Fluoride resistance in Streptococcus mutans

Liao, Ying

Link to publication

Creative Commons License (see https://creativecommons.org/use-remix/cc-licenses):
Other

Citation for published version (APA):
Liao, Y. (2017). Fluoride resistance in Streptococcus mutans.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
Nederlandse Samenvatting
Samenvatting

Fluoride wordt al meer dan vijf decennia lang gebruikt als het meest effectieve anti-cariës agens. Langdurige blootstelling aan hoge concentraties fluoride kan leiden tot de ontwikkeling van fluorideresistentie van orale bacteriën. Dit proefschrift beschrijft een aantal experimenten die gericht zijn op fenotypische en genotypische kenmerken van fluorideresistente Streptococcus mutans stammen.

In hoofdstuk 2 werden deze kenmerken onderzocht voor de fluorideresistente stam S. mutans C180-2FR en zijn moederstam C180-2. S. mutans C180-2FR had een significant groter groeivermogen in aanwezigheid van fluoride dan C180-2. De coloniën van deze twee stammen vertoonden ook een duidelijk verschillende morfologie. Vervolgens hebben we “whole genome shotgun (WGS) sequencing” toegepast op deze twee stammen om genen te vinden die gerelateerd zijn aan fluorideresistentie. De hele genoomsequenties van deze twee stammen werden vervolgens met elkaar vergeleken. Op deze manier werden enkel-nucleotide polymorfismen (SNPs: single nucleotide polymorphisms) in het genoom van S. mutans C180-2FR geïdentificeerd, waarna deze bevestigd werden met traditionele Sangersequencing. De functies van deze genomische veranderingen werden verder onderzocht door de expressie te meten van de genen die één of meer SNPs bevatten. Een vergelijking tussen de genomen van beide stammen onthulde acht mutaties in C180-2FR, waarvan vijf SNPs gelegen waren in een gen en twee in intergene gebieden. Genexpressiegegevens toonden aan dat drie genen, stroomafwaarts van een promotort dat een SNP bevatte, constitutief hoger tot expressie kwamen in C180-2FR in vergelijking met C180-2. Interessant genoeg zijn twee van de drie genen, perA en perB, homologen van eriC⁺, een gen dat codeert voor een fluoridetransporteiwit. Deze studie toonde aan dat WGS sequencing een bruikbare methode is om veranderingen in het genoom van fluorideresistente S. mutans stammen te ontdekken.

Het verband tussen de mutatie in de promotort (mutp) van de genen coderend voor de fluoride-transport eiwitten en fluorideresistentie werd verder bestudeerd in hoofdstuk 3. Van de fluoridegevoelige stam S. mutans UA159 is een afgeleide stam geconstrueerd met de betreffende mutatie in mutp. Deze afgeleide stam, UF35 genaamd, werd gekenmerkt door zijn vermogen om in aanwezigheid van fluoride zowel te groeien als fermentatief melkzuur te produceren. De resultaten toonden aan dat deze afgeleide stam, UF35, kon groeien in aanwezigheid van hogere concentraties fluoride dan S. mutans UA159. In aanwezigheid van fluoride produceerde UF35 significant meer
Samenvatting

melkzuur dan UA159. Echter, de zuurtolerantieresponstest toonde aan dat de mutant gevoeliger was voor zuurstress dan de wild-type stam. Deze verhoogde gevoeligheid van UF35 voor een lage pH kan het gevolg zijn van een energieverspillende "futiele protoncyclus" gemedieerd door de fluoridetransporteiwitten. Het effect van de mutatie op de activiteit van mutp werd bepaald door, zowel de expressie van stroomafwaarts gelegen genen, als de fluorescentie van reporterstammen te kwantificeren. Resultaten van beide bepalingen bevestigden dat de gemuteerde mutp constitutief meer actief was dan het wild-type mutp. Wij concludeerden dat de SNP in mutp de promotoractiviteit en de expressie van de fluoride-transport eiwitten verhoogt, resulterend in een verhoogde fluorideresistentie.

Gegevens uit hoofdstuk 3 bevestigden de rol van één van de acht mutaties die in hoofdstuk 2 waren gevonden. Hoewel de rol van de export van fluoride als een fluorideresistentie mechanisme voor de hand ligt, is het waarschijnlijk niet het enige mechanisme dat bacteriën gebruiken om fluorideresistent te worden. Eerdere studies hebben aangetoond dat dezelfde fluoridegevoelige stammen verschillende niveaus van fluorideresistentie kunnen ontwikkelen, wat kan wijzen op de betrokkenheid van meerdere genen. Om andere factoren die verband houden met fluorideresistentie te identificeren, werden in hoofdstuk 4 de genoomsequenties van twee natuurlijk geselecteerde fluorideresistente stammen (UA159FR en C180-2FR) en die van hun moederstammen (UA159 en C180-2) geanalyseerd. Op deze manier werden in beide fluorideresistente stammen mutaties gevonden in dezelfde chromosomale gebieden. De genexpressie en enzymactiviteit van deze gemuteerde genen werden daarop geëvalueerd. Mutaties werden gevonden in drie gemeenschappelijke loci, gerelateerd aan twee promotoren van functionele genen en één metabole route. In overeenstemming met onze eerdere studie (hoofdstuk 2), vonden we mutaties, in de fluorideresistente stammen, in mutp en eveneens een verhoogde expressie van de fluoridetransporteiwitten in deze afgeleide stammen ten opzichte van hun moederstam. Dit onderstrept de rol van de fluoridetransporteiwitten bij de resistentie tegen fluoride. Er werden ook mutaties gevonden in de promotor glpFp, waarvan het stroomafwaarts gelegen gen (glpF) codeert voor een eiwit dat de opname van glycerol faciliteert. Een significant lagere expressie van glpF werd waargenomen in de twee fluorideresistente stammen in vergelijking met de wild-type stammen, wat de membraanpermeabiliteit en dus de influx van fluoride kan veranderen. De genen die coderen voor enolase (eno) en pyruvaatkinase (pyk), twee belangrijke
Samenvatting
glycolytische enzymen, zijn ook gemuteerd in de fluorideresistente stammen. *S. mutans* C180-2FR heeft twee mutaties in *pyk*, terwijl UA159FR één mutatie in zowel *eno* als *pyk* heeft. We hebben vervolgens het effect van deze mutaties op de desbetreffende enzymactiviteit bepaald. In *S. mutans* C180-2FR werd pyruvaatkinase volledig gedeactiveerd door de aminozuursubstitutie Y419D. Enolase in *S. mutans* UA159FR werd minder geremd door fluoride in vergelijking met de wild-type stam UA159. De resultaten van hoofdstuk 4 gaven inzicht in mogelijke genen, gerelateerd aan het fluoride transport en de glycolyse, die betrokken kunnen zijn bij de ontwikkeling van fluorideresistentie.

Na het beschrijven van het genotype van fluorideresistente *S. mutans* stammen onderzochten we een belangrijk kenmerk van fluorideresistente stammen, namelijk de stresstolerantie, ofwel de “fitness”, van de stammen. In hoofdstuk 5 werd van zowel twee fluorideresistente stammen, namelijk *S. mutans* UF35 (beschreven in hoofdstuk 3) en UA159FR (beschreven in hoofdstuk 4), als hun wild-type stam UA159, de fitness bepaald. In plaats van planktonische culturen werden biofilms gebruikt, aangezien biofilms de bacteriële levensstijl in tandplak beter nabootsen. De fitness van de biofilms van de twee fluorideresistente stammen en hun wild-type werd onderzocht door ze bloot te stellen aan fluoride, chloorhexidine en letale pH (pH 3,0). Zowel *S. mutans* UF35 als UA159FR waren beter bestand tegen fluoride dan UA159. De *S. mutans* UA159FR biofilms waren beter bestand tegen chloorhexidine en lage pH dan de biofilms van UF35 en UA159. Daarnaast was de biomassa van UA159FR significant hoger dan van de andere twee stammen. Derhalve concludeerden wij dat de fitness van de fluorideresistente *S. mutans* stammen beter dan (UA159FR), of gelijk aan (UF35), de fitness van de wild-type stam was.

Naast de fitness is het vermogen om melkzuur te produceren, bijdragen end aan de ontwikkeling van tandcariës, een belangrijk kenmerk van *S. mutans*. Vele studies rapporteerden dat, in aanwezigheid van fluoride, fluorideresistente *S. mutans* stammen meer melkzuur produceren dan fluoridegevoelige stammen, wat duidt op een hogere glycolytische activiteit in de fluorideresistente stammen. Dit kan het gevolg zijn van veranderingen in de regulering van de glucoseopname, wat ondersteund wordt door de experimenten in hoofdstuk 4. De mutatie die is geïdentificeerd in *pyk* en de veranderde activiteit van pyruvaatkinase in *S. mutans* C180-2FR kan leiden tot veranderingen in de intracellulaire concentratie van fosfoenolpyruvaat en
daardoor tot veranderingen in glucoseopname. In hoofdstuk 6 vergeleken we de glucoseopnameactiviteit van een fluoridegevoelige met die van een fluorideresistente stam om de verschillen in zuurproductie in aanwezigheid van fluoride te bestuderen. De totale glucoseopnameactiviteit en de expressie van genen gerelateerd aan de glucoseopname, in afwezigheid en aanwezigheid van fluoride, werd gekwantificeerd voor *S. mutans* C180-2 en C180-2FR. Daarnaast werd de activiteit van het PEP-afhankelijke fosfotransferase systeem (PTS) in deze twee stammen bepaald. De glucoseopnameactiviteit in *S. mutans* C180-2FR werd aanzienlijk minder geremd door fluoride dan in C180-2. De aanwezigheid van fluoride leidde in C180-2 tot een duidelijke verhoging van de expressie van genen betrokken bij glucoseopname, terwijl geen verandering in de genexpressie werd waargenomen in C180-2FR. In afwezigheid van fluoride had C180-2 een significant hogere PEP-PTS activiteit dan C180-2FR. In aanwezigheid van fluoride vertonen de twee soortgelijke PEP-PTS activiteiten. De data uit dit hoofdstuk laten zien dat de glucoseopname in fluoridegevoelige en fluorideresistente stammen verschillend gereguleerd is. Het verschil in glucoseopname kan, zowel in afwezigheid, als in aanwezigheid van fluoride, worden gezien.

Samenvattend toont dit proefschrift aan dat fluorideresistente *S. mutans* stammen zowel fenotypische als genotypische veranderingen hebben ondergaan. Verscheidene genomische mutaties zijn geïdentificeerd in relatie tot fluorideresistentie. Een andere regulering van de fluoride-transport eiwitten kan een efficiënte en essentiële manier zijn voor *S. mutans* om resistent tegen fluoride te worden. Andere factoren, waaronder veranderingen in de glycolyse, kunnen ook bijdragen aan fluorideresistentie. Wanneer de bacteriën fluorideresistent zijn geworden, verandert hun glucoseopname, de fitness en uiteindelijk het vermogen om te overleven in de mondholte.
氟化物作为最有效的防龋药物应用于临床已五十余年，口腔细菌在长时间暴露于高浓度氟化物后有可能发生对氟的耐受，即产生耐氟性。目前关于致龋性研究最多的细菌是变异链球菌，本论文将对一系列耐氟变形链球菌株的表型及基因型特点进行研究。

第二章研究了耐氟变形链球菌 C180-2FR 及其亲本菌株 C180-2 的特点。C180-2FR 在高氟环境中的生长能力显著高于 C180-2，两种菌株菌落形态表现出明显差异。对两个菌株进行全基因组鸟枪测序（WGS）及全基因组序列比对，以定位与耐氟性有关的基因。并利用 Sanger 测序法验证 C180-2FR 基因组中的单核苷酸多态性（SNP），对含有 SNP 的基因进行了基因表达的检测，以研究这些基因组变化的功能。基因组比对中发现 C180-2FR 中有 8 个 SNP，位于 5 个基因和 2 个基因间区域。基因表达的结果显示一个含有 SNP 的启动子下游 3 个基因在 C180-2FR 中较在 C180-2 中持续性上调，其中 2 个基因（perA 和 perB）编码氟转运体基因 ericF 的同源基因。该研究表明 WGS 是一种发现耐氟变形链球菌基因组中变异的有效工具。研究为进一步探究耐氟机制提供了候选基因。

启动子 mutp 下游基因可编码编码氟转运体，第三章研究了 mutp 中的突变与 C180-2FR 耐氟性的关系。我们构建了一个含 mutp 突变的变形链球菌菌株 UA159 变异株，将其命名为 UF35，并对其在有氟环境下生长和产酸的能力进行检测。UF35 相较于 UA159 可在更高氟浓度下生长，同时可代谢产生更多乳酸。耐酸反应（ATR）显示 UF35 相较野生株 UA159 对酸更敏感，这可能与氟转运体介导的消耗能量的“质子无效循环”有关。随后通过下游基因表达及报告菌株荧光检测了 mutp 突变对启动子活性的影响。结果都表明变异后的 mutp 相较野生型 mutp 更加活跃。该研究表明 mutp 中的单核苷酸变异可提高启动子活性，并上调氟转运体的表达，由此增强变形链球菌的耐氟性。

以上研究证实了氟转运体基因调节和细菌耐氟性的关系，但它并不是细菌获得耐氟性的唯一方式。既往研究发现同一个亲本菌株能发展出具有不同程度耐氟性的子代菌株，表明耐氟性的发展过程中可能包括多个基因。为了识别其他与耐氟性相关的因素，在第四章中，我们分析了两个自然选择产生的耐氟菌株（UA159FR 和 C180-2FR）与他们的亲本菌株（UA159 和 C180-2）的基因组序列，识别了两个耐氟菌株共有的含突变染色体区域，对相应的基因表达和酶活性也进行检测。结果发现突变
位于3个共有区域，与两个功能基因启动子和一个代谢通路相关。与第二章所描述的研究一致，我们在两个耐氟菌株的mutp区域都发现了突变，并检测到氟转运体在两个耐氟菌株中较亲本菌株都明显高表达。这再次验证了氟转运体在耐氟性中的重要作用。除此之外，我们在glpFp发现突变，其下游基因glpF编码一个甘油摄取促进蛋白。两个耐氟菌株中glpF的表达明显低于亲本菌株，这可能导致细胞膜渗透性的变化并影响细胞对氟的摄入。编码烯醇酶（eno）和丙酮酸激酶（pyk）两个糖代谢关键酶的基因也在两个耐氟菌株中发生了突变。C180-2FR在pyk中含有两个突变，UA159FR则在eno和pyk中各有一个突变。酶活性检测发现C180-2FR的丙酮酸激酶由于氨基酸替换Y419D而完全失活，UA159FR的烯醇酶较UA159的烯醇酶被氟抑制的程度更小。本章结果为耐氟性机制的研究提供了新的候选基因，这些基因与氟转运和糖代谢有关。

在研究了耐氟变形链球菌的基因型特点后，我们进一步检测了耐氟菌株的另一重要特性，即对环境压力的耐受性，又称细菌的适应性（fitness）。在第五章中我们研究了UF35、UA159FR以及它们的野生菌株UA159在生物膜状态下的适应性。将三种细菌生物膜暴露于氟、氯己定和强酸（pH3.0）的环境压力中，结果表明UF35和UA159FR相较野生菌株UA159都表现出对氟更强的耐受性，UA159FR生物膜的量和对氟已定和强酸的耐受性均显著高于UA159和UF35。我们由此总结耐氟变形链球菌的适应性等于（UF35）或强于（UA159FR）野生菌株。

除了适应性之外，变形链球菌的产酸性也是其导致龋病发展的重要表型。多项研究表明耐氟变形链球菌在有氟环境下显示出更强的产酸能力，说明有氟环境中耐氟菌的糖代谢活力更强。由第四章的数据推断，这可能是葡萄糖摄取的调控发生改变导致的。C180-2FR中发现的位于pyk的基因突变和丙酮酸激酶酶活性的改变可导致胞内磷酸烯醇式丙酮酸（PEP）浓度改变并由此调控葡萄糖摄取。在第六章中，我们量化分析了变形链球菌C180-2和C180-2FR的无氟和有氟环境下糖摄取总活性及糖摄取相关基因表达，同时检测了这两种细菌内PEP介导的磷酸转移酶系统（PTS）活性。结果发现有氟环境下C180-2FR糖摄取受到的抑制较C180-2明显更小。氟的存在诱发了C180-2内糖摄取相关基因的显著高表达，而在C180-2FR内并没有基因调控的发生。在无氟环境中，C180-2的PEP-PTS活性显著高于C180-2FR，在有氟环境中，两个菌种PEP-PTS活
总结

性无明显差异。本章数据揭示了氟敏感和耐氟菌种的糖摄取被差异性调控，这种差异在无氟和有氟环境中皆存在。

综上所述，通过本研究我们筛选出了耐氟变形链球菌基因中多个与耐氟性相关的基因突变，证明了耐氟变形链球菌表型和基因型的改变。氟转运体的调控可能是变形链球菌获得耐氟性的一种关键而有效的方式。其他因素，如糖代谢的改变，也可能在耐氟机制中发挥一定作用。获得耐氟性后，细菌适应性和糖摄取均发生改变，这些表型变化可影响细菌在口腔中各种环境压力下的生存能力。
References

Ajdic D, McShan WM, McLaughlin RE, Savic G, Chang J, Carson MB, Primeaux C, Tian R, Kenton S, Jia H et al. 2002. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A 99(22):14434-9.

Alam MT, Petit RA, 3rd, Crispell EK, Thornton TA, Conneely KN, Jiang Y, Satola SW, Read TD. 2014. Dissecting vancomycin-intermediate resistance in Staphylococcus aureus using genome-wide association. Genome Biol Evol 6(5):1174-85.

Albers CA, Lunter G, MacArthur DG, McVean G, Ouwehand WH, Durbin R. 2011. Dindel: accurate indel calls from short-read data. Genome Res 21(6):961-73.

Almaechi BT, Porteous N, Ramalingam K, Mensinkai PK, Ccahuana Vasquez RA, Sadeghpour A, Nakamoto T. 2013. Remineralization of artificial enamel lesions by theobromine. Caries Res 47(5):399-405.

Ames TD, Rodionov DA, Weinberg Z, Breaker RR. 2010. A eubacterial riboswitch class that senses the coenzyme tetrahydrofolate. Chem Biol 17(7):681-5.

Andersson DI. 2003. Persistence of antibiotic resistant bacteria. Curr Opin Microbiol 6(5):452-6.

Andersson DI, Hughes D. 2010. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 8(4):260-71.

Anusavice KJ, Zhang NZ, Shen C. 2005. Effect of CaF$_2$ content on rate of fluoride release from filled resins. J Dent Res 84(5):440-4.

Auierbach C. 2013. Mutation research: problems, results and perspectives. Springer.

Baker JL, Sudarsan N, Weinberg Z, Roth A, Stockbridge RB, Breaker RR. 2012. Widespread genetic switches and toxicity resistance proteins for fluoride. Science 335(6065):233-5.

Barbier O, Arreola-Mendoza L, Del Razo LM. 2010. Molecular mechanisms of fluoride toxicity. Chem Biol Interact 188(2):319-33.

Bartholmes P MA, Duschner H, Hiither FJ, Psarros N. 1990. Purification of Streptococcus mutans enzymes and inhibition by fluoride. J Dent Res 69:825.

Beighton D, McDougall WA. 1977. The effects of fluoride on the percentage bacterial composition of dental plaque, on caries incidence, and on the in vitro growth of Streptococcus mutans, Actinomyces viscosus, and Actinobacillus sp. J Dent Res 56(10):1185-91.

Belli WA, Buckley DH, Marquis RE. 1995. Weak acid effects and fluoride inhibition of glycolysis by Streptococcus mutans GS-5. Can J Microbiol 41(9):785-91.

Bender GR, Sutton SV, Marquis RE. 1986. Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. Infect Immun 53(2):331-8.

Bender GR, Thibodeau EA, Marquis RE. 1985. Reduction of acidurance of streptococcal growth and glycolysis by fluoride and gramicidin. J Dent Res 64(2):90-5.

Birkeland JM, Torell P. 1978. Caries-preventive fluoride mouthrinses. Caries Res 12 Suppl 1:38-51.

Bjorkman J, Nagaev I, Berg OG, Hughes D, Andersson DI. 2000. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science 287(5457):1479-82.

Bobrovskyy M, Vanderpool CK. 2016. Diverse mechanisms of post-transcriptional repression by the small RNA regulator of glucose-phosphate stress. Mol Microbiol 99(2):254-73.

Bowden GH. 1990. Effects of fluoride on the microbial ecology of dental plaque. J Dent Res 69 Spec No:653-9; discussion 682-3.

Breaker RR. 2012, New insight on the response of bacteria to fluoride. Caries Res 46(1):78-81.

Brenot A, King KY, Caparon MG. 2005. The PerR regulon in peroxide resistance and virulence of Streptococcus pyogenes. Mol Microbiol 55(1):221-34.

Brown LR, Handler SF, Horton IM, Streckfuss JL, Dreizen S. 1980. Effect of sodium fluoride on the viability and growth of Streptococcus mutans. J Dent Res 59(2):159-67.

Brown LR, White JO, Horton IM, Dreizen S, Streckfuss JL. 1983. Effect of continuous fluoride gel use on plaque fluoride retention and microbial activity. J Dent Res 62(6):746-51.

Browning DF, Busby SJ. 2004. The regulation of bacterial transcription initiation. Nat Rev Microbiol 2(1):57-65.

Brussock SM, Kral TA. 1987. Effects of pH on expression of sodium fluoride resistance in Streptococcus mutans. J Dent Res 66(10):1594-6.

Bryant J, Chewapreecha C, Bentley SD. 2012. Developing insights into the mechanisms of evolution of bacterial pathogens from whole-genome sequences. Future Microbiol 7(11):1283-96.

Bunick FJ, Kashket S. 1981. Enolases from fluoride-sensitive and fluoride-resistant streptococci. Infect Immun 34(3):856-63.

Burne RA, Marquis RE. 2000. Alkal production by oral bacteria and protection against dental caries. FEBS Microbiol Lett 193(1):1-6.
References

Buzalaf MA, Pessan JP, Honorio HM, Ten Cate JM. 2011. Mechanisms of action of fluoride for caries control. Monogr Oral Sci 22:97-114.

Caroff N, Espaze E, Gautreau D, Richet H, Reynaud A. 2000. Analysis of the effects of -42 and -32 ampC promoter mutations in clinical isolates of Escherichia coli hyperproducing AmpC. J Antimicrob Chemother 45(6):783-8.

Castagnoli L. 1987. Characterization of a promoter up mutation in the -35 region of the promoter of the primer for ColE1 replication. Mol Gen Genet 206(1):178-80.

Chansley PE, Kral TA. 1989. Transformation of fluoride resistance genes in Streptococcus mutans. Infect Immun 57(7):1968-70.

Clancy A, Burne RA. 1997. Construction and characterization of a recombinant ureolytic Streptococcus mutans and its use to demonstrate the relationship of urease activity to pH modulating capacity. FEMS Microbiol Lett 151(2):205-11.

Cormack BP, Valdivia RH, Falkow S. 1996. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173(1 Spec No):33-8.

Curran TM, Buckley DH, Marquis RE. 1994. Quasi-irreversible inhibition of enolase of Streptococcus mutans by fluoride. FEMS Microbiol Lett 119(3):283-8.

Curran TM, Ma Y, Rutherford GC, Marquis RE. 1998. Turning on and turning off the arginine deiminase system in oral streptococci. Can J Microbiol 44(11):1078-85.

Darling AC, Mau B, Blattner FR, Perna NT. 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14(7):1394-403.

Darling AE, Mau B, Perna NT. 2010. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One 5(6):e11147.

De Stoppelaar JD, Van Houte J, De Moor CE. 1967. The presence of dextran-forming bacteria, resembling Streptococcus bovis and Streptococcus anguis, in human dental plaque. Arch Oral Biol 12(10):1199-202.

Deng DM, Hoogenkamp MA, Exterkate RA, Jiang LM, Van der Sluis LW, Ten Cate JM, Crielard W. 2009a. Influence of Streptococcus mutans on Enterococcus faecalis biofilm formation. J Endod 35(9):1249-52.

Deng DM, Hoogenkamp MA, Ten Cate JM, Crielard W. 2009b. Novel metabolic activity indicator in Streptococcus mutans biofilms. J Microbiol Methods 77(1):67-71.

Deng DM, Liu MJ, Ten Cate JM, Crielard W. 2007a. The VicRK system of Streptococcus mutans responds to oxidative stress. J Dent Res 86(7):606-10.

Deng DM, Ten Cate JM, Crielard W. 2007b. The adaptive response of Streptococcus mutans towards oral care products: involvement of the ClpP serine protease. Eur J Oral Sci 115(5):363-70.

Deutscher J, Ake FM, Derkaoui M, Zebre AC, Cao TN, Bouraoui H, Kentache T, Mokhtari A, Milohanic E, Joyet P. 2014. The bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system: regulation by protein phosphorylation and phosphorylation-dependent protein-protein interactions. Microbiol Mol Biol Rev 78(2):231-56.

Dirks OB, Kunzel W, Carlos JP. 1978. Caries-preventive water fluoridation. Caries Res 12 Suppl 1:7-14.

Duckworth RM, Morgan SN, Murray AM. 1987. Fluoride in saliva and plaque following use of fluoride-containing mouthwashes. J Dent Res 66(12):1730-4.

Duncan TM, Duser MG, Heitkamp T, McMillan DG, Borsch M. 2014. Regulatory conformational changes of the epsilon subunit in single FRET-labeled F,F1-ATP synthase. Proc SPIE Int Soc Opt Eng 8948:89481J.

Eisenberg AD, Wegman MR, Oldershaw MD, Curzon ME. 1985. Effect of fluoride, lithium or strontium on acid production by pelleted human dental plaque. Caries Res 19(5):454-7.

Froger A, Rolland JP, Bron P, Lagree V, Le Cahercie F, Deschamps S, Hubert JF, Pellerin I, Thomas D, Delamarce C. 2001. Functional characterization of a microbial aquaglyceroporin. Microbiology 147(Pt 5):1129-35.

Fu D, Libson A, Stroud R. 2002. The structure of GlpF, a glycerol conducting channel. Novartis Found Symp 245:51-61; discussion 61-5, 165-8.

Germaine GR, Tellefson LM. 1986. Role of the cell membrane in pH-dependent fluoride inhibition of glucose uptake by Streptococcus mutans. Antimicrob Agents Chemother 29(1):58-61.

Guha-Chowdhury N, Clark AG, Sissons CH. 1997. Inhibition of purified enolases from oral bacteria by fluoride. Oral Microbiol Immunol 12(2):91-7.

Guo L, Ying Y, Hong X, Zhang R, Yang Y, Hu T, Qiu Y. 2014. A Preliminary study of exogenous dextranase and NaF directly influence Streptococcus mutans glucosyltransferase activity. Journal of Pure and Applied Microbiology 9(1):21-28.

Gutmann I, Wahlefeld A. 1974. L-(-)-Lactate determination with lactate dehydrogenase and NAD. Methods of enzymatic analysis 3:1464-1468.
References

Hamilton IR. 1969a. Growth characteristics of adapted and ultraviolet-induced mutants of *Streptococcus salivarius* resistant to sodium fluoride. Can J Microbiol 15(3):287-95.

Hamilton IR. 1969b. Studies with fluoride-sensitive and fluoride-resistant strains of *Streptococcus salivarius*. II. Fluoride inhibition of glucose metabolism. Can J Microbiol 15(9):1021-7.

Hamilton IR. 1990. Biochemical effects of fluoride on oral bacteria. J Dent Res 69 Spec No:660-7; discussion 682-3.

Hamilton IR, Ellwood DC. 1978. Effects of fluoride on carbohydrate metabolism by washed cells of *Streptococcus mutans* grown at various pH values in a chemostat. Infect Immun 19(2):434-42.

Heller KB, Lin EC, Wilson TH. 1980. Substrate specificity and transport properties of the glycerol facilitator of *Escherichia coli*. J Bacteriol 144(1):274-8.

Hoelscher GL, Hudson MC. 1996. Characterization of an unusual fluoride-resistant *Streptococcus mutans* isolate. Curr Microbiol 32(3):156-61.

Hogema BM, Arents JC, Bader R, Eijkemans K, Yoshida H, Takahashi H, Aiba H, Postma PW. 1998. Inducer exclusion in *Escherichia coli* by non-PTS substrates: the role of the PEP to pyruvate ratio in determining the phosphorylation state of enzyme IIA.Glc. Mol Microbiol 30(3):487-98.

Holmes AH, Moore LS, Sandford A, Steinbakk M, Regmi S, Karkey A, Guerin PJ, Piddock LJ. 2016. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387(10014):176-87.

IPC. 2002. Fluorides. Environmental Health Criteria 227. Geneva: World Health Organization.

Jacobson A, Strang R, Stephen K. 1991. Effect of low fluoride levels in demineralization solutions of pH-cycling. Caries Res 25:230-231.

Jagtap S, Yenkie MK, Labhsetwar N, Rayalu S. 2012. Fluoride in drinking water and defluoridation of water. Chem Rev 112(4):2454-66.

Jaurin B, Grundstrom T, Normark S. 1982. Sequence elements determining ampic promoter strength in *E. coli*. EMBO J 1(7):875-81.

Jensen ME, Schachtele CF. 1983. Plaque pH measurements by different methods on the buccal and approximal surfaces of human teeth after a sucrose rinse. J Dent Res 62(10):1058-61.

Johnson KM, Swenson L, Opipari AW, Jr., Reuter R, Zarrab N, Fierke CA, Borsch M, Glick GD. 2009. Mechanistic basis for differential inhibition of the F$_1$F$_o$-ATPase by aurovertin. Biopolymers 91(10):830-40.

Kara D, Luppens SB, Cate JM. 2006. Differences between single- and dual-species biofilms of *Streptococcus mutans* and *Veillonella parvula* in growth, acidogenicity and susceptibility to chlorhexidine. Eur J Oral Sci 114(1):58-63.

Kent WJ. 2002. BLAT--the BLAST-like alignment tool. Genome Res 12(4):656-64.

Lau KA, Kral TA. 1987. Isolation and characterization of low-pH fluoride-resistant mutants of *Streptococcus mutans*. Oral Microbiol Immunol 2(3):136-8.

Li H, Darbin R. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26(5):895-95.

Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J. 2009. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25(15):1966-7.

Li R, Smith KD, Davis JH, Gordon PB, Breaker RR, Strobel SA. 2013. Eukaryotic resistance to fluoride toxicity mediated by a widespread family of fluoride export proteins. Proc Natl Acad Sci U S A 110(47):19018-23.

Li X, Hoogenkamp MA, Ling J, Crielard W, Deng DM. 2014. Diversity of *Streptococcus mutans* strains in bacterial interspecies interactions. J Basic Microbiol 54(2):97-103.

Li YH, Bowden GH. 1994. The effect of environmental pH and fluoride from the substratum on the development of biofilms of selected oral bacteria. J Dent Res 73(10):1615-26.
References

Liao Y, Brandt BW, Zhang M, Li J, Crielaard W, van Loveren C, Deng DM. 2016. A Single nucleotide change in the promoter mutP enhances fluoride resistance of Streptococcus mutans. Antimicrob Agents Chemother 60(12):7509-7512.

Liao Y, Chen J, Brandt BW, Zhu Y, Li J, van Loveren C, Deng DM. 2015. Identification and functional analysis of genome mutations in a fluoride-resistant Streptococcus mutans strain. PLoS One 10(4):e0122630.

Loesche WJ. 1986. Role of Streptococcus mutans in human dental decay. Microbiol Rev 50(4):353-80.

Loesche WJ, Syed SA, Murray RJ, Mellberg JR. 1975. Effect of topical acidulated phosphate fluoride on percentage of Streptococcus mutans and Streptococcus sanguis in plaque. II. Pooled occlusal and pooled approximal samples. Caries Res 9(2):139-55.

Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y et al. 2012. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1(1):18.

Lynch RJ, Smith SR. 2012. Remineralization agents - new and effective or just marketing hype? Adv Dent Res 24(2):63-7.

Maamar H, Raj A, Dubnau D. 2007. Noise in gene expression determines cell fate in Bacillus subtilis. Science 317(5837):526-9.

Maltz M, Emilson CG. 1982. Susceptibility of oral bacteria to various fluoride salts. J Dent Res 61(6):786-90.

Marceau A, Zagorec M, Chailleul S, Mera T, Champonnier-Verges MC. 2004. Evidence for involvement of at least six proteins in adaptation of Lactobacillus sakei to cold temperatures and addition of NaCl. Appl Environ Microbiol 70(12):7260-8.

Marcusson LL, Frimodt-Moller N, Hughes D. 2009. Interplay in the selection of fluoroquinolone resistance and bacterial fitness. PLoS Pathog 5(8):e1000541.

Marquis RE. 1990. Diminished acid tolerance of plaque bacteria caused by fluoride. J Dent Res 69 Spec No:672-5; discussion 682-3.

Marquis RE. 1995. Antimicrobial actions of fluoride for oral bacteria. Can J Microbiol 41(11):955-64.

Marquis RE, Clock SA, Mota-Meira M. 2003. Fluoride and organic weak acids as modulators of microbial physiology. FEMS Microbiol Rev 26(5):493-510.

Marsh PD, Keevil CW, Ellwood DC. 1984. Relationship of bioenergetic processes to the pathogenic properties of oral bacteria. J Dent Res 63(3):401-6.

Marsh PD, Keevil CW, McDermid AS, Williamson MI, Ellwood DC. 1983. Inhibition by the antimicrobial agent chlorhexidine of acid production and sugar transport in oral streptococcal bacteria. Arch Oral Biol 28(3):233-40.

Mason B, Moore CB. 1982. Principles of geochemistry (4th ed.). New York: Wiley. p. 386-399.

Matsui R, Cvitkovitch D. 2010. Acid tolerance mechanisms utilized by Streptococcus mutans. Future Microbiol 5(3):403-17.

McNeill K, Hamilton IR. 2003. Acid tolerance response of biofilm cells of Streptococcus mutans. Future Microbiol 5(3):403-17.

Melynk AH, Wong A, Kassen R. 2015. The fitness costs of antibiotic resistance mutations. Evol Appl 8(3):273-83.

Men X, Shibata Y, Takeshita T, Yamashita Y. 2016. Identification of anion channels responsible for fluoride resistance in oral streptococci. PLoS One 11(11):e0165900.

Meurman JH. 1988. Ultrastructure, growth, and adherence of Streptococcus mutans after treatment with chlorhexidine and fluoride. Caries Res 22(5):283-7.

Meza E, Becker J, Bolivar F, Gosset G, Wittmann C. 2012. Consequences of phosphoenolpyruvate:sugar phosphotransferase system and pyruvate kinase isozymes inactivation in central carbon metabolism flux distribution in Escherichia coli. Microb Cell Fact 11:127.

Mitsuhashi C, Puteri MM, Ohara Y, Tatsukawa N, Kozai K. 2014. Possible involvement of enolase in fluoride resistance in Streptococcus mutans. Pediatric Dental Journal 24(1):12-16.

Moye ZD, Zeng L, Burne RA. 2014. Modification of gene expression and virulence traits in Streptococcus mutans in response to carbohydrate availability. Appl Environ Microbiol 80(3):972-85.

Murakami KS, Masuda S, Campbell EA, Muzzin O, Darst SA. 2002. Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science 296(5571):1285-90.

Murata T, Hanada N. 2016. Contribution of chloride channel permease to fluoride resistance in Streptococcus mutans. FEMS Microbiol Lett 363(11).

Naumova EA, Kuehl P, Hertenstein P, Markovic L, Jordan RA, Gaengler P, Arnold WH. 2012. Fluoride bioavailability in saliva and plaque. BMC Oral Health 12:3.

Ng EY, Truelove M, Hooper DC. 1994. Quinolone resistance mediated by norA: physiologic characterization and relationship to flaB, a quinolone resistance locus on the Staphylococcus aureus chromosome. Antimicrob Agents Chemother 38(6):1345-55.
References

Ng PC, Henikoff S. 2003. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 31(13):3812-4.

Normark BH, Normark S. 2002. Evolution and spread of antibiotic resistance. J Intern Med 252(2):91-106.

Pandit S, Kim HH, Song KY, Jeon JG. 2013. Relationship between fluoride concentration and activity against virulence factors and viability of a cariogenic biofilm: in vitro study. Caries Res 47(6):539-47.

Pandit S, Kim JE, Jung KH, Chang KW, Jeon JG. 2011. Effect of sodium fluoride on the virulence factors and composition of Streptococcus mutans biofilms. Arch Oral Biol 56(7):643-9.

Parfenyev AN, Salminen A, Halonen P, Hachimori A, Baykov AA, Lahti R. 2001. Quaternary structure and metal ion requirement of family II pyrophosphatases from Bacillus subtilis, Streptococcus gordonii, and Streptococcus mutans. J Biol Chem 276(27):24511-8.

Picollo A, Xu Y, Johner N, Berneche S, Accardi A. 2012. Synergistic substrate binding determines the stoichiometry of transport of a prokaryotic H+Cl- exchanger. Nat Struct Mol Biol 19(5):525-31, S1.

Rapp M, Granesh E, Seppala S, von Heijne G. 2006. Identification and evolution of dual-topology membrane proteins. Nat Struct Mol Biol 13(2):112-6.

Ren A, Rajashankar KR, Patel DJ. 2012. Fluoride ion encapsulation by Mg2+ ions and phosphates in a fluoride riboswitch. Nature 486(7401):85-9.

Rolla G, Melsen B. 1975. Desorption of protein and bacteria from hydroxyapatite by fluoride and monofluorophosphate. Caries Res 9(1):66-73.

Rosen S, Free JJ, Hsu SM. 1978. Effect of fluoride-resistant microorganisms on dental caries. J Dent Res 57(2):180.

Russell JB. 2007. The energy spilling reactions of bacteria and other organisms. J Mol Microbiol Biotechnol 13(1-3):1-11.

Schilling K, Blitzer M, Bowen W. 1989. Adherence of Streptococcus-mutans to glucans formed in situ in salivary pellicle. Journal of Dental Research 68:1678-1680.

Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101-8.

Shani S, Friedman M, Steinberg D. 2000. The anticariogenic effect of amine fluorides on Streptococcus sobrinus and glucosyltransferase in biofilms. Caries Res 34(3):260-7.

Sheng JY, Huang ZW, Liu Z. 2005. [A comparison of the activities of membrane-bound, proton translocating ATPases between Streptococcus mutans fluoride-resistant and their parent strains]. Shanghai Kou Qiang Yi Xue 14(1):71-3.

Sheng JY, Liu Z. 2000. Acidogenicity and acidurance of fluoride-resistant Streptococcus sobrinus in vitro. Chin J Dent Res 3(2):7-14.

Sheppard SK, Didelot X, Merc G, Torralbo A, Jolley KA, Kelly DJ, Bentley SD, Maiden MC, Parkhill J, Falush D. 2013. Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter. Proc Natl Acad Sci U S A 110(29):11923-7.

Sherman DR, Mdluli K, Hickey MJ, Arain TM, Morris SL, Barry CE, 3rd, Stover CK. 1996. Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science 272(5268):1641-3.

Smoot LM, Smoot JC, Graham MR, Somerville GA, Sturdevant DE, Migliaccio CA, Sylva GL, Musser JM. 2001. Global differential gene expression in response to growth temperature alteration in group A Streptococcus. Proc Natl Acad Sci U S A 98(18):10416-21.

Stockbridge RB, Kolmakova-Partensky L, Shane T, Koide A, Koide S, Miller C, Newstead S. 2015. Crystal structures of a double-barrelled fluoride ion channel. Nature 525(7570):548-51.

Stockbridge RB, Lim HH, Otten R, Williams C, Shane T, Weinberg Z, Miller C. 2012. Fluoride resistance and transport by riboswitch-controlled CLC antiporers. Proc Natl Acad Sci U S A 109(38):15289-94.

Sutton SV, Bender GR, Marquis RE. 1987. Fluoride inhibition of proton-translocating ATPases of oral bacteria. Infect Immun 55(11):2597-603.

Svensäter G, Larsson UB, Greif EC, Cvitkovitch DG, Hamilton IR. 1997. Acid tolerance response and survival by oral bacteria. Oral Microbiol Immunol 12(5):266-73.

Tao L, Sudcliffe IC, Russell R, Ferretti JJ. 1993. Cloning and expression of the multiple sugar metabolism (msm) operon of Streptococcus mutans in heterologous streptococcal hosts. Infect Immun 61(3):1121-5.

Toprak E, Veres A, Michel JB, Chait R, Hartl DL, Kishony R. 2012. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nat Genet 44(1):101-5.
References

Truniger V, Boos W. 1993. Glycerol uptake in *Escherichia coli* is sensitive to membrane lipid composition. Res Microbiol 144(7):565-74.

Vadeboncoeur C, Pelletier M. 1997. The phosphoenolpyruvate:sugar phosphotransferase system of oral streptococci and its role in the control of sugar metabolism. FEMS Microbiol Rev 19(3):187-207.

Valentini G, Chiarelli L, Fortin R, Speranza ML, Galizzi A, Mattevi A. 2000. The allostery regulation of pyruvate kinase. J Biol Chem 275(24):18145-52.

Van Loveren C. 1990. The antimicrobial action of fluoride and its role in caries inhibition. J Dent Res 69 Spec No:676-81; discussion 682-3.

Van Loveren C. 2001. Antimicrobial activity of fluoride and its *in vivo* importance: identification of research questions. Caries Res 35 Suppl 1:65-70.

Van Loveren C, Buijs JF, Ten Cate JM. 1993. Protective effect of topically applied fluoride in relation to fluoride sensitivity of mutants streptococci. J Dent Res 72(8):1184-90.

Van Loveren C, Buys JF, De Soet JJ, De Graaff J, Ten Cate JM. 1991a. Competition between fluoride-resistant and fluoride-sensitive *Streptococcus mutans* in rat dental plaque. Caries Res 25(6):424-30.

Van Loveren C, Hoogenkamp MA, Deng DM, Ten Cate JM. 2008. Effects of different kinds of fluorides on enolase and ATPase activity of a fluoride-sensitive and fluoride-resistant *Streptococcus mutans* strain. Caries Res 42(6):429-34.

Van Loveren C, Lammens AJ, Ten Cate JM. 1989. *In vitro* induced fluoride resistance of *Streptococcus mutans* and dental caries in rats. Caries Res 23(5):358-64.

Van Loveren C, Lammens AJ, Ten Cate JM. 1990. Development and establishment of fluoride-resistant strains of *Streptococcus mutans* in rats. Caries Res 24(5):337-43.

Van Loveren C, Spitz LM, Buijs JF, Ten Cate JM, Eisenberg AD. 1991b. *In vitro* demineralization of enamel by F-sensitive and F-resistant mutants streptococci in the presence of 0, 0.05, or 0.5 mmol/L NaF. J Dent Res 70(12):1491-6.

Van Loveren C, Van de Plassche-Simons YM, De Soet JJ, De Graaff J, Ten Cate JM. 1991c. Acidogenesis in relation to fluoride resistance of *Streptococcus mutans*. Oral Microbiol Immunol 6(5):288-91.

Van Palenstein Helderman WH, Ijsseldijk M, Huis in ’t Veld JH. 1983. A selective medium for the two major subgroups of the bacterium *Streptococcus mutans* isolated from human dental plaque and saliva. Arch Oral Biol 28(7):599-603.

Walsh T, Worthington HV, Glenny AM, Appelbe P, Marinho VC, Shi X. 2010. Fluoride toothpastes of different concentrations for preventing dental caries in children and adolescents. Cochrane Database Syst Rev(1):CD007868.

Weinstein LH, Davidson A. 2004. Fluorides in the environment: effects on plants and animals. Cambridge, MA: CABI.

Welin-Neilands J, Svensäter G. 2007. Acid tolerance of biofilm cells of *Streptococcus mutans*. Appl Environ Microbiol 73(17):5633-8.

Yamada T, Carlsson J. 1975. Glucose-6-phosphate-dependent pyruvate kinase in *Streptococcus mutans*. J Bacteriol 124(1):562-3.

Yoneyama H, Hori H, Lim SJ, Murata T, Ando T, Isogai E, Katsumata R. 2011. Isolation of a mutant auxotrophic for L-alanine and identification of three major aminotransferases that synthesize L-alanine in *Escherichia coli*. Biosci Biotechnol Biochem 75(5):930-8.

Zeng X, Brown S, Gillespie B, Lin J. 2014. A single nucleotide in the promoter region modulates the expression of the beta-lactamase OXA-61 in *Campylobacter jejuni*. J Antimicrob Chemother 69(5):1215-23.

Zhu L, Zhang Z, Liang J. 2012. Fatty-acid profiles and expression of the fabM gene in a fluoride-resistant strain of *Streptococcus mutans*. Arch Oral Biol 57(1):10-4.

Zoraghi R, See RH, Gong H, Lian T, Swayze R, Finlay BB, Brunham RC, McMaster WR, Reiner NE. 2010. Functional analysis, overexpression, and kinetic characterization of pyruvate kinase from methicillin-resistant *Staphylococcus aureus*. Biochemistry 49(35):7733-47.
Acknowledgements

When I started as a guest scholar at ACTA in January 2014, I never expected to finish the journey with a PhD defense. This thesis would be non-existing without the wonderful people who have helped and supported me all along.

Prof. dr. W. Crielaard, dear Wim: thank you for accepting me as a PhD candidate at ACTA. I have enjoyed our progress meetings and “brainstorming” sessions. Your knowledge and experience in dental research have been precious to me. Moreover, I have learned a lot from your enthusiasm and meticulousness in doing research.

Prof. dr. C. van Loveren, dear Cor: your doctoral thesis from 1990 is the basis and inspiration of my own thesis. You provided me not only with the fluoride-resistant Streptococcus mutans strain, but also with valuable suggestions based on your expertise in microbiology. I have also learned from you the virtue of kindness and humbleness, which will guide me in my future life and career.

Dr. D. Deng, dear Dongmei: when I first came as a total green hand, it was you who taught me all the ABC’s in the lab. I would not have made it so far without your patient guidance. You have always trusted me in developing the topic into my own research project. You have also shown me the spirit of a true scientist with your everlasting energy in work.

Dr. B.W. Brandt, dear Bernd: we have spent massive time discussing the thesis. Your input means really a lot to me. Whenever I come with a question, you are always ready to help. Also in life you prove to be a perfect teacher and loyal friend. I will always remember the wonderful times we have spent together.

I am grateful to the reading committee for reading this manuscript and attending the defense ceremony.

Prof. dr. J. Li, dear prof. Li: you have showed me the way in endodontics. You have strongly supported me during my stay abroad. I have learned from you the clinics skills, as well as the integrity as a dentist and researcher. As it says in Chinese, 一日为师，终身为父, “A teacher for a day is a father for a lifetime”. I feel blessed to have you in my life.

Dr. Y. Liu, dear Maria: you have been extremely kind with me. Your courage and wisdom in life has encouraged me to confront the difficulties along the way.

To my (former and later) roommates at ACTA: Carolien, Elly, Wendy,
Acknowledgements

Mark, Michel, Rob, Andrei and Ilaria, thank you for your kindness and friendliness all the time. You helped me through the very first period when I just came and found everything curious. In work I have also benefitted a lot from your suggestions and support. I enjoyed all the talks and drinks these years.

I want to express my gratitude to my other colleagues in the department: prof. dr. J. M. ten Cate, prof. dr. B.J.F. Keijser, prof. dr. E. Zaura, dr. B.P. Krom, dr. J. J. de Soet and dr. ir. M. H. van der Veen. Of course there are more colleagues and friends in the department I would like to thank: Alexa, Catherine, Charifa, Guus, Ilona, Jessica, Marwa, Marleen, Maxim, Nina, Sultan, Suzette, Thijs and many others. Also to my fellow Chinese friends who used to be or are still working in the department: Min, Lin (Wang), Lijia, Hongyan, Yanling, Qi, Yang, Lin (Shang), Jingmei and Minnie, thank you for sharing this experience with me.

To my colleagues and friends at ACTA: Martijn, Hui, Yixuan, Francis, Elmira, Gang, Ana, Janak, Naichuan, Fereshteh, Sabrina, and many others, I am grateful to have met and worked with you. Dear Patrick, I will miss all the “tea breaks” when we shared joy and frustrations with each other. Dear Henri and Suzanne, your wisdom and experience, as well as your friendliness, is something I admire and appreciate.

My special thanks go to my paranymphs, Athina and Fei. I am so lucky to have you girls by my side at the defense. It has been my great pleasure getting to know you and sharing my life with you.

当然,我非常感激我的父母。感谢你们给了我这样一个温暖的家,在我彷徨失落时做我的避风港。是你们无条件的信任和支持让我走到了今天。我爱你们！还有我亲爱的亲人们，谢谢你们的支持和爱护！

At last, dear Xingnan: you are the best thing that happened to me during my four-year stay in the Netherlands. Thank you for the comfort, understanding, support and love! Having you with me to face the future adventures, is my source of hope and courage.未来还请多多关照！
List of publications and conferences

Publications in this thesis
Liao Y, Chen J, Brandt BW, Zhu Y, Li J, van Loveren C, Deng DM. 2015. Identification and functional analysis of genome mutations in a fluoride-resistant Streptococcus mutans strain. PLoS One 10(4):e0122630.
Liao Y, Brandt BW, Zhang M, Li J, Crielaard W, van Loveren C, Deng DM. 2016. A Single nucleotide change in the promoter mutp enhances fluoride resistance of Streptococcus mutans. Antimicrob Agents Chemother 60(12):7509-7512.
Liao Y, Brandt BW., Li J., Crielaard W., van Loveren C, Deng DM. 2017. Fluoride resistance in Streptococcus mutans: a mini review. J Oral Microbiol 9(1):1344509.
Liao Y, Brandt BW, Yang J, Li J, Crielaard W, van Loveren C, Deng DM. 2017. Genetic loci associated with fluoride resistance in Streptococcus mutans. Submitted to J Dent Res.
Cai Y, Liao Y, Brandt BW, Wei X, Liu H, Crielaard W, van Loveren C, Deng DM. 2017. The fitness cost of fluoride resistance for different Streptococcus mutans strains in biofilms. Front Microbiol 8:1630. doi: 10.3389/fmicb.2017.01630 (accepted)

Other publications
Liang K, Gao Y, Li J, Liao Y, Xiao S, Lv H, He L, Cheng L, Zhou X, Li J. 2014. Effective dentinal tubule occlusion induced by polyhydroxy-terminated PAMAM dendrimer in vitro. RSC Advances 4(82):43496-503.
Liang K, Gao Y, Li J, Liao Y, Xiao S, Zhou X, Li J. 2015. Biomimetic mineralization of collagen fibrils induced by amine-terminated PAMAM dendrimers–PAMAM dendrimers for remineralization. J Biomater Sci Polym Ed 26(14):963-74.
Zhang M, Wang R, Liao Y, Buijs MJ, Li J. 2016. Profiling of Oral and Nasal Microbiome in Children With Cleft Palate. Cleft Palate Craniofac J 53(3):332-8.

Scientific conferences participation
ORCA 2015, Brussels, Belgium
Identification and functional analysis of genome mutations in a fluoride-resistant Streptococcus mutans strain. (Abstract and poster presentation)
List of publications

OMIG 2016, Gregynog, Wales, United Kingdom
A single nucleotide change leads to enhanced fluoride resistance in Streptococcus mutans. (Oral presentation)

ORCA 2016, Athens, Greece
A single nucleotide change in Streptococcus mutans enhances fluoride resistance and alters virulence factors. (Abstract and poster presentation)

AMZA 2017, Amsterdam, the Netherlands
Fluoride resistance in Streptococcus mutans. (Oral presentation)

ORCA 2017, Oslo, Norway.
Identification of genomic mutations related to fluoride resistance in Streptococcus mutans. (Abstract)