Research Article

An Improved Cuckoo Search Algorithm for Multithreshold Image Segmentation

Wentan Jiao,1 Wenqing Chen,1 and Jing Zhang2

1Luoyang Institute of Science and Technology, Henan, Luoyang 471023, China
2Luoyang Center of Quality and Metrology Inspection, Henan, Luoyang 471023, China

Correspondence should be addressed to Wenqing Chen; hncwq197001@163.com

Received 15 June 2021; Revised 14 July 2021; Accepted 22 July 2021; Published 3 August 2021

1. Introduction

With the rapid development and application of computers, handheld terminals, networks, and multimedia technologies, multimedia data have gained more and more widespread applications, especially the explosive growth of image and video data [1]. Especially in SnapChat, Instagram, Facebook, Telnet, and other image-related portals, the number of images has reached hundreds of millions, and the trend is multiplying [2]. Therefore, the study of these data images has a relatively important value. In the field of image engineering, image processing, image analysis, and image understanding are classified according to the data source to be processed and the level of semantic abstraction of the image. The result of image processing directly affects the success or failure of image depth understanding and analysis. Image segmentation is one of the most important tools in graphics processing methods, which has a wide range of applications in target recognition, feature detection, image annotation, and semantic search. It is the process of dividing a digital image into multiple regions or multiple targets, which can provide more accurate and meaningful information than a single pixel, and it is obvious that image analysis and understanding based on multiple segmentation targets is better than image analysis and understanding based on isolated pixel points with no semantic meaning.

In recent years, a large amount of related literature has shown that intelligent methods have significant advantages over traditional methods in image segmentation [3, 4]. Therefore, in this paper, we choose the cuckoo search (CS) [5] for image segmentation, which is one of the relatively new metaheuristics to efficiently solve the optimization problem by simulating the parasitic brood (Brood Parasitism) of some species of cuckoo, which uses the Levy flight mechanism to improve the performance of the algorithm. The performance of the algorithm is improved by using the Levy flight search mechanism. Due to this unique optimization mechanism, CS can provide good global search functionality, which makes it popular in various engineering problems. In this work, we will try to explore the application of CS to image segmentation optimization problems under multiple thresholds. Specifically, the image segmentation scheme is mapped into the model of CS algorithm, and then the near-optimal solution is obtained using CS algorithm.
Based on this, we propose an advanced method called ICS (Improved CS for Vehicle Scheduling), which aims to further improve the best solution search capability of CS. We provide a detailed implementation of ICS and evaluate the performance through simulation experiments. We summarize the contributions of this work as follows: (1) to improve the effectiveness of multithreshold image segmentation, we use the ICS algorithm to solve problem; (2) we propose a new method called ICS, which improves the convergence speed and accuracy of the ICS-based method by combining advanced optimization strategies to improve image segmentation; (3) we present the detailed design and implementation of ICS and compare it with modern metaheuristic algorithms such as CS, ACO, and PSO. The experimental results show that the ICS algorithm can provide better performance in terms of image segmentation with multiple thresholds.

Section 2 describes the results of related researches, Section 3 introduces the basic concepts of image segmentation, Section 4 describes the application of the improved cuckoo algorithm in image segmentation, Section 5 describes the process of simulation experiments, and Section 6 concludes the paper.

2. Related Research

As the application of image segmentation technology becomes more and more extensive, scholars at home and abroad have put forward a large number of related research results. The image segmentation is studied from different angles. Image segmentation based on metaheuristic algorithm is a segmentation method that has been used more in recent years. Firstly, one or more optimization objective functions are determined, and then these objective functions are maximized or minimized through metaheuristic algorithm. At the same time as the best, the image can also complete the best segmentation. Scholars have used a large number of intelligent optimization methods for image segmentation, such as Improved Moth-Flame Optimization Algorithm [6], Symbiotic Organisms Search [7], Dragonfly algorithm [8], Particle Swarm Optimization Artificial Bee Colony algorithm [9], Bat Algorithm [10], Fruit Fly Optimization Algorithm [11], etc. The use of these intelligent algorithms improves the effect of image segmentation, which is the direction of this paper.

The selection of the optimal threshold in the segmentation algorithm is the main optimization direction of the metaheuristic algorithm. It searches for the optimal value of the objective function under a certain criterion in an iterative manner to obtain the optimal segmentation threshold. Literature [12] proposed a multithreshold image segmentation method based on moth algorithm, which combined moth algorithm with maximum entropy to achieve image segmentation quickly and accurately; literature [13] proposed an image segmentation method based on improved hybrid particle swarm optimization (PSO). Simulation experiments show that the algorithm can effectively improve the segmentation effect; literature [14] applied the firefly algorithm to color image segmentation and accurately selects the optimal segmentation threshold to achieve image segmentation; literature [15] introduced an improved image threshold segmentation method of bee colony algorithm; simulation experiment results show that the proposed algorithm is efficient and robust. Literature [16] used the gray wolf algorithm to obtain the best segmentation threshold of the image and obtain higher quality segmentation results. At the same time, literature [17] introduced the whale algorithm to image multithreshold segmentation. Literature [18] proposed image multithreshold segmentation based on harmony algorithm and electromagnetic optimization algorithm. Literature [19] gave the application of social spider optimization and pollination algorithm in multithreshold image segmentation. Experiments show that the algorithm can effectively avoid local optima as the number of thresholds increases, and the segmentation stability is better.

The single-element heuristic algorithm is easy to fall into the problem of local optimization in the later stage. The use of two intelligent algorithms of fusion is a research hotspot in the field of image segmentation. For example, literature [20] uses the combination of cuckoo algorithm and adaptive differential evolution algorithm to perform multithreshold segmentation of images. The experimental results show that the fusion algorithm has better segmentation results and requires fewer parameters, which has better results; literature [21] proposed an image segmentation method based on simulated annealing and genetic algorithm. Simulation experiments showed that the fusion algorithm was in segmentation accuracy. Literature [22] suggested mixing the wind-driven optimization algorithm with the cuckoo algorithm and using the fused algorithm to search for the best threshold under Kapur entropy. Compared with the two algorithms before mixing, the segmentation accuracy is higher. Literature [23] proposed an image segmentation algorithm based on PSO and FCM. Simulation experiments show that the fusion algorithm has better results in image segmentation.

3. Multithreshold Image Segmentation

Image segmentation is to divide an image segmentation into several different areas. The color, shape, and information similarity of the image in the same area are relatively high. At the same time, the similarity between different regions is very low, and the purpose of image segmentation is to select the region of interest from the image for subsequent image processing algorithm application. Think of an image as a set \(R \) and each segmented A region is a nonempty subset \(R_i, R_2, \ldots, R_m \). These subsets satisfy the following conditions. Condition 1: \(\cup_{i=1}^{n} R_i = R \), which means that the sum of pixels in \(n \) subregions includes all pixels of the original image and all pixels in the same subregion are connected; condition 2: for the \(i \) th nonempty subset and the \(j \) th nonempty subset, when \(i \neq j \), \(R_i \cap R_j = \emptyset \), it shows that any pixel in the image cannot belong to different subregions at the same time; condition 3: for \(i = 1, 2, \ldots, n \), \(P(R_i) = True \); this means that the pixel values in the same subregion have a high degree of similarity in some features; condition 4: for nonempty subset
$i \neq j$, $P(R_i \cup R_j) = \text{False}$. This means that pixels in different subregions should have different characteristics in some respect.

Threshold segmentation algorithm is a simple and efficient method in image segmentation, which has the advantages of small computation, simple implementation, and stable performance. It is to divide the image pixel points into several classes based on several suitable thresholds found in the whole image, and to ensure that each set of pixel points divided is consistent from the perspective of gray level. Generally speaking, image segmentation is mainly divided into single-threshold and multithreshold, and this paper will study image segmentation under multithreshold based on the maximum entropy value method.

The maximum entropy thresholding method [24] is an image segmentation algorithm proposed by Kapur et al. in 1985, which finds the optimal threshold to maximize the amount of information contained in the background and target regions of an image by analyzing the entropy of the image grayscale histogram. For an image with grayscale range $[0, L - 1]$, k represents any gray value, let the segmentation threshold be t, the pixel points with grayscale level below t are taken as the target region (T) as in expression (2), and the pixel points with grayscale level higher than t above are taken as the background region (B) as in expression (3), which is described as follows:

$$
\sum_{k=0}^{i-1} P_k = 1, \quad (1)
$$

$$
T: \frac{P_0}{P_n}, \frac{P_1}{P_n}, \ldots, \frac{P_i}{P_n}, \quad (2)
$$

$$
B: \frac{P_i}{1 - P_n}, \frac{P_{i+1}}{1 - P_n}, \ldots, \frac{P_{L-1}}{1 - P_n}, \quad (3)
$$

$$
P_n = \sum_{k=0}^{i} P_k, \quad (4)
$$

The entropies associated with the probability densities of these two regions are equations (5) and (6), respectively.

$$
H(T) = -\sum_{i=0}^{i-1} \frac{P_k}{p_n} \ln \frac{P_k}{p_n}, \quad (5)
$$

$$
H(B) = -\sum_{i=i+1}^{L-1} \frac{P_k}{1 - P_n} \ln \frac{P_k}{1 - P_n}, \quad (6)
$$

$$
\varphi(t) = H(T) + H(B). \quad (7)
$$

In equation (7), $\varphi(t)$ is denoted as the sum of $H(T)$ and $H(B)$. When $\varphi(t)$ achieves the maximum value, t is the optimal threshold.

The maximum entropy thresholding method is applied to multithreshold segmentation, and the multithreshold problem to be solved can be viewed as a problem optimization in N dimensions, let the range of grayscale values of the image to be segmented be $\{0, 1, 2, \ldots, L - 1\}$, and since the image needs to be segmented into $n + 1$ regions, the objective function of maximum entropy is as follows:

$$
J([t_1, t_2, \ldots, t_n]) = H_0 + H_1 + \cdots + H_n
$$

$$
= -\sum_{k=0}^{i-1} \frac{P_i}{w_0(t_i)} \ln \frac{P_i}{w_0(t_i)} + \sum_{k=0}^{i-1} \frac{P_i}{w_0(t_i, t_2)} \cdot \ln \frac{P_i}{w_0(t_i, t_2)} + \cdots + \sum_{k=t_n}^{i-1} \frac{P_i}{w_0(t_i, L - 1)} \cdot \ln \frac{P_i}{w_0(t_i, L - 1)}.
$$

(8)

In equation (8), p_i is used to denote the probability of occurrence of gray value i in the image, and w is used to denote the probability of occurrence of gray values in a class. When the value of $J([t_1, t_2, \ldots, t_n])$ reaches the maximum value of $[t_1^*, t_2^*, \ldots, t_n^*]$, then this is the optimal segmentation threshold. The multithreshold segmentation algorithm has better segmentation accuracy than the single-threshold segmentation algorithm, but the traditional multithreshold segmentation algorithm increases the time complexity with the increase of the number of segmentation thresholds, and sometimes even exponentially, which can cause the image segmentation process time complexity to be too large or even the algorithm to be difficult to achieve; particularly, the segmentation effect of the segmentation time and segmentation quality effect indicators are difficult to ensure. The image segmentation problem can be converted into a multi-dimensional function problem, which is essentially a multi-objective optimization problem, and a large number of experiments have proved that the cuckoo algorithm has a strong global convergence ability and is better than other group intelligent optimization algorithms in solving the optimal value of the function of the local explosive; particularly, the use of Levy behavior makes the individual jump out of the local optimal solution, so this paper will use the bionic cuckoo algorithm for image segmentation to convert the problem of maximum entropy threshold objective function to segment the optimal threshold of an image into the problem of finding the optimal value of the fitness function.

4. Research on Improved Cuckoo Search in Multithreshold Image Segmentation

British scholars Xin-She Yang and Sua Deb proposed Cuckoo search in 2009 based on the unique nest parasitic behavior of cuckoos and the unique Levy behavior of birds. It is a metaheuristic algorithm based on nature. The content of the algorithm is described as follows:

(1) Randomly generate N bird nests, and the location is shown as $X_0 = (x_0^1, x_0^2, \ldots, x_0^N)$, by choosing an optimal bird’s nest location and keeping this location for the next generation.
(2) The position update is performed through the Levy flight in the algorithm, and the next iteration position in each current bird nest is obtained, and compared with the previous generation bird nest position, the position of the better individual of the two is used as the current position.

(3) Compare the random number \(r \in [0, 1] \) with the probability of host bird discovering alien eggs \(P_a \). When \(r > P_a \), then randomly change the position of the bird’s nest; otherwise, it will not change. Compare the position of the previous generation of bird’s nest, and select a group of bird’s nest positions with better positions \(X_i = (x_{i1}^*, x_{i2}^*, \ldots, x_{iN}^*) \).

(4) When the algorithm obtains the bird’s nest position to meet the accuracy requirements or terminate the iteration condition, the bird’s nest is the global optimal solution; otherwise, continue to (3) execution.

In ICS, each egg in the nest represents a solution, so the ICS solution is expressed as follows:

\[
x_{i}^{t+1} = x_{i}^{t} + \alpha \otimes L(\lambda).
\]

In the formula, \(x_{i}^{t+1} \) means the location of the i-th bird nest in the generation t; \(\otimes \) is point-to-point multiplication, \(\alpha \) is the pace length, and \(L(\lambda) \) is random search path. After the update of location, use the random number \(r \) to compare with \(P_a \). If \(r > P_a \), change \(x_{i}^{t+1} \). Otherwise, keep it unchanged.

Like other metaheuristic algorithms, ICS also has the problem of falling into local optimality and insufficient global search capabilities. Therefore, in order to better use in image segmentation, this article optimizes the three aspects of population initialization, step factor, and probability.

4.1. Population Initialization
The diversity of the population during initialization will affect the convergence speed and accuracy of the swarm intelligence algorithm, while the cuckoo search uses a random method to initialize the population, which cannot guarantee the diversity of the population solution. Chaos mapping has the characteristics of randomness, ergodicity, and regularity and is widely used in the optimization of intelligent algorithms. In order to make better use of the solution space, this paper uses chaotic mapping to initialize the population. This paper adopts formula (10) chaotic mapping, so the specific steps are shown in Table 1.

\[
x_{n+1} = x_{n} + \text{rand}(0, 1).
\]

Among them, \(x_{k-1,j} \) represents the i individual in the j dimension of the k - 1 iteration, \(x_{kj} \) represents the i individual in the j dimension of the k iteration after the chaotic map is adopted, \(x_{ij} \) represents the i individual in the j dimension, and \(x_{\text{max},j} \) and \(x_{\text{min},j} \) represent upper and lower bounds in j dimensional space, respectively.

4.2. Text Layout
The setting of step factor \(\alpha \) in ICS is related to the performance of the algorithm. When the search space is large, the parameter \(\alpha \) can be set larger, which can effectively improve the search efficiency. On the contrary, when the search space is small, the value of parameter \(\alpha \) can be set relatively small. Therefore, the value of \(\alpha \) may affect the possibility of obtaining the optimal solution of the algorithm to a certain extent. In this paper, the value of \(\alpha \) and the number of iterations are comprehensively considered, and the ratio of the current number of iterations to the total number of iterations is used to assign the value of \(\alpha \) to the value of \(s \), which can ensure that the value of \(\alpha \) is selected to an appropriate value, as shown in

\[
a = a_0 + \frac{s}{s_{\text{max}}} \times e^{\Delta f_{\text{best}}}.
\]

In the formula, \(s_{\text{max}} \) is the maximum number of iterations, \(s \) is the number of current iterations, and \(\Delta f_{\text{best}} \) is the absolute difference between the optimal value of individual fitness in the previous iteration and the optimal value of fitness in this iteration. \(a_0 \) is 0.5. In the initial stage of the algorithm, the value of \(\alpha \) is small, which can ensure the local better results in a smaller search space. As the number of iterations increases, the value of \(\alpha \) gradually increases, and the search scope expands.

4.3. Probability Optimization
In cuckoo search, probability \(P_a \) is usually a fixed value. However, when the \(P_a \) ratio is large, the convergence speed of algorithm will be accelerated, but the optimal solution with high accuracy may not be obtained. On the contrary, the time complexity of the algorithm will be significantly improved. Therefore, the probability \(P_a \) is optimized as shown in the following expression:

\[
P_a = P_{\text{min}} + \left(P_{\text{max}} - P_{\text{min}} \right) \times \frac{s}{s_{\text{max}}}.
\]

In the formula, \(P_{\text{min}} \) and \(P_{\text{max}} \) respectively, represent the minimum and maximum value of probability \(P_a \), \(s_{\text{max}} \) is the largest iteration number, and \(s \) is the number of iterations. As the number of iterations increases, the value of \(P_a \) is constrained by the maximum and minimum probability. The convergence rate of algorithm is controlled and closer to the optimal solution. Thus, the performance of algorithm is improved.

4.4. Algorithm Complexity
Time complexity refers to the computational workload required for the execution of the algorithm, which mainly depends on the number of repeated
executions of the problem. In the cuckoo search algorithm, the time complexity is mainly affected by the population size N, the number of iterations T, and the search dimension D. The algorithm optimization step shows that its time complexity is $O(N \cdot T \cdot D)$. Since the ICS algorithm is improved from the CS algorithm, on the basis of the CS algorithm time complexity, more optimization steps can be known. The newly introduced strategy of judging individual attributes and dynamically adjusting the search equation increases the number of calculations of $O(N \cdot T \cdot D)$, and dynamically adjusting the convergence factor increases the number of calculations of $O(T)$. In general, the time complexity of the ICS algorithm is slightly higher than that of the CS algorithm. The space complexity is mainly affected by the population size and search dimension, so the space complexity of the two algorithms is $O(N \cdot D)$.

4.5. Application of Improved Algorithm in Image Segmentation

Step 1: convert the image to be segmented into a grayscale image to obtain the grayscale distribution. According to the grayscale value of the image within $[0, 255]$, the position limit of the ICS is also set in this interval.

Step 2: initialize a certain number of cuckoo individuals in a specific solution space. The initialization process represents the population number, dimension, and number of iterations, and each individual represents a solution in the solution space.

Step 3: use the segmentation algorithm in formula (2) as the fitness value function of the ICS, and calculate the fitness value of each particle according to the fitness function.

Step 4: CS to different degrees according to the sections population initialization, text layout, and probability optimization.

Step 5: calculate the individual fitness value of ICS, and reserve the respective fitness function values through the selection strategy to save the current optimal fitness function value, and save the position of the maximum function value during each iteration.

Step 6: when the individual does not meet the termination condition, the next iteration needs to be carried out according to Steps 3–5, and the optimal effect is obtained through repeated operations until the termination condition is met, and the result obtained is the optimal threshold for segmenting the image.

5. Simulation Experiment

In order to further illustrate the advantages of this algorithm in image segmentation, the simulation experiment is divided into two parts: the first part verifies the performance of this algorithm, and the second part verifies the effect of this algorithm in the index of image segmentation. In order to better illustrate the advantages of the algorithm in this paper, in terms of performance, compare the algorithm in this paper with the CS algorithm, and compare it with Ant Clony Optimization (ACO) and Particle Swarm Optimization (PSO) in terms of image segmentation. Matlab2012 is selected, the CPU is Core i7, the memory is 4GDDR3, and the operating system is running on a Windows 7 host.

5.1. Performance Comparison. In this paper, four test function algorithms are selected for comparison; the four test functions are

$$
\begin{align*}
\min f_1 (x) &= \sum_{i=1}^{n} x_i^2, \\
\min f_2 (x) &= \sum_{i=1}^{n} |x_i| + \prod_{i=1}^{n} |x_i|, \\
\min f_3 (x) &= \sum_{i=1}^{n} ([x_i + 0.5])^2, \\
\min f_4 (x) &= \max(\text{abs}(x_i)).
\end{align*}
$$

Run each algorithm 50 times under the conditions of 5, 10, and 50 dimensions, and compare the optimal value and variance results as shown in Tables 2 to 5.

Tables 2–5 show the comparison results of the optimal value and variance of CS and ICS algorithms. From the table, it is found that the ICS algorithm has better results in the four benchmark functions than the CS algorithm. This shows that the performance of the ICS algorithm, after population initialization, text layout, and probability optimization, is significantly improved so that the optimal value and variance of the algorithm have better results.

Table 6 shows the comparative effects of CS and ICS algorithms in different dimensions under the 4 benchmark functions. When the dimension is 5, the running time of ICS and CS in f_1 and f_3 is not much different. When the dimension is 10, the running time in f_3 is not much different. The ICS proposed in this article has obvious advantages in other dimensions. It shows that the optimized algorithm can indeed improve the performance of the algorithm.

5.2. Image Segmentation Effect Comparison. This paper uses the GC value in literature [24] as the multithreshold image segmentation quality evaluation standard, i.e., the evaluation of the GC value ranges between 0 and 1, and the larger the GC value, the better the segmentation quality. This paper chooses the segmentation quality and segmentation time as the standard hardware platform for comparison. This paper selects the Berkeley Segmentation Data Set and Benchmarks 500 (BSDS500) data set to randomly select 3 images as the segmentation object, set the segmentation threshold to 4, and the segmentation effect with the threshold value of 1–4 as shown in Figures 1(a)–3(e). Three pictures under the same threshold are represented by 1, 2, and 3, respectively.

Figures 4–7 show the comparison of the four algorithms for image segmentation quality GC values under different
thresholds. When the threshold is 1, the GC value of the algorithm in this paper is significantly better than the other three comparison algorithms, especially compared to CS. In terms of the algorithm, the algorithm segmentation effect is obvious. When the threshold is 2, the GC value of the algorithm in this paper is slightly lower than when the threshold is 1, but overall it is still better than the other three algorithms, but it is compared with the GC value of the ICS algorithm. When the threshold is 3, the GC value of the algorithm in this paper is still stable at about 0.8, and the GC values of the other three algorithms have increased to varying degrees. When the threshold is 4, the GC value of the algorithm in this paper is close to 0.9, and the GC values of the other three algorithms have risen to varying degrees.
Figure 1: (a) Lean image, (b) threshold = 1, (c) threshold = 2, (d) threshold = 3, and (e) threshold = 4.

Figure 2: (a) Rice image, (b) threshold = 1, (c) threshold = 2, (d) threshold = 3, and (e) threshold = 4.

Figure 3: (a) Woman image, (b) threshold = 1, (c) threshold = 2, (d) threshold = 3, and (e) threshold = 4.

Figure 4: Comparison of GC values of four algorithms with a threshold of 1.
From the four results, as the threshold continues to increase, the GC values of the four algorithms show an overall upward trend, but overall the ICS algorithm has certain advantages, mainly because the optimization and improvement measures of the ICS algorithm provide the segmentation effect which is a great help. With the use of chaotic initialization population to increase the diversity of the solution, the use of optimized step size factors to increase the possibility of the algorithm to obtain the optimal solution, and the use of probability to reduce the complexity of the algorithm, overall the algorithm’s image segmentation under multiple thresholds is improved effect. This shows that under the condition of multiple thresholds the image segmentation of the algorithm in this paper has a good effect. The speed of segmentation time is a very important indicator in image segmentation. Figures 8 –11 show the time required for the four algorithms to segment under different thresholds. When the threshold is 1, the image segmentation time of the algorithm in this paper is more obvious than other algorithms. When the threshold value is 2, the image segmentation time of the four algorithms is improved to a certain extent compared with the threshold value of 1, but the algorithm in this paper still has advantages. When the threshold value is 3, the image segmentation time of the four algorithms increases, but the gap between each other shrinks. When the threshold is 4, the average image segmentation time of the algorithm in this paper has reached 0.6, which is still the smallest image segmentation time required by the other three algorithms. In particular, compared with the CS algorithm, the image segmentation
time of the algorithm in this paper can be shortened by 40%, which shows that the advantages of population initialization, optimization of the step size factor, and use of probability optimization have been significantly improved.

5.3. Analysis of Statistical Characteristics of Optimal Algorithm Based on Wilcoxon Test. Due to the importance of multi-question statistical analysis, this paper uses R_+ and R_- in the literature [25] to represent the maximum and minimum sum ranks, respectively. Table 7 also shows the statistical analysis results of ICS and the other three comparison algorithms through Wilcoxon test. The parameters of Wilcoxon test are $\alpha = 0.01$ and 0.05.

Algorithm type	R_+	R_-	P value
ICS versus CS	364	254	0.0056
ICS versus PSO	205	134	0.1839
ICS versus ACO	200	123	0.2189

As can be seen from the results shown in Table 7, in all cases, the R_+ value provided by ICS is higher than R_-. Therefore, we can conclude that ICS has the best optimization performance.

6. Conclusions

Aiming at the problem of poor image segmentation under multithreshold, this paper proposes an improved cuckoo search image segmentation processing algorithm. First, the image segmentation is described, and then the chaotic initialization population, step factor, and probability selection are optimized. Finally, the maximum entropy threshold function in image segmentation is solved as an improved cuckoo search individual fitness function. The experiment shows that using the optimized improved cuckoo search for image segmentation has achieved good results. The ICS algorithm proposed in this paper has good application value in multithreshold image segmentation, especially in the medical field. It can segment patient images to assist doctors in observing patient images, and can also be used in the analysis of urban road traffic conditions and the application of the extracted target vehicle and so on. However, because this article only considers the two indicators of segmentation quality and segmentation time, the lack of consideration of the accuracy of the image after segmentation makes the algorithm of this paper have certain limitations. This requires continued research in the next step, while continuously improving the segmentation quality and reducing the split time.
Data Availability

The image simulation experiment data used to support the findings of this study have not been made available because the authors used labs in other schools to complete the experiment.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] A. Visa, “Keynotes: multimedia—the past, today, and the future,” in Proceedings of the 2016 Visual Communications and Image Processing (VCIP), pp. 1–2, Chengdu, China, November 2016.
[2] D. Murthy, A. Gross, and M. McGarry, “Visual social media and big data. Interpreting Instagram images posted on Twitter,” Digital Culture & Society, vol. 2, no. 2, pp. 113–134, 2016.
[3] K. Hammouche, M. Diaf, and P. Siarry, “A comparative study of various meta-heuristic techniques applied to the multilevel thresholding problem,” Engineering Applications of Artificial Intelligence, vol. 23, no. 5, pp. 676–688, 2010.
[4] E. Cuevas and H. Sossa, “A comparison of nature inspired algorithms for multi-threshold image segmentation,” Expert Systems with Applications, vol. 40, no. 4, pp. 1213–1219, 2013.
[5] X. S. Yang and S. Deb, “Engineering optimisation by cuckoo search,” International Journal of Mathematical Modelling and Numerical Optimisation, vol. 1, no. 4, pp. 330–343, 2010.
[6] T. B. Li, J. H. Hu, and Q. K. Zhou, “Improved moth-flame optimization algorithm based on levy flight to optimize infrared image segmentation,” Infrared Technology, vol. 42, no. 9, pp. 846–854, 2020.
[7] S. Wang and H. M. Jia, “Plant canopy image segmentation based on improved symbiotic Organisms search algorithm,” Computer Applications and Software, vol. 37, no. 9, pp. 152–159+182, 2020.
[8] X. L. Bao, H. M. Jia, and C. B. Lang, “Multi threshold color image segmentation based on improved dragonfly algorithm,” Computer Applications and Software, vol. 37, no. 6, pp. 234–241, 2020.
[9] F. Zhao, L. R. Kong, and G. N. Ma, “A thresholding image segmentation algorithm based on multi-objective particle swarm and artificial bee colony hybrid optimization,” Computer Engineering and Science, vol. 42, no. 2, pp. 281–290, 2020.
[10] Y. Chen and S. Chen, “Research on application of Dynamic Weighted Bat algorithm in image segmentation,” Computer Engineering and Applications, vol. 56, no. 14, pp. 207–215, 2020.
[11] C. T. Xin, H. Zou, C. Sheng et al., “The optimal entropy threshold image segmentation of the newfruit fly optimization algorithm,” Microelectronics & Computer, vol. 36, no. 4, pp. 52–56, 2019.
[12] Y. Q. Zhou, X. Yang, Y. Ling et al., “Meta-heuristic moth swarm algorithm for multilevel thresholding image segmentation,” Multimedia Tools and Applications, vol. 77, no. 18, Article ID 23699, 2018.
[13] S. Liu, K. Zhou, H. Qi et al., “Improved hybrid particle swarm optimisation for image segmentation,” International Journal of Parallel, Emergent and Distributed Systems, vol. 36, no. 1, pp. 44–50, 2021.

[14] V. Rajinikanth and M. S. Couceiro, “RGB histogram based color image segmentation using firefly Algorithm,” Procedia Computer Science, vol. 46, pp. 1449–1457, 2015.
[15] A. A. Ewees, E. M. Abd, M. A. A. A. Qaness, H. A. Khalil, and S. Kim, “Improved artificial bee colony using sine-cosine algorithm for multi-level thresholding image segmentation,” IEEE Access, vol. 8, Article ID 26304, 2020.
[16] X. Wang, Z. Li, H. Kang et al., “Medical image segmentation using PCNN based on multi-feature grey wolf optimizer bionic algorithm,” Journal of Bionics Engineering, vol. 18, no. No.3, pp. 711–720, 2021.
[17] M. A. Elaziz, N. Nabil, R. Moghdani et al., “Multilevel thresholding image segmentation based on improved volleyball premier league algorithm using whale optimization algorithm,” Multimedia Tools and Applications, vol. 80, no. 8, Article ID 12435, 2021.
[18] D. Oliva, E. Cuevas, G. Pajares, D. Zaldívar, and V. Osuna, “A multilevel thresholding algorithm using electromagnetism optimization,” Neurocomputing, vol. 139, pp. 357–381, 2014.
[19] S. Ouadfel and A. T. Ahmed, “Social spiders optimization and flower pollination algorithm for multilevel image thresholding: a performance study,” Expert Systems with Applications, vol. 55, pp. 566–584, 2016.
[20] U. Mlakar, B. Potočnik, and J. Breš, “A hybrid differential evolution for optimal multilevel image thresholding,” Expert Systems with Applications, vol. 65, pp. 221–232, 2016.
[21] L. Wang, W. X. Wang, and H. J. Liao, “Image Segmentation on Colonies Images by a Combined Algorithm of Simulated Annealing and Genetic algorithm,” in Proceedings of the Fourth International Conference on Image and Graphics (ICIG 2007), pp. 342–346, IEEE, Chengdu, China, August 2007.
[22] A. K. Bhandari, V. K. Singh, A. Kumar et al., “Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy,” Expert Systems with Applications, vol. 41, no. 7, pp. 3558–3560, 2014.
[23] L. Zhang, J. Wang, and Z. An, “FCM fuzzy clustering image segmentation algorithm based on fractional particle swarm optimization,” Journal of Intelligent and Fuzzy Systems, vol. 38, no. 4, pp. 3575–3584, 2020.
[24] J. N. Kapur, P. K. Sahoo, and A. K. C. Wong, “A new method for gray-level picture thresholding using the entropy of the histogram,” Computer Vision, Graphics, and Image Processing, vol. 29, no. 3, pp. 273–285, 1985.
[25] A. W. Mohamed and A. K. Mohamed, “Adaptive guided differential evolution algorithm with novel mutation for numerical optimization,” International Journal of Machine Learning & Cybernetics, vol. 10, no. 2, pp. 253–277, 2019.