Non traumatic knee effusion: Pointer or Decoy? The commonly missed relationship of knee swelling with Lumbar disc disease: “The Dervan knee effusion sign”

Kohli Pavankumar, Patel Pooryv, Nadkarni Sunil, Sudame Onkar, Dhotkar Kalpit, Gore Satishchandra and Waybase Hanumant A

DOI: https://doi.org/10.22271/ortho.2021.v7.i1n.2588

Abstract

Introduction: Knee pain and swelling are known amongst orthopedic surgeons as symptoms of a local pathology arising from the knee joint area. It is also often used by patients as an ‘umbrella term’. Although in most cases the causative pathology may be the knee joint itself, however, this umbrella term can cause prejudice among clinicians to look only locally and not think of a lumbar pathology as a cause of knee pain and swelling. The objective of this pilot study was to make clinicians aware that causes knee pain and swelling may be beyond the anatomical confinements of the knee.

Material and Methods: This is a prospective study in which we evaluated consecutive patients with non-traumatic knee joint pain and effusion coming in our hospital from 1st January to 1st February 2020.

Results: After synovial fluid examination, 2 patients were found to have subclinical inflammatory arthritis and were excluded out of the study. 36 of the 38 patients had a normal study. Out of these 36 patients had no abnormalities on spine MRI. Out of the remaining 34, 30 had disc degenerative disease at L45 or L5S1 (25 patient L4-5, 3 patient L5-S1, 4 patients with both L4-5 and L5-S1), 1 patient had a L34 disc degenerative disease, 3 patients had Grade 2 L45 spondylolisthesis with mild or no back pain.

Conclusion: Although a disc degeneration can be seen incidentally in many asymptomatic patients, based on our observations we think that causes like “autonomic” load can be one of the unheard reasons of knee pain and effusion. The clinician must be aware of possible causes of knee pain and swelling beyond the anatomical confinements of knee and that lumbar spine pathology need also to be ruled out. The clinician must not let prejudice rule his clinical judgement. We don’t claim direct association of lumbar disc degeneration and knee pain and swelling in this study. Further studies are needed.

Keywords: knee effusion, knee Swelling, lumbar disc, degenerative disc

Introduction

Knee pain with swelling is one of the most common symptom presentations with which a patient comes to an orthopaedic surgeon. It requires a systematic diagnostic approach. However, the knee joint is susceptible to effusions secondary to a wide variety of non-traumatic causes (e.g. inflammatory, septic, sympathetic etc.). Each cause needs to be identified and specific treatment needs to be given. Arthroplasty surgeries are donoroutinely now for osteoarthritis knee; however, arthroplasty surgeries are often faced with dissatisfied patients complaining of lingering knee pain, often behind the knee [1]. This may be due to the fact that sources of knee pain can also be secondary to pain generators in lumbar spine [2-5]. Most of the causes of non-traumatic knee pain and swelling can be diagnosed based on clinical and radiological examination (Xray’s and MRI’s). Osteoarthritis being one of the most common causes of knee pain and swelling can be easily diagnosed clinically and radiographically.
Apart from clinical and radiological evaluation, other causes of non-traumatic knee swelling need arthrocentesis and synovial fluid examination to differentiate between each other.

Sympathetic joint effusion (SJE) is poorly understood clinical entity not yet been well characterised in literature with its annualized incidence of 1.2% \(^6\). The exact cause of SJE is not known with early theories being proposed as vascular permeability and localized oedema from inflammation or immobilization, imbalance of synovial fluid permeability due to disruption of joint fluid turnover and lymphatic system \(^7,8\). SJE is usually thought to be associated with concurrent adjacent pathology in the same limb, however, most of the times it may not be so.

Chronic regional pain syndrome (CRPS) is another entity whose pathogenesis is still obscure and is clinically characterized by sensory, autonomic and motor disturbances\(^9\). It is usually seen with extremity trauma, but can also be seen in association with central lesions (e.g. stroke, cervical cord injury). Pathophysiologically, there is evidence of functional changes in central nervous system and for involvement of peripheral inflammatory process \(^10\).

We clinicians are aware that the site of pain is not necessarily the source of pain. Based on our previous experience of concomitant knee pain with lumbar disc degeneration (Dervan Dermatome Syndrome) \(^1\) and the background of theories pathogenesis of SJE \(^6\) and CRPS \(^10\), we think that these cases of unexplained knee pain and effusion can also be due to “autonomicoverload” secondary to nerve root irritation in lumbar disc degenerative disease. The objective of this study was to make the clinician aware of that causes of knee pain and swelling may not be limited to anatomical confinements of knee but may also be due to a lumbar spine pathology. The clinician must not let prejudice rule his clinical judgement.

Material and Methods

This is a prospective observational study in which we evaluated consecutive patients with non-traumatic knee joint pain and effusion coming in BKL Walawalkar Rural Medical College and Research Centre, Dervan, Maharashtra, India from 1\(^{st}\) January to 1\(^{st}\) February 2020. Detailed history, clinical and radiologically examination was done and patients were selected based on the following criteria:

Inclusion criteria
1. Non-traumatic knee pain with swelling
2. Age more than 20 years
3. All patients who gave consent for the study

Exclusion criteria
1. Traumatic knee pain and swelling
2. Post-traumatic arthritis
3. Inflammatory arthritis with or without its systemic associations (e.g. inflammatory bowel disease)
4. Septic arthritis
5. Intra-articular malignances
6. Neuropathic joints
7. Neurological disorders (e.g. diabetic neuropathies, cerebrovascular stroke)
8. Previous history of knee surgery
9. Sympathetic knee joint effusions with identified pathologies in the vicinity (e.g. osteomyelitis, bone tumours, bursitis around patella, any ipsilateral hip pathology, thigh or leg hematoma)

After selecting the patients based on above criteria they were evaluated withstanding AP and Lateral view radiographs of the affected knee. They further underwent X-rays and MRI of Lumbosacral spine with axial and sagittal view (T1 and T2 weighted images). Patients with and without lumbar spine abnormalities were noted. All patients were examined clinically for knee pain and swelling, general examination done to rule out any systemic neurological disorder. Patients then underwent arthrocentesis of the affected knee and synovial fluid examination was done which included aerobic culture, gram and ZN staining and routine cytology.

Results

38 patients were included in our study based on our eligibility criteria, of which 2 were excluded based on synovial fluid analysis. All the remaining 36 patients had normal synovial fluid examination with mild (squeeze test) to moderate (patellar tap) effusion (Image 1 and 2). All the 36 patients had symptoms of chronic mechanical low back pain revealed after asking leading questions. All 36 patients presented with some pattern of radicular leg pain corresponding to the side of knee effusion and pain. The average age of patients was 62 (40 – 73 yrs) with mostly male patients (25 males, 11 female). Mostly single knee was involvement with almost equal predilection to each side (Table 1)
Image 2: 62-year male with bilateral knee moderate effusion with his bilateral knee standing AP Xray’s

Out of the 36 patients, lumbar disc degenerative changes were seen in 34 patients

Table 1: Side of involvement

Side of involvement	No. of patients	Percentage
Right side	16/36	44.4
Left side	17/36	47.2
Bilateral	3/36	8.3

Diagram 1: Side of involvement (in percentage)

Table 2: Comparison of patients with knee effusion and pain with or without lumbar disc degeneration (on MRI)

Patients with knee effusion and pain with or without lumbar disc degeneration (on MRI)	No. of patients	Percentage
With MRI changes	34/36	94.4
Without MRI changes	2/36	5.6

Diagram 2: Comparison of patients with or without lumbar disc degeneration on MRI (in percentage)

Out of the remaining 34, 30 had disc degenerative disease at L4-5 or L5-S1 (25 patient L4-5, 3 patient L5-S1, 4 patients with both L4-5 and L5-S1), 1 patient had a L34 disc degenerative disease, 3 patients had Grade 2 L4-5 spondylolisthesis with mild or no back pain.

Image 3: MRI Lumbosacral spine (axial and sagittal sections) and LS spine standing lateral xray of a 44-year-old male labourer with L4-5 Levels and L5-S1 disc protrusion (axial sections)
CRPS type I occurs when nociceptive sensory fibers are damaged, and is differentiated by its mechanism of pain development. Pain is localized to the site of injury but may spread as new nociceptive fibers are activated. Nociceptive sensory fibers are pain-sensitive fibers that respond to a variety of stimuli, including mechanical, thermal, and chemical. These fibers are responsible for pain perception in the peripheral nervous system. In the case of CRPS type I, the nociceptive sensory fibers in the peripheral nervous system are damaged, leading to a chronic pain syndrome.

CRPS type II (causalgia) develops after injury to a major peripheral nerve. The injury can be due to trauma, infection, or other pathological processes. Causalgia is characterized by a persistent pain that is often described as burning or shooting. The pain is typically localized to the area of the injured nerve and may spread proximally or distally. The syndrome is often associated with autonomic symptoms, such as sweating, flushing, and hyperhidrosis. The pain is often associated with allodynia and hyperalgesia, which are increased sensitivity to pain stimuli.

The International Association for the Study of Pain (IASP) has defined CRPS as a chronic pain condition that is characterized by persistent pain, hyperalgesia, and allodynia. CRPS is a complex syndrome that involves the peripheral nervous system, the autonomic nervous system, and the central nervous system. The pathophysiology of CRPS is not fully understood, and it is likely that there are multiple mechanisms involved. One of the key theories is that CRPS is a result of a primary disturbance of sensory-motor fibers in the peripheral nervous system. This disturbance can be caused by trauma, infection, or other pathological processes. The primary disturbance can lead to a cascade of events that affect the sensory and motor function of the peripheral nervous system.

CRPS is a chronic pain condition that is characterized by persistent pain, hyperalgesia, and allodynia. The International Association for the Study of Pain (IASP) has defined CRPS as a chronic pain condition that is characterized by persistent pain, hyperalgesia, and allodynia. CRPS is a complex syndrome that involves the peripheral nervous system, the autonomic nervous system, and the central nervous system. The pathophysiology of CRPS is not fully understood, and it is likely that there are multiple mechanisms involved. One of the key theories is that CRPS is a result of a primary disturbance of sensory-motor fibers in the peripheral nervous system. This disturbance can be caused by trauma, infection, or other pathological processes. The primary disturbance can lead to a cascade of events that affect the sensory and motor function of the peripheral nervous system.

CRPS is a chronic pain condition that is characterized by persistent pain, hyperalgesia, and allodynia. The International Association for the Study of Pain (IASP) has defined CRPS as a chronic pain condition that is characterized by persistent pain, hyperalgesia, and allodynia. CRPS is a complex syndrome that involves the peripheral nervous system, the autonomic nervous system, and the central nervous system. The pathophysiology of CRPS is not fully understood, and it is likely that there are multiple mechanisms involved. One of the key theories is that CRPS is a result of a primary disturbance of sensory-motor fibers in the peripheral nervous system. This disturbance can be caused by trauma, infection, or other pathological processes. The primary disturbance can lead to a cascade of events that affect the sensory and motor function of the peripheral nervous system.

CRPS is a chronic pain condition that is characterized by persistent pain, hyperalgesia, and allodynia. The International Association for the Study of Pain (IASP) has defined CRPS as a chronic pain condition that is characterized by persistent pain, hyperalgesia, and allodynia. CRPS is a complex syndrome that involves the peripheral nervous system, the autonomic nervous system, and the central nervous system. The pathophysiology of CRPS is not fully understood, and it is likely that there are multiple mechanisms involved. One of the key theories is that CRPS is a result of a primary disturbance of sensory-motor fibers in the peripheral nervous system. This disturbance can be caused by trauma, infection, or other pathological processes. The primary disturbance can lead to a cascade of events that affect the sensory and motor function of the peripheral nervous system.
of our patients had. According to the traditional teaching, the representative dermatome of the knee joint is L3 and L4. To explain this conundrum, we may refer to our previous discussion that the site of injury (CRPS) and region of pain perception (radiculopathy) may be different from the site of actual pathology. Also, anatomical studies have shown that the knee joint has innervations from L2 to S2 roots \cite{11, 12}, so irritation of any root along with the reach nerve supply of the synovium \cite{13} may be a reason for this presentation. Additionally, based on our observations of the study by Tan et al, we can ponder on the possibility that lumbar spine affections can also be the source of knee joint. All the 36 patients didn’t give history of low back pain as a presenting symptom. Only after asking them leading questions did they agree that they also had symptoms of chronic mechanical low back pain. So, we may say that lumbar disc degeneration causing knee pain and effusion can be considered as a diagnosis of exclusion.

Based on this study, we don’t claim a direct correlation of knee joint effusion and pain due to nerve root irritation secondary to lumbar disc degeneration. We present a conjecture of “autonomic system overload” as a causative factor and we suggest concomitant lumbar disc degeneration to include as one of the differential diagnosis of knee pain and effusion of unknown aetiology as a diagnosis of exclusion. At this stage we would like to propose a “Dervan Knee Effusion Sign” as a sign to confirm the existence of lumbar degenerative spine pathology in a case with a non-traumatic knee pain and effusion. However, we do recommend that further studies are needed to establish this causative factor. We are aware that lumbar spine abnormalities can be seen in asymptomatic individuals as well with varying presentations on MRI, so we had included the all patients above 20 years old \cite{17}. The objective of this study was to make the clinician aware that causes of knee pain and swelling may not be limited to anatomical confinements of knee joint and surrounding area but may also be due to a lumbar spine pathology. The clinician must not let prejudice rule his clinical judgement.

Conclusion

Based on our previous experiences of pain management, current observations and published literature review, we suggest that lumbar spine disc degenerative disease be included as one of the differential diagnosis of knee pain and effusion of unknown aetiology as a diagnosis of exclusion. However, we do recommend that further studies are needed to establish this claim. We think that this might be due “autonomic system overload” of nerve root irritation in the lumbar spine, which may cause knee pain and effusion. The clinician must be aware of possible causes of knee pain and swelling beyond the anatomical confines of knee and that lumbar spine pathology need also to be ruled out. The clinician must not let prejudice rule his clinical judgement.

References

1. Stirling Bryan, Laurie J, Goldsmith Jennifer C, Davis, et al. Revisiting patient satisfaction following total knee arthroplasty: a longitudinal observational study. BMC Musculoskelet Disord 2018;19:423.
2. Pavankumar Kohli, Ankush Nawale, Sushant Chavan, Satishchandra Gore, Sunil Nadkarni. Dervan dermatome syndrome often missed but surprisingly common coexistent spine pathology in ‘Knee Pain’, ignore at your own risk. Int J Orthop Sci 2018;4(4):649-653.
3. Mohammad Rahbar et al. Association between knee pain and low back pain. J Pak Med Assoc 2015;65(6):626-31.
4. Wolfe F, Hawley D, Peloso P, Wilson K, Anderson J. Back pain in osteoarthritis of the knee. Arthritis Care Res 1996;9:376-83.
5. Hong AN, Lim MD, Eun-Kyoo Song MD, et al. Causes of Aseptic Persistent Pain after Total Knee Arthroplasty. Clin Orthop Surg 2017;9(1):50-56.
6. Strickland RW, Raskin RJ, Welton RC. Sympathetic synovial effusions associated with septic arthritis and bursitis. Arthritis Rheum 1985;28:941-3.
7. Levick JR, McDonald JN. Fluid movement across synovium in healthy joints: role of synovial fluid macromolecules. Ann Rheum Dis 1995;54:417-423.
8. Tan JI, Barlow JL. Sympathetic Joint Effusion in an Urban Hospital. ACR Open Rheumatol 2019;1(1):37-42.
9. Christina Misiodou, Charalampos Papagoras. Complex Regional Pain Syndrome: An update Mediterr J Rheumatol 2019;30(1):16-25.
10. Wasner G, Schattschneider J, Binder A, Baron R. Complex regional pain syndrome - diagnostic, mechanisms, CNS involvement and therapy. Spinal Cord 2003;41:61-75.
11. Fonkoué L, Behets C, Kouassi JK, Coyette M, Detrembleur C, Thiempont E, et al. Distribution of sensory nerves supplying the knee joint capsule and implications for gnicular blockade and radiofrequency ablation: an anatomical study. Surg Radiol Anat 2019;41(12):1461-1471.
12. Devon Rubin. Brachial and lumbosacral plexopathies: A review. Clin Neurophysiol Pract 2020;5:173-193.
13. Tamer TM. Hylanuron and synovial joint: function, distribution and healing. Interdiscip Toxicol. 2013 Sep;6(3):111-25.
14. Veronica Macchi, Elena Stocco, Carla Stecco, Elisa Belluzzi, Marta Favero, Andrea Porzianoto et al. The infrapatellar fat pad and the synovial membrane: an anatomofunctional unit. J Anat. 2018;233(2):146-154
15. Merskey H, Bogduk N. Classification of chronic pain: descriptions of chronic pain syndromes and definition of terms. Seattle: IASP Press, 1995.
16. Satishchandra Gore, Sunil Nadkarni. Sciatia: Detection and Confirmation by New Method. Int J Spine Surg 2014.
17. Brinjikji W, Luetmer PH, Comstock B, Bresnahan BW, Chen LE, Deyo RA, et al. Systematic Literature Review of Imaging Features of Spinal Degeneration in Asymptomatic Populations. AJNR Am J Neuroradiol 2015;36(4):811-816.