TP53 Germline Mutations are Associated with HR+/HER2+ in BRCA1/2-Negative Early-Onset Breast Cancer in China

Lili Chen
Fujian Medical University Union Hospital

Meng Huang
Fujian Center for Disease Control and Prevention

Minyan Chen
Fujian Medical University Union Hospital

Yuxiang Lin
Fujian Medical University Union Hospital

Jing Li
Fujian Medical University Union Hospital

Wenhui Guo
Fujian Medical University Union Hospital

Chuan Wang
Fujian Medical University Union Hospital

Fangmeng Fu (ffm@fjmu.edu.cn)
Fujian Medical University Union Hospital

Research Article

Keywords: breast cancer, mutation, early-onset, China, Susceptibility Genes

Posted Date: January 5th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1200021/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background: Except for BRCA1/2, there is no data on the relationship between genetic counseling for the range of mutations and early-onset breast cancer populations. We looked for a link between inherited genes and the molecular subtype of early-onset breast cancer.

Methods: We genotyped 1214 individuals with early-onset sporadic breast cancer (age ≤ 40 years) who were BRCA1/2-negative in 3 genes: TP53, PALB2, and RECQL. We focus on the immunohistochemistry characteristics that are unique to each patient.

Results: The mutation rates of TP53, PALB2, and RECQL in 1214 BRCA-negative young individuals were 4/1214 (0.33%), 8/1214 (0.66%), 2/1214 (0.16%), respectively. The fact that the TP53 mutation rate was 3.49% among estrogen receptor-and/or progesterone receptor-positive, human epidermal growth factor receptor 2 (HER-2) amplification patients under the age of 35 (P < 0.001) was particularly noteworthy.

Conclusion: According to the findings, TP53 genetic testing should focus on women under 35 with HR-positive and HER2-positive IDC patients.

What Is New

In China, there has been little research on the incidence and clinical consequences of susceptibility genes variants. We looked at TP53, PALB2, and RECQL germline mutations in early-onset breast cancer and beyond BRCA1/2. HR/HER2 positivity and onset age are most likely linked to TP53.

Introduction

According to literature, pathogenic variants are linked with a significant risk of breast cancer, especially in patients with early-onset breast cancer\(^1\). The median age at breast cancer diagnosis in China is roughly 10 years younger than in the United States. These discrepancies might be due to ethnic groups having distinct environmental and genetic origins. \textit{BRCA1/2} genetic testing is suggested for people with early-stage breast cancer\(^2\). In a growing number of studies, rare, highly penetrant mutations in tumor suppressor genes have been linked to cancer susceptibility syndromes other than \textit{BRCA1/2}. Except for \textit{BRCA1/2} pathogenic variants, early-onset breast cancer individuals may have several intermediate breast cancer risk genes\(^3\), such as \textit{PALB2} (partner and localizer of \textit{BRCA2}), \textit{RECQL} (ATP-dependent DNA helicase Q1), and \textit{TP53}\(^4\).

The National Comprehensive Cancer Network indicated early-onset breast cancer patients in 2011 as a candidate for germline TP53 mutation testing\(^5\). BRCA1/2, ATM, BARD1, BRIP1, CDH1, CHEK2, NBN, PALB2, STK11, RAD51C, RAD51D, and TP53 are also recommended in the 2021 St. Gallen guidelines for patients\(^6\). The handbook explains that the moderate-risk genetic susceptibility genes play a key part in the disease's genesis. Furthermore, according to a recent study, PALB2 is a more prevalent in bilateral breast cancer patients with BRCA1/2 negative\(^7\). The panel covered around 80% of all BRCA1/2, CHEK2,
PALB2, NBN, and RECQL mutation detection in high-risk families with breast cancer, which is a huge variation in frequency\(^8\). TP53, PALB2, RECQL have been identified as high-risk breast cancer gene in certain studies\(^8,9,10\). Previous studies have indicated that HER2-positive breast tumors are more likely to have TP53 germline mutations\(^11,12,13\). Various ethnic groups may have distinct genetic variations. The ratio of BRCA1/2 mutations observed in our prior study is considerably different from that of the Western population, notably in individuals with early-onset breast cancer patients, where it is much lower\(^14\). A few studies have looked at the incidence and clinical significance of these mutant alleles of TP53, CHEK2, RECQL in a large group of Chinese patients with early-onset breast cancer. However, due to the low frequency of these genes, research into the prevalence of germline mutations in additional breast cancer susceptibility genes in early-onset breast cancer series is restricted. As a result, we lack data on the prevalence and range of susceptibility genes.

This study discovered germline mutations in the three cancer susceptibility genes in early-onset breast cancer patients who had previously tested negative for BRCA1 and BRCA2 mutations (including PALB2, TP53 and RECQL). We focused on the early-onset patients, and immunohistochemistry features such as estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2) status to determine the frequency of harmful germline mutations and determine whether early-onset breast cancer should be tested with multiple gene panels.

Results

Frequency and Spectrum of TP53\(\rightarrow\)PALB2\(\rightarrow\)RECQL Germline Mutations

A total of 1214 female breast cancer patients under the age of 40 tested for germline TP53, PALB2, RECQL mutations were found. Four patients (0.33%) tested positive for a TP53 germline mutation (carriers), eight patients (0.66%) tested positive for a PALB2 germline mutation (carriers), and two patients (0.16%) carried the RECQL germline mutation among 1214 young patients diagnosed with breast cancer before the age of 40 years (carriers) (Table 2). The incidence of TP53 mutation was 3.49% among HR+, HER2+ young patients, which was particularly noteworthy (Figure 1).

TP53

TP53 pathogenic germline mutations were discovered in four HER-2 positive individuals. In the Clin Var, four missense variants (none of which were new) were considered pathogenic. The pathogenic mutation did not cause the Li-Fraumeni-like syndrome in the patient. All four mutation variants were missense mutations: c.796G>A, c.848G>A, c.856G>A, c.524G>A. (Table 1a).

| Table 1a | **TP53 truncating mutations identified in China patients with early-onset breast cancer** |
TP53 has three VUSs: c.920-5C>T (splice), c.35C>A(missense), c.751A>T(missense). Clin Var did not mention one of them, the c.751A>T variant, and it is worth mentioning that the patient who had the c.751A>T variant was also HER2 positive.

PALB2

In comparison to Clin Var, our analysis found eight pathogenetic mutations in PALB2, including c.2317dupA, c.2167_2168delAT, c.1056_1057delGA, c.2406_2407delTG, c.1451T>A, c.444delG, c.643G>T, c.2257C>T. Five of the pathogenic mutations were frameshift, whereas three were nonsense. The frameshift mutations c.2317dupA and c.2406_2407delTG were discovered to be new. Only one frameshift mutation (c.1056_1057delGA) was detected in familial breast cancer in our analysis, his variation has been found in breast cancer families from United States, Spanish and Italy. It is, however, the first report on the Chinese population (Table 1b).

Table 1b **PALB2 truncating mutations identified in China patients with early-onset breast cancer**

Mutation	Exon	Protein change	rs number	Mutation effect
c.2317dupA	5	p.Thr773fs	rs587776416	frameshift_variant
c.2167_2168delAT	5	p.Met723fs	rs180177110	frameshift_variant
c.1056_1057delGA	4	p.Lys353fs	rs180177110	frameshift_variant
c.2406_2407delTG	5	p.Cys802fs	rs1555461796	frameshift_variant
c.1451T>A	4	p.Leu484*	rs786203714	stop_gained
c.444delG	4	p.Lys149fs	rs1555461693	stop_gained
c.643G>T	4	p.Glu215*	rs1555461796	stop_gained
c.2257C>T	5	p.Arg753*	rs180177110	stop_gained

VUS mutations account for about 1.4% (87/1213) of the PALB2 gene mutations, as they provide little information about the gene’s function and have no bearing on cancer risk. In our investigation, c.3054G was found in 21 breast cancer patients with a high frequency. This variant has been discovered in several nations. Furthermore, the genes c.98C>A, c.1073C>G, c.1208T>C, c.1712A>G, c.1672A>G, and
c.1490A>G were discovered for the first time in this study and were not previously identified in Clin Var databases.

RECQL

On chromosome 12p12, the RECQL gene is found. There were only two pathogenic variants found: c.796C>T and c.1155_1158delTGTT (Table 1c). Variants of uncertain clinical relevance were found in 4.2% of the samples (51/1213). Ten distinct RECQL gene variants, including c.4G>A, c.430A>G, c.1418A>G, c.1795A>G, c.1849G>A, c.209A>C, c.1363_1365delCGT, c.1418A>G, c.1012G>C, and c.1744G>A, have yet to be referenced in Clin Var. These is no functional evidence for these variants in Clin Var.

Table 1c
RECQL truncating mutations identified in China patients with early-onset breast cancer

Mutation	Exon	Protein change	rs number	Mutation effect
c.796C>T	8	p.Gln266Ter	rs572725483	missense_variant
c.1155_1158delTGTT	11	p.Phe385fs	rs1252404021	frameshift_variant

Mutations and clinical characteristics

None of the familial instances and 0.36% of non-familial patients had a TP53 mutation in the cohort, whereas 0.18% of non-familial cases had a RECQL mutation. Only one familial case and 0.63% of non-familial patients in the PALB2 cohort had a mutation. (Table 2)

Table 2
Comparison of family history between Mutation Carriers and Non-carriers

Family history of breast and/or ovarian cancer	TP53	RECQL	PALB2			
	Non-carrier	Carrier	Non-carrier	Carrier	Non-carrier	Carrier
no	1118	4	1120	2	1115	7
yes	92	0	92	0	91	1
χ^2						
P	1.000	1.000	0.469			

Breast cancer immunohistochemistry characteristics are summarized (Table 3). Regarding HR and HER2 status, no significant changes were identified between PALB2 and RECQL mutation carriers and non-carriers. We discovered that all four patients with TP53 mutation were ER, PR and HER2 positive compared to the non-carriers group ($P=0.001$), HER2 status($P=0.007$) was a statistically significant predictor of being a carrier for a TP53 germline mutation. The other two genes were not affected in the
same way (Table3, Table4). TP53 and PALB2 mutations carriers were substantially more likely than non-carriers to be 35 years old or younger at the time of diagnosis (P=0.009) (Table 5).

Table 3 Comparison of Pathological Features between Mutation Carriers and Non-carriers

Subtype	TP53	RECQL	PALB2			
	Non-carrier	Carrier	Non-carrier	Carrier	Non-carrier	Carrier
HR+&HER2-	706	0	705	1	700	6
HR+&HER2+	200	4	204	0	204	0
HR-&HER2+	153	0	152	1	152	1
HR-&HER2-	151	0	151	0	150	1
X²	—	—	—	—	—	—
P	0.000	0.418	0.627	0.009	0.449	0.449

HR, estrogen receptor or progesterone receptor; HER2, human epidermal growth factor receptor 2

Table 4 Comparison of HER2 status between Mutation Carriers and Non-carriers

HER2 status	TP53	RECQL	PALB2			
	Non-carrier	Carrier	Non-carrier	Carrier	Non-carrier	Carrier
HER2-	857	0	856	1	850	7
HER2+	353	4	356	1	356	1
X²	—	—	—	—	—	—
P	0.007	0.502	0.449	0.007	0.449	0.449

Table 5 Comparison of age between Mutation Carriers and Non-carriers
Conclusion

Beyond BRCA1/2, this study investigates the frequency of TP53, PALB, RECQL mutations in solitary early-onset breast cancer. We help enhance the detection of instances with harmful mutations, particularly in genes other than BRCA1/2. This research also reveals that VUS of the three genes will continue to be a problem in clinical practice.

In this study of 1214 unselected early-onset breast cancer patients, it was discovered that 1.15% of them had at least one pathogenic mutation in one of the three susceptibility genes. TP53 pathogenic variants were uncommon, with mutation rates ranging from 3% to 8% in very early-onset breast cancer in prior investigations\(^\text{21,22,23}\). However, because there are only four instances in total, the mutation rate (0.33%) is significantly lower than in prior studies conducted in other counties. However, in this investigation, all four TP53 mutation carriers were shown to be more likely than non-carriers to have HR-positive and HER2-positive early-onset breast tumors. In HR+, HER2+ young patients, the rate is 3.49%. Some earlier studies have found a link between the two\(^\text{24,25,26}\). The utilization of multigene panel studies suggests that TP53 germline variants analysis in all breast cancer patients is not essential.

PALB2 pathogenic variants were the most prevalent collection of mutations in our study (0.66%). However, we found no PALB2 mutations linked to the molecular subtype of familial disease. The rate and association were not the same as in prior research. According to Antoniou et al., PALB2 mutation carriers had a greater TNBC phenotypic frequency (30%) than unselected individuals with breast cancer (12–17%)\(^\text{27}\). This study discovered some novel mutations in our study that have not been reported earlier in Chinese or other population and have not been referenced in Clin Var.

In this study, two patients (0.16%) had harmful mutation in the RECQL gene, including c.796C>T and c.1155-1158delTGTT. In several nations, the harmful mutation c.796C>T was described. This nonsense mutation was thought to cause premature protein termination and was thus considered harmful. RECQL
is involved in DNA double-strand break repair via the HR (homologous recombination) pathway, according to previous research28. c.1155_1158delTGTT was not cited in Clin Var. Jie Sun et al. revealed that the RECQL gene had a surprising 2.0\% pathogenic mutation rate in Chinese familial breast cancer patients, suggesting that it might be used to screen for mutations in BRCA1/2-negative breast cancer patients29. However, we found no link between the RECQL mutation carriers’ family history and that of non-carriers in our research. The main explanation for the disparity is that Jie Sun gathered most patients with a family history.

Although the frequency of VUS (variants of undetermined significance) has reduced due to advancements in categorization, the test of a VUS causes uncertainty and anxiety, which is a prevalent concern in clinical practice. Our study found that three genes had VUS and that the proportion of VUS was larger than the percentage of pathogenetic VUS. All the VUS is primarily missense site mutations with no apparent tumor connection. A total of 17 VUS had never been recorded before, including 1 variant in TP53, 6 PALB2 variants, and 10 RECQL variants. Currently, VUS should not be utilized to make clinical choices. Furthermore, the validity of VUS analysis is hampered by a lack of healthy controls.

TP53 testing is recommended for HR, HER2 positive individuals under the age of 35. The need for mutation screening in all young patients is now being debated. It is debatable whether all young breast cancer patients should have their genes tested. Only 1.15\% of patients under the age of 40 in our sample had pathogenic mutations in one of moderate penetrance genetic testing, indicating that genetic testing is of little benefit to most patients.

However, we identified several new mutations in Chinese and other populations that had never been seen previously. The hunt for these genes is currently ongoing. Despite the large sample size, the study's major limitation is that the number of TP53, PALB2, and RECQL mutation carriers is relatively small. Furthermore, the absence of healthy controls limits the investigation of VUSs and mutations in genes unrelated to breast cancer.

Methods

Patients

We investigated 1214 women who had been diagnosed with early-stage breast cancer at Fujian Medical University’s Affiliated Union Hospital in Fuzhou. In term of family history, none of the participants were chosen. The following were the eligibility requirements: (1) a diagnosis of breast cancer before the age of 40; (2) BRCA1/2 deficiency (3) Invasive breast carcinoma was ruled out based on histological findings. We focused on estrogen receptor (ER), progesterone receptor (PR), and HER2 status immunohistochemical characteristics. Immunohistochemistry was used to detect the presence of estrogen and progesterone receptors (IHC). Nuclear staining of ER or PR over 10\% was judged positive. Immunohistochemical staining with a score of 3+ and/or FISH amplification of the HER2 gene was used to determine HER2 positive (fluorescence in situ hybridization).
Next-generation sequencing

The coding regions and exon–intron boundaries of the TP53, PALB2 and RECQL genes were all examined. Clin Var was used to compare all of the variations we found. The study’s genetic sequencing data were solely utilized for scientific purposes, not for clinical decision-making. According to the Clin Var database (https://www.ncbi.nlm.nih.gov/clinvar/), germline variants the were previously clinically assessed and characterized were classified as benign, unknown significance (VUS), likely pathogenic or pathogenic.

Statistical analysis

The Chi-square test and Fisher’s exact test were used to examine the relationships between immunohistochemistry type, family history, and mutation status of the three susceptibility genes. P-values less than 0.05 were deemed statistically significant.

Declarations

Ethical Approval and Consent to participate

All the procedures performed in studies involving human participants adhere to the Ethical Standards of the Institutional and/or National Research Committee and with the Helsinki Declaration and its later amendments or comparable ethical standards. This study was approved by the Research Ethics Committee of Fujian Medical University Union Hospital (2020KJT031). Informed consent was obtained from each participant.

Consent for publication

Not applicable

Availability of supporting data

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Competing interests

The authors declare that they have no conflicts of interest.

Funding

This research was funded by the Natural Science Foundation of Fujian Province (2020J01995), and the joint funds for the Innovation of Science and Technology, Fujian Province (2018Y9205, 2019Y9103).

Authors’ contributions
Lili Chen: data curation, writing of the manuscript, resources, collection of the blood samples and clinical information, funding acquisition, approval of the final manuscript. Meng Huang: Data curation, gene sequencing and approval of the final manuscript. Minyan Chen: Recruitment of the patients, collection of the blood samples and clinical information, and approval of the final manuscript. Yuxiang Lin: Recruiting the patients to collection the blood samples and clinical information, approving. Jing Li: Recruitment of the patients, collection of the blood samples and clinical information, and approval of the final manuscript. Chuan Wang: Planning and design of the study, project administration, recruitment of the patients, collection of the blood samples and approval of the final manuscript. Fangmeng Fu: Planning and design of the study, data curation, project administration, recruitment of the patients, collection of the blood samples and approval of the final manuscript.

Acknowledgements

I would like to express my gratitude to all those who have helped me during the writing of the thesis. We thank Prof. Chunfu Zheng for editing our manuscript.

References

1. Anders CK, Hsu DS, Broadwater G, et al. (2008) Young age at diagnosis correlates with worse prognosis and defines a subset of breast cancers with shared patterns of gene expression. J Clin Oncol 26:3324-3330
2. Daly MB, Axilbund JE, Buys S, et al. National Comprehensive Cancer Network. Genetic/familial high-risk assessment: breast and ovarian. J Natl Compr Canc Netw 2010;8:562-594.
3. Maxwell KN, Domcheck SM. Familial breast cancer risk. Curr Breast Cancer Rep 2013;5:170-182.
4. Vahteristo P, Bartkova J, Eerola H, Syrjäkoski K, Ojala S, Kilkivaa O, Tamminen A, Kononen J, Aittomäki K, Heikkila P, et al. A CHEK2 Genetic Variant Contributing to a Substantial Fraction of Familial Breast Cancer. Am. J. Hum. Genet. 2002, 71, 432-438
5. National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: genetic/familial high risk assessment: breast and ovarian. Version 1.2010. Available at: http://www.nccn.org. Accessed January 2011.
6. 17TH ST. GALLEN INTERNATIONAL BREAST CANCER CONFERENCE 2021 primary Therapy of Early Breast Cancer. Evidence, Controversies, Consensus.
7. Tedaldi G, Tebaldi M, Zampiga V, Danesi R, Arcangelì V, Ravegnani M, Cangini I, Pirini F, Petracci E, Rocca A, et al. Multiple-Gene Panel Analysis in A Case Series of 255 Women with Hereditary Breast and Ovarian Cancer. Oncotarget 2017, 8, 47064-47075.
8. Cybulski Cezary, Kluzniak Wojciech, Huzarski Tomasz, et al. The spectrum of mutations predisposing to familial breast cancer in Poland.[J] .Int J Cancer, 2019, 145: 3311-3320.
9. Slavin Thomas P, Maxwell Kara N, Lilyquist Jenna, et al. The contribution of pathogenic variants in breast cancer susceptibility genes to familial breast cancer risk.[J] .NPJ Breast Cancer, 2017, 3: 22.
10. Mouchawar J, Korch C, Byers T, et al. Population-based estimate of the contribution of TP53 mutations to subgroups of early-onset breast cancer: Australian Breast Cancer Family Study. [J]. Cancer Res, 2020, 70(12): 4795-4800.

11. Wilson JR, Bateman AC, Hanson H, et al. A novel HER2-positive breast cancer phenotype arising from germline TP53 mutations. J Med Genet 2010; 47: 771-774.

12. Masciari S, Dillon DA, Rath M, et al. Breast cancer phenotype in women with TP53 germline mutations: a Li-Fraumeni syndrome consortium effort. Breast Cancer Res Treat 2012; 133: 1125-1130.

13. Melhem-Bertrandt A, Bojadzieva J, Ready KJ, et al. Early onset HER2-positive breast cancer is associated with germline TP53 mutations. Cancer 2012; 118: 908-913.

14. Chen Lili, Fu Fangmeng, Huang Meng et al. The spectrum of BRCA1 and BRCA2 mutations and clinicopathological characteristics in Chinese women with early-onset breast cancer. [J]. Breast Cancer Res Treat, 2020, 180: 759-766.

15. Nykamp Keith, Anderson Michael, Powers Martin, et al. Sherloc: a comprehensive refinement of the ACMG-AMP variant classification criteria. [J]. Genet Med, 2017, 19: 1105-1117.

16. García María J, Fernández Victoria, Osorio Ana et al. Analysis of FANCB and FANCN/PALB2 Fanconi anemia genes in BRCA1/2-negative Spanish breast cancer families. [J]. Breast Cancer Res Treat, 2009, 113: 545-551.

17. Papi Laura, Putignano Anna Laura, Congregati Caterina et al. A PALB2 germline mutation associated with hereditary breast cancer in Italy. [J]. Fam Cancer, 2010, 9: 181-5.

18. Nguyen-Dumont T, Hammet F, Mahmoodi M, Tsimiklis H, Teo ZL, Li R, Pope BJ, Terry MB, Buys SS, Daly M et al (2015) Mutation screening of PALB2 in clinically ascertained families from the Breast Cancer Family Registry. Breast Cancer Res Treat 149(2):547-554

19. Kim H, Cho DY, Choi DH, Oh M, Shin I, Park W, Huh SJ, Nam SJ, Lee JE, Kim SW (2017) Frequency of pathogenic germline mutation in CHEK2, PALB2, MRE11, and RAD50 in patients at high risk for hereditary breast cancer. Breast Cancer Res Treat 161(1):95-102

20. Kun Zhang, Jiaojiao Zhou1, Xuan Zhu, Yiding Chen, Germline mutations of PALB2 gene in a sequential series of Chinese patients with breast cancer, Breast Cancer Res Treat 2017 Dec;166(3)

21. Laloo F, Varley J, Ellis D, et al. Prediction of pathogenic mutations in patients with early-onset breast cancer by family history. Lancet 2003; 361: 1101-1102.

22. Laloo F, Varley J, Moran A, et al. BRCA1, BRCA2 and TP53 mutations in very early-onset breast cancer with associated risks to relatives. Eur J Cancer 2006; 42: 1143-1150.

23. Lee DS, Yoon SY, Looi LM, et al. Comparable frequency of BRCA1, BRCA2 and TP53 germline mutations in a multi-ethnic Asian cohort suggests TP53 screening should be offered together with BRCA1/2 screening to early-onset breast cancer patients. Breast Cancer Res 2012; 14: R66.

24. Wilson JR, Bateman AC, Hanson H, et al. A novel HER2-positive breast cancer phenotype arising from germline TP53 mutations. J Med Genet 2010; 47: 771-774.
25. Masciari S, Dillon DA, Rath M, et al. Breast cancer phenotype in women with TP53 germline mutations: a Li-Fraumeni syndrome consortium effort. Breast Cancer Res Treat 2012; 133: 1125-1130.

26. Melhem-Bertrandt A, Bojadzieva J, Ready KJ, et al. Early onset HER2-positive breast cancer is associated with germline TP53 mutations. Cancer 2012; 118: 908-913.

27. Antoniou AC, Casadei S, Heikkinen T, Barrowdale D, Pylkas K, Roberts J, Lee A, Subramanian D, De Leeneer K, Fostira F et al (2014) Breast-cancer risk in families with mutations in PALB2. New Eng J Med 371(6):497-506

28. Wu Y, Brosh RM Jr. (2010) Distinct roles of RECQ1 in the maintenance of genomic stability. DNA Repair (Amst) 9: 315–324. doi: 10.1016/j.dnarep.2009.12.010 PMID: 20061189)

29. Sun Jie, Wang Yuxia, Xia Yisui, et al. Mutations in RECQL Gene Are Associated with Predisposition to Breast Cancer.[J]. PLoS Genet, 2015, 11: e1005228.

Figures

Figure 1 The contrast of TP53， PALB2， RECQL mutation rate

See image above for figure legend