Leptotrichia species in human infections II

Emenike R. K. Eribe and Ingar Olsen

Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway

ABSTRACT

Leptotrichia species are non-motile facultative anaerobic/anaerobic bacteria that are found mostly in the oral cavity and some parts of the human body, in animals, and even in ocean sediments. Valid species include L. buccalis, L. goodfellowii, L. hofstadii, L. honkongensis, L. shahii, L. trevisanii, and L. wadei. Some species require serum or blood for growth. All species ferment carbohydrates and produce lactic acid that may be involved with tooth decay. Acting as opportunistic pathogens, they are involved in a variety of diseases, and have been isolated from immunocompromised but also immunocompetent individuals. Mucositis, oral lesions, wounds, and abscesses may predispose to Leptotrichia septicaemia. Because identification of Leptotrichia species by phenotypic features occasionally lead to misidentification, genetic techniques such as 16S rRNA gene sequencing is recommended. Early diagnosis and treatment of leptotrichia infections is important for positive outcomes. Over the last years, Leptotrichia species have been associated with several changes in taxonomy and new associations with clinical diseases. Such changes are reported in this updated review.

Introduction

Leptotrichia is one of four genera within the family Leptotrichiaceae. Description of Leptotrichiaceae is based on phylogenetic analyses of the 16S rRNA gene sequences. Leptotrichia species are facultative anaerobic/anaerobic Gram-negative rods that inhabit the oral cavity, intestines, urogenital system, and female genital tract of humans [1–5]. They are non-motile and ferment carbohydrates to produce various organic acids, including lactic acid, and traces of acetic, formic, or succinic acid, depending on the substrates and species. Some species are fastidious, requiring serum or blood for growth [1–3]. L. buccalis was for centuries the only known Leptotrichia species, but new species have now been formally accepted, which include L. goodfellowii, L. hofstadii, L. shahii, L. trevisanii, and L. wadei (Figure 1) [2,4,5] and L. honkongensis [6]. As with other members of the oral commensal microbiota, Leptotrichia species are also associated with periodontal diseases and oral cavity abscesses [5,7,8], typically as opportunistic infections. However, isolation of Leptotrichia species from infective endocarditis patients with normally functioning immune systems has been also reported [5,9–12]. Leptotrichia species can cause opportunistic infections that lead to bacteremia in neutropenic patients with oral mucosal injuries [2,5] and bacteremia due to L. trevisanii after an allogeneic bone-marrow transplant [13]. Although systemic infections involving Leptotrichia species are infrequent, severe infections have been reported in immunocompromised patients [2,4,7,9,10,13–19].

Some species have been recovered from the human oral cavity, while others such as L. buccalis and L. goodfellowii have been recovered from dog bites [20] and guinea-pig wounds [6,21]. Based on 16S rDNA sequences comparisons Leptotrichia species were isolated from the hindgut of termites, fish, and even ocean sediments (Table 2) [3]. Most mammals may have their own versions of human oral species, which are typically host-species specific.

In most cases, the cause of Leptotrichia infections has been L. buccalis. Since previous reviews [2,3], Leptotrichia species have been reported in >124 cases [4,7,16–18,69–87–93], whereby 30 cases involved L. buccalis [4,8,15,21,34,52,56,70–79,87], 24 cases L. wadei [4,20,24,34,37,42,48,56,67,80,81,90,93], 16 cases L. trevisanii [4,5,9,10,13,14,17,37,87], 14 cases L. hofstadii [34,40,49,56,81–84,93], 10 cases L. goodfellowii [4,11,12,21,56,74,85,87], eight cases L. honkongensis [4,6,18,45,47,56], and five L. shahii [34,56,86]. L. trevisanii and L. wadei bacteremias are extremely rare; clinicians should consider these species in cases involving immunocompromised patients with oral lesions [4,5,13,17,87]. The aim of the present review is to update the knowledge on the genus Leptotrichia as given in previous reports, adding information published after 2008 [2,3].
Taxonomy

Leptotrichia was recognized and described by van Leeuwenhoek in 1683, and the genus was established in 1879 by Trevisan [2,3]. Leptotrichia ferments carbohydrates, producing lactic acid as its major metabolic end product [2,3]. The primary habitat has been considered to be the oral cavity.

In Bergey’s Manual of 2005 [95] and based on comparative analysis of 16S rDNA sequences [31], the genus Leptotrichia is placed in the phylum Fusobacteria in the family II Leptotrichiaceae with Leptotrichia as the first genus. Other genera of this family include Sebaldella, Sneathia, and Streptobacillus [3,95].

The genus Leptotrichia comprises seven formally described species: L. buccalis is the type species of the genus, followed by L. goodfellowii, L. hofstadii, L. hongkongensis, L. shahii, L. trevisanii, and L. wadei (Figure 1) [1–3,6,96]. Their characteristics have been described in detail elsewhere [1,6,95] and will not be repeated here. L. amnionii is not validly published [2,97]. However, based on 16S rRNA gene sequences, L. amnionii was suggested to be transferred to the genus Sneathia [1,2], and recently, a strain with similar resemblances and features was characterized, renamed, and transferred to the genus Sneathia as S. amnii [98]. For this reason, L. amnionii will not be discussed in this review.

Genomics

The whole genomes of 12 Leptotrichia species have been completely sequenced [99,100]. A short description of these species and their genomic features are given in Table 1. In addition, a large variety of 16S rRNA gene Leptotrichia nucleotide sequences exists in various databases (e.g. in HOMD; www.homd.org), NCBI GenBank, RDP, DNA data Bank of Japan (DDBJ), and other private databases. For instance, a survey from the NCBI GenBank showed that >4,800 Leptotrichia nucleotide sequences were registered and deposited as of 7 August 2017. The sequences came from material collected from humans, animals, fish, and ocean sediment. A representative phylogenetic tree based on 4,800 Leptotrichia sequences showing the diversity of the species aligned by ClustalW is given in Figure 1. The phylogenetic tree was generated by neighbor joining based on 500 bootstrap replicates and reconstructed with MEGA7 software (www.megasoftware.net).
Species	Short description of species	Median total length (Mb)	Median gene count	Median protein count	Median GC%	Accession number	Depositor or source
Leptotrichia buccalis	This Gram-negative rod is a member of the normal human oral microbial community but has occasionally been implicated in cases of septicemia and endocarditis	2.46561	2.309	2.182	29.6	NC_013192	JGI-PGF
Leptotrichia goodfellowii	The species contain Gram-negative anaerobic rods isolated from human sources (blood)	2.28422	2.199	2.079	31.55	AZXW00000000	JGI-PGF
Leptotrichia hofstadii	Gram-negative, non-spore-forming, non-motile rods isolated from the saliva of a healthy person	2.50859	2.413	2.156	30.65	AUAY00000000	JGI-PGF
Leptotrichia shahii	Gram-negative, non-spore-forming, non-motile rods isolated from a gingivitis patient	2.14461	1.982	1.888	29.5	ARDD00000000	JGI-PGF
Leptotrichia trevisanii	Gram-negative, aerobic, non-spore-forming, non-motile rods, isolated from blood of a patient with acute myeloid leukemia	2.65336	2.648	2.500	30.4	AXVL00000000	JGI-PGF
Leptotrichia wadei	Gram-negative rods, facultative, non-motile, non-spore-forming, isolated from saliva of a healthy person	2.35345	2.215	2.069	29.3	ARDS00000000	JGI-PGF
Leptotrichia sp. oral taxon 879 str. F0557	Isolates from a population of *Leptotrichia*, clearly distinct from currently recognized species. Tentatively designated at the species level. Unnamed isolates have not yet been characterized using traditional methods, and the species name has not yet been validly published.	2.41755	2.293	2.177	29.7	AWVL00000000	NCBI
Leptotrichia sp. oral taxon 215 str. W9775	Isolates from a population of *Leptotrichia*, clearly distinct from currently recognized species. Tentatively designated at the species level. Unnamed isolates have not yet been characterized using traditional methods, and the species name has not yet been validly published.	2.30849	2.158	2.052	31.4	AWVR01000000	NCBI
Leptotrichia sp. Marseille-P3007	Leptotrichia massiliensis was isolated from sputum in a healthy patient as part of a ‘culturomics’ study aiming at cultivating all bacteria in human stool	2.53864	2.388	2.307	29.7	NZ_FNV20000000	NCBI
Leptotrichia sp. oral taxon 212 str. W10395	Isolates from a population of *Leptotrichia*, clearly distinct from currently recognized species. Tentatively designated at the species level. Unnamed isolates have not yet been characterized using traditional methods, or the species name has not yet been validly published.	2.4449	2.289	2.159	31.4	CP012410	NCBI
Leptotrichia sp. oral taxon 847 str.F0260	Isolates from a population of *Leptotrichia*, clearly distinct from currently recognized species. Tentatively designated at the species level. Unnamed isolates have not yet been characterized using traditional methods, or the species name has not yet been validly published.	2.19494	2.070	1.939	29.8	CP014231	NCBI
Leptotrichia sp. oral taxon 225 str. F0581	Isolates from a population of *Leptotrichia*, clearly distinct from currently recognized species. Tentatively designated at the species level. Unnamed isolates have not yet been characterized using traditional methods, or the species name has not yet been validly published.	2.4008	2.248	2.155	29.6	AWV50000000	NCBI

Table adopted and modified from Gupta et al. [100].

JGI-PGF, US DOE Joint Genome Institute; NCBI, www.ncbi.nlm.nih.gov-genome-genomes/149617
Table 2. Update on reported Leptotrichia infections. Cases 1–54 were reported in a previous review by the authors [2]

Case	Sex (years)	Leptotrichia species identified	Clinical-associated disease/predisposing factors/recovery	Suggested source and port of entry (type of material)	Other microbe(s) isolated/identification type	Reference
55	US	Leptotrichia spp., L. wadei, L. goodfellowii, L. trevisani, L. hongkongensis, L. buccalis	Wounds, respiratory, amniotic fluid, multiple myeloma, neutropenic fever, mucositis, HSCT, R	Blood, wounds, respiratory, amniotic fluid, (bacteremia)	Polymicrobial containing pathogens (viridans group streptococci, E. faecium, B. urealyticus, Streptococcus S. infantis, or F. nucleatum), culture, DNA sequencing	[4]
56	F 74	L. trevisani	Immunocompetent, pharyngeal pain, RSRTW, normal renal function, AML, MLS, PA, oral lesion, fever, pneumonia, R, SD	Blood (bacteremia)	Enterococcus faecium, S. epidermidis, fungus, culture, 16S rRNA gene sequencing	[5]
57	F 66	L. hongkongensis	Metastatic breast carcinoma, cataract, lesions of lungs, pleura, lymph node, metastatic bilateral retinal detachment, fever, colonic polyph, R	Blood, mouth (bacteremia)	Culture, 16S rRNA gene sequencing, groEL, gyrB, recA, rapB genes	[6]
58	MF 52.3 ± 22.3	Leptotrichia spp.	Liver abscess, neutropenic sepsis, mucositis, HF, AML, intraabdominal, oropharyngeal and pelvic, cholangiocarcinoma, some D, some R	Blood (bacteremia)	Propionibacterium spp., Bacteroides spp., M. morganii, D. pneumosintes, E. faecalis, B. fragilis, K. oxytoca, Prevotella spp., E. coli, Clostridium spp., P. perffringens, C. tertium, Fusobacterium spp., anaerobic Gram-positive cocci, cultures, 16S rRNA gene sequencing	[7]
59	US	L. buccalis	Root canals, open cavities, provoked pain, sinus tract, palpation	Root canals	E. faecalis, C. gracilis, E. staurureum, M. melonogenicta, T. socarinski, M. micros, P. gingivalis, P. endodontalis, P. nigens, S. anginosus, F. nuc. sp. vicenti, F. nuc. sp. nucleatum, V. parvula, N. mucosa, checkerboard DNA–DNA hybridization	[8]
60	M 53	L. trevisani	PBST, myeloblastic chemotherapy, NHL, NF, relapsed follicular, mucositis, multiple myeloma, R	Blood (bacteremia)	Sphingomonas paucimobilis, cultures, RapID ANA II, Vitek, 16S rRNA gene sequencing	[9]
61	M 56	L. trevisani	PBST, multiple myeloma, NHL, mucositis, NF, myeloblastic chemotherapy, relapsed follicular, R	Blood (bacteremia)	Sphingomonas paucimobilis, cultures, RapID ANA II, Vitek, 16S rRNA gene sequencing	[10]
62	F 63	L. trevisani	PBST, AML, MPS, NF, NF, myeloblastic chemotherapy, mucositis, R	Blood (bacteremia)	Sphingomonas paucimobilis, cultures, RapID ANA II, Vitek, 16S rRNA gene sequencing	[11]
63	F 12	L. trevisani	AML, mandible tumor, stomatitis, PBST, NF, chemotherapy, R	Blood (bacteremia)	Tissierella praeacuta, culture, RapID ANA II, Vitek, 16S rRNA gene sequencing	[12]
64	M 66	L. trevisani	Esophageal carcinoma, cheemotherapy, NF, dysphagia, esophageal lesion, R	Blood (bacteremia)	Cultures, VMS, MALDI-TOF MS, 16S rRNA gene sequencing	[13]
65	M 78	L. goodfellowii	Immunocompetent, dyspnea, nausea, HF, DI, BC, hypertension, periumbilical pain, bilateral opacities, lung lesion, bronchopneumonia, fever, pulmonary edema, R	Blood (bacteremia)	Culture, GC, RapID ANAII test, 16S rRNA gene sequencing	[14]
66	M 44	L. goodfellowii	Immunocompetent, bioprosthetic pulmonic valve, headaches, aortic valve homograft, fever, infective endocarditis, chronic night sweats (diaphoretic), fatigue, inflammatory markers (ESR and CRP), elevated R	Blood (bacteremia)	Culture, 16S rRNA gene sequence	[15]
67	M 55	L. trevisani	Myelodysplastic syndrome, fever, trisomy, nausea, stomatitis, gum bleeding, mucositis, chemotherapy, neutropenic, pancytopenia, R	Blood (bacteremia)	Cultures, 16S rRNA gene sequence	[16]
68	F 80	L. buccalis	Subacute dyspnea, AML, mucositis, malaise, mild PBSB, thrombocytopenia, neutropenic fever, moderate normocytic anemia, blood transfused, R	Blood (bacteremia)	Gram-negative rod, cultures, 16S rRNA gene sequencing	[17]
69	MF 2–97	Leptotrichia spp.	Coronary artery disease, candidal esophagitis, DI, DU, EG, GRD, GU, HH, RE, IM, chronic kidney disease, UGIB, RT, sarcoidosis	Gastric fluid	Lactobacillus spp., Bacteroidetes, Fusobacterium spp., Proteobacteria, R. dentocariosa, Firmicutes, Actinobacteria, A. odontolyticus, Prevotella, H. pylori, C. concisus, C. albicans, C. parapalis, C. tropicalis, P. pneumonia, qPCR, HTS	[18]

(Continued)
Case	Sex (years)	Leptotrichia species identified	Clinical-associated disease/predisposing factors/recovery	Suggested source and port of entry (type of material)	Other microbes isolated/identification type	Reference
70	F 69	L. trevisanii	Diffuse large B-cell lymphoma, mucositis, febrile	Stool, blood (bacteremia)	Culture, MALDI-TOF MS, 16S rRNA gene sequencing	[17]
			diarheal syndrome, catheter-related bloodstream infection, post-transplant aplasia, febrile, blood progenitor-cell transplantation, R			
71	M/F 71.1	L. hongkongensis, Leptotrichia spp., Leptotrichia sp. oral taxon	Pancreatic cancer	Saliva, mouth	Porphyromonas, Bacteroides, Neisseria, qPCR, HTS	[18]
74	M/F 62–66	Leptotrichia spp.	Other disease (including cancer)	Saliva (mouth)	Porphyromonas, Bacteroides, qPCR, HTS	[19]
74	M/F 62–66	Leptotrichia spp.	HNSCC, OPSCC-HPV negative	Tumor tissues, saliva	Streptococcus, Peptostreptococcus, Staphylococcus, Neisseria, Haemophilus, Eikenella, Citrobacter, Parvimonas, Tannerella, Lactobacillus, Prevotella, qPCR, HTS	
74	M/F 62–66	Leptotrichia spp.	HNSCC, OPSCC-HPV positive	Tumor tissues, saliva	Streptococcus, Peptostreptococcus, Weeksellaeae, Tannarella, Parvimonas, Staphylococcus, Prevotella, Lactobacillus, Veillonella, qPCR, HTS	
74	M/F 62–66	Leptotrichia spp.	HNSCC, OSCC-HPV negative	Tumor tissues, saliva	Streptococcus, Peptostreptococcus, Lactobacillus, Haemophilus, Neisseria, Parvimonas, Staphylococcus, Prevotella, Tannerella, Eikenella, qPCR, HTS	
74	M/F 62–66	Leptotrichia spp.	HPV negative, NM	Tumor tissues, saliva	Streptococcus, Prevotella, Lactobacillus, Haemophilus, Gemella, Neisseria, Aggregatibacter, Lactatopia, Eikenella, qPCR, HTS	
78	F 62	L. trevisanii	Hematological disease, symptomatic myeloma, oral pain, multiple myeloma, relapsed, fever, persistent catarrhal, dyspnea, deep medullary aplasia, mucositis, febrile neutropenia, cough, allogeneic bone marrow transplant, R	Blood (bacteremia)	Cultures, MALDI-TOF, 16S rRNA gene sequencing	[13]
79	M/F 56.8 ± 13.9	Leptotrichia spp.	Hematological disease, AML, myeloma, gut hormone activity, BMT, acute lymphoid leukemia, chronic lymphoid leukemia, myelodysplastic syndrome, lymphoma, neutropenia, decubitus ulcer, sacrum decubitus bedsore, amygdalitis, dental abscess, mucositis, necrotic gingivitis, sigmoiditis, pteryritis	Blood (bacteremia)	Bacteroides spp., B. fragilis group, Fusobacterium spp., Clastidium spp., C. tertium, Staphylococcus spp., E. coli, P. intermedia, Enterococcus faecium, E. aerogenes, S. anginosus, S. sanguinis, S. mitis, S. constellatus, K. oxytoca, K. pneumoniae, culture, BacT/Alert 240 system	[22]
	(23.5–80.9)					
81	US	L. goodfellowi, L. buccalis, Leptotrichia spp., uncultured Leptotrichia sp. oral clone	Guinea pigs	Oral swab samples	Streptobacillus moniliformis, uncultured bacterium, PCR amplicons, DNA sequencing	[21]

(Continued)
Table 2. (Continued).

Case	Sex (years)	Leptotrichia species identified	Clinical-associated disease/predisposing factors/recovery	Suggested source and port of entry (type of material)	Other microbes isolated/Identification type	Reference	
82	M/F 82–92 ± 85.6	Leptotrichia spp.	Root caries	Plaque	Actinomyces, Selenomonas sp. clone, S. sputigena, Propionibacterium spp., P. acryloxydans, Actinomyces sp. clone, Prevotella spp., Veillonella spp.	[23]	
84	M 73	L. wadei, Leptotrichia spp.	Immunocompetent, pneumonia, hypoxemia, sore throat, fever, dyspnea, cough, leukocytosis, R	BALF, mouth-gargled water	Note: 1st case of pneumonia		
85	M/F 3–6	Leptotrichia	Caries-free male, male with caries, caries-free females, female with caries	Saliva, plaque	Capnocytophaga, Peptostreptococcus, Corynebacterium, Rothia, Veillonella, Granulicatella, Streptococcus, Actinomyces, Thiomonas, Kingella, Campylobacter, Fusobacterium, Erythrobacter, Atopobium, Oribacterium, Haemophilus, Neisseria, DGGE, HTS		
86	M/F 3–5	Leptotrichia spp.	Moderate caries	Plaque	Capnocytophaga, Gorynebacterium, Campylobacter, Haemophilus, mitis group streptococci, mutans group streptococci, Neisseria, Burkholderia, Actinomyces, Prevotella, DGGE, cloning, 16S rRNA gene sequencing		
89	M/F 25–39	Leptotrichia spp.	Unhealthy, gingivitis	Plaque, saliva	S. sanguinis, Veillonella, Prevotella, Fusobacterium, Rothia, TM7, H. parainfluenzae, Granulicatella, L. mirabilis, Selenomonas, Actinomyces, HTS, PCA		
91	F 21–23 ± 18	Leptotrichia spp.	Healthy	Plaque, saliva	S. sanguinis, Veillonella, Prevotella, Neisseria, Granulicatella, Selenomonas, Rothia, L. mirabilis, Acidaminococcus, Actinomyces, H. parainfluenzae, Fusobacterium, HTS, PCA		
92	M/F 3–6 Mo	Leptotrichia spp.	Edentulous infants	Saliva	Streptococcus, Haemophilus, Veillonella, Capnocytophaga, Treponema, Gemella, Prevotella, Fusobacterium, Actinomyces, Granulicatella, Porphyromonas, Oribacterium, Campylobacter, Neisseria, Rothia, HTS		
Table 2. (Continued).

Case	Sex (years)	Leptotrichia species identified	Clinical-associated disease/predisposing factors/recovery	Suggested source and port of entry (type of material)	Other microbes isolated/identification type	Reference
93	F ≤ 20, 21–30, ≥31	Leptotrichia spp.	Sexually active: young and old partners, HIV, vaginal discharge, candidiasis, trichomoniases	Vaginal fluid	Lactobacillus, Bifidobacterium, Diastreptococcus, Prevotella, Peptoniphilus non-lactis, G. vaginalis, Sneathia, Mobiluncus, M. hominis, Eggertella, A. vaginae, Lactobacillus, T. vaginalis, M. elsdenii, PCR	[30]
94	M 20–40	Leptotrichia spp.	Left skin feet	Skin emanation samples	Staphylococcus spp., Corynebacterium spp., Propionibacteria spp., Delftia spp., Baccillus spp., Pseudomonas spp., Brevibacterium spp., Actinobacteria Gp3 spp., Variorovax spp., Micrococcus spp., culture, 16S rRNA gene sequencing	[31]
95	F 17–21	Leptotrichia spp.	Sexually inactive: no sexual contact, vaginal discharge, or odor	Vaginal swab smear	G. vaginalis, Megasphaera, Atopobium vaginae, qPCR	[32]
	F 17–21	Leptotrichia spp.	Sexually active: no penile vaginal sex, vaginal discharge, or odor	Vaginal swab smear	G. vaginalis, Sneathia, Megasphaera, A. vaginae, qPCR	[33]
	M 81	Leptotrichia spp.	Sexually active: penile vaginal sex, vaginal discharge, or odor Immunocompetent, DI, cough, fever, fatigued, chills, RD, HSCT, CAP, dyspnea, lung cancer or vasculitis, rigors, cavity lesion, pneumonia, mild anemia, pulmonary diseases, bilateral lungs crackles, respiratory distress, R Note: 3rd case of pneumonia	Blood, bronchial wash fluid (bacteremia)	S. aureus, Streptococcus group B, viirdans Streptococcus, culture	[34]
99	M/F 18–55 (35.6 ± 11.8)	L. hofstadii, L. buccalis, L. wadei, L. shahii, Leptotrichia spp.	Patients	Saliva, plaque, mucosal surfaces	Streptococcus, S. mutans, Gemella, Corynebacterium, Cardiobacterium, G. elegans, Selenomonas, Porphyromonas, Campylobacter, Neisseria, Rothia, Prevotella, A. parvum, Actinomyces, Veillonella, C. dublinensis, Lautropia, DGGE, Cloning, 16S rRNA gene sequencing	[35]
	M/F 21–54 (35.9 ± 11.7)	Leptotrichia spp.	Healthy without prosthesis	Saliva, plaque, mucosal surfaces	Streptococcus, Corynebacterium, Selenomonas, Veillonella, Actinomyces, Gemella, Neisseria, Rothia, DGGE, clining16S rRNA gene sequencing	[36]
101	M 39–42.5	Leptotrichia spp.	Chronic periodontitis, inflammation, bone loss, bleeding, peri-implantitis, suppuration	Submucosal: sulci or peri-implant crevice, supragingival plaque	Propionibacter, Prevotella, Corynebacterium, Campylobacter, Lactococcus, Gemella, Rothia, Actinomyces, Burkholderia, non-mutans Streptococcus, S. mutans, Mycoplasma, Peptococcus, Eubacterium, Neisseria, Solobacterium, Porphyromonas, Pseudomonas, Escherichia, Johnsonella, Actinomycobacter, Butyribrio, Peptostreptococcus, Catonella, Treponema, Kingella, Lactobacillus, Dialister, Chloroflexi, Megasphaera, Selenomonas, HTS, PEA	[37]
	M 35.5–41	Leptotrichia spp.	Healthy, periodontal peri-implant	Supragingival plaque	Propionibacter, Porphyromonas, Corynebacterium, Neisseria, Prevotella, Fusobacterium, Propionibacterium, Synergistes, Dialister, Streptococcus, S. mutans, Granulicatella, Campylobacter, Burkholderia, Neisseria, Rothia, B. Borisovensis, Peptococcus, Lactobacillus, Veillonella, Arthrobacter, non-mutans Eubacterium, Actinomyces, Lactococcus, Mycoplasma, Treponema, Catonella, HTS, PEA, Streptococcus, Streptococcus group B, Staphylococcus, Veillonella, TM7, Prevotella, Weisella, Leuconostoc, Lactococcus, qPCR, HTS	[38]
103	F 32.01 ± 5.12	Leptotrichia spp.	Obese women, gestational DI	Breast milk	Streptococcus, Streptococcus group B, Staphylococcus, Veillonella, TM7, Prevotella, Weisella, Leuconostoc, Lactococcus, qPCR, HTS	[39]
	F 32.01 ± 5.12	Leptotrichia spp.	Healthy, normal-weight women, gestational DI	Breast milk	Streptococcus, Streptococcus group B, Staphylococcus, Prevotella, TM7, Weisella Leuconostoc, Lactococcus, Veillonella, qPCR, HTS	[40]

(Continued)
Case	Sex (years)	Leptotrichia species identified	Clinical-associated disease/predisposing factors/recovery	Suggested source and port of entry (type of material)	Other microbes isolated/identification type	Reference	
105	F 42.2 ± 40	Leptotrichia spp., L. wadei	New-onset rheumatoid arthritis	Mouth	Porphyrmonas clones, P. gingivalis, Prevotella spp., Treponema clones, Streptococcus, Tannerea clones, Anaeroglobinoides, Neisseria, Selenomonas, Corynebacterium, HTS, PCA, ELISA	[20]	
F 47.7 ± 48	Leptotrichia spp.	Chronic established rheumatoid arthritis	Mouth	P. gingivalis, Corynebacterium, Streptococcus, Selenomonas, Prevotella, A. guminatus, Treponema clones, Tannerea clones, HTS, PCA, ELISA	[37]		
F 42.2 ± 39	Leptotrichia spp.	Healthy	Mouth	P. gingivalis, Capnocystophaga, A. guminatus, Selenomonas, Prevotella, HTS, PCA, ELISA	[37]		
108	M 37.08 ± 14.1	Leptotrichia spp.	Severe dentin caries, biofilm	Carious lesions	P. adefiaciens, S. mutans, L. hamahiodhichi, L. haminosus, L. vaginalis, L. zeae, L. faecis, L. pontis, L. paris, L. frumenti, qPCR	[37]	
M 32.28 ± 10.0	Leptotrichia spp., L. trevisanii, Leptotrichia sp.	Caries-free, biofilm	Plaque	P. adefiaciens, E. brachy, S. parasanguinis, S. sanguinis, S. constellatus, S. gardoniai, S. mitis, S. anginosus, S. pneumoniae, S. australis, S. intermedius, S. oralis, G. morbillorum, Capnocystophaga sp. oral taxon, Capnocystophaga spp., C. spigtena, Treponema spp., Treponema sp. oral taxon, T. denticola, Fusobacterium spp., F. nucleatum, F. periodonticum, qPCR	[37]		
110	M/F 22–24	Leptotrichia spp.	Healthy	Saliva	Streptococcus, Lachnospiraceae, Peptostreptococcus, Flavobacteriaceae, Aggregatibacter, Porphyrmonas, Corynebacterium, Granulicatella, Rothia, Eubacterium, Veillonella, Fusobacterium, Oblacterium, Neisseria, Gemella, Pasteurella, Prevotella, Actinomycetes, Haemophilus, Moaella, SR1, HTS	[38]	
M/F 3–6	Leptotrichia spp.	Healthy	Saliva	Streptococcus, Lachnospiraceae, Granulicatella, Fusobacterium, Neisseria, Aggregatibacter, Actinomycetes, Haemophilus, Porphyrmonas, Pasteurella, Rothia, Veillonella, Oblacterium, Gemella, Prevotella, HTS	[38]		
112	1–60 days	Leptotrichia spp.	Fermenting Lees liquor	Liquor	Corynebacterium, Staphylococcus, Microbacterium, Lactobacillus, Bacillus, Clostridium, Streptococcus, Burkholderia, Actinobacter, Serratia, Rhodococcus, Pelobacter, Arthrobaciter, Curtobacterium, Methanosalinae, Saccharomyces, Aspergillus, Eutroget, Zygosaercharomaryx, Saccharomyces, Cryptococcus, Pichia, Talaromyces, Trichosporon, 16S rRNA- and 18S rRNA gene sequencing	[39]	
113	UK	Leptotrichia spp., L. hofstadii	Tumor tissue	Tumor tissues	Campylobacter, Fusobacterium spp., F. nucleatum, C. shewae, Ralstonia, Selenomonas, S. spipigena, Bacteroides, HTS, PCA	[40]	
UK	Leptotrichia spp.	Unaffected tissue	Surgical samples				
115	M/F 20–66	Leptotrichia spp.	TB	Sputum	Unclassified Enterobacteriaceae, Veillonella, P. melanogenica, Neisseria, Fusobacterium, Streptococcus, S. anginosus, S. mitis clone, Mogibacterium, Morrela, P. mira, Oblacterium, Prevotella, Pseudomonas, Lactobacillus, C. crispatus, Actinomycetes, HTS, PCA	[41]	
M/F 22–82	Leptotrichia spp.	TB-free	Sputum	Streptococcus, S. parasanguinis clone, unclassified			

(Continued)
Case	Sex (years)	Leptotrichia species identified	Clinical-associated disease/predisposing factors/recovery	Suggested source and port of entry (type of material)	Other microbes isolated/Identification type	Reference
117	M/F 19–47	Leptotrichia spp., L. wadei	Malodor individuals	Tongue plaque	Prevotella, P. tarnerae, Streptococcus, Fusobacterium, Veillonella, Gemella, Granulicatella, Neisseria, Rothia, Porphyromonas, Haemophilus, Actinomycetes, H,S, HTS, PCA	[42]
118	M/F 13–77 ± 44	Leptotrichia spp.	NTB, R	Sputum	Mycobacterium, Streptococcus, Granulicatella, Haemophilus, Pseudomonas, Neisseria, Bergeyella, Acinetobacter, Haloplasma, Veillonella, Capnocytophaga, Alcaligenes, Treponema, Lautropia, Bulleidia, Prevotella, Catonella, Sharpea, HTS	[43]
M/F 22–79 ± 52	Leptotrichia spp.	RTB, R	Sputum	Mycobacterium, Granulicatella, Gorynebacterium, Sharpea, Achromobacter, Streptococcus, Granulicatella, Lactobacillus, Treponema, Bergeyella, Prevotella, Veillonella, Haloplasma, Campylobacter, Catanella, Alcaligenes, Rothia, Lautropia, HTS	[43]	
M/F 20–78 ± 49	Leptotrichia spp.	TFTB, failed	Sputum	Mycobacterium, Streptococcus, Granulicatella, Campylobacter, Prevotella, Pseudomonas, Veillonella, Bergeyella, Haloplasma, Capnocytophaga, Alcaligenes, Catanella, Treponema, Neisseria, Lautropia, HTS	[43]	
M/F 24–55 ± 31	Leptotrichia spp.	Healthy	Throat	Granulicatella, Streptococcus, Campylobacter, Anaeroglobus, Pseudomonas, Treponema, Capnocytophaga, Haemophilus, Selenomonas, Bulleidia, Neissera, Haloplasma, Atopobium, Prevotella, Clostridium, Catanella, HTS	[43]	
122	M/F 50 (±47.5–52.5)	Leptotrichia sp. clones	Dental caries, dental caries + periodontitis	Saliva, caries lesions, mouth	V. atypica, V. parvula, M. micronucleiformis, F. periodontium, S. moorei, A. xylosoxidans, S. parasanguinis sp. clone, S. salivarius, S. salivarius sp. clone, PCR, HOMIM	[44]
123	M/F 55 (±53.8–56.3)	Leptotrichia sp. clones	Healthy and diseases (caries + periodontitis)	Saliva, mouth	A. xylosoxidan, M. micronucleiformis, F. periodontium, V. atypica, PCR, HOMIM	[44]
124	M/F < 30 Mo ±19.1	Leptotrichia spp., L. hongkongensis clones	Caries	Supragingival plaque, mouth	Parphyromonas, Gorynebacterium, Capnocytophaga, Streptococcus spp., S. mutans clones, S. salivarius clones, Veillonella, Neisseria, Rothia, TM7 genus incertae sedis, Actinomycetes, Prevotella spp., P. histicola clones, Eikenella, Kingella, Fusobacterium, Gemella, Campylobacter, Granulicatella spp., G. adaiens clones, Abiotrophia, Selenomonas, Acinetobacter, Lactobacillus, Anaeroglobus, Ottowa, Schlegellea, HTS, PCA	[45]
M/F < 30 Mo ±19.1	Leptotrichia spp.	CF	Supragingival plaque, mouth	Parphyromonas, Gorynebacterium, Capnocytophaga, Streptococcus spp., S. mutans clones, S. salivarius clones, Veillonella, Neisseria, Rothia, TM7 genus incertae sedis, Actinomycetes, Prevotella spp., P. histicola clones, Eikenella, Kingella, Fusobacterium, Gemella, Campylobacter, Granulicatella spp., G. adaiens clones, Abiotrophia, Selenomonas, Acinetobacter, Lactobacillus, Anaeroglobus, Ottowa, Schlegellea, HTS, PCA	[45]	
Table 2. (Continued).

Case	Sex (years)	Leptotrichia species identified	Clinical-associated disease/predisposing factors/recovery	Suggested source and port of entry (type of material)	Other microbes isolated/identification type	Reference
126	M/F/T 39 ± 10	Leptotrichia spp.	HIV seropositive	Saliva	Lactobacillus spp., Aggregatibacter, Lachnospiraceae, Rothia, Eubacterium, Tannerella, Haemophilus, Neisseria, Gemella, Granulicatella, Shuttleworthia, Streptococcus, S. mutans, Fusobacterium, Solobacterium, Campylobacter, Veillonella, Diadolder, Synergistetes, Filifactor, Parvimonas, Actinomycete, Megasphaera, Selenomonas, Prevotella, Candida, culture, DGGE, HOMIM, PCA	[46]
	M/F 43 ± 13	Leptotrichia spp.	HIV seronegative	Saliva	Capnocytophaga, Lachnospiraceae, Peptostreptococcaceae, Granulicatella, Veillonella, Synergistetes, Lactobacillus spp., Porphyromonas, Lactobacillus, Campylobacter, Streptococcus, S. mutans, Parvimonas, Kingella, Atopobium, Selenomonas, Aggregatibacter, Fusobacterium, Haemophilus, Megaspheara, Prevotella, Solobacterium, Gemella, Actinomycete, Rothia, Slacks, Filifactor, Diadolder, Neisseria, Candida, culture, DGGE, HOMIM, PCA	[46]
128	M/F ≥ 18– 21.5 ± 1.9	Leptotrichia spp., L. hongkongensis	Healthy, supragingival plaque	Mouth	Corynebacterium, Capnocytophaga, Streptococcus, Cardiobacterium, Haemophilus, Dersia, Veillonella, Prevotella, HITS	[47]
129	UK	Leptotrichia spp., L. wadei	Healthy, biofilms	Oral epithelial cells	Prevotella, Streptococcus spp., qPCR	[48]
130	M/F 3–3 MY	Leptotrichia spp.	Caries individuals	Plaque, biofilm, saliva, mouth	Aggregatibacter sp. HOT 513, Streptococcus genus, S. oralis, S. mutans, S. sobrinus, S. mitis/S. mitis bv2/S. infantis, Streptococcus sp. HOT 431, Lactobacillus, Atopobium genus, A. parvulum, Actinobaculum sp. HOT 513, culture, HTS, microarray	[49]
	M/F 3–3 MY	L. hofstadii /Leptotrichia sp. HOT 203 or 234	Healthy, CF	Plaque, biofilm, saliva, mouth	C. concisus, G. adiessens, Actinomyces sp. HOT 177, Actinomyces genus, Kingella genus, K. dentiformans, K. oralis, Streptococcus anginosus/S. gordoni, S. sanguinis, Bergeyella sp. HOT 322, culture, HTS, microarray	[49]
132	M 73–83 ± 77	Leptotrichia spp.	Lung, AECOPD, cough, dyspnea, fatigue, sputum production	Sputum	Capnocytophaga, Stenotrophomonas, Pasteurellaceae, Pedicoccus, Rothia, Actinobacter, Parvimonas, Streptococcus, Actinomyces, Enterobacter, Veillonella, Prevotella, Neisseria, fungi (Stingelmobyces, Teratosphaeria, Candida, Aspergillus Phosatimiex, Aureobasidium), 16S rRNA gene sequencing, barcoded ITS genes, HTS, CRP	[50]
133	UK/A	Leptotrichia spp.	Healthy, ciprofloxacin group	Saliva, fecal	Veillonella, Bacteroides, K. pneumoniae, E. coli, culture, microarray, MALDI-TOF, PFGE	[51]
134	UK/A	Leptotrichia spp.	Healthy, clindamycin group	Saliva, fecal	Veillonella, K. pneumoniae, culture, MALDI-TOF, microarray, PFGE	[51]
135	UK/A	Leptotrichia spp.	Healthy, placebo control group	Saliva, fecal	Veillonella, Bacteroides, K. pneumoniae, culture, MALDI-TOF, microarray, PFGE	[51]
136	M/F 48	L. buccalis	Rheumatoid arthritis patients, healthy subjects without periodontitis	Subgingival plaque samples	P. gingivalis, T. forsythia, T. denticola, checkerboard DNA–DNA hybridization	[52]
	M/F 48	L. buccalis	Rheumatoid arthritis patients, periodontitis, gingivitis	Subgingival plaque samples	P. gingivalis, T. forsythia, T. denticola, G. morbillorum, S. gordoni, P. acnes, checkerboard DNA–DNA hybridization	[52]
Table 2. (Continued).

Case	Sex (years)	Leptotrichia species identified	Clinical-associated disease/predisposing factors/recovery	Suggested source and port of entry (type of material)	Other microbes isolated/identification type	Reference
138	M/F 3–6	Leptotrichia spp.	Healthy, intact enamel surface: discordant caries twins	Supragingival plaque, mouth	Fusobacterium, Corynebacterium, Porphyromonas, Veillonella, TM7 genus incertae sedis, Streptococcus, Moraxella, Capnocytophaga, F. canifelium, Selenomonas, Propionibacterium, Actinomyces, Neisseria, K. denitrificans, Alysiella, Prevotella, Lactobacillus, Scardovia, HTS, PCA	[53]
	M/F 3–6	Leptotrichia spp.	Caries, intact enamel surface: discordant caries twins	Supragingival plaque, mouth	Capnocytophaga, Porphyromonas, Streptococcus, Porphyromonas, TM7 genus incertae sedis, Prevotella, Lactobacillus, Moraxella, Selenomonas, Alysiella, Scardovia, Neisseria, HTS, PCA	
	M/F 3–6	Leptotrichia spp.	Caries, decayed tooth surface: discordant caries twins	Supragingival plaque, mouth	Peptostreptobacterium, Capnocytophaga, Streptococcus, C. matruchotii, Veillonella, V. d SP, Prevotella, Porphyromonas, TM7 genus incertae sedis, Lactobacillus, Alysiella, Actinomyces, Selenomonas, S. noxia, Moraxella, Scardovia, Neisseria, HTS, PCA	
141	M/F 4–21 DO	Leptotrichia spp.	PEDV	Piglets feces	Actinobacteria, Veurnecomicbicia, Proteobacteria, Fusobacteria, Firmicutes, Bacteroidetes, Mst, qPCR, 16S rRNA gene sequencing	[54]
	F 18–60+	Leptotrichia spp.	hrHPV, HIV+, HIV−	Vaginal swab suspensions	Proteobacteria, Peptostreptobacillus, Bacteroidetes, Peptoniphilus spp., L. iners, L. crispatus, Fusobacterium spp., Atopobium, Bacillus, G. vaginalis, Megacaphera spp., Neisseria spp., Prevotella spp., G. vaginalis, D. aalborgi, D. sanguinis, HTS, PCA	[55]
	F 18–60+	Leptotrichia spp.	Negative hrHPV, HIV+, HIV−	Vaginal swab suspensions	Prevotella spp., Proteobacteria, L. iners, L. crispatus, G. vaginalis, HTS, PCA	
144	M 17	L. buccalis, L. goodfellowii, L. shahii, L. hofstadii, L. wadei, Leptotrichia sp. clones	Active caries, caries lesions	Plaque, mouth, Swedish	Peptostreptococcaceae, Porphyromonas, S. mutans, S. austaeilis, S. mitis, D. pneumosintes, Capnocytophaga sp. mutans, Capnocytophaga sp. clone, TM7 clone, F. nucill sp. animals, Lachnosaerobaculum, Alloprevotella, Actinobaculum, Neisseria, Kingella, Eubacterium spp., G. haemolysans, Selenomonas, P. oris, P. maculosa, P. nigrescens, Teponema, A. gerencseriae, Actinomyces sp. clone, Porphyromonas, Bacteroidales, C. matruchotii, Beggeryia, Veillonella, Mitsucella, PCR, qPCR, HTS	[56]
	M 17	L. buccalis, L. goodfellowii, L. shahii, L. hofstadii, L. wadei, L. hongkongensis, Leptotrichia sp. clones	Healthy, CF	Plaque, mouth, Swedish	Streptococcus spp., Capnocytophaga spp. clone, Capnocytophaga sp. clone, F. nucill sp. animals, Campylobacter, S. mutans, Actinomyces, Alloprevotella, Alloprevotella, Actinobaculum, Neisseria, Kingella, Eubacterium spp., G. haemolysans, Selenomonas, P. oris, P. maculosa, P. nigrescens, Teponema, A. gerencseriae, Actinomyces sp. clone, Porphyromonas, Bacteroidales, C. matruchotii, Beggeryia, Veillonella, Mitsucella, PCR, qPCR, HTS	[57]
	M 14–15	L. buccalis, L. goodfellowii, L. shahii, L. hofstadii, L. wadei, Leptotrichia sp. clones	High caries	Plaque, mouth, Romania	Peptostreptococcus, Lachnosaerobaculum, Capnocytophaga, Capnocytophaga, C. matruchotii, D. pneumosintes, S. sobrinus, S. austaeilis, S. sanctus, S. sinensis, S. cristatus, S. mutans, S. mitis, Streptococcus sp. clones, Fusobacterium, G. haemolysans, Filifactor, Actinomyces, Shuttleworthia, Campylobacter, G. haemolysans, Alloprevotella, P. canis, Bacteroidetes, Porphyromonas, Neisseria, Selenomonas, Veillonella, Lactobacillus, Prevotella spp., Alloprevotella clone, PCR, qPCR, HTS	[58]
Table 2. (Continued).

Case	Sex (years)	Leptotrichia species identified	Clinical-associated disease/predisposing factors/recovery	Suggested source and port of entry (type of material)	Other microbes isolated/identification type	Reference
147	M/F 55–74 (60.77–63.71)	Leptotrichia spp.	Prostate, lung, colorectal, and ovarian (PLCO-a) head and neck patients	Oral wash samples	Corynebacterium, Bifidobacterium, Peptostreptococcus, Porphyromonas, V. parvula, Capnocytophaga, Selenomonas, Aggregatibacter, Lactobacillus, Kingella, Neisseria, Streptococcus, Eikenella, Haemophilus, Atopobium, Lautropia, Prevotella, HTS	[57]
	M/F 55–74 (61.02–64.25)	Leptotrichia spp.	PLCO-b pancreas patients	Oral wash samples	Corynebacterium, Bifidobacterium, Peptostreptococcus, Porphyromonas, V. parvula, Capnocytophaga, Selenomonas, Streptococcus, Aggregatibacter, Haemophilus, Lactobacillus, Prevotella, Abiotrophia, Eikenella, Lautropia, Neisseria, Atopobium, Kingella, HTS	
	M/F 55–74 (68.82–70.53)	Leptotrichia spp.	Cancer Prevention Study II (CPS-II-a) head and neck patients	Oral wash samples	Corynebacterium, Bifidobacterium, Peptostreptococcus, Porphyromonas, V. parvula, Streptococcus, Capnocytophaga, Aggregatibacter, Haemophilus, Atopobium, Abiotrophia, Selenomonas, Eikenella, Lactobacillus, Lautropia, Neisseria, Prevotella, Kingella, HTS	
	M/F 55–74 (70.77–74.80)	Leptotrichia spp.	CPS-II-b pancreas patients	Oral wash samples	Corynebacterium, Bifidobacterium, Peptostreptococcus, Porphyromonas, V. parvula, Streptococcus, Capnocytophaga, Aggregatibacter, Haemophilus, Atopobium, Abiotrophia, Selenomonas, Eikenella, Lautropia, Lactobacillus, Atopobium, HTS	
151	US	Leptotrichia spp.	Herbivorous, carnivorous, omnivorous, and fish filter-feeding	Fish gut	Cetobacterium, Gaarderibacter, Bacteroides, Shewanella, Xiphimetabolactobacter, Citrobacter, Helomomas, 16S rRNA gene sequencing, HTS, PCA	[58]
152	M/F 20–50	Leptotrichia spp.	Brush-alone, gingivitis, R	Plaque, saliva	Actinomycetes, Actinobaculum, Lachnospiraceae, Bergeyella, Granulactella, Lautropia, Selenomonas, Prevotella, Tannerella, uncultured Peptococcus, uncultured Veillonellaceae, TM7, Rothia, HTS, PCA, MA	[59]
	M/F 18–50	Leptotrichia spp.	Brush-plus-rinse, gingivitis, R	Plaque, saliva	Actinomycetes, Actinobaculum, Lachnospiraceae, Bergeyella, Granulactella, Selenomonas, Tannerella, Lautropia, Peptococcus, Prevotella, TM7, Rothia, uncultified Veillonellaceae, HTS, PCA, MA	
154	M/F	Leptotrichia	Healthy, normal oropharyngeal and intestine, R	Blood, saliva, mouth,	Bifidobacteria, Enterobacteria, enterococci, lactobacilli, Streptococcus spp., S. salivarius, Fusobacteria, Veillonella, Clostridia, Staphylococci, Micrococcus, Neisseria, Prevotella, Candida, culture, MALDI-TOF MS, GC, qPCR	[60]
	18–45 ± 27.3	Healthy, normal oropharyngeal and intestine, R		Fecal, blood	Enterococci, Enterospora, Bifidobacteria, Bacteroides, Clostridium, E. coli, lactobacilli, Candida, culture, MALDI-TOF MS, GC, qPCR	

(Continued)
Case	Sex (years)	Leptotrichia species identified	Clinical-associated disease/predisposing factors/recovery	Suggested source and port of entry (type of material)	Other microbes isolated/Identification type	Reference
156	M/F 41–60	Leptotrichia spp.	Cholelithiasis (gallstone disease), fish-borne liver fluke infection (Opisthorchis felineus), pancreatitis, hepatitis C virus	Aspirated bile	T. socranskii, T. amylavorum, Aggregatibacter, Klebsiella, Flavobacterium, P. distasonis, P. aminovorans, L. brevis, V. d’Apar, TGS, C. durum, B. fleasu, B. uniformis, R. aeria, H. influenza, H. parainfluenzae, S. equorum, Zoogloea, A. johnsonii, A. lwoffi, Cellulosimicrobium, Sediminibacterium, Dorea, Saccharopolyspora, Parabacteroides, S. changbaensis, Physicoccus, P. mexicana, Granulicatella, Halogeometricum clone, Selenomonas, M. mobilis, M. adhaesivum, Friedmanniella, Luteibacter, Mycoplana, S. yabuuchi, S. xenophagus, Microhunatus, Pimelobacter, Brochothrix, Odoribacterium, Ruminococcus, Psychrobacter, S. anginosus, Lutibacterium, Oxalobacter, Anaerostipes, Kastlobacter, qPCR, HTS, PCA	[61]
157	M/F 20–50	Leptotrichia spp.	Low caries load	Supragingival plaque	Porphyromonas, Capnocytophaga, Gorynebacterium, Propionibacterium, Campylobacter, Streptococcus, Ottowia, Fusobacterium, Actinobaculum, Actinomyces, Selenomonas, Prevotella, Neisseria, Lautropia, Veillonella, TM7, Rothia, HTS, PCA	[62]
	M/F 20–50	Leptotrichia spp.	Moderate caries load	Supragingival plaque	Corynebacterium, Capnocytophaga, Propionibacterium, Ottowia, Neisseria, Campylobacter, Porphyromonas, Actinobaculum, Fusobacterium, Prevotella, Streptococcus, Selenomonas, Actinomyces, Veillonella, Lautropia, Rothia, TM7, HTS, PCA	
	M/F 20–50	Leptotrichia spp.	High caries load	Supragingival plaque	Capnocytophaga, Gorynebacterium, Propionibacterium, Prevotella, Rothia, Neisseria, Fusobacterium, Porphyromonas, Campylobacter, Streptococcus, Actinomyces, Actinobaculum, Selenomonas, Lautropia, TM7, Veillonella, HTS, PCA	
	M/F 20–50	Leptotrichia spp.	Healthy, CF	Supragingival plaque	Cardiobacterium, Propionibacterium, Capnocytophaga, Fusobacterium, Gorynebacterium, Aggregatibacter, Selenomonas, Porphyromonas, Ottowia, Actinomyces, Actinobaculum, Prevotella, Veillonella, Rothia, Campylobacter, Neisseria, Streptococcus, TM7, Lautropia, HTS, PCA	
Case	Sex (years)	Leptotrichia species identified	Clinical-associated disease/predisposing factors/recovery	Suggested source and port of entry (type of material)	Other microbes isolated/identification type	Reference
------	-------------	--------------------------------	--	---	--	-----------
161	US	Leptotrichia spp.	Healthy, CF, no pigment	Supragingival plaque, saliva	Neisseria, unclassified Neisseriaceae, Capnocytophaga, Paracardovia, Prevotella, Streptococcus, unclassified Streptococcaceae, Paenibacillus, Rotinia, Haemophilus, HTS, PCA	[63]
	US	Leptotrichia spp.	BPES patients	Supragingival plaque, saliva	Neisseria, unclassified Neisseriaceae, Capnocytophaga,	[64]
	US	Leptotrichia spp.	Active caries (obvious decay)	Supragingival plaque, saliva	Neisseria, unclassified Neisseriaceae, Capnocytophaga,	
	US	Leptotrichia spp.	Active caries + pigment (obvious decay)	Supragingival plaque, saliva	Neisseria, unclassified Neisseriaceae, Capnocytophaga,	
	M/F 4–5	Leptotrichia spp.	Halitosis	Supragingival plaque	Neisseria, unclassified Neisseriaceae, Capnocytophaga,	
	M/F 50–74	Leptotrichia spp.	Cancer Prevention Study (CPS) II	Supragingival plaque	Neisseria, unclassified Neisseriaceae, Capnocytophaga,	
	M/F 55–74	Leptotrichia spp.	Prostate, lung, colorectal, and ovarian cancer (PLCO)	Oral wash samples	Neisseria, unclassified Neisseriaceae, Capnocytophaga,	
	M/F 63.8–73.1	Leptotrichia spp.	Nested case control with no prior history of cancer	Oral wash samples	Neisseria, unclassified Neisseriaceae, Capnocytophaga,	
172	US	Leptotrichia wade, Leptotrichia spp.	Patient with caries cavity, supragingival plaque mucosal swabs	Plaque samples, saliva mucosal swabs	Hemolytic bacterium, streptococci, S. mutans, S. tigurinus, F. nucleatum, Lactobacillus, C. albicans, Gram-stain, culture, VITEK system, qPCR, DGGE, 16S rRNA gene sequencing	[67]
	US	Leptotrichia spp.	Healthy	Plaque samples, saliva mucosal swabs	Hemolytic bacterium, streptococci, S. mutans, S. tigurinus, F. nucleatum, Lactobacillus, C. albicans, Gram-stain, culture, VITEK system, qPCR, DGGE, 16S rRNA gene sequencing	[67]
Case	Sex (years)	Leptotrichia species identified	Clinical-associated disease/predisposing factors/recovery	Suggested source and port of entry (type of material)	Other microbes isolated/identification type	Reference
------	------------	-------------------------------	--	--	---	-----------
174	F 183–36.3	Leptotrichia	Healthy	Maternal saliva, premasticated foods	Sphingomonas, unclassified Pasteurellaceae, Porphyromonas, Eubacterium, Fusobacterium, Gemella, Veillonella, Johnsenella, Streptococcus, Neisseria, Actinomyces, Rothia, Prevotella, MiSeq sequencing	[68]
M/F 0.8–20	Leptotrichia	Healthy, breastfeeding	Infant saliva, premasticated foods	Streptococcus, Fusobacterium, Porphyromonas, Sphingomonas, Gemella, Neisseria, unclassified Pasteurellaceae, Actinomyces, Veillonella, Rothia, Prevotella, MiSeq sequencing		
176	M/F 3–4	Leptotrichia sp. oral clone FP036	Dental caries	Saliva	P. melaninogenica, P. histicola, P. saliva, R. dentocariosa, Haemophilus, S. mutans, S. sanguinis, Neisseria, Gemella, Veillonella Veillonella sp. oral taxon 780, A. odontolyticus, A. graveenitii, Scardovia, F. periodonticum, Lactobacillus, MiSeq sequencing	[69]
M/F 3–4	Leptotrichia sp. oral clone FP036	Healthy	Saliva	P. melaninogenica, P. histicola, P. saliva, R. dentocariosa, Veillonella, A. odontolyticus, A. graveenitii, Veillonella sp. oral taxon 780, A. odontolyticus, A. graveenitii, Veillonella, MiSeq sequencing		
178	M/F 3–7	L. buccalis	Teeth with irreversible pulpitis	Cells	C. rectus, G. morbillorum, T. denticola, F. nuc ssp. polymorphism, C. ochracea, C. gingivalis, S. mitis, S. intermedius, S. gordonii, checkerboard DNA–DNA hybridization	[70]
M/F 3–7	L. buccalis	Teeth with pulp necrosis and apical periodontitis	Cells	C. rectus, T. denticola, S. intermedius, S. mitis, S. oralis, S. gordonii, F. nuc ssp. polymorphism, G. morbillorum, C. gingivalis, C. ochracea, checkerboard DNA–DNA hybridization		
180	M/F 60–70	L. buccalis	ABL, control no bone loss	Subgingival plaque, guinea pigs	L. acidophilus, E. corroden, S. anginosus, S. sanguinis, S. mutans, S. oralis, E. saburreum, P. gingivalis, T. forsythia, F. nuc ssp. viridans, F. nuc ssp. polymorphism, F. nuc ssp. nucleatum, T. denticola, P. micra, P. intermedia, A. actinomyctemcomitans, checkerboard DNA–DNA hybridization	[71]
181	M/F 18–70 ± 34	L. buccalis	Endodontic root canal infection	Tissue fluid	P. melaninogenica, A. actinomyctemcomitans, P. gingivalis, F. nuc ssp. nucleatum, F. nuc ssp. viridans, F. nuc ssp. polymorphism, F. nuc ssp. nucleatum, T. denticola, P. micra, P. intermedia, A. actinomyctemcomitans, checkerboard DNA–DNA hybridization	[72]
182	F 26–42	L. buccalis	Pregnant, postpartum, BOP	Supragingival sample	N. mucosa, C. ochracea, C. putigna, S. aureus, E. saburreum, F. nuc ssp. naeviforme, F. nuc ssp. polymorphism, S. gordonii, S. anginosus, S. mutans, S. intermedius, S. sanguinis, S. oralis, V. parvula, P. micra, P. intermedia, P. melaninogenica, S. nokia, checkerboard DNA–DNA hybridization	[73]
183	F 30	L. buccalis, L. goodfellowii	Healthy, dog bite, cellulitis, painful erythema, inflammation, R	Wound exudate (bacteremia)	Capnocytophaga spp., C. perfringens, culture, API rapid ID 32A, molecular identification	[74]
Case	Sex (years)	Leptotrichia species identified	Clinical-associated disease/predisposing factors/recovery	Suggested source and port of entry (type of material)	Other microbes isolated/Identification type	
------	-------------	--------------------------------	--	---	--	
184	M/F 14–32	L. buccalis	Lip piercings – stainless steel-stud	Biofilms, absorbed fluid	A. actinomycetemcomitans, V. parvula, T. denticola, P. micra, C. rectus, C. gracilis, C. showae, E. saburreum, P. melaninogenica, S. anginosus, S. oralis, S. mutans, S. intermedius, S. mitis, S. pneumoniae, S. constellatus, F. nucleatum, F. periodonticum, C. gingivalis, C. spathigena, B. longum, G. vaginalis, S. aureus, S. anaerobius, S. haemolyticus, S. epidermidis, L. acidophilus, A. naeslundii, P. gingivalis, P. aeruginosa, checkerboard DNA–DNA hybridization	
	M/F 14–32	L. buccalis	Lip piercings-titanium-stud	Biofilms, absorbed fluid	A. actinomycetemcomitans, V. parvula, T. denticola, P. micra, C. rectus, C. showae, C. gingivalis, C. spathigena, P. melaninogenica, P. gingivalis, E. saburreum, S. anginosus, S. mutans, S. intermedius, S. pneumoniae, S. mitis, S. oralis, C. gracilis, S. epidermidis, S. aureus, S. anaerobius, F. nucleatum, C. necrophorum, C. periodonticum, S. haemolyticus, checkerboard DNA–DNA hybridization	
	M/F 14–32	L. buccalis	Lip piercings – polypropylene-stud	Biofilms, absorbed fluid	A. actinomycetemcomitans, P. melaninogenica, T. denticola, E. saburreum, S. mutans, S. anginosus, S. intermedius, S. mitis, S. oralis, P. aeruginosa, F. nucleatum, F. periodonticum, C. gingivalis, S. gordonii, S. constellatus, S. intermedius, S. mitis, S. oralis, C. gracilis, S. epidermidis, S. aureus, S. anaerobius, S. haemolyticus, C. showae, V. parvula, G. vaginalis, L. buccalis, C. rectus, C. gingivalis, C. gracilis, C. showae, V. parvula, G. vaginalis, S. aureus, S. anaerobius, S. epidermidis, S. haemolyticus, checkerboard DNA–DNA hybridization	
188	M/F 23–59	L. buccalis	Healthy	Saliva	G. haemolytica, V. cholerae spp., V. parvula, S. gordonii, S. mutans, S. oralis, S. thermophilus, S. termitidis, virus, 314 chips sequencing	
189	M/F 27–57	L. buccalis	Endodontic infection, swelling. sinus tract, exudates	Root canal, mouth	E. faecium, E. faecalis, S. epidermidis, S. waferi, P. micra, H. pylori, E. saburreum, checkerboard DNA–DNA hybridization	
190	F 35	L. buccalis	Immunocompetent, pregnant, afibrile, AC, R, pregnancy loss (non-viable infant)	Amniotic fluid (bacteremia)	Culture, MALDI-TOF MS, bioMérieux Vitek MS, 16S rRNA gene sequencing	
191	M/F 26–41	L. buccalis	Peri-implantitis	Peri-implant cervicular fluid	P. aeruginosa, A. actinomycetemcomitans, F. periodonticum, A. israelii, E. coli, P. micra, S. anginosus, T. forsythia, S. aureus, S. haemolyticus, C. gracilis, checkerboard DNA–DNA hybridization	
Case	Sex (years)	Leptotrichia species identified	Clinical-associated disease/predisposing factors/recovery	Suggested source and port of entry (type of material)	Other microbes isolated/Identification type	Reference
------	-------------	---------------------------------	---	--	---	-----------
192	M/F 40–60	L. wadei	DS, low gastric cancer risk	Antral gastric biopsies, Tumaco	Veillonella, Staphylococcus, Haemotobacter, Porphyromonas, Catonella, N. flavescens, Sphingomonadaceae, H. pylori, P. oris, Actinomyces, TM7 genera incertae sedis, S. oralis, C. gingivalis, Rothia, Flavobacterium, 16S rRNA gene sequencing, HTS, PCA	[80]
	M/F 40–60	L. wadei	DS, high gastric cancer risk	Antral gastric biopsies, Túquerres	H. pylori, Veillonella, 16S rRNA gene sequencing, HTS, PCA	
	M/F 41–60	Cholelitiasis, non-Opisthorchis felineus, pancreatitis, hepatitis C virus	Aspirated bile		Flectobacillus, Burkholderia, P. mexicana, Xanthobacter, A. lwofii, A. johnsonii, L. brevis, J. psychrophilus, T. amylavorum, V. dispar, R. aeria, Streptomyces, S. yabuuchiae, S. anginosus, R. caris, H. influenza, J. lividum, B. uniformis, B. flexus, C. durum, S. xenophagum, M. mobilis, M. adhaesivum, S. equorum, PCR, qPCR, HTS, PCA	
195	M/F 4–5	L. wadei, L. hofstadii	Halitosis, tongue	Saliva, tongue coating, mouth	P. stomatis, E. sulci, E. saburreum, S. australis, Bacteroides, TM7 genus incertae sedis, Fusobacterium, Capnocytophaga, P. shahii, P. loeshei, P. catoniae, S. moorei, Actinomyces spp., A. graevenitzii, A. gerencseriae, S. infelix, unclassified Flavobacteriaceae spp., 16S rRNA gene sequencing, HTS, qPCR, PCA	[81]
	M/F 4–5	L. wadei, L. hofstadii	Healthy, tongue	Saliva, tongue coating, mouth	S. moorei, Actinomyces spp., P. stomatis, Capnocytophaga, A. graevenitzii, A. gerencseriae, TM7 genus incertae sedis, P. shahii, P. loeshei, P. catoniae, unclassified Flavobacteriaceae spp., Streptococci spp., S. infelix, S. oralis, 16S rRNA gene sequencing, HTS, qPCR, PCA	
197	M 12–79	L. hofstadii	Tongue coating, halitosis	Saliva	Granulicatella, Fusobacterium, Porphyromonas, Laeotria, Aggregatibacter, Haemophilus, Prevotella, Streptococcus, Treponema, Veillonella, Neisseria, Parvimonas, Rothia, PCR, qPCR, T-RFLP, PCA	[82]
	F 12–79	L. hofstadii	Tongue coating, halitosis	Saliva	Granulicatella, Fusobacterium, Streptococcus, Aggregatibacter, Parvimonas, Rothia, Veillonella, Haemophilus, Porphyromonas, Prevotella, Neisseria, Lautropia, Treponema, PCR, qPCR, T-RFLP, PCA	
199	F 33–64	L. hofstadii	Periodontitis	SPPS	Streptococcus spp., Actinobacteria, Bacteroidetes sp. clone, TM7, K. oralis, P. denticola, Treponema spp., S. intermedia, S. intermedius/anginosus, S. parasanguinis, S. c. status spp., S. anginosus/intermedius/constellatus, E. yurii, E. saphenum, E. brahyi, S. szeles, Synergistetes, HOMIM DNA microarray	[83]
	F 33–64	L. hofstadii	Periodontitis	GCF	P. nigeriav, T. fohnyi, Haemophilus spp., Peptostreptococaceae spp., F. nuc. ssp. polymorphum, Actinomyces, TM7, C. rectus/concisus, C. concisus, D. pneumoniae, Spirochaetes, Synergistetes, Bacteroidetes sp., HOMIM, DNA microarray	

(Continued)
Case	Sex (years)	Leptotrichia species identified	Clinical-associated disease/predisposing factors/recovery	Suggested source and port of entry (type of material)	Other microbes isolated/identification type	Reference
201	US 6–8	L. hofstadii	Caries-active	Saliva	Bacteroidetes spp., Lachnospiraceae, Selenomonas spp., Campylobacter, P. peptonicum, Tannerella spp., S. infelix, TM7 sp. clone, P. micra, S. mutans, S. anginosus, Eubacterium, C. showae, C. matruchotii, C. spurtgrena, G. sanguinis, Prevotella, P. catoniae, HOMIM 16S rRNA gene, microarray	[84]
202	F US	L. goodfellowii	Immunocompetent, foul odor, stillborn child, spontaneously expelled at 25 weeks of gestation, amniotic fluid, urinary tract infection, D	Gastric fluid, blood (bacteremia)	E. coli, culture, VITEK 2, GC, 16S rRNA gene sequencing	[85]
203	M/F 3–6 ± 1.19	L. shahii	Healthy	Plaque, saliva, mouth	S. oralis, C. leadbetteri, C. granulosa, N. mucosa, N. subflava, Ottowia spp., A. segnis, Parphyomonas spp., urease activity, HTS	[86]
204	M 7	L. trevisanii, L. buccalis	Burkitt’s lymphoma, fever	Blood, ulceration, bacteremia, R	P. canis, S. paucimobilis, culture, VITEK 2 system, VITEK MS, Bruker Biotype, MALDI-TOF MS, 16S rRNA gene sequencing	[87]
	M 37	L. trevisanii	Diffused large B-cell lymphoma, fever	Blood, bacteremia R	Culture, VITEK 2 system, VITEK MS, Bruker Biotype, MALDI-TOF MS, 16S rRNA gene sequencing	[87]
	M 65	L. trevisanii, L. buccalis	Plasmablastic lymphoma, fever	Blood, bacteremia mucositis, R	S. paucimobilis, culture, VITEK 2 system, VITEK MS, Bruker Biotype, MALDI-TOF MS, 16S rRNA gene sequencing	[87]
	F 34	L. trevisanii, L. buccalis	Double primary cancer (colon and gastric cancer), diarrhea	Blood, bacteremia R	S. paucimobilis, culture, VITEK 2 system, VITEK MS, Bruker Biotype, MALDI-TOF MS, 16S rRNA gene sequencing	[87]
	M 19	L. trevisanii, L. buccalis	Ewing sarcoma, fever	Blood, bacteremia ulceration, R	S. paucimobilis, culture, VITEK 2 system, VITEK MS, Bruker Biotype, MALDI-TOF MS, 16S rRNA gene sequencing	[87]
209	M/F 53.6 ± 14.6	Leptotrichia spp.	Healthy	Buccal scraping samples	Streptococcus, Prevotella, Haemophilus, Fusobacterium, Actinomyces, Neisseria, Veillonella, PCR, qPCR, HT-454 pyrosequencing	[88]
	M/F 48.2 ± 15.5	Leptotrichia spp.	Oral lichen planus patients, erosive	Buccal scraping samples	Fusobacterium, Veillonella, Streptococcus, Prevotella, Haemophilus, Lautropia, Neisseria, Actinomyces, PCR, HT-454 pyrosequencing	[88]
	M/F 43.8 ± 14.1	Leptotrichia spp.	Oral lichen planus patients, non-erosive	Buccal scraping samples	Streptococcus, Haemophilus, Fusobacterium, Actinomyces, Veillonella, Prevotella, Neisseria, PCR, HT-454 pyrosequencing, Neisseria (OTU 5), Streptococcus (OTU 90), Haemophilus (OTU 3), Rathia (OTU 8, OTU 58), Veillonella (OTU 2, OTU 17, OTU 44), Prevotella (OTU 12, OTU 16, OTU 25), Fusobacterium (OTU 24), C. albicans, culture, CLSM, qPCR, PCA, HTS,	[89]

(Continued)
Case	Sex (years)	Leptotrichia species identified	Clinical-associated disease/predisposing factors/recovery	Suggested source and port of entry (type of material)	Other microbes isolated/identification type	Reference
213	M 58 ± 23	Leptotrichia spp., L. bucalis	Normoglycemic non-smoker, periodontitis	Plaque, periodontitis	Streptococcus, S. oralis, S. sanguinis, Neisseria, Selenomonas, Treponema, C. gracilis, C. matruchoti, F. nucleatum, G. sanguinis, G. adiacens, PCR, FLX 16S pyrosequencing, PCA	[90]
	M 58 ± 6.6	Leptotrichia spp.	Hyperglycemic non-smoker, periodontitis, diabetics	Plaque, periodontitis	Fusobacterium, Parvimonas, Peptostreptococcus, Peptostreptococcaceae [XI] [G4] [XII] [G5], Streptococcus, Veillonella, A. golubae, Tannerella, Porphyromonas, Selenomonas, Terrahaeophilus, Lactobacillus, Lachnoanaerobaculum, F. alocis, Corynebacterium, Parvimonas, Alloprevotella, Stenotrophomonas, Brevundimonas, Gemella, Micobacterium, Sphingomonas, Fretibacterium, Prevotella, Eubacterium, Atopobium, Neisseria, Haemophilus, Enterobacter, B. urinae, D. interstitalis, Treponema, TM7, PCR, FLX 16S pyrosequencing, PCA	
	M 50 ± 9.8	Leptotrichia spp.	Normoglycemic smoker, periodontitis	Plaque, periodontitis	Streptococcus, Stenotrophomonas, Neisseria, Selenomonas, Alloprevotella, Brevundimonas, Peptostreptococcus, Staphylococcus, Enterobacter, B. urinae, D. interstitalis, Treponema, PCR, FLX 16S pyrosequencing, PCA	
	M 56 ± 6.3	Leptotrichia spp.	Hyperglycemic smoker periodontitis, diabetics	Plaque, periodontitis	Fusobacterium, Parvimonas, Peptostreptococcus, Peptostreptococcaceae [XI] [G4] [XII] [G5], Gemella, Streptococcus, Veillonella, TM7, Terrahaeophilus, Lactobacillus, Lachnoanaerobaculum, Parvimonas, Prevotella, Alloprevotella, Brevundimonas, Microbacterium, Sphingomonas, Staphylococcus, Brevundimonas, Lactobacillus, Fretibacterium, D. interstitalis, Pseudomonas, Tannerella, Eubacterium, Atopobium, Hemophilus, Neisseria, Enterobacter, B. urinae, D. interstitalis, Treponema, PCR, FLX 16S pyrosequencing, PCA	
	M 40 ± 9.8	Leptotrichia spp.	Normoglycemic non-smoker	Plaque, without periodontitis	Streptococcus, S. oralis, S. sanguinis, Neisseria, Selenomonas, Treponema, C. gracilis, C. matruchoti, F. nucleatum, G. sanguinis, G. adiacens, PCR, FLX 16S pyrosequencing, PCA	
	M 492 ± 3.8	Leptotrichia spp., L. goodfellowii	Hyperglycemic non-smoker, diabetic	Plaque, without periodontitis	Peptostreptococcus, Peptostreptococcaceae [XI] [G4] [XII] [G5], Gemella, G. sanguinis, Parvimonas, Fusobacterium, F. nucleatum, Streptococcus, S. oralis, S. sanguinis, Veillonella, TM7, Terrahaeophilus, Campylobacter, C. gracilis, F. alocis, Lactobacillus, Lachnoanaerobaculum, Fretibacterium, G. adiacens, Parvimonas, Stenotrophomonas, Brevundimonas, Pseudomonas, B. urinae, D. interstitalis, Treponema, C. gracilis, C. matruchoti, Stenotrophomonas, Alloprevotella, Eubacterium, Atopobium, B. urinae, D. interstitalis, Treponema, PCR, FLX 16S pyrosequencing, PCA	
	M 413 ± 6.3	Leptotrichia spp., L. wadei	Normoglycemic smoker	Plaque, without periodontitis	Streptococcus, S. oralis, S. sanguinis, Neisseria, Selenomonas, Treponema, C. gracilis, F. nucleatum, Alloprevotella, Stenotrophomonas, C. matruchoti, G. sanguinis, Brevundimonas, Terrahaeophilus, Pseudomonas, Acinetobacter, G. adiacens, Enterobacter, B. urinae, D. interstitalis, Treponema, PCR, FLX 16S pyrosequencing, PCA	
Case	Sex (years)	Leptotrichia species identified	Clinical-associated disease/predisposing factors/recovery	Suggested source and port of entry (type of material)	Other microbes isolated/Identification type	Reference
------	-------------	---------------------------------	--	--	---	-----------
220	M/F 40	Leptotrichia	Normal, smoker	Oral cavity swab samples	Streptococcus, Veillonella, Gemella, Granulicatella, Neisseria, Haemophilus, Selenomonas, Fusobacterium, Lachnospiraceae, Porphyromonas, Prevotella, PCR, cloning, RFLP analysis, 16S rDNA sequencing, MOTHUR, AMOVA	[91]
	M/F 54	Leptotrichia	Oral potentially malignant disorder (OPMD), smoker, drinker	Oral cavity swab samples	Streptococcus, Veillonella, Gemella, Granulicatella, Neisseria, Haemophilus, Selenomonas, Fusobacterium, Lachnospiraceae, Porphyromonas, Prevotella, PCR, cloning, RFLP analysis, 16S rDNA sequencing, MOTHUR, AMOVA	
	M/F 60	Leptotrichia	Oral cancer, smoker, drinker	Oral cavity swab samples	Streptococcus, Veillonella, Gemella, Granulicatella, Neisseria, Haemophilus, Selenomonas, Fusobacterium, Lachnospiraceae, Porphyromonas, Prevotella, PCR, cloning, RFLP analysis, 16S rDNA sequencing, MOTHUR, AMOVA	
223	M 4.2 ± 0.5	Leptotrichia spp.	Healthy children without mite sensitization	Oropharyngeal swabs	Firmicutes, Proteobacteria, Bacteroidetes, Fusobacteria, Actinobacteria, Streptococcus, Haemophilus, Prevotella, Moraxella spp., Porphyromonas, Fusobacterium, Parvimonas PCR, MiSeq sequencing	[92]
	M 4.4 ± 0.4	Leptotrichia spp.	Mite-sensitized children with rhinitis	Oropharyngeal swabs	Firmicutes, Proteobacteria, Bacteroidetes, Fusobacteria, Actinobacteria, Streptococcus, Haemophilus, Prevotella, Moraxella spp., Porphyromonas, Fusobacterium, Parvimonas PCR, MiSeq sequencing	
	M 4.6 ± 0.3	Leptotrichia spp.	Mite-sensitized children with asthma	Oropharyngeal swabs	Firmicutes, Proteobacteria, Bacteroidetes, Fusobacteria, Actinobacteria, Streptococcus, Haemophilus, Prevotella, Moraxella spp., Porphyromonas, Fusobacterium, Parvimonas PCR, MiSeq sequencing	
226	M/F 57	L. wadei, L. wadei (HOT-222)	Placebo group, exacerbation-prone severe asthma, lower respiratory tract infections	Oropharyngeal swabs	L. orale, L. mirabilis, M. micronuformis, O. sinus, S. moorei, TM7 [G-1] sp., G. sanguinis (HOT-757), Pevotella, P. melaninogérica (HOT-469), P. pallens (HOT-714), N. flavescentes (HOT-610), G. adiacens (HOT-534), V. atypica (HOT-524), Streptococcus spp., S. mitis/pneumoniae (HOT-677), S. parasanguinis (HOT-411), S. salivarius, S. salivarisis (HOT-755), F. periodonticum (HOT-201), A. graevenitzii (HOT-866), H. parainfluenzae (HOT-718), PCR, 454 pyrosequencing, PCA	[93]
	M/F 48	L. wadei, Leptotrichia spp.	AZ responders, exacerbation-prone severe asthma, lower respiratory tract infections	Oropharyngeal swabs	L. orale, L. mirabilis, M. micronuformis, O. sinus, S. moorei, TM7 [G-1] sp., M. catarrhalis, H. influenza, H. parainfluenzae, H. parainfluenzae (HOT-718), A. graevenitzii (HOT-866), G. sanguinis (HOT-757), Streptococcus, S. parasanguinis (HOT-411), S. pneumonia, S. mitis/pneumoniae (HOT-677), S. salivarius, S. salivarisis (HOT-755), G. adiacens (HOT-534), M. faurium, M. lipophilum, M. salivarium, Pevotella, P. melaninogérica (HOT-469), P. pallens (HOT-714), V. atypica (HOT-524), F. periodonticum (HOT-201), F. nucleatum (HOT-200), N. flavescentis (HOT-610), PCR, 454 pyrosequencing, PCA	
Case	Sex (years)	Leptotrichia species identified	Clinical-associated disease/predisposing factors/recovery	Suggested source and port of entry (type of material)	Other microbes isolated/Identification type	Reference
------	-------------	---------------------------------	--	--	--	-----------
M/F 48	L. wadei, L. wadei (HOT-222)	AZ non-responders, exacerbation-prone severe asthma, lower respiratory tract infections	Oropharyngeal swabs	L. orale, L. mirabilis, M. micronucleiformis, O. sinus, S. moorei, TM7 [G-1] sp., M. catarrhalis, H. influenza, H. parainfluenzae, H. parainfluenzae (HOT-718), A. graeveniti (HOT-868), Streptococcus, S. parasanguinis (HOT-411), S. pneumonia, S. mitis/pneumoniae (HOT-677), S. salivarius, S. salivarius (HOT-755), V. atypica (HOT-524), N. flavescens (HOT-610), M. faecium, M. lipophilum, M. salivarium, Prevotella, P. melanomogenia (HOT-469), P. pallens (HOT-714), F. nucleatum (HOT-200), F. periodonticum (HOT-201), G. adiacens (HOT-534), G. sanguinis (HOT-757), PCR, 454 pyrosequencing, PCA		
229–231	M/F 42.0 ± 14.6 Leptotrichia spp.	Normal, MBL	Saliva	Veillonella, Haemophilus, TM7, Tenericutes, Neisseria, Orbacterium, Rothia, Selenomonas [G-3], Alloprevotella, Prevotella, Prevotella [G-7], Actinomyces, Lautropia, Granulicatella, Selenomonas, Capnocytophaga, Porphyromonas, Fusobacterium, Gemella, Streptococcus, PCR, 16S MiSeq sequencing		[94]
M/F 45.0 ± 14.1 Leptotrichia spp.	Moderate, MBL	Saliva	Treponema, TM7, Tenericutes, Neisseria, Orbacterium, Selenomonas [G-3], Selenomonas, Paraprevotella, Fusobacterium Capnocytophaga, Lautropia, Granulicatella, Gemella, Alloprevotella, Prevotella, Rothia, Haemophilus, Veillonella, Prevotella [G-7], Actinomyces, Streptococcus, T. denticola, PCR, 16S MiSeq sequencing	Treponema, TM7, Tenericutes, Streptococcus, Lautropia, Capnocytophaga, Neisseria, Orbacterium, Actinomyces, Prevotella [G-7], Porphyromonas, P. gingivalis, Prevotella, Alloprevotella, Selenomonas [G-3], Selenomonas, T. denticola, Fusobacterium, Granulicatella, Gemella, Haemophilus, Veillonella, Rothia, PCR, 16S MiSeq sequencing		
M/F 52.3 ± 15.9 Leptotrichia spp.	Severe, MBL	Saliva	Treponema, TM7, Tenericutes, Streptococcus, Lautropia, Capnocytophaga, Neisseria, Orbacterium, Actinomyces, Prevotella [G-7], Porphyromonas, P. gingivalis, Prevotella, Alloprevotella, Selenomonas [G-3], Selenomonas, T. denticola, Fusobacterium, Granulicatella, Gemella, Haemophilus, Veillonella, Rothia, PCR, 16S MiSeq sequencing			

A, adult; ABL, alveolar bone loss; AC, acute chorioamnionitis; ABCPD, acute exacerbation of chronic obstructive pulmonary disease; AML, acute myelogenous leukemia; AMOVA, analysis of molecular variance; BALF, bronchoalveolar lavage fluid; BC, bladder cancer; BOP, bleeding on probing; BPEs, black pigmented extrinsic stain; CAP, community-acquired pneumonia; CF, cases free; CLSM, confocal scanning laser microscopy; D, died; DI, diabetes; DO, days old; DS, dyspeptic symptoms; DU, duodenal ulcer; EG, erythematous gastropathy; F, females; GC, gas chromatographic; GCF, gingival crevicular fluid; GRD, gastroesophageal reflux disease; GUs, gastric ulcer; H, healthy; HF, heart failure; HH, hiatal hernia; HNSCC, head and neck squamous-cell carcinoma; hHRV, high-risk human papillomavirus; HSCT, hematopoietic stem-cell transplant; HTS, high-throughput sequencing; IMS, immunosuppression; M, male; MALDI-TOF MS, matrix assisted laser desorption ionization-time of flight mass spectrometry; MA, metabolic analysis; MBL, marginal bone loss; MST, metagenome sequencing technology; MLD, mild liver dysfunction; mo, months; MY, months – years; NF, neutropenic fever; NHL, non-Hodgkin lymphoma; NTB, new tuberculosis; OPSCC, oropharyngeal squamous-cell carcinoma; PA, peritonsillar abscess; PBSB, peripheral blood smear blasts; PBST, peripheral blood stem-cell transplant; PCA, principal component analysis; PEDV, porcine epidemic diarrhea virus; PFGE, pulse field gel electrophoresis; qPCR, real-time quantitative polymerase chain reaction; R, recovery; RD, respiratory distress; RE, reflux esophagitis; RSTWI, redness-swelling – right tonsil-incision wound; RT, renal transplant; RTB, recurrent tuberculosis; SD, subsequently died; T, transgender; TTB, treatment failure tuberculosis; UGIB, upper gastrointestinal bleeding; UK, unknown; US, unspecified; w, week.
Conserved proteins of the phylum Fusobacteria

Conserved signature inserts

Genome sequencing has provided insight into rich resources of molecular markers or signatures that are specific for different groups of bacteria. These novel molecular markers can be used to demarcate diverse bacterial taxa. An example is conserved signature inserts (CSIs) or deletions (i.e. indels) in protein sequences [100].

Members of the family Leptotrichiaceae are easily distinguished based on concatenated sequences for conserved proteins. Comparative analysis of Fusobacteria identified CSIs in proteins involved in a broad range of functions specific for the phylum. Some of these CSIs important proteins are uniquely present in the protein homologs of all sequenced members of Fusobacteria and thereby provide potential molecular markers for this phylum, which includes the family Leptotrichiaceae. Further, it has been suggested that these specific CSIs provide evidence that could be used as novel tools for identifying and distinguishing members of the families Fusobacteriaceae and Leptotrichiaceae and other bacteria [100]. The gene sequences for many of the proteins containing these CSIs are highly conserved and based upon the conserved regions of the genes/proteins, for which PCR primers can be designed.

Clinical importance of Leptotrichia species

Eribe and Olsen [2,3] reported previously that the clinical importance of Leptotrichia species remains unclear due to difficulties in isolation and identification of the organisms [2,3,70]. Recently, with modern molecular techniques and more awareness, more light has been shed on Leptotrichia species and their involvement in a variety of diseases. Leptotrichia species commonly colonize the mucous membrane of humans and animals, and are significant constituents of the microbiota of the human oral cavity, playing an important role in many diseases [2,3,70]. A continuation of previous Table 1 [2], depicts 176 cases of Leptotrichia species presented in the current review. It shows where Leptotrichia species were isolated, the various sources they came from, which Leptotrichia species were detected, the polymicrobial species they are associated with, as well as their frequencies. As can be seen, Leptotrichia species are commonly present in the human and animal gastrointestinal tract, in the periurethral region, and in the genitalia of women [1–3,21,54,97].

In a previous review [3], it was concluded that Leptotrichia species were isolated and recovered from various sources, including patients who had gingivitis, necrotizing ulcerative gingivitis, adult/juvenile periodontitis, ‘refractory periodontitis’, Vincent’s angina, noma, acute appendicitis, bacterial vaginosis, aortic aneurysms, cellulitis, phagedenic chancreoid, saplingitis, neutropenia, human immunodeficiency virus (HIV), leukemia, endocarditis, and human and animal infections [2,97]. It was suggested that Leptotrichia species are opportunistic pathogens. Current documentation and a review of the literature support this view.

Brief additional clinical information on Leptotrichia species

L. buccalis

Recently, L. buccalis has been isolated from irreversible pulpitis, pulp necrosis, apical periodontitis [70], and dental plaques of both humans and guinea pigs with alveolar bone loss (Table 2) [21,56,71,90]. It has also been recovered from root canals of patients with or without other oral diseases, tissue fluids and subgingival plaque samples, and exudate with cellulitis after a dog bite (Table 2) [8,52,72–74,77,90]. Furthermore, it has been recovered from the blood and amniotic fluid of a female patient and from the amniotic fluid of an afebrile pregnant woman with acute chorioamnionitis [4,78] (Table 2). It has also been detected in saliva, on the mucosal surface of patients with removable partial dentures, in peri-implant crevicular fluids [34,76,79], and in biofilms (Table 2) [75]. In addition, L. buccalis was isolated from the blood of an elderly woman who suffered from moderate normocytic anemia, acute myelogenous leukemia, and mucositis (Table 2) [15,87].

L. goodfellowii

L. goodfellowii has been isolated from oral swabs of guinea pigs [21] and the gastric fluid of patients who suffered spontaneous stillborn child expulsion [85]. It has also been isolated from the blood of an amniotic fluid patient with a wound and respiratory difficulties [4], from a wound exudate of a healthy person with cellulitis after a dog bite [74], from saliva, plaque, and the mucosal surface of caries-active patients and diabietic smokers [56,90], and from the blood of patients with heart failure, diabetes, bladder cancer, pulmonary edema, and bronchopneumonia [11]. L. goodfellowii has been recovered from an immunocompetent endocarditis patient with bioprosthetic pulmonic valve and an aortic valve homograft suffering from fever and chronic night sweats (diaphoretic) (Table 2) [12].
L. hofstadii

L. hofstadii has been isolated from subgingival samples and gingival crevicular fluid of periodontitis patients [83], saliva, biofilm from caries [49,65], the mucosal surface of patients with removable partial dentures, and root canals of patients with or without disease [34,56,84], tumor tissue [40], and tongue coatings of halitosis patients (Table 2) [81,82].

L. hongkongensis

L. hongkongensis has been isolated from the blood of metastatic breast carcinoma (MBC) patients [6], the blood and amniotic fluid of a patient with a wound and respiratory difficulties [4], plaque from dental caries [45,47,56], saliva from pancreatic cancer patients and black pigmented stain caries patients (Table 2) [18,63].

L. shahii

L. shahii has been recovered from the saliva and plaque of patients with active caries and the mucosal surface of patients with removable partial dentures (Table 2) [34,56,86].

L. trevisanii

L. trevisanii has been cultured from the blood of an immunocompetent patient, dental plaque and stool of patients with stomatitis, neutropenia, mucositis, peritonsillar abscess, blood progenitor-cell transplantation, catheter-related bloodstream infection, acute myelogenous leukemia, and redness and swelling in a tonsil incision wound [5]. It has also been associated with mild liver dysfunction, normal renal function [5], multiple myeloma, non-Hodgkin lymphoma (NHL), diffuse large B-cell lymphoma, post-transplant aplasia, neutropenic fever, myelodysplastic syndrome, mandibular tumor, esophageal carcinoma, and the wound and amniotic fluid of a patient with respiratory difficulties [4,5,9,10,13,14,17,37,87].

L. wadei

L. wadei has been isolated from bronchoalveolar lavage fluid of a patient with leukocytosis, hypoxemia, and dyspnea [24] and from the blood and amniotic fluid of a patient with a wound and respiratory difficulties (Table 2) [4]. Saliva, plaque, and the oral mucosal surface of caries patients [34,37,56,67] and the oral cavity and biofilms from oral epithelial cells of a patient with new-onset rheumatoid arthritis [20,48] all contained *L. wadei*. Patient material from tongue plaque, saliva, and the tongue coating of malodor and halitosis patients [42,81] was isolated with *L. wadei* present. This bacterium was even isolated from the antral gastric biopsy of a dyspeptic patient [80], smokers’ plaque [90], and oropharyngeal samples (Table 2) [93].

Unspecified Leptotrichia species

Leptotrichia species have been recovered from the blood of patients with liver abscesses, mucositis, neutropenic sepsis, diabetes, respiratory distress, community-acquired pneumonia (CAP), bilateral lung crackles, mild anemia, and vasculitis (Table 2) [7,22,33–35]. They were also recovered from oral plaque of guinea pigs [21] and feces of piglets [54], dental plaque from healthy individuals, plaque and saliva from patients with various types of caries, gingivitis, chronic periodontitis, and peri-implantitis [23,25–27,34,35,37,38,44,45,47,49,52,59,60,62,66–69,91,94], decayed tooth surfaces and discordant caries from intact enamel surfaces [53]. *Leptotrichia* species were also isolated from bronchoalveolar lavage fluid, and patients with leukocytosis, hypoxemia, and dyspnea [24]. Further, *Leptotrichia* species were recovered from healthy patients with oral cancer, premalignant oral lesion [18,28,33,56,91], edentulous infants [29], human vaginal fluid of sexually active and inactive individuals [30,32], HIV-seropositive and -seronegative patients [46], pancreatic cancer patients [18,66], black pigmented stain caries patients [63], and patients with halitosis (Table 2) [42,65,81,82]. Besides, *Leptotrichia* species were isolated from the blood [4,5,22,74], the amniotic fluid of a patient with a wound and respiratory difficulties [4], breast milk of obese women with gestational diabetes and normal weight [36], oral samples of a patient with new-onset rheumatoid arthritis [20], oral lichen planus patients [88], and even from fermenting Lees liquor [39]. *Leptotrichia* species were equally isolated from the blood and gastric fluid of patients with coronary artery disease (CAD), candidal esophagitis, chronic kidney disease, diabetic, duodenal ulcer, erythematous gastropathy, gastroesophageal reflux disease, gastric ulcer, hiatal hernia, reflux esophagitis, upper gastrointestinal bleeding, renal transplant, and sarcoidosis (Table 2) [16]. Also, *Leptotrichia* species were isolated from tumor tissues and sputum of patients with tuberculosis, acute exacerbation of chronic obstructive pulmonary disease, and feces of piglets with porcine epidemic diarrhea virus [40,41,43,50,51]. They were also detected in patient material from tongue plaque with malodor [42], biofilms of caries, oral epithelial cells [48,49], vaginal swabs with high-risk human papillomavirus, and from HIV-positive and -negative subjects [55]. The guts of herbivorous, carnivorous, and omnivorous fish [58], tumor tissues and saliva of patients with head and neck squamous-cell carcinoma human papillomavirus (HPV), oropharyngeal squamous-cell
carcinoma HPV, and oral cavity squamous-cell carcinoma HPV [19] all contained *Leptotrichia* species. They were also isolated from the bile aspirate of fish with cholelithiasis (gallstone diseases) and *Opisthorchis felineus* (fish-borne liver fluke infections), in pancreatitis and hepatitis C [61], and in saliva from a Behçet’s disease patient [64]. Wu et al. [57] reported recovery of *Leptotrichia* species, together with *Veillonella parvula* and *Peptostreptococcus* species in low amounts in cigarette smokers’ mouthwash (Table 2) [57,90,91]. Also, human skin emanation samples and oropharyngeal samples of mite-food-sensitized children with rhinitis and asthma were found to contain *Leptotrichia* species [31,92].

Pathogenicity of Leptotrichia

The genus *Leptotrichia* consists of slow-growing, non-motile facultative anaerobic/anaerobic Gram-negative rods that reside in the oral cavity and the genitourinary and intestinal tract [1]. *Leptotrichia* species were traditionally considered non-pathogenic but have recently been considered as opportunistic causes of human disease [2,3,78]. Previously, Eribe and Olsen [2] described a myriad of pathological conditions associated with *Leptotrichia*, including appendicitis, pneumonia, mucositis, and sepsis [2,78]. The concept that *Leptotrichia* infections are opportunistic is further supported in the current review. *Leptotrichia* species, primarily oral commensals, have been associated with infections, particularly in immunocompromised hosts (Table 2) [4,9,13–17,24,30,32,46,55,74,78,97], but occasionally in immunocompetent persons [5,11,12,24,33,60,74,78,85].

The cell surface of *leptotrichia* has protruding structures presumed fitted for adhesion [2,3]. Like any other Gram-negative rod that possesses lipopolysaccharide (LPS, endotoxin), *Leptotrichia* displays O-antigen linked to lipid-A. The latter may cause hemorrhage, fever, tumor necrosis, fatal shock, and septicemia [4–7,9,10,12–15,17,24,33,40,85,87] and may even lead to abortion, as observed in infection associated with *L. goodfellowii* [85]. The virulence of *L. buccalis* was demonstrated experimentally in a rabbit model [2,3]. When *Leptotrichia* endotoxin was compared to *Escherichia coli* endotoxin in terms of a lethal dose for 50% survival, febrile response, and leukopenia, *Leptotrichia* endotoxin was 10–20% as active on a weight basis. In the same test, the endotoxin from *L. buccalis* proved more potent than *Salmonella* endotoxin [2,3,7]. Once activated, the immune system is hard to switch off, and sometimes it gets out of control, causing damage to other parts of the body. This ‘self-inflicted’ damage acts as trigger for various disease conditions [101]. Many types of Gram-negative bacteria secrete LPS that stimulates the immune system. A study by Langfeldt et al. [48] found that *Leptotrichia* was able to trigger the transcription level of proinflammatory interleukin (IL)-1β, IL-6, IL-8, and IL-10 in epithelial cells [48]. This suggests that *Leptotrichia* may play a key role during the transition from health to disease [54]. IL-1β modulates human cell differentiation, proliferation, and apoptosis, which regulate the release of other proinflammatory cytokines such as IL-6 and IL-8 [48]. In addition, IL-6 and IL-8 have the capacity to attract granulocytes and lymphocytes, thereby inducing the host cellular immune response. In contrast, IL-10 is designated as an anti-inflammatory mediator that prohibits excessive immune response by suppressing pro-inflammatory cytokine production and the antigen-presenting capacity of monocytes, macrophages, and dendritic cells [48]. Both pathogenic and commensal bacteria interfere with early host cell signaling for survival or promote bacterial infection by decreasing pro-inflammatory responses [48]. In an in vitro multispecies biofilm model with or without major periodontal pathogens, it was documented that such biofilms can upregulate IL-8 expression in gingival epithelial cells. The presence of the ‘red-complex’ species (*Porphyromonas gingivalis, Tannerella forsythia*, and *Treponema denticola*) resulted in even greater upregulation [48]. The data strongly argued that *Leptotrichia* may be crucially involved in the ‘fine-tune’ regulation of epithelial immune response to obtain homeostasis or propagate inflammatory response [48]. Jang et al. [102] reported that *L. wadei*, *Fusobacterium nucleatum*, and *Campylobacter gracilis* when co-cultured with human gingival fibroblasts highly upregulated the expression of antimicrobial chemokine peptides and the proinflammatory mediators IL-6 and IL-8, whereas the red-complex bacteria stimulated low levels or often suppressed expression of these factors [102].

New-onset patients with chronic rheumatoid arthritis harbored high levels of several pathogens, including *Gemella morbillorum*, *Propionibacterium acnes*, *Streptococcus gordonii*, and *L. buccalis*. This indicated that *L. buccalis* can be more specifically associated with multiple disease activity than so far realized [20,52]. Irrespective of periodontal disease status, the *Leptotrichia* OTU 87 (*L. wadei*) clone and *Prevotella* OTU 60 (*P. intermedia*) clone were the only clones observed in increased amount in patients with new-onset rheumatoid arthritis but were absent in healthy controls [20].

Leptotrichia and proinflammatory mediators

It is known that the systemic release of endotoxin and proinflammatory mediators from infected host tissue can contribute directly or indirectly to the sepsis syndrome associated with *Leptotrichia* [2,3,7]. Once activated, the immune system is hard to switch off, and sometimes it gets out of control, causing damage to other parts of the body. This ‘self-inflicted’ damage acts as trigger for various disease conditions [101]. Many types of Gram-negative bacteria secrete LPS that stimulates the immune system. A study by Langfeldt et al. [48] found that *Leptotrichia* was able to trigger the transcription level of proinflammatory interleukin (IL)-1β, IL-6, IL-8, and IL-10 in epithelial cells [48]. This suggests that *Leptotrichia* may play a key role during the transition from health to disease [54]. IL-1β modulates human cell differentiation, proliferation, and apoptosis, which regulate the release of other proinflammatory cytokines such as IL-6 and IL-8 [48]. In addition, IL-6 and IL-8 have the capacity to attract granulocytes and lymphocytes, thereby inducing the host cellular immune response. In contrast, IL-10 is designated as an anti-inflammatory mediator that prohibits excessive immune response by suppressing pro-inflammatory cytokine production and the antigen-presenting capacity of monocytes, macrophages, and dendritic cells [48]. Both pathogenic and commensal bacteria interfere with early host cell signaling for survival or promote bacterial infection by decreasing pro-inflammatory responses [48]. In an in vitro multispecies biofilm model with or without major periodontal pathogens, it was documented that such biofilms can upregulate IL-8 expression in gingival epithelial cells. The presence of the ‘red-complex’ species (*Porphyromonas gingivalis, Tannerella forsythia*, and *Treponema denticola*) resulted in even greater upregulation [48]. The data strongly argued that *Leptotrichia* may be crucially involved in the ‘fine-tune’ regulation of epithelial immune response to obtain homeostasis or propagate inflammatory response [48]. Jang et al. [102] reported that *L. wadei*, *Fusobacterium nucleatum*, and *Campylobacter gracilis* when co-cultured with human gingival fibroblasts highly upregulated the expression of antimicrobial chemokine peptides and the proinflammatory mediators IL-6 and IL-8, whereas the red-complex bacteria stimulated low levels or often suppressed expression of these factors [102].

New-onset patients with chronic rheumatoid arthritis harbored high levels of several pathogens, including *Gemella morbillorum*, *Propionibacterium acnes*, *Streptococcus gordonii*, and *L. buccalis*. This indicated that *L. buccalis* can be more specifically associated with multiple disease activity than so far realized [20,52]. Irrespective of periodontal disease status, the *Leptotrichia* OTU 87 (*L. wadei*) clone and *Prevotella* OTU 60 (*P. intermedia*) clone were the only clones observed in increased amount in patients with new-onset rheumatoid arthritis but were absent in healthy controls [20].
Leptotrichia species in bacteremia

Thirty-one cases of bacteremia and four cases of wound infections associated with Leptotrichia species have been reported (Table 2). Bacteremia caused by Leptotrichia species were found among neutropenic patients with various forms of predisposing diseases such as bone-marrow transplants, infective endocarditis, and sepsis associated with mucositis. The latter served as an oral or orodental portal of entry [2,3,22]. In fact, neutropenic fever coupled with mucositis is an established predisposing factor for development of sepsis by Leptotrichia species [4,7,87]. Peripheral blood stem-cell transplant patients (PBSCCT) with fever due to mucosal disruptions and lesions have a portal of entry for bacteria that causes bacteremia [5,9,22,33]. Mucositis, esophageal ulcer, or diverticulitis are possible risk factors for infected patients [7,9,13,15–17,33,85]. Leptotrichia trevisanii was involved in 15 incidences of bacteremia. Eight cases each also involved Leptotrichia species and L. buccalis, six L. goodfellowii, three L. wadei, two L. hongkongensis, and one with L. shahii (Table 2) [4–6,9–15,17,21,22,33,42,74,78,85–88]. In cases involving L. trevisanii, seven were also associated with neutropenic fever [5,13,14,17,87], while five were associated with PBSCCT [9,10], four had acute myelogenous leukemia (AML) [5,7,9,10,15] and multiple myelomas (MM) [4,9,13], two had stomatitis [10,14], three had NHL [9,87], and one had a catheter-related bloodstream infection [17]. It is worth mentioning that L. goodfellowii has previously been associated with endocarditis. Leptotrichia goodfellowii isolated from immunocompetent patients was found to be a pathogenic agent when associated with bacteremia [11,12,33,74,85]. Lim et al. [11] therefore hypothesized that L. goodfellowii could be secondary to pneumonia, as there was no other causative factor leading to bacteremia in their patient. In one of three cases, L. goodfellowii was even associated with a stillborn child, spontaneously expelled after 25 weeks of gestation [4]. In three cases of L. hongkongensis bacteremia, one case was associated with amniotic fluid, fever, and MBC [6]. L. wadei bacteremia was detected in wounds and amniotic fluid [4].

Thus, recent reports have proven the pathogenicity of Leptotrichia species. Inappropriate clinical situations can affect the protective function of the indigenous bacterial flora, which can lead to disruption by broad-spectrum antibiotic therapy [2–4,12,69,103], resulting in infection. Likewise, enhanced Leptotrichia proliferation and tissue invasion can culminate in bloodstream invasion and dissemination [2,3]. This occurs frequently when the patient’s immune system is comprised with Leptotrichia species such as with cases involving L. buccalis, L. trevisanii, L. wadei, and L. goodfellowii. These species have been reported to act as opportunistic pathogens responsible for bloodstream infections in immunocompromised patients [2,4,5,15,17,33,74,85,87,103].

L. buccalis has been associated with chorioamnionitis and child loss during pregnancy [78]. The authors suggested that the development of chorioamnionitis was a result of hematogenous spread arising from the oral cavity [78]. Unique to bacteremia from other Leptotrichia species, L. goodfellowii showed an association with bacteremia secondary to endocarditis [11,12]. In contrast to previously reported cases of Leptotrichia bacteremia, the patient in this report was immunocompetent and had no history of endocarditis. For the first time, a case of L. goodfellowii bacteremia was recently reported in a Korean patient [11]. It is noteworthy that in a 62-month retrospective survey of 4,857 episodes of anaerobic bacteremia, Leptotrichia species were identified as the causative pathogens in 7.3% of cases [12,22].

Leptotrichia species in endocarditis

A few Leptotrichia species were related to 88 incidences of various cancers [4–7,9–11,13–15,17–19,22,28,33,40,57,60,61,66,74,80,87,91], of which 43 cases had neutropenia, sepsis, and fever [4–7,9,10,12–15,17,22,24,33,87], 14 had transplant issues [4,9,10,13,16,17,22,33], 14 mucositis [4,7,9,13–15,17,22,87], 12 various lesions (6, 11, 27, 32, 37, 44, 56, 64, 99), and five pneumonia [5,9,11,24,33]. The suspected port of Leptotrichia entry included mucositis, abscesses, wound infections, gingivitis, diverticulitis, peritonitis, neutropenic sepsis, and ulcers (Table 2).

In an examination of the relationship of the oral microbiota with subsequent risk of pancreatic cancer in a large nested case-control study, the authors reported that the carriage of oral pathogens, P. gingivalis and Aggregatibacter actinomycetemcomitans, was associated with a higher risk of pancreatic cancer [66]. They also found that a greater abundance of the phylum Fusobacteria was associated with decreased pancreatic cancer risk as well as its genus Leptotrichia [66]. Their finding was inconsistent with a recent cross-sectional study of eight patients, which found higher abundances of Leptotrichia and Porphyromonas in the saliva of pancreatic cancer patients compared to controls and those with other diseases, including non-cancerous pancreatic disease [18]. Torre et al. [18] concluded that the Leptotrichia and Porphyromonas ratio may serve as a potential pancreatic cancer biomarker. Based on their findings, pancreatic cancer may be detected at early stages by sampling individuals’ saliva and looking at the ratios of Leptotrichia and Porphyromonas.
Leptotrichia in dental caries

Among the many microbial species residing in oral biofilms (plaque) at the tooth surface [104], *mutans* streptococci have long been recognized as primary contributors in the etiology of dental caries [104]. The pathogenicity of organisms such as *Streptococcus mutans* and *S. sobrinus* is attributable in part to (i) the capacity of these species to produce extracellular glucan(s) from dietary sucrose that facilitate microbial adherence to the tooth surface, and (ii) the fermentation of sucrose to lactic acid – the causative agent in the demineralization of tooth enamel [104]. There is supporting evidence that the genus *Leptotrichia* is highly saccharolytic [1–3,11,104–106], implying that it ferments a wide variety of mono- and disaccharides to lactic acid similar to *S. mutans*. This property may implicate the participation of *Leptotrichia* species in tooth decay [1–3,11].

Association between Leptotrichia and halitosis

Leptotrichia has also been associated with halitosis (oral malodor) [42,65,81,82]. Most of the species within the core microbiome of the tongue-coating biofilm are Gram-negative anaerobic bacteria that are adaptable to the tongue-coating environment (Table 2) [81]. Malodor is foul-smelling breath from the oral cavity in humans [42]. Most malodor originates from the host’s tongue plaque and is without any clear signs of disease, which is defined as physiologic oral malodor [42]. Malodorants are produced by the tongue plaque resident on the large surface area of the tongue. Some bacteria inside tongue plaque can produce amino acids and peptide by-products as well as food debris to putrefy, thus producing malodorants [42]. The unpleasant oral odor results from volatile sulfur compounds (VSCs), including hydrogen sulphide (H$_2$S), methyl mercaptan (CH$_3$SH), other thiols, and dimethyl sulphide ((CH$_3$)$_2$S) involved and associated with halitosis [42]. Of the three major VSCs involved in oral malodor, (CH$_3$)$_2$S is the main contributor to halitosis [81], whereas CH$_3$SH is more pathogenic than H$_2$S and is associated with periodontal disease [81]. It has been inferred that the reason for halitosis might be cooperative polymicrobial activity, which includes *Leptotrichia* species interactions rather than the effect of a single pathogen [81]. There is also evidence supporting that *Leptotrichia* species are present in increased abundances in people with oral malodor, despite a lack of H$_2$S production [81,82]. Yang et al. reported that *L. wadei* was positively correlated with H$_2$S concentrations [42] and concluded that *Leptotrichia* spp. and *Prevotella* spp. were found to be strongly associated with oral malodour [42], although direct proof of production was not provided. This bacterium was detected in relatively high abundance in all the halitosis tongue-coating samples and was inferred to be involved in halitosis [81,82], likewise *L. hofstadii* in some subjects [81,82]. Bacteria such as *Peptostreptococcus stomatis* and *Prevotella shahii* isolated from tongue coatings of diseased persons together with *L. wadei* were also suggested to be candidate halitosis pathogens [81] (Table 2).

Leptotrichia in co-existence with other microbes

The human oral cavity has an indigenous microbiota known to include a robust community of microorganisms. *Leptotrichia* species are present in the salivary milieu and coexist with virus/bacteriophages in this environment, together with other microbes, for example *Veillonella* [76]. Their interrelationships remain elusive. *Leptotrichia, Clostridium*, and *Citrobacter* were found as the most abundant bacteria in the herbivorous fish gut [58]. Previous studies have reported that *Clostridium, Citrobacter, Leptotrichia, Bacillus, and Enterobacter* are important cellulose-degrading bacteria in herbivorous fish [58]. It was suggested that these bacterial species might play significant roles in their host’s digestive system. Herbivorous fish harbored abundant cellulose-degrading bacteria, including *Clostridium, Citrobacter*, and *Leptotrichia* (Table 2) [58]. *L. hofstadii* was considered and reported as a potential biomarker for dental caries in association with *Campylobacter showae* and *Parvimonas micra* [69,84]. *Leptotrichia* species were found together with *Fusobacterium* and *Campylobacter* species in patients with colorectal carcinoma. This polymicrobial signature was associated with overrepresentation of numerous host genes, including the gene for encoding the proinflammatory chemokine IL-8 [40].

Leptotrichia species were reported in close association with fungi, including species of *Saccharomyces, Aspergillus, Zygomascharomyces, Pichia, Saccharomycespsis, Talaromyces, Euortium, Fomitopsis, Trichosporon, Candida albicans, C. parapsilosis*, and *C. tropicalis*, and other species from liquor [39], gastric fluid [16], the saliva of HIV patients [46], sputum [50], blood, and saliva [60] (Table 2). The importance of these associations remains unknown. *Leptotrichia* species, together with *Delftia* species and *Actinobacteria* species, were significantly correlated with individuals attacked by malaria mosquitoes [31]. *Leptotrichia* species, *L. wadei*, and *Streptococcus* species were isolated together with *C. albicans* from dental plaque samples of patients with or without rampant caries [67,89]. The authors postulated that these pathogenic species and dysbiosis of the oral microbial community might have contributed to the pathogenesis of rampant caries in their patient. *Leptotrichia*
spp. and *Lautropia* spp. were found to increase significantly in oral lichen planus (OLP) patients [88]. The argument for this was that as OLP is an immune-related disease, the elevated colonization of these bacteria might be related to the local immune dysfunction of OLP, which again suggested that OLP is associated with dysbiosis of the oral microbiome [88]. Kawanami et al. [24] suggested that in a severe pneumonia patient, isolated *L. wadei* and other *Leptotrichia* species, together with mixed oral bacteria (*Enterococcus faecalis, E. casseliflavus, Veillonella parvula, V. atypica, V. dispar, Prevotella nanceiensis, L. goodfellowii* Clostridium Leptotrichia Delftia Streptococcus *L. trevisanii* DNA or RNA-DNA interference [species, together and other Veillonella parvula *L. goodfellowii* as by the Vitek 2 [sp. clone, possess clustered regularly inter- V. atypica *spp. were found to increase sig- *species can be proble- 11 *and L. buccalis bacteremia [sp. clone, *spp. and *Leptotrichia* species, Schrimsher et al. [9] reported cases of misidentification of *L. trevisanii* sepsis where all the isolates were unidentified by biochemical tests. One of the isolates was misidentified as *Sphingomonas paucimobilis* [9] and another as *Clostridium acetobutylicum* [13]. A report from Lim et al. [11] showed misidentification of *L. trevisanii* as *Capnocytophaga* spp. and *L. buccalis* by the Vitrek 2 system [11], or as unidentified using this system. In addition, the MALDI-TOF MS system may struggle in the identification of *Leptotrichia* species [11]. The VITEK MS database has no known *Leptotrichia* species, making their identification impossible and underestimated. Lim et al. [11], however, reported that the Bruker Biotyper System (Bruker Daltonics, Billerica, MA), which contains some *Leptotrichia* species in their database, gave successful identification [11]. It is of general interest that more database development and strain accumulation are made to enable the precise identification of *Leptotrichia* species [11]. To avoid misclassification of *Leptotrichia* species, application of 16S rRNA gene identification is recommended because of its reliability and feasibility. HOMD with its large amount of genetic data from oral bacteria is probably the most reliable database to use.

Antimicrobial agents toward *Leptotrichia*

Leptotrichia species are susceptible to many antimicrobial agents such as penicillin, ampicillin, oxacillin, cephalothin, cefoxitin, cefotaxime, amoxicillin/sulbactam, ampicillin/sulbactam, amoxicillin/clavulanate, clindamycin, metronidazole, rifampicin, tetracycline, imipenem, and chloramphenicol. Strains have developed resistance to erythromycin, genta- mycin, kanamycin, vancomycin, ciprofloxacin, tobramycin, amikacin, fluorquinolones, and aminoglycosides [2,11,70]. Some strains have been treated successfully while others have not with these antibiotics. *L. goodfellowii* bacteremia has been successfully treated with piperacillin/tazobactam, cef- triaxone/metronidazole, or amoxicillin/clavulanate, clindamycin, vancomycin, gentamycin, and imipe- nem [11,74]. *L. goodfellowii* was found resistant to tobramycin, amikacin, and ciprofloxacin [74]. With antimicrobial susceptibility testing, prompt and ade- quate selection of antibiotics could be sufficient for treatment of *L. goodfellowii* bacteremia [11]. Antibiotic treatment with piperacillin/tazobactam, moxifloxacin, piperacillin, erythromycin, levofloxacin, gentamycin, amikacin, and chloramphenicol was unsuccessful toward *L. trevisanii* [13,14,17] and successful with meropenem [14,17], penicillin, amoxicillin, amoxicillin/clavulanate, cefoxitin, imi- penem, clindamycin, tetracycline, metronidazole [13,14], cefotaxime, ceftazidime, piperacillin/tazo- bactam, and tigercycline [14]. Severe pneumonia caused by *L. wadei* was successfully treated with imipenem/cilastin, minocycline, sulfametoazoxole/ trimethoprim, and clindamycin but not with cefca- pene pivoxil or levofloxacin [24].

Clustered regularly interspaced short palindromic repeats (CRISPRs)

There is evidence that almost all *Archaea* and about half of *Bacteria* possess clustered regularly inter- spaced short palindromic repeats (CRISPRs). These are segments containing short repetitions of base sequences. The unique sequences between the repeats match the DNA of the virus preying on the bacterium. CRISPRs are part of the bacterial immune system. CRISPR-associated proteins (Cas) are adaptive immune systems for *Archaea* and *Bacteria* defending microbes against foreign genetic elements (e.g. virus) via DNA or RNA-DNA interference [107,108]. Most Cas proteins are grouped into two functional mod- ules: (i) the adaptation module, which delivers genetic materials into CRISPR arrays generating CRISPR RNAs (crRNAs); and (ii) the effector module, which
is guided by crRNA that targets and cleaves invading nucleic acids [107]. Up-to-date characterized CRISPR-Cas systems consist of Cas1 and Cas2, which are exclusively involved in spacer acquisition [107]. C2c2 is the sole effector protein that uses a crRNA guide to achieve interference, targeting RNA [107]. Targeting C2c2 to mRNA prevents gene expression [107], suggesting that CRISPR-Cas systems and C2c2 can be used for development of a new molecular RNA-targeting tools [107], including tools for Leptotrichiaceae. C2c2 from L. shahii was documented to provide interference against RNA phage [108].

Disclosures statement

No potential conflict of interest was reported by the authors.

Funding

The authors acknowledge the European Commission (FP7-HEALTH-306029 ‘TRIGGER’) for funding.

Notes on contributors

Emenike Ribs K. Eribe is a guest researcher at Department of Oral biology, Faculty of Dentistry, University of Oslo. BSc Biology from the University of Trondheim 1986. MSc Microbiology from the Faculty of Dentistry, University of Oslo in 2001 and PhD Microbiology in 2004. Co-supervisor of many MSc and PhD students.

Ingvar Olsen is professor emeritus and guest researcher at Department of Oral Biology, Faculty of Dentistry, University of Oslo. DDS from the Faculty of Dentistry, Cambridge, MA. DDS from the Faculty of Dentistry, University of Oslo in 1966. Dr. odont. in 1976. Professor in oral microbiology 1988. Dean for Research 2002–2008. Previously, main supervisor of more than 20 PhD students.

References

[1] Eribe ERK, Paster BJ, Caugant DA, et al. Genetic diversity of Leptotrichia and description of Leptotrichia goodfellowii sp. nov., Leptotrichia hofstadii sp. nov., Leptotrichia shahii sp. nov. and Leptotrichia wadei sp. nov. Int J Syst Evol Microbiol. 2004;54:583–592.
[2] Eribe ERK, Olsen I. Leptotrichia species in human infections. Anaerobe. 2008;14:131–137.
[3] Eribe ERK, Olsen I. Leptotrichia and Leptotrichia-like organisms. In: Liu D, editor. Molecular detection of human bacterial pathogens. Section III. Bacteroidetes, Chlamydiae, and Fusobacteria, Chapter 49. Boca Raton, London, New York: CRC Press: Taylor & Francis Group; 2011. p. 555–566.
[4] Couturier MR, Slecha ES, Goulston C, et al. Leptotrichia bacteremia in patients receiving high-dose chemotherapy. J Clin Microbiol. 2012;50:1228–1232.
[5] Kumagai J, Takeda Y, Shono K, et al. Acute myelogenous leukemia with Leptotrichia trevisanii bacteremia. Intern Med. 2013;52:2573–2576.
[6] Woo PCY, Wong SSY, Teng JLL, et al. Leptotrichia hongkongensis sp. nov., a novel Leptotrichia species with the oral cavity as its natural reservoir. J Zhejiang Univ Sci B. 2010;11:391–401.
[7] Muttaiyah S, Paviour S, Buckwell L, et al. Anaerobic bacteremia in patients admitted to Auckland City Hospital: clinical significance. N Z Med J. 2007;120:U2809.
[8] Sassone L, Fidel R, Figueiredo L, et al. Evaluation of the microbiota of primary endodontic infections using checkerboard DNA-DNA hybridization. Oral Microbiol Immunol. 2007;22:390–397.
[9] Schirmer JM, McGuirk JP, Hinthorn DR. Leptotrichia trevisanii sepsis after bone marrow transplantation. Emerg Infect Dis. 2013;19:1690–1691.
[10] Higurashi Y, Tatsuno K, Fujimoto F, et al. Two cases of bacteremia caused by Leptotrichia trevisanii in patients with febrile neutropenia. J Infect Chemother. 2013;19:1181–1184.
[11] Lim YK, Kweon OJ, Kim HR, et al. Leptotrichia goodfellowii infection: case report and literature review. Ann Clin Lab Sci. 2016;46:83–6.
[12] Matias WR, Bourque DL, Niwano T, et al. Subacute bacterial endocarditis with Leptotrichia goodfellowii in a patient with a valvular allograft: a case report and review of the literature. Case Rep Infect Dis. 2016;2016:3051212.
[13] Sabater Cabrera C, Fernández Blázquez A, García Carús E. Bacteremia due to Leptotrichia trevisanii after an allogeneic bone marrow transplant. Enferm Infect Microbiol Clin. 2016. DOI:10.1016/j.eimc.2016.09.010. pii: S0213-005X(16)30315-9. Spanish.
[14] Cooreman S, Schuermans C, Van Schaeren J, et al. Bacteremia caused by Leptotrichia trevisanii in a neutropenic patient. Anaerobe. 2011;17:1–3.
[15] Baracaldo R, Bourbeau P. Photo quiz: an 80-year-old female with acute myeloid leukemia and induction-associated neutropenic fever. J Clin Microbiol. 2013;51:389, 737.
[16] Von Rosenvinge EC, Song Y, White JR, et al. Immune status, antibiotic medication and pH are associated with changes in the stomach fluid microbiota. ISME J. 2013;7:1354–1366.
[17] Martin-Gutierrez G, Rodriguez N, Lepe JA, et al. Rapid identification of a Leptotrichia trevisanii catheter-related bloodstream infection using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. JMM Case Reports. 2015;1–4. DOI:10.1099/jmmcr.0.000036
[18] Torres PJ, Fletcher EM, Gibbons SM, et al. Characterization of the salivary microbiome in patients with pancreatic cancer. Peer J. 2015;3:e1373.
[19] Guerrero-Preston R, Godoy-Vitorino F, Jedlicka A, et al. 16S rRNA amplicon sequencing identifies microbiota associated with oral cancer, human papilloma virus infection and surgical treatment. Oncotarget. 2016;7:51320–51334.
[20] Scher JU, Ubeda C, Equinda M, et al. Periodontal disease and the oral microbiota in new-onset rheumatoid arthritis. Arthritis Rheum. 2012;64:3083–3094.
[21] Boot R, Van De Berg I, Reubsaat FAG, et al. Positive Streptobacillus moniliformis PCR in guinea pigs likely due to Leptotrichia spp. Vet Microbiol. 2008; 128:395–399.

[22] Blairon L, De Gheldre Y, Delaere B, et al. A 62-month retrospective epidemiological survey of anaerobic bacteriaemia in a university hospital. Clin Microbiol Infect. 2006;12:527–532.

[23] Preza D, Olsen I, Aas JA, et al. Bacterial profiles of root caries in elderly patients. J Clin Microbiol. 2008;46:2015–2021.

[24] Kawanami T, Fukuda K, Yatera K, et al. Severe pneumonia with Leptotrichia sp. detected predominantly in bronchial/alveolar lavage fluid by use of 16S rRNA gene sequencing analysis. J Clin Microbiol. 2009;47:496–498.

[25] Ling Z, Kong J, Jia P, et al. Analysis of oral microbiota in children with dental caries by PCR-DGGE and barcoded pyrosequencing. Micro Ecol. 2010;60:677–690.

[26] Jiang W, Jiang Y, Li C, et al. Investigation of supragingival plaque microbiota in different caries status of Chinese preschool children by denaturing gradient gel electrophoresis. Microbes Ecol. 2011;61:342–352.

[27] Huang S, Yang F, Zeng X, et al. Preliminary characterization of the oral microbiota of Chinese adults with and without gingivitis. BMC Oral Health. 2011;11:33.

[28] Ahn J, Yang L, Paster BJ, et al. Oral microbiome profiles: 16S rRNA pyrosequencing and microarray assay comparison. PLoS One. 2011;6:e22788.

[29] Cephas KD, Kim J, Mathai RA, et al. Comparative analysis of salivary bacterial microbiome diversity in edentulous infants and their mothers or primary care givers using pyrosequencing. PLoS One. 2011;6:e23503.

[30] Pépin J, Deslandes S, Giroux G, et al. The complex vaginal flora of West African women with bacterial vaginosis. PLoS One. 2011;6:e25082.

[31] Verhulst NO, Qiu YT, Beijleveld H, et al. Composition of human skin microbiota affects attractiveness to malaria mosquitoes. PLoS One. 2011;6:e28991.

[32] Fethers K, Twin J, Fairley CK, et al. Bacterial vaginosis (BV) candidate bacteria: associations with BV and behavioural practices in sexually-experienced and inexperienced women. PLoS One. 2012;7:e30633.

[33] Lo TS. A cavitary pneumonia caused by Leptotrichia species in an immunocompetent patient. Infect Dis Rep. 2012;4:e24.

[34] Zhu X, Wang S, Gu Y, et al. Possible variation of the human oral bacterial community after wearing removable partial dentures by DGGE. World J Microbiol Biotechnol. 2012;28:2229–2236.

[35] Kumar PS, Mason MR, Brooker MR, et al. Pyrosequencing reveals unique microbial signatures associated with healthy and failing dental implants. J Clin Periodontol. 2012;39:425–433.

[36] Cabrera-Rubio R, Collado MC, Laitinen K, et al. The human milk microbiome changes after lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr. 2012;96:544–551.

[37] Wolff D, Frese C, Maier-Kraus T, et al. Bacterial biofilm composition in caries and caries-free subjects. Caries Res. 2013;47:69–77.

[38] Ling Z, Liu X, Wang Y, et al. Pyrosequencing analysis of the salivary microbiota of healthy Chinese children and adults. Microb Ecol. 2013;65:487–495.

[39] Xiang W, Li K, Liu S, et al. Microbial succession in the traditional Chinese Luzhou-flavor liquor fermentation process as evaluated by SSU rRNA profiles. World J Microbiol Biotechnol. 2013;29:559–567.

[40] Warren RL, Freeman DJ, Pleasance S, et al. Co-occurrence of anaerobic bacteria in colorectal carcinomas. Microbiome. 2013;1:16.

[41] Cheung MK, Lam WY, Fung WYW. Sputum microbiota in tuberculosis as revealed by 16S rRNA pyrosequencing. PLoS One. 2013;8:e54574.

[42] Yang F, Huang S, He T, et al. Microbial basis of oral malodor development in humans. J Dent Res. 2013;92:1106–1112.

[43] Wu J, Liu W, He L, et al. Sputum microbiota associated with new, recurrent and treatment failure tuberculosis. PLoS One. 2013;8:e83445.

[44] Belstrom D, Fiehn N-E, Nielsen CH, et al. Altered bacterial profiles in saliva from adults with caries lesions: a case-cohort study. Caries Res. 2014;48:368–375.

[45] Xu H, Hao W, Zhou Q, et al. Plaque bacterial microbiome diversity in children younger than 30 months with or without caries prior to eruption of second primary molars. PLoS One. 2014;9:e89269.

[46] Li Y, Saxena D, Chen Z, et al. HIV infection and microbial diversity in saliva. J Clin Microbiol. 2014;52:1400–1411.

[47] Fernandez Y Mostajo M, Van Der Reijden WA, Buijs MJ, et al. Effect of an oxygenating agent on oral bacteria in vitro and on dental plaque composition in healthy young adults. Front Cell Infect Microbiol. 2014;4:95.

[48] Langfeldt D, Neuling SC, Stiesch M, et al. Health and disease-associated species clusters in complex natural biofilms determine the innate immune response in oral epithelial cells during biofilm maturation. FEMS Microbiol Lett. 2014;360:137–143.

[49] Li F, Holgerson P, Öhman C, Rönnlund A, et al. Maturation of oral microbiota in children with or without dental caries. PLoS One. 2015;10:e0128534.

[50] Su J, Liu H-Y, Tan X-L. Sputum bacterial and fungal dynamics during exacerbations of severe COPD. PLoS One. 2015;10:e0130736.

[51] Card RM, Mafura M, Hunt T, et al. Impact of ciprofloxacin and clindamycin administration on Gram-negative bacteria isolated from healthy volunteers and characterization of the resistance genes they harbor. Antimicrob Agents Chemother. 2015;59:4410–4416.

[52] Arvika S, Hasturk H, Nguyen D, et al. Elevated subgingival levels of periodontal pathogens in rheumatoid arthritis patients, particularly Leptotrichia species in new-onset disease. Abstract Number: 2721 2015 ACR/ARHP Annual Meeting; 2015 Sep 29. Available from: http://acrabstracts.org/abstract/elevated-subgingival-levels-of-periodontal-pathogens-in-rheumatoid-arthritis-patients-particularly-leptotrichia-species-in-new-onset-disease/
[91] Mok SF, Karuthan C, Cheah YK, et al. The oral microbiome community variations associated with normal, potentially malignant disorders and malignant lesions of the oral cavity. Malays J Pathol. 2017;39:1–15.

[92] Chiu C-Y, Chan Y-L, Tsai Y-S, et al. Airway microbial diversity is inversely associated with mite-sensitized rhinitis and asthma in early childhood. Sci Rep. 2017;7:1820.

[93] Lopes Dos Santos Santiago G, Brusselle G, Dauwe K, et al. Influence of chronic azithromycin treatment on the composition of the oropharyngeal microbial community in patients with severe asthma. BMC Microbiol. 2017;17:109.

[94] Duan X-B, Wu T-X, Guo Y-C, et al. Marginal bone loss around non-submerged implants is associated with salivary microbiome during bone healing. Int J Oral Sci. 2017;9:95–103.

[95] Krieg NR, Staley JT, Brown DR, et al. Bergey’s Manual of Systematic Bacteriology. In: Staley JT, Whitman WB, editors. The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomus, Gemmatiminales, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. 2nd ed. Vol. 4. New York: Springer; 2005. p. 766–769.

[96] Tee W, Midolo P, Janssen PH, et al. Bacteremia due to Leptotrichia trevisanii sp. nov. Eur J Clin Microbiol Infect Dis. 2001;20:765–769.

[97] Shah HN, Olsen I, Bernard K, et al. Approaches to the study of the systematics of anaerobic, gram-negative, non-sporoforming rods: current status and perspectives. Anaerobe. 2009;15:179–194.

[98] Harwich MD Jr, Serrano MG, Fettweis JM, et al. Genomic sequence analysis and characterization of Sneathia amnii sp. nov. BMC Genomics. 2012;13:S4.

[99] Ivanova N, Gronow S, Lapidus A, et al. Complete genome sequence of Leptotrichia buccalis type strain (C-1013-b). Stand Genomic Sci. 2009;1:126–132.

[100] Gupta RS, Sethi M. Phylogeny and molecular signatures for the phylum Fusobacteria and its distinct subclades. Anaerobe. 2014;28:182–198.

[101] Sandle T. Bacteria in the blood could trigger dozens of diseases. In: Science. 2016. Available from: http://www.digitaljournal.com/tech-and-science/science/bacteria-in-the-blood-could-trigger-dozens-of-diseases/article/474337?

[102] Jang JY, Song JS, Baek KJ, et al. Immunologic characteristics of human gingival fibroblasts in response to oral bacteria. J Periodontal Res. 2016. DOI:10.1111/jre.12410

[103] Decroix V, Goudjal S, Kongolo G, et al. ‘Leptotrichia amnionii’, a newly reported cause of early onset neonatal meningitis. J Med Microbiol. 2013;62:785–788.

[104] Thompson J, Pikis A. Metabolism of sugars by genetically diverse species of oral Leptotrichia. Mol Oral Microbiol. 2012;27:34–44.

[105] Birkeland NK, Hofstad T. Oligosaccharides obtained by partial hydrolysis of lipopolysaccharides from Leptotrichia buccalis. Scand J Dent Res. 1985;93:432–435.

[106] Hofstad T, Jantzen E. Fatty acids of Leptotrichia buccalis: taxonomic implications. J Gen Microbiol. 1982;128:151–153.

[107] Shmakov S, Abudayyeh OO, Makarova KS, et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell. 2015;60:385–397.

[108] Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 2016;353:aaf5573.