Supporting Information

Simple Preparation of Porous Carbon Supported Ruthenium: Propitious Catalytic Activity in the Reduction of Ferrocyanate(III) and Cationic Dye

Pitchaimani Veerakumar,*†§ Kamaraj Salamalai,‡ Pounraj Thanasekaran,∥ King-Chuen Lin*†§

†Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
§Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
‡Department of Mechanical Engineering, PSN Institute of Technology and Science, Tirunelveli-627152, Tamil Nadu, India
∥Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan

Corresponding Authors

*E-mail: spveerakumar@gmail.com; Tel.: +886-2-2366-8230; Fax: +886-2-2362-0200

* E-mail: kclin@ntu.edu.tw; Tel.: +886-2-3366-1162; Fax: +886-2-2362-1483
Catalyst Characterization. Powder X-ray diffraction (XRD) measurements were performed on the PANalytical (X’Pert PRO) instrument using a Cu Kα radiation (λ = 0.1541 nm). HRTEM observations were performed on a Philips Tecnai F20 G2 FEI-TEM electron microscope at an acceleration voltage of 200 kV. TEM samples were prepared on lacey carbon on 400 mesh copper grids. A drop of sample (5 µL) was deposited on the grid and left to air-dry. To quantify the loading of Ru, an inductively coupled plasma atomic-emission spectrometry (ICP-AES) was used. (Spectro Ciiros Vision, Germany). N₂ adsorption/desorption isotherms were measured using a physisorption apparatus (Micromeritics, ASAP 2020). Moreover, microwave heating was performed by using Milestone’ START (power 300 W) instrument. H₂ pulse chemisorption for metal dispersion of all samples was performed utilizing an Autochem-2920 instrument. The amount of H₂ uptake during the reduction was measured continuously with a thermal conductivity detector (TCD) and the corresponding Ru dispersion in each catalyst sample was derived, given an assumption of a complete Ru reduction with the stoichiometry of H/Ru₂ = 2. All Fourier-transform infrared (FT-IR) spectra were recorded by a Bruker IFS28 spectrometer in the region of 4000–400 cm⁻¹ with a spectral resolution of 2 cm⁻¹ using KBr pellet method at room temperature. Thermogravimetric and differential thermal analysis (TG-DTA) measurements were performed on a Netzsch TG-209 instrument under air atmosphere. The absorption spectra were recorded with a Thermo Scientific evolution 220 UV–visible spectrophotometer. Gas chromatography/mass spectrometry (GC/MS) analyzer (Agilent 7890B GC system) equipped with a DB-5MS capillary column (30 m, 0.25 mm i.d., 0.25 µm-phase thickness; Agilent J&W Scientific), connected to an Agilent 5977A Mass Spectrometer was carried out.

Ruthenium Dispersion Measurements. Approximately, a 100 mg of catalyst was placed in a U-shaped quartz tube along with a thermocouple in a temperature-controlled furnace. The Ru dispersions of Ru@PDC sample was measured by hydrogen chemisorption. Prior to each measurement, the sample was pretreated by argon gas with a flow rate of 30 mL min⁻¹ at 623 K for 2 h to remove impurities. Then, the system was cooled to room temperature. At first H₂ adsorption isotherm (flow rate: 10% H₂/Ar gas mixture and a heating rate of 10 °C min⁻¹) was measured after the sample was cooled to 323 K, followed by outgassing for one hour to obtain a second H₂ adsorption isotherm under the same conditions.
The metal dispersion can be calculated based on monolayer coverage of H\(_2\) chemisorption as given in eqn (1)\(^{S1}\)

\[
D = \left(\frac{V_m}{22414} \right) \times S \times M_w \times \left(\frac{100}{X_m} \right)
\]

(1)

In which \(D\) is the dispersion in \%, \(V_m\) the mono-layer coverage in cm\(^3\) g\(^{-1}\), \(S\) the stoichiometric factor of H\(_2\) to Ru atoms (S=2), \(M_w\) the molar weight of ruthenium (101.07 g mol\(^{-1}\)), and \(X_m\) the weight fraction of metal on the catalyst. So, a value of \(D = 6.01\%\) was calculated for the dispersion of Ru in the 4.01% wt. Ru@PDC sample.

Table S1. Dispersion and average crystallite size for Ru-based catalysts based on H\(_2\) chemisorption analysis.

Catalyst	Ru content (wt.%)	Size (nm)	H\(_2\) uptake (\(\mu\)mol g\(^{-1}\))	Dispersion\(^a\) (H/Ru)	Ref
Ru/Carbon black	4.7	4.4	47	4.6	S2
Ru/\(\gamma\)-Al\(_2\)O\(_3\)	5.0	6.3	26	11.8	S3
Ru/\(\gamma\)-Al\(_2\)O\(_3\)	1.5	NR\(^b\)	39.0\(\pm\)1.5	NR	S4
Colloidal Ru/\(\gamma\)-Al\(_2\)O\(_3\)	5.1	2.2	70	0.28	S5
Ru/ACC	3.0	2.5	NR	32.0	S6
Ru/MOC-900	1.5	3.0	NR	3.1	S7
Ru/CeO\(_2\)	1.0	1.9	14.9	0.15	S8
Ru/TiO\(_2\)	4.8	NR	NR	0.26	S9
Ru-K/AC	4.0	5.9	42.4	21.4	S10\(^c\)
Ru@PDC	4.01	5 \(\pm\) 0.2	63.2	6.01	This work

\(^a\)Calculated from equation (1). \(^b\)Not reported. \(^c\)At 400\(^\circ\)C and 3.0 MPa.

Inductively Coupled Plasma Atomic-Emission Spectrometry (ICP-AES). The ruthenium content was quantitatively estimated by inductively coupled plasma atomic-emission spectrometry (ICP-AES). Typically, a 10 mg of Ru@PDC was treated with aqua-regia by evaporating to dryness. The process was repeated at least for 5 times, and the final 50 mL solution was made in dil. HCl medium. Similarly, another two sets were prepared. The average
concentration of Ru was estimated from these three set of solutions. The average Ru content (4.01wt%) was then calculated.

Figure S1. The pore-size distributions for as-prepared samples.

Figure S2. Typical SEM images of (a-f) the pristine PDC-800 sample with different magnifications.
Figure S3. Typical FE-TEM images of pristine PDC-600, (a,b) and PDC-700 samples (c,d) with different magnifications.

Figure S4. Histogram of particle size distribution for Ru NPs in Ru@PDC catalyst.

Figure S5. EDS analysis of Ru@PDC catalyst.
Figure S6. (a) FT-IR spectra of waste plastic derived carbons at different temperatures (PDC-600, PDC-700 and PDC-800) and Ru@PDC samples, and (b) Ru@PDC catalyst dispersed in DI water.

Figure S7. FE-SEM images of carbon spheres produced from various carbon sources, (a) HDPE, (b) LDPE, (c) PC and (d) PET carbonization at 800 °C under same experimental conditions.
Figure S8. TEM images of carbon spheres produced from various carbon sources, (a,b) HDPE, (c,d) LDPE, and (e-h) PC carbonization at 800 °C under same experimental conditions.

Figure S9. XRD patterns of carbon produced from various carbon sources, (a) HDPE, (b) LDPE, and (c) PC carbonization at 800 °C.

Figure S10. UV-Visible absorption spectra of $\text{K}_3[\text{Fe(CN)}_6]$ in the absence of (a) NaBH_4 and (b) Ru@PDC catalyst.
Figure S11. UV-Visible absorption spectra of K₃[Fe(CN)₆] in the (a) absence of catalyst, (b) presence of 1.0 mg of Ru@PDC catalyst, and (c) presence of 2.0 mg of Ru@PDC catalyst by Na₂S₂O₃.

Figure S12. Plot of rate constant against different amounts of Ru@PDC catalyst under same experimental conditions.

Carbon Yield Calculation. The mass yield of the carbon is defined as the ratio of the mass of the resultant carbon to that of the mass of the precursor plastics taken, with both masses being measured on a dry basis and expressed in percentage (%) using equation (2) as follows:

\[
\text{Yield of carbonization (\%)} = \frac{M_2}{M_0} \times 100 \quad (2)
\]

where \(M_0 \) is the mass of the precursor waste plastics and \(M_2 \) is the mass of the carbon on a dry basis.
Chemical and Elemental Composition Analyses. We quantify chemical composition by gas chromatography/mass spectrometry (GC/MS) analyzer (Agilent 7890B GC system) equipped with a DB-5MS capillary column (30 m, 0.25 mm i.d., 0.25 µm-phase thickness; Agilent J&W Scientific), connected to an Agilent 5977A Mass Spectrometer. The elemental analysis results showed that PET contains more carbon, nitrogen and hydrogen, but less sulphur than those of other samples (Table S2). All chemical intermediates were identified by comparing with authentic samples while using biphenyl as an internal standard, to understand the reaction pathway. In addition, the elemental composition of PDC derived from waste PET plastic bottles at different temperatures was examined by CHN/O analysis, as shown in Table S3 and S4. This analysis was done using the Elemental Analyzer (Perkin Elmer, Series II 2400) to evaluate the percentage of carbon, hydrogen, and oxygen value, determined by difference, according to previous literature.511

Table S2. Chemical Composition of Waste Plastics.

Chemical name	LDPE^a	HDPE^b	PC^c	PET^d
Toluene	34.18	44.02	44.02	46.43
Naphthalene	3.82	7.28	15.82	26.76
Anthracene	20.49	20.41	7.24	11.14
Pyrene	9.26	7.21	5.64	6.84
Biphenyl	7.93	6.65	6.51	7.32
Fluorene	1.15	1.06	1.12	1.63
Others	n/d^e	n/d	n/d	n/d

^aLow-density polyethylene. ^bHigh-density polyethylene. ^cPolyacrylate. ^dPolyethylene terephthalate. ^eNot detected.

Table S3. Elemental Composition of Carbon Products Prepared Using Waste Plastics.

Type of plastic	Elemental composition (%)						
	C	H	O	N	S	Cl	Others
LDPE^a	68.910	12.370	12.431	0.480	1.922	0.980	n/d^e
HDPE^b	68.891	9.131	14.612	0.821	1.290	1.242	n/d
PC^c	67.561	4.940	23.012	0.422	0.713	2.121	n/d
PET^d	69.920	4.041	23.491	0.613	0.731	0.232	n/d

^aLow-density polyethylene. ^bHigh-density polyethylene. ^cPolyacrylate. ^dPolyethylene terephthalate. ^eNot detected.
Table S4. Elemental Analysis of PDCs and Ru@PDC Samples.

Sample	Elemental composition (%)						Ru (wt%)
Char	70.010	4.101	2.140	23.201	0.424	n/d	n/d
PDC-600b	69.001	4.062	2.061	23.110	n/d	n/d	n/d
PDC-700b	69.689	3.311	1.129	23.061	n/d	n/d	n/d
PDC-800b	69.407	3.161	1.077	22.291	n/d	n/d	n/d
Ru@PDCb	69.321	2.124	0.965	22.145	n/d	n/d	4.01

*a Before activation. b After activation. c Not detected. d Ru content was calculated using ICP-AES technique.

Table S5. Effect of Carbonization Temperature and Yield of Carbon Using Waste Plastics.

Samples	Carbonization temperature ($T_c, °C$)	Yield (%)a	Activation temperature ($T_a, °C$)	Yield (%)b	S_{BET}^c (m² g⁻¹)
PDC-600	300	71.6	600	63.7	97.6
PDC-700	300	67.2	700	58.1	294.2
PDC-800	300	64.5	800	54.8	466.7

*a Yield was calculated after ZnCl₂ carbonization. b Yield was calculated after CO₂ activation. c Surface area determined after CO₂ activation.

The carbon yields under different carbonization conditions are summarized in Table S5. It can be seen that the yields are very different after ZnCl₂ carbonization. The largest yield is 71.6% for PDC-600 and the smallest yield is 64.5% for PDC-800. Compared to ZnCl₂ carbonization (data not shown), CO₂ activation generally results in larger surface areas and micropore volumes (determined by N₂ adsorption). However, a slight decrease in yield is observed for PDC-800 carbon sample. It is expected that at the carbonization temperature of 600 °C and above, the extensive growth of graphene layers occurs mainly due to the intermolecular crosslinking of polymer chains containing highly organized aromatic rings. Consequently, the decrease in yield is observed due to the formation of simple organic moieties, which are easily volatile during the carbonization at high temperature conditions. In addition, CO₂ activations also result in the large surface area, high porosity and thickening of the graphene planes. The formation of such structures allows for more graphene planes, which eventually enhance the catalytic active...
properties of the resultant PDCs. In other words, it can be inferred that a fast heating rate and slow CO\textsubscript{2} flow rate are appropriate to produce high surface area carbons yield.S13

Carbon Supported Other Heterogeneous Catalysts. The results for the various supported metal catalysts are shown in Table S7. To prove the competence of the catalytic activity of Ru@PDC, the reduction of Fe(CN)\textsubscript{6}3− was performed using various carbon supported heterogeneous metal catalysts, such as Fe\textsubscript{3}O\textsubscript{4}@PDC, Co\textsubscript{3}O\textsubscript{4}@PDC, NiO@PDC, MnO\textsubscript{2}@PDC and CuO@PDC, under identical conditions. The average crystal size of the metal nanoparticles was calculated by the Scherrer formula, and determined by XRD spectra (data not shown). The performance of other catalyst results is listed in Table S7. Among them, Fe\textsubscript{3}O\textsubscript{4}@PDC, Co\textsubscript{3}O\textsubscript{4}@PDC and MnO\textsubscript{2}@PDC (Table S7, entry 1 and 2) showed a very poor catalytic activity with a lower conversion, whereas the other catalysts (Table S7, entry 3–5) are less active compared to Ru@PDC catalyst in the Fe(CN)\textsubscript{6}3− reduction. Based on these observations, we inferred that the presence of an active small Ru NPs (5 ± 0.2 nm) on PDC support (Ru@PDC) are responsible for the high catalytic activity in the presence of the NaBH\textsubscript{4} at room temperature.

Table S6. Different Catalysts in the Reduction of K\textsubscript{3}[Fe(CN)\textsubscript{6}].

entry	catalyst	size (nm)a	time (s)	reductant	k (s-1)	TOF (s-1)	Conversion (%)
1	Fe\textsubscript{3}O\textsubscript{4}@PDC	25-35	50	NaBH\textsubscript{4}	0.018	6.0 × 10-5	28
2	Co\textsubscript{3}O\textsubscript{4}@PDC	33-35	50	NaBH\textsubscript{4}	0.021	6.0 × 10-5	33
3	NiO@PDC	34.5	45	NaBH\textsubscript{4}	0.046	6.66 × 10-5	41
4	MnO\textsubscript{2}@PDC	23-26	41	NaBH\textsubscript{4}	0.056	7.31 × 10-5	47
5	CuO@PDC	22-24	45	NaBH\textsubscript{4}	0.061	6.66 × 10-5	55
6	Ru@PDC	5 ± 0.2	30	NaBH\textsubscript{4}	0.1011	5.0 × 10-5	98

aReaction conditions: [K\textsubscript{3}Fe(CN)\textsubscript{6}] (3 × 10-3 M; 3 mL), catalyst (1.0 mg), NaBH\textsubscript{4} (0.04 M; 0.2 mL), RT. bThe average crystallite size was estimated from Scherrer’s equation.
catalyst	size	catalyst	time	reductant	rate constant (k)	TOF (min\(^{-1}\))	ref	
Au NPs\(^{a}\)	3 ± 4	50–150 µL	18	NaBH\(_4\)	0.24	0.72	S14	
Pt NNs\(^{b}\)	60–100	50	60	Na\(_2\)S\(_2\)O\(_3\)	9.1 ± 0.7 × 10\(^{-3}\)	1 × 10\(^{-2}\)	S15	
Pt NBs\(^{c}\)	60–100	50	60	Na\(_2\)S\(_2\)O\(_3\)	16.9 ± 0.6 × 10\(^{-2}\)	1 × 10\(^{-2}\)	S15	
Pd/GPDA\(^{d}\)	2	5 µg	75 s	NaBH\(_4\)	2.330 × 10\(^{-2}\) s\(^{-1}\)	7.8 × 10\(^{8}\) s\(^{-1}\)	S16	
Au@Boehmite	15–40	1 cm\(^2\) × 1.9 µm	32	NaBH\(_4\)	0.103	NR	S18	
Au/Boehmite	15–40	1 cm\(^2\) × 1.9 µm	70	Na\(_2\)S\(_2\)O\(_3\)	3.12 × 10\(^{-3}\)	NR	S18	
Spherical Au NPs	15.2 ± 2.5	2.28 × 10\(^{-10}\) M	60 s	NaBH\(_4\)	9.22 × 10\(^{-2}\) s\(^{-1}\)	1.36 × 10\(^{5}\) s\(^{-1}\)	S19	
ce-MoS\(_2\)\(^{f}\)	>100	22 µM	30	NaBH\(_4\)	53 ± 7 × 10\(^{-2}\) s\(^{-1}\)	392 ± 32	S20	
Fe\(_3\)O\(_4\)@Au NS\(^{h}\)	5	2.8	240	NaBH\(_4\)	18.65 × 10\(^{-3}\) s\(^{-1}\)	1.1 × 10\(^{-2}\)	S21	
Fe\(_3\)O\(_4\)@Au HS\(^{i}\)	25–30	2.8	150	NaBH\(_4\)	36.55 × 10\(^{-3}\) s\(^{-1}\)	7.14 × 10\(^{-3}\)	S21	
Au@(NIPAM-Am)	36 ± 5	1.8 × 10\(^{15}\) Au-atom mL\(^{-1}\)	40	NaBH\(_4\)	1.9 × 10\(^{-2}\)	0.1	S22	
G\(^{j}\)-Pd	18.8	1.0	5	NaBH\(_4\)	9.5 × 10\(^{-3}\) s\(^{-1}\)	4 × 10\(^{-2}\)	S23	
G-Pt	2.5	1.0	5	NaBH\(_4\)	2.1 × 10\(^{-2}\) s\(^{-1}\)	2 × 10\(^{-2}\)	S23	
G-Au	15.6	1.0	5	NaBH\(_4\)	1.2 × 10\(^{-2}\) s\(^{-1}\)	3.6 × 10\(^{-2}\)	S23	
G-Ag	48.2	1.0	5	NaBH\(_4\)	2.6 × 10\(^{-2}\) s\(^{-1}\)	1.6 × 10\(^{-2}\)	S23	
CNT\(^{k}\)/Pt\(_{x}\) hybrid	3	0.40	60	NaBH\(_4\)	0.0820 s\(^{-1}\)	1.35 × 10\(^{-3}\)	S24	
CNT/Pt\(_{x}\) hybrid	20	2.4	70	NaBH\(_4\)	0.0580 s\(^{-1}\)	2.62 × 10\(^{4}\)	S24	
Fe\(_3\)O\(_4\)@GNS\(^{l}\)	2	0.3 mL	1	NaBH\(_4\)	NR	NR	S25	
Stock Numbers	Material	Concentration	Activity	Contact Time	Active Mass	Discharge	Voltage	
---------------	----------	---------------	----------	--------------	-------------	-----------	---------	
GHNSs"		20–25	1.0	225 s	NaBH₄	17.66 × 10⁻³ s⁻¹	6.664 × 10⁻³	S26
Pt-HPNTs"		>100	2.0 g L⁻¹	7.5	NaBH₄	NR	3.75 × 10⁻²	S27
PDCA"--AuNPs		4.5 ± 0.6	10µL	3	NaBH₄	NR	7.5 × 10⁻³	S28
NiWO₄" NPs		20 ± 5	250	240	Na₂S₂O₃	0.0064	9.6 × 10⁻⁴	S29
Au@pNIPAM"		58.2 ± 4.6	1.34 × 10⁻¹² M	80s	NaBH₄	0.08 s⁻¹	NR	S30
Fe₃O₄@Pd NPs		20	25 µL	150	NaBH₄	22.50 × 10⁻³ s⁻¹	3.28 × 10⁻² s⁻¹	S31
Fe₃O₄@Au--Pd NPs		25–30	25 µL	90s	NaBH₄	36.06 × 10⁻³ s⁻¹	8.78 × 10⁻² s⁻¹	S31
PEGDMA"@AuNP		8–10	0.1	20	NaBH₄	0.837	3.0	S32
Ni(P₄Mo₆O₃₁)₂		NR	3.16 × 10⁻⁶ M	180	Na₂S₂O₃	6.35 × 10⁻³	2.49 × 10⁻³ s⁻¹	S33
Cd(P₂Mo₆O₃₁)₂		NR	3.22 × 10⁻⁶ M	150	Na₂S₂O₃	13.16 × 10⁻³	3.52 × 10⁻³ s⁻¹	S33
Cd₄(Cd(P₂Mo₆O₃₁)₂		NR	5.53 × 10⁻⁶ M	180	Na₂S₂O₃	9.43 × 10⁻³	1.46 × 10⁻³ s⁻¹	S33
Mn-Phosphomolybate		NR	20	150	Na₂S₂O₃	1.5 × 10⁻³	7.5 × 10⁻³	S34
RuNPs		NR	1.0	45s	NaBH₄	0.0612 s⁻¹	6.66 × 10⁻⁵ s⁻¹	this work
Ru/C		NR	1.0	45s	NaBH₄	0.021 s⁻¹	6.66 × 10⁻⁵ s⁻¹	this work
Ru@PDC		5 ± 0.2	1.0	30s	NaBH₄	0.0842 s⁻¹	1.0 × 10⁻⁴ s⁻¹	this work
Ru@PDC		5 ± 0.2	2.0	30s	NaBH₄	0.1011 s⁻¹	5.0 × 10⁻⁵ s⁻¹	this work
Ru@PDC		5 ± 0.2	1.0	30s	Na₂S₂O₃	0.0932 s⁻¹	1.0 × 10⁻⁴ s⁻¹	this work
Ru@PDC		5 ± 0.2	2.0	30s	Na₂S₂O₃	0.1164 s⁻¹	5.0 × 10⁻⁵ s⁻¹	this work

"Gold nanoparticles. "Platinum nanonets. "Platinum nanoballs. "Graphene-polydopamine. "Imidazole and institute of functional material chemistry. "Chemically exfoliated molybdenum disulfide. "Iron oxide. "Gold nanoseeds. "Gold hollow sphere. "Graphene. "Carbon nanotubes. "Graphene nanosheets. "Gold hollow nanospheres. "Hollow porous nanotubes. "2,6-Pyridinedicarboxylic acid. "Nickel tungstate. "Poly(N-isopropylacrylamide). "Poly(ethylene glycol dimethacrylate). "NR = Not reported
Order of the Reaction. Chen et al. reported that the order of the reaction can be expressed as follows:

\[-dC_A/dt = k^s(K_AC_A)^m/1+(K_AC_A)^m = kC_A^n\] \hspace{1cm} (3)

where \(n\) refers to the apparent order of reaction with respect to the \([K_3Fe(CN)_6]\), and \(k\) can be defined as:

\[k = k^sK_AC_A^{m-n}/1+(K_AC_A)^m\] \hspace{1cm} (4)

When \(n \neq 1\), the definite integration of the differential equation (eq (4)) yields eq (5), where \(C_{A0}\) is the initial concentration of the reactant \([K_3Fe(CN)_6]\).

\[C_A^{1-n} = (n-1)k + C_{A0}^{1-n}\] \hspace{1cm} (5)

Importantly, eqn (5) can be used to quantitatively fit the curve \(C_A vs. t\) data, then the apparent reaction order, \(n\), and the apparent rate constant, \(k\), can be obtained.

Table S8. Kinetic Parameters for Ru@PDC Catalyst at Different Dosages.

catalyst (mg)	reaction time (s)	\(R_{ave}^{a}\) (mol s\(^{-1}\))	rate constant \((k, s\(^{-1}\))^{d}\)	\(n^{b}\)	TOF\(^{c}\) (mol mol\(^{-1}\) s\(^{-1}\))	correlation coefficient \((R^2)\)
0.25	30	\(1 \times 10^4\)	0.0686	0.90182	\(4.0 \times 10^4\)	0.9897
0.5	30	\(1 \times 10^4\)	0.0798	1.0672	\(2.0 \times 10^4\)	0.9864
1.0	30	\(1 \times 10^4\)	0.0942	1.3448	\(1.0 \times 10^4\)	0.9965
1.5	30	\(1 \times 10^4\)	0.1002	1.4388	\(6.66 \times 10^5\)	0.9981
2.0	30	\(1 \times 10^4\)	0.1011	2.5608	\(5.0 \times 10^5\)	0.9999
2.5	18	\(1.66 \times 10^4\)	0.1231	2.6438	\(6.66 \times 10^5\)	0.9977
3.0	15	\(2.0 \times 10^4\)	0.1335	2.6959	\(6.66 \times 10^5\)	0.9990

\(^{a}\)\(R_{ave}\) is defined by the initial moles of \([K_3Fe(CN)_6]\) over the overall reaction time. \(^{b}\)\(n\) is defined by the apparent order of reaction. \(^{c}\)TOF is the turnover frequency defined by the ratio of mole of \([K_3Fe(CN)_6]\) per mole of Ru@PDC catalyst in per second. \(^{d}\)\(k\) is defined by the rate constant.
Table S9. Chemical structure and some properties of NF dye

Property	Value
Common name	New fuchsin, basic violet 2, magenta III, new magenta, fuchsin NB
IUPAC name	4-[(4-amino-m-tolyl)(4-imino-3-methylcyclohexa-2,5-dien-1-ylidene)methyl]-o-toluidine monohydrochloride
Class	Triarylmethane
Appearance	Green powder
Empirical formula	C\(_{22}\)H\(_{24}\)N\(_{4}\)Cl
Solubility in water	1.13%
Solubility in ethanol	3.2%
Molecular weight (g mol\(^{-1}\))	365.90
Color in water	Red
\(\lambda_{\text{max}}\) (nm)	553 nm
Molecular structure	![Molecular structure](image)

REFERENCES

S1. Shen, X.; Garces, L. J.; Ding, Y.; Laubernds, K.; Zerger, R. P.; Aindow, M.; Neth, E. J.; Suib, S.L. Behavior of H\(_2\) chemisorption on Ru/TiO\(_2\) surface and its application in evaluation of Ru particles compared with TEM and XRD analysis. *Appl. Catal., A.* 2008, 335, 187–195.

S2. Rodriguez-Ramos, I.; Reinoso, F.R.; Guerrero-Ruiz, A.; Lopez-Gonzalez, J.D.; Hydrogenation of CO and CO\(_2\) on carbon black-supported Ru catalysts. *J. Chem. Tech. Bioiechnol.* 1986, 36, 67–73.
S3. Masthan, S.K.; Chary, K.V.R.; Kanta Rao, P. Measurement of surface dispersion of ruthenium on $\gamma\text{Al}_2\text{O}_3$ support by low-temperature oxygen chemisorption (LTOC) technique. *J. Calal.* 1990, 124, 289–292.

S4. Berndt, H.; Muller, U. Determination of the surface area of dispersed ruthenium by reactive nitrous oxide chemisorption. *Appl. Catal. A.* 1999, 180, 63–69.

S5. Okal, J.; Zawadzki, M.; Kepinski, L.; Krajczyk, L.; Tylus, W. The use of hydrogen chemisorption for the determination of Ru dispersion in Ru/γ-alumina catalysts. *Appl. Catal. A.* 2007, 319, 202–209.

S6. Sulman, E.M.; Yu. V.; Doluda, Matveeva, V.G.; Grigorev, M.E.; Sulman, M.G.; Bykov, A.V. Ru-containing catalysts in hydrogenation of D-glucose in flow-type microreactor. *Chem. Eng. Trans.* 2016, 52, 673–678.

S7. Lou, B.-S.; Veerakumar, P.; Chen, S.-M.; Veeramani, V.; Madhu, R.; Liu, S.-B. Ruthenium nanoparticles decorated curl-like porous carbons for high performance supercapacitors. *Sci. Rep.* 2016, 6, 19949.

S8. Bedrane, S.; Descorme, C.; Duprez, D. An optimized route for the preparation of well dispersed supported ruthenium catalysts. *J. Mater. Chem.* 2002, 12, 1563–1567.

S9. Iglesia, E.; Soled, S. L.; Fiato, R.A. Fischer-Tropsch Synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity. *J. Catal.* 1992, 137, 212–224.

S10. Liang, C.; Wei, Z.; Xin, Q.; Li, C. Ammonia synthesis over Ru/C catalysts with different carbon supports promoted by barium and potassium compounds. *Appl. Catal. A.* 2001, 208, 193–201.

S11. Sains, U.; Sembilan, N. Preparation and characterization of activated carbon from desiccated coconut residue by potassium hydroxide. *Asian J. Chem.* 2015, 27, 2331–2336.

S12. Paredes, J. I.; Suarez-Garcia, F.; Martinez-Alonso, A.; Tascon, J. M. D.; A microscopic view of physical and chemical activation in the synthesis of porous carbons. *Langmuir* 2006, 22, 9730–9739.

S13. Suarez-Garcia, F.; Martinez-Alonso, A.; Tascon, J. M. D. Beneficial effects of phosphoric acid as an additive in the preparation of activated carbon fibers from nomex aramid fibers by physical activation. *Fuel. Process Technol.* 2002, 77-78, 237–244.
S14. Assefa, A. G.; Mesfin, A. A.; Akele, M. L.; Alemu, A. K.; Gangapuram, B. R.; Guttena, V.; Alle, M. Microwave-assisted green synthesis of gold nanoparticles using olibanum gum (Boswellia serrate) and its catalytic reduction of 4-nitrophenol and hexacyanoferrate(III) by sodium borohydride. *J. Clust. Sci.*, 2017, 28, 917–935.

S15. Ajit, M. K.; Kumar Sharma, K. K.; Anaïs, L.; Fabrice, A.; Hynd, R.; Saha, A.; Sharma, K. G. Investigation into the catalytic activity of porous platinum nanostructures. *Langmuir* 2013, 29, 11431–11439.

S16. Ma, J.-X.; Yang, H.; Li, S.; Ren, R.; Li, J.; Zhang, X.; Ma, J. Well-dispersed graphene-polydopamine-Pd hybrid with enhanced catalytic performance. *RSC Adv.*, 2015, 5, 97520–97527.

S17. Du, D.-Y.; Qin, J.-S.; Wang, T.-T.; Li, S.-L.; Su, Z.-M.; Shao, K.-Z.; Lan, Y.-Q.; Wang, X.-L.; Wang, E.-B. Polyoxometalate-based crystalline tubular microreactor: Redox-active inorganic–organic hybrid materials producing gold nanoparticles and catalytic properties. *Chem. Sci.* 2012, 3, 705–710.

S18. Jana, D.; Dandapat, A.; De, G. Anisotropic gold nanoparticle doped mesoporous Boehmite films and their use as reusable catalysts in electron transfer reactions. *Langmuir* 2010, 26, 12177–12184.

S19. Carregal-Romero, S.; Perez-Juste, J.; Herves, P.; Liz-Marzan, L. M.; Mulvaney, P. Colloidal gold-catalyzed reduction of ferrocyanate(III) by borohydride ions: A model system for redox catalysis. *Langmuir* 2010, 26, 1271–1277.

S20. Guardia, L.; Paredes, J. I.; Munuera, J. M.; Villar-Rodil, S.; Ayan-Varela, M.; Martínez-Alonso, A.; Tascon, J. M. D. Chemically exfoliated MoS$_2$ nanosheets as an efficient catalyst for reduction reactions in the aqueous phase. *ACS Appl. Mater. Interfaces* 2014, 6, 21702–21710.

S21. Xia, Q.; Fu, S.; Ren, G.; Chai, F.; Jiang, J.; Qu, F. Fabrication of Fe$_3$O$_4$@Au hollow spheres with recyclable and efficient catalytic properties. *New J. Chem.* 2016, 40, 818–824.

S22. Xiao, C.; Wu, Q.; Chang, A.; Peng, Y.; Xu, W.; Wu, W. Responsive Au@polymer hybrid microgels for the simultaneous modulation and monitoring of Au-catalyzed chemical reaction. *J. Mater. Chem. A* 2014, 2, 9514–9523.

S23. Kun, H. H.; Chao, G. Graphene nanosheets decorated with Pd, Pt, Au, and Ag nanoparticles: Synthesis, characterization and catalysis applications. *Sci. China Chem.* 2011, 54, 397–404.
S24. Sanles-Sobrido, M.; Correa-Duarte, M. A.; Carregal-Romero, S.; Rodriguez-Gonzalez, B.; Alvarez-Puebla, R. A.; Herves, P.; Liz-Marzan, L. M. Highly catalytic single-crystal dendritic Pt nanostructures supported on carbon nanotubes. *Chem. Mater.* **2009**, *21*, 1531–1535.

S25. Miao, X. M.; Wang, T. T.; Chai, F.; Zhang, X. L.; Wang, C. G.; Sun, W. D. A facile synthetic route for the preparation of gold nanostars with magnetic cores and their reusable nanohybrid catalytic properties. *Nanoscale* **2011**, *3*, 1189–1194.

S26. Xia, Q.; Su, D.; Yang, X.; Chai, F.; Wang, C.; Jiang, J. One pot synthesis of gold hollow nanospheres with efficient and reusable catalysis. *RSC Adv.* **2015**, *5*, 58522–58527.

S27. Wu, Z.; Ji, Y.; Zhai, Y.; Li, S.; Lee, J. The facile ionic liquid-assisted synthesis of hollow and porous platinum nanotubes with enhanced catalytic performances. *RSC Adv.* **2016**, *6*, 67290–67294.

S28. Yang, X.; Fu, S.; Ren, G.; Chai, F.; Qu, F. Facile preparation of 2,6-pyridinedicarboxylic acid protected gold nanoparticles with sensitive chromium ion sensing and efficient catalysis. *Eur. J. Inorg. Chem.* **2015**, *2015*, 5411–5418.

S29. Nithiyanantham, U.; Ede, S. R.; Anantharaj, S.; Kundu, S. Self-assembled NiWO4 nanoparticles into chain-like aggregates on DNA scaffold with pronounced catalytic and supercapacitor activities. *Cryst. Growth. Des.* **2015**, *15*, 673–686.

S30. Carregal-Romero, S.; Buurma, N. J.; Perez-Juste, J.; LizMarzan, L. M.; Herves, P. Catalysis by Au@pNIPAM nanocomposites: Effect of the cross-linking density. *Chem. Mater.* **2010**, *22*, 3051–3059.

S31. Xia, Q.; Fu, S.; Ren, G.; Chai, F.; Jiang, J.; Qu, F. Fabrication of magnetic bimetallic Fe3O4@Au–Pd hybrid nanoparticles with recyclable and efficient catalytic properties. *RSC Adv.* **2016**, *6*, 55248–55256.

S32. Chen, J.; Chen, F.; Wang, Y.; Wang, M.; Wu, Q.; Zhou, X.; Ge, X. One-step synthesis of poly(ethyleneglycol-dimethacrylate)-microspheres-supported nano-Au catalyst in methanol–water solution under γ-ray radiation. *RSC Adv.* **2016**, *6*, 55878–55883.

S33. Wang, W.; Han, Z.; Wang, X.; Zhao, C.; Yu, H. Polyaniionic clusters [M(P4Mo6O24)2] (M = Ni, Cd) as effective molecular catalysts for the electron-transfer reaction of ferricyanide to ferricyanide. *Inorg. Chem.* **2016**, *55*, 6435–6442.
S34. Gong, K.; Liu, Y.; Han, Z. Manganese-phosphomolybdate molecular catalysts for the electron transfer reaction of ferricyanide to ferricyanide. *RSC Adv.* **2015**, *5*, 47004–47009.

S35. Li, M.; Chen, G. Revisiting catalytic model reaction p-nitrophenol/NaBH$_4$ using metallic nanoparticles coated on polymeric spheres. *Nanoscale* **2013**, *5*, 11919–11927.