Kalra, Hina, Simpson, Richard J., Ji, Hong, Aikawa, Elena, Altevogt, Peter, Askenase, Philip, Bond, Vincent C., Borrás, Francesc E., Breakefield, Xandra, Budnik, Vivian, Buzas, Edit, Camussi, Giovanni, Clayton, Aled, Cocucci, Elena, Falcon-Perez, Juan M., Gabrielsson, Susanne, Gho, Yong Song, Gupta, Dwijendra, Harsha, H. C., Hendrix, An, Hill, Andrew F., Inal, Jameel M., Jenster, Guido, Krämer-Albers, Eva-Maria, Lim, Sai Kiang, Llorente, Alicia, Lötvall, Jan, Marcilla, Antonio, Mincheva-Nilsson, Lucia, Nazarenko, Irina, Nieuwland, Rienk, Nolte-'t Hoen, Esther N. M., Pandey, Akhilesh, Patel, Tushar, Piper, Melissa G., Pluchino, Stefano, Prasad, T. S., Kesava, Rajendran, Lawrence, Raposo, Graca, Record, Michel, Reid, Gavin E., Sánchez-Madrid, Francisco, Schifffers, Raymond M., Siljander, Pia, Stensballe, Allan, Stoorvogel, Willem, Taylor, Douglas, Thery, Clotilde, Valadi, Hadi, van Balkom, Bas W. M., Vázquez, Jesús, Vidal, Michel, Wauben, Marca H. M., Yáñez-Mó, María, Zoeller, Margot and Mathivanan, Suresh 2012. Vesiclepedia: A compendium for extracellular vesicles with continuous community annotation. PLoS Biology 10 (12), e1001450. 10.1371/journal.pbio.1001450

Publishers page: http://dx.doi.org/10.1371/journal.pbio.1001450

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation

Hina Kalra1*, Richard J. Simpson1*, Hong Ji1*, Elena Aikawa2, Peter Altevogt3, Philip Askenase4, Vincent C. Bond5, Francesc E. Borras6, Xandra Breakfield7, Vivian Budnik8, Edit Buzas9, Giovanni Camussi10, Aled Clayton11, Emanuele Coccioni12,13, Juan M. Falcon-Perez14,15, Susanne Gabrielson16, Yong Song Gho17, Dwijendra Gupta18, H. C. Harsha19, An Hendrix20, Andrew F. Hill21, Jameel M. Inal22, Guido Jenster23, Eva-Maria Krämer-Albers24, Sai Kiang Lim25, Alicia Llorente26, Jan Lötvall27, Antonio Marcilla28, Lucia Mincheva-Nilsson29, Irina Nazarenko30, Rienk Nieuwland31, Esther N. M. Nolte-’t Hoen32, Akhilesh Pandey19,33,34,35, Tushar Patel36, Melissa G. Piper37, Stefano Pluchino38, T. S. Keshava Prasad19, Lawrence Rajendran39, Graca Raposo40, Michel Record41, Gavin E. Reid42, Francisco Sánchez-Madrid43, Raymond M. Schifffeler44, Pia Siljander45, Allan Stensballe46, Willem Stoorvogel47, Douglas Taylor48, Clotilde Thery49,50, Hadi Valadi51, Bas W. M. van Balkom52, Jesús Vázquez53, Michel Vidal54, Marca H. M. Wauben55, María Yáñez-Mó56, Margot Zoeller57, Suresh Mathivanan1*.

1Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia, 2Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America, 3Tumor Immunology Programme, German Cancer Research Center, Heidelberg, Germany, 4Department of Medicine, Yale Medical School, New Haven, Connecticut, United States of America, 5Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia, United States of America, 6IVECAT, LIRAD-BST, Institut d’Investigació Germans Trias i Pujol, Dep’t de Biologia Celular, Fisiologia I Immunologia, Universitat Autònoma de Barcelona, Badalona, Spain, 7Department of Neurology, Massachusetts General Hospital, and Neuroscience Program, Harvard Medical School, Boston, Massachusetts, United States of America, 8Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America, 9Department of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary, 10Department of Internal Medicine, Centre for Molecular Biotechnology and Centre for Research in Experimental Medicine, Torino, Italy, 11Institute of Cancer & Genetics, School of Medicine, Cardiff University, Velindre Cancer Centre, Whitchurch, Cardiff, United Kingdom, 12Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, United States of America, 13Immune Disease Institute and Program in Cellular and Molecular Medicine at Boston Children’s Hospital, Boston, Massachusetts, United States of America, 14Metabolomics Unit, CIC biogUNE, CIBERehd, Technology Park of Bizkaia, Derio, Bizkaia, Spain, 15KIERBASQ, Basque Foundation for Science, Bilbao, Spain, 16Translational Immunology Unit, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden, 17Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea, 18Center of Bioinformatics, Institute of Interdisciplinary Studies, University of Allahabad, Allahabad, India, 19Institute of Bioinformatics, Bangalore, India, 20Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium, 21Department of Cellular and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia, 22Cellular and Molecular Immunology Research Centre, Faculty of Life Sciences, London Metropolitan University, London, United Kingdom, 23Department of Urology, Erasmus Medical Centre, Rotterdam, The Netherlands, 24Department of Molecular Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany, 25A*STAR Institute of Medical Biology and Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 26Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital-The Norwegian Radium Hospital, Oslo, Norway, 27Krefeld Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, 28Área de Paraparasitología, Departamento de Biología Celular y Parasitología, Universitat de València, Burjassot (Valencia), Spain, 29Department of Clinical Microbiology/Clinical Immunology, Umeå University, Umeå, Sweden, 30Department of Environmental Health Sciences, University Medical Center Freiburg, Freiburg, Germany, 31Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands, 32Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands, 33McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America, 34Department of Biomedical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America, 35Department of Oncology and Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America, 36Mayo Clinic, Jacksonville, Florida, United States of America, 37Department of Internal Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America, 38Center for Brain Repair and Wellcome Trust-MRC Stem Cell Institute, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom, 39Systems and Cell Biology of Neurodegeneration, Division of Psychiatry Research, University of Zurich, Zurich, Switzerland, 40Institut Curie, Paris, France, 41Cancer Researcherad, Toulouse, France, 42Department of Chemistry, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, United States of America, 43Servicio de Inmunología, Hospital de la Princesa, Universidad Autónoma Madrid, Madrid, Spain, 44Laboratory of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands, 45Department of Biosciences, Division of Biochemistry and Biotechnology, University of Helsinki, Finland, 46Institute for Biotechnology, University of Alborg, Denmark, 47Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine and Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands, 48Department of Obstetrics, Gynecology and Women’s Health and James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, Kentucky, United States of America, 49Institut Curie Centre de Recherche, Paris, France, 50INSERM U932, Paris, France, 51Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, 52Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands, 53Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain, 54UMR 5235 CNRS-University Montpellier II, Montpellier, France, 55Department of Biochemistry & Cell Biology, Faculty of Veterinary Medicine, Life Sciences, Utrecht University, Utrecht, The Netherlands, 56Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa, Madrid, Spain, 57Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany.
Abstract: Extracellular vesicles (EVs) are membranous vesicles released by a variety of cells in their microenvironment. Recent studies have elucidated the role of EVs in intercellular communication, pathogenesis, drug, vaccine and gene-vector delivery, and as possible reservoirs of biomarkers. These findings have generated immense interest, along with an exponential increase in molecular data pertaining to EVs. Here, we describe Vesiclepedia, a manually curated compendium of molecular data (lipid, RNA, and protein) identified in different classes of EVs from more than 300 independent studies published over the past several years. Even though databases are indispensable resources for the scientific community, recent studies have shown that more than 50% of the databases are not regularly updated. In addition, more than 20% of the database links are inactive. To prevent such database and link decay, we have initiated a continuous community annotation project with the active involvement of EV researchers. The EV research community can set a gold standard in data sharing with Vesiclepedia, which could evolve as a primary resource for the field.

Introduction

A growing body of research has implicated extracellular vesicles (EVs), membranous sacs released by a variety of cells, in diverse physiological and patho-physiological conditions [1–9]. They can be detected in body fluids including blood plasma, urine, saliva, amniotic fluid, breast milk, and pleural ascites [10–13], and contain proteins, lipids, and RNA representative of the host cell [14–18]. Though a definitive categorization is yet to be achieved [19], EVs can be broadly classified into three main classes, based on the mode of biogenesis: (i) ectosomes (also referred to as shedding microvesicles), (ii) exosomes, and (iii) apoptotic bodies (ABs) (see Box 1).

Recent studies have highlighted the role of EVs in intercellular communication [20–22], vaccine and drug delivery [23–25], and suggested a potential role in gene vector therapy [26] and as disease biomarkers [27]. More than three decades of research has advanced our basic understanding of these extracellular organelles and has generated large amounts of multidimensional data [14,17]. Whilst most of the data are presented in the context of the biological findings/technical development and are mentioned in the inline text of the published article, a vast majority are often placed as supplementary information or not provided [28,29]. Importantly, none of the molecular data in published articles is easily searchable [28]. With the immense interest in EVs and advances in high-throughput techniques, the data explosion will only increase. An online compendium of heterogeneous data will help the biomedical community to exploit the publicly available datasets and accelerate biological discovery [30].

ExoCarta and Need for an EV Database

Existing databases are not comprehensive. For example, ExoCarta [http://www.exocarta.org], a database for molecular data (proteins, RNA, and lipids) identified in exosomes, catalogs only exosomal studies (as reported by the authors) [31]. Described initially in 2009 [32], the database has been visited by more than 16,000 unique users [33]. However, only exosomal studies (as reported by the authors) are catalogued in ExoCarta. With the confusion in terminologies and inefficiency of the purification protocols to clearly segregate each class of EVs [1,19], it is critical to build a repository with data from all classes of EVs to understand more about the molecular repertoire of the various classes of EVs and their biological functions. This was the rationale for starting the Vesiclepedia online compendium for EVs.

Vesiclepedia

Vesiclepedia (http://www.microvesicles.org) is a manually curated compendium that contains molecular data identified in all classes of EVs, including ABs, exosomes, large dense core vesicles, microparticles, and shedding microvesicles. The main criterion for manual curation was the presence of these vesicles in the extracellular microenvironment (EVs) as approved by the investigators who undertook the research. At this juncture, the EVs are named as per the curated article or submitting author, as the nomenclature is yet to be standardized [19]. Vesiclepedia was built using ZOPE, an open source content management system. Python a portable, interpreted, object oriented programming language was used in the three-tier system to connect the web interface with a MySQL database. Users can query or browse through proteins, lipids, and RNA molecules identified in EVs. Selecting a gene of interest directs the user to a gene/molecule page with information on the gene, its external references to other primary databases, experiment description of the study that identified the molecule, gene ontology based annotations, protein-protein interactions, and a graphical display of such network with relevance to molecules identified in EVs. Gene ontology annotations of molecular functions, biological process, and subcellular localization were retrieved from Entrez Gene [34] and mapped onto the proteins/mRNA identified in EVs. Under the experiment description, the sample source including the tissue name or cell line name, EV isolation procedures, and flotation gradient density as reported in the study are provided to the users. EV proteins are mapped onto their protein physical interactors along with the protein interaction identification method and PubMed identifier. Protein-protein interaction data was obtained from HPRD.
Additionally, only few journals mandate data deposition with an investigator. Tools don’t have a continuous data deposition before publication. Currently available community annotation data deposition before publication. Cur-and (ii) peer-reviewed journals mandating be regulated at two levels: (i) principal has to be noted that data annotation can system has to ensure continuous deposition of data and “not just once” uploads. It happens with a clear and transparent mechanism. In addition, the system has to ensure continuous deposition of data and “not just once” uploads. It has to be noted that data annotation can be regulated at two levels: (i) principal investigators voluntarily contributing data and (ii) peer-reviewed journals mandating data deposition before publication. Currently available community annotation tools don’t have a continuous data deposition arrangement with an investigator. Additionally, only few journals mandate the deposition of data to public repositories before acceptance of a manuscript. To this end, we have initiated a community annotation project through Vesiclepedia that involves members of the EV research community (33 laboratories from 20 countries: Table 1).

Community annotation via Vesiclepedia happens through the founding members who agree to the conditions listed in Box 2. All of the members are listed in the credits page (http://www.microvesicles.org/credits).

On the basis of the agreement of community participation, members will submit their data automatically to Vesiclepedia before or after publication (Figure 1). Non-members submitting their research findings for peer-review through international journals might find the Vesiclepedia members as referees who will request/mandate the authors to submit the data to Vesiclepedia. By instituting this mechanism the datasets will be continuously deposited to Vesiclepedia. However, a non-member can also be appointed as a referee in which case the data might not be submitted to Vesiclepedia. The Vesiclepedia-data capture team will work along with the researchers to make the data submission as easy as possible. Detailed information on the format of data required for submission is provided in the Vesiclepedia webpage (http://www.microvesicles.org/data_submission). Currently, Vesiclepedia comprises 33,264 protein, 18,718 mRNA, 1,772 miRNA, and 342 lipid entries (Table 1). All of these data were obtained from 341 independent studies that were published over the past several years.

Conclusions and Future Directions

ExoCarta will be active even after the release of Vesiclepedia and will become a primary resource for high-quality exosomal datasets. Data deposited to ExoCarta can also be accessed through Vesiclepedia; however, only high quality exosomal datasets deposited to Vesiclepedia can be accessed through ExoCarta. With the launch of Vesiclepedia, we expect to have an organised data deposition mechanism. We expect active participation from the EV research community, along with the addition of new members and numerous heterogeneous datasets. All datasets submitted by EV researchers will be listed in the credits page along with the investigator details.

Box 2. Conditions to Become a Member of Vesiclepedia Community Annotation
1. Agree to submit datasets pertaining to EVs to Vesiclepedia before or after publication on a continuous basis
2. When reviewing articles, mandate/request investigators to submit datasets on EVs to Vesiclepedia
Figure 1. A schematic of Vesiclepedia community annotation. Based on the agreement of community participation, members will submit their data automatically to Vesiclepedia before and after publication. Non-members submitting their research findings for peer-review through international journals might find some of the Vesiclepedia members as referees who will request/mandate the authors to submit the data to Vesiclepedia. Alternatively, a non-member can also be appointed as a referee in which case the data might not be submitted to Vesiclepedia. A non-member can also submit data directly to Vesiclepedia.

doi:10.1371/journal.pbio.1001450.g001

References

1. Thery C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9: 581–593.
2. Keller S, Sanderson MP, Stoeck A, Altevogt P (2006) Exosomes: from biogenesis and secretion to biological function. Immunol Lett 107: 102–108.
3. Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: Extracellular organelles important in intercellular communication. J Proteomics 73: 1907–1920.
4. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ (2006) Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20: 1487–1495.
5. Cocucci E, Raparini G, Meldolesi J (2009) Sheding microvesicles: artefacts no more. Trends Cell Biol 19: 43–51.
6. Stoorvogel W, Kleijmeer MJ, Geuze HJ, Raposo G (2002) The biogenesis and functions of exosomes. Traffic 3: 321–330.
7. van Nie G, Porto-Carreiro I, Simoes S, Raposo G (2006) Exosomes: a common pathway for a specialized function. J Biochem (Tokyo) 140: 13–21.
8. Johnstone RM (2006) Exosomes biological significance: A concise review. Blood Cells Mol Dis 36: 315–321.
9. Rajendran L, Houho M, Zahn TR, Keller P, Geiger KD, et al. (2006) Alzheimer’s disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci U S A 103: 11172–11177.
10. Simpson RJ, Lim JW, Moritz RL, Mathivanan S (2009) Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics 6: 267–283.
11. Lasser C, Alkhani VS, Ekstrom K, Edh M, Paredes PT, et al. (2011) Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med 9: 9.
12. Admyre C, Johansson SM, Qazi KR, Filen JJ, Lahesmaa R, et al. (2007) Exosomes with immune modulatory features are present in human breast milk. J Immunol 179: 1969–1978.
13. Mincheva-Nilsson L, Baranova V (2010) The role of placental exosomes in reproduction. Am J Reprod Immunol 63: 520–533.
14. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, et al. (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9: 654–659.
15. Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2: 569–579.
16. Al-Nedawi K, Meehan B, Rak J (2009) Microvesicles: messengers and mediators of tumor progression. Cell Cycle 8: 2014–2018.
17. Mathivanan S, Lim JW, Tauro BJ, Ji H, Moritz RL, et al. (2010) Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol Cell Proteomics 9: 197–208.
18. Al-Nedawi K, Mechan B, Micalel J, Hotak V, May L, et al. (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10: 619–624.

19. Simpson RJ, Mathivanan S (2012) Extracellular microvesicles: the need for internationally recognised nomenclature and stringent purification criteria. J Proteomics Bioinform 5: ii–ii.

20. Hood JL, San RS, Wickline SA (2011) Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res 71: 3792–3801.

21. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, et al. (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18: 883–891.

22. Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, Gonzalez S, Sanchez-Cabo F, et al. (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2: 282.

23. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, et al. (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29: 141–145.

24. Sun D, Zhang X, Xiang X, Liu Y, Zhang S, et al. (2010) A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 18: 1606–1614.

25. Lakhal S, Wood MJ (2010) Exosome nanotechnology: an emerging paradigm shift in drug delivery: exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers. Bioessays 33: 737–741.

26. Skog J, Wurdinger T, van Rijn S, Meijer DH, Guanche L, et al. (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10: 1470–1476.

27. Santos C, Blake J, States DJ (2005) Supplementary data need to be kept in public repositories. Nature 438: 738.

28. Mathivanan S, Ahmed M, Ahn NG, Alexandre H, Amanchy R, et al. (2008) Human Proteinpedia enables sharing of human protein data. Nat Biotechnol 26: 164–167.

29. Vizcaino JA, Foster JM, Martens L (2010) Proteomics data repositories: providing a safe haven for your data and acting as a springboard for further research. J Proteomics 73: 2136–2146.

30. Wren JD (2008) URL decay in MEDLINE–a 4-year follow-up study. Bioinformatics 24: 1381–1385.

31. Mathivanan S, Pandey A (2008) Human Proteinpedia as a resource for clinical proteomics. Mol Cell Proteomics 7: 2038–2045.

32. Wren JD (2004) 404 not found: the stability and persistence of URLs published in MEDLINE. Bioinformatics 20: 668–672.

33. Guerrier-Burel M, Gouin E, Virelizier JL (2003) The exosome: a new player in trans- and post-translational regulations. Nat Rev Mol Cell Biol 4: 11–21.

34. Maglott D, Ostell J, Pruitt KD, Tatusova T (2007) Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res 35: D92–D96.

35. Mishra GR, Mathivanan S, Kumaran K, Kannabiran N, Suresh S, et al. (2006) Human protein reference database–2006 update. Nucleic Acids Res 34: D411–D414.

36. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, et al. (2009) Human Protein Reference Database–2009 update. Nucleic Acids Res 37: D767–D772.

37. Breitkreutz BJ, Stark C, Reguly T, Boucher L, Breitkreutz A, et al. (2008) The BioGRID Interaction Database: 2008 update. Nucleic Acids Res 36: D637–D640.

38. Mathivanan S, Pandey A (2008) Human Proteinpedia as a resource for clinical proteomics. Mol Cell Proteomics 7: 2038–2047.

39. Breitkreutz BJ, Stark C, Reguly T, Boucher L, Breitkreutz A, et al. (2008) The BioGRID Interaction Database: 2008 update. Nucleic Acids Res 36: D637–D640.

40. Breitkreutz BJ, Stark C, Reguly T, Boucher L, Breitkreutz A, et al. (2008) The BioGRID Interaction Database: 2008 update. Nucleic Acids Res 36: D637–D640.

41. Wren JD (2004) 404 not found: the stability and persistence of URLs published in MEDLINE. Bioinformatics 20: 668–672.

42. Fevrier B, Raposo G (2004) Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 16: 413–421.

43. Raposo G, Nijman HW, Stoorvogel W, Liejen- dekker R, Harding CV, et al. (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183: 1161–1172.