Relation between total cross sections from elastic scattering and α-induced reactions: the example of 64Zn

Gy. Gyürky,1 P. Mohr,1,2 Zs. Fülop,1 Z. Halász,1 G.G. Kiss,1 T. Szücs,1 and E. Somorjai1

1 Institute of Nuclear Research (ATOMKI), H-4001 Debrecen, Hungary
2 Diakonie-Klinikum, D-74523 Schwäbisch Hall, Germany

(Dated: May 2, 2014)

The total reaction cross section is related to the elastic scattering angular distribution by a basic quantum-mechanical relation. We present new experimental data for α-induced reaction cross sections on 64Zn which allow for the first time the experimental verification of this simple relation at low energies by comparison of the new experimental reaction data to the result obtained from 64Zn(α, α)64Zn elastic scattering.

PACS numbers: 24.10.Ht,24.60.Dr,25.55.-e

A main application of quantum mechanics is nuclear physics. Here basic theoretical relations can be tested experimentally with high precision. An interesting example is the simple relation between the total (non-elastic) reaction cross section σ_{reac} and the elastic scattering cross section:

$$\sigma_{\text{reac}} = \frac{\pi}{k^2} \sum_L (2L + 1) \left(1 - \eta^2_L \right).$$

(1)

Here $k = \sqrt{2\mu E_{\text{c.m.}}/\hbar}$ is the wave number, $E_{\text{c.m.}}$ is the energy in the center-of-mass (c.m.) system, and η_L and δ_L are the real reflexion coefficients and scattering phase shifts which define the angular distribution ($\frac{d\sigma}{d\theta}$) (θ) of elastic scattering. Eq. (1) is derived from a partial wave analysis using the standard two-body Schrödinger equation. This Eq. (1) is widely used, in particular in the calculation of reaction cross sections using the statistical model (StM; to avoid confusion with the widely used abbr. “SM” for “shell model”). In the following discussion we will focus on α-induced reactions at low energies.

In the StM the reaction cross section of an α-induced (α, X) reaction is calculated in two steps. In the first step the total reaction cross section σ_{reac} is calculated using Eq. (1). The reflexion coefficients η_L are determined by solving the Schrödinger equation using a global α-nucleus potential, e.g. the widely used potential by McFadden and Satchler 1. Compound formation is the dominating absorption mechanism at energies from a few MeV up to about several tens of MeV; thus, it is assumed that the compound formation cross section is approximately given by the total reaction cross section: $\sigma_{\text{compound}} \approx \sigma_{\text{reac}}$. In the second step σ_{compound} is distributed among all open channels. The decay branching is obtained from the transmission factors into the various open channels which are again calculated using global potentials for each (outgoing particle + residual nucleus) channel or from the photon strength function in the case of the (α, γ) channel. Further details of the StM can be found in the recent review 2.

To our knowledge, the underlying basic relation in Eq. (1) has never been verified experimentally for α-induced reactions at low energies around or below the Coulomb barrier. Although there is no special reason to suspect to Eq. (1) for the particular case of α-induced reactions, an experimental verification assures its application for the calculation of reaction cross sections which has turned out to be difficult especially at low energies (see discussion below). Alternatively, if the validity of Eq. (1) is assumed a priori, it can be used as a stringent test for consistency between different methods for the determination of σ_{reac}.

σ_{reac} has been measured at higher energies up to 200 MeV using transmission experiments 3-4. The experimental results have significant uncertainties, and earlier results 2 have been questioned later by the same group 5. For the early experiments 2 it was found that σ_{reac} from the transmission data is significantly smaller than σ_{reac} derived from (α, α) elastic scattering using Eq. (1) 5-7 whereas agreement was found using the latest transmission data 6 where σ_{reac} is about $10-30\%$ higher compared to earlier results 5.

At lower energies α-induced reactions have been studied intensively in the last decades to determine a global α-nucleus potential which is then used for the prediction of α-induced reaction cross sections and their inverse, mainly (γ, α), reaction cross sections. Often the motivation came from astrophysics where (γ, α) reaction rates under stellar conditions play an important role for the nucleosynthesis of heavy neutron-deficient nuclei (the so-called p-nuclei) 9-12. It turned out over the years that it is very difficult or even impossible to obtain a consistent description of elastic (α, α) scattering and (α, X) cross sections. Especially the reproduction of (α, γ) capture cross sections for heavy targets (above $A \approx 100$) at the lowest experimentally accessible energies (i.e. the most relevant energy range for the calculation of stellar reaction rates) was poor 13-19 with significant efforts better results have been obtained mainly for (α, n) reactions at slightly higher energies very recently 20-23.

It is the aim of the present work to provide an experimental confirmation of Eq. (1) at relatively low energies.
around the Coulomb barrier because it is implicitly used in all the above mentioned studies of \((\alpha, \gamma)\) and \((\alpha, n)\) reactions \([12, 22]\). The target nucleus \(^{64}\text{Zn}\) is an almost perfect candidate for such a study because (i) a series of experiments have measured angular distributions of elastic \((\alpha, \alpha)\) scattering in the energy range from 12 to 50 MeV \([24, 25]\) which enables to study the \(^{64}\text{Zn-}\alpha\) potential in a wide energy range, and (ii) almost all relevant reaction channels at low energies lead to unstable residual nuclei which can be measured using the activation technique. Thus, this experiment can use a completely different experimental approach for the determination of \(\sigma_{\text{reac}}\) where the systematic uncertainties of transmission experiments can be avoided (see discussion in \([4]\)). In addition we point out that the activation technique is the most appropriate tool for the determination of total \((\alpha, X)\) reaction cross sections whereas e.g. in-beam \((\alpha, \gamma)\) experiments might miss weak \(\gamma\)-ray branches.

Although several data sets for \((\alpha, X)\) cross sections on \(^{64}\text{Zn}\) are already available (e.g. \([26, 30]\)), the data quality is relatively poor. So we have remeasured the cross sections of the \(^{64}\text{Zn}(\alpha, \gamma)^{68}\text{Ge}\), \(^{64}\text{Zn}(\alpha, n)^{67}\text{Ge}\), and \(^{64}\text{Zn}(\alpha, p)^{67}\text{Ga}\) reactions at low energies. Relatively low energies were chosen not only because of the underlying astrophysical request for a low-energy \(\alpha\)-nucleus potential, but also because of the relatively small numbers of open channels. In the energy range under study, the total reaction cross section is given by the following sum:

\[
\sigma_{\text{reac}} = \sigma(\alpha, \gamma) + \sigma(\alpha, n) + \sigma(\alpha, p) + \sigma(\alpha, \alpha') + \\
\sigma(2\alpha) + \sigma(\alpha, \alpha'p) + \sigma(\alpha, 2p) + \sigma(\alpha, \alpha'n) \tag{2}
\]

In the following we present first our new experimental data for the \(^{64}\text{Zn}(\alpha, \gamma)^{68}\text{Ge}\), \(^{64}\text{Zn}(\alpha, n)^{67}\text{Ge}\), and \(^{64}\text{Zn}(\alpha, p)^{67}\text{Ga}\) reactions. Then we estimate the cross sections of the remaining open channels in Eq. (2) which are much smaller than the dominant \((\alpha, p)\) and \((\alpha, n)\) cross sections. Next we compare the sum of the \(\alpha\)-induced cross sections to the total reaction cross section \(\sigma_{\text{reac}}\) from the analysis of a angular distribution of \(^{64}\text{Zn}(\alpha, \alpha)^{64}\text{Zn}\) elastic scattering and find agreement within the uncertainties, i.e. we confirm the basic quantum-mechanical relation in Eq. (1). Finally, we suggest potential improvements to reduce the uncertainties.

The cross sections of the three studied \(\alpha\)-induced reaction have been measured with the activation method. The experimental technique was similar to the one described in one of our recent works \([31]\). Some important aspects are briefly described here. For further details see also \([32]\).

The targets were prepared by evaporating natural isotopic composition metallic \(\text{Zn}\) onto 2 \(\mu\text{m}\) thick \(\text{Al}\) foils. The target thicknesses (typically between 100 and 500 \(\mu\text{g/cm}^2\)) have been measured by weighing and Rutherford backscattering spectrometry. The \(\alpha\)-irradiations have been carried out at the cyclotron accelerator of ATOMKI which provided an \(\alpha\)-beam with up to 1 \(\mu\text{A}\) intensity. The durations of the irradiations varied between half an hour and one day. Changes in the beam intensity were taken into account by recording the current integrator counts in multichannel scaling mode with 1 minute time constant. The stability of the targets was continuously monitored by detecting the elastically scattered alpha particles from the target with an ion implanted \(\text{Si}\) detector built into the chamber at 150 degrees. With a beam intensity not higher than 1 \(\mu\text{A}\) no target deterioration has been observed.

The cross sections of the \(^{64}\text{Zn}(\alpha, \gamma)^{68}\text{Ge}\), \(^{64}\text{Zn}(\alpha, p)^{67}\text{Ga}\), and \(^{64}\text{Zn}(\alpha, n)^{67}\text{Ge}\) reactions have been determined from the measurement of the \(\gamma\)-radiation following the \(\beta\)-decay of the reaction products having half-lives of 270.93 d, 3.26 d, and 18.9 min, respectively. The decay parameters of the reaction products are summarized in Table I. Owing to the largely different half-lives of the reaction products, the gamma-counting of one target has been done two or three times.

Reaction Product isotope	\(E_{\gamma}\) [keV]	intensity [%]	relative	
\(^{64}\text{Zn}(\alpha, \gamma)^{68}\text{Ge}\)	270.93 d	—	—	
\(^{68}\text{Ge}\) decay	\(^{68}\text{Ga}\)	67.11 min	1077.3	3.22±0.03
\(^{64}\text{Zn}(\alpha, p)^{67}\text{Ga}\)	3.26 d	184.6	21.41±0.01	
\(^{64}\text{Zn}(\alpha, n)^{67}\text{Ge}\)	18.9 min	167.0	84.28±4.52	

The \(\gamma\)-measurements were carried out with a 100 % relative efficiency HPGe detector equipped with a 4 \(\tau\) low background shielding. The absolute efficiency of the detector at a large source-to-detector distance of 27 cm was measured with several calibrated sources \([31]\). In this geometry the true coincidence summing effect is completely negligible. The strong activity of the short lived \(^{67}\text{Ge}\) reaction product was measured in this far geometry.

At higher alpha energies the \((\alpha, p)\) cross section is large enough so that the target activity could be measured in far geometry. At low energies, on the other hand, a close source-to-detector distance of 1 cm was used where the true coincidence summing effect is strong. In order to take this into account, spectra of strong \(^{67}\text{Ga}\) sources were measured both in far and close geometries and for all studied transitions a conversion factor between the two geometries was calculated. This factor accounts for the ratio of the efficiencies as well as the effect of summing.

The weak source activities from the \(^{64}\text{Zn}(\alpha, \gamma)^{68}\text{Ge}\) reaction could only be measured in the close counting
and the weak γ order to detect the low activity of the (α,γ) reaction product.

The peaks used for the analysis are indicated.

The peaks for the analysis are indicated.

omometry. Owing to the simple decay scheme of 68Ga, however, the summing effect is negligible here. Therefore, for the 68Ga activity measurement the absolute efficiency of the detector has been measured directly in close geometry using summing-free, single line calibration sources (7Be, 54Mn, 65Cu and 137Cs).

A typical γ-spectrum of the 64Zn(α,n)67Ge reaction channel was shown in Ref. [32]. Here in Fig.1 two spectra are shown which were used to determine the 64Zn(α,n)67Ge (upper panel) and 64Zn(α,γ)68Ge (lower panel) cross sections at $E_{c.m.} = 12.37$ MeV. The waiting time between the end of the irradiation and the start of counting as well as the durations of the countings are indicated. The peaks used for the analysis are marked by arrows.

Table II lists the measured cross sections for the three reactions. The cross section of the 64Zn(α,p)67Ga reaction was measured in a wide energy range between $E_{c.m.} = 5.8$ and 12.4 MeV. The 64Zn(α,n)67Ge reaction was studied from the threshold up to 12.4 MeV at 9 energies. Owing to the long half-life of the (α,γ) reaction product and the weak γ-branching of the decay, the activation method is not optimal for the measurements of the very low (α,γ) cross sections. Therefore, the (α,γ) cross section was measured only at a few energies. Further (α,γ) measurements are planned using e.g. the AMS method [33]. Data for the three channels (α,p), (α,n), and (α,γ) are available at 12.37 MeV (shown in bold face in Table II); these data are used for the determination of the total reaction cross section σ_{tot}.

The effective energies were calculated by taking into account the energy loss of the beam in the target. The uncertainty of the energy is the quadratic sum of the uncertainty of the beam efficiency (5 %), current integration (3 %), decay correction (4 %), counting statistics (typically about 0.3 – 5 %, in the worst case < 23 %).

Figure 2 shows the results of the three reactions in the form of the astrophysical S-factor. Along with the experimental data the predictions of two different StM codes, the NON-SMOKER [30] and TALYS [37] codes, are plotted using their standard parameters. Both codes give a good qualitative description of the measured data. At $E_{c.m.} = 12.37$ MeV, where the total cross section is determined, both codes reproduce well the (α,p) and (α,n) cross sections. The (α,γ) value is well predicted by TALYS and somewhat underestimated by NON-SMOKER which code is not optimized for high energies. The discussion of the low energy cross sections and the astrophysical consequences will be the subject of a forthcoming publication.

Now we focus on the measurement at the energy

![FIG. 1: Gamma-spectra measured on a target irradiated with a 13.2 MeV α-beam. Upper panel: spectrum measured directly after the irradiation where the decay of the 64Zn(α,n)67Ge reaction product is dominant. Lower panel: spectrum taken after 22 days of cooling time of the target in order to detect the low activity of the (α,γ) reaction product. The peaks used for the analysis are indicated.](image-url)
So we estimate 23 mb for the higher-lying excited states, i.e. a lower limit of zero and an upper limit identical to the dominating cross section of the first excited 2\(^+\) state. By summing the dominating contribution of the first excited 2\(^+\) state (46 \pm 10 mb) and the estimated contribution of higher-lying states (23 \pm 23 mb) we find in total \(\sigma(\alpha,\alpha') = 69 \pm 25\) mb.

For the first excited 2\(^+\) state at \(E_x = 992\) keV we find a Coulomb contribution of 34 mb (close to the semi-classical result) for Coulomb excitation \(10\) using the adopted transition strength of \(B(E2) = 20\) W.u. \(11\) and a smaller nuclear contribution of 12 mb leading to a total excitation cross section of 46 mb with an estimated 20\% uncertainty of 10 mb. The Coulomb-nuclear interference is practically negligible at the low energies under study. The cross sections of higher-lying excited states are much smaller which is confirmed by the spectrum of inelastically scattered \(\alpha\) particles at somewhat higher energies (see e.g. Fig. 2 of \(30\)). So we estimate 23 \pm 23 mb for the higher-lying states, i.e. a lower limit of zero and an upper limit identical to the dominating cross section of the first excited 2\(^+\) state. By summing the dominating contribution of the first excited 2\(^+\) state (46 \pm 10 mb) and the estimated contribution of higher-lying states (23 \pm 23 mb) we find in total \(\sigma(\alpha,\alpha') = 69 \pm 25\) mb.

\(\sigma(\alpha,2\alpha), (\alpha,\alpha p), (\alpha,2p), (\alpha,\alpha n):\) The \(Q\)-values for all two-particle emission reactions are strongly negative. Thus, the probability to emit one or even two particles from the compound nucleus \(^{68}\)Ge with very low energies is extremely small. Calculations using the code TALYS \(37\) with different \(\alpha\)-nucleus optical potentials always lead to negligible cross sections below 1 mb for each of the two-particle emission channels. Thus, we adopt 0.5 \pm 0.5 mb for each of the two-particle channels.

Summing up all the above cross sections, we find a total reaction cross section of \(\sigma_{\text{reac}} = 596 \pm 62\) mb for the \(r.h.s.\) of Eq. \(2\). Next, this number has to be compared to the total reaction cross section \(\sigma_{\text{reac}}\) derived from the elastic scattering angular distribution using Eq. \(1\).

Di Pietro et al. \(24\) have measured \(^{64}\)Zn(\(\alpha,\alpha\))\(^{64}\)Zn elastic scattering at the energy \(E_{\text{c.m.}} = 12.4\) MeV. From their analysis using Woods-Saxon potentials of volume type they determine a total reaction cross section of \(\sigma_{\text{reac}} = 650 \pm 80\) mb. A reanalysis of these scattering data using a folding potential in the real part and an imaginary surface Woods-Saxon potential (consistent with a global study of \(\alpha\)-nucleus potentials at low energies \(42\)) leads to a slightly lower value of 610 mb with a significantly reduced \(\chi^2/F\). So we adopt \(\sigma_{\text{reac}} = 610 \pm 80\) mb in the following discussion. This result also fits nicely into the systematics of so-called reduced cross sections \(\sigma_{\text{red}}\) versus reduced energy \(E_{\text{red}}\) \(13, 14\) for \(^{64}\)Zn(\(\alpha,\alpha\))\(^{64}\)Zn scattering data at higher energies \(24, 25\); however, the obtained \(\sigma_{\text{red}}\) for \(^{64}\)Zn are slightly higher than \(\sigma_{\text{red}}\) for other \(\alpha\)-nucleus systems \(22, 43\).

The energy difference between the elastic scattering data at 12.4 MeV and the activation data at 12.37 MeV is very small. The calculated \(\sigma_{\text{reac}}\) at 12.37 MeV differs by less than 0.5\% from the result at 12.4 MeV. This tiny difference is neglected, and we take \(\sigma_{\text{reac}} = 610 \pm 80\) mb for \(\sigma_{\text{reac}}\) in Eq. \(1\) at 12.37 MeV.

The ratio \(r = l.h.s./r.h.s\) between the left-hand side and right-hand side in Eq. \(2\) should be unity if the \(l.h.s.\) can be taken from Eq. \(1\). The experimental result of this work \(r = 1.02 \pm 0.17\) confirms the validity of Eqs. \(1\) and \(2\) within about 17\% uncertainty which is the first experimental confirmation of Eqs. \(1\) and \(2\) for \(\alpha\)-induced reactions at low energies around the Coulomb barrier. A more precise confirmation requires a reduction of the uncertainties. Such a reduction is possible for the total reaction cross section from elastic scattering where uncertainties of the order of a few per cent can be achieved if the angular distribution is measured over the full angular range with small uncertainties \(14\). Such an experiment is in preparation at ATOMKI. It is also planned to measure inelastic scattering cross sections in this experiment; this will lead to a further reduction of the uncertainty of \(r\) because of a more precise determination of the \(\alpha(\alpha')\) cross section in Eq. \(2\).

In the previous work \(5, 4, 3\) ratios of about \(1.1 \leq r \leq 1.5\) were found for various nuclei at energies above the Coulomb barrier whereas \(r \approx 1\) was found using the lat-
est transmission data. However, there is no explicit determination of the ratio \(r \) in recent literature because in most cases the energies of the transmission data did not exactly match the energies of the available elastic scattering angular distributions, and thus also no uncertainty for \(r \) is given. The experimental uncertainties for the transmission data are about 1 – 3\% in \([5, 6]\) and 4 – 10\% in \([7]\). As can be seen from Fig. 1 of \([7]\), different parametrizations of the \(\alpha \)-nucleus potential differ by about 10 – 20\% in the calculation of \(\sigma_{\text{reac}} \); the differences may result from the limited angular range of the angular distributions at higher energies. Together with an additional uncertainty from the mismatch of the energies between the transmission data and the scattering data we estimate a total uncertainty of at least 20\% for the ratio \(r \) at higher energies. We recommend to perform a new transmission experiment for a properly chosen target nucleus and a simultaneous study of the elastic and inelastic scattering angular distributions (with small uncertainties over a broad angular range) at exactly the same energy. With these data it should be possible to confirm Eqs. (1) and (2) also at energies significantly above the Coulomb barrier with small uncertainties.

We have also determined the total reaction cross section at the other energies where we have measured three reaction channels. The summed cross sections are 366 ± 39 mb (8.9 ± 1.0 mb) at 11.24 MeV (7.96 MeV). The given numbers do not include inelastic cross sections of 62 ± 22 mb (16 ± 5 mb). From these data it is possible to determine \(\sigma_{\text{reac}} = 428 ± 44 \text{ mb} \) at 11.24 MeV. We do not provide \(\sigma_{\text{reac}} \) at 7.96 MeV because \(\sigma_{\text{reac}} \) is dominated by inelastic scattering and not by our experimental data. A test of Eq. (1) is not possible at these lower energies because experimental angular distributions are not available. Such scattering experiments will be very difficult in particular at the lower energy because the elastic scattering cross section will deviate from the Rutherford cross section by less than 10\% here.

In conclusion, this work has confirmed for the first time experimentally that the total reaction cross section \(\sigma_{\text{reac}} \) of \(\alpha \)-induced reactions from the sum over all open reaction channels (measured by the activation technique) and \(\sigma_{\text{reac}} \) from the analysis of elastic scattering angular distributions is identical. This is an important experimental confirmation of the basic quantum-mechanical relations in Eqs. (1) and (2) which are widely used in the prediction of reaction cross sections e.g. in the statistical model, in particular because some previous studies \([5, 6, 7]\) failed to confirm this identity. A close relation between reaction cross sections and backward angle elastic scattering was also found by the analysis of barrier distributions (e.g. \([45]\)). If the validity of Eqs. (1) and (2) is assumed a priori, our result may also be interpreted as consistency check of different methods for the determination of the total reaction cross section \(\sigma_{\text{reac}} \). This result also strengthens the motivation for the study of elastic \(\alpha \)-scattering at low energies to determine \(\sigma_{\text{reac}} \) and to obtain a low-energy \(\alpha \)-nucleus potential for a better prediction of (\(\alpha, \gamma \)) capture cross sections \([42, 46] \).

We thank Zs. Dombradi for the ECIS calculations and A. Di Pietro and V. Scuderi for encouraging discussions. This work was supported by ERC St.G. 203175 and OTKA PD104664, K101328 and NN83261 (EuroGENDIS).

* Electronic address: gyurky@atomki.mta.hu

[1] L. McFadden and G. R. Satchler, Nucl. Phys. 84, 177 (1966).
[2] T. Rauscher, Int. J. Mod. Phys. E 20, 1071 (2011).
[3] G. Igo and B. D. Wilkins, Phys. Rev. 131, 1251 (1963).
[4] E. Labie et al., Nucl. Phys. A205, 81 (1973).
[5] A. Anse et al., Phys. Rev. C 50, 871 (1994).
[6] A. Ingemarsson et al., Nucl. Phys. A676, 3 (2000).
[7] H. Abele et al., Phys. Rev. C 50, R10 (1994).
[8] A. Ait-Tahar et al., Phys. Rev. C 52, 415 (1995).
[9] S. E. Woosley and W. M. Howard, Astrophys. J. Suppl. 36, 285 (1978).
[10] M. Arnould and S. Goriely, Phys. Rep. 384, 1 (2003).
[11] T. Rauscher, Phys. Rev. C 73, 015804 (2006).
[12] W. Rapp et al., Astrophys. J. 653, 474 (2006).
[13] E. Somorjai et al., Astron. Astrophys. 333, 1112 (1998).
[14] G. Gyürkő et al., Phys. Rev. C 74, 025805 (2006).
[15] N. Özkas et al., Phys. Rev. C 75, 025801 (2007).
[16] I. Cata-Danil et al., Phys. Rev. C 78, 035803 (2008).
[17] C. Yalcin et al., Phys. Rev. C 79, 065801 (2009).
[18] G. Gyürkő et al., J. Phys. G 37, 115201 (2010).
[19] G. G. Kiss et al., Phys. Lett. B 695, 419 (2011).
[20] M. Avrigea àu and V. Avrigea, Nucl. Phys. C 82, 014606 (2010).
[21] A. Sauerwein et al., Phys. Rev. C 84, 045808 (2011).
[22] P. Mohr, Phys. Rev. C 84, 055803 (2011).
[23] A. Palumbo et al., Phys. Rev. C 85, 028801 (2012).
[24] A. Di Pietro et al., Phys. Rev. C 69, 044613 (2004).
[25] C. B. Fulmer, J. Benveniste, A. C. Mitchell, Phys. Rev. 165, 1218 (1968); T. B. Robinson and V. R. W. Edwards, Nucl. Phys. A301, 36 (1980); J. B. A. England et al., Nucl. Phys. A388, 573 (1982); G. Ballestre, E. Casal, J. B. A. England, Nucl. Phys. A490, 245 (1988); K. B. Baktybaev, J. Izv. Ros. Akad. Nauk, Ser. Fiz. 39, 2152 (1975); N. Alpert, J. Alster, E. J. Martens, Phys. Rev. C 2, 974 (1970); D. K. McDaniel et al., Nucl. Phys. 17, 614 (1960); C. Pirat et al., Phys. Rev. C 17, 810 (1978).
[26] N. T. Porile, Phys. Rev. 115, 939 (1959).
[27] F. H. Ruddy et al., Nucl. Phys. A127, 305 (1969).
[28] P. H. Stelson et al., Phys. Rev. 133B, 911 (1964).
[29] M. Cogneau et al., Nucl. Phys. 73, 122 (1965).
[30] V. Scuderi et al., Phys. Rev. C 84, 064604 (2011).
[31] Z. Halász et al., Phys. Rev. C 85, 025804 (2012).
[32] G. Gyürkő et al., J. Phys.: Conf. Ser. 337, 012009 (2012).
[33] E. A. McCutchan, Nucl. Data Sheets 113, 1735 (2012).
[34] H. Junde, H. Xiaolong and J.K. Tuli, Nucl. Data Sheets 106, 159 (2005).
[35] A. Wallner, Nucl. Instr. Meth. B268, 1277 (2010).
[36] T. Rauscher and F.-K. Thielemann, At. Data Nucl. Data Tables 75, 1 (2000); 79, 47 (2001).
[37] A. J. Koning, S. Hilaire, and M. C. Duijvestijn, AIP Conf. Proc. 769, 1154 (2005).
[38] J. Raynal, Saclay Report No. CEA-N-2772 (1994).
[39] S. Raman, C. W. Nestor jr., P. Tikkanen, At. Data Nucl. Data Tables 78, 1 (2001).
[40] K. Alder et al., Rev. Mod. Phys. 28, 432 (1956).
[41] B. Singh, Nucl. Data Sheets 108, 197 (2007).
[42] P. Mohr et al., At. Data Nucl. Data Tables, submitted.
[43] P. N. de Faria et al., Phys. Rev. C 81, 044605 (2010).
[44] P. Mohr et al., Phys. Rev. C 82, 047601 (2010).
[45] H. Timmers et al., Nucl. Phys. A 584, 190 (1995).
[46] A. Palumbo et al., Phys. Rev. C 85, 035808 (2012).