Abstract

BACKGROUND: To understand cartilage oligomeric matrix protein (COMP) mechanism network from human normal adjacent tissues to lung adenocarcinoma.

METHODS: COMP complete different activated (all no positive correlation, Pearson CC < 0.25) and uncomplete (partly no positive correlation except COMP, Pearson CC < 0.25) network were identified in higher lung adenocarcinoma compared with lower human normal adjacent tissues from the corresponding COMP-stimulated (≥0.25) or inhibited (Pearson CC ≤−0.25) overlapping molecules of Pearson correlation coefficient (CC) and GRNInfer, respectively. COMP complete different activated and inhibited (all no positive correlation, Pearson CC < 0.25) mechanisms networks of higher lung adenocarcinoma and lower human normal adjacent tissues were constructed by integration of Pearson CC, GRNInfer and GO. As visualized by integration of GO, KEGG, GenMAPP, BioCarta and Disease, we deduced COMP complete different activated and inhibited network in higher lung adenocarcinoma and lower human normal adjacent tissues.

RESULTS: As visualized by GO, KEGG, GenMAPP, BioCarta and disease database integration, we proposed mainly that the mechanism and function of COMP complete different activated network in higher lung adenocarcinoma was involved in COMP activation with matrix-localized insulin-like factor coupling carboxypeptidase to metallopeptidase-induced proteolysis.
whereas the corresponding inhibited network in lower human normal adjacent tissues participated in COMP inhibition with nucleus-localized vasculogenesis, B and T cell differentiation and neural endocrine factors coupling pyrophosphatase-mediated proteolysis. However, COMP complete different inhibited network in higher lung adenocarcinoma included COMP inhibition with nucleus-localized chromatin maintenance, licensing and assembly factors coupling phosphatase-inhibitor to cytokinesis regulators-mediated cell differentiation, whereas the corresponding activated network in lower human normal adjacent tissues contained COMP activation with cytoplasm-localized translation elongation factor coupling fucosyltransferase to ubiquitin-protein ligase-induced cell differentiation.

CONCLUSION: COMP different networks were verified not only by complete and uncomplete COMP activated or inhibited networks within human normal adjacent tissues or lung adenocarcinoma, but also by COMP activated and inhibited network between human normal adjacent tissues and lung adenocarcinoma.

Keywords: Cartilage oligomeric matrix protein (COMP), cell differentiation to proteolysis mechanism networks, from human normal adjacent tissues to lung adenocarcinoma

1. Introduction

Cartilage oligomeric matrix protein (COMP) (our identified 500 significant molecules in 22,284 genes of 25 higher lung adenocarcinoma) was identified different from the corresponding 25 lower human normal adjacent tissues in GEO data set GSE7670. Now the function and mechanism studies with cartilage oligomeric matrix protein (COMP) positive relationships are presented in papers. Such as, COMP acts as a catalyst in collagen fibrillogenesis [1]. Ultrastructural immunolocalization of cartilage oligomeric matrix protein (COMP) in relation to collagen fibrils in the equine tendon [2]. Differential response of cartilage oligomeric matrix protein (COMP) to morphogens of bone morphogenetic protein/transforming growth factor-beta family in the surface, middle and deep zones of articular cartilage [3]. Cartilage oligomeric matrix protein (COMP) forms part of the connective tissue of normal human hair follicles [4]. Identification of cartilage oligomeric matrix protein (COMP) gene mutations in patients with pseudoachondroplasia and multiple epiphyseal dysplasia [5]. The functional studies with cartilage oligomeric matrix protein (COMP) negative relationships are presented in papers. Such as, the deficiency of cartilage oligomeric matrix protein (COMP) leads to vascular mineralization [6]. Microarray analysis identifies COMP as the most differentially regulated transcript throughout in vitro follicle growth [7]. The murine COMP (cartilage oligomeric matrix protein) promoter contains a potent transcriptional repressor region [8]. Transgenic mice expressing D469Delta mutated cartilage oligomeric matrix protein (COMP) show growth plate abnormalities and sternal malformations [9]. Chondrocyte cell death and intracellular distribution of COMP and type IX collagen in the pseudoachondroplasia growth plate [10]. Delta 469 mutation in the type 3 repeat calcium binding domain of cartilage oligomeric matrix protein (COMP) disrupts calcium binding [11]. Retention of cartilage oligomeric matrix protein (COMP) and cell death in redifferentiated pseudoachondroplasia chondrocytes [12]. Yet novel COMP-mediated cell differentiation to proteolysis mechanism networks is not clear and remains to be elucidated from human normal adjacent tissues to lung adenocarcinoma.

In the lower expression of human normal adjacent tissues, we detected 366 and 361 as COMP-activated (Pearson CC ≥ 0.25) and -inhibited (Pearson CC≤ -0.25) targets for COMP-mediated cell differentiation to proteolysis mechanism networks from human normal adjacent tissues to lung adenocarcinoma by GRNInfer (Table S1A), respectively. Validated 53 and 41 as COMP-activated and -inhibited targets were also quantified for COMP-mediated cell differentiation to proteolysis mechanism networks by correlation coefficient analysis, respectively (Table S1B). 41 and 31 as COMP-activated and -inhibited targets were identified for COMP-mediated cell differentiation to proteolysis mechanism networks by overlapping molecules of Pearson and GRNInfer, respectively (Table S1C). Taken together, the studies suggest that COMP includes maybe directly or indirectly at least potential 378 and 371 as COMP-activated and -inhibited distinct proteins for COMP-mediated cell differentiation to proteolysis mechanism networks (Table S1D). Mutual 9 and 7 as COMP-activated and -inhibited targets were identified from overlapped analysis for COMP-mediated cell differentiation to proteolysis mechanism networks by correlation coefficient, respectively (Table S1E). Positive mutual complete (all no positive correlation, Pearson CC < 0.25) and uncomplete (partly no positive correlation except COMP, Pearson CC < 0.25) different 3 of COMP-activated targets, and positive
positive correlation, Pearson CC < 0.25) and uncomplete (partly no positive correlation except COMP, Pearson CC < 0.25) different COMP-activated (Pearson CC ≥ 0.25) and -inhibited (Pearson CC ≤ 0.25) networks grouped vertical bars quantification chart between lower human normal adjacent tissues and higher lung adenocarcinoma by Pearson correlation coefficient and our programming, respectively, as shown in Fig. 1 and Table S2.

Mutual relationships of novel complete (all no positive correlation, Pearson CC < 0.25) and uncomplete (partly no positive correlation except COMP, Pearson CC < 0.25) different COMP-activated (Pearson CC ≥ 0.25) and -inhibited (Pearson CC ≤ 0.25) networks were computed between lower human normal adjacent tissues and higher lung adenocarcinoma by scatterplot (matrix) of linear regression and our programming, respectively, as shown in Fig. 2 and Table S3.

Novel complete (all no positive correlation, Pearson CC < 0.25) and uncomplete (partly no positive correlation except COMP, Pearson CC < 0.25) different COMP-activated (Pearson CC ≥ 0.25) and -inhibited (Pearson CC ≤ 0.25) networks including autocorrelations were constructed between lower human normal adjacent tissues and higher lung adenocarcinoma by GRNInfer and our programming, respectively, as shown in Fig. 3 and Table S4.

Terms and occurrence numbers of GO (Cellular Component, Molecular Function, Biological Process), KEGG, GeneMAPP, BioCarta and Disease in novel complete (all no positive correlation, Pearson CC < 0.25) and uncomplete (partly no positive correlation, Pearson CC < 0.25) different COMP-activated (Pearson CC ≥ 0.25) and -inhibited (Pearson CC ≤ 0.25) networks were identified between lower human normal adjacent tissues and higher lung adenocarcinoma by MAS 3.0 and our programming, respectively, as shown in Fig. 4 and Table S5.

3. Discussion

Gene Ontology (GO) analysis of COMP-regulated proteins revealed extracellular region, extracellular matrix (sensu Metazoa), extracellular matrix structural constituent, calcium ion binding, protein binding, skeletal development, cell adhesion, organ morphogenesis, TGF-beta signaling pathway, Focal adhesion, ECM-receptor interaction,
Fig. 1. Novel different COMP-activated and -inhibited networks by correlation coefficient (CC) and our programming. (A) Complete (all no positive correlation, Pearson CC < 0.25) and (B) uncomplete (partly no positive correlation except COMP, Pearson CC < 0.25) different COMP-activated networks grouped vertical bars quantification chart in higher lung adenocarcinoma compared with lower human normal adjacent tissues by Pearson correlation coefficient (CC) and our programming, respectively. Vertical scale bars indicate CC value, n = 25. (C) Complete and (D) uncomplete different COMP-inhibited network grouped vertical bars quantification chart in lower human normal adjacent tissues compared with higher lung adenocarcinoma by Pearson CC and our programming, respectively. Vertical scale bars indicate CC value, n = 25. (E) Complete and (F) uncomplete different COMP-inhibited network grouped vertical bars quantification chart in higher lung adenocarcinoma compared with lower human normal adjacent tissues by Pearson CC and our programming, respectively. Vertical scale bars indicate CC value, n = 25. (G) Complete and (H) uncomplete different COMP-activated network grouped vertical bars quantification chart in lower human normal adjacent tissues compared with higher lung adenocarcinoma by Pearson CC and our programming, respectively. Vertical scale bars indicate CC value, n = 25. con, human normal adjacent tissues; ex, lung adenocarcinoma; act, activation; inh, inhibition; dif, different.
Fig. 2. The mutual relationships of novel different COMP-activated and -inhibited networks by scatterplot (matrix) and our programming. (A) Complete (all no positive correlation, Pearson CC < 0.25) and (B) uncomplete (qualitatively no positive correlation except COMP, Pearson CC < 0.25) different mutual relationships of COMP-activated network in higher lung adenocarcinoma compared with lower expression of human normal adjacent tissues by scatterplot (matrix) and our programming, respectively, \(n = 25 \). (C) Complete and (D) uncomplete different mutual relationships of COMP-inhibited network in lower human normal adjacent tissues compared with higher lung adenocarcinoma by scatterplot (matrix) and our programming, respectively, \(n = 25 \). (E) Complete and (F) uncomplete different mutual relationships of COMP-inhibited network in higher lung adenocarcinoma compared with lower expression of human normal adjacent tissues by scatterplot (matrix) and our programming, respectively, \(n = 25 \). (G) Complete and (H) uncomplete different mutual relationships of COMP-activated network in lower expression of human normal adjacent tissues compared with higher lung adenocarcinoma by scatterplot (matrix) and our programming, respectively, \(n = 25 \). Comp, complete; Uncomp, uncomplete; con, human normal adjacent tissues; ex, lung adenocarcinoma; act, activation; inh, inhibition; dif, different.

skeletal development, Tissue-specific-Hs1-Tissue-Muscle_fat_and Connective_extracellular matrix (sensu Metazoa), Contributed-cellular_process-Hs1-

Focal adhesion, KEGG, osteoarthritis, thanatophoric dysplasia, dwarfism, ptosis, rheumatoid arthritis, osteoarthropathy, achondroplasia, dysplasia,
Fig. 3. The novel different COMP-activated and inhibited directionality networks by GRNInfer and our programming. (A) Complete (all no positive correlation, Pearson CC < 0.25) and (B) incomplete (partly no positive correlation except COMP, Pearson CC < 0.25) different COMP-activated network in higher lung adenocarcinoma compared with lower expression of human normal adjacent tissues by GRNInfer and our programming, respectively. n = 25. (C) Complete and (D) incomplete different COMP-inhibited network in lower human normal adjacent tissues compared with higher lung adenocarcinoma by GRNInfer and our programming, respectively. n = 25. (E) Complete and (F) incomplete different COMP-inhibited network in higher lung adenocarcinoma compared with lower expression of human normal adjacent tissues by GRNInfer and our programming, respectively. n = 25. (G) Complete and (H) incomplete different COMP-activated network in lower expression of human normal adjacent tissues compared with higher lung adenocarcinoma by GRNInfer and our programming, respectively. n = 25. Black arrow represents as activated relationship and empty circle as inhibited relationship. Comp, complete; Uncomp, uncomplete; con, human normal adjacent tissues; ex, lung adenocarcinoma; act, activation; inh, inhibition; dif, different.

tetanus, pseudoachondroplastic dysplasia, poly-chondritis relapsing, osteoarthritis hip, disability, osteochondrodysplasias, myopathy, inflammation, joint diseases, malignant neoplasm of pancreas, bone mass, atherosclerosis, osteoarthritis knee, sclerosis, skeletal dysplasia, short stature, brachydactyly, necrosis, effusion, autoimmune diseases, hereditary diseases, chondrosarcoma, chronic pancreatitis, collagen fibril, arthritis reactive, acquired clubfoot, bone diseases developmental, spondyloepiphyseal dysplasia, diastrophic dysplasia, arthritis, bone destruction, hypertrophy, osteoporosis, vascular diseases, hydrarthrosis, synovitis, multiple epiphyseal dysplasia, swollen joint, connective tissue
L. Wang et al. / COMP-mediated cell differentiation to proteolysis mechanism networks

Multiple Epiphyseal Dysplasia, Dominant, Pseudoachondroplasia, multiple epiphyseal dysplasia, Pseudoachondroplasia, osteoarthrosis, pseudoachondroplasia, and multiple epiphyseal dysplasia, pseudoachondroplasia, multiple epiphyseal dysplasia (Fig. 4 and Table S5), yet few novel COMP-mediated cell differentiation to proteolysis mechanism networks are known from human normal adjacent tissues to lung adenocarcinoma.

3.1. COMP-stimulated proteolysis network in lung adenocarcinoma

COMP complete different activated (all no positive correlation, Pearson CC < 0.25) and uncomplete (partly no positive correlation except COMP, Pearson CC < 0.25) network were identified in higher lung adenocarcinoma compared with lower human normal adjacent tissues from the corresponding COMP-stimulated (≥0.25) overlapping molecules of Pearson and GRNInfer (Fig. 1A, B and Table S2). This result was verified by the corresponding scatter matrix (Fig. 2A, B and Table S3). COMP complete different activated network was constructed with COL1A1_2, GREM1_2, CPZ, IGFBP3, MMP11_2 (Fig. 3A and Table S4) and the corresponding uncomplete network with GREM1_2, COL1A1_2, CST1, COL5A1_2, LLRC15, C7orf10 (Fig. 3B and Table S4). As visualized by GO, KEGG, GenMAPP, BioCarta and disease database integration (Fig. 4A, B and Table S5), we proposed mainly that the mechanism and function of the corresponding COMP network was involved in COMP activation with matrix-localized insulin-like factor coupling carboxypeptidase to metallopeptidase-induced proteolysis in higher lung adenocarcinoma. This hypothesis was verified by the corresponding uncomplete network in lung adenocarcinoma.

3.2. COMP-inhibited proteolysis network in human normal adjacent tissues

COMP complete different inhibited (all no positive correlation, Pearson CC < 0.25) and uncomplete (partly no positive correlation except COMP, Pearson CC < 0.25) network were identified in lower human normal adjacent tissues compared with higher lung adenocarcinoma from the corresponding COMP-inhibited (≤−0.25) overlapping molecules of Pearson and GRNInfer (Fig. 1C, D and Table S2). This result was verified by the corresponding scatter matrix (Fig. 2C, D and Table S3). COMP complete different inhibited network was constructed with SOX4_2, PALB2, ENC1_2, XTP3TPA, CUL7 (Fig. 3C and Table S4) and the corresponding uncomplete network with SOX4_2, SAC3DI (Fig. 3D and Table S4). As visualized by GO, KEGG, GenMAPP, BioCarta and disease database integration (Fig. 4C, D and Table S5), we proposed mainly that the mechanism and function of the corresponding COMP network participated in COMP inhibition with nucleus-localized vasculogenesis, B and T cell differentiation and neural endocrine factors coupling pyrophosphatase-mediated proteolysis in lower human normal adjacent tissues. This hypothesis was verified by the corresponding uncomplete network in human normal adjacent tissues and COMP-activated proteolysis network in lung adenocarcinoma.

3.3. COMP-repressed cell differentiation network in lung adenocarcinoma

COMP complete different inhibited (all no positive correlation, Pearson CC < 0.25) and uncomplete (partly no positive correlation except COMP, Pearson CC < 0.25) network were identified in higher lung adenocarcinoma compared with lower human normal adjacent tissues from the corresponding COMP-repressed (≤−0.25) overlapping molecules of Pearson and GRNInfer (Fig. 1E, F and Table S2). This result was verified by the corresponding scatter matrix (Fig. 2E, F and Table S3). COMP complete different inhibited network was constructed with NEK2, MCM4_1, CHAF1B, NDC80, PPP1R14B, RAD51AP1, KIF11, PRC1, ASF1B, CDC2_2 (Fig. 3E and Table S4) and the corresponding uncomplete network with RRM2_1, MELK, CCNB1, RAG2_2, UBE2C, TTK, TMY5, GINS1, CDKN3, DLG7, AURKA_2, CCNB2, HIST1H2BD_2, ZWINT, AURKB, LOC349909, CDT1, MYB12, NUSAP1_2, NCAPH, MCM2, CKS1B, CDCA8 (Fig. 3F and Table S4). As visualized by GO, KEGG, GenMAPP, BioCarta and disease database integration (Fig. 4E, F and Table S5), we proposed mainly that the mechanism and function of the corresponding COMP network contained COMP inhibition with nucleus-localized chromatin maintenance, licensing and assembly factors coupling phosphatase-inhibitor to cytokinesis.
Column 1	Column 2	Column 3	Column 4
Data 1	Data 2	Data 3	Data 4
Data 5	Data 6	Data 7	Data 8
Data 9	Data 10	Data 11	Data 12
Data 13	Data 14	Data 15	Data 16
Data 17	Data 18	Data 19	Data 20

Note: The table continues with similar data structures.
regulators-mediated cell differentiation in higher lung adenocarcinoma. This hypothesis was verified by the corresponding incomplete network in lung adenocarcinoma and COMP-activated cell differentiation network in human normal adjacent tissues.

3.4. COMP-activated cell differentiation network in human normal adjacent tissues

COMP complete different activated (all no positive correlation, Pearson CC < 0.25) and incomplete (partly no positive correlation except COMP, Pearson CC < 0.25) network were identified in lower human normal adjacent tissues compared with higher lung adenocarcinoma from the corresponding COMP-activated (≥0.25) overlapping molecules of Pearson and GRNInfer (Fig. 1G, H and Table S2). This result was verified by the corresponding scatter matrix (Fig. 2G, H and Table S3). COMP complete different activated network was constructed with EEF1A2, FUT6, HUWE1, FLJ20999 (Fig. 3G and Table S4) and the corresponding incomplete network with HIST1H2AG, CSPG5, FRKCA (Fig. 3H and Table S4). As visualized by GO, KEGG, GenMAPP, BioCarta and disease database integration (Fig. 4G, H and Table S5), we proposed mainly that the mechanism and function of the corresponding COMP network included COMP activation with cytoplasm-localized translation elongation factor coupling fucosyltransferase to ubiquitin-protein ligase-induced cell differentiation in lower human normal adjacent tissues. This hypothesis was verified by the corresponding incomplete network in human normal adjacent tissues and COMP-inhibited cell differentiation network in lung adenocarcinoma.

3.5. COMP networks autocorrelations

In complete (all no positive correlation, Pearson CC < 0.25) and incomplete (partly no positive correlation except COMP, Pearson CC < 0.25) different COMP-activated network of higher lung adenocarcinoma compared with lower human normal adjacent tissues, there is COL1A1 auto-activation including upstream CPZ, MMP11, downstream COMP; MMP11 downstream COMP. There is GREM1 auto-activation including upstream CPZ, MMP11, downstream COMP; There is MMP11 auto-activation including upstream COL1A1, downstream COL1A1, GREM1, COMP; CPZ by GRNInfer (Fig. 3A and Table S4). Thus, our results reflected the stimulation of GREM1 upstream, MMP11 downstream; COL1A1 the same molecular numbers in lung adenocarcinoma. There is COMP auto-inhibition containing upstream COL1A1, GREM1, CPZ, IGFBP3, MMP11 downstream COMP, CPZ by GRNInfer (Fig. 3A and Table S4). Thus, our results reflected the repression of CPZ, IGFBP3 upstream, COMP downstream molecular numbers in lung adenocarcinoma.

In complete (all no positive correlation, Pearson CC < 0.25) and incomplete (partly no positive correlation except COMP, Pearson CC < 0.25) different COMP-inhibited network of lower human normal adjacent tissues compared with higher lung adenocarcinoma, there is COMP auto-activation including upstream SOX4, EN1C, CUL7, downstream PALB2, XPSTP3A, CUL7; There is PALB2 auto-activation including upstream XPSTP3A, CUL7, COMP, SOX4; There is EN1C auto-activation including upstream SOX4, XPSTP3A, CUL7, downstream SOX4, COMP by GRNInfer (Fig. 3C and Table S4). Thus, our results reflected the stimulation of PALB2 EN1C, COMP the same molecular numbers in human normal adjacent tissues. There is SOX4 auto-inhibition containing upstream EN1C, CUL7, downstream EN1C, CUL7, COMP.
PALB2. There is XTP3TPA auto-inhibition containing upstream COMP, downstream PALB2, ENC1_2. There is CUL7 auto-inhibition containing upstream SOX4_2, COMP downstream SOX4_2, PALB2, ENC1_2, COMP by GRNInfer (Fig. 3C and Table S4). Thus, our results reflected the repression of SOX4_2, XTP3TPA, CUL7 upstream molecular numbers in human normal adjacent tissues.

In complete (all no positive correlation, Pearson CC <0.25) and uncomplete (partly no positive correlation except COMP, Pearson CC <0.25) different COMP-inhibited network of higher lung adenocarcinoma compared with lower human normal adjacent tissues, there is NEK2 auto-activation including upstream MCM4_2, PPP1R14B, RADS1AP1, PRC1, CHAF1B, CDC2_2, downstream MCM4_2, NDC80, PRC1, CDC2_2, COMP; There is MCM4_2 auto-activation including upstream NEK2, NDC80, RADS1AP1, PRC1, CDC2_2, COMP; downstream NEK2, CHAF1B, PPP1R14B, RAD51AP1, PRC1, ASF1B, CDC2_2, COMP; There is CHAF1B auto-activation including upstream MCM4_2, RAD51AP1, PRC1, COMP, downstream NDC80, KIF11, PRC1, ASF1B, COMP; There is PRC1 auto-activation including upstream NEK2, MCM4_2, CHAF1B, RADS1AP1, ASF1B, COMP, downstream NEK2, MCM4_2, CHAF1B, RAD51AP1, KIF11, CDC2_2; There is ASF1B auto-activation including upstream MCM4_2, CHAF1B, NDC80, KIF11, CDC2_2, COMP, downstream NEK2, NDC80, PRC1 by GRNInfer (Fig. 3E and Table S4). Thus, our results reflected the inhibition of NEK2, ASF1B upstream; MCM4_2, CHAF1B downstream; PRC1 the same molecular numbers in lung adenocarcinoma. There is COMP auto-inhibition containing upstream NEK2, MCM4_2, CHAF1B, NDC80, PPP1R14B, RADS1AP1, KIF11, CDC2_2, downstream MCM4_2, CHAF1B, NDC80, KIF11, PRC1, ASF1B; There is NDC80 auto-inhibition containing upstream NEK2, CHAF1B, MCM4_2, CHAF1B, ASF1B, CDC2_2, COMP, downstream MCM4_2, KIF11, ASF1B, COMP; There is RADS1AP1 auto-inhibition containing upstream MCM4_2, PRC1, CDC2_2, downstream NEK2, MCM4_2, CHAF1B, PPP1R14B, KIF11, PRC1, CDC2_2, COMP; There is CDC2_2 auto-inhibition containing upstream NEK2, MCM4_2, RADS1AP1, KIF11, PRC1, downstream NEK2, MCM4_2, NDC80, PPP1R14B, RADS1AP1, ASF1B, COMP by GRNInfer (Fig. 3E and Table S4). Thus, our results reflected the repression of RADS1AP1, CDC2_2 upstream; COMP, NDC80 downstream molecular numbers in lung adenocarcinoma.

In complete (all no positive correlation, Pearson CC <0.25) and uncomplete (partly no positive correlation except COMP, Pearson CC <0.25) different COMP-activated network of lower human normal adjacent tissues compared with higher lung adenocarcinoma, there is COMP auto-activation including upstream EEF1A2, FUT6, HUWE1, downstream EEF1A2, FUT6, FLJ20699; There is EEF1A2 auto-activation including upstream COMP, downstream COMP, HUWE1; There is FUT6 auto-activation including upstream COMP, HUWE1, FLJ20699, downstream COMP, HUWE1, FLJ20699; There is HUWE1 auto-activation including upstream EEF1A2, FUT6, FLJ20699, downstream COMP, HUWE1, FLJ20699; There is FLJ20699 auto-activation including upstream COMP, FUT6, HUWE1, downstream FUT6, HUWE1 by GRNInfer (Fig. 3G and Table S4). Thus, our results reflected the stimulation of FLJ20699 upstream; EEF1A2 downstream; COMP, FUT6, HUWE1 the same molecular numbers in human normal adjacent tissues.

3.6. Summary

As visualized by GO, KEGG, GenMAPP, BioCarta and disease database integration, we proposed mainly that the mechanism and function of COMP complete different activated network in higher lung adenocarcinoma was involved in COMP activation with matrix-localized insulin-like factor coupling carboxypeptidase to metallopeptidase-induced proteolysis, whereas the corresponding inhibited network in lower human normal adjacent tissues participated in COMP inhibition with nucleus-localized vasculogenesis, B and T cell differentiation and neural endocrine factors coupling pyrophosphatase-mediated proteolysis. However, COMP complete different inhibited network in higher lung adenocarcinoma included COMP inhibition with nucleus-localized chromatin maintenance, licensing and assembly factors coupling phosphatase-inhibitor to cytokinesis regulators-mediated cell differentiation, whereas the corresponding activated network in lower human normal adjacent tissues contained COMP activation with cytoplasm-localized translation elongation factor coupling fucosyltransferase to ubiquitin-protein ligase-induced cell differentiation. COMP different
networks were verified not only by complete and uncomplete COMP activated or inhibited networks within human normal adjacent tissues or lung adenocarcinoma, but also by novel COMP activated and inhibited network between human normal adjacent tissues and lung adenocarcinoma.

4. Materials and methods

Cartilage oligomeric matrix protein (COMP) (our identified 500 significant molecules in 22,284 genes of 25 higher lung adenocarcinoma) was identified different from the corresponding 25 lower human normal adjacent tissues in GEO data set GSE7670 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7670) [13]. The raw microarray data was processed by log base 2.

Novel different COMP-activated and -inhibited networks were detected and quantified from 500 significant molecules between lower human normal adjacent tissues and higher lung adenocarcinoma using significant analysis of microarrays (SAM) (http://www-stat.stanford.edu/tibs/SAM/) [14] and our programming. Two classes paired and minimum fold change ≥ 2 were selected (the false-discovery rate 0%).

Mutual relationships of novel complete (all no positive correlation, Pearson CC < 0.25) and uncomplete (partly no positive correlation except COMP, Pearson CC < 0.25) different COMP-activated (Pearson CC > 0.25) and inhibited (Pearson CC < -0.25) network were computed between lower human normal adjacent tissues and higher lung adenocarcinoma by SPSS of Pearson correlation coefficient quantification about measures of the correlation (linear dependence) between two variables X and Y, giving a value between $+1$ and $–1$ inclusive and our programming, respectively.

Mutual relationships of novel complete (all no positive correlation, Pearson CC < 0.25) and uncomplete (partly no positive correlation except COMP, Pearson CC < 0.25) different COMP-activated and -inhibited networks were investigated between lower human normal adjacent tissues and higher lung adenocarcinoma by SPSS of scatterplot (matrix) based on linear regression and our programming, respectively.

Novel complete (all no positive correlation, Pearson CC < 0.25) and uncomplete (partly no positive correlation except COMP, Pearson CC < 0.25) different COMP-activated and -inhibited networks were constructed between lower human normal adjacent tissues and higher lung adenocarcinoma by GRNInfer [15], our articles [16–33] and GVis tool and our programming, respectively.

Terms and occurrence numbers of GO (Cellular Component, Molecular Function, Biological Process), KEGG, GenMAPP, BioCarta and Disease in novel complete (all no positive correlation, Pearson CC < 0.25) and uncomplete (partly no positive correlation except COMP, Pearson CC < 0.25) different COMP-activated and -inhibited networks were identified between lower human normal adjacent tissues and higher lung adenocarcinoma, respectively, by Molecule Annotation System, MAS (CapitalBio Corporation, Beijing, China; bioinfo.capitalbio.com/mas3) and our programming. The primary databases of MAS integrated various well-known biological resources, such as Gene Ontology (http://www.geneontology.org), KEGG (http://www.genome.jp/kegg/), BioCarta (http://www.biocarta.com/), GenMapp (http://www.genmapp.org/), HPRD (http://www.hprd.org/), etc.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 6117114), the State Key Laboratory of Drug Research (SIMM1302KF), Automatical Scientific Planning of Tsinghua University (20111081023 and 20111081010), State Key Lab of Pattern Recognition Open Foundation.

Conflict of interests

We have no conflict of interests.

References

[1] K. Halasz, et al., COMP acts as a catalyst in collagen fibrillogenesis, J Biol Chem 282(43) (2007), 31166-31173.
[2] F Sodersten, et al., Ultrastructural immunolocalization of cartilage oligomeric matrix protein (COMP) in relation to collagen fibrils in the equine tendon, Matrix Biol 24(5) (2005), 376–385.
[3] S.C. Motaung, PE. Di Cesare and A.H. Reddi, Differential response of cartilage oligomeric matrix protein (COMP) to morphogens of bone morphogenetic protein/transforming growth factor-beta family in the surface: middle and deep zones of articular cartilage, J Tissue Eng Regen Med 8(6) (2011), e87–e96.
A. Ariza de Schellenberger, et al., Cartilage oligomeric matrix protein (COMP) forms part of the connective tissue of normal human hair follicles, Exp Dermato 20(4) (2011), 361–366.

H.R. Song, et al., Identification of cartilage oligomeric matrix protein (COMP) gene mutations in patients with pseudohypoplasia and multiple epiphyseal dysplasia, J Hum Genet 49(5) (2004), 222–227.

Y. Du, et al., Upregulation of a disintegrin and metalloproteinase with thrombospondin motifs-7 by miR-29 repression mediates vascular smooth muscle calcification, Arterioscler Thromb Vasc Biol 32(11) (2012), 2580–2586.

R.M. Slurry, et al., Microarray analysis identifies COMP as the most differentially regulated transcript throughout in vitro follicle growth, Mol Reprod Dev 80(2) (2013), 132–144.

F. Han, et al., The murine COMP (cartilage oligomeric matrix protein) promoter contains a potent transcriptional repressor region, Osteoarthritis Cartilage 10(8) (2002), 658–665.

M. Schmitz, et al., Transgenic mouse expressing D469Delta mutated cartilage oligomeric matrix protein (COMP) show growth plate abnormalities and skeletal malformations, Matrix 27(2) (2008), 67–75.

J.T. Hecht, et al., Chondrocyte cell death and intracellular distribution of COMP and type IX collagen in the pseudohypoplasia growth plate, J Orthop Res 22(4) (2004), 759–767.

J. Hou, J.A. Putkey and J.T. Hecht, Delta 469 mutation in the most differentially regulated transcript throughout in vitro follicle growth, Mol Reprod Dev 80(2) (2013), 132–144.

F. Han, et al., The murine COMP (cartilage oligomeric matrix protein) promoter contains a potent transcriptional repressor region, Osteoarthritis Cartilage 10(8) (2002), 658–665.

M. Schmitz, et al., Transgenic mouse expressing D469Delta mutated cartilage oligomeric matrix protein (COMP) show growth plate abnormalities and skeletal malformations, Matrix 27(2) (2008), 67–75.

J.T. Hecht, et al., Chondrocyte cell death and intracellular distribution of COMP and type IX collagen in the pseudohypoplasia growth plate, J Orthop Res 22(4) (2004), 759–767.

J. Hou, J.A. Putkey and J.T. Hecht, Delta 469 mutation in the most differentially regulated transcript throughout in vitro follicle growth, Mol Reprod Dev 80(2) (2013), 132–144.

F. Han, et al., The murine COMP (cartilage oligomeric matrix protein) promoter contains a potent transcriptional repressor region, Osteoarthritis Cartilage 10(8) (2002), 658–665.

M. Schmitz, et al., Transgenic mouse expressing D469Delta mutated cartilage oligomeric matrix protein (COMP) show growth plate abnormalities and skeletal malformations, Matrix 27(2) (2008), 67–75.

J.T. Hecht, et al., Chondrocyte cell death and intracellular distribution of COMP and type IX collagen in the pseudohypoplasia growth plate, J Orthop Res 22(4) (2004), 759–767.
[32] L. Wang, et al., Integrative decomposition procedure and Kappa statistics for the distinguished single molecular network construction and analysis, *J Biomed Biotechnol* (2009), 726–728.

[33] L. Wang, et al., FOS proliferating network construction in early colorectal cancer (CRC) based on integrative significant function cluster and inferring analysis, *Cancer Invest* 27(8) (2009), 816–824.