SALT spectroscopic observations of galaxy clusters detected by ACT and a Type II quasar hosted by a brightest cluster galaxy

Brian Kirk, Matt Hilton, Catherine Cress, Steven M. Crawford, John P. Hughes, Nicholas Battaglia, J. Richard Bond, Claire Burke, Megan B. Gralla, Amir Hajian, Matthew Hasselfield, Adam D. Hincks, Leopoldo Infante, Arthur Kosowsky, Tobias A. Marriage, Felipe Menanteau, Kavilan Moodley, Michael D. Niemack, Jonathan L. Sievers, Cristóbal Sifón, Susan Wilson, Edward J. Wollack, and Caroline Zunckel

1 INTRODUCTION

Clusters of galaxies mark the highest density regions of the Universe at mega parsec scales. By charting the evolution of their num-
number density as a function of mass and redshift, one is able to obtain constraints on cosmological parameters, including the amount of dark matter and dark energy in the Universe (e.g., Vikhlinin et al. 2009; Mantz et al. 2010; Sehgal et al. 2011; Benson et al. 2013; Hasselfield et al. 2013; Planck Collaboration 2013). However, cluster mass – which is the property predicted by N-body simulations of cold dark matter – is not a directly measurable quantity, and must instead be inferred from the observable properties of the clusters. This has led to many studies that derive mass–observable scaling relations using a wide variety of observables including, optical richness (e.g., Rozo et al. 2009); X-ray luminosity and temperature (e.g., Vikhlinin et al. 2006); and Sunyaev-Zel’dovich effect signal (e.g., Sifón et al. 2013).

The discovery of new clusters from large area surveys using the Sunyaev-Zel’dovich effect (SZ; Sunyaev & Zel’dovich 1970) began only in recent years (e.g., Staniszewski et al. 2009; Vanderlinde et al. 2010; Marriage et al. 2011; Reichardt et al. 2013; Planck Collaboration et al. 2013; Bleem et al. 2014). The SZ effect is the inverse Compton scattering of cosmic microwave background photons by hot (10^7 K) gas trapped within the deep gravitational potential wells of massive galaxy clusters. It is almost redshift independent, and in principle, it allows the discovery of all clusters in the Universe above a mass limit set by the noise properties of the SZ survey (see, e.g., Birkinshaw 1999; Carlstrom et al. 2002). In addition, the SZ signal, usually denoted by the integrated Comptonisation (Y) parameter, has been shown to correlate with cluster mass, with relatively small scatter (e.g., Planck Collaboration et al. 2011; Hoeft et al. 2012; Sifón et al. 2013). Despite this, mass–calibration is the main contribution to the error budget of current cosmological studies using SZ-selected cluster samples (e.g., Sehgal et al. 2011; Hasselfield et al. 2013; Reichardt et al. 2013; Planck Collaboration 2013; Bocquet et al. 2014), and so further work in this area is clearly needed.

In this paper, we present the results of a pilot follow-up study of SZ-selected clusters detected by the Atacama Cosmology Telescope (ACT; Swetz et al. 2011) conducted using the Robert Stobie Spectrograph (RSS; Burgh et al. 2003) on the Southern African Large Telescope (SALT; Buckley et al. 2006). The goals of this programme were to obtain spectroscopic redshifts and dynamical mass estimates through velocity dispersions for ACT clusters, with the aim of increasing the sample of clusters for our calibration of the Y–mass relation (Sifón et al. 2013; see Hasselfield et al. 2013 for joint constraints on the dynamical mass scaling relation and cosmological parameters). The structure of this paper is as follows. We briefly describe the ACT cluster sample and the design, execution, and reduction of the SALT spectroscopic observations in Section 2. Section 3 presents the cluster redshifts and velocity dispersions. We compare the properties of the clusters studied here to previous observations of SZ clusters in Section 4 and summarise our findings in Section 5.

We assume a cosmology with $\Omega_m = 0.3$, $\Omega_{\Lambda} = 0.7$, and $H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1}$ throughout. All magnitudes are on the AB system (Oke 1974), unless otherwise stated.

2 OBSERVATIONS AND ANALYSIS

2.1 Cluster sample

The clusters targeted for SALT observations were drawn from the SZ-selected sample constructed by the ACT team (Hasselfield et al. 2013; Menanteau et al. 2013). ACT (Swetz et al. 2011) is a 6 m telescope located in northern Chile that observes the sky in three frequency bands (centred at 148, 218, and 277 GHz) simultaneously with arcminute resolution.

ACT surveyed two regions of the sky, of which 755 deg2 have been searched for SZ galaxy clusters. During 2008, ACT observed a 455 deg2 patch of the Southern sky, centred on $\delta = -55$ deg, detecting a total of 23 massive clusters that were optically confirmed using 4 m class telescopes (Menanteau et al. 2010; Marriage et al. 2011). From 2009–2010, ACT observed a 504 deg2 region centred on the celestial equator, an area chosen due to its complete overlap with the deep $(r \approx 23.5 \text{ mag})$ optical data from the 270 deg2 Stripe 82 region (Annis et al. 2011) of the Sloan Digital Sky Survey (SDSS; Abazajian et al. 2009; Hasselfield et al. 2013) describes the construction of the SZ cluster sample from the 148 GHz maps (see Dünner et al. 2013 for a detailed description of the reduction of the ACT data from timestreams to maps). Optical confirmation and redshifts for these clusters are reported in Menanteau et al. (2013), using data from SDSS and additional targeted optical and IR observations obtained at Apache Point Observatory. All 68 clusters in the sample have either photometric redshift estimates, or spectroscopic redshifts (largely derived from SDSS data). The sample spans the redshift range $0.1 < z < 1.4$, with median $z = 0.5$.

In this pilot study with SALT, we targeted seven of the equatorial ACT clusters detected with reasonably high signal-to-noise ratio ($4.6 < S/N < 8.3$) and at moderate redshift ($z \approx 0.4$), in order to ensure that targeted galaxies would be bright enough for successful absorption line redshift measurements given the capabilities of the RSS instrument at the time of the observations.1 Sifón et al. (in prep.) will present observations of a further 21 ACT equatorial clusters observed with the Gemini telescopes.

2.2 Spectroscopic observations

We conducted observations of the seven target ACT clusters with RSS in multi-object spectroscopy (MOS) mode, which uses custom designed slit masks. Given that SALT is located at Sutherland where the median seeing is 1.3″ (Catala et al. 2013), we chose to use slitlets with dimensions of $1.5'' \times 10''$ length. The latter was chosen to ensure reasonably accurate sky subtraction given these seeing conditions. The RSS has an 8″ diameter circular field of view, and with these slit dimensions we found we were able to target 19-26 galaxies in each cluster field per slit mask. We selected 3-4 bright (15 – 17.5 magnitude in the r band) stars per cluster field for alignment of the slit masks during acquisition.

The slit masks were designed using catalogues extracted from the 8th data release of the SDSS (SDSS; Aihara et al. 2011). We centred each slit mask on the Brightest Cluster Galaxy (BCG) coordinates listed in Menanteau et al. (2013) and estimated the colour of the red-sequence from visual inspection of the colour-magnitude diagrams. We used this information to define target galaxy samples for each cluster, prioritising the selection of galaxies with magnitudes fainter than the BCG and with colour bluer than our estimate of the red-edge of the red-sequence (note that these colour - magnitude cuts vary from cluster-to-cluster due to their slightly different redshifts). We then proceeded to assign slits to target galaxies in an automated fashion using an algorithm that prioritised objects closer to the cluster centre (in practice, this ensured that the number of objects whose spectra were centred horizontally on the detector

1 At the time of writing (September 2014), RSS is undergoing refurbishment that aims to increase its throughput considerably.
The CS and GA columns indicate the RSS camera station and grating angle used respectively. Slitlets in all masks were 1.5
subsequent observations, we obtained 4
block for our first observations in July-September 2012. For some
Table 1.

Program	Target	Mask	N\textsubscript{slits}	Frames (sec)	CS (deg)	GA (deg)	Airmass	Seeing (arcsec)	Date(s) (UT)
2012-1-RSA_UKSC_RU-001	J2058.8+0123	1	23	2 × 975	28.75	14.375	1.8	1.6	2012 Jul 16
2012-1-RSA_UKSC_RU-001	J2058.8+0123	2	22	2 × 975	28.75	14.375	1.3	1.5	2012 Jul 24
2012-1-RSA_UKSC_RU-001	J2058.8+0123	3	22	2 × 975	28.75	14.375	1.3	1.4	2012 Sep 06
2012-2-RSA_UKSC_RU-001	J0320.4+0032	1	25	2 × 975	28.75	14.375	1.3	1.3	2012 Nov 10
2012-2-RSA_UKSC_RU-001	J0320.4+0032	2	26	4 × 975	28.75	14.375	1,1,3	0.9,1.4	2012 Nov 13, 15
2012-2-RSA_UKSC_RU-001	J0320.4+0032	3	22	4 × 975	28.75	14.375	1.3	1.3	2012 Nov 16
2012-2-RSA_UKSC_RU-001	J0320.4+0032	3	22	4 × 975	28.75	14.375	1,1,3	1,1,3	2012 Nov 15, 16
2013-1-RSA_UKSC_RU-001	J0045.2-0152	1	26	4 × 975	32.50	16.250	1,2,1,2	1,2,1,4	2013 Sep 01, 05
2013-1-RSA_UKSC_RU-001	J0045.2-0152	2	25	2 × 975	32.50	16.250	1.2	1.5	2013 Sep 25
2013-2-RSA_RU-002	J0156.4-0123	1	25	2 × 975	31.00	15.50	1.2	1.6	2013 Nov 02
2013-2-RSA_RU-002	J0156.4-0123	3	21	2 × 975	31.00	15.50	1.3	1.3	2014 Jan 03
2013-2-RSA_RU-002	J0348.6-0028	1	25	2 × 975	28.75	14.375	1.2	1.4	2013 Nov 03
2013-2-RSA_RU-002	J0348.6-0028	2	23	2 × 975	28.75	14.375	2.0	1.9	2014 Jan 01
2013-2-RSA_RU-002	J0348.6-0028	3	23	4 × 975	28.75	14.375	1,1,3	1,5,0,8	2013 Nov 04, 08
2013-2-RSA_RU-002	J0348.6-0028	4	19	4 × 975	28.75	14.375	1,1,3	1,4,1,5	2013 Dec 29, 30
2013-2-RSA_RU-002	J0342.7-0017	1	22	2 × 975	28.00	14.000	1.2	1.3	2014 Jan 03

array was maximised). The final masks were made using the PySLITMASK tool, part of the PySALT package (Crawford et al. 2010). We designed multiple masks for each target, although not all masks were observed.

The RSS observations were conducted using the pg0900 Volume Phase Holographic (VPH) grating. We set the RSS camera station and grating angle to centre the wavelength coverage at the expected wavelength of D4000 for each cluster, since each cluster had either a spectroscopic or photometric redshift measurement (Menanteau et al. 2013). The observing set up for z \approx 0.3 clusters (i.e., most clusters in this sample; camera station 28.75°, grating angle 14.375°) results in dispersion 0.98 Å per binned pixel (2 × 2 binning) with 4000 – 7000 Å wavelength coverage. This results in a resolution of \sim 4 Å. There are two gaps in the spectral coverage due to physical gaps between three CCD chips that read out the dispersed spectra.

The design of SALT limits observations of objects on the celestial equator to approximately 3200 sec long intervals (referred to as observing blocks or tracks). In each observing block the position of the tracker must be reset and the object re-acquired, the mask must be aligned, and flats and arcs must be obtained. These operations incur significant overhead (\approx 1200 sec in total per block). We therefore obtained 2 × 975 sec RSS exposures per observing block for our first observations in July-September 2012. For some subsequent observations, we obtained 4 × 975 sec exposures by observing each mask in two observing blocks. Note that SALT is a queue-scheduled telescope and observations were obtained (sometimes of the same mask) on different nights throughout each observing semester. Table 1 presents a summary of the observations.

2.3 Spectroscopic data reduction

A combination of PySALT and IRAF tasks were used to reduce the spectra. PySALT is a suite of PyRAF tools for the reduction and analysis of data obtained from the RSS instrument mounted on SALT (see Crawford et al. 2010). PySALT tasks were used to prepare the image headers for the pipeline; apply CCD amplifier gain and crosstalk corrections; subtract bias frames; perform cleaning of cosmic-rays; apply flat-field corrections; create mosaic images; and extract the data for each target based on the slit mask geometry. IRAF tasks were then used to determine a wavelength dispersion function from a calibration lamp (Xenon or Argon); fit and transform the arc dispersion to the science frames; apply a background subtraction to each slitlet; the value of which is determined by a constant sampling area across the dispersion axis; combine images; and extract one dimensional spectra. For combined images, a maximum wavelength shift of 0.2 Å was measured between nights for observations of the same objects, well within the spectrograph resolution.

2.4 Galaxy redshift measurements

Galaxy redshifts were measured by cross-correlating the spectra with SDSS galaxy spectral templates using the RVSAO/XCSAO package for IRAF (Kurtz & Mink 1998). We ran the cross-correlation repeatedly with starting redshifts spanning 0 < z < 1 in intervals of \Delta z = 0.0001 for six different templates. We selected the redshift with the highest correlation coefficient as the best measurement for the given template. This method provided six possible redshifts per galaxy spectrum. The final redshift measurement for each galaxy was selected from these six candidate redshifts after visual inspection of the 1d and 2d spectra by two or more of the co-authors.

2 The PySALT user package is the primary reduction and analysis software tools for the SALT telescope (http://pysalt.salt.ac.za/).

3 IRAF is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

html
We defined a quality rating system \(Q \) to describe the confidence level of each redshift measurement (e.g., Wirth et al. 2004). Galaxies exhibiting multiple absorption and/or emission features were given a \(Q = 4 \) rating; \(Q = 3 \) corresponds to galaxies exhibiting a single, strongly detected feature; galaxies showing the proper \(z \) range but exhibiting no strong features were rated \(Q = 2 \); and galaxies with clearly spurious \(z \) values (where the cross correlation failed due to poor signal-to-noise) and no strong features were rated \(Q = 1 \). Redshift measurements with \(Q < 3 \) were as a result of poor signal-to-noise spectra, slits blocked by the guide probe, or telescope malfunctions such as slit mask alignment failure resulting in manual alignment.

Spectra of members of each cluster, overlapped with best match spectral templates at the measured redshifts, are presented in Fig. 1 for ACT-CL J0320.4+0032 and Figs. A1–A6 in the Appendix for the other clusters in the sample. In these figures, the left hand panel shows a \(9 \times 9' \) false colour SDSS optical image (\(g, r, i \)) and the right hand panel, black lines correspond to SALT RSS spectra (smoothed with a 10 pixel boxcar), while red lines show the best match redshifted SDSS spectral template in each case. The displayed object spectra span a representative range in \(g \)-band magnitude, as indicated in the figure, and the spectrum for the brightest object is that of the BCG. In this case, the BCG (object 330) is a Type II quasar (see Section 4.2; it is highlighted with the yellow circle in the image). Similar figures for the other clusters can be found in the Appendix.

Since this project is one of the first to use the MOS mode of RSS to collect galaxy redshifts, here we quantify our efficiency for the benefit of others planning to use this instrument for similar work. Fig. 2 shows the redshift measurement success rate as a function of galaxy \(r \)-band magnitude, where we define a successful redshift measurement as one with \(Q \geq 3 \) (note that only galaxies with \(Q \geq 3 \) are included in the sample used to measure cluster velocity dispersions, as described in Section 3 below). Overall, we successfully measured redshifts for 191 out of 372 galaxies targeted (51 per cent), spanning the \(r \)-band magnitude range 17.9–23.9; the top panels in Fig. 2 show the magnitude distributions of the target galaxies.

As described in Section 2.2 above, the design of SALT limits observations on the celestial equator to tracks of 3200 sec duration, and we observed some masks with one SALT track per target (obtaining \(2 \times 975 \) sec of integration per mask), and others with two SALT tracks per target (obtaining \(4 \times 975 \) sec of integration per mask). The columns of Fig. 2 show how the redshift success rate changes depending on whether one or two tracks were used. We see that the two-track observations result in more than double the efficiency for measuring redshifts for galaxies with \(21 < r \)-band mag < 19.
23. In two-track observations, we successfully measured redshifts for 53 per cent of galaxies with $21 < r$-band mag < 22 and 18 per cent of galaxies with $22 < r$-band mag < 23. The magnitude limit corresponding to redshift measurement efficiency of 70 per cent is $r < 21$ for one track, compared to $r < 21.4$ for the two track observations. Note that none of the above estimates take into account possible variation in observing conditions between the one versus two track observations, although the seeing was similar (see Table I).

3 RESULTS

In this Section, we describe our measurements of cluster properties: redshift, velocity dispersion, and dynamical mass. Throughout we used only galaxies with secure redshifts ($Q \geq 3$). Where needed, we adopt the coordinates of the BCG (as listed in Menanteau et al. 2013) as the cluster centre.

3.1 Cluster redshift measurements

We used the biweight location (Beers et al. 1990) to estimate cluster redshifts. Firstly, we remove obvious foreground and background galaxies not physically associated with the cluster by applying a 3000 km s$^{-1}$ cut relative to the initial cluster redshift (as listed in Menanteau et al. 2013) and removed any galaxies determined to be interlopers (see Section 3.2 below). We then calculated the biweight location from the remaining galaxies. This procedure was iterated until the estimate for the redshift of the cluster converged. Peculiar velocities for galaxies were then calculated relative to this newly adopted cluster redshift estimate.

3.2 Determining cluster membership

Not all of the galaxies targeted in the SALT RSS field of view are identified as cluster members. For this work, we used an adaptation of the fixed-gap method to identify cluster members. This is similar to the procedure used by Fadda et al. (1996) and further refined in Crawford et al. (2014). We define the peculiar velocity of a galaxy within a cluster as

$$\Delta v_i = c \frac{(z_i - \bar{z})}{(1 + \bar{z})},$$

where Δv_i is the peculiar velocity of the ith galaxy, z_i is its redshift, and \bar{z} is the redshift of the cluster as estimated using the biweight location (see Section 3.1 above).

To find the interlopers, we sorted all galaxies by their peculiar velocities and identified any adjacent galaxies (in velocity space) with gaps greater than 1000 km s$^{-1}$. De Propris et al. (2002) argue that galaxy clusters correspond to well-defined peaks with respect to recessional velocity and that gaps between successive galaxies of more than 1000 km s$^{-1}$ indicate interlopers. We iteratively remove...
Table 2

Spectroscopic redshifts of galaxies in the direction of ACT-CL J0320.4+0032 measured using SALT RSS: m_v is the SDSS r-band magnitude of the object; z is the redshift; Q is the redshift quality flag (see Section [3.4]). Em. Lines? indicates objects which show emission lines in their spectra (e.g., [OIII]λ3727); Member? indicates objects which are determined to be cluster members (see Section [3.5]). r (Mpc) indicates the projected distance from the ACT cluster position as given by Hasselfield et al. (2013). Member galaxies in Mask ‘S’ have redshifts from SDSS DR10 (Ahn et al. 2013). Similar tables for the other clusters are found in the Appendix.

ID	Mask	RA (J2000)	Dec. (J2000)	m_v	z	Q	Em. Lines?	Member?	r (Mpc)
311	2	03°20'29"130	+00°32'34"61	21.02	0.3790	4	✓ ✓	✓ ✓	0.07
10	S	03°20'30"096	+00°32'10"41	19.69	0.3883	4	✓	✓	0.07
324	2	03°20'29"602	+00°32'03"99	21.73	0.3884	4	✓ ✓	✓ ✓	0.10
6	S	03°20'30"857	+00°32'42"80	19.46	0.3939	4	✓ ✓	✓ ✓	0.13
356	3	03°20'30"772	+00°31'59"27	21.92	0.3943	4	✓ ✓	✓ ✓	0.15
330	1	03°20'29"788	+00°31'33"60	18.54	0.3836	4	✓ ✓	✓ ✓	0.16
286	2	03°20'28"141	+00°31'43"24	22.06	0.4725	3
360	1	03°20'30"907	+00°31'37"50	21.75	0.3827	3	✓ ✓	✓ ✓	0.26
319	1	03°20'29"372	+00°33'21"18	19.86	0.3922	4	✓ ✓ ✓	✓ ✓ ✓	0.30
396	3	03°20'32"770	+00°31'44"87	20.32	0.3842	4	✓ ✓	✓ ✓	0.31

3.3 Determining velocity dispersion and mass

We used the biweight scale estimator (described in Beers et al. [1990]) to calculate the cluster velocity dispersion σ from the galaxies selected as members. Similarly to Sifón et al. [2013], we convert our velocity dispersion measurements into estimates of dynamical mass by applying a scaling relation measured in cosmological simulations. Sifón et al. [2013] used the relation of Evrard et al. [2008], derived from dark matter only simulations, for this purpose. This assumes that galaxy velocities follow the same relation as dark matter particles in N-body simulations. However, it has been shown (e.g., Carlberg [1993], Colín et al. 2000) that the velocity of subhalos is biased with respect to the dark matter. So, instead we adopt the relation of Munari et al. [2013], which was calibrated using subhalo...
los and galaxies,
\[\sigma_v (\text{km s}^{-1}) = A \left(\frac{0.7 \times E(z) M_{200c}}{10^{14} \text{M}_\odot} \right)^\alpha, \]

where \(A = (1117 \pm 4.2) \text{ km s}^{-1} \), \(\alpha = 0.364 \pm 0.0021 \) and \(E(z) = \sqrt{\Omega_m(1+z)^3 + \Omega_k} \) (the factor of 0.7 accounts for the assumption of \(H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1} \) in this work). The parameters \(A \) and \(\alpha \) are the normalisation and slope of the relation obtained from a cosmological hydrodynamical simulation including a model for AGN feedback, using galaxies with stellar masses \(> 3 \times 10^9 \text{M}_\odot \) as the velocity tracers (see their Table 1). In comparison to the \(\sigma_v \) relation used in Sifón et al. (2013), equation (2) results in masses which are 16–26\% smaller for a given velocity dispersion. This is due to dynamical friction and tidal disruption and mergers, which act on galaxies but not on dark matter particles (Munari et al. 2013). This issue will be discussed in detail in the context of the ACT sample, with reference to numerical simulations, in Sifón et al., in preparation.

For convenience, and comparison with other results, we convert our \(M_{500c} \) estimates into \(M_{500c} \), following the appropriate \(c - M \) relation given in Duffy et al. (2008). We estimated uncertainties on all cluster properties by bootstrap resampling 5000 times.

3.4 Cluster properties

Table 3 lists the properties we have measured for each cluster, i.e., number of members, redshift \(z \), velocity dispersion \(\sigma_v \), dynamical mass \(M_{200c} \) (\(M_{500c} \)) and associated radius \(R_{200c} \) (\(R_{500c} \)), and SZ Comptonisation parameter \(Y_{500c} \) (as listed in Hasselfield et al. 2013). The clusters range in \(M_{200c} \) from \((5.1 - 20.0) \times 10^{14} \text{M}_\odot \) and span the redshift range \(0.3 < z < 0.55 \). We report spectroscopic redshifts for the first time in the cases of ACT-CL J0156.4-0123 and ACT-CL J2058.8+0123. These new redshift measurements are in excellent agreement with the photometric redshift estimates for these systems recorded in Menanteau et al. (2013). Note that we do not report a velocity dispersion measurement and dynamical mass for J0156.4-0123, as only 5 spectroscopic members were identified in our observations.

4 DISCUSSION

4.1 Previous measurements of the SZ \(Y \)-mass relation

As noted in Section 3.3 in deriving dynamical mass estimates of the clusters observed with SALT we have followed the approach of Sifón et al. (2013), who observed 16 southern ACT clusters with Gemini and the VLT. However, in this work we have adopted the scaling relation of Munari et al. (2013), rather than Evrard et al. (2008), for the conversion of velocity dispersion into mass. We present a comparison of the SALT clusters to the Sifón et al. (2013) sample in the \(Y_{500c} - M_{500c} \) plane in Fig. 3; note that for all clusters we use the \(Y_{500c} \) values reported in Hasselfield et al. (2013), and have converted the \(M_{200c} \) measurements for all clusters to \(M_{500c} \) using the \(c - M \) relation of Duffy et al. (2008).

As can be seen in Fig. 3 the ACT clusters observed with SALT occupy the same region of the \(Y_{500c} - M_{500c} \) plot as the Sifón et al. (2013) sample. Also plotted in Fig. 3 are some recent \(Y_{500c} - M_{500c} \) relations from the literature: the baseline mass calibration adopted in the Planck Collaboration (2013) cosmological study (calibrated from X-ray observations, and here we assume the hydrostatic bias parameter \(b = 0.2 \)); the relation of Marrone et al. (2012), derived from Sunyaev-Zel’dovich Array (SZA) observations of Local Cluster Substructure Survey (LoCuSS) clusters, which have mass estimates from gravitational weak lensing (Okabe et al. 2010); and the relation of Andersson et al. (2011), with masses measured from Chandra and XMM-Newton observations of South Pole Telescope clusters (Vanderlinde et al. 2010).

We find that with the adoption of the Munari et al. (2013) scaling relation, the ACT clusters scatter around the relations measured by Planck Collaboration (2013) and Andersson et al. (2011), which are both derived from X-ray observations (note however that in this work we do not correct for Malmquist-like bias as was done in Sifón et al., 2013). The data have a higher normalisation than is found in the weak-lensing based SZA/LoCuSS measurement (Marrone et al. 2012). If we had instead used the Evrard et al. (2008) \(\sigma_v \) scaling, the dynamical mass measurements would be 16–26\% higher, causing the majority of the ACT clusters to lie above all of these recent scaling relation measurements. Such a bias in the scaling relation normalisation would lead to larger inferred values for \(\sigma_v \) (the normalisation of the dark matter power spectrum) and \(\Omega_m \) in a cosmological analysis (see, e.g., the discussion in Hasselfield et al. 2013 where the impact of various different scaling relation assumptions is considered). This issue will be discussed in detail, with reference to results from cosmological simulations, in Sifón et al. (in prep.), which will present an updated fit to the \(Y_{500c} - M_{500c} \) relation using the full sample of 48 ACT clusters with velocity dispersion measurements from the literature, Gemini, SALT, and the VLT.

The cluster which deviates most from the southern ACT sample is ACT-CL J0320.4-0032 (the most massive cluster in this study), which has a somewhat lower \(Y_{500c} \) than expected given its
mass. Based on the uncertainty in its dynamical mass, it deviates from the [Planck Collaboration] (2013) \(M_{500} \sim M_{200} \) scaling relation by 2.3\%. If this has a physical (rather than statistical) cause, it could be due to substructure in the line of sight velocity distribution, and in turn the dynamical mass. More spectroscopic members need to be identified in order to test if this is the case. Alternatively, we know that the BCG of this cluster is a quasar host, and it may be possible that recent AGN activity has had some influence on the intracluster medium (ICM), and hence the SZ signal, although more data are needed to investigate this.

4.2 ACT-CL J0320.4-0032: a Type II quasar hosted in a Brightest Cluster Galaxy

As seen in Fig. 1 and noted in Section 2.4, the BCG in ACT-CL J0320.4-0032 has relatively broad emission lines, indicating AGN activity. This object has previously been identified as a candidate Type II quasar (i.e., an obscured AGN) in the catalogue of [Zakamska et al.] (2005), on the basis of the equivalent width of the \([\text{O} \text{II} \lambda 3727]\) line in its SDSS spectrum, and was subsequently observed with the Hubble Space Telescope in November 2006 (PI: H. Schmitt, HST Proposal 10880). [Villar-Martín et al.] (2012) conducted a study of the morphologies of Type II AGN hosts using these data, finding that the host galaxy (SDSS J032029.78+003153.5 in their catalogue) is an elliptical with a somewhat disturbed morphology, and possibly a double nucleus. Therefore it may be the case that the BCG has undergone a recent merging event, fuelling the AGN. The object is not detected as a 1.4 GHz source in either FIRST (Faint Images of the Radio Sky at Twenty-cent) [Becker et al. 1995] or NVSS (National Radio Astronomy Observatory Very Large Array Sky Survey) [Condon et al. 1998].

The BCG of ACT-CL J0320.4-0032 may be only the third case of a Type II quasar being discovered in a cluster, after IRAS 09104+4109 [Kleinmann et al. 1988; O’Sullivan et al. 2012] and the recent discovery that the central galaxy of the Phoenix Cluster at \(z = 0.596 \) is a Type II quasar [Ueda et al. 2013]. In the latter case, the quasar has evidently not yet stemmed the cooling of gas, as the central galaxy is also undergoing a starburst [McDonald et al. 2012; 2014]. The study of such rare systems is important for quantifying the effect of quasar-mode feedback on the ICM (see the review by Fabian 2012). It is well established that radio jets, triggered by radiatively inefficient, low levels of accretion onto supermassive black holes in BCGs, carve out cavities in the ICM (e.g., McNamara et al. 2004; Hlavacek-Larrondo et al. 2013); indeed, this is the main evidence we have for the influence of AGN activity on large scales. The gas that fuels radio mode AGN is thought to originate in the hot intracluster material, as supported by recent analyses indicating that radio AGN inhabit environments that support hot at-
mospheres (Gralla et al. 2014). Quasar-mode feedback, on the other hand, is radiatively efficient, associated with high accretion rates, drives ubiquitous winds (with velocities ~ 800 km s$^{-1}$). McElroy et al. (2014), and is thought to be responsible for the quenching of star formation in massive galaxies (e.g., Di Matteo et al. 2005; Croton et al. 2006; Bower et al. 2006). Evolution is expected from the quasar-mode to radio-mode (e.g., Churazov et al. 2005), with the former including a highly obscured stage that keeps the quasar hidden from view in the optical (e.g., Hopkins et al. 2005). Sometimes, radio-emitting bubbles are seen in association with Type II quasars, as in the case of the Teacup AGN (Harrison et al. 2014).

Therefore, with only a couple of other similar systems known, ACT-CL J0320.4-0032 may be an important system to study, in order to understand the evolution between these modes of feedback in very massive haloes. As noted above, the SZ signal for ACT-CL J0320.4-0032 is relatively low given its dynamical mass, although only at the 2.3σ level. In a study investigating radio-mode feedback, Gralla et al. (2014) found that the SZ effect associated with radio AGN host haloes is somewhat lower than expected from SZ-mass scaling relations. The possibility of suppression of the SZ signal by AGN feedback in this cluster (perhaps from previous radio-mode feedback episodes) could be investigated using X-ray observations (there are no data on this object in the Chandra or XMM-Newton archives), through measuring the cluster mass with X-ray proxies, and searching for evidence of cavities in the X-ray emission. If seen, this would indicate a previous radio-mode feedback episode. For the other two known Type II quasars hosted in cluster BCGs, we note that some evidence for cavities has recently been reported on the basis of Chandra observations of the Phoenix cluster (Hlavacek-Larrondo et al. 2014), but no cavities have yet been identified in IRAS 09104+4109 (Hlavacek-Larrondo et al. 2013). In performing such a study, care must be taken to separate the emission of the quasar from the cluster signal. Such observations, when combined with optical spectroscopy, can also be used to measure the obscuration of the nucleus (e.g., Jia et al. 2013).

Spatially resolved spectroscopic observations may also be used to investigate outflows from the quasar (e.g., Villar-Martín et al. 2012; McDonald et al. 2014; McElroy et al. 2014).

5 SUMMARY

We have conducted a pilot program of spectroscopic follow-up observations of galaxy clusters discovered via the SZ effect, by ACT in its equatorial strip survey, using the RSS instrument on SALT. We successfully measured secure redshifts for 191 out of 372 galaxies (overall 51 per cent efficiency) in 7 cluster fields, targeting galaxies with r-band magnitudes in the range 17.9–23.9, with between 1950–3900 sec of exposure time.

We measured the redshifts, velocity dispersions, and estimated dynamical masses of the clusters. We made the first spectroscopic redshift measurements for two systems, ACT-CL J0156.4-0123 (z = 0.456) and ACT-CL J2058.8+0123 (z = 0.327), finding these to be in excellent agreement with the photometric redshift estimates presented in Menanteau et al. (2013). Using a scaling relation from the cosmological hydrodynamical simulations of Munari et al. (2013) to convert velocity dispersion into mass, we found that the clusters range in mass (M_{500c}) from $(5 \times 10^{14} \text{M}_\odot)$ to $(2 \times 10^{15} \text{M}_\odot)$. The previous study of ACT cluster dynamical masses (Sifón et al. 2013) used the Evrard et al. (2008) scaling relation, based on the results of dark matter only simulations, to convert velocity dispersion into mass. The Munari et al. (2013)-based masses are 16–26 per cent smaller. We found that the SALT clusters occupy a similar region of the $Y_{500c} - M_{500c}$ plane to the Sifón et al. (2013) sample, and that they are in good agreement with recent measurements of the $Y_{500c} - M_{500c}$ relation measured based on X-ray observations. The ACT clusters are slightly more massive on average than would be expected if the Marrone et al. (2012) weak-lensing based $Y_{500c} - M_{500c}$ relation is used for comparison. A future study (Sifón et al., in prep.) of the complete sample of 48 ACT clusters with dynamical mass measurements from Gemini, SALT, and the VLT will present an updated measurement of the $Y_{500c} - M_{500c}$ relation, and consider in detail the potential sources of bias in the observational measurements through comparison with the results of numerical simulations.

In conducting this study, we also found that the BCG in ACT-CL J0320.4-0032 is host to a previously identified Type II quasar (Zakamska et al. 2003; Villar-Martín et al. 2012). However, these previous studies were not aware that this object is located in a massive cluster of galaxies, and it is, to our knowledge, only the third object of its kind discovered. Further follow-up observations of this object may help to illuminate the role played by quasar-mode feedback in massive clusters.

Overall, this study has proved to be a successful early use of SALT for extragalactic astronomy. These results, as well as continued efforts to improve the telescope and instrument performance, justify a more extensive use of SALT in the future for exploring higher z clusters, such as those that are being discovered with ACT-Pol (Naess et al. 2014).

ACKNOWLEDGMENTS

This work is based in large part on observations obtained with the Southern African Large Telescope (SALT). Funding for SALT is provided in part by Rutgers University, a founding member of the SALT consortium. BK, MHi and KM acknowledge financial support from the National Research Foundation and the University of KwaZulu-Natal. This work was supported by the U.S. National Science Foundation through awards AST-0408698 and AST-0965625 for the ACT project, as well as awards PHY-0858887 and PHY-1241379, along with awards AST-095810 to ABO and AST-1312380 to AK. Funding was also provided by Princeton University, the University of Pennsylvania, and a Canada Foundation for Innovation (CFI) award to UBC. ACT operates in the Parque Astronómico Atacama in northern Chile under the auspices of the Comisión Nacional de Investigación Científica y Tecnológica (CONICYT). Computations were performed on the GPC supercomputer at the SciNet HPC Consortium. SciNet is funded by the CFI under the auspices of Compute Canada, the Government of Ontario, the Ontario Research Fund – Research Excellence; and the University of Toronto. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration (see the SDSS-III web site for details).

REFERENCES

Abazajian K. N., Adelman-McCarthy J. K., Agüeros M. A., Allam S. S., Allende Prieto C., An D., Anderson K. S. J., Anderson
10 Kirk et al.

S. F., Annis J., Bahcall N. A., et al. 2009, ApJS, 182, 543
Ahn C. P., Alexandroff R., Allende Prieto C., Anders F., Andersson S. F., Anderton T., Andrews B. H., Aubourg E., Bailey S., Bastien F. A., et al. 2014, ApJS, 211, 17
Ahara H., et al., 2011, ApJS, 193, 29
Andersson K., et al., 2011, ApJ, 738, 48
Annis J., et al., 2011, ApJ submitted (arXiv:1111.6619)
Becker R. H., White R. L., Helfand D. J., 1995, ApJ, 450, 559
Beers T. C., Flynn K., Gebhardt K., 1990, AJ, 100, 32
Benson B. A., et al., 2013, ApJ, 763, 147
Birkhainw M., 1999, Physics Reports, 310, 97
Bleem E. B., Nordsieck K. H., Kobulnicky H. A., Williams T. B., Buckley D. A. H., Swart G. P., Meiring J. G., 2006, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 6267 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Completion and commissioning of the Southern African Large Telescope
Burgh E. B., Nordsieck K. H., Kobulnicky H. A., Williams T. B., O'Donoghue D., Smith M. P., Percival J. W., 2003, in Iye M., Moorwood A. F. M., eds, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 4841 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Prime Focus Imaging Spectrograph for the Southern African Large Telescope: optical design. pp 1463–1471
Carlberg R. G., 1994, ApJ, 433, 468
Carlstrom J. E., Holder G. P., Reese E. D., 2002, ARA&A, 40, 643
Catala L., Crawford S. M., Buckley D. A. H., Pickering T. E., Wilson R. W., Butterley T., Shepherd H. W., Marang F., Matshaya P., Fourie C., 2013, MNRAS, 436, 590
Churazov E., Sazonov S., Sunyaev R., Forman W., Jones C., Böhringer H., 2005, MNRAS, 363, L91
Colín P., Krüpfm A. A., Kravtsov A. V., 2000, ApJ, 539, 561
Condon J. J., Cotton W. D., Greisen E. W., Yin Q. F., Perley R. A., Taylor G. B., Broderick J. J., 1998, AJ, 115, 1693
Crawford S. M., Still M., Schellart P., Balona L., Buckley D. A. H., Dugmore G., Oulibs A. A. S., Kniazev A., Kotzé M., Loaring N., Nordsieck K. H., Pickering T. E., Potter S., Romero Colmanero E., Vaisanen P., Williams T., Zietsman E., 2010, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series Vol. 7737 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, PySALT: the SALT science pipeline
Crawford S. M., Wirth G. D., Bershady M. A., 2014, ApJ, 786, 36
Croton D. J., Springel V., White S. D. M., De Lucia G., Frenk C. S., Gao L., Jenkins A., Kauffmann G., Navarro J. F., Yoshida N., 2006, MNRAS, 365, 11
De Propris R., et al., 2002, MNRAS, 329, 87
Di Matteo T., Springel V., Hernquist L., 2005, Nature, 433, 604
Duffy A. R., Schaye J., Kay S. T., Dalla Vecchia C., 2008, MNRAS, 380, L64
Dünner R., et al., 2013, ApJ, 762, 10
Evrard A. E., Bialek J., Buscha M., White M., Habib S., Heitmann K., Warren M., Rasia E., Tormen G., Moscardini L., Power C., Jenkins A. R., Gao L., Frenk C. S., Springel V., White S. D. M., Diemond J., 2008, ApJ, 672, 122
Fabian A. C., 2012, ARA&A, 50, 455
Fadda D., Girardi M., Giuricin G., Mardirossian F., Mezzetti M., 1996, apj, 473, 670
Gralla M. B., et al., 2014, MNRAS, 445, 460
Harrison C. M., Thomson A. P., Alexander D. M., Bauer F. E., Edge A. C., Hogan M. T., Mullaney J. R., Swinbank A. M., 2014, ApJ submitted (arXiv:1410.4198)
Hasselfield M., et al., 2013, JCAP, 7, 8
Hlavacek-Larrondo J., et al., 2014, ApJ submitted (arXiv:1410.0025)
Hlavacek-Larrondo J., Fabian A. C., Edge A. C., Ebeling H., Allen S. W., Sanders J. S., Taylor G. B., 2013, MNRAS, 431, 1638
Hoeckstra H., Mahdavi A., Babel A., Bildfell C., 2012, MNRAS, 427, 1298
Hopkins P. F., Hernquist L., Martini P., Cox T. J., Robertson B., Di Matteo T., Springel V., 2005, ApJL, 625, L71
Jia J., Ptak A., Heckman T., Zakamska N. L., 2013, ApJ, 777, 27
Kleinmann S. G., Hamilton D., Keel W. C., Wyn Williams C. G., Eales S. A., Becklin E. E., Kurtz K. D., 1988, ApJ, 328, 161
Kurtz M. J., Mink D. J., 1998, PASP, 110, 934
Mantz A., Allen S. W., Rapetti D., Ebeling H., 2010, MNRAS, 406, 1759
Marriage T. A., et al., 2011, ApJ, 737, 61
Marrone D. P., Smith G. P., Okabe N., Bonamente 2012, apj, 754, 119
McDonald M., et al., 2012, Nature, 488, 349
McDonald M., Swinbank M., Edge A. C., Wilner D. J., Veilleux S., Benson B. A., Hogan M. T., Marrone D. P., McNamara B. R., Wei L. H., Bayliss M. B., Bautz M. W., 2014, ApJ, 784, 18
McElroy R., Groom M. S., Pracy M., Sharp R., Ho I., Medling A. M., 2014, MNRAS in press (arXiv:1410.6552)
McNamara B. R., Nulsen P. E. J., Wise M. W., Rafferty D. A., Carilli C., Sarazin C. L., Blanton E. L., 2005, Nature, 433, 45
Menanteau F., et al., 2010, ApJ, 723, 1523
Menanteau F., et al., 2013, ApJ, 765, 67
Munari E., Biviano A., Borgani S., Murante G., Fabjan D., 2013, MNRAS, 430, 2638
Naess S., et al., 2014, JCAP in press (arXiv:1405.5524)
Okabe N., Takada M., Utimoto K., Futamase T., Smith G. P., 2010, PASJ, 62, 811
Oke J. B., 1974, ApJS, 27, 21
O’Sullivan E., Giacintucci S., Babel A., Raychaudhury S., Venturi T., Bildfell C., Mahdavi A., Onk J. B. R., Murray N., Hoekstra H., Donahue M., 2012, MNRAS, 424, 2971
Planck Collaboration 2013, A&A in press, arXiv:1303.5080
Planck Collaboration Ade P. A. R., Aghanim N., Armitage-Caplan C., Arnaud M., Ashdown M., Atrio-Barandela F., Aumont J., Ausell H., Baccigalupi C., et al., 2013, ArXiv e-prints
Planck Collaboration Ade P. A. R., Aghanim N., Arnaud M., Ashdown M., Aumont J., Baccigalupi C., Balbi A., Banday A. J., Barreiro R. B., et al., 2011, A&A, 536, A11
Reichardt C. L., et al., 2013, ApJ, 763, 127
Rozo E., et al., 2009, ApJ, 699, 768
Sehgal N., et al., 2011, ApJ, 732, 44
Sifón C., Menanteau F., Hasselfield M., et al., 2013, ApJ, 772, 25
Staniszewski Z., et al., 2009, ApJ, 701, 32
Sunyaev R. A., Zel’dovich Y. B., 1970, Comments on Astrophysics and Space Physics, 2, 66
Swetz D. S., et al., 2011, ApJS, 194, 41
Ueda S., Hayashida K., Nakajima H., Koyama K., Tsunemi H., 2013, ApJ, 778, 33
Vanderlinde K., et al., 2010, ApJ, 722, 1180
Vikhlinin A., et al., 2009, ApJ, 692, 1060
APPENDIX

The tables below list the spectroscopic redshifts measured with SALT RSS in each ACT cluster field. We also present a selection of images and spectra in the same style as Fig. [I]
Table A1. Spectroscopic redshifts of galaxies in the direction of ACT-CL J0045.2-0152 measured using SALT RSS; see Table 2 for an explanation of the table columns.

ID	Mask	RA (J2000)	Dec. (J2000)	m_r	z	Em. Lines?	Member?	r (Mpc)
399	1	00^h45^m13's86	-01°'53'20''61	20.75	0.5543	✓	✓	0.15
418	1	00^h45^m14's607	-01°'52'42''69	21.98	0.5482	✓	✓	0.16
374	1	00^h45^m12's499	-01°'52'31''65	19.22	0.5486	✓	✓	0.18
18	S	00^h45^m11's507	-01°'53'09''64	20.66	0.5404	✓	✓	0.18
438	1	00^h45^m15's359	-01°'53'09''28	20.66	0.5457	✓	✓	0.22
440	2	00^h45^m15's476	-01°'53'29''43	21.38	0.4880	✓	✓	...
451	1	00^h45^m15's494	-01°'53'40''05	19.88	0.5535	✓	✓	0.38
306	2	00^h45^m09's483	-01°'53'17''99	21.47	0.9898	✓	✓	...
376	1	00^h45^m12's645	-01°'53'57''37	21.48	0.5574	✓	✓	0.39
446	1	00^h45^m15's661	-01°'52'08''31	21.99	0.5504	✓	✓	0.39
335	2	00^h45^m10's733	-01°'53'59''12	21.66	0.6379	✓	✓	...
7	S	00^h45^m07's935	-01°'53'21''18	20.40	0.5488	✓	✓	0.53
509	1	00^h45^m18's228	-01°'52'19''59	21.93	0.7100	✓	✓	...
486	2	00^h45^m17's187	-01°'51'57''75	21.66	0.5491	✓	✓	0.54
14	S	00^h45^m08's649	-01°'54'07''50	20.77	0.5526	✓	✓	0.63
434	2	00^h45^m15's222	-01°'51'18''97	21.33	0.5490	✓	✓	0.66
11	S	00^h45^m09's245	-01°'54'26''52	20.04	0.5388	✓	✓	0.69
387	1	00^h45^m13's094	-01°'51'04''19	21.45	0.5130	✓	✓	...
251	2	00^h45^m06's334	-01°'53'46''27	21.34	0.6425	✓	✓	...
400	1	00^h45^m13's59	-01°'54'56''36	20.47	0.3675	✓	✓	...
439	1	00^h45^m15's372	-01°'50'28''54	21.44	0.6570	✓	✓	...
510	2	00^h45^m18's243	-01°'55'20''68	21.61	0.5284	✓	✓	...
415	1	00^h45^m14's368	-01°'49'53''20	20.15	0.2431	✓	✓	...
207	1	00^h45^m03's524	-01°'50'51''21	20.18	0.4726	✓	✓	...
363	1	00^h45^m12's009	-01°'49'37''58	21.18	0.5434	✓	✓	...
355	1	00^h45^m11's751	-01°'56'24''72	21.26	0.5523	✓	✓	...
343	1	00^h45^m11's012	-01°'56'39''24	21.58	0.2010	✓	✓	...
371	2	00^h45^m12's315	-01°'56'48''94	19.37	0.8268	✓	✓	...

Figure A1. The $z = 0.55$ cluster ACT-CL J0045.2-0152 (see Fig. 1 for an explanation of symbols and colours).
Table A2. Spectroscopic redshifts of galaxies in the direction of ACT-CL J0156.4-0123 measured using SALT RSS; see Table B for an explanation of the table columns.

ID	Mask	RA (J2000)	Dec. (J2000)	m_r	z	Q	Em. Lines?	Member?	r (Mpc)
320	1	01°56′24″297	−01°23′17″32	17.88	0.4526	4	...	✓	0.01
317	1	01°56′24″192	−01°23′35″61	20.34	0.4380	4
6	S	01°56′26″066	−01°23′33″76	19.55	0.4602	4	...	✓	0.19
246	3	01°56′20″883	−01°23′55″64	21.45	0.5965	3
268	1	01°56′21″674	−01°22′12″07	21.08	0.4435	4	✓
239	1	01°56′20″400	−01°22′24″40	20.78	0.5689	4
403	1	01°56′28″970	−01°22′46″03	20.22	0.4582	4	✓	✓	0.45
310	1	01°56′23″810	−01°21′57″79	19.71	0.2769	4
410	1	01°56′29″305	−01°23′59″72	20.69	0.4561	4	...	✓	0.51
243	1	01°56′20″696	−01°21′30″28	19.90	0.5597	4	✓	...	0.68
195	3	01°56′17″450	−01°22′06″30	21.92	0.5985	3	✓
186	3	01°56′16″882	−01°21′51″12	20.06	0.5683	4
361	1	01°56′26″472	−01°25′33″21	18.22	0.1368	4	✓
419	1	01°56′30″384	−01°21′07″92	20.60	0.6804	4	✓
164	1	01°56′15″462	−01°24′47″50	20.03	0.6058	4	✓
355	1	01°56′26″243	−01°25′57″64	19.66	0.3397	4	✓
393	1	01°56′28″181	−01°20′43″36	20.68	0.3941	4	✓
142	3	01°56′13″247	−01°22′40″53	19.98	0.7713	3	✓
350	3	01°56′25″923	−01°20′21″53	18.60	0.3808	4	✓
468	3	01°56′34″261	−01°21′38″25	19.58	0.3400	4
123	3	01°56′12″040	−01°23′23″13	19.12	0.4773	4	✓
337	1	01°56′25″235	−01°20′12″52	20.15	0.0392	4	✓
335	1	01°56′25″171	−01°26′31″22	20.85	0.4551	4	✓
426	1	01°56′30″748	−01°26′19″24	20.93	0.4497	4	✓
340	1	01°56′25″337	−01°26′46″89	21.09	0.7356	4	✓
385	3	01°56′27″728	−01°19′40″68	21.59	0.3845	3	✓
127	3	01°56′12″255	−01°20′47″78	19.70	0.4215	3	✓

Figure A2. The $z = 0.46$ cluster ACT-CL J0156.4-0123 (see Fig. 1 for an explanation of symbols and colours) The unlabelled member galaxy is from SDSS DR10.
Table A3. Spectroscopic redshifts of galaxies in the direction of ACT-CL J0219.9+0129 measured using SALT RSS; see Table 3 for an explanation of the table columns.

ID	Mask	RA (J2000)	Dec. (J2000)	m_r	z	Q	Em. Lines?	Member?	r (Mpc)
397	I	$02^h19^m52^s975$	+01°29'35"03	21.29	0.3639	4	...	✓	0.12
434	I	$02^h19^m54^s222$	+01°29'20"51	21.01	0.3641	4	...	✓	0.15
370	I	$02^h19^m52^s155$	+01°29'52"19	17.96	0.3646	4	...	✓	0.21
410	I	$02^h19^m53^s386$	+01°30'31"71	21.22	0.3679	4	...	✓	0.24
1	S	$02^h19^m57^s414$	+01°30'02"31	19.45	0.3697	4	...	✓	0.25
390	I	$02^h19^m52^s668$	+01°29'06"20	21.01	0.3585	4	...	✓	0.37
4	S	$02^h19^m54^s219$	+01°30'58"53	18.56	0.3675	4	...	✓	0.40
508	I	$02^h19^m55^s973$	+01°31'07"71	21.23	0.3649	4	...	✓	0.47
395	I	$02^h19^m52^s931$	+01°31'22"76	20.08	0.3544	4	...	✓	0.55
379	I	$02^h19^m52^s348$	+01°28'17"92	20.17	0.3496	4	0.69
447	I	$02^h19^m54^s580$	+01°27'59"68	20.91	0.3686	4	...	✓	0.74
407	I	$02^h19^m53^s365$	+01°31'48"61	19.11	0.2389	4	...	✓	0.87
309	I	$02^h19^m49^s797$	+01°31'35"97	20.67	0.3489	4	0.87
5	S	$02^h20^m01^s648$	+01°28'27"15	19.19	0.3629	4	...	✓	0.87
274	I	$02^h19^m48^s609$	+01°27'46"90	18.53	0.3666	4	0.87
428	I	$02^h19^m53^s908$	+01°32'35"19	21.45	0.5602	4	0.87
450	I	$02^h19^m54^s615$	+01°26'53"96	20.06	0.3697	4	...	✓	0.87
663	I	$02^h20^m02^s912$	+01°27'08"25	21.69	0.3580	4	0.87
229	I	$02^h19^m46^s790$	+01°26'39"57	21.61	0.7861	4	✓	...	0.87
299	I	$02^h19^m49^s495$	+01°26'20"61	20.68	0.5314	4	✓	...	0.87

Figure A3. The $z = 0.36$ cluster ACT-CL J0219.9+0129 (see Fig. 3 for an explanation of symbols and colours).
Table A4. Spectroscopic redshifts of galaxies in the direction of ACT-CL J0342.7-0017 measured using SALT RSS; see Table A2 for an explanation of the table columns.

ID	Mask	RA (J2000)	Dec. (J2000)	m_r	z	Q	Em. Lines?	Member?	r (Mpc)
413	I	03:42:44:804	-00:17:18:92	20.25	0.3009	4	...	✓	0.04
2	S	03:42:42:873	-00:17:10:22	18.20	0.3127	4	...	✓	0.11
432	I	03:42:45:707	-00:17:37:69	20.47	0.1658	3
7	S	03:42:42:651	-00:17:08:29	17.70	0.3072	4	...	✓	0.13
362	I	03:42:42:346	-00:17:01:28	20.58	0.3052	4	...	✓	0.16
364	I	03:42:42:414	-00:16:42:67	20.21	0.3039	4	...	✓	0.22
409	I	03:42:44:651	-00:18:14:94	19.81	0.3107	4	...	✓	0.23
474	I	03:42:47:751	-00:17:51:14	20.56	0.1654	4
25	S	03:42:44:899	-00:18:22:30	19.86	0.3129	4	...	✓	0.26
429	I	03:42:45:595	-00:16:22:35	21.00	0.3111	4	0.29
374	I	03:42:42:883	-00:16:09:36	20.86	0.3010	4	...	✓	0.34
407	I	03:42:44:546	-00:18:40:94	20.95	0.3019	4	...	✓	0.35
363	I	03:42:42:387	-00:15:54:14	20.23	0.7064	4
8	S	03:42:38:364	-00:16:45:57	18.67	0.3111	4	...	✓	0.43
400	I	03:42:44:194	-00:15:36:13	20.57	0.2384	4	✓
473	I	03:42:47:601	-00:19:18:95	20.62	0.2863	4	✓
42	S	03:42:52:148	-00:18:08:46	18.98	0.3042	4	...	✓	0.56
436	I	03:42:45:840	-00:15:18:69	19.50	0.2393	4
216	I	03:42:35:633	-00:18:02:22	20.77	0.3664	4	✓
428	I	03:42:45:590	-00:19:50:29	20.61	0.1116	4	✓
260	I	03:42:37:754	-00:19:30:24	19.15	0.3033	4	✓	✓	0.71
274	I	03:42:38:579	-00:15:00:36	20.70	0.0191	3
430	I	03:42:45:654	-00:20:12:98	20.77	0.3093	4	...	✓	0.76
26	S	03:42:34:639	-00:15:29:36	18.95	0.3043	4	...	✓	0.82
468	I	03:42:47:405	-00:20:24:07	19.67	0.3656	4
5	S	03:42:31:905	-00:16:49:20	18.74	0.3113	4	...	✓	0.84
498	I	03:42:48:728	-00:20:44:52	20.80	0.2869	4	✓
521	I	03:42:50:300	-00:20:58:49	21.30	0.4619	4

Figure A4. The $z = 0.30$ cluster ACT-CL J0342.7-0017 (see Fig. [I] for an explanation of symbols and colours).
Table A5. Spectroscopic redshifts of galaxies in the direction of ACT-CL J0348.6-0028 measured using SALT RSS; see Table 2 for an explanation of the table columns.

ID	Mask	RA (J2000)	Dec. (J2000)	m_p	z	Q	Em. Lines?	Member?	r (Mpc)
252	4	03h48m38s726	−00°28′07″42	18.13	0.1381	4
246	1	03h48m38s378	−00°28′23″21	20.49	0.3443	4	...	✓	0.09
274	3	03h48m39s545	−00°28′16″90	19.22	0.3450	4	...	✓	0.10
229	4	03h48m37s682	−00°28′20″77	20.07	0.1393	4
218	2	03h48m37s125	−00°27′48″38	18.17	0.1603	4
230	1	03h48m37s699	−00°28′36″14	20.40	0.3416	4	...	✓	0.16
207	1	03h48m36s300	−00°27′49″82	20.50	0.3401	4	...	✓	0.18
232	3	03h48m37s909	−00°28′46″75	21.04	0.3448	3	...	✓	0.21
303	1	03h48m41s534	−00°28′07″50	19.87	0.3443	4	...	✓	0.22
304	2	03h48m41s593	−00°27′35″15	19.48	0.5471	4
215	1	03h48m36s792	−00°27′12″79	20.54	0.3505	4	...	✓	0.29
264	1	03h48m39s134	−00°29′05″30	21.02	0.3503	4	...	✓	0.30
315	3	03h48m42s291	−00°28′29″17	21.08	0.3490	3	...	✓	0.30
312	1	03h48m42s151	−00°28′48″76	19.76	0.3462	4	...	✓	0.34
239	1	03h48m38s081	−00°29′18″25	20.68	0.3482	4	...	✓	0.36
165	3	03h48m33s621	−00°28′04″90	20.68	0.3446	4	...	✓	0.36
308	3	03h48m42s024	−00°28′58″10	21.09	0.3420	4	...	✓	0.37
255	4	03h48m38s949	−00°26′50″01	21.29	0.3443	4	...	✓	0.37
330	3	03h48m43s143	−00°27′31″36	20.92	0.3450	4	...	✓	0.38
237	1	03h48m37s972	−00°26′40″69	20.56	0.3459	4	...	✓	0.42
181	4	03h48m34s662	−00°29′07″57	21.34	0.3570	4
272	2	03h48m39s430	−00°26′39″99	20.69	0.1803	3	✓
153	2	03h48m32s984	−00°27′17″87	22.25	0.4894	3
358	3	03h48m45s127	−00°27′45″73	20.81	0.2938	4	✓
206	1	03h48m36s276	−00°30′01″29	20.94	0.3456	4	...	✓	0.60
169	3	03h48m33s978	−00°30′01″20	20.46	0.2963	4
320	1	03h48m42s708	−00°25′44″78	20.20	0.3602	3
270	4	03h48m39s412	−00°25′30″78	19.13	0.3516	4	...	✓	0.77
98	3	03h48m28s95	−00°29′10″64	20.20	0.3412	4	...	✓	0.78
107	3	03h48m29s523	−00°29′31″57	20.86	0.3084	4
149	4	03h48m32s871	−00°30′22″95	21.29	0.3400	4	...	✓	0.80
231	1	03h48m37s854	−00°25′21″24	20.67	0.3515	4	...	✓	0.81
371	3	03h48m45s867	−00°30′25″66	21.75	0.3342	4
136	1	03h48m32s246	−00°25′03″39	20.76	0.3412	3
258	1	03h48m39s012	−00°31′35″60	20.27	0.3891	4
141	1	03h48m32s555	−00°31′24″45	19.99	0.2950	4
99	3	03h48m29s063	−00°25′15″83	20.34	0.3422	3
401	1	03h48m48s183	−00°31′03″08	20.82	0.4575	4
174	2	03h48m34s196	−00°31′48″88	21.63	0.4168	3	✓
Figure A5. The $z = 0.35$ cluster ACT-CL J0348.6-0028 (see Fig. 1 for an explanation of symbols and colours).

Table A6. Spectroscopic redshifts of galaxies in the direction of ACT-CL J2058.8+0123 measured using SALT RSS; see Table 3 for an explanation of the table columns.

ID	Mask	RA (J2000)	Dec. (J2000)	mr	z	Q	Em. Lines?	Member?	r (Mpc)
184	1	20°58'53.730	+01°23'36.04	20.83	0.3148	4
194	1	20°58'54'089	+01°22'24'07	20.71	0.3227	3	...	✓	0.17
173	2	20°58'52'683	+01°22'14'21	19.86	0.2043	4
219	2	20°58'56'777	+01°22'47'58	19.66	0.3383	4
157	2	20°58'51'547	+01°23'54'82	21.00	0.3260	4	...	✓	0.29
177	1	20°58'53'056	+01°24'10'76	18.13	0.3301	4	...	✓	0.33
137	3	20°58'50'390	+01°23'56'26	19.60	0.3265	4	...	✓	0.34
164	2	20°58'52'060	+01°21'40'62	19.50	0.3264	4	...	✓	0.39
200	1	20°58'54'514	+01°24'26'77	20.55	0.3317	4	...	✓	0.40
225	3	20°58'57'187	+01°21'51'00	19.72	0.3207	4	...	✓	0.41
166	2	20°58'52'163	+01°24'30'79	20.38	0.3239	4	...	✓	0.43
162	2	20°58'51'745	+01°24'45'88	20.97	0.3281	4	...	✓	0.51
211	1	20°58'55'861	+01°21'03'94	20.73	0.3270	3	...	✓	0.57
201	2	20°58'54'572	+01°20'59'56	20.54	0.3293	4	...	✓	0.57
190	1	20°58'53'906	+01°25'24'84	19.60	0.1856	✓
213	1	20°58'56'096	+01°20'41'27	20.44	0.3286	4
203	2	20°58'54'836	+01°20'35'18	18.00	0.3311	✓
146	2	20°58'50'917	+01°25'22'66	19.69	0.3228	4	✓	✓	0.69
90	3	20°58'46'076	+01°24'52'59	18.14	0.2935	✓
153	1	20°58'51'408	+01°25'57'05	19.66	0.3321	4	...	✓	0.83
136	1	20°58'50'317	+01°26'09'59	21.34	0.3249	4	✓	✓	0.91
165	3	20°58'52'163	+01°26'23'63	17.86	0.1344	4
210	2	20°58'55'832	+01°26'29'51	20.27	0.1346	4
150	1	20°58'51'379	+01°19'14'61	19.92	0.3222	4	✓
Figure A6. The $z = 0.33$ cluster ACT-CL J2058.8+0123 (see Fig. 1 for an explanation of symbols and colours).