Bifurcation in cellular evolution

Diego Radillo-Ochoa, Andrea Rodríguez-Hernández, and César A. Terrero-Escalante
Facultad de Ciencias, Universidad de Colima, Bernal Díaz del Castillo 340,
Col. Villas San Sebastián, C.P. 28045, Colima, Colima, México.
(Dated: September 1, 2022)

Aspects of cell metabolism are modeled by ordinary differential equations describing the change of intracellular chemical concentrations. There is a correspondence between this dynamical system and a complex network. As in the classic Erdős–Rényi model, the reaction network can evolve by the iterative addition of edges to the underlying graph. In the biochemical context, each added reaction implies a metabolic mutation. In this work it is shown that modifications to the graph topology by gradually adding mutations lead here too to the formation of a giant connected component, i.e., to a percolation–like phase transition. It triggers an abrupt change in the functionality of the corresponding network. This percolation is mapped into a bifurcation in the intracellular dynamics. It acts as a shortcut in biological evolution, so that the most probable metabolic state for the cell is suddenly switched from cellular stagnation to exponential growth.

Keywords: metabolic networks; cell evolution; complex networks; bifurcations.

I. INTRODUCTION

The cell, considered to be the basic unit of life, can be defined as a self–sustaining chemical system capable of undergoing Darwinian evolution [1]. No matter how relatively simple a unicellular organism is when compared to most forms of biological organization, its metabolism stills a complex system, i.e., it involves a large number of components subject to nonlinear interactions. Therefore, it is a non–trivial task to study this whole system or even specific metabolic processes. In the last few decades, mathematical modeling has been increasingly recognized as an important tool in this area of research. Models are started to be considered as a valuable tool for optimization of bioprocesses, to simulate therapy strategies, and to predict outcomes in biomedical engineering [2]. Along with these and several others application–oriented uses, models could also be expected to help to answer fundamental questions in Cell Biology, for instance, what were the basic features of the structure of the first protocell capable of the initial forms of metabolism, and how complexity and novel functions evolved without new mutations compromising already existing metabolic functions.

Starting with the work of Kauffman in 1969 [3], models of different aspects of cell metabolism have been proposed relying on the fact of the intracellular reactions conforming a complex network [4, 5] of chemical interactions. In some of these models each vertex in a graph is associated with a different (not necessarily simple) chemical species, having as attribute the corresponding concentration value. Then, a pair of vertices is connected by an edge if there is a reaction that involves the respective species either as reactant or product. The direction of the edge points towards the vertex corresponding to the product of the reaction. When reversible reactions are not taken into consideration an oriented graph is used, i.e., a graph having no symmetric pair of directed edges. In a catalytic reaction network model, every edge has as an attribute the concentration of the catalyst for the reaction it represents. To complete a model there are also prescribed rules for the concentrations to change according to the intracellular chemical reactions and the interaction with the external environment. Along these lines, several phenomenological models have been thoroughly studied, like the simple boolean gene–interaction networks [6], the condensation–cleavage binary polymer model [7] or the evolutionary process based on an artificial chemistry of catalyzed reactions proposed in Ref. [8]. Currently, it has been also realized that the geometrical representation just described is not well suited for certain applications, as for instance, the important task of inferring metabolic pathways. In such cases, besides different dynamical rules, variations of the model may also consider, for example, the conservation of the atomic structure of the metabolites during the enzymatic reactions [9], or using hypergraphs instead of common graphs to relate more than one set of reactants and products [10].

The procedure for network evolution can also be modified to include link–deleting or node–deleting with various kinds of restrictions, or to consider different fitness criteria [4, 6, 8, 11].

In the study reported in the present manuscript, for the mathematical description of the internal dynamics of a simple cell we use the catalytic reaction network model introduced by Kaneko and Furusuwa in Ref. [12]. In the course of the Darwinian–like evolution of this modeled cell, mutations are added in each generation as new reactions in the chemical network. Having the largest volume growth rate among cells of one generation is considered as the sole criterion for evolutionary fitness. Versions of this simulation toolbox have been successful replicating properties of real organisms like differentiation [12], pluripotency [13], power–law chemical abundance [15, 16] the reduction in the dimensionality of the phenotypic space changes due to environmental perturbations [17], the fact of enrichment of central metabolites corresponding mainly

* Author names are arranged alphabetically. Corresponding author: cterrero@ucol.mx

arXiv:2208.14973v1 [physics.bio-ph] 31 Aug 2022
to building-block molecules, the rise of the small-world structure, and the existence of a small number of keys metabolites exhibiting the highest degree of connectivity [10].

Before continuing with the outline of the motivation and goal of our work, let us note that, though it is customary among researchers to use interchangeably terms “network” and “graph”, we believe it is useful to consider a complex network as a pair \((G, F)\), with the graph \(G(N, L)\) as its fixed geometrical layout determined by \(N\) vertices connected by \(L\) edges, and the functional structure \(F(A, R)\) given by a set \(A\) of attributes for the edges and vertices of \(G\), as well as a set \(R\) of rules according to which these attributes can change. To emphasize the distinction, when referring to a network we use node instead of vertex, and link instead of edge [4, 5]. This way, we see the graph as the static topology of a complex network, while its functionality gives us the dynamics that regulates the flow of nodal information through the network links. This separation is particularly relevant for the aim of our study because, as noted in Ref. [13], the intracellular dynamics determined by the network functionality may be radically different from what seems to be dictated, for instance, by the static topology of protein interaction and transcriptional regulatory maps.

Specific details of the version of the mutation–selection process used here can be found in Ref. [10], where four distinct phases of self-organization were unveiled during cell evolution simulated with our toolbox. In that work it was found that the ‘time’ when these phases arise can be parametrized in terms of the size \(N\) of the reaction network. Around generation 0.5\(N\) the nutrient species prevail as the central reactants of the chemical reactions. Later, by the 1\(N\)–th generation, the cell becomes a ‘small–world’, i.e., despite how big the graph can be, each one of its vertices can be reached from any other one along paths of edges linking a rather small number of vertices, usually between 4 and 6 [4, 5]. Next, a highly connected core component emerges near generation 1.5\(N\), concurrently with the nutrient carriers becoming the central product of reactions. And finally, after 2\(N\) generations, the cell reaches a statistically steady configuration where the concentrations of the core chemical species are described by Zipf’s law, a hallmark of complex systems with a modular structure. All of these four phases arise gradually. The progressive development of the small-world structure during the mutation–selection process is shown in Fig.5 of Ref. [10] as the smooth decrease of the mean and standard deviation of the average minimum distance between all pairs of vertices. Similarly, the closeness centrality of both nutrients (outward) and carriers (inward) raises steadily throughout the evolutionary process until surpassing the corresponding centrality of the remaining species, as it is shown in Fig.6 of Ref. [10]. As to the formation of the core component, let us first recall that it is defined as the subgraph comprised by the top 20% – 30% of the graph vertices ranked with higher overall connectivity. The main signature of the core is a positive correlation between its nodes connectivity and the corresponding species concentration. This correlation is developed very slowly over the course of the simulation, becoming clearly distinct at late generations (see Fig.9 of Ref. [10]), when the cell is already in the state of self-organized criticality.

In principle, the gradual rise of the phases above mentioned is to be expected, as the reaction networks undergo very little change between generations; the addition of a single link directly affecting just two nodes. Nevertheless, since the pioneer study by Erdős and Rényi [19] it has been shown that incrementally adding edges to an initial random graph leads to the formation of subgraphs (called components) formed by a fraction of the vertices that are reachable from each other along a path in the corresponding graph. When the largest subgraph with such a structure comprises almost half of the total number of vertices, it is called the giant connected component (GCC) of the graph. The rise of the GCC manifests itself in the form of a power–law distribution of the probability of a vertex being attached to a given number of edges (degree \(k\) of a vertex), and leads to a continuous phase transition as shown in Fig.1. In the left panel of this figure it is plotted the ratio \(r_G\) between the number of vertices in the GCC and \(N\). Right panel, plot of \(\langle S\rangle\), the average component size for the finite graph (blue dots) and the exact result (dashed curve). Quantities are plotted as function of the number of edges added, and of \(\langle k\rangle\), the average degree of the graph.
familiar to physicists behavior of continuous phase transitions, with the average degree of the graph acting as the control parameter, the size of the giant component as an order parameter, and the average component size behaving like a susceptibility. Similar transitions have been observed in many other models of graph evolution. It can even be made discontinuous by slightly changing the way the new edges are added [20].

It is also known that the phase transition associated with the surge of the GCC falls in the same universality class as percolation [4, 5, 21], the sudden formation of long-range connectivity in random lattices. Because of the instantaneous increase in the number of links in each chain of catalytic reactions, it could imply a drastic change in the reaction network functionality, perhaps accelerating the emergence of the phases of cellular self-organization already described in this Introduction, which in turn seem to be necessary for the development of those properties of real organisms which have been theoretically replicated and were enumerated here–above. It brings to cellular level the question of whether biological evolution proceeds gradually by adding many mutations of small effect (Darwinian paradigm) or in jumps due to a few mutations of large effect (saltational paradigm) [21].

Taking all of the above into account, the aim of this work is to find out whether there is a percolation–like transition in the evolution of the cell as given by the Darwinian–process described in Refs.[12, 16] and the impact such a phase transition would have in the intracellular dynamics. This paper is organized as follows. In the next section we briefly describe the toolbox used in this research to simulate cell evolution. In section III are described the main findings obtained after having analyzed 31 simulations with networks of three different sizes. Finally, in section IV those findings are discussed in the light of previously published results, and conclusions are drawn.

\[\frac{dx_n}{dt} = -\sum_{j', l'} \sigma_{n, j', l'} x_n x_{l'} + Dx_{n+4} (X - x_n) \]

\[-\alpha Dx_n \sum_{n=0}^{3} x_{n+4} (X - x_n) , \] (1a)

\[\frac{dx_k}{dt} = \sum_{j, l} \sigma_{j, k, l} x_j x_l - \sum_{j', l'} \sigma_{k, j', l'} x_k x_{l'} \]

\[-\alpha Dx_k \sum_{n=0}^{3} x_{n+4} (X - x_n) , \] (1b)

where index \(n \) denotes four nutrient species which show up inside the cell only by diffusion through the membrane. Nutrient intake is induced by a gradient with respect to the environmental concentration \(X \), and tuned by the time–dependent product of the diffusion coefficient \(D \) and the concentration of the respective nutrient carrier \(x_{n+4} \). Index \(k \) stands for the \(N - 4 \) remaining species. Factors \(\sigma_{s, p, c} \) are equal to 1 if reaction \(s + c \rightarrow p + c \) takes place, and 0 otherwise. Therefore, terms in the first line of each equation describe the net synthesis rate \(R_i \). The second line accounts for dilution by growth, i.e., change in concentration \(x_i \) due to variation of cell volume \(\alpha \).

\[\frac{d \ln V}{dt} = \alpha R(t) , \] (2)

where \(\alpha \) is a proportionality constant between volume and the total number of molecules, while

\[R(t) \equiv \sum_{i=0}^{N-1} R_i = D \sum_{n=0}^{3} (X - x_n) x_{n+4} . \] (3)

It can be shown that constraint

\[\sum_{i=0}^{N-1} x_i(t) = \frac{1}{\alpha} , \] (4)

must be satisfied along the solutions to Eqs.\[11, 16]\.

In Refs.\[12, 16\] are described all the biologically inspired constraints that determine the possible terms in the right hand sides of Eqs.\[11\] and, correspondingly, the topology and functionality of the network dual to this dynamical system. Then, to study the evolution of the dual network we begin by setting up \(m = 2N \) cells sharing an identical internal state \(x_0 \), but whose graphs are generated by different mutations to a given initial random graph, with a mutation being the addition of a new edge between two randomly selected vertices. These \(m \) cells are allowed to grow according to Eqs.\[11\], and each cell duplication time \(t_d \) is estimated using relation \(2 \) (see Ref.\[16\] for the derivation of the specific expression and the details on its numerical calculation). The \(n \) cells with the lowest \(t_d \) are selected to be mothers cells of the first generation. Next, daughter cells are built as single

II. SIMULATION TOOLBOX

For simulating cell evolution a toolbox is often used which includes a reaction network model and a Darwinian–like process [8, 12, 15]. In our study, the time variation of the concentrations \(x \) of \(N \) intracellular chemical species is given by the following set of ordinary differential equations,
mutations of each one of the mothers. Every generation is conformed by a set of \(n \times m \) daughters. Subsequently, daughter cells are allowed to grow, and \(t_d \) for each one is estimated. The \(n \) ones growing faster up to duplication are selected as mothers of the next generation, and so on.

Since in our simulation a mutation is the addition of just one link to the network, and for each daughter cell it occurs once in each generation, then mutations pile up linearly during the mutation–selection process, i.e., after evolving up to generation \(N \), the reaction network of the cells has grown in complexity by including \(N \) additional catalytic reactions.

III. RESULTS

In Ref.[22] was introduced and applied a procedure to build the metabolic networks for 3481 real organisms using data from the Kyoto Encyclopedia of Genes and Genomes (KEGG) [23]. Those authors obtained that the number of nodes of the assembled networks varied between \(N = 514 \) and \(N = 1154 \). On the other hand, in Ref.[16] it was found that, throughout the simulation of the evolutionary process, the reaction networks with \(N = 250 \) nodes share most of the stages and properties found for networks with size \(N = 500 \) and \(N = 1000 \). Taking this into account, for the present study were performed a total of 31 simulations: 15 with \(N=250 \) nodes, 11 with \(N=500 \) and 5 with \(N=1000 \), each one with \(20 \times N \) cells per generation. Taking into account that by generation 1.5\(N \) the tightly connected core component in the network has usually been already emerged [16], all the simulations were carried out up to 1500 generations. Even though we parallelized several tasks to run our simulations in multicore architectures, together with the analysis of the outcomes, they still accounted for more than a thousand of computing hours.

Despite the high degree of complexity of the simulations, we found the outcomes to be generic, and qualitatively independent of \(N \), as well as of the values of the other parameters in Eqs. (1). For the findings summarized in table I it was used \(D = 6 \), \(X = 0.2 \) and \(\alpha = 1 \). In all but one simulation a phase transition was detected. The results detailed below correspond to these 30 cases.

A. Percolation in the reaction network

The mutation–selection process is started with random graphs that had, on average, one edge per vertex. Because of the sparse nature of the initial graph, to be able to clearly observe the giant component, we applied a procedure similar to the one used in Ref.[18] and analyzed an effective network derived from the original reaction network by neglecting all nodes with concentrations below a threshold value. Since the \(x_i \) are constrained by Eq.(1) to be less than one and always enter as quadratic terms in Eqs. (1), those species with concentrations below \(10^{-4} \) at the duplication time usually played a negligible role throughout the modeled cell lifetime.

In the top panels of Fig.2 are shown generic examples of the formation of the giant component in our simulations. For the effective graph of the fittest cell of each generation \(g \), the ratio \(r_G \) is plotted. In the bottom panels is presented the corresponding behavior for the average component size, \(\langle S \rangle \). As it can be seen by comparing figures 1 and 2 there are similarities and differences between the behavior of our evolutionary process and that of the classic Erdős–Rényi model. The most important similarity is that in both cases we are able to note a clear change in the growth trend of the GCC. As to the obvious differences observed, it must first be considered that, since we are dealing with directed graphs, we have to take the direction of the paths into account and look instead for the giant strongly connected component [4,6]. Secondly, even one–thousand vertices happen to be rather few for capturing some features characterizing graphs in the limit of large \(N \), in particular, the statistics of the graph components, excluding the GCC [4]. Furthermore, in most models it is followed the evolution of a single graph, while we follow the graph of the fittest cell amongst the \(20 \times N \) cells of each generation. Mother–daughter trails can come to a dead–end at any point in our simulation, and the fittest cell of one generation does not necessarily grows faster than the fittest one of the previous generation. All these differences are reflected as a scattering of points in the plots, instead of the rather plain curves observed for the Erdős–Rényi model in Fig.1. Hence, the onset of the rapid growth of \(r_G \) does not correspond here to a point, but to a transient regime along which builds up the amount of cells in each generation having the topology needed for the rise of the giant component. In table I it can be observed that, as in the examples of Fig.2, this regime typically starts by generation 0.5\(N \) and ends well before generation 1\(N \). It happens when the average number of edges per vertex in the effective graph is above 1 (recall that we start our simulations with \(\langle k \rangle = 1 \)), but still less than 2.

Results in Fig.2 imply that, in our case, the size of the GCC does not act as a distinct order parameter, as it does in most models of random graph evolution and, consequently, the average component size does not longer behave like a susceptibility. Nevertheless, we verified that it is indeed observed a continuous phase transition. As it was mentioned earlier, for many models of graph evolution the surge of the giant component is equivalent to a second order transition in a lattice. In our case, this percolation–like transition causes a radical change in the reaction network functionality. To uncover this, we study the network response to external stimuli. With that aim we took the fittest cell of each generation, doubled the environmental concentration of nutrients \(X \), solved system (1) numerically with the initial conditions set to \(x_i(t_d) \), and then counted the number of non–inert nodes, i.e., those whose concentrations, after a time much larger than \(t_d \), varied by an amount greater than \(10^{-6} \).
TABLE I. Results summary. Thirty-one simulations were performed with networks of three different sizes. In the third row it is shown that in all but one the rapid growth of the GCC was observed. For these, the transient regime starts at $g_i \approx 0.5N$, ends at $g_f < 1N$, and the corresponding network was sensitive to an external stimulus. In the 6th row are displayed the median of the exponents of the power–law for the rank–size distribution of the concentrations before and after the transition, showing a clear jump in the values. In the next row it can be observed that the nutrients usually dominate the outward centrality a few generations around g_f. In the last row it is shown the value of the effective control parameter $\beta_{eff}(g_f)$.

Network size (N)	250	500	1000
Number of simulations performed.	15	11	5
Number of cases with transient regime.	15/15	10/11	5/5
Generation at which the transition begins (g_i).	81 ± 18	155 ± 50	381 ± 168
Generation at which the transition ends (g_f).	139 ± 79	243 ± 89	452 ± 286
Power–law exponent before and after transition.	$-7, -0.85$	$-7, -1$	$-7, -1$
Interval of generations at which nutrients become central substrates (zeroed at g_f).	$[-5g, +10g]$	$[-5g, +5g]$	$[-4g, +1g]$
Effective control parameter (β_{eff}).	1.64 ± 0.18	1.69 ± 0.24	1.66 ± 0.33

FIG. 2. Rise of the giant component. Top panel, plots of the ratio r_G during three simulations of cell evolution using reaction networks with $N = 250$ (left), $N = 500$ (center) and $N = 1000$ (right) species. Bottom panels, corresponding plots of $\langle S \rangle$. In the horizontal axis g stands for the simulation generation. Vertical dashed lines enclose the transient regime.
In Fig. 3 is plotted the ratio r_P between the number of non-inert nodes and N, as it varies in an interval of generations centered at the end of the transient regime. For the examples presented in this figure it is clearly observed a discontinuity in the trend of the values of r_P before and after the transient regime ends. Again, it must be emphasized that the data do not correspond to one and the same graph evolved from an original random graph, but to the fittest among the $20 \times N$ cells of each generation. As summarized in the sixth row of table I, a similar effect of doubling X was observed in all of the cases where there was a rapid rise of the GCC.

More evidence on the nature of this transition is presented in Fig. 4, where it is shown, in other examples, that it also causes a sudden jump in the value of the exponent of the power-law describing the rank-size distribution for the asymptotic concentrations of the fittest cell. This discontinuity implies an abrupt change in the statistical properties of x_i. For all these generations the distributions can be fitted by power-laws [24] but, as it can be seen in the seventh row of table I, exponents before the critical point (approximated by the blue line slope) correspond to data with finite variance, while this is not true for the distributions after the transition (orange line).

B. Bifurcation in intracellular dynamics

So far we have analyzed the impact of the mutation-selection process on the topology and functionality of the network describing the fittest cell. But to the geometrical representation of a reaction network corresponds a specific dynamical system given by Eqs. (1). A meaningful insight into the cellular metabolism is revealed now if this dynamical system–complex network duality is used to uncover what the percolation–like transition implies for the dynamics of the intracellular reactions.

Let us start by recalling that a dynamic steady state of the cell metabolism is reached when, for each chemical species, the net synthesis rate R_i is balanced by dilution by growth, so that,

$$\frac{dx_i}{dt} = 0, \quad \forall i \in \{0, 1, \cdots, N - 1\}. \quad (5)$$

The following proposition comes in handy: A cell is at a dynamic steady state if, at any time, the finite ratio between the concentrations of any two intracellular species is equal to the ratio between the corresponding net synthesis rates. This implies that at this state all the species are diluted steadily. To prove this statement, let us start by noting that the origin $\{x_i(t) = 0, \forall i\}$, is not an equilibrium of this dynamics, because is not consistent with constraint (4) for any finite α. Then, according to our proposition,

$$\frac{x_i(t)}{x_j(t)} = \frac{R_i(t)}{R_j(t)}, \quad \forall (i, j), \quad (6)$$

and $x_j \neq 0$. Let us now sum over index i and use constraint (4) and expression (3) to obtain

$$\frac{1}{\alpha x_j(t)} = \frac{R(t)}{R_j(t)}, \quad \forall j, \quad (7)$$

which is consistent with Eqs. (1) only if conditions (6) are fulfilled. Finally, taking the derivative of Eq. (6) it can be verified that if conditions (5) are met, then the volume change rate remains constant. It can be positive (exponential growth), zero (stagnation) or negative (atrophy).

Now, since in our study we consider several hundred species, due to the huge dimension of the corresponding phase–space and the nonlinearity of Eqs. (1), it is nearly impossible to carry out a qualitative analysis of their solutions, not even of dynamic steady states. Still in lower dimensions there is an infinite number of ways of satisfying conditions (6), as they often define hyperplanes and not just isolated points in the phase–space.
Moreover, the classification of the stability of any of the possible isolated equilibria is also nontrivial because the associated flow cannot be linearized in their vicinity. Therefore, very little can be inferred about the modeled cellular metabolism from the information on the matching phase–portrait. Fortunately, having analyzed, for instance, any of the examples presented in the previous subsection, we can now solve numerically the ODE systems corresponding to the networks immediately before and after that transition, and study the behavior of the solutions. For the case with \(N = 250 \) in Fig. 2, several of these solutions are represented in Fig. 3, where \(R(t) \) is plotted instead of each one of the \(x_i(t) \). Whenever we observed \(dR(t)/dt = 0 \), conditions (8) were tested to find out whether it corresponds to a dynamic steady state. Recall that the meaningful for us dynamics takes places around the origin of the phase–space, which, as mentioned before, is not an equilibrium itself. In Fig. 3 (a) the system corresponds to the network immediately before the percolation–like transition. For this case it can be observed that stagnation, \(R(t) = 0 \), is always the attractive asymptotic state. In Fig. 3 (b) is plotted \(R(t) \) in the percolating phase. Stagnation states still persist, but they are now unstable. Moreover, a new attractor arose, a steady state where the cell grows exponentially. To check that this state does not exist before the transition we solved system (1) backward and forward in the convergence to any other state, but to \(R(t) = 0 \), was detected.

Adding a network link corresponds to considering new reciprocal terms \(x_p x_c \) and \(x_s x_c \) in the right hand sides of Eqs. (11), equivalent to switching the values of the related coefficients \(\sigma_{s,p,c} \) from zero to one. The exchange in the stagnation stability and the emergence of the new stable equilibrium imply that the initial phase–portrait is not longer topologically equivalent to the one resulting after switching on the couple of parameters \(\sigma_{s,p,c} \). This is the distinct signature of what is known as bifurcation of a vector field. Even if these parameters are switched on randomly for this bifurcation to happen it should be done so that it gradually increases the degree of coupling between Eqs. (11). Obviously, this can be done in several ways, i.e., there are many paths leading to this bifurcation. We found that, independently of the system dimension, at the critical number of switched on \(\sigma_{s,p,c} \), if all \(x_i \) below a threshold value are neglected, the probability of any pair of species being involved in the same reaction is approximately \(1/(N – 1) \).

IV. DISCUSSION

Let us start the discussion of our results by recalling that we have found that the number of generations at which take place the events described in this manuscript can be parametrized by \(N \), the number of species in the modeled cells. In particular \(N \) takes here the values 250, 500 and 1000, the last two values been consistent with what have been found for the metabolic networks of real organisms, while for \(N = 250 \) it was found previously that reaction networks with this number of nodes share most of the properties found for larger networks.

We have reported in this manuscript evidences that including new chemical interactions during the evolution of the intracellular reaction network leads to the rapid growth of a giant connected component. Differently to what happens in other models of graphs evolution, here this event does not takes place at a specific iteration, but rather after a transient regime. Though it varies from case to case, this regime is typically centered around generation 0.5\(N \). As mentioned before, this is the same generation when usually the nutrients clearly become the central reactants of the chemical reactions. As already noted, this last event occurs gradually, while the sudden rise of the giant strongly connected component is ubiquitous in the evolution of random directed graphs. Therefore, it is the functionality and not the topology of the reaction network what induces this coincidence; at this stage of the simulation, the mutations lead to the fast increase of the length of the chemical chains in all cells, but the evolutionary process selects as the fittest ones those where nutrients happen to be at the origin of most pathways, because in those cases the nutrients intake keeps the concentrations of the involved species above a critical value. The fact that a similar topology does not necessarily implies a unique functionality was, for instance, discussed in Ref. [18], where it was noted that the dynamic of a cellular network may be radically different from what is suggested by the given topology of a network of protein interaction and transcriptional regulatory maps. On the other hand, since it is considered that the largest component of a graph becomes its giant connected component when it comprises about half of the vertices, it means that, by the time the giant component starts to form, its complement remains mostly disconnected. This way, as observed in our simulations, the end of the transition period should precede the setup, around generation \(1 N \), of the small–world structure observed in Ref. [16].

We have shown that, indeed, the fast growth of the giant strongly connected component signals a percolation–like phase transition in the reaction network functionality. This percolation is characterized by a sudden change in the cell response to an external stimulus; after duplicating the nutrients external concentration, the percent of species actively participating in the chemical reactions is usually increased by a factor of 2. Ironically, the percolation also leads to concentration statistics described by power–laws with infinite variance, i.e., allowing for a few species to account for most of the chemical content of the cell. It is obvious that intracellular chemical concentrations cannot actually have infinite variance and, according to constraint (11), one would expect \(x_i \propto O(1/N) \) for all \(i \). This could be the case before the transition but, in
FIG. 5. Volume rate of change, $R(t)$, as function of time for generations 98 (a) and 99 (b) of the simulation in the left panel of Fig. 2. The orange curve corresponds to a stagnation steady-state, $R(t) = 0$. The solution displayed with a blue curve starts as a tiny perturbation of the stagnation state. The continuous and dashed gray curves correspond to solutions starting with $R(0) > 0$ and $R(0) < 0$, respectively.

In the percolating phase, cell metabolism becomes capable of ‘black swan’ behavior (see Ref. [15] for an example in real microorganisms). In the continuous phase transition characterizing many other models of graph evolution the size of the giant component is the order parameter, nevertheless, in our simulations the variation of this quantity is not monotonic so, there seems not to exist a clear-cut order parameter for the observed by us phase transition. This is consistent with the difference between physical and biological systems found in the experimental study reported in Ref. [26]. Because of the interaction between its elements, the growth of complexity during the evolution of a biological system is usually aimed to benefit most of its components, and the solution of this problem of optimization with constraints is commonly not unique. In the case of a cell, its evolution could have proceed through several lanes, in such a way that, at any given state of the mutation–selection process, the same “metabolic status” of the system is reached following different preferred reaction pathways [26].

In that regard, using the correspondence between the geometrical and dynamical representations of a reaction network, we found out that the percolation–like phase transition is mapped into a bifurcation of the vector field describing the intracellular dynamics. Starting from a simple cell with a random and sparse structure of catalytic reactions, a Darwinian process causes an early qualitative switch in the cellular metabolism, so that the fittest cell suddenly stop being the one which, just by chance, happens to be as far as possible from stagnation, to become the one naturally closer to the state of exponential growth. Relation between phase transitions and bifurcations has been documented before (see for instance chapter 10 in Ref. [27] and references therein). Nevertheless, to uncover it the behaviour of a complex system is usually approximated with a one-dimensional nonlinear dynamic equation for the average over time and space of the order parameter, with the particular property that, as the control parameter crosses the critical value for the phase transition, the corresponding 1D dynamical system undergoes a bifurcation. Since in our case we do not have well defined control and order parameters, that approach seems to be useless. A closer affinity with our results have those reported in Ref. [11], where a formalism was devised to reduce to an effective 1D ordinary differential equation the dynamics of multi-dimensional systems consisting of a large number of components that interact through a complex network. In particular, applying their method to the transcription networks of *Saccharomyces cerevisiae* and *Escherichia coli*, the authors found that, in the effective phase–space, the cell undergoes a transition from death to a resilient state, though nothing is said about what kind of phase transition in the functionality of the original complex network the bifurcation corresponds to. We estimated the value at the end of the transition regime of the effective control parameter β_{eff} proposed by these authors and reported it in the last row of table I. Even if the statistics are too poor to make definite conclusions, β_{eff} seems to be around a fixed value, regardless of the specific topology and functionality of the analyzed network, a universality noted in Ref. [11]. Besides the fact that we have found a bifurcation of the full N–dimensional phase–space, another difference between those and our results seems to be the cell states before and after the transition. Before the bifurcation reported by us the modeled cell will experience a decelerated growth, but it will be eventually able to duplicate. Of course, in a more realistic setup, prolonging the duplication time makes a cell liable of dying before dividing because of, for instance, mechanical trauma, extreme thermal effects, ischemia, toxins and pathogens inflow. To the contrary, growth after the bifurcation here described would be robust to metabolic changes caused by environmental or internal factors not considered in this model, provided these changes occur.
at time scales larger than the now relatively short duplication time characteristic of the exponential growth.

The drastic change in cellular metabolism induced by a minor modification in its structure can be seen as a shortcut in evolution. Besides making the cell fairly resilient to some adverse external influences, it also enables it to reach faster the level of complexity required for new processes to take place, such as the emergence of small-world and hierarchical structure, of autocatalytic cycles and of a dominant core of metabolites, which in turn allow for immature and non-specialized cells to develop into mature ones with specialized forms and functions, and able to produce several distinct biological responses individually or as a collective behavior.

If such a bifurcation in the intracellular dynamics could actually occur, then, along with Darwinism and saltationism, there would be another way for biological evolution to proceed, at least at cellular level: the gradual accumulation of mutations of negligible effect leading to a sudden change in the phenotype. Since there would be many paths leading, through the bifurcation, to the same metabolic status, then the new phenotype would not be exclusive of a hopelessly monster, but rather an inevitable outcome of evolution.

We would like to conclude by noting that, since in our study we are dealing with universal properties of complex systems, it makes sense to conjecture that there is a wide class of phenomena modeled by complex networks of size N where topology-induced phase transitions in the network functionality are mapped into bifurcations of a dual N-dimensional vector field. If true, this duality will be reinforced as a powerful tool for studying a class of high-dimensional non-linear dynamical systems, where usual analytical techniques are fruitless, if suitable at all.

V. ACKNOWLEDGMENTS

We thank Vrani Ibarra and Roberto Sáenz for useful discussions. We also acknowledge HypernetLabs and Google Cloud Services for allowing us to use their computational facilities to run most of our simulations. The work of A. R-H and D. R-O was supported by CONACyT grants for graduate studies.

[1] S. A. Benner, Defining life, Astrobiology 10 (2010).
[2] M. Jolicoeur, Modeling cell behavior: moving beyond intuition, AIMS Bioengineering 1, 1 (2014).
[3] S. Kauffman, Homeostasis and differentiation in random genetic control networks, Nature 224 (1969).
[4] M. E. Newman et al., Random graphs as models of networks, Handbook of graphs and networks 1, 35 (2003).
[5] A.-L. Barabási, Network Science (Cambridge University Press, 2016).
[6] S. A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets, Journal of Theoretical Biology 22 (1969).
[7] A. Filisetti, M. Villani, C. Damiani, A. Graudenzi, A. Roli, W. Hordijk, and R. Serra, On raf sets and autocatalytic cycles in random reaction networks, Advances in Artificial Life and Evolutionary Computation (2014).
[8] S. Jain and S. Krishna, Autocatalytic sets and the growth of complexity in an evolutionary model, Phys. Rev. Lett. 81 (1998).
[9] M. Arita, The metabolic world of Escherichia coli is not small, Proceedings of the National Academy of Sciences 101 (2004).
[10] S. Klamt, U.-U. Haus, and F. Theis, Hypergraphs and cellular networks, PLOS Computational Biology 5, 1 (2009).
[11] J. Gao, B. Barzel, and A.-L. Barabási, Universal resilience patterns in complex networks, Nature 530, 307 (2016).
[12] C. Furusawa and K. Kaneko, Evolutionary origin of power-laws in a biochemical reaction network: Embedding the distribution of abundance into topology, Physical Review E 73 (2006).
[13] C. Furusawa and K. Kaneko, Origin of complexity in multicellular organisms, Physical Review Letters (2000).
[14] C. Furusawa and K. Kaneko, Chaotic expression dynamics implies pluripotency: when theory and experiment meet, Biology Direct (2009).
[15] C. Furusawa and K. Kaneko, Zipf’s law in gene expression, Physical Review Letters (2003).
[16] V. Ibarra-Junquera, D. Radillo-Ochoa, and C. A. Terrero-Escalante, Evolutionary timeline of a modeled cell, Journal of Theoretical Biology, 111233 (2022).
[17] C. Furusawa and K. Kaneko, Formation of dominant mode by evolution in biological systems, Physical Review E 97 (2018).
[18] C. Christensen, A. Gupta, C. D. Maranas, and R. Albert, Large-scale inference and graph-theoretical analysis of gene-regulatory networks in b. subtilis, Physica A: Statistical Mechanics and its Applications 373, 796 (2007).
[19] P. Erdős and A. Rényi, On the evolution of random graphs, Publ. Math. Inst. Hungar. Acad. Sci. 5 (1960).
[20] D. Achlioptas, R. M. D’Souza, and J. Spencer, Explosive percolation in random networks, Science 323, 1453 (2009).
[21] G. Theißen, Saltational evolution: hopeful monsters are here to stay, Theory in Biosciences 128, 43 (2009).
[22] D. Gamermann, J. Triana-Dopico, and R. Jaime, A comprehensive statistical study of metabolic and protein–protein interaction network properties, Physica A: Statistical Mechanics and its Applications 534, 122204 (2022).
[23] Kyoto Encyclopedia of Genes and Genomes, (2022), https://www.genome.jp/kegg/.
[24] The exponents are found using the Python library plfit.py, an implementation by Adam Ginsburg of the general algorithm presented in Ref. 28.
[25] J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields (Springer-Verlag, 1983).
[26] A. Giuliani, J. P. Zbilut, F. Conti, C. Manetti, and A. Miccheli, Invariant features of metabolic networks: a data analysis application on scaling properties of biochemical pathways, Physica A: Statistical Mechanics and its Applications 337, 157 (2004).

[27] S. Didier, Critical Phenomena in Natural Sciences: Chaos, Fractals, and Selforganization (Springer Berlin Heidelberg, 2006).

[28] A. Clauset, C. R. Shalizi, and M. E. J. Newman, Power-law distributions in empirical data, SIAM Review 51 (2009).