Temperature, carbon dioxide and methane

Clive Hambler (clive.hambler@zoo.ox.ac.uk)
University of Oxford

Peter A. Henderson
University of Oxford

Research Article

Keywords: Climate change, Degassing, Outgassing, Productivity, Proxy

DOI: https://doi.org/10.21203/rs.3.rs-558940/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Temperature, carbon dioxide and methane

Clive Hambler (1)*, Peter A. Henderson (1,2)

(1) Department of Zoology, University of Oxford, UK, ORCID 0000-0002-2361-828X (2) PISCES Conservation Ltd, UK, ORCID 0000-0002-7461-1758 * corresponding author clive.hambler@zoo.ox.ac.uk

Abstract

1) Globally-representative monthly rates of change of atmospheric carbon dioxide and methane are compared with global rates of change of sea ice and with Arctic and Antarctic air temperatures. 2) Carbon dioxide is very strongly correlated with sea ice dynamics, with the carbon dioxide rate at Mauna Loa lagging sea ice extent rate by 7 months. 3) Methane is very strongly correlated with sea ice dynamics, with the global (and Mauna Loa) methane rate lagging sea ice extent rate by 5 months. 4) Sea ice melt rate peaks in very tight synchrony with temperature in each Hemisphere. 5) The very high synchrony of the two gases is most parsimoniously explained by a common causality acting in both Hemispheres. 6) Time lags between variables indicate primary drivers of the gas dynamics are due to solar action on the polar regions, not mid-latitudes as is conventionally believed. 7) Results are consistent with a proposed role of a high-latitude temperature-dependent abiotic variable such as sea ice in the annual cycles of carbon dioxide and methane. 8) If sea ice does not drive the net flux of these gases, it is a highly precise proxy for whatever does. 9) Potential mechanisms should be investigated urgently.

Keywords Climate change • Degassing • Outgassing • Productivity • Proxy
Introduction

The atmospheric levels of carbon dioxide have risen during the instrumental record (IPCC 2013). Superimposed on the trend are seasonal cycles. At Mauna Loa, Hawaii, carbon dioxide cycles are very regular and levels typically peak in May of each year, whilst methane, which is less regular, peaks around November. The amplitude of these cycles is generally highest in northern high latitudes, with some recording sites being exceptions and methane variation being more complex in the Northern Hemisphere (Fung et al 1991; Dlugokencky et al 1994; He et al 2017, Dlugokencky et al 2020; Saunois et al 2020; Hambler & Henderson 2020a, b).

The seasonal cycle of carbon dioxide is typically ascribed to the cycles of terrestrial productivity on the large land masses of the Northern Hemisphere, generating high seasonal amplitude at Arctic sites such as Barrow and Alert and with low amplitude at the South Pole and other Antarctic sites (Keeling et al 1989; Keeling et al 2001, 2005; Buermann et al 2007; Keeling 2008; IPCC 2013; He et al 2017; Jiang & Yung 2019). Similarly, the seasonal cycle of methane is typically ascribed to the cycle of wetland and agricultural and livestock production (with large sources on the land masses of the Northern Hemisphere) and to destruction by the OH radical in summer months in each Hemisphere (Fung et al 1991; Dlugokencky et al 1994).

However, the seasonal cycles of carbon dioxide and methane are both very strongly correlated with the seasonal cycle of sea ice, suggesting sea ice could have a dominant causal role in the cycle or is extremely strongly correlated with whatever does (Hambler & Henderson 2020a, b). This unexpected observation requires explanation and invites the hypothesis that high-latitude temperature drives the dynamics of these gases. Temperature drives ice melt and should thus be very highly correlated with the monthly rate of change of these greenhouse gasses - whether or not sea ice is involved in the cycles. We test this prediction here.

Temperature is conventionally believed to drive the annual cycles of methane and carbon dioxide through changes in vegetation and microbial productivity, including agriculture (IPCC 2013). Yet despite great efforts, there is substantial uncertainty in the locations and magnitudes of sources and sinks for these gases (Kort et al 2012; Zhao et al 2016; Resplandy et al 2018; Weber et al 2019; Winkler et al 2019; Saunois et al 2020) with polar regions and
areas of melting sea ice being amongst the most poorly known due to challenging logistics (Vancoppenolle &
Tedesco 2017; Geilfus et al 2018; Bushinsky et al 2019; MOSAiC 2019).

The locations of sources and sinks of carbon dioxide have traditionally been estimated using 'inversions' and
'atmospheric transport' models which rely on climate models to reverse-engineer from observed gas levels where
major fluxes occur (e.g. Keeling et al 1989; Hein et al 1997; Sitch et al 2015; Zhao et al 2016; Saunois et al 2020).
Similarly, for methane, inversions and machine learning models have predicted where and when major ocean-
atmosphere fluxes occur (such as shallow and Arctic and biologically productive waters) using sparse samples
(Dlugokencky et al 1994; Weber et al 2019; Saunois et al 2020). We suggest an improvement on this method is to
look at the similarity and synchrony of observed monthly rates of change of the gases with observations of potential
causal variables, locally and globally. A dominant causal variable should be most strongly correlated with the global
rate - with least temporal lag between timeseries of the gas rate and its local driver and with co-varying annual
amplitudes. Of course, any seasonal variables such as livestock activity or wetland productivity or sea ice extent will
have correlations with methane and carbon dioxide seasonality, but the spatial pattern of lags between timeseries can
help identify the more likely causes and locations. For example, a polar causal variable should have a relatively high
correlation and low lag with a positive gas flux near the pole.

Terrestrial productivity in the Northern Hemisphere is typically measured by NDVI (Keeling et al 1989; Keeling et
al 2001; Buermann et al 2007) which is less strongly correlated with carbon dioxide rates than are sea ice rates
(Hambler & Henderson 2020a); to our knowledge no region has been shown to have extremely high temporal
synchrony and hence statistical correlation with the global carbon dioxide rate. Buermann et al (2007) do not present
correlations of $r > 0.7$, and include significance values of $p < 0.1$. A "strong" correlation coefficient of 0.74 between
the seasonal cycle amplitude of carbon dioxide and Northern Hemisphere land NDVI was detected by He et al
(2017), with the highest local correlations between carbon dioxide levels and NDVI discovered being $r > 0.9$.
Oceanic fluxes have been deduced using a grid showing cohesion between temperature anomaly and carbon dioxide
levels at Mauna Loa (Park 2009).

Given the relatively strong correlations we have found with sea ice (Hambler & Henderson 2020a, b), we predict
very strong synchrony between polar air temperatures and the high latitude fluxes of methane and carbon dioxide
(driven mainly by the annual cycle of solar elevation). We hypothesize high-latitude air temperatures drive sea ice
dynamics and snow dynamics and thence might influence greenhouse gas dynamics. Such strong relationships are
not presented in the review of the carbon cycle that informs international climate policy (IPCC 2013) and could focus
greater attention on high latitude sites and fluxes.

Results

a) Globally representative atmospheric gas measurements

The monthly time series for carbon dioxide rate from Mauna Loa, global sea ice extent rate and an Arctic
temperature (Alert, Canada) are given in Fig. 1 and Fig. 2.

![Graph showing correlations between carbon dioxide rate, sea ice extent, and Arctic temperature.]

Fig. 1 Global monthly carbon dioxide rate (measured at Mauna Loa, lagged 7 months) vs. global sea ice extent rate.

$r = 0.79$ at lag = 7 months; $p < 0.001$
Fig. 2a Monthly carbon dioxide rate Mauna Loa (lagged 1 month) vs. temperature at Alert (inverted)

Fig. 2b Monthly carbon dioxide rate Mauna Loa (lagged 1 month) vs. temperature at Alert, Canada (inverted), 6 month moving average for both variables
Fig. 2c Monthly carbon dioxide rate Mauna Loa (lagged 1 month) vs. temperature at Alert, Canada (inverted), using full continuous monthly Mauna Loa CO₂ record from July 1976

Fig. 2d Monthly carbon dioxide rate Mauna Loa (lagged 1 month) vs. temperature at Alert, Canada (inverted), 6 month moving average for both variables, using full continuous monthly Mauna Loa CO₂ record from July 1976

The monthly time series for carbon dioxide rate from Mauna Loa and an Antarctic temperature (South Pole) are given in Fig. 3.
Fig. 3a Monthly carbon dioxide rate Mauna Loa (lagged 7 months) vs. temperature at South Pole (inverted)

Fig. 3b Monthly carbon dioxide rate Mauna Loa (lagged 7 months) vs. temperature at South Pole (inverted), 6 month moving average for both variables
Fig. 3c Monthly carbon dioxide rate Mauna Loa (lagged 7 months) vs. temperature at South Pole (inverted), using full continuous monthly Mauna Loa CO₂ record from July 1976.

The monthly time series for methane rates averaged from a global network of sites, and from Mauna Loa, are plotted against global sea ice extent rate in Fig. 4 and Fig. 5.

Fig. 4 Monthly global average methane rate (lagged 5 months) vs. global sea ice extent rate. \(r = 0.78 \) at lag = 5 months; \(p < 0.001 \).
Fig. 5 Monthly methane rate Mauna Loa (lagged 5 months) vs. global sea ice extent rate

Globally representative carbon dioxide and methane rates are compared in Fig. 6.

Fig. 6 Global carbon dioxide rate (Mauna Loa, lagged 2 months) vs. global methane rate

b) Arctic. Monthly time series for carbon dioxide and methane rates at Alert (Canada) plotted against Alert temperature and Northern Hemisphere snow extent rate, are given in Figs. 7 - 9.
Fig. 7 Monthly carbon dioxide rate Alert vs. temperature at Alert (inverted)

Fig. 8 Monthly methane rate Alert vs. temperature at Alert (inverted)
Fig. 9 Monthly methane rate Alert vs. Northern Hemisphere snow extent rate

Time series for Arctic sea ice extent rate and a local temperature (Alert) are given in Fig. 10

c) Antarctic

Monthly time series of carbon dioxide rate and methane rate at the South Pole, and temperature at the South Pole, are given in Figs. 11-13.
Fig. 11 Monthly carbon dioxide rate South Pole (lagged 1 month) vs. monthly methane rate South Pole

Fig. 12 Monthly carbon dioxide rate South Pole (lagged 1 month) vs. temperature at South Pole (inverted)
Fig. 13a Monthly methane rate South Pole vs. temperature at South Pole (inverted). $r = 0.88$ at zero lag; $p < 0.001$

Fig. 13b Monthly South Pole methane rate vs. temperature at South Pole (inverted), using full continuous monthly methane record from February 1983

An example of the similarity of South Pole methane rate phenology to another Southern Hemisphere site, Cape Grim, is given in Fig. 14.
Fig. 14 Monthly methane rate South Pole vs. monthly methane rate Cape Grim (Tasmania)

Time series for Antarctic sea ice rate, a local temperature and South Pole methane rate are given in Figs. 15 and 16.

Fig. 15 Monthly Antarctic sea ice extent rate vs. temperature at South Pole (inverted)
Fig. 16 Monthly Antarctic sea ice extent rate vs. monthly methane rate South Pole, 6 month moving average for both variables.

Fig. 17a Monthly methane rate Mauna Loa vs. monthly methyl chloroform rate Mauna Loa.
Fig. 17b Monthly methane rate South Pole vs. monthly methyl chloroform rate South Pole

Fig. 18a Monthly carbon dioxide rate Mauna Loa (20°N) lagged 3 months vs. monthly inverted NDVI rate North America and Eurasia, 35°N to 70°N (NAEUA3570)
Discussion

Air temperature at or near the Poles peaks in very close synchrony with regional peaks in sea ice melt (Figs. 10 and 15). It will also be correlated with a range of other abiotic and biotic variables with various lags, such as Northern Hemisphere snow (Fig. 9) and Greenland terrestrial ice melt. Air temperature at high latitude sites leads the global carbon dioxide rate with a greater lag of carbon dioxide behind the Antarctic than the Arctic temperature (Fig. 2 and Fig. 3).

The rates of change of globally representative levels of carbon dioxide and methane are very strongly correlated with the rate of change of global ('Arctic plus Antarctic') sea ice (Figs. 1 and 4). The rate of change of methane at Mauna Loa has similar phenology but greater amplitude (Fig. 5). At the South Pole, methane rates are very highly synchronous with Antarctic sea ice extent rates (Fig. 16), as are other regional methane rates (Hambler & Henderson 2020b). The lag of 5 - 7 months between the peak Antarctic temperature (and sea ice melt) and the fastest decline of global methane and global carbon dioxide suggest a strong Antarctic influence on these gases (Fig. 1 and Fig. 4). It may take months for the effects of temperature on gas flux in the Antarctic to reach the Northern Hemisphere.
The extremely strong predictive power of global total sea ice for carbon dioxide and methane is notable - revealing possible causality or high predictive power for the actual cause. The two peaks in global sea ice rate result from the peak temperatures in the two Hemispheres. Global carbon dioxide and methane rates also have twin peaks which are similarly separated (Fig. 6). We propose that whatever dominates the fluxes of these gases makes strong contributions at high latitudes in both Hemispheres. For carbon dioxide we propose (on the basis of seasonal amplitudes and lags) that there is a particularly strong contribution from sea ice melt and calcium carbonate dissolution in the Greenland area (Hambler & Henderson 2020a).

Temperature in at least one Arctic recording site has a close synchrony with carbon dioxide (Fig. 7) and methane (Fig. 8) flux rates at the site (Alert, Canada). Other high-latitude Northern Hemisphere recording sites in the NOAA network have similar carbon dioxide and methane phenology to Alert (Hambler & Henderson, 2020a, b). Peak negative carbon dioxide flux (indicating drawdown or destruction of the gas) usually occurs synchronously with peak atmospheric temperature in the Arctic summer (July, Fig. 7). This is also synchronous with peak decline in Arctic ice extent (Fig. 10). However, peak negative methane flux at Alert (Fig. 8) occurs about one month earlier than peak temperature and peak sea ice melt in the whole Arctic, which we suggest results from an influence of the biota or other abiotic factors on methane dynamics in the Arctic. Arctic sea ice as a whole can not be the dominant causal variable in this region at least, but there are regional differences in sea ice phenology, and Alert methane peak decline is more closely synchronous with the Barents Sea ice rate (Hambler & Henderson, unpublished). Peak rate of decline of Arctic methane is also closely synchronous with peak snow extent decline in the Northern Hemisphere, with Alert lagging snow melt rate by about a month (Fig. 9), consistent with putative terrestrial influences such as increased methanogenic microbial activity. Peak methane emission from Arctic mires can occur near peak summer air temperature (Jackowicz-Korczyński et al 2010).

Peak negative methane flux at the South Pole is synchronous with peak temperature at the South Pole (Fig. 13) but carbon dioxide rate at the South Pole lags one month behind the peak temperature which occurs December / January (Fig. 12). Similarly, methane rates slightly lead carbon dioxide rates globally and at Mauna Loa (Figs. 4 - 6). Intriguingly, South Pole temperature peaks simultaneously with peak rates of decline in both methane and carbon dioxide at the coastal and marine Antarctic sites in the NOAA network (Palmer, Syowa, Halley, Drake Passage) and is also simultaneous with peak Antarctic sea ice melt (Hambler & Henderson, 2020a, b). There may be differential
transport, production or removal processes for methane and carbon dioxide after a synchronous monthly pattern is
imprinted in the two gases at the edge of the Antarctic continent. High latitude sites in the Southern Hemisphere
have very similar methane phenology (e.g. Fig. 14 and Hambler & Henderson 2020b) suggesting a very well-mixed
southern air mass (as per Dlugokencky et al 1994) and/or a large-scale causal process.

The synchronous decline and rise in carbon dioxide and methane at many sites would most parsimoniously be
explained by a single mechanism. These results are broadly consistent with our proposals that sea ice is either
involved in the decline of atmospheric carbon dioxide and methane or is extremely strongly correlated with an
unknown variable causing fluxes of the gases (Hambler & Henderson 2020a, b). We argue the extremely high
correlations between sea ice and fluxes of both gases are more plausibly due to simple physical or chemical
processes than to ecological ones (Hambler & Henderson 2020a, b). In particular, we suggest the peak negative gas
rates may relate to ice melt and absorption by cold water undersaturated in these gases (Wiesenbarg & Guinasso Jr
1979). Similarly, ocean temperature was suggested to drive lagged carbon dioxide changes through solubility
changes (Park 2009). The peak positive rates may relate to expulsion of gas during sea ice formation (degassing),
marine emissions, and other physical and biological processes (Hambler & Henderson 2020a, b). Mechanisms
coupling sea ice and the atmosphere (such as brine drainage, modulation of upwelling, and ikaite dissolution cycles)
are not yet well represented qualitatively or quantitatively in biogeochemical models (Kort et al 2012; Damm et al
2015; Vancoppenolle & Tedesco 2017) and their magnitudes may have been underestimated.

The conventional explanation of the terrestrial biota of the Northern Hemisphere driving the carbon dioxide seasonal
cycle (Keeling et al 1989; Keeling et al 2001, 2005; Buermann et al 2007; Keeling 2008; IPCC 2013; He et al
2017; Jiang & Yung 2019) does not explain the similar patterns of global carbon dioxide and methane which have
many different biological and abiotic sources and sinks (IPCC 2013). The similar patterns of seasonal variation of
CO\textsubscript{2} concentration and 13C isotopic fraction at several locations is puzzling if the fractionation mechanism is biotic
and predominantly northern (Keeling et al 2005) but not if it is physical and the same in both Hemispheres. Isotopes
are in any case of limited use in identifying carbon fluxes because different sources can have the same fractions
(Salby 2012).
Measured by NDVI, terrestrial productivity has relatively weak synchrony and curve shape similarity with carbon
dioxide rates, in any large region, even with lags (Fig.18; Hambler & Henderson 2020a), making this a less likely
driver than sea ice rates despite common belief. For the period 2003-2018 inclusive, the cross correlation between
sea ice volume and carbon dioxide rates ($r = 0.90$) is stronger than between NDVI (35°N -70 °N) and carbon dioxide
rates ($r = 0.62$), Hambler & Henderson (2020a). Alternatively, NDVI may be of limited value in detecting carbon
fixation rates despite its conventional use for this purpose - and dependence of flux on precipitation or other factors
affecting productivity might be expected to introduce noise and weaken the relationship further. Terrestrial fluxes of
carbon dioxide are not as well known as many imagine, and much recent data has been surprising - as with periods of
emission from tropical forests or large fluxes over deserts (e.g. Mearns 2015; Qin et al 2021). Those supporting the
conventional ‘consensus’ view have yet to locate areas of the planet with such strong correlations as we find with
global carbon dioxide rates - yet probably have an intuitive feeling such areas exist since this is easier to accept than
to reject the current paradigm.

A major factor implicated in removing atmospheric methane, the hydroxyl radical (OH) (Dlugokencky et al 1994;
Mastepanov et al 2008; Salby 2012; Ciais et al 2013) is created by photodissociation and thus would be expected to
be temperature-dependent with latitudinal variation in amplitude. Indeed, OH concentration is highest in the tropics
(Hein et al 1997; Reidel & Lassey 2008). If as is widely assumed OH is dominant in global methane dynamics it
would be expected to cause lagged fluxes of methane at the polar sites. The seasonal low of methane level near the
South Pole occurs when OH is assumed high in the austral summer (Dlugokencky et al 1994). However, methane
rate lags further behind peak temperature nearer the equator (Hambler & Henderson 2020b) suggesting net methane
loss is not fastest where there is most sunlight. The relationship between methane rates and methyl chloroform rates
is relatively weak (e.g. Fig. 17 and Hambler & Henderson, unpublished). Moreover, to our knowledge there is no
reported directly causal reason for OH to vary synchronously with carbon dioxide rate (as it often does regionally).
Indeed, the positive modelled correlation between marine methane emission and photosynthetic productivity (Weber
et al 2019) would argue against synchrony with carbon dioxide release.

A lag of 7 months between temperature and carbon dioxide rate is consistent with the observed lag of about 9 - 10
months between temperature and carbon dioxide level (Humlum et al 2013; Salby 2013), suggesting South Pole air
temperature is a very good proxy for a variable driving the annual carbon cycle. South Pole air temperature and
Antarctic sea ice extent rate should both have predictive power for the ‘global’ carbon dioxide level 10 months in advance. Our results are consistent with a proposed sequence of events driving carbon dioxide changes starting in the Southern Hemisphere (Humlum et al 2013). Tropical ocean temperature anomaly is also significantly coherent with lagged carbon dioxide level (Park 2009); temperature fluctuations at gridpoints in North East America and the North Atlantic but not polar regions were also significantly coherent with Mauna Loa carbon dioxide fluctuations; it is possible the difference from our result reflects Park’s use of the Hadley Centre’s HadCrut3 temperature anomaly, rather than temperature, and carbon dioxide levels, rather than rates.

Critiques of our methods and conclusions might suggest that there are stronger terrestrial flux correlations with the gas rates that have yet to be identified, and that the recorded quantities (moles) of carbon dioxide or methane in sea ice are insufficient to cause the global flux changes. Our results are indeed inconsistent with current estimates of gas budgets (e.g. Dlugokencky et al 1994; Ciais et al 2013; Saunois et al 2020). Our response is that it is circular reasoning to use existing sampling of quantities and flux measurements to argue our predictions on under-sampled quantities must be wrong. Falsification of our hypotheses would require much more comprehensive spatial and temporal coverage of gas levels (such as satellites might provide). Whilst some carbon stores (such as in sea ice itself) might be lower than we predict, a combination of several temperature-dependent fluxes and stores in the carbon cycle might combine to reach the magnitudes required. Although sparse, many measurements of carbon dioxide phenology in polar regions show similar timings of positive and negative fluxes that are in general agreement with an involvement of sea ice and calcium carbonate (ikaite) dissolution (Hambler & Henderson 2020a). However, high temporal and spatial variability suggests determination of net annual flux from all regions will require hourly or daily, consistent sampling at large scales and more systematic analysis. Analyses and animations of the globe showing rates of change of gases, rather than levels, may be particularly informative and convincing.

Inter-annual variation in monthly rates leads to net accumulation or loss of methane and carbon dioxide from the atmosphere. Both the amplitude and phase of methane rates in many sites in the Southern Hemisphere south of about 25°S are very similar (Hambler & Henderson 2020b, and e.g. Fig. 14) suggesting large-scale common forcing. A variable such as temperature which correlates strongly with the amplitude of the annual cycle (e.g. Fig. 13) could help explain net global trends: for example, warm years generally have higher sea ice melt rates and more negative gas rates which might be partially caused by dissolution in melt water and changes in upwelling of gas-laden water.
The monthly timeseries of sea ice extent we use (Table 1) are presumably created with relatively consistent methods between years but are only provided since 2006. There may be too little statistical power to examine in detail relationships between sea ice and annual rate - but Hambler & Henderson (2020a) demonstrate annual carbon dioxide rates correlate strongly with global and oceanic lower tropospheric temperature and thus mechanisms involving ice could be hypothesized. The selected longer timeseries we have examined do not suggest recent years are anomalous (Fig. 2c; Fig. 2d; Fig. 3c; and Fig. 13b) and these warrant further analysis.

Conclusions

We suggest other variables be examined that might be influenced by temperature or insolation which might drive fluxes of carbon dioxide and methane. These include, for example, marine and terrestrial productivity, upwelling rates, sea temperature depth profiles, glacial and ice shelf melt and calving, winds, and the hydroxyl radical (for methane). Isolating the relative contributions of such factors would require far more data, although the sharp decline of atmospheric carbon dioxide and methane precisely at the time of peak ice melt suggests dissolution in temporarily cold water is a major component. However, our correlations between sea ice rates, carbon dioxide rates and methane rates are the strongest with a putative driver of global greenhouse gas dynamics that we are aware of - and we suggest they are a priority for further investigation and empirical tests of causality and mechanism. The global and Antarctic cycle of both gases have similarities suggesting the same processes or regions are involved in the dominant fluxes for both, despite their very different biological properties.

If temperature drives the annual cycle of carbon dioxide and methane it should be no surprise if variation in temperature between years causes changes in the annual rate of accumulation or decline of these gases (Hambler & Henderson 2020a, b). Variation in the shape of the monthly temperature curve (e.g. Fig. 3c) can be used to predict variation in the monthly change of the gases - and hence monthly levels. A common mechanism could cause the observed similarity of long term changes in these gases (Salby 2012, 2013). The phase relationship between temperature and carbon dioxide has been examined to help elucidate the possible direction of causality (Stips et al 2016; Faes et al 2017) and the lags we find between time series are consistent with carbon dioxide being the response variable.
The current paradigm for the carbon cycle is supported by weaker correlations than the paradigm we propose. Whilst paradigm shifts require strong evidence, a failure to thoroughly explore stronger correlations would be scientifically negligent. If potential processes with appropriately large magnitudes are discovered though correlations, large scale experiments will be needed to test causation. Given the high economic, social and environmental costs (Hambler & Canney 2013) of attempting to manipulate the flux of greenhouse gases it is paramount that natural fluxes be identified and partitioned to deduce the relative scale of human influence upon them.

Methods

We use the datasets in Table 1.

Variable	Data source	
Atmospheric CO\(_2\)	NOAA GML Carbon Cycle Cooperative Global Air Sampling Network, 1983-2019, Version: 2020-07-24	
Mauna Loa, Alert and South Pole	https://www.esrl.noaa.gov/gmd/dv/data/	ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask
Monthly flask	Accessed 1 August 2020	
	Dlugokencky et al (2020a)	
Atmospheric CH\(_4\)	NOAA GML Carbon Cycle Cooperative Global Air Sampling Network, 1983-2019, Version: 2020-07-24	
Atmospheric CH\(_4\) (continued)	https://www.esrl.noaa.gov/gmd/dv/data/	ftp://aftp.cmdl.noaa.gov/data/trace_gases/ch4/flask
Mauna Loa, Alert, Cape Grim and South Pole	https://www.esrl.noaa.gov/gmd/dv/data/	
Monthly flask	Accessed 1 August 2020	
	Dlugokencky et al (2020b)	
Atmospheric CH\(_3\)	https://esrl.noaa.gov/gmd/ccgg/trends_ch4/	
Globally-averaged monthly data	https://esrl.noaa.gov/gmd/ccgg/trends_ch4/	
	Dlugokencky (2021)	
Atmospheric methyl chloroform	Methyl chloroform data from the NOAA/ESRL halocarbons in situ program	https://www.esrl.noaa.gov/gmd/dv/data/
Gas chromatograph hourly samples	https://www.esrl.noaa.gov/gmd/dv/data/	
	Accessed 29 March 2021	
NDVI	https://esrl.noaa.gov/gmd/ccgg/trends_ch4/	
	MDOIS satellite imagery MOD13C2 product as 5 kilometre monthly mean global imagery	
	Accessed July 2019	
We examine atmospheric gas levels for a site considered globally representative for carbon dioxide (Mauna Loa, Hawaii, USA) (IPCC 2013), and a global average estimate of monthly methane (Dlugokencky 2021). We also examine methane rates at Mauna Loa since these are measurements from what might also be a representative site for methane.

Within the NOAA Global Monitoring Laboratory network of atmospheric gas recording sites we examine the most northerly site (Alert, Canada) and the most southerly (South Pole) since these would be predicted to respond strongly...
to any temperature-dependent forcing. Having examined all sites in this network with monthly flask data we selected Cape Grim (Tasmania, Australia, latitude 41°S) as an illustration of the high similarity of phenology of the South Pole to some sites at lower latitudes.

We do not use models of atmospheric transport of gas but instead make the minimalistic assumption that gas from a polar region will take longer to reach or cross the equator than to reach nearby sites. We assume the shape of the seasonal gas flux curve will be most similar to the curve of the causal variable near the site of the causal variable (due to mixing).

Temperature data (average monthly values in degrees Centigrade) were obtained for meteorological stations at the South Pole and Alert as examples of very high-latitude sites where local gas levels are also monitored. The Alert data were rescaled by subtracting 100, to make all values negative. Temperature values were inverted to visually compare synchrony of peak temperature with peak negative net fluxes of the gases, since we have previously established peak negative flux is tightly synchronous with sea ice melt at high latitudes (Hambler & Henderson 2020a, b).

Recording of the OH radical in the atmosphere is very difficult, so is usually done indirectly using methyl chloroform (CH_3CCl_3) which OH reacts with and hence lowers the atmospheric concentration (Ravishankara & Albritton 1995; Hein et al 1997; Reidel & Lassey 2008). In the annual cycle, low levels of methyl chloroform should correspond to high levels of OH.

We follow the classic use of NDVI to locate likely carbon dioxide fluxes due to terrestrial vegetation productivity (Keeling et al 1989; Buermann et al 2007; He et al 2017). There is high synchrony in monthly NDVI rates between the Northern Hemisphere latitudinal belts and continents (Hambler and Henderson 2020a) and thus for simplicity of presentation we selected data for North America and Eurasia, 35°N to 70°N, which has high amplitude (as does recorded carbon dioxide flux at northern high latitudes) and which captures a substantial area of these continents. Use of NDVI for the full Northern Hemisphere or a narrower high latitude belt would not affect our conclusions (Hambler & Henderson 2020a). We invert monthly data for NDVI to give an approximate measure of a lack of
productivity (indicating periods which have a net carbon dioxide sink). These are rescaled by a factor of 1000 for clarity.

Methodological consistency is essential in time series analysis (Henderson 2021) so we use datasets which are very likely to have been quality controlled for methodological drift. A monthly database of sea ice extent is easily available from NSIDC from January 2006, which we therefore use as the start date. Arctic and Antarctic extents were used to calculate the rate for the 'global' sea ice extent (which we term 'Arctic plus Antarctic' rate as in Hambler & Henderson 2020a, b). Longer timeseries are available and presented for selected variables, such as the full continuous carbon dioxide record at Mauna Loa from July 1976, to visually assess if more recent years have a very different pattern.

Rates of change for variables were derived as follows: rate in month 2 is the mean value in month 2 minus the mean value in month 1.

Statistical analysis was based on the R platform. Cross correlations and consideration of autocorrelation were performed as in Hambler & Henderson (2020b). For pairs of time series, cross correlations and 95% confidence bounds for lags of up to +/- 12 months were calculated using the ccf function in the tseries R package. These results were used to identify the lag producing the highest correlation and the rcorr function then used to calculate the Pearson correlation and associated probability that it could be generated by random chance. Because we find probabilities are near zero for numerous of our results, which would require many digits to present, significance values are all presented as p < 0.001.

Due to data availability and other constraints at the time of this work, some time series have different end dates or missing values so are not fully comparable and not all are analysed statistically. Statistical analyses are only performed here for the global levels of methane and carbon dioxide and for one other time series for illustrative purposes (showing a tight visual fit is also supported statistically). The results of any analysis are given in the Figure captions. Previous work (Hambler & Henderson 2020a, b and unpublished) has established that close visual fits
using the minima in such time series always have high statistical correlations and often identify the lag between them; this can be confirmed if the work is replicated.

Data availability Statement

Data are available from the sources in Table 1.

References

Buermann, W., Lintner, B.R., Koven, C.D. et al (2007) The changing carbon cycle at Mauna Loa Observatory. *Proceedings of the National Academy of Sciences*, 104, 4249-4254.

Bushinsky, S.M., Landschützer, P., Rödenbeck, C. et al (2019) Reassessing Southern Ocean air sea CO₂ flux estimates with the addition of biogeochemical float observations. *Global Biogeochemical Cycles*, 33, 1370-1388.

Ciais, P., Sabine, C., Bala, G. et al (2013) Carbon and other biogeochemical cycles. In: *Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change* (ed. by T. Stocker, D. Qin, G.-K. Plattner et al), pp. 465-570. Cambridge University Press, Cambridge, United Kingdom.

Damm, E., Rudels, B., Schauer, U. et al (2015) Methane excess in Arctic surface water - triggered by sea ice formation and melting. *Scientific Reports*, 5, 16179.

Dlugokencky, E. J., Steele, L., Lang, P. M. et al (1994) The growth-rate and distribution of atmospheric methane. *Journal of Geophysical Research: Atmospheres*, 99, 17021-17043.

Dlugokencky, E.J., Mund, J.W., Crotwell, A.M. et al (2020a) Atmospheric carbon dioxide dry air mole fractions from the NOAA GML Carbon Cycle Cooperative Global Air Sampling Network, 1968-2019, Version: 2020-07. https://doi.org/10.15138/wkgj-f215. Accessed 1 August 2020.

Dlugokencky, E.J., Crotwell, A.M., Mund, J.W. et al (2020b) Atmospheric methane dry air mole fractions from the NOAA GML Carbon Cycle Cooperative Global Air Sampling Network, 1983-2019, Version: 2020-07, https://doi.org/10.15138/VNCZ-M766. Accessed 1 August 2020.

Dlugokencky, E. (2021) Ed Dlugokencky, NOAA/GML (www.esrl.noaa.gov/gmd/ccgg/trends_ch4/). Accessed 1 January 2021.

Faes, L., Nollo, G., Stramaglia, S. et al (2017) Multiscale granger causality. *Physical Review E*, 96, 042150.
Fung, I., John, J., Lerner, J. et al (1991) Three-dimensional model synthesis of the global methane cycle. *Journal of Geophysical Research, 96*, 13033-13065.

Geilfus, N.-X., Pind, M., Else, B. et al (2018) Spatial and temporal variability of seawater pCO$_2$ within the Canadian Arctic Archipelago and Baffin Bay during the summer and autumn 2011. *Continental Shelf Research, 156*, 1-10.

Hambler, C. & Canney, S.M. (2013) *Conservation*. Cambridge University Press, Cambridge, United Kingdom.

Hambler, C. & Henderson, P.A. (2020a) Sea ice and carbon dioxide. Working Paper, version 2. https://ora.ox.ac.uk/objects/uuid:640a0c7e-6b55-4aff-a9cc-f47f6b490254

Hambler, C. & Henderson, P.A. (2020b) Sea ice and methane. Working paper, version 2. https://ora.ox.ac.uk/objects/uuid:52b0e80f-7358-4b88-8941-55068738638e.

He, Z.H., Zeng, Z.C., Lei, L.P. et al (2017) A data-driven assessment of biosphere-atmosphere interaction impact on seasonal cycle patterns of XCO2 Using GOSAT and MODIS observations. *Remote Sensing, 9*, 251.

Hein, R., Crutzen, P. J. & Heimann, M. (1997) An inverse modelling approach to investigate the global atmospheric methane cycle. *Global Biogeochemical Cycles, 11*, 43-76.

Henderson, P.A. (2021). *Southwood's Ecological Methods*. 5th Edn. Oxford University Press, Oxford, United Kingdom.

Humlum, O., Stordahl, K. & Solheim, J.-E. (2013) The phase relation between atmospheric carbon dioxide and global temperature. *Global and Planetary Change, 100*, 51-69.

IPCC (2013) *Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change* (ed. by T. Stocker, D. Qin, G.-K. Plattner et al), Cambridge University Press, Cambridge, United Kingdom.

Jackowicz-Korczyński, M., Christensen, T.R., Bäckstrand, K. et al (2010) Annual cycle of methane emission from a subarctic peatland. *Journal of Geophysical Research, 115*, G02009.

Jiang, X. & Yung, Y.L. (2019) Global patterns of carbon dioxide variability from satellite observations. *Annual Review of Earth and Planetary Sciences, 47*, 225-245.

Keeling, C.D., Bacastow, R.B., Carter, A. et al (1989) A three-dimensional model of atmospheric CO$_2$ transport based on observed winds: 4. Mean annual gradients and interannual variations. *Aspects of climate variability in the Pacific and the Western Americas, 55*, 305-363.

Keeling, C.D., Piper, S.C., Bacastow, R.B. et al (2005). Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and oceans from 1978 to 2000: observations and carbon cycle implications. In EPRINTS-BOOK-
Hambler, C. & Henderson, P.A. (2021) Temperature, carbon dioxide and methane.

TITLE University of Groningen, Centre for Isotope Research.

Keeling, C.D., Piper, S.C, Bacastow, R.B. et al (2001) Exchanges of atmospheric CO\textsubscript{2} and 13CO\textsubscript{2} with the terrestrial biosphere and oceans from 1978 to 2000. In: Exchanges of atmospheric CO\textsubscript{2} and 13CO\textsubscript{2} with the terrestrial biosphere and oceans from 1978 to 2000. I. Global aspects, SIO Reference Series, No. 01-06, pp. 1-88.

Scripps Institution of Oceanography, San Diego.

Keeling, R.F. (2008) Recording Earth's vital signs. Science, 319, 1771-1772.

Kort, E. A., Wofsy, S. C., Daube, B. C. et al (2012) Atmospheric observations of Arctic Ocean methane emissions up to 82 degrees north. Nature Geoscience, 5, 318-321.

Mastepanov, M., Sigsgaard, C., Dlugokencky, E.J. et al (2008) Large tundra methane burst during onset of freezing. Nature, 456, 628–630.

Mearns, E. (2015). CO\textsubscript{2} - The view from space - update. http://euanmearns.com/co2-the-view-from-space-update/ Accessed 24 April 2021.

MOSAiC (2019) The key to the Arctic puzzle. From https://www.mosaic-expedition.org/science/arctic-climate/. Accessed 29 October 2019.

Park, J. (2009) A re-evaluation of the coherence between global-average atmospheric CO\textsubscript{2} and temperatures at interannual time scales. Geophysical Research Letters, 36, L22704.

Qin, Y, Xiao, X., Wigneron, J.-P. et al (2021) Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nature Climate Change (2021), https://doi.org/10.1038/s41558-021-01026-5.

Ravishankara, A.R. & Albritton, D.L. (1995) Methyl chloroform and the atmosphere. Science, 269, 183-184.

Reidel, K. & Lassey, K. (2008) "Detergent of the atmosphere". Water & Atmosphere, 16, 22-23.

Resplandy, L., Keeling, R., Rödenbeck, C. et al (2018) Revision of global carbon fluxes based on a reassessment of oceanic and riverine carbon transport. Nature Geoscience, 11, 504-509.

Salby, M. (2012) Physics of the atmosphere and climate, 2nd edn. Cambridge University Press, Cambridge, United Kingdom.

Salby, M. (2013) Presentation Prof. Murry Salby in Hamburg on 18 April 2013. https://www.youtube.com/watch?v=2ROw_cDKwc0&feature=youtu.be. Accessed 9 February 2021.

Saunois, M., Stavert, A. R., Poulter, B. et al (2020) The Global Methane Budget 2000-2017. Earth System Science Data, 12, 1561-1623.

Sitch, S., Friedlingstein, P., Gruber, N. et al (2015) Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeoosciences, 12, 653-679.

Stips, A., Macias, D., Coughlan, C. et al (2016) On the causal structure between CO\textsubscript{2} and global temperature.
Hambler, C. & Henderson, P.A. (2021) Temperature, carbon dioxide and methane. *Scientific Reports, 6*, 1-9.

Vancoppenolle, M. & Tedesco, L. (2017) Numerical models of sea ice biogeochemistry. In: *Sea ice*, 3rd edn. (ed. by D.N. Thomas), pp. 492-515. Wiley, New Jersey.

Weber, T., Wiseman, N. A. & Kock, A. (2019) Global ocean methane emissions dominated by shallow coastal waters. *Nature Communications, 10*, 4584.

Wiesenburg, D.A. & Guinasso Jr, N.L. (1979) Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water. *Journal of Chemical and Engineering Data, 24*, 356-360.

Winkler, A.J., Myneni, R.B., Alexandrov, G.A. et al (2019) Earth system models underestimate carbon fixation by plants in the high latitudes. *Nature Communications, 10*, 1-8.

Zhao, F., Zeng, N., Asrar, G. et al (2016) Role of CO$_2$, climate and land use in regulating the seasonal amplitude increase of carbon fluxes in terrestrial ecosystems: a multimodel analysis. *Biogeosciences, 13*, 5121–5137.

Acknowledgements

Download and processing of MODIS satellite imagery was implemented by Environmental Research Group Oxford, Ltd. and we thank William Wint for this and for critical comment. Several colleagues and particularly Marian Dawkins provided valuable critiques. We thank all sources listed in Table 1 or indicated in the metadata on the hosting websites.

Author Contributions

CH and PAH contributed equally.

Declarations

Funding None.

Conflict of interest / Competing Interest Statement The authors have no conflict of interest / competing interests.

Data Availability Statement Data are available from the online providers indicated in Table 1. R code can be provided upon reasonable request.
Figure Legends

Fig. 1 Global monthly carbon dioxide rate (measured at Mauna Loa, lagged 7 months) *vs.* global sea ice extent rate.

\[r = 0.79 \text{ at lag } = 7 \text{ months; } p < 0.001 \]

Fig. 2a Monthly carbon dioxide rate Mauna Loa (lagged 1 month) *vs.* temperature at Alert (inverted)

Fig. 2b Monthly carbon dioxide rate Mauna Loa (lagged 1 months) *vs.* temperature at Alert, Canada (inverted), 6 month moving average for both variables

Fig. 2c Monthly carbon dioxide rate Mauna Loa (lagged 1 month) *vs.* temperature at Alert, Canada (inverted), using full continuous monthly Mauna Loa CO\(_2\) record from July 1976

Fig. 2d Monthly carbon dioxide rate Mauna Loa (lagged 1 month) *vs.* temperature at Alert, Canada (inverted), 6 month moving average for both variables, using full continuous monthly Mauna Loa CO\(_2\) record from July 1976

Fig. 3a Monthly carbon dioxide rate Mauna Loa (lagged 7 months) *vs.* temperature at South Pole (inverted)

Fig. 3b Monthly carbon dioxide rate Mauna Loa (lagged 7 months) *vs.* temperature at South Pole (inverted), 6 month moving average for both variables

Fig. 3c Monthly carbon dioxide rate Mauna Loa (lagged 7 months) *vs.* temperature at South Pole (inverted), using full continuous monthly Mauna Loa CO\(_2\) record from July 1976

Fig. 4 Monthly global average methane rate (lagged 5 months) *vs.* global sea ice extent rate. \[r = 0.78 \text{ at lag } = 5 \text{ months; } p < 0.001 \]

Fig. 5 Monthly methane rate Mauna Loa (lagged 5 months) *vs.* global sea ice extent rate

Fig. 6 Global carbon dioxide rate (Mauna Loa, lagged 2 months) *vs.* global methane rate

Fig. 7 Monthly carbon dioxide rate Alert *vs.* temperature at Alert (inverted)

Fig. 8 Monthly methane rate Alert *vs.* temperature at Alert (inverted)

Fig. 9 Monthly methane rate Alert *vs.* Northern Hemisphere snow extent rate

Fig. 10 Monthly Arctic sea ice extent rate *vs.* temperature at Alert (inverted)

Fig. 11 Monthly carbon dioxide rate South Pole (lagged 1 month) *vs.* monthly methane rate South Pole
Fig. 12 Monthly carbon dioxide rate South Pole (lagged 1 month) vs. temperature at South Pole (inverted)

Fig. 13a Monthly methane rate South Pole vs. temperature at South Pole (inverted). $r = 0.88$ at zero lag; $p < 0.001$

Fig. 13b Monthly South Pole methane rate vs. temperature at South Pole (inverted), using full continuous monthly methane record from February 1983

Fig. 14 Monthly methane rate South Pole vs. monthly methane rate Cape Grim (Tasmania)

Fig. 15 Monthly Antarctic sea ice extent rate vs. temperature at South Pole (inverted)

Fig. 16 Monthly Antarctic sea ice extent rate vs. monthly methane rate South Pole, 6 month moving average for both variables

Fig. 17a Monthly methane rate Mauna Loa vs. monthly methyl chloroform rate Mauna Loa

Fig. 17b Monthly methane rate South Pole vs. monthly methyl chloroform rate South Pole

Fig. 18a Monthly carbon dioxide rate Mauna Loa (20°N) lagged 3 months vs. monthly inverted NDVI rate North America and Eurasia, 35°N to 70°N (NAEAUA3570)

Fig. 18b Monthly carbon dioxide rate Barrow, Alaska (71°N) lagged 3 months vs. monthly inverted NDVI rate North America and Eurasia, 35°N to 70°N (NAEAUA3570)

Table 1 Data sources