TOWARD QUALITY CONTROL OF BIOGAS PRODUCT IN INDONESIA: AN OVERVIEW

Oman Zuas 1,*, Eka Mardika Handayani 1, Muhammad Rizky Mulyana 1, Melati Azizka Fajria 1, Harry Budiman 1, Ayu Hindayani 1, Arfan Sindhu Tistomo 1, Anthoni Batahan Aritonang 2, Nazarudin 3

1 Center for Research and Human Resource Development, National Standardization Agency of Indonesia (BSN), Gedung 420, Kawasan PUSIPTEK, 15314, Tangerang Selatan, Banten, Indonesia

2 Department of Chemistry, Faculty of Science, Tanjungpura University, Pontianak, 78124, West Kalimantan, Indonesia

3 Centre of Excellence for Bio-Geo Material and Energy, Universitas Jambi, Jalan Tribrata KM 11 Pondok Meja, 36364, Mestong, Jambi

*Corresponding author: oman@bsn.go.id

ARTICLE INFO

Article history:
Received 23 June 2021
Accepted 31 July 2021
Available online 31 August 2021

Keywords:
Biomass, quality infrastructure, standardization, metrology, conformity assessment

ABSTRACT

The quality control of the final product of biogas is essential for providing a maximum level of consumer satisfaction. The most important criteria for any biogas product are its regulatory compliance and safety. Based on a desk study of documents and laboratory experiment, this paper overviews the development of infrastructure of quality to control the quality of biogas, aiming at summarising the experience, problems and demonstrating development status of quality infrastructure in Indonesia in the hope of providing references for the present condition. The discussion is made to cover issues related to biogas that are emphasised on three pillars of the infrastructure of quality in Indonesia, i.e., standardization, metrology, and conformity assessment. From the overview, the conclusion that can be drawn is that increasing understanding and continuing the development of quality infrastructure as an effort to ensure the safety and quality of biogas in Indonesia remains essential.

© 2021 IJoPAC. All rights reserved

1. Introduction

Fossil-based fuels as the primary energy sources in Indonesia and dominates national energy needs [1]. Up to now, however, fossil-based fuels have been considered to contribute to enormous environmental problems—from air pollution to global warming [2, 3]. In addition to its negatives impacts, the use of fossil-based fuels has declined petroleum reserves, triggered higher oil prices in the market, and increased the number of oil imports due to national fuel consumption. Generally speaking, dependence on fossil-based fuels may create a significant economic, environmental, and energy security concern. As a result, numerous attempts have been made to replace fossil-based fuels with new and renewable energy sources.
To overcome the aforementioned energy-related problems in Indonesia, the government has stepped up its effort by encouraging the adoption of alternative energy policy through the implementation of new and renewable energy programs set in National Energy Policy (NEP) (Govt. Decree No. 79/2014) [4]. The main direction of NEP is to target a higher portion of new or renewable energy in the national energy mix to reach 23% by 2025 [3, 5]. Hence, the NEP could help ensure sustainable energy security and supply, improve the environmental quality of life, and foster national economic growth. In addition, the NEP has encouraged the scientific community to take part in reducing demand for fossil-based energy by pursuing some potential energy sources include solar, waterfall, geothermal, wind, and biomass [5, 6, 7]. In this regard, bio-energy such as biogas-based biomass could be the most potential source.

During the past decade, the biogas industry has been one of the fastest-growing fields in Indonesia for an energy source for heating supply, electricity, and vehicle. The energy efficiency derived from biogas is purity dependent because high energy conversion occurs only at the high-quality biogas [8]. Thus, regulatory compliance and safety become essential criteria for biogas products. In Indonesia, the quality of biogas may refer to SNI 8019: 2014 [19] whose application is voluntary.

Production of biogas is a complicated process led to possible obtains biogas with various levels of impurities [9]. The existence of impurities in biogas product may cause problem resulting in less safe and less energy efficiency. Therefore, a properly functioning of quality infrastructure will ensure the availability of high quality and safety of the biogas that meets consumer requirement to support the use of commercial biogas. It indicates that the quality must be carefully reassured before the practical utilization of biogas.

This paper briefly overviews the quality infrastructure that is designated for controlling of biogas quality product with the aim in summarising the experience and demonstrating available quality infrastructure in Indonesia in the hope of providing references for the present condition.

2. Methodology

This study was conducted by collecting and reviewing the available data on public platform including journal article, books, data sets, reports, and government regulations regarding the research topic.

3. Results and Discussion

3.1. Biogas Production

Typically, biogas refers to a gas mixture containing a high portion of both carbon dioxide (CO$_2$) and methane (CH$_4$) produced by a fermentation process of organic materials using bacteria under anaerobic conditions. An anaerobic fermentation process of organic material into biogas is a biological process that takes place in 4 successive stages [9, 10, 11] that is schematically presented in Figure 1 [12].

Stage 1: Hydrolysis of macromolecules (proteins, polysaccharides, and lipids) contained in organic materials into macromolecules. Stage 2: Fermentation of micro molecules produces intermediate compounds. Stage 3: Acetogenesis of compounds by acetogenic microorganisms produces acetic acid, CO$_2$ and H$_2$ compounds. Stage 4: Methanogenesis of acetate, CO$_2$, and H$_2$ into methane using methanogenic microorganisms, accompanied by generating many other impurities such as nitrogen (N$_2$), oxygen (O$_2$), hydrogen (H$_2$), hydrogen sulfide (H$_2$S) and ammonia (NH$_3$). From the process, it is known that biogas production involves a complex biological process, indicating that it is possible to obtain biogas with different purity levels. Table 1 lists the main compound that generally make up biogas and its impurities [13].

Table 1	Main Compound in Biogas and Its Impurities
Component	Description
CO$_2$	Carbon Dioxide
CH$_4$	Methane
H$_2$S	Hydrogen Sulfide
N$_2$	Nitrogen
O$_2$	Oxygen
NH$_3$	Ammonia
Figure 1. A schematic diagram of decomposition of organic macromolecules into biogas under anaerobic conditions

Components	Concentration (%)
Methane (CH\(_4\)) - main	50 - 80
Carbon dioxide (CO\(_2\)) - main	25 - 50
Nitrogen (N\(_2\)) - impurity	0 - 10
Hydrogen sulfide (H\(_2\)S) - impurity	0 - 3
Oxygen (O\(_2\)) - impurity	0 - 2
Hydrogen (H\(_2\)) - impurity	0 - 1

The low purity level of biogas product means that the product contains a high concentration of impurities. The use of such low quality of biogas may cause energy inefficiency, increase safety issues, and low profitability of the biogas. On the other hand, the higher of the CH\(_4\) content, the higher the heating value produced during the combustion process [14, 15, 16]. Therefore, an attempt to produce biogas which complies with the quality requirement is a crucial consideration for industrial biogas processes.

Figure 2 maps some biogas producers in Indonesia along with their plant location. A significant increase in the number of biogas producers in Indonesia presents an opportunity to sustain energy security and supply. Thus, available quality infrastructure (standardization, metrology and conformity assessment) at the national level will allow biogas producers to provide a maximum level of consumer satisfaction and safety.
3.2. Quality Infrastructure in Indonesia

Obtaining a high-quality of biogas that meets existing standard in an effort to maintain the availability of biogas as an efficient energy and environmentally friendly. For this reason, it is very necessary to provide quality infrastructure (standardization, metrology, and conformity assessment) to support biogas producers to access and compete in the market by demonstrating quality and safety of their product to comply with available standard.
Quality infrastructure is defined as a system created by government or private institutions accompanied by the necessary policies and regulatory frameworks in an effort to support and improve the quality, safety, and environment in the provision of goods, services and processes \[2, 17\]. Indonesia’s quality infrastructure has three pillars (key elements), namely standardization, metrology and conformity assessment (accreditation and certification). Based on National Law No. 20/2014 and President Decree 4/2018, the three pillars of national quality infrastructure are independently managed by National Standardization Agency of Indonesia (BSN), and they form a close network based on a technical hierarchy (Figure 3) \[18\]. The BSN has taken the lead on this issue with a focus on being able to optimally implement quality infrastructure to create a system that enables products to meet the quality and safety requirements. In most cases, the government has to enforce standards and technical regulations. For instance, when producing biogas, it is necessary to demonstrate compliance with quality and safety standards that harmonize to international requirements.

Standardization

Standardization of a product refers to a condition of understanding to which all appropriate parties must grow together to assure that any processes regarding the creation of a product are conducted under a set of guidelines \[18\]. The agreement assures that the end product with all other similar items in the same level has consistent in quality and all conclusions made can be compared. Standardization of product is obtained by establishing a general guideline concerning how a product or service is created, as well as how a business is driven and how all processes are governed. The objective of standardization in biogas product is to implement a good consistency to specific standards within a selected environment. The national standards for biogas product will contribute to drive a consistent approach at national level for improving its quality and safety. To maintain the quality of biogas and support the commercial use of biogas, the government through BSN has decreed rules set out in the Indonesian National Standard (SNI). The SNI was developed by the Technical Committee (TC 27-04: Bioenergy) and firstly established in 2014 i.e., SNI 8019: 2014 \[19\]. Development of SNI 8019: 2014 was a collaborative process that involves stakeholders including government (regulator), producers and users from across Indonesia with expert input. The quality parameters of biogas products based on SNI 8019: 2014 can be seen in Table 2. The SNI for Biogas was developed by referring to various normative references (Table 3), meaning that the SNI 8019: 2014 for biogas has been harmonized with others standards (national and international). Thus, it provides an opportunity for the global market to accept Indonesian biogas.

Parameters	Requirements
Dew point temperature at 20000 kPA (°C, max)	5
Wobbe index (MJ/Nm³)	39 – 41
Methane number	80 – 118
Methane (% vol., min)	80
Hydrogen sulphide (mg/Nm³, max)	23
Hydrogen (% vol., max)	0.1
Carbon dioxide (% vol., max)	16
Oxygen (% vol., max)	1
Sulphur total (mg/Nm³, max)	50
Relative density	0.55 – 0.75

Table 2. quality requirements for biogas based on Indonesian National Standard (SNI) 8019: 2014 \[19\]
Table 3. List of standards used as normative references for the development of SNI 8019:2014

No	Title
SNI 3619	Handling of compressed cylinder
ASTM D1142	Standard test method for water vapor content of gaseous fuels by measurement of dew point temperature
ASTM D2385	Standard test method for hydrogen sulfide and mercaptan sulfur in natural gas (cadmium sulfate iodometric titration method)
ASTM D1145	Test method for sampling natural gas
ASTM D1945	Standard test method for analysis of natural gas by gas chromatography
ASTM D 3588	Standard practice for calculating heat value, compressibility factor, and relative density of gaseous fuels
ASTM D4084	Standard test method for analysis of hydrogen sulfide in gaseous fuels (lead acetate reaction rate method)
ASTM D4468	Standard test method for total sulfur in gaseous fuels by hydrogenolysis and rateometric colorimetry
ISO 6974	Natural gas -- determination of composition with defined uncertainty by gas chromatography
ISO 6976	Natural gas -- calculation of calorific values, density, relative density and wobbe index from composition
ISO 10101	Determination of water by karl fischer method
ISO 10715	Natural gas -- sampling guidelines
ISO DTR 22302	Natural gas -- calculation of methane number
GPA 2172	Calculation of gross heating value, relative density, compressibility and theoretical hydrocarbon liquid content for natural gas mixtures for custody transfer
GPA 2166	Obtaining natural gas samples for analysis by gas chromatography

Metrology

Metrology is the measurement science, supporting both theoretical and experimental testing at the level of uncertainty in all fields of science and technology [20, 21]. Metrology consists of three metrology subfields including scientific, industrial, and legal metrology [2, 22]. Scientific metrology, in particular, includes the development of a new method of measurement, development of reference materials (standards), and deliver the reference materials to end users [22]. In Indonesia, scientific metrology is coordinated by the *Standar National Satuan Ukur* BSN (SNSU-BSN), as a national metrology institute (NMI), but at the international level, metrology is coordinated by BIPM. The task of NMI is to disseminate measurement traceability to accredited and testing calibration laboratories, certified reference material producers, accredited reference laboratories, and registered proficiency test providers [23].
In cases of biogas products, metrology is intended to verify the quality of biogas products, where in measuring the concentration of biogas constituent must consider the sources of uncertainty that can affect the final results of the measurement. In ISO/IEC 17025:2017 [24], it is stated that an accuracy and traceability of measurement results can only be achieved by performing a calibration of testing instruments and by using certified reference materials. Traceability in the field of measurement is defined as the nature of measurement results of a reference standard that is linked to an appropriate standard (local or international standard) via an unbroken chain [25].

Quality infrastructure of metrology in Indonesia for supporting an availability of certified biogas reference materials is under development. In making the certified reference materials of biogas, the preparation is carried out in accordance with ISO 6142-1:2015, a specific gravimetric method for Class I mixture [26], and other ISO related standards. Figure 4 shows the automatic weighing system (AWS), which is available at Building 456 Kawasan PUSPIPTEK Serpong Tangerang Selatan Indonesia, as an adequate tool in preparing gas reference materials in accordance with ISO 6142-1:2015. The composition requirements of the biogas reference material are made based on SNI 8019:2014 (Table 2) [19]. The biogas reference material is used in calibrating biogas testing instrument to ensure the generated data are valid and traceable.

![Automatic weighing system (AWS)](image)

Figure 4. Automatic weighing system (AWS) for the preparation of biogas reference material in accordance with ISO 6142-1:2015 [26].

Conformity Assessment

Conformity assessment is systematic processes that carefully evaluate the data to assure that all products meet the requirement of a standard [1, 27]. The primary forms of conformity assessment are accreditation and certification. Different of conformity assessment are available depending on the type of product or service and the level of potential risk. Several benefits for producers in conducting the conformity assessment process may include providing the consumer with confidence, giving the producer a competitive edge, and helping regulators in assuring the quality and safety condition [27, 28].

Assessment of conformity is a crucial step in obtaining product or service on the national market. For a biogas product, a certification is the best alternative for the producer to ensure
their product meets the requirement of the standard. Certification is a provision that can be conducted by accredited independent body or laboratory that is also known as third-party conformity assessment. In Indonesia, the requirements to accredit certification bodies are explained in SNI ISO/IEC 17065:2012 that was adopted identically from ISO/IEC 17065:2012. It consists of requirements for of personel's competency, operation and quality product consistency, certification for process and service. Certification bodies operate this International Standard to fill the need in the biogas conformity assessment in Indonesia where a biogas producer requires assurance to meet relevant technical requirements as regulated in SNI 8019: 2014.

4. Conclusions

The existence of three pillars of quality infrastructure in Indonesia in supporting the availability of quality biogas products has been presented. Biogas as sustainable energy may achieve security and supply of energy, improve the environment, quality of life, and foster national economic growth. Since either domestic or international biogas market is developed rapidly, better control of the biogas quality can better its utilities. With this regard, available quality infrastructures (standardization, metrology, and conformity assessment) at the national level will allow biogas producers to offer a maximum level of consumer satisfaction and safety.

Acknowledgment

This work was supported by the Ministry of Research, Technology and Higher Education of the Republic of Indonesia (KEMENRISTEKDIKTI) through the scheme of INSINAS 2019 under BSN's Flagship Program.

References

[1] Yudiartono, Anindhita, Sugiyono A., Laode M.A., and Adiarso W. (2018). Sustainable energy for land transportation-Indonesia energy outlook. ISBN 978-602-1328-05-7, Agency for The Assessment and Application of Technology, pp. 34-37.
[2] Perera, F (2018). Pollution from fossil-fuel combustion is the leading environmental threat to global pediatric health and equity: solutions exist. International J. of Environmental Research and Public Health, 15(16):1-17.
[3] Lee, H. H., Iraqui O., and Wang C. (2019). The impact of future fuel consumption on regional air quality in southeast asia. Scientific reports, 9(1):2648.
[4] Kemenkumham-RI (2014). Government regulation of the republic of indonesia number 79 of 2014 on national energy policy. Retrieved on May 21, 2021. https://policy.asiapacificenergy.org/sites/default/files/National%20Energy%20Policy%202014_0.pdf.
[5] Widya Yudha S., and Tjahjono B. (2019). Stakeholder mapping and analysis of the renewable energy industry in Indonesia. Energies, 12(4):1-19.
[6] IRENA (2017). Renewable energy prospects: Indonesia, a remap analysis, International Renewable Energy Agency (IRENA), ISBN 978-92-95111-19-6, Abu Dhabi. Retrieved on April 03, 2021. www.irena.org/remap.
[7] Jaelani A., Firdaus S., and Jumena J. (2017). Renewable energy policy in Indonesia: the Qur'anic scientific signals in Islamic economics perspective. International Journal of Energy Economics and Policy, 7(4):193-204.
[8] Karapidakis E. S., Tsavgi A. A. Soupios P. M., and Katsigiannis Y. A. (2010). Energy efficiency and environmental impact of biogas utilization in landfills. International Journal of Environmental Science and Technology, 7(3):599-608.
[9] M. Charles Gould, *Chapter 18-Bioenergy and anaerobic digestion*, Editor(s): Anju Dahiya, *Bioenergy*, Academic Press, 2015, Pages 297-317, ISBN 9780124079090.

[10] Raja I. A., and Wazir S. (2017). Biogas production: the fundamental processes. *Universal Journal of Engineering Science*, 5(2):29-37.

[11] Ramaraj R., and Dussadee N. (2015). Biological purification processes for biogas using Algae cultures: A review. *International Journal of Sustainable and Green Energy*, 4(1-1):20-32.

[12] Meegoda J.N., Li, B., Patel K. and Wang L. B. (2018). A review of the processes, parameters, and optimization of anaerobic digestion. *International Journal of Environmental Research and Public Health*, 15(10): 1-16.

[13] Samuel P.O. (2015). Production of biogas from perennial and biennial crop wastes: peach palm and banana’s wastes as alternative biomass in energy generation and environmental sustainability. *American Journal of Environmental Engineering*, 4(5): 79-89.

[14] Pöschl M., Ward, S., and Owende P. (2010). Evaluation of energy efficiency of various biogas production and utilization pathways. *Applied Energy*, 87(11) 3305-3321.

[15] Salvi O., Chaubet, C., and Evanno S. (2012). Biogas: opportunities to improve safety and safety regulation safety. *Transactions of the VŠB*, 7(2): 36-43.

[16] Capodaglio A.G., Callegari A., and Lopez M.V. (2016). European framework for the diffusion of biogas uses: emerging technologies, acceptance, incentive strategies, and institutional-regulatory support. *Sustainability*, 8(4): 1-18.

[17] InetQI. (2018). *The definition of quality infrastructure system*. Retrieved on April 15, 2021. https://www.bipm.org/en/news/full-stories/2018-12-inetqi.html.

[18] Prasetya, Bambang (2013) “Studium General for Student of Graduate Programme at University of Sriwijaya”, available at: https://www.slideshare.net/spiritneverdie/2013-materi-studiumgeneralkabsndiunsri?from_action=save, accessed on October 12, 2020.

[19] Sharma K. (2017). *Planning for High Volume Standardized Products*. Kindle Edition, BookRix GmH & Co KG ISBN 9783743815254.

[20] BSN. (2014). *Standar Nasional Indonesia (SNI) 8019:2014-Standar mutu biogas bertekanan tinggi*. ICS 27.190

[21] BIPM, IEC, IFCC, ILAC, IUPAC, IUPAP, ISO, and OIML. (2012). *The international vocabulary of metrology—basic and general concepts and associated terms (VIM)*. 3rd ed., JCGM 200:2012. Retrieved on May 27, 2021. http://www.bipm.org/vim

[22] De Bièvre, P. (2012). The 2012 International Vocabulary of Metrology: “VIM” *Accreditation and Quality Assurance*, 17:231–232.

[23] Dresselhaus J.M.S. (2010). *Nanostructured materials: metrology*, Editor(s): K.H. Jürgen Buschow, Robert W. Cahn, Merton C. Flemings, Bernhard Ilschner, Edward J. Kramer, Subhash Mahajan, Patrick Veyssière, *Encyclopedia of Materials: Science and Technology*, Elsevier, 1-7.

[24] Wang, J., Li, H., and Liandi M. (2009). *NIM's role in developing national system of metrology in chemistry for food analysis*. 19th IMEKO World Congress Proceeding, IMEKO XIX World Congress 2009. Vol. 1:2628-2632.

[25] ISO. (2017). *ISO/IEC 17025:2017-General requirements for the competence of testing and calibration laboratories*. https://www.iso.org/standard/66912.html.

[26] De Bièvre P., Dybkær R., Fajgelj, A., and Hibbert D.B. (2011). Metrological traceability of measurement results in chemistry: concepts and implementation (IUPAC Technical Report). *Pure and Applied Chemistry*, 83(10):1873-1935.
[27] ISO (2015). ISO 6142-1:2015-Gas analysis - Preparation of calibration gas mixtures - Part 1: Gravimetric method for Class I mixtures. https://www.iso.org/standard/59631.html

[28] Tobin J. J. (2015). 7 - Global marketing authorization of biomaterials and medical devices, Editor(s): Stephen F. Amato, Robert M. Ezzell, In Woodhead Publishing Series in Biomaterials, Regulatory Affairs for Biomaterials and Medical Devices, Woodhead Publishing, 2015, pp. 93-114, ISBN 9780857095428.

[29] Hindayani A., Mulyana, M.R., Budiman H., Darmayanti N.T.E., and Zuas O. (2020). Development of calibration gas mixtures (carbon dioxide and oxygen in nitrogen matrix) at a typical concentration range of modified atmosphere packaging. *Periódico Tchê Química*, 17(36):674-687

[30] ISO. (2012). ISO/IEC 17065:2012-Conformity assessment - Requirements for bodies certifying products, processes and services. https://www.iso.org/standard/46568.html.