On HC-subgroups of a finite group*†

Lijun Huo, Xiaoyu Chen‡ Wenbin Guo

Department of Mathematics, University of Science and Technology of China,

Hefei, Anhui 230026, P. R. China

e-mails: ljhuo@mail.ustc.edu.cn, jelly@mail.ustc.edu.cn, wbguo@ustc.edu.cn

Abstract

A subgroup H of a finite group G is said to be an HC-subgroup of G if there exists a normal subgroup T of G such that $G = HT$ and $H^g \cap N_T(H) \leq H$ for all $g \in G$. In this paper, we investigate the structure of a finite group G under the assumption that certain subgroups of G of arbitrary prime power order are HC-subgroups of G.

Key words: H-subgroups; HC-subgroups; p-nilpotent group; nilpotent group; supersolvable group.

1 Introduction

Throughout this paper, all groups considered are finite. G always denotes a group, p denotes a prime, and $|G|_p$ denotes the order of Sylow p-subgroups of G. A class of groups \mathcal{F} is called a formation if \mathcal{F} is closed under taking homomorphic images and subdirect products. A formation \mathcal{F} is said to be saturated if $G \in \mathcal{F}$ whenever $G/\Phi(G) \in \mathcal{F}$. All unexplained notation and terminology are standard, as in [7,10,12].

Recall that a subgroup H of G is said to be an H-subgroup of G if $H^g \cap N_G(H) \leq H$ for all $g \in G$. This concept was introduced by Goldschmidt in [9] and Bianchi et al. in [5]. It is easy to see that normal subgroups, Sylow subgroups and self-normalizing subgroups of G are all H-subgroups of G. Csörgö, Herzog [6] and Asaad [11] further investigated the influence of H-subgroups on the structure of a finite group.

*This manuscript was finished in August 2013.

†Research is supported by a NNSF grant of China (Grant 11371335) and Research Fund for the Doctoral Program of Higher Education of China(Grant 20113430110036).

‡Corresponding author.

2000 AMS Mathematics Subject Classification: 20D10, 20D20.
Besides, Y. Wang [20] introduced the concept of c-normal subgroups. A subgroup H of G is said to be c-normal in G if there exists a normal subgroup K of G such that $G = HK$ and $H \cap K \leq H_G$, where H_G is the largest normal subgroup of G contained in H. The properties of c-normal subgroups have been studied by many authors, see for example, [3, 4, 14, 15].

Recently, some attempts were made to give a generalization of both c-normal subgroups and H-subgroups. In [2], M. Asaad et al. introduced the concept of weakly H-subgroups: a subgroup H of G is called an HC-subgroup of G if there exists a normal subgroup T of G such that $G = HT$ and $H \cap T$ is an H-subgroup of G. Meanwhile, X. Wei and X. Guo [21] introduced the concept of HC-subgroups: a subgroup H of G is said to be an HC-subgroup of G if there exists a normal subgroup T of G such that $G = HT$ and $H^g \cap N_T(H) \leq H$ for all $g \in G$. It is easy to see that every weakly H-subgroup of G is an HC-subgroup of G.

In [21], the authors gave some conditions on maximal subgroups or minimal subgroups of Sylow subgroups, which are sufficient to guarantee a group to be p-nilpotent or supersolvable. In this paper, we continue to investigate the structure of a group G under the assumption that certain subgroups of G of arbitrary prime power order are HC-subgroups of G. New characterizations of some classes of finite groups are obtained.

2 Preliminaries

Lemma 2.1. Suppose that H is an \mathcal{H}-subgroup of G.

1. ([5, Theorem 6(2)]) If H is subnormal in G, then H is normal in G.
2. ([5, Lemma 7(2)]) If $H \leq K \subseteq G$, then H is an \mathcal{H}-subgroup of K.
3. ([5, Lemma 2(1)]) If $N \leq H$ and $N \trianglelefteq G$, then H is an \mathcal{H}-subgroup of G if and only if H/N is an \mathcal{H}-subgroup of G/N.
4. ([5, Theorem 6(3)]) If $N \leq G$ and $N \leq N_G(H)$, then $N_G(HN) = N_G(H)$ and HN is an \mathcal{H}-subgroup of G.

Lemma 2.2. Let H and K be subgroups of G, and $N \trianglelefteq G$.

1. ([21, Lemma 2.3(1)]) If $H \leq K$ and H is an HC-subgroup of G, then H is an HC-subgroup of K.
2. ([21, Lemma 2.3(2)]) If $N \leq H$, then H is an HC-subgroup of G if and only if H/N is an HC-subgroup of G/N.
3. ([21, Lemma 2.4]) If H is a p-group with $(p, |N|) = 1$ and H is an HC-subgroup of G, then HN is an HC-subgroup of G and HN/N is an HC-subgroup of G/N.

Lemma 2.3. [21, Theorem 3.7] Let p be the smallest prime dividing $|G|$ and let P be a Sylow p-subgroup of G. Then G is p-nilpotent if every maximal subgroup of P is an HC-subgroup of G.

2
Lemma 2.4. [9 Corollary B3] Suppose that S is a 2-subgroup of G such that S is an \mathcal{H}-subgroup of G and $N_G(S)/C_G(S)$ is a 2-group. Then S is a Sylow 2-subgroup of S^G.

Lemma 2.5. [16 Theorem 1] Let P be a Sylow p-subgroup of G. Then the following two statements are true:

1. If p is odd and every minimal subgroup of P lies in $Z(N_G(P))$, then G is p-nilpotent.

2. If $p = 2$ and every cyclic subgroup of P of order 2 or 4 is quasi-normal in $N_G(P)$, then G is 2-nilpotent.

Let $F^*(G)$ denote the generalized Fitting subgroup of G, that is, the largest normal quasinilpotent subgroup of G. The following basic facts can be found in [13 Chapter X].

Lemma 2.6. (1) If N is a normal subgroup of G, then $F^*(N) = N \cap F^*(G)$.

(2) $F(G) \leq F^*(G) = F^*(F^*(G))$. If $F^*(G)$ is solvable, then $F^*(G) = F(G)$.

(3) $C_G(F^*(G)) \leq F(G)$.

(4) If $G > 1$, then $F^*(G) > 1$. In fact, $F^*(G)/F(G) = \text{soc}(F(G)C_G(F(G))/F(G))$.

Lemma 2.7. [21 Lemma 2.5] Let K be a normal subgroup of G and let H be a normal subgroup of K. If H is an $\mathcal{H}C$-subgroup of G, then H is c-normal in G.

Lemma 2.8. Let H be a p-subgroup of G. If H is an $\mathcal{H}C$-subgroup of G and H is not an \mathcal{H}-subgroup of G, then G has a normal subgroup M such that $|G : M| = p$ and $G = HM$.

Proof. By hypothesis, G has a normal subgroup T such that $G = HT$ and $H^g \cap N_T(H) \leq H$ for all $g \in G$. Since H is not an \mathcal{H}-subgroup of G, we have that $T < G$. Hence G/T is a p-group, and so G has a normal subgroup M containing T such that $|G : M| = p$ and $G = HM$. □

Lemma 2.9. [11 Lemma 2.9] Let \mathfrak{F} be a saturated formation containing all supersolvable groups and let G be a group with a normal subgroup E such that $G/E \in \mathfrak{F}$. If E is cyclic, then $G \in \mathfrak{F}$.

Lemma 2.10. Let \mathfrak{F} be a saturated formation containing all supersolvable groups. Suppose that M is a subgroup of G such that $|G : M| = p$, $F(G) \notin M$ and $M \in \mathfrak{F}$. Then $G \in \mathfrak{F}$.

Proof. If $\Phi(G) > 1$, then it is easy to see that $G/\Phi(G)$ satisfies the hypothesis of the lemma, and so $G/\Phi(G) \in \mathfrak{F}$ by induction. This implies that $G \in \mathfrak{F}$. We may, therefore, assume that $\Phi(G) = 1$. Then $F(G) = N_1 \times N_2 \cdots \times N_t$, where N_i ($i = 1, \ldots, t$) is a solvable minimal normal subgroup of G. Since $F(G) \notin M$, there exists a solvable minimal normal subgroup N_i of G such that $N_i \notin M$. Then clearly, $G = N_i M$, and so $N_i \cap M = 1$. Therefore, $|N_i| = |G : M| = p$ and $G/N_i \cong M \in \mathfrak{F}$. It follows from Lemma 2.9 that $G \in \mathfrak{F}$. □
Lemma 2.11. Let H be an $\mathcal{H}C$-subgroup of G. If $L/\Phi(L)$ is a chief factor of G and $H \leq L$, then H is an \mathcal{H}-subgroup of G.

Proof. By hypothesis, there exists a normal subgroup T of G such that $G = HT$ and $H^g \cap N_T(H) \leq H$ for all $g \in G$. Since $L/\Phi(L)$ is a chief factor of G, either $(L \cap T)\Phi(L)/\Phi(L) = 1$ or $(N \cap T)\Phi(L)/\Phi(L) = L/\Phi(L)$. In the former case, $L = H(L \cap T) = H$. This implies that $H \trianglelefteq G$, and so H is an \mathcal{H}-subgroup of G. In the latter case, $(L \cap T)\Phi(L) = L$, and so $T = G$. This also implies that H is an \mathcal{H}-subgroup of G. \hfill \Box

Lemma 2.12. [18, Lemma 2.8] Let P be a normal p-subgroup of G contained in $Z_\infty(G)$. Then $O_p^p(G) \leq C_G(P)$.

Lemma 2.13. [8, Lemma 2.4] Let P be a p-group. If α is a p'-automorphism of P which centralizes $\Omega_1(P)$, then $\alpha = 1$ unless P is a non-abelian 2-group. If $[\alpha, \Omega_2(P)] = 1$, then $\alpha = 1$ without restriction.

3 Main results

Theorem 3.1. Let p be the smallest prime divisor of $|G|$ and let P be a Sylow p-subgroup of G. Suppose that P is cyclic or P has a subgroup D with $1 < |D| < |P|$ such that every subgroup H of P of order $|D|$ is an $\mathcal{H}C$-subgroup of G. When $p = 2$ and $|P : D| > 2$, suppose further that H is an $\mathcal{H}C$-subgroup of G if there exists $D_1 \leq H \leq P$ such that $2|D_1| = |D|$ and H/D_1 is a cyclic group of order 4. Then G is p-nilpotent.

Proof. Suppose that the result is false and let G be a counterexample of minimal order. Then we proceed via the following steps.

(1) P is not cyclic and $|P : D| > p$.

If P is cyclic, then by [19] (10.1.9), G is p-nilpotent, a contradiction. Suppose that $|P : D| = p$. Then every maximal subgroup of P is an $\mathcal{H}C$-subgroup of G. Hence by Lemma 2.3, G is p-nilpotent, also a contradiction.

(2) Every proper subgroup of G containing P is p-nilpotent.

Let V be any proper subgroup of G containing P. Then by Lemma 2.2(1), V satisfies the hypothesis of the theorem. By the choice of G, V is p-nilpotent. Thus (2) follows.

(3) $O_{p'}(G) = 1$.

If not, then by Lemma 2.2(3), $G/O_{p'}(G)$ satisfies the hypothesis of the theorem. By the choice of G, $G/O_{p'}(G)$ is p-nilpotent, and so G is p-nilpotent, which is impossible.

(4) G is not a non-abelian simple group.
Assume that G is a non-abelian simple group. Then by Feit-Thompson’s Theorem, we have that $p = 2$. Let H be a subgroup of P of order $|D|$. Then clearly, H is an \mathcal{H}-subgroup of G. Hence by Lemma 2.1(2), H is an \mathcal{H}-subgroup of P, and thus $H \leq P$ by Lemma 2.1(1). It follows from (2) that $N_G(H)$ is 2-nilpotent for $H \not\leq G$, and so $N_G(H)/C_G(H)$ is a 2-group. By Lemma 2.4, H is a Sylow 2-subgroup of G, a contradiction. Therefore, G is not a non-abelian simple group.

(5) $O_p(G) > 1$, and every proper normal subgroup of G is contained in $O_p(G)$.

Let L be a proper normal subgroup of G. Then we only need to prove that L is a p-group. By (3), $p | |L|$. If $|L|_p > |D|$, then L satisfies the hypothesis of the theorem by Lemma 2.2(1). Hence L is p-nilpotent due to the choice of G. It follows from (3) that L is a p-group. Now consider that $|L|_p \leq |D|$. Then there exists a normal subgroup K of P such that $P \cap L \leq K$ and $|K| = p|D|$. This induces that $|LK|_p = |K| = p|D|$, and so K is a Sylow p-subgroup of LK. If $LK = G$, then $|P| = |K| = p|D|$, which contradicts (1). Thus $LK < G$. By Lemma 2.2(1), LK satisfies the hypothesis of the theorem. Then by the choice of G, LK is p-nilpotent, and so is L. Hence L is a p-group by (3), and consequently (5) holds.

(6) Every $\mathcal{H}C$-subgroup of G contained in P is an \mathcal{H}-subgroup of G.

Let V be any $\mathcal{H}C$-subgroup of G contained in P. Then there exists a normal subgroup T of G such that $G = VT$ and $V^g \cap N_T(V) \leq V$ for all $g \in G$. By (5), since G is not a p-group, we have that $T = G$. Therefore, V is an \mathcal{H}-subgroup of G.

(7) Let N be a minimal normal subgroup of G contained in $O_p(G)$. Then $|N| \leq |D|$ and G/N is p-nilpotent.

If $|N| > |D|$, then there exists a subgroup H of N of order $|D|$ such that H is an \mathcal{H}-subgroup of G by (6). It follows from Lemma 2.1(1) that H is normal in G, which is impossible. Hence $|N| \leq |D|$. First suppose that $|N| < |D|$. Then by (6) and Lemma 2.1(3), G/N satisfies the hypothesis of the theorem. By the choice of G, G/N is p-nilpotent.

Now consider that $|N| = |D|$. We claim that every cyclic subgroup of P/N of order prime or 4 (when $p = 2$) is normal in $N_G(P)/N$. Let X/N be a subgroup of P/N of order p. If $N \leq \Phi(X)$, then X is cyclic, and so is N. This implies that $|N| = |D| = p$. Then by (6), every cyclic subgroup of P of order p or 4 (when $p = 2$) is an \mathcal{H}-subgroup of G. By Lemmas 2.1(1) and 2.1(2), every cyclic subgroup of P of order p or 4 (when $p = 2$) is normal in $N_G(P)$. Since p is the smallest prime divisor of $|G|$, every minimal subgroup of P lies in $Z(N_G(P))$. Hence by Lemma 2.5, G is p-nilpotent, a contradiction. Thus $N \not\leq \Phi(X)$, and so X has a maximal subgroup S such that $X = SN$. Since $|S| = |N| = |D|$, S is an \mathcal{H}-subgroup of G by (6). By Lemmas 2.1(1) and 2.1(2), $S \leq N_G(P)$, and thus $X/N = SN/N \leq N_G(P)/N$. This shows that the claim holds when p is odd. Consider that $p = 2$. Then by (1), $|P : D| > 2$. Let Y/N be a cyclic subgroup of P/N of order 4. If $N \leq \Phi(Y)$, then Y is cyclic. This implies that $|N| = |D| = 2$, a contradiction. Thus $N \not\leq \Phi(Y)$, and
so Y has a maximal subgroup U such that $Y = UN$. Clearly, $|U| = 2|D|$. Since $U/U \cap N \cong Y/N$ is a cyclic group of order 4, by hypothesis and (6), U is an \mathcal{H}-subgroup of G. A similar discussion as above shows that $Y/N = UN/N \leq N_G(P)/N$. Hence the claim holds when $p = 2$. Since p is the smallest prime divisor of $|G|$, every minimal subgroup of P/N lies in $Z(N_G(P)/N)$. Therefore, G/N is p-nilpotent by Lemma 2.5.

(8) Final contradiction.

By (7), G/N is p-nilpotent. Then G has a normal subgroup M of G such that $|G : M| = p$. By (1), $|M| > |D|$. Then by (6) and Lemma 2.1(2), M satisfies the hypothesis of the theorem. Hence M is p-nilpotent due to the choice of G, and so G is p-nilpotent. The final contradiction completes the proof. \hfill \Box

The following corollary can be deduced immediately from Lemma 2.2(3) and Theorem 3.1.

Corollary 3.2. Suppose that every noncyclic Sylow subgroup P (if exists) of G has a subgroup D such that $1 < |D| < |P|$ and every subgroup H of P of order $|D|$ is an $\mathcal{H}C$-subgroup of G. When P is a Sylow 2-subgroup of G and $|P : D| > 2$, suppose further that H is an $\mathcal{H}C$-subgroup of G if there exists $D_1 \leq H \leq P$ such that $2|D_1| = |D|$ and H/D_1 is a cyclic group of order 4. Then G has a Sylow tower of supersolvable type.

Theorem 3.3. Let \mathcal{F} be a saturated formation containing all supersolvable groups and let G be a group with a normal subgroup E such that $G/E \in \mathcal{F}$. Suppose that every noncyclic Sylow subgroup P (if exists) of $F^*(E)$ has a subgroup D such that $1 < |D| < |P|$ and every subgroup H of P of order $|D|$ is an $\mathcal{H}C$-subgroup of G. When P is a Sylow 2-subgroup of $F^*(E)$ and $|P : D| > 2$, suppose further that H is an $\mathcal{H}C$-subgroup of G if there exists $D_1 \leq H \leq P$ such that $2|D_1| = |D|$ and H/D_1 is a cyclic group of order 4. Then $G \in \mathcal{F}$.

Proof. Suppose that the result is false and let (G, E) be a counterexample such that $|G| + |E|$ is minimal. Then we proceed via the following steps.

1. $F^*(E) = F(E)$.

By Lemma 2.2(1) and Corollary 3.2, $F^*(E)$ has a Sylow tower of supersolvable type, and so $F^*(E)$ is solvable. It follows from Lemma 2.6(2) that $F^*(E) = F(E)$.

2. There exist a noncyclic Sylow p-subgroup P of $F(E)$ and a subgroup H of P of order $|D|$ or $2|D|$ (when $p = 2$, and there exists $D_1 \leq H \leq P$ such that $2|D_1| = |D|$ and H/D_1 is a cyclic group of order 4) such that $|P : D| > p$ and H is not an \mathcal{H}-subgroup of G.

Suppose that for every prime divisor p of $|F(E)|$ and every noncyclic Sylow p-subgroup P of $F(E)$, either $|P : D| = p$ or all subgroups H of P of order $|D|$ or $2|D|$ (when $p = 2$, $|P : D| > 2$ and there exists $D_1 \leq H \leq P$ such that $2|D_1| = |D|$.
and \(H/D_1 \) is a cyclic group of order 4) are \(\mathcal{H} \)-subgroups of \(G \). In the former case, by Lemma 2.7, all subgroups \(H \) of \(P \) of order \(|D| \) are c-normal in \(G \). In the latter case, by Lemma 2.1(1), all subgroups \(H \) of \(P \) of order \(|D| \) or \(2|D| \) (when \(p = 2 \), \(|P : D| > 2 \) and there exists \(D_1 \leq H \leq P \) such that \(2|D_1| = |D| \) and \(H/D_1 \) is a cyclic group of order 4) are normal in \(G \). Hence by [17] Theorem 1.4], \(G \in \mathfrak{F} \), a contradiction. Thus (2) holds.

(3) Final contradiction.

By hypothesis and (2), \(H \) is an \(\mathcal{H} \)-subgroup of \(G \) and \(H \) is not an \(\mathcal{H} \)-subgroup of \(G \). Hence \(G \) has a normal subgroup \(M \) such that \(|G : M| = p \) and \(G = HM \) by Lemma 2.8. Since \(G = HM = EM \), we have that \(M/E \cap M \cong G/E \in \mathfrak{F} \).

By Lemma 2.6(1), \(F^*(E \cap M) = F^*(E) \cap M = F(E) \cap M \). Note that \(|F(E) : F(E) \cap M| = |G : M| = p \) and \(|F(E) \cap M_p| > |D| \) by (2). Then clearly, \((M, E \cap M) \) satisfies the hypothesis of the theorem by Lemma 2.2(1). By the choice of \((G, E) \), \(M \in \mathfrak{F} \). It follows from Lemma 2.10 that \(G \in \mathfrak{F} \). The final contradiction completes the proof.

\[\square \]

Theorem 3.4. Let \(\mathfrak{F} \) be a saturated formation containing all supersolvable groups and let \(G \) be a group with a normal subgroup \(E \) such that \(G/E \in \mathfrak{F} \). Suppose that every noncyclic Sylow subgroup \(P \) (if exists) of \(E \) has a subgroup \(D \) such that \(1 < |D| < |P| \) and every subgroup \(H \) of \(P \) of order \(|D| \) is an \(\mathcal{H} \)-subgroup of \(G \). When \(P \) is a Sylow 2-subgroup of \(E \) and \(|P : D| > 2 \), suppose further that \(H \) is an \(\mathcal{H} \)-subgroup of \(G \) if there exists \(D_1 \leq H \leq P \) such that \(2|D_1| = |D| \) and \(H/D_1 \) is a cyclic group of order 4. Then \(G \in \mathfrak{F} \).

Proof. Suppose that the result is false and let \((G, E) \) be a counterexample such that \(|G| + |E| \) is minimal. By Lemma 2.2(1) and Corollary 3.2, we see that \(E \) has a Sylow tower of supersolvable type. Without loss of generality, let \(p \) be the largest prime divisor of \(|E| \). Then \(P \leq G \). By Lemma 2.2(3), \((G/P, E/P) \) satisfies the hypothesis of the theorem. Then the choice of \((G, E) \) implies that \(G/P \in \mathfrak{F} \). Hence \((G, P) \) satisfies the hypothesis of Theorem 3.3, and so \(G \in \mathfrak{F} \).

\[\square \]

Theorem 3.5. Let \(E \) be a normal subgroup of \(G \) such that \(G/E \) is nilpotent. Suppose that every minimal subgroup of \(E \) is contained in \(Z_\infty(G) \), and every cyclic subgroup of \(E \) of order 4 is an \(\mathcal{H} \)-subgroup of \(G \). Then \(G \) is nilpotent.

Proof. Assume that the result is false and let \((G, E) \) be a counterexample such that \(|G| + |E| \) is minimal. Then we prove the theorem via the following steps.

(1) \(G \) is a minimal nonnilpotent group, that is, \(G = P \rtimes Q \), where \(P \) is a normal Sylow \(p \)-subgroup of \(G \) and \(Q \) is a nonnormal cyclic Sylow \(q \)-subgroup of \(G \) for some prime \(q \neq p \); \(P/\Phi(P) \) is a chief factor of \(G \); \(exp(P) = p \) when \(p > 2 \) and \(exp(P) \) is at most 4 when \(p = 2 \).

Let \(K \) be any proper subgroup of \(G \). Then \(K/E \cap K \cong EK/E \leq G/E \) is nilpotent, and every minimal subgroup of \(E \cap K \) is contained in \(Z_\infty(G) \cap K \leq Z_\infty(K) \).
By hypothesis, every cyclic subgroup of $E \cap K$ of order 4 is an $\mathcal{H}C$-subgroup of G. Thus by Lemma 2.2(1), every cyclic subgroup of $E \cap K$ of order 4 is an $\mathcal{H}C$-subgroup of K. Hence $(K, E \cap K)$ satisfies the hypothesis of the theorem. Then the choice of (G, E) implies that K is nilpotent. Hence G is a minimal nonnilpotent group, and so (1) holds by [12, Chapter III, Satz 5.2].

(2) $P \leq E$.

If not, then $P \cap E < P$, and so $(P \cap E)Q < G$. By (1), $(P \cap E)Q$ is nilpotent. This implies that $Q \leq (P \cap E)Q$. Since $G/P \cap E \leq G/P \times G/E$ is nilpotent, $(P \cap E)Q \leq G$, and thus $Q \leq G$, a contradiction.

(3) Final contradiction.

If $\exp(P) = p$, then $P \leq Z_\infty(G)$, and so G is nilpotent, which is impossible. Hence we may assume that $p = 2$ and $\exp(P) = 4$. Then by Lemma 2.11, every cyclic subgroup of P of order 4 is an \mathcal{H}-subgroup of G, and so every cyclic subgroup of P of order 4 is normal in G by Lemma 2.1(1). Take an element $x \in P \setminus \Phi(P)$. Since $P/\Phi(P)$ is a chief factor of G, $P = \langle x \rangle \Phi(P) = \langle x \rangle^G$. If x is of order 2, then $P = \langle x \rangle^G \leq Z_\infty(G)$, a contradiction. Now assume that x is of order 4. Then $\langle x \rangle \leq G$, and so $P = \langle x \rangle$ is cyclic. By [19, (10.1.9)], G is 2-nilpotent, and so $Q \leq G$. This is the final contradiction. \qed

Theorem 3.6. Let E be a normal subgroup of G such that G/E is nilpotent. Suppose that every minimal subgroup of $F^*(E)$ is contained in $Z_\infty(G)$, and every cyclic subgroup of $F^*(E)$ of order 4 is an $\mathcal{H}C$-subgroup of G. Then G is nilpotent.

Proof. Assume that the result is false and let (G, E) be a counterexample such that $|G| + |E|$ is minimal. Then we prove the theorem via the following steps.

(1) Every proper normal subgroup of G is nilpotent.

Let K be any proper normal subgroup of G. Then $K/E \cap K \cong EK/E \leq G/E$ is nilpotent. By Lemma 2.6(1), $F^*(E \cap K) = F^*(E) \cap K$. Hence by Lemma 2.2(1), $(K, E \cap K)$ satisfies the hypothesis of the theorem. The the choice of (G, E) implies that K is nilpotent.

(2) $E = G = \gamma_\infty(G)$ and $F^*(G) = F(G) < G$, where $\gamma_\infty(G)$ is the nilpotent residual of G.

If $E < G$, then E is nilpotent by (1), and so $F^*(E) = F(E) = E$. By Theorem 3.5, G is nilpotent, a contradiction. Thus $E = G$. Now suppose that $F^*(G) = G$. Then by Theorem 3.5 again, G is nilpotent, which is impossible. Hence $F^*(G) < G$, and $F^*(G) = F(G)$ by (1). If $\gamma_\infty(G) < G$, then by (1), $\gamma_\infty(G) \leq F(G)$, and so $G/F(G)$ is nilpotent. It follows from Theorem 3.5 that G is nilpotent, a contradiction. Thus $\gamma_\infty(G) = G$.

(3) every cyclic subgroup of $F(G)$ of order 4 is contained in $Z(G)$.

By hypothesis and (2), every cyclic subgroup H of $F(G)$ of order 4 is an $\mathcal{H}C$-subgroup of G. Then there exists a normal subgroup T of G such that $G = HT$.
and \(H^g \cap N_T(H) \leq H \) for all \(g \in G \). If \(T < G \), then \(T \leq F(G) \) by (1), and thereby \(F(G) = G \), a contradiction. Hence \(T = G \), and so \(H \) is an \(\mathcal{H} \)-subgroup of \(G \). By Lemma 2.1(1), \(H \leq G \). This implies that \(G/C_G(H) \) is abelian. Then by (2), \(C_G(H) = \gamma_\infty(G) = G \), and so \(H \leq Z(G) \). Thus (3) holds.

(4) Final contradiction.

Let \(p \) be any prime divisor of \(|F(G)|\) and let \(P \) be the Sylow \(p \)-subgroup of \(F(G) \). Then \(P \leq G \). If \(p \) is odd, then by hypothesis, \(\Omega_1(P) \leq Z_\infty(G) \). It follows from Lemma 2.12 that \(O^p(G) \leq C_G(\Omega_1(P)) \), and so \(O^p(G) \leq C_G(P) \) by Lemma 2.13. Then by (2), \(C_G(P) = \gamma_\infty(G) = G \). Now consider that \(p = 2 \). Then by hypothesis and (3), \(\Omega_2(P) \leq Z_\infty(G) \). A similar discussion as above also shows that \(C_G(P) = G \). Therefore, we have that \(C_G(F(G)) = G \), which contradicts the fact that \(C_G(F(G)) \leq F(G) \) by (2) and Lemma 2.6(3). The proof is thus completed.

References

[1] M. Asaad, On \(p \)-nilpotence and supersolvability of finite groups, Comm. Algebra, 34 (2006), 189–195.

[2] M. Asaad, A. A. Heliel, M. M. Al-Mosa Al-Shomrani, On weakly \(\mathcal{H} \)-subgroups of finite groups, Comm. Algebra, 40 (2012), 3540–3550.

[3] M. Asaad, M. E. Mohamed, On c-normality of finite groups, J. Aust. Math. Soc., 78 (2005), 297–304.

[4] A. Ballester-Bolinches, Y. Wang, Finite groups with some C-normal minimal subgroups, J. Pure Appl. Algebra, 153 (2000), 121–127.

[5] M. Bianchi, A. Gillio Berta Mauri, M. Herzog, L. Verardi, On finite solvable groups in which normality is a transitive relation, J. Group Theory, 3 (2000), 147–156.

[6] P. Csörgö, M. Herzog, On supersolvable groups and the nilpotator, Comm. Algebra, 32 (2004), 609–620.

[7] K. Doerk, T. Hawkes, Finite Soluble Groups, Berlin, Walter de Gruyter, 1992.

[8] T. M. Gagen, Topics in Finite Groups, Cambridge, Cambridge University Press, 1976.

[9] D. M. Goldschmidt, Strongly closed 2-subgroups of finite groups, Ann. of Math., 102 (1975), 475–489.

[10] W. Guo, The Theory of Classes of Groups, Dordrecht, Kluwer Academic Publishers, 2000.
[11] W. Guo, A. N. Skiba, Finite groups with given s-embedded and n-embedded subgroups, J. Algebra, 321 (2009), 2843–2860.

[12] B. Huppert, Endliche Gruppen I, Berlin, Springer-Verlag, 1967.

[13] B. Huppert, Blackburn N, Finite Groups III, Berlin–New York, Springer-Verlag, 1982.

[14] J. J. Jaraden, A. N. Skiba, On c-normal subgroups of finite groups, Comm. Algebra, 35 (2007), 3776–3788.

[15] D. Li, X. Guo, The influence of c-normality of subgroups on the structure of finite groups, J. Pure Appl. Algebra, 150 (2000), 53–60.

[16] S. Li, On minimal subgroups of finite groups, Comm. Algebra, 22 (1994), 1913–1918.

[17] Y. Li, S. Qiao, Y. Wang, On weakly s-permutably embedded subgroups of finite groups, Comm. Algebra, 37 (2009), 1086–1097.

[18] Y. Li, Y. Wang, On π-quasinormally embedded subgroups of finite group, J. Algebra, 281 (2004), 109–123.

[19] D. J. S. Robinson, A Course in the Theory of Groups, New York, Springer-Verlag, 1996.

[20] Y. Wang, C-normality of groups and its properties, J. Algebra, 180 (1996), 954–965.

[21] X. Wei, X. Guo, On HC-subgroups and the structure of finite groups, Comm. Algebra, 40 (2012), 3245–3256.