Development of a Strategy for Linear-Selective Cu-Catalyzed Reductive Coupling of Ketones and Allenes for the Synthesis of Chiral γ-Hydroxyaldehyde Equivalents

Raphael K. Klake, Samantha L. Gargaro, Skyler L. Gentry, Sharon O. Elele, and Joshua D. Sieber

Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-3028, United States

Supporting Information

ABSTRACT: We report the development of a stereoselective method for the allylation of ketones utilizing N-substituted allyl equivalents generated from a chiral allenamide. By choice of the appropriate ligand for the Cu-catalyst, high linear selectivity can be obtained with good diastereoselectivity. This methodology allows access to chiral γ-hydroxyaldehyde equivalents that were applied in the synthesis of chiral γ-lactones and 2,5-disubstituted tetrahydrofurans.

Chiral alcohols are ubiquitous in organic molecules prepared both naturally and synthetically for a desired biological function. Therefore, development of synthetic methods to access chiral alcohols has been an intense area of research in the field of organic chemistry. One of the most highly studied areas of stereoselective alcohol synthesis is in the controlled addition of an allylmetal reagent to an aldehyde or ketone electrophile. Pioneering work in stereoselective allylation typically employed the generation of a stoichiometric chiral allylmetal nucleophile in a separate step to be used in the allylation reaction with an aldehyde or ketone to generate the chiral alcohol. Over the years, catalytic methods to generate the reactive allylmetal in situ from an unreactive allyl source and metal catalyst have emerged in particular, reductive coupling strategies that generate the reactive allylmetal from unsaturated hydrocarbons via hydrometalation are extremely powerful, atom-economical approaches for the synthesis of chiral homoallylic alcohols.

Recently, an elegant catalytic method for the allylation of ketone and imine electrophiles was developed by Buchwald employing hydrometallation of carbon-substituted allenes (2) or 1,3-dienes by a Cu–H catalyst to generate the reactive allylmetal reagent in situ (Figure 1A). In the ketone version of this process, the anti-diastereomer of the branched product (anti-b-3) was formed as the major product in high diastereoselectivity when using chiral bis(phosphine) ligands. However, the linear product l-3 was not formed. Our group became interested in developing a method to generate linear products utilizing this approach, which has not been reported with ketones. While Buchwald demonstrated that both linear and branched products could be obtained when using imine electrophiles by changing the N-substituent on the imine, this is not possible with ketone electrophiles.

Our working mechanistic hypothesis for regio- and diastereoselectivity for this reaction is given in Figure 1B.

Figure 1. Cu-catalyzed reductive coupling of allenes and ketones.

Hydrometallation of allenes typically occurs trans to the R'-substituent of the allene due to sterio reasons. Therefore, initial hydrometallation of 2 would be expected to afford the Z-isomer of the linear (allyl)Cu species l-Z-5. Buchwald has
already determined that the turnover-limiting step is alkylation of the ketone, so \(\pi-\sigma-\pi \) equilibration of 5 would be expected. Assuming the alkylation step proceeds through closed Zimmerman–Traxler chairlike transition states (6), the major product obtained in Buchwald’s report (anti-b-3) would be derived from anti-b-7 from reaction between l-E-5 and 1 via 6c. The preference for this isomer can be easily rationalized by steric effects. Arguably, l-E-5 would be the least sterically hindered of the three possible (allyl)Cu intermediates (5) causing it to be the dominant species in the reaction. Therefore, if this mechanistic hypothesis is correct, then to obtain the linear product (E-l-7), conditions would need to be designed to either stabilize the branched (allyl)Cu intermediate b-5 relative to l-5 or make it more reactive.

Our strategy to stabilize (allyl)Cu intermediate b-5 is shown in Figure 1C. Use of allene 8 containing a heteroatom tethered ligand should initially generate linear (allyl)Cu species l-9 after hydrocupration. The tethered ligand could then help stabilize the branched (allyl)Cu intermediate b-9 through coordination to Cu. Reaction of b-9 with a ketone would then generate linear product l-10 with an enol (X = O) or enamine (X = NR) group representing a masked aldehyde functionality to provide useful chiral \(\gamma \)-hydroxyaldehyde equivalents. Additionally, use of a chiral tethered ligand in allene 8 could enable stereocontrol of the newly formed stereocenter of 10. Overall, we envisioned that this methodology could be a valuable entry into chiral lactone \(^{15} \) or tetrahydrofuran \(^{16} \) containing natural products (Scheme 1) through lactol \(^{11} \) obtained by hydrolysis of the enol or enamine functionality of 10. Herein, we report our findings on the development of a diastereoselective copper-catalyzed reductive coupling of a chiral allenamide with ketones to access the linear isomer (10) of product.

To identify an allene that fit the requirements of 8, we initially chose to investigate allenamide 14 derived from Evans’ auxiliary because it has been synthesized previously (Table 1).\(^{17} \) Furthermore, we had hoped that the carbonyl group of the oxazolidinone would serve as a sufficient coordinating group for Cu.\(^{18} \) Additionally, based on our design in Figure 1C, we focused on reaction conditions where Cu would have a low coordination number to facilitate potential coordination of the oxazolidinone carbonyl group (i.e., noncoordinating solvents, monodentate ligands).

Trialkyl monodentate phosphines favored the formation of linear product l-15a with modest l/b selectivity (entries 1, 3, and 4). Furthermore, use of dpe, a bidentate ligand commonly employed in Cu–H catalyzed reductive coupling reactions,\(^{10,11} \) also gave preferentially the branched product (entry 2). A further survey of monodentate phosphate ligands of varying electronic\(^ {19} \) and steric\(^ {19a} \) properties revealed that the linear selectivity was largely influenced by the electron-donating ability of the ligand employed with less electron-donating ligands affording higher linear selectivities (compare entries 1, 3, 4, and 8–14). There was a rough correlation between ligand cone angle and diasterocontrol with larger ligands affording higher diastereoselectivity (compare entries 1, 3, 4, 9, 10, 12, and 13). Ultimately, phosphoramidite ligand 16 afforded the highest reaction yield with excellent linear selectivity and good diastereoselectivity.

The substrate scope for the linear-selective reductive coupling of ketones and allene 14 is given in Scheme 2. In general, high linear selectivity was obtained in good to excellent reaction yield for halogenated (l-15f, j), electron-rich (l-15b, c, j, k), and electron-poor (l-15e, m) arenes. Hindered ketones bearing ortho-substitution on the aryl group required heating to achieve full conversion; however, this did not severely reduce the diastereoselectivity (l-15c, h, j). Additionally, diastereoselectivity and linear selectivity were reduced when the steric bias between the two R-groups of ketone 1 was reduced (e.g. l-15d, l, n, o, p, u). Notably, a nitrile...
group was not reduced under the reaction conditions (l-15q), and both amino (l-15s) and a free hydroxyl group (l-15k) was also tolerated.

In regards to factors dictating branched/linear selectivity and stereocontrol in these reactions, studies employing achiral allenamide 18 were informative (Scheme 3). Use of 18 lacking substitution on the oxazolidinone ring afforded reduced linear selectivity in the reaction when the optimized ligand 16 was used. Additionally, use of PCy3 as a ligand afforded linear selectivity (Scheme 3 and Table 1, entry 1). Based on these observations, a model to rationalize regio- and stereo-control in these reactions could be developed (Figure 2).

Mechanistically, hydrocupration of allene 14 or 18 is expected to initially form the Z-linear (σ-allyl)Cu complex (l-Z-20; vide supra) that will be in equilibrium with the branched (σ-allyl)Cu complex (b-σ-20) through the intermediacy of the (π-allyl)Cu complex π-20. The π-allyl geometry and coordination of the oxazolidinone group to Cu in complex π-20 are proposed based on structural information determined by X-ray crystallography and NMR spectroscopy for related anions of this type found in the literature. Considering the turnover-limiting step in Cu-catalyzed reductive coupling of ketones and allenes is believed to be the addition of the (allyl)Cu reagent to the ketone electrophile, this would allow for a pre-
equilibrium between \(l-Z-20 \) and \(b-\sigma-20 \) to be established before reaction with the ketone. Therefore, a model to rationalize regioselectivity in the reaction could be developed based on considering the stability of these two intermediates whereby a preference for \(l-Z-20 \) would result in a branched selective process while preference for \(b-\sigma-20 \) in the reaction would result in linear selectivity.\(^ {21} \)

Due to the \(Z \)-olefin geometry formed in the initial hydrocupration event, reaction regioselectivity could be explained by a competition between the strength of the oxazolidinone coordination versus the size of the \(A^{1,3} \)-strain present in \(l-Z-20 \) (Figure 2). The high linear selectivity obtained as the electron-donating ability of the phosphine ligand decreases (Table 1) can be explained by an increase in the preference for complex \(b-\sigma-20 \) due to the enhanced electrophilicity at Cu. Additionally, the magnitude of the \(A^{1,3} \)-strain in \(l-Z-20 \) would be expected to affect the overall equilibrium between the \((\text{allyl})\text{Cu} \) complexes. As a result, when the poorly electron-donating ligand \(16 \) is employed, coordination of the oxazolidinone to the electrophilic Cu atom leads to a preference for \(b-\sigma-20 \) leading to linear selectivity when using either allenamide \(14 \) or \(18 \). A reduction in linear selectivity with ligand \(16 \) when using allenamide \(18 \) in place of \(14 \) can be rationalized by the presence of increased amounts of \(l-Z-20 \) due to the reduction in the magnitude of the \(A^{1,3} \)-strain present in \(l-Z-20 \) when \(R = H \). In contrast, when the electron-rich ligand PCy\(_3\) is used, the branched product \((b-19) \) is preferred when the unsubstituted allenamide \(18 \) was used. This may result from a shift in the equilibrium of the \((\text{allyl})\text{Cu} \) complexes to favor \(l-Z-20 \) because of the reduced coordinating ability of the oxazolidinone to the more electron-rich Cu atom. When the magnitude of the \(A^{1,3} \)-strain present in \(l-Z-20 \) is increased by utilizing the chiral allenamide \(14 \) with PCy\(_3\) as ligand, the oxazolidinone coordination is presumably enhanced by destabilizing \(l-Z-20 \) leading to preferential linear selectivity in the reaction. Furthermore, it is important to point out that if the \(A^{1,3} \)-strain present in \(l-Z-20 \) is involved in governing regiochemical control in this reaction, then the alkene moiety in \(b-\sigma-20 \) likely remains coordinated to Cu.\(^ {22} \) If the alkene of \(b-\sigma-20 \) were to disassociate from Cu, isomerization of the Z-alkene to the E-isomer \(E-Z-20 \) could occur that would remove this \(A^{1,3} \)-interaction that is proposed to be important. Additionally, it is possible that \(b-\sigma-20 \) may not be a discrete intermediate in these reactions, and rather, \(\pi-20 \) may be the dominant species that reacts directly with ketone \(1a \) to afford linear product \(l-15a/19 \).\(^ {22} \) However, this scenario is also consistent with the model described above for regiocontrol. Finally, the absolute stereochemistry and the \(Z \)-olefin geometry of the linear product \(l-15a \) can be rationalized by the reaction of \(b-\sigma-20 \) or \(\pi-20 \) with ketone \(1a \) through chair-transition state \(21 \) with the oxazolidinone group in an axial position and complexed with Cu for selective reaction to the \(Si \)-face of \(1a \). Transition state model \(21 \) is supported by literature precedent\(^ {20b,c} \) and further supports oxazolidinone coordination in these processes.

Demonstration of the synthetic potential of the reductive coupling products is outlined in Scheme 4. Reduction of the oxazolidinone of \(l-15a \) with excess DIBAL afforded lactol \(22 \) after hydrolysis of the resultant enamine formed in the reduction to unmask the chiral \(\gamma \)-hydroxylaldehyde equivalent. Lactol \(22 \) could then be converted to chiral \(\gamma \)-lactone \(23 \) by oxidation with TPAP/NMO or converted to the 2,5-substituted tetrahydrofuran \(24 \) in good yield albeit with poor diastereoccontrol in the \(Et_2Zn \) addition.\(^ {23} \) Finally, the linear selective reductive coupling reaction was performed on a 1.0 g scale to complete a three-step asymmetric synthesis of the natural product \((S)-(-)\)-boivinianin A\(^ {15a} \) starting from 4′-methylacetophenone.

In conclusion, we have disclosed a strategy for the stereoselective reductive coupling of ketones and a chiral allenamide to selectively generate the linear reaction products providing useful chiral \(\gamma \)-hydroxylaldehyde equivalents. This method employs simple starting materials and a readily available catalyst system to furnish chiral products with increased complexity in an efficient manner. Further development of this reaction to enable stereocontrol by a chiral catalyst is currently under investigation and will be reported in due course.

![Scheme 4. Synthetic Applications](image_url)

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orqlett.9b02973.

Experimental procedures and characterization data for all compounds and NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Author

jd sieber@vcu.edu

ORCID

Joshua D. Sieber: 0000-0001-6607-5097

Notes

The authors declare no competing financial interest.
Start up funding from the Virginia Commonwealth University and the Bill and Melinda Gates Foundation (The Medicines for All Institute, Grant Number OPP#1176590) is gratefully acknowledged. We thank Dr. Joseph Turner (VCU) for assistance in collecting HRMS data.

REFERENCES

(1) For selected recent reviews on stereoselective alcohol synthesis, see: (a) Echeverria, P.-G.; Ayad, T.; Phansavath, P.; Ratovelomahana-Vidal, V. Recent Developments in Asymmetric Hydrogenation and Transfer Hydrogenation of Ketones and Imines through Dynamic Kinetic Resolution. *Synthesis* 2016, 48, 2523–2539. (b) Noyori, R.; Okhuma, T. Asymmetric Catalysis by Architectural and Functional Molecular Engineering: Practical Chemo- and Stereoselective Hydrogenation of Ketones. *Angew. Chem., Int. Ed.* 2001, 40, 40–73. (c) Dub, P.; Gordon, J. C. The Role of the Metal-Bound N-H Function in Asymmetric N-H-Activated C-N Bond Formation. *Angew. Chem., Int. Ed.* 2007, 46, 108–134. (d) Shibasaki, M. Asymmetric Synthesis of Tertiary Alcohols and Ketimines. *Chem. Rev.* 2005, 105, 2964–3016. (e) Brown, H. C.; Waltz, K. M.; Garcia, I. F.; Kwiatkowski, D.; Walsh, P. J. Highly Concentrated Catalytic Asymmetric Arylation. *Adv. Synth. Catal.* 2008, 350, 2050–2056. (f) Robbins, D. W.; Lee, K.; Silverio, D. L.; Volkov, A.; Torker, S.; Lu, B.; Rihs, G.; Rothe-Streit, P.; Schwarzenbach, F. Enantioselective Allylation of Aldehydes with Cylopentadienylalkyldialkyllithium Complexes. *J. Am. Chem. Soc.* 1992, 114, 2321–2336. (g) For selected examples employing Boron-based allylaldehydes: (a) Shi, S.; L.; Xu, L. – W.; Osaki, K.; Kanai, M.; Shibasaki, M. Identifications of Modular Chiral Bisphosphines Effective for Cu(I)-Catalyzed Asymmetric Allylation and Propargylation of Ketones. *J. Am. Chem. Soc.* 2010, 132, 6638–6639. (b) Zhang, Y.; Li, N.; Qu, B.; Ma, S.; Lee, H.; Gonnella, N. C.; Gao, J.; Li, W.; Tan, Z.; Reeves, J. T.; Wang, J.; Lorenz, J. C.; Li, G.; Reeves, D. C.; Premasiri, A.; Grinberg, N.; Haddad, N.; Li, B. Z.; Song, J. J.; Senanayake, C. H. Asymmetric Methallylation of Ketones Catalyzed by a Highly Active Organocatalyst 3,3′-F2-BINOL. *Org. Lett.* 2013, 15, 1710–1713. (c) Lou, S.; Moquist, P. N.; Schaus, S. E. Asymmetric Allylation of Ketones Catalyzed by Chiral Diols. *J. Am. Chem. Soc.* 2006, 128, 12660–12661. (d) Alam, R.; Voglirr, R.; Eriksson, L.; Szabó, K. Synthesis of Adjacent Quaternary Stereocenters by Catalytic Asymmetric Allylation. *J. Am. Chem. Soc.* 2015, 137, 11262–11265. (e) Wada, R.; Osaki, K.; Kanai, M.; Shibasaki, M. Catalytic Enantioselective Allylation of Ketones Catalyzed by Chiral Diols. *J. Am. Chem. Soc.* 2006, 128, 12660–12661. (f) Robbins, D. W.; Lee, K.; Silverio, D. L.; Volkov, A.; Torker, S.; Hoveyda, A. H. Practical and Broadly Applicable Catalytic Enantioselective Additions of Allyl(bpin) Compounds to Ketones and α-Ketoesters. *Angew. Chem., Int. Ed.* 2016, 55, 9610–9614. (g) For selected examples employing Si-based allylaldehydes: (a) Hanhan, N. V.; Tang, Y. C.; Tran, N. T.; Franz, A. K. Scandium(III)-Catalyzed Enantioselective Allylation of Isatins Using Allylboranes. *Org. Lett.* 2012, 14, 2218–2221. (b) Wadamoto, M.; Yamamoto, H. Silver-Catalyzed Asymmetric Sakurai-Hosomi Allylation of Ketones. *J. Am. Chem. Soc.* 2005, 127, 14556–14557. (c) Shibasaki, M. E.; Fujii, Y.; Fujinaga, Y.; Fujii, Y.; Shiokawa, H. Understanding the Correlation of Structure and Selectivity in the Chiral-Phosphoramide-Catalyzed Enantioselective Allylation Reactions: Solution and Solid-State Structural Studies of Bisphosphoramido-SnCl4 Complexes. *J. Am. Chem. Soc.* 2003, 125, 2208–2216. (h) For selected examples employing Sn-based allylaldehydes: (a) Wooten, A. J.; Kim, J. G.; Walsh, P. J. Highly Concentrated Catalytic Asymmetric Allylation of Ketones. *Org. Lett.* 2007, 9, 381–384. (b) Zhang, X.; Chen, D.; Liu, X.; Feng, X. Enantioselective Allylation of Ketones Catalyzed by N,N′-Dioxide and Indium(III) Complexes. *J. Org. Chem.* 2007, 72, 5227–5233. (c) Teo, Y. – C.; Goh, J. – D.; Loh, T. – P. Catalytic Enantioselective Allylation of Ketones via a Chiral Indium(III) Complex. *Org. Lett.* 2005, 7, 2743–2746. (d) Kim, J. G.; Waltz, K. M.; Garcia, I. F.; Kwiatkowski, D.; Walsh, P. J. Catalytic Asymmetric Allylation of Ketones and a Tandem
Asymmetric Allilation/Diastereoselective Epoxidation of Cyclic Enones. J. Am. Chem. Soc. 2004, 126, 12580–12585.

(7) Selected umpolung based approaches employing allyl electrophiles as nucleophiles: (a) Miller, J. J.; Sigman, M. S. Design and Synthesis of Modular Oxaazoline Ligands for the Enantioselective Chromium-Catalyzed Addition of Allyl Bromide to Ketones. J. Am. Chem. Soc. 2007, 129, 2752–2757. (b) Miller, J. J.; Sigman, M. S. Quantitatively Correlating the Effect of Ligand-Substituent Size in Asymmetric Catalysis Using Linear Free Energy Relationships. Angew. Chem., Int. Ed. 2008, 47, 771–774. (c) Kim, I. S.; Ngai, M. – Y.; Krische, M. J. Enantioselective Iridium-Catalyzed Carbonyl Allilation from the Alcohol or Aldehyde Oxidation Level Using Allyl Acetate as an Allyl Metal Surrogate. J. Am. Chem. Soc. 2008, 130, 6340–6341. (d) Kim, I. S.; Ngai, M. – Y.; Krische, M. J. Enantioselective Iridium-Catalyzed Carbonyl Allilation from the Alcohol or Aldehyde Oxidation Level via Transfer Hydrogenative Coupling of Allyl Acetate: Departure from Chirally Modified Allyl Metal Reagents in Carbonyl Addition. J. Am. Chem. Soc. 2008, 130, 14891–14899. (e) Chen, R. – Y.; Dhondhe, A. P.; Lee, G. – H.; Chen, C. A Chiral Bipyridyl Alcohol for Catalytic Enantioselective Nozaki-Hiyama-Kishi Coupling and Related Alcohol-Mediated Carbonyl Additions That Form Acyclic Quaternary Carbon Stereocenters. J. Am. Chem. Soc. 2019, 141, 2251–2256. (f) Li, T. Y.; Yang, Y.; Buchwald, S. L. Enantioselective and Regioselective Carbonyl-Catalyzed Ketone Allylation with Terminal Alkenes. J. Am. Chem. Soc. 2018, 140, 2007–2011. (b) Liu, R. Y.; Zhou, Y.; Yang, Y.; Buchwald, S. L. Enantioselective Allylation Using Allene, a Petroleum Cracking Byproduct. J. Am. Chem. Soc. 2019, 141, 139, 2251–2256. (b) Liu, R. Y.; Yang, Y.; Buchwald, S. L. Regiodivergent and Diastereoselective CuH-Catalyzed Allylation of Imines with Terminal Alkenes. Angew. Chem., Int. Ed. 2016, 55, 14077–14080. (11a) Li, C.; Liu, R. Y.; Jesikiewicz, L. T.; Yang, Y.; Liu, P.; Buchwald, S. L. CuH-Catalyzed Enantioselective Ketone Allylation with 1,3-Dienes: Scope, Mechanism, and Applications. J. Am. Chem. Soc. 2019, 141, 5062–5070. (12a) Trost, B. M.; Xie, J.; Sieber, J. D. The Palladium Catalyzed Asymmetric Addition of Oxindoles and Alkenes: An Atom-Economical Versatile Method for the Construction of Chiral Indole Alkaloids. J. Am. Chem. Soc. 2011, 133, 20611–20622. (b) Hiroi, K.; Kato, F.; Yamagata, A. Asymmetric Direct αβ-Functionlization of Alkenes via Asymmetric Carbopalladation. Chem. Lett. 1998, 27, 397–398. (c) Gamez, P.; Ariente, C.; Gore, J.; Cazes, B. Stereoselectivity of the Carbopalladation-Functionalization of Allenic Compounds: A Mechanistic Study. Tetrahedron 1998, 54, 14835–14844.

(13) Zimmerman, H. E.; Traxler, M. D. The Stereochemistry of the Ivanov and Reformatsky Reactions. J. Am. Chem. Soc. 1957, 79, 1920–1923.

(14) Closed transition states for addition of (allyl)Cu intermediates to ketones has been supported by calculation; see ref 11a.

(15a) Mulholland, D. A.; McFarland, K.; Randrianarivelosio, M.; Sesiquiterpenoid Derivatives from Cipadessa boiviniana (Melicaceae). Biochem. Syst. Ecol. 2006, 34, 365–369. (b) Tsuji, N.; Kennaum, J. L.; Buyck, T.; Lee, S.; Prevost, S.; Kab, P. S. J.; Bykov, D.; Fares, C.; List, B. Activation of olefins via asymmetric Bronsted acid catalysis. Science 2018, 359, 1501–1505. (c) Monasterolo, C.; Muller-Bunz, H.; Gilheany, D. G. Very short highly enantioselective Grignard synthesis of 2,2-disubstituted tetrahydrofurans and tetrahydropyrans. Chem. Sci. 2019, 10, 6531–6538. (d) Kirtany, J. J.; Paknikar, S. K. Transformation products of 2-methyl-6-p-tolylhept-2-en-6-ol and comments on the assigned structure of curcumene ether. Indian J. Chem. 1974, 12, 1202–1203. (e) Abebassic, K.; Gibson, S. E. Synthesis of (+)- and (−)-gossonorol and cyclisation to boivinianin B. Eur. J. Org. Chem. 2010, 2010, 2938–2944.

(16a) Brown, R.; Quirk, J.; Kirkpatrick, P. Epelnerone. Nat. Rev. Drug Discovery 2003, 2, 177–178. (b) Chang, C. W. J.; Patra, A.; Baker, J. A.; Scheuer, P. J. Kalihinols, Multifunctional Triterpenoid Antibiotics from Marine Sponges Acanthella spp. J. Am. Chem. Soc. 1987, 109, 6119–6123. (c) White, R. D.; Keane, G. F.; Slown, C. D.; Wood, J. L. Total Synthesis of Kalihinol C. Org. Lett. 2004, 6, 1123–1126. (d) Reiher, C. A.; Shenvi, R. A. Stereocontrolled Synthesis of Kalihinol C. J. Am. Chem. Soc. 2017, 139, 3647–3650. (e) Wei, L. L.; Mulder, J. A.; Xiong, H.; Zifcask, C. A.; Douglas, C. J.; Huang, R. P. Efficient Preparations of Novel Ynamides and Allenamides. Tetrahedron 2001, 57, 459–466.

(18) For a recent example of Cu-o xoazolidinone coordination utilizing allenamides, see: (a) Takimoto, M.; Gholap, S. S.; Hou, Z. Alkyllative Carboxylation of Ynamides and Allenamides with Functionalized Allyllic Halides and Carbon Dioxide by a Copper Catalyst. Chem. - Eur. J. 2019, 25, 8363–8370. (b) Gholap, S. S.; Takimoto, M.; Hou, Z. Regioselective Alkyllative Carboxylation of Allenamides with Carbon Dioxide and Dialkylzinc Reagents Catalyzed by an N-Heterocyclic Carbene-Copper Complex. Chem. - Eur. J. 2016, 22, 8547–8552.
(19) (a) Tolman, C. A. Steric Effects of Phosphorous Ligands in Organometallic Chemistry and Homogeneous Catalysis. Chem. Rev. 1977, 77, 313–348. (b) Dorta, R.; Stevens, E. D.; Scott, N. M.; Costabile, C.; Cavallo, L.; Hoff, C. D.; Nolan, S. P. Steric and Electronic Properties of N-Heterocyclic Carbenes (NHC): A Detailed Study on Their Interactions with Ni(CO)₄. J. Am. Chem. Soc. 2005, 127, 2485–2495.

(20) (a) Marsch, M.; Harms, K.; Zschage, O.; Hoppe, D.; Boche, G. η¹-(1S,2E)-1-((N,N-diisopropylcarbamoyloxy)-3-trimethylsilylallyllithium: Structure of a Chiral, Carbamoyloxy-Substituted Allyllithium Compound. Angew. Chem., Int. Ed. Engl. 1991, 30, 321–323. (b) Roder, V. H.; Helmchen, G.; Peters, E. – M.; Peters, K.; von Schnering, H. – G. Highly Enantioselective Homoaldol Additions with Chiral N-Allylureas – Application to the Synthesis of Optically Pure γ-Lactones. Angew. Chem., Int. Ed. Engl. 1984, 23, 898–899. (c) Gaul, C.; Seebach, D. Metallations and Reactions with Electrophiles of 4-Isopropyl-5,5-diphenyloxazolidin-2-one (DIOZ) with N-Allyl and N-Propargyl Substituents: Chiral Homoenoenate Reagents. Helv. Chim. Acta 2002, 85, 963–978. (d) Pippel, D. J.; Weisenburger, G. A.; Wilson, S. R.; Beak, P. Solid-State Structural Investigation of an Organolithium (−)-Sparteine Complex: η²-N-Boc-(p-methoxyphenyl)-3-phenylallyllithium(−)-Sparteine. Angew. Chem., Int. Ed. Engl. 1998, 37, 2485–2492. (e) Pippel, D. J.; Weisenburger, G. A.; Faibish, N. C.; Beak, P. Kinetics and Mechanism of the (−)-Sparteine-Mediated Deprotonation of (E)-N-Boc-(p-methoxyphenyl)-3-cyclohexylallylamine. J. Am. Chem. Soc. 2001, 123, 4919–4927.

(21) While the proposed regiochemical model argues thermodynamic control by considering ground-state stabilities of the intermediate (allyl)Cu complexes, similar interactions would be expected to be present in the corresponding chairlike transition states. Therefore, this model may also apply if the regiochemistry is a result of a Curtin–Hammett scenario (i.e., kinetic control) rather than from thermodynamic control.

(22) For discussion purposes, intermediates π-20 and b-σ-20 were considered as discrete intermediates; however, it is possible that these are a single species. For instance, the actual intermediate formed from the isomerization of l-Z-20 could be a distorted (π-allyl)Cu complex of type π-20 with the Cu-atom shifted towards the C-atom of the π-allyl bearing the oxazolidinone substituent because of the directing effect. This possibility needs further investigation but would still be consistent with the model proposed for regiocontrol in this transformation.

(23) Tomooka, K.; Matsuzawa, K.; Suzuki, K.; Tsuchihashi, G. Lactols in stereoselection 2. Stereoselective synthesis of disubstituted cyclic ethers. Tetrahedron Lett. 1987, 28, 6339–6342.