Comparison of the Venom Peptides and Their Expression in Closely Related Conus Species: Insights into Adaptive Post-speciation Evolution of Conus Exogenomes

Neda Barghi¹, Gisela P. Concepcion¹,2, Baldomero M. Olivera³, and Arturo O. Lluisma¹,2,*

¹Marine Science Institute, University of the Philippines-Diliman, Quezon City, Philippines
²Philippine Genome Center, University of the Philippines, Quezon City, Philippines
³Department of Biology, University of Utah
*Corresponding author: E-mail: aolluisma@upd.edu.ph.

Accepted: May 26, 2015

Data deposition: Transcriptome Shotgun Assembly projects of Conus tribblei and Conus lenavati have been deposited at DDBJ/EMBL/GenBank under the accessions GCVM00000000 and GCVH00000000, respectively. The versions described in this article are the first versions: GCVM01000000 (C. tribblei) and GCVH01000000 (C. lenavati). The COI sequences of the specimens of C. tribblei and C. lenavati are available from GenBank under accessions KR107511–KR107522 and KR336542.

Abstract

Genes that encode products with exogenous targets, which comprise an organism’s “exogenome,” typically exhibit high rates of evolution. The genes encoding the venom peptides (conotoxins or conopeptides) in Conus sensu lato exemplify this class of genes. Their rapid diversification has been established and is believed to be linked to the high speciation rate in this genus. However, the molecular mechanisms that underlie venom peptide diversification and ultimately emergence of new species remain poorly understood. In this study, the sequences and expression levels of conotoxins from several specimens of two closely related worm-hunting species, Conus tribblei and Conus lenavati, were compared through transcriptome analysis. Majority of the identified putative conopeptides were novel, and their diversity, even in each specimen, was remarkably high suggesting a wide range of prey targets for these species. Comparison of the interspecific expression patterns of conopeptides at the superfamily level resulted in the discovery of both conserved as well as species-specific expression patterns, indicating divergence in the regulatory network affecting conotoxin gene expression. Comparison of the transcriptomes of the individual snails revealed that each specimen produces a distinct set of highly expressed conopeptides, reflecting the capability of individual snails to fine-tune the composition of their venoms. These observations reflect the role of sequence divergence and divergence in the control of expression for specific conopeptides in the evolution of the exogenome and hence venom composition in Conus.

Key words: conotoxin, species-specific expression pattern, diversification, conopeptide.

Introduction

The genes that encode the venom peptides in Conus (conopeptides or conotoxins) belong to a class of genes whose products act on exogenous targets (Olivera 2006). These genes, which may be referred to as “exogenes” and which collectively make up an organism’s “exogenome” (Olivera 2006), share a common characteristic, namely their rapid evolution and diversification. The accelerated pace of evolution of conopeptide genes (Duda and Palumbi 2000; Conticello et al. 2001; Espiritu et al. 2001; Duda 2008; Puillandre et al. 2010; Chang and Duda 2012), together with the high diversity of species in Conus sensu lato (Puillandre et al. 2014, 2015), and the evolution of biochemical mechanisms that introduce a variety of post-translational modifications to the peptides (Duterre et al. 2013) collectively account for the remarkable chemical diversity of conopeptides in nature.

A number of mechanisms have been proposed to explain the rapid evolution of conopeptides. Gene duplication and positive selection have been shown to be important factors (Duda and Palumbi 2000; Duda 2008; Duda and Remigio 2008; Puillandre et al. 2010; Chang and Duda 2012, 2014). Several molecular mechanisms such as recombination (Espiritu et al. 2001), hypermutation (Olivera et al. 1999; Espiritu et al. 2001), presence of error-prone DNA polymerase, and even...
special molecules protecting cysteine codons (Conticello et al. 2001) have been suggested, although solid evidence in support of these mechanisms is still lacking.

Studies have also shown that the expression of conopeptides differs among Conus species with different diets: Worm-, mollusk-, and fish-hunting (Conticello et al. 2001; Duda and Palumbi 2004) indicating the importance of diet as a factor influencing the evolution of venom components. Furthermore, the diet of each vermicorous Conus species co-occurring in a habitat is dominated by a different type of polychaete where each Conus species have specialized on different prey taxa (Kohn 2001). Therefore, there seems to be a dietary specialization within worm-hunting species (Duda et al. 2001; Kohn 2001). In addition, Conus species that feed exclusively on specific types of prey express less diverse conopeptides than those with a broader range of prey (Remigio and Duda 2008; Elliger et al. 2011).

Little is known about how gene expression patterns differ between closely related species of Conus. In primates, variations in gene expression patterns are known to contribute to interspecies phenotypic variation and adaptation (Romero et al. 2012). Although the expression of majority of genes in closely related species is under purifying selection (Khaitovich et al. 2006), the expression of some genes has evolved more rapidly giving rise to species-specific gene expression patterns (Enard et al. 2002). A number of studies have shown that closely related species of Conus having similar diet also tend to produce conopeptides with similar structure and molecular targets (Espiritu et al. 2001; Olivera and Teichert 2007). For example, a few orthologous genes of the O1- and A-superfamilies were found to be expressed among closely related species of Conus (Duda and Remigio 2008; Chang and Duda 2012, 2014). A crucial limitation of these previous studies was the insufficient sampling of expressed genes or conotoxin superfamilies partly owing to the technical limitations of the traditional cDNA library-based approaches (Duda and Remigio 2008; Chang and Duda 2012, 2014). Recent studies using next generation sequencing have shown the presence of 11–36 conopeptide gene superfamilies in each species (Hu et al. 2011, 2012; Lluisma et al. 2012; Terrat et al. 2012; Dutertre et al. 2013; Lavergne et al. 2013; Robinson et al. 2014; Barghi et al. 2015). In addition, the advent of high-throughput sequencing has made possible not only the identification but also the quantification of expression levels of conopeptide transcripts. Therefore, high-throughput sequencing could be leveraged to obtain deeper insights into the expression patterns of conopeptides and identifying the orthologous genes in all expressed conopeptide gene superfamilies. Similar to those in primate species, the differential expression of orthologous conotoxin exogenes may also contribute to the species-specific gene expression patterns and differentiation of venom composition in closely related species of Conus.

In addition to the interspecific variation in venom composition, characterization of intraspecific variabilty of the venom components may also provide clues to adaptive ability of the species as a whole. High intraspecific variability in the masses of venom peptides has been observed among the individuals of worm-, mollusk- (Davis et al. 2009), and fish-hunting (Jakubowski et al. 2005; Dutertre et al. 2010; Chun et al. 2012) cone snails. It was shown recently that variable post-translational processing could account for the observed large number (thousands) of peptide fragments (Dutertre et al. 2013). The expression of toxins in individuals of venomous animals such as snakes and scorpions varies with a number of factors such as sex, age, geographic location (Daltry et al. 1998; Menezes et al. 2006; Abdel-Rahman et al. 2009), and diet (Barlow et al. 2009; Caswell et al. 2009; Gibbs et al. 2013). The factors influencing the intraspecific variation in the expression patterns of conopeptides are still poorly known, and transcriptomic analysis of the venom duct of several individuals will be essential in characterizing such variability.

This study aims to investigate the expression and diversification of conopeptides in closely related species to provide insights into the processes that contribute to inter- and intraspecific differences in the venom composition and facilitate the evolution of Conus exogenome. This is the first comprehensive inter- and intraspecific transcriptome analysis of the venom duct in closely related Conus species using next generation sequencing. In this study, the expression patterns of conopeptide gene superfamilies were evaluated in several specimens of the closely related worm-hunting species, Conus tribblei and Conus lenavati. These two species belong to the same clade (VIII) (Espiritu et al. 2001). Recently, Puillandre et al. (2014) assigned these species to the subgenus Spinoconus. Conus coffeae and Conus glans, members of subgenus Leporiconus, the most closely related clade to the subgenus Spinoconus (Puillandre et al. 2014), are known to prey on errant polychaetes, mostly eunicidae (Duda et al. 2001). Furthermore, Conus papuensis another member of the subgenus Spinoconus (Puillandre et al. 2015) is also known to prey on polychaetes (Tucker and Tenorio 2009). As closely related Conus species generally have similar diet (Espiritu et al. 2001; Puillandre et al. 2014), C. tribblei and C. lenavati may also prey on polychaetes.

Materials and Methods

Sample Collection

A total of eight specimens of C. tribblei (~6 cm shell length) and five specimens of C. lenavati (~5–8 cm shell length) were collected using tangle nets from depth of 96–136 m in Sogod, Cebu province in the Philippines. The venom duct of each specimen was dissected, stored separately in RNAlater (Ambion, Austin, TX), and kept at −20 °C. The whole body
tissue and the shell of each specimen were stored in 95% ethanol and kept at room temperature.

Phylogenetic Analysis

DNA was extracted from a small piece of the foot tissue of each specimen using DNeasy blood and tissue kit (Qiagen, USA) according to manufacturer’s recommendations and stored at −20°C. Using universal primers: LCO1490 and HCO2198 (Folmer et al. 1994), a fragment of cytochrome oxidase c subunit 1 (COI) gene segment of mitochondrial DNA was amplified. All PCR reactions were performed in 30 μl containing 1× Titanium Taq PCR Buffer, 0.4 mM dNTP, 0.2 mM of each primer, 0.15 μl Titanium Taq DNA polymerase, and 0.5–4 μl of DNA template (total concentration of 100 ng in each PCR reaction). The PCR amplification consisted of one cycle of 1 min at 94°C; five cycles of 1 min at 94°C, 1.5 min at 45°C and 1.5 min at 72°C; 35 cycles of 1 min at 94°C, 1.5 min at 50°C and 1 min at 72°C, and a final cycle of 5 min at 72°C (Hebert et al. 2003). Each PCR product was gel purified using GF-1 AmbiClean Kit (vivantis) and sequenced in both directions using forward and reverse primers on an ABI 3730XL Capillary sequencer (Applied Biosystems). The manual inspection and cleaning of the sequences based on the chromatograms were performed using BioEdit version 7.0.0 (Hall 1999). Multiple sequence alignment was performed on the COI sequences of C. tribblei and C. lenavati specimens and other members of the subgenus Splinoconus downloaded from the National Center for Biotechnology Information (NCBI) (supplementary table S1, Supplementary Material online) using MEGA 5.2 (Tamura et al. 2011). Bayesian analysis was performed using six substitution categories, a gamma-distributed rate variation across sites approximated in four discrete categories, and a proportion of invariable sites in two parallel runs using MrBayes (Ronquist et al. 2012) each consisting of six Markov chains of 5 million generations with a parallel runs using MrBayes (Ronquist et al. 2012) e — concrete categories, and a proportion of invariable sites in two distributed rate variation across sites approximated in four dis- was performed using six substitution categories, a gamma-

Conopeptide Identification and Superfamily Classification

The conopeptide sequences in NCBI’s nr protein database, UniProtKB/Swiss-Prot database (UniProt Consortium 2015), and ConoServer (Kaas et al. 2012) were downloaded and pooled in a data set. The putative conopeptides identified by Barghi et al. (2015) were also added, the redundant sequences of the data set were removed, and the remaining sequences were formatted into the “reference conopeptide database” using formadtb software of BLAST (Basic Local Alignment Search Tool) 2.2.29+ (Altschul et al. 1990). To identify putative conopeptides, the sequences in the reference assembly of C. tribblei and C. lenavati were searched against the reference conopeptide database using BLASTX. In each BLASTX result, the sequences with significant hits (e value < 10^-5) were translated according to the identified reading frame and were manually inspected. The mature regions of the conopeptides were predicted using ConoPrec (Kaas et al. 2012), the redundant and truncated transcripts were excluded from the data set, and the good quality puta- tive conopeptide precursors were collected into the “tribblei conopeptide data set” and “lenavati conopeptide data set.”

The classification of the conopeptides in the tribblei conopeptide data set and lenavati conopeptide data set into gene superfamilies was performed as described in Barghi et al. (2015). Briefly, conopeptides were assigned into gene superfamilies based on the identification of the two highest-scoring full-length conopeptide precursor hits in the BLASTX search (in which the sequences in the reference assemblies of C. tribblei and C. lenavati were used to search for similar sequences in the reference conopeptide database). The signal regions of

Venom Peptides and Their Expression

Genome Biol. Evol. 7(6):1797–1814. doi:10.1093/gbe/evv109 Advance Access publication June 4, 2015
the putative conopeptide precursors were predicted using SignalP 4.1 (Petersen et al. 2011), and percentage sequence identity (PID) between the signal region of each putative conopeptide precursor and the highly conserved signal sequence of the known conopeptide gene superfamilies was computed using MatGAT 2.02 (Campanella et al. 2003). Originally, the PID value of 76 was chosen as the threshold for superfamily assignment (Kaas et al. 2010). However, some conopeptide gene superfamilies have less conserved signal regions. Therefore, based on the average PID of members of each superfamily, specific PID threshold values were set for different conopeptide gene superfamilies (Barghi et al. 2015). If the PID of a conopeptide’s signal region was above the threshold of a superfamily, the conopeptide was assigned to that gene superfamily. Otherwise, the conopeptide was classified as a new conopeptide group. The assigned name of each new group was “SF-” plus Arabic numbers such as “01.” Multiple sequence alignment was performed on the precursors of the putative conopeptides and the reference conopeptide sequences using ClustalX version 2.1 (Larkin et al. 2007) followed by manual refinement using BioEdit.

Comparison of Conopeptide Identity

For each conopeptide gene superfamily identified in both *C. tribblei* and *C. lenavati*, the conopeptides’ mature regions were aligned using ClustalX, the pairwise distances were computed using MEGA, and the PID was computed for every conopeptide pair using the following formula:

\[
\text{Percentage sequence identity} = \frac{\text{identical residues} \times 2}{\text{sum of the length of a conopeptide pair}}
\]
For every conopeptide in *C. tribblei*, the conopeptide in *C. lenavati* with the highest PID (and belonging to the same superfamily) was chosen as the most similar match, and the same criterion was applied for choosing the most similar match for the conopeptides in *C. lenavati*.

Test of Positive Selection for Orthologous Conopeptide Genes

To identify the orthologous conopeptide genes in *C. tribblei* and *C. lenavati*, the nucleotide sequences of the conopeptide precursors of each superfamily identified in both species were aligned using ClustalX, and the best-fitted model was chosen using MEGA. The phylogenetic tree of the conopeptides of each superfamily was constructed using maximum-likelihood method based on the best-fitted model with bootstrap support value based on 500 replicates using MEGA. Those conopeptides that occurred in clades with strong bootstrap support containing only two sequences, one from *C. tribblei* and the other one from *C. lenavati*, and had identical cysteine framework were considered orthologous. For the superfamilies containing only one conopeptide in *C. tribblei* and one conopeptide in *C. lenavati*, the sequences were considered orthologs if, in addition to having identical length and cysteine framework, the PID of the mature region was above 78%. The pairwise estimates of nonsynonymous substitutions per nonsynonymous sites (*d*~*H*~) and synonymous substitutions per synonymous sites (*d*~*S*~) for the mature regions of the orthologous conopeptide pairs were computed using the maximum-likelihood approach implemented in PAML (runmode = −2, CodonFreq = 2) (Yang 1997).

Shannon’s Diversity Index of Venom Conopeptides

Diversity of the conopeptides in the tribblei and lenavati conopeptide data sets was computed as Shannon’s diversity index, \(H' \), where \(R \) is the number of conopeptide gene superfamilies and \(p_i \) is the proportion of conopeptides belonging to the \(i \)th superfamily in the data set. The evenness of conopeptide data sets was computed as Shannon’s equitability, \(E_H \), whereas \(S \) is the data set richness based on the number of conopeptide gene superfamilies:

\[
H' = -\sum_{i=1}^{R} p_i \ln(p_i) \quad E_H = \frac{H'}{\ln S}
\]

Quantification of the Transcript Expression Level

In the recent transcriptome studies of the venom duct of several *Conus* species, the expression level of each conopeptide has been determined by the total number of sequencing reads generated from each conopeptide transcript (Hu et al. 2012; Terrat et al. 2012; Dutertre et al. 2013; Jin et al. 2013; Robinson et al. 2014). However, the transcript length and the sequencing depth affect the number of reads generated from each transcript (Mortazavi et al. 2008). Therefore, for a more accurate comparison of the expression levels among conopeptides with different lengths, normalization of the number of reads by the transcript length and sequencing depth was performed (Mortazavi et al. 2008; Trapnell et al. 2010).

To determine how many of the conopeptides were expressed in each specimen of *C. tribblei* and *C. lenavati*, the sequencing reads of each specimen were aligned separately to the tribblei and lenavati reference assemblies, respectively, using Bowtie 1.0.1 (Langmead and Salzberg 2012). For each specimen, the alignment of the reads to the transcripts were visualized in Tablet (Milne et al. 2012) to ensure that reads align to the entire length of conopeptide precursor or at least to the full length of the mature region. Only those transcripts where the mature regions were entirely covered by reads were considered as “expressed.” For each specimen, the number of reads representing a transcript was estimated as the maximum-likelihood abundances using expectation-maximization algorithm by RSEM (Li and Dewey 2011) using the default settings, and was represented as the “expected count.” To enable comparison of the expression levels of transcripts among specimens, trimmed mean of M values (TMM) normalization factor was computed using edgeR (Robinson and Oshlack 2010). Then, the “effective library size” for each specimen was computed by normalizing the library size of each specimen (total number of aligned reads) using the TMM normalization factor. The “effective length” of each transcript which is the mean number of positions along the transcript sequence that a read may start (Li and Dewey 2011) was also computed using RSEM. Finally, the expression level of each transcript was computed as TMM-normalized Fragments Per Kilobase of transcript per Million fragments mapped (FPKM) (Trapnell et al. 2010; Haas et al. 2013) using the following formula:

\[
\text{TMM - normalized FPKM} = \frac{\text{expected count} \times 10^9}{\text{effective length} \times \text{effective library size}}
\]

For each specimen, the expression level of each gene superfamily is the sum of expression levels (TMM-normalized FPKM) of the conopeptides belonging to that superfamily represented as “sum TMM-normalized FPKM.” As for each species, the expression level of each gene superfamily is the average of the expression levels of that superfamily among three specimens represented as “mean TMM-normalized FPKM.”

Functional Annotation

The functional annotation of the reference assemblies of *C. tribblei* and *C. lenavati* was performed using the pipeline version of BLAST2GO software (B2G4Pipe) (Götz et al. 2008). The transcripts of the reference assemblies were searched
against the UniProtKB/Swiss-Prot database using BLASTX, and the results containing the significant hits (e value < 10^{-5}) were loaded to the pipeline. The GO terms for each blast hit were extracted from the local B2G MySQL database and assigned to each transcript. After refinement of the annotation results by GO-Slim function, the plot of transcripts GO classifications was constructed using Web Gene Ontology Annotation Plot (WEGO) software (Ye et al. 2006).

Correlation Analysis of Transcripts’ Expression Levels
The Pearson’s correlation coefficient was computed for the expression levels of conopeptides and gene superfamilies among specimens of either C. tribblei or C. lenavati using “TMM-normalized FPKM” and “sum TMM-norm FPKM” values, respectively. In order to validate the correlation in the expression patterns of conopeptide superfamilies between C. tribblei and C. lenavati, the expression levels of conopeptide superfamilies, mean TMM-normalized FPKM, were used for the Pearson’s correlation coefficient test. Additionally, to confirm the correlation of expression levels of the orthologous conopeptide genes between C. tribblei and C. lenavati, the mean expression level of each orthologous conopeptide was computed among specimens of each species, and these values were used for the correlation test. In all the correlation analyses, the expression level values were transformed to logarithmic scale (log2), and the significance levels were calculated using Bonferroni correction.

Results

Taxonomic Identification of the Specimens and Their Phylogenetic Relationships
The phylogenetic reconstruction of the relationship of COI sequences of members of the subgenus Splinococonus (Puillandre et al. 2014) (supplementary table S1, Supplementary Material online) showed that C. tribblei, Conus queenslandis, Conus roseorapum, and C. lenavati clustered together in a clade (fig. 1). Specifically, C. tribblei and C. lenavati formed two distinct branches of this clade whereas all the specimens of each species were grouped together.

Transcriptome Sequencing and Assembly
The mRNA sequencing of C. tribblei specimens generated 29,138,176 (trib1), 23,917,406 (trib3), and 29,916,262 (trib21) good quality PE reads, whereas the mRNA sequencing of C. lenavati specimens generated 32,335,757 (lena1), 28,637,629 (lena2), and 33,027,986 (lena3) good quality PE reads. The pooled reads of three C. tribblei specimens (82,971,844 PE reads) and three specimens of C. lenavati (94,001,372 PE reads) with the average size of 81 bp were de novo assembled using Trinity into “tribblei reference assembly” and “lenavati reference assembly,” respectively.

The tribblei reference assembly contained 327,700 transcripts with an average length of 489 bp, whereas 298,481 transcripts with an average length of 476 bp were identified in the lenavati reference assembly (supplementary table S2a, Supplementary Material online). The size of the assembled transcriptome was 160.27 Mb in C. tribblei and 142.14 Mb in C. lenavati. The N50 of the transcripts was 567 bp in the tribblei reference assembly and 547 bp in the lenavati reference assembly. Around 64% of the transcripts in both assemblies were 201–400 bp long and the length of 23–24% of the transcripts was 401–800 bp (supplementary table S2b, Supplementary Material online). However, the maximum transcript length was 21,724 and 16,659 bp in the tribblei and lenavati reference assemblies, respectively.

Conopeptide Diversity
A total of 100 unique putative conopeptide precursors belonging to 39 gene superfamilies were identified in the tribblei conopeptide data set whereas the lenavati conopeptide data set contained 132 novel putative conopeptide precursors that were classified into 40 gene superfamilies (fig. 2a). A total of 55 conopeptides in the tribblei conopeptide data set were previously discovered in C. tribblei (accession GCJM00000000 in DDBJ/EMBL/GenBank; Barghi et al. 2015), whereas the rest of the identified conopeptides were new. The majority of the identified conopeptides was classified into the known gene superfamilies (fig. 2a). Moreover, some new conopeptide groups indentified in recent transcriptome studies of the Conus venom duct were also discovered (fig. 2a); several sequences of the tribblei and lenavati conopeptide data sets showed high similarity to SF-mi2 and SF-mi4 in Conus miles (Jin et al. 2013), R, W, and Y2 in Conus marmoreus (Lavergne et al. 2013), U superfamily in Conus victoriae (Robinson et al. 2014), and A-like, G-like, N-like, Y2-like, and SF-01 groups in C. tribblei (Barghi et al. 2015) (supplementary fig. S1, Supplementary Material online). In addition, conopeptides with signal region PID values below the threshold for any conopeptide gene superfamily were classified into conopeptide groups SF-02 to SF-06 (fig. 3). Furthermore, seven putative conopeptides in the tribblei conopeptide data set and five conopeptides in the lenavati conopeptide data set showed similarity to the “divergent” superfamilies: Divergent MKFPLLFLSL, divergent M---L-LTVA, divergent MSTLGMLTL-, and divergent MSKLVLAVL (fig. 2a). Divergent superfamilies refer to the conopeptides identified in early divergent species, Conus californicus and Conus distans. The conopeptide sequences identified in C. tribblei and C. lenavati are shown in supplementary figure S1, Supplementary Material online.

In both species, roughly half of the identified conopeptide precursors belonged to few superfamilies, and the most prominent superfamilies in both species were the con-ikot-ikot family and the M- and O1-, and O2-superfamilies (fig. 2a). Although the majority of gene superfamilies was represented...
by more than one conopeptide, 19 and 16 superfamilies had only one sequence in the tribblei and lenavati conopeptide data sets, respectively. A total of 32 conopeptide gene superfamilies and groups were represented in both species. However, a few superfamilies such as the D-, J-, K- and Y2-superfamilies, the “divergent MSKLVILAVL” and “divergent MSTLGMTLL-” superfamilies, and the N-like group were only found in C. tribblei, whereas the T-, A-, E- and C-superfamilies, SF-05, SF-06, SF-mii2 and SF-mi4 groups were identified only in C. lenavati. On the other hand, the cysteine frameworks identified in the majority of conopeptide gene superfamilies were similar between the tribblei and lenavati conopeptide data sets (supplementary table S3, Supplementary Material online). However, several conopeptide superfamilies such as the O1-, O2-, L-, M-, H- and S-superfamilies, the con-ikot-ikot family, and the Y2-like and SF-04 groups exhibited some cysteine patterns that were exclusively observed in either the tribblei or lenavati conopeptide data sets.

The diversity of putative conopeptides as indicated by the number of gene superfamilies was higher in C. tribblei and C. lenavati than in other previously studied species (table 1). Subsequently, both C. tribblei and C. lenavati had Shannon’s diversity index of 3.30, higher than in other species which ranges from 1.29 (Conus bullatus) to 2.35 (C. victoriae) (table 1). Additionally, specimens of C. tribblei and C. lenavati showed Shannon’s diversity indices ranging from 3.16 to 3.30.

![Fig. 2](https://academic.oup.com/gbe/article-abstract/7/6/1797/2467063)
Expression Patterns of Conopeptide Gene Superfamilies

The expression patterns of conopeptides gene superfamilies in *C. tribblei* and *C. lenavati* were highly variable ranging from FPKM > 85,000 to < 10 (fig. 2b and supplementary table S4, Supplementary Material online). Superfamilies such as B2, O2, and P and con-ikot-ikot family were highly expressed (FPKM > 10,000) in *C. tribblei* and *C. lenavati*. Others, like M-, O1-, O3- and I2-superfamilies and G-like group also showed high expression levels (1,000 < FPKM < 10,000) in both species. Several conopeptide groups were moderately (100 < FPKM < 1,000) expressed: F-, N-, B1- and W-superfamilies, conopressin/conophysin family, and SF-02 group. On the other hand, expression levels of “Divergent M--L-LTVA”- and R-superfamilies and A-like group in *C. tribblei* and *C. lenavati* were much lower (10 < FPKM < 100). Other conopeptide superfamilies had more variable expression levels between the two species (supplementary table S4, Supplementary Material online). Both *C. tribblei* and *C. lenavati* expressed seven to eight superfamilies that were not present in the other species (fig. 2b). Although, the majority of these conopeptide groups had relatively low expression levels, the T-superfamily in *C. lenavati* was highly expressed (FPKM > 10,000).

The expression patterns of all the conopeptide superfamilies were moderately correlated between *C. tribblei* and *C. lenavati* (r = 0.608, P value < 0.001) (fig. 4), but it was apparent that a great number of superfamilies had highly

SF-02

Cln_SF2-1	HLPFTTVVWLMHMIITDFQGTYCTNTKPSCEDEDLRGKNNWQCNVALCKCPQQAACTTDTHYQVQKRP
Cln_SF2-1	HLPFTTVVWLMHMIITDFQGTYCTNTKPSCEDEDLRGKNNWQCNVALCKCPQQAACTTDTHYQVQKRP
Ctr_SF2-1	FQVTFTTYCKVNTMSDQCNAKAMSQTSTYKIM-KCDTYPSPATNWKFG
Ctr_SF2-1	FQVTFTTYCKVNTMSDQCNAKAMSQTSTYKIM-KCDTYPSPATNWKFG

SF-03

| Cln_SF3-1 | HEALTIFFRL-LLVALTSVVVSAAPLDRVQDGECPTVGGGRNPFFLCHRACLTTSTPYCEIYKCHCPYCRGAIYCHS |
| Cln_SF3-1 | HEALTIFFRL-LLVALTSVVVSAAPLDRVQDGECPTVGGGRNPFFLCHRACLTTSTPYCEIYKCHCPYCRGAIYCHS |

SF-04

Ctr_SF4-2	-------VLALTSAALYQGRATQGRCKTVRMSNNLNIKRECPYCPVCMDGECCDGIVYCS---QOERVVYCGGCGGGE
Ctr_SF4-2	-------VLALTSAALYQGRATQGRCKTVRMSNNLNIKRECPYCPVCMDGECCDGIVYCS---QOERVVYCGGCGGGE
Ctr_SF4-2	HNIQIQLLLVLTSTTTLAYDPRKTRRGGGSIKTTLLNLSRDRSTGCPVCPEKHTRCCSGISCTYFTGYGGTTCSGGG
Ctr_SF4-2	HNIQIQLLLVLTSTTTLAYDPRKTRRGGGSIKTTLLNLSRDRSTGCPVCPEKHTRCCSGISCTYFTGYGGTTCSGGG
Ctr_SF4-2	------TIAALYQGRTAQDDGMRDMSLNIKRECPSCPDVATCNPMECCDDGCYSSALRFPCTGCGSGGE

SF-05

P01619	------GGLGRCIYCGSNGGGLSFQCTMCY
P02828	------GGLGRCIYCGSNGGGLSFQCTMCY
Cln_SF5-1	MGHKVALIVLVLVMATTSSLAPFQFSEAETSVGQNGGQGQGCHDSCNGGGLSFQCTMCY

SF-06

| Cln_SF6-1 | VLLCSSAMTMTATIAEQYCPIAQGCTCTFGSDLGGkeesGSCPNCNCRERMCSRDSHTITVVRFRPPVEEYRTCTVALSGLECSNQKALDLOVRENLNEVHMKCSPKIVGMYLKGYFGTYESR |

FIG. 3.—The putative conopeptide precursors of new conopeptide groups. The conopeptides identified in *C. tribblei* and *C. lenavati* are shown in black. The name of each conopeptide is presented as Ctr/Cln.$\#$: Ctr, *C. tribblei*; Cln, *C. lenavati*; $\#$, superfamily (the abbreviations are indicated in fig. 2); #, arbitrary assigned number. The reference sequences are shown in green, and cysteine residues are shown in bold italic red. The signal regions are highlighted, and the mature regions are underlined. The reference sequences are Ctr_130_T, Ctr_131_T (Barghi et al. 2015), P01619, and P02828 (ConoServer database).
correlated expression (32 shared superfamilies, \(r = 0.820, \) \(P \) value < 0.001). Although the expression patterns of majority of these superfamilies were apparently conserved, another subset consisting of the S-, H-, and U-superfamilies, and the conkunitzin family had very different expression levels in \(C. \) tribblei and \(C. \) lenavati (fig. 4 and supplementary table S4, Supplementary Material online). There is moderate correlation between the abundance and expression of different conopeptide gene superfamilies in \(C. \) tribblei (\(r = 0.602, \) \(P \) value < 0.001) and \(C. \) lenavati (\(r = 0.597, \) \(P \) value < 0.001) (supplementary fig. S2, Supplementary Material online).

Interspecific Genetic Divergence of Conopeptide Superfamilies

Although, the total number of identified conopeptides in the lenavati conopeptide data set (132) was higher than in the tribblei conopeptide data set (100), the number of superfamilies in both species was similar (39–40 superfamilies). More than half of the conopeptides of the superfamilies shared in \(C. \) tribblei and \(C. \) lenavati had PID > 81%, and these sequences were distributed across all gene superfamilies (except for H-, S-, and F-superfamilies) (fig. 5). Additionally, 12.02% (12 superfamilies) and 8.65% (11 superfamilies) of conopeptides in \(C. \) tribblei and \(C. \) lenavati showed 61–80% and 41–60% PID, respectively. Interestingly, a large portion (19.71%) of conopeptides belonging to 12 gene superfamilies had only 21–40% PID. 2.88% of the conopeptides exhibited PID < 20%, whereas the minimum sequence identity was 10%.

Table 1

Species	Richness (S)	No. of Conopeptides	Shannon’s Diversity Index	Evenness (E)	Sequencing Platform	References
Conus bullatus	6	30	1.29	0.72	Roche 454	Hu et al. 2011
Conus geographus	16	63	2.30	0.83	Roche 454	Hu et al. 2012
Conus pulicarius	14	82	2.02	0.77	Roche 454	Luism et al. 2012
Conus consors	11	61	2.04	0.85	Roche 454	Terrat et al. 2012
Conus marmoreus	26	263	2.17	0.67	Roche 454	Dutertre et al. 2013;
						Lavergne et al. 2013
Conus victoriae	20	117	2.35	0.78	Roche 454	Robinson et al. 2014
Conus tribblei	36	136	3.13	0.87	Roche 454, Illumina	Barghi et al. 2015
Conus tribblei	39	100	3.30	0.90	Illumina	This study
Conus lenavati	40	132	3.30	0.89	Illumina	This study

NOTE.—Richness (S) is the number of identified conopeptide gene superfamilies.

*The number of conopeptides of \(C. \) tribblei and \(C. \) lenavati in this study is the total nonredundant conopeptides identified in three specimens for each species.

Table 2

Species	Specimen	Richness (S)	No. of Conopeptides	Shannon’s Diversity Index	Evenness (E)
\(C. \) tribblei	trib1	36	87	3.23	0.90
	trib3	36	85	3.23	0.90
	trib21	38	89	3.32	0.91
\(C. \) lenavati	lena1	31	71	3.19	0.93
	lena2	31	71	3.16	0.92
	lena3	40	125	3.30	0.90

Divergence of Orthologous Conopeptide Genes

A total of 67 pairs of orthologous conopeptide genes belonging to 31 conopeptide gene superfamilies and groups were identified in \(C. \) tribblei and \(C. \) lenavati (supplementary table S5, Supplementary Material online). More than half of the orthologous gene pairs (37 pairs) had \(d_N > d_S > 1, \) whereas nine gene pairs showed \(d_N > d_S > 1. \) Interestingly, 21 orthologous gene pairs exhibited identical mature regions. Although 15 of these identical orthologs also contained identical signal and pre regions (\(d_N = d_S = 0), \) six gene pairs had 1–10 amino acid differences in the prepro regions.

The conopeptides with identical mature regions belonged to 14 superfamilies (B1-, N-, O1-, O2-, P-, W- and Y-superfamilies, “divergent MKFPLLFSI” superfamily, con-ikot-ikot and conopressin/conophysin families, and A-like, Y2-like, SF-02 and SF-04 groups) (fig. 6). The expression levels of all orthologous conopeptide gene pairs in \(C. \) tribblei and \(C. \) lenavati were moderately correlated (\(r = 0.640, \) \(P \) value < 0.001, data not shown), and the correlation of the expression of identical orthologous conopeptide genes was slightly lower.
Notably, the expressions of three outliers (conopeptides of O1- and O2- and P-superfamilies) (fig. 6a) in the correlation test of identical orthologs were highly divergent that upon their exclusion, the correlation increased to $r = 0.924$ ($P < 0.001$). The expression of orthologs having higher rate of d_s to d_N was moderately though not significantly correlated ($r = 0.749$, $P = 0.02$) (fig. 6b), whereas the expression of orthologous pairs under positive selection showed weak correlation ($r = 0.585$, $P < 0.001$) (fig. 6c).

Intraspecific Patterns of Conopeptide Expression

Most (75) of the identified conopeptide precursors in *C. tribblei* were found in all specimens, but some sequences were observed in either one or two individuals only (fig. 7a and supplementary table S6, Supplementary Material online). Similarly, although 34 superfamilies were identified in all specimens of *C. tribblei*, a few superfamilies were expressed in only one or two individuals (fig. 7a and supplementary table S6, Supplementary Material online). Interestingly, only less than half of the identified conopeptides in lenavati conopeptide data set were expressed in all three specimens (fig. 7b and supplementary table S6, Supplementary Material online). Specimen lena3 expressed 54 more conopeptides than the other two individuals (fig. 7b and supplementary table S6, Supplementary Material online). In addition, although 29 superfamilies were identified in all three individuals of *C. lenavati*, 7 superfamilies including A, C, I3, S and SF-05, SF-mi2, and SF-mi4 groups were expressed only in specimen lena3. Moreover, the number of orthologous conopeptide genes with identical mature regions among the individuals of *C. tribblei* and *C. lenavati* varied from 12 to 16 (fig. 7c).

The expression patterns of conopeptides among the specimens of *C. tribblei* were moderately correlated, whereas a higher correlation in the conopeptide expression was observed among the *C. lenavati* specimens (table 3). In addition, the expression levels of conopeptide gene superfamilies were highly correlated among individuals of *C. tribblei* as well as among specimens of *C. lenavati* (table 3). Despite the high correlation, the levels of expression of each conopeptide (and also each superfamily) were not the same among the specimens of each species (supplementary table S4, Supplementary Material online).

The similarity of the expression patterns of conopeptides across individuals of each species was evaluated using the ten most highly expressed conopeptides as reference (supplementary tables S7 and S8, Supplementary Material online). It was found that of the ten most highly expressed conopeptides in each specimen of *C. tribblei*, seven conopeptides were common among all individuals whereas other highly expressed conopeptides were observed in one or two specimens only (fig. 8a). Likewise, six of the ten most highly expressed conopeptides in each *C. lenavati* individual were similar in all
three individuals whereas the other most highly expressed conopeptides were different among specimens of *C. lenavati* (fig. 8b). The presence of a combination of highly expressed conopeptides that are common in all individuals and other conopeptides which are highly expressed in one or two specimens resulted in a distinct set of highly expressed conopeptides in each individual (fig. 8 and supplementary tables S7 and S8, Supplementary Material online). The majority of the highly expressed conopeptides in both species belonged to superfamilies and groups (O1, O2, B2, P, con-ikut-ikut, and G-like) with high expression levels (fig. 2b). Notably, conopeptides of several superfamilies such as O3, M, T, and U were among the highly expressed conopeptide in individuals of *C. lenavati* but not in *C. tribblei* (fig. 8 and supplementary tables S7 and S8, Supplementary Material online). Similarly, one H-superfamily conopeptide was highly expressed only in the individuals of *C. tribblei*. Interestingly, six of the ten highly expressed conopeptides in the individuals of *C. tribblei* and *C. lenavati* were orthologous conopeptide pairs identified between these species (fig. 8).

Functional Analysis of Transcriptomes

In addition to the conopeptides, a total of 41,875 and 39,516 transcripts in the *tribblei* and *lenavati* reference assemblies, respectively, exhibited high similarity to the proteins in the UniProtKB/Swiss-Prot database. Gene ontology terms were assigned to 34,876 transcripts in *C. tribblei*, and also to 32,778 transcripts in *C. lenavati* data sets. In both species, transcripts having binding and catalytic activities comprised a high percentage of the GO terms in the molecular function category, whereas cellular and metabolic processes and biological regulation were the most prominent categories in the biological process category in *C. tribblei* and *C. lenavati* (supplementary fig. S3, Supplementary Material online). Also, cell and organelle were the most abundant terms in the cellular component category in the *tribblei* and *lenavati* data sets.

Discussion

High Diversity of Expressed Conopeptide Genes

The venom of *C. tribblei* and *C. lenavati* had the highest number of conopeptide gene superfamilies and the most diverse venom complement observed in any *Conus* species thus far. Moreover, the conopeptide diversity even in the individuals of *C. tribblei* and *C. lenavati* was higher than in other *Conus* species indicating that the high conopeptide diversity and the venom complexity were consistent across the specimens. These observations also suggest that although using
A pooled sample of several individuals in the transcriptome studies may increase the total number of identified conopeptides, it may not significantly affect the inferred diversity of the conopeptide superfamilies. The diversity of the conopeptide genes in cone snails reflects dietary specialization and prey types (Duda and Palumbi 2004; Duda et al. 2009); species with more exclusive prey types produce less diverse conopeptides (Remigio and Duda 2008). The remarkably high diversity of conopeptide gene superfamilies in *C. tribblei* and *C. lenavati* may thus indicate a relatively wide range of prey targets for these closely related species. In addition, identification of divergent superfamilies that have only been reported for the generalist feeder *C. californicus* (Elliger et al. 2011) is consistent with the hypothesis that the high diversity of conopeptides in *C. tribblei* and *C. lenavati* may be an adaptation to a wide taxonomic prey field. The conopeptide diversity in *C. tribblei*, *C. lenavati*, and other *Conus* species is compared in table 1; Although these estimates may to some degree be
subject to inaccuracies (owing to such factors as sequencing platforms and bioinformatics tools used), the data clearly indicate the relatively high diversity of conopeptides in *C. tribblei* and *C. lenavati*. The conopeptide gene superfamilies expressed in *C. tribblei* and also in *C. lenavati* had variable frequencies (fig. 2a). Similar observations were previously reported (Hu et al. 2011, 2012; Lluisma et al. 2012; Terrat et al. 2012; Dutertre et al. 2013; Lavergne et al. 2013; Robinson et al. 2014; Barghi et al. 2015). Surprisingly, the computed Shannon’s evenness indices did not reflect such variability (tables 1 and 2). This incongruence may have arisen because except for a few predominant superfamilies, 19 and 16 conopeptide groups in *C. tribblei* and *C. lenavati*, respectively, were each represented by only one sequence. Hence, despite the high diversity of gene superfamilies, the frequencies of most of the conopeptide superfamilies were similar.

Patterns of Sequence Divergence in Conopeptide Superfamilies

The members of different conopeptide gene superfamilies have diverged differently after separation of closely related species *C. tribblei* and *C. lenavati* so that several divergence patterns have emerged (fig. 5). At one end, the divergence of...
Table 3
Correlation of the Expression Levels of Conopeptides and Gene Superfamilies among Specimens of Conus tribblei and Conus lenavati

Conus tribblei	trib1	trib3	trib21
trib1	1	0.751	0.644
trib3	0.884	1	0.682
trib21	0.835	0.833	1

Conus lenavati	lena1	lena2	lena3
lena1	1	0.913	0.798
lena2	0.936	1	0.824
lena3	0.858	0.883	1

Note.—The Pearson’s correlation coefficient for the conopeptides is shown in the cells above the diagonal and for the gene superfamilies below the diagonal. For all the correlation coefficients (r), the P value is less than 0.001.

Conserved and Species-Specific Expression Patterns of Conopeptide Genes

In both C. tribblei and C. lenavati, the expressions of different gene superfamilies had order-of-magnitude differences. Although half of the venom transcriptome consisted of transcripts from few highly expressed superfamilies, the majority of the conopeptide groups had moderate to low expression levels. Similarly, high variations in the expression patterns of different superfamilies have been observed in other species of Conus (Hu et al. 2011, 2012; Terrat et al. 2012; Dutertre et al. 2013; Robinson et al. 2014). High correlation (r = 0.938) between the frequency and the expression level of conopeptide superfamilies in C. marmoratus was observed (Dutertre et al. 2013). On the contrary, the frequency and the expression of different superfamilies in C. tribblei and C. lenavati were only moderately correlated (supplementary fig. S2, Supplementary Material online). This is because although O2-superfamily and con-ikot-ikot family were predominant components of the venom in terms of both the number of conopeptides and also the expression levels, other superfamilies such as P and B2 had extremely high expression levels despite containing only 1–4 conopeptides.

Comparison of the expression levels of conopeptide gene superfamilies between the two species revealed the presence of both conserved and species-specific expression patterns. The expression levels of superfamilies common in both species were highly correlated whereas several conopeptide superfamilies appeared to be species-specific and are only expressed in either C. lenavati or C. tribblei. The complement of gene superfamilies identified in each C. tribblei specimen was a relatively robust representative of the superfamilies characteristically expressed in this species. Of the 36 gene superfamilies identified in the transcriptome analysis of the pooled mRNA from the venom ducts of 20 C. tribblei specimens (Barghi et al. 2015), 32 were identified in all the three individuals of C. tribblei in this study, and 3 gene superfamilies were expressed in either 1 or 2 specimens. Moreover, none of the species-specific superfamilies of C. lenavati (T, A, C, E, SF-05, SF-06, SF-mi2, and SF-mi4) was identified in the pooled sample transcriptome of C. tribblei (Barghi et al. 2015). Whether similar observation is relevant for C. lenavati requires an analysis of the transcriptome of a pooled sample of C. lenavati. The conopeptides identified in this transcriptome analysis represent the genes expressed at a specific time and in a specific developmental stage of the organism. The sequencing depth in this study has allowed detection of a wide range of expression level (10–85,000 FPKM). Hence, if some conopeptides were not detected in this study, they must have been expressed at extremely low level. Furthermore, some conopeptide genes might be present in the genome but not expressed in the specific individuals sequenced in this study.

In general, the diet of each worm-hunting cone snail is dominated by a different polychaete, and even Conus species coexisting in a habitat specialize on different prey types (Kohn 2001). The distribution of these species in the Philippines is not well documented, but both species used in this study were collected in deep waters at the same location in Eastern Cebu, Sogod. Conus tribblei was collected at lower depth (100 m) than C. lenavati which is usually found at the depth of 130 m. Hence the evolution of species-specific expression patterns in C. tribblei and C. lenavati may indicate their divergence in range of conopeptide targets (prey, predators, or competitors) in their habitat.

Divergent Expression of Orthologous Conopeptide Genes

The expression pattern of identical (hence, orthologous) conopeptide genes in C. tribblei and C. lenavati reveals strong conservation of regulatory modes in the two species, although instances of divergence were noted (fig. 6a). On the other hand, the conopeptides under positive selection showed greater dissimilarity in expression in C. tribblei and C. lenavati and showed only slight correlation (fig. 6c). It appears that the conservation of sequence in the orthologous conopeptides of C. tribblei and C. lenavati is correlated with conservation of expression pattern. Our results elucidated that even among...
FIG. 8.—The ten most highly expressed conopeptides among the individuals of (a) *C. tribblei* and (b) *C. lenavati*. The thickness of ribbons corresponds to the expression level of conopeptides. The nomenclature of the conopeptide names is noted in figure 3, and the abbreviations of superfamily names are noted in figure 2. The conopeptides that are present in the highly expressed conopeptides of only one or two individuals are marked with red asterisks. The figures were constructed using Circos (Krzywinski et al. 2009). The orthologous conopeptide pairs are: B2-1, GL-1, P-2, Ikot-10, Ikot-11, Ikot-8 (*C. tribblei*), and Ikot-9 (*C. lenavati*).
the orthologous conopeptide pairs, the divergence in pattern of expression can contribute to differences and uniqueness of venom composition in each species.

This study discovered a large number of orthologous conopeptide pairs (a total of 67) belonging to a wide range (31) of gene superfamilies in C. tribblei and C. lenavati. Duda and Remigio (2008) identified 12 sets of orthologous O1-superfamily genes among closely related worm-hunting Conus species. No orthologous pair was identified between recently diverged sister species C. abbreviatus and Conus aristophanes, eight pairs were identified in C. abbreviatus and C. miliaris which is separated from the lineage of C. abbreviatus and C. aristophanes (Duda and Remigio 2008). Additionally, few orthologs of A-superfamily genes were expressed in four closely related worm-hunting species (Chang and Duda 2012, 2014). Identification of very few orthologous conopeptide genes in the previous studies (Duda and Remigio 2008; Chang and Duda 2012, 2014) could be partly explained by the fact that only 1–2 conopeptide gene superfamilies were investigated. It must also be mentioned that because the previous studies (Duda and Remigio 2008; Chang and Duda 2014) used the traditional cDNA library method, the accuracy of the measurement of gene expression could have been limited, and some conopeptides with low expression levels could not have been detected.

Intraspecific Variation of Conopeptide Expression

The intraspecific variation of the number of conopeptides among the specimens of C. tribblei was low. This observation may be due to the similar size of C. tribblei individuals (~6 cm), which implies their similar developmental stage. A more pronounced intraspecific variation was observed among the specimens of C. lenavati mainly because of the expression of significantly higher number of conopeptides and the exclusive expression of several superfamilies in one specimen, lena3. This specimen (shell length 5 cm) was smaller than the other two specimens (8 cm) which may indicate an earlier developmental stage. Ontogenic changes in the expression of conopeptides have been previously documented in Conus (Safavi-Hemarni et al. 2011). However, further analysis of the conopeptide expression in individuals of different developmental stages is needed to corroborate our results. The observed correlation of the conopeptide expression patterns among individuals of C. tribblei and of C. lenavati (table 3) indicates species-characteristic mechanism for regulating conopeptide expression, but the observed quantitative differences in levels of gene expression (supplementary table S4, Supplementary Material online) and specimen-specific set of highly expressed conopeptides (fig. 8) suggest that the expression levels of a subset of conopeptides can also be independently regulated by individual snails. All the previous studies describing intraspecific variation in Conus only studied the peptide masses in the venom (Jakubowski et al. 2005; Davis et al. 2009; Dutertre et al. 2010; Chun et al. 2012). Despite the variability in the peptide masses among individuals, the venom profile of the individuals for each species remains consistent (Jakubowski et al. 2005; Dutertre et al. 2010), and even the predominant peptides remain the same over time (Chun et al. 2012). These observations suggest that each species apparently evolves species-specific regulatory mechanisms for its venom peptides.

Evolution of Conus Exogenomes

Identification of positive selection in the conopeptide orthologs and the presence of several divergence patterns among the conopeptide superfamilies specifically those exhibiting very high divergence between C. tribblei and C. lenavati (fig. 5) provide further evidence that multiple molecular mechanisms synergistically act to cause differentiation of venom composition between species and drive the evolution of Conus exogenome. These extend previous observations on the molecular evolution and extremely high diversification rate of conopeptides through gene duplication and positive selection in piscivorous and vermivorous species (Duda and Palumbi 2000; Duda 2008; Duda and Remigio 2008; Puillandre et al. 2010; Chang and Duda 2012, 2014). The role of altered gene expression in evolution has been demonstrated, for example in morphological and behavioral changes in mammals (Enard et al. 2002). Divergence of gene expression and the protein sequence divergence both contribute to the adaptive evolution (Nuzhdin et al. 2004; Lemos et al. 2005; Khaitovich et al. 2006). Modifications of the expression level of toxin transcripts together with the diversity of isoforms in each toxin family were shown to account for the differentiation of the venom affecting prey specificity in species of vipers (Casewell et al. 2009). In this study, we showed that divergence in the control of conopeptide expression is another factor that may contribute to the differentiation of Conus venom composition. The divergent expression patterns of positively selected conopeptide orthologs in C. tribblei and C. lenavati (fig. 6) and the species-specific expression patterns of some superfamilies (figs. 2b and 4) contribute to the presence of unique venom complement in these species. Our results identified the divergence in the conopeptide expression as an important adaptation strategy in these two species; further studies will be necessary to uncover the molecular mechanisms of conotoxin gene regulation and exogenome evolution in Conus.

Conclusion

The results of this study highlight the role of sequence divergence, positive selection, and selective changes in the patterns of gene expression in the generation of conopeptide diversity and modification of venom composition over evolutionary time, and how these processes reflect the evolution of Conus exogenomes. These genome-level processes are among the factors that underlie the capacity of Conus species.
to exploit their taxonomic prey field or adapt to changing biotic conditions (e.g., changes in prey availability, or type of predators or competitors in their environment). However, other related processes (e.g., gene duplication, hypermutation, recombination, or chromosome-level mutations) are likely to play a significant role in this evolutionary process. To obtain deeper insights into the evolution of Conus exogenomes, it will be important to investigate how the processes described in this study and those related processes interact.

Supplementary Material

Supplementary figures S1–S3 and tables S1–S8 are available at *Genome Biology and Evolution* online (http://www.gbe.oxfordjournals.org/).

Acknowledgments

The specimens used in this study were obtained in conjunction with a collection trip supported in part by ICBG grant #1U01TW008163. This study was supported by the Emerging Interdisciplinary Research Program of the University of the Philippines System through the Philippine Genome Center to AOL. The data analysis was carried out using the High-Performance Computing Facility of the Advanced Science and Technology Institute and the Philippine e-Science Grid, Diliman, Quezon City. The authors thank Noel Sagui for the help in sample collection and Alexander Fedosov for the help in the phylogenetic analysis.

Literature Cited

Abdel-Rahman MA, Omran MAA, Abdel-Nabi IM, Ueda H, McVean A. 2009. Intraspecific variation in the Egyptian scorpion *Scorpio marcus palmatus* venom collected from different biotopes. *Toxicon* 53:349–359.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. *J Mol Biol.* 215:403–410.

Barghi N, Concepcion GP, Olivera BM, LLuisma AO. 2015. High conopeptide diversity in *Conus tribulus* revealed through analysis of venom duct transcriptome using two high-throughput sequencing platforms. *Mar Biotechnol.* 17:81–98.

Barlow A, Pook CE, Harrison RA, Wüster W. 2009. Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. *Proc R Soc Lond B Biol Sci.* 276:2434–2449.

Campanella JJ, Bitincka L, Smalley J. 2003. *MatGAT*: an application that generates similarity/identity matrices using protein or DNA sequences. *BMC Bioinformatics* 4:29.

Casewell NR, Harrison RA, Wüster W, Wagstaff SC. 2009. Comparative venom gland transcriptome surveys of the saw-scaled vipers (*Viperidae: Echis*) reveal substantial intra-family gene diversity and novel venom transcripts. *BM C Genomics* 10:564.

Chang D, Duda TF. 2012. Extensive and continuous duplication facilitates rapid evolution and diversification of gene families. *Mol Biol Evol.* 29:2019–2029.

Chang D, Duda TF. 2014. Application of community phylogenetic approaches to understand gene expression: differential exploration of venom gene space in predatory marine gastropods. *Mol Biol Evol.* 14:123.

Chun JBS, et al. 2012. Cone snail milked venom dynamics—a quantitative study of *Conus purpurascens*. *Toxicon* 60:83–94.

Conticello SG, et al. 2001. Mechanisms for evolving hypervariability: the case of conopeptides. *Mol Biol Evol.* 18:120–131.

Daltry JC, Wüster W, Thorpe RS. 1998. Intraspecific variation in the feeding ecology of the crotaline snake *Calloselasma rhodostoma* in Southeast Asia. *J Herpetol.* 32:198–205.

Davis J, Jones A, Lewis RJ. 2009. Remarkable inter- and intra-species complexity of conotoxins revealed by LC/MS. *Peptides* 30:1222–1227.

Duda TF. 2008. Differentiation of venoms of predatory marine gastropods: divergence of orthologous toxin genes of closely related Conus species with different dietary specializations. *J Mol Evol.* 67:315–321.

Duda TF, Chang D, Lewis B, Lee T. 2009. Geographic variation in venom allelic composition and diets of the widespread predatory marine gastropod *Conus ebrinus*. *PLoS* One 4(7):e6245.

Duda TF, Palumbi SR. 2000. Evolutionary diversification of multigene families: allelic selection of toxins in predatory cone snails. *Mol Biol Evol.* 17:1286–1293.

Duda TF, Palumbi SR. 2004. Gene expression and feeding ecology: evolution of piscivory in the venomous gastropod genus *Conus*. *Proc R Soc Lond B Biol Sci.* 271:1165–1174.

Duda TF, Remigio EA. 2008. Variation and evolution of toxin gene expression patterns of six closely related venomous marine snails. *Mol Ecol.* 17:3018–3032.

Dutertre S, Bias D, Stöcklin R, Favreau P. 2010. Dramatic intraspecimen variations within the injected venom of Conus consors: an unsuspected contribution to venom diversity. *Toxicon* 55:1453–1462.

Dutertre S, et al. 2013. Deep venomics reveals the mechanism for expanded peptide diversity in cone snail venom. *Mol Cell Proteomics.* 12:312–329.

Elliger CA, et al. 2011. Diversity of conotoxin types from *Conus californicus* reflects a diversity of prey types and a novel evolutionary history. *Toxicon* 57:311–322.

Enard W, et al. 2002. Intra- and Interspecific variation in primate gene expression patterns. *Science* 296:340–343.

Espiritu DJ, et al. 2001. Venomous cone snails: molecular phylogeny and the generation of toxin diversity. *Toxicon* 39:1899–1916.

Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome *c* oxidase subunit I from diverse metazoon invertebrates. *Mol Mar Biol Biotechnol.* 3:294–299.

Gibbs AL, Sanz L, Sovic MG, Calvette JJ. 2013. Phylogeny-based comparative analysis of venom proteome variation in a clade of rattlesnakes (*Sistrurus* sp.) *PLoS* One 8:e67220.

Götzt S, et al. 2008. High-throughput functional annotation and data mining with the Blast2GO suite. *Nucleic Acids Res.* 36:3420–3435.

Grabherr MG, et al. 2011. Full-length transcriptome assembly from RNA-seq data without a reference genome. *Nat Biotechnol.* 29:644–654.

Haas BJ, et al. 2013. *De novo* transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. *Nat Protocols.* 8:1494–1512.

Hall TA. 1999. *BioEdit*, a user-friendly biological sequence alignment editor and analysis program for Windows 95, 98, NT. *Nucleic Acids Symp Ser.* 41:95–98.

Hebert PDN, Cywinska A, Ball SL, deWaal JR. 2003. Biological identifications through DNA barcodes. *Proc R Soc Lond B.* 270:313–321.

Hu H, Bandypadhyay PK, Olivera BM, Yandell M. 2011. Characterization of the *Conus bullatus* bullatoxin genome and its venom-duct transcriptome. *BM C Genomics* 12:60.

Hu H, Bandypadhyay PK, Olivera BM, Yandell M. 2012. Elucidation of the molecular envenomation strategy of the cone snail *Conus geographus*
through transcriptome sequencing of its venom duct. BMC Genomics
13:284.
Jakubowski JA, Kelley WP, Sweeeder JV, Gilly WF Schulz JR. 2005.
Intraspecific variation of venom injected by fish-hunting Conus
snails. J Exp Biol. 208:2873–2883.
Jin A, et al. 2013. Transcriptomic messiness in the venom duct of Conus
miles contributes to conotoxin diversity. Mol Proteomics.
12(12):3824–3833.
KaaS Q, Westermann J, Craik DJ. 2010. Conopeptide characterization and
classifications: an analysis using ConoServer. Toxicon 55:1491–1509.
KaaS Q, Yu R, Jin A, Dutertre S, Craik DJ. 2012. ConoServer: updated
content, knowledge, and discovery tools in the conopeptide database.
Nucleic Acids Res. 40:D325–D330.
Khaitovich P, Enard W, Lachmann M, Pa¨ a¨ bo S. 2006. Evolution of primate
gene expression. Nat Rev Genet. 7:693–702.
Kohn AJ. 2001. Maximal species richness in Conus: diversity, diet and habitat
on reefs of northeast Papua New Guinea. Coral Reefs 20:25–38.
Krzyniowski Ml, et al. 2009. Circos: an information aesthetic for compara-
tive genomics. Genome Res. 19:1639–1645.
Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie
2. Nat Methods. 9:357–360.
Larkin MA, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics
23:2947–2948.
Lavergne V, et al. 2013. Systematic interrogation of the Conus marmoreus
venom duct transcriptome with ConoSorter reveals 158 novel cono-
peptides and 13 new gene superfamilies. BMC Genomics 14:708.
Lemos B, Bettencourt BR, Meiklejohn CD, Hartl DL. 2005. Evolution of pro-
teins and gene expression levels are coupled in
ordered sequence with or without a reference genome. Bioinformatics 12:323.
Lluisma AO, Milash BA, Lachmann M, Páabo S. 2006. Evolution of primate
gene expression. Nat Rev Genet. 7:693–702.
Kohn AJ. 2001. Maximal species richness in Conus: diversity, diet and habitat
on reefs of northeast Papua New Guinea. Coral Reefs 20:25–38.
Krzyniowski Ml, et al. 2009. Circos: an information aesthetic for compara-
tive genomics. Genome Res. 19:1639–1645.
Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie
2. Nat Methods. 9:357–360.
Larkin MA, et al. 2007. Clustal W and Clustal X version 2.0. Bioinformatics
23:2947–2948.
Lavergne V, et al. 2013. Systematic interrogation of the Conus marmoreus
venom duct transcriptome with ConoSorter reveals 158 novel cono-
peptides and 13 new gene superfamilies. BMC Genomics 14:708.
Lemos B, Bettencourt BR, Meiklejohn CD, Hartl DL. 2005. Evolution of pro-
teins and gene expression levels are coupled in Drosophila and are in-
dependently associated with mRNA abundance, protein length, and
number of protein-protein interactions. Mol Biol Evol. 22(5):1345–1354.
Li B, Dewey CN. 2011. RSEM: accurate transcript quantification from RNA-
Seq data with or without a reference genome. Bioinformatics 12:323.
Lluisma AO, Milash BA, Moore M, Olivera BM, Bandyopadhyay PK. 2012.
Novel venom peptides from the cone snail Conus pulicarius discovered
through next-generation sequencing of its venom duct transcriptome.
Mar Genomics. 5:43–51.
Menezes MC, Furtado MF, Travaglia-Cardoso SR, Camargo ACM, Serrano
SMT. 2006. Sex-based individual variation of snake venom proteome
among eighteen Bothrops jararaca snakes. Toxicon 47:304–312.
Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science
Gateway for inference of large phylogenetic trees. Proceedings of the
Gateway Computing Environments Workshop (GCE), 2010 Nov
14; New Orleans, LA. p. 1–8.
Milei I, et al. 2012. Using Tablet for visual exploration of second genera-
tion sequencing data. Brief Bioinform. 14:193–202.
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008. Mapping
and quantifying mammalian transcriptomes by RNA-seq. Nat
Methods. 5:621–628.
Nuzhdin SV, Wayne ML, Harmon Kl, McIntyre LM. 2004. Common pat-
tive genomics. Genome Res. 19:1639–1645.
Ronquist F, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic in-
terpretation: primed to kill or divergent function? J Biol Chem
286(25):22546–22557.
Tamura K, et al. 2011. MEGAS: molecular evolutionary genetics analysis
using maximum likelihood, evolutionary distance, and maximum par-
simony methods. Mol Biol Evol. 28:2731–2739.
Trott Y, et al. 2012. High-resolution picture of a venom duct
transcriptome: case study with the marine snail Conus consors.
Toxicon 59:34–46.
Trapnell C, et al. 2010. Transcript assembly and quantification by RNA-seq
reveals unannotated transcripts and isoform switching during cell dif-
fentiation. Nat Biotechnol. 28:511–515.
Tucker JK, Tenorio MJ. 2009. Systematic classification of recent and fossil
Conoidean gastropods. Hackenheim (Germany): Conchbooks.
UniProt Consortium. 2015. UniProt: a hub for protein information. Nucleic
Acids Res. 43:D204–D212.
Yang Z. 1997. PAML: a program package for phylogenetic analysis by
maximum likelihood. Comput Appl Biosci. 13:555–556.
Ye J, et al. 2006. WEGO: a web tool for plotting GO annotations. Nucleic
Acids Res. 34(Web service issue):293–297.
Associate editor: Michael Purugganan