A zinc–iron redox-flow battery under $100 per kW h of system capital cost

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation
Gong, Ke, Xiaoya Ma, Kameron M. Conforti, Kevin J. Kuttler, Jonathan B. Grunewald, Kelsey L. Yeager, Martin Z. Bazant, Shuang Gu, and Yushan Yan. “A Zinc–iron Redox-Flow Battery Under $100 Per kW h of System Capital Cost.” Energy Environ. Sci. 8, no. 10 (2015): 2941–2945. © 2015 The Royal Society of Chemistry

As Published
http://dx.doi.org/10.1039/c5ee02315g

Publisher
Royal Society of Chemistry

Version
Final published version

Citable link
http://hdl.handle.net/1721.1/102312

Terms of Use
Creative Commons Attribution-NonCommercial 3.0 Unported licence

Detailed Terms
http://creativecommons.org/licenses/by-nc/3.0/
Redox flow batteries (RFBs) are one of the most promising scalable electricity-storage systems to address the intermittency issues of renewable energy sources such as wind and solar. The prerequisite for RFBs to be economically viable and widely employed is their low cost. Here we present a new zinc–iron (Zn–Fe) RFB based on double-membrane triple-electrolyte design that is estimated to have under $100 per kW h system capital cost. Such a low cost is achieved by a combination of inexpensive redox materials (i.e., zinc and iron) and high cell performance (e.g., 676 mW cm\(^{-2}\) power density). Engineering of the cell structure is found to be critical to enable the high power density. Our cost model shows that a Zn–Fe RFB demonstrates the lowest cost among some notable RFBs and could reach the 2023 cost target set by the U.S. Department of Energy ($150 per kW h).

The widespread deployment of renewable energies such as wind and solar calls for energy-storage systems to smooth out their intermittent electricity generation. Redox flow batteries (RFBs) are scalable energy-storage devices with great design flexibility due to their decoupled energy and power functions. The most important prerequisite for RFBs to be economically viable is low capital cost. In this work, we present a zinc–iron (Zn–Fe) RFB that uses inexpensive redox materials yet offers high cell performance, and thus achieves a very low system capital cost under $100 per kW h.

Broader context

The widespread deployment of renewable energies such as wind and solar calls for energy-storage systems to smooth out their intermittent electricity generation. Redox flow batteries (RFBs) are scalable energy-storage devices with great design flexibility due to their decoupled energy and power functions. The most important prerequisite for RFBs to be economically viable is low capital cost. In this work, we present a zinc–iron (Zn–Fe) RFB that uses inexpensive redox materials yet offers high cell performance, and thus achieves a very low system capital cost under $100 per kW h.
where, V_{rev} is the reversible voltage, η is the total activation overpotential at both electrodes (V), I is the current density and R is the area-specific internal cell resistance ($\Omega \text{ cm}^2$).

Current RFBs cannot satisfy simultaneously low U_e and high V_{eff} at high current densities. As a reference, the challenges facing two notable RFBs are described here. All-V RFBs recently achieved a dramatic improvement in their V_{eff} at high current density by reduction of internal resistance, but their U_e is too high. The vanadium material alone would cost $64 per kW h (Table S1, ESI†). On the other hand, Cr–Fe RFBs have low U_e, but their V_{eff} is low due to the intrinsically low reversible cell voltage and sluggish kinetics of the Cr redox pair. It is therefore imperative to find two redox pairs that have low elemental cost, fast redox kinetics, and high reversible voltage.

Zn and Fe are two elements with the potential to satisfy these low cost requirements. Specifically, the use of Zn in a basic environment and Fe in an acidic environment has been seen in many RFBs due to their low elemental cost, facile redox kinetics, and desirable standard potential ($\phi_{\text{Zn(II)/Zn}} = 1.22 \text{ V vs. SHE}$ in base, pH = 14; and $\phi_{\text{Fe(III)/Fe(II)}} = 0.77 \text{ V vs. SHE}$ in acidic, pH = 0). In addition, the long-standing concern of Zn dendrite formation is precluded by the flowing electrolyte in RFBs. Each of the two redox pairs has been separately used in the construction of many promising RFBs; however, the combination of the two redox pairs in one cell cannot be realized by the conventional single-membrane cell configuration. In this work, the Zn–Fe RFB is fabricated using a double-membrane design that enables the use of redox pairs of different ion charges and supporting electrolytes of different pHs. The working principles of the Zn–Fe RFB based on the basic Zn redox pair and the acidic Fe redox pair are illustrated in Fig. 1, and the negative and positive electrode reactions are shown in eqn (3) and (4), respectively.

Negative electrode: $\text{Zn} + 4\text{OH}^- \leftrightarrow \text{Zn(OH)}_4^{2-} + 2e^-$ (3)

Positive electrode: $2\text{Fe}^{3+} + 2e^- \leftrightarrow 2\text{Fe}^{2+}$ (4)

The combination of the Zn redox pair in base and the Fe redox pair in acid has the potential to achieve very low system capital cost: (1) both Zn and Fe are inexpensive elements, i.e., $\& 0.13$ per A h (half-cell) for Fe and $\& 0.20$ per A h (half-cell) for Zn (see the ESI† for calculation). Overall, a Zn–Fe RFB requires an electrolyte cost (U_e) of only $\& 0.73$ per A h (full-cell), which is one order of magnitude smaller than that of all-V RFBs (8.10 per A h, full-cell). (2) The combination of the Zn(OH)$_4^{2-}$/Zn redox pair in base and the Fe$^{3+}$/Fe$^{2+}$ redox pair in acid provides a high standard cell voltage of 1.99 V and also offers a wide electrochemical window of 2.06 V for water splitting (-0.83 V of hydrogen evolution at pH = 14 and 1.23 V of oxygen evolution at pH = 0). (3) Both Zn(OH)$_4^{2-}$/Zn and Fe$^{3+}$/Fe$^{2+}$ redox pairs have fast kinetics, with the standard rate constant (k^0) of 2.5×10^{-4} cm2 s$^{-1}$ for the former and 1.2×10^{-4} cm2 s$^{-1}$ for the latter. The magnitudes of these standard rate constants require very small electrode overpotential even at high current density. For example, the charge/discharge electrode overpotential is less than 10 mV and 40 mV for the Fe$^{3+}$/Fe$^{2+}$ redox pair (carbon felt electrode) and the Zn(OH)$_4^{2-}$/Zn redox pair (copper mesh electrode), respectively, at a current density of 200 mA cm$^{-2}$ (Fig. S1, ESI†). These small overpotentials observed in this work are consistent with data reported in the literature.

A sufficiently low cell resistance is then the remaining barrier to achieving the low cost. Unlike traditional single-membrane RFBs, the double-membrane design used by the Zn–Fe RFB requires an additional membrane and electrolyte, which adds challenges for managing the cell resistance. The study shows that the total cell resistance consists of two components: ohmic resistance (R_o) mostly from the two membranes and three electrolytes; and concentration-polarization resistance (R_{cp}) caused by insufficient ion diffusion in the middle electrolyte. Specifically, the concentration-polarization resistance originates from the accumulation or depletion of Na$^+$ and Cl$^-$ ions in the vicinity of either membrane when a current flows through the cell (Fig. S2a, ESI†). Compared with OH$^-$ anions (in negative electrolyte) and H$^+$ cations (in positive electrolyte), the Na$^+$ cations and Cl$^-$ anions have much smaller ion diffusion coefficients, and as such the middle electrolyte, to a great extent, controls R_{cp}.

R_o can be managed by optimizing the electrolyte concentration and reducing the thickness of the middle electrolyte (Fig. S3a and b, ESI†). With an optimal electrolyte concentration of 2.5 mol L$^{-1}$ and a small electrolyte thickness of 0.5 mm, an R_o as low as 2.3 Ω cm2 was obtained, which is sufficiently low for the Zn–Fe RFB, considering its close-to-2 V
standard voltage. R_{cp}, on the other hand, depends on various structural and operational parameters \(^{24}\) (Fig. S2b, ESI†). R_{cp} can be quantitatively measured by subtracting the constant R_o from total cell resistance obtained at different flow rates and/or different current densities.

Fig. 2 shows the impact of flow rate and current density on R_{cp} with different thicknesses of the middle electrolyte (0.5, 2.0, 0, and 3.5 mm). We found that the operational and structural parameters can be correlated to a dimensionless number X characterizing R_{cp}: $X = (Q \cdot d^{-1} \cdot w^{-1})/(I \cdot F^{-1} \cdot C^{-1})$, where Q is the flow rate; d and w are thickness and width of the middle electrolyte, respectively; I is current density; F is the Faraday’s constant; C is the salt concentration of the middle electrolyte. The quantity X represents the ratio of vertical velocity of convection (direction of electrolyte flow) to horizontal velocity of ion diffusion (direction of current flow). From regression analysis, increasing X can effectively depress R_{cp} to a negligible level (Fig. S4a, ESI†). This relationship illustrates the general resistance behavior with respect to cell structural and operational parameters. The theoretically calculated R_{cp} also has a similar trend with respect to the dimensionless number X (Fig. S4b and c, ESI†), as compared with measured R_{cp}. Both results show that R_{cp} can be limited to around 0.1 Ω cm\(^2\) if X is larger than 10^4, suggesting that the manipulation of cell structural and operational parameters is effective to minimize R_{cp}.

With an engineered middle electrolyte, the Zn–Fe RFB achieves high performance (Fig. 3). A peak power density of 676 mW cm\(^{-2}\) was delivered during discharge at a current density of 660 mA cm\(^{-2}\) at 70% of state of charge (Fig. 3a, state of charge, SOC, is calculated as a percentage via dividing available capacity for discharge by total capacity of the battery). This peak power density is the highest among all RFBs based on zinc (\sim 200 mW cm\(^{-2}\) for the Zn–Br RFB to our best estimation\(^{25}\) or iron (257 mW cm\(^{-2}\) for the H–Fe RFB\(^{26}\)) and among the highest among advanced RFBs including quinone-Br RFBs (600 mW cm\(^{-2}\)),\(^{26}\) all-V RFBs (1300 mW cm\(^{-2}\)),\(^{27}\) and H–Br RFBs (1450 mW cm\(^{-2}\)).\(^{28}\) In addition, even at $I = 600$ mA cm\(^{-2}\), V_{eff} remains at 1.1 V, which is comparable to V_{rev} of some of the most advanced RFBs. The charge polarization also demonstrated high power density, comparable to discharge power density. Zn–Fe RFBs also showed a very high coulombic efficiency of 99.9% regardless of current density (Fig. 3b), indicating excellent isolation of two redox pairs, owing to the double-membrane cell configuration. In addition, the Zn–Fe RFB showed no decrease in coulombic efficiency (99.9%), voltage efficiency (76%) and capacity after 20 cycles at 80 mA cm\(^{-2}\) current density with 75% SOC swing (Fig. 3c and d).

Low element cost and high performance make the Zn–Fe RFB very attractive in terms of the total capital cost. To quantify the capital cost of the double-membrane RFB system, we adapted the cost model for all-V and Fe-V RFBs developed by
Our results demonstrate that the Zn–Fe RFB can deliver high power density with inexpensive materials, making it one of the most cost-effective RFB systems. The Zn–Fe RFB is able to meet the $100 per kWh of the capital cost (with 65% system efficiency), although a significant amount of work is still needed such as long-term durability testing and scale-up to large cells and stacks before industrial implementation.

Acknowledgements

This work was funded by the US Department of Energy through ARPA-E Award (DE-AR0000346). We thank Vish Viswanathan of the PNNL for help and sharing details of the PNNL RFB’s open-source cost model.

Notes and references

1. Z. G. Yang, J. L. Zhang, M. C. W. Kintner-Meyer, X. C. Lu, D. W. Choi, J. P. Lemmon and J. Liu, Chem. Rev., 2011, 111, 3577–3613.
2. J. Liu, J. G. Zhang, Z. G. Yang, J. P. Lemmon, C. Imhoff, G. L. Graff, L. Y. Li, J. Z. Hu, C. M. Wang, J. Xiao, G. Xia, V. V. Viswanathan, S. Baskaran, V. Sprenkle, X. L. Li, Y. Y. Shao and B. Schwenzer, Adv. Funct. Mater., 2013, 23, 929–946.
3. J. Rugolo and M. J. Aziz, Energy Environ. Sci., 2012, 5, 7151–7160.
4. U. Eberle, B. Muller and R. von Helmolt, Energy Environ. Sci., 2012, 5, 8780–8798.
5. H. Ibrahim, A. Ilinca and J. Perron, Renewable Sustainable Energy Rev., 2008, 12, 1221–1250.
6. U. Eberle, M. Felderhoff and F. Schuth, Angew. Chem., Int. Ed., 2009, 48, 6608–6630.
7. B. Dunn, H. Kamath and J. M. Tarascon, Science, 2011, 334, 928–935.
8. P. Leung, X. H. Li, C. P. de Leon, L. Berlouis, C. T. J. Low and F. C. Walsh, RSC Adv., 2012, 2, 10125–10156.
9. W. Wang, Q. T. Luo, B. Li, X. L. Wei, L. Y. Li and Z. G. Yang, Adv. Funct. Mater., 2013, 23, 970–986.
10. M. Skyllas-Kazacos, M. H. Chakraborti, S. A. Hajimolana, F. S. Mjallil and M. Saleem, J. Electrochem. Soc., 2011, 158, R55–R79.
11. A. Z. Weber, M. M. Mench, J. P. Meyers, P. N. Ross, J. T. Gostick and Q. H. Liu, J. Appl. Electrochem., 2011, 41, 1137–1164.
12. C. P. de Leon, A. Frias-Ferrer, J. Gonzalez-Garcia, D. A. Szanto and F. C. Walsh, J. Power Sources, 2006, 160, 716–732.
13. Grid Energy Storage, U.S. Department of Energy, 2013.
14. R. F. Service, Science, 2014, 344, 352–354.
15. D. S. Aaron, Q. Liu, Z. Tang, G. M. Grim, A. B. Papandrew, A. Turhan, T. A. Zawodzinski and M. M. Mench, J. Power Sources, 2012, 206, 450–453.
16. N. H. Hagedorn, NASA redox storage system development project final report, National Aeronautics and Space Administration, Lewis Research Center, 1984.
17 J. Cheng, L. Zhang, Y. S. Yang, Y. H. Wen, G. P. Cao and X. D. Wang, *Electrochem. Commun.*, 2007, 9, 2639–2642.
18 L. H. Thaller, 9th Intersociety Energy Conversion Engineering Conference Proceedings, 1974, 924–928.
19 L. Zhang, J. Cheng, Y. S. Yang, Y. H. Wen, X. D. Wang and G. P. Cao, *J. Power Sources*, 2008, 179, 381–387.
20 M. C. Tucker, K. T. Cho and A. Z. Weber, *J. Power Sources*, 2014, 245, 691–697.
21 S. Gu, K. Gong, E. Z. Yan and Y. S. Yan, *Energy Environ. Sci.*, 2014, 7, 2986–2998.
22 R. Holze, *Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, Electrochemical Thermodynamics and Kinetics*, Springer, 2007.
23 R. D. Patel, K.-C. Lang and I. F. Miller, *Ind. Eng. Chem. Fundam.*, 1977, 16, 340–348.
24 Y. Tanaka, *J. Membr. Sci.*, 2003, 216, 149–164.
25 L. Zhang, H. Zhang, Q. Lai, X. Li and Y. Cheng, *J. Power Sources*, 2013, 227, 41–47.
26 B. Huskinson, M. P. Marshak, C. Suh, S. Er, M. R. Gerhardt, C. J. Galvin, X. Chen, A. Aspuru-Guzik, R. G. Gordon and M. J. Aziz, *Nature*, 2014, 505, 195–198.
27 M. L. Perry, R. M. Darling and R. Zaffou, *Stationary and Large Scale Electrical Energy Storage 2*, 2013, 53, 7–16.
28 K. T. Cho, P. Albertus, V. Battaglia, A. Kojic, V. Srinivasan and A. Z. Weber, *Energy Sci. Technol.*, 2013, 1, 596–608.
29 V. Viswanathan, A. Crawford, D. Stephenson, S. Kim, W. Wang, B. Li, G. Coffey, E. Thomsen, G. Graff, P. Balducci, M. Kintner-Meyer and V. Sprenkle, *J. Power Sources*, 2014, 247, 1040–1051.
30 W. A. Braff, M. Z. Bazant and C. R. Buie, *Nat. Commun.*, 2013, 4.