Productivity and Dissolved Oxygen Controls on the Southern Ocean Deep-Sea Benthos During the Antarctic Cold Reversal

Joseph A. Stewart1, Tao Li1,2, Peter T. Spooner1,3, Andrea Burke4, Tianyu Chen1,2, Jenny Roberts5, James W. B. Rae4, Victoria Peck6, Sev Kender7,8, Qian Liu1, and Laura F. Robinson1

1School of Earth Sciences, University of Bristol, Bristol, UK, 2School of Earth Sciences and Engineering, Nanjing University, Nanjing, China, 3Department of Earth Science, University College London, London, UK, 4School of Earth and Environmental Science, University of St Andrews, St Andrews, Scotland, 5Thermo Fisher Scientific, Bremen, Germany, 6British Antarctic Survey, Cambridge, UK, 7Cambridge School of Mines, University of Exeter, Cornwall, UK, 8British Geological Survey, Environmental Sciences Centre, Nottingham, UK

Abstract The Antarctic Cold Reversal (ACR; 14.7 to 13 thousand years ago; ka) phase of the last deglaciation saw a pause in the rise of atmospheric CO2, and Antarctic temperature, that contrasted with warming in the North. A reexpansion of sea ice and a northward shift in the position of the westerly winds in the Southern Ocean are well-documented, but the response of deep-sea biota and the primary drivers of habitat viability remain unclear. Here, we present a new perspective on ecological changes in the deglacial Southern Ocean, including multifaunal benthic assemblage (foraminifera and cold-water corals) and coral geochemical data (Ba/Ca and δ11B) from the Drake Passage. Our records show that, during the ACR, peak abundances of thick-walled benthic foraminifera Uvigerina bifurcata and corals are observed at shallow depths in the sub-Antarctic (~300 m), while coral populations at greater depths and further south diminished. Our ecological and geochemical data indicate that habitat shifts were dictated by (a) a northward migration of food supply (primary production) into the sub-Antarctic Zone and (b) poorly oxygenated seawater at depth during this Antarctic cooling interval.

1. Introduction

The rise in atmospheric CO2 during the last deglaciation (18–11.5 ka) occurred primarily during Heinrich Stadial 1 (HS1; 18–14.7 ka) and the Younger Dryas (YD; 13–1.5 ka) intervals that were associated with high-latitude cooling in the northern hemisphere and warming in the south. These CO2 increases, each of >40 ppm, were separated by a ~1,500-year interval known as the Antarctic Cold Reversal (ACR), where the deglacial rise in CO2 stalled and Antarctic temperatures cooled (Figure 1a; Bereiter et al., 2014; Blunier et al., 1997; Parrenin et al., 2013). The effects of the ACR have been documented in paleo-temperature records as far afield as 40°C, thus this enigmatic pause in the deglaciation and the associated changes in the Southern Ocean have drawn much attention (Pedro et al., 2016; Putnam et al., 2010).

The Southern Ocean surrounding Antarctica is a region where carbon-rich and nutrient-rich deep waters are upwelled (Figure 2), with the strength and position of the upwelling controlled by sea ice and wind stress (Ferrari et al., 2014; Menviel et al., 2018). Expansive sea ice during the Last Glacial Maximum (LGM) likely presented a physical barrier to air-sea gas exchange in the Southern Ocean (Stephens & Keeling, 2000) and changed the large scale geometry of the overturning circulation (Ferrari et al., 2014), giving rise to poorly oxygenated bottom waters (Jaccard et al., 2016), and greater carbon storage at depth (Rae et al., 2018).

As Antarctica warmed during HS1 and the YD and sea ice retreated, the westerly winds shifted southward causing intensified upwelling in the Antarctic Zone, stimulating high primary productivity (Figure 1f), and releasing these deep carbon stores (Anderson et al., 2009). By contrast the ACR cooling was associated with a resurgence of Antarctic sea ice extent as evidenced by concentrations of wind-blown sea-salt within Antarctic ice cores (ssNa; Figure 1a; Buijzert et al., 2015), a resurgence of Fragilariopsis curta and F. cylindrus abundance within Antarctic Zone diatom assemblages (Figure 1e; Bianchi & Gersonde, 2004), and climate modeling (Lowry et al., 2019). Furthermore, enhanced sea ice would have shifted the position of the westerlies northward (McCulloch et al., 2000). Correspondingly, there is some evidence of higher primary
productivity in the sub-Antarctic Zone as fronts shift north, including a notable peak in total organic carbon mass accumulation rates on the Falkland Plateau (Core GC528; Figure 1d; Roberts et al., 2017) and more subtle pauses in the deglacial decline in opal flux and nitrate utilization at this time (Anderson et al., 2014; Martínez-García et al., 2014). Yet, despite the many records documenting changes in primary production (Anderson et al., 2002; Martínez-García et al., 2014) and shifts toward surface-water biotic assemblages adapted to cooler conditions (Figures 1c and 1e; Barker et al., 2009; Bianchi & Gersonde, 2004), relatively little is known about associated impact on benthic marine organisms in the Southern Ocean during the ACR.

With their important roles in carbon-cycling and deep-sea food webs (Gooday et al., 1992) and the creation of habitat for biodiversity hotspots (Hovland, 2008; Roberts et al., 2006), the distribution of benthic foraminifera and cold-water corals in the past is of high paleoceanographic significance. Benthic foraminiferal assemblage data also harbor a great deal of paleoenvironmental information as different species bear an affinity to particular environmental conditions (e.g., flux of raining organic carbon or oxygen content...
of seawater; Gooday, 2003). Cold-water coral habitat migration has been previously suggested at ~50°S during the ACR in the Drake Passage (Margolin et al., 2014) and Tasmania (Thiagarajan et al., 2013), yet these studies were based on limited coral specimens and low precision dating techniques. Furthermore, without paired geochemical proxy data, the dominant drivers of any changes in benthic ecology remain unclear (e.g., circulation driven primary production and food supply, dissolved oxygen, seawater pH).

Cold-water corals offer a variety of paleoceanographic proxy potential, including tracers for circulation, productivity, and seawater pH. Radiocarbon data, for instance, can be corrected for postmortal decay using uranium-thorium dating, and used to reconstruct changes in seawater ventilation. Published radiocarbon data from Tasmania Seamounts and Drake Passage corals (Hines et al., 2015; Li et al., 2020) suggest that initial destratification of the Southern Ocean during HS1 halted briefly during maximum Antarctic cooling in the late ACR (~13.5 ka). Ba/Ca ratios in cold-water corals record the dissolved barium concentration in seawater ([Ba]sw; Anagnostou et al., 2011; Spooner et al., 2018), which is controlled by adsorption/absorption onto organic particulates in the upper ocean and release during remineralization at depth (Cardinal et al., 2005), resulting in a nutrient-like seawater profile (Chan et al., 1977). Ba/Ca data may thus provide insights into changes in upwelling of deep waters and/or surface primary productivity that may act as a food source for benthic ecosystems. The boron isotopic composition (\(\delta^{11}B\))/\(^{10}B\) ratio expressed as \(\delta^{11}B\) relative to NIST SRM 951 in parts per thousand) of cold-water corals increases as a function of seawater pH and has been used to document carbon release from the deep Southern Ocean during the last deglaciation (Rae et al., 2018). Coral \(\delta^{11}B\) data can therefore be used to assess whether large changes in pH (and associated shifts in saturation state) were responsible for changes in benthic calcifier abundance.

Here, we use well-dated biotic and paleoceanographic records to answer the questions: (a) What impact did a return to more glaciated conditions have on benthic ecology in the Southern Ocean during the ACR? (b) What were the primary drivers of deep-water habitat changes for marine calcifiers? We provide new benthic foraminifera and cold-water scleractinian coral abundance data and geochemical reconstructions from sites across the Drake Passage, spanning the Antarctic, Polar Front and sub-Antarctic Zones and occupying water depths from 300 to 1,750 m (Figure 2). More than 600 new coral radiometric dates have been added to initial coral abundance compilations (Burke et al., 2010; Margolin et al., 2014) and many low precision “reconnaissance” dates have now been improved by isotope-dilution U-Th techniques (see Section 2). These new data allow us to present precisely dated, coral abundance data from across the Drake Passage. Furthermore, we provide new records of productivity and pH from coral Ba/Ca and \(\delta^{11}B\) measurements for direct comparison with published coral geochemical records (Burke & Robinson, 2012; Chen et al., 2015; Li et al., 2020). When viewed in conjunction with benthic foraminifera assemblage data, these results provide unique insight into the likely causes of biotic change during the ACR.

2. Methodology

2.1. Benthic Foraminifera Assemblage Counts

Sediment core GC528 (53.01°S, 58.04°W, 598-m water depth) was collected on Cruise JR244 from the Falkland Plateau within the sub-Antarctic Zone (~150 km north of Burdwood Bank; Figure 2); a site currently bathed in Antarctic Intermediate Water. We adopt the radiocarbon-based age model for this core from Roberts et al. (2016). This includes 14 radiocarbon measurements of *Uvigerina bifurcata* between 66-cm
and 229-cm core depth (11–18 ka) with 14C reservoir corrections based on nearby coral measurements by Burke and Robinson (2012). The benthic foraminiferal assemblage was determined on the >63-μm size fraction of 218 core samples. This broad size fraction was targeted so as to include the smaller Alabaminella weddellensis and Epistominella exigua species in count data (Gooday, 1993). A minimum of 300 individuals were counted per sample; samples containing significantly >600 individuals were split. Correspondence Analysis of count data between 8 and 22 ka (54-cm and 321-cm core depth) was conducted to establish the contrasting assemblages before, during, and after the ACR. One sample within a suspected dissolution horizon at 19 ka (see Section 4.1.1) dominated by agglutinated foraminifera (~80%) was omitted to remove its weighting on axes.

2.2. Cold-Water Coral Abundance

Fossil cold-water scleractinian were collected from Shackleton Fracture Zone (60.2°S, 57.8°W), Sars Seamount (59.7°S, 68.8°W), Interim Seamount (60.6°S, 66.0°W), Cape Horn (57.2°S, 67.0°W), and Burdwood Bank (54.7°S, 62.2°W) during Research Cruises LMG06-05, NBP0805, and NBP1103 (Figure 2). Most corals were collected the using dredges (reinforced box dredge) and trawls (Blake and Otter). A select few corals were collected by gravity core at Burdwood Bank; the age-depth distribution of these samples suggests that the relatively shallow depth of dredging does not unduly bias sampling (Margolin et al., 2014).

Today, Shackleton Fracture Zone lies south of the Polar Front in the Antarctic Zone, Sars and Interim Seamounts are located in the Polar Front Zone, and Cape Horn and Burdwood Bank are in the more northerly sub-Antarctic Zone (Figure 2). The shallowest coral samples come from depths of 334 m on Burdwood Bank that are currently bathed in sub-Antarctic Mode Waters. Corals were also collected at Burdwood Bank from 700 to 1,520 m, at water depths corresponding to modern day Antarctic Intermediate Water. Corals recovered from depths 695 to 1,200 m further south at Sars Seamount are currently bathed in Upper Circumpolar Deep Water while deeper samples at this site sit within Lower Circumpolar Deep Water (1,300–1,750 m). Samples from the nearby Interim Seamount are grouped with Sars samples for the purposes of this discussion.

More than 1,500 coral samples were initially “reconnaissance” dated by radiocarbon and U-series laser ablation techniques (typically ±650 years age control; this study and published data from Burke et al., 2010; Margolin et al., 2014; Spooner et al., 2016). This technique is based solely on measured 239Th/238U ratios and therefore must assume that the initial 238U/238U of the sample is similar to modern seawater and that the initial 239Th is negligible (Spooner et al., 2016). Previous age distribution assessments from these sites by Margolin et al. (2014) only included around half the number of specimens in our study and of those only 59 had high-precision dates (Burke & Robinson, 2012), thus interpretations of benthic population changes were heavily reliant on these less precise reconnaissance dates—with the age resolution being similar to the duration of the ACR. Since those initial studies, where sufficient well-preserved material permitted, deglacial age samples have been precisely dated using U-Th isotope-dilution techniques (Chen et al., 2015; Cheng et al., 2000), typically offering age uncertainties better than ±250 years for deglacial aged samples (2 SD). This study includes 604 corals newly dated by “reconnaissance” techniques and a further 124 new high-precision isotope-dilution dates that are combined with previous coral dating studies (Burke & Robinson, 2012; Chen et al., 2015; Li et al., 2020). The result is that >47% of these coral samples within the deglacial interval now have precise dates. While reconnaissance dates are still shown for samples that lack precise dates in coral abundance plots, the vast majority of specimens used for δ^{13}B and Ba/Ca records have precise dates assigned by isotope-dilution techniques.

2.3. Cold-Water Coral Ba/Ca and δ^{13}B Analyses

Deglacial coral samples from Burdwood Bank and Sars/Interim Seamounts were selected for Ba/Ca analysis to examine changes in circulation and organic matter flux within the sub-Antarctic and Polar Front Zones (water depth range: 300–1,750 m). The Burdwood Bank site, with coral samples present during the late ACR, was primarily targeted for boron isotope analysis in this study. These new δ^{13}B data are supplemented by existing data from Sars/Interim sites (Rae et al., 2018), to which we add one new boron isotope measurement from a newly dated coral from Interim Seamount (13.6 ka; late ACR). Whole “S1” septa and
attached theca were taken from cup corals using a rotary cutting tool for geochemical analysis. This tool was further used to remove surficial oxide coatings and any chalky white altered carbonate. This type of visual inspection and physical removal of diagenetically altered material from deglacial specimens is shown to yield robust U isotope results reducing the effects of open-system behavior (Burke & Robinson, 2012; Chen et al., 2016). Microstructures within cold-water corals are known to exhibit highly contrasting trace metal and boron isotope values (Blamart et al., 2007; Gagnon et al., 2007; Stewart et al., 2016), therefore where sufficient sample material allowed, multiple subsamples (typically duplicates) were measured to characterize microstructural bias. Coral fragments were finely crushed using a pestle and mortar before a 5 mg aliquot of the homogenous powder was taken. A warm 1% H$_2$O$_2$ (buffered in NH$_4$OH) oxidative clean and weak acid polish (0.0005 M HNO$_3$) was performed on powders (Boyle, 1981; Rae et al., 2011). Samples were then dissolved in distilled 0.5 M HNO$_3$.

All coral trace metal and boron isotope analyses were carried out at the Universities of Bristol or St Andrews. An aliquot of the dissolved sample was analyzed by ICPMS using well-characterized, matrix-matched, synthetic standard solutions to give Ba/Ca ratios. Repeat analysis of NIST RM 8301 (Coral) ($n = 19$) yielded analytical precision of $\pm 2\%$ (2 SD). Small analytical offsets between the labs are quantified and corrected using NIST RM 8301 (Coral) results to bring values into line with interlaboratory comparison results following Stewart et al. (2020). To this end, Ba/Ca ratios of samples measured in Bristol and St Andrews were adjusted by 0.95 and 1.03, respectively.

For boron isotopic and Sr analyses, a further aliquot of the dissolved sample containing ~ 40 ng B was separated from the carbonate matrix using 20 μl Amberlite IRA 743 boron-specific anionic exchange resin microcolumns (Foster, 2008). The δ11B of purified boron samples were measured by (MC)-ICPMS against NIST SRM 951 at Bristol and St Andrews following identical protocols (Foster, 2008; Rae et al., 2011, 2018). Interlaboratory comparison studies reveal no systematic analytical offset between these institutions or other laboratories using this method (Gutjahr et al., 2020; Stewart et al., 2020). Samples, blanks, and standards were introduced to the instrument in a 0.5 M HNO$_3$ and 0.3 M HF acid matrix to aid B wash out (Zeebe & Rae, 2020). Full procedural uncertainty is assessed using repeat measurements of NIST RM 8301 (Coral) consistency standard (Stewart et al., 2020) yielding average δ11B values of $24.24 \pm 0.15\%$ at Bristol (2 SD; $n = 67$) and $24.12 \pm 0.12\%$ at St Andrews (2 SD; $n = 15$). Total procedural blanks ($n = 21$) were on average $<0.13\%$ of the sample boron loaded onto columns.

2.4. Estimating Seawater [Ba] and pH

Seawater barium concentration ([Ba], nmol/kg) is estimated from coral Ba/Ca using the cold-water coral calibration of Spooner et al. (2018) (Equation 2). Many of the modern corals included in the Spooner et al. (2018) calibration are from the same sites used in our study

$$\text{Ba/Ca (μmol/mol)} = 0.15[±0.02] \times [\text{Ba}]_{sw} + 2.5[±1.4]$$

Scleractinian corals do not make their carbonate skeleton from ions derived directly from seawater, rather they calcify from a semi-restricted extracellular calcification fluid (Al-Horani et al., 2003). The chemistry of this calcification fluid is modified through ion pumping mechanisms (Ca-ATPase pump) that transport in Ca$^{2+}$ ions at the expense of H$^+$ to make conditions more favorable for calcification. This “pH up-regulation” means that internal pH is routinely higher ($∼ 9$) than external seawater (Al-Horani et al., 2003; Gagnon et al., 2021). This results in coral δ11B values that are higher (cold-water corals $\sim +11\%$ higher; [McCulloch et al., 2012]) than that predicted by the simplified relationship between δ11B$_{borate}$ and seawater pH described in Equation 3 (Zeebe & Wolf-Gladrow, 2001); see also full expression in Rae (2018):

$$\text{pH} = \text{pK}^*_B - \log \left(\frac{\delta^{11}\text{B}_{sw} - \delta^{11}\text{B}_{borate}}{\alpha_p \delta^{11}\text{B}_{borate} - 1000(\alpha_B - 1)} \right)$$

where α_B (1.027) is the fractionation factor between boric acid and borate (Klochko et al., 2006), δ11B$_{sw}$ (39.61) is the δ11B of seawater (Foster et al., 2010), and pK*_B is the dissociation constant of the two boron species (8.82 for temperature salinity and pressure of 3°C, 35 psu, and 1,000 m, respectively, typical of sites in this study).
Scleractinian coral δ¹¹B varies as a function of ambient seawater pH, providing the basis for deep water pH reconstruction from these archives (Rae et al., 2018). A secondary influence of dissolved inorganic carbon on coral δ¹¹B has also been observed in culture, that has the same sense of change as pH, with lower pH, carbon-rich waters yielding lower δ¹¹B (Gagnon et al., 2021). Due to biological vital effects, taxa-specific coral δ¹¹B versus pH calibrations are required to give seawater pH estimates (Anagnostou et al., 2012; Martin et al., 2016; McCulloch et al., 2012; Stewart et al., 2016). Cold-water coral samples used in this study include Desmophyllum, Flabellum, Caryophyllia, and Balanophyllia. Calibrations for Desmophyllum dianthus and Caryophyllia smithii (Anagnostou et al., 2012; McCulloch et al., 2012; Rae et al., 2018) reveal that these taxa (both family Caryophyllidae) upregulate internal pH by a similar amount and broadly lie on a common calibration line (Supporting Information S1). By contrast, Balanophyllia cultured under laboratory conditions yield similar δ¹¹B-pH sensitivity (slope of regression) to the well-studied taxon Desmophyllum, but with δ¹¹B values ~1.5‰ lower for a given seawater pH (Gagnon et al., 2021) (Supporting Information S1). In light of these contrasting vital effects and the additional minor dependency of coral δ¹¹B on dissolved inorganic carbon, in this study, we adopt a simple approach to our assessment of relative changes in seawater pH, presenting raw coral δ¹¹B, but with a +1.5‰ adjustment factor applied to Balanophyllia δ¹¹B results (all figures and discussion of Balanophyllia δ¹¹B refer to adjusted values).

3. Results

3.1. Benthic Ecology During the ACR

3.1.1. Benthic Foraminifera

Our deglacial benthic foraminiferal assemblage data from core GC528 are shown in Figure 3. Both percentage (Figure 3a) and raw benthic foraminiferal abundance count data (Figures 3b–3d) from this core suggest that three taxa dominate the assemblage at different times during the deglaciation: Fursenkoima fusiformis prior to the ACR (~80%; 22–14.5 ka), U. bifurcata during the ACR (~80%; 14.5–13 ka), and E. exigua after the ACR (~30%; 13–8 ka). The ACR also features several short-lived (<100-year duration) peaks in abundance of E. exigua (Figure 3d). The peak in relative abundance of thick-walled infaunal foraminifer Uvigerina during the ACR (Figure 3c) is coincident with the peak in total organic carbon (TOC) mass accumulation rates in the same core (Figure 1d; Roberts et al., 2017), and with higher total benthic foraminiferal abundance (Figure 3e) and diversity (Figure 3f) compared to the preceding HS1 event (~16 ka).

We confirm these inferred deglacial shifts in foraminiferal assemblage through a Correspondence Analysis approach (Figure 4). Once results were plotted on their principal axes, broad groupings were defined that encompass >95% of the respective age points (pre-ACR, during-ACR, and post-ACR) and their neighboring taxa. While there is some overlap between assemblages, the broad-scale assemblage shifts from before (Assemblage 1 dominated by F. fusiformis; 22–14.5 ka), during (Assemblage 2 dominated by U. bifurcata; 14.5–13 ka), and after (Assemblage 3 dominated by E. exigua; 13-8 ka) the ACR appear robust (Figure 4). Alternatively, when plotted over time, the shift in sign (negative to positive) of principal component 1 (Axis 1) shows that the majority of the variance in the benthic foraminiferal data are described by a shift from Assemblage 1 to Assemblage 3 during the deglaciation (Figure 3g). The negative shift in principal component 2 (Axis 2) during the ACR interval shows that the next most important change in assemblage was a shift from Assemblages 1 and 3 to Assemblage 2 at ~14 ka (Figure 3h).

3.1.2. Cold-Water Corals

Our new radiometric dates for Drake Passage cold-water corals are shown in Figures 5a–5d. Once these data are combined with previously published dates, grouped by depth interval, and plotted as histograms, changes in coral abundance over time become clear (Figure 6). Similar to Uvigerina abundance, we observe a peak in coral (absolute) abundance at ~300-m water depth at the nearby Burdwood Bank site during the ACR (Figure 6a), where the genus Balanophyllia dominates the assemblage (74% of individuals; Supporting Information S1). By contrast, at deeper depths (>700 m) on Burdwood Bank, we see a distinct demise in coral populations, identified by a gap in occurrence (Figure 6a), with no recovered corals dated between the ages of 14 and 13.2 ka despite dedicated analytical effort. With Balanophyllia also present at deeper depths both before and after this gap in occurrence, this event appears to have impacted all coral genera (Supporting Information S1). A similar decrease in coral abundance also occurs across the Cape Horn, Sars/Interim...
Seamount, and Shackleton Fracture Zone sites with just 10 corals found within this entire 800-year interval (Figures 6b–6d). With a greater number of coral specimens recovered from Cape Horn and Sars/Interim sites, a clear decrease in coral abundance is observable from the peak in abundance at the end of HS1 (14.5 ka; up to 15 individuals per 200 years bin of the histograms) to near zero by the middle of the ACR. At the Sars/Interim sites, coral numbers recover initially at the deeper sites (∼12 ka), followed by a return of shallower water specimens later in the YD (∼11.5 ka; Figure 6c).

We adopt a statistical approach to assess the likelihood that the 800-year gap in coral occurrence during the late ACR (14.0–13.2 ka) is merely an artifact of sampling. Three hundred and ten corals were recovered from deep waters (>500 m) at all sites with ages between 16.0 and 11.5 ka (late HS1, ACR, and YD intervals). We run multiple Monte Carlo simulations (10,000) to estimate the probability that a random distribution of these corals would yield 10 or fewer corals within any 800-year interval between 16.0 and 11.5 ka. In >99% of simulations there were >10 corals in 800-year bins suggesting that the gap in coral occurrence is unlikely

Figure 3. Benthic foraminiferal assemblage data in this study from core GC528 Falkland Plateau (53.01°S, 58.04°W, 598-m water depth). (a) Benthic foraminiferal percentage abundance and (b–d) abundance per gram of sediment of dominant taxa: Fursenkoina fusiformis, Uvigerina bifurcata, and Epistominella exigua. (e) Total benthic foraminifera per gram of sediment. (f) Number of benthic foraminiferal taxa identified (measure of diversity). (g and h) Axis 1 and Axis 2 of the Correspondence Analysis (Figure 4) over time showing assemblage shifts. A potential dissolution event (∼19 ka; low diversity, low total number, high proportion of thick-walled Uvigerina) is highlighted in yellow. This contrasts with the peak in Uvigerina during the ACR (∼14 ka) that is associated with high total benthic foraminiferal abundance and diversity.
a sampling artifact. This result is robust (95% confidence) even if we limit the sample set to only the most well-dated corals in this interval (age uncertainty <±400 years; \(n = 158 \); i.e., isotope-dilution dates and only the best laser reconnaissance analyses) and include those samples that fall within age uncertainty of the ACR gap.

3.2. Coral Geochemical Records

Replicate Ba/Ca measurements in these corals generally agreed within 5% of one another, thus internal skeletal variability in Ba has little influence on our record (Figure 5e). Mean Ba/Ca ratios in corals from both deep and shallower depths at the Sars/Interim Seamount sites are generally high (>15 μmol/mol) during the YD and HS1 (Figure 7d), equating to \([\text{Ba}]_{sw} \) values comparable with modern measurements at these sites (\(\sim 100 \text{ nmol/kg} \); [Spooner et al., 2018]). We find similarly high Ba/Ca ratios in the few Sars samples available in the early and latest ACR (i.e., outside of the occurrence “gap”). Samples from Burdwood Bank have generally lower Ba/Ca ratios (\(\sim 10 \text{ μmol/mol} \)) in both shallow and deep waters throughout the deglacial interval, with the exception being corals at \(\sim 300 \text{ m} \) within the latter part of ACR interval (\(\sim 13.3 \text{ ka} \)), and one coral at \(\sim 14 \text{ ka} \) that lived at 1,400-m depth, exhibiting Ba/Ca values similar to those at the more southerly deep Drake Passage sites (\(\sim 20 \text{ μmol/mol} \); \([\text{Ba}]_{sw} \sim 120 \text{ nmol/kg} \)).

The majority of our \(\delta^{11} \text{B} \) replicates from the same coral fall within 0.5% of one another, though some samples have higher variability (\(\sim 1\% \); Figure 5f). Average \(\delta^{11} \text{B} \) measurements from corals are generally high (>26\%) during the initial phase of the ACR (\(\sim 13.8-14.6 \text{ ka} \)), including our new data from Burdwood Bank and new and published data from the Sars/Interim Seamount sites (Rae et al., 2018; Figure 7e). During the
latter half of the ACR (13.2–13.8 ka), at the same time as the coral abundance gap at depth and the Ba/Ca peak in Burdwood Bank samples, there is some hint of lower or more variable values. We also note that a single *Desmophyllum* sample at 16.3 ka records low δ¹¹B (<25‰, inferred seawater pH < 7.7; Figure 7e), similar to the low δ¹¹B excursions at the Sars/Interim Seamounts at the end of YD and HS1 (14.7 and 11.5 ka; Rae et al., 2018). As this event is represented by a single coral we refrain from using it in a detailed discussion; however, we note that it has a temporal correspondence with the 16.3 ka centennial CO₂ rise event (Marcott et al., 2014) and the associated Southern Ocean ventilation anomalies revealed by coral radiocarbon in Li et al. (2020).

4. Discussion

By combining records of multifaunal biotic change and coral geochemistry during the last deglaciation we seek to come to a consensus view of the both the timing of benthic habitat change in the Southern Ocean and its potential paleoceanographic drivers. In this discussion, we first reason that recorded shifts in benthic
foraminiferal assemblage are a true representation of faunal exchange and are not merely a result of variable preservation in core GC528. Second, we argue that peaks in *U. bifurcata* and shallow cold-water abundance in the sub-Antarctic Zone during the ACR are the result of the northward shift in centers of primary production. Finally, by considering all evidence from benthic foraminiferal abundance and coral geochemistry data sets we posit that depletion of oxygen in seawater was the principal cause of the disappearance of corals at deeper and more southerly Drake Passage sites during the ACR.

4.1. Benthic Foraminiferal Assemblage and Primary Productivity

4.1.1. Preservation Bias

Benthic foraminiferal assemblage data have the potential to be biased by variable preservation. Thin-walled specimens are more vulnerable to dissolution compared to thick-walled taxa; thus, a dissolution interval can lead to an increase in the proportion thick-walled benthic foraminifera within the fossil assemblage, without an actual increase in their true abundance within the living population at that time. An example of a potential dissolution event is present in GC525 at ~19 ka where a peak in the percentage of the thick-walled taxon *U. bifurcata* (Figure 3a) occurs during a low in total benthic foraminiferal abundance and diversity (Figures 3e and 3f) and is not associated with a peak in *U. bifurcata* abundance per gram (Figure 3c). The proportion of noncalcareous, agglutinated, foraminifera is also high within this interval, further supporting a transient carbonate dissolution event. By contrast, the general assemblage shift from *F. fusiformis* dominated before the ACR, to *U. bifurcata* dominated during ACR, and *E. exigua* dominated after the ACR observed from relative benthic foraminiferal abundance data (Figure 3a) is also robust in the absolute counts (Figures 3b–3d). Moreover, the double peak in *U. bifurcata* abundance during the ACR occurs during maxima in benthic foraminiferal total abundance and diversity. This result suggests that these wholesale shifts in foraminiferal abundance are not an artifact of variable preservation and that the ACR represents a true increase in abundance of *Uvigerina*.

Figure 6. Age distribution of Drake Passage corals arranged by water depth for (a) Burdwood Bank, (b) Cape Horn, (c) Sars/Interim Seamounts, and (d) Shackleton Fracture Zone sites. Histograms include all coral radiometric ages, both from this study and published results (Burke & Robinson, 2012; Chen et al., 2015; Li et al., 2020; Margolin et al., 2014).
4.1.2. Deglacial Benthic Foraminiferal Abundance

The changes in benthic foraminifera we document in GC528 from *F. fusiformis*, to *U. bifurcata*, to *E. exigua* dominated assemblages before, during, and after the ACR, respectively, are likely to represent distinct regional transitions of organic carbon flux to the seafloor, impacting benthic ecology. On the West Antarctic Peninsula shelf, the species *F. fusiformis* is typically associated with high primary productivity resulting from seasonal ice melt (Peck et al., 2015). High *F. fusiformis* abundance on the Falkland Plateau during HS1 and LGM likely represents seasonal productivity peaks associated with nutrient-rich meltwater injections and/or seasonal sea ice melt. In shelf settings such as this, the genus *Uvigerina* is also associated with high primary productivity regimes (100–300 g m$^{-2}$ yr$^{-1}$) where organic carbon fluxes to the seafloor are elevated.
Paleoceanography and Paleoclimatology

(2–20 g m\(^{-2}\) yr\(^{-1}\)) (Gooday, 2003). *Uvigerina* are also able to withstand lower oxygen conditions owing to its ability to denitrify (Piña-Ochoa et al., 2010). As a thick-walled foraminifer resistant to winnowing by currents, *Uvigerina* is also found in high relative abundance in strong flow speed environments, with *U. bifurcata* in particular associated with the Falkland Current (Harloff & Mackensen, 1997). Within GC528, the close association of *U. bifurcata* with high TOC mass accumulation rates (Figure 1d) and increases in the \(^{81}\)C and C/N ratios of TOC (Roberts et al., 2017), suggests that the shift to Assemblage 2 is most likely a result of northward displacement of centers of surface-water primary production into this region and potentially enhanced current speeds across on the Falkland Plateau during the ACR. Furthermore, this interpretation is consistent with the transient peaks in *E. exigua* also seen at this time: *E. exigua* is classed as an opportunist species adapted to fluctuating nutrient supply and preferring strong seasonality in open ocean waters (Barker et al., 2009; Gooday, 1993). These interludes of *E. exigua* abundance may therefore also support claims that the ACR was a time of enhanced seasonality in Southern Ocean Sea ice extent (Fogwill et al., 2020). The abrupt decline in *U. bifurcata* at ∼13 ka suggests a rapid transition at the end of the ACR from an extremely high primary productivity regime on the Falkland Plateau to conditions approaching the modern.

4.2. Controls on Cold-Water Coral Abundance

4.2.1. Shallow Sub-Antarctic Zone Corals

We explore the possibility that the peak in *Balanophyllia* coral abundance at shallow depths on Burdwood Bank during the ACR may be linked to upwelling and plentiful food supply caused by a shift in Polar Front position toward the sub-Antarctic Zone. The rain of organic carbon through the water column is an important food source for all benthic marine calcifiers that live outside of the photic zone, not least cold-water corals (Roberts et al., 2006). The coral *Balanophyllia* in particular has been shown to maintain calcification and respiration rates, even under low pH conditions (such as those in the Southern Ocean), provided that food supply is high (Crook et al., 2013; Griffiths et al., 2019). The abundant *Balanophyllia* corals living at shallow depths on Burdwood Bank between 13.8 and 13 ka also exhibit anomalously high Ba/Ca ratios. With supporting evidence for locally high productivity (e.g., our benthic foraminiferal assemblage data), it is possible that seafloor [Ba] was enhanced by a high flux of Ba-rich (organic) particulates during the ACR. Ba is actively scavenged from seawater as a result of barite sedimentation (Montaggioni et al., 2006). Therefore, the increase in Ba/Ca values measured in these shallow corals, to values more typical of deeper/more poleward sites, suggests that shallow Burdwood Bank was influenced by upwelling of deeper, high-[Ba] deep waters during the late ACR. We consider it likely therefore, that the increased coral abundance (notably of *Balanophyllia*) at ∼300-m water depth at Burdwood Bank, along with the shift in benthic foraminifera assemblages on the Falkland Plateau, result from higher productivity driven by increased nutrient availability. Furthermore, the shift toward a *Uvigerina* dominated assemblage and evidence from sortable silt from core GC528 suggest that there was an increase in flow of water from the Pacific through the Drake Passage after 14 ka (Roberts et al., 2017). This strengthening of the bottom current would be consistent with enhanced regional upwelling and corals may have further benefited from optimal bottom current speeds for larval transport or prey capture (Purser et al., 2014).

We posit that changes in benthic ecology we document in the Drake Passage are unlikely a local effect and were seen throughout the Southern Ocean. In contrast to the high TOC flux in the sub-Antarctic Zone (Roberts et al., 2017), decreases in opal (Figure 1f; Anderson et al., 2009) and biogenic barium flux (Figure 1g; Jaccard et al., 2016) in the Antarctic Zone suggest that primary production decreased at more poleward sites during the ACR. This anticorrelation between peaks in organic matter/barium fluxes between sites north and south of the Polar Front forms the basis of the theory that the focus of primary production was displaced northward during Antarctic cool periods as a result of expanding sea ice (Anderson et al., 2002), an equatorward shift in the Southern Hemisphere westerly winds (Toggweiler, 2009), and the associated changes in buoyancy flux (Watson & Naveira Garabato, 2006). An increase in coral abundance similar to that we observe at Burdwood Bank is also seen at the shallowest sites on the Tasmanian Seamounts in the South Pacific (∼1,600 m; ∼45°S) between 13.5 and 14.5 ka (Thiagarajan et al., 2013). Synchronous
increases in cold-water coral abundance in opposing sectors of the Southern Ocean therefore suggest that these changes in benthic ecology are the result of the wholesale displacement of the Polar Front northward.

Our benthic ecological records provide yet more evidence that centers of primary production moved further from the pole during the ACR. This result however makes the source of a transient peak in marine-aerosol fluorescent organic matter biomarkers (derived from nanoplankton, picoplankton, and picoeukaryotes) recorded in the Patriot Hills ice core on West Antarctica during this interval rather enigmatic (Figure 1b; Fogwill et al., 2020). To explain the occurrence of an organic-rich zone within this ice core, we suggest that marine-derived organics were likely sourced from the more distal sub-Antarctic Zone where productivity was high (rather than the immediate Antarctic Zone) or that marine aerosols in polar regions were simply more efficiently transported to the Patriot Hills during interval the ACR interval of cooling (e.g., Markle et al., 2018).

4.2.2. Deep-Dwelling and Polar Front Zone Corals

While the increased sub-Antarctic Zone primary productivity appears to favor shallow cold-water coral habitats at the ACR, we find a distinct minimum in coral abundance in the late ACR at deeper depths on Burdwood Bank, as well as across all depths at the more southerly Sars/Interim sites. In the following section, we show that our coral δ¹³B records reveal little evidence for large reductions in seawater pH during the ACR, and instead we suggest that low oxygen conditions were more likely responsible for the temporary loss of these cold-water coral habitat.

High surface-water primary production recorded during the ACR at the shallow Burdwood Bank coral and sediment core sites allows us to discount food supply as a limiting factor for coral occurrence at the deep Burdwood Bank site. In addition to food supply, however, it is thought that cold-water scleractinian corals tend to live in seawater that is near to or above the aragonite saturation depth (Ω > 0.9) (Guinotte et al., 2006; Thiagarajan et al., 2013) and which has dissolved oxygen content greater than ∼165 μmol/kg (Dodds et al., 2007; Thiagarajan et al., 2013). The individual impact of multiple stressors on cold-water coral physiology is difficult to establish, particularly for ancient samples (Gori et al., 2016). However, it seems unlikely that a decrease in saturation state is the leading control on the absence of corals in deeper, more southerly sites during the ACR. Although the coral gap precludes detailed δ¹³C reconstructions show that Southern Ocean cold-water corals can, to some extent, tolerate low pH conditions, for example during the LGM and during centennial-scale events during the last deglaciation (Rae et al., 2018). We note also that the high Ba values in shallow Burdwood Bank *Balanophyllia* in the early ACR are associated with relatively high δ¹³B, suggesting some decoupling of Ba and carbonate chemistry. This might result from the relatively deep regeneration profile of Ba, and/or from a combination of high Ba and buffering of pH by carbonate dissolution in waters input from the Pacific, so although the Ba data suggest high availability of nutrients this does not necessarily imply the influence of carbon-rich (low pH) waters from depth. Whatever the exact explanation, as there are no low δ¹³B values (e.g., <25‰) recorded in available samples during the late ACR we infer that any decrease in pH associated with a northward shift in organic matter flux was likely modest and within the uncertainty of bulk coral δ¹³B-pH proxy capabilities (i.e., <0.2 pH units; Anagnostou et al., 2012; Stewart et al., 2016). We therefore suggest that low pH and saturation state may not have been the dominant factor limiting deep and southerly coral growth during the late ACR.

In lieu of large changes in pH or saturation state, we draw on several lines of evidence for regionally low oxygen conditions at this time. The thick-walled shallow infaunal *Uvigerina* genus is readily abundant in low oxygen bottom water conditions (Boersma, 1986; Kaiho, 1994) and is often found to dominate in oxygen minimum zones (Kender et al., 2019; Schumacher et al., 2007). The shift toward a *Uvigerina* dominated assemblage during the ACR on the Falkland Plateau is therefore suggestive of high primary productivity and is consistent with low dissolved oxygen. Further evidence for a return to widespread lower oxygen conditions in the Southern Ocean region is provided by a collapse in epifaunal-infaunal (bottom water to pore water) benthic foraminiferal carbon isotope gradients during the ACR (Gottschalk et al., 2016; Haddam et al., 2020).
Many paleoceanographic records also support a regional increase in stratification of seawater that would make the Southern Ocean more prone to widespread oxygen depletion at depth. Coral radiocarbon records show an increase in B-atmosphere age (14C age difference between sample and the contemporary atmosphere) caused by a relative decrease in 14C at the shallowest site (~300 m) on Burdwood Bank between 14.7 and 13.5 ka (Figure 7b) toward values similar to those seen at the deeper and more southerly sites (Figure 7c) immediately before and after the ACR (Burke & Robinson, 2012; Chen et al., 2015; Li et al., 2020). This radiocarbon depletion at shallow depths further implies that this site had limited exchange with the atmosphere and was more influenced by deeper, older, waters at this time. Other lines of evidence suggest that the impacts of this return to more stratified conditions were felt far beyond the Drake Passage. There is a sharp 500-year increase in B-atmosphere age measured in corals from the Tasmania Seamounts (Figure 7a; Hines et al., 2015) also supporting increased isolation and influence of older waters over this time period. Stable silicon isotope ratios from the Indian Ocean show a striking increase during the ACR, indicative of enhanced silicic acid utilization relative to supply (Dumont et al., 2020). More stratified conditions and more efficient nutrient utilization in the Polar Frontal Zone are also inferred from the increase in the available cold-water coral nitrogen isotope data (Figure 7f; Li et al., 2020; Wang et al., 2017). Furthermore, planktonic foraminiferal δ13B-based surface-water pH records (also from 44°S) suggest the sub-Antarctic Zone briefly transitioned from a net source of carbon during HS1 to a net sink between 14 and 13 ka (Martín-Botí et al., 2015). A reduction in dissolved oxygen content of seawater is therefore a likely driver of low coral abundance at this time and was likely caused by (a) an increase in sea ice extent that decreased air-sea gas exchange at more southerly sites and (b) remineralization of enhanced organic carbon export to depth in the sub-Antarctic Zone (Figure 8; Buizert et al., 2015; Stephens & Keeling, 2000).

5. Conclusions

We show that significant changes in benthic ecology occurred during the Antarctic Cold Reversal within the Drake Passage (Figure 8). Increased abundance of corals, a shift toward a Uvigerina dominated benthic foraminifera assemblage, and elevated coral Ba/Ca ratios at more northerly and shallow sites during the ACR were most likely driven by enhanced surface-water nutrient supply, primary production, and thus food supply to the benthos in the sub-Antarctic Zone. At the same time, increased stratification and reduced oxygen concentrations inhibited coral occurrence at depth and further south.

Data Availability Statement

Data sets for this research are available at https://pangaea.de/ https://doi.pangaea.de/10.1594/PANGAEA.924088, https://doi.pangaea.de/10.1594/PANGAEA.924091, and https://doi.pangaea.de/10.1594/PANGAEA.924097.
Acknowledgments
We acknowledge the crew and researchers on board the research cruises who obtained the samples for this study. We thank C. Coath, C. Taylor, S. Mitchell, M. Prokopenko, M. Auro, A. Samperiz, M. Ferreira, C. Cole, and E. Littley for their help with laboratory work. We thank the editors and anonymous reviewers for their comments that improved this manuscript. Funding was provided by an Antarctic Bursary awarded to J.A.S., ERC and NERC grants awarded to L.F.R. (278705, NE/awarded to J.A.S., ERC and NERC was provided by an Antarctic Bursary).

We thank the editors and anonymous reviewers for their comments that improved this manuscript. Funding was provided by an Antarctic Bursary awarded to J.A.S., ERC and NERC grants awarded to L.F.R. (278705, NE/awarded to J.A.S., ERC and NERC was provided by an Antarctic Bursary.

References
Al-Hornai, F. A., Al-Mohgabhi, S. M., & de Beer, D. (2003). Microsensor study of photosynthesis and calcification in the scleractinian coral, Galaxea fascicularis: Active internal carbon cycle. Journal of Experimental Marine Biology and Ecology, 288(1), 1–15. https://doi.org/10.1016/s0022-0981(03)00578-4
Anagnostou, E., Huang, K. F., You, C. F., Sikes, E. L., & Sherrill, R. M. (2012). Evaluation of boron isotope ratio as a pH proxy in the deep sea coral Desmophyllum dianthus: Evidence of physiological pH adjustment. Earth and Planetary Science Letters, 349(0), 251–260. https://doi.org/10.1016/j.epsl.2012.07.006
Anagnostou, E., Sherrill, R. M., Gagnon, A., LaVigne, M., Field, M. P., & McDonough, W. F. (2011). Seawater nutrient and carbonate ion concentrations recorded as P/Ca, Ba/Ca, and U/Ca in the deep-sea coral Desmophyllum dianthus. Geochimica et Cosmochimica Acta, 75(9), 2529–2543. https://doi.org/10.1016/j.gca.2011.02.019
Anderson, R. F., Ali, S., Bramtmiller, L. I., Nielsen, S. H. H., Fleisher, M. Q., Anderson, B. E., & Burckle, L. H. (2009). Wind-driven upwelling in the southern ocean and the deglacial rise in atmospheric CO₂ concentrations recorded as P/Ca, Ba/Ca, and U/Ca in the deep-sea coral Desmophyllum dianthus. Geochimica et Cosmochimica Acta, 73(15), 4287–4303. https://doi.org/10.1016/j.gca.2009.03.029
Anderson, R. F., Parker, S., Fleisher, M., Gersonde, R., Goldstein Steven, L., Kuhn, G., et al. (2014). Biological response to millennial variability of dust and nutrient supply in the Subantarctic South Atlantic Ocean. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372, 20130054. https://doi.org/10.1098/rsta.2013.0054
Anderson, R. F., Chase, Z., Fleisher, M. Q., & Sachs, J. (2002). The Southern Ocean’s biological pump during the last glacial maximum. Deep Sea Research Part II: Topical Studies in Oceanography, 49(9), 1909–1938. https://doi.org/10.1016/s0012-821x(02)00018-8
Barker, S. D., Diz, P., Vautravers, M. J., Knorr, G., Hall, J. R., & Broecker, W. S. (2009). Interhemispheric Atlantic seesaw response during the last deglaciation. Nature, 457(7233), 1097–1102. https://doi.org/10.1038/nature07770
Beritez, B., Eggleston, S., Schmitt, J., Nehrbaensch-Ahles, C., Stocker Thomas, F., Fischer, H., et al. (2014). Revision of the EPICA Dome C CO₂ record from 800 to 600kyr before present. Geophysical Research Letters, 42, 542–549. https://doi.org/10.1002/2014gl061957
Bianchi, C., & Gersonde, R. (2004). Climate evolution at the last deglaciation: The role of the Southern Ocean. Earth and Planetary Science Letters, 228(3), 407–424. https://doi.org/10.1016/j.epsl.2004.10.003
Blamart, D., Rollon-Bard, C., Meibom, A., Cuij, J. P., Juillet-Leclerc, A., & Dauphin, Y. (2007). Correlation of boron isotopic composition with ultrastructure in the deep-sea coral Lophelia pertusa: Implications for biominaleralization and paleo-pH. Geochimica, Geophysics, Geosystems, 8, Q10001. https://doi.org/10.1029/2007GC001686
Blunier, T., Schwander, J., Stauffer, B., Stocker, T., Dätlenbach, A., Erdenmirabile, A., et al. (1997). Timing of the Antarctic Cold Reversal and the atmospheric CO₂ increase with respect to the Younger Dryas Event. Geophysical Research Letters, 24(21), 2683–2686. https://doi.org/10.1029/97gl10258
Boersma, A. (1986). Eocene/Oligocene Atlantic paleo-oceanography using benthic foraminifera. In C. Pomerol, & I. Premoli-Silva (Eds.), Developments in paleoentology and stratigraphy (Vol. 9, pp. 225–236). Elsevier. https://doi.org/10.1016/0929-5446(87)90125-0
Boyle, E. A. (1981). Cadmium, zinc, copper, and barium in foraminifera tests. Earth and Planetary Science Letters, 53(1), 11–35. https://doi.org/10.1016/0012-821x(81)90002-4
Buizert, C., Adrian, B., Ahn, J., Albert, M., Alley, R. B., Baggenstos, D., et al. (2015). Precise interopolar phasing of abrupt climate change during the last ice age. Nature, 520, 661–665
Burke, L., & Robinson, L. F. (2012). The Southern Ocean's role in carbon exchange during the last deglaciation. Science, 335(6086), 557–561. https://doi.org/10.1126/science.1208163
Burke, A., Robinson, L. F., McNichol, A. P., Jenkins, W. J., Scanlon, K. M., & Gerlach, D. S. (2010). Reconnaissance dating: A new radicarbon method applied to assessing the temporal distribution of Southern Ocean deep-sea corals. Deep Sea Research Part I: Oceanographic Research Papers, 57(11), 1510–1520. https://doi.org/10.1016/j.dsr.2010.07.010
Cardinali, D., Savoye, N., Trull, T. W., André, L., Kopczynska, E. E., & Dehairs, F. (2005). Variations of carbon remineralisation in the Southern Ocean illustrated by the Baxs proxy. Geophysical Research Letters, 32, 10.1029/2005GL024014
Chen, T., Robinson, L. F., Burke, A., Southon, J., Spooner, P., Morris, P. J., & Dehairs, F. (2005). Sr/Ca and Mg/Ca vital effects correlated with skeletal architecture in a scleractinian deep-sea coral and the role of Rayleigh fractionation. Earth and Planetary Science Letters, 261(1–2), 280–285. https://doi.org/10.1016/j.epsl.2007.07.013
Dodd, L. A., Roberts, J. M., Taylor, A. C., & Murabini, F. (2007). Metabolic tolerance of the cold-water coral Lophelia pertusa (Scleractinian) to temperature and dissolved oxygen change. Journal of Experimental Marine Biology and Ecology, 349(2), 205–214. https://doi.org/10.1016/j.jembe.2007.05.013
Dumont, M., Pichevin, L., Gelbert, W., Crook, E. D., Cooper, H., Potts, D. C., Lambert, T., & Paytan, A. (2013). Impacts of food availability and pCO₂ on planulation, juvenile survival, and calcification of the azooxanthellate scleractinian coral Balanophyllia elegans. Biogeochemistry, 10(11), 7599–7608. https://doi.org/10.1016/j.biogeo.2013.01.006
Foster, G. L. (2008). Seawater pH, pCO₂ and [CO₂] variations in the Caribbean Sea over the last 130 kyr: A boron isotope and B/Ca study of planktic foraminifera. Earth and Planetary Science Letters, 271(1–4), 254–266. https://doi.org/10.1016/j.epsl.2008.04.015
Foster, G. L., Fogwill von Strandmann, P. A. E., & Rae, J. W. B. (2010). Boron and magnesium isotopic composition of seawater. Geochimica, Geophysica, Geosystems, 11, Q08015. https://doi.org/10.1029/2010GC003201
Gagnon, A. C., Adkins, J. F., Fernandez, D. P., & Robinson, L. F. (2007). Sr/Ca and Mg/Ca vital effects correlated with skeletal architecture in a scleractinian deep-sea coral and the role of Rayleigh fractionation. Earth and Planetary Science Letters, 261(1–2), 280–285. https://doi.org/10.1016/j.epsl.2007.07.013

STEWART ET AL.

15 of 17
Gagnon, A. C., Gothmann, A. M., Branson, O., Rae, J. W. B., & Stewart, J. A. (2021). Controls on boron isotopes in a cold-water coral and the cost of resilience to ocean acidification. *Earth and Planetary Science Letters*, 554, 116662. https://doi.org/10.1016/j.epsl.2021.116662

Gooday, A. J. (1993). Deep-sea benthic foraminiferal species which exploit phytothetitrus: Characteristic features and controls on distribution. *Marine Micropaleontology*, 23(3), 187–205. https://doi.org/10.1016/0377-8898(93)90043-W

Gooday, A. J. (2003). Benthic foraminifera (protozoa) as tools in deep-water paleoceanography: Environmental influences on faunal characteristics. In *Advances in marine biology* (Vol. 46, pp. 1–90). Academic Press. https://doi.org/10.1016/S0065-2806(03)46002-1

Gooday, A. J., Levin, L. A., Linke, P., & Heeger, T. (1992). The role of benthic foraminifera in deep-sea food webs and carbon cycling. In G. T. Rowe, & V. Pariente (Eds.), *Deep-sea food chains and the global carbon cycle* (pp. 63–91). Springer. https://doi.org/10.1007/978-94-011-2452-2_5

Gori, A., Ferrier-Pagès, C., Hennige, S. J., Murray, F., Rottler, C., Wicks, L. C., & Cabioch, G. (2006). Coral barium/calcium record of mid-Holocene upwelling activity on the equatorial central Pacific Ocean. *Deep Sea Research Part II: Topical Studies in Oceanography*, 53, 1159. https://doi.org/10.1016/j.dsr2.2005.12.018

Griffiths, J. S., Pan, T.-C. F., & Kelly, M. W. (2019). Differential responses to ocean acidification between populations of *Balanophyllia elegans* corals from high and low upwelling environments. *Molecular Ecology*, 28(11), 2715–2730.

Guinotte, J. M., Orr, J., Cairns, S., Freiwald, A., Morgan, L., & George, R. (2006). Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? *Frontiers in Ecology and the Environment*, 4(3), 141–146. https://doi.org/10.1890/1540-9295(2006)04[0141:wihcic]2.0.co;2

Haddam, N. A., Michel, E., Siani, G., Licari, L., & Dewilde, F. (2020). Ventilation and expansion of intermediate and deep waters in the southeast pacific during the last termination. *Paleoceanography and Paleoclimatology*, 35, e2019PA003743. https://doi.org/10.1029/2019PA003743

Harloff, J., & Mackensen, A. (1997). Recent benthic foraminiferal associations and ecology of the Scotia Sea and Argentine Basin. *Marine Micropaleontology*, 31(1), 1–29. 10.1016/S0377-8898(96)00059-x

Hines, S. K. V., Southon, J. R., & Adkins, J. F. (2015). A high-resolution record of Southern Ocean intermediate water radiocarbon over the past 30,000 years. *Earth and Planetary Science Letters*, 432, 46–58. https://doi.org/10.1016/j.epsl.2015.09.038

Hovland, M. (2008). *Deep-water coral reefs: Unique biodiversity hot-spots*. Springer Science & Business Media.

Jaccard, S. L., Glibert, P. M., Martinez-Garcia, A., & Anderson, R. F. (2016). Covariation of deep Southern Ocean oxygenation and atmospheric CO₂ through the last ice age. *Nature*, 530, 207–210. https://doi.org/10.1038/nature16514

Kaiho, K. (1994). Benthic foraminiferal dissolved-oxygen index and dissolved-oxygen levels in the modern ocean. *Geostandards and Geoeanalytical Research*, 45, 59–73. https://doi.org/10.1111/ggr.12364

Klochko, K., Kaufman, A. J., Byrne, R. H., & Tossell, J. A. (2006). Experimental measurement of boron isotope fractionation in seawater. *Marine Micropaleontology*, 61(2–3), 248–265. https://doi.org/10.1016/j.marchem.2006.03.034

Li, T., Robinson, L. F., Chen, T., Wang, X. T., Burke, A., Rae, J. W. B., et al. (2020). Rapid shifts in circulation and biogeochemistry of the Southern Ocean during deglacial carbon cycle events. *Science Advances*, 6, eabb3807. https://doi.org/10.1126/sciadv.aabb3807

Lowry, D. P., Golledge, N. R., Menviel, L., & Bertler, N. A. N. (2019). Deglacial evolution of regional Antarctic climate and Southern Ocean conditions in transient climate simulations. *Climate of the Past*, 15(1), 189–215. https://doi.org/10.5194/cp-15-189-2019

Marcott, S. A., Bauska, T. K., Buizert, C., Steig, E. J., Rosen, J. L., Cuffey, K. M., et al. (2013). Centennial-scale changes in the global carbon cycle during the last deglaciation. *Nature*, 514(7524), 616–619. https://doi.org/10.1038/nature13799

Margolin, A. R., Robinson, L. F., Burke, A., Waller, R. G., Scanlon, K. M., Roberts, M. L., et al. (2014). Spatial and temporal distributions of cold-water corals in the Drake Passage: Insights from the last 35,000 years. *Deep Sea Research Part II: Topical Studies in Oceanography*, 99, 237–248. https://doi.org/10.1016/j.dsr2.2013.06.008

Markle, B. R., Steig, E. J., Roe, G. H., Winckler, G., & McConnell, J. R. (2018). Combinatorial variability in high-latitude aerosols, water isotopes and the hydrologic cycle. *Nature Geosience*, 11(11), 853–859. https://doi.org/10.1038/s41561-018-0210-9

Martin, P., Goodkin, N. F., Stewart, J. A., Foster, G. L., Sikes, E. L., White, H. K., et al. (2016). Deep-sea coral 34S/C: A tool to reconstruct the difference between seawater S and 34S-derived calcifying fluid pH. *Geophysical Research Letters*, 43, 299–308. https://doi.org/10.1002/2015GL066494

Martinez-Botí, M. A., Marino, G., Foster, G. L., Ziveri, P., Henehan, M. J., Rae, J. W. B., et al. (2015). Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation. *Nature*, 518(7538), 219–222. https://doi.org/10.1038/nature14155

Martinez-Garcia, A., Sigman, D. M., Ren, H., Anderson, R. F., Straub, M., Hodell, D. A., et al. (2014). Iron fertilization of the subantarctic ocean during the last ice age. *Science*, 344(6177), 1347–1350. https://doi.org/10.1126/science.1246848

McCulloch, M., Trotter, J., Montagna, P., Falter, J., Dunbar, R., Freiwald, A., et al. (2012). Resilience of cold-water scleractinian corals to ocean acidification: Boron isotopic systematics of pH and saturation state up-regulation. *Geochimica et Cosmochimica Acta*, 87(0), 21–34. https://doi.org/10.1016/j.gca.2012.03.027

McCulloch, R. D., Bentley, M. J., Purves, R. S., Hulton, N. R. J., Sugden, D. E., & Clapperton, C. M. (2000). Climatic inferences from glacial and palaeoclimatological evidence at the last glacial termination, southern South America. *Journal of Quaternary Science*, 15(4), 409–417. https://doi.org/10.1002/(SICI)1099-1417(20000515)15:4<409::AID-JQS539>3.0.CO;2-2

Menviel, L., Spence, P., Yu, J., Chamberlain, M. A., Matear, R. J., Meinssner, K. J., & England, M. H. (2018). Southern Hemisphere westerlies as a driver of the early deglacial atmospheric CO₂ rise. *Nature Communications*, 9(1), 2503. https://doi.org/10.1038/s41467-018-04876-4

Montaggioni, L. F., Le Corne, F., Corrègé, T., & Cabioch, G. (2006). Coral barium/calcium record of mid-Holocene upwelling activity in New Caledonia, South-West Pacific. *Paleoceanography, Palaeoclimateology, Palaeoecology*, 23(2), 436–455. https://doi.org/10.1029/2005PA001218

Olsen, A., Key, R. M., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X., et al. (2016). The Global Ocean Data Analysis Project version 2 (GLODAPv2)—An internally consistent data product for the world ocean. *Earth System Science Data*, 8(2), 297–323. https://doi.org/10.5194/esd-8-297-2016
Parrenin, F., Masson-Delmotte, V., Köhler, P., Raynaud, D., Paillard, D., Schwander, J., et al. (2013). Synchronous change of atmospheric CO₂ and Antarctic temperature during the last deglaciation warming. *Science*, 339(6123), 1060–1063. https://doi.org/10.1126/science.1236368

Peck, V. L., Allen, C. S., Kender, S., McClymont, E. L., & Hodgson, D. A. (2015). Oceanographic variability on the West Antarctic Peninsula during the Holocene and the influence of upper circumpolar deep water. *Quaternary Science Reviews*, 119, 54–65. https://doi.org/10.1016/j.quascirev.2015.04.002

Pedro, J. B., Bostock, H. C., Bitz, C. M., He, F., Vandergeoes, M. J., Steig, E. J., et al. (2016). The spatial extent and dynamics of the Antarctic Cold Reversal. *Nature Geoscience*, 9(1), 51–55. https://doi.org/10.1038/ngeo2580

Piña-Ochoa, E., Høgslund, S., Geslin, E., Cedhagen, T., Revsbech, N. P., Nielsen, L. P., et al. (2010). Widespread occurrence of nitrate storage and denitrification among Foraminifera and *Gromiida*. *Proceedings of the National Academy of Sciences of the United States of America*, 107(3), 1148–1153. https://doi.org/10.1073/pnas.0908440107

Roberts, J. M., Wheeler, A. J., & Freiwald, A. (2006). Reefs of the deep: The biology and geology of cold-water coral ecosystems. *Nature Geoscience*, 550, 543–547. https://doi.org/10.1038/ngeo962

Rae, J. W. B. (2018). Boron isotopes in foraminifera: Systematics, biomineralisation, and CO₂ reconstruction. In H. Marschal, & G. Foster (Eds.), *Boron isotopes: The fifth element* (pp. 107–143). Springer International Publishing. https://doi.org/10.1007/978-3-319-64866-4_5

Rae, J. W. B., Burke, A., Robinson, L. F., Adkins, J. F., Chen, T., Cole, C., et al. (2016). CO₂ storage and release in the deep Southern Ocean on millennial to centennial timescales. *Nature*, 562(7728), 569–573. https://doi.org/10.1038/s41586-016-0614-0

Rae, J. W. B., Foster, G. L., Schmidt, D. N., & Elliott, T. (2011). Boron isotopes and B/Ca in benthic foraminifera: Proxies for the deep ocean carbonate system. *Earth and Planetary Science Letters*, 302(3–4), 403–413. https://doi.org/10.1016/j.epsl.2010.12.034

Roberts, J., Gottschalk, J., Skinner, L. C., Peck, V. L., Kender, S., Elderfield, H., et al. (2016). Evolution of South Atlantic density and chemical stratification across the last deglaciation. *Proceedings of the National Academy of Sciences of the United States of America*, 113(3), 514–519. https://doi.org/10.1073/pnas.151252111

Roberts, J., McCave, I. N., McClymont, E. L., Kender, S., Hillenbrand, C. D., Matano, R., et al. (2017). Deglacial changes in flow and frontal structure through the Drake Passage. *Earth and Planetary Science Letters*, 474, 397–408. https://doi.org/10.1016/j.epsl.2017.07.004

Roberts, J. M., Wheeler, A. J., & Freiwald, A. (2006). Reefs of the deep: The biology and geology of cold-water coral ecosystems. *Science*, 312(5773), 543–547. https://doi.org/10.1126/science.1119861

Schumacher, S., Jorissen, F. J., Dissard, D., Larkin, K. E., & Gooday, A. J. (2007). Live (Rose Bengal stained) and dead benthic foraminifera from the oxygen minimum zone of the Pakistan continental margin (Arabian Sea). *Marine Micropaleontology*, 62(1), 45–73. https://doi.org/10.1016/j.marmicro.2006.07.004

Spooner, P. T., Chen, T., Robinson, L. F., & Coath, C. D. (2016). Rapid uranium-series age screening of carbonates by laser ablation mass spectrometry. *Quaternary Geochronology*, 31, 28–39. https://doi.org/10.1016/j.quageo.2015.10.004

Spooner, P. T., Robinson, L. F., Hemsing, F., Morris, P., & Stewart, J. A. (2018). Extended calibration of cold-water coral Ba/Ca using multiple genera and co-located measurements of dissolved barium concentration. *Chemical Geology*, 499, 100–110. https://doi.org/10.1016/j.chemgeo.2018.09.012

Stephens, B. B., & Keeling, R. F. (2009). The influence of Antarctic Sea ice on glacial–interglacial CO₂ variations. *Nature*, 404(6774), 171–174. https://doi.org/10.1038/404171a

Stewart, J. A., Anagnostou, E., & Foster, G. L. (2016). An improved boron isotope pH proxy calibration for the deep-sea coral *Dendrophyllia dianthus* through sub-sampling of fibrous aragonite. *Chemical Geology*, 447, 148–160. https://doi.org/10.1016/j.chemgeo.2016.10.029

Stewart, J. A., Christopher, S. J., Kucklick, J. R., Bordier, L., Chalk, T. B., Dapoigny, A., et al. (2020). NIST RM 8301 Boron Isotopes in Marine Carbonate (Simulated Coral and Foraminifera Solutions): Inter-laboratory δ¹⁵B and trace element ratio value assignment. *Geostandards and Geomaterials Research*, 45, 77–96. https://doi.org/10.1111/ggr.12364

Stroobants, N., Dehairs, F., Goeyens, L., Vanderheijden, N., & Van Grien, R. (1991). Barite formation in the Southern Ocean water column. *Marine Chemistry*, 35(1), 411–421. https://doi.org/10.1016/0304-4203(90)90033-0

Thiagarajan, N., Gerlach, D., Roberts Mark, L., Burke, A., Nichol, A., Jenkins William, J., et al. (2013). Movement of deep-sea coral *Balanophyllum* and co-located measurements of dissolved barium concentration. *Science*, 340(6134), 3352–3357. https://doi.org/10.1126/science.1236134

Watson, A. J., & Naveira Garabato, A. C. (2006). The role of Southern Ocean mixing and upwelling in glacial-interglacial atmospheric CO₂ change. *Tellus B: Chemical and Physical Meteorology*, 58(1), 73–87. https://doi.org/10.1111/j.1600-0889.2005.00167.x

Zeebe, R. E., & Rae, J. W. B. (2020). Equilibria, kinetics, and boron isotope partitioning in the aqueous boric acid–hydrofluoric acid system. *Chemical Geology*, 530, 119693. https://doi.org/10.1016/j.chemgeo.2020.119693

Zeebe, R. E., & Wolf-Gladrow, D. A. (2001). *CO₂ in seawater: Equilibrium, kinetics, isotopes*. Elsevier.