1. INTRODUCTION

The discovery that Seyfert 2 galaxies can have reflected or polarized broad line emission has led to an approach coined “unification” toward interpreting the differences between active galactic nuclei (AGNs) in terms of orientation angle (Antonucci 1993). The dusty torus of this unification paradigm absorbs a significant fraction of the optical/UV/X-ray luminosity of an active galaxy and consequently reradiates this energy at infrared wavelengths. As a result of this extinction, it is difficult to observe continuum radiation from Seyfert 2 galaxies at optical and UV wavelengths (e.g., Mulchaey et al. 1994). An additional complication is that in a given aperture it may be difficult to identify the percentage of flux from a nonstellar nuclear source (e.g., Alonso-Herrero, Ward, & Kotilainen 1996). For example, in Seyfert 2 galaxies much of the nuclear emission may originate from nuclear star formation (e.g., Maiolino et al. 1997; Gonzalez-Delgado & Perez 1993).

The high sensitivity and resolution of near-infrared imaging with the Hubble Space Telescope (HST) using the Near-Infrared Camera and Multiobject Spectrograph (NICMOS) allows us to probe galactic centers at wavelengths that experience reduced extinction compared to the optical and with a beam area about 30 times smaller than is typically achieved with ground-based observations at these wavelengths. This enables us to separate the nuclear emission from that of the surrounding galaxy with unprecedented accuracy. Although a previous study using WFPC2 at 0.6 μm did not detect unresolved nuclear continuum emission from Seyfert 2 galaxies (Malkan, Gorjian, & Tam 1998), about 60% of the Revised Shapely-Ames and CfA samples (described below) of Seyfert 1.8–2.0 galaxies display prominent unresolved nuclear sources with diffraction rings in NICMOS images at 1.6 μm (McDonald et al. 2000). Although we suspect that these unresolved continuum sources are most likely associated directly with an AGN, they could also be from unresolved star clusters, which are found in a number of normal galaxies (Carollo et al. 1997).

Variability observed in the continuum (e.g., Fitch, Pacholczyk, & Weymann 1967) is an intrinsic property of AGNs which demonstrates that the energy causing the emission must arise from a very small volume. This led early studies to suggest that accretion onto a massive black hole is responsible for the luminosity (Salpeter 1964; Zeldovich & Novikov 1964). Long-term multiyear monitoring programs have found that Seyfert 1 galaxies are variable in the near-infrared (Clavel, Wamsteker, & Glass 1989; Lebofsky & Rieke 1980), but these programs have only seen a few Seyfert 2 nuclei vary (e.g., Glass 1997; Lebofsky & Rieke 1980). Evidence for variability in the unresolved sources seen in HST observations of Seyfert 2 galaxies would provide evidence that this nuclear emission is nonstellar and so arises from the vicinity of a massive black hole.

2. OBSERVATIONS

In this Letter, we present a study of variability in Seyfert galaxies. We have searched the HST archive for galaxies (Seyfert and normal) that were imaged twice by HST at 1.6 μm in the F160W filter with the NICMOS cameras. The Seyfert galaxies with unplanned duplicate observations either satisfy the Revised Shapely-Ames Catalog criteria (described by Maiolino & Rieke 1995) or are part of the CfA redshift survey (Huchra & Burg 1992). The Seyfert observations are discussed in Regan & Mulchaey (1999) and Martini & Pogge (1999), and the observations of the normal or non-Seyfert galaxies are described by Seigar et al. (2000) and Böker et al. (1999). The observations are listed in Table 1 and are grouped by the NICMOS cameras with which they were observed. Images were reduced with the NICRED data reduction software (McLeod 1997) using on orbit darks and flats. Each set of images in the F160W filter was then combined according to the position observed. The pixel sizes for the NICMOS cameras are ~0″043, 0″076, and 0″204 for cameras 1, 2, and 3, respectively.

At the center of these galaxies, we expect contribution from an underlying stellar component in addition to that from an unresolved nonstellar component. To measure the flux from the unresolved component, we must subtract a resolved stellar component. However, this procedure is dependent upon assumptions made about the point-spread function, the form of the stellar surface brightness profile fit to the image, and the region over which we fit this profile. This procedure adds uncertainty in the measurement of the unresolved component. However, aperture photometry has proved quite robust with observations of flux calibration standard stars showing variation less than 1% over the lifetime of NICMOS (M. Rieke 1999, private communication). We therefore opt to use aperture photometry to measure flux variations and then subsequently correct for contamination of the aperture by the background galaxy.

From each pair of images, we measure fluxes in apertures...
TABLE 1

Galaxy	Line Classification	Type of Nucleus	First Image	Second Image	Flux	Difference (%)
IC 5063	S2	D	7330/2	7119/2	2.74	0.57
NGC 1275	S1.9/S1.5	D	7330/2	7119/2	2.73	19.0
NGC 2460		R	7330/2	7331/2	3.09	1.06
NGC 2985	T1.9	R	7330/2	7331/2	5.44	-0.04
NGC 3368	L2	R	7330/2	7331/2	9.23	-1.10
NGC 2903	H	W	7330/2	7331/2	3.01	-1.66
NGC 6051	S2	R	7330/2	7331/2	3.88	0.53
NGC 7177	T2	R	7330/2	7331/2	2.46	-2.63
Mrk 266	S2	R	7867/1	7328/1	1.10	2.32
Mrk 573	S2	D	7867/1	7330/2	2.26	2.69
NGC 3982	R	F	7867/1	7330/2	1.36	1.91
NGC 5033	S1.9/S1.5	D	7867/1	7330/2	5.23	-8.78
NGC 5252	S1.9	D	7867/1	7330/2	1.81	0.24
NGC 5273	S1.9/S1.5	D	7867/1	7330/2	2.35	-8.63
NGC 5347	S2	D	7867/1	7330/2	2.30	5.45
NGC 5929	R	D	7867/1	7330/2	1.91	0.43
Mrk 471	S1.8	D	7867/1	7330/2	0.88	2.06
Mrk 533	S2	D	7867/1	7330/2	4.86	-9.31
UGC 12138	S1.8	D	7867/1	7330/2	3.60	-16.0
UM 146	S1.9	D	7867/1	7330/2	1.36	-6.89
NGC 1241	S2	W	7919/3	7915/3	4.24	0.01
NGC 214		R	7919/3	7915/3	2.73	2.13
NGC 2639	S1.9	R	7919/3	7915/3	7.25	-0.29
NGC 2903	H	W	7919/3	7915/3	5.31	0.45
NGC 3627	T2	R	7919/3	7915/3	14.99	-3.89
NGC 404	L2	D	7919/3	7915/3	11.74	0.84
NGC 4151	S1.5	D	7906/3	7915/3	97.35	11.3
NGC 4528	S1.9	W	7919/3	7915/3	19.20	1.86
NGC 4935	S1.8	D	7919/3	7915/3	1.14	11.2
NGC 5128	S2	D	7919/3	7915/3	16.27	-2.72
NGC 628		W	7919/3	7915/3	1.37	4.24
NGC 6744	L	R	7919/3	7915/3	7.03	-2.08
NGC 6946	H	R	7919/3	7915/3	13.73	-1.86

Note.—Seyfert and normal galaxies have been grouped by the NICMOS cameras in which they were observed. The first group consists of camera 2/camera 2 pairs, the second camera 1/camera 2 pairs, the third camera 1/camera 1 pairs, and the last group camera 2/camera 3 pairs. Col. (1): Galaxy name. Col. (2): Classification of emission lines in the nucleus. Spectroscopic identifications for the nuclei of NGC 2460 and NGC 214 could not be found. The nucleus of NGC 628 lacks emission lines (Ho et al. 1995). Col. (3): Type of nucleus seen in the F160W images. When the nucleus displayed a clear diffraction ring, it was marked “D,” when the ring was faint it was marked “E” and when the galaxy was resolved, we marked it “R.” When there was an unresolved peak but no sign of a diffraction ring, we marked it “W.” Col. (4): Proposal identification number followed by camera number of the first NICMOS image considered; col. (5): date on which this image was observed. Col. (6): Proposal identification number followed by camera number of the second NICMOS image considered; col. (7): date on which this image was observed; col. (8): Nuclear flux at 1.6 μm measured in mJy for the image identified by cols. (4) and (5). Col. (9): Flux in an aperture for the image identified by cols. (6) and (7). Col. (10): Percent difference divided by the mean of the fluxes listed in cols. (8) and (9).

- A polarized broad-line component was detected in IC 5063 by Inglis et al. 1993.
- From Osterbrock & Marrel 1993.
- From Ho, Filippenko & Sargent 1995, 1997 (classifications from these works include H = H ii nucleus, S = Seyfert nucleus, L = LINER, and T = transition object with numbers corresponding to subtypes).
- From Huchra & Burg 1992. No data are available about the line ratios of NGC 5347.
- From Daahari & De Robertis 1988.
- From Daahari 1985.
- From Tadhunter et al. 1993.
- NGC 6744 was classified as a LINER by Vaceli et al. 1997, and no subtype was given.

of the same angular size. No background was subtracted, since the level expected at 1.6 μm is negligible compared to the galaxy surface brightnesses. Apertures are listed in Table 1 and were chosen so that more than 75% of the flux of an unresolved source would be contained in the aperture. We chose apertures based on which two cameras were used to observe the object. We list in Table 1 the difference divided by the mean of the two flux measurements for each pair of images.

To determine whether the nuclear sources are variable, we use the galaxies not identified as Seyfert galaxies and those containing Seyfert nuclei but lacking an unresolved nuclear component. Comparing camera 2 and camera 3 measurements for this control sample, we find a mean difference of μ = -0.9 ± 0.7% with a variance of σ = 2.0% in the measurements. Comparing measurements with two observations in camera 2 for this control sample, we find a mean difference of μ = -0.6 ± 0.6% with a variance of σ = 1.4%. Unfortunately, our control sample only contains two galaxies with observations in camera 1 and camera 2 (Mrk 266...
and NGC 5929). To supplement this, we also measured stars observed in both camera 1 and 2 in the vicinity of the Galactic center. Differences in fluxes measured in these three image pairs were less than 3%. The statistics of our control sample suggest that the intrinsic scatter of our measurements is smaller than a level and likely to be caused by variability and not by scatter in the measurements. The galaxies in which we measure differences larger than this level are listed in Table 2.

We did not find that the unresolved nuclear sources in NGC 404 our NGC 2903 were variable. As demonstrated with UV spectra by Maoz et al. (1998), it is possible that the unresolved component in NGC 404 is from a young star cluster. The same is probably true in NGC 2903, which also contains a compact nuclear source and has a nuclear H α region-type spectrum. The scatter in our aperture measurements does not appear to be dependent on the surface brightness profile of the galaxy. No large differences were measured between image pairs for galaxies lacking an unresolved nuclear source.

To estimate the level of variability in the unresolved component, we must measure the contribution within the aperture of this component. For each camera, we measured a point-spread function from stars in the images. We then estimated the contribution within the aperture of the unresolved component (galaxy subtracted) averaged between the two measurements. We estimate the error to be ±15% of the flux listed.

From Table 2 we see that most of the variable sources are Seyfert 1.8 or 1.9 galaxies. NGC 1275, NGC 5033, and NGC 5273 are usually classified as Seyfert 1.9 galaxies, although Ho, Filippenko & Sargent (1995) classify them as S1.5. There are two Seyfert 2 galaxies exhibiting variability: Mrk 533 and NGC 5347. In Mrk 533 a broad component in Paα was detected by Ruiz et al. 1994, and so this galaxy could be classified as a Seyfert 1.9. Seyfert 1.8 and 1.9 galaxies are more likely to display unresolved nuclear sources than Seyfert 2.0 galaxies (McDonald et al. 2000). In the context of the unification model, reduced extinction toward the continuum-emitting region at 1.6 μm would be expected in Seyfert galaxies that display faint broad-line emission. However, this might also suggest that the sizes of the broad-line region and 1.6 μm continuum emission region are small compared to the material responsible for the bulk of the extinction.

Two major sources for AGN continuum variability are generally considered: (1) instabilities in an accretion disk (e.g., Shakura & Sunyaev 1973) and (2) jet-related processes. The second case could be a possible explanation for variability NGC 1275, since it is bright at radio wavelengths and is significantly polarized at optical wavelengths (as discussed by Angel & Stockman 1980). However, the luminosity of the compact nucleus of this galaxy at 1.3 GHz is about 20 times lower than that we measure at 1.6 μm (using the flux from Taylor & Vermeulen 1996). So the 1.6 μm flux is higher than what would be expected from synchrotron emission and could be from an additional thermal component (e.g., from hot dust). Better measurements showing the shape of the spectral energy distribution spanning the optical and near-infrared region (to see if two
components are present) or a polarization measurement at 1.6 μm would help differentiate between a thermal or non-thermal origin for the near-infrared emission.

For the remainder of the Seyfert galaxies, their low radio power implies that jet-related processes are not responsible for the variability. From observations of the Seyfert 1 galaxy Fairall 9, Clavel et al. (1989) observed large (400 day) time delays between variations seen at 2 and 3 μm and those seen in the UV. Little or no time delay was seen at 1.2 μm. This led them to suggest that the longer wavelength emission was associated with hot dust located outside the broad-line region (e.g., Lebofsky & Rieke 1980; Barvainis 1987; Netzer & Laor 1993) and that the shorter wavelength emission was reprocessed near the UV-emitting region.

For hot dust to cause the 1.6 μm emission, dust grain temperatures resulting from absorption of UV radiation must be quite high, nearly that expected for sublimation (T ~ 2000 K). The grain temperature should reach this level at a radius r ~ 0.06 pc (L/10^{44} ergs s^{-1})^{1/2} (following the estimate given in Barvainis 1987). This radius would have a characteristic variability timescale of ~70 days or 2 months for a source of 10^{44} ergs s^{-1}. We can crudely estimate the bolometric luminosity of our sources from that at 1.6 μm (which are listed in Table 2) by assuming a ratio of ~10 between the 1.6 μm and mid-IR luminosity (e.g., Fadda et al. 1998 for the Seyfert 2 galaxies) and a ratio of ~10 between the mid-IR and bolometric luminosity (e.g., Spinoglio et al. 1995). The timescales over which we see variations for the brighter sources such as NGC 1275, Mrk 533, and UGC 12138 (L ~ 10^{44} ergs s^{-1}) are consistent with the 2 month minimum estimated for emission from hot dust. The least luminous of our sources, NGC 4395 (L ~ 10^{43} ergs s^{-1}), could have a variability timescale of only a few days for hot dust emitting at 1.6 μm, again consistent with the timescale (a few weeks) over which we see a variation.

Emission from hot dust may not necessarily dominate at 1.6 μm since the emitting material would require a temperature near the sublimation point of graphites and silicates (Netzer & Laor 1993). However, transient superheating at larger radii could still cause emission from hot dust at this wavelength. While the timescales over which we see variability are comparable to those expected from hot dust near a sublimation radius, a long-term study comparing flux variations between the near-infrared and X-ray emission would be needed to determine the exact nature of the 1.6 μm emission. This kind of study would also place strong constraints on disk and torus models for the infrared emission (e.g., Efstathiou & Rowan-Robinson 1995; Fadda et al. 1998).

Most of the unresolved nuclear sources studied here exhibit variability. This suggests that most of the many unresolved continuum sources recently discovered in near-infrared surveys (McDonald et al. 2000; Alonso-Herrero et al. 1996)—and not seen in previous optical surveys—are nonstellar and associated with the central parsecs of an AGN. The near-infrared continuum in low-luminosity AGNs can now be studied in a set of objects comprising a larger range of luminosity and orientations. This should provide tests of the unification model for Seyfert 1 and 2 galaxies as well as the nature of accretion in these lower luminosity sources.

We thank the referee, Ski Antonucci, for comments which have improved this Letter. We thank Brad Peterson and Chien Peng for helpful discussions on this work. Support for this work was provided by NASA through grant GO-07869.01-96A from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. We also acknowledge support from NASA projects NAG5-3359 and NAG5-3042 and from JPL contract 961633.

REFERENCES

Alonso-Herrero, A., Ward, M. J., & Kotilainen, J. K. 1996, MNRAS, 278, 902
Angel, J. R. P., & Stockman, H. S. 1980, ARA&A, 18, 321
Antonucci, R. R. J. 1993, ARA&A, 31, 473
Barvainis, R. 1987, ApJ, 320, 537
Boker, T., et al. 1999, ApJS, 124, 95
Carollo, C. M., Stiavelli, M., de Zeeuw, P. T., & Mack, J. 1997, AJ, 114, 2366
Clavel, J., Wamsteker, W., & Glass, I. S. 1989, ApJ, 337, 236
Dahari, O., 1995, ApJS, 57, 643
Dahari, O., & De Robertis, M. M. 1998, ApJS, 67, 249
Efstathiou, A., & Rowan-Robinson, M. 1995, MNRAS, 273, 649
Fadda, D., Giuricin, G., Granato, G. L., & Vecchi, D. 1998, ApJ, 496, 117
Filippenko, A. V., Ho, L. C., & Sargent, W. L. W. 1993, ApJ, 410, L75
Filippenko, A. V., & Sargent, W. L. W. 1989, ApJ, 342, L11
Fitch, W., Paczolszyk, A. G., & Weymann, R. J. 1967, ApJ, 150, L67
Glass, I. S. 1997, MNRAS, 292, L50
Gonzalez-Delgado, R. M., & Perez, E. 1993, ApSS, 205, 127
Ho, L. C., Filippenko, A. V., & Sargent, W. L. W. 1995, ApJS, 98, 477
Huchra, J., & Burg, R. 1992, ApJ, 393, 90
Inglis, M. D., Bridle, C., Hough, J. H., Young, S., Axon, D. J., Bailey, J. A., & Ward, M. J. 1993, MNRAS, 263, 895
Lebofsky, M. J., & Rieke, G. H. 1980, Nature, 284, 410
Lira, P., Lawrence, A., O’Brien, P., Johnson, R. A., Terlevich, R., & Bannister, N. 1999, MNRAS, 305, 109
Maiolino, R., & Rieke, G. H. 1995, ApJ, 454, 95
Malkan, M. A., Gorjian, V., & Tam, R. 1998, ApJS, 117, 25
McDonald, C., Quillen, A. C., Alonso-Herrero, A., Shaked, S., Lee, A., Rieke, M. J., & Rieke G. H. 2000, ApJ, submitted
McLeod, B. 1997, in Proc. 1997 HST Calibration Workshop, ed. S. Casertano, R. Jedrzejewski, T. Keyes, & M. Stevens (Baltimore: STScI), 281
Mulchaey, J. S., Koratkar, A., Ward, M. J., Wilson, A. S., Whittle, M., Antonucci, R. R. J., Kinney, A. L., & Hurl, T. 1994, ApJ, 436, 586
Netzer, H., & Laor, A. 1993, ApJ, 404, L51
Osterbrock, D. E., & Mar, A. 1993, ApJ, 414, 552
Regan, M. W., & Mulchaey, J. S. 1999, AJ, 117, 2676
Rowan-Robinson, M. 1985, The Cosmological Distance Ladder (New York: Freeman), 171
Rieke, M. J., Rieke, G. H., & Schmidt, G. D. 1994, ApJ, 432, 608
Salpeter, E. E. 1964, ApJ, 140, 796
Seigar, M., Stiavelli, M., Carollo, C. M., de Zeeuw, P. T., & Dejongue, H. 2000, in ASP Conf. Ser. 197, Dynamics of Galaxies: From the Early Universe to the Present, ed. F. Combes, G. A. Mamon, & V. Charmandaris (San Francisco: ASP), 269
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337
Spinoglio, L., Malkan, M. A., Rush, B., Carrasco, L., & Recillas-Cruz, E. 1995, ApJ, 453, 616
Tadhunter, C. N., Morganti, R., di Serego±Alighieri, S., Fosbury, R. A. E., & Antonucci, R. R. J., & Ward, M. J., 1996, ApJ, 457, L69
Vaceli, M. S., Viegas, S. M., Gruenwald, R., & de Souza, R. E. 1997, AJ, 114, 1345
Zeldovich, Ya. B., & Sunyaev, R. A. 1973, A&A, 24, 337
Zandivc, I. D. 1964, Dokl. Akad. Nauk SSSR, 155, 1033