The Effect of Flight and Design Parameters of a Turbofan Engine on Global Warming Potential

A Dinc¹*

¹College of Engineering and Technology, American University of the Middle East, Kuwait

*Corresponding author: Ali.Dinc@aum.edu.kw

Abstract. Anthropogenic global warming is caused by human beings as a result of fuel combustion process used in energy production, transportation, residential heating etc. Fossil fuels after combustion generate gases such as CO₂, H₂O, NOx, SOx, CO etc. Those gases form a greenhouse effect and causes global warming. For a sustainable world there is a need to limit those greenhouse gases. Transportation vehicles also consume fossil fuels and aviation is a part of that. Aircraft engines emit exhaust gases during flight and ground operations. Turbofan engine is the most common type in commercial aviation today. Turboprop, turbojet and piston engines constitute a smaller percentage in the sector. In this study, in order to reduce the environmental impact of aviation, a turbofan engine related exhaust gas emission was calculated for different input parameters of design and operation. Global warming potential (GWP) parameter was analysed as a sensitivity study with respect to input parameters. A +/-5% change was considered for input parameters and effects on GWP were presented in the order of magnitude and importance. Results obtained in this study have practical implications for engine designers and operators to potentially reduce the GWP for a sustainable world.

Keywords: Global warming potential; turbofan engine; greenhouse gas emissions; cycle analysis; sustainability

1. Introduction

Anthropogenic global warming is the increase of Earth’s average temperature due to human activities in the long term. CO₂ is the main contributor of global warming which is a byproduct of combustion of fossil fuels such as coal, oil, natural gas etc. In other words, fossil fuel combustion generates heat-trapping gases and when these gases are released into atmosphere; more heat is stored which causes global temperature increase in Earth’s atmosphere. Other contributors are methane (CH₄), nitrous oxides (NOx), ozone (O₃) and also water vapor (H₂O) [1], [2]. Climate change and global warming is a big risk for society [3], [4]. In 2018, CO₂ emissions have reached a maximum value of 37.1 billion tons [5]. GHG emissions are predicted to increase 50% more compared to today’s value in 2050, mostly from energy needs of growing population [4]. Therefore, we need more efforts in finding solutions to reduce emissions.

Transportation vehicles also consume fossil fuels and aviation is a part of that. Aircraft engines emit exhaust gases during flight and ground operations. On the reduction of greenhouse gas emissions there is a lot of research and development in aviation sector. Whellens and Singh [6] studied propulsion system optimisation for minimum Global Warming Potential. Jelinek et al. [7] developed an advanced emissions...
model to estimate aviation emissions and fuel burn. Jungbluth and Meili [8] offered recommendations for calculation of the global warming potential of aviation including the radiative forcing index. Şöhret et al. [9], [10] presented environment-friendly engine selection methodology for aerial vehicles and also mathematical modelling for carbon dioxide equivalent prediction of greenhouse gases emitted from a small scale turbojet engine. Wang et al. [11] investigated flight operation and airframe design for tradeoff between cost and environmental impact. Berton and Guynn [12] performed multi-objective optimization of turbofan design parameters for an advanced, single-aisle transport aircraft. Wasiuk et al. [13] presented an aircraft performance model implementation for the estimation of global and regional commercial aviation fuel burn and emissions. Jakovljević et al. [14] calculated carbon dioxide emission during the life cycle of turbofan aircraft. Dinc [15–17] studied NOx emission of aircraft engines for LTO and GWP for a complete flight cycle. Becker [18] studied exhaust emissions characteristics for a general aviation light-aircraft. Pagoni and Psaraki-Kalouptsidi [19] performed calculations of aircraft fuel consumption and CO2 emissions based on path profile estimation by clustering and registration. Diehl and Biaglow [20] performs measurements of gaseous emissions from a turbofan engine.

Turbofan engine is the most common type in commercial aviation today. Turboprop, turbojet and piston engines constitute a smaller percentage in the sector. In this study, in order to reduce the environmental impact of aviation, a turbofan engine related exhaust gas emissions were calculated for different input parameters on a JT9D-7J turbofan engine model. Global warming potential values were calculated for a range of selected design and flight parameters such as altitude, speed, turbine inlet temperature, compressor pressure ratio, compressor efficiency, turbine efficiency etc. Global warming potential (GWP) parameter was analyzed as a sensitivity study with respect to input parameters. A +/-5% change was considered for input parameters and effects on GWP were presented.

2. Materials and methods
1.1 Turbofan Engine Performance Model
In this study, cycle analysis was done for 222 kN (50000 lb) class JT9D-7J turbofan engine [21] which is typically used in B747 commercial aircraft (Figure 1). The cycle analysis results include the total pressure and temperature values at every engine station (for every component of the engine e.g. compressor, combustor, turbine, nozzle etc.) and also engine performance values such as shaft power output, specific fuel consumption, fuel flow rate etc. Then, exhaust emissions of engine were calculated from those values. All the analysis was done for cruise condition which is 0.85 Mach speed and 10668 m flight altitude since the exhaust emissions are mostly produced at cruise. At cruise flight condition, data from literature was 49.06 kN for engine thrust and 17.8744 g/(kN.s) for thrust specific fuel consumption [21].

Input values were collected from different sources and some assumptions were made if no data is available. Thus, total set of data used in the cycle analysis calculations which are given in Table 1. Results were found to be very close to literature data of JT9D-7J engine and a general comparison was given in Table 2.

![Figure 1. (a) JT9D-7J turbofan engine, (b) B747 aircraft](image_url)
Table 1. Assumed design input parameters for JT9D-7J turbofan engine

Input parameter	Definition	Assumed Value
ΔP_{in}	intake total pressure loss	0.01
ΔP_{pipe}	total pressure loss of the low pressure turbine jet pipe	0.01
FHV	Fuel heating value (MJ/kg)	43.124
h	Flight altitude (km)	10.668
M	Flight speed (Mach)	0.85
m	inlet corrected air mass flow rate (kg/s)	721.2
N_{cd}	nozzle discharge coefficient	1
T_4	total temperature at turbine entry (K)	1390
ε_{2a}	cooling air ratio for high pressure turbine rotor	0.06
ε_{3}	cooling air ratio nozzle guide vanes	0.05
η_b	combustor efficiency	0.99
η_{C}	compressor isentropic efficiency	0.9
η_{FB}	booster isentropic efficiency	0.9
η_{HPT}	high pressure turbine isentropic efficiency	0.91
η_{m}	shaft mechanical efficiency	0.99
η_{PT}	power turbine isentropic efficiency	0.9
Π_B	Burner design pressure ratio	9
Π_C	compressor total pressure ratio	2.61
Π_{FB}	booster total pressure ratio	

Table 2 Comparison of cruise performance parameters for JT9D-7J turbofan engine

Parameter	Literature Data*	Calculated Value	Deviation (%)
Thrust at cruise (kN)**	49.06	49.11	0.09%
TSFC at cruise (g/(kN.s))**	17.8744	17.8886	0.07%

*Source: [21]
**at 0.85 Mach speed and 10668 m flight altitude

1.2 Global Warming Potential Calculations

Total GWP value is the sum of the individual contributions of CO$_2$, H$_2$O and NOx. The smaller effects of CO, HC were neglected in this study. Emissions metrics are proportional to fuel flow and values are 3.155 (kg/kg fuel) for CO$_2$ and 1.237 (kg/kg fuel) for H$_2$O [22]. In other words, for each kilogram of fuel burned, 3.155 kilogram of CO$_2$ and 1.237 kilogram of H$_2$O are generated during combustion process.

\[
GWP_{\text{total}} = GWP_{\text{CO}_2} + GWP_{\text{H}_2\text{O}} + GWP_{\text{NOx}}
\]

(1)

\[
GWP_{\text{CO}_2} = 3.155 \ m_{\text{fuel}}
\]

(2)

\[
GWP_{\text{H}_2\text{O}} = 1.237 \ m_{\text{fuel}}
\]

(3)

\[
GWP_{\text{NOx}} = EI_{\text{NOx}} \ m_{\text{fuel}}
\]

(4)

where EI_{NOx} is NOx emission index and m_{fuel} is the mass of fuel to be burned. For prediction of EI_{NOx}, ‘P3T3’ (compressor discharge pressure and temperature) method can be used in general and test data is also needed for validation. The NOx Severity Parameter S_{NOx} can be defined by Eq(5) [23]. The following equations were used in the prediction of NOx in this study.

\[
S_{\text{NOx}} = \left(\frac{P_3}{2965 \text{ kPa}} \right)^{0.4} e^\frac{(T_3-826 \text{ K}) + 0.29-100 \times \text{warp}}{53.2}
\]

(5)

\[
EI \sim S_{\text{NOx}}
\]

(6)
\[EI_{NOx} = C \left(\frac{P_t}{2965 \text{ kPa}} \right)^{0.4} e^{\left(\frac{T_3 - 826 \text{ K}}{194 \text{ K}} + \frac{6.29 \times 100 \text{ war}}{53.2} \right)} \]

(7)

The NOx Emission Index \(EI_{NOx} \) (g/kg fuel) increases linearly with the NOx severity parameter where C is a constant for the specific engine. Schulte et al. [24] performed NOx measurements on several aircraft and engines during flight. They provided flight test data for JT9D-7J turbofan engine on B747-200B aircraft during London - Washington flight at 0.85 Mach and 10058 m of altitude. The measurement for NOx emission index \(EI_{NOx} \) was 23.7 (g/kg fuel) for this cruise flight conditions. From this data, C constant was calculated to be 74.5 in Eq (7).

3. Results and discussion

According to the methodology described above, GWP values were calculated for the baseline engine initially. Then, the some of the design parameters were selected and were changed by ±5%. The effect of ±5% change on GWP were calculated and tabulated in Table 3. In order to make better comparisons, GWP values were calculated in (kg/(kN.s)) similar to TSFC, because engine thrust varies due to the changes in input parameters.

In the first place, the total GWP value for baseline engine can be seen 78.952 (kg/(kN.s)). CO2 constitutes the majority of the GWP with a value of 56.439 (kg/(kN.s)). Then water vapor (H2O) with 22.128 (kg/(kN.s)) value comes second. Smallest contributor is NOx with a value of 0.2891 (kg/(kN.s)). Except for NOx, CO2 and H2O emissions have similar trend with TSFC (thrust specific fuel consumption) in total GWP values. Therefore, any effort to decrease in fuel consumption would decrease GWP (except for NOx value).

In Table 3, the effects of individual parameters were evaluated. Those parameters are \(T_4, \Pi_{FB}, \Pi_C, \eta_{FB}, \eta_C, \eta_{PT}, \eta_{HPT}, \text{ and } h \) (km), Mach number. The results are also depicted in Figures 2-10.

Most effective parameter was calculated to be \(T_4 \) (total temperature at turbine entry) and the 2nd effect comes from the Mach number as shown in Figure 2. Thirdly, \(\eta_{PT} \) (power turbine isentropic efficiency), 4th \(\eta_{HPT} \) were depicted in Figure 3. Then \(\Pi_C \) and \(\Pi_{FB} \) as given in Figure 4. Lastly, \(\eta_C \) and \(\eta_{FB} \) are less effective among the investigated parameters.

![Figure 2. Effect of parameters on total GWP (%) a) \(T_4 \), b) Mach number](image)
Figure 3. Effect of parameters on total GWP (%) a) η_{PT}, b) η_{HPT}

Figure 4. Effect of parameters on total GWP (%) a) Π_C, b) Π_{FB}

Figure 5. Effect of parameters on total GWP (%) a) η_C, b) η_{FB}
Table 3. Effect of design and flight parameters on GWP.

Case No	Design and Flight Parameters	Output Parameters										
	Name	Baseline Value	Modified Value (+5%)	Thrust (kN)	TSFC (g/(kN.s))	Fuel flow (kg/s)	CO2 (g/(kN.s))	H2O (g/(kN.s))	NOx severity	NOx (g/(kN.s))	GWP (g/(kN.s))	Change
1	Τ₄ (K)	1390	1320.5	45.19	17.40	0.786	54.896	21.524	0.2891	0.3853	78.985	-2.73%
2	Π₈	2.61	2.4795	49.31	18.04	0.889	56.903	22.310	0.2693	0.3619	79.607	0.79%
3	Π₉	2.61	2.7405	48.90	17.75	0.868	56.004	21.958	0.3095	0.4093	78.407	-0.73%
4	Π₉	9	8.55	49.30	18.03	0.889	56.899	22.309	0.2696	0.3622	79.602	0.78%
5	Π₉	9	9.45	48.91	17.75	0.868	56.008	21.959	0.3091	0.3748	79.313	0.42%
6	Π₉	0.9	0.945	49.74	18.04	0.860	56.915	22.315	0.3143	0.4224	79.688	0.89%
7	Π₉	0.9	0.945	50.30	17.79	0.895	56.125	22.005	0.2680	0.3552	78.516	-0.59%
8	Π₉	0.9	0.945	50.30	17.79	0.895	56.125	22.005	0.2680	0.3552	78.516	-0.59%
9	Π₉	0.9	0.945	49.74	18.04	0.867	56.658	22.159	0.3020	0.4041	79.313	0.42%
10	Π₉	0.9	0.945	49.74	18.04	0.867	56.658	22.159	0.3020	0.4041	79.313	0.42%
11	Π₉	0.9	0.945	49.74	18.04	0.867	56.658	22.159	0.3020	0.4041	79.313	0.42%
12	Π₉	0.9	0.945	49.74	18.04	0.867	56.658	22.159	0.3020	0.4041	79.313	0.42%
13	Π₉	0.9	0.945	49.74	18.04	0.867	56.658	22.159	0.3020	0.4041	79.313	0.42%
14	Π₉	10.668	10.135	52.21	17.90	0.935	56.468	22.147	0.3143	0.4192	79.089	0.13%
15	Π₉	10.668	11.201	45.75	17.89	0.818	56.428	22.124	0.2709	0.3610	78.944	-0.05%
16	Π₉	10.668	11.201	45.75	17.89	0.818	56.428	22.124	0.2709	0.3610	78.944	-0.05%
17	Π₉	0.85	0.8075	48.68	17.56	0.855	55.395	21.719	0.2731	0.3572	77.501	-1.88%
18	Π₉	0.85	0.8925	49.59	18.22	0.904	57.493	22.541	0.3068	0.4165	80.487	1.90%
4. Conclusion
In this study, the effects of selected input parameters were investigated parametrically on global warming potential. It was presented the magnitude of effects of T_4 (total temperature at turbine entry), flight Mach number, η_{PT} (power turbine isentropic efficiency), Π_C (compressor pressure ratio) and Π_{FB} (booster pressure ratio), η_C (compressor isentropic efficiency), and η_{FB} (booster isentropic efficiency) on GWP. Results can be used for engine designers and airline operators as a guide to reduce GWP. Therefore results can support the efforts to reduce greenhouse gases emissions for a sustainable world.

Nomenclature

Symbol	Description
CO	carbon monoxide
CO₂	carbon dioxide
EINOx	NOx emission index (g/kg fuel)
FHV	jet fuel heating value (MJ/kg)
GWP	global warming potential
h	altitude (km)
H₂O	water vapor
HC	unburned hydrocarbons
HPT	high pressure turbine
m	inlet corrected air mass flow rate (kg/s)
NOx	nitrogen oxides
P_{amb}	ambient pressure (kPa)
PSFC	power specific fuel consumption
PWSD	shaft power delivered
SNOx	NOx severity parameter
SOx	sulfur oxides
T_4	total temperature at turbine entry (K)
T_{amb}	ambient temperature (K)

Greek Letters

Symbol	Description
ε_{2a}	cooling air ratio for HPT rotor
ε_3	cooling air ratio nozzle guide vanes
η_b	combustor efficiency
η_C	compressor isentropic efficiency
η_{FB}	booster isentropic efficiency
η_{HPT}	isentropic efficiency
η_m	shaft mechanical efficiency
η_{PT}	power turbine isentropic efficiency
Π_B	combustor total pressure ratio
Π_C	compressor total pressure ratio
Π_{FB}	booster total pressure ratio

References

[1] Machrafi H. Global Warming. Boston, MA: Springer US; 2010. https://doi.org/10.1007/978-1-4419-1017-2.
[2] Archer D. Global warming: understanding the forecast. Blackwell Publishing; 2007.
[3] EASA EEA EUROCONTROL. European aviation environmental Report 2019. 2019. https://doi.org/10.2822/309946.
[4] OECD. OECD Environmental Outlook to 2050: What could the environment look like in 2050? 2012.
[5] Strong growth in global CO2 emissions expected for 2018 | Tyndall Centre for Climate Change Research n.d. https://www.tyndall.ac.uk/news/strong-growth-global-co2-emissions-expected-2018 (accessed July 14, 2020).

[6] Whellens M, Singh R. Propulsion system optimisation for minimum Global Warming Potential. Proc ICAS 2002 Congr … 2002:1–10.

[7] Jelinek F, Carlier S, Smith J. The Advanced Emission Model (AEM3) - Validation Report - Version 1.5 - Appendices A, B and C. Eurocontrol 2004:1–65.

[8] Jungbluth N, Meili C. Recommendations for calculation of the global warming potential of aviation including the radiative forcing index. Int J Life Cycle Assess 2019;24:404–11. https://doi.org/10.1007/s11367-018-1556-3.

[9] Şöhret Y, Kincay O, Karakoç TH. An environment-friendly engine selection methodology for aerial vehicles. Int J Green Energy 2018;15:145–50. https://doi.org/10.1080/15435075.2017.1324788.

[10] Şöhret Y, Karakoc TH, Karakoç N. Mathematical Modelling for Carbon Dioxide Equivalent Prediction of Greenhouse Gases Emitted from a Small Scale Turbojet Engine. 7th AIAA Atmos. Sp. Environ. Conf., Reston, Virginia: American Institute of Aeronautics and Astronautics; 2015. https://doi.org/10.2514/6.2015-3326.

[11] Wang Y, Xing Y, Yu X, Zhang S. Flight operation and airframe design for tradeoff between cost and environmental impact. Proc Inst Mech Eng Part G J Aerosp Eng 2018;232:973–87. https://doi.org/10.1177/0954410017748967.

[12] Berton JJ, Guynn MD. Multi-objective optimization of turbofan design parameters for an advanced, single-aisle transport. 10th AIAA Aviat Technol Integr Oper Conf 2010, ATIO 2010 2010;2. https://doi.org/10.2514/6.2010-9168.

[13] Wasiuik DK, Lowenberg MH, Shalcross DE. An aircraft performance model implementation for the estimation of global and regional commercial aviation fuel burn and emissions. Transp Res Part D Transp Environ 2015;35:142–59. https://doi.org/10.1016/j.trd.2015.11.022.

[14] Jakovljević I, Mijailović R, Miroslavljević P. Carbon dioxide emission during the life cycle of turbofan aircraft. Energy 2018;148:866–75. https://doi.org/10.1016/j.energy.2018.02.022.

[15] Dinc A. Optimization of turboprop ESFC and NOx emissions for UAV sizing. Aircr Eng Aerosp Technol 2017;89:375–83. https://doi.org/10.1108/AEAT-12-2015-0248.

[18] Becker E. Exhaust Emissions Characteristics for a General Aviation Light-Aircraft Avco Lycoming IO-360-B1BD Piston Engine. 1979.

[19] Pagoni I, Psaraki-Kalouptsidi V. Calculation of aircraft fuel consumption and CO2 emissions based on path profile estimation by clustering and registration. Transp Res Part D Transp Environ 2017;54:172–90. https://doi.org/10.1016/j.trd.2017.05.006.

[20] Diehl LA, Biaglow JA. Measurement of Gaseous Emissions From a Turbopfan Engine At Simulated Altitude Conditions 1974.

[21] Meier N. Jet Engine Specification Database n.d. http://www.jet-engine.net/ (accessed May 24, 2020).

[22] Kim B, Fleming G, Balasubramanian S, Malwitz A, Lee J, Gillette W. Global Aviation Emissions Inventories for 2000 through 2004. 2005.

[23] National Research Council. Aeronautical Technologies for the Twenty-First Century. Washington, D.C.: National Academies Press; 1992. https://doi.org/10.17226/2035.

[24] Schulte P, Schlager H, Ziereis H, Schumann U, Baughcum SL, Deidewig F. NOx emission indices of subsonic long-range jet aircraft at cruise altitude: In situ measurements and predictions. J Geophys Res Atmos 1997;102:21431–42. https://doi.org/10.1029/97JD01526.