Homoeopathy for infantile spasms: An open label, single arm, clinical trial

Savita Kumari
District Joint Ayush Hospital, Sahibganj, Jharkhand, India, kumarisavita@gmail.com

Neha Kalra
Central Council for Research in Homoeopathy, New Delhi, India, drnehamehta1985@gmail.com

Follow this and additional works at: https://www.ijrh.org/journal

Part of the Alternative and Complementary Medicine Commons

How to cite this article

Kumari S, Kalra N. Homoeopathy for infantile spasms: An open label, single arm, clinical trial. Indian J Res Homoeopathy 2021;15(3). doi: [10.53945/2320-7094.1036](https://doi.org/10.53945/2320-7094.1036)
Homoeopathy for infantile spasms: An open label, single arm, clinical trial

Abstract

Background: Treatment of infantile spasms (ISs) with allopathic medicines along with homeopathy is poorly understood in context with the seizure profile, psychomotor outcome, and electroencephalogram (EEG) changes. Objectives: The objective of the study was to evaluate the role of homeopathic treatment in seizure control, psychomotor development, and EEG changes in patients of IS. Materials and Methods: An open label, single-arm, clinical trial was conducted. Patients found eligible were enrolled (n = 30) and given individualized homeopathic intervention along with conventional medicine for 3 months. Follow-up assessment was done weekly based on 7 points: Sense of well-being, changes in cognitive behavior, changes in activity level, changes in seizure ictal period, changes in hypsarrhythmia, changes in speech, and gross and fine motor development. Results: About 76.66% (n = 23) of patients had improved clinically (sense of well-being, activity level, and seizure ictal period). Cognitive behavior improved in 50% (n = 9), while hypsarrhythmia improved in 16.66% (n = 5) of patients. Speech improved in 13.33% (n = 4), while gross and fine motor skills improved in 21% (n = 4) and 16% (n = 4), respectively. Calcarea carbonica (n = 4, 13.33%), Arsenic album (n = 4, 13.33%), Causticum (n = 4, 13.33%), Lycopodium (n = 3, 10%), and Nux vomica (n = 2, 6.66%) were frequently used medicines. Conclusion: Homeopathy plays a positive role in seizures in IS patients. More multicentric, randomized trials are required to make conclusions.

Acknowledgments and Source of Funding

N/A
Homoeopathy for infantile spasms: An open-label, single-arm, clinical trial

Savita Kumari1*, Neha Kalra2
1District Joint Ayush Hospital, Sahibganj, Jharkhand, India, 2Central Council for Research in Homoeopathy, New Delhi, India

Abstract

Background: Treatment of infantile spasms (ISs) with allopathic medicines along with homoeopathy is poorly understood in context with the seizure profile, psychomotor outcome, and electroencephalogram (EEG) changes. Objectives: The objective of the study was to evaluate the role of homoeopathic treatment in seizure control, psychomotor development, and EEG changes in patients of IS. Materials and Methods: An open-label, single-arm, clinical trial was conducted. Patients found eligible were enrolled (n = 30) and given individualized homoeopathic intervention along with conventional medicine for 3 months. Follow-up assessment was done weekly based on 7 points: Sense of well-being, changes in cognitive behavior, changes in activity level, changes in seizure ictal period, changes in hypsarrhythmia, changes in speech, and gross and fine motor development. Results: About 76.66% (n = 23) of patients had improved clinically (sense of well-being, activity level, and seizure ictal period). Cognitive behavior improved in 50% (n = 9), while hypsarrhythmia improved in 16.66% (n = 5) of patients. Speech improved in 13.33% (n = 4), while gross and fine motor skills improved in 21% (n = 4) and 16% (n = 4), respectively. Calcarea carbonica (n = 4, 13.33%), Arsenic album (n = 4, 13.33%), Causticum (n = 4, 13.33%), Lycopodium (n = 3, 10%), and Nux vomica (n = 2, 6.66%) were frequently used medicines. Conclusion: Homoeopathy plays a positive role in seizures in IS patients. More multicentric, randomized trials are required to make conclusions.

Keywords: Cognitive outcome, Infantile myoclonic encephalopathy, Infantile spasm, Psychomotor development, Seizure improvement, West syndrome

Introduction

Infantile spasms (ISs) are a rare disorder with an incidence of 2.5–6.0 cases/10,000 live births. IS constitutes 2% of childhood epilepsies but 25% of epilepsy with onset in the 1st year of life. Its prevalence rate is 1.5–2.0 cases/10,000 children aged 10 years or younger. The morbidity rate reported is 50%. Familial recurrence and male-to-female ratio suggests a sex-linked trait. It is commonly known as West syndrome (WS). IS is characterized by the triad of generalized seizure, myoclonic spasm, and hypsarrhythmia on the electroencephalogram (EEG). Commonly seen with trisomy 21. Different types of seizures are flexor (salaam attack), extension, and mixed type. Salaam attack is seen as clusters ranging from <1 min to 10–15 min or longer. Extension seizure is associated with crying/laughing, flushing, and/or other autonomic features. Mixed type (43%) seizures may occur during sleep or immediately on awakening.

Based on etiology, there are two types of IS: Cryptogenic and symptomatic. In cryptogenic or idiopathic (10–15%), there is complete recovery seen in 68% of cases. In symptomatic (85–90%) type, there is evidence of brain damage, psychomotor retardation, and neurological deficit found in 70–95% of patients. Known etiology includes prenatal causes (75%) such as cerebral dysgenesis, hypoxic-ischemic encephalopathy with periventricular leukomalacia or white matter injury, intrauterine infection with cytomegalovirus, and inborn error of metabolism or postnatal (25%) causes such as cerebral hypoxia, head trauma, and infection with herpes simplex virus.

Approximately 75–90% of IS patients will have moderate-to-severe developmental delays. About 10–50% will develop
Lennox-Gastaut syndrome \[17\] (slow spike-wave EEG pattern, mixed seizure, and developmental delay). Computed tomography scan can detect the brain damage in 90% of infants. \[18\] Other investigations include single-photon emission computed tomography, \[9\] magnetic resonance imaging (MRI), \[10\] ictal EEG, and interictal EEG. Ophthalmic examination may reveal chorioretinitis from congenital infection with Alcadi syndrome. \[11\] With Wood lamp, tuberous sclerosis \[12\] (skin test), the single most common recognizable cause of WS, can be detected. \[13\] Allopathic treatment includes adrenocorticotropic hormone, \[14\] sodium valproate, and lamotrigine, which is only palliative. Focal cortical resection \[15\] is the treatment of choice in some cases to get freedom from seizures. Dieticians assist to commence and maintain the ketogenic diet. \[16\] Intravenous immunoglobulin (Ig) therapy has been studied with an objective to see the efficacy of dose-dependent Ig in early treatment of cryptogenic WS. \[17\] They found complete remission amongst all six patients studied with cryptogenic WS.

Materials and Methods

Study design, setting, and duration

An open-label, single-arm, clinical trial was conducted at the District Joint AYUSH Hospital, Sahibganj, Jharkhand state, India. Door-to-door visit was made in the nearby vicinity (August 2003–February 2004). Diagnosed cases of IS with hypsarrhythmia were enrolled and followed up weekly for 3 months.

The study protocol and procedure adhered to the ethical guidelines of the Declaration of Helsinki, \[18\] however, ethical approval was not sought due to limited knowledge of the investigator on this subject. This is regretted. Trial registry under Clinical Trials Registry of India was made mandatory in 2009. However, this study was conducted way before this in 2003–2004.

Eligibility criteria

Screening

During the enrolment period of the study, patients reporting at the outpatient department (OPD) of the hospital were screened based on inclusion and exclusion criteria. Diagnosed IS patients fulfilling the inclusion criteria were explained verbally about the study, and written consent from the parents was obtained in the OPD register for voluntarily participating in the study. However, they were free to withdraw from the study at any point of time.

Inclusion criteria

Children of both sexes, of age group 12 months–6 years with radiographic evidence of hypsarrhythmia or its variants on EEG; those with epileptic spasms due to focal brain damage, scattered or generalized shrinkage of brain, and symptomatic, asymptomatic diagnosed cases of IS were included in the study.

Exclusion criteria

Those with severe spasms which needed hospitalization; or with chronic systemic illness such as cardiovascular, endocrinal diseases, or systemic infections (other than Down’s syndrome, autism and cerebral palsy); or with active tuberculosis, severe acute malnutrition, and temporal lobe epilepsy were excluded from the study.

Intervention and follow-up

A structured format was formed for initial case taking. To elicit totality of symptoms, special emphasis was given to find symptoms related to constitution, diathesis and miasm involved, general aggravations and ameliorations, general state of being, location, character and concomitant associated during convulsive phase, prenatal history of mother, and history of suppressions, if any. Attendants were interrogated in local language for better understanding of symptoms.

Intervention was given as per the indicated individualized homoeopathic medicine obtained after repertorization from Kent’s repertory or Boger Boenninghausen’s Characteristics and Repertory (BBCR) depending on the predominance of general or particular symptoms suited to the case, respectively. \[19,20\]

Initially, 30 C potency of selected medicine was given in each case which was sequentially raised in series if improvement stopped after giving the medicine. In 30 potency, each dose consisted of four cane sugar globules medicated with two drops of the indicated homoeopathic dilution. Patients were given each dose orally on tongue at the time of visit by the investigator. Medicines were obtained from good manufacturing practice certified firms of India.

The duration of therapy was 3 months. The progress was recorded based on symptomatic improvement supported by EEG examination.

Based on presenting symptom totality of each case, a single indicated medicine was prescribed and dispensed during door-to-door visit by the investigator. Repertorization was done manually (in due course of time) with due consultation from Materia Medica. Follow-up was taken subsequently every week on follow-up sheets based on 7-point criteria. \[21\] Follow-up prescriptions were done as per Kent’s observations and Hering’s law of cure. Intercurrent remedies were given based on totality of symptoms when required in indolent cases or to remove miasmatic influences. Patients were assessed by two homeopaths during the field visit. Medicine was selected on each occasion by both the homeopaths based on their individual observations and attendant’s feedback.

General management

All patients were advised to continue their ongoing conventional medicines regularly along with homoeopathic treatment and be present for weekly follow-ups. Any emergency condition needed to be immediately addressed to avoid further damage to brain by reporting to the tertiary care centers from where the patients’ conventional treatment was going on.

Outcomes

Outcome measures

Keeping in mind both homoeopathic and pathological points of view of IS, follow-up assessment was done based on the following 7 points:
i. Sense of well-being
ii. Changes in cognitive behavior (social smile, response to direction of sound in 12 months old, and obeying directed voluntary tasks in younger children)
iii. Changes in activity level
iv. Changes in seizure level (intensity and frequency of jerks)
v. Changes in hypsarrhythmia (number and amplitude of spikes on EEG)
vi. Changes in speech
vii. Changes in gross and fine motor skills.

Comparisons were made at baseline and after 3 months of treatment as per the investigator’s observations and attendant’s feedback. Improvement levels up to 60% were classified as “general improvement” and up to 40–50% as “partial improvement.” Cases which showed below 40% changes were “status quo” cases.

Sample size
Convenient sampling was done. Thirty diagnosed cases of IS were enrolled in the study.

Statistical analysis
The data were coded, entered, and statistically analyzed. Descriptive statistics were used to describe the social and demographic profiles.

RESULTS
Study flow
Figure 1 gives a flowchart representing the steps taken during the course of the study.

Baseline features
Twenty-five baseline variables were studied in 30 children suffering from IS [Table 1a]. Both male \((n = 22, 73.33\%)\) and female \((n = 8, 26.67\%)\) children were included in the study. The mean age of children at the time of presentation was 38 ± 20.36 months. There was a history of emotional stress in patients’ mothers \((n = 14, 46.66\%)\) during pregnancy and hypoxia of children \((n = 30, 100\%)\) due to several reasons including difficult labor \((n = 14, 46.66\%)\), fluid aspiration during normal labor \((n = 1, 3.33\%)\), nuchal cord \((n = 1, 3.33\%)\), and forceps-induced head injury \((n = 2, 6.66\%)\). Maximum children \((n = 12, 40\%)\) were born with normal birth weight and were full term \((n = 24, 80\%)\). All children were hypoxic \((n = 30, 100\%)\) and had delayed birth cry \((n = 28, 93.33\%)\) and majority \((n = 22, 73.33\%)\) were cyanosed at the time of birth [Table 1b]. It was observed that only few children were firstborn \((n = 8, 26.67\%)\). Cerebral palsy \((n = 2, 6.67\%)\) and Down’s syndrome \((n = 1, 3\%)\) were seen associated with IS. Onset of symptoms occurred between 1 and 3 years of age in most of cases \((n = 18, 60\%)\). Social smile \((n = 18, 60\%)\) and response to direction of sound \((n = 18, 60\%)\) were absent in many cases. Spasticity \((n = 21, 70\%)\) was found in majority of cases. Spasms were seen more in upper extremity \((n = 22, 73.33\%)\). Gross motor \((n = 19, 63.33\%)\) and fine motor \((n = 25, 83.3\%)\) abnormalities were seen in cases though vision \((n = 24, 80\%)\) and hearing \((n = 26, 86.67\%)\) were normal. Delayed teething \((n = 8, 26.67\%)\) and walking \((n = 8, 26.6\%)\) were seen in few cases. Hypsarrhythmia on EEG was present in all the patients \((n = 30, 100\%)\), while abnormal MRI \((n = 10, 33.33\%)\) was found in few cases only.

Improvement after 3 months
General improvement (up to 60%) was achieved in 15 patients and partial improvement (40%–60%) in 8, while 7 patients (below 40%) did not show any changes.

Homoeopathic medicines used
Out of 12 patients in which prescription was based on BBCR repertory, Causticum (caust) was given in 3 (25%) patients; Lycopodium and Nux vomica in 2 (16.66%) patients and sep, am-c, lach, ign, and bell in 1 (8.33%) patient. General improvement was seen in 6 patients (50%), partial improvement in 3 (25%) patients, while 3 (25%) patients remained status quo.

Similarly, out of 18 cases in which prescription was based on Kent’s repertory, Calcarea carbonica and Arsenic album were given in 4 (22.22%) patients and nat-m, chin, acon, bell, ign, lach, sep, plb, lyc, and caust were given in 1 (5.55%) patient each. General improvement was seen in 9 (50%) patients, 5 (27.22%) partial improvement, while 4 (22.22%) patients remained status quo.

Based on the fact that IS is a psoric-syphilitic[23] miasmatic disease complex,[24] Sulphur, Syphilinum, and Tuberculinum were used as intercurrent remedies in indolent cases, cases showing inadequate short-lasting response in acute exacerbations and cases who had strong miasmatic influences. Indicated rubrics to prescribe the intercurrent remedies are given in Table 2.

When repertorizing the cases, many other rubrics with broader spectrum of indicated medicines were found matching the symptom syndrome of IS patients. All these works (based on the American 6th edition of Kent’s repertory)[25] were compiled together to be used as reference work for future studies as “clinical repertory of spasms” [Supplementary Table 1].

Adverse events
Patients were instructed to report any harms, unintended effects, serious adverse events, and undue aggravations either directly in OPDs of tertiary care centers or over phone, but not a single case were reported.

Figure 1: Flow chart diagram

- Diagnosed patients of IS were screened for eligibility \((n = 32)\)
- Excluded \((n = 2)\) Cases with severe spasms needed hospitalisation
- Included \((n = 30)\)
- Follow-up every week for 3 months
- Lost to follow-up \((n = 0)\)
- Completed study and data analysed \((n = 30)\)
Table 1a: Sociodemographic data of the study population (n=30)

Characteristics	Number of cases, n (%)
Age (months), mean±SD (at presentation)	38±20.68
Gender	
Male	22 (73.33)
Female	8 (26.67)
Religion	
Hindu	21 (70.00)
Muslim	7 (23.33)
Christian	2 (6.67)
Mother’s health history during pregnancy	
If suffered from any acute infection	12 (0.00)
Any medications taken during pregnancy	2 (6.67)
History of physical strain and/or emotional trauma	14 (46.66)
Developmental delay	
Teething onset delayed	6 (20.0)
Walking onset delayed	26 (86.66)
Spastic	
Present	21 (70.00)
Absent	9 (30.00)
Abnormal MRI brain	10 (33.33)
Birth weight	
Underweight	8 (26.67)
Normal	12 (40.00)
Overweight	10 (33.33)
Birth cry	
Normal	2 (6.67)
Delayed	28 (93.33)
Cyanosis	
Normal	8 (26.67)
Blueness present	22 (73.33)
Hypoxia	30 (100)
Time of delivery	
Full term	24 (80.00)
Pre-mature	4 (13.33)
Post-mature	2 (6.67)
Firstborn	8 (26.67)
Age at presentation (years)	
1-3	18 (60.00)
4-6	11 (36.67)
7-10	1 (3.33)
Extremity involved	
Upper limbs predominantly	22 (73.33)
Lower limbs predominantly	8 (26.6)
Hypsarrhythmia (EEG)	30 (100)
Vision	
Normal	24 (80)
Abnormal	6 (20)
Hearing	
Normal	26 (86.67)
Abnormal	4 (13.33)
Gross motor development	
Normal	11 (36.66)
Abnormal	19 (63.33)
Fine motor development	
Normal	5 (16.6)
Abnormal	25 (83.3)

(Contd...)
Table 1a: (Continued)

Characteristics	Number of cases, n (%)
Eating habit	
Vegetarian	18 (60)
Non-vegetarian	12 (40)
Associated complaints	
Cerebral palsy	2 (6.67)
Down’s syndrome	1 (3.00)
Socioeconomic class	
Upper (I)	1 (3.33)
Upper middle (II)	0
Lower middle (III)	4 (13.33)
Upper lower (IV)	13 (43.33)
Lower (V)	12 (40.00)
Vaccination history	
Complete	24 (80)
Incomplete	6 (20)
Social smile	
Present	12 (40)
Absent	18 (60)
Direction of sound in 12 months old/obeying directed voluntary tasks in younger children	
Responding	12 (40)
Non-responding	18 (60)

Data presented as mean±SD, categorical data presented as absolute values (%), SD, socioeconomic class is classified as per Kuppuswamy’s scale 2003-2004 [22]. SD: Standard deviation, EEG: Electroencephalogram, MRI: Magnetic resonance imaging.

Table 1b: Aetiology in the patients of infantile spasms

Prenatal cause	n (%)
Any deformity shown at the time of third	6 (20)
Trimester in ultrasound	None
Viral infection to the mother	2 (6.66)
Drug taken by mother	14 (46.66)
Physical strain and emotional trauma (premature)	4 (13.33)
Maturity (postmature)	2 (6.66)
Perinatal cause	
Birth cry delayed	28 (93.33)
Hypoxia	30 (100)
Blueness (cyanosis)	22 (73.33)
Difficult labour	14 (46.66)
Under/over birth weight (kg)	None
Respiratory infection (pneumonia-like symptoms)	4 (13.33)
Injury due to forceps delivery	2 (6.66)
Fluid aspiration during normal labour	1 (3.33)
Nuchal cord	1 (3.33)
Postnatal cause	
Viral infection to child	6 (20)

Symptom profile

Cases presenting predominantly with mental and physical generals were repertorized using Kent’s repertory (n = 18), and more of particular symptoms were repertorized using BBCR (n = 12). The list of prescribed medicines along with indications is given in Table 3.

When comparing improvement levels between both repertories, it was found that general improvement was seen in 50% of the cases using either of the two repertories. However, partial improvement using Kent’s repertory (27.77%) was found slightly more than BBCR (25%). Status quo cases seen with Kent (22.22%) though were lesser than BBCR (25%). Inference could be drawn that both repertories were found more or less equally efficient in selecting the homeopathic similimum for treating IS cases [Figure 2].

Discussion

In the present study, it was observed that the onset of symptoms of IS was within the 1st year of life and predominantly in male children of upper-lower- and lower-income group. Causative factors found during case taking could broadly be classified as prenatal, perinatal, and postnatal [Table 1b]. Perinatal factors were found as the leading cause for hypoxic injury of brain. The clinical profile (i.e., sense of well-being, activity level) of 76.66% (n = 23) of patients improved over 3 months as compared to baseline. Out of 14 different homeopathic medicines used in the study, C. carbonica (n = 4, 13.33%), A. album (n = 4, 13.33%), caust (n = 4, 13.33%), lyc (n = 3, 10%), and N. vomica (n = 2, 6.66%) were among the most frequently indicated group. Improvement in the cognitive behavior (50%, n = 9), speech (13.33%, n = 4), gross (21%, n = 4), fine (16%, n = 4) motor skill development, and hypsarrhythmia (16.66%, n = 5) was observed in patients of IS. Two factors which could predict bad seizure outcome
were hypoxia at time of birth and delayed birth cry. The earlier homoeopathic treatment was given along with already going on conventional treatment; better improvement was seen in patients of IS. No substantial medicinal adverse effects were noted.

However, being single-arm, open-label clinical trial, this study design is a methodological limitation of the study. Other limitations were that IS is a rare disorder and taking mental symptoms in retarded patients were challenging. The strengths of the study were the specific (constitution, diathesis, and miasm) pointers for homoeopathic case taking in challenging disease like IS. The investigator’s vast personalized experience with IS helped to clearly distinguish individualized symptoms from disease symptoms. Detailed demographic data obtained

Table 2: Intercurrent remedies

Indicated intercurrent remedy	Indications from Kent’s repertory	Indications from BBCR® repertory	Number of cases, n (%)
Sulphur	Eyes: Agglutinated, night; page: 235	Mind: Indifference, apathy; page: 207	5 (16.66)
	Ears: Discharges, purulent; page: 287	Eyes: Eyelids, agglutinated, infants in; page: 336	
	Teeth: Discoloured, black; page: 431	Abdomen: Cramps, etc., touch; page: 564	
	Nose: Ulcers inside; page: 353	Stool: Diarrhoea, anus and rectum, biting in; page: 596	
	Extremities: Pain, night; page: 1044	Upper extremities: Jerks and twitches; page: 821	
	Extremities: Pain, rheumatic; page: 1045	Upper extremities: Jerks and twitches, fingers; page: 821	
	Generalities: Night, 6 pm to 6 am; page: 1343	Upper extremities: Powerlessness; page: 824	
	Generalities: Abscesses, burning; page: 1343	Sensation and complaints in general: Constitution, psoric, scrofulo-lymphatic, etc.; page: 888	
	Mind: Travel, desire to; page: 89	Skin and exterior body: Itching, in general, warmth of bed page: 980	
	Head: Hair falling; page: 120	Sleep: Positions during sleep, lying on back; page: 991	
	Head: Hair lustreless; page: 120		4 (13.33)
	Nose: Catarrh; page: 324		
	Abdomen: Swelling, glands of; page: 603		
	Rectum: Diarrhoea, morning, bed, driving out of; page: 609		
	Generalities: Cold, tendency to take; page: 1349		
	Generalities: Cold, place, entering a, agg; page: 1349		
	Generalities: Emaciation; page: 1358		
	Generalities: Exertion, physical agg; page: 1358		
	Generalities: Weakness, perspiration from; page: 1418		

BBCR: Boger Boenninghausen’s Characteristics and Repertory

Figure 2: Bar chart: Comparison of homoeopathic medicines taken from BBCR and Kent repertory. BBCR: Boger Boenninghausen’s Characteristics and Repertory.
Medicine	Rubrics from Kent’s repertory	Rubrics from BBCR repertory
Acon	Mind: Anxiety fear, with; page: 6	-
	Mind: Restlessness anxious, etc.; page: 73	-
	Stomach: Vomiting, convulsions, after; page: 532	-
	Generalities: Convulsions, children; page: 1352	-
	Generalities: Convulsions, fright, from; page: 1354	-
	Generalities: Convulsions, tonic; page: 1355	-
	Generalities: Twitching; page: 1409	-
Calcarea	Mind: Confusion of mind; page: 13	-
	Mind: Darkness, agg; page: 17	-
	Head: Motions of head, convulsive; page: 131	-
	Stomach: Vomiting, coughing on; page: 532	-
	Extremities: Ataxia; page: 953	-
Chin	Mind: Dullness, periodical; page: 38	-
	Stomach: Constriiction; page: 483	-
	Stomach: Pain, cramping, loss of animal fluids, after; page: 518	-
	Generalities: Faintness, loss of fluids from; page: 1360	-
	Generalities: Pain, bones; page: 1377	-
Ign	Mind: Emotional, ailments from; page: 40	Mind: Absence of, lost in thought, absent minded, etc.; page: 191
	Mind: Morose; page: 68	Cough: Throat, constriction of; page: 716
	Face: Convulsions, spasms, beginning in face; page: 357	Sensation and complaints in general:
	Generalities: Convulsions, consciousness, without; page: 1352	Convulsive movements, spasms, etc.; page: 890
	Generalities: Convulsions, sleep, during; page: 1355	Sensation and complaints in general:
	Generalities: Convulsions, vexation, from; page: 1356	Twitching, jerks, etc., convulsive; page: 933
Bell	Mind: Irritability, morning, waking, on; page: 58	Mind: Irritable; moaning; page: 222
	Eyes: Movement, eyeballs, constant; page: 246	Eye: Movements, convulsive of; page: 314
	Face: Convulsions, spasms; page: 357	Face: Convulsions of; page: 393
	Throat: Choking, convulsive; page: 449	Mouth: Throat, spasm or cramp; page: 455
	Extremities: Convulsion, upper limbs, fingers; page: 969	Urine: Incontinence of; page: 620
	Generalities: Convulsions, mental exertion, after; page: 1354	Mind: Sadness, melancholy, etc.; page: 215
	Generalities: Convulsive movements; page: 1356	Stomach: Nausea and vomiting, food, sight of; page: 508
	Generalities: Convulsions, waking, on; page: 1356	Sensation and complaints in general:
	Generalities: Sun, from exposure to; page: 1404	Marasmus; page: 908
	Generalities: Convulsions, weakness, during nervous page: 135	Sensation and complaints in general:
Sep	Mind: Weeping, involuntary; page: 93	Weakness, exhaustion, prostration, infirmity; page: 935
	Head: Jerking of the head, back and forth; page: 129	Mind: Indifference, apathy; page: 207
	Stomach: Nausea food, smell of; page: 507	Mind: Irritability, cross; page: 209
	Urine: Bladder, urine involuntary, night; page: 659	Head: Internal, vertex, heat of, with cold limbs, feet, etc.; page 264
	Generalities: Convulsions, weakness, during nervous page: 135	Eye: Look, unsteady, restless; page: 314
Lach	Mind: Restlessness, chill, at beginning of; page: 73	Circulation: Pulse full; page: 1014
	Eye: Inflammation conjunctiva, pustular; page: 243	Aggravation and amelioration in general:
	Chest: Cramp, heart; page: 828	Sleep, after; page: 1141
	Generalities: Convulsions, chill, during; page: 1352	-
	Generalities: Convulsive movements; page: 1356	-
	Generalities: Cyanosis, infants, in; page: 1356	-
Nat-mur	Mind: Restlessness, nervousness, midnight at; page: 73	-
	Mind: Weeping, causeless; page: 93	-
	Mouth: Mapped tongue; page: 407	-
	Extremities: Ataxia; page: 953	-
	Generalities: Convulsions, periodic, every 7 day; page: 1355	-
	Generalities: Emaciation, children; page: 1358	-
Arsenic	Mind: Restlessness, children in, relieved by being carried about; page: 73	-
	Stomach: Nausea food, smell of; page: 507	-
	Generalities: Convulsion, chill, during; page: 1352	-
	Generalities: Convulsion, periodic; page: 1355	-

(Contd...)
during case taking helped to clearly understand the causal relationships and presentation of IS cases. No homoeopathic studies on IS could be identified in the past, and therefore, the present study would be a significant contribution to the homoeopathic literature on IS. Only two case reports published so far revealed complete cure with Medorrhinum and Aurum metallicum, respectively.\[25,26\] In another paper, the author reports cases of animals elucidating successful treatment of seizures of idiopathic origin with homoeopathic medicines.\[27\] Adequately powered, randomized, multicentric controlled trials of longer duration are warranted to arrive at a definite conclusion regarding the efficacy of homoeopathic medicines in IS.

Conclusion
Homoeopathic medicine holds a ray of hope for IS, since not only intensity and frequency of seizures were controlled but also improvement in cognitive and social behavior was observed. However, randomized double-blind placebo-controlled trials with a larger sample size, with longer follow-ups using standardized outcome measures, are further required to explore the efficacy of homoeopathy in bringing either palliation or complete cure in cases of IS with or without radiographic changes.

Financial support and sponsorship
Nil.

Conflicts of interest
None declared.

Disclaimer
IJRH, in general, discourages reporting dated work, this publication being an exception. Role of Homoeopathy in infantile spasm is under-researched. This work is, therefore,
published in the hope that further research can be taken up in this significant field.

REFERENCES

1. Sehgal R, Gulati S, Sapra S, Tripathi M, Kabra M, Pandey RM. Neurodevelopmental and epilepsy outcome in children aged one to five years with infantile spasms a North Indian cohort. Epilepsy Res 2014;108:526-34.

2. Dila M, Triki C, Rhouma B, Jomaa R, Issa A, Ammar-Keskes L, et al. A novel C-terminal truncated mutation in hCDKL5 protein causing a severe West syndrome: Comparison with previous truncated mutations and genotype/phenotype correlation. Int J Dev Neurosci 2018;72:22-30.

3. Krey I, Neudenberger JK, Hentschel J, Syrbe S, Polster T, Hanker B, et al. Genotype-phenotype correlation on 45 individuals with west syndrome. Eur J Paediatr Neurol 2020;25:134-8.

4. Hussain SA, Lay J, Cheng E, Weng J, Sankar R, Baca CB. Recognition of infantile spasms is often delayed: The ASSIST study. J Pediatr 2017;190:215-21.e1.

5. Nelso GR. Management of infantile spasms. Transl Pediatr 2015;4:260-70.

6. Shields WD. Infantile spasms: Little seizures, BIG consequences. Epilepsy Curr 2006;6:63-9.

7. Auvin S. Lennox-Gastaut syndrome: New treatments and treatments under investigation. Rev Neurol (Paris) 2020;176:444-7.

8. Mahdi AH, Yohannan MD, Patel PJ, Malabarrey TM, Kolawole TM. Computerized tomography of brain in infantile spasms (West syndrome). Pediatr Radiol 1990;21:9-11.

9. Taghdiri MM, Nemati H. Infantile spasms: A review article. Iran J Child Neurol 2014;8:1-5.

10. Medina RC, Navas P, Rodriguez L, Fernandez MA, Sanchez VE, Anton JM, et al. Infantile spasms (West syndrome). Electroencephalography (EEG) pattern and development outcome. Study of 103 cases. Eur J Paediatr Neurol 2017;21:107-8.

11. Devinsky O, Verducci C, Thiele EA, Laux LC, Patel AD, Filloux F, et al. Open-label use of highly purified CBD (Epidiolex®) in patients with CDKL5 deficiency disorder and Aicardi, Dup15q, and Doose syndromes. Epilepsy Behav 2018;86:131-7.

12. Riikonen R, Kokki H. CSF nerve growth factor (β-NGF) is increased but CSF insulin-like growth factor-(IGF-1) is normal in children with tuberous sclerosis and infantile spasms. Eur J Paediatr Neurol 2019;23:191-6.

13. Marsh R, Nichols C, Payne M. Novel case of resolution of hypersarrhythmia following tuber resection in a patient with infantile spasms and tuberous sclerosis. Clin Case Rep 2017;5:859-62.

14. Hodgeman RM, Kapur K, Paris A, Marti C, Can A, Kimia A, et al. Effectiveness of once-daily high-dose ACTH for infantile spasms. Epilepsy Behav 2016;59:4-8.

15. Kang JW, Rhee SK, Yu R, Eom S, Hong W, Kim SH, et al. Seizure outcome of infantile spasms with focal cortical dysplasia. Brain Dev 2013;35:816-20.

16. Zhang Y, Yu L, Zhou Y, Zhang L, Wang Y, Zhou S. Prognostic utility of hypersarrhythmia scoring in children with WS after ketogenic diet. Clin Neurol Neurosurg 2019;184:105402.

17. Arizumi M, Baba K, Hibi S, Shihara H, Michihiro N, Ogawa K, et al. Immunoglobulin therapy in the West syndrome. Brain Dev 1987;9:422-5.

18. World Medical Association. World medical association declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013;310:2191-4.

19. Kent JT, Kent CL, editors. Repertory of the Homoeopathic Materia Medica. 6th ed. New Delhi: B. Jain Publishers; 2005.

20. Boger CM, Bradford TL, Roberts HA. Boger Boenninghausen Characteristics and Repertory. New Delhi: B. Jain Publishers; 1996.

21. Sehgal R, Gulati S, Sapra S, Tripathi M, Pandey RM, Kabra M. Prognostic utility of clinical epilepsy severity score versus pretreatment hypersarrhythmia scoring in children with west syndrome. Clin EEG Neurosci 2017;48:280-7.

22. Sharma R, Kuppuswamy’s socioeconomic status scale: Explained and updated. Indian Paediatr 2017;54:867-70.

23. Tiwari SK. Essentials of Repertorization. 4th ed. New Delhi: B. Jain Publishers; 2005.

24. Hahnemann S. The Chronic Diseases Their Peculiar Nature and Their Homoeopathic Cure: Theoretical Part with Word Index. Symptoms of Latent Psora. New Delhi: B. Jain Publishers; 2005.

25. Sydney: The Association; c2020. Available from: https://aurumproject.org.au/homoeopathy-childhood-epilepsy. [Last accessed on 2020 Jul 23; Last updated on 2012 Jun 11].

26. Saxton J. Homoeopathic Treatment of Primary or Idiopathic Seizures; c2020. Available from: https://ivcjournal.com/homoeopathic-treatment-seizures. [Last accessed on 23 Jul 20; Last updated on 2017 Aug 01].