Chromatin information content landscapes inform transcription factor and DNA interactions

Ricardo D'Oliveira Albanus, Yasuhiro Kyono, John Hensley, Arushi Varshney, Peter Orchard, Jacob O. Kitzman & Stephen C. J. Parker

Interactions between transcription factors and chromatin are fundamental to genome organization and regulation and, ultimately, cell state. Here, we use information theory to measure signatures of organized chromatin resulting from transcription factor-chromatin interactions encoded in the patterns of the accessible genome, which we term chromatin information enrichment (CIE). We calculate CIE for hundreds of transcription factor motifs across human samples and identify two classes: low and high CIE. The 10–20% of common and tissue-specific high CIE transcription factor motifs, associate with higher protein–DNA residence time, including different binding site subclasses of the same transcription factor, increased nucleosome phasing, specific protein domains, and the genetic control of both chromatin accessibility and gene expression. These results show that variations in the information encoded in chromatin architecture reflect functional biological variation, with implications for cell state dynamics and memory.
Understanding the interactions between transcription factors (TFs) and chromatin is critical to dissect regulatory circuits that lead to differences in transcriptional activity across species, tissues, stimulatory, and genetic contexts. Chromatin is the association between DNA, RNA, and diverse nuclear proteins, including nucleosomes. It enables the ~2-meter human genome to be packaged inside the nucleus while allowing active genes and their corresponding regulatory elements to remain accessible.

Nucleosome positioning is an essential property of chromatin architecture and has been shown to have both passive and active roles in TF binding. Information theory provides a powerful framework to quantify ordered patterns in data and has been successfully used to characterize genome-wide DNA methylation patterns.

In this work, we develop information-theoretical tools to study TF-chromatin interactions in human tissues using chromatin accessibility data. We show that local chromatin architecture encodes information-rich signatures of TF interactions. Our results show that variations in the information patterns encoded in chromatin architecture reflect functional biological variation, with implications for cell state dynamics and memory.

Results

Chromatin information reflects TF-chromatin interaction patterns. We first aimed to quantify patterns of chromatin accessibility around TF-chromatin interactions. We reasoned that TF binding creates a localized impact on chromatin architecture, which may result in TF-specific signatures. To measure chromatin architecture, we focused on the assay for transposase-accessible chromatin using sequencing (ATAC-seq) that can simultaneously quantify both TF and nucleosome signatures, which are reflected in the ATAC-seq fragment length patterns. This chromatin architecture can be visualized using V-plots, which show the aggregate ATAC-seq fragment midpoints around TF binding sites and can result in a stereotyped “V” pattern of points for bound TFs with well-phased adjacent nucleosomes (Fig. 1a, upper plot). The extent of organization in the V-plot can be measured using Shannon’s entropy equations to quantify information. We, therefore, calculated the information content of the ATAC-seq fragment size distribution around TF binding sites as a way to quantify V-plot organization (Fig. 1a, middle plot). To adjust for potential bias arising from non-uniform ATAC-seq fragment coverage across the V-plot, we devised a metric called chromatin information enrichment (CIE; Methods, Fig. 1a, middle and lower plots, Supplementary Fig. 1). We summarized CIE into a single value, named feature V-Plot Information Content Enrichment (f-VICE), which represents the CIE at landmark TF and nucleosomal positions across the V-plot. These positions are expected to have high CIE when the nucleosomes are well-positioned around the TF binding site (Fig. 1a, lower plot). Therefore, f-VICE quantifies the degree of chromatin architecture organization around a TF.

We initially focused on the GM12878 lymphoblastoid cell line, for which there is high-quality, deeply-sequenced ATAC-seq data and 41 TF chromatin immunoprecipitation followed by sequencing (ChIP-seq) experiments that pass our inclusion criteria (Supplementary Data 1). To increase our ability to detect TF-chromatin interactions, we generated an independent GM12878 ATAC-seq dataset with higher signal-to-noise ratio (measured by TSS enrichment and fraction of reads in peaks; Supplementary Fig. 2). Using these datasets, we created V-plots and calculated f-VICEs centered on bound motif instances for 41 TFs. The ATAC-seq fragment pattern was most ordered around CTCF, a known chromatin organizer, where we detected clusters of fragments distributed periodically in a “V” pattern indicating nucleosome phasing (Fig. 1b–c, Supplementary Fig. 3). CTCF f-VICE was highest among the 41 TFs (Fig. 1d). Other TFs, exemplified by AP-1 and NFKB, had diverse f-VICEs (Fig. 1b–d, Supplementary Fig. 3). The TF f-VICE values were highly consistent across these TFs and were most highly correlated with GM12878 BMO-informed f-VICE (Fig. 1e, f).

Fig. 1 Information content of TF-chromatin interactions. a Upper: TF binding impacts the chromatin architecture and the observed ATAC-seq fragment distribution around TF binding sites. Middle and bottom: calculation of CIE and f-VICE. b-c V-plots and CIEs of CTCF, AP-1, and NFKB (GM12878 ATAC-seq data generated in this study). V-plots were downsampling to highlight differences in chromatin architecture (but not for f-VICE calculation). d-f f-VICEs calculated for TFs with GM12878 ChIP-seq data. e F1 score sum of TF binding prediction algorithms. f Normalized GM12878 BMO-informed f-VICE distribution.
Footprint-free prediction of TF binding and chromatin information. One alternative to determine f-VICEs for TFs without ChIP-seq data is to rely on binding predictions using chromatin accessibility data. This motivated us to first evaluate the performance of current TF binding prediction algorithms. Most algorithms search for footprints, which are regions of low chromatin accessibility embedded within larger accessible regions, thought to be caused by cleavage protection from bound TFs. However, a recent report indicated that ~80% of TFs do not associate with footprints. Hence, we developed BMO (“Bee MOdel of TF binding”), an unsupervised method to predict TF binding using negative binomial models of chromatin accessibility and co-occurring motifs, without relying on footprints (Supplementary Fig. 6, Methods). We benchmarked BMO and other TF binding prediction methods (DNase2TF, HINT-ATAC, PIQ, and CENTIPEDE) using TF ChIP-seq data from GM12878 and HepG2 (n = 41 and n = 59, respectively; Supplementary Data 1). DNase2TF, HINT-ATAC, and PIQ rely on footprints to predict TF binding, while CENTIPEDE learns informative DNA cut patterns indicating TF binding. To compare methods, we calculated their F1 scores for predicting each TF. We additionally developed a custom implementation of CENTIPEDE that does not rely on the DNA cut patterns around the motif, which we named signal-sum CENTIPEDE (ssCENTIPEDE; Methods). ssCENTIPEDE allows us to estimate the contribution of the DNA cut patterns around the TF motif compared to motif accessibility in CENTIPEDE predictions (Supplementary Note).

BMO had overall higher performance (higher F1 score than the other methods in 74% of all comparisons; Supplementary Fig. 7). Importantly, the footprint-agnostic methods (BMO, CENTIPEDE, and ssCENTIPEDE) outperformed the footprint-based methods (higher F1 scores in 90% of comparisons), particularly on TFs with low f-VICEs (Fig. 1e, Supplementary Figs. 7-11; Supplementary Note). To determine if the overall lower performance of the footprint-based methods resulted from only sites with strong TF affinity being associated with footprints, we benchmarked all the methods separately for TF binding sites in the top and bottom 20% of TF occupancy, based on ChIP-seq signal (Supplementary Figure 12). The footprint-based method DNase2TF had higher performance compared to BMO when predicting the top 20% occupancy binding sites (Supplementary Figure 12a). However, the increase in performance for DNase2TF was limited to medium and high f-VICE TFs and only when using the high signal-to-noise GM12878 ATAC-seq dataset generated for this study (Supplementary Fig. 12a, left). BMO outperformed DNase2TF in the top 20% binding sites when using the Buenrostro et al. GM12878 dataset (Supplementary Fig. 12a, right), which had a lower signal-to-noise ratio (Supplementary Fig. 2). These results are consistent with (1) only a subset of high-occupancy binding sites from high f-VICE TFs associated with detectable footprints and (2) footprint detection being sensitive to sample quality. Together, these findings indicate that footprinting-based approaches are not the optimal strategy to predict TF binding. Instead, we show that TF binding is generally more accurately predicted using a simple chromatin accessibility model tuned to each TF motif.

Chromatin information varies across TFs. Having determined that our BMO footprint-agnostic method is among the most accurate for predicting TF binding regardless of their f-VICE, we proceeded with BMO predictions to estimate f-VICEs for TFs without ChIP-seq data. BMO-predicted f-VICEs were significantly correlated with f-VICEs calculated from TF ChIP-seq data across all datasets (Pearson’s r range 0.72–0.79, median = 0.76, all p < 9.78e-11; Supplementary Fig. 13). We therefore concluded that BMO can be used to estimate f-VICEs without ChIP-seq data and performed BMO TF binding predictions to calculate f-VICEs for 540 non-redundant TF motifs (Supplementary Data 2-3). We used high-quality ATAC-seq datasets from four additional human tissues (pancreatic islets, pancreatic islet sorted alpha and beta cells, and CD4 and CD8 cells; Supplementary Data 1), selected by applying a strategy that uses the highly stereotyped chromatin architecture in ubiquitous and conserved CTCF/cohesin binding sites to measure sample quality (Supplementary Fig. 14) (Methods). We normalized f-VICEs within each sample to control for differences in the number of bound motif predictions and overall chromatin accessibility (Supplementary Fig. 15). Among the 540 motifs, we observed a mixture of two f-VICE distributions and therefore used a mixture of two Gaussians to fit the data. The median percentage of high f-VICE motifs across datasets was 14% (range 7–18%, Fig. 1f, Supplementary Fig. 16), which is comparable to the percentage of motifs associated with DNase footprint protection across datasets (median = 19%) from another study and supports our conclusion that footprint-based algorithms will not perform well on the majority of TFs (median of 86% across datasets). Together, these results reinforce the use of footprint-agnostic methods like BMO for accurately calculating f-VICE. Importantly, our results suggest that only a subset of TFs associate with highly organized chromatin.

Chromatin information is associated with TF-DNA residence times. TF residence time, which corresponds to the duration of DNA binding for a TF, is an important biophysical measurement that can influence TF activity. Based on the high f-VICEs for CTCF and AP-1 and low f-VICE for NFKB (Fig. 1c, d), which agree with the known residence times for these TFs (Supplementary Table 1), we hypothesized that CIE correlates with residence time. We correlated BMO-informed f-VICEs with previously measured fluorescence recovery after photobleaching (FRAP) data from mammalian cell lines (Supplementary Table 1), which provide an upper bound of TF residence time. Using a robust linear regression to protect against outlier influence, we found that f-VICE was significantly associated with FRAP recovery times in all samples (β range 0.7–1.3, median = 0.98, all Bonferroni-adjusted p ≤ 0.001; Fig. 2a, Supplementary Fig. 17). This suggests that TFs associated with high CIE have longer residence times.

A recent study found that cohesin has a residence time 10- to 20-fold higher than CTCF. We reasoned this difference could be reflected in the local chromatin architecture and calculated the
CIE of the GM12878 lymphoblastoid cell line CTCF binding sites with and without the presence of cohesin (CTCF/cohesin+ and CTCF/cohesin−), controlling for ATAC-seq coverage, ChIP-seq signal, and motif quality (Supplementary Fig. 18a). CTCF/cohesin+ had 1.9-fold higher CIE compared to CTCF/cohesin− (Fig. 2b, Supplementary Fig. 18b), indicating these distinct CTCF occupancy classes have different CIE signatures. We next compared the nucleosome positioning signals inferred from lymphoblastoid cell line micrococcal nuclease sequencing (MNase-seq) profiles (Supplementary Data 1). Only the CTCF/cohesin+ class had phased nucleosomes around the binding site (Fig. 2c, Supplementary Fig. 18c), consistent with longer residence times associated with nucleosome phasing. To experimentally validate these results, we generated chromatin accessibility data using a modified ATAC-seq protocol with an additional sonication step (Methods) to disrupt the fragment size information (Supplementary Fig. 19). There were no detectable nucleosome phasing patterns in the motif-flanking CIE signature (~50 bp from the motif) of the sonicated sample (vertical arrows in Fig. 2d and Supplementary Fig. 19b), which we determined was not due to size-selection bias in the library preparation (Supplementary Fig. 19c). These results are complementary to our residence time results above in that they show our CIE approach can capture differences in chromatin organization in subsets of TF binding sites that are associated with different residence times.

Most high chromatin information TFs associate with nucleosome phasing. To systematically characterize the association between CIE and nucleosome positioning, we compared GM12878 CIE patterns across TF motifs to the nucleosome positions obtained both from ATAC-seq using the NucleoATAC algorithm26 and from lymphoblastoid MNase-seq profiles (Supplementary Fig. 20). High f-VICE motifs had lower nucleosome occupancy directly at the motif region and phased nucleosomes directly adjacent to it (Fig. 2e, Supplementary Fig. 20e). Accordingly, the CIE patterns of high f-VICE motifs were significantly more likely to be anti-correlated with the MNase-seq signal at the motif region (\(p = 2.18 \times 10^{-11}\), generalized linear model; Fig. 2fg, upper two panels, Supplementary Fig. 20f). We calculated the degree of nucleosome phasing around the motif region and found that it was significantly correlated with f-VICE (Pearson’s \(\rho = 0.4, p = 3.60 \times 10^{-22}\); Supplementary Fig. 20g). However, we observed that 22% of the high f-VICE motifs had high MNase signal at the motif region (12/54; Fig. 2g, bottom two panels, Supplementary Fig. 21). This indicates that high CIE patterns more commonly result from nucleosome phasing induced by TF binding, but can also result from a well-positioned nucleosome at the TF binding site. The latter case is consistent with TFs that bind at the nucleosome dyad4,27 and include a member of the RFX family4. These results indicate that the CIE levels reflect the overall level of chromatin organization and can capture different nucleosomal configurations. Therefore, the CIE patterns are more general and complementary to nucleosome positioning data.

Chromatin information asymmetry at TF motifs. Previous reports suggested that a subset of TFs directionally bind DNA, with potential effects on gene regulation11,28,29. To investigate this further, we extended our information content analyses to quantify CIE asymmetry (Methods). Of the 540 motifs tested, 150 had significantly asymmetric CIE (Bonferroni corrected \(p < 0.05\);
Fig. 2h, Supplementary Fig. 22a). The direction of CIE asymmetry was significantly correlated with the direction of the nearest TSS relative to each motif instance (Spearman’s ρ = 0.66, ρ = 3.34e-20; Supplementary Fig. 22b). To determine if asymmetric CIE was an artifact of TSS proximity, we calculated CIE asymmetry separately for TSS-proximal (≤1 kb) and TSS-distal (>10 kb) motif instances. The TSS-distal and TSS-proximal CIE asymmetry directions agreed significantly more than expected by chance (111/150, binomial test p = 3.8e-9, Fisher exact test p = 2.80e-5; Supplementary Fig. 22c-d), suggesting that CIE asymmetry is intrinsic to the TF motif. The magnitude of asymmetry was higher in TSS-proximal motifs (Supplementary Fig. 22d), suggesting that TSS proximity amplifies TF CIE asymmetry. Accordingly, the correlation between nearest TSS direction and CIE asymmetry was stronger at TSS-proximal motifs (Spearman’s ρ = 0.88, ρ = 1.25e-48; Fig. 2i). These results indicate that a subset of TFs are associated with asymmetric TF-chromatin interactions.

Chromatin information patterns are tissue-specific and associate with genetic control of gene expression. We next aimed to investigate cross-tissue differences in CIEs. We performed an unsupervised hierarchical clustering of motif f-VICE scores and found that it recapitulated the expected tissue grouping (Fig. 3a). A recent study demonstrated that NF-KB (p65) residence time is determined by its DNA-binding domain (DBD) [30], which motivated us to ask if DBDs are associated with CIE. We assigned DBDs and protein domains to motifs and designed a permutation-based rank test to calculate domain f-VICE enrichments (Methods). We observed both common and tissue-specific f-VICE enrichments, including IRF and ETS in blood-related samples, PAX in islet-related samples, and HMG/SOX families associated with known pioneers [11,33,34] had some of the highest f-VICEs in all (e.g. OCT/POU, KLF) or in a subset of overlapping lymphoblastoid cis-expression quantitative trait loci (cis-eQTLs) datasets [31,32], which represent gene expression genetic control regions. High f-VICE motifs had 15–30% higher (median = 24%) fold-enrichment in cis-eQTLs compared to low f-VICE motifs (Fig. 3c, Supplementary Fig. 24a), but no differences in eQTL effect sizes (Supplementary Fig. 24b). These results indicate that high f-VICE TFs are more likely to mediate genetic effects on gene expression, but not their magnitude.

High chromatin information TF motifs are associated with increased chromatin accessibility. Given that high f-VICE TFs have highly ordered chromatin (Fig. 1), high predicted residence times (Fig. 2a, b, Supplementary Fig. 17), and nucleosome phasing properties (Fig. 2e, Supplementary Fig. 21), we hypothesized that their regulatory effects (Fig. 3c) could result from acting as or recruiting pioneer factors that induce chromatin accessibility [11,33,34]. Supporting this, we find that motifs belonging to families associated with known pioneers [11,33,34] had some of the highest f-VICEs in all (e.g. OCT/POU, KLF) or in a subset of
samples (e.g. FOXA in HEPG2, PAX in islets, IRF and BATF in GM12878 and CD4 + cells; Fig. 3b, Supplementary Fig. 21, and Supplementary Data 3). If true, we would expect increased CIE at single nucleotide polymorphism (SNP) alleles associated with increased chromatin accessibility (i.e. with ATAC-seq allelic imbalance; Fig. 3d). We performed a motif-agnostic approach to calculate the f-VICEs associated with every DNA 6-mer, controlling for differences in chromatin accessibility. This strategy allows the interrogation of genetic variants by determining all the possible DNA 6-mers formed by each allele and their corresponding f-VICEs, without incurring in bias from under-represented sequences in the TF motif library. DNA 6-mers have a distribution of f-VICEs (Fig. 3e; Supplementary Fig. 25a), and GC-pure 6-mers had the highest f-VICEs (Supplementary Fig. 25b), which is consistent with GC-rich sequences driving enhancer activity35 and suggests that high GC-content regions represent anchors of nuclear architecture. Notably, a single base-allelic imbalance (binomial test, p < 0.05) in GM12878 and pancreatic islets (Methods). The preferred ATAC-seq alleles were significantly biased to form higher f-VICE 6-mers compared to the less favored allele in all samples (all p < 2.81e-4, permutation tests; Fig. 3g-h, Supplementary Fig. 26). These findings support a model where TFs with potential pioneer-like properties bookmark regions of the genome to allow binding of other migrant-like TFs. Accordingly, TF motifs that are predictive of binding without any chromatin accessibility data (based solely on the motif match score) have significantly higher f-VICEs in GM12878 and HepG2 (robust linear regression p ≤ 0.001; Supplementary Fig. 27). This suggests that high f-VICE TFs, particularly CTCF, are more likely to bind any strong motif regardless of its underlying accessibility, while the remaining TFs require motifs located in already accessible regions.

Asymmetrical CIE patterns at transcription start sites. While we focused this study on TF-chromatin interactions, the CIE framework presented here can be used to study other genomic features. To illustrate this, we generated V-plots and calculated CIE for the TSS regions from highly expressed genes in GM12878. Using this approach, we can observe the highly asymmetrical accessibility pattern in the TSS, indicating a well-positioned +1 nucleosome downstream of the TSS (Supplementary Fig. 29). This demonstrates the versatility of our entropy-based methodology to characterize genomic features which would otherwise require laborious experimental approaches or would not be possible in vivo.

Discussion
In this study, we develop and use entropy-based algorithms to analyze chromatin accessibility data and quantify the level of chromatin organization at genomic features of interest. This chromatin information approach is more general and complementary to analyzing nucleosome positioning, as it captures additional features such as DNA protection from TF binding and local DNA topology. We use this entropy-based approach to dissect TF-chromatin interaction patterns across human cell lines and tissues. The TF-chromatin interactions are captured in the information content patterns of chromatin accessibility and reflect functional properties of TFs, such as TF-DNA residence times, specific protein domains, and the ability to induce nucleosome repositioning. We find that a subset of TFs (10–20%) have high chromatin information and are more highly associated with the genetic control of both chromatin accessibility and gene expression. We hypothesize that these TFs define cell state by potentially acting as pioneers. Future studies are necessary to experimentally determine the fraction of TFs associated with high chromatin information that have pioneer properties.

A potential application of the methodology presented here is to estimate chromatin information patterns in other organisms, including non-model organisms where less information about their TF repertoire is available. We reason that the unbiased estimation of information patterns encoded in DNA substrings occurring in accessible chromatin, such as we performed using DNA 6-mers (Fig. 3e), can be used to inform the possible chromatin organization configurations associated with that organism. Such an approach could potentially be used to determine the appearance of pioneer-like TFs along the eukaryotic tree, which would be reflected in the emergence of a long right tail in the f-VICE distribution (Fig. 3e and Supplementary Fig. 25a).

One limitation of our methodology is that it can be affected by clusters of TFs binding in close proximity, which can potentially decrease the apparent information of the local chromatin. This can be circumvented with careful experimental approaches to separate these TF binding sites, such as the one we used for CTCF and cohesin. In addition, the f-VICE metric we developed here is highly tuned to detect patterns associated with TF binding, but other genomic features may have distinct CIE patterns. Indeed, we found a subset of DNA 6-mers with “non-canonical” V-plot patterns, which we hypothesized reflected a specific DNA topology (Fig. 3i, Supplementary Fig. 28). Therefore, it is reasonable to develop and use entropy-based algorithms to analyze chromatin accessibility data and quantify the level of chromatin organization at genomic features of interest. This chromatin information approach is more general and complementary to analyzing nucleosome positioning, as it captures additional features such as DNA protection from TF binding and local DNA topology. We use this entropy-based approach to dissect TF-chromatin interaction patterns across human cell lines and tissues. The TF-chromatin interactions are captured in the information content patterns of chromatin accessibility and reflect functional properties of TFs, such as TF-DNA residence times, specific protein domains, and the ability to induce nucleosome repositioning. We find that a subset of TFs (10–20%) have high chromatin information and are more highly associated with the genetic control of both chromatin accessibility and gene expression. We hypothesize that these TFs define cell state by potentially acting as pioneers. Future studies are necessary to experimentally determine the fraction of TFs associated with high chromatin information that have pioneer properties.

A potential application of the methodology presented here is to estimate chromatin information patterns in other organisms, including non-model organisms where less information about their TF repertoire is available. We reason that the unbiased estimation of information patterns encoded in DNA substrings occurring in accessible chromatin, such as we performed using DNA 6-mers (Fig. 3e), can be used to inform the possible chromatin organization configurations associated with that organism. Such an approach could potentially be used to determine the appearance of pioneer-like TFs along the eukaryotic tree, which would be reflected in the emergence of a long right tail in the f-VICE distribution (Fig. 3e and Supplementary Fig. 25a).

One limitation of our methodology is that it can be affected by clusters of TFs binding in close proximity, which can potentially decrease the apparent information of the local chromatin. This can be circumvented with careful experimental approaches to separate these TF binding sites, such as the one we used for CTCF and cohesin. In addition, the f-VICE metric we developed here is highly tuned to detect patterns associated with TF binding, but other genomic features may have distinct CIE patterns. Indeed, we found a subset of DNA 6-mers with “non-canonical” V-plot patterns, which we hypothesized reflected a specific DNA topology (Fig. 3i, Supplementary Fig. 28). Therefore, it is reasonable to
Using a homemade mix by combining Carboxyl-modified 5-methylC-MEDS-A oligos and MEDS-B oligos at 37 °C for 30 min in a 50 μL reaction, we column-purified the tagged DNA using the Zymo DNA Clean & Concentrator-5 kit (Zymo Research, Irvine, CA) and constructed Illumina sequencing library using the Kitzman lab custom indexing primers (barcode plate #5 and #10; Supplementary Table 2). We PCR-amplified a total of 11 cycles until the amplification curve reached its mid-log phase (1/3 to 1/2 of the cation column that contained 8.33 mL 1 M NaCl, 10 mM Tris-HCl, pH 8.0, 1 mM EDTA, pH 8.0) and eluted in 22 μL of TTE8 buffer. Sequencing was performed on an Illumina HiSeq 4000 platform at the University of Michigan Sequencing Core and a total of ~33 million paired-end 52 bp reads were generated.

Sonicated GM12878 ATAC-seq data generation. For each replicate we incubated 250,000 cells with three different concentrations of enzyme (0.2X, 1X, and 5X; 1X corresponds to 2.5 μL of Tn5 that carry 5-methylC-MEDS-A oligos) at 37 °C for 30 min in a 50 μL reaction. We column-purified the tagged DNA using the Zymo DNA Clean & Concentrator-5 kit (Zymo Research, Irvine, CA), and sonicated to ~350 bp using the Covaris M220 sonicator (peak incident power ~20 W). The lysate was pelleted by centrifugation (20,000 rpm for 30 min at 4 °C in the Beckman JA17 rotor). 2.1 mL 10% neutralized PEI (Sigma P3143) was added to the supernatant dropwise on a magnetic stirrer. The precipitate was removed by centrifugation at 12,000 rpm for 10 min at 4 °C (JA17 rotor). We assembled the Tn5 transposome using the on-column transposase assembly method. First, we transferred the supernatant to a Kontex Flex protein purification column that contained 8.33 mL of chitin resin, and then incubated on a rotator for 1.5 h at 4 °C. We drained the column, and washed the column rotor in assay buffer (25 mL of HEGX buffer for each wash (i.e. a total of 100 mL wash). The washed resin was transferred to 50 mL conical tubes and mixed with the Tn5-MEDS-A or Tn5-MEDS-B annealed oligos (for each mL of resin, we mixed in 200 μL of MEDS duplex oligos at 250 μM). The mixture was incubated on a rotator and kept at a nuclease. After 24 h, we washed the resin three times with HEGX buffer to remove unbound MEDS oligos. After the third wash, we resuspended the resin in HEGX buffer containing 100 mM DTT, and incubated at 4 °C on a rotator for 4 h. After incubation, we poured the resin solution to a Kontex flex column, and then drained it to collect eluates (which contained the released Tn5-MEDS complexes). We eluted DNA from 50 mL conical tube by transferring the DNA to a Snap-Mag Skin Dialysis Tubing (Thermo #68110; 10,000 MWCO; 22 mm × 35 feet dry diameter) and dialyzed against two changes of 2X Tn5 dialysis buffer (100 mM HEPES KOH pH 7.2, 0.2 M NaCl, 0.2 mM EDTA, 2 mM DTT, 0.2% Triton X-100, 200 μL/mL) at 4 °C for 24 h. We measured the protein concentration using a Bradford assay (Bio-Rad protein assay) and adjusted the concentration to 12.5 μM with 50 mM DTT and 1X lysis buffer.

ATAC-seq data processing. Reads were trimmed for barcodes using cta (v. 0.1.2) and aligned to the hg19 reference human genome using BWA mem (v. 0.7.15) similarly to our previous study, with additional parameters -L 200,200,5000 to avoid larger ATAC-seq fragments being discarded. We removed duplicate alignments using Picard (broadinstitute.github.io/picard; v2.8.1) and retained poorly and uniquely mapped alignments with high mapping quality using samtools view (v. 1.3.1) with flags -f 4 -F 8 -F 256 -F 1024 -F 2048 -q 30. We called broad and narrow peaks using MACS2 (v. 2.1.1.180309) with flags -g hs -model shift=100 -extsize 200 -b 10 -broad -keep-dup all and short indels from the 1,000 Genomes project (release v5) to generate complementary scans with FIMO (v0.5.4) using the background nucleotide frequencies from hg19 and a p < 1e-4. We only kept motif instances that intersected mappable regions and did not intersect blacklisted regions. In order to reduce motif redundancy, we performed PWM clustering in our motif database using the matrix-clustering tool from RSAT (v1.0.3), with parameters -th cor 0.7 -th th 0.75 -Nxor 0.7. For each of the 540 clusters obtained, we used the motif with the highest total PWM information content for downstream analyses.

Motif processing. We used the PWM scans from [32]. Briefly, we used biallelic SNPs and snips from the 1,000 Genomes project (release v5) to generate complementary scans with FIMO, using the background nucleotide frequencies from hg19 and a p < 1e-4. We only kept motif instances that intersected mappable regions and did not intersect blacklisted regions. In order to reduce motif redundancy, we performed PWM clustering in our motif database using the matrix-clustering tool from RSAT, with parameters -th cor 0.7 -th th 0.75 -Nxor 0.7. For each of the 540 clusters obtained, we used the motif with the highest total PWM information content for downstream analyses.

V-plots, chromatin information enrichments, and t-VICEs. V-plots were generated by determining the size and position of all ATAC-seq fragments within ±500 bp of the genomic feature set of interest (e.g. bound TF motifs). The fragment size and positions were obtained using the script measure_signal, which is part of atack, a suite of tools to analyze ATAC-seq data developed for this study (https://github.com/ParkerLab/atack). We excluded from the V-plots any instances of the genomic feature of interest that were closer than 500 bp to each other to avoid interference, and we also excluded ATAC-seq fragments smaller than 40 bp. We then checked the matrix encoding the fragment counts per position relative to the feature (−500 to 500 bp) and per fragment size. To decrease sparsity, we summed the fragment counts corresponding to each fragment size across consecutive positions using a sliding window of 10 bp width in 8-bp increments between windows (e.g. [−500,−490], [−492,−482], …). We did not sum fragment counts smaller than 0.1× the fragment size mean across fragment sizes. The fragment size mean across fragment sizes (H(x)) is the vector of the fragment size counts for each 10-bp window using Eq. (1), where H(x) is the maximum-likelihood Shannon’s entropy function implemented of the entropy R package (v. 1.2.1) and Hmax is the maximum Shannon’s entropy
for a vector of the same length (i.e. the maximum fragment size minus 40).

\[I(x) = \int_{-\infty}^{\infty} \frac{\hat{H}(s)}{H_{\text{max}}} ds \]

(1)

To additionally control for sparsity from low ATAC-seq coverage, we calculated the expected normalized information content by repeating all the steps described above using a randomized version of the input ATAC-seq fragment list. The randomized data was then manipulated in the same way as the original ATAC-seq data set, except that the labels corresponding to the fragment sizes and positions. The null expectation was calculated by shuffling the chromatin signal enrichment (CIE) for a vector of the same length (i.e. the maximum fragment size minus 40).

For the analyses in Supplementary Fig. 5, we divided the TF-bound motifs into three categories: DNA binding sites that had at least two samples that passed our stringent selection criteria. A list of all dataset accessions used in this study can be found in Supplementary Data 1.

BMO transcription factor binding prediction. BMO ("Bee" MOdel of TF binding) builds on previous reports that the degree of chromatin accessibility around a motif15-17 and the presence of co-occurring motifs18 positively correlate with TF occupancy, corresponding to the analogy of TFs behaving as "Brownian bees" in the genome looking for TF binding sites ("flowers"). The more accessible and the greater quantity of flowers, the more likely the bee will interact with them. BMO uses per-TF negative binomial models of the motif accessibility and density signals to estimate the likelihood of a TF motif instance being bound. BMO performs three steps: (1) calculate the background ATAC-seq fragment negative binomial distribution, (2) calculate the co-occurring motifs negative binomial distribution, and (3) combine the p values from the two distributions (Supplementary Fig. 6).

To additionally control for the motif DNA cuts we performed CENTIPEDE predictions using as input the vector of motif PWM scores and the number of ATAC-seq fragments overlapping a region ±100 bp from every motif instance, ignoring fragments that integrate directly in the motif coordinates. The latter step is performed to mitigate ATAC-seq bias, as the nucleotide sequence in the motif regions is relatively constant across features and is more subject to assay-specific biases compared to the motif-flanking regions. BMO uses the number of ATAC-seq fragments ±100 bp from motif instances occurring outside ATAC-seq peaks to fit a negative binomial distribution which corresponds to the ATAC-seq background for that motif. For computational reasons, BMO randomly selects 10,000 motif instances outside peaks to fit the ATAC-seq background, repeats this step 100 times, and uses the average median and overdispersion parameters for the ATAC-seq background. This approach is 1-2 orders of magnitude faster compared to fitting the ATAC-seq background negative binomial distribution on the entire set of motif matches outside ATAC-seq peaks and yields identical results. BMO then calculates the p values for the number of ATAC-seq fragments ±100 bp from every motif instance using a negative binomial regression model, ignoring fragments that integrate directly in the motif coordinates. The BMO determines the number of additional instances of the same motif PWM within ±100 bp of every TF instance. This is used to fit a second negative binomial representing the distribution of co-occurring motifs within ±100 bp of each motif instance.

BMO combines the nominal p values of the ATAC-seq and co-occurring motifs distributions by summing their Z scores54. This step yields a single p value representing chromatin accessibility and number of co-occurring motifs. A given motif instance will have more significant p values if it is located in accessible chromatin and/or have many instances of the same motif nearby. Multiple testing correction was performed using the Benjamini-Hochberg procedure55. Motif instances are reported as bound when the adjusted p value < 0.05. Fitted NB distributions were obtained using the R packages MASS (v. 7.3-50)56 and fdistus (v. 1.0-11)57.

CENTIPEDE. For each motif, we generated a strand-specific (relative to the motif orientation) base-pair resolution matrix encoding the number of Tn5 transposase integration events in a region ±100 bp from each motif instance using make_cut_matrix with parameters -d -r 100. The cut matrix and the vector of motif PWM scores were used as input for CENTIPEDE (v. 1.2)19. Any motif instance was considered bound if the CENTIPEDE posterior probability was higher than 0.5. The make_cut_matrix script was developed as part of atacTk (https://github.com/ParkerLab/atacTk).

Signal-sum CENTIPEDE (ssCENTIPEDE). For this study, we developed an alternative implementation of CENTIPEDE, called signal-sum CENTIPEDE (ssCENTIPEDE). ssCENTIPEDE differs from CENTIPEDE in that it is blinded to any positional patterns encoded in the Tn5 cut preferences. To run ssCENTIPEDE, we performed CENTIPEDE predictions using as input the vector of motif PWM scores and a variant encoding the sum of Tn5 DNA cuts in the region of each motif instance (instead of a base-pair resolution matrix encoding the positions of the DNA cuts relative to the motif). This strategy informs the overall motif instance accessibility while omitting any positional patterns that can be used by CENTIPEDE to predict TF binding.

DNaSe2TF. In order to run DNaSe2TF (v. 1.0)12 on ATAC-seq data, we offset all the cut points calculated using paired_end_bam2split by 4 bp before using them as the input to the ssCENTIPEDE software, which was run with default parameters. We intersected the outputted footprints coordinates with each motif bed file and considered bound any motif instance that intersected a footprint scored with FDR < 0.05.
HINT-ATAC. We performed footprinting analyses with HINT-ATAC (RGT v. 1.1.1)\(^3\) using as input the broad ATAC-seq peaks and filtered BAM file from each sample. In their methods, the authors used MACS1 for peak calling to avoid potential bias for broad peaks, but we found that they had lower performance compared to broad peaks (Supplementary Fig. 8), so we used the latter for the analyses. We intersected the HINT output file with each motif file and considered bound any motif instance that intersected a footprint.

PIQ. We performed PWM scans using the `pwmatch.exact.r` script included with PIQ (v. 1.3)\(^4\). BAM files were processed with `bam2datar` due to an error in the code of `pairedbam2datar` which prevented any of our BAM files from being processed. Footprinting was performed using the `perfr` script. Because PIQ performs its own PWM scans, we compared PIQ to BMO only on PWM matches that were shared between PIQ and BMO (using bedtools intersect).

Dataset downsampling. In order to compare f-VICE calculations or TF binding prediction methods across multiple sequencing depths, we uniformly downsampled BAM files using the -s flag of samtools view (v1.9), which downsamples files while maintaining read pairs intact (this behavior is not present in version 1.3.1). These downsampled files were used as input to generate V-plots or for peak calling and all other steps required prior to running each TF binding prediction method.

TF binding evaluation. We defined as true positives for a given TF all motif matches that fully intersected a ChIP-seq ENCODE conservative irreproducible discovery rate (IDR) narrow peak in the respective sample (using the flag -f 1.0 in bedtools intersect). We only analyzed TFs that had motifs in our database and at least 1,000 bound motif instances. For TFs with multiple PWM matches, we selected the PWM with the highest total information. For TFs with multiple ChIP-seq experiments, we selected the one with the highest number of bound motifs. To evaluate methods, we calculated the area under the precision-recall curve (AUPR), which informs the performance of the classifier in ranking bound and unbound motif instances, and the F1 score, which takes into account threshold used to call bound motif instances. We did not use areas under the receiver operator characteristic curve (AUC-ROC) given the highly skewed class imbalance between bound and unbound motifs, which makes AUC-ROCs an unreliable metric to evaluate TF binding predictions.\(^5,6\) AUC-PRs were calculated using package `ROCR` (v. 1.0-7) and `PRROC` (v. 1.3) in R.\(^6\) To rank predictions, we used the -log\(_10\) adjusted p values for BMO, the number of reported tags from HINT-ATAC, the posterior probabilities calculated by CENTIPEDE and ssCENTIPEDE, the -log\(_{10}\) p values calculated by DNase2TF, the purity score outputted by PIQ, and MACS2 -log\(_{10}\) p values for motifs in peaks. F1 scores were calculated using Eq. (3) at the following thresholds for each method: BMO adjusted p value < 0.05, CENTIPEDE and ssCENTIPEDE posterior ≥ 0.99, any motif instance overlapping a HINT-ATAC predicted footprint, any motif instance overlapping a DNase2TF predicted footprint with FDR value < 0.05, and any motif instance predicted bound by PIQ.

\[
F1 = \frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}}
\]

(3)

For the analyses in Supplementary Fig. 12, we used the `signalValue` column of the ENCODE narrowPeak files to divide the data into quintiles. We used either the top or bottom quintiles for benchmarking the TF binding prediction methods, after removing from the analyses any motif instances that intersected the remaining quintiles.

Mixture models for f-VICE distributions. High and low f-VICE Gaussian mixture model distributions were fitted using the R package mixtools (v. 1.1.0)\(^6\) using as input the normalized f-VICEs for each ATAC-seq sample, after filtering low signal motif instances with the number of total predicted bound instances for the motif was in the lowest decile of that sample. The filtering step is to avoid potential bias for lower f-VICE values due to sparsity. We used a posterior probability of 0.5 as the threshold to split the high and low f-VICE distributions. We alternatively tried to fit a single Gaussian distribution to the f-VICEs instead of a mixture model. The Bayesian information criterion values of the Gaussian mixture models were greater than the single Gaussian models in all nine samples analyzed in this study, indicating that a mixture model was a better fit for these data. Q-Q plots show that the Gaussian mixture model and single Gaussian model thresholds can be used to obtain a similar separation between the low and high f-VICE motifs (Supplementary Fig. 16b), which indicates the robust nature of the chosen thresholds.

FRAP/f-VICE robust regression and CTCF-Cohesin regions comparisons. To measure the correlation between FRAP recovery times and f-VICE, we performed a literature search of reported FRAP recovery times, which are referenced in Supplementary Table 1. Robust linear regressions of f-VICE and FRAP recovery times were performed with the rlm function of the R package MASS (v. 7.3-50)\(^6\). For each TF with FRAP recovery times, we used MACS2 tag from the merged GM1287 RAD21 optimal IDR peaks (ENCODE accessions ENFCF753RGL and ENFF002CPK). CTCF regions without cohesin were obtained similarly as before, removing CTCF motifs that intersected any of the GM1287 RAD21 ChIP-seq peaks. All operations were performed with bedtools (v. 2.26.0). The choice of optimal IDR peaks for RAD21 aimed to maintain the number of RAD21 peaks included in each motif instance from nonoverlapping regions, therefore increasing the stringency of the comparisons. We performed a quintile-based downsampling approach to make the CTCF/cohesin\(^+\) and CTCF/ cohesin\(^-\) regions comparable regarding ChIP-seq signal, ATAC-seq signal, and FIMO motif scores. This was done by selecting all CTCF motifs encompassing the CTCF/cohesin\(^+\) and CTCF/cohesin\(^-\) regions and, for each feature (ATAC-seq signals, ChIP-seq signal, or motif scores), calculating quantiles (n = 20). Then, for every quintile, we counted the number of motifs belonging to the CTCF/cohesin\(^+\) and CTCF/cohesin\(^-\) regions and randomly downsampled the group with more motifs instances to have the same number of motifs as the other in that quintile. This ensured that both regions had the same number of motifs and comparable distributions of ATAC and ChIP signals and motif scores (as an example of this normalization, refer to Supplementary Fig. 18a).

Pseudocode. for feature in {ATAC, ChIP, PWM}:
 split feature in 20 quintiles for quantile in {1..20}:
 set1 = CTCF/cohesin\(^+\) ∈ feature
 set2 = CTCF/cohesin\(^-\) ∈ feature
 smallest_set = smallest (set1, set2)
 largest_set = largest (set1, set2)
 n = size (smallest_set)
 randomly select n items from largest_set

For the main figures, we used CTCF and RAD21 experiments ENCFNF963PJY and ENCFNF753CPK, respectively (the same comparisons using the other CTCF/RAD21 datasets are presented in Supplementary Fig. 18). The quantity labeled as relative chromatin information enrichment in Fig. 2b corresponds to the sum of positive chromatin information enrichment (above dashed line) in each V-plot, divided by the CTCF/cohesin\(^+\) value for normalization.

Clustering. Cross-tissue clustering and dendrograms (Fig. 3a) were calculated using the Euclidean distances of the pairwise Spearman correlation of f-VICEs across samples. Normalized f-VICE values were converted to motif-wise Z scores before clustering.

Nucleosome occupancy analyses. We used NuclaoATAC (v. 0.3.4)\(^2,6\) to estimate the nucleosome positions in Fig. 2e. Briefly, we ran the software with default parameters as input the GM1287 ATAC-seq data generated in this study. We calculated the aggregate density of nucleosome midpoints positions relative to the BMO predicted bound motif coordinates for each motif (see Supplementary Fig. 20g for an example density plot). We then converted the nucleosome density values into Z-scores, binned the f-VICE quintiles, and calculated the average nucleosome density Z-score per f-VICE quintile (Supplementary Fig. 20h).

**Pair-end Mapped unmapped reads from the lymphoblastoid cell line GM19238 were obtained from SRA, under accession SRR4524833. Reads were mapped to the hg19 reference using BWA mem and processed in an identical fashion to the ATAC-seq data, with an additional step to retain only sequenced fragments of length ≥ 12 bp, therefore enriching for mononucleosomal fragments. The NGS aggregate signal plots were generated using ngsplot (github.com/shellen-sinai/ngsplot; v. 2.63). For each motif plot, we used as input the BED files corresponding to the regions that were used to generate the corresponding V-plot. Motif NGS Z-Nase reads were calculated using the MNEase reads per million mapped reads (RPM) signal tracks outputted by ngsplot and Eq. (4). MNEase/CIE correlations were calculated using positions ≤ 150 bp from the motif center.

Chromatin information enrichment asymmetry. Chromatin information enrichment asymmetry was calculated as the log ratio between the positive information content enrichment in the left and right of the motif center. To estimate significance, we used a permutation test where each fragment midpoint had a 50% chance of changing its direction relative to the motif while keeping the same distance (i.e. multiply its x-axis value by −1). We calculated the asymmetry of the permuted V-plots (n = 100,000) to generate a null distribution of asymmetry. Because the null was normally distributed based on Kolmogorov-Smirnov and Shapiro normality tests, we were able to estimate p values beyond the number of permutations by calculating the observed asymmetry Z-score relative to the null

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21534-4}

ARTICLE
distribution. To calculate the nearest TSS directionality bias, we counted the number of active protein-coding TSS (GENCODE V19) (determined with the presence of LCL Cap-analysis gene expression (CAGE) tag支持 contexts in the next session) on the left and right sides of the motif and calculated the log2 ratio of the two sides. For the proximal and distal motif V-plots, we restricted our analyses to motifs occurring ≤1 kb or ≥1 kb from the nearest CAGE-supported TSS of any type (e.g. lincRNAs, pseudogenes; GENCODE V19). Enrichments of the plots in Fig. 2f were calculated by randomly permuteing the signal of the points in the x- and y-axis (n = 10,000 permutations).

CAGE tag cluster identification. We downloaded CAGE data (fastq files) for 154 LCL samples44 and mapped to hg19 using STAR (version 2.5.4b; default parameters)45 and pruned the mapped reads to high quality reads (using samtools view v. 1.3.1; options -F q < 255). We used the paralu method66 to identify clusters of CAGE tag reads. We called CAGE tag clusters in each individual sample using raw tag counts, requiring at least 2 tags at each included start site and allowing single base-pair tag clusters (‘singleton’) if supported by >2 tags. We then merged the tag clusters on each strand across samples. For each resulting segment, we calculated the number of LCL samples in which TCS overlapped the segment. We included the segment in the consensus TCS set if it was supported by independent TCS in at least 10 individual LCL samples, resulting in n = 10 tag clusters. We then filtered out regions blacklisted by the ENCODE consortium due to poor mappability using bedtools (v. 2.26.0) to obtain the final set of LCL tag cluster regions.

DNA binding domain enrichments. DNA binding domains (DBD) enrichments were performed using a f-VICE rank sum permutation test. We assigned DBDs to the non-redundant motifs that mapped between our database and the one reported with at least 5 motifs and calculated the f-VICE enrichments for each DBD using rank sums obtained from randomly permuting gene labels. This approach ensures the DBD and compared the observed value to a null distribution of 100,000 540 motifs. We used the f-VICE rank from each motif to calculate the f-VICE rank the queried database), which yielded high-con

6-mer f-VICE calculations. We generated a list of all possible DNA 6-mers (n = 2016 after filtering reverse complements) and scanned the hg19 reference genome to obtain the coordinates for all their corresponding matches. Similarly to motifs, we only retained 6-mer matches that were in mappable regions and did not intersect blacklisted regions. For each set of 6-mer matches, we used BMO to determine the subset that was predicted bound. We calculated the normalized f-VICE for each 6-mer using exactly the same steps as in the motifs, including using linear regression to control for chromatin accessibility. For each sample with significantly high allelic imbalance, we calculated the f-VICE associated with all 6-mer instances overlapping with each allele. For each sample, we determined the f-VICE decile changes associated with every SNP tested for allelic imbalance and determined the matrix of the log2 ratios of each possible decile change in the imbalanced versus all trotonomic SNPs. To test for significance, we devised a permutation test where all symmetrical pairs of f-VICE deciles, X1, X2, ..., Xn, were permuted to provide the observed allele imbalance at each SNP to 20 reads when performing the binomial test. We did not test SNPs in the lymphoblastoid cell line sample because of its low representation of 11-mers in the genome, which precluded the use of BMO filtering reverse complements) and scanned the hg19 reference genome

cis-eQTL enrichments. Feature enrichments in eQTLs were calculated using GREGOR (v. 1.2.1)71 and QTL tools fenrich (v. 1.1)72. We used the lymphoblastoid cell line (LCL) eQTL sets from Geuvadis52 and GTEx53 (FDR < 5%). GREGOR background estimations were performed using SNPs with LD 0.99 for eQTL, with a maximum distance of 1 Mb from the variants of interest. Variants used as input for GREGOR were pruned to have maximum linkage disequilibrium r2 of 0.8 with any other variant. For fenrich, we used the most significant SNP per gene as input.

ATAC-seq allelic imbalance analyses. To determine SNP allelic bias in ATAC-seq data, we used the publicly available data from Buenrostro et al., listed in Supplementary Data 1, the Parker Lab GM12878 sample discussed here, and the ABCU196 islet sample50. For GM12878 data, adapters were trimmed using cuta (v. 0.1.2), and reads mapped to hg19 using bowtie (default options except for the -M flag). Bam files were filtered to high-quality autosomal read pairs using samtools view (v. 1.3.1) (with flags -f 3 -F 4 -F 8 256 -F 2048 -q 30. WASP (v. 0.2.1, commit 5a25185; python version 2.7)27 was used to diminish reference bias; for the non-redundant motifs that mapped between our database and the one reported with at least 5 motifs and calculated the f-VICE enrichments for each DBD using rank sums obtained from randomly permuting gene labels. This approach ensures the DBD and compared the observed value to a null distribution of 100,000 permutations. We simultaneously performed a similar analysis using InterPro protein domains (2758)89 Supplementary Fig. 23). In order to assign domains to motifs, we first mapped our motifs to CIS-BP database (Build 1.02)90, which has high-confidence motif-gene assignments, and retained genes that mapped to a single motif using the same approach described above. Each gene was then linked to a motif f-VICE score (n = 475) and we only retained domains with at least 5 genes after motif-gene mapping. Permutation and enrichments were calculated identically as described above.

cis-eQTL enrichments. Feature enrichments in eQTLs were calculated using GREGOR (v. 1.2.1)71 and QTL tools fenrich (v. 1.1)72. We used the lymphoblastoid cell line (LCL) eQTL sets from Geuvadis52 and GTEx53 (FDR < 5%). GREGOR background estimations were performed using SNPs with LD 0.99 for eQTL, with a maximum distance of 1 Mb from the variants of interest. Variants used as input for GREGOR were pruned to have maximum linkage disequilibrium r2 of 0.8 with any other variant. For fenrich, we used the most significant SNP per gene as input.
14. Baek, S., Goldstein, I. & Hager, G. L. Bivariate genomic footprinting detects DNA sequence and chromatin accessibility data. Genome Res. 21, 447–455 (2011).

15. Varshney, A. et al. Genetic regulatory signatures underlying islet gene expression and type 2 diabetes. Proc. Natl Acad. Sci. USA 114, 2301–2306 (2017).

16. Ackermann, A. M., Wang, Z., Schug, J., Naji, A. & Kaestner, K. H. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes. Mol. Metab. 5, 233–244 (2016).

17. Corces, M. R. et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat. Methods 14, 959–962 (2017).

18. Loffreda, A. et al. Live-cell p53 single-molecule binding is modulated by C-terminal acetylation and correlates with transcriptional activity. Nat. Commun. 8, 313 (2017).

19. Mueller, F., Mazza, D., Stasevich, T. J. & McNally, J. G. FRAP and kinetic modeling in the analysis of nuclear protein dynamics: what do we really know? Curr. Opin. Cell Biol. 22, 403–411 (2010).

20. Hansen, A. S., Pustova, I., Cattoglio, C., Tjian, R. & Darzacq, X. CTCF and cohesin regulate chromatin loop stability with distinct dynamics. eLife 6, 1–33 (2017).

21. Scheb, A. N. et al. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions. Genome Res. 25, 1757–1770 (2015).

22. Li, S., Zheng, E. B., Zhao, L. & Liu, S. Nonreciprocal and conditional cooperation directs the pioneer activity of pluripotency transcription factors. Cell Rep. 28, 2689–2703.e4 (2019).

23. Kundaje, A. et al. Ubiquitous heterogeneity and asymmetry of the chromatin environment at regulatory elements. Genome Biol. 22, 1735–1742 (2017).

24. Grossman, S. R. et al. Positional specificity of different transcription factor classes within enhancers. Proc. Natl Acad. Sci. USA 108, 20146–201463 (2011).

25. Hansen, A. S., Pustova, I., Cattoglio, C., Tjian, R. & Darzacq, X. CTCF and cohesin regulate chromatin loop stability with distinct dynamics. eLife 6, 1–33 (2017).

26. Scheb, A. N. et al. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions. Genome Res. 25, 1757–1770 (2015).

27. Li, S., Zheng, E. B., Zhao, L. & Liu, S. Nonreciprocal and conditional cooperation directs the pioneer activity of pluripotency transcription factors. Cell Rep. 28, 2689–2703.e4 (2019).

28. Kundaje, A. et al. Ubiquitous heterogeneity and asymmetry of the chromatin environment at regulatory elements. Genome Biol. 22, 1735–1742 (2017).

29. Grossman, S. R. et al. Positional specificity of different transcription factor classes within enhancers. Proc. Natl Acad. Sci. USA 108, 20146–201463 (2011).

30. Collegari, A. et al. Single-molecule dynamics and genome-wide transcriptions reveal that NF-κB (p65)-DNA binding times can be decoupled from transcriptional activation. PLOS Genet. 15, e1007891 (2019).

31. GTEx Consortium. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

32. Lappalainen, T. et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501, 506–511 (2013).

33. Zaret, K. S. & Carroll, J. S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25, 2227–2241 (2011).

34. Karwacki, K. et al. Critical role of IRF1 and BATF in forming chromatin landscape during type 1 regulatory cell differentiation. Nat. Immunol. 18, 412–421 (2017).

35. Yanez-Cuna, J. O. et al. Dissection of thousands of cell type-specific enhancers identifies dinucleotide repeat motifs as general enhancer features. Genome Res. 24, 1147–1156 (2014).

36. Segal, E. & Widom, J. Poly(ACT)tracts: major determinants of nucleosome positioning. Trends Genet. 25, 335–343 (2009).

37. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

38. Scott, L. J. et al. The genetic regulatory signature of type 2 diabetes in human skeletal muscle. Nat. Commun. 7, 447 (2016).

39. Rohland, N. & Reich, D. Cost-effective, high-throughput DNA sequencing enables interrogation of frozen tissues. Proc. Natl Acad. Sci. USA 115, 2040–2040 (2014).

40. Picelli, S. et al. Tn5 transposase and tagmentation procedures for massively scaled sequencing projects. Genome Res. 24, 2033–2040 (2014).

41. Rohland, N. & Reich, D. Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 22, 939–946 (2012).

42. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

43. Scott, L. J. et al. The genetic regulatory signature of type 2 diabetes in human skeletal muscle. Nat. Commun. 7, 447 (2016).

44. Li, H. et al. The sequence alignment/Map format and SAMtools. Bioinforma. Oxf. Engl. 25, 2078–2079 (2009).

45. Zhang, Y. et al. Model-based Analysis of ChIP-Seq (MACS). Bioinforma. Oxf. Engl. 25, 2078–2079 (2009).

46. 1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

47. Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinforma. Oxf. Engl. 27, 1017–1018 (2011).

48. Castro-Mondragon, J. A., Jaeger, S., Thieffry, D., Thomas-Chollier, M. & Van Helden, J. RSAT matrix-clustering: dynamic exploration and redundancy reduction of transcription factor binding motif collections. Nucleic Acids Res. 45, 1–13 (2017).

49. Rekker, J., StümerK. Entropy inference and the James-Stein estimator, with application to nonlinear gene association networks. J. Mach. Learn. Res. 10, 1469–1484 (2009).
50. Stormo, G. D. DNA binding sites: representation and discovery. Bioinformatics 16, 1264–1268 (2000).
51. Zhao, Y. & Stormo, G. D. Quantitative analysis demonstrates most transcription factors require only simple models of specificity. Nat. Biotechnol. 29, 480–483 (2011).
52. Chesi, A. et al. Genome-scale Capture C promoter interactions implicate effector genes at GWAS loci for bone mineral density. Nat. Commun. 10, 12 (2019).
53. Denas, O. et al. Genome-wide comparative analysis reveals human-mouse regulatory landscape and evolution. BMC Genomics 16, 87 (2015).
54. Liptak, T. On the combination of independent tests. Magy. Tud. Akad. Mat. Kut. Int Koz 3, 171–197 (1958).
55. Benjamini, Y. & Yekutieli, D. The control of the false discovery rate in multiple testing under dependency by Yoav Benjamini I and Daniel Yekutieli 2. Ann. Stat. 29, 1165–1188 (2001).
56. Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (Springer-Verlag, 2002).
57. Delignette-Muller, M. L. & Dutang, C. tdistrplus: An R Package for Fitting Distributions. J. Stat. Softw. 64, (2015).
58. Saito, T. & Rehmsmeier, M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE 10, 1–21 (2015).
59. Davis, J. & Goadrich, M. The relationship between Precision-Recall and ROC curves. Proc. 23rd Int. Conf. Mach. Learn. - ICML 06, 233–240 (2006).
60. Sing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. ROC: visualizing classifier performance in R. Bioinformatics 21, 3940–3941 (2005).
61. Grau, J., Grosse, I. & Keilwagen, J. PRROC: computing and visualizing Precision-recall and receiver operating characteristic curves in R. Bioinformatics 31, 2595–2597 (2015).
62. Benaglia, T., Chauveau, D., Hunter, D. R. & Young, D. S. mixtools: an R package for analyzing mixture models. J. Stat. Softw. 32, 1–29 (2009).
63. Gaffney, D. J. et al. Controls of nucleosome positioning in the human genome. PLOS Genet. 8, e1003036 (2012).
64. Garieri, M. et al. The effect of genetic variation on promoter usage and enhancer activity. Nat. Commun. 8, 1–9 (2017).
65. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
66. Frith, M. C. et al. A code for transcription initiation in mammalian genomes. Genome Res 18, 1–12 (2008).
67. Lambert, S. A. et al. The human transcription factors. Cell 172, 650–665 (2018).
68. Gupta, S., Stamatoyannopoulos, J. A., Bailey, T. L. & Noble, W. S. Quantifying similarity between motifs. Genome Biol. 8, R24 (2007).
69. Mitchell, A. L. et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. https://doi.org/10.1093/nar/gky1100 (2018).
70. Weirauch, M. T. et al. Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158, 1431–1443 (2014).
71. Schmidt, E. M. et al. GREGOR: evaluating global enrichment of trait-associated variants in epigenomic features using a systematic, data-driven approach. Bioinformatics 31, 2601–2606 (2015).
72. Delaneau, O. et al. A complete tool set for molecular QTL discovery and analysis. Nat. Commun. 8, 15452 (2017).
73. van de Geijn, R., McVicker, G., Gilad, Y. & Pritchard, J. K. WASP: allele-specific software for robust molecular quantitative trait locus discovery. Nat. Methods 12, 1061–1063 (2015).
74. Lee, D. LS-GKM: a new glm-SVM for large-scale datasets. Bioinformatics 32, 2196–2198 (2016).
75. D’Oliveira Albanus, R. et al. Chromatin information content landscapes inform transcription factor and DNA interactions. https://github.com/ParkerLab/chromatin_information. (2020) https://doi.org/10.5281/ ZENODO.4317990.
76. D’Oliveira Albanus, R. et al. Chromatin information content landscapes inform transcription factor and DNA interactions. https://github.com/ ParkerLab/atacltk (2020) https://doi.org/10.5281/ZENODO.4321161.

Acknowledgements
We thank members of the Parker Lab, L.J. Scott, P. Freddolino, P. Witkopp, M. Barmeister, G. Higgins, P. Pereira, M. Puthrenvedu, and J. Brancho for helpful comments. Dr. Rickard Sandberg generously gifted the plasmid used for Trn5 synthesis. Sequencing was performed at the UM Sequencing Core Facility. This work was supported by the ADA Pathway to Stop Diabetes Grant 1-14-IN1-07 and by the National Institute of Diabetes and Digestive and Kidney Diseases grant R01 DK117960 to S.C.J.P.

Author contributions
R.O.A.: Analyzed data, designed computational experiments, wrote the manuscript. Y.K.: Generated ATAC-seq datasets. I.H.: Implemented computational algorithms. A.V.: analyzed eQTL and chromHMM data. P.O.: calculated ATAC-seq allelic imbalance. J.K.: designed ATAC-seq experiments. S.C.J.P.: designed experiments, analyzed data, wrote the manuscript, and supervised all aspects of the project.

Competing interests
All authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-21534-4.

Correspondence and requests for materials should be addressed to S.C.J.P.

Peer review information Nature Communications thanks Davide Cittaro and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.