SSR Markers Suitable for Marker Assisted Selection in Sunflower for Downy Mildew Resistance

Abstract: The effectiveness of Pl genes is known to be resistant to downy mildew (DM) disease affected by fungus Plasmopara halstedii in sunflower. In this study phenotypic analysis was performed using inoculation tests and genotypic analysis were carried out with three DM resistance genes Plarg, Pl13 and Pl8. A total of 69 simple sequence repeat markers and 241 F2 individuals derived from a cross of RHA-419 (R) x P6LC (S), RHA-419 (R) x CL (S), RHA-419 (R) x OL (S), RHA419 (R) x 9758R (S), HA-R5 (R) x P6LC (S) and HA89 (R) x P6LC (S) parental lines were used to identify resistant hybrids in sunflower. Results of SSR analysis using markers linked with downy mildew resistance genes (Plarg, Pl8 and Pl13) and downy mildew inoculation tests were evaluated together and ORS716 (for Plarg and Pl13), HA4011 (for Pl8) markers showed positive correlation with their phenotypic results. These results suggest that these markers are associated with DM resistance and they can be used successfully in marker-assisted selection for sunflower breeding programs specific for downy mildew resistance.

Keywords: Helianthus annuus L., downy mildew, Plarg, Pl13, Pl8, simple sequence repeats.

1 Introduction

The sunflower (Helianthus annuus L.) is known as the most important crop for the oil industry. Sunflower downy mildew caused by the obligate biotroph Plasmopara halstedii (Farl.) Berl. & de Toni is regarded to be a very damaging leaf tissue disease and has spread to all the countries where sunflower production has been made. Downy mildew (DM) can induce yield loss up to 80% in sunflower production [1]. Pl (Pl1–Pl17, Pl21 and Plarg) downy mildew resistance genes discovered to date in sunflowers and for the source of the Pl genes, wild Helianthus annual species can be followed [2]. These Pl genes that are very effective against P. halstedii races have been mapped in different linkage groups of sunflower: The Pl1/Pl6 locus on linkage group LG8 [3, 4]; the Pl5/Pl8 and Pl21 loci on LG1 [5, 6, 7]; the Plarg locus on LG1 [8]; the Pl13, Pl14 and Pl16 loci on LG1 [8-12].

The main target of sunflower breeding programs is to improve of downy mildew resistance. However, emerging strains of P. halstedii challenge global sunflower production and this has resulted in susceptibility to certain downy mildew strains in many commercial hybrids [13]. Therefore, new hybrids of sunflower are sought that are resistant to DM. The most effective measure of controlling downy mildew is the use of available resistant hybrids. Determination of the resistance genes location in sunflower genome and facilitation of marker assisted introgression for elite germplasm have been supplied with genetic mapping of downy mildew resistance genes [11].

Molecular markers are crucial for understanding genome organization and provide important advantages in the means of development of new lines [14] and determination of differentiation between initial germplasm [15]. The development of molecular markers in sunflower is at an advanced level and different types of markers have been developed for marker-assisted selection (MAS) over the years. There are numerous different molecular markers available which can be used in sunflower
breeding [16]. Pérez-Vich and Berry [17] described three different generations of markers in sunflower research: Firstly, anonymous deoxyribonucleic acid (DNA) markers like RFLP (Restriction Fragment Length Polymorphism), RAPD (Random Amplified Polymorphic DNA), AFLP (Amplified Fragment Length Polymorphism) and genomic SSR (Simple Sequence Repeat) markers were developed [18-24]. Usage of several molecular markers combined with numerous linkage maps makes it possible to develop a hybrid line that provides required properties [25]. There are several linkage maps available to use for marker assisted selection programmes. Researchers completed the first linkage map of sunflower in 2002 [24] and this was improved by another research group in 2003 through usage of new recombinant inbred lines population with SSR markers [26]. Another research group accomplished the genetic mapping of the fertility restoration gene by using SSR and TRAP (Targeted Region Amplified Polymorphism) markers [27]. Molecular markers related to different downy mildew resistance genes have been identified by bulk segregant analysis methods [28]. Mapping studies completed by RFLP and RAPD markers for identification of Pl1 [29], STS (Sequence Tagged Site) markers for identification of Pl5/Pl8 cluster [6], and SSR markers for identification of Pl6 and Pl13 locus. The Pl13 could be a useful source of resistance to the four major races of downy mildew and can be successfully transferred to different genetic backgrounds [30]. The identified markers closely linked to downy mildew resistance are expected to greatly enhance the efficiency of breeding using MAS [9]. Another study showed that Plarg loci provide resistance all known Plasmopara halstedii races [29].

Novel sources of resistance genes and suitable sequence specific molecular markers need to be found to keep up with the new pathogenic strains. More studies will be needed to quantitatively demonstrate resistance to downy mildew. MAS could in this way be used for detecting both major and minor genes and would bring us closer to achieving sustainable resistance to Plasmopara halstedii. Two DM resistance genes, Plarg and Pl8, are highly effective against P. halstedii races in the USA [31]. The objective of this study is to determine resistant sunflower lines for downy mildew using Plarg, Pl13 and Pl8 genes which gain resistance to downy mildew. SSRs were employed for screening resistant and susceptible parental lines and their F2 populations. Results of this study will permit an early selection of downy mildew resistant genotypes without inoculation and symptom detection as well as providing important knowledge for the development of new sunflower lines which are region specific.

2 Experimental Procedures

2.1 Plant Materials

DM-resistant parents RHA-419 (restorer oilseed sunflower which has Plarg resistance gene for downy mildew released by the USDA-ARS and the North Dakota Agricultural Experiment Station, Fargo, ND, USA), HA-R5 (restorer oilseed sunflower which has Pl13 resistance gene for downy mildew released by the USDA-ARS and the North Dakota Agricultural Experiment Station, Fargo, ND, USA), HA89 (oil seed sunflower which is susceptible for downy mildew released by the USDA-ARS and the North Dakota Agricultural Experiment Station, Fargo, ND, USA), DM-susceptible parents P6LC (resistant cultivar to IMI, Orobanche cumana, and downy mildew, Pl6 or Pl8), CL (IMI resistant and high oleic cultivar), 9758R (restorer oilseed sunflower which is susceptible for downy mildew released by Trakya Agricultural Research Institute, Edirne, TURKEY), OL (IMI resistant and high oleic cultivar) and 241 F populations from the cross of the DM-resistant and susceptible parents (Table 1) were used for screening for resistance to downy mildew.

The young leaf tissues of the Helianthus annuus L. species provided by Republic of Turkey Ministry of Agriculture and Livestock General Directorate of Agricultural Research and Policy, Trakya Agricultural Research Institute, Edirne, Turkey, have been used as plant material.

Table 1. Pl genes, parental lines and number of F2 individuals used in this study.

Gene	Parental Lines	No. of F2
Pl13 (LG1)	RHA-419 x P6LC	39
Pl1 (LG1)	RHA-419 x CL	23
Pl13 (LG1)	RHA-419 x OL	26
Pl13 (LG1)	RHA-419 x 9758R	102
Pl1 (LG1)	HA-R5 x P6LC	30
Pl13 (LG13)	HA89 x P6LC	23
RHA-419: Resistant	9758R: Susceptible	
HA89: Resistant	OL: Susceptible	
HA-R5: Resistant	P6LC: Susceptible	
	CL: Susceptible	

2.2 Downy mildew inoculation and phenotyping

Phenotypic screening for downy mildew was performed with inoculation tests in 10 replicates. Spores of
different races of *P. halstedii* were cultured on the appropriate susceptible sunflower variety, and then a sporangium suspension was prepared with spores. Spore concentration was adjusted to 30,000 sporangia/ml. For sunflower seed disinfection, seeds were soaked in 1% NaClO suspension for 3 minutes, then were washed in distilled water, sunflower seeds were put in the growth chamber (24-28°C) to germinate until 2-5 mm. rootless were formed. Germinated seeds were incubated in the sporangium suspension for 4 hours at 18°C. Inoculated seedlings were planted in plastic flats or pots filled with a sand/perlite mixture (3:2, v/v). The growing condition was optimum at 24°C temperature and a 12/14 hr photoperiod illuminated with warm-white, high pressure mercury lamps (HGLM-400, Tungsram) to provide the plants with a light intensity of about 12,000 lux. After 8-10 days, when the first true leaves were formed, seedlings were placed in 100% humid, 16-17°C growth chamber for 48 hours. From each plant three segments of about 1 cm were excised, one from each from the lower hypocotyl, the upper hypocotyl and the lower epicotyl. These were washed thoroughly with sterile distilled water, placed in Petri dishes lined with sterile moist filter paper and incubated at 18°C for 48 h in the dark to induce sporulation. Subsequently, white mildew spores could be seen under the cotyledon leaves of sensitive plants. Each plant infection level was assessed as a cotyledon/leaf surface covered with zoosporangiophores using a scale ranging from 0-3 [32] where 0: no sporulation, 1: sparse sporulation, 2: less than 50% of cotyledon/leaf area covered, and 3: more than 50% of cotyledon/leaf surface covered with zoosporangiophores.

2.3 DNA extraction and SSR Analysis

Leaf samples were harvested at seedling stage for DNA isolation and SSR analysis. 50-100 mg of plant young leaf tissues were homogenized by using a RetchMM400 mixer mill with liquid nitrogen and genomic DNA of the plants was isolated according to the CTAB method [33], the DNA quantity and quality were determined using a Qubit® 2.0 fluorometer.

A total of 69 SSR markers (12 markers for *Plarg*, 20 markers for *Pl13*, 37 markers for *Pl8*) were screened which showed linkage to the downy mildew resistance gene to identify polymorphisms between the parents (Table 2).

The PCR reagents mixed in a master mix 2X solution, consisting of dH2O, 2X Taq buffer, 2.5 mM MgCl2, 5 mM dNTP mix, Taq Polymerase 0.054 U/µl. Then master mix 2X solution is diluted into master mix X solution with water and primer addition to final volume of 23 µl per sample. The final reaction tube content has been calibrated as 1X Taq Buffer, 2.5 mM MgCl2, 2.5 mM dNTP, 0.8 mM primer, 0.027 U/µl Taq polymerase and 4 ng/µl genomic DNA. The PCR amplification profile included a hot start at 94°C for 3 min followed by 40 cycles of denaturation at 94°C for 1 min, annealing at 59-62°C for 1 min and extension at 72°C for 1 min with a final extension at 72°C for 10 min. Amplified products were run on 2% agarose gel. DNA isolation and SSR studies were performed in 3 replicates.

Ethical approval: The conducted research is not related to either human or animals use.

3 Results

Results of the downy mildew resistance test for phenotyping of the 241 F2 plants derived from RHA-419 x P6LC, RHA-419 x CL, RHA-419 x OL, RHA419 x 9758R, HA-R5 x P6LC, HA89 x P6LC parental lines were determined as homozygous resistant/susceptible and heterozygous samples numerically. These results were shown with genotyping data obtained using polymorphic markers together (Table 3). Parental (RHA419-resistant x 9758R-susceptible) polymorphism was determined by 2 SSRs (*ORS610, ORS716*) and different combinations of crosses (RHA419-resistant x P6LC-susceptible; RHA419-resistant x CL-susceptible; RHA419-resistant x OL-susceptible) were resulted with polymorphic pattern by 1 SSR (*ORS716*) out of 12 SSRs for *Plarg* gene. Polymorphism was determined between HARS (resistant) and P6LC (susceptible) parental lines by 7 SSRs (*ORS822, ORS803, ORS728, ORS716, HA4090, HA77, ORS1008*) out of 20 SSRs for *Pl13* gene. Amplification with five SSRs (*ORS707, ORS730, ORS215, ORS316, and HA4011*) out of 37 SSRs produced polymorphic pattern between HA89 (resistant) and P6LC (susceptible) for *Pl8* gene. As a result, fourteen SSR markers out of 69 were selected for screening of F2 individuals belong the crosses mentioned above regarding the genetic linkage to Plasmopara resistance genes namely *Plarg, Pl13* and *Pl8*. For this purpose, SSR analysis of 241 F2 plants derived from the cross of RHA-419 x P6LC, RHA-419 x CL, RHA-419 x OL, RHA419 x 9758R, HA-R5 x P6LC, HA89 x P6LC was conducted using fourteen polymorphic SSR markers. SSR results of *ORS716 (Plarg)* for RHA-419 x OL cross and their 26 F2; *ORS716 (Pl13)* for HA-R5 x P6LC cross and their 30 F2; *HA4011 (Pl8)* for HA89 x P6LC cross and their 23 F2 together with their phenotyping results were shown in Figure 1.
Table 2. The primer sequences of the SSR markers linked to the sunflower downy mildew resistance genes Plarg, Pl13 and Pl8.

Gene	SSR Marker	Forward Primer (5'-3')	Reverse Primer (5'-3')	Gene	SSR Marker	Forward Primer (5'-3')	Reverse Primer (5'-3')
Pl$_{13}$	HT324	ggC CAC CAC AAC AAT AAT C	ATC AgA ATA TTC AAT AAT C	ORS500	ACT CTT ggAT TgA AAg CtC C	CgC ACT gCC TTA AAC CTC C	
	HT446	CgT ATT gTC TAT gTg Tgg TgT Tg	AAT CAA Tgg gAA gCT gAA TTT CTT	ORS879	CTT CgT gTT TgA TgA TTT	gAA CTT CCC TTT gTT gTC ATA C	
	HT722	CgT ATT gTC TAT gTg Tgg TgT Tg	AAT CAA Tgg gAA gCT gAA TTT	ORS1277	AgT gCT AAT CTT gAA gAg CAC CT	TTT CgA CTg AgAT TgA TgA g	
	ORS5371	CAC ACC ACC AAC CAT CAA CgA	ggT gCT CTC TCC TCC TgT	ORS1244	CAC ACC AAC CAT CAA CgA	CAC ACC AAC CAT CAA CgA	
	ORS5503	AAC AAC AAC AAC gCA Act	TgA ACC TTT AAA CTT gCT AATC A	ORS5956	gAT gAg gCC CTT CTT gCT AAT	TgC gAT TAT TCT gAg AAg gTA C	
	ORS5509	CAA CgG AAA AAC gAg AGC AAC	gGC gGA ATT TTA CAA gAg CAA	ORS707	gCA gTC AAT CgT TaG gAg CAA	gCT gAA gCT gAA gAC AgA TCC	
	ORS5543	CAC gTC ATT gTC TAT AAT gCA Act	gGC gAG gAG gAG gGC gTC gTTC gTg TgT CTTT gTT CTT TTT	ORS7530	CTT TgT gAg gTT AAT gGC gTC gT		
	ORS5610	AgA AAg CgE AAC AAT gAg gAT gT	TgT gTA CCT TCT CTC TgC Tg	ORS5976	AAA TTA CAA CTT CCA CAC CTT ATT	CTT TgT TAT TgA gAg CACT AAT CA	
	ORS5716	CCC CCC AAC CCC TAga CTT A	gAA CTA ACC gCC AAC TTA A	ORS215	CCT TgT CgT AAT gAA gAg CAA	TgT TCA CCA gCA gTT gAg	
	ORS5959	Cgg CTA ACC gAT AAC AAT C	CTT CgT CTT gCC AAT CATT CTT T	ORS317	gAg CTA TgT CTT AAT TTT gCT	TTT gAg AAg TgT gAg gTA C	
	ORS5118-1	ggC gAT AAT AGA TgC gAC ACT C	TCT gTT CCA CAC CTT TTT CTT Ag	ORS224	AAA CAA AgC gCT gAA gAA ACT	TgAg ACT AAC TAC CAg AAg CAA C	
	ORS5118-2	TCT TCT gAT TgT gAg CgG TgT gT	gAg CTA TCT CgT CTT CTT gAg CTT	ORS5179	AAA Cgg gAA gCA gAg AAg AAg gAA gAA	gAg CTA gAg Cg CgC gAg AAg C	
	ORS5822	AAA CAA ACC TTT ggA cGA AAc CCC	gAg CTA CgT gCT gCA gCT	ORS536	gAA ATg AAg gAg gAg CTT ACC g	gAg gAg AAg AAg gAg AAg gAg	
	ORS5598	ATA gCT CgT gAC gAg gTg ATAg g	CCA AAT gTg AAg Tgg gAg AA	ORS871	gAT gAg gAg gAg gAg gAg gAg gAg	gCT AAC CCA gCC CCC AAA AA	
	ORS5222	AAT TgAg gCT TAT AAG TgAg gTg A	AgT CgT gCg AAT TAA CCA CTA Cg	ORS1056	gAg gTT AAT CAg TCA gTg CTT CTA	gAg gTT gAg gTT gTT gTA CTT gTT T	
	ORS5474	gTg TgC gAg gTT AAT gCT TgT gT	gAg ACC TTT gAg gTT CTT	ORS5995	CAT gCT CTT TgT gAg gAA CAA	TgT TAg TAg CAg AAg CAA AgT	
	ORS6050	Acg gAg cAg AAT TgC gAg gT	CgC gTg TAg TgA CgA CAA TTA T	ORS551	Cgg gTT gCg ATg TgA gAg ATg TA	TgAg CTA gAg TAAT gAA gCA	
	ORS5462	Agg CTA cCA AAc ggT CTT CAC A	AgC TAg gAg gAg CgC CTT gC T	ORS5103	CTT TgT CAg TAg gAgg AgA gAg Tg	CgA cTA ATT TAg AAg CCA gAA gTA	
	ORS5803	Ccc gG CcC AAT gAA gGA gT	TTT gCT CAA ACC AAT CTT TTT TTT C	ORS7597	CTT CCC CAC ATT cCT CTT	TCC gAgg AAg gTA CgA gCA A	
	ORS5718	AgT CAA cAC CcG AAT CAA g	CAC TTT AgC gCC ACC AAA CC	ORS191	gAg gCT gTT gAg ATg gCtt gT	gAg gCT gAg gCT gAg gCT gAg	
	ORS5965	CAC TTT gAg gAg gAA cCA ACC CCC	TtT CgT ATg gAg TgA TgC CTA C	ORS5581	ACT TTA TgAT TTT CCA gCA gAC	CTT gAg TTA AAg gCC gAA	
	ORS728	CCA ACC CCT gAA TgA TAC TgT gAg CAA	CTT cTA gCg CAC ACC CAg CAA T	ORS5630	gCA CcG gCC gAg TTg ATgA gT	gTg CAg gAT gAT gAT gAg CAg	
	ORS6662	CcT TTA cCA AAc Agg AAc cAC cTA A	CgG gTT gAA TAT gAA gT CTA C	ORS5316	gAg gTT AAg TgA gCT TgC gTg CTA	Tgg CgT gTT CAg TAg AAg CAg	
	ORS6607	CcG cTA AAg gAA Agg gAg AgA	ATC TgA cAg gCA AAg gTA C	ORS4011	gAg gTT TTT CTA gAT gTg CTT	CTT TgC TAg TAg gAA gTA CAg	
	ORS7516	Ccc cAC AAc CcA TgC CTT A	gAA CTA ACC gCC gAA CAA CAA gT	ORS7597	gAg gTT aAg CAg TgC CCA gCg C	CTT gAg CAg TAA gTA AAg CCA	
	ORS5970	gTc TTA gAg AgT gAg AAT gTA TgT gT	TgT gTA TTT AAT CAg gAg CAA Tg	ORS317	TAg TTA gAg gTT gAgAg gTT gAg	TgAg TTT gAg gTA gGg gGA AAA	
	ORS5625	Ccc TTT gAg gAg gAA gTA gAg TgT gT	gCT cCT CgT gCg gTT CTA C	ORS2958	CTT CCA TgT gCT gCA gCA gC	CTT gAg gAA gCA gAA gCA gAA	
	ORS5552	CCA Tcc CTT CTT CTT CTT TTT	tcC CcC Agg AAc CAC CAA	ORS5179	CTA gAT TgA TgA gAg CAA TTA	CTT CTA gAg CgA TgC CCA	
	HA4090	gCc AGT ATg gTTC gTT CgC	TgT gGg gAT gAA gAg CAA	ORS4011	gAg gTT TTT CTA gAT gTg CTT	CTT TgC TAg TAg gAA gTA CAg	
	HA77	TgT gAg CAg TgC CAC CcC CcC	gTT gGg gAT gAA gAg CAA	ORS316	gAg gTT AAg TgA gCT TgC gTg CTA	Tgg CgT gTT CAg TAg AAg CAg	
	ORS365	CgA ggC AAA ggg TgT CTA A	gAA gAg gAg gAG gAA TgT CTT	ORS317	TAg TTA ACC ATg gCT gAA gAC gCT g	gTT gAA gAA TAAT gTT gCg CTC gT	
	ORS1008	CgAg gGc gGC CTT gTc gAT gTg TgT	gAT cAC cCT CAC TTA CAA CCA CcC	ORS7597	gAg gTT AAg ATg TgA TgA gAg gTT C	gAg gTT AAg ATg TgA TgA	
	ORS5673	gAg gTg TCC TCA CcG TCC TTA	TgT gAg CAg TCC CTT ACC TTA	ORS7597	gAg gTT AAg ATg TgA TgA gAg gTT C	gAg gTT AAg ATg TgA TgA	
	ORS534	gCA gCg AAA TAg gAA AAA Cg	TTT AAA ATT gC TTT CTT CcC	ORS7597	gAg gTT AAg ATg TgA TgA gAg gTT C	gAg gTT AAg ATg TgA TgA	

The table provides primer sequences for SSR markers linked to sunflower downy mildew resistance genes Pl$_{13}$, Pl$_{14}$, and Pl$_{15}$. The forward and reverse primers are listed for each SSR marker. The primer sequences are crucial for identifying and locating the resistance genes in sunflower plants, which is essential for developing resistance to downy mildew, a fungal disease that严重影响s sunflower production.
Table 3. Genotypic results of polymorphic markers and phenotypic results of inoculation tests.

Gene	Parental Lines	Polymorphic Markers	Genotypic Results	Phenotypic Results
\(P_{10} \) (LG1)	RHA-419 x 9758R (102 F₂)	ORS610	R:62 S:27 H:1	R:63 S:10 H:29
		ORS716	R:65 S:23	R:63 S:10 H:29
		RHA-419 x CL (23 F₂)	R:5 S:6 H:7	R:3 S:2 H:17
		RHA-419 x OL (26 F₂)	R:7 S:7 H:12	R:4 S:5 H:16
		RHA-419 x P64LC53 (39 F₂)	R:3 S:27 H:7	R:4 S:5 H:25
\(P_{15} \) (LG1)	HA-R5 x P6LC (30 F₂)	ORS822	R:6 S:24	R:12 S:3 H:9
		ORS803	R:13 S:15	
		ORS728	R:18 S:12	
		ORS716	R:27 S:3	
		HA4090	R:6 S:22	
		HA77	R:28 S:2	
		ORS1008	R:8 S:21	
\(P_{18} \) (LG13)	HA89 x P6LC (23 F₂)	ORS707	R:1 S:22	R:9 S:3 H:9
		ORS730	R:9 S:14	
		ORS215	R:0 S:23	
		ORS316	R:10 S:13	
		HA4011	R:17 S:6	

R: Resistant
S: Susceptible
H: Heterozygous

Figure 1. PCR amplifications of SSR markers and phenotypic results (a) \(ORS716 \) (\(P_{10} \) - RHA-419 x OL and 26 F₂) (b) \(ORS716 \) (\(P_{15} \) - HA-R5 x P6LC and 30 F₂) (c) \(HA4011 \) (\(P_{18} \) - HA89 x P6LC and 23 F₂) M: 100 bp.
3.1 Correlation of Genotypic and Phenotypic Evaluation

When the results of genotyping and phenotyping were evaluated together, ORS716 (for Plarg and Pl13), HA4011 (for Pl8) markers showed positive correlation with their phenotypic results (Figure 1). For Plarg resistance in breeding population of RHA419 (resistant) x OL (susceptible) cross, one F2 individual (#93) was scored as resistant and two F2 individuals (#82, #85) were scored as susceptible by both phenotypic and genotypic evaluation while 7 individuals (#83, #86, #100, #101, #102, #103, #108) were scored as heterozygous both phenotypically and genotypically. Phenotypically nine heterozygous F2 individuals were segregated as 4 resistant (#88, #95, #98, #106) and 5 susceptible individuals (#79, #89, #91, #97, #104) by ORS716 marker (Figure 1a). For Pl13 resistance in breeding population of HA-R5 (resistant) x P6LC (susceptible) cross, eleven F2 individuals (#114, #115, #116, #117, #119, #120, #128, #130, #132, #135, #144) were scored as resistant by both phenotypic and genotypic evaluation while eight F2 individuals (#127, #133, #134, #136, #139, #143, #146, #147) were heterozygous phenotypically but they were scored as resistant by genotypic data. In the frame of these results, ORS716 SSR marker was found very effective for both Plarg and Pl13 genes to identify the downy mildew resistance in sunflower (Figure 1b). For Pl8 resistance in breeding population of HA89 (resistant) x P6LC (susceptible) cross, seven F2 individuals (#279, #281, #284, #288, #292, #293, #302) were scored as resistant by both phenotypic and genotypic evaluation while six F2 individuals (#283, #285, #287, #296, #300, #301) were heterozygous phenotypically but they were scored as resistant by genotypic data by HA4011 marker. The one individual (#282) was scored as susceptible by both phenotypic scoring and HA4011 marker (Figure 1c).

4 Discussion

Downy mildew is an important disease which causes serious yield losses in sunflower cultivation both in Turkey and worldwide. The most promising and powerful solution for resistance to downy mildew is the development of new sunflower lines that show genetic resistance to Plasmopara halstedii races.

Development of new lines by conventional breeding is a question of time and money. Therefore, integration of marker assisted selection to conventional breeding applications is essential. By establishment of a relationship between genes providing resistance to an important trait like resistance to downy mildew, sensitivity and reliability of the breeding programs can be increased. Marker assisted selection methods make breeders able to determine resistance/sensitivity of the plant in early stages of the cultivation and also allows the testing of more than one plant in a shorter period of time.

Classical genetic analysis by phenotyping segregating populations elucidated that Plarg is unlinked to the previous known major resistance loci Pl1, Pl2, Pl5, Pl6, Pl7 and Pl8 which are mainly used in breeding material [34, 35]. There are markers for several Pl genes, including Pl8, Pl13 and Plarg, which are still effective against all strains of P. halstedii [5,6,8-11,13].

Dufle et al. [8], studied 180 SSRs and they found 66 polymorphic markers between Arg1575-2xCmsHA342. Twelve polymorphic SSRs linked to the Plasmopara resistance gene Plarg were identified with the analysis of these 66 SSRs. These SSRs mapped on the same linkage group (LG1), as based on the map of Yu et al. [26], spanning a maximum distance of 9.3 cM. Two fertility restorer lines RHA-419 and RHA-420 were registered by Miller et al. [36] (derived from the cross RHA-373×Arg1575-2) which expressing resistance against Plasmopara races 300, 700, 730, and 770. Combination of Plarg with other known Pl resistance loci should provide a multigenic resistance for sunflower cultivars against new plasmopara epidemics. Radwan et al. [37] reported the association between Pl8 resistance system and hypersensitive response in the hypocotyl. Also, they observed a hypersensitive response for Plarg. Therefore, strategies have to be worked out to conserve the broad function of the resistance gene Plarg. Till now, Pl8 and Plarg confer resistance against all downy mildew races but Pl6 provides resistance to the races 304 and 314 [38]. A couple of studies were discussed how to extend the durability of Pl loci. Combination of monogenic Pl loci and quantitative resistance against downy mildew were proposed by Sakr [39], Tourvieille de Labrouhe et al. [40] and Vear et al. [41]. McDonald and Linde [42] recommended a pyramiding major resistance gene in hybrid cultivars or breeding cultivar mixtures including genotypes with diversified major resistance genes.

More information of the biochemistry and functional basis of resistance was needed for the implementation of these strategies. Mulpuri et al. [9], screened 116 F2 belong to HA-R5 x HA-821 sunflower parent combination using 500 SSR markers. They reported that 42.6% polymorphism determined between HA-R5 and HA-821 from 213 polymorphic bands. Using these polymorphic primers, they showed the association with the downy mildew resistance phenotype on S- and R- bulks and F, population
with identification of 7 SSR markers, including 1 marker from LG10 (ORS1008) and 6 markers from LG1 (ORS965-1, ORS965-2, ORS959, ORS71, ORS605, ORS716). ORS1008 and ORS965 markers were found close to the Pl13 locus comparing with the other markers. Similar to this study ORS1008 marker of Pl13 gene showed polymorphism between HA-R5 x P6LC. 30 F2 from this parental combination were screened using ORS1008 marker and showed 26.6% resistance. Qi et al. [43], identified 361 polymorphic markers from 849 SSR markers using HA-234. [43], identified 361 combination were screened using HA-458 marker and ORS1008 and HA-458 parents include a total of 17 linkage groups (LGs). Their BSA revealed the polymorphism that was

Acknowledgments: This research is supported by Scientific and Technological Research Council of Turkey (TUBITAK) (Project No: 3150030) and Marmara University Research Foundation (BAPKO) (Project No:FEN-A-090414-0088).

Conflict of interest: Authors state no conflict of interest.

References

[1] Molinero-Ruiz ML, Melero-Vara JM, Dominguez J, Inheritance of resistance to two races of sunflower downy mildew (Plasmopara halstedii) in two Helianthus annuus L. lines, Euphytica, 2003;131:47–51.

[2] Qi LL, Foley ME, Cai XW, Gulya TJ, Genetics and mapping of a novel downy mildew resistance gene, Pl18, introgressed from wild Helianthus argophyllus into cultivated sunflower (Helianthus annuus L.), Theor Appl Genet, 2016;129(4):741-752.

[3] Gedil MA, Slabaugh MB, Berry S, Segers B, Peleman J, Michelmore R, et al. Candidate disease resistance genes in sunflower cloned using conserved nucleotide binding site motifs: genetic mapping and linkage to downy mildew resistance gene Pl1 gene, Genome, 2001;44:205–212.

[4] Bouzidi MF, Badaoui S, Cambon F, Vear F, Tourvillie De Labroude D, Nicolas P, et al. Molecular analysis of a major locus for resistance to downy mildew in sunflower with specific PCR-based markers, Theor Appl Genet, 2002;104:592–600.

[5] Radwan O, Bouzidi MF, Vear F, Philippon J, de Touvielle Labroude D, Nicolas P et al. Identification of non-TIR-NBSLRR markers linked to the Pl5/Pl8 locus for resistance to downy mildew in sunflower, Theor Appl Genet, 2003;106:1438–144.

[6] Radwan O, Bouzidi MF, Nicolas P, Mouzeyar S. Development of PCR markers for the Pl5/Pl8 locus for resistance to Plasmopara halstedii in sunflower, Helianthus annuus L. from complete CC-NBS-LRR sequences, Theor Appl Genet, 2004;109:176–185.

[7] Vincourt P, As-sadi F, Bordat A, Langlade NB, Gouzy J, Pouilly N, et al. Consensus mapping of major resistance genes and independent QTL for quantitative resistance to sunflower downy mildew, Theor Appl Genet, 2012;125:909–920.

[8] Duible CM, Hahn V, Knapp SJ, Bauer E. Plarg from Helianthus argophyllus is unlinked to other known downy mildew resistance genes in sunflower, Theor Appl Genet, 2004;109:1083–1086.

[9] Mulpuri S, Liu Z, Feng J, Gulya TJ, Jan CC. Inheritance and molecular mapping of a downy mildew resistance gene, Pl13 in cultivated sunflower (Helianthus annuus L.), Theor Appl Genet, 2009;119:795–803.

[10] Wieckhorst S, Bachlava E, Duible CM, Tang S, Gao W, Sasaki C, et al. Fine mapping of the sunflower resistance locus PlARG introduced from the wild species Helianthus argophyllus, Theor Appl Genet, 2010;121(8):1633-1644.

[11] Bachlava E, Radwan OE, Abratti G, Tang S, Gao W, Heesacker AF, et al. Downy mildew (Pl18 and Pl14) and rust (RAdv) resistance genes reside in close proximity to tandemly duplicated clusters of non-TIR-like NBS-LRR-encoding genes on sunflower chromosomes 1 and 13, Theor Appl Genet, 2011;122:1211–1221.
[12] Liu Z, Gulya TJ, Seiler GJ, Vick BA, Jan CC. Molecular mapping of the Pl16 downy mildew resistance gene from HA-R4 to facilitate marker-assisted selection in sunflower, Theor Appl Genet, 2012;125:121–131.

[13] Gulya TJ, Markell S, McMullen M, Harveson B, Osborne L. New virulent races of downy mildew: distribution, status of DM resistant hybrids, and USDA sources of resistance. In: Proceedings of 33th Sunflower Research Forum, Fargo ND, 12–13 Jan 2011.

[14] Hvarleva T, Tarpomanova I, Hristova-Cherbadji M, Hristov M, Bakalova A, Atanassov A, et al., Toward marker assisted selection for fungal disease resistance in sunflower. Utilization of H. bolanderi as a source of resistance to downy mildew, Biotechnol. and Biotechnol., 2009;23(4):1427-1430.

[15] Santalla M, Power JB, Davey MR. Genetic diversity in mung bean germplasm released byRAPD markers, Plant Breeding, 1998;117:473-478.

[16] Wieckhorst S. Characterization of the PIARG locus mediating resistance against Plasmodium halstedii in sunflower, Doctoral dissertation, Technische Universität München, 2012.

[17] Pérez-Vich B, Berry ST, Molecular Breeding, In: Hu J, Seiler G, Kole C (Eds.), Genetics, Genomics and Breeding of Sunflower CRC Press, Pullman, Washington, USA, pp 221-252, 2010.

[18] Al-Chaarani GR, Roustaee A, Gentzbittel L, Mokrani L, Barrault G, Dechamps-Guillaume G, et al. A QTL analysis of sunflower partial resistance to downy mildew (Plasmodium halstedii) and black stem (Phoma macdonaldii) by the use of recombinant inbred lines (RILs), Theor Appl Genet, 2002;104:490-496.

[19] Berry ST, Leon AJ, Hanfrey CC, Challis P, Burkholz A, Barnes et al. Characterization of the PlARG locus mediating resistance against Plasmodium halstedii in sunflower, Theor Appl Genet, 1995;91:195-199.

[20] Gentzbittel L, Vear F, Zhang YX, Bervillé A, Nicolas P. Development of a consensus linkage RFLP map of cultivated sunflower (Helianthus annuus L.), Theor Appl Genet, 1995;90:1079-1086.

[21] Lawson WR, Goulter KC, Henry RJ, Kong GA, Kochman JK. Marker assisted selection for two rust resistance genes in sunflower, Mol Breeding, 1998;4:227-234.

[22] Lu YH, Melero-Vara JM, Garcia-Tejada JA, Blanchard P. Development of SCAR markers linked to the gene Or5 conferring resistance to broomrape (Orobanche cumana Wallr.) in sunflower, Theor Appl Genet, 2000;100:625-632.

[23] Quagliaro G, Vischi M, Tyrka M, Olivieri AM. Identification of wild and cultivated sunflower for breeding purposes by AFLP markers, J Hered, 2001;92:38-42.

[24] Tang S, Yu JK, Slabaugh MB, Shintani DK, Knapp SJ. Simple sequence repeat map of the sunflower genome, Theor Appl Genet, 2002;105:1124-136.

[25] Knapp SJ, Berry ST, Rieseborg LH. Genetic mapping in sunflowers, In DNA-Based Markers in Plants, Springer Netherlands, 2001, pp 379-403.

[26] Yu JK, Tang S, Slabaugh MB, Heesacker A, Cole G, Herring M, et al. Towards a saturated molecular genetic linkage map for cultivated sunflower, Crop Sci., 2003, 43, 367–387.

[27] Yue B, Vick BA, Cai X, Hu J. Genetic mapping for the Rf1 (fertility restoration) gene in sunflower (Helianthus annuus L.) by SSR and TRAP markers, Plant Breeding, 2010;129:24–28.

[28] Michelmore RW, Paran I, Kesseli RV. Identification of markers linked to disease resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations, Proc Natl Acad Sci USA, 1991;88:9828–9832.

[29] Mouzeyar S, Roeckel-Drevet P, Gentzbittel L, Philippont J, Tourvieille De Labrouhe D, et al. RFLP and RAPD mapping of the sunflower Pl locus for resistance to Plasmodium halstedii race 1, Theor Appl Genet, 1995;91:733–737.

[30] Gulya TJ, Marek LF, Gavrilova V, In: Proc. of the Int. Symposium “Sunflower Breeding on Resistance to Diseases”, Krasnodart Russia. pp.7, 2010.

[31] Qi LL, Talukder ZI, Hulke BS, Foley ME. Development and dissection of diagnostic SNP markers for the downy mildew resistance genes PlArg and Pl8 and maker-assisted gene pyramiding in sunflower (Helianthus annuus L.), Mol Genet Genomics, 2017:1-13.

[32] Oros G, Virániyi F. Glasshouse evaluation of fungicides for the control of sunflower downy mildew (Plasmodium halstedii), Ann Appl Biol, 1987;110(1):53-63.

[33] Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue, Phytochem. Bull., 1987;19:11-15.

[34] Röcher T. Molekular genetische Untersuchungen zur Resistenz der Sonnenblume (Helianthus annuus L.) gegen den Erreger des Falschen Mehltaus (Plasmodium halstedii). Dissertation, Justus-Liebig-Universität Gießen, Gießen, 1999.

[35] Vear F, Tourvieille de Labroughe D, Miller J. Inheritance of the wild-range downy mildew resistance in the sunflower line RHA419, Helia, 2003;26:19-24.

[36] Miller JF, Gulya TJ, Seiler G, Registration of five fertility restorer inbred lines (RILs), Theor Appl Genet, 2002;104:490-496.

[37] Radwan O, Mouzeyar S, Venisse JS, Nicolas P, Bouzidi MF. Resistance of sunflower to the biotrophic oomycete Plasmodium halstedii is associated with a delayed hypersensitive response within the hypocotyls, J Exp Bot, 2005b;56: 2683-2693

[38] Vear F, Tourvieille de Labrougue D, Miller J. Inheritance of the wild-range downy mildew resistance in the sunflower line RHA419, Helia, 2003;26:19-24.

[39] Miller JF, Gulya TJ, Seiler G, Registration of five fertility restorer sunflower germplasms, Crop Sci, 2002;42:989-991.

[40] Vear F, Tourvieille de Labrouhe D, Serre F, Walser P, Tourvieille de Labrouhe D, Molecular marker analysis of Helianthus annuus L. 2. Construction of an RFLP linkage map for cultivated sunflower, Theor Appl Genet, 1995;91:195-199.

[41] Gentzbittel L, Vear F, Zhang YX, Bervillé A, Nicolas P. Development of a consensus linkage RFLP map of cultivated sunflower (Helianthus annuus L.), Theor Appl Genet, 1995;90:1079-1086.

[42] Lawson WR, Goulter KC, Henry RJ, Kong GA, Kochman JK. Marker assisted selection for two rust resistance genes in sunflower, Mol Breeding, 1998;4:227-234.

[43] Quagliaro G, Vischi M, Tyrka M, Olivieri AM. Identification of wild and cultivated sunflower for breeding purposes by AFLP markers, J Hered, 2001;92:38-42.

[44] Tang S, Yu JK, Slabaugh MB, Shintani DK, Knapp SJ. Simple sequence repeat map of the sunflower genome, Theor Appl Genet, 2002;105:1124-136.

[45] McDonald BA, Linde C. Pathogen population genetics, evolutionary potential, and durable resistance, Ann Rev Phytopathol, 2002;40:349-379.

[46] Qi LL, Long YM, Jan CC, Ma GJ, Gulya TJ. Pl17 is a novel gene independent of known downy mildew resistance genes in the cultivated sunflower (Helianthus annuus L.), Theor Appl Genet, 2015;128(4):757-767.

[47] Galasuelo Q, Martinez Y, Boniface MC, Vear F, Pichon M, Godiard L. The sunflower downy mildew pathogen Plasmodium halstedii., Mol Plant Pathol, 2015;16(2):109-122.

[48] Gilley MA, Markell SG, Gulya TJ, Misar CG. Prevalence and virulence of Plasmodium halstedii (downy mildew) in sunflowers in 2014. In: Proceeding 37th Sunflower Research Forum. Fargo ND, 7–8 Jan 2015.