Dynamics of tungro disease and its vector population on intercropping of rice varieties

R Apriyani, A Rosmana and B Patandjengi
Plant Pests and Diseases Department, Faculty of Agriculture, Hasanuddin University Makassar 90245 Indonesia
E-mail: riskiapriyani15@gmail.com

Abstract. Tungro is one of the major diseases has ability reduce the yield potential of rice. The disease was caused by *rice tungro baciliform virus* (RTBV) and *rice tungro spherical virus* (RTSV). Both of virus only transmitted by green leafhoppers, *Nephotettix virescens* in a semi-persistent manner. The research purpose is to control tungro disease and its vectors as well as the diversity of natural enemies by applying the intercropping method of several rice plant varieties. The optimum of disease incidence in 11 weeks observation on the variety of Ciherang, Inpari 32, Inpari 36, and IR 64 planted in intercropping was 7.8%, 7.3%, 3.8%, and 6.3%. Whereas, the incidence on these respective variety planted in monoculture was 9.8%, 8.8%, 4.3%, and 8.5%. Then, the optimum of *N. virescens* population per clump on rice variety with intercropping in the same time of observation was 4.8, 2.3, 1.5, and 4, and on variety with monoculture was 6.5, 4.5, 3.3, and 4, respectively. Moreover, the population of insect predators tended to be higher on variety with intercropping than on rice variety with monoculture. These data indicated that rice planted with variety intercropping was related to the reduction of tungro incidence and its vector and also the increase of insect predators. Therefore, the intercropping of variety could used as one of control method against rice pests and diseases.

1. Introduction
Tungro is the one crucial disease in rice, caused by two forms of viruses: *rice tungro baciliform virus* (RTBV) and *rice tungro spherical virus* (RTSV) [1]. The disease is transferred by green leafhoppers (*Nephotettix virescens* Dist.) (Homoptera: Cicadellidae) in a semipersistent manner after acquiring the virus from an infected plant. In the field, the tungro endemic is influenced by several factors such as availability of inoculum sources, varieties and cropping patterns, physical environmental conditions (temperature and rainfall), biology (the presence of natural enemies), cultivation practices, the occurrence of vector species and populations [7-9]. Among these factors, the last is the most important.

Green leafhopper, *N. virescens* is the most dominant rice disease vector and has the highest transmission efficiency [2-4]. This efficiency can reach 81% in endemic areas and around 52% in non-endemic areas [5,6], especially when the insect acquire the virus from young plants [10,11]. The vector population fluctuation affects of tungro disease if the source of virus inoculum is already in the field [12]. The presence 30–40% of the inoculum sources in the rice plant, accompanied by an increase in the vector population, causing a high incidence of tungro [13]. Furthermore, the development of subsequent infestation is determined by the source of the inoculum in the plant and the population density of the first generation vector [14].
Control of tungro disease has been carried out with various efforts. This control include effective, economical and environmental friendly such as using of resistant varieties [4,15], biological control by using natural enemies [16], resistant variety [17] and technical culture such as Legowo system and varieties intercropping [18]. Varieties intercropping plays a role in limiting the vector distribution [19]. In addition, the intercropping would reduce the use of pesticides, increase natural enemies, and obtain high and stable production yields. The research purpose is to apply rice varieties intercropping to control tungro disease. In this research, we observed fluctuation of tungro incidence, insect vector, and insect predator.

2. Material and methods

The research was conducted in Aka-Akae village, Panca Rijang district, Sidenreng Rappang Regency, South Sulawesi from February 2020 to April 2020. This research was designed in completely randomized design with four treatments and each treatment repeated four times. Treatments consisted of rice varieties having different in their resistance to tungro and green leafhoppers: Ciherang, Inpari 32, Inpari 36, and IR 64. The plantation was divided into two blocks, one block was intercropping and other block was monoculture and each block have area of 12 m x 11 m. The intercropping block was devide into four plots where each plot consisting of four sub-plots as replication. Each replication consisting of two rows of crops representing one variety. The monoculture block was divided into 16 plots where four plots represent one variety. The distance between two block was 4 m.

Rice plantation was planted using Legowo 2:1 system. Fertilization was carried out three times The first was seven days after planting using 75 kg of urea, 45 kg of Phonska, and 45 kg KCl. The second was 21 days after planting by 25 kg of urea and 25 kg KCl. The last was 49 days after planting by 25 kg of urea. Plant maintenance was carried out by regulating the availability of water, weeding and without pesticides application.

Observation of disease incidence was carried out by observing clumps of rice plants showing symptom and calculated using formula [20]:

\[IP = \frac{n(1)+n(3)+n(5)+n(7)+n(9)}{tn} \]

- IP = tungro disease index
- N = plants showing tungro with a specific symptoms score
- tn = the total of plants observed

Score	Symptoms (%)	Description
1	0	no symptoms
3	1 - 10	dwarf symptoms without leaf yellowing
5	11 – 30	dwarf symptoms and not yellow
7	31 – 50	dwarf symptoms and not yellow
9	≥ 10	Stunted by stunts and oranges or die

The existence of green planthopper population and predators was determined by constant observation of the rice plant. The arthropods including, green leafhoppers and predators, were captured using vacuum pump. After the rice clumps are covered by transparent plastic, these arthropods were sucked and collected to identify and count in the laboratory. T-test was used to determine the significant difference of tungro disease, green leafhopper and predator densities between each rice variety in intercropping and monoculture.
3. Results and Discussion
Rice plants infected by tungro viruses present morphological characteristics such as dwarf, orange, low number of clumps, and many empty panicles [21]. Simultaneously, its physiological signs show a decrease in the amount of chlorophyll and hormones, the reduction of photosynthesis rates, and an increase in the respiratory rate followed by the rise in the oxidase enzyme.

In the field, until two weeks after planting, no symptoms of tungro disease was observed both on monoculture and intercropping plots. Symptoms appear such as dwarf plants and lower clumps number compared to the surrounding plants, although the color of the leaves still does not show a change to orange like tungro symptoms. Stunted symptoms and a reduction in rice tillers were seen three until four weeks after planting. The disease incidence increase with increasing age of the rice plants. According to [22], the tungro infestation was determined by several factors such as the available source of inoculum and the degree of planted varieties’ resistance. The high virus source during the vegetative phase of the plant empirically cause high tungro transmission. The tungro incidence progressing from one week until eleven weeks after planting on rice varieties Ciherang, Inpari 32, Inpari 36, and IR 64 was presented in figure 1.

![Figure 1](image-url)

Figure 1. The development incidence of tungro disease in rice varieties: Ciherang (a), Inpari 32 (b), Inpari 36 (c) and IR 64 (d) planted with intercropping varieties and monoculture.

Optimum of disease incidence in all varieties was reached at seven days, except for Inpari 32 was reached at eight weeks after planting. In this phase the disease incidence on Ciherang, Inpari 32, Inpari 38 and IR 64 was 7.8%, 7.3%, 3.8%, and 6.3%. While with monoculture was 9.8%, 8.8%, 4.3% and 8.5%, respectively. Therefore, the incidence of disease in monoculture was higher than in intercropping of varieties. The susceptibility variation of rice varieties into tungro disease depend on the number of resistance genes it contains [3,4]. The disease’s level of damage is affected, beside by rice variety, also by virus strain, plant age, single and multiple infection, and growth environment [23]. Intercropping of rice varieties would influence virus infection and growth environment that can reduce the tungro incidence.

Intercropping also affected the dynamics of green leafhoppers (N. virescens) population. Nymph and adult stages of this vector were not present at first week after planting in all varieties with intercropping and monoculture. This condition was normally related to the absence of eggs and nymph on young plant [4]. Therefore there was not migration from other plantations to the nursery. However, their presence began to appear at three weeks after planting where their population was one insect/clumps in intercropping varieties and 2.75 insects/clumps in monoculture. The population of green leafhoppers was still low at the beginning of planting. They were still in the stage of population formation by finding hosts and adjusting to new environments [24]. After finding a suitable food source, the green leafhoppers population start to grow, in the following week increasing their
population. The dynamics of green leafhoppers at one week until eleven weeks after planting on Ciherang (a), Inpari 32 (b), Inpari 36 (c) and IR 64 (d) varieties was shown in figure 2.

Figure 2. The averages population density of green leafhoppers (GLH, *N. virescens*) on rice varieties: Ciherang (a), Inpari 32 (b), Inpari 36 (c) dan IR 64 (d) planted with in intercropping varieties and monoculture.

The optimum green planthopper population was found five weeks after planting. This population on Ciherang, Inpari 32, Inpari 38 and IR 64 varieties in intercropping was 4.8 GLH/clump, 2.3 GLH/clump, 1.5 GLH/clump, and 4 GLH/clump. While in monoculture was 6.5 GLH/clump, 4.5 GLH/clump, 3.3 GLH/clump, and 4.3 GLH/clump, respectively. Therefore, the intercropping of rice varieties reduced the population of green leafhopper population. It is likely that the presence of different varieties in the same area limits the vectors movement, and consequently reducing the tungro incidence.

Figure 3 The development of predators from one week until eleven weeks after planting on Ciherang, Inpari 32, Inpari 36 and IR 64 varieties. By comparing to the monoculture, the total population of predators in eleven weeks in intercropping varieties was higher. Their optimum on each variety was at five weeks, six weeks, six week, and eight weeks, respectively. In intercropping, the total was 36, 35, 40 and 28 predators, while in the monoculture was 34, 26, 21, 30 predators per clumps, respectively. Dominant predators in two culture systems were lady beetle *Menochilus sexmaculatus* (Coleoptera: Coccinellidae) and dragonfly *Agriocnemis pygmaea* (Odonata: Coenagrionidae). The others were round spider *Araneus inustus* (Araneae: Araneidae), sharp-eyed spider *Oxyopes javanus* (Araneae: Oxyopidae) and long-legged spider *Tetragnatha maxillosa* (Araneae: Tetragnathidae) [25-28]. Coccinellids is a common predator insect in upland rainfed rice ecosystem in the third trophic of ecology hierarchy [19, 28]. These predators are effective in controlling green leafhoppers on rice field [29-31].
In general, the predator population fluctuations did not follow the pattern of the green leafhoppers development in each variety. The effectiveness of predators in controlling the green planthopper population measured based on its predatory degree. The ideal life of natural enemies when their activities and population number increase along the prey population. The number of prey eaten by predator showed successful their control of the population and result of predation activities [25]. At four and five weeks after planting, predators presence increased significantly because they were supported by the increase GLH population in nymph and adult stages. Predation will increase when prey is abundant; consequently, predation on certain prey types will be disturbed when sufficient alternative prey is available [26].

The system of crop diversity management by intercropping rice of traditional and hybrid rice varieties provides an effective way to control rice disease, increase yields, and reduce fertilizer requirements [32,33]. In this study, four rice varieties’ intercropping can reduce tungro disease and GLH population and increase natural enemies population. It is likely that with the presence of different varieties in one area, besides increasing natural enemies that can play an important role in the management of GLH, the movement of GLH is limited. Therefore, the role of GLH in transmitting of tungro virus is reduced and consequently less incidence by the disease in intercropping varieties compared to monoculture.

4. Conclusions
The incidence of tungro disease was less prevalent in four varieties of intercropping consisted of Cihera 32, Inpari 38 and IR 64 if it is compared with the monoculture of each variety. The intercropping reduced the population of green leafhopper vector (N. virescens) and the increased the predators in line with this less stringency. Therefore, controlling tungro disease and its vector can potentially use the application of rice varieties intercropping.

References
[1] Hibino H, Roechan and Sudarisman S 1978 Association of two types of viruses particles with penyakit habang (tungro disease) of rice in Indonesia. Phytopathology 68 1412–1416
[2] Widiarta I N 2005 Wereng hijau (Nephotettix virescens Distant): Dinamika populasi dan strategi pengendaliannya sebagai vektor penyakit tungro. J. Litbang Pertanian 24(3) 85–92
[3] Siwi S S and Suzuki Y 1991 The Green leafhopper (Nephotettix spp.): vector of rice tungro virus disease in Southeast Asia, particularly in Indonesia and its management. Indonesian
di dengan beberapa cara tanam erpadu Secara Alamiah, Konservasi Musuh Alami dan Varietas Produksi Padi mental. Science City of Munoz, Nueva

807 (2021) 022110 doi:10.1088/1755-1315/807/2/022110

Agricultural Research and Development Journal 13 8–15
[4] Senoqi S dan Praptana R H 2015 Population development of green leafhoppers and their predators in several rice varieties Jurnal Perlindungan Tanaman Indonesia 19(1) 65–72
[5] Azzam O, and Chancellor T C B 2002 The biology, epidemiology, and management of rice tungro disease Plant Disease 86 88–100
[6] Supriyadi, Untung K, Trisyono A and Yuwono T 2004 Population characteristics of the green leafhopper, Nephotettix virescens (Hemiptera: Cicadellidae) in the endemic and non endemic areas of rice tungro disease Jurnal Perlindungan Tanaman Indonesia 10(2) 112–120
[7] Suzuki Y, Astika I G N, Widrawan I K R, Gede I G N, Raga I N and Soeroto 1992 Rice tungro disease transmitted by green leafhoppers: its epidemiology and forecasting technology Japan Agricultural Research Quarterly 26 98–104
[8] Holt J, Chancellor T C B, Reynolds D R and Tiongco E R 1996 Risk assessment for rice planthopper and tungro disease outbreaks Crop Protection 15(4) 359–368
[9] Truong H X and Tiongco E R 2008 Integral Factors in Tungro Disease Development p 30–66 In Tiongco E R, Angeles E R and Sebastian LS (Eds.), Rice Tungro Virus Disease: a Paradigm in Disease Management Science City of Munoz, Nueva Ecija: Philippine Rice Research Institute and Honda Research Institute Japan Co. Ltd.
[10] Chancellor T C B, Cook A G and Heong K L 1996 The within-field dynamics of rice tungro disease in relation to the abundance of its major leafhopper vectors Crop Protection 15 439–449
[11] Said M Y, Widiarta I N dan Muhsin M 2007 Petunjuk Teknis Pengendalian Pengelii Terpadu Penyakit Tungro. Pusat Penelitian dan Pengembangan Tanaman Pangan Badan Penelitian dan Pengembangan Pertanian
[12] Senoqi W, Praptana R H, Muliadi A, Rosida N dan Komalasari E I 2015 Petunjuk Teknis Pengendalian Pengstro Terpadu Secara Alamiah, Konservasi Musuh Alami dan Varietas Unggul Padi Tahan Tungro Badan Penelitian dan Pengembangan Pertanian Kementerian Pertanian
[13] Raga I N, Murtida W, Tri M P L, Edi S W, dan Oman 2004 Sistem Surveillance Antisipasi Ledakan Penyakit Tungro di Indonesia p 49–59 In Hasanuddin A, Widiarta I N dan Sunihardi (Eds.), Strategi Pengendalian Penyakit Tungro: Status dan Program, Prosiding Seminar Nasional Status Program Penelitian Tungro Mendukung Keberlanjutan Produksi Padi Nasional Makassar 7–8 September 2004
[14] Sumardiyoano Y B, Hartono S, dan Suswanto I 2004 Interaksi RTV dengan Wereng Hijau dan Daur Penyakit Tungro pada Padi p 37–47 In Hasanuddin A, Widiarta I N dan Sunihardi (Eds.) Strategi Pengendalian Penyakit Tungro: Status dan Program, Prosiding Seminar Nasional Status Program Penelitian Tungro Mendukung Keberlanjutan Produksi Padi Nasional Makassar 7–8 September 2004
[15] Cabunagan R C, Tiongco E R and Choi I R 2008 Component Technologies for Management of Rice Tungro Disease p 197–212 In Tiongco E R, Angeles E R, and Sebastian L S (Eds.) Rice Tungro Virus Disease: a Paradigm in Disease Management. Science City of Munoz, Nueva Ecija: Philippine Rice Research Institute and Honda Research Institute Japan Co. Ltd.
[16] Bambaradeniya C N B and Edirisinghe J P 2008 Composition, structure and dynamics of arthropod communities in a rice agro-ecosystem Ceylon Journal of Science (Biological Science) 37 23–48
[17] Amirullah J C, Baharuddin and Kuswinant T 2020 Test of resistance in some of rice varieties to pathogenic bacteria Burkholderia Glumae IOP Conference Series: Earth and Environmental Science 484(1) 012102
[18] Widiarta I N, Kusdiaman D and Hasanuddin A 2003 Pemencaran wereng hijau dan keberadaan tungro pada pertanaman padi dengan beberapa cara tanam Penelitian Pertanian Tanaman Pangan 22 129–133
[19] Vinothkumar B 2013 Diversity of coccinellid predators in upland rainfed rice ecosystem J Biol...
Control 27 184–189

[20] Rapusas H R and Heinrichs E A 1982 Plant age and levels of resistance to green leafhopper, Nephotettix virescens (Distant) and tungro virus in rice varieties. Crop Protection 1(1) 91-98
[21] Praptana R H, and Yasin M 2008 Epidemiologi dan strategi pengendalian penyakit tungro. Iptek Tanaman Pangan 3: 184–204
[22] Widiarta I N 2017 Tungro disease control through the elimination vector role of green leafhopper with environment friendly control AGRIC 29(2) 77-88
[23] Widiarta I N, Kusdianam D and Hasanuddin A 1999 Population dynamics of Nephotettix virescens in two rice planting pattern. Jurnal Perlindungan Tanaman Indonesia 5(1) 42-49
[24] Widiarta I N 1992 Comparative population dynamics of green leafhoppers in paddy fields of the tropis and temperate region Japan Agricultural Research Quarterly 26 115–123
[25] Moreno C R, Lewins S A, and Barbosa P 2010 Influence of relative abundance and taxonomic identity on the effectiveness of generalist predators as biological control agents Biological Control 52 96–103
[26] Kuusk A K and Ekborn B 2010 Lycosid spiders and alternative food: feeding behavior and implications for biological control Biological Control 55 20–26
[27] Arafah dan Sirappa M P 2003 Kajian penggunaan jerami dan pupuk N, P dan K pada lahan sawah irigasi. Balai Penelitian Tanaman Pangan Sulawesi Selatan. J Ilmu Tanah dan Lingkungan 4(1) 15-24
[28] Weber D C and Lundgren J G 2009 Assessing the trophic ecology of the Coccinellidae: their roles as predators, and as prey Biol Control. 51 199–214
[29] Begum MA, Jahan M, Bari MN, Mofazzel Hossain M, and Afsana N 2002 Potentiality of Micraspis discolor (F.) as a biocontrol agent of Nilaparvata lugens (Stal). J Biol Sci. 2 630–632
[30] Rattanapun W 2012 Biology and potentiality in biological control of Micraspis discolor (Fabricius) (Coleoptera: Coccinellidae) Commun Agric Appl Biol Sci. 77(4) 541-548
[31] Straub C S, Finke D L and Snyder W E 2008 Are the conservation of natural enemy biodiversity and biological control compatible goals Biological Control 45 225–237
[32] Zhu Y, Chen H, Fan J, Wang Y, Li Y, Chen J, Fan J, Yang S, Hu L, Leung H, Mew T W, Teng P S, Wang Z, Mundt C C 2000 Genetic diversity and disease control in rice Nature 406 (6797)718–22
[33] Zhu Y, Wang Y, Chen H, Lu B-R 2003 Conserving traditional rice varieties through management of crop diversity. Bio Science 53(2) 158–162