Further advances in the production of membrane proteins in *Pichia pastoris*

Kristina Hedfalk
Department of Chemistry and Molecular Biology, University of Gothenburg, Göteborg, Sweden

Membrane proteins have essential cellular functions and are therefore of high interest in both academia and industry. Many efforts have been made on producing those targets in yields allowing crystallization experiments aiming for high resolution structures and mechanistic understanding. The first step of production provides a crucial barrier to overcome, but what we now see, is great progress in membrane protein structural determination in a relatively short time. Achievements on recombinant protein production have been essential for this development and the yeast *Pichia pastoris* is the most commonly used host for eukaryotic membrane proteins. High-resolution structures nicely illustrate the successes in protein production, and this is the measure used by Ramón and Marin in their review “Advances in the production of membrane proteins in *Pichia pastoris*” from 2011. Here, additional advances on production and crystallization of eukaryotic membrane proteins are described and reflected on.

High-Resolution Structures: A Measure of Successful Overproduction

In June 2011, the review “Advances in the production of membrane proteins in *Pichia pastoris*” by Ana Ramón and Mónica Marin was published in the *Journal of Biotechnology*.1 This article nicely describes the use of the *P. pastoris* host system for production of membrane proteins where the number of high resolution structures achieved (11 structures representing four protein families) is used as a measure of success. Membrane proteins provide important cellular functions like transport, signaling, sensing, and energy generation. They constitute about 30% of any proteome and their crucial functions mirror their importance as drug targets.2 High-resolution structures provide extremely valuable insight into the molecular mechanisms of proteins but take a lot of material to pursue. Since overproduction of membrane proteins is non-trivial, the first hurdle to overcome is achieving enough material for subsequent studies. In addition, membrane proteins are hydrophobic in their nature and therefore more difficult to handle as compared with soluble proteins. These facts taken together, explain why membrane protein structures constitute a minor fraction of the protein structures reported in PDB. Despite clear difficulties, great progress in membrane protein structure determination has been achieved in recent years which have been driven by a pronounced and determined interest in their structure and function. One key stone in this success is optimization of the recombinant production of eukaryotic membrane proteins where the host *P. pastoris* plays an important role.1,3

Eukaryotic Membrane Proteins Can Be Produced in *P. pastoris*

By following the number of membrane protein structures reported per year, it is evident that large progress has been achieved in a short time. From this survey, we can also conclude that the
majority of the new structures are results of recombinant protein production. Hence, we are no longer limited to study membrane proteins that are endogenously produced to high levels in their native membranes. In this context, yeast has shown to be a promising host system for eukaryotic membrane proteins providing the most successful recombinant system for the majority of the eukaryotic membrane proteins. P. pastoris is the most common yeast host among the 383 eukaryotic membrane proteins structures reported at 4 Å or lower (http://blanco.biomol.ucd.edu/mpstruc/listAllList). The collected knowledge on the production optimization in this yeast, clearly put together by Ramón and Marin in their review, can be divided into three approaches: (1) optimization of the nucleotide sequence of the gene to be expressed, (2) co-production of assisting proteins, and (3) optimization of the growth conditions.6

Generic Strategies to Improve Membrane Protein Production

The production of stable membrane proteins is often referred to as the main bottleneck for characterization of their structure and function. Thus, it is worth reflecting on generic strategies for production optimization as learned from *P. pastoris*. To begin with, the correlation between gene dosage and final membrane protein yield is worth some consideration, an aspect that was not reflected on in the review by Ramón and Marin. When integrated in the *P. pastoris* genome, the expression cassette can end up as multimers giving increased template levels for the gene of interest. Intuitively, one could argue that more template would give more protein. For a membrane protein, this is not necessarily true since a high gene dosage could cause an overload of the cellular machinery with consequences for the protein maturational processes.7 From production studies of the human aquaporins, however, it is clear that the presence of multimers and the concomitant improved growth on high Zn2 concentration is also beneficial for integral membrane proteins.8 This would indicate that a high gene dosage is not in conflict with proper folding and translocation to the membrane. Similar effects have been reported for more challenging targets like GPCRs where 15 to 25 copies of the gene had no negative effect on the expression level of the human mu-opioid receptor.9 Moreover, for the HTS, 5-hydroxytryptamin and the human β2-adrenergic receptor, the yield of functional protein was increased up to 2-fold when the number of gene copies was increased from one to two or six.10 Taken together, a higher gene dosage is worth aiming for when planning a production experiment of a novel membrane protein target in *P. pastoris*. Two additional characteristics of the nucleotide sequence were pointed out in the review from 2011, the consensus sequence surrounding the start ATG and the optimization of codon usage for the selected production system. Both of these can have large impact on the final protein yield and should therefore be taken into consideration, also in those cases when the codon usage is apparently similar for the host and the origin of the gene.11 In addition, Ramón and Marin highlighted gene fusions, using for example the n-factor from *Saccharomyces cerevisiae* and the FLAG-tag, as successful strategies. Worth adding to this notion, however, is that the fusion partner should be selected among those verified for the particular system of choice.12 Moreover, a very efficient generic way to increase the protein production level, which was totally left out by Ramón and Marin, is the introduction of specific mutants that affecting the phenotype.10

Structures at High Resolution

Eight New Membrane Protein Structures at High Resolution

Noteworthy, since the review by Ramón and Marin in June 2011, eight additional membrane protein structures have been published as results from recombinant production of eukaryotic proteins in *P. pastoris* (Table 1). Especially, two additional families of proteins, G-protein coupled receptors and ion-selective calcium channels are now represented among *P. pastoris* produced proteins. When comparing these new structures, there are some common themes for the design of the DNA constructs where codon optimization, elimination of N-linked glycosylation, removal of disulfide bridges, truncations of the hydrophilic termini, and fusion with GFP are commonly applied (Table 2). Several of these protein engineering
the stability of the target of interest since this has a major impact on both the chance that the protein is produced as well as the likelihood that the protein will form well-ordered crystals.

main benefits with these modifications are to improve translation of the heterologous gene6 and reduce flexible regions, as well as to increase the crystal contacts and hydrophilic surfaces.3 Thus, all changes are done in order to improve approaches were discussed by Ramón and Marin but some, worth noting, is extracted knowledge from production in other systems and successfully applied to P. pastoris, like the chimera with the 4 lysozyme (Table 2). All together, the

Table 1. The 19 high resolution structures of eukaryotic integral membrane proteins produced recombinantly in Pichia pastoris

Target	Origin	Ref
A2 adenosine receptor in complex inverse-agonist antibody	Homo sapiens	18
Histamine H1 receptor, complexed with desipramine	Homo sapiens	27
Channels: potassium and sodium ion-selective		
Two-pore domain potassium channel K1.1 (TWIK-1)	Homo sapiens	26
Two-pore domain potassium channel K1.4 (TRAJK)	Homo sapiens	14
Kv1.2 voltage-gated potassium channel (full length)	Rattus norvegicus	15
Kv1.2 voltage-gated potassium channel	Rattus norvegicus	23
Kv1.2/Kv2.1 voltage-gated potassium channel chimera	Rattus norvegicus	24
Kv1.2/Kv2.1 voltage-gated potassium channel chimera	Rattus norvegicus	29
Kir2.1 Inward-Rectifier Potassium Channel (Complete)	Gallus gallus	28
Kir2.2 Inward-rectifier potassium channel in complex with Prblns4.5NP	Gallus gallus	17
GIRQ2, Kir2.2 G-protein-gated K+ channel	Mus musculus	31
Channels: calcium ion-selective		
Oval calcium release-activated calcium (CRAC) channel	Drosophila melanogaster	21
Channels: aquaporins and glycoporins		
AQP4 aquaporin water channel	Human	19
AQPS aquaporin water channel (HaAQPS)	Human	20
SoPIP2.1 plant aquaporin (closed conformation)	Spinacia oleracea	30
Aplysia ywst aquaporin	Pichia pastoris	16
Membrane-associated proteins in eicosanoid and glutathione metabolism (MAPSEG)		
Leukotriene Ltc4 Synthase in complex with glutathione	Human	25
ATP binding cassette (ABC) transporters		
P-glycoprotein	Mus musculus	13
P-glycoprotein	Caenorhabditis elegans	22

Eight new structures (underlined) have been published since the review by Ramón and Marin published in June 2011.1 Among those, two new protein families are included; GPCRs and ion-selective calcium channels.

Table 2. Common themes in the construct design listed for the eight structures that have been published since the review by Ramón and Marin

Target	co	ge	sbr	trunc	GFP	T4L	Ref
Human A2 adenosine receptor	yes	yes	-	-	-	-	18
Human histamine H1 receptor	yes	yes	yes	yes	yes	yes	27
Human potassium channel K1.1 (TWIK-1)	yes	yes	yes	yes	yes	yes	26
Human potassium channel K1.4 (TRAJK)	yes	yes	-	-	-	-	14
Chicken Kir2.2 potassium channel	-	-	-	-	-	-	17
Mouse GIRQ2 (Kir3.2) G-protein-gated K+ channel	-	-	-	yes	yes	-	31
Worm P-glycoprotein	yes	-	-	-	-	-	22
Drosophila Orai calcium channel (CRAC)	-	-	yes	yes	yes	-	21

The following shortenings are used; co (codon optimization), ge (N-glycosylation elimination by introducing asn to gln mutations), sbr (disulfide bridge removal), trunc (truncation of hydrophilic termini), GFP (fusion with GFP), and T4L (chimera with T4 lysozyme).
Future Perspectives

Strikingly, all structurally determined membrane proteins recombinantly produced in P. pastoris are α-helical.15 To date there is no example of a β-barrel protein, which should be added to the challenges for the future. The lack of es kurayski β-barrel structures from proteins produced in P. pastoris could possibly relate to the localization of these targets to the mitochondrial membrane, rather than the plasma membrane, resulting in a lower production yield. Nevertheless, GPCRs constitute the largest family of drug targets,16 and many efforts on production optimization are found in the literature. Hence, it is worth reflecting on what we can learn from the total experience in producing these targets. To date, there are high resolution structures for 15 members of this protein family whereof all but one is a result of recombinant production (http://blanco.biomol.uc.edu/mpstruct/ listAllList). The vast majority is produced in Spodoptera frugiperda and many of the receptors are engineered by T4 lysozyme increasing the hydrophilic surface to improve crystal formation. Another interesting strategy is to make the target more amendable for crystallization in short chain detergents which form micelles that expose larger area available for crystallization and purification.7 17 Independent of the method used for creating the library of stable mutants, efficient screening protocols are necessary to assess the useful protein products. Such protocols have been presented for S. cerevisiae43 as well as for P. pastoris,44 which provides platforms for screening of membrane localized, and most likely also properly folded, proteins. If the efficient production screen can also be combined with assays on the protein function in the same system, the concept would be even more attractive. For the GPCR targets, the binding characteristics are helpful, but transport processes can also be assayed directly in yeast cells,18 possibly making P. pastoris a useful system for both production and functional screening. However, as compared with S. cerevisiae, P. pastoris cannot be used for functional studies by complementation since libraries of deletion strains are not available for this yeast.19 However, the genome of P. pastoris is known20 providing the opportunity to create a similar library suitable for functional screening. Having such genetic tools at hand would create even more opportunities and widen the use of the P. pastoris host system.

Conclusion

Importantly, P. pastoris has shown the ability to host high levels of demanding membrane protein targets in their functional form in its membrane. Tools for gene design, production screening and functional assessment are available for this host system. Thus, P. pastoris provides a complete system for high-throughput screening of all various steps from production to function. In conclusion, this yeast provides an attractive production host promising a future production promoter that can be fine-tuned, it grows to high cell densities and it is robust to work with.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

1. Ramzi A, Maito M. Advances in the production of membrane proteins in Pichia pastoris. Biotechnol J 2011; 6:780-6. PMID:22067766; http://dx.doi.org/10.1002/biot.201000184.
2. Lundstrom K. Structural genomics and drug discovery. J Cell Mol Med 2007; 11:224-38; PMID:17584476; http://dx.doi.org/10.1111/j.1582-4934.2006.00188.x.
3. Bill KM, Heidenheim PJ, Joens U, Karp ER, Michel H, Neupert W, et al. Osmocarrier-biotics to membrane protein structure determination. Nat Biotechnol 2011; 29:355-60; PMID:21478852; http://dx.doi.org/10.1038/nbt.1935.
4. Tao GC. Overexpression of mammalian integral membrane proteins for structural studies. FEBS Lett 2003; 539:94-100; PMID:12855239; http://dx.doi.org/10.1016/S0014-5793(03)00273-0.
5. Brandl N, Hafskjølff K, Larsson G, Monial R, Chong C, Giorgini F, et al. Design of improved mammalian membrane protein expression protocols: quantification of the best response. Protein Sci 2005; 14:372-80; PMID:15837962; http://dx.doi.org/10.1110/ps.51435705.
6. Obeng-Tyson J, Cantor MT, Bill KM, Hafskjølff K. Improving recombinant es kurayski membrane protein yields in Pichia pastoris: the importance of codon optimization and time evolution. Mol Membr Biol 2011; 28:398-411; PMID:21770495; http://dx.doi.org/10.1080/096876808028616229.
7. Serraino V, Domange P, Milius A, Teleirs F. Optimizing functional recombinant expression of the human ion-opioid receptor in Pichia pastoris. Protein Expr Purif 2001; 24:212-20; PMID:11589715; http://dx.doi.org/10.1006/peup.2001.1562.
8. Wills HM, Haase W, Michel H, Rießler H. Comparative biochemical and pharmacological characterization of the mouse SHT3.5 Voltage-gated potas- sium receptor and the human β2-adrenergic recep- tor produced in the yeast Pichia pasto- ris. Biochim J 1998; 338:1157-74; PMID:9649678.
9. Obeng-Tyson J, Kristoffersen B, Bengtsson A, Ståhls R, Hafskjølff K. Insight into factors directing high production of es kurayski mammalian proteins. pro- duction of 13 human AQPs in Pichia pastoris. Mol Membr Biol 2009; 26:215-27; PMID:19500764; http://dx.doi.org/10.1080/096876808028616289.
10. Park EK, Komazawa K, Higashijima T, Even EM. Recombinantly active α-1 protein-coupled receptors purified from baculovirus-recombinant insect cells. J Biol Chem 1999; 274:310-27; PMID:9847979.

366
Bioengineered
Volume 4 Issue 6
Long S. PMID:16002581; http://dx.doi.org/10.1126/science.1116269.

Jin MS; PMID:23000902; http://dx.doi.org/10.1038/structure of the multidrug transporter P-glycoprotein

Orai. Science 2012; 338:1308-13; PMID:23180775; http://dx.doi.org/10.1126/science.1228757.

Hou X, P; PMID:22286059.

AC, et al. High-resolution x-ray structure of human

Törnroth-Horsefield S, Terwisscha van Scheltinga

42; PMID:19383790; http://dx.doi.org/10.1073/pnas.0902725106.

4; PMID:21874019; http://dx.doi.org/10.1038/nature06009.

2007; 448:613-6; PMID:17632546; http://dx.doi.org/10.1073/pnas.0601730.

Wheaton BB, Tao X, Campbell EB, MacKinnon R. Crystal structure of the human adenosine A2A receptor. J Mol Thermostabilisation of an agonist-bound conformation of the β1- adrenergic receptor. Proc Natl Acad Sci U S A 2008; 105:13327-32; PMID:18768791; http://dx.doi.org/10.1073/pnas.0801466105.

Tao X, Araki J, Chen J, MacKinnon R. Crystal structure of the adenine nucleotide translocase 1 at 2.9 Å resolution. Structure 2011; 19:1010-6; PMID:21501622; http://dx.doi.org/10.1016/j.str.2011.06.009.

Lee A, Limapichat W, Dougherty DA, MacKinnon R. A gating charge transfer center in voltage sensors. Science 2010; 328:67-73; PMID:20349812; http://dx.doi.org/10.1126/science.1180310.

Wharton MR, MacKinnon R. Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium. Cell 2011; 147:199-208; PMID:21962516; http://dx.doi.org/10.1016/j.cell.2011.07.046.

Overexpression and purification of eukaryotic membrane proteins in Saccharomyces cerevisiae. Nat Protoc. 2006; 1:784-98; PMID:18497187; http://dx.doi.org/10.1038/nprot.2006.103.

Obweg H, Hoffmann K. Recombinant production of the human aquaporins in the yeast Pichia pastoris (Invited Review). Mol Membr Biol 2013; 30:15-31; PMID:23986694; http://dx.doi.org/10.1080/09687688.2012.694503.

Singh S, Gou A, Fair-Vidal C, Martinez M, Wagner R, Byrne B. Scanning for high-yielding Pichia pastoris clones: the production of G protein-coupled receptors as a case study. Methods Mol Biol 2012; 866:65-73; PMID:22454115; http://dx.doi.org/10.1007/978-1-61779-770-5_7.

Vidal S, Smyth M. Large-scale mutagenesis: yeast genetics in the genome era. Curr Opin Biotechnol 2001; 12:26-34; PMID:11167069; http://dx.doi.org/10.1016/S0958-1669(00)00183-0.

De Schutter E, Lin YC, Dodevski I, Kenig M, Dudli S, Mohr EH, Lebon G, Warne T, Moukhametzianov R, Baker JG, Nehmé C, Lee A, Hermans E, et al. Directed evolution of a G protein-coupled receptor for expression, stability, and binding selectivity. Proc Natl Acad Sci U S A 2008; 105:14884-9; PMID:18981512; http://dx.doi.org/10.1073/pnas.0803005.

Doré D, Nocestral F, Souza V, Kim H, von Hojvta G, Jura S. GPCR-based optimisation scheme for the overexpression and purification of eukaryotic membrane proteins in Saccharomyces cerevisiae. Nat Protoc. 2008; 3:784-98; PMID:18497187; http://dx.doi.org/10.1038/nprot.2008.49.

Singh S, Gou A, Fair-Vidal C, Martinez M, Wagner R, Byrne B. Scanning for high-yielding Pichia pastoris clones: the production of G protein-coupled receptors as a case study. Methods Mol Biol 2012; 866:65-73; PMID:22454115; http://dx.doi.org/10.1007/978-1-61779-770-5_7.