Modeling and Forecasting of Volatility using ARMA-GARCH: Case Study on Malaysia Natural Rubber Prices

I M Md Ghani¹ and H A Rahim¹
¹ School of Informatics and Applied Mathematics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Darul Iman
E-mail: intanmartina23@gmail.com

Abstract. Malaysia is one of the largest producers of natural rubber in the world. Among the various types of natural rubber which contribute to the country’s agricultural sector is the Standard Malaysian Rubber Grade 20 (S.M.R 20). Since 2008, the rubber price has received attention of investors and Malaysia Rubber Board due to price fluctuation. The price of rubber is characterized by the existence of heavy tails and volatility clustering. These properties play a significant impact on parameter estimation and forecasting performance resulting from S.M.R 20 rubber price data. The approach used in modeling S.M.R 20 rubber price data, is Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model. The aims of this paper are to find the best ARMA-GARCH model by using different specifications structures and to forecast the daily price for 20 days ahead. There are 20 models produced from different specifications in ARMA(R,M) dan GARCH(p,q) models. In this study, 1953 daily price data of S.M.R 20 are taken into consideration. The validity comparison of diagnostic checking and forecasting performance are based on AIC, AICC, SBC, HQC, MSE, RMSE and MAPE. The results reveals that ARMA(1,0)-GARCH(1,2) model is the best volatility modeling in S.M.R 20 rubber price. Based on the implications of the results, the scope of the future research directions has been widen.

1. Introduction

Financial time series usually include of floating and volatility models. The floating component always modelled using mean models such as ARIMA, moving average and many other models. The volatility of financial time series will be model when the series have stylized facts. It can be modelled using ARCH/GARCH. Several studies investigating volatility have been carried out on rubber price [1], oil price [2], electricity price [3] and petroleum [4]. Furthermore, most volatility in business and economic data influenced by stylized facts.

The stylized facts that give significant impact on modeling financial time series are fat tails, volatility clustering and nonlinear dependence. With the existing of volatility clustering in economic data, it can affect the forecasting performance of the mean models. In order to achieve accurate forecast, most researchers applied Generalized Autoregressive Conditional Heteroscedasticity (GARCH) to model volatility.

More recent studies have selected GARCH(1,1) model to analyze time series data. Some references consensus that GARCH(1,1) model is popular among others specifications because it is the simplest and most robust among volatility models [6], fits many data series well [7] and sufficient to capture the volatility clustering in the data [8]. Furthermore, Olson and Wu [9] mentioned that analysis can adequate with only one lag for each variable.

The research to date has tended to focus an exchange rate rather than production and prices from agricultural data. Goh et al. [1] and Isa and Jamil [10] investigated on the Standard Malaysia Rubber 20 (S.M.R 20) price. Both studies was selected GARCH(1,1) model in modeling and forecasting. ¹⁰found that GARCH(1,1) model is appropriate in modeling S.M.R 20 and Ribbed...
Smoked Sheet Grade I (RSS 1) price during the period of 1980 to 2002. In another study, one examined the comparison between symmetry and asymmetry GARCH model during pre and post-global financial crisis in 15 years. According to both studies, whereby preferred GARCH(1,1) model in analysis S.M.R. 20 rubber price, one unresolved question is whether GARCH(1,1) model accurate in current S.M.R 20 rubber price. Therefore, in this study S.M.R 20 rubber price using GARCH model with combination ARMA model based on different specifications. Adding to that, the study indicated daily forecasted for S.M.R 20 for 20 days ahead. The GARCH model [1] is one of the furthermost statistical technique applied in volatility. A large and growing body of literature has investigated using GARCH(1,1) model [1-2, 12-17]. However not all of these literature reported GARCH(1,1) is more appropriate in analyzing. Only [12] shown that GARCH(1,1) has predictive power in modeling daily exchange rate in the nation of Tanzania. Another study by [14] found that ARMA(1,1) with GARCH(1,1) and GARCH(2,1) is applicable in Dhaka Stock Exchange.

The paper is organized as follows. In the next section, few models are briefly described which are the ARMA model, ARCH model and GARCH model. Third session will be the result and discussion of ARMA-GARCH model based on S.M.R 20 from the duration 4th January 2010 to 29th December 2017. Last but not least are the summarized conclusion of the research.

2. Materials and Methods

2.1. Data
In this section, 1953 daily price data of Standard Malaysia Rubber 20 (S.M.R 20) are used. These data consist of period from 4th January 2010 to 29th December 2017. All observations were taken from official portal of Malaysia Rubber Board. Based on the observations, the data are split into two parts which is the in-sample part (4th January 2010 to 4th August 2015) and the out-of-sample part (5th August 2015 to 29th December 2017).

2.2. Methods
There are three types of time series models such as Autoregressive Moving Average (ARMA) model, Autoregressive Conditional Heteroscedasticity (ARCH) model and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model.

In 1976, Box and Jenkins [18], proposed ARIMA(m,D,n) models where m is the number of autocorrelation terms, D is the number of differencing elements and n is the number of moving average terms. The letter "I" in ARIMA used to differentiate when the series are not stationary. However, when the time series is stationary, we can model it using three classes of time series process: autoregressive (AR), moving-average (MA) and mixed autoregressive and moving-average (ARMA).

An autoregressive model of order m, denoted as AR(m), can be expressed as
\[y_t = \mu + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_m y_{t-m} + u_t \] (1)

The moving average of order n which denoted as MA(n) can be expressed as follows
\[y_t = \mu + u_t + \theta_1 u_{t-1} + \theta_2 u_{t-2} + \cdots + \theta_n u_{t-n} \] (2)

where \(u_t(t = 1,2,3,\ldots) \) is a white noise disturbance term with \(E(u_t) = 0 \) and \(\text{var}(u_t) = \sigma^2 \).
The combination of AR(m) model and MA(n) model formed of ARMA(m,n) model which expressed as
\[y_t = \mu + \phi_1 y_{t-1} + \cdots + \phi_m y_{t-m} + \theta_1 u_{t-1} + \cdots + \theta_n u_{t-n} + \varepsilon_t \]
(3)
or in sigma notation
\[y_t = C + \sum_{i=1}^{m} \phi_i y_{t-i} + \sum_{j=1}^{n} \theta_j \varepsilon_{t-j} \]
(4)
where \(y_t \) is the daily rubber S.M.R 20 prices, \(C \) is a constant term, \(\phi_i \) are the parameter of the autoregressive component of order \(m \), \(\theta_j \) are the parameters of the moving average component of order \(n \), and \(\varepsilon_t \) is the error term at time \(t \). The order \(m \) and \(n \) are non-negative integers.

There are two time-varying volatility models that popular among researchers: ARCH model and GARCH model. The aims of ARCH model that developed by Engle [6] is to predict the conditional variance of return series.
\[y_t = C + \varepsilon_t \]
(5)
\[\varepsilon_t = z_t \sigma_t \]
(6)
Where \(y_t \) is an observed data series, \(C \) is a constant value, \(\varepsilon_t \) is residual, \(z_t \) is the standardized residual with independently and identically distributed with mean equal to zero and variance equal to one and \(\sigma_t \) is the square root of the conditional variance with non-negative process. The general form of ARCH(q) model with the first q past squared innovations can be expressed as follows [6]:
\[\sigma_t^2 = \eta + \sum_{j=1}^{q} \alpha_j \varepsilon_{t-j}^2 \]
(7)
The constraints of parameters are \(\eta > 0 \) and \(\alpha_j \geq 0 (j = 1, \ldots, q) \), which to ensure the conditional variance, \(\sigma_t^2 \) is non-negative. Although the ARCH model is simple model and widely used among researchers, but it has weakness. When modeling volatility using ARCH, there might be a need for a large value of the lag \(q \), hence a large number of parameters to be estimated. This may result the difficulties to estimate parameters.

After four years an extension from ARCH model was developed by [11] namely GARCH model. The GARCH model is more parsimonious (use fewer parameters) than ARCH model [19]. There are two part that consist in GARCH model which are mean equation, \(y_t \); see Equation (4) and variance equation, \(\sigma_t^2 \); see Equation (8). The general form for GARCH(p,q) model can be written as follows:
\[\sigma_t^2 = \eta + \sum_{i=1}^{p} \beta_i \sigma_{t-i}^2 + \sum_{j=1}^{q} \alpha_j \varepsilon_{t-j}^2 \]
(8)
where η is the long-run volatility with condition $\eta > 0$, $\beta_i \geq 0; i = 1, ..., p$ and $\alpha_j \geq 0; j = 1, ..., q$. If $\beta_i + \alpha_j < 1$, then GARCH(p,q) model is covariance stationary. The unconditional variance of the error terms

$$\text{var}(\epsilon_t) = \frac{\eta}{1 - \beta - \alpha}$$

(9)

From the general form of GARCH(p,q) model, the GARCH(1,1) model can be defined as

$$\sigma_t^2 = \eta + \beta \sigma_{t-1}^2 + \alpha \epsilon_{t-1}^2$$

(10)

2.3. Model Selection

When comparing among different specification of ARMA-GARCH models, then we select an appropriate model based on Akaike Information Criteria (AIC) [20], the corrected Akaike Information Criteria (AICC), Schwarz's Bayesian Information Criterion (SBC) [21] and the Hannan-Quinn Information Criterion (HQC). The AIC, AICC, SBC and HQC can be computed as

$$AIC = -2 \ln (L) + 2k$$

$$\text{AICC} = \text{AIC} + 2 \frac{k(k + 1)}{N - k - 1}$$

$$SBC = -2 \ln (L) + \ln(N)k$$

$$\text{HQC} = -2 \ln (L) + 2 \ln(\ln(N))k$$

Where L is the value of the likelihood function evaluated at the parameter estimates, N is the number of observations, and k is the number of estimated parameters. The minimum value of AIC, AICC, SBC and HQC was selected as the better model when comparing among models.

2.4. Model Evaluations

The performance of forecasting models are evaluated using three measures: Mean Square Error (MSE), Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE).

$$\text{MSE} = \frac{1}{T} \sum_{t=T_1}^{T} (\sigma_t^2 - \hat{\sigma}_t^2)^2$$

$$\text{RMSE} = \sqrt{\frac{1}{T} \sum_{t=T_1}^{T} (\sigma_t^2 - \hat{\sigma}_t^2)^2}$$

$$\text{MAPE} = \frac{1}{T} \sum_{t=T_1}^{T} \left| \frac{\sigma_t^2 - \hat{\sigma}_t^2}{\sigma_t^2} \right| \times 100$$

Where T is the number of total observations and T_1 is the first observation in out-of-sample. The σ_t^2 and $\hat{\sigma}_t^2$ is the actual and predicted conditional variance at time t, respectively. When comparing among ARMA-GARCH models, the smallest value of MSE, RMSE and MAPE are chosen as the best accurate forecast model.

3. Results and Discussion

3.1. In-Sample Part

In Fig. 1 (left panel) there is a clear trend of 1367 daily observations prices of the S.M.R 20 in Malaysia from 4th January 2010 to 4th August 2015. When daily prices converted to log returns, the plot in Fig. 1 (right panel) illustrates there are large negative values especially on March and October 2011. Both Fig.s can explained there exist volatility clustering in daily returns on S.M.R 20.
Fig. 1. In-sample results of daily prices (left panel) and daily returns (right panel) of S.M.R 20

The descriptive statistics of the daily returns for S.M.R 20 are shown in Table 1. There is excess kurtosis in daily returns, which is 5.5298 larger than the normal value of 3. This can explain that there exist heavier tails in the data and distribute as leptokurtic.

Table 1. Descriptive Statistics of Daily Returns of S.M.R 20

Mean	Variance	Standard Deviation	Kurtosis	Skewness
-0.0469	1.3963	1.1817	5.5298	-0.6102

Source: Author’s calculation using data S.M.R 20

The first step in time series data is to test the stationarity. The SAS output based on Phillips-Perron (PP) test [22], Augmented Dickey-Fuller (ADF) test [23] and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test [24] are shown in Table 2, 3 and 4, respectively. As Table 2 shows, we reject the null hypothesis of a unit root for the three cases (Zero mean, Single mean and Trend) at the 5 percent level of significance. This is because the “Pr<Tau” values are <.0001. These indicates that the series is stationary where there is no unit root.

Table 2. SAS output based on the PP test

Type	Lags	Rho	Pr<Rho	Tau	Pr<Tau
Zero mean	7	-817.1034	<.0001	-24.2783	<.0001
Single mean	7	-816.8883	0.0019	-24.2876	<.0001
Trend	7	-817.0899	0.0008	-24.2994	<.0001

Source: Author's calculation using data S.M.R 20

In addition, at the 5 percent level of significance the Tau test in Table 3 also rejects the null hypothesis of a unit root in the three cases. The finding of ADF test is consistent with the PP test. Therefore, both PP test and ADF test results imply that the returns are stationary and the series has no unit root. Meanwhile in Table 4, the Eta test do not reject the null hypothesis of a unit root in the two cases (Single mean and Trend) at 5 percent level of significance. These indicates that the series is stationary and there is no unit root. Because all three tests proved the series is stationary and has no unit root, therefore we proceed next step.
Table 3. SAS output based on the ADF test

Type	Lags	Rho	Pr<Rho	Tau	Pr<Tau	F	Pr>F
Zero mean	0	-830.9948	<.0001	-24.3937	<.0001	298.0640	<.0010
Single mean	0	-832.3303	<.0001	-24.4155	<.0001	298.5766	<.0010
Trend	0	-833.6864	<.0001	-24.4367	<.0001	298.5766	<.0010

Source: Author's calculation using data S.M.R 20

Table 4. SAS output based on the KPSS test

Type	Lags	Eta	Pr<Eta
Single mean	23	0.1963	0.2754
Trend	23	0.0861	0.2298

Source: Author's calculation using data S.M.R 20

When the series are stationary, the next testing is done on the statistical independence. In this step two models were tested: AR(1) model and MA(2) model. Both models were selected by using SCAN option in SAS software. The autocorrelation check of residuals for AR(1) model and MA(2) model are illustrated in Table 5 and 6, respectively. It appears from both tables that the Pr > ChiSq values are greater than 0.05 for all lag order, which implying that we cannot reject the null hypothesis of white noise and the estimated residuals are white noise. Therefore the identified model AR(1) and MA(2) passed the diagnostic test.

Table 5. Autocorrelation Check For Residuals of AR(1) Model

To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations
6	7.98	5	0.1571	0.020
12	13.05	11	0.2903	-0.039
18	18.11	17	0.3817	0.014
24	24.70	23	0.3658	-0.040
30	30.01	29	0.4137	0.017
36	34.05	35	0.5139	0.000
42	42.26	41	0.4164	0.027
48	45.33	47	0.5419	0.014

Source: Author's calculation using data S.M.R 20

Table 6. Autocorrelation Check For Residuals of MA(2) Model

To Lag	Chi-Square	DF	Pr > ChiSq	Autocorrelations
6	3.39	4	0.4954	-0.000
12	8.26	10	0.6031	-0.036
18	13.19	16	0.5990	0.016
24	19.72	22	0.6005	-0.039
30	25.53	28	0.5991	0.018
36	29.06	34	0.7083	0.001
42	37.39	40	0.5884	0.025
48	40.42	46	0.7045	0.018

Source: Author's calculation using data S.M.R 20
Table 7. In-Sample Analysis of Testing an ARCH Effect For S.M.R 20

Order	Q	Pr > Q	LM	Pr > LM	LK	Pr >	WL	Pr >WL
1	166.1245	<.0001	165.9043	<.0001	25.0250	<.0001	175.8346	<.0001
2	227.7188	<.0001	178.7377	<.0001	24.5244	<.0001	243.5460	<.0001
3	422.5273	<.0001	297.4051	<.0001	30.6907	<.0001	311.7386	<.0001
4	518.0371	<.0001	308.9287	<.0001	27.8513	<.0001	370.6685	<.0001
5	529.9433	<.0001	309.1092	<.0001	26.9007	<.0001	415.0158	<.0001
6	556.9039	<.0001	309.7842	<.0001	26.5255	<.0001	443.5837	<.0001
7	589.8222	<.0001	311.7765	<.0001	24.8546	<.0001	494.9318	<.0001
8	594.9220	<.0001	312.4701	<.0001	23.0565	<.0001	535.6105	<.0001
9	596.8305	<.0001	312.4006	<.0001	21.8958	<.0001	572.0933	<.0001
10	597.1771	<.0001	313.8788	<.0001	20.7063	<.0001	624.4816	<.0001
11	597.5316	<.0001	313.8788	<.0001	19.7216	<.0001	635.2950	<.0001

Source: Author’s calculation using data S.M.R 20

Table 7 provides the result of ARCH effect using four tests which are Q test, LM test, LK test and WL test. The p-value of four tests indicate that we rejected the null hypothesis of no ARCH effect at the 5 percent level of significance. From Table 7, the results show that the presence of ARCH effect in S.M.R 20. This can be explained that heteroscedastic appeared in residuals.

Table 8. Comparison Model of Selection Criteria ARMA-GARCH Model

Models	AIC	AICC	SBC	HQC
ARMA(0,1)	4124.7460	NA	4135.1850	NA
ARMA(0,2)	4108.7360	NA	4124.3950	NA
ARMA(1,0)	4110.6460	4110.6550	4121.0850	4114.5530
ARMA(1,1)	4109.1410	NA	4124.8000	NA
ARMA(1,2)	4110.7340	NA	4131.6130	NA
ARMA(2,0)	4109.2020	4109.2190	4124.8610	4115.0620
ARMA(2,1)	4111.1220	NA	4132.0000	NA
ARMA(2,2)	4112.7330	NA	4138.8310	NA
GARCH(1,1)	4034.7170	4034.7460	4055.5960	4042.5310
GARCH(1,2)	4016.4990	4016.5430	4042.5970	4026.2670
GARCH(2,1)	4329.4060	4329.4150	4339.8450	4333.3130
GARCH(2,2)	4327.1800	4327.1890	4337.6200	4331.0880
ARMA(1,0)-GARCH(1,1)	3836.9930	3837.0370	3863.0910	3846.7610
ARMA(1,0)-GARCH(1,2)	3831.8580	3831.9200	3863.1760	3843.5800
ARMA(1,0)-GARCH(2,1)	4109.9150	4109.9330	4125.5740	4115.7760
ARMA(1,0)-GARCH(2,2)	4107.7620	4107.7790	4123.4210	4113.6230
ARMA(2,0)-GARCH(1,1)	3837.7330	3837.7950	3869.0510	3849.4540
ARMA(2,0)-GARCH(1,2)	3831.7290	3831.8120	3868.2670	3845.4050
ARMA(2,0)-GARCH(2,1)	4110.9660	4110.9960	4131.8450	4118.7810
ARMA(2,0)-GARCH(2,2)	4110.7770	4110.8060	4131.6550	4118.5910

NA = Not applicable

After confirmed heteroscedastic exist in residuals, then we proceed to specify the model. We generates 20 models from different conditional mean ad conditional variance specification in ARMA(m,n)-GARCH(p,q) models where m and n were either 0,1 or 2 while p and q were either 1 or 2. The 20 different specification models was compared based on criteria such as AIC, AICC, SBC and HQC to select the best model. The comparison among 20 models are highlighted in Table 8. The ARMA(2,0)-GARCH(1,2) model presents the minimum value of AIC and AICC.
ARMA(1,0)-GARCH(1,1) and ARMA(1,0)-GARCH(1,2) model shows minimum in SBC and HQC value, respectively. As Table 9 indicates, the ARMA(1,0)-GARCH(1,2) model and ARMA(2,0)-GARCH(1,2) model are the lowest in total rank. From both models, we decided ARMA(1,0)-GARCH(1,2) model as the best model in-sample part.

| Table 9. Comparison of ARMA-GARCH Model Based on Ranking |
|-----------------|-----------------|----------|----------|----------|----------|
| Models | Rank AIC | Rank AICC| Rank SBC | Rank HQC | Total rank |
| ARMA(0,1) | 18 | 20 | 17 | 19 | 74 |
| ARMA(0,2) | 8 | 15 | 9 | 15 | 47 |
| ARMA(1,0) | 12 | 10 | 7 | 8 | 37 |
| ARMA(1,1) | 9 | 16 | 10 | 16 | 51 |
| ARMA(1,2) | 13 | 17 | 13 | 17 | 60 |
| ARMA(2,0) | 10 | 8 | 11 | 9 | 38 |
| ARMA(2,1) | 16 | 18 | 16 | 18 | 68 |
| ARMA(2,2) | 17 | 19 | 18 | 20 | 74 |
| GARCH(1,1) | 6 | 6 | 6 | 6 | 24 |
| GARCH(1,2) | 5 | 5 | 5 | 5 | 20 |
| GARCH(2,1) | 20 | 14 | 20 | 14 | 68 |
| GARCH(2,2) | 19 | 13 | 19 | 13 | 64 |
| ARMA(1,0)-GARCH(1,1) | 3 | 3 | 1 | 3 | 10 |
| ARMA(1,0)-GARCH(1,2) | 2 | 2 | 2 | 1 | 7 |
| ARMA(1,0)-GARCH(2,1) | 11 | 9 | 12 | 10 | 42 |
| ARMA(1,0)-GARCH(2,2) | 7 | 7 | 8 | 7 | 29 |
| ARMA(2,0)-GARCH(1,1) | 4 | 4 | 4 | 4 | 16 |
| ARMA(2,0)-GARCH(1,2) | 1 | 1 | 3 | 2 | 7 |
| ARMA(2,0)-GARCH(2,1) | 15 | 12 | 15 | 12 | 54 |
| ARMA(2,0)-GARCH(2,2) | 14 | 11 | 14 | 11 | 50 |

3.2. Out-of-Sample Part

In Fig. 2 (left panel) there is a clear trend of 586 daily observations prices of the S.M.R 20 from 5th August 2015 to 29th December 2017. The plot in Fig. 2 (right panel) illustrates there are large negative values especially on 28th September 2017. Both Figures can be explained that there exists volatility clustering in daily prices and returns on S.M.R 20.

In out-of-sample part, the performance of forecasting was evaluated. The evaluation of ARMA-GARCH models in out-of-sample are summarized in Table 10. As illustrated in Table 10, the accurate forecast for MSE and RMSE statistic are ARMA(2,0)-GARCH(2,1) model and ARMA(2,0)-GARCH(2,2) model. While ARMA(1,0)-GARCH(1,2) model present more accurate in MAPE statistic. Therefore among 14 models, we decided ARMA(1,0)-GARCH(1,2) model as the best accurate model in out-of-sample part. This is supported by25 which suggested that the selection of MAPE statistic is the best if there are different results between three statistics. In addition, based on the SCAN option during in-sample part analysis, only AR(1) model and MA(2) model selected for forecasting.
Fig. 2: Out-of-sample results of daily prices (left panel) and daily returns (right panel) of S.M.R 20

Table 10: Comparison Model Evaluation of ARMA-GARCH Models

Models	MSE	RMSE	MAPE
ARMA(1,0)	4.4771	2.1159	99.7326
ARMA(2,0)	4.4845	2.1177	99.7914
GARCH(1,1)	4.4650	2.1131	99.9117
GARCH(1,2)	4.4727	2.1149	100.4053
GARCH(2,1)	4.4650	2.1131	99.8665
GARCH(2,2)	4.4650	2.1131	99.8665
ARMA(1,0)-GARCH(1,1)	4.4620	2.1123	99.8477
ARMA(1,0)-GARCH(1,2)	4.4620	2.1123	99.6798
ARMA(1,0)-GARCH(2,1)	4.4618	2.1123	99.7328
ARMA(1,0)-GARCH(2,2)	4.4618	2.1123	99.7328
ARMA(2,0)-GARCH(1,1)	4.4638	2.1128	100.3370
ARMA(2,0)-GARCH(1,2)	4.4664	2.1134	100.2446
ARMA(2,0)-GARCH(2,1)	4.4615	2.1122	99.7919
ARMA(2,0)-GARCH(2,2)	4.4615	2.1122	99.7919

Source: Author’s calculation using SAS

3.3. Overall Part

For overall part, there is a clear trend of 1953 daily observations prices of the rubber S.M.R 20 in Malaysia from 4th January 2010 to 29th December 2017 depicted in Fig. 3. When daily prices converted to log returns, plotted of daily returns of rubber S.M.R 20 clearly show exhibit volatility clustering.
Table 11 provides the result of ARCH effect using four tests which are Q test, LM test, LK test and WL test. The p-value of four tests indicate that we reject the null hypothesis of no ARCH effect at the 5 percent level of significance. Table 11 shows that the presence of ARCH effect in S.M.R 20. This can be explained that heteroscedastic appeared in residuals.

Order	Q	Pr > Q	LM	Pr > LM	LK	Pr >	LK		WL	Pr > WL
1	150.624	<.0001	150.410	<.0001	19.838	<.0001			6800.491	<.0001
2	217.600	<.0001	175.112	<.0001	20.691	<.0001			10690.557	<.0001
3	335.227	<.0001	235.213	<.0001	23.911	<.0001			14325.307	<.0001
4	416.569	<.0001	251.162	<.0001	24.831	<.0001			16981.035	<.0001
5	451.437	<.0001	251.959	<.0001	23.986	<.0001			19081.184	<.0001
6	489.096	<.0001	254.964	<.0001	23.673	<.0001			21779.230	<.0001
7	567.360	<.0001	276.011	<.0001	24.629	<.0001			24279.598	<.0001
8	590.339	<.0001	276.195	<.0001	23.927	<.0001			27379.125	<.0001
9	654.523	<.0001	296.258	<.0001	24.501	<.0001			30696.639	<.0001
10	680.825	<.0001	296.770	<.0001	24.111	<.0001			33706.437	<.0001
11	701.056	<.0001	296.961	<.0001	23.648	<.0001			36433.951	<.0001
12	733.562	<.0001	299.649	<.0001	23.607	<.0001			38825.800	<.0001

Source: Author’s calculation using data S.M.R 20

Since the best model in estimation part and forecasting part are consistent, then the parameter estimation of ARMA(1,0)-GARCH(1,2) model summarized in Table 12. From Table 12, the estimated conditional mean and conditional variance of ARMA(1,0)-GARCH(1,2) model can expressed as

\[
\hat{y}_t = 0.043 - 0.312y_{t-1}
\]

\[
\sigma_t^2 = 0.011 + 0.913\sigma_{t-1}^2 + 0.224\epsilon_{t-1}^2 - 0.136\epsilon_{t-2}^2
\]

Finally we used ARMA(1,0)-GARCH(1,2) model to forecast the daily S.M.R 20 rubber price for 20 days ahead (2nd January 2018 to 30th January 2018) which presented in Table 13. From this data there is a clear trend forecasting of rubber price and returns, visible in Fig. 4.
Table 12. Estimation Result of ARMA(1,0)-GARCH(1,2) Model For Rubber S.M.R 20

| Parameter | Estimate | Standard error | t-value | Approx. Pr > |t| |
|-----------|----------|----------------|---------|---------------|---|
| Intercept | 0.043 | 0.035 | 1.24 | 0.2158 | |
| ϕ_1 | -0.312 | 0.025 | -12.49 | <.0001 | |
| η | 0.011 | 0.003 | 4.18 | <.0001 | |
| α_1| 0.224 | 0.030 | 7.4 | <.0001 | |
| α_2| -0.136 | 0.030 | -4.49 | <.0001 | |
| β_1 | 0.913 | 0.008 | 109.26 | <.0001 | |

Forecast performance

AIC	6396.60874			
AICC	6396.65193			
SBC	6430.0684			
HQC	6408.90953			
MSE	2.28525			
MAPE	122.27325			

Table 13. Forecast Prices for Rubber S.M.R 20 (sen/kg)

Date	Actual Price RM (sen/kg)	Forecast Price RM (sen/kg)	L95	U95	Returns
2/1/2018	582.00	580.85	543.581	618.122	-0.29172
3/1/2018	576.00	573.75	527.962	619.538	-0.07991
4/1/2018	571.00	572.77	504.148	641.392	-0.04130
5/1/2018	572.00	567.49	485.423	649.55	-0.03427
8/1/2018	572.50	565.55	464.742	666.359	-0.03299
9/1/2018	580.00	561.39	446.294	676.489	-0.03276
10/1/2018	588.50	558.99	427.973	690.012	-0.03273
11/1/2018	590.50	555.49	410.962	700.009	-0.03273
12/1/2018	595.50	552.91	394.67	711.139	-0.03273
15/1/2018	603.00	549.79	379.34	720.233	-0.03274
16/1/2018	603.00	547.17	364.827	729.504	-0.03274
17/1/2018	597.50	544.30	351.104	737.488	-0.03275
18/1/2018	602.00	541.70	338.142	745.263	-0.03276
19/1/2018	595.00	539.01	325.857	752.154	-0.03277
22/1/2018	600.50	536.47	314.241	758.702	-0.03277
23/1/2018	590.00	533.91	303.211	764.601	-0.03278
24/1/2018	584.50	531.44	292.756	770.132	-0.03279
25/1/2018	585.50	528.99	282.812	775.16	-0.03279
26/1/2018	591.50	526.60	273.362	779.839	-0.03280
29/1/2018	580.50	524.24	264.357	784.116	-0.03281
30/1/2018	580.50	521.93	255.778	788.077	-0.03281

L95 = Lower 95, U95 = Upper 95
4. Conclusion

In this paper, the aim was to model the S.M.R. 20 rubber price using 20 different specification of ARMA-GARCH models. The results of this paper shows that ARMA(1,0)-GARCH(1,2) model is the best model for the period of in-sample part and out-of-sample sections. The ARMA(1,0)-GARCH(1,2) model was used to estimate and forecast the daily S.M.R 20 rubber price for 20 days ahead in the future market effectively. The findings of this study suggest that GARCH(1,2) model is suitable used to model and forecast the current S.M.R 20 rubber price compared to GARCH(1,1) model. Future research should therefore concentrate on the investigation of excess kurtosis on S.M.R 20 rubber price which caused by outlier effect.

5. References

[1] Goh H H, Tan K L, Khor C Y and Ng S L 2016 Volatility and Market Risk of Rubber Price in Malaysia: Pre- and Post-Global Financial Crisis Journal of Quantitative Economics 14(2) p 323–344
[2] Salisu A A and Fasanya I O 2013 Modelling oil price volatility with structural breaks. Energy Policy p 554–562
[3] Liu H and Shi J 2013 Applying ARMA-GARCH approaches to forecasting short-term electricity prices Energy Economics 37 p 152–166
[4] Kang S H and Yoon S M 2013 Modeling and forecasting the volatility of petroleum futures prices Energy Economics 36(July 2015) p 354–362
[5] Danielsson J 2011 Financial risk forecasting: The theory and practice of forecasting market risk with implementation in R and MATLAB (United Kingdom: John Wiley and Sons) chapter 1 pp 9
[6] Engle R F 1982 Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50 p 987–1007
[7] Hill R C, Griffiths W E and Lim G C 2011 Principles of Econometrics ed Fourth (United States of America: John Wiley & Sons, Inc) chapter 14 pp 526
[8] Brooks C 2014 Introductory Econometrics for Finance ed Third (New York: Cambridge University Press) chapter 9 pp 430
[9] Olson D L and Wu D 2017 Predictive Data Mining Models (Singapore: Springer) chapter 6 pp 63
[10] Isa Z and Jamil N A 2004 Tabiat Kemeluapan Perubahan Harga Getah Asli Malaysia Jurnal Ekonomi Malaysia 38 p 63–79
[11] Bollerslev T 1986 Generalized autoregressive conditional heteroskedasticity Journal of Econometrics 31 p 307–327
[12] Epaphra M 2017 Modeling Exchange Rate Volatility: Application of the GARCH and EGARCH Models Journal of Mathematical Finance 7(1) p 121–143
[13] Joukar A and Nahmens I 2015 Volatility Forecast of Construction Cost Index Using General Autoregressive Conditional Heteroskedastic Method J. Constr. Div., Am. Soc. Civ. Eng. 142(1) 4015051

Fig. 4. Forecast of daily prices of S.M.R 20 (left panel) and Forecast of daily returns of S.M.R 20 (right panel)
[14] Huq M M, Rahman M M, Rahman M S, Shahin A and Ali A 2013 Analysis of Volatility and Forecasting General Index of Dhaka Stock Exchange American Journal of Economics 3(5) p 229–242
[15] Hickey E, Loomis D G and Mohammadi H 2012 Forecasting hourly electricity prices using ARMAX-GARCH models: An application to MISO hubs Energy Economics 34(1) p 307–315
[16] Wang Y and Wu C 2012 Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate model Energy Economics 34(6) p 2167–2181
[17] Pham H T and Yang B S 2010 Estimation and forecasting of machine health condition using ARMA/GARCH model Mechanical Systems and Signal Processing 24(2) p 546–558
[18] Box G E P and Jenkins G M 1976 Time Series Analysis: Forecasting and Control ed Second (San Francisco: Holden-Day)
[19] Poon S H and Granger C W 2003 Forecasting Volatility in Financial Markets: A Review Journal of Economic Literature 41(2) p 478–539
[20] Akaike H 1974 A New Look at the Statistical Model Identification IEEE Trans. Autom. Control 19(6) p 716–723
[21] Schwarz G 1978 Estimating the Dimension of a Model The Annals of Statistics 6(2) p 461–464
[22] Phillips P C B and Perron P 1988 Testing for a Unit Root in Time Series Regression Biometrika 75(2) p 335–346
[23] Dickey D A and Fuller W A 1979 Distribution of the Estimators for Autoregressive Time Series With a Unit Root J. Am. Stat. Assoc. 74(366) p 427–431
[24] Kwiatkowski D, Phillips P C B, Schmidt P and Shin Y 1992 Testing the null hypothesis of stationarity against the alternative of a unit root Journal of Econometrics 54(1–3) p 159–178
[25] Makridakis S 1993 Accuracy measures: theoretical and practical concerns International Journal of Forecasting 9 p 527–529