Electronic Supplementary Information (ESI) for

Potentiometric and UV-Vis spectrophotometric titrations for evaluation of the antioxidant capacity of chicoric acid

Haiqing Yi, Yan Cheng, Yu Zhang, Qingji Xie* and Xiaoping Yang

*Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China

E-mail: xieqi@hunnu.edu.cn (Q. Xie)

Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
Scheme S1. The chemical structures of trolox, ChA, ABTS, and ABTS$^+$.
Scheme S2. Possible mechanism of the oxidation and dimerization of a catechol structure at high pH (the dimerization at other available phenyl carbon atoms is also possible. R is an appropriate substituent group)1. Moreover, the pH-dependent nucleophilic attack of one hydroxyl group of catechol structure to the available phenyl carbon atoms of the \(o\)-benzoquinone structure is also possible, like the oxidation of dopamine2.
Fig. S1. Curve of trolox concentration versus ABTS$^+$ concentration obtained from potentiometric titration (A) or from spectrophotometric titration (B). Here, trolox was titrated into the ABTS$^+$ solution when the potential (A) or absorbance (B) was recorded, and the concentration of unreacted ABTS$^+$ corresponding to each added trolox concentration can be worked out by the Nernst equation (A) or by Lambert-Beer's law (B). Relationship between the ChA concentrations consumed at end points by spectrophotometric (c_{UV}) and potentiometric (c_{PT}) titrations of ChA into ABTS$^+$ at different concentrations (C).
Fig. S2. CV curves on GCE at different time after titrating 25 μM ChA into 0.1 M phosphate buffer at pH 5.0 (A), 7.4 (B), or 9.0 (C) containing 0.1 M Na$_2$SO$_4$, 117 μM ABTS$^+$ and 58.0 μM ABTS. Scan rate: 100 mV/s; initial potential: 0 V.
Fig. S3. CV curves on GCE at different time after titrating 50 μM trolox into 0.1 M phosphate buffer at pH 5.0 (A), 7.4 (B), or 9.0 (C) containing 0.1 M Na$_2$SO$_4$, 117 μM ABTS$^+$ and 58.0 μM ABTS. Scan rate: 100 mV/s; initial potential: 0 V.
Fig. S4. CV curves on GCE at different time after adding 117 μM ABTS$^+$ and 58.0 μM ABTS into 0.1 M phosphate buffer at pH 5.0 (A), 7.4 (B), or 9.0 (C) containing 0.1 M Na$_2$SO$_4$. Scan rate: 100 mV/s; initial potential: 0 V.
Fig. S5. CV curves on GCE at different time after adding 25 μM ChA into 0.1 M phosphate buffer at pH 5.0 (A), 7.4 (B), or 9.0 (C) containing 0.1 M Na₂SO₄. Scan rate: 100 mV/s; initial potential: 0 V.
Fig. S6. CV curves on GCE at different time after adding 50 μM trolox into 0.1 M phosphate buffer at pH 5.0 (A), 7.4 (B), or 9.0 (C) containing 0.1 M Na$_2$SO$_4$. Scan rate: 100 mV/s; initial potential: 0 V.
Fig. S7. Potentiometric titration kinetics curves for a single dose of 25 μM ChA (A) or 50 μM trolox (B) at 0 s into 0.1 M phosphate buffer at pH 7.4 containing 0.1 M Na₂SO₄, 117 μM ABTS⁺ and 58.0 μM ABTS under nitrogen saturated and air saturated conditions.
Fig. S8. (A) Potentiometric titration curves (A) on GCE for the successive additions (indicated by green spheres) of *Echinacea* extract (addition of 20.0 µL of 3.50 g/L original extract for each) into 4.0 mL of 0.1 M phosphate buffer (pH 7.4) containing 0.1 M Na$_2$SO$_4$, 33.6 µM ABTS and 53.9 µM ABTS$^+$. (B) Spectrophotometric titration of *Echinacea* extract (addition of 20.0 µL of 3.50 g/L original extract for each) into 4.0 mL of 0.1 M phosphate buffer (pH 7.4) containing 0.1 M Na$_2$SO$_4$, 32.8 µM ABTS and 54.7 µM ABTS$^+$, and the relationship of the peak absorbance at 734 nm versus final concentration of added extract (inset).
References (The numbering here is valid only for the Supporting Information)

1 E. F. Newair, R. Abdel-Hamid and P. A. Kilmartin, *Electroanalysis*, 2017, **29**, 850-860.

2 Y. L. Li, M. L. Liu, C. H. Xiang, Q. J. Xie and S. Z. Yao, *Thin Solid Films*, 2006, **497**, 270-278.