M/L, Hα ROTATION CURVES, AND H i MEASUREMENTS FOR 329 NEARBY CLUSTER AND FIELD SPIRALS. I. DATA

NICOLE P. VOGT1,2

Department of Astronomy, New Mexico State University, 1320 Frenger Mall, Las Cruces, NM 88003; nicole@nmsu.edu

AND

MARTHA P. HAYNES,3 TERRY HERTER, AND RICCARDO GIOVANELLI,3

Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853; haynes@astro.cornell.edu, riccardo@astro.cornell.edu, herter@astro.cornell.edu

Received 2003 August 4; accepted 2004 February 23

ABSTRACT

A survey of 329 nearby galaxies (redshift z < 0.045) has been conducted to study the distribution of mass and light within spiral galaxies over a range of environments. The 18 observed clusters and groups span a range of richness, density, and X-ray temperature and are supplemented by a set of 30 isolated field galaxies. Optical spectroscopy taken with the 200 inch (5 m) Hale Telescope provides separately resolved Hα and [N II] major-axis rotation curves for the complete set of galaxies, which are analyzed to yield velocity widths and profile shapes, extents, and gradients. H i line profiles provide an independent velocity width measurement and a measure of H i gas mass and distribution. I-band images are used to deconvolve profiles into disk and bulge components, to determine global luminosities and ellipticities, and to check morphological classification. These data are combined to form a unified data set ideal for the study of the effects of environment upon galaxy evolution.

Key words: galaxies: clusters: general — galaxies: evolution — galaxies: kinematics and dynamics

On-line material: additional figures, machine-readable tables

1. INTRODUCTION

This study concerns the effects of the cluster environment on the distribution of mass and light in spiral galaxies. These data are part of a large survey of nearby clusters (redshift z < 0.045) designed to study the dependence of mass-to-light distributions upon cluster densities by comparing core galaxies with periphery and low-density region members, to evaluate the global properties of rotation curves, and to examine fundamental galaxy properties in varied environments. There are several other large samples of optical rotation curves in the literature at present, including Courteau’s 1992 sample of 350 that focuses primarily upon field galaxies, and Mathewson & Ford’s 1996 sample of 2447 in the southern hemisphere. This data set contains the rotation curves of 329 northern hemisphere cluster and field galaxies, with H i observations for most to provide additional, independent constraints upon mass distributions.

The velocity profiles of spiral galaxies were originally believed to fall in a Keplerian decline at large radii, following an inverse r law near the edge of the optical disk where the light (and presumably mass) dropped off. When the first measured rotation curves did not show such a trend they were assumed to probe only the inner region, rather than that predicted to exist at large radii for a pure exponential disk model. As hardware improvements extended the sensitivity and depth of observations, however, more and more of the outer regions of galaxy disks were observed. It became clear that both optical and 21 cm line observations showed velocity profiles that rose in the inner regions but often remained flat at their outer extents, implying the presence of a considerable amount of dark matter within the optical radius (see Bosma 1978; review by Faber & Gallagher 1979).

In the early 1980s, Rubin and collaborators began a pioneering study of spiral galaxies to attempt to constrain mass distributions by analyzing optical velocity profiles and light distributions (Rubin et al. 1985, and references therein). They deduced that velocity profiles correlated well with basic galaxy properties as luminosity (brighter galaxies having larger velocity widths which rose more slowly) and morphological type (earlier type galaxies having larger velocity widths). This initial sample of field galaxies was later extended to include a set of cluster spirals (Burstein et al. 1986; Rubin, Ford, & Whitmore 1988; Whitmore, Forbes, & Rubin 1988) to evaluate the importance of the cluster environment upon the mass distributions. They found a population of cluster galaxies with rotation curves that appeared to decline at large radii and argued that these galaxies had deficient halos that had either been stripped through an interaction with the cluster medium (e.g., ram pressure sweeping) or with close neighbors (tidal stripping) or had never been allowed to form. Later studies (Guhathakurta et al. 1988; Forbes & Whitmore 1989; Distefano et al. 1990; Anram et al. 1993; Adami et al. 1999; Dale et al. 2001) found conflicting results regarding these trends, and thus part of the motivation for this work has been to reexamine these claims within a larger sample of galaxies.

The strong effect of the cluster environment upon the H i gas envelope of spiral galaxies has been well established (see Haynes & Giovanelli 1986; Magri et al. 1988; Haynes 1989; Solanes et al. 2001). Galaxies interacting with the hot intracluster medium of moderate to high X-ray luminosity clusters...
are observed to be strongly H\textsubscript{i} deficient and to have lost H\textsubscript{i} gas preferentially at outer radii (Haynes 1989), and the pattern of H\textsubscript{i} deficiency correlates strongly with clustercentric radius. The stripped galaxies appear to have an undisturbed spiral morphology, although biased toward early types, implying that the mechanisms in play are either too weak to directly affect the stellar material or that the effect can only be recognized on a longer timescale (e.g., decreased young star formation from a depleted H\textsubscript{i} gas reservoir).

This paper is the first of three in a series. The present paper (Paper I) details the observations that were made in the optical and in the radio and defines the data analysis procedures and the modeling technique used to determine mass-to-light ratios for the galaxies within the sample. The second paper (Vogt et al. 2004a, hereafter Paper II) investigates the evidence for which many H\textsubscript{i} profiles had been already obtained and X-ray flux data existed (see Magri et al. 1988 study of H\textsubscript{i} deficiency): A262, A426 (Perseus), A1367, A1656 (Coma), A2147, and A2151 (Hercules). We added A2152 since it overlaps with A2147 and A2151, and A2197 and A2199 as the companion clusters cover the extremes of rich (A2199) and poor (A2197) environments. More moderate environments were sampled within clusters A400, A539, and A2063, and A2634 and close neighbor A2666, and the poor clusters A779 (chosen also to fill a gap at $\alpha \sim 10^\circ$) and A2162 (selected but observations barely begun). The sample was then augmented by the Cancer (CGCG 0819.6+2209) and NGC 507 (CGCG 0150.8+3615) groups. The cluster distributions were evaluated after the observations were completed and membership criterion imposed to separate true cluster members from those associated with the cluster in the nearby supercluster envelope and foreground and background field galaxies (see discussion in Paper II). Table 1 lists the cluster positions, redshifts, and parent supercluster structures, and Figure 1 shows their distribution upon the sky. Redshifts are presented in the heliocentric and the cosmic microwave

2. SAMPLE PROPERTIES

2.1. Distribution of Clusters

We have assembled herein the data from an observational program in moderate-resolution optical spectroscopy conducted at the 200 inch (5 m) Hale Telescope, with parallel 21 cm and I-band photometric observations, centered upon a set of 18 nearby clusters and an accompanying field sample. The clusters span a wide range in richness, density, and X-ray temperature in order to explore a wide range of environments, with redshifts between 5000 and 12,000 km s$^{-1}$. They were selected so that part of the sample was overhead at all hours to enable observations at all seasons and maximize our use of observing time on the project, with a preference for clusters within the Arecibo Observatory declination range ($-1^\circ < \delta < 38^\circ$). The initial selection of 16 was made from the northern catalog of rich clusters of galaxies (Abell, Corwin, & Olowin 1989), drawing from the Pisces-Perseus, Hercules, and Coma superclusters. We began with six rich clusters for which many H\textsubscript{i} profiles had been already obtained and X-ray flux data existed (see Magri et al. 1988 study of H\textsubscript{i} deficiency): A262, A426 (Perseus), A1367, A1656 (Coma), A2147, and A2151 (Hercules). We added A2152 since it overlaps with A2147 and A2151, and A2197 and A2199 as the companion clusters cover the extremes of rich (A2199) and poor (A2197) environments. More moderate environments were sampled within clusters A400, A539, and A2063, and A2634 and close neighbor A2666, and the poor clusters A779 (chosen also to fill a gap at $\alpha \sim 10^\circ$) and A2162 (selected but observations barely begun). The sample was then augmented by the Cancer (CGCG 0819.6+2209) and NGC 507 (CGCG 0150.8+3615) groups. The cluster distributions were evaluated after the observations were completed and membership criterion imposed to separate true cluster members from those associated with the cluster in the nearby supercluster envelope and foreground and background field galaxies (see discussion in Paper II). Table 1 lists the cluster positions, redshifts, and parent supercluster structures, and Figure 1 shows their distribution upon the sky. Redshifts are presented in the heliocentric and the cosmic microwave

Table 1

Cluster	R.A. (B1950.0)	Decl. (B1950.0)	Heliocentric Redshifta	CMB Redshift	R_a^b	Supercluster	Referencesc
NGC 507	01 20 00.0	+33 04 00	5091	4808	1.74	Pisces-Perseus	1
A262	01 49 50.0	+35 54 40	4918	4664	1.81	Pisces-Perseus	1
A400	02 55 00.0	+05 50 00	7142	6934	1.25	Pisces-Perseus	2
A426	03 16 20.0	+41 20 00	5460	5300	1.63	Pisces-Perseus	3
A539	05 13 54.0	+06 25 00	8730	8732	1.04	...	4
Cancer	08 17 30.0	+21 14 00	4705	4939	1.91	...	5
A779	09 16 48.0	+33 59 00	6967	7211	1.30	...	2
A1367	11 41 54.0	+20 07 00	6408	6735	1.38	Coma	2
A1656	12 57 24.0	+28 15 00	6917	7185	1.29	Coma	6
A2063	15 20 36.0	+08 49 00	10445	10605	0.86	Hercules, southern	2
A2147	16 00 00.0	+16 02 00	10493	10588	0.87	Hercules, canonical	7
A2152	16 03 07.0	+16 35 00	12930	13018	0.72	Hercules, canonical	7
A2151	16 03 00.0	+17 53 00	11005	11093	0.83	Hercules, canonical	7, 8
A2162	16 10 30.0	+29 40 00	9600	9659	0.95	Hercules, northern	9
A2197	16 26 30.0	+41 01 00	9138	9162	0.99	Hercules, northern	2, 10
A2199	16 26 54.0	+39 38 00	8970	8996	1.00	Hercules, northern	2, 10
A2634	23 35 54.9	+26 44 19	9240	8895	0.98	Pisces-Perseus	11
A2666	23 48 24.0	+26 48 24	8188	7776	1.11	Pisces-Perseus	2, 11

Note.—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds.

a Redshifts from the heliocentric and CMB reference frames.

b The Abell radius (in degrees).

c References—(1) Sakai, Giovannelli, & Wegner 1994; (2) Zabludoff et al. 1993; (3) Kent & Sargent 1983; (4) Ostriker et al. 1988; (5) Bothun et al. 1983; (6) Kent & Gunn 1982; (7) Barmby & Huchra 1998; (8) Bird, Dickey, & Salpeter 1993; (9) Abell 1958; (10) Dixon, Godwin, & Peach 1989; (11) Scodeggio et al. 1995.
background (CMB) reference frames (see Kogut et al. 1993 for relative relations). A number of these clusters were analyzed in the peculiar velocity study of Giovanelli et al. 1997; coordinates and redshifts are consistent between the two presentations.

We began by characterizing the clusters by a set of criteria, including the Abell richness class, the diffuse X-ray gas luminosity and temperature, the velocity dispersion, and the H i deficiency of member galaxies. The Abell classification serves as a robust measure of cluster richness, defined by the number of bright galaxies within one R_d (1.5 h^{-1} Mpc). Rich clusters are also distinguished by the presence of a large, diffuse envelope of hot X-ray gas, of order 10^{42}–10^{45} ergs s$^{-1}$ (Beers et al. 1991), with a flux distribution only roughly equivalent in some cases to that of the individual galaxies (the luminous matter). This material can compose up to 30% of the mass of a cluster (Dell’Antonio, Geller, & Fabricant 1995). It is accreted from the surrounding 10–20 Mpc (David 1997), in contrast to the dark matter, which can be accounted for entirely by the stripping of individual galaxy halos.

Dynamically evolved, centrally condensed clusters, such as A1656, have high X-ray luminosities and intergalactic gas temperatures, and the X-ray flux is distributed smoothly throughout the cluster. In contrast, less evolved rich clusters, such as A2634, have lower X-ray luminosities and temperatures, and the X-ray intergalactic gas is clumped about individual galaxies, suggesting recent emission or gas stripping by ram pressure (Gunn & Gott 1972) or tidal forces (see Toomre & Toomre 1972, and more recently Weinberg 1997). The X-ray gas temperature and distribution serves as an indicator of the overall state of the cluster: the X-ray temperature correlates tightly with the velocity dispersion (i.e., the depth of the potential well), while the X-ray luminosity reflects the density of the intracluster medium.

H i deficiency, in contrast, is as a specific indicator of the local environment around a particular galaxy. By observing the morphology-density relation (see Dressler 1980), number counts of galaxies, and H i–deficiency statistics, we gain a measure of the previous interaction history of member galaxies, with both the intergalactic medium and with other galaxies within the potential. We are thus able to characterize the range of our sample, from such highly evolved clusters as A1656 and A426, to the loose groups of Cancer and NGC 507, to isolated field galaxies.

2.2. Galaxy Selection

An initial search was made of the Uppsala General Catalog (UGC; Nilson 1973) for sources that fell within several R_d of the target cluster centers (the total sample is heavily concentrated within one R_d). Extensive use was made of the source lists contained within Dressler’s (1980) catalog of rich clusters and the accumulated sources already entered into the 1994 version of the private database of R. G. and M. P. H. known as the AGC, containing a large number of galaxies observed with the Arecibo Observatory 305 m radio telescope and/or the 300 ft (91 m) NRAO telescope in Green Bank. A visual examination was then conducted of the POSS prints of the region surrounding each cluster center for additional sources. Galaxies were chosen on the basis of apparent cluster membership (i.e., within several R_d of the target cluster centers, note that redshifts were unknown for many sources before the observations began) and spiral appearance and morphology, with no evidence of current interaction with other sources or overlapping field stars to obscure the profiles. Roughly 12% of the selected galaxies are barred systems. The sources were prioritized to have an angular size $\theta \geq 30''$ and an inclination angle $i \geq 30^\circ$ ($b/a \leq 0.87$). The clusters were examined from the center outward, focusing first upon all galaxies within one R_d and then adding additional sources further out as observing time permitted. Since the optical spectra and I-band images were acquired in parallel over the 5 yr observational period, spectral candidates were at times prioritized within a cluster sample because an image had already been obtained. This was a random effect, however, as the imaging program was designed to lag the spectral and H i line profile programs deliberately, so as to be composed mainly of sources for which we had already obtained a velocity profile. Because of this time lag and the limited amount of observing time available for imaging, several clusters lack substantial imaging, and we have no images for A2063.

The sample cannot be said to be strictly limited nor complete in either size nor magnitude, because of the varying inputs into the total set. We conducted a program to evaluate the distances to many of the clusters via the Tully-Fisher (Tully & Fisher 1977) relation in parallel with this project, and thus every effort was made to observe all spiral galaxies that appeared to be members of the target clusters (i.e., neither foreground nor background objects, and without obscuring...
sources), especially in the inner regions of the clusters. As expected, the fraction of late-type spirals decreases within the cluster cores, although such galaxies were prioritized in the selection process; the median type across the complete sample is Sbc.

Figure 2 addresses the issue of sample selection, given the lack of completeness in the selection criteria (note that the sample covers a factor of 2 in redshift). The data are divided into five narrow redshift bins, and the distinct peaks within each bin are caused by the tight cluster distribution. The distribution of angular size (characterized by $R_{23.5}$, the radius at which the disk reaches a surface brightness level of $M_I = 23.5$ mag arcsec$^{-2}$) within each bin can be fitted well by a Gaussian curve, given the narrowness of the bins (i.e., the spread in distance is rather small within each bin). We find that a Gaussian of constant width will fit the data across all five bins. The mean of the curve has been shifted to account for the change in apparent size due to distance for the central redshift of each band.

A Schechter luminosity function ($M^* = -22.1, \alpha = -0.50$, assuming the central redshift of each band) is similarly applied to the magnitude histograms and shifted to account for the change in apparent magnitude on the sky with redshift; a dotted line marks where completeness begins to fall off, at $M_I = 13.85$. The spread of each luminosity histogram is a combination of variations in distance and in intrinsic luminosity, but the first factor is minimized by the narrowness of the redshift bins and the strong peaks due to clustering.
constant width and mean suggest that we are sampling galaxies of the same velocity width (mass) at all redshifts. The change in apparent magnitudes mirrors that in apparent size. We fitted a Schechter luminosity function to the data within each redshift bin, a technique that works purely because the scatter in distance within each bin is small and so is the spread in luminosity primarily because of intrinsic variation. The point is simply to characterize the change in apparent magnitudes, which are well fitted by a luminosity function where M^* is set by assuming all galaxies within each bin fall at the central redshift for the bin. The completeness in magnitude can then be observed to fall off at $M_I = 13.85$, across all redshift bins, below the peak of the luminosity function.

3. OPTICAL SPECTRA

3.1. Data Acquisition and Reduction

Moderate-resolution long-slit optical spectra were obtained for 329 spiral galaxies with the Hale 200 inch telescope using the Double Spectrograph (Oke & Gunn 1982) at the Cassegrain focus ($f/15.7$) on 51 nights spread throughout 12 observing runs from 1990 April to 1994 June. The red ($5200–11000$ Å) camera was used with one of two TI 800 × 800 chips, with a 1200 lines mm$^{-1}$ grating (7100 Å blaze) yielding a resolution of 0.81 Å pixel$^{-1}$ for 15 μm pixels. The camera has a spatial scale of 0′58 pixel$^{-1}$ and the $1/4 × 125′′$ slit was used (only one galaxy within the sample extended beyond a slit edge in Hα). We observed the appropriately redshifted [N II] line pair ($λλ6548, 6584$), Hα ($λ6563$), and the [S II] line pair ($λλ6717, 6731$) by obtaining spectra over the wavelength range $6300 ≤ λ ≤ 7000$, with a resolution in velocity space of 37 km s$^{-1}$ pixel$^{-1}$. Note that at a redshift $z = 0.045$ Hα is redshifted to a wavelength of $λ6858$, comfortably within our upper limit.

The spectrograph was rotated to align the slit along the major axis of the source with an accuracy greater than that of the position-angle measurement ($±2′$, measured from sample I-band images or POSS prints). The seeing conditions ranged from 0′′8 to 2′′ and were usually under 1′′5. Because of this, neighboring 0′′58 pixels are not independent. Sources were observed on average at less than 1.2 air masses and never at more than 1.5 air masses. Exposures ranged from 2400 to 3000 s in length. As the project progressed, integration times were lowered slightly from the nominal value of 3000 s for all but the most distant clusters in order to observe more sources per night, since the signal-to-noise ratios (S/Ns) were quite high in the observed emission lines.

The data were reduced using standard Image Reduction and Analysis Facility* (IRAF) routines and custom software. The CCD was aligned so that the spectra were dispersed along the columns, and the spatial axis ran along the rows. Flat fields were created from dome flats taken with high intensity white light lamps, and standard stars were placed in a series of five positions across the slit twice each night to correct for S-curve distortion along the chip (0.1–0.2 pixels). Spectra were wavelength calibrated directly from the strong night-sky emission lines since they spanned the wavelength range observed quite well and to avoid the problems of variable spectrograph flexure that appeared in the lamp spectra taken directly before and after each exposure.

A region was marked on each spectrum beyond the extent of the disk emission (for all but the most spatially extended galaxies) and used to calculate an average background level across the chip. This background was then subtracted to remove the strong night sky line emission that fell near or on top of the galaxy emission lines. A running (boxcar) average was applied across the chip in a box three columns wide to smooth the data slightly. A Gaussian fitting routine was then applied to each column of data in the zone about the Hα line, fitted in either emission or in absorption, and then the stronger [N II] line ($λ6584$) to trace the velocity profile across the optical disk. The [S II] line pair ($λλ6717, 6731$) had been redshifted into a wavelength range that is heavily contaminated by night-sky lines for most of the galaxies in this sample, and thus the lines could not be well fit. Criteria were set for the quality of the fit at every column: an amplitude requirement (5σ), a width requirement (3σ), a limit on the line width (1–10 Å), and a limit on the distance that the line centerpoint could shift between two columns (5 pixels). This fitting process was iterated until the fit of the lines was found to be adequate. The final fits are good to within 5 km s$^{-1}$.

3.2. Comparison with Literature Data

The first significant sample of optical rotation curves was acquired by Vera Rubin and her collaborators in the early 1980s, taken on photographic plates with the KPNO and CTIO 160 inch (4 m) telescopes. We have reobserved six galaxies in the Rubin sample; the spectra and derived Hα rotation curves are found to be in good agreement, as one would expect given the similarity of observational techniques. In Figures 3a and 3b, we compare the data for two common galaxies, UGC 11810 (NGC 1401) and UGC 5250 (NGC 2998). The overall structure is the same in both set of spectra, although since the Rubin data has been smoothed significantly it shows less of the small scale variations seen in our data. Their data appear to extend slightly further out along the galaxy disks, although of course such measurements are a strong function of the fitting constraints applied to extracting rotation curves, but the additional data points do not show additional structure in the rotation curves.

The extensive data set of Mathewson & Ford (1996) is certainly worthy of note; however, due to its southern declination we do not overlap. More recently, Courteau (1992, 1997) has presented CCD long-slit spectroscopy from the Shane 120 inch (3 m) of Hα and [N II] lines for 304 spiral galaxies. We have observed 23 galaxies in common; a comparison plot of the full set can be found within Courteau (1997) and is thus not included here. Courteau’s data were obtained primarily to determine a full velocity width for each galaxy rather than to examine the structure of the entire rotation curve, and so are not as deep. Our observations have a higher S/N due to longer exposures times (50 minutes vs. 25–30 minutes) and a larger aperture. Taking this into account, we find good agreement between the two data sets. The radial extents of the profiles are similar, and much (although not all) of the small-scale structure is confirmed in each set.

Long-slit spectroscopy observations are handicapped by the fact that they sample only along the (major) axis of a galaxy and thus are extremely sensitive to the (1) detection and (2) localized noncircular motions of individual H II regions or spiral arm structure along this axis. An excellent alternative technique is to acquire full two-dimensional velocity maps via interferometry. Fabry-Pérot data sets typically penetrate further and with greater S/N in the outer regions of galaxies, and

*IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under cooperative agreement with the National Science Foundation.
full velocity maps allow a more sophisticated deprojection of velocities into the edge-on plane by fitting a series of disks of varying inclination as a function of radii and modeling for warps and substructure as a function of azimuth. The costs, however, in both observing and analysis time, can be high, and to date have limited the number of galaxies analyzed via this technique. Amram et al. (1992, 1994) used the 140 inch (3.6 m) CFH telescope to obtain two-dimensional Hα maps for 36 galaxies within nearby clusters (13 of which fall within our sample), and the GHASP project (Garrido et al. 2002, 2003) has recently published similar data for 38 galaxies out of an observed sample of over 160 field spirals and irregulars. Figures 3c and 3d overlay the optical rotation curves from our data and from Amram et al. for UGC 1437 (NGC 753) and UGC 1238. As expected the Fabry-Pérot data extends roughly 30% further out in the outer regions of the galaxy, and, being smoothed azimuthally, shows less small-scale, localized variations. The curves agree well on global structure, however, and within the inner arcminute radius sampled within our data the terminal behavior of the velocity profile is well established.

We have compared the common galaxies within our sample and several from the literature to establish the equivalence of techniques of observation and analysis between various practitioners of long-slit spectroscopy. Although not shown here explicitly, our data acquisition and reduction techniques are also in good agreement with the published work of Dale et al. (1997, 1998, 1999), which shares many common elements. More extensive comparisons could be made with a broader range of data sets (e.g., Corradi & Capaccioli 1991), but we have shown sufficient consistency in form for our purpose. While Fabry-Pérot observations give additional information regarding the detailed velocity structure of galaxy disks, the global properties obtained via long-slit work are in agreement with those derived from these measurements.

3.3. Data Characterization and Analysis

We begin by visually characterizing the optical spectra; Figure 4 shows a subset of four galaxies ranging from type Sa through Sc. These moderate-resolution data show a clear separation between the Hα and [N ii] lines, and the velocity profiles of the two species exhibit similar global behavior and structure. The Hα flux is generally stronger than that of the [N ii] at a given position and tends to extend slightly further to large radii. Both are sensitive to the positioning of individual H ii regions along the slit and can become patchy when traced along a late-type disk with strong spiral arms, where the regions between the arms have been swept clean of gas. The [N ii] lines tend to be better resolved in the nuclear region. The Hα line, in contrast, can broaden appreciably and may be derived from clumps of gas traveling at noncircular (i.e., random) velocities. The presence of a bar often creates a plateau, or a local maximum, in velocity at the end of the bar, as shown for UGC 1013 in Figure 5f. The emission extends out to a mean value of 3.7 Rd. It can be traced past 2.2 Rd, the point of maximum velocity for a pure exponential disk (Freeman 1970), for all but the lowest quality data and a number of galaxies with strong bars, where Rd has been measured to be quite large (>10 kpc).

The first galaxy in Figure 4, UGC 2736, is shown as it exhibits no [N ii], and the Hα line is found purely in absorption. We note that at high-inclination angles the morphological distinction between an early-type spiral galaxy and an S0 becomes more difficult to discern, because the spectra are composed primarily of light from the older stellar populations of the disk (see the discussion in Paper II).
less than 30 such spectra in the sample. The next three galaxies were selected because they were less inclined than average, to allow easy examination of the spiral structure along the long slit, but are otherwise representative of the sample (although recall that the median type is Sbc). The strength of the flux along the disk is a clear function of the spiral arm structure, and indeed much of the disk of the Sa galaxy is extremely faint.

Rotation curves were created for the entire data set by combining the H\alpha and [N ii] data together to create unified velocity profiles. The rotation curve of a normal spiral galaxy can be characterized by three regions. There is a steeply rising inner region, a transition zone (often called the elbow point) where the rotation curve turns over, and then an outer region that is roughly linear (like the inner region) and often flat. We find the overall shape of the rotation curve to be more a function of luminosity than of morphological type, as reported by Rubin et al. (1988), indicating that optical morphology is not a strong measure of the underlying gravitational potential. The terminal velocities correlate strongly with luminosity, as expected from the Tully-Fisher relation, and the higher luminosity galaxies also have rotation curves that rise more quickly to their terminal value than the lower luminosity sources (characterized by gentler curves with wider transition zones).

The spectra were binned according to quality and to rotation curve shape. The 278 quality 1 rotation curves are well-defined (traced) and well sampled, the 45 quality 2 curves are of fair quality; the curve is untraceable at certain points along the disk (due either too weak H\alpha flux or to the inference of [OH] emission lines), and the six quality 3 curves do not adequately map the velocity profile of the galaxy (the H\alpha flux is too weak or the galaxy is too face-on). The shape scale is sensitive to the slope of the rotation curve, particularly in the outer region, and defined as follows: the 120 quality 1 curves are flat in their outer regions, and evenly terminated, the 128 quality 2 curves are almost flat and yet slightly rising in their outer regions, the 57 quality 3 curves terminate with a rising profile, and the 12 quality 4 curves exhibit a pattern of solid-body rotation, being lines of one continuous slope with no turnover, or elbow, point or inflection recorded in the emission-line profile. Examples of all four types are shown in Figure 5. Twelve of the rotation curves fit none of these shape categories, five being too face-on for the velocity profile to be well mapped, two having disturbed curves with strong distortion from a smooth shape, and five (all of quality 2 or 3) either too poor in quality or too sparse in coverage of the disk to be well fitted.

Each calibrated spectrum was visually inspected and (rarely) single points were removed from the fitted rotation curve. We illustrate the characteristics of the sample with four galaxies; scales are identical and spatial axes aligned for each set of three plots. The top image shows the I-band data for each galaxy, with the width of the long-slit represented as a black line. The bottom image is of the optical spectrum centered about the H\alpha line and companion [N ii] lines, with the bulk of the continuum removed to reveal the shape of the rotation curve in the inner regions. The bottom plot shows the rotation curve fit to H\alpha and to the stronger of the two [N ii] profiles. UGC 2736 is typed as an Sbc and shown because the H\alpha line is found purely in absorption, representative of an older stellar population; less than 10% of the sample shows no H\alpha emission. UGC 6746, one of the few Sa galaxies in the sample, UGC 8705, an Sb galaxy, and UGC 8337, an Sc galaxy, were chosen because their face-on orientation makes the spiral structure easier to observe in the images, but are otherwise representative.
curve if they were believed to be contaminated by night-sky lines or a cosmic-ray residual. A global centerpoint was then measured for each galaxy, and the data were transformed from wavelength to rest-frame velocity space. This enabled the rotation curves to be folded into a radial profile, so that they could be compared with the luminosity profiles for agreement of structure and used to create mass models. Velocity widths were measured to check for variations in the terminal velocities relative to those measured from the 21 cm line and to calculate deviations from the Tully-Fisher relation. Slopes were fitted to the inner and outer portions of each rotation curve, and functional fits were also applied to the form of the rotation curve to permit quantitative comparisons between galaxies.

The centerpoint of each spectrum in wavelength and on the sky was estimated in two ways. First, the wavelengths were binned into a histogram, and cuts were made into each side at the 10% level to remove scattered and outlying points. The two endpoints of the trimmed histogram were averaged to determine the cardinal central wavelength of the galaxy. The spatial and wavelength centerpoint of the rotation curve was then defined to lie at the location of the nearest data point. If the galaxy could not be traced through the nuclear continuum in either Hα or [N ii] (see Fig. 5c), the spatial centerpoint was allowed to “float” to a column with no data, and the cardinal wavelength value was used as the wavelength centerpoint. Second, the point closest to the center of light (COL) determined from fitting the peak of the galaxy continuum was chosen to be the spatial centerpoint, and the wavelength of that point to be the central wavelength of the system.

Default central values are those determined from the endpoints of the histogram of wavelengths. For 40 galaxies, however, the COL value is more representative. The spatial centerpoint for these galaxies differs by more than 2σ when measured via the two techniques. In the case of such disagreement, the COL values were taken to be more accurate and were used. We also folded each rotation curve at the centerpoint to create two radial profiles that were plotted on top of each other and verified that the curvature of the inner region of the rotation curve matched from profile to profile. In these cases, using the COL coordinates for centering decreased the deviations between the two radial profiles.

The central wavelength was then converted to a rest-frame velocity, as discussed in Vogt (1995). The central redshift z_c...
was taken to be the redshift of the galaxy, corrected first to a heliocentric reference frame and then to the reference frame of the Local Group according to the formulation

\[c_{z_{LG}} = c_{z_{\odot}} + 300 \sin l \cos b, \]

where \(l \) and \(b \) are the galactic longitude and latitude.

3.3.1. Velocity Widths

Velocity widths were measured in several ways from the optical spectra. First, the velocity data were binned into a histogram, as above, and cuts were made of a certain percentage into each side (the default being 10%). Although this process bears an apparent resemblance to the fitting of a 21 cm profile by making cuts in frequency space, it is only superficially analogous. The rotation curve is a spatially sampled curve, with no flux weighting given to the data points. A clipping algorithm is used to eliminate scattered outlying points that deviate from the curve and high-velocity points in the innermost regions from bars (see Fig. 5e); a curve that has leveled off in the outer regions has a fairly constant velocity near the spatial endpoints. The velocity width of the galaxy was then taken to be the difference between the velocity at each endpoint of the trimmed histogram. A second technique is designed for galaxies that are asymmetric or have unbalanced arms (e.g., strong H\(\alpha \) regions have been traced much further out into the disk along one side than the other, and so a more extended velocity profile can be derived; see Fig. 5e). The velocity data were again binned, and cuts were made on each end. Two velocity half-widths were defined by comparing the velocity of each endpoint with that of the center of the galaxy as defined by the COL. The full velocity width was then set to be twice that of the half-width measured further out along the disk. In the case of AGC 210727/CGCG 097-125, for example, the velocity half-width measured on the left side of the galaxy is 30 km s\(^{-1}\) higher than that measured on the right side, because it is based upon an inner peak in the velocity profile. We have thus chosen to double the half-width measured from the right side of the galaxy in determining the full width of the system.

A final velocity and velocity width were selected for each galaxy by examining all of the data, taking into account the structure of the velocity profile. The 12 curves of shape class 4, exhibiting solid-body rotation, proved to be better fitted by measuring the endpoints of the total velocity histogram as the velocity profile continued to rise appreciably in the outermost regions. For these galaxies the data were trimmed only of outlying deviant points (e.g., isolated points at the end of the rotation curve with an error bar 2–3 times higher than the norm lying more than 10 km s\(^{-1}\) above or below the rest of the curve), and the histogram endpoints were then used to calculate the velocity width. For the other rotation curve shapes, the standard trimmed histogram technique functioned well. It removed outlying points and a certain amount of scatter and minimized the effect of large velocities in the inner regions upon the total rotation curve. The key to any technique is a consistent and uniform application, however, that has been achieved with the current method.

It is interesting to compare velocity widths taken from optical spectra with those determined from 21 cm line profiles (see Courteau’s 1997 detailed discussion of various techniques, and weighted comparisons, for extracting widths from several samples in the literature). We initially applied our shape coding to the rotation curves within the subsample of Mathewson, Ford, & Buchhorn (1992) for which both optical spectra and 21 cm line profiles had been processed (165 galaxies). A comparison was made of the optical and radio velocity widths, and a shape-dependent correction factor applied to the optical spectra on this basis for the well-sampled types 1 through 3 (the number of shape 4 curves is too small for a statistically meaningful correction). The correction is not very large, and as expected is largest for the rotation curves that are rising in their outer regions: the optical velocity width is reduced by 3 km s\(^{-1}\) for \(Q_{sh} = 1 \), increased by 6 km s\(^{-1}\) for \(Q_{sh} = 2 \), and increased by 16 km s\(^{-1}\) for \(Q_{sh} = 3 \). Figure 6 compares velocity widths measured via the two techniques for the current sample, after this correction has been applied. There is a good linear relation over the full range of interest, given the error budget in both width estimates (see discussion in Giovanelli et al. 1997). An average of \(y \)-on-\(x \) and \(x \)-on-\(y \) weighted fits yields the relation (log \(\Delta V_{circ,H\alpha} - 2.2 \) = (1.03 \(\pm \) 0.02)(log \(\Delta V_{circ,H1} - 2.2 \)) – (0.013 \(\pm \) 0.008). The scatter in the width difference relation is 31 km s\(^{-1}\) and remains fairly constant across the range of \(\Delta V_{circ} \) (between 2.2 and 2.8), comparable to previous results for comparable samples of spiral galaxies (Courteau 1997).

One goal of our program is to explore changes in the fundamental parameters (mass, size, and luminosity) of galaxies as a function of environment. We thus need a robust measurement of the velocity width (mass) that is not affected by H\(\alpha \) gas stripping (that can penetrate well into the central regions of the disk) nor by truncation of star formation (and dependent H\(\alpha \) emission) in the outer regions of the disk. We have thus also opted to measure the velocity widths at a distance of 2 \(R_{d} \) along the disks. The rotation curves were again folded about their centerpoints, and both the H\(\alpha \) and [N \(ii \)] data inspected. These data were then interpolated to derive a representative velocity width at 2 \(R_{d} \), after the disk scale
lengths had been corrected for the effects of galaxy inclination and for seeing conditions.

For 16 galaxies, the H/\text{C}1\text{II} flux is in absorption rather than in emission, and the \text{[N II]} lines are too weak to be traced. For these galaxies a small correction was made to compensate for asymmetric drift, since the raw velocities were measured from the stellar component. Following the fitting technique laid out in Neistein et al. (1999), we fitted the velocity width and the dispersion of the H/\text{C}1\text{II} line at 2\text{R}_d, and derive a corrected velocity, $V^{2}_{\text{cor}} = \sigma^2(r + 2\frac{r}{R_d} - 1)$, where $r = 2\text{R}_d$ (see also discussion in Paper III). For a single galaxy, UGC 8069, the velocity could also be measured from the \text{[N II]} flux; the values agree to within 10 km s$^{-1}$.

3.3.2. Rotation Curve Slopes

Rotation curves can be defined to first order by a steeply rising linear inner region, a short transition zone, and then a linear outer region that levels off to a fairly constant level. Shape differences arise from the relative sizes of the regions, and when the outer region of a curve is truncated or does not level off. Each galaxy profile was first folded about its centerpoint by taking the absolute value of positions and velocities relative to that point. Five points were marked on each rotation curve defining the turnover point and a beginning and ending of an inner and an outer region, each of approximately linear behavior (see Fig. 7). A least-squares fit was made to each of the two regions, and these slopes were normalized by the velocity half width, $V(R_f)$, of the galaxy and the radius of the turnover point, R_{el}. This had the advantage of characterizing the curves with parameters derived solely from the shape of the potential, rather than using an optical radius and adding in the effects of the light distribution. The turnover point is less strictly defined than an isophotal radius, though, particularly for barred galaxies with additional substructure in the inner velocity profile. We define the slopes as

$$S_{in} = \frac{\Delta V_{in}/V(R_f)}{\Delta R_{in}/R_{ci}} \frac{V(R_{ci})}{V(R_f)}$$

Fig. 7.—Sample rotation curves of each shape class, overlaid with measured slopes (same galaxies as in Fig. 5). Rotation curves have been folded about the centerpoints; H/\text{C}1\text{II} circles are filled (approaching) and open (receding) to mark each side of the galaxy, and no error bars are plotted. The slopes can be well quantified for galaxies (a)–(d) ($Q_{sh} = 1–4$), but for those with inner peaks in the velocity profile, the inner slope is heavily influenced by the peak behavior (often caused by a bar, as in f). Rectangular hatched boxes mark the zones 0%–15% $R_{23.5}$ and 40%–80% $R_{23.5}$, over which the percentage rise of the curve is also measured.
and note their asymptotic forms for the simple case of two linear regions with a narrow turnover zone (the inner slope reduces to the fractional rise of the rotation curve within the turnover point). In Figure 7 we overlay the slope measurements on sample rotation curves for all shape codes. We observe that the inner and outer regions can be well defined and measured for all of the galaxies, but that for the $Q_{\text{sh}} = 4$ galaxy the turnover point is difficult to constrain. For the pictured two galaxies with inner peaks in the velocity profiles, the inner slope is weighted heavily by that substructure.

One can also normalize the ranges over which gradients are measured by isophotal radii. B-band images, which have been used for this purpose in previous studies (see Whitmore et al. 1988, hereafter WFR88; Amram et al. 1993, 1996), are strongly influenced by current star formation; we have opted for I-band images to be more sensitive to the older, underlying disk population. The cardinal B-band R_{25}, the isophotal limit of 25 mag arcmin$^{-2}$, lies roughly an order of magnitude above background levels. We compare R_{25} (taken from the RC3 for the 181 galaxies in common with our sample) to I-band isophotal radii and find a comparable limit at 23.5 mag arcmin$^{-2}$, $R_{23.5}$, with a median offset of 0.02 between the two radii (Vogt 1995). We then use $R_{23.5}$ to normalize the ranges over which we fitted velocity gradients to the rotation curves for comparison with the literature. It was necessary to determine a rotational velocity for a arbitrary points along each rotation curve. Each rotation curve was folded about its centerpoint, and the Hα and [N II] points from both sides of the disk were binned together in a weighted average to produce a nondegenerate radial curve. These data were then smoothed with a low-pass FFT filter, and velocities were calculated at specific points along the curve by using an interpolating routine. Inner and outer slopes of the rotation curves, which we shall label as gradients to distinguish them from slopes as defined above, were then defined to be the percentage rise of a synthetic, smooth rotation curve fitted to the data, in the ranges 0–0.15 $R_{23.5}$ and 0.4–0.8 $R_{23.5}$.

Figure 7 shows these fitting regions for a set of rotation curves of various shapes. As observed by WFR88, galaxies that are intrinsically brighter and/or of earlier type tend to rise more quickly to their maximum velocity, with a short transition zone, and level off to a constant velocity. The 0.15 $R_{23.5}$ point targets the inner region for most of the galaxies, but (like the inner slope measurement described above) is sensitive to inner peaks of the velocity profile. The region over which the outer gradient is measured can frequently extend beyond the terminal point of the rotation curve, and thus when examining the outer gradients the sample must be limited to those galaxies for which $R_i \geq 0.8$ $R_{23.5}$ (roughly 50%). For barred galaxies, such as UGC 1013 (F), the outer gradient range may extend far beyond the extent of the rotation curve.

We can compare the distribution of I-based gradients within our sample with the trends seen within previous data in B band to evaluate global trends, as long as we do not assume a one-to-one correspondence between R_{25} and $R_{23.5}$ for individual sources. There are no systematic offsets or trends between WFR88, Amram et al., and ourselves when common galaxies are compared; the outer gradients agree to within the observational errors. A primary finding of WFR88, that galaxies with falling rotation curves are found preferentially in cluster cores, has not been reproduced. Studies of optical and H I velocity profiles for galaxies in the Virgo Cluster (Guhathakurta et al. 1988; Distefano et al. 1990; Sperandio et al. 1995), have not confirmed the trend, and two-dimensional Fabry-Pérot observations (Amram et al. 1993, 1996) of several galaxies within the WFR88 sample did not find the same velocity gradients. The ranges over which each measurement of the velocity gradients was made were not always the same, and as Amram notes, the inclusion or exclusion of single data points along a moderate-resolution rotation curve can have a significant effect upon the measured gradient when there are few points.

Figure 8 shows a plot of outer gradient as a function of cluster radius, for 75 galaxies within 10 h$^{-1}$ Mpc of a cluster (foreground and background galaxies have been suppressed). The observed trend is exceedingly weak, whether fitted to galaxy gradients at all radii [OG $= (2.9 \pm 2.8) \log R + (3.7 \pm 0.4)$, correlation coefficient $r = 0.24$], or to those within 750 h$^{-1}$ Mpc from a cluster core [OG $= (1.5 \pm 8.8) \log R + (3.9 \pm 4.9)$, $r = 0.02$], where one would expect environmental effects to dominate. In contrast, fits to samples of \sim20 galaxies have produced OG $= 43.2 \log R + 23.3$ (WFR), and the far weaker trend of OG $= 12.6 \log R + 0.5$ (Amram). Fits to our data produce an even shallower slope than that found by Amram, as was also found by Dale et al. (2001) for a sample of comparable size, and are fully consistent (within 1 σ) with no correlation. A reanalysis (Adami et al. 1999) of the data of Amram found the observed trend to be stronger in late-type spirals and not significant in early types; we do not see the correlation in either type group.

Rubin et al. argued that their evidence for declining rotation curves within clusters implied that the affected sources had deficient halos, which had either been stripped through an interaction with the cluster medium (e.g., tidal stripping, ram pressure sweeping) or with close neighbors (e.g., harassment, mergers) or had never been allowed to form. This sample shows no evidence for a strong correlation between outer gradient and clustercentric radius and thus provides no support for strong environmental variations within dark matter distributions of cluster spirals relative to the field based on these indicators. We note that for all studies the analysis has been restricted to those galaxies for which Hα flux extends to a minimum of 0.80 $R_{23.5}$; the accompanying histogram in Figure 8 shows that this removes a significant fraction of observed galaxies at all radii. The fraction rises to 60% between 300 h$^{-1}$ kpc and 3 h$^{-1}$ Mpc, but is lower both in peripheral regions and in cluster cores, suggesting that underlying sample bias (e.g., what portion of the total galaxy population falls within the complete sample) is also relevant. This factor could alter the observed effect (e.g., stripped galaxies have less extended Hα flux; see discussion in Paper II).

3.3.3. Rotation Curve Fits

Analytic functional fits were applied to the data to enable the fitting of mass-to-light ratios. A large-scale fit, demonstrated in Figure 9, was made to each rotation curve, of the form

$$V(r) = a_1(1 - e^{a_2r})(1 + a_3r + a_4r^2),$$

where the global form of the profile was determined by a_1 and a_2 (i.e., a two-parameter fit), and a_3 and a_4 mapped the curvature in the outer regions and could be set to zero to reduce the final term from quadrature to linear or constant order. The
coefficients interact to create a model curve such that a_1 scales with the maximum width of the curve, a_2 softens the curvature of the turnover point and shifts it along the spatial axis, and a_3 and a_4 control secondary curvature displayed primarily in the outer regions of the curve. Note that a_1 is not equivalent to the asymptotic velocity of the profile but can assume values much larger when a rotation curve with a very soft turnover region is fit. The fit can be modeled on the total spectral data or on the Hα/Cλ data alone; typically the [N ii] data were included unless they were of poor quality. The purpose of the analytic fit was to provide a quantitative smoothed form of the rotation curve, so that a representative velocity could be calculated for an arbitrary point along the disk. The exponential form was chosen purely for convenience, not because of a particular embodiment of physical variables, and is but one of a number of possible and appropriate fitting models (see the Universal Rotation Curve model of Persic & Salucci 1990, model fitting by Rix et al. 1997, the arctangent function of Courteau 1997, and Polyex fit of Giovanelli & Haynes 2002).

3.3.4. Mass Distributions

The mass distribution of a galaxy can be determined solely from the observed rotation curve by way of several simplifying assumptions (see Rubin et al. 1985). By assuming that the observed rotation curves are a valid measurement of circular, coplanar motion within the gravitation potential of the galaxy, and that the mass distribution is spherically symmetric, the integral mass distribution can be defined as

$$M(r) = (2.3265 \times 10^5)V^2(r)rM_\odot,$$

where V is measured in kilometers per second and r in kiloparsecs. Mass curves can then be defined by taking the logarithm of the galaxy mass and radius, subtracting off the offsets M_m and R_m from the centers of the curves, and creating a set of curves centered about a single point. Burstein & Rubin (1985, see also Burstein et al. 1986) determined for the sample of Rubin et al. such integral mass curves, as a means of evaluating the total mass as a function of radius. They defined three mass types of systematically increasing curvature. The type I mass curve was originally determined by fitting a sample of 21 field Sc galaxies (Burstein et al. 1982), type II was created as an intermediate form between I and III, and the mass curve for type III is that of a massless disk in coplanar rotation with an isothermal sphere (Burstein & Rubin 1985). These three curves map out a fairly narrow range in the two-dimensional $(M(r), r)$ space; it is interesting to note that almost all spiral galaxies examined to date can be fitted fairly well with one of these three curves. Note that as the derived mass depends linearly on radius, a rotation curve that is flat at
large radius (i.e., displays constant velocity) will be transformed into a mass curve of linear slope in the outer regions. Mass types were assigned for our sample of 329 galaxies by evaluating the H\textsc{i}/C\textsc{i} rotation curves, the [N\textsc{ii}] rotation curves in the cases where the H\textsc{i}/C\textsc{i} data was deficient (because of weak tracing or strong absorption), and model fits to the combined data sets. It was found that there existed a small number of galaxies with less curvature than the mass types I through III, and thus a type 0 was created to hold these nine outliers.

4. H\textsc{i} OBSERVATIONS

This paper incorporates H\textsc{i} data obtained in the course of this and other projects, available in a digital archive. The bulk of the H\textsc{i} observations were made with the Arecibo Observatory 305 m telescope. The three northernmost clusters A426, A2197, and A2199 in the range (39° ≤ δ ≤ 41°) have been observed with the former 300 ft NRAO telescope in Green Bank (Freudling, Haynes, & Giovanelli 1988, 1992; Haynes, Magri, & Giovanelli 1988). All galaxies targeted for optical rotation curve studies were included in a dedicated 21 cm line program (Haynes et al. 1997); the techniques of data acquisition and analysis are discussed in detail therein and in Giovanelli et al. (1997). A total of 304 of the 329 galaxies were successfully observed, and 260 were detected. The data were binned according to quality, Q\textsubscript{HI}. The 245 quality 1 line profiles are well defined and well sampled, the 13 quality 2 profiles are marginal but still usable for measurements of velocity width, the two quality 3 spectra have detected fluxes but valid velocity widths cannot be measured, the 44 quality 4 spectra are nondetections, and we do not currently have good data on the 25 quality 0 objects (eight of which were observed but for which the data are unusable due to strong interference or known source confusion).

The 21 cm line fluxes were calculated by correcting the observed flux, measured at a level of 50% of the profile horns, for the effects of random pointing errors, source extent, and internal H\textsc{i} absorption (Haynes & Giovanelli 1984; Giovanelli et al. 1995). The H\textsc{i} gas masses were calculated by placing galaxy cluster members at the true cluster distance and nonmembers at individually derived redshift-dependent distances (see Paper II for discussion of cluster membership criteria). H\textsc{i} deficiency is determined by comparing the observed H\textsc{i} gas mass with the expected H\textsc{i} gas mass (Solanes, Giovanelli, & Haynes 1996). The expected H\textsc{i} gas mass is calculated from

Fig. 9.—Sample rotation curves of each shape class, overlaid with measured fits (same galaxies as in Fig. 5). Rotation curves have been folded about the centerpoints; H\alpha circles and [N\textsc{ii}] triangles are filled (approaching) and open (receding) to mark each side of the galaxy, and no error bars are plotted. Galaxies of Q\textsubscript{a} = 1–4 can be well traced by the simple exponential form for the fit, as shown in (a)–(d). Curves with a strong inner peak in the velocity profile require the higher order terms and are more difficult to trace, as illustrated in (e)–(f).
galaxy morphological type and linear diameter, using blue major-axis diameters taken from the UGC (or converted to UGC form from RC3 data) when available and otherwise estimated from the POSS prints. Morphological typing was done through visual examination of plate reproductions of the POSS-I prints at Cornell University, which have a more extended dynamic range than do the standard POSS prints, comparison with the UGC published type codes for UGC galaxies, and (infrequently) updated upon detailed examination of our own I-band data. The accuracy is of order ±1 Hubble type overall.

For cases where no 21 cm line flux was detected, an upper limit has been placed upon the source strength based on the rms noise per frequency channel, σ, and the full velocity width, ∆V, based on the optical rotation curve of the galaxy. We assume a simple linear flux model at a level of 1.5 σ across the full velocity profile, such that

\[S(\text{max}) = 1.5\sigma\Delta V \text{ Jy km s}^{-1}. \]

(7)

The application of this H I–deficiency estimation is problematic, given that the calibrating field galaxies in the Solanes et al. sample have a larger average angular diameter than those within this sample. This incompleteness will lead to an underestimation of the H I deficiency, particularly for the smallest (diameter \(D_L \leq 60''\)) galaxies within the sample (see Giovanelli, Chincarini, & Haynes 1981). Figure 10, however, confirms that there is no strong trend in H I deficiency with angular diameter.

A survival analysis was conducted on the distribution of nondetections in order to integrate them statistically into the detected sample. The long-term nature of our observing program leads to a substantial bias in the distribution of nondetected sources in H I deficiency, and also in H I gas mass, and the rms noise level of the spectra, as nondetections at the standard flux limit were immediately identified and then preferentially reobserved throughout the program. This makes the distribution incompatible with a random censoring model (see Magri et al. 1988). We instead redistribute each nondetection into the portion of the total H I–deficiency distribution that lies above the corresponding lower limit, factoring in the statistical weight of the distribution. Given the extreme bias of the nondetections, they will dominate the tail of the distribution. This technique will thus partially correct but still lead to an underestimate of the H I deficiency for the most extreme nondetections (i.e., those lower limits which fall near to or beyond the limit beyond which no true detections are found within the sample).

5. PHOTOMETRY OBSERVATIONS

Optical images were taken using the KPNO 0.9 m telescope and the MDM 1.3 m telescope to obtain Mould I-band data for the optical rotation curve sample. Full details of the data acquisition and analysis techniques are provided elsewhere (Haynes et al. 1999; Giovanelli et al. 1997), since these data represent only a subset of our large-scale imaging program of nearby field and cluster galaxies. A total of 261 of the 329 galaxies were observed under photometric conditions, and all but two of the images were deemed usable. The data were binned according to quality. The 245 quality 1 images are have a high S/N level and are well sampled, the six quality 2 images are of fair quality, the two quality 3 images are marred by poor flat fielding, extensive bad columns, or have too low a S/N level, and we do not currently have good, photometric data on the 73 quality 0 objects.

The data were analyzed to provide surface brightness and luminosity profiles and estimates of ellipticity and position angle as a function of radius. A set of ellipses defining radii of constant surface brightness was fitted to each galaxy and allowed to vary in eccentricity and in angular orientation about the center of the galaxy. A total magnitude was determined, typically to within 0.05 mag, for each galaxy by combining the flux from the successive ellipses and extrapolating analytically to infinity and a disk scale length \(R_d\) determined by the slope of the disk region of the surface brightness profile. A representative ellipticity and position angle were selected by evaluating the mean and extremum values within the region identified as the disk by visual inspection.

Disk scale lengths were determined for a face-on orientation to compensate for the varying effects of extinction with radius, and a correction was made for seeing conditions. As discussed by Giovanelli et al. (1994), a linear fit was made to the surface brightness profiles over the range 0.40 \(R_{23.5}–1 R_{23.5}\), where the measured value of \(R_{23.5}\) was first corrected to face-on orientation based on the observed blue axial ratios. This technique compensates for both inclination and redshift-dependent shifts in the range over which the disk scale length is fitted, since at large radii (e.g., where \(R_{23.5}\) is measured) disks can be treated as transparent, while the inner regions suffer significantly from (inclination angle-dependent) extinction. Disk scale lengths were thus fitted over this disk regime for all galaxies; note that the restriction to \(r > 0.40 R_{23.5}\) restricted the fit to the disk-dominated region beyond the bulge for all spiral types. A simple correction was then made for the effect of the seeing disk, which could blur and flatten the surface brightness profiles when significant in size relative to the width of the total disk fitting regime. We measured the FWHM of the estimated seeing disk, \(FWH_M\), for each exposure (determined from the resolution of stellar images, and taken to be 1.25 if no calibration data was available), and set

\[R_d = \left(1 - \frac{FWH_M}{R_{23.5}}\right)R_d(\text{obs}). \]

An inclination angle has also been derived for each galaxy from the observed ellipticity by convolving it with the estimated seeing disk, consistent with the analysis outlined in Giovanelli et al. (1994).
The galaxy luminosity has been transformed from an apparent to an absolute magnitude by correcting for galactic extinction, applying a \(k \)-correction to compensate for the redshift of the flux of the spectral band, correcting for internal extinction, and then assuming a distance to the galaxy. Galactic extinction in the \(I \) band has been taken to be \(A_I = 0.45A_B \) from the RC3 when available for the specific galaxy or approximated by that of its nearest listed neighbors when necessary. This correction is most important for galaxies within the clusters A426 \((A_B = 0.81) \) and A539 \((A_B = 0.59) \), which lie closest to the galactic plane; for the rest of the sample \(A_B = 0.11 \). The fairly small \(k \)-correction has been applied in the fashion of Han (1992), and the correction for internal extinction as defined by Giovanelli et al. (1994). Note that the form of the correction for internal extinction is probably more complicated than this, being dependent upon both the morphological type (earlier type spirals suffering from more extinction than later type spirals) and the luminosity class of the source.

6. MASS MODELS

Stellar mass-to-light ratios were estimated by fitting bulge, disk, and halo components to surface brightness and velocity profiles. The \(I \)-band surface brightness profiles were first deconvolved into contributions from bulges and disks, assuming two independent, discrete ellipsoidal components. A series of mass models, constraining light and dark matter in varied ways, were then fitted to combined \(H_\alpha \) and [N II] major-axis rotation curves; the “maximum disk” model in particular was found to define the mass-to-light ratios in a uniform and representative fashion, to within 10%. Significant trends were found to be a function of expected variations with morphological type and intrinsic luminosity. When these effects were removed, the mass-to-light ratios are relatively uniform. The critical limitation proved to be the spatial extent of the optical rotation curves. A typical spiral galaxy in the vicinity of a cluster does not have \(H_\alpha \) flux extended sufficiently far out along the disk to provide strong constraints on the disk and halo contributions of the potential, unlike bright, nearby field galaxies.

6.1. Bulge and Disk Decompositions

The \(I \)-band surface brightness profiles were deconvolved into bulge and disk components in a manner similar to that used by Kent (1986). This avoids parameterizing the bulge and disk components by way of set density laws (e.g., \(r^2 \) exponential), allowing more freedom to conform to the physical shape the profile. The bulge and disk are instead modeled as ellipsoids, each of constant axial ratio. Major and minor axes profiles of the galaxy are taken to be the sum of the two luminosity profiles and given that two components have different axial ratios the individual profiles can be uniquely recovered. We define \(\mu(r) \) as the surface density profile and \(\epsilon(r) \) as the ellipticity, where

\[
\epsilon(r) = 1 - \frac{b(r)}{a(r)}. \tag{9}
\]

The major- and minor-axis profiles are defined in terms of the bulge and disk major-axis profiles and ellipticities as

\[
\mu_{maj}(r) = \mu_b(r) + \mu_d(r), \tag{10}
\]

\[
\mu_{min}(r) = \mu_b \left[\frac{r}{1 - \epsilon_b} \right] + \mu_d \left[\frac{r}{1 - \epsilon_d} \right], \tag{11}
\]

and can be combined to define the bulge profile as

\[
\mu_b(r) = \mu_b^o \left[1 - \epsilon_b \right] + \mu_b \left[\frac{r}{1 - \epsilon_b} \right], \tag{12}
\]

where \(\mu_b^o (r) \) is the first-order approximation of the bulge profile of the form

\[
\mu_b^o (r) = \mu_{\min}(r) - \mu_{maj} \left[\frac{r}{1 - \epsilon_d} \right]. \tag{13}
\]

Equation (12) can be solved by calculating \(\mu_b(r) \) and introducing it iteratively into the right-hand side of the equation to determine the bulge profile from the total surface brightness profile along the major axis; convergence is typically achieved after only a few iterations. The sample extends to redshift \(z = 0.045 \), where 1" on the sky corresponds to 0.6 \(h^{-1} \) kpc. Each galaxy has been fitted by a series of ellipses of constant surface brightness at successive radii; because of constraints, such as the extreme rise in brightness in the galaxy core and the size of the seeing disk, the innermost ellipse was typically placed at a radius of \(1''2 - 1''4 \). The derived profiles thus had to be extrapolated inward from this point. Although the surface density profile is undetermined in this core region, the total flux is known and constrains its form.

The ellipticity profile was first examined; profiles range from the radially smooth to those with strong substructure, as shown in Figure 11. A fit was made to the profile of the form

\[
\epsilon(r) = a_1 + a_2 e^{-a_3 r} \left[1 + a_4 r + a_5 r^2 + a_6 r^3 \right], \tag{14}
\]

selected by modeling the ellipticity profile upon the simple curve

\[
\epsilon(r) = 1 - e^{-r}, \tag{15}
\]

with initial values for the fit parameters set to match the asymptotic behavior at the beginning and end of the profile. The ellipticity of the bulge \(\epsilon_b \) was taken to be the minimum ellipticity in the central \(5 \) \(h^{-1} \) kpc of the galaxy, and the disk ellipticity \(\epsilon_d \) to be the final ellipticity of the galaxy chosen by evaluating the maximum, average, and representative user-selected ellipticities. In certain cases, the ellipticity profile varied considerably from this type of smooth function; the profile was then modeled by an interpolating function that estimated the profile at a given radius by using the nearest five points in the observed ellipticity profile.

The surface brightness profile along the major axis was fitted in a similar fashion with the form

\[
\mu_{maj}(r) = a_1 + a_2 e^{-a_3 r} \left[1 + a_4 r + a_5 r^2 + a_6 r^3 \right] + a_7 e^{-a_8 r} \left[1 + a_9 r + a_{10} r^2 + a_{11} r^3 \right], \tag{16}
\]

where the two exponential terms combine to fit both in the regime near the galaxy center and in the asymptotic zone.
The resultant fit was found to model the global behavior of the profile quite well but failed to reflect the small-scale variations in the profile. An interpolating function was thus used to model all but the innermost parts of the profiles. As the bulge mass distribution is assumed to be smooth, it was calculated using the smooth function (eq. [12]). The disk luminosity, however, was calculated using the interpolating function to model the small-scale structure for all but the innermost regions.

The minor axis surface brightness profile was derived from the major-axis profile and the ellipticity profile. The brightness profile was taken to be that measured along the major axis, and the radius was taken to be

$$r_{\min} = r_{\text{maj}}[1 - \epsilon(r_{\text{maj}})], \quad (17)$$

and the profile $\mu_{\text{min}}(r)$ was then fit to the form of equation (16). The surface brightness profile was then deconvolved into bulge and disk components, according to equations (12) and (13).

Once the bulge profile converged satisfactorily, it was examined and terminated at the first evidence of nonphysical behavior, in the form of secondary maxima or discontinuities in the first derivative of the function. This behavior occurred only in the outer regions of the galaxy where the profile was dominated by the disk; thus, the bulge profile could safely be set to zero from this point outward and the disk profile set to be equal to the remainder of the surface brightness profile. The core region of the galaxy was then examined, since the fit could at times exhibit nonlinear behavior in the inner 1.5′. Such cases were refit by eye to appropriate asymptotic behavior in this range.
6.2. Velocity Profile Models

The next step was to calculate the velocity profile of the galaxy from the gravitational potential of the different components of the galaxy, including now a halo. We calculate the velocity for the galaxy bulge, disk, and halo components, defining

\[v^2(r) = r \frac{\partial \phi(r)}{\partial r}, \]

(18)

where

\[\phi(r) = \phi_b(r) + \phi_d(r) + \phi_h(r), \]

(19)

and the potential of each component can be examined separately. The bulge potential can be modeled assuming a spherically symmetric distribution yielding

\[\frac{\partial \phi_b(r)}{\partial r} = G \frac{m(r)}{r^2}, \]

(20)

where

\[\rho(r) = -\frac{1}{\pi} \int_r^\infty \frac{\mu_b(s)ds}{(s^2 - r^2)^{1/2}} \]

(21)

and

\[m(r) = \int_0^r 4 \pi s^2 \rho(s)ds, \]

(22)

which takes the form

\[m(r) = \int_0^r 2 \pi s \mu_b(s)ds \]

\[+ \int_r^\infty \left[4 \sin^{-1}\left(\frac{L_z}{\rho}\right) - \frac{4r}{(s^2 - r^2)^{1/2}} \right] s \mu_b(s)ds. \]

(23)

The disk potential can be modeled as an infinitely thin disk (Toomre 1963). Beginning with Poisson’s equation in cylindrical coordinates,

\[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial \phi}{\partial r} \right) + \frac{\partial^2 \phi}{\partial z^2} = 4 \pi G \rho = 4 \pi G \mu_d(r)\delta(z), \]

(24)

a Fourier-Bessel transformation is applied to deduce the form

\[\frac{\partial \phi_d(r)}{\partial r} = 2 \pi G \int_0^\infty s \mu_d(s)H(s,r)ds, \]

(25)

where

\[H(s,r) = \begin{cases}
\frac{2}{\pi sr} \left[K(k) - \frac{E(k)}{1 - k^2} \right], & k = r/s \ (s < r), \\
\frac{2E(k)}{\pi r^2(1 - k^2)}, & k = s/r \ (s < r).
\end{cases} \]

(26)

The Green’s function \(H(s,r) \) has a logarithmically singular point at \(s = r \). This can be integrated numerically without difficulty by subdividing the integral in equation (25) into three parts, a region chosen to be symmetric about the singularity, and the regions before and after this zone.

The dark matter halo potential can be modeled in a variety of ways. A density law has been chosen of the form

\[\rho = \frac{\sigma^2}{2\pi G(r^2 + a^2)}. \]

(27)

By modeling the halo as a sphere of radial symmetry in a matter analogous to that used for the bulge the following velocity profile is deduced:

\[\frac{\partial \phi_h(r)}{\partial r} = 2 \pi G \left\{ 1 - \tan^{-1}\left(\frac{r/a}{(r/a)} \right) \right\}. \]

(28)

6.3. Luminosity Corrections

The effects of extinction upon both the luminosity profile and the optical velocity profile are fairly complicated to model. It has been shown (Giovanelli et al. 1994, 1995) that the effects of extinction on a luminosity profile vary with total luminosity and morphological type; in particular, early-type spirals seem to suffer a greater extinction than later types. Extinction also varies as a function of galaxy radius and thus can significantly alter the slope of the luminosity profile. The main effect upon an optical velocity profile is that the inner regions of the galaxy tend to be obscured by dust, particularly in the case of a highly inclined galaxy, and the observed velocity profile may not be representative of true rotation. The inner slope is dependent upon galaxy inclination, because of extinction effects (Giovanelli & Haynes 2002). This does not impact the mass modeling technique used here significantly, however, as the model parameters are most strongly controlled by the behavior of the rotation curve at large radii (i.e., the amplitude of the profile beyond the turnover point).

A correction has been applied to the luminosity profile to account for the projection effects of viewing the disk luminosity from an inclined position. In the case of a sphere, the observed luminosity profile is representative of the true radial luminosity profile, but in the case of an optically thin disk the apparent profile flux is increased by a factor of \(1 - e \), the minor to the major-axis ratio, over the true profile. This effect was dealt with by considering the two extreme cases. In the first case, the galaxy was treated as a pure thin disk system, and all flux was corrected for projection. In the second case, a dividing point was set at the radius at which the galaxy becomes a pure disk. The flux beyond this point was corrected for projection, while the inner flux was treated as if it came from a pure sphere, and no correction was applied. The two cases were then averaged together to achieve a full correction of the pure disk zone and a partial correction in the region of combined bulge and disk, and this correction was applied to the data.

6.4. Mass-to-Light Ratios

The mass-to-light ratios of the bulge and disk are defined as \((M/L)_b \) and \((M/L)_d \) in units of \((M/L)_\odot \). A set of models were chosen to explore the parameter space defined by \((M/L)_b \), \((M/L)_d \), and the halo parameters \(\sigma \) and \(a \) (Vogt 1995). Attempting to fit all four variables simultaneously with no additional constraints results in a poorly constrained search of a large parameter space that can deviate wildly from physically reasonable parameters; thus, we have selected a set of physically representative models with varying constraints.

The first three models are pure disk and bulge models. Model 1 fits \((M/L)_b \) and \((M/L)_d \) to the full velocity profile; the overall importance of the bulge and disk can be evaluated by...
comparing their amplitudes with those found in models that contain significant halo components. Model 2 forces \((M/L)_{rb}\) to zero and fits \((M/L)_{rb}\) alone to the data and model 3 holds \((M/L)_{rb}\) and \((M/L)_{ir}\) equal, giving information on the dependencies between the bulge and the disk.

The remaining models all include a halo component. Model 4 assumes a constant density halo, which is physically reasonable if the optical rotation curves do not extend out beyond the inner portion of the halo exhibiting solid-body rotation. Our data do not support this assumption, but the model is useful for comparison to literature (e.g., Kent 1986) and has the simplifying advantage of parameterizing the halo with a single variable. Model 5 determines \(\sigma (\sigma = V/\sqrt{2})\) from the terminal velocity of the \(H_i\) line profile. This assumes that the velocity profile is relatively flat beyond the optical radius and is strongly dominated by the halo. For those galaxies in the sample where no \(H_i\) width was determined (because of \(H_i\) deficiency or because the galaxy was not observed), the terminal velocity of the optical rotation curve was used. This model has been labeled informally the “maximum halo” or “maximum dark” hypothesis because the obvious result of setting \(\sigma\) to reflect the terminal velocity of the profile is to increase the halo, at the expense of the disk. Model 6 is commonly referred to as the “maximum disk” hypothesis (van Albada et al. 1985), although more accurately designated the “maximum light.” An inner region is defined within the peak of the disk velocity profile, and \((M/L)_{rb}\) and \((M/L)_{ir}\) are fitted to the velocity data within this point. Then \(\sigma\) and \(a\) are fitted to the remnant over the entire profile. This assumes that the mass distribution of the inner part of the galaxy, well within the optical radius, is dominated by the stellar components. Model 6 has been chosen as the most representative mass model for the sample. Model 7 submerges the bulge component of the galaxy into the disk. The fit to the inner region (as defined in model 6) is done for \((M/L)_{rb}\) alone. This model is completely independent of the bulge-disk deconvolution and a measure of the importance of the bulge component can be gained by comparing it with models 1 and 6. Model 8 fits a pure halo to the entire velocity profile, an extreme model that serves only to constrain the range of possible halo contributions.

Figure 12 shows the distribution of \(\chi^2\) for fits of \((M/L)_{rb}\), \((M/L)_{ir}\), \(\sigma\), and \(a\) for UGC 8220 under the maximum disk model. The spread in the mass-to-light ratios can be taken as a valid indicator of the sum of the errors in the analysis and the intrinsic scatter. The halo parameters are not well constrained, however. Due to the limited radial extent of the rotation curves, there exists a family of solutions within the two-dimensional \((\sigma, a)\) space that work equally well. The chosen solutions have been selected to produce terminal velocity behavior in agreement with the terminal velocity determined from the \(H_\alpha\) and \(H_i\) spectra and to avoid an extremely abrupt rise to maximum amplitude (very small values of \(a\)). While the former practice is linked to valid observables, the second is an arbitrary modification designed to produce an standardized technique that can be applied uniformly. Recall, however, that under the maximum disk hypothesis the mass-to-light ratios are set before the halo parameters and are thus unaffected by them. We emphasize that the poor constraint upon halo parameters is an endemic problem for all mass models determined from long-slit \(H_\alpha\) spectra and not peculiar to our sample in any fashion—NGC 3198 is prominently featured in the literature precisely because of its extended velocity profile, but is not representative of the general population of spiral galaxies.

We can combine the models of the bulge and the disk profiles to define the stellar mass-to-light ratio as

\[
(M/L)_* = \frac{(M/L)_{rb} L_b + (M/L)_{ir} L_d}{L_b + L_d}
\]

(29)

and incorporate the halo to derive the ratio of dark-to-light matter within the luminous portion of the galaxy as

\[
R_M = \frac{M_h}{M_b + M_d} = 2\sigma^2 r_2 \left\{ \frac{1}{2} \tan^{-1}\left(\frac{r_2/a}{r_2/a}\right) \right\}
\]

(30)

where \(r_1\) is the radius of the final point of the bulge (where the bulge luminosity profile terminates), \(v_b\) the calculated velocity of the bulge component, \(r_2\) the radius of the final point of the luminosity profile, and \(v_d\) the calculated velocity of the disk component. This places a lower limit upon the mass of the halo, since it assigns to the halo the mass necessary to produce the observed rotation curve after calculating the components due to the bulge and disk velocity profiles.

6.4.1. Error Estimations

The sources of error inherent in mass modeling can be divided into several categories, namely the observed luminosity...
and velocity profiles, the derived ellipticity and inclination angle, the deconvolution of the luminosity profile, and the selection of the mass-to-light ratios and halo parameters to best match the velocity profile. This set of errors combines with the variations with independent galaxy properties as yet uncorrelated to produce the observed scatter. The case of a galaxy with a rotation curve that ends significantly within the optical radius is worthy of special notice. If the rotation curve does not reflect the true full amplitude of the velocity profile, an artificially low mass and mass-to-light ratio will be derived. A simple test for this problem that has been performed for the sample is a comparison of the optical and radio velocity widths for suspect galaxies, since the radio widths will not have been similarly affected; no problem is revealed.

Errors in luminosity profile deconvolution are relatively unimportant. They become significant in the case of a galaxy where the bulge and disk ellipticities are very similar and the profiles are thus difficult to separate or when barlike structures in the inner regions of the galaxy create a luminosity profile that cannot be easily separated into two components of constant ellipticity. For most galaxies a variation of the deconvolution has an effect on the bulge mass-to-light ratio but virtually no effect on the disk mass-to-light ratio, since it is determined from the entire profile and thus minimally affected by the deconvolution occurring within the inner regions.

The error on \((M/L)_b \) is on the order of 10% and in general can be constrained quite well by the outer regions of the optical rotation curve. The small number of sources for which \((M/L)_b \) is less than 0.3 are galaxies for which an unhappy combination of noncircular velocity behavior in the inner regions that is poorly matched by either the bulge or the disk and weak sampling in the outer regions creates an invalid best-fit solution. Since the inner regions can be subverted far more easily by distortion due to extinction effects on the luminosity profile and on the rotation curve, and the effect of noncircular velocities, \((M/L)_b \), is less well defined. A poor deconvolution will also have a far more significant effect upon \((M/L)_b \) than on \((M/L)_d \), because the bulge is present only in the overlap region. Figure 12 maps the value of \(\chi^2 \) in the two-dimensional \((\langle M/L \rangle_b,\ (M/L)_d) \) and in space and in \(\langle \sigma, a \rangle \) space for UGC 8220. It is clear that \((M/L)_d \) is constrained much more strongly than \((M/L)_b \). The shift in \((M/L)_b \) away from the nadir of the map is caused by a slight mistracing of the inner slope of the rotation curve by its fit function, easily evaluated by the human eye. The halo parameters \(\sigma \) and \(a \) together define a family of solutions that can match the velocity profile equally well within the optical rotation curve radius but diverge widely from each other in their asymptotic behavior at significantly larger radii.

Figure 13 shows the good agreement between calculated mass-to-light ratios for the overlap of the sample and that analyzed by Kent (1986). Kent’s data has been corrected to the distances and inclination angles used herein, the latter being a key factor, assuming that his inclination angle was calculated from the tabulated values of the disk eccentricity in his Table 3 and with an intrinsic axial ratio of 0.2. The data are presented in bolometric units of \((M_\odot/L_\odot) \) where no extinction correction has been applied (Kent’s photometric profiles are \(R \) band, while ours are \(I \) band). The deviation of the bulge of UGC 4484 can be explained by different interpretations of the noncircular structure in the nuclear region and by the variation in the two luminosity profiles in the inner core within the seeing disk (Kent quotes a seeing FWHM of 2.5 vs. 1.2 herein).

![Graph showing comparison of (M/L) ratios within the overlap of the sample analyzed by Kent (1986). Dark circles represent disks and open circles bulges.](image)

Figure 13.—Comparison of \((M/L) \) ratios within the overlap of the sample analyzed by Kent (1986). Dark circles represent disks and open circles bulges. The deviation of the bulge of UGC 4484 can be explained by different interpretations of the noncircular structure in the nuclear region and by the variation in the two luminosity profiles in the inner core within the seeing disk. The line denotes \(y = x \) and error bars are plotted for a 10% error (representative of the total accuracy of the derived \(M/L \) ratio, not simply of the fitting technique).

7. DATA PRESENTATION

We present in Tables 2–4 a listing of key galaxy properties for this sample of 329 local northern hemisphere galaxies, sorted by right ascension. Note that quantities are not necessarily identical to similar parameters from previous publications, although no significant differences exist. A small fraction of the photometric data for the Coma cluster have been taken by combining literature results with our own measurements; specifics of those observations can be found for those sources within Giovannelli et al. (1997). Because of length, specific comments on individual galaxies are placed separately from the table, in the main text below.

AGC 110759/NGC 507-A1: ORC flux fairly faint.

UGC 916: Use H I flux but not H I width (detection looks real, but low S/N, baseline quite sloped, horns not defined so width, systemic velocity not measurable).

UGC 1045: Use TF I-band data from Han & Mould (1992); assume \(R_d \) lies in long, flat region of ORC.

UGC 1404: Use TF I-band data from Han & Mould (1992); assume \(R_d = R_{23.5}/3.5 \).

UGC 1437: ORC flux suggests strong H II regions along major axis.

UGC 120684: H\(\alpha \) spectrum in absorption; H I profile shows wider velocity width than ORC.

UGC 130014/CGC 415-058: Use TF I-band data from Han & Mould 1992; assume \(R_d = R_{23.5}/3.5 \).

UGC 2561: Marginal H I detection (see Magri et al. 1988); calculate H I gas mass from rms, not flux.

UGC 2581: Marginal H I detection with GB300 (see Magri et al. 1988); calculate H I gas mass from rms, not flux.

UGC 2617: Treat as if no H I data (clearly confused with known companion).
TABLE 2
Galaxy Parameters I

Names	R.A.	Decl.	T	V_{CMB}	r	s	h^{-1} kpc	θ			
U00809/520-033...	01 13 00.0	$+33 33 00$	5	3920	NGC 507	f	1.54	-2.00	0.190	1311	23
U00841/502-025...	01 16 22.3	$+32 46 06$	4	5287	NGC 507	c	0.82	1.08	0.233	1211	54
U00927/N496...	01 20 22.2	$+33 16 04$	4	5722	NGC 507	c	0.22	2.06	0.233	1211	28
U00940/521-016...	01 20 40.0	$+34 18 30$	5	6707	NGC 507	b	1.25	4.28	0.325	1211	85
U00944/N512...	01 21 10.5	$+33 38 54$	2	4587	NGC 507	c	0.63	-0.50	0.233	1111	116

Notes.—Table 2 is presented in its entirety in the electronic edition of the Astronomical Journal. A portion is shown here for guidance regarding its form and content. Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds. Col. (1): Source identification. The first listing is an internal coding number, which is equal to the UGC number if the galaxy is listed in the UGC catalog (Nilson 1973). A second galaxy name is added with the following priority scheme: if the galaxy has an NGC or IC number, that coding is entered preferentially; if the galaxy is listed in the CGCG (Zwicky, Herzog, & Wild 1968), that coding is listed with second priority, in the form: field number—ordinal number within the field. If entries in those three catalogs are not available, a second name is entered. Cols. (2) and (3): Right ascension and declination in the B1950.0 epoch; the listed positions typically have 15" accuracy. Col. (4): Morphological type code in the RC3 scheme, where code 1 corresponds to Sa’s, code 3 to Sb’s, and code 5 to Sc’s. The type code is followed by a “B” if the galaxy is listed in the UGC archive; use the Theureau et al. (1995) TOCGC data in AGC archive; use Theureau et al. (1995) TOCGC data in AGC archive. Cols. (5) and (6): The galaxy radial velocity (redshift) in the CMB reference frame; this value is obtained from high quality 21 cm line data. Col. (7): The angular size of the galaxy as measured in optical photometry. Col. (8): The position angle of the galaxy major axis. Col. (9): The galaxy radial velocity (redshift) in the CMB reference frame; this value is obtained from high quality 21 cm line data. Col. (10): The corrected velocity width converted to edge-on viewing, measured at 2 R_e. Col. (11): Quality and shape codes. A four digit code indicates foreground and background galaxies, respectively. The criteria adopted to assign membership to each of the clumps. The case of A2634 (Bothun et al. 1983). We use the criteria given in that reference to assign membership to each of the clumps. The case of A2634 (Bothun et al. 1983). We use the criteria given in that reference to assign membership to each of the clumps. The case of A2634 (Bothun et al. 1983). We use the criteria given in that reference to assign membership to each of the clumps. The case of A2634 (Bothun et al. 1983). We use the criteria given in that reference to assign membership to each of the clumps.

UBC 2639: Hα spectrum shows both emission and absorption flux.
UBC 2642: Very weak Hα emission flux; only the nucleus can be traced.
UBC 2655: ORC flux suggests strong H II regions along major axis.
UBC 2659: No H I data in AGC archive; use Theureau et al. (1998; not of the same quality as our own reprocessing of archive data, because we cannot make the same corrections.)
AGC 130204/CGCG 540-115: Hα spectrum quite asymmetric, with right side much fainter than left side. Hα absorption shows faintly beyond emission; perhaps trough not completely filled?
UBC 2696: Hα absorption shows faintly beyond emission; perhaps trough not completely filled?
UBC 2742: Marginal and suspect H I detection, do not use (H I profile implies much wider velocity width than ORC). Difficult to extract Hα velocity profile due to significant sin i effect (very face-on).
UBC 3525: Continuum extremely strong around Hα and [N II] emission lines.
AGC 150073: Gadzooks!—ORC is of neighboring galaxy (do not use).

TABLE 3
Galaxy Parameters II

Names	R_0	R_f	ΔH_{α}	H_{α}^{int}	S_α	S_{out}	G_α	G_{out}	$O\alpha_{\text{0}}$	$O\alpha_{\text{1}}$	$O\alpha_{\text{2}}$	$O\alpha_{\text{3}}$
U00809/520-033...	10.9	39.2	1.43	0.81	0.66(04)	0.10(02)	55	13	270	282	286(6)	257(7)
U00841/502-025...	13.3	31.7	2.14	0.71	1.14(05)	0.03(06)	73	$-$8	247	245	249(10)	254(12)
U00927/N496...	6.8	39.8	2.28	0.75	0.96(06)	0.04(01)	70	21	270	268	318(13)	318(14)
U00940/521-016...	8.8	30.6	0.94	0.91	0.97(04)	0.01(01)	48	0	282	278	352(9)	317(8)
U00944/N512...	7.7	41.0	0.96	0.90	0.83(05)	$-$0.01(01)	65	$-$10	515	500	506(5)	510(6)

Note.—Table 3 is presented in its entirety in the electronic edition of the Astronomical Journal. A portion is shown here for guidance regarding its form and content. Col. (1): Source identification, exactly as in Table 2. Cols. (2) and (3): The turnover (elbow) point and the maximum radial extent of the rotation curve R_0 in arcseconds. Cols. (4) and (5): The differential extent of Hα or [N II] emission, in h^{-1} kpc, followed by the ratio. Cols. (6)–(9): The measured inner and outer slopes S_α and S_{out} in normalized units, and inner and outer gradients G_α and G_{out} as a percentage of the measured optical velocity half-width, of the rotation curves (with estimated uncertainties between brackets). Cols. (10)–(13): The velocity width from the optical spectroscopy, in km s$^{-1}$. Col. (10): The measured velocity width. Col. (11): The velocity width corrected for the shape of the rotation curve and cosmological stretch. Col. (12): The corrected velocity width converted to edge-on viewing (with its estimated uncertainty, taking into account both measurement errors and uncertainties arising from the corrections, between brackets). Col. (13): The corrected velocity width converted to edge-on viewing, measured at 2 R_e.

Table 4

Galaxy Parameters III

Names	RW_0 (km s\(^{-1}\))	RW_1 (km s\(^{-1}\))	RW_2 (km s\(^{-1}\))	M\(_{\text{HI}}\) (Obs.) (log 10\(^{10}\) M\(_\odot\))	M\(_{\text{HI}}\) (Exp.) (log 10\(^{10}\) M\(_\odot\))	i (deg)	I (mag)	M\(_I\) (10\(^{10}\) M\(_\odot\))	D/T (%)	R\(_d\) (arcsec)	R\(_{23.5}\) (arcsec)	(M/L) (meas.) (\(\text{Me}_\odot\))	(M/L) (corr.) (\(\text{Me}_\odot\))	M\(_D\)/M\(_L\)
U00809/520-033	314	289	291(6)	9.31	9.25	83	13.55	-22.30(03)	98	10.32	49.5	0.64	2.06	0.15
U00841/502-025	290	262	266(8)	9.27	9.54	80	13.58	-22.18(03)	97	8.90	43.5	0.62	1.71	0.13
U00927/N496	297	271	322(12)	9.72	9.61	57	12.47	-22.93(05)	97	14.77	52.3	1.07	1.61	0.08
U00940/521-016	288	260	331(13)	9.57	9.48	52	13.63	-22.43(04)	93	8.77	30.5	1.71	2.42	0.19
U00944/N512	522	493	499(7)	9.41	9.36	81	12.04	-23.70(02)	91	8.70	55.4	0.50	1.30	0.28

Notes.—Table 4 is presented in its entirety in the electronic edition of the Astronomical Journal. A portion is shown here for guidance regarding its form and content. Col. (1): Source identification, exactly as in Table 2. Cols. (2)–(4): The velocity width from the 21 cm line profiles, in km s\(^{-1}\). Col. (2) lists the measured velocity width, measured at a level of 50% of the profile horns, col. (3) the velocity width corrected for instrumental and data processing broadening, S/N effects, interstellar medium turbulence, and cosmological stretch, and col. (4) the corrected velocity width converted to edge-on viewing (with its estimated uncertainty, taking into account both measurement errors and uncertainties arising from the corrections, between brackets). Cols. (5)–(6): The observed and the predicted H\(_{\alpha}\) masses, in units of log 10\(^{10}\) M\(_\odot\). Col (7): The adopted inclination \(i\) of the plane of the disk to the line of sight, in degrees, (90\(^{\circ}\) corresponding to edge-on perspective). Col (8): The apparent magnitude, to which \(k\)-term, galactic and internal extinction corrections were applied, measured in Mould I. Col. (9): The absolute \(I\) magnitude, computed assuming that the galaxy is at the distance indicated either by the cluster redshift, if the galaxy is a true cluster member, or by the galaxy redshift if it is not. The calculation assumes \(H_0 = 100 \text{ km s}^{-1} \text{ Mpc}^{-1}\), so the value listed is strictly \(M_I + 5 \log h\). In calculating this parameter, radial velocities are expressed in the LG frame and uncorrected for any cluster peculiar motion. The uncertainty on the magnitude, indicated between brackets in hundreds of a magnitude, is the sum in quadrature of the measurement errors and the estimate of the uncertainty in the corrections applied to the measured parameter. The error estimate does not include the uncertainty on the value of the distance. Col (10): The disk percentage of the total luminosity. Col. (11): The disk exponential scale length, \(R_d\), corrected to face-on value, in arcseconds. Col. (12): The radius \(R_{23.5}\) at which the surface brightness profile reaches a limiting value of 23.5 magnitudes per square arcsecond, in arcseconds. Cols. (13) and (14): The stellar mass-to-light ratio, (M/L), in solar units. Col. (13): The measured (M/L). Col. (14): the (M/L), corrected for inclination and extinction effects. Col (15): The ratio of dark to light matter, \(M_D/M_L\), within \(R_d\).
AGC 150118: ORC extremely faint, in Hα and in [N ii]. Left side less faint than right.

UGC 3291: Assume that Hα detection is interference peak and discard, as ORC data are solid, Hα line profile shows single peak, and Δcz = 4500 km s⁻¹. Calculate Hα gas mass from rms, not flux.

UGC 4575: [N ii] masked by [OH] emission line feature.

UGC 4865: Inclination and corrected ellipticity from Dale et al. (1999).

UGC 5250: ORC slightly truncated by edge of slit on left side.

AGC 210015/A148: Irregular/ ring galaxy.

AGC 210643: Treat as nondetection in Hα.

UGC 6697: Hα spectrum quite asymmetric and disturbed; all ORC emission lines extremely wide and strong.

UGC 6718: No Hα in AGC archive; use Giovanelli & Haynes (1985; lesser quality than reprocessing of archive data).

UGC 6724: Patchy Hα along major axis.

UGC 6746: Patchy Hα along major axis.

AGC 210816/CGCG 127-062: Extremely faint Hα flux, especially on right, some [N ii] in nucleus.

AGC 211029/F1319: Treat as if no Hα data (clearly confused with known companion).

UGC 6928: No Hα in AGC archive; use Bottinelli et al. (1990; lesser quality than reprocessing of archive data).

UGC 7724: Hα and [N ii] spectra very weak along disk.

AGC 221147/CGCG 160-031: Hα spectrum fainter on right side then on left.

UGC 8069: Treat as a nondetection in Hα.

UGC 8096: Hα emission line turns into strong absorption on left side.

AGC 221409: [N ii] extent matches Hα extent, except on truncated side of spectrum.

UGC 8161: ORC suggests patchy Hα regions along major axis.

UGC 8194: Use TF I-band data from Bernstein et al. (1994); assume R_d = R_{21.5}/3.5.

AGC 250443/CGCG 049-108: Inclination and corrected ellipticity from Dale et al. (1999).

AGC 250472/CGCG 049-127: Inclination and corrected ellipticity from Dale et al. (1999).

AGC 250632/CGCG 049-151: Inclination and corrected ellipticity from Dale et al. (1999). Note cz_{rad} = 9849 km s⁻¹, cz_{arc} = 9695 km s⁻¹.

AGC 250740/CGCG 077-119: Inclination and corrected ellipticity from Dale et al. (1999).

UGC 9838: No Hα in AGC archive; use Freudling, Haynes & Giovanelli (1992; lesser quality than reprocessing of archive data).

UGC 9844: Inclination and corrected ellipticity from Dale et al. (1999).

AGC 250803/CGCG 077-126: Inclination and corrected ellipticity from Dale et al. (1999).

AGC 250896/CGCG 077-135: Inclination and corrected ellipticity from Dale et al. (1999).

AGC 251744/CGCG 476-112: Disregard Hα data altogether (profile is confused with AGC 251498); ORC replaced with Dale version (ΔP.A. = 13°). Identified as AGC 251499 in Vogt (1995).

AGC 251400/CGCG 108-031: Treat as if no Hα data (clearly confused with known companion).

UGC 10121: Inclination and corrected ellipticity from Dale et al. (1999).

AGC 251424/CGCG 108-037: Inclination and corrected ellipticity from Dale et al. (1999).

AGC 251503: Inclination and corrected ellipticity from Dale et al. (1999).

AGC 251436/CGCG 108-043: Inclination and corrected ellipticity from Dale et al. (1999). ORC offset in position angle from Dale spectrum.

AGC 251445/IC 1157: Weak Hα absorption, weak [N ii] emission.

AGC 251509: Inclination and corrected ellipticity from Dale et al. (1999).

UGC 10131: ORC quite faint.

AGC 251510: Inclination and corrected ellipticity from Dale et al. (1999).

UGC 10166: Treat as nondetection in Hα.

AGC 260112/CGCG 108-108: ORC offset in position angle from Dale spectrum.

AGC 260116/CGCG 108-107a: [N ii] masked by [OH] emission line feature.

AGC 260953: Disk scale length from Dale et al. (1999). Hα on both sides, but [N ii] only on the left, [N ii] masked by [OH] emission line feature.

UGC 10177: No Hα in AGC archive; use Giovanelli & Haynes (1985; lesser quality than reprocessing of archive data).

UGC 10180: No Hα in AGC archive; use Giovanelli & Haynes (1985; lesser quality than reprocessing of archive data).

AGC 260146: Inclination and corrected ellipticity from Dale et al. (1999).

UGC 10190: [N ii] masked by [OH] emission line feature.

UGC 10192: Identified as AGC 260184 in Vogt (1995). No Hα in AGC archive; use Huchtmeier & Richter (1989; lesser quality than reprocessing of archive data).

UGC 10193: [N ii] masked by [OH] emission line feature. Note moderately close companion in ORC (Δcz = 600 km s⁻¹) and in I band.

UGC 10195: No Hα in AGC archive; use Giovanelli & Haynes (1985; lesser quality than reprocessing of archive data).

AGC 260208/CGCG 108-140: Inclination and corrected ellipticity from Dale et al. (1999).

AGC 260226/IC 1192: Inclination and corrected ellipticity from Dale et al. (1999).

AGC 260245: Inclination and corrected ellipticity from Dale et al. (1999). Hα beyond [N ii] is very faint on left, bright on right.

AGC 260246/CGCG 108-155: Inclination and corrected ellipticity from Dale et al. (1999).

AGC 260274/CGCG 108-157: Hα outlying points on left are quite faint.

UGC 10287: ORC offset in position angle from Dale spectrum.

UGC 10389: No Hα in AGC archive; use Huchtmeier & Richter (1989; lesser quality than reprocessing of archive data).

AGC 260599: ORC very probably has large position angle offset (do not use velocity profile).

UGC 10415: Face-on galaxy, ORC is quite noisy because of inclination angle factor, major axis was difficult to determine.

AGC 260929: Faint, patchy Hα along major axis.

AGC 260622: Faint, patchy Hα along major axis.

AGC 260930: Fairly strong Hα emission spectrum, but [N ii] extremely faint.

AGC 260934: [N ii] masked by [OH] emission line feature.

UGC 10661: Use Hα flux but not width (detection looks real, but low S/N, horns not defined).
Fig. 14.—Rotation curves are shown for the entire sample, sorted by right ascension and labeled by AGC name. Filled circles show Hα data, and open circles [N ii] data; error bars are plotted when larger than 10 km s⁻¹. The x-axis shows the radial distance along the major axis, in h⁻¹ kpc, and the y-axis the velocity, in kilometers per second. The cluster name is noted for galaxies within 2 h⁻¹ Mpc of a cluster center, with the galaxy radius (h⁻¹ Mpc) and velocity offset (σ) inset below the morphological type. The absolute magnitude M_i is then added if available. For galaxies within one h⁻¹ Mpc of a cluster center, an arrow from the center of the rotation curve points toward the cluster center (the angle between the x-axis and the arrow indicates the position of the major axis relative to the cluster center.) To the right of each rotation curve we present the H i line profile, preserving the velocity scale on the y-axis. The line profile is scaled along the x-axis to fill the available horizontal space rather than in absolute flux units, but the line profile is scaled lower and drawn as a dotted line for galaxies that are H i deficient by more than a factor of 2.5 (log H_i < 40). [See the electronic edition of the Journal for additional panels of this figure.]

UGC 11348: No H i data in AGC archive; use Theureau et al. (1998; lesser quality than reprocessing of archive data).

AGC 330564/CGCG 476-075: Strong, solid-body inner ORC profile rises above V_{max}—bar?

AGC 330712: Strong Hα, but no [N ii] to trace along ORC.

UGC 12721: Patchy H ii along disk (isolated points appear to be real, match J band).

AGC 330721: Treat as if no H i data; likely confused with known companion.

AGC 330768/CGCG 476-112: Sole case of strong ORC asymmetry outside of cluster cores, from interacting neighbor at 16 h⁻¹ kpc.

AGC 331185/F2532: New AGC name for AGC 331096 (deactivated). H i spectrum has been published as AGC 331096, and recorded in the NED. Identified as AGC 331096 in Vogt (1995).

AGC 330918/CGCG 477-012: Use TF J-band data from Han & Mould (1992); assume R_d = R_{50}/3.5.

AGC 330958/CGCG 477-020: H i marginal (S/N barely acceptable) and Δcz = 1200 km s⁻¹ from ORC; assume nondetection in H i and calculate H i gas mass from rms, not flux.

AGC 331013/CGCG 478-003: H i marginal (S/N barely acceptable) and Δcz = 200 km s⁻¹ from ORC; assume nondetection in H i and calculate H i gas mass from rms, not flux.

Figure 14 presents the data on the derived rotation curves for the entire sample of galaxies, sorted by right ascension and labeled by AGC name. Filled circles designate the Hα data, and open circles the [N ii] data (where traced). Error bars
are plotted only on points for which they have an amplitude greater than 10 km s$^{-1}$, to reduce obscuration of the points. The x-axis shows the radial distance along the major axis, in units of h^{-1} kpc, and the y-axis the velocity, in units of kilometers per second. The profiles have been corrected by $\sin i$ to edge-on amplitude. Maximum disk mass models have been superposed on top of the rotation curves; the dotted lines represent the bulge components, the dot–long-dashed lines the disk components, the dot–short-dashed lines the halo components, and the solid lines the total velocity models. Upright arrows on the x-axis mark 1 disk scale length. [See the electronic edition of the Journal for additional panels of this figure.]

Figure 15 shows the rotation curves folded about their centerpoints for the galaxies for which we have I-band data, sorted by right ascension and labeled by AGC name. Circles designate the Hα data, and the triangular points the [N ii] data, while filled points and open points fall, respectively, on the approaching and receding sides of the galaxy. Error bars are again plotted when larger than 10 km s$^{-1}$. The x-axis shows the radial distance along the major axis, in units of h^{-1} kpc, and the y-axis the velocity, in units of kilometers per second. The profiles have been corrected by $\sin i$ to edge-on amplitude. Maximum disk mass models have been superposed on top of the rotation curves; the dotted lines represent the bulge components, the dot–long-dashed lines the disk components, the dot–short-dashed lines the halo components, and the solid lines the total velocity models. Upright arrows on the x-axis mark 1 disk scale length. [See the electronic edition of the Journal for additional panels of this figure.]
sorted by right ascension and labeled by AGC name. Circles designate the Hα data, and triangular points the [N ii] data, while filled points and empty points fall, respectively, on the approaching and receding sides of the source. Error bars are again plotted only on points for which they have an amplitude greater than 10 km s$^{-1}$, to reduce obscuration of the points. The x-axis shows the radial distance along the major axis in h^{-1} kpc, and the y-axis the velocity in kilometers per second. For sources where an image is available and thus an inclination angle is known, the profiles have been corrected by $\sin i$ to edge-on amplitude. Maximum disk mass models have been superposed on top of the rotation curves for sources for which images are available. The dotted lines represent the bulge components, the dot–long-dashed lines the disk components, the dot–short-dashed lines the halo components, and the solid lines the total velocity models. The component profiles have been terminated at the end of the luminosity profile for the few sources in which the optical rotation curve extends further out than the traced luminosity profile. The upright arrows placed upon the x-axis mark 1 disk scale length.

Figure 16 presents the data on the I-band surface brightness profiles for the galaxies within the rotation curve sample for which we have such data, sorted by right ascension and labeled by AGC name. The x-axis shows the radial distance along the major axis in h^{-1} kpc, and the y-axis the surface brightness profile, azimuthally averaged along the fitting ellipse, in magnitudes per square arcsecond. An arrow marks the radius of 2 disk scale lengths, and the bulge and disk components have been deconvolved. [See the electronic edition of the Journal for additional panels of this figure.]
8. SUMMARY

This study concerns the effects of the cluster environment upon the distribution of mass and light in spiral galaxies. We have observed a set of 329 nearby (redshift \(z < 0.045 \)) galaxies (1) to study the dependence of mass-to-light distributions upon cluster environment, (2) to evaluate the global properties of optical rotation curves (spatially extended velocity profiles), and (3) to determine the robustness of the Tully-Fisher relation within differing environments. The 16 Abell clusters cover a wide range of cluster richness, density, and luminosity, and are supplemented by the less rich groups Cancer and NGC 507, and 30 isolated field galaxies. We have examined the distribution of mass and light within the target galaxies through a study of optical emission lines, the total H i gas, and optical photometry. Optical spectroscopy were taken with the 200 inch Hale Telescope and provide separately resolved Hα and [N ii] major-axis rotation curves for the complete set of galaxies, which are analyzed to yield velocity widths and velocity profile shapes and gradients. H i line profiles provide an independent velocity width measurement and a measure of H i gas deficiency. I-band images are used to deconvolve profiles into disk and bulge components and to determine global luminosities and inclination. This paper is the first in a series of three linked papers concerning this data set. The present paper (Paper I) covers the observational data collected; the remaining two (Vogt et al. 2004a, 2004b; Paper II and Paper III) contain the results of the analysis of cluster properties and environmental effects.

The data presented in this paper are based upon observations carried out at the Arecibo Observatory, which is part of the National Astronomy and Ionosphere Center (NAIC), at Green Bank, which is part of the National Radio Astronomy Observatory (NRAO), at the Kitt Peak National Observatory (KPNO), the Palomar Observatory (PO), and the MDM Observatory. NAIC is operated by Cornell University, NRAO by Associated Universities, Inc., and KPNO and CTIO by Associated Universities for Research in Astronomy, Inc. all under cooperative agreements with the National Science Foundation. The MDM Observatory is jointly operated by the University of Michigan, Dartmouth College, and the Massachusetts Institute of Technology on Kitt Peak, Arizona. The Hale telescope at the PO is operated by the California Institute of Technology under a cooperative agreement with Cornell University and the Jet Propulsion Laboratory. We would like to thank the staff members at these observatories who so tirelessly dedicated their time to insure the success of our observations. We also thank Sc project team members John Salzer, Gary Wegner, Wolfram Freidling, Luiz da Costa, and Pierre Chamaraux, and also Shoko Sakai and Marco Scodeggo, for sharing their data in advance of publication. We thank the anonymous referee for helpful comments on the manuscript. N. P. V. is a Guest User, Canadian Astronomy Data Center, which is operated by the Dominion Astrophysical Observatory for the National Research Council of Canada’s Herzberg Institute of Astrophysics. This research has made use of the NASA/IPAC Extragalactic Database (NED), which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. This research was supported by NSF grants AST 92-18038 and AST 95-28860 to M. P. H. and T. H., AST 90-23450 to M. P. H., AST 94-20505 to R. G., and NSF-0123690 via the ADVANCE Institutional Transformation Program at NMSU, as well as NASA grants GO-07883.01-96A to N. P. V. and NAS5-1661 to the WFPC1 IDT.

REFERENCES

Abell, G. O. 1958, ApJS, 3, 211
Abell, G. O., Corwin, H. G., Jr., & Olowin, R. P. 1989, ApJS, 70, 1
Adami, C., Marcelin, M., Amram, P., & Russell, D. 1999, A&A, 349, 812
Amram, P., Balkowski, C., Boulesteix, J., Cayatte, V., Marcelin, M., & Sullivan, W. T. III. 1996, A&A, 310, 737
Amram, P., Le Coarer, E., Marcelin, M., Balkowski, C., Sullivan, W. T. III, & Cayatte, V. 1992, A&A, 225, 175
Amram, P., Marcelin, M., Balkowski, C., Cayatte, V., Sullivan, W. T. III, & Le Coarer, E. 1994, A&A, 103, 5
Amram, P., Sullivan, W. T. III, Balkowski, C., Marcelin, M., & Cayatte, V. 1993, ApJ, 403, L59
Barnby, P., & Huchra, J. P. 1998, AJ, 115, 6
Beers, T. C., Gebhardt, K., Forman, W., Huchra, J. P., & Jones, C. 1991, AJ, 102, 1581
Bernstein, G. M., Guhathakurta, P., Raychaudhury, S., Giovanelli, R., Haynes, M. P., Herter, T., & Vogt, N. P. 1994, AJ, 107, 1962
Bird, C. M., Dickey, J. M., & Salpeter, E. E. 1993, ApJ, 404, 81
Bosma, A. 1978, Ph.D. thesis, Univ. Groningen
Bothun, G. D., Geller, M. J., Beers, T. C., & Huchra, J. P. 1983, ApJ, 268, 47
Bottinelli, L., Guougenheim, L., Fouqué, P., & Patrulé, G. 1990, A&A, 82, 391
Burstein, D., & Rubin, V. C. 1985, ApJ, 297, 423
Burstein, D., Rubin, V. C., Ford, W. K., & Whitmore, B. C. 1986, ApJ, 305, L11
Burstein, D., Rubin, V. C., Thonnard, N., & Ford, W. K. 1982, ApJ, 253, 70
Corradi, R. L. M., & Capaccioli, M. 1991, A&A, 90, 121
Courteau, S. 1997, AJ, 114, 2402
———. 1992, Ph.D. thesis, Univ. California, Santa Cruz
Dale, D. A., Giovanelli, R., Haynes, M. P., Hardy, E., & Campusano, L. E. 1999, AJ, 118, 1468
———. 2001, AJ, 121, 1886
Dale, D. A., Giovanelli, R., Haynes, M. P., Scodeggo, M., Hardy, E., & Campusano, L. E. 1997, AJ, 114, 455
———. 1998, AJ, 115, 418

David, L. P. 1997, ApJ, 484, L11
Dell’Antonio, I. P., Geller, M. J., & Fabricant, D. G. 1995, AJ, 110, 502
Distefano, A., Rampazzo, R., Chincarini, G., & de Souza, R. 1990, A&A, 86, 7
Dixon, K. L., Godwin, J. G., & Peach, J. V. 1989, MNRAS, 239, 459
Dressler, A. 1980, ApJS, 42, 565
Faber, S. M., & Gallagher, J. S. 1979, ARA&A, 17, 135
Forbes, D. A., & Whitmore, B. C. 1989, ApJ, 339, 657
Freeman, K. C. 1970, ApJ, 160, 81
Freudling, W., Haynes, M. P., & Giovanelli, R. 1988, AJ, 96, 1791
———. 1992, ApJS, 79, 157
Garrido, O., Marcelin, M., Amram, P., & Boisson, O. 2003, A&A, 399, 51
Garrido, O., Marcelin, M., Amram, P., & Boulesteix, J. 2002, A&A, 387, 821
Giovanelli, R., & Haynes, M. P. 1985, ApJ, 292, 404
———. 2002, ApJ, 571, L107
Giovanelli, R., Haynes, M. P., Herter, T., Vogt, N. P., Wegner, G., Salzer, J. J., da Costa, L. N., & Freudling, W. 1997, AJ, 113, 22
Giovanelli, R., Haynes, M. P., Salzer, J. J., Wegner, G., da Costa, L., & Freudling, W. 1995, AJ, 110, 1059
———. 1994, AJ, 107, 2036
Giovanelli, R., Chincarini, G. L., & Haynes, M. P. 1981, ApJ, 247, 383
Guhathakurta, P., van Gorkom, J. H., Kotanyi, C. G., & Balkowski, C. 1988, AJ, 96, 851
Gunn, J. E., & Gott, J. R., III. 1972, ApJ, 176, 1
Han, M. 1992, ApJ, 395, 75
Han, M., & Mount, J. 1992, ApJ, 396, 453
Haynes, M. P. 1989, NAIC Bul., 254, 1
Haynes, M. P., & Giovanelli, R. 1984, AJ, 89, 758
———. 1986, ApJ, 306, 466
Haynes, M. P., Giovanelli, R., Herter, T., Vogt, N. P., Freudling, W., Maia, M. A. G., Salzer, J. J., & Wegner, G. 1997, AJ, 113, 1197
Haynes, M. P., Giovanelli, R., Salzer, J. J., Wegner, G., Freudling, W., da Costa, L. N., Herter, T., & Vogt, N. P. 1999, AJ, 117, 1668
Haynes, M. P., Magri, C., & Giovanelli, R. 1988, AJ, 95, 607
Huchtmeier, W. K., & Richter, O.-G. 1989, A&A, 210, 1
Kent, S. M. 1986, AJ, 91, 1301
Kent, S. M., & Gunn, J. E. 1982, AJ, 87, 945
Kent, S. M., & Sargent, W. L. M. 1983, AJ, 88, 697
Kogut, A., et al. 1993, ApJ, 419, 1
Magri, C., Haynes, M. P., Forman, W., Jones, C., & Giovanelli, R. 1988, ApJ, 333, 136
Mathewson, D. S. & Ford, V. L. 1996, ApJS, 107, 97
Mathewson, D. S., Ford, V. L., & Buchhorn, M. 1992, ApJS, 81, 413
Neistein, E., Maoz, D., Rix, H.-W., & Tonry, J. L. 1999, AJ, 117, 2666
Nilson, P. 1973, Uppsala General Catalogue of Galaxies (Uppsala: Astron. Obs.)
Oke, J. B., & Gunn, J. E. 1982, PASP, 94, 586
Ostriker, E. C., Huchra, J. P., Geller, M. J. & Kurtz, M. J. 1988, AJ, 96, 1775
Persic, M., & Salucci, P. 1990, MNRAS, 245, 577
Rix, H.-W., Guhathakurta, P., Colless, M., & Ing, K. 1997, MNRAS, 285, 779
Rubin, V. C., Burstein, D., Ford, W. K., & Thonnard, N. 1985, ApJ, 289, 81
Rubin, V. C., Ford, W. K., & Whitmore, B. C. 1988, ApJ, 333, 522
Rubin, V. C., Ford, W. K., Jr., & Thonnard, N. 1980, ApJ, 238, 471
Rubin, V. C., Ford, W. K., Jr., Thonnard, N., & Burstein, D. 1982, ApJ, 261, 439
Sakai, S., Giovanelli, R., & Wegner, G. 1994, AJ, 108, 33
Scodeggio, M., Solanes, J. M., Giovanelli, R., & Haynes, M. P. 1995, ApJ, 444, 41
Solanes, J. M., Giovanelli, R., & Haynes, M. P. 1996, ApJ, 461, 609
Solanes, J. M., Manrique, A., García-Gómez, C., González-Casado, G., Giovanelli, R., & Haynes, M. P. 2001, ApJ, 548, 97
Sperandio, M., Chincarini, G., Rampazzo, R., & de Souza, R. 1995, A&AS, 110, 279
Theureau, G., Bottinelli, L., Coudreau-Durand, N., Gouguenheim, L., Hallet, N., Loulergue, M., Paturel, G., & Teerikorpi, P. 1998, A&AS, 130, 333
Toomre, A. 1963, ApJ, 138, 385
Toomre, A., & Toomre, J. 1972, ApJ, 178, 623
Tully, R. B., & Fisher, J. R. 1977, A&A, 54, 661
van Albada, T. S., Bahcall, J. N., Begeman, K., & Sancisi, R. 1985, ApJ, 295, 305
Vogt, N. P. 1995, Ph.D. thesis, Cornell Univ.
Vogt, N. P., Haynes, M. P., Giovanelli, R., & Herter, T. 2004a, AJ, 127, 3300 (Paper II)
———. 2004b, AJ, 127, 3325 (Paper III)
Weinberg, M. 1997, ApJ, 478, 425
Whitmore, B. C., Forbes, D. A., & Rubin, V. C. 1988, ApJ, 333, 542 (WFR88)
Zabludoff, A. I., Geller, M. J., Huchra, J. P., & Ramella, M. 1993, AJ, 106, 1301
Zwicky, F., Herzog, E., & Wild, P. 1961–1968, Catalogue of Galaxies and of Clusters of Galaxies, I–VI (Pasadena: Caltech)