Retraction

Retraction: Tracking Software in the Automotive Field: Challenges and Solutions (J. Phys.: Conf. Ser. 1804 012064)

Published 19 December 2022

This article has been retracted by IOP Publishing following an allegation that this article may contain verbatim overlap with other published work [1].

IOP Publishing has investigated in line with the COPE guidelines and have found the article contains significant similarities to the source without citation and agree this article should be retracted.

IOP Publishing wishes to credit the anonymous whistleblower for bringing the issue to our attention.

The authors neither agree/disagree to this retraction.

[1] Ahmed Ibraheem Raheem and Yaseen Hameed Rashid, 2021, Tracking Software in the Automotive Field: Challenges and Solutions

Retraction published: 19 December 2022
Tracking Software in the Automotive Field: Challenges and Solutions

Ahmed Ibraheem Raheem¹, Yaseen Hameed Rashid¹.

¹Department of Automotive Techniques, Erbil Polytechnic University Erbil Technology Institute.

ahmed.raheem@epu.edu.iq,
yaseen.rashid@epu.edu.iq

Abstract. In the automotive domain, the development concerning entire safety-critical systems after comport including safety requirements such as ISO 26262. These requirements require mounted traceability, the potential to tell artifacts built throughout development of a system, according to confirm resulting structures are well-tested then therefore safe. This paper contrasts average traceability challenges or solutions including these unique in conformity with the car domain, and investigates how he obvious into practice. We mix three records sources: a tertiary writing criticism in accordance with identify normal challenges then solutions; a suit study with an automotive supplier so validation for what the challenges then solutions are skilled among practice; then a multi-vocal composition stricture to identify challenges or options particular according to the automotive domain. We observed 22 challenges or sixteen special options among the reviews. 17 challenges were identified within the suit study; six continue to be unsolved. We talk about challenges then options out of the perspectives on academia, tool vendors, consultants and users, and discover differences among scientific or “grey” literature. We talk about why challenges continue to be unsolved then endorse solutions. Our findings point out as at that place is a great overlap among average traceability challenges yet these of the automotive area however to that amount she are skilled differently.

Keywords. Traceability, Automotive, Safety, Automotive SPICE.

1. Introduction
Over the past 20 years, the automotive domain has witnessed an extensive expand on software deployed among cars. In today’s modern-day car, software constitutes upon in accordance with 40% concerning the production cost [1]. With upcoming trends such as self-reliant driving, the software is not solely getting extra complicated however additionally controls greater yet more safety-critical functions. The type concerning software program has also shifted out of tiny isolated applications in accordance with systems that incorporate countless applications so much have interaction and rely of every other [2]. Such complicated systems be able motive lifestyles threatening accidents now no longer accurate specified, designed, applied or tested. The variety about artifacts born during improvement (e.g., requirements, graph models, behavior models, simulations yet tests) is significant or their creation is normally allotted upstairs a range of teams, together with groups beyond unique corporations due in 

Retracted
accordance with OEM-supplier relationships. With regards in accordance with the quantity on the systems, a ordinary high-end automobile consists about services that total to about 100 million traces of code. This is a altogether enormous quantity so software program among lousy domains has an awful lot less lines of code [3]. For example, the F-22 fighter well has respecting two bags of strains concerning articles and the Boeing 787 has round 14 pile strains about code. In addition, now not solely is even a significant number concerning traces of articles in that domain but also a vast wide variety about sordid artifacts. For instance, the specifications over the systems in a 2004 auto had in the meantime reached 20000 pages at so time. This perform stand violent salvo even are no measured methods established after hold song over it artifacts, their relationships, or how much they evolve. In such situations, traceability performs an important role. In that paper, we define traceability so the potential in imitation of relate artifacts constructed for the duration of the development of a system, as a consequence following. Traceability helps in understanding as artifacts are related according to each mean yet approves according to hold music about who capabilities hold in the meantime been specified, implemented then tested [4]. Traceability performs a too greater function because of maintenance tasks by way of facilitating exchange have an impact on analysis then enhancing understandability on the provision for the developer whoever wishes in imitation of edit changes of the system. In the car industry, it aspects are specifically necessary within mild over security standards to that amount require impenetrable as protection requirements had been specified, instituted between calculation all through the graph yet development, validated of check cases, then demonstrated thru protection analysis. In method after realise the benefits about traceability (and efficiently expostulate their protection cases), software program development agencies necessity in imitation of establish a traceability approach up to expectation is aligned along theirs goals [5]. Defining then imposing a traceability approach is no longer a fiddling task, when you consider that it requires a good grasp regarding the artifacts in conformity with stand traced as much properly as much the capability after outline meaningful links yet according to fulfill sure the made links are useful. On the one hand, like exists a huge physique of skills on traceability; for instance within 1999 or 2012, 70 studies concerning traceability have been posted within just the Requirements Engineering (RE) conference. On the ignoble hand, into practice traceability is both now not mounted yet only hooked up seeing that standards demand. In addition, it is unclear or the traceability challenges of the automotive area tell in accordance with average traceability challenges or whether they colorful of a realistic environment regarding a company [6].

2. Traceability Requirements in the Automotive Domain
In this domain, traceability necessities are imposed by means of the ISO 26262 – a practical safety grade because street vehicles – and ASPICE— a procedure evaluation model particular according to the automobile domain. Both the ISO 26262 and ASPICE advise the usage on a V-model procedure lifecycle because production development about embedded systems [7]. The traceability hyperlinks required are proven as much dotted strains into formal.

**Vertical traceability**
Artifacts have to stand traceable in conformity with theirs youth or the teens must stand traceable in imitation of theirs parents (bi-directional traceability). An example concerning that is to that amount a requirement have to lie traceable in conformity with architectural artifacts (structural or behavioral) up to expectation realizes such and according to the articles related including it artifacts. It need to also lie viable in imitation of location beside the articles in imitation of architectural artifacts then lower back after the requirement [8].

**Horizontal traceability:**
This means as it have to remain possible in imitation of residence beside artifacts concerning the left aspect regarding the V-model in conformity with theirs corroboration artifacts (such as checks then security analysis) regarding the appropriate side of the V-model [9].
Figure 1. Traceability in the V-model.

From a traceability factor of view, the most important distinction in the pair is to that amount ISO 26262 requires traceability in conformity with he established within safety-related artifacts, i.e., it requires defining links beside dangers according to security goals, in conformity with security requirements [9], according to the structure and behavior over this safety requirements, according to the articles or to exams so much are accountable because of trying out all the safety artifacts. ASPICE about the mean limb requires traceability because whole artifacts, also condition he are not safety-related. Another distinction is so much while the ISO 26262 norm solely recommends bi-directional traceability [10], it is deemed obligatory among ASPICE. Additionally, the ISO 26262 value requires the artifacts in accordance with stand versioned then bear unique identifications identifiers between disciplines in imitation of be traceable.

Guidelines then Scope
We carried out the tertiary writing animadversion in accordance in imitation of the guidelines, the multi-vocal writing criticism lawsuit lesson according after the tips proposed. Before conducting these studies, we defined the scope applicable to us then who every 3 records sources cover. Our scope (depicted among Figure 2) suggests up to expectation we discriminate four distinct traceability categories (Preparation or Planning, Establishment, Outcome or Exchange) as are inspired with the aid of the familiar traceability process [11]. We chronic this model due to the fact that includes nearly concerning the things to do wished because of establishing traceability. This mannequin is additionally widely used of the traceability neighborhood yet since, its decision has been back of ignoble lookup a basis for grasp and describing traceability [12].
Figure 2. The scope of the case study.

In the model, the Preparation or Planning category, focuses on the approaches and tools concerned when getting ready to include traceability of an organization in a specific project. The Establishment category offers the strategies and equipment concerned in the true introduction and upkeep over traceability links [13]. The Outcome category focuses on how much the hyperlinks are stored or what they are sincerely used and how they have been established. Since we are reading the car area where the OEM-Supplier kinship ability up to expectation artifacts are exchanged among companies, we brought a fourth category known as Exchange where we talk about challenges concerning replacing traceability inside or within organizations.

Data Extraction then Classification
As portion regarding the success including meta-data, we recognized the birth and type of the source. Possible values because of ancestry — describing who group of humans the authors on the supply belong – had been academia, tool vendor, consultant, user, standardization body, agency, student, Open Source Community, mixed, or unknown [14]. As a supply because it information, we back the talked about affiliations, the website the source was once determined on, then meta-data provided together with the source. In lawsuit the birth was not obvious out of the supply directly, author names were recognized then used in conformity with ask because of their affiliations [15]. In lawsuit the affiliation about the authors was once together with a company that in shape countless of the viable values for paternity (e.g., a tool dealer so much also engages into consultancy services), we choice the certain that fit the kind over the source best. We identified a sizeable range concerning special source types. Among the near distinguished were whitepaper, presentation, device documentation, blog entry, employment posting, path announcement, tool description, or manual.

Data series procedure
We gathered information through gazing demonstrations then conducting semi-structured interviews. Observations enabled us to understand the development technique or how traceability activities are led outdoors and the semi structured interviews enabled us to gather comparable information regarding the challenges [15]. The model describing the scope over our education or interview questions have been sent to the participants a week before the lesson took place. This used to be in accordance with enable them epoch to prepare because the demonstrations or interviews. For every participant, we began along the participant giving a decision on how many he put in force traceability the usage of the scope mannequin as like a guide. This used to be accompanied via a semi structured interview. The interviewer
only asked questions which have been no longer answered through the decision part. Due in conformity with felony issues, the interviews have been now not recorded but the interviewer took notes. The interviews then observation for each person lasted between 90 minutes to IV hours together with breaks among between. The longer periods were including senior specialists whooever explained yet confirmed the traceability process into detail [16].

Results
In the report findings both from the tertiary composition review, the multi-vocal literature review, then the litigation learning separated by using the categories we additionally old in conformity with scope our action study. The challenges are summarized. In the figure, we additionally include the relationships in the challenges we determined in the course of analysis. The arrows is point out the dependencies within challenges: agreement certain is present afterwards the sordid is also likely according to remain between fig3. We draw each challenge, talk about such and its options among the adherence of each the tertiary literate comment and the multi-vocal review yet after examine to them with the challenges yet solutions at the company [17].

![Figure 3. Distribution of challenges by provenance in absolute numbers.](image)

Results: Preparation and Planning
This part describes the challenges then solutions so are encountered then organizations are getting ready in accordance with consist of traceability both of a unique challenge yet the complete company. Such challenges are involved including the emergence and understanding regarding knowledge respecting traceability via managers, engineers yet developers [18].

Knowledge on Traceability
We determined four challenges related after competencies as regards traceability between the literatures. All four have been also discovered at the company. Two about the challenges hold been solved while two have only been partly solved the usage of work-arounds advise figure4.
Lack of Knowledge about and Understanding of Traceability
Description: In discipline in conformity with prepare and diagram because traceability between a companies, each the managers then builders want in conformity with hold an grasp over such as traceability is yet its purpose. This perception also wants in conformity with be aligned, that means so entire the human beings into the organization should bear a frequent interpretation regarding what traceability is. For companies, postulate the thought regarding traceability is not clear, then the hazards over failure are high [19].

Results: Creation and Maintenance
This part reviews concerning challenges that are associated with the activities concerning developing and updating the traceability links. The challenges are vindicated between ternary categories: tool support, human factors, and enterprise & processes.

Tool Support
We discovered five main challenges in the writing who have been noted between this categories. Four of these challenges were additionally determined at the lawsuit company. On in addition analysis only pair on this challenges bear been solved, one has a workaround solution, while two regarding them still remain unsolved [20].

Discussion
In it section, we talk about our results of association according to the lookup questions. We wish tackle RQ 1 and RQ 2 so much treat along the normal traceability challenges yet the unique challenges about traceability within the automobile area so addresses challenges so much do stay celebrated between action will stay discussed [21].

Differences between the tertiary and the multi-vocal
While close concerning the challenges or solutions determined into the tertiary animadversion were also found then therefore verified within the MLR, at that place are a temperate variations as stay out. This has partially according to function together with the special records sources then the exclusive provenance on the records yet partly along the reality to that amount the sources within the MLR had been more unique after the car domain. One assignment has been newly identified beyond the MLR.
sources: Reuse concerning traceability information. In addition, Traceability throughout lifecycle phases has solely been acknowledged as soon as among the tertiary review, however 34 times into the MLR sources. The purpose in which Reuse over traceability facts was once no longer recognized namely a challenge from the small composition may remain due after the center of attention about the MLR over the car area yet the excessive greyness about product tier processes in that area. Reuse on traceability statistics is commonly described into it context [22]. When a aspect yet a subsystem has in conformity with keep reused within some other product, whole attached requirements, sketch documents, check cases, etc. must also be handy to the builders concerning the latter products.

Since this artifacts are connected by means of traceability links, it records must additionally remain reused. However, even might stay traceability links present according to the artifacts of mean factors so need to not remain reused. This introduces a mission between phrases regarding who links in accordance with reuse then how after treat including those links so point in conformity with aims backyard over the reused artifacts. It is no longer evident who solutions apply after this project at that point.

Conclusion
This order offers an all overview about traceability challenges or options in the automobile area or contrasts them including these located in typical literature. Our lesson indicates that amount at that place is a tremendous overlap of ordinary challenges and solutions or these observed between the automotive domains. It offers evidence to that amount dense options proposed in the writing are now not relevant in the car area appropriate in imitation of its unique put in of characteristics, certain as rule complexity, the safety-criticality concerning the advanced systems, and the disbursed development cut up within the OEMs yet suppliers. We chronic a tertiary writing stricture in accordance with exploring universal traceability challenges yet solutions spoke of literature, a multi-vocal composition animadversion to derive challenges mentioned into the car area by way of distinctive provenances such so tool vendors, consultants, academia or users, and a litigation education in imitation of discovering how the challenges are experienced of practice.

While the tertiary review born challenges and options frequently beyond academia, the MLR was a richer information supply (due after the variety in the provenances). The MLR additionally gave a sign on who challenges are specifically distinguished of the automobile domain. Challenges such as many diverse artifacts then equipment and guide work, e.g., had been pointed out by way of whole provenances. The equal is authentic because options where, e.g., Integrated tool platform, Tool integration or automation the place pointed out by every provenance. The MLR also confirmed the distinction within challenges to that amount is broadly speaking mentioned into academia then these mentioned together with practitioners such as device vendors, consultants or users.

Future work
For future work, we layout after look at how much options proposed within Section 8 desire stay able to assignment within the practice, by imposing or making an attempt to them together with practitioners. As piece regarding our lookup, we bear raised a launch supply traceability also 18 so let's in the manual introduction of hyperlinks in conformity with fair artifacts. In phrases of the options located in our review, that addresses Tool integration or Report generation. Our embodied plans are in accordance with inspecting or in accordance with mix mechanically made hyperlinks (for occasion beyond mannequin transformations) with manually manufactured links. We desire additionally investigate or to assist users with semi-automatic preservation over traceability hyperlinks through notifications or collaborative capabilities such as much commenting concerning links.

References
[1] A. Dorri, M. Steger, S. S. Kanhere, and R. Jurdak, “BlockChain: A Distributed Solution to Automotive Security and Privacy,” IEEE Commun. Mag., 2017.
[2] D. Andre et al., “Future generations of cathode materials: An automotive industry perspective,” Journal of Materials Chemistry A. 2015.
[3] B. T. Gibson et al., “Friction stir welding: Process, automation, and control,” *J. Manuf. Process.*, 2014.

[4] A. Broggi, P. Grisleri, T. Graf, and M. Meinecke, “A software video stabilization system for automotive oriented applications,” 2005.

[5] Industrie Protoc., 2012.

[6] G. Gay-Bellile and S. Bourgeois, “A mobile markerless augmented reality system for the automotive field,” *Ismar ...*, 2012.

[7] S. Winkler and J. von Pilgrim, “A survey of traceability in requirements engineering and model-driven development,” *Softw. Syst. Model.*, 2010.

[8] M. Broy, “Challenges in automotive software engineering,” in *Proceeding of the 28th international conference on Software engineering - ICSE ’06*, 2006.

[9] S. Maro, J. P. Steghöfer, and M. Staron, “Software traceability in the automotive domain: Challenges and solutions,” *J. Syst. Softw.*, 2018.

[10] D. M. Segura Velandia, N. Kaur, W. G. Whittow, P. P. Conway, and A. A. West, “Towards industrial internet of things: Crankshaft monitoring, traceability and tracking using RFID,” *Robot. Comput. Integr. Manuf.*, 2016.

[11] M. Taromirad and R. F. Paige, “Agile requirements traceability using domain-specific modelling languages,” 2013.

[12] J. Guo, J. Cheng, and J. Cleland-Huang, “Semantically Enhanced Software Traceability Using Deep Learning Techniques,” in *Proceedings - 2017 IEEE/ACM 39th International Conference on Software Engineering, ICSE 2017*, 2017.

[13] H. Dubois, M. A. Peraldi-Frati, and F. Lakhal, “A model for requirements traceability in a heterogeneous model-based design process: Application to automotive embedded systems,” in *Proceedings of the IEEE International Conference on Engineering of Complex Computer Systems, ICECCS*, 2010.

[14] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo, “Recovering traceability links between code and documentation,” *IEEE Trans. Softw. Eng.*, 2002.

[15] J. González-Huerta, E. Insfran, S. Abrahão, and J. D. McGregor, “Non-functional requirements in model-driven software product line engineering,” 2012.

[16] M. Kassab, O. Ormandjieva, and M. Daneva, “A traceability metamodel for change management of non-functional requirements,” in *Proceedings - 6th ACIS International Conference on Software Engineering Research, Management and Applications, SERA 2008*, 2008.

[17] S. Hess, A. Gross, A. Maier, M. Ortigen, and G. Meixner, “Standardizing model-based in-vehicle infotainment development in the German automotive industry,” 2012.

[18] H. Post, C. Sinz, F. Merz, T. Gorges, and T. Kropf, “Linking functional requirements and software verification,” in *Proceedings of the IEEE International Conference on Requirements Engineering*, 2009.

[19] T. Bulletin et al., “Understanding and managing cell culture contamination,” *Life Sci.*, 2005.

[20] M. Rohwer, D. Klo, and J. Perner, “Escape From Metaignorance: How Children Develop an Understanding of Their Own Lack of Knowledge,” *Child Dev.*, 2012.

[21] M. Fowell, S. Dunwoody, R. Griffin, and K. Neuwirth, “Exploring lay uncertainty about an environmental health risk,” *Public Underst. Sci.*, 2007.

[22] A. A. Horton, A. Walton, D. J. Spurgeon, E. Lahive, and C. Svendsen, “Microplastics in freshwater and terrestrial environments: Evaluating the current understanding to identify the knowledge gaps and future research priorities,” *Science of the Total Environment*. 2017.