Activation of NF-E2 p45-related factor-2 transcription and inhibition of intestinal tumor development by AHCC, a standardized extract of cultured *Lentinula edodes* mycelia

Maiko Takahashi,† Gen Fuji,‡ Takahiro Hamoya,† Yurie Kurokawa,† Yui Matsuzawa,† Kohei Miki,† Masami Komiya,† Takumi Narita† and Michihiro Mutoh†,*

1Division of Prevention, Center for Public Health Sciences, 2Central Radioisotope Division and 3Division of Carcinogenesis and Cancer Prevention, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan

(Received 25 April, 2019; Accepted 20 July, 2019; Published online 27 September, 2019)

It has been reported that activation of NF-E2 p45-related factor-2 (NRF2), a transcription factor, induces a variety of antioxidant enzymes, and plays an important role in preventing carcinogenesis. AHCC is a standardized extract of cultured *Lentinula edodes* mycelia and it has been demonstrated to improve cancer. However, the effects of AHCC on NRF2 have not been examined, and the effects on intestinal adenoma development are not yet fully understood. We first investigated the effects of AHCC (1–5 mg/ml) on NRF2 activity in human colon cancer cell lines by a luciferase reporter gene assay, and found NRF2 transcriptional activities were increased ~12.6-fold. In addition, AHCC dose-dependently increased HO-1 and NQO-1 mRNA levels, and decreased interleukine-6 mRNA levels. Next, we administered 1,000 ppm AHCC for 8 weeks in the diet of *Apc* mutant Min mice, and found that AHCC significantly reduced the total number of intestinal polyps by 57.7% and to 67.6% of the control value in male and female Min mice, respectively, with suppression of interleukine-6 in the polyp part. These data suggest that AHCC possesses an ability to suppress cellular oxidative stress through activation of NRF2, thereby lowering intestinal polyp development in Min mice.

Key Words: AHCC, oxidative stress, NRF2, IL-6, cancer chemoprevention

The estimated number of incident cases of colorectal cancer (CRC) shows it is the third most common cancer in men and second most in women worldwide in 2018. The trend of the estimated number of incident cases is decreasing, but the majority of CRCs occur in developed countries, including Japan. Thus, it is still important to establish useful methods for preventing CRC. One approach is using functional foods/plant-derived agents as cancer chemopreventive agents because many people can take them for long time through dietary habits.

Moreover, because of CRC’s natural history, it is effective to treat colorectal polyps at the stage of colorectal adenoma, a premalignant lesion, to prevent CRC development. It has been reported that interventions to detect and remove adenomas earlier are effective in reducing CRC cases and deaths. Thus, the target of functional foods/plant-derived agents could be colorectal adenoma.

It has been reported that oxidative stress is likely to play an important role in carcinogenesis through generation of reactive oxygen species (ROS), which modify DNA bases, induce DNA damage and lipid peroxidation. Under such oxidative stress, a variety of antioxidant enzymes are induced by activation of NF-E2 p45-related factor-2 (NRF2), a transcription factor. It is also reported that the proper basal function of NRF2 and Kelch-like ECH-associated protein 1 (KEAP1) is essential for preventing colorectal carcinogenesis. Nuclear factor-kappaB (NFκB) is another transcriptional factor induced by oxidative stress, and promotes carcinogenesis. Thus, reducing oxidative stress might be one of the targets of functional foods/plant-derived agents.

Previous studies have demonstrated that AHCC improve hyperlipidemia, obesity and cancer. AHCC is a standardized extract of cultured *Lentinula edodes* mycelia. This natural product is composed of a mixture of amino acids, minerals, polysaccharides and lipids enriched in α-l,4-linked glucan. It has been shown that AHCC stimulates immune response and has improved the prognosis and quality of life of several cancer patients. However, the effects of AHCC on NRF2 have not been examined, and the preventive action, i.e., the effect on intestinal adenoma development, is not yet fully understood.

In this study, we examined the antioxidant potential of AHCC by measuring oxidative stress-related transcription factors NRF2 and NFκB. We also investigated the effect of AHCC on the development of intestinal polyps in *Apc*-mutant Min mice, an animal model of human familial adenomatous polyposis that develops numerous adenomas in the intestinal tract.

Materials and Methods

Chemicals. AHCC® is a standardized extract of cultured *Lentinula edodes* mycelia and is a trademark of Amino Up Co., Ltd. (Sapporo, Japan). AHCC® is a gifted from Amino Up Co., Ltd. Azobis (2-methylpropion amidine) dihydrochloride (AAPH) is purchased from Tokyo Chemical Industry (Tokyo, Japan).

Cell culture. HCT116 and DLD-1 cell lines, human colon adenocarcinoma cells, were purchased from the American Type Culture Collection (Manassas, VA). Both cell lines were maintained in DMEM supplemented with 10% heat-inactivated fetal bovine serum (FBS; HyClone Laboratories Inc., Logan, UT) and antibiotics (100 µg/ml streptomycin and 100 U/ml penicillin) at 37°C with 5% CO2.

MTT assay. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was used to evaluate cell viability. HCT116 and DLD-1 colon cancer cells were seeded in 96-well plates (2 × 104 cells/well). After 24 h incubation, the cells were...
were run at 95°C. PCR reactions were analyzed.

primer set, the melting curves of the amplicons generated by the

were referred to as HCT116-NRF2-Luc and DLD-1-NRF2-Luc, and HCT116-NFkB-Luc and DLD-1-NFkB-Luc respectively. HCT116-NRF2-Luc cells and DLD-1-NRF2-Luc cells were separately seeded in 96-well plates (2 x 10^4 cells/well). After 24 h incubation, the cells were treated with AHCC for 24 h. Luciferase activity levels were determined using the Bright GLO Luciferase Assay System (Promega). In these cells, basal NRF2 and NFkB luciferase activities were normalized by protein assay. NRF2 and NFkB luciferase activity in the control was set as 1.0. Data are expressed as the mean ± SD (n = 4).

Quantitative real-time polymerase chain reaction analyses. HCT116 and DLD-1 cells were seeded in 12-well plates (1.5 x 10^4 cells/well). The cells were cultured in the presence of 0.5, 1, 2.5 and 5 mg/ml AHCC for 24 h. After 24 h, the mRNA expression levels regarding oxidative stress-related factors were evaluated by quantitative real-time polymerase chain reaction (PCR). Total RNA was isolated using RNAiso Plus (TaKaRa, Shiga, Japan). 100 ng aliquots in a final volume of 20 μl were used for synthesis of cDNA using a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA) and oligo (dT) primers. Real-time PCR was carried out using the CFX96/384 PCR Detection System (BIO RAD, Tokyo, Japan) designed to minimize pain and discomfort to the animals. The animal protocol was approved by the Institutional Ethics Review Committee for Animal Experimentation of the National Cancer Center. The animal protocol was approved by the Institutional Ethics Review Committee for Animal Experimentation of the National Cancer Center. The animal protocol was designed to minimize pain and discomfort to the animals. The animals were acclimatized to laboratory conditions for more than two weeks prior to experimentation. All experiments were performed according to the “Guidelines for Animal Experiments in the National Cancer Center” and were approved by the Institutional Ethics Review Committee for Animal Experimentation of the National Cancer Center. The animal protocol was designed to minimize pain and discomfort to the animals. The animals were acclimatized to laboratory conditions for more than two weeks prior to experimentation. All experiments were euthanized by isoflurane overdose for tissue collection.

Statistical analyses. Results are expressed as the mean ± SD, with statistical analyses performed using Dunnett's test. Differences were considered to be statistically significant at *p <0.05, **p <0.01. Results

Activation of NRF2 transcriptional activity by AHCC. HCT116 and DLD-1 cells were treated with AHCC for 24 h (Fig. 1), and the effect evaluated on NRF2 and NFkB promoter transcriptional activities. In HCT116 cells, AHCC slightly decreased cell viability in a dose-dependent manner (Fig. 1A). Twenty-four hours treatment with 1, 2.5 and 5 mg/ml AHCC increased NRF2 promoter transcriptional activity 1.2 (p <0.05), 1.7 (p <0.01) and 12.6 (p <0.01)-fold as compared with the untreated control value, respectively (Fig. 1B). Besides, 24 h of 2.5 and 5 mg/ml AHCC treatment slightly increased NFkB promoter transcriptional activity by 1.1 (p <0.05), and 1.2 (p <0.01)-fold as compared with the untreated control value, respectively (Fig. 1C). In other colorectal cancer cells, DLD-1 cells, AHCC treatment slightly decreased the cell viability (Fig. 1D). Similarly, AHCC treatment increased NRF2 and NFkB promoter transcriptional activity (Fig. 1E and F).

Effects of AHCC on mRNA expression levels regarding oxidative stress- and inflammation-related factors in HCT116 and DLD-1 cells. In order to clarify the effects of AHCC on the downstream targets of NRF2, mRNA expression regulated by NRF2 was evaluated in HCT116 and DLD-1 cells. AHCC signifi-
M. Takahashi et al.

Significantly increased HO-1 and NQO-1 mRNA levels in a dose-dependent manner in HCT116 cells (Fig. 2). Twenty-four hours of 1, 2.5, and 5 mg/ml AHCC treatment significantly increased 2.4 (p < 0.01), 3.0 (p < 0.01), and 9.6 (p < 0.01)-fold of HO-1 mRNA levels compared with the untreated control value, respectively, and increased 1.6 (p < 0.01), 2.0 (p < 0.01), and 2.4 (p < 0.01)-fold of NQO-1 mRNA levels, respectively (Fig. 2A and B). In DLD-1 cells, the increase of HO-1 mRNA levels by AHCC treatment was weaker than that of HCT116 cells (Fig. 2C). However, NQO-1 mRNA expression was similarly increased compared to those of HCT116 cells, 1.2 (p < 0.05), 1.5 (p < 0.01), 2.0 (p < 0.01), and 3.3 (p < 0.01)-fold (Fig. 2D). In addition, AAPH (a radical starter)-produced ROS was detected in the medium cultured HCT116 and DLD-1 cells. In this condition, 24 h of 1, 2.5, and 5 mg/ml AHCC treatment significantly decreased AAPH-produced ROS levels (Fig. 2E and F). However, AHCC plus AAPH treatment did not clearly affect NRF2 and NFκB transcriptional activities (Supplemental Fig. 1*).

To clarify the effects of AHCC on the downstream targets of NRF2, IL-6 mRNA expression levels were evaluated in HCT116 and DLD-1 cells following 24 h of 0.5, 1, 2.5, and 10 mg/ml AHCC treatment. In HCT116 cells, 24 h of AHCC treatment significantly decreased IL-6 mRNA expression levels under 10 ng/ml TNFα stimulation (Fig. 3A). Similar results were obtained in DLD-1 cells (Fig. 3B). AHCC treatment increased TNFα-stimulated IL-6 mRNA expression levels by 36% (p < 0.01) compared with the untreated control value.

Inhibition of intestinal polyp development in Min mice by AHCC. Administration of AHCC to Min mice for 8 weeks did not affect body weight, food intake or clinical symptoms throughout the experimental period. There was no difference in average daily food intake between the basal diet control group and AHCC-treated groups of Min mice. In addition, no changes in organ weights that may have been attributable to toxicity were observed. Table 1 summarizes the data regarding the numbers and distributions of intestinal polyps in the basal diet control group and AHCC-treated groups. The number of polyps was mostly observed in the small intestine, and some did not have polyps in the colon. Treatment with 1,000 ppm AHCC significantly reduced the total number of intestinal polyps to 57.7% of the control value in male Min mice and to 67.6% of the control value in female Min mice (p < 0.01 vs control group).

In treatment with 500 ppm AHCC for males, a reduction in the

Fig. 1. Effect of AHCC on NRF2 and NFκB promoter transcriptional activity in HCT116 and DLD-1 cells. HCT116 cells (A) and DLD-1 cells (D) treated with 0.5, 1, 5 and 10 mg/ml AHCC for 24 h were adopted for MTT assay. The luciferase activities of HCT116-NRF2-Luc cells (B) and DLD-1-NRF2-Luc cells (E) were measured after treatment with the indicated dose of AHCC for 24 h. The control basal luciferase activity level corrected by protein assay was set as 1.0. The luciferase activities of HCT116-NFκB-Luc cells (C) and DLD-1-NFκB-Luc cells (F) are also shown. Data are the mean ± SD (n = 3). *p<0.05, **p<0.01 vs control.

Fig. 2. Expression levels of HO-1 and NQO-1 mRNA in HCT116 and DLD-1 cells treated with AHCC. HCT116 cells were seeded in 12-well plates (1.5 x 10^5 cells/well) and cultured in medium containing 0.5, 1, 2.5 and 5 mg/ml AHCC for 24 h. After 24 h, mRNA expression levels of HO-1 (A) and NQO-1 (B) were evaluated by quantitative real-time PCR analysis. Change of HO-1 (C) and NQO-1 (D) mRNA expression levels were also shown in DLD-1 cells. The basal mRNA expression levels of the control were set as 1.0. Data were normalized with GAPDH. Data are the mean ± SD (n = 3). *p<0.05, **p<0.01 vs 0 control. HCT116 cells (E) and DLD-1 cells (F) were seeded in 96-well plates (2.0 x 10^4 cells/well) and cultured in medium containing 10 mM AAPH for 3 h after treated with 1, 2.5 and 5 mg/ml AHCC for 24 h. After treated with AAPH, ROS levels were evaluated by DCFDA. Data are the mean ± SD (n = 4). *p<0.05, **p<0.01, ***p<0.001 vs 0 mg/ml AHCC with 10 mM AAPH.

*See online. https://doi.org/10.3164/jcbn.19-36
Data were normalized with GAPDH. Data are the mean ± SD. *Significantly different from the control untreated group at \(p<0.05 \), and 32% respectively, compared with the untreated control values (Fig. 4A). Furthermore, AHCC treatments tended to decrease IL-6 mRNA expression levels in the intestinal polyp of male and female mice by 39% (\(p<0.05 \)), and 32% respectively, compared with the untreated control group. In administration of 1,000 ppm AHCC for 8 weeks suppressed MCP-1 mRNA expression levels in the intestinal polyp of male and female mice by 39% (\(p<0.05 \)), and 32% respectively, compared with the untreated control group (Fig. 4A). Furthermore, AHCC treatments tended to decrease IL-6 mRNA expression levels in the intestinal polyp of male and female mice by 39% (\(p<0.05 \)), and 32% respectively, compared with the untreated control group.

Discussion

In the present study, AHCC was shown to significantly activate one of the oxidative stress-related transcriptional factors, NRF2, in a human colon cancer cell line. Moreover, AHCC prevented intestinal polyp development formation in Apc-mutant Min mice with reduced IL-6 expression levels in the polyp part.

Table 1. Numbers of intestinal polyps/mouse in male Min mice

AHCC (ppm)	No. of mice	Small intestine	Colon	Total		
0	7	8.4 ± 3.3	14.4 ± 4.1	34.7 ± 13.0	2.0 ± 2.4	58.7 ± 18.1
250	7	3.6 ± 1.6*	10.7 ± 4.8	26.7 ± 7.7	1.1 ± 0.9	42.1 ± 11.2
500	7	2.9 ± 1.6*	8.3 ± 2.1*	21.4 ± 6.1*	0.3 ± 0.5	32.9 ± 5.8*
1,000	7	4.6 ± 1.0*	8.6 ± 3.7*	21.6 ± 5.3*	0.9 ± 0.9	33.9 ± 8.2*

Data are mean ± SD. *Significantly different from the control untreated group at \(p<0.01 \). *\(p = 0.05 \) vs 0 ppm.

Table 2. Numbers of intestinal polyps/mouse in female Min mice

AHCC (ppm)	No. of mice	Small intestine	Colon	Total		
0	7	4.4 ± 1.4	12.4 ± 3.4	28.7 ± 10.9	0.6 ± 0.5	47.3 ± 11.0
250	6	3.3 ± 1.6	8.8 ± 3.1	25.5 ± 6.3	0.5 ± 0.5	38.7 ± 9.0
500	7	5.0 ± 2.0	11.9 ± 5.0	17.3 ± 6.8*	0.4 ± 0.8	34.6 ± 13.3
1,000	7	4.3 ± 2.0	9.1 ± 3.5	18.0 ± 4.8*	0.6 ± 0.5	32.0 ± 6.1*

Data are mean ± SD. *Significantly different from the control untreated group at \(p<0.01 \). *\(p = 0.05 \) vs 0 ppm.
AHCC has been shown to inhibit constitutive signal transducer and activator of transcription 3 (STAT3) phosphorylation in ovarian cancer cells.(18) However, AHCC has not been shown to increase NRF2 transcriptional activity hitherto. This is the first report that shows significant elevation of NRF2 transcriptional activity by AHCC treatment \textit{in vitro}. The significance of increased NRF2 transcriptional activity is further highlighted by previous studies demonstrating that NRF2 is an important molecular target for naturally derived cancer chemopreventive agents both \textit{in vitro} and \textit{in vivo}.(19) It has been reported that 5\% tomato powder decreases the development of aberrant crypt foci (ACF) and adenocarcinoma, along with regulating NRF2/HO-1 signaling pathway in the colorectal tissue of azoxymethane (AOM)-treated Wistar rats.(19) Our previous reports also demonstrated that citrus peel extract significantly activated NRF2, in a human colon cancer cell line, and prevented AOM-induced ACF formation in the colon of F344 rats via antioxidant action.(20)

Our present data also demonstrate that AHCC increases the transcriptional activity of NF-kB weakly, but significantly. Inconsistent with our data, other reports demonstrated that AHCC did not influence the activation of NF-kB stimulated by IL-1\textbeta.(21) We do not know the reason exactly but assumed that weak suppression of cell viability induced by AHCC may secondarily activate NF-kB transcriptional activity since an increase in NF-kB transcriptional activity confers an anti-apoptotic phenotype through inhibition of apoptosis protein (IAP) family induction.(22)

We confirmed that our increase of NRF2 transcriptional activity is functionally working by detecting downstream mRNA expression levels. Actually, AHCC treatment significantly decreased AAPH-produced ROS levels. NRF2 is a helix-loop-helix basic leucine zipper transcription factor that binds to the antioxidant response element (ARE), which results in transcriptional activation of genes involved in carcinogen detoxication and attenuation of oxidative stress, such as glutathione S-transferase (GST), UDP-glucuronosyltransferase (UGT), HO-1, NQO and gamma glutamylcysteine synthetase (\gamma GCS).(23) We showed in the present study that AHCC significantly increased HO-1 and NQO-1 mRNA levels in a dose-dependent manner in human colon cancer cells.

The reason why we used Min mice is that these mice are known to be under high oxidative stress. We demonstrated that oxidant-related triglycerides and oxidized phosphatidylcholines, such as aldehyde and carboxylic acid types, were increased in the serum of Min mice.(24) Moreover, we showed that NADPH oxidase 1 (NOX1) and p22phox mRNA levels tend to be elevated in the intestinal tumors of Min mice.(25) NOX1 and p22phox belong to a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family that produces ROS. Thus, it is assumed that this mouse is an appropriate model to observe the antioxidative effects of AHCC on tumorigenesis \textit{in vivo}.

We did not uncover the mechanisms why AHCC inhibited intestinal polyp development. However, suppression of MCP-1 and IL-6 mRNA levels may affect the results. MCP-1 and IL-6 are the cytokines primarily produced at acute and chronic inflammation sites, and act as both pro-inflammatory and anti-inflammatory cytokines. The function of the MCP-1 and IL-6 gene is implicated in a wide variety of inflammation-associated diseases, such as cancer.(26,27) In Min mice, lacking the IL-6 gene decreased overall polyp number by 32\% compared to that of IL-6 wild Min mice. The Min mouse showed a 10-fold increase in serum IL-6 levels at 26 weeks of age.(28) Thus, down regulation of IL-6 in polyps may be involved in the inhibition of intestinal polyp development. It has been reported that NRF2 regulates oxidative stress-response, and represses inflammation, including suppression of MCP-1 and IL-6.(29,30) Thus, our speculation of an NRF2-MCP-1 and IL-6 axis in the suppression of polyp development is not something unusual. Further research is needed to confirm this possibility.

In conclusion, our data suggest that AHCC may block cellular oxidative stress through induction of NRF2, thereby preventing intestinal polyp development in Min mice. It was worthwhile to show first time in this study that AHCC has a preventive effect other than a therapeutic one. The use of AHCC as a functional food/plant-derived agent may favor prevention of colorectal cancer. Further mechanisms of preventing intestinal polyp development by AHCC will be revealed in future studies.

Acknowledgments

The Authors thank the Animal Core Facility of the National Cancer Center Research Institute for maintaining mice and for their technical support with histopathological evaluations. The Core Facility was supported by the National Cancer Center Research and Development Fund (29-A-2). The Authors thank Ms. Ruri Nakanishi and Mr. Naoka Uchiya, a member of the National Cancer Center Research Core Facility, for expert technical assistance in animal experiments. The study is supported by the practical research for innovative cancer control from Japan Agency for Medical Research and Development, AMED (18ck0106271h0002).

Abbreviations

- ACF: aberrant crypt foci
- AOM: azoxymethane
- ARE: antioxidant response element
- CRC: colorectal cancer
- FBS: fetal bovine serum
- GCS: gamma glutamylcysteine synthetase
- GAPDH: glyceraldehyde-3-phosphate dehydrogenase
- GST: glutathione S-transferase
- HO-1: heme oxygenase-1
- IL-6: interleukin-6
- MCP-1: monocyte chemoattractant protein-1
- NRF2: nuclear factor erythroid 2-related factor 2
- NOX1: NADPH oxidase 1
- p22phox: p22-phox subunit
- SOD: superoxide dismutase
- UGT: UDP-glucuronosyltransferase
- TGF-\beta: transforming growth factor-\beta
- TNF-\alpha: tumor necrosis factor-\alpha
- TRAMP: transgenic adenocarcinoma mouse prostate
- HO-1: heme oxygenase-1
- IL-6: interleukin-6
- MCP-1: monocyte chemoattractant protein-1
- NRF2: nuclear factor erythroid 2-related factor 2
- NOX1: NADPH oxidase 1
- p22phox: p22-phox subunit
- SOD: superoxide dismutase
- UGT: UDP-glucuronosyltransferase
- TGF-\beta: transforming growth factor-\beta
- TNF-\alpha: tumor necrosis factor-\alpha
- TRAMP: transgenic adenocarcina
References

1 International Agency for Research on Cancer. GLOBOCAN 2012: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2012 v1.0.
2 Winawer SJ, Zauber AG, Ho MN, et al. Prevention of colorectal cancer by colonoscopic polypectomy. N Engl J Med 1993; 329:1977–1981.
3 Zauber AG, Winawer SJ, O'Brien MJ, et al. Colonoscopic polypectomy and long-term prevention of colorectal-cancer deaths. N Engl J Med 2012; 366:687–696.
4 Tamura M, Mutoh M, Fujii G, Matsu H. Involvement of mitochondrial reactive oxygen species in gastric carcinogenesis. J Gastrointest Digest Syst 2013; 8:150.
5 Sloam S, Kensler TW. Nrf2: control of sensitivity to carcinogens. Arch Toxicol 2011; 85:273–284.
6 Yanaka A. Sulforaphane enhances protection and repair of gastric mucosa against oxidative stress in vitro, and demonstrates anti-inflammatory effects on Helicobacter pylori-infected gastric mucosa in mice and human subjects. Curr Pharm Des 2011; 17:1532–1540.
7 Gonzalez-Donquilies C, Alonso-Molero J, Fernandez-Villa T, Vilorio-Bravo I, Molina AJ, Martin V. The NRF2 transcription factor plays a dual role in colorectal cancer: a systematic review. PLoS One 2017; 12:e0177549.
8 Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. FASEB J 1996; 10:709–720.
9 Gao Y, Zhang D, Sun B, Fujii H, Kosuna K, Yin Z. Active hexose correlated compound enhances tumor surveillance through regulating both innate and adaptive immune responses. Cancer Immunol Immunother 2006; 55:1258–1266.
10 Daddaoua A, Martinez-Plata E, Ortega-Gonzalez M, et al. The nutritional supplement Active Hexose Correlated Compound (AHCC) has direct immunomodulatory actions on intestinal epithelial cells and macrophages involving TLR/MycD8 and NF-kB/STAT3 activation. Food Chem 2013; 136:1288–1295.
11 Matsui Y, Uhara J, Satoi S, et al. Improved prognosis of postoperative hepatocellular carcinoma patients when treated with functional foods: a prospective cohort study. J Hepatol 2002; 37:78–86.
12 Matsushima K, Kuramitsu Y, Ohiro Y, et al. Combination therapy of active hexose correlated compound plus UFT significantly reduces the metastasis of rat mammary adenocarcinoma. Anticancer Drugs 1998; 9:343–350.
13 Ignacio RM, Kim CS, Kim YD, Lee HM, Qi XF, Kim SK. Therapeutic effect of Active Hexose-Correlated Compound (AHCC) combined with CpG-ODN (oligodeoxynucleotide) in B16 melanoma murine model. Cytokine 2015; 76:131–137.
14 Vetvicka V, Vetvickova J. Immune-enhancing effects of Maitake (Grifola frondosa) and Shiitake (Lentinula edodes) extracts. Ann Transl Med 2014; 2:14.
15 Cowaswintaweosat S, Manoromana S, Srijung H, et al. Prognostic improvement of patients with advanced liver cancer after active hexose correlated compound (AHCC) treatment. Asian Pac J Allergy Immunol 2006; 24:33–45.
16 Parida DK, Wakame K, Nomura T. Integrating complimentary and alternative medicine in form of Active Hexose Co-Related Compound (AHCC) in the management of head & neck cancer patients. Int J Clin Med 2011; 2:588–592.
17 Ishizuka R, Fuji H, Miura T, Fukuchi Y, Tajima K. Personalized cancer therapy for stage IV non-small cell lung cancer: combined use of active hexose correlated compound and genistein concentrated polysaccharide. Pers Med Universe 2012; 1:39–44.
18 Choi JY, Lee S, Yun SM, et al. Active hexose correlated compound (AHCC) inhibits the proliferation of ovarian cancer cells by suppressing signal transducer and activator of transcription 3 (STAT3) activation. Nutr Cancer 2018; 70:109–115.
19 Jeong WS, Jun M, Kong AN. Nrf2: a potential molecular target for cancer chemoprevention by natural compounds. Antioxid Redox Signal 2006; 8:99–106.
20 Onuma W, Asai D, Tomono S, et al. Anti-carcinogenic effects of dried citrus peel in colon carcinogenesis due to inhibition of oxidative stress. Nutr Cancer 2017; 69:855–861.
21 Matsu K, Kawaguchi Y, Ozaki T, et al. Effect of active hexose correlated compound on the production of nitric oxide in hepatocytes. JPN J Parent Enter Nutr 2007; 31:373–380.
22 Mohamed MS, Bishr MK, Almutairi FM, Ali AG. Inhibitors of apoptosis: clinical implications in cancer. Apoptosis 2017; 22:1487–1509.
23 Kwak MK, Egner PA, Dolan PM, et al. Role of phase 2 enzyme induction in chemoprotection by dithiolethiones. Mutant Res 2001; 480–481:305–315.
24 Ikeda K, Mutoh M, Teraoka N, Nakaniishi H, Wakabayashi K, Taguchi R. Increase of oxidant-related triglycerides and phosphatidylcholines in serum and small intestinal mucosa during development of intestinal polyp formation in Min mice. Cancer Sci 2011; 102:79–87.
25 Komiyama M, Fujii G, Miyamoto S, et al. Suppressive effects of the NAPDH oxidase inhibitor apocynin on intestinal tumorigenesis in obese KK-Ay and Apc mutant Min mice. Cancer Sci 2015; 106:1499–1505.
26 Oshima H, Oshima M. The inflammatory network in the gastrointestinal tumor microenvironment: lessons from mouse models. J Gastroenterol 2012; 47:97–106.
27 Ito K, Ishigamori R, Mutoh M, Ohta T, Imai T, Takahashi M. A* allele promotes azoxymethane-induced colorectal carcinogenesis by macrophage migration in hyperlipidemic/diabetic KK mice. Cancer Sci 2013; 104:835–843.
28 Baltgalvis KA, Berger FG, Pena MM, Davis JM, Muga SJ, Carson JA. Interleukin-6 and cachexia in Apc^{min} mice. Am J Physiol Regul Integr Comp Physiol 2008; 294:R393–R401.
29 Kobayashi EH, Suzuki T, Funayama R, et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun 2016; 7:11624.
30 Masida Y, Vaziri ND, Li S, et al. The effect of Nrf2 pathway activation on human pancreatic islet cells. PLoS One 2015; 10:e0131012.