Minimal Residual Disease–Guided Intermittent Dosing in Patients With Cancer: Successful Treatment of Chemoresistant Anaplastic Large Cell Lymphoma Using Intermittent Lorlatinib Dosing

Petra Pokorna, MSc1; Giannoula Lakka Klement, MD2,3; Alzbeta Vasikova, PhD4; Veronika Kanderova, PhD5; Marta Jezova, MD, PhD6; Kristyna Noskova, PhD7,8; Peter Mudry, MD, PhD9; Michal Kyr, MD, PhD9; Tomas Merta, MD9; Viera Bajciova, MD, PhD9; Zdenka Krenova, MD9; Hana Palova, PhD10; Dalibor Valik, MD, PhD10; Lenka Zdrazilova Dubska, PhD10; Ondrej Slaby, PhD1,11; and Jaroslav Sterba, MD, PhD2,12

JCO Precis Oncol 6:e2100525. © 2022 by American Society of Clinical Oncology

Creative Commons Attribution Non-Commercial No Derivatives 4.0 License

Introduction

There are about 100 new children presenting with anaplastic large cell lymphoma (ALCL) in the United States and Europe each year. Among these patients, approximately 90% harbor ALK gene rearrangements, with NPM1-ALK being the most prevalent. Despite the use of several different intensive chemotherapy approaches, about one third of patients will experience a relapse of the disease. In relapsed patients, multiple therapeutic strategies can be considered. The frequency of ALK gene rearrangements in ALCL and the success of ALK inhibitors in other cancer types led to early use of tyrosine kinase inhibitors (TKIs) in patients with ALK gene rearrangement–positive ALCL (ALK-positive ALCL). Crizotinib, which showed to be not only well-tolerated in the pediatric population but also to have high response rates, is already approved for relapsed ALCL in children and young adults.

The inhibition of ALK gene rearrangements represents a promising therapeutic option for ALK-positive ALCL, as long as several issues are addressed. First, there are concerns about frequent disease recurrence with the completion of monotherapy. Second, there is a likelihood of observing similar toxicities as those associated with long-term use of other TKIs like imatinib. These concerns, along with the risk of acquired ALK inhibitor resistance seen in other ALK-positive cancers, suggest a need for innovative treatment strategies.

Intermittent dosing of TKI as means to prevent drug resistance has been previously explored in the past; however, different mechanisms of resistance to different TKIs in various malignancies need to be considered here. For ALK-positive ALCL, upregulated ALK signaling leads to a resistance to continuous TKI administration. After TKI withdrawal, increased ALK signaling may result in cell death, which allows prolonged disease control compared with continuous dosing. In the presented case with the best treatment not being defined, we commenced intermittent lorlatinib treatment with frequent minimal residual disease (MRD) monitoring to assess the efficacy of this approach.

Case Presentation

We present a case of a 2-year-old male admitted to University Hospital Brno in November 2020 with disseminated NPM1-ALK–positive, CD30+ ALCL (see Fig 1). At presentation, the child had skin, bone marrow, and generalized lymph node involvement, with a WBC count of 47 × 10⁹/L with more than 30% of ALCL blasts in peripheral blood.

The patient was treated as per Children’s Oncology Group ALCL protocol ANHL12P1 on the brentuximab vedotin arm. Despite achieving clinical and radiologic remission after three cycles of this therapy, MRD levels decreased by only one log. Moreover, after the fourth cycle, he had overt clinical disease progression manifested by generalized lymph node involvement, with a WBC count of 47 × 10⁹/L with more than 30% of ALCL blasts in peripheral blood.

Discussion with the family concerning the patient’s further treatment covered possible options like weekly vinblastine, second-line intensive chemotherapy followed by allogeneic bone marrow transplantation, or...
On the basis of previous reports on disease progression after TKI cessations and efficacy of vinblastine in the relapsed setting, the parents consented to treatment with a combination of an ALK inhibitor and low-dose weekly vinblastine. As crizotinib was suspended in the ANHL12P1 trial because of reported occurrence of blood clots, third-generation ALK inhibitor lorlatinib was selected on the basis of positive reports in children with neuroblastoma.

The patient started treatment with continuous weekly vinblastine (once a week, maximum dose 6 mg/m²) and daily lorlatinib (45 mg/m², once a day) on an initial intermittent schedule of 2 weeks on and 2 weeks off. On the basis of MRD dynamics, we were ready to adjust the proposed scheduling and similarly to adjust vinblastine doses on the basis of absolute neutrophil counts. The child’s overall condition improved markedly within the first 2 weeks of treatment. After almost 3 months
of well-tolerated lorlatinib dose, the dose was increased to 90 mg/m², once a day. For maximal disease control, after seven courses of lorlatinib administration, anti–programmed cell death protein 1 treatment was added on the basis of strong programmed death ligand 1 positivity of the tumor cells confirmed by immunohistochemistry staining.

The child’s MRD levels were assessed since presentation using quantitative real time polymerase chain reaction for the NPM1-ALK fusion transcript (Appendix Table A1) and expressed as the normalized copy number (NCN) of the fusion transcript. Lorlatinib administration resulted in a gradual increase of NPM1-ALK NCN after several days of lorlatinib administration followed by a significant decrease after TKI discontinuation. With each cycle, higher suppression of the NPM1-ALK NCN was achieved (Fig 2). After anti–programmed cell death protein 1 addition, the pattern of MRD response to intermittent lorlatinib administration did not change.

As the patient continues to benefit from the initially determined two weeks on/two weeks off scheme and we do not see any signs of disease progression, the administration schedule remains unchanged at the time of publication of this article. Notably, the child has been on this regimen for

FIG 2. Levels of NPM1 ALK NCN throughout the treatment. (A) The overall MRD dynamics throughout 13 administration cycles. (B) MRD dynamics pattern is shown on three consecutive cycles of intermittent lorlatinib administration. NPM1 ALK NCN showed a characteristic dynamics pattern with a gradual increase after several days of lorlatinib administration followed by a significant decrease after TKI discontinuation (marked by blue color in the graph). Progressively higher suppression of NPM1 ALK NCN was observed. ABL1, Abelson Murine Leukemia 1 tyrosin kinase; MRD, minimal residual disease; NCN, normalized copy number; TKI, tyrosine kinase inhibitor.
12 months, which represents a 9-month extension on the three-month event-free survival (EFS) achieved with the intensive chemoimmunotherapy.

In addition to the NPM1-ALK NCN transcript, we also monitored the phosphorylation of STAT1 (Tyr 701) and STAT3 (Tyr 705), the key molecules in ALK-positive T-cell lymphoma, in weekly intervals. Because ALCL does not have a specific immunophenotypic feature, we used the population of atypical cells within the CD45-positive lymphocyte gate that was negative for T-lineage (CD3/4/8), B-lineage (CD19), and NK-lineage (CD16/56/7) markers. The pSTAT1 and pSTAT3 levels in this abnormal population were compared with levels in a healthy control sample (the child’s mother), and its monitoring continued for as long as the abnormal cell population was detectable. STAT1 and STAT3 play opposite roles in tumorigenesis, with STAT3 presenting itself as an oncogene, whereas STAT1 exhibits rather tumor-suppressive functions. Consequently, at the initiation of treatment, pSTAT3 is high and pSTAT1 is low. After the first week of lorlatinib, pSTAT1 begins to rise and remains relatively high until the start of the second course. Both pSTAT1 and pSTAT3 subsequently show similar inhibition during treatment and restoration of the phosphorylation levels after lorlatinib discontinuation (Fig 3), suggesting that evaluating phosphorylation in a disappearing population is unhelpful.

Ethics Statement

Ethical approval was granted by The Ethics Committee for Multicenter Clinical Trials of the University Hospital Brno (ref. No. 10-101121/EK). Written informed consent was provided by the parents before conducting and publishing the presented analyses.

Discussion and Conclusion

Currently, there is no consensus on the best treatment for relapsed/refractory ALK-positive ALCL. Since the US Food and Drug Administration approval of crizotinib, the drug has been shown to produce a marked improvement in survival in lung cancer, neuroblastoma, and ALCL and ALK inhibitors in ALK-positive ALCL are emerging as potential frontline therapies. However, sustained maintenance treatment with TKIs has not been shown to be effective in indolent disease, and people with sustained deep molecular response can successfully discontinue TKI therapy and maintain a treatment-free remission. In children, where TKIs may cause growth disturbance, the treatment length and intensity become even more important. Intermittent dosing represents a promising strategy, which may prevent upregulation of the ligand or the receptor and reduce the likelihood of long-term sequelae or off-target toxicity. Its comparison with continuous dosing in terms of effectiveness and toxicity is, however, yet to be evaluated. A recent phase II randomized trial focused on intermittent versus continuous dosing of BRAF/MEK inhibitors in BRAF-mutated melanoma is often quoted as resulting in a shortened progression-free survival in the intermittent dosing group vs continuous dosing (5.5 v 9 months) although the toxicities and overall survival were similar. However, this trial had chosen the on/off-treatment interval on the basis of a pharmacokinetic modeling rather than on the basis of response biomarker.

As shown in our case, intermittent two weeks on, two weeks off lorlatinib dosing combined with low-dose metronomic vinblastine led to significantly improved treatment response and prolongation of the child’s EFS. Observed MRD dynamics supported the selected administration schedule and, at least to date, circumvented acquired drug resistance.

FIG 3. Weekly monitoring of the STAT phosphorylation. Phosphorylation of STAT1 (Tyr 701) and STAT3 (Tyr 705) was monitored in the population of atypical lymphocytes positive for CD45, but negative for T-lineage (CD3/4/8), B-lineage (CD19), and NK-lineage (CD16/56/7) markers. The pSTAT1 and pSTAT3 levels in this abnormal population were compared with levels in a healthy control sample (the child’s mother), and its monitoring continued for as long as the abnormal cell population was detectable. As shown, after the second course, levels of pSTAT1 and pSTAT3 show similar inhibition during treatment and restoration of the phosphorylation levels after TKI discontinuation. TKI, tyrosin kinase inhibitor.
Although there is some preclinical evidence that intermittent dosing may lead to the development of drug-resistant clones,22 this has only been shown in a monotherapy setting. Tumors harbor mixed populations of drug-sensitive and drug-resistant clones, and both clones must be eliminated for a deep molecular response. Combinations with metronomic chemotherapy may be more beneficial than standard therapies.23-25

Currently, we have another very similar ALK-positive ALCL patient, relapsing after the same chemoimmunotherapy as the index case. She has successfully reached second complete remission with the same treatment as the index case, and her second EFS is already three times longer than the first. The patient is not presented in the article as the ALK fusion at the time of relapse was detectable only as positive and nonquantifiable, and therefore, her MRD levels could not give a similar picture as the presented case.

In conclusion, intermittent dosing of lorlatinib appears to have sustained efficacy with manageable toxicities in ALK-positive ALCL. Our observation supports consideration of intermittent dosing in situations where target upregulation under the treatment is documented. To our knowledge, this is the first published case using this strategy in ALCL. The important, yet to be explored, questions like treatment duration and combinations with other agents such as chemotherapy, immune therapies, or others need to be evaluated. Successful development of effective treatment for relapsed or chemotherapy-refractory ALCL may avoid or defer the need for an allogeneic bone marrow transplant and its associated toxicities. Provided that the use of intermittent dosing is confirmed to be beneficial in a larger number of relapsed patients, it may become attractive for the first-line therapy setting.

 Ministry of Health of the Czech Republic, grant No. NV19-03-00562. All rights reserved.

AUTHOR CONTRIBUTIONS

Conception and design: Petra Pokorna, Kristyna Noskova, Peter Mudry, Viera Bajciová, Dalibor Valík, Ondrej Slaby, Jaroslav Sterba
Collection and assembly of data: Petra Pokorna, Alzbeta Vasikova, Veronika Kanderova, Peter Mudry, Tomas Merta, Viera Bajciová, Zdenka Krenova
Data analysis and interpretation: Petra Pokorna, Giannoula Lakka Klement, Veronika Kanderova, Marta Jezova, Peter Mudry, Michal Kyr, Viera Bajciová, Hana Palova, Dalibor Valík, Lenka Zdrazilova Dubska, Ondrej Slaby
Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/go/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Giannoula Lakka Klement
Employment: CSTS Health Care Inc, Hessian Labs
Leadership: CSTS Health Care Inc
Stock and Other Ownership Interests: CSTS Health Care Inc, Hessian Labs
Consulting or Advisory Role: Ipsen

Lenka Zdrazilova Dubska
Honoria: Roche

Ondrej Slaby
Honoria: Roche, Bristol Myers Squibb
Consulting or Advisory Role: Roche, Bristol Myers Squibb

CORRESPONDING AUTHOR
Jaroslav Sterba, MD, PhD, Department of Pediatric Oncology, University Hospital Brno, Cernopolni 212, 613 00 Brno-sever, Czech Republic; e-mail: sterba.jaroslav@fnbrno.cz.

SUPPORT
Supported by NV19-03-00562, as provided by the Ministry of Health, Czech Republic; Conceptual Development of Research Organisation (FNBr, 65269705), as provided by Ministry of Health, Czech Republic; European Regional Development Fund—Project ENOCH (No. CZ.02.1.01/0.0/0.0/16_019/0000868); and MUNI/A/1427/2021 Specific University Research Grant, as provided by the Ministry of Education, Youth and Sports of the Czech Republic and supported by the European Regional Development Fund (FNBr, 65269705), as provided by Ministry of Health, Czech Republic; Czech Republic; Conceptual Development of Research Organisation Supported by NV19-03-00562, as provided by the Ministry of Health, Czech Republic.

AFFILIATIONS
1Central European Institute of Technology, Masaryk University, Brno, Czech Republic
2Department of Pediatric Oncology, University Hospital Brno, and Faculty of Medicine, Masaryk University, Brno, Czech Republic
3CSTS Health Care, Toronto, ON, Canada
4Department of Internal Medicine—Hematology and Oncology, University Hospital Brno, and Faculty of Medicine, Masaryk University, Brno, Czech Republic
5CLIP, Department of Pediatric Hematology/Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
6Department of Pathology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
7Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
8Clinical Pharmacy Section of Hospital Pharmacy, University Hospital Brno, Brno, Czech Republic
9Department of Laboratory Methods, Faculty of Medicine, Masaryk University, Brno, Czech Republic
10Department of Clinical Microbiology and Immunology, University Hospital Brno, and Faculty of Medicine, Masaryk University, Brno, Czech Republic
11Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
12International Clinical Research Center, St Anne’s University Hospital, Brno, Czech Republic

DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rwc or ascopubs.org/go/author-center.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

Giannoula Lakka Klement
Employment: CSTS Health Care Inc, Hessian Labs
Leadership: CSTS Health Care Inc
Stock and Other Ownership Interests: CSTS Health Care Inc, Hessian Labs
Consulting or Advisory Role: Ipsen

Lenka Zdrazilova Dubska
Honoria: Roche

Ondrej Slaby
Honoria: Roche, Bristol Myers Squibb
Consulting or Advisory Role: Roche, Bristol Myers Squibb
ACKNOWLEDGMENT

We acknowledge the Core Facility Genomics supported by the NCMG research infrastructure (LM2018132 funded by MEYS CR) and the Core Facility Bioinformatics of CEITEC Masaryk University for their support in obtaining scientific data presented in this paper.

REFERENCES

1. Turner SD, Lamant L, Kenner L, et al: Anaplastic large cell lymphoma in paediatric and young adult patients. Br J Haematol 173:560-572, 2016
2. Brugieres L, Quartier P, Le Deley MC, et al: Relapses of childhood anaplastic large-cell lymphoma: Treatment results in a series of 41 children—A report from the French Society of Pediatric Oncology. Ann Oncol 11:53-58, 2000
3. Kwak EL, Bang YJ, Camidge DR, et al: Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363:1693-1703, 2010
4. Mossé YP, Voss SD, Lim MS, et al: Targeting ALK with crizotinib in pediatric anaplastic large cell lymphoma and inflammatory myofibroblastic tumor: A Children’s Oncology Group study. J Clin Oncol 35:3215-3221, 2017
5. Gambacorti-Passerini C, Mussolin L, Brugieres L: Abrupt relapse of ALK-positive lymphoma after discontinuation of crizotinib. N Engl J Med 374:95-96, 2016
6. Mughal TI, Schrieber A: Principal long-term adverse effects of imatinib in patients with chronic myeloid leukemia in chronic phase. Biologics 4:315-323, 2010
7. Doebele RC, Pilling AB, Aisner DL, et al: Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non–small cell lung cancer. Clin Cancer Res 18:1472-1482, 2012
8. Amin AD, Rajan SS, Liang WS, et al: Evidence suggesting that discontinuous dosing of ALK kinase inhibitors may prolong control of ALK+ tumors. Cancer Res 75:2916-2927, 2015
9. Lowe EJ, Reilly AF, Lim MS, et al: Brentuximab vedotin in combination with chemotherapy for pediatric patients with ALK+ ALC: Results of COG trial ANHL12P1. Blood 137:3595-3603, 2021
10. Trigg RM, Turner SD: ALK in neuroblastoma: Biological and therapeutic implications. Cancers (Basel) 10:E113, 2018
11. Verma P, Jain S, Kapoor G: Complete response with crizotinib in two children with chemotherapy resistant neuroblastoma. South Asian J Cancer 6:89-90, 2017
12. Laneuville P: When to stop tyrosine kinase inhibitors for the treatment of chronic myeloid leukemia. Curr Treat Options Oncol 19:15, 2018
13. Lee Y, Choi YR, Kim KY, et al: The impact of intermittent versus continuous exposure to EGFR tyrosine kinase inhibitor on selection of EGFR T790M-mutant drug-resistant clones in a lung cancer cell line carrying activating EGFR mutation. Oncotarget 7:43315-43323, 2016
14. Clement GL: Eco-evolution of cancer resistance. Sci Transl Med 8:327ts5, 2016
15. Enriquez-Navas PM, Kam Y, Das T, et al: Exploiting evolutionary principles to prolong tumor control in preclinical models of breast cancer. Sci Transl Med 8:327ra24, 2016
16. Gatenby RA, Brown J, Vincent T: Lessons from applied ecology: Cancer control using an evolutionary double bind. Cancer Res 69:7499-7502, 2009
APPENDIX

TABLE A1. Detected Levels of NPM1-ALK NCN During the Treatment

Time Point	Material	NPM1-ALK NCN
Initial biopsy	Bone marrow	16,854.5
Before the prephase start	Peripheral blood	76,688.3
Before the first course of	Peripheral blood	32,123.5
intensive CHT		
Before the second course of	Peripheral blood	12,576.6
intensive CHT		
Before the third course of	Peripheral blood	12,963.1
intensive CHT		
Before the fourth course of	Peripheral blood	9,287.3
intensive CHT		
Clinical progression	Peripheral blood	2,982.6
Start of the first course of	Peripheral blood	8,974.8
lorlatinib		
1 week on	Peripheral blood	8,352.3
Lorlatinib discontinued	Peripheral blood	4,067.4
1 week off	Peripheral blood	1,072.3
9 days off	Peripheral blood	309.2
Start of the second course	Peripheral blood	862.9
of lorlatinib		
2 days on	Peripheral blood	1,402.8
1 week on	Peripheral blood	1,303.9
Lorlatinib discontinued	Peripheral blood	1,192.0
1 week off	Peripheral blood	425.5
9 days off	Peripheral blood	404.5
12 days off	Peripheral blood	414.0
Start of the third course of	Peripheral blood	326.8
lorlatinib		
1 week on	Peripheral blood	561.7
9 days on	Peripheral blood	626.4
12 days on	Peripheral blood	578.5
Lorlatinib discontinued	Peripheral blood	487.3
1 week off	Peripheral blood	306.7
Start of the fourth course	Peripheral blood	184.0
of lorlatinib		
1 week on	Peripheral blood	492.8
Lorlatinib discontinued	Peripheral blood	254.6
1 week off	Peripheral blood	159.6
Start of the fifth course	Peripheral blood	81.1
of lorlatinib—dose increased		
1 week on	Peripheral blood	192.1
Lorlatinib discontinued	Peripheral blood	182.6
1 week off	Peripheral blood	163.0
Start of the sixth course of	Peripheral blood	90.2
lorlatinib		
(Continued in next column)		

TABLE A1. Detected Levels of NPM1-ALK NCN During the Treatment

(Continued)

Time Point	Material	NPM1-ALK NCN
1 week on	Peripheral blood	117.2
Lorlatinib discontinued	Peripheral blood	85.4
1 week off	Peripheral blood	50.7
Start of the seventh course	Peripheral blood	
of lorlatinib		
1 week on	Peripheral blood	82.2
Lorlatinib discontinued	Peripheral blood	108.6
1 week off	Peripheral blood	34.0
Start of the eighth course	Peripheral blood	
of lorlatinib		
1 week on	Peripheral blood	47.3
Lorlatinib discontinued	Peripheral blood	53.1
1 week off	Peripheral blood	16.4
Start of the ninth course	Peripheral blood	
of lorlatinib		
1 week on	Peripheral blood	24.1
Lorlatinib discontinued	Peripheral blood	33.7
1 week off	Peripheral blood	28.2
Start of the 10th course of	Peripheral blood	
lorlatinib		
1 week on	Peripheral blood	13.1
Lorlatinib discontinued	Peripheral blood	25.4
1 week off	Peripheral blood	11.4
Start of the 11th course of	Peripheral blood	
lorlatinib		
1 week on	Peripheral blood	12.0
Lorlatinib discontinued	Peripheral blood	30.1
1 week off	Peripheral blood	12.1
Start of the 12th course of	Peripheral blood	
lorlatinib		
1 week on	Peripheral blood	13.4
Lorlatinib discontinued	Peripheral blood	6.4
1 week off	Peripheral blood	8.0
Lorlatinib discontinued	Peripheral blood	11.7
1 week off	Peripheral blood	7.8
Start of the 13th course of	Peripheral blood	
lorlatinib		
1 week on	Peripheral blood	6.6
Lorlatinib discontinued	Peripheral blood	8.1
1 week off	Peripheral blood	5.9
Lorlatinib discontinued	Peripheral blood	3.3

Abbreviations: CHT, chemotherapy; PD-1, programmed cell death protein 1.

Anti–PD-1 treatment introduced.