ON FINITE ca-\mathcal{F} GROUPS AND THEIR APPLICATIONS

EVGENIY N. MYSLOVETS, ALEXANDER F. VASIL’EV

Abstract. Let \mathcal{F} be a class of groups. A group G is called ca-\mathcal{F}-group if its every non-abelian chief factor is simple and $H/K \times C_G(H/K) \in \mathcal{F}$ for every abelian chief factor H/K of G. In this paper, we investigate the structure of a finite ca-\mathcal{F}-group. Properties of mutually permutable products of finite ca-\mathcal{F}-groups are studied.

1. Introduction

Only finite groups are considered. The concept of composition formation was introduced by L.A. Shemetkov [15] and R. Baer in an unpublished paper (noted in [7, IV, p.370]). Every saturated formation is a composition formation. The class of all quasinilpotent groups is an example of composition, but not saturated formation. Guo Wenbin and A.N. Skiba [9, 10] introduced the concept of quasi-\mathcal{F}-group that is a generalization of quasinilpotency. In [9] they proved that the class of all quasi-\mathcal{F}-groups is a composition formation if \mathcal{F} is a saturated formation.

In [19] V.A. Vedernikov introduced the definition of a c-supersoluble group. Recall [19] that a group G is called c-supersoluble if every chief factor of G is simple. In [18] A.F. Vasil’ev and T.I. Vasil’eva proved that the class \mathcal{U}_c of all c-supersoluble groups is a composition but not a saturated formation. D. Robinson (using notation: SC-group) [13] established the structural properties of finite c-supersoluble groups.

In [12] the following generalization of c-supersolubility was proposed.

Let \mathcal{F} be a class of groups. Recall [17] that a chief factor H/K of group G is called \mathcal{F}-central provided $H/K \times G/C_G(H/K) \in \mathcal{F}$.

Definition 1.1 ([12]). Let \mathcal{F} be a class of groups. A group G is called a ca-\mathcal{F}-group if its every non-abelian chief factor is simple and every abelian chief factor of G is \mathcal{F}-central.

The class of all ca-\mathcal{F}-groups is denoted by \mathcal{F}_{ca}. If $\mathcal{F} = \mathcal{U}$ we have that $\mathcal{F}_{ca} = \mathcal{U}_c$. If $\mathcal{F} = \mathcal{N}$, then $\mathcal{F}_{ca} = (\mathcal{N})_{ca}$ is the class of all groups whose every non-abelian chief factor is simple and $Aut_G(H/K)$ is abelian for every abelian chief factor H/K. If $\mathcal{F} = \mathcal{G}$ then \mathcal{F}_{ca} is the class of all SNAC-groups [13], i.e the class of all groups whose all non-abelian factors are simple.

The class of all ca-\mathcal{F}-groups is a composition formation [12]. Also in [12] some properties of the products of normal ca-\mathcal{F}-subgroups were found.

2010 Mathematics Subject Classification. 20D40, 20F17.
Key words and phrases. ca-\mathcal{F}-group, composition formation, mutually permutable products.
Recall [17, §8], $Z_F^\infty(G)$ denotes the F-hypercenter of a group G. $Z_F^\infty(G)$ is the product of all normal subgroups H of G whose G-chief factors are F-central.

The following theorem is an extension of Robinson’s result [13] for case when F is a soluble saturated formation.

Theorem A. Let \mathfrak{F} be a soluble saturated formation. A group G is a ca-\mathfrak{F}-group if and only if G satisfies:

1. $G^\mathfrak{G} = G^\mathfrak{F}$;
2. If $G^\mathfrak{G} \neq 1$ then $G^\mathfrak{G}/Z(G^\mathfrak{G})$ is a direct product of G-invariant non-abelian simple groups;
3. $Z(G^\mathfrak{G}) \subseteq Z_F^\infty(G)$

Following Carocca [6], we say that $G = HK$ is the mutually permutable product of subgroups H and K if H permutes with every subgroup of K and K permutes with every subgroup of H. The mutually permutable products of supersoluble and c-supersoluble subgroups were investigated in many works of different authors (see monograph [3]). A lot of papers were dedicated to the case where $G = HK$ is the mutually permutable product of subgroups H and K which belong to a saturated formation \mathfrak{F}. Therefore we have the following problem.

Problem. Let \mathfrak{F} be a composition formation. What is the structure of the group $G = HK$ where H and K are mutually permutable \mathfrak{F}-subgroups of G.

In this paper this problem is solving for a formation of ca-\mathfrak{F}-groups where \mathfrak{F} is a saturated formation containing all supersoluble groups.

Theorem B. Let \mathfrak{F} be a saturated formation containing the class \mathfrak{U} of supersoluble groups. Let a group $G = HK$ be the product of the mutually permutable subgroups H and K of G. If G is a ca-\mathfrak{F}-group then both H and K are ca-\mathfrak{F}-groups.

Corollary B.1 (4). Let the group $G = HK$ be the mutually permutable product of the subgroups H and K of G. If G is a c-supersoluble group then both H and K are c-supersoluble groups.

Corollary B.2 (4). Let the group $G = HK$ be the mutually permutable product of the subgroups H and K of G. If G is a SNAC-group then both H and K are SNAC-groups.

Corollary B.3. Let the group $G = HK$ be the mutually permutable product of the subgroups H and K of G. If G is a ca-\mathfrak{N}-group then both H and K are ca-\mathfrak{N}-groups.

It is well known that in general, the product $G = HK$ of two normal supersoluble subgroups of a finite group G need not be supersoluble. In 1957 Baer [2] established that such group G will be a supersoluble if and only if the derived subgroup G' of G is nilpotent. The next theorem is an extension of this result.

Theorem C. Let \mathfrak{F} be a saturated formation containing the class \mathfrak{U} of supersoluble groups. Let the group $G = HK$ be the product of the mutually permutable ca-\mathfrak{F}-subgroups H and K of G. If the derived subgroup G' of G is quasinilpotent, then G is a ca-\mathfrak{F}-group.

Corollary C.1 (4). Let the group $G = HK$ be the product of the mutually permutable c-supersoluble subgroups H and K of G. If the derived subgroup G' of G is quasinilpotent, then G is c-supersoluble.
Corollary C.2 ([1]). Let the group $G = HK$ be the product of the mutually permutable supersoluble subgroups H and K of G. If the derived subgroup G' of G is nilpotent, then G is supersoluble.

Corollary C.3. Let the group $G = HK$ be the product of the mutually permutable ca-\mathfrak{F}-subgroups H and K of G. If the derived subgroup G' of G is quasinilpotent, then G is ca-\mathfrak{F}-group.

The following corollary extends [12] the properties of normal products of ca-\mathfrak{F}-groups.

Corollary C.4. Let \mathfrak{F} be a saturated formation containing the class \mathfrak{U} of supersoluble groups. If $G = HK$ is the product of normal ca-\mathfrak{F}-subgroups H and K of G and the derived subgroup G' of G is quasinilpotent, then G is a ca-\mathfrak{F}-group.

2. Preliminaries

Standard notations, notions and results are used in the paper (see [7][16]). Recall significant notions and notations for this paper. \mathbb{P} is the set of all prime numbers; 1 is an identity group; $H \ltimes K$ is a semidirect product of groups H and K; \mathfrak{G} is the class of all groups; \mathfrak{S} is the class of all soluble groups; \mathfrak{U} is the class of all supersoluble groups; \mathfrak{N} is the class of all nilpotent groups; \mathfrak{N}_p is the class of all p-groups; \mathfrak{F} is the class of all simple groups; $\mathfrak{A}(p - 1)$ is the class of all abelian groups of exponent dividing $p - 1$.

A formation is a homomorph \mathfrak{F} of groups such that each group G has the smallest normal subgroup (called \mathfrak{F}-residual and denoted by $G^{\mathfrak{F}}$) with quotient in \mathfrak{F}. A formation \mathfrak{F} is said to be saturated if it contains each group G with $G/\Phi(G) \in \mathfrak{F}$. A formation \mathfrak{F} is said to be (normally) hereditary if it contains all (normal) subgroups of every group in \mathfrak{F}.

Let \mathfrak{F} be a non-empty formation. $G_{\mathfrak{F}}$ denotes \mathfrak{F}-radical of group G, i.e., the largest normal \mathfrak{F}-subgroup of G.

A function $f : \mathbb{P} \to \{\text{formations of groups}\}$ is called a local formation function. The symbol $LF(f)$ denotes the class of all groups such that either $G = 1$ or $G \neq 1$ and $G/C_G(H/K) \in f(p)$ for every chief factor H/K of G and every $p \in \pi(H/K)$. The class $LF(f)$ is a non-empty formation.

For a formation \mathfrak{F}, if there exists a formation function f such that $\mathfrak{F} = LF(f)$ then \mathfrak{F} is called a local formation. It is known that a formation \mathfrak{F} is local if and only if it is saturated [7][16], IV, Theorem 4.6).

A formation \mathfrak{F} is said to be soluble saturated, composition, or Baer-local formation if it contains each group G with $G/\Phi(N) \in \mathfrak{F}$ for some soluble normal subgroup N of G. For every function f of the form $f : \mathbb{P} \to \{\text{formations of groups}\}$ we put, $CLF(f) = \{G \text{ is a group } | G/C_G(H/K) \in f(A) \text{ for every } A \in \mathfrak{K}_G(H/K)\}$. It is well known that a composition formation (or a Baer-local formation if we use the terminology in [7]) \mathfrak{F} is exactly a class $\mathfrak{F} = CLF(f)$ for some function f of above-mention form. In this case, the function f is said to be a composition satellite [14] of the formation \mathfrak{F}.

A local function f is called an inner local function if $f(p) \subseteq LF(f)$ for every prime p. Function f is called a maximal inner local function of formation \mathfrak{F} if f is a maximal element of set of all inner local functions of formation \mathfrak{F}. Similarly, we can introduce the notion of the inner composition satellite and maximal inner composition satellite.
Every local (composition) formation has the unique maximal inner local function (composition satellite) \cite{16} ch. 1.

We will use the following results.

Lemma 2.1 (\cite{12}). Let \(\mathfrak{F} \) be a class of groups. Then the class \(\mathfrak{F}_{ca} \) is a non-empty formation.

Theorem 2.2 (\cite{12}). Let \(\mathfrak{F} \) be a saturated formation and \(f \) is its maximal inner local function. Then the formation \(\mathfrak{F}_{ca} \) is a composition formation and has a maximal inner composition satellite \(h \) such that \(h(N) = \mathfrak{F}_{ca} \), if \(N \) is a non-abelian group and \(h(N) = f(p) \), if \(N \) is a simple \(p \)-group, where \(p \) is a prime.

Lemma 2.3 (\cite{18}). Let \(\mathfrak{F} \) be a formation and \(N \) be a minimal normal subgroup of \(G \) such as \(|N| = p^n \) for some prime \(p \). If \(N \) contains in the subgroup \(H \) of \(G \) and \(H/C_H(U/V) \in \mathfrak{F} \) for every \(H \)-chief factor \(U/V \) of \(N \), then \(H/C_H(N) \in \mathfrak{N}_p \mathfrak{F} \).

Lemma 2.4 (\cite{3}). Assume that the subgroups \(A \) and \(B \) of the group \(G \) are mutually permutably and that \(N \) is a normal subgroup of \(G \). Then the subgroups \(AN/N \) and \(BN/N \) are mutually permutable in \(G/N \).

Lemma 2.5 (\cite{3}). Let the group \(G = AB \) be the mutually permutable product of the subgroups \(A \) and \(B \). Then:
1. If \(N \) is a maximal normal subgroup of \(G \), then \(\{AN, BN, (A\cap B)N\} \subseteq \{N, G\} \).
2. If \(N \) is a non-abelian minimal normal subgroup of \(G \), then \(\{A\cap N, B\cap N\} \subseteq \{N, 1\} \) and \(N = (N\cap A)(N\cap B) \) (that is, \(N \) is prefactorised with respect to \(G = AB \)).
3. If \(N \) is a minimal normal subgroup of \(G \), then \(N \leq A \cap B \) or \(|N, A \cap B| = 1 \).
4. If \(N \) is a maximal normal subgroup of \(G \), then \(A \cap N, B \cap N \subseteq \{N, 1\} \).
5. If \(N \) is a minimal normal subgroup of \(G \) contained in \(A \) and \(B \cap N = 1 \), then \(N \leq C_G(A) \) or \(N \leq C_G(B) \). If furthermore \(N \) is not cyclic, then \(N \leq C_G(B) \).

Lemma 2.6 (\cite{3}). Let the group \(G = AB \) be the product of the mutually permutable subgroups \(A \) and \(B \) and let \(\mathfrak{F} \) be a saturated formation containing the class \(\Omega \) of all supersoluble groups. If \((A \cap B)G = 1 \), then \(G \in \mathfrak{F} \) if and only if \(A \in \mathfrak{F} \) and \(B \in \mathfrak{F} \).

3. **Proof of theorem A**

In this section we prove the theorem that describes the structure of finite \(ca-\mathfrak{F} \)-group.

Lemma 3.1. Let \(\mathfrak{F} \) be a soluble formation containing the class \(\Omega \) of all supersoluble groups. If \(G \) is a \(ca-\mathfrak{F} \)-group then the following statements hold:
1. \(G^{\mathfrak{F}} \leq C_G(G_{\mathfrak{F}}) \);
2. \((G^{\mathfrak{F}})^{\mathfrak{F}} \leq Z(G^{\mathfrak{F}}) \).

Proof. Prove the statement 1. Obviously that all chief factors of group \(G \) below subgroup \(G_{\mathfrak{F}} \) are \(\mathfrak{F} \)-central. Hence subgroup \(G_{\mathfrak{F}} \) is a \(\mathfrak{F} \)-hypereentric and thus it is subgroup of a \(\mathfrak{F} \)-hypercrter \(Z_{\mathfrak{F}}(G) \). By Corollary 9.3.2 \cite{16} we have that \(G^{\mathfrak{F}} \leq C_G(Z_{\mathfrak{F}}(G)) \). Since \(\mathfrak{F} \) is a soluble formation, \(G^{\mathfrak{F}} \leq G^{\mathfrak{F}} \leq C_G(G_{\mathfrak{F}}) \).

Prove the statement 2. Let \(R = (G^{\mathfrak{F}})^{\mathfrak{F}} \). Since \(R \) char \(G^{\mathfrak{F}} \lneq G \), it follows \(R \lneq G \). Therefore \(R \leq G_{\mathfrak{F}} \). Hence \(G^{\mathfrak{F}} \leq C_G(R) \) by statement 1 of the Lemma. The statement 2 is true.

Proof of theorem A Denote by \(D \) the soluble residual \(G^{\mathfrak{F}} \) of group \(G \).
Let G be a ca-\mathfrak{F}-group. If G is soluble, then $D = 1$ and $G \in \mathfrak{F}$. So G satisfies the Statements 1, 2, and 3. We assume that group G is not soluble. Then $D \neq 1$.

Since \mathfrak{F} is a soluble formation, $G/G^\mathfrak{F} \in \mathfrak{F} \subseteq \mathfrak{S}$. Hence $D \subseteq G^\mathfrak{F}$. Since \mathfrak{F}_{ca} is a formation, it follows $G/D \in \mathfrak{F}_{ca}$. By solvability of quotient G/D we have that $G/D \in \mathfrak{F}$. Hence $G^\mathfrak{F} \subseteq D$ and $D = G^\mathfrak{F}$. The Statement 1 holds. Note that all chief factors of G below $Z(D)$ are abelian and therefore are \mathfrak{F}-central. This means, that $Z(D)$ is \mathfrak{F}-hypercentral and the Statement 3 holds.

We show that $D/Z(D)$ is a direct product of G-invariant simple groups.

Assume that $Z(D) = 1$. Let N_1 be a minimal normal subgroup of G contained in D. If N_1 is abelian, then it follows from $N_1 \leq D_{\mathfrak{F}}$ and the Statement 2 of Lemma 5.1 that $N_1 \leq Z(D) = 1$. Hence N_1 is non-abelian. Since $G \in \mathfrak{F}_{ca}$, we have that N_1 is a simple. Note that $G/C_G(N_1)$ is isomorphic to a subgroup of $\text{Aut}(N_1)$ and $N_1C_G(N_1)/C_G(N_1)$ is isomorphic to $\text{Inn}(N_1)$. So $G/N_1C_G(N_1) \cong (G/C_G(N_1))/((N_1C_G(N_1)/C_G(N_1)))$ is isomorphic to a subgroup of $\text{Aut}(N_1)/\text{Inn}(N_1)$. From the validity of the Schreier conjecture, it follows that $G/N_1C_G(N_1)$ is soluble. Then $D \leq N_1C_G(N_1)$. Hence $D = D \cap N_1C_G(N_1) = N_1(D \cap C_G(N_1)) = N_1C_D(N_1)$ and $N_1 \cap C_D(N_1) = 1$. If $D = N_1$, then the Statement 2 holds. Assume that D is not simple. Therefore, $C_D(N_1) \neq 1$. The Statement 2 holds in the case when $C_D(N_1)$ is simple. Assume that $C_D(N_1)$ is not a simple and let N_2 be a minimal normal subgroup of G contained in $C_D(N_1)$. Since $Z(D) = 1$ and the Statement 2 of lemma 5.1 it follows that N_2 is a simple non-abelian subgroup. By the above $D = N_2C_D(N_2)$. By Dedekind identity $C_D(N_1) = C_D(N_1) \cap N_2C_D(N_2) = N_2(C_D(N_1) \cap C_D(N_2)) = N_2C_L(N_2)$, where $L = C_D(N_1) \cap C_D(N_2)$. Then $D = N_1N_2C_L(N_2)$. Applying above to $C_D(N_2)$ and etc. we can conclude that $D = N_1 \times N_2 \times \cdots \times N_i$ is the direct product of minimal normal subgroups of G, each of them simple, as desired. So the Statement 2 holds.

Let $Z(D) \neq 1$. Since $G/Z(D) \in \mathfrak{F}_{ca}$ and $(G/Z(D))^\mathfrak{F} = D/Z(D)$, the Statement 1 and 3 holds for $G/Z(D)$. Denote $T/Z(D) = Z(D/Z(D))$. Then T is a normal soluble subgroup of D. By lemma 5.1 T is contained in the center $Z(D)$. Therefore $Z(D/Z(D)) = 1$. By the above the Statement 1 holds for $G/Z(D)$.

Conversely, assume that a group G satisfies the Statements 1, 2, and 3. We consider a chief series of G which passes through the subgroup $D = G^\mathfrak{F}$. Note all chief factors above D are abelian and \mathfrak{F}-central. By the Statement 2 the quotient $D/Z(D)$ is the direct product of minimal normal subgroups of $G/Z(D)$, which are simple. All chief factors of G below $Z(D)$ are \mathfrak{F}-central by the Statement 3. By virtue of Jordan-Holder’s theorem for groups with operators [7, A, 3,2] and the Definition 1.1, $G \in \mathfrak{F}_{ca}$. □

4. PROOF OF THEOREM \mathcal{B} AND \mathcal{C}

In this section we prove some properties of the mutually permutable products of ca-\mathfrak{F}-groups.

Proof of Theorem \mathcal{B}. Assume that that this theorem is false and let G be a counterexample of minimal order. Let N be a minimal normal subgroup of G. If $N = G$, then G is simple. Hence $H \in \mathfrak{F}_{ca}$ and $K \in \mathfrak{F}_{ca}$. Assume $N \neq G$. By Lemma 2.3 $G/N = HN/N \cdot KN/N$ is the mutually permutable product of subgroups HN/N and KN/N of G/N. Note that $G/N \in \mathfrak{F}_{ca}$. Then all conditions of the theorem hold for G/N. Therefore $HN/N \simeq H/(H \cap N) \in \mathfrak{F}_{ca}$ and $KN/N \simeq K/(K \cap N) \in \mathfrak{F}_{ca}$.

Since \mathfrak{F}_{ca} is a formation by Lemma 2.1, it follows that N is the unique minimal normal subgroup of G.

Let N be a non-abelian group. Then N is simple. According to Lemma 2.5, we should consider the following cases.

1. Let $H \cap N = K \cap N = N$. Then $N \leq H \cap K$, $H/(H \cap N) = H/N \in \mathfrak{F}_{ca}$ and $K/(K \cap N) = K/N \in \mathfrak{F}_{ca}$. Hence H and K are ca-\mathfrak{F}-groups, a contradiction.

2. Let $H \cap N = K \cap N = 1$. Then $H/(H \cap N) \simeq H$ and $K/(K \cap N) \simeq K$ are ca-\mathfrak{F}-groups, a contradiction.

3. Let $H \cap N = N$ and $K \cap N = 1$. Then $H/(H \cap N) = H/N \in \mathfrak{F}_{ca}$ and H is a ca-\mathfrak{F}-group and $K/(K \cap N) \simeq K$ is a ca-\mathfrak{F}-group. A contradiction.

4. Let $H \cap N = 1$ and $K \cap N = N$. This case is considered similarly to the case 3. □

To prove the Theorem C we need the following results.

Lemma 4.1. Let the group G has the unique minimal normal subgroup $N = N_1 \times \cdots \times N_t$ and N_i are isomorphic simple non-abelian groups for all $i = 1, \ldots, t$. If $N \leq H$, where H is a ca-\mathfrak{F}-subgroup of G, then $N_i \triangleleft H$ for all $i = 1, \ldots, t$.

Proof. Let $i \in \{1, \ldots, t\}$. Consider normal closure $N_i^H = \langle N_i^x | x \in H \rangle$ of subgroup N_i in H. Note that $N_i \triangleleft G$. Hence $N_i \triangleleft H$. By the Lemma 9.17 [11] we have that N_i^H is a minimal normal subgroup of H. Since subgroup N_i^H is non-abelian and isomorphic to the chief factor of ca-\mathfrak{F}-subgroup H, then N_i^H is simple. Then, by $N_i \triangleleft N_i^H$, we have that $N_i^H = N_i$. Hence $N_i \triangleleft H$ for all $i = 1, \ldots, t$. □

Lemma 4.2. Let \mathfrak{F} be a composition formation and f is an inner composition satellite of \mathfrak{F}. Let a group G has the unique minimal normal subgroup N and N is an abelian p-group for some prime p. The chief factor N of G is \mathfrak{F}-central in G if and only if $G/C_G(N) \in f(p)$.

Proof. Let $G/C_G(N) \in f(p)$. Consider semidirect product $R = N \rtimes G/C_G(N)$. Note that N is the unique minimal normal subgroup of R and $C_R(N) = N$. Then $R/C_R(N) \simeq G/C_G(N) \in f(p) \subseteq \mathfrak{F}$. Hence $R \in \mathfrak{F}$, i.e. the chief factor $N/1$ of G is \mathfrak{F}-central.

Conversely, assume that N is \mathfrak{F}-central chief factor of G. Then $R = N \rtimes G/C_G(N) \in \mathfrak{F}$, where N is the unique minimal normal subgroup of R and $C_G(N) = N$. Hence $R/C_R(N) \simeq G/C_G(N) \in f(p)$. □

Lemma 4.3. Let \mathfrak{F} be a formation and $\mathfrak{A}(p-1) \subseteq \mathfrak{F}$. Let $G = HK$ be the mutually permutable products of subgroup H and K, where $H, K \in \mathfrak{M}_p\mathfrak{F}$ and $G \in \mathfrak{M}_p\mathfrak{A}$. Then $G \in \mathfrak{M}_p\mathfrak{F}$.

Proof. Assume that this lemma is false and let G be a counterexample of minimal order. Let N be a minimal normal subgroup of G. We can assume without loss of generality that $G \neq N$. By Lemma 2.3 $G/N = HN/N \cdot KN/N$ is the mutually permutable product of subgroups HN/N and KN/N of G/N. Note that $HN/N \in \mathfrak{M}_p\mathfrak{F}$, $HN/N \in \mathfrak{M}_p\mathfrak{A}$ and $G/N \in \mathfrak{M}_p\mathfrak{A}$. Then all conditions of the Lemma 4.3 hold for G/N. Therefore $G/N \in \mathfrak{M}_p\mathfrak{F}$. Since $\mathfrak{M}_p\mathfrak{F}$ is a formation, it follows that N is the unique minimal normal subgroup of G. We note that N is a q-group for some prime $q \neq p$. Since $G \in \mathfrak{M}_p\mathfrak{A}$ and $O_p(G) = 1$, we have that $G \in \mathfrak{A}$. Therefore $H \in \mathfrak{F}$ and $K \in \mathfrak{F}$. Since N is the unique minimal normal subgroup of G, it follows that G is a cyclic q-group. Since $G = HK$, we have that $G = H$ or $G = K$, i.e. $G \in \mathfrak{F}$. □
Proof of Theorem C. Assume that this theorem is false and let G be a counterexample of minimal order. Let N be a minimal normal subgroup of G. If $N = G$, then G is simple. Hence $G \in \mathfrak{F}_{ca}$. Assume $N \neq G$. By Lemma 2.4 $G/N = HN/N \cdot KN/N$ is the mutually permutable product of subgroups HN/N and KN/N of G/N. Note that the derived subgroup $(G/N)'$ of G/N is quasinilpotent. Then all conditions of the Theorem hold for G/N. Therefore $G/N \in \mathfrak{F}_{ca}$. Since \mathfrak{F}_{ca} is a formation by Lemma 2.1 it follows that N is the unique minimal normal subgroup of G.

Let N be a non-abelian group. Then $N = N_1 \times \cdots \times N_t$, where N_i are isomorphic simple non-abelian groups for all $i = 1, \ldots, t$. According to Lemma 2.5 we should consider the following cases.

1. Let $H \cap N = K \cap N = N$. Then $N \subseteq H \cap K$. Since H and K are ca-\mathfrak{F}-subgroups and $N = N_1 \times \cdots \times N_t$, it follows that $N_i \not\leq H$ and $N_i \not\leq K$ by Lemma 2.1. Hence by $G = HK$ we have that $N_i \not\leq G$ for all $i = 1, \ldots, t$. Since N is the unique minimal normal subgroup of G, it follows that $t = 1$ and N is simple. Since $G/N \in \mathfrak{F}_{ca}$, we have that $G \in \mathfrak{F}_{ca}$. A contradiction.

2. Let $H \cap N = K \cap N = 1$. Then $N = (H \cap N)/(K \cap N) = 1$ by Lemma 2.5. A contradiction with choice of N.

3. Let $H \cap N = N$ and $K \cap N = 1$. Then $N \subseteq H \cap K$. Since H and N is non-abelian, we have that $N \leq C_G(K)$. Since $N = N_1 \times \cdots \times N_t$, it follows that $N_i \leq C_G(K)$ for all $i = 1, \ldots, t$. By Lemma 4.1 we have that $N_i \not\leq H$ for all $i = 1, \ldots, t$. By $G = HK$ we have that $N_i \not\leq G$. Since N is the unique minimal normal subgroup of G, it follows that $N = N_i$ and N is simple. Since $G/N \in \mathfrak{F}_{ca}$, we have that $G \in \mathfrak{F}_{ca}$. A contradiction.

4. Let $H \cap N = 1$ and $K \cap N = N$. This case is considered similarly to the case 3.

Assume N is an abelian group. Then N is a p-group for some prime p. By Theorem 2.2 formation \mathfrak{F}_{ca} has the maximal inner composition satellite h such that $h(N) = f(p)$, where f is a maximal inner local function of \mathfrak{F}. According to Lemma 2.5 we should consider the following cases.

1. Let $H \cap N = K \cap N = N$. Then $N \subseteq H \cap K$. Let U/V is any H-chief factor of N. Since $H \in \mathfrak{F}_{ca}$, it follows that $H/C_H(U/V) \in \mathfrak{F}_p$ by Lemma 2.5. We have that $H/C_H(U/V) \in \mathfrak{F}_p$. Similarly we can show that $K/C_K(N) \in \mathfrak{F}_p$. Note the group $G/C_G(N) = HCG(N)/CG(N) \cdot CCG(N)/CG(N)$ is the mutually permutable product of subgroups $HC_{CG}(N)/CG(N)$ and $KC_{CG}(N)/CG(N)$ of $G/CG(N)$.

Since $N \leq G'$ and G' is quasinilpotent, it follows that $G'/CG(N) \in \mathfrak{F}_p$ by Lemma 2.2. So $(G/CG(N))' = G'/CG(N)/CG(N) \simeq G'/CG(N)$ is a p-group. Since $G/CG(N)/(G/CG(N))' \in \mathfrak{F}$, it follows that $G/CG(N) \in \mathfrak{F}_p\mathfrak{A}$. By Lemma 4.3 for $G/CG(N)$ we have that $G/CG(N) \in \mathfrak{F}_p$. Therefore $G \in \mathfrak{F}_{ca}$. A contradiction.

2. Let $H \cap N = K \cap N = 1$. Then $N \not\leq H \cap K$ and $(H \cap K)_G = 1$. If $H^S = 1$ and $K^S = 1$, then H and K are soluble. Hence $H \in \mathfrak{F}$ and $K \in \mathfrak{F}$. By Lemma 2.6 we have that $G \in \mathfrak{F} \subseteq \mathfrak{F}_{ca}$, a contradiction. Hence we can assume without loss of generality that $H^S \neq 1$. Then $H^S \leq G$ by Corollary 4.3.6. Hence $N \leq H^S$. Therefore $N \leq H \cap N = 1$, a contradiction.

3. Let $H \cap N = N$ and $K \cap N = 1$. Assume that N is non-cyclic subgroup. Then $N \leq C_G(K)$ by Lemma 2.5. Hence $K \subseteq C_G(N)$ and $G/C_G(N) =$
HC_G(N)/C_G(N) \cdot KC_G(N)/C_G(N) = HC_G(N)/C_G(N) \simeq H/(C_G(N) \cap H) = H/C_H(N). Since N \subseteq H and H \in \mathcal{F}_{ca}, it follows that H/C_H(N) \in h(p) by Lemma 2.3. By Lemma 4.2 we have that factor N is \mathcal{F}_{ca}-central chief factor of G. Then G \in \mathcal{F}_{ca}, a contradiction. Let N be a cyclic group. Then |N| = p and G/C_G(N) is a cyclic group of order dividing p − 1. Hence G/C_G(N) \in \mathfrak{A}(p − 1) \subseteq f(p) = h(p). Since G/N \in \mathcal{F}_{ca}, it follows that G \in \mathcal{F}_{ca}, a contradiction.

4. Let H \cap N = 1 and K \cap N = N. This case is considered similarly to the case 3. □

5. Final remarks

Many different specific examples of composition formations containing all super-soluble groups can be built using the concept of ca-\mathcal{F}_{ca}-group.

According to [7], a rank function is a map R : p \to R(p) which associates with each prime p a set \(R(p)\) of natural numbers. With each rank function R we associate a class [7]

\[\mathcal{F}(R) = \{G \in \mathcal{S} \mid \text{for all prime } p \in \mathbb{P} \text{ each } p\text{-factor of } G\]

has rank in \(R(p)\),

that is a formation.

If \(\mathcal{F}(R)\) is a saturated formation, then rank function is called a saturated (see [7, p. 484]). A rank function R is said to have full characteristic if \(R(p) \neq \emptyset\) for all \(p \in \mathbb{P}\).

Note that if R is a saturated rank function of full characteristic, by [7, IV, 4.3], we have \(1 \in R(p)\) for all prime \(p \in \mathbb{P}\) and therefore \(\mathfrak{A} \subseteq \mathcal{F}(R)\).

If a rank function R is defined, then for all prime \(p \in \mathbb{P}\) are defined [7]

\[\pi(G) = R(p) \cap \mathbb{P}\]

and

\[e(p) = \{p^m − 1 \mid m \in R(p)\}\]

By \(\mathfrak{A}_\pi(e(p))\) we denote a class of abelian \(\pi(p)\)′-group with exponent dividing \(e(p)\) that is a formation.

According to [7] the following lemma holds.

Lemma 5.1 ([7]). Let R is a saturated rank function of full characteristic. Then R satisfies the following conditions

- **RF1:** If \(n \in R(p)\) and \(m \mid n\), then \(m \in R(p)\);
- **RF2:** If \(\{m, n\} \in R(p)\), then \(mn \in R(p)\);
- **RF3:** If \(p\) and \(q\) are distinct primes with \(q \in R(p)\) and if \(m \in R(p)\), then \(q^m − 1 \in R(p)\);
- **RF4:** If \(p, q \in \mathbb{P}\) and \(r \in \mathbb{N}\) satisfy the following conditions:
 (i) \(p \mid (q^m − 1)\) for some \(m \in R(p)\),
 (ii) \(q \mid (p^n − 1)\) for some \(n \in R(p)\),
 (iii) \(r \mid (p^k − 1)\) for some \(k \in R(p)\),
 (iv) \(p \in R(p)\), \(r \in R(p)\),
 then \(r \in R(p)\).

Local function of formation \(\mathcal{F}(R)\) in the case when R is a saturated rank function is described in theorem 2.18 [7, p. 490] which we form as lemma.

Lemma 5.2. Let R is a rank function and let \(\mathcal{F}(R)\) is a local formation defined by local function \(f\) such that \(f(p) = \mathfrak{A}_\pi(e(p))\mathcal{S}_\pi(p)\) for all prime \(p\). Then any two of the following statements are equivalent:

(a) R is a saturated rank function;
(b) \(R \) satisfies Conditions RF1-RF4;
(c) \(\hat{\mathfrak{F}} = \mathfrak{F} \).

Corollary B.4. Let \(R \) be a saturated rank function of full characteristic and the group \(G = HK \) be the mutually permutable product of the subgroups \(H \) and \(K \) of \(G \). If \(G \) is a ca-\(\mathfrak{F}(R) \)-group, then \(H \) and \(K \) are also ca-\(\mathfrak{F}(R) \)-groups.

Corollary C.5. Let \(R \) be a saturated rank function of full characteristic and the group \(G = HK \) be the mutually permutable product of the ca-\(\mathfrak{F}(R) \)-subgroups \(H \) and \(K \) of \(G \). If the derived subgroup \(G' \) of \(G \) is quasinilpotent, then \(G \) is a ca-\(\mathfrak{F}(R) \)-group.

References

[1] M. Asaad, A. Shaalan, *On the supersolvability of finite groups*, Arch. Math. (Basel), N.53, 1989, pp.318–326.
[2] R. Baer, *Classes of finite groups and their properties*, Illinois J. Math. N.1, 1957, pp.115–187.
[3] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, *Products of Finite Groups*, Walter de Gruyter, 2010.
[4] A. Ballester-Bolinches, J. Cossey, M.C. Pedraza-Aguilera, *On mutually permutable products of finite groups*, Journal of Algebra, N.294, 2005, pp.127–135.
[5] J.C. Beidleman, H. Heineken, *Group classes and mutually permutable products*, Journal of Algebra, N.297, 2006, pp.409–416.
[6] A. Carocca, *p-supersolvability of factorized finite groups*, Hokkaido Math. J, N.21, 1992, pp.395–403.
[7] K. Doerk, T. Hawkes, *Finite soluble groups*, Walter de Gruyter, 1992.
[8] W. Gaschütz, *Zur Theorie der endlichen auflösbaren Gruppen*, Math. Z., 80, N.4, 1963, S. 300–305.
[9] W. Guo, A.N. Skiba, *On finite quasi-\(\mathfrak{F} \)-groups*, Communication in Algebra, N.37 2009, pp. 470–481.
[10] W. Guo, A.N. Skiba, *On some classes of finite quasi-\(\mathfrak{F} \)-groups*, Journal of Group Theory, N.12, 2009, pp. 407–417.
[11] I.M. Isaacs, *Finite Group Theory*, Graduate Studies in Mathematics, N.92, 2008.
[12] E.N. Myslovets, *On finite ca-\(\mathfrak{F} \)-groups*, Problems of Physics, Mathematics and Technics, 2, N.19, 2014, pp. 64–68.
[13] D.J.S. Robinson, *The structure of finite groups in which permutability is a transitive relation*, J. Austral. Math. Soc., N.70, 2001, pp.143–149.
[14] A.N. Skiba, L.A. Shemetkov, *Multiply w-composition formations of finite groups*, Ukrain. Math. Zh, 52, N.6, 2000, pp.783–797.
[15] L.A. Shemetkov, *Two directions in the development of the theory of non-simple finite groups*, Russian Mathematical Surveys, 30, N.2, 1975, pp. 185–206.
[16] L.N. Shemetkov, *Formations of finite groups*, Nauka, 1978.
[17] L.A. Shemetkov, A.N. Skiba, *Formation of algebraic systems*, Nauka, 1989.
[18] A.F. Vasil’ev, T.I. Vasil’eva, *On finite groups with simple chief factors*, Izv. Vuzov. Ser. Mathematics, 426, N.11, 1997, pp.10–14.
[19] V.A. Vedernikov, *On some classes of finite groups*, Dokl. Akad. Nauk BSSR, 2, N.10, 1988, pp.872–875.

Francisk Scorina Gomel State University, Mathematical Department, Sovetskaya street, 104, Gomel, 246019, Belarus

E-mail address: mylovets@gmail.com
E-mail address: formation56@mail.ru