A Review on Correlations for Consolidation Characteristics of Various Soils

S Jayalekshmi1 and V Elamathi2

1Professor, National Institute of Technology, Tiruchirappalli, Tamil Nadu.
2Research Scholar, National Institute of Technology, Tiruchirappalli, Tamil Nadu.

Email: elamathivenkat@gmail.com

Abstract. Settlement is the major problem that arises after the construction of a structure on a soil mass. Consolidation characteristics of soil such as coefficient of consolidation \(c_v\), compression index \(c_c\), recompression index \(c_r\), preconsolidation pressure \(\sigma'_p\) play a major role in the settlement behavior of fine grained soil mass. \(c_v\) represents the rate of consolidation of soil mass. \(c_c\) and \(c_r\) are essential in calculating settlement of normally and over consolidated clays respectively. \(\sigma'_p\) is determined to find whether the clay is under, normally or over consolidated. These consolidation properties are obtained from graphical constructions after conducting several one dimensional consolidation-oedometer tests. Since this is time consuming, many correlations have been derived between consolidation properties and index properties of soil. Different researchers have used various soil parameters such as liquid limit (\(w_L\)), plastic limit (\(w_p\)), natural moisture content (\(w_n\)), initial insitu void ratio (\(e_0\)), dry unit weight (\(\gamma_d\)), plasticity index (\(I_p\)), void ratio at liquid limit (\(e_L\)) etc., as correlative parameters for deriving the correlations. Hence, it is desirable to predict the value of \(c_v\), \(c_c\), \(c_r\) and \(\sigma'_p\) from the known correlations rather than conducting several tests, to ease the procedures.

1. Introduction
The determination of settlement of soil mass is most important during the construction of structure on a soil. Settlement is due to compressibility of soil mass. The consolidation characteristics of soil like compression index \(c_c\) and coefficient of consolidation \(c_v\) play a vital role in predicting the compressibility of soil mass. Settlement is estimated from compression index \(c_c\) which is obtained from void ratio \(e\) versus vertical effective stress \(\sigma'\) in the semi-logarithmic plane. Coefficient of consolidation \(c_v\) is used to predict the time required for a given amount of compression to take place i.e., rate of settlement. Casagrande’s logarithm of time fitting \([2]\) and the Taylor’s square root of time fitting methods \([4]\) are widely accepted as standard methods for determination of \(c_v\). Other consolidation characteristics of soil such as recompression index \(c_r\) and preconsolidation pressure \(\sigma'_p\) are also important in predicting the compressibility behavior of the soil mass. \(c_c\) and \(c_v\) which are slopes of virgin curve and recompression curve respectively (\(e\) versus log \(\sigma'\) plot) for calculating the settlement of normally and over consolidated clays respectively. In order to find whether the clay is normally or over
Consolidated, it is necessary to determine σ'_p. Casagrande’s [3] construction is the most popular method for determining σ'_p. These consolidation characteristics are obtained from data of several one-dimensional consolidation tests according to ASTM Standard [1] using oedometer apparatus for varying loading increments. The collected data are plotted as graphical construction, from which the consolidation characteristics are determined. The soil specimen in the oedometer can also be tested for various conditions like incremental loading [4,5], constant rate of strain (CRS) [6,7], controlled Gradient tests (CG Test) [8,9] and continuous loading (CL test) [10]. Thus the laboratory oedometer test takes more time to determine these consolidation characteristics. Hence equations have been developed for predicting consolidation properties, which can be used without conducting oedometer tests, thus saving considerable time. The paper reviews the correlation for c_v, c_c, c_t and σ'_p using soil properties like activity (ACT), liquidity index I_L, plasticity index I_p, shrinkage index I_s, liquid limit w_L, plastic limit w_P, initial void ratio e_0, natural moisture content (w_n), initial in situ void ratio (e_o), dry unit weight (γ_d), plasticity index (I_p), and void ratio at liquid limit (e_L) as correlative parameters.

2. Prediction of coefficient of consolidation c_v from soil properties

An equation for one-dimensional consolidation of cohesive soil layer under sustained loads considering the length of the drainage path given by [5] is expressed as:

$$T = \frac{c_v t}{H^2}$$ \hspace{1cm} (1)

Where t is the time for consolidation, T is the time factor and H is the length of the longest drainage path or thickness of the consolidating layer. The drainage path for double drainage is equal to $H/2$ and for single drainage, it is equal to H. The dimensionless factor T is derived from degree of consolidation U (%), for $U<60\%$, $T=(\pi/4) \left(\frac{U}{100}\right)^2$, for $U>60\%$, $T=1.781-0.933 \log (100-U)$ [2,12]. c_v is calculated using Casagrande’s logarithm of time fitting method [3], Taylor’s square root of time fitting method [12] Inflection point method [13], Analytical method [14], Velocity method [15,16], Rectangular Hyperbola Fitting Method [17] which consumes more time by conducting oedometer test for more than a week. In recent days, index properties of soil are used in correlating many engineering properties of soil.

S.No.	Equation	Applicability	source
1.	$c_v = \frac{9.09 \times 10^{-7} \{1.192 + ACT^{-1}\}^{0.998} (4.135 I_L + 1)^{1.29} \{2.03 I_L + 1.192 + ACT^{-1}\}^{0.998}}{I_L (2.03 I_L + 1.192 + ACT^{-1})^{0.998}} \left(\text{m}^2/\text{s}\right)$	Normally consolidated clays	[18]
2.	$c_v = \frac{1 + e_0 \left(1.23 - 0.276 \log \sigma'_p\right)}{e_L} \times \frac{1}{\sigma'^{0.333}} \times 10^{-3} \left(\text{cm}^2/\text{s}\right)$	Normally consolidated clays with w_L 50-106% and w_P 27-47%	[21]
From Table 1, it can be seen that index properties like liquid limit (w_L), liquidity index (I_L), plasticity index (I_p), shrinkage index (I_s), activity (ACT), void ratio at liquid limit (e_L) are used as a single parameter or multiple correlative parameters for predicting coefficient of consolidation c_v. Experiments were conducted on normally consolidated clay and it was observed that c_v decreases with decrease in water content and it is inversely proportional to I_p[18]. c_v has a better correlation with shrinkage index I_s than plasticity index I_p or liquid limit w_L and it was reported that ample scope exists for undisturbed and over consolidated soils [19]. Liquid limit w_L gives better correlation with c_v than shrinkage index I_s and plasticity index I_p [20].

3. Prediction of compression index c_c from soil properties

Compression index c_c is a main parameter in predicting time dependent consolidation settlement (S_c) as given in the equation 2. Hence it is necessary to find c_c in order to calculate S_c. For a layer of normally consolidated clay of thickness H, initial void ratio e_0, compression index c_c, and effective overburden pressure σ'_0, the total settlement s_c under an applied load increment $\Delta\sigma'$ can be expressed as:

$$s_c = c_c H \log \frac{\sigma'_0 + \Delta\sigma'}{\sigma'_0}$$

Eq. (2)

c_c is the slope of the compression curve $e - \log \sigma'$ plot and the expression is given as $c_c = \Delta e/\log (\sigma'_2/\sigma'_1)$, where Δe is the change in void ratio for the corresponding effective vertical stress. The conventional one dimensional consolidation by oedometer test is time consuming in determination of c_c. In order to reduce the effort, many correlations exist between c_c and soil index properties like w_L, I_p, w_n, e_o, γ_d as a single or multiple correlative parameter, as tabulated in Table 2, for different regions and applicability. Hence these empirical equations can be used directly for predicting c_c based on its applicability without undergoing conventional oedometer tests.
Table 2. Correlations for c_e

S.No.	Equation	Applicability	source
1.	$c_e = 0.007(w_L - 10)$	Remoulded clays	[11]
2.	$c_e = 0.54(e_a - 0.35)$ \[c_e = 1.15(e - e_o)\]	Normally consolidated clays	[34]
3.	$c_e = 0.001(w_L - 12)$	Osaka alluvial clays	[33]
4.	$c_e = 0.009(w_L - 10)$	Normally consolidated clays	[25]
5.	$c_e = 0.0083(w_L - 9)$	Various clays	[35]
6.	$c_e = 0.006(w_L - 9)$ \[c_e = 0.4(e_o - 0.25)\] \[c_e = 0.01(w_n - 5)\]	All clays with $w_L<100\%$	[26]
7.	$c_e = 1.35f_r$	Remoulded clays of Gulf of Mexico and North Sea	[36]
8.	$c_e = 0.0092(w_L - 13)$ \[c_e = 0.0072(f_r + 26)\]	All Clays	[37]
9.	$c_e = 0.011w_n$	Chicago clays	[27]
10.	$c_e = 0.2343e_L$	Remoulded normally consolidated clays	[28]
11.	$c_e = 0.329\left[0.027(w - w_p) + 0.0133\left(f_r + 1.192 + ACT^{-1}\right)\right]$	Normally consolidated clays	[18]
14.	$c_e = 0.256e_L - 0.04$	Reconstituted clay Soil lying above A-Line	[29]
15.	$c_e = 0.009(w_L - 8)$	Osaka Bay Clay	[38]
16.	$c_e = 0.008(w_L - 12)$ \[c_e = 0.007(f_r + 18)\]	All Clays	[30]
Skempton[11] was the first to give empirical correlation for c_c of remoulded soils with liquid limit w_L. Colloidal clays are more compressible and possess higher void-ratios under a given pressure than the sandy clays and silts[11]. A modified equation for normally consolidated clays was given by [25]. e_0 and w_o were utilised to obtain best correlae model for the determination of both c_c and c_r than w_L [26]. Ridge regression holds well in dealing with multicollinearity in regression models [27]. c_c decreases with decrease in the water content and it is directly proportional to the plasticity index [18]. The normally consolidated e versus log σ' curves of different fine grained soils were normalized by their respective e_L values where $e_L=w_L/(G_s+e_0)$ and equations were developed for the stress and time dependent nature of preconsolidation pressure [28].

A normalizing parameter called void index, I_v was introduced in order to differentiate the properties of reconstituted clay (i.e., intrinsic compression characteristics of clay) from the natural clay soil [29]. It

17.	$c_c = 0.0012(w_L + 16.4)$	$c_c = 0.013(w_o - 3.85)$	South coast of Korea
	$c_c = 0.54(e_0 - 0.37)$	$c_c = -1.6\gamma_d - 2.4$	
	$c_c = -0.0003w_o + 0.538e_0 + 0.002w_L - 0.3$	[39]	
18	$c_c = 0.01w_o$	Undisturbed fibrous peat	[31]
19	$c_c = 0.0061(w_L - 0.0024)$	$c_c = 0.0082I_p + 0.0915$	Alluvial deposits, Surat, India
	$c_c = 0.0091w_o + 0.0522$	[40]	
20	$c_c = 0.0055(w_L - 1.8364)$	$c_c = 0.0055(I_p + 21.2364)$	Highly plastic clays of Kuttanad, Kerala, India
	$c_c = 0.0086(I_p + 24.2674)$	$c_c = 0.2875(e_0 - 0.5082)$	[32]
21	$c_c = 0.013(w_o - 0.115)$	$c_c = 0.49(e_0 - 0.11)$	Republic of Korea
	$c_c = 0.014(w_L - 0.168)$	[41]	
	$c_c = 0.009w_o + 0.005w_L$	$c_c = 0.013w_o + 0.0w_L + 0.168$	
22	$c_c = 0.0118(w_L - 20.7)$	$c_c = 0.014(w_o - 22.7)$	Irish soft soils
23	$c_c = 0.0062w_L + 0.0165$	Remoulded soil with w_L 29% to 46% and I_p 8 to 18	[24]

Irish soft soils

Remoulded soil with w_L 29% to 46% and I_p 8 to 18
has been demonstrated that intrinsic compression line (ICL) and sedimentation compression line (SCL) is a valuable reference line in studying the compression characteristics of natural, normally and over consolidated clays. However ICL can be obtained by plotting \(I_v^* \) versus \(\log \sigma' \) for every increase in \(\sigma' \). Similarly SCL can be obtained by plotting \(I_{v0}^* \) and \(\log \sigma' \). \(I_v^* \) and \(I_{v0}^* \) can be calculated from the equation 3 and equation 4.

\[
I_v^* = \frac{e^* - e_{100}^*}{c^*_c} \quad \text{(3)}
\]

\[
I_{v0}^* = \frac{e_{00}^* - e_{100}^*}{c^*_c} \quad \text{(4)}
\]

Where \(I_v^* \) = intrinsic void index
\(e^* \) = intrinsic void ratio at various preconsolidation pressure
\(e_{100}^* \) = intrinsic void ratio at 100 kPa preconsolidation pressure
\(c^*_c \) = intrinsic compression index =\(e_{100}^* - e_{100}^* \)

The normally consolidated soil lying between ICL and SCL, for a given value of \(I_{v0}^* \), the effective overburden pressure taken by the natural clay is almost five times that for reconstituted clay. For overconsolidated clays, ICL and SCL are helpful in assessing the degree of overconsolidation [29].

The soil with a lower shrinkage index compresses less than a soil with a higher shrinkage index, even though their liquid limits are about the same [30]. The fibrous peat possesses very high water content of 500% to 2000% and very high permeability of 1000 times the initial permeability of soft clays. Fibrous peat deposits compresses extremely with an increase in effective vertical pressure and it exhibits highest value of secondary compression and lowest duration for primary consolidation [31]. Shrinkage index \(I_s \) is found to be the most suitable generalization parameter to characterize the compressibility behavior of highly plastic soil of Kuttanad region in the State of Kerala, India [32].

4. Determination of recompression index \(c_r \)

Over consolidated soils are probably encountered more often than normally consolidated soils. Moreover, if the soil is overconsolidated, it is necessary to determine settlement due to overconsolidation. The soil is overconsolidated, when the preconsolidation pressure \(\sigma'_p \) is greater than the existing vertical overburden pressure \(\sigma'_0 \). So, the first thing is to check whether the soil is preconsolidated. However, \(\sigma'_p \) is determined by plotting \(e \) versus \(\log \sigma' \) through graphical construction [3]. Equation 5 and equation 6 gives recompression index \(c_r \) for overconsolidated clays of thickness \(H \) to compute the level of settlement.

When \(\sigma'_0 + \Delta \sigma' \leq \sigma'_p \),

\[
s_c = \frac{c_r}{1 + e_0} H \log \frac{\sigma'_0 + \Delta \sigma'}{\sigma'_0} \quad \text{(5)}
\]

When \(\sigma'_0 + \Delta \sigma' > \sigma'_p \),

\[
s_c = \frac{c_r}{1 + e_0} H \log \frac{\sigma'_p}{\sigma'_0} + \frac{c_r}{1 + e_0} H \log \left[\frac{\sigma'_0 + \Delta \sigma'}{\sigma'_p} \right] \quad \text{(6)}
\]
Recompression index \(c_r \) is the slope of the recompression curve obtained when void ratio \(e \) is plotted against effective vertical stress \(\sigma' \) in a semi logarithmic plot. Since the determination of \(c_r \) from oedometer tests is relatively time-consuming and is usually determined for a single unloading, empirical equations based on index properties can be useful for settlement estimation. Correlations have been proposed to relate the \(c_r \) of clay deposits to other soil parameters as given in Table 3. \(c_c \) and \(c_r \) are not only affected by over consolidation ratio, but also by other physical properties of soil like initial void ratio \(e_0 \). Increase in \(e_0 \) decreases \(c_c \) and \(c_r \) and increase in OCR, increases \(c_c \) and \(c_r \) [43]. Artificial neural networks (ANN) perform better in developing regression equations than the regression analysis [44].

Table 3. Correlations for determining \(c_r \)

S.No.	Equation	Applicability	References
1.	\(c_r = 0.0463e_L \)	overconsolidated saturated fine grained soils	[28]
2.	\(c_r = 0.14(e_0 + 0.007) \)		
\(c_r = 0.01(w_m + 7) \)			
\(c_r = 0.002(w_L + 9) \)	All clays with \(w_L <100\% \)	[26]	
3.	\(c_r = 0.00084(I_p - 4.6) \)	remolded young natural clays	[45]
4.	\(c_r = -0.025 + 0.002w_m \)		
\(c_r = -0.024 + 0.0732e_0 \)			
\(c_r = 0.0048 + 0.001I_p \)			
\(c_r = -0.0214 + 0.0013w_L \)	Clay deposits	[46]	
5.	\(c_r = 0.041 - 0.0268e_0 \)		
\(c_r = 0.0131 + 0.0254c_c \)			
\(c_r = 0.02 + 0.00052OCR \)	Turkish clays	[43]	
6.	\(c_r = 0.0007w_L + 0.0062 \)		
\(c_r = 0.1257\gamma_d^{-2.8826} \) | Mazandaran Province of Iran | [44] |

5. Correlation between preconsolidation pressure \(\sigma'_p \) and soil properties

In order to find whether the soil is preconsolidated, it is necessary to determine preconsolidation pressure \(\sigma'_p \). Several procedures have been proposed to determine \(\sigma'_p \). Casagrande’s method [3], which is graphical construction method was widely used for determination of \(\sigma'_p \). Interpretation of preconsolidation pressure from incremental loading test is more difficult, when the incremental ratio is high. Controlled strain test is the fastest method of determination of \(\sigma'_p \) [16]. \(\sigma'_p \) determined using ANN model gives more accurate result than graphical method and void ratio is the effective parameter on preconsolidation pressure [47]. Correlations for \(\sigma'_p \) for different applicability are given in the Table 4.
Table 4. Correlations for determining σ'_p

S.No	Equation	Applicability	References
1.	$\frac{e}{e_L} = 1.122 - 0.188 \log \sigma'_p - 0.0463 \log \sigma' \quad (\text{kN/m}^2)$	overconsolidated saturated fine grained soils	[28]
2.	$\sigma'_p = 137.924 - 0.179\sigma' - 30.48 \left(\frac{e}{e_L}\right) \quad (\text{kN/m}^2)$	alluvial deposits of south Gujarat region	[40]

6. Conclusions
- It can be concluded that, the existing empirical correlations for the consolidation characteristics of soil, coefficient of consolidation c_v, compression index c_c, recompression index c_r and preconsolidation pressure σ'_p with soil parameters, as per the conditions of applicability and the methods used for deriving the correlations are reviewed extensively. The correlations are derived in terms of single or multiple soil parameters.
- Hence, by selecting the suitable equations, one can predict the values of c_v, c_c, c_r and σ'_p without conducting conventional oedometer tests.

Acknowledgement
The authors acknowledge with thanks, for the facilities offered, by the Department of Civil Engineering, National Institute of Technology, Tiruchirappalli, India. Also, grateful to the Ministry of Education (MoE), India, for providing scholarship, to carry out the research work.

References
[1] ASTM D2435 / D2435M-11 2011 Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading, ASTM International.
[2] Casagrande A and Fadum R E 1940 Notes on soil testing for engineering purposes Soil Mechanics Series Harvard University Cambridge 8: 37 Pub. No. 268.
[3] Casagrande A 1936 The determination of the preconsolidation load and its practical significance In Proceedings of 1st International Conference Soil Mechanics and Foundation Engineering (Cambridge) 3 60–64.
[4] Taylor D W 1942 Research on the Consolidation of Clays Massachusetts Institute of Technology Department of Civil and Sanitary Engineering Serial 82 Cambridge.
[5] Terzaghi K 1925 Settlement and consolidation of clay Engineering News-Record 95 874-878.
[6] Hamilton J J and Crawford C B 1960 Improved determination of preconsolidation pressure of a sensitive clay ASTM STP 254 254-271.
[7] Smith R E and Wahls H E 1969 Consolidation under constant rates of strain Journal of the Soil Mechanics and Foundations Division ASCE, 95(SM2) 519-540.
[8] Gorman C T, Hopkins T C, Deen R C and Drnevich V P 1978 Constant-Rate-of-Strain and Controlled-Gradient consolidation Testing Geotechnical Testing Journal 1(1) 3-15.
[9] Lowe J, Jonas E and Obrician V 1969 Controlled gradient consolidation test Journal of the Soil Mechanics and Foundations Division American Society of Civil Engineers 95(SM1) 77-98.
[10] Janbu N, Tokheim O and Senneset K 1981 Consolidation tests with continuous loading Proceedings of 10th International Conference on Soil Mechanics and Foundation Engineering Stockholm 1 645-654.
[11] Skempton A W and Jones O T 1944 Notes on compressibility of clays Quarterly Journal of the Geological Society London 100(2) 119-135.
[12] Taylor D W 1948 Fundamentals of Soil Mechanics John Wiley and Sons New York.
[13] Cour F R 1971 Inflection point method for computing consolidation coefficient Journal of the Soil Mechanics and Foundations Division ASCE 97(SM5) 827-831.
[14] Sivaram B and Swamee P K 1977 A computational method for consolidation coefficient Soils and Foundations 17(2) 48-51.
[15] Parkin A K 1978 Coefficient of consolidation by the velocity method Geotechnique 28(4) 472-474.
[16] Parkin A K 1981 Consolidation analysis by velocity method Proceedings of 10th International Conference on Soil Mechanics and Foundation Engineering Stockholm 1 723-726.
[17] Sridharan A and Rao A 1981 Rectangular hyperbola fitting method for one dimensional consolidation Geotechnical Testing Journal ASTM 4(4) 161-168.
[18] Carrier W D III 1985 Consolidation parameters derived from index tests Geotechnique 35(2) 211–213.
[19] Sridharan A and Nagaraj H B 2004 Coefficient of consolidation and its correlation with index properties of remolded soils Geotechnical Testing Journal ASTM 27(5) 1-6.
[20] Priyadarshini Devi S, Rambha Devi K, Prasad D S V and Prasada Raju G V R 2015 Study on consolidation and correlation with index properties of different soils in Manipur valley International Journal of Engineering Research and Development 11(5) 57-63.
[21] Raju Narasimha P S R, Pandian N S and Nagaraj T S 1995 Analysis and estimation of coefficient of consolidation Geotechnical Testing Journal 18(2) 252–258.
[22] Solanki C H 2011 Quick settlement computation of shallow foundation using soil index and plasticity characteristics Pan-Am CGS Geotechnical conference 1-5.
[23] Asma Y Al-Tae’e and Abbas F Al-Ameri 2011 Estimation of relationship between coefficient of consolidation and liquid limit of middle and south Iraqi soils Journal of engineering 17(3) 430-440.
[24] Kok Shien N, Yee Ming C and Nur Izzati A L 2018 Prediction of consolidation characteristics from index properties E3S Web of Conferences 65 1-5.
[25] Terzaghi K and Peck R B 1967 Soil Mechanics in Engineering Practice John Wiley and Sons New York.
[26] Azzouz A S, Krizek R J, and Corotis R B 1976 Regression analysis of soil compressibility Soils and Foundations 16(2) 19-29.
[27] Kopppula S D 1981 Statistical estimation of compression index Geotechnical Testing Journal GTJOIDJ ASTM 4(2) 68-73.
[28] Nagaraj T S and Srinivasa Murthy B R 1985 Prediction of the preconsolidation pressure and recompression index of soils Geotechnical Testing Journal ASTM 8(4) 199-202.
[29] Burland J B 1990 On the compressibility and shear strength of natural clays Geotechnique 40(3) 329-378.
[30] Sridharan A and Nagaraj H B 2000 Compressibility behaviour of remoulded fine grained soils and correlation with index properties Canadian Geotechnical Journal 37 712-722.
[31] Mesri G and Ajlouni M 2007 Engineering properties of fibrous peats Journal of Geotechnical and Geoenvironmental Engineering 133(7) 850-866.
[32] Vinod P and Bindu J 2010 Compression index of highly plastic clays - An empirical correlation Indian Geotechnical Journal 40(3) 174-180.
[33] Murayama S, Akai K and Ueshita K 1958 Engineering properties of diluvial clays in Osaka Soils and Foundations 6(4) 39-47.
[34] Nishida Y 1956 A brief note on compression index of soil Journal of the Soil Mechanics and Foundations Division ASCE 82(3) 1-4.
[35] Schofield A N and Wroth C P 1968 Critical-state soil mechanics (McGraw-Hill London) 134-206.
[36] Wroth C P and Wood D M 1978 The correlation of index properties with some basic engineering properties of soils Canadian Geotechnical Journal 15(2) 137-145.
[37] Mayne P W 1980 Cam-clay predictions of undrained strength Journal of the Geotechnical Engineering Division Proceedings of the American Society of Civil Engineers ASCE 106(GT11) 1219-1242.
[38] Tsuchida T, 1991 A new concept of e-logp relationship for clays Proceedings of the 9th Asian regional conference on soil mechanics and foundation engineering (Bangkok Thailand) 87-90.
[39] Gil-Lim Yoon, Byung-Tak Kim and Sang-Soo Jeon 2004 Empirical correlations of compression index for marine clay from regression analysis Canadian Geotechnical Journal 41 1213-1221.
[40] Solanki C H and Desai J A 2008 Significance of Atterberg limits on compressibility parameters of alluvial deposits–new correlations Proceedings of Indian Geotechnical Conference Bangalore India 23 20.
[41] Park H I and Lee S R 2011 Evaluation of the compression index of soils using an artificial neural network. Computers and Geotechnics 38 472-81.
[42] Bryan A McCabe, Brian B Sheil, Michael M Long, Fintan J Buggy and Eric R Farrell 2014 Empirical correlations for the compression index of Irish soft soils *Proceedings of the Institution of Civil Engineers Geotechnical Engineering* 167(GE6) 510–517.

[43] Gunduz Z and Arman H 2007 Possible relationships between compression and recompression indices of a low plasticity clayey soil *Arabian Journal for science and engineering* 32(2) 179-190.

[44] Sinan N 2009 Estimation of swell index of fine grained soils using regression equations and artificial neural networks *Scientific Research and Essays* 4(10) 1047–1056.

[45] Nakase A, Kamei T and Kusakabe O 1988 Constitute parameters estimated by plasticity index. *Journal of Geotechnical Engineering* ASCE 114(7) 844-858.

[46] Afshin K, Farzin K, Behrouz K and Hossein M A 2015 Prediction of recompression index using GMDH-type neural network based on geotechnical soil properties *Soils and Foundations* 55(6) 1335–1345.

[47] Celik S and Tan O 2005 Determination of preconsolidation pressure with artificial neural network *Civil Engineering and Environmental Systems* 22(4) 217-231.