Transdisciplinary research in theatrical literature through technological integration and interfacing information

P P Pop¹, A Pop-Vădean¹, C Barz² and T Latinovic³

¹Technical University of Cluj Napoca, Department of Mechatronics and Machine Dynamics, Muncii str., no. 103-105, 400641 Cluj Napoca, Romania
²Technical University of Cluj-Napoca, North University Center of Baia Mare, Romania
³University of Banja Luka, Faculty of Mechanical Engineering, Republic of Srpska, Bosnia and Herzegovina

E-mail: poppaulpetrica@yahoo.com

Abstract. This paper aims to address more confident mathematical laws to explain a literary phenomenon. For this we studied the play "O scrisoare pierduta (Lost Letter)" written by Ion Luca Caragiale, in order to establish some connection between the characters but also to show certain aspects hidden by the author under the personality of the characters. We use transdisciplinary research to get from measurements and calculations results who will demonstrate objective of the proposed research. The challenge is to find those favorite characters by the author. Information and communications technology is a tool for research that will integrate this knowledge for modeling and interfacing.

1. Introduction
In the moments of scientific creativity one uses, as source of inspiration, clearly defined laws and instruments, namely mathematics. Hard to define! This complex of laws logically and precisely structured resembles a queen of sciences rather than a standalone science. If you master these laws, you feel that you can explain almost anything. You feel surrounded by things and events that look normal only because you are able to find a reasonable explanation for them. In that moment you are capable of issuing realistic theories regarding the world around you. Therefore, you are the owner of a mathematical culture, explained in the purest and most logical language based on syllogisms. Did we say culture? But is Mathematics really a culture? Well, however affirmative the answer might seem, it is still "no"!

Mathematics is a sum of interlinked laws and syllogisms capable of explaining, through a specific language, manifestations and phenomena which man has come in contact with or which are yet to be discovered. The phenomena of the world around us have been happening even before having discovered their scientific explanation: gravitation, time, space-time, regressivity, recursivity, etc. It was enough to go from basic to complex in order to develop laws and principles which, not belonging to any of the other sciences, we called mathematics. Fortunately, these were the most abstract but, at the same time, the most generally true.

And nevertheless, they do not make up a culture, but only arguments which, if well placed in a fortunate perspective, could generate culture. Mathematics is not a culture in itself if we look at it the
way it is presented to us in schools or in the most extensive dissertations. However, it can generate a
culture in any field of knowledge through a precise and well integrated group.

The mathematician becomes a scholar, a man of culture, only when he transposes his knowledge
into the natural language specific to any phenomenon capable of being generated by the particular
laws that structure it. Only then can we say that Mathematics has generated a culture.

„The fluttering of a butterfly’s wings on one side of the Earth can cause a hurricane on the other
side”- the chaos theory. Here’s how fractals and the laws that govern the Brownian movements are the
base of the chaos theory, which generated a culture of the Universe and foreseeing of the phenomena.
Not to mention the countless artistic and literary creations that were inspired from this theory, or the
incentive it represented for discoveries related to both microcosm and macrocosm.

Mathematics has to be adapted to all forms of communication and expressivity in order to become
a culture. Learnt only through its own language it becomes merely a set of known of axioms, laws or
theorems. The mathematical problems we solve at school only help us gain knowledge of artifices or
solving algorithms that only make our dependence on notions and syllogisms stronger, without even
giving us the right to err. Error generates creativity even when it comes to Mathematics.

In conclusion, Mathematics is the queen of sciences only if it generates a culture inside each of
these sciences. A different perspective on Mathematics can generate interesting discovery in fields that
appear to have nothing to do with it in the first place.

2. The Mathematics of a lost letter
This paper attempts to boldly make use of mathematical laws as means of explaining a literary
phenomenon. To do this, we studied Caragiale’s play „A Lost Letter” [2] in order to establish some
connections between the characters, but also to highlight some aspects that the author concealed under
his characters’ personalities. We therefore used statistics and probabilities as means of analyzing the
literary text from a mathematical point of view. The main concern is to discover which characters the
author prefers and which he does not. It is well known that any writers, even a playwright, displays
more trust and preference for some characters to the disadvantage of the others.

The reasoning is quite simple. If one of the characters has a higher frequency of appearance in
comparison to the mathematical probability of appearance, then that particular character was favored
by the author, whereas, in the case of a lower frequency of appearance (compared to the mathematical
probability) another character was less favored.

In order to do this, we have to define the following notions, implemented in Microsoft Office
Excel.

3. The POISSON function
POISSON return the Poisson distribution [1] [3]

=POISSON (x, average, cumulative)

The Poisson distribution of probability is applied to experiments with random and independent
occurrence, related to a certain amount of time, space or volume. Using an average number of
occurrences for that particular interval, the Poisson function calculates the probability of a certain
number of occurrences in the interval x (Figure 1).

The arguments of the function have the following significances:
• x the number of occurrences inside the interval
• average the average number of occurrences (the expected number of occurrences)
• cumulative a logical value which determines the form in which the Poisson probability
distribution will be returned. If the value is TRUE, the cumulative probability is returned (the
probability that the number of occurrences be between 0 and the value x). If the values is FALSE, the
mass probability is returned (the probability that exactly x events occur).
The Poisson Distribution of Probability

CHARACTERS	NO. of APPEARANCES	Act I	Act II	Act III	Act IV	Act average	Occurrence Interval	Cumulative Poisson	Cumulative Poisson	Poisson
1 Catavencu	299	34	74.75	299	TRUE	1 FALSE	5.46454E-85	0.006544185	0.049479119	
2 Tipatescu	291	31	72.75	56	TRUE	0.0348073111	FALSE	0.014100743		
3 Zoe	239	12	59.75	57	TRUE	0.068304804	FALSE	0.014100743		
4 Trahanache	201	22	50.25	62	TRUE	0.054185603	FALSE	0.014100743		
5 Farfuridi	128	1	32	73	TRUE	1 FALSE	2.12915E-10			
6 Pristanda	123	11	30.75	64	TRUE	0.999999949	FALSE	5.80919E-08		
7 Cetateanul turmentat	93	16	23.25	56	TRUE	0.999999997	FALSE	3.7198E-09		
8 Branzenescu	88	6	22	21	TRUE	0.471641978	FALSE	0.08733234		
9 Dandanache	76	19	6.75	21	TRUE	0.725496867	FALSE	0.07882252		
10 Public	27	3	6.25	21	TRUE	0.999998424	FALSE	1.9534E-06		
11 Popescu	25	5	5.75	21	TRUE	0.99999806	FALSE	5.9098E-07		
12 Ionescu	23	5	5	21	TRUE	0.99999982	FALSE	6.2886E-08		
13 Alegatori	20	3	3	21	TRUE	1 FALSE	1.0193E-11			
14 Cetateni	12	1.5	1.5	21	TRUE	1 FALSE	2.1783E-17			
15 Un fecior	6									
total average	27.51667									

Figure 1. The Poisson Distribution of probability

The correlation coefficient

characters	no.appearances	line parameters	calculate appearances	corelation
1 Catavencu	299	282.9238095	261.3166667	
2 Tipatescu	291	239.7095238	218.1023813	
3 Zoe	239	218.1023813	218.1023813	
4 Trahanache	201	196.4952381	196.4952381	
5 Farfuridi	128	-21.60714286	174.8880952	
6 Pristanda	123	153.2809524	153.2809524	
7 Cetateanul turmentat	93	131.6738095	131.6738095	
8 Branzenescu	88	110.0666667	88.45952381	
9 Dandanache	76	66.85238095	66.85238095	
10 Public	27	45.2452381	45.2452381	
11 Popescu	25	23.6380952	23.6380952	
12 Ionescu	23	2.030952381	2.030952381	
13 Alegatori	20	-19.57619048	-19.57619048	
14 Cetateni	12	-14.18333333	-14.18333333	
15 Un fecior	6	-41.13833333	-41.13833333	0.946143266
average	170.8888889			

Figure 2. The correlation coefficient between two sets of values
4. The Correlation Coefficient

CORREL (tablou_1, tablou_2) returns the correlation coefficient between two sets of values [1], [4]. The value of the correlation coefficient is set between -1 and 1. A correlation coefficient which is close to 1 indicates a positive correlation: when one of the variables increases, so does the other. A correlation coefficient which is close to -1 indicates a negative correlation: one of the variables decreases, while the other increases. A value close to 0 indicates that the degree of correlation between the variables is extremely low (even inexisten).

INTERCEPT (y_known, x_known) calculates the point in which a line will intersect the y axis, using known x and y values (the arguments of the function) [1], [5].

SLOPE (x_known, y_known) returns the gradient of the regression line using the given points y_known and x_known [1], [6].

We have obtained a correlation which is close to 1, therefore positive, which means that one of the characters has a larger number of appearances and thus the other characters will have a larger number as well (Figure 2). This proves that our data is accurate. In order to establish a mathematical connection we built, by using Excel functions, a linear mathematical function which can render the number of appearances.

It can be noticed that there are characters with a calculated number of appearances lower than the actual number of appearances: Cațavencu, Tipătescu, Zoe, Trahanache, Ionescu, Alegători, Cetățeni. We can therefore draw the conclusion that Caragiale had a preference for these characters, granting them a higher number of appearances compared to what results from the mathematical analysis.

5. The confidence and the Degree of Confidence

CONFIDENCE (alpha, st_dev, dimension) [1], [7] returns the degree of confidence for a population average, where:

- alfa is the level of importance used in order to determine the degree of confidence.
- The degree of confidence is the difference 1 – alpha (rendered as percentage). If alpha is 0.1, then the degree of confidence is 90%.
- st_dev is the standard deviation of the population calculated with the STDEV function
- dimension refers to the dimension of the population.

The degree of confidence is an area situated around and average value and it indicates the lowest and the highest figures. In order to find the limits of this interval, the result obtained through the CONFIDENCE function is subtracted from the average value to find the lowest figure, and added to the average value to find the highest limit.

STDEV(number_1, number_2) estimates the standard deviation based on a specific sample [1], [8]. The standard deviation is a means of measuring to what extent the values have dissipated compared to their mathematical average. If the values represent the entire population, the STDEVP function is used [1], [8].

The degree of confidence we have found proves the fact that only the characters whose appearance is outside this interval are the object of our research (Figure 3). In other words, only these characters could have been preferred or not by the author. A fact which we have demonstrated above.
CHARACTERS | no. appearances | standard deviation
1 Catavencu | 299 | 98.66743243
2 Tipatescu | 291 |
3 Zoe | 239 |
4 Trahanache | 201 |
5 Farfuridi | 128 |
6 Pristanda | 123 |
7 Cetateanul turmer | 93 |
8 Branzovenescu | 88 |
9 Dandanache | 76 |
10 Public | 27 |
11 Popescu | 25 |
12 Ionescu | 23 |
13 Alegatori | 20 |
14 Cetateni | 12 |
15 Un fecior | 6 |
AVERAGE | 110.0666667 |

Calculation of confidence (for the confidence interval)

Alfa	standard deviation	dimension	confidence
0.05	98.66743243	15	49.93169263

The confidence interval

average	inferior limit of confidence	superior limit of confidence
110.0666667	60.13497404	159.9983593

Figure 3. Calculation of confidence

6. Conclusion
This work is a promising perspective for literary research using information technology. Needs to study the relationship between author and characters in literary sciences through interference. Here's how a transdisciplinary approach can create scientific answers and solutions to the various problems facing the information society.

References
[1] Curteanu S 2004 *Excel prin exemple*, Polirom, Iasi, Romania
[2] Caragiale I L 2015 *O scrisoare pierduta*, Agora, Bucuresti, Romania
[3] https://support.office.com/ro-RO/article/POISSON-func%C8%9Bia-POISSON-d81f7294-9d7c-4f75-bc23-80aa8624173a.
[4] https://support.office.com/ro-RO/article/CORREL-func%C8%9Bia-CORREL-995dcef7-0c0a-4bed-a3fb-239d7b68ca92.
[5] https://support.office.com/ro-RO/article/INTERCEPT-func%C8%9Bia-INTERCEPT-2a9b74e2-9d47-4772-b663-3bca70bf63ef.
[6] https://support.office.com/ro-RO/article/SLOPE-func%C8%9Bia-SLOPE-11fb8f97-3117-4813-98aa-61d7e01276b9.
[7] https://support.office.com/ro-RO/article/CONFIDENCE-T-func%C8%9Bia-CONFIDENCE-T-e8ec395-6c3a-4ba9-9003-79c6e6d3c53.
[8] https://support.office.com/ro-RO/article/STDEV-P-func%C8%9Bia-STDEV-P-6e917c05-31a0-496f-adc7-4f4e7462f285