A LOCATION VALUE RESPONSE SURFACE MODEL
FOR MASS APPRAISING: AN “ITERATIVE” LOCATION
ADJUSTMENT FACTOR IN BARI, ITALY

Maurizio D’AMATO
1st Faculty of Engineering, Technical University - Politecnico di Bari, Via Calefati,
272 - 70122 Bari, Italy
E-mail: madamato@interfree.it; Tel.: +39 (0)80 9645267; Fax: +39 (0)80 0999777; Research Web:
www.noaves.com; Didactic web: http://mdamato.altervista.org

Received 6 June 2009; accepted 20 April 2010

ABSTRACT. The work is focused on a new model of mass appraising including location variable. A location adjustment factor derived from a mathematical iteration was compared to the location adjustment factor based on geostatistical techniques. The work compares three different linear MRA models. The first one uses the location blind linear MRA. The second integrates the linear MRA with a location adjustment factor calculated using spatial interpolation. The second alternative is an application of Location Value response surface models (O’Connor, 1982). It represents the first application of these models for mass appraising in Italy. The third approach introduces the Iterative Location Adjustment Factor. This is a factor which measure the influence of location derived from a mathematical iteration. Empirical results seem to prove the validity of Iterative Location Adjustment Factors in specific context with few observations.

KEYWORDS: Mass appraisal; Automated valuation models; Location; Location value response surface; Location adjustment factor

1. INTRODUCTION

Several authors pointed out the role of externalities and location in property values (Krantz et al., 1982; Hoch and Waddell 1993; Des Rosiers et al., 1996). Previous research focused on the problem of variability of house prices which remains unexplained in multiple regression models (Anselin and Can 1986; Dubin 1998). The consequences are for example: the presence of excessive multicollinearity among attributes, spatial autocorrelation among residuals; diminishing the stability of regression coefficients (Dubin 1988; Anselin and Rey 1991; Des Rosiers and Thériault, 1999). For this reason neighbourhood factors should consider submarket specifics (Adair et al., 1996). This problem is particularly relevant in real estate markets with a limited number of observations. This work proposes a different approach to location variable in mass appraising and automated valuation modelling. After the application of a traditional location blind MRA linear model, the works compare it with an application of Location Value Response Surface analysis in Italy. It is the first application of this kind of model to the Italian context. The third model derive the location factor from a mathematical iteration instead of geostatistical techniques. The empirical findings of the traditional LAf and the new Iterative Location Adjustment Factor converge on comparable solutions. The article is organized as follows: the first paragraph will give a brief outline of
Location Value Response Surface Models, in the second paragraph will be proposed the application of an Iterative Location Adjustment Factor for mass appraising. After a comparison among the automated valuation methods applied final remarks will be offered at the end.

2. LOCATION VALUE RESPONSE SURFACE MODELS

Location Value Response Surface (LVRS) Analysis has been introduced in US (O’Connor, 1982) for the first time for the appraisal of single family houses in Lucas County, and is different approach to fixed neighbourhoods or composite submarkets analysis (Ward et al., 2002). The application of this method requires spatial interpolation of property prices or error term. This method has been applied in the U.S. (Eichenbaum, 1989; Eichenbaum, 1995; Ward et al., 1999), in England (Gallimore et al., 1996), and Northern Ireland (McCluskey et al., 2000). The application of LVRS allows the appraiser to analyze the effect of location using Geographical Information Systems (GIS). Among different possible classifications it is possible to observe three main approaches to LVRS. A first approach (McCluskey et al., 2000) consists in calculating a location adjustment factor based on the spatial distribution of property prices or error term. This method has been applied in the U.S. and in Northern Ireland. A second approach is based on the measure of the variance between actual prices and predicted prices using a MRA model without location variable. This model will present greater value of forecasting error in some areas and lower value in other areas generating a contour map of errors instead of values. Using the error ratio related to under valuation or over valuation and the coordinates of each observation. The impact of each VIC on any property is determined using different possible measures of the distance from the property to the VIC (Eckert, 1990; Eckert et al., 1993). The response surface is depending on the VIC positions and the adopted distance measure. The third approach starts creates an interpolation grid, modelled to reflect the influence on each property of the location ratio factors within its proximity. The method has not been applied to residential flats. It has not been applied outside North America, Britain or Northern Ireland. This is the first application to Italian real estate market. A prerequisite is having sufficient amount of data in each zone of the area considered in order to produce the spatial interpolation. There are not a minimum number of observations but real estate market, especially in the Italian context presents a scarcity of data. Location Adjustment factor does not indicate the value of a certain location, but only the comparative location values for real property on coordinates and the distance of each property to each VIC. The predicted price is then divided by the average estimated price. As a consequence will be determined a local adjustment factor having a mean of 1. In particular better locations will have a factor greater than 1, while poorer locations will have a factor less than 1. This local adjustment factor varying from -1 to 1 will become a measure of impact of location in the final regression model whose predictability will be improved. In the case of Bari there is one only VIC and the area is quite homogeneous therefore the measure of distance was the physical distance. A second approach is based on the measure of the variance between actual prices and predicted prices using a MRA model without location variable. This model will present greater value of forecasting error in some areas and lower value in other areas generating a contour map of errors instead of values. Using the error ratio related to under valuation or over valuation and the coordinates of each observation. The impact of each VIC on any property is determined using different possible measures of the distance from the property to the VIC (Eckert, 1990; Eckert et al., 1993). The response surface is depending on the VIC positions and the adopted distance measure. The third approach starts creates an interpolation grid, modelled to reflect the influence on each property of the location ratio factors within its proximity. The method has not been applied to residential flats. It has not been applied outside North America, Britain or Northern Ireland. This is the first application to Italian real estate market. A prerequisite is having sufficient amount of data in each zone of the area considered in order to produce the spatial interpolation. There are not a minimum number of observations but real estate market, especially in the Italian context presents a scarcity of data. Location Adjustment factor does not indicate the value of a certain location, but only the comparative location values for real property
analysed. Spatial interpolation require the surface of the z variable (selling price or error term) to be continuous and the data value at any location can be estimated if sufficient information about the surface is given. In addition the z variable (selling price or error term) must be spatially dependent therefore the value at any specific location is related to the values of surrounding locations.

3. THE APPLICATION OF ITERATIVE LOCATION ADJUSTMENT FACTOR IN BARI, ITALY. DATA AND METHODS

In the residential real estate market of Bari the location factor have been built avoiding the construction of contour maps. In fact in some institutional context it may be not easy to collect data for several problems. In italian context neither real price nor characteristics are always clearly indicated in the transaction and the data are often incomplete. There are few organized databank of real transactions. Developing a Real Estate Market Observatory in order to test and apply mass appraisal-automated valuation models it is not a easy task in Italy. Real Estate Market Observatory founded in 1998 collects real transactions from several sources. It has groups of real estate transactions in several parts of the city of Bari in the south east of Italy. This kind of sample are often recurring in real estate markets without an institutional organization of property data. Although the number of observations are poor this works tries to explore the power of mathematical criterion of minimum square least of representing real estate market contexts like Italy with few data (Kauko and d’Amato, 2008). The work uses a sample of 20 observations in the administrative area of Carraisi Poggiofranco in Bari. These observations are related to residential dwellings in a semi-central location in the urban area of Bari. The list of 20 real observations is indicated in the paragraph 1.1 of the Appendix of this work.

In this work the sample has been analysed considering the following variables indicated in the Table 1.

Table 1. Variable considered in mass appraisal modelling

Variable	Description
PRICE	In Euro
DATE	Measured in month
ELEVATOR	Dichotomic variable assuming or not the presence of an elevator
BALCONY	Balcony measured in sq.m.
SQM	Square meters of the flat

The observations are located near an important park of the city of Bari. A first location blind linear multiple regression analysis has been selected among the possible forms to analyse the relationship between the PRICE as dependent variable and the other variables such as $\text{BALCONY}; \text{ELEVATOR}; \text{SQM};$ and DATE indicated in the Table 1. The linear model is the following formula (1).

\[
\text{PRICE} = 51.943,42 - 1545,46 \\
\text{DATE} + 1867,03 \text{ SQM} + 1547,10 \\
\text{BALCONY} + 37898,76 \text{ ELEVATOR} + \varepsilon \quad (1)
\]

The paragraph 1.2 of Appendix shows the output of linear regression model. It is possible to observe a good R^2 equal to 0.89 an acceptable test F of Fisher, a good performing t - Student Gossett test except for BALCONY variable. The output shows no presence of colinearity. The mean absolute percentage error whose formula is indicated in the formula (2) was calculated in order to test this first regression model.

\[
\text{MAPE} = \frac{100 \sum_{i=1}^{n} \frac{|\text{PS}_i - \text{AS}_i|}{\text{AS}_i}}{n} \quad (2)
\]

In the formula (2) PS means predicted selling price while AS indicated actual selling
price, \(n \) is the number of observations. The proposed linear regression model has a MAPE of 15.261\%. In order to improve the predictability of the model a location adjustment factor was considered in the model. The location of 20 observations in term of longitude and latitude in the area of Bari is indicated in the Table 2.

The geographic distribution of 20 observations in the urban context of Bari is indicated in the Figure 1. In the middle of area it is possible to observe the urban park “Largo 2 Giugno”.

Spatial correlation among the 20 observations was preliminary detected using Moran’s I (Moran, 1948; Moran, 1950) test. This index measures autocorrelation between values of the \(x \) vector. It ranges from -1 to +1 and each observation is only compared with its relevant neighbourhood. Positive Moran’s I indicates positive autocorrelation which means that high values for \(x \) or (market basket value or price per square meters) should be located near other high values while lower market basket values should be located near other lower market basket values.

Table 2. Geographic coordinates of the 20 observations
LATITUDE (Degrees)

1. Kennedy 1d
2. Morea 17
3. Petroni 102d
4. De Viti de Marco 20
5. Gabrieli 7
6. Morea 38
7. Kennedy 6
8. Benedetto XIII
9. Fanelli 206b
10. Fanelli 207
11. Salvemini 68
12. Gabrieli 12
13. Podgora
14. Petroni 91bis
15. Pavoncelli
16. via Podgora 83
17. via A. De Gasperi 401
18. v.le Resistenza 108
19. via lacini 5
20. via D. D’Orso 14
A significantly negative Moran’s I implies spatial heterogeneity, or that high values are near low, or vice versa. Moran’s test formula is indicated in the formula (3).

\[
I = \frac{N \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(x_i - \bar{x})(x_j - \bar{x})}{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij}(x_i - \bar{x})^2}
\]

where: \(x\) is the variable (the market basket value), and \(w_{ij}\) represents the set of neighbours \(j\) for observation \(i\).

In this case, as in previous examples in literature, inverse squared distance among the observations has been considered (Des Rosiers and Thériault, 1999) The final result showed positive autocorrelation assuming a value of 0.7954. A market basket value (say price per unit) has been calculated in order to produce a contour map. Contour map is a map created joining all the points having similar measure (similar price per square meter). The market basket value has been obtained dividing the actual property price by the square meters. In the following Figure 2 is indicated the contour map.

Starting from the spatial distribution of the market basket value it has been possible to observe the relationship between the price per unit of observations and their location through a linear semivariogram. The surface obtained allowed the application of an universal kriging to generate a surface in order to model

\[\text{Figure 1. Map of observations}\]

\[\text{Figure 2. Contour map of market basket}\]
location variable in this residential property market. Kriging is a spatial interpolation technique which relies on analysis of the spatial variance of a phenomenon. Spatial variability is used to build experimental variogram and observe means differentials between values. In this application the “regional” variable is the price per square meter (Cressie, 1993). Variograms are then formally approximated with a formal function. In this case the theoretical function is linear to obtain the best adjustment for value variations resulting from proximity. The universal kriging was carried out using SURFER 8.

Therefore a second MRA has been runned considering the value influence center clearly individuated in the kriging whose coordinates are indicated in the Table 3.

Table 3. Coordinates of Location Adjustment Factor

LATITUDE	LONGITUDE
41.1063629	16.88000012

This second linear regression model includes the physical distance between each point and the VIC previsously individuated in the Table 3 in the variable LAF or Location Adjustment Factor. In the paragraph 1.3 of Appendix is indicated the formula of physical distance between the coordinates of two points. The second regression model indicated in the formula (4).

\[
PRICE = 112290,19 - 1524,46 \\
\text{DATE} + 1567,08 \text{ SQM} + 1463,55 \\
\text{BALCONY} + 42204,36 \text{ ELEVATOR} + \\
51112,55 \text{LAF} + \epsilon
\]

\[(4)\]

The output of this regression model is indicated in the paragraph 1.4 of Appendix. The R² is 0.93, the F di Fisher test and the t-test of Student Gossett are both satisfying. The mean absolute percentage error is 11.08 with a significative improvement compared to the first MRA model presented in the formula (1).
This work proposed the research of a location adjustment factor without using geostatistical technique. For this reason a third linear regression model has been applied to the same sample of 20 observations selected in this work. The MRA model is indicated in the following formula (5).

\[
\text{PRICE} = \text{CONSTANT} + X_1 \text{DATE} + X_2 \text{SUI} + X_3 \text{BALCONY} + X_4 \text{ELEVATOR} + X_5 \text{ILAF} + \varepsilon
\]

The formula (5) has the same variables of formula (4) except for a new variable indicated as ILAF (Iterative Location Adjustment Factor) instead of LAF (Location Adjustment factor). This variable is the physical distance in km of the coordinates (longitude and latitude) of each point from a virtual point whose coordinates should be defined after a mathematical nonlinear iteration in order to reach the highest level of R^2. In the Appendix paragraph 1.3 is indicated the formula. After several iterations carried out through the command “Excel Solver” it has been possible to define an Iterative Location Adjustment Factor. It is Iterative because it is simply based on non linear iterations. The coordinates of this point (for this study we call it iterative location adjustment point) will vary in a mathematical iteration in order to select the appropriate Iterative Location Adjustment Factor. At this stage using solver command of Excel it is assumed the following goal function indicated in formula (6).

\[
\max f(x); \quad \max R^2
\]

where: R^2 is the well known coefficient of determination.

The constraints will regard the coordinates of the iterative location adjustment point. It will vary according to these constraints that must be applied to the coordinates. The value of these constraints are indicated in the Table 4.

Constraints for iterative location adjustment factor point selection	LATITUDE	LONGITUDE
min	41,098432	16,865226
max	41,106418	16,88289

In this way the virtual point to be individuated through non linear iterations is inside the area individuated by the coordinates of the points. Several iterations were carried out using the simple function Solver included in the well known MS Office Excel. The iterations selected an Iterative location Adjustment Point as VIC without using geostatistics techniques. The report of iterations is indicated in the Appendix with the paragraph 1.4. The iterative location adjustment factor has the coordinates indicated in the Table 5.

Iterative value influence center	LATITUDE	LONGITUDE
ITERATIVE value influence center	41,106418	16,88289

Therefore a third linear regression model was runned considering the same variable of model 4. In this model the term ILAF – Iterative Location Adjustment Factor indicates the distance among each point of the sample and the coordinates of the Iterative Value Influence Center indicated in the Table 5. The formula (7) shows the linear multiple regression model obtained.

\[
\text{PRICE} = 52,992,393 - 1528,46 \quad \text{DATE} + 1495,12 \quad \text{SQM} + 1763,11 \\
\text{BALCONY} + 36874,73 \quad \text{ELEVATOR} + 38093,64 \quad \text{ILAF} + \varepsilon
\]

(7)
The model indicated in the formula 6 is linear having the same characteristics of the model indicated in the formula (4). The variable ILAF has a positive marginal price. The t-student Gossett test of ILAF variable shows a satisfying a 3.429. The iteration indicated an undesired place near a crossroad with problem of traffic, noise and pollution. This is the reason why the marginal is positive. The unpleasant place can be easily individuated in the kriging of market basket value in the Figure 3. It is worth to notice the convergence between empirical findings of kriging technique and the iterations proposed. In the Appendix paragraph 1.5 are indicated the statistics of this third regression containing ILAF – Iterative Location Adjustment Factor. The R^2 is 94.0 the Fisher and the t-student Gossett tests are encouraging. The mean absolute percentage error is equal to 11.07. It presents a small improvement compared to the first model and to the second – Location Value Response Surface Model. The final Table 6 compares the three mass appraising models.

Table 6. Final comparison among the three regression models
I. Model
location
blind linear
R^2
MAPE

The comparison seems to confirm that the Iterative Location Adjustment Factor may represent an interesting tool to develop for implementing Mass Appraisal and Automated Valuation Systems.

4. FINAL REMARKS AND FUTURE DIRECTIONS OF RESEARCH

The works demonstrated that it is possible to produce an Iterative Location Adjustment Factor using a mathematical iteration instead of the well known geostatistical techniques. Among three different models the Iterative Location Adjustment Factor based on mathematical modelling showed and interesting performance. The iteration were carried out with a quite simple software like MS Office Excel using solver function. More complex analysis with more than one or two VICs may require the use of MathLab or Solver programming offered by Frontline. Further researches may verify the Iterative Location Adjustment Factor in area with more than one VIC and with different formal function from the linear one.

REFERENCES

Adair, A. S., Berry, J. N. and McGreal, S. W. (1996) Hedonic modelling, housing sub-markets and residential valuation, Journal of Property Research, 13(1), pp. 67–83. doi:10.1080/095999196368899

Anselin, L. and Can, A. (1986) Model comparison and model validation issues in empirical work on urban density functions, Geographical Analysis, 18, pp. 179–197.

Anselin, L. and Rey, S. (1991) Properties of tests for spatial dependence in linear regression models, Geographical Analysis, 23(2), pp. 112–131.

Cressie, N. (1993) Statistics for spatial data (Wiley series in probability and statistics). Wiley-Interscience, New York.

Des Rosiers, F., Lagana, A., Thériault, M. and Beaudoin, M. (1996) Shopping centres and house values: an empirical investigation, Journal of Property Valuation and Investment, 14(4), pp. 41–62. doi:10.1108/14635789610153461

Des Rosiers, F. and Thériault, M. (1999) House prices and spatial dependence: towards an integrated procedure to model neighborhood dynamics, Working Papers, Laval - Faculte des sciences de administration.
Dubin, R. A. (1988) Estimation of regression coefficients in the presence of spatially autocorrelated error terms, *Review of Economics and Statistics*, 70(3), pp. 466–474. doi:10.2307/1926785

Dubin, R. A. (1998) Predicting house prices using multiple listings data, *Journal of Real Estate Finance and Economics*, 17(1), pp. 35–59. doi:10.1023/A:1007751112669

Eckert, J. (Ed.) (1990) *Property appraisal and assessment administration*, The International Association of Assessing Officers, Chicago, IL.

Eckert, J., O'Connor, P. and Chamberlain, C. (1993) Computer-assisted real estate appraisal: a California savings and loan case study, *The Appraisal Journal*, LIX(4), pp. 524–532.

Eichenbaum, J. (1989) Incorporating Location into Computer-Assisted Valuation, *Property Tax Journal*, 8(2), pp. 151–169.

Eichenbaum, J. (1995) The location variable in world class cities: lessons from cama valuation in New York city, *Journal of Property Tax Assessment and Administration*, 1(3), pp. 46–60.

Gallimore, P., Fletcher, M. and Carter, M. (1996) Modelling the influence of location on value, *Journal of Property Valuation and Investment*, 14(1), pp. 6–19. doi:10.1108/14635789610107444

Hoch, I. and Waddell, P. (1993) Apartment rents: another challenge to the monocentric model, *Geographical Analysis*, 25(1), pp. 20–34.

Kauko, T. and d'Amato, M. (2009) *Mass appraising. An international perspective for property valuers*, Wiley Blackwell, London.

Krantz, D. P., Weaver, R. D. and Alter, T. R. (1982) Residential property tax capitalization: consistent estimates using micro-level data, *Land Economics*, 58(4), pp. 488–496. doi:10.2307/3145695

Moran, P. A. P. (1948) The interpretation of statistical maps, *Journal of the Royal Statistical Society Series B-Statistical Methodology*, 10, pp. 243–251.

Moran, P. A. P. (1950) Notes on continuous stochastic phenomena, *Biometrika*, 37(1-2), pp. 17–23. doi:10.1093/biomet/37.1-2.17

McCluskey, W. J., Deddis, W. G., Lamont, I. G. and Borst, R. A. (2000) The application of surface generated interpolation models for the prediction of residential property values, *Journal of Property Investment and Finance*, 18(2), pp. 162–176. doi:10.1108/14635780010324321

O'Connor, P. (1982) *Locational valuation derived directly from the real estate market with the assistance of response surface techniques*, Lincoln Institute of Land Policy.

Ward, R. D., Weaver, J. R. and German J. C. (1999) Improving models using geographic information systems/response surface analysis location factors, *Assessment Journal*, 6(1), pp. 30–38.

Ward, R. D., Guilford, J., Jones, B., Pratt, D. and German, J. C. (2002) Piecing together location: three studies by the Lucas County research and development staff, *Assessment Journal*, 9(5), pp. 15–48.

SANTRAUKA

GEOGRAFINĖS PADĖTIES VERTĖS STEBIMOJO PAVIRŠIAUS MODELIS MASINIAM TURTO VERTINIMUI: ITERACINIS GEOGRAFINĖS PADĖTIES KOREKCIJOS VEIKSUOZAS BARYJE (ITALIJA)

Maurizio D’AMATO

Darbe nagrinėjamas naujas masinio turto vertinimo modelis, apimantis geografinės padėties kintamąją. Iteraciniu būdu apskaičiuotas geografinis padėties korekcijos veiksnys yra mažai. Darbe nagrinėjamos naujas masinio turto vertinimo modelis, apimantis geografinės padėties kintamąją. Iteraciniu būdu apskaičiuotas geografinis padėties korekcijos veiksnys yra mažai. Darbe nagrinėjamas naujas masinio turto vertinimo modelis, apimantis geografinės padėties kintamąją. Iteraciniu būdu apskaičiuotas geografinis padėties korekcijos veiksnys yra mažai. Darbe nagrinėjamas naujas masinio turto vertinimo modelis, apimantis geografinės padėties kintamąją. Iteraciniu būdu apskaičiuotas geografinis padėties korekcijos veiksnys yra mažai. Darbe nagrinėjamas naujas masinio turto vertinimo modelis, apimantis geografinės padėties kintamąją. Iteraciniu būdu apskaičiuotas geografinis padėties korekcijos veiksnys yra mažai.

Santrauka

Geografinės padėties vertės stebimojo paviršiaus modelis masiniam turto vertinimui: iteracinis geografinės padėties korekcijos veiksnys baryje (Italia)

Maurizio D’Amato

Darbe nagrinėjamos naujas masinio turto vertinimo modelis, apimantis geografinės padėties kintamąją. Iteraciniu būdu apskaičiuotas geografinis padėties korekcijos veiksnys yra mažai. Darbe nagrinėjamos naujas masinio turto vertinimo modelis, apimantis geografinės padėties kintamąją. Iteraciniu būdu apskaičiuotas geografinis padėties korekcijos veiksnys yra mažai. Darbe nagrinėjamos naujas masinio turto vertinimo modelis, apimantis geografinės padėties kintamąją. Iteraciniu būdu apskaičiuotas geografinis padėties korekcijos veiksnys yra mažai. Darbe nagrinėjamos naujas masinio turto vertinimo modelis, apimantis geografinės padėties kintamąją. Iteraciniu būdu apskaičiuotas geografinis padėties korekcijos veiksnys yra mažai. Darbe nagrinėjamos naujas masinio turto vertinimo modelis, apimantis geografinės padėties kintamąją. Iteraciniu būdu apskaičiuotas geografinis padėties korekcijos veiksnys yra mažai.
APPENDIX

1.1. List of 20 observations, residential real estate transactions in the real estate market of Bari

SQM	BALCONY	ELEV	DATE	PRICE
100,00	25,00	1,00	85	€ 198,000,00
65,00	14,00	1,00	78	€ 113,620,00
85,00	16,70	1,00	92	€ 123,970,00
71,00	7,90	1,00	86	€ 110,000,00
54,00	9,50	1,00	108	€ 74,890,00
90,00	27,00	1,00	111	€ 103,000,00
62,50	23,00	1,00	103	€ 69,720,00
75,00	6,60	1,00	87	€ 74,890,00
90,00	7,00	1,00	90	€ 163,944,06
135,00	24,00	1,00	64	€ 293,000,00
130,00	10,00	1,00	86	€ 201,418,00
95,00	10,00	1,00	75	€ 144,607,93
72,00	17,00	1,00	62	€ 130,000,00
85,00	0,00	0,00	89	€ 65,000,00
75,60	21,00	0,00	107	€ 77,469,00
95,00	10,00	1,00	75	€ 144,608,00
85,00	9,45	0,00	79	€ 103,000,00
85,00	3,35	0,00	67	€ 103,290,00
80,00	10,00	1,00	62	€ 185,000,00
115,00	15,00	1,00	61	€ 280,000,00

1.2. SPSS output regression model on 20 observations in the residential real estate market of Bari

Variables Entered	Variables Removed	Method
SUI, ELEVATOR, BALCONY, DATE	.	Enter

a. All requested variables entered.
b. Dependent Variable: PRICE

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.844*	.713	.681	23828.43

a. Predictors: (Constant), SUI, ELEVATOR, BALCONY, DATE
1.3. Physical distance between two points A and B whose coordinates are \(A(a_1; b_1) \) and \(B(a_2; b_2) \)

\[
d(A, B) = \left[\arccos(\cos(a_1 - a_2) \cos(b_1) \cos(b_2) + \sin(b_1) \sin(b_2)) \right] \times 6360
\]
1.4. SPSS output regression model on 20 observations in the residential real estate market of Bari using location adjustment factor based on universal kriging

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.837	.695		18459.667

a. Predictors: (Constant), LAF, ELEVATOR, DATE, BALCONY, SUI
b. Dependent Variable: PRICE

ANOVA

Model	Sum of Squares	df	Mean Square	F	Sig.
Regression	7.162E10	5	1.432E10	41.989	.000*
Residual	4.776E9	14	3.411E8		
Total	7.838E10	19			

a. Predictors: (Constant), LAF, ELEVATOR, DATE, BALCONY, SUI
b. Dependent Variable: PRICE

Coefficients

Model	Unstandardized Coefficients	Standardized Coefficients	t	Sig.	Collinearity Statistics	
(Constant)	112290.186	43082.118	2.600	.021		
DATE	-1524.441	313.474	-4.822	.000	.733	1.560
ELEVATOR	42304.362	11162.066	3.781	.002	.896	1.168
BALCONY	1633.551	643.291	2.725	.039	.761	1.134
SUI	1557.088	246.866	6.272	.000	.663	1.508
LAF	-51112.559	15736.088	-3.400	.006	.917	1.223

a. Dependent Variable: PRICE

Residuals Statistics

	Minimum	Maximum	Mean	Std. Deviation	N
Predicted Value	41901.43	272453.03	139371.35	61396.277	20
Residual	-22490.205	32968.566	0.000	15054.252	20
Std. Predicted Value	-1.540	2.207	0.000	1.000	20
Std. Residual	-1.272	1.786	0.000	0.859	20

a. Dependent Variable: PRICE
1.5. Excel report on iteration – iterative location adjustment point calculation

Microsoft Excel 11.0 Rapporto valori
Data di creazione: 05/06/2009 20.27.20

Cella obiettivo (Max)	Nome	Valori originali	Valore finale
I41 DATE		0,940471283	0,940471283

Celle variabili	Nome	Valori originali	Valore finale
C4 Parco 2 Giugno LATITUDINE (Degrees)	41,10353295	41,10353295	
D4 Parco 2 Giugno LONGITUDINE (Degrees)	16,865226	16,865226	

Vincoli	Nome	Valore della cella	Formula	Stato	Tolleranza
C4 Parco 2 Giugno LATITUDINE (Degrees)	41,10353295	C4<=C27	Non vincolante	0,005100945	
D4 Parco 2 Giugno LONGITUDINE (Degrees)	16,865226	D4<=D27	Vincolante	0	
C4 Parco 2 Giugno LATITUDINE (Degrees)	41,10353295	C4<=C28	Non vincolante	0,002885055	
D4 Parco 2 Giugno LONGITUDINE (Degrees)	16,865226	D4<=D28	Non vincolante	0,017664	

1.6. SPSS output regression model on 20 observations in the residential real estate market of Bari using iterative location adjustment factor

Model Summary

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.370 a	.940	.912	18029.096

a. Predictors: (Constant), ILAF, BALCONY, DATE, ELEVATOR, GOM
b. Dependent Variable: PRICE

ANOVA

Model	Sum of Squares	df	Mean Square	F	Sig.	
1	Regression	7.184E10	5	1.437E10	44.385	.0002
	Residual	4.551E9	14	3.250E8		
	Total	7.639E10	19			

a. Predictors: (Constant), ILAF, BALCONY, DATE, ELEVATOR, GOM
b. Dependent Variable: PRICE
Coefficients

Model	Unstandardized Coefficients	Standardized Coefficients	t	Sig		
		B	Std. Error	Beta	t	Sig
1	(Constant)	52662.268	37098.166	1.368	1.042	
DATE		-1296.408	305.963	.881	-4.295	.000
ELEVATOR		36674.732	10023.266	.233	3.407	.004
BALCONY		1763.112	630.586	.210	2.788	.014
BD		1495.121	251.233	.491	5.951	.000
ILAF		36065.840	11108.446	.255	3.429	.004

a Dependent Variable: PRICE

Residuals Statistics

Predicted Value	Minimum	Maximum	Mean	Std Deviation	N
Residual	-23540.764	26855.277	.000	15476.008	20
Std. Predicted Value	-1.443	2.321	.000	1.000	20
Std. Residual	-1.411	1.477	.000	.858	20

a Dependent Variable: PRICE