Effect of Seahorse Extract (Hippocampus comes L.) on Caspase-3 and TUNEL assay in Rats After Depot Medroxyprogesterone Acetate Induction

Trisnawati Mundijo1,2, Yurnadi Hanafi Midoen3,*, Franciscus D. Suyatna4, Agung Eru Wibowo5, Kusmardi Kusmardi1,6,8

ABSTRACT
Seahorse (Hippocampus spp) is a marine fish and have pharmacological activity, such as an antiinflammatory, antioxidative, and antifatigue and improve the fertility. Depot medroxyprogesterone acetate (DMPA) is a contraception drug for male and affect the endocrine system by inhibiting pituitary gonadotropin with reduce testosterone levels in 12 weeks. There are limited studies reported the effects seahorse extract (SE) on Caspase-3 and TUNEL assay in rats induced by DMPA. Thirty Sprague-Dawley (SD) male rats that were induced by 1.25mg/kgbw DMFA in 0 and 12 weeks. The animals were randomly into five groups, following: aquadest (G1), CMC 1% (G2), SE dose of 150 mg/kgbw (G3), SE dose of 225 mg/kgbw (G4), SE dose of 300 mg/kgbw (G5). The rats were gavage every day from seven until week eighteen. On the last week, we take the right and left testis to observed the apoptotic on Caspase-3 and TUNEL assay. Apoptotic marker was observed through immunohistochemistry from testicular tissue and analysed with plugin ImageJ IHC profiler, which is H-score as the results. Data were analysed using One-Way ANOVA and Bonferroni’s post hoc tests. The SE decrease the Caspase-3 and TUNEL assay expression in rats induced by DMPA until eighteen weeks, with dose 150 mg/kgbw given the significant difference with p=0.028, <0.05 and p=0.000, <0.01. These results suggest that SE decreased germ cells apoptotic in DMPA induced rats.

Key words: Seahorse, DMPA, Apoptotic, Caspase-3, TUNEL assay.

INTRODUCTION
To date, nature products from the marine have been explored as a marine natural products (MNPs), one of this is a seahorse (Hippocampus sp).1 Seahorse (Hippocampus comes L.) is a marine teleost fish and known for medicinal use.2,3 In Indonesia this species is a widely used in traditional medicine as “Jamu”.4,5 The previous studies reported that seahorse has a biofunctional compounds include steroids, amino acids, minerals, and protein.6 Also, recent pharmacological studies stated that the seahorse has multiple biological activities, including antiinflammatory, antioxidative, and improve the fertility.7,8 Depot Medroxyprogesterone Acetate (DMPA) is a hormonal contraceptive that inhibiting Gonadotropin pituitary secretion.9,10 The others studies reported that DMFA dose 1.25 mg/kgbw11,12 could influence the gonadotropin hormone secretion. Additionally, recent studies also reported that conditions in rat after induced by DMPA can be testicular dysfunction.

Nowadays, the research about seahorse extract induces DMPA by rats and investigated the apoptotic marker is still limited. Based on these facts, we hypothesized that SE have positive effects on apoptotic on Caspase-3 and TUNEL assay. Therefore, this study aimed to investigate effects of SE on Caspase-3 and TUNEL assay in DMPA induced rat.

MATERIALS AND METHODS
Ethical approval
The experimental protocol was approved by the ethics committee of the faculty of Medicine, Universitas Indonesia with protocol number KET-101/UN2.F1/ETIK/PPM.00.02/2021.

Seahorse material
Seahorse (Hippocampus comes L.) taken from fishermen of Karya Usaha Bersama (KUB) Karya Laut, Pesawaran, Lampung, Indonesia with supervision from Marine Cultivation Fisheries Center (Balai Besar Perikanan Budidaya Laut), Lampung, Indonesia. Then, washed with distilled water and placed in a freeze dryer (Merck Heto FD4 Diagnostic), for forty-eight hours, in -45°C. Freeze-dried samples were weighed and crushed into powder using a grinder (Merck Retsch). The powder extracted with water solvent for 3 days, with maceration process added buffer phosphate, and every day stirred for 2 hours, at 500 rpm. At the end of day 3, the sample was centrifuged with Thermos scientific, Soryall Legend XTR centrifuge for 10 minutes at 12.000 rpm. Supernatant and natant was separated, and supernatant were collected using a freeze dryer and stored at -20°C for further use.9

Animals and treatment
Thirty adult male Sprague Dawley (SD) rats (200-250 g), 8 weeks old from Center for drug and food control, Indonesia. The rats were husbandary with 250 g), 8 weeks old from Center for drug and food control, Indonesia.

Cite this article: Mundijo T, Midoen YH, Suyatna FD, Wibowo AE, Kusmardi K. Effect of Seahorse Extract (Hippocampus comes L.) on Caspase-3 and TUNEL assay in Rats After Depot Medroxyprogesterone Acetate Induction. Pharmacogn J. 2022;14(4): 253-258.
conditions temperature 25°C, 12 h light/dark cycles, free access food and water ad libitum. The rat acclimatized for 1 week and treated at Animal Research Facilities, Indonesian Medical Education and Research Institute (ARF-IMERI), faculty of Medicine, Universitas Indonesia.

The SD rats were intramuscular administered 1.25 mg/kgbw DMPA (Merck Depo Geston) @150 mg/3mL in 0 and 12 weeks. The rats were randomly divided into five groups (n=6 per group) consisting: distilled water (G1), CMC 1% (G2), SE dose of 150 mg/kgbw (G3), 225 mg/kgbw (G4), and 300 mg/kgbw (G5). The treatment from 7 until week 18, and the last eighteen weeks all rats were euthanized with ketamine KET-A-100 (dose 100 mg/kgbw) and Xylazine Xyla Holland (10 mg/kgbw). After that the tests were collected to testicular tissue and the apoptotic parameters following Caspase-3 and TUNEL assay were observed by immunohistochemistry analysis.

Measurement of apoptotic index

Immunohistochemistry was conducted with standard protocol. We collected the right and left testis and fixed in 10% buffered formalin solution. After the tests fixed in 10% neutral buffered formalin, embedded in paraffin, sectioned and stained with hematoxylin and eosin (H&E). The graded ethanol series was used to dehydration the tissue, wash in xylene, and sectioned used embedded in paraffin wax.4 Apoptotic parameters including Caspase-3 and TUNEL assay activity in the testicular tissue was detected by Antibody primer Anti Caspase-3 cat no ab184787 Sigma-Active antibody produced in rabbit, NovolinkTM polymer detection system RE7140-K Leica Biosystem, TUNEL Assay Kit-HRP-DAB Abcam cat no ab206386, DNAse I recombinant cat no 4536282001-Roche, according to the manufacturer's instruction. In our study, we observed apoptotic marker using a light microscope at a total magnification of 400x. The brown color intensity was calculated our study, we observed apoptotic marker using a light microscope at 4536282001-Roche, according to the manufacturer's instruction. In this present study, apoptotic parameters including Caspase-3 and TUNEL assay with the results in Table 1.

Table 1: H-Score of Caspase-3 and TUNEL assay in group.

Parameter	H-score (%)	p-value				
Caspase-3	G1 118.33±10.12	G2 126.76±8.15	G3 111.71±3.85	G4 122.86±11.97	G5 128.61±3.52	0.028*
TUNEL	G1 10.02±1.64	G2 10.46±2.43	G3 3.12±1.83	G4 7.5±0.64	G5 8.36±0.90	0.000**

*: Significant data, *p<0.05, **p<0.01. Group with treatment aquadest (G1), CMC 1% (G2), SE dose 150 mg/kgbw (G3), SE dose 225 mg/kgbw (G4), SE dose 300 mg/kgbw (G5).

Statistical analysis

Data are presented the mean ± standard deviation values. One-way analysis of variance (ANOVA) followed by Bonferroni test post hoc analysis were then used to compare other groups. The data were entered into a spreadsheet by Excel, Microsoft, and GraphPad Prism Ver.9.0. Note that p value < 0.05, <0.01 indicated statistical significance.

RESULTS AND DISCUSSIONS

In this present study, apoptotic parameters including Caspase-3 and TUNEL assay with the results in Table 1. We found that the highest Caspase-3 expression in G5, followed G2, G4, G3, and G1. Compared to the group without treatment SE, the G3 significantly decreased after induced DMPA (p < 0.05; Table 1). Compared to the group with SE treatment, the highest expression on Caspase-3 in the group with SE dose 300 mg/kgbw (G5). The result in TUNEL assay, we know that the highest expression in G2, followed G1, G5, G4 and G3. Meanwhile, compared to the group without treatment SE, the G3 has a lowest expression on TUNEL assay. Besides that, when we compared to the group with SE treatment, the G5 has a highest TUNEL assay expression. Administration of the SE dose 150 mg/kgbw (G3) also significantly decreased both the Caspase-3 and TUNEL assay with p=0.028; <0.05 and p=0.000; <0.01.

Post hoc analysis using Bonferroni test in Caspase-3 show the group with SE dose 150 mg/kgbw (G3) was significant decrease expression than SE dose 300 mg/kgbw (G5), p < 0.05. However, Caspase-3 expression in SE dose 150 mg/kgbw (G3) had no significantly difference when compared to the group without SE, but the expression in group SE dose 225 mg/kgbw (G4) and 300 mg/kgbw (G5), p < 0.05, and has most significantly when compared to treatment group with aquadest (G1) and CMC 1% (G2) note p < 0.01. (Figure 1 and 2)
Figure 2: Expression of Caspase-3 and TUNEL assay with 400x magnification.

Group with treatment aquadest (G1), CMC 1% (G2), SE dose 150 mg/kgbw (G3), SE dose 225 mg/kgbw (G4), SE dose 300 mg/kgbw (G5).
In our study, the rats after induced DMPA twice a week at 0 and 12. We observed the rats were given the SE and group without treatment SE after induced by DMPA to determine effectiveness on apoptotic marker. DMPA can suppress the gonadotropin hormones (FSH and LH) secretion in 12 weeks, and can affects spermatogenesis as testosterone hormone. DMPA inhibiting pituitary gonadotropin and reducing testosterone levels.19,20

In this study, we founds the increase expression of Caspase-3 and TUNEL assay in group without SE treatment compared to the group with SE treatment. We hypothesized that SE biocompounds can be ameliorate the apoptotic expression in rats induced by DMPA. We investigated for the first time whether the SE treatment reduce the apoptotic. We found that the content of SE may be decrease apoptotic marker as a Caspase-3 and TUNEL assay in germ cell apoptotic. Caspase-3 and TUNEL assay reduces significantly H-score with dose 150 mg/kgbw. Our results indicated that amino acids, alkaloids, triterpenoids and steroid could suppressing germ cells apoptotic. However, the addition of the extract treatment dose, the H-score increased. It is suggesting that the increase in the dose of extract causes oxidative stress, thereby inducing the process of apoptotic through signal transduction of DNA fragmentation activation. Caspase-3 has an enzymatic function in apoptotic that plays an important role in signal transduction and activation of DNA fragmentation.17-19

In the other part of our study, we identified that SE have triterpenoids, alkaloids, amino acids, and steroid glycosides, with the two highest amino acids being L-Arginine and Glycine (unpublished results).20 Amino acids is a facilitating the transfer of plasma membranes to phosphorylation to protecting spermatozoa from aging and apoptotic. One of them is the L-Lysine which is an amino acid constituent of Carnitine which acts as an antioxidant and antiapoptotic. The L-Arginine play role a biosynthesis of nitric oxide which is the main neurotransmitter and neurotrophin function. J Ethnopharmacol. 2020;25(250):112487.

3. Oh Y, Ahn CB, Je JY. Cytoprotective role of edible seahorse (Hippocampus abdominalis) on testosteron secretion from TM3 leydig cells and in male mice. Appl Biol Chem. 2016;59(6):869-79.

4. Kim MY, Jeon YJ, Huh JS, Kim SD, Park KK, Cho M, et al. Effect of enzymatic hydrolysate from seahorse (Hippocampus abdominalis) on testosteron secretion from TM3 leydig cells and in male mice. Marine Drugs. 2021;19(2):86.

5. Ministry of Marine Affairs and Fisheries, Directorate General of Aquaculture, Center for Marine Aquaculture, Lampung. Seahorse cultivation (Hippocampus spp). Marine Cultivation Technical Guidelines. 2018:1-101.

6. Nurilmala M, Nurhayati KH, Butet NA, Sudrajat AO. Molecular marker based on 16s rrna gene for seahorse (Hippocampus spp.) from Bintan island-Indonesia. The 3rd EIW IOP Conf. Series: Earth and Environmental Science. 2019;278:012054.

7. Zhang YY, Bo-Mi R, Qian ZJ. A Review-Biology: Aquaculture and medical use of seahorse (Hippocampus spp). Ann Res Rev Biol. 2017;14(5):1-12.

8. Zhang N, Xu B, Mou C, Yang W, Wei J, Lu L, et al. Molecular profile of the unique species of traditional Chinese medicine, Chinese seahorse (Hippocampus kuda Bleeker), FEBS Lett. 2003;550(1):124-34.

9. Midoen YH, Anggraeni DR, Suryandari DA, Freisleben HJ. Finding the minimal effective dose of a combination of depot medroxyprogesterone acetate and javanese long pepper for male contraception on testicular fertility parameters in male Sprague dawley rats. Biomed Pharmacol J. 2017;10(2):725-37.

10. Dragoman M, Gaffiel ME. The Safety of Subcutaneously Administered Depot Medroxyprogesterone Acetate (104 mg/0.65 mL): A Systematic Review. Contraception. 2016;94(3):202-15.

11. Butler K, Ritter JM, Ellis S, Morris MR, Hanson DL, McNicholl JM, et al. A DMPA (Depot Medroxyprogesterone Acetate) dose that models human use and its effect on vaginal SHIV acquisition risk. J Acquire Immune Defic Syndr. 2016;72(4):363-71.

12. Moeloek N, Asmarinah, Siregar NC, Ilyas S. Testosterone undecanoate and depot medroxyprogesterone acetate induced azospermia through increased expression of spermatogenic cell caspase 3. Med J Indones. 2009;17(1):3.

13. Ilyas S, Lestari SW, Moeloek N, Asmarinah, Siregar NC. Induction of rat germ cell apoptosis by testosterone undecanoate and depot medroxyprogesterone acetate and correlation of apoptotic cells with sperm concentration. Acta Med Indones-Indones J Intern Med. 2013;45(1):32-7.

14. Urmadi, Asmida Y, Suryandari DA, Wahjoevi B, Moeloek N. Determination of the minimum dose of medroxyprogesterone acetate (DMPA) and it is effect on spermatozoa viability and testosterone hormone levels in rats. Indones Med J. 2008;58(1):1-6.

15. Kusmardi K, Wijerathna L., in the apoptotic. Based on results, we conclude that the seahorse Hippocampus comes L., has a potential candidate and needed more explore useful in medicinal health.

CONCLUSION
The SE dose 150 mg/kgbw could reduce Caspase-3 and TUNEL assay expression in rats by DMPA induction for eighteen weeks.

CONFLICTS OF INTEREST
No declare conflicts of interest in our study.

ACKNOWLEDGEMENTS
We would like to thank for Directorate of Research and Development of the Universitas Indonesia in the International Indexed Publication Research Schemes in the Doctoral (PUTI Doctor) for the Fiscal Year 2020 with contract number NKB-578/UN2.RST/HKP05.00/2020 for supporting this research.

REFERENCES
1. Jemenes C. Marine natural products in medicinal chemistry. ACS Med Chem Lett. 2018;9(10):959-61.
18. Chen Y, Yang J, Wang Y, Yang M, Guo M. Zinc deficiency promotes testicular cell apoptosis in mice. Biol Trace Elem Res. 2019;195(1):142-9.

19. Savitskaya MA, Onishchenko GE. Mechanisms of apoptosis. Review. Biochem. 2015;80(11):13931405.

20. Mundijo T, Suyatna FD, Wibowo AE, Supriyono A, Midoen YH. Characterization of seahorse (Hippocampus comes L.) extract originated from cultured and nature from Pesawaran, Lampung, Indonesia. J. Adv. Vet. Anim. Res. 2022 (Inpublished).

21. Sova VV, Pesentseva MS, Zakharenko AM, Kovalchuk SN, Zvyagintseva TN. Glycosidases of marine organisms. Biochem. 2013;78(7):962-76.

22. Wijerathna HMSM, Nadarajapillai K, Udayantha HMV, Kasthuriarachchi TDW, Shanaka KASN, Kwon H, et al. Molecular delineation, expression profiling, immune response, and anti-apoptotic function of a novel clusterin homolog from big-belly seahorse (Hippocampus abdominalis). Fish Shellfish Immunol. 2022;124:289-99.

23. Qian ZJ, Chen MF, Chen J, Zhang Y, Zhou C, Hong P, et al. Intracellular ethanol-mediated oxidation and apoptosis in HepG2/ CYP2E1 cells impaired by two active peptides from seahorse (Hippocampus kuda bleeler) protein hydrolysates via the Nrf2/HO-1 and AKT pathways. Food Sci Nutr. 2021;9(3):1584-602.
Mundijo T, et al.: Effect of Seahorse Extract (*Hippocampus comes* L.) on Caspase-3 and TUNEL assay in Rats After Depot Medroxyprogesterone Acetate Induction

ABOUT AUTHORS

Trisnawati Mundijo: Lecturer in the Department of Medical Biology, Faculty of Medicine, Universitas Muhammadiyah Palembang. Research interest in Biomedical Sciences, Biology Reproduction, and Human Genetic, and Doctoral Student at Biomedical Sciences, Faculty of Medicine, Universitas Indonesia.

Yurnadi Hanafi Midoen (M.Sc., Ph.D): Lecturer and Researcher at Department of Medical Biology, Faculty of Medicine, Universitas Indonesia. Research interest in Biology Reproduction, Molecular Biology, Human Genetic, and Cancer Biology.

Franciscus D. Suyatna (Prof., dr., Sp.FK., Ph.D): Lecturer and Researcher at Department of Pharmacology and Therapeutics, Faculty of Medicine, Universitas Indonesia. Research interest in Toxicology, Immunology, Pharmacogenetics, and Drug Development.

Agung Eru Wibowo (M.Sc., Ph.D): Researcher at Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency, Indonesia. Research interest in Natural Product from Medicinal Plants, Traditional Medicine, Standardized Herbal Medicine, and Herbal Cosmetic.

Kusmardi (M.Sc., Ph.D): Lecturer and Researcher at Department of Anatomic Pathology, Drug Development Research Center Indonesian Medical Education and Research Institute, Human Cancer Research Center Indonesian Medical Education and Research Institute, Faculty of Medicine, Universitas Indonesia. Research interest in Immunology, Pathology, Cancer Biology, Herbal Medicine, Biomedical Sciences, Oncology, Animal Model for Cancer Research, Biostatistics, and Research Methodology.

Cite this article: Mundijo T, Midoen YH, Suyatna FD, Wibowo AE, Kusmardi K. Effect of Seahorse (*Hippocampus comes* L.) on Caspase-3 and TUNEL assay in Rats After Depot Medroxyprogesterone Acetate Induction. Pharmacogn J. 2022;14(4): 253-258.