Study of the Coexistence of Helicobacter pylori and Candida in the Saliva of Patients with Dyspepsia

Prem Karthick B
Department of Oral Pathology, Priyadarshini Dental College & Hospital, Tiruvallur

Umadevi K. Rao
Department of Oral Pathology, Ragas Dental College & Hospital, Chennai

Elizabeth Joshua
Department of Oral Pathology, Ragas Dental College & Hospital, Chennai

Ranganathan K
Department of Oral Pathology, Ragas Dental College & Hospital, Chennai, ranjay22@gmail.com

Follow this and additional works at: https://scholarhub.ui.ac.id/jdi

Recommended Citation
Karthick B, P., Rao, U. K., Joshua, E., & K, R. Study of the Coexistence of Helicobacter pylori and Candida in the Saliva of Patients with Dyspepsia. *J Dent Indones*. 2019;26(1): 26-31

This Article is brought to you for free and open access by the Faculty of Dentistry at UI Scholars Hub. It has been accepted for inclusion in Journal of Dentistry Indonesia by an authorized editor of UI Scholars Hub.
ORIGINAL ARTICLE

Study of the Coexistence of Helicobacter pylori and Candida in the Saliva of Patients with Dyspepsia

Prem Karthick B1, Umadevi K Rao2, Elizabeth Joshua2, Ranganathan K2

1Department of Oral Pathology, Priyadarshini Dental College & Hospital, Tiruvallur
2Department of Oral Pathology, Ragas Dental College & Hospital, Chennai
Correspondence e-mail to: ranjay22@gmail.com

ABSTRACT

Helicobacter pylori, a gram negative microaerophilic bacterium, is known to cause gastritis, peptic ulcer disease, and gastric adenocarcinoma. An extragastric reservoir of this bacterium can cause recurrent infection in treated patients. The oral cavity is considered an important extragastric reservoir owing to the favorable milieu in subgingival areas and the symbiotic association between *H. pylori* and *Candida*, a common commensal organism in the oral cavity.

Objectives: To evaluate the presence of *H. pylori* and *Candida* in the saliva of patients with chronic gastritis.

Methods: The study comprised subjects with *H. pylori*-positive gastritis (Group I *n* = 30), subjects with *H. pylori* negative gastritis (Group II, *n* = 30) and normal controls without gastritis (Group III, *n* = 10). Unstimulated saliva (whole mouth fluid) samples were collected and subjected to real-time polymerase chain reaction analysis for detecting the Urease A gene of *H. pylori*. Sabouraud's dextrose agar was used to detect the presence of *Candida* species.

Results: Overall, 7 (23.3%) and 4 (13.3%) patients from Group I and Group II, respectively, were positive for oral *H. Pylori*, whereas 14 (46.6%) and 8 (26.6%) patients from Group I and Group II, respectively, exhibited oral *Candida*. Four patients (13.3%) from Group I exhibited both oral *H. pylori* and *Candida*.

Conclusion: *H. pylori* and *Candida* in the oral cavity could potentially influence *H. pylori* recolonization of the gastric mucosa leading to recurrent gastritis.

Key words: *Candida*, dyspepsia, gastritis, *Helicobacter pylori*, polymerase chain reaction, saliva

INTRODUCTION

Helicobacter pylori is a gram-negative microaerophilic, spiral bacterium measuring 2.5–5 μ in length. The organism has adapted to survive in the gastric mucosa. It contains flagella for facilitating motility in the viscous mucous lining of the stomach. The enzyme urease produced by the bacteria safeguards it against the gastric acidity and adhesin helps it to firmly bind to the mucosa. *H. pylori* infection can cause focal or multifocal atrophic or nonatrophic gastritis, peptic ulcer disease, noncardia gastric carcinoma, and lymphoma.12 *H. pylori* has been designated as a Group I carcinogen by the International Agency for Research on Cancer of the World Health Organization.1 Besides gastric mucosal diseases, *H. pylori* infection has been associated with other conditions including recurrent aphthous stomatitis,6 dyslipidemias,7 and coronary atherosclerosis.8 The natural niche of *H. pylori* is the gastric mucosa; however, extragastric sites, such as the oral cavity and esophagus,9,12 may harbor this bacterium. In the oral cavity, *H. pylori* is commonly detected in the dental plaque,13 particularly surrounding the molar teeth.13 Moreover, *H. pylori* has been isolated from the tonsils, adenoids,15 and fingernails.12 *H. pylori* is transmitted from person to person and colonizes the gastric mucosa. The persistence of *H. pylori* and resistance to treatment is attributed to the versatile adaptability of this organism via mutations and genetic recombinations between strains as well as via its ability to evade host immunity.16 Moreover, the persistence of this organism has been attributed to its presence in ecologically protected niches, such as the vacuoles of host immune cells and epithelial cells and within *Candida*.17 *Candida* is a ubiquitous fungi present in 40%–60% of healthy human oral cavities. Nonculturable bacterium-like bodies (BLBs) of *H. pylori* have been detected within...
the vacuoles of Candida in the oral cavity and upper gastrointestinal tract of patients with peptic ulcer.19 \textit{H. pylori} and Candida have a symbiotic relationship, which may have a role in the persistence of \textit{H. pylori} within the oral cavity and gastric mucosa as well as in recurrent \textit{H. pylori} infection.17

Numerous tests are available to detect \textit{H. pylori}, such as the histopathological analysis of endoscopic biopsies, culture, Urea Breath Test (UBT), Rapid Urease test (RUT), enzyme immunoassay, Southern Blot, and polymerase chain reaction (PCR) of \textit{H. pylori} genes, such as the cytoxin vaculating gene \textit{Vac A},\textit{\textit{s1 s2}},10 \textit{16 S rRNA},8,11,14,18 \textit{Urease A},9,10 and \textit{Urease AB}.19

The present study was conducted to assess the presence of \textit{H. pylori} and \textit{Candida} in the oral cavity of patients with symptomatic gastritis.

\section*{METHODS}

A total of 60 patients attending a gastroenterology unit for the endoscopic investigation of gastritis as well as the signs and symptoms of dyspepsia (complaints of abdominal pain, belching, retrosternal pain, and bloating), who were not undergoing any antifungal or proton pump inhibitor therapy, were included in the study. Moreover, 10 asymptomatic individuals without any history of gastritis or receiving any medication, who attended Ragas Dental College and Hospital, Chennai, for routine dental treatment, were included as controls. Based on endoscopic findings, the study participants were classified, as those with \textit{H. pylori}-positive gastritis (Group I, \textit{n} = 30), those with \textit{H. pylori}-negative gastritis (Group II, \textit{n} = 30), and the asymptomatic controls without gastritis and not undergoing any therapy (Group III, \textit{n} = 10). A thorough history and physical examination findings were recorded in a preformatted questionnaire. Ethical permission was obtained from the Institutional Review Board of Ragas Dental College and Hospital, Chennai. Informed consent was obtained from the participants before enrollment in the study. Unstimulated saliva was obtained using the spit technique.5 The participants were instructed to spit (unstimulated) saliva into a 50 mL sterile container every minute for 10 minutes and the containers were stored in the deep freezer at −70°C at Ragas Dental College. The saliva sample of each patient was divided into two parts—one for PCR analysis and the other for \textit{Candida} culture. DNA from the saliva samples was extracted by standard extraction protocol using the HiYield Genomic DNA Minikit – Real Genomics™ (Real Biotech Corporation, Taipei, Taiwan). Following DNA extraction, the DNA was quantified using spectrometric analysis to confirm the yield by monitoring the absorption (\textit{A}) of UV light at various wavelengths—280, 260, and 230 nm. An absorption ratio at A260:A280 was performed to measure the contamination of proteins. An absorption ratio of A260:A230 was performed to measure the contamination of phenolate ions, thiocyanates, and other organic compounds. All samples exhibited an A260:A230 ratio of >1.5 and A260:A280 ratio of >2.0. The minimum yield of DNA required for amplification was 4 ng/\textmu L. PCR was performed using the genomic DNA isolated from the saliva to detect the presence of \textit{Urease A}. PCR amplification was performed in a total volume of 25 \textmu L PCR assay using 12.5 \textmu L Master Mix (Qiagen, Hilden, Germany), 4 \textmu L Primer and Probe for \textit{Urease A}, 5 \textmu L template DNA, and 3.5 \textmu L Millipore water. The recruited primers were as follows: Forward Sequence, GCC AAA AAA GCC GTT AGC GTG AA; Reverse Sequence, TGT CCC GCT CGC AAT GTC TAA G; and Probe Sequence, TTGGCGACAGACCGGTCATAACGCGTCACAC.

The PCR assay was transferred into Eppendorf PCR cuvettes and the cuvettes were centrifuged for 5 s and then transferred into Eppendorf Master Cyclerb to perform real-time PCR. PCR amplification was programmed as follows: initial denaturation at 95°C for 15 min, followed by 40 cycles with a standard cycle containing denaturation at 95°C for 15 s followed by annealing and extension at 60°C for 1 min. The threshold line for the detection of fluorescence was fixed at 257 based on normalized data, and 40 cycles was set as the maximum. Samples crossing the fluorescence threshold line were considered positive and their cycle threshold (\textit{Ct}) value was recorded (Figure 1).

For identifying the presence of \textit{Candida}, the saliva collected in the sterile container was sampled using a sterile 0.001 \textmu L loop and inoculated by streaking on Sabouraud’s Dextrose Agar (HIMEDIA™, Mumbai, India) supplemented with chloramphenicol (10 mg/\textmu L) and incubated at 37°C for 48 h. After 48 h, the growth of white, creamy, smooth, raised \textit{Candida} colonies along the line of streaking was recorded as a positive growth and the subject was considered as

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Amplification plot showing the positive samples crossing the threshold fluorescence. Samples crossing the threshold fluorescence are considered positive for \textit{H. pylori}.}
\end{figure}
and salivary 24 (95% H. pylori 9,10 as a causative agent for gastritis was first isolated from 22 patients with gastritis and from 3 participants in the control group. Oral (N = 60, r = 0.129, p = 0.3), salivary H. pylori versus oral Candida (N = 60, r = 0.003, p = 0.9), and gastric H. pylori versus oral Candida (N = 60, r = 0.208, p = 0.1). No correlation was observed between overall age and candidal status of the saliva in patients with symptomatic gastritis (p = 0.64). On comparing the candidal status between the age groups in participants <30 years old, the OR was 7.5 (95% CI, 0.98–68.75, p = 0.035, Table 2). There was no significant difference in the mean CFU/mL between Groups I and II. Patients with gastritis exhibiting H. pylori and Candida in the saliva showed a mean CFU of 5250 ± 3095.69. Patients who were positive for oral Candida and H. pylori in the gastric mucosa exhibited a 8.22 times higher risk of having symptomatic gastritis than those who did not have oral Candida (95% CI, 1.1–61.495, p = 0.038) (Table 4). The correlation coefficient between age and salivary candidal positivity was significant (−0.296; p = 0.022*. Table 2).

RESULTS

Overall, there were 23 males and 7 females in Group I (H. pylori-positive gastritis; 6 of these participants were <30 and 24 were >30 years old), 24 males and 6 females in Group II (H. pylori-negative gastritis; 3 of these participants were <30 and 27 were >30 years old), and 5 males and 5 females in Group III (8 of these participants were <30 and 2 were >30 years old. (Table 1).

Of the 60 patients with symptomatic gastritis, 11 (36.6%) exhibited H. pylori in the saliva (7/30 (23.3%) in Group I and 4/30 (13.3%) in Group II; p = 0.5). No subject in Group III exhibited H. pylori in the saliva. The OR for gastritis and salivary H. pylori was 1.98 (p = 0.05; 95% CI, 0.51–7.61). (Table 2)

Oral Candida was isolated from 22 patients with gastritis and from 3 participants in the control group. On comparison between the subjects in various groups, Candida occurred in the saliva in 14 participants in Group I, 8 in Group II, and 3 in Group III (P = 0.5). (Table 3).

Significant correlation was not observed between the presence of gastric versus salivary H. pylori (N = 60, r = 0.05; 95% CI, 1.1–61.495, p = 0.038) (Table 4). The correlation coefficient between age and salivary candidal positivity was significant (−0.296; p = 0.022*; Table 2).

DISCUSSION

H. pylori as a causative agent for gastritis was first documented by Marshal and Warren in 1983. The bacterium causes progressive damage to the gastric mucosa due to chronic inflammation, and over a period of time, it leads to gastric adenocarcinoma or gastric mucosa-associated lymphoid tissue lymphoma. Chronic *H. pylori* infection affects approximately two-thirds of the population worldwide and has a prevalence of approximately 90% in developing countries. Low education levels and low socioeconomic status are associated with an increase in the prevalence of *H. pylori* infection. Epidemiological data shows that the rate at which a population acquires *H. pylori* infections is higher in developing than in developed countries. The presence of *H. pylori* in the oral cavity has been reported by various researchers, who have suggested that its presence acts as a primary extragastric reservoir that can contribute to gastric reinfection following eradication therapy as well as have an active role in person-to-person transmission. However, some studies have reported the absence of any evidence for the oral cavity as a major reservoir for *H. pylori*. This could be attributed to the difficulty in sample collection because the bacteria is found in specialized niches in the oral cavity, such as in plaques rather than in saliva. Anand et al., in their review of the literature on the presence of *H. pylori* in the oral cavity, have found that in patients with *H. pylori* infection, the detection of *H. pylori* in the dental plaque is higher than that from the saliva because plaque acts as a biofilm that facilitates the adherence of the bacteria to the solid surfaces.
Table 1. Age and Sex Distribution between the Study Groups (N = 70)

Age Groups	Group I		Group II		Group III	
	Male	Female	Male	Female	Male	Female
	N	%	N	%	N	%
≤30	6	26.1	-	-	3	12.5
	3	12.5	-	-	4	66.7
31–50	13	56.5	5	71.4	10	41.7
	4	17.4	2	28.6	11	45.8
>50	4	17.4	2	28.6	11	45.8
Total	23	76.7	7	23.3	24	80

P value 0.307

Table 2. Relation between Age and Salivary Candidal Status in Patients with Symptomatic Gastritis (N = 60)

Age Group	Candida in the Saliva	OR	95% CI	p value^a	p value^b
<30	Present 6 (66.7%)	7.5	0.98–68.75	0.035*	
	Absent 3 (33.3%)				
30–50	Present 12 (37.5%)	2.25	0.52–10.37	0.36	0.064
	Absent 20 (62.5%)				
>50	Present 4 (21.1%)				
	Absent 15 (78.9%)				

Pearson χ² between the age and salivary candidal status (P = 0.064). CI, Confidence interval; OR, Odds ratio; *=reference

Table 3. Presence of Salivary H. pylori and Salivary Candida in Various Groups

Salivary H. pylori	Group I		Group II		Group III	
	Candida		Candida		Candida	
	Present	Absent	Present	Absent	Present	Absent
Positive	4	3	0	4	0	0
Negative	10	13	8	18	3	7
	30	30	10			

Table 4. Salivary Candida and Salivary Helicobacter Pylori in the Oral Cavity

Status of oral Candida and H. Pylori	Symptomatic Gastritis	
H. pylori-positive (n = 30)	H. pylori-negative (n = 30)	
Positive	4 (13.3%)	0
Negative*	26 (86.7%)	30 (100%)
	8.22	1.1–61.495

P value 0.038*

CI, Confidence interval; OR, Odds ratio; *= as reference

The most commonly used method for the detection of *H. pylori* in the gastric mucosa is endoscopic biopsy and Giemsa staining; immunohistochemical analysis is also used. Other methods include the RUT, culture, serology, and UBT to diagnose or monitor the presence of *H. pylori*. In our study, we used Giemsa-stained histological section to detect *H. pylori* in the gastric mucosa.

At sites where the bacteria is present in lower levels, such as gastric secretions, saliva, and stools, PCR techniques show better sensitivity. We used real-time PCR (using *Urease A*) to detect *H. pylori* in the saliva. Moreover, it has been shown that in patients who received systemic drug therapy for the eradication of *H. pylori* in the stomach, oral *H. pylori* was not eliminated. However, in patients who had concurrently used antiplaque mouth rinses alone or in combination with periodontal treatment, considerable reduction in the prevalence of oral *H. pylori* was observed, along with better eradication rates for gastric *H. pylori*. In our study, the patients did not use any mouthwash before sample collection.
Candida albicans is the yeast species more often isolated from various sites in healthy adults, children, and hospitalized patients. The oral Candida carriage rate in normal healthy children can be as high as 75% of the study group.26 Candida species are highly complex group of micro-organisms with a remarkable ability to adapt to environmental stress exposure to antimicrobials and to the host immune system as well as to changes in host physiology.27,28 C. albicans have been found to colonize various human body surfaces, such as the oral cavity, genitourinary tract, gastrointestinal tract, and skin.28,29 Although, yeast and bacteria have coexisted for years, the biological interaction between them remains predominantly unknown. An association between H. pylori and Candida was first documented by Siavoshi et al.,26 who proposed that the H. pylori BLBs were observed within the vacuoles of the Candida as an adaptation for invasion, and subsequently, for its persistence and survival. They further proposed that the association between the bacterium and yeast serves to protect H. pylori from environmental stress.30

The presence of Candida in patients with gastritis, even in low levels, may cause injury to the epithelium due to the action of proteolytic enzymes secreted by the fungal blast conidia or spores.31 The coexistence of Candida and H. pylori in the gastric mucosa of these patients exhibits a synergistic effect in the pathogenesis of the inflammation.32 An intracellular symbiotic relationship between H. pylori and Candida has been proposed as an important mechanism for the survival of H. pylori outside its well-known niche, the human stomach.33

We observed that patients with symptomatic gastritis aged <30 years old exhibited 7.5 (OR) times (P = 0.035) higher chance of having oral Candida than those who were aged >50 years old and this association was significant (P = 0.064). As the age increased, the mean CFU/mL increased in the overall study group. This finding could be attributed to the fact that older individuals have other local and systemic factors that could influence and provide a suitable environment for the growth of Candida.33 Moreover, in our study, the prevalence of H. pylori infection was lower in the younger age group (20–39 years) and higher in the older age group (40–59 years).

There was no significant difference in the mean CFU between the groups. Although we did not observe a significant difference in mean CFU/mL between the age groups, we observed that when the data were stratified, the mean CFU/mL increased with age in males and females with symptomatic gastritis.

When we studied the correlation between patients with Candida and H. pylori in their saliva, we observed that subjects who exhibited both the organisms in the saliva had an 8 times increased chance of having gastritis and H. pylori positivity in the gastric mucosa and this correlation was significant (P = 0.038*). This finding is similar to those of Salmanian et al.,19 who suggested that a symbiotic relationship exists between Candida and H. pylori in the oral cavity, which facilitates the H. pylori gastric reinfection.19

Our findings showed that salivary H. pylori is an extragastric reservoir and indicated that it has a potential role in primary infection and reinfection in gastritis. The synergistic role of oral Candida with H. pylori is being increasingly recognized and further longitudinal studies are required to understand and for improving the management of gastritis.

CONCLUSION

This study found the presence of H. pylori and Candida in the saliva of patients with chronic gastritis, showing extragastric reservoir. H. pylori and Candida in the oral cavity could potentially influence H. pylori recolonization of the gastric mucosa leading to recurrent gastritis.

ACKNOWLEDGMENT

We thank Dr. Kannan R and Dr. Adarsh Surendranath- Gastroenterologist, Dr. Ezhilvizhi Alavandhar - General Pathologist, Dr. Sreeja, Dr. Somashekar Goud, Dr. KM Vidhya, Mrs. Kavitha Wilson, Ms. Prescila Mary – Indigenous DNA (P) Ltd for their support.

CONFLICT OF INTEREST

The authors declare that there were no conflicts of interest related to this case report.

REFERENCES

1. Warren JR, Marshal BJ. Unidentified bacilli on gastric epithelium in active chronic gastritis. Lancet. 1983; 1:1273-5.
2. Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1984; 1:1311-5.
3. “Schistosomes, Liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon 7-14 June 1994”, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 1994; 61:1-241.
4. Riggio MP, Lennon A, Wray D. Detection of Helicobacter pylori DNA in recurrent aphthous stomatitis tissue by PCR. J Oral Pathol Med. 2000; 29:507-13.
5. Jia EZ, Zhao FJ, Hao B, Zhu TB, Wang LS, Chen B, et al. Helicobacter pylori infection is associated with decreased serum levels of high density lipoprotein, but not with the severity of coronary atherosclerosis. Lipids Health Dis. 2009; 8:59.
6. Farsak B, Yildirim A, Akyon Y, Pinar A, Oc M, Boke E, et al. Detection of Chlamydia pneumonia and Helicobacter pylori DNA in human Atherosclerotic plaques by PCR. J Clin Microbiol. 2000; 38:4408-4411.

7. Guzik MC, Karczewska E, Bielanski W, Guzik TJ, Kapera P, Targosz A, et al. Association of the presence the Helicobacter pylori in the oral cavity and in the stomach. J Physiol Pharmacol. 2004; 55(Suppl 2):105-15.

8. Cellini L, Grande R, Artese L, Marzio L. Detection of Helicobacter pylori in saliva and Oesophagus. New Microbiol. 2010; 33:351-357.

9. Medina ML, Medina MG, Martin GT, Picon SO, Bancalari A, Merino LA. Molecular detection of Helicobacter pylori in oral samples from patients suffering from digestive pathologies. Med Oral Patol Oral Cir Bucal. 2010; 15(1):38-42.

10. Berroteran A, Perrone M, Correnti M, Cavazza ME, Tombazzi C, Goncalvez R, et al. Detection of Helicobacter pylori DNA in the oral cavity and gastro duodenal system of a Venezuelan population. J Med Microbiol. 2002; 51:764-70.

11. Tiwari SK, Khan AA, Ahmed KS, Ahmed I, Kauser F, Hussain, et al. Rapid diagnosis of Helicobacter pylori infection in dyspeptic patients using salivary secretion: a non-invasive approach. Singapore Med J. 2005; 46(5):224-8.

12. Dowsett SA, Archila L, Segreto VA, Gonzalez CR, Silva A, Vastola KA, et al. Helicobacter pylori infection in indigenous families of Central America: Serostatus, Oral and fingernail carriage. J Clin Microbiol. 1999; 37(8):2456-60.

13. Song Q, Lange T, Spahr A, Adler G, Bode G. Characteristic distribution pattern of Helicobacter pylori in dental plaque and saliva detected with nested PCR. J Med Microbiol. 2000; 49:349-53.

14. Riggio MP, Lennon A. Identification by PCR of Helicobacter pylori in subgingival plaque of adult periodontitis patients. J Med Microbiol. 1999; 48:317-22.

15. Cirak MY, Ozdek A, Yilmaz D, Bayiz U, Samim E, Turet S. Detection of Helicobacter pylori and its CagA gene in Tonsil and adenoid tissues by PCR. Arch Otalaryngol Head Neck Surg. 2003; 129:1225-9.

16. Blaser MJ, Atherton JC. H. pylori persistence: biology and disease. J Clin Invest. 2004; 113(3):321-33.

17. Siavoshi F, Saneei P. Vacuoles of Candida yeast as a specialised niche for H. pylori. World J Gastroenterol. 2014; 20(18):5263-73.

18. Nakamura RM. Laboratory tests for the evaluation of Helicobacter pylori infections. J Clin Lab Anal. 2001; 15:301-7.

19. Salmanian AH, Siavoshi F, Akbari F, Afshari A, Malekzadeh R. Yeast of the oral cavity is the reservoir of Helicobacter pylori. J Oral Pathol Med. 2008; 37:324-8.

20. Fock KM, Graham DY, Malfertheiner P. Helicobacter pylori research: historical insights and future directions. Nat Rev Gastroenterol Hepatol. 2013; 10:495-500.

21. Thomas E, Jiang C, Chi DS, Li C, Ferguson DA. The role of the oral cavity in Helicobacter pylori infection. Am J Gastroenterol. 1997; 92:2148-54.

22. Malaty HM, Kim JG, Kim SD, Graham YD. Prevalence of Helicobacter pylori infection in Korean children: inverse relation to socioeconomic status despite a uniformly high prevalence in adults. Am J Epidemiol. 1996; 143:257-62.

23. Chitsazi MT, Fattahi E, Farahani RMZ, Fattahi S. Helicobacter pylori in the dental plaque: Is it of diagnostic value for gastric infection? Med Oral Patol Oral Cir Bucal. 2006; 11:E325-8.

24. Anand PS, Kamath KP, Anil S. Role of dental plaque, saliva and periodontal disease in Helicobacter pylori infection. World J Gastroenterol. 2014; 20(19):5639-53.

25. Zaric S, Boje B, Jankovic LJ, Dapcevic B, Popovic B, Cakic S, et al. Periodontal therapy improves gastric Helicobacter pylori eradication. J Dent Res. 2009; 88(10):946-50.

26. Martin MV, Wilkinson GR. The oral yeast flora of 10 year old school children. Sabouraudia. 1983; 21:129-35.

27. Gasch AP, Werner-Washburne M. The genomics of yeast responses to environmental stress and starvation. Funct Integr Genomics. 2002; 2:181-92.

28. Soll DR. Candida commensalism and virulence: the evolution of phenotypic plasticity. Acta Tropica. 2002; 81:101-10.

29. Soll DR, Galask R, Schmid J, Hanna C, Mac K, Morrow B. Genetic dissimilarity of commensal strains of Candida spp. Carried in different anatomical locations of the same healthy women. J Clin Microbiol. 1991; 29:1702-10.

30. Siavoshi F, Nourali-Ahari F, Zennali S, Hashemi-Dogheh MH, Malekzadeh R, Massarrat S. Yeast protects Helicobacter pylori against the environmental stress. Arch Iran Med. 1998; 1:2-8.

31. De Repentigny L, Phaneuf M, Mathieu LG. Gastrointestinal colonization and systemic dissemination by Candida albicans and Candida tropicalis in intact and immunocompromised mice. Infect Immun. 1992; 60:4907-14.

32. Karczewska E, Wojtas I, Sito E, Trojanowska D, Budak A, Wcislo MZ, et al. Assessment of co-existence of Helicobacter pylori and candida fungi in diseases of the upper gastrointestinal tract. J Physiol Pharmacol. 2009; 60(Suppl 6):33-9.

33. Samaranayake L. Commensal Oral Candida in Asian cohorts. Int J Oral Sci. 2009; 1(1):2-5.

(Received October 26, 2018; Accepted March 29, 2019)