1 Introduction

Recent research shows that expressing emotion can help people to improve their mental health [1]. Mehrabian et al. illustrated that 93% of the meaning related to emotion is transferred using non-verbal cues such as body language and vocal inflections [2]. However, these two are not part of the messaging communication mechanism. Emojis are a set of minor pictorial glyphs that help users express their emotions on messaging platforms. Emojis were first used in the late 90s and officially adopted into Unicode in 2010 [3]. Nowadays, users use emojis to convey their feeling while using social media data. However, among several pre-trained word embeddings, just a few have an emoji embedding. For example, although word2vec was developed by Google in 2013 [10] and has been frequently used in literature, it includes some smileys and there is no emoji in its vocabulary. Similarly, Glove [11], another well-known word embedding model, was developed before emojis were frequently used. These two models were initially developed based on the data that includes very few emojis. Despite the users’ interest in using emojis, many current language processing projects in the social media domain still utilize pre-trained word embeddings that do not include emojis in their vocabulary. In this project, we introduce emojiSpace, a word-embedding trained on billions of tweets and includes emoji in its vocabulary. We show how this embedding outperforms similar types of word+emoji embeddings.

2 Related Work

A few emoji embeddings are available in the literature, which are based on two main approaches: 1) utilizing social media data and finding the word embedding for all the words, including emojis [12; 13; 14]. 2) extracting labels that describe the emojis, and then the processed embedding of those labels represent the corresponding emoji embeddings [15]. The main limitation of the first approach is the limited number of tweets including emojis in the training set. For instance, Barbieri et al. used 100 M tweets, but only 700 of them included emojis [13]. On the other hand, since their dataset was significantly smaller than the ones used for training word2vec or Glove, the resulting embedding is not as general as word2vec or Glove. To overcome these deficiencies, researchers apply the second approach to extract emoji embedding.

One of the most frequently used emoji embeddings using the second approach is emoji2vec [15], which maps emojis into a 300-dimensional space that can be
used along with Google News word2vec embedding. In emoji2vec, emojis’ name and their descriptions were extracted from the Unicode emoji list. The authors defined vector representation of emoji names and descriptions, v_j, as the sum of embeddings for all individual word vectors in the word2vec space,

$$v_j = \sum_{k=1}^{N} w_k$$

where w_k is the embedding vector of k^{th} description word if the word is in the word2vec vocabulary and 0 otherwise. Then the vector representation of emojis, x_j, is estimated based on maximizing the match between x_j and v_j. For the training process they used the corresponding description vector of the emoji, v_j, as positive sample and a random sample description from other emojis, v_i ($i \neq j$) as a negative sample [15]. In other word, they minimized the following loss function,

$$L(i, j, y_{ij}) = -y_{ij} \log \left(\sigma(x_j^T v_j) \right) - (1-y_{ij}) \log \left(\sigma(x_i^T v_j) \right)$$

where $\sigma(x_j^T v_j)$ represent the sigmoid of the dot product between the two vectors and y_{ij} is 1 when description j matches emoji i and 0 otherwise.

3 Methodology

In this project, we use the gensim\(^1\) word2vec on a corpus of more than 4 billion English tweets to train the model. This large corpus of texts includes both words, emojis, and informal words. We used an extrinsic method (sentiment analysis) for the evaluation part and compared the performance of emojiSpace with two other embeddings using two different classifiers.

3.1 Data Collection & Pre-processing

We collected over 4 billion random English tweets posted after 2011 from Archive Team [16]. To train the model, we used the text of tweets and discarded the metadata.

Raw tweets are highly unstructured and contain redundant information. Therefore, we pre-processed the data by taking multiple steps as follows:

- **Removing unnecessary items**: We removed hashtag signs, reserved words (e.g. RT), HTML entities (e.g. <, >, &), punctuation, stopwords, and numbers, because they don’t add any meaning to the tweets and keeping them may harm the embedding [17].

- **Text replacements**: It is common for people to mention other users’ IDs in their tweets, but those user IDs should not be considered as a unique vocabulary in the embedding space. Therefore, we replaced mentions, URLs, and email addresses with “mentionn”, “linkks”, and “emailss”, respectively.

- **Emoji separation**: Users usually do not consider emojis as separate words. Therefore, using emojis without any space between them and repeating the same emoji to emphasize a feeling is common in social media texts. In those cases, we added a space between emojis, and if a single emoji was repeated, we only kept one of them.

- **Removing redundant letters**: Users also change words with redundant characters to express their feelings. For example, instead of using the simple word “good”, we find something similar to ”goOoOoOoOoOoOod” in many tweets. Although finding all these redundant letters is challenging, we used a regular expression tool to uncover all three consecutive same characters and replace them with two consecutive ones.

For the cleaning process, we used a tokenizer developed by Erika Varis [18].

3.2 Modeling

After cleaning and tokenizing the data, we utilized the word2vec model from gensim to compute the word embedding from our data. We specified the hyperparameters as follows:

- **Embedding size**: We selected an embedding size of 300, similar to the word2vec model, and mapped emojiSpace to the Google News original pre-trained word2vec space [19] for easier use by other researchers.

- **Minimum count**: This hyperparameter specifies a threshold on frequency of word usage in the data. In the vocabulary list, the model excludes all the words that are repeated less than this threshold. Selecting small values for the minimum count, adds words used in very few tweets, and it may bias the embedding based on a small number of tweets. On the other hand, large values remove less frequent emojis and words. We iterated on the values for the minimum count and selected 50 as a reasonable value for this dataset.

- **Window size**: Some users prefer to use emojis as an immediate indicator of their feelings, and others prefer to add different emojis together in one place. We utilized the window size of 10 for our model, which is large enough to cover both cases.

By training the model using the above hyperparameters, we got an embedding with a vocabulary size of 2,011,787.

To justify our embedding, we use similarities of words. We found the most similar words to some emojis shown in Table 1. As we see in this table, the most similar words to the emojis have very identical themes. For example, in the 5th row is close to “eww”, “yuck”, or “ew” that are excellent descriptions for this emoji.

\(^1\)Gensim is a Python package that implemented word2vec, and it is available to the public.
Table 1: Most similar emojis and words to a sample of 10 emojis.

emoji	T1	T2	T3	T4	T5	T6	T7	T8
😏	😊	😊	😊	😊	😊	😊	😊	😊
😏	😊	😊	😊	😊	😊	😊	😊	😊
😏	😊	😊	😊	😊	😊	😊	😊	😊
😏	😊	😊	😊	😊	😊	😊	😊	😊
😏	😊	😊	😊	😊	😊	😊	😊	😊
😏	😊	😊	😊	😊	😊	😊	😊	😊
😏	😊	😊	😊	😊	😊	😊	😊	😊
😏	😊	😊	😊	😊	😊	😊	😊	😊
😏	😊	😊	😊	😊	😊	😊	😊	😊

Table 2: Evaluating our embedding based on similarity of the words to the word “they”.

word2vec	emojiSpace		
word	similarity	word	similarity
we	0.66	them	0.64
do	0.55	their	0.61
have	0.55	theirs	0.56
themselves	0.55	we	0.56
you	0.58	theirs	0.56
yall	0.54	them	0.62
ppl	0.47	you	0.58
em	0.47	us	0.47
people	0.46	them	0.62
they	0.45	themselves	0.57

Table 3: Examples of 10 common and rare emojis based on emojiTracker [21]

We evaluated our model with and without emojis to find out how the performance of our model is improved by using emojis. We used two different classifiers, RF and SVM, to evaluate which one would outperform another. To compare the performance of our model with other models, we used two other sets of pre-trained embeddings as well. The first one is the original Google News word2vec embedding [19] and the second one is word2vec augmented with emoji2vec trained from Unicode descriptions [15]. In the training process, we defined the feature vectors by summing up the embedding vectors corresponding to each word or emoji in the tweet’s text.

We used emojiTracker website which ranks frequency of emojis usage over the web [21]. This website ranks a list of 845 emojis based on their frequency. We divided this list of emojis into two subsets: the top 20% of the list (173 most frequently used emojis) and the bottom 80% (672 less frequently used emojis). Hereinafter, the former group will be referred to as the “common” emojis, and the latter group will be referred to as the “rare” emojis. Based on these two groups of emojis, we defined two subsets. First, tweets containing common emojis and second, tweets containing rare emojis.

To find how much improvement we can get on sentiment classification by using emojis, we considered two scenarios. One uses the embedding of all the words in the tweet and the other uses the embedding of words and emojis in a tweet. We did the classification in these two scenarios and summarized the result in table 4. As we can see from the result in table 4, removing emojis had a negative effect on the task performance.

The emojiSpace outperforms emoji2vec in all the subsets we tested. Table 5 shows the results of using each embedding for sentiment analysis on the whole tweets and the two subsets. As we can see, the
emojiSpace embedding outperforms two other embeddings. Also, our findings indicate that, in all scenarios, the linear SVM classifier outperforms the RF in this sentiment analysis task.

5 Conclusion and Future Work

Although users of many social media applications use emojis to express their feelings, most NLP projects in this domain still utilize word embeddings such as word2vec and Glove that do not present emoji embeddings. In this project, we trained a new embedding using a large number of tweets that include emojis. To the best of our knowledge, the number of tweets used in this project is more than any dataset used for emoji embeddings. emojiSpace contains embedding for both words and emojis and is obtained using the genism method on 4 billion English tweets containing emojis. For evaluating emojiSpace, we used sentiment analysis as the downstream task using two different classifiers of RF and SVM, and found the following results:

- We compared the performance of these two classifiers and found that Linear SVM outperformed RF classifier in all the scenarios that we used in the evaluation.
- We compared emojiSpace performance with two other pre-trained embeddings (Google News original word2vec, and word2vec augmented with emoji2vec) on sentiment analysis task. When we used all tweets and tweets with rare emojis as the test set, emojiSpace outperformed the two others pre-trained embeddings. Only in the scenario of using tweets with common emojis, Google News word2vec augmented with emoji2vec) outperformed emojiSpace if linear SVM was used as the classifier. Using RF as the classifier in this scenario, resulted in the better performance of emojiSpace.
- We compared the performance of emojiSpace on the same subsets of tweets with and without emojis, and the results showed that removing emojis from the tweets, decreases the performance of both of the classifiers in the sentiment analysis task.

Based on these results that met our expectation of improving the classifiers’ performance in the sentiment analysis task, we validated emojiSpace reliability.

For future works, it is possible to use a “translation matrix” (or any other transformations) to map emojiSpace word-embedding into other embedding spaces. This helps to use emoji-embedding of emojiSpace together with those embeddings. As an alternative approach, it is possible to use the most similar words to emojis from emojiSpace to find emoji-embeddings similar to emoji2vec approach.

We believe there is still space to work more rigorously on pre-processing of the data used in this project. Specifically, for any NLP task on Twitter posts, it is essential to note that users are using a decent amount of slang and abbreviations. For example, “DIAF” stands for Die in a Fire, which clearly represents negative sentiment, or “HT”, which stands for the hat tip, which indicates giving credit to another person and represents positive sentiment. Therefore, in future works, it is possible to collect the most frequent slang used in Twitter posts, replace them with their representative words, and see their impact on producing better word embedding. This project was not focused on the sentiment analysis part, so building on top of this embedding can result in much better sentiment analysis.

Acknowledgment

The authors would like to thank Yangfeng Ji from the University of Virginia for his great suggestions about this course project.

References

[1] M. S. Clark and E. J. Finkel, “Does expressing emotion promote well-being? It depends on relationship context,” The social life of emotions, pp. 105–126, 2004.
[2] A. Mehrabian et al., Silent messages, vol. 8. Wadsworth Belmont, CA, 1971.
[3] H. Pohl, C. Domin, and M. Rohs, “Beyond just text: semantic emoji similarity modeling to support expressive communication,” ACM Transactions on Computer-Human Interaction (TOCHI), vol. 24, no. 1, pp. 1–42, 2017.
[4] J. Cruse, “Emoij usage in tv conversation,” 2015.
[5] M. A. Riordan, “The communicative role of non-face emojis: Affect and disambiguation,” Computers in Human Behavior, vol. 76, pp. 75–86, 2017.
[6] A. Beattie, A. P. Edwards, and C. Edwards, “A bot and a smile: Interpersonal impressions of chatbots and humans using emoji in computer-mediated communication,” Communication Studies, vol. 71, no. 3, pp. 409–427, 2020.
[7] M. Mostafavi and M. Porter, “How emoji and word embedding helps to unveil emotional transitions during online messaging,” in 2021 IEEE International Systems Conference (SysCon), IEEE, 2021.
[8] M. Mostafavi, “Adapting online messaging based on emotional state,” in Proceedings of the 29th ACM Conference on User Modeling, Adaptation and Personalization, UMAP ’21, (New York, NY, USA), p. 315–320, Association for Computing Machinery, 2021.
Embeddings	All tweets RF	All tweets SVM	Common RF	Common SVM	Rare RF	Rare SVM
Google News	58%	61%	47%	50%	44%	44%
Google News + emoji2vec	59%	62%	50%	63%	47%	49%
emojiSpace	60%	62%	58%	63%	54%	59%

Table 5: Comparing emojiSpace sentiment classification accuracy with Google News and Google News + emoji2vec on the whole tweets dataset and the two subsets of tweets containing common emojis and tweets containing rare emojis.

[9] S. K. Bailey, B. L. Schroeder, D. E. Whitmer, and V. K. Sims, “Perceptions of mobile instant messaging apps are comparable to texting for young adults in the united states,” in *Proceedings of the Human Factors and Ergonomics Society Annual Meeting*, vol. 60, pp. 1235–1239, Sage Publications Sage CA: Los Angeles, CA, 2016.

[10] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” *arXiv preprint arXiv:1301.3781*, 2013.

[11] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word representation,” in *Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)*, pp. 1532–1543, 2014.

[12] T. Dimson, “Emojineering part 1: Machine learning for emoji trends,” *Instagram Engineering Blog*, vol. 30, 2015.

[13] F. Barbieri, F. Ronzano, and H. Saggon, “What does this emoji mean? a vector space skip-gram model for twitter emojis,” in Calcolari N, Choukri K, Declerck T, *et al.*, editors. *Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016); 2016 May 23-28; Portorož, Slovenia. Paris: European Language Resources Association (ELRA); 2016. p. 3967-72*, ELRA (European Language Resources Association), 2016.

[14] J. H. Reelfs, O. Hohlfeld, M. Strohmaier, and N. Henckell, “Word-emoji embeddings from large scale messaging data reflect real-world semantic associations of expressive icons,” *arXiv preprint arXiv:2006.01207*, 2020.

[15] B. Eisner, T. Rocktäschel, I. Augenstein, M. Bošnjak, and S. Riedel, “emoji2vec: Learning emoji representations from their description,” *arXiv preprint arXiv:1609.08359*, 2016.

[16] I. Archive, “Archive team: The twitter stream grab.” “https://archive.org/details/twitterstream”. Accessed: 2021-05-20.

[17] S. Mondal, “Twitter data cleaning and preprocessing for data science.”

[18] V. Erika, “Tokenizer.” *https://github.com/erikavaris/tokenizer*, 2017.

[19] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed representations of words and phrases and their compositionality,” *arXiv preprint arXiv:1310.4546*, 2013.

[20] P. Kralj Novak, J. Smailović, B. Sluban, and I. Mozetič, “Sentiment of emojis,” *PLOS ONE*, vol. 10, pp. 1–22, 12 2015.

[21] M. Rothenberg, “Emojitracker website which is an experiment in realtime tracking of all emoji used on twitter.” *http://www.emojitracker.com/*, 2013. Accessed: 2021-05-20.