Metabolic associated fatty liver disease and COVID-19: a double whammy?

INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic and the increased healthcare burden have driven the pursuit of knowledge in COVID-19 and its relationship with chronic diseases. Metabolic disorders, in particular, have been of interest in recent weeks as the need for risk management and appropriate resource allocation increases. The high prevalence of metabolic associated fatty liver disease (MAFLD) has elicited interest in establishing the interaction between MAFLD and COVID-19 infection. MAFLD, previously known as non-alcoholic fatty liver disease, is one of the most common liver disorders, affecting up to 24% of the population globally.[1] It stems from the underlying state of systemic metabolic dysfunction independent of other chronic liver diseases[2]; hence, it is a diagnosis of inclusion and does not warrant the exclusion of other liver diseases.[3] Diagnosis of MAFLD is based on evidence of hepatic steatosis and one of the following: (a) overweight or obesity; (b) type 2 diabetes mellitus; or (c) evidence of metabolic dysregulation.[3] Although there are only limited studies of patients with MAFLD and COVID-19, all of which showed a possible link between MAFLD and severity of COVID-19.

LIVER INJURY, MAFLD AND COVID-19

The incidence of liver injury in COVID-19 patients is highly variable, ranging from 14% to 53%.[3,4] Consistently, the majority of liver injury reported in studies are mild, with a predominance of hepatocellular (aspartate transaminase [AST]/alanine transaminase [ALT]) abnormalities. Patients with MAFLD, however, were observed to have a higher likelihood of liver derangement from admission to discharge, as compared to patients without MAFLD (70% vs. 11.1%; P < 0.0001).[5] Furthermore, obese COVID-19 patients with MAFLD also had higher levels of AST and ALT as compared to non-obese MAFLD patient.[5] These results may suggest that obesity, rather than MAFLD, is a more dominant risk factor for liver derangement.

Current studies have consistently shown an increased risk of severe COVID-19 disease in patients with MAFLD. The presence of MAFLD was associated with a four-fold increased risk of severe COVID-19 as compared with the absence of MAFLD (unadjusted odds ratio [OR] 4.22, 95% confidence interval [CI] 1.45–12.22).[6] Additionally, patients with MAFLD are frequently obese and have other metabolic risk factors that may place them at a higher risk of severe COVID-19 infection. Obesity, for example, is associated with a three-fold increased risk of severe COVID-19 compared to non-obesity (adjusted OR 3.00, 95% CI 1.22–7.38).[7] MAFLD with obesity further increases the risk of severe COVID-19 to six-fold (adjusted OR 6.32, 95% CI 1.16–34.54, P = 0.03) as compared to MAFLD without obesity.[8] This increased risk is independent of diabetes mellitus, dyslipidaemia and hypertension.[9] The risk of severe COVID-19 has also been shown to rise with increasing metabolic risk factors,[6] suggesting the cumulative effects of MAFLD, obesity and other metabolic disorder on severity of COVID-19.

Targher et al., using the fibrosis-4 index (FIB-4) to assess the extent of liver cirrhosis, demonstrated that patients with MAFLD and moderate-to-high liver fibrosis scores are at higher risk of severe COVID-19 infection, irrespective of their metabolic comorbidities.[9] Notably, these patients are also more likely to be older, obese, and have diabetes and higher levels of AST/ALT as compared to patients with low FIB-4 scores or without MAFLD.[9] Zhou et al. demonstrated an association between age, MAFLD and severity of COVID-19; patients under 60 years old with MAFLD were observed to have a greater than two-fold increased prevalence of more severe COVID-19 disease as compared to those without MAFLD, and this association remained significant after adjusting for major confounders like overweight, diabetes mellitus, hypertension and smoking.[10]

PHYSIOLOGY OF LIVER INJURY IN COVID-19 AND MAFLD

The exact physiology and virology of COVID-19 and liver injury remains elusive. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects the human host via angiotensin converting enzyme 2 (ACE2) receptor,[11] which is expressed widely in endothelial cell and arterial smooth muscle. High levels of ACE2 expression is found in the lungs, kidney, oesophagus, bladder, ileum and heart.[11] Interestingly, liver ACE2 expression level is relatively low,[11] suggesting that liver injury may not be due to SARS-CoV-2 invasion and cytopathic damage. A recent study by Biquard et al. further supports this hypothesis[12]; the authors found that gene expression of receptors required for SARS-CoV-2 infection, including ACE2 receptor, was not different between patients with MAFLD and those with simple steatosis, and between obese and lean patients.[12] In fact, a postmortem liver biopsy has suggested a more likely immune-regulated mechanism with microvesicular steatosis and T cell overactivation.[13]
One possible viral route of entry to the hepatic reticuloendothelial system is via the ileum, where there are an abundance of ACE2 receptors[11] and a rich vascular supply to the liver. Kupfer cells are hepatic macrophages that line the sinusoids of the liver and produce potent immune modulating cytokines. Patients with MAFLD, especially those who are obese, have increased levels of cytokines such as interleukin-6 (IL-6).[14] This increased IL6 level correlates independently with increased inflammatory activity in the liver and visceral fat.[14] Hence, the presence of MAFLD with advanced fibrosis could further exacerbate the virus-induced ‘cytokine storm’, resulting in more severe COVID-19.[8] Another hypothesis of disease progression and severity is the dysregulation of hepatic immune response, skewing pro-inflammatory M1 macrophages to immune-suppressing M2 macrophages.[1] Furthermore, anti-inflammatory cytokines, such as adiponectin, are known to be reduced in MAFLD.[15,16] Adiponectin has several immune-suppressing properties, including the induction of anti-inflammatory cytokines IL-10 and IL-1–receptor antagonist.[15] This state of immune imbalances may be primed to exacerbate COVID-19 infection. Other possible mechanisms for liver injury include drug hepatotoxicity, liver hypoperfusion and ischaemia resulting from pneumonia-associated hypoxia, particularly in patients with more severe COVID-19 requiring ventilatory support.

DISCUSSION

The ongoing COVID-19 pandemic has placed significant threats to healthcare systems throughout the world. Knowledge surrounding pre-existing chronic illnesses and risks of COVID-19 severity and progression are crucial in risk stratification and resource allocation of the already burdened healthcare system. Limited evidence has elucidated that MAFLD is associated with increased risk of severe COVID-19 disease.

Metabolic syndrome and MAFLD, however, are rarely considered mutually exclusive. Given the metabolic associations of MAFLD and obesity as the primary aetiology, it is still plausible that the association between COVID-19 severity and MAFLD could have been a coincidence. Metabolic syndrome has been previously identified as an independent risk factor for respiratory disorders,[17,18] through the combined effects of altered hormone levels,[19,20] activation of the innate immune system leading to a chronic inflammatory state,[21] and mechanical compromise.[22] Hence, it is not surprising that patients with MAFLD, as extra-hepatic manifestations of metabolic syndrome, is at risk of disease progression.

Although possible hypotheses have been put forward to explain the mechanism of liver injury, it remains uncertain if MAFLD as a single metabolic entity contributes to COVID-19 severity and progression. It is clear, however, that COVID-19 patients with disorders of metabolism, such as MAFLD and obesity, have a significantly higher risk of disease progression and poorer outcomes. Until a definitive treatment and/or vaccine is made available, accurately identifying these patients at risk of severe COVID-19 infection is pivotal to providing safe and optimal care with appropriate use of limited healthcare resources.

At present, there is limited knowledge surrounding the impact of each metabolic entity, including obesity and MAFLD, on the course of COVID-19 infection. As MAFLD is the most common liver disorder worldwide, research in a larger and more varied population is warranted to further understand this heterogeneous disorder.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

Jaime Hui Xian Lin, MBBS (Hons), FRACP, Veeraraghavan Meyyur Aravamudan, MBBS, FRCP

Department of Medicine, Woodlands Health Campus, Singapore

Correspondence: Dr. Jaime Hui Xian Lin,
Consultant, Department of Medicine, Woodlands Health Campus,
Yishun Central 2, Tower E Level 5, 768024, Singapore.
E-mail: Jaime_lin@whc.sg

Received: 29 Jun 2020 Accepted: 01 Sep 2020 Published: 21 Sep 2020

REFERENCES

1. Perumpail BJ, Khan MA, Yoo ER, Cholankeril G, Kim D, Ahmed A. Clinical epidemiology and disease burden of nonalcoholic fatty liver disease. World J Gastroenterol 2017;23:8263-76.
2. Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol 2020;73:202-9.
3. Ji D, Qin E, Xu J, Zhang D, Cheng G, Wang Y, et al. Non-alcoholic fatty liver diseases in patients with COVID-19: A retrospective study. J Hepatol 2020;73:451-3.
4. Xu L, Liu J, Lu M, Yang D, Zheng X. Liver injury during highly pathogenic human coronavirus infections. Liver Int 2020;40:998-1004.
5. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506.
6. Gao F, Zheng KI, Wang XB, Yan HD, Sun QF, Pan KH, et al. Metabolic associated fatty liver disease increases coronavirus disease 2019 disease severity in nondiabetic patients. J Gastroenterol Hepatol 2021;36:204-7.
7. Gao F, Zheng KI, Wang XB, Kumar B, Suryakumar G. Obesity is a risk factor for greater COVID-19 severity. Diabetes Care 2020;43:e72-4.
8. Zheng KI, Gao F, Wang XB, Sun QF, Pan KH, Wang TY, et al. Letter to the Editor: Obesity as a risk factor for greater severity of COVID-19 in patients with metabolic associated fatty liver disease. Metabolism 2020;108:154244. doi: 10.1016/j.metabol.2020.154244.
9. Targher G, Mantovani A, Byrne CD, Wang XB, Yan HD, Sun QF, et al. Risk of severe illness from COVID-19 in patients with metabolic dysfunction-associated fatty liver disease and increased fibrosis scores. Gut 2020;69:1545-7.
10. Zhou YJ, Zheng KI, Wang XB, Yan HD, Sun QF, Pan KH, et al. Younger patients with MAFLD are at increased risk of severe COVID-19 illness: A multicenter preliminary analysis. J Hepatol 2020;73:719-21.
11. Zou X, Chen K, Zou J, Han P, Hao J, Han Z, et al. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk...
of different human organs vulnerable to 2019-nCoV infection. Front Med 2020;14:185-92.
12. Biquard L, Valla D, Rautou PE. No evidence for an increased liver uptake of SARS-CoV-2 in metabolic-associated fatty liver disease. J Hepatol 2020;73:717-8.
13. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020;8:420-2.
14. van der Poorten D, Milner KL, Hui J, Hodge A, Trenell MI, Kench JG, et al. Visceral fat: A key mediator of steatohepatitis in metabolic liver disease. Hepatology 2008;48:449-57.
15. Tilg H, Hotamisligil GS. Nonalcoholic fatty liver disease: Cytokine-adipokine interplay and regulation of insulin resistance. Gastroenterology 2006;131:934-45.
16. Chen F, Esmaili S, Rogers GB, Bugianesi E, Petta S, Marchesini G, et al. Lean NAFLD: A distinct entity shaped by differential metabolic adaptation. Hepatology 2020;71:1213-27.
17. Leone N, Courbon D, Thomas F, Bean K, Jégo B, Leynaert B, et al. Lung function impairment and metabolic syndrome: The critical role of abdominal obesity. Am J Respir Crit Care Med 2009;179:509-16.
18. Lin WY, Yao CA, Wang HC, Huang KC. Impaired lung function is associated with obesity and metabolic syndrome in adults. Obesity (Silver Spring) 2006;14:1654-61.
19. Mancuso P, Canetti C, Gottschalk A, Tithof PK, Peters-Golden M. Leptin augments alveolar macrophage leukotriene synthesis by increasing phospholipase activity and enhancing group IVC iPLA2 (cPLA2gamma) protein expression. Am J Physiol Lung Cell Mol Physiol 2004;287:L497-502.
20. Dixon AE, Johnson SE, Griffies LV, Raymond DM, Ramdeo R, Soloveichik A, et al. Relationship of adipokines with immune response and lung function in obese asthmatic and non-asthmatic women. J Asthma 2011;48:811-7.
21. Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest 2011;121:2111-7.
22. Mafort TT, Rufino R, Costa CH, Lopes AJ. Obesity: Systemic and pulmonary complications, biochemical abnormalities, and impairment of lung function. Multidiscip Respir Med 2016;11:28.

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

How to cite this article: Xian Lin JH, Aravamudan VM. Metabolic associated fatty liver disease and COVID-19: a double whammy? Singapore Med J 2022;63:542-4.