Role of High Frequency Ultra-Sonogram & Color Duplex Findings with FNAC in Identifying Benign and Malignant Thyroid Nodule

Authors
Dr V Sridhar1*, Dr M Adaikkappan2, Dr M. Dhanalakshmi3

1Resident, Department of Radio-diagnosis, Rajah Muthiah Medical College and Hospital, Annamalai University, Chidambaram
2Professor& HOD, Department of Radio-diagnosis, Rajah Muthiah Medical College and Hospital, Annamalai University, Chidambaram
3Reader, Department of Pathology, Rajah Muthiah Medical College and Hospital, Annamalai University, Chidambaram

Abstract
Introduction: High frequency ultra-sonogram is the best imaging investigation accessible, for the analysis of the thyroid tissue and because of frequent use of ultra-sonogram non palpable thyroid nodules were also identified before symptoms. In this present study I am correlating ultra sound B-Mode grayscale, color and spectral Doppler characteristics of benign versus malignant thyroid nodules with FNAC findings.

Aim: To study the specific B – mode grayscale characteristics, color Doppler and standard reference values of Doppler Resistive index of benign versus malignant thyroid nodules with that of FNAC findings. To assess the specificity and sensitivity of grayscale, color Doppler and FNAC elucidated criteria in differentiating benign from malignant nodules.

Materials and Methodology: We prospectively investigated 60 patients who were referred to our department for thyroid ultra sound investigation from various departments of our institute for thyroid swelling. Every nodule was assessed according to shape, margins, number, echo texture, halo, calcification on grey scale findings and vascularity, RI values on color Doppler findings. All nodules are designated as benign and malignant on the basis of grey scale USG and color Doppler usg findings. Cut off RI values for benign and malignant thyroid nodules by using Receiver operating characteristics curve.

Results: Based on the high frequency ultra-sonogram and color Doppler findings with cross verification with FNAC findings it was found out that out of 60 patients 40 benign, 4 malignant, 15hashimotos thyroiditis and 1 nonspecific thyroiditis. Significant correlation was noted with malignant nodule with following ultra – sonogram features of taller than wider shape, ii-defined margin, markedly hypoechoic, and micro calcification. significant intranodular vascularity and RI values >0.75 was feature of malignant nodules whereas benign nodule showed both intra and peri nodular vascularity and RI values <0.75.high sensitivity and specificity of diagnosing malignant nodule combining both high frequency ultra-sonogram and color Doppler than done either of them alone.

Conclusion: Both high frequency ultra-sonogram and color Doppler findings of thyroid nodule are complimentary in diagnosing malignant and benign nature rather than either of them alone.

Keywords: USG-Ultra-sonogram, FNAC-Fine needle aspiration cytology.
Introduction
Thyroid nodules can present in up to 51% of the normal adult population and most of them could not detected by palpation. However, it is only 7% of the thyroid nodules are detected are malignant and it is important that they are diagnosed early and treated. Palpable nodules are seen in 5% to 9% of the population. Smaller nodules of size up to 2mm can be identified with high-frequency probe (USG) which is usually missed on routine palpation of thyroid examination. Mostly these nodules are benign nodules and on further follow up, approximately 9% to 11% of these nodules were found malignant. The need of ultra-sonogram is to proficiently and accurately identify malignant cases that belong to minority population. High frequency ultra-sonogram probe (USG) is the most susceptible imaging investigation available for the evaluation of the thyroid gland. CT and MRI investigations are used to detect extension and distant metastasis like nodal and organ metastasis. So, the investigation of choice for assessing thyroid nodules is high frequency ultra-sonogram.

All patients with thyroid swelling were assessed by using high frequency Ultra-sonogram as initial step. Ultra-sonogram investigation can assess both palpable and non-palpable thyroid swellings, if present. We can take the advantage of US for guiding FNAC biopsy for HPE correlation of both palpable and non-palpable thyroid nodules. US can also be used to the pre-operative assessment and identify local extent and nodal involvement. However, conventional Ultra-sonogram alone is sufficient for differentiating benign and malignant nodules based on their grey scale findings and nodal assessment of thyroid gland lymphatic system. There are umpteen no of studies in literature stating that both high frequency ultrasonogram and color Doppler were least sensitive for differentiating thyroid nodule as benign or malignant. Few latest studies have supported the fact that color Doppler is useful in diagnosing malignant nodules. Investigators substantiate that Resistive Index (RI) values or vascular patterns were not sufficient in differentiating between benign and malignant nodules. In my study I would like to prove that grey scale ultra-sonogram and color Doppler findings in differentiating malignant from benign thyroid nodules and to compare it with FNAC histopathological findings.

Materials and Methods
Study Population
The prospective case control study was conducted over a period of 1 year starting from January 2017 to June 2018 after getting permission from institutional ethics committee. The study population included 60 persons with palpable thyroid who was referred to radiology department for from various departments in our institution for ultra-sonogram examination, in all patients who had undergone ultrasound examination were referred to pathology department for targeted FNAC of lesions was performed. 25 cases were excluded in the present study due to loss of follow-up/FNAC findings. Thyroid nodules were broadly categorized into benign and malignant of which 40 thyroid nodules were benign, 4 nodules were malignant and 16 were assigned as has himotos thyroiditis. In the setting of MNG, single nodule was assessed by USG, color Doppler and FNAC findings for characterization in to benign versus malignant. All the patients who underwent USG, color Doppler and FNAC examination informed written consent was obtained. Self-prepared case sheet which contain the patients demographic details, complaints, present and past history, general examination and thyroid profile of patients who underwent high frequency ultra-sonogram, color Doppler and FNAC investigations. The ultrasound examination of the thyroid nodules will be performed in gray scale and color Doppler modes using a high frequency, 7.5 –10 MHz, linear array probe of ACCUSON ANTARES. These nodular lesions will be then characterized into benign, malignant and thyroiditis considering...
the following gray scale and color Doppler findings:

B-Mode Ultrasonography

- **Shape**
 - Wider than tall / taller than wide / irregular.
- **No of nodules**
 - Single/Multiple.
- **Echogenicity**
 - Anechoic/hypoechoic/hyperechoic/isoechoic/markedly hypoechoic/heteroechoic
- **Margin**
 - Well-defined smooth / Ill-defined.
- **Halo**
 - Thin/ thick/ absent.
- **Calcification**
 - Micro calcification / Macro calcification/Rim calcifications.

Color duplex sonogram

- **Vascularity**
 - No significant vascularity / significant peripheral vascularity / mixed vascularity/ significant central vascularity.
- **Resistive Indexes – (USG software)**
 - RI value of both intranodular and perinodular vessels.

Fine needle aspiration cytology of the thyroid nodules will be performed after taking informed consent. The high frequency ultra-sonogram findings will be correlated with the FNAC (fine needle aspiration cytology) findings to consider malignant/benignity. The specificity of high frequency ultrasonography and color Doppler findings in concluding benign and malignant lesions will be determined.

Statistical Analysis

SPSS software is utilized for statistical analysis from the results obtained by comparing the USG grey scale, color Doppler findings of thyroid nodule with that of FNAC findings chi – square test used to confirm the association of high frequency ultra-sonogram grey scale, color Doppler and FNAC findings. Statistical analysis is considered significant when p values are less than 0.05.

Results

Ultra-sonogram features.

Age

In my study average age was 20-40 years and 40-60 years patients with benign as well as chronic thyroiditis and malignant nodules. Age wise there was no significant findings based on the p value.

Sex

Sex wise my study shows that female predominance in benign, chronic thyroiditis and malignant nodules. 5 males were diagnosed with benign nodule; none of them is diagnosed as malignant and chronic thyroiditis.
Shape

FNAC DIAGNOSIS * SHAPES Crosstabulation

Shapes	Total	Diffuse	Wider	Taller
Hashimotos thyroiditis	15	0	0	15
Colloid goiter	0	32	0	32
Follicular adenoma	1	6	0	7
Papillary carcinoma of thyroid	0	2	3	5
Nonspecific thyroiditis	1	0	0	1
Total	17	40	3	60

Shape of the nodule showed that the malignant nodules were taller than wider and benign nodules were in favor of wider than taller, but thyroiditis did not fall in to either as it is a diffuse disease with multiple small nodules with increased vascularity.

Margins

MARGINS * USG DIAGNOSIS Crosstabulation

USG DIAGNOSIS	BENIGN NODULE	MALIGNANT NODULE	CHRONIC THYROIDITIS	Total	
MARGINS	1.00	7	3	9	19
	2.00	36	2	0	41
Total	46	5	9		60

1-ILL DEFINED 2- WELL DEFINED

Based on the above table illdefined magin nodules go in favour of malignant and majority of the benign nodules show well-defined margins.In this study based on the margins it is significant to tell benign or malignant.

Halos

FNAC DIAGNOSIS* HALOS Cross tabulation

Halos	Total			
0	1	2	Total	
Hashimotos thyroiditis	15	0	0	15
Colloid goiter	14	18	0	32
Follicular adenoma	1	6	0	7
Papillary carcinoma of thyroid	0	1	4	5
Nonspecific thyroiditis	1	0	0	1
Total	31	25	4	60
The above table shows that incomplete halo is a feature of malignant nodule where as complete and no halo is feature of benign nodule .In this study it is significant to tell whether a nodule is either malignant or benign.

No of nodules

Count	USG DIAGNOSIS				Total
	BENIGN NODULE	MAUVAIT NODULE	CHRONIC THYROIDIS		
NO OF NODULES	SINGLE	18	2	0	20
	MULTIPLE	30	3	9	40
Total	48	5	9	60	

Based on the above table no of nodules does not show significant sensitiveness in identifying the nature of the thyroid disease (benign vs malignant vs thyroiditis).

Echotexture

Based on the above table malignant lesions shows markedly hypoechoic echotexture and benign lesions show wide variety of echotexture from anechoic, isoechoic, hyperechoic, hypoechoic to heteroechoic nature. By this we come to conclusion that most of the malignant lesions are hypoechoic in nature. Benign nodules show wide variety of echotexture.

FNAC DIAGNOSIS * ECHOPENICITY Crosstabulation

Echogenicity	Anechoic	Markedly hypoechoic	Hypoechoic	Isoechoic	Hyperechoic	Heteroechoic	Total
Hashimotos thyroiditis	0	0	15	0	0	0	15
Colloid goiter	7	0	6	3	15	1	32
Follicular adenoma	0	0	0	1	6	0	7
Papillary carcinoma of thyroid	0	3	2	0	0	0	5
Nonspecific thyroiditis	0	0	1	0	0	0	1
Total	7	3	24	4	21	1	60

Based on the above table malignant lesions shows markedly hypochoiceechotexture and benign lesions show wide variety of echotexture from anechoic, isoechoic, hyperechoic, hypoechoic to heteroechoic nature. By this we come to conclusion that most of the malignant lesions are hypoechoic in nature. Benign nodules show wide variety of echotexture.

Fig. Transverse ultrasound scans showing a well-defined solitary echogenic nodule in (R) lobe of thyroid suggestive of follicular neoplasm.
Calcification

The above table shows that most of the thyroid lesions show no calcification but in case of benign lesion macro calcifications are common, with malignant lesions it shows micro calcifications are common. Egg shell calcification shown equally in both benign and malignant lesion in the present study. There is a significant in the presence of calcification in diagnosing malignant from benign lesion.

Calcification Status	US Diagnosis			
	Benign Nodule	Malignant Nodule	Chronic Thyroids	Total
No Calcification	36	3	0	39
EGG SHELL CALCI	1	1	0	2
Micro Calcification	0	1	0	1
Macro Calcification	6	0	0	6
Total	44	5	0	50

Lymph node status: In this all the malignant nodule showed lymph node involvement while benign and inflammatory nodules did not show lymph node involvement in this study we did Detailed study was not done due to small sample size.

Ultra-sonogram versus FNAC

Above table shows high frequency ultra-sonogram shows significant p value (0.0001) suggesting that based on the grey scale features (Shape, margin, echotexture, halo and calcification) is 100 % sensitive in diagnosing benign lesions like colloid goiter, follicular adenoma),malignant (papillary carcinoma) and chronic inflammatory conditions like hashimotos thyroiditis.

Color Doppler

Color Doppler Grades	US Diagnosis					
	Hashimoto Thyroids	Colloid Goitre	Follicular Adenoma	Papillary Carcinoma	Non Specific Thyroid	Total
No Significant Vascularity	14	23	0	3	3	40
Significant Peripheral Vascularity	3	21	0	3	2	31
Significant Internal Vascularity	0	0	0	0	0	0
Significant Internal Vascularity	0	0	0	0	0	0
Total	16	34	0	1	1	42
The above table shows that malignant lesions show significant internal vascularity when compared to benign (colloid, follicular adenoma) showed significant peripheral vascularity. Whereas thyroiditis showed both peripheral and internal vascularity. as per p value 0.0003 thyroid nodule vascularity is significant in diagnosing benign and malignant thyroid lesions as well as thyroiditis.

Receiver operating characteristics curve shows relationship between sensitivity and specificity of RI for each cut off value.

The above table shows resistive index is significant parameter to diagnose benign and malignant. RI value >0.75 is in favor of malignant and RI value < 0.75 goes in favor of benign (follicular, colloid goiter) and thyroiditis (hashimotos and non-specific).
Discussion
As thyroid nodule is one of the presentations in the spectrum of thyroid lesions it becomes essential to identify malignant condition by using reliable investigations\cite{20}. The exact pathology of the thyroid nodule is characterized by Tru-cut biopsy. Old studies indicate that it is not necessary to do FNAC for all incidentally diagnosed thyroid nodules because cost and unpractical. Nodules which show features suggestive of malignancy in ultrasound are subjected to needle aspiration. In my study age and sex did not show any significant p values though there was female sex predominance in both benign and malignant nodules but it did not show any importance in differentiating benign from malignant but there are some studies which showed that age and sex significant\cite{2,5,21}. In my study number of nodules did not show any prediction of malignancy size criteria was not included in this study as such in some of the studies done earlier also stated that number and size of the nodules did not matter\cite{2,5,21}. Whereas the echotexture of the nodule shows that more the hypoechoic in nature it signifies malignancy and this was substantiated one of the studies\cite{5}. While anechoic nature goes in favor of the benign nodule which could not be justified in some of the older studies\cite{9}. In this study there were significant p values (<0.05) for the following USG features margins, micro calcification, halo showed that based on the earlier said features it was able predict and diagnose thyroid nodule as benign or malignant which was later confirmed with the biopsy\cite{5, 20, 22}. The importance of color Doppler investigations as shown by many older studies it is affected by PRF, filter, position of the nodule, swallowing, respiratory movements and noncooperation of the patient however recent studies showed it did not matter that color Doppler are able to predict benign and malignant nodules as well as chronic thyroiditis\cite{5,10,19}. In this study malignant nodules showed significant intra nodular vascularity which is supported by the study done by Mohammad et al.\cite{28} however there are studies which showed contradictory to the above said vascularity pattern such as Tamsel et al, Argalia et al.\cite{25,26,27}. RI assessment of thyroid nodule showed no interference either arterial course, angle of the probe and size of the nodule but however velocity of the blood flow is affected to an extent by the above said parameters. The present study shows higher RI values for malignant conditions. There are studies which showed similar results of higher RI values for malignancy, this was similar to the present study. As the study population is too small for the study it actually requires larger population to analysis comprehensively.

With the above findings the present study shows both ultra-sonogram and color Doppler investigations are significant in diagnosing benign and malignant nodules with accuracy rate of 100 % then either of them alone high frequency ultrasound (98%), color and RI spectral (94%).

Modality	SEN in %	SPE in %	PPV in%	Accuracy in %
USG	100	98.25	80	98.3
Color + RI	100	100	59.7	94.3

Study limitations
Elastography is not used because of non-availability in the USG equipment used for study. Recent studies show that Elastography features of thyroid are utilized for identifying malignant nodules based on the density parameter. Since our institution is located in economically backward place the study population is very limited and follow up of patients is difficult due to constant referral to other centers for further evaluation so post-operative Histo-pathological findings was not available for the comparison.

Conclusion
Color Doppler sonography is a safe, fast, inexpensive, popular, and cost-effective.
Repeatable noninvasive procedure for investigating thyroid gland. Because of the superficial location and good vascularization of the Thyroid gland, high resolution grayscale and color Doppler sonography can demonstrate normal thyroid anatomy and pathological conditions with remarkable clarity. Our experience demonstrates significantly improved sensitivity for highresolution ultrasound over other investigations for the anatomic characterization of thyroid lesions. Ultrasound is valuable for identifying many malignant or potentially malignant thyroid nodules. Although there is some overlap between the ultrasound appearance of benign nodules and that of malignant nodules, certain features are helpful in differentiating between the two. The newly developed high resolution ultrasonography with color doppler flow mapping function can reveal fine details of the thyroid gland and the hemodynamic features of thyroid neoplasms. Color flow doppler sonography is gaining importance for the functional evaluation of the thyroid disorders. Color flow Doppler sonography could differentiate the untreated Graves disease from the Hashimoto's thyroiditis, which has similar gray scale findings. Thyroid ultrasound differentiates solid from cystic lesions, solitary nodules from multinodular and diffuse enlargement, and extra thyroidal lesions. The other advantages of thyroid ultrasound are very accurate method of calculation of thyroid volume. Finely in selected cases, direction of fine needle aspiration biopsy can be best accomplished with sonography.

References

1. Popli MB, Rastogi A, Bhalla P, Solanki Y. Utility of gray-scale ultrasound to differentiate benign from malignant thyroid nodules. Indian J Radiol Imaging. 2012;22(1):63-68.
2. Papini E, Guglielmi R, Bianchini A, Crescenzi A, Taccogna S, Nardi F, et al. Risk of malignancy in nonpalpable thyroid nodules: predictive value of ultrasound and color-Doppler features. J Clin Endocrinol Metab. 2002;87(5):1941-46.
3. Bruneton JN, Balu-Maestro C, Marcy PY, Melia P, Mourou MY. Very high frequency (13 MHz) ultrasonographic examination of the normal neck: detection of normal lymph nodes and thyroid nodules. J Ultrasound Med. 1994;13(2):87-90.
4. Brander AE, Viikinkoski VP, Nickels JJ, Kivisaari LM. Importance of thyroid abnormalities detected at US screening: a 5-year follow-up. Radiology.2000;215(3):801-06.
5. Algin O, Algin E, Gokalp G, Ocakoglu G, Erdogan C, Saraydaroglu O, et al. Role of duplex power Doppler ultrasound in differentiation between malignant and benign thyroid nodules. Korean J Radiol. 2010;11(6):594-602.
6. Ross DS. Nonpalpable thyroid nodules--managing an epidemic. J Clin Endocrinol Metab. 2002;87(5):1938-40.
7. Maciel RM. Thyroid ultrasound: beyond the diagnosis of thyroid nodules. Arch Endocrinol Metab. 2015;59(6):479-81.
8. Marqusee E, Benson CB, Frates MC, Doubilet PM, Larsen PR, Cibas ES, et al. Usefulness of ultrasonography in the management of nodular thyroid disease. Ann Intern Med. 2000;133(9):696-700.
9. Iannuccilli JD, Cronan JJ, Monchik JM. Risk of malignancy of thyroid nodules assessed by sonographic criteria: The need for biopsy. J Ultrasound Med. 2004;23(11):1455-64.
10. Bakhshae M, Davoudi Y, Mehrabi M, Layegh P, Mirsadaee S, Rad MP, et al. Vascular pattern and spectral parameters of power Doppler ultrasound predictors of malignancy risk in thyroid nodules. Laryngoscope.2008;118(12):2182-86.
12. Peccin S, de Castro JA, Furlanetto TW, Furtado AP, Brasil BA, Czepielewski MA. Ultrasonography: is it useful in the diagnosis of cancer in thyroid nodules? J Endocrinol Invest. 2002;25(1):39-43.

13. Frates MC, Benson CB, Charboneau JW, Cibas ES, Clark OH, Coleman BG, et al. Society of Radiologists in Ultrasound. Management of thyroid nodules detected at US: Society of Radiologists in Ultrasound consensus conference statement. Radiology. 2005;237(3):794-800.

14. Appetecchia M, Solivetti FM. The association of color flow Doppler sonography and conventional ultrasonography improves the diagnosis of thyroid carcinoma. Horm Res. 2006;66(5):249-56.

15. Wienke JR, Chong WK, Fielding JR, Zou KH, Mittelstaedt CA. Sonographic features of benign thyroid nodules: interobserver reliability and overlap with malignancy. J Ultrasound Med. 2003;22(10):1027-31.

16. Stacul F, Bertolotto M, De Gobbis F, Calderan L, Cioffi V, Romano A, et al. US color-Doppler US and fine-needle aspiration biopsy in the diagnosis of thyroid nodules. Radiol Med. 2007;112(5):751-62.

17. Moon HJ, Kwak JY, Kim MJ, Son EJ, Kim EK. Can vascularity at power Doppler US help predict thyroid malignancy? Radiology. 2010; 255(1): 260-69.

18. Frates MC, Benson CB, Doubilet PM, Kunreuther E, Contreras M, Cibas ES, et al. Prevalence and distribution of carcinoma in patients with solitary and multiple thyroid nodules on sonography. J Clin Endocrinol Metab. 2006;91(9):3411-17.

19. Chammas MC, Gerhard R, de Oliveira IR, Widman A, de Barros N, Durazzo M, et al. Thyroid nodules: evaluation with power Doppler and duplex Doppler ultrasound. Otolaryngol Head Neck Surg. 2005;132(6):874-82.

20. Jena A, Patnayak R, Prakash J, Sachan A, Suresh V, Lakshmi AY. Malignancy in solitary thyroid nodule: A clinicoradiopathological evaluation. Indian J Endocrinol Metab. 2015;19(4):498-503.

21. Kim EK, Park CS, Chung WY, Oh KK, Kim DI, Lee JT, et al. New sonographic criteria for recommending fine-needle aspiration biopsy of nonpalpable solid nodules of the thyroid. AJR Am J Roentgenol. 2002;178(3):687-91.

22. Kovacevic DO, Skurla MS. Sonographic diagnosis of thyroid nodules: correlation with the results of sonographically guided fine-needle aspiration biopsy. J Clin Ultrasound. 2007; 35(2):63-67.

23. Koike E, Noguchi S, Yamashita H, Murakami T, Ohshima A, Kawamoto H, et al. Ultrasonographic characteristics of thyroid nodules: prediction of malignancy. Arch Surg. 2001; 136(3):334-37.

24. Wong KT, Ahuja AT. Ultrasound of thyroid cancer. Cancer Imaging. 2005;5(1):157–66.

25. Argalia G, D’Ambrosio F, Lucarelli F, Mignosi U, Giuseppetti GM, Passarini G, et al. Echo Doppler in the characterization of thyroid nodular disease. Radiol Med. 1995; 89(5): 651-57.

26. Tamsel S, Demirpolat G, Erdogan M, Nart D, Karadeniz M, Uluer H, et al. Power Doppler US patterns of vascularity and spectral Doppler US parameters in predicting malignancy in thyroid nodules. Clin Radiol. 2007; 62(3):245-51.

27. Rosario PW, Silva AL, Borges MA, Calsolari MR. Is Doppler ultrasound of additional value to gray-scale ultrasound in differentiating malignant and benign thyroid nodules? Arch Endocrinol Metab. 2015; 59(1):79-83.
28. Mohammadi A, Hajizadeh T. Evaluation of diagnostic efficacy of ultrasound scoring system to select thyroid nodules requiring fine needle aspiration biopsy. *Int J ClinExp Med*. 2013; 6(8):641-48.

29. De Nicola H, Szejnfeld J, Logullo AF, Wolosker AM, Souza LR, Chiferi V. Flow pattern and vascular resistive index as predictors of malignancy risk in thyroid follicular neoplasms. *J Ultrasound Med*. 2005; 24(7): 897-904.

30. Ivanac G, Brkljacic B, Ivanac K, Huzjan R, Skreb F, Cikara I. Vascularisation of benign and malignant thyroid nodules: CD US evaluation. *Ultraschall Med*. 2007; 28(5): 502-06.