Optimizing smartphone intervention features to improve chronic disease management: A rapid review

Arieh Gomolin
McGill University, Canada

Bertrand Lebouché
McGill University, Canada; Research Institute of the McGill University Health Centre, Canada

Kim Engler
Research Institute of the McGill University Health Centre, Canada

Isabelle Vedel
McGill University, Canada; Lady Davis Institute for Medical Research, Canada

Abstract
While there are an increasing number of mobile health applications to facilitate self-management in patients with chronic disease, little is known about which application features are responsible for impact. The objective was to uncover application features associated with increased usability or improved patient outcomes. A rapid review was conducted in MEDLINE for recent studies on smartphone applications. Eligible studies examined applications for adult chronic disease populations, with self-management content, and assessed specific features. The features studied and their impacts on usability and patient outcomes were extracted. From 3661 records, 19 studies were eligible. Numerous application features related to interface (e.g. reduced number of screens, limited manual data entry) and content (e.g. simplicity, self-tracking features) were linked to improved usability. Only three studies examined patient outcomes. Specific features were shown to have a higher impact. Implementing them can improve chronic disease management and reduce app development efforts.

Keywords
chronic disease, health outcomes, mHealth, mobile applications, usability

Corresponding author:
Arieh Gomolin, Faculty of Medicine, McGill University, 3605 Rue de la Montagne, Montreal, QC H3G 2M1, Canada.
Email: arieh.gomolin@mail.mcgill.ca

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Introduction

Chronic diseases, including cardiovascular and respiratory diseases, cancer, and diabetes, are a significant cause of morbidity and mortality worldwide. Despite the existence of many therapies for these diseases, adherence and self-management are often suboptimal, resulting in a large annual financial burden to health systems. With the advancement of digital technology, individuals and companies have made an effort to address chronic disease management. One example is the use of mobile health applications (app(s))—computer programs on smartphones—to improve patient self-management.

Current literature supports the use of mobile app interventions for chronic disease management. Many studies show statistically significant improvements in clinically relevant indicators of chronic disease management with mobile app interventions; for example, one meta-analysis clearly indicated these interventions can reduce HbA1c% levels in diabetics, a common indicator of appropriate diabetic management. Moreover, research also provides evidence of app “usability,” defined by the International Standardization Organization as the “extent to which a product can be used by specified users to achieve specified goals with effectiveness, efficiency, and satisfaction, in a specified context of use.” For example, patient populations rate most hypertension apps as “usable.”

However, a vast amount of mobile health interventions have been reported to fail during clinical implementation. Given the large number of apps available, the frequency at which apps are developed, and the cost of development, it is important to identify the specific features that are more promising. Little is known about the specific app features that are responsible for improvements in chronic disease management. Typically, investigators hypothesize about desirable features. For instance, Lee Jungh et al., analyzed several mobile interventions to determine whether they improved disease outcomes or usability and then discussed several app features shared by successful interventions in common.

To our knowledge, no review has focused on specifically studying the app features of smartphone interventions targeting chronic disease management. We found one meta-analysis on text messaging interventions that showed that personalized messages, scheduled less than daily, were most effective at improving chronic disease management. However, as the mobile world has advanced beyond text messaging, a deeper understanding of new mobile features is due. Given app diversity, it is important to know what makes a given mobile app intervention effective at improving chronic disease management. This information could help end users, such as development teams, design interventions with the most favorable app features.

Objective

The goal of this review was to determine the impact of specific mobile app features on chronic disease management or usability.

Methods

Design

We conducted a convergent mixed study rapid review, where qualitative, quantitative, and mixed method studies were integrated to better understand the complex and new phenomenon of mobile app use in health management. Rapid reviews are essentially less comprehensive than systematic
reviews and aim to uncover results quicker and with less divergent accompanying findings.15 They are particularly appropriate for the study of mobile apps, given the rapid evolution of technology.16

\textbf{Information source and search strategy}

A literature search was conducted on 13 May 2018 in a single major database (MEDLINE) for relevant original studies on app features. The intentionally broad preliminary search terms were: “Mobile Applications (Mesh)” Or “Smartphones” Or “Mobile Apps” Or “Cell Phones Or iPhones.” Search terms beyond the MeSH term were required, given the frequent delay in assigning MeSH categories to new studies. To further narrow the search, additional filters for English papers, human subjects, adult populations (18–44 years), and publication year (past 5 years) were applied. The search strategy was discussed with a health science librarian. We opted not to limit the search with terms for specific chronic diseases such as diabetes or human immunodeficiency virus (HIV) infection. This resulted in more records to screen but prevented us from missing potential studies.

\textbf{Study selection}

One reviewer (A.G.) conducted study selection as per rapid review norms.17 Selection was completed in two rounds. First, records were screened by title and abstract and second, by full text. A second reviewer resolved any uncertainties (I.V.). The following eligibility criteria were applied:

\textbf{Population.} We included original studies conducted with adults who were clinically diagnosed with a chronic disease, such as diabetes, HIV infection, heart failure, or depression.

\textbf{Intervention.} To be included, studies needed to investigate interventions based on smartphone mobile apps to help patients self-manage their conditions. Self-management was defined as the “active participation by a patient in his or her own health care decisions and interventions.18” Interventions strictly based on text messaging have been studied extensively and were excluded. Interventions utilizing computers, tablets, and other wearable devices were also excluded to focus on widely available portable devices, that is, smartphones. Interventions that only provided information to clinicians were excluded, as our interest was in what helps patients themselves manage their disease(s).

\textbf{Outcomes.} Eligible studies examined the impacts of specific app features on disease management or usability. Studies that measured outcomes of an app without narrowing in on specific app features were excluded.

There were no additional exclusion criteria for the number of apps studied or the number of participants in each study as we wanted to be comprehensive and extract the maximum amount of both quantitative and qualitative information.

\textbf{Data extraction}

Each study’s authors, date, country, population examined, design, duration, and number of participants were extracted to provide context for how each app feature was studied. The reviewer then extracted (1) a description of each app feature considered and (2) the study’s quantitative or qualitative findings on the reported impact of each feature on chronic disease management or usability.
Synthesis

The raw results include, per study, each app feature studied and the impact described on chronic disease management or usability. These data were then synthetized using qualitative synthesis methods. More precisely, we used grouping and clustering to divide features into meaningful categories for interpretation. During the synthesis process, we used several steps to regroup studies inductively. The first distinction was made between app features relating to content and those concerned with interface. Content refers to what is delivered by the intervention, while interface concerns how the content is accessed. Content features were further broken down into information presentation features, personal data tracking and tailoring features, communication with health worker features, and social support features. Interface features were divided into screen features, data entry features, and security features.

Results

Study selection process

From 3661 initial search records, 19 original studies were included in the review (see flowchart in Figure 1). The most common reason for article exclusion during the title and abstract screen was because the app being studied was not designed for chronic disease management. During the full-text review, studies were mostly excluded for failure to study a specific mobile app feature. This exclusion criterion was applied with caution, since some studies provided relevant data on specific mobile app features as secondary outcomes and were eligible.

Characteristics of included studies

Specific chronic diseases represented by the retained studies were diabetes (n = 4 studies), HIV infection (n = 4), mental illness (n = 2), hypertension (n = 2), chronic pain (n = 1), thalassemia (n = 1), chronic obstructive pulmonary disease (n = 1), and rheumatoid arthritis (n = 1). Three additional studies concerned patient populations with multiple chronic diseases. Study designs varied. Approximately half (n = 11) were quantitative studies, whereas seven were qualitative and one was mixed. Prevalent among the quantitative studies were surveys on specific features (n = 6), quasi-experimental cohort studies where several features were implemented and outcomes such as depression scores or viral loads were measured (n = 3), and quasi-experimental cohort studies where several features were implemented and usability outcomes were measured (n = 2). Prevalent among the qualitative studies were interviews (n = 5) and focus groups (n = 2) that inquired with open-ended questions, about patient preferences for proposed features or for suggestions on what features to include. The characteristics of each included study can be found in Table 1.

Results of included studies

As per our eligibility criteria, each retained study examined several app features and resulted in findings for each feature. The raw features and findings, per study, are presented in Table 2 (Main findings for interface features) and Table 3 (Main findings for content features).

Interface-related app features. Interface features (i.e. screen features, data entry features, and security features) were examined in approximately one-third of the studies (n = 6, 32%).
Regarding screen features, two studies identified the need to minimize the number of screens one must encounter per task.20,21 Two studies identified the need for clean visuals22,23 and one identified the benefit of a “welcome wizard” with instructions, the first time an app is used.23 An additional study showed that light colors and ornate fonts were most beneficial.24

As to data entry features, one study identified the need to limit the use of manual data entry.20 One study showed that input data should be limited to meaningful values (i.e. within the possible range of values).23 Moreover, this study highlights the benefit of an error notification function that signals erroneous inputs.23

For security features, one study examined authentication methods and found that password protection is essential and that PIN entry is preferred to other methods.25 Another study
Table 1. Characteristics of included studies.

Title	Author	Date	Country	Type of study	Population	Study design	Study length	No. of participants
Evaluating authentication options for mobile health applications in younger and older adults	Grinrod et al.	2018	Canada	Quant	Multiple	Participants attempted various authentication methods, and the following outcomes were measured: (1) time to authenticate, (2) mean number of errors before login, and (3) satisfaction with the method.	Cross-sectional	102
mHealth applications for diabetes: User preference and implications for app development	Conway et al.	2016	UK	Quant	Diabetes	Participants answered a survey on the desirability of common app features.	Cross-sectional	226
Supporting the self-management of hypertension: Patients’ experiences of using a mobile phone-based system	Hallberg et al.	2015	Sweden	Qual	Hypertension	Participants used an app for 8 weeks and were then interviewed on the utility of the self-management system.	8 weeks	51
Developing an interactive mobile phone self-report system for self-management of hypertension. Part 2: Content validity and usability	Bengtsson et al.	2014 (Part 2)	Sweden	Qual	Hypertension	Interviews were conducted to evaluate various self-reporting questions a mobile app posed.	Cross-sectional	21
Usability Pitfalls of Diabetes mHealth Apps for the Elderly	Isakovic et al.	2016	Slovenia	Qual	Diabetes	Participants were asked to perform a task in an app and were then retrospectively probed to inquire about the usability of the features.	Cross-sectional	10
Smartphone application for rheumatoid arthritis self-management: cross sectional study revealed the usefulness, willingness to use and patients needs	Azevedo et al.	2015	Portugal	Quant	Rheumatoid arthritis	Participants completed a survey about the usefulness of several proposed mobile app features.	Cross-sectional	100
Development of a mental health smartphone app: perspectives of mental health service users	Goodwin et al.	2016	Ireland	Qual	Mental health	Interviews were conducted and participants were asked about the usefulness of several suggested app features.	Cross-sectional	8
Beta Testing a Novel Smartphone Application to Improve Medication Adherence	Ly et al.	2014	USA	Quant	Depression	2 cohorts tried apps with different intervention contents. Beck’s Depression Scores were conducted before and after in each cohort.	8 weeks	81
Effect of a smartphone application incorporating personalized health-related imagery on adherence to antiretroviral therapy: a randomized clinical trial	Perera et al.	2014	New Zealand	Quant	HIV	2 cohorts either underwent a standard intervention or an enhanced intervention with added features. Viral load and self-reported adherence was measured in both groups at baseline and after 3 months.	3 months	26
Feasibility and Preliminary Outcomes of a Web and Smartphone-Based Medication Self-Management Platform for Chronically Ill Patients	Anglada et al.	2016	Spain	Quant	Multiple	Participants tried an intervention and then completed a survey. The % of participants who used each intervention feature and the % of participants who found the feature useful were presented.	6 months	42

(Continued)
Title	Author	Date	Country	Type of study	Population	Study design	Study length	No. of participants
Development and testing of a mobile application to support diabetes self-management for people with newly diagnosed type 2 diabetes: a design thinking case study	Peterson et al.	2017	Denmark	Qual	Diabetes	Users tested an app and were then interviewed about usability and perceptions.	4 weeks	14
Assessing the quality and usability of smartphone apps for pain self-management	Reynoldson et al.	2014	United Kingdom	Quant	Pain	Users tested two apps and reported their preferences for certain usability characteristics.	Cross-sectional	41
Usability of Commercially Available Mobile Applications for Diverse Patients	Sarkar et al.	2016	USA	Quant	Multiple	Participants were given tasks to complete, and statistics about their ability to achieve the tasks were obtained.	Cross-sectional	26
Using Persuasive Technology to Increase Physical Activity in People With Chronic Obstructive Pulmonary Disease by Encouraging Regular Walking: A Mixed-Method Study Exploring Opinions & Preferences	Bartlett et al.	2017	UK	Quant	COPD	Participants tried three interventions and then answered a questionnaire about the relative persuasiveness of each.	Cross-sectional	54
The Use of Mobile Health Applications Among Youth and Young Adults Living with HIV: Focus Group Findings	Saberi et al.	2016	USA	Qual	HIV	4 focus groups were conducted to determine features of the ideal app for an HIV intervention. The most recurrent findings were presented.	Cross-sectional	17
Use of Design Science for Informing the Development of a Mobile App for Persons Living with HIV	Schnall et al.	2014	USA	Qual	HIV	A focus group was conducted to discover the features participants desired most in a mobile intervention.	Cross-sectional	5
Mobile technology use and desired technology-based intervention characteristics among HIV+ Black men who have sex with men	Senn et al.	2017	USA	Mixed	HIV	A questionnaire and phone interview were conducted to inquire about the features participants desired most in a mobile intervention.	Cross-sectional	22
Patient Involvement as Experts in the Development and Assessment of a Smartphone App as a Patient Education Tool for the Management of Thalassemia and Iron Overload Syndromes	Ward et al.	2016	Canada	Quant	Thalassemia	A questionnaire was used to assess participants’ desires for certain design options. Participants were asked questions and then had to rank potential answers in order of preference.	Cross-sectional	35
Randomized Controlled Trial of Super Better, a Smartphone-Based/Internet-Based Self-Help Tool to Reduce Depressive Symptoms	Roepke et al.	2015	USA	Quant	Health	Participants with depression were either assigned to use the SB Social Media app, a cognitive behavioral therapy and psychotherapy enhanced SB app, or were assigned to the control group. Depression scores were measured at baseline and at 6 weeks.	8 weeks	283

Quant: quantitative study, Qual: qualitative study, Mixed: mixed methods study; COPD: chronic obstructive pulmonary disease.
Author	Date	Characteristics	Findings
Grinrod et al.	2018	PIN authentication, Fingerprint authentication, Pattern authentication, Graphical authentication	Fastest, least errors, most preferred
			Slowest, most errors, least preferred
			Irritating for older population
			Irritating for younger population
Isakovic et al.	2016	App welcome screen, Application buttons, Error notification function, Input data	Should have a welcome wizard with instructions
			Need to look like buttons, not pictures
			Needs to identify when there is an erroneous input
			Needs to be limited to meaningful values
Reynoldson et al.	2014	Preferred colors, Preferred font	Light blue and white > darker colors
			Ornate and non-standard > standard font
Sarkar et al.	2016	Data entering tasks, Data retrieval tasks	50%–89% success rate
			43% success rate
			Recommendations:
			Reducing the number of screens
			Reducing manual entry
			Using simple language
			Having clear rationale for each part of the design
Ward et al.	2016	Ease of use > clean visuals > fast loading > offline availability > search functionality > Security details > provider credentials > how to optimize usability > Frequently updated > reliability > password protection > Advertisement/spam > push notifications > pop-ups	Most liked app features ranked in priority of importance to users
			Information about app desired ranked in priority of importance to users
			Features needed for continued app use ranked in priority of importance to users
			Least liked features ranked in priority of importance to users
Shnall et al.	2014	Limiting the number of screens, User interface and information presented simply, Confidentiality and privacy	Usability factors which would make users more likely to use an app
Table 3. Main findings for content features.

Author	Date	Characteristics	Findings
Conway et al.	2016	Password protection Ratio wizard and glucose monitoring function Insulin logging Social media integration	Most desirable feature overall More desirable in type I > type II diabetes users More desirable in Type I > Type II diabetes users Least desirable feature overall
Hallberg et al.	2015	Symptom self-reporting questions Motivating messages Visualization of self-reported data	Irrelevant according to patients without frequent symptoms Should be tailored based on results or user preferences Graph of results versus adherence is key at showing the relationship between user effort and results
Bengtsson et al.	2014	Phrasing of self-reporting questions	Supplementary written information is required for a few brief questions that can be ambiguous. (e.g. “How do you feel today?” vs. “Heart palpitations today?”)
Azevedo et al.	2015	Information on disease and treatment in simple format Monitoring of the disease activity and quality of life over time Alerts for taking medication or other tasks such as doctor visits Register of therapeutic, adverse, and side effects of medications Register of medications and compliance Practical tips to improve the disease condition and quality of life Actualizations of the recent scientific articles in area Chat for contacting peers	Score of 327/490 Score of 312/490 Score of 297/490 Score of 296/490 Score of 234/490 Score of 7/490 Score of 1/490 Score of 1/490
Goodwin et al.	2016	Includes contact information for resources Includes self-reporting questions that identify triggers Includes diaries for sleep, food, or exercise Includes rating scales for mood and anxiety levels Demonstrates relaxation and breathing techniques	Score of 8/8 Score of 7/7 Score of 7/7 Score of 7/7 Score of 7/7
Ly et. al.	2014	Mindfulness as the intervention content Behavioral activation as the intervention content	Better for lower levels of depression Better for higher levels of depression
Perera et al.	2014	Graphical representation of the patient’s plasma concentration of medications Pictorial representation of the patient’s CD4 counts and viral load	Leads to increased self-reported adherence and decreased viral load

(Continued)
Author	Date	Characteristics	Findings
Anglada et al.	2016	Medication log	79% found useful
		Pending reminders	81% found useful
		Extending confirmation interval of these reminders (they normally disappear after 24 h)	57% found useful
		Over-the-counter meds section to notify provider	79% used
		Search bar for drug information	26% used 81% found useful
		Bidirectional contact with provider	62% used 98% found useful
		Download facts into PDF feature	7% used 50% found useful
Peterson et al.	2017	“My health data” (input of blood pressure, glucose)	Most used; most favored by men
		“Status” (input of stress and feeling scores)	Most used: most favored by women
		New habits (methods to encourage self-reflection)	Least used feature
Bartlett et al.	2017	Dialogue support intervention content	Most likely to be persuasive (score of 41/60)
		Primary task support intervention content	Intermediate level of persuasiveness (~36/40)
		Social support intervention content	Least likely of the 3 to be persuasive (~31/60)
		Tips and advice on performing activities with COPD	Score of >130/140
		Identifying local sporting facilities	Score of <10/140
		Getting stars and trophies for tasks	Score of <10/140
		Getting coupons for tasks	Score of <10/140
		Displaying achievements for others	Score of <10/140
Saberi et al.	2016	Connecting to a community	Factors considered important in a mobile health app
		Accessing healthcare providers in lieu of visits	
		Tracking data (CD4, viral loads, medications)	
		Obtaining news and education on disease	

(Continued)
Author	Date	Characteristics	Findings
Senn et al.	2017	Connecting with other HIV men	Important features for a mobile app
		Anonymity	
		Tailoring	
Ward et al.	2016	Keep track of health records > up-to-date information on thalassemia > side effects of meds > info on symptoms and how to deal with them	Content desired in an app, ranked by order of preference
		Appointment times > relevant studies' access > nutritional tips > reminders for meds > thalassemia specialist information > FAQ page	Supplemental features desired in an app, ranked by order of preference
		Interactivity with professionals > forums with other patients > social networking capability	Interactivity desired in an app, ranked by order of preference
		As needed > 1 × week > 1 × month > 1 × day	Desired frequency of use for an app, ranked by order of preference
Roepke et al.	2015	Social media leveraged intervention content	Symptom score reduction by 49%
		Cognitive behavior therapy and psychotherapy enhanced social media leveraged intervention content	Symptom score reduction by 46%
		Control group	Symptom score reduction by 23%

COPD: chronic obstructive pulmonary disease.
Content-related app features. Content features (i.e. information presentation features, self-tracking features, communication with health worker features, social support features) were examined in three quarters of the studies (n = 14, 74%).

- Regarding information presentation features, two studies demonstrated the need to present information on disease and treatment in a simple format.21,26 Another showed that a dialogue support approach was the content most likely to be persuasive over the primary task support approach and the social support approach.27
- Considering self-tracking features, five studies showed that tracking personal data and information was beneficial.21,28–31 Four additional studies demonstrated that tailoring content to each user based on their profile and past data is beneficial.19,24,32,33 For example, symptom self-report questionnaires should be automatically tailored to the patients’ frequency of symptoms to avoid burdening respondents.32 In addition, one study showed that graphical presentations and visuals increased medication adherence and improved outcomes.34
- As to communication with healthcare worker features, a method to communicate with healthcare providers, in lieu of a clinic visit, was deemed helpful in three studies.21,24,31
- Regarding social support features, there were contrasting findings on their desirability, depending on the disease. For people living with HIV (PLHIV), connection to other users was suggested as an important feature, if anonymity was respected.31,33 However, users with diabetes or rheumatoid arthritis did not deem these features helpful.26,28 In addition, the ability to obtain media news and education in a distilled manner was suggested for PLHIV.31 However, this was not deemed helpful for rheumatoid arthritis patients.26

Discussion

Many commercial apps have been found to be effective and useful in patient populations, without any determination of which app features were responsible.5,7,11 To our knowledge, this
review contributes the first summary of the benefits of specific smartphone app features for use in the self-management of chronic diseases. It is, thus, unique and complimentary to past research on mobile apps. It is also one of the first reviews to draw on the newer capabilities offered by smartphones beyond text messaging.

Results of our review showed that numerous app features related to interface (e.g. reduced number of screens, limited manual data entry, simple authentication methods) and content (e.g. simplicity, self-tracking features, communication with healthcare workers) were linked to improved usability. With regard to social support features, results were mixed. Figure 2 summarizes the most frequently valued features.

Given the significant global burden of prevalent chronic diseases, achieving improved chronic disease management is of paramount importance. These study results could help optimize app design and increase app usability. In an expanding market of apps for chronic disease management, it is important to identify promising features and prevent implementation failure, a common challenge.

While this review was conducted in accordance with predefined and recognized review methods, there are some limitations. The validity of the results may be limited by an adherence bias. Patients who agreed to participate in the included studies may be more likely to self-manage their health conditions. Should this be the case, the perspective of poor self-managers may be underrepresented. Future research should ensure users from all spectrums of compliance are included. In addition, this study is a rapid review, not a systematic review, and focuses on records from a sole database. Once additional studies accumulate on this topic, it may be worthwhile to efficiently conduct a systematic review.

Regarding next steps, there is a need to continue researching specific app features, given the many apps and features that are continuously developed. Particular effort should be devoted to investigating newly emerging trends in mobile health such as gaming. It should also be noted that most studies (n=16) assessed usability and not improvements in markers of chronic disease management. Although the assumption is that usability leads to improved chronic disease management, future intervention studies should include patient outcomes directly such as depression scores or viral loads.

Conclusion

In summary, this study overviews the current status of research assessing the effectiveness of specific app features in smartphone intervention for chronic disease self-management. Several specific features are important to include in app interventions. Doing so can reduce wasted app development efforts, maximize intervention efficacy, and lead to overall better chronic disease management for patients. Further research is needed in this domain, as there are numerous apps and features in development. Moreover, studies assessing patient outcomes directly are needed.

Acknowledgements

We would also like to thank the MSD Avenir Foundation for their support.

Declaration of conflicting interests

The author(s) declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article: BL and KE and in the process of developing a smartphone application for routine use in the patient and clinician management of barriers to antiretroviral therapy adherence in people living with HIV.
Funding
The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: AG and KE are funded, in part, by a Strategy for Patient-Oriented Research (SPOR) Mentorship Chair in Innovative Clinical Trials awarded by the Canadian Institutes of Health Research (CIHR) (www.cihr-irsc.gc.ca) to BL (grant number 383427).

ORCID iD
Arieh Gomolin https://orcid.org/0000-0003-1214-4434

References
1. World Health Organization (WHO). *World health statistics 2012*. Report, WHO, Geneva, 2013.
2. Miller AS, Cafazzo JA and Seto E. A game plan: gamification design principles in mHealth applications for chronic disease management. *Health Inform J* 2016; 22: 184–193.
3. Bremmer I. How technology is shaping our world. *Time Magazine*, 20 January 2016. https://time.com/4187146/davos-2016-technology-facts/
4. Rosenbaum L. Swallowing a spy —the potential uses of digital adherence monitoring. *New Engl J Med* 2018; 378: 101–103.
5. Carter B, Hou C, Hewitt J, et al. Do mobile phone applications improve glycemic control in the self-management of diabetes: a systematic review, meta-analysis and GRADE of 14 RCTs. *Endocrine Abst* 2016; 43: OC31.
6. Usability Definition. Developing standards, https://www.iso.org/obp/ui/#iso:std:iso:ts:20282:-2:en (accessed 30 December 2018).
7. Alessa T, Abdi S, Hawley MS, et al. Mobile apps to support the self-management of hypertension: systematic review of effectiveness, usability, and user satisfaction. *JMIR mHealth uHealth* 2018; 6: e10723.
8. Jung M-L and Berthon P. Fulfilling the promise: a model for delivering successful online health care. *J Med Market* 2009; 9: 243–254.
9. Shortliffe EH. Strategic action in health information technology: why the obvious has taken so long. *Heal Affair* 2005; 24: 1222–1233.
10. Research 2 Guidance. *mHealth economics 2017—current status and future trends in mobile health*. Report, 2017. Berlin, Germany: Research2guidance.
11. Wang J, Wang Y, Wei C, et al. Smartphone interventions for long-term health management of chronic diseases: an integrative review. *Telemed e-Heal* 2014; 20: 570–583.
12. Lee J-A, Choi M, Lee SA, et al. Effective behavioural intervention strategies using mobile health applications for chronic disease management: a systematic review. *BMJ Med Inform Decis Mak* 2018; 18: 12.
13. Head KJ, Noar SM, Iannarino NT, et al. Efficacy of text messaging-based interventions for health promotion: a meta-analysis. *Soc Sci Med* 2013; 97: 41–48.
14. Ploe P and Hong QN. Combining the power of stories and the power of numbers: mixed methods research and mixed studies reviews. *Ann Rev Public Health* 2014; 35: 29–45.
15. Hartling L, Guise J-M, Kato E, et al. A taxonomy of rapid reviews links report types and methods to specific decision-making contexts. *J Clin Epidemiol* 2015; 68(12): 1451–1462.e3.
16. Kaltenthaler E, Cooper K, Pandor A, et al. The use of rapid review methods in health technology assessments: 3 case studies. *BMC Med Res Methodol* 2016; 16(1): 108.
17. Tricco AC, Zarin W, Antony J, et al. An international survey and modified Delphi approach revealed numerous rapid review methods. *J Clin Epidemiol* 2016; 70: 61–67.
18. Self-managing. *Medical Dictionary*, https://medical-dictionary.thefreedictionary.com/self-managing (accessed 30 December 2018).
19. Hong QN, Ploe P, Bujold M, et al. Convergent and sequential synthesis designs: implications for conducting and reporting systematic reviews of qualitative and quantitative evidence. *Syst Rev* 2017; 6: 61.
20. Sarkar U, Gourley GI, Lyles CR, et al. Usability of commercially available mobile applications for diverse patients. *J Gen Inter Med* 2016; 31: 1417–1426.
21. Schnall R, Rojas M, Travers J, et al. Use of design science for informing the development of a mobile app for persons living with HIV. *AMIA Annu Symp Proc* 2014; 2014: 1037–1045.

22. Ward R and Taha KM. Patient involvement as experts in the development and assessment of a smartphone app as a patient education tool for the management of thalassemia and iron overload syndromes. *Hemoglobin* 2016; 40: 323–329.

23. Isakovic M, Sedlar U, Volk M, et al. Usability pitfalls of diabetes mHealth apps for the elderly. *J Diabetes Res* 2016; 2016: 1604609.

24. Reynoldson C, Stones C, Allsop M, et al. Assessing the quality and usability of smartphone apps for pain self-management. *Pain Med* 2014; 15: 898–909.

25. Grindrod K, Khan H, Hengartner U, et al. Evaluating authentication options for mobile health applications in younger and older adults. *PLoS ONE* 2018; 13: e0189048.

26. Azevedo R, Bernardes M, Fonseca J, et al. Smartphone application for rheumatoid arthritis self-management: cross-sectional study revealed the usefulness, willingness to use and patients’ needs. *Rheumatol Int* 2015; 35: 1675–1685.

27. Bartlett YK, Webb TL and Hawley MS. Using persuasive technology to increase physical activity in people with chronic obstructive pulmonary disease by encouraging regular walking: a mixed-methods study exploring opinions and preferences. *J Med Internet Res* 2017; 19(4): e124.

28. Conway N, Campbell I, Forbes P, et al. mHealth applications for diabetes: user preference and implications for app development. *Health Inform J* 2016; 22: 1111–1120.

29. Anglada-Martinez H, Martin-Conde M, Rovira-Illamola M, et al. Feasibility and preliminary outcomes of a web and smartphone-based medication self-management platform for chronically ill patients. *J Med Syst* 2016; 40: 99.

30. Petersen M and Hempler NF. Development and testing of a mobile application to support diabetes self-management for people with newly diagnosed type 2 diabetes: a design thinking case study. *BMC Med Inform Decis Mak* 2017; 17: 91.

31. Saberi P, Siedle-Khan R, Sheon N, et al. The use of mobile health applications among youth and young adults living with HIV: focus group findings. *AIDS Patient Care STDs* 2016; 30: 254–260.

32. Hallberg I, Ranerup A and Kjellgren K. Supporting the self-management of hypertension: patients’ experiences of using a mobile phone-based system. *J Hum Hypertens* 2016; 30: 141–146.

33. Senn TE, Braksmajer A, Coury-Doniger P, et al. Mobile technology use and desired technology-based intervention characteristics among HIV Black men who have sex with men. *AIDS Care* 2017; 29: 423–427.

34. Perera AI, Thomas MG, Moore JO, et al. Effect of a smartphone application incorporating personalized health-related imagery on adherence to antiretroviral therapy: a randomized clinical trial. *AIDS Patient Care STDs* 2014; 28: 579–586.