A Bayesian mesh meta-analysis of medicine treatment in patients with enuresis

CURRENT STATUS: POSTED

Tao Han
Xuzhou Children's Hospital

Shujing Chen
Xuzhou Children's Hospital

Yuan Li
Xuzhou Children's Hospital

Jinchao Gong
Xuzhou Children's Hospital

Xiaoning Zhang
Xuzhou Medical University

DOI:
10.21203/rs.2.11158/v1

SUBJECT AREAS
General Surgery

KEYWORDS
Bayesian mesh meta-analysis; enuresis; efficacy, medicine
Abstract

Background

The aim of this study was to comprehensively evaluate the efficacy of multiple methods for enuresis and chose optimal treatment plan.

Methods

We searched Pubmed, Embase and Cochrane Library for included articles. All data were analyzed comprehensively using aggregate data drug information system (ADDIS) software (1.16.5). The random effects model was used for all test models. Node-splitting analysis and inconsistency standard deviation (ISD) were applied for consistency test. For node-splitting analysis (NSA) with Pb > 0.05, consistency model was chosen for analysis. Otherwise, the inconsistency model was used.

Results

Twenty-one studies were included in this meta-analysis. For the response rates, desmopressin acetate tablets (dDAVP) + Tolterodine (Tol), dDAVP + Imipramine (Imi), Imi + oxybutynin (Oxy), and Imi + Pseudoephedrine (Pse) treatment were the best, while the efficacy of Verapamil (Ver), Mianserin (Mia) and Estradiol (Est) were the worst. For the mean number of nocturia indicator, the effects of dDAVP + Imi and dDAVP + Tamsulosin (Tam) treatment were the best, while the efficacy of Imi was the worst. For nocturnal urine volume, the effects of dDAVP + Oxy and dDAVP + Tam were the best, while the efficacy of Pse and Tam were the worst. However, the difference between the groups was not statistically significant (P > 0.05). For adverse effects index, the incidence of adverse effects of Est and dDAVP + Imi was the lowest, the incidence of Ver was the highest.

Conclusions

The effects of dDAVP + Imi and dDAVP + Tam were the best, while Ver was with the worst efficacy.

Background

Enuresis, commonly known as bedwetting, usually refers to involuntary urination when a child is asleep. Generally, only 20% children have enuresis when they are 4 years old, and 5% have enuresis when they are 10 years old. There are a few patients with enuresis that lasts into adulthood. Primary enuresis is with no obvious urinary tract or neurological lesion, which accounting
for 70% to 80% \(^3\). Secondary enuresis includes lower urinary tract obstruction, cystitis, and neurogenic bladder \(^4\). In addition to nighttime bedwetting, patients often have symptoms, including frequent urination, urgency or difficulty urinating, and fine urine flow during the day \(^5\).

Although enuresis does not harm health, it has an impact on mentality of both child and parents. At present, there are four commonly used therapeutic drugs, including anti-diuretic drugs, anticholinergic drugs, tricyclic antidepressants, and central nervous stimulants \(^6\). Previous meta-analyses have been used to compare the effects of various drugs on enuresis. Yu et al. processed a meta-analysis and confirmed that clinical efficacy of combination desmopressin therapy plus anticholinergic agent was significantly higher than that of desmopressin alone treatment for children with enuresis \(^7\). Interestingly, acupuncture combined with traditional Chinese medicine was with certain clinical advantages than acupuncture or traditional Chinese medicine alone in enuresis treatment \(^8\). For efficacy, compliance and safety of several formulations of desmopressin in enuresis treatment, the efficacy and safety are similarly among different formulations, while the sublingual tablets are with higher compliance than other formulations \(^9\).

Although above studies have compared the effects of drugs on enuresis, most of them compared only two methods, and comprehensive report compared various methods is rare. In the current study, Bayesian mesh meta-analysis method was used to comprehensively evaluate the efficacy of multiple methods for enuresis, and the optimal treatment plan may be obtained to provide a basis for future clinical treatment.

Methods

Search strategy

We comprehensive evaluated of the efficacy of some methods for enuresis. An electronic search for enuresis related medicines was conducted in English updated in Aug. 2018. Electronic literature database included Pubmed (http://www.ncbi.nlm.nih.gov/pubmed), Embase (http://www.embase.com) and Cochrane Library (http://www.cochranelibrary.com). The key words for researching were disease name (enuresis OR enuretic OR bedwetting OR “incontinence urine” OR Nocturia), combined with
various drugs for enuresis treatment (desmopressin OR vasopressin OR pharmacotherapy OR amitriptyline OR Imipramine OR viloxazine OR clomipramine OR desipramine OR mianserin OR Diclofenac OR indomethacin OR oxybutynin OR pseudoephedrine OR Ibuprofen OR oxybutynin OR verapamil OR anticholinergic OR Clonidine OR Reboxetine OR Tolterodine OR anticholinerg), as well as research type (Trail OR clinical trial OR random OR comparison OR placebo).

Inclusion and exclusion criteria

Inclusion criteria: (1) The literature on the efficacy of drugs in patients with enuresis was published in English; (2) The outcome variables mainly included response rates, mean number of nocturia, nocturnal urine volume and adverse effects; (3) The research type is randomized controlled study.

Exclusion criteria: (1) exclusion of data is incomplete, which could not be used for statistical analysis; (2) Non-religious literature such as reviews, letters and reviews were excluded; (3) For multiple studies with repeated data, only the most comprehensive one was included and the rest were excluded; (4) In order to reduce the difference, study with less than 10 patients was excluded, and study without mean and standard deviation was also excluded.

Data Extraction

The data was extracted by two investigators independently. The extracted contents were as follows: the first author of the literature, the year of publication, the year of study, research area, the drug in each group, the number of included cases, and the demographic characteristics (age and gender) of each group. Referring to the risk assessment tools for bias of Cochrane Collaboration recommendations, the quality of randomized controlled literature was evaluated 10.

If there is a dispute during the data extraction and document quality evaluation, a group discussion will be conducted and the third investigator will be communicated to achieve a consistent result.

Statistical Analysis

All data were analyzed comprehensively using ADDIS software (1.16.5). ADDIS software is a non-programming software based on the Bayesian framework, which is used for prior evaluation and
processing by Markov chain Monte Carlo theory (MCMC)11,12. All data are represented by OR (odds ratio), MD (Mean difference) values and a 95\% confidence interval (CI) of each value.

The random effects model was used for all test models. Node-splitting analysis and inconsistency standard deviation (ISD) were applied for consistency test. Node-splitting analysis is an alternative method to assess inconsistency in network meta-analysis. For node-splitting analysis (NSA) with $P > 0.05$, consistency model was chosen for analysis. Otherwise, the inconsistency model was used13.

Based on the Potential Scale Reduction Factor (PSRF), Brooks-Gelman-Rubin method was used to detect the convergence degree of model. PSRF value less than 1.2 was acceptable. The closer it is to 1, the better the model converges14.

Results

\textit{Study filtering and quality evaluation}

The literature screening process and results were shown in figure 1. Based on the pre-defined search strategy, a total of 1187 studies were filtered from Pubmed, Embase, and Cochrane Library databases. After excluded duplicated literature, there were 715 studies remaining. Based on the title and abstract, 610 studies did not meet the inclusion criteria obviously. After reading the full text, 84 studies were then retrieved. A total of 21 studies were finally obtained for further quality evaluation15-35.

The filtered studies were published from 1996 to 2016, and most of them were published after 2005. The research year were ranged from 1996 to 2014, while some literatures did not report the research year. The research areas of these studies included Egypt, Turkey, the United States, China, Italy and South Korea. Total 3410 enuresis were included, the drugs used contained dDAVP (Desmopressin), Tam (Tamsulosin), Tol (Tolterodine), Oxy (Oxybutynin), Dox (Doxazosin), Imi (Imipramine), Pse (Pseudoephedrine), Ver (Verapamil), Ibu (Ibuprofen) and Mia (Mianserin). There is no significant difference in gender and age between each group of these studies.

The results of RCT quality evaluation show that the quality of included literature is generally high. However, parts of studies showed unclear risk of bias in Allocation concealment (selection bias),
blinding of participants and personnel (performance bias), blinding of outcome assessment (detection bias), incomplete outcome data (attrition bias) and selective reporting (reporting bias) (Figure 2 and 3).

Mesh meta-analysis results

Parameter was set for the ADDIS software, including number of chains of 4, tuning iterations of 20000, simulation iterations of 50000, thinning interval of 10, inference samples of 10000 and variance scaling factor of 2.5. Mesh meta-analysis was processed for response rates, mean number of nocturia, nocturnal urine volume and adverse effects.

The consistency test was performed by Node-splitting analysis, and the P values were all more than 0.05. Therefore, the consistency model was adopted. All the PSRFs of response rates, mean number of nocturia, nocturnal urine volume and adverse effects were close to 1, which proved that the model was completely converged, the iterative effect was very good, and the results were stable.

Response rates

As shown in Table 1, for the response rates, dDAVP+Tol, dDAVP+Imi, Imi+Oxy, and Imi+Pse treatment were the best, while the efficacy of Ver, Mia, and Est were the worst. However, the difference between the groups was not statistically significant (P > 0.05).

Mean number of nocturia

For the mean number of nocturia indicator, the effects of dDAVP+Imi and dDAVP+Tam treatment were the best, while the efficacy of Imi was the worst. However, the difference between the groups was not statistically significant (P > 0.05) (Figure 2).

Nocturnal urine volume

For nocturnal urine volume, the effects of dDAVP + Oxy and dDAVP + Tam were the best, while the efficacy of Pse and Tam was the worst. However, the difference between the groups was not statistically significant (P > 0.05) (Figure 3).

Adverse effects

For adverse effects index, the incidence of adverse effects of Est and dDAVP + Imi was the lowest, the incidence of Ver was the highest, and the incidence of Imi and Imi + Oxy were also high
Discussion
The etiology of enuresis is still unclear. Therefore, there are many treatments for this disease in China, and no uniform standard with curative effect. In this study, a total of 21 studies were screened from 1187 studies to compare the response rates, mean number of nocturia, nocturnal urine volume and adverse effects of various drugs. All the PSRFs of response rates, mean number of nocturia, nocturnal urine volume and adverse effects were close to 1, which proved that the model was completely converged, the iterative effect was very good, and the results were stable. Taken together, the effects of dDAVP + Imi and dDAVP + Tam were the best, while Ver was with the worst efficacy.

Similarly with previous study, combined treatment with low dose oral desmopressin with tamsulosin was more effective than desmopressin or tamsulosin therapy, and also with improved I-PSS, QoL score, post-void residual urine volume and Qmax. In women with nocuria, desmopressin and tamsulosin clinical trials have also confirmed the efficacy and safety in improving the severity and frequency of this disease. Besides, a review of scarce literature showed that this combined treatment could improve the renal enrichment ability and functional bladder capacity in children with enuresis. The lower bladder filling rate and reduced urinary output due to DDAVP could enhance the oxybutynin action by decreasing uninhibited bladder contractions. A randomized, double-blind, placebo-controlled trial demonstrated oxybutynin combined with desmopressin could significantly decrease wall thickness index and bladder volume in children with enuresis. In addition, Lee et al. confirmed that, compared with single drug therapy, desmopressin combined with oxybutynin treatment was with high tolerance, more and faster effective results. Consistent with the result of this study, a prospective, randomized, crossover study showed that both verapamil and oxybutynin treatment could improve nocturnal incontinence by ameliorating urodynamic characteristics with minimal side-effects. In addition, Verapamil (80 mg/day) displayed antienuretic activity in clozapine induced enuresis. However, verapamil was suggested to be eliminated in the treatment of enuresis.
in this study.

Our study had a strong point. This study used a mesh meta-analysis method to comprehensively compare the above drugs firstly, providing some clues and evidence for further clinical practice. However, there are some limitations in this study. Firstly, due to the incomplete data of some studies, the covariates were not corrected in this study. They may affect the results of the meta-analysis as potential confounders, and no further sub-group analysis was processed. Secondly, ADDIS software is simple for operation but not freely programmable. Thereby, the results may be constrained. For example, when estimating the effect amount, only the random effects model can be reported, and our results may be slightly conservatively estimated. Thirdly, due to the small number of studies conducted on some indicators and some drugs, it is not possible to conduct a comprehensive analysis of all indicators and all combinations, and it is also not possible to separate children and adults patients.

Conclusions
In summary, this meta-analysis comprehensively evaluated most drugs for enuresis treatment, and found that DAVP + Imi and dDAVP + Tam may be better drugs for the treatment.

Abbreviations
aggregate data drug information system ADDIS
inconsistency standard deviation ISD
node-splitting analysis NSA
Tolterodine Tol
Imipramine Imi
Oxybutynin Oxy
Pseudoephedrine Pse
Verapamil Ver
Mianserin Mia
Estradiol Est
Tamsulosin Tam
Declarations
Ethics approval and consent to participate: Not applicable.

Consent for publication: Not applicable.

Availability of data and material: All data generated or analyzed during this study are included in this published article [and its supplementary information files].

Competing interests: The authors declare that they have no competing interests.

Funding: Not applicable.

Authors' contributions: TH and SJC designed and collected data, and was a major contributor in writing the manuscript. YL, JCG and XNZ analyzed the data. All authors read and approved the final manuscript.

Acknowledgements: Not applicable.

References
1. Panda S. PRIMARY NOCTURNAL ENURESIS IN CHILDREN: ISSUES, SYMPTOMS AND MANAGEMENT.
2. Ouedraogo A, Kere M, Ouedraogo T, Jesu F. Epidemiology of enuresis among children and teenagers, 5 to 16-year old, in Ouagadougou (Burkina Faso). Archives De Pédiatrie. 1997;4:947-51.
3. Birch BR, Miller RA. Primary Nocturnal Enuresis: A Urodynamic Study Spanning Three Generations. Scandinavian Journal of Urology & Nephrology. 1995;29:285-8.
4. Shimada K, Sakurai T, Ikoma F, Tokizane M, Hayashi T. [Lower urinary tract obstruction and subclinical neurogenic bladder in childhood: relation to the pathogenesis of enuresis (author's transl)]. Nihon Hinyokika Gakkai Zasshi. 1977;68:636-43.
5. Gondim R, Azevedo R, Aanm B, Veiga ML, Jr BU. Risk factors for urinary tract infection in children with urinary urgency. International Braz J Urol Official Journal of the Brazilian Society of Urology. 2018;44:378-83.
6. Owens RG, Karram MM. Comparative tolerability of drug therapies used to treat
incontinence and enuresis. Drug Safety. 1998;19:123-39.

7. Yu J, Yan Z, Zhou S, Han F, Xiao F, Han J, et al. Desmopressin plus anticholinergic agent in the treatment of nocturnal enuresis: A meta-analysis. Experimental & Therapeutic Medicine. 2017;14:2875-84.

8. Wei SZ, Zheng FJ. A Meta analysis of acupuncture combined with traditional Chinese medicine in the treatment of nocturnal enuresis in children. Chinese Journal of Healthy Birth & Child Care. 2013.

9. Feng TX, Huang R, Jian YU. Meta-Analysis on Efficacy and Safety of Different Formulations of Desmopressin in Treatment of Childhood Enuresis. Journal of Applied Clinical Pediatrics. 2011;26:369-2.

10. Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions: Wiley Online Library; 2008.

11. Hillege H, Brock Bd, Valkenhoef Gv, Zhao J. ADDIS: an automated way to do network meta-analysis. University of Groningen, Research Institute SOM (Systems, Organisations and Management); 2012.

12. Van Valkenhoef G, Tervonen T, Zwinkels T, De Brock B, Hillege H. ADDIS: a decision support system for evidence-based medicine. Decision Support Systems. 2013;55:459-75.

13. Dias S, Welton NJ, Caldwell DM, Ades AE. Checking consistency in mixed treatment comparison meta-analysis. Statistics in medicine. 2010;29:932-44.

14. Brooks SP, Gelman A. General methods for monitoring convergence of iterative simulations. Journal of computational and graphical statistics. 1998;7:434-55.

15. Abedin Zadeh M, Moslemi MK, Kholaseh Zadeh G. Comparison between imipramine and imipramine combined with pseudoephedrine in 5-12-year-old children with uncomplicated enuresis: a double-blind clinical trial. Journal of pediatric urology.
16. Ahmed AF, Maarouf A, Shalaby E, Gabr AH, Shahin A, Ghobish A. The impact of adding low-dose oral desmopressin therapy to tamsulosin therapy for treatment of nocturia owing to benign prostatic hyperplasia. World journal of urology. 2015;33:649-57.

17. Austin PF, Ferguson G, Yan Y, Campigotto MJ, Royer ME, Coplen DE. Combination Therapy With Desmopressin and an Anticholinergic Medication for Nonresponders to Desmopressin for Monosymptomatic Nocturnal Enuresis: A Randomized, Double-Blind, Placebo-Controlled Trial. Pediatrics. 2008;122:1027-32.

18. Ceylan C, Ceylan T, Doluoglu OG, Yuksel S, Agras K. Comparing the effectiveness of intranasal desmopressin and doxazosin in men with nocturia: a pilot randomized clinical trial. Urology Journal. 2013;10:993.

19. Chertin B, Koulikov D, Abu-Arafeh W, Mor Y, Shenfeld OZ, Farkas A. Treatment of Nocturnal Enuresis in Children With Attention Deficit Hyperactivity Disorder. The Journal of Urology. 2007;178:1744-7.

20. El-Bahnasawy MS, Shaaban H, Gomha MA, Nabeeh A. Clinical and urodynamic efficacy of oxybutynin and verapamil in the treatment of nocturnal enuresis after formation of orthotopic ileal neobladders. Scandinavian Journal of Urology and Nephrology. 2009;42:344-51.

21. Ellington DR, Szychowski JM, Malek JM, Gerten KA, Burgio KL, Richter HE. Combined Tolterodine and Vaginal Estradiol Cream for Overactive Bladder Symptoms After Randomized Single-Therapy Treatment. Female Pelvic Medicine & Reconstructive Surgery. 2016;22:254-60.

22. Ferrara P, Marrone G, Emmanuele V, Nicoletti A, Mastrangelo A, Tiberi E, et al. Homotoxicological remedies versus desmopressin versus placebo in the treatment of
enuresis: a randomised, double-blind, controlled trial. Pediatric nephrology. 2008;23:269-74.

23. Fu F-G, Lavery HJ, Wu D-L. Reducing nocturia in the elderly: A randomized placebo-controlled trial of staggered furosemide and desmopressin. Neurourology and Urodynamics. 2011;30:312-6.

24. Gelotte CK, Prior MJ, Gu J. A Randomized, Placebo-Controlled, Exploratory Trial of Ibuprofen and Pseudoephedrine in the Treatment of Primary Nocturnal Enuresis in Children. Clinical Pediatrics. 2008;48:410-9.

25. Lee T, Suh HJ, Lee HJ, Lee JIE. Comparison Of Effects Of Treatment Of Primary Nocturnal Enuresis with Oxybutynin Plus Desmopressin, Desmopressin Alone Or Imipramine Alone: A Randomized Controlled Clinical Trial. The Journal of Urology. 2005;174:1084-7.

26. Lose G, Lalos O, Freeman RM, van Kerrebroeck P. Efficacy of desmopressin (Minirin) in the treatment of nocturia: a double-blind placebo-controlled study in women. American Journal of Obstetrics and Gynecology. 2003;189:1106-13.

27. Montaldo P, Tafuro L, Rea M, Narciso V, Iossa AC, Gado RD. Desmopressin and oxybutynin in monosymptomatic nocturnal enuresis: a randomized, double-blind, placebo-controlled trial and an assessment of predictive factors. BJU International. 2012;110:E381-E6.

28. Rackley R, Weiss JP, Rovner ES, Wang JT, Guan Z. Nighttime dosing with tolterodine reduces overactive bladder-related nocturnal micturitions in patients with overactive bladder and nocturia. Urology. 2006;67:731-6.

29. Sand PK, Dmochowski RR, Reddy J, van der Meulen EA. Efficacy and Safety of Low Dose Desmopressin Orally Disintegrating Tablet in Women with Nocturia: Results of a Multicenter, Randomized, Double-Blind, Placebo Controlled, Parallel Group Study. The
30. Smellie JM, Mcgrigor VS, Meadow SR, Rose SJ, Douglas MF. Nocturnal enuresis: a placebo controlled trial of two antidepressant drugs. Archives of Disease in Childhood. 1996;75:62-6.

31. Tahmaz L, Kibar Y, Yildirim I, Ceylan S. Combination Therapy of Imipramine with Oxybutynin in Children with Enuresis Nocturna. Urologia Internationalis. 2000;65:135-9.

32. van Kerrebroeck P, Rezapour M, Cortesse A, Thuroff J, Riis A, Norgaard JP. Desmopressin in the treatment of nocturia: a double-blind, placebo-controlled study. European urology. 2007;52:221-9.

33. Wang C-J, Lin Y-N, Huang S-W, Chang C-H. Low Dose Oral Desmopressin for Nocturnal Polyuria in Patients With Benign Prostatic Hyperplasia: A Double-Blind, Placebo Controlled, Randomized Study. The Journal of Urology. 2011;185:219-23.

34. Zhang K, Yu W, Jin J, Ye H, Wang X, Zhang N, et al. Effect of Doxazosin Gastrointestinal Therapeutic System 4 mg vs Tamsulosin 0.2 mg on Nocturia in Chinese Men With Lower Urinary Tract Symptoms: A Prospective, Multicenter, Randomized, Open, Parallel Study. Urology. 2011;78:636-40.

35. Zhang L, Li J, Pan M, Han W, Liu S, Xiao Y. Doxazosin oral intake therapy to relieve stent-related urinary symptoms and pain: a prospective, randomized, controlled study. International braz j urol. 2016;42:727-33.

36. Christophersen ER, Rapoff MA. Enuresis treatment. Issues in Comprehensive Pediatric Nursing. 1978;2:35-52.

37. Ahmed AF, Maarouf A, Shalaby E, Gabr AH, Shahin A, Ghobish A. The impact of adding low-dose oral desmopressin therapy to tamsulosin therapy for treatment of nocturia owing to benign prostatic hyperplasia. World Journal of Urology. 2015;33:1-
9.

38. Kurtzman JT, Bergman AM, Weiss JP. Nocturia in women. Current Opinion in Urology. 2016;26:315.

39. T N. Oxybutynin, desmopressin and enuresis. The Journal of Urology. 2001;166:2459-62.

40. P C, F A, M B, RM C, D C, ML C, et al. Nocturnal enuresis and daytime wetting: a multicentric trial with oxybutynin and desmopressin. European Urology. 1997;31:459.

41. Montaldo P, Tafuro L, Rea M, Narciso V, Iossa AC, Del GR. Desmopressin and oxybutynin in monosymptomatic nocturnal enuresis: a randomized, double-blind, placebo-controlled trial and an assessment of predictive factors. Bju International. 2012;110:E381-E6.

42. Lee T, Suh HJ, Lee HJ, Lee JE. Comparison of effects of treatment of primary nocturnal enuresis with oxybutynin plus desmopressin, desmopressin alone or imipramine alone: a randomized controlled clinical trial. Journal of Urology. 2005;174:1084-7.

43. Elbahnasawy MS, Shaaban H, Gomha MA, Nabeeh A. Clinical and urodynamic efficacy of oxybutynin and verapamil in the treatment of nocturnal enuresis after formation of orthotopic ileal neobladders. A prospective, randomized, crossover study. Scandinavian Journal of Urology & Nephrology. 2008;42:344-51.

44. Pojurovsky M, Schneidman M, Mark M, Weizman A. Verapamil treatment in clozapine-induced sleep-related enuresis: a case report. Eur Psychiatry. 1995;10:413-5.

Tables
Table 1 Response rates of Node-splitting analysis
Name	Direct Effect	Indirect Effect	Overall	P-Value
Imi, Oxy	-0.57 (-4.14, 2.74)	-0.56 (-108.34, 105.04)	-0.44 (-3.48, 2.59)	
Imi, Placebo	-1.59 (-4.01, 0.80)	-0.41 (-3.49, 2.74)	-1.11 (-2.92, 0.63)	
Imi, dDAVP	1.64 (-1.78, 4.93)	0.97 (-1.43, 3.58)	1.23 (-0.53, 3.09)	
Imi, dDAVP+Oxy	1.63 (-2.28, 6.19)	0.39 (-3.62, 4.34)	0.83 (-1.68, 3.47)	
Oxy, Placebo	-0.92 (-4.35, 2.56)	-0.12 (-4.50, 4.35)	-0.67 (-3.72, 2.30)	
Placebo, dDAVP	2.16 (0.77, 3.78)	3.37 (-0.16, 7.16)	2.34 (1.13, 3.71)	
dDAVP, dDAVP+Oxy	-0.71 (-3.95, 2.62)	0.48 (-4.06, 5.37)	-0.40 (-2.75, 2.05)	

Table 2 Mean number of nocturia of Node-splitting analysis

Name	Direct Effect	Indirect Effect	Overall	P-Value
Dox, Placebo	0.66 (-4.68, 5.93)	1.94 (-4.02, 7.86)	1.17 (-2.21, 4.53)	0.66
Dox, dDAVP	0.34 (-5.24, 5.81)	-1.01 (-7.29, 5.15)	-0.28 (-3.59, 3.05)	0.64
Placebo, dDAVP	-1.63 (-4.32, 1.13)	-0.28 (-8.08, 7.70)	-1.45 (-3.61, 0.59)	0.66

Table 3 Nocturnal urine volume of Node-splitting analysis

Name	Direct Effect	Indirect Effect	Overall	P-Value
Pse, Placebo	-1.63 (-4.15, 1.10)	-0.11 (-2.46, 1.58)	-0.79 (-2.54, 0.77)	0.29
Pse, Ibu+ Pse	0.96 (0.05, 2.17)	-0.55 (-3.23, 3.12)	0.89 (-0.04, 2.07)	0.30
Ibu+ Pse, Placebo	1.03 (-0.22, 3.37)	2.56 (-0.03, 5.53)	1.67 (0.35, 3.42)	0.28

Table 4 Adverse effects of Node-splitting analysis

Name	Direct Effect	Indirect Effect	Overall	P-Value
Dox, Placebo	-0.01 (-1.57, 1.65)	0.58 (-3.07, 4.61)	0.11 (-1.31, 1.58)	0.58
Dox, dDAVP	0.25 (-4.17, 4.21)	0.01 (-1.78, 1.99)	0.06 (-1.41, 1.55)	0.96
Imi, Oxy	-0.13 (-1.82, 1.48)	-1.01 (-56.26, 54.50)	-0.15 (-1.80, 1.41)	0.96
Imi, Placebo	-0.35 (-1.42, 0.67)	-1.97 (-4.17, -0.63)	-0.95 (-1.81, -0.10)	0.96
Imi, dDAVP	-2.23 (-4.46, -0.65)	-0.34 (-1.47, 0.79)	-0.98 (-1.87, -0.12)	0.96
Oxy, Placebo	-0.50 (-2.14, 1.38)	-1.12 (-3.31, 0.92)	-0.78 (-2.45, 0.84)	0.96
Placebo, dDAVP	0.00 (-0.37, 0.45)	-1.30 (-3.19, 0.26)	-0.05 (-0.48, 0.37)	0.96

Figures
Figure 1

Flowchart of selection of included studies in this meta-analysis
Figure 2

Risk of bias graph
Risk of bias summary

Study	Random sequence generation (selection bias)	Allocation concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data (attrition bias)	Selective reporting (detection bias)	Other biases
Ahmed AF2014	?	?	?	?	?	?	?
Austin PF2008	?	?	?	?	?	?	?
Ceylan C2013	?	?	?	?	?	?	?
Chertin B2007	?	?	?	?	?	?	?
Elbahmasawy MS2008	?	?	?	?	?	?	?
Ellington DR2016	?	?	?	?	?	?	?
Ferrara P2007	?	?	?	?	?	?	?
Fu FG2011	?	?	?	?	?	?	?
Gelotte CK2008	?	?	?	?	?	?	?
Lee T2005	?	?	?	?	?	?	?
Lose G2003	?	?	?	?	?	?	?
Montaldo P2012	?	?	?	?	?	?	?
Rackley R2006	?	?	?	?	?	?	?
Sand PK2013	?	?	?	?	?	?	?
Smellie JM1996	?	?	?	?	?	?	?
Tahmaz L2000	?	?	?	?	?	?	?
VanKerrebroeck P2007	?	?	?	?	?	?	?
Wang CJ2011	?	?	?	?	?	?	?
Zadeh MA2011	?	?	?	?	?	?	?
Zhang K2011	?	?	?	?	?	?	?
Zhang L2016	?	?	?	?	?	?	?
