Real-life use of talimogene laherparepvec (T-VEC) in melanoma patients in centers in Austria, Switzerland and Germany

Ressler, Julia Maria; Karasek, Matthias; Koch, Lukas; Silmbrod, Rita; Mangana, Joanna; Latifyan, Sofiya; Aedo-Lopez, Veronica; Kehrer, Helmut; Weihsgengruber, Felix; Koelblinger, Peter; Posch, Christian; Kofler, Julian; Michielin, Olivier; Richtig, Erika; Hafner, Christine; Hoeller, Christoph

Abstract: BackgroundTalimogene laherparepvec (T-VEC) is a licensed therapy for use in melanoma patients of stage IIIB-IVM1a with injectable, unresectable metastatic lesions in Europe. Approval was based on the Oncovex Pivotal Trial in Melanoma study, which also included patients with distant metastases and demonstrated an overall response rate (ORR) of 40.5% and a complete response (CR) rate of 16.6%. ObjectivesThe aim of this study was to assess the outcome of melanoma patients treated with T-VEC in a real-life clinical setting. Methods Based on data from 10 melanoma centers in Austria, Switzerland and southern Germany, we conducted a retrospective chart review, which included 88 patients (44 male, 44 female) with a median age of 72 years (range 36–95 years) treated with T-VEC during the period from May 2016 to January 2020. Results 88 patients fulfilled the inclusion criteria for analysis. The ORR was 63.7%. 38 patients (43.2%) showed a CR, 18 (20.5%) had a partial response, 8 (9.1%) had stable disease and 24 (27.3%) patients had a progressive disease. The median treatment period was 19 weeks (range: 1–65), an average of 11 doses (range: 1–36) were applied. 39 (45.3%) patients developed adverse events, mostly mild, grade I (64.1%). Conclusion This real-life cohort treatment with T-VEC showed a high ORR and a large number of durable CRs.

DOI: https://doi.org/10.1136/jitc-2020-001701
Real-life use of talimogene laherparepvec (T-VEC) in melanoma patients in centers in Austria, Switzerland and Germany

Julia Maria Ressler, Matthias Karasek, Lukas Koch, Rita Silmbrod, Joanna Mangana, Sofiya Latifyan, Veronica Aedo-Lopez, Helmut Kehrer, Felix Weihengruber, Peter Koelblinger, Christian Posch, Julian Kofler, Olivier Michielin, Erika Richtig, Christine Hafner, Christoph Hoeller

ABSTRACT
Background Talimogene laherparepvec (T-VEC) is a licensed therapy for use in melanoma patients of stage IIB-IVM1a with injectable, unresectable metastatic lesions in Europe. Approval was based on the Oncovex Pivotal Trial in Melanoma study, which also included patients with distant metastases and demonstrated an overall response rate (ORR) of 40.5% and a complete response (CR) rate of 16.6%.

Objectives The aim of this study was to assess the outcome of melanoma patients treated with T-VEC in a real-life clinical setting.

Methods Based on data from 10 melanoma centers in Austria, Switzerland and southern Germany, we conducted a retrospective chart review, which included 88 patients (44 male, 44 female) with a median age of 72 years (range 36–95 years) treated with T-VEC during the period from May 2016 to January 2020.

Results 88 patients fulfilled the inclusion criteria for analysis. The ORR was 63.7%. 38 patients (43.2%) showed a CR, 26 (29.5%) had a partial response, 8 (9.1%) had stable disease and 24 (27.3%) patients had a progressive disease. The median treatment period was 19 weeks (range: 1–65), an average of 11 doses (range: 1–36) were applied. 39 (45.3%) patients developed adverse events, mostly mild, grade I (64.1%).

Conclusion This real-life cohort treatment with T-VEC showed a high ORR and a large number of durable CRs.

INTRODUCTION
Talimogene laherparepvec (T-VEC) is the first approved intratissial oncolytic therapy in the European Union, the USA and Australia for the treatment of unresectable stage IIB, IIC or IVM1a melanoma in Europe and up to IVM1c melanoma in the USA. It is injected directly into metastatic lesions. T-VEC is a genetically modified oncolytic herpes simplex virus type 1 (HSV-1). HSV-1 is modified through (1) the deletion of a neurovirulence gene (ICP34.5) and a immunogenicity gene (ICP47) and (2) the insertion of two gene copies encoded for human granulocyte macrophage colony-stimulating factor (GM-CSF). These modifications enhance tumor-selective replication, reduce virally mediated suppression of antigen presentation, and induce tumor-specific T-cell responses. Approval, in 2015, was based on the results of the phase III study Oncovex Pivotal Trial in Melanoma (OPTIM). Intratasiional treatment with T-VEC, which was compared with subcutaneous application of human GM-CSF led to durable responses over at least 6 months, the primary endpoint of the OPTIM trial, in 25.2% of patients over only 1.2% in the GM-CSF arm. While the impact of T-VEC on overall survival (OS) did not show significance in the intention to treat population it did significantly improve OS in patients with stage IIB, IIC and IVM1a in a descriptive post hoc analysis.

Well-implemented systemic therapies, like checkpoint inhibitors (CTLA-4, PD-1 Inhibitors) and targeted therapies (BRAF and MEK inhibitors) dramatically improved survival of patients with metastatic melanoma. However, large multicenter studies of checkpoint inhibitors and BRAF and MEK inhibitors did not pre-specific the subgroup of stage IIB–IVM1a melanoma patients during recruitment. This subgroup was analyzed retrospectively with limited conclusions due to the small number of patients. Exactly this subgroup of patients with an initial low tumor burden might benefit from a treatment with T-VEC as an alternative treatment option to checkpoint inhibitors and targeted therapies, which in case of progression would still be available. The aim of this study was to assess the outcome of melanoma patients treated with T-VEC in a real-life clinical setting.
MATERIAL AND METHODS
We performed a multi-institutional retrospective analysis of melanoma patients treated with T-VEC within the period of May 2016 and January 2020 (1370 days) (data cut-off).

Study site selection
Data were provided by 10 melanoma centers in Austria (AT), Switzerland (CH) and Germany (DE): Medical University of Vienna AT, University Hospital St. Poelten AT, Ordensklinikum Linz AT, Medical University of Graz AT, Landeskrankenhaus Klagenfurt AT, Krankenhaus der Elisabethinen AT, Krankenanstalt Rudolfstiftung, AT, University Hospital Zürich and Service d’Oncologie, CH, Center hospitalier Universitaire Vaudois, Lausanne, CH; Technical University of Munich, DE.

Study population
All participating centers were asked to provide data on all patients treated with T-VEC during the study period to avoid selection bias. Patients treated outside the approved indication and patients treated concurrently with other drugs were also included to provide a precise picture of real-life use of T-VEC. In total, 88 patients with a median age of 72 years (range 36–95 years), 44 male, 44 female, diagnosed with metastatic melanoma stage IIIb–IVM1d, based on the American Joint Committee on Cancer (AJCC V.8.0), were included in this retrospective chart review.

Data collection
Anonymized data were collected and entered in an electronic case report form. Patient data included demographics, melanoma history (primary melanoma diagnosis, tumor characteristics, anatomical region and mutation status), clinical characteristics (Eastern Cooperative Oncology Group (ECOG) Performance Status and comorbidities), laboratory parameters (lactate dehydrogenase (LDH), differential blood count, S100), the use of other melanoma therapies (type, duration) before, during, and after therapy with T-VEC, and finally the investigator assessed response rates, safety, and survival outcomes on T-VEC (table 1). Best overall response (BOR) was classified based on Investigator’s assessment as the best response achieved during the treatment with T-VEC. Due to the retrospective nature of this cohort investigator-assessed responses could be variably based on either measurement, count of metastases, clinical photographs or radiological assessments.

Statistical analysis
Descriptive statistics were provided for demographic, safety and efficacy analyzes. For nominally scaled variables we present absolute numbers and percentages. For metric variables mean, SD, median, minimum and maximum are provided. P values less than 0.05 are considered significant. Statistical analyzes were conducted using the statistic programs SPSS (V:26.0). Kaplan-Meier methods were used to estimate treatment persistence.

RESULTS
Study population
Data were abstracted from 88 patients’ medical charts. The decision diagram is illustrated as a flow chart in figure 1. At the time of data abstraction, 6 patients (6.8%) had ongoing treatment and 82 patients (93.2%) had discontinued treatment. The reasons for discontinuation were as follows: (1) a complete response (CR) in 38 patients, (2) a stable disease (SD) in 8 patients, (3) a partial response (PR) in 18 patients, (4) a progressive disease (PD) in 24 patients and (3) adverse events (AEs) in 2 patients. Staging of disease was based on the AJCC criteria V.8.0: 9 patients (10.2%) were stage IIIb, 47 (53.4%) stage IIIC, 1 (1.1%) stage IIID, 18 (20.5%) stage IVM1a, 5 (5.7%) stage IVM1b, 4 (4.5%) stage IVM1c and 4 (4.5%) stage IVM1d. Demographics and baseline characteristics are presented in table 2. Similar numbers of patients were treated on an annual basis during the study period with a slight peak during 2018 (figure 2).
Table 2 Demographics and baseline characteristics

Demographics and baseline characteristics	Stage IIIB-IVM1a (n=75)	Stage IVM1b-IVM1d (n=13)	Total (n=88)
Sex; n (%)			
Female	37 (42.1)	7 (7.9)	44 (50.0)
Male	38 (43.2)	6 (6.8)	44 (50.0)
ECOG; n (%)			
0	56 (63.7)	12 (13.6)	68 (77.3)
1	16 (18.2)	1 (1.1)	17 (19.3)
≥2	3 (3.4)	3 (3.4)	3 (3.4)
Mutation status; n %			
BRAF	25 (38.3)	6 (6.8)	31 (35.2)
c-KIT	1 (1.1)	2 (2.2)	3 (3.3)
NRAS	10 (11.4)	2 (2.2)	12 (13.6)
No detected mutation ("wild type")	39 (44.3)	3 (3.4)	42 (47.7)
Herpes anamnesis			
Positiv	27 (30.7)	5 (5.7)	32 (36.4)
Negativ	42 (47.7)	6 (6.8)	48 (54.5)
Unknown	6 (6.7)	2 (2.3)	8 (9.1)
Location of metastases			
Head	9 (10.1)	3 (3.5)	12 (13.6)
Trunk	8 (9.1)	8 (9.1)	
Lower extremities	51 (58)	6 (6.8)	57 (64.8)
Upper extremities	5 (5.6)	3 (3.5)	8 (9.1)
Unknown	2 (2.4)	1 (1.1)	3 (3.4)

Tumor stage based on the American Joint Committee on Cancer V.8.0. ECOG, Eastern Cooperative Oncology Group Performance Status.

Primary tumor characteristics
The median primary tumor thickness Breslow Index within our patient cohort was 2.9 mm (range 0.35–40.00 mm). All patients underwent surgery on their primary melanoma with an adequate safety margin excision. In 74 patients (84.1%) a sentinel lymph node biopsy was performed, of which 38 (43.2%) were positive. Additionally, the mutation status information of melanoma metastases was collected (BRAF, NRAS, c-KIT). In 46 patients (52.5%) a mutation was detected; 31 patients (35.2%) had a BRAF mutation, 3 (3.4%) had a c-KIT and 12 (13.7%) had an NRAS mutation (table 2). The melanoma metastases were located as follows; trunk: 8 patients (9.1%), head: 12 (13.6%), lower extremities: 57 (64.8%), and upper extremities: 8 (9.1%) (table 2).

Clinical parameters and comorbidities
ECOG performance status (0–5) was ECOG 0 for 68 patients (77.3%), ECOG 1 for 17 patients (19.3%) and ECOG 3 for 3 patients (3.4%) (table 2). Comorbidities were as follows: arterial hypertension in 37 patients (42.0%), diabetes mellitus in 9 patients (10.2%), 15 patients (17.0%) had a history of a second malignancy, 1 patient (1.1%) had a history of organ transplantation, 3 (3.4%) had a chronic obstructive lung disease, 31 patients (36.0%) had a positive herpes simplex anamnesis.

Administration of T-VEC
T-VEC was administered into injectable metastatic melanoma lesions (cutaneous, subcutaneous and nodal tumors). The initial dose on day 1 was 106 plaque-forming units (PFU)/mL (up to 4mL based on the lesion size). The second dose on day 21 was 108 PFU/mL (up to 4mL based on the lesion size), the following cycles were applied every 14 days thereafter with 108 PFU/mL (up to 4mL based on the lesion size). The median treatment period was 19.0 weeks (range: 1–65), an average of 11 doses (range: 1–36) were applied.

Efficacy outcomes
Eighty-eight patients fulfilled the criteria for analyzes. Investigator-assessed responses are shown in table 3. The overall response rate (ORR) was 63.7%. 38 patients

Figure 2 Talimogene laherparepvec (T-VEC) treatment over the years 2016–2020, in 10 melanoma centers in Austria, Switzerland and Germany. CPI, checkpoint inhibitors.

Table 3 Investigator assessed best overall response.

Investigator-assessed best overall response	n=88	100%
Response rates		
CR	38	43.2%
PR	18	20.5%
SD	8	9.1%
PD	24	27.3%

CR, complete response; PD, progressive disease; PR, partial response; SD, stable disease.

Ressler JM, et al. J Immunother Cancer 2021;9:e001701. doi:10.1136/jitc-2020-001701
Table 4 Talimogene laherparepvec (T-VEC) as first-line therapy correlated with best overall response rates (complete response (CR), stable disease (SD), partial response (PR), progressive disease (PD))

Best overall response rate	Total	CR	SD	PR	PD
T-VEC secondline	43 (48.9%)	15 (17.0%)	5 (5.7%)	8 (9.1%)	15 (17.0%)
T-VEC firstline	45 (51.1%)	23 (26.1%)	3 (3.4%)	10 (11.4%)	9 (10.2%)

(43.2%) showed a CR, 18 (20.5%) had a PR, 8 (9.1%) had an SD and 24 (27.3%) patients had a PD. The 45 patients (51.1%) treated with T-VEC as first line therapy showed better response rates, however differences where not statistically significant (p=0.185), compared with the remaining 43 patients (48.9%) treated with T-VEC as second line therapy (table 4). The BOR from patients treated with T-VEC as first-line therapy correlated significantly with longer progression free survival (PFS) (p=0.04), but did not correlate significantly with longer OS (p=0.199).

The median time to response was 124 days (range: 44–397) (figure 3). The median PFS was 9 months (95% CI 5.9 to 10.12) (figure 4A). The median OS was not reached (figure 5A). At the 1-year landmark 45% of all patients were without progression and 82% of patients were still alive (figures 4A, 5A). PFS (p=0.011) and OS (p=0.004) were significantly worse in patients with stage IVM1b to IVM1d melanoma (figures 4B, 5B). The 45 patients (51.1%) treated with T-VEC as first line therapy showed significant improved PFS (p=0.016) (figure 4C) and a trend toward improved OS (p=0.267) (figure 5C). However, OS differences were not statistically significant, compared with the remaining 43 patients (48.9%) treated with T-VEC as second line. The median follow-up period was 542 days (range: 14–1465 days). During the follow-up period 58 (65.9%) patients had a progression of disease: 32 (36.4%) patients progressed locoregional, 16 (18.2%) developed distant metastasis and 10 (11.4%) developed both, locoregional and distant metastases.

Laboratory parameters
Prior to therapy with T-VEC, the following laboratory parameters were collected: Lymphocytes (G/L), leukocytes (G/L), eosinophils (G/L), C reactive protein (CRP) (mg/dL), LDH and S100 (pg/L). Elevated S100 correlated with decreased PFS (p=0.0046). There was no significant association between eosinophils, lymphocytes, leukocytes, LDH and CRP and OS and PFS. Baseline laboratory parameters grouped in upper limits of normal and lower limits of normal based on BOR, namely CR, SD, PR, PD are shown in table 5.

Use of other melanoma therapies before, during or after treatment with T-VEC
Tumor therapies used before, during or after T-VEC are shown in table 6. Forty-five patients (51.1%) received T-VEC as the sole melanoma therapy without prior antineoplastic treatment. Forty-three patients (48.9%) received therapy prior to treatment with T-VEC: 3 (3.4%) received radiotherapy, 12 (13.6%) PD-1 inhibitors, 10 (11.4%) Interferon, 5 (5.7%) BRAF and MEK inhibitors, 1 (1.1%) Imiquimod and 3 (3.4%) electrochemotherapy. A further nine patients (10.2%) received prior but unknown therapy.

In addition to T-VEC, 11 patients (12.5%) received concurrent treatment: 10 patients (11.4%) PD-1 inhibitors and 1 patient (1.1%) a CTLA-4 inhibitor. These patients had advanced tumor stages: one patient stage IIIC, two patients stage IVM1a, two patients stage IVM1b, three patients stage IVM1c and three patients stage IVM1d. Eight of these 11 patients did receive T-VEC as an add on therapy on progression on a PD-1 inhibitor (5/8) or PD-1 based combination treatment (3/8). One patient received CTLA4 +TVEC on progression on a PD1 inhibitor and two patients received first line combinations of TVEC with a PD-1 inhibitor. PFS and OS for patients on concurrent therapy are shown in figure 6A,B.

Thirty-three patients (37.5%) required therapy during the follow-up period. A detailed outline of follow-up therapies according to BOR and first or second line therapy with T-VEC is presented in table 7.

Tolerability and safety
AEs were classified based on the common terminology criteria for AE V.5.0 on severity from grade 1 to 5. AEs were reported in 39 (44.3%) of the patients; 26 patients (29.5%) developed grade 1 AEs, 16 (18.2%) grade 2 AEs, 2 (2.3%) grade 3 AEs, 2 (2.3%) grade 4 AEs. No grade 5 AE occurred. Most common AEs were influenza like
symptoms such as fever 21.6% (n=19), shivering 6.8% (n=6) and fatigue 8.1% (n=7). Herpetic lesions appeared in only one patient (1.1%) (table 8). Among the 11 patients that received concurrent treatment with T-VEC and checkpoint inhibitors, 5 (45.5%) developed AEs. Out of the remaining 77 patients which were treated only with T-VEC, 36 (46.8%) developed AEs.

DISCUSSION

There is an increasing amount of clinical data that supports the efficacy of T-VEC in treating metastatic melanoma.16-20 In our analysis, we provide data from an international cooperation across AT, CH and DE, countries that have similar access to novel melanoma treatments and follow comparable treatment standards in the management of metastatic melanoma. We provide detailed insights of patients treated with T-VEC in routine clinical practice.

Compared with 25.7 weeks in the OPTIM trial (which led to the approval of T-VEC), the median duration of T-VEC treatment was 19.0 weeks, whereas the ORR in our patients was 63.7%, vs 26.4% in the OPTIM trial.21

Our study included a population of patients with disease stages ranging from IIIB to IVM1d. 85.3% of the patients had stage IIIB–IVM1a and only a minority, 14.7%, had stage IVM1b–IVM1d. 51.1% of the patients in our cohort received T-VEC as first-line therapy. In the OPTIM study, only 55% of the patients were in stage IIIB-IVM1a and 47% of patients received T-VEC as first-line therapy. Therefore, patient selection, also in relation to the European label for T-VEC, is the most likely explanation for the observed difference in ORR.

In other published real-life data analyzes, study populations with differing tumor stages were included. In the cosmos-1 trial, only 55.3% of patients had earlier stage IIIB-IVM1a metastatic melanoma, whereas other recent publications included only stage IIIB–IVM1a metastatic melanoma. In the cosmos-1 trial, 19.7% of the patients had a CR, however, the ORR was not evaluated.17-20 A multicenter retrospective German study, which included 27 patients with unresectable early stage IIIB–IVM1a melanoma treated with T-VEC, reported that 63% of the patient cohort received T-VEC as first-line therapy. The ORR was not evaluated.19 In a multicenter US study,
Table 5 Blood biomarkers: lymphocytes (G/L), leucocytes (G/L), eosinophils (G/L), C reactive protein (CRP) (mg/dL), lactate dehydrogenase (LDH) and S100 (µg/L) correlated with response rates

	CR N (%)	SD N (%)	PR N (%)	PD N (%)
LDH (U/L)				
Norm	27 (37.0)	2 (2.7)	12 (16.4)	13 (17.8)
>ULN	6 (8.2)	2 (2.7)	3 (4.1)	8 (11.0)
Leucocytes (G/L)				
Norm	33 (44.6)	4 (5.4)	12 (16.2)	17 (23.0)
<LLN	2 (2.7)	–	–	–
>ULN	2 (2.7)	–	–	4 (5.4)
Lymphocytes (G/L)				
Norm	32 (43.2)	4 (5.4)	9 (12.2)	18 (24.3)
<LLN	3 (4.1)	–	2 (2.7)	3 (4.1)
>ULN	1 (1.4)	–	1 (1.4)	–
Eosinophils (G/L)				
Norm	35 (47.9)	2 (2.7)	12 (16.4)	17 (23.3)
<LLN	–	1 (1.4)	–	2 (2.7)
>ULN	1 (1.4)	1 (1.4)	–	2 (2.7)
S100 (µg/L)				
Norm	24 (38.1)	–	5 (7.9)	8 (12.7)
>ULN	10 (15.9)	2 (3.2)	5 (7.9)	9 (14.3)
CRP (mg/dL)				
Norm	18 (27.7)	–	3 (4.6)	7 (10.8)
>ULN	16 (24.6)	3 (4.6)	6 (9.2)	37 (18.5)

CR, complete response; LLN, lower limit of normal; PD, progressive disease; PR, partial response; SD, stable disease; ULN, upper limit of normal.

conducted between 2015 and 2018, in which 42.5% of patients received T-VEC as first-line therapy the ORR was 56.4%.30 A single-site study of 26 T-VEC-treated patients from the Netherlands presented a similar safety profile and an ORR of 88.5%.24

While the majority of our patients were treated within the approved European indication, a minority of our patients with stage IVM1b-d received T-VEC as well. These were mostly patients with stable systemic disease, but locoregional progression, that received T-VEC as an add-on therapy. Responses have been observed in some of these patients. In our cohort, 11 patients (12.5%) received concurrent therapy with PD-1 or CTLA-4 checkpoint inhibitors. 22 patients (25.0%) received treatment with checkpoint inhibitors following progression on T-VEC. Due to the low number of patients requiring follow-up or concurrent treatment in our cohort we cannot assess if treatment with T-VEC did alter the response to a

Table 6 Tumor therapies used before, during or after therapy with talimogene laherparepvec (T-VEC)

Therapies before, during or after treatment with T-VEC	Before T-VEC	During T-VEC	After T-VEC
PD-1 inhibitors	12 (13.6%)	10 (11.4%)	16 (18.2%)
Interferon adjuvant	10 (11.4%)	1 (1.1%)	8 (9.2%)
BRAF/MEK inhibitors	5 (5.7%)	1 (1.1%)	4 (4.5%)
Radiation	3 (3.4%)	3 (4.6%)	2 (2.3%)
Electrochemotherapy	3 (3.4%)	2 (2.3%)	1 (1.1%)
Local therapy/Imiquimod	1 (1.1%)	1 (1.1%)	2 (2.3%)
Yes, therapy unknown	9 (10.2%)	6 (7.2%)	1 (1.1%)

Ressler JM, et al. J Immunother Cancer 2021;9:e001701. doi:10.1136/jitc-2020-001701
subsequent or concurrent systemic immunotherapy. The possibility that a local induction of an anti-tumor immune response could alter the response to systemic therapy with checkpoint inhibitors like PD-1 or CTLA-4 blocking antibodies has been addressed in early clinical trials and randomized studies to evaluate this possibility are currently ongoing in metastatic melanoma patients with injectable lesions.25-29

An analysis of the type of follow-up therapy according to BOR and first or second line treatment with TVEC shows that patients receiving TVEC as a first line therapy more often received a PD-1 inhibitor therapy compared with patients receiving TVEC as a second-line therapy, which is in line with current recommendations to use PD-1 inhibitors as systemic first line treatment.30 From all the laboratory values collected at baseline only elevated S100 was associated with decreased PFS (p=0.046). The tolerability of TVEC was similar to the OPTIM trial and other real-life studies with only 2 out of 88 patients stopping treatment due to AEs.17-20 22-25 The most common grade 1 and 2 AEs were fever 21.6% (n=19), chills 6.8% (n=6), fatigue 8.0% (n=7) and pain on the injection site 5.8% (n=5). There were 2 grade 3 AEs, namely cellulitis on the injection site and colitis. One grade 3 AE colitis, one grade 4 cardiac AE and one grade 4 gastrointestinal AE occurred in patients who received simultaneous therapy with PD-1 inhibitors. Only one patient (1.1%) reported cold sores. TVEC was well-tolerated, even though the study cohort represents an elderly population with a median age of 72 years and multiple comorbidities, with one patient even having a history of organ transplantation.31 In our cohort, no difference in the

Patients with follow-up therapy	BRAF inhibitor	MEK inhibitor	PD-1 Inhibitor	PD-1+CTLA4 Inhibitor	CTLA4 Inhibitor	Chemo-therapy	Electro-chemotherapy
First line therapy with TVEC	14/45 (15.9%)	1 (1.1%)	10 (11.4%)	1 (1.1%)	2 (2.3%)		
Second line therapy with TVEC	19/43 (21.6%)	7 (8.0%)	6 (6.8%)	3 (3.4%)	2 (2.3%)	1 (1.1%)	
In total	33/88 (37.5%)	8 (9.1%)	16 (18.2%)	4 (4.5%)	2 (2.3%)	1 (1.1%)	2 (2.3%)
BOR							
CR	6/38 (6.8%)	1 (1.1%)	4 (4.5%)	1 (1.1%)			
SD	3/8 (3.4%)	1 (1.1%)	1 (1.1%)	1 (1.1%)			
PR	6/18 (6.8%)	3 (3.4%)	2 (2.3%)	1 (1.1%)			
PD	18/24 (20.4%)	3 (3.4%)	9 (10.2%)	2 (2.3%)	2 (2.3%)	1 (1.1%)	1 (1.1%)
In total	33/88 (37.5%)	8 (9.1%)	16 (18.2%)	4 (4.5%)	2 (2.3%)	1 (1.1%)	2 (2.3%)
frequency of occurrence of AEs was observed between the patients who received TVEC in combination with immunotherapy (45.5%) and patients who received T-VEC without immunotherapy (46.8%). While the documentation of AEs is usually less stringent outside of clinical trials, the recorded AEs are more likely to represent clinically significant events.

The era of checkpoint inhibitors and targeted therapies like BRAF and MEK inhibitors has led to dramatic improvements in OS and PFS for patients with metastatic melanoma and these drugs are the current standard therapies in the adjuvant as well as in the inoperable metastatic setting. In the latter, the 5-year OS rate for PD-I inhibitor based therapies is between 39% and 52%,10 and for BRAF and MEK inhibitors up to 34%.13 However, more than 50% of patients do not respond to these and between 10% and 42% of patients, depending on the type of therapy have to stop these treatments because of AE.32 Furthermore, despite the great effectiveness of these drugs, the number of lines of therapies with a proven impact on OS is still limited for melanoma patients. Therefore, an additional treatment option that, as shown in our data collection, can add to the number of patients that achieve control of their disease is a clear advantage. We believe that T-VEC with its low toxicity profile is an ideal treatment option for selected patients with unresectable, but still limited cutaneous or subcutaneous metastases, especially for elderly patients or patients with multiple comorbidities. Checkpoint inhibitors and BRAF and MEK inhibitors would still be available to these patients in case of a potential recurrence of disease.

The strengths of our study include the size of the study population, the insights provided by a heterogeneous group of patients with different disease stages, clear and comprehensive information about clinical parameters, medical history and laboratory parameters. The main limitation of our study is its retrospective character which naturally limits the size, the depth and the availability of the data.

Table 8: AEs (adverse events): classified based on the CTCAE criteria V.5.0 on severity from grade 1 to 5

AEs	In total; n (%)	Grade 1; 25 (29%)	Grade 2; 16 (18.6%)	Grade 3; 1 (1.2%)	Grade 4; 2 (2.4%)
Fever	19 (21.6)	10 (11.4)	9 (10.2)	–	–
Fatigue	7 (8.1)	6 (7.0)	1 (1.2)	–	–
Shivering	6 (6.8)	6 (6.8)	–	–	–
Nausea	5 (5.7)	5 (5.7)	–	–	–
Local reaction/pain	4 (4.6)	1 (1.1)	2 (2.3)	1 (1.2)	–
Gastrointestinal AEs	4 (4.5)	2 (2.3)	–	1 (1.1)	1 (1.1)
Arthralgia	2 (2.2)	1 (1.1)	1 (1.1)	–	–
Herpetic lesions	1 (1.1)	–	1 (1.1)	–	–
Cardiac AEs	1 (1.1)	–	–	–	1 (1.1)

CTCAE, common terminology criteria for AE.

CONCLUSION

In our real-life cohort, treatment with T-VEC showed a high ORR and CR rate. Our findings support that T-VEC is a well-tolerated therapy that can be successfully used in patients with unresectable, locoregional and injectable metastatic melanoma. Elderly patients with multiple comorbidities who may not bear the risk of AEs from other systemic therapies and patients with a low tumor burden at the beginning of the treatment, might benefit specifically from T-VEC therapy.

Author affiliations
1. Department of Dermatology, Medical University of Vienna, Vienna, Austria
2. Department of Dermatology, University Hospital St. Poelten, Karl Landsteiner University of Health Sciences, St Poelten, Austria
3. Department of Dermatology, Medical University of Graz, Graz, Austria
4. Department of Dermatology, University Hospital of Zurich, Zuerich, ZH, Switzerland
5. Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, VD, Switzerland
6. Department of Dermatology, Krankenhaus der Elisabethinen, Linz, Linz, Austria
7. Department of Dermatology, Krankenanstalt Rudolfstiftung, Vienna, Austria
8. Department of Dermatology, Paracelsus Medical University Salzburg, Salzburg, Austria
9. Department of Dermatology, Technische Universität München Fakultät für Medizin, Muenchen, Germany
10. Department of Dermatology, Landeskrankenhaus Klagenfurt, Klagenfurt, Austria

Correction notice
This article has been corrected since it first published. The provenance and peer review statement has been included.

Contributors
Study design and supervision: CHO and JMR. Contributed in data collection: JMR, MK, LK, RS, JM, SL, VA, HK, FW, PK, CP, JK, OM, ER, CHA and CHO. Analyzed the data: JMR, RS and CHO. Wrote the paper: JMR, RS and CHO.

Funding
The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests
JMR received project funding by Amgem, Speakers bureau of Amgem and Bristol Myers Squibb and travel support from Bristol Myers Squibb, Pierre Fabre outside of the submitted work. JMR has intermittent project focused consultant or advisory relationships with Merck/Pfizer, Merck Sharp & Dohme, Amgem, Novartis, Bristol Myers and Squibb and Pierre Fabre and has received travel support from Ultrasun, C’oreal, Merck Sharp & Dohme, Bristol Myers and Squibb and Pierre Fabre outside of the submitted work. PK has received honoraria for travel/congress support and consulting/advisory roles for Roche, Bristol Myers Squibb (BMS), Merck Sharp and Dorne (MSD), Novartis, Amgem, Pierre Fabre and Sanofi Aventis unrelated to the submitted work. ER Honoraria, consulting or
advisory role: Amgen, Bayer, Bristol Myers Squibb, MSD, Merck, Novartis, Pierre Fabre, Roche, Sanofi/Speakers' bureau: Amgen, Bristol Myers Squibb, MSD, Merck, Novartis, Pierre Fabre, Sanofi/Research funding site: Amgen, Bristol Myers Squibb, MSD, Merck, Novartis, Pierre Fabre, Roche Research funding steering committee: Novartis/travel, accommodations, expenses: Amgen, Bristol Myers Squibb, MSD, Merck, Novartis, Pierre Fabre, Roche, Sanofi. CI is associated with consulting or advisory role for Bristol-Myers Squibb, Amgen, Merck Sharp and Dohme, Novartis, Pierre Fabre and Speaker’s bureau of Bristol-Myers Squibb, Amgen, Merck Sharp & Dohme, Pierre Fabre and received travel/accommodations/expenses from Amgen, Bristol-Myers Squibb, Merck Sharp and Dohme, Pierre Fabre. CHD is associated with advisory role for Advisory Boards: Amgen, Astra Zeneca, BMS, Jounce, MSD, Novartis, Pierre Fabre, Roche and Speakers bureau of Amgen, BMS, MSD, Novartis, Roche.

Patient consent for publication Not required.

Ethics approval This study was registered at the Medical University of Vienna with the ethics committee number 18/40 2019.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement All data relevant to the study are included in the article or uploaded as online supplementary information.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs Julia Maria Ressler http://orcid.org/0000-0001-8602-0878
Christoph Hoeller http://orcid.org/0000-0003-1192-0227

REFERENCES
1 Andtbacca RHI, Aqanvala SS, Ollila DW, et al. Cutaneous head and neck melanoma in OPTIM: a randomized phase 3 trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor for the treatment of unresected stage IIIB/IIIC/IV melanoma. Head Neck 2016;38:1752–8.
2 Zheng M, Huang J, Tong A, et al. Oncolytic viruses for cancer therapy: barriers and recent advances. Mol Ther Oncolytics 2019;15:234–47.
3 Bommarredy PK, Silk AW, Kaufman HL. Intratumoral approaches for the treatment of melanoma. Cancer J 2017;23:40–7.
4 Kaufman HL, Andtbacca RHI, Collicchio FA, et al. Durable response rate as an endpoint in cancer immunotherapy: insights from oncolytic virus clinical trials. J Immunother Cancer 2017;5:72.
5 Cassidy T, Craig M. Determinants of combination GM-CSF immunotherapy and oncolytic virotherapy success identified through in silico treatment personalization. PLoS Comput Biol 2019;15:e1007495.
6 Kaufman HL, Bommarredy PK. Two roads for oncolytic immunotherapy development. J Immunother Cancer 2019;7:26.
7 Andtbacca RHI, Collicchio F, Harrington KJ, et al. Final analyses of OPTIM: a randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III-IV melanoma. J Immunother Cancer 2019;7:145.
8 Bommarredy PK, Zloza A, Rabkin SD, et al. Oncolytic virus immunotherapy induces immunogenic cell death and overcomes sting deficiency in melanoma. Oncoimmunology 2019;8:1591875.
9 Andtbacca RHI, Amatruda T, Nemunaitis J, et al. Biodistribution, shedding, and transmissibility of the oncolytic virus talimogene laherparepvec in patients with melanoma. EBioMedicine 2019;47:89–97.
10 Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Five-Year survival with combined nivolumab and ipilimumab in advanced melanoma (KEYNOTE-006): post-hoc 5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol 2019;20:1239–51.
11 Gellrich FF, Schmitz M, Beissert S, et al. Anti-Pd-1 and novel combinations in the treatment of Melanoma-An update. J Clin Med 2020;9. doi:10.3390/jcm9010225.
12 Roser C, Grob JJ, Straynvoksky D, et al. Five-Year outcomes with dabrafenib plus trametinib in metastatic melanoma. N Engl J Med 2019;381:626–36.
13 Gyorki DE. Management of in-transit melanoma: we need some high-quality data. J Oncol Pract 2018;14:302–3.
14 Nan Tie E, Lai-Kwong JF, Gyorki DE. Systemic therapies for unresectable locoregional melanoma: a significant area of need. Melanoma Manag 2019;6;MMT25.
15 Laloo KS, Banks V, Scholz F, et al. Real-World use of talimogene laherparepvec in Germany: a retrospective observational study using a prescription database. Future Oncol 2020;13:317–28.
16 Louie RJ, Perez MC, Jajja MR, et al. Real-World outcomes of Talimogene Laherparepvec therapy: a multi-institutional experience. J Am Coll Surg 2019;228:644–9.
17 Mohr P, Haferkamp S, Pinter A, et al. Real-World use of Talimogene Laherparepvec in German patients with stage IIIB to IVM1a melanoma: a retrospective chart review and physician survey. Adv Ther 2019;36:101–17.
18 Perez MC, Miura JT, Naqui SMH, et al. Talimogene Laherparepvec (TVEC) for the treatment of advanced melanoma: a single-institution experience. Ann Surg Oncol 2018;25:3990–5.
19 Harrington KJ, Andtbacca RH, Collicchio F, et al. Efficacy and safety of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in patients with stage IIIB/C and IVM1a melanoma: subanalysis of the phase III OPTIM trial. Onco Targets Ther 2016;9:7081–93.
20 Zhou YF, Wang DY, McKee S, et al. Correlates of response and outcomes with talimogene laherparepvec. J Surg Oncol 2019;120:558–64.
21 Perez MC, Zager JS, Amatruda T, et al. Observational study of talimogene laherparepvec use for melanoma in clinical practice in the United States (COSMUS–I). Melanoma Manag 2019;6;M1T19.
22 Franke V, Berger DMS, Klopf WNC, et al. High response rates for T-VEC in early metastatic melanoma (stage IIIB/C-IVM1a). Int J Cancer 2019;145:974–8.
23 Ribas A, Dummer R, Puzanov I, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 2017;170:1109–19.
24 Atzal MZ, Shirai K. Response to the rechallenge with Talimogene Laherparepvec (T-VEC) after ipilimumab/Nivolumab treatment in patient with cutaneous malignant melanoma who initially had a progression on T-VEC with pembrolizumab. J Immunother Cancer 2019;4:136–41.
25 Almutairi AR, Alkhathib OS, Oh M, et al. Economic evaluation of Talimogene Laherparepvec plus ipilimumab combination therapy vs ipilimumab monotherapy in patients with advanced unresectable melanoma. JAMA Dermatol 2019;155:22–8.
26 Cheeley J, Puzanov I, Collicchio F, et al. Patterns of response with talimogene laherparepvec in combination with ipilimumab or ipilimumab alone in metastatic unresectable melanoma. Br J Cancer 2019;121:417–20.
27 Sun L, Funchion P, Song JM, et al. Talimogene Laherparepvec combined with anti-PD-1 based immunotherapy for unresectable stage III-IV melanoma: a case series. J Immunother Cancer 2018;6:36.
28 Michielini V, van Akkooi ACJ, Asciento PA, et al. Cutaneous melanoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2018;30:1864–901.
29 Rosser J, Simbrodt R, Stapen A, et al. Talimogene laherparepvec (T-VEC) in advanced melanoma: complete response in a heart and kidney transplant patient. A case report. Br J Dermatol 2019;181:186–9.
30 Darnell EP, Mooradian MJ, Baruch EN, et al. Immune-Related adverse events (irAES): diagnosis, management, and clinical pearls. Curr Oncol Rep 2020;22:39.