

NEURAL-SYMBOLIC RECURSIVE MACHINE FOR SYSTEMATIC GENERALIZATION

Qing Li\(^1\), Yixin Zhu\(^3\), Yitao Liang\(^1,3\), Ying Nian Wu\(^2\), Song-Chun Zhu\(^1,3\), Siyuan Huang\(^1\)

1National Key Laboratory of General Artificial Intelligence, BIGAI
2Department of Statistics, UCLA
3Institute for Artificial Intelligence, Peking University

https://liqing-ustc.github.io/NSR

ABSTRACT

Current learning models often struggle with human-like systematic generalization, particularly in learning compositional rules from limited data and extrapolating them to novel combinations. We introduce the Neural-Symbolic Recursive Machine (NSR), whose core is a Grounded Symbol System (GSS), allowing for the emergence of combinatorial syntax and semantics directly from training data. The NSR employs a modular design that integrates neural perception, syntactic parsing, and semantic reasoning. These components are synergistically trained through a novel deduction-abduction algorithm. Our findings demonstrate that NSR’s design, imbued with the inductive biases of *equivariance* and *compositionality*, grants it the expressiveness to adeptly handle diverse sequence-to-sequence tasks and achieve unparalleled systematic generalization. We evaluate NSR’s efficacy across four challenging benchmarks designed to probe systematic generalization capabilities: SCAN for semantic parsing, PCFG for string manipulation, HINT for arithmetic reasoning, and a compositional machine translation task. The results affirm NSR’s superiority over contemporary neural and hybrid models in terms of generalization and transferability.

1 INTRODUCTION

A defining characteristic of human intelligence, *systematic compositionality* (Lake and Baroni, 2023), represents the algebraic capability to generate infinite interpretations from finite, known components, famously described as the “infinite use of finite means” (Chomsky, 1957; Montague, 1970; Marcus, 2018; Xie et al., 2021). This principle is essential for extrapolating from limited data to novel combinations (Lake et al., 2017; Jiang et al., 2023). To evaluate machine learning models’ ability for systematic generalization, datasets such as SCAN (Lake and Baroni, 2018), PCFG (Hupkes et al., 2020), CFQ (Keysers et al., 2020), and HINT (Li et al., 2023b) have been introduced. Traditional neural networks often falter on these challenges, leading to the exploration of inductive biases to foster better generalization. Innovations like relative positional encoding and layer weight sharing have been proposed to improve Transformers’ generalization capabilities (Csordás et al., 2021; Ontanón et al., 2022). Moreover, neural-symbolic stack machines have been demonstrated to achieve remarkable accuracy on tasks similar to SCAN (Chen et al., 2020), and large language models have been guided towards compositional semantic parsing on CFQ (Drozdov et al., 2023). Yet, these solutions usually require domain-specific knowledge and struggle with domain transfer.

In pursuit of achieving human-like systematic generalization across various domains, we introduce the Neural-Symbolic Recursive Machine (NSR), a principled framework designed for the joint learning of perception, syntax, and semantics. At the heart of NSR lies a Grounded Symbol System (GSS), depicted in Fig. 1, which emerges solely from the training data, eliminating the need for domain-specific knowledge. NSR employs a modular design, integrating neural perception, syntactic parsing, and semantic reasoning. Initially, a neural network acts as the perception module, grounding symbols in raw inputs. These symbols are then organized into a syntax tree by a transition-based neural dependency parser (Chen and Manning, 2014), followed by the interpretation of their semantic meaning using functional programs (Ellis et al., 2021). We prove that NSR’s capacity for various sequence-to-sequence tasks, underpinned by the inductive biases of equivariance and compositionality, allows for the decomposition of complex inputs, sequential processing of components, and their
recomposition, thus facilitating the acquisition of meaningful symbols and compositional rules. These biases are critical for NSR’s exceptional systematic generalization.

The end-to-end optimization of NSR poses significant challenges due to the lack of annotations for the internal GSS and the model’s non-differentiable components. To circumvent these obstacles, we devise a probabilistic learning framework and a novel deduction-abduction algorithm for the joint training. This algorithm starts with a greedy deduction to form an initial GSS, which might be inaccurate. A top-down search-based abduction follows, aiming to refine the initial GSS by exploring its neighborhood for better solutions until the correct result is obtained. This refined GSS acts as pseudo supervision, enabling the independent training of each NSR component.

NSR’s performance is validated against three benchmarks that test systematic generalization:

1. SCAN (Lake and Baroni, 2018), for translating natural language commands to action sequences;
2. PCFG (Hupkes et al., 2020), for predicting output sequences from string manipulation commands;
3. HINT (Li et al., 2023b), for computing results of handwritten arithmetic expressions.

NSR establishes new records on these benchmarks, achieving 100% generalization accuracy on SCAN and PCFG, and surpassing the previous best accuracy on HINT by 23%. Our analyses show that NSR’s modular design and intrinsic inductive biases lead to stronger generalization than traditional neural networks and enhanced transferability over existing neural-symbolic models, with reduced need for domain-specific knowledge. NSR’s effectiveness is further demonstrated on a compositional machine translation task by Lake and Baroni (2018) with a 100% generalization accuracy, revealing its potential in practical applications with complex and ambiguous rules.

2 RELATED WORK

The exploration of systematic generalization within deep neural networks has captivated the machine learning community, especially following the introduction of the SCAN dataset (Lake and Baroni, 2018). Various benchmarks have since been introduced across multiple domains, including semantic parsing (Keysers et al., 2020; Kim and Linzen, 2020), string manipulation (Hupkes et al., 2020), visual question answering (Bahdanau et al., 2019; Xie et al., 2021), grounded language understanding (Ruis et al., 2020), mathematical reasoning (Saxton et al., 2018; Li et al., 2023b), physical reasoning (Li et al., 2024a; Dai et al., 2023; Li et al., 2022), word learning (Jiang et al., 2023), robot manipulation (Li et al., 2024b; Wang et al., 2024; Li et al., 2023a), and recently developed open-ended worlds (Fan et al., 2022; Xu et al., 2023), serving as platforms to evaluate different aspects of generalization, like systematicity and productivity. In particular, research in semantic parsing (Chen et al., 2020; Herzig and Berant, 2021; Drozdov et al., 2023) has explored incorporating diverse inductive biases into neural networks to improve performance across these datasets. We categorize these approaches into three groups based on their method of embedding inductive bias:

1. Architectural Prior: Techniques under this category aim to refine neural architectures to foster compositional generalization. Dessi and Baroni (2019) have shown convolutional networks’ effectiveness over RNNs in SCAN’s “jump” split. Russin et al. (2019) improve RNNs by developing separate modules for syntax and semantics, while Gordon et al. (2019) introduce a permutation equivariant seq2seq model with convolutional operations for local equivariance. Enhancements in Transformers’ systematic generalization through relative positional encoding and layer weight sharing are reported by Csordás et al. (2021) and Ontaño et al. (2022). Furthermore, Gontier et al. (2022) embed entity type abstractions in pretrained Transformers to boost logical reasoning.
2. **Data Augmentation:** This strategy devises schemes to create auxiliary training data to foster compositional generalization. Andreas (2020) augment data by interchanging fragments of training samples, and Akyurek et al. (2020) employ a generative model to recombine and resample training data. The meta sequence-to-sequence model (Lake, 2019) and the rule synthesizer (Nye et al., 2020) utilize samples from a meta-grammar resembling the SCAN grammar.

3. **Symbolic Scaffolding:** This strategy entails the integration of symbolic components into neural frameworks to enhance generalization. Liu et al. (2020) link a memory-augmented model with analytical expressions, emulating reasoning processes. Chen et al. (2020) embed a symbolic stack machine within a seq2seq model, with a neural controller managing operations. Kim (2021) derive latent neural grammars for both the encoder and decoder in a seq2seq model. While these methods achieve significant generalization by embedding symbolic scaffolding, their reliance on domain-specific knowledge and complex training methods, such as hierarchical reinforcement learning in Liu et al. (2020) and exhaustive search in Chen et al. (2020), restrict their practical use.

Beyond these technical implementations, existing research underscores two core inductive biases critical for compositional generalization: equivariance and compositionality. The introduced NSR model incorporates a generalized Grounded Symbol System as symbolic scaffolding and instills these biases within its modules, facilitating robust compositional generalization. Distinct from prior neural-symbolic methods, NSR requires minimal domain-specific knowledge and forgoes a specialized learning curriculum, leading to enhanced transferability and streamlined optimization across different domains, as demonstrated by our experiments; we refer readers to Sec. 4 for details.

Our work also intersects with neural-symbolic approaches for logical reasoning, such as the introduction of Neural Theorem Provers (NTPs) by Rocktäschel and Riedel (2017) for end-to-end differentiable proving with dense vector representations of symbols. Minervini et al. (2020) address NTPs’ computational challenges with Greedy NTPs, extending their application to real-world datasets. Furthermore, Mao et al. (2018) present a Neuro-Symbolic Concept Learner that utilizes a domain-specific language to learn visual concepts from question-answering pairs.

3 Neural-Symbolic Recursive Machine

3.1 Representation: Grounded Symbol System (GSS)

The debate between connectionism and symbolism on the optimal representation for systematic generalization has been longstanding (Fodor et al., 1988; Fodor and Lepore, 2002; Marcus, 2018). Connectionism argues for distributed representations, where concepts are encoded across many neurons (Hinton, 1984), while symbolism advocates for physical symbol systems, with each symbol encapsulating an atomic concept, and complex ideas constructed through syntactical combination (Newell, 1980; Chomsky, 1965; Hauser et al., 2002; Evans and Levinson, 2009). Symbol systems, due to their interpretability, enable higher abstraction and generalization capabilities than distributed representations (Launchbury, 2017). However, developing symbol systems is knowledge-intensive and may lead to brittle systems, susceptible to the symbol grounding problem (Harnad, 1990).

We introduce a Grounded Symbol System (GSS) as the internal representation for systematic generalization, aiming to seamlessly integrate perception, syntax, and semantics, as depicted by Fig. 1. Formally, a GSS is a directed tree $T = < (x, s, v), e >$, with each node being a triplet consisting of grounded input x, an abstract symbol s, and its semantic meaning v. The edges e represent semantic dependencies, with an edge $i \to j$ indicating node i’s meaning depends on node j.

Given the delicate nature and intensive effort required to create handcrafted symbol systems, the necessity of anchoring them in raw inputs and deriving their syntax and semantics directly from training data is paramount. This critical aspect is explored in depth in the subsequent sections.

3.2 Model: Neural-Symbolic Recursive Machine (NSR)

The NSR model, structured to induce a GSS from the training data, integrates three trainable modules (Fig. 2): neural perception for symbol grounding, dependency parsing to infer dependencies between symbols, and program synthesis to deduce semantic meanings. Given the absence of ground-truth GSS during training, these modules must be trained end-to-end without intermediate supervision. Below, we detail these modules and the end-to-end learning approach.
Neural Perception This module converts raw input x (e.g., a handwritten expression) into a symbolic sequence s, represented by a list of indices. It addresses the perceptual variability of raw input signals, ensuring that each predicted token $w_i \in s$ accurately matches a specific segment of the input $x_i \in x$. Formally, this relationship is expressed as:

$$p(s|x; \theta_p) = \prod_i p(w_i|x_i; \theta_p) = \prod_i \text{softmax}(\phi(w_i, x_i; \theta_p)),$$

where $\phi(w_i, x_i; \theta_p)$ denotes a scoring function parameterized by a neural network with parameters θ_p. The design of this neural network varies with the type of raw input and can be pre-trained, such as using a pre-trained convolutional neural network for processing image inputs.

Dependency Parsing To deduce the dependencies among symbols, we employ a transition-based neural dependency parser (Chen and Manning, 2014), a widely used method in natural language sentence parsing. Operating as a state machine, the parser identifies possible transitions to transform the input sequence into a dependency tree, iteratively applying predicted transitions until the parsing process is complete; see Fig. A1 for illustration. At each step, the parser predicts a transition based on the state representation, which includes the top elements of the stack and buffer, along with their direct descendants. A two-layer feed-forward neural network, given this state representation, determines the next transition. Formally, for an input sequence s, the parsing process is defined as:

$$p(s|e; \theta_s) = p(T|s; \theta_s) = \prod_{i, e \in T} p(t_i|c_i; \theta_s),$$

where θ_s are the parameters of the parser, $T = \{t_1, t_2, ..., t_t\} \models e$ is the sequence of transitions that generates the dependency tree e, and c_i is the state representation at step i. A greedy decoding strategy is employed to determine the most likely transition sequence for the given input sequence.

Program Induction Influenced by developments in program induction (Ellis et al., 2021; Balog et al., 2017; Devlin et al., 2017), we utilize functional programs to express the semantics of symbols, framing learning as a process of program induction. Symbolic programs offer enhanced generalizability, interpretability, and sample efficiency over purely statistical approaches. Formally, given input symbols s and their dependencies e, the relationship is defined as:

$$p(\hat{v}|e, s; \theta_l) = \prod_i p(\hat{v}_i|s_i, \text{children}(s_i); \theta_l),$$

where θ_l denotes the set of induced programs for each symbol. Symbolic programs are utilized in practice, ensuring a deterministic reasoning process.

Deriving symbol semantics involves identifying a program that aligns with given examples, employing pre-defined primitives. Based on Peano axioms (Peano, 1889; Xie et al., 2021), we select a universal set of primitives, such as 0, inc, dec, ==, and if, proven to be sufficient for any symbolic function representation; see Sec. 3.4 for an in-depth discussion. To streamline the search and improve generalization, we include a minimal subset of Lisp primitives and the recursion primitive (Y-combinator (Peyton Jones, 1987)). DreamCoder (Ellis et al., 2021) is adapted for program induction; we modified it to accommodate noise in examples during the search.

Model Inference Fig. 2 depicts the model inference process, beginning with the neural perception module translating input x, such as a handwritten expression from Fig. 1 (3) HINT, into a sequence of symbols, $2 \times 3 \times 9$. The dependency parsing module then structures this sequence into a dependency tree, for instance, $+ \rightarrow 2 \times$ and $\times \rightarrow 3 \times 9$. Subsequently, the program induction module employs programs associated with each symbol to compute node values in a bottom-up fashion, yielding calculations like $3 \times 9 \Rightarrow 27$, followed by $2 + 27 \Rightarrow 29$.

![Grounded Symbol System Illustration of the inference and learning pipeline in NSR.](image-url)
3.3 Learning

The intermediate GSS in NSR is both latent and non-differentiable, making direct application of backpropagation unfeasible. Traditional approaches, such as policy gradient algorithms like REINFORCE (Williams, 1992), face difficulties with slow or inconsistent convergence (Liang et al., 2018; Li et al., 2020). Given the vast search space for GSS, a more efficient learning algorithm is imperative. Formally, for input \(x \), intermediate GSS \(T = < (x, s, v) \), \(e > \), and output \(y \), the likelihood of observing \((x, y) \), marginalized over \(T \), is expressed as:

\[
p(y|x; \Theta) = \sum_T p(T, y|x; \Theta) = \sum_{s,e,v} p(s|x; \theta_s)p(e|s; \theta_e)p(v|s, e; \theta_v)p(y|v),
\]

where maximizing the observed-data log-likelihood \(L(x, y) = \log p(y|x) \) becomes the learning objective, from a maximum likelihood estimation viewpoint. The gradients of \(L \) with respect to \(\theta_s, \theta_e, \theta_v \) are as follows:

\[
\nabla_{\theta_s} L(x, y) = \mathbb{E}_{T \sim p(T|x,y)}[\nabla_{\theta_s} \log p(s|x; \theta_s)],
\]

\[
\nabla_{\theta_e} L(x, y) = \mathbb{E}_{T \sim p(T|x,y)}[\nabla_{\theta_e} \log p(e|s; \theta_e)],
\]

\[
\nabla_{\theta_v} L(x, y) = \mathbb{E}_{T \sim p(T|x,y)}[\nabla_{\theta_v} \log p(v|s, e; \theta_v)],
\]

where \(p(T|x,y) \) denotes the posterior distribution of \(T \) given \((x, y) \), which can be represented as:

\[
p(T|x,y) = \frac{p(T, y|x; \Theta)}{\sum_{T'} p(T', y|x; \Theta)} = \begin{cases} 0, & \text{if } T \notin Q \\ \frac{p(T|x; \Theta)}{\sum_{T' \in Q} p(T'|x; \Theta)}, & \text{if } T \in Q \end{cases}
\]

Due to the computational challenge of taking expectations with respect to this posterior distribution, Monte Carlo sampling is utilized for approximation. This optimization strategy entails sampling a solution from the posterior distribution and iteratively updating each module through supervised training, circumventing the difficulty of sampling within a vast, sparsely populated space.

Deduction-Abduction The essence of our learning approach is an efficient sampling from the posterior distribution \(p(T|x, y) \), achieved through the deduction-abduction algorithm (Alg. A1). For an instance \((x, y) \), we initially perform a greedy deduction from \(x \) to obtain an initial GSS \(T = < (x, s, v), e > \). To align \(T^* \) with the correct result \(y \) during training, a top-down abduction search is employed, iterating over the neighbors of \(T \) and adjusting across perception, syntax, and semantics; see Figs. 3 and A2 for more details. This search ceases upon finding a \(T^* \) that yields \(y \) or reaching a predetermined number of steps. Theoretically, this method acts as a Metropolis-Hastings sampler for \(p(T|x, y) \), facilitating an efficient approach to model training (Li et al., 2020).

3.4 Expressiveness and Generalization of NSR

We now examine the characteristics of NSR, particularly its expressiveness and ability to systematically generalize, which are attributed to its inherent inductive biases.
The capacity of NSR to represent a broad spectrum of seq2seq tasks is substantiated by theoretical analysis. The following theorem articulates the model’s expressiveness.

Theorem 3.1. Given any finite dataset $D = \{(x^i, y^i)\}_{i=0}^{N}$, there exists an NSR that can express D using only four primitives: $\{0, \text{inc}, ==, \text{if}\}$.

The proof of this theorem involves constructing a specialized NSR that effectively “memorizes” all examples in D through a comprehensive program:

$$\text{NSR}(x) = \text{if}(f_p(x)==0, y^0, \text{if}(f_p(x)==1, y^1, ... \text{if}(f_p(x)==N, y^N, \varnothing)...)$$

serving as a sophisticated lookup table constructed with $\{\text{if}, ==\}$ and the indexing scheme provided by $\{0, \text{inc}\}$ (proved by Lemmas C.1 and C.2). Given the universality of these four primitives across domains, NSR’s ability to model a variety of seq2seq tasks is assured, offering improved transferability compared to preceding neural-symbolic models.

Generalization The program outlined in Eq. (7), while guaranteeing perfect accuracy on the training dataset, lacks in generalization capacity. For effective generalization, it is essential to incorporate certain inductive biases that are minimal yet universally applicable across various domains. Inspired by seminal works in compositional generalization (Gordon et al., 2019; Chen et al., 2020; Xie et al., 2021; Zhang et al., 2022), we advocate for two critical inductive biases: equivariance and compositionality. Equivariance enhances the model’s systematicity, enabling it to generalize concepts such as “‘jump twice’” from examples like {“‘run’”, “‘run twice’”, “‘jump’”}, whereas compositionality increases the model’s ability to extend these concepts to longer sequences, e.g., “‘run and jump twice’”.

The formal definitions of equivariance and compositionality are as follows:

Definition 3.1 (Equivariance). For sets \mathcal{X} and \mathcal{Y}, and a permutation group \mathcal{P} with operations $T_p : \mathcal{X} \rightarrow \mathcal{X}$ and $T'_p : \mathcal{Y} \rightarrow \mathcal{Y}$, a mapping $\Phi : \mathcal{X} \rightarrow \mathcal{Y}$ is equivariant iff $\forall x \in \mathcal{X}, p \in \mathcal{P} : \Phi(T_p x) = T'_p \Phi(x)$.

Definition 3.2 (Compositionality). For sets \mathcal{X} and \mathcal{Y}, with composition operations $T_c : (\mathcal{X}, \mathcal{X}) \rightarrow \mathcal{X}$ and $T'_c : (\mathcal{Y}, \mathcal{Y}) \rightarrow \mathcal{Y}$, a mapping $\Phi : \mathcal{X} \rightarrow \mathcal{Y}$ is compositional iff $\exists T_c, T'_c, \forall x_1 \in \mathcal{X}, x_2 \in \mathcal{X} : \Phi(T_c(x_1, x_2)) = T'_c(\Phi(x_1), \Phi(x_2))$.

The three modules of NSR—neural perception (Eq. (1)), dependency parsing (Eq. (2)), and program induction (Eq. (3))—exhibit equivariance and compositionality, functioning as pointwise transformations based on their formulations. Models demonstrating exceptional compositional generalization, such as NeSS (Chen et al., 2020), LANE (Liu et al., 2020), and NSR, inherently possess these properties. This leads to our hypothesis regarding compositional generalization:

Hypothesis 3.1. A model achieving compositional generalization instantiates a mapping $\Phi : \mathcal{X} \rightarrow \mathcal{Y}$ that is inherently equivariant and compositional.

4 Experiments

Our evaluation of the NSR’s capabilities in systematic generalization extends across three distinct benchmarks: (i) SCAN (Lake and Baroni, 2018), focusing on the translation of natural language commands to action sequences; (ii) PCFG (Hopkes et al., 2020), aimed at predicting output sequences from string manipulation commands; and (iii) HINT (Li et al., 2023b), predicting outcomes of handwritten arithmetic expressions. Furthermore, we explore NSR’s performance on a compositional machine translation task (Lake and Baroni, 2018) to validate its applicability to real-world scenarios.

4.1 SCAN

The SCAN dataset (Lake and Baroni, 2018) emerges as a critical benchmark for assessing machine learning models’ systematic generalization capabilities. It challenges models to translate natural language directives into sequences of actions, simulating the movement of an agent within a grid-like environment.

Evaluation Protocols Following established studies (Lake, 2019; Gordon et al., 2019; Chen et al., 2020), we assess NSR using four splits: (i) SIMPLE, where the dataset is randomly divided into
training and test sets; (ii) LENGTH, with training on output sequences up to 22 actions and testing on sequences from 24 to 48 actions; (iii) JUMP, training excluding the “jump” command mixed with other primitives, tested on combinations including “jump”; and (iv) AROUND RIGHT, excluding “around right” from training but testing on combinations derived from the separately trained “around” and “right.”

Baselines NSR is compared against multiple models including (i) seq2seq (Lake and Baroni, 2018), (ii) CNN (Dessì and Baroni, 2019), (iii) Transformer (Csordás et al., 2021; Ontanón et al., 2022), (iv) equivariant seq2seq (Gordon et al., 2019)—a model that amalgamates convolutional operations with RNNs to attain local equivariance, and (v) NeSS (Chen et al., 2020)—a model that integrates a symbolic stack machine into a seq2seq framework.

Results The summarized results are presented in Tab. 1. Remarkably, both NSR and NeSS realize 100% accuracy on the splits necessitating systematic generalization. In contrast, the peak performance of other models on the LENGTH split barely reaches 20%. This stark discrepancy underscores the pivotal role and efficacy of symbolic components—specifically, the symbolic stack machine in NeSS and the GSS in NSR—in fostering systematic generalization.

models	SCAN	PCFG					
	SIMPLE	JUMP	AROUND RIGHT	LENGTH	l.i.d.	systematicity	productivity
Seq2Seq (Lake and Baroni, 2018)	99.7	1.2	2.5	13.8	79	53	30
CNN (Dessì and Baroni, 2019)	100.0	69.2	56.7	0.0	85	56	31
Transformer (Csordás et al., 2021)	-	-	-	20.0	-	96	85
Transformer (Ontanón et al., 2022)	-	0.0	-	19.6	-	83	63
equivariant Seq2seq (Gordon et al., 2019)	100.0	99.1	92.0	15.9	-	-	-
NeSS (Chen et al., 2020)	100.0	100.0	100.0	100.0	≈0	≈0	≈0
NSR (ours)	100.0	100.0	100.0	100.0	100	100	100

While NeSS and NSR both manifest impeccable generalization on SCAN, their foundational principles are distinctly divergent.

1. NeSS necessitates an extensive reservoir of domain-specific knowledge to meticulously craft the components of the stack machine, encompassing stack operations and category predictors. Without the incorporation of category predictors, the efficacy of NeSS plummets to approximately 20% in 3 out of 5 runs. Contrarily, NSR adopts a modular architecture, minimizing reliance on domain-specific knowledge.

2. The training regimen for NeSS is contingent on a manually curated curriculum, coupled with specialized training protocols for latent category predictors. Conversely, NSR is devoid of any prerequisite for a specialized training paradigm.

Fig. 4 elucidates the syntax and semantics assimilated by NSR from the LENGTH split in SCAN. The dependency parser of NSR, exhibiting equivariance as elucidated in Sec. 3.4, delineates distinct permutation equivalent groups syntactically among the input words: {turn, walk, look, run, jump}, {left, right, opposite, around, twice, thrice}, and {and, after}. It is pivotal to note that no prior information regarding these groups is imparted—they are entirely a manifestation of the learning from the training data. This is in stark contrast to the provision of pre-defined equivariant groups (Gordon et al., 2019) or the explicit integration of a category induction procedure from execution traces (Chen et al., 2020). Within the realm of the learned programs, the program synthesizer of NSR formulates an index space for the target language and discerns the accurate programs to encapsulate the semantics of each source word.

4.2 PCFG

We further assess NSR on the PCFG dataset (Hupkes et al., 2020), a task where the model is trained to predict the output of a string manipulation command. The input sequences in PCFG are synthesized using a probabilistic context-free grammar, and the corresponding output sequences are formed by recursively executing the string edit operations delineated in the input sequences. The selection of input samples is designed to mirror the statistical attributes of a natural language corpus, including sentence lengths and parse tree depths.
Results The results are summarized in Tab. 2. NSR surpasses the state-of-the-art model, Transformer, by approximately 23%. The detailed results reveal that this improvement is primarily due to better extrapolation in syntax and semantics, with NSR elevating the accuracy on the “LL” subset.
Table 2: **Test accuracy on HINT.** Results for GRU, LSTM, and Transformer are directly cited from Li et al. (2023b). NeSS results are obtained by adapting its source code to HINT.

Model	Symbol Input	Image Input		
	I SS LS SL LL	Avg.	I SS LS SL LL	Avg.
GRU	76.2 69.5 42.8 10.5 15.1	42.5	66.7 58.7 33.1 9.4	12.8 35.9
LSTM	92.9 90.9 74.9 12.1 24.3	58.9	83.9 79.7 62.0 11.2	21.0 51.5
Transformer	98.0 96.8 78.2 11.7 22.4	61.5	88.4 86.0 62.5 10.9	19.0 53.1
NeSS	≈0 ≈0 ≈0 ≈0 ≈0	≈0	- - - - - - - -	
NSR (ours)	**98.0** **97.3** **83.7** **95.9** **77.6**	**90.1**	**88.5** **86.2** **67.1** **83.2** **58.2**	**76.0**

from 19.0% to 58.2%. The gains on the “I” and “SS” subsets are more modest, around 2%. For a more detailed insight into NeSS’s predictions on HINT, refer to Fig. A3. Similar to its performance on PCFG, NeSS fails on HINT, underscoring the challenges discussed in Sec. 4.2.

4.4 **COMPOSITIONAL MACHINE TRANSLATION**

In order to assess the applicability of NSR to real-world scenarios, we conduct a proof-of-concept experiment on a compositional machine translation task, specifically the English-French translation task, as described by Lake and Baroni (2018). This task has been a benchmark for several studies (Li et al., 2019; Chen et al., 2020; Kim, 2021) to validate the efficacy of their proposed methods in more realistic and complex domains compared to synthetic tasks like SCAN and PCFG. The complexity and ambiguity of the rules in this translation task are notably higher.

We utilize the publicly available data splits provided by Li et al. (2019). The training set comprises 10,000 English-French sentence pairs, with English sentences primarily initiating with phrases like “I am,” “you are,” and their respective contractions. Uniquely, the training set includes 1,000 repetitions of the sentence pair (“I am daxy,” “je suis daxiste”), introducing the pseudoword “daxy.” The test set, however, explores 8 different combinations of “daxy” with other phrases, such as “you are not daxy,” which are absent from the training set.

Results Tab. 3 presents the results of the compositional machine translation task. We compare NSR with Seq2Seq (Lake and Baroni, 2018) and NeSS (Chen et al., 2020). It is noteworthy that two distinct French translations for “you are” are prevalent in the training set; hence, both are deemed correct in the test set. NSR, akin to NeSS, attains 100% generalization accuracy on this task, demonstrating its potential applicability to real-world tasks characterized by diverse and ambiguous rules.

Table 3: **Accuracy on compositional machine translation.**

Model	Accuracy
Seq2Seq	12.5
Transformer	14.4
NeSS	100.0
NSR (ours)	100.0

5 **CONCLUSION AND DISCUSSION**

We introduced NSR, a model capable of learning Grounded Symbol System from data to facilitate systematic generalization. The Grounded Symbol System offers a generalizable and interpretable representation, allowing a principled amalgamation of perception, syntax, and semantics. NSR employs a modular design, incorporating the essential inductive biases of equivariance and compositionality in each module to realize compositional generalization. We developed a probabilistic learning framework and introduced a novel deduction-abduction algorithm to enable the efficient training of NSR without GSS supervision. NSR has demonstrated superior performance across diverse domains, including semantic parsing, string manipulation, arithmetic reasoning, and compositional machine translation.

Limitations While NSR has shown impeccable accuracy on a conceptual machine translation task, we foresee challenges in its deployment for real-world tasks due to (i) the presence of noisy and abundant concepts, which may enlarge the space of the grounded symbol system and potentially decelerate the training of NSR, and (ii) the deterministic nature of the functional programs in NSR, limiting its ability to represent probabilistic semantics inherent in real-world tasks, such as the existence of multiple translations for a single sentence. Addressing these challenges remains a subject for future research.
Acknowledgment We thank the anonymous reviewers for their valuable feedback and constructive suggestions. Their insights have contributed significantly to improving the quality and clarity of our work. Additionally, we sincerely appreciate the area chairs and program chairs for their efforts in organizing the review process and providing valuable guidance throughout the submission. We would like to thank NVIDIA for their generous support of GPUs and hardware. This work is supported in part by the National Science and Technology Major Project (2022ZD0114900) and the Beijing Nova Program.

REFERENCES

Akyürek, E., Akyürek, A. F., and Andreas, J. (2020). Learning to recombine and resample data for compositional generalization. In International Conference on Learning Representations (ICLR). 3

Andreas, J. (2020). Good-enough compositional data augmentation. In Annual Meeting of the Association for Computational Linguistics (ACL). 3

Bahdanau, D., de Vries, H., O’Donnell, T. J., Murty, S., Beaudoin, P., Bengio, Y., and Courville, A. (2019). Closure: Assessing systematic generalization of clevr models. arXiv preprint arXiv:1912.05783. 2

Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S., and Tarlow, D. (2017). Deepcoder: Learning to write programs. In International Conference on Learning Representations (ICLR). 4, A1

Carpenter, T. P., Fennema, E., Franke, M. L., Levi, L., and Empson, S. B. (1999). Children’s mathematics. Cognitively Guided. A3

Chen, D. and Manning, C. D. (2014). A fast and accurate dependency parser using neural networks. In Annual Conference on Empirical Methods in Natural Language Processing (EMNLP). 1, 4

Chen, X., Liang, C., Yu, A. W., Song, D., and Zhou, D. (2020). Compositional generalization via neural-symbolic stack machines. In Advances in Neural Information Processing Systems (NeurIPS). 1, 2, 3, 6, 7, 8, 9, A7

Chomsky, N. (1957). Syntactic structures. In Syntactic Structures. De Gruyter Mouton. 1

Chomsky, N. (1965). Aspects of the Theory of Syntax. MIT press. 3

Csordás, R., Irie, K., and Schmidhuber, J. (2021). The devil is in the detail: Simple tricks improve systematic generalization of transformers. In Annual Conference on Empirical Methods in Natural Language Processing (EMNLP). 1, 2, 7, 8, A7

Dai, B., Wang, L., Jia, B., Zhu, S.-C., Zhang, C., and Zhu, Y. (2023). X-voe: Measuring explanatory violation of expectation in physical events. In International Conference on Computer Vision (ICCV). 2

Dessì, R. and Baroni, M. (2019). Cnns found to jump around more skillfully than rnns: Compositional generalization in seq2seq convolutional networks. In Annual Meeting of the Association for Computational Linguistics (ACL). 2, 7, 8, A7

Devlin, J., Usato, J., Bhupatiraju, S., Singh, R., Mohamed, A.-r., and Kohli, P. (2017). Robustfill: Neural program learning under noisy i/o. In International Conference on Machine Learning (ICML). 4, A1

Drozdov, A., Schärli, N., Akyürek, E., Scales, N., Song, X., Chen, X., Bousquet, O., and Zhou, D. (2023). Compositional semantic parsing with large language models. ICLR. 1, 2

Ellis, K., Ritchie, D., Solar-Lezama, A., and Tenenbaum, J. B. (2018a). Learning to infer graphics programs from hand-drawn images. In Advances in Neural Information Processing Systems (NeurIPS). A1

Ellis, K., Wong, C., Nye, M., Sablé-Meyer, M., Morales, L., Hewitt, L., Cary, L., Solar-Lezama, A., and Tenenbaum, J. B. (2021). Dreamcoder: Bootstrapping inductive program synthesis with wake-sleep library learning. In Programming Language Design and Implementation. 1, 4, A1, A3

Ellis, K. M., Morales, L. E., Sablé-Meyer, M., Solar-Lezama, A., and Tenenbaum, J. B. (2018b). Library learning for neurally-guided bayesian program induction. In Advances in Neural Information Processing Systems (NeurIPS). A1

Evans, N. and Levinson, S. C. (2009). With diversity in mind: Freeing the language sciences from universal grammar. Behavioral and Brain Sciences, 32(5):472–492. 3
Fan, L., Wang, G., Jiang, Y., Mandlekar, A., Yang, Y., Zhu, H., Tang, A., Huang, D.-A., Zhu, Y., and Anandkumar, A. (2022). Minedojo: Building open-ended embodied agents with internet-scale knowledge. In *Advances in Neural Information Processing Systems (NeurIPS)*. 2

Fodor, J. A. and Lepore, E. (2002). The Compositionality Papers. Oxford University Press. 3

Fodor, J. A., Pylyshyn, Z. W., et al. (1988). Connectionism and cognitive architecture: A critical analysis. *Cognition*, 28(1-2):3–71. 3

Gontier, N., Reddy, S., and Pal, C. (2022). Does entity abstraction help generative transformers reason? *TMLR*. 2

Gordon, J., Lopez-Paz, D., Baroni, M., and Bouchacourt, D. (2019). Permutation equivariant models for compositional generalization in language. In *International Conference on Learning Representations (ICLR)*. 2, 6, 7, A2, A7

Harnad, S. (1990). The symbol grounding problem. *Physica D: Nonlinear Phenomena*, 42(1-3):335–346. 3

Hauser, M. D., Chomsky, N., and Fitch, W. T. (2002). The faculty of language: what is it, who has it, and how did it evolve? *Science*, 298(5598):1569–1579. 3

Herzig, J. and Berant, J. (2021). Span-based semantic parsing for compositional generalization. *ACL*. 2

Hinton, G. E. (1984). Distributed representations. Technical Report CMU-CS-84-157, Carnegie Mellon University. 3

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are universal approximators. *Neural networks*, 2(5):359–366. A2

Hupkes, D., Dankers, V., Mul, M., and Bruni, E. (2020). Compositionality decomposed: how do neural networks generalise? *Journal of Artificial Intelligence Research (JAIR)*, 67:757–795. 1, 2, 6, 7

Jiang, G., Xu, M., Xin, S., Liang, W., Peng, Y., Zhang, C., and Zhu, Y. (2023). Mewl: Few-shot multimodal word learning with referential uncertainty. In *International Conference on Machine Learning (ICML)*. 1, 2

Keysers, D., Schärli, N., Scales, N., Buisman, H., Furrer, D., Kashubin, S., Momchev, N., Sinopalnikov, D., Stafinski, L., Tihon, T., et al. (2020). Measuring compositional generalization: A comprehensive method on realistic data. In *International Conference on Learning Representations (ICLR)*. 1, 2

Kim, N. and Linzen, T. (2020). Cogs: A compositional generalization challenge based on semantic interpretation. In *Annual Conference on Empirical Methods in Natural Language Processing (EMNLP)*. 2

Kim, Y. (2021). Sequence-to-sequence learning with latent neural grammars. In *Advances in Neural Information Processing Systems (NeurIPS)*. 3, 9

Kingma, D. and Ba, J. (2015). Adam: A method for stochastic optimization. In *International Conference on Learning Representations (ICLR)*. A3

Kulkarni, T. D., Kohli, P., Tenenbaum, J. B., and Mansinghka, V. (2015). Picture: A probabilistic programming language for scene perception. In *Conference on Computer Vision and Pattern Recognition (CVPR)*. A1

Lake, B. M. (2019). Compositional generalization through meta sequence-to-sequence learning. In *Advances in Neural Information Processing Systems (NeurIPS)*. 3, 6

Lake, B. M. and Baroni, M. (2018). Generalization without systematicity: On the compositional skills of sequence-to-sequence recurrent networks. In *International Conference on Machine Learning (ICML)*. 1, 2, 6, 7, 8, 9, A7

Lake, B. M. and Baroni, M. (2023). Human-like systematic generalization through a meta-learning neural network. *Nature*, 623(7985):115–121. 1

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B. (2015). Human-level concept learning through probabilistic program induction. *Science*, 350(6266):1332–1338. A1

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gershman, S. J. (2017). Building machines that learn and think like people. *Behavioral and Brain Sciences*, 40. 1

Launchbury, J. (2017). A darpa perspective on artificial intelligence. *Retrieved November, 11:2019*. 3
Li, P., Liu, T., Li, Y., Zhu, Y., Yang, Y., and Huang, S. (2023a). Gendexgrasp: Generalizable dexterous grasping. In *International Conference on Robotics and Automation (ICRA)*. 2

Li, Q., Huang, S., Hong, Y., Chen, Y., Wu, Y. N., and Zhu, S.-C. (2020). Closed loop neural-symbolic learning via integrating neural perception, grammar parsing, and symbolic reasoning. In *International Conference on Machine Learning (ICML)*. 5

Li, Q., Huang, S., Hong, Y., Zhu, Y., Wu, Y. N., and Zhu, S.-C. (2023b). A minimalist dataset for systematic generalization of perception, syntax, and semantics. In *ICLR*. 1, 2, 6, 8, 9, A7

Li, S., Wu, K., Zhang, C., and Zhu, Y. (2022). On the learning mechanisms in physical reasoning. In *Advances in Neural Information Processing Systems (NeurIPS)*. 2

Li, S., Wu, K., Zhang, C., and Zhu, Y. (2024a). I-phyre: Interactive physical reasoning. In *International Conference on Learning Representations (ICLR)*. 2

Li, Y., Liu, B., Li, P., Yang, Y., Zhu, Y., Liu, T., and Huang, S. (2024b). Grasp multiple objects with one hand. *IEEE Robotics and Automation Letters (RA-L)*. 2

Li, Y., Zhao, L., Wang, J., and Hestness, J. (2019). Compositional generalization for primitive substitutions. In *Annual Conference on Empirical Methods in Natural Language Processing (EMNLP)*. 9

Liang, C., Norouzi, M., Berant, J., Le, Q. V., and Lao, N. (2018). Memory augmented policy optimization for program synthesis and semantic parsing. In *Advances in Neural Information Processing Systems (NeurIPS)*. 5

Liu, Q., An, S., Lou, J.-G., Chen, B., Lin, Z., Gao, Y., Zhou, B., Zheng, N., and Zhang, D. (2020). Compositional generalization by learning analytical expressions. In *Advances in Neural Information Processing Systems (NeurIPS)*. 3, 6

Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. (2017). The expressive power of neural networks: A view from the width. In *Advances in neural information processing systems*. 30. A2

Mao, J., Gan, C., Kohli, P., Tenenbaum, J. B., and Wu, J. (2018). The neuro-symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision. In *International Conference on Learning Representations (ICLR)*. 3

Marcus, G. F. (2018). *The algebraic mind: Integrating connectionism and cognitive science*. MIT press. 1, 3

Minervini, P., Bošnjak, M., Rocktäschel, T., Riedel, S., and Grefenstette, E. (2020). Differentiable reasoning on large knowledge bases and natural language. In *Proceedings of the AAAI conference on artificial intelligence*, volume 34, pages 5182–5190. 3

Montague, R. (1970). Universal grammar. *Theoria*, 36(3):373–398. 1

Newell, A. (1980). Physical symbol systems. *Cognitive science*, 4(2):135–183. 3

Nye, M., Solar-Lezama, A., Tenenbaum, J., and Lake, B. M. (2020). Learning compositional rules via neural program synthesis. In *Advances in Neural Information Processing Systems (NeurIPS)*. 3

Ontanón, S., Ainslie, J., Cvicek, V., and Fisher, Z. (2022). Making transformers solve compositional tasks. In *Annual Meeting of the Association for Computational Linguistics (ACL)*. 1, 2, 7, 8, A7

Peano, G. (1889). *Arithmetices principia: Nova methodo exposita*. Fratres Bocca. 4

Peyton Jones, S. L. (1987). *The implementation of functional programming languages*. Prentice-Hall, Inc. 4

Rocktäschel, T. and Riedel, S. (2017). End-to-end differentiable proving. *Advances in neural information processing systems*, 30. 3

Ruis, L., Andreas, J., Baroni, M., Bouchacourt, D., and Lake, B. M. (2020). A benchmark for systematic generalization in grounded language understanding. *Advances in Neural Information Processing Systems (NeurIPS)*. 2

Russin, J., Jo, J., O’Reilly, R. C., and Bengio, Y. (2019). Compositional generalization in a deep seq2seq model by separating syntax and semantics. *arXiv preprint arXiv:1904.09708*. 2

Saxton, D., Grefenstette, E., Hill, F., and Kohli, P. (2018). Analysing mathematical reasoning abilities of neural models. In *International Conference on Learning Representations (ICLR)*. 2

Solomonoff, R. J. (1964). A formal theory of inductive inference. *Part i. Information and control*, 7(1):1–22. A1
Van Gansbeke, W., Vandenhende, S., Georgoulis, S., Proesmans, M., and Van Gool, L. (2020). Scan: Learning to classify images without labels. In European Conference on Computer Vision (ECCV). A2

Wang, Q., Zhang, H., Deng, C., You, Y., Dong, H., Zhu, Y., and Guibas, L. (2024). Sparsedff: Sparse-view feature distillation for one-shot dexterous manipulation. In International Conference on Learning Representations (ICLR). 2

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning, 8(3-4):229–256. 5

Xie, S., Ma, X., Yu, P., Zhu, Y., Wu, Y. N., and Zhu, S.-C. (2021). Halma: Humanlike abstraction learning meets affordance in rapid problem solving. arXiv preprint arXiv:2102.11344. 1, 2, 4, 6

Xu, M., Jiang, G., Liang, W., Zhang, C., and Zhu, Y. (2023). Active reasoning in an open-world environment. In Advances in Neural Information Processing Systems (NeurIPS). 2

Zhang, C., Xie, S., Jia, B., Wu, Y. N., Zhu, S.-C., and Zhu, Y. (2022). Learning algebraic representation for systematic generalization in abstract reasoning. In European Conference on Computer Vision (ECCV). 6, A2
A Model Details

Dependency Parsing Fig. A1 illustrate the process of parsing an arithmetic expression via the dependency parser. Formally, a state $c = (\alpha, \beta, A)$ in the dependency parser consists of a stack α, a buffer β, and a set of dependency arcs A. The initial state for a sequence $s = w_0 w_1 ... w_n$ is $\alpha = [\text{Root}]. \beta = [w_0 w_1 ... w_n]. A = \emptyset$. A state is regarded as terminal if the buffer is empty and the stack only contains the node Root. The parse tree can be derived from the dependency arcs A. Let α_i denote the i-th top element on the stack, and β_i the i-th element on the buffer. The parser defines three types of transitions between states:

- **LEFT-ARC**: add an arc $\alpha_1 \rightarrow \alpha_2$ to A and remove α_2 from the stack α. Precondition: $|\alpha| \geq 2$.
- **RIGHT-ARC**: add an arc $\alpha_2 \rightarrow \alpha_1$ to A and remove α_1 from the stack α. Precondition: $|\alpha| \geq 2$.
- **SHIFT**: move β_1 from the buffer β to the stack α. Precondition: $|\beta| \geq 1$.

The goal of the parser is to predict a transition sequence from an initial state to a terminal state. The parser predicts one transition from $T = \{\text{LEFT-ARC, RIGHT-ARC, SHIFT}\}$ at a time, based on the current state $c = (\alpha, \beta, A)$. The state representation is constructed from a local window and contains following three elements: (i) The top three words on the stack and buffer: $\alpha_i, \beta_i, i = 1, 2, 3$; (ii) The first and second leftmost/rightmost children of the top two words on the stack: $lc_1(\alpha_i), rc_1(\alpha_i), lc_2(\alpha_i), rc_2(\alpha_i), i = 1, 2$; (iii) The leftmost of leftmost/rightmost of rightmost children of the top two words on the stack: $lc_i(lc_1(\alpha_i)), rc_i(rc_1(\alpha_i)), i = 1, 2$. We use a special Null token for non-existent elements. Each element in the state representation is embedded to a d-dimensional vector $e \in R^n$, and the full embedding matrix is denoted as $E \in R^{(2i+3) \times d}$, where Σ is the concept space. The embedding vectors for all elements in the state are concatenated as its representation: $c = [e_1 e_2 ... e_n] \in R^{nd}$. Given the state representation, we adopt a two-layer feed-forward neural network to predict the transition.

Program Induction Program induction, i.e., synthesizing programs from input-output examples, was one of the oldest theoretical frameworks for concept learning within artificial intelligence (Solomonoff, 1964). Recent advances in program induction focus on training neural networks to guide the program search (Kulkarni et al., 2015; Lake et al., 2015; Balog et al., 2017; Devlin et al., 2018a,b). For example, Balog et al. (2017) train a neural network to predict properties of the program that generated the outputs from the given inputs and then use the neural network’s predictions to augment search techniques from the programming languages community. Ellis et al. (2021) released a neural-guided program induction system, DreamCoder, which can efficiently discover interpretable, reusable, and generalizable programs across a wide range of domains, including both classic inductive programming tasks and creative tasks such as drawing pictures and building scenes. DreamCoder adopts a “wake-sleep” Bayesian learning algorithm to extend program space with new symbolic abstractions and train the neural network on imagined and replayed problems.

To learn the semantics of a symbol c from a set of examples D_e is to find a program ρ_c composed from a set of primitives L, which maximizes the following objective:

$$
\max_{\rho} p(\rho|D_e, L) \propto p(D_e|\rho) p(\rho|L), \quad (A1)
$$

where $p(D_e|\rho)$ is the likelihood of the program ρ matching D_e, and $p(\rho|L)$ is the prior of ρ under the program space defined by the primitives L. Since finding a globally optimal program is usually intractable, the maximization in Eq. (A1) is approximated by a stochastic search process guided by a neural network, which is trained to approximate the posterior distribution $p(\rho|D_e, L)$. We refer the readers to DreamCoder (Ellis et al., 2021) for more technical details.

\[^1\text{https://github.com/ellisk42/ec}\]
B LEARNING

Derivation of Eq. (5) Take the derivative of L w.r.t. θ_p,

$$
\nabla_{\theta_p} L(x, y) = \nabla_{\theta_p} \log p(y|x) = \frac{1}{p(y|x)} \nabla_{\theta_p} p(y|x)
$$

$$
= \sum_T \frac{p(T, y|x; \Theta)}{\sum_{T'} p(T', y|x; \Theta)} \nabla_{\theta_p} \log p(s|x; \theta_p) \tag{A2}
$$

$$
= \mathbb{E}_{T \sim p(T|x, y)} [\nabla_{\theta_p} \log p(s|x; \theta_p)].
$$

 Similarly, for θ_s, θ_t, we have

$$
\nabla_{\theta_s} L(x, y) = \mathbb{E}_{T \sim p(T|x, y)} [\nabla_{\theta_s} \log p(e|s; \theta_s)],
$$

$$
\nabla_{\theta_t} L(x, y) = \mathbb{E}_{T \sim p(T|x, y)} [\nabla_{\theta_t} \log p(v|s, e; \theta_t)]. \tag{A3}
$$

Deduction-Abduction Alg. A1 describes the procedure for learning NSR by the proposed deduction-abduction algorithm, Fig. 3 illustrates the one-step abduction over perception, syntax, and semantics in HINT and Fig. A2 visualizes a concrete example to illustrate the deduction-abduction process. It is similar for SCAN and PCFG.

C EXPRESSIVENESS AND GENERALIZATION OF NSR

Expressiveness

Lemma C.1. Given a finite unique set of $\{x^i : i = 0, ..., N\}$, there exists a sufficiently capable neural network f_p such that: $\forall x^i, f_p(x^i) = i$.

This lemma asserts the existence of a neural network capable of mapping every element in a finite set to a unique index, i.e., $x^i \rightarrow i$, as supported by (Hornik et al., 1989; Lu et al., 2017). The parsing process in this scenario is straightforward, given that every input is mapped to a singular token.

Lemma C.2. Any index space can be constructed from the primitives $\{0, \text{inc}\}$.

This lemma is grounded in the fact that all indices are natural numbers, which can be recursively defined by $\{0, \text{inc}\}$, allowing the creation of indices for both inputs and outputs.

Generalization Equivariance and compositionality are formalized utilizing group theory, following the approaches of Gordon et al. (2019) and Zhang et al. (2022). A discrete group G comprises elements $\{g_1, ..., g_{|G|}\}$ and a binary group operation “\cdot”, adhering to group axioms (closure, associativity, identity, and invertibility). Equivariance is associated with a permutation group P, representing permutations of a set X. For compositionality, a composition operation C is considered, defining $T_c : (X', X') \rightarrow X'$.

The three modules of NSR—neural perception (Eq. (1)), dependency parsing (Eq. (2)), and program induction (Eq. (3))—exhibit equivariance and compositionality, functioning as pointwise transformations based on their formulations. Eqs. (1) to (3) demonstrate that in all three modules of the NSR system, the joint distribution is factorized into a product of several independent terms. This factorization process makes the modules naturally adhere to the principles of equivariance and recursiveness, as outlined in Definitions 3.1 and 3.2.

D EXPERIMENTS

D.1 EXPERIMENTAL SETUP

For tasks taking symbols as input (i.e., SCAN and PCFG), the perception module is not required in NSR; For the task taking images as input, we adopt ResNet-18 as the perception module, which is pre-trained unsupervisedly (Van Gansbeke et al., 2020) on handwritten images from the training set. In the dependency parser, the token embeddings have a dimension of 50, the hidden dimension of the transition classifier is 200, and we use a dropout of 0.5. For the program induction, we adopt the
default setting in DreamCoder (Ellis et al., 2021). For learning NSR, both the ResNet-18 and the
dependency parser are trained by the Adam optimizer (Kingma and Ba, 2015) with a learning rate of
10^{-4}. NSR are trained for 100 epochs for all datasets.

Compute All training can be done using a single NVIDIA GeForce RTX 3090Ti under 24 hours.

D.2 Ablation Study

To explore how well the individual modules of NSR are learned, we perform an ablation study on
HINT to analyze the performance of each module of NSR. Specifically, along with the final results,
the HINT dataset also provides the symbolic sequences and parse trees for evaluation. For Neural
Perception, we report the accuracy of classifying each symbol. For Dependency parsing, we report
the accuracy of attaching each symbol to its correct parent, given the ground-truth symbol sequence
as the input. For Program Induction, we report the accuracy of the final results, given the ground-truth
symbol sequence and parse tree.

Overall, each module achieves high accuracy, as shown in Tab. A1. For Neural Perception, most
errors come from the two parentheses, "(" and ")", because they are visually similar. For Dependency
Parsing, we analyze the parsing accuracies for different concept groups: digits (100%), operators
(95.85%), and parentheses (64.28%). The parsing accuracy of parentheses is much lower than those of
digits and operators. We think this is because, as long as digits and operators are correctly parsed in the
parsing tree, where to attach the parentheses does not influence the final results because parentheses
have no semantic meaning. For Program Induction, we can manually verify that the induced programs
(Fig. 4) have correct semantics. The errors are caused by exceeding the recursion limit when calling
the program for multiplication. The above analysis is also verified by the qualitative examples in
Fig. A3.

D.3 Qualitative Examples

Figs. A3 and A4 show several examples of the NSR predictions on SCAN and HINT.

Fig. A5 illustrates the evolution of semantics along the training of NSR in HINT. This pattern is
highly in accordance with how children learn arithmetic in developmental psychology (Carpenter
et al., 1999): The model first masters the semantics of digits as counting, then learns + and − as
recursive counting, and finally figures out how to define \times and \div based on + and −. Crucially, \times
and \div are impossible to be correctly learned before mastering + and −. The model is endowed with
such an incremental learning capability since the program induction module allows the semantics of
concepts to be built compositionally from those learned earlier (Ellis et al., 2021).
Figure A1: Applying the transition-based dependency parser to an example of HiNT. It is similar for SCAN and PCFG.

Figure A2: An illustration of the deduction-abduction process for an example of HiNT. Given a handwritten expression, the system performs a greedy deduction to propose an initial solution, generating a wrong result. In abduction, the root node, paired with the ground-truth result, is first pushed to the priority queue. The abduction over perception, syntax, and semantics is performed on the popped node to generate possible revisions. A top-down search is also applied to propagate the expected value to its children. All possible revisions are then pushed into the priority queue. This process is repeated until we find the most likely revision for the initial solution.
Figure A3: Examples of NSR predictions on the test set of HINT. “GT” and “PD” denote “ground-truth” and “prediction,” respectively. Each node in the tree is a tuple of (symbol, value).
Figure A4: Examples of NSR predictions on the test set of the SCAN LENGTH split. We use * (repeating the list) and + (concatenating two lists) to shorten the outputs for easier interpretation.

Figure A5: The evolution of learned programs in NSR for HINT. The recursive programs in DreamCoder are represented by lambda calculus (a.k.a. λ-calculus) with Y-combinator. Here, we translate the induced programs into pseudo code for easier interpretation. Note that there might be different yet functionally-equivalent programs to represent the semantics of a symbol; we only visualize a plausible one here.
Table A1: **Accuracy of the individual modules of NSR on the HINT dataset.**

Module	Neural Perception	Dependency Parsing	Program Induction
Accuracy	93.51	88.10	98.47

Table A2: **The test accuracy on different splits of SCAN and PCFG.** The results of NeSS on PCFG are reported by adapting the source code from Chen et al. (2020) on PCFG. Reported accuracy (%) is the average of 5 runs with standard deviation if available.

models	SCAN	PCFG					
	SIMPLE	**JUMP**	**AROUND RIGHT**	**LENGTH**	**L.I.d.**	**systematicity**	**productivity**
Seq2Seq (Lake and Baron, 2018)	99.7 ± 0.1	1.2 ± 0.1	2.5 ± 0.1	13.8 ± 0.1	79 ± 3	53 ± 3	30 ± 3
CNN (Dessì and Baron, 2019)	100.0 ± 0.0	69.2 ± 1.2	56.7 ± 1.2	0.1±0.0	85 ± 5	56 ± 5	31 ± 5
Transformer (Cordónd et al., 2021)	-	-	-	-	20.0 ± 1.0	96 ± 1	85 ± 1
Transformer (Ontanón et al., 2022)	-	-	-	19.6	-	83	63
equivariant Seq2Seq (Cordónd et al., 2019)	100.0 ± 0.0	99.1 ± 0.04	92.0 ± 0.24	15.9 ± 3.2	-	-	-
NeSS (Chen et al., 2020)	100.0	100.0	100.0	100.0	100.0	100.0	100.0
NSR (ours)	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0

Table A3: **The test accuracy on HINT.** We directly cite the results of GRU, LSTM, and Transformer from Li et al. (2023b). The results of NeSS are reported by adapting its source code on HINT. Reported accuracy (%) is the median and standard deviation of 5 runs.

Model	Symbol Input	Image Input										
	I	SS	LS	SL	LL	Avg.	I	SS	LS	SL	LL	Avg.
GRU	76.9 ± 0.6	69.5 ± 0.6	42.8 ± 1.5	10.5 ± 0.2	15.3 ± 1.2	42.5 ± 0.7	66.7 ± 2.0	58.7 ± 2.2	33.1 ± 2.7	9.4 ± 2.3	12.8 ± 1.0	35.9 ± 1.6
LSTM	92.9 ± 1.4	90.9 ± 1.4	74.9 ± 1.5	12.1 ± 0.2	24.1 ± 0.3	30.9 ± 0.7	83.9 ± 0.9	79.7 ± 0.8	62.0 ± 2.5	11.2 ± 0.1	21.0 ± 0.8	53.5 ± 1.0
Transformer	98.0 ± 0.3	98.8 ± 0.6	78.2 ± 2.9	11.7 ± 0.3	22.4 ± 1.1	61.5 ± 0.9	88.4 ± 1.3	86.0 ± 1.3	62.5 ± 1.1	10.9 ± 0.2	19.0 ± 1.0	53.1 ± 1.6
NeSS	x0											
NSR (ours)	98.0 ± 0.2	97.3 ± 0.5	83.7 ± 1.2	95.9 ± 4.6	77.6 ± 3.1	90.1 ± 2.7	88.5 ± 1.0	86.2 ± 0.9	67.1 ± 2.4	83.2 ± 3.9	58.2 ± 3.3	76.0 ± 2.6
Algorithm A1: Learning by Deduction-Abduction

Input: Training set \(D = \{(x_i, y_i) : i = 1, 2, ..., N\} \)
Output: \(\theta_p^{(T)}, \theta_s^{(T)}, \theta_i^{(T)} \)

Initial Module: perception \(\theta_p^{(0)} \), syntax \(\theta_s^{(0)} \), semantics \(\theta_i^{(0)} \)

1. for \(t \leftarrow 0 \) to \(T \) do
 2. Buffer \(B \leftarrow \emptyset \)
 3. foreach \((x, y) \in D \) do
 4. \(T \leftarrow \text{deduce}(x, \theta_p^{(t)}, \theta_s^{(t)}, \theta_i^{(t)}) \)
 5. \(T^* \leftarrow \text{abduce}(T, y) \)
 6. \(B \leftarrow B \cup T^* \)
 7. \(\theta_p^{(t+1)}, \theta_s^{(t+1)}, \theta_i^{(t+1)} \leftarrow \text{learn}(B, \theta_p^{(t)}, \theta_s^{(t)}, \theta_i^{(t)}) \)
 8. return \(\theta_p^{(T)}, \theta_s^{(T)}, \theta_i^{(T)} \)

Function \text{deduce} \((x, \theta_p, \theta_s, \theta_i)\):

1. Sample \(\hat{s} \sim p(s | x; \theta_p) \), \(\hat{c} \sim p(c | \hat{s}; \theta_s) \), \(\hat{v} = f(\hat{s}, \hat{c}; \theta_i) \)
2. return \(T = \langle x, \hat{s}, \hat{v}, \hat{c} > \)

Function \text{abduce} \((T, y)\):

1. \(Q \leftarrow \text{PriorityQueue}() \)
2. \(Q \text{.push}(\text{root}(T), y, 1.0) \)
3. while \(Q \) is not empty do
 4. \(\text{A, yA, p} \leftarrow Q \text{.pop}() \)
 5. \(A \leftarrow \langle x, w, v, arcs \rangle \)
 6. if \(A. v = yA \) then
 7. return \(T(A) \)
 8. // Abduce perception
 9. foreach \(w' \in \Sigma \) do
 10. \(A' \leftarrow A(w \rightarrow w') \)
 11. if \(A'. v = yA \) then
 12. \(Q \text{.push}(A', yA, p(A')) \)
 13. // Abduce syntax
 14. foreach \(arc \in arcs \) do
 15. \(A' \leftarrow \text{rotate}(A, arc) \)
 16. if \(A'. v = yA \) then
 17. \(Q \text{.push}(A', yA, p(A')) \)
 18. // Abduce semantics
 19. \(A' \leftarrow A(v \rightarrow yA) \)
 20. \(Q \text{.push}(A', yA, p(A')) \)
 21. // Top–down search
 22. foreach \(B \in \text{children}(A) \) do
 23. \(yB \leftarrow \text{solve}(B, A, yA | \theta_i(A.w)) \)
 24. \(Q \text{.push}(B, yB, p(B)) \)