The RAppArmor Package: Enforcing Security Policies in R Using Dynamic Sandboxing on Linux

Jeroen Ooms
UCLA Department of Statistics

Abstract

The increasing availability of cloud computing and scientific super computers brings great potential for making R accessible through public or shared resources. This allows us to efficiently run code requiring lots of cycles and memory, or embed R functionality into e.g. systems and web services. However some important security concerns need to be addressed before this can be put in production. The prime use case in the design of R has always been a single statistician running R on the local machine through the interactive console. Therefore the execution environment of R is entirely unrestricted, which could result in malicious behavior or excessive use of hardware resources in a shared environment. Properly securing an R process turns out to be a complex problem. We describe various approaches and illustrate potential issues using some of our personal experiences in hosting public web services. Finally we introduce the RAppArmor package: a Linux based reference implementation for dynamic sandboxing in R on the level of the operating system.

Keywords: R, Security, Linux, Sandbox, AppArmor.

1. Security in R: Introduction and motivation

The R project for statistical computing and graphics (R Development Core Team 2012) is currently one of the primary tool-kits for scientific computing. The software is widely used for research and data analysis in both academia and industry, and is the de-facto standard among statisticians for the development of new computational methods. With support for all major operating systems, a powerful standard library, over 3000 add-on packages and a large active community, it is fair to say that the project has matured to a production-ready computation tool. However, practices in statistical computation have changed since the initial design of R in 1993 (Ihaka 1998). Internet access, public cloud computing (Armbrust et al. 2010), live and open data and scientific super computers are transforming the landscape of data analysis. This is only the beginning. Sharing of data, code and results on social computing platforms will likely become an integral part of the publication process (Stefanski et al. 2013). This could address some of the hardware challenges, but also contribute towards reproducible research and further socialize data analysis, i.e. facilitate learning, collaboration and integration. These developments shift the role of statistical software towards more general purpose computational back-ends, powering systems and applications with embedded analytics and visualization.

However, one reason developers might still be reluctant to build on R is concerns regarding
security and management of shared hardware resources. Reliable software systems require components which behave predictably and cannot be abused. Because R was primarily designed with the local user in mind, security restrictions and unpredictable behavior have not been considered a major concern in the design of the software. Hence, these problems will need to be addressed somehow before developers can feel comfortable making R part of their infrastructure, or convince administrators to expose their facilities to the public for R based services. It is our personal experience that the complexity of managing security is easily underestimated when designing stacks or systems that build on R. Some of the problems are very domain specific to scientific computing, and make embedding R quite different from embedding other software environments. Properly addressing these challenges can help facilitate wider adoption of R as a general purpose statistical engine.

1.1. Security when using contributed code

Building systems on R has been the main motivation for this research. However, security is a concern for R in other contexts as well. As the community is growing rapidly, relying on social courtesy in contributed code becomes more dangerous. For example, on a daily basis, dozens of packages and package updates submitted to the Comprehensive R Archive Network (CRAN) (Ripley 2011). These packages contain code written in R, C, Fortran, C++, Java, etc. It is unfeasible for the CRAN maintainers to do a thorough audit of the full code that is submitted, every time. Some packages even contain pre-compiled Java code for which the source is not included. Furthermore, R packages are not signed with a private key as is the case for e.g. packages in most Linux distributions, which makes it hard to verify the identity of the author. As CRAN packages are automatically build and installed on hundreds, possibly thousands of machines around the world, they form an interesting target for abuse. Hence there is a real danger of packages containing malicious code making their way unnoticed into the repositories. Risks are even greater for packages distributed through channels without any form of code review, for example by email or through the increasingly popular Github repositories (Torvalds and Hamano 2010; Dabbish, Stuart, Tsay, and Herbsleb 2012).

In summary, it is not overly paranoid of the R user to be a bit cautious when installing and running contributed code downloaded from the internet. However, things don’t have to be as critical as described above. Controlling security is a good practice, even when there are no immediate reasons for concern. Some users simply might want to prevent R from accidentally erasing files or interfering with other activities on the machine. Making an effort to ensure R is running safely with no unnecessary privileges can be reassuring to both user and system administrator, and might one day prevent a lot of trouble.

1.2. Sandboxing the R environment

This paper explores some of the potential problems, along with approaches and methods of securing R. Different aspects of security in the context of R are illustrated using personal experiences and examples of bad or malicious code. We will explain how untrusted code can be executed inside a sandboxed process. Sandboxing in this context is a somewhat informal term for creating an execution environment which limits capabilities of harmful and undesired behavior. As it turns out, R itself is not very suitable for implementing such access control policies, and the only way to properly enforce security is by leveraging features from the operating system. To exemplify this approach, an implementation based on AppArmor is
provided which can be used on Linux distributions as the basis for a sandboxing toolkit. This package is used throughout the paper to demonstrate one way of addressing issues.

However, we want to emphasize that we don’t claim to have solved the problem. This paper mostly serves an introduction to security for the R community, and hopefully creates some awareness that this is a real issue moving forward. The RAppArmor package is one approach and a good starting point for experimenting with dynamic sandboxing in R. However it mostly serves as a proof of concept of the general idea of confining and controlling an R process. The paper describes examples of use cases, threats, policies and anecdotes to give the reader a sense of what is involved with this topic. Without any doubt, there are concerns beyond the ones mentioned in this paper, many of which might be specific to certain applications or systems. We hope to invoke a discussion in the community about potential security issues related to using R in different scenarios, and encourage those comfortable with other platforms or who use R for different purposes to join the discussion and share their concerns, experiences and solutions.

2. Use cases and concerns of sandboxing R

Let us start by taking a step back and put this research in perspective by describing some concrete use cases where security in R could be a concern. Below three simple examples of situations in which running R code in a sandbox can be useful. The use cases are ordered by complexity and require increasingly advanced sandboxing technology.

Running untrusted code

Suppose we found an R package in our email or on the internet that looks interesting, but we are not quite sure who the author is, and if the package does not contain any malicious code. The package is too large for us to inspect all of the code manually, and furthermore it contains a library in a foreign language (e.g. C++, Fortran) for which we lack the knowledge and insight to really understand its implications. Moreover, programming style (or lack thereof) of the author can make it difficult to assess what exactly is going on (IOCCC 2012). Nevertheless we would like to give the package a try, but without exposing ourselves to the risk of potentially jeopardizing the machine.

One solution would be to run untrusted code on a separate or virtual machine. We could either install some local virtualization software, or rent a VPS/cloud server to run R remotely, for example on Amazon EC2. However this is somewhat cumbersome and we will not have our regular workflow available: in order to put the package to the test on our own data, we first need to copy our data, scripts, files and package library, etc. Some local virtualization software can be configured for read-only sharing of resources between host and guest machine, but we would still need separate virtual machines for different tasks and projects. In practice, managing multiple machines is a bit unpractical and not something that we might want to do on a daily basis. It would be more convenient if we could instead sandbox our regular R environment for the duration of installing and using the new package with a tailored security policy. If the sandbox is flexible and unobtrusive enough not to interfere with our daily workflow, we could even make a habit out of using it each time we use contributed code (which to most users means every day).
Shared resources

A second use case could be a scenario where multiple users are sharing a single machine. For example, a system administrator at a university is managing a large computing server and would like to make it available to faculty and students. This would allow them to run R code that requires more computing power than their local machine can handle. For example, a researcher might want to do a simulation study, and fit a complex model a million times on generated datasets of varying properties. On her own machine this would take months to complete, but the super computer can finish the job overnight. The administrator would like to set up a web service for this and other researchers to run such R scripts. However he is worried about users interfering with each others work, or breaking anything on the machine. Furthermore he wants to make sure that system resources are allocated in a fair way such that no single user can consume all memory or cpu on the system.

Embedded systems and services

There have numerous efforts to facilitate integration of R functionality into 3rd party systems, both for open source and proprietary purposes. Major commercial vendors like Oracle, IBM and SAS have included R interfaces in their products. Examples of open source interfaces from popular general purpose languages are RInside (Eddelbuettel and Francois 2011), which embeds R into C++ environments, and JRI which embeds R in Java software (Urbanek 2011, 2013a). Similarly, rpy2 (Moreira and Warnes 2006; Gautier 2008) provides a Python interface to R, and RInRuby is a Ruby library that integrates the R interpreter in Ruby (Dahl and Crawford 2009). Littler provides hash-bang (i.e. script starting with #!/some/path) capability for R (Horner and Eddelbuettel 2011). The Apache2 module rApache (mod_R) (Horner 2011) makes it possible to run R scripts from within the Apache2 web server. Heiberger and Neuwirth (2009) provide a series of tools to call R from DCOM clients on Windows environments, mostly to support calling R from Microsoft Excel. Finally, RServe is TCP/IP server which provides low level access to an R session over a socket (Urbanek 2013b).

The third use case originates from these developments: it can be summarized as confining and managing R processes inside of embedded systems and services. This use case is largely derived from our personal needs: we are using R inside various systems and web services to provide on-demand calculating and plotting over the internet. These services need to respond quickly and with minimal overhead to incoming requests, and should scale to serve many jobs per second. Furthermore the systems need to be stable, requiring that jobs should always return within a given timeframe. Depending on user and the type of job, different security restrictions might be appropriate. Some services specifically allow for execution of arbitrary R code. Also we need to dynamically enforce limits on the use of memory, processors and disk space on a per process basis. These requirements demand a more flexible and finer degree of control over the process privileges and restrictions than the first two use cases. It encouraged us to explore more advanced methods than the conventional tools and has been the most central motivation of this research.

2.1. System privileges and hardware resources

The use cases described above outline motivations and requirements for an R sandbox. Two inter-related problems can be distinguished. The first one is preventing system abuse, i.e.
use of the machine for malicious or undesired activity, or completely compromising the machine. The second problem is managing hardware resources, i.e. preventing excessive use by constraining the amount of memory, CPU, etc that a single user or process is allowed to consume.

System abuse

The R console gives the user direct access to the operating system and does not implement any privilege restrictions or access control policies to prevent malicious use. In fact, some of the basic functionality in R assumes quite profound access to the system, e.g. read access to system files, or the privilege of running system shell commands. However, running untrusted R code without any restrictions can get us in serious trouble. For example, the code could call the `system()` function from where any shell commands can be executed. But also innocent looking functions like `read.table` can be used to extract sensitive information from the system, e.g. `read.table("/etc/passwd")` lists all users on the system or `readLines("/var/log/syslog")` exposes system log information.

Even an R process running as a non-privileged user can do a lot of harm. Potential perils include code containing or downloading a virus or security exploit, or searching the system for sensitive personal information. Appendix B.2 demonstrates a hypothetical example of a simple function that scans the home directory for documents containing credit card numbers.

Another increasing global problem are viruses which make the machine part of a so called “botnet”. Botnets are large networks of compromised machines (“bots”) which are remotely controlled to used for illegal activities (Abu Rajab, Zarfoss, Monrose, and Terzis 2006). Once infected, the botnet virus connects to a centralized server and waits for instructions from the owner of the botnet. Botnets are mostly used to send spam or to participate in DDOS attacks: centrally coordinated operations in which a large number of machines on the internet is used to flood a target with network traffic with the goal of taking it down by overloading it (Mirkovic and Reiher 2004). Botnet software is often invisible to the user of an infected machine and can run with very little privileges: simple network access is sufficient to do most of its work.

When using R on the local machine and only running our own code, or from trusted sources, these scenarios might sound a bit far fetched. However, when running code downloaded from the internet or exposing systems to the public, this is a real concern. Internet security is a global problem, and there are a large number of individuals, organizations and even governments actively employing increasingly advanced and creative ways of gaining access to protected infrastructures. Especially servers running on beefy hardware or fast connections are attractive targets for individuals that could use these resources for other purposes. But also servers and users inside large companies, universities or government institutions are frequently targeted with the goal of gathering confidential information. This last aspect seems especially relevant, as R is used frequently in these types of organizations.

Resource restrictions

The other category of problems is not necessarily related to deliberate abuse, and might even arise completely unintentionally. It involves proper management, allocation and restricting of hardware.

It is fair to say that R can be quite greedy with system resources. It is easy to run a command
which will consume all of the available memory and/or CPU, and does not finish executing until manually terminated. When running R on the local machine through the interactive console, the user will quickly recognize a function call that is not returning timely or is making the machine unresponsive. When this happens, we can easily interrupt the process prematurely by sending a SIGINT, i.e. pressing CTRL+C in Linux or ESC in Windows. If this doesn’t work we can open the task manager and tell the operating system to kill the process, and if worst comes to worst we can decide to reboot our machine.

However, when R is embedded in a system, the situation is more complicated and we need to cover these scenarios in advance. If an out-of-control R job is not properly detected and terminated, the process might very well run indefinitely and take down our service, or even the entire machine. This has actually been a major problem that we personally experienced in an early implementation of a public web service for mixed modelling (Ooms 2010) which uses the lme4 package (Bates, Maechler, and Bolker 2011). What happened was that users could accidentally specify a variable with many levels as the grouping factor. This causes the design matrix to blow up even on a relatively small dataset, and decompositions will take forever to complete. To make things worse, lme4 uses a lot of C code which does not respond to time limits set by R’s setLimit function. Appendix B.4 contains a code snippet that simulates this scenario. When this would happen, the only way to get things up and running again was to manually login to the server and reset the application.

Unfortunately this example is not an exception. The behavior of R can be unpredictable, which is an aspect easily overlooked by (non-statistician) developers. When a system calls out to e.g. an SQL or PHP script, the procedure usually runs without any problems and the processing time is proportional to the size of the data, i.e. the number of records returned by SQL. However, in an R script many things can go wrong, even though the script itself is perfectly fine. Algorithms might not converge, data might be rank-deficient, or missing values throw a spanner in the works. Statistical computing is full of such intrinsic edge-cases and unexpected caveats. Using only tested code or predefined services does not entirely guarantee smooth and timely completion of R jobs, especially if the data is dynamic. When embedding R in systems or shared facilities, it is important that we acknowledge this facet and have systems in place to manage jobs and mitigate problems without manual intervention.

3. Various approaches of confining R

The current section introduces several approaches of securing and sandboxing R, with their advantages and limitations. They are reviewed in the context of our use cases, and evaluated on how they address the problems of system abuse and restricting resources. The approaches are increasingly low-level: they represent security on the level of the application, R software itself and operating system respectively. As will become clear, we are leaning towards the opinion that R is not very well suited to address security issues, and the only way to do proper sandboxing is on the level of the operating system. This will lead up to the RAppArmor package introduced in section 4.

3.1. Application level security: predefined services

The most common approach to prevent malicious use is simply to only allow a limited set of predefined services, that have been deployed by a trusted developer and cannot be abused.
This is generally the case for websites containing dynamic content though e.g. CGI or PHP scripts. Running arbitrary code is explicitly prevented and any possibility to do so anyway is considered a security hole. For example, we might expose the following function as a web service:

```r
liveplot <- function (ticker) {
  url <- paste("http://ichart.finance.yahoo.com/table.csv?s=",
             ticker, ",a=07&b=19&c=2004&d=07&e=13&f=2020&g=d&ignore=.csv",
             sep = "")
  mydata <- read.csv(url)
  mydata$Date <- as.Date(mydata$Date)
  myplot <- ggplot2::qplot(Date, Close, data = mydata, geom =c("line",
                 "smooth"), main = ticker)
  print(myplot)
}
```

The function above downloads live data from the public API at Yahoo Finance and creates an on-demand plot of the historical prices using `ggplot2` (Wickham 2009). It has only one parameter: `ticker`, a character string identifying a stock symbol. This function can be exposed as a predefined web service, where the client only supplies the `ticker` argument. Hence the system does not need to run any potentially harmful user-supplied R code. The client sets the symbol to e.g. "GOOG" and the resulting plot can be returned in the form of a PNG image or PDF document. This function is actually the basis of the “stockplot” web application (Ooms 2009); an interactive graphical web application for financial analysis which still runs today.

Limiting users and clients to a set of predefined parameterized services is the standard solution and reasonably safe in combination with basic security methods. For example, Rserve can be configured to run with a custom `uid`, `umask`, `chroot`. However in the context of R, predefined services severely limit the application and security is actually not fully guaranteed. We can expose some canned calculations or generate a plot as done in the example, but beyond that things quickly becomes overly restrictive. For example in case of an application that allows the user to fit a statistical model, the user might need to be able to include transformations of variables like `I(cos(x^2))` or `cs(x, 3)`. Not allowing a user to call any custom functions makes this hard to implement.

What distinguishes R from other statistical software is that the user has a great deal of control and can do programming, load custom libraries, etc. A predefined service takes this freedom away from the user, and at the same time puts a lot of work in the hands of the developer and administrator. Only they can expose new services and they have to make sure that all services that are exposed cannot be abused in some way or another. Therefore this approach is expensive, and not very social in terms of users contributing code. In practice, anyone that wants to publish an R service will have to purchase and manage a personal server or know someone that is willing to do so. Also it is still important to set hardware limitations, even when exposing relatively simple, restricted services. We already mentioned the example of the lme4 web application, where a single user could accidentally take down the entire system by specifying an overly complex model. But actually even some of the most basic functionality in R can cause trouble with problematic data. Hence, even restricted predefined R services
are not guaranteed to consistently return smooth and timely. These aspects of statistical computing make common practices in software design not directly generalize to R services, and are easily under appreciated by developers and engineers with a limited background in data analysis.

Code injection

Finally, there is still the risk of *code injection*. Because R is a very dynamic language, evaluations sometimes happen at unexpected places. One example is during the parsing of formulas. For example, we might want to publish a service that calls the `lm()` function in R on a fixed dataset. Hence the only parameter supplied by the user is a *formula* in the form of a character vector. Assume in the code snippet below that the `userformula` parameter is a string that has been set through some graphical interface.

```r
coe(lm(userformula, data=cars))
```

For example the user might supply a string "speed±dist" and the service will return the coefficients. On first sight, this might seem like a safe service. However, formulas actually allow for the inclusion of calls to other functions. So even though `userformula` is a character vector, it can be used to inject a function call:

```r
userformula <- "speed ~ dist + system('whoami')"
```

```r
lm(userformula, data=cars)
```

In the example above, `lm` will automatically convert `userformula` from type character to a *formula*, and subsequently execute the `system('whoami')` command. Hence even when a client supplies only simple primitive data, unexpected opportunities for code injection can still arise. Therefore it is important when using this approach, to sanitize the input before executing the service. One way is by setting up the service such that only alphanumeric values are valid parameters, and use a regular expression to remove any other characters, before actually executing the script or service:

```r
myarg <- gsub("[^a-zA-Z0-9]", ",", myarg)
```

3.2. Sanitizing code by blacklisting

A less restrictive approach is to allow users to push custom R code, but inspect the code before evaluating it. This approach has been adopted by some web sites that allow users to run R code, like Banfield (1999) and Chew (2012). However, given the dynamic nature of the R language, malicious calls are actually very difficult to detect and such security is easy to circumvent. For example, we might want to prevent users from calling the `system` function. One way is to define some smart regular expressions that look for the word “system” in a block of code. This way it would be possible to detect a potentially malicious call like this:

```r
system("whoami")
```

However, it is much more difficult to detect the equivalent call in the following block:
foo <- get(paste("sy", "em", sep="st"))
bar <- paste("who", "i", sep="am")
foo(bar)

And indeed, it turns out that the services that use this approach are fairly easy to trick. Because R is a dynamic scripting language, the exact function calls might not reveal themselves until runtime, when it is often too late. We are actually quite convinced that it is nearly impossible to really sanitize an R script just by inspecting the source code.

An alternative method to prevent malicious code is by defining an extensive blacklist of functions that a user is not allowed to call, and disable these at runtime. The sandboxR package (Daroczi 2013) does this to block access to all R functions providing access to the file system. It evaluates the user-supplied code in an environment in which all blacklisted functions are masked from the calling namespace. This is fairly effective and provides a barrier against smaller possible attacks or casual errors. However, the method relies on exactly knowing and specifying which functions are safe and which are not. The package author has done this for the thousands of R functions in the base package and we assume he has done a good job. But it is quite hard to maintain and cumbersome to generalize to other R packages (by default the method does not allow loading other packages). Everything falls if one function has been overlooked or changes between versions, which does make the method vulnerable. Furthermore, in R even the most primitive functions can be exploited to tamper with scoping and namespaces, so it is unwise to rely solely on this for security.

Moreover, even when sanitizing of the code is successful, this method does not limit the use of hardware resources in any way. Hence, additional methods are still required to prevent excessive use of resources in a public environment. Packages like sandboxR should probably only be used to supplement system level security as implemented in the RAppArmor package. They can be useful to detect problematic calls earlier on and present informative errors naming a specific forbidden function rather than just ”permission denied”. But blacklisting solutions are not waterproof and should not be considered a full security solution.

3.3. Sandboxing on the level of the operating system

One can argue that managing resources and privileges is something that is outside the domain of the R software, and is better left to the operating system. The R software has been designed for statistical computing and related functionality; the operating system deals with hardware and security related matters. Hence, in order to really sandbox R properly without imposing unnecessary limitations on its functionality, we need to sandbox the process on the level of the operating system. When restrictions are enforced by the operating system instead of R itself, we do not have to worry about all of the pitfalls and implementation details of R. The user can interact freely with R, but won’t be able to do anything for which the system does not grant permission.

Some operating systems offer more advanced capabilities for setting process restrictions than others. The most advanced functionality is found in UNIX like systems, of which the most popular ones are either BSD based (FreeBSD, OSX, etc) or Linux based (Debian, Ubuntu, Fedora, Suse, etc). Most UNIX like systems implement some sort of ULIMIT functionality to facilitate restricting availability of hardware resources on a per-process basis. Furthermore, both BSD and Linux provide various Mandatory Access Control (MAC) systems. On Linux,
these are implemented as Kernel modules. The most popular ones are AppArmor (Bauer 2006), SELinux (Smalley, Vance, and Salamon 2001) and Tomoyo Linux (Harada, Horie, and Tanaka 2004). MAC gives a much finer degree of control than standard user-based privileges, by applying advanced security policies on a per-process basis. Using a combination of MAC and ULIMIT tools we can do a pretty decent job in sandboxing a single R process to a point where it can do little harm to the system. Hence we can run arbitrary R code without losing any sleep over potentially jeopardizing the machine. Unfortunately, this approach comes at the cost of portability of the software. As different operating systems implement very different methods for managing processes and privileges, the solutions will be to a large extend OS-specific. In our implementation we have tried to hide these system calls by exposing R functions to interact with the kernel. Going forward, eventually these functions could behave somewhat OS specific, abstracting away technicalities and providing similar functionality on different systems. But for now we limit ourselves to systems based on the Linux kernel.

4. The RAppArmor package

The current section describes some security concepts and how an R process can be sandboxed using a combination of ULIMIT and MAC tools. The methods are illustrated using the RAppArmor package: an implementation based on Linux and AppArmor. AppArmor ("Application Armor") is a security module for the Linux kernel. It allows for associating programs and processes with security profiles that restrict the capabilities and permissions of that process. There are two ways of using AppArmor. One is to associate a single, static security profile with every R process. This can be done only by the system administrator and does not require our R package (see also section section 4.9). However, this is usually overly restrictive. We want more flexibility to set different policies, priorities and restrictions for different users or tasks.

The RAppArmor package exposes R functions that interface directly to Linux system calls related to setting privileges and restrictions of a running process. Besides applying security profiles, RAppArmor also interfaces to the prlimit call in Linux, which sets RLIMIT (resource limit) values on a process (RLIMIT are the Linux implementation of ULIMIT). Linux defines a number of RLIMIT’s, which restrict resources like memory use, number of processes, and stack size. More details on RLIMIT follow in section 4.7. Using RAppArmor, the sandboxing functionality is accessible directly from within the R session, without the need for external tools or programs. Once RAppArmor is installed, any user can apply security profiles and restrictions to the running process; no special permissions are required. Furthermore, it allowed us to create the eval.secure function: an abstraction which mimics eval, but has additional parameters to evaluate a single call under a given uid, priority, security policy and resource restrictions.

The RAppArmor package brings the low level system security methods all the way up to level of the R language. Using eval.secure, different parts of our code can run with different security restrictions with minimal overhead, something we call dynamic sandboxing. This is incredibly powerful in the context of embedded services, and opens the door applications which explicitly allow for arbitrary code execution; something that previously always had to be avoided for security reasons. This enables a new approach to socialize statistical computing and lies at the core of the OpenCPU framework (Ooms 2013), which exposes a public HTTP API to run and share R code on a central server.
4.1. AppArmor profiles

Security policies are defined in profiles which form the core of the AppArmor software. A profile consists of a set of rules specified using AppArmor syntax in an ascii file. The Linux kernel translates these rules to a security policy that it will enforce on the appropriate process. A brief introduction to the AppArmor syntax is given in section 5.1. The appendix of this paper contains some example profiles that ship with the RAppArmor package to get the user started. When the package is installed through the Debian/Ubuntu package manager (e.g. using apt-get) the profiles are automatically copied to /etc/apparmor.d/rapparmor.d/. Because profiles define file access permissions based on the location of files and directories on the file system, they are to some extent specific to a certain Linux distribution, as different distributions have somewhat varying conventions on where files are located. The example profiles included with RAppArmor are based on the file layout of the r-base package (and its dependencies) by Bates and Eddelbuettel (2004) for Debian/Ubuntu, currently maintained by Dirk Eddelbuettel.

The RAppArmor package and the included profiles work “out of the box” on Ubuntu 12.04 (Precise) and up, Debian 7.0 (Wheezy) and up. The package can also be used on OpenSuse 12.1 and up, however Suse systems organize the file system in a slightly different way than Ubuntu and Debian, so the profiles need to be modified accordingly. The RAppArmor website contains some specific instructions regarding various distributions.

Again, we want to emphasize that the package should mostly be seen as a reference implementation to demonstrate how to create a working sandbox in R. The RAppArmor package provides the tools to set security restrictions and example profiles to get the user started. However, depending on system and application, different policies might be appropriate. It is still up to the administrator to determine which privileges and restrictions are appropriate for a certain system or purpose. The example profiles are merely a starting point and need fine-tuning for specific applications.

4.2. Automatic installation

The RAppArmor package consists of R software and a number of example security profiles. On Ubuntu it is easiest installed using binary builds provided through launchpad:

```bash
sudo add-apt-repository ppa:opencpu/rapparmor
sudo apt-get update
sudo apt-get install r-cran-rapparmor
```

Binaries in this repository are build for the version of R that ships with the operating system. To get builds for R version 3.0 and up, use repository ppa:opencpu/rapparmor-dev instead. The r-cran-rapparmor package can also be build from source using something along the lines of the following:

```bash
wget http://cran.r-project.org/src/contrib/RAppArmor_0.8.3.tar.gz
tar xzvf RAppArmor_0.8.3.tar.gz
cd RAppArmor/
debuild -uc -us
cd ..
sudo dpkg -i r-cran-rapparmor_0.8.3-precise1_amd64.deb
```
The `r-cran-rapparmor` package will automatically install required dependencies and security profiles. The security profiles are installed in `/etc/apparmor.d/rapparmor.d/`.

4.3. Manual installation

On distributions for which no system installation package is available, manual installation is required. Start with installing required dependencies:

```
sudo apt-get install r-base-dev libapparmor-dev apparmor apparmor-utils
```

Note that R version 2.14 or higher is required. Also the system needs to have an AppArmor enabled Linux kernel. After dependencies have been installed, install `RAppArmor` from CRAN:

```
wget http://cran.r-project.org/src/contrib/RAppArmor_0.8.3.tar.gz
sudo R CMD INSTALL RAppArmor_0.8.3.tar.gz
```

This will compile the C code and install the R package. After the package has been installed successfully, the security profiles need to be copied to the `apparmor.d` directory:

```
cd /usr/local/lib/R/site-library/RAppArmor/
sudo cp -Rf profiles/debian/* /etc/apparmor.d/
```

Finally, the AppArmor service needs to be restarted to load the new profiles. Also we do not want to enforce the global R profile at this point:

```
sudo service apparmor restart
sudo aa-disable usr.bin.r
```

This should complete the installation. To verify if everything is working, start R and run the following code:

```
library("RAppArmor")
aa_change_profile("r-base")
```

If the code runs without any errors, the package has successfully been installed.

4.4. Linux security methods

The `RAppArmor` package interfaces to a number of Linux system calls that are useful in the context of security and sandboxing. The advantage of calling these directly from R is that we can dynamically set the parameters from within the R process, as opposed to fixing them for all R sessions. Hence it is actually possible to execute some parts of an application in a different security context other parts.

The package implements many functions that wrap around Linux C interfaces. However it is not required to study all of these functions. To the end user, everything in the package comes together in the powerful and convenient `eval.secure()` function. This function mimics `eval()`, but it has additional parameters that define restrictions which will be enforced to a specific evaluation. An example:
myresult <- eval.secure(myfun(), RLIMIT_AS = 10*1024*1024, profile="r-base")

This will call myfun() with a memory limit of 10MB and the “r-base” security profile (which is introduced in section 5.2). The eval.secure function works by creating a fork of the current process, and then sets hard limits, uid and AppArmor profile on the forked process, before evaluating the call. After the function returns, or when the timeout is reached, the forked process is killed and cleaned up. This way, all of the one-way security restrictions can be applied, and evaluations that happen inside eval.secure won’t have any side effects on the main process.

4.5. Setting user and group ID

One of the most basic security methods is running a process as a specific user. Especially within a system where the main process has superuser privileges (which could be the case in for example a webserver), switching to a user with limited privileges before evaluating any code is a wise thing to do. We could even consider a design where every user of the application has a dedicated user account on the Linux machine. The RAppArmor package implements the functions getuid, setuid, getgid, setgid, which call out to the respective Linux system calls. Users and groups can either be specified by their name, or as integer values as defined in the /etc/passwd file.

R> library("RAppArmor")
AppArmor LSM is enabled.

R> system('whoami')
root
R> getuid()
[1] 0
R> getgid()
[1] 0
R> setgid(1000)
R> setuid(1000)
R> getgid()
[1] 1000
R> getuid()
[1] 1000
R> system('whoami')
jeroen

The user/group ID can also be set inside the eval.secure function. In this case it will not affect the main process; the UID is only set for the time of the secure evaluation.

R> eval(system('whoami', intern=TRUE))
[1] "root"
R> eval.secure(system('whoami', intern=TRUE), uid=1000)
[1] "jeroen"
R> eval(system('whoami', intern=TRUE))
[1] "root"
Note that in order for `setgid` and `setuid` to work, the user must have the appropriate capabilities in Linux, which are usually restricted to users with superuser privileges. The `getuid` and `getgid` functions can be called by anyone.

4.6. Setting Task Priority

The `RAppArmor` package implements interfaces for setting the scheduling priority of a process, also called its `nice` value or `niceness`. Linux systems use a priority system with 40 priorities, ranging from -20 (highest priority) to 19 (lowest priority). By default most processes run with nice value 0. Users without superuser privileges can only increase this value, i.e. lower the priority of the process. In `RAppArmor` the `getpriority` and `setpriority` functions change the priority of the current session:

```r
R> getpriority()
[1] 0
R> setpriority(10)
[1] 10
R> system("nice", intern=TRUE)
[1] "10"
R> setpriority(5)
Error in setpriority(5) :
  Failed to set priority. The caller attempted to lower a process priority, but did not have the required privilege.
```

Again, the `eval_secure` function is used to run a function or code block with a certain priority without affecting the priority of the main R session:

```r
R> getpriority()
[1] 0
R> eval.secure(system('nice', intern=TRUE), priority=10)
[1] "10"
R> getpriority()
[1] 0
```

4.7. Linux Resource Limits (RLIMIT)

Linux defines a number of `RLIMIT` values that can be used to set resource limits on a process (Free Software Foundation 2012). The `RAppArmor` package has functions to get/set to the following RLIMITs:

- **RLIMIT_AS** – The maximum size of the process’s virtual memory (address space).
- **RLIMIT_CORE** – Maximum size of core file.
- **RLIMIT_CPU** – CPU time limit.
- **RLIMIT_DATA** – The maximum size of the process’s data segment.
• **RLIMITFSIZE** – The maximum size of files that the process may create.

• **RLIMITMEMLOCK** – Number of memory that may be locked into RAM.

• **RLIMITMSGQUEUE** – Max number of bytes that can be allocated for POSIX message queues

• **RLIMITNICE** – Specifies a ceiling to which the process’s nice value (priority).

• **RLIMITNOFILE** – Limit maximum file descriptor number that can be opened.

• **RLIMITNPROC** – Maximum number of processes (or, more precisely on Linux, threads) that can be created by the user of the calling process.

• **RLIMITRTPRIO** – Ceiling on the real-time priority that may be set for this process.

• **RLIMITRTTIME** – Limit on the amount of CPU time that a process scheduled under a real-time scheduling policy may consume without making a blocking system call.

• **RLIMITSIGPENDING** – Limit on the number of signals that may be queued by the user of the calling process.

• **RLIMITSTACK** – The maximum size of the process stack.

For all of the above **RLIMITs**, the **RAppArmor** package implements a function which name is equivalent to the non-capitalized name of the **RLIMIT**. For example to get/set **RLIMIT_AS**, the user calls **rlimit_as()**. Every **rlimit_** function has exactly 3 parameters: **hardlim**, **softlim**, and **pid**. Each argument is specified as an integer value. The **pid** arguments points to the target process. When this argument is omitted, the calling process is targeted. When the **softlim** is omitted, it is set equal to the **hardlim**. When the function is called without any arguments, it returns the current limits.

The soft limit is the value that the kernel enforces for the corresponding resource. The hard limit acts as a ceiling for the soft limit: an unprivileged process may only set its soft limit to a value in the range from 0 up to the hard limit, and (irreversibly) lower its hard limit.

A privileged process (under Linux: one with the **CAP_SYS_RESOURCE** capability) may make arbitrary changes to either limit value. (Free Software Foundation 2012)

```r
R> rlimit_as()
$hardlim
[1] 1.845e+19

$softlim
[1] 1.845e+19

R> A <- rnorm(1e7)
R> rm(A)
R> gc()

used (Mb) gc trigger (Mb) max used (Mb)
Ncells 230219   6.2   467875  12.5   350000  9.4
```
```r
Vcells 211018 1.7 8773042 67.0 10211897 78.0
R> rlimit_as(10*1024*1024)
$hardlim
[1] 10485760

$softlim
[1] 10485760

R> A <- rnorm(1e7)
Error: cannot allocate vector of size 76.3 Mb
```

Note that a process owned by a user without superuser privileges can only modify `RLIMIT` to more restrictive values. However, using `eval_secure`, a more restrictive `RLIMIT` can be applied to a single evaluation without any side effects on the main process:

```r
R> library("RAppArmor")
R> A <- eval_secure(rnorm(1e7), RLIMIT_AS = 10*1024*1024)
Error: cannot allocate vector of size 76.3 Mb
R> A <- rnorm(1e7)
```

The exact meaning of the different limits can be found in the `RAppArmor` package documentation (e.g. `?rlimit_as`) or in the documentation of the distribution, e.g. Canonical, Inc (2012).

4.8. Activating AppArmor profiles

The `RAppArmor` package implements three calls to the Linux kernel related to applying AppArmor profiles: `aa_change_profile`, `aa_change_hat` and `aa_revert_hat`. Both the `aa_change_profile` and `aa_change_hat` functions take a parameter named `profile`: a character string identifying the name of the profile. This profile has to be preloaded by the kernel, before it can be applied to a process. The easiest way to load profiles is to copy them to the directory `/etc/apparmor.d/` and then run `sudo service apparmor restart`.

The main difference between a `profile` and a `hat` is that switching profiles is an irreversible action. Once the profile has been associated with the current process, the process cannot call `aa_change_profile` again to escape from the profile (that would defeat the purpose). The only exception to this rule are profiles that contain an explicit `change_profile` directive.

The `aa_change_hat` function on the other hand is designed to associate a process with a security profile in a way that does allow it to escape out of the security profile. In order to realize this, the `aa_change_hat` takes a second argument called `magic_token`, which defines a secret key that can be used to `revert` the hat. When `aa_revert_hat` is called with the same `magic_token` that was used in `aa_change_hat`, the security restrictions are relieved.

Using `aa_change_hat` to switch in and out of profiles is an easy way to get started with `RAppArmor` and test some security policies. However it should be emphasized that using `hats` instead of `profiles` is also a security risk and should be avoided in production settings. It is important to realize that if the code running in the sandbox can find a way of discovering the value of the `magic_token` (e.g. from memory, command history or log files), it will be able...
to escape from the sandbox. Hence `aa_change_hat` should only be used to prevent general purpose malicious activity, e.g. when testing a new R package. When hosting services or otherwise exposing an environment that might be specifically targeted, hackers could write code that attempts to find the magic token and revert the hat. Therefore it is recommended to only use `aa_change_profile` or `eval.secure` in production settings. When a profile is applied to a process using `aa_change_profile` or `eval.secure`, the kernel will keep enforcing the security policy on the respective process and all of its children until they die, no matter what.

The RAppArmor package ships with a profile called `testprofile` which contains a hat called `testhat`. We use this profile to demonstrate the functionality. The profiles have been defined such that `testprofile` allows access to `/etc/group` but denies access to `/etc/passwd`. The `testhat` denies access to both `/etc/passwd` and `/etc/group`.

```r
R> library("RAppArmor");
R> result <- read.table("/etc/passwd")
R> aa_change_profile("testprofile")
Switching profiles...
R> passwd <- read.table("/etc/passwd")
Error in file(file, "rt") : cannot open the connection
In addition: Warning message:
In file(file, "rt") : cannot open file '/etc/passwd': Permission denied
R> group <- read.table("/etc/group")

R> mytoken <- 13337;
R> aa_change_hat("testhat", mytoken)
Setting Apparmor Hat...

R> passwd <- read.table("/etc/passwd")
Error in file(file, "rt") : cannot open the connection
In addition: Warning message:
In file(file, "rt") : cannot open file '/etc/passwd': Permission denied
R> group <- read.table("/etc/group")
Error in file(file, "rt") : cannot open the connection
In addition: Warning message:
In file(file, "rt") : cannot open file '/etc/group': Permission denied

R> aa_revert_hat(mytoken);
Reverting AppArmor Hat...

R> passwd <- read.table("/etc/passwd")
Error in file(file, "rt") : cannot open the connection
In addition: Warning message:
In file(file, "rt") : cannot open file '/etc/passwd': Permission denied
R> group <- read.table("/etc/group")

Just like for `setuid` and `rlimit` functions, `eval.secure` can be used to enforce an AppArmor
security profile on a single call, without any side effects. The `eval.secure` function uses `aa_change_profile` and is therefore most secure.

```r
R> out <- eval(read.table("/etc/passwd"))
R> nrow(out)
[1] 68
R> out <- eval.secure(read.table("/etc/passwd"), profile="testprofile")
Error in file(file, "rt") : cannot open the connection
```

4.9. AppArmor without RAppArmor

The RAppArmor package allows us to dynamically load an AppArmor profile from within an R session. This gives a great deal of flexibility. However, it is also possible to use AppArmor without the RAppArmor package, by setting a single profile to be loaded with any running R process.

To do so, the RAppArmor package ships with a profile named `usr.bin.r`. At the installation of the package, this file is copied to `/etc/apparmor.d/`. This file is basically a copy of the `r-user` profile in appendix A.3, however with a small change: where `r-user` defines a named profile with

```r
profile r-user {
 ...
}
```

the `usr.bin.r` file defines a profile specific to a filepath:

```r
/usr/bin/R {
 ...
}
```

When using the latter syntax, the profile is automatically associated every time the file `/usr/bin/R` is executed (which is the script that runs when R is started from the shell). This way we can set some default security restrictions for our daily work. Profiles tied to a specific program can be activated only by the administrator using:

```
sudo aa-enforce usr.bin.r
```

This will enforce the security restrictions on every new R process that is started. To stop enforcing the restrictions, the administrator can run:

```
sudo aa-disable usr.bin.r
```

After disabling the profile, the R program can be started without any restrictions. Note that the `usr.bin.r` profile does not grant permission to change profiles. Hence, once the `usr.bin.r` profile is in enforce mode, we cannot use the `eval.secure` or `aa_change_profile` functions from the RAppArmor package to change into a different profile, as this would be a security hole:
R> library(RAppArmor)
AppArmor LSM is enabled.
Current profile: /usr/bin/R (enforce mode)
R> aa_change_profile("r-user")
Switching profiles...
Getting task confinement information...
Error in aa_change_profile("r-user") :
  Failed to change profile from: /usr/bin/R to: r-user.
  Note that this is only allowed if the current profile has a
  directive "change_profile -> r-user".

4.10. Learning using complain mode

Finally AppArmor allows the administrator to set profiles in complain mode, which is also called learning mode.

    sudo aa-complain usr.bin.r

This is useful for developing new profiles. When a profile is set in complain mode, security restrictions are not actually enforced; instead all violations of the security policy are logged to the syslog and kern.log files. This is a powerful way of creating new profiles: a program can be set in complain mode during regular use, and afterwards the log files can be used to study violations of the current policy. From these violations we can determine which permissions need to be added to the profile to make the program work under normal behavior. AppArmor even ships with a utility named aa-logprof which can help the administrator by parsing these log files and suggesting new rules to be added to the profile. This is a nice way of debugging a profile, and figure out which permissions exactly a program requires to do its work.

5. Profiling R: Defining security policies

The “hard” part of the problem is actually profiling R. With profiling we mean defining the policies: which files and directories should R be allowed to read and write to? Which external programs is it allowed to execute? Which libraries or shared modules it allowed to load, etc. We want to minimize ways in which the process could potentially damage the system, but we don’t want to be overly restrictive either: preferably, users should be able to do anything they normally do in R. Because R is such a complete system with a big codebase and a wide range of functionality, the base system actually already requires quite a lot of access to the file system.

As often, there is no “one size fits all” solution. Depending on which functionality is needed for an application we might want to grant or deny certain privileges. We might even want to execute some parts of a process with tighter privileges than other parts. For example, within a web service, the service process should be able to write to system log files, which should not be writable by custom code from a user. We might also want to be more strict on some users than others, e.g. allow all users to run code, but only allow privileged users to install a new package.
5.1. AppArmor policy configuration syntax

The AppArmor policy configuration syntax is used to define the access control profiles in AppArmor. Other mandatory access control systems might implement different functionality and require other syntax, but in the end they address mostly similar issues. AppArmor is quite advanced and provides access control over many of the features and resources found in the Linux kernel, e.g. file access, network rules, Linux capability modes, mounting rules, etc. All of these can be useful, but most of them are very application specific. Furthermore, the policy syntax has some meta functionality that allows for defining subprofiles, and includes.

The most important form of access control which will be the focus of the remaining of the section are file permission access modes. Once AppArmor is enforcing mandatory access control, a process can only access files and directories on the system for which it has explicitly been granted access in its security profile. Because in Linux almost everything is a file (even sockets, devices, etc) this gives a great deal of control. AppArmor defines a number of access modes on files and directories, of which the most important ones are:

\[ r \] – read file or directory.
\[ w \] – write to file or directory.
\[ m \] – load file in memory.
\[ px \] – discrete profile execute of executable file.
\[ cs \] – transition to subprofile for executing a file.
\[ ix \] – inherit current profile for executing a file.
\[ ux \] – unconfined execution of executable file (dangerous).

Using this syntax we will present some example profiles for R. Because the profiles are defined using absolute paths of system files, we will assume the standard file layout for Debian and Ubuntu systems. This includes files that are part of r-base and other packages that are used by R, e.g. texlive, libxml2, bash, libpango, libcairo, etc.

5.2. Profile: r-base

Appendix A.1 contains a profile that we have named r-base. It is a fairly basic and general profile. It grants read/load access to all files in common shared system directories, e.g. /usr/lib, /usr/local/lib, /usr/share, etc. However, the default profile only grants write access inside /tmp, not in e.g. the home directory. Furthermore, R is allowed to execute any of the shell commands in /bin or /usr/bin for which the program will inherit the current restrictions.

\[ R> library("RAppArmor") \]
\[ R> aa_change_profile("r-base") \]
\[ Switching profiles... \]

\[ R> list.files("/") \]
The \texttt{r-base} profile effectively protects R from most malicious activity, while still allowing access to all of the libraries, fonts, icons, and programs that it might need. One thing to note is that the profile does not allow listing of the contents of /tmp, but it does allow full \texttt{rw} access on any of its subdirectories. This is to prevent one process from reading/writing files in the temp directory of another active R process (given that it cannot discover the name of the other temp directory).

The \texttt{r-base} profile is a quite liberal and general purpose profile. When using \texttt{AppArmor} in a more specific application, it is recommended to make the profile a bit more restrictive by specifying exactly which of the packages, shell commands and system libraries should be accessible by the application. That could prevent potential problems when vulnerabilities are discovered in some of the standard libraries.

5.3. Profile: \texttt{r-compile}

The \texttt{r-base} profile does not allow access to the compiler, nor does it allow for loading (\texttt{m}) or execution (\texttt{ix}) of files in places where it can also write. If we want user to be able to compile e.g. C++ code, the policy needs grant access to the compiler. Assuming \texttt{GCC} is installed, the following lines can be added to the profile:
The RAppArmor Package

The RAppArmor Package

Note especially the last line. The combination of w and m access modes allows R to load a shared object into memory from after installing it in a temporary directory. This does not come without a cost: compiled code can potentially contain malicious code or even exploits that can do harm when loaded into memory. If this privilege is not needed, it is generally recommended to only allow m and ix access modes on files that have been installed by the system administrator. The new profile including these rules ships with the package as r-compile and is also printed in appendix A.2.

After adding the lines above and reloading the profile, it should be possible to compile a package that contains C++ code and install it to somewhere in /tmp:

R> eval.secure(install.packages("wordcloud", lib=tempdir()), profile="r-compile")
trying URL 'http://cran.stat.ucla.edu/src/contrib/wordcloud_2.0.tar.gz'
downloaded 36 Kb

* installing *source* package 'wordcloud' ...
** package 'wordcloud' successfully unpacked and MD5 sums checked
** libs
  g++ -I/usr/share/R/include -DNDEBUG -I"/usr/local/lib/R/site-library/Rcpp/include"
    -fpic -O3 -pipe -g -c layout.cpp -o layout.o
g++ -shared -o wordcloud.so layout.o -L/usr/local/lib/R/site-library/Rcpp/lib
   -lRcpp -Wl,-rpath,/usr/local/lib/R/site-library/Rcpp/lib -L/usr/lib/R/lib -lR
installing to /tmp/RtmpFCM6WS/wordcloud/libs
** R
** data
** preparing package for lazy loading
** help
*** installing help indices
** building package indices
** testing if installed package can be loaded

* DONE (wordcloud)

The downloaded source packages are in
  '/tmp/RtmpFCM6WS/downloaded_packages'

5.4. Profile: r-user

Appendix A.3 defines a profile named r-user. This profile is designed to be a nice balance between security and freedom for day to day use of R. It extends the r-compile profile with some additional privileges in the user’s home directory. The variable @HOME is defined in the /etc/apparmor.d/tunables/global include that ships with AppArmor and matches the location of the user home directory, i.e. /home/jeroen/. If a directory named R exists inside
the home directory (e.g /home/jeroen/R/), R has both read and write permissions here. Furthermore, R can load and execute files in the directories `i686-pc-linux-gnu-library` and `x86_64-pc-linux-gnu-library` inside of this directory. These are the standard locations where R installs a user’s personal package library.

With the `r-user` profile, we can do most of our day to day work, including installing and loading new packages in our personal library, while still being protected against most malicious activities. The `r-user` profile is also the basis of the default `usr.bin.r` profile mentioned in section 4.9.

5.5. Installing packages

An additional privilege that might be needed in some situations is the option to install packages to the system’s global library, which is readable by all users. In order to allow this, a profile needs to include write access to the `site-library` directory:

```
/usr/local/lib/R/site-library/ rw,
/usr/local/lib/R/site-library/** rwm,
```

With this rule, the policy will allow for installing R packages to the global site library. However, note that AppArmor does not replace, but supplements the standard access control system. Hence if a user does not have permission to write into this directory (either by standard Unix access controls or by running with superuser privileges), it will still not be able to install packages in the global site library, even though the AppArmor profile does grant this permission.

6. Concluding remarks

In this paper the reader was introduced to some potential security issues related to the use of the R software. We hope to have raised awareness that security is an increasingly important concern for the R user, but also that addressing this issue could open doors to new applications of the software. The RAppArmor package was introduced as an example that demonstrates how some security issues could be addressed using facilities from the operating system, in this case Linux. This implementation provides a starting point for creating a sandbox in R, but as was emphasized throughout the paper, it is still up to the administrator to actually design security policies that are appropriate for a certain application or system.

Our package uses the AppArmor software from the Linux kernel, which works for us, but this is just one of the available options. Linux has two other mandatory access control systems that are worth exploring: TOMOYO and SELinux. Especially the latter is known to be very sophisticated, but also extremely hard to set up. Other technology that might be interesting is provided by Linux CGroups. Using CGroups, control of allocation and security is managed by hierarchical process groups. The more recent LXC (Linux Containers) build on CGroups to provide virtual environments which have their own process and network space. A completely different direction is suggested by renjin (Bertram 2012), a JVM-based interpreter for the R Language. If R code can be executed though the JVM, we might be able to use some tools from the Java community to address similar issues. Finally the TrustedBSD project provides advanced security features which could provide a foundation for sandboxing R on BSD systems.
However, regardless of the tools that are used, security always comes down to the trade off between use and abuse. This has a major human aspect to it, and is a learning process in itself. A balance has to be found between providing enough freedom to use facilities as desired, yet minimize opportunities for undesired activity. Apart from technical parameters, a good balance also depends on factors like what exactly constitutes undesired behavior and the relation between users and provider. For example a process using 20 parallel cores might be considered abusive by some administrators, but might actually be regular use for a MCMC simulation server. Security policies are not unlike legal policies in the sense that they won’t always immediately work out as intended, and need to evolve over time as part of an iterative process. It might not be until an application is put in production that users start complaining about their favorite package not working, or that we find the system being abused in a way that was hard to foresee. We hope that our research will contribute to this process and help take a step in the direction of a safer R.

7. Acknowledgments

We owe gratitude to several people who have been specifically helpful in the course of this research. Things would not have been possible without their valuable criticism, support and feedback. Among others these include Dirk Eddelbuettel and Michael Rutter for providing excellent packages for the Debian and Ubuntu distributions on which we largely build our implementation. Daróczy Gergely and Aleksandar Blagotić for always being “early adopters” (guinea pigs) and putting things to the test. And finally John Johansen, Seth Arnold and Steve Beattie have been very helpful (and patient) by providing support and feedback through the apparmor mailing lists.

A. Example profiles

This appendix prints some of the example profiles that ship with the RAppArmor package. To load them in AppArmor, an ascii file with these rules needs to be copied to the /etc/apparmor.d/ directory. After adding new profiles to this directory they can be loaded in the kernel by running sudo service apparmor restart. The r-cran-rapparmor package that can be build on Debian and Ubuntu does this automatically during installation. Once profiles have been loaded in the kernel, any user can apply them to an R session using either the aa_change_profile or eval.secure function from the RAppArmor package.

A.1. Profile: r-base

#include <tunables/global>
profile r-base {
  #include <abstractions/base>
  #include <abstractions/nameservice>

  /bin/* rix,
  /etc/R/ r,
  /etc/R/* r,
A.2. Profile: r-compile

#include <tunables/global>
profile r-compile {
    #include <abstractions/base>
    #include <abstractions/nameservice>

    /bin/* rix,
    /etc/R/* r,
    /etc/R/* r,
    /etc/fonts/** mr,
    /etc/xml/* r,
    /tmp/** rmw,
    /usr/bin/* rix,
    /usr/include/** r,
    /usr/lib/gcc/** rix,
    /usr/lib/R/bin/* rix,
    /usr/lib{,32,64}/** mr,
    /usr/lib{,32,64}/R/bin/exec/R rix,
    /usr/local/lib/R/** mr,
    /usr/local/share/** mr,
    /usr/share/** mr,
}

A.3. Profile: r-user

#include <tunables/global>
profile r-user {
    #include <abstractions/base>
    #include <abstractions/nameservice>

    capability kill,
B. Security unit tests

This appendix prints a number of unit tests that contain malicious code and which should be prevented by any sandboxing tool.

B.1. Access system files

Usually R has no business in the system logs, and these are not included in the profiles. The codechunk below attempts to read the syslog file.

```r
readSyslog <- function()
 readLines("/var/log/syslog")
```

When executing this with the r-user profile, access to this file is denied, resulting in an error:

```r
R> eval.secure(readSyslog(), profile="r-user")
Switching profiles...
Error in file(con, "r") : cannot open the connection
```

B.2. Access personal files
Access to system files can to some extend by prevented by running processes as non privileged users. But it is easy to forget that also the user’s personal files can contain sensitive information. Below a simple function that scans the Documents directory of the current user for files containing credit card numbers.

```r
findCreditCards <- function(){
 pattern <- "\([0-9]{4}\-[0-9]{4}\)[0-9]{4}\"
 for (filename in list.files("~/Documents", full.names=TRUE, recursive=TRUE)){
 if(file.info(filename)$size > 1e6) next
 doc <- readLines(filename)
 results <- gregexpr(pattern, doc)
 output <- unlist(regmatches(doc, results))
 if(length(output) > 0){
 cat(paste(filename, ":", output, collapse="\n"), "\n")
 }
 }
}
```

This example prints the credit card numbers to the console, but it would be just as easy to post them to a server on the internet. For this reason the r-user profile denies access to the user’s home dir, except for the ∼/R directory.

### B.3. Limiting memory

When a system or service is used by many users at the same time, it is important that we cap the memory that can be used by a single process. The following function generates a large matrix:

```r
memtest <- function(){
 A <- matrix(rnorm(1e7), 1e4)
}
```

When R tries to allocate more memory than allowed, it will throw an error:

```r
R> A <- eval.secure(memtest(), RLIMIT_AS = 1000*1024*1024)
R> rm(A)
R> gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 193074 10.4 407500 21.8 350000 18.7
Vcells 299822 2.3 17248096 131.6 20301001 154.9
```

```r
R> A <- eval.secure(memtest(), RLIMIT_AS = 100*1024*1024)
Error: cannot allocate vector of size 76.3 Mb
```

### B.4. Limiting CPU time
Suppose we are hosting a web service and we want to kill jobs that do not finish within 5 seconds. Below is a snippet that will take much more than 5 seconds to complete on most machines. Note that because R calling out to C code, it will not be possible to terminate this function prematurely using R’s `setTimeLimit` or even using CTRL+C in an interactive console. If this would happen inside of a bigger system, the entire service might become unresponsive.

```r

```
cputest <- function(){
  A <- matrix(rnorm(1e7), 1e3)
  B <- svd(A)
}
```

In RAppArmor we have actually two different options to deal with this. The first one is setting the `RLIMIT_CPU` value. This will cause the kernel to kill the process after 5 seconds:

```r
R> system.time(x <- eval.secure(cputest(), RLIMIT_CPU=5))
user  system elapsed
 0.004 0.000  5.110
R> print(x)
NULL
```

However, this is actually a bit of a harsh measure: because the kernel automatically terminates the process after 5 seconds we have no control over what should happen when this happens, nor can we throw an informative error. Setting `RLIMIT_CPU` is a bit like starting a job with a self-destruction timer. A more elegant solution is to terminate the process from R using the `timeout` argument from the `eval.secure` function. Because the actual job is processed in a fork, the parent process stays responsive, and is used to kill the child process.

```r
R> system.time(x <- eval.secure(cputest(), timeout=5))
Error: R call did not return within 5 seconds. Terminating process.
Timing stopped at: 4.748 0.26 5.007
```

One could even consider a Double Dutch solution by setting both `timeout` and a slightly higher value for `RLIMIT_CPU`, so that if all else fails, the kernel will end up killing the process and its children.

B.5. Fork bomb

A fork bomb is a process that spawns many child processes, which often results in the operating system getting stuck to a point where it has to be rebooted. Performing a fork bomb in R is quite easy and requires no special privileges:

```r

```
forkbomb <- function(){
 repeat{
 parallel::mcparallel(forkbomb())
 }
}
```
Do not call this function outside sandbox, because it will make the machine unresponsive. However, inside our sandbox we can use the `RLIMIT_NPROC` to limit the number of processes the user is allowed to own:

```r
R> eval.secure(forkbomb(), RLIMIT_NPROC = 20)
RLIMIT_NPROC:
Previous limits: soft=39048; hard=39048
Current limits: soft=20; hard=20
Error in mcfork() :
 unable to fork, possible reason: Resource temporarily unavailable
```

Note that the process count is based on the Linux user. Hence if the same Linux user already has a number of other processes, which is usually the case for non-system users, the cap has to be higher than this number. Also note that in some Linux configurations, the root user is exempted from the `RLIMIT_NPROC` limit.

Different processes owned by a single user can enforce different NPROC limits, however in the actual process count all active processes from the current user are taken into account. Therefore it might make sense to create a separate Linux system user that is only used to process R jobs. That way `RLIMIT_NPROC` actually corresponds to the number of concurrent R processes. The `eval.secure` arguments `uid` and `gid` can be used to switch Linux users before evaluating the call. E.g to add a system user in Linux, run:

```bash
sudo useradd testuser --system -U -d/tmp -c"RAppArmor Test User"
```

If the main R process has superuser privileges, incoming call can be evaluated as follows:

```r
eval.secure(run_job(), uid="testuser", RLIMIT_NPROC=10, timeout=60)
```

### References

Abu Rajab M, Zarfoss J, Monrose F, Terzis A (2006). “A Multifaceted Approach to Understanding the Botnet Phenomenon.” In *Proceedings of the 6th ACM SIGCOMM conference on Internet measurement*, pp. 41–52. ACM. URL [conferences.sigcomm.org/imc/2006/papers/p4-rajab.pdf](http://conferences.sigcomm.org/imc/2006/papers/p4-rajab.pdf).

Armbrust M, *et al.* (2010). “A View of Cloud Computing.” *Communications of the ACM*, 53(4), 50–58. URL [http://dl.acm.org/citation.cfm?id=1721672](http://dl.acm.org/citation.cfm?id=1721672).

Banfield J (1999). “Rweb: Web-based Statistical Analysis.” *Journal of Statistical Software*, 4(1), 1–15. ISSN 1548-7660. URL [http://www.jstatsoft.org/v04/i01](http://www.jstatsoft.org/v04/i01).

Bates D, Eddelbuettel D (2004). *Using R on Debian: Past, Present, and Future*. UseR 2004, URL [http://www.r-project.org/conferences/useR-2004/abstracts/Eddelbuettel+Bates+Gebhardt.pdf](http://www.r-project.org/conferences/useR-2004/abstracts/Eddelbuettel+Bates+Gebhardt.pdf).

Bates D, Maechler M, Bolker B (2011). *lme4: Linear Mixed-Effects Models Using S4 Classes*. R package version 0.999375-39, URL [http://CRAN.R-project.org/package=lme4](http://CRAN.R-project.org/package=lme4).
Bauer M (2006). “Paranoid Penguin: an Introduction to Novell AppArmor.” Linux Journal, 2006(148), 13. URL www.linuxjournal.com/article/9036.

Bertram A (2012). Renjin: JVM-based Interpreter for R. URL http://code.google.com/p/renjin/.

Canonical, Inc (2012). Ubuntu 12.04 Precise Manual: GETRLIMIT(2). URL http://manpages.ubuntu.com/manpages/precise/man2/getrlimit.2.html.

Chew K (2012). Cloudstat: Analyze Big Data With R in the Cloud. URL http://www.cloudstat.org.

Dabbish L, Stuart C, Tsay J, Herbsleb J (2012). “Social Coding in GitHub: Transparency and Collaboration in an Open Software Repository.” In Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work, pp. 1277–1286. ACM. URL http://dl.acm.org/citation.cfm?id=2145396.

Dahl DB, Crawford S (2009). “RinRuby: Accessing the R Interpreter from Pure Ruby.” Journal of Statistical Software, 29(4), 1–18. ISSN 1548-7660. URL http://www.jstatsoft.org/v29/i04.

Daroczi G (2013). The sandboxR package: Filtering "malicious" Calls in R. URL https://github.com/Rapporter/sandboxR.

Eddelbuettel D, Francois R (2011). RInside: C++ Classes to Embed R in C++ Applications. R package version 0.2.4, URL http://CRAN.R-project.org/package=RInside.

Free Software Foundation (2012). GETRLIMIT – Linux Programmer’s Manual. URL http://www.kernel.org/doc/man-pages/online/pages/man2/getrlimit.2.html.

Gautier L (2008). rpy2: A Simple and Efficient Access to R from Python. URL http://rpy.sourceforge.net/rpy2.html.

Harada T, Hori T, Tanaka K (2004). “Task Oriented Management Obviates Your Onus on Linux.” In Linux Conference. URL http://sourceforge.jp/projects/tomoyo/document/1c2004-en.pdf.

Heiberger R, Neuwirth E (2009). R Through Excel: A Spreadsheet Interface for Statistics, Data Analysis, and Graphics. Springer-Verlag New York Inc. URL http://www.springer.com/statistics/computational+statistics/book/978-1-4419-0051-7.

Horner J (2011). rApache: Web Application Development with R and Apache. URL http://www.rapache.net/.

Horner J, Eddelbuettel D (2011). littler: A Scripting Front-end for GNU R. Littler version 0.1.5, URL http://dirk.eddelbuettel.com/code/littler.html.

Ihaka R (1998). “R: Past and Future History.” Computing Science and Statistics, pp. 392–396.

IOCCC (2012). “The International Obfuscated C Code Contest.” URL http://www.ioccc.org.
Mirkovic J, Reiher P (2004). “A taxonomy of DDoS Attack and DDoS Defense Mechanisms.” 
*ACM SIGCOMM Computer Communication Review, 34*(2), 39–53. URL www.eecis.udel.edu/˜sunshine/publications/ccr.pdf.

Moreira W, Warnes G (2006). “RPy: R from Python.” URL http://rpy.sourceforge.net/rpy/README.

Ooms J (2009). *Stockplot web application: A Web Interface for Plotting Historical Stock Values.* URL http://rweb.stat.ucla.edu/stockplot.

Ooms J (2010). *lme4 web application: A Web Interface for the R Package lme4.* URL http://rweb.stat.ucla.edu/lme4.

Ooms J (2013). *OpenCPU: Producing and Reproducing Results.* URL http://www.opencpu.org.

R Development Core Team (2012). *R: A Language and Environment for Statistical Computing.* R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.

Ripley B (2011). “The R Development Process,” The R User Conference 2011, URL http://web.warwick.ac.uk/statsdept/user2011/invited/user2011_Ripley.pdf.

Smalley S, Vance C, Salamon W (2001). “Implementing SELinux as a Linux Security Module.” *NAI Labs Report, 1*, 43. URL http://www.nsa.gov/research/_files/publications/implementing_selinux.pdf.

Stefanski L, *et al.* (2013). “The Future of Publication in the Statistical Sciences.” *The Membership Magazine of the American Statistical Association.* URL http://magazine.amstat.org/wp-content/uploads/2013an/FuturePublicationsReport.pdf.

Torvalds L, Hamano J (2010). *GIT: Fast Version Control System.* URL http://git-scm.com.

Urbanek S (2011). *JRI - Java- R Interface.* JRI is now part of rJava, URL http://www.rforge.net/JRI/index.html.

Urbanek S (2013a). *rJava: Low-Level R to Java Interface.* R package version 0.9-4, URL http://CRAN.R-project.org/package=rJava.

Urbanek S (2013b). *Rserve: Binary R server.* R package version 0.6-8.1, URL http://CRAN.R-project.org/package=Rserve.

Wickham H (2009). *ggplot2: Elegant Graphics for Data Analysis.* Springer-Verlag New York. ISBN 978-0-387-98140-6. URL http://had.co.nz/ggplot2/book.
University of California
E-mail: jeroen.ooms@stat.ucla.edu
URL: http://jeroenooms.github.io