Surface hopping dynamics with Frenkel exciton model in a semiempirical framework

Eduarda Sangiogo Gil, Prof. Giovanni Granucci

March 2nd, 2022
Challenges in simulating photo processes \textit{in silico}

1. Long time scale simulations;

2. Simulate large systems, for instance, multichromophoric systems.

Mixed quantum-classical dynamics \rightarrow Computational cost: \textit{electronic structure method}

- The study of EET and other aspects of nonadiabatic dynamics in multichromophoric systems calls for employing some sort of ‘divide and conquer’ strategy.

- \textit{Exciton} model.
Objective

Semiempirical FOMO-CI

Surface Hopping dynamics

Frenkel exciton model

Photodynamics of multichromophoric systems
Method
Frenkel exciton model

\[
\hat{H}^{ex} = H^a + H^b
\]

\[
\begin{align*}
E_{\text{GS}} & = 0 & \cdots & 0 & V_{a1}^{1,1} & \cdots & V_{a1}^{1,N} \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & e_{a1}^N & V_{a1}^{N,1} & \cdots & V_{a1}^{N,N} \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & \cdots & \cdots & \cdots & 0
\end{align*}
\]

\[
E_{\text{GS}} = E_{\text{tot}}^{\text{MM}} + \sum_i (E_i^{\text{QM/MM}}(S_0) - E_{\text{tot}}^{\text{MM}})
\]
Method

Couplings (off-diagonal terms)

\[V_{ai,bj} \approx \int \frac{\rho_{0i}^{(a)}(\mathbf{r}_1) \rho_{0j}^{(b)}(\mathbf{r}_2)}{r_{12}} d\mathbf{r}_1 d\mathbf{r}_2 \]

\[V_{ai,bj} = \sum_{A \in a} \sum_{B \in b} \sum_{\mu \nu \in A} \sum_{\sigma \tau \in B} \rho_{\mu \nu, 0i, \sigma \tau}^{(a)} \rho_{0j, \mu \nu, \sigma \tau}^{(b)} (\mu \nu \mid \sigma \tau) \]

"Exact Coulomb" (EC)

It scales quadratically with the number of chromophores.

\[V_{ai,bj} \approx \sum_{A \in a} \sum_{B \in b} \frac{q_{A,ai} q_{B,bj}}{R_{AB}} \]

"Transition charges "(TC)

It scales linearly with the number of chromophores.
Method
Gradients and integration of the electronic TD Schrodinger equation

- Gradients;
- Integration of the electronic TD Schrodinger equation: Local diabatization.

\[S_{KL} = \langle K(t) | L(t + \Delta t) \rangle \]

Sangiogo Gil, E.; Granucci, G.; Persico, M., Surface hopping dynamics with Frenkel exciton model in a semiempirical framework. *J. Chem. Theory Comput.* **2021**, *17*(12), 7373-7383.
Photodynamics of SAMs of ABPT

- Thermalization trajectories with 10; 12 and 20 monomers; \(\rightarrow \) Absorption Spectra;
- SH dynamics with 12 monomers;
- \(S_1 \) and \(S_2 \) state of each monomer were included in the exciton Hamiltonian.
Application
Photodynamics of SAMs of ABPT

Absorption Spectra

10 monomers: 21 states

12 monomers: 25 states

20 monomers: 41 states
Application
Photodynamics of SAMs of ABPT

Simulation of the photodynamics (nπ*)

- Lifetime: 4.00 ps.

Simulation of the photodynamics (ππ*)

- Lifetime: 3.41 ps.
- Lifetime: 0.27 ps.

Very low photoisomerization quantum yield
Extended exciton model

LIMITATION OF THE FRANKEEL EXCITON MODEL:
It can only describe local excitation

Monomers:

Dimers:
Extended exciton model

\[
\hat{H}_{\text{ex}} =
\]

	ABC	A*BC	AB*C	ABC*	A'B'C	A'B'C*	AB'C	AB'C*	A'BC	A'BC*
ABC	0	0	0	0	0	0	0	0	0	0
A*BC	0	\(\epsilon_{A}^{1}\)	\(\epsilon_{A}^{1}\)	\(\epsilon_{A}^{1}\)	\(D_{C}^{A*}\)	\(D_{C}^{A*}\)	0	0	\(D_{C}^{A*}\)	\(D_{C}^{A*}\)
AB*C	0	\(\epsilon_{B}^{1}\)	\(\epsilon_{B}^{1}\)	\(\epsilon_{B}^{1}\)	\(D_{C}^{B*}\)	\(D_{C}^{B*}\)	\(D_{C}^{B*}\)	\(D_{C}^{B*}\)	0	0
ABC*	0	0	\(\epsilon_{C}^{1}\)	0	0	\(D_{C}^{C*}\)	\(D_{C}^{C*}\)	\(D_{C}^{C*}\)	\(D_{C}^{C*}\)	0
A'B'C	0	\(\epsilon_{C}^{1}\)	\(\epsilon_{C}^{1}\)	\(\epsilon_{C}^{1}\)	\(D_{C}^{2}\)	\(D_{C}^{2}\)	0	0	0	
A'B'C*	0	0	\(\epsilon_{C}^{2}\)	\(\epsilon_{C}^{2}\)	\(\epsilon_{C}^{2}\)	\(D_{C}^{C*}\)	0	0	0	
AB'C	0	0	0	\(\epsilon_{C}^{3}\)	\(D_{C}^{3}\)	\(D_{C}^{3}\)	0	0	0	
AB'C*	0	0	0	0	\(\epsilon_{C}^{4}\)	\(\epsilon_{C}^{4}\)	0	0	0	
A'BC	0	0	0	0	0	\(\epsilon_{C}^{5}\)	\(D_{C}^{5}\)	\(D_{C}^{5}\)	0	
A'BC*	0	0	0	0	0	0	\(\epsilon_{C}^{6}\)	\(\epsilon_{C}^{6}\)	0	

- The null terms are coupled via NAD;
- Gradients;
- Overlap martix (local diabatization).
Conclusions

• Overall, the two Frenkel exciton approaches (EC and TC) showed very close matching results in terms of absorption spectra, lifetimes, and photoisomerization quantum yields;

• The Frenkel exciton model combined with SH dynamics makes possible the study of EET in multichromophoric systems;

• The extended exciton model can open up new scenarios for the study of more complex systems.

Remarks

• The Frenkel exciton model was implemented in Newton-X program within:
 ✓ Semiempirical FOMO-CI – MOPAC
 ✓ TDDFT - Gaussian
Surface hopping dynamics with Frenkel exciton model in a semiempirical framework

Eduarda Sangiogo Gil, Prof. Giovanni Granucci

eduarda.sangiogogil@phd.unipi.it