First record of the association of a species of Lycaenidae (Lepidoptera) with Zornia latifolia Sm. (Fabaceae), and its parasitoid (Hymenoptera: Chalcididae) in Brazil

Suianne Oliveira dos Santos Cajé, Jefferson Duarte de Melo, Erlande Lins da Silva & Iracilda Maria de Moura Lima

1. Laboratório de Bioecologia de Insetos, Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Brazil. 2. Herbário MAC, Instituto do Meio Ambiente do Estado de Alagoas (IMA-AL), Brazil.

Abstract. The family Lycaenidae (Lepidoptera) comprises over 6,000 described and widely distributed species. However, studies on interactions with other insects such as ants, parasitoids, and with food plants in the Neotropical region, are still scarce, even though such information are fundamental for better understanding the natural history of this taxonomic group. This study reports a new food plant to larvae of Lycaenidae species in the neotropics, as well as its parasitoid. Lycaenidae larva (n = 1) was found and collected for immature stage observation under laboratory conditions. The larva fed on petals and seeds of Zornia latifolia Sm. (Fabaceae). Nineteen days after pupation in laboratory one larvipupal parasitoid of the genus Conura (Chalcididae) had egressed. This is the first report of tritrophic relationship amongst Z. latifolia, a Lycaenidae larva and its larvipupal parasitoid of the genus Conura in a periurban area near remnants of the Atlantic Forest in Northeastern Brazil.

Keywords: Bioecology; Insect-plant interactions; Neotropical region; Parasitoidism.
PEREZ et al. 2015), occurring in Cerrado, rupestral fields, forest boundaries and in sandbanks; it has excellent forage capability and is also used in traditional medicine (LORENZI 2000; FERREIRA et al. 2015). In this study, Lycaenidae larva, with the color pattern uniformly light green and tegument covered with translucent short setae, attacked petals and green seeds (Figures 1B and 1C). Species of Zornia were recorded as food plants for Lycaenidae larvae: (1) Zornia diphylla (L.) Pers. for Freyeria putii (Kollar), Freyeria trochylus (Freyer) in India; to Zizeeria karsandra (Moore) in West Malaysia; and for Zizia ophis (Fabricius) in Hong Kong (ROBINSON et al. 2010); and Zornia gibbosa Span., for Zizeeria karsandara (Moore) in India (KANAGARAJ & KATHIRVELU 2018). In addition, Zornia latifolia was also recorded for Eurema elathea (Cramer) (Pieridae) in Brazil (FONTEs et al. 2007).

Nineteen days after pupation in laboratory, one parasitoid of the genus Conura egressed from a lycaenid through a circular opening in the lateral part of the thorax (Figures 1D and 1E). Larvae of the Cyanophrys bertha (Jones) and Strymon crambusa (Hewitson) collected in the field and reared in laboratory were also parasitized, and after pupation one Conura species egressed after 18 and 20 days, respectively (KAMINSKI et al. 2010; SILVA et al. 2016). Lycaenidae species have the pupal period between 5 and 13 days (SILVA et al. 2016; KUMAR et al. 2017; SONTAKKE 2018). Conura parasitoid species here recorded extended about 1,5 times this development stage of its host lycaenid.

This study reports, for the first time, the tritrophic relationship amongst Z. latifolia, a Lycaenidae larva and its larvipupal parasitoid of the genus Conura in a periurban area near remnants of the Atlantic Forest, in Northeastern Brazil. This also contributes with important basic information for understanding the dynamics of ecological interaction networks including this lepidopteran family.

ACKNOWLEDGMENTS

The authors are grateful to Rosângela Pereira de Lyra Lemos for the support as curator of the MAC Herbarium, from the Environmental Institute of Alagoas State (IMA/AL). We also grateful to Jorge Luiz Lopes da Silva, technical director of the Natural History Museum of the Federal University of Alagoas for the equipment provided. We thank Ana Cláudia Mendes Malhado and anonymous reviewer for critical reading the manuscript. We also thank Hector Mauricio Casanova Navarro for helping us with initial translate. We thank

Figure 1. Bioecological aspects of Lycaenidae larva in Zornia latifolia. A. The study site and Z. latifolia (9°33’20” S 35º46’37” W). B. Lycaenidae larva feeding on the petal. C. Seeds with perforations (red arrows) caused by the larva. D. Larvipupal parasitoid Conura sp. (Hymenoptera: Chalcididae). E. Lycaenidae pupal exuviae with an oval opening at the correspondent lateral of the thorax. (Photos: Cajé, SOS.).
REFERENCES

Del-Claro, K, V Stefani, D Lange, AA Vilela, L Nahas, M Velasques & HM Torezan-Silingardi, 2013. The importance of natural history studies for a better comprehension of animal-plant interaction networks. Bioscience Journal, 29: 439-448. DOI: https://doi.org/10.14393/Bj-v29n2a2013-17892

Dias, MM, 2006. Lepidoptera, pp. 175-204. In: Costa C, S Ide & CE Simonda. (Eds.), Insetos Imaturos. Metamorfose e identificação. Ribeirão Preto, SP, Holos Editora, 249 p.

Diniz, IR, L Braga, C Lepesqueur, N Silva & H Moraes, 2013. Lagartas do cerrado: guia de campo. Rio de Janeiro, Technical Books.

Duarte, M, 2007. Morfologia externa do adulto de Hemiarthus hannon (Lepidoptera, Lycanidae, Polymommatinae, Polymommatini). II. Região cervical, tórax e abdome. Iheringia, Série Zoologia, Porto Alegre. 97: 194-206. DOI: https://doi.org/10.1590/S0073-47212007000200009

Duarte, M & RK Robbins, 2015. Lycanidae in Catálogo Taxonômico da Fauna do Brasil. PNUD. Available on: <http://fauna.bjrj.gov.br/fauna/listaBrasil/FichaPublicaTaxonUC/FichaPublicaTaxonUC.do?id=961> [Access in: 22.x.2020].

Feirere, PSM, DMB trovão & Jm Melo, 2015. Leguminosae na APA do Cariri, Estado da Paraíba, Brasil. Hoehnea, 42: 531-547. DOI: https://doi.org/10.1590/2236-8906-44/2015

Fontes, EMG, CSS Pires, EML Pinheiro, MM Teixeira, ER Suji, VO Becker & DP Paula, 2007. Avaliação ecológica de riscos de algodoeiro resistentes a insetos: levantamento e seleção de lepidópteros não-alvo. Brasilia, DF, Embrapa (Boletim de Pesquisa Série Embrapa), 19 p.

Fortuna-Perez, AP, GP Lewis, RT Queiroz, J Santos-Silva, AMGA Tozzi & KF Rodrigues, 2015. Fruit as diagnostic characteristic to recognize Brazilian species of Zornia (Leguminosae, Papilionoideae). Phytotaxa, 219: 027–042. DOI: https://doi.org/10.11646/phytotaxa.219.1.2

Kaminski, LA, SC Thiele, CA Iserhard, HP Romanowski & A Moser, 2010. Natural history, new records, and notes on the conservation status of Cyanophrys bertha (Jones) (Lepidoptera: Lycanidae). Proceedings of the Entomological Society of Washington, 112: 54-60. DOI: https://doi.org/10.4289/0013-8797-112.1.54

Kaminski, LA & AVL Freitas, 2010. Natural history and morphology of immature stages of the butterfly Allosmaitia strophius (Godart) (Lepidoptera: Lycanidae) on flower buds of Malpighiaceae. Studies on Neotropical Fauna and Environment, 45: 11-19. DOI: https://doi.org/10.1080/01650520903495826

Kanagaraj, B & C Kathirvelu, 2018. Diversity and Relative Abundance of Lycanidae Butterflies in Annamalai Nagar, Tamil Nadu. International Journal of Recent Scientific Research, 9: 26777-26780. DOI: https://doi.org/10.24327/ijrser.2018.0905.2120

Klitgaard, B & M Lavin, 2005. Dalbergiaeae, pp. 307-333. In: Lewis G, Schrire B, Mackinder B and Lock M. (Eds.). Legumes of the world. Royal Botanic Gardens, Kew.

Kumar, KP, PDK, Jayanthi, SO Naik, A Verghese & AK Chakravarty, 2017. Biology of Anar Butterfly, Deudorix isocrates (Fab.) (Lycanidae: Lepidoptera) on Pomegranate, Punica granatum L. Indian Journal of Pure & Applied Biosciences, 5: 498-503. DOI: https://doi.org/10.18782/2320-7051.2564

Lima, IMM & MB Carvalho, 2017. Garrafas PET como alternativa para a confecção de recipientes para criação de insetos em laboratório. Ciência Agrícola, Rio Largo 15: 79-86.

Lorenzi, H, 2000. Plantas daninhas do Brasil: terrestres, aquáticas, parasitas e tóxicas. Nova Odessa, SP, Instituto Plantarum.

Pierce, NE, MF Braby, A Heath, DJ Lohman, J Mathew, DB Rand & MA Travassos, 2002. The ecology and evolution of ant association in the Lycanidae (Lepidoptera). Annual Review of Entomology, 47: 733-771. DOI: https://doi.org/10.1146/annurev.ento.47.091201.145257

Pinheiro, CEG & R Cintra, 2017. Butterfly predators in the neotropics: which birds are involved? Journal of the Lepidopterists’ Society, 71: 109-114. DOI: https://doi.org/10.18473/lepi.7112.a5

Robinson, GS, PR Ackery, IJ Kitching, GW Beccaloni & LM Hernández, 2010. HOSTS - A Database of the World's Lepidopteran Hostplants. Natural History Museum, London. Available on: <http://www.nhm.ac.uk/hosts>. [Access in: 16.vi.2019].

Silva, NAP, C Lepesqueur, AR Souza & HC Moraes, 2016. Biology of the immature stages of Strymon cymbusa (Lycanidae, Theclinae) on Oxalidaceae. Revista Brasileira de Entomologia, 60: 68-72. DOI: https://doi.org/10.1016/j.rbe.2015.11.003

Sontakke, PP, 2018. Life Cycle of the Pulse Blue Butterfly, Lampides boeticus (Linnaeus) (Lepidoptera: Lycanidae) on Cowpea. International Journal of Current Microbiology and Applied Sciences, 7: 2377-2381. DOI: https://doi.org/10.20546/ijcmas.2018.702.290

Sourakov, A, 2013. Two heads are better than one: false head allows Calycopsis cercops (Lycanidae) to escape predation by a Jumping Spider, Phidippus pulcherinus (Salticidae). Journal of Natural History, 47: 1047-1054. DOI: https://doi.org/10.1080/00222933.2012.759288

Tavares, MT & TRA, Brotto, 2019. Chalcididae parasitoids Brassolis v1.3. Portal de Biodiversidade de Chalcidoidae. 2019. Chaves de identificação. Available on: <https://chalcidoidea.ufes.br/keys/page/1> [Access in: 02.ii.2020].

Vargas, HA, M Vargas-Ortiz & D Bobadilla, 2016. Larval plant interaction networks. Bioscience Journal, 29: 439-448. DOI: https://doi.org/10.4289/0013-8797-112.1.54

Wagner, WA, LF Nogueira, MS Constantino, FC Tavares, AT Moraes & RA Gomes, 2017. Diversity and distribution of Lycaenid butterflies in the Atacama Desert. Journal of the Lepidopterists’ Society, 70: 153-157. DOI: https://doi.org/10.18473/lepi.70i2.a11

Suggestion citation:
Cajé, SOS, JD Melo, EL Silva & IMM Lima, 2020. First record of the association of a species of Lycanidae (Lepidoptera) with Zornia latifolia Sm. (Fabaceae), and its parasitoid (Hymenoptera: Chalcididae) in Brazil. EntomoBrasilis, 13: e916.

Available in: doi: 10.12741/ebrasilis.v13.e916