Multiparticle correlation studies in pPb collisions at $\sqrt{s_{NN}} = 8.16$ TeV

The CMS Collaboration

Abstract

The second- and third-order azimuthal anisotropy Fourier harmonics of charged particles produced in pPb collisions, at $\sqrt{s_{NN}} = 8.16$ TeV, are studied over a wide range of event multiplicities. Multiparticle correlations are used to isolate global properties stemming from the collision overlap geometry. The second-order “elliptic” harmonic moment is obtained with high precision through four-, six-, and eight-particle correlations and, for the first time, the third-order “triangular” harmonic moment is studied using four-particle correlations. A sample of peripheral PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV that covers a similar range of event multiplicities as the pPb results is also analyzed. Model calculations of initial-state fluctuations in pPb and PbPb collisions can be directly compared to the high precision experimental results. This work provides new insight into the fluctuation-driven origin of the v_3 coefficients in pPb and PbPb collisions, and into the dominating overall collision geometry in PbPb collisions at the earliest stages of heavy ion interactions.

Submitted to Physical Review Letters
In collisions of ultra relativistic heavy ions, two-particle azimuthal correlations between the large number of particles created over a broad range in pseudorapidity, were first observed in gold–gold and copper–copper collisions at the BNL RHIC [1–4], and have subsequently been studied in lead–lead (PbPb) collisions at the CERN LHC [5–9]. These correlations are thought to reflect the collective motion of a strongly interacting and expanding medium with quark and gluon degrees of freedom, namely, the quark-gluon plasma [10]. The observed azimuthal correlation structure can be characterized by Fourier harmonics, with the second (v_2) and third (v_3) harmonics referred to as “elliptic” and “triangular” flow, respectively. Within a hydrodynamic picture, the Fourier harmonics directly reflect the initial geometry of the colliding system and provide insight into the transport properties of the produced medium [11–13]. Fluctuations can also arise from the discrete substructure of the interaction region at the parton level [14, 15] and can have a significant effect on the observed higher-order harmonic coefficients.

Two-particle azimuthal correlations, which are long-range in pseudorapidity, are also found in small systems for collisions leading to high final-state particle densities. At the LHC, long-range correlations have been observed in proton–proton (pp) [16–18] and proton–lead (pPb) [19–22] collisions. Similar results have been obtained at RHIC in studies of deuteron–gold, proton–gold, and helium-3–gold collisions [23–26]. The origin of the long-range correlations in systems involving only a small number of participating nucleons is still under active discussion [27]. One possibility is that fluctuation-driven asymmetries in the initial-state nucleon locations within the overlap region are transferred to the final-state particle distributions through the hydrodynamic evolution of an expanding plasma [28–30]. Alternatively, it has been proposed that the observed behavior arises from the transfer of initial-state gluon correlations to the produced particles [31–33].

Studies of azimuthal correlations in small systems using two or more particles, as achieved through the use of a multiparticle cumulant expansion [34], show that the pp [35] and pPb [36] systems develop similar collective behavior to that found in heavier systems [37]. By requiring correlations among multiple particles, correlations that are not related to a bulk property of the medium, such as back-to-back jet correlations and resonance decays, are strongly suppressed [38]. The v_n harmonics based on different orders of the multiparticle expansion provide information on the event-by-event fluctuation of the observed anisotropy [39]. Previous v_2 multiparticle cumulant results for pPb collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_{NN}} = 5.02$ TeV suggest a direct correlation of the final-state asymmetry with the initial-state eccentricity of the participating nucleons [35, 40]. In these earlier measurements, it was not possible to obtain a multiparticle expansion of the v_3 harmonic, which is expected to be dominated by initial-state fluctuations. With precise measurements of the v_2 and v_3 multiparticle cumulants, it becomes possible to make direct comparison of calculations based on eccentricity fluctuations in the initial-state geometry to the higher-order moments of the fluctuation distributions. The measurements provide key input for models that explore the hydrodynamic expansion of the medium [41, 42], as well as for models that propose that final-state asymmetries in light systems arise from partons scattering off localized domains of color charge in the initial state [43]. In the hydrodynamic picture, the v_2 and v_3 values are dominated by fluctuations in pPb collisions. In PbPb collisions, the v_2 value is dominated by the lenticular shape of the overlap geometry, while the v_3 value is dominated by initial-state fluctuations of the nucleon locations [14].

In this Letter, the results from pPb collisions at $\sqrt{s_{NN}} = 8.16$ TeV are studied with a significant improvement in the precision of the v_2 results compared to the earlier measurements at $\sqrt{s_{NN}} = 5.02$ TeV. For the first time, the v_3 harmonic is determined by multiparticle correlations. The pPb results are also compared to those found for PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV where, for
noncentral collisions, the shape of the overlap region of the two nuclei during the collision is the
dominant cause of the large v_2 harmonic amplitude. The ratios between the four-particle and
two-particle v_n values provide information on the relative importance of the global geometry
and the fluctuation-driven asymmetries [43]. These ratios are explored for both the v_2 and v_3
harmonics and are compared between the pPb and PbPb systems.

The CMS detector comprises a number of subsystems [44]. The results in this paper are mainly
based on the silicon tracker information. The silicon tracker, located in the 3.8 T field of a su-
perconducting solenoid, consists of 1 440 silicon pixel and 15 148 silicon strip detector mod-
ules. The silicon tracker measures charged particles within the laboratory pseudorapidity
range $|\eta| < 2.5$, and provides an impact parameter resolution of $\approx 15 \mu\text{m}$ and a transverse
momentum (p_T) resolution better than 1.5% up to 100 GeV/c. The electromagnetic (ECAL) and
hadron (HCAL) calorimeters are also located inside the solenoid and cover the pseudorapidity
range $|\eta| < 3.0$. The HCAL barrel and endcaps are sampling calorimeters composed of
brass and scintillator plates. The ECAL consists of lead tungstate crystals arranged in a quasi-
projective geometry. Iron and quartz-fiber Čerenkov hadron forward (HF) calorimeters cover
the range $3.0 < |\eta| < 5.2$ on either side of the interaction region. These HF calorimeters are
azimuthally subdivided into 20° modular wedges and further segmented to form 0.175×0.175
rad ($\Delta \eta \times \Delta \phi$) cells. The ECAL and HCAL cells are grouped to form “towers.” The detailed
Monte Carlo (MC) simulation of the CMS detector response is based on GEANT4 [45].

The analysis is performed using data recorded by CMS during the LHC pPb run in 2016 and
corresponds to an integrated luminosity of 186 nb$^{-1}$ [46]. The beam energies were 6.5 TeV for
protons and 2.56 TeV per nucleon for lead nuclei, resulting in $\sqrt{s_{\text{NN}}} = 8.16$ TeV. The beam di-
rections were reversed during the run allowing a check of potential detector related systematic
uncertainties. No significant differences were detected and the merged results are reported.

The nucleon-nucleon center-of-mass in the pPb collisions is not at rest with respect to the labo-
ratory frame because of the energy difference between the colliding particles. Massless particles
emitted at $\eta_{\text{cm}} = 0$ in the nucleon-nucleon center-of-mass frame will be detected at $\eta = -0.465$
(clockwise proton beam) or 0.465 (counterclockwise proton beam) in the laboratory frame. A
sample of $\sqrt{s_{\text{NN}}} = 5.02$ TeV PbPb data collected during the 2015 LHC heavy ion run, corre-
spanding to an integrated luminosity of 1.2 μb$^{-1}$, is also analyzed for comparison purposes.

The triggers and event selection, as well as track reconstruction and selection, are identical to
those used in Ref. [47] and are summarized below.

Minimum bias (MB) pPb events were triggered by requiring that at least one track with $p_T >$
0.4 GeV/c detected in the pixel tracker during a pPb bunch crossing, and at least one tower in
one of the two HF detecting an energy above a threshold of 1 GeV. In order to select high-
multiplicity pPb collisions, a dedicated high-multiplicity trigger was implemented using the
CMS level-1 (L1) and high-level trigger (HLT) systems [48]. At L1, the total number of ECAL
and HCAL towers with the transverse energies above a threshold of 0.5 GeV is required to
exceed 120 and 150 in ECAL and HCAL, respectively. The L1 trigger seeds the subsequent
HLT. Track reconstruction is performed online as part of the HLT trigger with the identical
reconstruction algorithm used offline [49]. For each event, the vertex reconstructed with the
highest number of pixel detector tracks was selected. The number (multiplicity) of pixel tracks
($N_{\text{trk}}^{\text{online}}$) with $|\eta| < 2.4$, $p_T > 0.4$ GeV/c, and a distance of closest approach to this vertex of
0.4 cm or less, was determined for each event. Several multiplicity ranges were defined with
prescale factors that were reduced with increasing particle multiplicity until, for the highest-
multiplicity events, no prescale was applied.

In the offline analysis, hadronic collisions are selected by requiring a coincidence of at least one
HF calorimeter tower containing more than 3 GeV of total energy in each of the HF detectors within $3.0 < |\eta| < 5.2$. Events are also required to contain at least one reconstructed primary vertex within 15 cm from the nominal interaction point along the beam axis and within 0.15 cm transverse to the beam trajectory. At least two reconstructed tracks are required to be associated with the primary vertex. Beam-related background is suppressed by rejecting events for which less than 25% of all reconstructed tracks pass the track selection criteria.

Tracks are used that pass the high-purity selection criteria described in Ref. [49]. In addition, a reconstructed track is only considered as a candidate track from the primary vertex if the separation along the beam axis (z) between the track and the best vertex, and the track-vertex impact parameter measured transverse to the beam are each less than three times their respective uncertainties. The relative uncertainty in the p_T measurement is required to be less than 10%. To restrict the analysis to a kinematic region of high tracking efficiency and a low rate of incorrectly reconstructed tracks, only tracks with $|\eta| < 2.4$ and $0.3 < p_T < 3.0$ GeV/c are used.

The entire pPb data set is divided into classes of reconstructed track multiplicity, $N_{\text{offline trk}}$, where primary tracks passing the high-purity criteria and with $|\eta| < 2.4$ and $p_T > 0.4$ GeV/c are counted. The HLT p_T cutoff is higher than that used for the analysis because of online processing time constraints. The multiplicity classification in this analysis is identical to that used in Ref. [38], where more details are provided, including a table relating $N_{\text{offline trk}}$ to the fraction of MB triggered events. The PbPb sample is reprocessed using the same event selection and track reconstruction as for the present pPb analysis. A description of the analysis of 2015 PbPb data can be found in Ref. [47].

The analysis is done using the Q-cumulant method [39]. Here it is possible to determine the n^{th} harmonic moment based on correlations among all possible grouping of m particles, where m also corresponds to the cumulant order. The multiparticle correlations for cumulant orders 2 through 8 can be expressed as:

$$\langle \langle 2 \rangle \rangle \equiv \left\langle e^{in(\phi_1 - \phi_2)} \right\rangle,$$

$$\langle \langle 4 \rangle \rangle \equiv \left\langle e^{in(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \right\rangle,$$

$$\langle \langle 6 \rangle \rangle \equiv \left\langle e^{in(\phi_1 + \phi_2 + \phi_3 - \phi_4 - \phi_5 - \phi_6)} \right\rangle,$$

$$\langle \langle 8 \rangle \rangle \equiv \left\langle e^{in(\phi_1 + \phi_2 + \phi_3 + \phi_4 - \phi_5 - \phi_6 - \phi_7 - \phi_8)} \right\rangle,$$

where ϕ_i ($i = 1, \ldots, m$) are the azimuthal angles of one unique combination of m particles in an event, n is the harmonic number (2 for elliptic and 3 for triangular flow, respectively), and $\langle \langle \cdots \rangle \rangle$ represents the average over all combinations from all events within a given N_{trk} range. The higher-order cumulants, $c_n \{ m \}$, are calculated as [39]

$$c_n \{ 4 \} = \langle \langle 4 \rangle \rangle - 2\langle \langle 2 \rangle \rangle^2,$$

$$c_n \{ 6 \} = \langle \langle 6 \rangle \rangle - 9\langle \langle 4 \rangle \rangle\langle \langle 2 \rangle \rangle + 12\langle \langle 2 \rangle \rangle^3,$$

$$c_n \{ 8 \} = \langle \langle 8 \rangle \rangle - 16\langle \langle 6 \rangle \rangle\langle \langle 2 \rangle \rangle - 18\langle \langle 4 \rangle \rangle^2$$

$$+ 144\langle \langle 4 \rangle \rangle\langle \langle 2 \rangle \rangle^2 - 144\langle \langle 2 \rangle \rangle^4.$$

The Fourier harmonics $v_n \{ m \}$ that characterize the global azimuthal behavior can be related to
the m-particle correlations using a generic framework discussed in Ref. [50], with

\[v_n\{4\} = \sqrt{2^4 c_n\{4\}}, \quad v_n\{6\} = \sqrt{1^6 c_n\{6\}}, \]

\[v_n\{8\} = \sqrt{\frac{1}{33} c_n\{8\}}. \]

Each reconstructed track is weighted by a correction factor to account for the reconstruction efficiency, the detector acceptance, and the fraction of misreconstructed tracks. This factor is based on HIJING 1.383 MC simulations, and is determined as a function of p_T, η, and ϕ, as described in Refs. [51]. The same method has been used in previous CMS analyses [36, 38, 52]. The two-particle correlation $v_n\{2\}$ can be measured as described in Ref. [47]. Increasing the numbers of particles used to determine the correlations for a given harmonic reduces the sensitivity of the results to few-particle correlations that are not related to a global behavior. The ratios between v_n harmonics involving different number of particles can be used to test the system independence of fluctuation-driven initial-state anisotropies in the hydrodynamic picture. In particular, the triangular flow ratio $v_3\{4\}/v_3\{2\}$, which is dominated by fluctuations, can be used to confirm this expectation.

A number of potential sources of systematic uncertainties affecting the experimental $v_n\{m\}$ values are considered. The sensitivity of the results to the selection criteria for valid tracks was studied by varying the criteria. The sensitivity to the primary vertex position was explored by performing the analysis for different vertex ranges. The potential for an HLT trigger bias was investigated by changing the trigger thresholds. Pileup effects, where two or more interactions occur in the same bunch crossing, were studied by comparing results obtained during different beam differential luminosity periods. For the pPb results, the beam directions were reversed, allowing for potential detector acceptance effects to be explored. No evident ΔN_{off} dependent systematic effects are observed. The total systematic uncertainties, obtained by combining the individual uncertainties in quadrature, are found to be 1–2.4% for the v_2 coefficients for both pPb and PbPb collisions and 5 (2.6)% for the pPb (PbPb) v_3 results. The pPb (PbPb) $v_2\{8\}/v_2\{4\}$ and $v_2\{8\}/v_2\{6\}$ ratios systematic uncertainties are found to be 2.6 (1.4)% and 3.6 (1.4)% respectively.

The second- and third-order harmonic multiparticle cumulant results v_2 and v_3 for charged particles with $0.3 < p_T < 3.0 \text{GeV/c}$ and $|\eta| < 2.4$ are shown in Fig. 1 for pPb collisions at $\sqrt{s_{\text{NN}}} = 8.16 \text{TeV}$ and for PbPb collisions at $\sqrt{s_{\text{NN}}} = 5.02 \text{TeV}$. The two-particle correlation results $v_2^{\text{sub}}\{2\}(|\Delta \eta| > 2)$ and $v_3^{\text{sub}}\{2\}(|\Delta \eta| > 2)$, with low-multiplicity subtraction to remove jet correlations, are described in details in Ref. [47]. The multiparticle elliptic flow harmonics $v_2\{4\}$, $v_2\{6\}$, and $v_2\{8\}$ are found to be real and of similar magnitude. The four-particle triangular flow harmonic, $v_3\{4\}$, is also found to be real. These results indicate collective behavior in high multiplicity pPb collisions at $\sqrt{s_{\text{NN}}} = 8.16 \text{TeV}$ [41, 42]. Comparing the different systems, the v_2 values for PbPb collisions are higher than those for pPb collisions, which is consistent with the lenticular-shaped overlap geometry dominating this harmonic for PbPb collisions. The two-particle correlation v_2 and v_3 results are systematically higher than the multiparticle results for both pPb and PbPb collisions. This is expected if there is a significant fluctuation component, which is expected to increase the two-particle correlation results and decrease the multiparticle correlation results, as compared to case where fluctuations are absent [43]. With increasing N_{off}, the $v_2\{4\}$, $v_2\{6\}$, and $v_2\{8\}$ values all rise in PbPb collisions, while they fall slightly in pPb collisions. This might suggest that the fluctuation-driven component of the eccentricity is decreasing with increasing multiplicity, with an increasing influence of the lenticular overlap geometry in the PbPb system. The v_3 values are comparable for both
systems, as expected if this higher-order harmonic is dominated by fluctuation behavior. A (3+1)D event-by-event viscous hydrodynamic calculation of the four-particle cumulant $v_3\{4\}$ for pPb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV [53] is also shown in Fig. 1 as a gray band. This calculation, with an entropy distribution taken as a two-dimensional Gaussian of width $\sigma = 0.4$ fm and having a shear viscosity-to-entropy ratio of $\eta/s = 0.08$, is found to be consistent with the data.

Figure 1: The multiparticle $v_2\{4, 6, 8\}$ and $v_3\{4\}$ harmonics are shown for pPb 8.16 TeV (left) and PbPb 5.02 TeV (right) as a function of N_{offline}. Two-particle results $v_2^{\text{sub}}\{2\}(\lvert \Delta \eta \rvert > 2)$ and $v_3^{\text{sub}}\{2\}(\lvert \Delta \eta \rvert > 2)$ are from Ref. [47]. Error bars and shaded boxes denote statistical and systematic uncertainties, respectively. The shaded area shows the hydrodynamic prediction of $v_3\{4\}$ in pPb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV [53].

Figure 2 shows the ratios $v_2\{4\}/v_2\{2\}$ and $v_3\{4\}/v_3\{2\}$ for both the pPb and PbPb systems. For pPb collisions, the ratios for v_2 and v_3 are similar within uncertainties, which is consistent with having both the second- and third-order harmonics arising from the same initial-state fluctuation mechanism. Comparing the pPb and PbPb systems, the v_3 ratios are comparable for both systems, while the v_2 ratios are higher in PbPb than in pPb for higher N_{trk} values, again reflecting the larger geometric contribution for the heavier system collisions. The v_2 ratio for PbPb collisions saturates at large multiplicity while, for pPb collisions, the ratio continues to decrease as the multiplicity increases.

Initial-state eccentricities can also be characterized by the cumulants of the event-by-event distributions of their Fourier harmonics coefficients, $\varepsilon_n\{m\}$. In the hydrodynamic picture, the $v_n\{m\}$ values are proportional to $\varepsilon_n\{m\}$, with $v_n\{m\} = k_n \varepsilon_n\{m\}$, where k_n reflects the medium properties and does not depend on the order of the cumulant. Therefore, ratios of different cumulant v_n values can directly probe properties of initial-state eccentricity. This is shown in Fig. 2 based on Glauber model initial condition simulated using the TRENTo framework [54], and assuming a width $\sigma = 0.3$ fm of the source associated with each nucleon [42]. The calculations were done for pPb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV by varying the geometric overlap of the colliding nuclei. It should be noted that the two-particle correlation results were obtained with a large pseudorapidity gap of $\lvert \Delta \eta \rvert > 2$. This gap can lead to a reduction in the observed correlations [55] and can cause the reported $v_2^{\text{sub}}\{2\}(\lvert \Delta \eta \rvert > 2)$ values being reduced by 10%; hence the ratio is increased by 10%.
In summary, the azimuthal anisotropy for pPb collisions at $\sqrt{s_{NN}} = 8.16 \text{ TeV}$ and PbPb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ are studied as functions of the final-state particle multiplicities with the CMS experiment. The v_2 Fourier coefficient is determined using cumulants obtained with four-, six-, and eight-particle correlations with greatly increased precision compared to previous measurements. The higher-order $v_3\{4\}$ coefficient is reported for the first time for a small system. For pPb collisions, the ratios $v_2\{4\}/v_2\{2\}$ and $v_3\{4\}/v_3\{2\}$ are comparable, consistent with a purely fluctuation-driven origin for the azimuthal asymmetry. Both the pPb and PbPb systems have very similar v_3 coefficients for the cumulant orders studied, indicating a similar, fluctuation-driven initial-state geometry. In contrast, both the magnitude of the v_2 coefficients and the $v_2\{4\}/v_2\{2\}$ ratio is larger for PbPb collisions, as expected if the overall collision geometry dominates. The v_2 cumulant ratios for pPb collisions are consistent with a collective flow behavior that originates from and is proportional to the initial-state anisotropy.

Figure 2: The ratios of four- and two-particle harmonics ($v_2\{4\}/v_2\{2\}$ and $v_3\{4\}/v_3\{2\}$) are shown for pPb at $\sqrt{s_{NN}} = 8.16 \text{ TeV}$ (left) and PbPb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ (right) as a function of N_{off}. Error bars and shaded boxes denote statistical and systematic uncertainties, respectively. The dashed curves show a hydrodynamics-motivated initial-state fluctuation calculation of eccentricities $\varepsilon_{\eta}\{m\}$ for pPb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ [42].
Figure 3: Cumulant ratios $v_2\{6\} / v_2\{4\}$ (upper) and $v_2\{8\} / v_2\{6\}$ (lower) as a function of $v_2\{4\} / v_2^{\text{sub}}\{2\}$ in pPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV and 8.16 TeV. Error bars and shaded areas denote statistical and systematic uncertainties, respectively. The solid curves show the expected behavior based on a hydrodynamics-motivated study of the role of initial-state fluctuations [40].

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria);
References

[1] PHOBOS Collaboration, “System size dependence of cluster properties from two-particle angular correlations in Cu+Cu and Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV”, Phys. Rev. C 81 (2010) 024904, doi:10.1103/PhysRevC.81.024904, arXiv:0812.1172.

[2] STAR Collaboration, “Distributions of charged hadrons associated with high transverse momentum particles in pp and Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV”, Phys. Rev. Lett. 95 (2005) 152301, doi:10.1103/PhysRevLett.95.152301, arXiv:nucl-ex/0501016.

[3] STAR Collaboration, “Long range rapidity correlations and jet production in high energy nuclear collisions”, Phys. Rev. C 80 (2009) 064912, doi:10.1103/PhysRevC.80.064912, arXiv:0909.0191.

[4] PHOBOS Collaboration, “High transverse momentum triggered correlations over a large pseudorapidity acceptance in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV”, Phys. Rev. Lett. 104 (2010) 062301, doi:10.1103/PhysRevLett.104.062301, arXiv:0903.2811.

[5] CMS Collaboration, “Long-range and short-range dihadron angular correlations in central PbPb collisions at a nucleon-nucleon center of mass energy of 2.76 TeV”, JHEP 07 (2011) 076, doi:10.1007/JHEP07(2011)076, arXiv:1105.2438.

[6] CMS Collaboration, “Centrality dependence of dihadron correlations and azimuthal anisotropy harmonics in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, Eur. Phys. J. C 72 (2012) 2012, doi:10.1140/epjc/s10052-012-2012-3, arXiv:1201.3158.

[7] ALICE Collaboration, “Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV”, Phys. Rev. Lett. 105 (2010) 252302, doi:10.1103/PhysRevLett.105.252302, arXiv:1011.3914.

[8] ATLAS Collaboration, “Measurement of the azimuthal anisotropy for charged particle production in $\sqrt{s_{NN}} = 2.76$ TeV lead-lead collisions with the ATLAS detector”, Phys. Rev. C 86 (2012) 014907, doi:10.1103/PhysRevC.86.014907, arXiv:1203.3087.

[9] CMS Collaboration, “Measurement of the elliptic anisotropy of charged particles produced in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, Phys. Rev. C 87 (2013) 014902, doi:10.1103/PhysRevC.87.014902, arXiv:1204.1409.
[10] W. Busza, K. Rajagopal, and W. van der Schee, “Heavy ion collisions: the big picture, and the big questions”, *Ann. Rev. Nucl. Part. Sci.* **68** (2018) 339, doi:10.1146/annurev-nucl-101917-020852, arXiv:1802.04801.

[11] B. H. Alver, C. Gombeaud, M. Luzum, and J.-Y. Ollitrault, “Triangular flow in hydrodynamics and transport theory”, *Phys. Rev. C* **82** (2010) 034913, doi:10.1103/PhysRevC.82.034913, arXiv:1007.5469.

[12] B. Schenke, S. Jeon, and C. Gale, “Elliptic and triangular flow in event-by-event (3+1)D viscous hydrodynamics”, *Phys. Rev. Lett.* **106** (2011) 042301, doi:10.1103/PhysRevLett.106.042301, arXiv:1009.3244.

[13] Z. Qiu, C. Shen, and U. Heinz, “Hydrodynamic elliptic and triangular flow in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ ATeV”, *Phys. Lett. B* **707** (2012) 151, doi:10.1016/j.physletb.2011.12.041, arXiv:1110.3033.

[14] B. Alver and G. Roland, “Collision geometry fluctuations and triangular flow in heavy-ion collisions”, *Phys. Rev. C* **81** (2010) 054905, doi:10.1103/PhysRevC.81.054905, arXiv:1003.0194 [Erratum: doi:10.1103/PhysRevC.82.039903].

[15] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg, “Glauber modeling in high energy nuclear collisions”, *Ann. Rev. Nucl. Part. Sci.* **57** (2007) 205, doi:10.1146/annurev.nucl.57.090506.123020, arXiv:nucl-ex/0701025.

[16] CMS Collaboration, “Observation of long-range near-side angular correlations in proton-proton collisions at the LHC”, *JHEP* **09** (2010) 091, doi:10.1007/JHEP09(2010)091, arXiv:1009.4122.

[17] ATLAS Collaboration, “Observation of long-range elliptic azimuthal anisotropies in $\sqrt{s} = 13$ and 2.76 TeV pp collisions with the ATLAS detector”, *Phys. Rev. Lett.* **116** (2016) 172301, doi:10.1103/PhysRevLett.116.172301, arXiv:1509.04776.

[18] CMS Collaboration, “Measurement of long-range near-side two-particle angular correlations in pp collisions at $\sqrt{s} = 13$ TeV”, *Phys. Rev. Lett.* **116** (2016) 172302, doi:10.1103/PhysRevLett.116.172302, arXiv:1510.03068.

[19] CMS Collaboration, “Observation of long-range near-side angular correlations in proton-lead collisions at the LHC”, *Phys. Lett. B* **718** (2013) 795, doi:10.1016/j.physletb.2012.11.025, arXiv:1210.5482.

[20] ALICE Collaboration, “Long-range angular correlations on the near and away side in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV”, *Phys. Lett. B* **719** (2013) 29, doi:10.1016/j.physletb.2013.01.012, arXiv:1212.2001.

[21] ATLAS Collaboration, “Observation of associated near-side and away-side long-range correlations in $\sqrt{s_{NN}} = 5.02$ TeV proton-lead collisions with the ATLAS detector”, *Phys. Rev. Lett.* **110** (2013) 182302, doi:10.1103/PhysRevLett.110.182302, arXiv:1212.5198.

[22] LHCb Collaboration, “Measurements of long-range near-side angular correlations in $\sqrt{s_{NN}} = 5$ TeV proton-lead collisions in the forward region”, *Phys. Lett. B* **762** (2016) 473, doi:10.1016/j.physletb.2016.09.064, arXiv:1512.00439.
[23] PHENIX Collaboration, “Measurements of multiparticle correlations in $d+Au$ collisions at 200, 62.4, 39, and 19.6 GeV and $p+Au$ collisions at 200 GeV and implications for collective behavior”, *Phys. Rev. Lett.* **120** (2018) 062302, doi:10.1103/PhysRevLett.120.062302, arXiv:1707.06108

[24] PHENIX Collaboration, “Measurement of long-range angular correlations and azimuthal anisotropies in high-multiplicity $p+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV”, *Phys. Rev. C* **95** (2017) 034910, doi:10.1103/PhysRevC.95.034910, arXiv:1609.02894

[25] PHENIX Collaboration, “Measurements of elliptic and triangular flow in high-multiplicity $^{3}\text{He}+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV”, *Phys. Rev. Lett.* **115** (2015) 142301, doi:10.1103/PhysRevLett.115.142301, arXiv:1507.06273

[26] PHENIX Collaboration, “Creation of quark-gluon plasma droplets with three distinct geometries”, *Nature Phys.* **15** (2019) 214, doi:10.1038/s41567-018-0360-0, arXiv:1805.02973

[27] J. L. Nagle and W. A. Zajc, “Small system collectivity in relativistic hadronic and nuclear collisions”, *Ann. Rev. Nucl. Part. Sci.* **68** (2018) 211, doi:10.1146/annurev-nucl-101916-123209, arXiv:1801.03477

[28] B. Schenke and R. Venugopalan, “Eccentric protons? Sensitivity of flow to system size and shape in $p+p$, $p+Pb$ and $Pb+Pb$ collisions”, *Phys. Rev. Lett.* **113** (2014) 102301, doi:10.1103/PhysRevLett.113.102301, arXiv:1405.3605

[29] P. Bozek, “Collective flow in $p-Pb$ and $d-Pd$ collisions at TeV energies”, *Phys. Rev. C* **85** (2012) 014911, doi:10.1103/PhysRevC.85.014911, arXiv:1112.0915

[30] P. Bozek and W. Broniowski, “Correlations from hydrodynamic flow in $p-Pb$ collisions”, *Phys. Lett. B* **718** (2013) 1557, doi:10.1016/j.physletb.2012.12.051, arXiv:1211.0845

[31] K. Dusling and R. Venugopalan, “Explanation of systematics of CMS $p+Pb$ high multiplicity di-hadron data at $\sqrt{s_{NN}} = 5.02$ TeV”, *Phys. Rev. D* **87** (2013) 054014, doi:10.1103/PhysRevD.87.054014, arXiv:1211.3701

[32] K. Dusling, M. Mace, and R. Venugopalan, “Multiparticle collectivity from initial state correlations in high energy proton-nucleus collisions”, *Phys. Rev. Lett.* **120** (2018) 042002, doi:10.1103/PhysRevLett.120.042002, arXiv:1705.00745

[33] K. Dusling, M. Mace, and R. Venugopalan, “Parton model description of multiparticle azimuthal correlations in pA collisions”, *Phys. Rev. D* **97** (2018) 016014, doi:10.1103/PhysRevD.97.016014, arXiv:1706.06260

[34] N. Borghini, P. M. Dinh, and J.-Y. Ollitrault, “A new method for measuring azimuthal distributions in nucleus-nucleus collisions”, *Phys. Rev. C* **63** (2001) 054906, doi:10.1103/PhysRevC.63.054906, arXiv:nucl-th/0007063

[35] CMS Collaboration, “Evidence for collectivity in pp collisions at the LHC”, *Phys. Lett. B* **765** (2017) 193, doi:10.1016/j.physletb.2016.12.009, arXiv:1606.06198

[36] CMS Collaboration, “Evidence for collective multiparticle correlations in $p-Pb$ collisions”, *Phys. Rev. Lett.* **115** (2015) 012301, doi:10.1103/PhysRevLett.115.012301, arXiv:1502.05382
[37] CMS Collaboration, “Measurement of higher-order harmonic azimuthal anisotropy in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV”, Phys. Rev. C 89 (2014) 044906, doi:10.1103/PhysRevC.89.044906, arXiv:1310.8651

[38] CMS Collaboration, “Multiplicity and transverse momentum dependence of two- and four-particle correlations in pPb and PbPb collisions”, Phys. Lett. B 724 (2013) 213, doi:10.1016/j.physletb.2013.06.028, arXiv:1305.0609

[39] A. Bilandzic, R. Snellings, and S. Voloshin, “Flow analysis with cumulants: Direct calculations”, Phys. Rev. C 83 (2011) 044913, doi:10.1103/PhysRevC.83.044913, arXiv:1010.0233

[40] L. Yan and J.-Y. Ollitrault, “Universal fluctuation-driven eccentricities in proton-proton, proton-nucleus and nucleus-nucleus collisions”, Phys. Rev. Lett. 112 (2014) 082301, doi:10.1103/PhysRevLett.112.082301, arXiv:1312.6555

[41] U. Heinz and R. Snellings, “Collective flow and viscosity in relativistic heavy-ion collisions”, Ann. Rev. Nucl. Part. Sci. 63 (2013) 123, doi:10.1146/annurev-nucl-102212-170540, arXiv:1301.2826

[42] G. Giacalone, J. Noronha-Hostler, and J.-Y. Ollitrault, “Relative flow fluctuations as a probe of initial state fluctuations”, Phys. Rev. C 95 (2017) 054910, doi:10.1103/PhysRevC.95.054910, arXiv:1702.01730

[43] J.-Y. Ollitrault, A. M. Poskanzer, and S. A. Voloshin, “Effect of flow fluctuations and nonflow on elliptic flow methods”, Phys. Rev. C 80 (2009) 014904, doi:10.1103/PhysRevC.80.014904, arXiv:0904.2315

[44] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004

[45] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8

[46] CMS Collaboration, “CMS luminosity measurement using 2016 proton-nucleus collisions at nucleon-nucleon center-of-mass energy of 8.16 TeV”, CMS Physics Analysis Summary CMS-PAS-LUM-17-002, 2018.

[47] CMS Collaboration, “Observation of correlated azimuthal anisotropy fourier harmonics in pp and p+Pb collisions at the LHC”, Phys. Rev. Lett. 120 (2018) 092301, doi:10.1103/PhysRevLett.120.092301, arXiv:1709.09189

[48] CMS Collaboration, “The CMS trigger system”, JINST 12 (2017) 01020, doi:10.1088/1748-0221/12/01/P01020, arXiv:1609.02366

[49] CMS Collaboration, “Description and performance of track and primary-vertex reconstruction with the CMS tracker”, JINST 9 (2014) P10009, doi:10.1088/1748-0221/9/10/P10009, arXiv:1405.6569

[50] A. Bilandzic et al., “Generic framework for anisotropic flow analyses with multi-particle azimuthal correlations”, Phys. Rev. C 89 (2014) 064904, doi:10.1103/PhysRevC.89.064904, arXiv:1312.3572
[51] M. Gyulassy and X.-N. Wang, “HIJING 1.0: A Monte Carlo program for parton and particle production in high-energy hadronic and nuclear collisions”, *Comput. Phys. Commun.* **83** (1994) 307, doi:10.1016/0010-4655(94)90057-4, arXiv:nucl-th/9502021.

[52] CMS Collaboration, “Pseudorapidity and transverse momentum dependence of flow harmonics in pPb and PbPb collisions”, *Phys. Rev. C* **98** (2018) 044902, doi:10.1103/PhysRevC.98.044902, arXiv:1710.07864.

[53] I. Kozlov et al., “Transverse momentum structure of pair correlations as a signature of collective behavior in small collision systems”, (2014). arXiv:1405.3976

[54] J. E. Bernhard et al., “Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium”, *Phys. Rev. C* **94** (2016) 024907, doi:10.1103/PhysRevC.94.024907, arXiv:1605.03954.

[55] CMS Collaboration, “Evidence for transverse momentum and pseudorapidity dependent event plane fluctuations in PbPb and pPb collisions”, *Phys. Rev. C* **92** (2015) 034911, doi:10.1103/PhysRevC.92.034911, arXiv:1503.01692.
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
A.M. Sirunyan, A. Tumasyan

Institut fr Hochenergiephysik, Wien, Austria
W. Adam, F. Ambrogi, E. Asilar, T. Bergauer, J. Brandstetter, M. Dragicevic, J. Er, A. Escalante Del Valle, M. Flechl, R. Frhwirth1, V.M. Ghete, J. Hrubec, M. Jeitler1, N. Krammer, I. Krtschmer, D. Liko, T. Madlener, I. Mikulec, N. Rad, H. Rohringer, J. Schieck1, R. Schieck, M. Spanring, D. Spitzbart, W. Waltenberger, J. Wittmann, C.-E. Wulz1, M. Zarucki

Institute for Nuclear Problems, Minsk, Belarus
V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
E.A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, A. Lelek, M. Pieters, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel

Vrije Universiteit Brussel, Brussel, Belgium
S. Abu Zeid, F. Blekman, J. D’Hondt, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs

Universit Libre de Bruxelles, Bruxelles, Belgium
D. Beghin, B. Bilin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, G. Fasanella, L. Favart, A. Grebenyuk, A.K. Kalsi, T. Lenzi, J. Luetic, N. Postiau, E. Starling, L. Thomas, C. Vander Velde, P. Vanlaer, D. Vannerom, Q. Wang

Ghent University, Ghent, Belgium
T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov2, D. Poyraz, C. Roskas, D. Trocino, M. Tytgat, W. Verbeke, B. Vermassen, M. Vit, N. Zaganidis

Universit Catholique de Louvain, Louvain-la-Neuve, Belgium
H. Bakhshiansohi, O. Bondu, G. Bruno, C. Caputo, P. David, C. Delaere, M. Delcourt, A. Giammanco, G. Krintiras, V. Lemaitre, A. Magitteri, K. Piotrzkowski, A. Saggio, M. Vidal Marono, P. Vischia, J. Zobec

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
F.L. Alves, G.A. Alves, G. Correia Silva, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato3, E. Coelho, E.M. Da Costa, G.G. Da Silveira4, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, D. Matos Figueiredo, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, W.L. Prado Da Silva, L.J. Sanchez Rosas, A. Santoro, A. Szajder, M. Thiel, E.J. Tonelli Manganote5, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade Estadual Paulista a, Universidade Federal do ABC b, So Paulo, Brazil
S. Ahuja a, C.A. Bernardes a, L. Calligaris a, T.R. Fernandez Perez Tomei a, E.M. Gregores b, P.G. Mercadante b, S.F. Novaes a, SandraS. Padula a

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, A. Marinov, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov
University of Sofia, Sofia, Bulgaria
A. Dimitrov, L. Litov, B. Pavlov, P. Petkov

Beihang University, Beijing, China
W. Fang⁵, X. Gao⁵, L. Yuan

Institute of High Energy Physics, Beijing, China
M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, S.M. Shaheen⁶, A. Spiezia, J. Tao, E. Yazgan, H. Zhang, S. Zhang⁶, J. Zhao

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
Y. Ban, G. Chen, A. Levin, J. Li, L. Li, Q. Li, Y. Mao, S.J. Qian, D. Wang

Tsinghua University, Beijing, China
Y. Wang

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, C.A. Carrillo Montoya, L.F. Chaparro Sierra, C. Florez, C.F. Gonzalez Hernandez, M.A. Segura Delgado

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
B. Courbon, N. Godinovic, D. Lesic, I. Puljak, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, M. Roguljic, A. Starodumov⁷, T. Susa

University of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, M. Kolosova, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski

Charles University, Prague, Czech Republic
M. Finger⁸, M. Finger Jr.⁸

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
A. Ellithi Kamel⁹, M.A. Mahmoud¹⁰,¹¹, E. Salama¹¹,¹²

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ehataht, M. Kadastik, M. Raidal, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, H. Kirchenschmidt, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Havukainen, J.K. Heikkil, T. Jrinten, V. Karimki, R. Kinnunen, T. Lampn, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindn, P. Luukka, T. Menp, H. Siikonen, E. Tuominen, J. Tuominiemi
E. Gallo19, A. Geiser, J.M. Grados Luyando, A. Grohsjean, M. Guthoff, M. Haranko, A. Harb, H. Jung, M. Kasemann, J. Keaveney, C. Kleinwort, J. Knolle, D. Krcker, W. Lange, T. Lenz, J. Leonard, K. Lipka, W. Lohmann20, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, M. Meyer, M. Missiroli, G. Mittag, C. Schwanenberger, R. Shevchenko, A. Singh, H. Tholen, O. Turkot, A. Vagnerini, M. Van De Klundert, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissing, O. Zenaiev

University of Hamburg, Hamburg, Germany
R. Aggleton, S. Bein, L. Benato, A. Benecke, T. Dreyer, A. Ebrahimi, E. Garutti, D. Gonzalez, P. Gunnellini, J. Haller, A. Hinzmann, A. Karavdina, G. Kasieczka, R. Klanner, R. Kogler, N. Kovatchuk, S. Kurz, V. Kutzner, J. Lange, D. Marconi, J. Multhaup, M. Niedziela, C.E.N. Niemeyer, D. Nowatschin, A. Perieanu, A. Reimers, O. Rieger, C. Scharf, P. Schleper, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbrück, F.M. Stoiber, M. Stver, B. Vormwald, I. Zoi

Karlsruher Institut fuer Technologie, Karlsruhe, Germany
M. Akbiyik, C. Barth, M. Baselga, S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, K. El Morabit, N. Faltermann, B. Freund, M. Giffels, M.A. Harrendorf, F. Hartmann17, S.M. Heindl, U. Husemann, I. Katkov15, S. Kudella, S. Mitra, M.U. Mozer, Th. Miller, M. Musich, M. Plagge, G. Quast, K. Rabbertz, M. Schröder, I. Shvetsov, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, C. Wührmann, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, G. Paspalaki

National and Kapodistrian University of Athens, Athens, Greece
A. Agapitos, G. Karathanasis, P. Kontaxakis, A. Panagiotou, I. Papavergou, N. Saoulidou, K. Vellidis

National Technical University of Athens, Athens, Greece
K. Kousouris, I. Papakrivopoulos, G. Tsipologis

University of Ioannina, Ioannina, Greece
I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas, F.A. Triantis, D. Tsiotsonis

MTA-ELTE Lendlet CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary
M. Bartk21, M. Csanad, N. Filipovic, P. Major, M.I. Nagy, G. Pasztor, O. Surnyi, G.I. Veres

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, D. Horvath22, . Hunyadi, F. Sikler, T. Vmi, V. Veszpremi, G. Vesztergombi1

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi21, A. Makovec, J. Molnar, Z. Szillasi

Institute of Physics, University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari

Indian Institute of Science (IISc), Bangalore, India
S. Choudhury, J.R. Komaragiri, P.C. Tiwari
INFN Sezione di Torino a, Universit di Torino b, Torino, Italy, Universit del Piemonte Orientale c, Novara, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, N. Bartosika, R. Bellana,b, C. Biinoa, A. Cappatia,b, N. Cartigliaa, F. Cennaa,b, S. Comettia, M. Costaa,b, R. Covarellia,b, N. Demariaa, B. Kiania,b, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, E. Monteila,b, M. Montenoa, M.M. Obertinoa,b, L. Pachera,b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b, A. Romeroa,b, M. Ruspaa,b, R. Salvaticoa,b, K. Shchelinaa,b, V. Solaa, A. Solanoa,b, D. Soldia,b, A. Staianoa

INFN Sezione di Trieste a, Universit di Trieste b, Trieste, Italy
S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, A. Da Rolda,b, G. Della Riccaa,b, F. Vazzolera,b, A. Zanettia

Kyungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S.I. Pak, S. Sekmen, D.C. Son, Y.C. Yang

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
H. Kim, D.H. Moon, G. Oh

Hanyang University, Seoul, Korea
B. Francois, J. Goh33, T.J. Kim

Korea University, Seoul, Korea
S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, K. Lee, K.S. Lee, S. Lee, J. Lim, S.K. Park, Y. Roh

Sejong University, Seoul, Korea
H.S. Kim

Seoul National University, Seoul, Korea
J. Almond, J. Kim, J.S. Kim, H. Lee, K. Lee, K. Nam, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu

University of Seoul, Seoul, Korea
D. Jeon, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park

Sungkyunkwan University, Suwon, Korea
Y. Choi, C. Hwang, J. Lee, I. Yu

Riga Technical University, Riga, Latvia
V. Veckalns34

Vilnius University, Vilnius, Lithuania
V. Dudenais, A. Juodagalvis, J. Vaitkus

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
Z.A. Ibrahim, M.A.B. Md Ali35, F. Mohamad Idris36, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

Universidad de Sonora (UNISON), Hermosillo, Mexico
J.F. Benitez, A. Castaneda Hernandez, J.A. Murillo Quijada

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, M.C. Duran-Osun, I. Heredia-De La Cruz37,
R. Lopez-Fernandez, J. Mejia Guisao, R.I. Rabadan-Trejo, M. Ramirez-Garcia, G. Ramirez-Sanchez, R. Reyes-Almanza, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
J. Eysermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Universidad Autonoma de San Luis Potos, San Luis Potos, Mexico
A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
S. Bheesette, P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, M.I. Asghar, Q. Hassan, H.R. Hoorani, W.A. Khan, M.A. Shah, M. Shaibb, M. Wqas

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Grski, M. Kazana, M. Szleper, P. Traczyk, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Bunkowski, A. Byszuk, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak

Laboratorio de Instrumentao e Fsica Experimental de Partculas, Lisboa, Portugal
M. Araujo, P. Bargassa, C. Beiro Da Cruz E Silva, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro, J. Hollar, N. Leonardo, J. Seixas, G. Strong, O. Toldaiev, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavine, A. Lanev, A. Malakhov, V. Matveev, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, A. Shabanov, D. Tlosiv, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lyakhovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepenov, V. Stolin, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia
T. Aushev

National Research Nuclear University 'Moscow Engineering Physics Institute' (MEPhI), Moscow, Russia
M. Chadeeva, P. Parygin, E. Popova, V. Rusinov
P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, A. Ershov, A. Gribushin, A. Kaminskiy, O. Kodolova, V. Korotkich,
I. Lokhtin, S. Obraztsov, V. Petrushanko, V. Savrin, A. Snigirev, I. Vardanyan

Novosibirsk State University (NSU), Novosibirsk, Russia
A. Barnyakov, V. Blinov, T. Dimova, L. Kardapoltsev, Y. Skovpen

Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’,
Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, P. Mandrik,
V. Petrov, V. Ryutin, S. Slabospitskii, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

National Research Tomsk Polytechnic University, Tomsk, Russia
A. Babaev, S. Baidali, V. Okhotnikov

University of Belgrade: Faculty of Physics and VINCA Institute of Nuclear Sciences
P. Adzic, P. Cirkovic, D. Devetak, M. Dordevic, P. Milenovic, J. Milosevic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
J. Alcaraz Maestre, A. Ivarez Fernandez, I. Bachiller, M. Barrio Luna, J.A. Brochero Cifuentes,
M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, C. Fernandez Bedoya,
J.P. Fernandez Ramos, J. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez,
M.I. Josa, D. Moran, A. Prez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero,
S. Sanchez Navas, M.S. Soares, A. Triossi

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocmiz

Universidad de Oviedo, Oviedo, Spain
J. Cuevas, C. Erice, J. Fernandez Menendez, S. Flogueras, I. Gonzalez Caballero, J.R. Gonzalez Fernandez,
E. Palencia Cortezon, V. Rodriguez Bouza, S. Sanchez Cruz, J.M. Vizan Garcia

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
I.J. Cabrillo, A. Calderon, B. Chazin Quero, J. Duarte Campderros, M. Fernandez,
P.J. Fernandez Manteca, A. Garca Alonso, J. Garcia-Ferrero, G. Gomez, A. Lopez Virto, J. Marco,
C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, C. Priels,
T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte

University of Ruhuna, Department of Physics, Matara, Sri Lanka
N. Wickramage

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, B. Akgun, E. Auffray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, J. Bendavid,
M. Bianco, A. Bocci, C. Botta, E. Brondolin, T. Camporesi, M. Cepeda, G. Cerminara, E. Chapon,
Y. Chen, G. Cucciati, D. d’Enterria, A. Dabrowski, N. Daci, V. Daponte, A. David, A. De Roeck,
N. Deelen, M. Dobson, M. Dnser, N. Dupont, A. Elliott-Peisert, F. Fallavollita,
D. Fasanella, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, A. Gilbert, K. Gill, F. Glege, M. Gruchala, M. Guibaud,
D. Gulhan, J. Hegeman, C. Heidegger, V. Innocente, G.M. Innocenti, A. Jafari, P. Janot,
O. Karacheban, J. Kieseler, A. Kornmayer, M. Krammer, C. Lange, P. Lecoq, C. Loureno,
L. Malgeri, M. Mannelli, A. Massironi, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, F. Moortgat,
M. Mulders, J. Ngadiuba, S. Nourbakhsh, S. Orfanelli, L. Orsini, F. Pantaleo, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, F.M. Pitters, D. Rabady, A. Racz, M. Rovere, H. Sakulin, C. Schfer, C. Schwik, M. Selvaggi, A. Sharma, P. Silva, P. Sphicas, A. Stakia, J. Steggemann, D. Treille, A. Tsirou, A. Vartak, M. Verzetti, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
L. Caminada, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr

ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
M. Backhaus, L. Bni, P. Berger, N. Chernyavskaya, G. Dissertori, M. Dittmar, M. Doneg, C. Dorfer, T.A. Gmez Espinosa, C. Grab, D. Hits, T. Klijnsma, W. Lustermann, R.A. Manzoni, M. Marionneau, M.T. Meinhard, F. Michel, P. Musella, F. Nessi-Tedaldi, F. Pauss, G. Perrin, L. Perrozzi, S. Pigazzini, M. Reichmann, C. Reissel, D. Ruini, D.A. Sanz Becerra, M. Schenneider, L. Shchutska, V.R. Tavolaro, K. Theofilatos, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu

Universität Zürich, Zurich, Switzerland
T.K. Aarrestad, C. Amsler, D. Brzhechko, M.F. Canelli, A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, T. Hreus, B. Kilminster, S. Leontsinis, I. Neutelings, G. Rauco, P. Robmann, D. Salerno, K. Schweiger, C. Seitz, Y. Takahashi, S. Wertz, A. Zucchetta

National Central University, Chung-Li, Taiwan
P. Chang, Y. Chao, K.F. Chen, P.H. Chen, W.-S. Hou, Y.F. Liu, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen

National Taiwan University (NTU), Taipei, Taiwan
P. Chang, Y. Chao, K.F. Chen, P.H. Chen, W.-S. Hou, Y.F. Liu, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, N. Srimanobhas, N. Suwonjandee

ukurova University, Physics Department, Science and Art Faculty, Adana, Turkey
A. Bat, F. Boran, S. Cerci, S. Damarseckin, Z.S. Demiroglu, F. Dolek, C. Dozen, I. Dumanoglu, G. Gokbulut, Y. Guler, E. Gurpınar, I. Hös, C. Isik, E.E. Kangal, O. Kara, A. Kayis Topaksu, U. Kınmonsu, M. Olgakci, G. Onengut, K. Ozdemir, S. Ozturk, D. Sunar Cerci, B. Tali, U.G. Tok, S. Turkcapar, I.S. Zorbakir, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
B. Isildak, G. Karapinar, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
I.O. Atakisi, E. Glmez, M. Kaya, O. Kaya, S. Ozkorucuklu, S. Tekten, E.A. Yetkin

Istanbul Technical University, Istanbul, Turkey
M.N. Agaras, A. Cakir, K. Cankocak, Y. Komurcu, S. Sen

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine
B. Grynyov

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk

University of Bristol, Bristol, United Kingdom
F. Ball, J.J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher, J. Goldstein,
G.P. Heath, H.F. Heath, L. Kreczko, D.M. Newbold, S. Paramesvaran, B. Penning, T. Sakuma, D. Smith, V.J. Smith, J. Taylor, A. Titterton

Rutherford Appleton Laboratory, Didcot, United Kingdom
A. Belyaev, C. Brew, R.M. Brown, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Linacre, K. Manolopoulos, E. Olaiya, D. Petyt, T. Reis, T. Schuh, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams, W.J. Womersley

Imperial College, London, United Kingdom
R. Bainbridge, P. Bloch, J. Borg, S. Breeze, O. Buchmuller, A. Bundock, D. Colling, P. Dauncey, G. Davies, M. Della Negra, R. Di Maria, P. Everaerts, G. Hall, G. Iles, T. James, M. Komm, C. Laner, L. Lyons, A.-M. Magnan, S. Malik, A. Martelli, J. Nash, A. Nikitenko, V. Palladino, M. Pesaresi, D.M. Raymond, A. Richards, A. Rose, E. Scott, C. Seez, A. Shtipliyski, G. Singh, M. Stoye, T. Strebler, S. Summers, A. Tapper, K. Uchida, T. Virdee, N. Wardle, D. Winterbottom, J. Wright, S.C. Zenz

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, C.K. Mackay, A. Morton, I.D. Reid, L. Teodorescu, S. Zahid

Baylor University, Waco, USA
K. Call, J. Dittmann, K. Hatakeyama, H. Liu, C. Madrid, B. McMaster, N. Pastika, C. Smith

Catholic University of America, Washington, DC, USA
R. Bartek, A. Dominguez

The University of Alabama, Tuscaloosa, USA
A. Buccilli, S.I. Cooper, C. Henderson, P. Rumerio, C. West

Boston University, Boston, USA
D. Arcaro, T. Bose, Z. Demiragli, D. Gastler, S. Girgis, D. Pinna, C. Richardson, J. Rohlf, D. Sperka, I. Suarez, L. Sulak, D. Zou

Brown University, Providence, USA
G. Benelli, B. Burkle, X. Coubez, D. Cutts, M. Hadley, J. Hakala, U. Heintz, J.M. Hogan, K.H.M. Kwok, E. Laird, G. Landsberg, J. Lee, Z. Mao, S. Narain, S. Sagir, R. Syarif, E. Usai, D. Yu

University of California, Davis, Davis, USA
R. Band, C. Brainerd, R. Breedon, D. Burns, M. Calderon De La Barca Sanchez, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, C. Flores, G. Funk, W. Ko, O. Kukral, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, S. Shalhout, M. Shi, D. Stolp, D. Taylor, K. Tos, M. Tripathi, Z. Wang, F. Zhang

University of California, Los Angeles, USA
M. Bachtis, C. Bravo, R. Cousins, A. Dasgupta, S. Erhan, A. Florent, J. Hauser, M. Ignatenko, N. McColl, S. Regnard, D. Saltzberg, C. Schnaible, V. Valuev

University of California, Riverside, Riverside, USA
E. Bouvier, K. Burt, R. Clare, J.W. Gary, S.M.A. Ghiasi Shirazi, G. Hanson, G. Karapostoli, E. Kennedy, F. Lacroix, O.R. Long, M. Olmedo Negrete, M.I.Paneva, W. Si, L. Wang, H. Wei, S. Wimpenny, B.R. Yates

University of California, San Diego, La Jolla, USA
J.G. Branson, P. Chang, S. Cittolin, M. Derdzinski, R. Gerosa, D. Gilbert, B. Hashemi,
O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, C. Mills, M.B. Tonjes, N. Varelas, H. Wang, X. Wang, Z. Wu, J. Zhang

The University of Iowa, Iowa City, USA
M. Alhusseini, B. Bilki, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, F. Ozok, A. Penzo, C. Snyder, E. Tiras, J. Wetzel

Johns Hopkins University, Baltimore, USA
B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, W.T. Hung, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao

The University of Kansas, Lawrence, USA
A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, A. Bylinkin, J. Castle, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, C. Rogan, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang

Kansas State University, Manhattan, USA
S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, D.R. Mendis, T. Mitchell, A. Modak, A. Mohammadi

Lawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright

University of Maryland, College Park, USA
A. Baden, O. Baron, A. Belloni, S.C. Eno, Y. Feng, C. Ferraioli, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, S. Nabili, F. Ricci-Tam, M. Seidel, Y.H. Shin, A. Skuja, S.C. Tonwar, K. Wong

Massachusetts Institute of Technology, Cambridge, USA
D. Abercrombie, B. Allen, V. Azzolini, A. Baty, R. Bi, S. Brandt, W. Busza, I.A. Cali, M. D’Alfonso, G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu, M. Hu, Y. Iiyama, M. Klute, D. Kovalskyi, Y.-J. Lee, P.D. Luckye, B. Maier, A.C. Marini, C. Mignerey, C. Mironov, S. Narayanan, X. Niu, C. Paus, D. Rankin, C. Roland, G. Roland, Z. Shi, G.S.F. Stephens, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch

University of Minnesota, Minneapolis, USA
A.C. Benvenuti, R.M. Chatterjee, A. Evans, P. Hansen, J. Hiltbrand, Sh. Jain, S. Kalafut, M. Krohn, Y. Kubota, Z. Lesko, J. Mans, R. Rusack, M.A. Wadud

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, F. Golf, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger

State University of New York at Buffalo, Buffalo, USA
A. Godshalk, C. Harrington, I. Iashvili, A. Kharchilava, C. Mclean, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbahani

Northeastern University, Boston, USA
G. Alverson, E. Barberis, C. Freer, Y. Haddad, A. Hortiangtham, G. Madigan, D.M. Morse, T. Orimoto, A. Tishelman-charny, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood
Northwestern University, Evanston, USA
S. Bhattacharya, J. Buengly, O. Charaf, T. Gunter, K.A. Hahn, N. Odell, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco

University of Notre Dame, Notre Dame, USA
R. Bucci, N. Dev, R. Goldouzian, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, K. Lannon, W. Li, N. Loukas, N. Marinelli, F. Meng, C. Mueller, Y. Musienko, M. Planer, R. Ruchti, P. Siddireddy, G. Smith, S. Taroni, M. Wayne, A. Wightman, M. Wolf, A. Woodard

The Ohio State University, Columbus, USA
J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, C. Hill, W. Ji, T.Y. Ling, W. Luo, B.L. Winer

Princeton University, Princeton, USA
S. Cooperstein, G. Dezoort, P. Elmer, J. Hardenbrook, N. Haubrich, S. Higginbotham, A. Kalogeropoulos, S. Kwan, D. Lange, M.T. Lucchini, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Pirou, J. Salfeld-Nebgen, D. Stickland, C. Tully

University of Puerto Rico, Mayaguez, USA
S. Malik, S. Norberg

Purdue University, West Lafayette, USA
A. Barker, V.E. Barnes, S. Das, L. Gutay, M. Jones, A.W. Jung, A. Khatiwada, B. Mahakud, D.H. Miller, N. Neumeister, C.C. Peng, S. Piperov, H. Qiu, J.F. Schulte, J. Sun, F. Wang, R. Xiao, W. Xie

Purdue University Northwest, Hammond, USA
T. Cheng, J. Dolen, N. Parashar

Rice University, Houston, USA
Z. Chen, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Kilpatrick, Arun Kumar, W. Li, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, W. Shi, Z. Tu, A. Zhang

University of Rochester, Rochester, USA
A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, E. Ranken, P. Tan, R. Taus

Rutgers, The State University of New Jersey, Piscataway, USA
B. Chiarito, J.P. Chou, Y. Gershtein, E. Halkiadakis, A. Hart, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, I. Laflotte, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen

University of Tennessee, Knoxville, USA
H. Acharya, A.G. Delannoy, J. Heideman, G. Riley, S. Spanier

Texas A&M University, College Station, USA
O. Bouhali, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon, S. Luo, D. Marley, R. Mueller, D. Overton, L. Perni, D. Rathjens, A. Safonov

Texas Tech University, Lubbock, USA
N. Akchurin, J. Damgov, F. De Guio, P.R. Dudero, S. Kunori, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang, A. Whitbeck
31: Also at Universit degli Studi di Siena, Siena, Italy
32: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
33: Also at Kyung Hee University, Department of Physics, Seoul, Korea
34: Also at Riga Technical University, Riga, Latvia
35: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
36: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
37: Also at Consejo Nacional de Ciencia y Tecnologia, Mexico City, Mexico
38: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
39: Also at Institute for Nuclear Research, Moscow, Russia
40: Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia
41: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
42: Also at University of Florida, Gainesville, USA
43: Also at P.N. Lebedev Physical Institute, Moscow, Russia
44: Also at INFN Sezione di Padova a, Universit di Padova b, Universit di Trento (Trento) c, Padova, Italy
45: Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia
46: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
47: Also at University of Belgrade, Belgrade, Serbia
48: Also at INFN Sezione di Pavia a, Universit di Pavia b, Pavia, Italy
49: Also at National and Kapodistrian University of Athens, Athens, Greece
50: Also at Universitt Zrich, Zurich, Switzerland
51: Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria
52: Also at Adiyaman University, Adiyaman, Turkey
53: Also at Istanbul Aydin University, Istanbul, Turkey
54: Also at Mersin University, Mersin, Turkey
55: Also at Piri Reis University, Istanbul, Turkey
56: Also at Gaziosmanpasa University, Tokat, Turkey
57: Also at Ozyegin University, Istanbul, Turkey
58: Also at Izmir Institute of Technology, Izmir, Turkey
59: Also at Marmara University, Istanbul, Turkey
60: Also at Kafkas University, Kars, Turkey
61: Also at Istanbul University, Istanbul, Turkey
62: Also at Istanbul Bilgi University, Istanbul, Turkey
63: Also at Hacettepe University, Ankara, Turkey
64: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
65: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
66: Also at Monash University, Faculty of Science, Clayton, Australia
67: Also at Bethel University, St. Paul, USA
68: Also at Karamanoğlu Mehmetbey University, Karaman, Turkey
69: Also at Purdue University, West Lafayette, USA
70: Also at Beykent University, Istanbul, Turkey
71: Also at Bingol University, Bingol, Turkey
72: Also at Sinop University, Sinop, Turkey
73: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
74: Also at Texas A&M University at Qatar, Doha, Qatar
75: Also at Kyungpook National University, Daegu, Korea
76: Also at University of Hyderabad, Hyderabad, India
