Inexact Newton regularization methods in Hilbert scales

Qinian Jin · Ulrich Tautenhahn

Abstract We consider a class of inexact Newton regularization methods for solving nonlinear inverse problems in Hilbert scales. Under certain conditions we obtain the order optimal convergence rate result.

1 Introduction

In this paper we consider the nonlinear inverse problems

\[F(x) = y, \]

where \(F : D(F) \subset X \mapsto Y \) is a nonlinear Fréchet differentiable operator between two Hilbert spaces \(X \) and \(Y \) whose norms and inner products are denoted as \(\| \cdot \| \) and \((\cdot, \cdot) \) respectively. We assume that \((1.1) \) has a solution \(x^\dagger \) in the domain \(D(F) \) of \(F \), i.e. \(F(x^\dagger) = y \). We use \(F'(x) \) to denote the Fréchet derivative of \(F \) at \(x \in D(F) \) and \(F'(x)^* \) the adjoint of \(F'(x) \). A characteristic property of such problems is their ill-posedness in the sense that their solutions do not depend continuously on the data. Let \(y^\delta \) be the only available approximation of \(y \) satisfying

\[\| y^\delta - y \| \leq \delta \]

with a given small noise level \(\delta > 0 \). Due to the ill-posedness, the regularization techniques should be employed to produce from \(y^\delta \) a stable approximate solution of \((1.1) \).

Many regularization methods have been considered in the last two decades. In particular, the nonlinear Landweber iteration \([6]\), the Levenberg-Marquardt method \([4,9]\), and the exponential Euler iteration \([7]\) have been applied to solve nonlinear inverse problems. These methods take the form

\[x_{n+1} = x_n - g_{\alpha_n} \left(F'(x_n)^* F'(x_n) \right) F'(x_n)^* \left(F(x_n) - y^\delta \right), \]

Qinian Jin
Department of Mathematics, Virginia Tech, Blacksburg, VA 24060, USA
E-mail: qnjin@math.vt.edu

Ulrich Tautenhahn
Department of Mathematics, University of Applied Sciences Zittau/Görlitz, PO Box 1454, 02754 Zittau, Germany
E-mail: u.tautenhahn@hs-zigr.de
where x_0 is an initial guess of x^\dagger, $\{\alpha_n\}$ is a sequence of positive numbers, and $\{g_\alpha\}$ is a family of spectral filter functions. The scheme (1.3) can be derived by applying the linear regularization method defined by $\{g_\alpha\}$ to the equation

$$F'(x_n)(x - x_n) = y^\delta - F(x_n).$$

(1.4)

which follows from (1.1) by replacing y by y^δ and $F(x)$ by its linearization $F(x_n) + F'(x_n)(x - x_n)$ at x_n. It is easy to see that

$$F(x_n) - y^\delta + F'(x_n)(x_{n+1} - x_n) = r_\alpha_n(F'(x_n)F'(x_n)^*)(F(x_n) - y^\delta),$$

where

$$r_\alpha(\lambda) = 1 - \lambda g_\alpha(\lambda)$$

(1.5)

which is called the residual function associated with g_α. For well-posed problems where $F'(x_n)$ is invertible, usually one has $\|r_\alpha_n(F'(x_n)F'(x_n)^*)\| \leq \mu_n < 1$ and consequently

$$\|F(x_n) - y^\delta + F'(x_n)(x_{n+1} - x_n)\| \leq \mu_n\|F(x_n) - y^\delta\|.$$

(1.6)

Thus the methods belong to the class of inexact Newton methods [2]. For ill-posed problems, however, there only holds $\|r_\alpha_n(F'(x_n)F'(x_n)^*)\| \leq 1$ in general. In [4] the Levenberg-Marquardt scheme was considered with $\{\alpha_n\}$ chosen adaptively so that (1.0) holds and the discrepancy principle was used to terminate the iteration. The order optimal convergence rates were derived recently in [5]. The general methods (1.3) with $\{\alpha_n\}$ chosen adaptively to satisfy (1.0) were considered later in [14] and the exponential Euler method in [1] for instance.

In this paper we will consider the inexact Newton methods in Hilbert scales which are more general than (1.3). Let L be a densely defined self-adjoint strictly positive linear operator in X. For each $r \in \mathbb{R}$, we define X_r to be the completion of $\cap_{k=0}^{\infty} D(L^k)$ with respect to the Hilbert space norm

$$\|x\|_r := \|L^r x\|.$$

This family of Hilbert spaces $(X_r)_{r \in \mathbb{R}}$ is called the Hilbert scales generated by L. Let $x_0 \in D(F)$ be an initial guess of x^\dagger. The inexact Newton method in Hilbert scales defines the iterates $\{x_n\}$ by

$$x_{n+1} = x_n - g_{\alpha_n}(L^{-2s}F'(x_n)^*F'(x_n)) L^{-2s}F'(x_n)^*(F(x_n) - y^\delta),$$

(1.7)

where $s \in \mathbb{R}$ is a given number to be specified later, and $\{\alpha_n\}$ is an a priori given sequence of positive numbers with suitable properties. We will terminate the iteration by the discrepancy principle

$$\|F(x_n) - y^\delta\| \leq \tau \delta < \|F(x_n) - y^\delta\|, \quad 0 \leq n < n_\delta$$

(1.8)

with a given number $\tau > 1$ and consider the approximation property of x_{n_δ} to x^\dagger as $\delta \to 0$. We will establish for a large class of spectral filter functions $\{g_\alpha\}$ the order optimal convergence rates for the method defined by (1.7) and (1.8).

Regularization in Hilbert scales has been introduced in [12] for the linear Tikhonov regularization with the major aim to prevent the saturation effect. Such technique has been extended in various ways, in particular, a general class of regularization methods in Hilbert scales has been considered in [15] with the regularization parameter chosen by the Morozov’s discrepancy principle. Regularization in Hilbert scales have
also been applied for solving nonlinear ill-posed problems. The nonlinear Tikhonov regularization in Hilbert scales has been considered in [10,3], a general continuous regularization scheme for nonlinear problems in Hilbert scales has been considered in [17], the general iteratively regularized Gauss-Newton methods in Hilbert scales has been considered in [8], and the nonlinear Landweber iteration in Hilbert scales has been considered in [13].

This paper is organized as follows. In Section 2 we first briefly review the relevant properties of Hilbert scales, and then formulate the necessary condition on \(\{a_n\} \), \(\{g_{\alpha}\} \) and \(F \) together with some crucial consequences. In Section 3 we obtain the main result concerning the order optimal convergence property of the method given by (1.7) and (1.8). Finally we present in Section 4 several examples of the method (1.2) for which \(\{g_{\alpha}\} \) satisfies the technical conditions in Section 2.

2 Assumptions

We first briefly review the relevant properties of the Hilbert scales \((X_r)_{r \in \mathbb{R}} \) generated by a densely defined self-adjoint strictly positive linear operator \(L \) in \(X \), see [3]. It is well known that \(X_r \) is densely and continuously embedded into \(X_q \) for any \(-\infty < q < r < \infty \), i.e.

\[
\|x\|_q \leq \theta^{r-q}\|x\|_r, \quad x \in X_r,
\]

where \(\theta > 0 \) is a constant such that

\[
\|x\|^2 \leq \theta(Lx, x), \quad x \in D(L).
\]

Moreover there holds the important interpolation inequality, i.e. for any \(-\infty < p < q < r < \infty \) there holds for any \(x \in X_r \) that

\[
\|x\|_q \leq \|x\|^{\frac{p-q}{p}}\|x\|^{\frac{r-q}{r}}.
\]

Let \(T : X \mapsto Y \) be a bounded linear operator satisfying

\[
m\|h\|_{-a} \leq \|Th\| \leq M\|h\|_{-a}, \quad h \in X
\]

for some constants \(M \geq m > 0 \) and \(a \geq 0 \). Then the operator \(A := TL^{-s} : X \mapsto Y \) is bounded for \(s \geq a \) and the adjoint of \(A \) is given by \(A^* = L^{-s}T^* \), where \(T^* : Y \mapsto X \) is the adjoint of \(T \). Moreover, for any \(|\nu| \leq 1 \) there hold

\[
R((A^*A)^{\nu/2}) = X_{\nu(a+s)}
\]

and

\[
\mathcal{L}(\nu)\|h\|_{-\nu(a+s)} \leq \|(A^*A)^{\nu/2}h\| \leq \mathcal{C}(\nu)\|h\|_{-\nu(a+s)}
\]

on \(D((A^*A)^{\nu/2}) \), where

\[
\mathcal{L}(\nu) := \min\{m^\nu, M^\nu\} \quad \text{and} \quad \mathcal{C}(\nu) = \max\{m^\nu, M^\nu\}.
\]

If \(g : [0, \|A\|^2] \mapsto \mathbb{R} \) is a continuous function, then

\[
g(A^*A)L^s = L^s g(L^{-2s}T^*T).
\]

In order to carry out the convergence analysis on the method defined by (1.7) and (1.8), we need to impose some suitable conditions on \(\{a_n\} \), \(\{g_{\alpha}\} \) and \(F \). For the sequence \(\{a_n\} \) of positive numbers, we set

\[
s_{-1} = 0, \quad s_n := \sum_{j=0}^{n} \frac{1}{\alpha_j}, \quad n = 0, 1, \ldots.
\]
We will assume that there are constants $c_0 > 1$ and $c_1 > 0$ such that
\[
\lim_{n \to \infty} s_n = \infty, \quad s_{n+1} \leq c_0 s_n \quad \text{and} \quad 0 < \alpha_n \leq c_1, \quad n = 0, 1, \ldots . \tag{2.8}
\]

We will also assume that, for each $\alpha > 0$, the function g_α is defined on $[0, 1]$ and satisfies the following structure condition, where \mathbb{C} denotes the complex plane.

Assumption 1 For each $\alpha > 0$, the function
\[
\varphi_\alpha(\lambda) := g_\alpha(\lambda) - \frac{1}{\alpha + \lambda}
\]
extends to a complex analytic function defined on a domain $D_\alpha \subset \mathbb{C}$ such that $[0, 1] \subset D_\alpha$, and there is a contour $\Gamma_\alpha \subset D_\alpha$ enclosing $[0, 1]$ such that
\[
|z| \geq \frac{1}{2} \alpha \quad \text{and} \quad |z + \lambda| \leq b_0, \quad \forall z \in \Gamma_\alpha, \alpha > 0 \quad \text{and} \quad \lambda \in [0, 1], \tag{2.9}
\]
where b_0 is a constant independent of $\alpha > 0$. Moreover, there is a constant b_1 such that
\[
\int_{\Gamma_\alpha} |\varphi_\alpha(z)| |dz| \leq b_1 \tag{2.10}
\]
for all $0 < \alpha \leq c_1$.

By using the spectral integrals for self-adjoint operators, it follows easily from (2.9) in Assumption 1 that for any bounded linear operator A with $\|A\| \leq 1$ there holds
\[
\|(zI - A^* A)^{-1}(A^* A)\| \leq \frac{b_0}{|z|^{1-\nu}} \tag{2.11}
\]
for $z \in \Gamma_\alpha$ and $0 \leq \nu \leq 1$.

Moreover, since Assumption 1 implies $\varphi_\alpha(z)$ is analytic in D_α for each $\alpha > 0$, there holds the Riesz-Dunford formula (see 1)
\[
\varphi_\alpha(A^* A) = \frac{1}{2\pi i} \int_{\Gamma_\alpha} \varphi_\alpha(z)(zI - A^* A)^{-1} dz
\]
for any linear operator A satisfying $\|A\| \leq 1$.

Assumption 2 Let $\{\alpha_n\}$ be a sequence of positive numbers, let $\{s_n\}$ be defined by (2.7). There is a constant $b_2 > 0$ such that
\[
0 \leq \lambda^\nu \prod_{k=j}^n r_{\alpha_k}(\lambda) \leq (s_n - s_{j-1})^{-\nu}, \tag{2.12}
\]
and
\[
0 \leq \lambda^\nu g_{\alpha_j}(\lambda) \prod_{k=j+1}^n r_{\alpha_k}(\lambda) \leq b_2 \frac{1}{\alpha_j} (s_n - s_{j-1})^{-\nu} \tag{2.13}
\]
for $0 \leq \nu \leq 1$, $0 \leq \lambda \leq 1$ and $j = 0, 1, \ldots , n$, where $r_{\alpha}(\lambda)$ is defined by (1.5).

In Section 4 we will give several important examples of $\{g_\alpha\}$ satisfying Assumptions 1 and 2. These examples of $\{g_\alpha\}$ include the ones arising from (iterated) Tikhonov regularization, asymptotical regularization, Landweber iteration and Lardy method.

Lemma 1 The inequality (2.13) implies for $0 \leq \nu \leq 1$ and $\alpha > 0$ that
\[
0 \leq \lambda^\nu (\alpha + \lambda)^{-1} \prod_{k=j+1}^n r_{\alpha_k}(\lambda) \leq 2\alpha^{\nu-1} (1 + \alpha(s_n - s_j))^{-\nu} \tag{2.14}
\]
for all $0 \leq \lambda \leq 1$ and $j = 0, 1, \ldots , n$.

Proof For $0 \leq \nu \leq 1$ and $\alpha > 0$ it follows from (2.12) that

$$0 \leq \lambda^\nu (\alpha + \lambda)^{-1} \prod_{k=j+1}^n r_{a_k}(\lambda) \leq \min \{ \alpha^{-1}, \alpha^{-\nu}(s_n - s_j)^{-\nu} \}$$

$$= \alpha^{-\nu} \min \{ 1, \alpha^{-\nu}(s_n - s_j)^{-\nu} \}$$

$$\leq 2^\nu \alpha^{-\nu} (1 + \alpha(s_n - s_j))^{-\nu}$$

for all $0 \leq \lambda \leq 1$ and $j = 0, 1, \cdots, n$. \hfill \Box

Assumption 3

(a) There exist constants $a \geq 0$ and $0 < m \leq M < \infty$ such that

$$m\|h\|_{-a} \leq \|F'(x)h\| \leq M\|h\|_{-a}, \quad h \in X$$

for all $x \in B_p(x^\dagger)$.

(b) F is properly scaled so that $\|F'(x)L^{-s}\|_{X \to Y} \leq \min \{ 1, \sqrt{a_0} \}$ for all $x \in B_p(x^\dagger)$, where $s \geq -a$.

(c) There exist $0 < \beta \leq 1$, $0 \leq b \leq a$ and $K_0 \geq 0$ such that

$$\|F'(x)^* - F'(x^\dagger)^*\|_{Y \to X_b} \leq K_0\|x - x^\dagger\|^\beta$$

(2.15)

for all $x \in B_p(x^\dagger)$.

The number a in condition (a) can be interpreted as the degree of ill-posedness of $F'(x)$ for $x \in B_p(x^\dagger)$. When F satisfies the condition

$$F'(x) = R_x F'(x^\dagger) \quad \text{and} \quad \|I - R_x\| \leq K_0\|x - x^\dagger\|,$$

(2.16)

which has been verified in [6] for several nonlinear inverse problems, condition (a) is equivalent to

$$m\|h\|_{-a} \leq \|F'(x^\dagger)h\| \leq M\|h\|_{-a}, \quad h \in X$$

From (a) and (2.1) it follows for $s \geq -a$ that $\|F'(x)L^{-s}\|_{X \to Y} \leq M\theta^{s+a}$ for all $x \in B_p(x^\dagger)$. Thus $\|F'(x)L^{-s}\|_{X \to Y}$ is uniformly bounded over $B_p(x^\dagger)$. By multiplying (1.13) by a sufficiently small number, we may assume that F is properly scaled so that condition (b) is satisfied. Furthermore, condition (a) implies that $F'(x)^*$ maps Y into X_b for $b \leq a$ and $\|F'(x)^*\|_{Y \to X_b} \leq M\theta^{a-b}$ for all $x \in B_p(x^\dagger)$. Condition (c) says that $F'(x)^*$ is locally Hölder continuous around x^\dagger with exponent $0 < \beta \leq 1$ when considered as operators from Y to X_b. It is equivalent to

$$\|L^h[F'(x)^* - F'(x^\dagger)^*]\|_{Y \to X} \leq K_0\|x - x^\dagger\|^\beta, \quad x \in B_p(x^\dagger)$$

or

$$\|[F'(x) - F'(x^\dagger)]L^h\|_{X \to Y} \leq K_0\|x - x^\dagger\|^\beta, \quad x \in B_p(x^\dagger).$$

Condition (c) was used first in [13] for the convergence analysis of Landweber iteration in Hilbert scales. It is easy to see that when $b = 0$ and $\beta = 1$, this is exactly the Lipschitz condition on $F'(x)$. When F satisfies (2.16), (c) holds with $b = a$ and $\beta = 1$. In [13] it has been shown that (c) implies

$$\|F(x) - y - F'(x^\dagger)(x - x^\dagger)\| \leq K_0\|x - x^\dagger\|^\beta \|x - x^\dagger\|_{-b}$$

(2.17)

which follows easily from the identity

$$F(x) - y - F'(x^\dagger)(x - x^\dagger) = \int_0^1 [F'(x^\dagger + t(x - x^\dagger)) - F'(x^\dagger)] L^hL^{-b}(x - x^\dagger)dt.$$
In this paper we will derive, under the above assumptions on \(\{\alpha_n\} \), \(\{g_\alpha\} \) and \(F \), the rate of convergence of \(x_{n_\delta} \) to \(x^\dagger \) as \(\delta \to 0 \) when \(\varepsilon_0 := x_0 - x^\dagger \) satisfies the smoothness condition

\[
x_0 - x^\dagger \in X_\mu \quad \text{with} \quad \frac{a-b}{\beta} < \mu \leq b+2s,
\]

where \(n_\delta \) is the integer determined by the discrepancy principle \(1.8 \) with \(\tau > 1 \).

The following consequence of the above assumptions on \(F \) and \(\{g_\alpha\} \) plays a crucial role in the convergence analysis.

Lemma 2 Let \(\{g_\alpha\} \) satisfy Assumptions 1 and 2, let \(F \) satisfy Assumption 3, and let \(\{\alpha_n\} \) be a sequence of positive numbers. Let \(A = F'(x^\dagger)L^{-s} \) and for any \(x \in B_p(x^\dagger) \) let \(A_x = F'(x)L^{-s} \). Then for \(-\frac{b+a}{a+s+\delta} \leq \nu \leq 1/2 \) there holds \(4 \)

\[
\left\| (A^*A)^\nu \prod_{k=j+1}^n r_{\alpha_k}(A^*A) \left[g_{\alpha_j}(A^*A)A^* - g_{\alpha_j}(A^*_xA_x)A^*_x \right] \right\| \lesssim \frac{1}{\alpha_j} (s_n - s_{j-1})^{-\nu - \frac{b+a}{a+s+\delta}} K_0 \|x - x^\dagger\|^2
\]

for \(j = 0, 1, \ldots, n \).

Proof Let \(\eta_\alpha(\lambda) = (\alpha + \lambda)^{-1} \) and \(\varphi_\alpha(\lambda) = g_\alpha(\lambda) - (\alpha + \lambda)^{-1} \). We can write

\[
(A^*A)^\nu \prod_{k=j+1}^n r_{\alpha_k}(A^*A) \left[g_{\alpha_j}(A^*A)A^* - g_{\alpha_j}(A^*_xA_x)A^*_x \right] = J_1 + J_2 + J_3,
\]

where

\[
J_1 := (A^*A)^\nu \prod_{k=j+1}^n r_{\alpha_k}(A^*A) g_{\alpha_j}(A^*A) [A^* - A^*_x],
\]

\[
J_2 := (A^*A)^\nu \prod_{k=j+1}^n r_{\alpha_k}(A^*A) \left[\eta_{\alpha_j}(A^*A) - \eta_{\alpha_j}(A^*_xA_x) \right] A^*_x,
\]

\[
J_3 := (A^*A)^\nu \prod_{k=j+1}^n r_{\alpha_k}(A^*A) \left[\varphi_{\alpha_j}(A^*A) - \varphi_{\alpha_j}(A^*_xA_x) \right] A^*_x.
\]

It suffices to show that the desired estimates hold for the norms of \(J_1, J_2 \) and \(J_3 \).

From 2.5, 2.13 in Assumption 2 and Assumption 3 it follows that

\[
\left\| J_1 \right\| \lesssim \left\| (A^*A)^\nu \prod_{k=j+1}^n r_{\alpha_k}(A^*A) g_{\alpha_j}(A^*A)(A^*_x - A^*) \right\| \times \left\| (A^*A)^{-\frac{b+a}{a+s+\delta}} [A^*_x - A^*] \right\|
\]

\[
\lesssim \sup_{0 \leq \lambda \leq 1} \left(\lambda^{b+a/s} \prod_{k=j+1}^n \left\| r_{\alpha_k}(\lambda) \right\| \|L^b(F'(x))^- - F'(x^\dagger)^-\|_Y \to X \right)
\]

\[
\lesssim \frac{1}{\alpha_j} (s_n - s_{j-1})^{-\nu - \frac{b+a}{a+s+\delta}} K_0 \|x - x^\dagger\|^2
\]

\[1\] Throughout this paper we will always use \(C \) to denote a generic constant independent of \(\delta \) and \(n \). We will also use the convention \(\Phi \lesssim \Psi \) to mean that \(\Phi \leq C\Psi \) for some generic constant \(C \).
which is the desired estimate.
In order to estimate \(\| J_2 \| \), we note that
\[
\eta_{\alpha_j}(A^*A) - \eta_{\alpha_j}(A^*_w A_w) = (\alpha_j I + A^*A)^{-1} \lambda^* (A_w - A)(\alpha_j I + A^*_w A_w)^{-1}
+ (\alpha_j I + A^*A)^{-1} \lambda (A_w - A^*)A_w (\alpha_j I + A^*_w A_w)^{-1}.
\]
Therefore \(J_2 = J_2^{(1)} + J_2^{(2)} \), where
\[
J_2^{(1)} = (A^*A)^{\nu} \prod_{k=j+1}^n r_{\alpha_k} (A^*A) (\alpha_j I + A^*A)^{-1} \lambda^*(A_w - A)(\alpha_j I + A^*_w A_w)^{-1},
\]
\[
J_2^{(2)} = (A^*A)^{\nu} \prod_{k=j+1}^n r_{\alpha_k} (A^*A) (\alpha_j I + A^*A)^{-1} \lambda (A_w - A^*)A_w (\alpha_j I + A^*_w A_w)^{-1}.
\]
With the help of Assumption \[3\] and (2.35) we have for any \(w \in Y \) that
\[
\| (A_w - A)(\alpha_j I + A^*_w A_w)^{-1} A^*_w w \|
= \| [F'(x) - F'(x^\dagger)]L^b L^{-(b+s)} (A_j I + A^*_w A_w)^{-1} A^*_w w \|
\leq K_0 \| x - x^\dagger \|^{\beta} \| (\alpha_j I + A^*_w A_w)^{-1} A^*_w w \|^{1-(b+s)}
\leq K_0 \| x - x^\dagger \|^{\beta} \| (A^*_w A_w)^\frac{b+s}{b+s} (\alpha_j I + A^*_w A_w)^{-1} A^*_w w \|
\leq K_0 \| x - x^\dagger \|^{\beta} \| a_j \|^{-\frac{1}{2}+\frac{b+s}{2(b+s)}} \| w \|.
\]
This implies
\[
\| (A_w - A)(\alpha_j I + A^*_w A_w)^{-1} A^*_w w \| \leq K_0 \| x - x^\dagger \|^{\beta} a_j \|^{-\frac{1}{2}+\frac{b+s}{2(b+s)}}.
\] (2.19)
Thus, by using Lemma \[11\] we derive
\[
\| J_2^{(1)} \| \leq \sup_{0 \leq \lambda \leq 1} \left(\lambda^{\nu+\frac{1}{2}} (\alpha_j + \lambda)^{-1} \prod_{k=j+1}^n r_{\alpha_k}(\lambda) \right) \| (A_w - A)(\alpha_j I + A^*_w A_w)^{-1} A^*_w w \|
\leq a_j \|^{-\nu+\frac{b+s}{2(b+s)}} (1 + \alpha_j (s_n - s_j))^{-\nu-\frac{1}{2}} K_0 \| x - x^\dagger \|^{\beta}.
\]
By using Assumption \[3\], Lemma \[11\] and a similar argument in estimating \(J_1 \) we can derive
\[
\| J_2^{(2)} \| \leq \sup_{0 \leq \lambda \leq 1} \left(\lambda^{\nu+\frac{b+s}{2(b+s)}} (\alpha_j + \lambda)^{-1} \prod_{k=j+1}^n r_{\alpha_k}(\lambda) \right) \| L^b F'(x)^* - F'(x^\dagger)^* \|_{Y \to X}
\leq a_j \|^{-\nu+\frac{b+s}{2(b+s)}} (1 + \alpha_j (s_n - s_j))^{-\nu+\frac{b+s}{2(b+s)}} K_0 \| x - x^\dagger \|^{\beta}.
\]
Combining the above estimates on \(J_2^{(1)} \) and \(J_2^{(2)} \) and noting \(\frac{b+s}{2(b+s)} \leq \frac{1}{2} \), it follows that
\[
\| J_2 \| \leq a_j \|^{-\nu+\frac{b+s}{2(b+s)}} (1 + \alpha_j (s_n - s_j))^{-\nu+\frac{b+s}{2(b+s)}} K_0 \| x - x^\dagger \|^{\beta}
= \frac{1}{\alpha_j} (s_n - s_j)^{-\nu+\frac{b+s}{2(b+s)}} K_0 \| x - x^\dagger \|^{\beta}.
\]
It remains to estimate \(J_3 \). Since Assumption \[11\] implies that \(\varphi_{\alpha_j}(z) \) is analytic in \(D_{\alpha_j} \), we have from the Riesz-Dunford formula that
\[
J_3 = \frac{1}{2\pi i} \int_{\Gamma_{\alpha_j}} \varphi_{\alpha_j}(z) T_j(z) dz,
\] (2.20)
where
\[T_j(z) := (A^*A)^\nu \prod_{k=j+1}^n r_{\alpha_k}(A^*A) \left[(zI - A^*A)^{-1} - (zI - A^*_x A_x)^{-1} \right] A_x^*. \]

We can write \(T_j(z) = T_j^{(1)}(z) + T_j^{(2)}(z) \), where
\[T_j^{(1)}(z) := (A^*A)^\nu \prod_{k=j+1}^n r_{\alpha_k}(A^*A)(zI - A^*A)^{-1} A^*(A - A_x)(zI - A_x^* A_x)^{-1} A_x^*, \]
\[T_j^{(2)}(z) := (A^*A)^\nu \prod_{k=j+1}^n r_{\alpha_k}(A^*A)(zI - A^*A)^{-1}(A^* - A_x^*) A_x A_x^*(zI - A_x A_x^*)^{-1}. \]

We will estimate the norms of \(T_j^{(1)}(z) \) and \(T_j^{(2)}(z) \) for \(z \in \Gamma_{\alpha_j} \). With the help of Assumption 3 (2.5) and (2.11), similar to the derivation of (2.19) we have
\[\|(A - A_x)(zI - A_x^* A_x)^{-1} A_x^*\| \lesssim K_0 \|x - x^\dagger\|^\beta \frac{1}{\sqrt{\alpha + s}}. \]

Since \(|z| \geq \alpha_j/2 \) and \(|z| - \lambda \leq b_0(|z| + \lambda)^{-1} \) for \(z \in \Gamma_{\alpha_j} \), we have from (2.14) in Lemma 1 that
\[\|T_j^{(1)}(z)\| \lesssim K_0 \|x - x^\dagger\|^\beta \left| \frac{1}{\sqrt{\alpha + s}} \right| \sup_{0 \leq \lambda \leq 1} \left(\lambda^{\nu + \frac{1}{2}} |z - \lambda|^{-1} \prod_{k=j+1}^n r_{\alpha_k}(\lambda) \right) \]
\[\lesssim K_0 \|x - x^\dagger\|^\beta \left| \frac{1}{\sqrt{\alpha + s}} \right| \sup_{0 \leq \lambda \leq 1} \left(\lambda^{\nu + \frac{1}{2}} (|z| + \lambda)^{-1} \prod_{k=j+1}^n r_{\alpha_k}(\lambda) \right) \]
\[\lesssim K_0 \|x - x^\dagger\|^\beta |z|^{\nu - 1 + \frac{b_0}{2(\alpha + s)}} (1 + (s_n - s_j)|z|)^{-\nu - 1/2} \]
\[\lesssim K_0 \|x - x^\dagger\|^\beta \frac{1}{\alpha_j} |z|^{\nu - 1 + \frac{b_0}{2(\alpha + s)}} (1 + (s_n - s_j)\alpha_j)^{-\nu - 1/2}. \]

Next, by using (2.14) in Lemma 1, 2.5, Assumption 3a) and (2.11), we have for \(z \in \Gamma_{\alpha_j} \) that
\[\|T_j^{(2)}(z)\| \lesssim \left\| (A^*A)^\nu \prod_{k=j+1}^n r_{\alpha_k}(A^*A)(zI - A^*A)^{-1} (A^*A)^{\frac{b_0}{2(\alpha + s)}} \right\| \]
\[\times \left\| (A^*A)^{-\frac{b_0}{2(\alpha + s)}} (A^* - A_x^*) A_x A_x^* (zI - A_x A_x^*)^{-1} \right\| \]
\[\lesssim \sup_{0 \leq \lambda \leq 1} \left(\lambda^{\nu + \frac{b_0}{2(\alpha + s)}} |z - \lambda|^{-1} \prod_{k=j+1}^n r_{\alpha_k}(\lambda) \right) \left\| L^b(F(x^\dagger)^* - F'(x)^*) \right\| \]
\[\lesssim K_0 \|x - x^\dagger\|^\beta \sup_{0 \leq \lambda \leq 1} \left(\lambda^{\nu + \frac{b_0}{2(\alpha + s)}} (|z| + \lambda)^{-1} \prod_{k=j+1}^n r_{\alpha_k}(\lambda) \right) \]
\[\lesssim K_0 \|x - x^\dagger\|^\beta |z|^{\nu - 1 + \frac{b_0}{2(\alpha + s)}} (1 + (s_n - s_j)|z|)^{-\nu - \frac{b_0}{2(\alpha + s)}} \]
\[\lesssim K_0 \|x - x^\dagger\|^\beta \frac{1}{\alpha_j} |z|^{\nu - 1 + \frac{b_0}{2(\alpha + s)}} (1 + (s_n - s_j)\alpha_j)^{-\nu - \frac{b_0}{2(\alpha + s)}}. \]

Combining the above estimates on \(T_j^{(1)}(z) \) and \(T_j^{(2)}(z) \) and noting \(\frac{b_0}{2(\alpha + s)} \leq \frac{1}{2} \), it follows for \(z \in \Gamma_{\alpha_j} \) that
\[\|T_j(z)\| \lesssim K_0 \|x - x^\dagger\|^\beta \frac{1}{\alpha_j} \frac{1}{\alpha_j} |z|^{\nu - 1 + \frac{b_0}{2(\alpha + s)}} (1 + (s_n - s_j)\alpha_j)^{-\nu - \frac{b_0}{2(\alpha + s)}} \]
\[= \frac{1}{\alpha_j} (s_n - s_{j-1})^{-\nu - \frac{b_0}{2(\alpha + s)}} K_0 \|x - x^\dagger\|^\beta. \]
Therefore, it follows from (2.20) and Assumption \[\| \psi \| \leq C \] that
\[
\| J_3 \| \lesssim \frac{1}{\alpha_j} (s_n - s_{j-1})^{-\nu - \frac{\nu+\tau}{s_n}} K_0 \| x - x' \|^2 \int_{\gamma_j} | \psi_{\alpha_j}(z) | dz
\]
\[
\lesssim \frac{1}{\alpha_j} (s_n - s_{j-1})^{-\nu - \frac{\nu+\tau}{s_n}} K_0 \| x - x' \|^2.
\]
The proof is therefore complete. \[\square\]

3 Convergence analysis

We begin with the following lemma.

Lemma 3 Let \(\{ \alpha_n \} \) be a sequence of positive numbers satisfying \(\alpha_n \leq c_1 \), and let \(s_n \) be defined by (2.7). Let \(p \geq 0 \) and \(q \geq 0 \) be two numbers. Then we have
\[
\sum_{j=0}^{n} \frac{1}{\alpha_j} (s_n - s_{j-1})^{-p} s_j^{-q} \leq C_0 s_n^{-p+q} \left\{ \begin{array}{ll}
1, & \max\{p, q\} < 1, \\
\log(1 + s_n), & \max\{p, q\} = 1,
\end{array} \right.
\]
where \(C_0 \) is a constant depending only on \(c_1, p \) and \(q \).

Proof This result is essentially contained in [5] Lemma 4.3 and its proof. For completeness, we include here the proof with a simplified argument. We first rewrite
\[
\sum_{j=0}^{n} \frac{1}{\alpha_j} (s_n - s_{j-1})^{-p} s_j^{-q} = s_n^{1-p-q} \sum_{j=0}^{n} \frac{1}{\alpha_j s_n} \left(1 - \frac{s_{j-1}}{s_n} \right)^{-p} \left(\frac{s_j}{s_n} \right)^{-q}.
\]
Observe that when \(0 \leq s_{j-1}/s_n \leq 1/2 \) we have
\[
\left(1 - \frac{s_{j-1}}{s_n} \right)^{-p} \left(\frac{s_j}{s_n} \right)^{-q} \leq 2^p \left(\frac{s_j}{s_n} \right)^{-q}
\]
while when \(s_{j-1}/s_n \geq 1/2 \) we have
\[
\left(1 - \frac{s_{j-1}}{s_n} \right)^{-p} \left(\frac{s_j}{s_n} \right)^{-q} \leq 2^q \left(1 - \frac{s_{j-1}}{s_n} \right)^{-p}.
\]
Consequently there holds with \(C_{p,q} = \max\{2^p, 2^q\} \)
\[
\sum_{j=0}^{n} \frac{1}{\alpha_j} (s_n - s_{j-1})^{-p} s_j^{-q} \leq C_{p,q} s_n^{1-p-q} \left(\sum_{j=0}^{n} \frac{1}{\alpha_j s_n} \left(\frac{s_j}{s_n} \right)^{-q} + \sum_{j=0}^{n} \frac{1}{\alpha_j s_n} \left(1 - \frac{s_{j-1}}{s_n} \right)^{-p} \right).
\]
(3.1)

Note that \(s_j - s_{j-1} = 1/\alpha_j \), we have with \(h = \frac{1}{2\alpha_0 s_n} \)
\[
\int_{s_n/s_n - h}^{1} t^{-q} dt \geq \sum_{j=1}^{n} \int_{s_j/s_n}^{s_j/s_n - h} t^{-q} dt + \int_{s_n/s_n - h}^{s_n/s_n} t^{-q} dt
\]
\[
\geq \sum_{j=1}^{n} \frac{s_j}{s_n}^{-q} \frac{s_j - s_{j-1}}{s_n} + \frac{1}{2\alpha_0 s_n} \frac{s_0}{s_n}^{-q}
\]
\[
\geq \frac{1}{2} \sum_{j=0}^{n} \frac{1}{\alpha_j s_n} \frac{s_j}{s_n}^{-q}.
\]
Therefore
\[
\sum_{j=0}^{n} \frac{1}{\alpha_j s_n} \left(\frac{s_j}{s_n} \right)^{-q} \leq 2 \int_{s_n/s_n-h}^{1} t^{-q} dt \leq \begin{cases} \frac{1}{q} \log(2s_n), & q < 1, \\ \frac{2}{q-1}(2s_n)^{-1}, & q > 1. \end{cases} \tag{3.2}
\]

By a similar argument we have with \(h = \frac{1}{2s_n s_n} \)
\[
\sum_{j=0}^{n} \frac{1}{\alpha_j s_n} \left(1 - \frac{s_{j+1}}{s_n} \right)^{-p} \leq 2 \int_{0}^{\frac{s_n-1}{s_n}+h} (1-t)^{-p} dt \leq \begin{cases} \frac{1}{1-p} \log(2s_n), & p < 1, \\ \frac{2}{p-1}(2s_n)^{-p}, & p > 1. \end{cases} \tag{3.3}
\]

Combining (3.1), (3.2) and (3.3) and using the condition \(\alpha_n \leq c_1 \), we obtain the desired inequalities.

In order to derive the necessary estimates on \(x_n - x^\dagger \), we need some useful identities. For simplicity of presentation, we set
\[
e_n := x_n - x^\dagger, \quad A := F'(x^\dagger)L^{-s} \quad \text{and} \quad A_n := F'(x_n)L^{-s}.
\]

It follows from (1.7) and (2.6) that
\[
e_{n+1} = e_n - L^{-s}g\alpha_n (A_n^* A_n) A_n^* (F(x_n) - y^\delta).
\]

Let
\[
u_n := F(x_n) - y^\delta - F'(x^\dagger)(x_n - x^\dagger).
\]

Then we can write
\[
e_{n+1} = e_n - L^{-s}g\alpha_n (A^* A) A^* (F(x_n) - y^\delta) - L^{-s}g\alpha_n (A^* A) (y^\delta + u_n) - L^{-s}g\alpha_n (A^* A) A^* (F(x_n) - y^\delta). \tag{3.4}
\]

By telescoping (3.3) we can obtain
\[
e_{n+1} = L^{-s} \prod_{j=0}^{n} r_{\alpha_j} (A^* A) L^s e_0 - L^{-s} \sum_{j=0}^{n} \prod_{k=j+1}^{n} r_{\alpha_k} (A^* A) g\alpha_j (A^* A) (y^\delta + u_j) - L^{-s} \sum_{j=0}^{n} \prod_{k=j+1}^{n} r_{\alpha_k} (A^* A) g\alpha_j (A^* A) A^* (F(x_j) - y^\delta). \tag{3.5}
\]

By multiplying (3.5) by \(T := F'(x^\dagger) \) and noting that \(A = TL^{-s} \) and
\[
I - \sum_{j=0}^{n} \prod_{k=j+1}^{n} r_{\alpha_k} (A^* A) g\alpha_j (A^* A) A^* = \prod_{j=0}^{n} r_{\alpha_j} (A^* A),
\]

and let
\[
\{\text{constant}\}
\]

We will show (3.9) by induction. By using (3.7) and
\[
T e_{n+1} - y^\delta + y
\]

Based on (3.5) and (3.6) we will derive the order optimal convergence rate of \(x_{n_k} \to x^\dagger\) when \(e_0 := x_0 - x^\dagger\) satisfies the smoothness condition (2.18). Under such condition we have \(L^s e_0 \in X_{\mu-s} \) and \(\|\frac{d}{dt}L_t\| \leq 1\). Thus, with the help of Assumption 3(a), it follows from (2.4) and (2.5) that there exists \(\omega \in X\) such that
\[
L^s e_0 = (A^* A)^{\frac{n}{2(\mu+s)}} \omega \quad \text{and} \quad c_2 \|\omega\| \geq \|e_0\| \leq c_3 \|\omega\|
\]

for some generic constants \(c_3 \geq c_2 > 0\). We will first derive the crucial estimates on \(\|e_n\|\) and \(\|T e_n\|\). To this end, introduce the integer \(\tilde{n}_\delta\) satisfying
\[
s_{\tilde{n}_\delta} \leq \frac{(r - 1)\delta}{2c_0\|\omega\|} < s_n \frac{n+\mu}{2(\mu+s)}, \quad 0 \leq n < \tilde{n}_\delta,
\]

where \(c_0 > 1\) is the constant appearing in (2.5). Such \(\tilde{n}_\delta\) is well-defined since \(s_n \to \infty\) as \(n \to \infty\).

Proposition 1 Let \(F\) satisfy Assumptions 3 and let \(\{g_{\alpha}\}\) satisfy Assumptions 7 and 8 and let \(\{\alpha_n\}\) be a sequence of positive numbers satisfying (2.3). If \(e_0 \in X_{\mu}\) for some \((a-b)\beta < b + 2s\) and if \(K_0 ||\omega||^2\) is suitably small, then there exists a generic constant \(C_* > 0\) such that
\[
\|e_n\| \leq C_* ||\omega|| \quad \text{and} \quad \|T e_n\| \leq C_* s_n \frac{n+\mu}{2(\mu+s)} ||\omega||
\]

and
\[
\|T e_n - y^\delta + y\| \leq (c_0 + C_0 \|\omega\|^2) s_n \frac{n+\mu}{2(\mu+s)} ||\omega|| + \delta
\]

for all \(0 \leq n \leq \tilde{n}_\delta\).

Proof We will show (3.9) by induction. By using (3.7) and \(\|A\| \leq \sqrt{c_0}\) we have
\[
\|T e_0\| = \|AL^s e_0\| = \|\mu A^* A^{\frac{n}{2(\mu+s)}} \omega\| = \|\mu A^* A^{\frac{n+\mu}{2(\mu+s)}} \omega\| \leq \alpha_0 \frac{n+\mu}{2(\mu+s)} ||\omega||.
\]

This together with (3.7) shows (3.9) for \(n = 0\) if \(C_* \geq \max\{1, c_3\}\). Next we assume that (3.9) holds for all \(0 \leq n \leq l\) for some \(l < \tilde{n}_\delta\) and we are going to show (3.9) holds for \(n = l + 1\).

With the help of (2.5) and (3.7) we can derive from (3.5) that
\[
\|e_{l+1}\| \leq \sum_{j=0}^{l} \|\alpha_j (A^* A)\| + \sum_{j=0}^{l} \|A^* A\| \sum_{k=j+1}^{l} \|r_{\alpha_k} (A^* A) (y - y^\delta + u_j)\|
\]

\[
+ \left(\sum_{j=0}^{l} \|A^* A\| \sum_{k=j+1}^{l} \|r_{\alpha_k} (A^* A) \left[\alpha_j (A^* A_j) A_j - \alpha_j (A^* A) A^*\right] (F(x_j) - y^\delta)\|
ight).
\]
Therefore, by using the fact

$$0 \leq \frac{a + 2s - \mu}{2(a + s)} < 1 \quad \text{and} \quad -\frac{b + s}{2(a + s)} \leq \frac{s - \mu}{2(a + s)} < \frac{1}{2}$$

Thus we may use Assumption 2 and Lemma 2 to conclude

$$\|e_{l+1}\|_\mu \lesssim \|\omega\| + \sum_{j=0}^{l} \frac{1}{\alpha_j} (s_l - s_{j-1})^{-\frac{a + 2s - \mu}{2(a + s)}} (\delta + \|u_j\|)$$

$$+ \sum_{j=0}^{l} \frac{1}{\alpha_j} (s_l - s_{j-1})^{-\frac{b + s}{2(a + s)}} K_0 \|e_j\|^{\beta} \|F(x_j) - y^\beta\|.$$ \hspace{1cm} (3.11)

Moreover, by using (3.7), Assumption 2 and Lemma 2 we have from (3.6) that

$$\|Te_{l+1} - y^\beta + y\| \leq s_l^{-\frac{b + s}{2(a + s)}} \|\omega\| + \delta + \sum_{j=0}^{l} \frac{1}{\alpha_j} (s_l - s_{j-1})^{-1} \|u_j\|$$

$$+ c_4 \sum_{j=0}^{l} \frac{1}{\alpha_j} (s_l - s_{j-1})^{-\frac{2(a + s - \mu)}{2(a + s)}} K_0 \|e_j\|^{\beta} \|F(x_j) - y^\beta\|,$$ \hspace{1cm} (3.12)

where $c_4 > 0$ is a generic constant.

By using the interpolation inequality (2.3), Assumption 3(a) and the induction hypotheses, it follows for all $0 \leq j \leq l$ that

$$\|e_j\| \leq \frac{n}{a - \alpha} \|e_j\|_{\mu + \beta} \lesssim \|Te_j\| \|e_j\|_{\mu + \beta} \lesssim \|\omega\| s_j^{-\frac{a + \beta}{2(a + s)}}.$$ \hspace{1cm} (3.13)

With the help of (2.17) and the interpolation inequality (2.3), we have

$$\|u_j\| \lesssim K_0 \|e_j\|^{\beta} \|e_j\|_{-\alpha} \lesssim K_0 \|e_j\|_{\mu + \beta} \lesssim K_0 \|\omega\|^{1+\beta} s_j^{-\frac{a + \beta}{2(a + s)}}.$$ \hspace{1cm} (3.15)

On the other hand, since (2.14) and the induction hypotheses implies

$$\|e_j\|_{-\alpha} \lesssim \|e_j\|_{\mu} \lesssim \|\omega\|, \quad 0 \leq j \leq l$$

and since $\mu > (a - b)/\beta$, we have from (3.14) and Assumption 3(a) that

$$\|u_j\| \lesssim K_0 \|e_j\|_{-\alpha} \|e_j\|_{\mu + \beta} \lesssim K_0 \|\omega\|^{\beta} \|Te_j\|.$$ \hspace{1cm} (3.16)

Therefore, by using the fact

$$\delta \lesssim \frac{2c_0}{\tau - 1} \|\omega\| s_j^{\frac{-\mu}{a + \beta}}, \quad 0 \leq j \leq l$$

and the induction hypotheses we have

$$\|F(x_j) - y^\beta\| \leq \delta + \|Te_j\| + \|u_j\| \lesssim \|\omega\| s_j^{\frac{-\mu}{2(a + s)}}.$$ \hspace{1cm} (3.18)

In view of the estimates (3.13), (3.15), (3.18) and the inequality

$$\sum_{j=0}^{l} \frac{1}{\alpha_j} (s_l - s_{j-1})^{-\frac{a + 2s - \mu}{2(a + s)}} \lesssim s_l^{-\frac{a + \beta}{2(a + s)}}$$
which follows from Lemma 3 we have from (3.11) and (3.12) that
\[
\|e_{t+1}\|_{\mu} \leq c_5 \|w\| + c_5 s_l \frac{a+b}{a+b \beta} \delta \\
+ CK_0 \|w\|^{1+\beta} \sum_{j=0}^{l} \frac{1}{a_j} (s_l - s_{j-1}) \frac{a+b}{a+b \beta} s_j \\
+ CK_0 \|w\|^{1+\beta} \sum_{j=0}^{l} \frac{1}{a_j} (s_l - s_{j-1}) \frac{b+b \beta}{b+b \beta} s_j
\]
and
\[
\|Te_{t+1} - y^\delta + y\| \leq \|w\| s_l^{-\frac{a+b}{a+b \beta}} + \delta \\
+ CK_0 \|w\|^{1+\beta} \sum_{j=0}^{l} \frac{1}{a_j} (s_l - s_{j-1})^{-1} s_j^{-\frac{b+b \beta}{b+b \beta}} \\
+ CK_0 \|w\|^{1+\beta} \sum_{j=0}^{l} \frac{1}{a_j} (s_l - s_{j-1})^{-\frac{b+b \beta}{b+b \beta}} s_j^{-\frac{b+b \beta}{b+b \beta}},
\]
where \(c_5\) and \(C\) are two positive generic constants.

With the help of Lemma 3 \(\mu > (a-b)/\beta\), (3.17) and (2.8) we have
\[
\|e_{t+1}\|_{\mu} \leq \left(c_5 + \frac{2}{\tau - 1} c_0 c_5 + CK_0 \|w\|^\beta \right) \|w\|
\]
and
\[
\|Te_{t+1} - y^\delta + y\| \leq \delta + (1 + CK_0 \|w\|^\beta) \|w\| s_l^{-\frac{a+b}{a+b \beta}} \\
\leq \delta + c_0 \left(1 + CK_0 \|w\|^\beta \right) \|w\| s_{t+1}^{-\frac{a+b}{a+b \beta}}. \tag{3.19}
\]
Consequently \(\|e_{t+1}\|_{\mu} \leq C_\ast \|w\|\) if \(C_\ast \geq 2c_5 + \frac{2}{\tau - 1} c_0 c_5\) and \(K_0 \|w\|^\beta\) is suitably small. Moreover, from (3.19), (3.17) and (2.8) we also have
\[
\|Te_{t+1}\| \leq 2\delta + c_0 \left(1 + CK_0 \|w\|^\beta \right) \|w\| s_{t+1}^{-\frac{a+b}{a+b \beta}} \\
\leq \left(\frac{4c_0^2}{\tau - 1} + c_0 + CK_0 \|w\|^\beta \right) \|w\| s_{t+1}^{-\frac{a+b}{a+b \beta}} \\
\leq C_\ast \|w\| s_{t+1}^{-\frac{a+b}{a+b \beta}}
\]
if \(C_\ast \geq 2c_0 + \frac{4c_0^2}{\tau - 1}\) and \(K_0 \|w\|^\beta\) is suitably small. We therefore complete the proof of (3.9). In the meanwhile, (3.19) gives the proof of (3.10). \(\Box\)

From Proposition 1 and its proof it follows that \(x_n \in B_\rho(x^\ast)\) for \(0 \leq n \leq \hat{n}_\delta\) if \(\|w\|\) is sufficiently small. Furthermore, from (3.15) and (3.16) we have
\[
\|F(x_n) - y - Te_n\| \lesssim K_0 \|w\|^{1+\beta} s_n \frac{b+b \beta}{b+b \beta}
\]
and
\[
\|F(x_n) - y - Te_n\| \lesssim K_0 \|w\|^\beta \|Te_n\| \tag{3.21}
\]
for \(0 \leq n \leq \hat{n}_\delta\).

In the following we will show that \(n_\delta \leq \hat{n}_\delta\) for the integer \(n_\delta\) defined by (1.8) with \(\tau > 1\). Consequently, the method given by (1.7) and (1.8) is well-defined.
Lemma 4 Let all the conditions in Proposition 1 hold. Let $\tau > 1$ be a given number. If $c_0 \in X_\mu$ for some $(a - b)/\beta < \mu \leq b + 2s$ and if $K_0\|c_0\|_\beta$ is suitably small, then the discrepancy principle (1.8) defines a finite integer $n_\delta \leq \tilde{n}_\delta$.

Proof From Proposition 1 and $\mu > (a - b)/\beta$ it follows for $0 \leq n \leq \tilde{n}_\delta$ that
\[
\|F(x_n) - y^\delta\| \leq \|F(x_n) - y - T e_n\| + \|T e_n - y^\delta + y\|
\leq CK_0\|\omega\|^{1+\beta} s_n^{-a/(a+b)} + (c_0 + CK_0\|\omega\|^\beta) s_n^{-a/(a+b)} \|\omega\| + \delta
\leq (c_0 + CK_0\|\omega\|^\beta) s_n^{-a/(a+b)} \|\omega\| + \delta.
\]
By setting $n = \tilde{n}_\delta$ in the above inequality and using the definition of \tilde{n}_δ we obtain
\[
\|F(x_n) - y^\delta\| \leq \left(1 + \frac{\tau - 1}{2} + CK_0\|\omega\|^\beta\right) \delta \leq \tau \delta
\]
if $K_0\|\omega\|^\beta$ is suitably small. According to the definition of n_δ we have $n_\delta \leq \tilde{n}_\delta$. \qed

Now we are ready to prove the main result concerning the order optimal convergence rates for the method defined by (1.7) and (1.8) with $\tau > 1$.

Theorem 1 Let F satisfy Assumptions \(3\) let $\{g_n\}$ satisfy Assumptions \(4\) and \(5\) and let $\{\alpha_n\}$ be a sequence of positive numbers satisfying (2.2). If $c_0 \in X_\mu$ for some $(a - b)/\beta < \mu \leq b + 2s$ and if $K_0\|c_0\|_\beta$ is suitably small, then for all $r \in [-a, \mu]$ there holds
\[
\|x_n - x^\dagger\|_r \leq C\|c_0\|_\mu^{\alpha_\tau} \delta^{\frac{a+\tau}{\alpha_\tau}}
\]
for the integer n_δ determined by the discrepancy principle (1.8) with $\tau > 1$, where $C > 0$ is a generic constant.

Proof It follows from (3.21) that if $K_0\|\omega\|^\beta$ is suitably small then
\[
\|F(x_n) - y - T e_n\| \leq \frac{1}{2}\|T e_n\|
\]
which implies $\|T e_n\| \leq 2\|F(x_n) - y\|$ for $0 \leq n \leq \tilde{n}_\delta$. Since Lemma 4 implies $n_\delta \leq \tilde{n}_\delta$, it follows from Assumption 3(a) and the definition of n_δ that
\[
\|e_n\|_a \leq \frac{1}{m}\|T e_n\| \leq \frac{2}{m} \left(\|F(x_n) - y^\delta\| + \delta\right) \leq \frac{2(1 + \tau)}{m} \delta.
\]
But from Proposition 1 we have $\|e_n\|_\mu \leq C_\mu\|\omega\|$. The desired estimate then follows from the interpolation inequality (2.23) and 3.7. \qed

Remark 1 If F satisfies (2.10) and $\{x_n\}$ is defined by (1.7) with $s > -a/2$, then the order optimal convergence rate holds for $x_0 - x^\dagger \in X_\mu$ with $0 < \mu \leq a + 2s$. On the other hand, if $F(x)$ satisfies the Lipschitz condition
\[
\|F'(x) - F'(x^\dagger)\| \leq K_0\|x - x^\dagger\|, \quad x \in B_\mu(x^\dagger)
\]
and $\{x_n\}$ is defined by (1.7) with $s > a/2$, then the order optimal convergence rate holds for $x_0 - x^\dagger \in X_\mu$ with $a < \mu \leq 2s.$
4 Examples

In this section we will give several important examples of \{g_\alpha\} that satisfy Assumptions 1 and 2. Thus, Theorem 1 applies to the corresponding methods if \(F\) satisfies Assumption 3 and \{\alpha_n\} satisfies (2.8). For all these examples, the functions \(g_\alpha\) are analytic at least in the domain

\[D_\alpha := \{z \in \mathbb{C} : z \neq -\alpha, -1\}.\]

Moreover, for each \(\alpha > 0\), we always take the closed contour \(\Gamma_\alpha\) to be (see [1])

\[\Gamma_\alpha = \Gamma_\alpha^{(1)} \cup \Gamma_\alpha^{(2)} \cup \Gamma_\alpha^{(3)} \cup \Gamma_\alpha^{(4)},\]

with

\[
\begin{align*}
\Gamma_\alpha^{(1)} &:= \{z = \frac{\alpha}{2} e^{i\phi} : \phi_0 \leq \phi \leq 2\pi - \phi_0\}, \\
\Gamma_\alpha^{(2)} &:= \{z = Re^{i\phi} : -\phi_0 \leq \phi \leq \phi_0\}, \\
\Gamma_\alpha^{(3)} &:= \{z = te^{i\phi_0} : \alpha/2 \leq t \leq R\}, \\
\Gamma_\alpha^{(4)} &:= \{z = te^{-i\phi_0} : \alpha/2 \leq t \leq R\},
\end{align*}
\]

where \(R > \max\{1, \alpha\}\) and \(0 < \phi_0 < \pi/2\) are fixed numbers. Clearly \(\Gamma_\alpha \subset D_\alpha\) and \([0, 1]\) lies inside \(\Gamma_\alpha\). It is straightforward to check that (2.9) is satisfied.

Example 1

We first consider for \(\alpha > 0\) the function \(g_\alpha\) given by

\[g_\alpha(\lambda) = \frac{(\alpha + \lambda)^N - \alpha^N}{\lambda(\alpha + \lambda)^N}\]

where \(N \geq 1\) is a fixed integer. This function arises from the iterated Tikhonov regularization of order \(N\) for linear ill-posed problems. The corresponding method (1.7) becomes

\[
\begin{align*}
 u_{n,0} &= x_n, \\
 u_{n,l+1} &= u_{n,l} - (\alpha_n L^{2s} + T_n T_n^*)^{-1} T_n^* (F(x_n) - y^\delta - T_n (x_n - u_{n,l})) , \\
 x_{n+1} &= u_{n,N},
\end{align*}
\]

where \(T_n : = F'(x_n)\). When \(N = 1\), this is the Levenberg-Marquardt method in Hilbert scales. The corresponding residual function is \(r_\alpha(\lambda) = \alpha N(\alpha + \lambda)^{-N}\). In order to verify Assumption 2 we recall the inequality (see [3] Lemma 3)

\[
\lambda \prod_{k=j}^{n} \frac{\alpha_k}{\alpha_k + \lambda} \leq (s_n - s_{j-1})^{-1} \quad \text{for all } \lambda \geq 0.
\]

Then for \(0 \leq \nu \leq 1\) and \(\lambda \geq 0\) we have

\[
\lambda^\nu \prod_{k=j}^{n} r_{\alpha_k}(\lambda) \leq \left(\lambda \prod_{k=j}^{n} \frac{\alpha_k}{\alpha_k + \lambda} \right)^\nu \leq (s_n - s_{j-1})^{-\nu}.
\]
and

\[\lambda^\nu g_{\alpha_j}(\lambda) \prod_{k=j+1}^n r_{\alpha_k}(\lambda) = \frac{(\alpha_j + \lambda)^N - \alpha_j^N}{\alpha_j^{N-\nu}} \prod_{k=j}^n \left(\frac{\alpha_k}{\alpha_k + \lambda} \right)^N \]

\[= \sum_{l=0}^{N-1} \binom{N}{l} \alpha_j^{l-N} \lambda^{N+N-1-1} \prod_{k=j}^n \left(\frac{\alpha_k}{\alpha_k + \lambda} \right)^N \]

\[\leq \sum_{l=0}^{N-1} \binom{N}{l} \alpha_j^{l-N} \left(\lambda \prod_{k=j}^n \frac{\alpha_k}{\alpha_k + \lambda} \right)^{N+N-1} \]

\[\leq \sum_{l=0}^{N-1} \binom{N}{l} \alpha_j^{l-N} (s_n - s_{j-1})^{N-1} \]

\[\leq C_N \frac{1}{\alpha_j} (s_n - s_{j-1})^{-\nu}, \]

where \(C_N = 2^{N-1} \) and we used the fact \(\alpha_j^{-1} \leq s_n - s_{j-1} \). We therefore obtain (2.12) and (2.13) in Assumption 2.

Next we will verify (2.10) in Assumption 1. Note that

\[\alpha \phi(z) = \alpha \phi(z) = \frac{1}{z(z + \alpha z)^N} \sum_{j=0}^{N-2} \binom{N-1}{j} \alpha_j^{j+1} z^{N-1-j}. \]

It is easy to check \(|\phi(z)| \leq \alpha^{-1} \) on \(R^{(1)}_\alpha \) and \(|\phi(z)| \leq 1 \) on \(R^{(2)}_\alpha \). Moreover, on \(R^{(3)}_\alpha \cup R^{(4)}_\alpha \) there holds

\[|\phi(z)| \leq \frac{1}{t(\alpha + t)^N} \sum_{j=0}^{N-2} \alpha_j^{j+1} t^{N-1-j} \leq \sum_{j=0}^{N-2} \alpha_j^{j+1} t^{-2-j}. \]

Therefore

\[\int_{r_\alpha} |\phi(z)| dz = \int_{r_\alpha^{(1)}} |\phi(z)| dz + \int_{r_\alpha^{(2)}} |\phi(z)| dz + \int_{r_\alpha^{(3)} \cup r_\alpha^{(4)}} |\phi(z)| dz \]

\[\leq \alpha^{-1} \int_{\phi_0}^{2\pi - \phi_0} a d\phi + \int_{-\phi_0}^{\phi_0} d\phi + \sum_{j=0}^{N-2} \alpha_j^{j+1} \int_{r_\alpha/2}^{R} t^{-2-j} dt \]

\[\lesssim 1. \]

Assumption 1 is therefore verified.

Example 2 We consider the method (1.7) with \(g_\alpha \) given by

\[g_\alpha(\lambda) = \frac{1}{\lambda} \left(1 - e^{-\lambda/\alpha} \right) \]

which arises from the asymptotic regularization for linear ill-posed problems. In this method, the iterative sequence \(\{x_n\} \) is equivalently defined as \(x_{n+1} := x(1/\alpha_n) \), where \(x(t) \) is the unique solution of the initial value problem

\[\frac{d}{dt} x(t) = \lambda^{-2} F'(x_n)^* (y - F(x_n) + F'(x_n)(x_n - x(t))), \quad t > 0, \]

\[x(0) = x_n. \]
The corresponding residual function is \(r_\alpha (\lambda) = e^{-\lambda/\alpha} \). We first verify Assumption 2. It is easy to see
\[
\lambda^n \prod_{k=1}^{n} r_{\alpha_k}(\lambda) = \lambda^n e^{-\lambda (s_n - s_{n-1})} \leq \nu^n e^{-\nu (s_n - s_{n-1})} \leq (s_n - s_{n-1})^{-\nu}
\]
for \(0 \leq \nu \leq 1 \) and \(\lambda \geq 0 \). This shows (2.12). By using the elementary inequality \(e^{-p\lambda} - e^{-q\lambda} \leq (q - p)/q \) for \(0 < p \leq q \) and \(\lambda \geq 0 \) and observing that \(0 \leq r_\alpha (\lambda) \leq 1 \) and \(0 \leq g_\alpha (\lambda) \leq 1/\alpha \), we have for \(0 \leq \nu \leq 1 \) and \(\lambda \geq 0 \) that
\[
\lambda^n g_{\alpha_j}(\lambda) \prod_{k=j+1}^{n} r_{\alpha_k}(\lambda) \leq \frac{1}{\alpha_j} \left(\lambda g_{\alpha_j}(\lambda) \prod_{k=j+1}^{n} r_{\alpha_k}(\lambda) \right)^\nu
\]
which gives (2.14). In order to verify (2.10) in Assumption 1 we note that
\[
\varphi_\alpha(z) = \frac{1 - e^{-z/\alpha}}{z} \leq 1 \frac{\alpha + z e^{-z/\alpha}}{z(\alpha + z)}.
\]
It is easy to see that \(|\varphi_\alpha(z)| \lesssim z^{-1} \) on \([1/\alpha, 1]\), \(|\varphi_\alpha(z)| \lesssim 1 \) on \([1/\alpha, 2]\) and
\[
|\varphi_\alpha(z)| \lesssim \frac{\alpha + (\alpha + t) e^{-z \cos \phi_\alpha}}{t(\alpha + t)} \lesssim \alpha t^{-2}
\]
on \([1/\alpha, 3] \cup [1/\alpha, 4]\). Therefore
\[
\int_{[1/\alpha]} |\varphi_\alpha(z)||dz| \lesssim 1 + \int_{\alpha/2} \alpha t^{-2} dt \lesssim 1.
\]

Example 3 We consider for \(0 < \alpha \leq 1 \) the function \(g_\alpha \) given by
\[
g_\alpha(\lambda) = \sum_{l=0}^{[1/\alpha] - 1} (1 - \lambda)^l = \frac{1 - (1 - \lambda)^{[1/\alpha]}}{\lambda}
\]
which arises from the linear Landweber iteration, where \([1/\alpha]\) denotes the largest integer not greater than \(1/\alpha\). The method (1.7) then becomes
\[
\begin{align*}
u_{n,1} &= u_n, \\
u_{n,t+1} &= u_n, - L^{-2s} T_n \left(F(x_n) - y^\delta - T_n (x_n - u_{n,t}) \right), \quad 0 \leq t \leq [1/\alpha] - 1, \\
u_{n+1} &= u_{n,[1/\alpha]},
\end{align*}
\]
where \(T_n := F'(x_n) \). When \(\alpha_n = 1 \) for all \(n \), this method reduces to the Landweber iteration in Hilbert scales proposed in [13]. The corresponding residual function is \(r_\alpha (\lambda) = (1 - \lambda)^{1/[1/\alpha]} \). We first verify Assumption 2 when the sequence \(\{\alpha_n\} \) is given by \(\alpha_n = 1/k_n \) for some integers \(k_n \geq 1 \). Then for \(0 \leq \nu \leq 1 \) and \(0 \leq \lambda \leq 1 \) we have
\[
\lambda^n \prod_{k=1}^{n} r_{\alpha_k}(\lambda) = \lambda^n (1 - \lambda)^{s_n - s_{n-1}} \leq \nu^n (s_n - s_{n-1})^{-\nu} \leq (s_n - s_{n-1})^{-\nu}.
\]
We thus obtain (2.12). Observing that \(0 \leq r_{\alpha_j}(\lambda) \leq 1 \) and \(0 \leq g_{\alpha_j}(\lambda) \leq 1/\alpha_j \) for \(0 \leq \lambda \leq 1 \), we have
\[
\lambda^\nu g_{\alpha_j}(\lambda) \prod_{k=j+1}^n r_{\alpha_k}(\lambda) \leq \frac{1}{\alpha_j^{1-\nu}} \left(\lambda g_{\alpha_j}(\lambda) \prod_{k=j+1}^n r_{\alpha_k}(\lambda) \right)^\nu
= \frac{1}{\alpha_j^{1-\nu}} \left((1 - \lambda)^{s_{\alpha_j} - 1} - (1 - \lambda)^{s_{\alpha_{j-1}}} \right)^\nu.
\]
Thus, (2.13) follows from the elementary inequality \(t^p - t^q \leq (q - p)/q \) for \(0 < p \leq q \) and \(0 \leq t \leq 1 \).

In order to verify (2.10) in Assumption 1, in the definition of \(\Gamma \), we pick \(R > 1 \) and \(0 < \phi_0 < \pi/2 \) such that \(R < 2 \cos \phi_0 \). Note that
\[
\varphi_{\alpha}(z) = 1 - \frac{(1 - z)^{[1/\alpha]}}{z} - \frac{1}{\alpha + z} = \frac{\alpha - (\alpha + z)(1 - z)^{[1/\alpha]}}{z(\alpha + z)}.
\]
By using the fact \((1 + \alpha)^{1/\alpha} \leq e\) we can see
\[
|\varphi_{\alpha}(z)| \leq \alpha^{-1}(1 + \alpha/2)^{1/\alpha} \lesssim \alpha^{-1} \quad \text{on } \Gamma_{\alpha}^{(1)}.
\]
According to the choice of \(R \) and \(\phi_0 \), we have \(1 + R^2 - 2R \cos \phi_0 < 1 \). Thus
\[
|\varphi_{\alpha}(z)| \lesssim \frac{\alpha + (\alpha + R)(1 + R^2 - 2R \cos \phi_0)^{1/[\alpha]/2}}{R(R + \alpha)} \lesssim 1 \quad \text{on } \Gamma_{\alpha}^{(2)}.
\]
Furthermore, on \(\Gamma_{\alpha}^{(3)} \cup \Gamma_{\alpha}^{(4)} \) we have
\[
|\varphi_{\alpha}(z)| \lesssim \frac{\alpha + (\alpha + t)(1 + t^2 - 2t \cos \phi_0)^{1/(2\alpha)}}{t(\alpha + t)}.
\]
Therefore
\[
\int_{\Gamma_{\alpha}} |\varphi_{\alpha}(z)||dz| \lesssim 1 + \int_{\alpha/2}^R \frac{\alpha + (\alpha + t)(1 + t^2 - 2t \cos \phi_0)^{1/(2\alpha)}}{t(\alpha + t)} dt
= 1 + \int_{1/2}^{R/\alpha} \frac{1 + (1 + t)(1 + \alpha^2 t^2 - 2\alpha t \cos \phi_0)^{1/(2\alpha)}}{t(1 + t)} dt
\lesssim 1 + \int_{1/2}^{R/\alpha} (1 + \alpha^2 t^2 - 2\alpha t \cos \phi_0)^{1/(2\alpha)} dt.
\]
Observe that for \(1/2 \leq t \leq R/\alpha \) there holds
\[
(1 + \alpha^2 t^2 - 2\alpha t \cos \phi_0)^{1/(2\alpha)} \leq (1 - \mu_0 t)^{1/(2\alpha)} \leq e^{-\mu t/2}
\]
with \(\mu_0 := 2 \cos \phi_0 - R > 0 \). Thus
\[
\int_{\Gamma_{\alpha}} |\varphi_{\alpha}(z)||dz| \lesssim 1 + \int_{1/2}^{R/\alpha} e^{-\mu t/2} dt \lesssim 1.
\]

Example 4 We consider for \(0 < \alpha \leq 1 \) the function \(g_{\alpha} \) given by
\[
g_{\alpha}(\lambda) = \sum_{i=1}^{[1/\alpha]} (1 + \lambda)^{-1} = \frac{1 - (1 + \lambda)^{-[1/\alpha]}}{\lambda}
\]
which arises from the Lardy method for linear inverse problems. Then the method (1.7) becomes

\[
\begin{align*}
 u_{n,0} &= x_n, \\
 u_{n,l+1} &= u_{n,l} - (L^2s + T_n^* T_n)^{-1} T_n^* \left(F(x_n) - y^\delta - T_n(x_n - u_{n,l}) \right), \\
 x_{n+1} &= u_{n,[1/\alpha_n]},
\end{align*}
\]

where \(T_n = F'(x_n) \). The residual function is \(r_\alpha(\lambda) = (1 + \lambda)^{-[1/\alpha]} \). Assumption \(\mathbb{H} \) and Assumption \(\mathbb{I} \) can be verified similarly as in Example 3 when the sequence \(\{\alpha_n\} \) is given by \(\alpha_n = 1/k_n \) for some integers \(k_n \geq 1 \).

References

1. A. B. Bakushinsky and M. Yu. Kokurin, *Iterative Methods for Approximate Solutions of Inverse Problems*, Mathematics and its applications, Springer, 2004.
2. R. S. Dembo, S. C. Eisenstat and T. Steihaug, *Inexact Newton methods*, SIAM J. Numer. Anal., 19 (1982), 400–408.
3. H. W. Engl, M. Hanke and A. Neunauer, *Regularization of Inverse Problems*, Kluwer, Dordrecht, 1996.
4. M. Hanke, *A regularizing Levenberg-Marquardt scheme with applications to inverse groundwater filtration problems*, Inverse Problems, 13(1997), 79–95.
5. M. Hanke, *The regularizing Levenberg-Marquardt scheme is of optimal order*, J. Integral Equations and Applications, 22 (2010), no. 2, 259–283.
6. M. Hanke, A. Neubauer and O. Scherzer, *A convergence analysis of the Landweber iteration for nonlinear ill-posed problems*, Numer. Math., 72 (1995), 21–37.
7. M. Hochbruck, M. Hönig and A. Ostermann, *A convergence analysis of the exponential Euler iteration for nonlinear ill-posed problems*, Inverse Problems, 25 (2009), no.7, article no. 075009.
8. Q. Jin, *Error estimates of some Newton-type methods for solving nonlinear inverse problems in Hilbert scales*, Inverse Problems, 16 (2000), no. 1, 187–197.
9. Q. Jin, *On a regularized Levenberg-Marquardt method for solving nonlinear inverse problems*, Numer. Math., 115 (2010), no. 2, 229–259.
10. J. Köhler and U. Tautenhahn, *Error bounds for regularized solutions of nonlinear ill-posed problems*, J. Inv. Ill-Posed Problems 3 (1995), 47–74.
11. A. Lechleiter and A. Rieder, *Towards a general convergence theory for inexact Newton regularizations*, Numer. Math. 114 (2010), no. 3, 521–548.
12. F. Natterer, *Error bounds for Tikhonov regularization in Hilbert scales*, Appl. Anal., 18 (1984), 29–37.
13. A. Neubauer, *On Landweber iteration for nonlinear ill-posed problems in Hilbert scales*, Numer. Math., 85 (2000), 309–328.
14. A. Rieder, *On the regularization of nonlinear ill-posed problems via inexact Newton iterations*, Inverse Problems, 15(1999), 309–327.
15. A. Rieder, *On convergence rates of inexact Newton regularizations*, Numer. Math. 88(2001), 347–365.
16. U. Tautenhahn, *Error estimates for regularization methods in Hilbert scales*, SIAM J. Numer Anal., 33 (1996), 2120–2130.
17. U. Tautenhahn, *On a general regularization scheme for nonlinear ill-posed problems: II. regularization in Hilbert scales*, Inverse Problems, 14 (1998), 1607–1616.