Singularities and Soft-Big Bang in a viscous ΛCDM model

Norman Cruz,† Esteban González,‡ and Jose Jovel†

1Departamento de Física, Universidad de Santiago de Chile, Avenida Ecuador 3493, Santiago, Chile
2Center for Interdisciplinary Research in Astrophysics and Space Exploration (CIRAS), Universidad de Santiago de Chile, Avenida Libertador Bernardo O’Higgins 3363, Estación Central, Chile
3Dirección de Investigación y Postgrado, Universidad de Aconcagua, Pedro de Villagra 2265, Vitacura, 7630367 Santiago, Chile

(Dated: January 7, 2022)

Abstract:

In this paper we explore the different types of singularities that arise in the ΛCDM model when dissipative processes are considered, in the framework of the Eckart’s theory. In particular, we study the late-time behavior of ΛCDM model with viscous cold dark matter (CDM) and an early-time viscous radiation domination era with cosmological constant (CC). The fluids are described by the barotropic equation of state (EoS) \(p = (\gamma - 1)\rho \), where \(p \) is the equilibrium pressure of the fluid, \(\rho \) their energy density, and \(\gamma \) is the barotropic index. We explore two particular cases for the bulk viscosity \(\xi \), a constant bulk viscosity \(\xi = \xi_0 \), and a bulk viscosity proportional to the energy density of the fluid \(\xi = \xi_0 \rho \). Due to some previous investigations that have explored to describe the behavior of the universe with a negative CC, we extend our analysis to this case. We found that future singularities like Big-Rip are allowed but without having a phantom EoS associated to the DE fluid. Big-Crunch singularities also appears when a negative CC is present, but also de Sitter and even Big-Rip types are allowed due to the negative pressure of the viscosity, which opens the possibility of an accelerated expansion in AdS cosmologies. We also discuss a very particular solution without Big Bang singularity that arises in the early-time radiation dominant era of our model known as Soft-Big Bang.

PACS numbers: 98.80.Cq, 04.30.Nk, 98.70.Vc

I. INTRODUCTION

It is well known in current cosmology that the accelerated expansion of the universe is one of the most fascinating puzzles in physics. This behavior is supported by the cosmological data coming from measurements of Supernovae type Ia (SNe Ia) [1–3], the observational Hubble parameter data (OHD) [4], the baryonic acoustic oscillations (BAO) [5], the cosmic microwave background (CMB) [6], and information from large-scale structures (LSS) formation coming from WMAP [7]: showing also that the universe is spatially flat.

There are different approaches in order to describe this accelerated expansion of the universe. One of them is to add in the energy-momentum tensor \(T_{\mu\nu} \), in the right hand side of the Einstein gravity equation, an exotic fluid with negative pressure, dubbed dark energy (DE), which can cause an overall repulsive behavior of the gravity at large cosmological scales (see [8–10] for some excellent reviews). The other approach is by modifying the left hand side of the Einstein equation, i.e., the geometry of the space time, that leads to different ideas of modify gravity (for some theories of modified gravity which involve this idea see [11–13]). For the first approach, the most simple model is the ΛCDM model which it is also the best cosmological model in order to describe the cosmological data [3, 7]. In this model, the current universe is dominated by dark matter (DM) and DE, representing approximately the 30% and 70% of the total energy density of the universe, respectively. This DE is given by the CC (Λ), which can be characterized by a barotropic EoS with barotropic index \(\gamma = 0 \), causing the acceleration in the universe expansion [4]. However, this model is not absents of problems, of which we can highlight:

- The CC problem: the value of the CC predicted from field theoretical estimations is about 60–120 order of magnitude larger than the observed value [15–17].
- The coincidence problem: current energy densities of DM and DE have the same order of magnitude, but in the ΛCDM model, these energy densities evolves differently, so, it is necessary a fine-tuning between them in the early universe in order to that both densities match in order of magnitude at the current time [17–19].
- The \(H_0 \) tension: measurements of the Hubble parameter at the current time \(H_0 \) shows a discrepancy of 4.4σ between the value inferred from Planck CMB and the locally measurements obtained by A. G. Riess et al. [20].

* norman.cruz@usach.cl
† esteban.gonzalez@uac.cl
‡ jose.jovel@usach.cl
- EDGES: most recently results of the experiment to detect the global EoR signature (EDGES) detect an excess of radiation that is not predicted by the ΛCDM model in the reionization epoch, specifically at $z \approx 17$ [21].

One approach to overcome some of these problems, without going further than ΛCDM or modify the gravity, is to consider dissipative fluids as a more realistic way of treating cosmic fluids [22,24]. In this sense, several authors shown that a bulk viscous DM in different models without DE can cause the accelerated expansion of the universe [25,26], due to the negativeness of the viscous pressure, which allows to alleviate in principle the CC and the coincidence problems. The excess of radiation predicted by EDGES are explain in [36], where the authors consider a viscous nature in DM. In [37,38] the authors address the H_0 tension problem as a good chance to construct new cosmological models with viscous/inhomogeneous fluids in the context of a bulk viscosity. Furthermore, tensions in the measurements of $\sigma_8 - \Omega_m$ (where σ_8 is the r.m.s. fluctuations of perturbations at $8 h^{-1} Mpc$ scale and $H_0 - \Omega_m$ coming from LSS observations and the extrapolated from Planck CMB parameters using the ΛCDM model, can be alleviate if one assumes a small amount of viscosity in the DM [24]. Some authors also used bulk viscosity in inflationary phases of the universe [39,40].

It is important to mention that from Landau and Lifshitz [41] we know that the bulk viscosity in the cosmic evolution seems to be significant and we can interpreted from the macroscopic point of view that is equivalent to the existence of slow processes of restoring equilibrium state. Some authors proposal that bulk viscosity of the cosmic fluid may be the result of non-conserving particle interactions [42] and another have shown that different cooling rates of the components of the cosmic medium can produce bulk viscosity [43,44]. Also, for neutralino CDM bulk viscosity pressure appears in the CDM fluid due to the energy transferred from the CDM fluid to the radiation fluid [46]. Many observational properties of disk galaxies can be reproduced by a dissipative DM component, which appears as a residing component in a hidden sector [47,48]. On the other hand, at perturbative level viscous fluid dynamics provides a simple and accurate framework for extending the description into the nonlinear regime [49]. Since up to date it is unknown the nature of the DM and the dissipative effect in cosmology can not be discarded, it is of physical interest to explore the behavior of this type of DM in the ΛCDM model.

In order to study dissipative processes in cosmology it is necessary to develop a relativistic thermodynamic theory out of equilibrium, being Eckart the first who developed it [50]. Later, it was discovered that Eckart’s theory was not really relativistic, since it is a non-causal theory [51,52]. A causal theory was proposed by Israel and Stewart [53,54], but it presents a much greater mathematical difficulty than the Eckart’s theory, even in scenarios where the bulk viscosity doesn’t present very exotic forms. Therefore, many authors work in the Eckart’s formalism in order to have a first approximation of the cosmological behavior with dissipative fluids [22,55,56], since the Israel-Stewart’s theory is reduced to the Eckart’s theory if the relaxation time for transient viscous effects is equal to zero. [60].

As we mentioned before, in both Eckart’s and Israel-Stewart’s theory it is possible to describe the accelerated expansion of the universe without the inclusion of a CC. Nevertheless, as it was previously discussed by Maartens [60], in the context of dissipative inflation, the condition to have an accelerated expansion due only to the negativeness of the viscous pressure enters into direct contradiction with the near equilibrium condition that is assumed in the Eckart’s and Israel-Stewart’s theory

\[
\left| \frac{\Pi}{p} \right| \ll 1, \tag{1}
\]

which means that the viscous stress Π must be lower than the equilibrium pressure p of the dissipative fluid. So, following this line, it as been prove in [61,62] that the inclusion of a positive CC could preserve the near equilibrium condition [1] in some regime. The price to pay is to abandon the idea of unified DM models with dissipation as models that can consistently describe the late time evolution of the universe. It is important to mention that a negative CC can not be ruled out from study in cosmology [63,71]. For example, a negative CC appears naturally in superstring theory in the dual space $AdS_5 \times S^5$ [72,74]. Some authors even mentioned the possibility of a transition between a negative CC to a positive one [63,75]. Even more, a negative CC has been explored by many authors with the aim of alleviating the H_0 tension [65,71].

Works with dissipation where the CC is included have been studied in recent times, for example the authors in [57] already work in Eckart Formalism with CC and a bulk viscosity proportional to the Hubble parameter, or more interesting scenarios can be seen in [76] where the authors also include a CC that is variable in time. On the other hand, some authors have shown that the presence of bulk viscosity in the DE could cause that their effective barotropic index can be less than 0 [58,59]. Fluids with a barotropic index $\gamma < 0$ are dubbed “phantom” [77] and can not be ruled out of the current cosmological data. For example, some works indicated that the barotropic index of the DE is inconsistent with the value of 0 at 2.3σ level [7,78]. The possibility of phantom EoS for the DE open an interesting scenario known as Big-Rip, in which the scale factor presents a singularity in a finite future time [79]. Following this line, the authors in [80,81] have made a classification of the different singularities obtained in models with phantom DE.

Other interesting issue related to viscous fluid is the possibility of avoid singularities. In the framework of general relativity many studies found cosmological scenarios where there are no singularities, corresponding to emergent and bouncing universes [82,85]. A regular uni-
verse without Big Bang was found in [55], where the viscosity drives the early universe to a phase with a finite space-time curvature. This regular scenario called “soft Big-Bang” are also discussed in other contexts [53, 58, 60], describing universes with eternal physical past time, that come from a static universe with a radius greater than the Planck radius to be far out of the regime where quantum gravity has to be employed.

The aim of this paper is to explore exact solutions of a viscous ΛCDM like model, looking for the conditions that leads to early and late time singularities, considering a bulk viscosity term constant and proportional to the energy density of the dissipative fluid. These two simple cases open up a great variety of behaviors which will allow us to study different singularity scenarios in the framework of the Eckart’s theory. We will discuss our results according to the classification given in [80]. Also, we will investigate solutions which represent regular universes, as it was found by Murphy in [55], but with the inclusion of a CC. It is important to note that many authors have studied these type of singularities within the framework of cosmological models filled with a phantom DE [10, 59, 80, 81, 87]. In our case, the model can be characterized by an effective EoS that represent the behavior of the two fluids of the model, the dissipative fluid and the CC, as a whole. Even more, we will study solutions where the CC can take negative values. Therefore, in this work we will try to give a more complete understanding of the early and late-time singularities when dissipative process are considered in a ΛCDM like cosmological model.

The outline of this paper is as follow: In section II we describe briefly the non-causal Eckart’s theory and we find the general differential equation to solve. In section III we present the possibility of de Sitter like solutions that arises from the general differential equation previously found. In section IV we start by describing briefly the different types of singularity that arises for a Friedmann–Lemaître–Robertson–Walker (FLRW) metric. In subsection A we study the late-time singularities that arises in our model for a constant dissipation, an a dissipation proportional to the energy density of the dissipative fluid, for a positive CC. In subsection B we will do the same for the case of a negative CC. In subsection C we discuss early-time singularities for the case of positive CC. In subsection D we discuss early-time singularities for the case of negative CC. In section V we discuss an early-time solution without Big Bang singularity called “soft Big-Bang”. Finally, in section VI we present some conclusions and final discussion.

II. THEORY OF ECKART WITH CC

In what follows, we will consider a flat FLRW cosmological spacetime, dominated by only two matter components: a DE given by Λ, and a barotropic fluid with EoS $p = (\gamma - 1)\rho$, where p is the equilibrium pressure of the fluid, ρ their energy density and γ is the barotropic index, that takes the values of $\gamma = 1$ for CDM and $\gamma = 4/3$ for radiation. This barotropic fluid experience dissipative processes during their cosmic evolution, with a bulk viscosity coefficient ξ that depends on their energy density through the power-law

$$\xi = \xi_0 \rho^m, \quad \xi_0 > 0,$$

where ξ_0 and m are constant parameters, with $\xi_0 > 0$ in order to be consistent with the second law of thermodynamics [53]. The behavior described by Eq. (2) for the viscosity has been widely investigated in the literature as one of the simplest and most natural choices since the bulk viscosity of fluids depends, particularly, in its temperature and pressure, and therefore it is physically suitable to take this dependence. Other elections include, for example, the function $\xi = \xi_0 + \xi_1 H$ [57], but in this case and since we are including a CC, this election implies that the viscosity of the fluid is a function not only of its properties but also of the CC.

In the Eckart’s theory, the field equations in presence of bulk viscous are

$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{\rho}{3} + \frac{\Lambda}{3},$$

$$\frac{\ddot{a}}{a} = \dot{H} + H^2 = -\frac{1}{6} (\rho + 3P_{eff}) + \frac{\Lambda}{3},$$

where “dot” accounts for the derivative with respect to the cosmic time t, a is the scale factor, H the Hubble parameter, and P_{eff} is an effective pressure given by

$$P_{eff} = p + \Pi,$$

being Π the bulk viscous pressure defined in the Eckart’s theory by

$$\Pi = -3H\xi.$$

The conservation equation takes the form

$$\dot{\rho} + 3H(\rho + p + \Pi) = 0.$$

Therefore, we can obtain from Eqs. (2)–(7) a single evolution equation for H, which is given by

$$2\dot{H} + 3\gamma H^2 - 3\xi_0 H(3H^2 - \Lambda)m - \Lambda \gamma = 0.$$

Since we are interested in comparing some solutions of Eq. (8) for different values of m with the standard ΛCDM model, we display below the solution for $H(t)$ by $a(t)$ with the initial conditions $H(t = 0) = H_0$ and $a(t = 0) = 1$, for the case without dissipation ($\xi = 0$)

$$H(t) = \frac{H_0 \sqrt{\Omega_\Lambda} \left((\sqrt{\Omega_\Lambda} + 1) e^{3\gamma H_0 t \sqrt{\Omega_\Lambda}} - \sqrt{\Omega_\Lambda} + 1 \right)}{(\sqrt{\Omega_\Lambda} + 1) e^{3\gamma H_0 t \sqrt{\Omega_\Lambda}} + \sqrt{\Omega_\Lambda} - 1},$$

$$a(t) = \frac{H_0 \sqrt{\Omega_\Lambda} \left((\sqrt{\Omega_\Lambda} + 1) e^{3\gamma H_0 t \sqrt{\Omega_\Lambda}} - \sqrt{\Omega_\Lambda} + 1 \right)}{(\sqrt{\Omega_\Lambda} + 1) e^{3\gamma H_0 t \sqrt{\Omega_\Lambda}} + \sqrt{\Omega_\Lambda} - 1},$$

$$\xi = \xi_0 \rho^m, \quad \xi_0 > 0,$$

where ξ_0 and m are constant parameters, with $\xi_0 > 0$ in order to be consistent with the second law of thermodynamics [53]. The behavior described by Eq. (2) for the viscosity has been widely investigated in the literature as one of the simplest and most natural choices since the bulk viscosity of fluids depends, particularly, in its temperature and pressure, and therefore it is physically suitable to take this dependence. Other elections include, for example, the function $\xi = \xi_0 + \xi_1 H$ [57], but in this case and since we are including a CC, this election implies that the viscosity of the fluid is a function not only of its properties but also of the CC.

In the Eckart’s theory, the field equations in presence of bulk viscous are

$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{\rho}{3} + \frac{\Lambda}{3},$$

$$\frac{\ddot{a}}{a} = \dot{H} + H^2 = -\frac{1}{6} (\rho + 3P_{eff}) + \frac{\Lambda}{3},$$

where “dot” accounts for the derivative with respect to the cosmic time t, a is the scale factor, H the Hubble parameter, and P_{eff} is an effective pressure given by

$$P_{eff} = p + \Pi,$$

being Π the bulk viscous pressure defined in the Eckart’s theory by

$$\Pi = -3H\xi.$$

The conservation equation takes the form

$$\dot{\rho} + 3H(\rho + p + \Pi) = 0.$$

Therefore, we can obtain from Eqs. (2)–(7) a single evolution equation for H, which is given by

$$2\dot{H} + 3\gamma H^2 - 3\xi_0 H(3H^2 - \Lambda)m - \Lambda \gamma = 0.$$

Since we are interested in comparing some solutions of Eq. (8) for different values of m with the standard ΛCDM model, we display below the solution for $H(t)$ by $a(t)$ with the initial conditions $H(t = 0) = H_0$ and $a(t = 0) = 1$, for the case without dissipation ($\xi = 0$)

$$H(t) = \frac{H_0 \sqrt{\Omega_\Lambda} \left((\sqrt{\Omega_\Lambda} + 1) e^{3\gamma H_0 t \sqrt{\Omega_\Lambda}} - \sqrt{\Omega_\Lambda} + 1 \right)}{(\sqrt{\Omega_\Lambda} + 1) e^{3\gamma H_0 t \sqrt{\Omega_\Lambda}} + \sqrt{\Omega_\Lambda} - 1},$$

$$a(t) = \frac{H_0 \sqrt{\Omega_\Lambda} \left((\sqrt{\Omega_\Lambda} + 1) e^{3\gamma H_0 t \sqrt{\Omega_\Lambda}} - \sqrt{\Omega_\Lambda} + 1 \right)}{(\sqrt{\Omega_\Lambda} + 1) e^{3\gamma H_0 t \sqrt{\Omega_\Lambda}} + \sqrt{\Omega_\Lambda} - 1},$$

$$\xi = \xi_0 \rho^m, \quad \xi_0 > 0,$$
Then, two solutions are allowed for the Hubble parameter with a discriminant given by

\[\Delta = \frac{m^2}{\Omega} \]

where \(\Omega_{\Lambda} = \Lambda/(3H_0^2) \). From Eq. (9) we can see that \(H = \sqrt{\Lambda/3} \) for very late times, corresponding to the de Sitter behavior.

III. DE SITTER LIKE SOLUTIONS

Before to make a complete integration of Eq. (8), we will explore the possibility of de Sitter like solutions. Knowing this behavior will help us to compare with the asymptotic behaviors in cases when \(\dot{H} \neq 0 \). Taking \(H = H_{dS} \) with \(H_{dS} = 0 \), Eq. (8) reduces to the following algebraic equation

\[3\gamma H^2_{dS} - 3\xi_0 H_{dS}(3H^2_{dS} - \Lambda)^m - \Lambda \gamma = 0. \tag{11} \]

One general result can be quickly found if the above equation is written as

\[(3H^2_{dS} - \Lambda) [\gamma - 3\xi_0 H_{dS}(3H^2_{dS} - \Lambda)^m - \Lambda] = 0, \tag{12} \]

which indicates that the values of \(H_{dS} \) given by

\[H_{dS} = \pm \sqrt{\frac{\Lambda}{3}}, \tag{13} \]

are two real solutions of Eq. (12), for \(m \geq 1 \) and \(\Lambda > 0 \). Note that the positive solution corresponds to the usual de Sitter one and the contracting solution \(H_{dS} < 0 \) it is not of physical interest. The other possible de Sitter solutions are obtained taking the square bracket of the left-hand side of Eq. (12) equal to zero, for different values of \(m \).

A. Case \(m = 0 \)

In this case, the dissipation of the fluid is constant and Eq. (12) becomes in a quadratic equation of the form

\[H^2_{dS} - \frac{\xi_0}{\gamma} H_{dS} - \frac{\Lambda}{3} = 0, \tag{14} \]

with a discriminant given by

\[\Delta_0 = \left(\frac{\xi_0}{\gamma} \right)^2 + \frac{4\Lambda}{3}. \tag{15} \]

Then, two solutions are allowed for the Hubble parameter

\[H_{dS\pm} = \frac{\xi_0/\gamma \pm \sqrt{\Delta_0}}{2}. \tag{16} \]

The above equation depends on the values of \(\xi_0 \), \(\gamma \) and \(\Lambda \), and three type of solutions are obtained depending if \(\Delta_0 \) is positive, zero or negative. This last one, where \(\Lambda < -3\xi_0^2/4\gamma^2 \), is discarded because represents a complex Hubble parameter without physical interest. If \(\Delta_0 = 0 \), the solution reduces to

\[H_{dS} = \frac{\xi_0}{2\gamma} \] for \(\Lambda = -\frac{3\xi_0^2}{4\gamma^2} \), \tag{17} \]

being the only de Sitter like solution of the model for this case, which is driven by the dissipative processes. Since \(\xi_0 \) can be expressed in terms of \(|\Lambda| \) it is straightforward to find that in this case \(H_{dS} \) in Eq. (17) can also be expressed as \(H_{dS} = \sqrt{\frac{|\Lambda|}{\gamma}} \). If \(\Delta_0 > 0 \), then \(\Lambda > -3\xi_0^2/4\gamma^2 \), and the model for this case has only two de Sitter like solutions, \(H_{dS+} \) and \(H_{dS-} \), again directly driven by the dissipative processes. But, \(H_{dS-} \) only represent an expanding solution when \(\Lambda < 0 \).

On the other hand, using the Eq. (3) it is possible to obtain the energy density associated to the de Sitter solutions (16) and (17), given respectively by

\[\rho_{\pm} = \frac{3\xi_0^2}{2\gamma^2 \pm \sqrt{\Delta_0}} \tag{18} \]

\[\rho = \frac{3\xi_0^2}{2\gamma^2}. \tag{19} \]

From the above expressions it is possible to see that \(\rho_{+} > 0 \) and \(\rho_{-} > 0 \), i. e., the de Sitter like solution given by Eqs. (16) (positive one) and (17) do not have null fluid energy density, contrary to the usual de Sitter solution (13) (positive one), where \(\rho_{dS} = 0 \) (DE dominant solution). It is important to note that \(\rho_{-} > 0 \) leads to the constraint \(\Lambda < 0 \), expression that it’s according with the constraint obtained in order to \(H_{dS-} \) represent an expanding solution. Therefore, the de Sitter like solutions with physical interest for \(m = 0 \) are \(H_{dS\pm} \) and \(H_{dS} \).

B. case \(m=1 \)

In this case the dissipation is proportional to the energy density of the dissipative fluid, and the other real solution of Eq. (12), besides the positive de Sitter solution (13) when \(\Lambda > 0 \), is given by

\[H_{dS} = \frac{\gamma}{3\xi_0}, \tag{20} \]

which depends only of the values of \(\gamma \) and \(\xi_0 \), i. e., being a de Sitter like solution that is a function of the parameters related to the dissipative processes and, in principle, independent of the values of \(\Lambda \). But, using Eq. (3), we obtain that the fluid energy density for this solution is given by

\[\rho = \frac{\gamma^2}{3\xi_0^2} - \Lambda, \tag{21} \]
expression that when we impose \(\rho > 0 \) leads to \(\Lambda < \gamma^2/3\xi_0^2 \). Again, this de Sitter like solution do not have null energy density, contrary to the usual de Sitter solution, except when \(\Lambda = \gamma^2/3\xi_0^2 \). The same result given by Eq. (20) was found in [26] for the case of a null CC.

A surprising results in both, \(m = 0 \) and \(m = 1 \) cases, is the possibility of de Sitter like solutions of physical interest despite the presence of a negative CC. It will find that the corresponding exact solutions behaves asymptotically with the de Sitter like evolution found in this section.

IV. SINGULARITIES IN VISCOUS \(\Lambda \text{CDM} \) MODELS

In what follows we will study the solutions that arise from Eq. (5), for the particular cases when \(m = 0 \) and \(m = 1 \), and we discuss their behavior in terms of the free parameters \(\xi_0, \gamma \) and \(\Lambda \). The solutions for each case will be compared with the \(\Lambda \text{CDM} \) model. We will focus our study in the existence of different types of early and late time singularities, which can occur for some values of the free parameters of each model, following the classifications given in [30][31].

- **Type 0A** ("Big Bang"): for \(t \rightarrow 0 \), \(a \rightarrow 0 \), \(\rho \rightarrow \infty \) and \(|p| \rightarrow \infty \).

- **Type 0B** ("Big Crunch"): for \(t \rightarrow t_s \), \(a \rightarrow 0 \), \(\rho \rightarrow \infty \) and \(|p| \rightarrow \infty \).

- **Type I** ("Big Rip"): for \(t \rightarrow t_s \), \(a \rightarrow \infty \), \(\rho \rightarrow \infty \) and \(|p| \rightarrow \infty \).

- **Type I** ("Little-Rip"): for \(t \rightarrow \infty \), \(a \rightarrow \infty \), \(\rho \rightarrow \infty \) and \(|p| \rightarrow \infty \).

- **Type II** ("Sudden"): for \(t \rightarrow t_s \), \(a \rightarrow a_s \), \(\rho \rightarrow \rho_s \) and \(|p| \rightarrow \infty \).

- **Type III** ("Big freeze"): for \(t \rightarrow t_s \), \(a \rightarrow a_s \), \(\rho \rightarrow 0 \) and \(p \rightarrow 0 \), and higher derivatives of \(H \) diverge.

- **Type IV** ("Generalized Sudden"): for \(t \rightarrow t_s \), \(a \rightarrow a_s \), \(\rho > 0 \) and \(\rho + 3p > 0 \) (SEC) in an expanding universe [95]; type III occurs for models with \(p = -\rho - Ap^a \) and the difference with the Big-rip type I is that here the scale factor has a finite value in a finite time [94][96]; and (iv) type IV which also appears in the context of phantom DE of the form \(p = -\rho - f(\rho) \), explored in [30] with a particular form of \(f(\rho) \) called "32", and in the context of quantum cosmology [97].

Since the singularities are characterized by the divergences in the curvature scalar, we will use in our study the Ricci scalar, given by the following expression

\[
R = 6 \left(\frac{\ddot{a}(t)}{a(t)} + \frac{\dot{a}^2(t)}{a^2(t)} \right) = 6 (\dot{H} + 2H^2),
\]

in order to explore the divergences in the solutions found.

A. Late-times singularities with \(\Lambda > 0 \)

In this subsection we will study the singularities that arise from the solutions of Eq. (5) for a positive CC when \(m = 0 \) and \(m = 1 \). In order to compare with \(\Lambda \text{CDM} \) model, we will set in the general solutions \(\gamma = 0 \) and \(\Omega_\Lambda = 0.69 \), which is the value corresponding to the cosmological data [3]. From now, all solutions will be expressed in terms of the dimensionless density parameters \(\Omega_\Lambda \) and \(\Omega_\xi = 3^m\xi_0H_0^{3m-1} \), using the initial conditions \(H(t = 0) = H_0 \) and \(a(t = 0) = 1 \), where \(t = 0 \) is the present time.

1. Cases for \(m = 0 \)

The integration of Eq. (3) is straightforward and leads to an integral of the form \(H = -\frac{3\gamma}{2}t + C \), where \(R = H^2 - (\xi_0/\gamma)H - (\Lambda/3) \) is a polynomial in \(H \). In principle, three different types of solutions emerge depending if the discriminant \(\Delta_0 \), given by Eq. (15), is positive, negative or zero. For \(\Lambda > 0 \) the only solution is with \(\Delta_0 > 0 \). The condition \(\Delta_0 \geq 0 \) in terms of dimensionless densities takes the form \(\Delta_0 = H_0^2\Delta_0 \), where

\[
\Delta_0 = \left(\frac{\Omega_\xi}{\gamma} \right)^2 + 4\Omega_\Lambda > 0,
\]

and \(\Omega_\xi = \xi_0/H_0 \). The exact solution for this case is

\[
E(T) = \frac{\sqrt{\Delta_0}}{2} \tanh \left[\frac{3\gamma\sqrt{\Delta_0}T}{4} + \text{arctanh} \left(\frac{2 - \Omega_\xi}{\sqrt{\Delta_0}} \right) \right] + \frac{\Omega_\xi}{2\gamma},
\]

\[
a(T) = \exp \left(\frac{\Omega_\xi}{2\gamma} \right) \left[\cosh \left(\frac{3\gamma\sqrt{\Delta_0}T}{4} + \text{arctanh} \left(\frac{2 - \Omega_\xi}{\sqrt{\Delta_0}} \right) \right) \right]^{\frac{2}{\gamma}},
\]

where \(E(T) = H(T)/H_0 \) and \(T = H_0t \) is a dimensionless time, therefore their positive values represents future
evolution. It is important to note that the Hubble parameter ξ doesn’t exhibit a singularity for any time T and the scale factor s represent a bouncing universe. Even more, the asymptotic behavior of the Hubble parameter for $T \to \infty$ gives us H_{d+} and for $T \to -\infty$ gives us H_{de-}, both solutions given by Eq. (16), being H_{dS+} the de Sitter-like solution of this model.

2. Case for $m = 1$

In this case the polynomial in H is $R = (1 - 3\xi_0 H/\gamma)(H^2 - \Lambda/3)$ and the solution takes the dimensionless form

$$T(E) = \frac{\Omega_\xi \sqrt{\Omega_x} \log \left(\frac{(1-\Omega_L)(\gamma - \xi \Omega_x)^2}{(2\gamma - \Omega_x)(\gamma - \xi \Omega_x)} \right)}{3\sqrt{\Omega_x}(\gamma^2 - \xi^2 \Omega_x)} + \frac{\gamma \log \left(\frac{(\gamma - \xi)(\gamma^2 - \xi^2 \Omega_x)}{(\gamma^2 - \Omega_x)(\gamma^2 - \xi^2 \Omega_x)} \right)}{3\sqrt{\Omega_x}(\gamma^2 - \xi^2 \Omega_x)}, \tag{26}$$

where $\Omega_\xi = 3\xi_0 H_0$. In Fig. 1 we have numerically found the behavior of $E(T)$ given by the above equation. Note that $T \to \infty$, $\forall E$ when $\Omega_\xi = \gamma$, in other words, this case represents the de Sitter case given by Eq. (20), that is $H(t) = H_0$, $\forall t$, as it can be seen from Fig. 1.

From Eq. (26) a singularity time, T_s, appears if we take $E \to \infty$, which gives

$$T_s = \frac{2\Omega_\xi \log \left[\frac{1-\Omega_L}{1+\Omega_L} \right]}{3(\gamma^2 - \xi^2 \Omega_x)}.$$

At this future singularity, from Eqs. (3), (6) and the EoS equation, we can see that ρ, p and Π are divergent. If

$$\Omega_\xi > \gamma, \tag{28}$$

then the argument of the logarithm in Eq. (27) is always positive. Even more, if $\Omega_\xi = \gamma/\sqrt{\Omega_\Lambda} > \gamma$, the numerator and denominator of the Eq. (27) are zero, however

$$\lim_{\Omega_\xi \to \gamma/\sqrt{\Omega_\Lambda}} T_s = \frac{\log \left(\frac{1-\Omega_L}{1+\Omega_L} \right) - 2\Omega_L}{6\gamma(\Omega_L - \Omega_\Lambda)}, \tag{29}$$

i.e. T_s is continue for $\Omega_\xi > \gamma$ and there are a change of sign in $\Omega_\xi = \gamma/\sqrt{\Omega_\Lambda}$ for both, the numerator and denominator in Eq. (27), yielding that T_s is always positive because when $\Omega_\xi > \gamma/\sqrt{\Omega_\Lambda}$ the argument of the logarithm is lower than 1 (negative numerator) and the denominator is negative, as can be seen in Fig. 2, where T_s given by Eq. (27) is plotted as a function of Ω_ξ. In Fig. 1, the red dashed lines represents two times of singularities according to Eq. (27), for $\Omega_\xi = 1.5$ and $\Omega_\xi = 1.1$, where the time of singularities are $T = 0.812997$, which is roughly equivalent to 11.6969 Gyrs (0.86 times the lifetime of ΛCDM universe); and $T = 2.26375$, corresponding to 32.5695 Gyrs (2.4 times the lifetime of ΛCDM universe).

For $\Omega_\xi < \gamma$, there are no future singularities (no finite time is obtained from Eq. (27)). From Eq. (26) we can see that $E(T)$ follows very close the behavior of standard model, ending with a de Sitter behavior at $T \to +\infty$, which can be seen taking $E = \sqrt{\Omega_\Lambda}$ (equivalent to the solution given by Eq. (13)) in Eq. (26).

In order to classify these singularities we need to explore the effective EoS of the models found. From Eqs. (5), (7) and the EoS equation one obtains as $\gamma = \Omega_\xi$ that

$$\gamma_{\text{eff}} = \gamma + \frac{\Pi}{3H^2}, \tag{30}$$

and from Eq. (4) it is possible to find an expression for
the viscous pressure given by
\[\Pi = -2\dot{H} - 3\gamma H^2, \] (31)
where using the above expression, we will have for \(\gamma \) the expression
\[\gamma_{\text{eff}} = -\frac{2\dot{H}}{3H^2}, \] (32)
and using Eq. 8 in our dimensionless notation we will have
\[\gamma_{\text{eff}} = \gamma - \Omega_\xi E + \frac{\Omega_\xi \Lambda_E}{E} - \frac{\Omega_\Lambda \gamma}{E^2}. \] (33)
This \(\gamma_{\text{eff}} \) represents the effective EoS of a universe with a DE component modeled by a CC and a dissipative component. The phantom behavior of our solutions can be associated to the global composition of the universe. Fig. 3 shows the behavior of \(\gamma_{\text{eff}} \) as a function of \(T \) for the solutions found, for different values of \(\Omega_\xi \).

Let see now the type of singularities that we found in the dissipative CDM case (\(\gamma = 1 \)). For the solutions without singularities, i.e., \(\Omega_\xi < 1 \), \(\gamma_{\text{eff}} \) evolves to 0, representing the dominance of the CC at very far future times. In the solution with \(\Omega_\xi > 1 \), \(\rho \) and \(p \) diverges and therefore, from Eq. 8 \(H \) and \(a \) diverges, i.e., these solutions present Big-Rip singularities because \(\gamma_{\text{eff}} \) from Eq. 33 is always phantom, as can be seen from Fig. 3. It is important to note that since \(H \) and \(\dot{H} \) go to infinity for this singularity, then the Ricci scalar given by Eq. 22 also diverge.

B. Late-times singularities with \(\Lambda < 0 \)

In this subsection we will study the singularities that arise from the solutions of Eq. 8 for a negative CC when \(m = 0 \) and \(m = 1 \). In this case, in order to compare with \(\Lambda \)CDM model, we will set in the general solutions \(\gamma = 1 \) (CDM) and \(\Omega_\Lambda = -0.69 \). It is important to note from Eq. 4 that the model with a negative CC can still gives an accelerated solution because of the negative pressure due to the bulk viscosity. Therefore, the election of \(\Omega_\Lambda = -0.69 \) is the first natural election in order to a further comparison, because, from Eqs. 3 and 7 the usual Friedmann’s constraint \(\Omega_m + \Omega_\Lambda = 1 \) is not already valid and the values of \(\Omega_\Lambda \) can, in principle, take any negative value.

1. **Cases for \(m = 0 \)**

In this case we have three different types of solutions depending if the discriminant, \(\Delta_0 \), given by Eq. 14 is greater, equal, or lower than zero.

(i) **Case \(\Delta_0 > 0 \)**. In this case the constraint for the values of a negative CC is
\[-\left(\frac{\Omega_\xi}{2\gamma}\right)^2 < \Omega_\Lambda < 0. \] (34)

We already have explained that this solution doesn’t present any kind of singularity due to its bouncing behavior and the solution was already found in Eq. 24 (for the Hubble parameter) and in Eq. 25 (for the scale factor). It is interesting to mention that despite having a negative CC, this solution does not present Big-Crunch singularity, and at late times displays a de Sitter like expansion.

(ii) **Case \(\Delta_0 = 0 \)**. In this case the CC takes the particular value
\[\Omega_\Lambda = -\left(\frac{\Omega_\xi}{2\gamma}\right)^2, \] (35)
and the solution for \(E(T) \) takes the form
\[E(T) = \frac{4 + 3\Omega_\xi(1 - \frac{\Omega_\xi}{\gamma})T}{4 + 6\gamma(1 - \frac{\Omega_\xi}{\gamma})T}. \] (36)

The corresponding scale factor is given by
\[a(t) = \exp\left[\frac{\Omega_\xi T}{2\gamma}\right]\left[\frac{3\gamma}{2}T\left(1 - \frac{\Omega_\xi}{2\gamma}\right) + 1\right]^\frac{1}{\gamma}. \] (37)

It is straightforward to see from Eq. 36 that if \(\Omega_\xi = 2\gamma \), then \(E = 1 \) for all time, corresponding to our de Sitter like solution given by 17. If \(\Omega_\xi > 2\gamma \), \(E \) goes to zero in a future time \(T_c \), given by
\[T_c = -\frac{4}{3\Omega_\xi\left(1 - \frac{\Omega_\xi}{2\gamma}\right)} > 0, \] (38)
which indicates that the scale factor takes a maximum value at this time and, from Eq. 37, goes to zero at a time given by
\[T_s = -\frac{2}{3\gamma\left(1 - \frac{\Omega_\xi}{2\gamma}\right)} > 0. \] (39)
From Eq. (36) we can see that at the above time $E \to -\infty$, which means, from Eq. (33), that ρ diverge and, from the EoS equation, p diverge, indicating that in this case the future singularity corresponds to a Big-Crunch (Type OB singularity). It is important to note that since H and \dot{H} go to minus infinity for this singularity, then the Ricci scalar given by Eq. (22) also diverge. On the other hand, if $\Omega_\xi < 2\gamma$, then $E > 0$ for all time and goes to the value $\Omega_\xi/2\gamma$ when $T \to +\infty$. Therefore, this solution asymptotically takes a de Sitter like behavior given by Eq. (17). Note that for $\Omega_\xi \leq 2\gamma$ effectively we can drive the acceleration expansion of the universe when a negative CC is considered in our model, due only to the negativeness of the viscous pressure.

In Fig. 4 we display the behavior of the Hubble parameter (36) for $\gamma = 1$. The Big-Crunch singularity appears for the particular values of $\gamma = 1$ and $\Omega_\xi = 3$ evaluated in Eq. (39), and leads to $T_s = 4/3$, which is roughly equivalent to 19.18 Gyr (1.45 times the lifetime of the ΛCDM universe).

From Eq. (32) the effective barotropic index for this solution is

$$\gamma_{eff} = \gamma - \frac{\Omega_\xi}{E} + \frac{\Omega_0}{E^2} \frac{\gamma}{\gamma},$$

and from the solution given by Eq. (36), we have

$$\gamma_{eff} = \frac{16\gamma \left(\frac{\Omega_\xi}{2\gamma} - 1 \right)^2}{\left(4 - 3\Omega_\xi T \left(\frac{\Omega_\xi}{2\gamma} - 1 \right) \right)^2}. \quad (41)$$

Note that, if we substitute Eq. (38) (where $E = 0$ and a takes its maximum value) in Eq. (41), we will get $\gamma_{eff} \to +\infty$, and if we substitute Eq. (39) (Big Crunch time) we will get $\gamma_{eff} = \gamma$ (according to Eq. (40)). The behavior of this γ_{eff} is presented in the Fig. 5.

![Figure 4 - Behavior of $E(T)$](image)

*FIG. 4. Behavior of $E(T)$, given by Eq. (39) for different values of Ω_ξ and for the particular value of $\gamma = 1$. Ω_Λ is given by Eq. (35). We also plotted the ΛCDM model. The red dashed line represent the singularity time given by Eq. (39) for $\Omega_\xi = 3$."

It is important to mention that as the viscosity increases, the value of Ω_Λ also increases, which can be seen from Eq. (35), also the time T_c, where the scale factor takes its maximum value, occurs after the current time.

(iii) Case $\Delta_0 < 0$. In this case the dimensionless density parameter associated to the negative CC satisfied the following inequality

$$\Omega_\Lambda < -\left(\frac{\Omega_\xi}{2\gamma} \right)^2,$$

and the exact solution takes the following form

$$E(T) = -\frac{\sqrt{\Delta_0}}{2} \tan \left(\frac{3\gamma \sqrt{|\Delta_0|} T}{4} - \frac{2 - \Omega_\xi}{\sqrt{|\Delta_0|}} \right) + \frac{\Omega_\xi}{2\gamma},$$

with a scale factor given by

$$a(T) = \exp \left(\frac{\Omega_\xi}{2\gamma} T \right) \left\{ \cosh \left[\frac{3\gamma \sqrt{|\Delta_0|} T}{4} - \frac{2 - \Omega_\xi}{\sqrt{|\Delta_0|}} \right] \right\}^{-\frac{1}{\gamma}},$$

In order to explore the possibility of future singularities, we found from Eq. (43) T as a function of E, obtaining

$$T(E) = \frac{4}{3\gamma \sqrt{|\Delta_0|}} \times \left(\arctan \left(\frac{\Omega_\xi}{\gamma} - E \right) + \arctan \left(\frac{2 - \Omega_\xi}{\gamma} \right) \right).$$

![Figure 5 - Behavior of γ_{eff} given by Eq. (41) as a function of T for the solution with $m = 0$ and $\Delta_0 = 0$, for the particular value of $\gamma = 1$ and for Ω_ξ given by Eq. (35), for different values of Ω_ξ. T_c and T_s are given by Eq. (38) and Eq. (39), respectively. We also plotted the γ_{eff} for the ΛCDM model."

*FIG. 5. Behavior of γ_{eff} given by Eq. (41) as a function of T for the solution with $m = 0$ and $\Delta_0 = 0$, for the particular value of $\gamma = 1$ and for Ω_ξ given by Eq. (35), for different values of Ω_ξ. T_c and T_s are given by Eq. (38) and Eq. (39), respectively. We also plotted the γ_{eff} for the ΛCDM model."

In order to explore the possibility of future singularities, we found from Eq. (43) T as a function of E, obtaining

$$T(E) = \frac{4}{3\gamma \sqrt{|\Delta_0|}} \times \left(\arctan \left(\frac{\Omega_\xi}{\gamma} - E \right) + \arctan \left(\frac{2 - \Omega_\xi}{\gamma} \right) \right).$$
From this equation we can notice that E is zero in a time given by

$$T_c = \frac{4}{3\gamma\sqrt{\frac{\Omega_0}{\Delta_0}}} \times \left(\arctan\left(\frac{\Omega_0}{\sqrt{|\Delta_0|}}\right) + \arctan\left(\frac{2 - \Omega_0}{\sqrt{|\Delta_0|}}\right) \right),$$

(46)

which indicates that the scale factor takes a maximum value at this time and goes to zero when $E \to -\infty$, as can be seen from Eq. (45), in a time given by

$$T_s = \frac{4}{3\gamma\sqrt{|\Delta_0|}} \times \left(\frac{\pi}{2} + \arctan\left(\frac{2 - \Omega_0}{\sqrt{|\Delta_0|}}\right) \right),$$

(47)

i.e., $a \to 0$, as can be shown if we substitute the time given in Eq. (47) in (44). So, from Eq. (3) ρ also diverge and from the EoS equation p also diverge. Therefore, at this time occurs a Big-Crunch singularity (Type 0B). It is important to note that since H and \dot{H} go to minus infinity for this singularity, then the Ricci scalar given by Eq. (42) also diverge. This is the only scenario that we have for this solution and a de Sitter asymptotic expansion is not possible, as it can be check from Eq. (16). In Fig. 6 we present the behavior for E as a function of T, given by Eq. (43). The value of time of singularity shown in this figure is $T = 0.609495$, which is roughly equivalent to 8.76906Gyrs (0.64 times the life of the ΛCDM universe).

![Image](image_url)

FIG. 6. Behavior of $E(T)$ given by Eq. (43), for different values of Ω_ξ and for the particular values $\gamma = 1$, $\Omega_\Lambda = -4$ and $\Omega_\xi = 3$, according to restriction (42). We also plotted the ΛCDM model. The red dashed line represent the singularity time given by Eq. (47).

For the solution given by Eq. (43) we have, from Eq. (40), that

$$\gamma_{eff} = \frac{\gamma |\Delta_0| \sec\left(\frac{3}{4}\sqrt{|\Delta_0|}T - \arctan\left(\frac{2 - \Omega_0}{\sqrt{|\Delta_0|}}\right)\right)}{4 \left(\frac{\Omega_0}{2\gamma} - \frac{\sqrt{|\Delta_0|}}{2}\tan\left(\frac{3}{4}\sqrt{|\Delta_0|}T - \arctan\left(\frac{2 - \Omega_0}{\sqrt{|\Delta_0|}}\right)\right)\right)^2}.$$

(48)

Note that, if we substitute Eq. (46) (where $E=0$) in Eq. (48) we will get $\gamma_{eff} \to +\infty$, and if we substitute Eq. (47) we will get $\gamma_{eff} = \gamma$ (according to Eq. 40). The behavior of the above expression is presented in Fig. 7.

![Image](image_url)

FIG. 7. Behavior of $\gamma_{eff}(T)$, given by Eq. (43), for the solution with $m = 0$ and $\Delta_0 < 0$, for the particular values of $\gamma = 1$ and $\Omega_\Lambda = -4$. We use $\Omega_\xi = 3$ according to restriction (42). T_c and T_s are given by (46) and Eq. (47), respectively. We also plotted γ_{eff} for the ΛCDM model.

2. Cases for $m = 1$

In this case the solution is given by

$$T(E) = \frac{2\Omega_0 \sqrt{\Omega_\Lambda} \log\left(\frac{(1+|\Omega_\Lambda|)^{\frac{1}{2}\gamma}}{E}\right)}{3\sqrt{\Omega_\Lambda}(|\gamma^2 + \Omega_0^2 \Omega_\Lambda|)} + \frac{2\gamma \left(\arctan\left(\frac{\sqrt{\Omega_\Lambda}}{|\Omega_0|}\right) - \arctan\left(\frac{E}{\sqrt{\Omega_0 \Omega_\Lambda}}\right)\right)}{3\sqrt{\Omega_\Lambda}(|\gamma^2 + \Omega_0^2 \Omega_\Lambda|)}.$$

(49)

Note that $T \to \infty$, $\forall E$ when $\Omega_\xi = \gamma$, in other words, this case represents the de Sitter case given by Eq. (20), that is $H(t) = H_0$, $\forall t$, as it can be seen from Fig. 3. If $\Omega_\xi < \gamma$, $E = 1$ at $T = 0$ and goes to zero in a future time T_c given by

$$T_c = \frac{2\Omega_0 \sqrt{\Omega_\Lambda} \log\left(\frac{(1+|\Omega_\Lambda|)^{\frac{1}{2}\gamma}}{E}\right)}{3\sqrt{\Omega_\Lambda}(|\gamma^2 + \Omega_0^2 \Omega_\Lambda|)} + \frac{2\gamma \left(\arctan\left(\frac{\sqrt{\Omega_\Lambda}}{|\Omega_0|}\right)\right)}{3\sqrt{\Omega_\Lambda}(|\gamma^2 + \Omega_0^2 \Omega_\Lambda|)},$$

(50)

indicating that the scale factor takes a maximum value at this time, and goes to zero when $E \to -\infty$ at a time given by

$$T_s = \frac{2\Omega_0 \log\left(\frac{(1+|\Omega_\Lambda|)^{\frac{1}{2}\gamma}}{E}\right)}{3\sqrt{\Omega_\Lambda}(|\gamma^2 + \Omega_0^2 \Omega_\Lambda|)} + \frac{2\gamma \left(\arctan\left(\frac{\sqrt{\Omega_\Lambda}}{|\Omega_0|}\right)\right)}{3\sqrt{\Omega_\Lambda}(|\gamma^2 + \Omega_0^2 \Omega_\Lambda|)}.$$

(51)
Therefore, if \(a \to 0 \) and since \(E \to -\infty \), from Eq. (53) \(\rho \) diverge and from the Eos \(p \) also diverge, so this solution represents a universe with a Big-Crunch type future singularity (Type 0B) and \(\gamma_{eff} \) from Eq. (53) goes to infinity. It is important to note that since \(H \) and \(\dot{H} \) go to minus infinity for this singularity, then the Ricci scalar given by Eq. (22) also diverge. In Fig. 8 we have numerically found the behavior of \(E \) as a function of \(T \), given by Eq. (49). The value of time of singularity show in this figure is \(T_{s1} = 1.79003 \), which is roughly equivalent to 25.7539 Gyrs (1.87 times the life of the ΛCDM universe).

If \(\Omega_\xi > \gamma, E > 0 \) for all time and goes to infinite in a finite time given by

\[
T_{s2} = \frac{2\Omega_\xi \log \left((1+|\Omega_\Lambda|)^{1/2} \left(\frac{\Omega_\xi}{|\Omega_\Lambda|}\right)\right)}{\left(\gamma^2+\Omega_\xi^2\Omega_\Lambda\right)^{1/2}} + \frac{2\gamma \left(\arctan \left(\frac{1}{\sqrt{\Omega_\Lambda}}\right)\right) - \frac{\pi}{2}}{\sqrt{\Omega_\Lambda} \left(\gamma^2+\Omega_\xi^2\Omega_\Lambda\right)}.
\]

As in the case of a positive CC, Eq. (52) is always positive for any value of \(\Omega_\xi > \gamma \). Now, if we substitute \(\gamma = 1 \) (dust case) and if we use \(\Omega_\Lambda = -0.69 \) (to compare with the case of positive CC), then for \(\Omega_\xi > 1 \), \(\rho \) and \(p \) diverges and therefore, from Eq. (53) \(H \) and \(a \) diverges, i.e., these solutions present Big-Rip singularities because \(\gamma_{eff} \) from Eq. (53) is always phantom, as can be seen from Fig. 9. In this figure for \(\Omega_\xi = 1.5 \), we have a Big Rip singularity time of \(T = 0.315246 \), which is roughly equivalent to 4.53558 Gyrs (0.33 times the life of the ΛCDM universe).

It is important to note that since \(H \) and \(\dot{H} \) go to infinity for this singularity, then the Ricci scalar given by Eq. (22) also diverge.

C. Early-Time singularities for the case of \(\Lambda > 0 \)

In the case of early-singularities we explore the behavior of our exact solutions backward in time, taking \(\gamma = 4/3 \) (radiation) or even \(\gamma \leq 2 \) (quasi stiff fluid), assuming that some kind of dissipation is possible at these very early stages. As an initial condition for our solutions, we will assume that \(\Omega_{radiation} \) takes values very close to one, which is reasonable to assume during the radiation dominant era. In order to make comparisons we will consider an early evolution stage of the ΛCDM model. Our model is based on the composition of only two fluids, (i) dissipative matter (ii) dark energy modeled as a CC. According to our previous discussion, radiation is imposed as the dominant fluid in relation to the value of \(\Omega_\Lambda \), therefore from Eq. (4) for an arbitrary very early radiation time we can consider the value of \(\Omega_\Lambda = 10^{-6} \), in order to use the exact solution found and explore its behavior to the past. On the contrary, during the current DE era the actual value of radiation density, according to observation, is \(\Omega_{radiation} = 9.72 \times 10^{-5} \).

The below discussion correspond to the case of a dissipative radiation fluid. The initial condition chosen, \(T = H_0 t = 0 \), represents the arbitrary moment during the radiation dominance when \(\Omega_\Lambda = 10^{-6} \) and \(1 - \Omega_\Lambda = \Omega_{radiation} \) is very close to one. Here \(H_0 \) and \(a_0 = 1 \) are the Hubble parameter and the scale factor at this arbitrary moment and we keep the definition for \(E(T) \). Clarifying these new particular initial conditions, we can use the solutions previously found looking their behavior backward in time. The value of \(\Omega_\xi \) represents then the dimensionless density of dissipation at this initial time chosen above.
1. Case for $m = 0$

We have found that the only solution for a positive CC is given, in this case, when the discriminant of Eq. (15) is positive, but this solution presents a bouncing behavior as it was discussed in section IV A 1, so this solution describe a regular universe without an early singularity.

2. Case for $m = 1$

The general solution for an arbitrary γ for this case corresponds to the expression (26). The expression (27) corresponds a time when the energy density and E tends to infinity, which are the same conditions required to have an early Type 0A (Big-Bang) singularity, with the difference that, in this case, the scale factor tends to zero. We already have discussed analytically and graphically (see Fig. 2) Eq. (27), showing that is strictly positive, so this universe doesn’t have early singularities. We will later discuss in detail in section V the behavior of this solution at early times.

D. Early time singularity for the case of $\Lambda < 0$

1. Cases for $m = 0$

For this case the only solutions that present a singularities are those with a discriminant equal or less than zero; recall when $\Delta_0 > 0$ the solution has a Bouncing-type behavior given by (25).

(i) Case $\Delta_0 = 0$. We consider the behavior backwards in time of expression $E(T)$ and $a(T)$ given by (36) and (37), respectively. Even more, for this solution the time for singularity is given by (39), resulting in a scale factor of null value, and since H and \dot{H} go to infinity for this singularity, then the Ricci scalar given by Eq. (22) also diverge. For early time singularity we need to considered, from (45), $E \to +\infty$ to get

$$T_s = \frac{4}{3\gamma \sqrt{|\Delta_0|}} \times \left(-\frac{\pi}{2} + \arctan \left(\frac{2 - \Omega_\xi}{2 - \Omega_\Lambda} \right) \right). \quad (53)$$

From the previous expression ρ and p diverges, so this is a type 0A singularity (Big-Bang). The value of $\Omega_\Lambda = -10^{-6}$ leads to $\Omega_\xi < 3 \times 10^{-3}$ from Eq. (42). In Fig. 11 we present the behavior for E as a function of T, given by Eq. (43).

(ii) Case $\Delta_0 < 0$. We consider the behavior backwards in time of expression $E(T)$ and $a(T)$ given by Eqs. (43) and (44), respectively. Even more, for this solution the time for singularity is given by (47), resulting in a scale factor of null value, and since H and \dot{H} go to infinity for this singularity, then the Ricci scalar given by Eq. (22) also diverge. For early time singularity we need to considered, from (45), $E \to +\infty$ to get

$$T_s = \frac{4}{3\gamma \sqrt{|\Delta_0|}} \times \left(-\frac{\pi}{2} + \arctan \left(\frac{2 - \Omega_\xi}{2 - \Omega_\Lambda} \right) \right). \quad (53)$$

From the previous expression ρ and p diverges, so this is a type 0A singularity (Big-Bang). The value of $\Omega_\Lambda = -10^{-6}$ leads to $\Omega_\xi < 3 \times 10^{-3}$ from Eq. (42). In Fig. 11 we present the behavior for E as a function of T, given by Eq. (43).
We discuss in section IV B 2 that the time for singularity is given by (52) and is strictly positive, so this solution as in the case of positive CC doesn’t have a singularity in early stages either. A detailed discussion about this behavior will be done in section V.

V. SOFT-BIG BANG

As we have discussed in section IV C 2, the solution given by Eq. (26) (case with $m = 1$ and $\Omega_\Lambda > 0$), when $\Omega_\xi < \gamma$, describe a universe without initial singularity. In this particular solution, when $T \to -\infty$, we obtain that the Hubble parameter is given by Eq. (20), and the same behavior is obtained if we considered a negative CC as can be seen in Eq. (49). In Fig. 12 we have numerically found the behavior of E as a function of T.

Note that taking the limit $\Omega_\xi \to 0$ in Eq. (20) we obtain that $E \to \infty$, which is the behavior corresponding to a Big Bang singularity in the past. Hence, this solution turns into a ΛCDM model with a Big-Bang singularity when dissipation is neglected. The behavior of the scale factor is shown in Fig. 13.

At $T \to -\infty$, $H \to \gamma/(3\xi_0)$ and $\dot{H} \to 0$, so the Ricci scalar given by Eq. (22) takes the value

$$R = \frac{4\gamma^2}{3\xi^2},$$

indicating that there is no curvature singularity in this solution. In the infinity past $a = 0$ and H takes a constant value. If $\xi_0 \to 0$ the behavior of the standard model is recovered with $R \to \infty$ when $a = 0$ in some finite time in the past. The inclusion of dissipation without a CC led to these soft-Big Bang scenarios [55].

This solution is different from the soft-Big Bang studied in [55, 56] or from other singularity-free models these suggested by Israel & Rosen [99], or by Blome & Priester [100] where the universe begin from either by a tiny bubble in a homogeneous and isotropic quantum state with the diameter of a Planck length as an initial condition, or start from an Einstein static universe, with a radius determined by the value of Λ, before entering a never-ending period of de Sitter expansion. The solution discussed in [55] has the particularity of having a finite scale factor in the infinite past.

VI. CONCLUSIONS AND FINAL DISCUSSIONS

We have discussed throughout this work the late and early times behavior of the exact solutions of viscous ΛCDM models, looking for the conditions to have future and past singularities, following the classification given in [80, 81], and we have also found the possibility of solutions describing regular universes. In the late time model we consider a universe filled with dissipative CDM and CC and in the early time model we consider a universe filled with dissipative radiation and CC, taking into consideration two different expression for the dissipation, a constant bulk viscosity and a bulk viscosity proportional to the energy density. We extend this study for a dissipative fluid model with a negative CC. In the Table I we summarize the early and late time singularities obtained in each solutions and in Table II we summarize the asymptotic early and late behavior without singularities found for these models.

For a positive CC in the late time behavior a remarkable result of the solution with $m = 1$ and $\Omega_\xi < 1$ is that the solution behaves at late times like the de Sit-
ter model, regardless of the viscosity value. In this sense this solution is suitable to constraint with the cosmological data, knowing that it evolves very close to the ΛCDM model.

For a negative CC in the late time behavior a remarkable result for the solution with \(m = 1 \) is that the dissipation in the DM component can drive the accelerated expansion and even a future Big-rip singularity, avoiding the big crunch singularity, that occurs for a flat DM filed universe with negative CC.

It is important to mention that within the context of singularities in phantom DE, the little rip singularity are discussed in the literature \cite{77,101,102} under the context of having a universe in which the DE density increases without bound and the universe never reaches a finite-time for singularity. In our work these type of singularities don’t appear because we are not considering phantom DE and unlike this we have asymptotic de Sitter-like behaviors with values of \(E = 1 \) as can be seen the Table I. In the same way, let us note that our Big-rip Type I singularities also occurs with phantom-like behavior with a parameter of state given by Eq. \((33) \), but this type of phantom occur in the context of our total fluid composed of dissipative DM and CC. Our results show that it is possible to extend the classification of Big-rip singularity to models where the phantom EoS is effective and not necessarily appears in phantom DE models.

For a positive CC in the early time behavior a remarkable result is that we only have universes without singularities. A special case appears for the solution with \(m = 1 \) which represents scenarios without singularity as we discussed in section \(\Box \). For this particular solution, beyond not having singularity, is that it’s behavior is very similar to the standard model for very small values of viscosity, in addition to being different from other singularity-free models \cite{55,56,59,100}. This behavior is independent of the sign of the CC. In \cite{54} a similar behavior was obtained without the inclusion of the CC. In our solution a CC is considered and the soft Big-bang is characterized by having a zero scale factor at a very past time, which is different from the obtained in \cite{55}.

For a negative CC in the early time behavior a remarkable result is that the singularities only appears in the case with \(m = 0 \), and the constraints in the parameters show that the singularity required values of \(Ω_ξ \) that depend on the values of the CC. So, despite the fact that in early times its contribution it is very small, its presence is required for the existence of this singularity.

Our results indicate that the inclusion of dissipation in the ΛCDM model leads to solutions where the Big Rip singularities appears without a phantom DE and the avoidance of Big Bang singularities is also possible. Therefore, the dissipation mechanism, which is a more realistic description of cosmic fluid, can alleviate the theoretical problems of phantom DE and initial singularities, and also we can obtain solutions whose behavior is very similar to the standard ΛCDM model.

Solution	Late-Time	Early-Time	Condition
Type 0B	\(Ω_ξ > 2 \)	\(Ω_ξ > 2 \)	\(γ_{eff} < 0 \)
Type 0A	\(Ω_ξ < \frac{8}{3} \)	\(Ω_ξ < \frac{8}{3} \)	\(γ_{eff} < 0 \)
Type 0B	\(Ω_ξ < \frac{8}{3} \)	\(Ω_ξ < \frac{8}{3} \)	\(γ_{eff} < 0 \)
Type 0A	\(Ω_ξ < \frac{8}{3} \)	\(Ω_ξ < \frac{8}{3} \)	\(γ_{eff} < 0 \)
TABLE II. Classification of the asymptotic behavior for early and late times without singularities.

Solution	Late-Time	Early-Time	Condition
m=0 and Δ₀ > 0	$\frac{\Omega}{\gamma} + \frac{\sqrt{\Delta_0}}{2}$	1 < $\frac{\gamma}{2}$ < 2, $\Omega \xi_0 > 0$	- $\left(\frac{\Omega}{\gamma}\right)^2 < \Omega_A < 0$
	$\frac{\Omega}{\gamma} - \frac{\sqrt{\Delta_0}}{2}$	1 < $\frac{\gamma}{2}$ < 2, $\Omega \xi_0 > 0$	- $\left(\frac{\Omega}{\gamma}\right)^2 < \Omega_A < 0$
m=0 and Δ₀ = 0	$E_{ds} = 1$	$E_{ds} = 1$	$\Omega_\xi = 2\gamma$, $\Omega_\Lambda = -1$
	$E_{ds} = \frac{\Omega}{\gamma}$	$\Omega_\xi < 2$, $\Omega_\Lambda = -\left(\frac{\Omega}{\gamma}\right)^2$	
m=1 and $\Omega_\Lambda > 0$	$E_{ds} = 1$	$E_{ds} = 1$	$\Omega_\xi = 1$
	$E_{ds} = \sqrt{\Omega_\Lambda}$	$\Omega_\xi < 1$	
Soft-Big-Bang	$E_{ds} = \frac{4}{3\Omega_\xi}$	$\Omega_\xi < \frac{4}{3}$	
m=1 and $\Omega_\Lambda < 0$	$E_{ds} = 1$	$E_{ds} = 1$	$\Omega_\xi = 1$
	$E_{ds} = \frac{4}{3\Omega_\xi}$	$\Omega_\xi < \frac{4}{3}$	

ACKNOWLEDGMENTS

Norman Cruz acknowledges the support of Universidad de Santiago de Chile (USACH), through Proyecto DICYT N° 042131CM, Vicerrectoría de Investigación, Desarrollo e Innovación. Esteban González acknowledges the support of Dirección de Investigación y Postgrado at Universidad de Aconcagua. Jose Jovel acknowledges ANID-PFCHA/Doctorado Nacional/2018-21181327.
[1] Adam G. Riess et. al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. The Astronomical Journal, Volume 116, Issue 3, pp. 1009-1038, (1998).

[2] S. Perlmutter et. al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys.J.517:565-586,1999.

[3] N. Aghanim et. al. Planck 2018 results. vi. cosmological parameters. A&A 641, A6 (2020).

[4] Joseph Ryan Shulei Cao and Bharat Ratra. Using pantheon and des supernova, baryon acoustic oscillation, and hubble parameter data to constrain the hubble constant, dark energy dynamics, and spatial curvature. MNRAS, 504, 300-310 (2021).

[5] Shadab Alam et. al. The clustering of galaxies in the completed sdss-iii baryon oscillationspectroscopic survey: cosmological analysis of the dr12 galaxy sample. Mon.Not.Roy.Astron.Soc. 470 (2017) 3, 2617-2652.

[6] M. Tegmark et al. Cosmological parameters from SDSS and WMAP. Phys.Rev.D69:103501,2004.

[7] G. Hinshaw et al. Nine-year wilkinson microwave anisotropy probe (wmap) observations: Cosmological parameter results. Astrophys.J.Suppl. 208 (2013) 19.

[8] Martiros Khurshudyan. On the phenomenology of an accelerated large-scale universe. Symmetry 8 (2016) 12, 110.

[9] Varun Sahni. Dark matter and dark energy. Lect.NotesPhys.653:141-180,2004.

[10] Shin’ichi Nojiri Sergei D. Odintsov Kazuhiaru Bamba, Salvatore Capozziello. Dark energy cosmology: the equivalent description via different theoretical models and cosmography tests. Astrophysics and Space Science (2012) 342:155-228.

[11] Shin’ichi Nojiri and Sergei D. Odintsov. Introduction to modified gravity and gravitational alternative for dark energy. eConf C0602061 (2006) 06, Int.J.Geom.Meth.Mod.Phys. 4 (2007) 115-146.

[12] Fabian Schmidt Austin Joyce, Lucas Lombriser. Dark energy versus modified gravity. Annu. Rev. Nucl. Part. Sci. 66:95-122 (2016).

[13] Timothy Clifton, Pedro G. Ferreira, Antonio Padilla, and Constantin Skordis. Modified gravity and cosmology. Phys.Rept. 513 (2012) 1-189.

[14] V.K. Oikonomou S. Nojiri, S.D. Odintsov. Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution. Phys.Rept. 692 (2017) 1-104.

[15] Sean M. Carroll, William H. Press, and Edwin L. Turner. The cosmological constant. Annual Rev. Astron. Astrophys., Vol. 30, p. 499-542 (1992).

[16] Steven Weinberg. The cosmological constant problem. Rev.Mod.Phys. 61 (1989) 1-23.

[17] Ivaylo Zlatev, Li-Min Wang, and Paul J. Steinhardt. Quintessence, cosmic coincidence, and the cosmological constant. Phys.Rev.Lett. 82 (1999) 896-899.

[18] H.E.S. Velten, R.F. vom Marttens, and W. Zimdahl. Aspects of the "cosmological coincidence problem". Eur.Phys.J. C74 (2014) 11, 3160.

[19] H.Mohseni Sadjadi(Tehran U.) and M. AliMohammadi(Tehran U.). Cosmological coincidence problem in interactive dark energy models. Phys.Rev.D 74 (2006) 103007.

[20] Adam G. Riess, Stefano Casertano, Wenlong Yuan, Lucas M. Macri, and Dan Scolnic. Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond CDM. Astrophys. J., 876 (1):85, 2019. doi:10.3847/1538-4357/ab1422.

[21] Judd D. Bowman, Alan E. E. Rogers, Raul A. Monsalve, Thomas J. Mozdzzen, and Nivedita Mahesh. An absorption profile centred at 78 megahertz in the sky-averaged spectrum. Nature volume 555, pages67–70 (2018).

[22] James R. Wilson, Grant J. Mathews, and George M. Fuller. Bulk viscosity, decaying dark matter, and the cosmic acceleration. Phys.Rev.D75:043521,2007.

[23] C. M. S. Barbosa, H. Velten, J. C. Fabris, and Rudnei O. Ramos. Assessing the impact of bulk and shear viscosities on large scale structure formation. Phys. Rev. D 96, 023527 (2017).

[24] Arindam Mazumdar Sampurn Anand, Prakrut Chaubal and Subhendu Mohanty. Cosmic viscosity as a remedy for tension between planck and lss data. JCAP 11 (2017) 005.

[25] Norman Cruz Miguel Cruz and Samuel Lepe. Accelerated and decelerated expansion in a causal dissipative cosmology. Phys. Rev. D 96, 124020 (2017).

[26] J.C. Fabris, S.V.B. Goncalves, and R. de Sa Ribeiro. Bulk viscosity driving the acceleration of the universe. Gen.Rel.Grav.38:495-506.2006.

[27] Baojiu Li and John D. Barrow. Does bulk viscosity create a viable unified dark matter model? Phys.Rev.D79:103521,2009.

[28] W.S. Hipólito-Ricaldi, H.E.S. Velten, and W. Zimdahl. Viscous dark fluid universe. Phys.Rev.D82:063507,2010.

[29] Ulises Nucamendi Arturo Avelino. Can a matter-dominated model with constant bulk viscosity drive the accelerated expansion of the universe? JCAP 0904:006,2009.

[30] Ulises Nucamendi Arturo Avelino. Exploring a matter-dominated model with bulk viscosity to drive the accelerated expansion of the universe. JCAP 1008:009,2010.

[31] Athira Sasidharan and Titus K. Mathew. Bulk viscous matter and recent acceleration of the universe. EPJ C 75 348 2015.

[32] Athira Sasidharan and Titus K Mathew. Phase space analysis of bulk viscous matter dominated universe. JHEP 1606 (2016) 138.

[33] Titus K Mathew Jerin Mohan N D, Athira Sasidharan. Bulk viscous matter and recent acceleration of the universe based on causal viscous theory. The European Physical Journal C volume 77, Article number: 849 (2017).

[34] Guillermo Palma Norman Cruz, Esteban González. Exact analytical solution for an israel–stewart cosmology. Gen.Rel.Grav. 52 (2020) 6, 62.

[35] Guillermo Palma Norman Cruz, Esteban González. Testing dissipative dark matter in causal thermodynamictics. Mod.Phys.Lett.A 36 (2021) 06, 2150032.

[36] Jitesh R. Bhatt, Arvind Kumar Mishra, and Alekha C. Nayak. Viscous dark matter and 21 cm cosmology. Phys. Rev. D 100, 063539 (2019).
[37] Emilio Elizalde, Matiрос Khurshudyan, Sergei D. Odintsov, and Ratbay Myrzakulov. An analysis of the ν_0 tension problem in a universe with a viscous dark fluid. Phys.Rev.D 102 (2020) 12, 123501.

[38] Iver Håkon Brevik and David Normann. Could the hubble tension be resolved by bulk viscosity? arXiv:2107.13533 [gr-qc].

[39] Iver Brevik, Oyvind Grøn, Jaume de Haro, Sergei D. Odintsov, and Emmanuel N. Saridakis. Viscous cosmology for early- and late-time universe. Int.J.Mod.Phys. D26 (2017) 1730024.

[40] John D. Barrow. String-driven inflationary and deflationary cosmological models. Nucl.Phys.B 310 (1988) 743-763.

[41] L. D. Landau and E. M. Lifshitz. Chapter xxvii fluctuations in fluid dynamics. Fluid Mechanics Volume 6, (1959) Pages 523-529.

[42] Winfried Zimdahl and Diego Pavón. Cosmology with adiabatic matter creation. Int.J.Mod.Phys.D 3 (1994) 327-330.

[43] M. A. Schweizer. Transient and transport coefficients for radiative fluids. Astrophysical Journal, Part 1, vol. 258, July 15, 1982, p. 798-811.

[44] N. Udey and W. Israel. ‘General relativistic radiation transfer: the 14-moment approximation. Monthly Notices of the Royal Astronomical Society 199(4) 1137-1147.

[45] Winfried Zimdahl. ‘understanding’ cosmological bulk viscosity. Mon.Not.Roy.Astron.Soc. 289 (1996) 1239.

[46] Stefan Hofmann, Dominik J Schwarz, and Horst Stoecker. Damping scales of neutralino cold dark matter. Physical Review D, 64(8):083507, 2001.

[47] R Foot and S Vagnozzi. Dissipative hidden sector dark matter. Physical Review D, 91(2):023512, 2015.

[48] Robert Foot and Sunny Vagnozzi. Solving the small-scale structure puzzles with dissipative dark matter. Journal of Cosmology and Astroparticle Physics, 2016 (07):013, 2016.

[49] Diego Blas, Stefan Floerchinger, Mathias Garny, Nikolao Tetrakis, and Urs Achim Wiedemann. Large scale structure from viscous dark matter. Journal of Cosmology and Astroparticle Physics, 2015(II):049, 2015.

[50] Carl Eckart. The thermodynamics of irreversible processes. iii. relativistic theory of the simple fluid. Phys. Rev. 58, 919 (1940).

[51] Werner Israel. Nonstationary irreversible thermodynamics: A causal relativistic theory. Annals Phys. 100 (1976) 310-331.

[52] Ingo Müller. Zum paradoxen der warmeleitungstheorie. Z.Phys. 198 (1967) 329-344.

[53] W. Israel and J. M. Stewart. Transient relativistic thermodynamics and kinetic theory. Annals Phys. 118 (1979) 341-372.

[54] W. Israel and J. M. Stewart. On transient relativistic thermodynamics and kinetic theory. ii. R. Soc. Lond. A. 357,59-75 (1977).

[55] George L. Murphy. ‘Big-bang model without singularities. Phys.Rev.D 8 (1973) 4231-4233.

[56] A. Hernández-Almada. Cosmological test on viscous bulk models using hubble parameter measurements and type ia supernovae data. Eur.Phys.J.C 79 (2019) 9, 751.

[57] Jinwen Hu and Huan Hu. Viscous universe with cosmological constant. Eur.Phys.J.Plus 135 (2020) 9, 718.

[58] Norman Cruz Mauricio Cataldo and Samuel Lepe. Viscous dark energy and phantom evolution. Phys.Lett.B619:5-10,2005.

[59] I. Brevik and O. Gorbunova. Dark energy and viscous cosmology. Gen.Rel.Grav. 37 (2005) 2039-2045.

[60] R. Maartens. Dissipative cosmology. Class.Quant.Grav. 12 (1995) 1455-1465.

[61] Norman Cruz, Esteban González, Samuel Lepe, and Diego Sáez-Chillón Gómez. Analysing dissipative effects in the Λcdm model. JCAP 12 (2018) 017.

[62] L. Herrera-Zamorano, A. Hernández-Almada, and Miguel A. García-Aspeitia. Constraints and cosmography of Λcdm in presence of viscosity. EPJ.C. 80, 637 (2020).

[63] Benjamin L’Huillier David Polarski Rodrigo Calderón, Radouane Gannouji. Negative cosmological constant in the dark sector? Phys. Rev. D 103, 023526 (2021).

[64] Özgür Akarsu, John D. Barrow, Luis A. Escamilla, and J. Alberto Vazquez. Graduated dark energy: Observational hints of a spontaneous sign switch in the cosmological constant. Phys. Rev. D 101, 063528 (2020).

[65] Sunny Vagnozzi Luca Visinelli and Ulf Danielsson. Revisiting a negative cosmological constant from low-redshift data. Symmetry 11 (2019) 8, 1035.

[66] Edvard Mörtsell and Suhail Dhawan. Does the hubble constant tension call for new physics? JCAP 09 (2018) 025.

[67] Gong-Bo Zhao Yuting Wang, Levon Pogosian and Alex Zucca. Evolution of dark energy reconstructed from the latest observations. Astrophys.J.Lett. 869 (2018) L8.

[68] Koushik Dutta, Anirban Roy, Itchika, Anjan A. Sen, and M. M. Sheikh-Jabbari. Beyond Λcdm with low and high redshift data: implications for dark energy. Gen.Rel.Grav. 52 (2020) 2, 15.

[69] Abdolali Banihashemi, Nima Khoravi, and Amir H. Shirazi. Ups and downs in dark energy: phase transition in dark sector as a proposal to lessen cosmological tensions. Phys. Rev. D 101, 123521 (2020).

[70] Abdolali Banihashemi, Nima Khoravi, and Amir H. Shirazi. Ginzburg-landau theory of dark energy: A framework to study bothtemporal and spatial cosmological tensions simultaneously. Phys. Rev. D 99, 083509 (2019).

[71] Yun-Song Piao Gen Ye. Is the hubble tension a hint of ads phase around recombination? Phys.Rev.D 101 (2020) 8, 083507.

[72] Radu Roiban Josif Bena, Joseph Polchinski. Hidden symmetries of the ads(5) x s**5 superstring. Phys.Rev.D 69 (2004) 046002.

[73] R.R. Metsaev and Arkady A. Tseytlin. Type iib superstring action in ads(5) x s**5 background. Nucl.Phys.B 533 (1998) 109-126.

[74] Romuald A. Janik. The ads(5) x s**5 superstring worldsheet s-matrix and crossing symmetry. Phys.Rev.D 73 (2006) 086006.

[75] Özgür Akarsu, Suresh Kumar, Emre Ozulker, and J. Alberto Vazquez. Relaxing cosmological tensions with a sign switching cosmological constant. Phys. Rev. D 104, 123512 (2021).

[76] O. Cornejo-Pérez and J. A. Belinchón. Exact solutions through factorization. arXiv:2107.13533

[77] Özgür Akarsu, Suresh Kumar, Emre Ozulker, and J. Alberto Vazquez. Relaxing cosmological tensions with a sign switching cosmological constant. Phys. Rev. D 104, 123512 (2021).
R. R. Caldwell. A phantom menace? cosmological consequences of a dark energy component with super-negative equation of state. Phys.Lett.B545:23-29,2002.

A. Rest et. al. Cosmological constraints from measurements of type ia supernovae discovered during the first 1.5 yr of the pan-starrs1 survey. Astrophys.J. 795 (2014) 1, 44.

Brett McInnes. The ds/cft correspondence and the big smash. JHEP 0208:029,2002.

Shin'ichi Nojiri, Sergei D. Odintsov, and Shinji Tsujikawa. Properties of singularities in (phantom) dark energy universe. Phys.Rev.D71:063004,2005.

Pradov Martín-Moruno Mariam Bouhmadi-López, Claus Kiefer. Phantom singularities and their quantum fate: general relativity and beyond—a cantata cost action topic. Gen.Rel.Grav. 51 (2019) 10, 135.

Esteban González Felipe Contreras, Norman Cruz. Generalized equations of state and regular universes. J.Phys.Conf.Ser. 720 (2016) 1, 012014.

Félice Contreras, Norman Cruz, Emilio Elizalde, Esteban González, and Sergei Odintsov. Linking little rip cosmologies with regular early universes. Phys.Rev.D 98 (2018) 12, 123520.

George F.R. Ellis, Jeff Murugan, and Christos G. Tsagas. The emergent universe: An explicit construction. Class.Quant.Grav.21:233-250,2004.

E. Rebhan. 'soft bang' instead of 'big bang': Model of an inflationary universe without singularities and with eternal physical past time. Astron.Astrophys. 353 (2000) 1-9.

M. Novello and E. Elbaz. Soft big bang model induced by nonminimal coupling. Nuovo Cim.B 109 (1994) 741-746.

I. Brevik, E. Elizalde, S. Nojiri, and S.D. Odintsov. Viscous little rip cosmology. Phys.Rev.D 84 (2011) 103508.

Steven Weinberg and R. H. Dicke. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. ISBN 9780471925675, 9780471925675,1973.

Robert R. Caldwell, Marc Kamionkowski, and Nevin N. Weinberg. Phantom energy and cosmic doomsday. Phys.Rev.Lett. 91 (2003) 071301.

Pedro F. González-Díaz. k-essential phantom energy: doomsday around the corner? Phys.Lett. B586 (2004) 1-4.

M. Sami and Alexey Toporensky. Phantom field and the fate of universe. Mod.Phys.Lett.A19:1509,2004.

Luis P. Chimento and Ruth Lazkoz. On big rip singularities. Mod.Phys.Lett. A19 (2004) 2479-2484.

Robert J. Scherrer. Phantom dark energy, cosmic doomsday, and the coincidence problem. Phys.Rev. D71 (2005) 063519.

John D. Barrow. Sudden future singularities. Class.Quant.Grav.21:L79-L82,2004.

Barbara Sandhöfer Mariam Bouhmadi-López, Claus Kiefer and Paulo Vargas Moniz. On the quantum fate of singularities in a dark-energy dominated universe. Phys.Rev.D79:124035,2009.

Hrvoje Stefancic. "expansion" around the vacuum equation of state - sudden future singularities and asymptotic behavior. Phys.Rev.D71:084024,2005.

Claus Kiefer Mariam Bouhmadi-López and Manuel Krämer. Resolution of type iv singularities in quantum cosmology. Phys. Rev. D 89, 064016 (2014).

P. A. R. Ade et. al. Planck 2013 results. xvi. cosmological parameters. Astron.Astrophys. 571 (2014) A16.

Israelit M. and Rosen N. A singularity-free cosmological model in general relativity. Astrophys. J. 342, 627 (1989).

Blome H.J. and Priester W. Big bounce in the very early universe. Astron. Astrophys. 250, 43 (1991).

Paul H. Frampton, Kevin J. Ludwick, and Robert J. Scherrer. The little rip. Phys.Rev.D84:063003,2011.

Paul H. Frampton, Kevin J. Ludwick, Shin’ichi Nojiri, Sergei D. Odintsov, and Robert J. Scherrer. Models for little rip dark energy. Phys.Lett.B 708 (2012) 204-211.