Homogenization of Biomechanical Models for Plant Tissues
Piatnitski, Andrey; Ptashnyk, Mariya

Published in:
Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal

DOI:
10.1137/15M1046198

Publication date:
2017

 Licence:
CC BY

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
Piatnitski, A., & Ptashnyk, M. (2017). Homogenization of Biomechanical Models for Plant Tissues. Multiscale Modeling and Simulation: A SIAM Interdisciplinary Journal, 15(1), 339-387. https://doi.org/10.1137/15M1046198

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
HOMOGENIZATION OF BIOMECHANICAL MODELS FOR PLANT TISSUES

ANDREY PIATNITSKI and MARIYA PTASHNYK

Abstract. In this paper homogenization of a mathematical model for plant tissue biomechanics is presented. The microscopic model constitutes a strongly coupled system of reaction-diffusion-convection equations for chemical processes in plant cells, the equations of poroelasticity for elastic deformations of plant cell walls and middle lamella, and Stokes equations for fluid flow inside the cells. The chemical process in cells and the elastic properties of cell walls and middle lamella are coupled because elastic moduli depend on densities involved in chemical reactions, whereas chemical reactions depend on mechanical stresses. Using homogenization techniques, we derive rigorously a macroscopic model for plant biomechanics. To pass to the limit in the nonlinear reaction terms, which depend on elastic strain, we prove the strong two-scale convergence of the displacement gradient and velocity field.

Key words. homogenization, two-scale convergence, periodic unfolding method, poroelasticity, Stokes system, biomechanics of plant tissues

AMS subject classification. 35B27

DOI. 10.1137/15M1046198

1. Introduction. Analysis of interactions between mechanical properties and chemical processes, which influence the elasticity and extensibility of plant cell tissues, is important for better understanding of plant growth and development, as well as their response to environmental changes. Plant tissues are composed of cells surrounded by cell walls and connected by a cross-linked pectin network of middle lamella. Plant cell walls must be very strong to resist high internal hydrostatic pressure and at the same time flexible to permit growth. It is supposed that calcium-pectin cross-linking chemistry is one of the main regulators of plant cell wall elasticity and extension [51]. Pectin is deposited to cell walls in a methylesterified form. In cell walls and middle lamella, pectin can be modified by the enzyme pectin methylesterase (PME), which removes methyl groups by breaking ester bonds. The de-esterified pectin is able to form calcium-pectin cross-links, and thus stiffen the cell wall and reduce its expansion; see, e.g., [50]. On the other hand, mechanical stresses can break calcium-pectin cross-links and hence increase the extensibility of plant cell walls and middle lamella. It has been shown that chemical properties of pectin and the control of the density of calcium-pectin cross-links greatly influence the mechanical deformations of plant cell walls [34], and the interference with PME activity causes dramatic changes in growth behavior of plant tissues [50].

To analyze the interactions between calcium-pectin dynamics and deformations of a plant tissue, we derive a mathematical model for plant tissue biomechanics at the...
length scale of plant cells. In the microscopic model we consider a system of reaction-diffusion-convection equations describing the dynamics of the methylesterified pectin, demethylesterified pectin, calcium ions, and calcium-pectin cross-links. Elastic deformations and water flow are modelled by the equations of poroelasticity for cell walls and middle lamella coupled with the Stokes system for the flow velocity inside cells. The interplay between the mechanics and the chemistry comes in by assuming that the elastic properties of cell walls and middle lamella depend on the density of the calcium-pectin cross-links and that the stress within cell walls and middle lamella can break the cross-links. Thus the microscopic problem is a strongly coupled system of the Stokes equations, reaction-diffusion-convection equations, with reaction terms depending on the displacement gradient, and equations of poroelasticity, with elastic moduli depending on the density of cross-links. To address the situations when a plant tissue is completely and not completely saturated by water, we consider both evolutionary and quasi-stationary equations of poroelasticity.

To show the existence of a weak solution of the microscopic equations, we use a classical approach and apply the Banach fixed-point theorem. However, due to quadratic nonlinearities of reaction terms, the proof of the contraction inequality is not standard and relies on delicate a priori estimates for the L^∞-norm of a solution of the reaction-diffusion-convection system in terms of the L^2-norm of displacement gradient and flow velocity. The Alikakos iteration technique [2] is applied to show the uniform boundedness of some components of solutions of the microscopic equations.

To analyze effective mechanical properties of plant tissues, we derive rigorously a macroscopic model for plant biomechanics using homogenization techniques. The two-scale convergence, e.g., [3, 31], and the periodic unfolding method, e.g., [15], are applied to obtain the macroscopic equations. The main mathematical difficulty in the derivation of the macroscopic problem arises from the strong coupling between the equations of poroelasticity and the system of reaction-diffusion-convection equations. In order to pass to the limit in the nonlinear reaction terms, we prove the strong two-scale convergence for the displacement gradient and fluid flow velocity, essential for the homogenization of the coupled problem considered here. Due to the dependence of the elasticity tensor on the time variable, in the proof of the strong two-scale convergence a specific form of the energy functional is considered.

Similar to the microscopic problem, to prove uniqueness of a solution of the macroscopic equations, we derive a contraction inequality involving the L^∞-norm of the difference of two solutions of the reaction-diffusion-convection equations. This contraction inequality also ensures the well-posedness of the limit system.

The poroelasticity equations, modelling interactions between fluid flow and elastic stresses in porous media, were first obtained by Biot using a phenomenological approach [10, 9, 8] and subsequently derived by applying techniques of homogenization theory. Formal asymptotic expansion was undertaken by the authors of [5, 13, 23, 42] to derive Biot equations from microscopic description of elastic deformations of a solid matrix and fluid flow in porous space. The rigorous homogenization of the coupled system of equations of linear elasticity for a solid matrix combined with the Stokes or Navier–Stokes equations for the fluid part was conducted in [17, 19, 24, 32] by using the two-scale convergence method. Depending on the ratios between the physical parameters, different macroscopic equations were obtained, e.g., Biot’s equations of poroelasticity, the system consisting of the anisotropic Lamé equations for the solid component, and the acoustic equations for the fluid component, the equations of viscoelasticity. The homogenization of a mathematical model for elastic deformations, fluid flow, and chemical processes in a cell tissue was considered in [20]. In contrast
to the problem considered in the present paper, in [20] the coupling between the
equations of linear elasticity and reaction-diffusion-convection equations for a concentra-
tion was given only through the dependence of the elasticity tensor on the chemical
concentration. The existence and uniqueness of a solution for equations of poroelas-
ticity were studied in [45, 53].

Compared to the many results for the equations of poroelasticity, there exist only
a few studies of interactions between a free fluid and a deformable porous medium. In
[46] a nonlinear semigroup method was used for mathematical analysis of a system of
poroelastic equations coupled with the Stokes equations for free fluid flow. A rigorous
derivation of interface conditions between a poroelastic medium and an elastic body
was considered in [26]. Numerical methods for a coupled Biot poroelastic system
and Navier-Stokes equations were derived in [6]. The Nitsche method for enforcing
interface conditions was applied in [12] for numerical simulation of the Stokes–Biot
coupled system.

Several results on homogenization of equations of linear elasticity can be found
in [7, 21, 33, 42] (and the references therein). Homogenization of the microscopic
model for plant cell wall biomechanics, composed of equations of linear elasticity and
reaction-diffusion equations for chemical processes, has been studied in [39].

This paper is organized as follows. In section 2 we derive the microscopic model for
plant tissue biomechanics. A priori estimates as well as the existence and uniqueness
of a weak solution of the microscopic problem are obtained in section 3. In section 4 we
prove the convergence results for solutions of the microscopic problem. The multiscale
analysis of the coupled poroelastic and Stokes problem is conducted in section 5. In
section 6 we show strong two-scale convergence of the displacement gradient and flow
velocity. The macroscopic equations for the system of reaction-diffusion-convection
equations are derived in section 7. The well-posedness and uniqueness of a solution
of the macroscopic problem are proved in section 8. In section 9 we consider the
incompressible and quasi-stationary cases for the equations of poroelasticity.

2. Microscopic model. In the mathematical model for plant tissue biomechan-
ics we consider interactions between the mechanical properties of a plant tissue and
the chemical processes in plant cells. A plant tissue is composed of the cell inte-
rior (intracellular space), the plasma membrane, plant cell walls, and the cross-linked
pectin network of the middle lamella joining individual cells together. Primary plant
cell walls consist mainly of oriented cellulose microfibrils (that strongly influence the
cell wall stiffness), pectin, hemicellulose, proteins, and water. It is supposed that
calcium-pectin chemistry, given by the de-esterification of pectin and creation and
breakage of calcium-pectin cross-links, is one of the main regulators of cell wall elas-
ticity; see, e.g., [51]. Hence in our mathematical model we consider the interactions
and two-way coupling between calcium-pectin chemistry and elastic deformations of
a plant tissue. To describe the coupling between the mechanics and chemistry, we
consider the dynamics of pectins, calcium, and calcium-pectin cross-links, water flow
in a plant tissue, and the poroelastic nature of cell walls and middle lamella.

To derive a mathematical model for plant tissue biomechanics, we denote a do-
main occupied by a plant tissue by \(\Omega \subset \mathbb{R}^3 \), where \(\Omega \) is a bounded domain with \(C^{1,\alpha} \)
boundary for some \(\alpha > 0 \). Notice that all results also hold for a two-dimensional
domain. Then the time-independent domains \(\Omega_f \subset \Omega \) and \(\Omega_e \subset \Omega \), with \(\overline{\Omega} = \overline{\Omega}_f \cup \overline{\Omega}_e \)
and \(\Omega_f \cap \Omega_f = \emptyset \), represent the reference (Lagrangian) configurations of the intracel-
lar (cell interior) and intercellular (cell walls and middle lamella) spaces, respectively,
and \(\Gamma \) denotes the boundaries between the cell interior and cell walls and correponds

© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
to the plasma membrane. Since Γ represents the interface between elastic material and fluid in the Lagrangian configuration, it is also independent of time.

Pectin is deposited into the cell wall in a highly methylesterified state and is modified by the wall enzyme PME, which removes methyl groups [50]. It was observed experimentally that pectins can diffuse in a plant cell wall matrix; see, e.g., [18, 35, 48]. Thus in the balance equation for the density of the methylesterified pectin $b_{e,1}$ and demethylesterified pectin $b_{e,2}$,

$$\partial_t b_{e,j} + \text{div} J_{b,j} = g_{b,j} \quad \text{in } \Omega_e, \quad j = 1, 2,$$

we assume the flux to be determined by Fick's law, i.e., $J_{b,j} = -D_{b,j} \nabla b_{e,j}$, with $j = 1, 2$ and $D_{b,j} > 0$. The term $g_{b,j}$ models chemical reactions that correspond to the demethylesterification processes and creation and breakage of calcium-pectin cross-links. In general, diffusion coefficients for pectins and calcium depend on the microscopic structure of the cell wall given by the cell wall microfibrils and hemicellulose network, which is assumed to be given and not to change in time, as well as on the density of pectins and calcium-pectin cross-links. For presentation simplicity we assume here that the diffusion coefficient does not depend on the dynamics of pectin and calcium-pectin cross-link densities. However, the analysis can be conducted in the same way for the generalized model in which the diffusion of pectin, calcium, and cross-links depends on pectin and cross-link densities, assuming that diffusion coefficients are uniformly bounded from below and above, which is biologically sensible.

The modification of methylesterified pectin by PME is modelled by the reaction term $g_{b,1} = -\mu_1 b_{e,1}$ with some $\mu_1 > 0$. For simplicity we assume that there is a constant concentration of PME enzyme in the cell wall. By simple modifications of the analysis considered here, the same results can be obtained for a generalized model including the dynamics of PME and chemical reactions between PME and pectin; see [39] for the derivation of the corresponding system of equations.

The deposition of the methylesterified pectin is described by the inflow boundary condition on the cell plasma membrane. We also assume that the demethylesterified pectin cannot move back into the cell interior:

$$D_{b_{e,1}} \nabla b_{e,1} \cdot n = P_i(b_{e,1}, b_{e,2}, b_{e,3}), \quad D_{b_{e,2}} \nabla b_{e,2} \cdot n = 0 \quad \text{on } \Gamma.$$

To account for mechanisms controlling the amount of pectin in the cell wall, we assume that the inflow of new methylesterified pectin depends on the density of methylesterified and demethylesterified pectin, i.e., $b_{e,1}$ and $b_{e,2}$, and calcium-pectin cross-links $b_{e,3}$.

We consider the diffusion and transport by water flow of calcium molecules in the symplast (in the cell interior) and diffusion of calcium in the apoplast (cell walls and middle lamella); see, e.g., [49]. Then the balance equations for calcium densities c_f and c_e in Ω_f and Ω_e, respectively, are given by

$$\partial_t c_f - \text{div}(D_f \nabla c_f - G(\partial_t u_f) c_f) = g_f \quad \text{in } \Omega_f,$$

$$\partial_t c_e - \text{div}(D_e \nabla c_e) = g_e \quad \text{in } \Omega_e,$$

where the chemical reaction term $g_f = g_f(c_f)$ in Ω_f describes the decay and/or buffering of calcium inside the plant cells (see, e.g., [52]), g_e models the interactions between calcium and demethylesterified pectin in cell walls and middle lamella and the creation and breakage of calcium-pectin cross-links, and G is a bounded function of the intracellular flow velocity $\partial_t u_f$. The condition that G is bounded is natural from
the biological and physical point of view, because the flow velocity in plant tissues is bounded. This condition is also essential for a rigorous mathematical analysis of the model. We assume that as the result of the breakage of a calcium-pectin cross-link by mechanical stresses we obtain one calcium molecule and two galacturonic acid monomers of demethylesterified pectin. A detailed derivation of the chemical reaction term \(g_e \) is given in [39]. See also Remark 2.3 for the detailed form of the reaction terms. We assume a passive flow of calcium between cell walls and cell interior and assume that the exchange of calcium between cell interior and cell walls is facilitated only on parts of the cell membrane \(\Gamma \setminus \tilde{\Gamma} \), i.e.,

\[
\begin{align*}
 c_f &= c_e,
 & (D_f \nabla c_f - G(\partial_t u_f) c_f) \cdot n = D_e \nabla c_e \cdot n & \text{on } \Gamma \setminus \tilde{\Gamma}, \\
 D_e \nabla c_e \cdot n &= 0, & (D_f \nabla c_f - G(\partial_t u_f) c_f) \cdot n &= 0 & \text{on } \tilde{\Gamma}.
\end{align*}
\]

The regulation of calcium flow by mechanical properties of the cell wall will be considered in future studies.

Calcium-pectin cross-links \(b_{e,3} \) are created by electrostatic and ionic binding between two galacturonic acid monomers of pectin chains and calcium molecules. It is also known that these cross-links are very stable and can be disturbed mainly by thermal treatments and/or mechanical forces; see, e.g., [38, 37]. Thus assuming a constant temperature, the calcium-pectin chemistry can be described as a reaction between calcium molecules and pectins, where the breakage of cross-links depends on the deformation gradient of the cell walls. Hence we assume that the cross-links are disturbed by the mechanical stresses in cell walls and middle lamella; see [39] for a detailed description of the modelling of the calcium-pectin chemistry. A similar approach was used in [41] to model a chemically mediated mechanical expansion of the cell wall of a pollen tube. There are no experimental observations of diffusion of calcium-pectin cross-links \(b_{e,3} \); however, since most calcium-pectin cross-links are not attached to cell wall microfibrils [18], it is possible that cross-links can move inside the cell wall matrix by a very slow diffusion

\[
\partial_t b_{e,3} - \text{div}(D_{b_{e,3}} \nabla b_{e,3}) = g_{b,3} \quad \text{in } \Omega_e,
\]

where \(D_{b_{e,3}} > 0 \) and the reaction term \(g_{b,3} \) models the creation and breakage by mechanical stresses of calcium-pectin cross-links (see Remark 2.3 for a detailed form of \(g_{b,3} \)). For the analysis presented here the diffusion term in the equations for calcium-pectin cross-link density is important. However, the same results can be obtained if one assumes that calcium-pectin cross-links do not diffuse and that the reaction terms in equations for pectin, calcium, and calcium-pectin cross-links depend on a local average of the deformation gradient, reflecting the fact that in a dense pectin network mechanical forces have a nonlocal effect on the calcium-pectin chemistry; see [39].

To describe elastic deformations of plant cell walls and middle lamella, we consider the equations of poroelasticity reflecting the microscopic structure of cell walls and middle lamella permeable to fluid flow:

\[
\begin{align*}
 \rho_e \partial_t^2 u_e - \text{div}(E(b_{e,3}) e(u_e)) + \alpha \nabla p_e &= 0 & \text{in } \Omega_e, \\
 \rho_p \partial_t p_e - \text{div}(K_p \nabla p_e - \alpha \partial_t u_e) &= 0 & \text{in } \Omega_e.
\end{align*}
\]

Here \(u_e \) denotes the displacement from the equilibrium position, \(e(u_e) \) stands for the symmetrized gradient of \(u_e \), and \(\rho_e \) denotes the poroelastic wall density. Since we
consider the equations of poroelasticity, one more unknown function that should be
determined is the pressure, denoted by \(p_e \). The mass storativity coefficient is denoted
by \(\rho_p \), and \(K_p \) denotes the hydraulic conductivity of cell walls and middle lamella. In
what follows, we assume that the Biot–Willis constant is \(\alpha = 1 \).

It is observed experimentally that the load-bearing calcium-pectin cross-links re-
duce cell wall expansion; see, e.g., [51]. Hence elastic properties of cell walls and middle
lamella depend on the chemical configuration of pectin and density of calcium-pectin
cross-links; see, e.g., [55]. This is reflected in the dependence of the elasticity tensor
\(E \) of the cell wall and middle lamella on the density of calcium-pectin cross-links \(b_{e,3} \).
The differences in the elastic properties of cell walls and middle lamella result in the
dependence of the elasticity tensor \(E \) on the spatial variables. Since the properties
of calcium-pectin cross-links are changing during the deformation and the stretched
cross-links have different impact (stress drive hardening) on the elastic properties of
the cell wall matrix from that of newly created cross-links (see, e.g., [11, 36, 43]), we
consider a nonlocal-in-time dependence of the Young modulus of the cell wall matrix;
see Assumption A1. A similar approach was used in [20] to model the dependence of cell deformations on the concentration of a chemical substance. We assume that the hydraulic conductivity tensor varies
between cell wall and middle lamella and, hence, \(K_p \) depends on the spacial variables.

In the cell interior, that is, in \(\Omega_f \), the water flow is modelled by the Stokes system
\[
\rho_f \frac{\partial^2 u_f}{\partial t^2} - \mu \text{div}(\varepsilon(\partial_t u_f)) + \nabla p_f = 0, \quad \text{div}\partial_t u_f = 0 \quad \text{in } \Omega_f,
\]
where \(\partial_t u_f \) denotes the fluid velocity, \(p_f \) the fluid pressure, \(\mu \) the fluid viscosity, and
\(\rho_f \) the fluid density.

As transmission conditions between free fluid and poroelastic domains we consider
the continuity of normal flux, which corresponds to mass conservation, and the contin-
uity of the normal component of total stress on the interface \(\Gamma \); i.e., the total stress of
the poroelastic medium is balanced by the total stress of the fluid, representing the
conservation of momentum,
\[
(-K_p \nabla p_e + \partial_t u_e) \cdot n = \partial_t u_f \cdot n \quad \text{on } \Gamma,
\]

\[
(E(b_{e,3}) \varepsilon(u_e) - p_e I) n = (\mu \varepsilon(\partial_t u_f) - p_f I) n \quad \text{on } \Gamma.
\]

Also taking into account the channel structure of a cell membrane separating cell
interior and cell wall, given by the presence of aquaporins (see, e.g., [14]), we assume
that the water flow between the poroelastic cell wall and cell interior is in the direction
normal to the interface between the free fluid and the poroelastic medium. Hence we
assume the no-slip interface condition, which is appropriate for problems where at the
interface the fluid flow in the tangential direction is not allowed (see, e.g., [12]),
\[
\Pi_\tau \partial_t u_e = \Pi_\tau \partial_t u_f \quad \text{on } \Gamma.
\]

By \(\Pi_\tau \) we define the tangential projection of a vector \(w \), i.e., \(\Pi_\tau w = w - (w \cdot n)n \),
where \(n \) is a normal vector and \(\tau \) indicates the tangential subspace to the boundary.

The balance of the normal components of the stress in the fluid phase across the
interface is given by
\[
n \cdot (\mu \varepsilon(\partial_t u_f) - p_f I) n = -p_e \quad \text{on } \Gamma.
\]

Notice that the transmission conditions (1) and (2) imply \(E(b_{e,3}) \varepsilon(u_e) n \cdot n = 0 \) on \(\Gamma \).

The transmission conditions are motivated by the models describing coupling between
Biot and Navier–Stokes or Stokes equations considered in, e.g., [6, 12, 27, 28, 46]. The coupling between elastic deformations and fluid flow is described in the Lagrangian configuration, and hence \(\Gamma \) is a fixed interface between the fluid domain and elastic material. Since in our model we consider only the linear elastic nature of the solid skeleton of the cell walls, the transmission conditions (1) and (2) are the corresponding linearizations of the fluid-solid interface conditions; i.e., \(|\det(I + \nabla u_e)|(\mu e(\partial_t u_j(t, x + u_e)) - p_f(t, x + u_e)) = 0 \) is approximated by \((\mu e(\partial_t u_j(t, x)) - p_f(t, x)) |\nabla u_e| \) on \(\Gamma \), and the first Piola–Kirchhoff stress tensor is equal to the Cauchy stress tensor in the first order approximation.

Then the model for the densities of calcium, pectins, and calcium-pectin cross-links reads as

\[
\begin{align*}
\partial_t b_e &= \text{div}(D_e \nabla b_e) + g_b(c_e, b_e, e(u_e)) \\
\partial_t c_e &= \text{div}(D_e \nabla c_e) + g_e(c_e, b_e, e(u_e)) \\
\partial_t c_f &= \text{div}(\nabla c_f - \mathcal{G}(\partial_t u_f) c_f) + g_f(c_f) \\
D_b \nabla b_e \cdot n &= P(b_e) \\
\end{align*}
\]

\(c_e = c_f, \quad D_e \nabla c_e \cdot n = (D_f \nabla c_f - \mathcal{G}(\partial_t u_f) c_f) \cdot n \) on \(\Gamma \), \(t > 0 \)

\(D_e \nabla c_e \cdot n = 0, \quad (D_f \nabla c_f - \mathcal{G}(\partial_t u_f) c_f) \cdot n = 0 \) on \(\Gamma \), \(t > 0 \)

\(b_e(0, x) = b_{0,e}(x), \quad c_e(0, x) = c_0(x) \) in \(\Omega_e \)

\(c_f(0, x) = c_{0,f}(x) \) in \(\Omega_f \)

where \(b_e = (b_{e,1}, b_{e,2}, b_{e,3}), D_f > 0, D_e > 0, \) and \(D_b = \text{diag}(D_{b,e,1}, D_{b,e,2}, D_{b,e,3}) \) with \(D_{b,e,j} > 0, j = 1, 2, 3 \), stands for the diagonal matrix of diffusion coefficients for \(b_{e,1}, b_{e,2}, \) and \(b_{e,3} \).

For elastic deformations of cell walls and middle lamella and fluid flow inside the cells we have a coupled system of Stokes equations and poroelastic (Biot) equations:

\[
\begin{align*}
\rho_e \partial_t^2 u_e - \text{div}(\mathbf{E}(b_{e,3}) e(u_e)) + \nabla p_e &= 0 \quad &\text{in } \Omega_e, \ t > 0, \\
\rho_p \partial_t p_e - \text{div}(K_p \nabla p_e - \partial_t u_e) &= 0 \quad &\text{in } \Omega_e, \ t > 0, \\
\rho_f \partial_t^2 u_f - \mu \text{div}(e(\partial_t u_f)) + \nabla p_f &= 0 \quad &\text{in } \Omega_f, \ t > 0, \\
\partial_t u_f &= 0 \quad &\text{in } \Omega_f, \ t > 0, \\
\mathbf{E}(b_{e,3}) e(u_e) - p_e \mathbf{I} &= (\mu e(\partial_t u_f) - p_f \mathbf{I}) n \quad &\text{on } \Gamma, \ t > 0, \\
\Pi_e \partial_t u_e - \Pi_e \partial_t u_f, \ n \cdot (\mu e(\partial_t u_f) - p_f \mathbf{I}) n &= -p_e \quad &\text{on } \Gamma, \ t > 0, \\
(-K_p \nabla p_e + \partial_t u_e) \cdot n &= \partial_t u_f \cdot n \quad &\text{on } \Gamma, \ t > 0, \\
u_e(0, x) = u_{e,0}(x), \quad \partial_t u_e(0, x) = u_{e,0}^1(x), \quad p_e(0, x) = p_{e,0}(x) \quad &\text{in } \Omega_e, \\
\partial_t u_f(0, x) = u_{f,0}(x) \quad &\text{in } \Omega_f.
\end{align*}
\]

For multiscale analysis of the mathematical model (3)–(4) we derive the nondimensionalized equations from the dimensional model by considering \(t = \bar{t}^*, x = \bar{x}^* \), \(b_e = b_{e,2}^*, c_j = c_{j}^*, u_j = \bar{u}_j^*, p_j = \bar{p}_j^*, \) with \(j = e, f, \bar{\mathbf{E}} = \bar{\mathbf{E}}^*, \bar{K}_p = \bar{K}_p^*, \mu = \bar{\mu} \), \(\rho_p = \bar{\rho}_p^*, \rho_f = \bar{\rho}_f^*, \) with \(j = e, f, D_j = \bar{D}D_j^* \) for \(j = b, e, f, P(b_e) = \bar{P}P^*(b_e^*) \), \(g_f(c_e, b_e, e(u_e^*)) = \bar{g}_f^*(c_e^*, b_e^*, e(u_e^*)) \) for \(j = b, e, \) and \(g_f(c_f) = \bar{g}_f^*(c_f^*) \). The dimensionless small parameter \(\varepsilon = \bar{\varepsilon}/L \) represents the ratio between the representative size of a plant cell \(l \) and the considered size of a plant tissue \(L \) and reflects the size of the microstructure. For a plant root cell we can consider \(l = 10\mu m \) and \(L = 1 m \), and, hence, \(\varepsilon \) is of order \(10^{-5} \). We consider \(\bar{x} = L, \bar{p} = \Lambda \varepsilon, \) with \(\Lambda = 1 \) MPa, and
\(\hat{a} = l \). For the time scale we take \(\hat{t} = \hat{\mu}/(\Lambda \varepsilon^2) \), which together with \(\hat{\mu} = 10^{-2}\text{Pa}\cdot\text{s} \) corresponds approximately to 1.7 min. We also consider \(\hat{E} = \Lambda, \hat{K} = \hat{\varepsilon}^2 / (\hat{\mu}) = \mu^2 / \hat{\mu}, \)
\(\hat{\rho} = (\Lambda^2) / \hat{\varepsilon}^2 = \hat{\mu}^2 / (\Lambda \varepsilon^4 L^2), \hat{\rho}_p = 1 / \Lambda, \hat{D} = \hat{\varepsilon}^2 / \hat{\mu} = \nu^2 \Lambda / \mu, \) and \(\hat{R} = \hat{\varepsilon} / \hat{t} = \varepsilon^3 L \Lambda / \hat{\mu}. \) Hydraulic conductivity \(K_p \) is of order \(10^{-9} - 10^{-8} \text{ m}^2 \cdot \text{s}^{-1} \). Pa\(^{-1} \), and the minimal value of the elasticity tensor is of order 10 MPa \([55]\). Hence the minimal value of the nondimensionalized elasticity tensor \(\hat{E}^* \) is approximately 10, and \(\hat{K}_p^* \sim 0.01 - 1 \). The parameters in the inflow boundary condition, i.e., in \(P(b_c) \), are of order \(10^{-7} \text{m/s} \), and with \(\hat{R} = 10^{-7} \text{m/s} \) we obtain the nondimensional parameters in the boundary condition for \(b_c \) to be of order 1. Here we assume that \(\rho_j > 0 \), with \(j = e, p, f \), are fixed. The case when the density \(\rho_e \) and/or \(\rho_p \) is of order \(\varepsilon^2 \) can be analyzed in the same way as the case when \(\rho_e = 0 \) and \(\rho_p = 0 \), considered in section 9.

To describe the microscopic structure of a plant tissue, we assume that cells in the tissue are distributed periodically and have a diameter of order \(\varepsilon \). The stochastic case will be analyzed in a future paper. We consider a unit cell \(\Omega = \Omega_c \cup \Omega_f \), with \(\Omega = [0, a_1] \times [0, a_2] \times [0, a_3], \) for \(a_j > 0 \) with \(j = 1, 2, 3 \), where \(\Omega_c \) represents the cell wall and a part of the middle lamella, and \(\Omega_f \), with \(\Omega_f \subset \Omega \), defines the inner part of a cell. We denote \(\partial \Omega_f = \Gamma \) and let \(\hat{\Gamma} \) be an open on \(\Gamma \) regular subset of \(\Gamma \).

Then the time-independent domains \(\Omega_f^\varepsilon \) and \(\Omega_c^\varepsilon \), representing the reference (Lagrangian) configuration of the intracellular (cell interior) and intercellular (cell walls and middle lamella) spaces, are defined by

\[
(5) \quad \Omega_f^\varepsilon = \text{Int} \left(\bigcup_{\xi \in \Xi^\varepsilon} \varepsilon (\hat{\Omega}_f + \xi) \right) \quad \text{and} \quad \Omega_c^\varepsilon = \Omega \setminus \overline{\Omega}_f^\varepsilon,
\]

respectively, where \(\Xi^\varepsilon = \{ \xi = (a_1 \eta_1, a_2 \eta_2, a_3 \eta_3), \eta = (\eta_1, \eta_2, \eta_3) \in \mathbb{Z}^3 : \varepsilon (\hat{\Gamma}_f + \xi) \subset \Omega \} \), and \(\Gamma_f^\varepsilon = \bigcup_{\xi \in \Xi^\varepsilon} \varepsilon (\hat{\Gamma}_f + \xi) \) defines the boundaries between cell interior and cell walls, \(\Gamma_c^\varepsilon = \bigcup_{\xi \in \Xi^\varepsilon} \varepsilon (\hat{\Gamma}_c + \xi) \); see Figure 1.

We shall use the following notation for time-space domains: \(\Omega_s = (0, s) \times \Omega, \)
\((\partial \Omega)_s = (0, s) \times \partial \Omega, \) \(\Omega_{j,s}^\varepsilon = (0, s) \times \Omega_{j}^\varepsilon \) for \(j = e, f, \) \(\Gamma_s^\varepsilon = (0, s) \times \Gamma^\varepsilon, \) and \(\Gamma_{s}^\varepsilon = (0, s) \times \hat{\Gamma}^\varepsilon \) for \(s \in [0, \hat{t}] \).

Neglecting \(\varepsilon \), we obtain the nondimensionalized microscopic model for plant tissue.
biomechanics

\[\partial_t b^e_c = \text{div}(D_b \nabla b^e_c) + g_b(c^e_c, b^e_c, e(u^e_c)) \quad \text{in } \Omega_{e,T}^r, \]
\[\partial_t c^e_c = \text{div}(D_c \nabla c^e_c) + g_c(c^e_c, b^e_c, e(u^e_c)) \quad \text{in } \Omega_{e,T}^r, \]
\[\partial_t c^e_f = \text{div}(D_f \nabla c^e_f - \mathcal{G}(\partial_t u^e_f)c^e_f) + g_f(c^e_f) \quad \text{in } \Omega_{f,T}^r, \]
\[D_b \nabla b^e_c \cdot n = \varepsilon P(b^e_c) \quad \text{on } \Gamma_T^e, \]
\[c^e_c = c^e_f, \quad D_c \nabla c^e_c \cdot n = (D_f \nabla c^e_f - \mathcal{G}(\partial_t u^e_f)c^e_f) \cdot n \quad \text{on } \Gamma_T^e \setminus \Gamma_T^f, \]
\[D_c \nabla c^e_c \cdot n = 0, \quad (D_f \nabla c^e_f - \mathcal{G}(\partial_t u^e_f)c^e_f) \cdot n = 0 \quad \text{on } \Gamma_T^f, \]
\[b^e_c(0, x) = b^e_{00}(x), \quad c^e_c(0, x) = c^e_{00}(x) \quad \text{in } \Omega_T^e, \]
\[c^e_f(0, x) = c^e_{00}(x) \quad \text{in } \Omega_T^f. \]

and

\[\rho_\varepsilon \partial^2_t u^e_c - \text{div}(\mathbf{E}^e(b^e_c,3)e(u^e_c)) + \nabla p^e_c = 0 \quad \text{in } \Omega_{e,T}^r, \]
\[\rho_\varepsilon \partial_t p^e_c - \text{div}(K_p^e \nabla p^e_c - \partial_t u^e_c) = 0 \quad \text{in } \Omega_{e,T}^r, \]
\[\rho_f \partial^2_t u^e_f - \varepsilon^2 \mu \text{div}(e(\partial_t u^e_f)) + \nabla p^e_f = 0 \quad \text{in } \Omega_{f,T}^r, \]
\[\partial_t u^e_f = 0 \quad \text{in } \Omega_{f,T}^r, \]

\[(\mathbf{E}^e(b^e_c,3)e(u^e_c) - p^e_c I) n = (\varepsilon^2 \mu e(\partial_t u^e_f) - p^e_f I) n \quad \text{on } \Gamma_T^e, \]
\[\Pi \partial_t u^e_c = \Pi \partial_t u^e_f, \quad n \cdot (\varepsilon^2 \mu e(\partial_t u^e_f) - p^e_f I) n = -p^e_e \quad \text{on } \Gamma_T^e, \]
\[(-K_p^e \nabla p^e_c + \partial_t u^e_c) \cdot n = \partial_t u^e_f \cdot n \quad \text{on } \Gamma_T^e, \]
\[u^e_c(0, x) = u^e_{00}(x), \quad \partial_t u^e_c(0, x) = u^1_{00}(x), \quad p^e_c(0, x) = p^e_{00}(x) \quad \text{in } \Omega_T^e, \]
\[\partial_t u^e_f(0, x) = u^1_{00}(x) \quad \text{in } \Omega_T^f. \]

On the external boundaries we prescribe the following force and flux conditions:

\[D_b \nabla b^e_c \cdot n = F_b(b^e_c), \quad D_c \nabla c^e_c \cdot n = F_c(c^e_c) \quad \text{on } (\partial \Omega)_T, \]
\[\mathbf{E}^e(b^e_c,3)e(u^e_c) n = F_u \quad \text{on } (\partial \Omega)_T, \]
\[(K_p^e \nabla p^e_c - \partial_t u^e_c) \cdot n = F_p \quad \text{on } (\partial \Omega)_T. \]

The elasticity and permeability tensors are defined by \(Y \)-periodic functions

\[\mathbf{E}^e(x, \xi) = \mathbf{E}(x/\varepsilon, \xi) \quad \text{and} \quad K_p^e(x) = K_p(x, x/\varepsilon), \]

where \(\mathbf{E}(\cdot, \cdot) \) and \(K_p(x, \cdot) \) are \(Y \)-periodic for a.a. \(\xi \in \mathbb{R} \) and \(x \in \Omega \).

We emphasize that the diffusion coefficients \(D_b, D_c, \) and \(D_f \) in (6) are supposed to be constant just for presentation simplicity. The method developed in this paper also applies to the case of nonconstant uniformly elliptic diffusion coefficients.

We suppose the following conditions hold:

\textbf{A1.} Elasticity tensor \(\mathbf{E}(y, \zeta) = (E_{ijkl}(y, \zeta))_{1 \leq i,j,k,l \leq 3} \) satisfies \(E_{ijkl} = E_{klij} = E_{ijlk} \) and \(\alpha_1 |A|^2 \leq \mathbf{E}(y, \zeta) A \cdot A \leq \alpha_2 |A|^2 \) for all symmetric matrices \(A \in \mathbb{R}^{3 \times 3}, \zeta \in \mathbb{R}^+ \), and \(y \in Y \), and for some \(\alpha_1 \) and \(\alpha_2 \) such that \(0 < \alpha_1 \leq \alpha_2 < \infty \).

\[\mathbf{E}(y, \zeta) = \mathbf{E}_1(y, \mathcal{F}(\zeta)), \] where

\[\mathbf{E}_1 \in C_{\text{per}}(Y; C^2_b(\mathbb{R})) \quad \text{and} \quad \mathcal{F}(\zeta) = \int_0^t \kappa(t - \tau)\zeta(\tau, x)d\tau, \]

with a smooth function \(\kappa : \mathbb{R}^+ \to \mathbb{R}^+ \) such that \(\kappa(0) = 0 \), and \(x \in \Omega \).
A2. $K_\eta \in C(\overline{\Omega}; L^\infty(\Omega))$ and $K_\eta(x, y)\eta \cdot \eta \geq k_1|\eta|^2$ for $\eta \in \mathbb{R}^3$, a.a. $y \in Y$ and $x \in \Omega$, and $k_1 > 0$.

A3. G is a Lipschitz continuous function on \mathbb{R}^3 such that $|G(r)| \leq R$ for some $R > 0$ and all $r \in \mathbb{R}^3$.

A4. For functions $g_b, g_e, g_f, P, F_b,$ and F_e we assume that

\[g_b \in C(\mathbb{R} \times \mathbb{R}^3 \times \mathbb{R}^6; \mathbb{R}^3), \quad g_e \in C(\mathbb{R} \times \mathbb{R}^3 \times \mathbb{R}^6), \quad F_b, \ P \in C(\mathbb{R}^3; \mathbb{R}^3), \]

and F_e and g_f are Lipschitz continuous. Moreover, the following estimates hold:

\[
\begin{align*}
|g_b(s, r, \xi)| &\leq C_1(1 + |s| + |r|) + C_2|r||\xi|, \\
|g_e(s, r, \xi)| &\leq C_3(1 + |s| + |r|) + C_4(|s| + |r|)|\xi|, \\
|F_b(r)| + |P(r)| &\leq C(1 + |r|), \\
|F_e(s)| + |g_f(s)| &\leq C(1 + |s|),
\end{align*}
\]

where $s \in \mathbb{R}_+$, $r \in \mathbb{R}^3$, and ξ is a symmetric 3×3 matrix. Here and in what follows we identify the space of symmetric 3×3 matrices with \mathbb{R}^6.

It is also assumed that for any symmetric 3×3 matrix ξ we have that $g_{b,i}(s, r, \xi), F_{b,i}(r),$ and $F_{f,i}(r)$ are nonnegative for $r = 0, s \geq 0,$ and $r_i \geq 0,$ with $i = 1, 2, 3$ and $j \neq i,$ and $g_e(s, r, \xi), g_f(s),$ and $F_e(s)$ are nonnegative for $s = 0$ and $r_i \geq 0,$ with $j = 1, 2, 3.$

We assume also that $g_b(\cdot, \cdot, \xi), g_e(\cdot, \cdot, \xi), F_b,$ and P are locally Lipschitz continuous and

\[
\begin{align*}
|g_b(s_1, r_1, \xi_1) - g_b(s_2, r_2, \xi_2)| &\leq C_1(|r_1| + |r_2|)|s_1 - s_2| \\
&\quad + C_2(|s_1| + |s_2| + |\xi_1| + |\xi_2|)|r_1 - r_2| + C_3(|r_1| + |r_2|)|\xi_1 - \xi_2|, \\
|g_e(s_1, r_1, \xi_1) - g_e(s_2, r_2, \xi_2)| &\leq C_1(|r_1| + |r_2| + |\xi_1| + |\xi_2|)|s_1 - s_2| \\
&\quad + C_2(|s_1| + |s_2| + |\xi_1| + |\xi_2|)|r_1 - r_2| + C_3(|r_1| + |r_2| + |s_1| + |s_2|)|\xi_1 - \xi_2|
\end{align*}
\]

for $s_1, s_2 \in \mathbb{R}_+, r_1, r_2 \in \mathbb{R}^3,$ and ξ_1, ξ_2 are symmetric 3×3 matrices.

A5. $u_{\alpha_0} \in L^\infty(\Omega)^3, u_0 \in L^\infty(\Omega), \quad b_{\alpha_0,j} \geq 0, \quad c_0 \geq 0$ a.e. in $\Omega,$ where $j = 1, 2, 3.$ $u_{\beta_0} \in H^1(\Omega)^3, u_{\beta_0} \in H^2(\Omega)^3,$ and div $u_{\beta_0} = 0$ in Y.

$\bar{u}_{\epsilon_0} \in H^1(\Omega_\epsilon)^3, \bar{p}_{\epsilon_0} \in H^1(\Omega)$ are defined as solutions of

\[
\begin{align*}
\text{div}(\mathbf{E}_{\epsilon}^-(b_{\alpha_0,3})\mathbf{e}(u_{\epsilon_0}^-)) &= f_u \quad \text{in } \Omega_\epsilon, \\
\Pi_\tau(\mathbf{E}_{\epsilon}^-(b_{\alpha_0,3})\mathbf{e}(u_{\epsilon_0}^-)n) &= \varepsilon^2\mu\Pi_\tau(\mathbf{e}(u_{\beta_0})n) \quad \text{on } \Gamma_\tau, \\
n \cdot \mathbf{E}_{\epsilon}^-(b_{\alpha_0,3})\mathbf{e}(u_{\epsilon_0}^-)n &= 0 \quad \text{on } \Gamma_\tau, \quad u_{\epsilon_0}^\tau = 0 \quad \text{on } \partial\Omega, \\
\text{div}(K_\epsilon^\tau\nabla p_{\epsilon_0}^-) &= f_p \quad \text{in } \Omega, \quad p_{\epsilon_0}^\tau = 0 \quad \text{on } \partial\Omega,
\end{align*}
\]

for given $f_u \in L^2(\Omega)^3$ and $f_p \in L^2(\Omega).$

$F_\epsilon \in H^1(0, T; L^2(\partial\Omega)), \quad F_u \in H^2(0, T; L^2(\partial\Omega))$.

Remark 2.1. Under the assumptions on u_{ϵ_0} and p_{ϵ_0} by the standard homogenization results, we obtain

\[
\hat{u}_{\epsilon_0} \to u_{\alpha_0}, \quad \tilde{p}_{\epsilon_0} \to p_{\alpha_0} \quad \text{strongly in } L^2(\Omega),
\]

\[
\mathbf{e}(u_{\epsilon_0}^-) \to \mathbf{e}(u_{\alpha_0}) + \mathbf{e}_y(u_{\alpha_0}) \quad \text{strongly two-scale, } \hat{u}_{\epsilon_0} \in L^2(\Omega; H^1(Y_c)/\mathbb{R})^3,
\]

where \hat{u}_{ϵ_0} is an extension of $u_{\epsilon_0},$ and $u_{\alpha_0} \in H^1(\Omega)^3$ and $p_{\alpha_0} \in H^1(\Omega)$ are solutions of the corresponding macroscopic (homogenized) equations.
Remark 2.2. Our approach also applies to the case when the initial velocity u_{j0}^1 has the form $u_{j0}^1(x) = U_{j0}^1(x, x/\varepsilon)$, where the vector function $U_{j0}^1(x, y)$ is periodic in y, sufficiently regular, and such that $\text{div}_x U_{j0}^1(x, y) = 0$, $\text{div}_y U_{j0}^1(x, y) = 0$.

Remark 2.3. The reaction terms for c_f^ε, $b_{e,1}^\varepsilon$, $b_{e,2}^\varepsilon$, $b_{e,3}^\varepsilon$, and c_r^ε can be considered in the following form:

$$
g_f(c_f^\varepsilon) = -\mu_2 c_f^\varepsilon, \quad g_{b,1}(b_{e,1}^\varepsilon, c_r^\varepsilon, e(u_\varepsilon^\varepsilon)) = -\mu_1 b_{e,1}^\varepsilon,
$$

$$
g_{b,2}(c_r^\varepsilon, b_{e,2}^\varepsilon, e(u_\varepsilon^\varepsilon)) = \mu_1 b_{e,1}^\varepsilon - 2r_{de} b_{e,2}^\varepsilon c_r^\varepsilon + 2R_b(b_{e,3}^\varepsilon)(\text{tr}E^e(b_{e,3}^\varepsilon)e(u_\varepsilon^\varepsilon))^+ - r_d b_{e,2}^\varepsilon,
$$

$$
g_{b,3}(c_r^\varepsilon, b_{e,3}^\varepsilon, e(u_\varepsilon^\varepsilon)) = r_{de} b_{e,2}^\varepsilon c_r^\varepsilon - R_b(b_{e,3}^\varepsilon)(\text{tr}E^e(b_{e,3}^\varepsilon)e(u_\varepsilon^\varepsilon))^+,
$$

$$
g_{c_r}(c_r^\varepsilon, b_{e,3}^\varepsilon, e(u_\varepsilon^\varepsilon)) = -r_{de} b_{e,2}^\varepsilon c_r^\varepsilon + R_b(b_{e,3}^\varepsilon)(\text{tr}E^e(b_{e,3}^\varepsilon)e(u_\varepsilon^\varepsilon))^+,
$$

where $\mu_1, \mu_2, r_{de}, r_d, \kappa > 0$, and $R_b(b_{e,3}^\varepsilon)$ is a Lipschitz continuous function of calcium-pectin cross-links density, e.g., $R_b(b_{e,3}^\varepsilon) = r_b b_{e,3}^\varepsilon$ with some constant $r_b > 0$. We assume that the concentration of the enzyme PME is constant, and hence methylesterified pectin is de-esterified at a constant rate. The demethylesterified pectin is produced through the de-esterification of methylesterified pectin by PME, demethylesterified pectin can decay, and through the interaction between two galacturonic acid groups of pectin chains and a calcium molecule a calcium-pectin cross-link is produced. If a cross-link breaks due to mechanical forces, we regain two acid groups of demethylesterified pectin and one calcium molecule. We consider the decay of calcium inside the cells. The positive part of the trace of the elastic stress reflects the fact that extension rather than compression causes the breakage of calcium-pectin cross-links. See [39] for more details on the derivation of a microscopic model for the biomechanics of a plant cell wall.

In what follows we use the notation $\langle \cdot, \cdot \rangle_{H^1(A), H^1}$ for the duality product between $L^2(0, s; H^1(A))$ and $L^2(0, s; H^1(A))$, and

$$
\langle \phi, \psi \rangle_{A_\varepsilon} = \int_0^s \int_A \phi(x, t) \psi(x, t) \, dx \, dt \quad \text{for} \quad \phi \in L^q(0, s; L^p(A)) \text{ and } \psi \in L^{q'}(0, s; L^{p'}(A)),
$$

where $1/q + 1/q' = 1$ and $1/p + 1/p' = 1$ for any $s > 0$ and domain $A \subset \mathbb{R}^3$.

We also use the notation

$$
c^\varepsilon = \begin{cases}
 c_r^\varepsilon & \text{in } \Omega_{c,\varepsilon}, \\
 c_f^\varepsilon & \text{in } \Omega_{f,\varepsilon}.
\end{cases}
$$

Next we define a weak solution of the coupled system (6)–(8).

Definition 2.4. Functions

$$
u_\varepsilon^\varepsilon \in \left[L^2(0, T; H^2(\Omega_{c,\varepsilon}^\varepsilon)) \cap H^2(0, T; L^2(\Omega_{c,\varepsilon}^\varepsilon)) \right]^3,
$$

$$
p_\varepsilon^\varepsilon \in \left[L^2(0, T; H^1(\Omega_{c,\varepsilon}^\varepsilon)) \cap H^1(0, T; L^2(\Omega_{c,\varepsilon}^\varepsilon)) \right],
$$

$$
\partial_t u_j^\varepsilon \in \left[L^2(0, T; H^1(\Omega_j^\varepsilon)) \cap H^1(0, T; L^2(\Omega_j^\varepsilon)) \right]^3, \quad p_j^\varepsilon \in L^2(0, T; \Omega_j^\varepsilon),
$$

$$
\Pi\varepsilon, \partial_t u_\varepsilon^\varepsilon = \Pi\varepsilon, \partial_t u_j^\varepsilon \quad \text{on } \Gamma_T^\varepsilon, \quad \text{div } \partial_t u_j^\varepsilon = 0 \quad \text{in } \Omega_{f,\varepsilon}^\varepsilon,
$$

and

$$
b_j^\varepsilon \in \left[L^2(0, T; H^1(\Omega_j^\varepsilon)) \cap L^\infty(0, T; L^2(\Omega_j^\varepsilon)) \right]^3,
$$

$$
c^\varepsilon \in \left[L^2(0, T; H^1(\Omega \setminus \bar{\Omega}_\varepsilon)) \cap L^\infty(0, T; L^2(\Omega)) \right]^3.
$$
are a weak solution of (6)–(8) if

(i) \((u_ε^c, p_ε^c, \partial_t u_ε^c, p_ε^f)\) satisfy the integral relation

\[
\langle \rho_ε \partial_t^2 u_ε^c, \phi \rangle_{Ω_ε^c, T} + \langle (\mathbf{E}^ε(b_ε^c, 3) \mathbf{e}(u_ε^c), \mathbf{e}(\phi)) \rangle_{Ω_ε^c, T} + \langle \nabla p_ε^c, \phi \rangle_{Ω_ε^c, T}
\]

\[
+ \langle \rho_ε \phi, \partial_t p_ε^c, \psi \rangle_{Ω_ε^c, T} + \langle K_ε^p \nabla p_ε^c - \partial_t u_ε^f, \nabla \psi \rangle_{Ω_ε^c, T} + \langle \partial_t u_ε^f \cdot n, \psi \rangle_{Γ^f_ε} - \langle p_ε^f, \eta \cdot n \rangle_{Γ^f_ε}
\]

\[
+ \langle \rho_f \partial_t^2 u_ε^f, \eta \rangle_{Ω_ε^f, T} + \varepsilon_2 \mu_ε \langle \mathbf{e}(\partial_t u_ε^f), \mathbf{e}(\eta) \rangle_{Ω_ε^f, T} = \langle F_u, \phi \rangle_{(ΩT)^c} + \langle F_ρ, \psi \rangle_{(ΩT)^c}
\]

for all \(ψ ∈ L^2(0, T; H^1(Ω_ε^f))\), \(φ ∈ L^2(0, T; H^1(Ω_ε^c))^3\), and \(η ∈ L^2(0, T; H^1(Ω_ε^f))^3\), with \(\Pi_ε φ = Π_ε η on Γ^f_ε\), and \(\text{div} η = 0 in (0, T) \times Ω_ε^f\).

(ii) \((b_ε^c, c_ε^c)\) satisfy the integral relations

\[
\langle \partial_t b_ε^c, \varphi_1 \rangle_{H^1(Ω_ε^c)^3, H^1} + \langle D_ε \nabla b_ε^c, \nabla \varphi_1 \rangle_{Ω_ε^c, T} - \langle g_0(c_ε^c, b_ε^c, \mathbf{e}(u_ε^c)), \varphi_1 \rangle_{Ω_ε^c, T}
\]

\[
= \varepsilon(P(b_ε^c), \varphi_1)_{Γ^f_ε} + \langle F_b(b_ε^c), \varphi_1 \rangle_{(ΩT)^c}
\]

and

\[
\langle \partial_t c_ε^c, \varphi_2 \rangle_{H^1(Ω_ε^c)^3, H^1} + \langle D_ε \nabla c_ε^c, \nabla \varphi_2 \rangle_{Ω_ε^c, T} - \langle g_ε(c_ε^c, b_ε^c, \mathbf{e}(u_ε^c)), \varphi_2 \rangle_{Ω_ε^c, T}
\]

\[
= \langle F_c(c_ε^c), \varphi_2 \rangle_{(ΩT)^c}
\]

for all \(φ_1 ∈ L^2(0, T; H^1(Ω_ε^c))^3\) and \(φ_2 ∈ L^2(0, T; H^1(Ω^c))^3\).

(iii) the corresponding initial conditions are satisfied. Namely, as \(t \to 0\),

\[
u_ε^c(t, ·) \to u_0^c(·), \quad \text{and} \quad \partial_t u_ε(t, ·) \to u_0^1(·) \in L^2(Ω_ε^f)^3, \quad p_ε(t, ·) \to p_0^c(·) \in L^2(Ω_ε^c)^3, \quad \partial_t u_ε^f(t, ·) \to u_0^1(·) \in L^2(Ω_ε^f)^3, \quad b_ε^c(t, ·) \to b_0^c(·) \in L^2(Ω_ε^c)^3, \quad \text{and} \quad c_t^c(t, ·) \to c_0(·) \in L^2(Ω).
\]

3. A priori estimates, existence and uniqueness of a solution of the microscopic problem. We begin by proving the existence of a weak solution of the microscopic model (6)–(8) and uniform in \(ε\) a priori estimates. In order to obtain uniform in \(ε\) estimates, we shall extend \(H^1\)-functions from a perforated domain into the whole domain.

Lemma 3.1.

- There exist extensions \(\overline{b}_ε^c\) and \(\overline{c}_ε^c\) of \(b_ε^c\) and \(c_ε^c\), respectively, from \(L^2(0, T; H^1(Ω_ε^c))^3\) to \(L^2(0, T; H^1(Ω))^3\) such that

\[
\| \overline{b}_ε^c \|_{L^2(ΩT)} \leq C \| b_ε^c \|_{L^2(Ω_ε^c, T)}, \quad \| \nabla \overline{b}_ε^c \|_{L^2(ΩT)} \leq C \| \nabla b_ε^c \|_{L^2(Ω_ε^c, T)},
\]

\[
\| \overline{c}_ε^c \|_{L^2(ΩT)} \leq C \| c_ε^c \|_{L^2(Ω_ε^c, T)}, \quad \| \nabla \overline{c}_ε^c \|_{L^2(ΩT)} \leq C \| \nabla c_ε^c \|_{L^2(Ω_ε^c, T)}.
\]

- There exists an extension \(\overline{c}_ε^c\) of \(c_ε^c\) from \(L^2(0, T; H^1(Ω_ε^f))^3\) to \(L^2(0, T; H^1(Ω))^3\) such that

\[
\| \overline{c}_ε^c \|_{L^2(ΩT)} \leq C \| c_ε^c \|_{L^2(Ω_ε^f, T)}, \quad \| \nabla \overline{c}_ε^c \|_{L^2(ΩT)} \leq C \| \nabla c_ε^c \|_{L^2(Ω_ε^f, T)}.
\]

Here the constant \(C\) is independent of \(ε\), and \(\overline{Ω}_ε^f = Ω \setminus \overline{Γ}^σ\), with \(Γ^σ = \bigcup_{ξ ∈ ξ} ξ(Γ_0 \cap Y_ε + ξ)\), where \(Γ_0\) is a \(δ\)-neighborhood of \(Γ\) such that \(Γ_0 \cap ∂Y = \emptyset\) and \(Y \setminus Γ_0 \cap Y_ε\) is a connected set.
Sketch of proof. The assumptions on the geometry of Ω_ε^c and $\bar{\Omega}_\varepsilon^c$ and a standard extension operator (see, e.g., [1, 16]) ensure the existence of extensions of b^c_ε, c^c_ε, and c^c satisfying estimates (12), (13), and (14), respectively.

Remark. Notice that we have a jump in c^c across $\bar{\Gamma}$. Thus in order to construct an extension of c^c in $H^1(\Omega)$ we have to consider c^c outside a δ-neighborhood of $\bar{\Gamma}$. Also since we would like to have an extension of c^c_j from Ω^c_j to Ω, we have to consider $\bar{\Omega}^c_j \cap Y^c_j$; see Figure 1.

Notice that, since $Y_j \subset Y$ with $\partial Y_j \cap \partial Y = \emptyset$ and $\Gamma = \partial Y_j$, for $\delta > 0$ sufficiently small $\bar{\Omega}^c_j$ will satisfy the assumption of the lemma.

Lemma 3.2. Under assumptions A1–A5, solutions of the microscopic problem (6)–(8) satisfy the following a priori estimates:

For elastic deformation, pressures, and flow velocity we have

\[
\begin{align*}
&\|b_\varepsilon^c\|_{L^\infty(0,T;H^1(\Omega^c_\varepsilon))} + \|\partial_t u_\varepsilon^c\|_{L^\infty(0,T;H^1(\Omega^c_\varepsilon))} + \|\partial_\varepsilon^2 u_\varepsilon^c\|_{L^\infty(0,T;L^2(\Omega^c_\varepsilon))} \leq C, \\
&\|p_\varepsilon^c\|_{L^2(0,T;H^1(\Omega^c_\varepsilon))} + \|\partial_t p_\varepsilon^c\|_{L^2(0,T;L^2(\Omega^c_\varepsilon))} + \|\partial_\varepsilon^2 p_\varepsilon^c\|_{L^2(0,T;H^1(\Omega^c_\varepsilon))} \leq C, \\
&\|\partial_t u_\varepsilon^c\|_{L^\infty(0,T;L^2(\Omega^c_\varepsilon))} + \|\partial_\varepsilon^2 u_\varepsilon^c\|_{L^\infty(0,T;L^2(\Omega^c_\varepsilon))} + \|\partial_\varepsilon^2 u_\varepsilon^c\|_{H^1(0,T;L^2(\Omega^c_\varepsilon))} + \|p_\varepsilon^c\|_{L^2(0,T;L^2(\Omega^c_\varepsilon))} \leq C.
\end{align*}
\]

For the densities we have

\[
\begin{align*}
&b_{\varepsilon,i}^c \geq 0, \quad c_{\varepsilon}^c \geq 0 \text{ a.e. in } \Omega^c_{\varepsilon,T}, \quad c_j^c \geq 0 \text{ a.e. in } \Omega^c_{f,T}, \quad i = 1, 2, 3, \\
&\|b_\varepsilon^c\|_{L^2(0,T;H^1(\Omega^c_\varepsilon))} + \|\theta h \varepsilon^c\|_{L^\infty(0,T;L^\infty(\Omega^c_\varepsilon))} \leq C, \\
&\|c_\varepsilon^c\|_{L^2(0,T;H^1(\Omega^c_\varepsilon))} + \|c_j^c\|_{L^\infty(0,T;L^2(\Omega^c_j))} \leq C, \quad j = e, f,
\end{align*}
\]

and

\[
\|\theta h b_\varepsilon^c - b_\varepsilon^c\|_{L^2((0,T) \times \Omega^c_{\varepsilon,T})} + \|\theta h c_\varepsilon^c - c_j^c\|_{L^2((0,T) \times \Omega^c_{f,T})} \leq C h^{1/4}, \quad j = e, f,
\]

for $\hat{T} \in (0, T - h)$, where $\theta h v(t, x) = v(t + h, x)$ for $(t, x) \in (0, T - h) \times \Omega^c_j$, with $j = e, f$, and the constant C is independent of ε.

Proof. The nonnegativity of c^c_ε, c^c_j, and b^c_ε is justified in the proof of Theorem 3.3 on the existence and uniqueness of a weak solution of the microscopic problem (6)–(8).

To derive the estimates in (15), we first take $(\partial_t u_\varepsilon^c, p_\varepsilon^c, \partial_t u_\varepsilon^c)$ as test functions in (9) and obtain

\[
\begin{align*}
&\rho_\varepsilon \|\partial_t u_\varepsilon^c(s)\|_{L^2(\Omega^c_\varepsilon)}^2 + \langle F_\varepsilon(b_\varepsilon^c), e(u_\varepsilon^c(s)), e(u_\varepsilon^c(s)) \rangle_{\Omega^c_\varepsilon} - \langle \partial_t \varepsilon^c(b_\varepsilon^c), e(u_\varepsilon^c), e(u_\varepsilon^c) \rangle_{\Omega^c_\varepsilon} \\
&+ 2\langle \nabla P^c, \partial_t u_\varepsilon^c \rangle_{\Omega^c_\varepsilon} + \rho_\varepsilon \|P^c(s)\|_{L^2(\Omega^c_\varepsilon)}^2 + 2\langle K_\varepsilon^c \nabla P^c, \nabla P^c \rangle_{\Omega^c_\varepsilon} - 2\langle \partial_t u_\varepsilon^c, \nabla P^c \rangle_{\Omega^c_\varepsilon} \\
&+ \rho_\varepsilon \|\partial_t u_\varepsilon^c(s)\|_{L^2(\Omega^c_\varepsilon)}^2 + 2\varepsilon^2 \mu \|e(\partial_t u_\varepsilon^c)\|_{L^2(\Omega^c_\varepsilon)}^2 \\
&= 2\langle F_u, \partial_t u_\varepsilon^c \rangle_{\partial \Omega^c_\varepsilon} + 2\langle F_p, P^c \rangle_{\partial \Omega^c_\varepsilon} + \rho_\varepsilon \|\partial_t u_\varepsilon^c(0)\|_{L^2(\Omega^c_\varepsilon)}^2 \\
&+ \rho_\varepsilon \|P^c(0)\|_{L^2(\Omega^c_\varepsilon)}^2 + \rho_\varepsilon \|\partial_t u_\varepsilon^c(0)\|_{L^2(\Omega^c_\varepsilon)}^2 + \langle F^c(b_\varepsilon^c), e(u_\varepsilon^c(0)), e(u_\varepsilon^c(0)) \rangle_{\Omega^c_\varepsilon}
\end{align*}
\]

for $s \in (0, T]$. As was defined just after formula (5), $\Omega^c_{j,s} : = (0, s) \times \Omega^c_j$ for $j = e, f$.

\[\text{c} 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license\]
Using assumptions \textbf{A1}, \textbf{A2}, and \textbf{A5} yields

\[
\|\partial_t u^\varepsilon(s)\|_{L^2(\Omega)}^2 + \|e(u^\varepsilon(s))\|_{L^2(\Omega)}^2 + \|\partial_t u^\varepsilon(s)\|_{L^2(\Omega)}^2 + \varepsilon^2\|e(\partial_t u^\varepsilon)\|_{L^2(\Omega)}^2
\leq \delta \|u^\varepsilon(s)\|_{L^2(\partial\Omega)}^2 + \|p^\varepsilon(s)\|_{L^2(\Omega)}^2 + \|\nabla p^\varepsilon\|_{L^2(\Omega)}^2
\]

\[
+ C_1 \|\partial_t E^\varepsilon(b^\varepsilon,0)(e(u^\varepsilon),e(u^\varepsilon))\|_{s,s} + C_3 \|F_u\|_{L^2((0,s);L^2(\partial\Omega))} + \|\partial_t F_u\|_{L^2((0,s);L^2(\partial\Omega))} + C_2
\]

for \(s \in (0,T]\). Under our standing assumptions \textbf{A1} on \(E\), we have

\[
\|\partial_t E^\varepsilon(b_{\varepsilon,3})\|_{L^{\infty}((0,T) \times \Omega)} \leq C.
\]

Applying the trace and Korn inequalities [33] and using extension properties of \(u^\varepsilon\), we obtain

\[
\|u^\varepsilon(s)\|_{L^2(\partial\Omega)} \leq C \left[\|u^\varepsilon(s)\|_{L^2(\Omega)} + \|e(u^\varepsilon(s))\|_{L^2(\Omega)}\right].
\]

Our assumptions \textbf{A5} on the initial conditions ensure

\[
\|u^\varepsilon(0)\|_{L^2(\Omega)} \leq \|\partial_t u^\varepsilon\|_{L^2(\Omega)} + \|u^\varepsilon(0)\|_{L^2(\Omega)} \leq C + \|\partial_t u^\varepsilon\|_{L^2(\Omega)}
\]

for \(s \in (0,T]\). Then applying the trace and Gronwall inequalities in (18) yields the following estimate:

\[
\|\partial_t u^\varepsilon\|_{L^2(\Omega)} + \|u^\varepsilon\|_{L^2(\Omega)} \leq C_1 \left(\|e(u^\varepsilon)\|_{L^2(\Omega)} + \|u^\varepsilon\|_{L^2(\Omega)}\right) \leq C,
\]

\[
\|\partial_t u^\varepsilon\|_{L^2(\Omega)} + \|u^\varepsilon\|_{L^2(\Omega)} \leq C_2 \left(\|e(u^\varepsilon)\|_{L^2(\Omega)} + \|u^\varepsilon\|_{L^2(\Omega)}\right) \leq C.
\]

Differentiating all equations in (7) with respect to time \(t\) and taking \((\partial_t^2 u^\varepsilon, \partial_t p^\varepsilon, \partial_t^2 u^\varepsilon)\) as test functions in the resulting equations, we obtain

\[
\rho^\varepsilon \partial_t^2 u^\varepsilon(s)\|_{L^2(\Omega)}^2 + (E^\varepsilon)(b^\varepsilon,0)(e(\partial_t u^\varepsilon(s)),e(\partial_t u^\varepsilon(s)))_{\Omega^\varepsilon} - \rho^\varepsilon \|\partial_t^2 u^\varepsilon(0)\|_{L^2(\Omega)}^2
\]

\[
+ \rho^\varepsilon \|\partial_t p^\varepsilon(s)\|_{L^2(\Omega)}^2 + 2\|K^\varepsilon_p \nabla \partial_t p^\varepsilon(s)\|_{L^2(\Omega)}^2 - \rho^\varepsilon \|\partial_t p^\varepsilon(0)\|_{L^2(\Omega)}^2
\]

\[
+ \rho^\varepsilon \|\partial_t^2 u^\varepsilon(s)\|_{L^2(\Omega)}^2 + 2\|\rho^\varepsilon (\partial_t^2 u^\varepsilon(s))\|_{L^2(\Omega)}^2 - \rho^\varepsilon \|\partial_t^2 u^\varepsilon(0)\|_{L^2(\Omega)}^2
\]

\[
= \langle E^\varepsilon(b_{\varepsilon,3}(0))e(\partial_t u^\varepsilon(0)), e(\partial_t u^\varepsilon(0))\rangle_{\Omega^\varepsilon} + 2\langle \partial E^\varepsilon(b_{\varepsilon,3})e(u^\varepsilon(s)), e(\partial_t u^\varepsilon(s))\rangle_{\Omega^\varepsilon}
\]

\[
- 2\langle \partial E^\varepsilon(b_{\varepsilon,3})e(u^\varepsilon(0)), e(\partial_t u^\varepsilon(0))\rangle_{\Omega^\varepsilon} + 2\langle \partial E^\varepsilon(b_{\varepsilon,3})e(u^\varepsilon(s)), e(\partial_t u^\varepsilon(0))\rangle_{\Omega^\varepsilon}
\]

\[
- \langle \partial E^\varepsilon(b_{\varepsilon,3})e(u^\varepsilon(s)), e(\partial_t u^\varepsilon(0))\rangle_{\Omega^\varepsilon} + \langle \partial E^\varepsilon(b_{\varepsilon,3})e(u^\varepsilon(0)), e(\partial_t u^\varepsilon(0))\rangle_{\Omega^\varepsilon}
\]

\[
- \langle \partial E^\varepsilon(b_{\varepsilon,3})e(u^\varepsilon(s)), e(\partial_t u^\varepsilon(0))\rangle_{\Omega^\varepsilon} + \langle \partial E^\varepsilon(b_{\varepsilon,3})e(u^\varepsilon(0)), e(\partial_t u^\varepsilon(0))\rangle_{\Omega^\varepsilon}.
\]

© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
Assumptions A5 on the initial conditions together with the microscopic equations in (7) ensure that

\begin{equation}
\|\partial_t^2 u^\varepsilon(0)\|_{L^2(\Omega^\varepsilon)}^2 + \|\partial_t p^\varepsilon(0)\|_{L^2(\Omega^\varepsilon)}^2 + \|\partial_t^2 u^\varepsilon_j(0)\|_{L^2(\Omega^\varepsilon_j)}^2 \leq C,
\end{equation}

where the constant C is independent of \(\varepsilon\). To justify (24), first we consider the Galerkin approximations of \(u^\varepsilon\) and \(\partial_t u^\varepsilon_j\) and a function \(\phi^k\) in the corresponding finite dimensional subspace, with \(\phi^k = 0\) on \(\partial \Omega\) and div \(\phi^k = 0\) in \(\Omega^\varepsilon_j\),

\[
\langle \rho^e \partial_t^2 u^\varepsilon\cdot k(0), \phi^k \rangle_{\Omega^\varepsilon_j} + \langle \mathbf{E}^\varepsilon(\mathbf{b}_{\varepsilon,3})\mathbf{e}(u^\varepsilon\cdot k(0)), \mathbf{e}(\phi^k) \rangle_{\Omega^\varepsilon_j} + \langle \nabla p^\varepsilon\cdot k, \phi^k \rangle_{\Omega^\varepsilon_j}
+ \langle \rho^f \partial_t^2 u^\varepsilon\cdot j(0), \phi^k \rangle_{\Omega^\varepsilon_j} + \varepsilon^2 \mu \langle \mathbf{e}(\partial_t u^\varepsilon\cdot j(0)), \mathbf{e}(\phi^k) \rangle_{\Omega^\varepsilon_j} + \langle p^\varepsilon\cdot j, \phi^k \cdot n \rangle_{\Gamma^\varepsilon} = 0.
\]

Taking \(t \to 0\) and using the regularity of \(u^\varepsilon\cdot k, \partial_t u^\varepsilon\cdot j\), and \(\mathbf{b}_{\varepsilon,3}\) with respect to the time variable, we obtain

\[
\langle \rho^e \partial_t^2 u^\varepsilon\cdot k(0), \phi^k \rangle_{\Omega^\varepsilon_j} + \langle \mathbf{E}^\varepsilon(\mathbf{b}_{\varepsilon,3})\mathbf{e}(u^\varepsilon\cdot k(0)), \mathbf{e}(\phi^k) \rangle_{\Omega^\varepsilon_j} + \langle \nabla p^\varepsilon\cdot k, \phi^k \rangle_{\Omega^\varepsilon_j}
+ \langle \rho^f \partial_t^2 u^\varepsilon\cdot j(0), \phi^k \rangle_{\Omega^\varepsilon_j} + \varepsilon^2 \mu \langle \mathbf{e}(\partial_t u^\varepsilon\cdot j(0)), \mathbf{e}(\phi^k) \rangle_{\Omega^\varepsilon_j} + \langle p^\varepsilon\cdot j, \phi^k \cdot n \rangle_{\Gamma^\varepsilon} = 0.
\]

Then the integration by parts in the last two terms and the assumptions on the initial values ensure

\[
\|\partial_t^2 u^\varepsilon\cdot k(0), \phi^k \|_{L^2(\Omega^\varepsilon)}^2 + \|\partial_t u^\varepsilon\cdot j(0), \phi^k \|_{L^2(\Omega^\varepsilon_j)}^2 \leq \varepsilon^2 \mu \|\mathbf{e}(\partial_t u^\varepsilon\cdot j(0)), \mathbf{e}(\phi^k) \|_{L^2(\Omega^\varepsilon_j)}^2 \leq C\|\phi^k\|_{L^2(\Omega^\varepsilon)},
\]

and hence

\[
\|\partial_t^2 u^\varepsilon\cdot k(0)\|_{L^2(\Omega^\varepsilon)} + \|\partial_t^2 u^\varepsilon\cdot j(0)\|_{L^2(\Omega^\varepsilon_j)} \leq C,
\]

where the constant C is independent of \(k\) and \(\text{div } \partial_t^2 u^\varepsilon\cdot j(0) = 0\) in \(\Omega^\varepsilon_j\). In a similar way, we also obtain the boundedness of \(\|\partial_t^2 u^\varepsilon\cdot i(0)\|_{L^2(\Omega^\varepsilon_i)}\) uniformly in \(\varepsilon\).

Then the estimates similar to (23) for the Galerkin approximations of \(u^\varepsilon, p^\varepsilon\), and \(\partial_t u^\varepsilon\) imply that \(p^\varepsilon \in C([-T, T]; L^2(\Omega^\varepsilon)), \mathbf{v}^\varepsilon, \partial_t u^\varepsilon \in C([-T, T]; L^2(\Omega^\varepsilon))^3, \mathbf{e}(u^\varepsilon) \in C([-T, T]; L^2(\Omega^\varepsilon))^3 \times 3, \partial_t u^\varepsilon \in C([-T, T]; L^2(\Omega^\varepsilon_j))^3 \times 3\), \(\partial_t^2 u^\varepsilon \in C([-T, T]; L^2(\Omega^\varepsilon_j))^3 \times 3\) or more.

Then the equations for \(u^\varepsilon\) and \(p^\varepsilon\) and the continuity of \(\mathbf{e}(u^\varepsilon), \partial_t u^\varepsilon\), and \(\mathbf{v}^\varepsilon\) with respect to the time variable, we obtain the continuity of \(\partial_t^2 u^\varepsilon\) and \(\partial_t^2 p^\varepsilon\) with respect to the time variable. Then the assumptions on \(u^\varepsilon, u^\varepsilon\cdot j, p^\varepsilon\cdot i\) ensure the boundedness of \(\|\partial_t^2 u^\varepsilon\|_{L^2(\Omega^\varepsilon)}\) and \(\|\partial_t^2 p^\varepsilon\|_{L^2(\Omega^\varepsilon)}\) uniformly in \(\varepsilon\).

For \(\phi \in H^1_0(\Omega)\), with \(\text{div } \phi = 0\) in \(\Omega^\varepsilon_j\), we have

\[
\langle \rho^e \partial_t^2 u^\varepsilon, \phi \rangle_{\Omega^\varepsilon_j} + \langle \mathbf{E}^\varepsilon(\mathbf{b}_{\varepsilon,3})\mathbf{e}(u^\varepsilon), \mathbf{e}(\phi) \rangle_{\Omega^\varepsilon_j} + \langle \nabla p^\varepsilon, \phi \rangle_{\Omega^\varepsilon_j}
+ \langle \rho^f \partial_t^2 u^\varepsilon_j, \phi \rangle_{\Omega^\varepsilon_j} + \varepsilon^2 \mu \langle \mathbf{e}(\partial_t u^\varepsilon_j), \mathbf{e}(\phi) \rangle_{\Omega^\varepsilon_j} + \langle p^\varepsilon, \phi \cdot n \rangle_{\Gamma^\varepsilon} = 0.
\]

Considering the continuity of \(\mathbf{e}(u^\varepsilon), \partial_t^2 u^\varepsilon, \nabla p^\varepsilon, \phi \text{ and } \phi \text{ with respect to the time variable and taking } t \to 0, \text{ we obtain the continuity of } \partial_t^2 u^\varepsilon_j \text{ and}

\[
\langle \rho^e \partial_t^2 u^\varepsilon(0), \phi \rangle_{\Omega^\varepsilon_j} + \langle \mathbf{E}^\varepsilon(\mathbf{b}_{\varepsilon,3})\mathbf{e}(u^\varepsilon(0)), \mathbf{e}(\phi) \rangle_{\Omega^\varepsilon_j} + \langle \nabla p^\varepsilon(0), \phi \rangle_{\Omega^\varepsilon_j}
+ \langle \rho^f \partial_t^2 u^\varepsilon_j(0), \phi \rangle_{\Omega^\varepsilon_j} + \varepsilon^2 \mu \langle \mathbf{e}(u^\varepsilon_j(0)), \mathbf{e}(\phi) \rangle_{\Omega^\varepsilon_j} + \langle p^\varepsilon(0), \phi \cdot n \rangle_{\Gamma^\varepsilon} = 0.
\]
The integration by parts, the boundary conditions for \(u^{\epsilon}_{0} \), and the assumptions on \(\phi \) imply
\[
\langle \rho_{f} \partial_{t}^{2} u_{f}^{\epsilon}(0), \phi \rangle_{\Omega_{f}^{T}} = -\langle \rho_{e} \partial_{t}^{2} u_{e}^{\epsilon}(0), \phi \rangle_{\Omega_{e}^{T}} + \langle \text{div}(E^{\epsilon}(b_{e,0,3})e(u_{e}^{\epsilon})), \phi \rangle_{\Omega_{e}^{T}} - \langle \nabla p_{e}^{\epsilon}, \phi \rangle_{\Omega_{e}^{T}}
+ \langle \varepsilon^{2} \mu \text{div}(e(u_{f}^{\epsilon})), \phi \rangle_{\Omega_{f}^{T}} - \varepsilon^{2} \langle \mu \cdot e(u_{f}^{\epsilon}), \phi \rangle_{\Omega_{e}^{T}}.
\]

From the assumptions on \(u_{e}^{\epsilon} \) and \(p_{e}^{\epsilon} \), we have that \(\text{div}(E^{\epsilon}(b_{e,0,3})e(u_{e}^{\epsilon})) = f_{u} \), with \(f_{u} \in L^{2}(\Omega) \), and \(\| \nabla p_{e}^{\epsilon} \|_{L^{2}(\Omega)} \leq C_{1} \), where \(C_{1} \) is independent of \(\varepsilon \). The assumptions on \(u_{f}^{\epsilon} \) ensure that \(\varepsilon^{2} \mu \| \text{div}(e(u_{f}^{\epsilon})) \|_{L^{2}(\Omega_{f}^{T})} \leq C_{2} \) and there exists \(\psi^{\epsilon} \in H^{1}(\Omega_{f}^{T}) \), such that \(\| \nabla \psi^{\epsilon} \|_{L^{2}(\partial \Omega_{f}^{T})} \leq C_{3} \) and
\[
|\varepsilon^{2} \langle \mu n \cdot e(u_{f}^{\epsilon}), \phi \rangle_{\Omega_{e}^{T}}| = |\langle \nabla \psi^{\epsilon}, \phi \rangle_{\Omega_{f}^{T}}| \leq C_{4} \| \phi \|_{L^{2}(\Omega_{f}^{T})},
\]
where the constants \(C_{2}, C_{3}, \) and \(C_{4} \) are independent of \(\varepsilon \). Using the density of \(\phi \) in \(\mathcal{H} = \{ v \in L^{2}(\Omega_{f}^{T}) : \text{div} v = 0 \text{ in } \Omega_{f}^{T} \} \), we obtain the boundedness of \(\partial_{t}^{2} u^{\epsilon}_{f}(0) \) in \(\mathcal{H} \) uniformly in \(\varepsilon \).

Then considering assumptions A1–A2 and applying the Hölder and Gronwall inequalities in (23), we obtain the estimates for \(\partial_{t}^{2} u^{\epsilon}_{e} \), \(\partial_{t} p_{e}^{\epsilon} \), and \(\partial_{t}^{2} u_{f}^{\epsilon} \) stated in (15). Here we used the fact that assumptions A1 on \(E \) imply the following upper bound:
\[
\| \partial_{t}^{2} E^{\epsilon}(b_{e,3}^{\epsilon}) \|_{L^{\infty}(0,T) \times \Omega_{e}^{T}} \leq C.
\]

Testing the first and third equations in (7) with \(\phi \in L^{2}(0,T;H^{1}(\Omega))^{3} \) and using the a priori estimates for \(u^{\epsilon}_{e} \), \(p_{e}^{\epsilon} \), and \(\partial_{t} u_{f}^{\epsilon} \), we obtain
\[
\langle \rho_{f} \partial_{t}^{2} u_{f}^{\epsilon}(0), \phi \rangle_{\Omega_{f}^{T}} + \langle p_{e}^{\epsilon}, \phi \rangle_{\Omega_{e}^{T}} = \langle \varepsilon^{2} \mu e(\partial_{t} u_{f}^{\epsilon}), \phi \rangle_{\Omega_{f}^{T}} + \rho_{f} \langle \partial_{t}^{2} u_{f}^{\epsilon}, \phi \rangle_{\Omega_{f}^{T}}
+ \rho_{e} \langle \partial_{t}^{2} u_{e}^{\epsilon}, \phi \rangle_{\Omega_{e}^{T}} + \langle E^{\epsilon}(b_{e,3}^{\epsilon})e(u^{\epsilon}_{e}), \phi \rangle_{\Omega_{e}^{T}} + \langle p_{e}^{\epsilon} n - F_{u}, \phi \rangle_{\partial \Omega_{f}^{T}}
\leq C \| \phi \|_{L^{2}(0,T;H^{1}(\Omega))^{3}}.
\]

Here we used the properties of an extension of \(p_{e}^{\epsilon} \) from \(\Omega_{e}^{T} \) to \(\Omega \) (see Lemma 3.1) and the trace estimate \(\| p_{e}^{\epsilon} \|_{L^{2}(0,T) \times \partial \Omega_{f}^{T}} \leq C_{1} \| p_{e}^{\epsilon} \|_{L^{2}(0,T;H^{1}(\Omega))} \leq C_{2} \| p_{e}^{\epsilon} \|_{L^{2}(0,T;H^{1}(\Omega))}. \)

For any \(q \in L^{2}(\Omega_{f}^{T}) \) there exists \(\phi \in L^{2}(0,T;H^{1}(\Omega))^{3} \) satisfying \(\text{div} \phi = q \) in \(\Omega \), \(\phi \cdot n = \frac{1}{|\partial \Omega|} \int_{\Omega} q(\cdot,x) dx \) on \(\partial \Omega \), and \(\| \phi \|_{L^{2}(0,T;H^{1}(\Omega))^{3}} \leq C \| q \|_{L^{2}(\Omega_{f}^{T})} \). Thus for
\[
\vec{p}_{e}^{\epsilon} = \begin{cases} p_{f}^{\epsilon} & \text{in } (0,T) \times \Omega_{f}^{T}, \\
p_{e}^{\epsilon} & \text{in } (0,T) \times (\Omega \setminus \Omega_{f}^{T})
\end{cases}
\]

using (25) we obtain
\[
\langle \vec{p}_{e}^{\epsilon}, q \rangle_{\partial \Omega_{f}^{T}} \leq C \| q \|_{L^{2}(0,T) \times \Omega_{f}^{T}},
\]
where the constant \(C \) is independent of \(\varepsilon \). This implies, by the definition of the \(L^{2} \)-norm and the estimates for \(p_{e}^{\epsilon} \), that \(\| p_{f}^{\epsilon} \|_{L^{2}(0,T) \times \Omega_{f}^{T}} \leq C. \)

To justify estimates (16) we take \(b_{e}^{\epsilon} \) and \(\varepsilon^{2} \) as test functions in (10) and (11), respectively. Using assumptions A3–A5, we obtain
\[
\| b_{e}^{\epsilon}(s) \|_{L^{2}(\Omega_{e}^{T})}^{2} + \| \nabla b_{e}^{\epsilon} \|_{L^{2}(\Omega_{e}^{T})}^{2}
\leq \| b_{e}^{\epsilon}(0) \|_{L^{2}(\Omega_{e}^{T})}^{2} + C_{1} \| e(u^{\epsilon}_{e}) \|_{L^{\infty}(0,s;L^{2}(\Omega_{e}^{T}))} \| b_{e}^{\epsilon} \|_{L^{2}(0,s;L^{4}(\Omega_{e}^{T}))}^{2}
+ C_{2} \| e(u^{\epsilon}_{e}) \|_{L^{2}(\Omega_{e}^{T})}^{2} + \| b_{e}^{\epsilon} \|_{L^{2}(\Omega_{e}^{T})}^{2} + C_{3} \| e(u^{\epsilon}_{e}) \|_{L^{2}(\Omega_{e}^{T})}^{2}.
\]
and
\[
\|c_\varepsilon(s)\|_{L^2(\Omega_s)}^2 + \|c_{\varepsilon f}(s)\|_{L^2(\Omega_f)}^2 + \|\nabla c_{\varepsilon}(s)\|_{L^2(\Omega_{\varepsilon,s})}^2 + \|\nabla c_{\varepsilon f}(s)\|_{L^2(\Omega_{\varepsilon,f})}^2
\leq \|c_\varepsilon(0)\|_{L^2(\Omega_s)}^2 + \|c_{\varepsilon f}(0)\|_{L^2(\Omega_f)}^2
+ C_1 \|e_c(\varepsilon)\|_{L^\infty(0,s;L^2(\Omega_s))} \left[\|b_{\varepsilon c}^2\|_{L^2(0,s;L^4(\Omega_s))} + \|c_{\varepsilon c}^2\|_{L^2(0,s;L^4(\Omega_s))}\right]
+ C_2 \left[1 + \|G(\partial_t u_f)\|_{L^2(\Omega_{\varepsilon,f})}\right]\|c_{\varepsilon f}\|_{L^2(\Omega_{\varepsilon,f})}
+ C_3 \left[\|b_{\varepsilon c}^2\|_{L^2(\Omega_{\varepsilon,s})} + \|c_{\varepsilon c}^2\|_{L^2(\Omega_{\varepsilon,s})} + \|c_{\varepsilon f}^2\|_{L^2(0,s;\partial\Omega)}\right].
\]

The Gagliardo–Nirenberg and trace inequalities, together with the extension properties of \(b_{\varepsilon c}\) and \(c_{\varepsilon}\) (see Lemma 3.1), yield
\[
\|b_{\varepsilon c}^2\|_{L^2(\Omega_s)} \leq \|b_{\varepsilon c}^2\|_{L^2(\Omega)} \leq \delta_1 \|\nabla b_{\varepsilon c}\|_{L^2(\Omega)} + C_{\delta_1} \|b_{\varepsilon c}^2\|_{L^2(\Omega)}
\leq \delta_2 \|\nabla b_{\varepsilon c}\|_{L^2(\Omega)} + C_{\delta_2} \|b_{\varepsilon c}^2\|_{L^2(\Omega)},
\]
\[
\|c_{\varepsilon c}^2\|_{L^2(\Omega_s)} + \|c_{\varepsilon f}^2\|_{L^2(\Omega_f)} \leq \delta \left[\|\nabla c_{\varepsilon c}\|_{L^2(\Omega)}^2 + \|\nabla c_{\varepsilon f}\|_{L^2(\Omega)}^2\right]
+ C_3 \left[\|c_{\varepsilon c}^2\|_{L^2(\Omega)} + \|c_{\varepsilon f}^2\|_{L^2(\Omega)}^2\right],
\]
\[(26)\]

for an arbitrary \(\delta > 0\), and \(C_3\) depending on \(\delta\) and independent of \(\varepsilon\). Notice that since the Gagliardo–Nirenberg inequality is applied to the extension of \(b_{\varepsilon c}\) and \(c_{\varepsilon}\) defined in \(\Omega\), the constant in the Gagliardo–Nirenberg inequality is independent of \(\varepsilon\). Then applying the Gronwall inequality and using the assumptions \(A3\) on \(G\) yields
\[
\|b_{\varepsilon c}\|_{L^\infty(0,T;L^2(\Omega_s))} + \|\nabla b_{\varepsilon c}\|_{L^2(0,T;L^2(\Omega_s))} \leq C,
\]
\[
\|c_{\varepsilon c}\|_{L^\infty(0,T;L^2(\Omega_s))} + \|\nabla c_{\varepsilon c}\|_{L^2(0,T;L^2(\Omega_s))} \leq C, \quad j = e, f.
\]

The uniform boundedness of \(b_{\varepsilon c}\), i.e.,
\[(28)\]
\[
\|b_{\varepsilon c}\|_{L^\infty(0,T;L^\infty(\Omega_s))} \leq C,
\]

with a constant \(C\) independent of \(\varepsilon\), is proved by applying the Alikakos iteration lemma [2, Lemma 3.2]. Since the derivation of estimate (28) is rather involved, we present the detailed proof of this estimate in the appendix; see Lemma 10.1. In the same lemma in the appendix we also prove the estimate
\[
\|c_{\varepsilon c}\|_{L^\infty(0,T;L^4(\Omega_s))} + \|c_{\varepsilon f}\|_{L^\infty(0,T;L^4(\Omega_f))} \leq C,
\]

where the constant \(C\) does not depend on \(\varepsilon\).

To justify the last estimate (17), we integrate the equation for \(b_{\varepsilon c}\) in (6) over
\[(t, t + h)\) and consider \(\theta_h b^\varepsilon - b^\varepsilon\) as a test function:

\[
\left\langle \theta_h b^\varepsilon - b^\varepsilon, \right. \\
\left. \int_t^{t + h} \nabla b^\varepsilon(s) \, ds, \nabla(\theta_h b^\varepsilon) - \nabla b^\varepsilon \right\rangle_{(0, \tilde{T}) \times \Omega^\varepsilon} \\
= \left\langle \int_t^{t + h} g_b(b^\varepsilon(s), c^\varepsilon(s), e(u^\varepsilon(s))) \, ds, \theta_h b^\varepsilon - b^\varepsilon \right\rangle_{(0, \tilde{T}) \times \Omega^\varepsilon} \\
+ \varepsilon \left\langle \int_t^{t + h} P(b^\varepsilon(s)) \, ds, \theta_h b^\varepsilon - b^\varepsilon \right\rangle_{(0, \tilde{T}) \times \Gamma^\varepsilon} \\
+ \left\langle \int_t^{t + h} F_b(b^\varepsilon) \, ds, \theta_h b^\varepsilon - b^\varepsilon \right\rangle_{(0, \tilde{T}) \times \partial \Omega}
\]

for all \(\tilde{T} \in (0, T - h)\). Then using the a priori estimates for \(u^\varepsilon, b^\varepsilon,\) and \(c^\varepsilon\) in (15) and (16) together with the Hölder inequality implies the estimate for \(b^\varepsilon(t + h, x) - b^\varepsilon(t, x)\). Similar calculations yield the estimates for \(c^\varepsilon(t + h, x) - c^\varepsilon(t, x)\) and \(f^\varepsilon(t + h, x) - f^\varepsilon(t, x)\).

Theorem 3.3. Under assumptions A1–A5, for every \(\varepsilon > 0\) there exists a unique weak solution of the coupled problem (6)–(8).

Proof. We shall use a contraction argument to show the existence of a solution of the coupled system. We consider an operator \(K\) over \(L^\infty(0, s; H^1(\Omega^\varepsilon)^3) \times L^\infty(0, s; L^2(\Omega^\varepsilon)^3)\) defined by \((u^{\varepsilon,j}, \partial_t u^{\varepsilon,j}) = K(u^{\varepsilon,j-1}, \partial_t u^{\varepsilon,j-1})\), where for given \((u^{\varepsilon,j-1}, \partial_t u^{\varepsilon,j-1})\) we first define \((b^{\varepsilon,j}, c^{\varepsilon,j}, f^{\varepsilon,j})\) as a solution of system (6) with functions \((u^{\varepsilon,j-1}, \partial_t u^{\varepsilon,j-1})\) in place of \((u^\varepsilon, \partial_t u^\varepsilon)\) and with external boundary conditions in (8), and then \((u^{\varepsilon,j}, p^{\varepsilon,j}, \partial_t u^{\varepsilon,j}, p^{\varepsilon,j})\) are solutions of (7) with \(b^{\varepsilon,j}\) in place of \(b^\varepsilon\).

For each \(j = 2, 3, \ldots\), the proof of existence and uniqueness of \((b^{\varepsilon,j}, c^{\varepsilon,j}, f^{\varepsilon,j})\) for given \((u^{\varepsilon,j-1}, \partial_t u^{\varepsilon,j-1})\) follows the same arguments (with a number of simplifications) as the proof that \(K\) is a contraction for \((u^{\varepsilon,j}, \partial_t u^{\varepsilon,j})\), i.e., using the Galerkin method and fixed-point arguments. Notice that the fixed-point argument for the system for \(b^{\varepsilon,j}\) and \(c^{\varepsilon,j}\) allows us to consider the equations for \(b^{\varepsilon,j}\) and \(c^{\varepsilon,j}\) recursively. Thus using the nonnegativity of initial data \(b_0, c_0,\) and \(c_{f0}\) and assumptions A4 on the reaction and boundary terms and applying iteratively the theorem on positively invariant regions [40, 47], we obtain the nonnegativity of all components of \(b^{\varepsilon,j}\) and \(c^{\varepsilon,j}\).

We choose the first iteration \((u^{\varepsilon,1}, p^{\varepsilon,1}, \partial_t u^{\varepsilon,1}, p^{\varepsilon,1})\) to satisfy the initial and boundary conditions in (7) and (8). Then applying the Galerkin method (using the basis functions for \(H^1(\Omega^\varepsilon) \times H^1(\Omega \setminus \Gamma^\varepsilon)\)) and fixed-point argument, we obtain the existence of solutions \((b^{\varepsilon,2}, c^{\varepsilon,2}, f^{\varepsilon,2})\) of system (6) with external boundary conditions in (8) and have

\[
\begin{align*}
\|b^{\varepsilon,2}\|_{L^\infty(0, T; L^2(\Omega^\varepsilon))} + \|\nabla b^{\varepsilon,2}\|_{L^2(\Omega^\varepsilon, T)} + \|b^{\varepsilon,2}\|_{L^\infty(0, T; L^\infty(\Omega^\varepsilon))} & \leq C, \\
\|c^{\varepsilon,2}\|_{L^\infty(0, T; L^2(\Omega^\varepsilon))} + \|\nabla c^{\varepsilon,2}\|_{L^2(\Omega^\varepsilon, T)} + \|c^{\varepsilon,2}\|_{L^\infty(0, T; L^\infty(\Omega^\varepsilon))} & \leq C, \quad l = e, f,
\end{align*}
\]

where the constant \(C\) depends only on \(\|e(u^{\varepsilon,1})\|_{L^\infty(0, T; L^2(\Omega^\varepsilon))}\) and the constants in assumptions A1–A4. The estimates (29) can be justified in the same way as those in (16).

Next we consider system (7) with \(b^{\varepsilon,2}\) in place of \(b^\varepsilon\). To show the existence result
we the Galerkin method with the basis functions \{\phi_j, \psi_j, \eta_j\}_{j \in \mathbb{N}} for the space

\[W = \{(v, p, w) \in H^1(\Omega_e)^3 \times H^1(\Omega_e) \times H^1(\Omega_f)^3 : \text{ div } w = 0 \text{ in } \Omega_f, \]
\[\Pi_r v = \Pi_r w \text{ on } \Gamma_r, \quad \text{div}(K^e_p \nabla p) \in L^2(\Omega_e), \]
\[\langle (v - K^e_p \nabla p - w) \cdot n, \psi \rangle_{H^{-1/2}(\Gamma_e), H^{1/2}(\Gamma_f)} = 0 \}, \]

and consider the approximate solutions in the form

\[u_{e,k}^\varepsilon = \sum_{j=1}^k q_j^k(t) \phi_j, \quad p_{e,k}^\varepsilon = \sum_{j=1}^k \frac{d}{dt} q_j^k(t) \psi_j, \quad \partial_t u_{f,k}^\varepsilon = \sum_{j=1}^k \frac{d}{dt} q_j^k(t) \eta_j, \quad k \in \mathbb{N}. \]

The linearity of equations for \((u_{e,k}^\varepsilon, p_{e,k}^\varepsilon, \partial_t u_{f,k}^\varepsilon)\) ensures the existence of unique solutions \(q_j^k(t)\) of the corresponding linear system of second order ordinary differential equations with initial conditions \(q_j^k(0) = \alpha_j^k\) and \(\frac{d}{dt} q_j^k(0) = \beta_j^k\), where \(\alpha_j^k\) and \(\beta_j^k\) are derived from the initial conditions in (7), and hence, the existence of a unique solution \((u_{e,k}^\varepsilon, p_{e,k}^\varepsilon, \partial_t u_{f,k}^\varepsilon)\) for \(k \in \mathbb{N}\). Then using the a priori estimates derived in the same way as in Lemma 3.2 (by considering assumptions A1, A2, and A5) and taking the limit as \(k \to \infty\), we obtain the existence of \(u_{e,2}^\varepsilon \in [H^1(0, T; H^1(\Omega_e^\varepsilon)) \cap H^2(0, T; L^2(\Omega_e^\varepsilon))]^3, \]
\(p_{e,2}^\varepsilon \in H^1(0, T; H^1(\Omega_e^\varepsilon)), \) and \(\partial_t u_{f,2}^\varepsilon \in H^1(0, T; H^1(\Omega_f^\varepsilon)) \cap L^2(0, T; V), \) with \(V = \{v \in H^1(\Omega_f^\varepsilon)^3 : \text{ div } v = 0 \text{ in } \Omega_f^\varepsilon\}, \) satisfying (9) with \(b_{e,2}^\varepsilon\) in place of \(b_{e,3}^\varepsilon\). Taking \(\psi \in L^2(0, T; H^1(\Omega_e^\varepsilon)), \) \(\phi \in L^2(0, T; H^1(\Omega_e^\varepsilon))^3, \) and \(\eta \in L^2(0, T; V_0), \) then \(V_0 = \{v \in H^1_0(\Omega_f^\varepsilon)^3 : \text{ div } v = 0 \text{ in } \Omega_f^\varepsilon\}, \) as test functions in the weak formulation, we obtain the equations for \(u_{e,2}^\varepsilon\) and \(p_{e,2}^\varepsilon\) in (7) and \(\langle \rho_f \partial_t^2 u_{f,2}^\varepsilon - \varepsilon^2 \mu \text{div}(e\partial_t u_{f,2}^\varepsilon), \eta \rangle = 0 \) for any \(\eta \in L^2(0, T; V_0). \) Then De Rham’s theorem applied to \(-\rho_f \partial_t^2 u_{f,2}^\varepsilon + \varepsilon^2 \mu \text{div}(e\partial_t u_{f,2}^\varepsilon)\) implies the existence of \(u_{f,2}^\varepsilon \in L^2((0, T) \times \Omega_f^\varepsilon) \) such that \(-\rho_f \partial_t^2 u_{f,2}^\varepsilon + \varepsilon^2 \mu \text{div}(e\partial_t u_{f,2}^\varepsilon) = \nabla p_{f,2}^\varepsilon. \) Using first \(\psi = 0, \phi = 0, \) and \(\eta \in L^2(0, T; H^1(\Omega_f^\varepsilon))^3, \) with \(\Pi_r \eta = 0 \) on \((0, T) \times \Gamma^e, \) as a test function in the weak formulation of the equations for \((u_{e,2}^\varepsilon, p_{e,2}^\varepsilon, \partial_t u_{f,2}^\varepsilon)\) we obtain the transmission condition \(-n \cdot \varepsilon^2 \mu e(\partial_t u_{f,2}^\varepsilon) n + p_{f,2}^\varepsilon = p_{e,2}^\varepsilon \) on \((0, T) \times \Gamma^e, \) satisfied in the distribution sense. Choosing \(\psi = 0, \phi \in L^2(0, T; H^1(\Omega_e^\varepsilon))^3, \) and \(\eta \in L^2(0, T; H^1(\Omega_f^\varepsilon))^3, \) with \(\Pi_r \phi = \Pi_r \eta \) on \((0, T) \times \Gamma^e, \) as test functions, we obtain the equations for \(u_{e,2}^\varepsilon\) and \(\partial_t u_{f,2}^\varepsilon\) ensure \((\varepsilon^2 \mu e(\partial_t u_{f,2}^\varepsilon) - p_{f,2}^\varepsilon) n = (e(\varepsilon^2 \mu e(\partial_t u_{f,2}^\varepsilon)) - p_{e,2}^\varepsilon) n \) on \((0, T) \times \Gamma^e, \) then, using the equations for \((u_{e,2}^\varepsilon, p_{e,2}^\varepsilon, \partial_t u_{f,2}^\varepsilon)\) and \(\psi \in L^2(0, T; H^1(\Omega_e^\varepsilon)), \phi \in L^2(0, T; H^1(\Omega_e^\varepsilon))^3, \) and \(\eta \in L^2(0, T; H^1(\Omega_f^\varepsilon))^3, \) with \(\Pi_r \phi = \Pi_r \eta \) on \((0, T) \times \Gamma^e, \) as test functions, we obtain the transmission condition \(-\rho_f \partial_t^2 u_{f,2}^\varepsilon - \partial_t u_{f,2}^\varepsilon \cdot n = \partial_t u_{f,2}^\varepsilon \cdot n \) on \((0, T) \times \Gamma^e, \) in the distribution sense. Taking \(\psi \in L^2(0, T; H^1(\Omega_e^\varepsilon)), \phi \in L^2(0, T; H^1(\Omega_e^\varepsilon))^3, \) and \(\eta \in L^2(0, T; H^1(\Omega_f^\varepsilon))^3, \) with \(\Pi_r \phi = \Pi_r \eta \) on \((0, T) \times \Gamma^e, \) as test functions, we obtain the boundary conditions on \((0, T) \times \partial \Omega. \) Hence we obtain that \((u_{e,2}^\varepsilon, p_{e,2}^\varepsilon, \partial_t u_{f,2}^\varepsilon, p_{f,2}^\varepsilon)\) is a weak solution of (7), with \(b_{e,3}^\varepsilon\) in place of \(b_{e,3}^\varepsilon,\) together with the corresponding external boundary conditions in (8). Standard arguments pertaining to the consideration of two solutions of (7) imply the uniqueness of a weak solution of (7), (8). The transmission condition \(-n \cdot \varepsilon^2 \mu e(\partial_t u_{f,2}^\varepsilon) n + p_{f,2}^\varepsilon = p_{e,2}^\varepsilon \) on \((0, T) \times \Gamma^e\) ensures that \(p_{f,2}^\varepsilon\) is defined uniquely.

Also, we obtain that the estimates similar to (15) are valid for the functions \((u_{e,2}^\varepsilon, p_{e,2}^\varepsilon, \partial_t u_{f,2}^\varepsilon, p_{f,2}^\varepsilon)\) uniformly with respect to solutions of (6) with boundary con-
obtain, for any \(\delta_1 > 0 \),

\[
\begin{align*}
\partial_t \| \tilde{u}_{e,j}^\varepsilon \|_{L^\infty(\Omega_T^e)} &+ \| \nabla \tilde{u}_{e,j}^\varepsilon \|_{L^2(\Omega^e_T)} \\
&\leq (\varepsilon^2 + \delta_1) \| \tilde{u}_{e,j}^\varepsilon \|_{L^2(\Omega^e_T)} \\
&\quad + C_1 (\| \tilde{u}_{e,j}^\varepsilon \|_{L^\infty(\Omega_T^e)} + C \delta_1) \left[\| \tilde{u}_{e,j}^\varepsilon \|_{L^2(\Omega^e_T)}^2 + \| \tilde{e}_{e,j}^\varepsilon \|_{L^2(\Omega^e_T)}^2 \right] \\
&+ C_2 \| \tilde{u}_{e,j}^\varepsilon \|_{L^\infty(\Omega_T^e)} \left[\| \tilde{u}_{e,j}^\varepsilon \|_{L^2(\Omega^e_T)}^2 + \| \tilde{e}_{e,j}^\varepsilon \|_{L^2(\Omega^e_T)}^2 \right] \\
&\quad + C_3 \left[\| \tilde{u}_{e,j}^\varepsilon \|_{L^2(\Omega^e_T)}^2 + \| \tilde{e}_{e,j}^\varepsilon \|_{L^2(\Omega^e_T)}^2 \right] \\
&\quad + C_4 (\varepsilon^2 + \delta_1) \| \tilde{u}_{e,j}^\varepsilon \|_{L^2(\Gamma')} + \| \tilde{e}_{e,j}^\varepsilon \|_{L^2(\partial \Omega)}.
\end{align*}
\]
can consider formulation of (31) and (32), applying the Gagliardo–Nirenberg inequality to
Notice that \(C_\varepsilon \in \mathbb{R} \) and \(\delta > 0 \). Then combining (33) and (34) and applying the Gronwall inequality, we obtain
\[
\int_0^T \left[\| (\varepsilon, j - 1) u_{\varepsilon, j} \|_{L^2(\Omega_\varepsilon)}^2 + \| (\varepsilon, j - 1) L^2(\Omega_\varepsilon) \|_{L^4(\Omega_\varepsilon)}^2 + \| (\varepsilon, j - 1) \|_{L^4(\Omega_\varepsilon)}^2 \right]\, dt
\leq \left(C_1 + C_2 \right) \left(\varepsilon, j - 1 \right) \varepsilon, j - 1 \| L^2(\Omega_\varepsilon) \|_{L^4(\Omega_\varepsilon)}^2 + \delta \| (\varepsilon, j - 1) L^2(\Omega_\varepsilon) \|_{L^4(\Omega_\varepsilon)}^2.
\]
for any \(\delta > 0 \). Then combining (33) and (34) and applying the Gronwall inequality, we obtain
\[
\| (\varepsilon, j - 1) \|_{L^\infty(0, T)}^2 + \| (\varepsilon, j - 1) L^2(\Omega_\varepsilon) \|_{L^4(\Omega_\varepsilon)}^2 + \| (\varepsilon, j - 1) \|_{L^4(\Omega_\varepsilon)}^2 \leq C_1 \| (\varepsilon, j - 1) \|_{L^\infty(\Omega_\varepsilon)}^2 + C_2 \| (\varepsilon, j - 1) \|_{L^2(\Omega_\varepsilon)}^2 + \delta \| (\varepsilon, j - 1) \|_{L^4(\Omega_\varepsilon)}^2.
\]
for any \(\delta > 0 \) and any \(0 < \sigma < 1/9 \). For more details see the appendix. Notice that (31) and (32) depend on \(T \) and are independent of \(s \). Now letting \(\varepsilon, j - 1 = u_{\varepsilon, j} - u_{\varepsilon, j} \) and \(\varepsilon, j - 1 = p_{\varepsilon, j} - p_{\varepsilon, j} \), considering the equations for \((\varepsilon, j - 1, p_{\varepsilon, j}, \partial_t \varepsilon, j - 1) \), and using \((\partial_t \varepsilon, j - 1, p_{\varepsilon, j}, \partial_t \varepsilon, j - 1) \) as test functions in the integral formulation of these equations, we arrive at the following
inequality:
\[
\frac{1}{2} \rho_e \partial_t \| \partial_t \tilde{u}_e^{\sigma,j} \|^2_{L^2(\Omega_e^T)} + \frac{1}{2} \partial_t (\mathbf{E}^e (b_{e,3}^{\sigma,j-1}) \mathbf{e} (\tilde{u}_e^{\sigma,j}), \mathbf{e} (\tilde{u}_e^{\sigma,j}))_{\Omega_e^T}
\]
\[+ \frac{1}{2} \rho_f \partial_t \| \tilde{p}_e^{\sigma,j} \|^2_{L^2(\Omega_e^T)} + \| \nabla \tilde{p}_e^{\sigma,j} \|^2_{L^2(\Omega_e^T)}
\]
\[+ \frac{1}{2} \rho_f \partial_t \| \partial_t \tilde{u}_f^{\sigma,j} \|^2_{L^2(\Omega_f^T)} + \mu \varepsilon^2 \| \mathbf{e} (\partial_t \tilde{u}_f^{\sigma,j}) \|^2_{L^2(\Omega_f^T)}
\]
\[\leq \langle \partial_t \mathbf{E}^e (b_{e,3}^{\sigma,j-1}) \mathbf{e} (\tilde{u}_e^{\sigma,j}), \mathbf{e} (\tilde{u}_e^{\sigma,j}) \rangle_{\Omega_e^T}
\]
\[+ \langle (\mathbf{E}^e (b_{e,3}^{\sigma,j-1}) - \mathbf{E}^e (b_{e,3}^{\sigma,j})) \mathbf{e} (u_e^{\sigma,j-1}), \partial_t \mathbf{e} (\tilde{u}_e^{\sigma,j}) \rangle_{\Omega_e^T}
\]
\[\leq C_1 \| \mathbf{e} (\tilde{u}_e^{\sigma,j}) \|^2_{L^2(\Omega_e^T)} + \partial_t \langle (\mathbf{E}^e (b_{e,3}^{\sigma,j-1}) - \mathbf{E}^e (b_{e,3}^{\sigma,j})) \mathbf{e} (u_e^{\sigma,j-1}), \mathbf{e} (\tilde{u}_e^{\sigma,j}) \rangle_{\Omega_e^T}
\]
\[= \langle \partial_t \mathbf{E}^e (b_{e,3}^{\sigma,j-1}) \mathbf{e} (u_e^{\sigma,j-1}), \partial_t \mathbf{e} (u_e^{\sigma,j-1}), \mathbf{e} (\tilde{u}_e^{\sigma,j}) \rangle_{\Omega_e^T}
\]
(36)

Thus using a priori estimates for \(u_e^{\sigma,j} \), \(\partial_t u_e^{\sigma,j} \), \(\partial_t u_f^{\sigma,j} \), \(b_{e,3}^{\sigma,j} \), and \(b_{e,3}^{\sigma,j} \), we have that
\[
\| \mathbf{e} (\tilde{u}_e^{\sigma,j}) \|_{L^\infty(0,T;L^2(\Omega_e^T))} + \| \partial_t \tilde{u}_f^{\sigma,j} \|_{L^\infty(0,T;L^2(\Omega_f^T))} + \| \mathbf{e} (\partial_t \tilde{u}_f^{\sigma,j}) \|_{L^2(\Omega_f^T)}
\]
\[+ \| \tilde{p}_e^{\sigma,j} \|_{L^\infty(0,T;L^2(\Omega_e^T))} + \| \nabla \tilde{p}_e^{\sigma,j} \|^2_{L^2(\Omega_e^T)} \leq C_1 \| \tilde{b}_{e,3}^{\sigma,j} \|_{L^\infty(0,T;L^2(\Omega_e^T))}
\]
\[\leq C_2 \| \mathbf{e} (\tilde{u}_e^{\sigma,j-1}) \|^2_{L^\infty(0,T;L^2(\Omega_e^T))} + C_3 \| \partial_t \tilde{u}_f^{\sigma,j-1} \|^2_{L^2(\Omega_f^T)} + \delta \| \mathbf{e} (\partial_t \tilde{u}_f^{\sigma,j-1}) \|^2_{L^2(\Omega_f^T)}
\]
for \(s \in (0,T] \), \(0 < \delta < 1 \), and \(\sigma_1 > 10 \), with the constants \(C_1 \), \(C_2 \), and \(C_3 \) depending on \(T \) and the model parameters but independent of the solutions, initial data, and of \(s \in (0,T) \). Considering \(\delta < 1 \) and sufficiently small time intervals \(s \) in the inequality
\[
\| \mathbf{e} (\tilde{u}_e^{\sigma,j}) \|_{L^\infty(0,s;L^2(\Omega_e^T))} + \| \partial_t \tilde{u}_f^{\sigma,j} \|_{L^\infty(0,s;L^2(\Omega_f^T))} + \| \mathbf{e} (\partial_t \tilde{u}_f^{\sigma,j}) \|_{L^2(\Omega_f^T)}
\]
\[\leq C_2 s^{1/\sigma_1} \| \mathbf{e} (\tilde{u}_e^{\sigma,j-1}) \|^2_{L^\infty(0,s;L^2(\Omega_e^T))}
\]
\[+ C_3 s^{1/2} \| \partial_t \tilde{u}_f^{\sigma,j-1} \|^2_{L^\infty(0,s;L^2(\Omega_f^T))} + \delta \| \mathbf{e} (\partial_t \tilde{u}_f^{\sigma,j-1}) \|^2_{L^2(\Omega_f^T)}
\]
we obtain by the contraction arguments the existence of a fixed point of \(\mathcal{K} \) and hence the existence of a unique weak solution of the microscopic problem (6)–(8) in \((0,s) \). Since the constants \(C_2 \) and \(C_3 \) depend only on \(T \) and the model parameters and do not depend on \(s \), iterating over time intervals we obtain the existence and uniqueness result in the whole time interval \((0,T) \).

4. Convergence results. The a priori estimates proved in Lemma 3.2 imply convergence results for the components of solutions of the microscopic problem (6)–(8).

Lemma 4.1. There exist functions \(u_e \in H^1(0,T;H^1(\Omega)) \cap H^2(0,T;L^2(\Omega)), p_e \in H^1(0,T;H^1(\Omega)), u_e^1, \partial_t u_e^1 \in L^2(\Omega_T;H^1_{\text{per}}(Y_e)/\mathbb{R}), p_e^1 \in L^2(\Omega_T;H^1_{\text{per}}(Y_e)/\mathbb{R}), \partial_t u_f, \partial_t^2 u_f \in L^2(\Omega_T;H^1_{\text{per}}(Y_f)), \) and \(p_f \in L^2(\Omega_T \times Y_f) \) such that, up to a subsequence,
\[
u_e \to u_e \quad \text{strongly in } H^1(0,T;L^2(\Omega)),
\]
\[
p_e \to p_e \quad \text{strongly in } L^2(\Omega_T),
\]
\[
\partial_t^2 u_e \to \partial_t^2 u_e, \quad \partial_t p_e \to \partial_t p_e \quad \text{weakly two-scale},
\]
\[
\nabla u_e \to \nabla u_e + \nabla_y u_e^1 \quad \text{weakly two-scale},
\]
\[
\nabla p_e \to \nabla p_e + \nabla_y p_e^1 \quad \text{weakly two-scale},
\]

© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
and for fluid velocity and pressure we have
\begin{align}
\partial_t u^\varepsilon_f & \rightharpoonup \partial_t u_f, \quad p^\varepsilon_f \rightharpoonup p_f \quad \text{weakly two-scale,} \\
\varepsilon \nabla \partial_t u^\varepsilon_f & \rightharpoonup \nabla_y \partial_t u_f \quad \text{weakly two-scale}.
\end{align}

Additionally, we have weak two-scale convergence \(\partial_t u^\varepsilon_c \rightharpoonup \partial_t u_c \) and \(\partial_t u^\varepsilon_f \rightharpoonup \partial_t u_f \) on \(\Gamma^*_T \).

Proof. Applying standard extension arguments (see, e.g., [1, 16] or Lemma 3.1) and using the same notation for the original and extended sequences, from estimates (15) in Lemma 3.2 we obtain a priori estimates, uniform in \(\varepsilon \), for \(u^\varepsilon_c, \nabla u^\varepsilon_c, \partial_t u^\varepsilon_c, \partial^2_t u^\varepsilon_c, \) and \(\nabla \partial_t u^\varepsilon_c \), as well as \(p^\varepsilon_c, \nabla p^\varepsilon_c, \) and \(\partial_t p^\varepsilon_c \) in \(L^2(\Omega_T) \). Then the convergence results for \(u^\varepsilon_c \) and \(p^\varepsilon_c \) follow directly from the compactness of the embedding of \(H^1(0,T;L^2(\Omega)) \cap L^2(0,T;H^1(\Omega)) \) in \(L^2(\Omega_T) \), the a priori estimates (15), and the compactness theorems for the two-scale convergence; see, e.g., [3, 31]. The a priori estimates (15) and the compactness theorems for the two-scale convergence ensure the convergence results for \(\partial_t u^\varepsilon_f \) and \(p^\varepsilon_f \). Using the trace inequality and a scaling argument together with a priori estimates (15), we obtain
\begin{align*}
\varepsilon \| \partial_t u^\varepsilon_c \|^2_{L^2(\Omega^*_T)} & \leq C (\| \partial_t u^\varepsilon_c \|^2_{L^2(\Omega^*_T)} + \varepsilon^2 \| \nabla \partial_t u^\varepsilon_c \|^2_{L^2(\Omega^*_T)}) \leq C, \\
\varepsilon \| \partial_t u^\varepsilon_f \|^2_{L^2(\Omega^*_T)} & \leq C (\| \partial_t u^\varepsilon_f \|^2_{L^2(\Omega^*_T)} + \varepsilon^2 \| \nabla \partial_t u^\varepsilon_f \|^2_{L^2(\Omega^*_T)}) \leq C,
\end{align*}
where the constant \(C \) is independent of \(\varepsilon \). Then the compactness theorem for the two-scale convergence on oscillating surfaces [4, 30] ensures the weak two-scale convergence of \(\partial_t u^\varepsilon_c \) and \(\partial_t u^\varepsilon_f \) on \(\Gamma^*_T \).

In what follows we shall use the same notation for \(b^\varepsilon_c, c^\varepsilon_c \) and their extensions to \(\Omega \), whereas the extension of \(c^\varepsilon \) from \(\Omega^*_e,f \) to \(\Omega \) will be denoted by \(\varphi^\varepsilon \). Then for \(b^\varepsilon_c \) and \(c^\varepsilon_c \) we have the following convergence results.

Lemma 4.2. There exist functions
\[b^\varepsilon_c, c^\varepsilon_c \in L^2(0,T;H^1(\Omega)), \quad b^\varepsilon_c, c^\varepsilon_c \in L^2(\Omega^*_e,f;H^1(\Omega \setminus \Gamma) / \mathbb{R}), \quad c^\varepsilon \in L^2(\Omega_T;H^1(\Omega \setminus \Gamma) / \mathbb{R}), \]
such that, up to a subsequence,
\begin{align}
& b^\varepsilon_c \rightarrow b_c, \quad c^\varepsilon_c \rightarrow c, \quad \varphi^\varepsilon \rightarrow c \quad \text{strongly in } L^2(\Omega_T), \\
& \nabla b^\varepsilon_c \rightarrow \nabla b_c + \nabla_y b^1_c, \quad \text{weakly two-scale}, \\
& \nabla c^\varepsilon_c \rightarrow \nabla c + \nabla_y c^1 \quad \text{weakly two-scale}.
\end{align}

Proof. Using estimates (16) and the extensions of \(b^\varepsilon_c, c^\varepsilon_c \), and \(\varphi^\varepsilon \), defined in Lemma 3.1, we obtain
\begin{align}
\| b^\varepsilon_c \|^2_{L^2(\Omega_T)} + \| \nabla b^\varepsilon_c \|^2_{L^2(\Omega_T)} + \| c^\varepsilon_c \|^2_{L^2(\Omega_T)} + \| \nabla c^\varepsilon_c \|^2_{L^2(\Omega_T)} & \leq C, \\
\| \varphi^\varepsilon \|^2_{L^2(\Omega_T)} + \| \nabla \varphi^\varepsilon \|^2_{L^2(\Omega_T)} & \leq C,
\end{align}
where the constant \(C \) is independent of \(\varepsilon \). The estimates (40), the compactness of the embedding of \(H^1(\Omega) \) in \(L^2(\Omega) \), along with the estimate (17) and the Kolmogorov compactness theorem [29] yield the strong convergence of \(b^\varepsilon_c \rightarrow b_c, c^\varepsilon_c \rightarrow c_c, \) and \(\varphi^\varepsilon \rightarrow c \) in \(L^2(\Omega_T) \). Since \(\Omega^*_e,f \cap \Omega^*_e,f \neq \emptyset \) and \(c^\varepsilon_c(t,x) = \varphi^\varepsilon(t,x) \) in \(\Omega^*_e,f \cap \Omega^*_e,f \), along with the fact that \(c_c \) and \(c \) are independent of the microscopic variables \(y \), we obtain that \(c_c(t,x) = c(t,x) \) in \(\Omega_T \).

From the estimates for \(\varphi^\varepsilon \), applying the compactness theorem for the two-scale convergence, we obtain that there exists \(c^1 \in L^2(\Omega_T;H^1(\Omega \setminus \Gamma) / \mathbb{R}) \) such that
\[\nabla c^\varepsilon \rightharpoonup \nabla c + \nabla_y c^1 \quad \text{weakly two-scale} \quad [54]. \]
5. Derivation of macroscopic equations for the flow velocity and elastic deformations. This section focuses on homogenization of the microscopic problem (7)–(8). First we define the effective tensors E_{hom}, K_{hom}^p, and K_u.

The macroscopic elasticity tensor $E_{\text{hom}} = (E_{ijkl})$, permeability tensor $K_{\text{hom}}^p = (K_{p,ijkl})$, and $K_u = (K_{u,ijkl})$ are defined by

$$E_{ijkl}(b_{e,3}) = \frac{1}{|Y|} \int_{Y_e} \left(E_{ijkl}(y, b_{e,3}) + E_{ij}(y, b_{e,3})e_y(w_{ijkl}^k)\right) \, dy,$$

$$K_{p,ijkl}(x) = \frac{1}{|Y|} \int_{Y_e} \left(K_{p,ijkl}(x, y) + K_{p,ij}(x, y)\nabla_y w_{p,ij}^k\right) \, dy,$$

$$K_{u,ijkl}(x) = \frac{1}{|Y|} \int_{Y_e} \left(\delta_{ij} - K_{p,ij}(x, y)\nabla_y w_{c,ij}^k\right) \, dy,$$

where $w_{ijkl}^k = w_{ijkl}^k(b_{e,3}, \cdot)$, for $k, l = 1, 2, 3$, are Y-periodic solutions of the unit cell problems

$$\nabla_y \left(E(y, b_{e,3})(e_y(w_{ijkl}^k) + b_{kl})\right) = 0 \quad \text{in } Y_e,$$

$$\int_{Y_e} w_{ijkl}^k \, dy = 0,$$

functions $w_p^k = w_p^k(x, \cdot)$, for $k = 1, 2, 3$, are Y-periodic solutions of the unit cell problems

$$\nabla_y \left(K_p(x, y)(\nabla_y w_p^k + \epsilon_k)\right) = 0 \quad \text{in } Y_e,$$

$$\int_{Y_e} w_p^k \, dy = 0,$$

and $w_c^k = w_c^k(x, \cdot)$, for $k = 1, 2, 3$, are Y-periodic solutions of the unit cell problems

$$\nabla_y \left(K_p(x, y)\nabla_y w_c^k - \epsilon_k\right) = 0 \quad \text{in } Y_e,$$

$$\int_{Y_e} w_c^k \, dy = 0.$$

Here $b_{kl} = \epsilon_k \otimes \epsilon_l$ and $\{\epsilon_j\}_{j=1}^3$ is the canonical basis of \mathbb{R}^3.

Lemma 5.1. Periodic cell problems (42)–(44) are well-posed and have a unique solution. The tensors E_{hom} and K_{hom}^p are positive definite. Moreover, E_{hom} possesses the symmetries declared in A1.

Sketch of proof. Assumptions A1 on E and the Korn inequality for periodic functions ensure the existence of a unique solution of the unit cell problems (42) for a given $b_{e,3} \in L^2(\Omega_T)$; see, e.g., [33]. Assumptions A2 on K_p yield the existence of unique solutions of the unit cell problems (43) and (44). The positive definiteness of E and K_p, the definition of E_{hom} and K_{hom}^p, and the fact that w_{ijkl}^k and w_p^k, for $k, l = 1, 2, 3$, are solutions of (42) and (43) ensure in the standard way (see [7]) that E_{hom} and K_{hom}^p are positive definite. The definition of E_{hom} implies that E_{hom} satisfies the same symmetry assumptions in A1 as E.

\[\square \]
Applying the method of the two-scale convergence and using the convergence results in Lemmas 4.1 and 4.2, we derive the homogenized equations for displacement, pressure, and flow velocity for a given \(\{ b_{\varepsilon} \} \) such that \(b_{\varepsilon} \rightarrow b_e \) strongly in \(L^2(\Omega_T)^3 \) as \(\varepsilon \rightarrow 0 \). It should be emphasized that we have not yet derived the equation for the limit function \(b_e \). We only use the strong convergence of \(\{ b_{\varepsilon} \} \).

In the formations of the macroscopic problem for \((u_e, p_e, \partial_t u_f)\) we shall use the function \(Q(x, \partial_t u_f) \) defined as

\[
(45) \quad Q(x, \partial_t u_f) = \frac{1}{|Y|} \left(\int_{Y_f} \partial_t u_f \, dy - \int_{Y_e} K_p(x, y) \nabla_y q(x, y, \partial_t u_f) \, dy \right),
\]

where for \((t, x) \in \Omega_T \) the function \(q \) is a \(Y \)-periodic solution of the problem

\[
\begin{align*}
\text{div}_y (K_p(x, y) \nabla_y q) &= 0 \quad \text{in} \; Y_e, \\
- K_p(x, y) \nabla_y q \cdot n &= \partial_t u_f \cdot n \quad \text{on} \; \Gamma, \\
\int_{Y_e} q(x, y, \partial_t u_f) \, dy &= 0.
\end{align*}
\]

Theorem 5.2. A sequence of solutions \(\{ u_{\varepsilon}, p_{\varepsilon}, \partial_t u_f^\varepsilon, p_f^\varepsilon \} \) of microscopic problem (7) and (8) converges, as \(\varepsilon \rightarrow 0 \), to a solution \((u_e, p_e, \partial_t u_f, \pi_f)\) of the macroscopic equations

\[
\begin{align*}
\partial_e \rho_e \partial_t^2 u_e - \text{div}(E_{\text{hom}}(b_{e, \lambda}) e(u_e)) + \nabla p_e + \partial_f \Pi_f \int_{Y_f} \partial_t^2 u_f \, dy &= 0 \quad \text{in} \; \Omega_T, \\
\partial_e \rho_p \partial_t u_p - \text{div}(K_{\text{hom}} \nabla p_e - K_u \partial_t u_e - Q(x, \partial_t u_f)) &= 0 \quad \text{in} \; \Omega_T,
\end{align*}
\]

with boundary and initial conditions

\[
\begin{align*}
E_{\text{hom}}(b_{e, \lambda}) e(u_e) &= F_u \quad \text{on} \; \partial \Omega_T, \\
(K_{\text{hom}} \nabla p_e - K_u \partial_t u_e) \cdot n &= F_p + Q(x, \partial_t u_f) \cdot n \quad \text{on} \; \partial \Omega_T, \\
u_e(0) &= u_{e0}, \quad \partial_t u_e(0) = u_{t0}, \quad p_e(0) = p_{e0} \quad \text{in} \; \Omega,
\end{align*}
\]

and the two-scale problem for the fluid flow velocity and pressure

\[
\begin{align*}
\rho_f \partial_t^2 u_f - \text{div}_y (\mu e_y (\partial_t u_f - \pi_f) I) + \nabla p_f &= 0, \quad \text{div}_y \partial_t u_f &= 0 \quad \text{in} \; \Omega_T \times Y_f, \\
\Pi_e \partial_t u_f &= \Pi_p \partial_t u_e \quad \text{on} \; \Omega_T \times \Gamma, \\
n \cdot (\mu e_y (\partial_t u_f - \pi_f) I) n &= -p_{f1} \quad \text{on} \; \Omega_T \times \Gamma, \\
\partial_t u_f(0) &= u_{f0} \quad \text{in} \; \Omega \times Y_f,
\end{align*}
\]

where \(\partial_e = |Y_e|/|Y|, \; \partial_f = |Y_f|/|Y|, \) and

\[
(50) \quad p_{e1}(t, x, y) = \sum_{k=1}^{3} \partial_{x_k} p_e(t, x) w_{p}^{k}(x, y) + \sum_{k=1}^{3} \partial_{y_k} u_f(t, x) w_{p}^{k}(x, y) + q(x, y, \partial_t u_f),
\]

with \(w_{p}^{k}, w_{e}^{k}\), and \(q \) being solutions of (43), (44), and (46), respectively.

We have \(u_e \in H^1(0, T; L^2(\Omega)) \cap H^1(0, T; H^1(\Omega)), \quad p_e \in H^1(0, T; H^1(\Omega)), \quad \partial_t u_f \in L^2(\Omega_T; \Pi^1(\Omega)) \cap H^1(0, T; L^2(\Omega \times Y_f)), \) and \(\pi_f \in L^2(\Omega_T \times Y_f) \) and the convergence in the following sense:

\[
\begin{align*}
u_{e}^{\varepsilon} &\rightarrow u_e \quad \text{in} \; H^1(0, T; L^2(\Omega)), \quad p_{e}^{\varepsilon} \rightarrow p_e \quad \text{in} \; L^2(\Omega_T), \\
\nabla u_{e}^{\varepsilon} &\rightarrow \nabla u_e + \nabla_y u_{e1} \quad \text{weakly two-scale}, \quad \nabla p_{e}^{\varepsilon} \rightarrow \nabla p_e + \nabla_y p_{e1} \quad \text{weakly two-scale}, \\
\partial_t u_{f}^{\varepsilon} &\rightarrow \partial_t u_f, \quad p_f^{\varepsilon} \rightarrow p_e, \quad \varepsilon \nabla \partial_t u_{f}^{\varepsilon} \rightarrow \nabla_y \partial_t u_f \quad \text{weakly two-scale}.
\end{align*}
\]
Remark. In the original microscopic problem the equations of poroelasticity and the Stokes system are coupled through the transmission conditions. The limit system shows the strong coupling in the whole domain Ω_T. Namely, the equations for macroscopic displacement and pressure defined in the whole domain Ω_T are coupled with the two-scale equations for the fluid flow defined on $\Omega_T \times Y_f$. This coupling in the limit problem can be observed through both the lower order terms in the equations and the boundary conditions.

Proof of Theorem 5.2. Considering $(\varepsilon \phi(t, x, x/\varepsilon), \varepsilon \psi(t, x, x/\varepsilon), \varepsilon \eta(t, x, x/\varepsilon))$ with $\phi \in C^\infty(\Omega_T; C^\infty(Y_e))^3$, $\psi \in C^\infty(\Omega_T; C^\infty(Y_e))$, and $\eta \in C^\infty(\Omega_T; C^\infty(Y_f))^3$ as test functions in the weak formulation of (7), with the corresponding boundary conditions in (8), we obtain

$$
\begin{align*}
(p_\varepsilon \partial^2_{zz} u_\varepsilon, \varepsilon \phi)_{\Omega^3_{zz}T} + & \langle \mathbf{E}'(b_{\varepsilon,3}) \mathbf{e}(u_\varepsilon), \varepsilon \mathbf{e}(\phi) \rangle_{\Omega^3_{zz}T} + \langle \nabla p_\varepsilon, \varepsilon \phi \rangle_{\Omega^3_{zz}T} \\
+ & \langle p_\varepsilon \partial_z u_\varepsilon, \varepsilon \psi \rangle_{\Omega^3_{zz}T} + \langle K_\varepsilon \nabla p_\varepsilon - \partial_t u_\varepsilon, \varepsilon \nabla \psi \rangle_{\Omega^3_{zz}T} \\
+ & \langle p_\varepsilon \partial_y u_\varepsilon, \varepsilon \eta \rangle_{\Omega^3_{zz}T} + \varepsilon^2 \mu \langle \partial_t u_\varepsilon, \varepsilon \mathbf{e} \eta \rangle_{\Omega^3_{zz}T} - \langle p_\varepsilon \partial_y, \varepsilon \text{div} \, \eta \rangle_{\Omega^3_{zz}T} \\
+ & \langle \partial_t u_\varepsilon \cdot n, \varepsilon \psi \rangle_{\Gamma^3_T} - \langle p_\varepsilon \partial_y, \varepsilon \eta \cdot n \rangle_{\Gamma^3_T} = \langle F_\varepsilon, \varepsilon \phi \rangle_{(\partial \Omega)T} + \langle F_\varepsilon, \varepsilon \psi \rangle_{(\partial \Omega)T}.
\end{align*}
$$

(51)

Letting $\varepsilon \to 0$ and using the convergence results in Lemmas 4.1 and 4.2 yields

$$
\begin{align*}
\langle \mathbf{E}(y, b_{e,3})(\mathbf{e}(u_e) + \mathbf{e}_y(u_1^e)), \mathbf{e}_y(\phi) \rangle_{\Omega_T \times Y_e} \\
+ \langle K_p (\nabla p_e + \nabla_y p_e^1) - \partial_t u_e, \nabla_y \psi \rangle_{\Omega_T \times Y_e} + \langle \partial_t u_f \cdot n, \psi \rangle_{\Omega_T \times \Gamma} \\
- \langle p_f, \text{div} \, \eta \rangle_{\Omega_T \times Y_f} = 0
\end{align*}
$$

(52)

and the equations for correctors

$$
\begin{align*}
\text{div} \, \mathbf{E}(y, b_{e,3})(\mathbf{e}(u_e) + \mathbf{e}_y(u_1^e)) &= 0 & \text{in } \Omega_T \times Y_e, \\
\mathbf{E}(y, b_{e,3})(\mathbf{e}(u_e) + \mathbf{e}_y(u_1^e)) &= 0 & \text{on } \Omega_T \times \Gamma
\end{align*}
$$

and

$$
\begin{align*}
\text{div} \, (K_p (\nabla p_e + \nabla_y p_e^1) - \partial_t u_e) &= 0 & \text{in } \Omega_T \times Y_e, \\
(\partial_t, \partial_y) (\nabla p_e + \nabla_y p_e^1) + \partial_t u_e \cdot n &= 0 & \text{on } \Omega_T \times \Gamma.
\end{align*}
$$

(55)

Considering $\eta \in C^\infty(\Omega_T; C^\infty(Y_f))^3$ with $\Pi_r \phi = \Pi_r \eta$ on $\Omega_T \times \Gamma$, from (52) and (53) it follows that

$$
p_f = p_f(t, x) & \text{ in } \Omega_T \times Y_f \text{ and } p_f = p_e & \text{ on } \Omega_T \times \Gamma.
$$

Thus we have $p_f = p_e$ in Ω_T. Taking $(\phi(t, x), \psi(t, x), \eta(t, x, x/\varepsilon))$, where

- $\phi \in C^\infty(\Omega_T)^3$ and $\psi \in C^\infty(\Omega_T)$,
- $\eta \in C^\infty(\Omega_T; C^\infty(Y_f))^3$ with $\Pi_r \eta = \Pi_r \phi$ on $\Omega_T \times \Gamma$ and $\text{div} \, \eta(t, x, y) = 0$ in $\Omega_T \times Y_f$,
as test functions in the weak formulation of (7), with external boundary conditions in (8), yields

\[
\langle \rho \varepsilon \partial_\varepsilon^2 u_\varepsilon^\gamma, \phi \rangle_{\Omega^\varepsilon,T} + \langle \mathbf{E}^\varepsilon (b_\varepsilon^\gamma), \mathbf{e}(\phi) \rangle_{\Omega^\varepsilon,T} + \langle \nabla p_\varepsilon^\gamma, \phi \rangle_{\Omega^\varepsilon,T}
\]

\[
+ \langle \rho_p \partial_t p_\varepsilon^\gamma, \psi \rangle_{\Omega^\varepsilon,T} + \langle K_p \nabla p_\varepsilon^\gamma - \partial_t u_\varepsilon^\gamma, \nabla \psi \rangle_{\Omega^\varepsilon,T}
\]

\[
+ \langle p_f \partial^2 u_f^\gamma, (\eta)^{\Omega_f^\varepsilon,T} + \mu \varepsilon^2 (\mathbf{e}(\partial_t u_f^\gamma), \mathbf{e}(\eta)) + \varepsilon^{-1} \mathbf{e}_g(\eta) \rangle_{\Omega_f^\varepsilon,T} - \langle p_f^\gamma, \text{div}_\varepsilon \eta \rangle_{\Omega_f^\varepsilon,T}
\]

\[
+ \langle \partial_t u_f^\gamma \cdot n, \psi \rangle_{\Gamma_f^\varepsilon} - \langle p_f^\gamma, \eta \cdot n \rangle_{\Gamma_f^\varepsilon} = \langle F_u, \phi \rangle_{(\partial_\varepsilon \Omega)T} + \langle F_p, \psi \rangle_{(\partial_\varepsilon \Omega)T}.
\]

Letting \(\varepsilon \to 0 \) and using the two-scale convergence of \(u_\varepsilon^\gamma, p_\varepsilon^\gamma \), and \(\partial_t u_f^\gamma \), we obtain

\[
\langle \rho \varepsilon \partial_\varepsilon^2 u_\varepsilon, \phi \rangle_{\Omega^\varepsilon,T} + \langle \mathbf{E}(y, b_\varepsilon^\gamma), \mathbf{e}(\phi) \rangle_{\Omega^\varepsilon,T} + \langle \nabla p_\varepsilon, \phi \rangle_{\Omega^\varepsilon,T}
\]

\[
+ \langle \rho_p \partial_t p_\varepsilon, \psi \rangle_{\Omega^\varepsilon,T} + \langle K_p \nabla p_\varepsilon - \partial_t u_\varepsilon, \nabla \psi \rangle_{\Omega^\varepsilon,T}
\]

\[
+ \langle p_f \partial^2 u_f, \eta \rangle_{\Omega^\varepsilon,T} + \mu (\mathbf{e}(\partial_t u_f^\gamma), \mathbf{e}(\eta)) + \varepsilon^{-1} \mathbf{e}_g(\eta) \rangle_{\Omega^\varepsilon,T} - \langle p_f^\gamma, \text{div}_\varepsilon \eta \rangle_{\Omega^\varepsilon,T}
\]

\[
+ \langle \partial_t u_f^\gamma \cdot n, \psi \rangle_{\Gamma_f^\varepsilon} - \langle p_f^\gamma, \eta \cdot n \rangle_{\Gamma_f^\varepsilon} = \langle F_u, \phi \rangle_{(\partial_\varepsilon \Omega)T} + \langle F_p, \psi \rangle_{(\partial_\varepsilon \Omega)T}.
\]

Here we used the relation \(p_\varepsilon = p_f \) a.e. in \(\Omega^\varepsilon \), as well as the fact that due to the relation \(\partial_t u_f^\gamma = 0 \) and the two-scale convergence of \(\partial_t u_f^\gamma \), we have

\[
\lim_{\varepsilon \to 0} \langle \partial_t u_f^\gamma \cdot n, \psi \rangle_{\Gamma_f^\varepsilon} = \lim_{\varepsilon \to 0} \langle \text{div} \partial_t u_f^\gamma, \psi \rangle_{\Omega^\varepsilon,T} - \langle \partial_t u_f^\gamma, \nabla \psi \rangle_{\Omega^\varepsilon,T}
\]

\[
= -\lim_{\varepsilon \to 0} \langle \partial_t u_f^\gamma, \nabla \psi \rangle_{\Omega^\varepsilon,T} = -|Y|^{-1} \langle \partial_t u_f, \nabla \psi \rangle_{\Omega^\varepsilon,T}.
\]

To show the convergence of \(\langle p_f^\gamma, \eta \cdot n \rangle_{\Gamma_f^\varepsilon} \) we use \(\text{div}_\varepsilon \eta = 0 \) and the fact that \(p_f^1 \) is well defined on \(\Gamma_f \):

\[
\lim_{\varepsilon \to 0} \langle p_f^\gamma, \eta \cdot n \rangle_{\Gamma_f^\varepsilon} = \lim_{\varepsilon \to 0} \langle \nabla p_\varepsilon, \eta \rangle_{\Omega^\varepsilon,T} - \langle p_f^\gamma, \text{div}_\varepsilon \eta \rangle_{\Omega^\varepsilon,T}
\]

\[
= -|Y|^{-1} \langle \nabla p_\varepsilon \rangle_{\Omega^\varepsilon,T} - \langle p_f^\gamma, \text{div}_\varepsilon \eta \rangle_{\Omega^\varepsilon,T} - |Y|^{-1} \langle p_\varepsilon, \text{div}_\varepsilon \eta \rangle_{\Omega^\varepsilon,T}.
\]

Notice that \(n \) is the internal for \(\Gamma_f \) normal at the boundary \(\Gamma_f \).

Also, for an arbitrary test function \(\eta_1 \in C_0^\infty(\Omega^\varepsilon; C_0^\infty(\gamma_f)) \), from the two-scale convergence of \(\partial_t u_f^\gamma \) and the fact that \(\partial_t u_f^\gamma \) is divergence-free, it follows that

\[
0 = \lim_{\varepsilon \to 0} \langle \partial_t u_f^\gamma, \varepsilon \eta_1(t, x, x/\varepsilon) \rangle_{\Omega^\varepsilon,T} = -\lim_{\varepsilon \to 0} \langle \partial_t u_f^\gamma, \varepsilon \nabla_x \eta_1 \rangle_{\Omega^\varepsilon,T} + \langle \partial_t u_f^\gamma, \varepsilon \eta_1 \rangle_{\Omega^\varepsilon,T}
\]

\[
= -|Y|^{-1} \langle \partial_t u_f, \nabla \eta_1 \rangle_{\Omega^\varepsilon,T}.
\]

Thus \(\text{div}_\varepsilon \partial_t u_f = 0 \) in \(\Omega^\varepsilon \times \gamma_f \).

Considering \(\phi = 0 \) and \(\psi = 0 \), and taking first \(\eta \in C_0^\infty(\Omega^\varepsilon; C_0^\infty(\gamma_f))^3 \) with \(\text{div}_\varepsilon \eta = 0 \) and then \(\eta \in C_0^\infty(\Omega^\varepsilon; C_0^\infty(\gamma_f))^3 \) with \(\Pi^\varepsilon \eta = 0 \) on \(\Omega^\varepsilon \times \Gamma_f \), we obtain the two-scale problem (49) for \(\partial_t u_f^\gamma \). From the boundary conditions \(\Pi^\varepsilon \partial_t u_\varepsilon^\gamma = \Pi^\varepsilon \partial_t u_f^\gamma \) on \(\Gamma_f^\varepsilon \) and the two-scale convergence of \(u_\varepsilon^\gamma \) and \(\partial_t u_f^\gamma \) on \(\Gamma_f^\varepsilon \) (see Lemma 4.1), we obtain

\[
\frac{1}{|Y|} \int_{\Omega^\varepsilon} \int_{\Gamma} \Pi^\varepsilon \partial_t u_\varepsilon^\gamma(t, x) \psi(t, x, y) d\gamma_y dx dt = \lim_{\varepsilon \to 0} \left(\frac{1}{|Y|} \int_{\Gamma_f^\varepsilon} \Pi^\varepsilon \partial_t u_f^\gamma(t, x) \psi(t, x, \tfrac{x}{\varepsilon}) d\gamma dt \right)
\]

\[
= \lim_{\varepsilon \to 0} \left(\frac{1}{|Y|} \int_{\Gamma_f^\varepsilon} \Pi^\varepsilon \partial_t u_f^\gamma(t, x, y) \psi(t, x, y) d\gamma_y dy dt \right)
\]

\[
= \frac{1}{|Y|} \int_{\Omega^\varepsilon} \int_{\Gamma} \Pi^\varepsilon \partial_t u_f^\gamma(t, x) \psi(t, x, y) d\gamma_y dx dt
\]

\[
= \frac{1}{|Y|} \int_{\Omega^\varepsilon} \int_{\Gamma} \Pi^\varepsilon \partial_t u_f^\gamma(t, x) \psi(t, x, y) d\gamma_y dx dt
\]
for all $\psi \in C_0(\Omega_T; C_{\text{per}}(Y))$. Thus $\Pi_{\tau} \partial_t u_e = \Pi_{\tau} \partial_t u_f$ on $\Omega_T \times \Gamma$.

Considering first $\phi \in C_0^\infty(\Omega_T)^3$, $\psi \in C_0^\infty(\Omega_T)$, and then $\phi \in C^\infty(\overline{\Omega_T})^3$, $\psi \in C^\infty(\overline{\Omega_T})$, together with $\eta \in C_0^\infty(\Omega_T; C_{\text{per}}(Y_f))^3$ and $\Pi_{\tau} \eta = \Pi_{\tau} \phi$ on Γ, and using the equations (49) for $\partial_t u_f$, we obtain the limit equations for u_e and p_e:

$$\begin{align*}
\vartheta_e \rho_c \partial_t^2 u_e - \text{div}(E^{\text{hom}}(b_e,3) \mathbf{e}(u_e)) + \vartheta_e \nabla p_e + \frac{1}{|Y|} \int_{Y_e} \nabla_y p_e^1 \, dy
- \frac{1}{|Y|} \langle \mu \Pi_{\tau}(\mathbf{e}(\partial_t u_f) n), 1 \rangle_{H^{-1/2},H^{1/2}(\Gamma)} = 0 \quad \text{in } \Omega_T,
E^{\text{hom}}(b_e,3) \mathbf{e}(u_e) = F_u \quad \text{on } (\partial\Omega)_T,
\end{align*}$$

(60)

where $\vartheta_e = |Y_e|/|Y|$ and the effective elasticity tensor E^{hom} is defined by (41), and

$$\begin{align*}
\vartheta_e \rho_c \partial_t p_e
\vartheta_e \rho_c \partial_t p_e
- \frac{1}{|Y|} \text{div} \left[\int_{Y_e} [K_p(\nabla p_e + \nabla_y p_e^1) - \partial_t u_e] \, dy - \int_{Y_f} \partial_t u_f \, dy \right] = 0 \quad \text{in } \Omega_T,
\int_{Y_e} \left[K_p(\nabla p_e + \nabla_y p_e^1) - \partial_t u_e \right] \, dy - \int_{Y_f} \partial_t u_f \, dy \cdot n = F_p \quad \text{on } (\partial\Omega)_T,
\end{align*}$$

(61)

with p_e^1 defined by the two-scale problem (55). Considering the weak formulation of (49) with the test function $\eta = 1$ yields

$$\rho_f \int_{Y_f} \partial_t^2 u_f \, dy + |Y_f|\nabla p_e = -\langle \mu \Pi_{\tau}(\mathbf{e}(\partial_t u_f) - \pi_f I) n, 1 \rangle_{H^{-1/2},H^{1/2}(\Gamma)} = \int_{Y_f} p_e^1 n \, d\gamma_y
- \langle \mu \Pi_{\tau}(\mathbf{e}(\partial_t u_f) n), 1 \rangle_{H^{-1/2},H^{1/2}(\Gamma)}.$$

Using the Y-periodicity of p_e^1, we obtain

$$-\langle \mu \Pi_{\tau}(\mathbf{e}(\partial_t u_f) n), 1 \rangle_{H^{-1/2},H^{1/2}(\Gamma)} = \rho_f \int_{Y_f} \partial_t^2 u_f \, dy + |Y_f|\nabla p_e - \int_{Y_e} \nabla_y p_e^1 \, dy.$$

Thus we can rewrite the equation for u_e as

$$\begin{align*}
\vartheta_e \rho_c \partial_t^2 u_e - \text{div}(E^{\text{hom}}(b_e,3) \mathbf{e}(u_e)) + \nabla p_e + \vartheta_e \rho_f \int_{Y_f} \partial_t^2 u_f \, dy = 0 \quad \text{in } \Omega_T,
\end{align*}$$

(62)

where $\vartheta_f = |Y_f|/|Y|$. Considering the structure of problem (55), we represent p_e^1 in the form

$$p_e^1(t, x, y) = \sum_{k=1}^3 \partial_{x_k} p_e(t, x) w^k_p(t, x) + \sum_{k=1}^3 \partial_t u^k_e(t, x) w^k_e(x, y) + q(x, y, \partial_t u_f),$$

(63)

where w^k_p and w^k_e are solutions of unit cell problems (43) and (44), and q is a solution of the two-scale problem (46). Incorporating the expression (63) for p_e^1 into (61) and considering (62), we obtain that p_e and u_e satisfy the macroscopic problem (47)–(48), where E^{hom}, K_p^{hom}, and K_u are defined by (41). The coupling with the flow velocity $\partial_t u_f$ is reflected in the interaction function Q, defined by (45). Notice that since $\text{div} \partial_t u_f = 0$ in Y_f, we have that $\int_{Y_f} \partial_t u_f \cdot n \, d\gamma = 0$ and the problem (46) is well-posed, i.e., the compatibility condition is satisfied.

\[\square\]
6. Strong two-scale convergence of $e(u^e_s), \nabla p^e_s$, and $\partial_t u^f_s$.

Lemma 6.1. For a subsequence of solutions of microscopic problem (7)–(8), $\{u^e_s\}$, $\{p^e_s\}$, and $\{\partial_t u^f_s\}$ (denoted again by $\{u^e_s\}$, $\{p^e_s\}$, and $\{\partial_t u^f_s\}$), and the limit functions u_e, u^e_1, p_e, p^e_1, and $\partial_t u_f$ as in Lemma 4.1, we have

$$
\begin{align*}
\nabla u^e_s &\to \nabla u_e + \nabla_y u^1_e \quad \text{strongly two-scale,} \\
\nabla p^e_s &\to \nabla p_e + \nabla_y p^1_e \quad \text{strongly two-scale,} \\
\partial_t u^f_s &\to \partial_t u_f \quad \text{strongly two-scale,} \\
\varepsilon e(\partial_t u^f_s) &\to e_y(\partial_t u_f) \quad \text{strongly two-scale.}
\end{align*}
$$

Proof. To show the strong two-scale convergence, we prove the convergence of the energy functional related to (7) for u^e_s, p^e_s, and $\partial_t u^f_s$. Because of the dependence of E on the temporal variable, we have to consider a modified form of the energy functional. We consider a monotone decreasing function $\zeta : \mathbb{R}_+ \to \mathbb{R}_+$, e.g., $\zeta(t) = e^{-rt}$ for $t \in \mathbb{R}_+$, and define the energy functional for the microscopic problem (7)–(8) as

$$
E^\varepsilon(u^e_s, p^e_s, \partial_t u^f_s) = \frac{1}{2} \rho_e \|\partial_t u^e_s(\zeta(s))\|_{L^2(\Omega_e)}^2 - \langle \zeta' \zeta, \rho_e |\partial_t u^e_s|^2 \rangle_{\Omega_e} + \frac{1}{2} \langle E^\varepsilon(b^e_{e,3}) e(u^e_s(s)), e(u^e_s(s)) \zeta(s) \rangle_{\Omega_e} + \frac{1}{2} \left[2 \zeta' \zeta E^\varepsilon(b^e_{e,3}) + \zeta^2 \partial_t E^\varepsilon(b^e_{e,3}) \right] e(u^e_s), e(u^e_s)_{\Omega_e},
$$

$$
+ \frac{1}{2} \rho_p \|p^e_s(\zeta(s))\|_{L^2(\Omega_e)}^2 - \langle \zeta' \zeta, \rho_p |p^e_s|^2 \rangle_{\Omega_e} + \langle K^e_p \nabla p^e_s \zeta, \nabla p^e_s \zeta \rangle_{\Omega_e},
$$

$$
+ \frac{1}{2} \rho_f \|\partial_t u^f_s(\zeta(s))\|_{L^2(\Omega_f)}^2 - \langle \zeta' \zeta, \rho_f |\partial_t u^f_s|^2 \rangle_{\Omega_f} + \mu \|\zeta \epsilon(\partial_t u^f_s)\|_{L^2(\Omega_f)}^2
$$

for $s \in (0, T)$. Considering $\partial_t u^e_s(\zeta^2, p^e_s (\zeta^2, \partial_t u^f_s (\zeta^2)$ as a test function in (9) we obtain the equality

$$
E^\varepsilon(u^e_s, p^e_s, \partial_t u^f_s) = \frac{1}{2} \rho_e \|\partial_t u^e_s(0)\|_{L^2(\Omega_e)}^2 + \frac{1}{2} \rho_p \|p^e_s(0)\|_{L^2(\Omega_e)}^2 + \frac{1}{2} \rho_f \|\partial_t u^f_s(0)\|_{L^2(\Omega_f)}^2 + \langle F_u, \partial_t u^e_s(0) \rangle_{\partial \Omega_e} + \langle F_p, p^e_s(0) \rangle_{\partial \Omega_e},
$$

Due to the assumptions on E and $\partial_t E$, there exists a positive constant γ such that

$$
(2\gamma E(y, \xi) - \partial_t E(y, \xi)) A \cdot A \geq 0 \quad \text{for all symmetric matrices } A,
$$

all continuous bounded functions ξ, and $y \in Y$.

Since $\{b^e_{e,3}\}$ converges strongly in $L^2(\Omega_T)$, $e(u^e_s)$ converges weakly two-scale, and $E^\varepsilon(b^e_{e,3})$ is uniformly bounded, we have the weak two-scale convergence of the sequence $(E^\varepsilon(b^e_{e,3}))^\frac{1}{2} e(u^e_s)$ to $(E(y, b_{e,3}))^\frac{1}{2} (e(u^e_s) + e_y(u^1_s))$ and of $(2\gamma E^\varepsilon(b^e_{e,3}) - \partial_t E^\varepsilon(b^e_{e,3}))^\frac{1}{2} e(u^e_s)$ to $(2\gamma E(y, b_{e,3}) - \partial_t E(y, b_{e,3}))^\frac{1}{2} (e(u^e_s) + e_y(u^1_s))$ as $\varepsilon \to 0$. Using in (65) and (66) the lower semicontinuity of the corresponding norms, the initial conditions for u^e_s, p^e_s, and
\[\partial_t u_s^\varepsilon, \] and the convergence of \(\partial_t u_s^\varepsilon, p_s^\varepsilon, \) and \(\partial_t u_f^\varepsilon \) implies

\[
\begin{align*}
\rho_e |\partial_t u_e(s) \zeta(s)|^2 \|\|^2_{L^2(\Omega \times Y_s)} &+ 2\gamma \rho_e |\partial_t u_e \zeta|^2 \|\|^2_{L^2(\Omega \times Y_s)} \\
+ \langle \mathbf{E}(y, b_e, s) (\zeta^2(s) (e_{u_e}(s)) + \mathbf{e}_y(u_e^1(s)), e_{u_e}(s)) + \mathbf{e}_y(u_e^1(s)) \rangle_{\Omega \times Y_s} &+ (2\gamma E(y, b_e, s) - \partial_t \mathbf{E}(y, b_e, s))(e_{u_e}^1(s)) + \mathbf{e}_y(u_e^1(s)) \rangle_{\Omega \times Y_s} \\
+ (2\gamma (\mathbf{E}(y, b_e, s) - \partial_t \mathbf{E}(y, b_e, s))(e_{u_e}(s)) + \mathbf{e}_y(u_e^1(s)), e_{u_e}(s)) + \mathbf{e}_y(u_e^1(s)) \rangle_{\Omega \times Y_s} &+ \partial_t p_s^\varepsilon(s) \zeta^2(s) \|\|^2_{L^2(\Omega \times Y_s)} + 2\gamma \rho_p \|p_e \zeta^2\|^2_{L^2(\Omega \times Y_s)} \\
+ 2(\partial^2 K_p(\nabla p_e + \nabla y p_f), \nabla p_e + \nabla y p_f^1)_{\Omega \times Y_s} + \rho_f \|\partial_t u_f(s) \zeta(s)|^2 \|\|^2_{L^2(\Omega \times Y_f)} &+ 2\gamma \rho_f \|\partial_t u_f \zeta|^2 \|\|^2_{L^2(\Omega \times Y_f)} \\
\leq 2|Y| \liminf_{\varepsilon \to 0} E^\varepsilon(u_s^\varepsilon, p_s^\varepsilon, \partial_t u_f^\varepsilon) &\leq 2|Y| \limsup_{\varepsilon \to 0} E^\varepsilon(u_s^\varepsilon, p_s^\varepsilon, \partial_t u_f^\varepsilon)
\end{align*}
\]

for \(s \in (0, T) \). Here we used the weak and the weak two-scale convergences of \(\partial_t u_s^\varepsilon, e_{u_s}(s), e(\partial_t u_s^\varepsilon), p_s^\varepsilon, \) and \(\nabla p_s^\varepsilon, \) and the weak two-scale convergence of \(\partial_t u_f^\varepsilon \) and \(\varepsilon e(\partial_t u_f^\varepsilon) \). Considering the limit equations (47)–(49) for \(u_e, p_e, \) and \(\partial_t u_f \) and taking \((\partial_t u_e \zeta^2, p_e \zeta^2, \partial_t u_f \zeta^2) \) as a test function yields

\[
\begin{align*}
\frac{1}{2} \rho_e |\partial_t u_e(s) \zeta(s)|^2 \|\|^2_{L^2(\Omega \times Y_s)} &- \frac{1}{2} \rho_e |\partial_t u_e(0) \zeta| \|\|^2_{L^2(\Omega \times Y_s)} + \gamma \rho_e |\partial_t u_e \zeta|^2 \|\|^2_{L^2(\Omega \times Y_s)} \\
+ \langle \mathbf{E}(y, b_e, s) (e_{u_e}(s)) + \mathbf{e}_y(u_e^1(s)), e_{u_e}(s)) + \mathbf{e}_y(u_e^1(s)) \rangle_{\Omega \times Y_s} &+ \langle \nabla p_e + \nabla_y p_f^1, \partial_t u_e \zeta \rangle_{\Omega \times Y_s} \\
+ \frac{1}{2} \rho_p \|p_s^\varepsilon(s) \zeta^2(s) \|\|^2_{L^2(\Omega \times Y_s)} &- \frac{1}{2} \rho_p \|p_e(0) \zeta^2\|\|^2_{L^2(\Omega \times Y_s)} + \gamma \rho_p \|p_e \zeta^2\|\|^2_{L^2(\Omega \times Y_s)} \\
+ (K_p(x, y)(\nabla p_e + \nabla_y p_f^1) - \partial_t u_e, \nabla p_e \zeta^2)_{\Omega \times Y_s} &+ \frac{1}{2} \rho_f |\partial_t u_f(s) \zeta(s)|^2 \|\|^2_{L^2(\Omega \times Y_f)} \\
\leq - \frac{1}{2} \rho_e |\partial_t u_e| \|\|^2_{L^2(\Omega \times Y_s)} &+ \gamma |\partial_t u_e \zeta|^2 \|\|^2_{L^2(\Omega \times Y_s)} \\
- \rho_f |\partial_t u_f(0) \zeta| \|\|^2_{L^2(\Omega \times Y_f)} &+ \gamma \rho_f |\partial_t u_f \zeta|^2 \|\|^2_{L^2(\Omega \times Y_f)} \\
- \langle \mathbf{E}(y, b_e, s) (e_{u_e}(s)) + \mathbf{e}_y(u_e^1(s)), e_{u_e}(s)) + \mathbf{e}_y(u_e^1(s)) \rangle_{\Omega \times Y_s} &+ \langle \nabla p_e + \nabla_y p_f^1, \partial_t u_e \zeta \rangle_{\Omega \times Y_s} \\
+ \mu(e_y(\partial_t u_f), e_y(\partial_t u_f) \zeta^2)_{\Omega \times Y_f} &+ |Y| |F_{\varepsilon}(\partial_t u_e \zeta^2)_{\partial Y_s} + |Y| |F_{\varepsilon}(p_e \zeta^2)_{\partial Y_s}|
\end{align*}
\]

for \(s \in (0, T) \). From (55) for the corrector \(p_e^1 \) we obtain

\[
\begin{align*}
- (p_e^1, \partial_t u_f \cdot n \zeta^2)_{\Omega \times \Gamma} &\leq (K_p(x, y)(\nabla p_e + \nabla_y p_f^1) - \partial_t u_e, \nabla p_e \zeta^2)_{\Omega \times Y_s}.
\end{align*}
\]

Considering (54) for the corrector \(u_e^1 \) and taking \(\partial_t u_e \zeta^2 \) as a test function yields

\[
\begin{align*}
\langle \mathbf{E}(y, b_e, s) (e_{u_e}(s)) + \mathbf{e}_y(u_e^1(s)), e_{\partial_t u_e \zeta} \rangle \zeta^2 \|\|^2_{\Omega \times Y_s} &\leq \langle \mathbf{E}(y, b_e, s) (e_{u_e}(s)) + \mathbf{e}_y(u_e^1(s)), e_{\partial_t u_e \zeta} \rangle \zeta^2 \|\|^2_{\Omega \times Y_s} \\
= \langle \mathbf{E}(y, b_e, s) (e_{u_e}(s)) + \mathbf{e}_y(u_e^1(s)), e_{\partial_t u_e \zeta} \rangle \zeta^2 \|\|^2_{\Omega \times Y_s} &\leq \langle \mathbf{E}(y, b_e, s) (e_{u_e}(s)) + \mathbf{e}_y(u_e^1(s)), e_{\partial_t u_e \zeta} \rangle \zeta^2 \|\|^2_{\Omega \times Y_s} \\
+ \frac{1}{2} \langle (2\gamma \mathbf{E}(y, b_e, s) - \partial_t \mathbf{E}(y, b_e, s)) \zeta^2 (e_{u_e} + \mathbf{e}_y(u_e^1(s)), e_{u_e} + \mathbf{e}_y(u_e^1(s)) \rangle_{\Omega \times Y_s}.
\end{align*}
\]

Combining (68)–(70) with (67) and using that \(\mathbf{e}_y(u_e^1(0)) = \mathbf{e}_y(\tilde{u}_e(0)) \) in \(\Omega \times Y_s \), we obtain

\[
\mathcal{E}(u_e, p_e, \partial_t u_f) \leq \liminf_{\varepsilon \to 0} \mathcal{E}^\varepsilon(u_s^\varepsilon, p_s^\varepsilon, \partial_t u_f^\varepsilon) \leq \limsup_{\varepsilon \to 0} \mathcal{E}^\varepsilon(u_s^\varepsilon, p_s^\varepsilon, \partial_t u_f^\varepsilon) = \mathcal{E}(u_e, p_e, \partial_t u_f)
\]

© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
and thus conclude that \(\lim_{\varepsilon \to 0} \mathcal{E}^\varepsilon(u_\varepsilon^\cdot, p_\varepsilon^\cdot, \partial_t u_\varepsilon^\cdot) = \mathcal{E}(u_\cdot, p_\cdot, \partial_t u_\cdot) \). Then the strong two-scale convergence relations stated in the lemma follow by lower semicontinuity arguments.

7. Derivation of macroscopic equations for reaction-diffusion-convection problem. The homogenized coefficients in the reaction-diffusion-convection equations, which will be obtained in the derivation of the macroscopic problem, are defined by

\[
D_{ij}^{\text{hom}} = \frac{1}{|Y|} \int_{Y_e} \left[D_{ij}^e(y) + (D^e(y) \nabla_y \omega^e_j(y)) \right] dy, \\
D_{ij}^{\text{hom}} = \int_Y \left[D_{ij}^f(y) + (D^f(y) \nabla_y \omega^f_j(y)) \right] dy, \\
v_f(t, x) = \frac{1}{|Y|} \int_{Y_f} [\mathcal{G}(\partial_t u_f(t, x, y) - D_f \nabla_y z(t, x, y)] dy,
\]

with \(\omega_b \) and \(\omega \) being \(Y \)-periodic solutions of the unit cell problems

\[
\text{div}(D^e(y) \nabla_y \omega^e_j(y) + e_j) = 0 \quad \text{in } Y_e, \\
D^e(y) \nabla_y \omega^e_j(y) + e_j \cdot n = 0 \quad \text{on } \Gamma,
\]

and

\[
\text{div}(D^f(y) \nabla_y \omega^f_j(y) + e_j) = 0 \quad \text{in } Y_f \setminus \tilde{\Gamma}, \\
D^e(y) \nabla_y \omega^e_j + e_j \cdot n = 0, \quad D^f(y) \nabla_y \omega^f_j + e_j \cdot n = 0 \quad \text{on } \tilde{\Gamma},
\]

where \(\omega^e_j(y) = \omega^e_j(y) \) for \(y \in Y_e \) and \(\omega^f_j(y) = \omega^f_j(y) \) for \(y \in Y_f \), and \(z \) is a \(Y \)-periodic solution of

\[
\text{div}(D_f \nabla_y z - \mathcal{G}(\partial_t u_f)) = 0 \quad \text{in } Y_f, \\
(D_f \nabla_y z - \mathcal{G}(\partial_t u_f)) \cdot n = 0 \quad \text{on } \Gamma.
\]

Here

\[
D(y) = \begin{cases}
D_e & \text{in } Y_e, \\
D_f & \text{in } Y_f.
\end{cases}
\]

Notice that the definition of \(D_{ij}^{\text{hom}} \) and \(D^{\text{hom}} \) and the fact that \(D_{ij}^{\text{hom}} > 0 \), with \(j = 1, 2, 3, D_e > 0, D_f > 0 \), and \(\omega^e_j, \omega^f_j \) are solutions of the unit cell problems (72) and (73) ensure that \(D_{ij}^{\text{hom}} \) and \(D^{\text{hom}} \) are positive definite.

Next we derive macroscopic equations for the limit functions \(b_e \) and \(e \) defined in (39). The main difficulty in the proof is to show the convergence of the nonlinear functions depending on the displacement gradient.

Theorem 7.1. Solutions of the microscopic problem (6), (8) converge to solutions
\(b_c, c \in L^2(0, T; H^1(\Omega)) \) of the macroscopic equations
\[
\begin{align*}
\partial_t b_c - \text{div}(D_b^{\text{hom}} \nabla b_c) &= \partial_t \int_{Y_e} g_c(b_c, W(b_{c,3}, y) e(u_c)) \, dy + \vartheta Y P(b_c) \quad \text{in } \Omega_T, \\
\partial_c c - \text{div}(D_{b}^{\text{hom}} \nabla c - \nu_f c) &= \vartheta f g_f(c) + \partial_t \int_{Y_e} g_c(b_c, W(b_{c,3}, y) e(u_c)) \, dy \quad \text{in } \Omega_T, \\
D_b^{\text{hom}} \nabla b_c \cdot n &= F_b(b_c) \quad \text{on } (\partial \Omega)_T, \\
(D_{b}^{\text{hom}} \nabla c - \nu_f c) \cdot n &= F_c(c) \quad \text{on } (\partial \Omega)_T, \\
b(0, x) &= b_0(x), \quad c(0, x) = c_0(x) \quad \text{in } \Omega,
\end{align*}
\]
where
\[
W(b_{c,3}, y) = (W_{kij}(b_{c,3}, y))^3_{k,l,i,j=1} = (b_{ij}^3 + (e_y(w_{ij}(b_{c,3}, y)))_{kl})^3_{k,l,i,j=1},
\]
with \(w_{ij} \) being solutions of the unit cell problems (42), and \(b_{kl} = e_k \otimes e_l \), \(\{ e_k \}_{k=1}^3 \), is the canonical basis of \(\mathbb{R}^3 \).

Here \(\vartheta = |Y_e|/|Y|, \ \vartheta f = |Y_f|/|Y|, \) and \(\vartheta T = |\Gamma|/|Y| \). We have the convergence in the following sense:
\[
\begin{align*}
b_{c,e} \rightarrow b_c, \quad c^e \rightarrow c \quad \text{strongly in } L^2(\Omega_T), \\
\nabla b_{c,e} \rightharpoonup \nabla b_c + \nabla g b^1_{c}, \quad \nabla c^e \rightharpoonup \nabla c + \nabla g c^1 \quad \text{weakly two-scale}.
\end{align*}
\]

\textbf{Proof.} We can rewrite the microscopic equation for \(b_{c,e} \) as
\[
\begin{align*}
- (b_{c,e} \chi_{\Omega_e}, \partial_t \varphi_1)_{\Omega_T} &+ (D_b^{\text{hom}} \nabla b_{c,e} \chi_{\Omega_e})_{\Omega_T} - (b_{c,0}, \varphi_1 \chi_{\Omega_e})_{\Omega_T} \\
&= (g_{b,c_e}(e_{c,e}, e(u_{c,e})) + (P(b_c), \varphi_1)_{\Omega_T} + (F_b(b_{c,e}), \varphi_1)_{(\partial \Omega)_T}
\end{align*}
\]
with \(\varphi_1 = \varphi_1(t, x) + \varepsilon \varphi_2(t, x, x/\varepsilon) \), where \(\varphi_1 \in C^{\infty}(\overline{\Omega}) \) is such that \(\varphi_1(T, x) = 0 \) for \(x \in \overline{\Omega} \), and \(\varphi_2 \in C^{\infty}_{\text{per}}(\Omega_T; C^{\infty}_{\text{per}}(Y)) \), and \(\chi_{\Omega_e} \) the characteristic function of \(\Omega_e \). Taking into account the strong convergence of \(b_{c,e}^e \) and \(c^e \) and the two-scale convergence of \(\nabla b_{c,e}^e \) and \(\nabla c^e \) (see Lemma 4.2) together with the strong two-scale convergence of \(e(u_{c,e}) \), we obtain
\[
\begin{align*}
- (\langle Y_e, b_c, \partial_t \varphi_1 \rangle_{\Omega_T}) &+ (D_b(b_{c,e} + \nabla g b^1_{c}), \nabla \varphi_1 + \nabla g \varphi_2)_{\Omega_T \times Y_e} \\
- (\langle Y_e, b_{c,0}, \varphi_1 \rangle_{\Omega_T}) &+ (g_{b,c}(e_{c,e}, e(u_{c,e}) + e_y(u_{c,e})), \varphi_1)_{\Omega_T \times Y_e} \\
&+ (P(b_c), \varphi_1)_{\Omega_T \times Y} + |Y| (F_b(b_c), \varphi_1)_{(\partial \Omega)_T}
\end{align*}
\]
Here we used the fact that due to the strong two-scale convergence of \(e(u_{c,e}) \), we have
\[
\lim_{\varepsilon \to 0} ||T^e_{\varepsilon} (e(u_{c,e}^\varepsilon)) - e(u_e) - e_y(u_{1,e})||_{L^2(\Omega_{\varepsilon,T} \times Y_e)} = 0,
\]
where \(T^e_{\varepsilon} \) is the periodic unfolding operator for the perforated domain \(\Omega_{\varepsilon} \); see, e.g., [15]. Assumptions on \(g_{b,c} \) in A4 and the a priori estimates for \(c^e, b_{c,e}^e, \) and \(u_{c,e}^\varepsilon \) ensure
\[
\begin{align*}
||g_{b,c}(e_{c,e}^\varepsilon, T^e_{\varepsilon} (b_{c,e}^\varepsilon), T^e_{\varepsilon} (e(u_{c,e}^\varepsilon))) - g_{b,c}(e_{c,e}, e(u_{c,e}) + e_y(u_{1,e}))||_{L^1(\Omega_T \times Y_e)} \\
&\leq C_1 \left(||T^e_{\varepsilon} (e_{c,e}^\varepsilon) - c||_{L^2(\Omega_T \times Y_e)} + ||T^e_{\varepsilon} (b_{c,e}^\varepsilon) - b_c||_{L^2(\Omega_T \times Y_e)} \\
&+ ||T^e_{\varepsilon} (e(u_{c,e}^\varepsilon)) - e(u_e) - e_y(u_{1,e})||_{L^2(\Omega_{\varepsilon,T} \times Y_e)} \right),
\end{align*}
\]
\[
||g_{b,c}(e_{c,e}^\varepsilon, b_{c,e}^\varepsilon, e(u_{c,e}^\varepsilon))||_{L^2(\Omega_{\varepsilon,T} \times Y_e)} \leq C_2,
\]
where \(C_1 = C_1 \left(\| T^*_e(e(u^*_e)) \|_{L^2(\Omega^*_e \times Y^*_e)}, \| e(u) + e_p(u^0) \|_{L^2(\Omega^*_e \times Y^*_e)} \right) \), and the constants \(C_1 \) and \(C_2 \) are independent of \(\varepsilon \). Combining the estimates in (79), the definition of \(\Omega^*_e \), and the strong convergence of \(\varepsilon \) and \(b^*_e \) in \(L^2(\Omega^*_T) \) and of \(T^*_e(e(u^*_e)) \) in \(L^2(\Omega^*_T \times Y^*_e) \), along with the properties of the unfolding operator, we obtain

\[
\lim_{\varepsilon \to 0} \int_{\Omega^*_T, Y^*_e} g_0(c^*_e, b^*_e, e(u^*_e)) \psi(t, x, \frac{x}{\varepsilon}) \, dx \, dt = \frac{1}{|Y|} \int_{\Omega^*_T} \int_{Y_e} g_0(c, b, e(u) + e_p(u^0)) \psi \, dy \, dx \, dt
\]

\[
+ \frac{1}{|Y|} \lim_{\varepsilon \to 0} \int_{\Omega^*_T} \int_{Y_e} \left[g_0(T^*_e(c^*_e), T^*_e(b^*_e), T^*_e(e(u^*_e))) - g_0(c, b, e(u) + e_p(u^0)) \right] T^*_e(\psi) \, dy \, dx \, dt
\]

(80)

for all \(\psi \in C^\infty_0(\Omega^*_T; C_{per}(Y)) \). Thus using the estimate for \(\| g_0(c^*_e, b^*_e, e(u^*_e)) \|_{L^2(\Omega^*_T)} \) in (79), we conclude

\[
g_0(c^*_e, b^*_e, e(u^*_e)) \to g_0(c, b, e(u) + e_p(u^0)) \quad \text{two-scale.}
\]

To show the convergence of the boundary integral over \(\Gamma^*_e \), we used the Lipschitz continuity of \(P \) and the trace estimate

\[
\varepsilon \| b^*_e - b_e \|^2_{L^2(\Gamma^*_e)} \leq C_1 \left(\| b^*_e - b_e \|^2_{L^2(\Omega^*_T)} + \varepsilon^2 \| \nabla (b^*_e - b_e) \|^2_{L^2(\Omega^*_T)} \right)
\]

\[
\leq C_2 \left(\| b^*_e - b_e \|^2_{L^2(\Omega^*_T)} + \varepsilon^2 \| \nabla b^*_e \|^2_{L^2(\Omega^*_T)} + \| \nabla b_e \|^2_{L^2(\Omega^*_T)} \right)
\]

Then due to the strong convergence of \(b^*_e \) in \(L^2(\Omega^*_T) \), the regularity of \(b_e \), i.e., \(b_e \in L^2(0, T; H^1(\Pi)) \), and the boundedness of \(\nabla b^*_e \) in \(L^2(\Omega^*_T) \), uniformly in \(\varepsilon \), we obtain

\[
\lim_{\varepsilon \to 0} \varepsilon \| P(b^*_e) - P(b_e) \|^2_{L^2(\Gamma^*_e)} \leq C \lim_{\varepsilon \to 0} \varepsilon \| b^*_e - b_e \|^2_{L^2(\Gamma^*_e)} = 0.
\]

Taking in (78) first \(\phi_1 \equiv 0 \) and then \(\phi_2 \equiv 0 \) and considering \(\phi_1 \) such that \(\phi_1(0) = 0 \), we obtain macroscopic equations for \(b_e \) in (75). The standard arguments for parabolic equations imply that \(\partial_t b_e \in L^2(0, T; H^1(\Pi)) \). Combining this with the fact that \(b_e \in L^2(0, T; H^1(\Pi)) \) (see Lemma 4.2), we conclude that \(b_e \in C([0, T]; L^2(\Omega^*_T)) \). Then from (78) we obtain that \(b_e \) satisfies the initial condition.

The properties of \(\Omega^*_f \) and of the unfolding operator \(T^*_{e,f} \) for the domain \(\Omega^*_f \) yield

\[
\lim_{\varepsilon \to 0} \int_{\Omega^*_f \times Y_f^*} G(\partial_t u^*_f) \psi(t, x, \frac{x}{\varepsilon}) \, dx \, dt = \lim_{\varepsilon \to 0} \frac{1}{|Y|} \int_{\Omega^*_f} \int_{Y_f^*} G(T^*_{e,f}(\partial_t u^*_f)) T^*_e(\psi) \, dy \, dx \, dt
\]

\[
= \frac{1}{|Y|} \int_{\Omega^*_f} \int_{Y_f^*} G(\partial_t u_f) \psi \, dy \, dx \, dt
\]

\[
+ \frac{1}{|Y|} \lim_{\varepsilon \to 0} \int_{\Omega^*_f} \int_{Y_f^*} \left[G(T^*_{e,f}(\partial_t u^*_f)) - G(\partial_t u_f) \right] T^*_e(\psi) \, dy \, dx \, dt
\]

for all \(\psi \in C^\infty_0(\Omega^*_f; C_{per}(Y)) \). Using the Lipschitz continuity of \(G \) and the strong convergence of \(T^*_e(\partial_t u^*_f) \), ensured by the strong two-scale convergence of \(\partial_t u^*_f \), we obtain

\[
\lim_{\varepsilon \to 0} \int_{\Omega^*_f \times Y_f} \left[G(T^*_{e,f}(\partial_t u^*_f)) - G(\partial_t u_f) \right] T^*_e(\psi) \, dy \, dx \, dt
\]

\[
\leq C \lim_{\varepsilon \to 0} \| T^*_e(\partial_t u^*_f) - \partial_t u_f \|_{L^2(\Omega^*_f \times Y_f^*)} \| \psi \|_{L^2(\Omega^*_f \times Y_f^*)} = 0.
\]
Thus taking into account the boundedness of \(G(\partial_t u_f^\varepsilon) \), we conclude

\[
G(\partial_t u_f^\varepsilon) \to G(\partial_t u_f) \quad \text{two-scale.}
\]

In the same way as for \(g_b \), the assumptions in A4 ensure that

\[
\begin{align*}
& \|g_e(T_\varepsilon^e(c_\varepsilon^e), T_\varepsilon^e(b_\varepsilon^e), T_\varepsilon^e(u_\varepsilon^e)) - g_e(c, b_e, \mathbf{e}(u_e) + e_y(u_1^e))\|_{L^1(\Omega_T \times Y_e)} \\
& \quad \leq C \left(\|T_\varepsilon^e(c_\varepsilon^e) - c\|_{L^2(\Omega_T \times Y_e)} \\
& \quad + \|T_\varepsilon^e(b_\varepsilon^e) - b_e\|_{L^2(\Omega_T \times Y_e)} + \|T_\varepsilon^e(u_\varepsilon^e) - \mathbf{e}(u_e) - e_y(u_1^e)\|_{L^2(\Omega_T \times Y_e)} \right),
\end{align*}
\]

(82)

where \(C = C(||T_\varepsilon^e(\mathbf{e}(u_\varepsilon^e))||_{L^2(\Omega_T \times Y_e)}, ||\mathbf{e}(u_e) + e_y(u_1^e)||_{L^2(\Omega_T \times Y_e)}, ||T_\varepsilon^e(c_\varepsilon^e)||_{L^2(\Omega_T \times Y_e)}, ||T_\varepsilon^e(b_\varepsilon^e)||_{L^2(\Omega_T \times Y_e)}, ||T_\varepsilon^e(u_\varepsilon^e)||_{L^2(\Omega_T \times Y_e)}, \|c\|_{L^2(\Omega_T)}, \|b_e\|_{L^2(\Omega_T)} \) are priori estimates for \(c_\varepsilon^e, b_\varepsilon^e, \) and \(u_\varepsilon^e \) and assumptions on \(g \) in A4 imply

\[
\|g_e(c_\varepsilon^e, b_\varepsilon^e, \mathbf{e}(u_\varepsilon^e))\|_{L^2(\Omega_T, T)} \leq C,
\]

with a constant \(C \) independent of \(\varepsilon \). Then estimate (82) and the strong convergence of \(c_\varepsilon^e \) and \(b_\varepsilon^e \) in \(L^2(\Omega_T) \) and of \(T_\varepsilon^e(\mathbf{e}(u_\varepsilon^e)) \) in \(L^2(\Omega_T \times Y_e) \), together with calculations similar to (80), yield

\[
g_e(c_\varepsilon^e, b_\varepsilon^e, \mathbf{e}(u_\varepsilon^e)) \to g_e(c, b_e, \mathbf{e}(u_e) + e_y(u_1^e)) \quad \text{two-scale.}
\]

Considering \(\varphi_2(t, x) = \psi(t, x) + \varepsilon \psi_2(t, x, \frac{x}{\varepsilon}) \), with \(\psi_1 \in C^0_0(0, T; C^\infty(\Omega)) \) and \(\psi_2 \in C^0_0(\Omega; C^\infty(\mathbb{R}) \setminus \mathbb{T}) \), as a test function in (11), we obtain

\[
\begin{align*}
-\langle c_\varepsilon^e \chi_{\Omega_T}, \partial_t \varphi_2 \rangle_{\Omega_T} & + \langle D_c \nabla c_\varepsilon^e, \nabla \varphi_2 \chi_{\Omega_T} \rangle_{\Omega_T} - \langle g_e(c_\varepsilon^e, b_\varepsilon^e, \mathbf{e}(u_\varepsilon^e)), \varphi_2 \chi_{\Omega_T} \rangle_{\Omega_T} \\
-\langle c_f^e \chi_{\Omega_T}, \partial_t \varphi_2 \rangle_{\Omega_T} & + \langle D_f \nabla c_f^e - \mathbf{G}(\partial_t u_f^\varepsilon) c_f^e, \nabla \varphi_2 \chi_{\Omega_T} \rangle_{\Omega_T} - \langle g_f(c_f^e), \varphi_2 \chi_{\Omega_T} \rangle_{\Omega_T} \\
& = \langle F_e(c_\varepsilon^e), \varphi_2 \rangle_{(\partial\Omega) \varepsilon}.
\end{align*}
\]

The two-scale and the strong convergences of \(c_\varepsilon^e \) and \(c_f^e \) together with strong two-scale convergence of \(\mathbf{e}(u_\varepsilon^e) \) and \(\partial_t u_f^\varepsilon \) ensure that

\[
\begin{align*}
-\langle \langle Y_e \rangle, c \rangle_{\Omega_T} & + \langle D_c (\nabla c + \nabla_y c^1), \nabla \psi_1 \rangle_{\Omega_T} + \langle \nabla_y \psi_2 \rangle_{\Omega_T \times Y_e} \\
-\langle \langle Y_f \rangle, c \rangle_{\Omega_T} & + \langle D_f (\nabla c + \nabla_y c^1) - \mathbf{G}(\partial_t u_f^\varepsilon)c, \nabla \psi_1 \rangle_{\Omega_T \times Y_e} + \langle \nabla_y \psi_2 \rangle_{\Omega_T \times Y_f} \\
-\langle g_e(c, b_e, \mathbf{e}(u_e) + e_y(u_1^e)), \psi_1 \rangle_{\Omega_T \times Y_e} - \langle g_f(c), \psi_1 \rangle_{\Omega_T \times Y_f} & = |Y| \langle F_e(c), \psi_1 \rangle_{(\partial\Omega) \varepsilon}.
\end{align*}
\]

Letting \(\psi_1 = 0 \) yields

\[
\begin{align*}
\langle D_c (\nabla c + \nabla_y c^1), \nabla_y \psi_2 \rangle_{\Omega_T \times Y_e} & + \langle D_f (\nabla c + \nabla_y c^1), \nabla_y \psi_2 \rangle_{\Omega_T \times Y_f} \\
- \langle \mathbf{G}(\partial_t u_f^\varepsilon)c, \nabla_y \psi_2 \rangle_{\Omega_T \times Y_f} & = 0,
\end{align*}
\]

(83)

where \(c^1_l(t, x, y) = c^l(t, x, y) \) for \(y \in Y_l \) and \((t, x) \in \Omega_T \), with \(l = e, f \). Taking into account the structure of (83), we represent \(c^l \) in the form

\[
c^e_l(t, x, y) = \sum_{j=1}^3 \partial_{x_j} c(t, x) \omega^l(y) \quad \text{for} \quad (t, x) \in \Omega_T, \ y \in Y_e,
\]

\[
c^f_l(t, x, y) = \sum_{j=1}^3 \partial_{x_j} c(t, x) \omega^l(y) + c(t, x) z(t, x, y) \quad \text{for} \quad (t, x) \in \Omega_T, \ y \in Y_f,
\]

© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license.
where \(\omega^j \), with \(j = 1, 2, 3 \), and \(z \) are solutions of the unit cell problems (73) and (74), respectively. Then choosing \(\psi_2 = 0 \), we obtain the macroscopic equations for \(c \) in (75).

8. Well-posedness of the limit problem. Uniqueness of a weak solution.

To ensure that the whole sequence of solutions of microscopic problem converges, we shall prove the uniqueness of a solution of the limit problem (47)–(49), (75). In fact we are going to prove, using the contraction arguments, that the limit problem is well-posed and in particular has a unique solution.

We consider an operator \(\mathcal{K} \) on \(L^\infty(0,T;H^1(\Omega)) \times L^\infty(0,T;L^2(\Omega)) \) given by \((u^j_t, \partial_t u^j_f) = \mathcal{K}(u^j_{c}^{-1}, \partial_t u^j_f^{-1}) \), where for given \((u^j_{c}^{-1}, \partial_t u^j_f^{-1}) \) we first define \(b^j_c, c^j \) as a solution of (75) with \((u^j_{c}, \partial_t u^j_f) \) in place of \((u^j_{c}, \partial_t u^j_f) \) and then \((u^j_{c}, \partial_t u^j_f, \pi^j_f) \) are solutions of (47)–(49) with \(b^j_c \) in place of \(b^j_c \). We denote \(\overline{c} = c^j - c^j-1 \), \(b^j_c = b^j_c - b^j_c-1 \), \(\overline{u}^j_c = u^j_{c} - u^j_{c}^{-1} \), \(\overline{c}^j_1 = p^j - p^j_1 \), and \(\overline{w}^j_f = w^j_f - w^j_f-2 \). To prove the existence of a unique solution of problem (47)–(49), (75), we derive a contraction inequality and show that the operator \(\mathcal{K} \) has a fixed point.

First we obtain estimates for solutions of the reaction-diffusion-convection system (75).

Lemma 8.1. Any two consecutive iterations

\[
(u^j_{c}^{-1}, \partial_t u^j_f^{-1}), \quad (b^j_c, c^j) \quad \text{and} \quad (u^j_{c}^{-2}, \partial_t u^j_f^{-2}), \quad (b^j_c, c^j-1)
\]

for the limit problem (47)–(49), (75) satisfy the following estimates:

\[
\begin{align*}
\|b^j_c\|_{L^\infty(0,T;L^\infty(\Omega))} + \|c^j\|_{L^\infty(0,T;L^\infty(\Omega))} + \|b^j_c^{-1}\|_{L^\infty(0,T;L^\infty(\Omega))} &+ \|c^j-1\|_{L^\infty(0,T;L^\infty(\Omega))} \\
n &\leq C,
\end{align*}
\]

\[\|\tilde{b}^j_c\|_{L^\infty(0,s;L^\infty(\Omega))} + \|\tilde{c}^j\|_{L^\infty(0,s;L^2(\Omega))} \leq C\left[\|e^{(\overline{u}^j_c)}\|_{L^{1+c/2}(0,s;L^2(\Omega))} + \|\partial_t \overline{u}^j_f^{-1}\|_{L^2(\Omega \times Y_f)}\right]\]

with an arbitrary \(s \in (0,T) \) and any \(0 < \sigma < 1/9 \), the constant \(C \) being independent of \(s \).

Proof. The boundedness of \(b^j_c \) and \(b^j_c^{-1} \) can be obtained in the same way as for \(b^j_c \) in (16). To show the boundedness of \(c^j \), we consider \((c^j - M)^+ \), where \(M = \max(\|c\|_{L^\infty(\Omega)}, 1) \), as a test function in the equation for \(c^j \) in (75). Using assumptions \(\textbf{A4} \) on \(g_e, g_f, \) and \(F_e \), we obtain

\[
\begin{align*}
\|((c^j - M)^+)^2\|_{L^2(\Omega)} + \|\nabla (c^j - M)^+\|_{L^2(\Omega)} &
\leq M\|b^j_c\|_{L^\infty(\Omega)} + \|b^j_c^{-1}\|_{L^\infty(\Omega)} + 1\|\nabla (c^j - M)^+\|_{L^2(\Omega)} \\
&+ M\|v^j_1^{-1}\|_{L^\infty(\Omega)} + C\|v^j_2^{-1}\|_{L^\infty(\Omega)} + 1\|\nabla (c^j - M)^+\|_{L^2(\Omega)} \\
&+ C\|b^j_c\|_{L^\infty(\Omega)} + C\|v^j_2\|_{L^\infty(\Omega)} + 1\|\nabla (c^j - M)^+\|_{L^2(\Omega)} \\
&+ \|e(u^j_{c}^{-1})\|_{L^\infty(0,s;L^2(\Omega))}\|W^j\|_{L^\infty(\Omega \times L^2(\gamma_f))} + 1\|\imath\|_{L^2(0,s;L^4(\Omega))} \\
&+ \|e(u^j_{c}^{-2})\|_{L^2(\Omega)}\|W^j\|_{L^\infty(\Omega \times L^2(\gamma_f))} (1 + M^2) \int_0^s \|\Omega_M(t)\|^{1/2} dt
\end{align*}
\]

for \(s \in (0,T) \), where \(\Omega_M(t) = \{ x \in \Omega : c^j(t,x) > M \} \) for \(t \in (0,T) \). Here \(v^j_2^{-1} \) is defined in the following way: first we replace \(\partial_t u^j_f \) in the unit cell problem (74)
with $\partial_t u_{j}^{-1}$ to obtain z^{-1}, and then we use the third line of (71) with z^{-1} instead of z to obtain v_{j}^{-1}. The definition of v_{j}^{-1} and of $W = W(b_{e,3}^j, y)$ in (76) together with assumptions A1 and A3 on E and G ensure that $\|v_{j}^{-1}\|_{L^\infty(\Omega_t)} \leq C$ and $\|W\|_{L^\infty(\Omega_t; L^2(\gamma_t))} \leq C_1 \|b_{e,3}^j\|_{L^\infty(\Omega_t)} \leq C_2$. Using the embedding $H^1(\Omega) \subset L^4(\Omega)$, we obtain

$$\|\tilde{e}_{j}^{-1}\|_{L^\infty(0, t; L^2(\Omega))}^2 + \|\nabla (c^j - M)^+\|^2_{L^2(\Omega_t)} \leq CM^2 \int_0^t \|\Omega(t)\| + \|\Omega_M(t)\|^{1/2} dt$$

for some $s \in (0, T]$. Then applying Theorem II.6.1 in [22] with $q = 4(1 + \gamma)$, $r = 5(1 + \gamma)/2$ and iterating over time intervals yields the boundedness of c^j in $L^\infty(0, T; L^2(\Omega_t))$. The same calculations ensure also the boundedness of c_{j}^{-1}.

Considering the equations for \tilde{b}_{j}^e and \tilde{c}^j and using \tilde{b}_{j}^e and \tilde{c}_{j}^{2} as test functions in these equations, we obtain

$$\tilde{\tilde{b}_{j}^e(s)}^2_{L^2(\Omega_t)} + \|\nabla \tilde{e}_{j}^{1}\|^2_{L^2(\Omega_t)} \leq C_{1} \|e_{j}^{-1}\|_{L^\infty(0, s; L^2(\Omega))} \|\tilde{b}_{j}^e\|_{L^2(0, s; L^4(\Omega))}\]

$$+ \|\tilde{b}_{j}^e\|_{L^2(\Omega_t)}^2 + C_{2} \|\tilde{e}_{j}^{1}\|_{L^\infty(\Omega_t)} \|\tilde{b}_{j}^e\|_{L^2(\Omega_t)} + \|\tilde{c}_{j}^{2}\|_{L^2(\Omega_t)}^2$$

$$+ C_{3} \|\tilde{b}_{j}^e\|_{L^2(\Omega_t)}^2 \|\tilde{e}_{j}^{1}\|_{L^\infty(\Omega_t)} \|\tilde{b}_{j}^e\|_{L^2(\Omega_t)} + C_{4} \|\tilde{e}_{j}^{1}\|_{L^\infty(0, s; L^2(\Omega))} \|\tilde{b}_{j}^e\|_{L^2(0, s; L^4(\Omega))}$$

(85)

where $\tilde{W} = W(b_{e,3}^j, y) - W(b_{e,3}^{-1}, y)$, and

$$\|\tilde{c}_{j}^{2}\|^2_{L^2(\Omega_t)} + \|\nabla \tilde{c}_{j}^{1}\|^2_{L^2(\Omega_t)} \leq C_{1} \left[1 + E_{2}^{-1}\|L^\infty(\Omega_t)\| + \|c^j\|_{L^\infty(\Omega_t)}\right] \|\tilde{b}_{j}^e\|^2_{L^2(\Omega_t)} + \|\tilde{b}_{j}^e\|^2_{L^2(\Omega_t)}$$

$$+ C_{2} \|\tilde{e}_{j}^{1}\|_{L^\infty(0, s; L^2(\Omega))} \|\tilde{b}_{j}^e\|_{L^2(0, s; L^4(\Omega))} + \|\tilde{c}_{j}^{2}\|^2_{L^2(0, s; L^4(\Omega))}$$

$$+ C_{3} \left[\|\tilde{b}_{j}^e\|^2_{L^2(\Omega_t)} + \|c_{j}^{-1}\|_{L^\infty(\Omega_t)}\right] \|\tilde{e}_{j}^{1}\|^2_{L^2(\Omega_t)}$$

$$+ \|\tilde{W}\|^2_{L^2(0, s; L^2(\Omega_t))} + \|\tilde{c}_{j}^{2}\|^2_{L^2(\Omega_t)} + \|\tilde{c}_{j}^{1}\|^2_{L^2(0, s; L^2(\Omega_t))}$$

$$+ C_{4} \|\tilde{e}_{j}^{1}\|_{L^\infty(0, s; L^2(\Omega))} \|\tilde{b}_{j}^e\|^2_{L^2(0, s; L^4(\Omega))}$$

(86)

for $s \in (0, T]$. Here we used assumptions A4 on the nonlinear functions g_b, g_e, g_f, P, F_b, and F_c. From the definition of v_{j}^{-1} and W_{j}^{-1}, the Lipschitz continuity of G and assumptions on E, it follows that

$$\|\tilde{\tilde{b}_{j}^e}\|_{L^2(\Omega_t)} \leq C\|\partial_t \tilde{u}_{j}^{-1}\|_{L^2(\Omega_t \times Y_t)}, \quad \|\tilde{\tilde{W}}\|_{L^2(0, s; L^4(\Omega_t; L^2(\gamma_t)))} \leq C\|\tilde{b}_{j}^e\|_{L^2(0, s; L^4(\Omega_t))}.$$

Adding the inequalities (85) and (86), considering the compactness of embedding $H^1(\Omega) \subset L^4(\Omega)$, and using the Hölder and Gronwall inequalities yields

$$\|\tilde{b}_{j}^e\|_{L^2(0, s; L^2(\Omega))} + \|\nabla \tilde{b}_{j}^e\|_{L^2(\Omega_t)} + \|\tilde{c}_{j}^{2}\|_{L^\infty(0, s; L^2(\Omega))} + \|\nabla \tilde{c}_{j}^{1}\|_{L^2(\Omega_t)}$$

$$\leq C \left[\|\tilde{e}_{j}^{1}\|_{L^2(\Omega_t)} + \|\partial_t \tilde{u}_{j}^{-1}\|_{L^2(\Omega_t \times Y_t)}\right].$$

(87)
To derive the estimate for the L^∞-norm of \tilde{b}_c^j we use $(\tilde{b}_c^j)^{p-1}$ as a test function in (75):

\[
\frac{1}{p} \| \tilde{b}_c^j(s) \|_{P^p(\Omega)}^p + \frac{4(p-1)}{p^2} \| \nabla \tilde{b}_c^j \|_{L^2(\Omega_s)}^2 \leq C_1 \left\| c^j \right\|_{L^\infty(0,s;L^2(\Omega))}^p \left(\frac{p-1}{p} \right) \| \tilde{b}_c^j \|_{L^2(\Omega_s)}^2 \\
+ \| e(u_c^{j-1}) \|_{L^\infty(0,s;L^2(\Omega_s))} \| W^{j-1} \|_{L^\infty(\Omega_s;L^2(\Omega_s))} \| \tilde{b}_c^j \|_{L^2(\Omega_s)}^2 \\
+ C_2 \| \tilde{b}_c^j \|_{L^p(\Omega_s)}^p + C_3 \| b_c^{j-1} \|_{L^\infty(\Omega_s)}^2 \| (e(u_c^{j-1}), \tilde{b}_c^j)^{p-1} \|_{\Omega_s} \\
+ C_4 \| b_c^{j-1} \|_{L^\infty(\Omega_s)} \| (e(u_c^{j-1}), \tilde{W}^j)^{p-1} \|_{\Omega_s} \\
+ C_5 \| b_c^{j-1} \|_{L^\infty(\Omega_s)} \left[\frac{1}{p} \| \tilde{c}^j \|_{L^\infty(0,s;L^2(\Omega))}^p + \frac{p-1}{p} \| \tilde{b}_c^j \|_{L^2(0,s;L^4(\Omega))}^2 \right]
\]

for $s \in (0,T]$. Using the Gagliardo–Nirenberg inequality

\[
\| w \|_{L^1(\Omega)} \leq C \| \nabla w \|_{L^2(\Omega)} \| w \|_{L^{1/\alpha}(\Omega)},
\]

with $\alpha = 9/10$, and making calculations similar to those in (118) in the appendix, we obtain the following estimate:

\[
(\| e(u_c^{j-1}) \|, \| \tilde{b}_c^{j-1} \|_{\Omega_s}) \leq \frac{\delta}{p^2} \frac{p-1}{p} \| \tilde{b}_c^j \|_{L^2(\Omega_s)}^2 \\
+ C_6 \frac{(p-1)p^\beta}{p} \| \tilde{b}_c^j \|_{L^\infty(0,s;L^1(\Omega))}^2 + C_7 \frac{1}{p} \| e(u_c^{j-1}) \|_{L^{1+\frac{1}{\alpha}}(0,s;L^2(\Omega))}^p,
\]

where $\beta = \frac{\alpha}{2}, 0 < \sigma < 1/9$, and $\delta > 0$ can be chosen arbitrarily. The definition of \tilde{W}^j implies

\[
\| e(u_c^{j-1}) \|_{\tilde{W}^j(\Omega_s)} \leq C \| e(u_c^{j-1}) \|_{L^\infty(0,s;L^2(\Omega))} \| \tilde{b}_c^{j-1} \|_{L^2(0,s;L^4(\Omega))}.
\]

Incorporating the estimate (88) for $\| \tilde{c}^j \|_{L^\infty(0,T;L^2(\Omega_s))}$ together with (89) and (90) into (88), using the Gagliardo–Nirenberg inequality to estimate $\| \tilde{b}_c^j \|_{L^p(\Omega_s)}$ by $\| \tilde{b}_c^j \|_{L^2(\Omega_s)}^2$, and iterating over $p = 2^k$, with $k = 2, 3, \ldots$, as in the Alikakos lemma [2, Lemma 3.2], we finally get

\[
\| \tilde{b}_c^j \|_{L^\infty(0,s;L^\infty(\Omega_s))} \leq C \left[\| e(u_c^{j-1}) \|_{L^{1+\frac{1}{\alpha}}(0,s;L^2(\Omega))} + \| \partial_t \tilde{u}_f^{j-1} \|_{L^2(\Omega_s \times Y_f)} \right]
\]

for $s \in (0,T]$ and any $0 < \sigma < 1/9$.

The macroscopic equations for elastic deformation and pressure are coupled with the two-scale problem for fluid flow velocity. Thus the derivation of the estimates for u_c and $\partial_t u_f$ is nonstandard and is shown in the following lemma.

Lemma 8.2. For two iterations

\[
(u_c^{j-1}, p_c^{j-1}, \partial_t u_f^{j-1}, \pi_f^{j-1}), (\tilde{b}_c^{j-1}, s^{j-1}, \pi_f^{j-1}), (\tilde{b}_c^{j}, s^{j}, \pi_f^{j}), (\tilde{b}_c^{j}, s^{j})
\]

for limit problem (47)–(49), (75), we have the following estimates:

\[
\| \partial_t \tilde{u}_c^{j} \|_{L^\infty(0,s;L^2(\Omega))} + \| e(u_c^{j}) \|_{L^\infty(0,s;L^2(\Omega))} \leq C \| \tilde{b}_c^{j} \|_{L^\infty(0,s;L^\infty(\Omega))},
\]

\[
\| \partial_t \tilde{u}_f^{j} \|_{L^\infty(0,s;L^2(\Omega \times Y_f))} + \| e_p(\partial_t \tilde{u}_f^{j}) \|_{L^2(\Omega_s \times Y_f)} \leq C \| \tilde{b}_c^{j} \|_{L^\infty(0,s;L^\infty(\Omega))}
\]

for $s \in (0,T]$, where $\tilde{u}_c = u_c - u_c^{j-1}, \tilde{p}_c = p_c - p_c^{j-1}, \partial_t \tilde{u}_f = \partial_t u_f - \partial_t u_f^{j-1}, \tilde{b}_c = b_c^{j} - b_c^{j-1}$, and the constant C is independent of s and solutions of the macroscopic problem.

© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
Proof. We begin with the two-scale model for fluid flow velocity. Taking \(\partial_t \tilde{u}_j^l - \partial_t w_j^l \) as a test function in the equation for the difference \(\partial_t \tilde{u}_j^l \), we obtain

\[
\begin{aligned}
 &\left(E^{\text{hom}}(b_{e,3}^{-1}) e(\tilde{u}_j^l(s)), e(\tilde{u}_j^l(s)) \right)_\Omega - \left(\partial_t E^{\text{hom}}(b_{e,3}^{-1}) e(\tilde{u}_j^l), e(\tilde{u}_j^l) \right)_\Omega \\
 &+ 2\left(\langle E^{\text{hom}}(b_{e,3}^{-1}) - E^{\text{hom}}(b_{e,3}^{-1}) \rangle e(u_j^l(s)), e(\tilde{u}_j^l) \right)_\Omega \\
 &- 2\left(\partial_t \langle E^{\text{hom}}(b_{e,3}^{-1}) \rangle e(u_j^l), e(\tilde{u}_j^l) \right)_\Omega \\
 &- 2\left(\langle E^{\text{hom}}(b_{e,3}^{-1}) - E^{\text{hom}}(b_{e,3}^{-1}) \rangle \partial_t e(u_j^l), e(\tilde{u}_j^l) \right)_\Omega \\
 &+ \rho_e \| \partial_t \tilde{u}_j^l(s) \|_{L^2(\Omega)}^2 + \rho_f \| \partial_t \tilde{u}_j^l(s) \|_{L^2(\Omega \times Y_j)}^2 + 2\mu \| \partial_t \tilde{u}_j^l \|_{L^2(\Omega)}^2 \\
 &+ 2\left(\nabla \tilde{p}_e^j, \partial_t \tilde{u}_j^l \right)_\Omega + \int_{Y_j} \partial_t \tilde{u}_j^l \, dy \\
 &+ \rho_f \| \partial_t \tilde{u}_j^l(0) \|_{L^2(\Omega \times Y_j)}^2 + \left(\langle E^{\text{hom}}(b_{e,3}^{-1}) e(\tilde{u}_j^l(0)), e(\tilde{u}_j^l(0)) \rangle \right)_\Omega \\
 &+ 2\left(\langle E^{\text{hom}}(b_{e,3}^{-1}) - E^{\text{hom}}(b_{e,3}^{-1}) \rangle e(u_j^l(0)), e(\tilde{u}_j^l(0)) \right)_\Omega \\
\end{aligned}
\]

(92)

where \(\tilde{p}_e^j = p_e^{j+1} - p_e^{j-1} \). Equation (47) for \(p_j^l \) and \(p_j^{l-1} \) yields

\[
\begin{aligned}
 &\rho_p \| \tilde{p}_e^j(s) \|_{L^2(\Omega)}^2 + 2\langle K_p \nabla \tilde{p}_e^j, \nabla \tilde{p}_e^j \rangle_\Omega \\
 &= 2\langle K_{\mu} \partial_t \tilde{u}_j^l + Q(x, \partial_t w_j^l) - Q(x, \partial_t w_j^{l-1}), \nabla \tilde{p}_e^j \rangle_\Omega + \rho_p \| \tilde{p}_e^j(0) \|_{L^2(\Omega)}^2 \\
\end{aligned}
\]

(93)

Due to the assumptions in A1 on \(E \), we have

\[
\| E^{\text{hom}}(b_{e,3}^{-1}) - E^{\text{hom}}(b_{e,3}^{-1}) \|_{L^\infty(\Omega)} + \| \partial_t (E^{\text{hom}}(b_{e,3}^{-1}) - E^{\text{hom}}(b_{e,3}^{-1})) \|_{L^\infty(\Omega)} \\
\leq C \| \tilde{b}_e^j \|_{L^\infty(0, s; L^\infty(\Omega))}
\]

for \(s \in (0, T] \). The expression (50) for \(p_{e,j} \) and \(p_{e,j-1} \) and the estimates for the \(H^1 \)-norm of the solutions of the unit cell problems (43), (44), and (46) yield

\[
\| \tilde{p}_e^j \|_{L^2(\Omega, x \in \Gamma)} \leq C \left(\| \nabla \tilde{p}_e^j \|_{L^2(\Omega)} + \| \partial_t \tilde{u}_j^l \|_{L^2(\Omega)} + \| \partial_t w_j^l \|_{L^2(\Omega, x \in \Gamma)} \right).
\]

From the compactness of the embedding \(H^1(Y_j) \subset L^2(\Gamma) \) we obtain

\[
\| \partial_t \tilde{u}_j^l \|_{L^2(\Omega, x \in \Gamma)} \leq C \delta \| \partial_t \tilde{u}_j^l \|_{L^2(\Omega, x \in Y_j)} + \delta \| \nabla_g \partial_t \tilde{u}_j^l \|_{L^2(\Omega, x \in Y_j)}
\]

for any \(\delta > 0 \). Adding (92) and (93) and applying the Hölder and Gronwall inequalities yields

\[
\| \partial_t \tilde{u}_j^l \|_{L^\infty(0, s; L^2(\Omega \times Y_j))} + \| e_p(\partial_t \tilde{u}_j^l) \|_{L^2(\Omega \times Y_j)} + \| \partial_t \tilde{u}_j^l \|_{L^\infty(0, s; L^2(\Omega))} + \| e_p(\tilde{u}_j^l) \|_{L^\infty(0, s; L^2(\Omega))} + \| \nabla \tilde{p}_e^j \|_{L^2(\Omega, x \in \Gamma)} \leq C \| \tilde{b}_e^l \|_{L^\infty(0, s; L^\infty(\Omega))}
\]

for all \(s \in (0, T] \).

The estimates in Lemmas 8.1 and 8.2 together with a fixed-point argument imply the existence of a unique solution of the strongly coupled limit problem (47)–(49), (75).

Lemma 8.3. There exists a unique weak solution of the limit problem (47)–(49) and (75).

© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
Proof. Considering the equations for the difference of two iterations for (47)–(49), (75) and using estimates in Lemmas 8.1 and 8.2 yields

\[
\begin{align*}
&\|\partial_t (u_s^j - u_s^{j-1})\|_{L^\infty(0,s;L^2(\Omega)))} + \|\epsilon(u_s^j - u_s^{j-1})\|_{L^\infty(0,s;L^2(\Omega)))} \\
&+ \|\partial_t (u_f^j - u_f^{j-1})\|_{L^\infty(0,s;L^2(\Omega \times Y_i)))} + \|\epsilon_p(u_f^j - u_f^{j-1})\|_{L^2(\Omega \times Y_i))} \\
&\leq C_1 \|b_{C}^j - b_{C}^{j-1}\|_{L^\infty(0,s;L^\infty(\Omega)))} \\
&\leq C \left[\|\epsilon(u_s^j - u_s^{j-2})\|_{L^{1+\frac{\sigma}{2}}(0,s;L^2(\Omega)))} + \|\partial_t (u_f^j - u_f^{j-2})\|_{L^2(\Omega \times Y_i))}\right]
\end{align*}
\]

for \(s \in (0, T) \) and any \(0 < \sigma < 1/9 \), where \(C \) is independent of \(s \) and iterative solutions of the limit problem. Considering a time interval \((0, \hat{T})\), such that \(C\hat{T}^{1/2} < 1 \) and \(C\hat{T}^{1/2} < 1 \), and applying a fixed-point argument, we obtain the existence of a unique solution of the coupled system (47)–(49), (75) on the time interval \([0, \hat{T}]\). Iterating this step over time intervals of length \(\hat{T} \) yields the existence and uniqueness of a solution of the macroscopic problem (47)–(49), (75) on an arbitrary time interval \([0, T]\). \(\square \)

9. Incompressible case. Quasi-stationary poroelastic equations in \(\Omega_e^c \).

Problem (6)–(8) was derived under a number of assumptions on plant tissue. In some cases these assumptions should be changed, and system (6)–(8) should be modified accordingly.

In this section we consider two possible modifications of problem (6)–(8):

(i) the incompressible case, when the intercellular space is completely saturated with water and we have the elliptic equation for \(p_e^c \);

(ii) the quasi-stationary case for the displacement \(u_e^c \). In this case we can consider both compressible and incompressible fluid phases in the elastic part \(\Omega_e^c \).

In the first case the equation for \(p_e^c \) in (7) is replaced with the following elliptic equation:

\[
-\text{div}(K_p^c \nabla p_e^c - \partial_t u_e^c) = 0 \quad \text{in} \quad \Omega_e^c,T.
\]

In the second situation we consider in (7) the quasi-stationary equations for \(u_e^c \),

\[
-\text{div}(\epsilon^c(b_e^c,s)\epsilon(u_e^c)) + \nabla p_e^c = 0 \quad \text{in} \quad \Omega_e^c,T.
\]

In the incompressible case, i.e., \(p_e^c \) satisfies (95), Definition 2.4 of a weak solution of microscopic problem (6)–(8) should be modified. Namely, we assume that

\[
P_e^c \in L^2(0,T;H^1(\Omega_e^c)) \quad \text{with} \quad \int_{\Omega_e^c} p_e^c(t,x) \, dx = 0 \quad \text{for} \quad t \in (0,T)
\]

and no initial conditions for \(p_e^c \) are required. Additionally we assume that

\[
\int_{\partial \Omega} F_p(t,x) \, dx = 0 \quad \text{for} \quad t \in (0,T).
\]

The analysis of the quasi-stationary problems considered in this section is very similar to the analysis of (6)–(8) presented in the previous sections. The only part that should be slightly modified is the derivation of a priori estimates.

For the incompressible case, in the same way as in the proof of Lemma 3.2, but now with (95) for \(p_e^c \), we obtain

\[
\begin{align*}
&\|\partial_t u_e^c(s)\|_{L^2(\Omega_e^c)}^2 + \|\epsilon(u_e^c(s))\|_{L^2(\Omega_e^c)}^2 + \|\nabla p_e^c\|_{L^2(\Omega_e^c)}^2 + \epsilon^2 \|\epsilon(\partial_t u_f^c)\|_{L^2(\Omega_e^c)}^2 \\
&+ \|\partial_t u_f^c(s)\|_{L^2(\Omega_e^c)}^2 \leq \delta \|[u_e^c(s)]\|_{L^2(\partial \Omega)}^2 + \|p_e^c\|_{L^2((0,s) \times \partial \Omega)}^2 + C_1 \|\epsilon(u_e^c)\|_{L^2(\Omega_e^c)}^2 \\
&+ C_2 \|F_u\|_{L^\infty((0,s) \times \partial \Omega)} + \|\partial_t F_u\|_{L^2((0,s) \times \partial \Omega)}^2 + \|F_p\|_{L^2((0,s) \times \partial \Omega)}^2 + C_2
\end{align*}
\]
for $s \in (0, T]$ and arbitrary $\delta > 0$. Then, as in the proof of Lemma 3.2, applying the trace and Poincare inequalities with the constraints in (97) and properties of an extension of p^e_s from Ω^e_s to Ω (see Lemma 3.1) ensure that

$$
\|p^e_s\|_{L^2((0,s) \times \partial \Omega)} \leq C \|\nabla p^e_s\|_{L^2(\Omega^e_s)}
$$

for $s \in (0, T]$. Then applying the Gronwall inequality, we obtain from (98) the estimates for u^e_s, $\partial_t u^e_s$, p^e_s, and $\partial_t u^e_f$ in (21).

Differentiating the equations in (7) and (95) with respect to time t and taking $(\partial_t^2 u^e_s$, $\partial_t p^e_s$, $\partial_t^2 u^e_f$) as test functions in the weak formulation of the resulting equations, we obtain

$$
\begin{align*}
&\rho_\varepsilon \|\partial_t^2 u^e_s(s)\|_{L^2(\Omega^e_s)}^2 + \langle \mathbf{E}^\varepsilon(b^e_\varepsilon, b^e_\varepsilon) \mathbf{e}(\partial_t u^e_s(s)), \mathbf{e}(\partial_t u^e_s(s)) \rangle_{\Omega^e_s} \\
&+ 2(K_p^e \nabla \partial_t p^e_s, \nabla \partial_t p^e_s)_{\Omega^e_s} + \rho_f \|\partial_t^2 u^e_f(s)\|_{L^2(\Omega^e_f)}^2 + 2\mu \varepsilon^2 \|\mathbf{e}(\partial_t^2 u^e_f)\|_{L^2(\Omega^e_f)}^2 \\
&= 2(\partial_t F^e, \partial_t^2 u^e_s)_{(0)} + 2(\partial_t F^e, \partial_t p^e_s)_{(0)} + \rho_\varepsilon \|\partial_t^2 u^e_s(0)\|_{L^2(\Omega^e_s)}^2 + \rho_f \|\partial_t^2 u^e_f(0)\|_{L^2(\Omega^e_f)}^2 \\
&+ \langle \mathbf{E}^\varepsilon(b^e_\varepsilon, b^e_\varepsilon) \mathbf{e}(\partial_t u^e_s(0)), \mathbf{e}(\partial_t u^e_s(0)) \rangle_{\Omega^e_s} \\
&+ \langle \mathbf{E}^\varepsilon(b^e_\varepsilon, b^e_\varepsilon) \mathbf{e}(\partial_t u^e_f(0)), \mathbf{e}(\partial_t u^e_f(0)) \rangle_{\Omega^e_f} \\
&- \langle 2\partial_t^2 \mathbf{E}^\varepsilon(b^e_\varepsilon, b^e_\varepsilon) \mathbf{e}(u^e_s) + \partial_t \mathbf{E}^\varepsilon(b^e_\varepsilon, b^e_\varepsilon) \mathbf{e}(\partial_t u^e_s), \mathbf{e}(\partial_t u^e_s) \rangle_{\Omega^e_s} \\
&- \langle 2\partial_t^2 \mathbf{E}^\varepsilon(b^e_\varepsilon, b^e_\varepsilon) \mathbf{e}(u^e_f) + \partial_t \mathbf{E}^\varepsilon(b^e_\varepsilon, b^e_\varepsilon) \mathbf{e}(\partial_t u^e_f), \mathbf{e}(\partial_t u^e_f) \rangle_{\Omega^e_f} \\
&\quad \text{for } s \in (0, T].
\end{align*}
$$

As before, applying the Korn inequality and the Poincare inequality together with the constraint in (97), we obtain the estimates for $\partial_t^2 u^e_s$, $\partial_t p^e_s$, and $\partial_t^2 u^e_f$ stated in (15). The equations for $\partial_t u^e_f$ and u^e_s and calculations similar to those in the proof of Lemma 3.2 ensure the estimate for p^e_f.

To derive the a priori estimates in the second case, when u^e_s satisfies the quasi-stationary equations (96), we have to check that the Korn inequality holds for u^e_s.

Lemma 9.1. For $u^e_s(s) \in H^1(\Omega^e_s)$, with $s \in (0, T]$, we have the following estimate:

$$
\|u^e_s(s)\|_{H^1(\Omega^e_s)} \leq C \|\mathbf{e}(u^e_s(s))\|_{L^2(\Omega^e_s)} + \varepsilon \frac{A}{2} \|\Pi\varepsilon \partial_t u^e_s\|_{L^2(\Gamma^e_s)} + \|u^e_s(0)\|_{H^1(\Omega)}.
$$

Proof. Consider first Y_e and $\mathcal{V} = \{v \in H^1(Y_e) : \Pi\varepsilon v = 0 \text{ on } \Gamma\}$. Then since $\mathcal{V} \cap \mathcal{R}(Y_e) = \{0\}$, where $\mathcal{R}(Y_e)$ is the space of all rigid displacements, we have

$$
\|v\|_{H^1(\mathcal{V})} \leq C \|\mathbf{e}(v)\|_{L^2(\mathcal{V})} + \|\Pi\varepsilon v\|_{L^2(\Gamma^e)}.
$$

Considering scaling $x = \varepsilon y$ and summing over $\zeta \in \Xi^e$, we obtain

$$
\|v\|_{L^2(\hat{\Omega}_e)}^2 + \varepsilon^2 \|\nabla v\|_{L^2(\hat{\Omega}_e)}^2 \leq C \|\mathbf{e}(v)\|_{L^2(\hat{\Omega}_e)}^2 + \varepsilon^2 \|\Pi\varepsilon v\|_{L^2(\Gamma^e)}^2,
$$

where $\hat{\Omega}_e = \text{Int}(\bigcup_{\zeta \in \Xi^e} \varepsilon(Y_e + \zeta))$. Using the fact that $\Pi\varepsilon \partial_t u^e_s = \Pi\varepsilon \partial_t u^e_f$ on Γ^e and estimating u^e_s by $\partial_t u^e_s$ and the initial value $u^e_s(0)$, we obtain

$$
\|\Pi\varepsilon u^e_s(s)\|_{L^2(\Gamma^e_s)} \leq C \|\Pi\varepsilon \partial_t u^e_s\|_{L^2(\Gamma^e_s)} + \|u^e_s(0)\|_{L^2(\Gamma^e)}.
$$

Hence applying (103) to u^e_s and using the fact that $\varepsilon \|u^e_s(0)\|_{L^2(\Gamma^e_s)} \leq C \|u^e_s(0)\|_{H^1(\Omega)}^2$, we have

$$
\|u^e_s(s)\|_{L^2(\Omega^e_s)}^2 \leq C \varepsilon^2 \|\mathbf{e}(u^e_s)(s)\|_{L^2(\Omega^e_s)}^2 + \varepsilon \|\Pi\varepsilon \partial_t u^e_s\|_{L^2(\Gamma^e_s)}^2 + \|u^e_s(0)\|_{H^1(\Omega)}^2.
$$
Then considering the extension of \(u_\varepsilon^e \) from \(\Omega^e_\varepsilon \) to \(\Omega \) (see, e.g., [33]) and applying the Korn inequality in \(\Omega \) yields the estimate stated in the lemma.

Then, in the same way as in the proof of Lemma 3.2, applying the Korn inequalities proved in Lemma 9.1 and using extension properties of \(u_\varepsilon^e \) and the regularity of the initial data \(u_{f0}^1 \in H^2(\Omega)^3 \), we obtain the following a priori estimates for solutions of the quasi-stationary problem:

\[
\begin{align*}
\| u_\varepsilon^e \|_{L^\infty(0,T;H^1(\Omega^e_\varepsilon))} + \| \partial_t u_\varepsilon^e \|_{L^\infty(0,T;H^1(\Omega^e_\varepsilon))} & \leq C, \\
\| p_\varepsilon^e \|_{L^2(0,T;H^1(\Omega^e_\varepsilon))} + \| \partial_t p_\varepsilon^e \|_{L^2(0,T;H^1(\Omega^e_\varepsilon))} & \leq C, \\
\| \partial_t u_f^j \|_{L^\infty(0,T;L^2(\Omega^j_f))} + \| \partial_t^2 u_f^j \|_{L^\infty(0,T;L^2(\Omega^j_f))} & \leq C, \\
& + \varepsilon \| \nabla \partial_t u_f^j \|_{H^1(0,T;L^2(\Omega^j_f))} + \| p_f^j \|_{L^2(\Omega^j_f,T)} \leq C,
\end{align*}
\]

where the constant \(C \) is independent of \(\varepsilon \). Notice that in the incompressible and quasi-stationary case, i.e., in the case of (95) and (96) for \(p_\varepsilon^e \) and \(u_\varepsilon^e \), respectively, problem (7), (8), (95), and (96) is well-posed without the initial conditions for \(u_\varepsilon^e \) and \(p_\varepsilon^e \). In this case \(u_\varepsilon^e(0,\cdot) \) and \(\partial_t u_\varepsilon^e(0,\cdot) \) are determined from the corresponding elliptic equations and the initial values for the fluid flow \(u_{f0}^1 \).

In contrast with the limit equations given by (47), in the quasi-stationary and incompressible case the macroscopic equations for effective displacement and pressure do not contain time derivatives and take the form

\[
\begin{align*}
&- \text{div}(\mathbf{E}^\text{hom}(b_{e,3})\mathbf{e}(u_e)) + \nabla p_e + \varrho_f \int_{Y_f} \partial_t^2 u_f \, dy = 0 \quad \text{in } \Omega_T, \\
&- \text{div}(K_p^\text{hom}\nabla p_e - K_u \partial_t u_e - Q(x, \partial_t u_f)) = 0 \quad \text{in } \Omega_T, \\
&\mathbf{E}^\text{hom}(b_{e,3})\mathbf{e}(u_e) \cdot n = F_n \quad \text{on } (\partial\Omega)_T, \\
&(K_p^\text{hom}\nabla p_e - K_u \partial_t u_e) \cdot n = F_p + Q(x, \partial_t u_f) \cdot n \quad \text{on } (\partial\Omega)_T,
\end{align*}
\]

together with the two-scale equations (49) for \(u_f \) and \(\pi_f \).

10. Appendix. Here we provide proofs of the estimates for \(\| b_\varepsilon^e \|_{L^\infty(0,T;L^\infty(\Omega^e_\varepsilon))} \), \(\| c^e \|_{L^\infty(0,T;L^4(\Omega^e_\varepsilon))} \) and for the difference \(\| b_\varepsilon^{e,j} \|_{L^\infty(0,T;L^\infty(\Omega^e_\varepsilon))} \) of two iterations for system (6)–(8).

Lemma 10.1. Under assumptions \(\text{A1–A5} \) solutions of the microscopic problem (6)–(8) satisfy the following estimates:

\[
\begin{align*}
\| b_\varepsilon^e \|_{L^\infty(0,T;L^\infty(\Omega^e_\varepsilon))} \leq C, \\
\| c_\varepsilon^e \|_{L^\infty(0,T;L^4(\Omega^e_\varepsilon))} + \| c_f^j \|_{L^\infty(0,T;L^4(\Omega^j_f))} \leq C,
\end{align*}
\]

where the constant \(C \) is independent of \(\varepsilon \).

Proof. To show that \(\| b_\varepsilon^e \|^p \) for \(p \geq 2 \) is an admissible test function for (10), we set \(b_{\varepsilon,N}^e(t,x) = \min \{ b_\varepsilon^e(t,x), N \} \) for \((t,x) \in \Omega^e_{N,T} \), where \(N > \| b_{e0} \|_{L^\infty(\Omega)} \), and derive estimates for \(\| b_{\varepsilon,N}^e \|^p \) independent of \(N \). Then letting \(N \to \infty \), we obtain the desired estimates for \(b_\varepsilon^e \). Taking \(\| b_{\varepsilon,N}^e \|_{L^p(\Omega^e_{N,T})} \) as a test function in (10) and applying simple
calculations, we obtain
\[
\|b_{e,N}(s)\|_{L^p(\Omega^e)} + \|\nabla b_{e,N}\|_{L^2(\Omega^e)}^2 \leq C_1 \left[\|\epsilon(u_e^\epsilon)\|_{L^\infty(0,s;L^2(\Omega^e))} + 1 \right] \int_0^s \|b_{e}^\epsilon\|_{L^{2p}(\Omega^e)} \|b_{e,N}^\epsilon\|_{L^{2p}(\Omega^e)}^{p-1} dt \\
+ C_2 |b_{o,0}|_{L^p(\Omega^e)} + C_3 \|b_{e}^\epsilon\|_{L^\infty(0,s;L^2(\Omega^e))} \|b_{e,N}^\epsilon\|_{L^2(0,s;L^4(\Omega^e))}^{p-1} \\
+ C_4 \left[\|b_{e,N}^\epsilon\|_{L^2(0,s;L^4(\Omega^e))} + \|\epsilon(u_e^\epsilon)\|_{L^p(0,s;L^2(\Omega^e))} \right] \\
+ (\parallel P(b_e^\epsilon),|b_{e,N}^\epsilon|^{p-1})_{\Omega_t^e},
\]
for \(s \in (0,T] \). Here we used the fact that the definition of \(b_{e,N}^\epsilon \) implies
\[
\langle \nabla b_{e}^\epsilon, \nabla (b_{e,N}^\epsilon)^{-1} \rangle_{\Omega^e} = \langle \nabla b_{e,N}^\epsilon, \nabla (b_{e,N}^\epsilon)^{-1} \rangle_{\Omega^e},
\]
and that due to the inequality \(b_{e}^\epsilon \geq 0 \) in \(\Omega^e_T \) we have
\[
\langle \partial_t b_{e}^\epsilon, |b_{e,N}^\epsilon|^{-1} \rangle_{\Omega^e} \geq \frac{1}{p} \|b_{e,N}^\epsilon\|_{L^p(\Omega^e)}^p - \frac{1}{p} |b_{o,0}|_{L^p(\Omega^e)}^p - \|b_{o,0}\|_{L^p(\Omega^e)} \\
+ \langle b_{e,N}^\epsilon, |b_{e,N}^\epsilon|^{-1} \rangle_{\Omega^e} \geq \frac{1}{p} \|b_{e,N}^\epsilon\|_{L^p(\Omega^e)}^p - (1 + 1/p) |b_{o,0}|_{L^p(\Omega^e)}.
\]
Here \(\Omega^e_N(t) = \{ x \in \Omega^e : b_e^\epsilon(t,x) \leq N \} \) for \(t \in (0,T) \). Applying the Gagliardo-
Nirenberg inequality, we can estimate
\[
\|b_{e,N}^\epsilon\|^p_{L^p(\Omega^e)} = \|b_{e,N}^\epsilon\|^2_{L^4(\Omega^e)} \leq C \|\nabla b_{e,N}^\epsilon\|^2_{L^2(\Omega^e)} \|b_{e,N}^\epsilon\|^2_{L^4(\Omega^e)}
\]
with \(\alpha = 9/10 \). Using the embedding \(L^2(0,s;H^1(\Omega^e)) \subset L^2(0,s;L^6(\Omega^e)) \), in space-
dimensions two and three, and applying the Gagliardo–Nirenberg inequality to \(\|b_{e,N}^\epsilon\|^2_{L^4(\Omega^e)} \) yields
\[
\int_0^s \|\nabla b_{e,N}^\epsilon\|^2_{L^2(\Omega^e)} \|b_{e,N}^\epsilon\|^p_{L^p(\Omega^e)} dt \\
\leq \int_0^s \|\nabla b_{e,N}^\epsilon\|^2_{L^2(\Omega^e)} \|\nabla |b_{e,N}^\epsilon|^{p/2}_{L^2(\Omega^e)} \|b_{e,N}^\epsilon\|^\frac{p-1}{p}_{L^p(\Omega^e)} \|\nabla |b_{e,N}^\epsilon|^{p/2}_{L^2(\Omega^e)} \|b_{e,N}^\epsilon\|^\frac{p-1}{p}_{L^p(\Omega^e)} dt.
\]
Then using the Hölder inequality on the right-hand side of the last estimate, we obtain
\[
\int_0^s \|\nabla b_{e,N}^\epsilon\|^2_{L^2(\Omega^e)} \|b_{e,N}^\epsilon\|^p_{L^p(\Omega^e)} dt \\
\leq C \left[\int_0^s \left(\|b_{e}^\epsilon\|^\frac{2p}{L^2(\Omega^e)} + \|\nabla |b_{e}^\epsilon|^{p/2}_{L^2(\Omega^e)} \|b_{e,N}^\epsilon\|^\frac{p-1}{p}_{L^p(\Omega^e)} dt \right)^\frac{2}{p} \\
\times \sup_{(0,s)} \|b_{e,N}^\epsilon\|^\frac{p-1}{p}_{L^p(\Omega^e)} \left[\int_0^s \|\nabla |b_{e,N}^\epsilon|^{p/2}_{L^2(\Omega^e)} \|b_{e,N}^\epsilon\|^\frac{3(p-1)}{2p}_{L^p(\Omega^e)} dt \right]^\frac{2p-2}{2} \right].
\]
For \(p \geq 3 \) we can estimate
\[
\|\nabla b_{e}^\epsilon\|^2_{L^2(\Omega^e)} \leq \|\nabla b_{e}^\epsilon\|^2_{L^2(\Omega^e)} + \|\nabla |b_{e}^\epsilon|^{p-2}_{L^2(\Omega^e)} \|b_{e,N}^\epsilon\|^2_{L^2(\Omega^e)} \\
\leq \|\nabla b_{e}^\epsilon\|^2_{L^2(\Omega^e)} + \|\nabla |b_{e}^\epsilon|^{p-2}_{L^2(\Omega^e)} \|b_{e,N}^\epsilon\|^2_{L^2(\Omega^e)}.
\]
where $\Omega_{e,s}^{c,1} = \{(t,x) \in \Omega_{e,s}^c : b_{e,s}(t,x) \leq 1\}$. Also notice that for $p \geq 3$ we have $\frac{3}{2} \leq p - 1$. Thus applying the Young inequality in (109) yields

\begin{equation}
\int_0^s ||b_{e,s}^c||_{L^p(\Omega_e^c)} ||b_{e,s,N}^c||_{L^{p-1}(\Omega_e^c)} dt \leq \delta_1 \sup_{(0,s)} ||b_{e,s,N}^c||_{L^p(\Omega_e^c)} + \delta_2 ||\nabla b_{e,s}^c||_{L^2(\Omega_e^c)}^2 + C_\delta \left(1 + ||b_{e,s}^c||_{L^{p-1}(\Omega_e^c)}^2 + ||\nabla b_{e,s}^c||_{L^2(\Omega_e^c)}^2 + ||\nabla b_{e,s}^c||_{L^2(\Omega_e^c)}^2\right)^\frac{3}{2}
\end{equation}

for any $\delta_1 > 0$ and $\delta_2 > 0$. Using the trace inequality, we estimate the integral over Γ_e^c as

\begin{equation}
\epsilon \langle |P(b_{e}^c)|, |b_{e,N}^c|^p \rangle_{\Gamma_e^c} \leq C_1 \epsilon \langle 1 + |b_{e}^c|, |b_{e,N}^c|^p \rangle_{\Gamma_e^c} \\
\leq C_2 \epsilon \left[1 + ||b_{e,s}^c||_{L^2(\Omega_e)} \right] \left[||\nabla b_{e,s}^c||_{L^2(\Omega_e)}^2 + ||b_{e,s}^c||_{L^2(\Omega_e)}^2 + ||\nabla b_{e,s}^c||_{L^2(\Omega_e)}^2\right]^\frac{3}{2} dt
\end{equation}

\begin{equation}
\leq C_3 \epsilon \left[1 + ||b_{e,s}^c||_{L^2(\Omega_e)} \right] \left[||\nabla b_{e,s}^c||_{L^2(\Omega_e)}^2 + ||b_{e,N}^c||_{L^2(\Omega_e)}^2 + ||\nabla b_{e,s}^c||_{L^2(\Omega_e)}^2\right]^\frac{3}{2} dt.
\end{equation}

Applying the Young inequality on the right-hand side of (112) and using (110), together with the uniform estimate of $||\nabla b_{e,s}^c||_{L^2(\Omega_e^c)}$ obtained in Lemma 3.2, yields

\begin{equation}
\epsilon \langle |P(b_{e}^c)|, |b_{e,N}^c|^p \rangle_{\partial \Omega_e} \leq C_1 \epsilon \left[1 + ||b_{e}^c||_{L^\infty(\Omega_e)} \right] \left[||\nabla b_{e,s}^c||_{L^2(\Omega_e)}^2 + ||b_{e,s}^c||_{L^2(\Omega_e)}^2 + ||\nabla b_{e,s}^c||_{L^2(\Omega_e)}^2\right] dt
\end{equation}

\begin{equation}
\leq C_1 \epsilon \left[1 + ||b_{e,s}^c||_{L^2(\Omega_e)} \right] \left[||\nabla b_{e,s}^c||_{L^2(\Omega_e)}^2 + ||b_{e,N}^c||_{L^2(\Omega_e)}^2 + ||\nabla b_{e,s}^c||_{L^2(\Omega_e)}^2\right] dt.
\end{equation}

The same calculations together with (110) ensure that

\begin{equation}
\langle |F_{b}(b_{e}^c)|, |b_{e,N}^c|^p \rangle_{\partial \Omega_e} \leq C_1 \epsilon \left[1 + ||b_{e}^c||_{L^\infty(\Omega_e)} \right] \left[||\nabla b_{e,s}^c||_{L^2(\Omega_e)}^2 + ||b_{e,s}^c||_{L^2(\Omega_e)}^2 + ||\nabla b_{e,s}^c||_{L^2(\Omega_e)}^2\right] dt
\end{equation}

\begin{equation}
\leq C_1 \epsilon \left[1 + ||b_{e,s}^c||_{L^2(\Omega_e)} \right] \left[||\nabla b_{e,s}^c||_{L^2(\Omega_e)}^2 + ||b_{e,N}^c||_{L^2(\Omega_e)}^2 + ||\nabla b_{e,s}^c||_{L^2(\Omega_e)}^2\right] dt.
\end{equation}

Considering $p = 3$ and using the standard a priori estimates (27) for b_{e}^c yields

\begin{equation}
\int_0^s ||b_{e}^c||_{L^6(\Omega_e)} ||b_{e,N}^c||_{L^3(\Omega_e)}^2 dt \leq C_1 \epsilon \left[1 + ||b_{e}^c||_{L^\infty(\Omega_e)} \right] \left[||\nabla b_{e,s}^c||_{L^2(\Omega_e)}^2 + ||b_{e,s}^c||_{L^2(\Omega_e)}^2 + ||\nabla b_{e,s}^c||_{L^2(\Omega_e)}^2\right] dt
\end{equation}

\begin{equation}
\leq C_1 \epsilon \left[1 + ||b_{e,s}^c||_{L^2(\Omega_e)} \right] \left[||\nabla b_{e,s}^c||_{L^2(\Omega_e)}^2 + ||b_{e,N}^c||_{L^2(\Omega_e)}^2 + ||\nabla b_{e,s}^c||_{L^2(\Omega_e)}^2\right] dt.
\end{equation}
For the boundary integrals, for \(p = 3 \), we have

\[
\varepsilon \langle P(b^\varepsilon_N), |b^\varepsilon_N|^2 \rangle_{\Gamma^\varepsilon} + \langle F_b(b^\varepsilon_N), |b^\varepsilon_N|^2 \rangle_{(\partial \Omega)^*} \\
\leq C_1(\varepsilon) \left[1 + \|b^\varepsilon_N\|_{L^\infty(0,s;L^2(\Omega^\varepsilon))}^2 \|\nabla b^\varepsilon_N\|_{L^2(\Omega^\varepsilon)}^2 \right] \\
\cdot \sup_{(0,s)} \|b^\varepsilon_N\|_{L^2(\Omega^\varepsilon)}^2 \|\nabla b^\varepsilon_N\|_{L^2(\Omega^\varepsilon)}^2 \\
\leq C_2(\varepsilon) \left[1 + \|b^\varepsilon_N\|_{L^\infty(0,s;L^2(\Omega^\varepsilon))}^2 \|\nabla b^\varepsilon_N\|_{L^2(\Omega^\varepsilon)}^2 \right] \\
+ \delta_1 \sup_{(0,s)} \|b^\varepsilon_N(s)\|_{L^3(\Omega^\varepsilon)}^2 + \delta_2 \|\nabla b^\varepsilon_N\|_{L^2(\Omega^\varepsilon)}^2.
\]

(114)

Considering (107) for \(p = 3 \) and using the estimates (108), (113), and (114) together with the standard a priori estimates for \(b^\varepsilon, c^\varepsilon, \) and \(u^\varepsilon \) shown in Lemma 3.2, we obtain

\[
\|b^\varepsilon_N(s)\|_{L^3(\Omega^\varepsilon)}^3 + \|\nabla b^\varepsilon_N\|_{L^2(\Omega^\varepsilon)}^2 \\
\leq C(\varepsilon) + \delta_1 \sup_{(0,s)} \|b^\varepsilon_N(s)\|_{L^3(\Omega^\varepsilon)}^3 + \delta_2 \|\nabla b^\varepsilon_N\|_{L^2(\Omega^\varepsilon)}^2
\]

with \(s \in (0,T) \), a constant \(C(\varepsilon) \) independent of \(N \), and arbitrary \(0 < \delta_1 \leq \frac{1}{2} \) and \(0 < \delta_2 \leq \frac{1}{2} \). Considering the supremum over \((0,s) \) and taking the limit \(N \to \infty \) yields that \(b^\varepsilon \in L^\infty(0,T;L^3(\Omega^\varepsilon)) \) and \(\nabla b^\varepsilon \in L^2(\Omega^\varepsilon_T) \). Taking iteratively \(p = 4, 5, \ldots \) and choosing \(\delta_1 > 0 \) and \(\delta_2 > 0 \) sufficiently small for each fixed \(p \) and for fixed \(\varepsilon \), we obtain estimates for \(\|b^\varepsilon_N\|_{L^\infty(0,T;L^p(\Omega^\varepsilon))} \) and \(\|\nabla b^\varepsilon_N\|_{L^p(\Omega^\varepsilon_T)}^2 \) independent of \(N \). Letting \(N \to \infty \) yields that \(b^\varepsilon \in L^\infty(0,T;H^1(\Omega^\varepsilon)) \) and \(b^\varepsilon \in L^\infty(0,T;L^p(\Omega^\varepsilon)) \) for every fixed \(p \geq 2 \).

Now we consider \((b^\varepsilon)^{p-1} \) as a test function in (10) and obtain

\[
\frac{1}{p} \|b^\varepsilon(s)\|^p_{L^p(\Omega^\varepsilon)} + \frac{4(p-1)}{p^2} \|\nabla b^\varepsilon\|_{L^2(\Omega^\varepsilon_T)}^2 \\
\leq C_1 \left(|c^\varepsilon|_{L^\infty(0,s;L^2(\Omega^\varepsilon))} + \|\varepsilon(u^\varepsilon(s))\|_{L^\infty(0,s;L^2(\Omega^\varepsilon))} + 1 \right) \|b^\varepsilon\|_{L^2(\Omega^\varepsilon_T)}^2 \\
+ C_2 \left(|c^\varepsilon|_{L^p(0,s;L^2(\Omega^\varepsilon))} + \|\varepsilon(u^\varepsilon(s))\|_{L^p(0,s;L^2(\Omega^\varepsilon))} \right) \\
+ \varepsilon \langle P(b^\varepsilon), |b^\varepsilon|^{p-1} \rangle_{\Gamma^\varepsilon} + \langle F_b(b^\varepsilon), |b^\varepsilon|^{p-1} \rangle_{(\partial \Omega)^*}
\]

(115)

for \(s \in (0,T) \). The integral over \(\Gamma^\varepsilon \) is estimated as

\[
\varepsilon \langle P(b^\varepsilon_N), |b^\varepsilon_N|^{p-1} \rangle_{\Gamma^\varepsilon} \leq C_1 \varepsilon (1 + \|b^\varepsilon_N\|_{L^2(\Omega^\varepsilon_T)}^2) \\
\leq C_2 \left(1 + \|b^\varepsilon_N\|_{L^2(\Omega^\varepsilon_T)}^2 + \varepsilon \varepsilon \|b^\varepsilon_N\|_{L^2(\Omega^\varepsilon_T)}^2 \right).
\]

Using the properties of extension of \(b^\varepsilon \) from \(\Omega^\varepsilon \) to \(\Omega \) and applying the Gagliardo–Nirenberg inequality

\[
\|w\|_{L^2(\Omega)} \leq C \|\nabla w\|_{L^2(\Omega)}^{\alpha_1} \|w\|_{L^1(\Omega)}^{1-\alpha_1}, \quad \|w\|_{L^4(\Omega)} \leq C \|\nabla w\|_{L^2(\Omega)}^{\alpha_2} \|w\|_{L^1(\Omega)}^{1-\alpha_2},
\]

with \(\alpha_1 = \frac{3}{4} \) and \(\alpha_2 = \frac{9}{10} \), we obtain

\[
\varepsilon \langle P(b^\varepsilon), |b^\varepsilon|^{p-1} \rangle_{\Gamma^\varepsilon} \leq C_1 \left(1 + \|b^\varepsilon\|_{L^2(\Omega^\varepsilon_T)}^2 \right) + (\varepsilon^2 + \delta) \|\nabla b^\varepsilon\|_{L^2(\Omega^\varepsilon_T)}^2, \\
\langle F_b(b^\varepsilon), |b^\varepsilon|^{p-1} \rangle_{(\partial \Omega)^*} \leq C \left(1 + \|b^\varepsilon\|_{L^2(\Omega^\varepsilon_T)}^2 \right) \\
\leq C_3 \left(1 + \|b^\varepsilon\|_{L^2(\Omega^\varepsilon_T)}^2 \right) + \delta \|\nabla b^\varepsilon\|_{L^2(\Omega^\varepsilon_T)}^2.
\]
Then applying the Gagliardo–Nirenberg inequality and the extension lemma, Lemma 3.1, to \(\|b_\varepsilon^n\|_{L^2(\Omega_\varepsilon)} \) and \(\|\nabla b_\varepsilon^n\|_{L^2(0, t; L^2(\Omega_\varepsilon))} \) in (115) and using the estimates (27) yields

\[
\|b_\varepsilon^n(s)\|^p_{L^p(\Omega_\varepsilon)} + \|\nabla b_\varepsilon^n\|^p_{L^2(\Omega_\varepsilon)} \leq C_1^p + C_2(1 + p^0) \int_0^s \|b_\varepsilon^n\|^p_{L^p(\Omega_\varepsilon)} dt,
\]

where the constants \(C_1 \) and \(C_2 \) are independent of \(\varepsilon \). Then the Alikakos iteration lemma implies the boundedness of \(b_\varepsilon^n \), uniformly in \(\varepsilon \).

We turn to \(c_\varepsilon^n \). Considering first \((c_\varepsilon^n)^p - 1 \) and \((c_\varepsilon^n)^p - 1 \), where \(c_\varepsilon^n(t, x) = \min\{c_\varepsilon^n(t, x), N\} \) for \((t, x) \in \Omega_{\varepsilon,T} \) with \(j = e, f \) and \(N > 0 \), as test functions in (11) and performing calculations similar to those in the derivation of (107), we obtain

\[
\|c_\varepsilon^n(0)\|^p_{L^p(\Omega_\varepsilon)} + \|\nabla c_\varepsilon^n(0)\|^p_{L^2(\Omega_\varepsilon)} + c_1 [1 + \|\nabla c_\varepsilon^n(0)\|^2_{L^2(\Omega_{\varepsilon,T})}] \leq C_3 \int_0^s \|b_\varepsilon^n\|^p_{L^p(\Omega_\varepsilon)} + C_4 \int_0^s \|\nabla b_\varepsilon^n\|^p_{L^2(\Omega_\varepsilon)} dt + C_5 \|\nabla c_\varepsilon^n\|^p_{L^2(\Omega_{\varepsilon,T})} + C_6 \|\nabla c_\varepsilon^n\|^p_{L^2(\Omega_{\varepsilon,T})}.
\]

Similar to (111) we estimate

\[
\int_0^s \|c_\varepsilon^n\|^p_{L^p(\Omega_\varepsilon)} \leq \delta_1 \sup_{(0, s)} \|c_\varepsilon^n(0)\|^p_{L^p(\Omega_\varepsilon)} + \delta_2 \|\nabla c_\varepsilon^n(0)\|^p_{L^2(\Omega_{\varepsilon,T})} + C_3 \left[1 + \|\nabla c_\varepsilon^n(0)\|^p_{L^p(\Omega_\varepsilon)} + \|\nabla c_\varepsilon^n(0)\|^p_{L^p(\Omega_\varepsilon)} \right].
\]

The boundary integral can be estimated in the same way as in (112):

\[
\int_0^s (1 + \|\nabla c_\varepsilon^n\|^p_{L^p(\partial \Omega_\varepsilon)}) \leq \delta_1 \sup_{(0, s)} \|c_\varepsilon^n(0)\|^p_{L^p(\Omega_\varepsilon)} + \delta_2 \|\nabla c_\varepsilon^n(0)\|^p_{L^2(\Omega_{\varepsilon,T})} + C_3 \left[1 + \|\nabla c_\varepsilon^n(0)\|^p_{L^p(\Omega_\varepsilon)} + \|\nabla c_\varepsilon^n(0)\|^p_{L^p(\Omega_\varepsilon)} \right].
\]

Considering \(p = 3, \ldots, 6 \) iteratively, using estimates (27), and making the calculations similar to those for \(b_\varepsilon^n \) yields

\[
\|c_\varepsilon^n\|_{L^\infty(0, T; L^\infty(\Omega_\varepsilon))} + \|\nabla c_\varepsilon^n\|_{L^2(0, T; L^2(\Omega_\varepsilon))} \leq C,
\]

where the constant \(C \) depends on \(p \) and \(\varepsilon \) and is independent of \(N \). Letting \(N \to \infty \), we obtain that \((c_\varepsilon^n)^p - 1 \in L^2(0, T; H^1(\Omega_\varepsilon)) \) with \(j = e, f \) and \(p = 3, \ldots, 6 \). Thus we
can consider \((c^e)^{p-1}\) and \((c^f)^{p-1}\), with \(p = 3, 4\), as test functions in (11):
\[
\begin{align*}
&\|c^e(s)\|_{L^p(\Omega_e)}^p + \|c^f(s)\|_{L^p(\Omega_f)}^p + \|\nabla c^e\|_{L^2(\Omega_e)}^p + \|\nabla c^f\|_{L^2(\Omega_f)}^p \\
&\leq \|c^e(0)\|_{L^p(\Omega_e)}^p + \|c^f(0)\|_{L^p(\Omega_f)}^p + C_1 [1 + \|G(\partial_t u_f)\|_{L^p(\Omega_f)}^p] \|c^f\|_{L^p(\Omega_f)}^p \\
&+ C_2 \|\delta(\partial_t u_f)\|_{L^p(\Omega_e)}^p + |\|\|c^e\|_{L^p(\Omega_e)}^p + \|\nabla c^f\|_{L^2(\Omega_f)}^p| \\
&+ C_3 [1 + \|\nabla c^e\|_{L^p(\Omega_e)}^p + \|\nabla c^f\|_{L^p(\Omega_f)}^p + \|c^e\|_{L^p(\Omega_e)}^p].
\end{align*}
\]
In the same way as in (115), applying the Gagliardo–Nirenberg inequality to \(|c^e|^2\) in \(L^2(\Omega_e')\) and \(L^4(\Omega_f')\) and using properties of the extension of \(c^e\) from \(\Omega_e\) to \(\Omega\) and of \(c^f\) from \(\Omega_e'\) to \(\Omega\), we obtain
\[
\|C_e\|_{L^\infty(\Omega';L^4(\Omega_e'))} + \|c^f\|_{L^\infty(\Omega';L^4(\Omega_f'))} + \|\nabla c^e\|_{L^2(\Omega_e',\Omega')} + \|\nabla c^f\|_{L^2(\Omega_f',\Omega')} \leq C,
\]
where the constant \(C\) is independent of \(\varepsilon\).

Next we present the proof of the estimate for \(|\|\tilde{b}^e\|_{L^\infty(\Omega;L^4(\Omega_e'))}\|

Lemma 10.2. For the difference of two iterations \(\tilde{b}^e_j = b^e_j - b^e_j, \tilde{u}^e_j = u^e_j - u^e_j\), and \(\tilde{u}^e_j = u^e_j - u^e_j\) for the microscopic system (6)–(8), defined in Theorem 3.3, we have
\[
\|\|\tilde{b}^e_j\|_{L^\infty(\Omega;L^4(\Omega_e'))} \leq C\|\|\tilde{u}^e_j\|_{L^\infty(\Omega;L^4(\Omega_e'))} + C_3\|\|\partial_t \tilde{u}^e_j\|_{L^2(\Omega_e',\Omega')} + \delta\|\|\|\|\tilde{b}^e_j\|_{L^p(\Omega_e)}^p + \|\nabla c^f\|_{L^2(\Omega_e')}
\]
for \(s \in (0, T)\), any \(\delta > 0\), and \(0 < \sigma < 1/9\), where the constants \(C\) and \(C_3\) are independent of \(s\) and \(j\).

Proof. Considering \((\tilde{b}^e_j)^{p-1}\) as a test function in the weak formulation of (31) yields
\[
\begin{align*}
\frac{1}{p} \|\tilde{b}^e_j\|_{L^p(\Omega_e')}^p + \frac{2(p-1)}{p^2} \|\nabla \tilde{b}^e_j \|_{L^2(\Omega_e')}^2 &\leq C_1 \|\tilde{b}^e_j\|_{L^p(\Omega_e')}^p \\
&+ C_2 \|\|\|\tilde{u}^e_j\|_{L^\infty(\Omega;L^2(\Omega_e'))} + C_3 \|\|\|\tilde{u}^e_j\|_{L^\infty(\Omega;L^2(\Omega_e'))} + C_4 \|\|\|\tilde{b}^e_j\|_{L^\infty(\Omega;L^2(\Omega_e'))} + C_5 \|\|\|\tilde{b}^e_j\|_{L^\infty(\Omega;L^2(\Omega_e'))}
\end{align*}
\]
for \(s \in (0, T)\). Applying the Hölder inequality, we estimate
\[
\begin{align*}
\|\|\|\tilde{u}^e_j\|_{L^\infty(\Omega;L^4(\Omega_e'))} \|\|\|\tilde{b}^e_j\|_{L^p(\Omega_e')}^p &\leq C_1 \int_0^s \|\|\|\tilde{u}^e_j\|_{L^\infty(\Omega;L^2(\Omega_e'))} \|\|\|\tilde{b}^e_j\|_{L^p(\Omega_e')}^p dt \\
&\leq C_2 \left(\int_0^s \|\|\|\tilde{u}^e_j\|_{L^\infty(\Omega;L^2(\Omega_e'))} \|\|\|\tilde{b}^e_j\|_{L^p(\Omega_e')}^p dt \right)^{\frac{1}{\sigma}} \left(\int_0^s \|\|\|\tilde{b}^e_j\|_{L^p(\Omega_e')}^p dt \right)^{\frac{\sigma}{1+\sigma}}
\end{align*}
\]
for some \(\sigma > 0\). Applying the Gagliardo–Nirenberg inequality
\[
\|w\|_{L^4(\Omega)} \leq C\|\nabla w\|_{L^2(\Omega)}^\sigma \|w\|_{L^1(\Omega)}^{1-\sigma}
\]
and
\[
\|w\|_{L^4(\Omega)} \leq C\|\nabla w\|_{L^2(\Omega)}^\sigma \|w\|_{L^1(\Omega)}^{1-\sigma}
\]
with \(\alpha = \frac{\rho}{1 + \rho} \), we obtain for \(0 < \sigma < 1/9 \)

\[
\left(\int_0^s \left\| \tilde{\eta}_{e,j} \right\|_{L^2(\Omega_e)}^{2(1+\sigma)} dt \right)^{\frac{1}{2(1+\sigma)}} \leq C \left(\int_0^s \left(\int_{\Omega_e} \left\| \nabla \tilde{\eta}_{e,j} \right\|^2 + \left\| \tilde{\eta}_{e,j} \right\|^2 + \left\| \tilde{\eta}_{e,j} \right\|^{2(1+\sigma)} dt \right)^{\frac{1}{2(1+\sigma)}} \right)^{\frac{1}{2(1+\sigma)}}
\]

\[
\leq C_2 \left\| \nabla \tilde{\eta}_{e,j} \right\|_{L^2(\Omega_e,s)}^{\sigma} \left(\int_0^s \left\| \tilde{\eta}_{e,j} \right\|_{L^1(\Omega_e)}^{2(1+\sigma)(1-\alpha)} dt \right)^{\frac{1-\alpha(1+\sigma)}{2(1+\sigma)}}
\]

\[
\leq \frac{\delta}{p} \left\| \nabla \tilde{\eta}_{e,j} \right\|_{L^2(\Omega_e,s)}^2 + C_3 \delta^{\frac{\sigma}{2}} \left(\int_0^s \left\| \tilde{\eta}_{e,j} \right\|_{L^1(\Omega_e)}^{2(1+\sigma)(1-\alpha)} dt \right)^{\frac{1-\alpha(1+\sigma)}{2(1+\sigma)}}
\]

(118)

for any \(\delta > 0 \). Hence we have the following estimate:

\[
\left\langle e(u_{e,j}^{-1}), \tilde{\eta}_{e,j} \right\rangle_{L^p(\Omega_e,s)} \leq \delta \left\| \sqrt{p} \left\| \tilde{\eta}_{e,j} \right\|_{L^2(\Omega_e,s)} \right\|_{L^2(\Omega_e,s)}^2
\]

\[
+ C_4 \left(\left\| \tilde{\eta}_{e,j} \right\|_{L^p(\Omega_e,s)}^p \right) + C_5 \left\| \tilde{\eta}_{e,j} \right\|_{L^p(\Omega_e,s)}^p + C_6 \left\| \tilde{\eta}_{e,j} \right\|_{L^p(\Omega_e,s)}^p
\]

(119)

with \(\beta = \frac{\sigma}{2(1+\sigma)} \). We incorporate inequality (119) in (16), estimate \(\left\| \tilde{\eta}_{e,j} \right\|_{L^p(\Omega_e,s)}^p \) and \(\left\| \tilde{\eta}_{e,j} \right\|_{L^2(\Omega_e,s)}^2 \) in terms of \(\left\| \tilde{\eta}_{e,j} \right\|_{L^2(\Omega_e,s)}^2 \) by applying the Gagliardo–Nirenberg inequality, and then use the estimate (35) for \(\left\| \tilde{\eta}_{e,j} \right\|_{L^p(\Omega_e,s)}^p \) and the boundedness of \(\tilde{\eta}_{e,j} \), which can be shown in the same way as the \(L^p \)-estimates in (106), to obtain

\[
\left\| \tilde{\eta}_{e,j} \right\|_{L^p(\Omega_e,s)}^p + \left\| \nabla \tilde{\eta}_{e,j} \right\|_{L^2(\Omega_e,s)}^2
\]

\[
\leq C_7 \left\{ \left(\int_0^s \left\| \tilde{\eta}_{e,j} \right\|_{L^1(\Omega_e)}^2 + \left\| \tilde{\eta}_{e,j} \right\|_{L^1(\Omega_e)}^{2(1+\sigma)} dt \right)^{\frac{1}{2(1+\sigma)}} \right\}^{\frac{1}{2}} + C_8 \left\| e(u_{e,j}^{-1}) \right\|_{L^1(\Omega_e,s)} + C_9 \left\| \partial_t \tilde{\eta}_{e,j} \right\|_{L^2(\Omega_e,s)}
\]

Using (35) and iterating in \(p = 2^k \) for \(k = 2, 3, \ldots \), similarly to [2, Lemma 3.2], we obtain the estimate stated in the lemma. \(\square \)

REFERENCES

[1] E. Acerbi, V. Chiadò Piat, G. Dal Maso, and D. Percivale, An extension theorem from connected sets, and homogenization in general periodic domains, Nonlinear Anal., 18 (1992), pp. 481–496.

[2] N. D. Alikakos, \(L^p \) bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations, 4 (1979), pp. 827–868, https://doi.org/10.1080/03605307908820113.

[3] G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), pp. 1482–1518, https://doi.org/10.1137/0523084.

[4] G. Allaire, A. Damlamian, and U. Hornung, Two-scale convergence on periodic surfaces and applications, in Proceedings of the International Conference on Mathematical Modelling of Flow through Porous Media, A. Bourgeois et al., eds., World Scientific, Singapore, 1996, pp. 15–25.

[5] J.-L. Auriault and E. Sánchez-Palencia, Étude du comportement macroscopique d’un milieu poreux saturé déformable, J. Mécanique, 16 (1977), pp. 575–603.

[6] S. Badia, A. Quaini, and A. Quarteroni, Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction, J. Comput. Phys., 228 (2009), pp. 7986–8014, https://doi.org/10.1016/j.jcp.2009.07.019.
HOMOGENIZATION OF BIOMECHANICAL MODELS

[34] S. Pelletier, J. Van Orden, S. Wolf, K. Visselberg, J. Delacourt, Y. A. Ndong, J. Pelloux, V. Bischoff, A. Urbain, G. Mouille, G. Lemonnier, J.-P. Renou, and H. Höfte, A role for pectin de-methylsterification in a developmentally regulated growth acceleration in dark-grown Arabidopsis hypocotyls, New Phytol., 188 (2010), pp. 726–739, https://doi.org/10.1111/j.1469-8137.2010.03409.x.

[35] T. E. Proseus and J. S. Boyer, Turgor pressure moves polysaccharides into growing cell walls of Chara corallina, Ann. Bot., 95 (2005), pp. 967–979, https://doi.org/10.1093/abbot/ mci113.

[36] T. E. Proseus and J. S. Boyer, Calcium pectate chemistry controls growth rate of Chara corallina, J. Exp. Bot., 57 (2006), pp. 3989–4002, https://doi.org/10.1093/jxb/erl166.

[37] T. E. Proseus and J. S. Boyer, Tension required for pectate chemistry to control growth in Chara corallina, J. Exp. Bot., 58 (2007), pp. 4283–4292, https://doi.org/10.1093/jxb/erm318.

[38] T. E. Proseus and J. S. Boyer, Calcium deprivation disrupts enlargement of Chara corallina cells: Further evidence for the calcium pectate cycle, J. Exp. Bot., 63 (2012), pp. 3953–3958, https://doi.org/10.1093/jxb/ers089.

[39] M. Ptashnyk and B. Seguin, Homogenization of a system of elastic and reaction-diffusion equations modelling plant cell wall biomechanics, ESAIM Model. Numer. Anal., 50 (2016), pp. 593–631, https://doi.org/10.1051/m2an/2015073.

[40] R. Redlinger, Invariant sets for strongly coupled reaction-diffusion systems under general boundary conditions, Arch. Rational Mech. Anal., 108 (1989), pp. 281–291, https://doi.org/10.1007/BF01052975.

[41] E. R. Rojas, S. Hotton, and J. Dumais, Chemically mediated mechanical expansion of the pollen tube cell wall, Biophys. J., 101 (2011), pp. 1844–1853, https://doi.org/10.1016/j.bpj.2011.08.016.

[42] E. Sánchez-Palencia, Nonhomogeneous Media and Vibration Theory, Springer-Verlag, Berlin, New York, 1980.

[43] E. Schuster, L. Lundin, and M. A. K. Williams, Investigating the relationship between network mechanics and single-chain extension using biomimetic polysaccharide gels, Macromolecules, 45 (2012), pp. 4863–4869, https://doi.org/10.1021/ma300724n.

[44] A. S. Shamaev and V. A. Samarin, On propagation of acoustic waves in the medium consisting of a fluid and an elastic material, J. Math. Sci. (N.Y.), 144 (2007), pp. 4284–4291, https://doi.org/10.1007/s10958-007-0271-6.

[45] R. E. Showalter, Diffusion in poro-elastic media, J. Math. Anal. Appl., 251 (2000), pp. 310–340, https://doi.org/10.1006/jmaa.2000.7048.

[46] R. E. Showalter, Poroelastic filtration coupled to Stokes flow, in Control Theory of Partial Differential Equations, Lect. Notes Pure Appl. Math. 242, Chapman & Hall/CRC, Boca Raton, FL, 2005, pp. 229–241.

[47] J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd ed., Springer-Verlag, New York, 1994.

[48] C. Somerville, S. Bauer, G. Brininstool, M. Facette, T. Hamann, J. Milne, E. Osborne, A. Paredez, S. Persson, T. Raab, S. Vorwerk, and H. Youngs, Toward a systems approach to understanding plant cell walls, Science, 306 (2004), pp. 2206–2211, https://doi.org/10.1126/science.1102765.

[49] P. J. White, The pathways of calcium movement to the xylem, J. Exp. Bot., 52 (2001), pp. 891–899, https://doi.org/10.1093/jxb/52.358.891.

[50] S. Wolf and S. Greiner, Growth control by cell wall pectins, Protoplasma, 249 (2012), pp. 169–175, https://doi.org/10.1007/s00709-011-0371-5.

[51] S. Wolf, K. Hématy, and H. Höfte, Growth control and cell wall signaling in plants, Annu. Rev. Plant Biol., 63 (2012), pp. 381–407, https://doi.org/10.1146/annurev-arplant-042811-105449.

[52] T.-C. Xiong, S. Bourque, D. Lecourieux, N. Amelot, S. Grat, C. Brière, C. Mazars, A. Pugin, and R. Ranjeva, Calcium signaling in plant cell organelles delimited by a double membrane, Biochim. Biophys. Acta, 1763 (2006), pp. 1209–1215.

[53] A. Ženíšek, The existence and uniqueness theorem in Biot’s consolidation theory, Apl. Mat., 29 (1984), pp. 194–211.

[54] V. V. Zhikov, On an extension of the method of two-scale convergence and its applications, Sb. Math., 191 (2000), pp. 973–1014, https://doi.org/10.1070/SM2000v191n07ABEH000491.

[55] G. Zsivanovits, A. J. McDougall, A. C. Smith, and S. G. Ring, Material properties of concentrated pectin networks, Carbohydr. Res., 339 (2004), pp. 1317–1322, https://doi.org/10.1016/j.carres.2004.02.027.