Cardiogram showed atrial flutter with rapid ventricular response. After a diltiazem infusion failed to achieve adequate rate control, he underwent transesophageal echocardiogram in preparation for electrical cardioversion. Two small mobile masses were visualized, one on each mitral leaflet. One was fixed to the ventricular aspect measuring 0.7 cm in cross section, while the other was on the atrial surface, measuring 2.07×0.36 cm (Fig. 1).

As there was uncertainty whether these masses were thrombus or vegetation, blood cultures were obtained. Gram negative rods were found and were subsequently identified by mass spectroscopy microbial identification system as *R. radiobacter*. Daily blood cultures persistently showed the organism four days into ceftriaxone therapy and the patient was switched to ertapenem and levofloxacin. The patient subsequently developed severe thrombocytopenia and ertapenem was discontinued after five days of therapy while levofloxacin was continued. Susceptibility results were not available from our laboratory and were requested from a specialty laboratory. The following susceptibilities results are shown in Table 1.

Sensitivities showed susceptibility to ceftazidime, and he was switched to ceftazidime after thirteen days of levofloxacin therapy. Throughout his hospitalization, the patient denied feeling chest pain, shortness of breath above baseline, fever, chills, and night sweats. Blood cultures remained negative since initiation of levofloxacin. The patient remained on ceftazidime for an additional nine days before being switched to piperacillin-tazobactam. Twelve days later, the patient was discharged on home cefepime and completed an eight week course. Of note, repeat transesophageal echocardiogram was performed 35 days after the initial echocardiogram and showed a reduced size of vegetation, measuring 2.07×0.36 cm (Fig. 2).
Discussion

Rhizobium radiobacter is a gram-negative, non-spore forming bacterium which used to be classified under the genus *Agrobacterium* as recently as 2003 [4]. It is a soil organism which has been implicated in tumor pathogenesis in multiple plant species important for agriculture.

More recently, *R. radiobacter* has been recognized as a pathogen known to cause serious infections in immunocompromised and debilitated individuals [7]. Since the 1980s, there have been increasing case reports of this organism causing bacteremia in patients with intravenous catheters, primarily in patients with underlying immunosuppression secondary to malignancies and HIV [5]. Most cases reported in the literature suggest that the major risk factors shared between patients infected with *R. radiobacter* are neutropenia, leukopenia, catheters, hospitalization, and low CD4+ lymphocyte count [2]. Prosthetic valve endocarditis is a rare manifestation of *R. radiobacter* infection that has only been reported a limited number of times.

This case is a rare example of bioprosthetic mitral valve endocarditis in an individual who lacked significant risk factors to suggest that he was immunocompromised. The patient did have a formal diagnosis of COPD and type 2 diabetes mellitus but had not received any systemic steroids in the previous year and his most recent glycosylated hemoglobin level was less than 6%. In previous reported cases of *R. radiobacter* endocarditis, an important similarity shared between the patients was a predisposition to infections as suggested by their debilitated clinical picture. For example, in one case report a patient with a known history of active hepatitis C infection who had just underwent a femoral popliteal thromboembolectomy developed *R. radiobacter* endocarditis of a prosthetic valve [8]. A second case report in Venezuela reported a patient with chronic kidney disease stage 5 on hemodialysis develop a tricuspid fusiform vegetation with *R. radiobacter* [6]. The clinical presentation of our patient raises the possibility that *Rhizobium* endocarditis and bacteremia can manifest in immunocompetent individuals, especially in the presence of prosthetic cardiac valves.

Another important discussion point with *R. radiobacter* endocarditis is establishing an antimicrobial guideline to treat this infection. Our patient was successfully treated with a prolonged course of levofloxacin, piperacillin/tazobactam, and ceftazidime with the assistance of a specialized laboratory for sensitivity testing. There is currently limited literature to establish a definitive guideline for the correct use of antimicrobials in the treatment of *R. radiobacter* infections. However, in one case series in Taiwan, isolates of the *R. radiobacter* organism were obtained from thirteen patients infected between 1996 and 2002 [1]. These isolates showed susceptibility to ceftazidime, piperacillin-tazobactam, carbapenems, and ciprofloxacin. These isolates were obtained from a number of infected sites but did not include any cases of confirmed endocarditis [1]. Nonetheless, our patient was successfully treated with the same antimicrobials as reported in the study. As described earlier, the patient with *R. radiobacter* endocarditis of a prosthetic mitral valve after undergoing a femoral-popliteal thromboembolectomy was successfully treated with a six-week course of piperacillin/tazobactam, and a patient in Venezuela with a tricuspid fusiform vegetation was successfully treated with a six-week course of imipenem [6,8]. However, some resistance to ampicillin-sulbactam, ceftazidime, cefotaxime, and aztreonam was documented in a Taiwanese study [1]. Due to limited literature data on the success and failure of antimicrobial therapy in the treatment of *R. radiobacter* and the rarity of the organism, it is still reasonable to obtain sensitivities from a specialized laboratory on a case-by-case basis.

Table 1

This table demonstrates susceptibilities as reported by specialty laboratory which further guided antibiotic management.

Antimicrobial	MIC (mcg/ml)	Susceptible/ Resistant
Piperacillin/tazobactam	≤16/4	S
Cefepime	≤2	S
Ceftazidime	8	S
Meropenem	2	S
Aztreonam	> 16	R
Ciprofloxacin	≤1	S
Levofloxacin	≤1	S
Amikacin	32	I
Gentamicin	8	I
Tobramycin	> 8	R
Trimethoprim/Sulfamethoxazole	> 2/38	R

Fig. 2. Repeat TEE showing almost entire resolution of previously identified vegetations, with only small residual mass on atrial aspect of bioprosthetic valve.

Unfortunately, his renal failure never improved and he remains hemodialysis dependent. His mitral valve stenosis is severe and quality of life is negatively impacted secondary to functional limitations. His long-term prognosis is guarded despite successful treatment for *Rhizobium radiobacter* endocarditis.
Radiobacter causing endocarditis and bacteremia have been limited to a few case reports, manifesting in immunocompromised individuals [3]. Our case demonstrates an immunocompetent host for *R. radiobacter* bacteremia and bioprosthetic endocarditis. The small study conducted in Taiwan where eighteen isolates of *R. radiobacter* in-vitro susceptibilities were established is the largest study of antibiotic efficacy in treating *R. radiobacter*. More studies of in-vitro susceptibilities are required to establish a more definitive antimicrobial approach for this organism. For cases of endocarditis, such as this one, cefepime, piperacillin-tazobactam, carbapenems, and fluoroquinolones are reasonable empiric antimicrobial agents, but it may be wise to obtain sensitivities from a specialty laboratory.

References

[1] Lai CC, Teng LJ, Hsueh PR, Yuan A, Tsai KC, Tang JL, Tien HF. Clinical and microbiological characteristics of *Rhizobium radiobacter* infections. Clin Infect Dis 2004;38:149–53.
[2] Manfredi R, Nanetti A, Ferri M, Mastrosalai A, Coronado OV, Chiodo F. Emerging gram-negative pathogens in the immunocompromised host: *Agrobacterium radiobacter* septicemia during HIV disease. New Microbiol 1999;22:975–82.
[3] Plotkin GR. *Agrobacterium radiobacter* prostatic valve endocarditis. Ann Intern Med 1980;93(6):839–40.
[4] Young JM. Classification and nomenclature of *Agrobacterium* and *Rhzobium* – a reply to Farrand et al. (2003). Int J Syst Evol Microbiol 2003;53(5):1689–95. http://dx.doi.org/10.1099/ijs.0.02762-0.
[5] Ponnapula S, Swanson JM, Wood GC, Boucher BA, Wells DL, Croce MA. Treatment of *Rhizobium radiobacter* bacteremia in a critically ill trauma patient. Ann Pharmacother 2013;47(11):1584–7.
[6] Rinerua Gonzalvez Zambrano IR, Calcano C, Montano C, Fuenmayor Z, Rodney H, Rodney M. Infective endocarditis by *Rhizobium radiobacter*. a case report. Investig Clin 2003;54(1):68–73.
[7] Sood S, Nerurkar V, Malvankar S1. Catheter associated bloodstream infection caused by *R. Radiobacter*. Indian J Med Microbiol 2010;28(1):62–4.
[8] Zahoor BA. *Rhizobium radiobacter* endocarditis in an intravenous drug user: clinical presentation, diagnosis, and treatment. Ann Vasc Surg 2016;35(206):7.