An integral version of Shor’s factoring algorithm

Felix M. Lev

Artwork Conversion Software Inc.

1201 Morningside Dr., Manhattan Beach, CA 90266 USA

Email: felix@acssouth.com

Abstract

We consider a version of Shor’s quantum factoring algorithm such that the quantum Fourier transform is replaced by an extremely simple one where decomposition coefficients take only the values of 1, i, -1, -i. In numerous calculations which have been carried out so far, our algorithm has been surprisingly stable and never failed. There are numerical indications that the probability of period finding given by the algorithm is a slowly decreasing function of the number to be factorized and is typically less than in Shor’s algorithm. On the other hand, quantum computer (QC), capable of implementing our algorithm, will require a much less amount of resources and will be much less error-sensitive than standard QC. We also propose a modification of Coppersmith’ Approximate Fast Fourier Transform. The numerical results show that the probability is significantly amplified even in the first post integral approximation. Our algorithm can be very useful at early stages of development of quantum computer.

1 Motivation

The discovery of Shor’s quantum algorithm for factoring a big integer resulted in considerable increase of interest to quantum computations and quantum theory in general. The details of the algorithm can be found in original Shor’s publications [1-3], numerous review articles and lecture notes (see e.g. Refs. [4-8]). The main result of the algorithm is that for quantum computer,
the number of steps required for factoring a big number N into primes is of order $(\log N)^3$. It is known that even the best classical algorithm requires at least $(\text{const} N)^{1/3}$ steps for that purpose. Here and henceforth we assume that all logarithms have the base 2.

The main ingredient of Shor's algorithm is Quantum Fourier Transform (QFT - don’t confuse this abbreviation with quantum field theory!). It is used for finding a period of the function $a^x \pmod{N}$ where a is a number coprime to N. Shor has proved [1-3] that the probability of period finding by using QFT is asymptotically constant when the number is big. However a straightforward implementation of the QFT requires computations with exponential precision. Therefore it is reasonable to expect that any realistic implementation of Shor’s algorithm will require approximations. Coppersmith [9] has proposed an approximate version of the QFT which he called Approximate Quantum Fourier Transform (AQFT). In this approach all the exponents in question are computed with some accuracy and therefore exponential precision can be avoided. The problem arises whether such an approximation is stable and whether it still guarantees that the probability of period finding is asymptotically constant. There are indications [10] that actually the probability is a slowly decreasing function of the number to be factorized.

It is expected that quantum computer (QC) outperforming classical one (at least for some class of problems [7]) will be available in several decades. In all the implementations of QC proposed so far, it will require substantial overhead resources in comparison with classical computer, and this is believed to be unavoidable in view of the nature of quantum theory. It is
also believed that QC will be rather error-sensitive. The problem arises whether it is possible, at least at early stages, to implement a real quantum computer, which satisfies two requirements:

- It will be able to work with numbers, which are rather big (say of order 2^{100}) although possibly not so big as desired.
- As compared to classical computer, it will not require big overhead resources and will have the same order of (in)sensitivity to errors.

We believe this problem is solvable and our motivation is given below.

The main difference between classical and quantum computer is as follows. While each bit in classical computer can have only two possible states, which we can denote as $|0\rangle$ and $|1\rangle$, quantum computer operates with qubits which are quantum superpositions of states $|0\rangle$ and $|1\rangle$. This means that (at least in principle) each qubit can be prepared in a state $c_0|0\rangle + c_1|1\rangle$ where c_0 and c_1 are arbitrary complex numbers. This property of quantum computer (which is often called quantum parallelism) makes quantum algorithms much more efficient than the corresponding classical ones. On the other hand, this is just the reason why quantum computer requires big overhead resources (in comparison with classical one) and is rather error-sensitive. The QFT, which is a quantum version of fast Fourier transform (FFT) is much more efficient because it operates with states $c_0|0\rangle + c_1|1\rangle$ where $c_0 = 1$ but c_1 contains phase factors $exp(i\alpha)$ with different values of α belonging to the field of real numbers R (see below).
The problem of factoring a big integer into primes is formulated exclusively in terms of natural numbers, and moreover, only a finite range of such numbers is involved. One might wonder whether for solving this problem it is necessary to involve analytical methods which are essentially based on the field of real numbers \(\mathbb{R} \). In number theory there are many examples when propositions related entirely to the natural numbers have been proved by using powerful analytical methods. On the other hand, many number theorists believe (see e.g. Ref. [11]) that such propositions "should be provable without the intervention of such foreign ideas". The history of number theory also contains many examples when a proposition related to the natural numbers was first proved by analytical methods but then a proof based exclusively on natural numbers has been found.

The above remarks make it reasonable to wonder whether it is possible to find a quantum factoring algorithm which involves only a finite number of integers. Since quantum computer necessarily operates with superpositions of states \(|0\rangle \) and \(|1\rangle \), the problem arises whether quantum factoring can be efficient if only combinations \(c_0|0\rangle + c_1|1\rangle \) with a finite number of integers \(c_0 \) and \(c_1 \) are involved. Strictly speaking we should make precise the following. The power of quantum mechanics is essentially based on the fact that the decomposition coefficients can be not only real but also complex numbers. Therefore it seems to be unwise not to use this power. However we can try to find a solution where the coefficients are represented as \(c = a + ib \) with only a finite number of integers \(a \) and \(b \).

Our belief that such a solution can be found, is based on our previous investigations of quantum theories where state vectors belong not to conventional Hilbert spaces but to spaces over a
Galois field. As shown in our papers [12], it is possible to construct a fully discrete and finite quantum theory over a Galois field, such that if the characteristic of the field is very big then the theory is experimentally indistinguishable from the conventional theory based on the field of complex numbers \mathbb{C}. Let us note that Galois fields contain only finite numbers of elements which can be treated as positive and negative simultaneously. For example, the simplest Galois field of characteristic p contains only p elements $0, 1, 2, \ldots, p-1$. Here $p-1$ plays the role of -1, $p-2$ plays the role of -2 etc.

The present paper is not based on the results [12] and we assume that the behavior of quantum computer is governed by conventional quantum mechanics. Nevertheless, for better understanding our motivation for quantum factoring algorithm, we describe below our motivation for investigations in [12].

It is quite reasonable to believe that the existing mathematics will be insufficient to describe future physics. Suppose, for example, that we want to verify experimentally whether addition is commutative: $a + b = b + a$. If our Universe is finite and contains not more than N elementary particles then we shall not be able to do this if $a + b > N$. Also it is not clear whether conventional division can be always consistent. We know from everyday experience that any macroscopic object can be divided by two, three and even a million parts. But is it possible to divide by, say, two or three the electron or neutrino? We can divide the gram-molecule of water by ten, million, billion, but when we begin to divide by numbers greater than the Avogadro number 6×10^{23}, the division operation loses its sense.

A possible objection against quantum theory based entirely on integers is that such a fundamental notion as probability nec-
essarily involves fractions. In our opinion, the notion of probability is a good example for the well-known Kronecker’s expression that the natural numbers were invented by the God and all others were invented by people. Indeed, the notion of probability arises as follows. Suppose that conducting experiment n times we have seen the first event n_1 times, the second event n_2 times etc. such that $n_1 + n_2 + ... = n$. We introduce the quantities $w_i(n) = n_i/n$ (these quantities depend on n) and $w_i = \lim w_i(n)$ when $n \to \infty$. Then w_i is called the probability of the ith event. We see that all information about the experiment under consideration is given by a set of integers. However, in order to define probability, people introduce additionally the notion of rational numbers and the notion of limit. Of course, we can use conventional probability even if quantum theory is based entirely on integers, but by doing so we should realize that it is only a convenient (or common?) way to describe the measurement outcome.

Another objection closely related to the previous one, is that the notion of unitary transformation also necessarily involves fractions. However, the requirement that physical transformations must be unitary is not necessary. This requirement is based in particular on the assumption that the total probability is a conserving physical quantity. Meanwhile, the total probability does not have any physical meaning, only relative probabilities of different outcomes do. Mathematically this is expressed as the statement that Hilbert spaces describing quantum systems are projective: the elements ψ and $c\psi$ describe the same physical state. Therefore it is quite sufficient to require unitarity in projective space: the transformation should be unitary up to an arbitrary factor.
Let us stress again that in the present paper we assume that the behavior of quantum computer is governed by conventional quantum mechanics. At the same time our algorithm remains unchanged for a purely discrete and finite version of quantum theory.

The paper is organized as follows. In Sect. 2 we outline the QFT in the way convenient for the subsequent presentation of our algorithm in Sect. 3. Numerical results are described in Sect. 4 and concluding remarks are given in Sect. 5.

2 Outline of quantum Fourier transform

Consider quantum computer operating with \(n \) qubits. The Hilbert space describing all possible states of this computer is the tensor product of \(n \) spaces describing the qubits in question. The dimension of this space is equal to \(N = 2^n \). The basis of the space can be chosen in such a way that the basis element \(X \) is defined by some natural number \(x = 0, 1, 2, ... N - 1 \) as follows. If

\[
x = x_{n-1}2^{n-1} + x_{n-2}2^{n-2} + ...x_02^0
\]

(1)

is a binary expansion of \(x \), such that each \(x_i \) can be either 0 or 1, then \(X \) is represented as a tensor product

\[
X = |x_{n-1}\rangle|x_{n-2}\rangle|x_{n-3}\rangle...|x_0\rangle
\]

(2)

If \(X' \) is another basis vector defined by \(x' \) then, as follows from Eqs. (1) and (2), \(X \) and \(X' \) will be orthogonal if \(x \neq x' \). Indeed, in that case there exists at least one value of \(i \) such that \(x_i \neq x'_i \) and the orthogonality follows from Eq. (2).
Let Y be another basis element identified by y in a similar way. Then the quantum Fourier transform (QFT) is defined as an operator F which acts on X as follows

$$ FX = \frac{1}{\sqrt{N}} \sum_{y=0}^{y=N-1} \exp\left(\frac{2i\pi xy}{N}\right)Y $$ (3)

We can rewrite this definition as

$$ FX = \frac{1}{\sqrt{N}} \sum_{y_0,y_1,\ldots,y_{n-1}} |y_{n-1} > |y_{n-2} > \ldots |y_0 > \exp\left(\frac{2i\pi xy}{N}\right) $$ (4)

where the values of y_i can be either 0 or 1. In the exponent we can use the binary expansions for x and y, and take into account the fact that all multiples of 2^n do not contribute to the result. Then we arrive at

$$ FX = \frac{1}{\sqrt{N}} \{ |00\} + \exp\left[\frac{i\pi}{2} (2x_0)\right]|1\} \times \\ \{ |00\} + \exp\left[\frac{i\pi}{2} (2x_1 + x_0)\right]|1\} \times \\ \{ |00\} + \exp\left[\frac{i\pi}{2} (2x_2 + x_1 + \frac{x_0}{2})\right]|1\} \ldots \times \\ \{ |00\} + \exp\left[\frac{i\pi}{2} (2x_{n-1} + x_{n-2} + \frac{x_{n-3}}{2})\right]|1\} \} $$ (5)

This expression is written in the form which will be convenient in Sect. 3.

In Shor’s algorithm, the QFT is applied to special periodic states which can be described as follows. Let $r << N$ and $x(0) < r$ be some natural numbers. Consider the numbers
\(x(j) = x(0) + jr, \) where \(j = 0, 1, ... A - 1 \) and \(A \) is such that \(x(A - 1) < N, \ x(A) \geq N. \) Let \(X(j) \) be the basis element defined by \(x(j) \) and

\[
X = \frac{1}{\sqrt{A}} \sum_{j=0}^{A-1} X(j) \tag{6}
\]

Then, as follows from Eqs. (3) and (6), the probability to find a state \(Y \) in \(FX \) is equal to

\[
Prob(y) = \frac{A}{N} \left| \frac{1}{A} \sum_{j=0}^{A-1} \exp\left(\frac{2i\pi jry}{N}\right) \right|^2 \tag{7}
\]

where \(Y \) is defined by \(y. \)

The simplest case is such that \(r \) exactly divides \(N \) and therefore \(N = Ar. \) Then \(Prob(y) \) equals 1/r if \(y/N = k/r \) \((k = 0, 1, ... r - 1)\) and equals 0 for other values of \(y. \) Therefore with the probability 1 the result of the measurement of the state \(FX \) is such that \(y/N \) equals \(k/r \) for some \(k = 0, 1, ... A - 1, \) and we have good chances to find the period \(r. \) As shown by Shor [1-3], if we know \(r \) then we have good chances to find a prime divisor of \(N \) where \(N \) is the number to be factorized.

Let us now consider a general case. It is easy to show that there exist at least \(r \) values of \(y \) satisfying

\[
\left| \frac{y}{N} - \frac{k}{r} \right| \leq \frac{1}{2N} \tag{8}
\]

For such \(y \) we can estimate the sum in Eq. (7) (see e.g. Refs. [1-8]) using the property that if \(\alpha \) belongs to the interval \([0, \pi/2]\) then \(|\sin \alpha| \leq \alpha \) and \(|\sin \alpha| \geq 2\alpha/\pi. \) The final result is that at least with the probability \(4/\pi^2 \) the measured value of \(y \) satisfies Eq. (8) with some \(k = 0, 1, ... r - 1. \) (As shown in Ref. [13], the probability can be amplified but for that purpose the number of
bits (and the complexity of computations) should be increased). The values of \(k \) and \(r \) can be efficiently extracted from the values of \(y \) and \(N \) by the continued fraction method, and we can repeat the measurements if necessary. Therefore we have good chances to find \(r \) and then factorize the number in question.

3 An integral version of quantum Fourier transform

It is clear from Eq. (5), that if Shor’s algorithm is used in a straightforward way then the following problem arises. For big values of \(N \) (and only such values are of interest) this expression contains very small exponents and therefore the quantum measurement preparing the state (5) should be performed with exponential accuracy.

Coppersmith [9] has proposed an approximate quantum Fourier transform (AQFT) such that all the terms containing \(1/2^l \) in the exponents are neglected if \(l \) is greater than some number \(m \). Then for each \(\epsilon \) specifying the accuracy of the exponents, we can find the required value of \(m \). The complexity of the quantum circuit implementing AQFT becomes \(O(n \log n) \) instead of \(O(n^2) \) for the QFT. Actually the complexity is rather sensitive to the required accuracy. If it is small then the complexity is close to \(O(n) \) and in the opposite case it is close to \(O(n^2) \). The problem arises whether the QFT is stable under small perturbations of the exponents and whether the probability of period finding is reasonably high for realistic values of the numbers to be factorized.

This problem has been investigated in Ref. [10] and there
exists a vast literature devoted to the role of error corrections in Shor’s algorithm. If \(m \) is the maximum number of terms retained in each exponent index, then, as shown in Ref. [11], Shor’s lower bound \(4/\pi^2 \) should be replaced by

\[
MinProb = \frac{8}{\pi^2} \sin^2\left(\frac{1}{2} \left(\frac{\pi}{2} - \Delta_{\text{max}}\right)\right)
\]

(9)

In the most favorable case \(\Delta_{\text{max}} = 0 \) and we again arrive at Shor’s result. However such a favorable scenario cannot be guaranteed. If \(m > \log n + 2 \) then it can be guaranteed that

\[
MinProb = \frac{8}{\pi^2} \sin^2 \left(\frac{\pi m}{4n}\right)
\]

(10)

Therefore in the worst scenario the probability will be a function decreasing asymptotically as \((\log n/n)^2 \).

As discussed in Sect. 1, our goal is to find an algorithm which can be formulated exclusively in terms of integers. Let us consider how we can modify Eq. (5) to satisfy this requirement. First we note that the presence of the factor \(1/\sqrt{N} \) is irrelevant. This factor is needed only to ensure unitarity but, as noted in Sect. 1, it is quite sufficient to require that the transformation should be unitary up to a constant factor. Let us now consider the exponents in Eq. (5). For the most important qubit our requirement is satisfied automatically since \(e^{i\pi x_0} \) can be either +1 or -1. For the second qubit this requirement is satisfied too because \(e^{i\pi x_0/2} \) can be either 0 or \(i \) (as noted in Sect. 1, we allow the coefficients to be of the form \(a + bi \) where \(a \) and \(b \) are integers). For the third qubit the requirement is not always satisfied because if \(x_0 \) equals 1 then the coefficient contains \(e^{i\pi/4} = (1 + i)/\sqrt{2} \). For the subsequent qubits the state |1⟩
enters with the coefficient \(\exp(i\alpha) \) where

\[
\alpha = \pi \left(x_l + \frac{x_{l-1}}{2} + \frac{x_{l-2}}{4} + \frac{x_{l-3}}{8} + \ldots \frac{x_0}{2^l} \right) \tag{11}
\]

We can ensure the integrity of the coefficient by neglecting all the terms beginning from \(x_{l-2}/4 \). In that case we will have the AQFT when the maximum number of terms retained in each exponent index equals \(m = 2 \) (the simplest case of the AQFT corresponding to \(m=1 \) is known as the Hadamard transform). The value of \(\alpha \) in that case will be always underestimated if at least one of the numbers \(x_{l-2}, x_{l-3}, \ldots x_0 \) is not equal to zero. In the worst scenario the difference between the exact and approximate values of \(\alpha \) can be close to \(\pi/2 \) and can accumulate for different qubits.

Another option is to replace the expression (11) by

\[
\beta = \pi \left(x_l + \frac{x_{l-1}}{2} + \frac{x_{l-2}}{2} \right) \tag{12}
\]

In that case the coefficient in question also will be integral as required. If \(x_{l-2} = 0 \) then \(\beta \) is always less or equal \(\alpha \) and their difference does not exceed \(\pi/4 \) in the worst scenario. On the contrary, if \(x_{l-2} = 1 \) then \(\beta \) is always greater than \(\alpha \) and in the worst scenario the difference also cannot exceed \(\pi/4 \). One might hope that for different qubits the both effects may considerably cancel out, and the result will be close to that given by the QFT or some higher order AQFT.

A straightforward generalization of our proposal is that for \(m > 2 \) the AQFT in the \(m \)th approximation can be modified as follows. When one considers the contribution of

\[
\text{ind} = 2i\pi \left(x_l + \frac{x_{l-1}}{2} + \ldots \frac{x_0}{2^l} \right) \tag{13}
\]
to the exponent in the \(m \)th approximation, then, instead of retaining \(m \) terms as

\[
\text{ind}_m = 2i\pi \left(x_l + \frac{x_{l-1}}{2} + \ldots \frac{x_{l-m+1}}{2^{m-1}} \right)
\]

(14)

we propose also to retain the \((m+1)\)th term but with the coefficient 2:

\[
\text{ind}'_m = 2i\pi \left(x_l + \frac{x_{l-1}}{2} + \ldots \frac{x_{l-m+1}}{2^{m-1}} + \frac{x_{l-m}}{2^{m-1}} \right)
\]

(15)

The above arguments make it reasonable to think that in that case the convergence to the QFT will be better and our results for \(m = 3 \) in Sect. 4 confirm this. However it is clear that for \(m > 2 \) the AQFT is not formulated only in terms of integers.

To summarize, we are going to investigate the transform which, by analogy with Eq. (5), reads

\[
F_I X = \frac{1}{\sqrt{N}} \{ |0\rangle + \exp\left[i\pi \left(\frac{2x_0}{2} \right) \right] |1\rangle \} \times \\
\{ |0\rangle + \exp\left[i\pi \left(2x_1 + x_0 \right) \right] |1\rangle \} \times \\
\{ |0\rangle + \exp\left[i\pi \left(2x_2 + x_1 + x_0 \right) \right] |1\rangle \} \ldots \times \\
|0\rangle + \exp\left[i\pi \left(2x_{n-1} + x_{n-2} + x_{n-3} \right) \right] |1\rangle
\]

(16)

Here the subscript \(I \) in \(F \) stands for "integral".

As noted in Sect. 1, the overall normalization factor \(1/\sqrt{N} \) is irrelevant. We retain it for convenience of the readers preferring strict unitarity. It is easy to show that the operator \(F_I \) is indeed unitary. Indeed, the norm of \(F_I X \) is equal to 1, i.e. the norm of \(X \). Furthermore, if \(X \) and \(X' \) are orthogonal, the same is true
for $F_I X$ and $F_I X'$. Indeed, as follows from Eq. (16), the contribution of the leftmost bit to the scalar product $(F_I X, F_I X')$ is equal to $1 + (-1)^{x_0 - x'_0}$. This quantity is not equal to zero only if $x_0 = x'_0$. If this is the case then the contribution of the second bit from the left is obviously equal to $1 + (-1)^{x_1 - x'_1}$. Analogously, the result is not zero only when $x_1 = x'_1$. By repeating this procedure we conclude that $(F_I X, F_I X')$ is not equal to zero only if $X = X'$.

Apart from the (irrelevant) normalization factor in Eq. (16), all the coefficients in front of $|1\rangle$ in this expression obviously have only one of four values: $1, i, -1, -i$. Therefore the algorithm based on F_I indeed operates only with integers.

It is clear from Eq. (16) that the quantum circuit implementing the transformation F_I has the complexity $O(n)$ but the main problem of course is whether our algorithm allows to peak the required values of y with a reasonable probability.

We denote

$$f(x, y, n) = [2(x_0 y_n-1 + x_1 y_{n-2} + ... x_{n-1} y_0) + (x_0 y_{n-2} + x_1 y_{n-3} + ... x_{n-2} y_0) + (x_0 y_{n-3} + x_1 y_{n-4} + ... x_{n-3} y_0)] \pmod{4},$$

$$g(x, y, n) = \exp\left[i\pi \frac{n}{2} f(x, y, n)\right]$$

(17)

The function $g(x, y, n)$ can obviously have only one of the values $1, i, -1, -i$. Then we can rewrite Eq. (16) as

$$F_I X = \frac{1}{\sqrt{N}} \sum_{y=0}^{y=N-1} g(x, y, n) Y$$

(18)

and apply this transformation to the state defined by Eq. (6). The overall factorization factors $1/\sqrt{N}$ and $1/\sqrt{A}$ are not impor-
tant, but if we wish to describe different measurement outcomes in terms of conventional probability (see the discussion in Sect. 1), it is convenient to retain them. As follows from Eq. (18), the (conventional) probability of the measurement outcome y is given by

$$Prob_I(y) = \frac{A}{N} \left| \frac{1}{A} \sum_{j=0}^{A-1} g(x(0) + jr, y, n) \right|^2$$

Eq. (19)

In the most favorable case, when the quantity $g(x(0) + jr, y, n)$ is the same for all the values of j, the quantity $Prob_I(y)$ is equal to A/N. As noted in the preceding section, for the QFT this is the case, in particular, when r exactly divides N (i.e. $N = Ar$) and $y = kA$ for some natural k in the range $0, 1, ... r - 1$. The same is valid in our case. Indeed, at such conditions we have $r = 2^l$ where l is an integer which is much less than n (because the algorithm applies only if $r \ll N$) and $A = 2^n - l$. The binary expansion of r obviously contains only the lth nonzero bit. Therefore the first $l - 1$ bits in all the numbers $x(0) + jr$ are the same. At the same time, the first $n - l - 1$ bits of the number $y = kA$ are always equal to zero. Therefore, as follows from Eq. (17), the quantity $f(x, y, n)$ depends only on the first $l - 1$ bits of x and thus $f(x(0) + jr, y, n)$ is indeed the same for all the values of j. Let us note that the same arguments apply to the QFT (in which case they can be treated as a proof based not on geometric series of phase factors but on positions of relevant bits in x and y) and to any version of the AQFT. Therefore the requirement $Prob_I(y) = A/N$ for such conditions does not impose practical restrictions on the algorithm.

In the general case we did not succeed in finding a good estimation for $Prob_I(y)$ and therefore we should perform direct
numerical computations of this quantity. The results are described in the next section.

4 Numerical results

It is clear from Eqs. (17) and (18) that the success of straightforward numerical computations of the probabilities in question depends mainly on how efficiently the function $g(x, y, n)$ can be calculated. Of course, for particular values of x and y this is a trivial task for modern computers. However in real computations this function should be calculated for many different values of x and y, and the time of the computation crucially depends on the computational algorithm. As follows from Eq. (17), the computation of $g(x, y, n)$ requires a direct access to each bit and therefore it is reasonable to believe that such programming languages as C or C++ (to say nothing about assembly language) will be convenient for that purpose. Moreover, all the modern implementations of C++ compilers include the standard template library (STL) which contains a container called bitset. Consider, for example, the expression

$$h(n) = x_0y_{n-1} + x_1y_{n-2} + ... + x_{n-1}y_0$$ \hspace{1cm} (20)

It is clear that the function $g(x, y, l)$ is defined by $h(l)$ with $l = n, n - 1, n - 2$. Let z be an n-bit integer which is a reversal of y:

$$z = \sum_{i=0}^{i=n-1} z_i2^i = \sum_{i=0}^{i=n-1} y_{n-i-1}2^i$$ \hspace{1cm} (21)

Then

$$h(n) = x_0z_0 + x_1z_1 + ... + x_{n-1}z_{n-1}$$ \hspace{1cm} (22)

We can create two bitsets representing the arrays of bits for x and z, say $B(x)$ and $B(z)$, respectively. Then it is clear from
Eq. (22), that $h(n)$ is equal to the number of bits in the array B obtained by ANDing the arrays $B(x)$ and $B(z)$. The STL provides the overloaded operator for that purpose (which is called `&=`) and the function `count()` which says how many nonzero bits the bitset in question has. However there are practical inconveniences in using this approach. The matter is that in the existing version of the STL, the bitset constructor, creating a bitset from the number in question, and the inverse function, converting the bitset to a number, are implemented only for numbers less than 4294967296 which are represented by 32 bits. Therefore for bigger numbers one should write his or her own versions of those functions. In any case, ANDing bits is much faster than a straightforward multiplication for computing products in Eq. (22).

The second problem is that for rather small values of $N = 2^n$ (say $n \leq 27$ or $N \leq 134217728$) we can compute probabilities for all the values of y in a reasonable time. However the complexity is growing with N roughly as N and for essentially bigger values of N this seems to be unrealistic if standard computers are used for that purpose. Let us recall that our main goal is to extract the value of r from the measured value of y. As noted above, for y satisfying Eq. (8) one can recover the values of k and r by the continued fraction method. Are other values of y of any use for us?

To answer this question we recall how the continued fraction method is used for extracting the period from the measurement outcome. If N is the number to be factorized then the adopted strategy is to choose $N = cN^2$ where typically c is a small number (say in the range 2-5) such that N is a power of two. The reason is that on the one hand, for a given N we want to
work with the least possible number of bits, but on the other hand we should unambiguously extract the period r. The value of r is always less than N by construction of Shor’s algorithm (r is defined as a period of a function $f(x) = a^x \pmod{N}$ where a is a number coprime to N [1-3]). We use the property of the continued fraction method that if k_1/r_1 and k_2/r_2 are two continued fractions for y/N then k_2/r_2 approximates y/N better if and only if $r_2 > r_1$ (see e.g. Ref. [11]). Therefore our approach is as follows. For a given y we develop continued fractions for y/N and stop if the next approximation has the denominator greater or equal than N. Then for each y we can unambiguously find a continuos fraction k_1/r_1 satisfying the requirement that it is the best approximation among the continuos fractions with the denominator less than N. However in the general case the result may have nothing to do with the period r.

Suppose however that y satisfies Eq. (8) and k_1/r_1 is the best approximation obtained in such a way. If $k_1/r_1 \neq k/r$ then obviously $|k/r - k_1/r_1| \leq 1/N$ but on the other hand this contradicts the obvious fact that they also satisfy $|k/r - k_1/r_1| \geq 1/r_1 > c/N$. Therefore for y satisfying Eq. (8) k/r is the best approximation obtained as described above.

Let us now reformulate the problem in this way: if y satisfies Eq. (8) and k/r is the continued fraction for y/N then can we guarantee that for values of y_1 close to y, y_1/N is approximated by the same continued fraction k/r? Suppose that $|y_1 - y| = a$, k_1/r_1 is the best approximation for y_1 and $k_1/r_1 \neq k/r$. Then on the one hand $|k/r - k_1/r_1| \geq 1/r_1 > c/N$ and on the other $|k/r - k_1/r_1| \leq (2a + 1)/N$. This is impossible if $a < (c - 1)/2$. We conclude that, depending on the value of c, k/r satisfying Eq. (8) represents also the best approximation for the values y_1
Taking into account the above consideration we adopted the following approach. For $n \leq 27$, when it is still realistic to test each value of y, we did this. For greater values of n we tested only the values of y satisfying Eq. (8) and the values of y_1 in some vicinities of those y (see below).

Let us first describe the results for $n \leq 27$. As follows from Eq. (19), the contribution of each y to the total probability is characterized by the quantity

$$RP(y) = \left| \frac{1}{A} \sum_{j=0}^{j=A-1} g(x(0) + jr, y, n) \right|^2$$

where RP stands for relative probability. For a given n we chose at random the values of $x(0)$ and r such that $x(0) < r$ and $r < 2^{n/2}$. Then we computed $RP(y)$ for each y. We set some threshold, say 0.05, and looked for the y passing over that threshold, i.e. for such values of y that $RP(y)$ was greater than the threshold. Then we computed the continued fraction for y/N and tested whether it is equal to k/r where r is the period and k is one of the numbers 0, 1, 2, ..., $r - 1$. The result is that in about 100 computations only the values of y satisfying Eq. (8) and in some cases y_1 such that $|y_1 - y| = 1$ passed over the threshold. Moreover, all such values of y passed over the threshold 0.05. When there were two values, y and y_1, passing over the threshold and approximated by k/r then typically $RP(y)$ was considerably greater than $RP(y_1)$ for the y satisfying Eq. (8). However we have found several cases when $RP(y_1)$ was greater.

For example, for $n = 25$, $x(0) = 85$, $r = 713$ both, $y_1 = 23906944$ and $y = 23906945$ pass over the threshold and are
approximated by 508/713. The result is $RP(y_1) = 0.120148$ and $RP(y) = 0.118273$ but it is the second value which satisfies Eq. (8).

For $n = 26$, $x(0) = 211$, $r = 975$ both, $y_1 = 1996058$ and $y = 1996059$ are approximated by 29/975; we have $RP(y_1) = 0.106606$ and $RP(y) = 0.0898572$ but again it is the second value which satisfies Eq. (8).

For $n = 27$, $x(0) = 163$, $r = 674$ both, $y_1 = 3186177$ and $y = 3186178$ are approximated by 8/337 = 16/674; $RP(y_1) = 0.146263$, $RP(y) = 0.143943$; again only the second value satisfies Eq. (8).

In all the three cases the quantity $|y_1/N - k/r|$ only slightly exceeds 1/2N.

For $n > 27$ testing each value of y becomes unrealistic and therefore we should decide what our main priorities are. What is the main characteristic of the algorithm? As we already discussed, the probability to successfully extract the value of k/r from the measurement outcome depends on r and in favorable cases can be 1. However such cases are not typical. We should ask ourselves whether there exists a minimum probability of success, such that for all values of r and $x(0)$ the probability of success is always greater than the minimum probability.

The results for $n \leq 27$ give strong evidence that only values of y satisfying Eq. (8) and possibly some close values can essentially contribute to the probability of success. For this reason we adopt the following approach in the general case. For given values of $n, x(0)$ and r we test only the values $[Nk/r] - 1, [Nk/r], [Nk/r] + 1, [Nk/r] + 2$ for $k = 1, \ldots r - 1$ (the case $k = 0$ is obviously trivial) and compute only the contribution of these values to the probability of success Pr. These quantities
represent four numbers in the vicinity of some \(y \) satisfying Eq. (8). We denote \(Pr(y) \) the relative contribution of all these numbers to the probability of success, i.e. the sum of the quantities \(RP(y) \) for those \(y \). Let \(MinPr(y) \) be the minimum value of \(Pr(y) \) for a given run. We also use \(Pr_{\text{min}} \) to denote the minimum value of the total probability of success \(Pr \) in all our runs for a given \(n \).

The table of the quantities \(Pr_{\text{min}} \) for \(20 \leq n \leq 34 \) is given below.

Our observation is that for odd values of \(r \) the probability is usually very close to \(Pr_{\text{min}} \), for the values of \(r \) divisible by 2 (i.e. for even numbers) it is greater and increases for the values of \(r \) divisible by 4, 8 etc. This is natural in view of the above discussion. For this reason, for \(32 \leq n \leq 34 \) where we carried out only a few runs, we tested only odd values of \(r \). For such values of \(r \) we ran the program on the Windows 2000 machine equipped with two processors running at 1 GHZ each. The availability of two processors makes it reasonable to implement the program as a two-threaded application. Then for \(n = 32 \) it typically takes 4 hours to run each test with a given choice of \(x(0) \) and \(r \). For \(n = 33 \) this time becomes 9 hours and for \(n = 34 \) - 20 hours. We ran four cases for \(n = 32 \), three cases for \(n = 33 \) and two cases for \(n = 34 \). For each \(n \) the results for \(Pr \) are very close to each other and the minimum values of \(Pr(y) \) also do not differ significantly.

For \(n = 32 \) (\(N = 4294967296 \)) the results are \(Pr = 0.195057, MinPr(y) = 0.103743 \) for \(x(0) = 863, r = 11337; Pr = 0.195051, MinPr(y) = 0.119318 \) for \(x(0) = 9774, r = 22239; Pr = 0.195057, MinPr(y) = 0.120364 \) for \(x(0) = 17867, r = 21229 \) and \(Pr = 0.195049, MinPr(y) = 0.103555 \) for \(x(0) = \)
Table 1: The quantities Pr_{min} at different values of n (see text).

n	20	21	22	23	24	25
Pr_{min}	0.3630	0.3450	0.3270	0.3108	0.2951	0.2802

n	26	27	28	29	30	31
Pr_{min}	0.2661	0.2527	0.2399	0.2278	0.2163	0.2054

n	32	33	34
Pr_{min}	0.1950	0.1852	0.1759

13559, $r = 33225$.

For $n = 33$ ($N = 8589934592$) the results are $Pr = 0.185207$, $MinPr(y) = 0.114707$ for $x(0) = 17226$, $r = 39041$; $Pr = 0.18524$, $MinPr(y) = 0.0967657$ for $x(0) = 9244$, $r = 18267$ and $Pr = 0.185205$, $MinPr(y) = 0.0969796$ for $x(0) = 21533$, $r = 27663$.

For $n = 34$ ($N = 17179869184$) the results are $Pr = 0.175864$, $MinPr(y) = 0.114707$ for $x(0) = 9244$, $r = 54337$ and $Pr = 0.174863$, $MinPr(y) = 0.103516$ for $x(0) = 26700$, $r = 36989$.

The results confirm our observation for smaller values of n that when there are no special favorable circumstances, the value of Pr is almost universal, i.e. practically does not depend on $x(0)$ and r. This shows that our algorithm is very stable, and Pr_{min} is probably a universal function of n. The quantities Pr_{min} at different values of n are shown in Table 1.

The data for $MinPr(y)$ are more irregular. In general these values decrease with the increase of n but are rather sensitive to the choice of $x(0)$ and r. The minimum value of $MinPr(y)$ for all our runs is equal to 0.0967657. It was observed for $n = 33$
(see above), not \(n = 34 \) what might seem to be rather strange and may be an indication that there exists a minimum of this quantity which is not equal to zero when \(n \to \infty \). However the existing amount of data is obviously insufficient for drawing such a conclusion.

We did not succeed in finding a simple function describing the data in Table 1. If one tries to approximate the data as \(Pr_{min}(n) = \text{Const}/n^c \) then the value of \(c \) for \(n \in [20, 34] \) is in the range \([1.35, 1.7] \).

In the preceding section we have also proposed a modification of the AQFT (see Eqs. (13-15)). In Table 2 we display the results of computations of the quantity \(Pr_{min} \) in the first ”post integral” approximation corresponding to \(m = 3 \). In this case decomposition coefficients can take the values of \(\exp(i\pi l/4) \) \((l = 0, 1, \ldots, 7) \) and the problem is no longer formulated only in terms of integers. The results show that the probability of period finding is significantly amplified. Moreover, the results for \(MinPr(y) \) become much more stable and in all our computations this quantity was rather close to \(Pr_{min} \). The minimum value of \(MinPr(y) \) in our computations is 0.556 for \(n = 31 \). This does not improve the estimation \(4/\pi^2 \approx 0.405 \) of the minimum relative probability in Shor’s algorithm because, as explained above, \(Pr(y) \) represents the contribution of four values of \(y_1 \) in the vicinity of \(y \) satisfying Eq. (8).

It is clear at a glance that the data in Table 2 have a much slower fall off with the increase of \(n \) than those in Table 1. If the data are approximated as \(Pr_{min}(n) = \text{Const}/n^c \) then the value of \(c \) for \(n \in [20, 31] \) is in the range \([0.25, 0.38] \) i.e. much better than in the pessimistic estimate \([14] \) for the conventional AFQT.
Table 2: The quantities Pr_{min} for our modification of the AQFT at $m = 3$ (see text).

n	20	21	22	23	24	25
Pr_{min}	0.7568	0.7472	0.7375	0.7282	0.7188	0.7096

n	26	27	28	29	30	31
Pr_{min}	0.7006	0.6916	0.6827	0.6740	0.6654	0.6569

5 Discussion

In this paper we have proposed a quantum algorithm for factor- ing which involves only a finite number of integers. There are strong numerical indications that the minimum probability to extract the correct value of k/r, where r is the period and k is one of the numbers $0, 1, ... r - 1$, is a universal function of the number of qubits n in question. Table 1 in the preceding section displays minimum probabilities in the range $20 \leq n \leq 34$, where $n = \log N$ and N is a number used for factorizing a big number N. As noted above, the adopted strategy is to choose $N = cN^2$ where $c > 1$ is a small number (say in the range [2,5]). Therefore for big values of N, $\log N$ is proportional to $\log N$.

The numbers in Table 1 are less than the lower bound $4/\pi^2 \approx 0.405$ for Shor’s algorithm and decrease with the increase of n. Therefore a greater number of repetitions will be required to ensure the success. On the other hand, for quantum computer implementing our algorithm, the corresponding quantum circuit has a smaller complexity ($O(n)$ instead of $O(n^2)$), a much less amount of resources is required and, since the algorithm involves only integers, its (in)sensitivity to errors is expected to have
the same order of magnitude than that for classical computer. Classical computer operating with \(n \) bits has \(N = 2^n \) states while in the version of quantum computer implementing our factoring algorithm with \(n \) qubits, the number of states does not exceed \(4N \). This is a consequence of the fact that the dimension of the Hilbert space for an \(n \)-qubit system is equal to \(N \) and we need only linear combinations of basis elements with the coefficients \(1, i, -1, -i \).

We have also proposed a modification of Coppersmith’ Approximate Quantum Fourier Transform (AQFT). The results in Table 2 show that the probability of period finding is significantly amplified already in the first post integral approximation and the fall off with the increase of \(n \) is much slower. However this approximation no longer can be formulated only in terms of integers. Quantum computer operating with \(n \) qubits in this approximation will require \(8N \) states because now the coefficients can take the values of \(\exp(i\pi l/4) \) (\(l = 0, 1, \ldots, 7 \)). In this case it will be also necessary to determine a required accuracy for \(\sqrt{2} \). In general it is clear that each next approximation will require a greater amount of resources and will have a greater error-sensitivity.

At early stages of development of quantum computer our integral version of Shor’s algorithm should be quite sufficient but for very big numbers one should look for better approximations. If one adopts a conventional approach then the above results give grounds to believe that by using our modification of the AQFT it will be possible to reduce the number of required approximations. At the same time, it is of indubitable interest to investigate whether there exists a quantum factoring algorithm which involves only integers and guarantees that the probability
of period finding is asymptotically constant.

Acknowledgements: The author is grateful to A.A. Makarov for valuable discussions.

References

[1] P.W. Shor, Algorithms for quantum computation: Discrete logarithms and factoring, *Proc. 35th Annual symposium on the Foundations of Computer Science*, p. 124, S. Goldwasser ed., IEEE Computer Society Press, Los Alamitos (1994).

[2] P.W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM, *J. Computing* 26 1484 (1997).

[3] P.W. Shor, Quantum Computing, *Documenta Mathematica Extra Vol. ICM I*, 467 (1998).

[4] A. Ekert and R. Jozsa, Quantum Computations and Shor’s algorithm, *Rev. Mod. Phys.* 68 733 (1996).

[5] A. Ekert, P. Hayden and H. Inamori, Lectures at les Houches Summer School on ”Coherent Matter Waves”, July-August 1999, [quant-ph/0011013](http://arxiv.org/abs/quant-ph/0011013) (2000).

[6] J. Preskill, Lecture Notes for Physics 229: Quantum Information and Computation (1999), available online at http://www.theory.caltech.edu/people/preskill/ph229.

[7] P.W. Shor, Introduction to Quantum Algorithms, Notes for talk given for the short course at the January 2000 American Mathematical Society meeting, [quant-ph/0005003](http://arxiv.org/abs/quant-ph/0005003) (2000).
[8] C.P. Williams and S.H. Clearwater, Ultimate Zero and One, *Copernicus, Springer Verlag*, New York (2000).

[9] D. Coppersmith, An Approximate Fourier Transform Useful in Quantum Factoring, *IBM Research Report* RC 19642 (1994).

[10] A. Barenco, A. Ekert, K-A. Suominen and P. Torma, Approximate Fourier Transform and Decoherence, quant-ph/9601018 (1996).

[11] H. Davenport, The Higher Arithmetic, *Cambridge University Press* (1999).

[12] F.M. Lev, Modular Representations as a Possible Basis of Quantum Physics, *J. Math. Phys.* 30 1985 (1989); Finiteness of Physics and Its Possible Consequences, *ibid*, 34 490 (1993).

[13] R. Cleve, A. Ekert, C. Macchiavello and M. Mosca, Quantum Algorithms Revisited, *Proc. R. Soc. London*, A454 339 (1998).