Specific dynamics for the domain walls in Einstein–Maxwell-dilaton theory

S Habib Mazharimousavi and M Halilsoy

Department of Physics, Eastern Mediterranean University, G Magusa, North Cyprus, Mersin 10, Turkey

E-mail: habib.mazhari@emu.edu.tr and mustafa.halilsoy@emu.edu.tr

Received 16 August 2011, in final form 30 January 2012
Published 28 February 2012
Online at stacks.iop.org/CQG/29/065013

Abstract
We consider Einstein–Maxwell-dilaton Lagrangian, supplemented by double Liouville potentials to enrich the system, and investigate the resulting dynamics. The general solution provides alternative structures induced on the three-dimensional domain wall (DW) moving in the four-dimensional bulk. In particular, the local maximum in the potential suggests a maximum bounce (or onset for a contraction phase) of the three-dimensional Friedmann–Robertson–Walker universe on the DW. Depending on the choice of parameters we plot various cases of physical interest.

PACS numbers: 04.50.Gh, 04.50.Kd, 04.70.Bw

1. Introduction
The idea that our universe is a brane living in a higher dimensional space has attracted considerable attention in recent decades [1]. The physical properties of such a brane must automatically be induced from the surrounding space—known as bulk—through some well-established junction rules. One such particular example of brane–bulk pair is provided when the brane has dimension one less \((d-1)\) in a \(d\)-dimensional bulk known as a domain wall (DW) with the \(Z_2\) symmetry across. Besides the universe concept, the DW entails topological defect formations pertaining to the remnants from the Big Bang, different vacua of quantum fields and other applications of vital importance. As emphasized often, one of the most important problems in modern cosmology is the accelerated expansion of our currently observed universe, its causes and whether it will do so indefinitely. Can the answer be obtained from the idea that our universe is a DW in a higher dimensional bulk spacetime? In other words, can we construct an appropriate bulk spacetime so that inflation driven by matter on the DW is induced from it? It must be admitted that a bulk with such generality is still missing. Herein we choose our bulk metric to be four dimensional \((d = 4)\), while the DW becomes three dimensional \((d = 3)\) which may be considered in this regard as a toy model.
Let us not forget, however, that lower dimensional physics may serve to shed light on higher dimensions. One justifiable reason for choosing our bulk as $d = 4$ is that we can provide an exact solution with sufficient generality to encompass new dynamics on the DW and serve our purpose well. The action contains Maxwell and dilaton fields beside gravity whose coupling is non-minimal \[2, 3\]. With this much rich action, unfortunately, we were unable to obtain the exact solution in bulk dimension $d > 4$; for this reason, we are satisfied with $d = 4$. In addition, we have an extra Liouville-type potential of the dilaton \[3\] and our Maxwell field is pure magnetic. Due to the fact that the coupling to dilaton is rather complicated, the solution becomes possible, with a pure magnetic field. Depending on the choice of integration constants and dilatonic parameter we have obtained a large class of non-asymptotically magnetic solutions that yield previously known solutions of its kind in particular limits \[4–6\]. Pure electrically charged solutions \[5\], on the other hand, are not expected to overlap with our magnetic ones. One crucial difference between those and this work lies in the coupling between the dilaton and the magnetic fields. Essentially, it is this difference that provides a richer dynamical structure on the DW without reference to non-physical conditions such as negative mass. It should also be added that we consider a neutral brane (DW) so that by Z_2 symmetry, continuity of the vector potential and the electromagnetic field across the brane, the Maxwell equations are trivially satisfied. In other words, the surface (DW) Lagrangian does not depend on the electromagnetic field; rather it depends explicitly only on the dilaton whose boundary conditions are accounted for under the junction conditions. This amounts to the fact that the tension/energy densities on the brane are only those induced from the energy and dilaton in the bulk. The effect of the Maxwell fields manifests itself on the brane through the magnetic charge.

Our DW universe is a three-dimensional Friedmann–Robertson–Walker (FRW) universe with a single metric function (= the radius of the universe) depending on its proper time \[7\]. The boundary conditions that connect bulk to the DW are provided by the Darmois–Israel conditions \[8\] apt for the problem. These conditions determine the energy–momentum on the DW universe together with its dynamics. An interesting aspect of the solution that we present in this paper is that on the DW our FRW universe attains both lower and upper bounces. This particular point provides our main motivation for this study. The occurrence of the double Liouville-type potentials in our model made this possible for us. From the boundary conditions, the induced potential on the DW and the radius $a(\tau)$ of the DW universe satisfy an equation of a particle with zero total energy (i.e. $(\frac{da}{d\tau})^2 + U(a) = 0$). Such a motion is physical only provided the potential $U(a)$ satisfies $U(a) < 0$, for all $a(\tau)$. This is investigated thoroughly, and we observed that our DW universe admits both minimum and maximum bounces. Among things the absence of a DW universe (i.e. $U > 0$) is also a possibility.

In section 2, we present our model Lagrangian and obtain a general class of solutions to it. In section 3, we analyze the induced potential on the DW. In conclusion, section 4 summarizes our results.

2. Our model in $d = 4$ and its solution

Our action of Einstein–Maxwell-dilaton (EMD) gravity is written as \[4–6, 9, 10\]

$$S = \frac{1}{\kappa^2} \int_M d^4x \sqrt{-g} \left(\frac{1}{2} R - \frac{1}{2} \partial_\mu \phi \partial^\mu \phi - V(\phi) - \frac{1}{2} W(\phi) F^2 \right) + \frac{1}{\kappa^2} \int_\Sigma d^3x \sqrt{-h} \{K\}$$

$$+ \int_\Sigma d^3x \sqrt{-h} L_{DW},$$

(1)
where \(F = F_{\mu \nu} \) is the Maxwell invariant, \(V(\phi) = V_1 e^{\beta \phi} + V_2 e^{\beta \phi} \), \(W(\phi) = \lambda_1 e^{-2\gamma \phi} + \lambda_2 e^{-2\gamma \phi} \) and \(\phi = \phi(r) \) is the dilaton scalar potential. Herein, \(\gamma, \beta, V_1 \) and \(\lambda \) are some constants to be identified later, while \(L_{DW} = -\hat{V}(\phi) = -V_0 e^{\phi} \) (\(\epsilon = \text{const.} \)) is the induced potential on the DW. \(\{ k \} \) is the trace of the extrinsic curvature tensor \(K_{ij} \) of DW with the induced metric \(h_{ij} \) \((h = |\gamma|_j) \). (Latin indices run over the DW coordinates, while Greek indices refer to the bulk’s coordinates. Also in the following, we use units in which \(\kappa^2 = 8\pi G = 1 \).

The four-dimensional bulk metric is chosen to be

\[
\text{d}s^2 = -f(r)\text{d}t^2 + \frac{1}{f(r)} \text{d}r^2 + H(r)^2 \text{d}\Omega_k^2,
\]

where \(f(r) \) and \(H(r) \) are functions to be found and \(\text{d}\Omega_k^2 \) is the line element on a two-dimensional space of constant curvature with \(k \in \{-1, 0, +1\} \), i.e.

\[
\text{d}\Omega_1^2 = \begin{cases}
\text{d}\theta^2 + \sin^2 \theta \text{ d}\varphi^2, & k = 1 \\
\text{d}\theta^2 + \text{d}\varphi^2, & k = 0 \\
\text{d}\theta^2 + \sinh^2 \theta \text{ d}\varphi^2, & k = -1.
\end{cases}
\]

The field equations inside the bulk follow from the variational principles as

\[
R^\nu_\mu = \partial_\nu \phi \partial^\nu \phi + V(\phi)\delta^\nu_\mu + W(\phi)T^\nu_\mu,
\]

\[
\nabla^2 \phi = V'(\phi) + \frac{1}{2} W'(\phi) F,
\]

\[
\left(\frac{d}{d\phi} \right) = V(\phi)
\]

in which

\[
T^\nu_\mu = 2F_{\mu \nu} F^\nu_\mu - \frac{1}{2} F^\nu_\nu
\]

is the energy–momentum tensor of our Maxwell 2-form \(F = \frac{1}{2} F_{\mu \nu} \text{d}x^\mu \wedge \text{d}x^\nu \). Variation with respect to the gauge potential 1-form \(A \) yields the Maxwell equation

\[
d(W(\phi)^* F) = 0,
\]

in which \(d(\cdot) \) is the exterior derivative and the Hodge star * means duality. As we commented before, \(\phi \) is a function of \(r \) and \(W(\phi) = \lambda_1 e^{-2\gamma \phi} + \lambda_2 e^{-2\gamma \phi} \) is the double Liouville function. This means that although an electric field ansatz that makes the Maxwell equation is complicated enough for an exact solution, a pure magnetic ansatz easily satisfies the Maxwell equation. Therefore, we prefer to use a magnetic potential 1-form with a magnetic charge \(P \) which reads as (this is also another feature of our work in comparison with Maity’s work in [5], while in the case of Yazadjiev [6] both electric and magnetic fields are used)

\[
A = \begin{cases}
-P \cos \theta \text{ d}\varphi, & k = 1 \\
P \text{ d}\varphi, & k = 0 \\
P \cosh \theta \text{ d}\varphi, & k = -1.
\end{cases}
\]

The field 2-form becomes

\[
F = \begin{cases}
P \sin \theta \text{ d}\theta \wedge \text{ d}\varphi, & k = 1 \\
P \text{ d}\theta \wedge \text{ d}\varphi, & k = 0 \\
P \sinh \theta \text{ d}\theta \wedge \text{ d}\varphi, & k = -1.
\end{cases}
\]

where the \(*F \) is substituted into equation (7) and it is easily satisfied, which justifies at the same time our choice of a pure magnetic gauge potential. For the case of \(k = 1 \), the magnetic charge \(p \) is defined as

\[
p = \frac{1}{4\pi} \oint_{S^2} *F = P.
\]
where S^2 is the two-dimensional sphere, while for the cases $k = 0, -1$ the topological charge takes the form $p = \frac{P_0}{2\pi}$, in which ω is the area of the corresponding 2-surface. Based on our choice of the magnetic field, one can show that independent of k the Maxwell invariant reads

$$\mathcal{F} = \frac{2p^2}{H(r)^4}$$ \hspace{1cm} (11)$$

and the energy–momentum tensor becomes

$$T^\mu_\nu = \frac{1}{2} \mathcal{F} \, \text{diag} \, [-1, -1, 1, 1].$$ \hspace{1cm} (12)$$

Upon substituting these into the field equations (4) and (5), we obtain the following equations:

$$\frac{1}{2H} [f''H + 2f'H'] = -V + \frac{1}{2} W \mathcal{F},$$ \hspace{1cm} (13)$$

$$\frac{1}{2H} [f''H + 2f'H' + 4fH'''] = -f \phi'^2 - V + \frac{1}{2} W \mathcal{F},$$ \hspace{1cm} (14)$$

$$\frac{1}{H^2} [HH'f' + fH'^2 + fHH'''] - \frac{k}{H^2} = -V - \frac{1}{2} W \mathcal{F},$$ \hspace{1cm} (15)$$

$$\frac{1}{H^2} (H^2 f \phi'') = \partial_\phi V + \frac{1}{2} \partial_\phi W \mathcal{F}.$$ \hspace{1cm} (16)$$

We note that a prime ' implies derivative with respect to r and $\partial_\phi = \frac{\partial}{\partial \phi}$. Before we write the solution of the field equations, we comment that our interest here is in finding an exact, non-asymptotically flat solution which was partially found previously [10]. Whether similar attempts may give a different class of asymptotically flat solution will remain as an open problem.

The general solution for the metric function (after setting $\beta_1 = \alpha \sqrt{2}, \beta_2 = \frac{\sqrt{2}}{2}, \gamma_1 = -\frac{\alpha}{\sqrt{2}}$ and $\gamma_2 = \frac{\sqrt{2}}{2\alpha}$) is expressed by

$$f(r) = \left\{\begin{array}{l}
(1 + \alpha^2)^2 r^2 \frac{\rho_2}{{r^2}^{\frac{1}{1+\alpha^2}}} + \left(\frac{\rho_2}{\alpha} - V_1\right)(\frac{r}{r_0})^{\frac{1}{1+\alpha^2}} - V_1(\frac{r}{r_0})^{\frac{1}{1+\alpha^2}} - 2M(\frac{r}{r_0})^{\frac{3-2\alpha}{1+\alpha^2}}, \quad \alpha^2 - 3 \neq 0
r^2 \sqrt{\frac{\rho_2}{\alpha}} (\frac{r}{r_0})^2 + 4 \left(\frac{\rho_2}{\alpha} - V_2\right) - 4V_1(\frac{r}{r_0}) \ln \left(\frac{r}{r_0}\right) - 32M(\frac{r}{r_0})^{\frac{3}{2}}, \quad \alpha^2 - 3 = 0.
\end{array}\right.$$ \hspace{1cm} (17)$$

Other functions read as

$$H = A \left(\frac{r}{r_0}\right)^{\frac{1}{1+\alpha^2}}, \quad \phi = -\frac{\sqrt{2} \alpha}{1 + \alpha^2} \ln \left(\frac{r}{r_0}\right), \quad V = V_1 \left(\frac{r}{r_0}\right)^{\frac{2\alpha}{1+\alpha^2}} + V_2 \left(\frac{r}{r_0}\right)^{\frac{3}{1+\alpha^2}}.$$ \hspace{1cm} (18)$$

$$W = \lambda_1 \left(\frac{r}{r_0}\right)^{\frac{3\alpha}{1+\alpha^2}} + \lambda_2 \left(\frac{r}{r_0}\right)^{\frac{3}{1+\alpha^2}},$$

where the constant A is related to P by the constraint condition

$$V_2(1 - \alpha^2)A^2 + k \alpha^2 A^2 - \lambda_2 P^2 (1 + \alpha^2) = 0.$$ \hspace{1cm} (19)$$

We also note that in solution (17) M and r_0 are two integration constants. We shall use this general solution, with $k = 1$, in the following section to construct our $(2 + 1)$-dimensional DW. Solution (17) has five model parameters $(\lambda_1, \lambda_2, V_1, V_2$ and $\phi)$ and three free parameters (after considering the constraint (19)) $(P, M$ and $r_0)$ which gives us a large class of black hole (BH) or non-BH solutions. To get closer to the solution, we give some limits which may be
useful in future calculation. First, we consider $0 < \alpha^2 < 1$ and find the asymptotic behavior of the master solution as

$$\lim_{r \to \infty} f \to (1 + \alpha^2)^2 r^2 \left(-\frac{V_1}{(3 - \alpha^2)} \left(\frac{r_0}{r} \right)^{\frac{2\lambda}{1+\alpha^2}} \right) = \text{sgn} (-V_1) \propto, \quad (20)$$

$$\lim_{r \to 0} f \to (1 + \alpha^2)^2 r^2 \left(\frac{P^2 \lambda_1}{A^4 (1 + \alpha^2)} \left(\frac{r_0}{r} \right)^{\frac{2(1+\alpha^2)}{1+\alpha^2}} \right) = \text{sgn} (\lambda_1) \propto, \quad (21)$$

which show that by choosing proper values for V_1 and λ_1 we definitely will obtain BH cases, at least with single horizon. Second, we consider $\alpha^2 = 1$ which in the extremal limits admits

$$\lim_{r \to \infty} f \to 2rr_0 \left[\frac{P^2 \lambda_2}{A^4} - V_2 - V_1 \right] = \text{sgn} \left(\frac{P^2 \lambda_2}{A^4} - V_2 - V_1 \right) \propto, \quad (22)$$

$$\lim_{r \to 0} f \to 2r^2 \left(\frac{P^2 \lambda_1}{A^4} \left(\frac{r_0}{r} \right)^{\frac{1}{1+\alpha^2}} \right) = \text{sgn} (\lambda_1) \propto. \quad (23)$$

The third case is the choice of $\alpha^2 > 1$ which has the limits as

$$\lim_{r \to \infty} f \to - (1 + \alpha^2)^2 r^2 \left(\frac{V_1}{(3 - \alpha^2)} \left(\frac{r_0}{r} \right)^{\frac{2\lambda}{1+\alpha^2}} \right) = \text{sgn} (-V_1) \propto, \quad (26)$$

$$\lim_{r \to \infty} f = \text{sgn} (\lambda_1) \propto, \quad (27)$$

while for $3 < \alpha^2$,

$$\lim_{r \to \infty} f \to - 2M (1 + \alpha^2)^2 r^2 \left(\frac{r_0}{r} \right)^{\frac{1+\alpha^2}{1+\alpha^2}} = \text{sgn} (-2M) \propto, \quad (28)$$

$$\lim_{r \to \infty} f = \text{sgn} (\lambda_1) \propto. \quad (29)$$

In both cases, we have the possibility of choosing proper values for the free parameters to have BH with at least one horizon. It should also be added that to construct a DW in these bulk solutions, we choose the radius of the DW always larger than the possible event horizon. This guarantees that the DW will not face any singularity problem on its domain.

Let us add that previously reported solutions are recovered when some constants of the present model are set to zero, e.g. $\lambda_2 = V_2 = 0$ leads to the type II solution in [4], $\lambda_1 = V_1 = 0$ leads to the type III solution in [4], etc.

After all these asymptotic consideration, we investigate the form of singularities at $r = 0$. To do so, we first set $r_0 = 1$ and obtain the Ricci scalar as

$$R = \begin{cases}
\frac{4\lambda_1}{(1+\alpha^2) V_2 - 4\lambda_2 V_1 + 4\lambda_1 V_2} + \frac{6(\alpha^2 - 2)V_1}{(\alpha^2 - 3) r^{2(1+\alpha^2)}} - \frac{4\alpha^2 M}{(1+\alpha^2)^2} \sqrt{(1+\alpha^2)(1+\alpha^2)} & \alpha^2 \neq 3 \\
\frac{2\lambda_2}{1+\alpha^2} r_0 & 26V_2 \lambda_1 \sqrt{(1+\alpha^2)(1+\alpha^2)} \\
\frac{26V_2 \lambda_1 \sqrt{(1+\alpha^2)(1+\alpha^2)}}{8\lambda_2} + \frac{3\lambda_1 P^2}{5\sqrt{\lambda M}} & \alpha^2 = 3.
\end{cases} \quad (30)$$

It clearly shows that in any possible case the solution is singular at $r = 0$, which for BH cases are screened by horizon(s).
3. Induced potential on the DW and its implications

The three-dimensional DW on the surface Σ in a four-dimensional bulk \mathcal{M} splits the background bulk into the two four-dimensional spacetimes which will be referred to as \mathcal{M}_\pm. Here, \pm is assumed with respect to the DW. Let us look at the master solution (17) and its asymptotic behaviors given by (20)–(29). We set the parameters such that $\lim_{r \to \infty} f(r) = \infty$ and for the case of BH we choose $r_h < r = a$. For the non-BH case we make the choice $0 < r = a$. Upon imposing the constraint

$$- f(a) \left(\frac{dr}{d\tau} \right)^2 + \frac{1}{f(a)} \left(\frac{da}{d\tau} \right)^2 = -1$$

with the DW at $r = a(\tau)$, τ being the proper time with respect to the wall observer, the DW’s line element takes the form

$$ds^2_{\text{DW}} = -d\tau^2 + a(\tau)^2 d\Omega_1^2.$$

This is the standard FRW metric in three dimensions whose only degree of freedom is $a(\tau)$, the cosmic scale factor. Now, we wish to employ the general solution for the field equations (13)–(16) under (11) and metric ansatz (2). We impose now the rules satisfied by the DW as the boundary of \mathcal{M}_\pm. These boundary conditions are the Darmois–Israel conditions which correspond to the Einstein equations on the wall [8]. These conditions on the DW Σ are given by

$$- \left(\langle K^i \rangle - \langle K \rangle \delta^i_j \right) = S^i_j,$$

where the surface energy–momentum tensor S_{ij} is given by [4, 5, 8]

$$S_{ij} = \frac{1}{\sqrt{-h}} \frac{2\delta}{\sqrt{-h} \delta^{ij}} \int d^3x \sqrt{-h} \left(-\hat{V}(\phi) \right).$$

Note that a bracket $\langle \cdot \rangle$ in (33) implies a jump across Σ. The stress–energy tensor reduces to the form

$$S^i_j = -\hat{V}(\phi) \delta^i_j.$$

By employing these expressions through (33) and (34) we find the energy density and surface pressures for generic metric functions $f(r)$ and $H(r)$ with $r = a(\tau)$. The results are given by

$$\sigma = -S^\tau_\tau = -4 \left(\sqrt{f(a) + \dot{a}^2} \frac{H'}{H} \right)$$

$$S^0_0 = S^\phi_\phi = p_\theta = p_\phi = \left(\frac{f' + 2\ddot{a}}{\sqrt{f(a) + \dot{a}^2}} + 2\sqrt{f(a) + \dot{a}^2} \frac{H'}{H} \right)$$

in which a dot ‘.’ and a prime ‘’ mean $\frac{d}{d\tau}$ and $\frac{d}{da}$, respectively. The Einstein equations on Σ accordingly read

$$\sqrt{f(a) + \dot{a}^2} \frac{H'}{H} = -\frac{1}{4} \hat{V}(\phi),$$

$$\frac{f' + 2\ddot{a}}{\sqrt{f(a) + \dot{a}^2}} + 2\sqrt{f(a) + \dot{a}^2} \frac{H'}{H} = -\hat{V}(\phi).$$

We observe first that

$$\frac{f' + 2\ddot{a}}{\sqrt{f(a) + \dot{a}^2}} = \frac{2}{\ddot{a}} \frac{d}{d\tau} \left(\sqrt{f(a) + \dot{a}^2} \right)$$
which after using (38) becomes
\[
\frac{f'}{\sqrt{f(a) + \dot{a}^2}} + 2 \frac{d}{d\tau} \left(-\frac{1}{4} \hat{V}(\phi) \frac{H}{H'} \right) = \frac{d}{da} \left(-\frac{1}{2} \hat{V}(\phi) \frac{H}{H'} \right). \tag{41}
\]
Finally, as a result, (39) and (38) yield
\[
\frac{d}{da} \left(\hat{V}(\phi) \frac{H}{H'} \right) = \hat{V}(\phi). \tag{42}
\]
This equation admits a simple relation between \(H(r)\) and \(\hat{V}(\phi)\) given by
\[
H'(r) = \xi \hat{V}(\phi), \tag{43}
\]
with \(\xi = \text{constant}\). Upon considering this relation, with (38) and (39), they become equivalent and therefore we consider equation (38) alone. Using above with some manipulations, we obtain
\[
\ddot{a} + U(a) = 0, \tag{44}
\]
where
\[
U(a) = f(a) - \frac{H^2}{16 \xi^2}. \tag{45}
\]
Further, equation (43) implies
\[
\xi = \frac{1}{\alpha^2 + 1 V_0 r_0^2}, \tag{46}
\]
and
\[
\hat{V}(\phi) = V_0 e^{\frac{\phi}{\xi}}, (V_0 = \text{const.}). \tag{47}
\]
One can easily show that the following boundary condition for the dilaton is satisfied (modulo equation (38) and with reference to [4] (equation (38))) automatically due to the Israel junction conditions
\[
\frac{\partial \phi}{\partial H} = -\frac{2}{H} \frac{1}{\hat{V}(\phi)} \frac{\partial \hat{V}(\phi)}{\partial \phi}. \tag{48}
\]
At this stage, we consider our solution in two different categories: \(\alpha^2 \neq 1\) and \(\alpha^2 = 1\). The latter is also known as a linear dilaton.

3.1. The solution for \(\alpha^2 \neq 1\)

In the following we consider the wall to be a classical, one-dimensional particle moving with zero total energy in the effective potential \(U(a)\). For this purpose, we employ \(f(a)\) and \(H(a)\) from solutions (17) and (18) and to see the general behavior of the potential \(U(a)\) we rewrite it explicitly as
\[
\begin{align*}
U(a) &= \begin{cases}
(1 + \alpha^2) a^2 & \text{if } \alpha^2 \neq 3, \\
\alpha^2 \sqrt{\alpha^2 + 1} & \text{if } \alpha^2 = 3,
\end{cases} \\
= \begin{cases}
(1 + \alpha^2) a^2 & \text{if } \alpha^2 \neq 3, \\
\alpha^2 \sqrt{\alpha^2 + 1} & \text{if } \alpha^2 = 3,
\end{cases}
\end{align*}
\]
where
\[
\begin{align*}
&\left(1 + \frac{2 a^2}{\alpha^2 (1 + \alpha^2)} \right) \left(1 + \frac{2 a^2}{\alpha^2 (1 + \alpha^2)} \right) \right)^{1/2} - \left(\frac{1}{\sqrt{2 - \alpha^2}} + \frac{1}{\sqrt{2 + \alpha^2}} \right) \left(\frac{\alpha^2}{2} \right)^{1/2} - 2 M \left(\frac{\alpha^2}{2} \right)^{1/2}, & \alpha^2 \neq 3 \\
&\alpha^2 \sqrt{\alpha^2 + 1} (\frac{2}{\alpha^2})^2 + \frac{1}{4} \left(\frac{\alpha^2 + 1}{\alpha^2} - V_2 \right) - 4 V_1 (\frac{e^2}{\alpha^2}) \ln \left(\frac{e^2}{\alpha^2} \right) - (32 M + V_0) (\frac{e^2}{\alpha^2}), & \alpha^2 = 3.
\end{align*}
\tag{49}
\]
At this point, we introduce a new parameter \(\gamma = \frac{1 - \alpha}{1 + \alpha} \) and proceed to analyze the foregoing potential. We set also \(r_0 = 1 \) for convenience so that the metric function and the potential for \(\alpha^2 \neq 3 \) \((\gamma \neq -\frac{1}{2}) \) take the form

\[
\begin{align*}
 f(a) &= \omega_1 a^{1+\gamma} + \omega_2 a^{1-\gamma} + \omega_3 a^{-\gamma} + \omega_4 a^{-1-\gamma} \\
 U(a) &= \tilde{\omega}_1 a^{1+\gamma} + \omega_2 a^{1-\gamma} + \omega_3 a^{-\gamma} + \omega_4 a^{-1-\gamma}
\end{align*}
\]

in which

\[
\begin{align*}
 \omega_1 &= \frac{-2V_1}{(1+2\gamma)(1+\gamma)}, \quad \omega_2 = \frac{(A^2 - 2P^2\lambda_2)}{A^2 \gamma}, \quad \omega_3 = -\frac{8M}{(1+\gamma)^2}, \quad \omega_4 = \frac{2P^2\lambda_1}{A^2(1+\gamma)},
\end{align*}
\]

while

\[
\tilde{\omega}_1 = \omega_1 - \frac{V_0^2}{4(1+\gamma)^2}.
\]

Having the new forms of \(f \) and \(U \), one observes that in the domain of \(a \), for \(U < f \), on general grounds there are many possibilities to be considered. We prefer to consider some cases which are not general but interesting enough analytically.

The first case is to set \(\tilde{\omega}_1 = \omega_2 = 0 \) for which the potential simply becomes

\[
U(a) = a^{-\gamma} \left(\omega_3 + \frac{\omega_4}{a} \right).
\]

Depending on the sign of \(\lambda_1 \), \(M \) and \(V_1 \) different cases may occur which are shown in figure 1. This figure also reveals that the only configurations, in this setting which admit BH, with the bouncing points are those shown in figures 1(B) and (F). In figure 2, we show these cases in a closer form. The bouncing points are visible and both are at

\[
a = \frac{\lambda_1 P^2(1+\gamma)}{4MA^4}.
\]

The other interesting setting, at which \(U(a) \) may admit two bouncing points, is due to \(\tilde{\omega}_1 = 0 \) while \(\omega_2 \neq 0 \). In this case, the potential becomes

\[
U(a) = \frac{1}{a^{1+\gamma}}(\omega_2 a^2 + \omega_3 a + \omega_4)
\]

which clearly depends on the values of the parameters and is shown in figure 3. In this figure, we have introduced

\[
\begin{align*}
 \theta &= \frac{(P^2\lambda_2 - \frac{1}{2}A^2)}{A^4 \gamma}, \quad \lambda_1^{(c)} = \left| \frac{40A^4M^2}{(1+\gamma)^3 Q^2} \right|
\end{align*}
\]

and

\[
V_1 = \frac{- (1+2\gamma)V_0^2}{1+\gamma}.
\]

Let us add that upon setting the latter equality, \(V_0^2 \) has no contribution in the general form of \(U(a) \), but it still changes the form of the metric function. This is the reason that figures 3(B) and (C) (also 3(D), (E) and (F)) differ, although the settings are the same. In fact, in these figures \(V_0^2 \) is not the same.

3.2. The linear dilaton case \(\alpha = 1 \) \((\gamma = 0) \)

In the case of linear dilaton with \(\alpha = 1 \) \((\gamma = 0) \), the form of the solution is given by

\[
f(r) = 2r_0^2 \left[\frac{P^2\lambda_1}{A^4} \left(\frac{t_0}{r} \right) + \left(\frac{1}{2A^2} - V_2 - V_1 \right) \left(\frac{r}{r_0} \right) - 4M \right].
\]
Figure 1. Diverse plots for different sets of parameters λ_1, M and γ. These range from corresponding BH states (1(A), (B), (C), (E) and (F)) to non-BH states (1(D), (G) and (H)) in the bulk. The cases for $U(a) > 0$ (1(D), (H)) do not allow the formation of DW universes at all. Plots (1(B) and (F)) show explicit upper bounces, whereas in (1(A), (D), (E) and (G)) the DW universe has infinite extension. It should also be added that cases such as $f(a) < 0$ (i.e. 1(E) outside the horizon and 1(G) everywhere) do not correspond to stationary spacetimes rather relate to cosmology.

together with

\[H^2 = A^2 \left(\frac{r}{r_0} \right), \quad \phi = -\frac{\sqrt{2}}{2} \ln \left(\frac{r}{r_0} \right), \quad V = (V_1 + V_2) \left(\frac{r_0}{r} \right), \]

\[W = \lambda_1 \left(\frac{r_0}{r} \right) + \lambda_2 \left(\frac{r}{r_0} \right). \]
Figure 2. With specific parameters we magnify two cases that admit upper bounces induced from the BH solutions. Such a bounce enforces the universe to contract anew. Both 2(a) and (b) have similar behavior, although the dilaton parameter differs much.

Figure 3. A variety of possibilities parameterized by M, θ and λ_1 versus $\lambda_1^{(c)}$, (for definitions, see equation (56) in the text). Depending on the sign of these parameters, we display 12 different cases revealing the available richness of our DW universe. The bouncing from below (3(B)) and above (3(A)) or both (3(D)) are explicitly shown. Plots 3(C), (J) and (L) are clearly non-stationary.

Herein we used the condition given in equation (19) which in the case of $k = 1$ and $\alpha = 1$ states $2P^2\lambda_2 = A^2$. The DW’s potential, therefore, reads

$$U (a) = \frac{1}{a} \left[\left(\frac{1}{A^2} - 2 (V_2 + V_1) - \frac{1}{4} V_0^2 \right) a^2 - 8Ma + \frac{2P^2\lambda_1}{A^4} \right].$$

where r_0 is set to 1. Here also analytically one can observe that if

$$\frac{P^2\lambda_1}{8A^4} \left(\frac{1}{A^2} - 2 (V_2 + V_1) - \frac{1}{4} V_0^2 \right) < M^2 < \frac{P^2\lambda_1}{8A^4} \left(\frac{1}{A^2} - 2 (V_2 + V_1) \right)$$

(61)
Figure 4. Various plots for linear dilaton case γ = 0 (or α² = 1). Plots 4(A) and (B) are both for non-BH cases and since U(a) > 0 they do not yield dynamic DW universes. Plot 4(C) has the double bounces but does not correspond to a BH. Plot 4(D) corresponds to an extremal BH which admits an upper bounce.

and

$$0 < \frac{1}{A^2} - 2 (V_2 + V_1) - \frac{1}{4} V_0^2, \quad 0 < \lambda_1,$$

then there would be two (i.e. both maximum and minimum) bouncing points. Also if

$$\frac{P^2 \lambda_1}{8A^4} \left(\frac{1}{A^2} - 2 (V_2 + V_1) - \frac{1}{4} V_0^2 \right) \geq M^2$$

with (62), then there would be no dynamical DW universe possible (see figure 4) since \(U(a) \geq 0\). Of course, there would be all other cases also possible which one can easily find from the closed form of the potential \(U(a)\).

With the exception of the cases we investigated closely here many other cases behave similarly, but since they should be treated numerically we do not study them here. For example, the case of \(\alpha^2 = 3 (\gamma = -\frac{1}{2})\) can be studied only numerically which we have ignored here.

4. Conclusion

For a pure magnetic field in \(d = 4\) bulk spacetime, we obtain a large class of solutions in EMD theory. This class generalizes all previously known pure magnetic-type solutions which are obtained in particular limits. The element that brought new extensions is to take double
Liouville-type coupling with dilaton in the action. The junction conditions induce potential on
our DW which is adopted to be a three-dimensional FRW universe. An investigation and plot of
the intricate, induced potential reveals the possible existence of a second (maximum) bounce
in our model. This implies an oscillatory universe on the DW between two (minimum and
maximum) limits. In order to go beyond these bounds and give a big crunch/infinite expansion,
the DW universe must naturally undergo quantum tunneling processes. We recall that in the
Einstein–Gauss–Bonnet bulk in five dimensions, DWs did not have a second bounce [11]. A
possible extension of our model presented in this paper may be to consider electromagnetic
action, study the Maxwell equations and find the induced charge on the DW [12]. Let us add
that the absence of any DW universe (i.e. for the potential $U(a) > 0$) at all is another extreme
possibility. Finally, it would be much desirable to see the present detailed analysis of this
paper extended to higher dimensions. The difficulty originates from the fact that the general
solutions (17)–(18) obtained in $d = 4$ do not extrapolate to $d > 4$ easily.

Acknowledgments

We are much indebted to the anonymous referees for constructive criticism and pointing out
numerous errors in the original version of the paper.

References

[1] Vilenkin A 1983 Phys. Lett. B 133 177
 Ipser J and Sikivie P 1984 Phys. Rev. D 30 712
 Lukas A, Ovrut B A, Stelle K S and Waldram D 1999 Phys. Rev. D 59 086001
 Rubakov V A and Shaposhnikov M E 1983 Phys. Lett. B 125 136
 Visser M 1985 Phys. Lett. B 159 22
 Gibbons G W and Wiltshire D L 1987 Nucl. Phys. B 287 717
 Dvali G and Shifman M 1997 Phys. Lett. B 396 64
 Kibble T W B 1976 J. Phys. A: Math. Gen. 9 1387
 Kibble T W B 1980 Phys. Rep. 67 183
 Vilenkin A 1985 Phys. Rep. 121 263

[2] Cai R G, Ji J Y and Myung Y S 1997 Nucl. Phys. B 495 339
 Cai R G and Zhang Y Z 2001 Phys. Rev. D 64 104015
 Charmousis C 2002 Class. Quantum Grav. 19 83
 Cai R G and Wang A 2004 Phys. Rev. D 70 084042
 Clement G and Leygnac C 2004 Phys. Rev. D 70 084018
 Charmousis C, Gouteraux B and Soda J 2009 Phys. Rev. D 80 024028
 Marty D 2008 Phys. Rev. D 78 084023
 Mann R B and Oht J J 2006 Phys. Rev. D 74 124016
 Ozzer M and Taha M O 1992 Phys. Rev. D 45 997
 Easther R 1993 Class. Quantum Grav. 10 2203
 Sheykhi A, Riazi N and Mahzoon M H 2006 Phys. Rev. D 74 044025
 Sheykhi A and Riazi N 2007 Phys. Rev. D 75 024021
 Sheykhi A, Dehghani M H and Hendi S H 2010 Phys. Rev. D 81 084040

[3] Chan K C K, Horne J H and Mann R B 1995 Nucl. Phys. B 447 441
 Cai R G, Ji J Y and Soh K S 1998 Phys. Rev. D 57 6547
 Clement G, Galtsov D and Leygnac C 2003 Phys. Rev. D 67 024012
 Sheykhi A, Dehghani M H and Riazi N 2007 Phys. Rev. D 75 044020
 Sheykhi A, Dehghani M H, Riazi N and Pakravan J 2006 Phys. Rev. D 74 084016
 Sheykhi A and Riazi N 2007 Phys. Rev. D 75 024021
 Sheykhi A 2007 Phys. Rev. D 76 124025
 Sheykhi A 2008 Phys. Lett. B 662 7
 Dehghani M H, Pakravan J and Hendi S H 2006 Phys. Rev. D 74 104014
Dehghani M H, Hendi S H, Sheykhi A and Sedehi H R 2007 J. Cosmol. Astropart. Phys. JCAP02(2007)020
Hendi S H 2008 J. Math. Phys., NY 49 082501

[4] Chamblin H A and Reall H S 1999 Nucl. Phys. B 562 133
[5] Maity D 2008 Phys. Rev. D 78 084008
[6] Yazadjiev S S 2005 Class. Quantum Grav. 22 3875
[7] Nihei T 1999 Phys. Lett. B 465 81

Csaki C, Graesser M, Kolda C and Terning J 1999 Phys. Lett. B 462 34
Binetruy P, Deffayet C, Ellwanger U and Langlois D 2000 Phys. Lett. B 477 285
Ida D 2000 J. High Energy Phys. JHEP09(2000)014
Bercelo C and Visser M 2000 Phys. Lett. B 482 183

Anchordoqui L, Nunez C and Olsen K 2000 J. High Energy Phys. JHEP10(2000)050
Bowcock P, Charmousis C and Gregory R 2000 Class. Quantum Grav. 17 4745
Csaki C, Erlich J and Grojean C 2001 Nucl. Phys. B 604 312
Coule D H 2001 Class. Quantum Grav. 18 4265

Gregory J P and Padilla A 2002 Class. Quantum Grav. 19 4071

[8] Darmois G 1927 Mémoir des Sciences Mathématiques, Fascicule XXV (Paris: Gauthier-Villars) chapter 5

Israel W 1966 Nuovo Cimento B 44 1
Musgrave P and Lake K 1996 Class. Quantum Grav. 13 1885

[9] Gibbons G W and Hawking S W 1977 Phys. Rev. D 15 2752

[10] Mazharimousavi S H, Halilsoy M, Sakalli I and Gurtug O 2010 Class. Quantum Grav. 27 105005

[11] Mazharimousavi S H and Halilsoy M 2010 Phys Rev. D 82 087502

[12] Lee B H, Lee W and Minamitsuji M 2009 Phys. Lett. B 679 160

Mazharimousavi S H and Halilsoy M 2011 Phys. Lett. B 697 497