Pathomorphological investigations on the prevalence of contact dermatitis lesions in broiler chickens

Ivan Dineva, Stefan Denev, Ivan Vashin, Dian Kanakov and Nikolina Rusenova

ARTICLE HISTORY
Received 23 March 2017
Accepted 11 February 2019

KEYWORDS
Contact dermatitis; lesions; prevalence; broiler chickens

1. Introduction

The aetiology of contact dermatitis is unclear. The condition is usually encountered in commercial broiler flocks and turkeys (Martland 1984; Allain et al. 2013). It was initially observed and described by McFerran et al. (1983); later, clinical and pathological findings were presented by Greene (Greene et al. 1985). The high prevalence of contact dermatitis among broiler chickens is associated with poor welfare and economic conditions. Losses are mainly attributed to slaughterhouse contamination of carcasses with contact dermatitis lesions (Pattison 1987). An examination of losses recorded between 1984 and 1987 revealed an average tarsometatarsal contact dermatitis prevalence of 21%; in some flocks, this reached 90% (McIlroy et al. 1987; Bruce et al. 1990). Furthermore, skin lesions are considered to be the main point of entry for pathogenic microorganisms, which can cause complications and new lesions of different types – cellulitis, gangrenous dermatitis, osteomyelitis (Dinev, 2009; Crespo and Shivaprasad, 2013; Gornatti-Churria et al. 2017).

Epidemiological surveys linked the increased prevalence of the condition to various production aspects, including increased population density, slaughter at a higher age and bigger male to female ratio in the flock (Bruce et al. 1990). The appearance of contact dermatitis lesions has also been linked to bad litter conditions, particularly when it occurred suddenly or within a short period of time (McIlroy et al. 1987; Bruce et al. 1990; Kaukonen et al. 2017). Lesions similar to those observed in broiler chickens were encountered in turkeys, housed on wet litter (Martland 1984). Recently, an examination of the pain caused by foot pad dermatitis, in the context of turkey poult, noted that the condition may have an adverse effect on mobility and linked it to weight loss (Da Costa et al. 2014; Wynenken et al. 2015). High humidity in poultry facilities was also highlighted as a predisposing factor (Bruce et al. 1990).

From an epidemiological perspective, the factors related to the incidence of contact dermatitis in broiler chickens in the 1980s and the 1990s were analysed and compared using data from large-scale field surveys (McIlroy et al. 1987; Menzies et al. 1998). In a number of studies, contact dermatitis lesions on the breast and tarsometatarsal joint area were suggested as economically relevant (Greene et al. 1985).

The purpose of the present study was to determine the prevalence and severity of contact dermatitis lesions in commercial broiler chicken flocks using pathomorphological research methods.

2. Material and methods

The cases of contact dermatitis in commercial broiler chickens were recorded over a period of one year. Chickens originated...
from one Ross 308 poultry farm located in Bulgaria. The annual production rate was 696,000 broilers. The observations focused on 36 broiler flocks; 24 flocks consisting of 20,000 chickens (during the winter-spring and autumn seasons), and 12 flocks consisting of 18,000 broilers (during the summer). Gender was not taken into account. The mean stocking density was 18.87/1 m² and 17.00/1 m² respectively, depending on the season, and the poultry house area was 1,060 m². During the experimental period, chickens received different rations depending on the fattening stage. The company’s aim was to produce broilers with an average live weight of 2.1–2.2 kg. The same immunophrophylaxis programme was used for broilers and original breeder flocks. The state of the litter, the relative air humidity and the age at which contact dermatitis lesions appeared were all recorded. Straw was used as litter in all cases.

The investigations were performed by a clinical examination (monitoring and registration) of chickens which showed obvious signs of contact dermatitis on their carcasses in the slaughterhouse. The number and the type of contact dermatitis lesions in the different flocks were both determined through meat inspection. All birds were slaughtered at the age of 36–42 days. The gender of chickens with clinical lesions was not recorded. In addition to the number of affected chickens, the localization and content of contact dermatitis was registered. An evaluation system focusing on the lesions’ area and depth after gross examination, similar to the model proposed by Michel et al. (2012), was used.

For the pathological study, 3 samples from the respective lesion type were obtained from each flock where they were observed. For this purpose, pieces of skin and subcutaneous tissue, including parts of the damaged and adjacent intact area, 1–2 cm in diameter, were fixed in 10% neutral formalin, routinely processed and embedded in paraffin. The cuts, approximately 5 μm, were stained with haematoxylin/eosin (H/E).

During the meat inspection of each flock with skin lesions, the results from routine bacteriological examinations for enterobacteria and Gram-positive cocci were taken into consideration, as required by the relevant meat inspection hygienic standards. Statistical analysis was performed using Statistica 6.1 (software). The significance level was set at \(P < 0.01 \).

3. Results

Varying levels of severity of the different types of contact dermatitis lesions were recorded in all broiler flocks in the farm during the study. The distribution of skin lesions, including their frequency and localization, is listed in Table 1. The total number of contact dermatitis lesions was 152,215 (21.87%), with seasonal prevalence during the winter-spring and autumn seasons: 88,932 (12.77%); this can be contrasted with the summer period: 63,283 (9.1%). Lesions on the plantar skin surface of the foot (plantar pododermatitis; PPD) were most frequently encountered – 109,272 (15.7%). The appearance of PPD was usually associated with a rapid or sudden dampening of the litter. Wet litter was found: when the ambient humidity on the premises exceeded 70% (in 8 facilities) as a result of the reduction of ventilation rates in order to save fuel for heating purposes (in 8 facilities); after flooding due to a watering system failure (1 premise); and after using a high-protein content ration (>22%) in the grower stage (6 premises). The incidence of lesions in different flocks ranged from 1% to 31%. In 78,648 (11.3%) of the cases, PPD was detected during the winter-spring and autumn. In 30,624 (4.4%) cases it was recorded during the summer of the one-year experimental period. PPD-specific lesions were detected clinically in broilers aged 21–30 days, regardless of the season.

Clinically, after an inspection of the affected chickens, lesions were noticed after the onset of lameness, impaired locomotion or after periods of lying down. The lesions’ surface was covered with brown-black crusts, which were removed along with profuse faecal mass stuck to them. The extent of the lesions varied from small erosions covered with a brown scab to deep ulcerations affecting the subcutis and underlying tissues. Frequently, erosions and ulcers were surrounded by perifocal inflammatory swelling (Figure 1). In more advanced stages, macerated lesions were detected, and birds were dehydrated.

![Figure 1. Moderate to strong swelling affecting the metatarsal region due to perifocal inflammatory oedema in plantar pododermatitis.](image1)

![Figure 2. Plantar pododermatitis lesions, having undergone maceration. Marked dehydration emerging on tarsometatarsal aspects of legs (arrows) likely to prolonged lying down and inability to reach food and water.](image2)
due to prolonged periods of lying down and the inability to eat or drink (Figure 2).

PPD lesions, detected in the slaughterhouse after the removal of litter and faecal mass tightly stuck to the foot pads, had a diameter of 1–1.5 cm. The depth of the ulcers varied between 1–2 and 5–6 mm; this was determined through transverse cuts. The lesions were distinctly separated from the intact tissue. Most frequently, they appeared as crater-like grooves surrounded by an indented haemorrhagic area (Figure 3).

Breast contact dermatitis lesions affecting the sternal bursa were next in prevalence – 36,888 (5.3%). Most of them – 30,624 (4.4%) – were observed during the summer, and the incidence during the other seasons was five times lower (6,264 or 0.9%). In all instances, the earliest appearance of lesions was in chickens older than 36 days of age in the slaughterhouse, when approximately 50% of the flocks with an average live weight >2 kg were slaughtered.

Breast skin lesions were of various shapes and sizes. In some cases, they were virtually round, 2–3–5–6 cm in diameter, whereas in other cases – strip-like and oblong, 3–4–7–8 cm in length (Figure 4). It should be noted that the breast plumage of these birds was in a poor condition or absent. The skin was covered with litter and faecal mass stuck to it. In cases of ulcerations, serous or haemorrhagic subcutaneous oedema was usually seen after the removal of the skin. Superficial breast muscles were affected only in the most severe cases.

The lowest prevalence of contact dermatitis lesions was observed on tarsometatarsal joints – 6,055 (0.87%). During the winter-spring and the autumn period, their frequency was almost twice higher than their frequency in the summer period: 4,020 (0.57%) vs 2,035 (0.3%). Lesions of this type could be observed in the farm, but in our study they were detected in the slaughterhouse. The lesions in initial stages were outlined on a hyperaemic surface, sometimes bleeding or eroded, with an area of 2–3 cm², and in their major part, in dorsal tarsometatarsal joint areas. In more advanced stages, the affected skin was necrotic, with dirty grey colour (Figure 5).

The extent to which contact dermatitis lesions are observed, as well as the area covered, is presented in Table 2. Superficial lesions (erosions) were predominant for all lesion types. Depending on the affected area, plantar lesions were mostly under 1 cm² (81.3%), whereas those larger than 1 cm² were most prevalent among breast (84.8%) and tarsometatarsal (75.15%) lesions.

During meat inspection in the slaughterhouse, 420 (~9%) out of the 4,685 chickens with deep breast lesions were regarded as inappropriate for human consumption and 1,670 (35.6%) were declared fit for processing after the removal of affected areas.

The routine bacteriological examinations which were performed, as per hygienic standards, did not show any differences between intact chickens and those with contact dermatitis lesions.

Histologically, the studied samples showed alterations depending on the stage of skin lesions development. In the early stage, subepidermal heterophilic infiltration was usually seen. For erosions, in addition to the inflammatory cell infiltration, typical degenerative necrobiotic changes of the superficial epidermal layers were observed. Deep ulcerations were characterized with the simultaneous occurrence of inflammatory degenerative and necrobiotic changes which affected all epidermal layers and penetrated deep into the dermis. In general, degenerative ulceration was differentiated from the adjacent intact tissue via a heterophilic zone (Figure 6).

Seasonal prevalence	Plantar	Breast	Tarsometatarsal	Total number (%)
Autumn-Winter-Spring	78,648 (11.3%)	6,264 (0.9%)	4,020 (0.57%)	88,932 (12.77%)
Summer	30,624 (4.4%)	30,624 (4.4%)	2,035 (0.3%)	63,283 (9.1%)
Total number (%)	109,272 (15.7%)	36,888 (5.3%)	6,055 (0.87%)	152,215 (21.87%)

Table 1. Localization and prevalence of lesions specific for contact dermatitis, *P < 0.01.*
Lesions

Tarsometatarsal 4,810 (79.42%) 1,245 (20.57%) 1,505 (24.85%) 4,550 (75.15) 6,055 (100%)

Breast 32,203 (87.3%) 4,685 (12.7%) 5,607 (15.2%) 31,281 (84.8%) 36,888 (100%)

Plantar 74,850 (68.5%) 34,422 (31.5%) 88,840 (81.3%) 20,432 (18.7%) 109,272 (100%)

Table 2. *Extent and area of observed contact dermatitis lesions, P < 0.01.*

Lesions	Extent	Area			
	Superficial	Deep	Small (<1 cm²)	Large (>1 cm²)	Total number (%)
Plantar	74,850 (68.5%)	34,422 (31.5%)	86,840 (81.3%)	20,432 (18.7%)	109,272 (100%)
Breast	32,203 (87.3%)	4,685 (12.7%)	5,607 (15.2%)	31,281 (84.8%)	36,888 (100%)
Tarsometatarsal	4,810 (79.42%)	1,245 (20.57%)	1,505 (24.8%)	4,550 (75.15%)	6,055 (100%)

The evaluation of lesions' extent and area was made on the basis of gross appearance and changes.
et al. (2002), but the seasonal expression was different. It is acknowledged that the higher population density of birds impedes the locomotion and forces birds to lie down. As a result, the continuous contact with the litter predisposes them to dermatitis, affecting the skin of the breast region (Shanawany 1992). The appearance of breast skin lesions during the summer in our study was also associated with the prolonged period of extremely high ambient temperatures, when the thermal comfort of the birds was disturbed. The hot weather also results in certain factors responsible for dermatitis appearance, such as high air temperature and overheating of the litter in the building.

The results of the performed bacteriological tests allowed us to confirm that the microbial factor had no major role in the etiogenesis of contact dermatitis; rather, it had a complicating effect. The relevance of gender cannot be discussed as the chickens originated from mixed flocks (almost an equal number of male and female birds). Therefore, gender was not taken into account as a factor in our analysis on lesion occurrence.

5. Conclusions

In summary, the results allowed us to conclude that the prevailing type of contact dermatitis in broiler chickens was plantar pododermatitis, which, together with skin lesions in the tarsometatarsal joint region, was highly dependent on the poor state of the litter (increased humidity). Lesions on the breast skin were the least prevalent and mainly associated with population density in the building, particularly in the finisher stage of broiler chicken production.

Acknowledgements

Our sincere thanks to the owners and practicing vets of the Apetit Ltd poultry farm and Evrovarhat poultry slaughterhouse – Stara Zagora, for kindly providing us with data and access for performing the present research.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

Allain V, Huonnica D, Rouinaa M, Michel V. 2013. Prevalence of skin lesions in turkeys at slaughter. Br Poult Sci. 54:33–41.
Allain V, Mirabito L, Arnould C, Colas M, Le Bouquin S, Lupo C, Michel V. 2009. Skin lesions in broiler chickens measured at the slaughterhouse: relationships between lesions and between their prevalence and rearing factors. Br Poult Sci. 50:407–417.
Bassler AW, Arnould C, Butterworth A, Colin L, De Jong IC, Ferrante V, Ferrari P, Haslam S, Wemelsfelder F, Blokhuis HJ. 2013. Potential risk factors associated with contact dermatitis, lameness, negative emotional state, and fear of humans in broiler chicken flocks. Poult Sci. 92:2811–2826. DOI:10.3382/ps.2013-03208.

Bessei W. 2006. Welfare of broilers: a review. Worlds Poult Sci J. 62:455–466.

Bruce DW, Mclroy SG, Goodall EA. 1990. Epidemiology of a contact dermatitis of broilers. Avian Pathol. 19:523–537.

Crespo R, Shivaprasad HL. 2013. Developmental, metabolic, and other non-infectious disorders. In: Swayne DE, Glisson JR, McDougald LR, Nolan LK, Suarez DL, Venugopal N, editors. Diseases of poultry. 13th ed. Ames (IA): Wiley-Blackwell; p. 1257–1258.

Da Costa MJ, Grimes JL, Oviedo-Rondón EO, Barasch I, Evans C, Dalmagro M, Nixon J. 2014. Footpad dermatitis severity on Turkey flocks and correlations with locomotion, litter conditions and body weight at market age. J Appl Poult Res. 23:268–279.

Dawkins MS, Donnelly CA, Jones TA. 2004. Chicken welfare is influenced more by housing conditions than by stocking density. Nat. 427:342–344.

de Jong IC, van Harn J, Gunnink HV, Hindle A, Lourens A. 2012. Footpad dermatitis in Dutch broiler flocks: prevalence and factors of influence. Poult Sci. 91:1569–1574.

Dinev I. 2009. Clinical and morphological investigations on the prevalence of lameness associated with femoral head necrosis in broilers. Br Poult Sci. 50:284–290.

Ekstrand C, Algers B, Svedberg J. 1997. Rearing conditions and foot-pad dermatitis in Swedish broiler chickens. Prev Vet Med. 31:167–174.

Gornatti-Churria CD, Crispo M, Shivaprasad HL, Uzal FA. 2017. Gangrenous dermatitis in chickens and turkeys. J Vet Diagn Invest. 2:188–196.

Greene JA, McCracken RM, Evans RT. 1985. A contact dermatitis of broilers - clinical and pathological findings. Avian Pathol. 14:23–38.

Haslam SM, Brown SN, Wilkins LJ, Kestin SC, Warriss PD, Nicol CJ. 2006. Preliminary study to examine the utility of using foot burn or hock burn to assess aspects of housing conditions for broiler chicken. Br Poult Sci. 47:13–18.

Haslam SM, Knowles TG, Brown SN, Wilkins LJ, Kestin SC, Warriss PD, Nicol CJ. 2007. Factors affecting the prevalence of foot pad dermatitis, hock burn and breast burn in broiler chicken. Br Poult Sci. 48:264–275.

Jensen LS, Martinson R, Shumaier GA. 1970. A foot pad dermatitis inTurkey pouls associated with soybean meal. Poult Sci. 49:76–82.

Kaukonen E, Norring M, Valros A. 2017. Evaluating the effects of bedding materials and elevated platforms on contact dermatitis and plumage cleanliness of commercial broilers and on litter condition in broiler houses. Brit Poultry Sci. 58:480–489.

Kjaer JB, Su G, Nielsen BL, Sorensen P. 2006. Foot pad dermatitis and hock burn in broiler chickens and degree of inheritance. Poult Sci. 85:1342–1348.

Kristensen HH, Perry GC, Prescott NB, Ladewig J, Erbsoll AK, Wathes CM. 2006. Leg health and performance of broiler chickens reared in different light environments. Br Poult Sci. 47:257–263.

Martland MF. 1984. Wet litter as a cause of plantar pododermatitis, leading to foot ulceration and lameness in fattening turkeys. Avian Pathol. 13:241–252.

Martland MF. 1985. Ulcerative dermatitis of broiler chickens: the effects of wet litter. Avian Pathol. 14:353–364.

Marttunen A, Boiletto E, Huonnic D, Pol F. 2002. Risk factors for foot-pad dermatitis in chicken and Turkey broilers in France. Prev Vet Med. 52:213–226.

Mayne RK, Hocking PM, Else RW. 2006. Foot pad dermatitis develops at an early age in commercial turkeys. Br Poult Sci. 47:36–42.

McFerran JB, McNulty MS, McCracken RM, Greene JA. 1983. Enteritis and associated problems. Proceedings of the International Union of Immunological Societies; Disease Prevention and Control in Poultry Production; University of Sydney; Australia.

Mclroy SG, Goodall EA, McMurray CH. 1987. A contact dermatitis of broilers - epidemiological findings. Avian Pathol. 16:93–105.

Menzies FD, Goodall EA, McConaghy DA, Alcorn MJ. 1998. An update on the epidemiology of contact dermatitis in commercial broilers. Avian Pathol. 27:174–180.

Michel V, Prampart E, Mirabito L, Allain V, Arnould C, Huonnic D, Le Bouquin S, Albaric O. 2012. Histologically-validated footpad dermatitis scoring system for use in chicken processing plants. Br Poult Sci. 53:275–281.

Pagazartundu A, Warriss PD. 2006. Measurements of footpad dermatitis in broiler chickens at processing plants. Vet Rec. 158:679–682.

Pattison M. 1987. Problems of diarrhoea and wet litter in meat poultry. In: Harsign W, Cole DJA, editors. Recent advances in animal nutrition. London: Butterworths; p. 27–37.

Shanawany MM. 1992. Influence of litter water-holding capacity on broiler weight and carcass quality. Arch Geflügelkd. 56:177–179.

Sirri F, Minelli G, Folegatti E, Lolli S, Meluzzi A. 2007. Foot dermatitis and productive traits in broiler chickens kept with different stocking densities, litter types and light regimen. Ital J Anim Sci. 6(Suppl. 1):734–736.

Statistica 6.1. https://statistica.software.informer.com/6.1/.

Tullo E, Fontana I, Peña Fernandez A, Vranken E, Norton T, Berckmans D, Guarino M. 2017. Association between environmental predisposing risk factors and leg disorders in broiler chickens. J Anim Sci. 95:1512–1520.

Wynenek CW, Sinclair A, Veldkamp T, Vinco LJ, Hocking PM. 2015. Footpad dermatitis and pain assessment in Turkey pouls using analgesia and objective gait analysis. Br Poult Sci. 5:522–530.