N–graphs, modular Sidon and sum–free sets, and partition identities

Melvyn B. Nathanson†
Department of Mathematics
Lehman College (CUNY)
Bronx, New York 10468
e-mail: nathansn@alpha.lehman.cuny.edu

Abstract

Using a new graphical representation for partitions, the author obtains a family of partition identities associated with partitions into distinct parts of an arithmetic progression, or, more generally, with partitions into distinct parts of a set that is a finite union of arithmetic progressions associated with a modular sum–free Sidon set. Partition identities are also constructed for sets associated with modular sum–free sets.

1 N–graphs for partitions

The standard form of a partition $n = a_1 + a_2 + \cdots + a_k$ is

$$\pi = (a_1, \ldots, a_k),$$

where the parts a_1, \ldots, a_k are positive integers arranged in descending order. The standard form of a partition is unique.

Associated to a partition $\pi = (a_1, \ldots, a_k)$ of n is an array of dots, called the Ferrers graph of π. This consists of n dots arranged in k rows, with a_1 dots on the first row, a_2 dots on the second row, \ldots, and a_k dots on the k–th row. The rows are aligned on the left. The Durfee square $D(\pi)$ of the graph is the largest square array of dots that appears in the upper left corner of the Ferrers graph. We denote by $d(\pi)$ the number of dots on a side of the Durfee square, or, equivalently, the number of dots on a diagonal of $D(\pi)$.

*2000 Mathematics Subject Classification. Primary 11P81, 11P83. Secondary 11B05, 11B25, 11B75. Key words and phrases. Partition identities, Ferrers graphs, modular graphs, and N–graphs of partitions, Sidon sets, sum–free sets, additive and combinatorial number theory.

†This work was supported in part by grants from the PSC–CUNY Research Award Program and the NSA Mathematical Sciences Program.
The Ferrers graph can be decomposed into a disjoint union of right angles, called hooks. The corners of the hooks are the dots on the main diagonal of the Durfee square, and so the number of hooks is $d(\pi)$. Counting the number of dots on the hooks, we obtain the hook numbers of the partition π. Since the sum of the hook numbers is n, we obtain a new partition of n, denoted $h(\pi)$ and called the hook number partition.

For example, the partition $\pi = (7, 6, 6, 5, 4)$ of 28 has $d(\pi) = 4$. The hook number partition is $h(\pi) = (11, 8, 6, 3)$.

MacMahon [2] introduced a beautiful arithmetic generalization of the Ferrers graph of a partition. Let $\pi = (a_1, \ldots, a_k)$ be a partition of n in standard form. For each positive integer m we shall construct the MacMahon modular m–graph of the partition π. By the division algorithm, we can write each part a_i uniquely in the form

$$a_i = u(a_i)m + s(a_i) \quad \text{where} \quad u(a_i) \geq 0 \quad \text{and} \quad 1 \leq s(a_i) \leq m.$$

The m–graph of π consists of k rows. The i–th row has $u(a_i) + 1$ entries, where the first $u(a_i)$ entries are m, and the last entry is $s(a_i)$. In the special case $m = 1$, we have $u(a_i) = a_i - 1$ and $s(a_i) = 1$ for $i = 1, \ldots, k$. The 1–graph is exactly the Ferrers graph with each dot replaced by 1.

The Durfee square of the m–graph, denoted $D_m(\pi)$, is the largest square array of integers contained in the upper left corner of the graph. The number of dots a side of the Durfee square is denoted $d_m(\pi)$. The hook number partition associated with the m–graph is the partition $h_m(\pi)$ obtained by adding the numbers on the hooks of the m–graph. The hook number partition has $d_m(\pi)$ parts.

For example, if $\pi = (9, 8, 6, 4)$, then the m–graphs of π for $m = 1, 2$, and 3 are

$$\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 & 2 & 1 \\
2 & 2 & 2 & 2 & 2 & 1 \\
2 & 2 & 2 & 2 & 2 & 1 \\
3 & 3 & 3 & 3 & 3 & 3 \\
3 & 3 & 2 & 2 & 2 & 2 \\
3 & 3 & 2 & 2 & 2 & 2 \\
3 & 3 & 2 & 2 & 2 & 2 \\
3 & 1 & 1 & 1 & 1 & 1 \\
3 & 1 & 1 & 1 & 1 & 1 \\
3 & 1 & 1 & 1 & 1 & 1 \\
3 & 1 & 1 & 1 & 1 & 1 \\
3 & 1 & 1 & 1 & 1 & 1 \\
3 & 1 & 1 & 1 & 1 & 1 \\
3 & 1 & 1 & 1 & 1 & 1 \\
3 & 1 & 1 & 1 & 1 & 1 \\
\end{array}$$

Note that $d_1(\pi) = 4$, $d_2(\pi) = 3$, and $d_3(\pi) = 2$. The hook number partitions associated with these graphs are $h_1(\pi) = (12, 9, 5, 1)$, $h_2(\pi) = (15, 10, 2)$, and $h_3(\pi) = (18, 9)$.

2
In this paper I introduce a generalization of MacMahon’s m–graphs. Let $m \geq 2$, and let $S = \{s_1, \ldots, s_\ell\}$ be an ordered, nonempty set of positive integers that are pairwise incongruent modulo m. We do not assume that $1 \leq s \leq m$ for $s \in S$. Let A be the set of integers of the form $um + s$, where $u \geq 0$ and $s \in S$. Then A is a finite union of arithmetic progressions with difference m, and every element $a \in A$ has a unique representation in the form $a = u(a)m + s(a)$, where $u(a)$ is a nonnegative integer and $s(a) \in S$.

A partition π into parts belonging to A can be written uniquely in the form $$\pi = (a_1, \ldots, a_k)_N,$$
where $$a_i = u(a_i)m + s(a_i) \in A,$$
and, if $u(a_i) = u(a_{i+1})$, $s(a_i) = s_j$, and $s(a_{i+1}) = s_{j+1}$, then $j_i \leq j_{i+1}$. We shall call this the standard N–form for a partition with parts in the set A. Note that if $(a_1, \ldots, a_k)_N$ is the standard N–form of a partition, then it is not necessarily true that $a_i \geq a_{i+1}$ for all $i = 1, \ldots, k-1$.

The N–graph of the partition $\pi = (a_1, \ldots, a_k)_N$ will consist of k rows. The i–th row has $u(a_i) + 1$ entries, where the first $u(a_i)$ entries are m and the last entry is $s(a_i)$. In particular, we obtain MacMahon’s modular m–graphs for partitions in the special case $\ell = m$ and $s_j = m + 1 - j$ for $j = 1, \ldots, m$.

The Durfee square $D_N(\pi)$ of the N–graph is the largest square array of integers contained in the upper left corner of the graph, and the hook number partition $h_N(\pi)$ associated with the N–graph is the partition obtained by adding the numbers on the hooks of the N–graph. If $d_N(\pi)$ is the number of integers on a side of the Durfee square $D_N(\pi)$, then the hook number partition has $d_N(\pi)$ parts.

For example, let $m = 13$ and $S = \{3, 2, 20\}$, where $\ell = 3$, and $s_1 = 3, s_2 = 2, s_3 = 20$. Then

\[
A = \{3, 16, 29, 42, 55, \ldots\} \cup \{2, 15, 28, 41, 54, \ldots\} \cup \{20, 33, 46, 59, \ldots\} \\
= \{2, 3, 15, 16, 20, 28, 29, 33, 41, 42, 46, 54, 55, 59, \ldots\}.
\]

Consider the partition $193 = 55 + 41 + 33 + 29 + 20 + 15$. The standard form for this partition is $$\pi = (55, 41, 33, 29, 20, 15),$$
and the standard N–form is $$\pi = (55, 41, 29, 15, 33, 20)_N.$$

The corresponding N–graph is

\[

\text{3}
\]
The Durfee square contains 9 points, \(d_N(\pi) = 3 \), and the hook number partition associated with the \(N \)-graph is \(h_N(\pi) = (127, 63, 3) \).

2 Sum–free Sidon sets

Let \(S = \{s_1, \ldots, s_\ell\} \) be a nonempty finite set of integers, and let \(2S = \{s + s' : s, s' \in S\} \). The set \(S \) is a **sum–free** if \(S \cap 2S = \emptyset \). The set \(S \) is a **Sidon set** if every integer has at most one representation as a sum of two elements of \(S \), that is, \(s_i + s_{i_2} = s_{j_1} + s_{j_2} \) if and only if \(\{i_1, i_2\} = \{j_1, j_2\} \). For example, \(\{1, 6, 19\} \) is a sum–free Sidon set, and \(\{s\} \) is a sum–free Sidon set for every \(s \neq 0 \).

Let \(m \geq 2 \). The set \(S \) is **sum–free modulo** \(m \) if the elements of \(S \) are pairwise incongruent modulo \(m \) and the congruence \(s_{i_1} + s_{i_2} \equiv s_j \pmod{m} \) has no solution with \(s_{i_1}, s_{i_2}, s_j \in S \). The set \(S \) is a **Sidon set modulo** \(m \) if every congruence class modulo \(m \) has at most one representation as a sum of two elements of \(S \), that is, \(S \) is a set of pairwise incongruent integers such that \(s_{i_1} + s_{i_2} \equiv s_{j_1} + s_{j_2} \pmod{m} \) if and only if \(\{i_1, i_2\} = \{j_1, j_2\} \). For example, \(\{1, 6, 19\} \) is a sum–free Sidon set modulo 15, but not modulo 11, since \(6 + 6 \equiv 0 + 1 \pmod{11} \). The set \(\{s\} \) is a sum–free Sidon set modulo \(m \) for every integer \(s \) and every modulus \(m \) that does not divide \(s \).

Let \(m \geq 2 \), and let \(S = \{s_1, \ldots, s_\ell\} \) be a set of positive integers that is a sum–free Sidon set modulo \(m \). Associated with \(S \) is the set \(A \) of positive integers of the form \(um + s \), where \(u \geq 0 \) and \(s \in S \). If \(a = um + s \in A \), we define \(u(a) = u \) and \(s(a) = a \). The integers \(u(a) \) and \(s(a) \) are uniquely determined by \(a \). For every positive integer \(n \), let \(A(n) \) denote the set of partitions of \(n \) in the form \(n = a_1 + \cdots + a_k \), where \(a_i \in A \) and \(u(a_i) > u(a_{i+1}) \) for \(i = 1, \ldots, k - 1 \). Then \(\pi = (a_1, \ldots, a_k)_N \) is the standard \(N \)-form of the partition. Let \(\mathcal{H}(n) \) denote the set of hook number partitions associated with the \(N \)-graphs of the partitions in \(A(n) \). The map that sends \(\pi \in A(n) \) to the hook number partition \(h_N(\pi) \in \mathcal{H}(n) \) is not, in general, one–to–one. For example, let \(m = 15 \) and \(S = \{1, 6, 19\} \). The partitions \(\pi^{(1)} = (96, 61, 64, 21)_N \) and \(\pi^{(2)} = (96, 66, 64, 16)_N \) have the same hook number partition \(h_N(\pi^{(1)}) = h_N(\pi^{(2)}) = (141, 67, 34) \). The standard \(N \)-graphs of the partitions \(\pi^{(1)} \) and \(\pi^{(2)} \) are
Even though the map $\pi \mapsto h_N(\pi)$ is not one-to-one, there is a partition identity that relates the sets $A(n)$ and $H(n)$.

Theorem 1 Let $m \geq 2$ and let

$$S = \{s_1, \ldots, s_\ell\}$$

be a set of positive integers that is a sum–free Sidon set modulo m. Let

$$A = \{um + s : u \geq 0 \text{ and } s \in S\}.$$

Let $A(n)$ be the set of partitions of n in the form

$$n = a_1 + \cdots + a_k,$$

where

$$a_i = u(a_i)m + s(a_i) \in A$$

and

$$u(a_1) > \cdots > u(a_k) \geq 0.$$ \hspace{1cm} (1)

Let $p_A(n)$ denote the number of partitions in the set $A(n)$.

Let

$$B = \{vm + s + s' : v \geq 1 \text{ and } s, s' \in S\}$$

and

$$H = A \cup B.$$

Since S is a sum–free Sidon set modulo m, each element $h \in H$ can be written uniquely in the form

$$h = v(h)m + t(h),$$

where $v(h) \geq 0$ and $t(h) \in S \cup 2S$. Let $H(n)$ be the set of partitions of n of the form

$$\pi' = (h_1, \ldots, h_d),$$

where

$$h_i \in H \quad \text{ for } i = 1, \ldots, d,$$

$$v(h_i) - v(h_{i+1}) \geq 3 \quad \text{ for } i = 1, \ldots, d - 1,$$
and
\[v(h_i) - v(h_{i+1}) \geq 4 \quad \text{if } h_{i+1} \in B. \]

Let
\[B' = \{ vm + s + s' : v \geq 1 \text{ and } s, s' \in S, s \neq s' \}. \]

For each partition \(\pi' = (h_1, \ldots, h_d) \in \mathcal{H}(n) \), let \(e'(\pi') \) denote the number of \(i \in \{1, \ldots, d\} \) such that \(h_i \in B' \). Then
\[p_A(n) = \sum_{\pi' \in \mathcal{H}(n)} 2^{e'(\pi')}. \quad (3) \]

Proof. Let \(\pi = (a_1, \ldots, a_k)_N \) be the standard \(N \)-form of a partition in \(A(n) \). Then \(a_1, \ldots, a_k \) are elements of the set \(A \) that satisfy conditions (1) and (2). Let \(h_N(\pi) \) be the hook number partition determined by the \(N \)-graph of \(\pi \). Then \(h_N(\pi) = (h_1, \ldots, h_d) \), where \(d = d_N(\pi) \) is the number of integers on the side of the Durfee square of the \(N \)-graph of \(\pi \). We shall show that \(h_N(\pi) \) is a partition in \(\mathcal{H}(n) \).

Each hook in the \(N \)-graph of \(\pi \) consists of a horizontal row of numbers and a vertical column of numbers; the corner of the hook lies on the diagonal of the Durfee square. The row consists of a sequence of \(m \)'s, and ends with an element of \(S \). The column consists of a sequence of \(m \)'s, and ends either with an \(m \) or with an element of \(S \). In the first case the hook number is an element of \(A \); in the second case the hook must contain an \(m \) on the diagonal, and the hook number is an element of \(B \). Therefore, each hook number in the partition \(h_N(\pi) \) belongs to the set \(H = A \cup B \).

For \(i = 1, \ldots, d \), we let \(x_i \) denote the number of integers on the row of the \(i \)-th hook, and \(y_i \) denote the number of integers in the column below the corner of the \(i \)-th hook. Let \(1 \leq i \leq d - 1 \). Since each row ends in an element of \(S \), it follows from (2) that
\[x_{i+1} \leq x_i - 2, \]

and so the row in hook \(i \) contains at least two more elements equal to \(m \) than the row in hook \(i + 1 \). Similarly,
\[y_{i+1} \leq y_i - 1, \]

and the column in hook \(i \) contains at least one more element equal to \(m \) than the column in hook \(i + 1 \). Therefore, \(v(h_i) - v(h_{i+1}) \geq 3 \). If \(h_{i+1} \in B \), then the column of hook \(i + 1 \) ends in an element of \(S \), hook \(i \) has an \(m \) to the left of this number, and \(v(h_i) - v(h_{i+1}) \geq 4 \). This proves that the map \(\pi \mapsto h_N(\pi) \) sends a partition in \(A(n) \) to a partition in \(\mathcal{H}(n) \).

Let \(\pi' = (h_1, \ldots, h_d) \) be a partition in \(\mathcal{H}(n) \) and let \(e'(\pi') \) denote the number of integers \(i \in \{1, \ldots, d\} \) such that \(h_i \in B' \). We shall prove that there exist exactly \(2^{e'(\pi')} \) partitions \(\pi \in A(n) \) such that \(h_N(\pi) = \pi' \), and we shall explicitly construct these partitions.
The partition $\pi' = (h_1, \ldots, h_d) \in \mathcal{H}(n)$ immediately determines the shape of the N–graph of any partition $\pi \in \mathcal{A}(n)$ such that $h_N(\pi) = \pi'$. First, the Durfee square of $D_N(\pi)$ must satisfy $d_N(\pi) = d$. Second, we let e denote the number of hook numbers h_i that belong to B. Each of these hook numbers is of the form $vm + s + s'$, where $s, s' \in S$, and the corresponding hook in the N–graph of π must contain two elements of S. Each of the remaining $d - e$ hook numbers is of the form $vm + s$, and the corresponding hook in the N–graph of π contains only one element of S. Therefore, the N–graph of π contains

$$2e + (d - e) = d + e = k$$

elements of S. Since each row of the N–graph of a partition contains exactly one element of S, it follows that the partition π must contain exactly k parts. Thus, if $\pi' = h_N(\pi)$, then π' determines the number of parts in π.

Corresponding to the e hook numbers $h_i \in B$ are integers $1 \leq j_1 < \cdots < j_e \leq d$ such that $h_{j_i} \in B$ for $i = 1, \ldots, e$. Then row k in the standard N–graph of π consists of $j_i - 1$ entries equal to m followed by an element of S. Similarly, row $k - 1$ in the standard N–graph of π consists of $j_2 - 1$ entries equal to m followed by an element of S. In general, for $i = 0, 1, \ldots, e - 1$, row $k - i$ in the standard N–graph of π consists of $j_{i+1} - 1$ entries equal to m followed by an element of S. This determines the shape of the bottom e rows of the N–graph. Then the hook numbers h_1, \ldots, h_d determine the shape of the top d rows of the N–graph. The only ambiguity concerns the elements of S that are at the ends of the rows. If $h_i \equiv s \pmod{m}$ for some $s \in S$, then the integer at the right end of row i is s. If $h_i \equiv 2s \pmod{m}$ for some $s \in S$, then the integer at the right end of row i is s and the integer at the bottom of column i is s. If $h_i \in B'$ and $h_i \equiv s + s' \pmod{m}$ for $s, s' \in S$ with $s \neq s'$, then either the integer at the right end of row i is s and the integer at the bottom of column i is s', or the integer at the right end of row i is s' and the integer at the bottom of column i is s. The set S is a Sidon set modulo m, and so these are the only ways to put elements of S at the ends of the i–th hook of the N–graph of π to obtain the hook number h_i. Since there are $e'(\pi')$ hook numbers h_i that belong to B', it follows that there are exactly $2^{e'(\pi')}$ partitions $\pi \in \mathcal{A}(n)$ such that $h(\pi) = \pi'$.

This completes the proof.

Theorem 2 Let $m \geq 2$ and let s be a positive integer not divisible by m. Let

$$A = \{um + s : u \geq 0\},$$

$$B = \{vm + 2s : v \geq 1\},$$

and

$$H = A \cup B.$$

Let $q_A(n)$ denote the number of partitions of n as a sum of distinct elements of A. Let $q_H(n)$ denote the number of partitions of n in the form

$$n = h_1 + \cdots + h_d,$$
where
\[h_i = v(h_i)m + t(h_i) \in H \quad \text{for } i = 1, \ldots, d, \]
\[t(h_i) \in \{s, 2s\}, \]
\[v(h_i) - v(h_{i+1}) \geq 3 \quad \text{for } i = 1, \ldots, d - 1, \]
and
\[v(h_i) - v(h_{i+1}) \geq 4 \quad \text{if } h_{i+1} \in B. \]
Then
\[q_A(n) = p_H(n). \]

Proof. This follows immediately from Theorem 1, applied to the sum–free Sidon set \(S = \{s\} \) modulo \(m \).

In the special case \(m = 2 \) and \(s = 1 \), the set \(A \) consists of all odd positive numbers, and we obtain the following result of Alladi [1]: The number of partitions \(n \) into distinct odd parts is equal to the number of partitions of the form \(n = h_1 + \cdots + h_d \), where \(h_d \neq 2 \), \(h_i - h_{i+1} \geq 6 \) for \(i = 1, \ldots, d - 1 \), and \(h_i - h_{i+1} \geq 7 \) if \(h_{i+1} \) is even.

3 Partition identities for sum–free sets

In the proof of Theorem 1, the assumption that the sum–free set \(S \) was a Sidon set modulo \(m \) implied that the cardinality of the “inverse image” of a hook number \(h_i \) was at most two. This produced the simple form of the partition identity (3). We can also derive partition identities for sets \(A \) that are finite unions of arithmetic progressions constructed from certain sets \(S \) that are sum–free modulo \(m \), but not necessarily Sidon sets modulo \(m \). For example, we can consider sets \(S \) that are sum–free modulo \(m \) and have the property that if \(s_{i_1}, s_{i_2}, s_{i_3}, s_{i_4} \in S \) and \(s_{i_1} + s_{i_2} \equiv s_{i_3} + s_{i_4} \pmod{m} \), then \(s_{i_1} + s_{i_2} = s_{i_3} + s_{i_4} \).

The set of all odd numbers \(s \) such that \(1 \leq s \leq m/2 \) has this property.

Theorem 3 Let \(m \geq 2 \) and let \(S \) be a set of positive integers that is sum–free modulo \(m \) and has the property that if \(s_{i_1}, s_{i_2}, s_{i_3}, s_{i_4} \in S \) and \(s_{i_1} + s_{i_2} \equiv s_{i_3} + s_{i_4} \pmod{m} \), then \(s_{i_1} + s_{i_2} = s_{i_3} + s_{i_4} \). Let
\[A = \{um + s : u \geq 0 \text{ and } s \in S\}. \]
Let \(A(n) \) be the set of partitions of \(n \) in the form
\[n = a_1 + \cdots + a_k, \]
where
\[a_i = u(a_i)m + s(a_i) \in A \]
and
\[u(a_1) > \cdots > u(a_k) \geq 0. \]
Let \(p_A(n) \) denote the number of partitions in the set \(A(n) \).
Let
\[B = \{ um + s + s' : u \geq 1 \text{ and } s, s' \in S \} \]
and
\[H = A \cup B. \]

Each element \(h \in H \) can be written uniquely in the form
\[h = v(h)m + t(h), \]
where \(v(h) \geq 0 \) and \(t(h) \in S \cup 2S \). Let \(\mathcal{H}(n) \) denote the set of partitions of \(n \) of the form
\[\pi' = (h_1, \ldots, h_d), \]
where
\[h_i \in H \quad \text{for } i = 1, \ldots, d, \]
\[v(h_i) - v(h_{i+1}) \geq 3 \quad \text{for } i = 1, \ldots, d - 1, \]
and
\[v(h_i) - v(h_{i+1}) \geq 4 \quad \text{if } h_{i+1} \in B. \]

For \(h \in H \), let \(r(h) \) denote the number of representations of \(h \) as a sum of two elements of \(S \), that is, \(r(h) \) is the number of ordered pairs \((s, s')\) such that \(s + s' = h \) and \(s, s' \in S \). Then
\[p_A(n) = \sum_{\pi' \in \mathcal{H}(n)} \prod_{i=1}^{d} r(h_i). \]

Proof. The proof is the same as the proof of Theorem \[.\]

References

[1] K. Alladi. A variation on a theme of Sylvester - a smoother road to Göllnitz’ theorem. *Discrete Math.*, 196:1–11, 1999.

[2] P. A. MacMahon. The theory of modular partitions. *Proc. Cambridge Philos. Soc.*, 21:197–204, 1923. Reprinted in P. A. MacMahon, *Collected Papers*, Vol. I, MIT Press, Cambridge, 1978, pages 1090–1097.