Potential risk of BPA and phthalates in commercial water bottles: a minireview

Rouse da Silva Costa, Tatiana Sainara Maia Fernandes, Edmilson de Sousa Almeida, Juliene Tomé Oliveira, Jhonyson Arruda Carvalho Guedes, Guilherme Julião Zocolo, Francisco Wagner de Sousa and Ronaldo Ferreira do Nascimento

ABSTRACT

The global water bottling market grows annually. Today, to ensure consumer safety, it is important to verify the possible migration of compounds from bottles into the water contained in them. Potential health risks due to the prevalence of bisphenol A (BPA) and phthalates (PAEs) exposure through water bottle consumption have become an important issue. BPA, benzyl butyl phthalate (BBP), di-n-butyl phthalate (DBP) and di (2-ethylhexyl) phthalate (DEHP) can cause adverse effects on human health. Papers of literature published in English, with BPA, BBP, DBP and DEHP detections during 2017, by 2019 by liquid chromatography and gas chromatography analysis methods were searched. The highest concentrations of BPA, BBP, DBP and DEHP in all the bottled waters studied were found to be 5.7, 12.11, 82.8 and 64.0 μg/L, respectively. DBP was the most compound detected and the main contributor by bottled water consumption with 23.7% of the Tolerable Daily Intake (TDI). Based on the risk assessment, BPA, BBP, DBP and DEHP in commercial water bottles do not pose a serious concern for humans. The average estrogen equivalent level revealed that BPA, BBP, DBP and DEHP in bottled waters may induce adverse estrogenic effects on human health.

Key words | bisphenol A, estrogenic effects, phthalates, risk assessment, water bottles

HIGHLIGHTS

• DBP was the most compound detected.
• An estimated intake of BPA, BBP, DBP and DEHP was far below their TDIs.
• The risk assessment of BPA, BBP, DBP and DEHP does not raise serious concern for humans.
• The average estrogen equivalent level for BPA, BBP, DBP and DEHP may induce adverse estrogenic effects on human health.
• BPA, BBP, DBP and DEHP in bottled water need more accurate data to avoid their effects on human health.
Reports show that, in 2018, 64% of produced bottles were made of polyethylene terephthalate (PET), 34% of high-density polyethylene (HDPE), 1.8% of polypropylene and 1% other (polycarbonate (PC) included here) (ACC 2019). According to the American Chemistry Council (ACC), in 2018, 0.31 million pounds of postconsumer PC bottles were collected for recycling. PET and HDPE continued to dominate as selected resins to produce plastic bottles (97.1% by weight of produced bottles has made of PET or HDPE) (ACC 2019).

The bottled water industry is a phenomenon in practically every region of the world. First, bottled water became a mainstream commercial beverage category in Western Europe and later grew into a truly global beverage (IBWA 2019). The bottled industry produces mainly two types of packaged water: packaged natural mineral drinking water and packaged drinking water. The last is water derived from any source of a potable water (ground, well, bore well water, etc.), which must be subjected to different treatment processes such as filtration, aeration, decantation, and reverse osmosis (Jain et al. 2019). In 2018, for the first time, global bottled water consumption has surpassed that 100 billion gallons is estimated to, and the per capita consumption exceeded 42 gallons (158,987 liters). It should be stressing that per capita consumption by individual regions or countries can differ from the global average (IBWA 2019). In 2018, the rank of the 10 leading countries’ consumption was China, United States, Mexico, Indonesia, Brazil, India, Thailand, Germany, Italy and France, respectively (IBWA 2019).

In 2018, approximately 7.7% (27.64 million tons out of the total plastic production of 359 million tons) of the plastic demand was constituted by PET worldwide was used in bottles for water, soft drinks, juices, and cleaners (Plastics Europe 2020). PET is the packaging most used in water bottles (Coniglio et al. 2020). PET and PC as the packing materials have been widely used for Chinese bottled water (Wang et al. 2020).

Bisphenol A (BPA), benzyl butyl phthalate (BBP), di-n-butyl phthalate (DBP) and di (2-ethylhexyl) phthalate (DEHP) have recently been detected in commercial water bottles raising concerns and discussions on possible risks for human health (Dada et al. 2018; Pinsrithong & Bunkoed 2018; Karayaka et al. 2019; Wu et al. 2019). Many countries included BPA, BBP, DBP and DEHP in the priority list of pollutants (Pignotti et al. 2017; Goeury et al. 2019; Li et al. 2019; Fard et al. 2020). Acceptable exposure levels for these compounds have been created to protect human health (Čelić et al. 2020; Fard et al. 2020). The maximum contaminant level (MCL) is the highest level of a contaminant that is allowed in drinking water (US EPA 2021). The MCL for drinking water for BPA, BBP, DBP and DEHP is in the section ‘Extraction techniques for detection’.

According to Hassan et al. (2020), BPA and PAEs exhibit similar toxicogenomics and health effects. How BPA and PAEs are not bound to the matrix, they can leach out into
the surroundings by delicate changes in the environment, like temperature, pH and pressure alterations (Hassan et al. 2020). The Regulation (EU) No. 10/2011 (EC 2011) defines the Specific Migration Limit (SML) as the maximum permitted amount of a given substance released from a material or article into food or food simulants. The SML values by the EU for BBP, DBP and DEHP are 30, 0.3 and 1.5 mg/kg, respectively (EFSA 2019). The detection of very low BPA, BBP, DBP and DEHP in water can be carried out by high-performance liquid (HPLC) and gas (GC) chromatography (Gorji et al. 2019; Karayaka et al. 2019; Li et al. 2019; Yin et al. 2019). The detection power can be improved by preconcentrating analytes before instrumental measurement and the type of detector (Kumar et al. 2014; Chang et al. 2017; Farajzadeh et al. 2019; Karayaka et al. 2019; Li et al. 2019).

In this context, due to the increasing popularity of bottled water consumption, the potential health effects of possible migration of chemical compounds from the bottles into the water can pose a health risk to consumers. The purpose of this minireview is to verify if recent BPA, BBP, DBP and DEHP detections in commercial water bottles around the world using HPLC and gas GC may pose a risk to human health.

Papers of literature published in English, that detected BPA and PAEs (BBP, DBP and DEHP) in commercial bottles during 2017, by 2019 were searched. Papers with storage studies were also taken into account. For data sources for further analysis we identified a total of 41 publications from 17 countries. PC bottles were not considered. Thus, this work hopes to aid decision-making in future research focusing on BPA, BBP, DBP and DEHP in commercial water bottles using HPLC and GC. Moreover, this review hopes to avoid consumer exposure to these chemicals and to guarantee consumer safety.

BPA AND PAES IN PET BOTTLED WATER

The production process of water bottles uses PC plastics containing BPA (antioxidant or monomer) (Alfarhani et al. 2019; Fikarová et al. 2019; Liu et al. 2019). Although BPA is not used in the manufacture of PET, it should consider the use of recycled PET (R-PET) as a possible source of BPA coming from cross-contamination, not only during the recycling process but also during the manufacture of virgin PET (Dreolín et al. 2019). BPA leachable from polymer packaging due to its moderate water solubility (120–300 mg/L; pH 7.0 at 25 °C) and low log Kow (3.32) in water (Borrirukwisitsak et al. 2012; Fikarová et al. 2019). Guart et al. (2011) not detected BPA in PET bottles cut in pieces, but on the other hand, detected BPA in HDPE caps at concentrations of 0.145 μg/dm². Bach et al. (2012) also indicated that the containers’ caps, in PET bottled water, could be a source of BPA.

The manufacturing of beverage bottles widely uses PAEs (Li et al. 2019) and like they are not chemically bound to polymers, they may also enter drinking samples. This process can occur through the production, packaging and storage (bottling lines and water refining centers) (Manzo et al. 2019; Pacyga et al. 2019). According to Bach et al. (2014), background pollution, as a source of PAEs, cannot be excluded. PAEs’ presence in PET bottled water can be associated with PAEs in the source of water (groundwater or tap water) used to fill in the bottles (Jeddi et al. 2015). The type of closure (‘cap’) on the bottles could be a more important source of PAEs than the bottle material (glass or PET) (EFSA 2019). The caps of plastic bottles are made of high- and low-density polyethylene (HDPE and LDPE) and polystyrene (PS) (Guart et al. 2011). Guart et al. (2011) identified BPA in HDPE, LDPE and PS plastics. The adhesive used for sticking the bottle labels could thus be considered one of the sources of PAEs in water samples (Cincotta et al. 2018). Aznar et al. (2011) identified DBP and DEHP in adhesive based on vinyl acetate-ethylene.

PAEs are hydrophobic organic compounds under normal conditions (25 °C), very insoluble in water (BBP: 2.69 mg/L, DBB: 11.2 mg/L and DEHP: 0.27 mg/L) and have a particular affinity for fats and alcohols (Grinbaum et al. 2013; PubChem 2020). However, exposure to these low levels in water may also cause significant risks to humans under long-term chronic exposure by resulting in a considerable total health risk (Abtahi et al. 2019; Chen et al. 2019a; Abdelghani et al. 2020). Exposure to that low level can cause problems such as spasms in arms and legs, bronchial obstruction in children, irritation of the eyes and endocrine disruption (Abdelghani et al. 2020).
CHROMATOGRAPHIC AND EXTRACTION TECHNIQUES FOR DETECTION

Chromatographic techniques for detection

A wide range of methods analyzes BPA and PAEs. The liquid chromatography (LC) and gas chromatography (GC) analysis methods for detection and respective extraction techniques used for the determination in commercial water bottles are presented in Table 1. The choice of the detector and extraction influences the detection limit (LOD) and the quantification limit (LOQ) values obtained.

HPLC coupled with diode-array detection (HPLC–DAD) was the most used in BPA detections. HPLC is adequate for the analysis of BPA since it is a relatively polar compound. The DAD detector allows simultaneous collection of chromatograms over a range of wavelengths during a single run, providing more information on sample composition than is provided by the use of a single wavelength detector (Waksmundzka-Hajnos & Sherma 2010). DAD is preferable since it is sufficiently selective for compound identification (McGowin 2006).

GC coupled with mass spectrometry (GC–MS) was the most used technique in PAEs detections. GC can separate volatile and semi-volatile compounds with high resolution, and its combination with MS can identify them, providing detailed structural information on most compounds such that they can be identified correctly (Hussain & Maqbool 2014). Only Karayaka et al. (2019) analyzed BPA by GC–MS and derivatization is not used. BPA has volatility and thermal stability suitable for detection and quantification by GC–MS. However, derivatization can improve the sensitivity, selectivity and performance of the chromatographic properties (Nollet 2005).

BPA analysis underivatized by GC–MS can be found in the literature because sensitivity can be improved using pre-concentration and liquid–liquid extraction (Oca et al. 2013). Karayaka et al. (2019) used the switchable liquid–liquid microextraction (SLLME) to preconcentrate BPA and improving the detection power of GC–MS. Microextraction methods are eco-friendly because they use too small quantities of chemicals, no compromising extraction efficiency and agree with green chemistry (Armenta et al. 2015).

Extraction techniques for detection

The sample preparation has been considered as the Achilles’ heel (Fumes et al. 2015). Matrix-related compounds can be co-extracted and can interfere in the analysis; so, the sample preparation has a multifarious role related to target analyte extraction, preconcentration and clean-up from co-existing species (Gao et al. 2015). A preconcentration step is usually necessary before the final analysis of compounds (Gao et al. 2015; Feizi et al. 2017). However, some methods often require high amounts of organic solvents that are harmful to the environment (Gao et al. 2015; Feizi et al. 2017; Plotka-Wasylka et al. 2017). A concept that has been approached is the green analytical chemistry, which decreases or eliminates organic solvents during the extraction procedure (Fumes et al. 2015; Plotka-Wasylka et al. 2017). Karayaka et al. (2019) developed a method to extract BPA from drinking water bottles using a switchable polarity solvent (N,N-dimethylbenzylamine), which is a green solvent. Also, it is very important to use a proper sample preparation to reach the required lower LODs (Gao et al. 2015). Discoveries in materials science may supply new tools for the preparation of samples (Jalili et al. 2020). Mohammadnezhad et al. (2017) developed ionic liquid-bonded fused silica as a new solid-phase microextraction (SPME) fiber for the liquid chromatographic determination of BPA in mineral water bottled in PET. Wei et al. (2018) synthesized a novel magnetic solid-phase extraction (MSPE) for the determination of six phthalic acid esters in mineral water (including BBP, DBP and DEHP). The development of natural sorbents has also been investigated, which are cheap and readily available and sometimes their performance was comparable with synthetic sorbents (Sajid et al. 2016).

Some works in Table 1 developed extraction methods. González-Sálamo et al. (2017) used the first application of core–shell poly (dopamine) magnetic nanoparticles as a sorbent for the extraction of a group of 11 phthalic acid esters of interest. Pinsrithong & Bunkoed (2018) synthesized a hierarchically porous composite nanostructure of polypyrrole, reduced graphene oxide, magnetite nanoparticles and alginate hydrogel microspheres (PPy-rGOx-Fe3O4). They applied as a magnetic solid-phase extraction
Table 1 | Extraction methods for the determination of BPA, BBP, DBP and DEHP in commercial water bottles

Detected analyte (s)	Extraction method	Chromatographic technique	LODs (μg/L)	LOQs (μg/L)	Reference
BPA	SPE	UFLC–MS/MS	0.004–0.055^a	1.4 × 10^{−2}	Zhou et al. (2019)
BPA	SBSE	HPLC–UV/Vis	0.02	0.06	Gorji et al. (2019)
BPA	UAE-MIP-μ-SPE	HPLC–DAD	0.07	0.15	Rozaini et al. (2017)
BPA	MDMIP- SPE	HPLC–DAD	0.083	0.114	Chang et al. (2017)
BPA	SPME	HPLC–DAD	0.20	Not stated	Mohammadnezhad et al. (2017)
BPA	USAE-MIP-μ-SPE	HPLC–DAD	0.54	1.8	Karayaka et al. (2019)
BPA	SLLME	GC–MS	0.07	0.15	Karayaka et al. (2019)
BPA; BBP; DBP; DEHP	LLE	LC–MS/MS GS–MS	Not stated	Not stated	Wu et al. (2019)
BBP; DBP	MIP-SPE	HPLC–MS	0.16; 0.84	0.55; 2.81	Barciela-Alonso et al. (2017)
BBP; DBP	IT-LLME	GC–MS	1.67; 0.75	5.50; 2.46	Farahani et al. (2017)
BBP; DBP	m-μDME	UHPLC–MS/MS	Not stated	6 × 10^{−3}; 11 × 10^{−3}	Santana-Mayor et al. (2018)
BBP; DBP; DEHP	MSPE	HPLC–UV/Vis	0.0103; 0.003^b; 0.0167	0.0342; 0.022^b; 0.0556	Yin et al. (2019)
BBP; DBP; DEHP	GC–MS/MS	1.0; 1.0; 0.5	3.0; 3.0; 0.15	Li et al. (2019)	
BBP; DBP; DEHP	GC–MS/MS	5.0; 1.0; 5.0	Not stated	Not stated	Wei et al. (2018)
DBP; DEHP	TSP–LLME	GC–MS	0.007	0.021	Chen et al. (2019)
DBP; DEHP	SVA–LLME	GC–MS	0.15	0.50	Mohebbi et al. (2017)
DBP; DEHP	DSPE–DLLME	GC–FID	1.24	4.11	Farajzadeh et al. (2019)
DBP; DEHP	SPE	HPLC–UV/Vis	2.4	7.9	Salazar-Beltrán et al. (2017)
DBP; DEHP	MISPE	HPLC–UV/Vis	3	10	Sohelifar et al. (2018)
DBP; DEHP	m-μDME	GC–MS/MS	Not stated	0.009	González-Sálimo et al. (2017)
DBP; DEHP	LLE	HPLC–UV/Vis	Not stated	Not stated	Dada et al. (2018)
DBP; DEHP	HF–LPME	GC–MS/MS	Not stated	Not stated	González-Sálimo et al. (2018)
DBP; DEHP	MEPS–DLLME	GC–FID	0.001; 0.005	0.003; 0.015	Amiri & Ghaemi (2017)
DBP; DEHP	MSPE	GC–MS/MS	0.005; 0.008	0.02; 0.03	Pinsrithong & Bunkoed (2018)
DBP; DEHP	RDSE	GC–MS	0.01; 0.03	0.04; 0.10	Manzo et al. (2019)
DBP; DEHP	MEPS	GC–FID	0.01; 0.15	0.10; 0.25	Manzo et al. (2019)
DBP; DEHP	LLE	GC–FID	Not stated	Not stated	Szendi et al. (2018)
DBP; DEHP	DMIS–SPE	GC–MS	0.000309	0.0013	Özer et al. (2017)
DBP; DEHP	SPE	GC–FID	0.02	Not stated	Chaikhani & Amiri (2019)
DBP; DEHP	DLLME	GC–FID	2	4	Notardonato et al. (2018)

(continued)
Without migration study

Detected analyte (s)	Extraction method	Chromatographic technique	LODs (µg/L)	LOQs (µg/L)	Reference
BBP; DBP; DEHP	LLE	GC-MS	0.00031; 0.00025; 0.00042	0.00096; 0.0008; 0.00122	Yang et al. (2017)
BBP; DBP; DEHP	Not stated	GC-MS	0.02; 0.02; 0.03	0.06; 0.06; 0.94	Suriho et al. (2017)
BBP; DBP; DEHP	LLE	GC-MS	0.025; 0.017; 0.031	Not stated	Abtahi et al. (2019)
BBP; DBP; DEHP	Not stated	GC-MS	0.015	Not stated	Hashemi-Moghaddam & Maddah (2018)
BBP; DBP; DEHP	PT-µ-SPE	HPLC-FLD	0.001	0.0032	Kaykhaii et al. (2020)
BBP; DBP; DEHP	m-SPE	GC-FID	0.64	Not stated	Surhio et al. (2017)
BBP; DBP; DEHP	AALLME	GC-MS/MS	0.64; 0.60; 0.94	Not stated	Yousefi et al. (2019)
BBP; DBP; DEHP	UA-DLLME	GC-MS	0.3	Not stated	Annamalai & Namasivayam (2017)
BBP; DBP; DEHP	SPE	GC-MS	0.015	Not stated	Sulentic et al. (2018)
BBP; DBP; DEHP	UA-DLLME	GC-MS	0.043; 0.062	Not stated	Zaki & Shoeib (2018)
BBP; DBP; DEHP	MIP-SPE	GC-FID	0.12	Not stated	Yang et al. (2017)

BPA, bisphenol A; BBP, benzylbutyl phthalate; DBP, di-n-butyl phthalate; DEHP, di(2-ethylhexyl) phthalate; SPE, solid-phase extraction; SBSE, stir bar sorptive extraction; USAE, ultrasound-assisted emulsification; MIP, molecularly imprinted polymer; µ-SPE, micro-solid-phase extraction; MDMP, magnetic dummy molecularly imprinted polymer; SPME, solid-phase microextraction; SLLME, switchable liquid-liquid microextraction; LE, liquid-liquid extraction; IT-UAA, in tube ultrasonic and air-assisted; LLME, liquid-liquid microextraction; m-µ-SPE, magnetic micro-dispersive solid-phase extraction; MSPE, magnetic solid-phase extraction; TSP, temperature-sensitive polymer; SVA, solvent vapor-assisted; DLLME, dispersive liquid-liquid microextraction; MISPME, molecularly imprinted solid-phase microextraction; HF-LPME, hollow fiber liquid-phase microextraction; MEPS, microextraction in packed syringe; RDSE, rotating disk sorptive extraction; DMIMS, dual-template molecularly imprinted mesoporous silica; PT-µ-SPE, pipette-tip micro-solid-phase extraction; µ-SPE, micro-solid-phase extraction; HS, headspace; AALLME, air-assisted liquid-liquid microextraction; UA, ultrasound-assisted; GC, gas chromatography; MS, mass spectrometry; HPLC, high-performance liquid chromatography; DAD, diode-array detector; FID, flame ionization detector; UV/Vis, ultraviolet/visible; EC, external quality control; UHPLC, ultra-high-performance liquid chromatography; UPLC, ultra-performance liquid chromatography; FLD, fluorescence detector.

With migration study

Detected analyte (s)	Extraction method	Chromatographic technique	LODs (µg/L)	LOQs (µg/L)	Reference
BBP; DBP; DEHP	LLE	GC-MS	0.00031; 0.00025; 0.00042	0.00096; 0.0008; 0.00122	Yang et al. (2017)
BBP; DBP; DEHP	Not stated	GC-MS	0.02; 0.02; 0.03	0.06; 0.06; 0.94	Suriho et al. (2017)
BBP; DBP; DEHP	LLE	GC-MS	0.025; 0.017; 0.031	Not stated	Abtahi et al. (2019)
BBP; DBP; DEHP	Not stated	GC-MS/MS	0.015	Not stated	Hashemi-Moghaddam & Maddah (2018)
BBP; DBP; DEHP	PT-µ-SPE	HPLC-FLD	0.001	0.0032	Kaykhaii et al. (2020)
BBP; DBP; DEHP	m-SPE	GC-FID	0.64	Not stated	Surhio et al. (2017)
BBP; DBP; DEHP	AALLME	GC-MS/MS	0.64; 0.60; 0.94	Not stated	Yousefi et al. (2019)
BBP; DBP; DEHP	UA-DLLME	GC-MS	0.3	Not stated	Annamalai & Namasivayam (2017)
BBP; DBP; DEHP	SPE	GC-MS	0.015	Not stated	Sulentic et al. (2018)
BBP; DBP; DEHP	UA-DLLME	GC-MS	0.043; 0.062	Not stated	Zaki & Shoeib (2018)
BBP; DBP; DEHP	MIP-SPE	GC-FID	0.12	Not stated	Yang et al. (2017)

Currently, MCL has not been established for BBP (US EPA 2019a), although, in 1990, US EPA proposed an MCL of 100 µg/L (Parks et al. 1993). In 2004, New Jersey State Primary and Secondary Drinking Water Standards derived the same value, multiplying the drinking water equivalent level of 7 mg/L by the relative source contribution factor of 20% and dividing the result by the additional uncertainty factor of 10 for possible human carcinogens (NJDEP 2004). All methods show LOD and LOQ below this proposed MCL value for BBP.

adsorbent for PAEs, including BBP, DBP and DEHP. Farajzadeh et al. (2019) developed a natural and costless adsorbent for the accomplishment of a dispersive solid-phase extraction (DSPE) procedure followed by dispersive liquid–liquid microextraction (DLLME) for the extraction and preconcentration of PAEs and alkylphenols. None of the methods of Table 1 present LOD and LOQ values lower than the MCL to BPA in drinking water by EC (0.1 µg/L), but are lower than in China (10 µg/L) (EC 2020; GB-5749-2006).

Currently, MCL has not been established for BBP (US EPA 2019a), although, in 1990, US EPA proposed an MCL of 100 µg/L (Parks et al. 1993). In 2004, New Jersey State Primary and Secondary Drinking Water Standards derived the same value, multiplying the drinking water equivalent level of 7 mg/L by the relative source contribution factor of 20% and dividing the result by the additional uncertainty factor of 10 for possible human carcinogens (NJDEP 2004). All methods show LOD and LOQ below this proposed MCL value for BBP.
Almost all methods exhibit LOD and LOQ lower than DBP by China for drinking water (3 μg/L) (GB-5749-2006). All methods show LOD and LOQ lower than DEHP by US FDA for bottled water (6 μg/L) and by WHO, Codex Alimentarius, China for drinking water (8 μg/L) (Codex Alimentarius 2001; GB-5749-2006; WHO 2017; ECFR 2020). Yang et al. (2017) analyzed BBP, DBP and DEHP by GC–MS/LLE. The values of LOD and LOQ are given in mg/kg. The LOD and LOQ are lower than the SML values by the EU for BBP (30 mg/kg), DBP (0.3 mg/kg) and DEHP (1.5 mg/kg) (EFSA 2019).

DETECTIONS OF BPA AND PAES

The detected levels of BPA, BBP, DBP and DEHP in commercial water bottles without the storage study are present in Table 2 and Figure 1. Wei et al. (2018) and Yang et al. (2017) are not included in Figure 1 because the units are in mg/kg. The detected levels of BPA, BBP, DBP and DEHP in commercial water bottles with the storage study are present in Table 3 and Figure 2. For articles with concentration ranges, averages were used to generate Figures 1 and 2. A better understanding of the methods used in storage studies can be verified in their respective articles.

Some papers presented values above the MCL to BPA (0.1 μg/L) by EC (EC 2020). All the papers exhibited levels lower than MCL to BPA by China (GB-5749-2006). Even though there is no specific legislation for BBP so far, all the papers showed levels lower than MCL of 100 μg/L proposed by US EPA. It should be noted that this is a proposed value and has not been defined as a standard, but the proposed value serves to analyze the results for the moment. Almost all papers exhibited DBP levels lower than 3 μg/L (GB-5749-2006) and displayed DEHP levels lower than 6 or 8 μg/L (Codex Alimentarius 2001; GB-5749-2006; WHO 2017; ECFR 2020). The values of BBP, DBP and DEHP obtained by Wei et al. (2018) and Yang et al. (2017) are lower than the SML values by the EU for BBP (30 mg/kg), DBP (0.3 mg/kg) and DEHP (1.5 mg/kg) (EFSA 2019).

The countries with the reported highest levels of BPA, BBP, DBP and DEHP were Turkey (5.7 μg/L – Figure 1), Pakistan (12.11 μg/L – Figure 2), Mexico (82.8 μg/L – Figure 1) and Thailand (64.0 μg/L – Figure 1), respectively. The PAE values detected were highest than those established by legislation. Thailand also was the country with the first rank with DEHP (94.1 μg/L) in bottled waters in the review by Luo et al. (2018). The value was obtained by Uansiri et al. (2016) in bottled water contained in plastic containers. DEHP is known as a dominant PAE in bottled water (Keresztes et al. 2013; Guart et al. 2014; Zaki & Shoieb 2018; Abtahi et al. 2019).

DBP was the most compound detected. Luo et al. (2018) also verified that DBP was the PAE with more detection frequency in bottled water. All the samples (10 brands) analyzed by Soheilifar et al. (2018) present DBP. Among 16 PAEs studied by Zhang et al. (2018), DBP was the most ubiquitous and dominant contaminant in the study population. Soheilifar et al. (2018) optimized a molecularly imprinted polymer as a highly selective sorbent toward DBP. Dada et al. (2018) also analyzed packaged sachet water, and DBP concentrations were almost four-time higher (160 μg/L) relative to bottled water. Sachet water is packaging in plastic bags (Semey et al. 2020) made of LDPE (Jnr et al. 2018), and it is relatively cheaper than a water bottle (Dada et al. 2018).

Kaykhaii et al. (2020) verified that the water sample presented more BPA migration (Figure 2) when brought to boiling in a steel jar, quickly poured into the bottle and after cooling at ambient temperature (Figure 2). Surhio et al. (2017) detected the highest value of BBP migration studied with the influence of sunlight in Pakistan (Figure 2). The intensity of sunlight may affect the degradation degree of PAEs (Lertsirisophon et al. 2009), and the occurrence of PAEs in water stored in PET bottles depended mainly on the country of origin of the bottle (Schmid et al. 2008; Keresztes et al. 2013). All the papers that specified the type of bottle demonstrated DBP levels above the MCL (3 μg/L). Yousefi et al. (2019) also studied PET bottled water exposed to sunlight and as well as Surhio et al. (2017) verified an increase in DBP concentration. DBP values at room temperature were lower than at freezing for Hashemi-Moghaddam & Maddah (2018), while the reverse occurred for Sulentic et al. (2018). The presence of DBP may be due to different production facilities used by the different brands tested (Al-Saleh et al. 2017; Guart et al. 2014). Anna- malai & Namasiyam (2017) obtained bigger values to DEHP at 4 °C and smaller values at 37 °C. To Zaki &
Detected analyte	Sample	Country	Type of bottle	Number of brands or samples	Concentration (μg/L)	Reference
BPA	Drinking water bottle	Turkey	Not stated	3	5.7	Karayaka et al. (2019)
BPA	Mineral water bottle	Iran	PET	1	5.5	Mohammadnejad et al. (2017)
BPA	Mineral water	Malaysia	Not stated	6	1.25	Rozaini et al. (2017)
BPA	Plastic bottled mineral water	China	Not stated	1	0.127	Chang et al. (2017)
BPA	Bottled mineral water	Iran	Not stated	3	0.07	Gorji et al. (2019)
BPA	Bottled water	China	Not stated	Not stated	0.05–0.08	Zhou et al. (2019)
BPA	Bottled water	China	Not stated	17	0.01	Wu et al. (2019)
BPA	Bottled water	Iran	PET	3	2.9–5.5	Farahani et al. (2017)
BPA	Bottled water	China	Not stated	17	1.86	Wu et al. (2019)
BPA	Bottled water in plastic	Spain	Not stated	4	0.75–1.9	Barciela-Alonso et al. (2017)
BPA	Mineral water	China	Not stated	5	0.515–0.690	Yin et al. (2019)
BPA	Mineral water	Vietnam	Not stated	14	0.30–0.95	Tran-Lam et al. (2018)
BPA	Bottled drinking water	China	Not stated	60	0.019–0.032	Li et al. (2019)
BPA	Mineral water bottled in plastic	Spain	Not stated	1	<LOQ	Santana-Mayor et al. (2018)
DBP	Plastic bottled Water	Nigeria	Not stated	15	42	Dada et al. (2018)
DBP	Drinking water	Mexico	PET	10	20.5–82.8	Salazar-Beltrán et al. (2017)
DBP	Mineral water	China	Not stated	5	8.98–11.5	Yin et al. (2019)
DBP	Bottled water in plastic	Spain	Not stated	4	4.6–8.2	Barciela-Alonso et al. (2017)
DBP	Plastic bottled water	Thailand	Not stated	1	17.0	Pinsrithong & Bunkoed (2018)
DBP	Plastic bottled water	Iran	Not stated	1	5.2	Mohebbi et al. (2017)
DBP	Mineral water	Cyprus	Not stated	Not stated	4.35	Farajzadeh et al. (2019)
DBP	Bottled mineral water	Iran	Not stated	1	4.5	Amiri & Ghaemi (2017)
DBP	Mineral water	China	Not stated	1	2.68	Chen et al. (2019b)
DBP	Bottled water	China	Not stated	17	1.34	Wu et al. (2019)
DBP	Mineral water	Iran	Not stated	3	1.1–2.5	Amiri et al. (2017)
DBP	Mineral water	Iran	PET	3	1.1–1.7	Farahani et al. (2017)
DBP	Mineral water	Spain	Not stated	1	<1	González-Sálamo et al. (2018)
DBP	Mineral bottled water	Spain	PET	1	0.36	González-Sálamo et al. (2017)
DBP	Water packed in plastic bottle	Chile	Not stated	5 (2 – still, 2 – sparkling, 1 – light sparkling)	0.353–2.756	Manzo et al. (2019)
DBP	Plastic bottled water	Iran	Not stated	10	0.26–1.13	Soheilifar et al. (2018)
DBP	Plastic bottled beverages	Vietnam	Not stated	8	0.24–1.86	Tri et al. (2018)
Detected analyte	Sample	Country	Type of bottle	Number of brands or samples	Concentration (μg/L)	Reference
------------------	--------	---------	----------------	----------------------------	----------------------	-----------
DBP	Mineral water bottled in plastic	Spain	Not stated	1	0.184	Santana-Mayor et al. (2018)
DBP	Mineral water	Vietnam	Not stated	14	0.09–0.95	Tran-Lam et al. (2018)
DBP	Bottled drinking water	China	Not stated	60	0.021–0.51	Li et al. (2019)
DBP	Bottled mineral water	Hungary	PET	4	<0.005–0.2	Szendi et al. (2018)
DEHP	Plastic bottled water	Thailand	Not stated	1	64.0	Pinsrithong & Bunkoed (2018)
DEHP	Bottled water	Italy	Not stated	2	22.9–24.4	Notardonato et al. (2018)
DEHP	Plastic bottled beverages (water)	Vietnam	Not stated	8	10.3–42.3	Tri et al. (2018)
DEHP	Bottled water	Turkey	Not stated	Not stated	10.06–11.90	Özer et al. (2017)
DEHP	Bottled mineral water	Iran	Not stated	1	3.0	Amiri & Ghaemi (2017)
DEHP	Bottled mineral water	Iran	Not stated	2	2.6	Chahkandi & Amiri (2019)
DEHP	Bottled water	China	Not stated	17	2.50	Wu et al. (2019)
DEHP	Water packed in plastic bottle (still, sparkling and light sparkling)	Chile	Not stated	5 (2 – still, 2 – sparkling, 1 – light sparkling)	1.258–4.321	Manzo et al. (2019)
DBP	Mineral water	Iran	Not stated	3	0.5–3.5	Amiri et al. (2017)
DBP	Mineral water	Vietnam	Not stated	14	0.46–1.8	Tran-Lam et al. (2018)
DEHP	Mineral water	China	Not stated	5	<LOQ–0.733	Yin et al. (2019)
DEHP	Bottled mineral water	Hungary	PET	4	<0.29–11.289	Szendi et al. (2018)
DEHP	Bottled drinking water	China	Not stated	60	0.013–0.021	Li et al. (2019)
BBP	Mineral water	China	Not stated	1	0.001	Wei et al. (2018)
DBP	Mineral water	China	Not stated	0.014		
DEHP	Mineral water	China	Not stated	0.018		
BBP	Mineral water	China	Not stated	0.32 × 10⁻⁴– 1.1 × 10⁻⁴	Yang et al. (2017)	
DBP	Mineral water	China	Not stated	1.3 × 10⁻⁴– 10.2 × 10⁻⁴		
DEHP	Mineral water	China	Not stated	2.2 × 10⁻⁴– 43.9 × 10⁻⁴		

BPA, bisphenol A; BBP, benzylbutyl phthalate; DBP, di-n-butyl phthalate; DEHP, di(2-ethylhexyl) phthalate.

*Polyethylene terephthalate.
Shoeib (2018) occurred the reverse. These authors analyzed DEHP in PET bottled water.

The migration of PAEs in bottled water results from the combined effects of multiple factors, as reported by Luo et al. (2018). The possible reason for the migration of PAEs is the usage of low-quality plastic as well as solubility in water (Saeed et al. 2010). The plastic type is that influences the presence of specific contaminants, where the migration of plasticizers from the cap material plays an important role (Guart et al. 2014). Jeddi et al. (2016) noted that the effect of temperatures and sunlight exposure on the release of the BBP, DBP and DEHP into the water is more than the effect...
Detected analyte	Sample	Country	Type of bottle	Number of brands or samples	Storage study	Concentration (µg/L)	Reference	
BPA	Bottled drinking water	Iran	Not stated	4	Freezing temperature (24 h)^a	0.0023	Kaykhaii et al. (2020)	
					Sunlight (for a week)	0.007		
					Boiled in a steel jar and quickly poured into the bottle (cooled to ambient temperature)^a	0.016		
BBP	Mineral water bottle	Pakistan	Not stated	5	Sunlight (7 days with 10 h/day – 46–48°C)	ND^b – 12.11 (median: 7.43)	Surhio et al. (2017)	
BBP	Bottled water	Iran	PET^c	10	Sunlight (roof on sunny days for 1 week)	0.03–0.13	Abtahi et al. (2019)	
DBP	Mineral water bottle	Pakistan	Not stated	5	Sunlight (7 days with 10 h/day – 46–48°C)	ND^b – 26.16 (median: 21.7)	Surhio et al. (2017)	
DBP	Bottled water	Iran	PET	10	Sunlight (roof on sunny days for 1 week)	ND^b – 0.12 (median: 0.10)	Abtahi et al. (2019)	
DBP	Bottled water	Romania	Not stated	Not stated	Room temperature 1–4°C^a	6.11	5.12	Sulentic et al. (2018)
DBP	Water in plastic bottle	Iran	Not stated	3	Room temperature^a	5.32	10.12	Hashemi-Moghaddam & Maddah (2018)
					Freezing temperature^a			
DBP	Bottled mineral water	Italy	PET	15	6 months at 25°C	1.23		Cincotta et al. (2018)
					12 months at 60°C	3.14		
					18 months at 60°C	6.01		
DBP	Bottled water	Egypt	PET	5	1 months (4 ± 1°C)	0.107		Zaki & Shoeib (2018)
					2 months (4 ± 1°C)	0.128		
					4 months (4 ± 1°C)	0.173		
					1 months (40 ± 5°C)	0.124		
					2 months (40 ± 5°C)	0.167		
					4 months (40 ± 5°C)	0.229		
					2 months (25 ± 5°C)	0.136		
					6 months (25 ± 5°C)	0.227		
DBP	Drinking water bottled	Iran	PET	5	First week of the production	0.80		Yousefi et al. (2019)
					Sunlight (23 ± 2°C at 5 days)	5.86	Not stated	
					Incubator (25°C for 75 days)	Not stated		
					Incubator (42°C for 15 days)	Not stated		
DEHP	Mineral water bottle	Pakistan	Not stated	5	Sunlight (7 days with 10 h/day – 46–48°C)	20.23	Surhio et al. (2017)	

(continued)
due to storage duration. Keresztes et al. (2013) analyzed identical brands of water samples in PET containers having different volumes. The authors verified that how much higher is the contact surface between water and PET material, higher concentrations of BBP, DBP and DEHP were observed.

RISK ASSESSMENT

Daily intake-associated risk assessment

To compare the health risk via commercial water bottle consumption was used the risk assessment. The highest levels of BPA, BBP, DBP and DEHP in commercial water bottles are presented in Table 4 and Figure 3. The BPA in PET bottled water suggests other sources of contamination beside the packaging itself. The presence of BPA in PC packaging is known. In the case of PET bottled water, BPA can result from leaching by bottle caps or contamination of the water before bottling (Guart et al. 2011; Bach et al. 2012; Rowell et al. 2016). The water quality intended for bottling can be affected by the leaching of pollutants from unprotected agricultural and industrial areas (Bono-Blay et al. 2012). Bono-Blay et al. (2012) studied Spanish water sources intended for bottling, where BPA was one of the most frequently
Figure 2 | Levels of BPA, BBP, DBP and DEHP variation in commercial water bottles with the storage study. The number in 'Sample-Type of bottle' represents different samples. NS is 'Not stated'.

Table 4 | Estimation of exposure to BPA, BBP, DBP and DEHP in commercial water bottles

Detected analyte	Country	Concentration (μg/L)*	EDI (μg/kg-bw/day)*	Contribution via bottled water (%)	ELCR#	Reference
BPA	Turkey	5.7	≈0.163	≈4.1	–	Karayaka et al. (2019)
BPA	Iran	5.5	≈0.157	≈3.9	–	Mohammadnezhad et al. (2017)
BPA	Malaysia	1.25	≈3.6 × 10⁻²	≈0.9	–	Rozaini et al. (2017)
BPA	China	0.127	≈3.6 × 10⁻³	≈0.09	–	Chang et al. (2017)
BPA	China	0.08	≈2.3 × 10⁻³	≈0.058	–	Zhou et al. (2019)
BPA	Iran	0.07	2.0 × 10⁻³	≈0.05	–	Gorji et al. (2019)
BPA	China	0.01	≈2.9 × 10⁻⁴	≈7.3 × 10⁻³	–	Wu et al. (2019)
BBP	Iran	5.5	≈0.157	≈0.03	–	Farahani et al. (2017)
BBP	Spain	1.9	≈5.4 × 10⁻²	≈1.1 × 10⁻²	–	Barciela-Alonso et al. (2017)
BBP	China	1.86	5.3 × 10⁻²	≈1.1 × 10⁻²	–	Wu et al. (2019)
BBP	Vietnam	0.95	2.7 × 10⁻²	≈5.4 × 10⁻³	–	Tran-Lam et al. (2018)
BBP	China	0.690	2.0 × 10⁻²	≈4.0 × 10⁻³	–	Yin et al. (2019)
BBP	China	0.032	≈9.1 × 10⁻⁴	≈1.8 × 10⁻⁴	–	Li et al. (2019)
BBP	Spain	<LOQ (0.006)	<1.7 × 10⁻⁴	<3.4 × 10⁻⁵	–	Santana-Mayor et al. (2018)
DBP	Mexico	82.8	2.37	25.7	–	Salazar-Beltrán et al. (2017)
Table 4 | continued

Without the storage study

Detected analyte	Country	Concentration (μg/L)	EDI (μg/kg-bw/day)	Contribution via bottled water (%)	ELCR	Reference
DBP	Nigeria	42	1.2	12	-	Dada et al. (2018)
DBP	Thailand	17.0	≈0.486	≈4.86	-	Pinsritpong & Bunkoed (2018)
DBP	China	11.5	≈0.329	≈3.29	-	Yin et al. (2019)
DBP	Spain	8.2	≈0.234	≈2.34	-	Barciela-Alonso et al. (2017)
DBP	Iran	5.2	≈0.149	≈1.49	-	Mohebbi et al. (2017)
DBP	Iran	4.5	0.129	1.29	-	Amiri & Ghaemi (2017)
DBP	Iran	4.35	≈0.124	1.24	-	Farajzadeh et al. (2019)
DBP	China	2.68	≈7.7 × 10⁻²	≈0.77	-	Chen et al. (2019b)
DBP	Iran	2.5	≈7.1 × 10⁻²	≈0.71	-	Amiri et al. (2017)
DBP	Vietnam	1.86	5.3 × 10⁻²	0.53	-	Tri et al. (2018)
DBP	Iran	1.7	≈4.9 × 10⁻²	≈0.49	-	Farahani et al. (2017)
DBP	China	1.34	≈3.8 × 10⁻²	≈0.38	-	Wu et al. (2019)
DBP	Iran	1.13	≈3.2 × 10⁻²	≈0.32	-	Soheilifar et al. (2018)
DBP	Spain	<1	<2.9 × 10⁻²	<0.29	-	González-Suárez et al. (2018)
DBP	Vietnam	0.95	≈2.7 × 10⁻²	≈0.27	-	Tran-Lam et al. (2018)
DBP	China	0.51	≈1.5 × 10⁻²	0.15	-	Li et al. (2019)
DBP	Spain	0.36	1.0 × 10⁻²	0.1	-	González-Suárez et al. (2017)
DBP	Hungary	<0.2	<5.7 × 10⁻³	<0.057	-	Szendi et al. (2018)
DBP	Spain	0.184	≈5.3 × 10⁻³	≈0.053	-	Santana-Mayor et al. (2018)
DEHP	Thailand	64.0	≈1.83	≈3.66	≈3.0 × 10⁻⁵	Pinsritpong & Bunkoed (2018)
DEHP	Vietnam	42.3	≈1.21	2.42	≈2.0 × 10⁻⁵	Tri et al. (2018)
DEHP	China	2.50	≈7.1 × 10⁻²	≈1.42	≈1.2 × 10⁻⁶	Wu et al. (2019)
DEHP	Italy	24.4	≈0.697	≈1.39	≈1.1 × 10⁻⁵	Notard donato et al. (2018)
DEHP	Turkey	11.90	0.34	0.68	≈5.6 × 10⁻⁶	Özer et al. (2017)
DEHP	Hungary	<11.289	<0.323	<0.646	<5.3 × 10⁻⁶	Szendi et al. (2018)
DEHP	Chile	4.321	≈0.123	≈0.246	≈2.0 × 10⁻⁶	Manzo et al. (2019)
DEHP	Iran	3.5	0.1	0.2	≈1.6 × 10⁻⁶	Amiri et al. (2017)
DEHP	Iran	3.0	0.086	0.172	≈1.4 × 10⁻⁶	Amiri & Ghaemi (2017)
DEHP	Vietnam	1.8	5.1 × 10⁻²	0.1	≈8.53 × 10⁻⁷	Tran-Lam et al. (2018)
DEHP	China	0.733	≈2.1 × 10⁻²	≈0.042	≈3.4 × 10⁻⁷	Yin et al. (2019)
DEHP	China	0.021	6.0 × 10⁻⁴	1.2 × 10⁻³	≈9.9 × 10⁻⁹	Li et al. (2019)

Detected analyte	Country	Concentration (μg/kg)	EDI (μg/kg-bw/day)	Contribution via bottled water (%)	CRI	Reference
BBP	China	Mineral water (MW): 0.11	≈3.1 × 10⁻⁴	≈6.2 × 10⁻⁴	-	Yang et al. (2017)
		Soda water (SW): 0.13	≈3.7 × 10⁻⁴	≈7.4 × 10⁻⁴		
Table 4 | continued

Without the storage study

Detected analyte	Country	Concentration (μg/L)a	EDI (μg/kg-bw/day)b	Contribution via bottled water (%)c	CRd	Reference
DBP	Mineral water: 1.02	2.9 × 10^{-2}	0.29			
	Soda water: 6.34	0.181				
DEHP	Mineral water: 4.3	0.123	0.246	5.2 × 10^{-8}	3.4	
	Soda water: 7.29	0.208	0.416			

With storage study

Detected analyte	Country	Concentration (μg/L)a	EDI (μg/kg-bw/day)b	Contribution via bottled water (%)c	CRd	Reference
BPA	Iran 0.016	4.6 × 10^{-4}	1.2 × 10^{-2}			Kaykhai et al. (2020)
BBP	Pakistan 12.11	0.346	0.069			Surhio et al. (2017)
BBP	Iran 0.13	3.7 × 10^{-3}	7.4 × 10^{-4}			Abtahi et al. (2019)
DBP	Pakistan 26.16	0.747	7.4			Surhio et al. (2017)
DBP	Iran 10.12	0.289	2.89			Hashemi-Moghaddam & Maddah (2018)
DBP	Iran 8.45	0.241	2.41			Yousefi et al. (2019)
DBP	Romania 6.11	0.175	1.75			Sulentic et al. (2018)
DBP	Italy 6.01	0.172	1.72			Cincotta et al. (2018)
DBP	Egypt 0.229	6.5 × 10^{-3}	0.065			Zaki & Shoeib (2018)
DBP	Iran 0.12	3.4 × 10^{-3}	0.034			Abtahi et al. (2019)
DEHP	Pakistan 20.23	0.578	1.16	9.5 × 10^{-6}		Surhio et al. (2017)
DEHP	Iran 12.67	0.362	0.724	6.0 × 10^{-6}		Yousefi et al. (2019)
DEHP	Romania 2.00	5.7 × 10^{-2}	0.114	9.4 × 10^{-7}		Sulentic et al. (2018)
DEHP	Egypt 0.432	1.2 × 10^{-2}	0.024	2.0 × 10^{-7}		Zaki & Shoeib (2018)
DEHP	Iran 0.12	3.4 × 10^{-3}	6.8 × 10^{-3}	5.6 × 10^{-8}		Abtahi et al. (2019)
DEHP	India 1.09	3.1 × 10^{-2}	0.062	5.1 × 10^{-7}		Annamalai & Namasivayam (2017)

BPA, bisphenol A; BBP, benzylbutyl phthalate; DBP, di-n-butyl phthalate; DEHP, di(2-ethylhexyl) phthalate.

aThe worst-case scenario (the maximum level of each compound) was employed.

bEDI = (C × IR/BW), where C is the concentration of target compounds (μg/L or mg/kg), ingestion rate (IR) is the daily consumption rate of bottled water (L/day or g/day), and BW is body weight (Zaki & Shoeib (2018), and the IR was assumed to be 2.0 L/day or 2.0 kg/day for a 70 kg for adult (BW) (WHO (2005)). The value of 2.0 L/day refers to all water sources that includes water from all supply sources such as community water supply (i.e., tap water), bottled water, etc.

cContribution via drinking water = (EDI/TDI) × 100 (Zaki & Shoeib 2018), where the TDI for BPA, BBP, DBP, and DEHP are available for reference as established by EFSA (4, 500, 10, and 50 μg/ kg/bw/day).

dELCR is the Excess Lifetime Cancer Risks due to exposure to chemicals through the use of bottled water. ELCR = DWUR × MC, where Drinking Water Unit Risk is equal to 4.7 × 10^{-7} μg/L of DEHP in water, and MC is the maximum concentration (μg/L or μg/kg) of DEHP in bottled water (Jeddi et al. 2015). Here was considered the value of 4.7 × 10^{-7} μg/L for papers with concentrations given in mg/kg.

dContribution via bottle water = (EDI/TDI) × 100 (Zaki & Shoeib 2018), where the TDI for BPA, BBP, DBP, and DEHP are available for reference as established by EFSA (4, 500, 10, and 50 μg/ kg/bw/day).

detected compounds at concentrations between 0.031 and 0.203 μg/L.

Although the estimated daily intake (EDI) of BPA, BBP, DBP and DEHP detected in PET bottled waters analyzed was below the legislative values (Table 4), considering all types of food, it may contribute to the total daily intake of these compounds. The highest contributions via commercial water bottles of BPA, BBP, DBP and DEHP in all the bottled waters studied were 4.1, 0.069, 25.7 and 3.66% of TDI, respectively (Figure 3). The results demonstrate that...
contribution via commercial water bottles (Table 4) could represent a substantial source of exposure to these compounds (considering the highest contributions), when the daily consumption rate, of 2.0 L/day of bottled water and body weight of 70 kg, is used according to the standard WHO (2005). If Reference Dose (RfD) were considered (Table 5), which is more restrictive for DEHP, the contribution would be much higher (9.15%).

The carcinogenic risk (Excess Lifetime Cancer Risks – ELCR) posed by the highest concentration of DEHP in bottled water was negligible for all papers, with extremely below or between the accepted risk level of 10^{-6}–10^{-4} cancer risk (WHO 2017). As mentioned by WHO (2017), daily water intake can vary significantly in different parts of the world and location-specific data on drinking water consumption are preferred. As reported by Leung et al.
Table 5 | Estimated human exposure and estrogenic effects of BPA, BBP, DBP and DEHP via commercial bottled water ingested for other population groups

Reference	BPA	BBP	DBP	DEHP
Maximum concentration (μg/L)	5.7	12.11	82.8	64.0
EDI (µg/kg-bw/day)				
Infants (birth to <12 months)a	≈0.042	≈0.089	≈0.61	≈0.471
Children (1 to <3 years)b	≈0.106	≈0.225	≈1.539	≈1.19
Children (3 to <11 years)c	≈0.072	≈0.154	≈1.051	≈0.813
Teenage (11 to <16 years)d	≈0.053	≈0.112	≈0.767	≈0.593
Young adult (16 <21 years)e	≈0.061	≈0.129	≈0.882	≈0.682
Adult (≥21 years)f	≈0.060	≈0.128	≈0.876	≈0.677
Pregnant (15–44)f	≈0.046	≈0.097	≈0.662	0.512
Elderly (≥65 years)g	≈0.057	≈0.120	≈0.821	≈0.635
Tolerable daily intake (µg/kg-bw/day)	4	500	10	50
Contribution via bottled water (%)*				
Infants (birth to <12 months)a	≈1.05	≈1.78 × 10⁻²	≈6.10	≈0.942
Children (1 to <3 years)b	≈2.65	≈4.50 × 10⁻²	≈15.40	≈2.38
Children (3 to <11 years)c	≈1.80	≈3.08 × 10⁻²	≈1.05	≈1.63
Teenage (11 to <16 years)d	≈1.33	≈2.24 × 10⁻²	≈7.67	≈1.19
Young adult (16 to <21 years)e	≈1.53	≈2.58 × 10⁻²	≈8.82	≈1.36
Adult (≥21 years)f	≈1.50	≈2.56 × 10⁻²	≈8.76	≈1.35
Pregnant (15–44)f	≈1.15	≈1.94 × 10⁻²	≈6.62	1.02
Elderly (≥65 years)g	≈1.43	≈1.2 × 10⁻²	≈8.21	≈1.27
RfD (µg/kg-bw/day)	50	500	100	20
HQ (based on maximum concentration)				
Infants (birth to <12 months)a	≈8.40 × 10⁻⁴	≈1.78 × 10⁻⁴	≈6.10 × 10⁻³	≈2.36 × 10⁻²
Children (1 to <3 years)b	≈2.12 × 10⁻³	≈4.50 × 10⁻⁴	≈1.54 × 10⁻²	≈5.95 × 10⁻²
Children (3 to <11 years)c	≈1.44 × 10⁻³	≈3.08 × 10⁻⁴	≈1.05 × 10⁻²	≈4.07 × 10⁻²
Teenage (11 to <16 years)d	≈1.06 × 10⁻³	≈2.24 × 10⁻⁴	≈7.67 × 10⁻³	≈2.97 × 10⁻²
Young adult (16 to <21 years)e	≈1.22 × 10⁻³	≈2.58 × 10⁻⁴	≈8.82 × 10⁻³	≈3.41 × 10⁻²
Adult (≥21 years)f	≈1.20 × 10⁻³	≈2.56 × 10⁻⁴	≈8.76 × 10⁻³	≈3.39 × 10⁻²
Pregnant (15–44)f	≈9.20 × 10⁻⁴	≈1.94 × 10⁻⁴	≈6.62 × 10⁻³	2.56 × 10⁻²
Elderly (≥65 years)g	≈1.14 × 10⁻³	≈2.4 × 10⁻⁴	≈8.21 × 10⁻³	≈3.18 × 10⁻³

SF (based on maximum concentration)

Infants (birth to <12 months)a	1,190	5,620	164	42.5
Children (1 to <3 years)b	472	2,220	65	16.8
Children (3 to <11 years)c	694	3,250	95.1	24.6
Teenage (11 to <16 years)d	943	4,460	130	33.7
Young adult (16 <21 years)e	820	3,880	113	29.3
Adult (≥21 years)f	833	3,910	114	29.5

(continued)
infants and children have been subject to increased risks that are approximately six times greater than those in adolescents and adults due to their high drinking water consumption based on body weight. As specified by US EPA, older adults (≥65 years of age) and pregnant are other susceptible groups due to their physiological properties change. As reported by Gerba et al. (1999), the elderly may be less able to create an effective defense against contaminants because of a pre-existing disease or weakened immune system. The risk is inherent to the pregnant and also to the fetus (Wee & Aris 2019).

Table 5 shows more detailed the risk assessment to other population groups based on only the ingestion of bottled water. The values of bottled water ingestion are based on US EPA (2011) and US EPA (2019b): a0.0685 L/day for 9.3 kg, b0.2305 L/day for 12.45 kg, c0.3365 L/day for 26.5 kg, d0.517 L/day for 55.8 kg, e0.753 L/day for 79.4 kg, f0.84 L/day for 75.4 kg; g0.6 L/day for 75 kg; h0.749 L/day for 75.5 kg (Table 8–24, 8–25, 8–29, 3–34, 3–71, and Table A–2).

Hazard Quotient (HQ) – \(\frac{EDI}{RfD} \), where HQ is associated with the exposure via the specified exposure route (unitless) (Jeddi et al. 2015).

Safety factor (SF) – \(\frac{RfD}{EDI} \) (Luo et al. 2018).

Potential estrogenic effect of BPA and PAEs

Despite the safety factor indicates that the levels of the compounds in bottled waters are acceptable in terms of water safety, the potential estrogenic effects of the compounds by an average Estrogen Equivalent (EEQ) level in bottled waters are based on the highest concentrations that were evaluated (Table 5). The EEQ provides valuable information on human exposure to estrogen-like compounds, aiding in the estimation of the total dietary intake of estrogenicity (Schilirò et al. 2015). The potential estrogenic effects of BBP and DBP in bottled water should not be ignored due to their relatively high concentrations. As can be seen in Table 5, the average EEQ level in the bottled waters is significantly at 6.1652 ng E2/L, which was 22.8 times higher than those that cause adverse estrogenic effects on zebrafish (0.27 ng E2/L) as reported by Soares et al. (2009). Thus, the

Table 5 | continued

	BPA	BBP	DBP	DEHP
Pregnant (15–44)*g	1,090	5,150	151	39.1
Elderly (≥65 years)*h	877	4,170	122	31.5
Estrogenic potency (EP)	5.9E−05	2E−4m	4.1E−5m	3E−7n
EEQ (ng E2/L)*k	0.336	2.42	3.39	0.0192
Total compounds	6.1652			

*The values of weights and bottled water ingested are based on US EPA (2011) and US EPA (2019b): a0.0685 L/day for 9.3 kg, b0.2305 L/day for 12.45 kg, c0.3365 L/day for 26.5 kg, d0.517 L/day for 55.8 kg, e0.753 L/day for 79.4 kg, f0.84 L/day for 75.4 kg; g0.6 L/day for 75 kg; h0.749 L/day for 75.5 kg (Table 8–24, 8–25, 8–29, 3–34, 3–71, and Table A–2).

| | Contribution via drinking water – \(\frac{EDI}{RfD} \times 100 \) (Zaki & Shoeib 2018), where the TD1 for BPA, BBP, DBP, and DEHP are available for reference as established by EFSA. US EPA (1987a, 1987b, 1988, 2019a).
| |
| | Hazard Quotient (HQ) – \(\frac{EDI}{RfD} \), where HQ is associated with the exposure via the specified exposure route (unitless) (Jeddi et al. 2015).
| | Safety factor (SF) – \(\frac{RfD}{EDI} \) (Luo et al. 2018).
| | EEQ – \(\frac{EP \times c}{c} \), where EP and c denote the estrogenic potency of an individual estrogenic compound (in vitro bioassays) and its corresponding concentration (Liu et al. 2009).
| | Safety factor (SF) – \(\frac{RfD}{EDI} \) (Luo et al. 2018).
| | EEQ – \(\frac{EP \times c}{c} \), where EP and c denote the estrogenic potency of an individual estrogenic compound (in vitro bioassays) and its corresponding concentration (Liu et al. 2009).
| | Safety factor (SF) – \(\frac{RfD}{EDI} \) (Luo et al. 2018).
| | EEQ – \(\frac{EP \times c}{c} \), where EP and c denote the estrogenic potency of an individual estrogenic compound (in vitro bioassays) and its corresponding concentration (Liu et al. 2009).
| | Safety factor (SF) – \(\frac{RfD}{EDI} \) (Luo et al. 2018).
| | EEQ – \(\frac{EP \times c}{c} \), where EP and c denote the estrogenic potency of an individual estrogenic compound (in vitro bioassays) and its corresponding concentration (Liu et al. 2009).
| | Safety factor (SF) – \(\frac{RfD}{EDI} \) (Luo et al. 2018).

428 R. da Silva Costa et al. | Potential risk of BPA and PAEs in commercial water bottles | Journal of Water and Health | 19.3 | 2021
average EEQ level indicated that BPA, BBP, DBP and DEHP in bottled waters may induce adverse estrogenic effects on human health.

CONCLUSIONS

Although the governments have published the guideline tolerance values of bisphenol A and PAEs in drinking water, they are still detected in water bottles. HPLC–DAD was the most used in BPA detections, while GC–MS was the most used in PAE detections. New methods to improve the extraction of BPA, BBP, DBP and DEHP from commercial water bottles have been developed. DBP and DEHP have still been detected in concentrations greater than those established by legislation. Contradictory observations, with decreasing and increasing concentrations on PAE concentration in bottled water, are reported. No consistent or clear trends regarding the effects of storage conditions, on PAE concentration in bottled water, are demonstrated. Based on the risk assessment, BPA, BBP, DBP and DEHP in commercial water bottles do not raise serious concern for humans. The average EEQ level revealed that BPA, BBP, DBP and DEHP in bottled waters may induce adverse estrogenic effects on human health. Besides that, the use of bottled water kept in unsuitable conditions is not appropriate and especially for sensitive groups. Thus, the occurrence of individual BPA, BBP, DBP and DEHP and their association in bottled water need to be verified to avoid their synergistic effects on human health.

DATA AVAILABILITY STATEMENT

All relevant data are included in the paper or its Supplementary Information.

REFERENCES

Abdelghani, J. I., Freihat, R. S. & El-Sheikh, A. H. 2020 Magnetic solid phase extraction of phthalate products from bottled, injectable and tap waters using graphene oxide: effect of oxidation method of graphene. Journal of Environmental Chemical Engineering 8 (2), 103527. https://doi.org/10.1016/j.jece.2019.103527.

Abtahi, M., Dobaradaran, S., Torabbeigi, M., Jorfi, S., Gholaamnia, R., Koolivand, A., Darabi, H., Kavousi, A. & Saeedi, R. 2019 Health risk of phthalates in water environment: occurrence in water resources, bottled water, and tap water, and burden of disease from exposure through drinking water in Tehran, Iran. Environmental Research 175, 469–479. https://doi.org/10.1016/j.envres.2019.05.071.

ACC 2019 United States National Postconsumer Plastic Bottle Recycling Report (2019). American Chemistry Council. Available from: https://plastics.americanchemistry.com/Reports-and-Publications/2018-National-Post-Consumer-Plastics-Bottle-Recycling-Report.pdf (accessed 7 February 2020).

Alfarhani, B. F., Al-Tameem, M., Fadhil, A. A., Hammza, R. A. & Kadhem, M. I. 2019 Endocrine disrupting bisphenol A detection in different water samples in Iraq. Journal of Physics: Conference Series 1294 (5), 052045. https://doi.org/10.1088/1742-6596/1294/5/052045.

Al-Saleh, I., Shinwari, N. & Alsabbeheen, A. 2011 Phthalates residues in plastic bottled waters. The Journal of Toxicological Sciences 36 (4), 469–478. https://doi.org/10.2131/jts.36.469.

Amiri, A. & Ghaemi, F. 2017 Microextraction in packed syringe by using a three-dimensional carbon nanotube/carbon nanofiber-graphene nanostructure coupled to dispersive liquid-liquid microextraction for the determination of phthalate esters in water samples. Microchimica Acta 184 (10), 3851–3858. https://doi.org/10.1007/s00604-017-2416-8.

Amiri, A., Chahkandi, M. & Targhoo, A. 2017 Synthesis of nano-hydroxyapatite sorbent for microextraction in packed syringe of phthalate esters in water samples. Analytica Chimica Acta 950, 64–70. https://doi.org/10.1016/j.aca.2016.11.027.

Annamalai, J. & Namashivayam, V. 2017 Determination of effect of pH and storage temperature on leaching of phthalate esters from plastic containers by ultrasound-assisted dispersive liquid–liquid micro-extraction. Journal of Food Measurement and Characterization 11 (4), 2222–2232. https://doi.org/10.1007/s11694-017-9607-1.

Armenta, S., Garrigues, S. & de la Guardia, M. 2015 The role of green extraction techniques in Green Analytical Chemistry. TrAC Trends in Analytical Chemistry 71, 2–8. https://doi.org/10.1016/j.trac.2014.12.011.

Aznar, M., Vera, P., Canellas, E., Nerín, C., Mercea, P. & Störmer, A. 2011 Composition of the adhesives used in food packaging multilayer materials and migration studies from packaging to food. Journal of Materials Chemistry 21 (12), 4358–4370. https://doi.org/10.1039/C0JM04136J.

Bach, C., Dauchy, X., Chagnon, M. C. & Etienne, S. 2012 Chemical compounds and toxicological assessments of drinking water stored in polyethylene terephthalate (PET) bottles: a source of controversy reviewed. Water Research 46 (3), 571–583. https://doi.org/10.1016/j.watres.2011.11.062.
Bach, C., Dauchy, X., Severin, I., Munoz, J. F., Etienne, S. & Chagnon, M. C. 2014 Effect of sunlight exposure on the release of intentionally and/or non-intentionally added substances from polyethylene terephthalate (PET) bottles into water: chemical analysis and in vitro toxicity. Food Chemistry 162, 63–71. https://doi.org/10.1016/j.foodchem.2014.04.020.

Barciela-Alonso, M. C., Otero-Lavandeira, N. & Bermejo-Barrera, P. 2017 Solid phase extraction using molecular imprinted polymers for phthalate determination in water and wine samples by HPLC-ESI-MS. Microchemical Journal 132, 233–237. https://doi.org/10.1016/j.microc.2017.02.007.

Bono-Blay, F., Guart, A., de la Fuente, B., Pedemonte, M., Pastor, M. C., Borrell, A. & Lacorte, S. 2012 Survey of phthalates, alkylphenols, bisphenol A and herbicides in Spanish source waters intended for bottling. Environmental Science and Pollution Research 19 (8), 3339–3349. https://doi.org/10.1007/s11356-012-0851-y.

Borrirukwisitsak, S., Keenan, H. E. & Gauchotte-Lindsay, C. 2012 Effects of salinity, pH and temperature on the octanol-water partition coefficient of bisphenol A. International Journal of Environmental Science and Development 3 (5), 460. http://www.ijesd.org/papers/267-CD0081.pdf

Cavanagh, J. A. E., Trought, K., Mitchell, C., Northcott, G. & Cavanagh, J. A. E., Trought, K., Mitchell, C., Northcott, G. & Tremblay, L. A. 2018 Assessment of endocrine disruption and oxidative potential of bisphenol-A, triclosan, nonylphenol, diethylhexyl phthalate, galaxolide, and carbamazepine, common contaminants of municipal biosolids. Toxicology In Vitro 48, 342–349. https://doi.org/10.1016/j.tiv.2018.02.003.

Čelić, M., Škrbić, B. D., Insa, S., Živančev, J., Gros, M. & Petrović, M. 2020 Occurrence and assessment of environmental sources of endocrine disrupting compounds in drinking, surface and wastewaters in Serbia. Environmental Pollution 262, 114544. https://doi.org/10.1016/j.envpol.2020.114544.

Chahkandi, M. & Amiri, A. 2019 Hydroxyapatite/Fe2O3 nanocomposite as efficient sorbent for the extraction of phthalate esters from water samples. Inorganic Chemistry Research 2 (1), 50–64. https://doi.org/10.22036/icr.2019.184834.1045.

Chang, T., Yan, X., Liu, S. & Liu, Y. 2017 Magnetic dummy template silica sol–gel molecularly imprinted polymer nanospheres as magnetic solid-phase extraction material for the selective and sensitive determination of bisphenol A in plastic bottled beverages. Food Analytical Methods 10 (12), 3980–3990. https://doi.org/10.1007/s12161-017-0969-0.

Chen, H., Mao, W., Shen, Y., Feng, W., Mao, G., Zhao, T., Yang, L., Yang, L., Meng, C., Li, Y. & Wu, X. 2019a Distribution, source, and environmental risk assessment of phthalate esters (PAEs) in water, suspended particulate matter, and sediment of a typical Yangtze River Delta City, China. Environmental Science and Pollution Research 26 (24), 24609–24619. https://doi.org/10.1007/s11356-019-05259-y.

Chen, X., Xin, L., Xu, Y., Liu, J., Li, Z., Wang, Y. & Zhao, J. 2019b Polymer phase transition characteristics coupled with GC-MS for the determination of phthalate esters. Journal of Separation Science 42 (19), 3095–3101. https://doi.org/ez11.periodicos.capes.gov.br/10.1002/jssc.201900410.

Cincotta, F., Verzera, A., Tripodi, G. & Condroso, C. 2018 Non-intentionally added substances in PET bottled mineral water during the shelf-life. European Food Research and Technology 244 (3), 433–439. https://doi.org/10.1007/s00217-017-2971-6.

Codex Alimentarius 2001 General standard for bottled/packaged drinking waters (other than natural mineral waters). Available from: http://www.fao.org/input/download/standards/369/CXS_227c.pdf (accessed 18 June 2020).

Coniglio, M. A., Fioriglio, C. & Laganà, P. 2020 Polyethylene terephthalate. In: Non-Intentionally Added Substances in PET-Bottled Mineral Water (M. A. Coniglio, C. Fioriglio & P. Laganà, eds). Springer International Publishing, Cham.

Dada, E. O., Osidipe, V. A., Iyaomolere, K. E., Itoje, S. O. & Akinola, M. O. 2018 Concentrations of phthalates and metals in commercially packaged sachet and plastic bottled water sold in Lagos, Nigeria. Journal of Food Quality and Hazards Control 5 (4), 134–139. https://doi.org/10.29252/jfqc.5.4.4.

Dreolin, N., Aznar, M., Moret, S. & Nerin, C. 2019 Development and validation of a LC–MS/MS method for the analysis of bisphenol A in polyethylene terephthalate. Food Chemistry 274, 246–253. https://doi.org/10.1016/j.foodchem.2018.08.109.

EC 2011 Commission Regulation (EU) No. 10/2011 on Plastic Materials and Articles Intended to Come Into Contact with Food. The European Commission, Brussels. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?

EC 2020 Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption (Recast) (Text with EEA Relevance). The European Commission, Brussels. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32020L2184&qid=161289479778 (accessed 9 February 2021).

ECFR 2020 §165.110 Bottled Water. Electronic Code of Federal Regulations. Available from: https://www.ecfr.gov/cgi-bin/text-idx?SID=a345042f6bd438d7949b0270596bb0fd&mc=true&node=sec21.2.165_1110&rgn=div8 (accessed 19 June 2020).

EFSAs 2005a Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC) on A Request From the Commission Related to Di-Butylphthalate (DBP) for use in Food Contact Materials. Available from: https://efsa.onlinelibrarywiley-com.ez11.ods.org/10.2903/j.efsa.2005.242 (accessed 20 June 2020).

EFSAs 2005b Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC) on a Request From the Commission Related to Di-[(2-Ethylhexyl) Phthalate (DEHP) for use in Food Contact Materials. European Food Safety Authority. Available from: https://www.efsa.europa.eu/en/efsajournal/pub/243 (accessed 20 June 2020).
EFSA 2005c. *Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC) on A Request From the Commission Related to Butyl Benzyl Phthalate (BBP) for use in Food Contact Materials*. European Food Safety Authority. Available from: https://www.efsa.europa.eu/en/efsajournal/pub/241 (accessed 21 June 2020).

EFSA 2019. *Update of the risk assessment of di-butylphthalate (DBP), butyl-benzyl-phthalate (BBP), bis (2-ethylhexyl) phthalate (DEHP), di-isomonylphthalate (DINP) and di-isodecylphthalate (DIDP) for use in food contact materials*. EFSA Journal 17, e05838. Available from: https://doi.org/10.2903/j.efsa.2019.5838 (accessed 20 June 2020).

Farahani, A., Ramezani, M., Hassan, J. & Niazi, A. 2017. In tube ultrasonic and air assisted liquid-liquid microextraction-gas chromatography-mass spectrometry determination: a novel method for the determination of phthalate esters in aqueous samples. *Journal of the Brazilian Chemical Society* 28 (6), 967–974. https://doi.org/10.21577/0103-5053.20160247.

Farajzadeh, M. A., Pezhhanfar, S. & Mohebbi, A. 2019. Development of a dispersive solid phase extraction procedure using a natural adsorbent as an efficient and costless sorbent followed by dispersive liquid-liquid microextraction. *International Journal of Environmental Analytical Chemistry* 1–14. https://doi.org/10.1080/03067319.2019.1685667.

Fard, S. M. B., Ahmadi, S. H., Hajimahmodi, M., Fazaei, R. & Amini, M. 2020. Preparation of magnetic iron oxide nanoparticles modified with imidazolium-based ionic liquids as a sorbent for the extraction of eight phthalic acid esters in water samples followed by UPLC-MS/MS analysis: an experimental design methodology. *Analytical Methods* 12 (1), 73–84. https://doi.org/10.1039/c9ay02073j.

Feizi, N., Yamin, Y., Moradi, M. & Salamat, Q. 2017. Nanostructured Gemini-based supramolecular solvent coupled with ultrasound-assisted back extraction as a preconcentration step before GC–MS. *Journal of Separation Science* 40 (24), 4788–4795. https://doi.org/10.1002/jssc.201700548.

Fikarová, K., Cocioc-Solberg, D. J., Rosende, M., Horstkotte, B., Sklenárová, H. & Miró, M. 2019. A flow-based platform hypenphated to on-line liquid chromatography for automatic leaching tests of chemical additives from microplastics into seawater. *Journal of Chromatography A* 1602, 160–167. https://doi.org/10.1016/j.chroma.2019.06.041.

Fumes, B. H., Silva, M. R., Andrade, F. N., Nazario, C. E. D. & Lanças, F. M. 2015. Recent advances and future trends in new methods for sample preparation. *TrAC Trends in Analytical Chemistry* 71, 9–25. https://doi.org/10.1016/j.trac.2015.04.011.

Gao, Y., Xia, B., Liu, J., Ji, B., Ma, F., Ding, L., Li, B. & Zhou, Y. 2015. Development and characterization of a nanodendritic silver-based solid-phase extraction sorbent for selective enrichment of endocrine-disrupting chemicals in water and milk samples. *Analytica Chimica Acta* 900, 76–82. https://doi.org/10.1016/j.aca.2015.10.019.

GB 9685-2016. 2016 *Standards for the use of Additives for Food Contact Materials and Products*. Available from: https://www.chinesestandard.net/PDF.aspx/GB9685-2016 (accessed 18 June 2020).

Gerba, C. P., Rose, J. B. & Haas, C. N. 1996. *Sensitive populations: who is at the greatest risk?* *International Journal of Food Microbiology* 50 (1–2), 113–123. https://doi.org/10.1016/0168-1605(96)00996-8.

Gocury, K., Day, S. V., Munoz, G., Prévost, M. & Sauvé, S. 2019. Analysis of Environmental Protection Agency priority endocrine disruptor hormones and bisphenol A in tap, surface and wastewater by online concentration liquid chromatography tandem mass spectrometry. *Journal of Chromatography A* 1591, 87–98. https://doi.org/10.1016/j.chroma.2019.01.016.

González-Sálamo, J., Sosas-Rodríguez, B., Hernández-Borges, J. & Rodríguez-Delgado, M. Á. 2017. Determination of phthalic acid esters in water samples using core-shell poly (dopamine) magnetic nanoparticles and gas chromatography tandem mass spectrometry. *Journal of Chromatography A* 1530, 35–44. https://doi.org/10.1016/j.chroma.2017.11.013.

González-Sálamo, J., González-Curbelo, M. Á., Sosas-Rodríguez, B., Hernández-Borges, J. & Rodríguez-Delgado, M. Á. 2018. Determination of phthalic acid esters in water samples by hollow fiber liquid-phase microextraction prior to gas chromatography tandem mass spectrometry. *Chemosphere* 201, 254–261. https://doi.org/10.1016/j.chemosphere.2018.02.180.

Gorji, S., Bahram, M. & Biparva, P. 2019. Optimized stir bar sorptive extraction based on self-magnetic nanocomposite monolithic kit for determining bisphenol A in bottled mineral water and bottled milk samples. *Analytical and Bioanalytical Chemistry Research* 6 (1), 137–156. https://pdfs.semanticscholar.org/ c27c/30138336e1cb6ba176b9d20fda4ce4ade943.pdf.

Grinbaum, M., Camponovo, A., Desseigne, J. M., Poupault, P., Meisterman, E., Chatellet, B., Davaux, F. & Lemperreuer, V. 2019. Phthalates: potential sources and control measures. *BIO Web of Conferences* 12, 04008. https://doi.org/10.1051/bioconf/20191204008.

Guart, A., Bono-Blay, F., Borrell, A. & Lacorte, S. 2011. Migration of plasticizers phthalate, bisphenol A and alklyphenols from plastic containers and evaluation of risk. *Food Additives and Contaminants Part B* 5 (6), 676–685. https://doi.org/10.1080/19440049.2011.555845.

Guart, A., Bono-Blay, F., Borrell, A. & Lacorte, S. 2014. Effect of bottling and storage on the migration of plastic constituents in Spanish bottled waters. *Food Chemistry* 156, 73–80. https://doi.org/10.1016/j.foodchem.2014.01.075.

Hashemi-Moghaddam, H. & Maddah, S. 2018. Coating of optical fiber with a smart thermosensitive polymer for the separation of phthalate esters by solid-phase microextraction. *Journal of Separation Science* 41 (4), 886–892. https://doi-org.ez11.periodicos.capes.gov.br/10.1002/jssc.201700994.
Hassan, S., Ali, R., Shah, D., Sajjad, N. & Qadir, J. 2020 Bisphenol A and phthalates exhibit similar toxicogenomics and health effects. In: Handbook of Research on Environmental and Human Health Impacts of Plastic Pollution (A. W. Khusreed, A. Lutfah, & S. M. Zuber, eds). Hershey, IGI Global, Engineering Science Reference, pp. 263-287.

Hossain, M. A., Rahman, M. M., Murrill, M., Das, B., Roy, B., Dey, S., Maity, D. & Chakraborti, D. 2015 Water consumption patterns and factors contributing to water consumption in arsenic affected population of rural West Bengal, India. Science of the Total Environment 463, 1217–1224. https://doi.org/10.1016/j.scitotenv.2012.06.057.

Hussain, S. Z. & Maqbool, K. 2014 GC-MS: principle, technique and its application in food science. International Journal of Current Science 13, 116–126. http://www.currentsciencejournal.info/issuespdf/Syed%202014.pdf.

IBWA 2018 Statistics: 2017 Market Report Findings. International Bottled Water Association. Virginia, United States. Available from: https://www.bottledwater.org/eco-nomics/industry-statistics (accessed 12 June 2020).

IBWA 2019 IBWA Buyers’ Guide Edition July/August 2019. International Bottled Water Association. Virginia, United States. Available from: https://www.bottledwater.org/newsroom/bottled-water-reporter (accessed 13 June 2019).

Jain, B., Singh, A. K. & Susan, M. A. B. H. 2019 The world around bottled water. In: Bottled and Packaged Water (A. Grumezescu & A. M. Holban, eds). Woodhead Publishing, Kidlington, UK, pp. 39–62.

Jalili, V., Bakhordari, A. & Ghasvand, A. 2020 New extraction media in microextraction techniques. A review of reviews. Microchemical Journal 153, 104386. https://doi.org/10.1016/j.microu.2019.104386.

Jeddi, M. Z., Rastkari, N., Ahmadkhaniha, R. & Yunesian, M. 2015 Concentrations of phthalates in bottled water under common storage conditions: do they pose a health risk to children? Food Research International 69, 256–265. https://doi.org/10.1016/j.foodres.2014.11.057.

Jeddi, M. Z., Rastkari, N., Ahmadkhaniha, R. & Yunesian, M. 2016 Endocrine disruptor phthalates in bottled water: daily exposure and health risk assessment in pregnant and lactating women. Environmental Monitoring and Assessment 188 (9), 534. https://doi.org/10.1007/s10661-016-5502-1.

Jnr, A. K. L., Yunana, D., Kamsouoloum, P., Webster, M., Wilson, D. C. & Cheeseman, C. 2018 Recycling waste plastics in developing countries: use of low-density polyethylene water sachets to form plastic bonded sand blocks. Waste Management 80, 112–118. https://doi.org/10.1016/j.wasman.2018.09.003.

Karayaka, S., Chormey, D. S., Froat, M. & Bakurdere, S. 2019 Determination of endocrine disruptive phenolic compounds by gas chromatography mass spectrometry after multivariate optimization of switchable liquid-liquid microextraction and assessment of green profile. Chemosphere 235, 205–210. https://doi.org/10.1016/j.chemosphere.2019.06.079.

Kaykhaii, M., Yavari, E., Sargazi, G. & Ebrahimi, A. K. 2020 Highly sensitive determination of bisphenol A in bottled water samples by HPLC after its extraction by a novel Th-MOF pipette-tip micro-SPE. Journal of Chromatographic Science 58 (4), 373–382. https://doi.org/10.1093/chromsci/bmnz111.

Keresztes, S., Tatár, E., Czégyény, Z., Záray, G. & Milhócz, V. G. 2013 Study on the leaching of phthalates from polyethylene terephthalate bottles into mineral water. Science of the Total Environment 458, 451–458. https://doi.org/10.1016/j.scitotenv.2013.04.056.

Kim, Y. J. & Ryu, J. C. 2006 Evaluation of estrogenic effects of phthalate analogues using in vitro and in vivo screening assays. Molecular & Cellular Toxicology 2 (2), 106–113. https://www.koreascience.or.kr/article/JAKO200617317912011.pdf.

Kumar, R., Gaurav, H., Malik, A. K., Kabir, A. & Furton, K. G. 2014 Efficient analysis of selected estrogens using fabric phase sorptive extraction and high performance liquid chromatography-fluorescence detection. Journal of Chromatography A 1359, 16–25. https://doi.org/10.1016/j.chroma.2014.07.013.

Legler, J., van den Brink, C. E., Brouwer, A., Murk, A. J., van der Saag, P. T., Vethaak, A. D. & van der Burg, B. 1999 Development of a stably transfected estrogen receptor-mediated luciferase reporter gene assay in the human t47d breast cancer cell line. Toxicological Sciences 48 (1), 55–66. https://doi.org/10.1093/toxsci/48.1.55.

Lertsrisopon, R., Soda, S., Sei, K. & Ike, M. 2009 Abiotic degradation of four phthalic acid esters in aqueous phase under natural sunlight irradiation. Journal of Environmental Sciences 21 (3), 285–290. https://doi.org/10.1016/S1001-0742(08)62265-2.

Leung, H. W., Jin, L., Wei, S., Tsui, M. M. P., Zhou, B., Jiao, L., Cheung, P. C., Chun, Y. K., Murphy, M. B. & Lam, P. K. S. 2013 Pharmaceuticals in tap water: human health risk assessment and proposed monitoring framework in China. Environmental Health Perspectives 121 (7), 839–846. https://doi.org/10.1289/ehp.1206244.

Li, H., Li, C., An, L., Deng, C., Su, H., Wang, L., Zhang, C. & Jin, F. 2019 Phthalate esters in bottled drinking water and their human exposure in Beijing, China. Food Additives & Contaminants: Part B 12 (1), 1–9. https://doi.org/10.1080/19393210.2018.1495272.

Liu, Z. H., Ito, M., Kanjo, Y. & Yamamoto, A. 2009 Profile and removal of endocrine disrupting chemicals by using an ER/AR competitive ligand binding assay and chemical analyses. Journal of Environmental Sciences 21 (7), 900–906. https://doi.org/10.1016/S1001-0742(08)62356-6.

Liu, Z., Li, Y., Sun, L., Yang, H., Zheng, X. & Wang, L. 2019 Investigation of diazo-derivatization of bisphenol A and its applicability for quantitation in food safety inspections using high-performance liquid chromatography. Biomedical Chromatography 33 (3), e4419. https://doi-org.ez11.periodicos.capes.gov.br/10.1002/bmc.4419.

Luo, Q., Liu, Z. H., Yin, H., Dang, Z., Wu, P. X., Zhu, N. W., Lin, Z. & Liu, Y. 2018 Migration and potential risk of trace...
phthalates in bottled water: a global situation. Water Research 147, 362–372. https://doi.org/10.1016/j.watres.2018.10.002.

Manzo, V., Becerra-Herrera, M., Arismendi, D., Molina-Balmaceda, A., Caraballo, M. A. & Richter, P. 2019 Rotating-disk sorptive extraction coupled to gas chromatography mass spectrometry for the determination of phthalates in bottled water. Analytical Methods 11 (48), 6111–6118. https://doi.org/10.1039/C9AY02076D.

Mohammadnezhad, N., Matin, A. A., Samadi, N., Shomali, A. & Valizadeh, H. 2017 Ionic liquid-bonded fused silica as a new solid-phase microextraction fiber for the liquid chromatographic determination of bisphenol A as an endocrine disruptor. Journal of AOAC International 100 (1), 218–223. https://doi.org/10.5740/jaoacint.16-0189.

Mohebbi, M., Heydari, R. & Ramezani, M. 2017 Solvent-vapor-assisted liquid-liquid microextraction: a novel method for the determination of phthalate esters in aqueous samples using GC-MS. Journal of Separation Science 40 (22), 4394–4402. https://doi-org.ez11.periodicos.capes.gov.br/10.1002/jssc.201700755.

McGowin, A. E. 2006 Polycyclic aromatic hydrocarbons. In: Chromatographic Analysis of the Environment (L. M. L. Nollet & D. A. Lambropoulou, eds). CRC Press, Taylor and Francis Group, LLC, Boca Raton, pp. 555–616.

NJDEP 2004 Ground Water Quality Standards. N.J.A.C. 7:9C. New Jersey Department of Environmental Protection, New Jersey, United States. Available from: https://www.nj.gov/dep/rules/adoptions/7-9-6_7.9C.pdf (accessed 3 July 2020).

Nollet, L. M. 2005 Chromatographic Analysis of the Environment. Taylor & Francis – CRC Press, London.

Notardonato, I., Russo, M. V. & Avino, P. 2018 Phthalates and bisphenol-A residues in water samples: an innovative analytical approach. Rendiconti Lincei. Scienze Fisiche e Naturali 29 (4), 831–840. https://doi.org/10.1007/s12210-018-0745-0.

Oca, M. L., Ortiz, M. C., Herrero, A. & Sarabia, L. A. 2017 Optimization of a GC/MS procedure that uses parallel factor analysis for the determination of bisphenols and their diglycidyl ethers after migration from polycarbonate tableware. Talanta 106, 266–280. https://doi.org/10.1016/j.talanta.2012.10.086.

Özer, E. T., Osman, B. & Yazıcı, T. 2017 Dummy molecularly imprinted microbeads as solid-phase extraction material for selective determination of phthalate esters in water. Journal of Chromatography A 1500, 53–60. https://doi.org/10.1016/j.chroma.2017.04.013.

Pacyga, D. C., Sathyarayana, S. & Strakovsky, R. S. 2019 Dietary predictors of phthalate and bisphenol exposures in pregnant women. Advances in Nutrition 10 (5), 803–815. https://doi.org/10.1093/advances/nmy029.

Parks, W. S., Mirecki, J. E. & Kingsbury, J. A. 1993 Hydrogeology, Ground-Water Quality, and Potential for Water-Supply Contamination Near an Abandoned Wood-Preserving Plant Site at Jackson, Tennessee. Memphis, Tennessee.

Pignotti, E., Farré, M., Barceló, D. & Dinelli, E. 2017 Occurrence and distribution of six selected endocrine disrupting compounds in surface- and groundwaters of the Romagna area (North Italy). Environmental Science and Pollution Research 24 (26), 21153–21167. https://doi.org/10.1007/s11356-017-9756-0.

Pinsirithong, S. & Bunkoed, O. 2018 Hierarchical porous nanostructured polypropylene-coated hydrogel beads containing reduced graphene oxide and magnetic nanoparticles for extraction of phthalates in bottled drinks. Journal of Chromatography A 1570, 19–27. https://doi.org/10.1016/j.chroma.2018.07.074.

Plastics Europe 2020 Plastics – the Facts 2019. An Analysis of European Plastics Production, Demand and Waste Data. Brussels, Belgium. Available from: https://www.plasticseurope.org/download_file/3183/181 (accessed 10 April 2020).

Płotka-Wasyłka, J., Rutkowska, M., Owczarek, K., Tobiszewski, M. & Namieśnik, J. 2017 Extraction with environmentally friendly solvents. TrAC Trends in Analytical Chemistry 91, 12–25. https://doi.org/10.1016/j.trac.2017.05.006.

PubChem 2020 Explore Chemistry. Available from: https://pubchem.ncbi.nlm.nih.gov/ (accessed 15 January 2020).

Rowell, C., Kuiper, N. & Preud’Homme, H. 2016 Is container type the biggest predictor of trace element and BPA leaching from drinking water bottles? Food Chemistry 202, 88–93. https://doi.org/10.1016/j.foodchem.2016.01.109.

Rozaini, M. N. H., Yahaya, N., Saad, B., Kamaruzaman, S. & Hanapi, N. S. M. 2017 Rapid ultrasound assisted emulsification micro-solid phase extraction based on molecularly imprinted polymer for HPLC-DAD determination of bisphenol A in aqueous matrices. Talanta 171, 242–249. https://doi.org/10.1016/j.talanta.2017.05.006.

Saeed, M., Niaz, A., Shah, A., Afridi, H. I. & Rauf, A. 2016 Fast voltammetric assay of water soluble phthalates in bottled and coolers water. Analytical Methods 2 (7), 844–850. https://doi.org/10.1039/C5AY0156B.

Sajid, M., Basheer, C., Alsharaa, A., Narasimhan, K., Buhmeida, A., Al Qahtani, M. & Al-Ahwal, M. S. 2016 Development of natural sorbent based micro-solid-phase extraction for determination of phthalate esters in milk samples. Analytica Chimica Acta 924, 35–44. https://doi.org/10.1016/j.aca.2016.04.016.

Salazar-Beltrán, D., Hinojosa-Reyes, L., Ruiz-Ruiz, E., Hernández-Ramírez, A. & Guzmán-Mar, J. L. 2017 Determination of phthalates in bottled water by automated on-line solid phase extraction coupled to liquid chromatography with UV detection. Talanta 168, 291–297. https://doi.org/10.1016/j.talanta.2017.03.060.

Santana-Mayor, Á., Socas-Rodríguez, B., del Mar Afonso, M., Palenzuela-López, J. A. & Rodríguez-Delgado, M. Á. 2018 Reduced graphene oxide-coated magnetic-nanoparticles as sorbent for the determination of phthalates in environmental samples by micro-dispersive solid-phase extraction followed by ultra-high-performance liquid chromatography tandem
mass spectrometry. Journal of Chromatography A 1565, 36–47. https://doi.org/10.1016/j.chroma.2018.06.031.

Schilirò, T., Porfído, A., Longo, A., Coluccia, S. & Gilli, G. 2013 The E-screen test and the MELN gene-reporter assay used for determination of estrogenic activity in fruits and vegetables in relation to pesticide residues. Food and Chemical Toxicology 62, 82–90. https://doi.org/10.1016/j.fct.2013.07.067.

Schmid, P., Kohler, M., Meierhofer, R., Luzi, S. & Wegelin, M. 2008 Does the reuse of PET bottles during solar water disinfection pose a health risk due to the migration of plasticisers and other chemicals into the water? Water Research 42 (20), 5054–5060. https://doi.org/10.1016/j.watres.2008.09.025.

Semye, M. D., Dotse-Gborgbortsi, W., Dzodzomenyo, M. & Schilirò, T., Porfído, A., Soares, J., Coimbra, A. M., Reis-Henriques, M. A., Monteiro, Tran-Lam, T. T., Dao, Y. H., Nguyen, D. T., Ma, H. K., Pham, T. Q. & Le, G. T. 2008 Optimization of sample preparation for detection of 10 phthalates in non-alcoholic beverages in Northern Vietnam. Toxics 6 (4), 69. https://doi.org/10.3390/toxics6040069.

Tri, T. M., Anh, N. T. N., Thao, P. T. P. & Trung, N. Q. 2008 Determination and distribution of phthalate diesters in plastic bottled beverages collected in Hanoi, Vietnam. VNU Journal of Science: Natural Sciences and Technology 34 (4), 97–104. https://doi.org/10.25073/2588-1140/vnunst.4822.

Uansiri, S., Vichapong, J. & Kanchanamayoon, W. 2016 Ultrasound-assisted low density solvent based dispersive liquid-liquid microextraction for determination of phthalate esters in bottled water samples. Chemical Research in Chinese Universities 32 (2), 178–183. https://doi.org/10.1007/s40242-016-5343-z.

US EPA 1987a Integrated Risk Information System (IRIS) – Dibutyl phthalate (CASRN 84-74-2). United States Environmental Protection Agency, Washington, United States. Available at: https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0038_summary.pdf (accessed 3 July 2020).

US EPA 1987b Integrated Risk Information System (IRIS), Di (2-ethylhexyl) phthalate (CASRN 117-81-7). United States Environmental Protection Agency, Washington, United States. Available at: https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0014_summary.pdf (accessed 3 July 2020).

US EPA 1988 Integrated Risk Information System (IRIS), Butyl benzyl phthalate (CASRN 83-68-7). United States Environmental Protection Agency, Washington, United States. Available at: https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0293_summary.pdf (accessed 4 July 2020).

US EPA 2011 Exposure Factors Handbook 2011 Edition (Final Report). United States Environmental Protection Agency. Washington, United States. Available at: https://cfpub.epa.gov/ncea/risk/recorddisplay.cfm?dirId=236252 (accessed 5 July 2020).

US EPA 2019a Proposed Designation of Butyl Benzyl Phthalate (CASRN 85-68-7) as a High-Priority Substance for Risk Evaluation. United States Environmental Protection Agency. Washington, United States. Available from: https://www.epa.gov/sites/production/files/2019-08/documents/butylbenzylphthalate_85-68-7_highpriority_proposeddesignation_082319.pdf (accessed 3 July 2020).

US EPA 2019b Update for Chapter 3 of the Exposure Factors Handbook Ingestion of Water and Other Select Liquids. U.S. EPA Office of Research and Development, Washington, DC. EPA/600/R-18/259F, 2019. United States Environmental Protection Agency. Available from: https://www.epa.gov/sites/production/files/2019-02/documents/efh_chapter_3_update.pdf (accessed 3 July 2020).

US EPA 2021 Ground Water and Drinking Water. National Primary Drinking Water Regulations. Washington, United States. Available from: https://www.epa.gov/ground-water-and-drinking-water/nationalprimary-drinking-water-regulations (accessed 11 March 2021).
Waksmundzka-Hajnos, M. & Sherma, J. 2010 Overview of the field of high performance liquid chromatography in phytochemical analysis and the structure of the book. In: High Performance Liquid Chromatography in Phytochemical Analysis (M. Waksmundzka-Hajnos & J. Sherma, eds). CRC Press, Boca Raton.

Wang, H., Liu, Z. H., Tang, Z., Zhang, J., Yin, H., Dang, Z., Wu, P. & Liu, Y. 2020 Bisphenol analogues in Chinese bottled water: quantification and potential risk analysis. Science of The Total Environment 713, 136583. https://doi.org/10.1016/j.scitotenv.2020.136583.

Wee, S. Y. & Aris, A. Z. 2019 Occurrence and public-perceived risk of endocrine disrupting compounds in drinking water. NPJ Clean Water 2 (1), 1–14. https://doi-org.ez11.periodicos.capes.gov.br/10.1038/s41545-018-0029-3.

WHO 2005 Sustainable Development and Healthy Environments Cluster. Nutrients in Drinking Water. World Health Organization, Geneva. Available from: https://apps.who.int/iris/handle/10665/43403 (accessed 4 July 2020).

WHO 2017 Guidelines for Drinking-Water Quality. Fourth Edition, Incorporating the First Addendum. World Health Organization, Geneva. Available from: https://apps.who.int/iris/bitstream/handle/10665/254637/9789241549950-eng.Pdf?sequence=1&isAllowed=y (accessed 8 January 2020).

Zaki, G. & Shoeib, T. 2018 Concentrations of several phthalates contaminants in Egyptian bottled water: effects of storage conditions and estimate of human exposure. Science of the Total Environment 618, 142–150. https://doi.org/10.1016/j.scitotenv.2017.10.337.

First received 2 September 2020; accepted in revised form 29 March 2021. Available online 8 April 2021