The effects of nitrogen fertilization on N$_2$O emissions from a rubber plantation

Wen-Jun Zhou1,2,3,*, Hong-li Ji1,2,*, Jing Zhu4, Yi-Ping Zhang1,2, Li-Qing Sha1,2, Yun-Tong Liu1,2, Xiang Zhang1,2, Wei Zhao1,2,3, Yun-Tong Liu1,2, Li-Qing Sha1,2, Jing Zhu4, Yi-Ping Zhang1,2, You-Xin Lin1,2,3, Jun-Hui Zhang5 & Xun-Hua Zheng3,6

To gain the effects of N fertilizer applications on N$_2$O emissions and local climate change in fertilized rubber (Hevea brasiliensis) plantations in the tropics, we measured N$_2$O fluxes from fertilized (75 kg N ha$^{-1}$ yr$^{-1}$) and unfertilized rubber plantations at Xishuangbanna in southwest China over a 2-year period. The N$_2$O emissions from the fertilized and unfertilized plots were 4.0 and 2.5 kg N ha$^{-1}$ yr$^{-1}$, respectively, and the N$_2$O emission factor was 1.96%. Soil moisture, soil temperature, and the area weighted mean ammoniacal nitrogen (NH$_4^+$-N) content controlled the variations in N$_2$O flux from the fertilized and unfertilized rubber plantations. NH$_4^+$-N did not influence temporal changes in N$_2$O emissions from the trench, slope, or terrace plots, but controlled spatial variations in N$_2$O emissions among the treatments. On a unit area basis, the 100-year carbon dioxide equivalence of the fertilized rubber plantation N$_2$O offsets 5.8% and 31.5% of carbon sink of the rubber plantation and local tropical rainforest, respectively. When entire land area in Xishuangbanna is considered, N$_2$O emissions from fertilized rubber plantations offset 17.1% of the tropical rainforest’s carbon sink. The results show that if tropical rainforests are converted to fertilized rubber plantations, regional N$_2$O emissions may enhance local climate warming.

Nitrous oxide (N$_2$O) is a major greenhouse gas that contributes to the destruction of the protective ozone layer in the stratosphere and to global warming$^{1-3}$. Its global warming potential (GWP) is about 310 times that of carbon dioxide (CO$_2$) on a 100-year time scale (i.e., the 100-year CO$_2$ equivalence (100a-CO$_2$ eq) of N$_2$O$^2-5$). Nitrous oxide has been reported to account for between 2–4% and 44%3,4,6 of the total GWP of greenhouse gases. The wide range of these estimates highlights the great uncertainty surrounding regional N$_2$O emissions and their GWP at the global scale. Hence, N$_2$O fluxes and their contributions to GWP feedback at local and global scales require more attention.

In recent decades, as N fertilizer applications and N deposition have increased worldwide, global levels of N$_2$O have increased, resulting in changes in the N cycle$^{4-5,8}$. In tropical regions, large quantities of fertilizers are applied to both farmland and agroforestry systems$^{8-14}$ to meet the demands for high agricultural production. Chronic N deposition will cause N$_2$O emissions to increase from their present levels by several fold$^{12-16}$. The magnitude of the increase in N$_2$O emissions depends on the soil N contents, the physico-chemical$^{17-23}$ and biomass characteristics of the soil, environmental factors, and substrate quality and quantity2.

On the global scale, tropical rainforest soils account for 14–23% of the atmospheric N$_2$O budget7. For example, it has been estimated that soil emissions represent around 57% of the global atmospheric sources of N$_2$O28. Soil fertilization is one of the major contributors to N$_2$O emissions and accounts for more than 51% of the total emissions from plantation forests29. Elevated applications of synthetic N fertilizers, coupled with land use and climate changes, are the main factors that control N$_2$O emissions from tropical soils. Wang et al.16 reported that

1Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China. 2Xishuangbanna Station for Tropical Rain Forest Ecosystem Studies, Chinese Ecosystem Research Net, Mengla, Yunnan 666303, China. 3University of Chinese Academy of Sciences, Beijing 100039, China. 4Guangxi Normal University, Guilin 541004, China. 5Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China. 6State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.

*These authors contributed equally to this work. Correspondence and requests for materials should be addressed to Y.-P.Z. (email: yipingzh@xtbg.ac.cn)
NH$_4^+$-N fertilizer was responsible for higher soil N$_2$O emissions than nitrate nitrogen (NO$_3^-$-N) fertilizer, as in their study the nitrification rates were higher from NH$_4^+$-N-treated plots than from NO$_3^-$-N-treated plots in subtropical forests. Few studies have examined changes in soil N$_2$O emissions in response to the ongoing deposition of different forms of N in tropical forests in China. Hence, to support both estimations of the contributions of tropical forest soils to local and global N$_2$O emission budgets and predictions of future trends in N$_2$O emissions, it is important to quantify the N$_2$O emissions from these forest soils in response to various N inputs. Therefore, the results of such a study will improve our understanding of the effects of chronic N inputs to tropical forest soils.

High global demand for natural rubber has resulted in sharp price increases. The unique climatic and growing conditions required by rubber trees mean that plantations are mainly concentrated in areas to the south of the Amazon River, western Peru, southern Bolivia and Brazil, and in some developing countries in Southeast Asia. Rubber plantations in China have traditionally been planted in the south and southeast of the country. However, the ongoing expansion of rubber plantations has resulted in further loss of virgin tropical rainforest in other areas. For example, in Xishuangbanna, southwest China, rubber plantations cover an area of ~4.7 × 105 ha (24.6% of the total land area), which represents about half the tropical rainforest in the region.

Intensive soil-management practices, along with chronic additions of synthetic N fertilizers, mean that rubber plantations are potential N$_2$O sources in tropical regions. Furthermore, while high rainfall, soil moisture content, soil temperature, and soil nutrient availability provide favorable environmental conditions for microbial activities, they are also important environmental factors that regulate N$_2$O emissions from tropical forest soils. The main objective of the present study was therefore to improve our understanding of how soil N$_2$O emissions are influenced by nitrogen (N) fertilizers in tropical rubber plantations by evaluating N$_2$O emissions from rubber plantations in Xishuangbanna. The specific aims are to (1) quantify the influence of synthetic N fertilizers on N$_2$O emissions, (2) assess spatial and temporal variations in N$_2$O fluxes, (3) identify the time and extent of the effect of mineral N fertilizer applications on N$_2$O fluxes, and (4) identify the environmental factors that control N$_2$O fluxes in tropical rubber plantations.

Results

Site conditions at the rubber plantation. The results show that temporal variations in soil temperature (0–5 cm soil depth) followed a unimodal pattern, with the highest temperature recorded in the middle of the rainy season. The total rainfall from 1 April 2012 to 31 March 2013 was 1292.6 mm, and from 1 April 2013 to 31 March 2014 was 1187.3 mm; 80.0% of the rainfall and 83.6% of the rainfall events occurred during the rainy season. Only 13 rain events occurred during the dry season (Fig. 1a). The soil water content increased sharply because of high rainfall that occurred at the end of April after a relatively long dry period (Fig. 1b,c). There were strong positive correlations between soil temperature and soil water content in all the treatments and at the flux tower (Table S1). The temperature and soil water content measurements made at the flux tower, along with other parameters, were included in the correlation analyses.

The temporal variations in soil temperature (F = 0.316, p = 0.929) and soil water content (F = 0.368, p = 0.692) for the different treatments were not significant. However, we found significant differences in dissolved organic carbon (DOC) (F = 2.20, p = 0.037), microbial biomass carbon (MBC) (F = 32.34, p < 0.0001), NH$_4^+$-N (F = 6.38, p < 0.0001), NO$_3^-$-N (F = 4.12, p = 0.0002), and mineral N (F = 6.55, p < 0.0001) over the monitoring period.
There were no clear seasonal trends in C and N concentrations (Fig. S1). The DOC, MBC, dissolved nitrogen (DN), NH₄⁺-N, and dissolved organic nitrogen (DON) were higher in the unfertilized plots than fertilized plots, whereas NO₃⁻-N was higher in the fertilized plots than unfertilized plots (Table 1). This clearly indicates that the fertilizer had a considerable effect on soil chemical properties in the rubber plantations after 2 years of N fertilizer applications.

Fertilizer effects on N₂O emissions in the rubber plantation. The N₂O flux rates showed similar seasonal trends in the unfertilized platform plots (NN), unfertilized slope plots (NN⁺), unfertilized trench plots (NNt), fertilized platform plots (UN), and fertilized slope plots (UN⁺) (Fig. 3a–e), with high flux rates during the rainy season when the soil temperature, soil water contents, and rainfall were high, and low flux rates during the dry season, when the soil water contents and soil temperature were low (Fig. 1a,b). The trends in N₂O fluxes at the dry season fertilizer trench plots (UNt) and rainy season fertilizer trench plots (UNa) were different from those from the unfertilized platform, unfertilized slope, unfertilized trench, fertilized platform, and fertilized slope treatments. A month after fertilizer application during the dry season, the N₂O fluxes increased sharply to a maximum and remained at a relatively high level about 4 months until the end of August (Fig. 3f). Similarly, during the rainy season the N₂O fluxes increased rapidly at ~15 days after fertilizer application and remained high for about 3 months (Fig. 3g). After fertilizer application, it took much less time to reach the peak N₂O flux in...
the rainy season than in the dry season. Likewise, the peak N$_2$O flux that occurred after fertilizer application was maintained for a longer duration (about 4 months) in the rainy season than in the dry season (about 3 months). Because the fertilizer was applied during April and September, the area-weighted N$_2$O flux from the fertilized rubber plantation showed a bimodal pattern (Fig. 4).

The mean N$_2$O flux rates varied significantly ($F = 23.14$, $p < 0.0001$) among the different treatments during the monitoring period (Fig. 3; Table S3). The flux rate was highest at the fertilized trench during the rainy season (0.58 ± 0.11 mg N m$^{-2}$ h$^{-1}$), closely followed by the dry season fertilized trench (0.55 ± 0.092 mg N m$^{-2}$ h$^{-1}$), and was lowest at the unfertilized trench (0.014 ± 0.0016 mg N m$^{-2}$ h$^{-1}$). The area-weighted N$_2$O flux rate was significantly higher ($t = 8.1$, $p < 0.0001$, df = 118) at the N fertilized plots (0.046 ± 0.032 mg N m$^{-2}$ h$^{-1}$) than the unfertilized plots (0.029 ± 0.026 mg N m$^{-2}$ h$^{-1}$). The N$_2$O fluxes from both fertilized and unfertilized plots were higher during the rainy season than during the dry season. The annual cumulative N$_2$O fluxes from the fertilized and unfertilized treatments were 4.0 and 2.5 kg N ha$^{-1}$ yr$^{-1}$, respectively. The N$_2$O emission factor was 1.96% at the rubber plantation.

Table 1. Area weighted mean values (mean ± SE) and paired t-test results for DOC, MBC, DN, MBN, NH$_4^+$-N, NO$_3^-$-N, mineral N, and DON between the unfertilized and fertilized treatments in the rubber plantation.

Parameter	Unfertilized	Fertilized	t	p	df
DOC	578.6 ± 18.2	465.5 ± 26.1	5.24	<0.0001	18
MBC	2202.3 ± 82.3	1744.0 ± 80.7	7.18	<0.0001	18
DN	46.5 ± 11.9	35.7 ± 9.2	3.03	0.01	18
MBN	143.9 ± 26.1	80.7 ± 11.7	3.05	0.01	18
NH$_4^+$-N	13.5 ± 0.8	10.4 ± 0.6	7.50	<0.0001	36
NO$_3^-$-N	3.2 ± 0.5	6.5 ± 0.8	5.38	<0.0001	36
Mineral N	16.6 ± 0.9	16.8 ± 1.0	0.27	0.79	35
DON	30.6 ± 11.2	20.7 ± 8.8	2.79	0.01	18

Factors influencing N$_2$O emissions at the rubber plantation. With the exception of the fertilizer trench in the rainy season, regression analysis shows significant correlations among soil water content, soil water content, and N$_2$O flux rates for the different treatments (Table S2). In contrast, there were no clear correlations between C fractions and the N$_2$O flux rates or between the N fractions and the N$_2$O flux rates (data not shown). The N$_2$O flux rate was higher from the fertilized plots than from the unfertilized plots (Fig. 4), which reflects the fact that soil water content and temperature had a greater influence on the flux rates in unfertilized than in fertilized treatment, and that fertilizer applications decreased the influence of soil water content and soil temperature on flux rates (Fig. 5). Regression analysis between soil temperature and N$_2$O flux (Fig. 5) shows that temperature dependence on the unfertilized treatment (5.0) was higher than that of the fertilized treatment (3.9). Furthermore, Pearson correlations show that of the different C and N fractions, NH$_4^+$-N was significantly and positively correlated with the N$_2$O flux rate from the fertilized ($r = 0.45$, $p = 0.0063$, $n = 36$) and unfertilized treatments ($r = 0.37$, $p = 0.030$, $n = 36$).

We used Pearson correlation analysis to assess the relationships among N$_2$O flux, C and N fractions, and SWC in the different treatments. The results indicate that the N fractions, such as DN, DON, mineral N, NH$_4^+$-N, and NO$_3^-$-N, were significantly ($p < 0.01$) and positively correlated with the average N$_2$O fluxes (Table 3). Stepwise linear regression analysis also indicated that the NH$_4^+$-N content was the key control on variations in the N$_2$O fluxes from the different treatments. The regression equation was as follows:

$$y = -88.12 + 8.54x(adj r^2 = 0.95, \ p < 0.0001)$$

(1)

where y is the annual N$_2$O flux (kg N ha$^{-1}$ yr$^{-1}$) and x is the average NH$_4^+$-N content (mg N kg$^{-1}$).

Discussion

Nitrogen fertilization has a significant influence on N$_2$O dynamics and contributes to high N$_2$O fluxes3,5,36. The results from this study show that the N$_2$O flux was higher from the fertilized rubber plantation (4.0 kg N ha$^{-1}$ yr$^{-1}$) than from the unfertilized rubber plantation (2.5 kg N ha$^{-1}$ yr$^{-1}$). The increased fertilizer ratio (160%) of the rubber plantation was less than the ratios reported for subtropical forests in southeast China (403–762%), where the fertilizer application rates ranged from 40 to 120 kg N ha$^{-1}$ yr$^{-1}$.36 Although the amount of N fertilizer (75 kg ha$^{-1}$ yr$^{-1}$) applied to the rubber plantation was higher than that reported in some previous studies10,16,37,38, which showed the contribution of inorganic N fertilizer applications to N$_2$O emissions in the rubber plantation at Xishuangbanna were much lower. This result can be explained as follows. Firstly, fertilization in the rubber plantation followed the furrow fertilization model (Fig. 6). This meant that the fertilized trench plot was a hot spot of N$_2$O emissions from which the emissions were significantly higher than from the slope and terrace plots (Fig. 3; Table S3). The fertilized trench plots, however, accounted for only a small areal proportion (Fig. 6) of the rubber plantation, therefore the overall contribution of the fertilized trench plots on N$_2$O emissions were low. Secondly, there were no significant ($p > 0.05$) differences among the N$_2$O fluxes from the fertilized and unfertilized slope and terrace plots (Fig. 3; Table S3). Hence, the area-weighted mean N$_2$O flux from the fertilized plot was only 1.6 times greater than that from the unfertilized plot.
As increased amounts of fertilizer are applied, N$_2$O emissions increase$^{39-41}$. The N$_2$O emissions from the fertilized rubber plantation (N application rate was 75 kg ha$^{-1}$ yr$^{-1}$) of the present study were lower than those from plantations where the N fertilizer application rates were higher (130–360 kg N ha$^{-1}$ yr$^{-1}$), such as papaya orchards (3.8–5.4 kg N ha$^{-1}$ yr$^{-1}$), coffee plantations (4.3 kg N ha$^{-1}$yr$^{-1}$), coffee + tree legumes in Costa Rica (5.8 kg N ha$^{-1}$yr$^{-1}$), and lychee orchards (4.5 ± 1.1 kg N ha$^{-1}$yr$^{-1}$)$^{39-41}$. The fertilization emission factor (1.96%) reported here was higher than those reported for the lychee (1.56%)39, papaya (0.90%)41, coffee+tree legume orchards (1.0%)40 in tropical regions, and the default factor (1.0%) reported by the IPCC5. This shows that the

Figure 3. N$_2$O fluxes from the fertilized treatments in the rubber plantation in Xishuangbanna, southwest China, showing data for the platform [NN, (a)], slopes [NN+, (b)], and old fertilizer trench [NNt, (c)] of the unfertilized treatment, and the platform [UN, (d)], slope [UN+, (e)], dry season fertilizer trench [UNts, (f)], and rainy season fertilizer trench [UNta, (g)] of the fertilized treatment. The arrows in (f,g) indicate the fertilizer date.
N₂O emission ratios for N-fertilized rubber plantations were higher than for other plantation types, which may have significant implications for the local GWP.

Differences in N₂O emissions among treatments in the rubber plantation can be attributed to the combined effects of environmental, soil, vegetation, and human factors. The combined effects can be explained by soil physical and biochemical characteristics that contributed directly to N₂O emissions. The significant positive correlations between the N₂O flux and the contents of organic N fractions, and between the N₂O flux and mineral N fractions, indicate that N was the most important control on spatial variations in N₂O emissions (Table 3). Furthermore, stepwise linear regression showed that the NH₄⁺-N content explained 94.5% of the variance in N₂O among the treatments, and that the NH₄⁺-N fraction dominated the spatial variations among the treatments. After 2 years without fertilizer application, the microbiomass community, which did not show the same degree of variation in the MBC and MBN (Fig. 2b,d)²¹, may vary with changes in the NH₄⁺-N content, resulting in changes in N₂O emissions from different treatments in the rubber plantation examined in the present study.

Figure 4. Area weighted mean N₂O fluxes from the fertilized and unfertilized treatments during the observation period. A black circle indicates the area-weighted N₂O flux from the fertilized treatment. An empty circle indicates the area weighted mean N₂O flux from the unfertilized treatment. The arrow indicates the date of fertilization.

Figure 5. Regression equation between area weighted mean nitrous oxide emissions (mg N m⁻²h⁻¹) and soil temperature (0–5 cm depth), and soil water content (0–10 cm) in the rubber plantation at Xishuangbanna, southwest China. (a) Soil temperature versus area weighted mean N₂O from the unfertilized treatment, (b) soil water content versus area weighted mean N₂O flux from the unfertilized treatment, (c) soil temperature versus area weighted mean N₂O from the fertilized treatment, and (d) soil water content versus area weighted mean N₂O flux from the fertilized treatment.
The NH$_4^+$-N content, along with other factors, contributed to spatial variations in the N$_2$O emissions from the different treatments. It was also one of the main controls on the area weighted mean values of N$_2$O in the fertilized and unfertilized rubber plantation. This suggests that nitrification rather than denitrification controlled N$_2$O emissions in the rubber plantation. It also contrasts with results from other studies in rubber plantation sites that are controlled by nitrification10,42,43, in which N$_2$O emissions have generally been attributed to the combined effects of environmental, soil, vegetation, and human factors. While the soil pH in the rubber plantation of the present study (Table S4) was similar to that reported for other studies in tropical regions12,44,45, the water content

Treatments	F	NF	F-NF
N$_2$O flux (kg N ha$^{-1}$yr$^{-1}$)	4.0	2.5	1.5
GWP	1929.1	1217.9	708.8
Ratio to the rubber plantation NEE (%)	5.8	3.7	2.1
Ratio to the tropical rainforest NEE (%)	31.5	19.9	11.6

Table 3. Global warming potential of N$_2$O in the rubber plantation. F indicates fertilized rubber plantation; NF indicates unfertilized rubber plantation; F-NF indicates the difference between fertilized and unfertilized rubber plantation; TRF indicates tropical rainforest. Rubber plantation and tropical rainforest NEE values were 9.04 t C ha$^{-1}$yr$^{-1}$48 and 1.67 t C ha$^{-1}$yr$^{-1}$52, respectively. The global warming potential of N$_2$O is 310 times that of CO$_2$ over a period of 100 years4,5.

The NH$_4^+$-N content, along with other factors, contributed to spatial variations in the N$_2$O emissions from the different treatments. It was also one of the main controls on the area weighted mean values of N$_2$O in the fertilized and unfertilized rubber plantation. This suggests that nitrification rather than denitrification controlled N$_2$O emissions in the rubber plantation. It also contrasts with results from other studies in rubber plantation sites that are controlled by nitrification10,42,43, in which N$_2$O emissions have generally been attributed to the combined effects of environmental, soil, vegetation, and human factors. While the soil pH in the rubber plantation of the present study (Table S4) was similar to that reported for other studies in tropical regions12,44,45, the water content

Table 2. Pearson’s correlations between the average N$_2$O flux, soil water content, and fractions of C and N after the different treatments in the rubber plantation. **Correlation is significant at the 0.01 level (two-tailed). *Correlation is significant at the 0.05 level (two-tailed). n = 7.

	SWC	DOC	DN	MBC	NH$_4^+$	NO$_3^-$	Mineral N	DON
r	-0.43	-0.53	0.89**	-0.69	0.98**	0.90**	0.80*	0.84**
p	0.29	0.19	0.003	0.06	<0.0001	0.003	0.017	0.009

Table 3. Global warming potential of N$_2$O in the rubber plantation. F indicates fertilized rubber plantation; NF indicates unfertilized rubber plantation; F-NF indicates the difference between fertilized and unfertilized rubber plantation; TRF indicates tropical rainforest. Rubber plantation and tropical rainforest NEE values were 9.04 t C ha$^{-1}$yr$^{-1}$48 and 1.67 t C ha$^{-1}$yr$^{-1}$52, respectively. The global warming potential of N$_2$O is 310 times that of CO$_2$ over a period of 100 years4,5.

The NH$_4^+$-N content, along with other factors, contributed to spatial variations in the N$_2$O emissions from the different treatments. It was also one of the main controls on the area weighted mean values of N$_2$O in the fertilized and unfertilized rubber plantation. This suggests that nitrification rather than denitrification controlled N$_2$O emissions in the rubber plantation. It also contrasts with results from other studies in rubber plantation sites that are controlled by nitrification10,42,43, in which N$_2$O emissions have generally been attributed to the combined effects of environmental, soil, vegetation, and human factors. While the soil pH in the rubber plantation of the present study (Table S4) was similar to that reported for other studies in tropical regions12,44,45, the water content
of the filled pore space was less than 80% (Fig. S2), which triggered changes in the threshold of the soil micro-
biomass community for denitrification21–23. Thus, NH4 +–N and N2O emissions were significantly and positively
correlated in the present study predicted nitrification may the main N2O emission way in this rubber plantation.
To understand the influence of the previously mentioned factors on N2O emissions, further studies are needed
to (1) determine whether nitrification is the main control on N2O emissions in each treatment, (2) calculate the
N2O:nitrification ratio in the rubber plantation, and (3) examine the N2O emission processes in isotope incubation
experiments, in the field and the laboratory.

Regardless of whether nitrification or denitrification dominates, the soil water content and temperature are the
most important controls on N2O seasonal dynamics, and drive higher N2O emissions in the rainy season
than in the dry season in most forests. The area-weighted mean N2O fluxes from each treatment indicate that the
N2O fluxes were higher in the rainy season than in the dry season (Figs 2 and 4). With the exception of the ferti-
lizer trench plot during the rainy season, the seasonality in the N2O flux rate can be explained by the significant
correlations between N2O flux and soil temperature, and between N2O flux and soil water content (Figs 3 and 5;
Table S1). Seasonal variations in N2O fluxes from the rainy season fertilizer trench plot were not well correlated
with soil temperature, because the flux rate increased gradually after the rainy season fertilizer application as the
soil temperature decreased (Figs 1a and 3g). Thus, the timing of fertilizer applications may also have a significant
influence on the relationship between soil temperature and N2O fluxes53,56,57, and may cause variations in N2O flux
rates within a given plantation. The N2O flux reached a peak more quickly after fertilization in the rainy
season fertilizer trench plot than in the dry season fertilizer trench plot (Fig. 3g). Because of the relatively high
soil water content and temperature in the later part of the rainy season (Fig. 1b), there was more microbiomass
to produce N2O emissions23–26, so the increased N mineralization rate and N2O flux were sustained for a shorter
time in the rainy season than after fertilization in the dry season due to the lack of clear trends in the contents of the C and N fractions in all the treatments (Fig. S1) may mean that a combination of other factors influenced N2O emissions. Temperature, soil moisture, and microbial bioactivity stimulate the N cycle14,42,44. Variations in N uptake from the surface and interflow runoff discharges of N influence the supply of N2O emissions to the substrate16,45–47. Rubber tree phenology and changes in fine root dynamics in the rhizosphere microenvironment influence N and C availability47–49. Furthermore, variations in litter inputs and soil microbial biomass influence the soil C and N fractions39–47, and, depending on the substrate and the energy supply, fertilization will have a considerable influence on N2O emissions39,43,44.

Overall, N2O from the fertilized rubber plantation contributes about 1227.6 kg C ha −1 yr −1 to the 100-year GWP, which accounts for 6.0% of the rubber plantation net ecosystem exchange (NEE) (9.04 t C ha −1 yr −1)49. This figure is far less than that reported for an acacia plantation in Sumatra, Indonesia (10.0%)37, and shows that the N2O fluxes from the rubber plantation made a relatively small, yet significant, contribution to the GWP17. However, the NEE is similar to that reported for a Chinese chestnut plantation, where CO2 emissions accounted for more than 95.0% of the total GWP regardless of the understory management treatment50. Comparison with the results from the unfertilized rubber plantation showed that mineral fertilizer only contributed 1.5 kg N ha −1 yr −1 or a GWP of 708.8 kg CO2 ha −1 yr −1, which offset the NEE of the rubber plantation by 2.1%. A modeling study7 has shown that the relatively low contribution of N2O to the GWP in the rubber plantation can be attributed to increases in the C sink potential and reductions in the GWP arising from the use of N fertilizer17,50,51.

In this study, the ratio of the rubber plantation N2O to the primary tropical forest NEE was estimated at 1.67 t C ha −1 yr −1 (Table 3). The ratio of the N2O GWP of the fertilized rubber plantation to the primary tropical
rainforest NEE was relatively high (31.5%), and was 8.6 times greater than the N2O GWP:NEE ratio of the tropical
rainforest. Most of the conversion from tropical rainforest to rubber plantation in Xishuangbanna has occurred
since the 1970s31–34. In Xishuangbanna during 2014, rubber plantation and tropical rainforest covered areas of
47.12 × 104 ha of tropical rainforest and 86.83 × 104 ha of rubber plantation, respectively43. Using the land use ratio (i.e., the ratio of the fertilized rubber plantation N2O GWP to the primary tropical forest NEE), we calculated that for the GWP the rubber plantation will offset 17.1% of the NEE of the primary tropical rainforest in Xishuangbanna. This indicates that as the area of the rubber plantation increases, the local tropical rainforest carbon sink will decrease because of the contribution of fertilizer in the rubber plantation, and there will be positive greenhouse effect feedbacks to the local climate with particular influences on precipitation and temperature40. Greenhouse gas emissions change with variations in land use and vegetation life cycles1,2,5,6,8. In the present study, we investigated only one stage of the life cycle of a mature rubber plantation. Hence, to obtain more accurate information about N2O feedback from fertilized rubber plantations to the local GWP, and the total accumulated greenhouse gas feedback to local climate change, further studies should investigate the whole life cycle of the rubber plantation.

Materials and Methods

Site description. The study site was a managed rubber plantation (21°55′30″N, 101°15′59″E; elevation
580 m) that was planted in 1993 in Xishuangbanna, Yunnan Province, China. The annual average temperature
in this area is 21.7 °C and the mean annual precipitation is 1557 mm31. There is a rainy season from May to
October and a dry season from November to March; the dry season is further divided into a cool, dry period from November to February, and a hot, dry period during March and April. The tropical rainforest was settled in 1990, and rubber trees were planted in May 1993. Rubber trees were planted 2 m apart in rows. The spacing between adjacent rows was either narrow (3 m) or wide (19 m), and the trees were planted at a density of 495 rubber trees per hectare. The mean canopy height of the rubber plantation area ranged from 20 to 30 m. The main rubber-tapping period is from May to November. The plantation was not irrigated. Fertilizer was applied twice each year, during the dry season at the end of March (or the beginning of April) and during the rainy season at the end of August or the beginning of September. The study site is on a slope (15%) and is covered with a thick layer of oxisol, the physical and chemical characteristics of which are listed in Table S4.

Experimental design. In March 2012 we established a 1 ha study plot in the rubber plantation. We set up a randomized block experiment to compare the effects of mineral fertilizers on N₂O emissions from the terraces, slope, and fertilizer trench. Taking into account the slope gradient, slope direction, and buffer zone, three fertilized and unfertilized blocks were installed from the bottom to the top of the slope around an eddy meteorological observation tower (on top of the hill) (Fig. 6). There were three terraces (NN), three fertilizer trenches (NNt), two narrow slopes, and two wide slopes (UN) in the unfertilized plots, and four terraces (UN), three dry season fertilizer trenches (UNt), three narrow slopes, and two wide slopes (UN+) in the fertilized plots. In line with local farming practices, 1 kg of mineral fertilizer (Huabei Sanning Chemical, China) containing 15% N as (NH₄)₂CO, 15% P as NH₄H₂PO₄, and 15% K as KCl was applied to each rubber tree every year; this amounted to an application rate of 75 kg N ha⁻¹ yr⁻¹, split into two applications (1 April and 6 September in 2012 and 2013). The fertilizer was applied by hand into a trench that was 150 cm long, 20 cm wide, and 10 cm deep between two rubber trees at a rate of 0.5 kg per tree per application.

Measurement of N₂O emissions. We measured the N₂O fluxes simultaneously in all the fertilized and unfertilized treatments for 2 years from 1 April 2012 to 30 March 2014 using a static opaque chamber technique. A chamber base collar made of PVC casing (covering an area of 0.12 m²) was inserted to a depth of 0.10 m in the center of each field plot to measure the gas flux. The chamber base collars were kept in place throughout the entire measurement period. Chambers, 0.12 m² in area and 0.2 m high, were manually mounted onto the base collars to measure gas fluxes. To measure the N₂O flux, five gas samples were taken from each chamber during the 1 h incubation at 15 min intervals. The gas samples were collected and stored in 100 ml plastic syringes and then transported to the laboratory within 3 hours of sampling. All the gas samples were analyzed immediately in the laboratory using a gas chromatograph (GC, Agilent 7890A, Agilent Technologies, CA, USA) equipped with an electron capture detector at 330 °C following the DN–Ascarite method with N₂ as the carrier gas and an ascarite filter to remove CO₂ from the samples. The N₂O samples were isothermally separated in two stainless steel columns (both with an inner diameter of 2 mm, and either 1 or 2 m long) packed with Porapak Q, 80–100 mesh, at 55 °C. To check the accuracy of the sample analysis, four standard N₂O samples (National Center for Standard Matters, Beijing, China) with concentrations of 350 ppbv were analyzed by the GC system every 10 samples. Results of the GC analyses were accepted when the four gas standard calibrations produced variation coefficients that were lower than 1%.

The air pressure and headspace air temperature were recorded when the samples were collected from the chamber enclosure. The gas flux was calculated from the change in concentration within the enclosure, the recorded air temperature, and pressure. We used either a linear or nonlinear fitting approach to determine the initial rate of change in the concentration and the N₂O flux. Sampling and measurements were carried out weekly throughout the observation period. All samples were collected between 09:00 and 11:00 AM (local time) on the sampling day so that the flux rate was representative of the mean daily flux. Emissions for days lacking measurements were estimated as the arithmetic mean flux of the two closest days for which measurements were available. The daily estimates were summed to obtain the total weekly, monthly, and annual emissions.

Auxiliary measurements. Soil volumetric water content and soil temperature. During gas sampling, the soil volumetric water content (0–12 cm soil depth) was determined with time-domain reflectometry (TDR100, Campbell Scientific, USA) in the soil close to the gas sampling plot. At the same time, the soil temperature (0–10 cm) and the air temperature were recorded with a needle thermometer. Missing soil water content and temperature data were calculated by calibrating the collected data with the soil water content (0–5 cm) and temperature, which was recorded half-hourly with a data logger fixed to the eddy flux tower (Campbell Scientific). Rainfall was recorded half-hourly by an automatic recorder attached to the top of the eddy flux tower.

Soil sampling and C/N fraction analysis. Throughout the soil N₂O flux observation period, soil samples (~200 g) were collected at a depth of 0–20 cm every month from a point close to the static chambers using a stainless steel auger (3 cm in diameter). Once collected, soils were immediately passed through a 2 mm sieve to remove roots, gravel, and stones. All the soil analyses were completed within 48 hours. The soil samples were extracted in a 2.0 mol L⁻¹ KCl solution (soil:water ratio of 1:10) and shaken for 1 h (160 rpm). The soil suspension was then filtered before NH₄⁺-N and NO₃⁻-N concentrations were determined with a continuous flow autoanalyzer (AutoAnalyzer 3; Germany). At the same time, a portion of each of the treated soil samples was pooled to make a composite sample for analysis of microbial biomass nitrogen (MBN), microbial biomass carbon (MBC), dissolved organic carbon (DOC), and total dissolved nitrogen (TDN). Soil MBC and MBN were determined by the chloroform fumigation–extraction method. Four replicate samples of 7.0 g of each treated soil sample were fumigated with ethanol-free chloroform for 24 h at 25 °C in a sealed incubator in the dark. Three 7.0 g samples of each treated soil were not fumigated. After fumigation, the chloroform was completely removed from the soils, and both the fumigated and unfumigated samples were extracted with 35 ml of freshly prepared 0.05 M
K₂SO₄ (soil:water ratio of 1:5), capped, and shaken at 300 rpm for 1 h. The suspensions were then centrifuged for 10 min at 5000 × g and the supernatants were filtered through 0.45 μm nitrocellulose membrane filters (Pall Life Science Company, Beijing, China). These filtered samples were analyzed for DOC and DN concentrations using Pt-catalyzed high-temperature combustion (680 °C) and a total organic carbon/total nitrogen analyzer (LiquiTOC II, Elementar Analyzer System, Germany). DOC and TDN were determined on the unfiltered filters, and the differences in DOC and TDN between the unfumigated and fumigated filters were the MBC and MBN, respectively. Mineral N was the sum of NH₄⁺−N and NO₃⁻−N, and DON was the difference between TDN and mineral N.

Statistical analyses. The N₂O flux from the fertilized and unfertilized areas was calculated as the area-weighted mean of three or more replicates from each treatment, as follows:

\[F = \frac{\sum a_i \times F_i}{\sum a_i} \]

where \(F \) is the N₂O flux (µg m⁻² h⁻¹), \(a_i \) is the treatment area (ha), \(F_i \) is the treatment N₂O flux (µg m⁻² h⁻¹), and \(i \) is the treatment.

SPSS (version 16.0) software was used for the statistical analysis. One-way ANOVA and general linear models were used to examine differences in N₂O, soil temperature, soil water content, DOC, MBC, DN, MBN, NH₄⁺−N, NO₃⁻−N, mineral N, and DON among the treatments. The Pearson correlation (two-tailed) test was used to determine the correlations between N₂O and each of the environmental variables, and the soil C and N fractions. Stepwise linear regression analysis was performed with the N₂O flux rate as the main factor. A paired \(t \)-test was used to detect differences among the soil temperature values, and among the area-weighted concentrations of N₂O, soil water content, DOC, MBC, DN, MBN, NH₄⁺−N, NO₃⁻−N, mineral N, and DON for the fertilized and unfertilized treatments. All the data for N₂O, soil temperature, soil water content, DOC, MBC, DN, MBN, NH₄⁺−N, NO₃⁻−N, mineral N, and DON, the different treatments, and the weighted area values were tested for normality with the Kolmogorov–Smirnov test (one sample), and all of the data complied with the assumptions of the analysis methods that we used. The N₂O emission factor (EF) for rubber plantation soils after fertilizer had been applied was calculated as follows:

\[EF = \left(\frac{E - E_0}{N} \right) \times 100\% \]

where \(E \) and \(E_0 \) are the N₂O emissions from the fertilized and unfertilized fields during the same period, respectively, and \(N \) is the amount of nitrogen fertilizer applied.

References

1. Reay, D. S. et al. Global agriculture and nitrous oxide emissions. Nat. Clim. Change 2, 410–416 (2012).
2. Beauchamp, E. G. Nitrous oxide emission from agricultural soils. Can. J. Soil Sci. 77, 113–123 (1997).
3. Mosier, A. R., Halvorson, A. D., Peterson, G. A., Robertson, G. P. & Sherrod, L. Measurement of net global warming potential in three agroecosystems. Natr. Cycl. Agroecosys. 72, 67–76 (2005).
4. Manne, A. S. & Richels, R. G. An alternative approach to establishing trade-offs among greenhouse gases. Nature 410, 675–677 (2001).
5. Bernstein, L., Bosch, P., Canziani, O., Chen, Z., Christ, R. et al. climate change 2007: synthesis report. Contribution of working groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change, Geneva. http://www.ipcc.ch/ipccreports/ar4-syr.htm (2007).
6. Mosier, A. R. Nitrous oxide emissions from agricultural soils. Fertilizer Research 37, 191–200 (1994).
7. Lu, C. & Tian, H. Net greenhouse gas balance in response to nitrogen enrichment: perspectives from a coupled biogeochemical model. Global change Biol. 19, 571–588 (2013).
8. Rennenberg, H. et al. Nitrogen balance in forest soils: nutritional limitation of plants under climate change stresses. Plant Biol. 11 Suppl 1, 4–23 (2009).
9. Zaehe, S. Terrestrial nitrogen-carbon cycle interactions at the global scale. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 368, doi: 10.1098/rstb.2013.0125 (2013).
10. Zhu, J., Mulder, J., Bakken, L. & Dörsch, P. The importance of denitrification for N₂O emissions from an N-saturated forest in SW China: results from in situ ¹⁵N labeling experiments. Biogeochemistry 116, 103–117 (2013).
11. Zhu, J., Mulder, J., Solheimslid, S. O. & Dörsch, P. Functional traits of denitrification in a subtropical forest catchment in China with high atmospheric N deposition. Soil Biol. Biochem. 57, 577–586 (2013).
12. Corre, M. D., Sueta, J. P. & Veldkamp, E. Nitrogen oxide emissions from tropical forest soils exposed to elevated nitrogen input strongly interact with rainfall quantity and seasonality. Biogeochemistry 118, 103–120 (2013).
13. Ding, W. et al. Effect of long-term compost and inorganic fertilizer application on background N₂O and fertilizer-induced N₂O emissions from an intensively cultivated soil. Sci. Total Environ. 465, 115–124 (2013).
14. Martinson, G. O., Corre, M. D. & Veldkamp, E. Responses of nitrous oxide fluxes and soil nitrogen cycling to nutrient additions in montane forests along an elevation gradient in southern Ecuador. Biogeochemistry 112, 625–638 (2013).
15. Stuart, D., Schewe, R. L. & McDermott, M. Reducing nitrogen fertilizer application as a climate change mitigation strategy: Understanding farmer decision-making and potential barriers to change in the US. Land Use Policy 36, 210–218 (2014).
16. Wang Y. et al. Simulated nitrogen deposition reduces CH₄ uptake and increases N₂O emission from a subtropical plantation forest soil in Southern China. PLoS ONE 9, e93571, doi: 10.1371/journal.pone.0093571.g001 (2014).
17. Adjii, F. F., Hamada, Y., Darang, U., Limin, S. H. & Hatano, R. Effect of plant-mediated oxygen supply and drainage on greenhouse gas emission from a tropical peatland in Central Kalimantan, Indonesia. Soil Sci. Plant Nutr. 60, 216–230 (2014).
18. Werner, C. et al. N₂O, CH₄, and CO₂ emissions from seasonal tropical rainforests and a rubber plantation in Southwest China. Plant Soil 289(1–2), 335–353 (2006).
19. Blagodatskaya, E. et al. Oxygen and substrate availability interactively control the temperature sensitivity of CO₂ and N₂O emission from soil. Biol. Fert. Soils 50, 775–783 (2014).
20. Yao, Z. et al. Tillage and crop residue management significantly affects N-trace gas emissions during the non-riese season of a subtropical rice-wheat rotation. Soil Biol. Biochem. 41, 2131–2140 (2009).
21. de Urzedo, D. I., Franco, M. P., Pitombo, L. M. & do Carmo, J. B. Effects of organic and inorganic fertilizers on greenhouse gas (GHG) emissions in tropical forestry. Forest Ecol. Manag. 310, 37–44 (2013).
We would like to acknowledge Prof. Zu-Cong Cai for supporting the experiment, Prof. Yun-Ting Fang and D. Balasubramanian for helping to revise the manuscript, and the field technicians for their invaluable contribution to sample collection and measurements of auxiliary parameters. We would also like to acknowledge the staff and technicians of the Xishuangbanna Station for Tropical Rain Forest Ecosystems, and the Public Technology Service Center of XTBG, CAS, for their support with field measurements and soil analyses. This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grants...
XDA05020302 and XDA05050601), the Natural Science Foundation of Yunnan Province (2015FB188), the National Natural Science Foundation of China (41271056, U1202234), the CAS 135 project (XTBG-T03), and the Science and Technology Service Network Initiative of the Chinese Academy of Sciences (no. KFJ-EW-STS-084).

Author Contributions
W.-J.Z. and H.-L.J. conducted the experiments, analyzed the data, and wrote the manuscript; J.Z., Y.-P.Z., L.-Q.S. and J.-H.Z. assisted with writing the manuscript; X.-H.Z. helped design the experiment and the manuscript; Y.-T.L., X.Z., Y.-X.D., X.-L.B. and Y.-X.L. assisted with the experiment and data analysis.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Zhou, W.-J. et al. The effects of nitrogen fertilization on N2O emissions from a rubber plantation. Sci. Rep. 6, 28230; doi: 10.1038/srep28230 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/