Influence of heterogeneity, natural fracture, and bedding plane on fracture propagation in the vicinity of a borehole

Pei Zhang, Tianshou Ma*, Yang Liu
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China

Corresponding author: matianshou@swpu.edu.cn ORCID:0000-0002-8754-9156

Abstract: The majority of lost circulation events during drilling include drilling fluid losses through natural or drilling-induced fractures, but this problem can be prevented by understanding fracture propagation behavior. However, studies have mostly focused on the influence of natural fracture and bedding planes on hydraulic fracture propagation, and few studies have explored the fracture propagation in the vicinity of a borehole. Therefore, the present paper intends to simulate the fracture propagation in the vicinity of a borehole under the joint impact of heterogeneity, natural fracture, bedding planes, and borehole. The theoretical model of flow-rock failure process analysis [20] was introduced, and the uniaxial compressive testing results of Longmaxi shale were obtained to verify the present model. Then, fracture propagation models in the vicinity of a borehole were proposed by considering heterogeneity, bedding planes, and natural fracture. Numerical findings were analyzed and discussed. Results indicated that heterogeneity, bedding planes, and natural fracture significantly influenced fracture propagation in the vicinity of the borehole. As such, this influence should be considered in the analysis and treatment of lost circulation. This study could help elucidate how lost circulation could be prevented during drilling in fractured formations.

1. Introduction
Lost circulation is one of the trickiest problems encountered during drilling [1]. In lost circulation, drilling fluid is partially or completely lost into formations during drilling [2]. Lost circulation leads not only to drilling fluid loss and formation damage but also to the induced wellbore instability, blowouts, and pipe sticking; consequently, lost circulation causes huge economic losses and long non-production time (NPT) [2-12]. The majority of lost circulation events during drilling include drilling fluid losses through natural or drilling-induced fractures; thus, knowledge about fluid loss-related fracture propagation behavior can help prevent this problem [2-3], especially fracture propagation in the vicinity of a borehole.

To understand the fracture propagation in the vicinity of a borehole for lost circulation, Salehi [13] proposed a fracture growth model by using a cohesive zone model (CZM) implemented in FEM software. Kostov et al. [14] also developed a similar fracture propagation model for lost circulation by using the CZM. Feng and Gray [15-16] designed a lost circulation model by using the CZM and Abaqus software. They found that dynamic mud circulation is involved in this lost circulation model. However, studies have mostly focused on drilling-induced fractures for static and dynamic mud circulation, and few studies have explored the influence of natural fracture and bedding planes on fracture propagation in the vicinity of a borehole. Numerous studies have been conducted on the
influence of natural fracture and bedding planes on hydraulic fracture propagation [17-34]. In general, analytical, numerical, and physical models have been utilized; among them, numerical models are the most useful for the analysis of fracture propagation [17-34]. However, these models have mostly described the influence of natural fracture and bedding planes on hydraulic fracture propagation. Few models have been established for the fracture propagation in the vicinity of a borehole under the joint impact of natural fracture, bedding planes, and borehole.

In this study, the flow-rock failure process analysis (F-RFPA) code was utilized to simulate the fracture propagation in the vicinity of a borehole, enhance the understanding on how it could be influenced by natural fracture and bedding planes, and elucidate the measures on how to prevent lost circulation during drilling.

2. Numerical modeling
The F-RFPA code (Dalian Mechanics Software Co., Ltd., China) was utilized to simulate the fracture propagation in the vicinity of a borehole. In the following part, the theoretical model was introduced [35-37].

2.1. Governing equations
The following equations are used:
(1) Equilibrium equation
\[
\frac{\partial \sigma_{ij}}{\partial x_j} + X_j = 0 \quad (i, j = 1, 2, 3)
\] (1)
where \(\sigma_{ij}\) is the total stress in the \(ij\)-plane, and \(X_j\) is the body force in the \(j\)th direction.

(2) Strain–displacement relation
\[
\varepsilon_{ij} = \frac{1}{2}(u_{i,j} + u_{j,i})
\] (2)
where \(\varepsilon_{ij}\) is the strain in the \(ij\)-plane, and \(u_i\) is the displacement in the \(i\)th direction.

(3) Constitutive equation
\[
\sigma'_{ij} = \sigma_{ij} - \alpha P_p \delta_{ij} = \lambda \delta_{ij} \varepsilon_v + 2G \varepsilon_{ij}
\] (3)
where \(\varepsilon_v\) is given as
\[
\varepsilon_v = \varepsilon_{11} + \varepsilon_{22} + \varepsilon_{33}
\] (4)
where \(\sigma'_{ij}\) is the effective stress in the \(ij\)-plane, \(P_p\) is the pore pressure, \(\alpha\) is the coefficient of pore-fluid pressure, \(\lambda\) is the Lame’s coefficient, \(G\) is the shear modulus, \(\delta_{ij}\) is the Kronecker constant, \(\varepsilon_v\) is volume strain, and \(\varepsilon_{11}, \varepsilon_{22},\) and \(\varepsilon_{33}\) are major strains.

(4) Seepage equation
\[
K_{ij} \nabla^2 P_p \delta_{ij} = \frac{1}{Q} \frac{\partial P_p}{\partial t} - \alpha \frac{\partial \varepsilon_v}{\partial t}
\] (5)
where \(K_{ij}\) is the permeability, \(Q\) is Biot’s constant, and \(t\) is time.

(5) Coupling equation [35-37]
\[
K\left(\frac{\sigma_n}{3}, P_p\right) = \xi K_0 \exp\left[-\beta\left(\frac{\sigma_n}{3} - \alpha P_p\right)\right]
\] (6)
where \(K_0\) is the original permeability, \(K\) is the permeability, and \(\xi\) and \(\beta\) are material constants.
2.2. Meso-element model
The local mechanical properties (including Young’s modulus, Poisson’s ratio, and strength) of the elements are assumed to follow Weibull’s distribution because of the heterogeneity of formation [35-37]:

\[\varphi(\omega, m) = \frac{m}{\omega} \left(\frac{\omega}{\omega_0} \right)^{m-1} \exp \left[-\left(\frac{\omega}{\omega_0} \right)^m \right] \] (7)

where \(\omega \) is the element property (Young’s modulus, Poisson’s ratio, or strength), \(\omega_0 \) is the mean value of \(\omega \) of the whole specimen, and \(m \) is a homogeneity index.

According to elastic damage mechanics, the failure of elements occurs when stress exceeds the strength of rock elements, and Young’s modulus after damage can be expressed as [35-37]

\[E = (1 - D)E_0 \] (8)

where \(E \) is the damaged Young’s modulus, \(E_0 \) is the undamaged Young’s modulus, and \(D \) is the damage variable that ranges from 0 to 1.

The elastic damage constitutive law of an element under uniaxial compression and extension is illustrated in Figure 1 [35-37].

![Figure 1. Elastic damage constitutive law under uniaxial compression and extension.](image)

(1) When the uniaxial tensile stress exceeds the tensile strength, element damage occurs; under this condition, this damage is described using the maximum tensile criterion [35-37]:

\[\sigma_j = -f_{t0} \] (9)

The damage variable is assigned as

\[D = \begin{cases} 0 & \varepsilon \geq \varepsilon_{t0} \\ 1 - \frac{f_{t0}}{E_0 \varepsilon} & \varepsilon_{m} \leq \varepsilon < \varepsilon_{t0} \\ 1 & \varepsilon \leq \varepsilon_{m} \end{cases} \] (10)

where \(f_{t0} \) is the residual tensile strength, \(\varepsilon_{t0} \) is the strain at the elastic limit, and \(\varepsilon_{m} \) is the ultimate tensile strain of the element.

(2) When the compressive stress exceeds the shear strength, element damage occurs; in this case, element damage is described using the Mohr–Coulomb criterion [35-37]:

\[F = \sigma_1 - \sigma_3 \frac{1 + \sin \phi}{1 - \sin \phi} \geq f_{c} \] (11)
The damage variable is assigned as

\[
D = \begin{cases}
0 & \varepsilon < \varepsilon_{c0} \\
1 - \frac{f_{cr}}{E_0\varepsilon} & \varepsilon \geq \varepsilon_{c0}
\end{cases}
\]

where \(f_{cr} \) is the residual compressive strength, and \(\varepsilon_{c0} \) is the compressive strain at the elastic limit.

2.3. Model verification

The uniaxial compressive testing results of Longmaxi shale with different coring angles were obtained from a previous study [38], and the coring angles (angle \(\beta \) between the bedding plane and the x-axis) were \(0^\circ, 15^\circ, 30^\circ, 45^\circ, 60^\circ, 75^\circ, \) and \(90^\circ \). The testing results are shown in Figure 2. The Longmaxi shale has an average bedding thickness of 0.2 mm (ranging from 0.12 mm to 0.48 mm), and the numerical model proposed by the F-RFPA\(^{2D} \) code is illustrated in Figure 3; this model consists of 20,000 elements, and the meso-mechanical parameters are listed in Table 1 [38]. The numerical simulation results are presented in Figure 4. The simulated results of uniaxial compressive strength with different coring angles agree with the experimental results. In most cases, the relative error is less than 15%. The causes of this error mainly include two aspects: the heterogeneity of shale rock and the uncertainty of model parameters.

![Figure 2. Stress–strain curves of the layered shale rock with different coring angles.](image)

![Figure 3. Numerical model of the layered shale rock under uniaxial compression.](image)
Table 1. Parameters used in simulation in the F-RFPA2D code.

No.	Parameters	Rock matrix	Bedding
1	Elastic modulus (E_0)	60 GPa	30 GPa
2	Poisson’s ratio (ν)	0.2	0.3
3	Compressive strength (σ_c)	330 MPa	220 MPa
4	Internal friction angle (ϕ)	53°	37°
5	Maximum tensile strain	1.5μe	1.5μe
6	Maximum compressive strain	200μe	200μe
7	Homogeneity index (m)	2	3

Figure 4. Comparison of the experimental and numerical simulation results.

2.4. Numerical modeling

The F-RFPA2D code was utilized to propose four typical numerical cases to simulate the fracture propagation in the vicinity of the borehole (Figure 5):

Figure 5. Four typical numerical models of F-RFPA2D.

(1) Case 1 has a non-layered heterogeneous formation with a drilling-induced fracture, as shown in Figure 5(a). This formation is made of a heterogeneous rock and has a preset drilling-induced fracture, but it has no bedding planes and no natural fracture.
(2) Case 2 has a layered heterogeneous formation without a natural fracture, as illustrated in Figure 5(b). The formation is composed of a heterogeneous rock with bedding planes and a preset drilling-induced fracture, but it does not have a natural fracture.

(3) Case 3 has a non-layered heterogeneous formation with a natural fracture, as presented in Figure 5(c). The formation is a heterogeneous rock with a natural fracture (fracture length of 10 cm) and a preset drilling-induced fracture, but it has no bedding planes.

(4) Case 4 has a layered heterogeneous formation with a natural fracture, as described in Figure 5(d). The formation is a heterogeneous rock with bedding planes, a natural fracture (fracture length of 10 cm), and a preset drilling-induced fracture.

The present model consists of 230,400 elements (480×480), and the meso-mechanical parameters are listed in Table 1. The maximum horizontal in situ stress is 15 MPa, the minimum horizontal in situ stress is 10 MPa, the permeability is 0.0002 mD, the pore pressure coefficient is 0.6, and the tension-to-compression ratio is 10.0.

3. Results and discussion

3.1. Simulation results of case 1: Impact of heterogeneity

The simulation results of the non-layered heterogeneous formation without a natural fracture are shown in Figure 6. When the drilling-induced fracture exists, the wellbore fractures initially form and propagate along the direction of the maximum horizontal principal stress for the non-layered heterogeneous formation. The induced fracture begins to occur when the wellbore pressure gradually increases from 0 MPa to 36.26 MPa. It continues to propagate on a large scale when the wellbore pressure increases to 48.02 MPa. Some bifurcate fractures exist because of the heterogeneity of rock formation. In other words, a fracture network easily forms through heterogeneity formation.

![Figure 6. Fracture propagation in the vicinity of the borehole for case 1.](image)

3.2. Simulation results of case 2: Impact of heterogeneity and bedding planes

The simulation results of the layered heterogeneous formation without a natural fracture are illustrated in Figures 7–9. In this case, the bedding plane angles are 0°, 45°, and 90°. The results indicate that the existing bedding planes significantly influence fracture propagation in the vicinity of the borehole. As such, the fracture in the vicinity of the borehole easily propagates along the bedding planes, especially non-vertical bedding planes, as shown in Figures 7(c) and 8(c). Some bifurcate fractures exist at the fracture tip when the bedding planes are involved. Thus, the influence of bedding planes on the fracture propagation in the vicinity of the borehole cannot be ignored for lost circulation.
3.3. Simulation results of case 3: Impact of heterogeneity and natural fracture

The simulation results of the non-layered heterogeneous formation with a natural fracture are shown in Figure 10. The existing natural fracture significantly affects the fracture propagation in the vicinity of the borehole. This fracture easily changes its path along the natural fracture because of heterogeneity and natural fracture. Fracture propagation begins at the tip of the preset drilling-induced fracture regardless of the existence of the natural fracture. An obvious deflection also occurs at the initial stage of fracture propagation and gradually extends to the natural fracture location. When the natural fracture is vertical, as described in Figure 10(a), the induced fracture extends to, intersects with, and passes through the natural fracture. Thus, a complex fracture network easily forms. When the natural fracture is non-vertical, as displayed in Figures 10(b)–10(c), the induced fracture penetrates along and
bypasses the natural fracture but does not penetrate the natural fracture. Thus, the influence of heterogeneity and natural fracture on fracture propagation cannot be ignored for lost circulation.

![Figure 10](image)

(a) Natural fracture angle of 90° (b) Natural fracture angle of 60° (c) Natural fracture angle of 30°

Figure 10. Fracture propagation in the vicinity of the borehole for case 3.

3.4. **Simulation results of case 4: Impact of heterogeneity, bedding planes, and natural fracture**

The simulation results of the layered heterogeneous formation with a natural fracture are shown in Figure 11. In this case, the bedding plane angle and the natural fracture angle are 0° and 30°, respectively. The fractures extend along the direction of parallel bedding planes. Although an obvious deflection occurs during the connection between the fracture tip and the natural fracture tip, the existence of natural fracture does not change the effective propagation direction of fractures in case 4. In other words, the influence of bedding planes on fracture propagation in the vicinity of the borehole may be higher than that of the natural fracture for horizontal bedding planes (bedding plane angle of 0°). Therefore, the influence of bedding plane must be considered in the analysis of fracture propagation in the vicinity of the borehole, but the influence of natural fracture should be considered depending on actual needs.

![Figure 11](image)

(a) $P_w = 33.2$ MPa (b) $P_w = 34.3$ MPa (c) $P_w = 35.3$ MPa

Figure 11. Fracture propagation in the vicinity of the borehole for case 4 (bedding plane angle of 0° and natural fracture angle of 30°).

4. **Conclusions**

The F-RFPA2D code was utilized to simulate the fracture propagation in the vicinity of a borehole in terms of the influence of heterogeneity, natural fracture, and bedding planes, and the following conclusions can be drawn:

1. The numerical simulated results of the uniaxial compressive strength of Longmaxi shale are consistent with the experimental results. In most cases, the relative error is less than 15%. Thus, the F-RFPA2D numerical model is sufficiently precise for rock failure prediction.

2. Heterogeneity, bedding planes, and natural fracture significantly affect fracture propagation in the vicinity of boreholes. In the presence of these factors, a fracture network easily forms in the
vicinity of a borehole. Thus, their influence should be considered for the analysis and treatment of lost circulation.

References
[1] Aadney BS and Looyeh R 2011 Petroleum rock mechanics: Drilling operations and well design (Oxford: Gulf Professional Publishing)
[2] Feng YC, Jones JF and Gray KE 2016 A review on fracture-initiation and-propagation pressures for lost circulation and wellbore strengthening SPE Drill. Completion 31(2) 134–144
[3] Cook J, Growcock F, Guo Q, Hodder M and van Oort E 2011 Stabilizing the wellbore to prevent lost circulation Oilfield Review 23(4) 26–35
[4] Wu X, Wan F, Chen Z, Han L and Li Z 2020 Drilling and completion technologies for deep carbonate rocks in the Sichuan Basin: Practices and prospects Nat. Gas Ind. B 7(5) 547–556
[5] Guo J, Zheng Y, Li W, Li B, Yuan B and Xu B 2020 Design and application of well cementing technology based on the precise managed pressure balancing method in narrow pressure window hole sections Nat. Gas Ind. B 7(3) 285–291
[6] Yang Y, Yang Y, Wen L, Zhang X, Chen C, Chen K, Zhang Y, Di G, Wang H and Xie C 2021 New progress and prospect of Middle Permian natural gas exploration in the Sichuan Basin Nat. Gas Ind. B 8(1) 35–47
[7] Ma TS, Wu BS, Fu JH, Zhang QB and Chen P 2017 Fracture pressure prediction for layered formations with anisotropic rock strengths J. Nat. Gas Sci. Eng. 38 485–503
[8] Ma TS, Zhang QB, Chen P, Yang CH and Zhao J 2017 Fracture pressure model for inclined wells in layered formations with anisotropic rock strengths J. Petrol. Sci. Eng. 149 393–408
[9] Ma TS, Liu Y, Chen P, Wu BS, Fu JH and Guo ZX 2019 Fracture-initiation pressure prediction for transversely isotropic formations J. Petrol. Sci. Eng. 176 821–835
[10] Ma TS, Liu Y, Chen P and Wu BS 2019 Fracture-initiation pressure analysis of horizontal well in anisotropic formations Int. J. Oil Gas Coal Tech. 22(4) 447–469
[11] Liu Y, Ma TS, Chen P, Wu BS, Zhang X and Wu BL 2020 Effects of permeable plugs on wellbore strengthening Int. J. Rock Mech. Min. 132 104416
[12] Liu Y., Chen P., Wu BS, Ma TS, Wu BL, Zhang X and Jeffrey R 2020 Mechanics of hydraulic fracture growth from a wellbore intersecting natural fractures SPE J. 25(2), 646–661
[13] Salehi S 2012 Numerical simulations of fracture propagation and sealing: Implications for wellbore strengthening (Rolla: Missouri University of Science and Technology) Doctoral Dissertations
[14] Kostov N, Ning J, Gosavi SV, Gupta P, Kulkarni K and Sanz P 2015 Advanced drilling induced fracture modeling for wellbore integrity prediction SPE Annual Technical Conference and Exhibition Society of Petroleum Engineers (SPE 174911)
[15] Feng Y and Gray KE 2018 Modeling lost circulation through drilling-induced fractures SPE J. 23(1) 205–223
[16] Feng Y and Gray KE 2017 Review of fundamental studies on lost circulation and wellbore strengthening J. Pet. Sci. Eng. 152 511–522
[17] Hoagland RG, Hahn GT and Rosenfield AR 1973 Influence of microstructure on fracture propagation in rock Rock Mech. 5(2) 77–106
[18] Zou Y, Ma X, Zhang S, Zhou T and Li H 2016 Numerical investigation into the influence of bedding plane on hydraulic fracture network propagation in shale formations Rock Mech. Rock Eng. 49 3597–3614
[19] Heng S, Yang CH, Guo YT, Wang CX and Wang L 2015 Influence of bedding planes on hydraulic fracture propagation in shale formations Chin. J. Rock Mech. Eng. 34(2) 228–237
[20] Hou ZK, Yang CH, Wang L, Liu PJ and Li Z 2016 Hydraulic fracture propagation of shale horizontal well by large-scale true triaxial physical simulation test Rock Soil Mech. 37(2) 407–414
[21] Hou B, Chen M, Li ZM, Wang YH and Diao C 2014 Propagation area evaluation of hydraulic fracture networks in shale gas reservoirs Petrol. Explor. Dev. 41(6) 833–838
[22] Wan L, Chen M, Hou B, Kao J, Zhang K and Fu W 2018 Experimental investigation of the effect of natural fracture size on hydraulic fracture propagation in 3D J. Struct. Geol. 116 1–11
[23] Lin C, He J, Li X, Wan X and Zheng B. 2017 An experimental investigation into the effects of the anisotropy of shale on hydraulic fracture propagation Rock Mech. Rock Eng. 50(3) 543–554
[24] Liu Z, Chen M and Zhang G 2014 Analysis of the influence of a natural fracture network on hydraulic fracture propagation in carbonate formations Rock Mech. Rock Eng. 47(2) 575–587
[25] Lecampion B, Bunger A and Zhang X. 2018 Numerical methods for hydraulic fracture propagation: a review of recent trends J. Nat. Gas Sci. Eng. 49 66–83
[26] Hoek E and Martin CD 2014 Fracture initiation and propagation in intact rock—a review J. Rock Mech. Geotech. Eng. 6(4) 287–300
[27] Mahrer KD 1999 A review and perspective on far-field hydraulic fracture geometry studies J. Petrol. Sci. Eng. 24(1) 13–28
[28] Liu P, Ju Y, Ranjith PG, Zheng Z, Wang L and Wanniarachchi A 2016 Visual representation and characterization of three-dimensional hydrofracturing cracks within heterogeneous rock through 3D printing and transparent models Int. J. Coal Sci. Technol. 3(3) 284–294
[29] Liu HY, Han H, An HM and Shi JJ 2016 Hybrid finite-discrete element modelling of asperity degradation and gouge grinding during direct shearing of rough rock joints. Int. J. Coal Sci. Technol. 3(3) 295–310
[30] Wang X, Tang Y, Wang S and Schobert HH 2020 Clean coal geology in China: Research advance and its future Int. J. Coal Sci. Technol. 7(2) 299–310
[31] Cheng Y, Wang L, Liu H, Kong S, Yang Q, Zhu J and Tu Q 2015 Definition, theory, methods, and applications of the safe and efficient simultaneous extraction of coal and gas Int. J. Coal Sci. Technol. 2(1) 52–65
[32] Zheng Y, Fan Y, Yong R and Zhou X 2020 A new fracturing technology of intensive stage + high-intensity proppant injection for shale gas reservoirs Nat. Gas Ind. B 7(3) 292–297
[33] Chao X, Wang M, Kang J, Wang S and Liang Y 2020 Fracturing technologies of deep shale gas horizontal wells in the Weirong Block, southern Sichuan Basin Nat. Gas Ind. B 7(1) 64–70
[34] Chang X 2019 Laboratory analysis of liquid injection method on hydraulic fracturing initiation and propagation in deep shale formation Nat. Gas Ind. B 6(6) 652–658
[35] Tang CA, Yang WT, Fu YF and Xu XH 1998 A new approach to numerical method of modeling geological processes and rock engineering problems-continuum to discontinuum and linearity to nonlinearity Eng. Geol. 49(3-4) 207–214
[36] Tang CA, Tham LG, Lee P, Yang TH and Li LC 2002 Coupled analysis of flow, stress and damage (FSD) in rock failure Int. J. Rock Mech. Min. 39(4) 477–489
[37] Zhang HQ, He YN, Tang CA, Ahmad B and Han LJ 2009 Application of an improved flow-stress-damage model to the criticality assessment of water inrush in a mine: A case study Rock Mech. Rock Eng. 42(6) 911–930
[38] Liu Y, Ma TS, Wu H and Chen P 2020 Investigation on mechanical behaviors of shale cap rock for geological energy storage by linking macroscopic to mesoscopic failures J. Energy Storage 29 101326

Acknowledgments

This work was supported by the Sichuan Science and Technology Program (Grant Nos. 2021YFH0047 and 2020JDJQ0055), the Fok Ying-Tong Education Foundation, China (Grant No. 171097), and the Youth Scientific and Technological Innovation Team Foundation of Southwest Petroleum University (Grant No. 2019CXTD09).