The Influence of Feeding Combination Silkworm (Tubifex sp.) with Commercial Feed on Growth Performance of Catfish (Clarias sp.)

Dewi Agustina* dan Retno Cahya Mukti*

* Program Studi Budidaya Perairan, Fakultas Pertanian, Universitas Sriwijaya

Abstract

This study aims to determine the growth of catfish (Clarias sp.) seeds by giving a combination of silkworms (Tubifex sp.) and commercial feed. This research was conducted in August - October 2020 in the fish farming group of PT ASABRI, West Iir II Palembang, South Sumatera. The treatments used in this study were 100% silkworm (control) feeding and a combination of feed treatment consisting of 75% commercial feed and 25% silkworms. Parameters include absolute weight growth, absolute length growth, feed efficiency, survival, and water quality. The results obtained from this study indicate that combination feeding (P1) obtained better results than the control (P0) with absolute weight growth data of 8.38 g, absolute length 7.39 cm, feed efficiency 56.38% and survival 87.50%.

Keywords: catfish, commercial feed, combination, growth silkworm,

1. Introduction

Catfish (Clarias sp.) One commodity that has been developed. Catfish often have domestic and foreign markets, often exported in the form of whole (whole around), cut meat (fillet), without gills and entrails (whole gill gutet) and without a head (head less). (Muallah et al., 2019). The high production of catfish causes the demand for seeds to also increase. The demand for catfish seeds in the market is quite high, namely ± 500,000 heads in one week (Arief et al., 2014).

The increasing demand for seeds requires business actors to increase the supply of seeds with good quality and quality (Amanta et al., 2015). Provision of fish seeds can be done through hatchery activities. Amanta et al., (2015) stated that hatchery activity is one of the successes in cultivation business. The rate of growth and survival of the seeds can be seen from the selection of the parent, the quality of the water and the feed given according to the nutritional needs of the fish seeds.

Feed used for seed catfish include natural feed and commercial feed. Natural feed used is silk worms (Tubifex sp). The use of natural food in the form of 100% silk worms requires a large amount of capital in some catfish farmers (Madinawati et
According to Setiawan et al., (2018), silk worms have quite expensive prices ranging from IDR 100,000/kg to IDR 125,000/kg. Meanwhile, if using 100% artificial feed, the digestive system of fish seeds is still simple both in terms of morphology and physiology (Nurhayati et al., 2014). To overcome this problem, a combination of natural feed and artificial feed is used.

According to Amanta et al., (2015), a combination of artificial feed and natural feed in order to create a balance of amino acids in the body of fish seeds, because amino acids come from animal and vegetable protein which will meet the amino acid needs needed by catfish seeds. Research conducted by Amanta et al., (2015) showed that feeding with a combination of 75% pellet flour 25% silkworms in African catfish seeds resulted in optimal growth compared to using 100% silk worms and 100% commercial feed. In research Muallah et al., (2019), feeding a combination of 75% pellets and 25% silk worms accelerate the growth rate of fish fry catfish the size of 1 cm. The aim of this study to determine the effect of the combination of silkworms and commercial feed on the growth and survival on the seed catfish.

2. Materials and Methods

2.1. Time and Place

This study was conducted in August-October 2020 in the fish farming group Partners PT.ASABRI, Ilir Timur, Palembang, South Sumatra.

2.2. Materials and tools

The tools used in this study include an aquarium with a size of 60 x 30 x 60 cm³, an aerator, an aeration hose, an aeration stone, a scale, a sipon hose, a thermometer and a pH meter. While the materials used include catfish seeds with a size of 3 cm, fresh silkworms, potassium permanganate, and commercial feed with a protein content of 40%.

2.3. Research design

This study used an experimental method, which was conducted to examine the effect of a combination of feed on the growth and viability of catfish seeds. The treatment given is: Treatment A: control (100% silk worm) Treatment B: combined feed (25% silkworm and 75% commercial feed)

2.4. Research procedures

2.4.1. Preparation of research containers

The container used is an aquarium. Before use, the container is cleaned first, after that the aquarium is soaked with potassium permanganate (PK) for 1 night. Then the aquarium is rinsed with water and dried and then filled with 20 L of water, the water used in the aquarium is first deposited for 24 hours, and an aerator is installed which is used as oxygen supply to the aquarium.

2.4.2. Fish maintenance

Stocking done in the morning, with a density of 2 fish / L (Amanta et al., 2015). Before stocking, the fish are acclimatized for 15 minutes, after that the fish are adapted for 7 days, then the fish are weighed and measured for their length. Fish rearing is carried out for 40 days by feeding 3 times a day, namely at 09.00, 13.00, and 17.00WIB with time intervals every 4 hours. The amount of feed is as much as 10% of the total weight of fish seeds (Amanta et al., 2015). The silk worms used were obtained from Pasar 16 Ilir Palembang. Before being given, silk worms are cleaned first, silk worms are given fresh and whole without being chopped. Checking the water quality and health of the fish during the rearing period is carried out once a week. Fish sampling is carried out every 7 days and if there are dead fish, they will be weighed and measured their length. Fish maintenance is carried out for 42 days.

2.4.3. Water Quality Management

The water quality was measured was the temperature and pH. Water quality measurements are carried out in the morning at 06.00 - 07.00 WIB before feeding (Muallah et al., 2019). Metabolic waste disposal is done every morning before feeding. The addition of water is done manually as much as the wasted water from the water that has been deposited in the reservoir.

2.5. Parameters

2.5.1. Growth

The absolute weight growth

The absolute weight growth of catfish during maintenance can be calculated using the following formula:

\[ G = W_t - W_o \]

Information:
- \( G \) : Absolute weight growth (g)
- \( W_t \) : Average weight of fish at the end of rearing (g)
- \( W_o \) : Average weight at fish the beginning of rearing (g)

The absolute length growth

The absolute length growth of catfish during rearing can be calculated using the following formula:

\[ P_m = L_t - L_o \]

Information:
- \( P_m \) : Absolute length growth (cm)
- \( L_t \) : Average length of fish at the end of maintenance (cm)
- \( L_o \) : Average length of fish at the beginning of rearing (cm)

2.5.2. Feed Efficiency

Feed Efficiency is calculated using the following formula:

\[ EP = \frac{(W_t - W_d) - W_o}{F} \times 100 \]

Information:
- \( EP \) : Feed efficiency (%)
- \( W_t \) : Fish biomass at the end of maintenance (g)
- \( W_o \) : Fish biomass at the start of rearing (g)
- \( W_d \) : Biomass of dead fish (g)
- \( F \) : Amount of feed given (g)

2.5.3. The survival rate

The survival rate (SR) of fish is calculated by the formula:

\[ SR = \frac{N_t}{N_o} \times 100 \]

Information:
- \( SR \) : Survival (%)
- \( N_t \) : Number of fish at the end of maintenance (fish)
- \( N_o \) : Number of fish at the beginning of maintenance (fish)

75
3. Results and Discussion

3.1. Growth

Weight growth in P1 treatment showed higher results than that in P0 (Figure 1). The growth in absolute weight of fish P0 was 7.81 g, while in P1 treatment was 8.38 g.

The absolute length growth of fish P0 is 7.04 cm and in P1 treatment is 7.39 cm. The length growth of catfish during maintenance is presented in Figure 2.

Figure 1. Graph weight growth catfish

The absolute length growth of fish P0 is 7.04 cm and in P1 treatment is 7.39 cm. The length growth of catfish during maintenance is presented in Figure 2.

Figure 2. Graph length growth catfish

The nutritional content in the feed affects its growth and development, high protein feed will accelerate the development of its body (Hamron et al., 2018). Fish need high protein for growth and through high protein fish can quickly grow and develop (Rihi, 2019). According to Hariati (2010), silk worms contain 51.9% protein, 20.3% carbohydrates, 22.3% fat, and 5.3% ash. The use of a combination of commercial feed and silkworms together can result in higher growth.

3.2. Feed efficiency

The data of catfish feed efficiency during maintenance in Figure 3 shows that the feed efficiency at P0 was 66.23% higher than the P1 treatment which was 56.38%, this is presumably due to the difference in feed given. According to Prasetya et al., (2020) differences in the type of feed given can affect digestibility and fish growth better, this difference is due to the presence of substances and nutrients contained in the combination feed of silk and commercial worms. Bokings et al., (2017) stated that artificial feeding and silk worms and their combination have a positive effect on the growth and survival of catfish seeds. In addition, the high feed efficiency control is due to feeding only using natural silk worm feed which is easily digested by catfish seeds during maintenance so that the total efficiency is high (Muallah et al., 2019).

3.3 Survival rate

The survival rate in P0 fish was 85% and P1 treatment was 87.5%. The survival of catfish is presented in figure 4.

Figure 3. Graph of catfish feed efficiency

The data of catfish feed efficiency during maintenance in Figure 2 shows that the feed efficiency at P0 was 66.23% higher than the P1 treatment which was 56.38%, this is presumably due to the difference in feed given. According to Prasetya et al., (2020) differences in the type of feed given can affect digestibility and fish growth better, this difference is due to the presence of substances and nutrients contained in the combination feed of silk and commercial worms. Bokings et al., (2017) stated that artificial feeding and silk worms and their combination have a positive effect on the growth and survival of catfish seeds. In addition, the high feed efficiency control is due to feeding only using natural silk worm feed which is easily digested by catfish seeds during maintenance so that the total efficiency is high (Muallah et al., 2019).

3.4. Water quality parameters

From the temperature measurement on the control during maintenance the range was 28.4 C - 30.1 C and in the combination feed treatment the range was 28.6 C - 30.2 C. During maintenance, the temperature fluctuates due to the influence of environmental temperature, it is suspected that the placement of the maintenance media container is outside the open space (outdoor) so that it often causes fluctuations in the water.
temperature of the maintenance media caused by heat and rain (Simanullang and Usman, 2018). According to Afifi (2014), catfish has a tolerance for temperatures of 22-34 °C. The pH value in the treatment ranged from 6.7 to 7.7 and in the treatment ranged from 6.4 to 7.9. According to Afifi (2014), states that catfish have a tolerance to the degree of acidity (pH) in the range of 6-9. The level of pH acidity is much influenced by several factors of formation, including organic matter, low soil pH and water pH followed by the accumulated organic matter content and no complete oxidation occurs (Hamron et al., 2018).

4. Conclusion

The use of a combination feed of silk worms (Tubifex sp.) With commercial feed on catfish seeds or P1 treatment obtained better results than the control or treatment P0, namely the absolute weight growth data of 8.38 g, absolute length 7.39 cm, feed efficiency 56.38%, and survival 87.5%.

References

Afifi, I.M. 2014. Pemanfaatan Bioflok pada Budidaya Ikan Lele Dumbo dengan Padat Tebar Berbeda terhadap Luas Pertumbuhan dan Survival Rate (SR). Skripsi. Surabaya.

Amanta, R., Usman, S., Lubis, M.R.K., 2015. Pengaruh kombinasi pakan alami dengan pakan buatan terhadap pertumbuhan benih ikan lele dumbo (Clarias gariepinus). Jurnal Aquacoast marine. 3(3): 1-12.

Arief., M., Fitriani, N., Subekti, S., 2014. Pengaruh pemberian probiotik berbeda pada pakan komersil terhadap pertumbuhan dan efisiensi pakan ikan lele sangkuriang (Clarias sp.). Jurnal Ilmiah Perikanan dan Kelautan. 6 (1): 49-53.

Bokings, U.L., Koniyo, Y., Juliana. 2017. Pertumbuhan dan kelangsungan hidup benih ikan patin siam (Pangasius hypophthalmus) yang diberi pakan buatan cacing sutera (Tubifex sp.) dan kombinasi keduanya. Jurnal Ilmiah Perikanan dan Kelautan. 5 (3): 82-89.

Hamron, N., Johan, Y., Brata, B., 2018. Analisis pertumbuhan populasi cacing sutera (Turbifex sp.) sebagai sumber pakan alami ikan. Jurnal Penelitian Pengelolaan Sumberdaya Alam dan Lingkungan.7(2): 79-89.

Hariati. E.,2010. Potensi tepung cacing sutera (tubifex sp) dan tepung potensi tepung topika untuk substitusi pakan (pangasius hypophthalmus). Skripsi Universitas Atma jaya Yogyakarta.

Madinawati., Serdiati, N., Yoel., 2011. Pemberian pakan yang berbeda terhadap pertumbuhan dan kelangsungan hidup benih ikan lele dumbo (Clarias gariepinus). Media Litbang Sulteng 4 (2): 83-87.

Muallah, A., Diniarti, N., Astriana, B.I., 2019. Pengaruh penambahan cacing sutra (Tubifex sp.) sebagai kombinasi pakan buatan terhadap efisiensi pemanfaatan pakan dan pertumbuhan larva ikan lele sangkuriang (Clarias gariepinus). Jurnal Perikanan. 9 (2): 160-171.

Nurhayati, Utomo, N.B.P., Setiawati, M., 2014. Perkembangan enzim pencernaan dan pertumbuhan larva ikan lele dumbo, Clarias gariepinus Burchell 1822, yang diberi kombinasi cacing sutra dan pakan buatan. Jurnal Ikhtiolgi Indonesia.14 (3) :167-178.

Prasetya, O.E.S., Muarif., Mumpuni, F.S., 2020. Pengaruh pemberian pakan cacing sutera (tubifex sp.) dan daphnia sp. terhadap pertumbuhan dan tingkat kelangsungan hidup larva ikan lele sangkuriang (Clarias gariepinus). Jurnal Mina Sains. Vol 6 (1). ISSN: 2407-9030.

Rihi, A.P., 2019. Pengaruh pemberian pakan alami dan buatan terhadap pertumbuhan dan kelangsungan hidup benih ikan lele dumbo (Clarias gariepinus burchell.) di Balai Benih Sentral Noekele Kabupaten Kupang. BIOEDU, 4(2): 56-62.

Rosmawati dan Muarif. 2010. Kelangsungan hidup dan pertumbuhan benih ikan lele dumbo (Clarias sp.) pada system resirkulasi dengan kepadatan berbeda. Sains Akuatik 13 (2): 1 – 8.

Setiawan., A., Yulisman., Sasanti, A.D., 2018. Periode waktu pengantian cacing sutera dengan ikan rucah sebagai pakan benih ikan gabus (Channa striata). Jurnal Akuakultur Rawa Indonesia. 6(1): 37-50.

Simanullang, A.D dan Usman, S., 2019. Pengaruh Frekuensi Pemberian Pakan Alami Cacing Sutra (Tubifex sp.) terhadap Pertumbuhan dan Kelangsungan Hidup Larva Ikan Lele (Clarias sp.). Skripsi. Universitas Sumatera Utara.

Triyanto H, Rosmawati, Widiyati A. 2016. Kebutuhan Jumlah Pakan Pada Pemeliharaan Ikan Tengadak (Barbonymus schwenfeldii) di Kolam. Jurnal Mina Sains. Vol: 2(1): 45-52.