Estimating the Burden of Japanese Encephalitis Virus and Other Encephalitides in Countries of the Mekong Region

Arnaud Tarantola1*, Flavie Goutard1,2, Paul Newton3, Xavier de Lamballerie4, Olivier Lortholary5, Julien Cappelle1,2, Philippe Buchy1

1 Institut Pasteur du Cambodge, Phnom Penh, Cambodia, 2 Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), Département ES, Unité AGIRs, Montpellier, France, 3 Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao PDR and Centre for Tropical Medicine, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom, 4 Aix Marseille University, IRD French Institute of Research for Development, EHESP French School of Public Health, UMR_D 190 “Emergence des Pathologies Virales”, Marseille, France, 5 Université René Descartes, Hôpital Necker-Enfants malades, Centre d’Infectiologie Necker Pasteur, IHU Imagine, Labex IBEID, Paris, France

Abstract: Diverse aetiologies of viral and bacterial encephalitides are widely recognized as significant yet neglected public health issues in the Mekong region. A robust analysis of the corresponding health burden is lacking. We retrieved 75 articles on encephalitis in the region published in English or in French from 1965 through 2011. Review of available data demonstrated that they are sparse and often derived from hospital-based studies with significant recruitment bias. Almost half (35 of 75) of articles were on Japanese encephalitis virus (JEV) alone or associated with dengue. In the Western Pacific region the WHO reported 30,000–50,000 annual JEV cases (15,000 deaths) between 1966 and 1996 and 4,633 cases (200 deaths) in 2008, a decline likely related to the introduction of JEV vaccination in China, Vietnam, or Thailand since the 1980s. Data on dengue, scrub typhus and rabies encephalitis, among other aetiologies, are also reviewed and discussed. Countries of the Mekong region are undergoing profound demographic, economic and ecological change. As the epidemiological aspects of Japanese encephalitis (JE) are transformed by vaccination in some countries, highly integrated expert collaborative research and objective data are needed to identify and prioritize the human health, animal health and economic burden due to JE and other pathogens associated with encephalitides.

Introduction

Encephalitides are considered a serious public health issue in countries of the Mekong region [here defined as Cambodia, Lao PDR (Laos), Vietnam, Thailand and Yunnan of PR China]. This part of the world is undergoing profound transformations due to remarkable increases in population, tourism, energy consumption, road networks, vehicle density, economic development and deforestation [1–3]. In these times of competing priorities and financial constraints for health authorities, can the burden of encephalitis in the Mekong region be estimated?

Various aspects need to be considered when estimating disease burden: collective versus individual burden, the cost of preventive versus curative measures, morbidity and mortality versus financial burden, acute versus chronic disease, human versus animal disease, etc. With the exception of some data on Japanese encephalitis virus, very few prevalence, incidence, cost-ascertainment or clinical follow-up studies seem available on most identified encephalitides circulating in countries of the Mekong region. We reviewed published Medline-referenced resources on encephalitis and meningoencephalitis and used these to complete an overview of the epidemiological situation in this dynamic region of the world.

Methods

In January 2012, we reviewed articles published in English or French from 1965 to January 1, 2012 and listed in the Medline database. The terms “Southeastern Asia/epidemiology,” “Encephalitis,” “Arboviral encephalitis,” “Encephalitis, viruses,” and “Anti-N-Methyl-D-Aspartate Receptor Encephalitis” were used alone and in combination.

A case of acute encephalitis syndrome was defined as any person presenting a fever with neurological signs (altered mental status AND/OR motor deficit AND/OR sensory deficit AND/OR seizures of new onset, excluding simple febrile seizures) of sudden onset (fewer than seven days). Meningoencephalitis cases present the abovementioned signs plus meningism (nuchal rigidity).

References on human and animal health were taken into consideration. These were consulted and extracted using the Institut Pasteur’s distance bibliographical resources or HINARI (http://hinari-gw.who.int). Bibliographical references of consulted articles were checked for pertinence and also reviewed, as needed. Additional queries were made using Google for specific references freely available on the Internet and resources identified while the manuscript was in preparation were also reviewed.

Citation: Tarantola A, Goutard F, Newton P, de Lamballerie X, Lortholary O, et al. (2014) Estimating the Burden of Japanese Encephalitis Virus and Other Encephalitides in Countries of the Mekong Region. PLoS Negl Trop Dis 8(1): e2533. doi:10.1371/journal.pntd.0002533

Editor: Darren J. Gray, University of Queensland, Australia

Received April 7, 2013; Accepted September 13, 2013; Published January 30, 2014

Copyright: © 2014 Tarantola et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors received no specific funding for this work.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: atarantola@pasteur-kh.org
Results

The MeSH search query found 38,753 references for “Southeastern Asia/epidemiology,” 38,160 references for “Encephalitis” and 140 articles for “Southeastern Asia/epidemiology” and “Encephalitis.” Of these, references were found using “Southeastern Asia/epidemiology” and “Arboviral encephalitis” (N = 66) and “Encephalitis, viruses” (N = 35). Seven articles were excluded as they were in a language other than English or French, and an additional three described neurocysticercosis, botanical repellents, and mosquito species. A further 55 articles were excluded as their title suggested they dealt with outbreaks or disease in countries outside of the Mekong region: Indonesia, Malaysia, Philippines, or Singapore. Of the 75 references examined, 35 dealt with Japanese encephalitis virus, three with dengue, three with both and seven with Nipah virus infection. The 27 remaining references dealt with various encephalitides or were not detailed.

Japanese encephalitis virus surveillance and estimated burden data

Japanese encephalitis virus (JEV) is the most important cause of acute encephalitis in Eastern/Southern Asia. Based on a data review for 1966–1996, the World Health Organization (WHO) estimated that there were 68,000 (15,000 deaths) annually [4]. Based on 1994 population figures and highly varying annual incidence rates documented during research projects, Tsai estimated that in 1994 there were approximately 175,000 cases, over 43,750 deaths, and 78,750 surviving children with disability [5]. Seroprevalence studies reviewed by WHO found almost universal infection by early adulthood in rural endemic areas [4].

There is a high degree of uncertainty regarding the present situation. Only 4,633 cases (200 deaths) were reported to WHO in 2008 from the Western Pacific region [6], due to some high-endemicity countries having introduced JEV vaccination [7,8] but certainly also to clinical misdiagnosis [9], underdiagnosis, and/or underreporting. There are very few geographical locations in the Mekong countries with JEV epidemiological data with vast swaths of encephalitis terra incognita [10]. Authors have tried to ascertain the size of the at-risk population and the estimated annual number of JEV cases using modelling techniques [5,11–13]. These modelling techniques far underestimate the observed number of cases in a country like Cambodia, where vaccination is not available countrywide and where the surface used for cultivating rice paddy—harbouring competent vectors—has increased by 39% between 2004 and 2011 [14]. Recently, Campbell et al. [11] revisited and complemented Tsai’s method, concluding that 67,897 JEV cases occurred per year worldwide. For Cambodia, however, these estimates are based only on published sentinel surveillance data [15], which probably provides an incomplete picture and will lead to severe underestimation. Using Campbell’s method, we arrive at an estimated 8,200 cases of symptomatic infection annually for the Mekong region and 563 for Cambodia alone (not shown). In 2012, the number of meningocerebral patients documented by the Kantha Bopha Foundation hospitals alone in Phnom Penh and Siem Reap were 2,090 and 1,521, respectively (2013 phone call with D. Laurent, personal communication). The Institut Pasteur du Cambodge (IPC) tested serum in 51 (16.1%). Extrapolated to the 3,611 meningocerebral JEV cases, this conservative estimate yields a total number of 581 JEV cases at Kantha Bopha hospitals alone. Meningocerebral cases are managed throughout Cambodia, whether in public sector or third-tier Foundation hospitals. Another project at Angkor Hospital for Children (Siem Reap) found 15 (15%) JEV positivity among a series of 100 meningocerebral patients (blood and/or CSF, 24 July 2013 email exchanges with V. Kumar, personal communication).

An additional 47 (14.8%) children were positive at IPC both for JEV and Dengue virus (DENV) IgM, for which the causative pathogen could be either flavivirus (15 July 2013 email exchanges with Philippe Buchy, personal communication). This illustrates the additional difficulty of diagnosing JEV encephalitis when CSF may contain undetectable amounts of pathogen or genetic material, when patients arrive late in the course of the disease at hospitals with diagnostic capability, when CSF samples are not routinely taken in countries such as Cambodia, and when attempting diagnosis in countries where other cross-reactive flaviviruses such as dengue are endemic.

Clinical impact of JEV

The available JEV data are predominantly derived from hospital-based studies and are therefore likely to underestimate community incidence as most JEV infections are asymptomatic and only an estimated 1 in 250–500 infections result in clinical signs [16,17]. Those signs vary greatly, ranging from a flu-like or dengue-like febrile syndrome—which is frequent in children in the Mekong region—to severe encephalitis, with a case-fatality rate (CFR) estimated at 5–40% (up to 60% for severe forms). Neurological sequelae occur in 30–50% of survivors and are often severe [18–22], although it seems that a majority of patients recovered after three to five years in one large study in India [23]. It has been estimated [24] that 265,778–1,859,170 disease-adjusted life years (DALYs) were lost to JEV worldwide in 2005.

JEV vaccination

Effective JEV vaccination was first developed in 1941 [8] and is now readily available. Laboratory and clinical surveillance data have shown its effectiveness as a public health measure in countries like Japan or South Korea [7]. Data from Thailand and Vietnam show that vaccination has transformed the epidemiology of JEV in those countries, vastly reducing the incidence of JEV since it was introduced or expanded in the 1990s [7,8]. The vaccine has recently been introduced in Laos but remains to be introduced or rolled out in the routine immunization programs of Cambodia, Laos, and Myanmar. The vaccination of pigs for JEV could be cost-effective from a public health point of view by decreasing the level of circulation in the amplifying host and consecutively the incidence in humans [13,25]. The impact of mass JEV vaccination of swine on human health has been studied in Japan [26], showing a reduction of JEV transmission to humans. Unfortunately the high turnover of animals and the cost of vaccine make such an option cost-ineffective. Implementing swine vaccination in countries like Cambodia or Laos where 70% of all pigs are raised in small-scale farms [27] would be a serious challenge. Although large-scale vaccination of domestic pigs may not be feasible, the use of pigs as sentinel animals appears efficient at least in the early detection of human outbreaks [26].

Other encephalitides

At least 90 other infectious agents are known to cause encephalitis or severe febrile disease associated with encephalitis signs, several of which circulate widely in Southeast Asia (Table 1).

Dengue encephalitis

The reach of dengue is expanding. The number of symptomatic dengue patients had been estimated at 50–100 million cases each...
Table 1. Nonexhaustive list of pathogens known to have caused human encephalitis cases published in the literature.

VIRUSES	BACTERIA
Adenovirus	Balamuthia mandrillaris
Al Khurma virus	Bartonella henselae, B. quintana or Bartonella bacilliformis
Bat lyssavirus	Borella burgdorferi (Lyme disease)
California encephalitis	Brucella spp.
Chandipura virus	Burkholderia pseudomallei
Chikungunya virus	Chlamydia pneumoniae
Cytomegalovirus	Chlamydia psitacci
Dengue virus	Coxiella burnetii (Q Fever)
Eastern Equine Encephalitis virus	Francisella tularensis
Enterovirus (incl. EV71)	Leptospira spp.
Epstein-Barr virus	Listeria monocytogenes
Hendra virus	Mycobacterium tuberculosis
Herpes simplex virus	Mycoplasma pneumoniae
Human herpesvirus 6	Pasteurella multocida
Influenza A Virus	Streptococcus A pyogenes
Influenza A(H5N1) virus	Streptococcus group B
Influenza B virus	Tropheryma whipplei
JC virus	RICKETTSIAE
Junin virus	Anaplasma phagocytophilum
Kunjin virus	Coxiella burnetii
Kyasanur Forest virus	Ehrlichia chaffeensis
LaCrosse Encephalitis virus	Orientia tsutsugamushi
Lassa virus	Rickettsia rickettsii
Lymphocytic Choriomeningitis Virus	Rickettsia rickettsii
Louping Ill virus	Rickettsia typhi
Measles virus	Rickettsia felis
Mumps virus	PROTOZOA
Murray Valley virus	Acanthamoeba
Nipah virus	Balanchna mandrillaris
Norovirus	B. pseudomallei
Omsk hemorrhagic fever virus	Baillariacarapis prionaris
Parechovirus	Coccidioides immitis
Parvovirus B19	Cryptococcus neoformans, C. gattii
Poliovirus	Naegleria fowleri
Powassan encephalitis virus	Plasmodia spp.
Rabies and other lyssaviruses	Toxocara canis
Respiratory Syncytial Virus	Toxoplasma gondii
Rift Valley Fever virus	Treponema pallidum
Rocio virus	Trypanosoma brucei gambiensse
Rotavirus	Trypanosoma brucei rhodesiensse
Rubella virus	HELMINTHS
Sindbis virus	Balfaracarapis prionaris
St Louis encephalitis virus	Gnathostoma spp.
Tick-borne encephalitis virus	Taenia solium
Toscana virus	Trichinella spiralis
Usutu virus	Angiostrongylus cantonensis
Varicella Zoster Virus	Venezuelan Equine Encephalitis virus

Table 1. Cont.

VIRUSES	BACTERIA
West Nile virus	OTHER
Western Equine Encephalitis virus	Prion disease
Yellow Fever virus	

Pathogens ubiquitous or known to circulate in countries of the Mekong region are shown in bold (completed and adapted from Tunkel et al. [91]).

doi:10.1371/journal.pntd.0002533.t001

Dengue encephalitis has only recently been accepted as a clinical entity and may manifest itself with signs ranging from fever with limited alteration of consciousness to severe encephalopathy with convulsions or myelitis, often with sequelae in survivors [40–46]. Dengue has been associated with encephalitis in 0.5–6.2% of cases. Among 42 Thai patients with dengue encephalitis (DE), three (7.1%) died and one (2.4%) had long-term sequelae [42]. In other DE studies with limited sample sizes (N = 27) in Vietnam, the CFR was 22% and short-term sequelae were observed in 29% of cases but all recovered within seven days [43]. In nine cases described in another, limited study, also in Vietnam, six (66%) had sequelae at discharge [40].

Frequent bacterial pathogens and encephalitis

Bacteria, including *Mycobacterium tuberculosis* and *Mycoplasma pneumoniae*, tend to be neglected as causes of encephalitis. **Scrub typhus** is an important—yet neglected but treatable—cause of fever in countries of the Mekong region [47,48]. Of 72 confirmed cases of scrub typhus with clinical records in Songkla, Thailand in the mid-1980s, nine (12.5%) presented with neurological signs. Murine typhus (*Rickettsia typhi*) and leptospirosis (*Leptospira spp.*) may also cause encephalitis [49].

Rabies encephalitis

Rabies is widely enzootic throughout Southeast Asia. Canine rabies is neglected and has re-emerged in China since 1990 [50] (and has even emerged in Flores [51] and Bali [52,53]), causing high morbidity (as rabid dogs bite more frequently [54]) and economic burden and mortality (human rabies deaths) throughout the region. With an estimated annual incidence of 5.8/100,000 population (95% CI 2.8–11.5) in Cambodia, rabies has been estimated to cause over 800 deaths a year for a population of 14 million [55], an incidence comparable to or higher than that of road-related deaths in developed countries [56]. As with JEV,
vaccination is available in the region but generally not readily accessible for populations at risk.

Rare causes of encephalitis in the Mekong region

Other, less frequent encephalitides circulate in the Mekong region. *Streptococcus suis* [57] can cause sporadic and self-limiting outbreaks of meningoencephalitis, even if recent studies in Thailand and Vietnam have shown that the disease may be underestimated [58]. Massive epidemics of encephalitis, such as the enterovirus serotype 71 (EV71) encephalitis outbreaks were as well described in Cambodia, Thailand, and Vietnam in 2012 [59–61]. Although human cases have not been identified, evidence of *Nipah virus* circulation has been found in bats throughout the lower Mekong Region [62–68]. Although it is the—one of the—main causes of encephalitis in studies conducted in the USA [69–71], the United Kingdom [72], France [73] and Australia [74], studies carried out to date in the Mekong Region and data from Cambodia have identified little or no Herpes Simplex Virus (February 2012 conversations with P. Buchy, personal communication). Although this relatively lower incidence may perhaps be overshadowed by the larger incidence of tropical encephalitides, diagnosing this pathogen remains a priority as it is one of the few accessible to curative management, despite its incomplete effectiveness even in developed countries [75–77].

Estimating the financial burden of encephalitis

The financial burden of encephalitis is significant: post-exposure rabies vaccination and travel costs to access it can amount to a Cambodian farmer’s monthly wage (A. Tarantola, unpublished data), while the direct and indirect costs of JEV encephalitis hospitalization and care can amount to nearly ten times that [22]. Hospitalization for dengue costs half a month’s average wage in rural Cambodia [39]. Encephalitis survivors often present severe sequelae; consequences on a family’s income, organization, or balance can be dire.

The impact of encephalitides in domestic animals

Encephalitic zoonoses impact animal husbandry as well. Japanese encephalitis in pigs causes stillbirths, abortions, infertility, and small litter sizes [78]. Furthermore, in Thailand for example, veterinary authorities are obliged by law to cull pigs after a JEV or a S. suis outbreak, causing further significant financial losses to pig producers [79]. The circulation of Japanese encephalitis in pigs in the Region is intense, principally in the countryside but increasingly in urban areas as well [80,81]. Outbreaks of Nipah virus would cause fatal pneumonia in pigs and would result of culling thousands of pigs in countries with veterinary law enforcement (like Thailand or Vietnam) as it happened in Malaysia in 1998 [68]. To the best of our knowledge, the economic impact of these diseases in animals and their prevention has not been evaluated in the Mekong region.

Perspectives

Over the past six decades, research has barely improved our understanding of enzootic circulation, vector control and etiological curative measures for JEV [82]. It is very likely that expansion of JEV vaccination to the remaining JEV endemic areas would be a highly cost-effective intervention [22]. In the absence of vaccination, the encephalitis burden will likely increase in the coming years in most Southeast Asian countries, especially as semi-commercial systems of pig production develop in periurban areas [83] with growing populations [12] and increasing land use for agriculture [84,85]. Whatever the nature and scope of the encephalitis burden in Southeast Asia and the criterion used to assess it—morbidity, mortality, handicap, impact on families’ budget, or livelihood—that burden is borne principally by the same rural, economically fragile populations with limited access to prevention and health care. The identification of etiological agents is useful for estimating burden and to guide research, but first and foremost to urgently rule out treatable or preventable causes. Overall, surveillance and diagnostic capabilities for encephalitis remain poor in most areas of the Mekong region and beyond [6]. Although the burden of non-infectious, autoimmune encephalitis [86] in the region remains to be ascertained, the best laboratories worldwide continue to only identify etiological infective agents in around 50% of cases at most [72,73,82,87–89]. Little progress in bedside diagnostic capacities is to be expected to help treat patients in frontline care.

Probabilistic encephalitis management protocol based on sound clinical, epidemiological, and laboratory-based research would benefit patients in settings with limited access to diagnostic capacities. State-of-the-art medical and scientific collaborations dedicated to encephalitides in the Mekong region are urgently needed. These may be organized around three main axes: (i) reinforced microbiological and immunological etiological investigations, (ii) improved clinical and therapeutic management, and (iii) assessment of ecoepidemiological and social determinants to identify environmental and behavioural risk factors for acquiring disease [90]. Well-designed frontline diagnostic strategies using

Key Learning Points

- Even in the best laboratories, aetiological agents are diagnosed in only about 50% of patients with encephalitis in Asia.
- Japanese encephalitis virus accounts for 50% of the diagnosed pathogens in areas where vaccination is not universally accessible.
- The burden of disease is particularly borne by children of rural, economically fragile families.
- Multidisciplinary research may help improve knowledge and practice in detecting, treating, and preventing encephalitis in the Mekong region.

Five Key Papers in the Field

- Mackenzie JS (2005) Emerging zoonotic encephalitis viruses: lessons from Southeast Asia and Oceania. J Neurovirol 11: 434–440.
- Erlanger TE, Weiss S, Keiser J, Utzinger J, Wiedenmayer K (2009) Past, present, and future of Japanese encephalitis. Emerg Infect Dis 15: 1–7.
- Solomon T, Dung NM, Vaughn DW, Kneen R, Thao LT, et al. (2000) Neurological manifestations of dengue infection. Lancet 355: 1053–1059.
- Granerod J, Ambrose HE, Davies NW, Clewley JP, Walsh AL, et al. (2010) Causes of encephalitis and differences in their clinical presentations in England: a multicentre, population-based prospective study. Lancet Infect Dis 10: 835–844.
- Coker RJ, Hunter BM, Rudge JW, Liverani M, Hanvoravongchai P (2011) Emerging infectious diseases in southeast Asia: regional challenges to control. Lancet 377: 599–609.
modern biomolecular tools with high sensitivity complemented by highly specific testing by second- or third-line, highly competent research laboratories would provide timely diagnosis of immediately treatable aetiologies, to the patients’ direct benefit. Microbiological and biomolecular approaches would help describe the distribution of pathogens’ circulation and prevention on a larger scale.

Such studies and collaborative projects are urgently needed to improve human capacity, diagnostic techniques, and strategies, and to further document the macroepidemiology of encephalitis as well as the microepidemiology of certain pathogens, whether known or yet to be discovered, in the Mekong region.

References

1. ADB (2013) Environment Operational Directions 2013-2020: Promoting Transitions to Green Growth in Asia and the Pacific. Greater Mekong Subregion Environment Operations Center. Available: http://www.gms-eosc.org/uploads/resources/273/attachment/ADB%20Environment%20Operational%20Directions%202013-2020%20Vol%204%20Green%20Growth.pdf. Accessed 12 December 2013.

2. Pope E. (2012) W-2012/12: Preliminary Analysis of Water Security in the Mekong River Basin. United Nations University Institute on Comparative Regional Integration Studies (UNU-CRIS). Available: http://www.cris.uni. edu/fileadmin/workingspapers/W-2012-12.pdf. Accessed 7 January 2014.

3. ADB (2013) GMS: GMS Overview. Available: http://www.gms-eosc.org/gms-statistics/gms. Accessed 18 July 2013.

4. WHO (2011) Japanese encephalitis. Available: http://www.who.int/immunization/diseases/japanese_encephalitis/en/index.html. Accessed 12 December 2013.

5. Tsai TF (2000) New initiatives for the control of Japanese encephalitis in Japan. Emerg Infect Dis 6: 95–102.

6. WHO-WPRO (n.d.) Fourth bioregional meeting on the control of Japanese encephalitis in the Western Pacific Region. Available: http://www.wpro.who.int/region/wpr/diseases/en/je/Measles_AE_RR.pdf. Accessed 12 December 2013.

7. Dit-InVS (2009) Encephalite Japonaise. Available: http://www.invs.sante.fr/web/maladies_virales/encyclopedia/encyclopedia_240499.pdf.

8. WHO-SEARO (2006) Introduction of Japanese Encephalitis vaccine in the South-East Asia Region. Available: http://www.searo.who.int/region/searo/diseases/en/measles_ae_53.pdf. Accessed 12 December 2013.

9. WHO-SEARO (2006) Japanese Encephalitis vaccine (2006). Releve Épidemiologique Heatl Sect. Available: http://www.who.int/immunization/diseases/japanese_encephalitis/en/index.html. Accessed 12 December 2013.

10. WHO-SEARO (2010) Situation update of dengue in the SEA Region, 2010. Available: http://www.searo.who.int/region/searo/diseases/en/dengue_ae_61.pdf. Accessed 12 December 2013.

11. WHO (2011) Japanese encephalitis. Available: http://www.who.int/immunization/diseases/japanese_encephalitis/en/index.html. Accessed 12 December 2013.

12. WHO-SEARO (2006) Vaccine 18 Suppl 2: 1–25.

13. WHO-WPRO (n.d.) Fourth bioregional meeting on the control of Japanese Encephalitis in the Western Pacific Region. Available: http://www.wpro.who.int/region/wpr/diseases/en/je/Measles_AE_RR.pdf. Accessed 12 December 2013.

14. Huynh T.T. T., Aarnink A.J. A., Drucker A, Verstegen M.W. A. (2007) Pig farming and vector control: strategies to reduce the risk of transmission of Japanese encephalitis to humans and animals, and vector control. Curr Top Microbiol Immunol 318: 55–72.

15. Huy NT, Phung D, Tran T, Son DM, Doan TH, et al. (2011) The cost-effectiveness analysis of Japanese encephalitis vaccine in Cambodia. Vaccine 28: 4593–4599. doi:10.1016/j.vaccine.2010.04.086.

16. Agharagi A (2002) Control of Japanese encephalitis in Japan: immunization of the general population. Emerg Infect Dis 8: 353–356.

17. Kumar R, Mathur A, Singh KB, Sthooley P, Prasad M, et al. (1993) Clinical sequelae of Japanese encephalitis in children. Indian J Med Res 97: 9–13. Available: http://www.ncbi.nlm.nih.gov/pubmed?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8387460.

18. Hili SV, Van Cauong N, Touch S, Mai HH, Soeung SC, et al. (2011) Disability from Japanese encephalitis in Cambodia and Viet Nam. J Trop Pediatr 57: 241–244. doi:10.1093/tropmed/lim133.

19. Chihour YM, Rulhe G, Hong R, Minn K, Kulan Y, et al. (2002) Hospital-based diagnosis of hemorrhagic fever, encephalitis, and hepatitis in Cambodian children. Emerg Infect Dis 8: 405–409.

20. Houang P, Sauradachda C, Gesbach C, Heng S, Gasley L, et al. (2010) A cost-effectiveness analysis of Japanese encephalitis vaccine in Cambodia. Vaccine 28: 4593–4599. doi:10.1016/j.vaccine.2010.04.086.

21. Sarkari NB, Thacker AK, Barthwal SP, Mishra VK, Prapaon S, et al. (2012) Japanese encephalitis [JE] part II: 14 years’ follow-up of survivors. J Neurol 259: 38–49.

22. Labeaud AD, Bashir F, King CH (2011) Measuring the burden of arboviral diseases: the spectrum of morbidity and mortality from four prevalent infections. Popul Health Med 9: 149–154.

23. Saiki O, Kajiyi Y, Kuroda A, Karaki T, Takenokuma K, et al. (1992) Protection of pigs against mosquito-borne Japanese encephalitis virus by immunization with a live attenuated vaccine. Antivir Res 22: 351–358.

24. Igarashi A (2002) Control of Japanese encephalitis in Japan: immunization of the general population. Emerg Infect Dis 8: 353–356.

25. Sasaki O, Karoji Y, Kuroda A, Karaki T, Takenokuma K, et al. (1982) Japanese encephalitis virus. Computers and Biomedical Research 15: 208–233. doi:10.1016/0010-4285(82)90013-1.

26. Igarashi A (2002) Control of Japanese encephalitis in Japan: immunization of the general population. Emerg Infect Dis 8: 353–356.

27. Huynh T.T. T., Aarnink A.J. A., Drucker A, Verstegen M.W. A. (2007) Pig farming and vector control: strategies to reduce the risk of transmission of Japanese encephalitis to humans and animals, and vector control. Curr Top Microbiol Immunol 318: 55–72.

28. WHO (2000) Strengthening the global distribution for strategy for dengue fever/dengue haemorrhagic fever prevention and control: report of the informal consultation 18–20 October 1999, WHO HQ, Geneva.

29. Bhart S, Gethin PV, Brady OJ, Messina JP, Farlow AW, et al. (2013) Global distribution and burden of dengue. Nature 496: 504–507.

30. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, et al. (2013) The global distribution and burden of dengue. Nature 496: 504–507.

31. Vong S, Goyet S, Ly S, Nian C, Hue R, et al. (2012) Under-recognition and reporting of dengue in Cambodia: a capture-recapture analysis of the National Dengue Surveillance System. Epidemiol Infect 140: 491–499.

32. Wichmann O, Youn IK, Vong S, Linkörd K, Gibbons RV, et al. (2011) Dengue in Thailand and Cambodia: an assessment of the degree of underrecognized disease burden based on reported cases. PLoS Negl Trop Dis 5: e996.

33. Oei EE, Gubler DJ (2009) Dengue in Southeast Asia: epidemiological characteristics and strategic challenges in disease prevention. Cad Saude Publica 25 Sup 1: S115–S126.

34. WHO-WPRO (2011) Annual Dengue Data in the Western Pacific Region - FY 2011. Available: http://www.wpro.who.int/region/wpr/en/dengue/data/2011/dengue_dengue_data_2011.pdf. Accessed 12 December 2013.

35. Bonar N, Gething PW, Brady OJ, Messina JP, Farlow AW, et al. (2013) The global distribution and burden of dengue. Nature 496: 504–507.
