent of the choice of the cover \(S \).

Again, by Proposition 8, we have the natural functor \(X \mapsto X_S : \mathcal{C}_Y \to \mathcal{C}_S \) for any \(S \in \text{Sch}^{aff}_Y \), and for \(f : S_2 \to S_1 \) a functorial isomorphism \(f^*(X_{S_1}) \simeq X_{S_2} \).

When \(Y \) is itself an affine scheme \(S = \text{Spec}(A) \), a data of a sheaf of categories \(\mathcal{C}^{sh} \) over \(S \) is equivalent to a single category over \(S \), which is reconstructed as \(\mathcal{C}_S \). In this case we will often abuse the notation and not distinguish between \(\mathcal{C}^{sh} \) and \(\mathcal{C}_S \).

We will now define a functor

\[
\mathcal{F}, X \mapsto \mathcal{F} \star X : \text{QCoh}_Y \times \mathcal{C}_Y \to \mathcal{C}_Y.
\]

Let \(\mathcal{F} \) be a quasi-coherent sheaf of \(Y \); for \(S = \text{Spec}(A) \in \text{Sch}^{aff}_Y \) we will denote by \(\mathcal{F}_S \) the corresponding quasi-coherent sheaf of \(S \). For \(X \in \mathcal{C}_Y \) we define

\[
(\mathcal{F} \star X)_S := \mathcal{F}_S \otimes_A X_S,
\]

which by descent gives rise to an object of \(\mathcal{C}_Y \).

The above functor has the following properties:

- (i) \(\text{QCoh}_Y \times \mathcal{C}_Y \to \mathcal{C}_Y \) is right exact and commutes with inductive limits.
- (ii) We have a functorial isomorphism \(\mathcal{O}_Y \star X \simeq X \).
- (iii) We have functorial isomorphisms \(\mathcal{F}_1 \star (\mathcal{F}_2 \star X) \simeq (\mathcal{F}_1 \otimes A_Y \mathcal{F}_2) \star X \), compatible with triple tensor products and the isomorphism of (ii).

By construction, the assertions of Lemma 4 hold in the present context, when we replace \(M \otimes X \) by \(\mathcal{F} \mapsto \mathcal{F} \star X \).

10. Descent of categories. Let \(f : Y' \to Y \) be a map of stacks, and \(\mathcal{C}^{sh} \) a sheaf of categories over \(Y \). It is clear that it gives rise to a sheaf of categories \(\mathcal{C}^{sh} := \mathcal{C}^{sh} \times Y' \) over \(Y' \), such that for \(S \in \text{Sch}^{aff}_Y \) the category \(\mathcal{C}'_S \) is by definition \(\mathcal{C}_S \), where \(S \) is regarded as an object of \(\text{Sch}^{aff}_Y \).
If $g : Y'' \to Y'$, it is clear that we have an equivalence of sheaves of categories

$$\mathcal{E}^\text{sh} \times_{Y} Y'' \simeq (\mathcal{E}^\text{sh} \times Y') \times_{Y'} Y''.$$

Suppose now \mathcal{E}^sh is a sheaf of categories over Y'. Let p_j be the projection on the j-th factor from the i-fold Cartesian product $Y(i)$ of Y over Y. Let $\mathcal{E}^{(i)\text{sh}}$ denote the corresponding base-changed sheaf of categories categories over $Y(i)$.

Suppose we are given an equivalence of sheaves of categories over Y of \mathcal{E}^sh with an equivalence

$$\mathcal{E}^\text{sh} \times_{Y} Y' \simeq \mathcal{E}^\text{sh} \times_{Y} Y'$$

and which gives rise to the above functors and natural transformations.

Proposition 11. Suppose that Y' is faithfully flat over Y. Then there exists a well-defined sheaf of categories \mathcal{E}^sh over Y with an equivalence $\mathcal{E}^\text{sh} \simeq \mathcal{E}^\text{sh} \times_{Y} Y'$, and which gives rise to the above functors and natural transformations.

Proof. The assertion readily reduces to the case when both Y and Y' are affine schemes, $\text{Spec}(A)$ and $\text{Spec}(A')$, respectively. Let Φ denote the functor $\mathcal{E}^{(2)} \to \mathcal{E}^{(2)}$, and T the natural transformation between the functors $\Phi^{1,3}$ and $\Phi^{2,3} \circ \Phi^{1,2}$ between $\mathcal{E}^{(3)}$ and $\mathcal{E}^{(3)}$.

We define \mathcal{C} to have as objects $X' \in \mathcal{C}'$ endowed with an isomorphism

$$\alpha_{X'} : \Phi((p_{1}^2)^*(X')) \to (p_{2}^2)^*(X'),$$

such that the diagram

$$\begin{array}{ccc}
\Phi^{1,3}((p_{1}^2)^*(X')) & \xrightarrow{T} & \Phi^{2,3} \circ \Phi^{1,2}((p_{1}^2)^*(X')) \\
\downarrow & & \downarrow \\
(p_{1}^2)^*(X') & \leftarrow & \Phi^{2,3}((p_{2}^2)^*(X'))
\end{array}$$

commutes. Morphisms in this category are \mathcal{C}'-morphisms, commuting with the data of $\alpha_{X'}$. Evidently, this is an A-linear category.

By construction, we have a functor $\mathcal{C} \to \mathcal{C}'$, which gives rise to a functor

$$\mathcal{C} \underset{\text{Spec}(A)}{\times} \to \mathcal{C}'.$$

The fact that the latter is an equivalence is shown by the base-change technique as in the context of quasi-coherent sheaves.

12. **Example: categories with a group-action.** Let us consider an example of the above situation, when $Y' = \text{pt}$, $Y = \text{pt} / G$, where G is an affine algebraic group. Let \mathcal{E}^sh be a sheaf of categories over Y', i.e., a plain category. Then the data of an equivalence $\mathcal{E}^{(2)} \to \mathcal{E}^{(2)}$ together with a natural transformation as above is what can be reasonably called an action of the group G on \mathcal{C}'.

Let us spell this notion out in more detail. We claim that an action of G on a category category \mathcal{C}' is equivalent to a data of a functor

$$\text{act}^* : \mathcal{C}' \to \mathcal{O}_G\text{-mod} \otimes \mathcal{C},$$

(here $\mathcal{O}_G\text{-mod} \otimes \mathcal{C}'$ denotes the same thing as $\mathcal{C}' \times \text{Spec}(A)$), and two functorial isomorphisms related to this functor. This first isomorphism is between the identity functor on \mathcal{C}' and the
composition $\mathcal{C}^\prime \overset{\text{act}^\ast}{\longrightarrow} \mathcal{O}_G\text{-mod} \otimes \mathcal{C}^\prime \rightarrow \mathcal{C}^\prime$, where the second arrow corresponds to the restriction to $1 \in G$.

To formulate the second isomorphism, note that from the existing data we obtain a natural functor

$$\text{act}^\ast : A\text{-mod} \otimes \mathcal{C}^\prime \rightarrow \mathcal{O}_G\text{-mod} \otimes \mathcal{C}^\prime \simeq (\mathcal{O}_G \otimes A)\text{-mod} \otimes \mathcal{C}^\prime$$

for any algebra A.

The second isomorphism is between the two functors $\mathcal{C} \rightarrow \mathcal{O}_{G \times G}\text{-mod} \otimes \mathcal{C}$ that correspond to the two circuits of the diagram

$$\begin{array}{ccc}
\mathcal{C} & \overset{\text{act}^\ast}{\longrightarrow} & \mathcal{O}_G\text{-mod} \otimes \mathcal{C} \\
\text{act}^\ast & \downarrow & \text{act}^\ast_G \\
\mathcal{O}_G\text{-mod} \otimes \mathcal{C} & \overset{\text{mult}^\ast}{\longrightarrow} & \mathcal{O}_{G \times G}\text{-mod} \otimes \mathcal{C},
\end{array}$$

where mult denoted the multiplication map $G \times G \rightarrow G$. These functors must satisfy the usual compatibility conditions.

From Proposition 11, it follows that an action of G on a category \mathcal{C}^\prime is equivalent to the data of a sheaf of categories \mathcal{C}^sh over pt/G. (As we shall see later, the latter can be also reformulated as a category with an action of the tensor category $\text{Rep}(G)$.)

By definition, $\mathcal{C} := \mathcal{C}_{\text{pt}/G}$ can be reconstructed as the category of G-equivariant objects of \mathcal{C}^\prime. By definition, the latter consists of $X^\prime \in \mathcal{C}^\prime$, endowed with an isomorphism $\alpha_X : \text{act}^\ast(X^\prime) \simeq \mathcal{O}_G \otimes X^\prime$, which is compatible with unit and associativity constraints. Morphisms in the category are \mathcal{C}^p-morphisms, compatible with the data of α.

13. Example: categories acted on by a groupoid. Generalizing the above set-up, let S be a base scheme, and $\mathcal{G} \overset{p_2}{\twoheadrightarrow} S$ be an affine groupoid, such that the maps p_1, p_2 (or, equivalently, one of them) are flat. Let \mathcal{C}^sh be a sheaf of categories over the quotient stack $\mathcal{Y} = S/\mathcal{G}$. This data can be rewritten as a sheaf of categories \mathcal{C}^sh over S, acted on by \mathcal{G}, which means the following:

We must be given a functor $\text{act}^\ast : \mathcal{C}^\prime \rightarrow \mathcal{C}^\prime \times \mathcal{G}$, which is \mathcal{O}_S-linear if we regard $\mathcal{C}^\prime \times \mathcal{G}$ as a category over S via $\mathcal{G} \overset{p_2}{\twoheadrightarrow} S$, and two functorial isomorphisms related to it. The first isomorphism is a unit constraint, i.e., an isomorphism between the functor

$$\mathcal{C}^\prime \overset{\text{act}^\ast}{\longrightarrow} \mathcal{C}^\prime \times \mathcal{G} \overset{1_S \otimes \text{id}_{\mathcal{G}}}{\longrightarrow} \mathcal{C}^\prime \times \mathcal{G} \times S \simeq \mathcal{C}^\prime,$$

where $1_S : S \rightarrow \mathcal{G}$ is the unit map.

Formulate the second isomorphism note that for any scheme S', mapping to S, we obtain a functor

$$\text{act}^\ast \times \text{id}_{S'} : \mathcal{C}^\prime \times S' \rightarrow \mathcal{C}^\prime \times (\mathcal{G} \times S').$$

2To simplify the notation, we will assume here that S is affine as well.
The second isomorphism is an associativity constraint, i.e., an isomorphism between the two functors in the diagram

\[
\begin{array}{ccc}
\mathcal{C}' & \xrightarrow{\text{act}^*} & \mathcal{C}' \times S_{p_1} \\
\downarrow \text{act}^* & & \downarrow \text{act}^* \times \text{id}_S \\
\mathcal{C}' \times S_{p_1} & \xrightarrow{\text{mult}^*} & \mathcal{C}' \times (S_{p_1} \times S_{p_1})
\end{array}
\]

such that the natural compatibility conditions hold.

Lemma 14.

(a) Let \(0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0\) be a short exact sequence of quasi-coherent sheaves on \(\mathcal{S}\) with \(\mathcal{F}_3\) being \(O_{S}\)-flat with respect to \(p_2\). Then for \(X \in \mathcal{C}'\), the sequence

\[0 \to \mathcal{F}_1 \circ \text{act}^*(X) \to \mathcal{F}_2 \circ \text{act}^*(X) \to \mathcal{F}_3 \circ \text{act}^*(X) \to 0\]

is also short exact.

(b) If \(X \in \mathcal{C}'\) is \(O_{S}\)-flat, then \(\text{act}^*(X)\) is \(O_{\mathcal{S}}\)-flat.

Proof. Let \(S'\) be a scheme with a map \(\phi : S' \to \mathcal{S}\); let \(\psi_i = p_i \circ \phi, i = 1, 2\). We claim that there exists a natural \(O_{S'}\)-linear equivalence

\[\text{act}^*_\phi : \mathcal{C}' \times S' \to \mathcal{C}' \times S',\]

defined by

\[X \mapsto (\phi \times \text{id}_{S'})^* \circ (\text{act}^* \times \text{id}_{S'})(X),\]

where \(\phi \times \text{id}_{S'} : S' \to \mathcal{S} \times S'\). Its quasi-inverse is defined using the map \(\gamma \circ \phi : S' \to \mathcal{S}\), where \(\gamma\) is the inversion on \(\mathcal{S}\).

We apply this to \(S' = \mathcal{S}\) and \(\phi = \gamma\). We obtain an equivalence

\[\text{act}^*_\gamma : \mathcal{C}' \times \mathcal{S} \to \mathcal{C}' \times \mathcal{S},\]

such that for \(X \in \mathcal{C}'\),

\[\text{act}^*_\gamma(\text{act}^*(X)) \simeq p_2^*(X).\]

This readily implies both points of the lemma. \(\square\)

We say that an object \(X \in \mathcal{C}'\) is \(\mathcal{S}\)-equivariant, if we are given an isomorphism

\[p_1^*(X) \simeq \text{act}^*(X) \in \mathcal{C}' \times \mathcal{S}_{p_1}\]

compatible with the unit and associativity constraints. Let us denote by \(\mathcal{C}'^\mathcal{S}\) the category of \(\mathcal{S}\)-equivariant objects in \(\mathcal{C}'\).

From the definitions we obtain:

Lemma 15.

(a) For any \(X \in \mathcal{C}'\), the object \((p_1)_*(\text{act}^*(X))\) is naturally \(\mathcal{S}\)-equivariant.

(b) The functor \(X \mapsto (p_1)_*(\text{act}^*(X))\) is the right adjoint to the forgetful functor \(\mathcal{C}'^\mathcal{S} \to \mathcal{C}'\).

In addition, we have:

Lemma 16. Assume that \(\mathcal{S}\) is flat over \(S \times S\). Then every \(\mathcal{S}\)-equivariant object of \(\mathcal{C}'\) is \(O_{S}\)-flat.
Proof. This follows from the fact that for $\mathcal{F} \in \text{QCoh}_S$ and $X \in \mathcal{C}'$,
$$\text{act}^* (\mathcal{F} \ast X) \simeq p_2^*(\mathcal{F}) \ast \text{act}^*(X).$$

\[\square\]

17. Stacks: approach II. Let Vect_Y denote the tensor category of locally free sheaves of finite rank on Y.

Assume now that we are given a category \mathcal{C}_Y endowed with an action of the tensor category Vect_Y:
$$\ast : \text{Vect}_Y \times \mathcal{C}_Y \rightarrow \mathcal{C}_Y,$$
which is exact. I.e., for a fixed $\mathcal{P} \in \text{Vect}_Y$ the functor $X \mapsto \mathcal{P} \ast X$ is exact, and whenever $0 \rightarrow \mathcal{P}_1 \rightarrow \mathcal{P}_2 \rightarrow \mathcal{P}_3 \rightarrow 0$ is a short exact sequence of objects of Vect_Y, the corresponding sequence
$$0 \rightarrow \mathcal{P}_1 \ast X \rightarrow \mathcal{P}_2 \ast X \rightarrow \mathcal{P}_3 \ast X \rightarrow 0$$
is also exact. We shall call such a data "a category over \mathcal{C}_Y".

We will now make an additional assumption on the stack Y:

- The stack Y is locally Noetherian and every quasi-coherent sheaf on it is an inductive limit of coherent ones.
- Every coherent sheaf on Y can be covered by an object of Vect_Y.

As in the affine case, this implies that every flat quasi-coherent sheaf on Y can be represented as an inductive limit of objects of Vect_Y.

Theorem 18. Under the above assumption on Y, a data of a category over Y is equivalent to that of a sheaf of categories over Y.

The rest of this subsection and the next one are devoted to the proof of this theorem. One direction has been explained above: given a sheaf of categories \mathcal{C}^{sh} over Y, we reconstruct \mathcal{C}_Y as $\Gamma(Y, \mathcal{C}^{sh})$. To carry out the construction in the opposite direction we will use the above additional assumption on Y.

We claim that the above data extends to an action of the monoidal category QCoh_Y on \mathcal{C}_Y, satisfying the conditions (i),(ii),(iii) of Sect. 9 and assertions (a), (b) and (c) of Lemma 4.

First we define an action of the monoidal category Coh_Y on \mathcal{C}_Y: By assumption, every $\mathcal{F} \in \text{Coh}_Y$ can be represented as $\text{coker}(\mathcal{P} \rightarrow \mathcal{Q})$ with $\mathcal{P}, \mathcal{Q} \in \text{Vect}_Y$. We set
$$\mathcal{F} \ast X := \text{coker}(\mathcal{P} \ast X \rightarrow \mathcal{Q} \ast X).$$

To show that this is well-defined, we must consider a commutative diagram of objects of Vect_Y

\[
\begin{array}{ccc}
0 & 0 & 0 \\
\uparrow & \uparrow & \uparrow \\
\mathcal{P} & \mathcal{Q} & \mathcal{F} \rightarrow 0 \\
\uparrow & \uparrow & \uparrow \\
\mathcal{P}' & \mathcal{Q}' & \mathcal{F} \rightarrow 0 \\
\uparrow & \uparrow & \uparrow \\
\mathcal{P}'' & \mathcal{Q}'' & 0
\end{array}
\]
with exact rows and columns, and show that the map
\[
coker(\phi \ast \text{id}_X) \to coker(\phi' \ast \text{id}_X)
\]
is an isomorphism. But this follows from the assumption.

It is clear that the resulting functor is right-exact and satisfies properties (ii) and (iii) of Sect. 9.

Next, we have to extend the above action of \(\text{Coh}_Y \) on \(\mathcal{C}_Y \) to that of \(\text{QCoh}_Y \) by setting for \(F \cong \lim_{\to} F_i \) with \(F_i \in \text{Coh}_Y \), \(F \in \text{QCoh}_Y \),
\[
F \ast X := \lim_{\to} F_i \ast X.
\]
The resulting action satisfies properties (i), (ii) and (iii) of Sect. 9. By assumption, the functor of tensor product with an object of \(\text{Vect}_Y \) is exact. This implies properties (a) and (b) Lemma 4, by repeating the proof of loc.cit. Property (c) stated in Lemma 4 is evident.

19. We shall now show how the data of an action of \(\text{QCoh}_Y \) on \(\mathcal{C}_Y \) with the above properties reconstructs the categories \(\mathcal{C}_S \) for \(S \in \text{Sch}_Y \).

Let \(S = \text{Spec}(A) \), let us denote by \(\mathcal{O}_S \) the direct image of the structure sheaf of \(S \) onto \(Y \), regarded as an algebra in \(\text{QCoh}_Y \). We introduce \(\mathcal{C}_S \) as the category, consisting of objects \(X \in \mathcal{C}_Y \) acted on by \(A \) in \(\text{QCoh}_Y \), and the morphisms being \(\mathcal{C}_Y \)-morphisms compatible with the action.

We have a map of algebras \(A \otimes \mathcal{O}_Y \rightarrow \mathcal{O}_S \) in \(\text{QCoh}_Y \); this makes \(\mathcal{O}_S \) into an \(A \)-linear category. We also have a functor \(\mathcal{C}_Y \rightarrow \mathcal{C}_S \) given by \(X \mapsto X_S := \mathcal{O}_S \ast X \).

Let \(f : S_2 = \text{Spec}(A_2) \rightarrow \text{Spec}(A_1) = S_1 \) be a morphism in \(\text{Sch}_Y^{\text{eff}} \). We define a functor \(f^* : \mathcal{C}_{S_1} \rightarrow \mathcal{C}_{S_2} \) by
\[
X \mapsto \mathcal{O}_{S_2} \otimes_{\mathcal{O}_{S_1}} X,
\]
where for an algebra \(A \) in \(\text{QCoh}_Y \), a sheaf \(\mathcal{F} \) of \(A \)-modules and an object \(X \in \mathcal{C}_Y \) acted on by \(A \), we set
\[
\mathcal{F} \ast X := \text{coker}((A \cdot A) \ast X \Rightarrow \mathcal{F} \ast X).
\]

We claim that the induced functor \(\mathcal{C}_{S_1} \times \mathcal{S}_2 \rightarrow \mathcal{C}_{S_2} \) is an equivalence. This follows from the fact that \(\mathcal{O}_{S_2} \simeq A_2 \otimes_{A_1} \mathcal{O}_{S_1} \).

Note in addition that for \(X \in \mathcal{C}_Y \),
\[
\mathcal{O}_{S_2} \ast X \simeq A_2 \otimes_{A_1} (\mathcal{O}_{S_1} \ast X).
\]

This implies that for \(X \in \mathcal{C}_Y \), we have a natural isomorphism \(f^*(X_{S_1}) \simeq X_{S_2} \).

Thus, we have constructed a sheaf of categories over \(Y \), and it remains to show that the initial category \(\mathcal{C}_Y \) can be reconstructed by the descent procedure. The usual proof for coherent sheaves works, once we establish the following:

Lemma 20. If \(A \in \text{QCoh}_Y \) be an algebra, faithfully flat over \(\mathcal{O}_Y \). Then the functor \(X \mapsto A \ast X : \mathcal{C}_Y \rightarrow \mathcal{C}_Y \) is exact and faithful.

Proof. The exactness part follows by property (a) of Lemma 4. The faithfulness part follows as in Proposition 5 using property (b) of Lemma 4. □
21. Example: de-equivariantization. Let \(Y \) be the stack \(\text{pt}/G \), where \(G \) is an affine algebraic group. Given a category \(\mathcal{C} \), a structure of category over \(\text{pt}/G \) on it is by definition the same as an action of the tensor category \(\text{Rep}(G) \) of finite-dimensional representations of \(G \) on it:

\[
V \in \text{Rep}(G), X \in \mathcal{C} \mapsto V \ast X \in \mathcal{C},
\]

which has the exactness property of Sect. 17.

By Theorem 18, such a data gives rise to a sheaf of categories \(\mathcal{C}^{\text{sh}} \) over \(\text{pt}/G \).

Let us show how to reconstruct the category \(\mathcal{C}' := \mathcal{C}^{\text{sh}} \times_{\text{pt}/G} \text{pt} \). By definition, this is the category, whose objects are \(X' \in \mathcal{C} \), endowed with an associative action \(\mathcal{O}_G \ast X' \to X' \), and morphisms are \(\mathcal{C} \)-morphisms, compatible with this action.

According to [AG], this data can be rewritten as follows. For every \(V \in \text{Rep}(G) \) we must be given a map \(\beta_V : V \ast X \to X \otimes V \), for every \(V \in \text{Rep}(G) \) (here \(V \) denoted the vector space underlying a representation), which satisfy the compatibility conditions of [AG], Sect. 2.2. One easily shows that the maps \(\beta_V \) are necessarily isomorphisms. Morphisms in this category are \(\mathcal{C} \)-morphisms, compatible with the data of \(\beta \).

Thus, \(\mathcal{C}' \) is the category of Hecke eigen-objects in \(\mathcal{C} \) with respect to the action of \(\text{Rep}(G) \). By construction, \(\mathcal{C}' \) carries a canonical action of \(G \). Explicitly, for \(X' \in \mathcal{C}' \), the \(\mathcal{O}_G \)-family \(\text{act}^\ast(X') \) is isomorphic to \(X' \otimes \mathcal{O}_G \) as an object of \(\mathcal{C} \). The isomorphisms \(\beta \) are given by

\[
V \ast (X' \otimes \mathcal{O}_G) \xrightarrow{\beta_V \otimes \text{id}_{\mathcal{O}_G}} X' \otimes V \otimes \mathcal{O}_G \to X' \otimes \mathcal{O}_G,
\]

where the second arrow is given by the co-action map \(V \to V \otimes \mathcal{O}_G \).

According to Sect. 6, the category \(\mathcal{C} \) is reconstructed from \(\mathcal{C}' \) as the category \(\mathcal{C}^G \) of \(G \)-equivariant objects. We will refer to \(\mathcal{C}' \) as the de-equivariantization of \(\mathcal{C} \).

22. Another example. Generalizing the previous example, let us take \(Y = S/G \), where \(S = \text{Spec}(A) \) is an affine scheme, and \(G \) an affine algebraic group acting on it. Let \(\mathcal{C} \) be an abelian category. A structure on \(\mathcal{C} \) of category over \(S/G \) is by definition expressed as follows:

An action of the tensor category \(\text{Rep}(G) \) on \(\mathcal{C} \): \(V, X \mapsto V \ast X \) as above, and a functorial map \(\alpha_X : A \ast X \to X \), where \(A \) is regarded as an algebra in \(\text{Rep}(G) \), such that for \(V \in \text{Rep}(G) \) the diagram

\[
\begin{array}{ccc}
V \ast (A \ast X) & \xrightarrow{\sim} & A \ast (V \ast X) \\
V \ast \alpha_X \downarrow & & \alpha_{V \ast X} \downarrow \\
V \ast X & \xrightarrow{\text{id}} & V \ast X
\end{array}
\]

commutes.

References

[AG] S. Arkhipov and D. Gaitsgory, Another realization of the category of modules over the small quantum group, math.QA/0010270, Adv. Math. 173 (2003), 114–143.