Inhibition of cytotoxic T lymphocyte-induced target cell DNA fragmentation, but not lysis, by inhibitors of DNA topoisomerase I and II

Walter K. Nishioka

University of Massachusetts Medical School

Et al.
Inhibition of Cytotoxic T Lymphocyte-induced Target Cell DNA Fragmentation, but Not Lysis, by Inhibitors of DNA Topoisomerases I and II

By Walter K. Nishioka and Raymond M. Welsh

From the Department of Pathology, University of Massachusetts Medical Center, Worcester, Massachusetts 01655

Summary

Cytotoxic T lymphocytes (CTL) kill their target cells via a contact-dependent mechanism that results in the perturbation of the target cell’s plasma membrane and the fragmentation of the target cell’s DNA into nucleosomal particles. The membrane disruption is presumed to be due to the action of perforin, while the DNA fragmentation is thought to be by the activation of an endogenous nuclease(s). DNA topoisomerases I and II are nuclear enzymes with inherent endonuclease activities. We have investigated their role in the CTL-induced DNA fragmentation process. We report that in CTL killing assays, the treatment of target cells with topoisomerase I and II inhibitors blocks the CTL-induced DNA fragmentation process, but not the lysis of the target cell.

Materials and Methods

Generation and Preparation of Virus-specific CTL. CTL were induced by the injection of 6–12-wk-old male or female (C57BL/6 x C3H/HeSnJ)F1 mice with lymphocytic choriomeningitis virus (LCMV),1 Armstrong strain (10). Single cell splenocyte preparations, depleted of NK cell activity (10, 16), were prepared in warm (25–37°C) RPMI 1640 (Gibco Laboratories, Grand Island, NY) containing 2% FCS (Sigma Chemical Co., St. Louis, MO) and 25 mM Hepes (Sigma Chemical Co.), pH 7.4, and enriched for T cells (16, 17). Immediately before use, the T cells (CTL) were resuspended in RPMI 1640 containing 5% FCS (RPMI-5% FCS).

Cytotoxicity Assays. 5Cr (Amersham Corp., Arlington Heights, IL) and [3H]IUDR (ICN Radiochemicals, Irvine, CA) ([3H]-DNA) release assays were performed in parallel (10). For 5Cr release assays, L-929 cells were labeled with 5Cr in RPMI-5% FCS (10). To 12 x 75-mm glass tubes (Fisher Scientific, Pittsburgh, PA) was added 10 μl of the desired topoisomerase inhibitor (100 x concentration), dissolved in DMSO (Fluka Chemical Corp., Ronkonkoma, NY), at two times its final concentration in the assay. 1 ml of 5Cr-labeled targets (10^4 cells/ml) containing 5 μg/ml of Con A (Sigma Chemical Co.) was added to these tubes. DMSO alone did not inhibit effector cell activity or cause spontaneous cell death by 5Cr or [3H]-DNA release (data not shown). The target cells were aliquoted into 96-well plates (Costar, Cambridge, MA) at 10^4 targets per well in 100 μl and allowed to stand at room temperature (25°C) for 1–1.5 h, and the effector cells were added in 100 μl, in quadruplicate wells, for a final E/T ratio of 50:1 and a final Con A concentration of 2.5 μg/ml. Spontaneous 5Cr release from these samples was usually <5% above the spontaneous release of those samples that did not contain any inhibitors (data not shown). The E/T cell mixture was incubated at 37°C, 5% CO2, and the medium was collected for counting after 6–10 h. For the [3H]-DNA targets, 10 μl of the inhibitor in DMSO was added to each assay tube (Sarstedt, Newton, NC) at two times its final concentration. 1 ml (10^6 cells/ml) of target cells containing Con A (5 μg/ml) was added and the mixture was incubated for 1–1.5 h at room temperature. 1 ml of effector cells was added to achieve a final E/T ratio of 50:1 and a final Con A concentration of 2.5 μg/ml. The cell

1 Abbreviation used in this paper: LCMV, lymphocytic choriomeningitis virus.
mixture was incubated at 37°C, 5% CO₂ for 6-10 h. After the desired incubation period, the samples were pelleted at 500 g. The media from the tubes were collected, and the percent specific 125I-phase was mixed with an equal volume of isopropanol (Fisher Laboratories, Richmond, CA), and the gds was processed for autoradiography as previously described (10). The DNA was subjected to electrophoresis in a 1.5% agarose gds (Bio-Rad Scientific Co.). The DNA was precipitated overnight at -20°C. Total sample DNA was purified as described (21) with modifications. In triplicate, were pooled and incubated at 37°C overnight. The samples, in guanidine HCl, were counted on a gamma counter to determine the levels of 125I-DNA release, the respective samples, containing 20 mM Tris (pH 8.0), 5 mM EDTA, were added to denature cellular proteins and to inhibit further nuclease activities, for a final concentration of 4.5 M. The topoisomerase remains covalently linked to the other terminus of the DNA strand-break intermediate, termed the “cleavable complex” (15). Exposure of the cleavable complex to SDS or alkali denatures the topoisomerase-DNA interaction such that a DNA strand-break occurs by virtue of the release of one DNA terminus; the topoisomerase is covalently linked to the other terminus of the broken strand (15, 20). Treatment of the DNA with EDTA (>1 mM) (18, 19), high salt (0.5 M) (19), or high heat (>55°C) (20) induces the dissolution of the cleavable complex and allows the religation reaction of the cleaved DNA termini to occur. Thus, exposure of the drug-treated samples with the topo lysis buffer containing 20 mM EDTA, before DNA purification with the chaotropic agent, guanidine hydrochloride, prevents drug-induced DNA strand-break artifacts.

Results and Discussion

Camptothecin, mAMSA, and VM-26 are cytotoxic to all cycling cells (15). Their toxicity is directly proportional to the rate of cell proliferation (22). Drug titration assays were performed to determine the highest tolerable concentration of each drug, as assessed by spontaneous 51Cr release, for our target cells. We verified that cells grown in lower serum concentrations, i.e., media containing 3% FCS (5% FCS) vs. 10% FCS, were less susceptible to drug-related cytotoxicity (22). Consequently, the target cells were cultured and assayed in 5% FCS. Initial analysis of the killing of LCMV-infected targets in 5% FCS revealed, in comparison with 10% FCS, depressed levels of DNA fragmentation, but not 51Cr release (data not shown). Preliminary data suggested that this was associated with a reduced proliferative capacity of the virus-infected cells, probably due to viral interference of cellular metabolic pathways (23, 24), which could be compensated for by high serum concentrations (data not shown). To test the efficacy of the drugs in 5% FCS and under conditions free from the virus-induced interference in the target cell’s metabolism, we used uninfected L-929 cells as targets with LCMV-induced CTL in a lectin-dependent (25) killing system. The lectin Con A enables CTLs to nonspecifically bind and lyse uninfected target cells.

To determine whether treatment with the topo I inhibitor, camptothecin, would prevent CTL-induced DNA fragmentation, [125]IUDR-labeled L-929 cells were preincubated with fivefold dilutions of camptothecin before CTL addition.
A parallel 51Cr release cytotoxicity assay was performed to allow the comparison between cell lysis and DNA fragmentation. Fig. 1A shows that camptothecin inhibited, in a dose-dependent manner, the CTL-induced DNA fragmentation in the L-929 target cells, assessed by 125I-labeled DNA (125I-DNA) release. In contrast, 51Cr release was not affected, indicating that the CTL were functional and could effect a perforin-like disruption (1, 4) of the target’s plasma membrane. When the cell-associated 125I-DNA was purified and subjected to electrophoresis (Fig. 2A), the fragmentation of target cell DNA into nucleosomal particles was inhibited in a dose-dependent manner. As the concentration of camptothecin was decreased, an increasing proportion of DNA migrated as distinct bands, suggesting a processive mechanism of degradation into nucleosome core particles. Treatment with the topo II inhibitor, mAMSA, yielded similar results. Fig. 1B shows that mAMSA treatment of target cells prevented 125I-DNA release, but not 51Cr release. Fig. 2B shows that the DNA fragmentation into nucleosomal particles was also inhibited, similar to the inhibition by camptothecin (Fig. 2B).

When the inhibitors were combined, camptothecin and mAMSA caused effective inhibition of 125I-DNA release at ~2.5- and ~1.0-fold lower drug concentrations than that of either drug alone (Fig. 1C). The autoradiogram (Fig. 2C) of the electrophoresed 125I-DNA samples shows an equivalent level of DNA fragmentation inhibition at a drug dose fivefold lower than either drug used alone.

A property of mAMSA is that it intercalates into the DNA while binding to topo II (15). Perturbations in DNA structure due to drug intercalation could affect the ability of the nuclease(s) to recognize the DNA substrate (26, 27). We therefore asked if VM-26, a nonintercalating topo II inhibitor (15), could also block DNA fragmentation. VM-26, like the other inhibitors, blocked 125I-DNA release (Fig. 1D) and fragmentation (Fig. 2D), but not 51Cr release (Fig. 1D). Thus,
drug intercalation, per se, is not a requirement for the initiation in the fragmentation of the target's DNA.

To our knowledge, these results are the first to implicate distinct nuclear enzymes in the CTL-induced fragmentation of the target cell's DNA. We have also performed these experiments with the mouse mastocytoma cell line, P815, the prototype target for DNA fragmentation analysis, in short-term CTL-mediated (2--4 h) and valinomycin-mediated killing experiments with the mouse mastocytoma cell line, P815, the prototype target for DNA fragmentation, in short-term CTL-mediated (2--4 h) and valinomycin-mediated killing (28) assays (2 h), and have obtained results similar to those presented here (data not shown).

Reported functions for topo I and II do not include exonuclease activities that could account for the processive digestion of the target's DNA into nucleosome core particles (12, 13, 15). Topoisomerases act as swivels to relieve torsional constraints acquired as a result of transcription, replication, and packaging of the cell's DNA (12, 13, 15). These superhelical motifs are a predicament for nuclear enzyme accessibility to targeted DNA sequences (27, 29). Topoisomerases may thus play a supporting role by allowing the target cell's chromatin to be presented as a more accommodating substrate for (exo)nuclease digestion.

The experiments presented also shed light on the mechanism of target cell destruction induced by CTL. Proponents of the internal disintegration model (1--3, 6--8) of target cell killing by CTL have asserted that since the fragmentation of the target cell's DNA occurs prelytically, i.e., [3H]thymidine- or 125I-DNA release can be measured from NP-40 or Triton X-100 treated targets before the detectable release of 51Cr from these targets, it is the fragmentation of the target cell's DNA that causes the disruption of the plasma membrane. Within our data, the fact that the significant reduction in target cell DNA fragmentation is not followed by a corresponding inhibition of 51Cr release suggests that the nuclear disintegration component of CTL-mediated killing may not be required for the disruption of the target cell's membrane and subsequent target cell death. In support of this, Zychlinsky et al. (30) have recently shown that zinc, an inhibitor of endogenous nuclease activity (9), blocks DNA fragmentation, but not target cell lysis. Thus, the CTL-induced membrane perturbation may be sufficient for target cell death.

We thank Drs. R. Duke, E. Martz, H. McFarland, J. Stein, M. Vargas-Cortes, and R. Woodland for suggestions and critical reading of the manuscript, Dr. N. Ruddle for helpful discussions, Dr. L.F. Liu for suggesting the use of VM-26, Dr. B. Long and Ms. M. Welch of Bristol-Myers Squibb Co. for providing VM-26, Ms. N. Lomax of NCI for providing camptothecin lactone and mAMSA, Ms. M. Picard-Craig for the photography, and Ms. D. G. Nishioka for support and motivation.

This work was supported by U.S. Public Health Service research grants AI-17672, CA-34461, and AR-35506.

Address correspondence to Walter K. Nishioka, Department of Pathology, University of Massachusetts Medical Center, 55 Lake Avenue North, Worcester, MA 01655.

Received for publication 11 March 1991 and in revised form 6 September 1991.

References

1. Ojcius, D.M., and J.D.-E. Young. 1990. Cell-mediated killing: effector mechanisms and mediators. Cancer Cells (Cold Spring Harbor). 2:138.
2. Henkart, P.A. 1985. Mechanism of lymphocyte-mediated cytotoxicity. Annu. Rev. Immunol. 3:31.
3. Hayes, M.P., G.A. Berrebi, and P.A. Henkart. 1991. Induction of target cell DNA release by the cytotoxic T lymphocyte granule protease granzyme A. J. Exp. Med. 170:933.
4. Duke, R.C., P.M. Persechini, S. Chang, C.-C. Liu, J.J. Cohen, and J.D.-E. Young. 1989. Purified perforin induces target cell lysis but not DNA fragmentation. J. Exp. Med. 170:1451.
5. Sanderson, C.J. 1981. The mechanism of lymphocyte-mediated cytotoxicity. Biol. Rev. 56:153.
6. Duvall, E., and A.H. Wyllie. 1986. Death and the cell. Immunol. Today. 7:115.
7. Russell, J.H., and C.B. Dobos. 1980. Mechanisms of immune lysis: II. CTL-induced nuclear disintegration of the target begins within minutes of cell contact. J. Immunol. 125:1256.
8. Russell, J.H., V. Masakowski, T. Rucinsky, and G. Phillips. 1982. Mechanisms of immune lysis. III. Characterization of the nature and kinetics of the cytotoxic T lymphocyte-induced nuclear lesion in the target. J. Immunol. 128:2087.
9. Duke, R.C., R. Chervenak, and J.J. Cohen. 1983. Endogenous endonuclease-induced DNA fragmentation: An early event in cell-mediated cytolyis. Proc. Natl. Acad. Sci. USA. 80:6361.
10. Welsh, R.M., W.K. Nishioka, R. Antia, and P.L. Dundon. 1990. Mechanism of killing by virus-induced cytotoxic T lymphocytes elicited in vivo. J. Virol. 64:3726.
11. Gromkowski, S.H., T.C. Brown, P.A. Cerutti, and J.-C. Cottini. 1986. DNA of human Raji target cells is damaged upon lymphocyte-mediated lysis. J. Immunol. 136:752.
12. Vosberg, H.-P. 1985. DNA topoisomerases: enzymes that control DNA conformation. Curr. Top Microbiol. Immunol. 114:19.
13. Wang, J.C. 1985. DNA topoisomerases. Annu. Rev. Biochem. 54:665.
14. Netiss, J., and J.C. Wang. 1988. DNA topoisomerase-targeting antitumor drugs can be studied in yeast. Proc. Natl. Acad. Sci. USA. 85:7501.
15. D'Arpa, P., and L.F. Liu. 1989. Topoisomerase-targeting antitumor drugs. *Biochim. Biophys. Acta.* 989:163.

16. Welsh, R.M., P.L. Dundon, E.E. Eynon, J.O. Brubaker, G.C. Koo, and C.L. O'Donnell. 1990. Demonstration of the antiviral role of natural killer cells in vivo with a natural killer cell-specific monoclonal antibody (NK1.1). *Nat. Immun. Cell Growth Regul.* 9:112.

17. Kasaian, M.T., and C.A. Biron. 1989. The Activation of IL-2 transcription in L3T4+ and Lyt-2+ lymphocytes during virus infection in vivo. *J. Immunol.* 142:1287.

18. Udvardy, A., P. Schell, M. Sander, and T.-S. Hsieh. 1986. Topoisomerase II cleavage in chromatins. *J. Mol. Biol.* 191:231.

19. Minford, J., Y. Pomnier, J. Filipski, et al. 1986. Isolation of intercalator-dependent protein-linked DNA strand cleavage activity from cell nuclei and identification as topoisomerase II. *Biochemistry.* 25:9.

20. Robinson, M.J., and N. Osheroff. 1990. Stabilization of the topoisomerase II-DNA cleavage complex by antineoplastic drugs: Inhibition of enzyme-mediated DNA religation by 4′-(9-acridinyl-amino)methanesulphon-m-anisidide. *Biochemistry.* 29:2511.

21. Verma, M. 1988. High molecular weight DNA isolation by guanidine hydrochloride or guanidine isothiocyanate treatment. *Biotechniques.* 6:848.

22. Zwelling, L.A., E. Estey, L. Silverman, S. Doyle, and W. Hittelman. 1987. Effect of cell proliferation and chromatin conformation on intercalator-induced, protein-associated DNA cleavage in human brain tumor cells and human fibroblasts. *Cancer Res.* 47:251.

23. Tishon, A., and M.B.A. Oldstone. 1990. Perturbation of differentiated functions during viral infection in vivo. *Am. J. Pathol.* 137:965.

24. Fernandez-Tomas, C. 1987. Virus-directed suppression of host transcription. In *Mechanisms of Viral Toxicity in Animal Cells.* L. Carrasco, editor. CRC Press, Inc., Boca Raton, FL. 21-58.

25. Bevan, M.J., and M. Cohn. 1975. Cytotoxic effects of antigen- and mitogen-induced T cells on various targets. *J. Immunol.* 114:559.

26. Neidle, S., P.H. Laurence, and J.V. Skelly. 1987. DNA structure and perturbation by drug binding. *Biochem. J.* 243:1.

27. Travers, A.A. 1989. DNA conformation and protein binding. *Annu. Rev. Biochem.* 58:427.

28. Allbritton, N.L., C.R. Verret, R.C. Wolley, and H.N. Eisen. 1988. Calcium ion concentrations and DNA fragmentation in target cell destruction by murine cloned cytotoxic T lymphocytes. *J. Exp. Med.* 167:514.

29. Laitinen, J.L., L. Sistonen, K. Alitalo, and E. Holtti. 1990. C-Ha-rasV12 oncogene-transformed NIH-3T3 fibroblasts display more decondensed nucleosomal organization than normal fibroblasts. *J. Cell. Biol.* 111:9.

30. Zychlinsky, A., L.M. Zheng, C.-C. Liu, and J.D.-E. Young. 1991. Cytolytic lymphocytes induce both apoptosis and necrosis in target cells. *J. Immunol.* 146:393.