Comparative study of floristic diversity along altitude in the northern slope of the central Alborz Mountains, Iran

HALIME MORADI*, FARIDEH ATTAR**
Central Herbarium of Tehran University, Department of Botany, School of Biology, College of Science, University of Tehran. 16th Azar St., Enghelah Sq., Tehran 1417466191, Iran. Tel.: +98-21-61112968, *email: hlh.moradi@gmail.com; ** fattar@khayam.ut.ac.ir

Manuscript received: 6 November 2018. Revision accepted: 29 December 2018.

Abstract. Moradi H, Attar F. 2019. Comparative study of floristic diversity along altitude in the northern slope of the central Alborz Mountains, Iran. Biodiversitas 20: 305-312. The Alborz is one of two main mountain chains in the north of Iran. The flora and vegetation of the sub-alpine and alpine zone of the central Alborz are less known comparing to the vegetation of lower altitudes with Hyrcanian forests. In this study, floristic composition and life-form spectra were investigated along an altitudinal transect ranging from 2000 m to the alpine and sub-nival peak of Mt. Rostam-Nisht at 4500 m. We compared the floristic diversity of the studied transect with the data obtained from an earlier studied transect in Kheyrud forest. A total of 299 taxa were found in the survey which showed high species diversity in the area. In addition, our results showed remarkable difference in life form categories between lower altitudes (Hyrcanian forests) and sub-alpine and alpine zones.

Keywords: Alpine flora, biodiversity, Caspian forest, conservation, elevation

INTRODUCTION

Biodiversity includes the variety of species, genes they contain, the communities and ecosystems of which they are a part (McNeely et al. 1990). In a particular region, it indicates the richness in floristic composition, i.e., the diversity of species which in any given plant community is often termed as species richness (Van der Maarel 2005). The rapid loss in species and habitats, and changing the pattern of vegetation due to various biotic and abiotic factors have imposed the assessment of diversity. So, the need for floristic knowledge as a base for biodiversity conservation is required. This knowledge can help to monitor the species loss, distribution of species and the effect of anthropogenic pressures on species habitat destruction (Pant and Samant 2012). Such studies can finally locate hot spots and areas with high biodiversity for conservation (Phillips et al. 2003).

Floristic studies are undertaken by many researchers following various aspects of species diversity. E.g. studying the diversity of plant life forms in different vegetation types or communities (Siadati et al. 2010; Naqinezhad et al. 2015) afford direct structural components of vegetation stands and explaining vegetation structure (Box 1981). In this regard, assessment of biodiversity along altitudes can reduce plant community complexity. This is because of steep environmental gradients at relatively short distances (Körner 2007) which simply disclose the latitudinal changes of diversity (Mc Cain 2007). Some aspects of mountains such as spatial scale, power of theoretical tests and variability of taxonomic signal make them ideally suited for examining biodiversity (Körner 2000; Mc Cain 2009; Qiong et al. 2012) and attract many researchers to compare them floristically.

The Alborz, the best-known mountain range in Iran has been poorly investigated, particularly ecologically and botanically in alpine areas (Noroozi et al. 2008). In Iran, the studies related to vegetation structure as well as the flora mainly focused on forests (e.g. Jafari and Akhani 2008; Siadati et al. 2010; Jafari et al. 2013; Naqinezhad et al. 2015; Gholizadeh et al. 2017), while few studies were conducted in the regions above 2000 m (e.g. Akhani et al. 2013; Mahdavi et al. 2013; Noroozi et al. 2011; Moradi et al. 2017).

The current investigation is a part of a project to study the vegetation and ecological properties of sub-alpine and alpine areas along an altitudinal transect in high mountains of the central Alborz. The main objective of this study was to provide a floristic list of the vascular plants in the area. This can lead to complement the information about the locality of the species, specifically those with restricted altitudinal distribution. Besides, it provides more knowledge on biodiversity conservation. Moreover, we compared the floristic composition of our studied transect with a transect located in Kheyrud forest (50-2200 m) where is belonged to the Hyrcanian forests. The Hyrcanian forest is a unique natural closed-canopy deciduous forest with a gradient of floristic changes (Moradi et al. 2016) in northern slope of the Alborz from Caspian Sea level to the altitudes at <2800 m. The findings should provide insights to (i) the potential of biodiversity within the central Alborz Mountains, and (ii) a comparison between the flora and life forms of our studied area and Kheyrud forest.
MATERIALS AND METHODS

Study area

The Alborz extends at the southern shore of the Caspian Sea from the Ararat mountainous range, in the border of Armenia in the west to Hindu Kush range in Afghanistan to the east. It acts as a natural barrier between the Caspian Sea and the Central Plateau of Iran. The Alborz is topographically divided into eastern, central and western Alborz with maximal altitudes between 3000-3500 m and the valleys with a minimum of around 2000 m. It includes several peaks in the central Alborz with more than 4000 m, e.g., Mt. Damavand (5671 m) and Mt. Alamkuh (4840 m) (Khalili 1973).

The Alborz has two distinct climatic regimes for northern and southern slopes. The climatic information delineates a dry to semi-dry climate with a semi Mediterranean rainfall regime mainly in winter on the southern slope. Conversely, in the northern slope, there is a humid and sub-humid climate with maximum precipitation in autumn and winter and a relative minimum rainfall in spring with no real dry season. The climate is cold and sub-humid in lower altitudes (2100 m) and cold and dry in the sub-alpine and alpine zones (2400-4000 m) (Khalili 1973).

The northern and southern slopes divide the Alborz floristically. The southern slope is covered by dry Irano-Turanian steppic plant assemblages, while the Hyrcanian forest encompasses the northern slope in lower altitudes (<2800m) and is characterized by temperate broad-leaved deciduous trees (Zohary 1973; Frey and Probst 1986). Toward higher altitudes, in sub-alpine areas, the grasslands and steppic vegetation replace the Hyrcanian forest, which is mainly divided into tall herbaceous vegetation (Noroozi 2014), grassland with scattered trees and grasslands with thorn cushion (Frey and Probst 1986). Thorny cushions are mostly found at sub-alpine altitudes with lowest temperature and long snow cover duration (Klein 1987) followed by chasmophytic and mobile screen species at alpine and nival areas in rocky habitats and screees (Klein 1982; Noroozi et al. 2008; Noroozi 2014).

Our studied transect is located on the northern slope of the central Alborz in the Mazandaran province between N 36° 26′ 16.1″, E 051° 03′ 23.2″ and N 36° 24′ 05.9″, E 050° 57′ 43.7″. It consists of starts from 2000 m a.s.l. just above the timberline until 4500 m to the peak of Mt. Rostam-Nisht (Figure 1).
Vegetation sampling
Field sampling was performed during the growing season (summer and spring) of 2013 to 2015 in a total of 76 vegetation plots. Three 10 x 10 m vegetation plots were allocated in each 100 m elevational interval along an altitudinal transect ranging from 2000 m up to 4500 m, in sub-alpine, alpine and nival areas. We took only one vegetation plot at 4500 m because of little space at the peak. The data related to the location, elevation, slope degree and exposition of the plots were noted. The voucher specimens were deposited in the central Herbarium of Teheran University (TUH) and were identified based on Flora Iranica (Rechinger 1963-2010), Flora of Iran (Assadi et al. 1988-2015) and Flora of Iraq (Townsend et al. 1966-1985). We followed Raunkiaer's classification (Raunkiaer 1934) to separate the life forms of the species found in our survey.

In order to compare the floristic composition of the Hycranian forest and steppic grasslands of the central Alborz, we considered the sub-alpine, alpine and nival areas of Mt. Rostam-Nisht and the data from an earlier studied transect in Kheyrud forest (Siadati et al. 2010). This transect is located 7 km east of Nowshahr in Mazandaran province, between 51°33˝05΄N and 36°33˝08˝−36°45˝05΄N, ranging from 50 to 2100 m a.s.l. (Figure 1).

The methods for collecting vegetation data in Kheyrud transect was similar to the transect in Mt. Rostam-Nisht including the altitudinal intervals between the plots (100 m), the number of the plots per interval (3 plots), nomenclature and the extracted species attributes. However, the size of the plots differed between two transects (10 x 10 m in Mt. Rostam-Nisht and 20 x 20 m in Kheyrud forest) because of the difference in their vegetation types (closed forests vs. grasslands).

RESULTS AND DISCUSSION
Floristic diversity and the comparison of their vegetation types
The locality of the Alborz between Hindu Kush-Himalaya Mountains in the east, and Anatolia and Caucasus Mountains in the west makes it so important and strategic in terms of historical, evolutionary, phytogeographical and biogeographical aspects (Noroozi et al. 2008; Naqinezhad et al. 2017). The Caucasus and Central Anatolian Mountains have been identified as the areas with a strong biogeographic connection with the Alborz (Noroozi 2008). The occurrence of a high number of vascular plant species in these mountainous ecosystems demonstrates their high floristic diversity and biodiversity importance. A total of 299 plant taxa of vascular plants were recorded along our altitudinal transect in Mt. Rostam-Nisht (Table 1), as a representative of the sub-alpine, alpine and nival areas of the central Alborz. While, based on studies on Caucasus and literature survey, 226 species, 96 genera and 35 families were recorded in the sub-nival belt of the Caucasus within a range of 2800 (2900) – 4000 m (Shetekari et al. 2012). In the western and central Taurus, 180 vascular plant species were exclusive to the highest life zone which 150 species were found in altitudes higher than 3000 m (Parolly 2015). The study on the Naran Valley located in the western Himalayan province of the Irano-Turanian region demonstrated 198 species and 68 families (Khan et al. 2012).

Although the Alborz mountain is rich in plant species, this is not applied to all altitudinal ranges, e.g., the highest number of species (58 species) was occurred in lower altitudinal ranges at 2200 m, while, a few numbers of species (4 species) were found at 4400 m.

The recorded species was belonged to 48 families and 168 genera, among them were four families of pteridophytes, one family of gymnosperms and 43 families of angiosperms. Eudicots with 36 families, 139 genera and 245 species were the richest group, while monocots had 7 families, 23 genera and 47 species in the studied flora (Table 2). The families Asteraceae (34 taxa, 11.37%), Poaceae (31 taxa, 10.37), Lamiaceae (25 taxa, 8.36%), Fabaceae (25 taxa, 8.36%) and Caryophyllaceae (20 taxa, 6.99%) showed the highest species richness. The families Brassicaceae (18 taxa, 6.02%), Rosaceae (16 taxa, 5.35%), Scrophulariaceae (15 taxa, 5.02%), Boraginaceae (11 taxa, 3.68%), Apiaceae (11, 3.68%) and Rubiaceae (10 taxa, 3.34%) were the next species-rich families.

The families Asteraceae (17, 10.12%), Lamiaceae (15, 8.93%), Brassicaceae (14, 8.33%), Poaceae (13, 7.74%), Apiaceae (11, 6.55%) and Caryophyllaceae (10, 5.95%) were the most genera rich. The genera with the highest species richness were Astragalus (13 taxa, 7.74%), Potentilla (9 taxa, 5.36%), Veronica (8 taxa, 4.76%), Bromus (7 taxa, 4.17%), Poa (7 taxa, 4.17%) and Galium (6 taxa, 3.57%). The genera such as Astragalus, Nepeta, Cousinia, Potentilla, Silene and Oxytropis were found to be the richest genera in the area which was reported by other researchers (e.g., Noroozi et al. 2008; Rechinger 1963-2010). These genera have been found in Mt. Rostam-Nisht, particularly in high altitudes. Accordingly, these genera contained a high number of endemic species, e.g., 7 out of 13 taxa of Astragalus are the endemic taxa which occurred mainly at altitudes higher than 3500 m in the studied area.

The variation in different groups of taxa is another reflection of high floristic diversity along lowland-mountain transects in the central Alborz. Here, a clear example is the higher occurrence of pteridophytes in Kheyrud forest (in altitudes 50-2200 m) than sub-alpine and alpine areas (2000-4500 m). The high soil humidity in wet seasons and dense canopy tree covers in forests makes the pteridophytes show a remarkable diversity (Siadati et al. 2010) in the forest, though they are few in the sub-alpine and alpine areas. This can simply mirror the variation of plant groups along altitude which may also reveal the climatic variation in the Alborz (Moradi et al. 2017).
Name of taxa	Life form	Altitudinal range
Pteridophytes		
Aspleniaceae		
Asplenium ceterach L.	Hem	2200-2800
Asplenium septentrionale (L.) Hoffm.	Hem	2100
Dryopteridaceae		
Dryopteris dilatata (Hoffm.) A. Gray.	Hem	2800-3100
Equisetaceae		
Equisetum ramosissimum Desf.	Hem	2100-2200
Polypodiaceae		
Polypodium interjectum Shivas.	Hem	2100
Pteridaceae		
Adiantum capillus-veneris L.	Hem	2800
Gymnosperms		
Juniperus communis L.	Ph	2500-2600
Monocots		
Alliaceae		
Allium ampeloprasum L. subsp. iranicum	Ge	2000-3500
Allium capillatum Boiss.	Ge	3600-3800
Allium dederi Noël. & Regel.	Ge	2200-3800
Allium umbilicatum Boiss.	Ge	2100-2900
Asteraceae		
Arum maculatum L.	Ge	2100-2200
Cyperaceae		
Carex divisa Stokes.	Hem	2200
Carex songoricar Kar. & Kir.	Hem	2000-2300
Iridaceae		
Iris imbricata Lindl.	Ge	2500
Iris reticulata M. Bib.	Ge	2200
Isidioideae		
Isoliron tatarica Pall.	Ge	2200-2600
Liliaceae		
Fritillaria kotschyan a Herb. subsp. kotschyan a	Ge	2600-2900
Gagea gageoides (Zucc.) Vved.	Ge	2400-3900
Muscari neglectum Guss. ex Ten.	Ge	2100-2600
Ornithogalum hangu Boiss.	Ge	2000-2600
Ornithogalum orthophyllum Ten.	Ge	2400-3800
Puschkinia scilloides Adams.	Ge	2800-3100
Poaceae		
Agropyron leporatum (Neves) Grossh.	Ge	2800
Agropyron longe aristata	Hem	3500-4200
Agropyron pectiniforme Roem. & Schult.	Ge	2800-3300
Alopecurus textilis Boiss.	Hem	2600-4400
Bromus biebersteinii Roem. & Schult.	Hem	3100-4100
Bromus briziformis Fisch. & C.A. Mey.	Thr	2000-2700
Bromus erectus Huds.	Hem	2600
Bromus tectorum L.	Thr	2000-2600
Bromus tomentosus Trin.	Hem	2000-3500
Bromus tomentosus Boiss.	Hem	2600-3600
Bromus variegatus M. Bib.	Hem	3100-4100
Dactylis glomerata L.	Hem	2000-3500
Festuca ovina L.	Hem	2900-4300
Hordeum glaucum Steud.	Thr	2300
Lolium multiflorum Lam.	Thr	2700-3300
Lolium perene L.	Hem	2300
Lolium rigidum Gaudin.	Hem	2400-3000
Melica jacquemontii Decne. f. subsp. hohenackeri (Boiss.) W.Hempel	Hem	3000-3700
Melica persica Kunt.	Hem	2400-3000
Milium vernale M. Bib.	Thr	2300
Oryzopsis gracilis (Mez) Pilg.	Hem	3100-3800
Eudicots		
Acer campestre L.	Ph	2000-2200
Aipaceae		
Anthriscus nemorosus (M.Bieb.) Spreng.	Hem	2400-3700
Bupleurum cylindricum (Boiss. Hohen.)	Hem	2500-3700
Drude in Engler & Prantl.		
Bupleurum exaltatum M.B.	Hem	2600
Cervaria cervifolia (C.A. Mey) M. Pimen. Hem	Hem	2100-2900
Ferula szovitsiana D.C. var. Ch	Hem	2100-3100
kandhanensis		
Heracleum pastinaci folium C. Koch.	Ch	2400-2900
Laser trilobum (L.) Borkh.	Hem	2900-3500
Pimpinella tragiun Vill. subsp. lithophila	Hem	2000-3800
Prangos ulopterae DC.	Hem	2500-2900
Torilis radiata Moench.	Thr	2100
Trachydis suggesperos (Boiss.) Boiss. subsp. depressus	Hem	3700-4300
Asteraceae		
Achillea aucheri Boiss. subsp. aucheri	Hem	3600-3700
Achillea millefolium L. subsp. elbursensis	Hem	2100-3400
Anthemis trianfettii (L.) DC. subsp.	Hem	2000
khorassanica		
Artemisia abansithium L.	Ch	2000-3000
Artemisia chamaemelitfa Vill.	Ch	2100-3400
Artemisia melanolip Boiss.	Hem	3700-4300
Centaurea zuversindo (Sosn.) Sosn.	Ch	2400-2500
Cirsium lappaceum M. Bib. subsp. ferox	Ch	2100-3600
Boiss.		
Cirsium vulgare (Savi.) Ten.	Ch	2000-2300
Cossinia pincarnosho Boiss.	Hem	2400-3800
Cossinia ptericaus (C.A.Mey) Rech.f.	Hem	2000-4200
Crepis multicaulis Ledeb. subsp.	Hem	3900-4000
multicaulis		
Crepis sancta (L.) Babc. subsp.	Hem	2000-2400
wensensens		
Crepis welmeioides Boiss.	Hem	2000-2900
Erigeron caucasicus Stev. subsp. venustus	Hem	3900-4200
(Botsch.) Grierson.		
Helichrysum graveolens Sweet.	Hem	2900-3600
Helichrysum picatum DC.	Hem	2500-3300
Helichrysum psychophylion Boiss.	Hem	3400-4100
Hieracium procerigregen Litt. & Zahn.	Hem	2300-2600
Lactuca wilmhelsiana Fisch. & C.A.Mey.	Ch	2000-2707
in DC.		
Leontodon hispidus L. var.	Hem	2500-3700
mazanderanicus Rech.f.		
Pyrogeton amorphoglossus (Boiss.) Novopokr.	Hem	3900
Scorzonera cinerea Boiss.	Hem	2400-2500
Scorzonera radicoso Boiss.	Hem	4000
Senecio vulcanicus Boiss.	Hem	3800-4200
Tanacetum cocineum (Willd.) Grierson.	Hem	2500-2600
subsp. cocineum		
Tanacetum parthenin (L.) Sch. Bip.	Hem	2300-3000
Tanacetum polycyphalum Sch.Bip. subsp. Ch	Ch	2000-3700
Tatarianum sp.1	Hem	2100-3700
Tatarianum sp.2	Hem	2000-2900
Tatarianum sp.3	Hem	3400-4000

Table 1. Checklist of identified plant species at Mt. Rostam-Nish with life form categories and the altitudinal distribution range per species.
Genus	Species Code/Description	Locality	Notes
Berberidaceae			
Berberis integerina L.		Ph 220	
Bongardia chrysogonum (L.) Griseb.		Hm 2400	
Boraginaceae			
Alkana frigida Boiss.		Hm 2000	
Corydalis crenatum Miller.		Ch 2000	
Echium amoenum Fisch. & C.A. Mey.		Hm 2200	
Lappula microcarpatürk.		Hm 2000	
Myosotis lithospermifolia Hornem.		Hm 2000	
Myosotis olympica Boiss.		Hm 2000	
Nonnea persica Boiss.		Hm 2000	
Oinosma dichroanthum Boiss.		Hm 2000	
Roschelia disperma (L.F.) Koch.		Hm 2000	
Roschelia peduncularis Boiss.		Hm 2000	
Solenanthus stamineus J.F. Macbr.		Hm 2000	
Brassicaceae			
Aethionema grandiflorum Boiss. & Hoven.		Hm 2000	
Allaria petiolata (M.B.) Cavara & Grande		Hm 2200	
Alyssopsis mollis (Jacq.) O.E. Schulz		Hm 2000	
Alyssum desertorum Stapf. var. desertorum		Hm 2200	
Alyssum minus (L.) Rothm. var. micranthus (C.A. Mey.) Dudley		Hm 2100	
Alyssum repens Baumg. var. trichostachyum (Rupr.) Hayek.		Hm 2100	
Anchonion elychrifolium Boiss.		Hm 2500	
Arabis caucasica Willd. subsp. caucasica		Hm 2700	
Arabis sp.		Hm 2700	
Cerastium draba (L.) Desv.		Hm 2400	
Descurainia sophia (L.) Webb. in Berth.		Hm 2400	
Didymothypha auehi Boiss.		Hm 2200	
Draba nemorosa L.		Hm 2200	
Erysimum caespitatum DC.		Hm 2200	
Erysimum cispadatum D.C.		Hm 2200	
Isatis gauhei Bornm.		Hm 2200	
Silvertchium L.		Hm 2200	
Thlaspi hastulatum (Stev.) ex DC.		Hm 2200	
Campanulaceae			
Asyneuma amplexicaule Hand.-Mazz. subsp. amplexicaule		Hm 2600	
Asyneuma pulchellum Bornm.		Hm 2600	
Campanula glomerata L.		Hm 2600	
Campanula stenifert M. Bihe.		Hm 2600	
Capsifoliaceae			
Loniceria floribunda Boiss. & Buhse.		Ch 2500	
Caryophyllaceae			
Acantholinon hovenackeri Lede.		Ch 2900	
Arenaria alsinoides Willd.		Hm 2400	
Arenaria gypsophilies L.		Hm 2600	
Arenaria insignis Litw.		Hm 3700	
Cerastium dichtanum L.		Hm 2200	
Cerastium purpurascens Adams var. elburserae (Boiss.) Moschle.		Hm 3900	
Dianthus orientalis subsp. stenocalyx		Hm 2000	
Herniaria glabra L. var. glaberrima		Hm 2100	
Fenzl. in Lede.		Hm 2100	
Herniaria hisuta L.		Hm 3000	
Herniaria incaidam L.		Hm 2000	
Minuartia lineata (Boiss.) Bornm.		Hm 2500	
Minuartia recurva Schinz. & Thellung.		Hm 3400	
Minuartia scutelata (Fisch. & C.A. Mey.) Thellung.		Hm 2000	
Petrohagia alpina (Hahl.) Ball & Heywood.		Hm 2100	
Silene auehteriana Boiss.		Hm 2500	
Silene bupleureoids L.		Hm 2900	
Silene latifolia Poir.		Hm 2100	
Silene marshallii C.A. Mey. subsp. sahendica (Boiss. & Buhse) Malshi.		Hm 2800	
Stellaria alsinoides Boiss. & Buhse.		Hm 2400	
Chenopodiaceae			
Chenopodium foliosum Aschers.		Hm 2300	
Cistaceae			
Helianthemum nummularium Mill.		Hm 2100	
Convolvulaceae			
Convolvulus arvensis L.		Hm 2200	
Crassulaceae			
Rosularia sempervivum (M.Bieb.) A.Berger.		Hm 2100	
Sedum lenkoranicum Grossh.		Hm 2100	
Sedum palloidum M.B.		Hm 2200	
Sedum crupinum M.Bieb.		Hm 2100	
Euphorbiaceae			
Euphorbia zviotisis Fisch. & Mey.		Hm 2700	
Fabaceae			
Astragalus (Sect. Adiastpustus) aureus (Willd.)		Hm 2000	
Astragalus (Sect. Adiastpustus)		Hm 3400	
Boiss. & Hohen. in Boiss.		Hm 2900	
Astragalus (Sect. Caprini) chrysanths		Hm 2900	
Astragalus (Sect. Holooleue) alysoiides Lam. Hm 3200-410		Hm 2900	
Astragalus (Sect. Hnymenostegi)		Hm 3200	
Fumariaceae			
Astragalus (Sect. Hypognolotidei)		Hm 3700	
Geraniaceae			
Cardaria draba (L.) Webb. in Berth.		Hm 2100	
Hypericaceae			
Hypericum armenum Jaub.		Hm 2300	
Hypericum elongatum subsp. elongatum		Hm 2900	
Hypericum scabrum L.		Hm 2900	
Lamiaceae			
Ajuga comata Stapf.		Hm 2500	
Orobanchacea			
Plantaginaceae			
Polemoniaceae			
Polygalaceae			
Ranunculaceae			
Resedaceae			
Scrophulariaceae			
Senecionaceae			
Saxifragaceae			
Saxifragoideae			
Stellariaceae			
Stylidiaceae			
Tropaeolaceae			
Rosaceae
Lamium album subsp. album
Lamium amplexicaule
Leontopodium cardicae L. subsp. cardicae
Marrubium astracanicum Jaq.
Nepeta racemosa Lam.
Phlomis anisodonotu Boiss.
Phlomis olivieri Benth.
Salvia atropatana Bunge.
Salvia scabra L.
Scutellaria glechomoides Boiss.
Scutellaria pinnatifida A. Hamilt. subsp. pinpinifolia
Stachys balansae Boiss. & Kotschy ex Boiss.
Stachys byzantina C.Koch.
Stachys lavandulifolia Vahl.
Teucrium chamaedrys L. subsp. syriense (C.Koch.) Rech.f.
Teucrium polium L.
Thymus fedtschenkoi Roniger.
Thymus kotschyanus Boiss. & Hohen.
Ziziphora clinopoides Lam. subsp. elbusensis (Rech.f.) Rech.f.

Linaceae
Linum nervosum Waldst. & Kit. var. bungei (Boiss.) Sharifinia
Malva neglecta Wallr.

Orobanchaceae
Orobanchus sp.

Papaveraceae
Papaver armeniacum (L.) DC.
Papaver fugax Poir.

Plantaginaceae
Linaria elymaeflora (Boiss.) Kuprian.
Plantago atrata Hoppe.
Plantago lanceolata L.

Polygonaceae
Oxyria digyna (L.) Hill
Polygonum rotboellioides Jaub. & Spach.
Polygonum serpyllaceum Jaub. & Spach.
Rumex chamaemorus Miller.
Rumex elbusensis Boiss.
Rumex scutatus Boiss.

Primulaceae
Androsace maxima L.
Androsace villosa L.
Primula macrocalyx Bunge.

Ranunculaceae
Ceratophyllum testiculatum (Crantz) Roth.
Delphinium aquilegifolium (Boiss.) Bornm.
Delphinium lanigerum Boiss.
Ficaria kochii (Leder.) Irmshart. & Rech.
Parasenecion caespitosa J.R.Drumm. & Hutch.
Ranunculus crymophilus Boiss. & Hohen.
Ranunculus repens L.
Thalictrum foetidum L.

Rosaceae
Cerasus microcarpa (C. A. Mey.) Boiss.
Crataegus microphylla K.Koeh.
Crataegus sp.
Geum urbanum L.

and Potentilla adscatica Somnier. & Levier.
ex Keller.

Potentilla argentea L.
Potentilla bungei Boiss.
Potentilla hirta L.
Potentilla hololeuca Boiss.
Potentilla iranica (Rech.) Schiman-Czeika Hem.
Potentilla polychistha Boiss. & Hohen.
Potentilla reptans L.
Potentilla sp.
Prunus divaricata Ledeb.
Rosa iricita Stev. in Bib.
Sanguisorba minor Scop. subsp. muricata

(Bsch.) Briq.

Rubiacese
Asperula glomerata subsp. bracteata
Asperula setosa Jaub. & Spach.
Crucianella suaveolens C.A. Mey.
Crucifera taurica (Pall. ex Willd.) Ehrend.
Galium aparine L.
Galium aucheri Boiss.

Galium glauconicum C.A.Mey.

Galium spp.

Galium verum L. subsp. glabrescens

Schrophulariaceae
Scrophularia elbursensis

(Spur.) Briq.

Scrophularia amplexicaulis Benth.
Scrophularia elbursensis Bornm.
Scrophularia variegata M. Bieb. subsp. variegata

Verbascum speciosum Schrad.
Veronica aucheri Boiss.
Veronica bilara Schreb.
Veronica hederifolia L.
Veronica kurdica Benth. subsp. kurdica
Veronica paederota Boiss.
Veronica persica Poir.
Veronica rechingeri M.A.Fisch.
Veronica verna L.

Urticaceae
Urtica dioica L.

Valerianaceae
Valeriana saxatilis Bieb.

Violaceae
Viola alba Besser.

Viola golluca Lemm.

Note: Ph: Phanerophyte, Ch: Chamaephyte, Ge: Geophyte: Hem: Hemicryptophyte, Th: Therophyte

Table 2. Comparing the percentage of taxa within different plant groups along two altitudinal transects in Mt. Rostam-Nish and Kheyurud forest

Plant groups	Eudicots	Monocots	Gymnosperms	Pteridophytes
Mt. Rostam-Nish	Families	Genera	Species	Species
Families	75	82.74	81.94	73.22
Genera	14.58	13.69	15.72	17.97
Species	2.08	0.6	0.33	0.34
Kheyurud forest	Families	Genera	Species	Species
Families	72.15	73.53	72.00	
Genera	13.92	18.63	20.00	
Species	1.27	0.49	0.25	

Biodiversitas 20 (1): 305-312, January 2019
The similarities and differences of floristic comparison of the vegetation in Mt. Rostam-Nisht and Kheyrud forest were notable. Our findings represented close number of taxa, i.e. 299 taxa in the mountain and 295 taxa in the forest, but the number of different plant groups was different. As mentioned, pteridophytes were high in the forest comparing to the sub-alpine and alpine areas. Besides, the number of families and genera were less in the Mt. Rostam-Nisht while the species-rich genera were less in the forest (Table 2). The genera with high number of species occurred in Mt. Rostam-Nisht, e.g. the genus Astragalus with 13 taxa (7.74%) represented the richest genus in our studied area, while the genus Carex with 8 taxa (2.71%) was found as the richest genus in Kheyrud forest. Furthermore, there were 37 genera (12.54%) with two taxa and 149 genera (50.51%) with only one taxon in Kheyrud forest, while there were 37 genera (12.37%) with two taxa and 100 genera (33.44%) with only one taxon in the Mt. Rostam-Nisht.

The comparison of diversity in Mt. Rostam-Nisht and Kheyrud forest is manifest not only in the floristic composition, but also in terms of life forms of the plants. Life form reflects the adaptive responses of plants to environment and climate (Archibold 1995) and provides differences of various vegetation types (Neilson 1993; Archibold 1995). The dominant life forms were hemicyryptophytes (196 taxa, 65.55%) followed by therophytes (47 taxa, 15.72 %) and chamaephytes (35 taxa, 11.71 %). Geophytes (14 taxa,4.68 %) and phanerophytes (7 taxa, 2.34 %) contained low proportion of life forms in the studied transect (Figure 2).

The comparison of life form spectrum between mountain and forest displayed an obvious difference in the proportion of phanerophytes. They were more in the forest than in Mt. Rostam-Nisht (19.2% vs. 2.34%), while the occurrence of chamaephytes (11.71% vs. 1.4%) and hemicyryptophytes (65.55% vs. 30.6%) was higher in our studied area than in Kheyrud forest. Interestingly, the geophytes contained only 4.68% of the flora in sub-alpine and alpine areas, whereas they confined higher proportion (37.5%) in the forest. Finally, therophytes were more common in Mt. Rostam-Nisht (15.72%) than in the forest (9.3%) (Figure 2). In this regard, phanerophytes in Kheyrud forest are a common group which decreases with altitude and are scattered at forest/steppe ecotones, and finally disappeared at altitudes higher than 2400 m. Although, climatic stresses such as winter snow cover is supposed to filter out trees in high altitudes (Körner 1999) (see Moradi et al. 2017 for more details), but Noroozi and Körner (2018) believed that the absence of trees up to 2850 m is best explained by millennia of detrimental land use practices. Chamaephytes, a well-known life form in the mountains, with a long altitudinal range from 2800-4300 m in Mt. Rostam-Nisht, seems to cope effectively with grazing in lower altitudes and climatic harshness of high altitudes (Moradi et al. 2017).

The major variation of life form proportions across two transects is also related to geophytes and hemicyryptophytes. Generally, geophytes comprise little number of species in alpine zones (Noroozi et al. 2011) as in our studied area. The sub-alpine and alpine zones are commonly characterized by hemicyryptophytes (Noroozi et al. 2008) which are associated with colder climates and longer periods of coldness (Raunkiaer 1934). The activities such as human effects, grazing and disturbance can make suitable habitats for therophytes in both Mt. Rostam-Nisht and Kheyrud forest. Therophytes have been found as indicators for highly stressful habitat in the forests (Siadati et al. 2010; Naqinezhad et al. 2015). Similarly, Mt. Rostam-Nisht, particularly in lower altitudes is threatened by land use changes, strong grazing pressure and trampling which resulted to the growth of some annual species such as Alyssum minus, Descurainia sophia, Sisymbrium irio and Thlaspi hastulatum.

Threat and conservation

The changing of vegetation types and habitats from Hycanian forest to the timberline and the particular vegetation of the forest/steppe, makes the Alborz an important landscape for conservation of species and biodiversity. The importance is more when treeline ecotones between forest and steppe are discussed. Climatic warming might cause an upslope ascent of treeline ecotones and the consequent contraction and fragmentation of alpine areas (Camargo et al. 2006). So, treeline ecotones can be considered as early indicators of future changes and the stability of forest stands under the increasing stresses of climate change (Walker et al. 2003). Although, the ecotones and alpine areas of the Alborz are naturally more protected comparing to the forests, but they supply a large amount of food capacity for cattle, so is highly under the pressure of sheep grazing mainly in last decades. Human and agricultural activities, livestock grazing, severe harvesting of endangered species for economic and ornamental purposes as well as the collection of medical plants are the main threats in the Hycanian forest (Naqinezhad et al. 2017). On the other hand, overgrazing of the vegetation in the delicate sub-alpine and alpine areas caused destruction in vegetation, habitat and biodiversity loss and intensive reduction in space for endemic and narrow distributed species (Noroozi et al. 2008). The Alborz Mountains should receive considerable ecological
attention for both conservation and theoretical reasons. More preserving and conservation of species and habitat is needed to protect its diverse and distinctive flora and vegetation.

ACKNOWLEDGEMENTS

This research was a part of Ph.D. dissertation which was supported by the University of Tehran, Tehran, Iran. The authors would like to express special thanks to A. DarvishiSefat (Khazar Mountain Team, Chalus), and the Vandarbon mountaineering federation staffs for their assistance during field visits. Particular thanks to Prof. Dr. Sh. Zarre (University of Tehran) for determination and confirmation of several Astragalus species. The authors are also indebted to DAAD (Deutscher Akademischer Austausch Dienst) for a grant to H.M. (funding grant number 57214227).

REFERENCES

Akhani H, Mahdavi P, NorooziJ, Zarrinpour V. 2013. Vegetation patterns of the Irano-Turanian steppe along a 3000 m altitudinal gradient in the Alborz mountains of northern Iran. Folia Geobot 48: 229-255.

Archibold OW. 1995 Ecology of World Vegetation. Chapman & Hall, London.

Assadi M, Massoumi AA, Khatamsaz M, Mozaffarian M. 1988-2015. Flora of Iran. Research Institute of Forests and Rangelands Publication, Tehran. [Persian]

Box EU. 1981. Macroclimate and plant forms: an introduction to predictive modeling in phytophography. Dr. Junk W, The Hague.

Camarero JJ, Gutierrez E, Fortin MJ. 2006. Spatial patterns of plant richness across treeline ecotones in the central Alborz (Iran). Phytocoen 463: 215-232.

Camerero JJ, Gutierrez E, Fortin MJ. 2006. Spatial patterns of plant richness across treeline ecotones in the Pyrenees reveal different locations for richness and tree cover boundaries. Glob Ecol Biogeogr 15: 182-191.

Frey W, Probst W. 1986. A synopsis of the vegetation of Iran. In: Kürschner H (ed). Contribution of the Vegetation of Southwest Asia. Dr. Ludwig Reichert, Wiesbaden.

Gholizadeh H, Saedeh Mehrvarz SH, Naqinezhad A. 2017. Floristic study of the alpine flora of Iran. Biodiversity Conserv 17: 493-521.

Gholizadeh H, Saeidi Mehrvarz SH, Naqinezhad A. 2017. Floristic study of the alpine flora of Iran. Biodiversity Conserv 17: 493-521.

McNeely JA, Miller KR, Reid WV, Mittermeier RA, Werner TB. 1990. Conserving the world biodiversity. IUCN, WRI, WWF and World Bank, Washington D.C.

Moradi H, NaqinezhadA, Siadati S, Yousefi Y, Attar F, Etemad V, Reif A. 2016. Elevational gradient and vegetation environmental relationships in the central Hyrcanian forests of northern Iran.Nord J Bot 34: 1-14.

Noroozi J, Attar F, Oldeland J. 2017. Plant functional type approach for a functional interpretation of altitudinal vegetation zones in the Alborz Mts., Iran.J. Mt. Sci 14: 2257-2269.

Noroozi J, Pauli H, Grabherr G, Breekle SW. 2011. The subnival-nival vascular plant species of Iran: a unique high-mountain flora and its threat from Climate Warming. Biodivers Conserv 20:1319-1338.

Noroozi J. 2014. A glance at the Wildflowers of Iranian Mountains. Karimkhakan Zand Publication, Tehran.

Noroozi J, Körner C. 2018. A bioclimatic characterization of high elevation habitats in the Alborz mountains of Iran. Alpine Bot. DOI: 10.1007/s00035-018-0202-9

Pant S, Samant SS. 2012. Diversity and regeneration status of tree species in Khojkhan Wildlife Sanctuary, North-Western Himalaya. Trop Ecol 53: 317-331.

Parolli G. 2015. The High-Mountain Flora and Vegetation of the Western and Central Taurus Mts. (Turkey) in the Times of Climate Change. In: Oztürk M, Hakeem K, Farahdah-Hanum I, Elie R (eds) Climate change impacts on high-altitude ecosystems. Springer, Cham.

Phillips OL, Martinez RV, Vargas PN, Monteagudo AL, Chuspe Zans ME, Sánchez WG, Cruz AP, TimanáM, Yli-Halla M, Rose S. 2003. Efficient plot-based floristic assessment of tropical forests. Trop Ecol 19: 629-645.

Qiong L, Grytnes JA, BBirks HJ. 2010. Alpine vegetation and species-richness patterns along two altitudinal gradients in the Gyama Valley, south-central Tibet, China. Plant Ecol Divers 3: 235-247.

Raunkiaer C. 1934. The Life Form of Plants and Statistical Plant Geography. Clarendon Press, Oxford.

Rechinger KH. 1993-2010. Flora Iranica, Vols. 1-176. Akademische Druck- und Verlagsanstalt, Graz.

Siadati S, Moradi H, Attar F, EtemadV, Hamzeh’ee B, Naqinezhad A. 2010. Botanical diversity of Hyrcanian forests; a case study of a transect in the Kheyrudd protected lowland mountain forests in northern Iran. Phytotaxa 7: 1-18.

Shotelauri Sh, Cheilde D, Barnaulov N. 2012. Diversity and florogenesis of subnival flora of the Caucasus. J Life Sci. 6:917-930. Townsend CC, Guest E, Al-Rawi A. 1966–1985. Flora of Iraq. Vols. 1-10, Ministry of Agriculture of the Republic of Iraq, Baghdad.

Van der Maarel E. 2005. Vegetation Ecology. Blackwell Publishing, Oxford.

Walker S, Wilson JB, Steel J, Rapson GL, SmithB, King WM, Cottam YH. 2003. Properties of ecotones: Evidence from five ecotones objectively determined from a coastal vegetation gradient. J Veg Sci 14: 579-590.

Zohary M. 1973. Geobotanical foundations of the Middle East, Vols. 1-2. Fischer Verlag, Stuttgart.