Associations between environmental tobacco smoke exposure and oral health symptoms in adolescents

Na-Young Yoon1,2, Il Yun1,2, Yu Shin Park1,2 and Eun-Cheol Park2,3*

Abstract
Background: Oral health condition in adolescence impacts the oral well-being throughout life. This study aimed to determine the association between environmental tobacco smoke (ETS) exposure and oral health in adolescents, using nationally representative data.

Methods: Using data from the 2020 Korea Youth Risk Behavior Web-based Survey, we assessed self-reported data on ETS exposure and oral health symptoms in 37,591 non-smoking adolescents. The dependent variables were self-reported oral health symptoms of adolescents (tooth fracture, dental pain, and gum bleeding). ETS exposure was the primary independent variable. Chi-square tests and multivariable logistic regression analyses were performed to examine these relationships.

Results: ETS exposure was positively associated with oral symptoms compared to no-ETS exposure in adolescents [boys, odds ratio (OR) 1.56, 95% confidence interval (CI) 1.46–1.66; girls, OR 1.50, 95% CI 1.41–1.60]; individuals with good oral health habits such as frequent tooth brushing [boys, three times or more a day, OR 1.38, 95% CI 1.24–1.53] and less soda consumption [girls, less than once a day, OR 1.73, 95% CI 1.29–2.33] had a weaker association. ETS exposure was positively associated with dental pain [boys, OR 1.55, 95% CI 1.45–1.66; girls, OR 1.50, 95% CI 1.41–1.60] and gum bleeding [boys, OR 1.43, 95% CI 1.29–1.58; girls, OR 1.32, 95% CI 1.21–1.44]; however, tooth fracture was significantly associated only in girls [OR 1.28, 95% CI 1.13–1.45].

Conclusions: ETS in various environments is negatively associated with oral health in adolescents. This association could vary depending on health habits. Sophisticated policies to protect South Korean adolescents from ETS can be developed from these findings.

Keywords: Tobacco, Oral health, Adolescent health

Background
Oral health refers to the health of teeth, gums, and the entire orofacial system that allows people to smile, chew, and speak [1]. Oral health has a significant impact on the overall health and quality of life of an individual. Poor oral health is also associated with a higher risk of mortality, including major causes of death such as cardiovascular and respiratory diseases, and infections [2, 3]. Therefore, the oral health condition in adolescence could impact oral well-being throughout life.

Environmental tobacco smoke (ETS) exposure, also known as passive smoking, includes a mixture of exhaled main and side-stream smoke that pollutes the air surrounding the area of tobacco consumption [4]. Tobacco smoke contains a deadly mix of more than...
Many studies have shown that ETS exposure is significantly associated with numerous diseases in adolescents. A study reported an association between ETS exposure measured by cotinine levels and metabolic syndrome in adolescents using the U.S. National Health and Nutrition Examination Survey [7]. According to a study conducted in Kuwait, asthma may be another negative health outcome in adolescents resulting from ETS exposure [8]. Another study showed an association between ETS exposure and depression among South Korean adolescents [9].

According to previous studies, tobacco smoke may affect the immune system and saliva flow, aggravating the oral health of an individual [10]. Most of the studies that examined the association between tobacco smoking and oral health focused on the direct effect of tobacco consumption on the smokers’ oral health [11, 12]. On the other hand, several recent studies have targeted the oral health of young children, which is mostly affected by parental ETS [13]. A previous study showed that parental smoking behavior is associated with caries in 5-year-old children [14]. Another study showed that children exposed to ETS had a high occurrence of enamel opacities, which increases the risk of dental caries [4].

However, previous studies that examined the association between ETS and health focused less on oral health in adolescents, which might be easily affected by the unhealthy behaviors among their peers, parents, community, as well as their own [15, 16]. Further, the ETS exposure location of adolescents might be more diverse than that of children as they spend a substantial amount of time outside home [17]. Furthermore, most studies to date that examine the association between ETS and oral health have been limited by small sample sizes and the difficulties of analyzing the effects of ETS exposure location of adolescents on various oral health symptoms.

Therefore, the present study aimed to determine the association between ETS exposure and the oral health symptoms in adolescents using a relatively large sample obtained from a national cross-sectional survey. After that, we further performed subgroup analysis according to the health behavior of adolescents as the association could vary depending on their oral health habits. The locations and frequencies of ETS exposure and the prevalence of three different oral health symptoms, i.e., tooth fracture, dental pain, and gum bleeding, were examined to specifically analyze the relationship.

Methods

Data

The data used in this study were obtained from the 2020 Korea Youth Risk Behavior Web-based Survey (Kyrbws) for adolescents aged 12–18 years. Kyrbws is a nationwide cross-sectional survey conducted by the Korea Disease Control and Prevention Agency (Kdca). The Kyrbws was a secondary dataset available in the public domain. And its data were de-identified to maintain respondents’ anonymity and confidentiality. This survey was approved by the Korean National Statistical Office (Approval No. 117058). The survey was conducted in accordance with the guidelines and regulations provided by the Institutional Review Board of the Kdca. Data is available for download from the Kdca website (https://www.kdca.go.kr/yhs/). Therefore, this present study did not require additional approval or prior consent from the Institutional Review Board.

The purpose of the Kyrbws survey is to examine the status of health behaviors of South Korean adolescents and identify health indicators for the formation and evaluation of health programs. The survey is conducted annually and anonymously, in approximately 400 high schools and middle schools. The data were collected from August to November 2020, and the total number of survey participants of 2020 Kyrbws was 54,948 (response rate of 94.9%) [18].

From the database, the following respondents were excluded: 6081 respondents (4234 boys and 1847 girls) who had smoked cigarettes such as conventional and electronic cigarettes, and heated tobacco products in their lifetime; 1447 adolescents (913 boys and 534 girls) whose teeth had been fractured due to exercise or accidents; and 9829 participants (6019 boys and 3810 girls) who did not agree to provide their household information. Finally, 37,591 samples (17,187 boys and 20,404 girls) were analyzed.

Variables

The dependent variable was self-reported oral health symptoms. To assess oral health symptoms, the Kyrbws inquired about the experience of “tooth fracture,” “dental pain,” and “gum bleeding” through four different indications: “chipped or broken tooth,” “toothache when eating or drinking,” “throbbing and sore tooth,” and “sore and bleeding gums” for last 12 months. We classified those who had more than one oral health symptom as “symptom group”, and those who did not as “symptomless group”. We further classified the “symptom group” based on each oral symptom.

The primary independent variable in this study was ETS exposure. The participants were asked about the frequency of inhalation of tobacco smoked by others during
Regardless of the sex, the ETS exposure group was significantly associated with oral health symptoms in adolescents after adjusting for control variables. The results are reported as OR and confidence intervals (CI). A subgroup analysis was performed and stratified by sex and location of ETS exposure. All statistical analyses were performed using SAS software (version 9.4, SAS Institute, Cary, NC, USA).

Statistical analysis
Chi-square test and multivariable logistic regression analysis were used to analyze the data. The general characteristics of the sample were analyzed using frequencies and means. Multivariable logistic regression analyses were performed to examine the association between ETS exposure and oral health symptoms in adolescents after adjusting for control variables. The results are reported as odds ratios (OR) and confidence intervals (CI). A subgroup analysis was performed and stratified by sex and location of ETS exposure. All statistical analyses were performed using SAS software (version 9.4, SAS Institute, Cary, NC, USA).

Results
We analyzed each variable according to sex. Table 1 presents the general characteristics of the participants. Among the 37,591 study participants, 17,187 (45.7%) were boys and 20,404 (54.3%) were girls. Based on the ETS exposure, the proportion of female students with oral health symptoms in the “ETS group” (57.3%) was higher than that of male students (48.5%). Table 2 shows the association between ETS exposure and oral health symptoms after adjusting for all confounding variables. Regardless of the sex, the ETS exposure group was significantly associated with oral health symptoms (boys, OR 1.56, 95% CI 1.46–1.66; girls, OR 1.50, 95% CI 1.41–1.60).

Table 3 shows the results of the subgroup analyses between ETS exposure and oral health symptoms by covariates related to the following oral health management behaviors: “Tooth brushing frequency in a day” and “Soda intake frequency”. In male adolescents, tooth brushing for three or more times a day (OR 1.38, 95% CI 1.24–1.53) had a smaller association between ETS exposure and oral health symptoms than less frequent tooth brushing. In female adolescents, there was a stronger association in those who brushed their teeth less than once a day (OR 1.73, 95% CI 1.29–2.33) than in those who brushed their teeth more often. Furthermore, male adolescents who drank soda more than once a day (OR 2.11, 95% CI 1.66–2.69) had a greater association than less frequent drinkers. Female adolescents who did not drink soda (OR 1.33, 95% CI 1.18–1.50) had a lesser association with oral symptoms than more frequent drinkers.

Table 3 also reports the result of subgroup analyses between ETS exposure and oral health symptoms by demographic and socioeconomic factors of respondents. In female adolescents, when respondents’ family affluence was in low group, the association between ETS exposure and their oral health symptoms were stronger than in middle, and high group [low, OR 1.75, 95% CI 1.49–2.04; middle, OR 1.49, 95% CI 1.37–1.63; high, OR 1.40, 95% CI 1.24–1.59]. Likewise, in female adolescents, when their parents’ education level was lower, the association between ETS exposure and oral health symptoms was stronger [≤ middle, OR 1.72, 95% CI 0.74–3.97; high school, OR 1.66, 95% CI 1.44–1.91; ≥ college, OR 1.45, 95% CI 1.34–1.57]. On the other hand, those relationship according to family affluence and parents’ education level was not conspicuously shown in male adolescents.

In Table 3, we further analyzed the association according to age (middle school/high school) of respondents. The result showed that the association between ETS and their oral health symptoms were stronger when adolescents were older [boys, middle school, OR 1.49, 95% CI 1.36–1.63; high school, OR 1.66, 95% CI 1.51–1.83; girls, middle school, OR 1.47, 95% CI 1.35–1.61; high school, OR 1.54, 95% CI 1.41–1.68].

Table 4 shows the results of the subgroup analysis stratified by primary independent variables. Table 4 reports the OR for oral health symptoms according to ETS location and frequency. The groups that reported no ETS exposure at home, school, and other places were set as the reference groups. Notably, in male adolescents, ETS exposure at home of more than 4–6 days was stronger than in middle and high group [low, OR 1.75, 95% CI 1.11–1.33; 7 days, OR 1.34, 95% CI 1.15–1.56]. In female adolescents, ETS exposure at home of more than 4–6 days was more strongly associated with having oral symptoms than exposure for 1–3 days (1–3 days, OR 1.22, 95% CI 1.11–1.33; 7 days, OR 1.34, 95% CI 1.15–1.56). In female adolescents, ETS exposure at home of more than 4–6 days was more strongly associated with having oral symptoms than exposure for 1–3 days (1–3 days, OR 1.13, 95% CI 1.03–1.23; 4–6 days, OR 1.22, 95% CI 1.06–1.42; 7 days, OR 1.18, 95% CI 1.03–1.34). Furthermore, only girls had a significantly positive association with oral symptoms after 1–3 days of ETS exposure at school (OR 1.30, 95% CI 1.12–1.51). In male adolescents, ETS exposure of more than 4–6 days...
Variables	Boys	Girls																																
	Oral health symptoms	Oral health symptoms																																
	Total	Normality	Abnormality	N	%	N	%	N	%	N	%	N	%	N	%	N	%	N	%	N	%	P value	N	%	N	%	N	%	P value	N	%	N	%	P value
Total (N = 37,591)	17,187	9,983	58.1	7,204	41.9	20,404	9,627	47.2	10,777	52.8	<0.0001	12,598	6,175	49.0	6,423	51.0	7,224	57.3	7,753	42.7	<0.0001													
Environmental tobacco smoke (ETS) exposure	8246	48.0	4248	51.5	3,998	48.5	12,598	61.7	5,374	42.7	<0.0001																							
Yes	8941	52.0	5735	64.1	3,206	35.9	7,806	38.3	4,253	54.5	<0.0001																							
No	0.004	0.829	3,149	41.0	8,546	41.9	4,039	47.3	4,507	52.7	<0.0001																							
Region	Metropolitan	7,686	44.7	4,537	59.0	3,149	41.0	8,546	41.9	4,039	47.3	<0.0001																						
Urban	8,177	47.6	4,647	56.8	3,530	43.2	10,188	49.9	4,812	47.2	<0.0001																							
Rural	1,324	7.7	799	60.3	525	39.7	1,670	8.2	776	46.5	<0.0001																							
Middle and high school	6,667	38.8	3,705	55.6	2,962	44.4	8,769	43.0	3,774	43.0	<0.0001																							
High school	10,520	61.2	6,278	59.7	4,242	40.3	11,635	57.0	5,853	50.3	<0.0001																							
Middle school	6,692	40.7	3,953	56.5	3,039	43.5	7,707	37.8	3,561	46.2	<0.0001																							
High	5,149	30.0	3,131	50.8	2,018	39.2	6,493	31.8	3,222	49.6	<0.0001																							
Middle	5,046	29.4	2,899	57.5	2,147	42.5	6,204	30.4	2,844	45.8	<0.0001																							
Low	4,377	25.5	2,156	49.3	2,221	50.7	7,915	38.8	3,157	39.9	<0.0001																							
Stress level	7,778	45.3	4,445	57.1	3,333	42.9	9,181	45.0	4,511	49.1	<0.0001																							
High	5,032	29.3	3,382	67.2	1,650	32.8	3,308	16.2	1,959	59.2	<0.0001																							
Middle	4,377	25.5	2,156	49.3	2,221	50.7	7,915	38.8	3,157	39.9	<0.0001																							
Low	7,208	41.9	4,528	62.8	2,680	37.2	10,955	53.7	5,437	49.6	<0.0001																							
Toothbrushing frequency in a day	8,173	47.6	4,579	56.0	3,594	44.0	8,350	40.9	3,784	45.3	<0.0001																							
3 times or more a day	1,806	10.5	876	48.5	930	51.5	1,099	5.4	406	36.9	<0.0001																							
Twice a day	13,199	7.7	752	57.0	567	43.0	9,01	4.4	396	44.0	<0.0001																							
None or once a day	3,239	18.8	1,954	60.3	1,285	39.7	5,701	27.9	2,865	50.3	<0.0001																							
Soda intake frequency	6,626	38.6	4,364	65.9	2,262	34.1	5,521	27.1	3,032	54.9	<0.0001																							
More than once a day	5852	34.0	3,341	57.1	2,511	42.9	6,844	33.5	3,362	49.1	<0.0001																							
1–6 times a week	4709	27.4	2,278	48.4	2,431	51.6	8,039	39.4	3,233	40.2	<0.0001																							
None	0.015	0.001	5701	27.9	2,865	50.3	2,836	49.7	4,806	59.8	<0.0001																							
Sleep time for fatigue recovery	6626	38.6	4,364	65.9	2,262	34.1	5,521	27.1	3,032	54.9	<0.0001																							
Sufficient	5852	34.0	3,341	57.1	2,511	42.9	6,844	33.5	3,362	49.1	<0.0001																							
Normal	4709	27.4	2,278	48.4	2,431	51.6	8,039	39.4	3,233	40.2	<0.0001																							
Not sufficient	0.015	0.001	5701	27.9	2,865	50.3	2,836	49.7	4,806	59.8	<0.0001																							
Variables	Boys																																	
---------------------------------	--------	----------	----------	----------	-----------	----------	----------	----------	----------	----------	----------	----------	----------	----------																				
	Total	Normality	Abnormality	P value	Total	Normality	Abnormality	P value	Total	Normality	Abnormality	P value																						
	N %	N %	N %		N %	N %			N %	N %																								
Family affluence																																		
High	4186	24.4	2355	56.3	1831	43.7			5687	27.9	2620	46.1	3067	53.9																				
Middle	9402	54.7	5436	578	3966	42.2			11,084	54.3	5232	47.2	5852	52.8																				
Low	3599	20.9	2192	609	1407	39.1			3633	17.8	1775	48.9	1858	51.1																				
Having parents																																		
Both parents	16,191	94.2	9395	580	6796	42.0			19,290	94.5	9103	47.2	10,187	52.8																				
Single parent or none	996	5.8	588	590	408	41.0			1114	5.5	524	47.0	590	53.0																				
Parent's education level																																		
≤ Middle	132	0.8	83	629	49	37.1			164	0.8	71	43.3	93	56.7																				
High school	3056	17.8	1747	57.2	1309	42.8			4297	21.1	1969	45.8	2328	54.2																				
≥ College	10,716	62.3	6021	562	4695	43.8			13,119	64.3	6065	46.2	7054	53.8																				
Unknown	3283	19.1	2132	64.9	1151	35.1			2824	13.8	1522	53.9	1302	46.1																				
at other indoor places during the last 7 days, was more strongly associated with oral symptoms, as compared to ETS exposure of 1–3 days of ETS (1–3 days, OR 1.42, 95% CI 1.32–1.54; 4–6 days, OR 1.84, 95% CI 1.56–2.17; 7 days, OR 1.72, 95% CI 1.32–2.23). Female adolescents were more strongly associated with oral symptoms in case of 7 days of ETS exposure than its lesser frequency at other indoor places (1–3 days, OR 1.39, 95% CI 1.30–1.49; 4–6 days, OR 1.70, 95% CI 1.50–1.93; 7 days, OR 1.88, 95% CI 1.60–2.20).

Figure 1 presents the OR for the three oral health symptoms. In male adolescents, there was a positive association between ETS experience and dental pain (OR 1.55, 95% CI 1.45–1.66) and gum bleeding (OR 1.43, 95% CI 1.29–1.58). In female adolescents, there was a positive association between ETS experience and all three oral symptoms: tooth fracture (OR 1.28, 95% CI 1.13–1.45), dental pain (OR 1.50, 95% CI 1.41–1.60), and gum bleeding (OR 1.32, 95% CI 1.21–1.44).

Table 2 Association between ETS and oral health symptoms

Variables	Boys	Girls		
	OR	95% CI	OR	95% CI
Environmental tobacco smoke (ETS) exposure				
Yes	1.56	(1.46–1.66)	1.50	(1.41–1.60)
No	1.00		1.00	
Region				
Metropolitan	1.05	(0.93–1.20)	0.98	(0.84–1.13)
Urban	1.14	(1.00–1.30)	0.96	(0.83–1.11)
Rural	1.00		1.00	
Middle and high school				
High school	1.09	(1.01–1.17)	1.35	(1.26–1.44)
Middle school	1.00		1.00	
Academic achievement				
High	1.00		1.00	
Middle	0.85	(0.79–0.92)	0.84	(0.78–0.91)
Low	0.93	(0.85–1.02)	0.92	(0.84–0.99)
Stress level				
High	1.62	(1.47–1.79)	1.81	(1.64–2.00)
Middle	1.35	(1.25–1.47)	1.39	(1.27–1.52)
Low	1.00		1.00	
Toothbrushing frequency in a day				
3 times or more a day	1.00	(1.22–1.41)	1.00	
Twice a day	1.31		1.21	(1.12–1.30)
None or once a day	1.78	(1.58–2.02)	1.68	(1.45–1.95)
Soda intake frequency				
More than once a day	1.09	(0.94–1.26)	1.21	(1.03–1.42)
1–6 times a week	1.05	(0.96–1.15)	1.16	(1.09–1.25)
None	1.00		1.00	
Sleep time for fatigue recovery				
Sufficient	1.00		1.00	
Normal	1.26	(1.16–1.37)	1.11	(1.02–1.20)
Not sufficient	1.70	(1.55–1.86)	1.45	(1.34–1.57)
Family affluence				
High	1.16	(1.04–1.30)	1.08	(0.98–1.20)
Middle	1.13	(1.02–1.24)	1.05	(0.96–1.15)
Low	1.00		1.00	
Having parents				
Both parents	1.00		1.00	
Single parent or none	1.06	(0.90–1.24)	1.10	(0.95–1.27)
Parents’ education level				
≤ Middle	1.00		1.00	
High school	1.36	(0.92–2.01)	0.80	(0.56–1.15)
≥ College	1.44	(0.98–2.13)	0.85	(0.59–1.21)
Unknown	1.07	(0.72–1.60)	0.66	(0.45–0.95)

Discussion

Most studies on ETS exposure of non-smoking adolescents have focused on the prevalence of respiratory or mental diseases. However, we aimed to determine the association between ETS and oral health status in adolescents. The results of this study found that non-smoking adolescents who experienced ETS exposure more than once had various oral symptoms regardless of the sex.

The mechanism behind the association between ETS and tooth fracture can be explained by the results of previous studies. The messenger RNA expression of dentin matrix acidic phosphoprotein-1, bone sialoprotein, and alkaline phosphatase activity were significantly decreased in nicotine-treated human dental pulp cells, and mineralized nodule formation was also inhibited by nicotine in human dental pulp cell [19, 20]. Even non-smokers show similar level of nicotine in their bodies when exposed to ETS for a long time [21], therefore, the functions of dentin matrix synthesis and mineralization may be decreased in the dental pulp cells of adolescents who exposed by ETS, which could lead to their tooth fracture.

Also, it is reported that ETS exposure may lead to a decrease in saliva flow rate and salivary α-amylase activity along with an increase in peroxidase activity, indicating the incidence of oxidative stress [22]. One study explained that ETS exposure could lead to elevation of interleukin-1beta, albumin, and aspartate aminotransferase levels in saliva [23]. Considering these mechanisms, abnormal oral health symptoms of dental pain, and gum bleeding in non-smoking adolescents could result from ETS exposure.

The present study also reports that the association between ETS exposure and oral health is statistically significant even when adolescents have different oral health management behaviors. However, the adverse effects of ETS exposure on oral health symptoms of adolescents
can be reduced by good health habits, such as brushing teeth more often and consuming soda less frequently. Previous studies have shown that adolescents who brush their teeth twice or more a day have significantly lower incidence of caries and counts of decayed, missing, or filled teeth [24]. These preventive oral health behaviors may lower the effects of ETS exposure. Lifestyle factors such as drinking soda also lead to negative oral health symptoms. Increased soda consumption is significantly associated with the prevalence of dental erosion, according to a previous study [25, 26]. Additionally, those results about the association between ETS exposure and oral health symptoms in older adolescents might be result of the cumulative effect, in that, bad oral health is progressive in nature [29, 30], and negative effects of ETS also becomes cumulative [31, 32]. As adolescents age, they might become more vulnerable to ETS.

Variables	Boys	Girls		
	Oral health symptoms	Oral health symptoms		
	None	None		
	ETS exposure	ETS exposure		
	OR	95% CI	OR	95% CI
Toothbrushing frequency in a day				
3 times or more a day	1.00	(1.24–1.53)	1.00	(1.39–1.65)
Twice a day	1.00	(1.58–1.90)	1.00	(1.34–1.61)
None or once a day	1.00	(1.28–1.97)	1.00	(1.29–2.33)
Soda intake frequency				
More than once a day	1.00	(1.66–2.69)	1.00	(1.10–2.09)
1–6 times a week	1.00	(1.40–1.64)	1.00	(1.47–1.72)
None	1.00	(1.31–1.84)	1.00	(1.18–1.50)
Middle and high school				
High school	1.00	(1.51–1.83)	1.00	(1.41–1.68)
Middle school	1.00	(1.36–1.63)	1.00	(1.35–1.61)
Family affluence				
High	1.00	(1.36–1.80)	1.00	(1.24–1.59)
Middle	1.00	(1.42–1.68)	1.00	(1.37–1.63)
Low	1.00	(1.35–1.84)	1.00	(1.49–2.04)
Parents’ education level				
≤ Middle	1.00	(0.68–3.42)	1.00	(0.74–3.97)
High school	1.00	(1.52–2.11)	1.00	(1.44–1.91)
> College	1.00	(1.42–1.67)	1.00	(1.34–1.57)
Unknown	1.00	(1.21–1.70)	1.00	(1.34–1.88)

| Table 4 Results of subgroup analysis stratified by interesting variable |
|---|---------------------|---------------------|
| Variables | Boys | Girls |
| | Oral health symptoms | Oral health symptoms |
| | OR | 95% CI | OR | 95% CI |
| Home ETS | | | | |
| None | 1.00 | | 1.00 | |
| 1–3 days | 1.22 | (1.11–1.33) | 1.13 | (1.03–1.23) |
| 4–6 days | 1.17 | (0.99–1.39) | 1.22 | (1.06–1.42) |
| 7 days | 1.34 | (1.15–1.56) | 1.18 | (1.03–1.34) |
| School ETS | | | | |
| None | 1.00 | | 1.00 | |
| 1–3 days | 1.14 | (0.98–1.34) | 1.30 | (1.12–1.51) |
| 4–6 days | 0.95 | (0.64–1.42) | 0.94 | (0.64–1.38) |
| 7 days | 1.03 | (0.66–1.61) | 1.48 | (0.88–2.48) |
| Else ETS | | | | |
| None | 1.00 | | 1.00 | |
| 1–3 days | 1.42 | (1.32–1.54) | 1.39 | (1.30–1.49) |
| 4–6 days | 1.84 | (1.56–2.17) | 1.70 | (1.50–1.93) |
| 7 days | 1.72 | (1.32–2.23) | 1.88 | (1.60–2.20) |
Additional subgroup analyses of the locations and frequencies of ETS exposure confirmed that there was a statistically significant occurrence of oral health symptoms in both sex groups when they experienced ETS exposure at home. Furthermore, frequent ETS exposure at other indoor locations was associated with oral health symptoms. However, a significant association between frequent ETS exposure at school and oral health symptoms when compared with non-school ETS exposure, was observed only in female adolescents.

A previous study with a purpose similar to that of our study showed that children of parents who smoked a higher number of cigarettes reported higher cotinine concentrations than children of non-smoking parents [13]. Furthermore, another study showed that adults who experienced ETS exposure for more than two hours per day had a higher risk of cardiovascular disease than adults who experienced it for less than two hours per day [33]. As shown in these studies, the frequency of ETS could become an important factor that determines the wellness of individuals who are exposed to ETS.

Finally, the present study examined the association between ETS exposure and the prevalence of these three oral symptoms. There was a significant association between ETS and dental pain and gum bleeding in the male adolescent group and tooth fracture, dental pain, and gum bleeding in the female adolescent group. These results based on sex differences are similar to those of several previous studies, which show a stronger association of ETS with numerous diseases in the female group than in the male group; however, this should be interpreted cautiously and investigated further [34, 35].

This study has several limitations that should be considered. First, cross-sectional data were used. Therefore, the association between variables could be confirmed; causality could not be determined. Second, the results were derived from self-reported data. We specifically assessed the oral health symptoms of an individual, ETS frequencies, socioeconomic status, and health behavior covariates based on self-reported data. This finding may have been subject to recall bias [36]. Hence, the data may not have been accurately measured and may not be reliable. To provide more reliable results, future research should be conducted using the results of clinical examinations to assess the oral health status, and assessment of biological biomarkers such as salivary/blood cotinine levels to substantiate the results from self-reported data. Third, there might be factors such as individual lifestyle and personal traits, which co-vary with the oral symptoms of an adolescent and are not considered in this research model.

Despite these limitations, our study has several strengths. First, we used nationally representative data that were suitable for generalizing the results of the study to the overall South Korean adolescent population in middle and high schools. Furthermore, KYRBWS is an anonymous web-based survey that is likely to obtain relatively honest responses [37]. Third, in South Korea, few studies have been performed on the associations between ETS and oral health of adolescents, which analyzes these relationships in multi-dimensional aspects.

Conclusion

Our study is meaningful because it reflects the current ETS patterns of non-smoking South Korean adolescents and their association with oral symptoms. The findings of our study emphasize the importance of protecting adolescents from ETS in various environments. Multi-dimensional aspects of ETS exposure of adolescents and health habits should be considered when developing...
sophisticated health policies. The results of this study can be used as a baseline for developing effective policies to protect South Korean adolescents from ETS exposure.

Abbreviations
ETS: Environmental tobacco smoke; KYRBWS: Korea Youth Risk Behavior Web-based Survey; KDCA: Korea Disease Control and Prevention Agency; OR: Odds ratio; CI: Confidence interval.

Acknowledgements
We sincerely thank the editors and reviewers for their valuable comments. In addition, we appreciate Korea Disease Control and Prevention Agency for offering the Korea Youth Risk Behavior Web-based Survey data used in this study.

Author contributions
Ms. N-YY had full access to all of the data in the study and takes responsibility for the accuracy of the data analysis. Concept and design: N-YY, E-CP. Acquisition, analysis, or interpretation of data: N-YY, E-CP, IY. Drafting of manuscript: N-YY. Critical revision of the manuscript of important intellectual content: N-YY, IY, YSP, E-CP. Statistical analysis: N-YY. Supervision: E-CP. All authors read and approved the final manuscript.

Funding
There were no specific grants from funding agencies for this study.

Availability of data and materials
Publicly available datasets were analyzed in this study. These data can be found here: https://www.kdca.go.kr/yhs (accessed on 13 July 2022).

Declarations
Ethics approval and consent to participate
The Korea Youth Risk Behavior Web-based Survey was a secondary dataset available in the public domain. And its data were de-identified to maintain respondents’ anonymity and confidentiality. This survey was approved by the Korean National Statistical Office (Approval No. 117058). This study did not require additional approval or prior consent from the Institutional Review Board.

Consent for publication
Not applicable.

Competing interests
The authors have no conflicts of interest to disclose.

Author details
1. Department of Public Health, Graduate School, Yonsei University, Seoul, Republic of Korea. 2. Institute of Health Services Research, Yonsei University, Seoul, Republic of Korea. 3. Department of Preventive Medicine, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.

Received: 8 June 2022 Accepted: 7 September 2022 Published online: 12 September 2022

References
1. Oral Health Conditions. United States Centers for Disease Control and Prevention. https://www.cdc.gov/oralhealth/conditions/index.html. Accessed 13 Apr 2022.
2. Kotronia E, Brown H, Papacosta AO, Lennon LT, Weyant RJ, Whincup PH, Wannamethee SG, Ramsay SE. Oral health and all-cause, cardiovascular disease, and respiratory mortality in older people in the UK and USA. Sci Rep. 2021;11(1):16452.
3. Hwang SY, Shim JL, Kang D, Choi J. Poor oral health predicts higher 10-year cardiovascular risk: a propensity score matching analysis. J Cardiovasc Nurs. 2018;33(5):429–36.
4. Hasmurn NN, Drummond BK, Milne T, Cullinan MP, Meldrum AM, Coates D. Effects of environmental tobacco smoke on the oral health of preschool children. Eur Arch Paediatr Dent. 2017;18(6):393–8.
5. Chemicals in tobacco smoke. United States Centers for Disease Control and Prevention. https://www.cdc.gov/tobacco/data_statistics/sgr/2010/consumer_booklet/chemicals_smoke/index.htm. Accessed 13 Apr 2022.
6. Tobacco. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/tobacco. Accessed 13 Apr 2022.
7. Weitzman M, Cook S, Auerger P, Florin TA, Daniels S, Nguyen M, Winicoff JP. Tobacco smoke exposure is associated with the metabolic syndrome in adolescents. Circulation. 2005;112(6):862–9.
8. Bocalayhan H, Abduuracim M, Al-Shanafi S, Boujary A, Al-Mukama A, Alkandory O, Akhtar S. Exposure to environmental tobacco smoke and prevalence of asthma among adolescents in a middle eastern country. BMC Public Health. 2020;20(1):1210.
9. Jang BN, Jeong W, Kang SH, Jang SI. Association between the location of secondhand smoke exposure and depressive symptoms among South Korean adolescents. Int J Environ Res Public Health. 2020;17(14):5116.
10. Aligne CA, Moss ME, Auerger P, Weitzman M. Association of pediatric dental caries with passive smoking. JAMA. 2003;289(10):1258–64.
11. Morse DE, Proctor WJ, Cleveland D, Cohen DJ, Moht-Tabatabai M, Koss DL, Eisenberg E. Smoking and drinking in relation to oral cancer and oral epithelial dysplasia. Cancer Causes Control. 2007;18(9):919–29.
12. Sadri G, Mahjub H. Tobacco smoking and oral cancer: a meta-analysis. J Res Health Sci. 2007;7(1):18–23.
13. Jeong SH, Jang BN, Kang SH, Joo JH, Park E-C. Association between parents’ smoking status and tobacco exposure in school-age children: assessment using major urine biomarkers. Sci Rep. 2021;11(1):4536.
14. Leroy R, Hoppenbrouwers K, Jara A, Declerck D. Parental smoking behavior and cares experience in preschool children. Commun Dent Oral Epidemiol. 2008;36(3):249–57.
15. Haleem A, Siddiqui MI, Khan AA. School-based strategies for oral health education of adolescents: a cluster randomized controlled trial. BMC Public Health. 2012;12(1):154.
16. Tsai C, Raphael S, Agnew C, McDonald G, Irving M. Health promotion interventions to improve oral health of adolescents: a systematic review and meta-analysis. Commun Dent Oral Epidemiol. 2020;48(6):549–60.
17. Lee A, Lee SY, Lee K-S. Association of secondhand smoke exposure with allergic multimorbidity in Korean adolescents. Sci Rep. 2020;10(1):16409.
18. Korea Disease Control and Prevention Agency: statistics on 2020 Korea Youth Risk Behavior Web-based Survey. 2021.
19. Yanagita M, Kashivagi Y, Kobayashi R, Tomaeda M, Shimabukuro Y, Murakami S. Nicotine inhibits mineralization of human dental pulp cells. J Endod. 2008;34(9):1061–5.
20. Cho JH. The association between electronic-cigarette use and self-reported oral symptoms including cracked or broken teeth and tongue and/or inside-cheek pain among adolescents: a cross-sectional study. PLoS ONE. 2017;12(7):e0180506.
21. Kim BJ, Han JM, Kang JG, Rhee EJ, Kim BS, Kang JH. Relationship of cotinine-verified and self-reported smoking status with metabolic syndrome in 116,094 Korean adults. J Clin Lipidol. 2017;11(3):638-645.e632.
22. Kammaz B, Lamont G, Danaci G, Gogeneni H, Buduneli N, Scott DA. Microbiological and biochemical findings in relation to clinical periodontal status in active smokers, non-smokers and passive smokers. Tob Induc Dis. 2019;17:20–20.
23. Nishida N, Yamamoto Y, Tanaka M, Maeda K, Kataoka N, Nakayama K, Mori-moto K, Shizukuishi S. Association between passive smoking and salivary markers related to periodontitis. J Clin Periodontol. 2006;33(10):717–23.
24. Skinner J, Johnson G, Blinkhorn A, Byun R. Factors associated with dental caries experience and oral health status among New South Wales adolescents. Aust N Z J Public Health. 2014;38(5):485–9.
25. Hasselkvist A, Johansson A, Johansson A-K. Association between soft drink consumption, oral health and some lifestyle factors in Swedish adolescents. Acta Odontol Scand. 2014;72(8):1039–46.
26. López-Gómez SA, Villalobos-Rodelo JJ, Ávila-Burgos L, Casanova-Rosado JF, Vallejos-Sánchez AA, Lucas-Rincón SE, Patiño-Marín N, Medina-Solis CE. Relationship between premature loss of primary teeth with oral hygiene,
consumption of soft drinks, dental care and previous caries experience.

Sci Rep. 2016;6(1):21147.

27. Rubika A, Luoto S, Krama T, Trakimas G, Rantalai MJ, Moore FR, Skrinda I, Efferts D, Krams R, Contreras-Garduño, J, et al. Women’s socioeconomic position in ontogeny is associated with improved immune function and lower stress, but not with height. Sci Rep. 2020;10(1):11517.

28. Pageot Y, Stanton A, Ganz P, Irwin M, Cole S, Crespí C, Breen E, Kuhlman K, Bower J. Socioeconomic status and inflammation in women with early-stage breast cancer: mediation by body mass index. Brain Behav Immun. 2021, 99:307–16.

29. Watt RG, Daly B, Allison P, Macpherson LMD, Venturelli R, Listl S, Weyant RJ, Mathur MR, Guarin-zo-Herreño CC, Celeste RK, et al. Ending the neglect of global oral health: time for radical action. Lancet. 2019;394(10194):261–72.

30. Al Anouti F, Abboud M, Papandreou D, Haidar S, Mahboub N, Rizk R. Oral health of children and adolescents in the United Arab Emirates: a systematic review of the past decade. Front Oral Health. 2021, 267.

31. Sandler D, Wilcox A, Everson R. Cumulative effects of lifetime passive smoking on cancer risk. The Lancet. 1985;325(8424):312–5.

32. Shiue I. Modeling the effects of indoor passive smoking at home, work, or other households on adult cardiovascular and mental health: the Scottish health survey, 2008–2011. Int J Environ Res Public Health. 2014;11(3):3096–107.

33. Park YS, Lee C-H, Kim Y-I, Ahn CM, Kim JQ, Park J-H, Lee SH, Kim JY, Chun EM, Jung T-H, et al. Association between secondhand smoke exposure and hypertension in never smokers: a cross-sectional survey using data from Korean National Health and Nutritional Examination Survey V, 2010–2012. BMJ Open. 2018;8(5):e021217.

34. Kim BJ, Kim JH, Seo DC, Kim BS, Kang JH. Association between secondhand smoke exposure and diabetes mellitus in 131,724 Korean never smokers using self-reported questionnaire and cotinine: gender differences. Eur Heart J. 2019;40(11):3307–14.

35. Heo S, Lee J-T. Disease burdens from environmental tobacco smoke in Korean adults. Int J Environ Health Res. 2015;25(3):330–48.

36. Kissely S, Strathearn L, Najman JM. A comparison of oral health outcomes of self-reported and agency-notified child maltreatment in a population-based birth cohort at 30-year-old follow-up. Psychosom Med. 2022;84(2):179–87.

37. Joo HJ, Joo JH, Kim SH, Park EC, Jang SI. Association between graphic health warning labels on cigarette packs and smoking cessation attempts in Korean adolescent smokers: a cross-sectional study. Front Public Health. 2022;10:789707.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.