Effect of Hydrolysis on Allergenicity and Sensory Quality of Whey Protein Concentrate

Smitha J. Lukose¹, Narasimha Murthy² and Anjum³*

¹Department of Dairy Chemistry, Kerala Veterinary and Animal Sciences University, Thrissur, Kerala, India
²Dairy Science College, Hebbal, Bengaluru-24, Karnataka, India
Karnataka Veterinary Animal and Fisheries Sciences University (KVAFSU), India
³Department of Dairy Chemistry, Dairy Science College, KVAFSU, Hebbal, Bengaluru-560024, Karnataka, India

*Corresponding author

A B S T R A C T

The extent of allergenicity of whey protein was revealed by inhibition ELISA using blood serum obtained from milk allergic infants. The effect of in vitro proteolysis on allergenicity and development of bitterness was studied using enzymes individually and in combination. Selective proteolysis of WPC was done to 3 and 5 per cent DH. A combination of enzymes was effective in reducing allergenicity at a lower DH. Sensory evaluation of hydrolysates was done to give bitterness scores. A hydrolysate with minimum bitterness and maximum reduction in allergenicity could be used to develop an ingredient for hypoallergenic cow milk formula.

Introduction

Although breast feeding has absolute priority in the nutrition of the newborn, infant formulae will continue to be needed to supplement or substitute for human milk as and when condition demands.

The modification of cow’s milk for this purpose is accomplished by the addition of whey and whey proteins such as β-lactoglobulin, α-lactalbumin or others become frequent allergens (Jost et al., 1987).

The incidence of food induced allergic disease in children has been estimated to be between 0.3- 7.5 %. Immunologic mechanisms particularly IgE antibodies are responsible for the development of these food allergies in infancy and childhood (Harris et al., 1989; Robert and Zeiger, 1990). Cow’s milk allergy is a hypersensitivity reaction to bovine milk proteins caused by immunological reaction (Bahna, 1980).

Among the whey proteins β-lactoglobulin is considered as the most potent allergen because
it is absent in human milk and gives highest
rate(60%) of positive oral challenges in
children with milk allergy (Asselin et al.,1989). Baldo et al., (1984) observed
that the specificity of IgE antibodies in sera from
infants with milk intolerance revealed
decreasing hypersensitivity reactions to the
individual proteins which were in the order of
β-lactoglobulin α-lactalburnin, caseins and
bovine serum albumin.

The effects of enzymatic digestion of milk
product were assessed by many researchers.
Peptic and peptic-tryptic hydrolysis yielded
breakdown products recognized by IgE
antibodies by many researchers. (Haddad et al., 1989; Pahud et al.,
1985) indicated that trypsin hydrolyzed whey
protein (4 h) remained inactive in inducing
oral sensitization in guinea pigs. However,
such an extensive hydrolysis could result in
production of bitter peptides (Clegg, 1977),
Jost et al., (1987) indicated that combining
selective hydrolysis by specific proteases with
proceeding of subsequent heat treatment was
promising in developing a hypoallergenic
infant formula. Lahl and Grindstaff (1989)
noticed that with an optimal enzyme mixture,
any source protein can be hydrolyzed or
‘attacked’ to obtain the optimal nutritional
profile attainable from the substrate.

Lahl and Braun (1994) did hydrolysis under
controlled condition to account for taste,
solubility and certain physical properties of
the hydrolysates. Enzymatic protein
hydrolysates are usually characterized by a
bitterness associated with terminal
hydrophobic amino acids attached to peptides
liberated during hydrolysis. Because of
bitterness leading to poor palatability and
increased cost, extensively hydrolyzed whey
protein formulae are not suitable for routine
use in a large population of allergic infants.
Many companies have produced
hypoallergenic formulae (Willerns et al.,
1993) in which whey proteins were subjected
for tryptic digestion with less amino acid
degradation. Petrich et al., (1972) stated that
the enzyme specificity has some influence on
bitterness of hydrolysates. However, they
concluded that this field needs further
investigations.

Materials and Methods

Enzymatic hydrolysis was performed on
commercial whey protein concentrate (70 %
protein) obtained from Mahaan proteins, New
Delhi. The following products were purchased
for the experiment. Enzymes, viz., trypsin
(1:250 S.D. Fine Chemicals, Ltd),
chymotryosin (40-60 units/mg protein,
HIMEDIA). Sera of milk allergic infants
(positive serum) and healthy infants (negative
serum) was collected from Bowring hospital,
Bangalore. All immune reagents were
obtained from Genei, Bangalore.

Enzymatic hydrolysis of whey protein
concentrates

Hydrolysis was performed on 4 per cent (on
protein basis) solution of whey protein
concentrate at 40°C and pH 8.0 at an E: S ratio
of 1:100 using enzymes individually and in
combination. The hydrolysis was performed in
triplicate for each reaction and time required
to attain 3 and 5 per cent DH was noted in
each case. Hydrolysis was arrested by heat
treatment (80°C/15 min), cooled and were
freeze dried.

Characterization of whey protein
hydrolysates

The degree of hydrolysis (DH) is defined as
the percentage of cleaved peptide bonds as
assessed by tht pH stat technique described by
Adler-Nissen (1986). In this method the
volume of standard NaOH required to keep
ph constant was directly converted to DH
using the following formula
DH=B x Nₐ x 1/α x 1/MP x 1/htot x 100%

Where b= Base consumption in ml (NaOH); Nₐ = Normality of the base (0.1 N); α= average degree of dissociation of the α-NH₂ group; MP= Mass of protein in g; htot= total number of peptide bonds in the protein substrate (meq/g protein).

Allergenic analysis of hydrolysates

Briefly, whey protein coated plates were first incubated with a pool of serum from patients allergic to milk and also from healthy infants; Optical density (OD) reading was noted to establish the allergenicity of WPC. Plates were coated with different concentration of whey to determine the concentration capable on inhibiting the reaction. This concentration (1mg/ml) was used when hydrolyzed proteins were tested as inhibitors on subsequent experiments. The allergenity of various hydrolysates were analyzed by their ability to inhibit the binding of human serum specific IgE antibodies to whey protein coated and results were expressed as the percentage reduction in allergenicity/ percentage inhibition for each hydrolysates using the following formula

(Blank-control) - (Blank-Sp. Inhibition X 100)
Reduction in allergenicity (%) = ---------------------
(Balnk- Control)

Sensory analysis

2 per cent solution of WPC hydrolysates was prepared (Adler-Nissen, 1986) by hydrolyzing with 2 different enzymes and their combination were evaluated from bitterness on five points hedonic scale by five trained judges. A score from 1 to 5 was assigned to bitterness for each sample. The scores were 5 (no bitterness), 5-4 (slightly bitter), 4-3 (moderately bitter), 3-2 (strongly bitter), 2-1 (intensive bitterness).

Results and Discussion

The allergenicity of WPC was determined by measuring absorbance of sera for various dilutions and the optical density values are given in Table 1. The absorbance value is almost double when positive serum is used and this establishes the fact that whey proteins being allergenic forms antigen-antibody complex. The optimum antigen- antibody reactivity was observed at 1 mg/ml of protein concentration and at a serum of 1:50. The antigenicity may be due to sequential or surface epitopes (Speurgen et al., 1996). Conformational epitopes depend on the tertiary structure of β- lactoglobulin is known (Burova et al., 1998) and the allergenic sites are in peptide presents between 25-107 and 108-145 amino acid regions (Otani et al., 1985). The poor digestibility of whey protein is also considered to be one of the reasons for their allergenicity (Boza et al., 1995).

Time required to obtain hydrolysates with 3 and 5 per cent DH is given in Table 2. Chymotrypsin is known to cleave bonds formed by involving amino acids with hydrophobic side chains of phenylalanine, tyrosine and tryptophan (Fersht, 1997).

Trypsin had specificity of bonds associated with the hydrophobid side chains of the amino acids lysine and arginine. From the table it is evident that chymotrypsin is efficient in hydrolyzing WPC and as the concentration of chymotrypsin is more in the combination efficiency is also improved. Pelissier (1984) stated that because of its high specificity and expected hydrolysate composition, chymotrypsin was chosen for enzymatic hydrolysis of whey proteins.

Table 3 reveals the reaction in allergenicity of WPC on hydrolysis. At 5 per cent DH trypsin was found to reduce allergenicity to the maximum extend of 77.74%.
Table 1: The allergenicity of WPC as determined by measuring absorbance of sera for various dilutions

WPC Concentration (mg/ml)	Sera	Absorbance values (405 nm)	Serum dilutions		
			1:25	1:50	1:100
0.1	Positive	0.152	0.245	0.265	
	Negative	0.342	1.361	0.626	
	Difference in Absorbance	1.181	0.386	0.361	
1.0	Positive	0.165	0.257	0.247	
	Negative	0.803	1.460	1.001	
	Difference in Absorbance	0.638	1.203	0.754	

Table 2: Enzymatic hydrolysis of WPC using enzymes and their combination

Enzyme/ Enzyme Combination	Time required (min)	
	3 % DH	5 % DH
Trypsin:Chymotrypsin	60	170
Trypsin:Chymotrypsin Ratio	10	23
75:25	30	105
50:50	13	45
25:75	10	30

DH: Degree of Hydrolysis

Table 3: Influence of enzymatic hydrolysis on reduction in allergenicity

Enzyme/ Enzyme combination	Absorbance values (405nm)	Reduction in Allergenicity (%)				
	Blank	Control	3 % DH	5 % DH	3 % DH	5 % DH
Trypsin	0.722	0.340	0.469	0.637	33.76	77.74
Chymotrypsin	0.439	0.497	0.412	0.461	25.90	41.10

Trypsin: chymotrypsin combination

	3 % DH	5 % DH	3 % DH	5 % DH
75:25	0.23	11.5		
50:50	0.23	11.5		
25:75	0.23	11.5		

DH: Degree of Hydrolysis
Table 4 Sensory evaluation of WPC hydrolysates prepared by using different enzymes and their combination

Enzyme/ Enzyme Combination	Hedonic Scores	Relative bitterness		
	3 % DH	5 % DH	3 % DH	5 % DH
Trypsin	4.50	3.97	Slightly bitter	Moderate bitter
Chymotrypsin	1.70	1.11	Intensely bitter	Intensely bitter
Trypsin: chymotrypsin	3.46	2.48	Moderate bitter	Strongly bitter

DH- Degree of Hydrolysis

Schymidt and Poll (1991) based on their findings reported that the major allergen β-lactoglobulin is a good trypsin substrate. Asselin *et al.*, (1989) stated that the allergenicity was reduced in hydrolysates compared to untreated proteins. Pahud *et al.*, (1985) concluded that the powerful allergens in whey proteins lost its sensitizing capacity when hydrolyzed with trypsin. Even though chymotrypsin is better with respect to rate of hydrolysis it is less efficient in reducing allergenicity. This may be attributed to the resistance of β-lactoglobulin to chymotryptic digestion as described by Reddy *et al.*, (1988). Similar results were obtained for Schmidt and pool (1991) who reported that α-lactalbumin was hydrolyzed easily and β-lactoglobulin more gradually by chymotrypsin. (At 3 per cent DH, combination was better with reduction in allergenicity of 63.6 per cent than the individual efficiency of enzymes. This is supported by Asselin *et al.*, (1989) who stated that the specificity of enzymes should be complementary to form an effective combination and reported that the combination of chymotrypsin and trypsin significantly reduced allergenicity.

Even though the rate of hydrolysis was more for chymotrypsin it is less efficient in reducing allergenicity. Based on their study Asselin *et al.*, (1989) also reported that degree of hydrolysis is not the factor affecting allergenicity and the susceptibility of peptide bonds involved in the allergenic sites β-lactoglobulin and α-lactalbumin depend on the specific activates of the enzyme. From the amino acid sequence of β- lactoglobulin it can be seen that the active site of the enzyme chymotrypsin in the region 25-107(antigenic site) is much lesser than that of trypsin.

The results of sensory evaluation of hydrolysates for bitterness and hence acceptability is given in Table 4.

Sensory evaluation studies proved that threshold for bitter taste decreased with higher degree of hydrolysis. The potential level of bitterness was different for hydrolysates of different enzymes (Petrichek *et al.*, 1972) and so can be related to the specificity of the enzyme and also depends on the degree of hydrolysis. This is supported by the findings of Ennis and Harper (1986) and other coworkers (Fox *et al.*, 1982; Cowan, 1983; Kinsella 1982) who suggested that amino acid residues having hydrophobic side chains are implicated as determinants of better taste. The hydrolysates of chymotrypsin are intensely bitter whereas in some cases i.e., 5 per cent hydolysate of trypsin exhibited moderate degree of bitterness.

The requirement demanded in the formation of hydrolysates is that they should not have a bitter taste, should be hypoallergenic, should be low in free amino acids (Ney, 1979; Grimble *et al.*, 1986; Otani *et al.*, 1990). It is possible to reduce allergenicity by extensive hydrolysis but it imparts bitterness. However
it is suggested that the moderate bitterness encountered in a partial hydrolysate can be masked if it is used in food formulation processes.

References

Asselin, A., Herbert, J. and Amiot, H., 1989, effects of in vitro proteolysis on the allergenicity of major whey proteins. Journal of Food Science. 54: 1037.

Bahna, S.L. and Heiner, D. L., 1980, “Allergies to milk”. Grune and strates. New York. Pp. 1.

Baldo, B. A., 1984, Milk allergies. Australian. Journal of Dairy Technology, 9: 120.

Boza J.J., Augustin O.M., and Gril, A., 1995, Nutritional and antigenic characterization of an enzymatic whey protein hydrolysate. J. Agric. Food Chem., 43: 872.

Clegg, M., 1977, dietary enzymatic hydrolysates of proteins. Biochemical aspects of new protein foods. FEBS, 11th MEETING, Copenhagen. Pp. 109.

Cowan, W.D., 1983, The application of enzymes in industry. In Industrial Enzymology. The Nature Press, New York. Pp. 3 and 352.

Ennis, B. M. and Harper, W.J., 1986, Properties of spray –dried lactalbumin treated with a protease. Newzea. J. Dairy Sci. Tech, 21: 205.

Fersht, A., 1977, Enzyme structure and mechanisms; Freencn: 32 San Francisco, 18: 321.

Grimble, G.K., Keohane, P.P., Higgins, B.E., Kaminshki, M.V. and Silk, D.B.A., 1986. Effect of peptide chain length on amino acid and nitrogen absorption from two lactalbumin hydrolysates in the normal human jejunum. Clinical Science. 71: 65.

Haddad, Z., Kalra, V. and Verma, 1989, IgE antibodies to peptic and peptic tryptic digests of β-lactoglobulin: significance in food hypersensitivity. Ann. Allergy., 42: 368.

Harris, M.C., Kolski, G.B., Campbell, D.E., Deuber, C., Marcus, M. and Doughlas, S.D., 1989, Ontogeny of the antibody response to cow milk proteins. Annal. Allergy., 11: 439.

Jost, R., Monti, J.C. and Pahud, J. J., 1987, Protein allergenicity and its reduction by technological means. Food Tech., 10:118.

Kinsella, J.E., 1982, In Food Proteins (Fox, P.F. and Condon, J, J., Eds). Applied Science Publishers, London. Pp.51.

Lahl, W.J and Grindstaff, D.A., 1989, Spices and seasonings: Hydrolyzed proteins. Proceedings of the 6th SIFST symposium on food ingredients application, Status and Safety, 27-29 April 1989, Singapore, Singapore Institute of Food Science and Technology. Singapore. pp.51

Lahl, W.J., and Braun, S.D., 1994, Enzymatic production of proteins for food use. Food Tech., 10: 68.

Ney, K.H., Bitterness of peptides: amino acid composition and chain length. ACS symposium series., 115: 149.

Otani, H., Dong, X.Y., and Hosono, A, 1990, Preparation of low immunogenic peptides from milk casein. Milchwissenschaft., 45:217.

Otani, H., Morita, S. and Tokita, F., 1985, Japanese J. Zootech. Sci., 56:341

Pahud, J.J., Monti, J.C. and Jost, P., 1985, Allergenicity of whey proteins. Its modification by tryptic in vitro hydrolysis of the protein. J. Pediatr. Gastroenterol. Nutr., 4: 408

Pelissier, J.P., 1984, Proteolysis of caseins. Sciences des Aliments. 4: 1.

2904
Petritschek, A., Lynen, F., Belitz, H-D., 1972, Lebensm. Wiss Technol., 5: 77.

Reddy, M., Kella, N.K.D., and Kinsella, J. 1988, Structural and conformational basis of the resistance of β-lactoglobulin to peptic and chymotryptic digestion. J Agric. Food Chem., 36; 737.

Schmidt, D.G. and Poll, J.K., 1991, enzymatic hydrolysis of α-lactalbumin and β-lactoglobulin in buffer solutions by proteolytic enzymes. Neth. Milk dairy J., 45:225

Speurgin, P., Meuller, H., Walter, M., Schittz, E., Forster, J., 1996, Allergenic epitopes of bovine α-s1 casein recognized by human IgE and IgG. Allergy., 51: 306

Willems, R., Duchateau, J., Magrez, P., Denis, R. and casimer, G., 1993, Influence of hypoallergenic milk formula on the incidence of early allergic manifestations in infants predisposed to atopic diseases. Annal. Allergy, 71:147.

Zeiger, R.S., 1990, Prevention of food allergy in infancy. Annal. Allergy., 65: 4.

How to cite this article:

Smitha J. Lukose, Narasimha Murthy and Anjum. 2018. Effect of Hydrolysis on Allergenicity and Sensory Quality of Whey Protein Concentrate. Int.J.Curr.Microbiol.App.Sci. 7(05): 2899-2905. doi: https://doi.org/10.20546/ijcmas.2018.705.338