Heat-shock stress activates a novel nuclear import pathway mediated by Hikeshi

Naoko Imamoto* and Shingo Kose
Cellular Dynamics Laboratory; RIKEN Advanced Science Institute; Wako, Saitama, Japan

Cellular stresses significantly affect nuclear transport systems. Nuclear transport pathways mediated by importin β-family members, which are active under normal conditions, are down-regulated. During thermal stress, a nuclear import pathway mediated by a novel carrier, which we named Hikeshi, becomes active. Hikeshi is not a member of the importin β family and mediates the nuclear import of Hsp70s. Unlike importin β-family-mediated nuclear transport, the Hikeshi-mediated nuclear import of Hsp70s is not coupled to the GT-Pase cycle of the small GT-Pase Ran but rather is coupled with the ATPase cycle of Hsp70s. Hikeshi-mediated nuclear import is essential for the attenuation and reversal of the thermal stress response in human cells. The mechanism and functions of this newly identified nuclear import pathway will be discussed.

Introduction

In eukaryotic cells, hundreds of molecules are exchanged between the nucleus and the cytoplasm every minute. This process, called nucleocytoplasmic transport, is crucial not only for basic cellular activities but also for regulating various cellular events. Based on the literature and database information, we can estimate that as much as ~30% of the proteins expressed in cells are nuclear proteins, indicating that the nucleocytoplasmic transport is the major intracellular trafficking pathway in terms of the quantity and diversity of molecules that are transported.

To enter and exit the nucleus, molecules must translocate through nuclear pore complexes (NPCs), which are large protein assemblies that are embedded in the nuclear envelope. NPCs allow the passive diffusion of small molecules, such as ions and proteins smaller than ~30 KDa. However, larger molecules must bind to a nucleocytoplasmic transport carrier; these are typically hydrophobic because the transport channel of the NPCs is hydrophobic. The best-characterized transport carriers are the members of the importin β family. These proteins are conserved from yeast to mammals and are considered to facilitate the nuclear transport of most proteins and many different RNAs.

Since 1995, when the first nuclear import carrier (importin β) was identified, our understanding of the basic mechanism of nucleocytoplasmic transport has advanced significantly. One key feature of this transport is that cargoes can continue to accumulate in one compartment against a chemical concentration gradient, i.e., from the cytoplasm to the nucleus or from the nucleus to the cytoplasm. To achieve this, carriers bind to cargo in one compartment, translocate through NPCs and dissociate from the cargo in the target compartment. The GT-Pase cycle of the small GT-Pase Ran is coupled with importin β-mediated transport pathways and plays a crucial role in the cargo binding and release that occurs in the nucleus or in the cytoplasm. Each nuclear import or export cycle consumes one GTP hydrolyzed by Ran, which serves as a driving force of the transport. To date, studies of nuclear protein import or export have focused almost exclusively on large protein complexes (NPCs), which are large protein assemblies that are embedded in the nuclear envelope.
on the Importin-Ran system, and the different transport pathways have not been identified/investigated.

Recently, we identified a transport pathway that is mediated by a novel carrier protein, Hikeshi, that becomes active during the thermal stress. Hikeshi does not belong to the importin β family, and it is evolutionarily conserved from yeast to mammalian species. The mechanism and physiological significance of Hikeshi-mediated nuclear import will be discussed.

Environmental Stresses Affect the Nuclear Transport

Upon exposure to environmental stresses, cells respond by altering many aspects of cellular physiology to protect cells from stress damage. After release from stresses, cells must attenuate the stress response and restore normal activities to survive. A shift in the temperature from the physiological state (heat shock) causes protein misfolding, protein dysfunction or protein aggregation, and thus perturbs protein homeostasis. In response to heat shock, one prominent phenomenon observed in cells is the increase in the cellular level of molecular chaperones known as heat-shock proteins (HSPs), which play essential roles in maintaining protein homeostasis. In addition to heat shock, a large variety of environmental stresses are known to induce the expression of HSPs. Therefore, the heat-shock response is considered synonymous with the cellular stress response. In addition, among many other stresses, heat-shock stress is most susceptible to reversion from stress damage within a short time frame. Heat-shock stress is therefore an excellent model system in which to study a cellular stress response, as well as the recovery of cells from stress.

During stresses, normal transcription and translation are downregulated, whereas stress-specific mechanisms are upregulated. Little was known about the nuclear transport during stress; however, several groups reported that stresses, such as heat-shock and oxidative stresses, induce nuclear retention and inhibition of the nuclear export of importin α, an adaptor molecule that connects classical nuclear localization signals (NLSs) to importin β, perturbing the importin α/β pathway. Furthermore, in yeast and in mammalian cells, different stresses induce the cytoplasmic localization of Ran, implying perturbation of the GTPase cycle, which could negatively affect all transport pathways mediated by importin β family members. On the other hand, it was known for nearly 30 y that the major molecular chaperone Hsp70/Heat shock protein 70 (Hsp70) strongly accumulates in the nucleus in response to heat shock. However, neither the mechanism of its nuclear accumulation nor its nuclear function was known. Studies using microinjection and reconstituted transport showed that the nuclear import activity of Hsp70s is upregulated during thermal stress. The evidence indicates that cellular stress significantly affects the nuclear transport system: the conventional nuclear transport pathway is downregulated, whereas stress-specific nuclear transport becomes active.

The Search for a Factor that Mediates the Stress-Induced Nuclear Import of Hsp70s

What mediates the nuclear import of Hsp70s under stress conditions when importin β family member-mediated nuclear transport is downregulated? To answer this question, we initially reconstituted heat shock-induced nuclear import using a cell-free transport assay using digitonin-permeabilized semi-intact cells. Because Hsp70 is a “sticky” protein, we could not identify its interaction partner molecule(s) required for its nuclear import via a simple binding assay (e.g., pull-down assays or immunoprecipitation experiments). In the reconstituted transport experiment, a combination of cytosol or permeabilized cells prepared from either normal or heat shock-stressed HEK293 cells revealed that the nuclear import activity of Hsp70s was present in the cytosol prepared from stressed cells. The biochemical fractionation of the cytosol prepared from stressed cells, followed by an examination of the nuclear import activity of Hsc70 in the cell-free transport assay, identified a protein encoded by human chromosome 11 open reading frame 73 (C11orf73) as a factor essential for the nuclear import of Hsp70s. C11orf73 encodes a protein that is evolutionarily conserved from yeast to mammals, but its function was unknown. Bacterially expressed recombinant C11orf73 protein supported the nuclear import of Hsc70 in cell-free transport assays; moreover, the knockdown of C11orf73 using siRNA inhibited the heat shock-induced nuclear import of Hsp70s in living cells, demonstrating the essential role of C11orf73 in the nuclear import of Hsp70s. Based on the cellular function described above, we renamed C11orf73 as Hikeshi.

Identification of Hikeshi as a Nuclear Import Carrier

Although it was evident that Hikeshi is essential for the heat shock-induced nuclear import of Hsp70s, our primary question was whether Hikeshi functions as a nuclear import carrier. If Hikeshi is a nuclear import carrier, it must bind to NPC components (nucleoporins) and be able to translocate through nuclear pore complexes, as all known nuclear transport carriers do. It was also important that the binding between Hikeshi and Hsp70s be regulated to allow the nuclear accumulation of Hsp70s against a chemical concentration gradient. In the case of importin β, the GTase cycle of Ran plays a crucial role in this active transport: cargoes bind to importin β in the cytoplasm where the RanGTP concentration is low but dissociate in the nucleus where RanGTP concentration is high because RanGTP binding to importin β triggers the cargo release. We therefore examined whether Hikeshi fulfills the above two criteria of a carrier: first, its ability to translocate through NPCs through interactions with FG-repeat containing nucleoporins (FG-Nups), and second, the regulation of its binding to Hsp70s.

Hikeshi translocates through NPCs and interacts with FG-Nups. GFP-Hikeshi, when expressed in living cells, localized diffusely throughout the cytoplasm and the nucleus. When incubated with digitonin-permeabilized semi-intact cells, GFP-Hikeshi enters the nucleus in
accepted that all known transport carriers translocate through the central channel of NPCs, which are filled with hydrophobic FXFG- or GLFG-repeats (FG-repeats), and that translocation proceeds through the absence of soluble factors or energy sources, showing that it is capable of translocating through NPCs on its own. This translocation was inhibited by the addition of importin β or wheat germ agglutinin (WGA), indicating that its nuclear migration occurs through a specific interaction with nucleoporins. Although the details of NPC translocation are currently not understood, it is now widely accepted that all known transport carriers translocate through the central channel of NPCs, which are filled with hydrophobic FXFG- or GLFG-repeats (FG-repeats), and that translocation proceeds through

Figure 1. Heat-shock stress downregulates the conventional nuclear transport pathway but upregulates the nuclear import of Hsp70s. (A) Nuclear import of importin β family cargoes or Hsc70 was examined in living cells by microinjection (left panels) or in reconstituted transport assay using digitonin-permeabilized semi-intact cells (right panels). In living cells, SV40 T-NLS (importin β cargo) efficiently accumulates in the nucleus whereas Hsc70 do not under normal condition. In contrast, Hsc70s accumulate efficiently in the nucleus whereas SV40 T-NLS does not under the heat shock condition. Results of 5min after cytoplast micinjection are shown. In reconstituted transport, SV40 T-NLS and M9 (transportin cargo) accumulate efficiently in the nucleus of permeabilized cells whereas Hsp70 do not in the presence of cytosol prepared from normal cells. In contrast, Hsp70s accumulate efficiently in the nucleus of permeabilized cells whereas SV40 T-NLS and M9 do not in the presence of cytosol prepared from heat shock treated cells. (B) Illustration of nuclear transport under normal condition and heat shock stress condition.
interactions between the carriers and FG repeats of nucleoporins.

When examined in a Bacto Halo assay, Hikeshi bound to FG-repeats containing nucleoporins, and this binding was inhibited by importin β, indicating that Hikeshi translocate through NPCs by interacting with the FG repeats of nucleoporins in a manner similar to that of importin β. Studies have suggested the binding of Hikeshi to Hsp70s. Demonstrating the physical interaction of Hikeshi and Hsp70s was initially challenging. Hikeshi bound to Hsp70s in a pull-down assay from cell extract, and it mediated the nuclear import of His70 in the presence of cell extract. Interestingly, the interaction of Hikeshi with Hsp70s in the crude cell extract and the Hikeshi-dependent transport of Hsp70s always depended on the presence of ATP. However, Hikeshi neither supported the nuclear import of His70 nor bound to Hsp70s in the absence of cell extract, even in the presence of ATP. These observations showed that Hikeshi and Hsp70s do associate with each other but suggest that their binding requires some soluble factor(s) in conjunction with ATP. To identify the soluble factor(s) necessary for the Hikeshi-Hsp70 interaction, we again performed biochemical fractionation and followed the nuclear import of Hsp70 in the presence of Hikeshi in cell-free transport assay. We identified Hsp110 family members as the cofactors required for Hsp70 import by Hikeshi. Hsp110 is a co-chaperone of Hsp70, which functions as a nucleotide exchange factor of Hsp70s.

In cells, Hsp70s do not function alone, but always function with co-chaperones that promote the ATPase cycle of Hsp70s. For example, Hsp70s nucleotide exchange factors, such as Hsp110, convert the ADP-bound form of Hsp70 to the ATP-bound form, whereas J-domain fractionation and followed the nuclear import of Hsp70 in the presence of Hikeshi in cell-free transport assay. We identified Hsp110 family members as the cofactors required for Hsp70 import by Hikeshi. Hsp110 is a co-chaperone of Hsp70, which functions as a nucleotide exchange factor of Hsp70s.

In cells, Hsp70s do not function alone, but always function with co-chaperones that promote the ATPase cycle of Hsp70s. For example, Hsp70s nucleotide exchange factors, such as Hsp110, convert the ADP-bound form of Hsp70 to the ATP-bound form, whereas J-domain fractionation and followed the nuclear import of Hsp70 in the presence of Hikeshi in cell-free transport assay. We identified Hsp110 family members as the cofactors required for Hsp70 import by Hikeshi. Hsp110 is a co-chaperone of Hsp70, which functions as a nucleotide exchange factor of Hsp70s.

In cells, Hsp70s do not function alone, but always function with co-chaperones that promote the ATPase cycle of Hsp70s. For example, Hsp70s nucleotide exchange factors, such as Hsp110, convert the ADP-bound form of Hsp70 to the ATP-bound form, whereas J-domain fractionation and followed the nuclear import of Hsp70 in the presence of Hikeshi in cell-free transport assay. We identified Hsp110 family members as the cofactors required for Hsp70 import by Hikeshi. Hsp110 is a co-chaperone of Hsp70, which functions as a nucleotide exchange factor of Hsp70s.

In cells, Hsp70s do not function alone, but always function with co-chaperones that promote the ATPase cycle of Hsp70s. For example, Hsp70s nucleotide exchange factors, such as Hsp110, convert the ADP-bound form of Hsp70 to the ATP-bound form, whereas J-domain fractionation and followed the nuclear import of Hsp70 in the presence of Hikeshi in cell-free transport assay. We identified Hsp110 family members as the cofactors required for Hsp70 import by Hikeshi. Hsp110 is a co-chaperone of Hsp70, which functions as a nucleotide exchange factor of Hsp70s.

In cells, Hsp70s do not function alone, but always function with co-chaperones that promote the ATPase cycle of Hsp70s. For example, Hsp70s nucleotide exchange factors, such as Hsp110, convert the ADP-bound form of Hsp70 to the ATP-bound form, whereas J-domain fractionation and followed the nuclear import of Hsp70 in the presence of Hikeshi in cell-free transport assay. We identified Hsp110 family members as the cofactors required for Hsp70 import by Hikeshi. Hsp110 is a co-chaperone of Hsp70, which functions as a nucleotide exchange factor of Hsp70s.
restricted to the attenuation of HSF activity but also seemed to have broader effects on the reversion of the heat shock-induced nuclear phenotype. For example, function and structure of nucleolus is affected with various cellular stresses. It is known that some nucleolar proteins are released from the nucleolus and dispersed into the nucleoplasm in response to heat shock, but they re-accumulate in the nucleolus after release from stress. This re-accumulation was not observed in the Hikeshi-depleted cells.

All of the above observations show that Hikeshi is required to protect cells from heat shock damage and is required for the attenuation and reversion of multiple heat shock-induced nuclear phenotypes. These functions are reminiscent of "Hikeshi," which is the traditional Edo-era Japanese compound word meaning firefighter, smokejumper or troubleshooter. Our results provide evidence for the physiological significance of Hikeshi-mediated nuclear import pathway activated during thermal stress.

Perspectives

Revealing a nuclear transport pathway that becomes active during thermal stress will raise fundamental new questions. For example, in spite of many reports demonstrating that stresses affect numerous nuclear events involving DNA metabolism and RNA biogenesis, which must be reverted upon release from stresses in order for cells to survive, the mechanisms underlying the reversion of stress-induced nuclear phenotypes have not been studied in depth to date. Our findings clearly show that there are active mechanism(s) for the reversion of the thermal stress-induced nuclear phenotype and that the activity of Hsp70s inside the nucleus is crucial, at least in part for this reversion. Because the depletion of Hikeshi seems to affect the reversion of various nuclear phenotypes, it is possible that the Hikeshi mediates nuclear import of proteins other than Hsp70s that are also responsible for reverting stress-induced nuclear phenotypes. Finding of Hikeshi-mediated nuclear transport pathway will provide a new avenue for research to address questions regarding how cells recover from thermal stress damage.

Another intriguing question to address is the molecular mechanism underlying the activation of Hikeshi-mediated nuclear import. Preliminary analysis shows that, at least in a reconstituted system, posttranslational protein modifications such as the phosphorylation of Hikeshi or Hsp70s are not involved in the activation of Hikeshi-mediated nuclear import. Because the ATPase cycle of Hsp70s, which is regulated by co-chaperones, is likely involved in the Hikeshi-mediated nuclear import,
is also important to analyze the functions served by protein from yeast to mammals, because Hikeshi is evolutionarily conserved from yeast to mammals. Hikeshi is provided by the molecular chaperone system. In addition, the nuclear transport system and molecular chaperone system from aspects of evolution. Further study of the nuclear transport switching mechanism should provide new insights into the regulation of both the nuclear transport system and the molecular chaperone system. In addition, because Hikeshi is evolutionarily conserved from yeast to mammals, it is also important to analyze the functions of Hikeshi in other organisms to know the conservation and divergence of nuclear transport system and molecular chaperone system from aspects of evolution.

Acknowledgments

We thank members of the Cellular Dynamics Lab for helpful comments and discussions. This work was supported by RIKEN Special Funding for Molecular System, ASI FY2012 Fund for Seeds of Collaborative Research to S.K., MEXT grant-in-aids to S.K., and funding awarded to N.I. by the Japan Society for the Promotion of Science (NIPS) through the “Funding Program for Next Generation World-Leading Researchers (Next Program),” initiated by the Council for Science and Technology Policy (CSTP).

References

1. Simpson JC, Wiessmann R, Poole JL, Pappelbaum R, Wтаніmіn S. Systematic redshark localization of novel proteins identified by large-scale cDNA sequencing. EMBO Rep 2001; 1:287-92; PMID:11464746; http://dx.doi.org/10.1038/sj.embor.745035.

2. Hosta A, Dobler E, Riedl G. The structure of the nuclear pore complex. Annu Rev Biochem 2001; 81:431-53; PMID:11458845; http://dx.doi.org/10.1146/annurev.biochem.81.110199.204509.

3. Wanta JS, Rose MR. The nuclear pore complex and nuclear transport. Cold Spring Harb Perspect Biol 2010; 2:a00062. PMID:20630994; http://dx.doi.org/10.1101/cshperspect.a00062.

4. Imam SN, Pandit K. Nuclear pore dynamics: along the cell cycle. Curr Opin Cell Biol 2011; 23:43-8; PMID:21227090; http://dx.doi.org/10.1016/j.ceb.2012.04.006.

5. Ribbeck K, Gotzle D. The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. EMBO J 2002; 21:2664-71; PMID:12133870; http://dx.doi.org/10.1093/emboj/22.11.2664.

6. Chi NC, Alagon EL, Alagon SA. Sequence and characterization of cytoplasmic nuclear protein import factors ept1. J Cell Biol 1995; 130:625-78; PMID:7613568; http://dx.doi.org/10.1083/jcb.130.2.265.

7. Imam SN, Shimamoto Y, Kaze S, Tanaka T, Tanabe T, Maruyama M, et al. The nuclear pore-targeting complex binds to nuclear pore after association with a karyophilic. FEBS Lett 1999; 385:485-9; PMID:9958485; http://dx.doi.org/10.1016/S0014-5793(99)00489-4.

8. Girkaitis D, Kurek S, Kraft R, Doggett C, Liskey RA, Hartmann E, et al. Two different subsets of imports cooperate to recognize nuclear localization signals and bind them to the nuclear pore complex. Curr Biol 1995; 5:383-92; PMID:7627554; http://dx.doi.org/10.1016/0960-9822(95)00079-A.

9. Girkaitis D, Kurek S, Kuran U. Transports between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 2003; 19:887-91; PMID:13864794.

10. Weis KE. Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 2003; 112:441-51; PMID:12600309; http://dx.doi.org/10.1016/S0092-8674(03)00282-5.

11. Stewart M. Molecular mechanism of the nuclear protein import cycle. Nat Rev Mol Cell Biol 2007; 8:195-208; PMID:17287812; http://dx.doi.org/10.1038/nrm2114.

12. Choudhuri YM, Suggs K. The nuclear import of karyophilic: recognition and inhibition. Biochem Biophys Acta 2001; 1513:359-66; PMID:11201796; http://dx.doi.org/10.1016/S0005-2728(01)00104-8.

13. Kusai K, Furuta M, Imam SN, Hikeshi, a nuclear import carrier for Hsp70, protects cells from heat shock-induced nuclear damage. Cell 2010; 149:578-89; PMID:20744297; http://dx.doi.org/10.1016/j.cell.2010.02.056.

14. Richter K, Hadlock M, Busch J. The heat shock response: life on the verge of death. Mol Cell 2010; 40:253-66; PMID:20965420; http://dx.doi.org/10.1016/j.molcel.2010.10.006.

15. Akeson M, Merienne RL, Simon L. Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 2011; 12:545-55; PMID:21495847; http://dx.doi.org/10.1038/nrm3159.

16. Merienne RL. Regulation of the heat shock transcriptional response: zoom in, harness a family of heat shock factors, molecular chaperones and negative regulators. Genes Dev. 1998; 12:3780-94; PMID:9698631; http://dx.doi.org/10.1101/gad.6.18.3780.

17. Merienne RL. Promotronic stress and nucleocytoplasmic shuttling in mammals: life on the verge of death. Mol Cell. 2008; 22:3487-98; PMID:18591595; http://dx.doi.org/10.1016/j.molcel.2008.11.008.

18. Lackner DL, Rübel J. Transcriptional control of gene expression from transcripts to transcriptional repression. Nat Rev Mol Cell Biol 2008; 7:199-205; PMID:18057664; http://dx.doi.org/10.1038/nrm23754.

19. Tachibana T, Matsubae M, et al. The nuclear pore-coat and the nuclear matrix. Annu Rev Cell Dev Biol 2007; 23:171-96; PMID:17029754; http://dx.doi.org/10.1146/annurev.cellbio.23.090605.100637.

20. Weis KE. Regulating access to the genome: nucleocytoplasmic transport throughout the cell cycle. Cell 2003; 112:441-51; PMID:12600309; http://dx.doi.org/10.1016/S0092-8674(03)00282-5.

21. Stewart M. Molecular mechanism of the nuclear protein import cycle. Nat Rev Mol Cell Biol 2007; 8:195-208; PMID:17287812; http://dx.doi.org/10.1038/nrm2114.

22. Choudhuri YM, Suggs K. The nuclear import of karyophilic: recognition and inhibition. Biochem Biophys Acta 2001; 1513:359-66; PMID:11201796; http://dx.doi.org/10.1016/S0005-2728(01)00104-8.

23. Kusai K, Furuta M, Imam SN, Hikeshi, a nuclear import carrier for Hsp70, protects cells from heat shock-induced nuclear damage. Cell 2010; 149:578-89; PMID:20744297; http://dx.doi.org/10.1016/j.cell.2010.02.056.

Cellular System, ASI FY2012 Fund for Seeds of Collaborative Research to S.K., MEXT grant-in-aids to S.K., and funding awarded to N.I. by the Japan Society for the Promotion of Science (JSPS) through the “Funding Program for Next Generation World-Leading Researchers (Next Program),” initiated by the Council for Science and Technology Policy (CSTP).
A conventional nuclear import block. J Cell Biol and cause Kotera I, Shibata S, et al. Cellular stresses induce α and recycling inhibition of importin Yoneda Y, et al. Heat-shock induced nuclear retention Miya α and recycling inhibition of importin. J Cell Biol 1999; 110:107-16. PMID:10391365. Kose S, Inoue N, Tsukihara Y, Minamoto Y, Tanimoto Y, Barson-mutant nuclear migration of a 97-kDa component of nuclear pore-targeting complex. J Cell Biol 1987; 109:840-8. PMID:5962960. Shi Y, Manner DD, Minton RI. Molecular chaperones as HSP-specific transcriptional repressors. Gene Dec 1998; 13:67-70. PMID:9699480. Mayer MP. Gymnastics of molecular chaperones. Nat Rev Mol Cell Biol 2010; 11:579-87. PMID:20965417. 

41. Nachury MV, Wen K. The direction of transport through the nuclear pore can be inverted. Proc Natl Acad Sci U S A 1999; 96:9622-7; PMID:10440076. Kose S, Inoue N, Tsukihara Y, Yoshida M, Yoneda Y. β-subunit of nuclear pore-targeting complex, Importin-β, can be exported from the nucleus in a Ran-independent manner. J Biol Chem 1999; 274:1844-52. PMID:9535304. Kose S, Inoue N, Tsukihara Y, Toshima Y, Yoshida M, Yoneda Y, β-subunit of nuclear pore-targeting complex, Importin-β, can be exported from the nucleus in a Ran-independent manner. J Biol Chem 1999; 274:1844-52. PMID:9535304. 

40. Fullall ES, Benack MF. Discovering novel interactions at the nuclear pore complex using bead halo: a rapid method for detecting molecular interactions of high and low affinity at equilibrium. Mol Cell Proteomics 2008; 7:122-31. PMID:18079573. 

39. Kampinga HH, Craig EA. The HSF9 chaperone machinery. J Protein Sci 2010; 17:579-82. PMID:20587982. 

38. Tachibana T, Shimamoto T, Yoshida M, Imamoto N, Tachibana T, Yoshida M, Imamoto N, Tachibana T, Yasuda Y, Yoneda Y. Ran-unassisted nuclear migration of a 97-kDa component of nuclear pore-targeting complex. J Cell Biol 1987; 109:840-8. PMID:5962960. Shi Y, Manner DD, Minton RI. Molecular chaperones as HSP-specific transcriptional repressors. Gene Dec 1998; 13:67-70. PMID:9699480. Mayer MP. Gymnastics of molecular chaperones. Nat Rev Mol Cell Biol 2010; 11:579-87. PMID:20965417. 

37. Nachury MV, Wen K. The direction of transport through the nuclear pore can be inverted. Proc Natl Acad Sci U S A 1999; 96:9622-7; PMID:10440076. Kose S, Inoue N, Tsukihara Y, Yoshida M, Yoneda Y, β-subunit of nuclear pore-targeting complex, Importin-β, can be exported from the nucleus in a Ran-independent manner. J Biol Chem 1999; 274:1844-52. PMID:9535304. Kose S, Inoue N, Tsukihara Y, Toshima Y, Yoshida M, Yoneda Y, β-subunit of nuclear pore-targeting complex, Importin-β, can be exported from the nucleus in a Ran-independent manner. J Biol Chem 1999; 274:1844-52. PMID:9535304. 

36. Mayer MP. Gymnastics of molecular chaperones. Mol Cell 2010; 39:321-5. PMID:20790336. 

35. Wilkow BR, DeLaGraff Blythe C, McKay DB. Structural basis of the 78-kilodalton heat shock cognate protein ATP hydrolytic activity. J Biol Chem 1994; 269:12893-8. PMID:8177506. 

34. Crist J, Sae M, Morimoto R. HSF1 regulates a novel stress-induced nuclear compartment of human cells. J Cell Sci 1997; 110:2525-34. PMID:9339876. 

33. Coppola E, Giammarra C, Menegatti F, Guardigli M, Cassone V, Small GM, Feldherr CM. Evidence for the existence of a novel mechanism for the nuclear import of the 72,000-dalton heat shock proteins in heat-shocked mammalian cells. J Biol Chem 1984; 259:4501-3. PMID:6484958. 

32. Adam S, Bublitz H, Gromer I. The nucleolus as a stress sensor. J Biol Chem 1999; 274:1844-52. PMID:9535304. 

31. Nachury MV, Wen K. The direction of transport through the nuclear pore can be inverted. Proc Natl Acad Sci U S A 1999; 96:9622-7; PMID:10440076. Kose S, Inoue N, Tsukihara Y, Yoshida M, Yoneda Y, β-subunit of nuclear pore-targeting complex, Importin-β, can be exported from the nucleus in a Ran-independent manner. J Biol Chem 1999; 274:1844-52. PMID:9535304. Kose S, Inoue N, Tsukihara Y, Toshima Y, Yoshida M, Yoneda Y, β-subunit of nuclear pore-targeting complex, Importin-β, can be exported from the nucleus in a Ran-independent manner. J Biol Chem 1999; 274:1844-52. PMID:9535304. 

30. Furu ta M, Kose S, Koike M, Shimi T, Hiraoka Y, et al. Cellular stresses induce α and recycling inhibition of importin-β. J Cell Biol 2000; 148:7-16. PMID:10692914. 

29. Lee KY, Pachal BM. Hypertonic stress signaling to the nucleus changes the Ran gradient and the production of RanGTP. Mol Cell Biol 2007; 17:8385-76. PMID:17733157. 

28. Kotera I, Shibata S, et al. Cellular stresses induce α and recycling inhibition of importin-β. J Cell Biol 2000; 148:7-16. PMID:10692914. 

27. Valaquinta JM, Lindquist S. hsp70: nuclear concentration during environmental stress and cytoplasmic storage during recovery. Cell 1984; 36:605-62. PMID:2402480. 

26. Pelham HH. Hsp70 acclimatizes the recovery of nuclear morphology after heat shock. EMBO J 1984; 3:699-711. PMID:6444397. 

25. Miya a and recycling inhibition of importin-β. J Cell Biol 2000; 148:7-16. PMID:10692914. 

24. Multiple mechanisms promote the inhibition of classical nuclear import upon exposure to severe oxidative stress. Cell Death Differ 2004; 11:862-74; PMID:15088071. 

23. Pelham HH. Hsp70 acclimatizes the recovery of nuclear morphology after heat shock. EMBO J 1984; 3:699-711. PMID:6444397. 

22. Crabtree GR, Augustin JA, Porco GN. Hypoxia periads inhibition of nuclear protein import is mediated by the mitogen-activated protein kinase, ERK2. J Cell Biol 1999; 148:191-201. PMID:10383351. 

21. Miyamoto Y, Sasaki T, Yoshimura J, Yoneda Y, Kose S, Hibi S, et al. Cellular stresses induce the nuclear accumulation of α- and cause a conventional nuclear import block. J Cell Biol 2004; 165:617-25. PMID:15484396. 

20. Paraskevopoulou MD, Amon A, Sigler PB. A method for detecting molecular interactions of high and low affinity at equilibrium. Mol Cell Proteomics 2009; 8:274-84. PMID:19229283. 

19. Ana CV, Velázquez JM, Lindquist S. hsp70: nuclear concentration during environmental stress and cytoplasmic storage during recovery. Cell 1984; 36:605-62. PMID:2402480. 

18. Crabtree GR, Augustin JA, Porco GN. Hypoxia per the nuclear pore complex using bead halo: a rapid method for detecting molecular interactions of high and low affinity at equilibrium. Mol Cell Proteomics 2008; 7:122-31. PMID:18079573. 

17. Fullall ES, Benack MF. Discovering novel interactions at the nuclear pore complex using bead halo: a rapid method for identifying molecular interactions of high and low affinity at equilibrium. Mol Cell Proteomics 2008; 7:122-31. PMID:18079573. 

16. Kampinga HH, Craig EA. The HSF9 chaperone machinery. J Protein Sci 2010; 17:579-82. PMID:20587982. 

15. Miya a and recycling inhibition of importin-β. J Cell Biol 2000; 148:7-16. PMID:10692914. 

14. Kotera I, Shibata S, et al. Cellular stresses induce α and recycling inhibition of importin-β. J Cell Biol 2000; 148:7-16. PMID:10692914.