Accelerated, Scalable and Reproducible AI-driven Gravitational Wave Detection

E. A. Huerta1,2,*, Asad Khan3, Xiaobo Huang3, Minyang Tian3, Maksim Levental2, Ryan Chard1, Wei Wei3, Maeve Heflin3, Daniel S. Katz3, Volodymyr Kindratenko3, Dawei Mu3, Ben Blaiszik1,2, and Ian Foster1,2

* e-mail: elihu@anl.edu

1Data Science and Learning Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
2University of Chicago, Chicago, Illinois 60637, USA
3University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

ABSTRACT

The development of reusable artificial intelligence (AI) models for wider use and rigorous validation by the community promises to unlock new opportunities in multi-messenger astrophysics. Here we develop a workflow that connects the D ATA AND LEARNING H UB f OR SCIENCE, a repository for publishing AI models, with the Hardware Accelerated Learning (HAL) cluster, using funcX as a universal distributed computing service. Using this workflow, an ensemble of four openly available AI models can be run on HAL to process an entire month’s worth (August 2017) of advanced Laser Interferometer Gravitational-Wave Observatory data in just seven minutes, identifying all four all four binary black hole mergers previously identified in this dataset and reporting no misclassifications. This approach combines advances in AI, distributed computing, and scientific data infrastructure to open new pathways to conduct reproducible, accelerated, data-driven discovery.

Introduction

Gravitational waves were added to the growing set of detectable cosmic messengers in the fall of 2015 when the advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors reported the observation of gravitational waves consistent with the collision of two massive, stellar-mass black holes [1]. Over the last five years, the advanced LIGO and advanced Virgo detectors have completed three observing runs, reporting over 50 gravitational wave sources [2, 3]. As advanced LIGO and advanced Virgo continue to enhance their detection capabilities, and other detectors join the international array of gravitational wave detectors, it is expected that gravitational wave sources will be observed at a rate of several per day [4].

An ever-increasing catalog of gravitational waves will enable systematic studies to advance our understanding of stellar evolution, cosmology, alternative theories and gravity, the nature of supranuclear matter in neutron stars, and the formation and evolution of black holes and neutron stars, among other phenomena [5–11]. Although these science goals are feasible in principle given the proven detection capabilities of astronomical observatories, it is equally true that established algorithms for the observation of multi-messenger sources, such as template matching and nearest neighbors, are compute-intensive and poorly scalable [12–14]. Furthermore, available computational resources will remain oversubscribed, and planned enhancements will be rapidly outstripped with the advent of next-generation detectors within the next couple of years [15]. Thus, an urgent re-thinking is critical if we are to realize the multi-messenger astrophysics program in the big-data era [16].

To contend with these challenges, a number of researchers have been exploring the application of deep learning and of computing accelerated with graphics processing units (GPUs). Co-authors of this article pioneered the use of deep learning and high performance computing to accelerate the detection of gravitational waves [17, 18]. The first generation of these algorithms targeted a shallow signal manifold (the masses of the binary components) and only required tens of thousands of modeled waveforms for training, but these models served the purpose of demonstrating that an alternative method for gravitational wave detection is as sensitive as template matching and significantly faster, at a fraction of the computational cost.

Research and development in deep learning is moving at an incredible pace [19–37] (see also ref. [38] for a review of machine-learning applications in gravitational wave astrophysics). Specific milestones in the development of artificial intelligence (AI) tools for gravitational wave astrophysics include the construction of neural networks that describe the four-dimensional (4D) signal manifold of established gravitational wave detection pipelines, that is, the masses of the binary components and the z-component of the three-dimensional spin vector in (m_1, m_2, s_z). This requires the combination of distributed training algorithms and extreme-scale computing to train these AI models with millions of modeled waveforms in a reasonable amount of time [30]. Another milestone concerns the creation of AI models that enable gravitational wave searches...
over hour-long datasets, keeping the number of misclassifications at a minimum [39].

In this article, we introduce an AI ensemble, designed to cover the 4D signal manifold \((m_1, m_2, \hat{s}_1, \hat{s}_2)\), to search for and find binary black hole mergers over the entire month of August 2017 in advanced LIGO data [40]. Our findings indicate that this approach clearly identifies all black hole mergers contained in that data batch with no misclassifications. To conduct this analysis we used the Hardware-Accelerated Learning (HAL) cluster deployed and operated by the Innovative Systems Lab at the National Center for Supercomputing Applications. This cluster consists of 16 IBM SC922 POWER9 nodes, with four NVIDIA V100 GPUs per node [41]. The nodes are interconnected with EDR InfiniBand network, and the storage system is made of two DataDirect Networks all-flash arrays with SpectrumScale file system, providing 250 TB of usable space. Job scheduling and resources allocation are managed by the SLURM (Simple Linux Utility for Resource Management) system. As we show below, we can process the entire month of August 2017 with our deep learning ensemble in just 7 min using the entire HAL cluster. In addition to taking this noteworthy step forward in the use of AI for accelerated gravitational wave searches, we also demonstrate that we can share these models with the broader community by leveraging the Data and Learning Hub for Science (DLHub) [42, 43]. We believe that this approach will accelerate the adoption and further development of deep learning for gravitational wave astrophysics.

Given that DLHub has the ability to both archivally store and actively run trained models, it provides a means to address reproducibility, reuse, and credit. With sufficient computational resources (HAL, in this case) and a connection made via funcX, a function-as-a-service platform, having a model on DLHub allows the inference or analysis described in a published paper to be reproduced given that the original data is also available (as described in Results). If applied to new data instead, the model can then be reused, with DLHub’s registration providing a means for the developers of the model to receive credit by the users citing the archived model. This also allows users to easily experiment with trained models, even from one discipline to another.

This paper brings together several key elements to accelerate deep learning research. We showcase how to combine cyberinfrastructure funded by the National Science Foundation (NSF) and the Department of Energy (DOE) to release state-of-the-art, production scale, neural network models for gravitational wave detection. The framework \(DLHub \rightarrow funcX \rightarrow HAL\) provides the means to enable open source, accelerated deep learning gravitational wave data analysis. This approach will empower the broader community to readily process open source LIGO data with minimal computational resources. Going forward, this approach may be readily adapted to demonstrate interoperability, replacing HAL with any other compute resource. At a glance, the developments for AI-driven gravitational wave detection introduced in this article encompass the following characteristics:

- **Open Source** The containerized AI models introduced in this study are shared with the broader community through DLHub. This approach will streamline and accelerate the adoption and development of AI for gravitational wave astrophysics.

- **Reproducible** We conducted two independent analyses to test the predictions of our AI ensemble, and confirm that the output of these studies is consistent and reproducible.

- **Accelerated** We used 64 NVIDIA GPUs to process advanced LIGO data from the entire month of August 2017 in just 7 min, which is orders of magnitude faster and computationally more efficient than other methods that have harnessed advanced cyberinfrastructure platforms for gravitational wave detection [12, 14].

- **Sensitivity and Accuracy** This data-driven approach is capable of processing advanced LIGO data in bulk for a 4D signal manifold, reporting perfect true positive rate on real gravitational wave events and zero misclassifications over one month’s worth of searched data.

- **Scalable** We demonstrate that AI-driven gravitational wave detection scales strongly as we increase the number of GPUs used for inference. The software needed to scale this analysis, and to post-process the output of the AI ensemble is all provided at the DLHub.

The outstanding aspect of this work is the consolidation of these five disparate elements into a unified framework for end-to-end AI-driven gravitational wave detection. This type of big-data, open science research is part of a global project that aims to harness AI and advanced cyberinfrastructure to enable innovation in data-intensive research through new modes of data-driven discovery. Examples are the NSF Harnessing the Data Revolution and DOE FAIR (Findable, Accessible, Interoperable, and Reusable) Projects in the United States; and the European Science Cluster of Astronomy & Particle Physics ESFRI Research Infrastructures (ESCAPE) Project; and the European Open Science Cloud (EOSC) [44].

Results

We present results for two types of analyses. The first set of results was obtained by running our AI ensemble directly in HAL on advanced LIGO noise. For the second set, we conducted a similar analysis but now using the AI ensemble hosted at the DLHub and connecting it to HAL through funcX. These analyses were independently carried out by two different teams.

Accelerated AI gravitational wave detection in HAL. We designed an AI ensemble, described in detail in Methods and schematically shown in Fig. 1, to process advanced LIGO open-source data, from both Livingston and Hanford, that cover the...
entire month of August 2017. We chose this month because it contains several gravitational wave sources, and thus it provides a test bed to quantify the sensitivity of our AI models in identifying real events and to estimate the number of false positives over extended periods of time.

Figure 1. Gravitational wave detection workflow with AI ensemble. Hanford and Livingston gravitational wave data, depicted as blue and orange time-series data on the left, are fed into an AI ensemble of four neural network models. The response of the neural networks to advanced LIGO data is shown to the right of the boxes representing the models. At the post-processing stage, the outputs of the four neural networks are combined. If the outputs of all the models are consistent with the existence of a gravitational wave signal, then the post-processing algorithm indicates a positive detection. The bottom panel showcases a positive detection for the binary black hole merger GW170809.

The results we present below were obtained by directly running our AI ensemble in HAL. Fig. 2 summarizes the speed and sensitivity of our approach. When we distributed the inference over all 64 NVIDIA V100 GPUs in HAL, we can complete the search over the entire month of August 2017, including post-processing of the noise triggers identified by each model in the ensemble, within just 7 min (Fig. 2a). Our AI ensemble identifies all four binary black hole mergers contained in this dataset (Fig. 2b). We follow up two of these gravitational wave sources in Fig. 3, which presents spectrograms (Fig. 3a, c) and the response of one of the AI models in the ensemble to these real events (Fig. 3b, d).

We quantified the performance of our AI ensemble for gravitational wave detection by computing the receiver operating characteristic (ROC) curve using a test set of 237,663 modeled waveforms, injected in advanced LIGO noise and that cover a broad signal-to-noise ratio (SNR) range. As described in detail in Methods, we post-process the output of our AI ensemble with the find_peaks algorithm so that the width of the peak is within [0.5, 2] seconds and the height is between 0 and 1. In Fig. 4 we vary the height threshold between 0 and 1 while maintaining a minimum width of the peak to 0.5s. Our AI ensemble attains optimal performance in true positive rate as we increase the threshold from 0 to 0.9998, while the false positive rate increases from 10^{-6} to 10^{-3}. The AI approach achieves a high level of sensitivity and computational performance over long stretches of...
Figure 2. Speed, sensitivity and scalability of AI ensemble. a, The blue line indicates that we obtain near-perfect scaling as we distribute our AI ensemble over the entire HAL cluster. The orange line shows that our AI ensemble may process Hanford and Livingston datasets that span August 2017 in about 25 minutes when each neural network in the ensemble is assigned four NVIDIA V100 GPUs. Assigning 16 V100 GPUs to each model in the ensemble reduces the gravitational wave search to just 7 min. b, The green segments indicate the times when both Hanford and Livingston detectors were collecting data. Grey lines show times when one or both detectors were down. The orange lines show the output of our AI ensemble, which coincides with the existence of real gravitational waves (indicated by red lines) of binary black hole mergers in August 2017.

real advanced LIGO data. This approach is also capable of an accelerated, reproducible, AI gravitational wave search at scale that covers the 4D signal manifold that describes quasi-circular, spinning, non-precessing binary black hole mergers.

Connection of DLHub to HAL through funcX. We exercise the AI ensemble through DLHub [43] so that the models are widely available and our results reproducible. DLHub is a system that provides model repository and model serving facilities, in particular for machine-learning models with science applications. DLHub itself leverages funcX [45], a function-as-a-service platform that enables high-performance remote function execution in a flexible, scalable, and distributed manner. A funcX endpoint is deployed to HAL and registered with the funcX service; an endpoint consists of a funcX agent, a manager and a worker, and abstracts the underlying computing resource. The endpoint dynamically provisions HAL nodes and deploys workers to perform inference requests. This computational infrastructure is schematically shown in Fig. 5.

DLHub packages the AI ensemble and the inference function as a servable, that is, it builds a container that includes the models and their dependencies and registers the inference function with the funcX registry. An inference run corresponds to a funcX function invocation, which triggers the dispatch of the task to the HAL funcX endpoint. On every such run (that is, per collection of data, not per sample) the funcX agent deployed to HAL allocates the task to multiple nodes and managers (one manager per node), each of which then forwards the task to a single worker, which finally distributes the task across the GPUs in a multiple instruction, single data fashion (that is, one model per GPU, with all models operating on the same data). The models then perform their individual forward passes and the workers aggregate their results. Note that distinct managers, and therefore workers on distinct nodes, operate on non-overlapping chunks of data. Fig. 6 shows that scaling the inference analysis through the DLHub architecture is equivalent to directly running the analysis on the HAL cluster through distributed inference. In both instances, we succeeded at using the entire HAL cluster optimally.
Using this computational infrastructure, we reproduced the results presented in the previous section. Not only that, we also found that the computational performance of the DLHub architecture provides the same throughput as running the AI ensemble directly in HAL.

Currently, the system is set up only for post-processing of data, which provides the required framework for accelerated, off-line analyses. We are working to extend DLHub and fUNCX to support streaming data by using Globus [46]. This approach is laying the foundations for future scenarios in which advanced LIGO and other astronomical observatories broadcast real-time data to the broader community. Such an approach would enable researchers to carry out analyses with open-source data that are beyond the scope of scientific collaborations but essential to push the frontiers of multi-messenger astrophysics.

Discussion

Innovative AI applications in gravitational wave astrophysics have evolved from disruptive AI prototypes [17, 18] into sophisticated, physics-inspired AI models that describe the signal manifold covered by traditional gravitational wave detection pipelines for binary black hole mergers [39]. These models have the same sensitivity as template matching algorithms and run orders of magnitude faster and at a fraction of the computational cost.

AI is now being used to accelerate the detection of binary black holes and binary neutron stars [28, 29, 36, 39], and to forecast the merger binary neutron stars and neutron star-black hole systems [36, 37]. The current pace of progress makes it clear that the broader community will continue to advance the development of AI to realize the science goals of multi-messenger astrophysics.

Mirroring the successful approach of corporations leading AI innovation, we are releasing our AI models to enable the broader community to use and perfect them. This approach is also helpful to address healthy and constructive skepticism from researchers who do not feel at ease using AI. This article also demonstrates how complementary communities can work
Figure 4. Receiver operating characteristic curve of AI ensemble. The lines show the ROC curves for a test set that contain 237,663 modeled binary black hole waveforms injected in advanced LIGO noise throughout August 2017 and that covers a broad SNR range. The true positive rate is shown against the false positive rate as estimated from the output of our ensemble of four AI models. For reference, we indicate the performance of a “perfect classifier” in the top-left corner, i.e., 100% sensitivity with no false positives. The red dashed line describes the performance of an untrained model that produces random guesses. The grey dotted lines indicate the region of the inset.

Methods

Data. Datasets used to train, validate and test our AI ensemble are open source and readily accessible as described below.

Modeled Waveforms We used the open source PyCBC library [47] to produce modeled waveforms with the approximant SEOBNRv3 [48]. The training dataset consists of 1,136,415 modeled waveforms, sampled at 4096 Hz, that cover a parameter space of binary black hole mergers with total masses $M \in [5M_{\odot}, 100M_{\odot}]$, mass ratios $q \leq 5$, and individual spins $s_{z}^{1,2} \in [-0.8, 0.8]$.

Advanced LIGO gravitational wave data. The modeled waveforms are whitened and linearly mixed with advanced LIGO noise obtained from the Gravitational Wave Open Science Center [40]. Specifically, we use the three noise data segments, each 4096 s long, starting at GPS times 1186725888, 1187151872, and 1187569664. None of these segments
Figure 5. **DLHub architecture.** Schematic representation of the cyberinfrastructure resources used to conduct accelerated and reproducible gravitational wave detection on open-source advanced LIGO data. This architecture provides a command line interface (CLI), a Python software development kit (SDK) and a representational state transfer (REST) application programming interface to publish, manage and invoke AI models. The management service coordinates the execution of tasks on remote resources using a ZeroMQ (ØMQ) queue, which sends tasks to registered task managers for execution. This messaging model ensures that tasks are received and executed. DLHub supports both synchronous and asynchronous task execution.

![Diagram of DLHub architecture](image)

Figure 6. **Throughput of the DLHub+HAL architecture.** An AI ensemble of four neural networks, hosted at the DLHub, processes advanced LIGO data from an entire month (August 2017) in 7 min using the entire HAL cluster that has 64 NVIDIA V100 GPUs evenly distributed over 16 nodes.

![Graph showing throughput](image)

include known gravitational wave detections. These data are used to compute noise power spectral density estimates with open-source code available at the Gravitational Wave Open Science Center. These power spectral densities are then used to whiten both the strain data and the modeled waveforms. Thereafter, the whitened strain data and the whitened modeled waveforms are linearly combined, and a broad range of SNRs are covered to encode scale invariance in the neural network. We
then normalize the standard deviation of training data that contain both signals and noise to one. The ground-truth labels for training are encoded such that each time step after the merger is classified as noise, and all preceding time-steps in the 1 second window are classified as waveform strain. Hence, the transition in classification from waveform to noise identifies the location of the merger.

Code. Our AI ensemble and the post-processing software used to search for and find gravitational waves are available at the DLHub [49]. Each model in our AI ensemble consists of two independent modified WaveNets [50] processing Livingston and Hanford strain data sampled at 4,096Hz. The two outputs are then concatenated and jointly fed into a final set of two convolutional layers which output a classification (noise or waveform) probability for each time step. At test time on advanced LIGO strain data, we employ a post-processing function to precisely locate such transitions in the model’s output. Specifically, we use a 1 second window on the strain data, with a step size of 0.5 seconds, and use off-the-shelf peak detection algorithm find_peaks, provided by SciPy, on the models probability output. In the find_peaks algorithm, we specify the thresholds so that only peaks with a width in the 0.5 s–2 s range are selected. As the time step for the sliding window is 0.5 s, we merge any repeated detections, that is, peaks within 0.5 s of each other are counted as repeated detection. Once we have the predicted locations of the peaks or mergers from each of the four (randomly initialized and trained) models in the ensemble, we combine them in one final post-processing step so that all peaks that are within 1/128 s of each other are flagged as detection of true gravitational wave events, while the rest are discarded as random false alarms.

Statistics. Using the aforementioned methodology, we have quantified the performance of our AI ensemble for classification (gravitational wave detection) by computing the ROC curve. For this calculation we used a test set that consists of 237,663 modeled waveforms that cover a broad SNR range. Note that we are able to reduce misclassifications by combining two methodologies. First, the use of four AI models in tandem enables us to discard noise anomalies that are flagged by only one of the models. For instance, we found in ref. [39] that using two AI models still led to the misclassification of two loud noise anomalies as true gravitational wave signals. However, we have found that using four AI models removes these misclassifications, as some of the models in the ensemble did not flag these glitches as potential gravitational wave events. Second, we can calibrate the performance of the AI ensemble during training using long data segments. As mentioned above, in the post-processing stage we set the threshold of the find_peaks algorithm so that the width of the peak is within the 0.5 s–2 s range and the height is between 0 and 1. To compute the ROC curve, we vary the height threshold between 0 and 1 while maintaining a minimum peak width of 0.5 s. With this approach, our AI ensemble attains optimal performance in true positive rate as we increase the threshold from 0 to 0.9998 while the false positive rate increases from 10^{-6} to 10^{-3}.

We notice that although our AI ensemble reduces significantly the number of misclassifications when processing advanced LIGO data in bulk, our methodology has room for improvement. For instance, our AI ensemble is close but not identical to an optimal classifier, which we have marked in the top left corner of Fig. 4. Our vision to continue to improve the performance of AI models for gravitational wave detection includes the development of physics-inspired architectures and optimization schemes to enhance the sensitivity of AI ensembles; the incorporation of rapid regression algorithms that provide internal consistency checks on the nature of noise triggers, for example, independent estimation of the total mass of a potential binary system and the associated frequency at merger; and the inclusion of include open-source GravitySpy [22] glitches during the training stage to boost the ability of AI models to tell apart real signals from noise anomalies and more confidently identify real events. We sincerely hope that the methodology introduced in this article is used, improved, and extended by a broad set of users. Such an approach will lead to the development of increasingly better and more robust AI tools for data-driven discovery.

Data Availability

Advanced LIGO data used in this manuscript is open-source and readily available at the Gravitational Wave Open Science Center [40]. Modeled waveforms used to train, validate and test our AI models were produced using the open-source PyCBC library [47]. The waveform family used was SEOBNRv3 [48]. The datasets generated and/or analysed during the current study are available from the corresponding author upon reasonable request.

Code Availability

All the required software to reproduce our results, encompassing AI models and post-processing scripts, are open source and readily available at the DLHub and may be found at [49]. Software to produce waveforms at scale in high-performance computing platforms with PyCBC may be provided upon request.
References

1. Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. *Phys. Rev. Lett.* **116**, 061102, 10.1103/PhysRevLett.116.061102 (2016).

2. Abbott, B. P. et al. GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. *Phys. Rev. X* **9**, 031040, 10.1103/PhysRevX.9.031040 (2019).

3. Abbott, R. et al. GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo during the First Half of the Third Observing Run. *Phys. Rev. X* **11**, 021053, 10.1103/PhysRevX.11.021053 (2021).

4. Abbott, B. P. et al. Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog. *Astrophys. J. Lett.* **913**, L7, 10.3847/2041-8213/abe949 (2021).

5. Soares-Santos, M. et al. First measurement of the Hubble constant from a dark standard siren using the dark energy survey galaxies and the LIGO/Virgo binary–black-hole merger GW170814. *Astrophys. J. Lett.* **876**, L7, 10.3847/2041-8213/ab14f1 (2019).

6. Abbott, B. P. et al. A gravitational-wave standard siren measurement of the Hubble constant. *Nature* **551**, 85–88, 10.3847/2041-8213/aa8fc7 (2017).

7. Schutz, B. F. Determining the Hubble constant from gravitational wave observations. *Nature* **323**, 310–311, 10.1038/323310a0 (1986).

8. Berti, E., Yagi, K. & Yunes, N. Extreme gravity tests with gravitational waves from compact binary coalescences: (I) inspiral-merger. *Gen. Relativ. Gravit.* **50**, 46, 10.1007/s10714-018-2362-8 (2018).

9. Abbott, B. et al. Tests of general relativity with the binary black hole signals from the LIGO-Virgo Catalog GWTC-1. *Phys. Rev. D* **100**, 104036, 10.1103/PhysRevD.100.104036 (2019).

10. Radice, D. et al. Dynamical mass ejection from binary neutron star mergers. *Mon. Notices Royal Astron. Soc.* **460**, 3255–3271, 10.1093/mnras/stw1227 (2016).

11. Metzger, B. D. Kilonovae. *Living Rev. Rel.* **23**, 1, 10.1007/s41114-019-0024-0 (2020).

12. Huerta, E. A. et al. BOSS-LDG: A Novel Computational Framework that Brings Together Blue Waters, Open Science Grid, Shifter and the LIGO Data Grid to accelerate gravitational wave discovery. In *13th International Conference on e-Science*, 335–344, 10.1109/eScience.2017.47 (2017).

13. Huerta, E. A., Haas, R., Jha, S., Neubauer, M. & Katz, D. S. Supporting High-Performance and High-Throughput Computing for Experimental Science. *Comput. Softw. Big Sci.* **3**, 5, 10.1007/s41781-019-0022-7 (2019).

14. Weitzel, D. et al. Data Access for LIGO on the OSG. In *PEARC 2017 on Sustainability, Success and Impact*, PEARC17, 10.1145/3093338.3093363 (Association for Computing Machinery, New York, NY, USA, 2017).

15. Asch, M. et al. Big data and extreme-scale computing: Pathways to convergence-toward a shaping strategy for a future software and data ecosystem for scientific inquiry. *The Int. J. High Perform. Comput. Appl.* **32**, 435–479, 10.1177/1094342018778123 (2018).

16. Huerta, E. A. et al. Enabling real-time multi-messenger astrophysics discoveries with deep learning. *Nat. Rev. Phys.* **1**, 600–608, 10.1038/s42254-019-0097-4 (2019).

17. George, D. & Huerta, E. A. Deep neural networks to enable real-time multimessenger astrophysics. *Phys. Rev. D* **97**, 044039, 10.1103/PhysRevD.97.044039 (2018).

18. George, D. & Huerta, E. Deep learning for real-time gravitational wave detection and parameter estimation: Results with advanced ligo data. *Phys. Lett. B* **778**, 64 – 70, https://doi.org/10.1016/j.physletb.2017.12.053 (2018).

19. Gabbard, H., Williams, M., Hayes, F. & Messenger, C. Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy. *Phys. Rev. Lett.* **120**, 141103, 10.1103/PhysRevLett.120.141103 (2018).

20. Lin, Y.-C. & Wu, J.-H. P. Detection of gravitational waves using Bayesian neural networks. *Phys. Rev. D* **103**, 063034, 10.1103/PhysRevD.103.063034 (2021).
21. Wang, H., Wu, S., Cao, Z., Liu, X. & Zhu, J.-Y. Gravitational-wave signal recognition of LIGO data by deep learning. *Phys. Rev. D* **101**, 104003, 10.1103/PhysRevD.101.104003 (2020).

22. Zevin, M. *et al.* Gravity Spy: integrating advanced LIGO detector characterization, machine learning, and citizen science. *Class. Quantum Gravity* **34**, 064003, 10.1088/1361-6382/aa5cea (2017).

23. Torres-Forné, A., Cuoco, E., Font, J. A. & Marquina, A. Application of dictionary learning to denoise LIGO’s blip noise transients. *Phys. Rev. D* **102**, 023011, 10.1103/PhysRevD.102.023011 (2020).

24. Nakano, H. *et al.* Comparison of various methods to extract ringdown frequency from gravitational wave data. *Phys. Rev. D* **99**, 124032, 10.1103/PhysRevD.99.124032 (2019).

25. Fan, X., Li, J., Li, X., Zhong, Y. & Cao, J. Applying deep neural networks to the detection and space parameter estimation of compact binary coalescence with a network of gravitational wave detectors. *Sci. China Phys. Mech. Astron.* **62**, 969512, 10.1007/s11433-018-9321-7 (2019).

26. Deighan, D. S., Field, S. E., Capano, C. D. & Khanna, G. Genetic-algorithm-optimized neural networks for gravitational wave classification. *Neural Comput. Appl.* 10.1007/s00521-021-06024-4 (2020).

27. Miller, A. L. *et al.* How effective is machine learning to detect long transient gravitational waves from neutron stars in a real search? *Phys. Rev. D* **100**, 062005, 10.1103/PhysRevD.100.062005 (2019).

28. Krastev, P. G. Real-time detection of gravitational waves from binary neutron star mergers using artificial neural networks. *Phys. Lett. B* **803**, 135330, 10.1016/j.physletb.2020.135330 (2020).

29. Schäfer, M. B., Ohme, F. & Nitz, A. H. Detection of gravitational-wave signals from binary neutron star mergers using machine learning. *Phys. Rev. D* **102**, 063015, 10.1103/PhysRevD.102.063015 (2020).

30. Khan, A., Huerta, E. & Das, A. Physics-inspired deep learning to characterize the signal manifold of quasi-circular, spinning, non-precessing binary black hole mergers. *Phys. Lett. B* **808**, 0370–2693, 10.1016/j.physletb.2020.135628 (2020).

31. Dreissigacker, C., Sharma, R., Messenger, C., Zhao, R. & Prix, R. Deep-learning continuous gravitational waves. *Phys. Rev. D* **100**, 044009, 10.1103/PhysRevD.100.044009 (2019).

32. Beheshtipour, B. & Papa, M. A. Deep learning for clustering of continuous gravitational wave candidates. *Phys. Rev. D* **101**, 064009, 10.1103/PhysRevD.101.064009 (2020).

33. Skliris, V., Norman, M. R. K. & Sutton, P. J. Real-time detection of unmodeled gravitational-wave transients using convolutional neural networks. *arXiv e-prints* arXiv:2009.14611 (2020).

34. Khan, S. & Green, R. Gravitational-wave surrogate models powered by artificial neural networks. *Phys. Rev. D* **103**, 064015, 10.1103/PhysRevD.103.064015 (2021).

35. Chua, A. J. K., Galley, C. R. & Vallisneri, M. Reduced-order modeling with artificial neurons for gravitational-wave inference. *Phys. Rev. Lett.* **122**, 211101, 10.1103/PhysRevLett.122.211101 (2019).

36. Wei, W. & Huerta, E. A. Deep learning for gravitational wave forecasting of neutron star mergers. *Phys. Lett. B* **816**, 136185, 10.1016/j.physletb.2021.136185 (2021).

37. Wei, W. *et al.* Deep Learning with Quantized Neural Networks for Gravitational Wave Forecasting of Eccentric Compact Binary Coalescence. *arXiv e-prints* arXiv:2012.03963 (2020).

38. Cuoco, E. *et al.* Enhancing Gravitational-Wave Science with Machine Learning. *Mach. Learn. Sci. Tech.* **2**, 011002, 10.1088/2632-2153/abb93a (2021).

39. Wei, W., Khan, A., Huerta, E. A., Huang, X. & Tian, M. Deep learning ensemble for real-time gravitational wave detection of spinning binary black hole mergers. *Phys. Lett. B* **812**, 136029, 10.1016/j.physletb.2020.136029 (2021).

40. Vallisneri, M., Kanner, J., Williams, R., Weinstein, A. & Stephens, B. The LIGO Open Science Center. *J. Phys. Conf. Ser.* **610**, 012021, 10.1088/1742-6596/610/1/012021 (2015).
41. Kindratenko, V. et al. HAL: Computer system for scalable deep learning. In Practice and Experience in Advanced Research Computing, PEARC ’20, 41–48, 10.1145/3311790.3396649 (Association for Computing Machinery, New York, NY, USA, 2020).

42. Li, Z. et al. DLHub: Simplifying publication, discovery, and use of machine learning models in science. J. Parallel Distributed Comput. 147, 64–76 (2020).

43. Chard, R. et al. DLHub: Model and data serving for science. In IEEE International Parallel and Distributed Processing Symposium, 283–292, 10.1109/IPDPS.2019.00038 (2019).

44. Allen, M. G. et al. The European Science Cluster of Astronomy & Particle Physics ESFRI Research Infrastructures (ESCAPE) Project – addressing Open Science challenges. arXiv e-prints arXiv:2012.11534 (2020). https://projectescape.eu/.

45. Chard, R. et al. FuncX: A federated function serving fabric for science. In 29th International Symposium on High-Performance Parallel and Distributed Computing, HPDC ’20, 65–76, 10.1145/3369583.3392683 (Association for Computing Machinery, New York, NY, USA, 2020).

46. Chard, K., Tuecke, S. & Foster, I. Efficient and secure transfer, synchronization, and sharing of big data. IEEE Cloud Comput. 1, 46–55, 10.1109/MCC.2014.52 (2014).

47. Nitz, A. H. et al. PyCBC. Free and open software to study gravitational waves, 10.5281/zenodo.4556907 (2021).

48. Pan, Y. et al. Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism. Phys. Rev. D 89, 084006, 10.1103/PhysRevD.89.084006 (2014).

49. Huerta, E. A., Khan, A., Huang, X., Tian, M., Levental, M., Chard, R., Wei, W., Hefflin, M., Katz, D. S., Kindratenko, V., Mu, D., Blaiszik, B., and Foster, I. AI-driven Gravitational Wave Detection (2021). https://doi.org/10.26311/ZWFW-3N68.

50. van den Oord, A. et al. WaveNet: A Generative Model for Raw Audio. In 9th ISCA Speech Synthesis Workshop, 125–125 (2016).

Acknowledgements
We gratefully acknowledge National Science Foundation (NSF) awards OAC-1931561 and OAC-1934757 (E.A.H.), OAC-1931306 (B.B.) and OAC-2004894 (I.F.). E.A.H gratefully acknowledges the Innovative and Novel Computational Impact on Theory and Experiment project ‘Multi-Messenger Astrophysics at Extreme Scale in Summit’. This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under contract no. DE-AC05-00OR22725. This work utilized resources supported by the NSF’s Major Research Instrumentation program, the HAL cluster (grant no. OAC-1725729), as well as the University of Illinois at Urbana-Champaign. DLHub is based upon work initially supported by Laboratory Directed Research and Development funding from Argonne National Laboratory, provided by the Director, Office of Science, of the DOE under contract no. DE-AC02-06CH11357. We thank NVIDIA for their continued support.

Author Contributions
E.A.H. led this work and coordinated the writing of this manuscript. A.K. developed and trained the AI ensemble, as well as the software to scale this analysis over the entire HAL cluster, and to post-process the output of the AI ensemble to estimate sensitivity and error analysis. X.H., M.T., M.H. and W.W. prepared the datasets and software used for training, testing and inference and conducted an independent inference study to ascertain the reproducibility of our AI ensemble. D.M. and V.K. optimized the HAL cluster—both at the hardware and software level—to maximize its throughput for AI training and inference at scale. B.B., I.F., and D.K. informed and guided the construction of the DLHub → FuncX → HAL workflow. M.L. and R.C. ran an independent AI analysis using the aforementioned workflow to establish the reproducibility and scalability of the results presented in this article. All authors contributed to developing the ideas, and writing and reviewing this manuscript.

Competing Interests
The authors declare no competing interests.
Additional information

Correspondence and requests for materials should be addressed to E.A.H.

Peer review information Nature Astronomy thanks Elena Cuoco, Plamen Krastev and Linqing Wen for their contribution to the peer review of this work.

Reprints and permissions information is available at reprints

Behind the Paper Blog in Nature Astronomy of this work is available at From Disruption to Sustained Innovation: Artificial Intelligence for Gravitational Wave Astrophysics