TCF7L2 regulates late events in insulin secretion from pancreatic islet β-cells.

Gabriela da Silva Xavier*, Merewyn K. Loder*, Angela McDonald*, Andrei I. Tarasov, Raffaella Carzaniga§, Katrin Kronenberger§, Sebastian Barg # and Guy A. Rutter†.

Section of Cell Biology, Division of Medicine, Faculty of Medicine, Imperial College, London, SW7 2AZ, United Kingdom.

Current address: Medical Cell Biology, Uppsala University, 751 23, Uppsala, Sweden
§ Electron Microscopy Centre, Imperial College London, South Kensington campus UK

*These authors contributed equally to this work.

†To whom correspondence should be addressed:
Guy A. Rutter PhD
Professor and Head of Department of Cell Biology, Division of Medicine, Sir Alexander Fleming Building, Imperial College, London, Exhibition Road, London SW7 2AZ, UK
E-mail: g.rutter@imperial.ac.uk
Website: Http://www1.imperial.ac.uk/medicine/about/divisions/medicine/cellbiology/

Submitted 29 August 2008 and accepted 14 January 2009.

Additional information for this article can be found in an online appendix at http://diabetes.diabetesjournals.org
ABSTRACT

Objective: Polymorphisms in the human TCF7L2 gene are associated with reduced insulin secretion and an increased risk of type 2 diabetes. However, the mechanisms by which TCF7L2 affects insulin secretion are still unclear. Here we define the effects of TCF7L2 expression level on mature β-cell function and suggest a potential mechanism for its actions.

Research Design and Methods: TCF7L2 expression in rodent islets and β-cell lines was altered using RNAi or adenoviral transduction. β-cell gene profiles were measured by quantitative real-time PCR and the effects on intracellular signalling and exocytosis by live cell imaging, electron microscopy and patch clamp electrophysiology.

Results: Reducing TCF7L2 expression levels by RNAi decreased glucose-, but not KCl-induced, insulin secretion. The glucose-induced increments in both ATP/ADP ratio and cytosolic free Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]) were increased compared to controls. Over-expression of TCF7L2 exerted minor inhibitory effects on glucose-regulated changes in [Ca\(^{2+}\)] and insulin release. Gene expression profiling in TCF7L2-silenced cells revealed increased levels of mRNA encoding syntaxin 1A, but decreased Munc18-1 and ZnT8 mRNA. Whereas the number of morphologically-docked vesicles was unchanged by TCF7L2 suppression, secretory granule movement increased and capacitance changes decreased, indicative of defective vesicle fusion.

Conclusion: TCF7L2 is involved in maintaining expression of β-cell genes regulating secretory granule fusion. Defective insulin exocytosis may thus underlie increased diabetes incidence in carriers of the at risk TCF7L2 alleles.

Abbreviations: EGFP, enhanced green fluorescent protein; [Ca\(^{2+}\)], intracellular free calcium ion concentration; GLP-1, glucagon-like peptide- 1; GK rat, Goto Kagizaki rat; homeostasis model assessment of β-cell function, HOMA-B; KRB, Krebs Ringer Bicarbonate; PC-1, -2, prohormone convertase-1,2; TIRF, total internal reflection fluorescence; SNP, Single nucleotide polymorphism; SNARE, Soluble N-ethylmaleimide sensitive factor-associated protein; MOI, multiplicity of infection; T2D, type two diabetes.
Type 2 diabetes (T2D) is the most common metabolic disease in industrialised societies (1). The disease has a complex aetiology involving interplay between environmental risk factors (obesogenic diet, lack of exercise) and a susceptible genetic background (2). Whilst the hereditary nature of T2D has been acknowledged for many years (3) only recently have candidate gene studies (4-6) and whole genome association approaches (7-10) identified polymorphisms in 12 specific gene loci which increase disease risk. These, and an earlier candidate gene study (11), identified single nucleotide polymorphisms (SNPs), including SNP rs7903146, in the third intron of the gene encoding transcription factor 7-like 2 (TCF7L2; also known as Transcription Factor 4, TCF-4) as strongly associated with T2D in different ethnic backgrounds (10-14). rs7903146 has been estimated to contribute to 10-25 % of all cases of diabetes in lean individuals (15).

TCF7L2 is a member of the T-cell specific high mobility group (HMG)-box containing family of transcription factors which, upon binding β-catenin transduces signals generated by Wnt receptors at the cell surface to modify expression of multiple genes, many of which are associated with the cell cycle (16). Mutations in TCF7L2 are also implicated in certain types of cancer (17).

Recent clinical studies have demonstrated that the at-risk SNP is associated with maintained insulin sensitivity (HOMA-B) but defects in β-cell function and insulin release (18). As the SNP is found in an intronic region, a potential mechanism through which it may confer an increased risk of diabetes is by altering TCF7L2 expression levels. A recent study by Lyssenko and colleagues (19) suggested that pancreatic islets from type 2 diabetic patients bearing the at-risk TT allele have increased TCF7L2 RNA levels, indicating that excessive TCF7L2 expression may be associated with the reported insulin secretory defects. However, expression studies carried out by Elbein and colleagues on adipose tissue and muscle showed that TCF7L2 expression was not altered by genotype and did not correlate with insulin sensitivity or body mass index (20). Furthermore, TCF7L2 mRNA levels in subcutaneous white adipose tissue from TT-bearing individuals were decreased compared to those in control (CC-bearing) individuals (21;22). At present data on TCF7L2 expression levels in individuals carrying the at-risk allele are inconclusive and, given the possibility of alternate splicing, it remains to be established how the level of active TCF7L2 is altered.

Homozygous tcf7l2 knockout mice die shortly after birth with profound changes in gut development involving failed conversion of the endoderm to epithelial progenitors (23). Although detailed morphometric analyses have yet to be reported, pancreatic development is grossly normal in homozygous mutant mice (23). A recent study in isolated human islets demonstrated that RNAi mediated depletion of TCF7L2 mRNA led to ablation of glucose-stimulated insulin secretion and increased β-cell apoptosis (24). To date, the mechanisms through which functional TCF7L2 modulates glucose sensing and insulin release in pancreatic β-cells are unknown.

Here, we provide a detailed investigation of the effects of altering TCF7L2 content on β-cell function and on the expression of genes pivotal to β-cell glucose sensing. We show that silencing of TCF7L2 in primary mouse islets as well as in clonal MIN6 and INS-1(832/13) cells, decreases both basal- and glucose-stimulated insulin secretion. TCF7L2 silencing also abolished the stimulatory effects of GLP-1 on secretion, whilst having little impact on glucose-induced changes in intracellular ATP or free Ca²⁺ concentrations.
Finally we show that TCF7L2 controls the expression of genes involved in insulin granule fusion at the plasma membrane. These changes may underlie defective insulin secretion in β-cells lacking TCF7L2.

RESEARCH DESIGN AND METHODS

All reagents were purchased from Sigma (Poole, U.K.) or Gibco-BRL (Paisley, U.K.), unless otherwise stated. Mouse monoclonal antibody for TCF7L2 was purchased from Abnova (Taiwan).

Culture of MIN6 and INS-1(832/13) β-cell lines. MIN6 β-cells were used between passages #19 and #30 and cultured as previously described (25). INS-1 (832/13) cells were cultured as in (26). Cells were transfected with plasmids and siRNA using Lipofectamine 2000™ (Invitrogen, Paisley) or TransIT™-TKO (Mirus Bio Corporation, Madison), respectively, according to the manufacturer’s instructions.

Isolation and culture of mouse islets. Islets were isolated from female CD1 mice and cultured as described (27).

TCF7L2 silencing. siRNA against mouse and rat TCF7L2 (sense- AAAGAAGGCCCTTAATGCATTCCTGTC TC, antisense- AATGCAATTAAGGGGCTTCT TTCCTGTC TC) and control siRNA (sense- AACCGCAATTTAGACCTTTCGTC T C, antisense- AATGCTTCTAAATTTGCAGGGTTTGTGC TC) were designed according to criteria set-out by Tuschl et al (http://www.rockefeller.edu/labheads/tuschl/siRNA.html and references therein) and synthesised using Ambion’s Silencer siRNA kit (Ambion, TX). Fluorescein-labelled siRNA duplexes of the above sequences were from Sigma Genosys (Europe). EGFP-tagged shRNA, based on the above siRNA, was synthesised by annealing oligonucleotides containing the sequences for scrambled or TCF7L2 shRNA into pcDNA6.2/GW/mir-EGFP (Invitrogen, Paisley).

Over-expression of TCF7L2 in rodent β-cells. Human TCF7L2 cDNA (OriGene Technologies) was cloned into pEGFP-N1. TCF7L2-EGFP adenovirus was generated as previously described (http://www.coloncancer.org/adeasy.htm). Cells were infected with control or TCF7L2-EGFP adenovirus at 100 MOI for 48 h prior to experiments.

Real-time PCR analysis. Primers for real-time PCR analysis were designed using Primer Express 3.0 (Applied Biosystems, CA) using mRNA sequences for mouse and rat on the Ensembl database (http://www.ensembl.org/). Sequence specificity for all primers was verified using BLAST (http://www.ncbi.nlm.nih.gov/blast/). Real-time-PCR was performed on an ABI-Prism 7500 device (Applied Biosystems, CA) using powerSYBR reagent (Applied Biosystems, CA).

Insulin secretion. Mouse islets and clonal cell lines were cultured in the presence of siRNA (1 nM or 10 nM respectively) for 48 h prior to insulin secretion assay in Krebs-Ringer Bicarbonate Buffer (KRB;125 mmol/l NaCl, 3.5mmol/l KCl, 1.5mmol/l CaCl2, 0.5mmol/l NaH2PO4, 0.5mmol/l MgSO4, 3mmol/l glucose, 10mmol/l HEPES, and 2mmol/l NaHCO3, pH 7.4, and equilibrated with O2/CO2 (95:5) and supplemented with 0.1% (wt/vol) BSA) (27;28). Secreted insulin was measured by radioimmunoassay (LINCO/Millipore, Missouri).

Intracellular [Ca2+] imaging. INS-1(832/13) cells or mouse islets were transduced 48 h before assay. INS-1(832/13) cells (incubated overnight in media containing 3mmol/l glucose) or dispersed islets were incubated for 30 min in KRB containing 3mmol/l glucose and 200nM FURA-RED AM (Invitrogen, UK). Cells were stimulated using the conditions indicated and excited at 480 / 440 nm using an Olympus IX-81 microscope.
coupled to an F-view camera and captured using Cell^R software (Olympus, UK) with a 40x oil objective. Data were expressed as the ratio of the fluorescence emission at 440 / 480 nm. The area under the curve (AUC) was calculated using OriginPro7.5 software (OriginLab, Northampton MA) and tests by ANOVA using GraphPad Prism 4.0 (GraphPad Software Inc.).

Dual Colour TIRF Microscopy. Transfected MIN6 cells were imaged at 30°C in KRB with 3mmol/l glucose using a custom-built lens-type TIRF microscope based on an inverted stand (Axiovert 200M, Carl Zeiss) and equipped with a 100x/1.45 Apo lens (Carl Zeiss). Cells were excited using DPSS lasers (473 nm, 80mW (EGFP) and 555nm, 25mW (mCherry); Crystalasers, USA). Emitted light was separated using a double dichroic (59022bs), magnified with an Optovar 1.6 (Carl Zeiss) and split into two channels using an image splitter (DualView, Optical Insights, Santa Fe, NM) with a dichroic cut-off at 585nm (T585LP) and bandpass filters 595-670nm (ET630-75) and 485-550 nm (ET517/65M). All filters were from Chroma, USA. Separate images of the two channels were taken on a CCD camera (Cascade 512B, Roper Scientific, Trenton, NJ or iXon EM + DU-897, Andor Technology, Belfast, UK).

Cells were selected based on green fluorescence and morphology. Granules were detected automatically with an in-house algorithm written as a MetaMorph journal. Briefly, the image was subjected to morphological tophat, H-Dome and dilate operations before internal thresholding and counting of objects. A threshold was set by the operator once for the entire data set.

Granule Dynamics: All granule tracks were selected for each time period using Image J software particle tracker. The movement of each granule between frames was then analyzed according to the equation \(\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \) and converted to microns/second generating a range of granule movement velocities. The results were expressed as the number of movements occurring at each velocity. Two distinct subgroups of granules were observed (fixed and moving) and analysis of the percentage of granules in each subgroup was determined by curve fitting to two sites (Origin Software).

Confocal microscopy. Paraformaldehyde (4%w/v) fixed INS-1(832/13) cells previously transfected with either pEGFP-N1 or TCF7L2-pEGFP-N1 were imaged using a Zeiss Axiovert 200M microscope fitted with a PlanApo ×63 oil-immersion objective and a 1.5x optivar. Sample illumination at 345 and 492nm, and data acquisition, were controlled with an Improvision/Nokigawa spinning disc system running Volocity™ (Improvision, Coventry) software.

Total adenine nucleotide measurements. ATP (29) and ADP (30) were quantified as previously described.

Electron Microscopy. Isolated islets were treated with siRNA and glucose as for secretion assays described above; then fixed in formaldehyde–glutaraldehyde for 30 min. at 37°C and post-fixed in 1.0% osmium tetroxide. Samples were processed for embedding in epon. Serial ultrathin 80nm sections were post-stained with saturated methanolic uranyl acetate and Reynold’s lead citrate and observed with a transmission electron microscope (Tecnai G2 Spirit–FEI Company) at an operating voltage of 120 kV. Images were collected using TEM v3.1 software (FEI Company) at a magnification of x2700 with 2k x 2k CCD camera (Eagle, FEI Company). Islets were sectioned at 20µm and 40µm from the surface and 4 cells imaged per section. All imaging was carried out blind to treatment condition.

Analysis of EM images: Morphologically docked granules were defined using criteria previously described (31). To control for variations in cell size due to the plane of section the length of plasma membrane was measured and the data expressed as granules /
µm. Total granule content was defined as the granule number / µm² of cytosol. Statistical analysis was by ANOVA with Bonferoni post-hoc analysis.

Electrophysiology. Electrical capacitance (Cm) and Ca²⁺ current (I_{Ca}) through the plasma membrane of β-cells were recorded using EPC9 patch-clamp amplifier controlled by Pulse software (HEKA Elektronik, Lambrecht/Pfalz, Germany), in standard whole-cell configuration. Single β-cells from dispersed mouse islets were transfected with Fluorescein-labelled siRNA as described for Ca²⁺ imaging.

Cells were voltage-clamped at -70 mV, and exocytosis was elicited by trains of 200, 500 or 2500 ms depolarisations to 10 mV essentially as previously described (32). Noise reduction (1-D quadratic Loess) and data analysis were performed using IgorPro software (Wavemetrics Inc, Lake Oswego, U.S.A.).

Statistics. Data are given as means ± S.E. of three to six individual experiments. Unless otherwise described, comparisons between means were performed using Student's t-test with Microsoft Excel™.

RESULTS

Impact of TCF7L2 silencing on regulated insulin secretion. The presence of TCF7L2 mRNA and protein was confirmed in mouse islets, MIN6 (mouse) and INS-1(832/13) (rat) clonal β-cells (Fig.1 a,b,c respectively) consistent with the reported expression of this protein in human islets (19;24). Endogenous TCF7L2 mRNA levels did not change in response to changing glucose concentrations in MIN6 and INS-1(832/13) cells (Fig. 1 b,c). Of three siRNAs designed against TCF7L2, one provided substantial knock-down (76±0.2 %, n=3, versus scrambled siRNA-treated cells) in TCF7L2 immunoreactivity in mouse islets (Fig. 1a) after 48 h of siRNA treatment and near total ablation of TCF7L2 immunoreactivity in MIN6 (Fig.1b) and INS-1(832/13) (Fig. 1c) β-cells.

Silencing of TCF7L2 in mouse islets had no significant effect on total islet insulin content (74.9±4.4 vs 69.7±3.2 ng/islet, n = 3; 54 islets per condition) but resulted in a decrease in both the basal (3mmol/l) and glucose- (11mmol/l) stimulated insulin release (Fig. 1a). Similar changes were seen in two β-cell lines (Fig. 1b, c), in concurrence with studies in human islets (24). By contrast, insulin release stimulated by cell depolarisation with high concentrations of K⁺ (30-50 mmol/l) was unaffected in islets (Fig. 1a) and INS-1(832-13) cells (Fig. 1c), implying a defect in metabolic signalling in response to elevated glucose (33) or a depletion of pool(s) of secretory granules with relatively high Ca²⁺ sensitivity (34). Whereas basal total cellular ATP and ADP levels were lower in TCF7L2- silenced mouse islets, glucose-induced changes in this ratio were augmented (0.46±0.10-, and 0.73±0.24-fold respectively compared to control; Fig. 2a). Similarly, glucose-induced changes in cytosolic free calcium ion concentration ([Ca²⁺]; Fig. 2b,c) were augmented in mouse islets (Fig. 2b,c). Glucose-induced changes in [Ca²⁺] in INS-1(832/13) cells were not affected by TCF7L2 depletion (Fig. 2d) although the number of cells responding to elevated glucose was higher (46±10.3 % vs 71±2.9 %, p<0.05). In mouse islets, the stimulation of insulin secretion by GLP-1 at permissive (8 mmol/l) glucose concentrations was abolished when TCF7L2 was silenced (Fig. 1a).

Impact of TCF7L2 over-expression on insulin secretion. Given the reportedly higher levels of TCF7L2 mRNA in islets from carriers of the at-risk (T) allele (19), we examined the effect of over-expressing EGFP-tagged human TCF7L2 (TCF7L2-EGFP) in mouse islets or INS-1 (832/13) cells. As expected, TCF7L2-EGFP was largely confined to the nucleoplasm (Fig. 3b). Increases in TCF7L2
protein level (~4-fold; Fig. 3a) in mouse islets did not affect glucose- (15 vs 3 mmol/l) stimulated insulin secretion (Fig. 3a). Likewise, over-expression of TCF7L2-EGFP did not affect glucose-induced [Ca2+] increases in INS-1(832/13) cells (Fig. 3a,c). By contrast, the proportion of INS-1(832/13) cells responding to high glucose after transfection with TCF7L2-EGFP was lower (31.8±3.7 vs 47.5±4.0%, p<0.05) than in cells treated with control (EGFP-expressing) plasmid (Fig. 3d). The increase in [Ca2+] in response to GLP-1 of cells over-expressing TCF7L2-EGFP was not different to that of EGFP-transfected cells (Fig. 3e).

Impact of TCF7L2 expression levels on islet and β-cell gene expression. To explore the mechanisms through which over- or under-expression of TCF7L2 may exert effects on insulin secretion, we examined the expression of genes which are involved in various aspects of β-cell function. Systematic real-time PCR analysis of scrambled or TCF7L2 siRNA-treated mouse islets was used to quantitate the expression of 32 genes implicated in the control of β-cell function or survival (Supplementary Table 1, Fig. 4). Of these, 25 displayed consistent changes in islets depleted of, or over-expressing, TCF7L2 (Fig. 4; n=6 separate mouse islet preparations). Depletion of TCF7L2 caused a small (~20%) but significant decrease in preproinsulin mRNA levels, whereas over-expression of this factor approximately doubled preproinsulin mRNA levels. Conversely, preproglucagon mRNA was increased upon TCF7L2 deletion, although over-expression of TCF7L2-EGFP exerted no clear effect on preproglucagon mRNA level. Neither TCF7L2 silencing nor over-expression exerted detectable effects on the mRNA level of the glucose transporter (Glut2) or on glucokinase (Gck), two key proteins involved in the control of glucose metabolism.

Islets treated with TCF7L2 siRNA also displayed decreased expression of preproinsulin, but increased levels of mRNA encoding the TCF regulator β-catenin, and the transcription factor FoxO-1, previously shown to influence the expression of pancreatic homeobox-1 (34). Similarly, mRNAs encoding the SNARE protein syntaxin 1A, and the cell cyclin-dependent kinase, cdk5, were both increased by TCF7L2 silencing. However, in none of these cases did TCF7L2 over-expression cause a reciprocal decrease in mRNA levels. Expression of the sec family member Munc 18-1 (35); the granule zinc transporter ZnT8/Slec30a8 (36) (also recently associated with increased risk of type 2 diabetes (13)); the peptidylprolyl cis/trans isomerise pin1 (37); and the proliferation marker ki67 (24), were all decreased when TCF7L2 was silenced. In the cases of Munc18-1 and ZnT8, TCF7L2 over-expression led to reciprocal increases in the coding mRNAs (Fig. 4) implicating the latter genes as direct transcriptional targets of TCF7L2. Changes in Munc18-1 and syntaxin 1A were also verified at the protein level by western (immuno-) blotting (Fig. 5a,b). There was no change in the expression of the granule trafficking proteins myosin5a and Kif5b, or the signalling molecule PI3kinase-c2-α.

It was recently reported that patients carrying the SNP rs7903146 respond poorly to sulphonylurea treatment (38). We therefore determined the effect of TCF7L2 silencing on the expression of the ATP-sensitive potassium (K-ATP) channel. Depleting TCF7L2 had no effect on the expression of either the Kir 6.2 or SUR1 components in mouse islets (Fig. 4).

Effect of TCF7L2 on the subcellular distribution of secretory granules. To explore the potential mechanisms through which changes in the expression of genes involved in granule dynamics and/or membrane fusion may affect secretion, we employed TIRF microscopy of neuropeptide-labelled dense
core granules (39). This approach allowed the number of granules immediately beneath (100-200 nm) the plasma membrane to be determined in scrambled shRNA or anti-TCF7L2 shRNA-transfected MIN6 cells. No differences in granule number beneath the cell surface were observed \((0.38 \pm 0.03, 0.48 \pm 0.04 \text{ granules/\mu m}^2; p>0.05; \text{data from 43 and 55 cells, respectively}). However there was an increase \((41.8\% \ p<0.01)\) in the proportion of granules moving after 6-8 min. of glucose stimulation implying a defect in granule recruitment or tethering (Fig. 5d-f). To further explore this possibility, we used electron microscopy analysis of siRNA-transfected islets to quantify tethered granules. There was no significant difference in granule number/\mu m membrane between control and TCF7L2 siRNA-treated islets in either the morphologically-docked pool \((0.26 \pm 0.02 \ vs 0.19 \pm 0.02 \ n=15-17 \text{ cells; Fig. 6})\) nor in the pool within 200 nm of the plasma membrane \((0.87 \pm 0.06 \ vs 0.78 \pm 0.05 \ n=15-17 \text{ cells}).\)

Effect of TCF7L2 on granule fusion and Ca\(^{2+}\) currents. The above results implicated defects in the machinery of vesicle fusion in cells depleted of TCF7L2. We hypothesised that the differences may be observed in response to “mild” stimulation with glucose, resulting in oscillatory \([\text{Ca}^{2+}]_i\) increases, but may be lost when \([\text{Ca}^{2+}]_i\) is raised for a lengthy period during K\(^-\)-depolarisation (see Fig 1a). To test this hypothesis, the effect of TCF7L2 silencing on granule fusion was measured using whole-cell patch-clamp. Stimulation protocols were used to provide oscillatory increases in \([\text{Ca}^{2+}]_i\), as observed during stimulation with glucose. Exocytosis was triggered by trains of membrane depolarisations of different duration: \(20 \times 0.25\)-sec, \(10 \times 0.50\)-sec or \(10 \times 2.5\)-sec. The depolarisations elicited similar exocytotic responses from the TCF7L2-depleted and control cells, with fusion dynamics strongly depending on the stimulation duration (Fig. 7) and \text{Ca}\(^{2+}\) current being essentially identical in the two groups. The initial cell capacitance of the TCF7L2-depleted cells was slightly higher than that of control \((11.4 \pm 0.7\text{pF vs 8.94} \pm 0.5\text{pF, } P<0.05)\) and the exocytotic response to the membrane depolarisation was significantly reduced in the TCF7L2-depleted cells, as compared to the control (Fig. 7a) for all pulse durations, with the extent of the inhibition decreasing from \(~80\% \ (0.2\text{s})\) to \(~40\% \ (2.5\text{s})\).

DISCUSSION

The principal aims of this study were to determine the impact of altering the level of expression of TCF7L2 on glucose sensing and insulin secretion in pancreatic β-cells and to explore the underlying molecular mechanisms. In addition to describing changes in the expression of genes involved in β-cell survival and proliferation (pin1, Ki67 etc.) consistent with earlier findings (24;38) we demonstrate that several genes involved in β-cell function, i.e. hormone production and secretion, are also under the control of TCF7L2.

TCF7L2 regulation of genes involved in insulin maturation. It has previously been suggested that TCF7L2 may regulate the promoters for prohormone convertase (PC)-1 and -2 (18) and hence exert an effect on proinsulin processing. The expression of neither gene was altered by manipulating TCF7L2 levels in mouse islets (Fig. 4). Mouse islets over-expressing TCF7L2 displayed higher \text{slc30a8} (another gene associated with type 2 diabetes which plays a role in insulin processing) (13;40) gene expression (Fig.4) while mouse islets in which TCF7L2 had been silenced displayed decreased \text{slc30a8} mRNA levels. However, whilst preproinsulin gene expression was reduced (Fig.4) no differences in granule number (Fig.6), insulin content or insulin processing (Supplementary Fig.1) were observed following treatment with TCF7L2 siRNA suggesting that the acute effects of
TCF7L2 depletion on insulin secretion are not due to changes in insulin production. **TCF7L2 regulation of β-cell survival.** TCF7L2 knockdown reduced expression of pin1 and ki67, a marker of β-cell proliferation, (24). However, electron microscopy analysis of β-cells revealed no apparent change in cellular ultrastructure, indicative of ER stress, mitochondrial damage or nuclear condensation. Thus, the observed inhibition of glucose-mediated insulin secretion seems unlikely to be due to decreased cell viability.

Control by TCF7L2 of insulin synthesis and release. The present study shows that reducing TCF7L2 expression in the short term (48 h) affects the normal function of the β-cell, leading to a decrease in glucose-stimulated insulin secretion (Fig. 1a,b,c). These changes were not associated with major perturbations in the expression of genes encoding the glucose transporter GLUT2 or glucokinase (Fig. 4). Correspondingly, glucose-stimulated increases in cytosolic free [Ca^{2+}] and cellular adenine nucleotide concentration (Fig. 2) were slightly enhanced upon TCF7L2 depletion and no changes in the content of β-cell calcium channel subunits, sodium/calcium exchangers, PMCA or the calcium sensing synaptotagmins were observed (Supplemental Table 1). Further, voltage-gated Ca^{2+} currents were un-altered (Fig. 7 c) showing that the channel capacity was unaffected.

The above observations led us to postulate that the secretory deficiency may be due to defects at a late step in the exocytotic process. Consistent with this view, real-time PCR and immuno-blot analysis of mouse islets treated with TCF7L2 siRNA revealed increases in syntaxin 1A, but decreases in Munc18-1, mRNA and protein levels (Fig. 4, 5a, b). Four-fold over-expression of TCF7L2 increased Munc18-1 and rab3a mRNA levels but did not alter syntaxin 1A expression or insulin secretion in islets suggesting syntaxin as the important effector of TCF7L2 effects. It has been suggested that TCF7L2 can act as a transcriptional repressor (41). However, our over-expression data does not suggest such a function for this clone.

Increased levels of syntaxin 1A can perturb insulin secretion. Transgenic mice over-expressing syntaxin 1A exhibit insulin secretory defects and reduced Ca^{2+} currents (42). In the present study we did not observe evidence for any corresponding changes in free [Ca^{2+}], in mouse islets treated with siRNA for TCF7L2 (Fig. 2a) suggesting that the influence of augmented syntaxin 1A expression on insulin release events is likely to be exerted via an alteration on the fusion potential of the granules in response to a glucose challenge.

Munc18-1 is an important modulator of the folded conformation of syntaxin 1A and decreased Munc18-1 expression has been seen in islets from type 2 diabetic patients (43) and GK rats (44). Furthermore, in PC12 cells, increased syntaxin 1A and decreased Munc18-1 levels had a negative effect on membrane trafficking and catecholamine secretion (45). Importantly, TCF7L2 consensus binding sites (WWCAAWG) were identified in the 5' untranslated region of both the human and mouse syntaxin 1A and munc18-1 (using TFExplorer (http://tfexplorer.org)), suggesting that they may be direct targets for regulation by TCF7L2. (Supplementary Fig. 2). The increase in syntaxin 1A and decrease in Munc18-1 levels described here may account, at least in part, for the defective glucose-stimulated insulin secretion observed in TCF7L2-depleted cells. Interestingly, despite a strong reduction in insulin secretion we did not observe any clear alteration in the number of near-plasma membrane granules in TCF7L2 siRNA-treated islets by TIRF (Fig. 5c) or electron microscopy (Fig. 6a). Furthermore, there were no observable alterations in the expression of
trafficking proteins Myosin5a or Kif5b (Fig. 4), or in the actin network structure (Supplemental Fig. 4), suggesting that granule targeting to the cell surface is unaffected. However, under conditions where a repeated mild stimulation was applied (Fig. 7b) to mimic the effects of glucose on \([\text{Ca}^{2+}]_i\), β-cells silenced for TCF7L2 showed impaired capacitance increases. Importantly, the inhibitory effects of TCF7L2 deletion were substantially more marked at shorter pulse durations (0.2s), most closely mimicking the spontaneous action potentials normally triggering insulin exocytosis in response to glucose, than at longer pulse durations (0.5 or 2.5s), approaching the effects of sustained depolarisation with KCl (Fig. 7a). Coupled with the increase in granule movements seen in the later stages of glucose stimulation by TIRF microscopy (Fig. 5e,f) this observation suggests that the selective inhibition of glucose-, but not KCl-stimulated insulin secretion may reflect the combined effect of failure to recruit competent granules, and defective vesicle fusion during repetitive \([\text{Ca}^{2+}]_i\) increases.

The present studies demonstrate that near complete ablation of TCF7L2 is likely to have marked effects on insulin release from pancreatic β-cells. It should be emphasised, however, that the extent of these changes is likely to considerably exceed those observed in carriers of the at risk T-allele of TCF7L2. Future studies will be required to assess how more subtle variations in TCF7L2 level impact on beta cell function and survival.

Conclusion. Lack of functional TCF7L2 leads to defective glucose-stimulated insulin secretion. This is probably due, in part, to changes in the expression of key regulatory genes and processes involved in granule recruitment and exocytosis.

ACKNOWLEDGEMENTS

Funded by grants to GAR from the Wellcome Trust (programme grants nos. 067081/Z/02/Z; 081958/Z/07/Z), MRC (G0401641), National Institutes of Health (ROI DKO71962-01), European Union FP6 (Savebeta), and to GSX from the Juvenile Diabetes Research Foundation (JDF 3-2005-112) and European Foundation for the Study of Diabetes (EFSD Albert Renold Travel Fellowship). We thank Prof. Andrew Halestrap and Mr. Nigel Edgell (University of Bristol) for their advice on total ADP measurements, and Ms. Nasret Harun, Ms. Saharnaz Vakhshouri and Mr. Gao Sun for excellent technical assistance, and Dr C Newgard (Duke University) for providing INS-1(832/13) cells. We thank Dr. Lorna Harris and Jonathan Locke for useful discussions.

REFERENCES

1. Zimmet, P, Alberti, KG, Shaw, J: Global and societal implications of the diabetes epidemic. *Nature* 414:782-787, 2001
2. Rutter, GA, Parton, LE: The Beta-cell in type 2 diabetes and in obesity. *Front Horm Res* 36:118-134, 2008
3. Busch, CP, Hegele, RA: Genetic determinants of type 2 diabetes mellitus. *Clin Genet* 60:243-254, 2001
4. Baier, LJ, Permana, PA, Yang, X, Pratley, RE, Hanson, RL, Shen, GQ, Mott, D, Knowler, WC, Cox, NJ, Horikawa, Y, Oda, N, Bell, GI, Bogardus, C: A calpain-10 gene polymorphism is associated with reduced muscle mRNA levels and insulin resistance. *J Clin Invest* 106:R69-R73, 2000
5. Hattersley, AT, Turner, RC, Permutt, MA, Patel, P, Tanizawa, Y, Chiu, KC, O’Rahilly, S, Watkins, PJ, Wainscoat, JS: Linkage of type 2 diabetes to the glucokinase gene. *Lancet* 339:1307-1310, 1992

6. Stoffel, M, Patel, P, Lo, YM, Hattersley, AT, Lucassen, AM, Page, R, Bell, JJ, Bell, GI, Turner, RC, Wainscoat, JS: Missense glucokinase mutation in maturity-onset diabetes of the young and mutation screening in late-onset diabetes. *Nat Genet* 2:153-156, 1992

7. Frayling, TM: Genome-wide association studies provide new insights into type 2 diabetes aetiology. *Nat Rev Genet* 8:657-662, 2007

8. Saxena, R, Voight, BF, Lyssenko, V, Burtt, NP, de Bakker, PI, Chen, H, Roix, JJ, Kathiresan, S, Hirschhorn, JN, Daly, MJ, Hughes, TE, Groop, L, Altshuler, D, Almgren, P, Florez, JC, Meyer, J, Ardlie, K, Bengtsson, BK, Isomaa, B, Lettre, G, Lindblad, U, Lyon, HN, Melander, O, Newton-Cheh, C, Nilsson, P, Orho-Melander, M, Rastam, L, Speliotes, EK, Taskinen, MR, Tuomi, T, Guiducci, C, Berglund, A, Carlson, J, Gianniny, L, Hackett, R, Hall, L, Holmkvist, J, Laurila, E, Sjogren, M, Sterner, M, Surti, A, Svensson, M, Svensson, M, Tewhey, R, Blumenstiegel, B, Parkin, M, Defelice, M, Barry, R, Brodeur, W, Camarata, J, Chia, N, Fava, M, Gibbons, J, Handsaker, B, Healy, C, Nguyen, K, Gates, C, Sougnez, C, Gage, D, Nizzari, M, Gabriel, SB, Chin, GW, Ma, Q, Parikh, H, Richardson, D, Ricke, D, Purcell, S: Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. *Science* 316:1331-1336, 2007

9. Sladek, R, Rocheleau, G, Rung, J, Dina, C, Shen, L, Serre, D, Boutin, P, Vincent, D, Belisle, A, Hadjadj, S, Balkau, B, Heude, B, Charpentier, G, Hudson, TJ, Montpetit, A, Psezhetsky, AV, Prentki, M, Posner, BI, Balding, DJ, Meyre, D, Polychronakos, C, Froguel, P: A genome-wide association study identifies novel risk loci for type 2 diabetes. *Nature* 445:881-885, 2007

10. Zeggini, E, Weedon, MN, Lindgren, CM, Frayling, TM, Elliott, KS, Manga, H, Timpson, NJ, Perry, JR, Rayner, NW, Freathy, RM, Barrett, JC, Shields, B, Morris, AP, Ellard, S, Groves, CJ, Harries, LW, Marchini, JL, Owen, KR, Knight, B, Cardon, LR, Walker, M, Hitman, GA, Morris, AD, Doney, AS, McCarthy, MI, Hattersley, AT: Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. *Science* 316:1336-1341, 2007

11. Grant, SF, Thorleifsson, G, Reynisdottir, I, Benediktsson, R, Manolescu, A, Sainz, J, Helgason, A, Stefansson, H, Emilsson, V, Helgadottir, A, Styrkarsdottir, U, Magnusson, KP, Walters, GB, Palsdottir, E, Jonasdottir, T, Gudmundsdottir, T, Gylfason, A, Saemundsdottir, J, Wilensky, RL, Reilly, MP, Rader, DJ, Baggett, Y, Christiansen, C, Gudnason, V, Sigurdsson, G, Thorsteinsdottir, U, Gulcher, JR, Kong, A, Stefansson, K: Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. *Nat Genet* 38:320-323, 2006

12. Groves, CJ, Zeggini, E, Minton, J, Frayling, TM, Weedon, MN, Rayner, NW, Hitman, GA, Walker, M, Wiltshire, S, Hattersley, AT, McCarthy, MI: Association analysis of 6,736 UK subjects provides replication and confirms TCF7L2 as a type 2 diabetes susceptibility gene with a substantial effect on individual risk. *Diabetes* 55:2640-2644, 2006

13. Sladek, R, Rocheleau, G, Rung, J, Dina, C, Shen, L, Serre, D, Boutin, P, Vincent, D, Belisle, A, Hadjadj, S, Balkau, B, Heude, B, Charpentier, G, Hudson, TJ, Montpetit, A, Psezhetsky, AV, Prentki, M, Posner, BI, Balding, DJ, Meyre, D, Polychronakos, C, Froguel, P: A genome-wide association study identifies novel risk loci for type 2 diabetes. *Nature* 445:881-885, 2007

14. Zhang, C, Qi, L, Hunter, DJ, Meigs, JB, Manson, JE, van Dam, RM, Hu, FB: Variant of transcription factor 7-like 2 (TCF7L2) gene and the risk of type 2 diabetes in large cohorts of U.S. women and men. *Diabetes* 55:2645-2648, 2006

15. Zeggini, E, McCarthy, MI: TCF7L2: the biggest story in diabetes genetics since HLA? *Diabetologia* 50:1-4, 2007

16. Moon, RT, Kohn, AD, De Ferrari, GV, Kaykas, A: WNT and beta-catenin signalling: diseases and therapies. *Nat Rev Genet* 5:691-701, 2004

17. Slattery, ML, Folsom, AR, Wolff, R, Herrick, J, Caan, BJ, Potter, JD: Transcription Factor 7-like 2 Polymorphism and Colon Cancer. *Cancer Epidemiol Biomarkers Prev* 17:978-982, 2008
18. Loos, RJ, Franks, PW, Francis, RW, Barroso, I, Gribble, FM, Savage, DB, Ong, KK, O'Rahilly, S, Wareham, NJ: TCF7L2 polymorphisms modulate proinsulin levels and beta-cell function in a British Europid population. *Diabetes* 56:1943-1947, 2007
19. Lyssenko, V, Lupi, R, Marchetti, P, Del, GS, Orho-Melander, M, Almgren, P, Sjogren, M, Ling, C, Eriksson, KF, Lethagen, AL, Mancarella, R, Berglund, G, Tuomi, T, Nilsson, P, Del, PS, Groop, L: Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. *J Clin Invest* 117:2155-2163, 2007
20. Elbein, SC, Chu, WS, Das, SK, Yao-Borengasser, A, Hasstedt, SJ, Wang, H, Rasouli, N, Kern, PA: Transcription factor 7-like 2 polymorphisms and type 2 diabetes, glucose homeostasis traits and gene expression in US participants of European and African descent. *Diabetologia* 50:1621-1630, 2007
21. Cauchi, S, Meyre, D, Dina, C, Choquet, H, Samson, C, Gallina, S, Balkau, B, Charpentier, G, Pattou, F, Stetsyuk, V, Scharfmann, R, Staels, B, Fruhbeck, G, Froguel, P: Transcription factor TCF7L2 genetic study in the French population: expression in human beta-cells and adipose tissue and strong association with type 2 diabetes. *Diabetes* 55:2903-2908, 2006
22. Wang, J, Kuusisto, J, Vanttinen, M, Kuulasmaa, T, Lindstrom, J, Tuomilehto, J, Uusitupa, M, Laakso, M: Variants of transcription factor 7-like 2 (TCF7L2) gene predict conversion to type 2 diabetes in the Finnish Diabetes Prevention Study and are associated with impaired glucose regulation and impaired insulin secretion. *Diabetologia* 50:1192-1200, 2007
23. Korinek, V, Barker, N, Moerer, P, van, DE, Huls, G, Peters, PJ, Clevers, H: Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. *Nat Genet* 19:379-383, 1998
24. Shu, L, Sauter, NS, Schulthess, FT, Matveyenko, AV, Oberholzer, J, Maedler, K: TCF7L2 regulates -cell survival and function in human pancreatic islets. *Diabetes* 2007
25. Miyazaki, J, Araki, K, Yamato, E, Ikegami, H, Asano, T, Shibasaki, Y, Oka, Y, Yamamura, K: Establishment of a pancreatic beta-cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. *Endocrinology* 127:126-132, 1990
26. Hohmeier, HE, Mulder, H, Chen, G, Henkel-Rieger, R, Prentki, M, Newgard, CB: Isolation of INS-1-derived cell lines with robust ATP-sensitive K+ channel-dependent and -independent glucose-stimulated insulin secretion. *Diabetes* 49:424-430, 2000
27. Ravier, MA, Rutter, GA: Glucose or insulin, but not zinc ions, inhibit glucagon secretion from mouse pancreatic alpha-cells. *Diabetes* 54:1789-1797, 2005
28. Ainscow, EK, Zhao, C, Rutter, GA: Acute overexpression of lactate dehydrogenase-A perturbs beta-cell mitochondrial metabolism and insulin secretion. *Diabetes* 49:1149-1155, 2000
29. Robb-Gaspers, LD, Burnett, P, Rutter, GA, Denton, RM, Rizzuto, R, Thomas, AP: Integrating cytosolic calcium signals into mitochondrial metabolic responses. *EMBO J* 17:4987-5000, 1998
30. Nilsson, T, Schultz, V, Berggren, PO, Corkey, BE, Tornheim, K: Temporal patterns of changes in ATP/ADP ratio, glucose 6-phosphate and cytoplasmic free Ca2+ in glucose-stimulated pancreatic beta-cells. *Biochem J* 314 (Pt 1):91-94, 1996
31. Olofsson, C, G+Åpel, S, Barg, S, Galvanovskis, J, Ma, X, Salehi, A, Rorsman, P, Eliasson, L: Fast insulin secretion reflects exocytosis of docked granules in mouse pancreatic B-cells. *Pflügers Archiv European Journal of Physiology* 444:43-51, 2002
32. Kanno, T, Ma, X, Barg, S, Eliasson, L, Galvanovskis, J, G+apel, S, Larsson, M, Renström, M, Rorsman, P: Large dense-core vesicle exocytosis in pancreatic [beta]-cells monitored by capacitance measurements. *Methods* 33:302-311, 2004
33. Rutter, GA, Tsuboi, T, Ravier, MA: Ca2+ microdomains and the control of insulin secretion. *Cell Calcium* 40:539-551, 2006
34. Wan, QF, Dong, Y, Yang, H, Lou, X, Ding, J, Xu, T: Protein kinase activation increases insulin secretion by sensitizing the secretory machinery to Ca2+. *J Gen Physiol* 124:653-662, 2004
35. Khvotchev, M, Dulubova, I, Sun, J, Dai, H, Rizo, J, Sudhof, TC: Dual modes of Munc18-1/SNARE interactions are coupled by functionally critical binding to syntaxin-1 N terminus. *J Neurosci* 27:12147-12155, 2007
36. Chimienti, F, Devergnas, S, Pattou, F, Schuit, F, Garcia-Cuenca, R, Vandewalle, B, Kerr-Conte, J, Van, LL, Grunwald, D, Favier, A, Seve, M: In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. *J Cell Sci* 119:4199-4206, 2006

37. Chen, SY, Wulf, G, Zhou, XZ, Rubin, MA, Lu, KP, Balk, SP: Activation of beta-catenin signaling in prostate cancer by peptidyl-prolyl isomerase Pin1-mediated abrogation of the androgen receptor-beta-catenin interaction. *Mol Cell Biol* 26:929-939, 2006

38. Pearson, ER, Donnelly, LA, Kimber, C, Whitley, A, Doney, AS, McCarthy, MI, Hattersley, AT, Morris, AD, Palmer, CN: Variation in TCF7L2 influences therapeutic response to sulfonylureas: a GoDARTs study. *Diabetes* 56:2178-2182, 2007

39. Tsuboi, T, McMahon, HT, Rutter, GA: Mechanisms of dense core vesicle recapture following "kiss and run" ("cavicapture") exocytosis in insulin-secreting cells. *J Biol Chem* 279:47115-47124, 2004

40. Kirchhoff, K, Machicado, F, Haupt, A, Schafer, SA, Tschritter, O, Staiger, H, Stefan, N, Haring, HU, Fritsche, A: Polymorphisms in the TCF7L2, CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion. *Diabetologia* 51:597-601, 2008

41. Tang, W, Dodge, M, Gundapaneni, D, Michnoff, C, Roth, M, Lum, L: A genome-wide RNAi screen for Wnt/β-catenin pathway components identifies unexpected roles for TCF transcription factors in cancer. *Proceedings of the National Academy of Sciences* 105:9697-9702, 2008

42. Lam, PP, Leung, YM, Sheu, L, Ellis, J, Tsushima, RG, Osborne, LR, Gaisano, HY: Transgenic mouse overexpressing syntaxin-1A as a diabetes model. *Diabetes* 54:2744-2754, 2005

43. Ostenson, CG, Gaisano, H, Sheu, L, Tibell, A, Bartfai, T: Impaired gene and protein expression of exocytotic soluble N-ethylmaleimide attachment protein receptor complex proteins in pancreatic islets of type 2 diabetic patients. *Diabetes* 55:435-440, 2006

44. Zhang, W, Khan, A, Ostenson, CG, Berggren, PO, Efendic, S, Meister, B: Down-regulated expression of exocytotic proteins in pancreatic islets of diabetic GK rats. *Biochem Biophys Res Commun* 291:1038-1044, 2002

45. Rowe, J, Corradi, N, Malosio, ML, Taverna, E, Halban, P, Meldolesi, J, Rosa, P: Blockade of membrane transport and disassembly of the Golgi complex by expression of syntaxin 1A in neurosecretion-incompetent cells: prevention by rbSEC1. *J Cell Sci* 112 (Pt 12):1865-1877, 1999
Figure 1. siRNA-mediated knock-down of TCF7L2 in mouse islets and clonal β-cell lines leads to defective glucose-stimulated insulin secretion. Mouse islets (a, panel top left), MIN6 (b, panel top left) and INS-1(832/13) (c, panel top left) β-cells were transfected as described in ‘Research Design and Methods’. Immuno-blot analysis was carried out using 50 µg of protein extract. Anti-TCF7L2 antibody (Abnova, Taiwan) was used at 1:1000 and revealed by chemiluminescence following blotting with anti-mouse-HRP conjugated antibody. Band intensity was quantified using ImageJ™ software. Real-time PCR analysis of RNA extracts from mouse islets (a, graph bottom left), MIN6 (b, graph bottom left) and INS-1(832/13) (c, graph bottom left) β-cells revealed that siRNA treatment led to 75 ± 3.57% and 71.0 ± 0.7% and 75.2 ± 19.8% decrease in TCF7L2 message levels. Mouse islets (a, right), MIN6 (b, right) and INS-1(832/13) (c, right) β-cells and were treated with siRNA as described above prior to insulin secretion assays as described in ‘Research Design and Methods’. Released and total insulin were assayed using an insulin radio-immunoassay kit from LINCO. Data are presented as mean ± SEM, n=3.
Fig. 1
Figure 2. TCF7L2 knockdown in mouse pancreatic islets and INS-1(832/13) β-cells does not alter glucose-stimulated changes in intracellular free [Ca^{2+}] but alters total cellular ATP and ADP levels. Mouse islets were treated and intracellular adenine nucleotide measured as described in ‘Research Design and Methods’ (a). Dissociated mouse islet cells (b-c) and INS-1(832/13) β-cells (d-e) were treated with 10nM fluorescein-labelled siRNA (b-c) or pEGFP-TCF7L2 shRNA (d-e) and incubated with FURA-Red (200 nM; b-e) for [Ca^{2+}]_{i} measurement. Typical traces are shown (c, d). Glucose-induced (3.0 vs 11 mmol/l) [Ca^{2+}]_{i} changes in individual glucose-responsive dissociated mouse islet cells in which TCF7L2 was silenced (b) and the number of INS-1 (832/13) cells within the cell population that responded to (20 mmol/l) glucose (e) are shown. Data are presented as mean ± SEM, n=3, unless otherwise stated in the methods.
Mouse islets

a.

![Graph showing ATP/ADP levels](image)

- Control siRNA
- TCF7L2 siRNA
- 3.0 mmol/l
- 11 mmol/l
- p<0.01
- p<0.05

b.

![Graph showing AUC](image)

- Control
- TCF7L2 siRNA
- p<0.05

C.

Transmitted

FITC

Fura-Red

![Images of cell under different conditions](image)

Control siRNA

- [Ca^{2+}] ratio 440/480
- Glucose
- 2 min

TCF7L2 siRNA

- [Ca^{2+}] ratio 440/480
- Glucose
- 2 min

INS-1(832/13)

![Graph showing [Ca^{2+}] levels](image)

- Control
- TCF7L2 shRNA
- 5 min

![Bar graph showing % of transfected cells responding](image)

- Control shRNA
- TCF7L2 shRNA
- p<0.05

Fig. 2
Figure 3. Over-expression of TCF7L2-EGFP has no effect on glucose-stimulated insulin secretion. Insulin secretion from mouse islets over-expressing TCF7L2-EGFP (a) was assessed as described in Research Design and Methods. Over-expression and subcellular localisation of TCF7L2-EGFP in INS-1 (832-13) cells was assessed by confocal microscopy 48 h following plasmid transfection (b). Scale bar=15 µm. [Ca^{2+}]_i imaging was performed as described in Research Design and Methods. Representative traces of [Ca^{2+}]_i responses to glucose (3 vs 20 mmol/l) stimulation are shown in (c); the proportion of cells which displayed glucose- or GLP-1-induced [Ca^{2+}]_i changes are shown in (d) and (e), respectively. Data are presented as mean ± SEM, n=3.
Fig. 3
Figure 4. Silencing and over-expression of TCF7L2 in mouse pancreatic islets leads to changes in expression of islet genes. Mouse pancreatic islets were cultured continuously in the presence of control or TCF7L2 siRNA, or control and TCF7L2-EGFP virus, for 48 h. Total RNA was isolated as described in Research Design and Methods and islet gene expression was assessed by real-time PCR. Genes are grouped according to function. Data are presented as mean ± SEM, n=3. * p < 0.05 versus control.
Figure 5. Syntaxin 1A and Munc 18-1 are regulated by TCF7L2. Mouse pancreatic islets were treated with TCF7L2 siRNA as described in Research Design and Methods and protein content was assessed by immuno-blot analysis. Typical blots are shown in (a) and quantification of immuno-blots from three separate sets of samples using ImageJ™ is shown in (b). TIRF microscopy of MIN6 cells treated with TCF7L2 shRNA and quantification of granule number at the cell surface was as described in Research Design and Methods. Images shown are averages of 1 s movies acquired at 50 Hz and 20 ms exposure at 100 nm/pixel. Data are presented as mean ± SEM, n=3 (30-35 cells per condition) (c). Scale bar=2 µm. (d) Example graphs of granule movement analysis from a representative control cell at different times and (e) representative tracks of the different categories of granule movement observed following the addition of 30 mmol/l glucose. All tracks are 30 s or longer (1= beginning of track, 2 = end), and (f) comparison of the proportion of moving granules in TCF7L2 silenced and control β-cells before and during application of high glucose (n=5, 15-25 separate cells per condition).
Mouse islets

a. siRNA: Control TCF7L2

- syntaxin 1A
- Munc18-1
- β-actin

b. Fold-change over β-actin

Protein	Control siRNA	TCF7L2 siRNA	p-value
Syntaxin 1A	0.5	1.6	<0.01
Munc18-1	0.8	0.6	<0.05

MIN6 cells
d. Fixed

- Number of movements

- Velocity: microns²/sec

- Moving

- Glucose stimulated (early)

- Glucose stimulated (late)

e. Control shRNA

- TCF7L2 shRNA

f. Proportion of vesicles moving

Time in 30mM Glucose	Scrambled	TCF7L2 shRNA	p-value
Low Glucose 1-4 mins	1.0	1.5	<0.01
6-8 mins	1.0	1.5	<0.01

Fig. 5
Figure 6. TCF7L2 expression does not affect the morphologically docked granule pool. (a) Mouse islets were transfected with siRNA as described. The total number of granules, morphologically docked, and within 200nm of the membrane pools were analysed as described in the Research Design and Methods $n=14\text{–}16$ cells per condition. (b) Representative β-cells with examples of docked granules and mitochondria. Scale bars=2μm
Fig. 6
Figure 7. TCF7L2 depletion affects membrane capacitance or voltage gated Ca$^{2+}$ currents.
Changes in beta-cell membrane capacitance (C_m) in response to a train of 10 pulses of 200, 500
or 2500-msec depolarisations from -70mV to 0mV (n=16, scrambled; n=18, TCF7L2). (a)
Absolute change in membrane capacitance. The number of data points shown is reduced
compared to those acquired by 200x for clarity. To filter the data, a threshold for capacitance
(7pF bottom, 13pF top) was set, considering the smaller/larger cells outliers. Ca$^{2+}$ currents were
normalised to cell membrane area (Fig.7b). The pipette solution contained (mmol/l): 125 Cs-
glutamate, 10 NaCl, 10 CsCl, 1 MgCl$_2$, 3 MgATP, 0.1 cAMP, 5 HEPES (pH7.15 with CsOH).
The extracellular (bath) solution contained (mmol/l): 118 NaCl, 20 TEA-Cl, 5.6 KCl, 5 glucose,
2.6 CaCl$_2$, 1.2 MgCl$_2$, 5 HEPES (pH 7.4 with NaOH).
(c) voltage-gated Ca$^{2+}$ currents (n=22, scrambled; n=27, TCF7L2)
Mouse Beta-cells

a.

- TCF7L2 siRNA
- scrambled siRNA

P<0.05

ΔC_{in}, pF

0.2 s

ΔC_{in}, pF

0.5 s

ΔC_{in}, pF

2.5 s

P<0.05

time, s

b.

- TCF7L2 siRNA
- scrambled siRNA

V_{in}, mV

I_{CP}, pA/pF

Fig. 7