Estimated Daily Intake and Health Risk of Polycyclic Aromatic Hydrocarbon by Consumption of Grilled Meat and Chicken in Egypt

Ahmed H. Hamzawy1*, Mona Khorshid1, Ashraf M. Elmarsafy1, Eglal R. Souaya2

1Central Laboratory of Residue Analysis of Pesticides and Heavy Metals in Food (QCAP), Agricultural Research Center (ARC), Ministry of Agriculture and Land Reclamation, 7, Nadi Elsaid Street, Dokki, Giza, P.O. 12311, Egypt
2Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, P.O. 11566, Egypt

*Corresponding author

A B S T R A C T

The present study investigates the presence of polycyclic aromatic hydrocarbons in grilled meat and chicken using modified QuEChERs method. The results found that Benzo(a)Pyrene concentration in charcoal grilled chicken ranged from 0.49-7.20 µg/kg and 2.01 µg/kg mean concentration, while for charcoal grilled meat ranged from 2.42-4.48 µg/kg and 0.36 µg/kg mean concentration. The summation of 16 PAHs concentrations in term of Benzo(a)Pyrene ranged from 0.03-10.65 µg/kg and mean concentration 3.03 µg/kg for charcoal grilled chicken, while for charcoal grilled meat from 0.10 to 6.49 µg/kg and mean concentration 1.13 µg/kg. The results suggested using of electric grill instead of traditional charcoal grill in order to reduce the contamination of meat and chicken with PAHs where the level of contamination reduced by 100%. The dietary intake for sum of seven carcinogenic PAHs in term of Benzo(a)Pyrene exceed than the average value by 1.6 and 2.3 times for meat and chicken respectively.

Keywords
PAHs; Dietary intake; Benzo(a) Pyrene; Grilled meat; Grilled chicken; Egypt.

Article Info
Accepted: 23 January 2016
Available Online: 10, February 2016

Introduction

Polycyclic aromatic hydrocarbons (PAHs) refer to a large group of organic chemicals containing two or more fused aromatic rings made up of carbon and hydrogen atoms as by products from the incomplete combustion of organic materials. Cooking of meat at high temperatures generate various kinds of genotoxic substances or cooking toxicants, including PAHs (Agerstad et al., 2005). The main sources of PAHs in the environment are aluminium production, coke production from coal, wood preservation, and fossil fuel combustion (traffic, domestic heating, and electricity production (Ravindra et al., 2008). It has been-established that there are two major sources of PAHs formation in foods the first source is mainly due to the method of food preparation. The other major source of contamination of foodstuffs is by contact with either petroleum products or...
coal tar products it would be possible to generate these naturally occurring PAHs in grilled foods (Kazerouni et al., 2001).

PAHs can also form in meat cooked at high temperatures (Falcó et al., 2005) and migrate through the food chain into hydrophobic compartments, and thus, accumulate in lipid components due to their lipophilic nature (Chen J and Chen S, 2005). However, according to (Richard et al., 2008), significant levels of PAHs do not usually accumulate in the meat because PAHs rapidly metabolized in these species.

This accumulation could indirectly cause human exposure to PAHs through food consumption and thus might pose a human health threat (Lin D et al., 2005). According to the Scientific Committee on Food (2002), PAHs showed clear evidence of mutagenicity/genotoxicity in somatic cells in experimental animals in vivo. They may be regarded as potentially genotoxic and carcinogenic to humans, their carcinogenicity is initiated by their metabolic conversion in mammalian cells to diol epoxides that bind covalently to cellular macromolecules, including DNA, causing errors in DNA replication and mutation (Phillips DH and Grover PL, 1994).

Elbadry, (2010) Studied the effect of household cooking methods and some food additives on polycyclic aromatic hydrocarbons (PAHs) formation in chicken meat and concluded that chicken meat should be treated prior to cooking and thermal processing with food additives treatment that causing inhibition or prevention the formation of the PAHs during cooking.

The European Union suggested the analysis of the contents of 15+1 PAH compounds, which are classified as priority in food (EFSA, 2008). These 15+1 EU priority PAHs are: naphthalene, Fluorene, fluoranthene, Benz(a)Anthracene, chrysene, Pyrene, Benzo(b) fluoranthene, Benzo(k) fluoranthene, Benzo(a) Pyrene, Acenaphthene, Phenanthrene, Anthracene, Acenaphthylene, Benzo(g,h,i)Perylene, Dibenzo(a,h)Anthracene and Indeno(1,2,3-cd)Pyrene. Seven PAHs been classified by the USEPA as compounds of probable human carcinogens. These are Benzo(a) Anthracene, Benzo(b)fluoranthene, Benzo(k) fluoranthene, chrysene, Benzo(a) Pyrene, Dibenzo(a,h)Anthracene, and Indeno(1,2,3-cd) Pyrene(10). In September 2012, Benz(a) Anthracene, Benzo(b) fluoranthene, and chrysene were included in the assessment and recorded together with Benzo (a) Pyrene as a sum parameter (group of “PAH4”), as per Regulation (EU) number 835/2011.

The present study will monitor the extent of accumulation of PAHs in grilled meat and chicken in Giza governorate (Egypt), study how to reduce the contamination levels of PAHs in grilled meat and chicken and evaluate whether such contamination levels may pose risks to human health by calculation of the acceptable dietary intake (ADI).

Materials and Methods

Reagents and Chemicals

Acetone (Sigma-Aldrich, Taufkirchen, Germany, purity 99.8%), Acetonitrile (Sigma-Aldrich, Taufkirchen, Germany, purity > 99.9%), Toluene (Merck, Kenilworth, U.S.A. purity > 99.9%), Dichloromethane (CHROMASOLV, for HPLC, Sigma-Aldrich, Taufkirchen, Germany, ≥99.8%), and n-hexane (CHROMASOLV, for HPLC, Sigma-Aldrich, Taufkirchen, Germany, purity ≥ 99.0%) were the solvents used. Agilent
QuEChERS salts and buffers were pre-packaged in anhydrous packages for EN 15662 containing 4 g magnesium sulphate (MgSO4), 1 g sodium chloride (NaCl), 1 g sodium citrate, and 0.5 g disodium citrate sesquihydrate. Silica gel (60–120mesh, Fluka) activated at 150°C for 12 hours prior to use. A stock solution of 1000 µg/mL concentration contains 14 PAHs includes Naphthalene, Fluorene, Fluoranthene, Benz(a) Anthracene, Chrysene, Pyrene, Benzo(b) Fluoranthene, Benzo(k)Fluoranthene, Benzo(a)Pyrene, Acenaphthene, Phenanthrene, Anthracene, Acenaphthylene, and Pyrene-d10 (surrogate standard) and reference standards obtained from Sigma-Aldrich with purity > 95% were prepared, while Benzo (g,h,i) Perylene and Dibenz (a,h) Anthracene were obtained as ready-made of 100 µg/mL in methylene chloride and Indeno(1,2,3-cd)Pyrene 200 µg/mL in methanol. All standard bring from Sigma-Aldrich, Taufkirchen, Germany. A working solution of 1.0 µg/mL concentration contain all 16 PAHs was prepared in toluene. Calibration mixtures with concentrations 2, 10, 50, 100, and 500 ng/mL were prepared from serial dilution of the working solution in toluene where pyrene-d10 maintained at level 50 ng/mL in all calibration levels and all stored in refrigerator at 4 °C.

Sampling Procedure

Monitoring Samples

Total of 60 samples belonging to two different species (Chicken and Meat) ready to eat cooked via charcoal grill collected randomly from different regions in Giza Governorate. All samples collected during the period of November up to December 2014 to determine the concentrations of PAHs. A representative sample of about one kilogram of each was collected from the local market in Giza completely homogenized in a food mixer then stored in a freezer at −20°C. and stored freeze until analysis.

Processing Samples

Three replicates of meat and chicken grilled using the traditional disposable charcoal grills. The distance between burning coals and meat or chicken was approximately 20 cm; the temperature at the surface of the sample ranged between 120-180 °C. In addition, another three replicates of each grilled using 2000-Watt electric grill at distance of 5 cm away from meat or chicken while water is placed in the dish coated with acetone and dried at 90°C before use.
Teflon material under the electric coal to collect the fat and prevent the formation of smoke.

Sample preparation, sample processing and sub-sampling to obtain analytical portions should take place before visible deterioration occurs and shall ensure that samples not contaminated during sample preparation. Glassware should be rinse with high purity acetone or hexane before use to minimize the risk of contamination. (Commission regulation, 333/2007).

Extraction Procedure

About 10 g of each sample was weighted in 50 mL Teflon centrifuge tube, pyrene-d10 was added which acts as surrogate standard of 50 µg/kg, and sample processed extraction using QuEChERs method as described in (Mona Khorshid et al., 2015).

The validity of this method were already confirmed through our previous published research article showing the recoveries varied from 56 to 114%, limits of detection (S/N = 3) varied from 0.33 to 1.9 and limits of quantification was 2 µg/kg and showed a good linearity from 2 to 50 µg/ml with (r² 0.996 to 0.999). The measurement uncertainty expressed as expanded uncertainty and in terms of relative standard deviation (at 95% confidence level) is 12%.

Results and Discussion

Monitoring Results

Table 1 summarized the results obtained from the analysis of PAHs (µg/kg) in grilled Meat collected from Giza Governorate by using traditional disposable charcoal grill unit. The results in table 1 showed that 100% of the analysed samples contaminated with Acenaphthylene (4.43-54.54 µg/kg), Anthracene (2.48-46.5 µg/kg), Fluoranthene (3.44-56.5 µg/kg), Fluorene (3.68-102.64 µg/kg), Naphthalene (11.8-277.16 µg/kg), and Phenanthrene (12.46-237.37 µg/kg) with the mentioned concentration range. 97% contaminated with Pyrene (3.13-49.4 µg/kg), 93% contaminated with Acenaphthene (2.18-26.85 µg/kg) and Chrysene (1.07-18.86 µg/kg), 73% with Benzo(a)Anthracene (0.88-7.93µg/kg), 50% with Benzo(b) Fluoranthene (1.69-9.76 µg/kg). Only 10% with Benzo(a)Pyrene (2.42-4.48 µg/kg) and Benzo(g,h,i)Perylene (2.15-5.78 µg/kg) while Benzo(k) Fluoranthene , Diben(z,a,h) Anthracene and Indeno(1,2,3-cd)Pyrene were not detected in all meat samples. The results also showed that the range of Benzo(a)Pyrene was (2.42-4.48 µg/kg) which is lower than estimated by IARC (International Agency Research on Cancer) to contain 10.5 µg/kg and higher than that estimated to contain 0.5 µg/kg (Abou-Arab et al., 2014).

It witnessed from the results that all collected grilled meat samples contaminated with 2 to 3 ring group of lower molecular weight PAHs such as Acenaphthylene, Anthracene, Fluoranthene, Fluorene, Naphthalene, and Phenanthrene that have significant acute toxicity to some organisms. A list of all PAHs quantified and their carcinogenic (IARC) classifications could be summarized in (IARC, 2010); Group 1 “carcinogenic to humans,” Group 2A “probably carcinogenic to humans,” and Group 2B “possibly carcinogenic to humans”.

Kalberlah et al., (1995), calculate PAHs in term of Benzo(a)Pyrene, the toxic equivalent concentration ‘TEQ’ which is the best way to evaluation is the most popular method used to identify the toxicity of PAHs. The summation of seven PAHs (Σ7PAHs) from group 1, 2A, and 2B, and present them here.
as “potentially carcinogenic PAHs” were calculated in term of Benzo(a)Pyrene. The Σ7PAHs included the following PAHs: Benzo(a)Pyrene, Benz(a)Anthracene, Benzo(b) Fluoranthene, Benzo(k) Fluoranthene, Indeno(1,2,3-cd)Pyrene, Dibenz(a,h) Anthracene, Chrysene and the total 16 PAHs in term of B(a)P (µg/kg).

Where toxicity equivalency concentrations (TEQs) calculated as the product of the values obtained by multiplying TEF values with concentrations of PAHs, as follows:

\[\text{TEQ} = (C_i \times \text{TEF}_i) \]

TEQ: Toxic equivalent concentration, \(C_i\): Concentration of PAH\(_i\), \(\text{TEF}_i\): Toxic Equivalency Factor

The results in tables 1 and 3, showed that grilled meat samples of ID (3, 5 and 17) record the highest concentrations of Benzo(a)Pyrene (4.05, 4.48, 2.42 µg/kg respectively), also the highest sum of 16 PAHs in term of Benzo(a) Pyrene (7.18, 6.44, 3.26 µg/kg respectively), however samples of ID (3, 5 and 8) record the highest sum of 7 carcinogenic EU PAHs (5.98, 5.75,1.78 µg/kg respectively), which indicate the presence of a relation between the presence of Benzo(a)Pyrene and the seven carcinogenic EU PAHs.

The results in table 2 showed that 100% of the analysed samples contain Anthracene, Fluoranthene, Fluorene, Phenanthrene and Pyrene with results range (2.5-45.9, 415-67.16, 3.28-31.95, 12.19-207.03 and 4.33-48.49 µg/kg) respectively, 97 % Acenaphthylene and Naphthalene (1.6-27.9, 1.29-57.88 µg/kg), 90 % Acenaphthene (1.3-12.43 µg/kg), 80 % Benzo(a)Anthracene, Chrysene (0.31-17.04,0.52-23.14 µg/kg),77% Benzo(b)Fluoranthene (0.44-13.02 µg/kg), 50% Benzo(a)Pyrene (0.49-7.2 µg/kg), 27% Indeno(1,2,3-cd)Pyrene (0.82-4.25 µg/kg), 45 % Benzo(g,h,i)Perylene (0.32-3.92 µg/kg), 17% Benzo(k)Fluoranthene (0.72-4.01 µg/kg) and only 3% of the analysed samples contain Dibenz (a,h)Anthracene (0.49-2.74 µg/kg).

Summation of seven PAHs (Σ7PAHs) and the total 16 PAHs in term of B(a)P (µg/kg). The results summarized in table 3.

From tables 2 and 3, the results showed that grilled Chicken samples of ID (8,15 and 16) was record the highest Benzo(a)Pyrene concentrations (7.2, 6.22, 6.48 µg/kg, respectively), and also show the highest sum of 16 PAHs in term of Benzo(a)Pyrene (14.17, 9.96, 9.95 µg/kg, respectively) and the highest sum of 7 carcinogenic EU PAHs (13.40, 9.11, 9.16 µg/kg respectively) which indicate that there is a relation between the presence of Benzo(a)Pyrene and the presence of 7 carcinogenic EU PAHs and also with the sum of 16 PAHs in term of Benzo(a)Pyrene likely concluded in meat results. The level of Benzo(a)Pyrene was more than EU regulation limit 2 µg/kg for about 10% of meat and about 57% of chicken samples.

The study indicates that the charcoal grilling has a significant effect on increasing the concentration of PAHs in grill meat and chickens samples, these findings are in agreement with that mentioned by (Phillips, 1999); where the barbecued meat total PAHs were found to be present at levels up to 164 µg/kg with Benzo(a)Pyrene being present at levels as high as 30 µg/kg.

Study the Effect of Grilling Method on the Contamination Levels of PAHs in Grilled Meat and Chicken

In this study, three replicates of meat and chicken grilled using both traditional charcoal grill and electric grill methods then
analysed. The mean concentration of each three replicates collected and summarized in table 4.

Reduction percentage (%) = 100*(Conc. found using charcoal grill - Conc. found using charcoal grill) / Conc. found using charcoal grill (2)

The results showed that significant reduction of PAHs contamination levels after cooking meat and chicken taken from the same raw material with electric grill where the sum of seven carcinogenic PAHs in term of B(a)P fall from 0.990 using traditional charcoal grill to 0.000 µg/kg for chicken and from 12.152 using traditional charcoal grill to 0.022 µg/kg, also the total sum of all 16 PAHs in term of B(a)P reduced from 1.600 to 0.038 µg/kg for chicken and from 13.425 to 0.048 µg/kg for meat compared to traditional charcoal grill where the reduction percentage approach to be 100% using electric grill in meat and chicken, also the level of B(a)P was reduced in chicken sample from 6.89 µg/kg to not detected after using electric grill. The results indicates the efficacy of using electric grill instead of traditional charcoal grill in meat and chicken cooking on reducing the contamination with PAHs during grilling.

Dietary Exposure Estimates

The dietary exposure assessment is based on the occurrence data of PAHs concentration and consumption of the corresponding food categories. All the calculations below based on the mean concentrations of PAHs obtained from analysis of thirty samples of meat and chicken to represent the central tendency of the distribution, the use of mean concentrations would represent in the most realistic picture for long-term dietary exposure (EFSA, 2008). The assessment of dietary exposure was based on Estimated Daily Intake (EDI) which was compared to Acceptable Daily Intake (ADI) and was expressed as a percentage (ADI%) (Joint FAO/WHO, 1997). The Acceptable Daily Intake (ADI) which is the estimated amount of a substance in food (expressed on a body-weight basis) that can be ingested daily over a lifetime without appreciable health risk to the consumer could also be used to predict the dietary intake of PAHs. The estimated dietary intake of PAHs in a given food is obtained by multiplying the residue level in the food by the amount of that food consumed. All calculations for the determination of EDI were according to international guidelines (WHO, GENEVA 2006),.

The Estimated Average Daily Intake (EADI) of PAHs can be calculated by the following equation

\[
EADI, \text{ expressed in } \mu\text{g/kg body weight/day} = \text{Fi x Ri}
\]

\[
\text{Fi} = \text{Food consumption of the relevant commodity (kg/day)},
\]

Ranges and sum of B(a)P, Σ7PAHs (Benzo(a)Pyrene, Benz(a) Anthracene, Benzo(b)Fluoranthene, Benzo(k) Fluoranthene, Indeno(1,2,3-cd) Pyrene, Dibenz(a,h) Anthracene, Chrysene) in term of B(a)P and Σ16PAHs in term of B(a)P are summarize in table 5. Chicken samples record the higher mean concentration of B(a)P, Σ7PAHs and Σ16PAHs in term of B(a)P when compared with meat samples. The difference is probably due to variation in fat content this is because when fat drops onto the charcoals the high temperature PAHs formed. Therefore, smoke carries the PAHs onto the surface of the chicken. The results in Table5 indicate a certain relationship between the amount of B (a)P and total amount of Σ16PAHs.
Table 1: PAHs Levels (μg/kg) in Grilled Meat Collected from Giza Governorate by using Traditional Disposable Charcoal Grill Unit

Compounds	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Acenaphthene	N.D	7.24	26.85	3.94	13.06	6.59	9.22	14.05	8.53	3.05	7.22	12.37	4.3	10.29	3.25
Acenaphthylene	54.45	6.32	39.95	36.44	18.58	19.73	18.3	6.19	12.79	33.77	13.14	42.23	5.75	23.45	5.75
Anthracene	13.78	12.33	46.5	6.92	25.33	17.29	26.95	33.38	18.32	9.66	14.9	24.04	7.54	16.78	7.21
Benzo[a]Anthracene	1.93	3.14	12.07	1.1	7.81	2.01	4.41	7.93	2.82	1.15	1.58	3.71	0.88	5.03	1.33
Benzo[a]Pyrene	N.D	N.D	4.05	N.D	4.48	N.D									
Benzo[b]Fluoranthene	N.D	N.D	7.07	N.D	4.74	3.47	4.04	9.76	3.58	N.D	N.D	N.D	N.D	N.D	N.D
Benzo[g,h,i]Perylene	N.D	N.D	2.46	N.D	5.78	2.15	N.D								
Benzo[k]Fluoranthene	N.D														
Chrysene	3.14	4.93	18.86	2.09	11.98	5.36	7.95	13.09	6.12	2.6	3.62	7.12	2.38	8.49	2.54
Dibenzo[a,h]Anthracene	N.D														
Fluoranthene	14.97	17.53	56.5	8.89	32.92	17.55	28.69	44.16	20	13.99	15.37	28.9	8.24	20.81	8.39
Fluorene	26.99	16.72	102.64	15.46	26.12	43.78	24	25.27	27.96	11.43	25.5	49.31	11.22	28.5	9.37
Indeno[1,2,3-cd]Pyrene	N.D														
Naphthalene	119.89	112.78	277.16	76.19	200	339.53	145.85	25.98	137.55	20.61	121.47	140.55	36.29	71.98	25.69
Phenanthrene	69.01	55.84	237.37	36.82	123.67	98.06	116.87	145.38	90.97	51.43	80.65	140.48	40.84	84.13	32.67
Pyrene	9.57	14.43	N.D	8.72	24.1	16.01	21.62	49.4	15.89	12.37	12.92	23.92	7.85	14.01	8.14

Compounds	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Acenaphthene	5	6.21	1.58	4.41	2.45	3.87	11.03	8.85	4.01	6.3	13.65	14.44	2.18	9.27	6.42
Acenaphthylene	23.45	15.33	4.75	7.96	4.43	9.99	24.04	18.34	11.11	14.11	31.38	38.47	10.92	26.91	21.22
Anthracene	12.35	19.33	2.48	10.09	6.54	12.12	30.13	16.66	12.58	12.8	33.51	29.5	7.77	25.64	11.69
Benzo[a]Anthracene	1.64	2.3	0.68	2.06	0.88	1.72	5.94	2.65	1.7	2.2	5.82	6.21	1.94	6.43	2.48
Benzo[a]Pyrene	N.D	2.42	N.D												
Benzo[b]Fluoranthene	N.D	2.14	N.D	N.D	N.D	N.D	4.8	2.94	1.69	2.36	5.33	5.07	N.D	4.54	2
Benzo[g,h,i]Perylene	N.D	N.D	N.D												
Benzo[k]Fluoranthene	N.D	N.D	N.D												
Chrysene	3.68	4.94	1.07	3.5	1.6	2.97	10.51	3.92	3.41	3.71	12.08	10.93	3.69	8.79	4.47
Dibenzo[a,h]Anthracene	N.D	N.D	N.D												
Fluoranthene	16.52	21.72	3.44	13.54	8.01	13.91	32.11	16.39	13.85	14.86	40.48	32.74	9.3	27.36	13.01
Table 2 PAHs Levels (μg/kg) in Grilled Chicken Collected from Giza Governorate by using Traditional Disposable Charcoal Grill Unit

Compounds	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Fluorene	17.01	11.89	3.68	12.19	6.43	13.21	24.94	28.67	18.62	33.99	43.27	8.78	23.54	21.59	
Indeno[1,2,3-cd]Pyrene	N.D														
Naphthalene	42.27	46.56	12.97	11.8	14.39	27.28	37.67	48.27	34.95	21.46	55.56	60.94	15.89	32.66	36.27
Phenanthrene	69.01	55.84	237.37	36.82	123.67	98.06	116.87	145.38	90.97	51.43	80.65	140.48	40.84	84.13	32.67
Pyrene	9.57	14.43	N.D	8.72	24.1	16.01	21.62	49.4	15.89	12.37	12.92	23.92	7.85	14.01	8.14

N.D: Not Detected,
Compounds	Sample ID														
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Acenaphthene	12.43	3.43	1.3	2.14	5.16	2.64	8.95	5.9	5.97	5.34	11.2	4.27	3.7	2.66	5.95
Acenaphthylene	22.89	7.2	1.6	3.24	9.18	3.98	17.41	9.56	17.95	11.39	20.83	7.09	9.23	4.03	18.27
Anthracene	40.56	15.59	2.5	4.54	18.79	11.39	30.61	18.34	20.73	25.57	44.68	11.61	13.34	8.63	21.66
Benzo[a]Anthracene	9.14	2.09	0.43	1.04	2.44	2.15	9.77	6.44	7.33	6.52	10.21	2.02	2.27	1.99	10.2
Benzo[a]Pyrene	**6.48**	1.82	N.D	N.D	N.D	1.36	4.05	3.33	2.8	2.58	5.2	1.42	N.D	N.D	3.82
Benzo[b]Fluoranthene	7.08	1.56	0.57	1.42	2.22	2.44	7.17	5.28	6.09	5.19	8.82	2.01	2.02	2.1	6.84
Benzo[g,h,i]Perylene	1.49	0.78	N.D	N.D	N.D	1.87	1.48	N.D	1.06	1.87	N.D	N.D	N.D	N.D	N.D
Benzo[k]Fluoranthene	N.D														
Chrysene	13.75	3.86	0.52	1.87	4.69	4.5	14.26	8.46	12.33	10	17.64	3.02	4.77	4.25	14.34
Dibenzo[a,h]Anthracene	0.82	0.49	N.D	N.D	N.D	1.03	N.D	N.D	N.D	0.89	N.D	N.D	N.D	N.D	N.D
Fluorene	55.35	18.99	4.15	6.33	21	17.3	42.01	25.23	28.05	34.73	58.62	13.21	14.93	13.6	29.6
Fluoranthene	31.95	8.97	3.28	4.84	19.12	8.73	23.56	17.6	21.92	15.02	30.97	10.7	13.43	7.24	16.93
Indeno[1,2,3-cd]Pyrene	2.13	0.97	N.D	N.D	N.D	2.3	2.1	N.D	1.66	2.36	N.D	N.D	N.D	N.D	1.81
Naphthalene	34.15	22.64	3.9	12.68	22.54	2.64	26.47	9.47	21.06	17.1	31.8	14.54	13.78	1.29	19.97
Phenanthrene	176.66	70.94	12.19	19.9	77.33	54.88	128.34	75.96	97.3	103.9	189.02	45.72	54.28	43.51	85.56
Pyrene	37.85	13.81	7.63	7.97	18.49	13.78	28.88	18.72	18.62	21.97	40.49	10.89	15.02	10.16	20.29
Table 3 Represent the Sum of 7 Pahs And 16 Pahs in Term Of Benzo[A] Pyrene in Grilled Chicken and Meat

Sample ID	Sum of 7 Carcinogenic EU PAHs in term of Benzo[α]Pyrene (µg/kg)	Sum of 16 PAHs in term of Benzo[α]Pyrene (µg/kg)		
	Chicken	Meat	Chicken	Meat
1	1.79	0.20	2.03	0.63
2	1.10	0.32	1.38	0.67
3	0.07	5.98	0.15	7.18
4	0.22	0.11	0.35	0.39
5	7.92	5.75	8.44	6.44
6	3.00	0.55	3.42	1.32
7	4.92	0.85	5.72	1.51
8	13.40	1.78	14.17	2.43
9	0.69	0.65	1.18	1.14
10	0.48	0.12	0.78	0.36
11	3.32	0.16	3.91	0.59
12	0.08	0.38	0.19	1.06
13	0.22	0.09	0.68	0.28
14	1.78	0.51	2.13	0.93
15	9.11	0.14	9.96	0.3
16	9.16	0.17	9.95	0.46
17	2.77	2.87	3.08	3.26
18	0.10	0.07	0.16	0.14
19	0.25	0.41	0.35	0.62
20	0.47	0.09	0.83	0.23
21	1.82	0.18	2.04	0.43
22	7.01	1.08	7.61	1.64
23	4.72	0.56	5.08	0.93
24	4.16	0.34	4.58	0.62
25	3.93	0.46	4.41	0.72
26	8.24	1.13	9.09	1.8
27	1.82	1.14	2.05	1.77
28	0.43	0.20	0.69	0.36
29	0.41	1.11	0.58	1.59
30	5.72	0.45	6.13	0.72
Table 4: Show the Effect of Cooking Meat and Chicken with Charcoal and Electric Grill on the Level of PAHs Generated

Compounds	Meat				Chicken			
	Charcoal	Electric	Reduction %	Charcoal	Electric	Reduction %		
	Mean Conc. (µg/kg)	Mean Conc. (µg/kg)		Mean Conc. (µg/kg)	Mean Conc. (µg/kg)			
Acenaphthene	16.58±20	2.42±17	85%	15.07±13	1.34±12	91%		
Acenaphthylene	21.06±4	2.63±10	88%	15.02±12	1.58±10	89%		
Anthracene	29.24±2	0.9±14	97%	71.81±1	0.67±9	99%		
Benzo[a]Anthracene	7.02±15	N.D	100%	17.68±10	0.22±9	99%		
Benzo[a]Pyrene	N.D	N.D	-----	6.89±7	N.D	100%		
Benzo[b]Fluoranthene	2.84±9	N.D	100%	15.49±3	N.D	100%		
Benzo[g,h,i]Perylene	N.D	N.D	-----	3.55±6	N.D	100%		
Benzo[k]Fluoranthene	N.D	N.D	-----	N.D	N.D	-----		
Chrysene	5±16	N.D	100%	23.42±6	0.2±9	99%		
Dibenz[a,h]Anthracene	N.D	N.D	-----	1.62±3	N.D	100%		
Fluoranthene	30.94±3	2.81±10	91%	105.18±10	1.55±3	99%		
Fluorene	61.9±17	N.D	100%	51.83±17	N.D	100%		
Indeno[1,2,3-cd]Pyrene	N.D	N.D	-----	3.02±17	N.D	100%		
Naphthalene	65.49±27	9.92±24	85%	34.82±5	5.8±19	83%		
Phenanthrene	101.98±5	5.96±19	94%	230.79±12	4.89±1	98%		
Pyrene	18.87±5	5.23±17	72%	66.48±8	3.55±2	95%		
Σ7PAHs	12.152	0.022	100%	0.990	0.000	99%		
Σ16PAHs	13.425	0.048	99%	1.600	0.038	99%		

N.D Not Detected, All data were expressed as means from at least two independent trials. mean number ± RSD % (Relative standard deviation of replicates)
Table 5 PAHs Concentration (µg/kg) in Term of B[a]P in Egyptian Charcoal Grilled Meat and Chicken Samples

	Grilled Meat (n=30)	Grilled Chicken (n=30)		
	Range	Mean Conc.	Range	Mean Conc.
B[a]P	2.42-4.48	0.36	0.49-7.20	2.01
Σ7PAHs in term of B[a]P	0.07-5.98	0.93	0.07-13.40	3.30
Σ16PAHs in term of B[a]P	0.14-7.18	1.35	0.15-14.17	3.70

Table 6 Estimated Daily Intake in Term Benzo[a]Pyrene (ng/ kg body per weight per day)

	Grilled Meat	Grilled Chicken		
	Maximum	Mean	Maximum	Mean
B[a]P	2.46	0.20	3.28	0.89
Σ7PAHs in term of B[a]P	3.29	0.52	6.11	1.50
Σ16PAHs in term of B[a]P	3.95	0.74	6.46	1.69

The results in table 6 showed that the maximum and mean Estimated Daily Intake in term of Benzo(a)Pyrene (ng/ kg body weight per day) for both meat and chicken by Egyptian Adult. Food consumption rates selected based on the consumption data issued by WHO (20) which is relatively within the same range of the Egyptian food balance sheet issued by economic affairs sector, ministry of agriculture (EFBS, 2008).

According to JECFA (WHO, GENEVA 2006), the estimated exposure limit for Benzo(a)Pyrene was 4.0 ng/kg body weight per day and the maximum limit was 10 ng/Kg body weight per day (estimates for Benzo(a)Pyrene as a marker for polycyclic aromatic hydrocarbons PAHs).

The results showed that, the mean Estimated Daily intake Benzo(a)Pyrene for adults of 70kg average weight was 0.2 ng/ kg body weight per day (5% of Estimated exposure limit by JECFA) and the maximum reaching was 2.46 ng/ kg body weight per day (24% of the estimated maximum limit) for grilled meat. While for chicken the mean Estimated Daily intake Benzo(a)Pyrene was 0.89 ng/kg body weight per (22.2% of estimated exposure limit by JECFA) and 3.28 ng/ kg body weight per day (32% of the estimated maximum limit).

However for Σ7PAHs in term of B(a)P, Estimated exposure limit in term of B(a)P was 6.38 ng/kg body weight per day for meat (160% of Estimated exposure limit by JECFA) and 9.27 ng/kg body weight per day for chicken (232% of Estimated exposure limit by JECFA) for chicken.

The mean intake values obtained in this study were lower compared to estimates for EU countries; however, the results show that, for sum of seven carcinogenic PAHs in term of B(a)P, the intake may be significant and exceed than the average value by 1.6 and 2.3 times meat and chicken respectively.

The present study showed the efficient role of traditional charcoal grill on contamination of the investigated foodstuffs by different levels of individuals PAHs where, grilled chicken record the higher Benzo(a)Pyrene concentration compared with grilled meat due to the fact that pyrolysis of fat that drops
in chicken was greater than meat samples. Also cooking via traditional charcoal grill produce high level of individuals PAHs of both meat and chicken while electric grill is much lower level of PAHs were detected.

The mean intake values obtained in this study were lower compared to estimates for EU countries; however, the results show that, for sum of seven carcinogenic PAHs in term of B(a)P, the intake may be significant and exceed than the aver-age value by 1.6 and 2.3 times meat and chicken respectively.

These results proved that it is recommended to use electric grill instead of traditional charcoal grill in order to reduce the contamination of meat and chicken where the level of contamination reached to 100% for both EU 7 carcinogenic PAHs and total 16 PAHs in term of B(a)P.

References

Agerstad, M.J. and Skog, K. 2005. Review genotoxicity of heat-processed foods. Mutat. Res. 574: 156–172.

Abou-Arab, A.A.K, M.A Abou-Donia., F.M El-Dars., O.I Ali., and Hossam Goda A. 2014. Detection of polycyclic aromatic hydrocarbons levels in Egyptian meat and milk after heat treatment by Gas chromatography-mass spectrometry. Int. J. Curr. Microbiol. Appl. Sci. 3,7:294-305.

Chen, J. and Chen S. 2005. Removal of polycyclic aromatic hydrocarbons by low-density polyethylene from liquid model and roasted meat. Food Chem. 90: 461-469.

Commission regulation (EC) No. 333/2007.laying down the methods of sampling and analysis for the official control of the levels of lead, cadmium, mercury, inorganic tin, 3-MCPD, and polycyclic aromatic hydro-carbons in foodstuffs. Vol. 038 P. 175 - 184 (2007).

Egyptian Food Balance Sheet (EFBS)issued by economic affairs sector, Central Administration for Agricultural Planning, Ministry of Agriculture (2008).

Elbadry N. 2010. Effect of Householf Cooking Method and Food Additives on Polycyclic Aromatic Hydrocarbons (PAHs) formation in Chicken meat. World Appl. Sci. J. (9): 963-974.

Falcó, G., A. Bocio, J.M. Lobet, Domingo J.L. 2005. Daily intake of polychlorinated dibenzo-p-dioxins/polychlorinated dibenzofurans (PCDD/PCDFs) in foodstuffs consumed in Tarragona, Spain: a review of recent studies (2001–2003) on human PCDD/PCDF exposure through the diet. J. Environ. Res. 97: 1-9.

International Agency for Research on Cancer, (IARC).Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 92 (2005).

Kalberlah, F., N. Frijus-Plessen and Hassauer M. 1995.Toxicological Criteria for the Risk Assessment of Polyaromatic Hydrocarbons (PAH) in Existing Chemicals. Part 1: The use of Equivalency Factors. Alt.Spect. 5: 231-237.

Kazerouni, N., R. Sinha, H. Che-Han, A. Greenberg and Rothman N. 2001. Analysis of 200 food items for benzo[a]pyrene and estimation of its intake in an epidemiologic study. Food Chem. Toxicol. 39:423-436.

Lin D., Y. Tu, and Zhu L. 2005. Concentrations and health risk of...
polycyclic aromatic hydrocarbons in tea. Food Chem. Toxicol. 43: 41-48.
Mona Khorshid, R. Eglal Souaya, H. Ahmed Hamzawy and Moustapha Mohammed N. 2015. QuEChERS Method Followed by Solid Phase Extraction Method for Gas Chromatographic-Mass Spectrometric Determination of Polycyclic Aromatic Hydrocarbons in Fish. Int. J. Anal. Ch. ID 352610.
Phillips D.H. 1999. Polycyclic aromatic hydrocarbons in the diet. Mutat. Res. 443: 139–147.
Phillips, D.H. and Grover P.L. 1994. Polycyclic hydrocarbon activation: Bay regions and beyond. Drug metabolism review, 26: 443–467.
Ravindra, K., R. Sokhi, and Van Grieken R. 2008. Atmospheric polycyclic aromatic hydrocarbons: Source attribution, emission factors, and regulation Atmos. Environ.42.
Richard, L., C. Laurie, and Judy D. 2008. The Food Safety Hazard Guidebook, the Royal Society of Chemistry, London, UK.
The EFSA Journal. 2008. Polycyclic aromatic hydrocarbons in food: scientific opinion of the Panel on contaminants in the food chain (question no EFSA-Q-2007-136). 724: 1-114.
The EFSA Journal. 2008. Scientific Opinion of the Panel on Contaminants in the Food Chain on a request from the European Commission on Polycyclic Aromatic Hydrocarbons in Food. 724:1-114.
United State Environmental Protection Agency. 2010. Addition of National Toxicology Program Carcinogens; Community Right-to-Know Toxic Chemical Release Reporting Federal Register, 59 FR 1788, (1994).
WHO food additives series: 58, Safety evaluation of certain food additives and contaminants. Prepared by the Sixty-seventh meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). (GE-NEVA, 2006).
World Health Organization. GEMS/food regional diets (2003).
World Health Organization. Joint FAO/WHO Consultation on Food Consumption and Exposure Assessment of Chemicals (Geneva, Switzerland). 1997. Programme of Food Safety and Food Aid; Food and Agriculture Organization of the United. pp.: 1-44 (1997).

How to cite this article:

Ahmed H. Hamzawy, Mona Khorshid, Ashraf M. Elmarsafy, Eglal R. Souaya. 2016. Estimated Daily Intake and Health Risk of Polycyclic Aromatic Hydrocarbon by Consumption of Grilled Meat and Chicken in Egypt. Int.J.Curr.Microbiol.App.Sci.5(2): 435-448.
doi: http://dx.doi.org/10.20546/ijcmas.2016.502.049