Supplemental material for “Halogen-free vapor phase epitaxy for high-rate growth of GaN bulk crystals”

Daisuke Nakamura,* Taishi Kimura, and Kayo Horibuchi
Toyota Central R&D Labs., Inc. Nagakute, Aichi, 480-1192, Japan
*E-mail: daisuke@mosk.tytlabs.co.jp

Relation between experimental activation energy for vaporization and enthalpy of vaporization

The experimental activation energy for a reaction E_a, is generally expressed as:1)

$$E_a = RT + \Delta H - p\Delta V,$$

(1)

where R is the gas constant, T is the absolute temperature under the reaction, ΔH is the standard enthalpy change due to activation for the reaction, p is the partial pressure and ΔV is the volume change of activated gases for the reaction. Assuming the activated gases act as an ideal gas, the following equation is obtained from Eq. 1:

$$E_a = RT + \Delta H - \Delta nRT,$$

(2)

where Δn is the change in the number of molecules (in mol) due to activation. Considering the evaporation process as $\Delta n = +1$, and ΔH as the enthalpy of vaporization ΔH_{vap}, the experimental activation energy for evaporation $E_{a\text{evap}}$, is obtained as:

$$E_{a\text{evap}} = \Delta H_{vap}.$$

(3)

Thus, if the experimental activation energy for the Ga feed $E_{a\text{feed}}$ (obtained by Arrhenius plot of kGa as shown in Fig. S1) in the HF-VPE growth process corresponds to ΔH_{vap} for Ga (~254 kJ/mol),2) then the mechanism for Ga supply in the process can be attributed to simple evaporation. The experimentally-obtained $E_{a\text{feed}}$ and literature-based ΔH_{vap} showed a good correspondence (Fig. S1), which confirms that the mechanism of Ga supply is evaporation, and no parasitic reactions3) such as Ga(l) + H2 → GaHx(g) occurred during the HF-VPE growth process.

Partial pressure and evaporation efficiency of Ga

Figure S2(a) shows the dependence of saturated Ga vapor pressure $p_{Ga\text{sat}}$ (literature), partial Ga vapor pressure $p_{Ga\text{expt}}$ (experimental), and $\eta_{Ga\text{evap}}$ with respect to Ga crucible temperature T. Figures S2(b) and S2(c) also show the dependence of $\eta_{Ga\text{evap}}$ with respect to crucible-interior pressure p_{c} and carrier-N2 flow rate $Q_{carrier}$, respectively.
Fig. S1. (e) Arrhenius plot of k_{Ga} and comparison of activation energy for Ga feed and heat of vaporization of Ga (inset figure).

Fig. S2. (a) Dependence of partial Ga vapor pressure p_{Ga} (experimental), saturated Ga vapor pressure p_{Ga}^{sat} (literature), and evaporation efficiency η_{Ga}^{evap} ($= p_{Ga}/p_{Ga}^{sat}$) on T. (b) and (c) show the dependence of η_{Ga}^{evap} on crucible-interior pressure p_c and carrier-N$_2$ flow rate $Q_{carrier}$, respectively.
X-ray rocking curve (XRC) analysis

Figure S3 shows XRC ω-scans obtained for the MOCVD-GaN template seed and the HF-VPE-GaN grown layer. The curves for both reflections indicated superior crystal quality (narrower peak width) in the HF-VPE-GaN layer to that of MOCVD-GaN template seed. The dislocation densities with screw and edge components estimated from the FWHMs of the peaks are also summarized in Table S1 for reference.

![XRC ω-scans](image)

Fig. S3. XRC ω-scans for (a) (0002) and (b) (1122) reflections obtained from MOCVD-GaN template seed and HF-VPE-GaN growth layer (~50 μm).

Table S1 Dislocation densities estimated from FWHM values of XRC with (0002) and (1122) reflections

Sample	Dislocation density (cm⁻²)	in screw component	in edge component
MO-GaN template	1.3 x 10⁸	5.7 x 10⁷	
HF-VPE-GaN thick layer	1.1 x 10⁸	1.4 x 10⁷	
References

1) S. Glasstone, K.J. Laidler and H. Eyring: *The Theory of Rate Processes* (McGraw-Hill, New York, 1941).

2) *CRC Handbook of Chemistry and Physics* (CRC press, Boca Raton, 2011). 92nd ed.

3) M. Imade, M. Kawahara, F. Kawamura, M. Yoshimura, Y. Mon and I. Sasaki: Mater. Lett. 59 [29-30](2005)4026.

4) S.R. Lee, A.M. West, A.A. Allerman, K.E. Waldrip, D.M. Follstaedt, P.P. Provencio, D.D. Koleske and C.R. Abernathy: Appl. Phys. Lett. 86 [24](2005)241904.