DMI meter: Measuring the Dzyaloshinskii-Moriya interaction inversion in Pt/Co/Ir/Pt multilayers

A. Hrabec, N. A. Porter, A. Wells, M. J. Benítez Romero, G. Burnell, S. McVitie, D. McGrouther, T. A. Moore, and C. H. Marrows

1School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
2School of Physics and Astronomy, University of Glasgow, G12 8QQ, United Kingdom

(Dated: February 25, 2014)

We describe a field-driven domain wall creep-based method for the quantification of interfacial Dzyaloshinskii-Moriya interactions (DMI) in perpendicularly magnetized thin films. The use of only magnetic fields to drive wall motion removes the possibility of mixing with current-related effects such as spin Hall effect or Rashba field, as well as the complexity arising from lithographic patterning. We demonstrate this method on sputtered Pt/Co/Ir/Pt multilayers with a variable Ir layer thickness. Inserting an ultrathin layer of Ir at the Co/Ir interface we can reverse the sign of the effective DMI acting on the sandwiched Co layer, and therefore continuously change the domain wall (DW) structure from right- to the left-handed Néel wall. We also show that the DMI shows exquisite sensitivity to the exact details of the atomic structure at the film interfaces by comparison with a symmetric epitaxial Pt/Co/Pt multilayer.

PACS numbers: 75.70.-1, 75.60.-d, 07.55.-w

The Dzyaloshinskii-Moriya interaction (DMI) [1,2] has recently returned to prominence due to recent findings in the field of magnetic domain wall (DW) motion. Initially, DWs in Permalloy nanowires were widely studied [3–8], but materials with out-of-plane (OOP) anisotropy promised even higher interaction between the current and DWs [9,10]. It was subsequently shown that broken spatial symmetry plays an extremely important role in the current-induced DW propagation process in OOP materials [11–13]. However, it has been pointed out that Bloch walls, which simple magnetostatic considerations predict to be the stable DW form in such materials [14], do not have the appropriate spin texture for an efficient Slonczewski-like torque [15]. This has been demonstrated by an application of a longitudinal magnetic field which distorts the Bloch wall towards the Néel wall structure [10] leading to much more efficient DW motion [17]. This is of importance in the efficient and reliable operation of technologies such as racetrack memories [18].

Soon after this demonstration, a series of theoretical [19,20] and experimental works [21–24] showed that a magnetic field that transforms a Bloch wall into a Néel wall can exist intrinsically due to the broken inversion symmetry at the interface. This effective field arises from the DMI as a result of high spin orbit coupling linking the broken inversion symmetry at the interface to the spin structure [25,26]. In contrast to the Heisenberg interaction (usually written as $-J\mathbf{S}_1 \cdot \mathbf{S}_2$ with J being the exchange integral), which favours collinear alignment of neighbouring spins \mathbf{S}_1 and \mathbf{S}_2, the DMI can be expressed as $-\mathbf{D} \cdot (\mathbf{S}_1 \times \mathbf{S}_2)$, thus preferring an orthogonal orientation of \mathbf{S}_1 and \mathbf{S}_2 with a given chirality depending on the direction of the DM vector \mathbf{D}. This interaction is equivalent to a magnetic field acting across the DW and establishes a Néel wall of fixed chirality which dictates the direction of DW motion under the influence of a spin Hall torque. This interfacial effect has been experimentally demonstrated by several in situ studies on epitaxial bilayers [27,29]. The DMI also plays a crucial role in bulk material systems with broken inversion symmetry producing exotic magnetization textures such as helices or skyrmions [30,31]. Skyrmions have been created on the atomic scale using the interfacial DMI in monolayer of Fe on Ir [32]. It has been predicted that skyrmions have a great potential for applications as magnetic memories due to their size and extremely low operational electric currents [33,34]. Therefore finding the means for ex situ studies of materials with high and tunable DMI is of a high interest.

Here we report a simple magnetic field-based method for DMI quantification in thin films with OOP magnetic anisotropy, and demonstrate its use by measuring the DMI inversion in Pt/Co/Ir/Pt multilayers with variable Ir thickness. Since crystallographically ordered Pt/Ni and Ir/Ni bilayers exhibit DMIs of opposite sign [29], the effective DMI in the Co layer can be potentially enhanced by placing the Pt and Ir layers on either side, i.e. using two DMI-active layers. Avoiding the use of currents to drive DW motion makes the method simple to implement, since it can be applied to sheet films and lithography is not required. Moreover, it makes the interpretation of the data much more straightforward, since the complexity of the interplay of spin-transfer, Rashba, and spin Hall torques, with their various field-like and Slonczewski-like components [35], does not enter the analysis. The power of magnetic field-based techniques has been already demonstrated by observing equi-speed contours in Pt/Co/Pt trilayers [36]. It has also been suggested that the detection of the Walker breakdown can be used as a direct measure of the DMI [19].
However, it is experimentally very difficult to observe the Walker breakdown field due to the fact that it is often not reached or hidden in the creep regime [37]. As will be seen below, the creep regime itself can be used to determine the strength of the DMI.

The multilayers for our study were grown by room temperature dc sputtering at base pressures $\lesssim 10^{-7}$ mbar on thermally oxidized Si substrates with a 3 nm thick Ta buffer layer. In order to reveal the effect of an Ir interface, we started from a stack of Pt(5 nm)/Co(0.7 nm)/Pt(3 nm) and inserted a thin layer of various Ir thicknesses t_{Ir} at the interface between the Co and top Pt layer, as depicted in Fig. 1(a). The films were consequently studied using polar Kerr microscopy. All the films exhibit a perpendicular anisotropy, as shown by the square OOP hysteresis loops presented in Fig. 1(b). The coercive field of about 20 mT in Pt/Co/Pt drops to about 9 mT as soon as the top surface is dusted with any thickness of Ir. The OOP anisotropy was measured by the vibrating sample magnetometry technique in an in-plane field configuration. Fig. 1(c) shows that the anisotropy field $\mu_0 H_K$ is about 1 T for all the films, which demonstrates that the anisotropy comes mostly from the bottom Pt/Co interface [38]. This is experimentally convenient, since permits us to study changes in the DMI from the inclusion of the Ir layer without the complication of varying OOP anisotropy—and quantities that depend on it such as DW width—also varying.

The field-induced DW displacement was investigated by Kerr microscopy in the polar configuration. The experimental setup is shown in Fig. 2(a). The magnetic field was applied in-plane with a small out-of-plane component. This is achieved by tilting the magnet by an angle δ with respect to the sample plane. This was needed due to the fact that an in-plane field alone is unable to move the DW. The role of the in-plane field is demonstrated in Fig. 2(b)-(d). In each case, a reverse domain was nucleated and allowed to expand a little before switching off the field. Its shape was then recorded, indicated by the dashed line shown in Fig. 2(b). Consequently we applied a 0.8-120 s long pulse of a magnetic field up to 350 mT, during which the domain expands as the DW propagates outwards. In the case of OOP field, i.e. $\delta = 90^\circ$, the domain expansion is homogeneous (Fig. 2b)). The situation was very different in the case of an in-plane field component when $\delta \approx 2.3^\circ$, as shown in Fig. 2c). One can immediately see that the DW moving to the left and to the right moved with different velocities while the DWs moving in the directions perpendicular to the in-plane field moved with the same velocities. Our explanation for this observation is that the magnetic film contains Néel walls rather than Bloch walls. The in-plane magnetic field thus breaks the symmetry, and the magnetic moments within the DW on the right would be initially antiparallel, whereas the ones on the left parallel, to the magnetic field. To confirm this hypothesis, we have reversed the the sense of the in-plane magnetic field—polar Kerr microscopy. The DW displacement after such a magnetic field pulse is shown in Fig. 2c) with the corresponding initial magnetic moment orientation within the DW.

The average DW velocity during a field pulse can be straightforwardly determined from the DW displacement and the pulse duration. We investigated systematically the DW velocities in the direction of in-plane magnetic field as a function of field pulse strength. A representative picture of the DW motion in a Pt/Co/Pt film is shown in Fig. 5(a), showing the right-hand DW moving much faster than the left-hand one for a left pointing in-plane field component. We emphasise that the DW creep is driven by the small OOP component and the
in-plane field component breaks the radial symmetry of the creep velocity. This is expressed by the asymmetry of the velocity-field curves in Fig. 3(d). The detected asymmetry almost disappears in the film with 2.3 Å of Ir (Fig. 3(b)), and has the opposite sign in the samples with no Ir (Fig. 3(a)) and 4.6 Å of Ir (Fig. 3(c)). The corresponding curves in Fig. 3(d) reflect these asymmetries. The inverted asymmetry suggests an inversion of the spin texture within the DWs.

The DW displacement at low magnetic fields follows the creep law [37], which can be expressed as

$$v = v_0 \exp \left[-\zeta (\mu H_x)^{-\mu} \right],$$

(1)

where $\mu = 1/4$ is the creep scaling exponent, v_0 is the characteristic speed, and ζ is the scaling coefficient which can be expressed as [36]

$$\zeta = \zeta_0 [\sigma(H_x)/\sigma_0]^{1/4},$$

(2)

where ζ_0 is a scaling constant, σ is the DW energy density, which is dependent on the in-plane magnetic field $\mu_0 H_x$ [19]. This dependence can be written as

$$\sigma(H_x) = \sigma_0 - \frac{\pi^2 \Delta M_s^2}{8K_D} (H_x + H_{DMI})^2,$$

(3)

for the case when the combination of the external magnetic field $\mu_0 H_x$ and the intrinsic DM field $\mu_0 H_{DMI}$ is not able to fully transform the Bloch wall into the Néel wall, i.e. $|H_x + H_{DMI}| < 4K_D/\pi\mu_0 M_s \equiv \mu_0 H_{N-B}$ and

$$\sigma(H_x) = \sigma_0 + 2K_D \Delta - \pi\Delta \mu_0 M_s |H_x + H_{DMI}|,$$

(4)

in the case of the Néel wall. In these expressions, M_s is the saturation magnetization, σ_0 is the Bloch wall energy density, K_D is the DW anisotropy energy density, and Δ is the DW width. In this model we use $M_s = 1.1 \times 10^6 \text{ A/m}^2$, $A = 16 \text{ pJ/m}$, $K_0 = \mu_0 (H_K M_s - M_s^2/2) = 3.4 \times 10^5 \text{ J/m}^3$, $\Delta = \sqrt{A/K_0} = 7.2 \text{ nm}$ and $\sigma_0 = 2\pi\sqrt{AK_0} = 14 \text{ mJ/m}^2$.

The magnetostatic shape anisotropy term favoring the Bloch wall $K_D = N_x \mu_0 M_s^2/2 = 1.7 \times 10^4 \text{ J/m}^3$ where N_x is the demagnetizing coefficient of the wall [39]. As such, this model only requires three fitting parameters that are not determined by other experiments: the scaling parameters v_0 and ζ_0, and H_{DMI} itself. This symmetry-breaking term is thus solely responsible for the asymmetry in the velocity-field plots.

This model was fitted to the data for all our samples, with the fitted curves shown as the dashed lines in Fig. 3(d), and the model can be seen to give an excellent description of the experimental results. The extracted DM fields as a function of Ir thickness are displayed in Fig. 4. One can see that the DM field sign reversal qualitatively agrees with the asymmetry reversal shown in Fig. 3(a)-(c). The DM field is large and negative in the Pt/Co/Pt film, nearly compensated in the case of 2.3 Å of Ir and positive for t_{Ir} of 4.6 Å or greater. The calculated critical field separating the Néel wall stability region from the Bloch-Néel wall transition region is
\[|\mu_0 H_{N-B}| \approx 18 \text{ mT}. \] When \(H_{\text{DMI}} < -H_{N-B} \), the DMI is able to stabilize the Néel wall structure of right-handed chirality, whilst for \(H_{\text{DMI}} > +H_{N-B} \) the stable structure is the left-handed Néel wall, as depicted in Fig. 3. The region between two dashed lines denotes the transition region in which the DW is continuously distorted from the pure Bloch wall towards the Néel walls of the appropriate chirality. This behaviour is similar to the one observed in epitaxially grown films by Chen et al. [29], where the DM constant reverses sign on a similar length scale upon insertion of a thin Ir interlayer. We also emphasize that the suggested DW structure depicted in Fig. 2 is no longer valid during the magnetic field pulse and all the magnetic moments eventually reorient into the field direction for sufficiently high magnetic fields. Such DWs, despite the similar magnetic moment orientation, have different energy expressed by equation (1). This is reflected in different resulting velocities in the creep regime.

We also estimate the effective DM constant \(D \) by using the expression \(D = \mu_0 H_{\text{DMI}} M_G \) [19]. This is given on the right-hand ordinate axis of Fig. 4. It is apparent that the DMI in these samples is controlled largely by the top interface, in contrast to the OOP anisotropy, which we saw above to be dominated by the bottom interface. The strongest DMI, \(D = 1.2 \pm 0.1 \text{ mJ} \), is obtained in the case of Pt/Co/Ir which can be compared to the critical DMI \(D_{\text{crit}} \) resulting in a non-uniform magnetization state such as a cycloidal or skyrmionic phase. The critical DM constant can be estimated by using \(D_{\text{crit}} = 4/\pi \sqrt{AK_0} \) [10], which in this case is \(D_{\text{crit}} \sim 3 \text{ mJ/m}^2 \). However, the case of \(D < D_{\text{crit}} \) is very important for applications due to the coexistence of ferromagnetic and skyrmionic phases, so that isolated skyrmions can be used for information encoding [23].

A strong DMI is also measured in the most structurally symmetric sample of Pt/Co/Pt, where one would not expect any DMI at all. In order to understand the origin of the strong DMI in the stack of Pt/Co/Pt, we grew a similar stack of Pt(3 nm)/Co(0.7 nm)/Pt(1 nm) epitaxially. The seed Pt layer was grown by the sputtering technique, similar stack of Pt(3 nm)/Co(0.7 nm)/Pt(1 nm) epitaxially grown films by Chen et al. [29], where the DM constant reverses sign on a similar length scale upon insertion of a thin Ir interlayer. We also emphasize that the suggested DW structure depicted in Fig. 2 is no longer valid during the magnetic field pulse and all the magnetic moments eventually reorient into the field direction for sufficiently high magnetic fields. Such DWs, despite the similar magnetic moment orientation, have different energy expressed by equation (1). This is reflected in different resulting velocities in the creep regime.

We also estimate the effective DM constant \(D \) by using the expression \(D = \mu_0 H_{\text{DMI}} M_G \) [19]. This is given on the right-hand ordinate axis of Fig. 4. It is apparent that the DMI in these samples is controlled largely by the top interface, in contrast to the OOP anisotropy, which we saw above to be dominated by the bottom interface. The strongest DMI, \(D = 1.2 \pm 0.1 \text{ mJ} \), is obtained in the case of Pt/Co/Ir which can be compared to the critical DMI \(D_{\text{crit}} \) resulting in a non-uniform magnetization state such as a cycloidal or skyrmionic phase. The critical DM constant can be estimated by using \(D_{\text{crit}} = 4/\pi \sqrt{AK_0} \) [10], which in this case is \(D_{\text{crit}} \sim 3 \text{ mJ/m}^2 \). However, the case of \(D < D_{\text{crit}} \) is very important for applications due to the coexistence of ferromagnetic and skyrmionic phases, so that isolated skyrmions can be used for information encoding [23].

A strong DMI is also measured in the most structurally symmetric sample of Pt/Co/Pt, where one would not expect any DMI at all. In order to understand the origin of the strong DMI in the stack of Pt/Co/Pt, we grew a similar stack of Pt(3 nm)/Co(0.7 nm)/Pt(1 nm) epitaxially. The seed Pt layer was grown by the sputtering technique on a C-plane sapphire substrate at 500°C followed by the Co/Pt bilayer sputtering at 100°C, as described in Ref. [21]. The epitaxial character of the grown film was confirmed by X-ray diffraction and high-angle annular dark-field imaging in a scanning transmission electron microscope. Fig. 5(a) shows the high level of crystallographic ordering in the epitaxial trilayer. In order to study the DMI we have performed the same measurements as described above and Fig. 5(b) shows a representative DW displacement for the epitaxial sample. One can directly see the striking difference from the picture obtained on the polycrystalline Ta/Pt/Co/Pt sample that was shown in Fig. 3(a). The observed asymmetry is in this case suppressed and the DW displacement becomes radially symmetric. This is also expressed by the symmetric velocity-field curve shown in Fig. 5(c) resulting in \(D = 0.02 \pm 0.01 \text{ mJ} \). The effective DMI thus vanishes in the case of the crystallographically symmetric interfaces on either side of the ferromagnet, just as expected. An important conclusion from the demonstrated experiment is that the DMI shows exquisite sensitivity to the atomic-scale details of the interfacial structure in these kinds of multilayer. Nevertheless, characterising the details of potentially asymmetric interface properties such as the roughness, degree of intermixing, density of stacking faults, remains an outstanding materials science challenge.

Besides the asymmetric metal composition and crystallographic structure around the ferromagnetic layer, the asymmetrically induced magnetic moment may play an important role. It has been shown that Pt and Ir exhibit strong proximity effect in the vicinity of a ferromagnet [42] therefore one would expect different induced magnetic moment on either side of the Co layer. In our magnetometry data shown in Fig. 1(c) we see a significant drop of normalized magnetization once the Ir layer is inserted between the top Co/Pt interface indicating a decrease of induced magnetic moment in the top layer. The effect of this asymmetry on the DMI is not yet known.

In conclusion, we have demonstrated a simple-to-implement magnetic field-based method for the DMI detection and measurement in out-of-plane anisotropy materials. The DMI was quantified in situ by Kerr microscopy in sputtered Pt/Co/Ir/Pt layers. We are able to control the DW chirality by changing the thickness of Ir film via in inversion of the effective intrinsic DM field. We also reveal the crucial importance of the exact nature of the ferromagnet/heavy metal interface for the DMI by comparing a polycrystalline multilayer of the
type studied in most laboratories to a similar multilayer with controlled crystallographic order. The method we present opens the way for fast and convenient exploration of the DMI in new multilayer structures intended for use in DW and skyrmion racetrack memories.

This work was supported by the UK EPSRC (grant numbers EP/I011668/1, EP/I013520/1, EP/K003127/1 and EP/J007110/1), the Scottish Universities Physics Alliance and the University of Glasgow. The authors thank to Stefania Pizzini for helpful discussion.

* c.h.marrows@leeds.ac.uk

[1] I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958).
[2] T. Moriya, Phys. Rev. 120, 91 (1960).
[3] L. Gan, S. H. Chung, K. H. Aschenbach, M. Dreyer, and R. D. Gomez, IEEE Trans. Magn. 36, 3047 (2000).
[4] M. Kläui, C. A. F. Vaz, J. A. C. Bland, W. Wernsdorfer, G. Faini, E. Cambril, L. J. Heyderman, F. Nolting, and U. Rüdiger, Phys. Rev. Lett. 94, 106601 (2005).
[5] A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, and T. Shinjo, Phys. Rev. Lett. 92, 077205 (2004).
[6] M. Hayashi, T. Shinjo, Phys. Rev. Lett. 101, 137203 (2009).
[7] O. Boulle, J. Kimling, P. Warnicke, M. Kläui, U. Rüdiger, G. Malinowski, H. J. Swagten, and B. Koopmans, Nature Mat. 8, 713 (2011).
[8] S. Heinze, K. von Bergmann, M. Menzel, J. Brede, A. Kubetzka, R. Wiesendanger, G. Blügel, and S. Blügel, Nature Phys. 7, 713 (2011).
[9] S. Heinze, G. Bihlmayer, A. Kubetzka, O. Pietzsch, S. Blügel, and R. Wiesendanger, Nature 447, 190 (2007).
[10] S. Heinze, G. Bihlmayer, A. Kubetzka, O. Pietzsch, S. Blügel, and R. Wiesendanger, Nature 447, 190 (2007).
[11] S. Heinze, G. Bihlmayer, and S. Blügel, Nature Phys. 9, 742 (2013).
[12] S. Heinze, G. Bihlmayer, and S. Blügel, Nature Phys. 9, 742 (2013).
[13] A. Schuhl, S. Pizzini, J. Vogel, P. Gambardella, and C. H. Marrows, Phys. Rev. Lett. 92, 057202 (2004).
[14] A. Schuhl, S. Pizzini, J. Vogel, P. Gambardella, and C. H. Marrows, Phys. Rev. Lett. 92, 057202 (2004).
[15] I. Dzyaloshinsky, J. Phys. Chem. Solids 29, 341 (1968).
[16] T. Moriya, Phys. Rev. 91, 241 (1958).
[17] I. Dzyaloshinsky, J. Phys. Chem. Solids 29, 341 (1968).
[18] T. Moriya, Phys. Rev. 91, 241 (1958).
[19] S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190 (2008).
[20] A. Thiaville, S. Rohart, E. Jué, V. Cros, and A. Fert, Europhys. Lett. 100, 57002 (2012).
[21] K.-W. Kim, H.-W. Lee, K.-J. Lee, and M. D. Stiles, Phys. Rev. Lett. 111, 216601 (2013).
[22] S. Emori, U. Bauer, S.-M. Ahn, E. Martinez, and G. S. D. Beach, Nature Mat. 12, 611 (2013).
[23] K.-S. Ryu, L. Thomas, S.-Y. Hong, and S. Parkin, Nature Nano. 8, 527 (2013).
[24] K.-S. Ryu, L. Thomas, S.-Y. Hong, and S. Parkin, Nature Nano. 8, 527 (2013).
[25] O. J. Lee, L. Q. Liu, C. F. Pai, Y. Li, H. W. Tseng, P. G. Gowtham, J. P. Park, D. C. Ralph, and R. A. Buhrman, Phys. Rev. B 89, 024418 (2014).
[26] T. Moriya, Phys. Rev. 91, 241 (1958).
[27] I. Dzyaloshinsky, J. Phys. Chem. Solids 29, 341 (1968).
[28] T. Moriya, Phys. Rev. 91, 241 (1958).
[29] I. Dzyaloshinsky, J. Phys. Chem. Solids 29, 341 (1968).
[30] U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, Nature 442, 797 (2006).