Less expression of prohibitin is associated with increased Caspase-3 expression and cell apoptosis in renal interstitial fibrosis rats

TIAN-BIAO ZHOU,* YUAN-HAN QIN,* CHUN ZHOU, FENG-YING LEI, YAN-JUN ZHAO, JING CHEN, LI-NA SU and WEI-FANG HUANG

Department of Pediatrics, The First Affiliated Hospital of GuangXi Medical University, NanNing, China

SUMMARY AT A GLANCE

The authors reported a reduced expression of prohibitin and that this is associated with the increased Caspase-3 expression and cell apoptosis in renal interstitial fibrosis rats in a rat UUO model. These findings suggest that prohibitin plays a protective role against renal interstitial fibrosis and regulates the expression of Caspase-3, which induces cell apoptosis in UUO rats. The authors acknowledged the limitation in that they have not performed in vitro experiments to show that the causal effects of prohibitin on cell apoptosis using cultured renal cells cannot be established.
Renal interstitial fibrosis (RIF) is a common feature of chronic kidney disease, regardless of the aetiology of the primary renal syndrome. Tubule-interstitial changes, including tubular degeneration and interstitial cell infiltration, are a hallmark of common progressive chronic diseases that lead to renal failure. Elevation of transforming growth factor-β1 (TGF-β1) and accumulation of extracellular matrix (ECM) in renal interstitium are the most important features of RIF.

Unilateral ureteral obstruction (UUO), used extensively as a model of progressive RIF, results in rapid parenchymal deterioration. These alterations are also a common feature associated with a variety of kidney disorders, such as chronic kidney disease and end-stage renal disease, and the increase of renal tubular epithelial cell (RTEC) apoptosis is a critical detrimental event that leads to chronic kidney injury in association with renal fibrosis.

Prohibitin (PHB), a ubiquitous protein, plays a number of different molecular functions and is mainly located on the inner mitochondrial membrane and nuclei. PHB could play a pivotal role in the processes of cell apoptosis. The overexpression of PHB could protect the mitochondria from oxidative-stress-induced injury. When the function of mitochondria is confused, the expression of TGF-β1 will be upgraded and Caspase-3 expression will be increased. TGF-β1 is an important cytokine to induce the accumulation of ECM. The increased PHB could suppress renal interstitial fibroblasts proliferation and halt the progression of RIF. So, PHB might take part in the development and progression of RIF.

As mentioned above, we drew a hypothesis that there was an association between PHB and Caspase-3/cell apoptosis. This investigation was conducted to explore whether PHB was associated with the Caspase-3 expression/cell apoptosis in RIF rats induced by UUO.

METHODS

Animal model

The Animal Care and Use Committee of Guangxi Medical University approved all protocols. Twenty-four male Wistar rats (6 weeks old) were purchased from the Experimental Animal Center of Guangxi Medical University, Nanning, China. The rats were randomly divided into two groups: the sham operation group (SHO); n = 12, respectively. The ureter was ligated at approximately 1 cm below the renal hilum with 3-0 silk suture. The abdominal wound was closed, and rats were returned to the cages. Control rats underwent abdominal incision and approximation with no ligation of the ureter. Six rats of the two groups were killed at 14 days and 28 days after surgery, respectively, and their renal tissues were collected for histological and molecular biology determination.

Renal morphology

After 10% neutral formaldehyde fixation, the renal tissues were dehydrated through a graded ethanol series and embedded in paraffin. Sections were prepared on a microtome and stained with masson’s trichrome staining. Renal pathology was observed by light microscope, the severity of the renal lesion was presented by the RIF index. Blue granular or linear deposits were interpreted as positive areas for collagen staining. Semi-quantitative evaluation was performed by computer-assisted image analysis (DMR + Q550, Leica Co., Germany). The area of positive staining for fibrosis was measured at 400-fold original magnification in 50 fields (ignoring the fields containing glomerular parts) and expressed as a percentage of the total area. The extent of interstitial fibrosis was scored as absent (0), involving less than 25% of the area (1), involving 26–50% of the area (2), and involving greater than 50% of the area (3). RIF index was obtained by the formula as follow: GSI = (0 × n0 + 1 × n1 + 2 × n2 + 3 × n3)/(n0 + n1 + n2 + n3) = (0 × n0 + 1 × n1 + 2 × n2 + 3 × n3)/50. All the fields were selected from coded sections for each rat at random and the scores obtained by two investigators were averaged.

Apoptosis assay

Cell apoptosis was examined by the TdT mediated dUTP nick end labelling (TUNEL) assay (Roche Inc., Basel, Switzerland) as described previously. Six slides from each kidney were evaluated for percentage of apoptotic cells by using the TUNEL assay. Then 10 watch fields, which didn’t include the glomerular parts, were chosen at random under a microscope on each section. Brown staining of cell nuclei was considered as apoptotic cells. Positive brown cells and total cells were counted. The formula for apoptosis index as the indicator of apoptosis was as follows: cell apoptosis index = positive cells/total cells × 100%. The scores obtained by two investigators were averaged.

Immunohistochemical analysis of the protein expressions of PHB, Caspase-3, TGF-β1, collagen-IV and fibronectin

Renal tissue fixed with 4% buffered paraformaldehyde was embedded in paraffin, and 4 μm thick sections were stained. The positive area was measured quantitatively using a computer-aided manipulator (DMR + Q550, Leica Co., Germany). For immunohistochemical analysis of PHB, Caspase-3, TGF-β1, collagen-IV (Col-IV) and fibronectin (FN), the sections were deparaffinized, washed with phosphate-buffered saline (PBS), and treated with 3% H2O2 in methanol for 10 min. All sections were then incubated with anti-PHB antibody (1:300) (Neomarker Lab., Co., USA), anti-Caspase-3 antibody (1:200) (Thermo Fisher Scientific, Co., Runcorn, UK), anti-TGF-β1 antibody (1:100) (Zhongshan, Co., Beijing, China), anti-Col-IV antibody (ready-to-use kit) (Bo Shide, Co., Wuhan, China) and anti-FN antibody (1:50) (Zhongshan, Co., Beijing, China), respectively. After incubation with second antibody immunoglobulin (Shanghai Changdao, Co., Shanghai, China), the sections were stained with diaminobenzidine (Maixin Bio, Co., Fuzhou, China). The positive area of PHB, Caspase-3, TGF-β1, Col-IV or FN in renal tissue was measured. During evaluation of the interstitial areas, fields containing glomerular parts were ignored. All of the
PHB with Caspase-3/cell apoptosis

Fig. 1: Statistical parameters in two groups. *P < 0.01 compared with SHO. Col-IV, collagen-IV; FN, fibronectin; GU, model group subjected to unilateral ureteral obstruction; PHB, prohibitin; RF, renal interstitial fibrosis; SHO, sham operation group; TGF-β1, transforming growth factor-β1.
Renal morphology was normal in sham group (A1 and A2). Renal tubular structure was severely, collapsed lumen, diffusive infiltration of fibroblast in renal interstitium, and collagen formation in the majority of extracellular matrix in GU group (blue = collagen) (A3 and A4), especially in A4. Cell apoptosis (SHO: B1: 14 days, B2: 28 days; GU: B1: 14 days, B2: 28 days) and representative samples of immunohistochemical stainings for prohibitin (PHB) (SHO: C1: 14 days, C2: 28 days; GU: C3: 14 days, C4: 28 days), Caspase-3 (SHO: D1: 14 days, D2: 28 days; GU: D3: 14 days, D4: 28 days), transforming growth factor-β1 (TGF-β1) (SHO: E1: 14 days, E2: 28 days; GU: E1: 14 days, E2: 28 days), collagen-IV (Col-IV) (SHO: F1: 14 days, F2: 28 days; GU: F3: 14 days, F4: 28 days), and fibronectin (FN) (SHO: G1: 14 days, G2: 28 days; GU: G3: 14 days, G4: 28 days) were observed in two groups. PHB protein expression was found at normal renal tissues with a positive distribution in interstitial cells and tubular epithelial cells (C1 and C2). However, the staining for PHB was mainly located in renal tubular epithelial cell (RTEC). Furthermore, the expression of PHB was markedly downregulated in damaged interstitial and tubular epithelial cells in the GU group (C3 and C4), especially in C4. The staining for PHB was mainly located in RTEC (especially in distal tube cells). Positive stainings (in brown) for TGF-β1, Col-IV and FN were strong in the area of extracellular matrix in the GU group than those in the SHO group, especially at 28 days of the GU group. The staining for Caspase-3 in the GU group (D3 and D4) was much more marked when compared with that in the SHO group (D1 and D2), especially in D4. Caspase-3 was also mainly located in the RTEC and the apoptotic cell in our observation was mainly derived from RTEC. GU, model group subjected to unilateral ureteral obstruction. Magnification x400.

Real time reverse transcription polymerase chain reaction to detect PHB mRNA expression in renal tissue

Renal tissue was homogenized and total RNA was extracted with TRIzol (Beijing Tiangen, Co., China). Ultraviolet spectrophotometer measuring absorbance, agarose gel electrophoresis confirmed that there had been no degradation of RNA by visualizing the 18S and 28S RNA bands under ultraviolet light. Primers were designed according to primer design principles by Primer Premier 5.0. The primers for PHB and internal control β-actin were as follows: F 5′-TGGCGTTAGCGGTACAGGAG-3′ and R 5′-GAGGATCCGTAGTGTATGTGAC-3′ for PHB; F 5′-GCCCCCTGAGGACACCCTG-T3′ and R 5′-ACGCTCGTGGTACAGATCTCA-3′ for β-actin. One microgram total RNA from the renal tissue of each rat was reverse transcribed into cDNA with an ExScript RT reagent kit (Takara Biotechnology, Co., Dalian, China). PHB and β-actin were amplified with SYBR Premix Ex Taq (Beijing Tiangen, Co., China). Gene expression of β-actin was also measured in each sample and used as an internal control for loading and reverse transcription efficiency. The analysis for each sample was performed in triplicate. The average threshold cycle (Ct, the cycles of template amplification to the threshold) was worked out as the value of each sample. The data for fold change was analyzed using $2^{-\Delta \Delta Ct}$. For example, the ΔCt for PHB mRNA expression in GU group at 14 days was as follows: $\Delta C_{\text{GU}} = (C_{\text{TMB}} - C_{\text{Tbeta-actin}})_{14\text{day, GU group}}$ and the fold change for PHB mRNA expression in GU group in 14 day was $2^{-\Delta \Delta C_{\text{PHB}}}$.

Statistical analysis

The data were shown as mean ± standard deviation (SD). Independent-Samples T-test was performed to determine the differences between the SHO group and GU group, and the Pearson’s correlation coefficients were used to determine the relationships between the indicators for detection. A value of $P < 0.05$ was considered as significant. Statistical analysis was performed using the statistical package for social studies SPSS version 13.0 (SPSS, Chicago, IL, USA).

RESULTS

Renal morphology

More collagen deposition, fibroblast proliferation and diffuse lymphocyte filtration in the renal interstitium of GU group were observed when compared with those in the SHO group (Fig. 2). The index of RIF in GU was notably elevated when compared with that in SHO ($P < 0.01$; Fig. 1).

Cell apoptosis

The staining for cell apoptosis was significant in renal interstitium in the GU group than that in the SHO group (Fig. 2), especially at 28 days, and the cell apoptosis index was significantly increased in the GU group when compared with that in SHO ($P < 0.01$, Fig. 1). Interestingly, the apoptotic cell in our observation was mainly derived from RTEC (Fig. 2).

Protein expression of PHB, Caspase-3, TGF-β1, Col-IV or FN

When compared with those in the SHO group, in the GU group, the protein expression of PHB in renal interstitium was significantly weakened ($P < 0.01$, Figs 1,2) and protein expressions of Caspase-3, TGF-β1, Col-IV and FN in renal interstitium were significantly increased (all $P < 0.01$, Figs 1,2). PHB and Caspase-3 were mainly located in the RTEC in our observation (Fig. 2).

mRNA expression of PHB

Renal tissue of the GU group showed consistently lower PHB mRNA expression, when compared with that in SHO (9 weeks: SHO vs GU = 1.023-fold vs 0.372-fold, 13-week: SHO vs GU = 1.015-fold vs 0.280-fold; all $P < 0.01$; Fig. 1).

Correlation analysis

There was a negative correlation between PHB protein and index of RIF, cell apoptosis index, or protein expression of...
Caspase-3, TGF-β1, Col-IV or FN (r = -0.825, -0.886, -0.863, -0.817, -0.948, -0.953; each P < 0.01).

DISCUSSION

Renal interstitial fibrosis, associated with extensive accumulation of ECM constituents in the cortical interstitium, is directly correlated to progression of renal disease. Overexpression and deposit of ECM, such as Col-IV and FN, are the important characteristics of RIF. The impaired RTEC plays a crucial role in the progress of RIF. Of all the cytokines and growth factors, TGF-β1 plays the most important role when compared with others, and the increased expression of TGF-β1 is closely correlated with the development of RIF. TGF-β1 is known to be one of the major mediators, which leads to RIF by inducing the production of ECM (Col-IV and FN) in renal interstitium. So, TGF-β1, Col-IV and FN are the important indicators to evaluate the grade of RIF lesion and the progression of RIF. Caspase-3 is a pivotal effector of the apoptosis machinery and Caspase-3 activity is associated with cell apoptosis. The elevation of cell apoptosis is associated with the development of RIF. In this investigation, those indicators were evaluated.

Prohibitin is regarded as an apoptosis-regulating protein. The PHB might play a protective role against the injury in cells or tissue in some studies. Liu et al. conducted a study in cardiomyocytes and their data indicated that PHB could protect the cardiomyocytes from oxidative stress-induced damage, and that increasing PHB content in mitochondria constituted a new therapeutic target for myocardium injury. Muraguchi et al. performed an investigation in H9C2 cardiomyocytes and found that PHB might function as a survival factor against hypoxia-induced cell death. Ko et al. reported that hepatocyte-specific PHB deficiency resulted in marked liver injury, oxidative stress, and fibrosis with development of hepatocellular carcinoma, suggesting that PHB was a tumour suppressor in hepatocytes. The results from those studies mentioned above drew a consistent conclusion that PHB could protect the cells or tissue from reactive oxygen species (ROS) induced injury.

There were some observations reported that the PHB might be observed in renal tissue and these studies found that PHB might play a protective role in kidney against renal disease. Guo et al. observed that PHB protein was positively expressed at normal renal tissues, strongly downregulated in renal biopsy specimens from patients, and negatively correlated with the degrees of tubulointerstitial lesions, and they also conducted a study in rat kidney fibroblasts cell line and found that the overexpression of PHB suppressed the renal interstitial fibroblasts proliferation and cell phenotypic change induced by TGF-β1. Wu et al. performed a study in rats with renal tubular atrophy and interstitial fibrosis induced by aristolochic acid and found that the expression of PHB protein was downregulated in renal tissue of rats. Quan et al. observed that the expression of prohibitin-2 (homologue of PHB147) was downregulated in RTEC stimulated by elevated uric acid, which might promote trans-differentiation of RTEC, and they also noted that prohibitin-2 was associated with RTEC apoptosis due to uric acid. Those reports consistently agreed that PHB was a protective factor, and Quan et al. found that prohibitin-2 was associated with RTEC apoptosis in vitro. It was similar to our result in vivo. However, there was not any investigation performed in vivo to report that there was an association between PHB expression and the expression of Caspase-3 or the cell apoptosis in renal interstitium of RIF rats. This study was performed to explore this association in RIF rats induced by UUO.

Results from our study showed that protein expression of Caspase-3, TGF-β1, Col-IV or FN, indexes of RIF and cell apoptosis were more markedly increased in the GU group than those in SHO group, especially at 28 days. We also found that the impaired RTEC was the main contributor for RIF progression in theUUO model. It could draw a conclusion that the RIF model induced by UUO in our study was successful. However, the pathological mechanism of RIF was not elucidated. In this study, we found that PHB was mainly located in RTEC and PHB expression was negatively correlated with protein expression of Caspase-3, TGF-β1, Col-IV or FN, index of RIF or cell apoptosis index. The PHB expression in the normal control group was more marked when compared with that in the GU group. In conclusion, PHB suppressed the development of RIF and alleviated the protein expression of Caspase-3, TGF-β1, Col-IV or FN, and weakened the indexes of cell apoptosis and RIF. As those mentioned above, PHB was associated with the expression of Caspase-3/apoptotic cell in renal interstitium of UUO rats.

Prohibitin expression (mRNA or protein) in SHO group was much more marked than that in the GU group in our observation. We speculated that the mechanism was as follows: The PHB expression in the GU group was weakened, which induced the generation of ROS. The increased ROS might upregulate the expression of TGF-β. The disorder of TGF-β might induce the expressions of Col-IV and FN, and overexpression TGF-β could upregulate the expression of Caspase-3. The increased Caspase-3 was associated with cell apoptosis. So, the over-accumulation of ECM was observed and index of RIF and the number of apoptotic cells were increased.

Interestingly, in our investigation, we found that PHB and Caspase-3 mainly located in RTEC, and the apoptotic cell was mainly derived from RTEC. We speculated that the injury of RTEC was an early event and might play a pivotal role in the progression of RIF in UUO rats. So, how to protect the RTEC against injury was very important in the prevention of RIF. More attention should be paid to the event of impaired RTEC in future study. Furthermore, in our study, we also found that the PHB mainly located in RTEC, and there was only a minimal expression in mesangial cells of glomerulus. The PHB expression in glomerulus was markedly weak when compared that in renal interstitium in UUO rats (figure and
data not shown). The location of PHB was similar to that in Guo et al. It might give us some new insights to explore the association of PHB with renal disease.

However, there was a limitation in our study. In this observational study, we only found that the PHB was associated with caspase-3 expression/cell apoptosis. Cell culture using RTEC in vitro and transfection with small inhibitory RNA of PHB to decrease the PHB gene expression might be needed in future to investigate the effect of PHB on caspase-3/cell apoptosis in UUO rats.

In conclusion, less expression of PHB was associated with the increased expression of Caspase-3/cell apoptosis in RIF rats, although the detailed mechanisms were not fully elucidated. So, how to upregulate the expression of PHB is very important for prevention of RIF, and PHB might be a potential therapeutic target for prevention of the cell injury. However, cells culture in RTEC and so on, and inhibition of signalling pathway of PHB need to be conducted to explore its detailed mechanism in the further.

ACKNOWLEDGEMENTS

This study was supported by the Nature Science Foundation of China (no. 81060061), the Natural Science Foundation of the Guangxi Zhuang Autonomous Region (no. 0832121) and the Health Department of Guangxi Zhuang Autonomous Region (no. 200917). The authors would like to gratefully acknowledge the most helpful comments on this paper received from Professor Liang Rong, Department of Pediatric-Neonatology, Baylor College of Medicine, Houston, Texas, USA.

REFERENCES

1. Barnes JL, Glass WN. Renal interstitial fibrosis: A critical evaluation of the origin of myofibroblasts. Contrib. Nephrol. 2011; 169: 73–93.
2. Correa-Costa M, Semedo P, Monteiro AP et al. Induction of heme oxygenase-1 can halt and even reverse renal tubule-interstitial fibrosis. PLoS ONE 2010; 5: 14 298.
3. Morisada N, Nomura M, Nishii H et al. Complete disruption of all nitric oxide synthase genes causes markedly accelerated renal lesion formation following unilateral ureteral obstruction in mice in vivo. J. Pharmacol. Sci. 2010; 114: 379–89.
4. Yuan XP, He XS, Wang CX, Liu LS, Fu Q. Triptolide attenuates renal interstitial fibrosis in rats with unilateral ureteral obstruction. Nephrology (Carlton) 2011; 16: 200–10.
5. Boor P, Ostendorf T, Fleoje J. Renal fibrosis: Novel insights into mechanisms and therapeutic targets. Nat. Rev. Nephrol. 2010; 6: 643–56.
6. Wada J, Sun L, Kanwar YS. Discovery of genes related to diabetic nephropathy in various animal models by current techniques. Contrib. Nephrol. 2011; 169: 161–74.
7. Kushiyama T, Oda T, Yamada M et al. Alteration in the phenotype of macrophages in the repair of renal interstitial fibrosis in mice. Nephrology (Carlton) 2011; 16: 522–35.
8. Forbes MS, Thornhill BA, Chevaller RL. Proximal tubular injury and rapid formation of atubular glomeruli in mice with unilateral ureteral obstruction: A new look at an old model. Am. J. Physiol. Renal. Physiol. 2011; 301: F110–17.
9. Okamura DM, Pasichnyk K, Lopez-Guisa JM et al. Galectin-3 preserves renal tubules and modulates extracellular matrix remodeling in progressive fibrosis. Am. J. Physiol. Renal. Physiol. 2011; 300: F245–53.
10. Puppin C, Passon N, Franzoni A, Russo D, Damante G. Histone deacetylase inhibitors control the transcription and alternative splicing of prohibitin in thyroid tumor cells. Oncol. Rep. 2011; 25: 393–97.
11. Zhu B, Zhai J, Zhu H, Kyprianou N. Prohibitin regulates TGF-beta induced apoptosis as a downstream effector of Smad-dependent and -independent signaling. Prostate 2010; 70: 17–26.
12. Li QF, Liang Y, Shi SL et al. Localization of prohibitin in the nuclear matrix and alteration of its expression during differentiation of human neuroblastoma SK-N-SH cells induced by retinoic acid. Cell. Mol. Neurobiol. 2011; 31: 203–11.
13. Kasahima K, Sumitani M, Satoh M, Endo H. Human prohibitin 1 maintains the organization and stability of the mitochondrial nucleoids. Exp. Cell Res. 2008; 314: 988–96.
14. Lee JJ, Nguyen KH, Mishra S, Nyomba BL. Prohibitin is expressed in pancreatic beta-cells and protects against oxidative and proapoptotic effects of ethanol. FEBS J. 2010; 277: 488–500.
15. Liu X, Ren Z, Zhan R et al. Prohibitin protects against oxidative stress-induced cell injury in cultured neonatal cardiomyocyte. Cell Stress Chaperones 2009; 14: 311–19.
16. Diao JS, Xia WS, Yi CG et al. Trichostatin A inhibits collagen synthesis and induces apoptosis in keloid fibroblasts. Arch. Dermatol. Res. 2011; 303: 573–80.
17. Kolosova I, Nethery D, Kern JA. Role of Smad2/3 and p38 MAP kinase in TGF-beta1-induced epithelial-mesenchymal transition of pulmonary epithelial cells. J. Cell. Physiol. 2011; 226: 1248–54.
18. Guo W, Xu H, Chen J et al. Prohibitin suppresses renal interstitial fibroblasts proliferation and phenotypic change induced by transforming growth factor-beta1. Mol. Cell. Biochem. 2007; 295: 167–77.
26. Zhou TB, Qin YH, Lei FY, Su LN, Zhao YJ, Huang WF. apoE expression in glomerulus and correlation with glomerulosclerosis induced by adriamycin in rats. Ren. Fail. 2011; 33: 348–54.

27. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–8.

28. Meran S, Steadman R. Fibroblasts and myofibroblasts in renal fibrosis. Int. J. Exp. Pathol. 2011; 92: 158–67.

29. Tang R, Yang C, Tao JI et al. Epithelial-mesenchymal transdifferentiation of renal tubular epithelial cells induced by urinary proteins requires the activation of PKC-alpha and beta isozymes. Cell Biol. Int. 2011; 35: 953–9.

30. Wang QL, Tao YY, Yuan JL, Shen L, Liu CH. Salvinianic acid B prevents epithelial-to-mesenchymal transition through the TGF-beta1 signal transduction pathway in vivo and in vitro. BMC Cell Biol. 2010; 11: 31.

31. Tang S, Leung JC, Abe K et al. Albumin stimulates interleukin-8 expression in proximal tubular epithelial cells in vitro and in vivo. Nephrology (Carlston) 2011; 16: 76–86.

32. Ma FY, Tesch GH, Ozols E, Xie M, Schneider MD, Nikolic-Paterson DJ. TGF-beta activated kinase-1 (TAK1) regulates inflammation and fibrosis in the obstructed kidney. Am. J. Physiol. Renal. Physiol. 2011; 300: F1410–21.

33. Barnes JL, Gorin Y. Myofibroblast differentiation during fibrosis: Role of NAD(P)H oxidases. Kidney Int. 2011; 79: 944–56.

34. Sakairi T, Hiromura K, Takahashi S et al. Effects of proteasome inhibitors on rat renal fibrosis in vitro and in vivo. Nephrology (Carlston) 2010; 15: 1016–27.

35. Zieg J, Blahova K, Seeman T et al. Urinary transforming growth factor-beta1 in children with obstructive uropathy. Nephrology (Carlston) 2011; 16: 595–98.

36. Mohamed SA, Misfeld M, Hanke T et al. Inhibition of caspase-3 differentially affects vascular smooth muscle cell apoptosis in the concave versus convex aortic sites in ascending aeurysms with a bicuspid aortic valve. Ann. Anat. 2010; 192: 145-50.

37. Cai H, Gu Y, Sun Q, Zeng J, Dong N, Zhao G. Effect of hematoporphyrin monomethyl ether-mediated photodynamic therapy on hypertrophic scar fibroblasts. Photodermatol. Photomed. Photomed. 2011; 27: 90–96.

38. Yue Z, She RP, Bao HH et al. Necrosis and apoptosis of renal tubular epithelial cells in rats exposed to 3-methyl-4-nitrophenol. Environ. Toxicol. 2011 doi: 10.1002/tox.20688.

39. He W, Wang Y, Zhang MZ et al. Sirt1 activation protects the mouse renal medulla from oxidative injury. J. Clin. Invest. 2010; 120: 1056–68.

40. Li L, Zepeda-Orozco D, Black R, Lin F. Autophagy is a component of epithelial cell fate in obstructive uropathy. Am. J. Pathol. 2010; 176: 1767–78.

41. Mandache G, Gherghiceanu M, Serafineanu C, Penescu M, Mircescu G. Myofibroblast involvement in tubular basement membrane remodeling in type II diabetic nephropathy. Rom. J. Morphol. Embryol. 2011; 52: 75–9.

42. Sato S, Murata A, Orihara T et al. Marine natural product aurilide activates the OPA1-mediated apoptosis by binding to prohibitin. Chem. Biol. 2011; 18: 131–39.

43. Muraguchi T, Kawawa A, Kubota S. Prohibitin protects against hypoxia-induced H9c2 cardiomyocyte cell death. Biomed. Res. 2010; 31: 113–22.

44. Ko KS, Tomasi ML, Iglesias-Ara A et al. Liver-specific deletion of prohibitin 1 results in spontaneous liver injury, fibrosis, and hepatocellular carcinoma in mice. Hepatology 2010; 52: 2096–108.

45. Wu HZ, Guo L, Mak YF et al. Proteomics investigation on aristolochic acid nephropathy: A case study on rat kidney tissues. Anal. Bioanal. Chem. 2011; 399: 3431–39.

46. Quan H, Peng X, Liu S et al. Differentially expressed protein profile of renal tubule cell stimulated by elevated uric acid using SILAC coupled to LC-MS. Cell. Physiol. Biochem. 2011; 27: 91–8.

47. Sievers C, Billig G, Gottschalk K, Rudel T. Prohibitins are required for cancer cell proliferation and adhesion. PLoS ONE 2010; 5: e12735.

48. Fujita H, Hida M, Kanemoto K, Fukuda K, Nagata M, Awazu M. Cyclic stretch induces proliferation and TGF-beta1-mediated apoptosis via p38 and ERK in ureteric bud cells. Am. J. Physiol. Renal. Physiol. 2010; 299: 648–55.

49. Liu S, Cieslinski DA, Funke AJ, Humes HD. Transforming growth factor-beta 1 regulates the expression of Pax-2, a developmental control gene, in renal tubule cells. Exp. Nephrol. 1997; 5: 295–300.

50. Djamali A, Vidyasagar A, Yagi G, Huang LJ, Reece S. Mycophenolic acid may delay allograft fibrosis by inhibiting transforming growth factor-beta1-induced activation of Nox-2 through the nuclear factor-kappaB pathway. Transplantation 2010; 90: 387–93.

51. Zhou G, Li C, Cai L. Advanced glycation end-products induce connective tissue growth factor-mediated renal fibrosis predominantly through transforming growth factor-beta-independent pathway. Am. J. Pathol. 2004; 165: 2033–43.

52. Kelley R, Werdin ES, Bruce AT et al. Tubular cell-enriched subpopulation of primary renal cells improves survival and augments kidney function in rodent model of chronic kidney disease. Am. J. Physiol. Renal. Physiol. 2010; 299: F1026–39.

53. Huang S, Zhang F, Miao L et al. Lentiviral-mediated Smad4 RNAi induced anti-proliferation by p16 up-regulation and apoptosis by caspase 3 down-regulation in hepatoma SMMC-7721 cells. Oncol. Rep. 2008; 20: 1053–59.

54. Zheng X, Boerboom D, Carrieri PD. Transforming growth factor-beta1 inhibits luteinization and promotes apoptosis in bovine granulosa cells. Reproduction 2009; 137: 969–77.

55. van der Heide LP, van Dinther M, Moustakas A, ten DP. TGFbeta activates mitogen- and stress-activated protein kinase 1 (MSK1) to attenuate cell death. J. Biol. Chem. 2011; 286: 5003–11.