Second Language Acquisition Modeling

2018 NAACL / BEA Shared Task Report

Burr Settles
Duolingo

Chris Brust
Duolingo

Erin Gustafson
Duolingo

Masato Hagiwara
Duolingo

Nitin Madnani
Educational Testing Service
why should we care about modeling second language acquisition?
people learning a second language

1,200,000,000
(~16% of the world’s population)

~800M satisfy three properties:
 - learning English
 - in a developing country
 - to gain more opportunity

(Source: British Council)
86% mobile device access

64% toilet access

(Source: U.N. Report, 2015)
enormous potential for computer-based, adaptive language-learning!
SLA Modeling

accurately model **what** language-learners know and **how well** they know it ...
SLA Modeling

... and do so in a **personalized** way
(that adapts + learns over time)
Learner Modeling in Other Domains

DataShop (Koedinger et al., 2010)

- **150 public** research data sets
- mostly **math + physics** domains, largely multiple-choice items
- still relatively **small**:
 - 71 avg students (5k max)
 - 880 avg instances (1.5M max)
Our Goals for the SLAM Task

• facilitate dialog among ML/NLP/CogSci fields through a common large-scale empirical task

• accessible, familiar data format + task definition (e.g., classification similar to other shared tasks)

• include languages other than English

• start with beginners who are learning over time
launched in **2012** (CMU research spinoff)

more than **200 million students** globally

currently **79 courses** (incl. Irish, Esperanto, + Klingon!)

expanding to **93 courses** (incl. Arabic + Hindi!)

content is **FREE**
The Data

reverse_translate

The bee is an insect.

L’abeille est une insecte.

"Insecte" is masculine, not feminine.

Labelle est un insecte.

reverse_tap

You are a man.

Tu es un homme

listen

Le chat et la souris

Translation:
The cat and the mouse
The Data

prompt: cuándo puedo ayudar

when (can i | am i able to) (help (out |) | assist)

student: wen can help

reference: when can I help

label: 1 0 1 0
The Data

IDs	reference answer tokens	morpho-syntactic features	labels				
oMGsnnH/0101	When	ADV PronType=Int	fPOS=ADV++WRB	advmod 4 1			
oMGsnnH/0102	can	AUX VerbForm=Fin	fPOS=AUX++MD	aux 4 0			
oMGsnnH/0103	I	PRON Case=Nom	Number=Sing	Person=1	PronType=Prs	fPOS=PRON++PRP	nsubj 4 1
oMGsnnH/0104	help	VERB VerbForm=Inf	fPOS=VERB++VB	ROOT 0 0			
The Data

user + session-level metadata

# user:XEinXf5+	countries:CO	days:2.678	client:web	session:practice	format:reverse_translate	time:6				
oMGsnnH/0101	When	ADV	PronType=Int	POS=ADV++WRB	advmod	4	1			
oMGsnnH/0102	can	AUX	VerbForm=Fin	POS=AUX++MD	aux	4	0			
oMGsnnH/0103	I	PRON	Case=Nom	Number=Sing	Person=1	PronType=Prs	POS=PRON++PRP	nsubj	4	1
oMGsnnH/0104	help	VERB	VerbForm=Inf	POS=VERB++VB	ROOT	0	0			
The Data

user:XEinXf5+ countries:CO days:2.678 client:web session:practice format:reverse_translate time:6
oMGsnnH/0101 When ADV PronType=Int|fPOS=ADV++WWRB advmod 4 1
oMGsnnH/0102 can AUX VerbForm=Fin|fPOS=AUX++MD aux 4 0
oMGsnnH/0103 I PRON Case=Nom|Number=Sing|Person=1|PronType=Prs|fPOS=PRON++PRP nsubj 4 1
oMGsnnH/0104 help VERB VerbForm=Inf|fPOS=VERB++VB ROOT 0 0

user:XEinXf5+ countries:CO days:5.707 client:android session:practice format:reverse_translate time:22
W+QU2fm70301 He PRON Case=Nom|Gender=Masc|Number=Sing|Person=3|PronType=Prs|fPOS=PRON++PRP nsubj 3 0
W+QU2fm70302 's AUX Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin|fPOS=AUX++VBZ aux 3 1
W+QU2fm70303 wearing VERB Tense=Pres|VerbForm=Part|fPOS=VERB++VBG ROOT 0 0
W+QU2fm70304 two NUM NumType=Card|fPOS=NUM++CD nummod 5 0
W+QU2fm70305 shirts NOUN Number=Plur|fPOS=NOUN++NNS dobj 3 0

user:XEinXf5+ countries:CO days:10.302 client:web session:lesson format:reverse_translate time:28
vOeGrMgP0101 We PRON Case=Nom|Number=Plur|Person=1|PronType=Prs|fPOS=PRON++PRP nsubj 2 0
vOeGrMgP0102 eat VERB Mood=Ind|Tense=Pres|VerbForm=Fin|fPOS=VERB++VBP ROOT 0 1
vOeGrMgP0103 cheese NOUN Degree=Pos|fPOS=ADJ++JJ dobj 2 1
vOeGrMgP0104 and CONJ fPOS=CONJ++CC cc 2 0
vOeGrMgP0105 they PRON Case=Nom|Number=Plur|Person=3|PronType=Prs|fPOS=PRON++PRP nsubj 6 0
vOeGrMgP0106 eat VERB Mood=Ind|Tense=Pres|VerbForm=Fin|fPOS=VERB++VBP conj 2 1
vOeGrMgP0107 fish NOUN fPOS=X++FW dobj 6 0
Data Partitions (Sequential)

- 80% TRAIN
- 10% DEV
- 10% TEST

TIME (30-day sampling window) →

 USERS ←
Three Language Tracks

	English (EN ← ES)	Spanish (ES ← EN)	French (FR ← EN)	TOTAL (All 3 Tracks)
USERS	2,593	2,643	1,213	6,449
TRAIN (tokens)	2,622,958	1,973,558	926,657	5,523,173
DEV (tokens)	387,374	288,864	137,571	813,809
TEST (tokens)	386,604	282,181	135,525	804,310
TOTAL (tokens)	3,396,936	2,544,603	1,199,753	7,141,292

Duolingo’s three largest courses (~1/3 of users)
Other Details

- **evaluation**: AUC (official metric) + F1
- **development phase (TRAIN + DEV)**: 8 weeks
- **test phase (TEST)**: 10 days
 - blind TEST set submissions via CodaLab
 - teams allowed to use both TRAIN+DEV to train
Official Results

English

Spanish

French
Official Results

Linear models
Official Results

English

Spanish

French

Tree Ensembles (GBDT, RF)

Linear models
Official Results

F1

AUC

SLAM_baseline

Linear models

Tree Ensembles (GBDT, RF)

RNN (across exercises)
Official Results

RNN (across exercises)
Tree Ensembles (GBDT, RF)
Linear models
Hybrid (RNN+GBDT)

* Multitask learning (i.e., unified model across all three tracks)
Does the Algorithm Matter?

Fixed effects (algorithm choices)	Effect	p-value
Intercept	.786	< .001 ***
Recurrent neural network	+ .028	.012 *
Decision tree ensemble	+ .018	.055 .
Linear model (e.g., IRT)	- .006	.541
Multitask model	+ .023	.017 *

Random effects	St. Dev.
User ID	± .086
Team ID	± .013
Track ID	± .011

linear mixed-effects analysis of learning algorithms
Example Multitask Approaches

NYU (Rich et al., 2018) — 3rd

TMU (Kaneko et al., 2018) — 4th
Other Algorithm Notes

• **linear classifiers** are effectively *item response theory* models, specifically AFMs (Cen et al., 2008)

• the **RNN systems** are examples of *deep knowledge tracing* (Piech et al., 2015), an extension of BKT

• the only linear model to rank in the top 5 was CECL, which used logistic regression with **feature conjunctions**

 • effectively modifies the decision surface to be **nonlinear**

 • RNN **hidden nodes** + GBDT **constituent trees** may be representing these same conjunctions
Does the Feature Set Matter?

Features used	Popularity	Effect
Word (surface form)		+.005
User ID		+.014
Part of speech		−.008
Dependency labels		−.011
Morphology features		−.021
Response time		+.028 *
Days in course		+.023 .
Client		+.005
Countries		+.012
Dependency edges		−.000
Session		+.014

linear mixed-effects analysis of provided features

time-related features appear to help somewhat

morpho-syntactic features seem to hurt slightly?
Parsing (+ Alignment) Errors

Along with the tokens themselves we encoded each instance word’s part of speech, morphological features, and dependency edge label. We noticed that some words in the original dataset were paired with the wrong morphological features, particularly near where punctuation had been removed from the sentence. To fix this, we reprocessed the data using Google SyntaxNet³.

Cambridge (Yuan, 2018)

NYU (Rich et al., 2018)
Does the Feature Set Matter?

> 30 days might make these more useful

Features used	Popularity	Effect
Word corpus frequency		+.008
Spaced repetition features		+.013
L1-L2 cognates		+.001
Word embeddings		+.020
Word stem/root/lemma		+.007

more linguistically diverse data might make these more useful

linear mixed-effects analysis of novel features
Can An Ensemble Do Better?
Can An Ensemble Do Better?

stacking weights (across all 3 tracks)

- 2nd (RNN)
- 3rd (GBDT)
- 1st (RNN+GBDT)
Summary

• **first SLA modeling task**: attracted 15 teams from diverse fields

• **learning algorithm choices** (RNNs, GBDTs, multitask) appear to be more impactful than **clever feature engineering**

• morpho-syntactic features **did not seem to help**, possibly due to systematic parsing (+ alignment) errors

• a more **longitudinal** SLA modeling task (> 30 days) + more linguistic diversity (multiple L1s; intermediate-advanced) might let **psychologically-inspired features be more useful**
Questions?

corpus, papers, starter code, etc. available at:
http://sharedtask.duolingo.com

special thanks to: Bozena Pajak, Joseph Rollinson, Hideki Shima, Eleanor Avrunin, Natalie Glance, Anastassia Loukina, Kristen K. Reyher, the BEA workshop organizers,
+ of course the participating teams!