On the Morita Reduced Versions of Skew Group Algebras of Path Algebras
Patrick Le Meur

To cite this version:
Patrick Le Meur. On the Morita Reduced Versions of Skew Group Algebras of Path Algebras. Quarterly Journal of Mathematics, 2020, 71 (3), 10.1093/qmathj/haa014. hal-02361334v2

HAL Id: hal-02361334
https://hal.science/hal-02361334v2
Submitted on 16 Feb 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
ON THE MORITA REDUCED VERSIONS OF SKEW GROUP ALGEBRAS OF PATH ALGEBRAS

PATRICK LE MEUR

Abstract. Let R be the skew group algebra of a finite group acting on the path algebra of a quiver. This article develops both theoretical and practical methods to do computations in the Morita reduced algebra associated to R. Reiten and Riedtmann proved that there exists an idempotent e of R such that the algebra eRe is both Morita equivalent to R and isomorphic to the path algebra of some quiver which was described by Demonet. This article gives explicit formulas for the decomposition of any element of eRe as a linear combination of paths in the quiver described by Demonet. This is done by expressing appropriate compositions and pairings in a suitable monoidal category which takes into account the representation theory of the finite group.

Introduction

In [13], Reiten and Riedtmann initiated the investigation of the skew group algebras of Artin algebras from the viewpoint of homological dimensions and representation theory. Their article was followed up by many research works illustrating the following principle: Artin algebras share many properties, whether of homological or of representation theoretic nature, with their associated skew group algebras. For instance, see [12] for interactions with Koszul duality; [4, 11] for interactions with piecewise hereditary algebras; and [14, 3] for interactions with preprojective algebras and McKay correspondence.

Let k be an algebraically closed field, Q be a finite quiver that may have oriented cycles, and G be a finite group with order not divisible by char(k) and acting on kQ by algebra automorphisms in such a way that both the set of (primitive idempotents of) vertices and the vector subspace generated by the arrows are stabilised by this action. Following [13], the skew group algebra $kQ * G$ is hereditary.

While Reiten and Riedtmann described a quiver whose path algebra is Morita equivalent to $kQ * G$ when G is cyclic, the description of such a quiver in general is recent. In [3], Demonet described an idempotent \tilde{e} of $kQ * G$ and a quiver Q_G such that $\tilde{e} \cdot (kQ * G) \cdot \tilde{e}$ is Morita equivalent to $kQ * G$ and isomorphic to kQ_G. This, however, does not yield a completely described isomorphism, which might be source of trouble. Here is a situation taken from Calabi-Yau algebras and where such trouble may occur. Following [10], if W is a G-invariant potential on Q, then G acts on the Ginzburg dg algebra $A(Q,W)$, defined in [6], and $A(Q,W) * G$ is Morita equivalent to $A(Q_G,W_G)$, where W_G is the potential on Q_G which, as a linear combination of oriented cycles, corresponds to $\tilde{e} \cdot W \cdot \tilde{e}$ under any chosen isomorphism $kQ_G \rightarrow \tilde{e} \cdot (kQ * G) \cdot \tilde{e}$. The problem here is that describing that linear combination explicitly is not easy. Up to now, the only fairly general explicit descriptions of W_G are due to Amiot and Plamondon [1] when G is of order 2 and to Giovannini and Pasquali [8] when G is cyclic, the stabiliser of each vertex is either trivial or the whole group, and every cycle appearing in W goes through fixed
vertices only (or, through vertices with trivial stabilisers only, respectively) as soon as it goes through two of them; during the revision of the present article, Giovannini, Pasqualli and Plamondon presented \cite{9} an extension of the latter description to the case where G is finite and abelian.

This raises the question of decomposing explicitly the elements of $\tilde{e} \cdot (kQ \ast G) \cdot \tilde{e}$ as linear combinations of paths in Q_G under an isomorphism $kQ_G \rightarrow \tilde{e} \cdot (kQ \ast G) \cdot \tilde{e}$.

Demonet’s description of Q_G involves the representation theory of the stabilisers of the vertices of Q. It is hence expectable that answering the above-mentioned question should involve representation theory. Answers of this kind already exist in particular cases where Q has only one vertex. Here is an example due to Ginzburg \cite{6}. He proved that, if G is a finite subgroup of $\text{SL}_3(\mathbb{C})$, then $\mathbb{C}[x,y,z] \ast G$ is Calabi-Yau in dimension 3. This was done by taking Q to be the quiver with one vertex and three loops x, y, and z, by taking $W = xyz - xzy$, and by expressing W_G in terms of the monoidal category of finite dimensional representations of G.

See \cite{2} for a generalisation to $\mathbb{C}[x_1,\ldots,x_n] \ast G$ where G is a finite subgroup of $\text{SL}_n(\mathbb{C})$, in which case Q is the quiver with one vertex and n loops. Note that this generalisation is (detailed and) successfully applied by Giovannini in \cite{7} to find subgroups Γ of $\text{SL}_n(\mathbb{C})$ such that $\mathbb{C}[x_1,\ldots,x_{n+1}] \ast \Gamma$ is Morita equivalent to the $(n+1)$-preprojective algebra of an n-representation finite algebra.

This article hence gives explicit formulas for the decomposition of the elements of $\tilde{e} \cdot (kQ \ast G) \cdot \tilde{e}$ as linear combinations of paths in Q_G under the isomorphism $kQ_G \rightarrow \tilde{e} \cdot (kQ \ast G) \cdot \tilde{e}$. These formulas are obtained by translating explicitly the result of natural operations and pairings in the monoidal category $(\text{mod}(A^e), \otimes_A)$ of finite dimensional A-bimodules, where A is the direct product of the group algebras of the stabilisers of the vertices of Q.

On one hand, these formulas provide an interpretation of the coefficients of these linear combinations in terms of the representation theory of the stabilisers of the vertices of Q. On the other hand, they are explicit enough to be implemented by a computer or a human being able to manipulate the irreducible representations of the involved groups. In specific cases, for instance when the action of the group elements transforms arrows to scalar multiples of arrows and the stabilisers are cyclic, these formulas simplify in a combinatorial way. Finally, these formulas give a complete solution to the problem of computing a potential W_G on Q_G such that the Ginzburg dg algebra $\mathcal{A}(Q_G,W_G)$ is Morita equivalent to $\mathcal{A}(Q,W) \ast G$, for any given G-invariant potential W on Q.

1. Definitions and main results

Throughout the article, k denotes an algebraically closed field. For all finite dimensional algebras A, their categories of finite dimensional left modules are denoted by $\text{mod}(A)$.

This section presents the main results of this text as well as the needed definitions and notation. These definitions are illustrated with a running example throughout the section. A full application of the main results is presented on an example in section 2. The remaining sections are devoted to the proofs of these results.

Setting 1.1. Let Q_0, S, G, and M be as follows.

- Q_0 is a finite set and S is the semi-simple k-algebra kQ_0.
- G is a finite group with order not divisible by $\text{char}(k)$ and acting on Q_0.
- M is a finite dimensional S-bimodule, considered as a collection of vector spaces $(M_j)_{(i,j) \in Q_0^2}$, endowed with an action of G written exponentially and such that $g^iM_j = g^iM_{g,i}j$ for all $i,j \in Q_0$ and $g \in G$.

The choice of a basis of \mathcal{M}_j, for all $i, j \in Q_0$ determines a quiver Q such that $T_S(M) \simeq \mathbb{k}Q$ as \mathbb{k}-algebras. All finite quivers arise in this way.

The actions of G on S and M induce an action on $T_S(M)$ by algebra automorphisms such that $^g(m_1 \otimes \cdots \otimes m_n) = ^g m_1 \otimes \cdots \otimes ^g m_n$ for all $g \in G$ and $m_1, \ldots, m_n \in M$. Recall that the skew group algebra $T_S(M) \ast G$ is the \mathbb{k}-algebra with underlying vector space $T_S(M) \otimes G$, where the tensor $u \otimes v$ is denoted by $u \ast v$ for all $u \in T_S(M)$ and $v \in \mathbb{k}G$, and with product such that $(u \ast g)(u' \ast g') = (u \ast g') \ast (u' \ast g')$ for all $u, u' \in T_S(M)$ and $g, g' \in G$. It is customary to consider $T_S(M)$ and $\mathbb{k}G$ as subalgebras of $T_S(M) \ast G$ in the canonical way.

Notation 1.2. The following data is used throughout the article.

- $[G \setminus Q_0]$ denotes a complete set of representatives of the orbits in Q_0.
- For all $i \in Q_0$,
 - G_i denotes the stabiliser of i and e_i denotes the corresponding primitive idempotent of S,
 - $[G/G_i]$ denotes a complete set of representatives of cosets modulo G_i,
 - $\text{irr}(G_i)$ denotes a complete set of representatives of the isomorphism classes of the irreducible representations of G_i,
 - and ε_U denotes a primitive idempotent of $\mathbb{k}G_i$ such that $U \simeq \mathbb{k}G_i \cdot \varepsilon_U$ in $\text{mod}(\mathbb{k}G_i)$, for all $U \in \text{irr}(G_i)$.
- $\bar{\varepsilon}$ denotes the idempotent $\sum_{U \in [G \setminus Q_0]} e_U \ast \varepsilon_U$ of $T_S(M) \ast G$, where i runs through $[G \setminus Q_0]$ and U runs through $\text{irr}(G_i)$.

Example 1.3. Let Q be the quiver

![Quiver Diagram]

where \overline{i} and $\overline{1}$ denote the classes in $\mathbb{Z}/2\mathbb{Z}$. For all vertices i, j of Q, the arrow from i to j is denoted by $x_{i,j}$. Let G be the group $\langle \tau | \tau^2 \rangle$ of order 2. The actions of G on Q and on M are assumed to be the ones such that

$$\tau \cdot e = e, \quad \tau \cdot \overline{1} = \overline{1},$$

and, for all vertices i, j of Q,

$$\tau x_{i,j} = -x_{\tau i, \tau j}.$$

- Let $[G \setminus Q_0]$ be $\{e, \overline{1}\}$. Note that $G_e = \{\text{Id}, \tau\}$ and $G_{\overline{1}} = \{\text{Id}\}$.
- Let $[G/G_e]$ and $[G/G_{\overline{1}}]$ be $\{\text{Id}\}$ and $\{\text{Id}, \tau\}$, respectively.
- For all $k \in \mathbb{Z}/2\mathbb{Z}$, denote by ε_k the idempotent $\frac{1}{2}(\text{Id} + (-1)^k \tau)$; denote by ρ_k the irreducible representation $\mathbb{k} \cdot \varepsilon_k$ of G.
- Let $\text{irr}(G_e)$ and $\text{irr}(G_{\overline{1}})$ be $\{\rho_k | k \in \mathbb{Z}/2\mathbb{Z}\}$ and $\{\text{Id}\}$, respectively.

In this situation, $\bar{\varepsilon} = e_{\overline{1}} \ast \varepsilon_{\overline{1}} + e_e \ast \varepsilon_e + \varepsilon_{\overline{1}} + \text{Id}$.

1.1. **Demonet’s quiver of the Morita reduction.** Demonet proved in [3] that the skew group algebra $T_S(M) \ast G$ is Morita equivalent to the path algebra of a quiver as follows.

Setting 1.4. Let Q_G be a quiver with the following properties.

- The vertices are the couples (i, U), where $i \in [G \setminus Q_0]$ and $U \in \text{irr}(G_i)$.
- For all vertices (i, U) and (j, V), the arrows $(i, U) \rightarrow (j, V)$ form a basis over \mathbb{k} of $\text{Hom}_G(U, M(i, j; V))$, here $M(i, j; V) = \bigoplus_{U \in [G/G_i]} M_{ij} \otimes \mathbb{k}yV$, where yV stands for $y \otimes \mathbb{k} V \subset \mathbb{k}G \otimes \mathbb{k} V$, see Definition 1.8 for details.
Example 1.5. This is the continuation of Example 1.3. In order to describe a quiver Q_G such as in Setting 1.4, Table 1 describes the G_i-module $M(i, j; U)$ for all possible i, j, U.

$M(i, j; U)$	Basis over k	Action of G_i
$M(\bullet, \bullet; \rho_k)$	$x_{\bullet, \bullet} \otimes \varepsilon_k$	$\tau(x_{\bullet, \bullet} \otimes \varepsilon_k) = (-1)^{k+1} x_{\bullet, \bullet} \otimes \varepsilon_k$
$M(\bullet, \overline{U}; k \cdot \Id)$	$(x_{\bullet, k} \otimes \tau_k)_{k \in \mathbb{Z}/2\mathbb{Z}}$	$\tau(x_{\bullet, k} \otimes \tau_k) = -x_{\bullet, k + \overline{T}} \otimes \tau^{k + \overline{T}}$
$M(\overline{U}, \bullet; \rho_k)$	$x_{\overline{U}, \bullet} \otimes \varepsilon_k$	Trivial
$M(\overline{U}, \overline{U}; k \cdot \Id)$	$(x_{\overline{U}, \overline{U}} \otimes \tau_k)_{k \in \mathbb{Z}/2\mathbb{Z}}$	Trivial

Table 1. The G_i-modules $M(i, j; U)$ ($k \in \mathbb{Z}/2\mathbb{Z}$).

For all $k \in \mathbb{Z}/2\mathbb{Z}$, denote by a_k and b_k the following respective morphisms of G_k-modules

$$
\begin{align*}
\rho_{k+T} & : M(\bullet, \bullet; \rho_k) \to M(\bullet, \bullet; \rho_{k+T}) \\
\varepsilon_{k+T} & : x_{\bullet, \bullet} \otimes \varepsilon_k \to x_{\bullet, \bullet} \otimes \varepsilon_{k+T}
\end{align*}
$$

and denote by c_k and d_k the following respective morphisms of $G_{\overline{T}}$-modules

$$
\begin{align*}
k \cdot \Id & : M(\overline{U}, \bullet; \rho_k) \to M(\overline{U}, \bullet; \rho_k) \\
Id & : x_{\overline{U}, \bullet} \otimes \varepsilon_k \to (-1)^k x_{\overline{U}, \bullet} \otimes \tau^k.
\end{align*}
$$

Then, Q_G may be taken equal to

$$
\begin{array}{c}
\bullet \cdot \rho_T \\
\varepsilon_T
\end{array}
\xrightarrow{\tau}
\begin{array}{c}
(0, \overline{k} \cdot \Id), \\
(\bullet, \rho_T)
\end{array}
\xrightarrow{d_T}
\begin{array}{c}
\bullet \cdot \rho_T \\
\varepsilon_T
\end{array}
\xrightarrow{\tau}
\begin{array}{c}
\bullet \cdot \rho_T \\
\varepsilon_T
\end{array}
\xrightarrow{b_T}
\begin{array}{c}
\bullet \cdot \rho_T \\
\varepsilon_T
\end{array}
\xrightarrow{d_T}
\begin{array}{c}
(0, \overline{k} \cdot \Id), \\
(\bullet, \rho_T)
\end{array}
$$

Demonet’s result may be reformulated as follows, see Section 5 for more details.

Theorem 1.6 ([3]). The k-algebras kQ_G and $T_S(M) \ast G$ are Morita equivalent. Besides, assuming that $U = kG_i \cdot \varepsilon_U$ for all vertices (i, U) of Q_G, then there exists an isomorphism of algebras

$$
(1.1.1) \quad kQ_G \xrightarrow{\sim} \tilde{c} \cdot (T_S(M) \ast G) \cdot \tilde{c}
$$

which maps every arrow $f : (i, U) \to (j, V)$ of Q_G to $f(\varepsilon_U)$.

1.2. Monoidal categories as a toolbox for intertwiners. The present article introduces a k-category, called the category of intertwiners relative to M and denoted by \mathbf{Intw}, and an isomorphism of k-categories $kQ_G \to \mathbf{Intw}^{op}$ together with explicit formulas decomposing any given element of \mathbf{Intw} in the basis consisting of the images of the paths in Q_G under $kQ_G \to \mathbf{Intw}^{op}$. See Theorem 1.25 for details. Composing this isomorphism with the inverse of (1.1.1) results in a k-category isomorphism $\tilde{c} \cdot (T_S(M) \ast G) \cdot \tilde{c} \to \mathbf{Intw}^{op}$. A description of it is given in Theorem 1.27 hence providing a decomposition, under (1.1.1), of any element of $\tilde{c} \cdot (T_S(M) \ast G) \cdot \tilde{c}$ in the basis of kQ_G consisting of the paths in Q_G. These decompositions involve non-degenerate pairings between intertwiners relative to M and intertwiners relative to the dual vector space M^*. Both the product in \mathbf{Intw} and the pairings are explicit reformulations of natural operations and pairings in a suitable monoidal category.

Remark 1.7 ([5]). Let (C, \otimes) be a monoidal k-linear category with finite dimensional morphism spaces.
(1) Given objects $X, Y, U, V,$ and W of \mathcal{C}, and following the ideas presented in [6, Subsection 4.4] for the monoidal categories of finite subgroups of $\text{SL}_2(\mathbb{C})$, there is a natural operation between morphisms $U \to X \otimes V$ and $V \to Y \otimes W$,

$$\mathcal{C}(U, X \otimes V) \times \mathcal{C}(V, Y \otimes W) \longrightarrow \mathcal{C}(U, X \otimes Y \otimes W)$$

$$(f, f') \longmapsto (X \otimes f') \circ f.$$

(2) Given an object X of \mathcal{C}, recall that a left dual of X is an object X' of \mathcal{C} together with an adjunction $(X \otimes -) \dashv (X' \otimes -)$ of endofunctors of \mathcal{C} ([5, Definition 2.10.1, Proposition 2.10.8]). If X has a left dual, then there exists a non-degenerate pairing, for all objects U and V of \mathcal{C} such that $\mathcal{C}(U, U) = \mathbb{k} \cdot \text{Id}_U$,

$$\langle - | - \rangle : \mathcal{C}(U, X \otimes V) \otimes \mathcal{C}(V, X' \otimes U) \longrightarrow \mathbb{k}$$

$f \otimes \phi \longmapsto \langle f | \phi \rangle$

such that $(f | \phi) \cdot \text{Id}_U = \overline{\phi} \circ f$, where $\overline{\phi} \in \mathcal{C}(X \otimes V, U)$ is adjoint to ϕ; because $\mathcal{C}(U, U) = \mathbb{k} \cdot \text{Id}_U$, a scalar is associated to every endomorphism of U, and hence to $\overline{\phi} \circ f$, which makes it possible to define a pairing with values in \mathbb{k}. When \mathcal{C} is a multitensor category this pairing is just a combination of the adjunction $(X \otimes -) \dashv (X' \otimes -)$ and the non-degenerate pairing $\mathcal{C}(U, X \otimes V) \otimes \mathcal{C}(X \otimes V, U) \to \mathbb{k}$ which takes into account U being simple in \mathcal{C} (see [5, Example 7.9.14]).

The monoidal category \mathcal{C} considered here is the category $\text{mod}(A')$ of finite dimensional A-bimodules with tensor product being \otimes_A, where A is as follows,

\[(1.2.1)\]

$$A = \mathbb{k} \times \Pi_{i \in Q_0} \mathbb{k}G_i.$$

Note that A is a semi-simple \mathbb{k}-algebra; accordingly, any object X of \mathcal{C} has a left dual given by the dual vector space X^*. The isolated factor \mathbb{k} in the definition of A is included so that \mathcal{C} contains $\text{mod}(\mathbb{k}G_i)$ as a full additive subcategory, yet not a monoidal subcategory, for all $i \in Q_0$. The reason for this inclusion is the following, at the same time it clarifies the role of \mathcal{C}. The text manipulates morphism spaces of the shape

\[(1.2.2)\]

$$\text{Hom}_{\mathbb{k}G_i}(U, e_{i_0}(M \otimes \mathbb{k}G)e_{i_1} \otimes_{\mathbb{k}G_{i_1}} \cdots \otimes_{\mathbb{k}G_{i_{n-1}}} e_{i_{n-1}}(M \otimes \mathbb{k}G)e_{i_n} \otimes_{\mathbb{k}G_{i_n}} V)$$

where i_0, \ldots, i_n are vertices of Q whereas $U \in \text{mod}(\mathbb{k}G_{i_0})$ and $V \in \text{mod}(\mathbb{k}G_{i_n})$; note that each one of $e_{i_{t-1}}(M \otimes \mathbb{k}G)e_{i_t}$ (for $1 \leq t \leq n$) is an object of \mathcal{C}, and so are U and V because of the isolated factor \mathbb{k} in A; the above-mentioned morphism space is hence equal to

\[(1.2.3)\]

$$\mathcal{C}(U, e_{i_0}(M \otimes \mathbb{k}G)e_{i_1} \otimes \cdots \otimes e_{i_{n-1}}(M \otimes \mathbb{k}G)e_{i_n} \otimes V)$$

and it is manipulated in this text using the tools recalled in Remark 1.7.

1.3. The interwiners. Here are the base ingredients needed to define Intw.

Definition 1.8. Let n be a non-negative integer. Let $\hat{i} = i_0, \ldots, i_n$ be a sequence in Q_0. Let $V \in \text{mod}(\mathbb{k}G_{i_n})$.

(1) For all sequences $y = y_1, \ldots, y_n$, where $y_t \in [G/G_{i_t}]$ for all $t \in \{1, \ldots, n\}$, let $M_\mathbb{k}(\hat{i}; V)$ be the following vector space,

$$M_\mathbb{k}(\hat{i}; V) = \Pi_t M_{y_t y_{i_t} \otimes_{\mathbb{k}G} \cdots \otimes_{\mathbb{k}G} y_1 \cdots y_{i_1-1} \otimes V},$$

where $y_1 \cdots y_n$ stands for the vector subspace $y_1 \cdots y_n \otimes_{\mathbb{k}G} V$ of $\mathbb{k}G \otimes V$.

(2) Define the \(kG_{i_0}\)-module \(M(\hat{i}; V) \) as follows. Its underlying vector space is
\[
\bigoplus_{\underline{x}} M_{\underline{x}}(\hat{i}; V),
\]
where \(y \) runs through all possible sequences such as in (1). For all \(g \in G_{i_0} \),
the action of \(g \) is written exponentially and defined as follows. For all \(y \),
there exist a unique sequence \(y^* = y_1', \ldots , y_n' \), where \(y_i' \in [G/G_{i_0}] \) for all \(t \in \{1, \ldots , n\} \),
and a unique \(h \in G_{i_0} \), such that
\begin{itemize}
 \item \(g y_1 \cdots y_t G_{i_0} \) for all \(t \in \{1, \ldots , n\} \),
 \item and \(g y_1 \cdots y_n = y_1' \cdots y_n' h \);
\end{itemize}
then, the action of \(g \) transforms \(M_{\underline{x}}(\hat{i}; V) \) into \(M_{\underline{x}}(\hat{i}; V) \) and, for all \(m_1 \otimes \cdots \otimes m_n \otimes y_1 \cdots y_n v \in M_{\underline{x}}(\hat{i}; V) \),
g \(m_1 \otimes \cdots \otimes m_n \otimes y_1 \cdots y_n v = g m_1 \otimes \cdots \otimes g m_n \otimes y'_1 \cdots y'_n h v \).

This does define a finite dimensional \(kG_{i_0}\)-module. If \(n = 0 \), then \(M(\hat{i}; V) = V \).
In the monoidal category \(\mathfrak{A} \) considered previously, \(M(\hat{i}; V) \) is isomorphic to \(M(\hat{i}) \otimes_A V \) where \(M(\hat{i}) \) is a \(kG_{i_0} \)-bimodule defined by \(M \) and \(i \),
see (4.1.1) for the definition of \(M(\hat{i}) \) and (4.1.7) for the isomorphism.
Note that, in the previous definition, if \(U = kG_{i_0} \cdot \varepsilon_U \) and \(V = kG_{i_0} \cdot \varepsilon_V \)
for primitive idempotents \(\varepsilon_U \in kG_{i_0} \) and \(\varepsilon_V \in kG_{i_0} \), then \(M(\hat{i}; U) \) is a \(kG_{i_0} \)
submodule of \(T_S(M) \ast G \).

Example 1.9. This is the continuation of Example 1.5. Let \(k \in \mathbb{Z}/2\mathbb{Z} \). Then \(M(\bullet, \mathbb{U}, \mathbb{U}, \bullet, \rho_U) \) identifies with the \(kG_{i_0}\)-submodule of \(T_S(M) \ast G \) whose underlying vector space is generated by \((x, a, x, b, x, b, \cdot \ast k)_{a \in \mathbb{Z}/2\mathbb{Z}, \cdot \in \mathbb{U}} \).
On this submodule, the action of \(\tau \) is such that \(\tau(x, a, x, b, x, b, \cdot \ast k) = (-1)^{k+1} x, a, x, b, x, b, \cdot \ast k \).

The main results of this article are based on a description of the quiver \(kQ_G \) in terms of intertwiners.

Definition 1.10. An intertwiner relative to \(M \) is a morphism of \(kG_{i_0}\)-modules \(U \to M(\hat{i}; V) \), for some sequence \(i = i_0, \ldots , i_n \) in \(Q_0 \) and some modules \(U \in \text{mod}(kG_{i_0}) \) and \(V \in \text{mod}(kG_{i_0}) \).
Note that, in the previous definition, if \(U = kG_{i_0} \cdot \varepsilon_U \) and \(V = kG_{i_0} \cdot \varepsilon_V \)
for primitive idempotents \(\varepsilon_U \in kG_{i_0} \) and \(\varepsilon_V \in kG_{i_0} \), then all intertwiners \(U \to M(\hat{i}; V) \) take their values in \(T_S(M) \ast G \).

Example 1.11. This is the continuation of Example 1.9. Let \(s, t \in \mathbb{Z}/2\mathbb{Z} \). For all \(a, b \in \mathbb{Z}/2\mathbb{Z} \), the following holds true in \(M(\bullet, \mathbb{U}, \mathbb{U}, \bullet, \rho_U) \),
\[
\varepsilon_s \cdot (x, a, x, b, x, b, \cdot \ast k) = \frac{1}{2} \left((x, a, x, b, x, b, \cdot \ast k + (-1)^{s+t} x, a, x, b, x, b, \cdot \ast k) \right) .
\]
Thus, \(\text{Hom}_{kG_{i_0}}(\rho_s, M(\bullet, \mathbb{U}, \mathbb{U}, \bullet, \rho_U)) \) is two-dimensional with basis \((F_a)_{a \in \mathbb{Z}/2\mathbb{Z}}, \text{where } F_a \text{ denotes the following intertwiner relative to } M, \text{ for all } a \in \mathbb{Z}/2\mathbb{Z}, \)
\[
\rho_s \mapsto M(\bullet, \mathbb{U}, \mathbb{U}, \bullet, \rho_U) \quad \varepsilon_s \mapsto \frac{1}{2} \left((x, a, x, b, x, b, \cdot \ast k + (-1)^{s+t} x, a, x, b, x, b, \cdot \ast k) \right) .
\]

The main purpose of this article is to provide explicit formulas in the main theorems. These formulas use the following notation.

Notation 1.12. Let \(i = i_0, \ldots , i_n \) be a sequence in \(Q_0 \) where \(n \geq 1 \). Let \(U \in \text{mod}(kG_{i_0}) \) and \(V \in \text{mod}(kG_{i_0}) \). Let \(f \in \text{Hom}_{kG_{i_0}}(U, M(\hat{i}; V)) \). For all \(u \in U \), write the decomposition of \(f(u) \) along (1.3.1) as follows
\[
f(u) = \sum_{\underline{x}} f_{\underline{x}}(u);
\]
and, for all sequences \(y = y_1, \ldots, y_n \), where \(y_t \in [G/G_{i_t}] \) for all \(t \in \{1, \ldots, n\} \), write symbolically the element \(f_y(u) \) of \(M_y(G; V) \) as follows, with the sum sign omitted,

\[
 f_y(u) = f_y^{(1)}(u) \otimes \cdots \otimes f_y^{(n)}(u) \otimes y_1 \cdots y_n f_y^{(0)}(u);
\]

hence, \(f_y^{(i)}(u) \) is meant to lie in \(y_{i-1} \cdots y_i M y_{i-1} \cdots y_i \), for all \(t \in \{1, \ldots, n\} \), and \(f_y^{(0)}(u) \) is meant to lie in \(V \); as a whole,

\[
 f(u) = \sum_y f_y(u) \otimes f_y^{(0)}(u).
\]

1.4. The algebra of intertwiners. Now here is the operation to be used as the multiplication in \(\text{Int}_W \).

Definition 1.13. Let \(\tilde{t}'' = i_0, \ldots, i_{m+n} \) be a sequence in \(Q_0 \), where \(m, n \geq 1 \). Denote the sequences \(i_0, \ldots, i_m, i_m, i_{m+1}, \ldots, i_{m+n} \) by \(\tilde{t} \) and \(\tilde{t}' \), respectively. Let \(U \in \text{mod}(kG_{i_0}) \), \(V \in \text{mod}(kG_{i_m}) \), and \(W \in \text{mod}(kG_{i_{m+n}}) \). For all \(f \in \text{Hom}_{kG_{i_0}}(U, M(G; V)) \) and \(f' \in \text{Hom}_{kG_{i_m}}(V, M(G; W)) \), define a \(k \)-linear mapping

\[
 f' \circ f : U \to M(G; W)
\]

by

\[
 (f' \circ f)_{\tilde{t}''} = \sum_{\tilde{t}'} (f' \circ f)_{\tilde{t}''} u',
\]

where

- \(y'' \) runs through all sequences \(y_1, \ldots, y_{m+n} \) with \(y_t \in [G/G_{i_t}] \) for all \(t \)
- and \((f' \circ f)_{\tilde{t}''} u' \) is the mapping \(U \to M_{y''}(G; W) \) such that, for all \(u \in U \),

\[
 (f' \circ f)_{\tilde{t}''} u'(u) = f_{y''}^{(1)}(u) \otimes \cdots \otimes f_{y''}^{(m)}(u) \otimes y_{1} \cdots y_{m+n} f_{y''}^{(0)}(f_{y''}^{(0)}(u)) \otimes y_{m+n+1} \cdots y_{m+n},
\]

where \(y = y_1, \ldots, y_m \) and \(y' = y_{m+1}, \ldots, y_{m+n} \).

Note that, in the previous definition, if \(U = kG_{i_0} \cdot \varepsilon_U \), \(V = kG_{i_m} \cdot \varepsilon_V \), and \(W = kG_{i_{m+n}} \cdot \varepsilon_W \) for primitive idempotents \(\varepsilon_U \) \(kG_{i_0} \), \(\varepsilon_V \) \(kG_{i_m} \), and \(\varepsilon_W \) \(kG_{i_{m+n}} \), then

\[
 (f' \circ f)(\varepsilon_U) = f(\varepsilon_U) \circ f'(\varepsilon_V),
\]

where the product on the right-hand side is taken in \(T_S(M) \ast G \).

Remark 1.14. The definition of \(\circ \) is technical. Actually, it is an explicit reformulation of a simple operation in the monoidal category \((\text{mod}(A^e), \otimes_A) \). More precisely, using the comment that follows Definition 1.8,

- first, \(M(\tilde{t}'') \cong M(\tilde{t}) \otimes_A M(\tilde{t}') \), see Lemma 4.2;
- next, if \(M(\tilde{t}; V) \), \(M(\tilde{t}'; W) \), and \(M(\tilde{t}''; W) \) are identified with \(M(\tilde{t}) \otimes_A V \), \(M(\tilde{t}') \otimes_A W \), and \(M(\tilde{t}'') \otimes_A W \), respectively, then \(\circ \) is an explicit reformulation of the operation introduced in part (1) of Remark 1.7, see Lemma 4.4 for a precise statement and proof.

In view of the previous remark, \(\circ \) does yield intertwiners, see Lemma 4.4, and it is associative, see Proposition 4.5.
Definition 1.15. The algebra of intertwiners relative to M is denoted by Intw and defined by

\[\text{Intw} = \left(\bigoplus_{n \in \mathbb{Z}} \text{Hom}_{\mathbb{B}G_0}(U, M_{(i; V)}), \circ \right), \]

where n runs through all non-negative integers, $i = i_0, \ldots, i_n$ runs through all sequences in $[G \setminus Q_0]$, and U and V run through $\text{irr}(G_0)$ and $\text{irr}(G_{i_0})$, respectively.

It is hence possible to associate an element of Intw to every path in Q_G.

Notation 1.16. For all paths in Q_G

\[\gamma : (i_0, U_0) \xrightarrow{f_1} (i_1, U_1) \xrightarrow{\cdots} (i_{n-1}, U_{n-1}) \xrightarrow{f_n} (i_n, U_n), \]

denote by f_{γ} the following element of Intw lying in $\text{Hom}_{\mathbb{B}G_0}(U_0, M(i_0, \ldots, i_n; U_n))$.

\[f_{\gamma} = f_n \circ f_{n-1} \circ \cdots \circ f_1. \]

1.5. Dual intertwiners and their pairing with intertwiners. As stated below, see Theorem 1.25, assigning f_{γ} to γ for every path γ in Q_G yields an isomorphism of algebras from $\mathbb{k}Q_G$ to Intw^opp. The purpose of this article is to explain how to decompose any element of Intw as a linear combination of the f_{γ}'s. This involves non-degenerate pairings between certain spaces of intertwiners relative to M and to M^*, respectively. Here, M^* denotes the dual vector space $\text{Hom}_{\mathbb{B}G_0}(M, \mathbb{k})$, it has a structure of \mathbb{B}-bimodule such that $M_{ij}^* = (M_{ij})^*$ for all $i, j \in Q_0$, and G acts on M^* in such a way that, for all $\varphi \in M^*$ and $g \in G$,

\[g_{\varphi} = \varphi(g^{-1} \bullet). \]

This action is such that $g_{M_{ij}^*} = g_{M_{ij}}$ for all $i, j \in Q_0$ and $g \in G$. Hence, the previous considerations may be applied to M^* instead of to M.

Example 1.17. This is the continuation of Example 1.11. For all vertices i, j of Q, the vector space M_{ij}^* is one-dimensional; denote by $x'_{i,j}$ its base element, dual to the base element x_{ij} of M_i. Hence, $x'_{i,j} = -x'_{\tau(i), \tau(j)}$. After replacing M by M^*, the considerations of Example 1.11 yield that $\text{Hom}_{\mathbb{B}G_0}(\rho_t, M^*(\bullet, \bar{0}, \bar{0}, \bullet, \rho_s))$ is two-dimensional with basis $(\phi_{a})_{a \in \mathbb{Z}/2\mathbb{Z}}$, where ϕ_a denotes the following intertwiner relative to M^*, for all $a \in \mathbb{Z}/2\mathbb{Z}$,

\[\rho_t \mapsto M^*(\bullet, \bar{0}, \bar{0}, \bullet, \rho_s) \]
\[\varepsilon_t \mapsto \tau^{x'_{\bar{0}, \bar{0}}} x_{\bullet, \bar{0} x'_{\bar{0}, \bar{0}}} \otimes \varepsilon_s + (-1)^{t+1+t^x} \tau^{x'_{\bar{0}, \bar{0}}} x_{\bullet, \bar{0} x'_{\bar{0}, \bar{0}}} \tau^{x'_{\bar{0}, \bar{0}}} \otimes \varepsilon_s. \]

Notation 1.18. Let $\bar{i} = i_0, \ldots, i_n$ be a sequence in Q_0, where $n \geq 0$. Let $U \in \text{mod}(\mathbb{k}G_{i_0})$ and $V \in \text{mod}(\mathbb{k}G_{i_n})$.

(1) Denote by \bar{i}^n the sequence $i_n, i_{n-1}, \ldots, i_0$.
(2) Let $\varphi \in \text{Hom}_{\mathbb{B}G_0}(V, M^*(\bar{i}^n, U))$. Proceeding similarly as done in Notation 1.12,

- denote by $\varphi_{\bar{i}^n}$ the composition of φ with the canonical projection $M^*(\bar{i}^n, U) \to M^*_\nu(\bar{i}^n, U)$, for all sequences $\bar{z} = x_{n-1}, x_{n-2}, \ldots, x_0$ where $x_t \in [G/G_{i_0}^n]$ for all $t \in \{0, \ldots, n-1\}$,
- and for all such \bar{z} and all $v \in V$, write symbolically the element $\varphi_{\bar{i}^n}(v)$ of $M^*_\nu(\bar{i}^n, U)$ as follows,

\[\varphi_{\bar{i}^n}(v) = \varphi_{i_0}^\nu(v) \otimes \cdots \otimes \varphi_{i_1}^\nu(v) \otimes x_{n-1} \cdots x_0 v_{i_0}^\nu. \]
Hence, \(\varphi^k(\bar{v}) \) is meant to lie in \((x_{n-1}x_{n-2} \cdots x_t) \in M^r_{(x_{n-1}x_{n-2} \cdots x_{t-1})} \quad \text{for all } t \in \{1, \ldots, n\} \) and \(\varphi^l(v) \) is meant to lie in \(U \). As a whole,

\[
\varphi(v) = \sum_{\bar{v}} \varphi_{(\bar{v})}(v) \otimes \cdots \otimes \varphi_{(1)}(v) \otimes x_{n-1} \cdots x_1 \varphi_{(0)}(v).
\]

Here is an illustration of this notation.

Example 1.19. This is the continuation of Example 1.17. Assume that \(n = 2 \) and \(\bar{z} = \bar{0}, \bar{u}, \bar{0} \). The underlying vector space of the \(\mathbb{Z}G \)-module \(M^r(\bar{z}; \mathbb{Z} \cdot \text{Id}) \) is freely generated by \((x_{t,a}x_{t,b} \otimes \tau^b)_{a,b} \in \mathbb{Z}/2\mathbb{Z} \).

Let \(a,b,s \in \mathbb{Z}/2\mathbb{Z} \). Denote by \(\varphi \) the intertwiner \(\rho_s \rightarrow M^r(\bar{z}; \mathbb{Z} \cdot \text{Id}) \) such that \(\varphi(\varepsilon) = \varepsilon \cdot (x_{t,a}x_{t,b} \otimes \tau^b) \), that is \(\varphi(\varepsilon) = \frac{1}{2} x_{t,a}x_{t,b} \otimes \tau^b + \frac{(-1)^t}{2} x_{t,b}^* + x_{t,a} \tau_t + x_{t,b}^* + x_{t,a} \tau_t \otimes \tau^b + \bar{T}. \) On one hand, \(x_{t,a}x_{t,b}x_{t,c} = x_{t,a}x_{t,b}x_{t,c} \). Hence

\[
\varphi_{i,a}^{s,b,c} \in \mathbb{Z}/2\mathbb{Z} \quad \text{for all } i \in \{1, n\}.
\]

On the other hand, \(x_{t,a}x_{t,b}x_{t,c} = x_{t,a}x_{t,b}x_{t,c} \). Hence

\[
\varphi_{i,a}^{s,b,c} \in \mathbb{Z}/2\mathbb{Z} \quad \text{for all } i \in \{1, n\}.
\]

In view of description of \(\varphi(\varepsilon) \) made initially, all the remaining terms of the sum of (1.51) are zero.

The above mentioned pairings are described explicitly as follows.

Proposition 1.20. Let \(i = i_0, \ldots, i_n \) be a sequence in \(G_0 \), where \(n \geq 0 \). Let \(U \in \text{mod}(\mathbb{Z}G) \) and \(V \in \text{mod}(\mathbb{Z}G) \). Assume that \(U \) is simple. There exists a non-degenerate pairing

\[
(\cdot, \cdot) : \text{Hom}_G(V, M^r(\bar{u}; \mathbb{Z} \cdot \text{Id})) \otimes \text{Hom}_G(U, M^r(\bar{v}; \mathbb{Z} \cdot \text{Id})) \rightarrow \mathbb{Z}
\]

with the following property. For all \(f \in \text{Hom}_G(U, M(\bar{v}; V)) \) and for all \(\varphi \in \text{Hom}_G(V, M^r(\bar{u}; U)) \), the scalar \((f|\varphi) \) is such that, for all \(u \in U \), the element \((f|\varphi) \cdot u \) of \(U \) is equal to

\[
(1.52) \quad \sum_{\bar{y}} \prod_{t=1}^n \varphi_{(t)}^r((f(t)^{-1}(y_t))((y_{t+1} \cdots y_n)^{-1} f(t)(u)) h_0(\varphi_{(0)}((y_1 \cdots y_t)^{-1}(u))),
\]

where \(y = y_1, \ldots, y_n \) runs through all sequences with \(y_t \in [G/G_{i_t}] \) for all \(t \) and \(\bar{z} = x_{n-1}, \ldots, x_0 \) and \(h_0 \) are uniquely determined by the following conditions:

(a) \(x_t \in [G/G_{i_t}] \) for all \(t \), and \(h_0 \in G_{i_0} \).
(b) \((y_1 \cdots y_n)^{-1} \in x_{n-1}x_{n-2} \cdots x_t G_{i_{1-t-1}} \) for all \(t \in \{1, \ldots, n\} \).
(c) \((y_1 \cdots y_n)^{-1} x_{n-1}x_{n-2} \cdots x_0 h_0 \).

In view of computations, here is a useful explanation regarding \(\bar{z} \) and \(h_0 \) in the above proposition. For all sequences \(y = y_1, \ldots, y_n \in G \) such that \(y_t \in [G/G_{i_t}] \) for all \(t \in \{1, \ldots, n\} \) and for all non zero tensors

\[
m_1 \otimes \cdots \otimes m_n \in \text{mod}(\mathbb{Z}G),
\]

there exist a unique sequence \(\bar{z} = x_{n-1}, x_{n-2}, \ldots, x_0 \) in \(G \) such that \(x_t \in [G/G_{i_t}] \) for all \(t \in \{0, \ldots, n-1\} \) and

\[
(y_1 \cdots y_n)^{-1} m_1 \otimes \cdots \otimes m_n \in (x_{n-1}x_{n-2} \cdots x_0)^{-1} M(x_{n-1} \cdots x_1) \otimes \mathbb{Z}G \otimes \cdots \otimes \mathbb{Z}G \otimes M(x_{n-1} \cdots x_0) ;
\]

besides, \((x_{n-1}x_{n-2} \cdots x_0)^{-1} (y_1 \cdots y_n)^{-1} \in G_{i_0} \). This sequence \(\bar{z} \) is the one in the statement of Proposition 1.20 in which \(h_0 = (x_{n-1}x_{n-2} \cdots x_0)^{-1} (y_1 \cdots y_n)^{-1} \).
When the action of G on M is such that arrows of Q are transformed into scalar multiples of arrows of Q, the expression (1.5.2) of $(-|\cdot)$ simplifies to (2.1.3). The following example illustrates the computation of $(-|\cdot)$ in this particular situation.

Example 1.21. This is the continuation of Example 1.17. Let $s, t \in \mathbb{Z}/2\mathbb{Z}$. Let $a, b \in \mathbb{Z}/2\mathbb{Z}$. Consider $F_a \colon \rho_s \rightarrow M(\bullet, \overline{\bullet}, \overline{\bullet} ; \rho_t)$ and $\phi_b \colon \rho_t \rightarrow M(\bullet, \overline{\bullet}, \overline{\bullet} ; \rho_s)$ such as in Examples 1.11 and 1.17, respectively.

In view of (2.1.3), $(F_a|\phi_b)$ is a sum of products of scalars, the sum is indexed by the paths in Q that appear in the expression of $F_a(\varepsilon_s)$. For all such paths γ, the scalars forming the corresponding product appear in Table 2 with bold face. For convenience, this table presents additional data, using the following notation, see Subsection 2.1 for more details. For a given path γ in Q:

- α_γ denotes the coefficient of $\gamma \otimes \varepsilon_z$ in $F_a(\varepsilon_s)$;
- y_1, y_2, y_3 is the sequence of G such that $y_1, y_2 \in [G/G_1], y_3 \in [G/G_2]$ and γ is a path of the shape $\bullet \rightarrow y_1 \cdot 0 \rightarrow y_1 y_2 \cdot 0 \rightarrow y_1 y_2 y_3 \cdot \bullet$;
- $(y_1 y_2 y_3)^{-1}(\gamma)$ denotes the path of Q and $\chi_{(y_1 y_2 y_3)^{-1}} \gamma$ denotes the scalar such that $(y_1 y_2 y_3)^{-1} \gamma = \chi_{(y_1 y_2 y_3)^{-1}} \gamma$;
- $(y_1 y_2 y_3)^{-1} (\gamma)^*$ denotes the element of the basis of $T_S(M^*)$ dual to the basis of $T_S(M)$ consisting of the paths of Q, associated to $(y_1 y_2 y_3)^{-1}(\gamma)$;
- $\beta_{(y_1 y_2 y_3)^{-1}} (\gamma)^*$ denotes the coefficient of $(y_1 y_2 y_3)^{-1}(\gamma)^*$ in $\phi_b(\varepsilon_z)$;
- χ_{ρ_s} denotes the character of ρ_s.

Thus,

\[
(F_a|\phi_b) = \begin{cases}
(-1)^{s+\frac{\tau_T}{2}} (1+(-1)^s) & \text{if } a = b \\
0 & \text{if not}
\end{cases}
\]

γ	$x_\bullet \overline{\r_0} \cdot x_\bullet$	$x_\bullet \overline{\r_0} \cdot x_\bullet$
α_γ	$\frac{1}{2}$	$(-1)^{s+\frac{\tau_T}{2}}$
y_1, y_2, y_3	$\text{Id}, \tau_a, \text{Id}$	τ, τ^a, Id
$(y_1 y_2 y_3)^{-1}(\gamma)$	$(-1)^s x_\bullet \cdot a \cdot x_\bullet, \tau^a$	$(-1)^{s+\frac{\tau_T}{2}} x_\bullet \cdot a \cdot x_\bullet, \tau^a$
$\chi_{(y_1 y_2 y_3)^{-1}} \gamma$	$(-1)^s$	$(-1)^{s+\frac{\tau_T}{2}}$
$(y_1 y_2 y_3)^{-1} (\gamma)^*$	$x_\bullet \cdot \overline{\r_0} \cdot a \cdot x_\bullet^\prime$	$x_\bullet \cdot \overline{\r_0} \cdot a \cdot x_\bullet^\prime$
$\beta_{(y_1 y_2 y_3)^{-1}} (\gamma)^*$	$\begin{cases} 1 & \text{if } b = -a \\ 0 & \text{if not} \end{cases}$	$\begin{cases} 1 & \text{if } b = -a \\ 0 & \text{if not} \end{cases}$
x_2, x_1, x_0, h_0	$\text{Id}, \tau^a, \text{Id}, \tau^a$	$\text{Id}, \tau^a, \text{Id}, \tau^a$
$\chi_{\rho_s}(h_0)$	$(-1)^s$	$(-1)^{s+\overline{\tau_T}}$

Table 2. The scalars appearing in the expression (2.1.3) of $(F_a|\phi_b)$

Remark 1.22. Like the operation \otimes, the pairing $(-|\cdot)$ has a simple interpretation in the monoidal category $(\text{mod}(A^*), \otimes_A)$. Indeed,

- first, $M(\overline{i})$ admits $M^*(\overline{i})$ as a left dual, see (4.1.5);
- next, if $M(\overline{i}; V)$ and $M^*(\overline{i}; U)$ are identified with $M(\overline{i}) \otimes V$ and $M^*(\overline{i}) \otimes U$, respectively, then $(-|\cdot)$ is an explicit reformulation of $(-|\cdot)$ as introduced in part (2) of Remark 1.7, see (4.3.8).

Using $(-|\cdot)$ yields intertwiners relative to M^* associated with the f_s’s for paths γ in QG.
Notation 1.23. Let Q_G be such as in Setting 1.4.

(1) Let $f : (i, U) \to (j, V)$ be an arrow of Q_G. Using the basis of the vector space $\text{Hom}_{\mathcal{G}_j}(U, M(i, j; V))$ consisting of the arrows $(i, U) \to (j, V)$ of Q_G and using the associated $(-|-)$-dual basis of $\text{Hom}_{\mathcal{G}_j}(V, M^*(j, i; U))$, denote by f^\vee the dual element associated with f. In other words, f^\vee lies in $\text{Hom}_{\mathcal{G}_j}(V, M^*(j, i; U))$ and, for all arrows $f' : (i, U) \to (j, V)$ of Q_G,

$$
(f'|f^\vee) = \begin{cases}
1 & \text{if } f' = f \\
0 & \text{otherwise.}
\end{cases}
$$

(2) For all paths γ in Q_G

$$
\gamma: (i_0, U_0) \xrightarrow{f_1} (i_1, U_1) \to \cdots \to (i_{n-1}, U_{n-1}) \xrightarrow{f_n} (i_n, U_n),
$$

denote by φ_γ the following intertwiner

$$
\varphi_\gamma = f_1^\vee \otimes f_2^\vee \otimes \cdots \otimes f_n^\vee \in \text{Hom}_{\mathcal{G}_j}(U_n, M^*(i_n, i_{n-1}, \ldots, i_0; U_0)).
$$

Example 1.24. This is the continuation of Example 1.21, it illustrates Notation 1.23.

Let $k \in \mathbb{Z}/2\mathbb{Z}$. Denote by a_k^γ and b_k^γ the following respective intertwiners relative to M^*

$$
\rho_k \mapsto M^*(\bullet, \bullet; \rho_k \cdot \tau), \quad k \cdot \text{Id} \mapsto M^*(\bullet, \bullet; \rho_k).
$$

Denote by c_k^γ and d_k^γ the following respective intertwiners relative to M^*

$$
\rho_k \mapsto M^*(\bullet, \bullet; k \cdot \text{Id}), \quad k \cdot \text{Id} \mapsto M^*(\bullet, \bullet; k \cdot \text{Id})
$$

Then $(a_k|a_k') = 1$, $(b_k|b_k') = 1$, $(c_k|c_k') = 1$ and $(d_k|d_k') = \delta_k$, for all $k \in \mathbb{Z}/2\mathbb{Z}$, where δ_k stands for the Kronecker symbol. Using (2.1.3), the intermediate steps of the computation of these pairings are given in Tables 3, 4, 5 and 6 (see Example 1.21). In view of the shape of Q_G, these equalities entail that $a_k' = a_k^\gamma$, $b_k' = b_k^\gamma$, $c_k' = c_k$ and $d_k' = d_k^\gamma$.

γ	a_k^γ	b_k^γ	c_k^γ	d_k^γ	contr. of γ
1	1	1	1	1	1

TABLE 3. $(a_k|a_k') = 1$

γ	a_k^γ	b_k^γ	c_k^γ	d_k^γ	contr. of γ
1	1	1	1	1	1

TABLE 4. $(b_k|b_k') = 1$

Now it is possible to give examples of intertwiners relative to M^* and associated to paths in Q_G. Let $s, t, a \in \mathbb{Z}/2\mathbb{Z}$. Denote by γ the following path of Q_G.

$$
(e, \rho_s) \xrightarrow{b_s} (0, k \cdot \text{Id}) \xrightarrow{d_s} (0, k \cdot \text{Id}) \xrightarrow{a} (e, \rho_t).
$$
Then \(\varphi_\gamma = b'_\gamma \otimes d'_\gamma \otimes c'_\gamma \) = \(b'_\gamma \otimes d'_\gamma \otimes c'_\gamma \) is the intertwiner \(\rho_\gamma \to M^*(\bullet, \overline{u}, \overline{g}, \bullet; \rho_a) \) such that (see (1.4.2))

\[
\varphi_\gamma(\varepsilon_\ell) = c'_\ell(\varepsilon_\ell) \cdot d'_\ell(\text{Id}) \cdot b'_\ell(\text{Id})
= (x'_{\overline{\gamma}} \otimes \text{Id} + (-1)^{s+T} x'_{\overline{\gamma}} \otimes \tau) \cdot (x'_{\gamma} \otimes \varepsilon_a) \cdot (x'_\gamma \otimes \varepsilon_a)
= (-1)^{a(s+T)} (x'_{\overline{\gamma}} x'_{\gamma} x'_a, \otimes \varepsilon_a) \cdot (-1)^{s+T} x'_{\overline{\gamma}} x'_{\gamma} \cdot (x'_{\overline{\gamma}} x'_{\gamma} \otimes \varepsilon_a).
\]

Thus, using the notation introduced in Example 1.17, \(\varphi_\gamma = (-1)^{a(s+T)} \phi_a \).

1.6. The comparison of the algebra of intertwiners with the Morita reduction.

Now, here is the result comparing \(kQ_G \) and \(\text{Intw} \).

Theorem 1.25. Keep Settings 1.1 and 1.4.

1. Assigning \(f_\gamma \) to every path \(\gamma \) in \(Q_G \) yields an isomorphism of algebras

\[
\mathbb{k}Q_G \xrightarrow{\text{iso}} \text{Intw}^{op}.
\]

2. For all \(f \in \text{Intw} \), say lying in \(\text{Hom}_{kG_{irr}}(U_0, M(i_0, \ldots, i_n; U_n)) \),

\[
f = \sum_\gamma (f|\varphi_\gamma) f_\gamma,
\]

where \(\gamma \) runs through all paths of \(Q_G \) of the shape \((i_0, U_0) \to (i_1, \bullet) \to \cdots \to (i_{n-1}, \bullet) \to (i_n, U_n) \).

It is now possible to explain how to decompose any element of \(\hat{c} \cdot (T_S(M) \ast G) \ast \hat{c} \) along the paths in \(Q_G \) via the isomorphism \(\mathbb{k}Q_G \xrightarrow{\text{iso}} \mathbb{k}Q_G \). This is done with the following construction and assuming that \(U = kG_{i_0} \ast \varepsilon_U \) for all vertices \((i, U)\) of \(Q_G \). Given a tensor \(m_1 \otimes \cdots \otimes m_n \ast g \in e_{i_0} \ast (M \otimes \cdots \otimes G) \ast e_{i_n} \), where \(n \geq 0 \) and \(i_0, i_n \in [G \setminus Q_0] \), then

\[
m_1 \otimes \cdots \otimes m_n \ast g \in (i_0, M_{y_1, i_1} \otimes \cdots \otimes k_{(y_1, \ldots, y_{n-1})} \cdot i_{n-1}, M_{(y_1, \ldots, y_n)} \ast i_n) \ast y_1 \cdots y_n kG_{i_n}
\]

for unique \(i_1, \ldots, i_{n-1} \in [G \setminus Q_0] \) and \(y_t \in [G / G_{i_t}] \), for all \(t \in \{1, \ldots, n\} \); this defines an intertwiner, for all \(U \in \text{irr}(G_{i_0}) \) and \(V \in \text{irr}(G_{i_n}) \),

\[
\mathbb{k}G_{i_0} \ast e_U \quad \mapsto \quad M(i_0, \ldots, i_n; \mathbb{k}G_{i_n} \ast e_V)
\]

\[
u : e_U \quad \mapsto \quad (u \ast e_U) \cdot (m_1 \otimes \cdots \otimes m_n \ast g) \cdot (e_{i_n} \ast e_V),
\]

where the products on the right-hand side are meant in \(T_S(M) \ast G \); summing these intertwiners over all \(U \in \text{irr}(G_{i_0}) \) and \(V \in \text{irr}(G_{i_n}) \) defines an element of \(\text{Intw} \).

This construction may be extended linearly to a linear mapping

\[
\hat{c} \cdot (T_S(M) \ast G) \ast \hat{c} \longrightarrow \text{Intw}^{op},
\]

where \(\hat{c} = \sum_{i \in [G \setminus Q_0]} e_i \). Denote by \(\Xi \) the restriction of this mapping to \(\hat{c} \cdot (T_S(M) \ast G) \ast \hat{c} \),

\[
\Xi : \hat{c} \cdot (T_S(M) \ast G) \ast \hat{c} \longrightarrow \text{Intw}^{op}.
\]

Remark 1.26. Here is how \(\hat{c} \) and \(\hat{e} \) are related. Given idempotents \(a \) and \(b \) of an algebra \(A \), say that \(b \) is a reduction of \(a \) whenever \(Ab \) is a direct summand of \(AA \) in \(\text{Mod}(A) \) and the algebras \(\text{End}_A(AB) \) and \(\text{End}_A(AA) \) are Morita equivalent. Now \(\hat{c} = (\sum_{i \in [G \setminus Q_0]} e_i \ast (\sum_{U \in \text{irr}(G)} e_U)) \) is a reduction of \(\hat{c} \ast 1_{G_G} (= \sum_{i \in [G \setminus Q_0]} e_i \ast 1_{G_G}) \) in the algebra \(T_S(M) \ast G \).
\textbf{Theorem 1.27.} Let Q_0, S, G, and M be as in Setting 1.1. Let Q_G be as in Setting 1.4. Assume that $U = \mathbb{k}G_i \cdot \varepsilon_U$ for all vertices (i, U) of Q_G. Then, Ξ, as introduced in (1.6.3), is an isomorphism of \mathbb{k}-algebras such that the following diagram is commutative,

\begin{equation}
\begin{array}{ccc}
\mathbb{k}Q_G & \xrightarrow{(1.1.1)} & (T_S(M) \ast G) \cdot \tilde{c}
\end{array}
\end{equation}

In particular, if (1.1.1) is used as an identification, then, for all $\theta \in \tilde{c} \cdot (T_S(M) \ast G) \cdot \tilde{c}$,

\begin{equation}
\theta = \sum_{\gamma \text{ path in } Q_G} (\Xi(\tilde{c})|(\varphi_{\gamma}) \cdot \gamma.
\end{equation}

\textbf{Example 1.28.} This is the continuation of Example 1.24. Denote by w the path $x_{\bullet, 0} \overset{t_0, 1-t_1, \ldots, t_n, \bullet}{\longrightarrow} i, \mathbb{k} \cdot \text{Id}$ in Q, this is an oriented cycle of length three going clockwise in the picture of Q in Example 1.3. The present example describes the intertwiner $\Xi(\tilde{c} \cdot (w \ast \text{Id}) \cdot \tilde{c})$ as well as its preimage under the isomorphism $\mathbb{k}Q_G \xrightarrow{(1.6.1)} \text{Intw}^{op}$.

Because of the definition,

\[\Xi(\tilde{c} \cdot (w \ast \text{Id}) \cdot \tilde{c}) = \sum_{s, t \in \mathbb{Z}/2\mathbb{Z}} \Xi(\tilde{c} \cdot (w \ast \text{Id}) \cdot \tilde{c})_{s, t}, \]

where, for all $s, t \in \mathbb{Z}/2\mathbb{Z}$, the piece of notation $\Xi(\tilde{c} \cdot (w \ast \text{Id}) \cdot \tilde{c})_{s, t}$ stands for the intertwiner $\rho_s \to M(\bullet, 0, \mathbb{k} \cdot \text{Id} \bullet, \rho_t)$ which maps ε_s to $(\varepsilon_s \otimes \varepsilon_{2}) \cdot \tilde{c} \cdot (\text{Id} \otimes \varepsilon_{t}) \cdot (\varepsilon_s \otimes \varepsilon_{t})$.

For all $s, t \in \mathbb{Z}/2\mathbb{Z}$, the latter expression is equal to $(1_{\mathbb{k}Q} \otimes \varepsilon_{s}) \cdot (w \otimes \varepsilon_{t})$, which in turn is equal to $\frac{1}{2}(x_{\bullet, 0} \overset{t_0, 1-t_1, \ldots, t_n, \bullet}{\longrightarrow} i, \mathbb{k} \cdot \text{Id}) \otimes \varepsilon_{t} + (-1)^{s+t+1}x_{\bullet, 0} \overset{t_0, 1-t_1, \ldots, t_n, \bullet}{\longrightarrow} i, \mathbb{k} \cdot \text{Id})$; therefore, using the notation of Example 1.11,

\[\Xi(\tilde{c} \cdot (w \ast \text{Id}) \cdot \tilde{c})_{s, t} = F_{\tilde{c}.} \]

Now, let $s, t, a \in \mathbb{Z}/2\mathbb{Z}$; using the computation of the pairings of the shape $(F_a |_{\phi_{\tilde{c}}})$ made in Example 1.21 as well as the description of the intertwiners relative to M^* associated to paths in Q_G made in Example 1.24, and denoting by γ the path $(\bullet, \rho_s) \overset{b_s}{\longrightarrow} (0, \mathbb{k} \cdot \text{Id}) \overset{d_{b_s}}{\longrightarrow} (0, \mathbb{k} \cdot \text{Id}) \overset{c_{b_s}}{\longrightarrow} (\bullet, \rho_t)$ of Q_G,

\[(\Xi(\tilde{c} \cdot (w \otimes \text{Id}) \cdot \tilde{c})_{s, t}|_{\varphi_{\gamma}}) = \begin{cases} 1 + (-1)^{t} & \text{if } a = 0 \\ 0 & \text{if not} \end{cases} \]

Therefore $\Xi(\tilde{c} \cdot (w \otimes \text{Id}) \cdot \tilde{c})_{s, t} = \frac{1 + (-1)^{t}}{2} \cdot b_{\gamma}d_{\gamma}c_{\gamma}$ (see (1.6.5)). As a whole, $\Xi(\tilde{c} \cdot (w \otimes \text{Id}) \cdot \tilde{c}) = b_{\gamma}d_{\gamma}c_{\gamma} + b_{\gamma}d_{\gamma}c_{\gamma}$.

\section{2. Practical aspects}

Let Q_0, S, G and M be as in Setting 1.1.

Applying Theorem 1.27 for computations requires to compute Q_G first. Actually, rather than computing explicitly the intertwiners relative to M which form the arrows of Q_G, it is simpler to

1. compute a basis of $\text{Hom}_{\mathbb{k}G_i}(\tau, M^*(j, i, \rho))$ for all pairs (i, ρ) and (j, τ) such that $i, j \in [G]'Q_0$, $\rho \in \text{irr}(G_i)$, and $\tau \in \text{irr}(G_j)$.

Because of the pairing $(-|-)$, this yields a quiver Q_G such as in Setting 1.4 as well as the intertwiners φ_{α} for all arrows α of Q_G. This avoids computing explicitly the intertwiners corresponding to the arrows of Q_G, which are not used in the formulas of Theorem 1.27.
the irreducible representations of
\[\gamma \]
the representation following specific setting.

These computations may be performed by a computer that is able to determine the irreducible representations of \(\text{irr}(G_i) \) for all \(i \in [G\backslash Q_0] \). This section illustrates these computations.

2.1. How to pair intertwiners? In view of (1.4.2), the main difficulty in the computations listed in the introduction of Section 2 lies in computing pairings for \((-\rightarrow\)). This section explains how to compute (1.5.2) in combinatorial terms in the following specific setting.

Setting 2.1. Let \(Q_0, S, G \) and \(M \) be as in Setting 1.1. Let \(Q \) be a quiver with vertex set being \(Q_0 \) and such that \(M \) is equal to the vector space with basis elements being the arrows of \(Q \). Let \(Q_G \) be as in Setting 1.4. Assume that

- the stabiliser \(G_i \) is abelian for all \(i \in Q_0 \),
- \(U = kG_i \cdot \varepsilon_U \) for all vertices \((i, U)\) of \(Q_G \), denote by \(\chi_U \) the character \(G_i \to k^\times \) of \(U \),
- and, for all \(g \in G \) and all paths \(\gamma \) in \(Q \), there exists a scalar \(\chi_{g, \gamma} \in k^\times \) and a path \(g(\gamma) \) such that \(\gamma_{g, \gamma} = \chi_{g, \gamma} g(\gamma) \).

If \(G \) is abelian, then it is possible to find a quiver \(Q \) and to choose irreducible representations \(U \) of \(G_i \), for all \(i \in [G\backslash Q_0] \), fitting in this setting.

Notation 2.2. The following notation relative to \(M \) is useful.

- For all arrows \(a: i \to j \) of \(Q \), denote by \(a^* \) the element of \(M^* \) such that \(a^*(a) = 1 \) and \(a^*(b) = 0 \) for all arrows \(b \) of \(Q \) distinct from \(a \).
- Denote by \(Q^* \) the quiver with vertex set being \(Q_0 \) and whose arrows are the linear forms \(a^* \) introduced just before. This quiver is isomorphic to the opposite quiver of \(Q \).
- For all paths \(\gamma: t_0 \xrightarrow{a_1} t_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} t_n \) in \(Q \), denote by \(\gamma^* \) the path \(t_n \xrightarrow{a_n^*} t_{n-1} \xrightarrow{a_{n-1}^*} \cdots \xrightarrow{a_1^*} t_0 \) in \(Q^* \).

Note that every path in \(Q \) starting in some vertex \(i_0 \) lying in \([G\backslash Q_0] \) is of the shape \(i_0 \to y_1 \cdot i_1 \to \cdots \to y_i \cdot i_n \) for a unique sequence \(i_1, \ldots, i_n \) in \([G\backslash Q_0] \) and a unique sequence \(y_1, \ldots, y_n \) in \(G \) such that \(y_t \in [G/G_i] \) for all \(t \in \{1, \ldots, n\} \).

Let \(\tilde{i} = i_0, \ldots, i_n \) be a sequence in \([G\backslash Q_0] \), consider \(U \in \text{irr}(G_{i_0}) \) and \(V \in \text{irr}(G_{i_n}) \), and let \(f: U \to M(\tilde{i}; V) \) and \(\varphi: V \to M^*(\tilde{i}^\circ; U) \) be intertwiners. Since the representation \(V \) is one dimensional, then,

\[
(2.1.1) \quad f(\varepsilon_u) = \sum_\gamma \alpha_{\gamma} \gamma \otimes y_1 y_2 \cdots y_n \varepsilon_V,
\]

where \(\gamma \) runs through all paths in \(Q \) of the shape

\[
i_0 \to y_1 \cdot i_1 \to y_1 y_2 \cdot i_2 \to \cdots \to (y_1 \cdots y_n) \cdot i_n
\]

for some (unique) sequence \(y = y_1, \ldots, y_n \) such that \(y_t \in [G/G_i] \) for all \(t \in \{1, \ldots, n\} \), and \(\alpha_{\gamma} \in k \). Note that the considered paths are precisely the ones of the
shape \(i_0 \to j_1 \to \cdots \to j_n \) such that \(j_t \) lies in the orbit of \(i_t \) for all \(t \in \{1, \ldots, n\} \). Similarly,
\[
(2.1.2) \quad \varphi(\varepsilon_V) = \sum_{\gamma'} \alpha_{\gamma'} \gamma' \otimes x_{n-1} \cdots x_0 \varepsilon_U,
\]
where \(\gamma' \) runs through all paths in \(Q \) of the shape
\[
i_o \to x_{n-1} \cdot i_{n-1} \to x_{n-2} \cdot i_{n-2} \to \cdots \to (x_{n-1} x_{n-2} \cdots x_0) \cdot i_0
\]
for some (unique) sequence \(x = x_{n-1}, \ldots, x_0 \) such that \(x_t \in [G/G_n] \) for all \(t \in \{0, \ldots, n-1\} \), and \(\beta_{\gamma'} \in \mathbb{k} \).

Lemma 2.3. Using the decompositions (2.1.1) and (2.1.2), then
\[
(2.1.3) \quad (f|\varphi) = \sum_{\gamma} \alpha_{\gamma} \beta_{(y_1 \cdots y_n)^{-1}(\gamma)} \cdot \chi_{(y_1 \cdots y_n)^{-1}, \gamma} \cdot \chi_U(h_0),
\]
where \(\gamma \) runs through all paths in \(P \) of the shape \(i_0 \to j_1 \to \cdots \to j_n \) such that \(j_t \) lies in the orbit of \(i_t \) for all \(t \in \{1, \ldots, n\} \), where \(\alpha_{\gamma} \in \mathbb{k} \), and where, for all such paths \(\gamma \),
- \(y = y_1, \ldots, y_n \) denotes the sequence in \(G \) such that \(y_t \in [G/G_n] \), for all \(t \in \{1, \ldots, n\} \) and \(\gamma \) is a path of the shape \(i_0 \to y_1 \cdot i_1 \to \cdots \to y_n \cdot i_n \),
- \(h_0 \) is the element of \(G_{i_0} \) such as in (c) in Proposition 1.20,
- \(\chi_{(y_1 \cdots y_n)^{-1}} \) is the element of \(\mathbb{k}^x \) and \((y_1 \cdots y_n)^{-1}(\gamma) \) is the path in \(P \) such that \((y_1 \cdots y_n)^{-1}(\gamma) = \chi_{(y_1 \cdots y_n)^{-1}}(y_1 \cdots y_n)^{-1}(\gamma) \),
- and \(((y_1 \cdots y_n)^{-1}(\gamma))^{\ast} \) is the reverse path in \(P^* \) associated to the path \((y_1 \cdots y_n)^{-1}(\gamma) \) in \(P \).

Proof. For all sequences \(y = y_1, \ldots, y_n \) and \(x = x_{n-1}, \ldots, x_0 \), such that \(x_t \in [G/G_n] \) and \(y_t \in [G/G_n] \) for all \(t \), denote by \(C(y) \) and \(C'(x) \) the sets of paths in \(P \) and in \(P^* \) of the shape \(i_0 \to y_1 \cdot i_1 \to \cdots \to y_n \cdot i_n \) and \(i_0 \to x_{n-1} \cdot i_{n-1} \to \cdots \to x_{n-1} \cdots x_0 \cdot i_0 \), respectively. For all \(y \),
\[
f_{\gamma}(\varepsilon_U) = \sum_{\gamma \in C'(y)} \alpha_{\gamma} \gamma \otimes y_1 \cdots y_n \varepsilon_U;
\]
hence, the following term that serves in the definition of \((f|\varphi) \), see (1.5.2),
\[
(1.5.2) \quad (y_1 \cdots y_n)^{-1} f_{\gamma}(\varepsilon_U) \otimes \cdots \otimes (y_1 \cdots y_n)^{-1} f_{\gamma'}(\varepsilon_U) \otimes \varepsilon_U,
\]
is equal to
\[
\sum_{\gamma \in C'(y)} \alpha_{\gamma} \chi_{(y_1 \cdots y_n)^{-1}}(\gamma) \cdot (y_1 \cdots y_n)^{-1}(\gamma) \otimes \varepsilon_U.
\]
Similarly, for all \(x \),
\[
\varphi(x)(\varepsilon_U) = \sum_{\gamma \in C'(x)} \beta_{\gamma} \gamma \otimes x_{n-1} \cdots x_0 \varepsilon_U.
\]
Therefore, given \(y \), the “\(\Pi_i \)”-term in (1.5.2) is equal to
\[
(1.5.4) \quad \sum_{\gamma \in C'(y), \gamma' \in C'(x)} \alpha_{\gamma} \cdot \beta_{\gamma'} \chi_{(y_1 \cdots y_n)^{-1}}(\gamma) \cdot b_n^c(c_n) \cdots b_2^c(c_2) \cdot b_1^c(c_1) \cdot \chi_U(h_0) \cdot \varepsilon_U,
\]
where
- \(x = x_{n-1}, \ldots, x_0 \) and \(h_0 \) are the elements of \(G \) determined by \(y \) and by (a), (b), and (c) in Proposition 1.20,
- \(b_1^c, \ldots, b_n^c \) are the arrows of \(Q^* \) such that \(\gamma' \) is \(b_1^c \rightarrow b_2^c \rightarrow \cdots b_n^c \rightarrow \gamma' \),
- and \(c_1, \ldots, c_n \) are the arrows of \(Q \) such that \((y_1 \cdots y_n)^{-1}(\gamma) \) is \(\cdots \rightarrow c_1 \rightarrow c_2 \rightarrow \cdots \rightarrow c_n \rightarrow \gamma' \).
By definition of the arrows b_1', \ldots, b_n', the summand of (2.1.4) with index γ is non-zero only if the paths $\cdot b_1 \rightarrow b_2 \rightarrow \cdot b_n$ and $(y_1 \cdots y_n)^{-1}(\gamma)$ in Q are equal, that is, only if $\gamma' = ((y_1 \cdots y_n)^{-1}(\gamma))^*$. Summing (2.1.4) over all possible γ yields that $(f|\varphi)\varepsilon_U$ is equal to

$$
\sum_{\gamma} \alpha_{\gamma} \beta((y_1 \cdots y_n)^{-1}(\gamma)) \cdot \chi_U((y_1 \cdots y_n)^{-1}(\gamma) \chi_U(h_0)\varepsilon_U.
$$

This proves (2.1.3).

\[\Box\]

2.2. An example. In this example, Q is the following quiver whose vertices are the elements of $\mathbb{Z}/4\mathbb{Z}$

(2.2.1)

\[
\begin{array}{c}
0 \\
\downarrow \\
1 \\
\downarrow \\
2 \\
\downarrow \\
3 \\
\downarrow \\
0
\end{array}
\]

and G is the dihedral group of order 10

$$
G = \langle e, \tau \mid e^5, \tau^2, \tau e \tau c \rangle.
$$

Denote by ε the group homomorphism $G \rightarrow \{ -1, 1 \}$ such that $\varepsilon(e) = 1$ and $\varepsilon(\tau) = -1$. Denote the arrows of Q by $x_{i,j}: i \rightarrow j$. For convenience, denote the arrows of Q^* by $x'_{i,j}: j \rightarrow i$, hence $(x_{i,j})^* = x'_{i,j}$. The actions of G on Q_0 and M are assumed to be the ones such that, for all $i \in Q_0$ and $g \in G$, and for all arrows $x_{i,j}$ of Q,

$$
e \cdot i = i + \bar{1}, \quad \tau \cdot i = -i, \quad (g \cdot x_{i,j}) = \varepsilon(g) x_{g \cdot i,g \cdot j}.
$$

The purpose of this section is to make a full illustration of Theorem 1.27, that is, for all $w \in T_S(M) \ast G$,

\begin{itemize}
 \item to describe the intertwiner $\Xi(\theta)$, where θ denotes $\bar{e} \cdot w \cdot \bar{e}$;
 \item and to describe the preimage of θ under the isomorphism $\mathbb{k}Q_G \xrightarrow{(1.1.1)} \bar{e} \cdot (T_S(M) \ast G) \cdot \bar{e}$.
\end{itemize}

Let $[G\setminus Q_0]$ be $\{ \bar{0} \}$. Note that $G_{\bar{1}} = \{ \text{Id, } \tau \}$. Let $[G/G_{\bar{1}}]$ be $\{ \text{Id, } c, c^2, c^3, c^4 \}$. For all $s \in \{ 0, 1 \}$, denote by ε_s the following primitive idempotent of $\mathbb{k}G_{\bar{1}}$

$$
\varepsilon_s = \frac{1}{2} (\text{Id} + (-1)^s \tau)
$$

and denote $\varepsilon_s \cdot \mathbb{k}G_{\bar{1}}$ by ρ_s. Finally, let $\text{irr}(G_{\bar{1}})$ be equal to $\{ \rho_0, \rho_1 \}$. In particular,

$$
\bar{e} = \varepsilon_0 + \varepsilon_1.
$$

The setting presented below is assumed until the end of the subsection. In view of the purpose stated previously, this is not a loss of generality in making this assumption because

\begin{itemize}
 \item the elements of the shape $p \ast g$, where p is a path in Q and $g \in G$, form a basis of $T_S(M) \ast G$ as a vector space;
 \item every $g \in G$ is equal to $\varepsilon \tau^r$ for a unique couple $(\ell, r) \in \{ 0, 1, 2, 3, 4 \} \times \{ 0, 1 \}$;
 \item for all paths p of Q and for all $(\ell, r) \in \{ 0, 1, 2, 3, 4 \} \times \{ 0, 1 \}$, the product $\bar{e} \cdot (p \ast g) \cdot \bar{e}$ vanishes as soon as p is not a path from $\bar{0}$ to $-\bar{\ell}$.
\end{itemize}

Setting 2.4. Assume that w is equal to $p \ast \varepsilon \tau^r$, where $(\ell, r) \in \{ 0, 1, 2, 3, 4 \} \times \{ 0, 1 \}$ and p is a path in Q from $\bar{0}$ to $-\bar{\ell}$. Denote the length of p by n. Denote by i_0, \ldots, i_n the sequence of vertices of Q such that p has the shape $i_0 \rightarrow i_1 \rightarrow \cdots \rightarrow i_n$. Thus,
Intertwiners relative to m

In particular, $i_0 = \overline{0}$, $i_n = \overline{1}$ and $i_k - i_{k-1} \in \{-1,1\}$ for all $k \in \{1, \ldots, n\}$.

2.2.1. Computation of Q_G. By definition, for all $t \in \{0, 1\}$,

$$M^*(\overline{0}, \overline{0}; \rho_t) = \text{Span}(x^*_0, x^*_t \otimes c^t \epsilon_t),$$

where the action of τ is given as follows

$$\begin{align*}
x^*_0 \otimes c^t \epsilon_t &\mapsto (-1)^{1+t} x^*_0 \otimes c^t \epsilon_t, \\
x^*_t \otimes c^t \epsilon_t &\mapsto (-1)^{1+t} x^*_0 \otimes c^t \epsilon_t.
\end{align*}$$

Hence, for all $s, t \in \{0, 1\}$,

$$\text{Hom}_{\mathbb{C}G_m}(\rho_s, M^*(\overline{0}, \overline{0}; \rho_t)) = \text{Span}(\varphi_{s,t}),$$

where $\varphi_{s,t}$ is the intertwiner such that $\varphi_{s,t}(\epsilon_s) = \epsilon_s \cdot (x^*_0 \otimes c^t \epsilon_t) = \epsilon_s \cdot (x^*_0 \otimes c^t \epsilon_t)$, that is,

$$\varphi_{s,t}(\epsilon_s) = x^*_t \otimes c^t \epsilon_t + (-1)^{s+t+1} x^*_0 \otimes c^t \epsilon_t.$$

Denote by $f_{s,t}$ the intertwiner $\rho_s \rightarrow M(0, 0; \rho_t)$ such that $(f_{s,t} \varphi_{t,s}) = 1$, for all $s, t \in \{0, 1\}$. Then Q_G may be taken equal to the following quiver

$$\begin{array}{ccc}
 f_{0,0} & \circlearrowleft & f_{1,0} \\
 (1, \rho_0) & & (1, \rho_1) \\
 f_{0,1} & \circlearrowleft & f_{1,1} \\
\end{array}$$

2.2.2. The intertwiner $\Xi(\theta)$. By definition, $\Xi(\theta)$ decomposes as

$$(2.2.2) \quad \Xi(\theta) = \sum_{s,t \in \{0, 1\}} \Xi(\theta)_{s,t},$$

where, for all $s, t \in \{0, 1\}$, the intertwiner $\Xi(\theta)_{s,t} : \rho_s \rightarrow M(0, 0; \rho_t)_{n+1}$ is such that

$$\Xi(\theta)_{s,t}(\epsilon_s) = \epsilon_s \cdot \tilde{e} \cdot \tilde{w} \cdot \tilde{e} \cdot \epsilon_t,$$

see (1.6.3). Note that

$$(2.2.3) \quad \Xi(\theta)_{s,t}(\epsilon_s) = \begin{array}{c}
\epsilon_s \cdot \tilde{e} \cdot \tilde{w} \cdot \tilde{e} \cdot \epsilon_t \\
\frac{1}{2}(\text{Id} + (-1)^s \tau) \cdot (p \otimes c^t \epsilon_t) \cdot \epsilon_t \\
\frac{1}{2}(-1)^t (\text{Id} + (-1)^s \tau) \cdot (p \otimes c^t \epsilon_t) \\
\frac{1}{2}(-1)^t (p \otimes c^t \epsilon_t + (-1)^s \cdot (p \otimes c^t \epsilon_t)),
\end{array}$$

where $\tilde{p} = (-1)^n x_{-1,0} x_{-1,1} x_{-1,2} \cdots x_{-1,n-1} x_{-1,n}$.

2.2.3. Intertwiners relative to M^* associated to paths of Q_G. Consider a path of length denoted by m in Q_G, say $q : (0, \rho_{s_0}) \rightarrow (0, \rho_{s_1}) \rightarrow \cdots \rightarrow (0, \rho_{s_m})$, where $s_0, \ldots, s_m \in \{-1, 1\}$. Then φ_q is the following intertwiner $\rho_{s_m} \rightarrow M^*(0, 0; \rho_{s_m})_{n+1}$,

$$\varphi_q = \varphi_{s_1, s_0} \otimes \varphi_{s_2, s_1} \otimes \cdots \otimes \varphi_{s_m, s_{m-1}}.$$

Consider $\varphi_q(\epsilon_{s_m})$ as an element of $\mathbb{C}Q^* \ast G$; following (1.4.2) it equals the product $(x^*_0 \otimes (-1)^{s_m+s_{m-1}+1} x^*_{j_m-1} \otimes c^{j_m}) \cdots (x^*_0 \otimes (-1)^{s_1+s_0+1} x^*_{j_1} \otimes c^{j_1})$. Hence

$$(2.2.4) \quad \varphi_q(\epsilon_{s_m}) = \sum (-1) \sum_{j_{m-1} \ldots j_2 j_1 j_0} x^*_{j_m-1} \cdots x^*_{j_1} j_0 \otimes c^{j_0},$$

where

- the first sum runs over all sequences $j_{m-1}, \ldots, j_0 \in \mathbb{Z}/4\mathbb{Z}$ such that the expression $x^*_{j_m-1} \cdots x^*_{j_1} j_0$ is a path in Q', which means that $j_t - j_{t-1} \in \{-1, 1\}$ for all $t \in \{1, \ldots, m\}$ (taking $j_0 = 0$),
• and the second sum (in the exponent) runs over all indices $k \in \{1, \ldots, m\}$ such that $x'_{j_k, j_{k-1}}$ of Q' goes anticlockwise when Q' is drawn like Q in (2.2.1), which means that $j_k - j_{k-1} = \mathbb{T}$.

2.2.4. Computation of the pairing $(\Xi(\theta)|\varphi_q)$. Let $q: (0, \rho_{x_0}) \to (0, \rho_{x_1}) \to \cdots \to (0, \rho_{x_n})$ be a path in Q_G like in 2.2.3. Because of the definition of the action of G on κQ, the pairing $(\Xi(\theta)|\varphi_q) \equiv (\Xi(\theta)_{\rho_{x_0}, \rho_{x_n}}|\varphi_q)$ is given by (2.1.3). In particular, because of (2.2.3) and (2.2.4),

- this pairing vanishes if $m \neq n$, that is, p and q have different lengths,
- if $m = n$ then, for all paths γ distinct from both $x_{t_0, t_1} x_{t_1, t_2} \cdots x_{t_{n-1}, t_n}$ and $x_{t_0, t_1} x_{t_1, t_2} \cdots x_{t_{n-1}, t_n}$, the term of index γ in (2.2.3) vanishes.

Using (2.2.3) and (2.2.4), the scalars appearing in (2.1.3) may be computed directly for these two possibilities for γ, assuming that $m = n$. Table 7 describes these scalars, they appear in bold face. Recall that if $i_0 = \mathbb{F}$.

γ	$\chi_{\rho_{x_0}}(\rho_{x_0})$	$\chi_{\rho_{x_n}}(\rho_{x_n})$
$y_1 \cdots y_m$	$e^{c_{1-1} \cdots e^{c_{m-1} - i_{m-1} - 1}}$	$e^{c_{1-1} \cdots e^{c_{m-1} - i_{m-1} - 1}}$
$y_1 \cdots y_m - \gamma$	$e^{c_{1-1} \cdots e^{c_{m-1} - i_{m-1} - 1}}$	$e^{c_{1-1} \cdots e^{c_{m-1} - i_{m-1} - 1}}$
$\chi_{(y_1 \cdots y_n) - \gamma}^{(-1, \gamma)}$	$e^{c_{1-1} \cdots e^{c_{m-1} - i_{m-1} - 1}}$	$e^{c_{1-1} \cdots e^{c_{m-1} - i_{m-1} - 1}}$
$\beta_{(y_1 \cdots y_n) - \gamma}^{(-1, \gamma)}$	$e^{c_{1-1} \cdots e^{c_{m-1} - i_{m-1} - 1}}$	$e^{c_{1-1} \cdots e^{c_{m-1} - i_{m-1} - 1}}$

Table 7. The coefficients in the expression (2.1.3) of $(\Xi(\theta)_{\rho_{x_0}, \rho_{x_n}}|\varphi_q)$ according to γ

Thus

$$(\Xi(\theta)|\varphi_q) = \frac{(-1)^{\gamma_{x_0}}}{2} (-1)^{\sum_{i_k - i_{k-1} = \mathbb{T}} (s_k + s_{k-1} + 1)} + \frac{(-1)^{\gamma_{x_0} + n + \gamma_{x_n}}}{2} (-1)^{\sum_{i_k - i_{k-1} = \mathbb{F}} (s_k + s_{k-1} + 1)}.$$

As whole (after factoring and simplifying),

$$(2.2.5) \quad (\Xi(\theta)|\varphi_q) = \begin{cases} (-1)^{\gamma_{x_0}} (-1)^{\sum_{i_k - i_{k-1} = \mathbb{T}} (s_k + s_{k-1} + 1)} & \text{if } m = n \\ 0 & \text{otherwise.} \end{cases}$$

2.2.5. Decomposition of θ into paths in Q_G. Because of Theorem 1.27, the preimage of θ under the isomorphism $\kappa Q_G \xrightarrow{(1.1.1)} \tilde{\theta} \cdot (T_5(M) \circ G) \cdot \tilde{\theta}$ is equal to

$$\sum_{q \text{ path in } Q_G} (\Xi(\theta)|\varphi_q) \cdot q.$$

In view of (2.2.5), this preimage is hence equal to

$$\sum_{s_0, \ldots, s_n \in \{0, 1\}} (-1)^{s_0} (-1)^{\sum_{i_k - i_{k-1} = \mathbb{T}} (s_k + s_{k-1} + 1)} ((0, \rho_{x_0}) \to (0, \rho_{x_1}) \to \cdots \to (0, \rho_{x_n})).$$

2.2.6. Illustration. Assume that $w = x_{0, 1}^2 x_{1, 2}^3 x_{2, 3}^2 x_{3, 4}^{-1} \cdot \text{Id} - x_{0, 1}^2 x_{1, 2}^3 x_{2, 3}^2 x_{3, 4}^{-1} \cdot \text{Id}$. Applying 2.2.5 yields that the preimage of $\tilde{\theta} \cdot w \cdot \tilde{\theta}$ under the isomorphism $\kappa Q_G \xrightarrow{(1.1.1)} \tilde{\theta} \cdot (T_5(M) \circ G) \cdot \tilde{\theta}$ is equal to $-2 \sum \gamma$, where γ runs through all oriented cycles of length 5 in Q_G.

3. Details on the monoidal category of bimodules over groups

This section details some isomorphisms and properties in the monoidal category \((\text{mod}(A^*), \otimes_A)\) and related to the operation, say \(x\), and the pairing \(\langle - | - \rangle\) considered in Remark 1.7.

- Section 3.1 describes the left dual of a tensor product of objects in \(\text{mod}(A^*)\).
- Section 3.2 details the the adjunction \((X \otimes_A -) \vdash (X^* \otimes_A -)\) for a given \(X \in \text{mod}(A^*)\).
- Section 3.3 details the compatibility of \(\langle - | - \rangle\).

The existence of the isomorphisms and adjunctions discussed in these sections may be part of the folklore (see [5, Exercise 2.10.16]). However, the proof of Theorem 1.25 is based on their description, which is the reason for detailing these here. For the sake of simplicity, the presentation is made independently of the monoidal category \((\text{mod}(A^*), \otimes_A)\) and of the framework of Theorem 1.25.

Here are some conventions. In any group, \(e\) denotes the neutral element; and \(\text{Hom}_{kG}\) and \(\otimes_{kG}\) are denoted by \(\text{Hom}_G\) and \(\otimes_G\), respectively, for all finite groups \(G\).

Given finite groups \(G\) and \(H\), by “a module \(G_X Y\)” is meant a \(kG - kH\)-bimodule, by “a module \(X^* Y\)” is meant a left \(kG\)-module, and by “by a module \(X \otimes Y\)” is meant a right \(kH\)-module.

Given finite groups \(G\) and \(H\) and given a \(kG - kH\)-bimodule \(X\), the dual vector space \(X^*\) is a \(kH - kG\)-bimodule in a natural way \((h \cdot \phi \cdot g = \phi(g \cdot h)\) for all \(g \in G, h \in H\) and \(\phi \in X^*)\). In particular, taking \(H\) to be the trivial group, this defines a functor \(X \mapsto X^*\) from left \(kG\)-modules to right \(kG\)-modules.

3.1. Tensor product of duals and dual of a tensor product.

Lemma 3.1. Let \(H\) be a finite group with order not divisible by \(\text{char}(k)\). For all finite dimensional \(kH\)-modules \(X_H\) and \(Y_Y\), there is a functorial bijective mapping

\[
Y^* \otimes_{H} X^* \rightarrow (X \otimes_{H} Y)^*, \\
\phi_2 \otimes \phi_1 \mapsto (x \otimes y \mapsto \sum_{h \in H} \phi_1(x \cdot h)\phi_2(h^{-1} \cdot y)).
\]

Proof. The mapping is well defined. When \(X = kH_H\) and \(Y = H_Y\), it identifies with the following one, where \(\{\delta_h\}_{h \in H}\) denotes the canonical basis of \((kH)^*\),

\[
(kH)^* \otimes_{H} (kH)^* \rightarrow (kH)^*, \\
\delta_{h_2} \otimes \delta_{h_1} \mapsto \delta_{h_1 h_2};
\]

and the latter is bijective. Since \(X_H\) and \(Y_Y\) are finite dimensional and projective, then (3.1.1) is bijective. \(\square\)

The previous lemma generalises as follows. Given an integer \(n \geq 2\), a sequence of groups \(G_0, \ldots, G_n\) and a finite dimensional \(kG_{i-1} - kG_i\)-bimodule \(U_i\) for every \(i \in \{1, \ldots, n\}\), there is a functorial bijective mapping

\[
X_n^* \otimes_{G_{n-1}} \cdots \otimes_{G_1} X_1^* \rightarrow (X_1 \otimes_{G_1} \cdots \otimes_{G_{n-1}} X_n)^*,
\]

which maps any \(\phi_n \otimes \cdots \otimes \phi_1\) to the following linear form on \(X_1 \otimes_{G_1} \cdots \otimes_{G_{n-1}} X_n\),

\[
x_1 \otimes \cdots \otimes x_n \mapsto \sum_{g_1, \ldots, g_{n-1}} \prod_{t=1}^{n} \phi_t(g_t^{-1} \cdot x_t \cdot g_t),
\]

where \(g_t\) runs through \(G_t\) \((1 \leq t \leq n - 1)\) and \(g_0 = g_n = e\).
3.2. Adjunctions.

Lemma 3.2. Let G and H be finite groups with orders not divisible by $\text{char}(\mathbb{k})$. Let G_X, HV and GU be (bi)modules over $\mathbb{k}G$ and $\mathbb{k}H$ such that X and V are finite dimensional. Then, there exists a functorial isomorphism

$$
\Psi^V_U: \text{Hom}_H(V, X^* \otimes_G U) \rightarrow \text{Hom}_G(X \otimes_H V, U),
$$

such that, for all $\phi \in \text{Hom}_H(V, X^* \otimes_G U)$, $x \in X$ and $v \in V$,

$$
(\Psi^V_U(\phi))(x \otimes v) = \sum_{g \in G} (\phi(2)(v))(g^{-1} \cdot x)g \cdot \phi(1)(v),
$$

where the following notation is used with sum sign omitted, for all $v \in V$,

$$
\phi(v) = \phi(2)(v) \otimes \phi(1)(v) \in X^* \otimes_G U.
$$

In particular, the pair of functors $(X \otimes_H -, X^* \otimes_G -)$ between finite dimensional left $\mathbb{k}H$-modules and finite dimensional left $\mathbb{k}G$-modules is adjoint.

Proof. Using the definition of the structure of $H-G$-bimodule of X^*, simple changes of variable in the sum $\sum_{g \in G}$ show that Ψ^V_U is indeed well defined.

Since HV is finitely generated and projective, it suffices to prove the lemma assuming that $V = \mathbb{k}H$. In this case, Ψ^V_U identifies with the mapping $\lambda_{X,U}$ defined (for all left $\mathbb{k}G$-modules X and U) by

$$
\begin{align*}
X^* \otimes_G U & \rightarrow \text{Hom}_G(X, U) \\
n & \mapsto (x \mapsto \sum_{g \in G} \phi(g^{-1} \cdot x)g \cdot n).
\end{align*}
$$

Now, $\lambda_{G^*,G}$ identifies with the following bijective mapping (recall that $|G| \in \mathbb{k}^*$).

$$
\begin{align*}
\mathbb{k}G^* \otimes_G \mathbb{k}G & \rightarrow \mathbb{k}G \\
\phi \otimes e & \mapsto \sum_{g \in G} \phi(g^{-1})g.
\end{align*}
$$

Since G_X is finite dimensional and projective, and since GU is projective, it follows that $\lambda_{X,U}$ is bijective. Thus, Ψ^V_U is bijective.

Lemma 3.3. Let G, H, K be finite groups with orders not divisible by $\text{char}(\mathbb{k})$. Let G_X, HY, K_W and GU be finite dimensional modules. Then, the following diagram commutes

$$
\begin{array}{ccc}
\text{Hom}_K(W, Y^* \otimes_H X^* \otimes_G U) & \overset{\Psi^W_X \otimes_G U}{\longrightarrow} & \text{Hom}_K(W, (X \otimes_H Y)^* \otimes_G U) \\
\downarrow_{\Phi^U_X \otimes_G W} & & \downarrow_{\Phi^U_X \otimes_G W} \\
\text{Hom}_H(Y \otimes_K W, X^* \otimes_G U) & \overset{\Psi^W_X \otimes_G Y}{\longrightarrow} & \text{Hom}_G(X \otimes_H Y \otimes_K W, U),
\end{array}
$$

where the top horizontal arrow is obtained upon applying $\text{Hom}_K(W, - \otimes_G U)$ to (3.1.1).

Proof. In view of the compatibility of the involved mappings with direct sum decompositions of the finite dimensional projective modules K_W and GU, it is sufficient to prove the lemma assuming that $W = \mathbb{k}K$ and $U = \mathbb{k}G$. In this case, the given diagram identifies with the following one

$$
\begin{array}{ccc}
Y^* \otimes_H X^* & \overset{\beta}{\longrightarrow} & (X \otimes_H Y)^* \\
\downarrow_{\gamma} & & \downarrow_{\alpha} \\
\text{Hom}_H(Y, X^*) & \rightarrow & \text{Hom}_G(X \otimes_H Y, \mathbb{k}G),
\end{array}
$$

where, after using (3.2.2),
Definition 3.4. Let \(\alpha \) be given by \(\phi \mapsto (x \otimes y) \mapsto \sum_{g \in G} \phi(g^{-1} \cdot x \otimes y) g \), \(\beta \) is given by \(\phi_2 \otimes \phi_1 \mapsto (y \mapsto \sum_{h \in H} \phi_2(h^{-1} \cdot y) h \cdot \phi_1) \) and \(\gamma \) is given by \(f \mapsto (x \otimes y) \mapsto \sum_{g \in G} (f(y))(g^{-1} \cdot x) g \).

It is direct to check that (3.2.4) commutes, which proves the lemma.

3.3. Pairing of morphisms.

Definition 3.5. Let \(G, H \) be finite groups whose orders are not divisible by \(\text{char}(k) \). Let \(G X_H, H V \), and \(G U \) be (bi)modules such that \(X \) and \(V \) are finite dimensional. Assume that \(U \) is simple. Define a pairing

\[
\langle - | - \rangle: \text{Hom}_G(U, X \otimes_H V) \otimes_k \text{Hom}_H(V, X^* \otimes_G U) \to k
\]

as follows. For all \(f \in \text{Hom}_G(U, X \otimes_H V) \) and \(\phi \in \text{Hom}_H(V, X^* \otimes_G U) \),

\[
\langle f | \phi \rangle = \Psi_{X,U}(\phi \circ f)
\]

(3.3.2) is the following composite morphism

\[
f_2 \times f_1: U \xrightarrow{f_1} X \otimes_H V \xrightarrow{(X \otimes_H f_2)} X \otimes_H Y \otimes_K W .
\]

This pairing is compatible with the following operation on morphisms.

Definition 3.6. Let \(G, H \) and \(K \) be finite groups whose orders are not divisible by \(\text{char}(k) \). Let \(G X_H, H Y_K, G U, H V \) and \(K W \) be (bi)modules. For all \(f_1 \in \text{Hom}_G(U, X \otimes_H V) \) and \(f_2 \in \text{Hom}_H(V, Y \otimes_K W) \), define \(f_2 \times f_1 \in \text{Hom}_G(U, X \otimes_H Y \otimes_K W) \) as the following composite morphism

\[
f_2 \times f_1: U \xrightarrow{f_1} X \otimes_H V \xrightarrow{(X \otimes_H f_2)} X \otimes_H Y \otimes_K W .
\]

Here is the above-mentioned compatibility.

Lemma 3.6. Let

\(G, H, \) and \(K \) be finite groups with orders not divisible by \(\text{char}(k) \),

\(G X_H, H Y_K, G U, H V \) and \(K W \) be (bi)modules such that \(X \), \(Y \), and \(W \) are finite dimensional and \(U \) and \(V \) are simple,

\(f_1 \in \text{Hom}_G(U, X \otimes_H V) \) and \(f_2 \in \text{Hom}_H(V, Y \otimes_K W) \) and \(\phi_1 \in \text{Hom}_H(V, X^* \otimes_G U) \) and \(\phi_2 \in \text{Hom}_K(W, Y^* \otimes_H V) \).

Denote by \(\lambda \) the following isomorphism obtained upon applying \(- \otimes_G U\) to (3.1.1),

\[
Y^* \otimes_H X^* \otimes_G U \xrightarrow{\lambda} (X \otimes_H Y)^* \otimes_G U .
\]

Then, \(\langle f_2 \times f_1 | \lambda \circ (\phi_1 \times \phi_2) \rangle = \langle f_2 | \phi_2 \rangle \cdot \langle f_1 | \phi_1 \rangle .
\]

Proof. Using (3.2.3) yields that

\[
\Psi_{X,U}^{W,U}(\lambda \circ (\phi_1 \times \phi_2)) = \Psi_{X,Y}^{W^*,\otimes_G U}(\phi_2 \circ \phi_1) .
\]

Recall that \(\phi_1 \times \phi_2 \) is the following composite morphism

\[
W \xrightarrow{\phi_2} Y^* \otimes_H Y \xrightarrow{\phi_2 \otimes \phi_1} Y^* \otimes_H X^* \otimes_G U .
\]

Since \(\Psi_{X,Y}^{W,U} \) and \(\Psi_{X,Y}^{W^*,U} \) are adjunction isomorphisms, then

\[
\Psi_{X,Y}^{W,U}(\phi_2 \circ \phi_1) = \Psi_{X,Y}^{W^*,\otimes_G U}(\phi_2 \circ \phi_1) = \Psi_{X,Y}^{W,U}(\phi_1 \circ (X \otimes_H \Psi_{Y,Y}^{W,V}(\phi_2))) .
\]

Therefore,

\[
\Psi_{X,Y}^{W,U}(\lambda \circ (\phi_1 \times \phi_2)) \circ (f_2 \times f_1) = \Psi_{X,Y}^{W,U}(\phi_1 \circ (X \otimes_H \Psi_{Y,Y}^{W,V}(\phi_2))) \circ (X \otimes_H f_2) \circ f_1 = \Psi_{X,Y}^{W,U}(\phi_1 \circ (X \otimes_H \langle f_2 | \phi_2 \rangle \cdot \text{Id}_V) \circ f_1 = \langle f_1 | \phi_1 \rangle \cdot \langle f_2 | \phi_2 \rangle \cdot \text{Id}_U .
\]

The conclusion of the lemma then follows from the definition of \(\langle - | - \rangle \).
The previous lemma has the following generalisation. Consider

- an integer \(n \geq 2 \),
- finite groups \(G_0, \ldots, G_n \) with orders not divisible by \(\text{char}(k) \),
- a finite dimensional left \(\mathbb{k}G_i \)-module \(U_i \) for every \(i \in \{0, \ldots, n\} \), such that \(U_0, \ldots, U_{n-1} \) are simple,
- a finite dimensional \(\mathbb{k}G_{i-1} - \mathbb{k}G_i \)-bimodule \(X_i \) for every \(i \in \{1, \ldots, n\} \),
- \(f_i \in \text{Hom}_{G_{i-1}}(U_{i-1}, X_i \otimes_G U_i) \) and \(\phi_i \in \text{Hom}_G(U_i, X_i^* \otimes_G U_{i-1}) \) for every \(i \in \{1, \ldots, n\} \).

Denote by \(\lambda^{(n)} \) the isomorphism obtained upon applying \(- \otimes_G U_0 \) to (3.1.2),

\[
\lambda^{(n)} : X_n^* \otimes_{G_{n-1}} \cdots \otimes_{G_1} X_1^* \otimes_{G_0} U_0 \xrightarrow{\sim} (X_1 \otimes_{G_1} \cdots \otimes_{G_{n-1}} X_n)^* \otimes_{G_0} U_0.
\]

Then,

\[
\langle f_n \times \cdots \times f_1 \rangle \lambda^{(n)} \circ (\phi_1 \times \cdots \times \phi_n) = \prod_{i=1}^{n} (f_i \phi_i).
\]

4. INTERTWINERS

Let \(Q_0, S, G \) and \(M \) be as in Setting 1.1. This section establishes properties on intertwiners relative to \(M \) which are needed to prove Theorem 1.25. This includes the properties of \(\otimes \) mentioned in Section 1 as well as Proposition 1.20 on the existence of the pairing \((-|-) \). This is done in several steps,

- first, by proving that, in Definition 1.8, the \(\mathbb{k}G_{i_0} \)-module \(M(\tilde{i}; V) \) is isomorphic to \(M(\tilde{i}) \otimes_{G_{i_0}} V \) for a suitable \(\mathbb{k}G_{i_0} - \mathbb{k}G_{i_0} \)-bimodule \(M(\tilde{i}) \);
- next, by proving that, under this isomorphism, \(\otimes \) corresponds to the operation \(\times \) of Definition 3.5;
- and finally by defining \((-|-) \) so that, under this isomorphism, it corresponds to the pairing \((-|-) \) of Definition 3.4.

These steps are proceeded in turn in Sections 4.1, 4.2, and 4.3, respectively. They use the bimodule \(MG \) defined as follows. Note that the action of \(G \) on \(S \) yields the skew group algebra \(S \ast G \). Like in Section 3, for all groups \(H \), the pieces of notation \(e, \otimes_H \) and \(\text{Hom}_H(\cdot, \cdot) \) stand for the neutral element of \(H \), for \(\otimes_{kH} \), and for \(\text{Hom}_{kH} \), respectively.

Definition 4.1. Define \(MG \) as the following \(S \ast G - S \ast G \)-bimodule.

- Its underlying vector space is \(M \otimes_k \mathbb{k}G \), a tensor \(m \otimes g \) is denoted by \(m \ast g \) for all \(m \in M \) and \(g \in G \).
- The actions of \(S \) and \(G \) on the left and on the right are such that, for all \(m \in M, g, h, k \in G \) and \(s, s' \in S \),

\[
\begin{align*}
 s \cdot (m \ast g) \cdot s' &= smg s' \ast g \\
 h \cdot (m \ast g) \cdot k &= h m \ast h g k.
\end{align*}
\]

The \(S \ast G - S \ast G \)-bimodule \(M^*G \) is defined similarly after replacing \(M \) by \(M^* \).

4.1. **The space ** \(M(\tilde{i}) \). Let \(n \) be a positive integer. Let \(\tilde{i} = i_0, \ldots, i_n \) a sequence in \(Q_0 \). Denote by \(M(\tilde{i}) \) the following \(\mathbb{k}G_{i_0} - \mathbb{k}G_{i_0} \)-bimodule,

\[
M(\tilde{i}) = e_{i_0} MGe_{i_1} \otimes_{G_{i_1}} \cdots \otimes_{G_{i_{n-1}}} e_{i_{n-1}} MGe_{i_n}.
\]

Note that this yields the \(\mathbb{k}G_{i_0} - \mathbb{k}G_{i_0} \)-bimodule \(M^*(\tilde{i}) \). These bimodules are dual to each other. Here is an explicit isomorphism used later. Consider the isomorphism (3.1.2) taking \(X_t = e_{i_{t-1}} M^*Ge_{i_t} \) for all \(t \in \{1, \ldots, n\} \),

\[
e_{i_n}(MG)^* e_{i_{n-1}} \otimes_{G_{i_{n-1}}} \cdots \otimes_{G_{i_1}} e_{i_1}(MG)^* e_{i_0}(3.1.2) \rightarrow M(\tilde{i})^*.
\]
Since the following mapping is a non-degenerate pairing
\[
[-\cdot] : \, M^* \otimes_k M^* \rightarrow k^\times
\]
\[
(m \ast g) \otimes (\varphi \ast h) \mapsto \varphi^{(g^{-1} \cdot m)} \delta_{e, hg},
\]
it induces an isomorphism (of \(S \ast G - S \ast G \)-bimodules)
\[
(4.1.3) \quad M^* \rightarrow (MG)^*
\]
the \(n \)-th tensor power of which induces an isomorphism of \(kG_{in} - kG_{in} \)-bimodules,
\[
(4.1.4) \quad M^*(i^n) \cong e_{in}^* (MG)^* e_{in-1} \otimes_{G_{in-1}} \cdots \otimes_{G_{i1}} e_{i1} (MG)^* e_{i0}.\]
Composing \((4.1.2)\) and \((4.1.4)\) yields an isomorphism of \(kG_{in} - kG_{in} \)-bimodules
\[
(4.1.5) \quad \Lambda_M : M^*(i^n) \rightarrow M(i^n)^*,
\]
which is induced by the mapping from \((MG)^{\otimes_n} \) to \(((MG)^{\otimes_n})^* \) which assigns to any tensor \((\varphi_n \ast g_n) \otimes \cdots \otimes (\varphi_1 \ast g_1)\) the following linear form on \((MG)^{\otimes_n},\)
\[
(4.1.6) \quad (m_1 \ast g_1) \otimes \cdots \otimes (m_n \ast g_n) \mapsto \sum_{k_1, \ldots, k_n} \prod_{i=1}^n \varphi_i (k_i^{-1} \cdot m_i) \delta_{e, g_i k_i^{-1} g_i k_i},
\]
where \(\delta \) denotes the Kronecker symbol, \(k_t \) runs through \(G_{i_t} \) and \(k_0 = k_0 = e.\)

The bimodules \(M(i^l) \) and \(M^*(i^n) \) are hence objects of the monoidal category \((\mod(A^\times), \otimes_A)\) in which they are left dual to each other. The following lemma describes tensor products of these objects in this monoidal category. The same statements are valid after replacing \(M \) by \(M^* \).

Lemma 4.2. Let \(m, n \) be positive integers. Let \(i^n = i_0, \ldots, i_{m+n} \) be a sequence in \(Q_0 \). Denote the sequences \(i_0, \ldots, i_m \) and \(i_{m+1}, \ldots, i_{m+n} \) by \(i \) and \(i^n \), respectively.

1. \(M(i^n) = M(i) \otimes_{G_{im}} M(i^m) \).
2. The following diagram is commutative
\[
\begin{array}{ccc}
M^*(i^n) \otimes_{G_{im}} M^*(i^m) & \xrightarrow{\Lambda_M \otimes_{G_{im}} \Lambda_M} & M(i^n)^* \otimes_{G_{im}} M(i^m)^* \\
\downarrow \hspace{0.5cm} & & \downarrow \hspace{0.5cm} \\
M^*(i^n) & \xrightarrow{\Lambda_M} & M(i^n)^*.
\end{array}
\]

Proof. (1) follows from the definition of the spaces \(M(\bullet) \) and (2) follows from the definition of the morphisms \(\Lambda_M \) in terms of \((3.1.2)\) and \((4.1.3)\). \(\square \)

The following result is the link between the bimodules \(M(\bullet) \) and the modules of Definition 1.8. This link makes it possible to translate the results of Section 3 in terms of intertwiners. From now on, the piece of notation \(* \) used for tensors in \(MG \) is often dropped in order to avoid overloaded notation.

Lemma 4.3. Let \(i^l = i_0, \ldots, i_n \) be a sequence in \(Q_0 \), where \(n \geq 1 \). Let \(U_n \in \mod(kG_{in}) \). There is an isomorphism in \(\mod(kG_{in}) \),
\[
(4.1.7) \quad \Theta_M^{U_n} : M(i; U_n) \rightarrow M(i) \otimes_{G_{im}} U_n
\]
given by
\[
m_1 \otimes \cdots \otimes m_n \otimes y_1 \cdots y_n u \mapsto m_1 y_1 \otimes y_1^{-1} m_2 y_2 \otimes \cdots \otimes (y_1 \cdots y_{n-1})^{-1} m_n y_n \otimes u.
\]
When there is no risk of confusion, \(\Theta_M^{U_n} \) is denoted by \(\Theta_U^{U_n} \).

Proof. This is straightforward to check. \(\square \)
The following natural transformation of functors from \(\text{mod}(kG_m) \) to \(\text{mod}(k) \), defined by \(\Theta_\ell U_m \), is hence an isomorphism of functors,

\[
(4.1.8) \quad \text{Hom}_{G_m}(-, M(\ell; U_n)) \xrightarrow{\sim} \text{Hom}_{G_m}(-, M(\ell) \otimes G_m U_n) \rightarrow \Theta_\ell U_n \circ -.
\]

4.2. Compositions of intertwiners. It is now possible to compare the operation \(\otimes \) on intertwiners, see Definition 1.13, and the operation \(\times \) of Definition 3.5.

Lemma 4.4. Let \(\ell'' = i_0, \ldots, i_{m+n} \) be a sequence in \(Q_0 \), where \(m, n \geq 1 \). Denote the sequences \(i_0, \ldots, i_m \) and \(i_m, i_{m+1}, \ldots, i_{m+n} \) by \(\ell \) and \(\ell' \), respectively. Let \(U_0 \in \text{mod}(kG_m) \), \(U_m \in \text{mod}(kG_m) \) and \(U_{m+n} \in \text{mod}(kG_{m+n}) \). Finally, let \(f \in \text{Hom}_{G_m}(U_0, M(\ell; U_m)) \) and \(f' \in \text{Hom}_{G_m}(U_m, M(\ell'; U_{m+n})) \). Then,

\[
(4.2.1) \quad (\Theta_\ell U_{m+n} \circ f') \times (\Theta_\ell U_m \circ f) = \Theta_\ell U_{m+n} \circ (f' \otimes f).
\]

As a consequence, \(f' \otimes f \in \text{Hom}_{G_m}(U_0, M(\ell''; U_{m+n})) \).

Proof. Let \(u \in U_0 \). Since \(\Theta_\ell U_{m+n} \circ f' \) lies in \(\text{Hom}_{G_m}(U_m, M(\ell'' \otimes G_{m+n}) U_{m+n}) \) and \(\Theta_\ell U_m \circ f \) lies in \(\text{Hom}_{G_m}(U_0, M(\ell \otimes G_m) U_m) \), then

\[
(\Theta_\ell U_{m+n} \circ f')(u) \circ (\Theta_\ell U_m \circ f)(u) = (M(\ell) \otimes kG_m (\Theta_\ell U_{m+n} \circ f')) \circ (\Theta_\ell U_m \circ f)(u).
\]

Using the definition of \(\Theta_\ell U_m \), see (4.1.7), the right-hand side is equal to

\[
(M(\ell) \otimes kG_m (\Theta_\ell U_{m+n} \circ f'))((\sum y_j f_1^{(1)}(u)y_1 \otimes y_1^{-1} f_1^{(2)}(u)y_2 \otimes \ldots \otimes (y_1 \cdots y_{m-1})^{-1} f_1^{(m)}(u))y_m \otimes f_1^{(m)}(u),)
\]

where \(y \) runs through all sequences \(y_1, \ldots, y_m \) such that \(y_t \in [G/G_i] \) for all \(t \in \{1, \ldots, m\} \). Using the definition of \(\Theta_\ell U_{m+n} \), see (4.1.7), this is equal to

\[
\sum y_j \cdots y_{m+n} f_1^{(1)}(u)y_1 \otimes \cdots \otimes (y_1 \cdots y_{m+n})^{-1} f_1^{(m)}(u))y_m \otimes f_1^{(m)}(u),
\]

where \(y \) is as before and \(y' \) runs through all sequences \(y_{m+1}, \ldots, y_{m+n} \) such that \(y_{m+t} \in [G/G_{m+n}] \) for all \(t \in \{1, \ldots, n\} \). Using the definition of \(\Theta_\ell U_{m+n} \), see (4.1.7), this is equal to

\[
\Theta_\ell U_{m+n} \sum y_j \cdots y_{m+n} f_1^{(1)}(u)y_1 \otimes \cdots \otimes f_1^{(m)}(u) \otimes (y_1 \cdots y_{m+n} f_1^{(1)}(u)) \otimes \cdots \otimes y_1 \cdots y_{m+n} f_1^{(m)}(u),
\]

where \(y \) runs through all sequences \(y_1, \ldots, y_{m+n} \) such that \(y_t \in [G/G_i] \) for all \(t \in \{1, \ldots, m+n\} \) and where \(y \) and \(y' \) stand for the sequences \(y_1, \ldots, y_m \) and \(y_{m+1}, \ldots, y_{m+n} \) respectively. Finally, using the definition of \(\otimes \), see (1.4.1), this is equal to \((\Theta_\ell U_{m+n} \circ (f' \otimes f))(u) \). Whence (4.2.1). Note that \(f' \otimes f \) is a morphism of \(kG_m \)-modules because

- \(\Theta_\ell U_{m+n} \) is an isomorphism of \(kG_m \)-modules,
- \(f \) and \(\Theta_\ell U_m \) are morphisms of \(kG_m \)-modules,
- \(f' \) and \(\Theta_\ell U_{m+n} \) are morphisms of \(kG_{m+n} \)-modules,
- and the operation \(\times ' \) yields morphisms of \(kG_m \)-modules (see (3.3.3)).

Lemma 4.4 shows that Definition 1.15 yields a, possibly non-associative, algebra.

Proposition 4.5. \(\text{Intw} \) is an associative and unital algebra.
Proof. Note that $\mathbb{T}tw$ is unital. Indeed, for all $i \in [G \setminus Q_0]$ and $U \in \text{irr}(G_i)$, denote by $\varepsilon_{i,U}$ the intertwiner $\text{Id}_U \in \text{Hom}_{G_i}(U, M(i; U))$, recall that $M(i; U) = U$. Then $\sum_{i,U} \varepsilon_{i,U}$ is a unity for \oplus.

In the framework of Definition 3.5, the equality $f_3 \times (f_2 \times f_1) = (f_3 \times f_2) \times f_1$ holds whenever both sides make sense because of the associativity of the tensor product. In view of Lemma 4.4, this entails that \oplus is associative. \square

4.3. The pairing on intertwiners. Let n be a positive integer, let $i = i_0, \ldots, i_n$ be a sequence in Q_0 and let U_0 and U_n be left modules over kG_{i_0} and kG_{i_n}, respectively. To every $\varphi \in \text{Hom}_{G_{i_n}}(U_n, M^*(i_n; U_0))$ is associated a k-linear mapping

$$\Phi(\varphi) : M(i; U_n) \rightarrow U_0$$

defined as follows. For every sequence of representatives y_1, \ldots, y_n ($y_t \in [G/G_{i_t}]$) there exist unique sequences

$$\underline{x} = x_{n-1}, \ldots, x_0 \ (x_t \in [G/G_{i_t}]) , \text{ and } h_{n-1}, \ldots, h_0 \ (h_t \in G_{i_t})$$

such that, for all $t \in \{1, \ldots, n\}$,

$$(y_t \cdots y_n)^{-1} = x_{n-1} \cdots x_{t-1} h_{t-1};$$

these sequences are determined by a decreasing induction: $y_0^{-1} = x_{n-1} h_{n-1}$ and $h_t y_{t}^{-1} = x_{t-1} h_{t-1}$ for all $t \in \{1, \ldots, n-1\}$; then, for every $m_1 \otimes \cdots \otimes m_t \otimes y_1 \cdots y_n u$ lying in $M(i; U_n)$, define the element $\Phi(\varphi)(m_1 \otimes \cdots \otimes m_t \otimes y_1 \cdots y_n u)$ of U_0, using Notation 1.18, as

$$(4.3.2) \quad \prod_{t=1}^n \varphi^x_{(t)}(u) \left((y_1 \cdots y_n)^{-1} m_t \right) h_{t}^{-1} \varphi^y_{(0)}(u)).$$

This does make sense, because $m_t \in y_1 \cdots y_{t-1} i_{t-1} M_{i_{t-1} \cdots i_{t}}$, because $\varphi^x_{(t)}$ is a linear form on $x_{n-1} \cdots x_{t-1} i_{t-1} M_{x_{n-1} \cdots x_{t} i_{t}}$, and because of (4.3.1).

After appropriate identifications, Φ is related to the adjunction isomorphism $\Psi_{M(i)}^*$ of section 3.2 as explained in the following result. Recall that $\Psi_{M(i)}^* : \Theta_{L^2(i; U_0)}^*$ and Λ_2 are defined in (3.2.1), (4.1.7), and (4.1.5), respectively.

Lemma 4.6. Keep the previous setting. Denote by φ' the following composite morphism of left kG_{i_n}-modules,

$$U_n \xrightarrow{\varphi} M^* \left(i_n^*; U_0 \right) \xrightarrow{\Theta_{L^2(i; U_0)}^*} M^* \left(i_0^* \right) \otimes_{G_{i_0}} U_0 \xrightarrow{\Lambda_{0 \otimes G_{i_0}} U_0} M(i)^* \otimes_{G_{i_0}} U_0.$$

Then,

$$(4.3.3) \quad \Phi(\varphi) = \Psi_{M(i)}^* \left(\varphi' \right) \circ \Theta_{L^2(i; U_n)}^*.$$

In particular, $\Phi(\varphi) \in \text{Hom}_{G_{i_0}}(M(i; U_n), U_0)$.

Proof. The composition $\Theta_{L^2(i; U_n)}^* \circ \varphi$ is given by (see (4.1.7))

$$u \mapsto \sum_{\underline{x}} \varphi^x_{(0)}(u) x_{n-1} \otimes x_{n-2} \otimes \cdots \otimes \varphi^x_{(n-1)}(u) x_0 \otimes \varphi^x_{(0)}(u),$$

where $\underline{x} = x_{n-1}, \ldots, x_0$ runs through all sequences of representatives ($x_t \in [G/G_{i_t}]$ for all $0 \leq t \leq n - 1$). Hence, following (4.1.6), the morphism φ' is given by

$$u \mapsto \sum_{\underline{x}} \varphi^{\underline{x}}(u) \otimes \varphi^x_{(0)}(u)$$
where \(\varphi_M(u) \) is the linear form on \(M(\mathfrak{i}) \), which is a quotient of \((MG)^{\otimes_k n}\), induced by the linear form on \((MG)^{\otimes_k n}\) mapping any \((m_1 \ast g_1) \otimes \cdots \otimes (m_n \ast g_n)\) to

\[
(4.3.4) \quad \sum_{k_1, \ldots, k_n = 1}^n \prod_{t=1}^n \left((x_{i_n-1} \cdots x_{i_1-2} \cdots x_t)^{-1} \left(\varphi_M^n(u) \right) \right) \left(k_t^{-1} g_{1_t}^{-1} m_t \right) \delta_{e, x_{i_1-1} \cdots x_{i_1-2} \cdots x_t} k_t,
\]

where \(\delta \) denotes the Kronecker symbol, \(k_0 = k_n = e \) and \(k_t \) runs through \(G_t \), for \(1 \leq t < n - 1 \).

In order to simplify the expression of (4.3.4), consider a tensor \((m_1 \ast g_1) \otimes \cdots \otimes (m_n \ast g_n)\) in \((MG)^{\otimes_k n}\); for all \(k_1, \ldots, k_n - 1 \) in \(G \), the following assertions are equivalent, keeping \(k_0 = k_n = e \),

(i) \((\forall t \in \{1, \ldots, n - 1\}) \) \(e = x_{t-1}k_{t-1}^{-1}g_t k_t \),

(ii) \(k_t = (x_{t-1} \cdots x_{1 \circ t} g_1 g_2 \cdots g_t)^{-1} \) for all \(t \in \{1, \ldots, n\} \), and \(g_1 \cdots g_n \) is the inverse of \(x_{n-1} \cdots x_0 \);

given that each \((x_{i_n-1} \cdots x_{i_1-2} \cdots x_t)^{-1} \left(\varphi_M^n(u) \right) \) in (4.3.4) is a linear form on \(x_{i_1-1} \cdots x_{i_1-2} \cdots x_t \) and each \(k_t \) is constrained to lie in \(G_t \), then (4.3.4) is equal to

\[
\prod_{t=1}^n \left(\varphi_M^n(u) \right) \left(x_{i_n-1} \cdots x_{i_1-2} \cdots x_t g_1 g_2 \cdots g_t m_t \right) \delta_{e, g_1 g_2 \cdots g_n x_{n-1} \cdots x_0},
\]

which simplifies to

\[
(4.3.5) \quad \prod_{t=1}^n \left(\varphi_M^n(u) \right) \left((g_1 g_2 \cdots g_n m_t) \right) \delta_{g_1 g_2 \cdots g_n x_{n-1} \cdots x_0}.
\]

Thus, the morphism \(\varphi' \) is given by \(u \mapsto \sum_x \varphi_M^n(u) \otimes \varphi_M^n(u) \), where \(\varphi_M^n(u) \) is the linear form on \(M(\mathfrak{i}) \) induced by the mapping assigning (4.3.5) to any element \((m_1 \ast g_1) \otimes \cdots \otimes (m_n \ast g_n)\) of \((MG)^{\otimes_k n}\).

Hence (see Lemma 3.2), \(\psi_{M(\mathfrak{i}),k_0}^{U_n}(\varphi') \) is the morphism from \(M(\mathfrak{i}) \otimes \mathfrak{g}_n U_n \to U_0 \) induced by the mapping from \((MG)^{\otimes_k n} \otimes \mathfrak{g}_n U_n \to U_0\) which maps any \((m_1 \ast g_1) \otimes \cdots \otimes (m_n \ast g_n)\) \(\otimes \) \(u \) to

\[
\sum_x \sum_{g \in \mathfrak{g}_n} \varphi_M^n(u) \left(g^{-1} m_1 g_1 \otimes m_2 g_2 \otimes \cdots \otimes m_n g_n \right) g \left(\varphi_M^n(u) \right) = \sum_x \sum_{g = 1}^n \prod_{t=1}^n \varphi_M^n(u) g_1 g_2 \cdots g_n \left((g_1 \cdots g_n)^{-1} m_t \right) \delta_{g_1 \cdots g_n x_{n-1} \cdots x_0} \left(\varphi_M^n(u) \right).
\]

Now, let \(m_1 \cdots m_n \otimes y_1 \cdots y_n \in M(\mathfrak{i}^k U_n) \). Recall that its image under \(\Theta_M^{U_n} \) is \(m_1 y_1 \otimes \cdots \otimes m_n y_n \otimes \ast \otimes \otimes (y_1 \cdots y_n)^{-1} \). Its image under \(\psi_{M(\mathfrak{i}),k_0}^{U_n}(\varphi') \) \(\circ \Theta_M^{U_n} \) is

\[
(4.3.6) \quad \sum_x \prod_{g = 1}^n \varphi_M^n(u) \left((y_1 \cdots y_n)^{-1} m_t \right) \delta_{y_1 \cdots y_n x_{n-1} \cdots x_0} \left(\varphi_M^n(u) \right).
\]

Note that, given \(g \in G_{i_1} \) and \(\mathfrak{x} \), then, for all \(t \in \{1, \ldots, n\} \),

- \(\varphi_M^n(u) \in (x_{i_n-1} \cdots x_{i_1-2} \cdots x_t M_{x_{i_n-1} \cdots x_{i_1-2} \cdots x_t}, \mathfrak{x})^* \) and
- \((y_1 \cdots y_n)^{-1} m_t \in (y_1 \cdots y_n)^{-1} M_{y_1 \cdots y_n} \cdot M_{y_1 \cdots y_n} \cdot \ast \)

in particular, if for a given index \((\mathfrak{g}, \mathfrak{x}) \) in (4.3.6) the product "\(\prod_{t=1}^n \)" is non-zero then this product is the unique non-zero term of the sum (4.3.6). More precisely, let \(\{x_t, h_t\}_{0 \leq t \leq n-1} \) be the unique collection of elements in \(G \) such that, for all \(t \in \{0, \ldots, n-1\} \),

- \(x_t \in [G/G_{i_t}] \),
- \(h_t \in G_{i_t} \), and
- \((y_1 \cdots y_n)^{-1} = x_{n-1} \cdots x_t h_t \);
then, the only possibly non-zero term of the sum \((4.3.6)\) is the one with index \((h_0^{-1}, \underline{x})\). Therefore, \((4.3.6)\) equals

\[
\prod_{t=1}^{n} \varphi_{(0)}^x(u) \left((y_1 \cdots y_n)^{-1} m_t \right) h_0^{-1} \varphi_{(0)}^x(u),
\]

which is equal to \(\Phi(\varphi)(m_1 \otimes \cdots \otimes m_n \otimes y_1 \cdots y_n u)\) (see \((4.3.2)\)). Thus, \(\Phi(\varphi) = \Psi_{M(U)}(\varphi') \circ \Theta_{\underline{2},U_0}'\). This proves \((4.3.3)\). The second assertion of the lemma is a direct consequence of \((4.3.3)\). \(\square\)

It follows from Lemma 4.6 that the following mapping is bijective,

\[
\Phi \colon \text{Hom}_{G_n}(U_n, M^*(\underline{t}^0; U_0)) \to \text{Hom}_{G_n}(M(\underline{2}; U_n), U_0).
\]

This yields a non-degenerate pairing defined as follows.

Definition 4.7. Let \(i = i_0, \ldots, i_n\) be a sequence in \(Q_0\), where \(n \geq 1\). Let \(U_0 \in \text{mod}(kG_n)\) be simple. Let \(U_n \in \text{mod}(kG_n)\). Define \((-\cdot\cdot\cdot-\cdot)\) to be the non-degenerate pairing

\[
(-\cdot\cdot\cdot-\cdot) \colon \text{Hom}_{G_n}(U_0, M(\underline{2}; U_0)) \otimes_k \text{Hom}_{G_n}(U_n, M^*(\underline{t}^0; U_0)) \to k,
\]

such that, for all \(f \in \text{Hom}_{G_n}(U_0, M(\underline{2}; U_0))\) and \(\varphi \in \text{Hom}_{G_n}(U_n, M^*(\underline{t}^0; U_0))\),

\[
(4.3.7) \quad (f|\varphi) \cdot \text{Id}_{U_0} = \Phi(\varphi) \circ f;
\]

With this definition, it follows from \((3.3.2)\) and \((4.3.3)\) that

\[
(4.3.8) \quad (f|\varphi) = (\Theta_{\underline{2},U_0}' \circ f)(\Lambda_n \otimes G_n U_0) \circ \Theta_{\underline{2},U_0}' \circ \varphi.
\]

It is now possible to prove Proposition 1.20.

Proof of Proposition 1.20. Note that \((1.5.2)\) is equal to \(\langle \Phi(\varphi)(f(u)) \rangle\), see \((4.3.2)\). Hence, the pairing \((-\cdot\cdot\cdot-\cdot)\) claimed by the proposition is the one of Definition 4.7. \(\square\)

The pairing \((-\cdot\cdot\cdot-\cdot)\) is compatible with the composition of (dual) intertwiners in the following sense.

Lemma 4.8. Let \(m, n\) be positive integers, let \(\underline{t}^0 = i_0, \ldots, i_{m+n}\) be a sequence in \(Q_0\), let \(U_0\) and \(U_m\) be simple left modules over \(kG_n\) and \(kG_m\), respectively, and let \(U_{m+n}\) be a left \(kG_{m+n}\)-module. Then, for all intertwiners

\[
f_1 \colon U_0 \to M(\underline{2}; U_m), \quad \varphi_1 \colon U_m \to M^*(\underline{t}^0; U_0),
\]

\[
f_2 \colon U_m \to M(\underline{2}; U_{m+n}), \quad \varphi_2 \colon U_{m+n} \to M^*(\underline{t}^0; U_m),
\]

where \(i = i_0, \ldots, i_m\) and \(\underline{t} = i_m, \ldots, i_{m+n}\), the following holds

\[
(4.3.9) \quad (f_2 \circ f_1|\varphi_1 \circ \varphi_2) = (f_2|\varphi_2) \cdot (f_1|\varphi_1).
\]

Proof. In order to avoid overloaded expressions, the following shorthand notation is used in this proof: \(\Theta_{\underline{2},U_0}\) for \(\Theta_{\underline{2},U_0}^{M(\underline{2}; U_0)}\) and \(\Theta_{\underline{2},U_0}'\) for \(\Theta_{\underline{2},U_0}'^{M^*(\underline{t}^0; U_0)}\). Define \(f_1', f_2', \varphi_1', \varphi_2'\) as follows

\[
f_1' = \Theta_{\underline{2},U_0} \circ f_1, \quad \varphi_1' = (\Lambda_n \otimes G_n U_0) \circ \Theta_{\underline{2},U_0} \circ \varphi_1,
\]

\[
f_2' = \Theta_{\underline{2},U_{m+n}} \circ f_2, \quad \varphi_2' = (\Lambda_m \otimes G_m U_m) \circ \Theta_{\underline{2},U_{m+n}} \circ \varphi_2.
\]

It follows from \((4.3.8)\) that \((f_2 \circ f_1|\varphi_1 \circ \varphi_2)\) is equal to

\[
\langle \Theta_{\underline{2},U_{m+n}} \circ (f_2 \circ f_1) \circ (\Lambda_n \otimes G_n U_0) \circ \Theta_{\underline{2},U_0}' \circ (\varphi_1 \circ \varphi_2) \rangle;
\]

applying Lemma 4.4 twice, first for \(M\) and next for \(M^\ast\), yields that the previous expression is equal to

\[
\langle (\Theta_{\underline{2},U_{m+n}} \circ f_2) \times (\Theta_{\underline{2},U_0} \circ f_1) \rangle \langle (\Lambda_n \otimes G_n U_0) \circ [(\Theta_{\underline{2},U_0} \circ \varphi_1) \times (\Theta_{\underline{2},U_0} \circ \varphi_2)] \rangle;
\]
considering e in Setting 1.1 and is a generator of the category of graded G-modules. Then, the first statement of the theorem. Now, if $\lambda \in \text{Lemma 4.2}$ this is equal to $2 \cdot\text{PATRICK LE MEUR} \leq \lambda (4.3.10)$

Thus, $(\varphi'_2 \otimes \varphi_2)$ is equal to φ'_1

Therefore, φ'_1 is equal to φ'_2.

Thus, $f_2 \otimes f_1 \varphi_1 \varphi_2 = (f_1, f_2 \varphi_2)$. \hfill \Box

5. PROOF OF THE MAIN RESULTS

This section proves Theorems 1.25 and 1.27. Keeping Q_0, S, G and M as in Setting 1.1 and Q_G as in Setting 1.4, the proofs use the following notation:

- denote by \tilde{e} the idempotent $\sum_{i \in [G \setminus Q_0]} e_i$ of S, this idempotent is not to be confused with \bar{e} which is equal to $\sum_{(i, U)} e_i \in \varepsilon_U$, where (i, U) runs through the vertices of Q_G;
- denote by S_i the k-algebra $\Pi_{i \in [G \setminus Q_0]} k G_i$.

First, it is necessary to check that the quiver Q_G corresponds to the one given by Demonet in [3].

Proof of Theorem 1.6. Following [3], see p. 1057, the algebra $T_S(M) \ast G$ is Morita equivalent to $\tilde{e} \cdot (T_S(M) \ast G) \cdot \tilde{e}$, which is isomorphic to the path algebra of a quiver having the same vertices as Q_G and such that the arrows from a vertex (i, U) to a vertex (j, V) form a basis of the vector space $(e_i \ast \varepsilon_U) \cdot (MG) \cdot (e_j \ast \varepsilon_V)$. Now, considering $e_i, e_j, \varepsilon_U, \varepsilon_V$ as elements of $S \ast G$,

$$(e_i \ast \varepsilon_U) \cdot (MG) \cdot (e_j \ast \varepsilon_V) = \varepsilon_U \cdot (e_i \cdot (MG) \cdot e_j) \cdot \varepsilon_V \equiv \varepsilon_U \cdot M(i, j) \cdot \varepsilon_V \simeq \text{Hom}_{k G_i}(U, M(i, j) \otimes G_j, V) \simeq (4.1.7) \cdot \text{Hom}_{k G_i}(U, M(i, j; V)).$$

Whence the first statement of the theorem. Now, if $U = k G_i \ast \varepsilon_U$ for all $(i, U) \in Q_G$, then $f(\varepsilon_U)$ does belong to $(e_i \ast \varepsilon_U) \cdot (MG) \cdot (e_j \ast \varepsilon_V)$, which is contained in $\check{e} \cdot (T_S(M) \ast G) \cdot \check{e}$, for all arrows $f : (i, U) \to (j, V)$ of Q_G. Whence the isomorphism (1.1.1).

The proof of Theorem 1.25 uses Morita equivalences in the graded sense. Two (\mathbb{N})-graded finite dimensional k-algebras A_1 and A_2 are Morita equivalent in the graded sense if $A_2 \simeq \text{End}_{A_1}(P)^{op}$ for some graded projective A_1-module P which is a generator of the category of graded A_1-modules, and hence of $\text{mod}(A_1)$. Both
\(\Lambda_1 \) and \(\Lambda_2 \) are isomorphic as graded algebras to basic graded finite dimensional algebras; moreover \(\Lambda_1 \) and \(\Lambda_2 \) are Morita equivalent in the graded sense if and only if their basic versions are isomorphic as graded algebras.

Proof of Theorem 1.25. Denote by \(\Phi \) the algebra homomorphism \(kQ_G \rightarrow \text{Intw}^{\text{op}} \) given in the statement of the theorem. Hence, \(\Phi(\gamma) = f_\gamma \) for all paths \(\gamma \) in \(Q_G \).

(1) Let \(\gamma \) and \(\gamma' \) be parallel paths in \(Q_G \). It follows from the definition of \(\varphi_{\gamma'} \), see Notation 1.23, and from (4.3.9) that

\[
(f_\gamma|\varphi_{\gamma'}) = \begin{cases}
1 & \text{if } \gamma = \gamma', \\
0 & \text{otherwise}.
\end{cases}
\]

Since \(\Phi \) maps non parallel paths in \(Q_G \) into distinct components of \(\text{Intw} \) in the decomposition (1.4.3), then \(\Phi \) is injective. In order to prove that \(\Phi \) is an isomorphism, it is hence sufficient to prove that, for all integers \(n \), the homogeneous components of degree \(n \) of the graded algebras \(kQ_G \) and \(\text{Intw} \) have the same dimensions. Note that \(kQ_G \) is graded by the length of the paths in \(Q_G \) and \(\text{Intw} \) is graded so that every intertwiner lying in a space of the shape \(\text{Hom}_{kG_n}(U, M(i_0, \ldots, i_n; V)) \) is homogeneous of degree \(n \).

First, following [3], see Theorem 1.6, the algebras \(kQ_G \) and \(\hat{\epsilon} \cdot (T_S(M) \ast G) \cdot \hat{\epsilon} \) are isomorphic \(\hat{\epsilon} \)-algebras both Morita equivalent to \(T_S(M) \ast G \). Actually, the proof given in [3] works in the graded setting.

Next, \(\epsilon \) may be considered as an idempotent of \(T_S(M) \ast G \). In this sense,

\[
\hat{\epsilon} \cdot (T_S(M) \ast G) \cdot \hat{\epsilon} = \hat{\epsilon} \cdot (T_S(M) \ast G) \cdot \hat{\epsilon} \cdot \hat{\epsilon}.
\]

Following [3], see p. 1057, the algebra \(\hat{\epsilon} \cdot (T_S(M) \ast G) \cdot \hat{\epsilon} \) is Morita equivalent to \(T_S(\hat{\epsilon} \cdot (MG) \cdot \hat{\epsilon}) \). Again, this is still true in the graded sense. Hence, \(\hat{\epsilon} \cdot (T_S(M) \ast G) \cdot \hat{\epsilon} \), which is basic, is isomorphic to \(\hat{\epsilon} \cdot T_S(\hat{\epsilon} \cdot (MG) \cdot \hat{\epsilon}) \) as a graded algebra.

Finally, by definition of \(\hat{\epsilon} \) and \(\hat{\epsilon} \), the homogeneous component of degree \(n \) of \(\hat{\epsilon} \cdot T_S(\hat{\epsilon} \cdot (MG) \cdot \hat{\epsilon}) \) is equal to

\[
\bigoplus_{i_0, i_n \in [G \backslash Q_0], U_0 \in \text{irr}(G_{i_0}), U_n \in \text{irr}(G_{i_n})} (\epsilon_{i_0} \ast \epsilon_{U_0}) \cdot (MG)^{\otimes_1 n} \cdot (\epsilon_{i_n} \ast \epsilon_{U_n}).
\]

This is equal to

\[
\bigoplus_{i_0, \ldots, i_n \in [G \backslash Q_0], U_0 \in \text{irr}(G_{i_0}), U_n \in \text{irr}(G_{i_n})} \epsilon_{U_0} \cdot M(i_0, \ldots, i_n) \cdot \epsilon_{U_n}.
\]

This is isomorphic to

\[
\bigoplus_{i_0, \ldots, i_n, U_0, U_n} \text{Hom}_{kG_0}(U_0, M(i_0, \ldots, i_n) \otimes_{G_{i_n}} V). \]

These considerations prove that the homogeneous components of degree \(n \) of \(kQ_G \) and \(\text{Intw} \) are isomorphic. Thus, \(\Phi \) is an isomorphism.

(2) follows from (5.0.1) and from the fact that \(\Phi \) is surjective. \(\square \)

Proof of Theorem 1.27. First, \(\Xi \) is bijective. Indeed, on one hand, there is an equality of vector subspaces of \(T_S(M) \ast G \),

\[
\hat{\epsilon} \cdot (T_S(M) \ast G) \cdot \hat{\epsilon} = \bigoplus_{\underline{y} \in \mathbb{Z}^G} (\epsilon_{i_0} M_{y_1, i_1} \otimes \mathbb{K} \cdots \otimes \mathbb{K} y_{i_n-1} \cdots y_n \ast M_{y_1 \cdots y_n} i_n) \ast y_1 \cdots y_n kG,
\]

where \(\hat{\epsilon} \) runs through all sequences \(i_0, \ldots, i_n \) of \([G \backslash Q_0] \) and \(\underline{y} \) runs through all sequences \(y_1, \ldots, y_n \) such that \(y_t \in [G/G_{i_t}] \) for all \(t \in \{1, \ldots, n\} \). On the other
hand, for all vertices \((i, U)\) and \((j, V)\) of \(Q_G\) and for all \(kG_i \ltimes kG_j\)-bimodules \(N\), the following mapping is bijective,
\[
\text{Hom}_{kG_i}(U, N \cdot \varepsilon_V) \rightarrow \varepsilon_U \cdot N \cdot \varepsilon_V
\]
\[
f \mapsto f(\varepsilon_U).
\]
Hence, \(\Xi\) is bijective and \(\Xi^{-1}\) is given by \(\Xi^{-1}(f) = f(\varepsilon_U)\) for all \(f \in \text{Intw}\) with domain denoted by \(U\).

Next, \(\Xi\) is a morphism of \(k\)-algebras. Indeed, for all \(f \in \text{Hom}_{kG_0}(U, M(\tilde{i}; V))\) lying in \(\text{Intw}\), then \(\Xi^{-1}(f) = f(\varepsilon_U)\). Therefore, with the setting of Definition 1.13, then \((f' \circ f)(\varepsilon_U)\) is equal to the product \(f(\varepsilon_V) \cdot f'(\varepsilon_U)\) in \(T_S(M) \ast G\), see (1.4.1). Accordingly, \(\Xi^{-1}\), and hence \(\Xi\), is a \(k\)-algebra homomorphism.

Finally, the diagram (1.6.4) is commutative. Indeed, all its arrows are \(k\)-algebra homomorphisms. Hence, it suffices to prove the commutativity on the arrows of \(Q_G\), which follows from the definitions of \(\Xi\), (1.1.1), and (1.6.1). Note that (1.6.5) follows from (1.6.2).

6. Acknowledgements

I thank Edson Ribeiro Alvares for helpful comments on previous versions of this article. I also thank the referee for several suggestions that improved the presentation of the article.

References

[1] C. Amiot and P.-G. Plamondon. The cluster category of a surface with punctures via group actions. arXiv:1707.01834 [math.RT], 2017.
[2] R. Bocklandt, T. Schedler, and M. Wemyss. Superpotentials and higher order derivations. J. Pure Appl. Algebra, 214(9):1501–1522, 2010.
[3] L. Demonet. Skew group algebras of path algebras and preprojective algebras. J. Algebra, 323(4):1052–1059, 2010.
[4] J. Dionne, M. Lanzilotta, and D. Smith. Skew group algebras of piecewise hereditary algebras are piecewise hereditary. J. Pure Appl. Algebra, 213(2):241–249, 2009.
[5] P. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik. Tensor categories, volume 205 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2015.
[6] V. Ginzburg. Calabi-Yau algebras. arXiv:math/0612139 v3, 2006.
[7] S. Giovannini. Higher representation infinite algebras from McKay quivers of metacyclic groups. Comm. Algebra, 47(9):3672–3711, 2019.
[8] S. Giovannini and A. Pasquali. Skew group algebras of Jacobian algebras. J. Algebra, 526:112–165, 2019.
[9] S. Giovannini, A. Pasquali, and P.-G. Plamondon. Quivers with potentials and actions of finite abelian groups. arXiv:1912.11284 [math.RT], 2019.
[10] P. Le Meur. Crossed-products of Calabi-Yau algebras by finite groups. Journal of Pure and Applied Algebra, 224(10):106394, 2020.
[11] L. Li. Finitistic dimensions and piecewise hereditary property of skew group algebras. Glasg. Math. J., 57(3):509–517, 2015.
[12] R. Martinez-Villa. Skew group algebras and their Yoneda algebras. Math. J. Okayama Univ., 43:1–16, 2001.
[13] I. Reiten and C. Riedtmann. Skew group algebras in the representation theory of Artin algebras. J. Algebra, 92(1):224–282, 1985.
[14] I. Reiten and M. Van den Bergh. Two-dimensional tame and maximal orders of finite representation type. Mem. Amer. Math. Soc., 80(408):viii+72, 1989.

Université de Paris, Sorbonne Université, CNRS, Institut de Mathématiques de Jussieu-Paris Rive Gauche, F-75013 Paris, France

Email address: patrick.le-meur@imj-prg.fr