Insights into the structural dynamics of Liver kinase B1 (LKB1) by the binding of STe20 Related Adapterα (STRADα) and Mouse protein 25α (MO25α) co-activators

Ikrormi Rungsung and Amutha Ramaswamy*

Centre for Bioinformatics, School of Life Sciences, Pondicherry University,

Puducherry-605014, India

*Corresponding author: R. Amutha, Email address: amutha_ramu@yahoo.com / ramutha@bicpu.edu.in
Supplementary Information

1. Materials and Methods

1.1 Analysis of Correlation between residues

The Dynamic Cross Correlation Map (DCCM) between pairs of atoms i and j were obtained from the last 50ps of the trajectories of all systems. The covariance matrix (C_{ij}) was generated using the Cα-atoms of residues (Hunenberger et al. 1995; Ichiye and Karplus 1991). The scaled version of covariance yields the correlation coefficients ranging between -1 and +1.

$$C_{ij} = \frac{\langle r_ir_j \rangle - \langle r_i \rangle \langle r_j \rangle}{\sqrt{\langle r_i^2 \rangle \langle r_j^2 \rangle}}$$

The negative value indicates the residues/domains moving in opposite direction (i.e. anti-correlated motion) and the positive value explains the concerted motions between residues. The value zero indicates the uncorrelated regions. The correlation analysis was performed using the CPPtraj module incorporated in AmberTools13 (Daniel R. Roe and Thomas E. Cheatham 2013).

1.2. Binding Free Energy Analysis

The binding free energy of LKB1 (as receptor) with ATP, STRADα and MO25α (as ligands) were calculated using g_mmpbsa tool and the equation used is given below (Kumari et al. 2014)

$$\Delta G_{\text{binding}} = \Delta G_{\text{complex}} - (\Delta G_{\text{receptor}} + \Delta G_{\text{ligand}})$$

Where,

$$G = \Delta E_{\text{mm}} + \Delta G_{\text{sol}}$$

$$\Delta E_{\text{mm}} = \Delta E_{\text{vdW}} + \Delta E_{\text{elec}}$$

$$\Delta G_{\text{sol}} = \Delta G_{\text{pol(PB)}} + \Delta G_{\text{nonpol(SASA-only)}}$$
\[\Delta G_{\text{pol(PB)}} = \nabla \cdot [\varepsilon(r) \nabla \varphi(r)] - \varepsilon(r) \kappa(r)^2 \sinh[\varphi(r)] + \frac{4\pi \rho_f(r)}{K_T} \]

\[\Delta G_{\text{nonpol}} = \gamma \text{SASA} + \beta \]

The \(\Delta E_{\text{mm}} \) is the molecular mechanics energy calculated from van der Waals and electrostatic energy. The \(\Delta G_{\text{pol(PB)}} \) is the polar solvation energy calculated using Poisson Boltzmann method. The dielectric constants \(\varepsilon \) and \(\varepsilon_0 \) were used for the solute and solvent, respectively and a grid space of 0.2 Å was used for polar solvation energy calculation. The non-polar solvation energy was calculated using SASA model with a probe radius of 1.4 Å.

1.3. Principal Component Analysis

Principal component analysis was used to extract the dominant modes of dynamics and the last 10 ns trajectories from the 30 ns simulation were used for all systems. The overall translational and rotational motions were removed by fitting into a reference structure and the results were presented based on the mass weighted analysis. A configurational space was constructed using Cartesian coordinates by generating the 3N-dimensional covariance matrix \(C \) of Cα atoms which is a symmetric matrix. The covariance matrix \(C \) was diagonalized by an orthogonal coordinate transformation to generate a set of eigenvectors and eigenvalues as explained below.

\[C = \langle (x - \langle x \rangle)(x - \langle x \rangle)^T \rangle \]

\[C = T \Lambda T^T \]

The eigenvectors represent the direction of atomic motions and the corresponding eigenvalues represent the magnitude of atomic fluctuations (Amadei et al. 1993; David and Jacobs 2014; Issack et al. 2012; Stepanova 2007).

1.4. Free energy landscape

The free energy landscape of LKB1 in 2D was generated using g_anaeig and g_sham
programs available in Gromacs package 4.5 (Walter R. P. Scott 1999). Both PC1 and PC2 modes were selected as the reaction coordinates for the 2D representation of free energy.

\[G(pc1, pc2) = -k_B T \ln P(pc1, pc2) \]

Where, \(k_B \) is the Boltzmann constant, \(T \) is the temperature (300K) and \(P(pc1, pc2) \) is the probability distribution as a function of conformational sampling of reaction coordinates (Maisuradze et al. 2010; Tavernelli et al. 2003).
Figure S1

Superimposition of both crystal (PDB ID: 2WTK) and simulated (extracted at 30 ns) structures of LKB1(ATP)-STRAD\(\alpha\)(ATP) is shown in panel A and the total number of H-bonds formed between LKB1 and STRAD\(\alpha\) during simulation is plotted in panel B.
Figure S2

Superimposition of the crystal (colored in grey) and modeled (colored in pink and green) structures of LKB1(ATP)-STRADα(ATP).
Figure S3

Superimposition of the crystal (colored in grey) and modeled (colored in cyan, pink and green) structures of LKB1(ATP)-STRAD\(\alpha\)(ATP)-MO25\(\alpha\).

\textbf{RMSD 1.2Å}

Crystal MO25\(\alpha\) STRAD\(\alpha\)(Haddock) LKB1 (Haddock)
Table S1
The list of H-bonds formed in LKB1:STRADα and LKB1:MO25α. Both donor and acceptor of the H-bond are superscripted as D and A, respectively.

LKB1:STRADα (in the absence of MO25α)
ASN252^D ARG331^A
GLN251^D ARG74^A
LYS235^D THR189^A
GLN225^D GLU317^A
HIS223^D HIS154^A
GLU110^D ARG106^A
ASN109^D ARG106^A
ARG331^D ASN252^A
LYS191^D GLU110^A
GLY188^D ASP232^A
GLY187^D ASN252^A
GLN123^D GLU430^A
LYS122^D PHE431^A
TYR118^D ASP427^A
GLN112^D GLU110^A
ARG106^D GLU105^A
ARG106^D CY5107^A
ARG103^D ASP427^A
ARG74^D GLN250^A
ARG74^D GLN251^A

LKB1:MO25α
ALA284^D SER69^A
GLN251^D LEU72^A
ARG74^D GLN251^A

LKB1:MO25α
References

Amadei, A., A.B. Linssen and H.J. Berendsen. 1993. Essential dynamics of proteins. *Proteins* 17, no 4: 412-25.

Daniel R. Roe and Thomas E. Cheatham, I. 2013. Ptraj and cpptraj: Software for processing and analysis of molecular dynamics trajectory data. *Journal of chemical theory and computation* 9: 3084-95.

David, C.C. and D.J. Jacobs. 2014. Principal component analysis: A method for determining the essential dynamics of proteins. *Methods Mol Biol* 1084: 193-226.

Hunenberger, P.H., A.E. Mark and W.F. Van Gunsteren. 1995. Fluctuation and cross-correlation analysis of protein motions observed in nanosecond molecular dynamics simulations. *J Mol Biol* 252, no 4: 492-503.

Ichiye, T. and M. Karplus. 1991. Collective motions in proteins: A covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. *Proteins* 11, no 3: 205-17.

Issack, B.B., M. Berjanskii, D.S. Wishart and M. Stepanova. 2012. Exploring the essential collective dynamics of interacting proteins: Application to prion protein dimers. *Proteins* 80, no 7: 1847-65.

Kumari, R., R. Kumar, C. Open Source Drug Discovery and A. Lynn. 2014. G MMPBSA--a gromacs tool for high-throughput mm-pbsa calculations. *J Chem Inf Model* 54, no 7: 1951-62.

Maisuradze, G.G., A. Liwo and H.A. Scheraga. 2010. Relation between free energy landscapes of proteins and dynamics. *Journal of chemical theory and computation* 6, no 2: 583-95.

Stepanova, M. 2007. Dynamics of essential collective motions in proteins: Theory. *Phys Rev E Stat Nonlin Soft Matter Phys* 76, no 5 Pt 1: 051918.

Tavernelli, I., S. Cotesta and E.E. Di Iorio. 2003. Protein dynamics, thermal stability, and free-energy landscapes: A molecular dynamics investigation. *Biophys J* 85, no 4: 2641-9.

Walter R. P. Scott, P.H.H., Ilario G. Tironi, Alan E. Mark, Salomon R. Billeter, Jens Fennen, Andrew E. Torda, Thomas Huber, Peter Kruger, and Wilfred F. Van Gunsteren. 1999. The gromos biomolecular simulation program package. *The Journal of Physical Chemistry A* 103: 3596–607.