Well-posedness for Stochastic Evolution Equations with Monotone Non-linearity and Multiplicative Poisson Noise in L^p

Erfan Salavati*
Faculty of Mathematics and Computer Science
Amirkabir University of Technology (Tehran Polytechnic)
School of Mathematics,
Institute for Research in Fundamental Sciences (IPM),
P.O. Box: 19395-5746, Tehran, Iran
Bijan Z. Zangeneh
Department of Mathematical Sciences
Sharif University of Technology
Tehran, Iran

Abstract
Semilinear stochastic evolution equations with Lévy noise and monotone nonlinear drift are considered. The existence and uniqueness of the mild solutions in L^p for these equations is proved and a sufficient condition for exponential asymptotic stability of the solutions is derived. The main tool in our study is an Itô type inequality for the pth power of stochastic convolution integrals in Hilbert spaces.

Mathematics Subject Classification: 60H10, 60H15, 60G51, 47H05, 47J35.

Keywords: Stochastic Convolution Integral, Itô type inequality, Stochastic Evolution Equation, Monotone Operator, Lévy Noise.

1 Introduction
In this article we are concerned with the L^p well-posedness (existence, uniqueness and continuous dependence on initial conditions) of the equation,

$$dX_t = AX_t dt + f(t, X_t) dt + \int_E k(t, \xi, X_{t-}) \tilde{N}(dt, d\xi),$$

(1)

*This research was supported by a grant from IPM.
on a Hilbert space H, where A in the generator of a C_0-semigroup of operators on H, f is a non-linear and dissipative (semi-monotone) operator on H, \tilde{N} is a compensated Poisson random measure and k is Lipschitz. We assume the linear growth condition on f and k.

We review the related works in the literature. There are many works for the case of Wiener noise, i.e., the equation

$$dX_t = AX_t dt + f(t, X_t) dt + g(t, X_t) dW_t,$$

where A in the generator of a C_0-semigroup and f is a non-linear and dissipative operator. This equation has been studied by two methods. First is the variational method for which see Krylov and Rosovski [9] and also Pardoux [13]. Second is the semigroup approach for which see Da Prato and Zabczyk [3] and also Zangeneh [19]. The L^p stability has been established by Jahanipour and Zangeneh [6].

To mention some recent advances for the case of Wiener noise, Barbu [2] has studied this equation in the special case of $H = L^2(D)$ where D is a domain in \mathbb{R}^d and A being the Laplacian and f being a semi-monotone evaluation operator. He does not assume any polynomial growth assumption on f. The idea is to reduce the equation to a deterministic equation with random coefficient. Marinelli [10] has studied this equation (with Wiener noise) on the Banach space $L^q(D)$ and f being a semi-monotone evaluation operator. He assumes some polynomial growth on the condition. He uses the stochastic analysis on Banach spaces.

The case of Poisson noise has been less studied. We mention some works that are most related to our work. For more, see the monograph [14] and the references therein. There are some works considering general noise (including Poisson noise) and L^2 theory, see for example [7] for the Lipschitz coefficients and and [4] for the variational approach to the monotone coefficients. They have studied the well-posedness of solutions. See also [14] for the monotone coefficients and the additive noise. The semigroup approach for the monotone coefficients and Poisson noise has been studied by Salavati and Zangeneh [15] and [16] and the L^2-well-posedness has been established. A recent work considering L^p theory is [12] which proves the well-posedness and asymptotic behaviour for solutions of (1) on certain $L^q(D)$ spaces where f is the evaluation operator associated with a decreasing function.

Our main contribution is to prove the L^p-well-posedness of the mild solution of (1) in general Hilbert space H which to the best of our knowledge, has not been proved before in this generality. To see some concrete applications of these results to stochastic partial differential equations and stochastic delay equations see [16].

The rest of the text is organized as follows. In section 2 we state some tools about the stochastic convolution integrals which we need in our proofs. The main tool is the Itô type inequality for pth power which gives a pathwise bound for the pth power of the norm of stochastic convolution integrals. In section 3 we prove our main results. We prove the existence of the mild solution in L^p in Theorem 4. The precise assumptions on coefficients will be stated in
this section. We also prove an auxiliary result known as the Bichteler-Jacod inequality in Hilbert spaces proved in Theorem 2. This result has been stated and proved before in the literature, for example in [11], but we give a new proof for it. We also show the continuous dependence on initial condition and provide a sufficient condition for exponential stability in L^p for the mild solution in Theorem [10].

2 Stochastic Convolution Integrals

In this section, we review some preliminaries on stochastic convolution integrals and introduce the main tools for the next section.

Stochastic convolution integrals are the solutions of the simplest stochastic evolution equations, i.e. the linear evolution equations with additive noise,

$$dX_t = AX_t dt + dM_t$$

Let H be a separable Hilbert space with inner product \langle , \rangle. Let S_t be a C_0 semigroup on H with infinitesimal generator $A : D(A) \to H$. Furthermore we assume the exponential growth condition on S_t, i.e. there exists a constant α such that $\|S_t\| \leq e^{\alpha t}$. If $\alpha = 0$, S_t is called a contraction semigroup. Stochastic convolution integrals are integrals of type $X_t = \int_0^t S_{t-s} dM_s$ where M_t is a martingale.

The reason for importance of stochastic convolution integrals is that the stochastic evolution equation,

$$dX_t = AX_t dt + f(X_t)dt + g(X_t) dM_t$$

is written in the following convolution integral form, in order to have solution,

$$X_t = S_t X_0 + \int_0^t S_{t-s} f(X_s) ds + \int_0^t S_{t-s} g(X_s) dM_s$$

The solutions thus performed are called mild solutions. In this article we are concerned mainly with the well-posedness of mild solution.

Stochastic convolution integrals in Hilbert spaces are different from stochastic integrals in some ways. For example, they are not semi-martingales and hence the tools which have been developed for stochastic integrals are not applicable to them. These include the regularity properties and maximal inequalities. Kotelenez [7] and [8] gives a maximal inequality for stochastic convolution integrals and also proves the existence of a càdlàg modification of them. The same estimates for the expectation of the maximum norm of stochastic convolution integrals are given independently by Ichikawa [5] but because of the presence of monotone nonlinearity in our equation, they are not applicable and we need a pathwise bound for stochastic convolution integrals. For this reason we state the following pathwise inequality for the norm of stochastic convolution integrals which has been proved in Salavati and Zangeneh [17].
\textbf{Theorem 1} (Itô type Inequality for pth power). Let $p \geq 2$. Assume $Z(t) = V(t) + M(t)$ is a semimartingale where $V(t)$ is an H-valued process with finite variation $|V|_t$ and $M(t)$ is a H-valued square integrable martingale with quadratic variation $[M](t)$. Assume that
\[
E[M](T)^{\frac{p}{2}} < \infty \quad E[|V|^p] < \infty
\]
Let $X_0(\omega)$ be \mathcal{F}_0 measurable and square integrable. Define $X(t) = S(t)X_0 + \int_0^t S(t-s)dZ(s)$. Then we have
\[
\|X(t)\|^p \leq e^{p\alpha t}\|X_0\|^p + p\int_0^t e^{p\alpha(t-s)}\|X(s^-)\|^{p-2}\langle X(s^-), dZ(s) \rangle
\]
\[
+ \frac{1}{2}p(p-1)\int_0^t e^{p\alpha(t-s)}\|X(s^-)\|^{p-2}d[M]^c(s)
\]
\[
+ \sum_{0 \leq s \leq t} e^{p\alpha(t-s)}(\|X(s^-)\|^p - \|X(s^-)\|^p - p\|X(s^-)\|^{p-2}\langle X(s^-), \Delta Z(s) \rangle)
\]
We will need also the following inequality which is an analogous of Burkholder-Davies-Gundy inequality for stochastic convolution integrals.

\textbf{Theorem 2} (Burkholder Type Inequality, Zangeneh [19], Theorem 2, page 147). Let $p \geq 2$ and $T > 0$. Let S_t be a contraction semigroup on H and M_t be an H-valued square integrable càdlàg martingale for $t \in [0,T]$. Then
\[
E \sup_{0 \leq s \leq T} \| \int_0^t S_{t-s}dM_s \|^p \leq K_p E([M]_T^p)
\]
where K_p is a constant depending only on p.

In the next section we will need an estimate for the L^p norm of stochastic integrals with respect to compensated Poisson random measures. For this reason we state and prove the following theorem which is a Bichteler-Jacod inequality for Poisson integrals in infinite dimensions. This theorem is essentially the Lemma 4 of [12] with an extension to $1 \leq p \leq 2$. We provide a new proof for this theorem based on the Burkholder-Davies-Gundy inequality.

\textbf{Theorem 3} (An L^p bound for Stochastic Integrals with Respect to Compensated Poisson Random Measures). Let $p \geq 1$. There exists a real constant denoted by C_p such that if $k(t,\xi,\omega)$ is an H-valued predictable process then
\[
E \sup_{0 \leq t \leq T} \left| \int_0^t \int_E k(s,\xi,\omega)\tilde{N}(ds,d\xi) \right|^p \leq C_p \left(\mathbb{E} \left(\left(\int_0^T \int_E |k(s,\xi,\omega)| \nu(d\xi)ds \right)^p \right) + \mathbb{E} \int_0^T \int_E |k(s,\xi,\omega)|^p \nu(d\xi)ds \right)
\]
\[
(2)
\]
Proof. Assume that $2^n \leq p < 2^{n+1}$. We prove by induction on n.

\textbf{Basis of induction:} $n = 0$. In this case we have $1 \leq p < 2$ and the statement follows from Theorem 8.23 of [14]. In fact, in this case we have
\[
E \left| \int_0^t \int_E k(s,\xi,\omega)\tilde{N}(ds,d\xi) \right|^p \leq C_p \mathbb{E} \int_0^t \int_E |k(s,\xi,\omega)|^p \nu(d\xi)ds
\]
Induction Step: Now assume $n \geq 1$ and we have proved the statement for $n - 1$. Hence $p \geq 2$. Applying Burkholder-Davies-Gundy inequality we find

$$E \sup_{0 \leq t \leq T} \left| \int_0^t \int_E k(s, \xi, \omega) \tilde{N}(ds, d\xi) \right|^p \leq K_p E \left(\int_0^T \int_E \|k(s, \xi, \omega)\|^2 N(ds, d\xi) \right)^{\frac{p}{2}}$$

Subtracting a compensator from the right hand side we get

$$\leq K_p 2^{\frac{p}{2}} \left[E \left(\left(\int_0^T \int_E |k(s, \xi, \omega)|^2 \tilde{N}(ds, d\xi) \right)^{\frac{p}{2}} \right) + E \left(\left(\int_0^T \int_E |k(s, \xi, \omega)|^p \nu(d\xi)ds \right)^{\frac{p}{2}} \right) \right] + E \left(\left(\int_0^T \int_E |k(s, \xi, \omega)|^2 \nu(d\xi)ds \right)^{\frac{p}{2}} \right)$$

Note that $2^{n-1} \leq \frac{p}{2} < 2^n$ hence we can apply the induction hypothesis to the first term on the right hand side and find

$$\leq K_p 2^{\frac{p}{2}} \left[\mathcal{E}_2 \left(\left(\int_0^T \int_E |k(s, \xi, \omega)|^2 \nu(d\xi)ds \right)^{\frac{p}{2}} \right) + E \left(\left(\int_0^T \int_E |k(s, \xi, \omega)|^p \nu(d\xi)ds \right)^{\frac{p}{2}} \right) \right] + E \left(\left(\int_0^T \int_E |k(s, \xi, \omega)|^2 \nu(d\xi)ds \right)^{\frac{p}{2}} \right)$$

By the interpolation inequality for a suitable θ such that $\theta \frac{1-p}{p} = \frac{1}{2}$ we have

$$\left(\int_0^T \int_E |k(s, \xi, \omega)|^2 \nu(d\xi)ds \right)^{\frac{1}{2}} \leq \left(\int_0^T \int_E |k(s, \xi, \omega)| \nu(d\xi)ds \right)^{\theta} \left(\int_0^T \int_E |k(s, \xi, \omega)|^p \nu(d\xi)ds \right)^{\frac{1}{2} - \theta}$$

raising to power p we have

$$\left(\int_0^T \int_E |k(s, \xi, \omega)|^2 \nu(d\xi)ds \right)^{\frac{p}{2}} \leq \left(\int_0^T \int_E |k(s, \xi, \omega)| \nu(d\xi)ds \right)^{\theta p} \left(\int_0^T \int_E |k(s, \xi, \omega)|^p \nu(d\xi)ds \right)^{1-\theta}$$
And by the arithmetic-geometric mean inequality
\[
\leq \theta \left(\int_0^T \int_E |k(s, \xi, \omega)| \nu(d\xi)ds \right)^p + (1 - \theta) \left(\int_0^T \int_E |k(s, \xi, \omega)|^p \nu(d\xi)ds \right)
\]
taking expectations and substituting in (3) the statement is proved. \(\square\)

3 Semilinear Stochastic Evolution Equations with Lévy Noise and Monotone Nonlinear Drift

Let \((\Omega, \mathcal{F}, \mathcal{F}_t, \mathbb{P})\) be a filtered probability space. Let \((E, \mathcal{E})\) be a measurable space and \(N(dt, d\xi)\) a Poisson random measure on \(\mathbb{R}^+ \times E\) with intensity measure \(dt \nu(d\xi)\). Our goal is to study the following equation in \(H\),
\[
dX_t = AX_t dt + f(t, X_t)dt + \int_E k(t, \xi, X_t)\tilde{N}(dt, d\xi), \quad (4)
\]
where \(\tilde{N}(dt, d\xi) = N(dt, d\xi) - dt \nu(d\xi)\) is the compensated Poisson random measure corresponding to \(N\).

The existence and uniqueness of the mild solutions of these equations in \(L^2\) has been proved in [15]. In this section we prove the existence and uniqueness of the solution in \(L^p\) for \(p \geq 2\) in Theorem 4. We also prove the continuous dependence on initial condition and provide sufficient conditions under which the solutions are exponentially asymptotically stable.

We will use the notion of stochastic integration with respect to compensated Poisson random measure. For the definition and properties see [14] and [1].

Definition 1. \(f : H \to H\) is called demicontinuous if whenever \(x_n \to x\), strongly in \(H\) then \(f(x_n) \rightharpoonup f(x)\) weakly in \(H\).

We assume the following,

Hypothesis 1. (a) \(f(t, x, \omega) : \mathbb{R}^+ \times H \times \Omega \to H\) is measurable, \(\mathcal{F}_t\)-adapted, demicontinuous with respect to \(x\) and there exists a constant \(M\) such that
\[
\langle f(t, x, \omega) - f(t, y, \omega), x - y \rangle \leq M\|x - y\|^2,
\]
(b) \(k(t, \xi, x, \omega) : \mathbb{R}^+ \times E \times H \times \Omega \to H\) is predictable and there exists a constant \(C\) such that
\[
\int_E \|k(t, \xi, x) - k(t, \xi, y)\|^2 \nu(d\xi) \leq C\|x - y\|^2,
\]
(c) There exists a constant \(D\) such that
\[
\|f(t, x, \omega)\|^2 + \int_E \|k(t, \xi, x)\|^2 \nu(d\xi) \leq D(1 + \|x\|^2),
\]

There exists a constant F such that
\[
\int_E \| k(t, \xi, x) - k(t, \xi, y) \|^p \nu(d\xi) \leq F \| x - y \|^p,
\]
\[
\int_E \| k(t, \xi, x) \|^p \nu(d\xi) \leq F(1 + \| x \|^p),
\]

$X_0(\omega)$ is \mathcal{F}_0 measurable and $\mathbb{E}\|X_0\|^p < \infty$.

Definition 2. By a mild solution of equation (4) with initial condition X_0 we mean an adapted càdlàg process X_t that satisfies
\[
X_t = S_t X_0 + \int_0^t S_{t-s} f(s, X_s) ds + \int_0^t \int_E S_{t-s} k(s, \xi, X_s - \tilde{N}(ds, d\xi)).
\]

We are now ready to state and prove the main theorem of this section,

Theorem 4 (Existence of the Solution in L^p). Let $p \geq 2$. Then under assumptions of Hypothesis 1, equation (4) has a unique square integrable càdlàg mild solution $X(t)$ such that $\mathbb{E}\sup_{0 \leq s \leq t} \|X(s)\|^p < \infty$.

Before proceeding to proof of Theorem 4, we state the following theorem from [18] without proof.

Theorem 5 (Zangeneh, [18]). Assume f satisfies Hypothesis 1-(a) and there exists a constant D such that $\| f(t, x, \omega) \|^2 \leq D(1 + \| x \|^2)$ and assume $V(t, \omega)$ is an adapted process with càdlàg trajectories and $X_0(\omega)$ is \mathcal{F}_0 measurable. Then the equation,
\[
X_t = S_t X_0 + \int_0^t S_{t-s} f(s, X_s, \omega) ds + V(t, \omega)
\]
has a unique measurable adapted càdlàg solution $X_t(\omega)$. Furthermore
\[
\|X(t)\| \leq \|X_0\| + \|V(t)\| + \int_0^t e^{(\alpha+M)(t-s)} \| f(s, S_s X_0 + V(s)) \| ds,
\]

Lemma 6. It suffices to prove theorem 4 for the case that $\alpha = 0$.

Proof. Define
\[
\tilde{S}_t = e^{-\alpha t} S_t, \quad \tilde{f}(t, x, \omega) = e^{-\alpha t} f(t, e^{\alpha t} x, \omega), \quad \tilde{k}(t, \xi, x, \omega) = e^{-\alpha t} k(t, \xi, e^{\alpha t} x, \omega).
\]

Note that \tilde{S}_t is a contraction semigroup. It is easy to see that X_t is a mild solution of equation (4) if and only if $\tilde{X}_t = e^{-\alpha t} X_t$ is a mild solution of equation with coefficients $\tilde{S}, \tilde{f}, \tilde{k}$. \qed
Proof of Theorem 4. Existence and uniqueness of the mild solution in L^2 has been proved in [15], Theorem 4. Uniqueness in L^2 implies the uniqueness in L^p for $p \geq 2$. It remains to prove the existence in L^p.

Existence. It suffices to prove the existence of a solution on a finite interval $[0, T]$. Then one can show easily that these solutions are consistent and give a global solution. We define adapted càdlàg processes X^n_t recursively as follows. Let $X^n_0 = S_t X_0$. Assume X^{n-1}_t is defined. Theorem 5 implies that there exists an adapted càdlàg solution X^n_t of

$$X^n_t = S_t X_0 + \int_0^t S_{t-s} f(s, X^n_s) ds + V^n_t,$$

where

$$V^n_t = \int_0^t \int_E S_{t-s} k(s, \xi, X^{n-1}_s) \tilde{N}(ds, d\xi).$$

It is proved in [15] that $\{X^n\}$ converge to some adapted càdlàg process X_t in the sense that

$$E \sup_{0 \leq t \leq T} |X^n_t - X_t|^2 \to 0,$$

and that X_t is the mild solution of equation (4).

We wish to show that $\{X^n\}$ converge to X_t in L^p with the supremum norm. This is done by the following two lemmas.

Lemma 7.

$$E \sup_{0 \leq t \leq T} \|X^n_t\|^p < \infty.$$

Proof. We prove by induction on n. By Theorem 5 we have the following estimate,

$$\|X^n_t\| \leq \|X_0\| + \|V^n_t\| + \int_0^t e^{M(t-s)} \|f(s, S_s X_0 + V^n_s)\| ds.$$

Hence,

$$\|X^n_t\|^p \leq 3^p \|X_0\|^p + 3^p \|V^n_t\|^p + 3^p \left(\int_0^t e^{M(t-s)} \|f(s, S_s X_0 + V^n_s)\| ds \right)^p.$$

Taking supremum and using Cauchy-Schwartz inequality we find

$$\sup_{0 \leq t \leq T} \|X^n_t\|^p \leq 3^p \|X_0\|^p + 3^p \|V^n_t\|^p$$

$$+ 3^p e^{M|T|T^p} \left(\int_0^T \|f(s, S_s X_0 + V^n_s)\|^2 ds \right)^{p/2}$$.
Using Hypothesis 1(c) and Holder’s inequality we find

\[G \leq D^{\frac{p}{2}} \left(\int_0^T (1 + \|S_s X_0 + V^p_s\|^2) ds \right)^{\frac{p}{2}} \]

\[\leq D^{\frac{p}{2}} \left(T + 2T\|X_0\|^2 + 2 \int_0^T \|V^p_s\|^2 ds \right)^{\frac{p}{2}} \]

\[\leq D^{\frac{p}{2}} \left(3^\frac{p}{2} T^{\frac{p}{2}} + 2 \frac{p}{2} 3^\frac{p}{2} T^{\frac{p}{2}} \|X_0\|^p + 2 \frac{p}{2} 3^\frac{p}{2} T^{\frac{p}{2}} \sup_{0 \leq s \leq T} \|V^p_s\|^2 \right) \]

Hence, to prove the Lemma it suffices to prove that

\[\mathbb{E} \sup_{0 \leq t \leq T} \|V^p_t\| < \infty. \]

Applying Burkholder type inequality (Theorem 2), we find

\[\mathbb{E} \sup_{0 \leq t \leq T} \|V^p_t\| \leq K_p \mathbb{E}([\tilde{M}^\frac{p}{2}], \]

where \(\tilde{M}_t = \int_0^t \int_E k(s, \xi, X^{n-1}_s) \tilde{N}(ds, du) \). Hence

\[\mathbb{E} \sup_{0 \leq t \leq T} \|V^p_t\| \leq K_p \mathbb{E} \left(\left(\int_0^T \int_E \|k(s, \xi, X^{n-1}_s)\|^2 \tilde{N}(ds, du) \right)^{\frac{p}{2}} \right) \]

\[\leq 2^\frac{p}{2} K_p \left(\mathbb{E} \left(\left(\int_0^T \int_E \|k(s, \xi, X^{n-1}_s)\|^2 \nu(ds, du) \right)^{\frac{p}{2}} \right) \right. \]

\[+ \mathbb{E} \left(\left(\int_0^T \int_E \|k(s, \xi, X^{n-1}_s)\|^2 \tilde{N}(ds, du) \right)^{\frac{p}{2}} \right) \]

By Hypothesis 1(c) we have,

\[\leq 2^\frac{p}{2} K_p D^{\frac{p}{2}} \left(\mathbb{E} \left(\int_0^T (1 + \|X^{n-1}_{s}\|^2) ds \right)^{\frac{p}{2}} \right) \]

\[+ 2^\frac{p}{2} K_p \mathbb{E} \left(\left(\int_0^T \|k(s, \xi, X^{n-1}_s)\|^2 \tilde{N}(ds, du) \right)^{\frac{p}{2}} \right) \]

9
Since $\frac{p}{2} \geq 1$, we can apply Theorem 3 to second term and find

$$
\leq 2^{\frac{p}{2}} K_p D \left(\mathbb{E} \left(\int_0^T (1 + \|X_{s}^{n-1}\|^2) ds \right)^{\frac{p}{2}} \right) + 2^{\frac{p}{2}} K_p C \int_0^T (1 + \|X_{s}^{n-1}\|^p) ds
$$

(7)

By Hypothesis 1 (c) we find,

$$
\leq 2^{\frac{p}{2}} K_p \left(D \int_0^T \mathbb{E}\|X_{s}^{n-1}\|^2 ds \right)^{\frac{p}{2}} + C \left(\mathbb{E} \left(\int_0^T \|X_{s}^{n-1}\|^2 ds \right) \right)^{\frac{p}{2}} + D \left(\int_0^T \mathbb{E}\|X_{s}^{n-1}\|^p ds \right)
$$

(8)

where $C_1 = 2^{\frac{p}{2}} K_p D (1 + C \mathbb{E})$ and $C_2 = 2^{\frac{p}{2}} K_p C D$, now by Holder inequality we find,

$$
\leq C_3 \left(\int_0^T \mathbb{E}\|X_{s}^{n-1}\|^p ds \right)
$$

(9)

which is finite by induction. The basis of induction follows directly from Hypothesis 1 (c).

Lemma 8. For $0 \leq t \leq T$,

$$
\mathbb{E}\|X_{t}^{n+1} - X_{t}^{n}\|^p \leq C_0 C_1^t \frac{t^n}{n!}
$$

(10)

where C_0 and C_1 are constants that are introduced below.

Proof. We prove by induction on n. Assume that the statement is proved for $n - 1$. We have,

$$
X_{t}^{n+1} - X_{t}^{n} = \int_0^t S_{t-s}(f(s, X_{s}^{n+1}) - f(s, X_{s}^{n})) ds + \int_0^t S_{t-s} dM_s,
$$

(11)

where

$$
M_t = \int_0^t \int_F (k(s, \xi, X_{s-}^{n}) - k(s, \xi, X_{s-}^{n-1})) \tilde{N}(ds, d\xi).
$$
Applying Theorem 1 for $\alpha = 0$, we have

$$
\|X_t^{n+1} - X_t^n\|^p \leq
$$

$$
p \int_0^t \|X_{s+}^{n+1} - X_{s-}^n\|^p \langle X_{s+}^{n+1} - X_{s-}^n, f(s, X_s^n) - f(s, X_{s-}^n) \rangle ds
$$

$$
+ p \int_0^t \|X_{s+}^{n+1} - X_{s-}^n\|^p - 2\langle X_{s+}^{n+1} - X_{s-}^n, dM_s \rangle
$$

$$
+ \frac{1}{2}p(p-1) \int_0^t \|X_{s+}^{n+1} - X_{s-}^n\|^p - 2\langle X_{s+}^{n+1} - X_{s-}^n, k(s, \xi, X_{s-}^n) - k(s, \xi, X_{s-}^{n-1}) \rangle ds + \int_0^t \int_E D_s^n N(ds, d\xi)
$$

where

$$
D_s^n = \|X_{s+}^{n+1} - X_{s-}^n + k(s, \xi, X_{s-}^n) - k(s, \xi, X_{s-}^{n-1})\|^p - \|X_{s+}^{n+1} - X_{s-}^n\|^p - p\|X_{s+}^{n+1} - X_{s-}^n\|^p \langle X_{s+}^{n+1} - X_{s-}^n, k(s, \xi, X_{s-}^n) - k(s, \xi, X_{s-}^{n-1}) \rangle
$$

Note that for a c\`adl\`ag function the set of discontinuity points is countable, hence when integrating with respect to Lebesgue measure, they can be neglected. Therefore from now on, we neglect the left limits in integrals with respect to Lebesgue measure. So, for the term A_t, the semimonotonicity assumption on f implies

$$
A_t^n \leq M \int_0^t \|X_{s+}^{n+1} - X_{s-}^n\|^p ds
$$

We also have

$$
[M]_t^c = 0
$$

and hence

$$
C_t^n = 0
$$

For the term D_s^n we have by Lemma 9 (proved later),

$$
D_s^n \leq \frac{1}{2}p(p-1) \left(\|X_{s+}^{n+1} - X_{s-}^n\|^p - 2\langle X_{s+}^{n+1} - X_{s-}^n, k(s, \xi, X_{s-}^n) - k(s, \xi, X_{s-}^{n-1}) \rangle \right)
$$

Hence by Hypothesis 1(b) and (d),

$$
E \int_E D_s^n \nu(d\xi) \leq \frac{1}{2}p(p-1) \left(CE \left(\|X_{s+}^{n+1} - X_{s-}^n\|^p - 2\|X_s^n - X_{s-}^{n-1}\|^2 \right) + FE \left(\|X_s^n - X_{s-}^{n-1}\|^p \right) \right)
$$

11
Now, taking expectations on both sides of (12) and substituting (13) and (14) and noting that B_t is a martingale we find,

$$E\|X_{t+1}^n - X_t^n\|_p \leq pM \int_0^t E\|X_{s+1}^n - X_s^n\|_p ds$$

$$+ \frac{1}{2}p(p - 1)C \int_0^t E\|X_{s+1}^n - X_s^n\|^{p-2}\|X_s^n - X_{s-1}^n\|^2 ds$$

$$+ \frac{1}{2}p(p - 1)F E\|X_s^n - X_{s-1}^n\|^p ds.$$

Applying Holder’s inequality to the second integral in the right hand side we find

$$\leq pM \int_0^t E\|X_{s+1}^n - X_s^n\|_p ds$$

$$+ \frac{1}{2}p(p - 1)C \left(\frac{p - 2}{p} \int_0^t E\|X_{s+1}^n - X_s^n\|_p^d ds \right.$$ \n
$$+ \frac{1}{2}p(p - 1)F E\|X_s^n - X_{s-1}^n\|^p ds$$

$$\leq \beta \int_0^t E\|X_{s+1}^n - X_s^n\|_p^p ds + \gamma \int_0^t E\|X_s^n - X_{s-1}^n\|^p ds$$

where $\beta = pM + \frac{1}{2}(p - 1)(p - 2)C$ and $\gamma = \frac{1}{2}(p - 1)(2C + pF)$.

Define $h^n(t) = E\|X_{t+1}^n - X_t^n\|^p$. We have

$$h^n(t) \leq \beta \int_0^t h^n(s) ds + \gamma \int_0^t h^{n-1}(s) ds$$

By Lemma 7 we know that $h^n(t)$ is uniformly bounded with respect to t, hence we can use Gronwall’s inequality and find

$$h^n(t) \leq e^{\beta t} \int_0^t h^{n-1}(s) ds$$

We have $h^0(t) \leq C_0$ where $C_0 = 2^pE\sup_{0 \leq t \leq T}(\|X_t^n\|^p + \|X_t^n\|^p) < \infty$ and it follows inductively that,

$$h^n(t) \leq C_0 C_1^{\frac{t^n}{n!}}$$

where $C_1 = e^{\beta T}$. \qed

Back to the proof of Theorem 4, since the right hand side of (10) is a convergent series, $\{X^n\}$ is a cauchy sequence in $L^p(\Omega, \mathcal{F}, \mathbb{P}; L^\infty([0, T]; H))$ and hence converges to a process $Y_t(\omega)$. But as is proved in [13], $\{X^n\}$ converges to a process X_t in $L^2(\Omega, \mathcal{F}, \mathbb{P}; L^\infty([0, T]; H))$ which is a solution of equation (4). Hence $Y_t = X_t$. \qed

In the above proof, we have used the following lemma,
Lemma 9. For \(x, y \in H \) we have

\[
\|x + y\|^p - \|x\|^p - p\|x\|^{p-2}(x, y) \leq \frac{1}{2} p(p-1)(\|x\|^{p-2} + \|x + y\|^{p-2})\|y\|^2
\]

Proof. Define \(f(t) = \|x + ty\|^p \). Then

\[
f'(t) = p\|x + ty\|^{p-2}(x + ty)
\]

and

\[
f''(t) = p\|x + ty\|^{p-2}\|y\|^2 + p(p-2)\|x + ty\|^{p-4}(x + ty, y)^2 \leq p(p-1)\|x + ty\|^{p-2}\|y\|^2
\]

By Taylor’s remainder theorem we have for some \(\tau \in [0, 1] \),

\[
f(1) - f(0) - f'(0) = \frac{1}{2} f''(\tau) \leq \frac{1}{2} p(p-1)\|x + \tau y\|^{p-2}\|y\|^2
\]

But \(\|x + \tau y\| \leq \max(\|x\|, \|x + y\|) \). Hence

\[
f(1) - f(0) - f'(0) \leq \frac{1}{2} p(p-1)(\|x\|^{p-2} + \|x + y\|^{p-2})\|y\|^2
\]

which completes the proof.

Theorem 10 (Continuous dependence and Exponential Stability in the \(p \)th Moment). Let \(X_t \) and \(Y_t \) be mild solutions of (4) with initial conditions \(X_0 \) and \(Y_0 \). Then

\[
E\|X_t - Y_t\|^p \leq e^\gamma t E\|X_0 - Y_0\|^p
\]

where \(\gamma = p\alpha + pM + \frac{1}{2} p(p-1)C + \frac{1}{2} p(p-1)((2p-2) + 1)C + 2p^{-2}F \). Hence the mild solution is \(L^p \) continuous with respect to initial conditions. Moreover, if \(\gamma < 0 \) then all mild solutions are exponentially stable in the \(L^p \) norm.

Proof. First we consider the case that \(\alpha = 0 \). Subtract \(X_t \) and \(Y_t \),

\[
X_t - Y_t = S_t(X_0 - Y_0) + \int_0^t S_{t-s}(f(s, X_s) - f(s, Y_s))ds + \int_0^t S_{t-s}dM_s,
\]

where

\[
M_t = \int_E (k(s, \xi, X_{s-} - k(s, \xi, Y_{s-}))d\tilde{N}.
\]

Applying Itô type Inequality for \(p \)th power (Theorem \(\square \), for \(\alpha = 0 \), to \(X_t - Y_t \)

13
and rewriting it with respect to random Poisson measure, we find

\[\|X_t - Y_t\|^p \leq \|X_0 - Y_0\|^p \]
\[
+ p \int_0^t \|X_s - Y_s\|^{p-2} \langle X_s - Y_s, (f(s, X_s) - f(s, Y_s)) \rangle ds \]
\[
+ p \int_0^t \|X_s - Y_s\|^{p-2} \langle X_s - Y_s, dM_s \rangle \]
\[
+ \frac{1}{2} p(p-1) \int_0^t \|X_s - Y_s\|^{p-2} d[M]_s + \int_0^t \int_E D_s N(ds, d\xi) \quad (15) \]

where

\[D_s = \|X_s - Y_s - k(s, \xi, X_s) + k(s, \xi, Y_s)\|^p - \|X_s - Y_s\|^p \]
\[
- p\|X_s - Y_s\|^{p-2} \langle X_s - Y_s, k(s, \xi, X_s) - k(s, \xi, Y_s) \rangle. \]

Using Hypothesis 1 (a) for term \(A_t \) we find

\[\mathbb{E}A_t \leq M \int_0^t \mathbb{E}\|X_s - Y_s\|^p ds \quad (16) \]

Using Hypothesis 1 (b) for term \(C_t \) we find

\[\mathbb{E}C_t \leq C \int_0^t \mathbb{E}\|X_s - Y_s\|^p ds \quad (17) \]

For term \(D_s \) we have by Lemma 9

\[D_s \leq \frac{1}{2} p(p-1) \left(\|X_s - Y_s\|^{p-2} + \|X_s - Y_s + k(s, \xi, X_s) - k(s, \xi, Y_s)\|^{p-2} \right) \]
\[
- \|k(s, \xi, X_s) - k(s, \xi, Y_s)\|^2 \]
\[
\leq \frac{1}{2} p(p-1) \left((2^{p-2} + 1) \|X_s - Y_s\|^{p-2} + 2^{p-2} |k(s, \xi, X_s) - k(s, \xi, Y_s)|^{p-2} \right) \]
\[
- \|k(s, \xi, X_s) - k(s, \xi, Y_s)\|^2 \]

Using Hypothesis 1 (b) and (d), we find

\[\mathbb{E} \int_E D_s \nu(d\xi) ds \leq \frac{1}{2} p(p-1) ((2^{p-2} + 1)C + 2^{p-2} F) \mathbb{E}\|X_s - Y_s\|^p \quad (18) \]

Taking expectations on both sides of (15) and noting that \(B_t \) is a martingale and substituting (16), (17) and (18) we find
where \(\gamma = pM + \frac{1}{2}p(p-1)C + \frac{1}{2}p(p-1)((2p^2 + 1)C - 2p-2F) \). Now applying Gronwall’s inequality the statement follows. Hence the proof for the case \(\alpha = 0 \) is complete. Now for the general case, apply the change of variables used in Lemma [6].

Remark. The results of this section remain valid by adding a Wiener noise term to equation (14), i.e. for the equation

\[
dX_t = AX_t dt + f(t, X_t) dt + g(t, X_t) dW_t + \int_E k(t, \xi, X_t) \tilde{N}(dt, d\xi),
\]

where \(W_t \) is a cylindrical Wiener process on a Hilbert space \(K \), independent of \(N \) and \(g(t, x, \omega) : \mathbb{R}^+ \times H \times \Omega \to L_{HS}(K, H) \) (Space of Hilbert-Schmidt operators from \(K \) to \(H \)) is Lipschitz and has linear growth. The proofs are straightforward generalizations of the proofs of this section.

References

[1] Albeverio, S., Mandrekar, V., and Rüdiger, B. Existence of Mild Solutions for Stochastic Differential Equations and Semilinear Equations with Non-Gaussian Lévy Noise. *Stochastic Processes and their Applications* 119:835-863, 2009.

[2] V. Barbu, Existence for semilinear parabolic stochastic equations , Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 21 (2010), no. 4, 397403. MR 2746091 (2012d:35424)

[3] Da Prato, Giuseppe, and Jerzy Zabczyk. Stochastic equations in infinite dimensions. Cambridge university press, 2014.

[4] Gyngy, I. On stochastic equations with respect to semimartingales. III, Stochastics 7 (1982), no. 4, 231254.

[5] Ichikawa, A. (1986). Some inequalities for martingales and stochastic convolutions. Stochastic Analysis and Applications, 4(3), 329-339.

[6] Jahanipur, R., and Zangeneh, B. Z. 2000. Stability of Semilinear Stochastic Evolution Equations with Monotone Nonlinearity. *Mathematical Inequalities and Applications* 3:593-614.

[7] Kotelnikov, P. 1982. A submartingale type inequality with applications to stochastic evolution equations. *Stochastics* 8:139-151.
[8] Kotelenez, P. 1984. A Stopped Doob Inequality for Stochastic Convolution Integrals and Stochastic Evolution Equations. *Stochastic Analysis and Applications* 2(3):245-265

[9] Krylov, N. V., and Rozovskii, B. L. 1981. Stochastic Evolution Equations. *Journal of Soviet Mathematics* 16:1233-1277.

[10] Marinelli, Carlo. "On well-posedness of semilinear stochastic evolution equations on L_p spaces." arXiv preprint [arXiv:1512.04323] (2015).

[11] Marinelli, C., Prevol, C., and Rockner, M. (2008). Regular dependence on initial data for stochastic evolution equations with multiplicative Poisson noise, 126.

[12] Marinelli, Carlo, and Michael Röckner. "Well-posedness and asymptotic behavior for stochastic reaction-diffusion equations with multiplicative Poisson noise." *Electron. J. Probab* 15.49 (2010): 1528-1555.

[13] Pardoux, É. 1975. Equations aux dérivés partielles stochastiques non linéaires monotones: Etude de solutions fortes de type Ito. PHD Thesis.

[14] Peszat, S., and Zabczyk, J. 2007. *Stochastic Partial Differential Equations With Lévy Noise*, Cambridge University Press.

[15] Salavati, Zangeneh, Stochastic Evolution Equations with Multiplicative Poisson Noise and Monotone Nonlinearity: A New Approach, [arXiv:1406.3908] [math.PR] (To appear in the Bulletin of the Iranian Mathematical Society).

[16] Salavati, Zangeneh, Continuous dependence on coefficients for stochastic evolution equations with multiplicative Lévy noise and monotone nonlinearity, Bulletin of the Iranian Mathematical Society, Vol. 42 (2016), No. 1, pp. 175-194

[17] Salavati and Zangeneh, A maximal inequality for pth power of stochastic convolution integrals, *Journal of Inequalities and Applications*, (2016) 2016:155

[18] Zangeneh, B. Z. 1991. Measurability of the Solution of a Semilinear Evolution Equation. *Progress in Probability* 24, Birkhäuser Boston, Boston, MA.

[19] Zangeneh, B. Z. 1995. Semilinear stochastic evolution equations with monotone nonlinearities. *Stochastics Stochastics Reports* 53:129-174.