Differentiation of industrial hemp strains by their cannabinoid and phenolic compounds using LC × LC-HRMS

Lidia Montero1,2 · Sven W. Meckelmann1,2 · Hyerin Kim1,2 · Juan F. Ayala-Cabrera1,2 · Oliver J. Schmitz1,2

Received: 29 November 2021 / Revised: 5 January 2022 / Accepted: 24 January 2022 / Published online: 17 March 2022
© The Author(s) 2022

Abstract
Cannabis is an ancient plant that has been used for therapeutic and recreational purposes. Nowadays, industrial hemp, a variety with low concentration of the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) and high concentration of non-psychoactive cannabinoids, is getting more and more interest in the food, pharmaceutical, and cosmetic industry. However, cannabis not only contains cannabinoids as bioactive components but also other metabolites like terpenes and phenolic compounds, and the content of these interesting secondary metabolites greatly differs with the genetic variety of the plant. Due to the huge complexity of composition of the cannabis matrix, in this work, a comprehensive two-dimensional liquid chromatography (LC × LC) method has been developed as a very power separation technique coupling a pentafluorophenyl (PFP) and a C18 in the first and second dimensions. Two industrial hemp strains (cookie and gelato) were analyzed to determine the difference in their content of cannabinoids and phenolic compounds. To do this, a new demodulation process was applied for the first time to transform 2D raw data into 1D data which allowed carrying out the chemometric analysis needed to determine the statistical differences between the hemp strains. The cookie strain presented a total of 41 cannabinoid markers, while the gelato strain presented more representative phenolic compounds, in total 24 phenolic compounds were detected as potential markers of this sample. These differences in the chemical composition could determine the industrial destiny of the different hemp strains.

Keywords Industrial hemp · Cannabinoids · Phenolic compounds · LC × LC–MS · 2D demodulation data treatment

Introduction
Cannabis (Cannabis sativa L. and Cannabis indica L.) is an herbaceous plant belonging to the Cannabaceae widely used for medicinal and recreational purposes by humans. The ancient origin and harvest of cannabis comes from Asia, although it has been commonly cultivated worldwide during the past 5,000 years [1–4]. Traditionally, different parts of the plant have been considered valuable to many different agro-industries, like textile, biofuel, or papermaking industries [5]. Currently, cannabis is well known for its content of cannabinoids. This family of metabolites is formed by a huge variety of terpenophenolic compounds which produce diverse classes of phytocannabinoids [3]. To date, there are more than 144 cannabinoids isolated and identified in cannabis [6, 7].

Cannabinoids are responsible for most of the therapeutic and psychoactive effects of cannabis due to their capability to react and activate receptors present in the endocannabinoid system (cannabinoid receptors) [8]. The two major cannabinoids described in cannabis are Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). THC is considered for its positive effects on nausea, loss of appetite, or chronic pain treatments. However, it is also mainly responsible for the psychoactive and addictive effects; therefore, the varieties with a high concentration of THC are strictly regulated [9]. On the other hand, CBD is also known for its therapeutic effects, like reducing the effects of anxiety, epilepsy, or...
cancer, and at the same time, it does not produce any psychoactive effect [10–14].

In general, phyto cannabinoids have been classified into eleven groups according to their chemical structure: \(\Delta^9 \)-THC, CBD, cannabigerol (CBG), cannabichromene (CBC), cannabidiol (CBN), \(\Delta^8 \)-trans-tetrahydrocannabinol (\(\Delta^8 \)-THC), cannabicyclol (CBL), cannabinodiol (CBND), cannabielsoin (CBE), cannabitriol (CBT), and miscellaneous types [7]. Each of these groups involves their analogs and transformation products [1]. Although cannabinoids can be classified into different subclasses, their chemical structure is similar and based on the CBG-type subclass (Fig. 1).

According to the European Industrial Hemp Association, marihuana contains 1–20% of THC, while industrial hemp does not exceed 0.2% of the psychoactive cannabinoid [2, 4]. Industrial hemp is currently considered as a balanced and complete food with health-promoting effects [2, 15, 16]. Regarding the content of cannabinoids in industrial hemp, these plants present a high concentration of non-psychoactive cannabinoids such as the neutral forms, and the acidic forms like cannabidiolic acid (CBDA) and cannabichromenic acid (CBCA), among many others [2]. Recently, the number of foods, pharmaceutical, and cosmetic products based on industrial hemp that are rich in non-psychoactive cannabinoids has drastically increased [17].

Besides of cannabinoids, industrial hemp contains other important families of secondary plant metabolites like phenolic compounds, terpenes, amides, amines, or phytosterols [4]. All these compounds play an important role together with cannabinoids not only in the organoleptic properties but also in the food and pharmaceutical applications due to their potential bioactive effects. Regarding the phenolic compound content, more than 20 compounds present in cannabis have been detected as flavones, flavonols, and prenylated flavones, which have been related to several health therapeutical activities [4]. Moreover, the presence of phenolic compounds in hemp produces a synergic action over some biological activities related to cannabinoids, producing an enhancement of these interesting bioactivities [18].

However, the chemical composition of hemp cultivars greatly varies depending on multiple factors such as the harvested year, environmental conditions, or the different parts of the plants [2, 15, 19, 20]. One of the most relevant factor that affects the nutritional and second metabolite profile of hemp plants is the genetic diversity between the plants [5, 21, 22]. Thus, each \(C. \ sativa \) and \(C. \ indica \) strain presents different chemical compositions and the analysis of the phytochemical profile of the different genetic varieties is important to establish the relationship between composition, medicinal effects, and industrial use [7, 22].

The analysis of hemp extracts is a challenge since there are more than 550 compounds identified in cannabis plants belonging to different chemical families [6] which implies the need for different analytical platforms such as gas chromatography and liquid chromatography coupled to mass spectrometry (GC–MS and LC–MS) for the analysis of all the different components [18, 23]. Besides, NMR [24] and two-dimensional comprehensive gas chromatography (GC×GC) [25] have been used for the analysis of hemp extracts. Liquid chromatography coupled to diode array detection (LC-DAD) and LC–MS methods have been successfully used for the separation and identification of target cannabinoids [7, 22, 23, 26, 27]. Berman et al. developed a method for the identification of 94 cannabinoids, providing the largest LC–MS/MS cannabinoid database. Moreover,
LC–MS methods have also been optimized for the analysis of the phenolic fraction of hemp inflorescences [28].

However, there are still some analytical challenges to obtain a complete separation of the whole hemp profile due to the high number of compounds that build the phytochemical composition. For this reason, analytical techniques with high separation power are required to create footprints of the different commercial varieties to establish food authenticity and industrial aims. In this work, a comprehensive two-dimensional liquid chromatography (LC × LC) method together with a new demodulation process that transforms 2D data in 1D data is proposed for the first time for the differentiation of two varieties of industrial hemp according to their cannabinoid and phenolic profile.

Materials and methods

Samples and reagents

Two commercial products of dried hemp inflorescences were purchased from a company that produces hemp products. The products (known as cookie and gelato strains) were certified as industrial hemp with a THC content of less than 0.2%. Both of them were indica dominant hybrid (60% *indica*, 40% *sativa*) strains, differentiated by their genetic precedence. While the cookie strain came from the cross of OG Kush with Durban poison strains, the gelato sample was obtained by crossing the Sunset Sherbet with the thin Mint Girl Scout cookie strains.

All solvents used were LC–MS grade. Acetone was purchased from Sigma-Aldrich (Darmstadt, Germany), acetonitrile and methanol were acquired from VWR (Darmstadt, Germany), and formic acid was bought from Fisher Scientific (Schwerte, Germany). Ultrapure water (resistivity 18.2 M Ω cm⁻¹) was obtained from a Sartorius Ultrapure Water System (Goettingen, Germany).

Sample preparation

For the extraction of cannabinoids and phenolic compounds, the dried hemp inflorescences were freeze-dried to remove any remaining water with a vacuum drier (Alpha 1–2 LDplus, Martin Christ, Osterode am Harz, Germany) for 16 h and then mortared into powder. 250 mg of each sample were extracted using 37.5 mL acetone/water 70:30 (v/v) as extraction solvent. The mixtures were vortexed for 3 min, sonicated with ultrasonic bath for 30 min, and then centrifuged (Centrifuge 5804R, Eppendorf, Hamburg, Germany) for 10 min (3000 rpm, 5 °C). The extract was evaporated under nitrogen stream to remove acetone and then freeze-dried (64 h) to eliminate the water. The powder of both samples was weighed and stored at 4 °C in the darkness until its analysis. Prior to analysis, the extracts were dissolved in water/methanol (50:50, v/v).

µLC × LC-DAD-qTOF MS analysis

The chemical characterization of the hemp extracts was carried out using a two-dimensional liquid chromatography (2DLC) system (Agilent, Walbronn, Germany) coupled with an Agilent 6545 QTOF-MS system (Agilent, Santa Clara, USA). The first dimension (1D) was built with a 1260 Infinity HiP micro ALS autosampler module (G1377A), a 1260 Infinity capillary pump (G1376A), a 1260 Infinity column compartment (G1316A), and a 1260 Infinity DAD detector module (G1315C). The second dimension (2D) was equipped with a 1290 Infinity II high-speed pump (G7120A) and a 1290 Infinity II DAD detector (G7117B). Moreover, a 1290 Infinity binary pump (G4220A) was used to create a make-up flow rate (additional pump). The coupling of the 1D and 2D was carried out by an automated controlled 2 ports/4-position dual valve (G1170A) equipped with two 40 µL sampling loops. The operation and control of the system were done using the program OpenLAB ChemStation Edition (Version C.01.07 SR3, Agilent, Santa Clara, USA).

For the 1D separation, a Kinetex PFP (150 × 2.1 mm, 1.7 µm, Phenomenex, Torrance, USA) column was used. Ultrapure water with 0.1% (v/v) formic acid (solvent A) and methanol with 0.1% (v/v) formic acid (solvent B) were used for the gradient elution. The optimized gradient program at a constant flow rate of 0.050 mL min⁻¹ was as follows: 5% B, 0 min; 8% B, 5 min; 25% B, 7 min; 35% B, 18 min; 40% B, 19 min; 55% B, 35 min; 65% B, 36 min; 85% B, 52 min; 100% B, 54 min; and 100% B, 65 min. The column temperature was kept at 30 °C while the injection volume was 8 µL. Modulation time was set at 0.5 min. For the 2D, a Kinetex C18 (50 × 4.6 mm, 2.6 µm, Phenomenex, Torrance, USA) column was used. Ultrapure water with 0.1% (v/v) formic acid and acetonitrile with 0.1% (v/v) formic acid were used for solvents A and B, respectively. At the 2D, shifted gradient was applied at the following gradient program: 0 min, 5% B; 0.42 min, 10% B; 12 min, 5% B; 12.42 min, 10% B; 33 min, 25% B; 33.42 min, 30% B; 40 min, 25% B; 40.42 min, 45% B; 51 min, 35% B; 51.42 min, 70% B; 60 min, 80% B; and 60.42 min, 100% B. The 2D flow rate was set to 2.5 mL min⁻¹ and the column temperature was 30 °C. The additional pump for the active modulation was operated with a flow rate of 0.020 mL min⁻¹ with ultrapure water containing 0.1% (v/v) formic acid. Both 1D and 2D were connected to two independent DADs. The separation was recorded at 254 nm, saving the wavelength range from 210 to 600 nm. Before entering the MS, the flow was split in a ratio of 7:3 (v/v).

The QTOF-MS system worked with an Agilent Dual Jet Stream ion source. The source conditions were as follows:
Results and discussion

μLC×LC separation

2DLC provides the separation power that cannot be achieved by conventional 1DLC analysis. The reason for this high separation power is the possibility to analyze a sample by two separation mechanisms that present different selectivity for the analytes. Accordingly, the analytes that are not possible to be separated and coelute in the first column (or first dimension, 1D) can be separated in the second column (second dimension, 2D). Therefore, 2DLC is the analytical tool of choice for the analysis of very complex samples. In particular, LC×LC is the 2DLC mode preferred to do non-targeted analysis, since the complete sample is separated by both dimensions. In the last years, the application of LC×LC methods for the analysis of complex food and plant samples has greatly increased, showing the expansion on the use of this technique [29]. In this work, a μLC×LC method has been developed for the analysis of the extract of industrial hemp inflorescences [6]. The μLC×LC method was optimized for the separation of cannabinoids and phenolic compounds present in the industrial hemp.

For the 1D, a μLC system was used to achieve high reproducible and robust gradients at low flow rates, typically used in 1D [30]. Different column combinations were tested for the 2DLC separation of the hemp extract. The combination of HILIC×RP has been successfully used for the separation of very complex phenolic compound and other secondary metabolite mixtures [31–33]; therefore, firstly, hydrophilic interaction liquid chromatography (HILIC) column was tested as 1D separation, although it was not possible to achieve an efficient separation to be modulated in the 2D system probably due to the non-polarity of the cannabinoids (data not shown). Then, reversed phase (RP) columns combined with 2D HILIC stationary phases (RP×HILIC) like C18×NH2, C18×HILIC, or C18×Cys were tested. Using C18 in the 1D, a good separation was achieved for the hemp; however, the coupling of this C18 separation in the 1D with HILIC produced a high breakthrough and a poor separation of the fractions transferred from the 1D into the 2D (Figure S1a–c). This effect is due to the high strength mismatch between the mobile phases of RP and HILIC (i.e., the weak solvent in RP is water, which is the strong solvent for HILIC). This fact together with the high sensitivity of HILIC to the injection solvent and the fast analysis carried out in the 2D made that the analytes transferred to the 2D diluted in the 1D solvent were not focused and retained in the 2D HILIC column. Finally, a RP×RP combination was checked. The main advantage of the RP×RP coupling is the good mobile phase compatibility between the two separation modes used in both dimensions. For this approach, the 1D
Differentiation of industrial hemp strains by their cannabinoid and phenolic compounds using 2D LC-MS and 2D LC-MS/MS. The separation was carried out in a PFP column that presents good properties for the separation of aromatic substances like cannabinoids and phenolic compounds. On the other hand, a short C18 column performed the 1D separation. C18 is the most common stationary phase used in the 1D [34, 35] due to its beneficial properties to perform fast analysis while keeping a high resolution, and parameters that are required in the 2D to carry out the separation of each 1D fraction before the next fraction are injected in the 2D column. The flow rate used in the 1D was optimized at 50 µL/min. Smaller flow rates were not optimal for the 1D separation providing a high dead times and therefore long total analysis time as can be observed in Figure S2a–c. Higher flow rates than 50 µL/min were not tested to avoid the collection of large 1D fractions that would disrupt the 2D separation. Although 50 µL/min is not the optimal flow rate for columns with internal diameter of 2.1 mm, the reproducibility of the 1D separation at this flow rate was very precise (Figure S2d). On the other hand, a modulation time of 0.5 min was established in order to achieve a compromise between the undersampling effect and the minimum analysis time required to carry out the 2D separation. The combination of two theoretically correlated separation mechanisms could drive to a non-orthogonal 2DLC separation and therefore, the separation of the compounds in the 2D space is limited to the diagonal. In fact, this effect occurred in the present PFP × C18 analysis before the optimization (Figure S1d), where the same 2D gradient was used during the whole 2DLC analysis (2D full gradient). To improve the orthogonality, different mobile phases were tested in both dimensions (methanol was used as organic solvent in PFP, and acetonitrile was used for the separation in the C18 2D). Besides, the 2D gradient was tailored according to the 1D eluted fractions along the whole 2DLC analysis developing a 2D multi-segment shifting gradient. The highly improved orthogonality obtained for the separation of the cookie and gelato hamps after the optimization (Figure S1d), where the same 2D gradient was used during the whole 2DLC analysis (2D full gradient). To qualify the gain in the separation after the optimization and to quantify the effect of the 2D multi-segment shifting gradient, the peak capacity and the orthogonality of both 2DLC methods, the 2D full gradient (Figure S1d), and the 2D shifting gradient (Fig. 2) were calculated. The practical peak capacity (2Dnpractical) was calculated according to Li et al. [36], the orthogonality was estimated following the asterisk equations (AO) [37], and the corrected peak capacity (2Dncorr) was calculated multiplying the 2Dnpractical and the AO. For the 1D, a peak width media of 1 and 0.8 min was calculated for the full and shifting gradient, respectively, while the peak width media of the 2D was 3.3 and 0.4 s for the two respective settings. The peak capacities of the 1D (n1) for the full gradient and the shifting gradient methods were 59 and 75, respectively. On the other hand, the peak capacities of the 2D (n2) in the full gradient method was 10 and for the shifting gradient method was 62. Therefore, the 2Dnpractical values were 442 and 3080 for the 2D full gradient and the 2D shifting gradient, respectively. Regarding the orthogonality, a gain of 23% was obtained after the optimization of the 2D gradient (AO = 40% for 2D full gradient and AO = 63% for the 2D shifting gradient). To have a more realistic value about the peak capacity, the 2Dncorr was corrected by the real 2D space occupied by the separated compounds (AO). The 2Dncorr values for the full gradient and shifting gradient were 170 and 1940, respectively. Although, as mentioned above, the peak capacity value should not be considered as a real number of separated peaks, this value is very useful not only to compare the improvement between different 2DLC methods carried out with the same setup during the optimization process but also to confirm the separation gain that 2DLC offers in comparison to conventional 1D separation for this kind of complex samples. In this work, the peak capacity achieved by 2DLC is much higher than the individual peak capacity obtained by the corresponding 1D alone. However, it is also important to remark that the 2DLC method is always accompanied by a big optimization and development effort and it involves specific instrumentation.
as well as a difficult data treatment as will be discussed in the following section. For this reason, the application of a 2DLC method should be always justified by a great gain in peak capacity.

Data treatment in µLC × LC

Although 2DLC has been established as a suitable alternative to conventional one-dimensional systems for the separation of very complex matrices in the last years, there is still a limitation on its use related to the data treatment. 2D raw data presents a matrix where each compound or feature is modulated several times due to the fractionation of each 1D peak. Therefore, the signal of a single compound is divided with a time frame corresponding to the modulation time in the raw data. The modulation of the signal makes it not possible to apply automatic data treatment to create a feature list that allows the typical workflow for the identification and statistical analysis. Different efforts have been done to solve this limitation, for example, by the compression of the data applying a selection of the region of interest (ROI) in the MS dimension, a one-dimensional wavelet analysis of the previous m/z ROI values, and finally a time windowing strategy of the compressed data [38], or by the development of a new 2DLC concept called LC + LC, where the modulation time is increased to avoid the modulation of the peaks, that way, each peak is analyzed only once by the 1D and the 2D, achieving only one signal per compound [39]. However, the reported solutions present some limitations like the complexity of the data treatment workflow or the loss of 1D resolution due to undersampling effects. In this work, a new data treatment has been used for the first time to convert 2D data feature analysis into a 1D data file that only shows one intensity or area per detected feature. This so-called demodulation process allows the use of common data analysis strategies (e.g., PCA) for the comparison between the chemical compositions of the cookie and gelato hemp samples acquired by a comprehensive 2D µLC × LC-HRMS analysis.

The analyses of the gelato and cookie samples were done in triplicate. Then, MS-Dial software was used for the identification and the alignment of all the features detected in the µLC × LC-HRMS analysis of the cookie and gelato hemp strains. The result of this alignment provided 75,387 features which included the divided signals of the modulated analytes. This feature list was introduced in the new demodulation tool. Although the signal of one compound is divided in modulation time frames, it follows a typical 1D Gaussian trend peak. The demodulation tool was programed to recognize the Gaussian trend of one m/z value that appears with time intervals equal to the modulation time and to combine the areas of all the modulated signals in the feature that corresponded to the maximum peak height. That way, the 2D modulated data are now reconstructed into 1D peaks that combine the total area of the 2D modulated peaks, that is, the demodulation tool transforms 2D data in 1D data. A graphical example of the demodulation process can be observed in Figure S3, where the ion m/z 865.2004 was modulated four times in the total retention time of 20.05, 20.55, 21.15, and 21.61 min and four times more at 29.99, 30.47, 30.95, and 31.44 min. After the demodulation, it can be seen how the areas of the corresponding modulations were summed up in the retention time of the maximum peak height. This tool provides a huge advantage in the global 2DLC methodology, since up to now, some omic applications have limited the use of this high resolution and separation technique due to the lack of powerful program able to deal with the complex 2DLC data treatment.

After applying the demodulation process, the feature list was reduced to 37,961 features. However, this number was still too high and therefore, filters were applied to obtain high quality features. Firstly, features with an intensity lower than 1 × 10^5 counts were discarded. Then, features that presented a relative standard deviation (RSD) higher than 50% across the triplicates were eliminated. This threshold was chosen as a compromise between analytical error and 2DLC repeatability (affected by both dimensions), since slight differences in the 1D retention time can have high effect in both the 2D retention time and area. Finally, all the features with a signal-to-noise ratio lower than 3 were also discarded of the data matrix. After this filtering, 5,296 features were considered for the statistical analysis.

Chemometric analysis was applied to evaluate the statistical differentiation of the cookie and gelato samples. First, a non-supervised method such as PCA was applied (Figure S4a) and after that, a PLS-DA was performed as a supervised method to describe the model (Figure S4b). In the loading plots of both statistical analyses, it is possible to observe a substantial number of features accumulated in the edge of the plot, which could be responsible for the statistical differentiation of the samples. Moreover, in the PCA and PLS-DA score plots, the PC1 was able to explain 65.2% of the samples’ variance. These results indicate that the two hemp samples presented a different chemical composition that could be used for authentication purposes as well as for the application in specific therapeutical, pharmaceutical, or cosmetic motivations depending on the composition of those hemp strains.

Differentiation of the cannabinoids and phenolic compounds in the cookie and gelato strains

The composition of industrial hemp is highly affected by the genetic variation of the plant, and consequently, the composition of bioactive compounds is different in each of the
strains [4, 22]. Thus, the variety in the chemical composition and, particularly, in bioactive compounds can increase the applications of each hemp strain to very specific functions in the industry. The interest of this work was to evaluate the composition of cannabinoids and phenolic compounds of two commercially available industrial hems and to assess possible differences between them. To do that, a flagging approach was carried out in the whole demodulated and filtered data.

For the suspected detection of cannabinoids, the database provided in the work of Berman et al. [7] was used to search for the most studied cannabinoids using the corresponding m/z values of [M-H]− ions as well as their typical MS/MS product ions. Besides, the most common product ions were selected to find other possible cannabinoids in the hemp strains.

Most of the cannabinoids found could be grouped into two families. On one hand, cannabinoids presented the typical fragment ion at m/z 179.1078 corresponding to the pentylresorcinol structure (Figure S5a). The second family of cannabinoid compounds was found to have a product ion at m/z 195.1031 corresponding to a hydroxylated pentylresorcinol (Figure S4b). For this last type of cannabinoids, only few information was available. In fact, only Berman et al. have reported them although they only classified and identified them as additional phytocannabinoids and provided the molecular formula. In particular, they found 27 compounds that were tentatively identified as potential phytocannabinoids by accurate mass and fragmentation patterns related to the already identified phytocannabinoids. Four of these 27 compounds were phytocannabinoid isomers at m/z 329.2122 and 373.2021 that presented the m/z 195.1027 as one of the main fragments [7]. Therefore, this fragment ion was also considered for the flagging approach to tentatively identify other potential phytocannabinoids. Besides these two families of cannabinoids, other cannabinoids described in the literature were considered.

After the flagging approach was done, the selected features were submitted to statistical analysis to determine the pattern of cannabinoids between the cookie and gelato sample. The heat map of the cannabinoids present in both samples is shown in Fig. 3a. As can be observed, it was possible to distinguish the two samples by their content on cannabinoids. Besides, this heat map revealed a cluster group of closely related compounds (marked in dash line) that were characteristic of the cookie sample. Moreover, it was also possible to appreciate that the cookie sample was richer in cannabinoids, being considered as potential markers since they presented a higher trend in this strain. The identification of these potential markers is shown in Table 1. Among them, there were some cannabinoids previously reported. For instance, the peaks observed at 46.08 and 47.07 min with an m/z value of 357.2091 and a fragmentation pattern consisted of m/z 313.2189, 245.1545, and 191.1080 could be assigned to the acidic forms CBDA, CBCA, CBLA, or CBRA. All these compounds as well as the acidic form of THC, the THCA, are isomers. However, THCA was not considered as possible identification due to the low concentration of THC in the industrial hemp samples. CBDA has been shown as the major compound in industrial hemp, and it is usually more abundant than the corresponding neutral form CBD. This fact is explained by the biosynthesis of these compounds since the phytocannabinoids are synthesized in the plant as acids [6, 22, 40]. The extracted ion chromatogram (EIC) of the ion m/z 357.2091 presented the maximum intensity at 46.08 min, so the compound eluted at that retention time could be tentatively identified as CBDA. Other identified cannabinoids belonged to the varinic acid-C3 type like CBDVA, CBCVA, or CBLVA (m/z 329.175 corresponding to [M-H]− ion and its product ions m/z 285.1878, 217.1203, and 163.0774), as well as the neutral-C4 form type cannabinoids identified as CBD-C4, CBC-C4, or CBL-C4 (m/z 299.2032 assigned to [M-H]− ion and its product ions m/z 269.1554, 231.1385, and 213.0899), according to the classification done in the database reported by Berman et al. [7]. Moreover, additional phytocannabinoids described in the database without the complete characterization or name were also identified by means of the deprotonated molecule as important compounds for the characterization of the cookie sample. Following the nomenclature provided in the database, these compounds were named as the isomers 11a, 11b, 11c, or 11d (m/z 329.2136); 12a, 12b, 12c, or 12d (m/z 373.2020); 13c (m/z 327.1975); and 14a or 14b (m/z 371.1835).

The rest of the selected compounds for the cookie sample were not previously identified. As mentioned above, these potential unknown cannabinoids could be divided in two groups according to the main product ion shown in their fragmentation pathway. In total, eight additional phytocannabinoids presented as main in-source fragment ion m/z 179.1078 and fourteen phytocannabinoids showed the m/z 195.1031 as major fragment in the outstanding compounds in cookie hemp. The retention time, accurate mass, molecular formula, and the MS/HRMS fragments of all of them are summarized in Table 2. A possible molecular structure of one of each phytocannabinoid group is proposed in Figure S5c–d.

On the other hand, a similar strategy was followed for the suspected analysis of phenolic compounds. In this case, Phenol-Explorer was used as database for the search of phenolic compounds in both samples [41]. This search was done by monitoring the aglycone ions which usually are the main fragments of phenolic compounds. The heat map of the phenolic compounds found in the samples is depicted in Fig. 3b. As it happened with the cannabinoid content, it was also possible to differentiate the samples according to
their phenolic compound content. Interestingly, in this case, gelato sample showed a group of closely related compounds highlighted in comparison to the gelato strain (dashed line). Thereby, these compounds were considered as potential authentication markers for the gelato sample.

The potential phenolic markers of the gelato sample are listed in Table 2. These compounds belonged to different classes of phenolic compounds. One of the main phenolic compound classes was the proanthocyanidins, which are polymeric phenolic compounds formed by the link of catechin or epicatechin units and constitute the second most abundant group of phenolic compounds in nature. They are responsible not only for some organoleptic properties like astringency but also several therapeutical properties have been related to them, like antioxidant, anticancer, cardioprotective, antimicrobial, antiviral, neuro-protective, and anti-inflammatory activities, among others [42, 43]. The presence of this phenolic class in *C. sativa* has been recently reported for the first time [23]. In that work, two proanthocyanidin dimers and two trimers were identified. In this work, one proanthocyanidin dimer and five different trimers were shown as characteristic compounds from the gelato strain. For example, the proanthocyanidin trimers were tentatively identified thanks to the accurate mass of the precursor [M-H]− ion at m/z 865.2004 and to the typical fragmentation pattern of proanthocyanidins consisting of the neutral losses of one or two units of (epi)catechin leading to the precursor ions at m/z 577.1281 or 575.1200 and 289.0728 or 287.0557, respectively, depending on where these losses were produced (terminal or the intermediate units). Besides, typical fragment ions from the Retro-Dial-Alder reaction were observed like m/z 739.1757, 713.1755, 451.1026, 425.0867, and 125.0254 (Figure S6). Another representative family of phenolic compounds described as markers of the gelato strain was the flavone
Table 1 Differentiated cannabinoids found in the cookie hemp strain

Peak ID	Feature ID (RT_MZ_Pol_id)	Total Rt (min)	[M-H]⁻	MS/MS	Formula	Identification	Theoretical [M-H]⁻ ppm
1c	46.08_357.2091__Neg_13377	46.08	357.2091	313, 245, 191	C22H29O4	CBCA/CBDA/ CBLA/CBRA	357.2066 7.0
2c	47.09_357.2091__Neg_13384	47.09	357.2091	313, 245, 192	C22H29O4	CBCA/CBDA/ CBLA/CBRA	357.2066 7.0
3c	50.2_329.2136__Neg_11874	50.20	329.2136	261, 195, 107	C21H29O3	11a/11b/11c/11d*	329.2116 6.1
4c	53.62_373.202__Neg_14145	53.62	373.2020	355, 329, 261, 195, 179	C22H29O5	12a/12b/12c/12d*	373.2015 1.3
5c	54.22_259.1354__Neg_8323	54.22	259.1975	259, 231, 174	C21H27O3	13c*	327.1960 4.6
6c	54.22_371.1834__Neg_14041	54.22	371.1834	327, 285, 259	C22H27O5	14a/14b*	371.1859 −6.7
7c	43.06_329.175__Neg_11857	43.06	329.1750	285, 217, 163	C20H25O4	CBDVA/CBCVA/ CBLVA	329.1752 −0.6
8c	54.22_299.2032__Neg_10319	54.22	299.2032	269, 231, 213, 174, 142	C20H27O2	CBD-C4/CBC-C4/ CBL-C4	299.2011 7.0
9c	21.9_561.197__Neg_23072	21.90	561.1779	532, 219, 193, 175, 123	C31H29O10		561.1766 2.3
10c	29.01_547.2063__Neg_22506	29.01	547.2063	385, 179	C24H35O14		547.2032 5.7
11c	33.341.1599__Neg_12506	33.00	341.1599	179	C17H25O7		341.1606 −2.1
12c	33.503.2121__Neg_20443	33.00	503.2121	179	C23H35O12		503.2134 −2.6
13c	36.341.1599__Neg_12508	36.00	341.1599	179	C17H25O7		341.1606 −2.1
14c	36.589.2157__Neg_24524	36.00	589.2117	179	C33H33O10		589.2079 6.4
15c	38.54_385.1535__Neg_14723	38.54	385.1504	179	C18H25O9		385.1504 0.0
16c	41.08_341.1599__Neg_12505	41.08	341.1599	179	C17H25O7		341.1606 −2.1
17c	44.05_383.1728__Neg_14629	44.05	383.1728	179	C19H27O8		383.1711 4.4
18c	45.54_535.259__Neg_22021	45.54	535.2576	329, 311, 179	C28H39O10		535.2549 5.0
19c	52.55_519.2588__Neg_21214	52.55	519.2588	451, 313, 245, 179	C28H39O9		519.2600 −2.3
20c	26.5_357.1568__Neg_13365	26.50	357.1568	195, 123	C17H25O8		357.1555 3.6
Table 1 (continued)

Peak ID	Feature ID (RT_MZ_Pol_id)	Total Rt (min)	[M-H]$^-$	MS/MS	Formula	Identification	Theoretical [M-H]$^-$	ppm
Phytocannabinoids with m/z 195 as main product								
21c	25.39.401.1448_ Neg_15430	25.39	401.1448	399, 195	C18H25O10	401.1453	−1.2	
22c	25.4_399.128_ Neg_15307	25.40	399.1280	195	C18H23O10	399.1297	−4.3	
23c	29.45_339.1466_ Neg_12394	29.45	339.1466	195	C17H23O10	339.1449	5.0	
24c	29.45_399.1686_ Neg_15329	29.45	399.1686	195	C19H27O9	399.1661	6.3	
25c	29.45_443.1561_ Neg_17344	29.45	443.1561	195	C20H27O11	443.1559	0.5	
26c	31.47_399.1686_ Neg_15334	31.47	399.1686	195, 123	C19H27O9	399.1661	6.3	
27c	33.47_357.1568_ Neg_13349	33.47	357.1568	195	C17H26O8	357.1555	3.6	
28c	34.88_401.1448_ Neg_15429	34.88	401.1448	383, 357, 339, 275, 195, 177	C18H25O10	401.1453	−1.2	
29c	37.55_357.1568_ Neg_13354	37.55	357.1568	195	C17H26O8	357.1555	3.6	
30c	40.59_399.1686_ Neg_15332	40.59	399.1686	195	C19H27O9	399.1661	6.3	
31c	41.55_399.1686_ Neg_15341	41.55	399.1686	195	C19H27O9	399.1661	6.3	
Other phytocannabinoids								
32c	43.51_593.2589_ Neg_24419	43.51	593.2589	575, 557, 489, 425, 393, 371, 327, 301, 195	C30H41O12	593.2604	−2.5	
33c	33.48_371.1367_ Neg_14026	33.48	371.1367	191, 165	C17H23O9	371.1348	5.1	
34c	35.05_355.1414_ Neg_13243	35.05	355.1414	194, 177, 151	C17H23O8	355.1398	4.5	
35c	40.07_369.1547_ Neg_13912	40.07	369.1547	271, 165	C18H25O8	369.1555	−2.2	
36c	41.49_635.2373_ Neg_25959	41.49	635.2373	591, 387, 369, 343, 325, 271, 165	C31H40O14	635.2345	4.4	
37c	42.5_507.222_ Neg_20827	42.50	507.2230	345, 301, 283, 232, 173	C26H35O10	507.2236	−1.2	
38c	44.01_593.221_ Neg_24406	44.01	593.2210	575, 549, 389, 327, 309, 259, 191, 173	C29H37O13	593.2240	−5.1	
39c	45.02_533.2411_ Neg_21894	45.02	533.2411	193	C28H37O10	533.2392	3.6	
40c	48.03_537.2724_ Neg_22109	48.03	537.2724	375, 357, 331, 245, 191	C28H41O10	537.2705	3.5	
41c	48.56_407.207_ Neg_15673	48.56	407.2070	193	C22H31O7	407.2075	−1.2	

Classification by Berman et al.

The peak ID refers to the peak labeling in Figure S7
Table 2 Differentiated phenolic compounds found in the gelato hemp strain

Peak ID	Feature ID (RT_MZ_Pol_id)	Total Rt (min)	[M-H]⁻ MS/MS	Formula	Identification	Theoretical [M-H]⁻ ppm	Phenolic classification
1 g	15.44_865.2004_Neg_34152	15.44	865.2004	739, 713, 696, 575, 451, 287, 125	C45H37O18 Procyanidin trimer	865.1980 2.8	Procyanidin
2 g	19.59_865.2004_Neg_34148	19.59	865.2004	739, 713, 577, 451, 287, 125	C45H37O18 Procyanidin trimer	865.1980 2.8	Procyanidin
3 g	20.05_577.1377_Neg_23751	20.05	577.1377	425, 407, 289	C30H25O12 Procyanidin dimer	577.1346 5.4	Procyanidin
4 g	20.43_353.0896_Neg_13109	20.43	353.0896	191, 179, 135	C16H17O9 Chlorogenic acid	353.0878 5.1	Phenolic acid
5 g	20.48_299.0771_Neg_10286	20.48	299.0771	137, 93	C13H15O8 Salicylic acid-hexoside	299.0767 1.3	Phenolic acid
6 g	20.93_315.0735_Neg_11112	20.93	315.0735	153, 109	C13H15O9 Dihydroxybenzoic acid-hexoside	315.0716 6.0	Phenolic acid
7 g	21.15_865.2004_Neg_34156	21.15	865.2004	739, 713, 577, 425, 289, 125	C45H37O18 Procyanidin trimer	865.1980 2.8	Procyanidin
8 g	26.47_865.2004_Neg_34145	26.47	865.2004	739, 713, 575, 425, 245, 125	C45H37O18 Procyanidin trimer	865.1980 2.8	Procyanidin
9 g	27.4_179.0362_Neg_4395	27.40	179.0362	161, 151, 135, 107, 59	C9H7O4 Caffeic acid	179.0344 10.1	Phenolic acid
10 g	30.47_865.2004_Neg_34146	30.47	865.2004	847, 739, 713, 575, 449, 369, 287, 125	C45H37O18 Procyanidin trimer	865.1980 2.8	Procyanidin
11 g	32.04_295.0457_Neg_10067	32.04	295.0457	251, 226, 154, 129, 111, 85	C13H11O8 NI	295.0459 − 0.7	Flavonol
12 g	33.34_625.1387_Neg_25591	33.34	625.1387	463, 301, 178	C27H29O17 Quercetin-dihexoside	625.1405 − 2.9	Flavonol
13 g	34.85_623.1258_Neg_25504	34.85	623.1258	285	C27H27O17 Luteolin-dihexoside // kaempferol-dihexoside	623.1248 1.6	Flavone
14 g	37.48_479.1916_Neg_19162	37.48	479.1916	316, 301, 285	C24H31O10 NI	479.1923 − 1.5	Flavonol
15 g	37.87_609.1461_Neg_25031	37.87	609.1461	300	C27H29O16 Quercetin rutinoside	609.1456 0.8	Flavonol
16 g	38.36_593.1179_Neg_24381	38.36	593.1179	285	C26H25O16 Luteolin hexuronide-pentoside // kaempferol hexuronide-pentoside	593.1143 6.1	Flavone
17 g	38.38_607.1349_Neg_24959	38.38	607.1349	563, 319, 299, 284, 161, 85	C28H31O15 Hispidulin hexoside-penturonide // diosmetin hexoside-penturonide // chrysoeriol hexoside-penturonide // rhamnocitrin hexoside-penturonide	607.1299 8.2	Flavone
18 g	38.4_637.1423_Neg_26029	38.40	637.1423	299, 284	C28H29O17 Hispidulin hexoside-hexuronide // diosmetin hexoside-hexuronide // chrysoeriol hexoside-hexuronide // rhamnocitrin hexoside-hexuronide	637.1405 2.8	Flavone
19 g	39.91_461.0754_Neg_18192	39.91	461.0750	285	C21H17O12 Luteolin hexuronide // kaempferol hexuronide	461.0720 6.5	Flavone
Table 2 (continued)

Peak ID	Feature ID (RT_MZ_Pol_id)	Total Rt (min)	[M-H]− MS/MS Formula Identification	Theoretical [M-H]− ppm	Phenolic classification
20 g	41.9_607.1349_Neg_24958	41.90	607.1349 563, 319, 299, 284, 161, 85, Hispidulin hexoside-penturonide // diosmetin hexoside-penturonide // chrysoeriol hexoside-penturonide // rhamnocitrin hexoside-penturonide	607.1299 8.2	Flavone
21 g	42.38_593.1491_Neg_24394	42.38	593.1514 299, 284, 269, Hispidulin hexoside-pentoside // diosmetin hexoside-pentoside // chrysoeriol hexoside-pentoside // rhamnocitrin hexoside-pentoside	593.1509 0.8	Flavone
22 g	42.39_621.146_Neg_25426	42.39	621.1460 299, 284, Hispidulin deoxyhexoside-hexuronide // diosmetin deoxyhexoside-hexuronide // chrysoeriol deoxyhexoside-hexuronide // rhamnocitrin deoxyhexoside-hexuronide	621.1456 0.6	Flavone
23 g	43.42_445.0803_Neg_17431	43.42	445.0803 269, Genistein hexuronide	445.0771 7.2	Isoflavone
24 g	43.42_475.089_Neg_18898	43.44	475.0890 299, 284, 227, Hispidulin hexuronide // diosmetin hexuronide // chrysoeriol hexuronide // rhamnocitrin	475.0877 2.7	Flavone

NI, no identified
The peak ID refers to the peak labeling in Figure S7
Differentiation of industrial hemp strains by their cannabinoid and phenolic compounds using…

The chemical composition of the cookie strain presented a richer cannabinoid profile in comparison with the gelato strain, showing several cannabinoids that distinguished that sample. In contrast, the gelato strain was more related to the content on phenolic compounds, being some of them characteristic analytes of this sample.

The peak labeling of all the tentatively identified compounds in cookie and gelato samples can be observed in Figure S7.

Conclusions

In this work, a µLC × LC-HRMS method is used for the analysis of two commercial industrial hemp strains (i.e., cookie and gelato). Two reversed phase modes were coupled in the 1D and 2D. To increase the orthogonality of these correlated modes, a 2D multi-segment shifting gradient was optimized that enhanced the orthogonality in 23% and produced a peak capacity eleven times higher. After the analysis, a demodulation process, which is able to transform 2D data into 1D data, was applied for the first time. With this process, the 2D data treatment of a very complex sample (75,387 features) was easily handled for the statistical and identification process. Due to the high variability in bioactive compounds between hemp varieties and strains, a suspected analysis of the phytocannabinoids and phenolic compounds present in both samples was carried out. Cookie sample presented a higher content and a higher number of characteristic cannabinoids that could be considered as potential markers of this strain. Among them, the acidic form of CBD (CBDA) or its isomer, varinic acid-C3 type, and neutral-C4 form type phytocannabinoids were identified together with several cannabinoids that presented a common MS/MS pathway not previously reported. On the other hand, the gelato sample was richer in phenolic compounds, among which an important number of potential markers were highlighted. Procyanidins and diosmetin or chrysoeriol glycosidic deri- vates were the major compounds that were characteristic of this sample. Therefore, this study reveals the different bioactive compound profiles between two industrial hemp varieties. The chemical characterization of them would be of great interest for pharmaceutical, food, or cosmetic applications that could be targeted to specific interests according to the properties offered by the compounds present in each strain. Another conclusion of this work is that the number of secondary metabolites in cannabis is exponentially growing more and more, and further studies are needed for achieving a high confident identification level of all the bioactive compounds responsible for all the interesting applications of cannabis.
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00216-022-03925-8.

Author contribution Conceptualization: L. Montero and O. J. Smithz; methodology: L. Montero, S. W. Meckelmann, H. Kim, and J. A. Ayala-Cabrera; formal analysis and investigation: L. Montero; data analysis: L. Montero, S. W. Meckelmann, J. F. Ayala-Cabrera; writing — original draft preparation: L. Montero; writing — review and editing: L. Montero, S. W. Meckelmann, J. F. Ayala-Cabrera, O. J. Schmitz; funding acquisition: O. J. Schmitz.

Funding Open Access funding enabled and organized by Projekt DEAL.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. ElSohly MA, Slade D. Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci. 2005;78(5):539–48. https://doi.org/10.1016/j.lfs.2005.09.011.

2. Farinon B, Molinari R, Costantini L, Merendino N. The seed of industrial hemp (Cannabis sativa L.): nutritional quality and potential functionality for human health and nutrition. Nutrients. 2020;12(7):1935. https://doi.org/10.3390/nu12071935.

3. Bow EW, Rimoldi JM. The structure–function relationships of classical cannabinoids: CB1/CB2 modulation. Perspect Medicin Chem. 2016;8:PMC. S32171. https://doi.org/10.4137/PMMC.S32171.

4. Pollastro F, Minassi A, Fresu LG. Cannabis phenolics and their effects on regional cerebral blood flow. Neuropsychopharmacology. 2004;29(2):417–26. https://doi.org/10.1038/sj.npp.1300340.

5. Grotenhermen F, Müller-Vahl K. The therapeutic potential of cannabis and cannabinoids. Dtsch Arztebl Int. 2012;109(29–30):495. https://doi.org/10.3238/arztebl.2012.0495.

6. Mazzotta R, Scialfa C, Liguori M, et al. A new ESI-LC/MS approach for comprehensive separation and non-separation methods for the analysis of non-psychoactive cannabinoids in fibre-type Cannabis sativa L. (hemp). J Pharm Biomed Anal. 2017;143:228–36. https://doi.org/10.1016/j.jpba.2017.05.049.

7. Atakan Z. Cannabis, a complex plant: different compounds and different effects on individuals. Ther Adv Psychopharmacol. 2012;2(6):241–54. https://doi.org/10.1177/204512312457586.

8. Bisogno T. Endogenous cannabinoids: structure and metabolism. J Neuroendocrinol. 2008;20:1–9. https://doi.org/10.1111/j.1365-2826.2008.01676.x.

9. Guimarães FS, Chiaretti T, Graeff F, Zuardi A. Antianxiety effect of cannabinoids in the elevated plus-maze. Psychopharmacology. 1990;100(4):558–9. https://doi.org/10.1007/BF0244012.

10. de Souza Crippa JA, Zuardi AW, Garrido GE, Wichert-Ana L, Guarnieri R, Ferrari L, et al. Effects of cannabidiol (CBD) on regional cerebral blood flow. Neuropsychopharmacology. 2004;29(2):417–26. https://doi.org/10.1038/sj.npp.1300340.

11. Atakan Z. Cannabis, a complex plant: different compounds and different effects on individuals. Ther Adv Psychopharmacol. 2012;2(6):241–54. https://doi.org/10.1177/204512312457586.

12. Pacher P. Towards the use of non-psychoactive cannabinoids for prostate cancer. Br J Pharmacol. 2013;168(1):76–8. https://doi.org/10.1111/1476-5381.2012.02121.x.

13. Leonard W, Zhang P, Ying D, Fang Z. Hempseed in food industry: nutritional value, health benefits, and industrial applications. Compr Rev Food Sci Food Saf. 2020;19(1):282–308. https://doi.org/10.1111/1541-4337.12517.

14. Crescenz G, Piccollella S, Espósito A, Scognamiglio M, Fiorinetto A, Pacifico S. Chemical composition and nutraceutical properties of hempseed: an ancient food with actual functional value. Phytochem Rev. 2018;17(4):733–49. https://doi.org/10.1007/s11101-018-9556-2.

15. Glivar T, Eržen J, Kreft S, Zagožen M, Čerenak A, Čeh B, et al. Cannabidiol content in industrial hemp (Cannabis sativa L.) varieties grown in Slovenia. Ind Crops Prod. 2020;145:112082. https://doi.org/10.1016/j.indcrop.2019.112082.

16. Pellati F, Brighenti V, Sperlea J, Marchetti L, Bertelli D, Benvenuti S. New methods for the comprehensive analysis of bioactive compounds in Cannabis sativa L. (hemp). Molecules. 2018;23(10):2639. https://doi.org/10.3390/molecules23102639.

17. Siano F, Moccia S, Picariello G, Russo GL, Sorrentino G, Di Stasio M, et al. Comparative study of chemical, biochemical characteristic and ATR-FTIR analysis of seeds, oil and flour of the edible fedora cultivar hemp (Cannabis sativa L.) Molecules. 2019;24(1):83. https://doi.org/10.3390/molecules24010083.

18. Cerino P, Buonerba C, Cannazza G, D'Auria J, Ottoni E, Fulgione A, et al. A review of hemp as food and nutritional supplement. Cannabis Cannabinoid Res. 2021;6(1):19–27. https://doi.org/10.1007/s11101-018-9556-2.

19. Vonapartis E, Aubin M-P, Seguin P, Mustafa AF, Charron J-B. Seed composition of ten industrial hemp cultivars approved for production in Canada. J Food Compost Anal. 2015;39:8–12. https://doi.org/10.1016/j.jfca.2014.11.004.

20. Brighenti V, Pellati F, Steinbach M, Maran D, Benvenuti S. Development of a new extraction technique and HPLC method for the analysis of non-psychoactive cannabinoids in fibre-type Cannabis sativa L. (hemp). J Pharm Biomed Anal. 2017;143:228–36. https://doi.org/10.1016/j.jpba.2017.05.049.

21. Delgado-Povedano M, Callado CS-C, Priego-Capote F, Pellegrino E, et al. Evolution of the cannabinoid and terpene chemotypes. J Nat Prod. 2016;79(2):324–31. https://doi.org/10.1021/acs.jnatprod.5b00949.

22. Azizpuraa-Olaizola O, Soderjazi U, Ozturk E, Schibano D, Semsri Y, Navarro P, et al. Evolution of the cannabinoid and terpene content during the growth of Cannabis sativa plants from different chemotypes. J Nat Prod. 2016;79(2):324–31. https://doi.org/10.1021/acs.jnatprod.5b00949.

23. Berman P, Futoran K, Lewitus GM, Mukha B, Benami M, Shlomi T, et al. A new ESI-LC/MS approach for comprehensive metabolic profiling of phytocannabinoids in Cannabis. Sci Rep. 2018;8(1):1–15. https://doi.org/10.1038/s41598-018-32651-4.
Differentiation of industrial hemp strains by their cannabinoid and phenolic compounds using…

25. Omar OL, Amigo J, Etxebarria N. Resolution of co-eluting compounds of Cannabis sativa in comprehensive two-dimensional gas chromatography/mass spectrometry detection with multivariate curve resolution-alternating least squares. Talanta. 2014;121:273–80. https://doi.org/10.1016/j.talanta.2013.12.044.

26. Mandrioli M, Tura M, Scotti S, Gallina TT. Fast detection of 10 cannabinoids by RP-HPLC-UV method in Cannabis sativa L. Molecules. 2019;24(11):2113. https://doi.org/10.3390/molecules24112113.

27. Citti C, Linciano P, Panseri S, Vezzalini F, Forni F, Vandelli MA, et al. Cannabinoid profiling of hemp seed oil by liquid chromatography coupled to high-resolution mass spectrometry. Front Plant Sci. 2019;10:120. https://doi.org/10.3389/fpls.2019.00120.

28. Izzo L, Castaldo L, Narváez A, Gaspari A, Rodriguez-Carrasco Y, et al. Analysis of phenolic compounds in commercial Cannabis sativa L. Inflorescences using UHPLC-Q-Orbitrap HRMS. Molecules. 2020;25(3):631. https://doi.org/10.3390/molecules25030631.

29. Cacciola F, Rigano F, Dugo P, Mondello L. Comprehensive two-dimensional liquid chromatography as a powerful tool for the analysis of food and food products. TrAC, Trends Anal Chem. 2020;127:115894. https://doi.org/10.1016/j.trac.2020.115894.

30. Pirok BW, Gargano AF, Schoenmakers PJ. Optimizing separations in online comprehensive two-dimensional liquid chromatography. J Sep Sci. 2018;41(1):68–98. https://doi.org/10.1002/jssc.201700863.

31. Montero L, Herrero M, Ibañez E, Cifuentes A. Profiling of phenolic compounds from different apple varieties using comprehensive two-dimensional liquid chromatography. J Chromatogr A. 2013;1313:275–83. https://doi.org/10.1016/j.chroma.2013.06.015.

32. Montero L, Ibañez E, Russo M, di Sanzo R, Rastrelli L, Piccinelli AL, et al. Metabolite profiling of licorice (Glycyrrhiza glabra) from different locations using comprehensive two-dimensional liquid chromatography coupled to diode array and tandem mass spectrometry detection. Anal Chim Acta. 2016;913:145–59. https://doi.org/10.1016/j.jca.2016.01.040.

33. Brazdauskas T, Montero L, Venskutonis PR, Ibañez E, Herrero M. Downstream valorization and comprehensive two-dimensional liquid chromatography-based chemical characterization of bioactives from black chokeberries (Aronia melanocarpa) pomace. J Chromatogr A. 2016;1468:126–35. https://doi.org/10.1016/j.chroma.2016.09.033.

34. Dugo P, Cacciola F, Kumm T, Dugo G, Mondello L. Comprehensive multidimensional liquid chromatography: theory and applications. J Chromatogr A. 2008;1184(1–2):353–68. https://doi.org/10.1016/j.chroma.2007.06.074.

35. Montero L, Herrero M. Two-dimensional liquid chromatography approaches in Foodomics—a review. Anal Chim Acta. 2019;1083:1–18. https://doi.org/10.1016/j.aca.2019.07.036.

36. Li X, Stoll DR, Carr PW. Equation for peak capacity estimation in two-dimensional liquid chromatography. Anal Chem. 2009;81(2):845–50. https://doi.org/10.1021/ac801772u.

37. Camenzuli M, Schoenmakers PJ. A new measure of orthogonality for multi-dimensional chromatography. Anal Chim Acta. 2014;838:93–101. https://doi.org/10.1016/j.aca.2014.05.048.

38. Navarro-Reig M, Jaumot J, Tauler R. An untargeted lipidomic strategy combining comprehensive two-dimensional liquid chromatography and chemometric analysis. J Chromatogr A. 2018;1568:80–90. https://doi.org/10.1016/j.chroma.2018.07.017.

39. Stephan S, Hippler J, Köhler T, Deeb AA, Schmidt TC, Schmitz OJ. Contaminant screening of wastewater with HPLC-qTOF-MS and LC+ LC-qTOF-MS using a CCS database. Anal Bioanal Chem. 2016;408(24):6545–55. https://doi.org/10.1007/s00216-016-9820-5.

40. Appendino G, Chianese G, Tagliaferata-Scafati O. Cannabinoids: occurrence and medicinal chemistry. Curr Med Chem. 2011;18(7):1085–99. https://doi.org/10.2174/092986711794940888.

41. Rothwell JA, Perez-Jimenez J, Neveu V, Medina-Remon A, M’hiri N, Garcia-Lobato P, et al. Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database. 2013;2013. https://doi.org/10.1093/database/bat070.

42. Aron PM, Kennedy JL, Flavan-3-ols: nature, occurrence and biological activity. Mol Nutr Food Res. 2008;52(1):79–104. https://doi.org/10.1002/mnfr.200700137.

43. Cos P, Bruyne TD, Hermans N, Apers S, Berge DV, Vlieghe A. Proanthocyanidins in health care: current and new trends. Curr Med Chem. 2004;11(10):1345–59. https://doi.org/10.2174/092986704501601358.

44. Leonard W, Zhang P, Ying D, Xiong Y, Fang Z. Extrusion improves the phenolic profile and biological activities of hempseed (Cannabis sativa L.) hull. Food Chem. 2021;346:128606. https://doi.org/10.1016/j.foodchem.2020.128606.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.