Wider frequency domain for negative refraction index in a quantized composite right-left handed transmission line

Qi-Xuan Wu
Faculty of Foreign Languages and culture, Kunming University of Science and Technology, Kunming, 650500, PR China

Shun-Cai Zhao∗
Department of Physics, Faculty of Science, Kunming University of Science and Technology, Kunming, 650500, PR China

(Dated: March 12, 2022)

The refraction index of the quantized lossy composite right-Left handed transmission line (CRLH-TL) was deduced in the thermal coherence state. The results show negative refraction index (herein the left-handedness) can be implemented by the electric circuit dissipative factors (i.e., the resistances R and conductances G) in the higher frequency bands ($1.446\text{GHz} \leq \omega \leq 15\text{GHz}$), and flexibly adjusted by the left-handed circuit components (C_l, L_l) and the right-handed circuit components (C_r, L_r) at a lower frequency ($\omega=0.995\text{GHz}$). The flexible adjustment for left-handedness in a more wider bandwidth will be significant to the microscale circuit design for the CRLH-TL and may pave the theoretical preparation for its compact applications.

PACS: 81.05.Xj, 78.67.Pt, 78.20.Ci, 42.50.Gy

Keywords: Quantized composite right-Left handed transmission line; negative refraction index; frequency domain

A well-established route for constructing negative refractive index materials (NRM) is based on Veselago’s theory\cite{1} of left-handed materials (LHM), simultaneous negative permittivity (ε) and magnetic permeability (μ) with different types of metamaterials\cite{2–7}. Although very exciting from a physics point of view, the negative ε and μ produced by electromagnetic resonance may bring about a very high loss\cite{8, 9} and narrow bandwidth consequently. Due to the weaknesses of resonant-type structures, three groups almost simultaneously introduced a transmission line (TL) approach for NRM\cite{10–13}, i.e., the composite right-Left handed transmission line (CRLH-TL), which refers to the right-handedness accompanying the positive refraction index at high frequencies and to the left-handedness with the negative refraction index (NRI) at lower frequencies\cite{39}. CRLH-TL initially the non-resonant-type one, is perhaps one of the most representative and potential candidates due to its low loss, broad operating frequency band, as well as planar configuration\cite{15, 39}, which is often related with easy fabrication for NRI applications in a suite of novel guided-wave\cite{16}, radiated-wave\cite{17}, and refracted-wave devices and structures\cite{18, 19}. Nowadays, the CRLH-TLs show a tendency to the compact applications influenced by the nanotechnology and microelectronics\cite{20–22}. Recently, a new class of miniaturized nonreciprocal leaky-wave antenna is proposed for miniaturization, nonreciprocal properties and wide-angle scanning at the same time\cite{23}. With four unit cells of CRLH-TL a wide-band loop antenna is proposed in a compact size\cite{24}.

However, when the compact size of the CRLH-TL approaches the Fermi wavelength, the quantum effects\cite{25–27} on the CRLH-TL must be taken into account. In our former work, we firstly deduced the quantum features of NRI of the lossless mesoscopic left-handed transmission line (LH-TL)\cite{28}. Then we

∗Corresponding author: zhaosc@kmust.edu.cn
quantized the lossy LH-TL[29] and we discussed the quantum influence of dissipation on the NRI[29] in a displaced squeezed Fock state. And some novel quantum effects were revealed and were reputed significance for the miniaturization application of LH-TL.

In this paper, a flexible adjustment for negative refraction index from a wider frequency bandwidth in the quantized lossy CRLH-TL is achieved in the thermal coherence state. And the paper is organized as follows. In Sec.2, we quantize the travelling current field in the unit-cell circuit of the CRLH-TL, and deduce its refraction index in the thermal coherence state. Then we evaluate the refraction index via the numerical approach in Sec.3. Sec.4 presents our summary and conclusions. Section 5 presents our summary and conclusions.

1. THE QUANTIZED REFRACTION INDEX IN THE THERMAL COHERENCE STATE

FIG. 1: chemicat diagram of an equivalent unit-cell circuit of the mesoscopic lossy CRLH-TL.

The equivalent unit-cell circuit model of the proposed lossy CRLH-TL is shown in Fig. 1. Comparing to the lossless CRLH-TL[30], the imported resistance R and conductance G represent the loss except the series capacitor C_l and inductance L_r, shunt inductance L_l and capacitor C_r[31] in each unit cell circuit. And the dimension Δz of the equivalent unit-cell circuit is much less than the wavelength at operating frequency. Hence, let us now consider Kirchhoffs voltage and current laws for this unit-cell circuit in Fig. 1, which respectively read

$$u(z) = j(z)[R + \frac{1}{i\omega C_l} + i\omega L_R]\Delta z + u(z + \Delta z), \quad (1)$$

$$j(z) = u(z)[G + \frac{1}{i\omega L_l} + i\omega C_R]\Delta z + j(z + \Delta z) \quad (2)$$

where $u(z)$ is the voltage, $j(z)$ is the current, and ω is the angle frequency. When $\Delta z \to 0$, the above equations, lead to the following system:

$$\frac{\partial^2 j(z)}{\partial z^2} = [G + \frac{1}{i\omega L_l} + i\omega C_R] \times [R + \frac{1}{i\omega C_l} + i\omega L_R]j(z)$$

The above electric current equation leads to the forward plane-wave solution:

$$j(z) = \exp(-\sigma z)[Ae^{i\beta z} + A^*e^{-i\beta z}] \quad (3)$$

in which

$$\sigma + i\beta = \sqrt{[G + \frac{1}{i\omega L_l} + i\omega C_R] \times [R + \frac{1}{i\omega C_l} + i\omega L_R]} \quad (4)$$
In Eq.(3) A^* is the complex conjugate of A for normalization purposes. We adopt the quantization method similar to Louisell [32] to achieve the current operator. In Fig.1 the given unit-length, i.e., $z_0 = m\lambda$ where λ is the wavelength labelled typically by wavenumber k and frequency ω, its Hamiltonian can be written as follows,

$$
H = \frac{1}{2} \int_{0}^{L} \left(Rj^2 + Lrj^2 + Cju_c^2 + \frac{1}{G}j^2 + L_i \dot{j}^2 \right) dz
$$

where $F=1+\frac{R_0 C_i + \omega^2 L_i C_i}{\omega C_i} + \frac{L_i^2 \omega^2 (G+1)}{(1+\omega L_i G + \omega^2 L_i C_i)^2} + \omega C_r(\frac{1+R_0 C_i + \omega^2 L_i C_i}{\omega C_i} + \frac{\omega L_i}{1+\omega L_i G + \omega^2 L_i C_r})^2$. Then, with the definitions $A = \sqrt{\frac{\hbar}{Fz_0}}, A^* = \alpha^* \sqrt{\frac{\hbar}{Fz_0}}$ we achieve the Hamiltonian of the unit-cell circuit,

$$
H = \hbar \omega a^* a
$$

(5)

According to the canonical quantization principle, we can quantize the system by operators \hat{q} and \hat{p}, which satisfy the commutation relation $[\hat{q}, \hat{p}] = i\hbar$. The annihilation and creation operators \hat{a} and \hat{a}^\dagger are defined by the relations

$$
\hat{a} = \frac{1}{\sqrt{2\hbar\omega}}(\omega\hat{q} + i\hat{p}), \quad \hat{a}^\dagger = \frac{1}{\sqrt{2\hbar\omega}}(\omega\hat{q} - i\hat{p})
$$

Thus the quantum Hamiltonian of Fig.1 can be rewritten as $\hat{H} = \hbar \omega \hat{a}^\dagger \hat{a} = \frac{1}{2}(\omega^2 \hat{q}^2 + \hat{p}^2)$. Thus the current in the lossy unit cell equivalent circuit for CRLH-TL can be quantized as

$$
\hat{j}(z) = \sqrt{\frac{\hbar}{Fz_0}} \exp\left(-\sigma z\right)\left[\hat{a}e^{i\beta z} + \hat{a}^\dagger e^{-i\beta z}\right]
$$

(6)

The thermal coherent state we adopted here is $|\alpha\rangle = D(\alpha)|0\rangle_T = D(\alpha)T(\theta)|0\rangle_T$ [33–35]. Where $D(\alpha) = \exp(\alpha a^\dagger - \alpha^* a), \ T(\theta) = \exp[-\theta(a^\dagger a - a a^\dagger)]$ and with $\sinh^2(\theta) = [\exp(\frac{\hbar \omega}{k_B T}) - 1]^{-1}$, in which k_B is the Boltzmann constant. In thermo-field dynamics (TFD) theory, the tilde space accompanies with the Hilbert space, and the tilde operators commute with the non-tilde operators [36]. Thus the creation and annihilation operators \hat{a}^\dagger, \hat{a} associate with their tilde operators $\hat{\tilde{a}}^\dagger, \hat{\tilde{a}}$ according the rules [36], $[\hat{a}, \hat{a}^\dagger] = 1, [\tilde{a}, \tilde{a}^\dagger] = [\hat{a}, \hat{a}^\dagger] = 0$. And we can prove the following equalities easily,

$$
T^\dagger(\theta) a T(\theta) = ua + v\tilde{a}, \quad T^\dagger(\theta)a^\dagger T(\theta) = ua^\dagger + v\tilde{a},
$$

$$
D^\dagger(\alpha)a D(\alpha) = a + \alpha, \quad D^\dagger(\alpha)a^\dagger D(\alpha) = a^\dagger + \alpha^*, \quad \tilde{D}^\dagger(\tilde{\alpha})\tilde{a} \tilde{D}(\tilde{\alpha}) = \tilde{a} + \tilde{\alpha}, \quad \tilde{D}^\dagger(\tilde{\alpha})\tilde{a}^\dagger \tilde{D}(\tilde{\alpha}) = \tilde{a}^\dagger + \tilde{\alpha}^*
$$

(7)

with $u = \cosh(\theta), \ v = \sinh(\theta)$. Then from Eq.(6) to Eq.(7), the quantum fluctuation of the current in the thermal coherent state is

$$
\langle (\Delta \hat{j})^2 \rangle = 2u^2 \frac{\hbar \omega}{Fz_0} \exp(-2\sigma z)
$$

(8)

It notes that σz is infinitesimal when z is a dimensionless, and we can transform Eq.(8) by using the first order approximation of Taylor expansion as follow,

$$
\frac{\langle (\Delta \hat{j})^2 \rangle Fz_0}{2u^2 \hbar \omega} = 1 - 2\sigma z
$$

(9)

With the relation $2\sigma \beta = \eta$ deduced from Eq.(4), and the relation $n = \frac{c_0 \eta}{2}$ [37], c_0 is the light speed in vacuum) between propagation constant and refraction index in the CRLH-TL, the refraction index can be deduced by Eq.(9),

$$
n = \frac{2\hbar c_0 u^2 \eta z}{2u^2 \hbar \omega - \langle (\Delta \hat{j})^2 \rangle Fz_0}
$$

(10)
TABLE I: Parameters of the circuit components in the quantized lossy CRLH-TL.

	$C_l (pF)$	$L_l (pH)$	$C_r (nF)$	$L_r (nH)$	$\omega (GHz)$	$R (\mu \Omega)$	$G (\mu S)$
Fig.2(a)	3.667	416.7	9.80	129.8	—	99.8	—
Fig.2(b)	3.667	416.7	9.80	129.8	—	0.95	—
Fig.3(a)	—	416.7	—	129.8	0.995	0.35	99.8
Fig.3(b)	1.000	416.7	—	—	0.995	0.35	99.8
Fig.4(a)	—	416.7	98.0	—	0.995	0.35	99.8
Fig.4(b)	285	—	98.0	—	0.995	0.35	99.8

2. NUMERICAL SIMULATIONS AND DISCUSSIONS

In the previous work\cite{39}, the negative refraction index happens in the lower frequency bandwidth of microwave wave. In order to investigate minus refraction index, we should work with the refraction index Exp.(10). However, the analytical Exp.(10) of the refraction index is rather cumbersome to obtain, so, we follow the numerical approach to analyze the refraction index of the CRLH-TL. And several parameters should be selected before the analysis. The length of the unit CRLH-TL circuit is $z = 4z_0 = 4nm$, and the quantum fluctuation of the current $\langle \Delta j \rangle^2 = 10^{-9}$. Other parameters used in our simulation are listed in Table 1 whose order of magnitudes are referenced from Ref.\cite{38}.

FIG. 2: The refraction index n as a function of the frequency ω tuned by different resistances R in (a) and conductances G in (b), respectively.

The frequency bandwidth for negative refraction index (i.e., the left-handedness) is of interest for the mesoscopic CRLH-TL. Not only that, the role of the imported resistance R and conductance G representing the loss is also what we care about. Fig.2 shows the refraction index dependent the imported resistance R and conductance G in the frequency domain. The relation between the refraction index and the resistance R is shown in Fig.2(a). It notes that in the lower frequency bands $[0, 1.446GHz]$ the refraction indexes are positive, and that its values are negative in the higher frequency bands $[1.446GHz, 15GHz]$ which surpasses the frequency bands for left-handedness mentioned by Ref\cite{39}. And we notice that the resistances R play a passive role both on the left-handedness and right-handedness frequency bands, i.e. the resistances R restrain the growth of the refraction index n in the two frequency bands. Fig.2(b) shows the similar behavior of the conductance G on the refraction index. The positive refraction indexes in the lower frequency bands $[0, 1.428GHz]$ and the negative refraction index in the higher frequency bands $[1.428GHz, 15GHz]$ can be observed by the curves in Fig.2(b). While the increasing conductance G by 0.2 μS can enhance the refraction index from the dotted curve to the solid curve in both the frequency bands, i.e. $[0, 1.428GHz]$ and $[1.428GHz, 15GHz]$. And we note that the frequency bands for negative refraction index (i.e., the left-handedness) in Fig.2 surpass which mentioned in Ref.\cite{39}. In generally speaking, the resistance R and the conductance G are not a desired role in electricity out of
the Joule heat via the Ohm Law. In this quantized CRLH-TL, the resistance \(R \) and the conductance \(G \) can adjust the refraction index except the classic Ohm Law. Throughout the full Fig.2, this quantized CRLH-TL demonstrates the positive refraction index (i.e., the right-handedness) in the lower frequency bands and the negative refraction index (i.e., the left-handedness) in the higher frequency bands.

A notable question is whether it is possible to realize negative refraction index (i.e., the left-handedness) in the lower frequency bands? Fig.3 and Fig.4 provide the refraction index dependent the parameters of the circuit components at a lower frequency \(\omega = 0.995 \text{GHz} \).

FIG. 3: The refraction index \(n \) as a function of the shunt capacitor \(C_r \) tuned by different series capacitors \(C_l \) in (a) and inductances \(L_r \) in (b), respectively.

The refraction index dependent the shunt capacitor \(C_r \) is provided in Fig.3 at frequency \(\omega = 0.995 \text{GHz} \). The curves show that the refraction index is positive when the series capacitor \(C_l \) is assigned by 7.0 \(pF \) and 7.5 \(pF \) in Fig.3 (a). But the refraction index is negative and reaches its maximum in the ranges \([10nF, 15nF]\) of the shunt capacitor \(C_r \) when the series capacitor \(C_l \) is set by the larger values, i.e., \(C_l = 8.5pF, 9.0pF \), respectively. The curves from dotted to solid in Fig.3(b) show the similar feature when the refraction index is tuned by the different series inductances \(L_r \). However, we also note that a larger negative refraction index can be implemented by a smaller shunt capacitor \(C_r \approx 1nF \) but a larger series inductances \(L_r = 1150nH \). Fig.3 demonstrates that the refraction index can be negative at a lower frequency \(\omega = 0.995 \text{GHz} \) with the proper parameters of series capacitor \(C_l \) and inductances \(L_r \) within the ranges \([0, 20nF]\) of the shunt capacitor \(C_r \).

FIG. 4: The refraction index \(n \) as a function of the series inductance \(L_r \) tuned by different series capacitors \(C_l \) in (a) and shunt inductances \(L_l \) in (b), respectively.

At the lower frequency \(\omega = 0.995 \text{GHz} \), Fig.4 shows the refraction index dependent the series inductance \(L_r \) tuned by different series capacitors \(C_l \) in (a) and shunt inductances \(L_l \) in (b), respectively. The increasing series capacitors \(C_l \) promote the ranges of the series inductance \(L_r \) for negative refraction.
index and gradually increase the values of negative refraction index in Fig.4 (a). And the curves in Fig.4 (b) display the similar growth trends for negative refraction index, but the increase of the negative refraction index in Fig.4 (a) is larger than that in Fig.4 (b). These results demonstrate the left-handed circuit components \((C_l, L_l)\) can enhance the negative refraction index in the mesoscopic lossy CRLH-TL.

Before concluding this paper, we would remark that how to broaden the frequency bands for negative refraction index is an active field for metamaterials, and the metamaterials within a wider band is always the direction of efforts. However, the frequency bands for negative refraction index only exist in the microwave band introduced by the first researchers\(^{[10-13]}\) in the CRLH-TL. In our current study, we implement the negative refraction index within a wider frequency bands in the quantized CRLH-TL and conclude that the negative refraction index in the higher frequency bands \((1.446\text{GHz} \leq \omega \leq 15\text{GHz})\) tuned by the resistances \(R\) and conductances \(G\) and at a lower frequency \((\omega=0.995\text{GHz})\) tuned by the parameters of the circuit components. These achievements show the new characteristic for the quantized CRLH-TL and should be paid enough attention in the coming future.

3. CONCLUSION

In present paper, the negative refraction index is implemented within a wider frequency bands in the quantized CRLH-TL. And the frequency domain for negative refraction index is \(1.446\text{GHz} \leq \omega \leq 15\text{GHz}\) with the values for negative refraction index being opposite tuned by the resistances \(R\) and conductances \(G\), respectively. At a much lower frequency \((\omega=0.995\text{GHz})\), the negative refraction index can also be flexibly implemented by the left-handed circuit components \((C_l, L_l)\), and the right-handed circuit components \((C_r, L_r)\), respectively. The adjusting negative refraction index within a more wider bandwidth in this quantized CRLH-TL is significant to the microscale circuit design and compact applications for the CRLH-TL.

4. ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61205205 and 6156508508), the General Program of Yunnan Applied Basic Research Project, China (Grant No. 2016FB009) and the Foundation for Personnel training projects of Yunnan Province, China (Grant No. KKSY201207068).

[1] V. Veselago “The electrodynamics of substances with simultaneously negative values of \(\varepsilon\) and \(\mu\)”, *Soviet Physics Uspekhi* 10 509 (1968).
[2] Q. Thommen, P. Mandel“Electromagnetically Induced Left Handedness in Optically Excited Four-Level Atomic Media”, *Phys. Rev. Lett.* 96 053601 (2006)
[3] R. A. Shelby and D. R. Smith “Experimental Verification of a Negative Index of Refraction”, *Science* 292 77 (2001)
[4] S. C. Zhao, Q. X. Wu, K. Ma, “Adjusting the left-handedness in a cold \(^{87}\text{Rb}\) atomic system via multiple parameter modulation”, *Chin. J. Phys.* 54, 756 (2016).
[5] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou and C. M. Soukoulis, “Electromagnetic waves: Negative refraction by photonic crystals”,*Nature* 423 , 604 (2003)
[6] S. C. Zhao, H. W. Guo, X. J. Wei,“The manipulated left-handedness in a rare-earth-ion-doped optical fiber by the incoherent pumping field ”, *Opt. Commun.* 400, 30 (2017).
[7] S. C. Zhao, X. F. Qian, Y. P. Zhang and Y. A. Zhang, “Negative refraction with little loss manipulated by the voltage and pulsed laser in double quantum dot”, *Prog. Theor. Phys.* **128**, 243 (2012).

[8] J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena”, *IEEE Trans. Microw. Theory Tech.* **47**, 2075 (1999).

[9] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity”, *Phys. Rev. Lett.* **84**, 4184 (2000).

[10] A. Grbic and G. V. Eleftheriades, “A backward-wave antenna based on negative refractive index L-C networks”, *Proc. IEEE-AP-S USNC/URSI National Radio Science Meeting* 4, (340), (San Antonio, TX, June 2002).

[11] A. A. Oliner, “A planar negative-refractive-index medium without resonant elements”, *URSI Digest, IEEE-AP-S USNC/URSI National Radio Science Meeting* 41, (San Antonio, TX, June 2002).

[12] C. Caloz and T. Itoh, “Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip LH line”, *Proc. IEEE-AP-S USNC/URSI National Radio Science Meeting* 2 (412), (San Antonio, TX, June 2002).

[13] C. Caloz, H. Okabe, T. Iwai, and T. Itoh, “Transmission line approach of left-handed materials ”, *URSI Digest, IEEE-AP-S USNC/URSI National Radio Science Meeting*, (224), (San Antonio, TX, June 2002).

[14] C. Caloz and T. Itoh, “Novel microwave devices and structures based on the transmission line approach of meta-materials”, *IEEE-MIT Int’l Symp., Philadelphia, PA, June*, 1, 195 (2003).

[15] R. E. Collin, *Foundations for Microwave Engineering (Second Edition)*, McGraw-Hill, (1992).

[16] Y. Horii, C. Caloz, and T. Itoh, “Super-compact multilayered left-handed transmission line and diplexer application”, *IEEE Trans. Microwave Theory Tech.*, **53**, 1527 (2005).

[17] A. Sanada, K. Murakami, I. Awai, H. Kubo, C. Caloz, and T. Itoh, “A planar zeroth-order resonator antenna using a left-handed transmission line”, *34th European Microwave Conference* (1341), (Amsterdam, The Netherlands, Oct. 2004).

[18] A. Sanada, K. Murakami, S. Aso, H. Kubo, and I. Awai, “A via-free microstrip left-handed transmission line ”, *IEEE-MTT Int’l Symp. (301)*, (Fort Worth, TX, June 2004).

[19] S. Lim, C. Caloz and T. Itoh, “Electr. Eng. Dept., Univ. of California, Los Angeles, CA, USA”, *IEEE Trans. Microwave Theory Tech.* **53**, 161 (2005).

[20] J. C. Flores, “Mesoscopic circuits with charge discreteness quantum transmission lines”, *Phys. Rev. B* **64**, 235309 (2001).

[21] Y. H. Ji, H. M. Luo, Q. Guo, “The time evolution of charge and current in mesoscopic LC circuit with charge discreteness ”, *Phys. Lett. A* **349**, 104 (2006).

[22] Y. H. Ji, “Dynamical behavior of a mesoscopic circuit in phonons bath derived by virtue of the IWOP technique ”, *Phys. Lett. A* **372**, 3874 (2008).

[23] N. Apaydin, K. Sertel, J. L. Volakis, “Nonreciprocal and Magnetically Scanned Leaky-Wave Antenna Using Coupled CRLH Lines ”, *IEEE Transactions on Antennas and Propagation* **62**, 2954 (2014).

[24] W. P. Cao, Y. N. Cao, S. M. Li, B. B. Li, “Wideband loop antenna based on composite right/left-handed transmission line ”, *11th International Symposium on Antennas, Propagation and EM Theory (ISAPE)* **56**, 145 (2016).

[25] J. C. Flores, “Mesoscopic circuits with charge discreteness quantum transmission lines”, *Phys. Rev. B* **64**, 235309 (2001).

[26] S. Zhang, Y. H. Liu, “Quantum fluctuation of a mesoscopic inductanceCresistance coupled circuit with power source ”, *Phys. Lett. A* **322**, 356 (2004).

[27] Y. H. Ji, “Dynamical behavior of a mesoscopic circuit in phonons bath derived by virtue of the IWOP technique”, *Phys. Lett. A* **372**, 3874 (2008).

[28] S. C. Zhao, H. W. Guo, X. J. Wei, “Negative refraction index of the mesoscopic left-handed transmission line in the thermal Fock state”, *Opt. Quant. Electron.* **49**, 222 (2017).

[29] H. W. Guo, S. C. Zhao, X. J. Wei, “Negative Refraction Index Manipulated by a Displaced Squeezed Fock State in the Mesoscopic Dissipative Left-Handed Transmission Line”, *Chin. Phys. Letts.* **34**, 034201 (2017).

[30] X. J. Wei, S. C. Zhao, H. W. Guo, “The thermal effect on the left-handedness of the mesoscopic composite right-Left handed transmission line”, *Superlat. and Microstr.* **110** 313 (2017).

[31] G. V. Eleftheriades, O. Siddiqui, and A. K. Iyer, “Transmission line models for negative refractive index media
and associated implementations without excess resonators", IEEE Microw. wireless components lett. 13, 51 (2003).

[32] W. H. Louisell, Quantum Statistical Properties of Radiation (John Wiley, New York, 1973).

[33] A. Vourdas, R. F. Bishop, “Thermal coherent states in the Bargmann representation”, Phys. Rev. A 50, 3331 (1994).

[34] J. Oz-Vogt, A. Mann and M. Revzen,“Thermal Coherent States and Thermal Squeezed States”, J. Mod. Opt. 38, 2339 (1991).

[35] G. J. Ni, J. J. Xu and W. Chen, “The thermal coherent state and its application to the one-dimensional field theory”, Phys. A: Math. Gen. 18, 149 (1985).

[36] H. Umezawa, Y. Yamanaka, “Micro, macro and thermal concepts in quantum field theory”, Advances in Physics 37, 531 (1988).

[37] C. Caloz and T. Itoh, “Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line”, IEEE transactions. on antennas and propagation 52, 1159 (2004).

[38] D. J. Egger and F. K. Wilhelm, “Multimode circuit quantum electrodynamics with hybrid metamaterial transmission lines”, Phys. Rev. Lett. 111, 163601 (2013).

[39] C. Caloz and T. Itoh, IEEE transactions. on antennas and propagation 52, 1159 (2004).