ABOUT DUALITY AND KILLING TENSORS

Dumitru Baleanu

JINR, Bogoliubov Laboratory of Theoretical Physics

141980 Dubna, Moscow Region, Russia

Abstract

In this paper the isometries of the dual space were investigated. The dual structural equations of a Killing tensor of order two were found. The flat space case was analyzed in details.

Keywords: Duality, Killing tensors

1Permanent Address: Institute for Space Sciences, P.O. BOX, MG-23, R 76900 Magurele-Bucharest, Romania

2e-mail:baleanu@thsun1.jinr.ru,baleanu@venus.nipne.ro
1 Introduction

Killing tensors are indispensable tools in the quest for exact solutions in many branches of general relativity as well as classical mechanics [1]. Killing tensors are important for solving the equations of motion in particular space-times. The notable example here is the Kerr metric which admits a second rank Killing tensor [1]. The Killing tensors give rise to new exact solutions in perfect fluid Bianchi and Katowski-Sachs cosmologies as well in inflationary models with a scalar field sources [2]. Recently the Killing tensors of third rank in (1 + 1) dimensional geometry were investigated and classified [3]. In a geometrical setting, symmetries are connected with isometries associated with Killing vectors, and more generally, Killing tensors on the configuration space of the system. An example is the motion of a point particle in a space with isometries [4], which is a physicist’s way of studying the geodesic structure of a manifold. Any symmetrical tensor $K_{\alpha\beta}$ satisfying the condition

$$K_{(\alpha\beta;\gamma)} = 0, \quad (1)$$

is called a Killing tensor. Here the parenthesis denotes a full symmetrization with all indices and coma denotes a covariant derivative. $K_{\alpha\beta}$ will be called redundant if it is equal to some linear combination with constants coefficients of the metric tensor $g_{\alpha\beta}$ and of the form $S_{(a}B_{\beta)}$ where A_{α} and B_{β} are Killing vectors. For any Killing vector K_{α} we have [3]

$$K_{\beta;\alpha} = \omega_{\alpha\beta} = -\omega_{\beta\alpha}, \quad (2)$$

$$\omega_{\alpha\beta;\gamma} = R_{\alpha\beta\gamma\delta}K^{\delta}. \quad (3)$$

The equations (2) and (3) may be regarded as a system of linear homogeneous first-order equations in the components $K_{\alpha\beta}$ and $\omega_{\alpha\beta}$. In [3] equations analogous to the above ones for a Killing vector were derived for $K_{\alpha\beta}$. Recently Holten [6] has presented a theorem concerning the reciprocal relation between two local geometries described by metrics which are Killing tensors with respect to one another. In this paper the geometric duality was presented and the structural equations of $K_{\alpha\beta}$ were analyzed. The plan of this paper is as follows. In Sec.2 the geometric duality is presented. In Sec.3 the structural equations of $K_{\alpha\beta}$ are investigated. Our comments and concluding remarks are presented in Sec. 4.

2 Geometric duality

Let us consider that the space with a metric $g_{\alpha\beta}$ admits a Killing tensor field $K_{\alpha\beta}$. As it is well known the equation of motion of a particle on a geodesic is derived from the action [4]

$$S = \int\!d\tau\left(\frac{1}{2}g_{\alpha\beta}\dot{x}^{\alpha}\dot{x}^{\beta}\right). \quad (4)$$

The Hamiltonian is constructed in the following form $H = \frac{1}{2}g_{\alpha\beta}p^{\alpha}p^{\beta}$ and the Poisson brackets are

$$\{x_{\alpha}, p^{\beta}\} = \delta_{\alpha}^{\beta}. \quad (5)$$
The equation of motion for a phase space function $F(x, p)$ can be computed from the Poisson brackets with the Hamiltonian

$$\dot{F} = \{F, H\}, \quad (6)$$

where $\dot{F} = \frac{dF}{d\tau}$. From the covariant component $K_{\alpha\beta}$ of the Killing tensor we can construct a constant of motion K

$$K = \frac{1}{2}K_{\alpha\beta}p^{\alpha}p^{\beta}. \quad (7)$$

We can easily verify that

$$\{H, K\} = 0. \quad (8)$$

The formal similarity between the constants of motion H and K, and the symmetrical nature of the condition implying the existence of the Killing tensor amount to a reciprocal relation between two different models: the model with Hamiltonian H and constant of motion K, and a model with constant of motion H and Hamiltonian K. The relation between the two models has a geometrical interpretation: it implies that if $K_{\alpha\beta}$ are the contravariant components of a Killing tensor with respect to the metric $g_{\alpha\beta}$, then $g_{\alpha\beta}$ must represent a Killing tensor with respect to the metric defined by $K_{\alpha\beta}$. When $K_{\alpha\beta}$ has an inverse we interpret it as the metric of another space and we can define the associated Riemann-Christoffel connection $\hat{\Gamma}^\lambda_{\alpha\beta}$ as usual through the metric postulate $\hat{D}_\lambda K_{\alpha\beta} = 0$. Here \hat{D} represents the covariant derivative with respect to $K_{\alpha\beta}$.

The relation between connections $\hat{\Gamma}^\mu_{\alpha\beta}$ and $\Gamma^\mu_{\alpha\beta}$ is

$$\hat{\Gamma}^\mu_{\alpha\beta} = \Gamma^\mu_{\alpha\beta} - K^\mu_\delta D_\delta K_{\alpha\beta}. \quad (9)$$

As it is well known for a given metric $g_{\alpha\beta}$ the conformal transformation is defined as $g_{\alpha\beta} = e^{2U(x)}g_{\alpha\beta}$ and the relation between the corresponding connections is

$$\hat{\Gamma}^\lambda_{\alpha\beta} = \Gamma^\lambda_{\alpha\beta} + 2\delta^\lambda_{\alpha\beta} U^{\alpha}_\gamma - g_{\alpha\beta} U^{\gamma}, \quad (10)$$

where $U^{\gamma} = \frac{dU_\lambda}{dx}$. After some calculations we conclude that the dual transformation is not a conformal transformation.

For this reason, it is interesting to investigate when the manifold and its dual have the same Killing isometries. Let us denote by χ_α a Killing vector corresponding to $g_{\alpha\beta}$ and by $\hat{\chi}_\alpha$ a Killing vector corresponding to $K_{\alpha\beta}$.

Proposition

The manifold and its dual have the same Killing vectors iff

$$(D_\delta K_{\alpha\beta})\chi^\delta = 0. \quad (11)$$

Proof.

Let us consider χ_σ a vector satisfies

$$D_\alpha \chi_\beta + D_\beta \chi_\alpha = 0. \quad (12)$$
Using (9) the corresponding dual Killing vector's equations are

\[D_\alpha \hat{\chi}_\beta + D_\beta \hat{\chi}_\alpha + 2K^\delta_\sigma (D_\delta K_\alpha_\beta) \hat{\chi}_\sigma = 0. \]

(13)

Let us suppose that \(\hat{\chi}_\alpha = \chi_\alpha \), then using (12) and (13) we obtain

\[(D_\delta K_\alpha_\beta) \hat{\chi}_\delta = 0. \]

(14)

Conversely if we suppose that (11) holds, then from (13) we can deduce immediately that \(\chi_\alpha = \hat{\chi}_\alpha \). q.e.d.

3 The structural equations

The following two vectors play roles analogous to that of a bivector \(\omega_{\alpha\beta} \)

\[L_{\alpha\beta\gamma} = K_{\beta\gamma;\alpha} - K_{\alpha\gamma;\beta}, \]

(15)

\[M_{\alpha\beta\gamma\delta} = \frac{1}{2}(L_{\alpha\beta[\gamma\delta]} + L_{\gamma\delta[\alpha\beta]}). \]

(16)

The properties of the tensors \(L_{\alpha\beta\gamma} \) and \(M_{\alpha\beta\gamma\delta} \) were derived in \[5\]. \(M_{\alpha\beta\gamma\delta} \) has the same symmetries as the Riemannian tensor and the covariant derivatives of \(K_{\alpha\beta} \) and \(L_{\alpha\beta\gamma} \) satisfy relations reminiscent of those satisfied by Killing vectors.

From (13) and (16) we found that

\[M_{\alpha\beta\gamma\delta} = \frac{1}{2}(K_{\beta\gamma;[\alpha\delta]} + K_{\alpha\delta;[\beta\gamma]} - K_{\alpha\gamma;[\beta\delta]} - K_{\beta\delta;[\alpha\gamma]}), \]

and

\[M_{\alpha\beta\gamma\delta} + M_{\gamma\alpha\beta\delta} + M_{\beta\gamma\alpha\delta} = 0 \]

(16)

We will investigate now the dual structural equations. Let us define a tensor \(H^\mu_{\alpha\beta} \) as

\[H^\mu_{\alpha\beta} = \hat{\Gamma}^\mu_{\alpha\beta} - \Gamma^\mu_{\alpha\beta}. \]

(17)

Taking into account (9) we found

\[H^\delta_{\alpha\beta} K_{\delta\gamma} = -D_\gamma K_{\alpha\beta}. \]

(18)

Using (15) and (18) we obtain

\[L_{\alpha\beta\gamma} = H^\delta_{\alpha\gamma} K_{\delta\beta} - H^\delta_{\beta\gamma} K_{\delta\alpha}. \]

(19)

From (19) we conclude that \(L_{\alpha\beta\gamma} \) looks like an angular momentum. This result is in agreement with those presented in \[5\]. Taking into account (16) and (18) the expression of \(M_{\alpha\beta\gamma\delta} \) becomes

\[M_{\alpha\beta\gamma\delta} = \frac{K_{\sigma\alpha}^\sigma}{2} \left[-D_\delta H^\sigma_{\beta\gamma} + D_\gamma H^\sigma_{\beta\delta} + H^\theta_{\gamma\delta} H^\sigma_{\delta\theta} - H^\sigma_{\gamma\beta} H^\sigma_{\delta\theta} \right] + \frac{K_{\sigma\beta}^\sigma}{2} \left[D_\delta H^\sigma_{\alpha\gamma} - D_\gamma H^\sigma_{\alpha\delta} + H^\theta_{\gamma\delta} H^\sigma_{\delta\theta} - H^\sigma_{\alpha\beta} H^\sigma_{\delta\theta} \right] + \frac{K_{\sigma\gamma}^\sigma}{2} \left[-D_\delta H^\sigma_{\delta\alpha} + D_\alpha H^\sigma_{\delta\beta} - H^\theta_{\beta\delta} H^\sigma_{\delta\theta} + H^\sigma_{\delta\alpha} H^\sigma_{\delta\theta} \right] \]
The general solution of eq. (16) in the flat space case has the form

\[K_{\beta\gamma} = s_{\beta\gamma} + \frac{2}{3} B_{\alpha(\beta\gamma)} x^\alpha + \frac{1}{3} A_{\alpha\beta\gamma\delta} x^\alpha x^\delta. \]

(21)

Here \(s_{\beta\gamma} \), \(B_{\alpha(\beta\gamma)} \) and \(A_{\alpha\beta\gamma\delta} \) are constant tensors having the same symmetries as \(K_{\beta\gamma}, L_{\alpha\beta\gamma} \) and \(M_{\alpha\beta\gamma\delta} \) respectively. Using (24) and (21) the expression of \(M_{\alpha\beta\gamma\delta} \) becomes

\[M_{\alpha\beta\gamma\delta} = \frac{1}{2} (K_{\sigma\alpha} R^\sigma_{\beta\gamma\delta} + K_{\sigma\beta} R^\sigma_{\alpha\gamma\delta} + K_{\sigma\gamma} R^\sigma_{\beta\alpha\delta} + K_{\sigma\delta} R^\sigma_{\gamma\alpha\beta}), \]

where

\[R^\sigma_{\nu\rho\sigma} = H^\beta_{\nu\rho,\sigma} - H^\beta_{\nu,\rho\sigma} + H^\beta_{\nu\rho} H^\alpha_{\alpha\sigma} - H^\alpha_{\nu\rho} H^\beta_{\alpha\sigma}. \]

(23)

From (23) we conclude that \(R^\beta_{\nu\rho\sigma} \) looks like as the curvature tensor \(R^\beta_{\nu\rho\sigma} \) [4].

The next step is to investigate the form of \(M_{\alpha\beta\gamma\delta} \) on a curved space. After tedious calculations we found the expression of \(M_{\alpha\beta\gamma\delta} \) as

\[M_{\alpha\beta\gamma\delta} = K_{\sigma\alpha} R^\sigma_{\beta\gamma\delta} + K_{\sigma\beta} R^\sigma_{\alpha\gamma\delta} + K_{\sigma\gamma} R^\sigma_{\beta\alpha\delta} + K_{\sigma\delta} R^\sigma_{\gamma\alpha\beta}, \]

\[- K_{\sigma\lambda} (-H^\lambda_{\beta\gamma} G^\sigma_{\gamma\delta} + H^\lambda_{\beta\delta} G^\sigma_{\gamma\gamma} + H^\lambda_{\gamma\delta} G^\sigma_{\gamma\gamma} - H^\lambda_{\gamma\gamma} G^\sigma_{\gamma\delta}), \]

\[+ H^\sigma_{\beta\delta} K_{\alpha\gamma,\sigma} + H^\sigma_{\alpha\gamma} K_{\beta\delta,\sigma} - H^\sigma_{\beta\gamma} K_{\alpha\delta,\sigma} - H^\sigma_{\alpha\delta} K_{\beta\gamma,\sigma}, \]

(24)

where \(G^\mu_{\alpha\beta} = -H^\mu_{\alpha\beta} + \Gamma^\mu_{\alpha\beta} \). \(M_{\alpha\beta\gamma\delta} \) has the form (22) for any curve \(\gamma(\tau) \) belonging to manifold [1].

Using (17) and (18) we found the dual expressions of \(L_{\alpha\beta\gamma\delta} \) and \(M_{\alpha\beta\gamma\delta} \) as

\[\hat{L}_{\alpha\beta\gamma} = \hat{D}_\alpha g_{\beta\gamma} - \hat{D}_\beta g_{\alpha\gamma} = -H^\delta_{\alpha\gamma} g_{\delta\beta} + H^\delta_{\beta\gamma} g_{\delta\alpha}, \]

\[\hat{M}_{\alpha\beta\gamma\delta} = \frac{1}{2} (\hat{L}_{\alpha\beta[\gamma\delta]} + \hat{L}_{\gamma\delta[\alpha\beta]}), \]

\[- g_{\sigma\lambda} (H^\lambda_{\beta\delta} \hat{G}^\sigma_{\alpha\gamma} - H^\lambda_{\beta\gamma} \hat{G}^\sigma_{\alpha\delta} - H^\lambda_{\gamma\delta} \hat{G}^\sigma_{\alpha\beta} + H^\lambda_{\gamma\beta} \hat{G}^\sigma_{\alpha\delta}), \]

\[- H^\sigma_{\beta\delta} \hat{g}_{\alpha\gamma,\sigma} + H^\sigma_{\alpha\gamma} \hat{g}_{\beta\delta,\sigma} + H^\sigma_{\alpha\delta} \hat{g}_{\beta\gamma,\sigma}. \]

(25)

Here \(\hat{G}^\sigma_{\alpha\delta} = H^\sigma_{\alpha\delta} + \hat{\Gamma}^\sigma_{\alpha\delta} \) and the semicolon denotes the dual covariant derivative. Taking into account (17) we found a new identity for \(K_{\alpha\beta} \)

\[K^\sigma_{\beta} D_{\sigma} K_{\nu\lambda} + K^\sigma_{\nu} D_{\sigma} K_{\beta\lambda} + K^\nu_{\beta} D_{\sigma} K_{\nu\lambda} = 0. \]

(26)

By duality we get from (20) the following identity for \(g_{\alpha\beta} \)

\[g^\sigma_{\beta} \hat{D}_{\sigma} g_{\nu\lambda} + g^\nu_{\beta} \hat{D}_{\sigma} g_{\beta\lambda} + g^\nu_{\beta} \hat{D}_{\sigma} g_{\beta\lambda} = 0. \]

(27)

4 Conclusions

The geometric duality between local geometry described by \(g_{\alpha\beta} \) and the local geometry described by Killing tensor \(K_{\alpha\beta} \) was presented. We found the relation between
connections corresponding to $g_{\alpha\beta}$ and $K_{\alpha\beta}$ respectively and we have shown that the dual transformation is not a conformal transformation. The manifold and its dual have the same isometries if $D_{\lambda}K_{\alpha\beta} = 0$. We have shown that $L_{\alpha\beta\gamma}$ looks like an angular momentum. The dual structural equations were analyzed and the expressions of $\hat{L}_{\alpha\beta\gamma}$ and $\hat{M}_{\alpha\beta\gamma\delta}$ were calculated. For the flat space case the general forms of $(L_{\alpha\beta\gamma}, \hat{L}_{\alpha\beta\gamma})$ and $(M_{\alpha\beta\gamma\delta}, \hat{M}_{\alpha\beta\gamma\delta})$ were found.

5 Acknowledgments

I would like to thank TUBITAK for financial support and METU for the hospitality during the working stage at Department of Physics.

References

[1] G.W. Gibbons, R.H. Rietdijk and J.W. van Holten, Nucl. Phys. B404 (1993) 42.
[2] K. Rosquist, C. Uggla, J. Math. Phys. 32 (1991) 3412.
[3] M. Karlovini and K. Rosquist, preprint gr-qc/9807051.
[4] R.H. Rietdijk and J.W. van Holten, J. Geom. Phys. 11 (1993) 559.
[5] I. Hauser and R. J. Malhiot, Jour. Math. Phys., vol. 16, no. 1 (1975) 150-152.
[6] R.H. Rietdijk and J.W. van Holten Nucl. Phys. B no. 1,2 (1996) 42.
[7] D. Baleanu, Gen. Rel. and Grav. 30, no. 2 (1998) 195, D. Baleanu, Hel. Acta Phys. vol 70, no. 3 (1998) 341-354.
[8] D. Baleanu, S. Codoban, Gen. Rel. Grav. vol 31, (1999) 497-509.
[9] P.A.M. Dirac, General Theory of Relativity (Wiley-Interscience) (1975) 21.
[10] L.P. Eisenhart, Riemannian Geometry (Princeton U.P., Princeton, N.J.) (1966).