Robustify Transformers with Robust Kernel Density Estimation

Xing Han†,* Tongzheng Ren†,* Tan Minh Nguyen⋄,* Khai Nguyen† Joydeep Ghosh† Nhat Ho†

University of Texas, Austin†; University of California, Los Angeles⋄
October 13, 2022

Abstract

Recent advances in Transformer architecture have empowered its empirical success in various tasks across different domains. However, existing works mainly focus on improving the standard accuracy and computational cost, without considering the robustness of contaminated samples. Existing work [40] has shown that the self-attention mechanism, which is the center of the Transformer architecture, can be viewed as a non-parametric estimator based on the well-known kernel density estimation (KDE). This motivates us to leverage the robust kernel density estimation (RKDE) in the self-attention mechanism, to alleviate the issue of the contamination of data by down-weighting the weight of bad samples in the estimation process. The modified self-attention mechanism can be incorporated into different Transformer variants. Empirical results on language modeling and image classification tasks demonstrate the effectiveness of this approach.

1 Introduction

Attention mechanism and transformers [61] have been widely used in machine learning community [27, 56, 24]. Transformer-based models are now among the best deep learning architectures on a variety of applications, including those in natural language processing [12, 1, 9, 7, 46, 2, 4, 10], computer vision [14, 29, 57, 47, 43, 15, 30], and reinforcement learning [6, 22]. Transformers have also been well-known for their effectiveness in transferring knowledge from pretraining tasks to downstream applications with weak supervision or no supervision [44, 45, 12, 65, 28].

Contribution Despite having appealing performance, the robustness of the conventional attention module still remains an open question in the literature. In this paper, to robustify the attention mechanism and transformer models, we first revisit the interpretation of the self-attention in transformer as the Nadaraya-Watson (NW) estimator [37] in a non-parametric regression problem in the recent work of [40]. Putting in the context of transformer, the NW estimator is constructed mainly based on the kernel density estimators (KDE) of the keys and queries. However, the KDE is not robust to the outliers [25], which leads to the robustness issue of the NW estimator and the self-attention in transformer when there are outliers in the data. To improve the robustness of the KDE, we first show that the KDE can be viewed as an optimal solution of the kernel regression problem in the reproducing kernel Hilbert space (RKHS). Then, to robustify the KDE, we only need to robustify the loss function of the kernel regression problem via some robust loss functions, such as the well-known Huber loss function [21]. The robust version of the KDE, named RKDE, can

* Xing Han, Tongzheng Ren, and Tan Nguyen contributed equally to this work.
be obtained by minimizing that loss of the robust kernel regression problem and can be used to construct a novel robust attention in transformer, which also improves the robustness issue of the transformer. In summary, our contribution is two-fold:

- By connecting the dot-product self-attention mechanism in transformer with the nonparametric kernel regression problem in reproducing kernel Hilbert space (RKHS), we propose a novel robust transformer framework, named Transformer-RKDE, based on replacing the dot-product attention by an attention arising from the robust kernel density estimators (RKDE) associated with the robust kernel regression problem. Comparing to the standard soft-max transformer, the Transformer-RKDE only requires computing an extra set of weights, which can be solved by an iterative re-weighted least-square problem.

- Extensive experiments on both vision and language modeling tasks demonstrate that Transformer-RKDE has favorable performance under various attacks. Furthermore, the proposed Transformer-RKDE framework is flexible and can be incorporated into different Transformer variants.

Organization The paper is organized as follows. In Section 2, we provide background on self-attention mechanism in Transformer and its connection to the Nadaraya-Watson (NW) estimator in the nonparametric regression problem, which can be constructed via the kernel density estimator (KDE). In Section 3, we first connect the KDE to a kernel regression problem in the reproducing kernel Hilbert space (RKHS) and demonstrate that it is not robust to the outliers. Then, we propose a robust version of the KDE based on robustifying the kernel regression loss and use the robust KDEs to construct the robust self-attention mechanism for the Transformer. We empirically validate the advantage of the proposed robust transformer, Transformer-RKDE, over the standard softmax transformer over both language modeling and image classification tasks in Section 4. Finally, we discuss the related works in Section 5 while conclude the paper in Section 6.

2 Background: Self-attention Mechanism from A Non-parametric Regression Perspective

In this section, we first provide background on the self-attention mechanism in transformer in Section 2.1. We then revisit the connection between the self-attention and the Nadaraya-Watson estimator in a nonparametric regression problem in Section 2.2.

2.1 Self-attention Mechanism

Given an input sequence \(X = [x_1, \ldots, x_N]^\top \in \mathbb{R}^{N \times D_x} \) of \(N \) feature vectors, the self-attention transforms it into another sequence \(H := [h_1, \ldots, h_N]^\top \in \mathbb{R}^{N \times D_v} \) as follows:

\[
 h_i = \sum_{j \in [N]} \text{softmax}\left(\frac{q_i^\top k_j}{\sqrt{D}} \right)v_j, \quad \text{for } i = 1, \ldots, N, \tag{1}
\]

where the scalar \(\text{softmax}((q_i^\top k_j)/\sqrt{D}) \) can be understood as the attention \(h_i \) pays to the input feature \(x_j \). The vectors \(q_i, k_j, \text{ and } v_j \) are the query, key, and value vectors, respectively, and are
computed as follows:

\[
\begin{align*}
[q_1, q_2, \ldots, q_N]^T := Q &= XW_Q^T \in \mathbb{R}^{N \times D}, \\
[k_1, k_2, \ldots, k_N]^T := K &= XW_K^T \in \mathbb{R}^{N \times D}, \\
[v_1, v_2, \ldots, v_N]^T := V &= XW_V^T \in \mathbb{R}^{N \times D_v},
\end{align*}
\]

(2)

where \(W_Q, W_K \in \mathbb{R}^{D \times D_v}, \) \(W_V \in \mathbb{R}^{D_v \times D_x} \) are the weight matrices. Equation (1) can be written as:

\[
H = \text{softmax}\left(\frac{QK^T}{\sqrt{D}}\right)V,
\]

(3)

where the softmax function is applied to each row of the matrix \((QK^T)/\sqrt{D}\). Equation (3) is also called the “softmax attention”. For each query vector \(q_i \), for \(i = 1, \cdots, N \), an equivalent form of equation 3 to compute the output vector \(h_i \) is given by

\[
h_i = \sum_{j \in [N]} \text{softmax}\left(\frac{q_i^T k_j}{\sqrt{D}}\right)v_j := \sum_{j \in [N]} a_{ij}v_j.
\]

(4)

In this paper, we call a transformer built with softmax attention standard transformer or transformer.

2.2 A Non-parametric Regression Perspective of Self-attention

We now review the connection between the self-attention mechanism in equation (4) and the non-parametric regression, which has been discussed in the recent work [40]. To ease the presentation, we assume that we have the key vectors \(\{k_j\}_{j \in [N]} \) and the value vectors \(\{v_j\}_{j \in [N]} \) that are collected from the following data generating process:

\[
v = f(k) + \varepsilon,
\]

(5)

where \(\varepsilon \) is some random noise vectors with \(\mathbb{E}[\varepsilon] = 0 \), and \(f \) is the unknown function that we want to estimate. We consider a random design setting where the key vectors \(\{k_j\}_{j \in [N]} \) are i.i.d. samples from the distribution \(p(k) \), and we use \(p(v, k) \) to denote the joint distribution of \((v, k) \) defined by equation (5). Our target is to estimate \(f(q) \) for any new queries \(q \).

[37] provides a non-parametric approach to estimate the function \(f \), which is known as the Nadaraya-Watson (NW) estimator, the kernel regression estimator or the local constant estimator. The main idea of the NW estimator is that

\[
f(k) = \mathbb{E}[v|k] = \int_{\mathbb{R}^D} v \cdot p(v|k)dv = \int_{\mathbb{R}^D} \frac{v \cdot p(v, k)}{p(k)}dv,
\]

(6)

where the first equation comes from the fact that \(\mathbb{E}[\varepsilon] = 0 \), the second equation comes from the definition of conditional expectation and the last inequality comes from the definition of the conditional density. With equation (6), we know, to provide an estimation of \(f \), we just need to obtain estimations for both the joint density function \(p(v, k) \) and the marginal density function \(p(k) \). One of the most popular approaches for the density estimation problem is the kernel density estimation (KDE) [49, 41], which requires a kernel \(k_\sigma \) with the bandwidth parameter \(\sigma \) satisfies \(\int_{\mathbb{R}^D} k_\sigma(x - x')dx = 1, \forall x' \), and estimate the density as

\[
\hat{p}_\sigma(v, k) = \frac{1}{N} \sum_{j \in [N]} k_\sigma([v, k] - [v_j, k_j]), \quad \hat{p}_\sigma(k) = \frac{1}{N} \sum_{j \in [N]} k_\sigma(k - k_j),
\]

(7)
where \([v, k]\) denotes the concatenation of \(v\) and \(k\). Specifically, when \(k_\sigma\) is the isotropic Gaussian kernel \(k_\sigma(x - x') = \exp\left(-\|x - x'\|^2/(2\sigma^2)\right)\), we have

\[
\hat{p}_\sigma(v, k) = \frac{1}{N} \sum_{j \in [N]} k_\sigma(v - v_j) k_\sigma(k - k_j). \tag{8}
\]

Given the kernel density estimators in equations (7) and (8), as well as the formulation in equation (6), we obtain the NW estimator of the function \(f\):

\[
\hat{f}_\sigma(k) = \frac{\int_{\mathbb{R}^D} v \cdot \hat{p}_\sigma(v, k) dv}{\int_{\mathbb{R}^D} \hat{p}_\sigma(v, k) dv} = \frac{\int_{\mathbb{R}^D} v \cdot \sum_{j \in [N]} k_\sigma(v - v_j) k_\sigma(k - k_j) dv}{\sum_{j \in [N]} k_\sigma(k - k_j)} = \frac{\sum_{j \in [N]} v_j k_\sigma(k - k_j)}{\sum_{j \in [N]} k_\sigma(k - k_j)}. \tag{9}
\]

Now we show how the self-attention mechanism is related to the NW estimator. Note that

\[
\hat{f}_\sigma(q) = \frac{\sum_{j \in [N]} v_j \exp\left(-\|q - k_j\|^2/2\sigma^2\right)}{\sum_{j \in [N]} \exp\left(-\|q - k_j\|^2/2\sigma^2\right)} = \frac{\sum_{j \in [N]} v_j \exp\left[-\left(\|q\|^2 + \|k_j\|^2\right)/2\sigma^2\exp\left(q^\top k_j/\sigma^2\right)\right]}{\sum_{j \in [N]} \exp\left[-\left(\|q\|^2 + \|k_j\|^2\right)/2\sigma^2\right]} \exp\left(q^\top k_j/\sigma^2\right). \tag{10}
\]

If the keys \(\{k_j\}_{j \in [N]}\) are normalized, we can further simplify \(\hat{f}_\sigma(q_i)\) in equation (9) to

\[
\hat{f}_\sigma(q_i) = \frac{\sum_{j \in [N]} v_j \exp\left(\frac{q k_j^\top/\sigma^2}{\sigma^2}\right)}{\sum_{j \in [N]} \exp\left(\frac{q k_j^\top/\sigma^2}{\sigma^2}\right)} = \sum_{j \in [N]} \text{softmax}\left(\frac{q^\top k_j/\sigma^2}{\sigma^2}\right) v_j. \tag{11}
\]

Such an assumption on the normalized key \(\{k_j\}_{j \in [N]}\) can be mild, as in practice we always have an normalization step on the key to stabilize the training of the transformer \([52]\). If we choose \(\sigma^2 = \sqrt{D}\), where \(D\) is the dimension of \(q\) and \(k_j\), then \(\hat{f}_\sigma(q_i) = h_i\). As a result, the self-attention mechanism in fact performs a non-parametric regression with NW-estimator and isotropic Gaussian kernel when the keys are normalized.

3 Robustify Transformer with Robust Kernel Density Estimation

As we have seen in Section 2, the self-attention mechanism can be interpreted as an NW estimator for the unknown function where the density is estimated with KDE using the isotropic Gaussian kernel. In this section, we first re-interpret KDE as a regression in the Reproducing Kernel Hilbert Space (RKHS), which shows that the vanilla KDE is sensitive to the data corruption. Instead, we observe that, a variant of the kernel density estimation termed as the robust KDE, can down-weight the importance of the potential corrupted data and obtain a robust density estimator. Based on the robust KDE, we derive the corresponding robust version of the NW-estimator, and show how to use this robust version of the NW estimator to replace the self-attention mechanism, and eventually lead to a more robust Transformer variants.
Figure 1: Contour plots of density estimation of the 2-dimensional query vector embedding in an attention layer when using (b) KDE (equation (12)) and (c) RKDE (equation (13)) with Huber loss (equation (14)), where (a) is the true density function. We draw 1000 samples (gray circles) from a multivariate normal density and 100 outliers (red cross) from a gamma distribution as the contaminating density. RKDE can be less affected by outliers when computing self-attention as nonparametric regression.

3.1 KDE as a Regression Problem in RKHS

We start from the formal definition of the RKHS. The space $\mathcal{H}_k = \{ f \mid f: X \to \mathbb{R} \}$ is called an RKHS associated with the kernel k, where $k : X \times X \to \mathbb{R}$, if it is a Hilbert space with the following two properties: (1) $k(x, \cdot) \in \mathcal{H}_k, \forall x \in X$; (2) the reproducing property: $\forall f \in \mathcal{H}$, $f(x) = \langle f, k(x, \cdot) \rangle_{\mathcal{H}_k}$, where $\langle \cdot, \cdot \rangle_{\mathcal{H}_k}$ denotes the RKHS inner product. With slightly abuse of notation, we define $k_{\sigma}(x, x') = k_{\sigma}(x - x')$. By the definition of the RKHS and the KDE estimator, we know $\hat{p}_\sigma = \frac{1}{N} \sum_{j \in [N]} k_{\sigma}(x_j, \cdot) \in \mathcal{H}_{\sigma}$. In fact, \hat{p}_σ is the optimal solution of the following least-square regression problem in RKHS:

$$\hat{p}_\sigma = \arg \min_{p \in \mathcal{H}_{\sigma}} \sum_{j \in [N]} \frac{1}{N} \| k_{\sigma}(x_j, \cdot) - p \|_{\mathcal{H}_{\sigma}}^2.$$

(12)

Note that, in equation (12), we have the same weight $1/N$ on each of the error $\| k_{\sigma}(x_j, \cdot) - p \|_{\mathcal{H}_{\sigma}}^2$. It can work well if we don’t have an outlier in $\{ k_{\sigma}(x_j, \cdot) \}_{j \in [N]}$. However, when there are some outliers (e.g., when there exists some j, such that $\| k_{\sigma}(x_j, \cdot) \|_{\mathcal{H}_{\sigma}} \gg \| k_{\sigma}(x_i, \cdot) \|_{\mathcal{H}_{\sigma}}$, for all $i \in [N], i \neq j$), the error on the outliers will dominate the whole error and lead to substantially worse estimation on the whole density. We illustrate the robustness issue of the KDE in Figure 1.

Since the KDE is not robust to the outliers. Combining this viewpoint with the interpretation of the self-attention as the Nadaraya–Watson estimator based on the KDE, it implies that the Transformer is also not robust when there are outliers in the data. The robustness issue of Transformer had been studied in other recent works, such as [33, 34, 67]. Therefore, via connecting the Transformer to a kernel regression problem in equation (12), we also offer another new insight into the robustness issue of the Transformer.
3.2 Robust KDE

Motivated by the robust regression \cite{16}, \cite{25} proposed a robust version of KDE, by replacing the least-square loss function in equation (12) with a robust loss function ρ as follows:

$$\hat{p}_{\text{robust}} = \arg\min_{p \in \mathcal{H}_{k_\sigma}} \sum_{j \in [N]} \rho \left(\| k_\sigma(x_j, \cdot) - p \|_{\mathcal{H}_{k_\sigma}} \right).$$ \hfill (13)

Examples of the robust loss functions ρ include the Huber loss \cite{21}, Hampel loss \cite{19}, Welsch loss \cite{64} and Tukey loss \cite{16}. In this paper, we focus on the Huber loss function, which is defined as follows:

$$\rho(x) := \begin{cases} x^2/2, & 0 \leq x \leq a \\ ax - a^2/2, & a < x, \end{cases}$$ \hfill (14)

where a is a constant. Kim et al. \cite{25} show the solution of this robust regression problem has the following form:

Proposition 1. Assume the robust loss function ρ is non-decreasing in $[0, \infty)$, $\rho(0) = 0$ and $\lim_{x \to 0} \frac{\rho(x)}{x} = 0$. Define $\psi(x) := \frac{\rho'(x)}{x}$ and assume $\lim_{x \to 0} \frac{\rho'(x)}{x}$ exists and finite. Then the optimal \hat{p}_{robust} can be written as

$$\hat{p}_{\text{robust}} = \sum_{j \in [N]} \omega_j k_\sigma(x_j, \cdot),$$

where $\omega = (\omega_1, \ldots, \omega_N) \in \Delta_N$, and $\omega_j \propto \psi \left(\| k_\sigma(x_j, \cdot) - \hat{p}_{\text{robust}} \|_{\mathcal{H}_{k_\sigma}} \right)$. Here Δ_n denotes the n-dimensional simplex.

Proof. The proof of Proposition 1 is mainly adopted from the proof in \cite{25}. Here, we provide the proof for the completeness. For any $p \in \mathcal{H}_{k_\sigma}$, we denote

$$J(p) = \frac{1}{N} \sum_{j \in [N]} \rho \left(\| k_\sigma(x_j, \cdot) - p \|_{\mathcal{H}_{k_\sigma}} \right).$$

Then we have the following lemma regarding the Gateaux differential of J and a necessary condition for \hat{p}_{robust} to be optimal solution of the robust loss objective function in equation (13).

Lemma 1. Given the assumptions on the robust loss function ρ in Proposition 1, the Gateaux differential of J at $p \in \mathcal{H}_{k_\sigma}$ with incremental $h \in \mathcal{H}_{k_\sigma}$, defined as $\delta J(p; h)$, is

$$\delta J(p; h) := \lim_{\tau \to 0} \frac{J(p + \tau h) - J(p)}{\tau} = -\langle V(p), h \rangle_{\mathcal{H}_{k_\sigma}},$$

where the function $V : \mathcal{H}_{k_\sigma} \to \mathcal{H}_{k_\sigma}$ is defined as:

$$V(p) = \frac{1}{N} \sum_{j \in [N]} \psi \left(\| k_\sigma(x_j, \cdot) - p \|_{\mathcal{H}_{k_\sigma}} \right) \left(k_\sigma(x_j, \cdot) - p \right).$$

A necessary condition for \hat{p}_{robust} is $V(\hat{p}_{\text{robust}}) = 0$.

6
The proof of Lemma 1 can be found in Lemma 1 of [25]. Based on the necessary condition for \hat{p}_{robust} in Lemma 1, i.e., $V(\hat{p}_{\text{robust}}) = 0$, we have

$$\frac{1}{N} \sum_{j \in [N]} \psi \left(\| k_{\sigma}(x_j, \cdot) - \hat{p}_{\text{robust}} \|_{H_{\sigma}} \right) \left(k_{\sigma}(x_j, \cdot) - \hat{p}_{\text{robust}} \right) = 0.$$

Direct algebra indicates that $\hat{p}_{\text{robust}} = \sum_{j \in [N]} \omega_j k_{\sigma}(x_j, \cdot)$ where $\omega = (\omega_1, \cdots, \omega_N) \in \Delta_N$, and $\omega_j \propto \psi \left(\| k_{\sigma}(x_j, \cdot) - \hat{p}_{\text{robust}} \|_{H_{\sigma}} \right)$. As a consequence, we obtain the conclusion of the proposition.

For Huber loss function, we have that

$$\psi(x) := \begin{cases} 1, & 0 \leq x \leq a \\ a/x, & a < x. \end{cases}$$

Hence, when the error $\| k_{\sigma}(x_j, \cdot) - \hat{p}_{\text{robust}} \|_{H_{\sigma}}$ is over the threshold a, the final estimator will down-weight the importance of $k_{\sigma}(x_j, \cdot)$. This is in sharp contrast with the standard KDE method, which will assign uniform weights to all of the $k_{\sigma}(x_j, \cdot)$. One additional issue is that, the estimator provided in Proposition 1 is circularly defined, as \hat{p}_{robust} is defined via ω, and ω depends on \hat{p}_{robust}. To address this issue, [25] proposed to estimate ω with an iterative algorithm termed as kernelized iteratively re-weighted least-squares (KIRWLS) algorithm. The algorithm starts with some randomly initialized $\omega^{(0)} \in \Delta_n$, and perform the following iterative updates:

$$\hat{p}^{(k)}_{\text{robust}} = \sum_{j \in [N]} \omega_i^{(k-1)} k_{\sigma}(x_j, \cdot), \quad \omega_j^{(k)} = \frac{\psi \left(\| k_{\sigma}(x_j, \cdot) - \hat{p}_{\text{robust}}^{(k)} \|_{H_{\sigma}} \right)}{\sum_{j \in [N]} \psi \left(\| k_{\sigma}(x_j, \cdot) - \hat{p}_{\text{robust}}^{(k)} \|_{H_{\sigma}} \right)}.$$

Note that, the optimal \hat{p}_{robust} is the fixed point of this iterative updates, and [25] shows that the proposed algorithm converges under standard regularity conditions. Furthermore, one can directly compute the term $\| k_{\sigma}(x_j, \cdot) - \hat{p}_{\text{robust}} \|_{H_{\sigma}}$ via the reproducing property:

$$\| k_{\sigma}(x_j, \cdot) - \hat{p}_{\text{robust}}^{(k)} \|_{H_{\sigma}}^2 = \langle k_{\sigma}(x_j, \cdot), k_{\sigma}(x_j, \cdot) \rangle_{H_{\sigma}} - 2 \langle k_{\sigma}(x_j, \cdot), \hat{p}_{\text{robust}}^{(k)} \rangle_{H_{\sigma}} + \langle \hat{p}_{\text{robust}}^{(k)}, \hat{p}_{\text{robust}}^{(k)} \rangle_{H_{\sigma}} = k_{\sigma}(x_j, x_j) - 2 \sum_{m \in [N]} \omega_m^{(k-1)} k_{\sigma}(x_m, x_j) + \sum_{m \in [N], n \in [N]} \omega_m^{(k-1)} \omega_n^{(k-1)} k_{\sigma}(x_m, x_n).$$

Therefore, the weights can be updated without mapping the data to the Hilbert space.

3.3 Robust Self-Attention Mechanism

Now we describe the robust self-attention mechanism we use. We consider the density estimator of the joint distribution and the marginal distribution from the robust KDE:

$$\hat{p}_{\text{robust}}(v, k) = \sum_{j \in [N]} \omega_j^\text{joint} k_{\sigma}(\{v_j, k_j\}, [v, k]), \quad \hat{p}_{\text{robust}} = \sum_{j \in [N]} \omega_j^\text{marginal} k_{\sigma}(k_j, k).$$
Algorithm 1: Procedure of Computing Attention Vector of Transformer-RKDE

1: **Input:** $Q = \{q_i\}_{i \in [N]}$, $K = \{k_j\}_{j \in [N]}$, $V = \{v_i\}_{i \in [N]}$, initial weights $\omega^{(0)}_{\text{marginal}}$, $\omega^{(0)}_{\text{joint}}$
2: Normalize $K = \{k_j\}_{j \in [N]}$ along the head dimension.
3: Compute kernel function between each pair of sequence: $k_{\sigma}(Q,K) = \{k_{\sigma}(q_i-k_j)\}_{i,j \in [N]}$.
4: (Optional) apply attention mask on $k_{\sigma}(Q,K)$.
5: Update weights for marginal density by $\omega^{\text{joint}}_{j} = \frac{\psi\left(\|k_{\sigma}(k_j,\cdot) - \hat{p}_{\text{robust}}^{(k_j)}\|_{K_{\sigma}}\right)}{\sum_{j \in [N]} \psi\left(\|k_{\sigma}(k_j,\cdot) - \hat{p}_{\text{robust}}^{(k_j)}\|_{K_{\sigma}}\right)}$.
6: Update weights for joint density $\omega^{\text{joint}}_{ij}$ as in step 5.
7: Obtain attention vector via robust self-attention $\tilde{h}_i = \frac{\sum_{j \in [N]} v_j \omega^{\text{joint}}_{ij} k_{\sigma}(q_i-k_j)}{\sum_{j \in [N]} \omega^{\text{marginal}}_{ij} k_{\sigma}(q_i-k_j)}$.

With the similar computation, the robust self-attention mechanism we use is defined as

$$
\tilde{h}_i = \frac{\sum_{j \in [N]} v_j \omega^{\text{joint}}_{ij} k_{\sigma}(q_i-k_j)}{\sum_{j \in [N]} \omega^{\text{marginal}}_{ij} k_{\sigma}(q_i-k_j)},
$$

where ω^{joint} and ω^{marginal} are obtained via the KIRWLS problem.

Remark. Note that, the computation of $\{\omega^{\text{marginal}}_{j}\}_{j \in [N]}$ and $\{\omega^{\text{joint}}_{ij}\}_{j \in [N]}$ are separate as $\omega^{\text{joint}}_{ij}$ involves both keys and values vectors. During the empirical evaluation, we concatenate the keys and values along the head dimension to obtain the weights for the joint density $\hat{p}_{\text{robust}}(v,k)$ and only use the key vectors for obtaining the set of weights for the marginal $\hat{p}_{\text{robust}}(k)$. In addition, $\omega^{\text{marginal}}, \omega^{\text{joint}} \in \mathbb{R}^{j \times i}$ for $i, j = 1, \ldots, N$ are 2-dimensional matrices that includes the pairwise weights between each position of the sequence and the rest of the positions. The weights are initialized uniformly across a certain sequence length dimension. For experiments related to language modeling, we can leverage information from attention mask to initialize the weights on the unmasked part of sequence. To speed up the computation for Transformer-RKDE, we use a single-step iteration on equation (15) to approximate the optimal set of weights. This strategy is shown to be effective during the empirical evaluation on both image and text data. The procedure of computing the attention vector for Transformer-RKDE can be found at Algorithm 1.

4 Experimental Results

In this section, we empirically validate the advantage of our proposed robust transformer (Transformer-RKDE) over the standard softmax transformer and its nonparametric regression variant (Transformer-KDE in equation (9)) on two large-scale datasets: language modeling on WikiText-103 dataset [35] (Section 4.1) and image classification on Imagenet [50, 11] and Imagenet-C [20] (Section 4.2). Our experiments have shown that: (1) Transformer-RKDE can reach competitive performance with baseline methods on a variety of tasks with different data modalities, this can be achieved without modifying the model architecture; (2) the advantage of Transformer-RKDE is more prominent when there is contamination of samples in either text or image data. All of our experiments are performed on the NVIDIA A-100 GPUs. For each experiment, we compare Transformer-RKDE with other baselines under the same hyper-parameter configurations.
Table 1: Perplexity (PPL) and negative likelihood loss (NLL) of our method and baselines on WikiText-103 dataset. Transformer-RKDE achieves competitive performance to the baseline methods while shows much better PPL and NLL under random swap with outlier words.

Method	Clean Data	Word Swap		
	Valid PPL/Loss	Test PPL/Loss	Valid PPL/Loss	Test PPL/Loss
Standard Softmax	33.52/3.51	34.59/3.54	72.28/4.45	74.56/4.53
Transformer-KDE	33.34/3.51	34.37/3.54	71.94/4.43	73.75/4.49
Transformer-RKDE	**33.22/3.50**	**34.29/3.54**	**52.14/3.92**	**55.68/3.99**

4.1 Robust Language Modeling

Dataset: WikiText-103 is a language modeling dataset that contains collection of tokens extracted from good and featured articles from Wikipedia, which is suitable for models that can leverage long-term dependencies. The dataset contains around $268K$ words and its training set consists of about $28K$ articles with $103M$ tokens, this corresponds to text blocks of about 3600 words. The validation set and test sets consist of 60 articles with $218K$ and $246K$ tokens respectively. We follow the standard configurations in [35, 52] and splits the training data into L-word independent long segments. During evaluation, we process the text sequence using a sliding window of size L and feed into the model with a batch size of 1. The last position of the sliding window is used for computing perplexity except in the first segment, where all positions are evaluated as in [1, 52].

Implementation Details: We used the language models developed by [52] in our experiments. The dimensions of key, value, and query are set to 128, and the training and evaluation context length are set to 256. As for self-attention, we set the number of heads as 8, the dimension of feed-forward layer as 2048, and the number of layers as 16. To avoid numerical instability, we apply the log-sum-exp trick in equation (9) when computing the attention probability vector through the Gaussian kernel. We apply similar tricks when computing the weights of KIRWLS algorithm, where we first obtain the weights in log space, followed by the log-sum-exp trick to compute robust self-attention as in equation (16).

Results: In Table 1, we report the validation and test PPL of Transformer-RKDE versus the softmax transformer and its nonparametric regression variant. Based on the derivation in equation (11), we would expect Transformer-KDE to have similar performance with softmax transformer. Meanwhile, Transformer-RKDE is able to improve baselines PPL and NLL in both validation and test sets.

We can observe more obvious improvement when the dataset is under a word swap attack, which randomly replace selected keywords of input data by a generic token “AAA” during evaluation. Transformer-RKDE achieves much better results for down-weighting rare words, and therefore more robust to such kind of attack. Our implementation on word swap is based on the public code TextAttack by [36], while we use the greedy search method with the constraints on stop-words modification from the TextAttack library.

Implementation available at github.com/QData/TextAttack
Table 2: Top-1, top-5 accuracy (%) and mean corruption error (mCE) of DeiT-RKDE versus the baseline DeiT with dot-product attention and DeiT with regular KDE attention. DeiT-RKDE outperforms the baseline under clean data, adversarial attack and corrupted settings.

Method	Clean Data	FGSM	PGD	SPSA	Imagenet-C			
	Top 1	Top 5	Top 1	Top 5	Top 1	Top 5	Top 1	mCE
Baseline DeiT	72.23	91.13	52.61	82.26	41.84	76.49	48.34	71.14
DeiT-KDE	72.58	91.34	52.25	81.52	41.38	76.41	48.61	70.78
DeiT-RKDE	**72.83**	**91.44**	**55.83**	**85.89**	**44.15**	**79.06**	**52.42**	**68.69**

Figure 2: The top-1 classification accuracy v.s. perturbation budget × 255 curves on ImageNet against three untargeted attack methods under the l_∞ norm. DeiT-RKDE shows improved robustness under all attack methods with different perturbation budgets.

4.2 Image Classification under Adversarial Attack

Dataset: We use the full ImageNet dataset that contains 1.28M training images and 50K validation images. The model learns to predict the class of the input image among 1000 categories. We report the top-1 and top-5 accuracy on all experiments. For robustness on common image corruptions, we use ImageNet-C [20] which consists of 15 types of algorithmically generated corruptions with five levels of severity. ImageNet-C uses the mean corruption error (mCE) as metric, while the smaller mCE means the more robust of the model under corruptions.

Implementation Details: Our method uses the same training configurations as DeiT-Tiny [58]. Given that all approaches do not modify the model architecture, each employed model has 5.7M parameters. To evaluate adversarial robustness, we apply adversarial examples generated by untargeted white-box attacks including single-step attack method FGSM [18], multi-step attack method PGD [32] and score-based black-box attack method SPSA [60]. The attacks are applied on 100% of the validation set of ImageNet. Both these attacks perturb the input image with perturbation budget $\epsilon = 1/255$ under l_∞ norm; while PGD attack uses 20 steps with step size $\alpha = 0.15$.

Results: We summarize the results in Table 2. On clean data, DeiT-RKDE can improve the
performance of baseline DeiT and DeiT-KDE in both top-1 and top-5 classification accuracy.

Similar to the language modeling experiment, the advantage of DeiT-RKDE is more obvious under adversarial attacks and common image corruptions, which suggests that Transformer-RKDE can improve the baseline dot-product transformer over different data modalities. Furthermore, Figure 2 shows the relationship between accuracy versus perturbation budget using three attack methods. DeiT-RKDE can improve the accuracy under different perturbation budget and exhibits greater advantage with higher perturbation strength.

5 Related Works

Robustness of Transformer: Vision Transformer (ViT) models [13, 58] recently achieved exemplary performance on a variety of vision tasks that can be used as a strong alternative to CNNs. To ensure its generalization ability on different datasets, many works [54, 42, 3] have studied the robustness of ViT under different types of attacks. [33] empirically shows that ViT is vulnerable to white-box adversarial attack but a simple ensemble defense can achieve unprecedented robustness without sacrificing clean accuracy. [34] performs robustness analysis on different building blocks of ViT and proposed position-aware attention scaling and patch-wise augmentation that improved robustness and accuracy of ViT models. More recently, [67] proposed fully attentional networks to improve the self-attention and achieved state-of-the-art accuracy on corrupted images. However, these works focus on improving the architectural design of ViT targeted for some specific tasks, which lacks a general framework on improving the robustness of transformers. In addition, most of the recent works studying robustness of transformer concentrate on vision related tasks and cannot generalize across different data modalities.

Theoretical Frameworks of Attention Mechanisms: Attention mechanisms in transformers have been recently studied from different perspectives. [59] shows that attention can be derived from smoothing the inputs with appropriate kernels. [23, 8, 62] further linearize the softmax kernel in attention to attain a family of efficient transformers with both linear computational and memory complexity. These linear attentions are proven in [5] to be equivalent to a Petrov-Galerkin projection [48], thereby indicating that the softmax normalization in the dot-product attention is sufficient but not necessary. Other frameworks for analyzing transformers that use ordinary/partial differential equations include [31, 51]. In addition, the Gaussian mixture model and graph-structured learning have been utilized to study attentions and transformers [55, 17, 66, 63, 53, 26, 39, 38].

6 Conclusion and Future Works

In this paper, via the connection between the dot-product self-attention mechanism in transformer with nonparametric kernel regression problem, we developed Transformer-RKDE by leveraging robust kernel density estimation as a replacement of dot-product attention to alleviate the effect from outliers. We show that the optimal estimation of density functions via robust KDE requires computing a set of weights by solving an iterative re-weighted least-square problem. Empirical evaluations have shown that Transformer-RKDE can improve performance on clean data while demonstrate robust results under various attacks on both vision and language modeling tasks. The Transformer-RKDE framework we developed has the merit of generalizing to the whole family of transformer models,
which we intended to demonstrate as a future work. Meanwhile, we will also investigate better and more efficient approach to estimate the set of weights for RKDE.

References

[1] R. Al-Rfou, D. Choe, N. Constant, M. Guo, and L. Jones. Character-level language modeling with deeper self-attention. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages 3159–3166, 2019. (Cited on pages 1 and 9.)

[2] A. Baevski and M. Auli. Adaptive input representations for neural language modeling. In International Conference on Learning Representations, 2019. (Cited on page 1.)

[3] S. Bhojanapalli, A. Chakrabarti, D. Glasner, D. Li, T. Unterthiner, and A. Veit. Understanding robustness of transformers for image classification. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 10231–10241, 2021. (Cited on page 11.)

[4] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al. Language models are few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020. (Cited on page 1.)

[5] S. Cao. Choose a transformer: Fourier or galerkin. Advances in Neural Information Processing Systems, 34, 2021. (Cited on page 11.)

[6] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srinivas, and I. Mordatch. Decision transformer: Reinforcement learning via sequence modeling. Advances in neural information processing systems, 34:15084–15097, 2021. (Cited on page 1.)

[7] R. Child, S. Gray, A. Radford, and I. Sutskever. Generating long sequences with sparse transformers. arXiv preprint arXiv:1904.10509, 2019. (Cited on page 1.)

[8] K. M. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane, T. Sarlos, P. Hawkins, J. Q. Davis, A. Mohiuddin, L. Kaiser, D. B. Belanger, L. J. Colwell, and A. Weller. Rethinking attention with performers. In International Conference on Learning Representations, 2021. (Cited on page 11.)

[9] Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov. Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint arXiv:1901.02860, 2019. (Cited on page 1.)

[10] M. Dehghani, S. Gouws, O. Vinyals, J. Uszkoreit, and L. Kaiser. Universal transformers. In International Conference on Learning Representations, 2019. (Cited on page 1.)

[11] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009. (Cited on page 8.)

[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North
[13] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*, 2020. (Cited on page 11.)

[14] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In *International Conference on Learning Representations*, 2021. (Cited on page 1.)

[15] H. Fan, B. Xiong, K. Mangalam, Y. Li, Z. Yan, J. Malik, and C. Feichtenhofer. Multiscale vision transformers. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 6824–6835, 2021. (Cited on page 1.)

[16] J. Fox and S. Weisberg. Robust regression. *An R and S-Plus companion to applied regression*, 91, 2002. (Cited on page 6.)

[17] P. Gabbur, M. Bilkhu, and J. Movellan. Probabilistic attention for interactive segmentation. *Advances in Neural Information Processing Systems*, 34, 2021. (Cited on page 11.)

[18] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. *arXiv preprint arXiv:1412.6572*, 2014. (Cited on page 10.)

[19] F. R. Hampel, E. M. Ronchetti, P. Rousseeuw, and W. A. Stahel. *Robust statistics: the approach based on influence functions*. Wiley-Interscience; New York, 1986. (Cited on page 6.)

[20] D. Hendrycks and T. Dietterich. Benchmarking neural network robustness to common corruptions and perturbations. *arXiv preprint arXiv:1903.12261*, 2019. (Cited on pages 8 and 10.)

[21] P. J. Huber. Robust estimation of a location parameter. In *Breakthroughs in statistics*, pages 492–518. Springer, 1992. (Cited on pages 1 and 6.)

[22] M. Janner, Q. Li, and S. Levine. Offline reinforcement learning as one big sequence modeling problem. *Advances in neural information processing systems*, 34:1273–1286, 2021. (Cited on page 1.)

[23] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. Transformers are rnns: Fast autoregressive transformers with linear attention. In *International Conference on Machine Learning*, pages 5156–5165. PMLR, 2020. (Cited on page 11.)

[24] S. Khan, M. Naseer, M. Hayat, S. W. Zamir, F. S. Khan, and M. Shah. Transformers in vision: A survey. *ACM Computing Surveys (CSUR)*, 2021. (Cited on page 1.)

[25] J. Kim and C. Scott. Robust kernel density estimation. *The Journal of Machine Learning Research*, 13:2529–2565, 2012. (Cited on pages 1, 6, and 7.)
[26] D. Kreuzer, D. Beaini, W. Hamilton, V. Létourneau, and P. Tossou. Rethinking graph transformers with spectral attention. *Advances in Neural Information Processing Systems, 34*, 2021. (Cited on page 11.)

[27] T. Lin, Y. Wang, X. Liu, and X. Qiu. A survey of transformers. *arXiv preprint arXiv:2106.04554*, 2021. (Cited on page 1.)

[28] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach. *arXiv preprint arXiv:1907.11692*, 2019. (Cited on page 1.)

[29] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 10012–10022, 2021. (Cited on page 1.)

[30] Z. Liu, J. Ning, Y. Cao, Y. Wei, Z. Zhang, S. Lin, and H. Hu. Video swin transformer. In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2022. (Cited on page 1.)

[31] Y. Lu, Z. Li, D. He, Z. Sun, B. Dong, T. Qin, L. Wang, and T.-Y. Liu. Understanding and improving transformer from a multi-particle dynamic system point of view. *arXiv preprint arXiv:1906.02762*, 2019. (Cited on page 11.)

[32] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models resistant to adversarial attacks. *arXiv preprint arXiv:1706.06083*, 2017. (Cited on page 10.)

[33] K. Mahmood, R. Mahmood, and M. Van Dijk. On the robustness of vision transformers to adversarial examples. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 7838–7847, 2021. (Cited on pages 5 and 11.)

[34] X. Mao, G. Qi, Y. Chen, X. Li, R. Duan, S. Ye, Y. He, and H. Xue. Towards robust vision transformer. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 12042–12051, 2022. (Cited on pages 5 and 11.)

[35] S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models. *arXiv preprint arXiv:1609.07843*, 2016. (Cited on pages 8 and 9.)

[36] J. X. Morris, E. Lifland, J. Y. Yoo, J. Grigsby, D. Jin, and Y. Qi. Textattack: A framework for adversarial attacks, data augmentation, and adversarial training in nlp. *arXiv preprint arXiv:2005.05909*, 2020. (Cited on page 9.)

[37] E. A. Nadaraya. On estimating regression. *Theory of Probability & Its Applications, 9*(1):141–142, 1964. (Cited on pages 1 and 3.)

[38] T. Nguyen, T. Nguyen, H. Do, K. Nguyen, V. Saragadam, M. Pham, K. Nguyen, N. Ho, and S. Osher. Improving transformer with an admixture of attention heads. In *Advances in Neural Information Processing Systems, 2022*. (Cited on page 11.)

[39] T. Nguyen, T. Nguyen, D. Le, K. Nguyen, A. Tran, R. Baraniuk, N. Ho, and S. Osher. Improving transformers with probabilistic attention keys. In *International Conference on Machine Learning*, 2022. (Cited on page 11.)
[40] T. Nguyen, M. Pham, T. Nguyen, K. Nguyen, S. J. Osher, and N. Ho. Fourierformer: Transformer meets generalized Fourier integral theorem. Advances in Neural Information Processing Systems, 2022. (Cited on pages 1 and 3.)

[41] E. Parzen. On estimation of a probability density function and mode. The annals of mathematical statistics, 33(3):1065–1076, 1962. (Cited on page 3.)

[42] S. Paul and P.-Y. Chen. Vision transformers are robust learners. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 2071–2081, 2022. (Cited on page 11.)

[43] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervision. In International Conference on Machine Learning, pages 8748–8763. PMLR, 2021. (Cited on page 1.)

[44] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language understanding by generative pre-training. OpenAI report, 2018. (Cited on page 1.)

[45] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. (Cited on page 1.)

[46] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. (Cited on page 1.)

[47] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever. Zero-shot text-to-image generation. In International Conference on Machine Learning, pages 8821–8831. PMLR, 2021. (Cited on page 1.)

[48] J. Reddy. An introduction to the finite element method, volume 1221. McGraw-Hill New York, 2004. (Cited on page 11.)

[49] M. Rosenblatt. Remarks on some nonparametric estimates of a density function. The annals of mathematical statistics, pages 832–837, 1956. (Cited on page 3.)

[50] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. International journal of computer vision, 115(3):211–252, 2015. (Cited on page 8.)

[51] M. E. Sander, P. Ablin, M. Blondel, and G. Peyré. Sinkformers: Transformers with doubly stochastic attention. In International Conference on Artificial Intelligence and Statistics, pages 3515–3530. PMLR, 2022. (Cited on page 11.)

[52] I. Schlag, K. Irie, and J. Schmidhuber. Linear transformers are secretly fast weight programmers. In International Conference on Machine Learning, pages 9355–9366. PMLR, 2021. (Cited on pages 4 and 9.)

[53] P. Shaw, J. Uszkoreit, and A. Vaswani. Self-attention with relative position representations. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pages
464–468, New Orleans, Louisiana, June 2018. Association for Computational Linguistics. (Cited on page 11.)

[54] A. Subramanya, A. Saha, S. A. Koohpayegani, A. Tejankar, and H. Pirsiavash. Backdoor attacks on vision transformers. *arXiv preprint arXiv:2206.08477*, 2022. (Cited on page 11.)

[55] B. Tang and D. S. Matteson. Probabilistic transformer for time series analysis. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors, *Advances in Neural Information Processing Systems*, 2021. (Cited on page 11.)

[56] Y. Tay, M. Dehghani, D. Bahri, and D. Metzler. Efficient transformers: A survey. *arXiv preprint arXiv:2009.06732*, 2020. (Cited on page 1.)

[57] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou. Training data-efficient image transformers & distillation through attention. In *International Conference on Machine Learning*, pages 10347–10357. PMLR, 2021. (Cited on page 1.)

[58] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou. Training data-efficient image transformers & distillation through attention. In *International Conference on Machine Learning*, pages 10347–10357. PMLR, 2021. (Cited on pages 10 and 11.)

[59] Y.-H. H. Tsai, S. Bai, M. Yamada, L.-P. Morency, and R. Salakhutdinov. Transformer dissection: An unified understanding for transformer’s attention via the lens of kernel. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pages 4344–4353, Hong Kong, China, Nov. 2019. Association for Computational Linguistics. (Cited on page 11.)

[60] J. Uesato, B. O’donoghue, P. Kohli, and A. Oord. Adversarial risk and the dangers of evaluating against weak attacks. In *International Conference on Machine Learning*, pages 5025–5034. PMLR, 2018. (Cited on page 10.)

[61] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need. In *Advances in neural information processing systems*, pages 5998–6008, 2017. (Cited on page 1.)

[62] S. Wang, B. Li, M. Khabsa, H. Fang, and H. Ma. Linformer: Self-attention with linear complexity. *arXiv preprint arXiv:2006.04768*, 2020. (Cited on page 11.)

[63] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural networks. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 7794–7803, 2018. (Cited on page 11.)

[64] R. E. Welsch and R. A. Becker. Robust non-linear regression using the dogleg algorithm. Technical report, National Bureau of Economic Research, 1975. (Cited on page 6.)

[65] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le. Xlnet: Generalized autoregressive pretraining for language understanding. *arXiv preprint arXiv:1906.08237*, 2019. (Cited on page 1.)
[66] S. Zhang and Y. Feng. Modeling concentrated cross-attention for neural machine translation with Gaussian mixture model. In *Findings of the Association for Computational Linguistics: EMNLP 2021*, pages 1401–1411, Punta Cana, Dominican Republic, Nov. 2021. Association for Computational Linguistics. (Cited on page 11.)

[67] D. Zhou, Z. Yu, E. Xie, C. Xiao, A. Anandkumar, J. Feng, and J. M. Alvarez. Understanding the robustness in vision transformers. In *International Conference on Machine Learning*, pages 27378–27394. PMLR, 2022. (Cited on pages 5 and 11.)