Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures

Jie Li a, b, Nianpeng He b,*, Li Xu b,**, Hua Chai a, Yuan Liu b, Deli Wang a, Ling Wang a, Xuehong Wei c, Jingyue Xue d, Xuefa Wen b, Xiaomin Sun b

a Institute of Grassland Science, Northeast Normal University, and Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
b Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
c Agricultural and Animal Husbandry College of Tibet University, Linzhi 860000, China
d Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China

ARTICLE INFO

Article history:
Received 12 April 2016
Received in revised form 2 December 2016
Accepted 8 December 2016
Available online 10 December 2016

Keywords:
Asymmetric responses
Hysteresis responses
Microbes
Periodic change
Soil organic matter decomposition
Temperature sensitivity

ABSTRACT

Periodic changes in temperature commonly occur diurnally and seasonally. However, the response of soil heterotrophic respiration to rising and decreasing temperatures during these periods remains poorly understood; thus the feedback between climate change and carbon (C) cycling requires further investigation. In this study, soils from three grasslands in the Qinghai-Tibet Plateau were incubated separately at rising (from 5 °C to 31 °C) and decreasing (from 31 °C to 5 °C) temperatures modes over 161 days, to explore how soil heterotrophic respiration rates (Rs) respond to different temperature changes. The parameters of Rs and temperature sensitivity (Q10) were used for the analyses. In addition, microbial biomass C (MBC), microbial biomass nitrogen (N) (MBN), dissolved organic C (DOC), and other soil properties were measured. The results indicated a pronounced hysteresis of Rs for both rising and decreasing temperatures. Furthermore, the hysteresis loops differed in the different sites. Rs values were significantly higher for rising temperature (2.71 µg C g⁻¹ d⁻¹) versus decreasing temperature (1.75 µg C g⁻¹ d⁻¹) in all three alpine grasslands. The Q₁₀ values were significantly higher for decreasing temperature (2.42) versus increasing temperature (1.55), with these differences being observed over the 161-d incubation period. Furthermore, soil microbes (specifically, MBC and MBC/MBN) explained 46% of the total variation in Q₁₀, followed by substrate and other properties. Our results provide experimental evidence for the asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures. In addition, the microbial effect was primarily associated with soil heterotrophic respiration, suggesting strong asymmetric responses to rising and decreasing temperatures that require investigation in future studies.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In response to increasing CO₂ concentrations in the atmosphere, the global mean temperature is predicted to increase 2–7 °C by the end of the 21st century (Allison et al., 2011). Temperature modifies the amount of carbon (C) stored in soils by influencing soil heterotrophic respiration rates (Rs) and the global C balance (Davidson and Janssens, 2006). Most studies have investigated how temperature affects Rs in relation to rising temperature, with it being assumed the same effects occur with decreasing temperature (Xia et al., 2009; Peng et al., 2013). Thus, it is necessary to test this assumption by better characterizing the responses of Rs to changing temperature under both rising and decreasing temperatures.

In nature, periodic changes in temperature are common. For example, soil temperature typically rises during the daytime and decreases at night, representing a dynamic diurnal pattern (Fig. 1A). In addition, larger temperature changes occur over greater time scales such as over seasons and years (Fig. 1B). Temperature sensitivity (Q₁₀) is a useful index to describe the proportional change in Rs with a 10 °C increase in temperature (Lloyd and Taylor,
observed variability in Q2015). Usually, higher Q ranging from nearly 1 to over 12 (Hamdi et al., 2013; Liu et al., greatly at different temperatures and in different ecosystems, resulting in a higher Q10 values are detected under colder temperatures versus warmer temperatures (Kirschbaum, 1995). Multiple hypotheses have been developed to explain the observed variability in Q10. First, the C quality-temperature hypothesis predicts that Q10 is controlled by enzyme kinetics and should decrease as the quality of C in soil organic matter (SOM) increases (Bosatta and Ågren, 1999). C quality varies among different ecosystems (Craine et al., 2010a; Bosatta and Ågren, 1999), or even within the same ecosystems, depending on the season (Niu et al., 2011), soil depth (Rovira and Vallejo, 2002), and the different stages of SOM decomposition (early or late stages). Experimental evidence supports the C quality hypothesis by demonstrating that the decomposition of lower quality C substrates is more sensitive to changes in temperature than the decomposition of higher C quality substrates (Fierer et al., 2005). Alternatively, varying Q10 might be derived from the physiological adjustments of microbes (Bradford et al., 2008). Microbes inhabiting colder regions may be more sensitive to increasing temperature than those in warm regions, resulting in a higher Q10 (Karhu et al., 2014). Some studies have shown that the adaptation of soil microbes changes differently when temperature increases or decreases (Fenner et al., 2005; Bradford et al., 2008). Moreover, abiotic soil properties, such as oxidation-reduction potential (ORP), pH (Min et al., 2014), and the substrate used for microbial metabolism (Blagodatskaya et al., 2014), might influence Rs because these soil properties regulate microbial activity directly or indirectly. Microbial adaptation when

![Diurnal temperature variation](image)

![Season temperature variation](image)

Fig. 1. Diurnal (A) and seasonal (B) variation in temperature in natural ecosystems.

1994). Previous studies have demonstrated that Q10 values vary greatly at different temperatures and in different ecosystems, ranging from nearly 1 to over 12 (Hamdi et al., 2013; Liu et al., 2015). Usually, higher Q10 values are detected under colder temperatures versus warmer temperatures (Kirschbaum, 1995).

Temperature responses have been reported for Rsk; however, the mechanisms remain unclear (Vargas and Allen, 2008; Phillips et al., 2011). Traditional methods used to quantify Q10 are performed at a single constant incubation temperature (Wagai et al., 2013; Quan et al., 2014) or by placing multiple soil samples at different constant temperatures along a temperature gradient (Weedon et al., 2013; Xue et al., 2015). Unfortunately, these methods produce limited data to calculate Q10, and might influence the accuracy of Q10 to some extent. More importantly, soils incubated at a constant temperature might consume more substrate at higher temperatures compared to lower temperatures, leading to large differences in substrate supply (or C quality), which influence Q10 estimates, especially for long-term incubation experiments. These disadvantages of traditional incubation experiments must be overcome in future studies.

Here we designed a novel soil incubation experiment under rising (from 5 °C to 31 °C) and decreasing (from 31 °C to 5 °C) temperature regimes, to simulate periodic changes in temperature during daytime and night-time. Using an equipment with continuous measurement, we evaluated Rs (recorded approximately every 20-min) at intervals of 0, 7, 14, 21, 28, 49, 77, 105, 133, and 161 days, and calculated the corresponding Q10. We used three alpine soils from the Qinghai-Tibet grasslands to investigate hysteretic responses of Rs and Q10 under rising and decreasing temperatures, and to explore the influence of soil microbes and soil substrate quality.

2. Materials and methods

2.1. Study sites

The experimental plots were selected from three main grassland types distributed widely across the Qinghai-Tibet Plateau. These grassland types were designated as alpine meadow, alpine steppe, and alpine desert (Fig. S1). The mean annual temperature at these sites ranged from −0.2 °C to 3.1 °C; and the mean annual precipitation ranged from 150.0 mm to 641.0 mm (Table 1). Detailed information on the three plots was primarily derived from a previous publication (Li et al., 2015) and is presented in Table 1.

2.2. Field sampling

Field sampling was conducted in August 2013. In each plot, nine sampling quadrats (0.5 m × 0.5 m) were established at about 10 m intervals along three random transects in each selected grassland type. The community structure and aboveground biomass were investigated in each quadrat. Subsequently, surface litter was removed and soil samples (approximately 5 kg) were randomly collected using a soil sampler (10 cm in diameter) from the surface soil (0–20 cm) in each quadrat. The samples were passed through a 2-mm sieve and all visible plant material was manually removed. Homogenized soil samples from the same depth were mixed and divided into two subsamples. Then, approximately 100 g of each soil sample was air-dried to analyze soil properties [e.g., C, nitrogen (N), and pH]. Approximately 5 kg fresh soil was immediately packed in labeled polyethylene bags and stored in a portable refrigerator (4 °C). The soil was then transported to the laboratory for subsequent incubation experiments.
chemistry, microbial community, and substrate properties were incubated and from 31 °C.

Temperatures, as well as a more accurate calculation of improved exploration of the relationship between frequently (i.e., at intervals of several minutes) allows for an accurate measurement of the program of Wang et al. (2016). Measuring continuously measured during the model of varying temperature over 24-h based on the program of Wang et al. (2016). Measuring R₃ more frequently (i.e., at intervals of several minutes) allows for an improved exploration of the relationship between R₃ and changing temperatures, as well as a more accurate calculation of Q₁₀. Soil chemistry, microbial community, and substrate properties were measured by conducting destructive sampling at different incubation times to determine how they influence R₅ and Q₁₀.

2.3. Laboratory incubation and analysis

To overcome the disadvantages of traditional incubation experiments (see Introduction), we developed a new experimental design in this study, in which soil samples were incubated under continuously and periodically changing temperature conditions. The temperature ranged from 5 °C to 31 °C in the first phase of incubation and from 31 °C to 5 °C in the second phase of incubation (Fig. 2). R₅ and soil temperature were simultaneously and continuously measured during the model of varying temperature over 24-h based on the program of Wang et al. (2016). Measuring R₅ more frequently (i.e., at intervals of several minutes) allows for an improved exploration of the relationship between R₅ and changing temperatures, as well as a more accurate calculation of Q₁₀. Soil chemistry, microbial community, and substrate properties were measured by conducting destructive sampling at different incubation times to determine how they influence R₅ and Q₁₀.

2.3.1. Incubation experiment

Forty-gams of fresh soil and 10 g of quartz sand (to prevent soil compaction) were placed in incubation bottles and adjusted to 55% soil water-holding capacity, which is commonly considered optimal for microbial activity. Soil sample for each grassland was divided into 15 replicates: three replicates for the repeated measurements of R₅ throughout the incubation period, and 12 replicates for five separate destructive sampling times to measure soil chemistry, microbial community, and substrate properties. All samples were pre-incubated for 7 days at 15 °C to minimize the mineralization pulse (Wagai et al., 2013) and to provide sufficient time for the stabilization of soil microbial populations (Sun et al., 2013). Subsequently, the samples were placed in an incubator with automatic temperature regulation. Considering the diurnal dynamics of air temperature and the limits of the incubator, four temperatures (6 °C, 14 °C, 22 °C, and 30 °C) were established, and each temperature was maintained for 6-h each day (Fig. 2A). We set the minimum temperature at 08:00 in the incubator, and, at the same time, R₅ was measured at 20-min intervals during both rising and decreasing temperature periods. As designed, R₅ was measured 10 times on days 0, 7, 14, 21, 28, 49, 77, 105, 133, and 161. The soil moisture of the incubated samples was adjusted at 3-d intervals on a weight basis. Soil substrate [dissolved organic C (DOC)], microbial characteristics [microbial biomass C (MBC) and microbial biomass N (MBN)], and chemical properties [pH, soil oxidation-reduction potential (ORP), and conductivity (COND)], were measured after 7, 21, 49, 105, and 161 days of incubation. To determine the actual temperature of the soil samples, button thermometers were buried in each soil sample (DS1922L, USA).

2.3.2. Chemical analyses

Soil organic C (SOC) content (%) was determined by the Walkley-Black method (Nelson and Sommers, 1982). Soil total N (STN) concentration (%) was measured using a modified Kjeldahl wet-digestion procedure by Elemental Analyzer (Series II CHN/S/O Analyzer 2400; Perkin Elmer) (Gallaher et al., 1976). MBC (µg g⁻¹) and MBN (µg g⁻¹) were determined using the chloroform fumigation-extraction method of Vance et al. (1987). DOC was determined using suspensions extracted by 0.5 mol L⁻¹ K₂SO₄, and was analyzed by total organic C (TOC) analyzers (Elementar Liqui TOC, Elementar Co., Germany). Soil pH, ORP, and COND were measured in a soil-water slurry (1:2.5, w/v) by using an Ultrameter-2 pH meter (Myron L Company, USA). Soil WHC (%) and gravimetric moisture content (%) were measured in the laboratory according to the protocol of He et al. (2013).

Table 1

Initial properties of plant and soil in the experimental plots.

Grassland types	MAT (°C)	MAP (mm)	Altitude (m)	Vegetation coverage (%)	Aboveground biomass SOC (%)	STN (%)	MBC (µg g⁻¹)	MBN (µg g⁻¹)	ORP (mV)	pH	
Alpine meadow	3.1	641.0	4618	74±8a^b	162.91 ± 7.12a	2.50 ± 0.20a	0.28 ± 0.02a	204.80 ± 3.64a	81.29 ± 2.54a	250.31 ± 0.84a	6.23 ± 0.06c
Alpine steppe	-1.9	150.0	4527	22±4b	90.04 ± 21.09b	0.95 ± 0.11b	0.13 ± 0.02b	120.37 ± 7.27b	53.59 ± 1.35b	194.67 ± 3.79b	7.62 ± 0.02b
Alpine desert	0.2	189.6	4546	11±2c	31.79 ± 11.30c	0.50 ± 0.03c	0.10 ± 0.01c	87.35 ± 0.55c	43.95 ± 1.62c	164.67 ± 0.58b	7.89 ± 0.02a

^a MAT, mean annual temperature; MAP, mean annual precipitation; SOC, mean soil organic carbon; STN, soil total nitrogen; MBC, microbial biomass carbon; MBN, microbial biomass nitrogen; ORP, oxidation-reduction potential.

^b The values in the table are presented as mean ± SD (n = 4); data with same letters with in the same column indicate no significant difference at P = 0.05.

Fig. 2. Changes in the incubation temperature in the incubator (A) and soil temperature during the measurement process (B) throughout the day.
2.3.3. Measurement of RS and soil properties

Traditionally, 3–6 specific temperature gradients are established to determine RS, with Q_{10} being calculated from this information (Craine et al., 2010a; Wetterstedt et al., 2010). In this study, a continuous measurement apparatus was used to measure (at 20-min intervals) the dynamics of RS over 24-h at each incubation time point by using an automatic and continuous system. We assumed that all soil samples experience a temperature ranging from 6°C (in the middle of the night) to 30°C (in the afternoon) daily. To ensure the integrity of the data in the measurement process of RS, we expanded 1°C in the measurement of the incubator using an automatic temperature regulator (Julabo, Germany). For instance, the temperature in the incubator ranged from 6°C to 30°C during the first 12-h, and from 30°C to 6°C in the following 12-h, whereas the temperature measurements ranged from 5°C to 31°C during the first 12-h, and from 31°C to 5°C in the next 12-h. This method was modified from He et al. (2013) based on the designated program of Wang et al. (2016). Furthermore, a button thermometer (DS1922L) was used to measure the actual soil temperature when we measured RS, providing accurate paired data for RS and soil temperature to calculate Q_{10} (Wang et al., 2016). To reduce the error in button thermometer readings, we used five button thermometers to monitor soil temperature in the incubation bottles.

A new PRI-8800 Automatic Temperature Control Soil Flux System (PRI-8800, Pre-Eco, China) was newly developed and used to measure RS as a modification of He et al. (2013). In brief, RS was first calculated from the slope of the CO2 concentration using specific transformation factors:

$$RS = \frac{C \times V \times \alpha \times \beta}{m}$$

where Q_{10} is the average value of Q_{10}; Q_{10-RT} is Q_{10} for rising temperature; Q_{10-DT} is Q_{10} for decreasing temperature; m is the number of times Q_{10} is measured for rising temperature; and n is the number of times.

Q_{10} values were calculated using the following exponential equations (Lloyd and Taylor, 1994):

$$RS = a \times e^{bT}$$

$$Q_{10} = e^{10b}$$

where RS is the soil heterotrophic respiration rate (µg C g$^{-1}$ d$^{-1}$); Q_{10} is temperature sensitivity; T is the soil temperature during measurement (the same as above); a is the net soil heterotrophic respiration rate at 0°C; and b is the temperature response factor.

The average RS for rising temperature was calculated as follows:

$$RS - Ave(RT) = \frac{\sum_{i=1}^{m} RS - RT(i)}{m}$$

where $RS_{-Ave} (RT)$ is the average value of RS at rising temperature (µg C g$^{-1}$ d$^{-1}$); RS_{RT} is RS for rising temperature (µg C g$^{-1}$ d$^{-1}$); and m is the number of time RS is measured during rising temperature.

The average RS for decreasing temperature was calculated as follows:

$$RS - Ave(DT) = \frac{\sum_{j=1}^{n} RS - DT(j)}{n}$$

where $RS_{-Ave} (DT)$ is the average value of RS for decreasing temperature (µg C g$^{-1}$ d$^{-1}$); RS_{DT} is RS for decreasing temperature (µg C g$^{-1}$ d$^{-1}$); and n is the number of times RS is measured for decreasing temperature. The average Q_{10} [Q$_{10-\text{Ave} (RT)}$] for decreasing temperature and Q_{10} [Q$_{10-\text{Ave} (DT)}$] for decreasing temperature were also calculated according to Eqs. 4 and 5.

The average RS was calculated as follows:

$$RS - Ave = \frac{\sum_{i=1}^{m} RS - RT(i) + \sum_{j=1}^{n} RS - DT(j)}{(m+n)}$$

where RS_{-Ave} is the average RS (µg C g$^{-1}$ d$^{-1}$); RS_{RT} is RS for rising temperature (µg C g$^{-1}$ d$^{-1}$); RS_{DT} is RS for decreasing temperature (µg C g$^{-1}$ d$^{-1}$); m is the number of times RS is measured for rising temperature; and n is the number of times RS is measured for decreasing temperature.

The average Q_{10} was calculated as follows:

$$Q_{10} - Ave = \frac{\sum_{i=1}^{m} Q_{10} - RT(i) + \sum_{j=1}^{n} Q_{10} - DT(j)}{(m+n)}$$

where $Q_{10-\text{Ave}}$ is the average value of Q_{10}; $Q_{10-\text{RT}}$ is Q_{10} for rising temperature; Q_{10-DT} is Q_{10} for decreasing temperature; m is the number of times Q_{10} is measured for rising temperature; and n is the number of times Q_{10} is measured for decreasing temperature. Q_{10} is measured for decreasing temperature.

MBC was calculated as follows:

$$MBC = (EC - EC_{ck}) \times 2.2$$

where MBC is soil microbial biomass C (µg g$^{-1}$); EC is DOC after fumigation (µg g$^{-1}$); and EC_{ck} is DOC before fumigation (µg g$^{-1}$). The correction factor was 2.2.

MBN was calculated as follows:

$$MBN = (EN - EN_{ck}) \times 2.2$$

where MBN is soil microbial biomass N (µg g$^{-1}$); EN is dissolved organic N (DON) after fumigation (µg g$^{-1}$); and EN_{ck} is DON before fumigation (µg g$^{-1}$). The correction factor was 2.2.

2.4. Statistical analysis

One-way analysis of variance (One-way ANOVA) was used to assess how grassland types affected vegetation coverage and aboveground biomass, soil water content, SOC, STN, MBC, MBN, pH, and ORP, as well as how incubation time affected Q_{10}. Repeated-ANOVA was used to explore how rising and decreasing temperatures affected RS_{-Ave} and $Q_{10-\text{Ave}}$. Correlation analysis between the two variables was implemented to assess each factor associated with RS and Q_{10}. Structural equation modeling (SEM) was used to evaluate the causal relationships among multiple interacting variables explicitly, and to determine the relative influence of microbial, substrate, and chemical properties on Q_{10}. SEM was conducted using the procedure of Amos 17 for Windows. All other statistical analyses were performed using SPSS 17.0 for Windows (SPSS, Chicago, IL, USA). Differences were considered statistically significant at $P=0.05$. All figures were prepared using SigmaPlot 10.0.

3. Results

3.1. Changes in RS under rising and decreasing temperatures

Temperature significantly influenced RS ($P<0.001$; Table 2). The average RS over the whole 161-d period was higher for rising temperature (2.71 µg C g$^{-1}$ d$^{-1}$) compared to decreasing temperature (1.75 µg C g$^{-1}$ d$^{-1}$) for all three alpine grasslands (Fig. 3). This pattern was also observed for each of the nine individual daily measurement (Fig. S2). In addition, incubation time had a
significant effect on R_S ($P < 0.001$; Table 3). Over the prolonged incubation times, R_S decreased in all three grassland soils (Fig. S3). During the incubation process, increasing and decreasing temperatures also significantly influenced R_S (rising temperature: $F = 202.124$, $P < 0.0001$; decreasing temperature: $F = 72.583$, $P < 0.0001$; Table 3). For rising temperature, R_S increased and peaked at the highest temperature, whereas, for decreasing temperature, R_S declined with decreasing temperature (Fig. S3). A pronounced hysteresis of R_S was observed for diurnal temperature dynamics with rising and decreasing temperatures, with the hysteresis loops differing at different sites (Fig. S3).

3.2. Changes in Q_{10} under rising and decreasing temperatures

The responses of Q_{10} depended on whether the temperatures was rising or decreasing ($P < 0.001$; Table 2). The Q_{10} values were lower at rising temperature (1.55) compared to decreasing temperature (2.42) in all three alpine grassland types (Fig. 4). Overall,

Table 2

Results of the t-test (P values) showing how rising and decreasing temperatures affect soil heterotrophic respiration rate (R_S) and its temperature sensitivity (Q_{10}).

Incubation time	R_S/C0 Ave	Q_{10}/C0 Ave
7-d	0.062	0.036
14-d	0.008	0.015
21-d	0.085	0.030
28-d	0.043	0.153
49-d	0.084	0.051
77-d	0.020	0.029
105-d	0.094	0.026
133-d	0.129	0.020
161-d	0.199	0.015
all days	<0.001	<0.001

* R_S/C0 Ave and Q_{10}/C0 Ave are the averages of R_S and Q_{10} under rising and decreasing temperature treatments, respectively.

Table 3

Results of the repeated ANOVA showing how grassland type and incubation time affect soil heterotrophic respiration rate (R_S) and its temperature sensitivity (Q_{10}).

Source	R_S/C0 RT F	P	Q_{10}/C0 RT F	P
Grassland type	793.637	<0.0001	217.009	<0.0001
Incubation time	202.124	<0.0001	11.467	<0.0001
$G \times T$	4.020	<0.0001	3.229	0.0001

Source	R_S/C0 DT F	P	Q_{10}/C0 DT F	P
Grassland type	1547.376	<0.0001	54.415	<0.0001
Incubation time	72.583	<0.0001	3.229	0.022
$G \times T$	11.102	<0.0001	107.894	<0.0001

* R_S/C0 RT and Q_{10}/C0 RT were R_S and Q_{10} under the rising temperature treatment, respectively.

b R_S/C0 DT and Q_{10}/C0 DT were R_S and Q_{10} under the decreasing temperature treatment, respectively.

Fig. 3. Changes in the soil heterotrophic respiration rate (R_S/C0 Ave) between rising and decreasing temperatures in different phases. 7-d, mean of the 7th day; 161-d, mean of the 161st day. Different lower case letters in the same column indicate significant differences at $P = 0.05$.

Fig. 4. Differences in the temperature sensitivity (Q_{10}) of soil heterotrophic respiration between rising and decreasing temperatures at day 7 (A) and day 161 (B) in three alpine grasslands. 7-d, mean of the 7th day; 161-d, mean of the 161st day. Different lower case letters in the same column indicate significant differences at $P = 0.05$.

J. Li et al. / Soil Biology & Biochemistry 106 (2017) 18–27
the average of Q_{10} was as follows: alpine meadow (1.25) < alpine steppe (2.06) < alpine desert (2.65). In addition, the difference in Q_{10} across different grassland types became more apparent as incubation progressed (Fig. 4). Incubation time significantly influenced Q_{10} (Table 3), irrespective of rising or decreasing temperatures. Over the prolonged incubation period, the values of Q_{10} increased in all grassland types.

3.3. Influencing factors for R_s and Q_{10} under rising and decreasing temperatures

On average, R_s was significantly correlated with DOC, MBC, MBN, MBC/MBN, pH, and COND (all $P < 0.001$) under both rising and decreasing temperatures (Table 4); however, R_s was not significantly associated with ORP. Furthermore, Q_{10} was significantly correlated with DOC, MBC, MBN, pH, COND ($P < 0.001$), and MBC/MBN ($P < 0.05$) under both rising and decreasing temperatures (Table 4).

Based on the SEM analyses, microbes (MBC, MBC/MBN), substrate (DOC), and soil chemical properties (pH, ORP) explained 76% of the variation in Q_{10} at rising temperature (Fig. 5A). The most important factors were microbes ($R^2 = 0.77$), soil substrate ($R^2 = 0.15$), and chemical properties ($R^2 = 0.04$). Similarly, all three factors explained 75% of the variation in Q_{10} at decreasing temperature (Fig. 5B). In this case, the important variables were soil microbes ($R^2 = 0.46$), soil substrate ($R^2 = 0.35$), and soil chemical characteristics ($R^2 = 0.10$).

4. Discussion

4.1. Asymmetric responses of soil heterotrophic respiration to rising and decreasing temperatures

R_s exhibited asymmetric responses to rising and decreasing temperatures. Supporting previous studies (Buchmann, 2000; Li et al., 2015), exponential equations represent a good fit for the response of R_s to changing temperatures in soils. One potential explanation for this phenomenon was that higher temperature increase microbial activity, which, in turn, enhances R_s (the basis of most models) (Kirschbaum, 2010). Microbial groups in different micro-habitats responded differently to the same magnitude of temperature change in control experiments (Wu et al., 2010). The global warming trend makes it crucial to understand how asymmetric warming affects R_s. Liu et al. (2006) found that a distinct day/night temperature-independent pattern exists in soil respiration during the growing season. Thus, these researchers suggested that night-time measurements used to extrapolate soil respiration during the daytime might underestimate daytime soil respiration. Similarly, Niu et al. (2011) observed a parabolic-like pattern of net ecosystem exchange (NEE) in response to temperature change during both spring and autumn. However, at similar temperatures, NEE was considerably depressed during the decreasing temperature season compared to the increasing temperature season. Most previous studies have only considered soil respiration during the daytime, and tended to overlook night-time effects (Koskinen et al., 2014).

Different responses of R_s to rising and decreasing temperatures result in an elliptical hysteresis loop. For rising temperatures, R_s increased, but decreased for decreasing temperatures. However, R_s at any given temperature was higher for rising temperature compared to decreasing temperature, supporting previous results (Niu et al., 2011; Phillips et al., 2011). Phillips et al. (2011) observed a semieliptical hysteresis loop when surface flux was plotted as a function of soil temperature. This phenomenon might be explained by C substrate supply and atmospheric CO$_2$ concentration, which also alter the lag times and hysteresis responses to varying degrees. Vargas and Allen (2008) reported that seasonal shifts influenced the diurnal hysteresis effects of R_s, suggesting that other biophysical mechanisms also regulate diurnal patterns of R_s to some extent, not just soil temperature. The diurnal pattern of R_s might depend on an interaction with the microbial physiological response. Moreover, some studies have demonstrated that ecosystem respiration also exhibits hysteresis, which might be attributed to diurnal changes in temperature (Pingintha et al., 2010). However, the mechanistic explanation for this pattern remains unclear, even though several physical and biological possibilities exist (Tang et al., 2005; Vargas and Allen, 2008). Further studies are required to explain the hysteresis effect and to emphasize its over- or underestimation for the emission of R_s.

In this study, temperature significantly influenced R_s at different stages of incubation. In particular, R_s was greater for rising temperatures compared to decreasing temperatures in all three alpine grasslands. A potential explanation for this trend is that, with rising temperature, the enzyme activity of soil microbes increases, resulting in the microbial community possibly adapting to a warming environment and, hence, increasing R_s. Conversely, during periods of decreasing temperature, soil enzyme activity decreases, which leads to a drop in R_s (Koch et al., 2007). Furthermore, microbial adaptations to temperature might explain the asymmetric responses of soil heterotrophic respiration to diurnal, seasonal, and inter-annual asymmetric changes in temperature (Bradford et al., 2008).

4.2. Q_{10} is higher for decreasing temperatures compared to rising temperatures

In this study, Q_{10} was higher for decreasing temperatures (2.42) compared to rising temperatures (1.55) in all three alpine

Property	R_{s-Ave} (RT)	R_{s-Ave} (DT)	Q_{10-Ave} (RT)	Q_{10-Ave} (DT)				
Substrate								
DOC	0.37	<0.001	0.70	<0.001	0.60	<0.001	0.67	<0.001
Microbe								
MBC	0.46	<0.001	0.44	<0.001	0.64	<0.001	0.50	<0.001
MBN	0.64	<0.001	0.82	<0.001	0.83	<0.001	0.78	<0.001
MBC/MBN	0.21	<0.001	0.23	<0.001	0.19	0.002	0.37	0.002
Chemistry								
pH	0.45	<0.001	0.73	<0.001	0.70	<0.001	0.66	<0.001
COND	0.58	<0.001	0.68	<0.001	0.53	<0.001	0.31	<0.001
ORP	0.02	0.342	0.10	0.038	0.14	0.011	0.13	0.038

* DOC, soil dissolved organic carbon; MBC, microbial biomass carbon; MBN, microbial biomass nitrogen; ORP, oxidation-reduction potential; and COND, conductivity. R_{s-Ave} and Q_{10-Ave} were averages of R_s and Q_{10} under rising and decreasing temperature treatments, respectively. RT, rising temperature treatment; DT, decreasing temperature treatment.
We speculated that this difference is due to the temperature dependence in microbial C use efficiency. Thus, microbial C use efficiency might decrease from rising temperature to decreasing temperature. However, we did not measure microbial growth rates, exudation rates, or C use efficiency. Our study differs from previous studies because most previous reports that describe the response of C to climate warming did not consider the asymmetric effect of altering temperature on Q_{10} during daytime and nighttime periods. Sampson et al. (2007) observed that large seasonal changes in Q_{10} were associated with larger seasonal changes in photosynthesis. This fluctuation might be explained by the extreme changes in temperature and photosynthesis that occur across seasons, leading to changes in soil microbial properties and, therefore, variation in Q_{10} throughout the year. More specifically, the soil microbial community differed in its sensitivity and adaptability to fluctuating temperatures. Within a certain temperature range, rising temperature increases soil enzyme activity and accelerates Rs, whereas decreasing temperature reduces Rs. During times of increased temperature, microbes consume labile substrate as an energy source, which requires less activation energy, and results in a lower Q_{10} (Lefèvre et al., 2014). In contrast, for lower temperatures, microbes consume more recalcitrant substrate, which...
requires greater activation energy, and leads to higher Q_{10} (Craine et al., 2010a). In addition, microbes have physiological self-regulation (an automatic instinctive reaction to regulate themselves) that affects their adaptation to temperature change. Under increasing temperature, microbes have lower temperature adaptability, resulting in a gradual increase in enzyme activity, which leads to less activation energy and lower Q_{10}. However, under decreasing temperature, microbes must adapt to high temperature by physiological self-regulation, which requires more activation energy and produces higher Q_{10} (Craine et al., 2010b; Xu et al., 2012). In a field experiment in Canada, Gaumont-Guay et al. (2009) found significant differences in Q_{10}: specifically, Q_{10} was lower during the daytime when temperature was increasing, temperature, and was higher at night when temperature was decreasing. This trend might be explained by the fact that daytime water limitation inhibits C absorption within the ecosystem, through an indirect negative effect that offsets the positive response of increased temperature. In contrast, water limitation is reduced at night, failing to offset the increasing temperature that promotes R_S; consequently, Q_{10} is greater under lower night-time temperatures (Xia et al., 2008). This difference might also be due to differences in C quality. When incubating samples with changing temperature (low-high-low $T: \pm 5^\circ C$), Xu et al. (2012) found that soils with lower C quality had higher Q_{10}. These results have been confirmed by others (Hartley and Ineson, 2008). Thus, there might be differences in C quality between daytime and night-time periods, leading to differences in Q_{10}. The difference in R_S between day and night generates hysteresis responses. Thus, Q_{10} estimates are probably related to the orientation of the hysteresis loops, and could be described as lag-time functions.

4.3. Soil microbial properties control the responses of Q_{10}

Soil microbes played a more important role in determining Q_{10} than substrate and soil chemical properties, even though Q_{10} values were also significantly correlated with DOC, ORP, and pH (Table 4). In fact, soil microbes were the most important factor for Q_{10} irrespective of the direction of temperature change (Fig. 5). Chemical properties (pH, ORP, substrate (DOC), and temperature primarily exerted an influence on Q_{10} by regulating microbial activity (Wang et al., 2016). Similarly, Wei et al. (2014) confirmed that Q_{10} depends on the structure of the soil microbial community. Variation in soil microbial communities has a significant effect on Q_{10} during prolonged incubation times. Some studies demonstrated that Q_{10} is closely associated with microbial decomposition efficiency (Thiessen et al., 2013; Karhu et al., 2014), which is related to soil substrate quality, the number of microbes, and environmental factors (Wagai et al., 2013; Leifeld and Lützow, 2014; He and Yu, 2016). Craine et al. (2010a) found that when substrate quality is high, reactants need less activation energy, and leading to lower Q_{10}. Fierer et al. (2003) reported that the Q_{10} values of subsurface soil were significantly higher (3.9) than that of the surface soil (3.0), mainly because of lower soil substrate quality in the subsurface layer. Q_{10} values were positively correlated with soil pH during both rising and decreasing temperature trends. Soil pH affects soil enzymatic activity through the structure of soil microbial community, which in turn indirectly influences Q_{10} (Craine et al., 2010b; Min et al., 2014). Soil base saturation increases with decreasing pH, which leads to the increased heterogeneity of microbes and increased enzyme activity. Consequently, a positive feedback loop is formed for soil heterotrophic respiration (Sinsabaugh et al., 2008; Min et al., 2014). In this way, the pH might indirectly reflect variation in Q_{10}. The Q_{10} values of the alpine grassland were positively and significantly correlated with soil pH in this study. Most likely, increasing or decreasing temperatures changed the rate of ion diffusion and disrupted the diffusion potential balance. Consequently, because these changes were affected by different temperatures, they led to variations in Q_{10}. Previous studies have demonstrated that soil pH correlates positively with Q_{10}, and that enzyme activity varies within a specific pH range (Craine et al., 2010b). Therefore, soil pH could be used to determine Rs indirectly. Soil pH is crucial to enzyme functioning; thus, acidification might affect microbial composition and activity, and therefore, the decomposition of SOM (Pastorelli et al., 2013).

We also observed that Q_{10} was negatively correlated with ORP under both increasing and decreasing temperature trends in this study. ORP is the result of a redox reaction of oxide and reduzate, and might reflect the macroscopic oxidation-reduction of all matter in the system. ORP characterizes the relative strength of oxidation and reduction (Zona et al., 2011) and is, therefore, an important indicator for the regulation of soil biochemical processes (Ascard et al., 2008). With increasing temperature, both soil microbial activity and soil oxygen consumption accelerate, and the redox potential decreases (Zona et al., 2011). During soil heterotrophic respiration, microbes break down longer C chains by oxidation (or open the C rings), followed by a complicated biochemical process where soil organic matter is oxidized to CO2, and high redox potential leads to the further degradation of the C chains, which release more CO2 (Luo and Zhou, 2006; Lipson et al., 2010).

Some studies have found that biophysical parameters regulate soil respiration under daily and seasonal patterns (Vargas and Allen, 2008). Similarly, we found that soil microbes (MBC, MBC/MBN) played more important roles than soil substrate (DOC) or soil chemical properties (pH, ORP) for regulating Rs. Therefore, our findings provide further experimental support that soil microbes are important in different temperature models.

5. Conclusions

The incubation experiment presented here was novel in that potentially avoided the effect of adaptation by soil microbes and, thus, large differences in substrate quality. Specifically, the experiment combined periodic changes in incubation temperature (to simulate daytime and night-time) with equipment that had continuous measurement function. This method improved our ability to explore the response of Rs to temperature change, leading to greater accuracy. A pronounced hysteresis of Rs was observed during rising and decreasing temperatures, with the hysteresis loops differing among sites. When comparing the processes of rising temperature and decreasing temperature, the Rs values were higher during rising temperature, whereas Q_{10} values were lower during rising temperatures. These findings indicate an asymmetric response of SOM decomposition to periodic changes in temperature at diurnal, seasonal, and inter-annual scales. In conclusion, for models to capture the response of microbial respiration to varying temperatures, hysteresis must be incorporated into microbial responses to rising and decreasing temperatures.

Acknowledgements

This work was partially supported by the National Nature Science Foundation of China (31470506, 41571130043), the National Key Research Project of China (2016YFC0500102), and the Program for Kezhen Distinguished Talents in Institute of Geographic Sciences and Natural Resources Research, CAS (2013RC102). Any additional data may be obtained from N.P. He (E-mail: hnp@igsnrr.ac.cn) or L. Xu (xuli050505@gmail.com).
Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.soilbio.2016.12.002.

References

Allison, I., Bindof, N.L., Bindschadler, R.A., Cox, P.M., de Noblet, N., England, M.H., François, J.B., Gruber, N., Haywood, A.M., Kato, O.J., 2011. The Copenhagen Diagnosis: Updating the World on the Latest Climate Science. Elsevier, Oxford, UK.

Asar, L., Ahumada, I., Richter, P., 2008. Influence of redox potential (Eh) on the availability of arsenic species in soils and soils amended with biosolid. Chemosphere 72, 1548–1552.

Błagodatskaya, E., Zheng, X.H., Blagodatsky, S., Wiegl, R., Dannenmann, M., Bartenbach-Bahls, K., 2014. Oxygen and substrate availability interactively control the temperature sensitivity of CO2 and N2O emission from soil. Biology & fertility of soils 50, 775–783.

Bosatta, E., Ägren, G.I., 1999. Soil organic matter quality interpreted thermodynamically. Soil Biology & Biochemistry 31, 1889–1891.

Bradford, M.A., Davies, C.A., Frey, S.D., Maddox, T.R., Melillo, J.M., Mohan, J.E., Reynolds, J.F., Treseder, K.K., Wallenstein, M.D., 2008. Thermal adaptation of soil microbial respiration to elevated temperature. Ecology Letters 11, 1316–1327.

Buchmann, N., 2000. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology & Biochemistry 32, 1625–1635.

Craine, J.M., Fierer, N., McLaughlan, K.K., 2010a. Widespread coupling between the formation and feedbacks to climate change. Nature 440, 165–173.

Davidson, E.A., Janssens, I.A., 2006. Temperature sensitivity of soil carbon decomposition. Global Change Biology 12, 2146–2154.

Edwards, N.T., Post, W.M., Gu, L., Ledford, J., Lenhart, S., 2006. Temperature-dependent diel variation in soil respiration observed from a temperate deciduous forest. Global Change Biology 12, 2146–2154.

Fierer, N., He, N.P., Wen, X.F., Yu, G.R., Gao, Y., Jia, Y.L., 2015. Patterns and regulating mechanisms of soil nitrogen mineralization and temperature sensitivity in Chinese terrestrial ecosystems. Agriculture Ecosystems & Environment 215, 31–41.

He, N.P., Yu, G.R., 2016. Substrate stoichiometry regulates the decomposition of soil organic carbon. Soil Biology & Biochemistry 106, 18–27.

Luo, Y.Q., Zhou, X.H., 2006. Soil Respiration and the Environment. Academic Press, San Diego, CA.

Leifeld, J., Lützow, M.V., 2014. Chemical and microbial activation energies of soil organic matter decomposition. Biology & Fertility of Soils 50, 1–7.

Lei, H., Wei, X.H., Gao, Y., 2015. Changes in temperature sensitivity and activation energy of soil organic matter decomposition in different Qinghai-Tibet Plateau grasslands. Plos One 10, e0137295.

Liu, Q, Edwards, N.T., Post, W.M., Gu, L., Ledford, J., Lenhart, S., 2006. Temperature-dependent diel variation in soil respiration observed from a temperate deciduous forest. Global Change Biology 12, 2146–2154.

Liu, Y, He, N.P., Wen, X.F., Yu, G.R., Gao, Y, Jia, Y.L, 2015. Patterns and regulating mechanisms of soil nitrogen mineralization and temperature sensitivity in Chinese terrestrial ecosystems. Agriculture Ecosystems & Environment 215, 31–41.

Lloyd, J., Taylor, J.A., 1994. On the temperature dependence of soil respiration. Functional Ecology 8, 315–322.

Luo, Y.Q., Zhou, X.H., 2006. Soil Respiration and the Environment. Academic Press, San Diego, CA.

Mink, K., Lehmeier, C.A., Ballantyne, F., Tatsarko, A., Billings, S.A., 2014. Differential effects of pH on temperature sensitivity of organic carbon and nitrogen respiration. Soil Biology & Biochemistry 76, 193–208.

Nelson, D.W., Sommers, L.E., 1982. Total Carbon, Organic Carbon and Organic Matter. Methods of Soil Analysis, Part 2. American Society of Agronomy, Madison, USA.

Nelson, D.W., L.Y., Fei, S.F., Montagnani, L., Bohrer, G., Janssens, I.A., Gielen, B., Reynolds, S., Moore, E., Matteucci, G., 2011. Seasonal hysteresis of net ecosystem exchange in response to temperature change: patterns and causes. Global Change Biology 17, 3102–3114.

Pastorelli, R., Vignozzi, N., Leclerc, M.Y., Pingintha, N., Serrone, R., Piccolo, R., Orsini, R., Seddaua, C., Roggero, P.P., Marcello, M., 2013. Consequences on macroporosity and bacterial diversity of adopting a no-tillage farming system in a clayey soil of central Italy. Soil Biology & Biochemistry 66, 78–93.

Phillips, C.L., Nickerson, N., Risk, D., Bond, B.J., 2011. Interpreting diel hysteresis between soil respiration and temperature. Global Change Biology 17, 515–527.

Pezzot, N., Corbalan, B.M., Gómez, F., Pérez-Ruzafa, A., 2010. Effects of pCO2 on the temperature sensitivity of SOM decomposition with grassland succession: implications for soil C sequestration. Ecology 86, 326–329.

Quan, Q., Wang, C.H., He, N.P., Zhang, Z., Wen, X.F., Su, H.X., Wang, R.F., Koerner, S.E., Yu, Q., 2016. Forest type affects the coupled relationships of soil C and N mineralization in the temperate forests of northern China. Scientific Reports 6, 6084.

Rovira, P., Vallejo, V.R., 2002. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach. Geoderma 107, 109–141.

Simsbaugh, R.L., Lauber, C.L., Weintraub, M.N., Bradford, M.A., Drenner, C., Reynolds, S., Goll, M.E., Garry, R.B., Meadow, J., Hobbie, S., Eggert, S., 2014. Changes in the temperature sensitivity of SOM decomposition with grassland succession: implications for soil C sequestration. Ecology & Evolution 13, 5045–5054.

Tang, J.W., Baldocchi, D.D., Xu, LK., 2005. Tree photosynthesis modulates soil respiration on a diurnal time scale. Global Change Biology 11, 1298–1309.

Vargas, R., Allen, M.F., 2008. Diel patterns of soil respiration in a tropical forest after Hurricane Wilma. Journal of Geophysical Research: Biogeosciences 113, G03021.

Wang, Q., He, N.P., Yu, G.R., Gao, Y., Wen, X.F., Xue, J.Y., 2014. Linking temperature sensitivity of soil organic matter decomposition to its molecular structure, accessibility, and microbial physiology. Global Change Biology 20, 1144–1152.

Wang, Q., He, N.P., Yu, G.R., Gao, Y., Wen, X.F., Wang, R.F., Koerner, S.E., Yu, Q., 2016. Soil microbial respiration rate and temperature sensitivity along a North-South forest transect in eastern China: patterns and influencing factors. Journal of Geophysical Research: Biogeosciences 21, 497–507.

Xu, Z., Tan, R., Zhang, X., Shi, D., Zheng, Y., Xu, Z., 2008. Substrate supply play a role? Soil Biology & Biochemistry 40, 1567–1574.

Zhang, G.S., Zhang, Z., Gao, Y., Xu, Z., Shi, D., Zheng, Y., 2008. Temperature sensitivity of soil organic matter decomposition in different boreal deciduous and coniferous forests. Soil Biology & Biochemistry 40, 887–898.

Zhou, X.H., Luo, Y.Q., 2006. Soil Respiration and the Environment. Academic Press, San Diego, CA.

Zuo, Y., 2015. Changes in temperature sensitivity of soil organic carbon and nitrogen respiration. Soil Biology & Biochemistry 82, 132–1322.

Fertility of Soils 50, 1–7.

Zhou, X.H., Luo, Y.Q., 2006. Soil Respiration and the Environment. Academic Press, San Diego, CA.

Zuo, Y., 2015. Changes in temperature sensitivity of soil organic carbon and nitrogen respiration. Soil Biology & Biochemistry 82, 132–1322.

Zuo, Y., 2015. Changes in temperature sensitivity of soil organic carbon and nitrogen respiration. Soil Biology & Biochemistry 82, 132–1322.
substrate quality in soil organic matter decomposition: results of an incubation study with three substrates. Global Change Biology 16, 1806–1819.

Wu, Y.P., Yu, X.S., Wang, H.Z., Ding, N., Xu, J.M., 2010. Does history matter? Temperature effects on soil microbial biomass and community structure based on the phospholipid fatty acid (PLFA) analysis. Journal of Soils & Sediments 10, 223–230.

Xia, J., Han, Y., Zhang, Z., Wan, S., 2009. Effects of diurnal warming on soil respiration are not equal to the summed effects of day and night warming in a temperate steppe. Biogeosciences 6, 1361–1370.

Xu, X., Luo, Y.Q., Zhou, J.Z., 2012. Carbon quality and the temperature sensitivity of soil organic carbon decomposition in a tallgrass prairie. Soil Biology & Biochemistry 50, 142–148.

Xue, J.Y., Zhang, H.X., He, N.F., Gan, Y.M., Wen, X.F., Li, J., Zhang, X.L., Fu, P.B., 2015. Response of SOM decomposition to temperature change in Zoige alpine wetland, China. Wetlands Ecology & Management 23, 977–987.

Zeppel, M.J., Murray, B.R., Barton, C., Eamus, D., 2004. Seasonal responses of xylem sap velocity to VPD and solar radiation during drought in a stand of native trees in temperate Australia. Functional Plant Biology 31, 461–470.

Zona, D., Lipson, D.A., Zulueta, R.C., Oberbauer, S.F., Oechel, W.C., 2011. Microtopographic controls on ecosystem functioning in the Arctic Coastal Plain. Journal of Geophysical Research: Biogeosciences 116. G00I08.