Stateful Security Protocol Verification

Li Li*, Jun Pang†, Yang Liu‡, Jun Sun§, Jin Song Dong*

*School of Computing, National University of Singapore, Singapore
†FSTC and SnT, University of Luxembourg, Luxembourg
‡School of Computer Engineering, Nanyang Technological University, Singapore
§Information System Technology and Design, Singapore University of Technology and Design, Singapore

Abstract—A long-standing research problem in security protocol design is how to efficiently verify security protocols with tamper-resistant global states. In this paper, we address this problem by first proposing a protocol specification framework, which explicitly represents protocol execution states and state transformations. Secondly, we develop an algorithm for verifying security properties by utilizing the key ingredients of the first-order reasoning for reachability analysis, while tracking state transformation and checking the validity of newly generated states. Our verification algorithm is proven to be (partially) correct, if it terminates. We have implemented the proposed framework and verification algorithms in a tool named SSPA, and evaluate it using a number of stateful security protocols. The experimental results show that our approach is not only feasible but also practically efficient. In particular, we have found a security flaw on the digital envelope protocol, which could not be detected by existing security protocol verifiers.

I. INTRODUCTION

Many widely used security protocols, e.g., [1], [2], [3], [4], keep track of the protocol execution states. These protocols maintain a global state among several sessions and can behave differently according to the values stored in the global state. More importantly, the protocol’s global state is tamper-resistant, i.e., it cannot be simply cloned, faked, or reverted. As the result, we cannot treat the global state as an input from the environment so that the protocol becomes stateless. In practice, such global states are usually extracted from trusted parties in protocols like central trustworthy databases, trusted platform modules (TPMs), etc.

The global state poses new challenges for the existing verification techniques as discussed below. First, most existing verification tools, e.g., ProVerif [5] and Scyther [6], are designed for stateless protocols. When they are used to verify stateful protocols, false alarms may be introduced in the verification results. For instance, when the protocol state is ignored in these tools, a value generated in a later global state can be used in a former global state. However, the execution trace is actually impractical. Second, stateful protocols usually have sub-processes that can be executed for infinitely many times. However, the state-of-the-art tools, e.g., [5], [6], [7], cannot handle loops. As a consequence, only a finite number of protocol execution steps can be modeled and checked. Therefore, valid attacks could be missed in the verification. Even though some tools like Tamarin [8] can specify loops, the verification cannot terminate for most stateful protocols as they do not consider the states as tamper-resistant in the multiset rewriting rules [9]. Third, some of the abstractions made in the existing works tend to either make the verification non-terminating for stateful protocols or introduce false alarms. For instance, fresh nonces generated in ProVerif [5] are treated as functions to the preceded behaviors in a session so that the nonces with the same name could be merged under the same execution trace. On one hand, if a stateful protocol receives some data before generating any nonce in its session, the nonce generated in one session can be received before the same nonce is generated in a different session. According to the abstraction method, the nonce becomes a function applied to itself, which could lead to infinite function applications. Thus the verification cannot terminate. On the other hand, if a nonce is generated without performing any session-specific behavior, then the nonce will be the same for multiple sessions. The query of asking whether the nonce for a particular session can be deduced may give false alarms, because the nonce that can be deduced is actually coming from another session. As these nonces are merged, they cannot be differentiated in the verification process.

To address the above identified challenges for verifying stateful security protocols, we first propose a protocol specification framework (see Section IV) that explicitly models the protocol execution state as tamper-resistant. We specify how states are used in the protocol as well as how states are transferred. As a result, stateful protocols can be modeled in our framework in an intuitive way. The protocol specification is introduced with a motivating example of the digital envelope protocol [4]. Second, a solving algorithm is developed to verify stateful protocols. During solving, we apply a pre-order to the states and converge the states into a valid state trace. The secrecy property checked in this work is then formulated into a reachability problem. The partial correctness of our method is formally defined in Section IV-E and proved in Section V. However, as the security protocol verification problem is undecidable in general [10], our algorithm does not guarantee the termination. The experiments show that our method can terminate for many stateful security protocols used in the real world. Third, we develop a tool named SSPA (Stateful Security Protocol Analyzer) based on our approach. Several stateful protocols including the digital envelop protocol and the Bitlocker protocol [11] have been analyzed using SSPA. The experiment results show that our method can both find security flaws and give proofs efficiently. Particularly, we have
found a security flaw in the digital envelope protocol which has not been identified before.

Structure of the paper. Related works are discussed in Section II and a motivating example is given in Section III. In Section IV, we present our protocol specification framework and describe how to specify cryptographic primitives, protocols and queries. In Section V, we show how the verification algorithm works and prove its partial correctness. We show the implementation details and the experiment results in Section VI. Finally, we conclude the paper with some discussions in Section VII.

II. RELATED WORKS

Mödersheim developed a verification framework that works with global states [12]. His framework extends the IF language with sets and abstracts the names based on its Set-Membership. According to [12], this method works well for several protocols. However, its applicability in general is unclear since sets should be explicitly identified for the protocols and no general solution for identifying the set is given in the paper. Guttman extended the strand space with mutable states to deal with stateful protocols [13], [14], but there is no tool support for his approach. Our approach presented in this paper is different from theirs, as the protocol specification does not need to be changed in our framework and we provide automatic tool support.

StatVerif is introduced by Arapinis et al. [7] to verify protocol with explicit states. It extends the process calculus of ProVerif [5] with stateful operational semantics and translates the resulting model into Horn clauses. ProVerif is then used as an engine to perform verification. Comparing with their method that can only work with a finite number of (global) states, our approach is more general and works for protocols with infinite states.

In [15], Delaune et al. modeled TPMs with Horn clauses and have verified three protocols using ProVerif. However, the specifications need to be adapted according to the different protocols under study. For instance, an additional parameter is added into the global state when it is used for the digital envelope protocol (DEP) [4] to prevent false attacks. More importantly, they also modified the specification of the DEP in a way that false negatives can happen (attacks are missing) comparing with the original DEP proposed in [4]. This is because their method does not work for infinite steps of the stateful protocols. Specifically, they have constrained the protocol so that its second phase is not repeatable. More discussions on the DEP can be found in Section III. Notice that all of the previous methods can only work with protocols with finite steps. while this is not the case with our approach.

III. MOTIVATING EXAMPLE

We introduce the digital envelope protocol (DEP) [4] in this section as a motivating example. Before going into the details of the protocol, we give a brief introduction on the trusted platform module (TPM) [16] used in the protocol first.

TPM is an embedded cryptographic device proposed to give higher level security guarantees than those can be offered by software alone. Every TPM has several tamper-resistant platform configuration registers (PCRs) that maintain the current state of the TPM. The values stored in the PCRs can only be extended. One possible implementation of extending a PCR p with a value n could be $extend(n)\{p = h(p, n)\}$, where h is a one-way hash function applied to the concatenation of p and n. Hence, the extending actions are irreversible unless the TPM reboot is allowed (the PCRs are reset to the default value b) and the previous extending actions are replayed in an identical order. TPM provides several APIs to help the key management, including key generation, key usage, etc., under PCR measurement.

TPMs use several types of keys, including the attestation identity keys (AIKs) and the warp keys. The AIK represents the identity of the TPM in the protocol and can be used for signing. In order to differentiate the TPMs, we assume every TPM has a unique AIK. However, this assumption does not prevent the adversary from using multiple AIK values as he could initiate multiple TPMs. The warp keys form a tree structure rooted under the permanent loaded storage root key (SRK). We usually use two kinds of warp keys in the TMP, i.e., the binding keys and the storage keys. Data can be encrypted with the binding public key remotely, or can be sealed with the loaded storage key in the TPM. Typically, the TPM supports the following operations.

- **Extend.** Extend the PCR value p by any value n to a new PCR value $h(p, n)$.
- **Read.** Read the current PCR value from the TPM.
- **Quote.** Certify the current PCR value.
- **CreateWrapKey.** Generate a warp key under a loaded parent key and bind it to a specific PCR value. The new
key is not yet loaded into the TPM but stored in a key blob, which is a storage place for holding the key.

- **LoadKey2.** Load the key into TPM by providing the key blob and its parent key.
- **CertifyKey.** Certify a loaded key.
- **UnBind.** Decrypt the data with a loaded binding key. The PCR value for the key should be matched.
- **Seal.** Encrypt the data with a storage key. The PCR value for the key should be matched and the encrypted data can be sealed to a particular PCR value.
- **UnSeal.** Decrypt the data with the loaded storage key. The PCR value of the seal key, the PCR value of the sealed storage and the current PCR value are required to be the same.

As the storage key and seal/unseal operation are not used in the DEP, we omit their specification in the following discussions.

By using TPMs, the DEP allows an agent *Alice* to provide a digital secret *s* to another agent *Bob* in a way that *Bob* can either access *s* without any further help from *Alice*, or revoke his right to access the secret *s* so that he can prove his revocation. This protocol consists of two phases as shown in Figure 1. In the first phase, *Alice* generates a secret nonce *n* and uses it to extend a given PCR in *Bob*'s TPM with an encrypted session. The transport session is then closed. Since the nonce *n* is secret, *Bob* cannot re-enter the current state of the TPM if he makes any changes to the given PCR. In the second phase, *Alice* and *Bob* read the value of the given PCR as *p* and *Bob* creates a binding key pair ⟨*sk*, *pk*⟩ locked to the PCR value *h*(*p*, open) and sends the key certification to *Alice*, where open is an agreed constant in the protocol. This means the generated binding key can be used only if the value open is first extended to the PCR of value *p*. After checking the correctness of the certification, *Alice* encrypts the data *s* with her public key pk and sends it back to *Bob*. Later, *Bob* can either open the digital envelope by extending the PCR with open or revoke his right to open the envelope by extending another pre-agreed constant revoke. If *Bob* revokes his right, the quote of PCR value *h*(*p*, revoke) can be used to prove *Bob*'s revoke action. The protocol is illustrated in Figure 1.

In fact, through our approach and the implemented tool, we have found a cold-boot attack for this DEP when the TPM reboot is allowed. According to the DEP proposed in [4], the authors only mentioned that *Bob* may lose his ability to open the envelope or to prove his revoke action if the TPM reboot is allowed. To the best of our knowledge, this attack has not been described before. We present the attack scenario in Figure 2. When the TPM reboot is allowed, *Bob* can reboot his TPM immediately after the first phase. As a consequence, the secret nonce *n* extended to the given PCR is lost. When *Alice* checks the PCR value in the beginning of the second phase, she actually reads a PCR value that is unrelated to her previous extend action. Hence, *Bob* can re-enter the current TPM state by simply performing TPM reboot again. This attack is caused by the fact that the PCR value in the second phase can be unrelated to the PCR value in the first phase. On the other hand, if the TPM reboot is not allowed, the secret nonce *n* could never get lost. So *Alice* can conduct the second protocol phase for multiple times and the claimed properties of the DEP are always preserved. In this way, if the TPM is maintained by a trusted server and remotely controlled by both *Alice* and *Bob* without the right to reboot TPM, this protocol is secure.

This protocol was previously verified in [15]. However, the modifications made in [15] to the original DEP prevent the authors from detecting the attack. In the modified version [15], *Bob* always does the TPM reboot before the first phase and *Alice* assumes that the PCR is *h*(*b*, *n*) without actually reading the value in the beginning of the second phase. As a result, TPM reboot can never happen before the second phase. The reason why they need to make such modifications is because ProVerif, which is used in their verification, can only model finite protocol steps. Unfortunately, this makes it impossible to find the attack as described in Figure 2. On the contrary, in this work, we provide a framework where protocols like this can be modeled faithfully and verified automatically.

IV. Protocol Specification

In this section, we describe our specification framework for modeling (stateful) protocols, crypto primitives and queries as a set of first order logic rules with the protocol execution states explicitly maintained. There are two categories of rules that can be specified in our approach, i.e., state consistent rules and state transferring rules. The state consistent rules specify the knowledge deductions, while the state transferring rules describe the state transitions. Since the protocol global state is tamper-resistant, we assume that it can only be changed by the state transition rules. The adversary model we consider in this work is the standard active attacker, who can intercept...
all communications, compute new messages and send any messages that he can obtain or compute. For instance, he can use all the public available functions including encryptions, decryptions and etc. He can also ask the legitimate protocol participants to take part in the protocol. That is, every rule specified in the framework describes a logic capability of the adversary. Our goal is to check whether he can deduce a target fact or not.

A. Framework Overview

In our framework, every entity and device in the protocol is treated as an object when it is tamper-resistant. Every object have an object global state with a unique identity. The protocol global state then consists of several object global states. For simplicity, we name object global state after state protocol global state then consists of several object global state with a unique identity. The object have an object global state with a unique identity. The object when it is tamper-resistant. Every object, a protocol is precedent to the third state. Thus, we need to identify them as one state when they are used in different places. On the other hand, the first state used in the protocol begins. At the beginning, *Alice'*s TPM, the protocol state becomes \{tpm(bob, h(p, n)), alice(n)\}. A protocol state can contain several TPM states with different AIK values.

The states of the same object should be ordered in a timeline of protocol execution, forming a state trace. For instance, the following sequence of four states is a legitimate TPM state trace in the DEP:

1) \(tpm(bob, i)\)
2) \(tpm(bob, h(i, n))\)
3) \(tpm(bob, h(h(i, n), x))\)
4) \(tpm(bob, h(h(h(i, n), x), revoke))\)

The first state is the initial state. Then, in the first phase of the DEP, *Alice* extends a secret nonce \(n\) into *Bob'*s TPM (the second state). Later, *Bob* extends a value \(x\) into his TPM for other purposes (the third state) and the second phase of the DEP begins. At the beginning, *Alice* and *Bob* record the PCR value as \(h(h(i, n), x)\). When *Bob* receives *Alice*'s sealed secret, *Bob* extends the pre-agreed constant \(revoke\) to revoke his right of opening the envelope (the fourth state). In most protocols, one state can be used for multiple times. For instance, in the above example, *Bob* needs to use the third TPM state for several times to generate key, load key, generate certifications and etc. As these states are actually the same, we need to identify them as one state when they are used in different places. On the other hand, the first state used in the protocol is precedent to the third state. Thus, we should also identify how states are updated, namely the transformation an old state to a new state.

The protocol rules specified in our framework are of the form \(H : M \rightarrow S : O \rightarrow V\). \(H\) is a set of premises such as the terms that the adversary should know and the events that the protocol should behave. \(S\) is a set of states. Both of \(H\) and \(S\) must be satisfied so that the rule is applicable. For example, when the adversary wants to load a key into the TPM, the adversary should know its parent key and obtain the TPM state with matched PCR value. \(V\) is the conclusion of the rule with two types of values. One type of conclusion is a fact. Take the TPM loading key as an example, its conclusion is a fact that the adversary can get the loaded key in the TPM. The other type of conclusion represents how the states are transferred from old ones to new ones. As the states in our framework are attached to the objects, the conclusion consists of pairs of old state and new state for the same object, denoting that state is converted from one to another. In TPM extending operation, the conclusion is one pair of states \(\langle tpm(aik, p), tpm(aik, h(p, n))\rangle\) in which the PCR value in the second state is extended. \(M\) and \(O\) help us to organize the correspondences between facts and states. \(M\) maps the facts to the states indicating that the facts should be known at which states. \(O\) is the orderings of the states generated from the knowledge deduction. For instance, when a fact \(f\) required by a rule \(R\) can be provided as the conclusion of another rule \(R'\), we can compose these two rules together to remove the requirement of \(f\). Since the \(f\) is provided by \(R'\) and used in \(R\), the states mapped by \(f\) in \(R\) are required later than requirement of the states in \(R'\). The orderings are specified in the verification process to make sure that the state trace is practical for the protocol. We name the rule as \(state\ consistent\ rule\) when \(V\) is a fact and call the rule as \(state\ transferring\ rule\) when \(V\) is a set of state conversions.

In addition, we use \(events\) and \(states\) to distinguish the protocol sessions. The \(events\) are engaged in the rule predicates to indicate the generation of fresh nonces. Since fresh nonces are random numbers, we assume their values can uniquely identify the events. Whenever the nonces generated in different events have the same value, these events should be merged. On the other hand, the \(states\) are used to describe the objects or entities presented in the protocol. Basically, we use states to differentiate the different phases of the objects. As we do not bound the number of \(events\) and \(states\), the verification is conducted for an infinite number of sessions.

B. Term Syntax

We adopt the syntax in Table I to model the protocols. Before using an event or a state in the rules, we need to declare it with a unique identity. For the nonce generation event, the pair of the event name and the fresh nonce is the key\(^1\) and we can merge two events if they have the same key. While for states, the pair of the object name and the object identity is the key and states with the same key should be ordered, describing certain phases of the same object.

\(^1\)Note that it is different from a cryptographic key.
while the value of a variable is decided by the assignment
variables because its value is decided by the environment,
rule
state consistent
as a pair of
a term
variable
several disjoint subsets. When a mutable value is encoded in
∼
The state set is a preorder set over
≤
ordering
state
representing that
f
is true at state
v
(g)
(configuration)
t
(knowledge)
t
(name)
[]
V
predecessor
R
f
A
is an equivalence relation that can partition a state set into
is post-assigned.
Assume \(H \) is a fact set, \(S \) and \(S' \) are two state sets, we
define \(H \times S = \{(f,s) \mid f \in H, s \in S\} \) and \(S \times S' = \{s \leq s' \mid s \in S, s' \in S'\} \). Given a rule \(H : M \rightarrow S : O \rightarrow V \) directly
specified from the protocol, the predicates \(H \) should be given at
the exact states and all the states should be presented at the
same time. So the default value of \(M \) is \(H \times S \), and the
default value of \(O \) is \(S \times S \). In the remaining of the paper, we
omit them in the protocol specification.

C. Rule Modeling
In the following, we illustrate how to specify stateful
protocols in our approach by using the DEP described in
Section III as a running example. In the following protocol
specification, we assume that both of the first phase and the
second phase could be conducted for infinitely many times. We
assume that all of the values extended to Bob’s TPM in the first
phase and the secrets bound to the public key in the second
phase are freshly generated nonces. So we can differentiate the
sessions and values used in the sessions during the verification.
In order to clearly illustrate the modeling strategy employed
in our approach, we describe the basic functionalities of the
TPM along with the rules. Notice that our approach is not
limited to the applications of TPM, but potentially other
stateful security protocols.

1) Declarations: Before specifying the protocol, we need
to declare the events and the states that are used in the rules
and queries.
There are three nonce generation events in the DEP. The
genkey(*sk, aik, p, per) event models that a new binding key
\(sk \) is generated in the TPM. In addition to the fresh key \(sk \), the
genkey event also specifies the AIK value \(aik \) and the PCR
value \(p \) of the TPM when the key is generated. Moreover, the
PCR in the genkey event models the PCR value that \(sk \) is
bound to. The init(*n, p) event is emitted when Alice
extends the nonce \(n \) to Bob’s TPM of the PCR value \(p \). The
genstart(*s, p, pkey) event is engaged when Alice creates
the secret \(s \) for a new session of the second phase after receiving
a key certification of \(pkey \) issued from Bob’s TPM with the
PCR value \(p \).
In terms of the protocol states, Alice enters the state
alice(*n) after she extends the secret nonce \(n \) to Bob’s TPM.
Alice also maintains the state secret(*s, p, pkey) when she
decides to share the secret value \(s \) over Bob’s TPM with the
PCR value \(p \). The \(pkey \) is a public key generated from Bob’s
TPM, locked to PCR \(h(p, open[i]) \). Besides, every TPM has a
state of \(tpn(*aik, p) \) in which the TPM is identified by the
AIK value \(aik \) and it has the PCR value \(p \).

2) State Consistent Rules: The rules in the first category
preserves the protocol execution state. However, they can be

Type	Expression
Data(x)	*n (key name)
	n (message name)
Declaration(D)	s(x1, x2, ..., x_n) (state type)
	e(x1, x2, ..., x_n) (event type)
Term(t)	f(t1, t2, ..., t_n) (function)
	a[] (name)
	[n] (nonce)
	[g] (configuration)
	v (variable)
State(s)	s(t1, t2, ..., t_n) (state)
Fact(f)	k(t) (knowledge)
	e(t1, t2, t2) (event)
Conversion(c)	(s, s') (state conversion)
Rule(R)	f1, f2, ..., f_n : M \rightarrow \{s1, s2, ..., s_m : O\} \rightarrow c1, c2, ..., c_k (state consistent rule)
	f1, f2, ..., f_n : M \rightarrow \{s1, s2, ..., s_m : O\} \rightarrow c1, c2, ..., c_k (state transferring rule)
Accessibility(A)	s(t1, t2, ..., t_n) (state instance)

TABLE I: Rule syntax hierarchy
applied only if the protocol is in some specific states. Most of the rules related to the TPM fall into this category.

Stateless Rules. Some stateless operations are allowed in stateful protocols such as encryption, decryption, concatenation and etc. For instance, public key generation and the binding operation of the TPM can be modeled as

\[k(skey) \rightarrow k(pk(skey)) \] \hspace{1cm} (1)
\[k(mess), k(pk) \rightarrow k(aenc(mess, pkey)) \] \hspace{1cm} (2)

where the state set is empty in these rules. Rule (1) means that if the adversary knows a term \(skey \), he could treat it as a private key and compute its corresponding public key \(pk(skey) \). Rule (2) models the binding operation happened outside of the TPM, which means if the adversary knows a message \(mess \) and a binding public key \(pkey \), he could encrypt \(mess \) by \(pkey \) and get the asymmetric encryption \(aenc(mess, pkey) \). As stateless protocols can be considered a special case of stateful protocols, our verification framework also works for stateless protocols. Other two stateless rules in the DEP model the fact that the agreed constant values \(open \) and \(revoke \) are known publicly.

\[\rightarrow \rightarrow k(revoke[]) \] \hspace{1cm} (3)
\[\rightarrow \rightarrow k(open[]) \] \hspace{1cm} (4)

Data Fetch Rules. Another category of the state consistent rules contains the data fetch rules. They model the fact that some data used in the protocol can be fetched directly from the protocol state without other information. In the DEP, the adversary has control over the TPM. First of all, he can use the storage root key (SRK) to encrypt any messages. In addition, he can ask the TPM for its PCR value and its PCR quote without providing any information. To specify a general case of the TPM, the AIK value is not fixed to Bob’s TPM.

\[\rightarrow k(srk([]aik[])) \] \hspace{1cm} (5)
\[\rightarrow k([p]) \] \hspace{1cm} (6)
\[\rightarrow k(percrt([]aik[], [p])) \] \hspace{1cm} (7)

As \(srk([]aik[]) \) represents the SRK itself rather than its value, rule (5) means that the adversary has access to the SRK. Rule (6) and (7) stand for getting the PCR value and the PCR quote, respectively. PCR quote is a certification issued from the TPM that can be used to prove its PCR value.

Data Processing Rules. The third category of the state consistent rules contains data processing rules, which process data based on the presented information and the protocol state. As we have illustrated in Section III, the keys used in the TPM are well protected and strictly controlled. In the TPM, keys can only be generated under a parent key, and the generated key can be bound to a specific PCR value so that it can be used only if the given PCR is of that value. In the DEP, for the sake of simplicity, we assume all the new keys are generated from the SRK. Additionally, all the new keys are bound to a specific PCR value as it is the case for the protocol. Notice that our technique does not restrict us from specifying the complete TPM.

\[k(pcr), k(srk([]aik[])), genkey([]sk[], [aik], [p]), pcr \]
\[\rightarrow \rightarrow k(pk([aik], [p])) \rightarrow k(blob([aik], [sk], srk([]aik[]), pcr)) \] \hspace{1cm} (8)
\[k(blob([aik], [sk], pkey, pcr)), k(pkey) \]
\[\rightarrow \rightarrow k(perkey([aik], [sk], pcr)) \] \hspace{1cm} (9)

Rule (8) specifies that a new session key \(sk \) can be generated in the TPM identified by \(aik \) with PCR value \(p \). In addition, the new key is bound to the PCR value \(pcr \) so that it can only be used when the PCR is of that value. As can be seen from rule (8), we need to specify the target PCR value for the key and provide the SRK as well. In addition, all of the related information should be encoded into the key generation event so that it can be used to identify the key generation behavior. Initially, the generated key is not loaded into the TPM but stored in a key blob. So rule (9) models the key loading operation by providing the key blob and its parent key. When the key is loaded, the TPM can issue key certification as illustrated in rule (10). Rule (11) describes the bound data can be decrypted with the corresponding loaded key. More importantly, the PCR value specified in the key should be matched with the current PCR.

When Alice receives key certification from Bob and she has already finished the first phase, she generates a secret \([s] \), encrypts it with the public key \(pkey \) and sends it to Bob.

\[gensrt([s], [p], pkey), k(keycert([bob[]], pkey, h([p], open[]))) \]
\[\rightarrow \rightarrow k(aenc([s], [pkey])) \] \hspace{1cm} (12)

3) **State Transferring Rules:** The state transferring rules change the protocol’s global state. The PCR value extending action is modeled as follows.

\[k(n) \rightarrow \rightarrow (tpm([aik], [p]), tpm([aik], h([p], [n]))) \] \hspace{1cm} (13)

Rule (13) means that if the adversary knows a value \(n \), he could extend the given PCR in the TPM by \(n \). The second state transition rule models the first phase for Alice.

\[init([n], [p]) \rightarrow \rightarrow \langle \text{alice}([n]) \rangle, \langle \text{tpm}(bob[], [p]), tpm(bob[], h([p], [n])) \rangle \] \hspace{1cm} (14)

The constant \(bob[] \) is the AIK value of Bob’s TPM. Alice enters a state called \(alice \) after Alice confirms that the nonce \(n \) is extended to Bob’s TPM. Meanwhile, the nonce \(n \) is extended to Bob’s TPM as described in the protocol. After the \(alice \) state is presented, \(Alice \) could repeatedly conduct the second phase of the protocol for infinitely many times.
The optional rule (15) below specifies the reboot behavior of the TPM.
\[
\neg \quad \rightarrow \langle tpm([\text{aik}], [p]), tpm([\text{aik}], \text{boot}]) \rangle \quad (15)
\]
In this work, we prove that the digital envelope protocol is secure when the TPM reboot is disallowed. We also show that this protocol is subject to attack otherwise.

D. Accessibility

Besides the rules, we also need to specify the object accessibilities for the adversary. The accessibility describes the objects the adversary have access to. So given a state in a rule, we can decide whether the states can be accessed by the adversary or not. For instance, in the DEP, the adversary can access Bob’s TPM, and he can use additional TPMs to process messages if necessary.

\[
\text{access tpm}(\text{bob}[])\]

\[
\text{access tpm}(\text{aik}[, p])
\]
We match the state patterns by substituting the terms in the states. We discuss more details about accessibility and pattern matching in Section V-B.

E. Query

In this paper, we focus on reachability properties such as secrecy. For instance, we want to ensure that Bob cannot open the secret s as well as obtain the proof for his revoke action \text{certper}(\text{bob}[, h(p, \text{revoke}[])]) at the same time for any iteration \text{secret}(s, p, pkey) in the DEP. If he can, it means that Bob can cheat in the protocol. We add supplementary rules to represent whether the adversary has the ability to obtain certain terms as events, such that we could simply check if those events are reachable or not.

We need to first add another state transferring rule when we want to check reachability. This rule models that Alice has indeed accepted the certification of the key.

\[
gensr([s], p, pkey), k(\text{keycert}(\text{bob}[, pkey, h(p, \text{open}[])]))
\]

\[
\neg \quad \langle \text{alice}(\text{n}) \rangle \rightarrow \langle \text{secret}([s], p, pkey) \rangle \quad (16)
\]
The queries are generally state consistent rules, but they have event conclusions. In the DEP, we are interested in the reachability properties as follows.

\[
gensr([s], [p], [pkey]), k([s])
\]

\[
\neg \quad \text{secret}([s], [p], [pkey]) \rightarrow \text{opened}() \quad (17)
\]

\[
gensr([s], [p], [pkey]), k(\text{percert}(\text{bob}[, h([p, \text{revoke}[])])))
\]

\[
\neg \quad \text{secret}([s], [p], [pkey]) \rightarrow \text{revoked}() \quad (18)
\]

\[
gensr([s], [p], [pkey]), k(\text{pcert}(\text{bob}[, h([p, \text{revoke}[])])))
\]

\[
, k([s]) \quad \neg \quad \text{secret}([s], [p], [pkey]) \rightarrow \text{attack}() \quad (19)
\]
The first query (rule 17) means that Bob can open the envelope and extract the nonce [s]. Similarly, the second query (rule 18) means that the PCR quote can be issued from the TPM if Bob chooses to revoke the right of opening the envelope. The third query (rule 19), the most interesting one, checks whether Bob can get the value of the nonce [s] as well as the proof for his revoke action from his TPM at the same time. As can be seen, we can name the events differently and check several queries at the same time.

Because verification for security protocol is generally undecidable, our algorithm cannot guarantee termination. Hence we define correctness under the condition of termination (partial correctness) as follows. In Section V, we present our verification algorithm on reachability checking, together with its partial correctness proofs.

Definition 1 (Partial Correctness). A verification algorithm is \textit{partially sound} if and only if the target event is reachable when the algorithm can terminate and claim that the event is reachable. It is \textit{partially complete} if and only if the target event is unreachable when the algorithm can terminate and claim that the event is unreachable.

V. Verification Algorithm

After a protocol is correctly specified (as illustrated in Section IV), we present how to verify the protocol in details in this section. During the verification, we divide our algorithm into two phases. The first phase is targeted at constructing a knowledge searching base by \textit{knowledge forward composition} and \textit{state backward transformation}. Based on the knowledge base, we could then perform query searching to find valid attacks in the second phase.

In order to verify security protocols, the verification algorithm needs to consider all possible behaviors of the adversary. Because the adversary adopted in this work can generate new names dynamically at runtime, the verification process cannot be conducted in a straightforward manner. To guide the attack searching procedure so that it can terminate, we adopt a similar strategy as proposed in [5] that applies to the Horn theory.

Our algorithm can be briefly described as follows. Recall that a rule of the form \(H : M \odot S : O \rightarrow V \) says that the V is true when all the predicates in \(H \) are satisfied and all the states \(S \) are presented under the restrictions of state mappings \(M \) and orderings \(O \). On one hand, if a predicate in a rule is not yet satisfied, we try to use a state consistent rule’s conclusion to fulfill it by \textit{rule composition}. However, if the predicate is a singleton, that is a fact of the form \(k(v) \) where \(v \) is a variable, and the value of \(v \) is not related to other facts in the rule, the singleton could be automatically fulfilled as the adversary assumed in our paper can generate new names. Additionally, events are not unifiable in our framework as the events in the predicates and the conclusions are different. Thus we reserve a set of facts \(\mathcal{N} \) from unifying with other facts. In this work, \(\mathcal{N} \) consists of \textit{events} and \textit{singletons}. On the other hand, if several states are presented in a rule, some of the states should be the latest ones that are presented when the conclusion is given, while others are the outdated states. Thus, we identify the latest states and deduce them to their previous states with the help of \textit{rule transformation}. By performing the \textit{rule composition} and \textit{rule transformation} iteratively, once the fixed-point can be reached for the knowledge base, the query
can then be answered directly from the rules in the knowledge base.

A. Knowledge Base Construction

In this section, we compose existing rules to generate new rules until the fixed point of the searching knowledge base is reached. Basically, when we compose two rules together, the term encoded in the conclusion of the first rule should be unifiable with the term in a predicate of the second rule. We use the most general unifier to unify the terms.

Definition 2 (Most General Unifier). If σ is a substitution for both terms t_1 and t_2 so that $\sigma t_1 = \sigma t_2$, we say t_1 and t_2 are unifiable and σ is a unifier for t_1 and t_2. If t_1 and t_2 are unifiable, the most general unifier for t_1 and t_2 is a unifier σ, where for all unifiers σ' of t_1 and t_2 there exists a substitution σ'' such that $\sigma' = \sigma'' \sigma$.

The unification of the facts is defined if and only if their predicate names are matched and the corresponding terms in the facts can be unified. According to Section IV, we have two kinds of rules in our framework, i.e., state consistent rules and state transferring rules. State consistent rules have a fact as conclusion, so given an unsatisfied predicate in a rule, we can compose the state consistent rule to it to provide the predicate.

The rule composition is formally defined as follows.

Definition 3 (Rule Composition). Let $R = H : M \leftarrow S : O \rightarrow f$ be a state consistent rule and $R' = H' : M' \leftarrow S' : O' \rightarrow V$ be either a state consistent rule or a state transferring rule. Assume there exists $f_0 \in H'$ such that f and f_0 are unifiable with the most general unifier σ. Given $S_0 = \{ s_0 \mid (f_0, s_0) \in M' \}$, the rule composition of R with R' on the fact f_0 is defined as

$$R \circ f_0 \rightarrow R' = \sigma(H \cup (H' - \{ f_0 \})) : \sigma(M \cup M') \leftarrow \sigma(S \cup S') : \sigma(O \cup O' \cup S \times S_0) \rightarrow \sigma V.$$

Example 1. For instance, given two simplified rules as follows. We omit the mappings and orderings when they are trivial and use special characters (e.g., ♠, ♥) to indicate the facts and states in the mappings and orderings.

$$\text{gensrt}([s], [p], \text{pkey}) \leftarrow \text{tpm}(\text{bob}[]), h(([p], \text{open}[])) \leftarrow k([s])$$
$$\text{gensrt}([s], [p], \text{pkey}), [s] : \{ ♠, ♥ \} \leftarrow \text{tpm}(\text{bob}[]), h([p], \text{revvoke}[])) \leftarrow \text{attack}()$$

The first rule means that the secret s can be revealed when Bob’s TPM has the PCR value $h(p, \text{open}[])$. The second rule means if Bob’s TPM has the PCR value $h(p, \text{revvoke}[])$ and the secret s is revealed (the envelope is opened), we have found an attack. Their rule composition on the fact $f_0 = k([s])$ is

$$\text{gensrt}([s], [p], \text{pkey}) \leftarrow \text{tpm}(\text{bob}[]), h([p], \text{open}[])) \leftarrow k([s]),$$
$$\text{tpm}(\text{bob}[]), h([p], \text{revvoke}[])) \leftarrow \text{attack}() \leftarrow$$

which means that $\text{open}[]$ should be extended to Bob’s TPM before $\text{revvoke}[]$ is extended. This is apparent because the last state of Bob’s TPM, according to the rules, should have $\text{revvoke}[]$ extended.

Given a state consistent rule with a conclusion f, it specifies that we can obtain f if its predicates are provided and the states form a valid state trace. Furthermore, some of the states are the latest states when the conclusion is given. Among the latest states, the latest state transformation is taken on some of them. If we can identify those latest states for the latest state transformation, we then can deduce their precedent states using the corresponding state transferring rule. We define S_0 as the cover set of S if $s_0 \in S_0, s \in S, s_0 \leq s$, then $s \in S_0$. Assume c is a conversion and $\text{post}(c)$ is unifiable with a state s under σ, we define the join operator $c \triangleright c s = \sigma \text{pre}(c)$. Besides, we define $[s]^S$ as the \sim partition of s in the set S. The state transformation is then defined as follows.

Definition 4 (State Transformation). Let $R = H : M \leftarrow S : O \rightarrow f$ be a state transferring rule and $R' = H' : M' \leftarrow S' : O' \rightarrow f$ be a state consistent rule. Assume there exists a unifier σ and an injective function $m : C \rightarrow \mathbb{P}(S')$ such that $\cup_{c \in C} \sigma m(c)$ is a cover set of $\cup_{c \in C} \sigma \text{post}(c)$ and $\forall c \in C, \forall s \in m(c), c \triangleright c s$ is defined. Let σ be the most general unifier of σ' and $S_n = \sigma S' - \text{post}(\sigma C)$, the state transformation of applying R to R' on m is defined as

$$R \triangleright m R' = \sigma(H \cup H') : \sigma(M \cup M') \leftarrow \sigma(S \cup S') : \sigma(O \cup O' \cup S \times S_0) \rightarrow \sigma V.$$

Example 2. For instance, if the PCR value extending rule (13) is used for transferring the states in rule (20), we first enumerate the state cover set of rule (20) as $\{ ♠, ♥, ♠ \}$. Because the states of $\{ ♠, ♥ \}$ cannot be unified, we have only one valid rule after the state transformation.

$$\text{gensrt}([s], [p], \text{pkey}), k(\text{revvoke}[]), \text{tpm}(\text{bob}[]), [p] \leftarrow \text{attack}()$$

Since the new generated rule has an unsatisfied predicate that is not in N, the verification algorithm continues. However, when TPM reboot is disallowed, these two states remained in the rule can never be unified to one state, so the attack event cannot be reached. The detailed discussions are available in the reachability analysis.

The adversary can generate new names. If a singleton predicate is not related to other facts in a rule, the adversary could generate a random fact and use it as the singleton predicate so that it can be removed from the predicates. In addition, given two events with the same key in the predicates, they should be unified and merged. Furthermore, for any two states $s \sim s'$ and $s \leq s' \wedge s' \leq s \in O$, they should be merged because clearly they are the same state. Meanwhile, any mappings and orderings related to the non-existing facts and states should be removed as well.

Definition 5 (Rule Validation). Let $R = H : M \leftarrow S : O \rightarrow V$ be a rule. We define a rule as valid if and only if there...
exists a unifier \(\sigma' \) such that any event in \(H \) under the same key is unifiable with \(\sigma' \). Let \(\sigma \) be the most general unifier of \(\sigma' \). The rule validation of \(R \) is defined as

\[
R \vdash = \text{clear}(\text{merge}(\sigma H : rm(\sigma M)))
\]

\[
\neg \left[\text{elim}(\sigma S : rm(\sigma O)) \rightarrow \sigma V \right]
\]

The function \(\text{merge} \) merges duplicated expressions; the function \(\text{clear} \) removes any singleton in which the variable does not appear in other facts in the rule; the function \(\text{elim} \) eliminates any isolated states and related orderings; and the function \(\text{rm} \) removes the mappings and orderings related to no longer existed facts and states.

When a new rule is composed from existing ones, we need to make sure it is not redundant. Suppose two rules \(R \) and \(R' \) can make the same conclusion, while (1) \(R \) requires less predicates, mappings and orderings than \(R' \) and (2) \(R \) is no less general than \(R' \), \(R' \) should be implicated by \(R \). The joint operator ‘\(\cdot \)’ between mapping \(M \) and ordering \(O \) is defined as

\[
M \cdot O = \{(f, s)|\{(f, s') \in M \land s' \leq s \in O\}\}.
\]

We then define rule implication as follows.

Definition 6 (Rule Implication). Let \(R = H : M \vdash \{ S : O \rightarrow V \} \) and \(R' = H' : M' \vdash \{ S' : O' \rightarrow V' \} \) be two rules. We define \(R \) implies \(R' \) denoted as \(R \Rightarrow R' \) if and only if

\[
\exists \sigma, \sigma V = V' \land \sigma H \subseteq H' \land \sigma (M \cdot O) \subseteq (M' \cdot O') \land \sigma S \subseteq S' \land \sigma O \subseteq O'.
\]

The knowledge base construction algorithm is shown in Algorithm 1, where we use \(B_{\text{init}} \) to denote the initial set of rules as specified and use \(B \) to denote the knowledge base constructed by the algorithm. In the following discussions, we will use \(B \) and \(B_{\text{init}} \) directly assuming they are clear from the context.

In the \textit{add} procedure (Line 1 to Line 6), we use rule implication to ensure that redundancies will not be introduced into the knowledge base. The main procedure, starting at Line 7, first adds all the initial rules into the knowledge base (Line 8 to Line 11), then it composes and transforms the rules until a fixed point is reached. We discuss the rule composition and the state transformation separately as follows.

For the rule composition (Line 13 to Line 20), when rules can be composed in an unlimited method, infinitely many composite rules can be generated, which we shall prevent. For instance, we can compose the rule (1) to itself by treating the public key as a valid private key and the composite rule becomes \(k(skey) \vdash (pk(pk(skey))) \), which could then be composed to the rule (1) again. Furthermore, as mentioned previously, singleton predicates that are not related to other facts in the rule can be removed, thus it is unnecessary to compose two rules on a singleton fact. As the rules cannot compose on events, when two rules are composed in our algorithm, we need to ensure that they can be composed on a fact \(f_0 \) such that \(f_0 \not\in \mathcal{N} \). Moreover, when two rules are composed in the form of \(R \circ f_0 R' \) and \(R \) has predicates which are not contained in \(\mathcal{N} \), we should fulfill those predicates first. Thus we ensure that \(R \)’s predicates are all in \(\mathcal{N} \).

For the state transformation (Line 21 to Line 28), as we deduce the states in a backward manner, we should make sure that the states we transferred in the rule are latest, and the target event is presented in the rule conclusion. In addition, its predicates should be all contained in \(\mathcal{N} \), resulting from the same reason mentioned previously.

Finally, we select a subset of the rules. Their predicates should only be singletons and events as rules with unfulfilled predicates cannot be used to conduct attacks directly. Their conclusion should be an event because these rules are the only rules that can make the same conclusion while (1) \(R \) requires less predicates, mappings and orderings than \(R' \) and (2) \(R \) is no less general than \(R' \), \(R' \) should be implicated by \(R \).

Algorithm 1: Knowledge Base Construction

Input: \(B_{\text{init}} \) - initial rules

Output: \(B \) - knowledge base

Procedure \textit{add} (\(R \), \(\text{rules} \))

1. for \(R_0 \in \text{rules} \) do
 2. if \(R_0 \Rightarrow R \) then return \(\text{rules} \);
 3. if \(R \Rightarrow R_0 \) then \(\text{rules} = \text{rules} - \{ R_0 \} \);
 4. end
5. return \(\{ R \} \cup \text{rules} \);

Algorithm

1. \(\text{rules} = \emptyset \);
2. for \(R \in B_{\text{init}} \) do
3. \(\text{rules} = \text{add}(R, \text{rules}) \);
4. end
5. repeat
6. Case 1.
 7. Select a state consistent rule \(R = H \vdash \{ S : O \rightarrow f \} \) and a general rule \(R' = H' \vdash \{ S' : O' \rightarrow V \} \) from \(\text{rules} \) such that
 8. \(\forall p \in H \cup H' : p \in \mathcal{N} \);
 9. \(\exists f_0 : f_0 \not\in \mathcal{N} \);
10. \((R \circ f_0, R') \vdash \) is valid;
11. \(\text{rules} = \text{add}((R \circ f_0, R') \vdash, \text{rules}); \)
12. Case 2.
 13. Select a state transferring rule \(R = H \vdash \{ S : O \rightarrow C \} \) and a general rule \(R' = H' \vdash \{ S' : O' \rightarrow f \} \) from \(\text{rules} \) such that
 14. \(\forall p \in H \cup H' : p \in \mathcal{N} \);
 15. \(f \) is an event;
 16. \(\exists m, (R \bowtie_m R') \vdash \) is valid;
 17. \(\text{rules} = \text{add}((R \bowtie_m R') \vdash, \text{rules}); \)
18. until fix-point is reached;
19. \(B_c = \text{rules} \);
20. return \(B = \{ R \in \text{rules} | \forall p \in \text{ predicates}(R), p \in \mathcal{N} \land \text{ conclusion}(R) \text{ is an event} \} \)

\[\text{Algorithm 1: Knowledge Base Construction} \]

Input	\(B_{\text{init}} \) - initial rules
Output	\(B \) - knowledge base
Procedure	\textit{add} (\(R \), \(\text{rules} \))
1. for \(R_0 \in \text{rules} \) do	
2. if \(R_0 \Rightarrow R \) then return \(\text{rules} \);	
3. if \(R \Rightarrow R_0 \) then \(\text{rules} = \text{rules} - \{ R_0 \} \);	
4. end	
5. return \(\{ R \} \cup \text{rules} \);	
Algorithm	\(\text{rules} = \emptyset \);
2. for \(R \in B_{\text{init}} \) do	
3. \(\text{rules} = \text{add}(R, \text{rules}) \);	
4. end	
5. repeat	
Case 1.	
7. Select a state consistent rule \(R = H \vdash \{ S : O \rightarrow f \} \) and a general rule \(R' = H' \vdash \{ S' : O' \rightarrow V \} \) from \(\text{rules} \) such that	
8. \(\forall p \in H \cup H' : p \in \mathcal{N} \);	
9. \(\exists f_0 : f_0 \not\in \mathcal{N} \);	
10. \((R \circ f_0, R') \vdash \) is valid;	
11. \(\text{rules} = \text{add}((R \circ f_0, R') \vdash, \text{rules}); \)	
Case 2.	
13. Select a state transferring rule \(R = H \vdash \{ S : O \rightarrow C \} \) and a general rule \(R' = H' \vdash \{ S' : O' \rightarrow f \} \) from \(\text{rules} \) such that	
14. \(\forall p \in H \cup H' : p \in \mathcal{N} \);	
15. \(f \) is an event;	
16. \(\exists m, (R \bowtie_m R') \vdash \) is valid;	
17. \(\text{rules} = \text{add}((R \bowtie_m R') \vdash, \text{rules}); \)	
18. until fix-point is reached;	
19. \(B_c = \text{rules} \);	
20. return \(B = \{ R \in \text{rules}	\forall p \in \text{ predicates}(R), p \in \mathcal{N} \land \text{ conclusion}(R) \text{ is an event} \} \)
1) Every edge in the tree is labeled by a fact f, a state set S and an index i, and $\forall s, s' \in S$ we have $s \not\approx s'$.

2) Every node is labeled by a rule in B.

3) Suppose the node is labeled by a state consistent rule as shown in Figure 3a, then we have $R \Rightarrow H : M \leftsett{S : O} f$ in which $H = f_1, \ldots, f_n$, $M = H \times S$, $O = S \times S$ and the indexes labeled on the outgoing edge and incoming edges are the same.

4) On the other hand, if the node is labeled by a state transferring rule as shown in Figure 3b, there exists C such that $R \Rightarrow H : M \leftsett{S_0 : O} C$ in which $H = f_1, \ldots, f_n$, $S_0 = S - \text{pre}(C) = S' - \text{post}(C)$, $M = H \times S_0$, $O = S_0 \times S_0$ and the indexes labeled on the incoming edges equal to the index labeled on the outgoing edge plus 1.

5) The outgoing edge of the root is labeled by the event e and the index 1.

6) The incoming edges of the leaves are only labeled by facts in N with the same index.

7) The edges with the same index have the same state.

In the tree, every node is labeled by a rule in B_{init} to represent how the knowledge is deduced. Additionally, we label the edges with states to indicate when the knowledge deduction rule is applied and how the state transferring rule affects the states. Furthermore, we also label every edge with an index to group the knowledge under the same state together as well as to denote the valid trace of state transferring, which eases the proof of Theorem 1.

The Lemma 1 demonstrates how to replace two directly connected nodes in the derivation tree with one node labeled by a composite rule with the same state and the same index.

Lemma 1. If $R_o \circ f R'_o$ is defined, $R_t \Rightarrow R_o$ and $R'_t \Rightarrow R'_o$, then either there exists f' such that $R_t \circ f R'_t$ is defined and $R_t \circ f' R'_t \Rightarrow R_o \circ f R'_o$, or $R'_t \Rightarrow R_o \circ f R'_o$.

Proof. Let $R_o = H_o : M_o \leftsett{S_o : O_o} f_o$, $R'_o = H'_o : M'_o \leftsett{S'_o : O'_o} V_o$. $R_t = H_t : M_t \leftsett{S_t : O_t} f_t$, $R'_t = H'_t : M'_t \leftsett{S'_t : O'_t} V_t$. There should exist a substitution σ such that $\sigma f_t = f_o$, $\sigma H_t \subseteq H_o$, $\sigma M_t \subseteq M_o$, $\sigma S_t \subseteq S_o$, $\sigma O_t \subseteq O_o$, $\sigma f'_t = f'_o$, $\sigma H'_t \subseteq H'_o$, $\sigma M'_t \subseteq M'_o$, and $\sigma S'_t \subseteq S'_o$, $\sigma O'_t \subseteq O'_o$. Assume $S_o \circ f'_o \leftsett{S'_o : O'_o} \sigma' V_o$. $\sigma(\text{pre}(H_o \cup (H'_o - \{f'_o\})) : \sigma'(M_o \cup M'_o) \leftsett{\sigma'(S_o \cup S'_o) : \sigma'(O_o \cup O'_o \cup S_o \times S_o) \mapsto \sigma' V_o}$ where $S = \{s|f, s \in M'_o\}$.

First case. Suppose $\exists f' \in H'_t$ such that $R'_o \Rightarrow R'_t$. Since $R_o \circ f R'_o$ is defined and $\sigma' f' = \sigma' f_o$, we thus have $\sigma' \sigma' f' = \sigma' \sigma f$. As f' and f_t are unifiable, $S_t \circ f R'_t$ is defined. Let σ_t be the most general unifier, then $\exists t_0$ such that $\sigma = \sigma_t \sigma_1$. Suppose we have $S_i \circ f R_i = \sigma_t (H_i \cup (H'_i - \{f_i\})) : \sigma_t (M_i \cup M'_i) \leftsett{\sigma_t (S_i \cup S'_i) : \sigma_t (O_i \cup O'_i \cup S_i \times S) \mapsto \sigma_t V_i}$ where $S_i \subseteq \{s|f, s \in M'_i\}$. First we prove $\sigma S_i = \{s|\sigma f, s \in \sigma M_i\} \subseteq \{s|f, s \in \sigma M'_i\}\subseteq \{s|f, s \in \sigma M'_i\} = S$. Since $\sigma(\sigma_t (H_i \cup (H'_i - \{f_i\})) : \sigma(\sigma_t (H_i \cup (H'_i - \{f_i\}))) \subseteq \sigma'(H_i \cup (H'_i - \{f'_i\}))$, $\sigma_t (S_t \cup S'_t) \subseteq \{\sigma' S_t \cup S'_t\} \subseteq \{\sigma S_t \cup S'_t\}$, $\sigma_t (O_t \cup O'_t \cup S_t \times S) = \sigma'(\sigma O_t \cup \sigma O'_t \cup \sigma S_t \times \sigma S)$ $\subseteq \{\sigma O_t \cup \sigma O'_t \cup \sigma S_t \times S, \sigma_t (M_t \cup M'_t) \subseteq \sigma'(\sigma M_t \cup \sigma M'_t) \subseteq \{\sigma M_t \cup \sigma M'_t\} \cup (O_t \cup O'_t) \cup S_t \times S\}$, and $\sigma_t V_i = \sigma' V_i = \sigma V_o$. Therefore $R_t \Rightarrow R_o \circ f R'_o$.

Theorem 1. Any event e that is derivable from the initial rules B_{init} if and only if it is derivable from the knowledge base B constructed in Algorithm 1.

Proof. Only if. Assume the event e is derivable from B_{init}, then there should exist a derivation tree T_e for e and every node in the tree is labeled by a rule in B_{init}. According to the add function in Algorithm 1, a rule is removed only if it is implied by another rule, so we have $\forall R \in B_{\text{init}}, \exists R' \in B_v, R' \Rightarrow R$, where B_v appears at the line 30 in Algorithm 1. Hence, we can replace all the rules labeled on tree with the rules in B_v and get a new derivation tree T_v. As can be seen from Algorithm 1, some rules are filtered out from B_v to B_v', so we need to further prove that the nodes in T_v can be composed and transformed until a derivation tree T is formed such that all the rules labeled on T are rules in B_v.

To continue the proof, we consider T_v purely as a tree structure, and each tree consists of a root and several connected subtrees. Next, we prove that each sub-tree is implied by a state consistent rule in B_v. Since the leaves of T_v are implied by the state consistent rules, the sub-trees of the leaves are directly implied by rules in B_v. Given two nodes n and n', n's outgoing edge f is one of incoming edges of n'. Assume the subtree n is implied by a state consistent rule R in B_v, the node n' is labeled by a rule R' and n' has an outgoing edge of f'.

- If $f \not\approx f'$, we have $R \Rightarrow H : M \leftsett{S : O} f$, $R' \Rightarrow H' : M' \leftsett{S' : O'} f \mapsto V$ and $f \in H'$. Since $R_f = (H : M \leftsett{S : O} f)$ $\sigma (H' : \sigma (M' \leftsett{S' : O'} f \mapsto V)$ is defined, according to Lemma 1, the sub-tree n' is also implied by a rule in B_v in two cases. In the first case, there exists f'' in the predicates of R', $R_o \circ f R'_o$ $\Rightarrow R_f$. If f'' is not a singleton, because B_v is the fixed-point of Algorithm 1, there should exist $R'' \in B_v$ such that $R'' \Rightarrow R_f$. So we can merge these two nodes in the tree and the proof continues. Otherwise, i.e., f'' is a singleton, we can detach the sub-tree of n from tree
T, temporarily. With the composition and transformation processing, \(f'' \) may be unified to a non-singleton fact, so the composition could continue. If the other part of the tree has been processed and \(f'' \) is still a singleton, we will prove later that \(n \) can be removed from the tree and the derivation tree is still valid. In the second case, we can remove the node \(n \) and link its incoming links directly to \(n' \), so that the node \(n' \) with more incoming edges is still implied by \(R' \) and the proof continues.

- If \(f = f' \), apparently we have that \(R \) implies the subtree of \(n' \).

We can continue the rule composition until we reach the root so that each subtree in \(T_v \) is implied by a state consistent rule in \(B_v \).

Notice that the states are not properly transferred in the rule that is labeled to the tree \(T_v \), so we also need to reorganize the states in the rule to form a valid state trace. Since all the state duplications appear in the sub-tree are kept in the resulting rule, we will merge them according to the state transformation. Consider the root is labeled by a rule \(R \). According to the derivation tree, some of the edges are labeled by the same index. So we prove in the following iterations, the resulting rule is still in \(B_v \). The index starts with 1, which is same index of the root, and it is increased by 1 after every iteration. If currently the index is \(i \), since the states in the rule are corresponding to the states in the edge, so we can merge the states in the edges labeled by \(i \) together. According to the definition of the derivation tree, from the edges labeled by \(i + 1 \) to the edges labeled by \(i \), there exists a conversion set \(C \) that converts some old states to the new states. Hence, we could construct the mapping function \(m \) defined in the state transformation, and map each \(e \in C \) to a set of states that should be merged (the latest states for the latest state transferring rule). After the state transformation, the largest states in the rule now are labeled by index \(i + 1 \). According to Algorithm 1 case 2, the new rule should be also in \(B_v \). Notice that we have mentioned previously that some rules cannot be composed because the incoming edge of the rule is labeled by a singleton. Along with the state transformations, some singleton may be unified to a non-singleton fact, so the rule composition could continue.

In this way, the rule composition and the state transformation can be conducted until all states left are all labeled by the largest index. If some inner edges are still labeled by singletons, because the adversary can generate new names, he can actively create a new value and label it to that edge, so that he can drop the remaining sub-tree connected by that edge and the remaining derivation tree is still valid. Since the facts in leaves are the events and singletons, including those failed with unification, the resulting rule is in the output knowledge base \(B \).

If, Whenever a rule is added into \(B_v \), it should be composed or transferred from existing rules. Thus all the rules in \(B_v \) should be derivable from \(B_{init} \). Meanwhile \(B \) does not introduce extra rules besides existing rules in \(B_v \), so \(\forall R' \in B \), \(R' \) is derivable from \(B \).

\[\square \]

B. Reachability Analysis

When the knowledge base is constructed, we need to check if the target event is reachable or not. Given a rule in the base, if the predicates are only events and singletons, the adversary can fulfill them by asking the protocol to engage those events and generate new names. For the remaining states in the rule, we then need to check if the adversary has the access to the corresponding object patterns. Assume the accessibility is modeled as a set of state patterns \(P \) according to Section IV-D. We define a state \(s \) as accessible to the adversary if \(\exists p \in P \) such that \(\exists \sigma, \sigma s = p \). For instance, if the attack needs a TPM \(tpm(cary)[p] \) from another participant Cary, while \(Bob \) only have the access to the TPM from himself and not precisely owned TPMs. Since there does not exist such a substitution \(\sigma \) such that \(\sigma tpm(cary)[p] = tpm(bob)[p'] \) or \(\sigma tpm(cary)[p] = tpm(ak)[p'] \), the attack found is impractical. Thus, a query can be answered using a simple algorithm as shown in Algorithm 2. It checks the target event against all the remaining rules in the knowledge base \(B \), and tries to find a rule whose predicates can be fulfilled and states can be accessed by the adversary. If there exists such a rule, the algorithm returns true; otherwise it returns false. We prove the partial correctness of our algorithm as follows.

Theorem 2. An event \(e \) is derivable from the initial rules \(B_{init} \) if and only if there exists a rule in \(B \) such that its conclusion is \(e \) and its states are all accessible to the adversary.

Proof. (If - Partial Soundness) If there is a rule in \(B \) that outputs \(e \). As the rules’ predicates are events and singletons, the adversary can ask the protocol to engage those events and generate new names to fulfill the singletons. When its states in the same partition are unifiable and all unified states are accessible to the adversary, the adversary can have the objects to meet the requirements of those states. Hence, \(e \) is derivable by the rule. According to Theorem 1’s if condition, \(e \) is also derivable from \(B_{init} \).

(Only if - Partial Completeness) If the event \(e \) is derivable from \(B_{init} \), according to Theorem 1’s only if condition, \(e \) is also derivable from \(B \). As the derivation tree is valid, the initial states should be accessible states for the adversary. \[\square \]

Algorithm 2: Query Contradiction Searching

Input : \(B \) - the knowledge base returned by Algorithm 1.

Input: \(e \) - the target event.

Output: \(b \) - if the event is reachable or not.

Algorithm

1. **for** \(f_1, \ldots, f_n : M \rightarrow \{ S \rightarrow O \} \rightarrow f \in B \) and \(f \neq e \) **do**
2. **if** \(\exists \sigma, \forall s, s' \in S, s \sim s' \Rightarrow s \sigma s = s' \sigma s \) and \(s \sigma s \) is accessible **then** return true;
3. **end**
4. return false;
the verification result shows that Bob The results are summarized in Table II. All of the protocols are correctly analyzed within 30 minutes.

Protocol	#Rules	Result	Time
DEP (w.o. reboot) [4]	318	Secure	6.2s
DEP (w. reboot) [4]	1409	Attack	12m 9.5s
Modified DEP [15]	1378	Secure	22m 17.7s
Bitlocker [11]	24	Secure	3ms
NSPK [18]	101	Attack	47ms
NSPK (Lowe) [19]	78	Secure	24ms

TABLE II: Experiment results

"The number of rules generated by our solving algorithm for each protocol.

VI. EXPERIMENTS

Our engineering efforts has realized the proposed approach in a tool named SSPA (Stateful Security Protocol Analyzer). Our tool, all protocol models and evaluation results are available online at [17]. SSPA is implemented in C++ with around 11K LOC. The experiments presented in this section are evaluated with Mac OS X 10.9.1, 2.3 GHz Intel Core i5 and 16G 1333MHz DDR3.

We have tested our tool with three versions of the DEP [4], [15], the Bitlocker protocol [11] and two versions of the Needham-Schroeder Public Key Protocol (NSPK) [18], [19]. All of the protocols are correctly analyzed within 30 minutes. The results are summarized in Table II.

For the DEP example, when the TPM reboot is disallowed, the verification result shows that Bob cannot obtain both of the secret and the proof for his revoke action at the same time. In the meanwhile, we also found several valid traces for Bob to finish the protocol by either opening the envelope or revoking his right. However, when the TPM reboot is allowed, the claimed security property of the DEP is not preserved. In addition to the attack trace described in Section III, SSPA also found several other traces (attacking at different states), which are similar variants to the attack described in Section III. The modified version of the DEP presented in [15] is also proven to be secure in our framework.

The Bitlocker [11] designed by Microsoft also uses TPM to protect its execution state. In the machine equipped with Bitlocker, the hard drive is assumed to be encrypted under a volume encryption key (VEK). The VEK is in turn encrypted by a volume master key (VMK). When the machine is booted, an immutable pre-BIOS will load the BIOS and extend the hash value of the BIOS into the TPM. The pre-BIOS then passes the control to the BIOS. Later, the BIOS can load other components by first extending the hash value of that component into the TPM. The components then could in turn load other components by doing this repeatedly, resulting in a trust chain. Initially, the VMK is sealed by the TPM to a certain PCR value corresponding to a correct boot state of the machine. When the correct state is reached, the VMK can be unsealed to decrypt the hard drive and access its data. Even though the attacker could replace the BIOS and other components in the machine, their hash values will not be the same as the original ones. So the correct state cannot be reached and the VMK remains secure. We model the protocol by assuming that the attacker can read the VMK by either replacing a fake BIOS or a fake loader (a component) in the machine. Otherwise, the attacker cannot access the unsealed data from the machine even if it is unsealed as it is controlled by a trusted component. The verification result shows that Bitlocker protects the VMK from the attacker even when the BIOS and the loader can be replaced.

Lastly, we modeled the Needham-Schroeder Public Key (NSPK) Protocol [18] and its fixed version by Gavin Lowe [19]. We use these two examples to show that our approach also works for stateless protocols. In order to model the nonces exchanged by the participants in NSPK as random numbers, we add two states for the participants when their first message is sent and they are waiting for the second message by treating them as trusted parties.

VII. DISCUSSIONS

In this paper, we have presented a new approach for the stateful security protocol verification. Different from existing tools in the literature, our approach allows for specifying stateful protocols directly (without modifications to the protocols) and it can deal with infinite protocol states. Moreover, our verification procedure is sound and complete if the solving algorithm terminates. We have implemented a tool for our new approach and validated it on a number of protocols. So far, the initial results are encouraging.

When rules are newly composed in the knowledge base, the redundancy checking consumes a large amount of time. This is mainly because of the complexity of pairing states and predicates from different rules and finding all possible substitutions according to Definition 6. For the future work, accelerating the redundancy checking would be very helpful to accelerate the verification process dramatically. In addition, analyzing more stateful protocols would be very interesting. Moreover, adapting our approach to verify stateful protocols with physical properties involved, e.g., time, space, etc. would be promising as well.

REFERENCES

[1] J. A. Garay and P. D. MacKenzie, “Abuse-free multi-party contract signing,” in Proc. 13th International Symposium on Distributed Computing (DISC), ser. LNCS, vol. 1693. Springer, 1999, pp. 151–165.
[2] B. Baum-Waidner and M. Waidner, “Round-optimal and abuse free optimistic multi-party contract signing,” in Proc. 27th International Colloquium on Automata, Languages and Programming (ICALP), ser. LNCS, vol. 1853. Springer, 2000, pp. 524–535.
[3] A. Mukhamedov and M. D. Ryan, “Fair multi-party contract signing using private contract signatures,” Information and Computation, vol. 206, no. 2-4, pp. 272–290, 2008.
[4] K. Ables and M. D. Ryan, “Escrowed data and the digital envelope,” in Proc. 3rd International Conference in Trust and Trustworthy Computing (TRUST), ser. LNCS, vol. 6101. Springer, 2010, pp. 246–256.
[5] B. Blanchet, “An efficient cryptographic protocol verifer based on Prolog rules,” in Proc. 14th IEEE Computer Security Foundations Workshop (CSFW). IEEE CS, 2001, pp. 82–96.
[6] C. J. F. Cremers, “The Scyther tool: Verification, falsification, and analysis of security protocols,” in Proc. 20th International Conference on Computer Aided Verification (CAV), ser. LNCS, vol. 5123. Springer, 2008, pp. 414–418.
[7] M. Arapinis, E. Ritter, and M. D. Ryan, “StatVerif: Verification of stateful processes,” in Proc. 24th IEEE Computer Security Foundations Symposium (CSF). IEEE CS, 2011, pp. 33–47.

[8] S. Meier, B. Schmidt, C. Cremers, and D. A. Basin, “The TAMARIN prover for the symbolic analysis of security protocols,” in Proc. 25th International Conference on Computer Aided Verification (CAV), ser. LNCS, vol. 8044. Springer, 2013, pp. 696–701.

[9] N. A. Durgin, P. Lincoln, and J. C. Mitchell, “Multiset rewriting and the complexity of bounded security protocols,” Journal of Computer Security, vol. 12, no. 2, pp. 247–311, 2004.

[10] J. Mitchell, A. Scedrov, N. Durgin, and P. Lincoln, “Undecidability of bounded security protocols,” in Workshop on Formal Methods and Security Protocols. Citeseer, 1999.

[11] “Bitlocker FAQ,” 2011. [Online]. Available: http://technet.microsoft.com/en-us/library/hh831507.aspx

[12] S. Mödersheim, “Abstraction by set-membership: verifying security protocols and web services with databases,” in Proc. 17th ACM Conference on Computer and Communications Security (CCS). ACM, 2010.

[13] J. D. Guttman, “Fair exchange in strand spaces,” in Proc. 7th International Workshop on Security Issues in Concurrency (SECCO), ser. EPTCS, vol. 7, 2009, pp. 46–60.

[14] ——, “State and progress in strand spaces: Proving fair exchange,” Journal of Automatic Reasoning, vol. 48, no. 2, pp. 159–195, 2012.

[15] S. Delaune, S. Kremer, M. D. Ryan, and G. Steel, “Formal analysis of protocols based on TPM state registers,” in Proc. 24th IEEE Computer Security Foundations Symposium (CSF). IEEE CS, 2011, pp. 66–80.

[16] “Trusted Platform Module.” [Online]. Available: http://www.trustedcomputinggroup.org/developers/trusted_platform_module

[17] “SSPA tool, experiment models and evaluation results.” [Online]. Available: http://www.comp.nus.edu.sg/~li-li/r/sspa.html

[18] R. M. Needham and M. D. Schroeder, “Using encryption for authentication in large networks of computers,” Communication of the ACM, vol. 21, no. 12, pp. 993–999, 1978.

[19] G. Lowe, “An attack on the needham-schroeder public-key authentication protocol,” Information Processing Letters, vol. 56, pp. 131–133, 1995.