Three-body structure of low-lying ^{12}Be states

C. Romero-Redondo and E. Garrido
Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006 Madrid, Spain

D.V. Fedorov and A.S. Jensen
Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark
(Dated: February 2, 2022)

We investigate to what extent a description of ^{12}Be as a three-body system made of an inert ^{10}Be-core and two neutrons is able to reproduce the experimental ^{12}Be data. Three-body wave functions are obtained with the hyperspherical adiabatic expansion method. We study the discrete spectrum of ^{12}Be, the structure of the different states, the predominant transition strengths, and the continuum energy spectrum after high energy fragmentation on a light target. Two 0$^+$, one 2$^+$, one 1$^-$ and one 0$^-$ bound states are found where the first four are known experimentally whereas the 0$^-$ is predicted as an isomeric state. An effective neutron charge, reproducing the measured $B(E1)$ transition and the charge rms radius in ^{11}Be, leads to a computed $B(E1)$ transition strength for ^{12}Be in agreement with the experimental value. For the $E0$ and $E2$ transitions the contributions from core excitations could be more significant. The experimental ^{10}Be-neutron continuum energy spectrum is also well reproduced except in the energy region corresponding to the 32- resonance in ^{11}Be where core excitations contribute.

PACS numbers: 21.45.-v, 21.60.Gx, 31.15.xj, 27.20.+n

I. INTRODUCTION

The second lightest bound nucleus in the $N=8$ isotonic chain is ^{12}Be, placed in the nuclear chart just above the widely investigated borromean ^{11}Li nucleus. These two nuclei are essential to understand the breakdown of the $N=8$ shell closure when the dripline is approached. The parity inversion in ^{11}Be, already known in the early 70’s [1], is a clear indication of this fact. The particle unstable nucleus ^{10}Li should in principle have the same neutron configuration as ^{11}Be. Several theoretical works also predicted the existence of an intruder low-lying s-wave state [2, 3, 4]. The available experimental data concerning the ground state properties of ^{10}Li are however controversial, although most of them point towards the existence of such low-lying virtual s-state [5, 6, 7, 8]. This result has been confirmed in the recent work [9].

These properties of ^{11}Be and ^{10}Li clearly suggest that the $p−sd$ shell gap is reduced when approaching the neutron dripline, leading to a structure of ^{12}Be and ^{11}Li with a large contribution from sd configurations. This has been confirmed theoretically and experimentally for both ^{12}Be [10, 11, 12, 13, 14] and ^{11}Li [4, 13, 15].

The ^{11}Li properties have been successfully described by use of three-body models that freeze the degrees of freedom of the ^9Li core [16, 17]. It is then tempting to follow a similar procedure to investigate ^{12}Be. In fact, although ^{12}Be is not borromean, ^{11}Be is considered to be the prototype of one-neutron halo nuclei [15, 10, 20], and therefore a description of ^{12}Be as a ^{10}Be core surrounded by two neutrons appears as a good first approach.

An important advantage of ^{12}Be compared to ^{11}Li is that the properties of ^{11}Li are are much better known than the ones of ^{11}Li, and therefore the uncertainties arising from the core-neutron interaction should in principle be smaller. However, while in ^{11}Li the ^9Li core is spherical, the ^{10}Be core in ^{12}Be is deformed, and as such one of the essential reasons for the shell closure breaking in ^{12}Be. The ground state in ^{11}Be contains an important contribution from core excited configurations [21]. Different theoretical calculations have estimated this contribution, and the results range from 40% in [22] to 10% in [23, 24], passing through 20% in [25, 26]. Recent experimental data [27, 28] are consistent with a 16% admixture of core excitation in the ^{11}Be ground state wave function.

As a consequence of this, a description of ^{12}Be as an inert core surrounded by two neutrons is quite questionable, and the role played by the core excitations is an important issue to be clarified. In [24] a hyperspherical expansion of the three-body wave function was used to obtain the ground state of ^{12}Be including core excitations. It was found that simultaneous fitting of the experimental ground state energy and the experimental longitudinal momentum distribution of ^{10}Be after high energy fragmentation of ^{12}Be, required a strong core excited component in the wave function ($≈42\%$).

However, after publication of this work additional experimental information about the spectrum of ^{12}Be became available. A bound 2^+ state and a bound 1^- state were found with excitation energies of 2.10 MeV [30, 31] and 2.68 MeV [32], respectively. Also the existence of a second 0^+ bound state with excitation energy of 2.24 MeV was already envisaged [33] (later on confirmed [34]). Also, the $(^{12}\text{Be},^{11}\text{Be})$ one neutron removal measurements at the NSCL [12] allowed a direct estimate of the $(^{11}\text{Be}(j^\pi)|^{12}\text{Be}(gs))$ spectroscopic factors. All new data lead the authors of [29] to review their calculations [35]. They found that a reasonable simultaneous matching of the data required a significant reduction of the core deformation, and hence a smaller contribution from core
excitation ($\approx 20\%$).

Very recently new experimental data on 12Be have been provided \cite{13}. Specially interesting is the continuum relative energy spectrum for 10Be+n after high energy breakup of 12Be on a carbon target. This invariant mass spectrum is known to be very sensitive to the final state interaction \cite{36, 37}, and therefore, in our case, to the properties of the unbound 11Be states. A reliable calculation of the spectrum requires inclusion of the 10Be-neutron continuum states together with core-neutron resonances. This energy spectrum is then a very useful observable to investigate the role played by the 10Be-neutron interaction, and to constrain the remaining uncertainties in the structure of 12Be.

In previous 12Be three-body calculations (10Be+n+n) \cite{4, 24, 32} the wave functions were obtained using the hyperharmonic expansion. The employed neutron-core potentials were chosen to reproduce the bound 11Be states and perhaps the first resonance at 1.78 MeV (excitation energy) but higher unbound states were ignored. This method is not the most efficient for a non-borromean system like 12Be, where two of the two-body subsystems have bound states. This is because an infinite hyperharmonic basis is in principle needed to reproduce the correct two-body asymptotics \cite{33}. The convergence of the hyperharmonic expansion is slow, and in practice the energies and rms radii are obtained after extrapolation of the numerical results \cite{4, 24, 32} where the basis is progressively increased up to a maximum value of the hypermomentum $K_{\text{max}} = 20$ for the ground state, and $K_{\text{max}} = 12$ for the excited states.

In the present context the hyperspheric adiabatic expansion method \cite{39} is more appropriate. This method solves the Faddeev equations in coordinate space, treating symmetrically the three two-body interactions such that each of them only appears in its natural coordinates. This makes the method specially suitable for non-borromean systems like 12Be, where more than one two-body subsystem has bound states. Also the method permits the use of much larger values of the hypermomentum quantum number which guarantees convergence of the results.

The main goal of the present work is to assess to what extent a three-body model with an inert 10Be-core is able to reproduce the existing rather large amount of both old and new experimental data concerning 12Be, i.e. the 12Be spectrum, the $E1$ and $E2$ transition strengths \cite{31, 32, 40}, the $\mathcal{M}(E0)$ \cite{41} and the measured invariant mass spectrum \cite{13}. The two-body potentials to be used in the calculations are fitted to reproduce the available two-body experimental data, in particular, the 11Be data. In this sense, although the 10Be core is considered an inert particle with spin and parity 0^+, the employed two-body interactions phenomenologically account for all effects of core excitation appearing in the corresponding channel. In particular it is interesting to know if the weakly bound excited states can be understood as halo states and perhaps can be better described in a three-body model than the relatively well bound ground state. Relations between various quantities can be tested and new properties predicted. For this the hyperspheric adiabatic expansion method is well suited. By comparing computed results and available data we can establish how large the contributions must be from inclusion of core excitations.

The paper is organized as follows. In section II we very briefly describe the basis of the three-body method. The different two-body interactions used in the calculations are detailed in section III. The results are shown in sections IV, V, and VI where we discuss the spectrum and structure of 12Be, the electromagnetic transition strengths, and the invariant mass spectrum after high-energy breakup, respectively. We finish in section VII with a summary and the conclusions. In the appendix some remarks about the $E1$ and $E2$ operators are given.

II. THEORETICAL FORMULATION

We assume 12Be can be described as a three-body system made by a 10Be core and two neutrons. The wave functions for the different bound states are obtained with the hyperspherical adiabatic expansion method. A detailed description of the method can be found in \cite{39}.

This method solves the Faddeev equations in coordinate space. The wave functions are computed as a sum of three Faddeev components $\psi^{(i)}(x_i, y_i)$ $(i=1,2,3)$, each of them expressed in one of the three possible sets of Jacobi coordinates $\{x_i, y_i\}$. Each component is then expanded in terms of a complete set of angular functions $\{\phi_n^{(i)}\}$

$$\psi^{(i)} = \frac{1}{\rho^{3/2}} \sum_n f_n(\rho) \phi_n^{(i)}(\rho, \Omega_i); (\Omega_i = \{\alpha_i, \Omega_{x_i}, \Omega_{y_i}\}) \quad (1)$$

where $\rho = \sqrt{x^2 + y^2}$, $\alpha_i = \arctan(x_i/y_i)$, Ω_{x_i}, and Ω_{y_i} are the angles defining the directions of $\{x_i$ and $y_i\}$. Writing the Faddeev equations in terms of these coordinates, they can be separated into angular and radial parts:

$$\Lambda^2 \phi_n^{(i)} + \frac{2m_\rho^2}{\hbar^2} V_{jk}(x_i) \left(\phi_n^{(i)} + \phi_n^{(j)} + \phi_n^{(k)} \right) = \lambda_n(\rho) \phi_n^{(i)} \quad (2)$$

$$\left[\frac{d^2}{d\rho^2} + \frac{2m}{\hbar^2} (V_{3\mu}(\rho) - E) + \frac{1}{\rho^2} \left(\lambda_n(\rho) + \frac{15}{4} \right) \right] f_n(\rho) \quad (3)$$

where V_{jk} is the two-body interaction between particles j and k, Λ^2 is the hyperangular operator \cite{39} and m is the normalization mass. In Eq. (3) E is the three-body energy, and the coupling functions $P_{nn'}$ and $Q_{nn'}$ are given for instance in \cite{39}. The potential $V_{3\mu}(\rho)$ is used for fine tuning to take into account all those effects that go beyond the two-body interactions. In the present cases it
is rather small and unless the opposite is explicitly said, this three-body potential is taken equal to zero.

It is important to note that the angular functions used in the expansion \(\lambda_n(\rho) \) are precisely the eigenfunctions of the angular part of the Faddeev equations. Each of them is in practice obtained by expansion in terms of the hyperspherical harmonics. Obviously this infinite expansion has to be cut off at some point, maintaining only the contributing components.

The eigenvalues \(\lambda_n(\rho) \) in Eq. (2) enter in the radial equations (3) as a basic ingredient in the effective radial potentials. Accurate calculation of the \(\lambda \)-eigenvalues requires, for each particular component, a sufficiently large number of hyperspherical harmonics. In other words, the maximum value of the hypermomentum \((K_{\text{max}}) \) for each component must be large enough to assure convergence of the \(\lambda \)-functions in the region of \(\rho \)-values where the \(f_n(\rho) \) wave functions are not negligible.

Finally, the last convergence to take into account is the one corresponding to the expansion in Eq. (4). Typically, for bound states, this expansion converges rather fast, and usually three or four adiabatic terms are already sufficient.

III. TWO-BODY INTERACTIONS

It is known that for weakly bound systems, like for instance \(^6\text{He}\) or \(^{11}\text{Li}\), the short distance behaviour of the two-body potentials is relatively unimportant as long as they reproduce the low-energy scattering data. Then the essential three-body properties can be described.

A. Neutron-neutron potential

For the neutron-neutron interaction we use a simple potential reproducing the experimental \(s\)- and \(p\)-wave nucleon-nucleon scattering lengths and effective ranges. It contains central, spin-orbit (\(\ell \cdot s \)), tensor (\(S_{12} \)) and spin-spin (\(s_1 \cdot s_2 \)) interactions, and is explicitly given as

\[
V_{\text{nn}}(r) = 37.05 e^{-(r/1.31)} - 7.38 e^{-(r/1.84)} - 23.77 e^{-(r/1.45)} \ell \cdot s + 49.40 e^{-(r/1.31)} + 29.53 e^{-(r/1.84)} S_{12},
\]

where \(\ell \) is the relative orbital angular momentum between the two neutrons, and \(s = s_1 + s_2 \) is the total spin. The strengths are in MeV and the ranges in fm. We will refer to this potential as gaussian neutron-neutron potential.

To test the role played by the short-distance properties of the neutron-neutron interaction, for some specific cases, we are also using the more sophisticated \(\kappa_8 \) version of the nucleon-nucleon Argonne potential. This is a non-relativistic potential reproducing proton-proton and neutron-proton scattering data for energies from 0 to 350 MeV, neutron-neutron low-energy scattering data, as well as the deuteron properties.

B. Neutron-\(^{10}\text{Be}\) potential

For the neutron-core interaction we have constructed an \(\ell \)-dependent potential of the form:

\[
V^{(\ell)}(r) = V_\ell^{(c)}(r) + V_\ell^{(s)}(r) \ell \cdot s_n,
\]

where \(\ell \) is the neutron-core relative orbital angular momentum and \(s_n \) is the spin of the neutron.

The central \((V_\ell^{(c)}(r)) \) and spin-orbit \((V_\ell^{(s)}(r)) \) radial potentials are assumed to have a gaussian shape. In this work four different \(^{10}\text{Be}\)-neutron potentials (labeled as I, II, III, and IV) will be used. Their parameters for \(\ell = 0\), 1, and 2 are given in Table I and they are adjusted to reproduce the spectrum of \(^{11}\text{Be}\). Contributions from partial waves with \(\ell > 2 \) are negligibly small and not included.

Potential I is built as follows: the range of the interactions is taken equal to 3.5 fm, that is the sum of the rms radius of the core and the radius of the neutron. For \(s\)-waves the strength is fixed to fit the experimental neutron separation energy of the \(1/2^- \)-state in \(^{11}\text{Be}\) \((-0.504 \text{ MeV})\). For \(p\)-waves the two free parameters (central...
and spin-orbit strengths) are adjusted to reproduce the experimental neutron separation energy of the $1/2^–$ state in ^{11}Be (-0.184 MeV [43]), and simultaneously push up the $3/2^–$ state, which is forbidden by the Pauli principle, since it is occupied by the four neutrons in the ^{10}Be core.

For the d-states it is well established that ^{11}Be has a $5/2^+$ resonance at 1.28 MeV (energy above threshold) [44, 45, 46]. The strength of the $d_{5/2}$-potential is then fixed to reproduce this resonance energy (as a pole of the S-matrix), leading to a resonance width of 0.4 MeV. The most likely candidate as spin-orbit partner of the $5/2^+$ state is the known $3/2^+$-resonance at 2.90 MeV (above threshold) [46]. A gaussian with a range of 3.5 fm fitting such $3/2^+$ energy is giving rise to a very broad resonance of roughly 1.5 MeV. Experimentally, the $5/2^+$ and $3/2^+$ states at 1.28 MeV and 2.90 MeV are rather narrow (about 100 keV) [46]. For this reason we have reduced the range of the $d_{3/2}$-neutron-core interaction to 1.7 fm, such that the width of the $3/2^+$ resonance is 0.4 MeV.

In principle the computed widths of the $5/2^+$ and $3/2^+$ resonances can be reduced by simply using smaller ranges for the corresponding gaussians. However, to obtain widths similar to the experimental ones, unrealistic ranges are needed, and we have then preferred to use a d-wave interaction with ranges similar to the ones for the s and p potentials. This disagreement indicates that these ^{11}Be states, beside the dominating single-neutron d-waves, have admixtures of the ^{10}Be core excited 2^+ coupled to the single-neutron s-wave.

Among the different partial wave neutron-core potentials described above, the s-wave potential is probably the most crucial, since it determines the properties of the ^{11}Be ground state. The s-wave neutron-^{10}Be components are expected to give a large contribution not only to the ^{11}Be ground state but also to most of the excited states. To test the dependence of the results on the details of this potential, we have in potential II increased the range of the s-wave neutron-core interaction up to 4.5 fm, modifying the strength to keep the energy of the $1/2^–$ state in ^{11}Be at the experimental value.

When constructing potential I the range of the $d_{3/2}$ potential was reduced to obtain a width for the $3/2^+$ resonance in better agreement with the experiment. To test the importance of this choice, we have in potential III increased the range of the $d_{3/2}$ interaction to 2.5 fm. The width of the $3/2^+$ resonance (at 2.90 MeV above threshold) is then 1.1 MeV.

The ^{10}Be core has two neutrons occupying the $s_{1/2}$-shell and four neutrons in the $p_{3/2}$-shell. Therefore, the neutron-core interaction can not bind the neutron into one of these states due to the Pauli principle. To treat this fact in a more careful way, we have constructed a new neutron-core potential such that there is a deeply bound $s_{1/2}$-state (forbidden by the Pauli principle) and a second bound $s_{1/2}$-state at the experimentally known energy of -0.504 MeV. In the same way the $p_{3/2}$ interaction has been made such that there is a bound state (also forbidden by the Pauli principle) at -6.81 MeV, that is the experimental neutron separation energy in ^{10}Be [47].

These two potentials are also taken to be gaussians, and their strengths and ranges are given in the second and third columns of table III. The last column gives the rms radii for a neutron sitting in the $s_{1/2}$-shell or in the $p_{3/2}$-shell in ^{10}Be. The parameters used for the gaussian potentials have been adjusted such that, together with the proper $s_{1/2}$ and $p_{3/2}$ energies, the computed single nucleon rms radii give rise to charge and mass rms radii for ^{10}Be in agreement with the experimental values, i.e. 2.24 fm and 2.30 fm, respectively [48].

We have then constructed potential IV using the $s_{1/2}$ and $p_{3/2}$ interactions as the phase equivalent potentials [49] of the ones described above and given in table II. These potentials have exactly the same phase shifts for all ℓ as the potentials described above. Potential IV is completed with the same $p_{1/2}$ and d-wave interactions as in potential I. In particular, the central and spin-orbit parts for p-waves in potential IV are given by: $V_c^{(\ell=1)} = (2V_{p_{3/2}} + V_{p_{1/2}})/3$ and $V_{so}^{(\ell=1)} = 2(V_{p_{3/2}} - V_{p_{1/2}})/3$, where $V_{p_{3/2}}$ and $V_{p_{1/2}}$ are the $p_{3/2}$ and $p_{1/2}$ potentials as described above.

The different ^{10}Be-neutron interactions described in this section reproduce reasonably well the known spectrum of ^{11}Be up to an excitation energy of 3.41 MeV. However, it is well established that ^{11}Be has a $3/2^–$ resonance at 2.19 MeV (above threshold) [51, 52, 53], which has been ignored in our analysis. This is because a ^{10}Be core in the 0^+ ground state can not produce a low-lying $3/2^–$ state in ^{11}Be. The first allowed $p_{3/2}$-shell where the halo neutron could sit is too high (even if a large ^{10}Be deformation was assumed). In fact, the $3/2^–$ state in ^{11}Be very likely corresponds to ^9Be (whose ground state is $3/2^–$) and two neutrons in the sd-shell [44]. In other words, one of the neutrons in the fully occupied $p_{3/2}$-shell in ^{10}Be has to jump into the sd-shell, which means that a description of this $3/2^–$ resonance as a ^{10}Be core plus a neutron requires the core in a negative parity excited state. Another possibility is to have the ^{10}Be core in the excited 2^+ state and the remaining neutron in the $p_{1/2}$-shell. Therefore, when investigating how an inert core three-body model describes the ^{12}Be properties this

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
Potential & S (MeV) & b (fm) & $\langle r^2 \rangle^{1/2}$ (fm) \\
\hline
$s_{1/2}$-wave & -139.84 & 1.78 & 1.26 \\
p$_{3/2}$-wave & -75.5 & 2.3 & 2.72 \\
\hline
\end{tabular}
\caption{Strengths (S) and ranges (b) used for the gaussians describing the deep neutron-^{10}Be interaction holding Pauli forbidden states for the $s_{1/2}$ and $p_{3/2}$-waves. The last column gives the single nucleon rms radius for each wave.}
\end{table}
To solve the angular part of the Faddeev equations (Eq. (2)) it is necessary to specify the components included in the hyperspherical harmonic expansion of the angular eigenvalues. These components should be consistent with the total angular momentum and parity of the system. For 12Be two 0^+, one 2^+, and one 1^- bound states are experimentally known. We find all of them and predict the existence of an isomeric 0^- state 53. The components included for them in the numerical calculations are given in the first five columns in tables III, IV, and V respectively. The upper part of the tables refer to the components in the first Jacobi set (x between the two neutrons), while the lower part gives the components in the second and third Jacobi sets (x from core to one of the neutrons).

The quantum numbers ℓ_x and ℓ_y are the orbital angular momenta associated to the x and y Jacobi coordinates, and they couple to the total orbital angular momentum L. The spins of the two particles connected by the x coordinate couple to s_x, that in turn couples with the spin of the third particle to the total spin S. Finally L and S couple to the total angular momentum of the three-body system. An additional quantum number to be considered is the hypermomentum ($K = 2n + \ell_x + \ell_y$) whose maximum value (K_{max}) for each component is crucial to guarantee convergence of the eigenvalues ($\lambda_n(\rho)$) up to distances where the radial wave functions are negligible. The values of K_{max} used in our calculations are given by the sixth column in the tables.

A. Effective potentials

The angular eigenvalues obtained from Eq. (2) enter in the coupled set of radial equations (3) as a part of the effective potentials $V_{\text{eff}}^{(n)}(\rho)$ as a part of the effective potentials $V_{\text{eff}}^{(n)}(\rho) = \frac{1}{\rho^2} (\lambda_n(\rho) + \frac{15}{4})$. In Fig. I we show the three most contributing effective potentials for the 0^+ (upper-left), 2^+ (upper-right), 1^- (lower-left) and 0^- (lower-right) states in 12Be. The results using potential I for the neutron-core interaction and the gaussian neutron-neutron potential are shown by the solid curves. When potential IV is used (dashed curves) these potentials are noticeably different in amplitude from the ones between the two neutrons). For the two-body 11Be state has to be excluded. We shall later discuss the consequences of this exclusion.

IV. STRUCTURE OF 12BE

To solve the angular part of the Faddeev equations (Eq. (2)) it is necessary to specify the components included in the hyperspherical harmonic expansion of the angular eigenvalues. These components should be consistent with the total angular momentum and parity of the three-body system. An additional quantum number to be considered is the hypermomentum ($K = 2n + \ell_x + \ell_y$) whose maximum value (K_{max}) for each component is crucial to guarantee convergence of the eigenvalues ($\lambda_n(\rho)$) up to distances where the radial wave functions are negligible. The values of K_{max} used in our calculations are given by the sixth column in the tables.

A. Effective potentials

The angular eigenvalues obtained from Eq. (2) enter in the coupled set of radial equations (3) as a part of the effective potentials $V_{\text{eff}}^{(n)}(\rho) = \frac{1}{\rho^2} (\lambda_n(\rho) + \frac{15}{4}).$ In Fig. I we show the three most contributing effective potentials for the 0^+ (upper-left), 2^+ (upper-right), 1^- (lower-left) and 0^- (lower-right) states in 12Be. The results using potential I for the neutron-core interaction and the gaussian neutron-neutron potential are shown by the solid curves. When potential IV is used (dashed curves) these potentials are noticeably different in amplitude from the ones between the two neutrons). For the two-body 11Be state has to be excluded. We shall later discuss the consequences of this exclusion.

IV. STRUCTURE OF 12BE

To solve the angular part of the Faddeev equations (Eq. (2)) it is necessary to specify the components included in the hyperspherical harmonic expansion of the angular eigenvalues. These components should be consistent with the total angular momentum and parity of the three-body system. An additional quantum number to be considered is the hypermomentum ($K = 2n + \ell_x + \ell_y$) whose maximum value (K_{max}) for each component is crucial to guarantee convergence of the eigenvalues ($\lambda_n(\rho)$) up to distances where the radial wave functions are negligible. The values of K_{max} used in our calculations are given by the sixth column in the tables.

A. Effective potentials

The angular eigenvalues obtained from Eq. (2) enter in the coupled set of radial equations (3) as a part of the effective potentials $V_{\text{eff}}^{(n)}(\rho) = \frac{1}{\rho^2} (\lambda_n(\rho) + \frac{15}{4}).$ In Fig. I we show the three most contributing effective potentials for the 0^+ (upper-left), 2^+ (upper-right), 1^- (lower-left) and 0^- (lower-right) states in 12Be. The results using potential I for the neutron-core interaction and the gaussian neutron-neutron potential are shown by the solid curves. When potential IV is used (dashed curves) these potentials are noticeably different in amplitude from the ones between the two neutrons). For the two-body 11Be state has to be excluded. We shall later discuss the consequences of this exclusion.
TABLE VI: The same as table III for the 1^- state in 12Be.

ℓ_x	ℓ_y	L	s_x	s	K_{max}	W_I	W_{II}	W_{III}	W_{IV}	$W_{I+\nu_S}$	
1	0	1	1	1	1	119	60.2	58.5	59.8	46.2	60.3
0	1	1	0	0	99	36.8	36.2	36.9	50.4	36.7	
2	1	1	0	0	61	0.7	1.4	0.7	0.6	0.7	
1	2	1	1	1	81	2.2	3.9	2.5	2.6	2.2	
1	2	2	1	1	61	0.1	0.04	0.1	0.2	0.1	
1	0	1	1/2	0	99	19.8	19.7	19.7	25.4	19.6	
1	0	1	1/2	1	119	28.6	28.9	28.6	22.8	28.6	
0	1	1	1/2	0	99	16.6	16.7	16.6	21.5	16.4	
0	1	1	1/2	1	119	33.9	33.5	33.8	26.6	33.9	
1	2	1	1/2	0	41	0.3	0.3	0.4	1.4	0.4	
1	2	1	1/2	1	41	0.3	0.3	0.3	0.3	0.3	
1	2	2	1/2	1	41	0.04	0.03	0.1	0.1	0.1	
2	1	1	1/2	0	41	0.4	0.4	0.5	1.7	0.5	
2	1	1	1/2	1	41	0.05	0.05	0.04	0.1	0.1	
2	1	2	1/2	1	41	0.05	0.04	0.1	0.1	0.1	

with potential I, but, in general, have similar shape. The following effective adiabatic potentials behave very similar in both cases. When the neutron-core potentials II and III are used, only minor differences in the adiabatic potentials are found compared to the ones obtained with potential J. All the neutron-core interactions give rise to indistinguishable effective potentials at large distances. For the 0^+ and 0^- cases the deepest and second deepest effective potentials go asymptotically to -0.504 MeV and -0.184 MeV, respectively, which are the two-body binding energies of the bound states in 11Be. For the 1^- and 2^+ the two deepest effective potentials go asymptotically to -0.504 MeV and the third deepest to -0.184 MeV.

B. Three-body energy spectrum

After solving the coupled set of radial equations (Eq.[3]) we obtain a series of 12Be bound states whose two-neutron separation energies are given in table VII. Columns 2 to 5 show the results obtained with the 10Be-neutron interactions given in table III. The gaussian neutron-neutron potential is used. In order to test the role played by the short-distance details of the nucleon-nucleon interaction, we give in the sixth column the spectrum obtained when potential I is combined with the Argonne v_8 neutron-neutron interaction. The last column gives the available experimental values. These results correspond to calculations without fine tuning the effective three-body potentials with a three-body force ($V_{3b}(\rho)=0$ in Eq.[3]).

The bound states found can be understood assuming a simple extreme single particle model: The ground 0^+ state should correspond to a configuration where the two neutrons occupy the two $s_{1/2}$ single-neutron states. The 1^- and the 0^- can be understood as one neutron in the $s_{1/2}$ wave and the other one in a $p_{1/2}$ state. The 2^+ state appears with one neutron in the $s_{1/2}$ wave and the second in the $d_{5/2}$ state, and finally, the second 0^+ state corresponds to both neutrons in $p_{1/2}$-waves.

FIG. 1: Three lowest Adiabatic effective potentials for the 0^+, 2^+, and 1^- states in 12Be. Results using the neutron-core potentials I (solid curves) and IV (dashed curves) are shown.

TABLE VII: Spectrum of 12Be for the different neutron-core interactions (see table III). The numerical results have been obtained without inclusion of a three-body potential in Eq.[3]. In the sixth column potential I has been used together with the v_8-Argonne nucleon-nucleon interaction. The energies are given in MeV.

W_I	W_{II}	W_{III}	W_{IV}	$W_{I+\nu_S}$	Exper.	
0^+_1	-3.60	-3.22	-3.64	-3.77	-3.53	$-3.67^{(a)}$
2^+	-0.54	-0.36	-0.66	-0.96	$-1.58 \pm 0.01^{(b)}$	
0^+_2	-0.62	-0.64	-0.64	-0.61	-0.74	$-1.43 \pm 0.02^{(c)}$
1^-	-0.97	-0.97	-0.97	-1.23	-1.12	$-0.99 \pm 0.03^{(d)}$
0^-	-0.96	-0.89	-0.96	-0.93	-1.17	$-$

$^{(a)}$ from [33], $^{(b)}$ from [31], $^{(c)}$ from [32], $^{(d)}$ from [32].
bound) than for potentials I and III, indicates that a range of 3.5 fm for the s-wave interaction could be more appropriate.

The p-wave potential is identical for the cases I, II, and III. Potential IV also uses the same $p_{1/2}$ interaction, but different $p_{3/2}$, which however is expected to play a minor role due to the Pauli principle. This explains why the energy of the 0^+_2 state is very much the same for all neutron-core potentials, since this state should be dominated by a pp configuration.

For the 1^- (or 0^-) and 2^+ states a neutron in the $s_{1/2}$ wave is combined with the second neutron either in the $p_{1/2}$ or the $d_{5/2}$ state, respectively. These states are less bound than the ground state. The effect of this is more important than the confining effects of the p and d centrifugal barriers, and consequently the 1^- (or 0^-) and 2^+ states are more extended than the ground state. Therefore the effect of the larger range in potential II for the s-wave interaction should be smaller. Actually, the 1^-_s energy is the same for all the three potentials. Only potential III, for which the $d_{5/2}$ wave was modified, produces a slightly more bound 2^+ state.

In potential IV the d-wave interaction is the same as in potential I. Also the s-wave and p-wave potentials, although obtained in a completely different way, produce similar 0^+ states. However, the 1^-_s state, and especially the 2^+ state, are more bound than with potential I. This indicates that the sp and sd interferences for these states differ between potentials IV and I. When the gaussian neutron-neutron interaction is substituted by the $v_{8_Argonne}$ potential (sixth column in table VII) similar results are found. Only a little more binding is found for the $1^-, 0^-$ and 0^+_2 states.

In summary, the energies obtained with the different potentials are quite stable, and the small differences found for some of the cases are insignificant, especially when taking into account the level of accuracy of the calculations at this stage. In fact, when compared to the experimental energies (last column of table VII) we see that in some cases the computed energy really disagrees with the experimental value, and even the ordering of the levels does not agree with the experiment. However, the ordering of the computed levels agrees with the extreme single particle model. The ground state should be the one having the two neutrons in the deepest single neutron level (the 0^+_1 state having both neutrons in the $s_{1/2}$-wave). The first excited state should appear when one neutron jumps into the next single neutron level (the 1^- or the 0^- state having one neutron in the $s_{1/2}$-wave and the other one in the $p_{1/2}$-wave). Finally, the states corresponding to the $p_{1/2} - p_{1/2}$ and the $s_{1/2} - d_{5/2}$ configurations (0^+_2 and 2^+ states) should in principle be less bound than the 1^- and the 0^- states.

C. Angular momentum decomposition

It is important to keep in mind that part of the contributions arising from core deformation have been effectively taken into account by fitting the parameters in the two-body potentials to the $^{11}_Be$ data. In this sense, the different states found in the $^{12}_Be$ spectrum are sensitive to such deformation. However, with such two-body interactions and the core treated as an inert particle, the additional contributions arising from the 2^+ excited state in $^{10}_Be$ are expected to play a minor role for both the 0^+_1 and 1^- states. For the ground state because two neutrons in the $s_{1/2}$-shell and a core in a 2^+ state can not produce total angular momentum zero. For the 1^-_s state because, although a core in a 2^+ state and the two neutrons in the $s_{1/2} - p_{1/2}$ configuration can produce a total angular momentum 1, this structure is obviously less favorable energetically than with the core in the ground state. However, for the 2^+ state it could be energetically efficient to excite the core into the 2^+ state and get some extra binding by placing the two neutrons in a $s_{1/2} - s_{1/2}$ configuration. The same could happen for the second 0^+ state, that could find it favorable to excite the core into the 2^+ state and place the neutrons in the $s_{1/2} - d_{5/2}$ configuration. Therefore, the disagreement between the computed and experimental binding energies of the 2^+ and 0^+_2 states can be a signal of the importance of core excitations for these two particular states.

In any case, the deviations between computed and experimental energies are quite common when three-body calculations are performed with bare two-body interactions. All those effects going beyond the two-body correlations have obviously not been considered in the calculations. Among them are those arising from contributions of core deformation and/or core excitation. The usual cure for this problem is including an effective three-body potential ($V_{3b}(\rho)$) that simulates the neglected effects. Since these effects should appear when all the three particles are close to each other, the three-body potential should be of short-range character.

In our calculations we have used a gaussian three-body force, whose range has been taken equal to 4.25 fm, that is the hyperradius corresponding to a $^{10}_Be$-core and two neutrons touching each other. The strength of the gaussian is adjusted to match the experimental energies given in the last column of table VII.

Since the 0^-_s-state is unknown experimentally, we can not use its energy to adjust the strength of the three body force. However, in this case we expect the three-body correction to be unimportant due to the similarity of the 0^-_s state to the composition of the 1^-_s-state where the experimental energy is reproduced without any three-body force. This indicates that the computed 0^-_s-energy also is close to the correct value.

Including the three-body potentials we have the four potentials specified in table II and in addition potential I combined with the $v_{8_Argonne}$ neutron-neutron potential. We then arrive at the contributions of the different
TABLE VIII: Root mean square radii (in fm) for the different bound states in \(^{12}\text{Be} \) with the four neutron-core interactions. A gaussian three-body force is included to fit the experimental binding energies. The range of the three-body force is 4.25 fm. Sixth column is as potential \(I + v_8 \) Argonne nucleon-nucleon interaction.

\(W_I \)	\(W_{II} \)	\(W_{III} \)	\(W_{IV} \)	\(W_{I+V8} \)	Exper.
0\(^+_1\)	2.60	2.63	2.60	2.60	2.59 ± 0.06\(^{(a)}\)
2\(^+\)	2.72	2.74	2.68	2.70	2.67 —
0\(^2\)	2.88	2.91	2.87	2.90	2.87 —
1\(^-\)	3.23	3.24	3.23	3.19	3.16 —
0\(^-\)	3.18	3.35	3.18	3.18	3.00 —

\(^{(a)}\) from \(^{[48]}\)

partial wave components given in the last five columns of tables \(^{[III]}\) to \(^{[V]}\) for the \(0^+, 2^+, 0^- \) and \(1^- \) states. The dominating components are in all the cases as expected from the extreme single particle picture. When the three-body wave functions are written in the second or third Jacobi set (\(x \) from core to neutron, lower part of the tables) the dominating components are the \(\ell_x = \ell_y = 0 \) (\(\sim 70\% \)) for the \(0^+_1 \) ground state, the \(\ell_x = \ell_y = 1 \) (\(\sim 75\% \)) for the \(0^2 \) state, the \(\{ \ell_x = 0, \ell_y = 2 \} \) and \(\{ \ell_x = 2, \ell_y = 0 \} \) components (\(\sim 90\% \) in total) for the \(2^+ \) state, and the \(\{ \ell_x = 0, \ell_y = 1 \} \) and \(\{ \ell_x = 1, \ell_y = 0 \} \) components (\(\sim 98\% \) and \(\sim 99\% \) in total) for the \(1^- \) and \(0^- \) states. Although the precise numbers can change a little from one potential to another, the differences are not significant. The residual contributions are more relevant for the \(0^+ \) states. The ground state has a \(p \)-wave contribution of about \(13\% \) to \(19\% \), and a \(d \)-wave contribution of about \(10\% \) to \(13\% \). The second \(0^+ \) state has an \(s \)-wave contribution from \(15\% \) to \(23\% \), and a \(d \)-wave contribution from \(6\% \) to \(8\% \).

In \(^{[12]}\) the configuration with the two outer neutrons in the \(p \)-shell for the \(0^+ \) ground state amounts to \(32\% \) of the wave function, which is clearly larger than the \(13\%-\) \(19\% \) obtained in this work. In \(^{[2]}\) this value is given to range between \(20\% \) and \(40\% \). Correspondingly, the contribution from configurations with the two neutrons in the \(sd \)-shell is larger in our calculation than in \(^{[2]}\) \(^{[12]}\). In these two references the individual contributions from \(s \) and \(d \)-waves are not given. In general, for both \(^{11}\text{Li} \) and \(^{12}\text{Be} \) the \(s \)-wave components are larger in cluster models than in shell model calculations. One reason for \(^{12}\text{Be} \) is that the \(d \)-waves are underestimated in the cluster model due to the neglect of the core-excited \(2^+ \) state. Another reason could be that large spatial extension is harder to describe in shell models than in cluster models. Since \(s \)-waves for a given energy extend to larger distances than \(d \)-waves the shell model tend to underestimate the \(s \)-wave components. As we shall show later the contributions obtained in the present work are consistent with the measured invariant mass spectrum given in \(^{[13]}\).

TABLE IX: For the different computed states in \(^{12}\text{Be} \), and the different neutron-core potentials, root mean square distances (in fm) \(\langle r_{nn} \rangle^{1/2} \) and \(\langle r_{cn} \rangle^{1/2} \), where \(n \) and \(c \) denote an external neutron and the core, respectively. A gaussian three-body force is included to fit the experimental binding energies.

\(W_I \)	\(W_{II} \)	\(W_{III} \)	\(W_{IV} \)	\(W_{I+V8} \)	
0\(^+_1\)	\(\langle r_{nn}^2 \rangle^{1/2} \)	\(\langle r_{cn}^2 \rangle^{1/2} \)	\(\langle r_{nn}^2 \rangle^{1/2} \)	\(\langle r_{cn}^2 \rangle^{1/2} \)	
2\(^+\)	4.5	4.6	4.4	4.3	4.4
0\(^2\)	5.7	5.8	5.4	5.2	5.4
1\(^-\)	4.4	4.5	4.3	4.3	4.3
0\(^-\)	7.3	7.8	7.3	7.7	7.3
1\(^-\)	5.0	5.1	5.0	5.1	5.0

FIG. 2: Contour diagram for the probability distribution of \(0^+_1 \) state in \(^{12}\text{Be} \). The square of the three-body wave function is integrated over the directions of the two Jacobi coordinates.

D. Wave functions

The rms radii for the computed bound states are given in table \(^{[VIII]}\). The results are essentially independent of the core-neutron potential used. The only available experimental value is the one corresponding to the \(0^+_1 \) ground state \(^{[48]}\), for which a good agreement between theory and experiment is found.

The geometry of the different states is reflected in the results given in table \(^{[IX]}\) where we give the rms distances between the two neutrons \(\langle r_{nn}^2 \rangle^{1/2} \), and between the core and one of the neutrons \(\langle r_{cn}^2 \rangle^{1/2} \) for the different cases. The ground state corresponds mainly to the three particles placed in the vertices of an equilateral triangle. For the excited states, the smaller binding obviously im-
plies a larger distance between particles. But, as seen in table \[\text{table IX} \], the distance between the neutrons grows clearly faster than the one between the neutron and the core. In fact, for the less bound excited states (the 1^- and 0^- states) the distance between the two neutrons is roughly a factor of two larger than the corresponding distance in the ground state, while the neutron-core distance increases by a factor of 1.5.

The spatial distribution of the three constituents can be better seen in Figures 2 to 6, where we show the probability distribution for the 0^+_1, 0^+_2, 2^+, 1^- and 0^- states in 12Be. The probability distribution is defined as the square of the three-body wave functions multiplied by the phase space factors and integrated over the directions of the two Jacobi coordinates. In particular, in the figures we have chosen the first Jacobi set, such that the distributions are plotted as function of the distance between the two neutrons (r_{nn}) and the distance between the core and the center of mass of the two neutrons ($r_{c,nn}$), respectively. The 0^+_1 and the 2^+ states have the largest probabilities when the two neutrons are separated from each other almost the same distance as from the core (about 2.2 fm and 2.6 fm, respectively). On the other hand, 0^+_2, 0^- and 1^- states have the largest probabilities when the two neutron are well separated from each other (about 5.5 fm) while they are closer to the core (about 3.5 fm). The 2^+ state has also a secondary probability maximum with this last geometry.

V. TRANSITION STRENGTHS

The bound states can only decay electromagnetically. The corresponding observable transition probabilities are critically depending on the structures. Thus they provide experimental tests and we therefore compute the lifetimes for future comparison. The selection rules determine the dominating transitions which can be of both electric and
magnetic origin.

A. Electric transitions

The electric multiple operators are defined as:

$$\mathcal{M}_\mu(E\lambda) = e \sum_{i=1}^{A} Z_i r_i^2 Y_{\lambda,\mu}(\hat{r}_i)$$ \hspace{1cm} (6)$$

where A is the number of constituents in the system, each of them with charge eZ_i, and where r_i is the coordinate of each of them relative to the A-body center of mass.

The electric multipole strength functions are defined as:

$$B(E\lambda, I_i \rightarrow I_f) = \sum_{\mu M_f} |\langle I_f M_f | \mathcal{M}_\mu(E\lambda) | I_i M_i \rangle|^2$$

$$= \frac{1}{2I_f+1} |\langle I_f | \mathcal{M}(E\lambda) | I_i \rangle|^2$$ \hspace{1cm} (7)$$

Also, following [40], we consider the monopole transition operator:

$$\mathcal{M}_0(E0) = e \sum_{i=1}^{A} Z_i r_i^2$$ \hspace{1cm} (8)$$

In our three-body model, where $A-2$ constituents are assumed to form a well defined core, the operators (6) and (8) contain one term directly associated to the three-body system having the form:

$$\mathcal{M}_\mu(E\lambda) = e \sum_{i=1}^{3} Z_i r_i^2 Y_{\lambda,\mu}(\hat{r}_i)$$ \hspace{1cm} (9)$$

$$\mathcal{M}_0(E0) = e \sum_{i=1}^{3} Z_i r_i^2$$ \hspace{1cm} (10)$$

where i labels the three constituents. In addition to Eqs. (6) and (8), there is a contribution from the intrinsic core multipole operators. In particular, for the electric dipole and quadrupole operators the precise expressions are given by Eqs. (9) and (10). For the quadrupole case, Eq. (10), there is an additional contribution arising from the coupling between the electric dipole operator of the core and its motion around the three-body center-of-mass.

When an inert core has spin zero, in the present ^{12}Be model, the contributions from the intrinsic core multipole operators $\mathcal{M}_\mu(E\lambda, \text{core})$ are zero. These terms contribute only when core excitations are included. For ^{12}Be, the first excited state of the ^{10}Be-core is a 2^+ state at about 3.4 MeV. Its effect on the $B(E1)$ strength must be small, since the $\mathcal{M}_\mu(E1, \text{core})$ operator does not couple the 0^+ and 2^+ core states. Therefore the $B(E1)$ strength is expected to be less dependent on the contribution of the 2^+ excited state in the core than the $B(E2)$ strength, where the $\mathcal{M}_\mu(E2, \text{core})$ operator does couple the 0^+ and 2^+ states in the core.

Also, the $\mathcal{M}_0(E0, \text{core})$ operator is not coupling the 0^+ and 2^+ states of the core. However, the expectation value of this operator between the 0^+ ground state of the core is not zero (it is actually related to the rms radius of the core). Nevertheless, for an inert core with spin zero, the total nuclear wave function factorizes into the three-body cluster wave function and the core wave function. In this way, the expectation value of $\mathcal{M}_0(E0, \text{core})$ between wave functions corresponding to different states is automatically zero due to the orthogonality of the three-body cluster wave functions.

For ^{11}Be ($^{10}\text{Be}+n$) the experimental value of the $B(E1, \frac{1}{2}^- \rightarrow \frac{1}{2}^+)$ transition strength is 0.115 ± 0.010 e^2 fm2 [54]. Direct application of Eq. (9) assuming zero charge for the neutrons fails in reproducing this value. However, it is well known that to take into account the distortion or polarization of the core one has to include an effective charge for the neutrons [55, 56]. Due to the square in Eq. (7), two different neutron effective charges are found to fit the experimental value for $B(E1, \frac{1}{2}^- \rightarrow \frac{1}{2}^+)$: $Z_n = 0.28$ and $Z_n = 0.52$. These two charges give rise to slightly different mean square charge radii for the ground state in ^{11}Be of about 2.7 fm and 3.0 fm, respectively. The ^{10}Be-neutron potential only has marginal effect and only 2.7 fm is consistent with the experimental value of 2.63 ± 0.05 fm [48]. Therefore a neutron effective charge of $Z_n = 0.28$ has been used in the following calculations.

In table X we give the computed $B(E\lambda)$ values for transitions between the states in table VII and the monopole transition matrix element $\mathcal{M}(E0) \equiv |\langle 0^+_2 | \mathcal{M}_0(E0) | 0^+_1 \rangle|$. An effective three-body force has been included to fit the experimental binding energies for the different ^{12}Be states. The results are quite stable for the different neutron-core potentials used. The only exception are the transitions in which the 0^+_1 state is involved. This state is the one showing the most important dependence on the potential used. In particular potentials II and IV produce an s-wave content (lower part of table III) about 50% larger than potentials I and III. As seen in the table the results are sensible to this difference, since the values found for $B(E2, 2^+ \rightarrow 0^+_1)$, $B(E1, 0^-_2 \rightarrow 1^-)$ and $\mathcal{M}(E0)$ with potentials II and IV clearly differ from the ones with I and III.

For the $B(E1)$ transitions, the experimental value of 0.051 ± 0.013 e^2 fm2 corresponding to the $0^-_1 \rightarrow 1^-$ transition [32], agrees well with the results given in the first row of table X. The agreement is equally good for all the neutron-core potentials used. Only for potential IV the computed value is a bit higher compared to the other cases, but the computed result is still lying within the experimental error. Therefore the three-body model used reproduces well the experimental value, although it is worth emphasizing that the effective neutron charge also is introduced to simulate neglected effects of core deformation and polarization. The small effect from the
three-body potential can be attributed to the choice of minimal structure, which means no dependence on angular momentum quantum numbers. The only essential effect is an adjustment of the three-body energy which in turn may have an effect on the spatial extension, but leaving all structures unchanged. For the other two \(E1 \) transitions experimental data are not available.

Using the same effective neutron charge we get the \(B(E2) \) values in the central part of table X. Assuming that the \(2^+ \) state in \(^{12}\text{Be}\) is a rotational state built on the ground state, an experimental value of 2.00\(\pm 0.23 \) is given in \(^{2n}\) for the deformation length \(\delta \) in \(^{12}\text{Be}\). This assumption means that the \(B(E2, 2^+ \rightarrow 0^+_1) \) value is given by \(\frac{\hbar^2}{12 \langle E2 \rangle} \), which equals 5.5 \(\pm 1.3 \) e\(^2\) fm\(^4\) or 8.2 \(\pm 1.9 \) e\(^2\) fm\(^4\) for \(R \approx 1.2A^{1/3} \) fm or \(R = \sqrt{3/2}A^{1/2} \) fm, respectively. Here \(\langle r^2 \rangle^{1/2} \) is the experimental charge r.m.s. radius of \(^{12}\text{Be}\). Both values are higher than obtained numerically (first line in the central part of the table).

Also the recently measured value of 1.40 \(\pm 0.12 \) e\(^2\) fm\(^4\) for \(B(E2, 2^+ \rightarrow 0^+_3) \) is much larger than all the computed results in the table, which varies about one order of magnitude with the different neutron-core potentials. Furthermore we see that the computed \(B(E2, 2^+ \rightarrow 0^+_3) \) is much larger than \(B(E2, 2^+ \rightarrow 0^+_1) \). This arises from the fact that the \(2^+ \) state is dominated by the \(sd \) interference in the second and third Jacobi sets (lower part of table X), while the \(0^+_2 \) state is dominated by a \(pp \) configuration (lower part of table III). When the core is infinitely heavy these dominating configurations must give a vanishing contribution from Eq. 10 to the \(B(E2, 2^+ \rightarrow 0^+_2) \) value. Thus, the values in table X have to be small and very sensitive to the non-dominating components in the two states.

Small variations in the contribution of some of these smaller components can produce large relative changes in the computed transition strength. In particular, for the \(0^+_2 \) state, the \(\ell_x = 1 \) components clearly dominate but a substantial probability appears in the \(\{ \ell_x = 0, S = 0 \} \) component, which coincides with a large probability for the \(\{ \ell_x = 0, S = 0 \} \) component in the \(2^+ \) state, see the lower part of table X. For potentials II and IV this \(s \)-wave component in the \(0^+_2 \) state (table III) is significantly larger than for the other three potentials. This implies a larger overlap, and therefore a larger \(B(E2) \) transition strength.

At this point it is important to emphasize that the computed results are obtained for an inert core. For \(E2 \)-transitions a non-negligible contribution from the \(2^+ \) excited state in the \(^{10}\text{Be}\)-core is expected. The second term in the electric quadrupole operator (A4), together with the weight factor corresponding to the admixtures of the \(2^+ \) core excitation in the \(^{12}\text{Be}\) states. In fact, this contribution should provide most of the strength for the \(2^+ \rightarrow 0^+_2 \) transition. In contrast, the contribution from the last term in the quadrupole transition operator (A3) is expected to be small, since \(\mathcal{M}_e(E1, \text{core}) \) cannot couple \(0^+ \) and \(2^+ \) states.

In [40] an experimental value of 0.87 \(\pm 0.03 \) e fm\(^2\) is given for the monopole transition matrix element between the two \(0^+ \) states. This observable gives information about the relative structures of the these two states. The computed results are given in the last row of table X and they are clearly higher (except for potential II) than the experimental value, but similar to the value of 1.7 e fm\(^2\) obtained in Ref. [39]. However, as seen in the table, the computed results are very sensitive to the contribution of the relative neutron-\(^{10}\text{Be}\) \(s \)-wave. An increase from about 15\% to 23\% reduces the computed \(\mathcal{M}(E0) \) by a factor of 3 (going in fact through the experimental value). This \(s \)-wave contribution could easily change significantly when core excitations are included in the \(0^+_2 \) wave function, for which, as mentioned at the beginning of subsection IX C such excitations could play a relevant role.
B. Magnetic transitions

For the unobserved predicted 0^- state the dominating multipolarities for its possible decays are of magnetic character. Only $M1$ and $M2$ transitions to the 1^- or the 2^+ states are possible.

The magnetic multiple operator is defined as:

$$\mathcal{M}_\mu(M\lambda) = \frac{\epsilon h}{2Mc} \sqrt{\lambda(2\lambda + 1)} \sum_i r_i^{\lambda-1} \left[\left(g_s^{(i)} - \frac{2g_t^{(i)}}{\lambda + 1} \right)(Y_{\lambda-1s}) + \frac{2g_t^{(i)}}{\lambda + 1}(Y_{\lambda-1j}) \right]_{(\lambda-1,1)\lambda\mu} \tag{11}$$

where the constants g_s and g_t depend on the constituent particles i. The magnetic multipole strength functions are defined as for the electric case (see Eq.(7)).

In particular, the $M1$ and $M2$ operators involved in the magnetic dipole and quadrupole decay of the 0^- state into the 1^- and 2^+ states are

$$\mathcal{M}_\mu(M1) = \frac{\epsilon h}{2Mc} \sqrt{\frac{3}{4\pi}} \sum_i (g_s^{(i)} s_i + g_t^{(i)} e_i)_\mu \tag{12}$$

$$\mathcal{M}_\mu(M2) = \frac{\epsilon h}{Mc} \frac{5}{\sqrt{2}} \sum_i \sum_{\nu,q} \left(\begin{array}{ccc} 1 & 1 & 2 \\ \nu & q & -\mu \end{array} \right) Y_{1,\nu}(\Omega_i) \left(g_s^{(i)} s_i + \frac{2g_t^{(i)}}{3} e_i \right)_q \tag{13}$$

where q labels the spherical component of an operator.

We can identify a source of uncertainties in the transition strength estimates, which come from the effective values of the g-factor in these expressions.

The core has angular momentum zero and therefore a vanishing effective spin $g_s^{(c)}$-factor and $g_t^{(c)} = 4$. We also use the free value of $g_s^{(n)} = -3.82$ and we use again an effective neutron charge $g_t^{(n)} = 0.28$. The transition operators are then defined and we can compute the $\mathcal{B}(M1,0^- \rightarrow 1^-)$ and $\mathcal{B}(M2,0^- \rightarrow 2^+)$ transition strengths. The results are given in table XI where we observe that the computed values are rather independent of the particular neutron-core potential used. Only for potential IV the results deviate by up to factor of two from the other estimates. This is reflecting the fact that potential IV is producing a different distribution of the weights between the components in the 1^- and 2^+ states (see tables VII and V).

As mentioned above, the effective values of the g-factors are rather uncertain and spin polarization could reduce g_s by a factor of 2, change $g_t^{(c)}$ by perhaps 10 %, and vary $g_t^{(n)}$ from the assumed effective value (see also the discussion of the empirical evidence in $[59]$). As discussed in $[53]$, the computed magnetic strength has a very limited dependence on the precise values used for the orbital gyromagnetic factors g_t, and they are mainly only sensitive to $g_s^{(n)}$. In particular, use of $g_s^{(n)} = -2.0$ reduces the computed magnetic strengths by a factor of about 3.

TABLE XI: $\mathcal{B}(M1)$ (in $e^2 \text{fm}^2$) and $\mathcal{B}(M2)$ (in $e^2 \text{fm}^4$) transition strengths between the computed states in ^{12}Be given in table VII. An effective three-body force has been used to fit the experimental binding energies.

W_I	W_{II}	W_{III}	W_{IV}	W_{I+II}	
$\mathcal{B}(M1,0^- \rightarrow 1^-)$	0.060	0.061	0.059	0.049	0.061
$\mathcal{B}(M2,0^- \rightarrow 2^+)$	0.94	0.78	0.78	0.43	0.85

In summary, the decay possibilities for the 0^- state are limited to magnetic transitions. Even with fairly reliable estimates for the transition probabilities it is not easy to give an accurate prediction for the lifetime of this state. If 0^- is below the 1^- state only decay into 2^+ is possible and the resulting lifetime can be estimated to be of the order 10^{-8} sec. However, if 0^- can decay into the 1^- state the possibly very small energy difference causes a large uncertainty which could reduce the lifetime to about 10^{-11} sec or perhaps even somewhat smaller. In any case these estimates justify the classification of this new 0^- state as an isomer in ^{12}Be.

VI. INVARIANT MASS SPECTRUM

One of the tools for studying the structure of three-body halo nuclei was breakup reactions on a target. By relatively fast removal of one of the constituents the remaining two are essentially left undisturbed and measurements of their momenta then provide fairly direct information about the initial state. We use this technique to investigate the two-body substructures of ^{12}Be. The experimental relative ^{10}Be-neutron energy spectrum (or invariant mass spectrum) after ^{12}Be breakup on a carbon target at a beam energy of 39.3 MeV/nucleon is shown in ref. $[12]$. Both fragments, ^{10}Be and neutron, are simultaneously detected, and their relative decay energy is reconstructed from the measured momenta. The final ^{10}Be-neutron states are then restricted to unbound states in ^{11}Be.

This spectrum can easily be computed by use of the sudden approximation. We assume that the target transfers a (relatively large) momentum to one of the particles (one of the neutrons) in the projectile which then is instantaneously removed. The remaining two particles, the ^{10}Be-core and the second neutron, are just spectators in the reaction, meaning that they continue their motion undisturbed without further interaction with the removed particle. They do, however, continue to interact with each other.

Under this assumption the differential cross section of the process takes the form:

$$\frac{d^2 \sigma}{d \kappa_x d \kappa_y} \propto \sum_M \sum_{s_x,\sigma_x} \sum_{s_y,\sigma_y} \left| \langle e^{i \kappa_x \cdot \mathbf{x}} \chi_{s_x \sigma_x} \chi_{s_y \sigma_y} (\mathbf{k}_x, \mathbf{x}) | \Psi^M (\mathbf{x}, \mathbf{y}) \rangle \right|^2 \tag{14}$$
where \(\Psi^{JM} \) is the three-body wave function with total angular momentum \(J \) and projection \(M \), \(k_x \) and \(k_y \) are the momenta associated to the Jacobi coordinates \(x \) and \(y \), \(s_x \) and \(s_y \) are the coupled spin of the spectator two-body system and the spin of the removed particle, respectively, and \(\sigma_x \) and \(\sigma_y \) are the corresponding spin projections. Finally, \(u^2_\sigma \) is the continuum two-body wave function of the spectators \(^{10}\text{Be} \) and neutron \) in the final state. This two-body wave function is computed with the corresponding two-body interaction and the boundary condition at small distance determined to be precisely the \(^{10}\text{Be}-\text{neutron} \) structure left by removing the other neutron in \(^{12}\text{Be} \), see [60] for a detailed description.

After integration of Eq.(14) over \(k_y \) and the angles describing the direction of \(k_x \) we obtain the differential cross section \(d\sigma/dk_x \), which is related to the invariant mass spectrum as shown in [60]:

\[
\frac{d\sigma}{d\omega_{nc}} = \frac{E_c E_n}{E_c + E_n} \frac{m(M_c + M_n)}{M_c M_n} \frac{1}{k_x} \frac{d\sigma}{dk_x}
\]

where \(E_c \) and \(M_c \) are the core energy and mass, \(E_n \) and \(M_n \) the neutron energy and mass, \(\omega_{nc} \) the relative neutron-core energy, and \(m \) is the normalization mass used to define the Jacobi coordinates.

The presence in Eq.(14) of the two-body wave function \(u^2_\sigma \) makes it evident that the invariant mass spectrum \(\sqrt{\sigma} \) crucially depends on the final state two-body interaction. It is important to note that Eq.(14) is not assuming that the two spectators populate two-body resonances in the final state. The two-body wave function \(u^2_\sigma \) contributes for any value of the relative two-body momentum \(k_x \), not only for those where \(k_x \) matches a two-body resonance energy. Except for those very precise values of \(k_x \), \(u^2_\sigma \) is just an ordinary continuum two-body wave function.

In Fig.7 we show the relative core-neutron energy spectrum after removal of one neutron from \(^{12}\text{Be} \) on a light target according to Eq.(15). The results for the different \(^{10}\text{Be}-\text{neutron} \) interactions used in this work are shown. The computed curves have been scaled to the experimental data [13]. Also, the experimental energy resolution has been taken into account by convoluting the computed distributions with a gaussian having a full width at half maximum (FWHM) equal to 0.4\(E^{1/2} \) (\(E \) in MeV) [13].

As a general result, all the potentials reproduce equally well the peak at about 1.2 MeV, and the tail of the distribution. In the same way all of them underestimate the spectrum in the region around 2.2 MeV and do not reproduce the very narrow peak at very low energies. Potential IV (dot-dashed curve) is reproducing the peak at 1.2 MeV best of all, but on the other hand gives a worse agreement with the experiment in the region between 3 and 4 MeV. Compared to the results with potential I (solid curve), inclusion of the Argonne nucleon-nucleon potential (dotted curve) slightly improves the behaviour at small energies but also slightly spoils the agreement with the experiment at large energies.

In Fig.8 we show, for different \(^{10}\text{Be}-\text{neutron} \) potentials, the contribution from \(s- \), \(p- \), and \(d- \) waves to the total invariant mass spectrum. Here \(s \), \(p \), and \(d \) refer to the value of the \(^{10}\text{Be}-\text{neutron} \) relative orbital angular momentum. In the figure the dotted and dot-dashed curves give the contribution from the \(d_{3/2} \) and \(d_{5/2} \)-waves, respectively. We notice that the main peak in the distribution is produced by the \(d_{5/2} \)-wave. This can be traced back to the \(5/2^+ \) resonance in \(^{11}\text{Be} \) at 1.28 MeV above threshold. The \(3/2^+ \) resonance, with an energy of 2.90 MeV, helps to match the experimental tail of the distribution. The \(s- \) and \(p- \)-waves contribute mainly at small energies, and they are almost entirely responsible for the distribution below 1 MeV.

From Fig.8 it is now easy to understand that the main disagreement between the computed curves and the experimental data is due to the absence in the calculation of the \(3/2^- \) resonance in \(^{11}\text{Be} \), whose energy above threshold is 2.19 MeV, precisely the energy region where the disagreement is found. However, as already mentioned, inclusion of this resonance necessarily requires information beyond the present \(^{12}\text{Be} \) three-body model with an inert \(^{10}\text{Be} \) core. If we still insist on the picture of a three-body system with a \(^{10}\text{Be} \) core, then a \(3/2^- \) state in \(^{11}\text{Be} \) needs either a neutron in the \(p \)-shell coupled to the \(2^+ \) state of \(^{10}\text{Be} \), or a neutron in the \(sd \)-shell coupled to \(^{10}\text{Be} \) in a negative parity state. Another possibility is of course to use a different cluster description for \(^{12}\text{Be} \), like for instance \(^9\text{Be} \) in the \(3/2^- \) ground state plus three neutrons. Therefore, except for the lack of this state in the \(^{11}\text{Be} \) spectrum, the contributions obtained in this work for the \(0^+ \) ground state are consistent with the experimental invariant mass spectrum given in [13].

The highest \(^{11}\text{Be} \) resonance that has been considered in
our calculations is the $3/2^+$ state at 2.90 MeV. The next excited states in 11Be are the $5/2^-$ and $3/2^-$ resonances with energies above threshold at 3.49 MeV and 3.46 MeV, respectively [52]. For the same reason as the $3/2^-$ state at 2.19 MeV, these two states cannot be included in our three-body picture with an inert 10Be core. In any case, decay of these two resonances into the ground state of 10Be plus a neutron would give some small contribution to the tail of the invariant mass spectrum. However, these two states can also decay into 10Be plus a neutron but leaving 10Be in its 2^+ excited state at 3.37 MeV. Therefore very little energy is left for the neutron after such decay (less than 100 keV [52]), giving rise to the experimental sharp peak at low energies. Theoretical calculation of this peak requires then also inclusion of core excitations in the model.

In [61] the experimental FWHM of the 10Be longitudinal momentum distribution after fragmentation of 12Be on a carbon target (beam energy equal to 56.8 MeV/nucleon) is found to be 194 ± 9 MeV/c. Within the sudden approximation, such distribution can also be computed from Eq. (14), see [60] for details. The widths of the longitudinal core momentum distributions are computed to be 162 MeV/c, 159 MeV/c, 169 MeV/c, 171 MeV/c, and 166 MeV/c for the neutron-core potentials I, II, III, IV, and $I+v_8$, respectively.

Inclusion of core excitations should help to reduce the discrepancy between the computed widths and the experimental value. The components having spin of the core equal to 2, and coupling to the total angular momentum zero of the 12Be ground state, must necessarily contain non-zero values for ℓ_x or ℓ_y. This means additional centrifugal barriers which attempt to confine the three-body system to smaller spatial extension, and subsequently producing broader momentum distributions.

VII. SUMMARY AND CONCLUSIONS

The properties of 12Be have been investigated assuming a three-body structure with an inert 10Be core and two neutrons. A description of the nucleus by use of the hyperspherical adiabatic expansion method is particularly appropriate in this case, since two of the two-body subsystems have bound states. The symmetric treatment of all the two-body interactions makes it easier to reproduce the correct two-body asymptotics. This could be especially important for the weakly bound excited states.

We constructed four different neutron-10Be interactions, each of them reproducing the known spectrum of 11Be up to an excitation energy of 3.41 MeV. However, the $3/2^-$ resonance in 11Be has been excluded, since it requires the 10Be core to be in an excited state. This case goes beyond the three-body model with an inert core that is used in this work. Nevertheless, part of the effects arising from core deformation are effectively taken into account through the fitting procedure of the neutron-10Be potential. For the neutron-neutron interaction two different potentials have been used, both reproducing low-energy scattering data.

We have found two 0^+, one 2^+, one 1^- and one 0^- bound states. The first four are known experimentally, but not the 0^- state. The computed binding energies agree reasonably well with the experimental value for the ground 0^+ state and the excited 1^- state. For the second 0^+ and the 2^+ states a larger discrepancy is found, which can be attributed to contributions from core excitations additional to the ones masked in the neutron-10Be potential. To reproduce the experimental two-neutron separation energies for these states we included a three-body force.

The dominating components of the wave functions correspond to the ones expected from the extreme single particle model. The ratio of the computed neutron-neutron and core-neutron root mean square distances increases with the excitation energy. All possible electric and magnetic transition strengths have also been computed. An effective charge for the neutron is used to take into ac-
count distortion or polarization of the core. This effective charge has been obtained by adjusting the calculation to reproduce the experimental $B(E1)$ transition strength in 11Be, as well as its charge root mean square radius.

Core excitations can contribute to transition strengths in two different ways. There could be a direct contribution arising from the transition between two core states or a contribution to the wave function of a 12Be state then leading to an indirect effect on transition strengths.

The direct contribution of core excitations in the 12Be monopole and dipole strength functions should be negligible, since r^2, $\mathcal{M}_\mu(E1)$ and $\mathcal{M}_\mu(M1)$ operators cannot couple the $J=0$ and $J=2$ states. On the other hand, quadrupole transition operators can couple these states and there could be an important effect from the excitation of the core. The possible contribution of core excitations to wave functions of 2^+ states could lead to some uncertainties in the calculated transition strengths involving those states. Our calculations reproduce rather well the available experimental data.

The relative 10Be-neutron energy spectrum after 12Be breakup on a carbon target at a beam energy of 39.3 MeV/nucleon has been computed within the sudden approximation. For all the potentials the experimental spectrum is rather well reproduced. Only in the region around 2.2 MeV the computed curves underestimate the experiment. This is due to the absence of the $3/2^-$ resonance in our 11Be spectrum, which originates from 10Be-core excited states.

In summary, a frozen-core three-body model is able to reproduce most of the properties of 12Be: ground and excited bound states, electromagnetic transition strengths, and invariant mass spectrum after high-energy breakup. Core excitations, however, are needed to improve the two-neutron separation energies for the 0^+_1 and 2^+_2 states, to get a better estimate of the quadrupole transition strengths and monopole transition matrix element, and to fine tune the agreement with the experimental invariant mass spectrum.

ACKNOWLEDGMENTS

We are grateful to K. Riisager for drawing our attention to the problems of weakly bound excited states investigated here. This work was partly support by funds provided by DGI of MEC (Spain) under contract No. FIS2005-00640. One of us (C.R.R.) acknowledges support by a predoctoral I3P grant from CSIC and the European Social Fund.

APPENDIX A: TRANSITION STRENGTH OPERATORS

For a system made of A constituents, the electric transition operator of order λ, $\mathcal{M}_\mu(E\lambda)$, is defined as:

$$\mathcal{M}_\mu(E\lambda) = e \sum_{i=1}^{A} Z_i r_i^\lambda Y_{\lambda,\mu}(\hat{r}_i)$$ \hspace{1cm} (A1)

where Z_i is the charge (in units of e) of constituent i, and r_i is its position from the A-body center-of-mass.

For the particular case of 12Be, we are assuming that the system is clustered, showing a three-body structure made by a core (containing $A-2$ nucleons) plus two additional nucleons outside the core. It is then convenient to write the coordinates of the particles inside the core as: $r_i = r_{c} + r'_i$, where r_c gives the position of the core center of mass relative to the A-body center-of-mass, and r'_i is the coordinate of constituent i in the core relative to the core center-of-mass (see Fig.9).

The $\mathcal{M}_\mu(E\lambda)$ operator in Eq.(A1) can then be rewritten as:

$$\mathcal{M}_\mu(E\lambda) = e \sum_{i=1}^{A-2} Z_i r_c + r'_i Y_{\lambda,\mu}(\hat{r}_c + \hat{r}'_i) + e \sum_{j=1}^{2} Z_j r_j^3 Y_{\lambda,\mu}(\hat{r}_j)$$ \hspace{1cm} (A2)

where the index i runs over the $A-2$ constituents in the core, and j labels the two external nucleons.

Making use of Eq.(1) in ref. [62] (see also [63]) one can easily see that for $\lambda = 1$ one has:

$$\mathcal{M}_\mu(E1) = e \sum_{i=1}^{A} Z_i r_i Y_{1,\mu}(\hat{r}_i) + \mathcal{M}_\mu(E1,\text{core})$$ \hspace{1cm} (A3)

where now i runs over the three constituents, Z_i refers to the charge (in units of e) of each of the three constituents, and $\mathcal{M}_\mu(E1,\text{core}) = e \sum_{i=1}^{A-2} Z_i r'_i Y_{1,\mu}(\hat{r}'_i)$ is the electric dipole transition operator of the core.

In the same way, for $\lambda = 2$ one finds:

$$\mathcal{M}_\mu(E2) = e \sum_{i=1}^{A} Z_i r_i^2 Y_{2,\mu}(\hat{r}_i) + \mathcal{M}_\mu(E2,\text{core})$$ \hspace{1cm} (A4)
\[f(m, \mu) \sum_{m=-1}^{1} r_{c}Y_{1,m}(r_{c})M_{\mu-m}(E1, \text{core}) \]

whose two first terms are analogous to the ones in Eq. (A3). The last term represents a coupling between the intrinsic core dipole operator and the dipole operator associated to the center-of-mass of the core while \(f(m, \mu) \) is a well defined function of the indices \(m \) and \(\mu \).