Evaluation of anti-inflammatory potential of *Nardostachys jatamansi* rhizome in experimental rodents

Rajnish Kumar Singh¹, Vaishali¹, Susanta Kumar Panda², Padala Narasimha Murthy³, Ghanashyam Panigrahi³, Pramod Kumar Sharma¹, Ramesh Kumar Gupta², ²*

¹Moradabad Educational Trust, Group of Institution Faculty of Pharmacy, Moradabad–244001, Uttar Pradesh, India
²Royal College of Pharmacy and Health Sciences, Berhampur–760002, Orissa, India
³School of Medical & Allied Sciences, Galgotias University, G.B. Nagar–201306, Uttar Pradesh, India

1. Introduction

Pain is a common symptom of various inflammatory diseases and is the primary reason why patients pursue specialised treatment[1]. Thus, there is a great demand for more effective anti-inflammatory drugs[2]. Because currently available anti-inflammatory drugs have considerable side effects that inhibit their clinical use, many studies are currently underway to develop new treatments for inflammatory diseases[3]. The search for alternatives to current treatments is necessary and will greatly benefit those afflicted with inflammatory diseases[4]. Natural products have been one of the most successful sources for the discovery of new therapeutic agents[5]. *Nardostachys jatamansi* (N. jatamansi, commonly named as jatamansi) belongs to family Valerianaceae.

N. jatamansi is perennial herb whose rhizome and roots are mainly used as drug. *N. jatamansi* is described in
Indian traditional system of medicine (Ayurveda) for its use in mental disorders, insomnia, hyperlipidemia, hypertension and heart diseases and memory improvement[6,7]. It has protective effect in Parkinsonism, epilepsy, cerebral ischemia and free radical scavenging activity[8]. Jatamansi showed antifungal, antioestrogenic, and jatamansone has been reported to possess anti-arythmatic, anti-asthmatic, nematicidal and anti-bacterial activity[9]. Jatamansi is capable of lowering norepinephrine as well as serotonin in brain[10]. To the best of our knowledge, there has been not any research reported on anti-inflammatory activity on N. jatamansi. Therefore, the present study was designed to demonstrate the anti-inflammatory effect of N. jatamansi extract (NJE) in experimental animals.

2. Materials and methods

2.1. Chemicals

Carrageenin, histamine, 5–hydroxytryptamine (5-HT), prostaglandin E2 (PGE2), bradykinin, acetylsalicylic acid (ASA) and phenylbutazone (PBZ) were purchased from Sigma Chemicals and formaldehyde from British Drug House, Mumbai, India. All the chemicals used were of analytical grade.

2.2. Animals

Wistar rats weighing 200–250 g of either sex were procured from Royal college of Pharmacy, Health and Sciences Berhampur, Orissa. They were kept in departmental animal house in well cross ventilated room at (22±2) °C with light and dark cycles of 12 h for 1 week before and during the experiments. All studies were performed in accordance with the guide for the care and use of laboratory animals, as adopted and promulgated by the Institutional Animal Care Committee, CPCSEA, India (Reg. No. 1018C/06/CPCSEA).

2.3. Preparation of plant extract

The plant material (dried rhizome) was procured from local market of Berhampur, Orissa, India in December 2010. The plant material was identified and the voucher specimen was deposited in the institutional herbarium. The rhizomes of plants of N. jatamansi were washed thoroughly in tap water, shade dried and powdered. Crushed material was subjected to extraction in a Soxhlet apparatus at 60–70 °C for 6 h continuously in 50% distilled ethanol. The extracted material was evaporated to dryness under reduced pressure (40–45 °C). The yield of the material was 14.65%. This crude extract was referred to as NJE. The extract obtained was further subjected to pharmacological investigation.

2.4. Anti-inflammatory activity

2.4.1. Study of NJE on acute inflammation

2.4.1.1. Carrageenin-induced hind paw oedema in rats

The acute hind paw oedema was produced by injecting 0.1 mL of carrageenin (prepared as 1% suspension in 1% carboxymethyl cellulose) locally into the plantar aponeurosis of the right hind paw of rats[11]. NJE (150 and 300 mg/kg, p.o.) was administered to two different groups while the other two groups served as negative and positive controls and received vehicle (1 mL/kg, p.o.) and standard drug, acetylsalicylic acid (ASA, 300 mg/kg, p.o.), respectively. NJE and ASA were administered 1 h prior to the injection of carrageenin. The rat pedal volume up to the ankle joint was measured using plethysmometer (Ugo Basile, 7140 Comerio–varese, Italy) at 0 h (just before) and 3 h after the injection of carrageenin. Increase in the paw edema volume was considered as the difference between 0 and 3 h. Percent inhibition of oedema volume between treated and control groups was calculated as follows:

\[
\text{Percent inhibition} = \frac{1 - V_t}{V_c} \times 100
\]

Where \(V_c\) and \(V_t\) represent the mean increase in paw volume in control and treated groups, respectively.

2.4.1.2. Autacoids–induced hind paw oedema in rats

This experiment was conducted as per the methodology used by Singh and Pandey[12]. The autacoids, viz., histamine (1 mg/mL), 5-HT (1 mg/mL), PGE2 (1 µg/mL) and bradykinin (20 µg/mL) were employed as phlogistic agents. The effect of NJE (150 and 300 mg/kg, p.o.) was tested individually against each autacoid. Right hind paw oedema was induced by the sub–plantar injection of 0.1 mL of respective phlogistic agent. Test compounds were administered 1 h prior to the inflammatory insult. The pedal volume was measured just before (0 h) and 3 h after the phlogistic challenge. PBZ (100 mg/kg, p.o.) was employed as reference standard.

2.4.2. Study of NJE on subacute inflammation

2.4.2.1. Formaldehyde-induced hind paw volume

The test was performed according to the technique developed by Brownlee[13]. Pedal inflammation was induced by injecting 0.1 mL of 4% formaldehyde solution below the plantar aponeurosis of the right hind paw of the rats. The paw volume was recorded immediately prior to compound administration (0 h) and then at 1.5, 24 and 48 h after formaldehyde injection. Vehicle (1 mL/kg, p.o.), NJE (150 and 300 mg/kg, p.o.) and standard drug, ASA (300 mg/kg, p.o.) were administered 1 h prior to formaldehyde injection.

2.4.3. Study of NJE on chronic inflammation

2.4.3.1. Cotton pellet granuloma in rats

The effect of NJE on chronic or proliferative phase of inflammation was assessed in cotton pellet granuloma rat model as described by Winter and Porter[14]. Autoclaved cotton pellets weighing (35±1) mg each were implanted subcutaneously through small incision made along the axilla or flank region of the rats anesthetized with ether. The different groups of rats were administered the NJE (150 and 300 mg/kg, p.o.) and ASA (300 mg/kg, p.o.) once daily for 7 consecutive days from the day of cotton pellet insertion. The control group received vehicle (1 mL/kg, p.o.). On the eighth day, all the rats were sacrificed and the cotton pellets covered by the granulomatous tissue were excised and dried in hot air oven at 60 °C till a constant weight was achieved.
Granuloma weight was obtained by subtracting the weight of cotton pellet on d 0 (before start of experiment) from the weight of the cotton pellet on eighth day.

2.4.3.2. Subcutaneous air pouch (SAP)

The SAP protocol used was similar to that described by Raymundo et al.[15]. Briefly, air pouches were produced by subcutaneous injections of 10 mL of sterile air into the intrascapular region of the mice. After 3 d, another 10 mL of air was injected to maintain the pouches. Three days after this last injection, animals received an injection of 0.5 mL of sterile carrageenan suspension (1%). Mice were pre-treated with oral doses of vehicle, dexamethasone (0.5 mg/kg) and NJE 1 h before and 23 h after carrageenan injections in the SAP. Animals were sacrificed 24 h after the carrageenan injection, and the cavity was washed with 2 mL of sterile phosphate buffer. Exudates were collected. An aliquot of exudates was diluted 1:20 in Turk liquid (0.5% crystal violet dissolved in 30% acetic acid). The exudates were centrifuged at 4000 r/min for 10 min at 4 °C; the supernatants were obtained and stored at -20 °C until further analysis.

2.4.3.2.1. TNF-α and PGE2 measurements

Supernatants from exudates collected in the SAP were used to measure, TNF-α, and PGE2. TNF-α were quantified by enzyme–linked immunosorbent assay, using the protocol supplied by the manufacturer (Peprotech). PGE2 was determined by using EIA kits (Cayman Chemical Co., MI, USA), according to the method of Pradelles et al.[16].

2.4.3.2.2. Nitrate measurement

To evaluate NO production, nitrate (the stable metabolite of NO) concentration in the supernatants was measured according to Xu et al.[17] with several modifications[15]. The absorbance was measured at 540 nm using amicrolute reader, and the nitrate concentration was calculated using a standard curve of sodium nitrate.

2.5. Statistical analysis

The values were represented as mean±SEM for six animals. Analysis of variance test was followed by individual comparison by Newman–Keuls test using Prism Pad software (Version 3.0) for the determination of level of significance. The value of P<0.05 was considered statistically significant.

3. Results

3.1. Effect of NJE on carrageenin–induced hind paw oedema

The mean increase in paw oedema volume was about (0.86±0.11) mL in the vehicle–treated control rats. NJE (150 and 300 mg/kg, p.o.) significantly reduced the mean paw oedema volume at 3 h after carrageenin injection. NJE (150 and 300 mg/kg, p.o.) exhibited anti-inflammatory activity in a dose–dependent manner with the percent inhibition of paw oedema of 29.06 and 55.81 respectively, as compared with the control group. However, the standard drug, ASA (300 mg/kg, p.o.) showed highly significant (P<0.001) anti-inflammatory activity with the percent inhibition of 69.76 (Table 1).

Table 1

Drug	Dose (mg/kg)	Carrageenin–induced paw oedema volume (mL)	% Protection	Weight of cotton Pellet granuloma (mg)	% Protection
Control	–	0.86±0.11	–	106.15±2.50	–
ASA 300	0.26±0.03	69.76	67.28±1.85	36.61	
NJE 150	0.61±0.08*	29.06	98.21±2.10	7.40	
NJE 300	0.38±0.05*	55.81	87.48±2.02	17.58	

Values are mean±SEM of 6 rats in each group.

a: P<0.05, b: P<0.01, c: P<0.001 compared with control group.

3.2. Effect of NJE on cotton pellet granuloma

The study of NJE on proliferative phase of inflammation indicated that NJE (150 and 300 mg/kg, p.o.) significantly (P<0.05; P<0.001) reduced the granuloma formation with inhibition of 47.0% and 17.58% as compared with ASA (300 mg/kg, p.o.), which showed significant (P<0.001) inhibition on granuloma formation with the percent inhibition of 36.61 (Table 1).

3.3. Effect of NJE on autacoids–induced hind paw oedema

The mean increase in paw oedema volume produced at 3 h after injection of different autacoids, viz., histamine, 5-HT, PGE2 and bradykinin was (0.28±0.02), (0.46±0.04), (0.29±0.04) and (0.28±0.04) mL, respectively. NJE (150 and 300 mg/kg, p.o.) significantly inhibited hind paw oedema induced by histamine (25%, P<0.01 and 39.12%, P<0.001), 5-HT (21.37%, P<0.05 and 36.95%, P<0.001) and PGE2 (31.03%, P<0.05 and 44.82, P<0.001) respectively, but not that of bradykinin. However, PBZ (100 mg/kg, p.o.) significantly (P<0.001) inhibited all autacoids including bradykinin induced hind paw oedema with 53.57, 54.34, 62.06 and 42.85 percent inhibition (Table 2).

3.4. Effect of NJE on formaldehyde–induced hind paw oedema

Table 2

Drug	Dose (mg/kg)	Histamine Increase in oedemar volume (mL)	% Protection	5–HT Increase in oedemar volume (mL)	% Protection	PGE2 Increase in oedemar volume (mL)	% Protection	Bradykinin	
Control	–	0.28±0.02	–	0.46±0.02	–	0.29±0.04	–	0.28±0.04	
PBZ	100	0.13±0.01*	53.57	0.21±0.01*	54.34	0.11±0.01*	62.06	0.16±0.02	
NJE	150	0.21±0.01*	25.00	0.36±0.03*	21.37	0.20±0.02*	31.03	0.26±0.02	
NJE	300	0.17±0.01*	39.28	0.29±0.02*	36.95	0.16±0.03*	44.82	0.27±0.03	

Values are mean±SEM of 6 rats in each group.

a: P<0.05, b: P<0.01, c: P<0.001 compared with control group.
NJE (150 mg/kg, p.o.) significantly diminished the mean paw oedema volume at 1.5 h (13.88%) \(P<0.05\) and 24 h (5.43%) (non significant). The maximum inhibition of oedema volume produced by NJE (300 mg/kg, p.o.) was almost comparable to that of ASA (300 mg/kg, p.o.) (51.38% versus 55.55% at 1.5 h). Interestingly, the effect of NJE persisted up to a period of 24 h in contrast to ASA, the effect of which was significant only at 1.5 h (Table 3).

Table 3

Drug	Dose (mg/kg)	Formaldehyde induced hind paw oedema volume (ml)	1.5 h	24 h	48 h
		Protection		Protection	
Control	–	0.72±0.04	–	0.92±0.07	–
ASA	300	0.32±0.02*	55.55	0.54±0.05*	41.30
NJE	150	0.62±0.03*	13.88	0.87±0.06	5.43
NJE	300	0.35±0.04	51.38	0.71±0.05*	22.82

Values are mean±SEM of 6 rats in each group.

3.5. Effect of NJE on TNF-α, nitric oxide and PGE2

This inflammatory response was also accompanied by an increase in the levels of TNF-α (496.11%), nitric oxide (312.33%) and PGE2 (132.46%) in the vehicle-treated group when compared with PBS. Pre-treatment of mice with NJE significantly suppressed the carrageenan-induced NO, PGE2 and TNF-α level in the vehicle-treated group when compared with PBS. NJE (150 mg/kg, p.o.) exhibited anti-inflammatory response in a dose-dependent manner with the percent inhibition of the level of TNF-α, NO and PGE2 as 13.15, 12.81 and 12.58 respectively. However, ASA (300 mg/kg, p.o.) significantly (\(P<0.001\)) inhibited TNF-α (66.57%), nitric oxide (81.4%) and PGE2 (61.69%). That means the ASA showed the maximum percentage inhibition as compared to vehicle treated group (Table 4).

Table 4

Drug	Dose (µmol/L)	PGE2 (pg/mL)	TNF-α (ng/mL)
Vehicle	–	67.21±2.40	89.71±3.40
PBS	100	16.30±2.81*	38.59±1.80*
NJE	150	58.60±2.10*	78.42±2.60*
NJE	300	41.39±2.00*	46.81±2.20*
ASA	300	12.51±0.96*	34.37±2.10*

Values are mean±SEM of 6 rats in each group.

4. Discussion

The present study demonstrates the potent anti-inflammatory activity of the ethanolic extract of \(N.\ jatamansi\) rhizome in different models of inflammation, \(i.e.,\) acute exudative (carrageenan-induced rat paw oedema), subacute (formaldehyde) and chronic proliferative inflammation (cotton pellet granuloma), there by indicating the possibility of developing \(N.\ jatamansi\) rhizome as the cheaper, safer and potent anti-inflammatory therapeutic agent. Carrageenan is the phlogistic agent of choice for testing anti-inflammatory drugs as it is not known to be antigenic and is devoid of apparent systemic effect[18]. The carrageenin induced paw oedema model in rats is known to be sensitive to cyclooxygenase inhibitors and has been used to evaluate the effect of non-steroidal anti-inflammatory agents[19]. The oedema and inflammation induced by carrageenin is shown to be mediated by histamine and 5-HT during first 1 h. After which increased vascular permeability is maintained by the release of kinins up to 2.3 h and from 2.3 to 6.0 h, the mediators appear to be prostaglandins, the release of which is closely associated with migration of leucocytes into the inflamed site[20]. It is well known that carrageenin induced paw oedema is characterized by biphasic event with involvement of different inflammatory mediators. In the first phase (during the first 2 h after carrageenan injection), chemical mediators such as histamine and serotonin play role, while in second phase (3–4 h after carrageenan injection) kinins and prostaglandins are involved[21].

Our results revealed that administration of ethanolic extract of \(N.\ jatamansi\) inhibited the oedema starting from the first hour and during all phases of inflammation, which is probably inhibition of different aspects and chemical mediators of inflammation. In autacoids induced inflammations, \(N.\ jatamansi\) produced significant inhibitory activity against histamine, 5-HT and PGE2 induced hind paw oedema in rats but failed to exhibit activity against bradykinin induced hind paw oedema. Administration of \(N.\ jatamansi\) at different doses level (150 and 300 mg/kg) attenuated the increased pedal volume against the phlogistic challenge. \(N.\ jatamansi\) caused a subsequent recovery towards normalization comparable to the PBZ group animals. Inflammation induced by formaldehyde is biphasic, an early neurogenic component is mediated by substance P and bradykinin followed by a tissue mediated response where histamine, 5-HT and bradykinin are known to be involved[22]. In the formaldehyde-induced inflammation, the \(N.\ jatamansi\) demonstrated significant anti-inflammatory activity that lasted up to 24 h in contrast to ASA, which was effective only at 1.5 h, suggesting its long duration of action. The cotton–pellet granuloma is widely used to evaluate the transudative and proliferative components of the chronic inflammation[23]. In order to assess its efficacy against proliferative phase of inflammation in which tissue degeneration and fibrosis occur, the widely used cotton pellet granuloma test was employed. During the repair process of inflammation, there is proliferation of macrophages, neutrophils, fibroblasts and multiplication of small blood vessels, which are the basic sources of forming a highly vascularised reddish mass, termed granulation tissue[24,25]. Though \(N.\ jatamansi\) (150 and 300 mg/kg, p.o.) significantly reduced the granuloma formation, the effect was of less intensity, when compared with ASA (300 mg/kg, p.o.). Macrophages are the first line of defence against microbial invaders and malignancies by nature of their
phagocytic, cytotoxic and intracellular killing capacities[26]. Macrophage activation by lipopolysaccharide results in the release of several inflammatory mediators such as NO and the proinflammatory cytokines, TNF–α[27], NO is a highly reactive molecule produced from guanidine nitrogen of NO synthase.

However, overproduction of NO can be harmful and may result in septic shock, neurologic disorders, rheumatoid arthritis, and autoimmune diseases[28]. Therefore, inhibition of NO production is an important therapeutic target in the development of anti-inflammatory agents. In this study, we demonstrated that the ethanolic extract of N. jatamansi suppressed NO production and TNF–α secretion at higher doses, both of which are crucial in the inflammatory and healing mechanism and naturally occurring flavonoids, such as rutin and quercetin, have been reported to scavenge NO[29]. It is well known that PGE2 is factors involved in many inflammatory processes[30] and in pain induction and perception[31], PGE2 increases in parallel with tissue oedema, a condition which can be suppressed by NSAIDs (inhibitors of cyclooxygenase)[32]. The increase in TNF levels in the SAP were accompanied by a corresponding increase in interferon. Significant increase in the level of TNF, a cytokine that plays an important role in acute phase reactions and immune response[33], was observed. NJE also inhibited PGE2 and TNF production. As seen in this experiment, the ability of this extract to suppress inflammation when it is applied after the onset of inflammation is likely to be due to the genuine anti-inflammatory activity.

Conflict of interest statement

We declare that we have no conflict of interest.

Acknowledgements

The authors are thankful to the Director of Royal college of Pharmacy and Health Sciences, Berhampur, Orissa and Moradabad Educational Trust Group of Institution Faculty of Pharmacy, Moradabad, for providing necessary facilities throughout this research. The entire grants were provided by Royal College of Pharmacy and Health Sciences Berhampur (Grant No–RCPHS/PH–09).

Related reports

The literature reports the anti-inflammatory activity of N. jatamansi rhizome against acute, subacute and chronic induced inflammation. As seen in this experiment, the ability of this extract to suppress inflammation when it is applied after the onset of inflammation is likely to be due to the genuine anti-inflammatory activity.

Innovations and breakthroughs

N. jatamansi (commonly known as jatamansi), is a medicinal plant used in various Ayurvedic formulations. In the present study, authors have demonstrated the anti-inflammatory activity of N. jatamansi rhizome in experimental animals. From the results, it is clear that the NJE has shown dose dependent activity among which at the dose level of 300 mg/kg, p.o. shows greater activity which is comparable with the control and standard groups.

Applications

The treatment with NJE significantly prevents the drug induced inflammation. As seen in this experiment, the ability of this extract to suppress inflammation when it is applied after the onset of inflammation is likely to be due to the genuine anti-inflammatory activity. From the literature survey, it has been found that N. jatamansi is safe to humans. Thus, NJE is use for the treatment of inflammation.

Peer review

This is a valuable research work in which authors have demonstrated the anti-inflammatory potential of N. jatamansi rhizome in experimental rodents. The activity was assessed based on inflammatory mediators which are the prime sign of inflammation. NJE was found to be a promising anti-inflammatory activity against acute, subacute and chronic model induced inflammation.
References

[1] Silva LM, Lima V, Holanda ML, Pinheiro PG, Rodrigues JA, Lima ME, et al. Antinociceptive and anti-inflammatory activities of lectin from marine red alga Pterocladia capillacea. Biol Pharm Bull 2010; 33: 830–835.

[2] Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 2013; 1830(6): 3670–3695.

[3] Shukla S, Mehta A, Mehta P, Vyas SP, Shukla S, Bajpai VK. Studies on antiinflammatory, antipyretic and analgesic properties of Caesalpinia bonducella F. seed oil in experimental animal models. Food Chem Toxicol 2010; 48: 61–64.

[4] Mika D, Guruvayoorappan C. The effect of Thespesia populnea on cisplatin induced nephrotoxicity. J Cancer Res Ther 2013; 9: 50–53.

[5] Brahmacahri G. Bioactive natural products: Opportunities and challenges in medicinal chemistry. Singapore: World Scientific Publishing Company, Incorporated; 2012.

[6] Abdel-Hamid NM, El-Moselhy MA, El-Baz A. Hepatocyte lysosomal membrane stabilization by olive leaves against chemically induced hepatocellular neoplasia in rats. Int J Hepatol 2011; doi: 10.4061/2011/736581.

[7] Disket J, Mann S, Gupta RK. A review on spikenard (Nardostachys jatamansi DC.): An ‘endangered’ essential herb of India. Int J Pharm Chem 2012; 2(3): 52–60.

[8] Sharma SK, Singh AP. In vitro antioxidant and free radical scavenging activity of Nardostachys jatamansi DC. J Acupunct Meridian Stud 2012; 5: 112–118.

[9] Rahman H, Shaik HA, Madhavi P, Eswaraiah MC. A review: pharmacognostics and pharmacological profiles of nardostachys jatamansi DC. Elvir Pharm 2011; 39: 5017–5020.

[10] Singh A, Kumar A, Duggal S. Nardostachys jatamansi DC. potential herb with CNS effects. Asian J Pharm Res Health Care 2009; 1: 276–290.

[11] Amdekar S, Roy P, Singh V, Kumar A, Singh R, Sharma P. Anti-inflammatory activity of lactothacilus on carrageenan–induced paw edema in male Wistar rats. Int J Inflamm 2012; 2012: 1–6.

[12] Shilpi JA, Islam ME, Billah M, Islam KM, Sabrin F, Uddin SJ, et al. Antinociceptive, anti-Inflammatory, and antipyretic activity of mangrove plants: a mini review. Adv Pharmacol Sci 2012; doi: 10.1155/2012/576086.

[13] Kang SY, Roh DH, Kim HW, Han HJ, Beitz AJ, Lee JH. Blockade of adrenal medulla–derived epinephrine potentiates bee venom–induced antinociception in the mouse formalin test: involvement of peripheral β-adrenoceptors. Evid Based Complement Alternat Med 2013; doi: 10.1155/2013/809062.

[14] Kameshwaran S, Suresh V, Arunachalam G, Frank PR, Manikandan V. Evaluation of antinociceptive and anti-inflammatory potential of flower extract Tecomia stans. Indian J Pharmacol 2012; 44(4): 543–544.

[15] Raymundo LJ, Guillhon CC, Alviano DS, Matheus ME, Antonioli AR, Cavaleanti SC, et al. Characterisation of the anti-inflammatory and antinociceptive activities of the Hylmis pectinata (L.) Poit essential oil. J Ethnopharmacol 2011; 134: 725–732.

[16] Hassimotto NM, Moreira V, do Nascimento NG, Souto PC, Teixeira C, Lajolo FM. Inhibition of carrageenan–induced acute inflammation in mice by oral administration of anthocyanin mixture from wild mulberry and cyanadin–3–glucoside. Biomed Res Int 2013; doi: 10.1155/2013/146716.

[17] Xu J, Xu X, Verstraete W. Adaptation of E. coli cell method for microscale nitrate measurement with the Griess reaction in culture media. J Microbiol Methods 2000; 41: 23–33.

[18] Vieira CP, de Aro AA, de Almeida Mdos S, de Mello GC, Antunes E, Pimentel ER. Effects of acute inflammation induced in the rat paw on the deep digital flexor tendon. Connect Tissue Res 2012; 53(2): 160–168.

[19] Kumar G, Chauhan B, Ali M. Anti–inflammatory effect of Anomum subalatum Roxb fruits extract. Int J Pharm Sci Res 2012; 3(12): 4722–4724.

[20] Patel RP. A study of anti-inflammatory activity of methanolic fraction of aerial parts of Corchorus aetans Linn. Int J Pharm Res 2011; 2(5): 198–200.

[21] Kitic D, Brankovic S, Radenkovic M, Savikin K, Zhunic G, Kocic B, et al. Hypotensive, vasorelaxant and cardiodpressant effects of the ethanol extract of Sideritis raeseri spp. raeseri Boiss & Heldr. J Physiol Pharmacol 2012; 63: 531–535.

[22] Kataria S, Shrivastava B, Kaur D, Sharma P. Anti-inflammation and antinoceptive activities of Crotalaria burhia Buch.—Ham. whole plant. Indian J Nat Prod Resour 2012; 3(2): 189–196.

[23] Paschupar M, Patil MB, Kumar R, Patil SR. Evaluation of anti-inflammatory activity of ethanolic extract of Borassus flabellifer L. male flowers (inflorescences) in experimental animals. J Med Plants Res 2009; 3: 49–54.

[24] Khan MO, Lee HJ. Synthesis and pharmacology of anti-inflammatory steroidal antedrugs. Chem Rev 2008; 108(12): 5131–5149.

[25] Bhagat R, Ambavade SD, Misar AV, Kulkarni DK. Anti-inflammatory activity of Jatropha gossypifolia L. leaves in albino mice and Wistar rat. J Sci Ind Res 2011; 70: 289–292.

[26] Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 2009; 27: 451–83.

[27] Golubovska I, Studers P, Jaunalksne I, Vanags I. Effects of different epidural analgesic compositions on postoperative pain relief and systemic response to surgery. Proc Latvian Acad Sci 2008; 62: 182–188.

[28] de Jager W, Bourrier C, Rijkers GT, Prakken BJ, Seyfert–Margolis V. Prerequisites for cytokine measurements in clinical trials with multiplex immunoassays. BMC Immunol 2009; doi: 10.1186/1471–2172–10–52.

[29] Ali Khan R, Khan MB, Sahreen S, Ahmed M. Assessment of flavonoids contents and in vitro antioxidant activity of Leucaena procumbens. Chem Cent J 2012; 6: 1–11.

[30] Xia L, Zhang D, Wang C, Wei F, Hu Y. PC–PLC is involved in osteoclastogenesis induced by TNF–α through upregulating IP3R1 expression. FEBS Lett 2012; 586: 3341–3348.

[31] Kyung J, Kim D, Park D, Yang YH, Choi EK, Lee SP, et al. Synergistic anti-inflammatory effects of Laminaria japonica fucoaid and Cistanche tubulosa extract. Lab Anim Res 2012; 28: 91–97.

[32] Kim D, Park D, Kyung J, Yang YH, Choi EK, Lee YB, et al. Anti-inflammatory effects of Houttuynia cordata supercritical extract in carrageenan–air pouch inflammation model. Lab Anim Res 2012; 28(2): 137–140.

[33] Theoharides TC. Luteolin as a therapeutic option for multiple sclerosis. J Neuroinflammation 2009; 6: 29.