Elementary Intracellular Ca Signals are Initiated by a Transition of Release Channel
System from a Metastable State

Guillermo Veron¹, Victor A. Maltsev¹, Michael D. Stern¹, Anna V. Maltsev²*

¹Cellular Biophysics Section, Laboratory of Cardiovascular Science,
National Institute on Aging, NIH, Baltimore, MD 21224, USA

²School of Mathematical Sciences, Queen Mary University of London, London E14NS,
United Kingdom

*Corresponding author:
Anna V. Maltsev, PhD
Email: a.maltsev@qmul.ac.uk
Telephone: +44 (0)20 7882 2969

Abstract

Cardiac muscle contraction is initiated by an elementary Ca signal (called Ca spark) which is
achieved by collective action of Ca release channels in a cluster. The mechanism of this
synchronization remains uncertain. This paper approaches Ca spark activation as an emergent
phenomenon of an interactive system of release channels. We construct a Markov chain that
applies an Ising model formalism to such release channel clusters and realistic open channel
configurations to demonstrate that spark activation is described as a system transition from a
metastable to an absorbing state, analogous to the pressure required to overcome surface
tension in bubble formation. This yields quantitative estimates of the spark generation
probability as a function of various system parameters. Our model of the release channel
system yields similar results for the sarcoplasmic reticulum Ca concentration threshold for
spark activation as previous experimental results, providing a mechanistic explanation of the
spark initiation. Additionally, we perform numerical simulations to find spark probabilities as
a function of sarcoplasmic reticulum Ca concentration obtaining similar values for spark
activation threshold as our analytic model, as well as those reported in experimental studies.
Introduction

Robust intracellular signals are achieved by synchronous operation of groups of molecules, each operating stochastically. In cardiac muscle, Ca release channels, ryanodine receptors (RyR), form clusters of 20 to 200 channels (known as Ca release units, CRU) embedded in the membrane of the junctional sarcoplasmic reticulum (SR). The channels can be opened via a stochastic gating mechanism that is activated by Ca and then close spontaneously. Within CRUs, individual channels are very close to each other (~30 nm) and arranged in an almost perfect rectangular grid. The channels interact via Ca-induced-Ca-release (Fabiotto, 1983) thereby facilitating RyR openings throughout the cluster. The all-or-none event when almost all of the channels in a CRU have been opened is referred to as a Ca spark (Cheng et al., 1993; Cheng and Lederer, 2008).

Ca sparks can be triggered by a Ca influx via L-type Ca channel (“induced sparks”), or arise spontaneously (“spontaneous sparks” (Cheng et al., 1993)). Induced sparks are elementary signals of excitation-contraction coupling and spontaneous sparks contribute to normal cardiac impulse initiation in sinoatrial node cells (Lakatta et al., 2010). Thus, spark activation is of crucial physiological importance in cardiac muscle contraction as well as heart rate and rhythm. Under pathological conditions spontaneous sparks can create an excessive amount of Ca leaking from the SR that has deleterious effects on heart function. In ventricular myocytes spontaneous sparks can initiate Ca waves and life-threatening arrhythmia (Bers, 2014; Boyden and Smith, 2018). In all these circumstances understanding spark initiation is essential both for basic biophysical research as well as in biomedical applications.

Here we study under what conditions RyRs open simultaneously to create a full Ca spark instead of firing individually or partially synchronized, all of which have been observed experimentally under various conditions (Wang et al., 2004; Brochet et al., 2011). Zima et al. (Zima et al., 2010) found that full sparks start forming as the SR Ca load surpasses 300 μM. Despite its fundamental importance, spark activation has not been systematically studied theoretically or numerically as an emergent phenomenon of an interactive system of release channels.

Detailed numerical models of the entire CRU including individual, interacting, stochastically gated RyR channels in the dyadic space were reported by Laver et al. (Laver et al., 2013) and Stern et al. (Stern et al., 2013), focusing on Ca spark termination. This approach was extended towards understanding the effect of different CRU geometries (Walker et al., 2014). Other models approximate CRU phenomenologically by a single gating mechanism or as a Markov chain representing a result of interactions of all RyRs within the CRU (the “sticky cluster” model (Sobie et al., 2002)). In 2011, Sato and Bers approximated probabilities of different number of RyRs open in the CRU at a given junctional SR Ca level by using the binomial distribution (Sato and Bers, 2011). However, due to the assumption of independence for RyRs inherent in the binomial distribution, this approach lacks the effect of RyR interactions crucial for spark initiation.

A fundamentally new approach to describe CRU operation has recently been introduced by the authors in (Maltsev et al., 2017), where the Stern model of the CRU (Stern et al., 2013) was mapped isomorphically to the Ising model from statistical mechanics. Further analysis identified the critical parameter (referred to as β, similar to inverse temperature in statistical mechanics models) that determines conditions for Ca leak (Maltsev...
et al., 2019). Both these studies focused again mainly on spark termination. The present study
is the first application of the Ising formalism to spark activation. Here we introduce a new
Markov chain describing the numbers of adjacent open channels to explicitly estimate the
probability that an open RyR will develop into a spark at each level of SR Ca, thus
establishing the threshold SR Ca load at which a spark can occur and offering a mechanistic
explanation. For numerical approximation, here we employed the modified Stern model of Ca
spark. In addition to our analytic approach, the present work is the first numerical study to
shed light on activation in a cluster of interactive RyRs and to establish a threshold of SR Ca
loading for spark activation.

Methods

Background. The Stern numerical model of the CRU has been shown to be isomorphic to an
Ising model (Maltsev et al., 2017), a classical model of statistical physics used to explain
spontaneous magnetization. This isomorphism provides a starting point for the present work.
The RyRs are assumed to be in a rectangular grid (with their coordinates given as $x = (x_1, x_2)$
and with $(0, 0)$ as the center of a grid with an odd number of elements) with each RyR
assuming one of two states: open (+1) or closed (-1). An assignment σ of an open or closed
state to each RyR is called a configuration, and the Ising model is a continuous time Markov
chain with RyR configurations as states. The instantaneous transition rates are only non-zero
between configurations differing at only one RyR, say at position x, and, upon discretizing
time, are given by Eq.6 in (Maltsev et al., 2017), which we give here for convenience:

$$
P(\sigma, \sigma') = \begin{cases}
\Delta t C e^{2\beta \sum_{x \neq 0} \phi(|x|) |\sigma(x)+1|} & \text{for } \sigma(x) = -1 \\
\Delta t C & \text{for } \sigma(x) = 1
\end{cases} \quad (1)
$$

Here σ' is the configuration that coincides with configuration σ except at x where the state is
reversed and $\phi(r)$ is the interaction profile (defined below).

The closing rate C is taken to be constant, and the opening rate is taken to be an
exponential of the cleft Ca concentration given by $\lambda^* \exp(\gamma |\text{Ca}|)$ fitted to experimental data of
Laver et al. (Laver et al., 2013) in our previous study (Maltsev et al., 2017). The analogues of
magnetic field h and inverse temperature β are given by

$$
h = \frac{1}{2\beta} \ln \frac{\lambda}{C} + \sum_{x \neq 0 \in \text{CRU}} \phi(|x|) \quad (2)
$$

where U is the distance between RyRs, ψ is the Ca level in the cleft resulting from the
opening of an RyR as a function of distance from the open RyR (i.e. an interaction profile,
Figure 1), and $\phi(r) = \psi(rU)/(\psi(U))$ is a natural choice of scaling for the interaction profile
function ϕ.

Figure 1: A family of interaction profiles $\psi(r)$ at various SR Ca. $\psi(r)$ is a steady-state [Ca] in the dyadic cleft as a function of distance r when one RyR opens at $r=0$. The profiles were measured in numerical simulations for 9x9 RyR grid, the distance between RyRs is 30 nm, and each voxel is 10x10x15 nm in xyz. See supplemental Excel file for exact values of the profiles.
The new Markov chain. We follow an evolution of a cluster under the conditions of strong interactions (i.e. supercritical β) and favorable magnetic field (i.e. positive and growing) but an initial configuration where all RyRs are closed (maximally unfavorable). For a wide range of positive magnetic field h, this initial condition constitutes a local energy minimum (also known as a metastable state) and the system is highly unlikely to transition to an all-open state. It would require the unlikely event of several RyRs randomly opening next to each other, despite the closed neighbors. Only when h is large enough that one open RyR creates enough Ca flux to strongly influence its neighbors, a spark has a good chance of activating.

To quantify these concepts, we introduce a new Markov chain. We define an open cluster as a collection of channels that are open and adjacent (diagonals don’t count). The states of the Markov chain are the size of the open cluster going from 0 to 4 (Figure 2A) and the transition probability for increasing the cluster is computed from (1), but weighted by the relative frequency of configurations both in the initial and the target states. The transition probability of decreasing the cluster is computed from (1) as well, but we assume that when transitioning from 3 to 2 only the outside RyRs can close, resulting in the configuration as in state 2.

![Figure 2](image_url)

Figure 2. Evolution of RyR cluster to generate a spark. (A), Five-state Markov process simulating the evolution. Each arrow represents the event of the Markov process changing from one state to another state with the direction indicated by the arrow. (B), Configuration tree. Illustration of the different configurations possible and the series of events that could take place to reach each of the configurations. Numbers at each configuration indicate the number of possible ways to reach a given configuration.
Results

Calculation of transition probabilities. Here we show an example of a calculation for the transition matrix of our Markov process. We compute the probability of going from 1 open channel to 2 open channels \(P(1 \to 2) \) at an SR level of 300 \(\mu M \). We find the following:

\[\beta \text{ at } 300 \mu M: 0.64544597505 \]

\[\sum_{y=x}^{h} \Phi_{y}[(x-y)]\sigma_{y}(y) \text{ at } 300 \mu M: -20.789863109249815 \]

\[h \text{ at } 300 \mu M: 18.02130417561286 \]

\[C \text{ (closing channel rate)} = 117 \text{ s}^{-1} \]

\[\Delta t = 7 \times 10^{-10} \text{ ms} \]

\[P(1 \to 2) = \Delta t e^{2h} \sum_{y=x}^{h} \Phi_{y}[(x-y)]\sigma_{y}(y)+h \]

\[P(1 \to 2) = (7 \times 10^{-10})(117)e^{2(0.64544597505)\sum_{y=x}^{h} \Phi_{y}[(x-y)]\sigma_{y}(y)+h} = 2.2969646869805702 \times 10^{-9} \]

Lastly, since there are four different ways for one open channel to turn into two open (adjacent) channels, we multiply this probability by four to arrive at the final answer of \(P(1 \to 2) = 9.187858747922281 \times 10^{-9} \).

The calculation becomes more involved for \(P(2 \to 3) \). We have a formula for transition probability from a given configuration to a configuration with one square added. Looking at Figure 2B, to compute \(P(2 \to 3) \), we compute the probability of transitioning from a configuration with 2 squares to configuration A (in the left branch) and multiply it by 4 and then add the probability of transitioning from 2 to configuration B (in the right branch) and multiply by 2. Lastly, to obtain \(P(3 \to 4) \) we notice that if we pick a random configuration with 3 squares, with probability 2/3 it will be in configuration A and with probability 1/3 it will be in configuration B. Thus to compute \(P(3 \to 4) \) we find the appropriately weighted sum of probabilities of transitioning from configuration A to a configuration of 4 squares and multiply the result by 2/3 and similarly find the appropriately weighted sum of probabilities of transitioning from configuration B to a configuration of 4 squares and multiply the result by 1/3.

This procedure results in a transition matrix \(M = (P(i \to j))_{0 \leq i,j \leq 4} \). The canonical form of an absorbing chain, with \(t \) transient states and \(r \) absorbing states, is defined as the following:

\[P = \begin{pmatrix} Q & R \\ 0 & I_r \end{pmatrix} \]

Where \(Q \) is a \(t \)-by-\(t \) matrix, \(R \) is a nonzero \(t \)-by-\(r \) matrix, \(0 \) is the \(r \)-by-\(t \) zero matrix, and \(I_r \) is the \(r \)-by-\(r \) identity matrix. To obtain a matrix in canonical form, we relabel the state with 0 squares as state 5. The fundamental matrix is defined as the following:

\[N = \sum_{k=0}^{\infty} Q^k = (I_t - Q)^{-1} \]

The probability of transitioning from state \(i \) to state \(j \) in exactly \(k \) steps is the \((i,j)\) entry in the matrix \(Q^k \). Lastly, the absorbing probability for going from a particular transient state \(i \) to a particular absorbing state \(j \) is the \((i,j)\) entry in the matrix \(B = NR \). Using this formula, we obtain the probability of going from state 1 with one open RyR to the absorbing state 4 with 4 open RyRs by finding the \((1,4)\) entry in the matrix \(NR \). We use Theorems 11.5 and 11.6 of (Grinstead and Snell, 1997) for absorbing Markov chains to obtain the probability of
absorption in state 4 when starting from state 1, corresponding to the probability that a spark
initiates from a given open RyR (for Python code see Supplemental material).

Figure 3 shows the results of similar computations performed by our Python program for all
relevant values of SR Ca yielding the probability of transitioning from 2 open channels to 3
open channels and the probability of transitioning from 3 open channels to 4 open channels
(our Python code and its Psi data file are provided in the supplement). We notice that the
curve $P(3 \to 4)$ is steeper and lies to the left of $P(2 \to 3)$, so SR Ca at which the transition
from 2 open channels to 3 open channels becomes somewhat likely is the same as SR Ca
where the transition from 3 open channels to 4 open channels becomes extremely likely. This
indicates the dependence of growth of the open cluster on its size. On a physics level, this
happens because the system with all channels closed but positive magnetic field and
supercritical β is in a local energy minimum. Each individual channel or small cluster might
not open or, if open, close quickly due to the strong interaction from closed neighbors. But as
the open cluster grows, the “curvature” of its boundary decreases, so the force from the
closed neighbors gets distributed over more open neighbors and is less likely to close an open
channel.

Figure 3: The probability of transitioning from 2 open channels to 3 open channels (circles) and
probability of transitioning from 3 open channels to 4 open channels (triangles). We notice that the
SR Ca at which the transition from 2 open channels to 3 open channels becomes somewhat likely is
the same as SR Ca where the transition from 3 open channels to 4 open channels becomes
extremely likely.
Spark activation probability as a function of SR Ca. In this work we assume that once the open cluster reaches 4 in size, it always initiates a spark. We do not compute in this work the probability of transitioning from 4 to 5, we call it \(P(4 \rightarrow 5) \), because the enumeration of all the possible clusters becomes cumbersome. However, it is clear that the curve \(P(4 \rightarrow 5) \) as well as further curves such as \(P(5 \rightarrow 6) \) would be much steeper and lie to the left of \(P(3 \rightarrow 4) \), in a similar way as \(P(3 \rightarrow 4) \) is steeper and lies to the left of \(P(2 \rightarrow 3) \) as evidenced in Figure 3. Thus, it is reasonable to let 0 and 4 be absorbent states.

The results of our analytical modeling are shown in Figure 4B (circles). The probability of spark activation follows a steep sigmoid curve as a function of SR Ca load, beginning to rise at around 250 μM. Our analytic results closely match the results of experimental studies (Figure 4A) and our numerical simulations (Figure 4B, triangles). More sensitive spark generation at high SR Ca vs. numerical estimates reflects analytical model assumption of instantaneous interactions, whereas Ca diffusion causes a small delay. In numerical model it takes roughly 2.5 ms for the Ca profile to reach its stable level (Figure 2B of (Maltsev et al., 2017)). Approximating the interactions with a step-function which is 0 until 1.25 ms and the full profile after 1.25 ms, and using the closing rate from our numerical model of \(C=0.117 \text{ ms}^{-1} \), we obtain that with probability of approximately 15% the RyR will close before it has a chance to interact with other channels. On the other hand, with probability 85% it will interact and enter into our Markov chain setup. Thus, if we scale the curve by 0.85 to account for this discrepancy, we obtained a closer match at higher SR Ca (Figure 4C). Less sensitive spark generation at low SR Ca in analytical model can be due to other Ising model assumptions, such as its interactions limited to the nearest neighbors. On the other hand, the threshold of spark activation (300-400 μM) reported in experimental studies (Figure 4A) is better reproduced by our analytical model than by the numerical modeling (200-300 μM).
Figure 4. Spark activation as a function of SR Ca load. (A), Experimentally defined SR Ca threshold for Ca spark activation; shown are mean values of total spark-mediated release flux (measured by confocal microscopy) which were rescanned and replotted from Figure 3B of (Zima et al., 2010). Spark activation predicted numerically and analytically: (B), no correction for diffusion delay and (C), with correction for the delay. In numerical method, probability of spark firing at each SR Ca was evaluated from 10,000 simulation runs of 200 ms each. In each run at \(t=0 \) one RyR in the center of 9x9 RyR cluster was set open. Our criterion for spark firing was that 50% of all RyRs open at any moment before all RyRs closed.
Discussion

In this study, we use numerical and analytical approaches to study Ca spark activation. We consider spark activation as an emerging property of an ensemble of interacting individual RyRs. Using this approach, we predict the threshold of SR Ca required for spark activation based on intrinsic RyR channel properties and RyR interactions. We examined spark activation dynamics at different SR Ca levels and found a sharp transition at 300 μM level where sparks were robustly generated. Zima et al. (Zima et al., 2010) reported spark and non-spark Ca SR leak types in ventricular myocytes. As SR Ca load grows above ~300 μM, Ca sparks strongly contribute to the leak (Figure 4A). Our results are in agreement with previous experimental studies.

The present study provides a mechanistic view on the spark initiation threshold. Mathematically speaking, one can view spark activation as equivalent to a system transitioning from a local energy minimum (also known as a metastable state) to a global one. As a physical process, spark activation becomes analogous to the pressure required to overcome surface tension in bubble formation. When a open cluster forms in a background of closed channels, the interaction between the closed and the open channels happens only at the boundary of the open cluster. When the open cluster is small, there are more closed channels per open channel at the boundary (in the extreme case of one open channel, there are 4 closed channels per that one open channel and the Ca from just one channel gets spread out to all 4). As the open cluster gets bigger, this ratio gets more favorable for the open channels. This reflects the “curvature” of the boundary as in bubble formation.

Our model includes measurable parameters of the system that can be further varied to understand the impact of realistic factors for spark activation, and our theoretical framework allows for further predictions. Such factors include SERCA pumping rate to increase network SR Ca, gating of RyRs and their sensitivity to Ca, connectivity of free SR and junctional SR (Sato et al., 2016), Ca buffering (e.g. via calsequestrin), posttranslational modifications (such as phosphorylation) of key Ca cycling molecules, etc. For example, increasing SR connectivity or performance of SERCA function would bring the system to spark activation threshold quicker as a result of SR Ca reloading at a more rapid pace. If diastole is long enough, these would provide conditions for spontaneous Ca release still during diastole, triggering life-threatening arrhythmia (Bers, 2008; Dobrev and Wehrens, 2017). On the other hand, the increased diastolic Ca release contributes to normal generation of spontaneous pacemaker potentials driving the heartbeat (Lakatta et al., 2010). Thus, our approach could help in directing pharmacological interventions to avoid regimes of spontaneous spark activation in cardiac muscle cells in cardiac disease (Bers, 2008) or to promote such regimes in cardiac pacemaker cells in sick sinus syndrome (insufficient pacemaker function) (Dobrzynski et al., 2007).

Lastly, our new analytical approach provides a substantial computational advantage to evaluate the conditions for spark activation within Ca release channel clusters. Calculating the dynamics for all states in the full Markovian representation of a CRU using the analytic solution to Markov matrix would involve taking exponentials of enormously large matrices.
Acknowledgments

The work was supported by the Intramural Research Program of the National Institute on Aging, National Institutes of Health. A.V.M. acknowledges the support of the Royal Society University Research Fellowship UF160569.

References

Bers, D.M. (2008). Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 70, 23-49. doi: 10.1146/annurev.physiol.70.113006.100455.

Bers, D.M. (2014). Cardiac sarcoplasmic reticulum calcium leak: basis and roles in cardiac dysfunction. Annu Rev Physiol 76, 107-127. doi: 10.1146/annurev-physiol-020911-153308.

Boyden, P.A., and Smith, G.L. (2018). Ca$^{2+}$ leak-What is it? Why should we care? Can it be managed? Heart Rhythm 15, 607-614. doi: 10.1016/j.hrthm.2017.11.018.

Brochet, D.X., Xie, W., Yang, D., Cheng, H., and Lederer, W.J. (2011). Quarky calcium release in the heart. Circ Res 108, 210-218. doi: 10.1161/CIRCRESAHA.110.231258.

Che, H., and Lederer, W.J. (2008). Calcium sparks. Physiol Rev 88, 1491-1545. doi: 10.1152/physrev.00030.2007.

Cheng, H., Lederer, W.J., and Cannell, M.B. (1993). Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262, 740-744.

Dobrev, D., and Wehrens, X.H.T. (2017). Calcium-mediated cellular triggered activity in atrial fibrillation. J Physiol 595, 4001-4008. doi: 10.1113/JP273048.

Dobrzenski, H., Boyett, M.R., and Anderson, R.H. (2007). New insights into pacemaker activity: promoting understanding of sick sinus syndrome. Circulation 115, 1921-1932.

Fabio, A. (1983). Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 245, C1-14.

Grinstead, C.M., and Snell, J.L. (1997). Introduction to Probability (2nd Edition). American Mathematical Society. ISBN 978-0-8218-0749-1.

Lakatta, E.G., Maltsev, V.A., and Vinogradova, T.M. (2010). A coupled SYSTEM of intracellular Ca$^{2+}$ clocks and surface membrane voltage clocks controls the timekeeping mechanism of the heart’s pacemaker. Circ Res 106, 659-673.

Laver, D.R., Kong, C.H., Imtiaz, M.S., and Cannell, M.B. (2013). Termination of calcium-induced calcium release by induction decay: an emergent property of stochastic channel gating and molecular scale architecture. J Mol Cell Cardiol 54, 98-100.

Maltsev, A.V., Maltsev, V.A., and Stern, M.D. (2017). Clusters of calcium release channels harness the Ising phase transition to confine their elementary intracellular signals. Proc Natl Acad Sci U S A 114, 7525–7530. doi: 10.1073/pnas.1701409114.

Maltsev, A.V., Stern, M.D., and Maltsev, V.A. (2019). Mechanisms of Calcium Leak from Cardiac Sarcoplasmic Reticulum Revealed by Statistical Mechanics. Biophys J 116, 2212-2223. doi: 10.1016/j.bpj.2019.04.031.

Sato, D., and Bers, D.M. (2011). How does stochastic ryanodine receptor-mediated Ca leak fail to initiate a Ca spark? Biophys J 101, 2370-2379. doi: 10.1016/j.bpj.2011.10.017.

Sato, D., Shannon, T.R., and Bers, D.M. (2016). Sarcoplasmic Reticulum Structure and Functional Properties that Promote Long-Lasting Calcium Sparks. Biophys J 110, 382-390. doi: 10.1016/j.bpj.2015.12.009.

Sobie, E.A., Dilly, K.W., Dos Santos Cruz, J., Lederer, W.J., and Jafri, M.S. (2002). Termination of cardiac Ca(2+) sparks: an investigative mathematical model of calcium-induced calcium release. Biophys J 83, 59-78.

Stern, M.D., Rios, E., and Maltsev, V.A. (2013). Life and death of a cardiac calcium spark. J Gen Physiol 142, 257-274.
Walker, M.A., Williams, G.S., Kohl, T., Lehnart, S.E., Jafri, M.S., Greenstein, J.L., Lederer, W.J., and Winslow, R.L. (2014). Superresolution modeling of calcium release in the heart. *Biophys J* 107, 3018-3029. doi: 10.1016/j.bpj.2014.11.003.

Wang, S.Q., Stern, M.D., Rios, E., and Cheng, H. (2004). The quantal nature of Ca2+ sparks and in situ operation of the ryanodine receptor array in cardiac cells. *Proc Natl Acad Sci U S A* 101, 3979-3984. doi: 10.1073/pnas.0306157101.

Zima, A.V., Bovo, E., Bers, D.M., and Blatter, L.A. (2010). Ca2+ spark-dependent and -independent sarcoplasmic reticulum Ca2+ leak in normal and failing rabbit ventricular myocytes. *J Physiol* 588, 4743-4757. doi: 10.1113/jphysiol.2010.197913.
This program was created by Guillermo Veron as a part of his research work in 2019-2021 at the Laboratory of Cardiovascular Science, Cellular Biophysics Section, Intramural Research Program, National Institute on Aging, NIH, Biomedical Research Center 251 Bayview Blvd. Baltimore, MD 21224-6825. Because this work was fully funded by the NIH, the code belongs to the public domain, does not carry a copyright, and can be freely used for the benefit of public knowledge, research, and healthcare. However, if this code is used entirely or in part in other studies or applications, please provide a full reference to it.

Instructions/Explanations

'Psi Values.xlsx' is needed in the same folder as code to work properly. Simply run the code and final probabilities of spark occurring will be listed in "A_LIST." This will be found under the "Diagonalization" sub-section under "Probabilities" section

Global Variables
We establish our data and constants we will be working with. For example, the number of nodes, psi values, given SR levels, value of gamma, channel closing rate, etc.

Hamiltonian Functions
We create our hamiltonian variables and functions such as how to calculate phi values, interaction profile values, and magnetic field values. The interaction profile values will necessarily change for different configurations. For example, going from one open node to two open nodes, going from three open nodes (in a straight configuration) to four open nodes (in an "L" configuration), etc. All potential configuration changes have been calculated (up to four open nodes).

Probabilities
Probabilities for configuration changes are calculated here. Once again different configuration changes will have different probabilities of occurring. All configuration change probabilities have been calculated. Transition matrix is created. Diagonalization is implemented to calculate final probability of induced spark with beginning state of one open channel. Results are presented and plotted.

Canonical Form
Canonical Form is used to estimate the number of steps it would take to reach our final configuration. Time for each step (delta_time) can be multiplied with this number to estimate time it takes to reach this final configuration.

For more information on canonical forms and absorbing Markov chains in general, see https://en.wikipedia.org/wiki/Absorbing_Markov_chain
import pandas as pd
import numpy as np
import scipy.linalg as la
import scipy as sp
from numpy import trapz
import math
from math import e
import matplotlib.pyplot as plt

Global Variables

In [2]:
NEAREST_NEIGHBOR_DISTANCE = 30 # distance of nearest neighbor RyRs from one another (nanometers)
N = 81 # total numbers of nodes
DIMX = 15
DIMY = 26
DISTANCES_NM = np.linspace(0, 130, 14)
CALCIUM_CONCENTRATIONS = [25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 300, 325, 350, 375, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000]
STARTING_SINGLE_CHANNEL = sp.array([0, 1, 0, 0, 0])

<ipython-input-2-d69713050b08>:7: DeprecationWarning: scipy.array is deprecated and will be removed in SciPy 2.0.0, use numpy.array instead
STARTING_SINGLE_CHANNEL = sp.array([0, 1, 0, 0, 0])

In [3]:
Grid_DimX = 9
Grid_DimY = 9
CENTER = np.ceil(Grid_DimY / 2)
N = Grid_DimX * Grid_DimY
gamma = 0.1138 # units are inverse micro molar
lowercase_lambda = 0.2482 # units are inverse seconds
channel_closing_rate = 117 # units are inverse seconds
delta_time = 7.0e-10 # units are in milliseconds
In [4]:
calcium_profiles = pd.read_excel('Psi Values.xlsx')
calcium_profiles

Out[4]:

distance, nm	distance, voxels	25	50	75	100	125	150
0	0.000000	5.325931	10.371009	15.912928	21.176525	26.374906	31.685792
1	1.000000	3.325624	6.342755	9.904539	13.161114	16.343166	19.653902
2	1.414214	2.782147	5.935447	8.271289	10.981693	14.008860	16.383152
3	2.000000	2.428112	4.538772	7.206327	9.560749	11.83954	14.250627
4	2.828427	1.952152	4.271868	7.737006	9.841142	11.382286	14.250627
5	3.000000	1.907791	3.497582	5.639754	7.470874	9.22466	11.143401
6	4.000000	1.552310	2.791583	4.567774	6.039113	7.433465	8.967646
7	4.242641	1.469579	3.285906	4.317070	5.705960	7.397651	8.468049
8	5.000000	1.285496	2.267135	3.759076	4.962136	6.087507	7.353381
9	5.656854	1.137866	2.589059	3.311491	4.365015	5.698555	6.459276
10	6.000000	1.073517	1.856024	3.114835	4.103139	5.017986	6.067707
11	7.000000	0.898650	1.522445	2.581155	3.392432	4.134029	5.004553
12	7.071068	0.891086	2.052404	2.559412	3.362919	4.416736	4.901061
13	8.000000	0.750170	1.244015	2.125723	2.786965	3.383857	4.099190
14	8.485281	0.699251	1.618696	1.971256	2.580110	3.404768	3.790699
15	9.000000	0.621077	1.006887	1.727777	2.257284	2.730935	3.309837
16	9.899493	0.546381	1.258790	1.499565	1.953149	2.585338	2.855470
17	10.000000	0.506328	0.800452	1.372160	1.784991	2.151173	2.606085
18	11.313708	0.423163	0.956953	1.116929	1.445295	1.914470	2.098947
19	11.000000	0.402163	0.616776	1.047792	1.354837	1.624759	1.965541
20	12.000000	0.305531	0.449415	0.745577	0.954371	1.136982	1.369895
21	12.727922	0.323898	0.704687	0.806800	1.034275	1.366183	1.487417
22	13.000000	0.213894	0.292893	0.458064	0.573768	0.674509	0.804038
23	14.142136	0.245029	0.497677	0.559047	0.706368	0.925035	1.000048
24	15.556349	0.184345	0.334068	0.367536	0.453197	0.582052	0.624071
25	16.970563	0.140502	0.213387	0.228672	0.269798	0.332267	0.351881
26	18.384776	0.112726	0.135822	0.140472	0.153390	0.173139	0.179189

27 rows C 30 columns

Hamiltonian Functions
In [5]:
used to estimate psi values that go beyond our given distance data
def found_slope(calcium_concentration):
 numerator = calcium_profiles[calcium_concentration].iloc[-1] - calcium_profiles[calcium_concentration].iloc[-2]
 denominator = calcium_profiles['distance, nm'].iloc[-1] - calcium_profiles['distance, nm'].iloc[-2]
 return numerator / denominator

def extended_psi(calcium_concentration, extended_distance):
 answer = found_slope(calcium_concentration)*(extended_distance - calcium_profiles['distance, nm'].iloc[-1]) + calcium_profiles[calcium_concentration].iloc[-1]
 if answer>= 0:
 return answer
 else:
 return 0

In [6]:
def inverse_temperature(calcium_concentration):
 return (gamma*psi(calcium_concentration, 30))/4

In [7]:
def round_down(num):
 if num<0:
 return -np.ceil(abs(num))
 else:
 return np.int(num)
In [8]: #calciun_concentration is in micromolars and distance_difference is in nanometers
def psi(calcium_concentration, distance_difference):
 normalized_distance = distance_difference/10
 for i in range(len(calcium_profiles['distance, nm']) - 1):
 if distance_difference >= calcium_profiles['distance, nm'].iloc[i] and distance_difference <= calcium_profiles['distance, nm'].iloc[i+1]:
 interval = calcium_profiles['distance, nm'].iloc[i+1] - calcium_profiles['distance, nm'].iloc[i]
 if np.isclose(distance_difference - calcium_profiles['distance, nm'].iloc[i], 0) or np.isclose(distance_difference - calcium_profiles['distance, nm'].iloc[i+1], 0):
 interval_sliver = 0
 else:
 interval_sliver = distance_difference - calcium_profiles['distance, nm'].iloc[i]
 ratio = interval_sliver / interval
 Y_interval = calcium_profiles.loc[calcium_profiles['distance, nm'] == calcium_profiles['distance, nm'].iloc[i+1], calcium_concentration].iloc[0] - \
 calcium_profiles.loc[calcium_profiles['distance, nm'] == calcium_profiles['distance, nm'].iloc[i], calcium_concentration].iloc[0]
 answer = calcium_profiles.loc[calcium_profiles['distance, nm'] == calcium_profiles['distance, nm'].iloc[i], calcium_concentration].iloc[0] + Y_interval*ratio
 return answer

In [9]: def phi(calcium_concentration, distance_difference): #Distance_difference is in nanometers
 return (psi(calcium_concentration, distance_difference)) / (psi(calcium_concentration, 30))

In [10]: def summation(calcium_concentration):
 counter = 0
 for j in range(1,Grid_DimY+1):
 for i in range(1,Grid_DimY+1):
 counter += phi(calcium_concentration, 30*math.hypot(CENTER - i, CENTER - j))
 counter -= phi(calcium_concentration, 30*math.hypot(0, 0))
 return counter

In [11]: def magnetic_field(calcium_concentration):
 return (1/(2*inverse_temperature(calcium_concentration)))*(math.log(lowercase_lambda / channel_closing_rate)) \
 + (summation(calcium_concentration))

\[
\text{Interaction Sum} = \sum_{y \in \Lambda_3} \phi(|x - y|)\sigma(y)
\]
In [12]:
 def interaction_sum_0to1(calcium_concentration):
 return (-1)*summation(calcium_concentration)

In [13]:
 def interaction_sum_1to2(calcium_concentration):
 return (-1)*summation(calcium_concentration) + 2*phi(calcium_concentration, 30)

In [14]:
 def interaction_sum_2to3_straight(calcium_concentration):
 return (-1)*summation(calcium_concentration) + (2)*phi(calcium_concentration, 30) + (2)*phi(calcium_concentration, 60)

 def interaction_sum_2to3_triangle(calcium_concentration):
 return (-1)*summation(calcium_concentration) + (2)*phi(calcium_concentration, 30) + (2)*phi(calcium_concentration, math.sqrt(30**2 + 30*2))

In [15]:
 def interaction_sum_3straight_to_4straight(calcium_concentration):
 return (-1)*summation(calcium_concentration) + (2)*phi(calcium_concentration, 30) + (2)*phi(calcium_concentration, 60) + (2)*phi(calcium_concentration, 90)
In [16]:

```python
def interaction_sum_3straight_to_4L(calcium_concentration):
    return (-1)*summation(calcium_concentration, 30) + \n        (2)*phi(calcium_concentration, math.sqrt(30**2 + 30**2)) + (2)*phi(calcium_concentration, math.sqrt(30**2+60**2))

def interaction_sum_3straight_to_4T(calcium_concentration):
    return (-1)*summation(calcium_concentration, 30) + (4)*phi(calcium_concentration, math.sqrt(30**2 + 30*2))

def interaction_sum_3triangle_to_4Box(calcium_concentration):
    return (-1)*summation(calcium_concentration, 30) + (2)*phi(calcium_concentration, math.sqrt(30**2 + 30*2)) +
        (2)*phi(calcium_concentration, 60) + (2)*phi(calcium_concentration, math.sqrt(30**2+60**2))

def interaction_sum_3triangle_to_4L(calcium_concentration):
    return (-1)*summation(calcium_concentration, 30) + \n        (2)*phi(calcium_concentration, math.sqrt(30**2 + 30**2)) + (2)*phi(calcium_concentration, 60) +
        (2)*phi(calcium_concentration, math.sqrt(30**2+60**2))

def interaction_sum_3triangle_to_4S(calcium_concentration):
    return (-1)*summation(calcium_concentration, 30) + \n        (2)*phi(calcium_concentration, math.sqrt(30**2 + 30**2)) +
        (2)*phi(calcium_concentration, math.sqrt(30**2+60**2)) + \n        (2)*phi(calcium_concentration, 60)
```

Probabilities

\[
P(\sigma, \sigma') = \begin{cases}
 \Delta t C e^{2\beta(\sum_{\mu \lambda} \phi(|x-y|)\sigma(y)+h)}, & \text{for } \sigma(x) = -1 \\
 \Delta t C, & \text{for } \sigma(x) = 1
\end{cases}
\]

In [17]:

```python
def P_1to0(calcium_concentration):
    return delta_time*channel_closing_rate
```
In [18]:

```python
def P_1to2(calcium_concentration):
    return 4*delta_time*channel_closing_rate*e**((2*inverse_temperature(calcium_concentration))*
    interaction_sum_1to2(calcium_concentration)+magnetic_field(calcium_concentration))
```

In [19]:

```python
def P_1to1(calcium_concentration):
    return 1 - P_1to0(calcium_concentration) - P_1to2(calcium_concentration)
```

In [20]:

```python
def P_2to1(calcium_concentration):
    return 2*delta_time*channel_closing_rate
```

In [21]:

```python
def P_2to3_straight(calcium_concentration):
    return 2*delta_time*channel_closing_rate*e**((2*inverse_temperature(calcium_concentration))*
    interaction_sum_2to3_straight(calcium_concentration)+magnetic_field(calcium_concentration))

def P_2to3_triangle(calcium_concentration):
    return 4*delta_time*channel_closing_rate*e**((2*inverse_temperature(calcium_concentration))*
    interaction_sum_2to3_triangle(calcium_concentration)+magnetic_field(calcium_concentration))

def P_2to3(calcium_concentration):
    return (1/3)*P_2to3_straight(calcium_concentration) + (2/3)*P_2to3_triangle(calcium_concentration)
```

In [22]:

```python
def P_2to2(calcium_concentration):
    return 1 - P_2to1(calcium_concentration) - P_2to3(calcium_concentration)
```

In [23]:

```python
def P_3straight_to2(calcium_concentration):
    return 2*delta_time*channel_closing_rate

def P_3triangle_to2(calcium_concentration):
    return 2*delta_time*channel_closing_rate

def P_3to2(calcium_concentration):
    return (1/3)*P_3straight_to2(calcium_concentration) + (2/3)*P_3triangle_to2(calcium_concentration)
```
In [24]:

```python
def P_3straight_to_4straight(calcium_concentration):
    return 2*delta_time*channel_closing_rate*\
           e**((2*inverse_temperature(calcium_concentration))*(interaction_sum_3straight_to_4straight(calcium_concentration)+magnetic_field(calcium_concentration)))

def P_3straight_to_4L(calcium_concentration):
    return 4*delta_time*channel_closing_rate*\
           e**((2*inverse_temperature(calcium_concentration))*(interaction_sum_3straight_to_4L(calcium_concentration)+magnetic_field(calcium_concentration)))

def P_3straight_to_4T(calcium_concentration):
    return 2*delta_time*channel_closing_rate*\
           e**((2*inverse_temperature(calcium_concentration))*(interaction_sum_3straight_to_4T(calcium_concentration)+magnetic_field(calcium_concentration)))

def P_3triangle_to_4Box(calcium_concentration):
    return delta_time*channel_closing_rate*\
           e**((2*inverse_temperature(calcium_concentration))*(interaction_sum_3triangle_to_4Box(calcium_concentration)+magnetic_field(calcium_concentration)))

def P_3triangle_to_4L(calcium_concentration):
    return 2*delta_time*channel_closing_rate*\
           e**((2*inverse_temperature(calcium_concentration))*(interaction_sum_3triangle_to_4L(calcium_concentration)+magnetic_field(calcium_concentration)))

def P_3triangle_to_4S(calcium_concentration):
    return 2*delta_time*channel_closing_rate*\
           e**((2*inverse_temperature(calcium_concentration))*(interaction_sum_3triangle_to_4S(calcium_concentration)+magnetic_field(calcium_concentration)))

def P_3triangle_to_4T(calcium_concentration):
    return 2*delta_time*channel_closing_rate*\
           e**((2*inverse_temperature(calcium_concentration))*(interaction_sum_3triangle_to_4T(calcium_concentration)+magnetic_field(calcium_concentration)))

def P_3straight_to_4(calcium_concentration):
    return (2/8)*P_3straight_to_4straight(calcium_concentration) + (4/8)*P_3straight_to_4L(calcium_concentration) + (2/8)*P_3straight_to_4T(calcium_concentration)

def P_3triangle_to_4(calcium_concentration):
    return (1/7)*P_3triangle_to_4Box(calcium_concentration) + (2/7)*P_3triangle_to_4L(calcium_concentration) + (2/7)*P_3triangle_to_4S(calcium_concentration) + (2/7)*P_3triangle_to_4T(calcium_concentration)

def P_3to4(calcium_concentration):
    return (8/15)*P_3straight_to_4(calcium_concentration) + (7/15)*P_3to4(calcium_concentration)
```

S9
triangle_to_4(calcium_concentration)

In [25]:
 def P_3to3(calcium_concentration):
 return 1 - P_3to2(calcium_concentration) - P_3to4(calcium_concentration)

In [26]:
 def transition_matrix(calcium_concentration):
 return sp.array([[1, 0, 0, 0, 0],
 [P_1to0(calcium_concentration), P_1to1(calcium_concentration), P_1to2(calcium_concentration), 0, 0],
 [0, P_2to0(calcium_concentration), P_2to1(calcium_concentration), P_2to2(calcium_concentration), 0],
 [0, 0, P_3to2(calcium_concentration), P_3to3(calcium_concentration), P_3to4(calcium_concentration)],
 [0, 0, 0, 0, 1]])

Diagonalization

In [27]:
 def P(calcium_concentration):
 return la.eig(transition_matrix(calcium_concentration))[1]

In [28]:
 #returns eignevalues for chosen SR level
 def eigenvalues(calcium_concentration):
 return la.eigvals(transition_matrix(calcium_concentration))

In [29]:
 def D(calcium_concentration):
 return sp.array([[la.eigvals(transition_matrix(calcium_concentration))[0],0,0,0,0],
 [0,la.eigvals(transition_matrix(calcium_concentration))[1],0,0,0],
 [0,0,la.eigvals(transition_matrix(calcium_concentration))[2],0,0],
 [0,0,0,la.eigvals(transition_matrix(calcium_concentration))[3],0],
 [0,0,0,0,la.eigvals(transition_matrix(calcium_concentration))[4]]])

In [30]:
 def P_inverse(calcium_concentration):
 return la.inv(P(calcium_concentration))

In [31]:
 def D_raised_to_k(calcium_concentration):
 return sp.array([[0,0,0,0,0],
 [0,0,0,0,0],
 [0,0,0,0,0],
 [0,0,0,1,0],
 [0,0,0,0,1]])

In [32]:
 def diagonalization_raised_to_k(calcium_concentration):
 PDk = sp.matmul(P(calcium_concentration),D_raised_to_k(calcium_concentration))
 return sp.matmul(PDk,P_inverse(calcium_concentration))
In [33]: def induced_spark(calcium_concentration):

 return sp.matmul(STARING_SINGLE_CHANNEL, diagonalization_raised_to_k(calcium_concentration))

In [34]: A_LIST = []
for i in CALCIUM_CONCENTRATIONS:
 print(induced_spark(i)[4])
 A_LIST.append(0.85*induced_spark(i)[4])

<ipython-input-26-47e076ce5f5>:2: DeprecationWarning: scipy.array is deprecated and will be removed in SciPy 2.0.0, use numpy.array instead
 return sp.array([[1, 0, 0, 0, 0],
<ipython-input-32-bf24790d66ae>:2: DeprecationWarning: scipy.matmul is deprecated and will be removed in SciPy 2.0.0, use numpy.matmul instead
 PDk = sp.matmul(P(calcium_concentration),D_raised_to_k(calcium_concentration))
<ipython-input-32-bf24790d66ae>:3: DeprecationWarning: scipy.matmul is deprecated and will be removed in SciPy 2.0.0, use numpy.matmul instead
 return sp.matmul(PDk,P_inverse(calcium_concentration))

2.3082661588788414e-07
6.29727683058175e-07
1.889687065192238e-06
5.281658616451008e-06
1.512086600846096e-05
4.0465585738139625e-05
0.0001215201556096529
0.0003637413025686484
0.0012825347168188338
0.002500824422603198
0.0067561771477859175
0.01440976759265422
0.02808358687757737
0.03559158071002546
0.06957902157607902
0.1357833718598471
0.2359144874010327
0.3576908093760188
0.48554735049003017
0.6072943213554631
0.7183760693154762
0.7923821416922303
0.8527292150062724
0.9082186301128848
0.9341159526061776
0.958749482882124
0.9736392699896748
0.9830954859791495
In [35]:
 plt.plot(CALCIUM_CONCENTRATIONS, A_LIST, 'r')
 plt.show()

Canonical Form

In [36]:
 def Q_matrix(calcium_concentration):
 return sp.array([[P_1to1(calcium_concentration), P_1to2(calcium_concentration), 0],
 [P_2to1(calcium_concentration), P_2to2(calcium_concentration), P_2to3(calcium_concentration)],
 [0, P_3to2(calcium_concentration), P_3to3(calcium_concentration)]]

In [37]:
 def R_matrix(calcium_concentration):
 return sp.array([[P_1to0(calcium_concentration), 0],
 [0, 0],
 [0, P_3to4(calcium_concentration)]]

In [38]:
 def Zero_matrix(calcium_concentration):
 return np.zeros([2,3])

In [39]:
 def Identity_matrix_r(calcium_concentration):
 return sp.array([[1, 0], [0,1]])

In [40]:
 def Identity_matrix_t(calcium_concentration):
 return sp.array([[1,0,0], [0,1,0], [0,0,1]])

In [41]:
 def fundamental_matrix(calcium_concentration):
 place_holder_matrix = sp.subtract(Identity_matrix_t(calcium_concentration), Q_matrix(calcium_concentration))
 return la.inv(place_holder_matrix)
In [42]: def B_matrix(calcium_concentration):
 return sp.matmul(fundamental_matrix(calcium_concentration), R_matrix(calcium_concentration))

In [43]: def rate_0to1(calcium_concentration):
 return channel_closing_rate*\
 e**((2*inverse_temperature(calcium_concentration))*(interaction_sum_0to1(calcium_concentration)+magnetic_field(calcium_concentration)))

In [44]: def rate_1to0(calcium_concentration):
 return channel_closing_rate

In [45]: def test_function(calcium_concentration):
 return 71*rate_0to1(calcium_concentration) - rate_1to0(calcium_concentration)

In [46]: def rate_1to2(calcium_concentration):
 return 4*channel_closing_rate*\
 e**((2*inverse_temperature(calcium_concentration))*(interaction_sum_1to2(calcium_concentration)+magnetic_field(calcium_concentration)))

In [47]: def test_function_2(calcium_concentration):
 return 71*rate_0to1(calcium_concentration) - rate_1to2(calcium_concentration)

In [48]: def test_function_3(calcium_concentration):
 return 71*rate_0to1(calcium_concentration) - (rate_1to2(calcium_concentration) + rate_1to0(calcium_concentration))

In [49]: ONE_MATRIX = sp.array([[1],[1],[1]])

In [50]: def expected_number_of_steps(calcium_concentration):
 return sp.matmul(fundamental_matrix(calcium_concentration),ONE_MATRIX)
