The Involution Kernel and the Dual Potential for Functions in the Walters’ Family

L. Y. Hataishi · A. O. Lopes

Received: 25 May 2022 / Accepted: 22 December 2022 / Published online: 31 December 2022
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract
First, we set a suitable notation. Points in \(\{0, 1\}^\mathbb{Z} - \{0\} = \{0, 1\}^\mathbb{N} \times \{0, 1\}^\mathbb{N} = \Omega^\mathbb{N} \times \Omega^\mathbb{N} \), are denoted by \((y|x) = (\ldots, y_2, y_1|x_1, x_2, \ldots)\), where \((x_1, x_2, \ldots) \in \{0, 1\}^\mathbb{N}\), and \((y_1, y_2, \ldots) \in \{0, 1\}^\mathbb{N}\). The bijective map \(\hat{\sigma}(\ldots, y_2, y_1|x_1, x_2, \ldots) = (\ldots, y_2, y_1|x_2, x_1, \ldots)\) is called the bilateral shift and acts on \(\{0, 1\}^\mathbb{Z} - \{0\}\). Given \(A : \{0, 1\}^\mathbb{N} = /\Omega^\mathbb{N} + \rightarrow \mathbb{R}\) we express \(A\) in the variable \(x\), like \(A(x)\). In a similar way, given \(B : \{0, 1\}^\mathbb{N} = /\Omega^\mathbb{N} - \rightarrow \mathbb{R}\) we express \(B\) in the variable \(y\), like \(B(y)\). Finally, given \(W : /\Omega^\mathbb{N} - \times \Omega^\mathbb{N} + \rightarrow \mathbb{R}\), we express \(W\) in the variable \((y|x)\), like \(W(y|x)\). By abuse of notation, we write \(A(y|x) = A(x)\) and \(B(y|x) = B(y)\). The probability \(\mu_A\) denotes the equilibrium probability for \(A : \{0, 1\}^\mathbb{N} \rightarrow \mathbb{R}\). Given a continuous potential \(A : \Omega^\mathbb{N} - \rightarrow \mathbb{R}\), we say that the continuous potential \(A^* : \Omega^\mathbb{N} + \rightarrow \mathbb{R}\) is the dual potential of \(A\), if there exists a continuous \(W : \Omega^\mathbb{N} - \times \Omega^\mathbb{N} + \rightarrow \mathbb{R}\), such that, for all \((y|x) \in \{0, 1\}^\mathbb{Z} - \{0\}\)

\[
A^*(y) = \left[A \circ \hat{\sigma}^{-1} + W \circ \hat{\sigma}^{-1} - W \right](y|x).
\]

We say that \(W\) is an involution kernel for \(A\). It is known that the function \(W\) allows to define a spectral projection in the linear space of the main eigenfunction of the Ruelle operator for \(A\). Given \(A\), we describe explicit expressions for \(W\) and the dual potential \(A^*\), for \(A\) in a family of functions introduced by P. Walters. Denote by \(\theta : \Omega^\mathbb{N} - \times \Omega^\mathbb{N} + \rightarrow \Omega^\mathbb{N} - \times \Omega^\mathbb{N} +\) the function \(\theta(\ldots, y_2, y_1|x_1, x_2, \ldots) = (\ldots, x_2, x_1|y_1, y_2, \ldots)\). We say that \(A\) is symmetric if \(A^*(\theta(x|y)) = A(y|x) = A(x)\). We present conditions for \(A\) to be symmetric and to be of twist type. It is known that if \(A\) is symmetric then \(\mu_A\) has zero entropy production.

A. O. Lopes
arturos.car.lopes@gmail.com
L. Y. Hataishi
lucas.hataishi@gmail.com

1 Instituto de Matemática e Estatística, UFRGS, Porto Alegre, Brazil
1 Introduction

The set $\mathbb{N} = \{1, 2, 3, \ldots, n, \ldots\}$ represents the one-dimensional unilateral lattice. Denote $\Omega = \Omega^+ = \{0, 1\}^\mathbb{N}$. The set $\{0, 1\}$ is the set of symbols (or spins) of the symbolic space Ω. Points in Ω are denoted by (x_1, x_2, x_3, \ldots), $x_j \in \{0, 1\}$, $j \in \mathbb{N}$. In some specific models in Statistical Mechanics the symbol 0 can represent the spin $-$ and the symbol 1 can represent the spin $+$.

The natural metric on $\{0, 1\}^\mathbb{N}$ is such that $d(x, y) = 2^{-j}$, where $j \in \mathbb{N}$ is the smallest one such that $x_j \neq y_j$.

We denote by \mathbb{Z}^- the set such that $\mathbb{Z}^- \cup \mathbb{N} = \{..., -3, -2, -1, 1, 2, 3, \ldots\} = \mathbb{Z} - \{0\}$, which represents the one-dimensional bilateral lattice.

Define $\Omega^- := \{0, 1\}^{\mathbb{Z}^+}$, and endow Ω^- with a metric space structure analog to the metric which was defined for Ω.

The cartesian product $\Omega^- \times \Omega = \Omega^\times \Omega^+$ is denoted by $\hat{\Omega}$, and a general element described by the ordered pair $((x_n)_{n \in \mathbb{Z}^-}, (x_n)_{n \in \mathbb{N}})$. We use the symbol \mid for a better notation, and pairs can be written as $((x_n)_{n \in \mathbb{Z}^-}, (x_n)_{n \in \mathbb{N}})$.

It is also natural to identify Ω^- with $\Omega := \Omega^+$ and we will do this without mention. $\hat{\Omega}$ is in some sense a version of $\{0, 1\}^{\mathbb{Z}^-} \sim \{0, 1\}^\mathbb{N} \times \{0, 1\}^\mathbb{N} = \Omega \times \Omega$. Under the such point of view we prefer the following notation: given $(x_1, x_2, x_3, \ldots) \in \Omega$ and $(y_1, y_2, y_3, \ldots) \in \Omega$, then a general point in $\hat{\Omega}$ is written as $(y|x) = (..., y_3, y_2, y_1 \mid x_1, x_2, x_3, \ldots) \in \hat{\Omega} = \Omega^- \times \Omega^+$.

We denote by $C(\Omega)$ the set of continuous functions on Ω taking real values. Cylinder sets in Ω are denoted by $[a_1, a_2, \ldots, a_n]$, $a_j \in \{0, 1\}$, $j = 1, 2, \ldots, n$.

The natural extension of a potential $A \in C(\Omega) = C(\Omega^+)$ to $\hat{\Omega}$ is the potential $\hat{A} : \hat{\Omega} \to \mathbb{R}$ given by

$$
\hat{A}(y|x) = A(x) , \forall (y|x) \in \hat{\Omega} .
$$

When $B(y|x)$ does not depend on y we will use sometimes the simplified expression $B(y|x) = B(x)$.

The bijective map

$$(..., y_2, y_1|x_1, x_2, \ldots) \to \hat{\sigma}(..., y_2, y_1|x_1, x_2, \ldots) = (..., y_2, y_1, x_1|x_2, \ldots)$$

is called the bilateral shift and acts on $\{0, 1\}^{\mathbb{Z}^-} - \{0\}$.

The map $\sigma : \Omega \to \Omega$, such that

$$(x_1, x_2, ...) \to \sigma(x_1, x_2, x_3, ...) = (x_2, x_3, ...)$$
is called the unilateral shift and acts on $\Omega^+ = \Omega$.

Given $y = (y_1, y_2, y_3, \ldots)$, we will also consider the function

$$x = (x_1, x_2, x_3, \ldots) \rightarrow \tau_y(x) = (y_1, x_1, x_2, x_3, \ldots),$$

for $\tau_y : \Omega \rightarrow \Omega$. The function τ_y is sometimes called an inverse branch.

Definition 1.1 Given a continuous function $A : \Omega \rightarrow \mathbb{R}$, if there exist continuous functions $W : \hat{\Omega} \rightarrow \mathbb{R}$ and $A^* : \Omega^+ \rightarrow \mathbb{R}$, such that, for any $(y|x) \in \Omega$,

$$A^*(y) = \left[A \circ \hat{\sigma}^{-1} + W \circ \hat{\sigma}^{-1} - W\right](y|x),$$

then we say that W is an **involution kernel** for A, and that A^* is the **dual potential** of A relatively to W.

Above we could write \hat{A} instead of A. (see (1))

Given $A : \Omega^+ = \Omega \rightarrow \mathbb{R}$, the involution kernel W is not unique. One can show that in the case A is Hölder there exist W and a Hölder function $A^* : \Omega^+ \rightarrow \mathbb{R}$ satisfying (2) (for a proof see [1, 14, 23, 29, 39] and [40]). We will consider here a large class of functions such that some of them are not of Hölder class, but despite that, there exist W and A^* satisfying (2).

Given A we are interested in explicit expressions for the involution kernel W and for the dual potential A^*.

The involution kernel was introduced in [1] where it was shown that a natural way to obtain an involution kernel W for A is via expression (10) or (11). The main inspiration for considering such concept in [1] was due to [7] which—in a different setting—considers a similar concept, but related to distributions, the Helgason kernel and eigenvalues of the Laplacian for surfaces of constant negative curvature. A mathematical rigorous formulation of [7] was later presented in [26].

Given a continuous potential $U : \Omega^+ = \Omega \rightarrow \mathbb{R}$, we say that the shift-invariant probability μ_U on Ω^+ is the equilibrium probability for U, if maximizes

$$\sup_{\mu \text{ shift invariant probability}} \left\{ h(\mu) + \int Ud\mu \right\},$$

where $h(\mu)$ is the entropy of μ. The maximal value (3) is called the Pressure of U. The study of properties of μ_U is the main topic of Thermodynamic Formalism, and the text [35] describes the main properties of this theory. If U is Hölder continuous the probability of attaining the maximal value in (3) is unique. If U is just continuous there exist probabilities attaining the maximal value but maybe not unique. This phenomena is associated to phase transition (see [9, 16, 20, 22, 31])

In Statistical Mechanics, if $H : \Omega^+ \rightarrow \mathbb{R}$ is a Hamiltonian and the physical system under analysis is considered under temperature T, the probability $\mu_{-\frac{1}{T}U}$ corresponds to the observed equilibrium probability.

Note that in the case W is an involution kernel for A, then, given $\beta \in \mathbb{R}$, we get that βW is an involution kernel for βA. The value β corresponds in Thermodynamic
Formalism (and Statistical Mechanics) to $\frac{1}{T}$, where T is temperature. In the case A is Hölder, using this property and (6), large deviation properties for the family of equilibrium probabilities $\mu_{\beta A}$, when $\beta \to \infty$ (that is, when the temperature goes to zero) are obtained in [1]. More precisely, [1] (see also [33]) address the following problem: given a Borel set K in Ω^+, estimate the asymptotic value

$$\lim_{\beta \to \infty} \frac{1}{\beta} \log(\mu_{\beta A}(K)).$$

Questions related to the selection of probability, that is the existence of a limit probability $\lim_{\beta \to \infty} \mu_{\beta A}$, when the temperature goes to zero appear in [4] and [2].

Denote by $\theta: \Omega^- \times \Omega^+ \to \Omega^- \times \Omega^+$ the function such that

$$\theta(..., y_2, y_1 | x_1, x_2, ...) = (... , x_2, x_1 | y_1, y_2, ...). \quad (4)$$

We say that A is symmetric if $A^*(\theta(x|y)) = A(y|x) = A(x)$.

Note that considering the set of symbols $\{-1, 1\}$ instead of $\{0, 1\}$ does not change much the above definitions.

Example 1.2 *(Taken from Section 5 in [8])* Consider the alphabet $\{-1, 1\}$ and the symbolic space $\{-1, 1\}^\mathbb{N}$. In this case $\hat{\Omega}$ is $\{-1, 1\}^\mathbb{Z}_{<0}$. We will define a potential $A: \{-1, 1\}^\mathbb{N} \to \mathbb{R}$ which is symmetric. Indeed, consider a sequence $a_n > 0, n \geq 1$, such that $\sum_{i \geq 1} \sum_{j > i} a_j < \infty$, and for $x = (x_1, x_2, x_3, ...) \in \{-1, 1\}^\mathbb{N}$, we define $A(x) = \sum_{n=1}^\infty a_n x_n$ (it is called a product type potential). Consider $W: \{-1, 1\}^{\mathbb{N} \times \mathbb{N}} \to \mathbb{R}$, given by

$$W(y|x) = \sum_{i=1}^{\infty} \left((x_i + y_i) \left(\sum_{j > i} a_j\right)\right) = \sum_{i=1}^{\infty} (x_i + y_i)(a_{i+1} + a_{i+2} + ...).$$

Then, one can show that W is an involution kernel and A is symmetric. A particular example is when $a_n = 2^{-n}, n \geq 1$, in which case A is of Hölder class.

It is known that eigenfunctions for the Ruelle operator for an Hölder potential $A: \Omega^+ \to \mathbb{R}$ and eigenprobabilities for the dual of the Ruelle operator for $A^*: \Omega^- \to \mathbb{R}$ are related via the involution kernel (see [1] or [23]), which plays the role of a dynamical integral kernel (see expression 6).

We elaborate on that: \mathcal{L}_A denotes the Ruelle operator for $A: \Omega^+ = \Omega \to \mathbb{R}$, which is the linear operator acting on continuous function $f_0: \Omega^+ \to \mathbb{R}$, such that,

$$f_0 \to f_1(z) = \mathcal{L}_A(f_0)(z) = \sum_{\sigma(x)=z} e^{A(x)} f_0(x).$$

When looking for equilibrium probabilities on $\hat{\Omega}$ (which are invariant for $\hat{\sigma}$) for potentials $\hat{A}: \hat{\Omega} \to \mathbb{R}$ properties of the Ruelle operator, as defined above, are quite useful (for more details see [35] or Appendix in [30]).
The Ruelle theorem for an Hölder function A claims the existence of a positive eigenfunction φ_A for the operator \mathcal{L}_A and an associated to the eigenvalue $\lambda_A > 0$ (see [35] for a proof). φ_A is called the main eigenfunction of \mathcal{L}_A. The dual operator for A is denoted \mathcal{L}_A^* and acts on finite measures.

Given a Hölder potential A, we say that the probability ν_A on $\Omega = \Omega^+$ is the eigenprobability for the dual of the Ruelle operator \mathcal{L}_A^*, if $\mathcal{L}_A^*(\nu_A) = \lambda_A \nu_A$ (see [35] for a proof).

The Ruelle theorem helps to identify the equilibrium probability for the potential A (see [35]). More precisely

$$\mu_A = \varphi_A \nu_A. \quad (5)$$

Given A^*, the Ruelle operator \mathcal{L}_{A^*} acts on functions $f_0 : \Omega^- \to \mathbb{R}$.

Note that from [1] (or [23]) the main eigenvalue of the Ruelle operator for A and the main eigenvalue of the Ruelle operator for its dual A^* are the same. The same thing for \mathcal{L}_A^* and \mathcal{L}_{A^*}. That is $\lambda_A = \lambda_{A^*}$. We denote by ν_{A^*} the eigenprobability for the dual operator $\mathcal{L}_{A^*}^*$. The probability ν_{A^*} is defined on $\Omega^- = \Omega$.

Denote by $W = W_A$ the involution for A, then,

$$\int e^{W(y|x)} d\nu_{A^*}(y) = \varphi_A(x) \quad (6)$$

is the main eigenfunction of the Ruelle operator \mathcal{L}_A (see, for instance [23], for a proof). The involution kernel allows us to to define a spectral projection in the linear space of the main eigenfunction of the Ruelle operator \mathcal{L}_A (see page 482 in [27]). Expression (6) describes one of the main reasons for the interest in the involution kernel.

Note that in Eq. (2) for the involution kernel, the eigenvalue λ_A does not appear; this is a property that is eventually quite useful when trying to get the main eigenfunction in the study of a particular example of potential A.

An interesting fact is that for a general continuous potential $A : \Omega \to \mathbb{R}$ an eigenprobability always exists but a continuous positive eigenfunction does not always (see [11, 12] and [10]).

Knowing the involution kernel for the potential A, other eigenfunctions for \mathcal{L}_A (not strictly positive) can be eventually obtained via eigendistributions for $\mathcal{L}_{A^*}^*$ (see [18]).

When A is symmetric, it follows from (6) that

$$\int e^{W(y|x)} d\nu_A(y) = \varphi_A(x). \quad (7)$$

Lopes and Mengue [25] shows that the involution kernel appears as a natural tool for the investigation of entropy production of μ_A. If the potential A is symmetric then the entropy production of μ_A is zero (see Section 7 in [25]). General results for entropy production in Thermodynamic Formalism appears in [17, 32, 36–38] and [21]. The case of symbolic spaces where the alphabet is a compact metric space is considered in Lopes and Mengue [25].
In Example 2 (product type potentials) and Example 3 (Ising type potentials) in Section 5 in [8] the authors present examples of potentials A in $\{-1, 1\}^\mathbb{N}$ that are symmetric by exhibiting the explicit expression of the involution kernel (see our Example 1.2). From this property and results in [25] it follows that the equilibrium probabilities μ_A for such potentials have zero entropy production. Explicit expressions for the involution kernel (and the dual potential) were obtained in several sources as in Proposition 9 in [1], Section 5 in [5], in Remarks 6 and 7 in [28] and in Section 13.2 in [15].

In the works [14, 28] and [27], the involution kernel $W : \Omega^- \times \Omega \to \mathbb{R}$ is considered as a dynamical cost in an Ergodic Optimal cost Problem. In the classical setting, a lot of nice results on Optimal Transport are proved under the condition of convexity of the cost function. One can define the Twist Condition (see Definition 6.2) for an involution kernel W (of a potential A) and this plays the role of a form of convexity in Ergodic Transport. We will address this issue in Sect. 6. The twist condition is sometimes called the supermodular condition (see Section 5.2 in [34]), which a natural hypothesis in optimization problems (see [6]), and Aubry-Mather theory (see [14, 27] and [28]).

Here, we investigate the existence of the involution kernel $W : \Omega^- \times \Omega \to \mathbb{R}$ and we study duality and symmetry issues for potentials $g : \{0, 1\}^\mathbb{N} \to \mathbb{R}$ in a certain class of continuous potentials g (see Sects. 4 and 5) to be defined next. We present explicit expressions.

We will consider a potential $g : \{0, 1\}^\mathbb{N} \to \mathbb{R}$ which is at least continuous. Potentials on the so-called Walters family were introduced in [42] where some explicit results for the main eigenfunction of the Ruelle operator were obtained. For this family of potentials in [13] the authors study a certain class of Spectral Triples, and in [2] the authors present explicit expressions for subactions in Ergodic Optimization.

Definition 1.3 A potential $g : \Omega \to \mathbb{R}$ is in the Walters family, if and only if, there exist convergent sequences $(a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{N}}, (c_n)_{n \in \mathbb{N}}$ and $(d_n)_{n \in \mathbb{N}}$, such that, for any $x \in \Omega$,

- $g(0^{n+1}1x) = a_{n+1}$;
- $g(01^n0x) = b_n$;
- $g(1^{n+1}0x) = c_{n+1}$;
- $g(10^n1x) = d_n$,

for all $n \in \mathbb{N}$.

The set of such continuous potentials is described by $R(\Omega)$.

Some of these functions g are not of Hölder class.

We denote by a, b, c, d, respectively, the limits of the sequences a_n, b_n, c_n, d_n.

Theorem 1.1 in [42] describes the condition for the potential g (on the Walters family) to be in Bowen’s class or the Walters’ class (do not confuse this set with the class of Walters potentials described by Definition 1.3). Theorem 3.1 in [42] presents conditions on g which will imply that the Ruelle Theorem (on the existence of eigenvalues and eigenfunctions for the Ruelle operator) is true (see [35] for details).

If

$$a_n - a, b_n - b, c_n - c \text{ and } d_n - d$$

(8)
converge to zero exponentially fast to zero, then, it is easy to see that the potential \(g \) is of Hölder class. In this case, the equilibrium states are unique (no phase transition) and the pressure function is differentiable.

The family described by Definition 1.3 contains a subfamily of potentials called the Hofbauer potentials (see \([16, 20, 22, 24, 31]\) and \([9]\)) which are not of Hölder class. For this subclass, in some cases, there exists more than one equilibrium state \(c_n \) that makes an Hölder potential \(A \) symmetric via the involution \(\sigma \) of potentials appear in \([3]\) and \([24]\); the Hofbauer potential is a fixed point for the renormalization operator.

The variety of possibilities of the functions on the Walters’ family of potentials is so rich that given a certain sequence \(c_n, n \in \mathbb{N} \), describing a possible decay of correlations (under some mild assumptions), one can find a potential in the family such the equilibrium probability for this potential has this decay of correlation (see \([24]\) for proof).

The potential of Example 1.2 is not in the Walters’ family.

A positive continuous function \(g : \Omega \to (0, 1) \), satisfying \(g(0) + g(1) = 1 \), for all \(x \in \Omega \), is called a \(g \)-function. Let \(G(\Omega) \) denote the set of all \(g \)-functions on the Walters family. Corollary 2.3 in \([42]\) (see also our Corollary 8.2) implies that, the equilibrium probability \(\mu_A \) of the continuous potential \(A = \log g \), where \(g \in G(\Omega) \) is on the Walters family, satisfies \(\forall n \in \mathbb{N} \), and each pair of cylinders \([x_1, x_2, \ldots, x_{n−1}, x_n]\) and \([x_n, x_{n−1}, \ldots, x_2, x_1]\)

\[
\mu_A([x_1, x_2, \ldots, x_{n−1}, x_n]) = \mu_A([x_n, x_{n−1}, \ldots, x_2, x_1]).
\]

(9)

This symmetry on the measure of cylinders means zero entropy production (see \([21]\) and Sect. 8) and is related to the concept of \(A \) being symmetric via the involution kernel (see \([25]\)). It follows from the reasoning of \([25]\) (using \([21]\) and \([9]\)) that given an Hölder potential \(A \) on the Walters family, there exists an involution kernel \(W \) such that makes \(A \) symmetric.

Given \(x' = (x'_1, x'_2, \ldots, x'_n, \ldots) \in \Omega \) fixed, if

\[
W(y|x) = \sum_{n \in \mathbb{N}} \left[\hat{A} \circ \hat{\sigma}^{-n}(y|x) - \hat{A} \circ \hat{\sigma}^{-n}(y|x') \right]
\]

(10)

is convergent for any \((y|x) \in \hat{\Omega}\), it is shown in Sect. 5 that \(W \) is an involution kernel for \(A \) (see also \([23]\)). It is called the involution kernel of \(A \) based on \(x' \in \Omega \).

Given a continuous potential \(A : \Omega \to \mathbb{R} \), a more simple expression for the involution kernel \(W \) for \(A \) is

\[
W(y|x) = \sum_{n \geq 1} A(y_n, \ldots, y_1, x_1, x_2, \ldots) - A(y_n, \ldots, y_1, x'_1, x'_2, \ldots),
\]

(11)

where \(x = (x_1, x_2, \ldots, x_n, \ldots) \) and \(y = (y_1, y_2, \ldots, y_n, \ldots) \).
In the case (11) converges an expression for a dual potential A^* associated with such involution kernel is given by (29).

If A is of Hölder class the above sum (11) always converges.

An outline of our main results: we investigate the existence and explicit expressions for the involution kernel W (see Sect. 4) and the dual potential A^* (see Tables 1, 2, 3 and 4 in Sect. 5.1), for potentials A in the class $R(\Omega)$. Note that in order to show that (2), we just require convergence (of a sum of functions which will define W) and not much regularity (like Hölder, or Lipschitz continuity). We give a sufficient and necessary condition for the existence of W (see Theorem 3.1). For results about the symmetry of the potential A see expression (33) and Theorem 5.3.

For a potential g in the Walters’ family we present here in Sect. 6 conditions for a potential of such type to satisfy the relaxed twist condition (see Definition 6.2 and Theorem 6.3).

Questions related to the characterization of normalized potentials on $G(\Omega)$ are described in Sect. 7 (see expression 38).

In Sect. 8 we consider the sets $\mathcal{M}(\sigma)$ and $\mathcal{M}(\hat{\sigma})$, which are, respectively, the set of Borel invariant probability measures for $\sigma : \Omega \rightarrow \Omega$ and $\hat{\sigma} : \hat{\Omega} \rightarrow \hat{\Omega}$. The reasoning we followed above deals with the Equilibrium Statistical Mechanics of the lattice \mathbb{N}, which results in probabilities on $\mu_A \in \mathcal{M}(\sigma)$. On the other hand, the study of equilibrium probabilities on the lattice $\mathbb{Z} - \{0\}$ result in probabilities $\mu_{\hat{A}}$ on $\mathcal{M}(\hat{\sigma})$, where $\hat{\sigma} : \hat{\Omega} = \{0, 1\}^{\mathbb{Z} - \{0\}} \rightarrow \mathbb{R}$. The relation between these two frameworks is the topic of Sect. 8 (see also Appendix in [30] or [41]).

2 Ruelle’s Theorem

We briefly describe some properties of Ruelle’s Operator Theorem before addressing the main issues of our paper.

Definition 2.1 A continuous function $A : \Omega \rightarrow \mathbb{R}$ is an element of $\Xi(\Omega)$ if, and only if, for every $\epsilon > 0$, there exists $\delta > 0$ such that, $\forall n \in \mathbb{N}$ and $\forall x \in \Omega$, $y \in B(x, n, \delta)$ implies

$$\left| \sum_{j=0}^{n-1} A(\sigma^j(x)) - \sum_{j=0}^{n-1} A(\sigma^j(y)) \right| < \epsilon ,$$

The set $\Xi(\Omega)$ is the set of potentials with Walters Regularity.

The Hofbauer potential does not have Walters Regularity.

In [42] is proved the following result:

Theorem 2.2 $A \in R(\Omega) \cap \Xi(\Omega) \iff \sum_{n \in \mathbb{N}} (an - a)$ and $\sum_{n \in \mathbb{N}} (cn - c)$ are both convergent. If $A \in R(\Omega) \cap \Xi(\Omega)$ then Ruelle’s Operator Theorem holds for A and it has a unique equilibrium state.

It follows from our calculations (in the next sections) the following result:
Theorem 2.3 Let $A \in \mathbb{R}(\Omega)$. If, for some $x' = (x'_n)_{n \in \mathbb{N}} \in \Omega$, the series
\[
\left[A(y_1x) - A(y_1x') \right] + \sum_{n=2}^{\infty} \left[A(y_n...y_1x) - A(y_n...y_1x') \right]
\]
converges absolutely, then it converges absolutely for any $x' \in \Omega$. Also, the convergence of the above series implies $A \in \Xi(\Omega)$, and A has a unique equilibrium state.

This result is related to expressions (11) and (12).

3 Existence of the Involution Kernel

We are going to calculate formally in Sect. 4 the exact expression for the involution kernel (based on a certain point x') of a given potential in $R(\Omega)$. The result also gives a sufficient and necessary condition for the existence of the involution kernel based on a certain point x'. We analyze this problem considering Definition 1.1.

After the calculations which will be presented in Sect. 4, the final result is:

Theorem 3.1 For the involution kernel as in (10) to exist, it is necessary and sufficient that the potential is of Walters regularity.

We investigate next the existence of involution kernels of the form (10) for the potentials in $R(\Omega)$. We will give a sufficient and necessary condition for its existence and calculate when this condition is satisfied, the exact expression of the involution kernel.

Definition 3.2 We call W be the involution kernel of A based at the point $x' \in \Omega$, the function such that, for any ordered pair $(y|x) \in \hat{\Omega}$,
\[
W(y|x) = \sum_{n=1}^{\infty} \left[A \circ \hat{\sigma}^{-n}(y|x) - A \circ \hat{\sigma}^{-n}(y|x') \right],
\]
in this case, the sum converges.

See (16), (24), and (26) for affirmative cases with explicit expressions.

Definition 3.3 If W is an involution kernel for $A \in R(\Omega)$, based at x', we define the dual potential $A^* : \Omega \to \mathbb{R}$ to be the potential given by
\[
A^*(y) := A^*(y|x) = A(\tau_y(x)) + W \circ \hat{\sigma}^{-1}(y|x) - W(y|x),
\]
in the case the sum converges) which one can show does not depend on x (see 30 and 31).

Conditions for symmetry for the Walters’ family are given by (33).

One can show that when A is of Hölder class, then expressions (12) and (13) are well defined and they are, respectively, an involution kernel and a dual potential for A (see a proof for instance [23]).
4 Calculation of the Involution Kernel for the Walters’ Family

We calculate formally an exact expression for the involution kernel of a potential in \(R(\Omega) \) via expression (12). The result gives a sufficient and necessary condition for the existence of the involution kernel on the base point \(x' \). We analyze different choices of \(x' \) (each one can produce different versions of the involution kernel).

Let \(A \in R(\Omega) \) be defined by the following convergent sequences of real numbers

\[(a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{N}}, (c_n)_{n \in \mathbb{N}} \text{ and } (d_n)_{n \in \mathbb{N}}.\]

4.1 First Case: \(x' = 0^\infty \)

With this choice of base point, \(x = 0^\infty \implies W(\cdot|x) \equiv 0 \). For \(y = 0^\infty \) and \(x \in [0^k1] \), with \(k \in \mathbb{N}

\[A(y_n\ldots y_1 x) - A(y_n\ldots 1 x') = A(0^{k+n}1 \ldots) - A(0^\infty) = a_{k+n} - a\]

\[W(0^\infty|[0^k1]) = \sum_{n \in \mathbb{N}} (a_{n+k} - a). \quad (14)\]

If \(y = 0^\infty \) and \(x = 1^\infty \), then, since \(A(01^\infty) - A(0^\infty) \) and \(A(0^k1^\infty) - A(0^\infty) - a_n - a \) for natural numbers \(n > 1 \),

\[W(0^\infty|1^\infty) = b - a + \sum_{n=2}^{\infty} (a_n - a). \quad (15)\]

If \(y = 0^\infty \) and \(x \in [1^k0], k \in \mathbb{N} \), then

\[W(y|x) = b_k - a + \sum_{n=2}^{\infty} (a_n - a) , \quad (16)\]

since \(A(01^k0\ldots) - A(0^\infty) = b_k - a \) and \(A(0^n1^k0\ldots) - A(0^\infty) = a_n - a \) if \(n > 1 \). We obtained the expressions for the involution kernel when the first coordinate is the point \(y = 0^\infty \).

Consider now \(y \in [0^l1] \), with \(l \in \mathbb{N} \). If \(x \in [0^k1] \). If \(1 \leq n \leq l \),

\[A(y_n\ldots y_1 x) - A(y_n\ldots y_1 x') = A(0^{n+k}1 \ldots) - A(0^\infty) = a_{n+k} - a .\]

Now

\[A(y_{l+1}\ldots y_x) - A(y_{l+1}\ldots y_1 x') = A(10^{l+k}1 \ldots) - A(10^\infty) = d_{l+k} - d .\]
The next terms are null, so

\[W([0^l]) = \sum_{n=1}^{l} (a_{n+k} - a) + d_{l+k} - d. \] (17)

Still for \(y \in [0^l] \), let \(x = 1^\infty \). In this case, \(A(y_1x) - A(y_1x') = A(01^\infty) - A(0^\infty) = b - a \). If \(1 < n \leq l \),

\[
A(y_n...y_1x) - A(y_n...y_1x') = A(0^n1^\infty) - A(0^\infty) = a_n - a.
\]
\[
A(y_{l+1}...y_1x) - A(y_{l+1}...y_1x') = A(1^n1^\infty) - A(1^\infty) = d_l - d,
\]
and all the other terms are null. Therefore,

\[
W([0^l]1^\infty) = (b - a) + \sum_{n=2}^{l} (a_n - a) + d_l - d. \] (18)

If \(y \in [0^l] \) and \(x \in [1^k0] \), then

\[A(y_1x) - A(y_1x') = A(01^k0...) - A(0^\infty) = b_k - a \\]

For \(1 < n \leq l \),

\[
A(y_n...y_1x) - A(y_n...y_1x') = A(0^n1^k0...) - A(0^\infty) = a_n - a.
\]
\[
A(y_{l+1}...y_1x) - A(y_{l+1}...y_1x') = A(1^n1^k0...) - A(1^\infty) = d_l - d.
\]

Since the other terms are zero, we conclude

\[
W([0^l][1^k0]) = b_k - a + \sum_{n=2}^{l} (a_n - a) + d_l - d. \] (19)

The above equation closes the case \(y \in [0] \). We proceed in a similar way to calculate it for \(y \in [1] \).

If \(y = 1^\infty \) and \(x \in [0^k1] \), with \(k \in \mathbb{N} \), then

\[A(y_n...y_1x) - A(y_n...y_1x') = A(1^n0^k1...) - A(1^n0^\infty) = \begin{cases} d_k - d, & \text{if } n = 1 \\ 0, & \text{if } n > 1 \end{cases}. \]

First, consider \(y = x = 1^\infty \).

\[A(y_n...y_1x) - A(y_n...y_1x') = A(1^\infty) - A(1^n0^\infty) = \begin{cases} c - d, & \text{if } n = 1 \\ c - c_n, & \text{if } n > 1 \end{cases}. \]
which implies

\[W(1^\infty|1^\infty) = c - d + \sum_{n=2}^{\infty} (c - c_n) \] \hspace{1cm} (20)

If \(y = 1^\infty \) and \(x \in [1^k0] \), then

\[A(y_1x) - A(y_1x') = A(1^{1+k}0...) - A(10^\infty) = c_{k+1} - d \, , \]

and

\[A(y_n...y_1x) - A(y_n...y_1x') = A(1^{n+k}0...) - A(1^n0^\infty) = c_{n+k} - c_n \, , \]

for \(n > 1 \). We have, therefore,

\[W(1^\infty|[1^k0]) = c_{k+1} - d + \sum_{n=2}^{\infty} (c_{n+k} - c_n) . \] \hspace{1cm} (21)

Consider now the case \(y \in [1^l0] \) and \(x \in [0^k1] \), for \(l, k \in \mathbb{N} \).

\[A(y_1x) - A(y_1x') = A(10^k1...) - A(10^\infty) = d_k - d \, . \]

If \(1 < n \leq l \), then

\[A(y_n...y_1x) - A(y_n...y_1x') = A(1^n0^k1...) - A(1^n0^\infty) = c_n - c_n = 0 \, , \]

so

\[W([1^l0][0^k1]) = d_k - d . \] \hspace{1cm} (22)

If \(y \in [1^l0] \) and \(x = 1^\infty \),

\[A(y_1x) - A(y_1x') = A(1^\infty) - A(10^\infty) = c - d \, . \]

For \(1 < n \leq l \), then

\[A(y_n...y_1x) - A(y_n...y_1x') = A(1^\infty) - A(1^n0^\infty) = c - c_n \, . \]

\[A(y_{l+1}...y_1x) - A(y_{l+1}...y_1x') = A(01^\infty) - A(01^l0^\infty) = b - b_l \, . \]

The other terms are zero, so

\[W([1^l0][0^k1]) = c - d + \sum_{n=2}^{l} (c - c_n) + b - b_l . \] \hspace{1cm} (23)
Let \(y \in [1^l0] \) and \(x \in [1^k0] \).

\[
A(y_1x) - A(y_1x') = A(1^{k+1}0\ldots) - A(1^\infty) = c_{k+1} - d
\]

For \(1 < n \leq l \),

\[
A(y_n\ldots y_1x) - A(y_n\ldots y_1x') = A(1^{n+k}0\ldots) - A(1^n0^\infty) = c_{n+k} - c_n
\]

\[
A(y_{l+1}\ldots y_1x) - A(y_{l+1}\ldots y_1x') = A(01^{l+k}0\ldots) - A(01^l0^\infty) = b_{l+k} - b_l
\]

The other terms are zero, so

\[
W([1^l0][1^k0]) = c_{k+1} - d + \sum_{n=2}^l (c_{n+k} - c_n) + b_{l+k} - b_l
\]

Equations (14–24) give the involution kernel, and the convergence conditions are needed only in Eqs. (14), (15), (16), (21). They are

\[
\exists \sum_{n \in \mathbb{N}} |a_n - a|, \exists \sum_{n \in \mathbb{N}} |c_n - c|, \exists \sum_{n \in \mathbb{N}} |c_{n+k} - c_n| \forall k \in \mathbb{N}.
\]

Observe, however, that the third convergence condition is implied by the second, since

\[
|c_{n+k} - c_n| \leq |c_{n+k} - c| + |c - c_n|
\]

All the calculations were made with the involution kernel based on \(x' = 0^\infty \). Thus, it is important to investigate if the convergence hypothesis changes if the other point \(x' \) is fixed as a base point. It is sufficient to consider \(x' = [0^\alpha 1] \) for some natural number \(\alpha \). The other cases are obtained from these two by permutation of symbols \(a \leftrightarrow c \) and \(b \leftrightarrow d \).

4.2 Second Case: \(x' \in [0^\alpha 1] \)

We present below the calculations of the involution kernel based on a point \(x' \in [0^\alpha 1] \).

\[
W(1^l0^k1) = \sum_{j=1}^l \left[A(0j^{k+1}1\ldots) - A(0j^{\alpha+1}1\ldots) \right] + A(10^j1^{k+1}0\ldots) - A(10^j1^{\alpha+1}1\ldots)
\]

\[
= \sum_{j=1}^l (a_{j+k} - a_{j+\alpha}) + d_{l+k} - d_{l+\alpha}
\]

\[
W(0^l1^k0) = \left[A(01^k0\ldots) - A(0^{\alpha+1}1\ldots) \right] + \sum_{j=2}^l \left[A(0j^10k) - A(0j^{\alpha+1}1\ldots) \right] + A(10^l1^k0\ldots) - A(10^l1^{\alpha+1}1\ldots)
\]
\(b_k - a_{\alpha + 1} + \sum_{j=2}^{l} (a_j - a_{j + \alpha}) + d_l - d_{l + \alpha} \).

\[
W(01^l|0^k) = A(10^k 1...) - A(10^a 1...) + \sum_{j=2}^{l} [A(1j0^k 1...) - A(1j0^a 1...)] \]
\[
= A(10^k 1...) - A(10^a 1...) = d_k - d_\alpha .
\]

\[
W(01^l|1^k) = A(1^{k+1} 01...) - A(10^a 1...) + \sum_{j=2}^{l} [A(1^{k+j} 0...) - A(1j0^a 1...)] +
\]
\[
+ A(01^{k+l} 0...) - A(01^0 1...)
\]
\[
= c_{k+1} - d_\alpha + \sum_{j=2}^{l} (c_{k+j} - c_j) + (b_{k+l} - b_l).
\]

All other remaining cases are obtained from the previous one by limits. The results are summarized in Table 2.

We denote the involution kernel based at \(x \in [0^\alpha 1] \) by \(W_\alpha \). From all those equations, we can conclude two things:

(1) there is no change in the convergence hypothesis needed to assert the existence of the involution kernel;

(2) the sequence of functions \((W_\alpha)_{\alpha \in \mathbb{N}} \), assuming that they exist (equivalently, if one of them exists) converges uniformly to \(W \), the involution kernel based at \(x' = 0^\infty \).

5 The Dual Potential

Let \(A \in R(\Omega) \) be a potential that admits involution kernel.

In [1] (see also [23]) it was shown that

Proposition 5.1 Given a continuous potential \(A : \Omega \to \mathbb{R} \) and \(x' \in \Omega \), if \(A^* \) is well defined when given by

\[
A^*(y) = A^*(y_1, y_2, ...)
\]
\[
= A(y_1, x'_1, x_2, ...) + [A(y_2, y_1, x'_1, x'_2, ...) - A(y_2, x'_1, x'_2, ...)] + ...\]
\[
[A(y_n, \ldots, y_2, y_1, x'_1, x'_2, ...) - A(y_n, \ldots, y_2, x'_1, x'_2, ...)] + ... \quad (29)
\]

then \(A^* \) is a dual potential for \(A \) [(considering the involution kernel \(W \) given by (12)].

We are interested here in explicit expressions for the dual potential \(A^* \) (which will be presented in Sect. 5.1). Let \(W \) be the involution kernel of \(A \) based on the point \(x' \in \Omega \). Then, for any ordered pair \((y|x) \in \hat{\Omega} \),

\[
A(\tau_y(x)) + W \circ \hat{\sigma}^{-1}(y|x) - W(y|x)
\]
\[-A \circ \hat{\sigma}^{-n} \circ \sigma(y)|x'] - \sum_{n=1}^{\infty} \left[\hat{A} \circ \hat{\sigma}^{-n} (y|x) - \hat{A} \circ \hat{\sigma}^{-n} (y|x') \right].\]

\[= A(\tau_y(x)) + \lim_{N \to \infty} \sum_{n=1}^{N} \left[\hat{A} \circ \hat{\sigma}^{-(n+1)} (y|x) - \hat{A} \circ \hat{\sigma}^{-n} (\sigma(y)|x') \right.\]

\[-\hat{A} \circ \hat{\sigma}^{-n} (y|x) + \hat{A} \circ \hat{\sigma}^{-n} (y|x') \left.\right]\]

\[= A(\tau_y(x)) + \lim_{N \to \infty} \sum_{n=1}^{N} \left[\hat{A} \circ \hat{\sigma}^{-n} (y|x') - \hat{A} \circ \hat{\sigma}^{-n} (\sigma(y)|x') \right].\]

Therefore, if there is an involution kernel based on \(x'\), the limit

\[\lim_{N \to \infty} A(\tau_y(x)) + \sum_{n=1}^{N} \left[\hat{A} \circ \hat{\sigma}^{-n} (y|x') - \hat{A} \circ \hat{\sigma}^{-n} (\sigma(y)|x') \right].\]

(30)

must exists and, by continuity of \(A\), it does not depend on \(x\). This shows that the function \(A^* : \hat{\Omega} \to \mathbb{R}\), given by

\[A^*(y) = \hat{A}^*(y|x) := A(\tau_y(x)) + W \circ \hat{\sigma}^{-1}(y|x) - W(y|x),\]

(31)

is independent of \(x\) and is a dual potential for \(A\).

5.1 Calculation of the Dual Potential for the Walters’ Family

Let \(W\) be an involution kernel for \(A \in R(\Omega)\) and \(A^*\) be the dual potential of \(A\) associated with \(W\).

The Tables 1, 2 and 3, to follow, show our results in the calculation of dual potentials and helps our future analysis of the conditions for symmetry (see for instance Theorem 5.3).

Definition 5.2 The potential \(A\) is symmetrized by \(W\) if, and only if, \(A^* = A \circ \theta\). If \(W\) is the involution kernel based at \(x'\) and \(A\) is symmetrized by \(W\), we say that \(A\) is symmetric relatively to \(x'\).
Table 1 Dual Potential associated to the Involution Kernel-based at $x' = 0^\infty$

x	A	$A^* \circ \theta^{-1}$
0^∞	a	a
$0^{n+1}1z$	a_{n+1}	a
01^n0z	b_n	a
1^∞	b	a
c	c	c
$1^{n+1}0z$	c_{n+1}	$c_{n+1} + b_{n+1} - b_n$
10^n1z	d_n	$(b_1 - a) + \sum_{j=2}^{n} (a_j - a) + d_n$
10^∞	d	$d + (b_1 - a) + \sum_{j=2}^{\infty} (a_j - a)$

Table 2 Dual Potential associated to the Involution Kernel-based at $x' = 0^\alpha \omega$

x	A	$A^* \circ \theta^{-1}$
0^∞	a	a
$0^{n+1}1z$	a_{n+1}	$a_{\alpha n} + n + (d_{\alpha n} - d_{\alpha})$
01^n0z	b_n	$a_{\alpha + 1} + (d_{\alpha + 1} - d_{\alpha})$
1^∞	b	$a_{\alpha + 1} + (d_{\alpha + 1} - d_{\alpha})$
c	c	c
$1^{n+1}0z$	c_{n+1}	$c_{n+1} + b_{n+1} - b_n$
10^n1z	d_n	$d_{\alpha} + (b_1 - a_{\alpha+1}) + \sum_{j=2}^{n} (a_j - a_{\alpha+j}) + (d_n - d_{\alpha n})$
10^∞	d	$d_{\alpha} + (b_1 - a_{\alpha+1}) + \sum_{j=2}^{\infty} (a_j - a_{\alpha+j})$

- Conditions for symmetry: The condition for symmetry is that the second column equals the third. The first two lines show that $b = b_n = a_{n+1} = a$ for all natural numbers n. If these conditions hold, the other equations are trivially satisfied.

As should be expected, the first table is obtained from the second, making $\alpha \to \infty$. The first result of the above calculations is that the dual of Walter’s potential is also Walter’s potential.

- Conditions for symmetry: The condition for symmetry is that the second column equals the third. Then

$$b_n = a_{\alpha + 1} + (d_{\alpha + 1} - d_{\alpha}) = b,$$

that is, $b_n = b$ for all $n \in \mathbb{N}$, is a necessary condition.

$$a_{n+1} = a_{\alpha n} + n + (d_{\alpha n} - d_{\alpha}) \iff a_{\alpha n} + n = d_{\alpha n} - d_{\alpha n+1}, \quad \forall \ n \in \mathbb{N}.$$
Table 3 Dual Potential associated to the Involution Kernel-based at $x' = 1^90w$

x	A	$A^* \circ \theta^{-1}$
0^∞	a	a
$0^{n+1}1_z$	a_{n+1}	$a_{n+1} + (d_{n+1} - d_n)$
0^1n0_z	b_n	$b_{\alpha} + (d_1 - c_{\alpha+1}) + \sum_{j=2}^{\infty}(c_j - c_{\alpha+j}) + (b_n - b_{n+a})$
$0^1\infty$	b	$b_{\alpha} + (d_1 - c) + \sum_{j=2}^{\infty}(c_j - c)$
1^∞	c	c
$1^{n+1}0_z$	c_{n+1}	$c_{\alpha+n+1} + (b_{\alpha+n+1} - b_{\alpha+n})$
10^a1_z	d_n	$c_{\alpha+1} + (b_{\alpha+1} - b_a)$
10^∞	d	$c_{\alpha+1} + (b_{\alpha+1} - b_a)$

Also, for all $n \in \mathbb{N}$

\[
d_{\alpha} + (b_1 - a_{\alpha+1}) + \sum_{j=2}^{n}(a_j - a_{\alpha+j}) = d_{\alpha+n},
\]

and

\[
d = d_{\alpha} + b - a_{\alpha+1} + \sum_{j=2}^{\infty}(a_j - a_{\alpha+j}). \quad (32)
\]

Then the conditions for symmetry, in this case, is the validity of the system of equation

\[
\begin{cases}
a_{\alpha+n+1} - a_{n+1} = d_{\alpha+n} - d_{\alpha+n+1} \\
b_n = a_{\alpha+1} + (d_{\alpha+1} - d_{\alpha}) = b \\
d_{\alpha+n} = d_{\alpha} + (b_1 - a_{\alpha+1}) + \sum_{j=2}^{n}(a_j - a_{\alpha+j}) \\
d = d_{\alpha} + b - a_{\alpha+1} + \sum_{j=2}^{\infty}(a_j - a_{\alpha+j})
\end{cases}, \quad (33)
\]

$\forall n \in \mathbb{N}$.

\[
\begin{cases}
c_{\alpha+n+1} - c_{n+1} = b_{\alpha+n} - b_{\alpha+n+1} \\
d_n = c_{\alpha+1} + (b_{\alpha+1} - b_{\alpha}) = d \\
b_{\alpha+n} = b_{\alpha} + (d_1 - c_{\alpha+1}) + \sum_{j=2}^{n}(c_j - c_{\alpha+j}) \\
b = b_{\alpha} + d - c_{\alpha+1} + \sum_{j=2}^{\infty}(c_j - c_{\alpha+j})
\end{cases}, \quad (34)
\]

$\forall n \in \mathbb{N}$.

In analogy with the first case, the conditions for symmetry here are $c_{n+1} = d_n = c \forall n \in \mathbb{N}$.

The following Theorem summarizes our conclusions:
Theorem 5.3 Suppose that $A \in R(\Omega)$ admits involution kernel. If $b_n = a_{n+1} = a$ for all $n \in \mathbb{N}$, then A is symmetric relatively to the involution kernel based at $x' = 0^\infty$. Let $\alpha \in \mathbb{N}$. If

$$\begin{align*}
 a_{\alpha+n+1} - a_{n+1} &= d_{\alpha+n} - d_{\alpha+n+1} \\
 b_n &= a_{\alpha+1} + (d_{\alpha+1} - d_\alpha) = b \\
 d_{\alpha+n} &= d_\alpha + (b_1 - a_{\alpha+1}) + \sum_{j=2}^{n}(a_j - a_{\alpha+j}) \\
 d &= d_\alpha + b - a_{\alpha+1} + \sum_{j=2}^{\infty}(a_j - a_{\alpha+j})
\end{align*}$$

holds \forall $n \in \mathbb{N}$, then A is symmetric relatively to $x' = 0^\alpha 1z$. If $d_n = c_{n+1} = c$ for all natural numbers n then A is symmetric relatively to the point $x' = 1^\infty$. If

$$\begin{align*}
 c_{\alpha+n+1} - c_{n+1} &= b_{\alpha+n} - b_{\alpha+n+1} \\
 d_n &= c_{\alpha+1} + (b_{\alpha+1} - b_\alpha) = d \\
 b_{\alpha+n} &= b_\alpha + (d_1 - c_{\alpha+1}) + \sum_{j=2}^{n}(c_j - c_{\alpha+j}) \\
 b &= b_\alpha + d - c_{\alpha+1} + \sum_{j=2}^{\infty}(c_j - c_{\alpha+j})
\end{align*}$$

holds for all $n \in \mathbb{N}$ then A is symmetric relatively to the point $x' = 1^\alpha 0z$.

The above Theorem allows us to show that there exist potentials in $R(\Omega)$ for which there is no involution kernel, accordingly to Definition 1.1, which makes it symmetric. In fact, take four distinct real number a, b, c and d, and define A with the constant sequences $a_n = a, b_n = b, c_n = c$ and $d_n = d$. By Theorem 2.3, A has an involution kernel based at any point $x' \in \Omega$. For any $n, \alpha \in \mathbb{N}$,

$$\begin{align*}
 b_n = b \neq a = a_n \implies A \text{ is not symmetric relatively to } 0^\infty \\
 b_n \neq a_{\alpha+1} = a_{\alpha+1} + (d_{\alpha+1} - d_\alpha) \implies A \text{ is not symmetric relatively to } 0^\alpha 1z \\
 d_n = d \neq c = c_{n+1} \implies A \text{ is not symmetric relatively to } 1^\infty \\
 d_n \neq c_{\alpha+1} = c_{\alpha+1} + (b_{\alpha+1} - b_\alpha) \implies A \text{ is not symmetric relatively to } 1^\alpha 0z
\end{align*}$$

so A cannot be symmetric relative to some point.
Remark 5.4 The results in this paper are restricted to a specific class of involution kernels; those which come from a limit as in (10). Thus, our results have some restrictions, which we illustrate with an example. It comes from a simple observation: If A_1 and A_2 are potentials, W_1 is an involution kernel for A_1 and W_2 is an involution kernel for A_2, then $W_1 + W_2$ is an involution kernel for $A_1 + A_2$. Also, if $k \in \mathbb{R} \setminus \{0\}$, $k W_1$ is an involution kernel for $k A_1$.

Suppose that $A : \Omega \to \mathbb{R}$ is a potential in $R(\Omega)$ depending only on the two first coordinates. Given a point $x' = (x'_n)_{n \in \mathbb{N}} \in \Omega$,

$$\sum_{n \in \mathbb{N}} [\hat{A} \circ \hat{\sigma}^{-n}(y|x) - \hat{A} \circ \hat{\sigma}^{-n}(y|x')]$$

$$= A(y_1 x_1...) - A(y_1 x'_1...) + A(y_2 y_1 x_1...) - A(y_2 y_1 x'_1...)$$

$$= A(y_1 x_1...) - A(y_1 x'_1),$$

and this implies that

$$\hat{A}^*(y|x) = A(y_2 y_1 x) + [A(y_1 x') - A(y_2 x')] .$$

Suppose now that A is a indicator function $\chi_{[a_0, a_1]}$ of a cylinder $[a_0 a_1)$. The above expression shows that, taking $x' \notin [a_1)$,

$$\hat{\chi}_{[a_0 a_1]}^*(y|x) = \chi_{[a_0 a_1]}(y_2, y_1 x) = \chi_{(a_1 a_0)}(y) ,$$

i.e., it is possible to choose x' in such a way that $\chi_{[a_0 a_1]}^* = \chi_{(a_1 a_0)}$.

Given a 2×2 line stochastic matrix $\mathcal{P} = \{p_{ij}\}$, the associated stationary Markovian measure over Ω can be obtained via Thermodynamic Formalism by considering the potential $A = p_{11} \chi_{[00]} + p_{12} \chi_{[01]} + p_{21} \chi_{[10]} + p_{22} \chi_{[11]}$. The potential A thus defined is in $R(\Omega)$. For each $\chi_{[a_0 a_1]}$ we can choose $x'(a_0 a_1) \in \Omega$ such that $\chi_{[a_0 a_1]}^*$, the dual with respect to the involution kernel based at $x'(a_0, a_1)$, is $\chi_{(a_1 a_0)}$. Considering the observation made at the beginning of the remark, we conclude that

$$B := p_{11} \chi_{[00]} + p_{12} \chi_{[10]} + p_{21} \chi_{[01]} + p_{22} \chi_{[11]}$$

is a dual potential for A (see Section 5 in [5]). If \mathcal{P} is row-stochastic, we have an associate Markov process in Ω^- defined by the column-stochastic matrix \mathcal{P}^T.

Besides B is a dual potential for A, it may not be obtained by an involution kernel of the form (10): for each indicator function $\chi_{[a_0 a_1]}$ we choose a $x'(a_0 a_1)$ to obtain the kernel, and B is obtained through the linear combination of these kernels. The sum of two kernels of type (10) may not be of the same type unless the respective base points are the same. Thus, our results do not apply to B as it does not apply, in general, to dual potential obtained by linear combinations of involution kernels of type (10).

The important result which is announced in Corollary 7.6 has also the same restriction.
6 Twist Condition

In the works [28] and [27], the involution kernel appears related to an Ergodic Transport Problem. The involution kernel can be seen as a natural cost function on \(\hat{\Omega} \). In the symbolic setting, the Twist Condition plays the role of convexity.

Definition 6.1 Considering the lexicographic order \(<\) in \(\Omega \) and \(\Omega^- \), the involution kernel \(W \) is said to satisfy the Twist Condition if and only if \(y < y' \) and \(x < x' \) implies

\[
W(y|x) + W(y'|x') < W(y|x') + W(y'|x').
\]

For the involution kernels in this paper, the twist condition cannot be satisfied, as we show now. Let \(a \in [1^s0], \ a' \in [0^{s+p}1], \ b \in [0^{k+q}1] \) and \(b' \in [0^k1] \). Then, if the involution kernel based at \(x' = 0^p1z \) satisfies the twist condition,

\[
W(...01^s|0^{k+q}1...) + W(...01^s+p|0^k1...)
\]

\[
< W(...01^s|0^k1...) + W(...01^s+p|0^{k+q}1...)
\]

This is equivalent to

\[
(d_{k+q} - d_a) + (d_k - d_a) < (d_k - d_a) + (d_{k+q} - d_a).
\]

(35)

If we change the base point of the involution kernel to be \(x' = 0^{\infty} \), the above inequality changes only by the substitution \(d_a \to d \). To consider basis points in the cylinder \([1^s0] \) would lead to a similar contradiction: considering \(b \in [1^s0], \ b' \in [1^{s+p}0], \ a \in [0^{k+q}1] \) and \(a' \in [0^k1] \) and the involution kernel based at \(x' = 1^a0z \), it holds

\[
W(...10^{k+q}|1^s0...) + W(...10^k|1^{s+p}0...)
\]

\[
= b_{k+q} - b_a = W(...10^{k+q}|0^{s+p+1}1...) + W(...10^k|1^s0...).
\]

Therefore, the twist condition cannot be satisfied.

Definition 6.2 A cost function \(c : \hat{\Omega} \to \mathbb{R} \) is said to satisfy a relaxed twist condition if, for any pair \((a, b), (a'b') \in \hat{\Omega} \) with \(a < a' \) and \(b < b' \),

\[
c(a, b) + c(a', b') \leq c(a, b') + c(a', b).
\]

We can define a class of Walters Potentials for which the involution kernel satisfies the relaxed twist condition. Indeed, let \(W \) be the involution kernel based at the point \(0^p1z \) of a Walters potential \(A \) defined by the sequences \((a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{N}}, (c_n)_{n \in \mathbb{N}} \) and \((d_n)_{n \in \mathbb{N}} \).

Define, for each \(n \in \mathbb{N} \), the sequences \((\Delta^n_i)_{i \in \mathbb{N}} \) and \((\Gamma^n_i)_{i \in \mathbb{N}} \) via \(\Delta^n_i := d_{n+i} - d_i \), \(\Gamma^n_i := b_{n+i} - b_i \).
Theorem 6.3 If \((a_n)_{n \in \mathbb{N}}, (c_n)_{n \in \mathbb{N}}\) and, for each \(m \in \mathbb{N}\), \((\Delta^m_n)_{n \in \mathbb{N}}\) and \((\Gamma^m_n)_{n \in \mathbb{N}}\) are decreasing, and if \((d_n)_{n \in \mathbb{N}}\) and \((b_n)_{n \in \mathbb{N}}\) are sub-additive, the involution kernel based at \(x\) satisfies the relaxed twist condition, for any \(x \in \Omega\).

7 Normalized Potentials on \(G(\Omega)\)

Suppose \(A\) is normalized. If \(A^*\) is the dual potential associated to the point \(0^\alpha 1_z\), then for it to be normalized, accordingly to Table 2, the following equations must be satisfied:

\[
\exp \left[d_\alpha + b_1 - a_\alpha + 1 + \sum_{j=2}^{n} (a_j - a_\alpha + j) + d_n - d_\alpha \right] = 1 - \exp (a_\alpha + n + 1 + d_\alpha + 1 - d_\alpha) \cdot \left(e^{c_\alpha + 1} - 1 \right),
\]

(36)

\[
\exp (a_\alpha + 1 + d_\alpha + 1 - d_\alpha) = 1 - \exp (c_\alpha + 1 + b_{n+1} - b_n).
\]

(37)

The normalization condition of \(A\) reduces its degree of freedom; the sequences \((b_n)_{n \in \mathbb{N}}\) and \((d_n)_{n \in \mathbb{N}}\) becomes entirely defined by the sequences \((a_{n+1})_{n \in \mathbb{N}}\) and \((c_{n+1})_{n \in \mathbb{N}}\). We show that normalization of \(A^*\) defines \((c_{n+1})_{n \in \mathbb{N}}\) in terms of \((a_{n+1})_{n \in \mathbb{N}}\).

Proposition 7.1 If \(A\) and \(A^*\) are normalized, then

\[
e^{c_{n+2}} = 1 - \left(1 - e^{a_{n+1} + d_{n+1} - d_\alpha} \right) \cdot \left(e^{-c_{n+1}} - 1 \right).
\]

Proposition 7.2 If \(A\) and \(A^*\) are normalized, then

\[
1 - e^{-2} = \frac{1 - e^{a_{n+1} + a_{n+2}}}{(e^{-a_{n+1}} - 1)(1 - e^{a_{n+1}}) \exp \left[\sum_{j=2}^{n} (a_j - a_\alpha + j) \right]}, \forall n \in \mathbb{N}.
\]

Corollary 7.3 If \(A\) and \(A^*\) are normalized, then the sequence

\[
1 - e^{a_{n+1} + a_{n+2}}
\]

\[
(e^{-a_{n+1}} - 1)(1 - e^{a_{n+1}}) \exp \left[\sum_{j=2}^{n} (a_j - a_\alpha + j) \right]
\]

is constant.

Then we can reach the following conclusion: there are normalized potentials \(A \in R(\Omega)\) for which there is no dual normalized potential. In fact, \(A\) is normalized if and only if the system

\[
\begin{align*}
 d_n &= \log(1 - e^{a_{n+1}}) \\
 b_n &= \log(1 - e^{c_{n+1}})
\end{align*}
\]

\(\forall n \in \mathbb{N},\) \hspace{1cm} (38)
holds and there exists $r \in (0, 1)$ such that $e^{a_{n+1}} \in (c, 1)$ and $e^{c_{n+1}} \in (0, 1 - c)$ for all $n \in \mathbb{N}$.

For any choice of sequences $(a_{n+1})_{n \in \mathbb{N}}$ and $(c_{n+1})_{n \in \mathbb{N}}$ satisfying these respective constraints, with

$$
\sum_{n \in \mathbb{N}} (a - a_n) \quad \text{and} \quad \sum_{n \in \mathbb{N}} (c - c_n)
$$

convergent, defining b_n and d_n by the above equations, we get a normalized potential, which may not satisfy the conclusion of Proposition 7.1.

Example 7.4 Let $a_n = d_n = \log \frac{1}{2}$ for all $n \in \mathbb{N}$. Let $c_n = \log \frac{2}{3}$ and $b_n = \log \frac{1}{3}$, for all $n \in \mathbb{N}$. Since $1/2 > 1/3$, $1/3 < 2/3$, and the Eq. (38) are satisfied, the potential derived from these sequences is normalized. We show that Proposition 7.1 does not hold.

$$
1 - \left(1 - e^{a_{n+1} + d_{n+1} - d_n} \right) \cdot \left(e^{-c_{n+1}} - 1 \right) = 1 - \left(1 - \frac{1}{2} \right) \left(\frac{3}{2} - 1 \right) = 1 - \frac{1}{4} = \frac{3}{4} \neq \frac{2}{3} = e^c.
$$

On the other hand, if A satisfies Ruelle’s Operator Theorem, its dual also satisfies it.

Let (λ, h) be a positive eigenpair for the Ruelle Operator associated with A, and let (λ^*, h^*) be a positive eigenpair for the Ruelle Operator associated with A^*. Moreover, take λ and λ^* as the greatest eigenvalue of L_A and L_{A^*}, respectively. We know that $\lambda = \lambda^*$.

Given a Holder potential A and its equilibrium probability μ_A, there exists a unique positive function $J : \Omega \rightarrow (0, 1)$, such that,

$$
L_{\log J}^* (\mu_A) = \mu_A.
$$

For proof see [35]. We call J the Jacobian of the probability μ_A.

We study the relation between h and h^* and the Jacobians of the equilibrium states of the potentials A and A^*. Fixing $A \in R(\Omega)$ with involution kernel W and denoting A^* the corresponding dual relatively to the involution kernel based at the point $0^\delta 1_w$, we prove

Theorem 7.5 Let μ and μ^* be the equilibrium states of A and A^*, respectively. Then the Jacobians of J of μ and J^* of μ^* satisfies $J = J^* \circ \theta^{-1}$.

Corollary 7.6 Let θ_*^{-1} be the pull-back of μ^* by θ^{-1}. In the above conditions, $\mu = \theta_*^{-1} \mu^*$.
Proof Since we are supposing that the series $\sum (a_n - a)$ and $\sum (c_n - c)$ converges, A and A^* has unique equilibrium states; μ and μ^*, respectively. Let A and A^* be the normalized potentials associated to A and A^*, respectively. As described in [42], for any continuous functions $f : \Omega \to \mathbb{R}$,

$$L^n_A f \rightarrow \int f \, d\mu, \quad \text{and} \quad L^n_A^* f \rightarrow \int f \circ \theta^{-1} \, d\mu^* = \int f \left(\theta^{-1}_* \mu^* \right),$$

in the uniform topology (the right side of the arrows denotes, with language abuse, constant functions which assume those values). Since A and A^* has the same Jacobians, $L^n_A = L^n_{A^*} \circ \theta^{-1}$, and thus $\int f \, d\mu = \int f \left(\theta^{-1}_* \mu^* \right)$ for any continuous function $f : \Omega \to \mathbb{R}$. From Riesz - Markov Representation Theorem, it follows that $\mu = \theta_*^{-1} \mu^*$. \hfill \Box

Remark 7.7 Corollary 7.6 can be generalized: in the class $R(\Omega)$ if the equilibrium states of two potentials have the same Jacobians, then the equilibrium states are equal.

8 A Generalization

Let $\mathcal{M}(\sigma)$ and $\mathcal{M}(\hat{\sigma})$ be the set of Borel invariant probability measures for σ and $\hat{\sigma}$, respectively. We show the existence of a bijection between these sets, which preserves entropy. Given $\mu \in \mathcal{M}(\sigma)$, define $\hat{\mu}$, the extension of μ to $\hat{\Omega}$, as being the measure in $\mathcal{M}(\sigma)$ satisfying

$$\hat{\mu}(< a_n ... a_1 | b_1 ... b_m >) = \mu([a_n ... a_1 b_1 ... b_m])$$

for any $(a_n, \ldots, a_1, b_1, \ldots, b_m) \in \bigcup_{k \in \mathbb{N}} A^{(k)}$. Now, there is a natural inclusion i of Borel σ-algebra $B(\Omega)$ into the Borel σ-algebra $B(\hat{\Omega})$. It satisfies $i([a_1 ... a_n]) = |a_1 ... a_n >$ for all words in the alphabet A. Given $\hat{\mu} \in \mathcal{M}(\hat{\sigma})$, let μ be the pull-back by the map i of the restriction of $\hat{\mu}$ to $i(B(\Omega))$. The map $\mu \mapsto \hat{\mu}$ thus defined is the inverse of the map $\mu \mapsto i\mu$ defined previously.

The natural extension of a σ-invariant probability on Ω to a $\hat{\sigma}$-invariant probability on $\hat{\Omega}$ is unique. Results related to this section appear in Section 7 in [25].

Proposition 8.1 For all $\hat{\mu} \in \mathcal{M}(\hat{\sigma})$, $h_{\hat{\mu}}(\hat{\sigma}) = h_\mu(\sigma)$.

Proof Let $\hat{\mathcal{P}} = \{|a >; \ a \in A\}$ and $\mathcal{P} = \{|a|; \ a \in A\}$. $\hat{\mathcal{P}}$ is a bilateral generating partition for $(\hat{\Omega}, \hat{\sigma})$ (i.e., $\bigcup_{n \in \mathbb{N}} \hat{\mathcal{P}}^{\pm n} = \bigcup_{n \in \mathbb{N}} \bigvee_{j=-n}^{n} \hat{\sigma}^j(\hat{\mathcal{P}})$ generates the Borel σ-algebra of $\hat{\Omega}$), while \mathcal{P} is a unilateral generating partition for (Ω, σ) ($\bigcup_{n \in \mathbb{N}} \mathcal{P}^n = \bigcup_{n \in \mathbb{N}} \bigvee_{j=0}^{n-1} \sigma^{-j}(\mathcal{P})$ generates de Borel σ-algebra of Ω). By Kolmogorov-Sinai’s Theorem,

$$h_{\hat{\mu}}(\hat{\sigma}) = h_{\mu}(\hat{\sigma}, \hat{\mathcal{P}}) \quad \text{and} \quad h_\mu(\sigma) = h_{\mu}(\sigma, \mathcal{P})$$

Invariance of the measures under the respective dynamics, and the relation between μ and $\hat{\mu}$, implies $h_{\hat{\mu}}(\hat{\sigma}, \hat{\mathcal{P}}) = h_\mu(\sigma, \mathcal{P})$. \hfill \Box
If $P : C(\Omega) \to \mathbb{R}$ and $\hat{P} : C(\hat{\Omega}) \to \mathbb{R}$ are the topological pressures, Proposition 8.1 implies that $\hat{P}(\hat{A}) = P(A)$ for all $A \in C(\Omega)$. Thus, the restriction of any equilibrium state of \hat{A} to Ω is an equilibrium state for A. The map $\hat{\mu} \mapsto \mu$ is a bijection. So, if A has a unique equilibrium state, \hat{A} also has a unique equilibrium state.

Analogous results hold for the pair \hat{A}^* and A^*. But, since

$$\int \hat{A}^* \ d\hat{\mu} = \int \left[\hat{A} \circ \hat{\sigma}^{-1} + W \circ \hat{\sigma}^{-1} - W \right] \ d\hat{\mu} = \int \hat{A} \ d\hat{\mu} \ \forall \hat{\mu} \in \mathcal{M}(\hat{\sigma}) ,$$

these two potentials have the same equilibrium states. Therefore, the uniqueness of the equilibrium state for A implies the uniqueness of the equilibrium state for \hat{A}, which implies the uniqueness of the equilibrium state for \hat{A}^*, which implies uniqueness of equilibrium state for A^*. Also,

$$\hat{\mu}_{A^*} = \hat{\mu}_A .$$

Corollary 8.2 If $\mu_A([a_1...a_n]) = \mu_A([a_n...a_1])$ for all $(a_1, \ldots, a_n) \in \bigcup_{m \in \mathbb{N}} A^m$, then $\theta_*^{-1}\mu_{A^*} = \mu_A$.

Corollary 2.3 in [42] claims that equilibrium probabilities for normalized potentials on the Walters’ family satisfy the hypothesis of the above corollary. It follows from [21] that the entropy production, in this case, is 0.

Acknowledgements The present work is part of the Master Dissertation of L. Y. Hataishi in Prog. Pos. Grad. em. Mat. UFRGS (see [19]).

Data Availability The authors declare that data sharing is not applicable to this article as no datasets were generated or analyzed during the current study

References

1. Baraviera, A., Lopes, A.O., Thieullen, Ph.: A Large Deviation Principle for Gibbs states of Hölder potentials: the zero temperature case. Stoch. Dyn. 6, 77–96 (2006)
2. Baraviera, A., Lopes, A.O., Mengue, J.K.: On the selection of subaction and measure for a subclass of Walters’ potentials. Erg. Theo. Dyn. Syst. 33(05), 1338–1362 (2013)
3. Baraviera, A., Leplaideur, R., Lopes, A.O.: The potential point of view for renormalization. Stoch. Dyn. 12(4), 1250005 (2012)
4. Baraviera, A., Leplaideur, R., Lopes, A.O.: Selection of measures for a potential with two maxima at the zero temperature limit. SIAM J. Appl. Dyn. Syst. 11(1), 243–260 (2012)
5. Baraviera, A., Leplaideur, R., Lopes, A. O.: Ergodic optimization, zero temperature limits and the max-plus algebra, mini-course in XXIX Coloquio Brasileiro de Matematica (2013)
6. Bhattacharya, P., Majumdar, M.: Random Dynamical Systems. Cambridge Univ Press (2007)
7. Bogomolny, E.B., Carioli, M.: Quantum maps of geodesic flows on surfaces of constant negative curvature, IV International Conference on “Path Integrals from meV to MeV”, Tutzing May, pp. 18–21 (1992)
8. Cioletti, L., Lopes, A.O.: Correlation inequalities and monotonicity properties of the Ruelle operator. Stoch. Dyn. 19(6), 1950048 (2019)
9. Cioletti, L., Lopes, A.O.: Phase transitions in one-dimensional translation invariant systems: a Ruelle operator approach. J. Stat. Phys. 159(6), 1424–1455 (2015)
10. Cioletti, L., Lopes, A.O., Stadlbauer, M.: Ruelle operator for continuous potentials and DLR-Gibbs measures. Disc. Cont. Dyn. Syst. A 40(8), 4625–4652 (2020)
11. Cioletti, L., Melo, L., Ruviaro, L., Silva, E.A.: On the dimension of the space of harmonic functions on transitive shift spaces. Adv. Math. 385, 107758 (2021)
12. Cioletti, L., Denker, M., Lopes, A.O., Stadlbauer, M.: Spectral properties of the Ruelle operator for product type potentials on shift spaces. J. Lond. Math. Society 95(2), 684–704 (2017)
13. Cioletti, L., Hataishi, L.Y., Lopes, A.O., Stadlbauer, M.: Spectral triples on thermodynamic formalism and dixmier trace representations of Gibbs measures: theory and examples, arXiv:1804.01362
14. Contreras, G., Lopes, A.O., Oliveira, E.R.: Ergodic transport theory, periodic maximizing probabilities and the twist condition, modeling, optimization, dynamics and bioeconomy I, Springer Proceedings in Mathematics and Statistics, Vol. 73, Edit. David Zilberman and Alberto Pinto, pp. 183-p219 (2014)
15. Ferrreira, H.H., Lopes, A.O., Oliveira, E.R.: Explicit examples in Ergodic optimization. Sao Paulo J. Math. Sci. 14, 443–489 (2020)
16. Fisher, A., Lopes, A.O.: Exact bounds for the polynomial decay of correlation, 1/f noise and the central limit theorem for a non-Hölder Potential. Nonlinearity 14(5), 1071–1104 (2001)
17. Gallavotti, G.: Fluctuation patterns and conditional reversibility in nonequilibrium systems. Ann. de l’H.P. Phys. Theor. 70(4), 429–443 (1999)
18. Giulietti, P., Lopes, A.O., Pitt, V.: Duality between Eigenfunctions and Eigendistributions of Ruelle and Koopman operators via an integral kernel. Stoch. Dyn. 3, 1660011 (2016)
19. Hataishi, L.Y.: Spectral Triples em Formalismo Termodinâmico e Kernel de Involução para potenciais Walters, Master Dissertation. Pos. Grad. Mat - UFRGS (2020)
20. Hofbauer, F.: Examples for the nonuniqueness of the equilibrium state. Tran. AMS 228, 133–141 (1977)
21. Jiang, D.Q., Qian, M., Qian, M.-P.: Entropy production and information gain in axiom-A systems. Commun. Math. Phys. 214, 389–409 (2000)
22. Lopes, A.O.: The zeta function, non-differentiability of pressure and the critical exponent of transition. Adv. Math. 101, 133–167 (1993)
23. Lopes, A.O., Mengue, J.K., Mohr, J., Souza, R.R.: Entropy and variational principle for one-dimensional Lattice Systems with a general a-priori probability: positive and zero temperature. Erg. Theory Dyn. Syst. 35(6), 1925–1961 (2015)
24. Lopes, A.O.: A general renormalization procedure on the one-dimensional lattice and decay of correlations. Stoch. Dyn. 19(01), 1950003 (2019)
25. Lopes, A.O., Mengue, J.K.: On information gain, Kullback-Liebler divergence, entropy production and the involution kernel. Disc. Cont. Dyn. Syst. Series A. 42(7), 3593–3627 (2022)
26. Lopes, A.O., Theisullen: Eigenfunctions of the Laplacian and associated Ruelle operator. Nonlinearity 21(10), 2239–2254 (2008)
27. Lopes, A.O., Oliveira, E.R., Smania, D.: Ergodic transport theory and piecewise analytic subactions for analytic dynamics. Bull. Braz. Math Soc. 43(3), 467–512 (2012)
28. Lopes, A.O., Oliveira, E.R., Theisullen, P.H.: The dual potential, the involution kernel and transport in ergodic optimization, Dynamics, Games and Science-International Conference and Advanced School Planet Earth DGS II, Portugal (2013), Edit. J-P Bourguignon, R. Jelstch, A. Pinto and M. Viana, Springer Verlag, pp. 357–398 (2015)
29. Lopes, A.O., Vargas, V.: Gibbs states and Gibbsian specifications on the space \mathbb{R}^N. Dyn. Syst. 35(2), 216–241 (2020)
30. Lopes, A.O.: Thermodynamic formalism, maximizing probabilities and large deviations, Notes on line - UFRGS
31. Lopes, A.O.: A first order level-2 phase transition in thermodynamic formalism. J. Stat. Phys. 60(3/4), 395–411 (1990)
32. Maes, C., Netocny, K.: Time-reversal and entropy. J. Stat. Phys. 110, 269–310 (2003)
33. Mengue, J.K.: Large deviations for equilibrium measures and selection of subaction. Bull. Brazil. Math. Soc. 49(1), 17–42 (2018)
34. Mitra, T.: Introduction to dynamic optimization theory, optimization and chaos, Editors: M. Majumdar, T. Mitra and K. Nishimura, Studies in economic theory, Springer Verlag
35. Parry, W., Pollicott, M.: Zeta functions and the periodic orbit structure of hyperbolic dynamics. Asterisque 187–188, 1–268 (1990)
36. Pollicott, M., Sharp, R.: Large deviations, fluctuations and shrinking intervals. Commun. Math. Phys. 290, 321–334 (2009)
37. Ruelle, D.: A generalized detailed balance relation. J. Stat. Phys. 164, 463–471 (2016)
38. Ruelle, D.: Positivity of entropy production in nonequilibrium statistical mechanics. J. Stat. Phys. 85, 1–25 (1996)
39. Souza, R.R., Vargas, V.: Existence of Gibbs states and maximizing measures on a general one-dimensional lattice system with Markovian structure. Qual. Theory Dyn. Syst. 21(1), 5 (2022)
40. Vargas, V.: On involution Kernels and large deviations principles on β-shifts. Discr. Contin. Dyn. Syst. 42(6), 2699–2718 (2022)
41. Walters, P.: An introduction to Ergodic theory. Springer-Verlag (1982)
42. Walters, P.: A natural space of functions for the Ruelle operator theorem. Erg. Theory Dyn. Syst. 27(4), 1323–1348 (2007)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.