NOTE

The paradox of endangered European rabbits regarded as pests on the Iberian Peninsula: trends in subspecies matter

Patricia H. Vaquerizas1,*, Miguel Delibes-Mateos1, Vicente Piorno2, Beatriz Arroyo3, Francisca Castro4, Rafael Villafuerte1

1Instituto de Estudios Sociales Avanzados (IESA-CSIC), 14004 Córdoba, Spain
2Parque Nacional de las Islas Atlánticas de Galicia, Consellería de Medio Ambiente, Territorio e Vivienda - Xunta de Galicia, 36202 Vigo, Spain
3Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), 13005 Ciudad Real, Spain
4Departamento de Didácticas Específicas, Universidad de Córdoba, Sociedad, Ecología y Gestión del Medio Ambiente, UCO-IESA, Unidad Asociada al CSIC, 14071 Córdoba, Spain

ABSTRACT: The European rabbit Oryctolagus cuniculus faces a paradoxical situation in its native range on the Iberian Peninsula. While many populations have declined sharply due to a new variant of the rabbit haemorrhagic disease virus (RHDV-b), others remain healthy. The latter populations, which flourish mostly on farmland, cause significant crop damage. We explored if this difference could be related to the existence of the 2 rabbit subspecies (O. c. algirus and O. c. cuniculus) that coexist allopatrically on the Iberian Peninsula. Potential differences in population trends between rabbit subspecies may also be relevant in assisting the conservation of endangered rabbit-dependent predators which mainly occur in the distribution area of O. c. algirus. To test this, we assessed rabbit trends after the outbreak of RHDV-b by an online questionnaire to the senior administrative officers of all provincial official game departments throughout peninsular Spain (n = 47). A generalized negative trend was reported by officers in the distribution area of O. c. algirus, while a more stable or even positive trend was reported in the distribution area of O. c. cuniculus. We point to the need for establishing a long-term rabbit population monitoring programme on the Iberian Peninsula to further confirm the observed patterns, but also to contribute to evidence-based management decision-making. Our results suggest a need to apply different management systems for each rabbit subspecies.

KEY WORDS: Management strategies · Oryctolagus cuniculus algirus · Oryctolagus cuniculus cuniculus · Peninsular Spain · Questionnaire survey · Rabbit haemorrhagic disease virus · RHDV-b

1. INTRODUCTION

A variety of factors such as environment, competition and disease affect the dynamics of animal populations. Closely related allopatric taxa may exhibit contrasting population trajectories if the limiting factors affect each taxonomic unit differently. Here, we explored whether the population trends of the 2 known subspecies of the European rabbit Oryctolagus cuniculus (O. c. cuniculus and O. c. algirus) on
the Iberian Peninsula (IP) differ significantly. These rabbit subspecies originated on the IP following isolation during glacial refuges in the late Pleistocene (Branco et al. 2002). The subspecies are allopatric, separated only by a narrow contact zone where both subspecies coexist (Geraldes et al. 2008) (Fig. 1). Hybrids are present at low frequencies, suggesting some degree of reproductive isolation. Diverse studies have shown significant ecological, morphological and molecular differences between the 2 subspecies (briefly reviewed by Delibes-Mateos et al. 2018b).

According to the International Union for Conservation of Nature (IUCN), the European rabbit is currently considered Endangered in its native range (Villafuerte & Delibes-Mateos 2019). This new status is underpinned by a reduction in population size of ≥50% between 2009 and 2019 (IUCN criterion A2), mainly as a consequence of the 2011, and ongoing, outbreaks of a new variant of the rabbit haemorrhagic disease virus Lagovirus europaeus/GI.1 or RHDV-b (Delibes-Mateos et al. 2014a, Monterroso et al. 2016). This reassessment may seem puzzling since the species often reaches very high numbers and is considered one of the most harmful vertebrate pests where it has been introduced, e.g. Australia (Thompson & King 1994). Despite rabbits being generally considered threatened on the IP, crop damage caused by rabbits has increased in some regions in Spain in recent years (Delibes-Mateos 2018a), with some farmers strongly opposed to classifying the rabbit as Endangered in its native range. An important farmers’ association in northern Spain claimed recently that rabbits are serious pests that threaten both crops and human health (Alba 2019).

Using questionnaires throughout all provinces in peninsular Spain, we assessed whether recorded population trends differ in areas where each rabbit subspecies is found, as well as in the contact zone between both. Our data can allow conservation and game managers to adapt their management strategies in accordance with the situation of each subspecies.

2. MATERIALS AND METHODS

We assessed rabbit trends through a questionnaire survey carried out in 2016, 5 yr after the initial outbreak of RHDV-b in Spain (Dalton et al. 2012). We distributed these surveys to the senior administrative officers of official game departments in the 47 provinces in peninsular Spain. These officials are responsible for the approval of management plans for all hunting estates under their authority. Each estate must produce a plan every 4–5 yr based on abundance estimates of game species (Ríos-Saldaña et al. 2013) and report game bag records at the end of each hunting season. In addition, in some of the provinces, rabbit population surveys are carried out by the environmental agencies of the regional governments (Piorno et al. 2020). Rabbit trends reported in this study are based on abundance information collated by provincial game officers.

We initially contacted all provincial game officers by phone or email to explain the objectives of our study. After officers agreed to participate, we sent the questionnaire by e-mail and followed up with those recipients who did not respond after a certain time. All officers (n = 47) completed the questionnaire.

The questionnaire was part of a larger project that investigated how rabbit hunting management has varied since the 1990s in relation to abundance changes (Piorno et al. 2020). In this study, we only considered the question that referred to rabbit trends between 2011 and 2016. We asked officers to rank rabbit trends in their province using a 5-point scale that ranged from marked decline (1) to marked increase (5). We then assigned each Spanish province to either of the rabbit subspecies distribution areas (Oryctolagus cuniculus cuniculus = 29 provinces; O. c. algirus = 10 provinces) or to the contact zone (8 provinces) when >50% of its surface was located in 1 of these 3 regions, as previously described (Geraldes et al. 2008) (Fig. 1). We compared the values of the 5-point scale obtained for each province by employing a Kruskal-Wallis test, and used Wilcoxon tests for subsequent pairwise comparisons.

3. RESULTS AND DISCUSSION

Most officers (75.9%, 22 out of 29) in the Oryctolagus cuniculus cuniculus distribution area considered that rabbit populations were stable or had increased since the initial RHDV-b outbreak in 2011 (stable: 41.4%, increase: 34.5%; Fig. 1). Only 1 officer in this area considered rabbit populations to have markedly declined. In the distribution area of O. c. algirus, all officers (n = 10) responded that rabbits had declined after the initial RHDV-b outbreak, with 70% considering that declines were marked (Fig. 1). In the contact zone, 1 out of 8 officers suggested that rabbit populations were stable, whereas all others indicated that the populations had declined during the study.
period; most officers (62.5%) considered the decline to be moderate (Fig. 1). Values attributed to rabbit trends varied significantly among the 3 areas (Kruskal-Wallis $\chi^2 = 22.71$, df = 2, $p < 0.001$); 2-by-2 comparisons showed differences between $O. c. cuniculus$ and $O. c. algirus$ distribution areas ($p < 0.001$) and between $O. c. cuniculus$ and the contact zone ($p = 0.016$), but not between $O. c. algirus$ and the contact zone ($p = 0.13$).

Although questionnaire surveys may be affected by some degree of subjectivity, we are confident that in our study, bias is likely to be small. Spanish senior administrative game officers are generally experienced in wildlife management, and possess the best available information to answer our relatively simple question on rabbit population trajectories (Piorno et al. 2020). As a result, we gathered an unprecedented volume of data on rabbit population trends across mainland Spain, and used these to compare and contrast between subspecies. These data are particularly significant since most monitoring of rabbit populations has been linked to the conservation of rabbit-dependent predators which are mainly found in the $O. c. algirus$ distribution area (e.g. Real et al. 2009). Nevertheless, we point to the need for establishing a long-term rabbit population monitoring programme on the Iberian Peninsula to further confirm the observed patterns, but also to contribute to evidence-based management decision-making.

Our results clearly show divergent trends in the populations of the 2 rabbit subspecies, with an intermediate situation in the contact zone of both subspecies. Reasons for these differences are unknown and deserve further investigation, but we suspect they are primarily driven by socioecological differences (e.g. environmental conditions, diversity and abundance of predators, or hunting pressure) between the distribution areas of both subspecies, along with intrinsic differences between them (e.g. differences in social behaviour and disease impacts). Regardless of the causes, the observed contradictory population trends point to the need for different
management systems for each subspecies, aimed at reducing crop damage caused by *O. c. cuniculus* and conserving *O. c. algirus*. The protection of *O. c. algirus* is paramount, as this subspecies only occurs on the IP and on a few islands in the Mediterranean and Atlantic. Such a management framework would also help reduce existing conflicts over rabbit management between hunters, farmers and conservationists on the IP (Delibes-Mateos et al. 2014b).

Acknowledgements. We are grateful to Ariday Martínez who helped with data collection and to all officers who responded to our survey. Special thanks go to Dr. M. W. Hayward, Dr. C. Ferreira, Prof. J. E. Fa and 2 anonymous reviewers for their helpful comments. P.H.V. was supported by a grant (FPU17/04821) from the Spanish Ministry of Science, Innovation and Universities. This study was partially funded by Projects 201810I026 and 202010E004 financed by CSIC.

LITERATURE CITED

Alba E (2019) Declaran al conejo como especie en peligro de extinción y equiparan su situación con el lince ibérico. El Bierzo Digital. December 12. https://www.elbierzodigital.com/declaran-al-conejo-como-especie-en-peligro-de-extincion-y-equiparan-su-situacion-con-el-lince-ibерico/310364

Branco M, Monnerot M, Ferrand N, Templeton AR (2002) Postglacial dispersal of the European rabbit (*Oryctolagus cuniculus*) on the Iberian Peninsula reconstructed from nested clade and mismatch analyses of mitochondrial DNA genetic variation. Evolution 56:792–803

Dalton KP, Nicieza I, Balseiro A, Muguerza MA and others (2012) Variant rabbit hemorrhagic disease virus in young rabbits, Spain. Emerg Infect Dis 18:2009–2012

Delibes-Mateos M, Ferreira C, Carro F, Escudero MA, Gortázar C (2014a) Ecosystem effects of variant rabbit hemorrhagic disease virus, Iberian Peninsula. Emerg Infect Dis 20:2166–2168

Delibes-Mateos M, Ferreira C, Rouco C, Villafuerte R, Barrio IC (2014b) Conservationists, hunters and farmers: the European rabbit *Oryctolagus cuniculus* management conflict in the Iberian Peninsula. Mammal Rev 44:190–203

Delibes-Mateos M, Farfán Má, Rouco C, Oliviero J and others (2018a) A large-scale assessment of European rabbit damage to agriculture in Spain: agricultural damage by rabbits in Spain. Pest M anaq Sci 74:111–119

Delibes-Mateos M, Villafuerte R, Cooke B, Alves PC (2018b) *Oryctolagus cuniculus* (Linnaeus, 1758). In: Smith AT, Johnston CH, Alves PC, Hackländer K (eds) Lagomorphs: pikas, rabbits and hares of the world. Johns Hopkins University Press, Baltimore, MD, p 99–104

Geraldes A, Carneiro M, Delibes-Mateos M, Villafuerte R, Nachman MW, Ferrand N (2008) Reduced introgression of the Y chromosome between subspecies of the European rabbit (*Oryctolagus cuniculus*) in the Iberian Peninsula. Mol Ecol 17:4489–4499

Monterroso P, Garrote G, Serronha A, Santos E and others (2016) Disease-mediated bottom-up regulation: An emergent virus affects a keystone prey, and alters the dynamics of trophic webs. Sci Rep 6:36072

Piorno V, Arroyo B, Delibes-Mateos M, Castro F, Villafuerte R (2020) European rabbit hunting: management changes and inertia in the governance system in a period of population fluctuations. J Nat Conserv 56:125832

Real R, Barbosa AM, Rodríguez A, García FJ, Vargas JM, Palomo LJ, Delibes M (2009) Conservation biogeography of ecologically interacting species: the case of the Iberian lynx and the European rabbit. Divers Distrib 15:390–400

Ríos-Saldaña CA, Delibes-Mateos M, Castro F, Martínez E, Vargas JM, Cooke BD, Villafuerte R (2013) Control of the European rabbit in central Spain. Eur J Wildl Res 59:573–580

Thompson HV, King CM (1994) The European rabbit: history and biology of a successful colonizer. Oxford Science Publications, Oxford

Villafuerte R, Delibes-Mateos M (2019) *Oryctolagus cuniculus*. The IUCN Red List of Threatened Species 2019: e. T41291A45189779. https://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS.T41291A45189779.en (accessed 10 April 2020)

Editorial responsibility: Matt Hayward, Callaghan, NSW, Australia

Submitted: April 23, 2020; Accepted: July 8, 2020

Proofs received from author(s): September 10, 2020