TÉCNICA DE OSCILAÇÕES FORÇADAS NA AVALIAÇÃO E MANEJO DE CRIANÇAS ASMÁTICAS: UMA REVISÃO NARRATIVA

FORCED OSCILLATION TECHNIQUE IN THE ASSESSMENT AND MANAGEMENT OF ASTHOMATIC CHILDREN: A NARRATIVE REVIEW

BSc. Marcos Brum A. 1, Disc. Caroline Lantmann 1, Disc. Giovani Zocche Junior 1, MSc. Ingrid Rodrigues F. 1, Disc. Amanda Santos 1, MSc. Frederico Friedrich 1, Dra. Morgana Carollo F. 1, Phd. Marcus Jones 1
1.- Centro Infant – Pontifícia Universidade Católica do Rio Grande do Sul – PUCRS, Porto Alegre, Rio Grande do Sul.

ABSTRACT

Asthma is considered the most prevalent chronic disease in children. The pulmonary function measurements are important in the evaluation of the disease, being able to confirm the diagnosis by demonstrating the reversibility of the obstruction as well as detecting risks of poor prognosis in the control of asthma. However, the most common methods for analyzing function in this age group have restrictions on its applicability, especially due to the need for cooperation on the part of patients. The forced oscillation technique (FOT) is considered a modern tool capable of estimating measures of respiratory mechanics related to the lungs. This method is easily applicable due to the low need for patient cooperation, an important element in the assessment of children. The aim of this study is to review the clinical utility of the Forced Oscillation Technique in the pulmonary assessment of asthmatic children. The bibliographic search covered the years between 1950 and 2019, in the databases: Medical Literature Analysis and Retrieval System Online (MEDLINE) and Latin American and Caribbean Literature in Health Sciences (LILACS). It was used as a search strategy the combination of the following Medical Subject Headings (MeSH) terms: “asthma”, “oscillometry” and “child” crossed through the AND and OR Boolean connectors. In asthmatic children, FOT showed greater accuracy in the evaluation of smaller caliber peripheral airways, which can be applied as a complementary method to spirometry to strengthen the diagnosis, enabling a better understanding of the disease and its progression.

Key words: Asthma, Oscillometry, Child.

RESUMO

A asma é considerada uma doença crônica de maior incidência em crianças. As medidas de função pulmonar são importantes na avaliação da doença, podendo confirmar o diagnóstico pela demonstração de reversibilidade da obstrução assim como detectar riscos de mau prognóstico no controle da asma. Entretanto, os métodos mais usuais para análise da função pulmonar nesta faixa etária apresentam restrições em sua aplicabilidade, especialmente pela necessidade de cooperação por parte dos pacientes. A técnica de oscilações forçadas (FOT) é considerada uma ferramenta moderna capaz de estimar medidas da mecânica respiratória relativas aos pulmões. Este método apresenta fácil aplicabilidade pela baixa necessidade de cooperação do paciente, elemento importante na avaliação de crianças. O objetivo deste estudo é revisar a utilidade clínica da Técnica de Oscilações Forçadas na avaliação pulmonar de crianças asmáticas. A busca bibliográfica contemplou os anos entre 1950 e 2019, nas bases de dados: Medical Literature Analysis and Retrieval System Online (MEDLINE) e Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS). Foi utilizada como estratégia de busca a combinação dos seguintes Medical Subject Headings (MeSH) terms: “asthma”, “oscillometry” e “child” cruzados através dos conectores AND e OR Boolean Connectors. Em crianças asmáticas, a FOT mostrou maior acurácia na avaliação de vias aéreas periféricas de menor calibre, podendo ser aplicada como método complementar a espirometria para encorajar o diagnóstico, possibilitando compreender melhor a doença e sua progressão.

Palavras-chave: asma, oscilometria, criança.

INTRODUÇÃO

A asma é considerada uma doença crônica de maior incidência em crianças. (1) Os sintomas apresentam-se frequentemente nos primeiros anos de vida e a confirmação do diagnóstico está baseada na história clínica do paciente. (2) As medidas de função pulmonar são parte importante da avaliação da asma, pois auxiliam na construção do diagnóstico por meio da análise de reversibilidade brônquica e, também, detectam riscos de mau prognóstico no controle da doença. (1)

Correspondence author:
Marcos Brum A., Endereço: Av. Ipiranga, 6681 - Partenon - Porto Alegre/ RS – 90610-000, E-mail: marcos.antunes@edu.pucrs.br, Contato: 55 51 3203000, ramal 2221.

A espirometria é o principal método usado para documentar alterações características da função pulmonar em asmáticos. Entretanto, sua acurácia pode ser comprometida em crianças, uma vez que, aceitabilidade e reprodutibilidade do exame dependem de concentração e esforço prolongados. (3) Outros métodos diagnósticos para caracterizar as alterações funcionais da asma incluem as medidas de resistência de vias aéreas, que podem ser obtidas por oscilometria, técnica do interruptor ou pleitismografia. (4) A oscilometria é considerada uma ferramenta moderna que permite mensurar a impedância do sistema respiratório (Zrs). A Zrs inclui todas as forças que se opõem ao movimento do ar, sendo composta por resistência (Rrs), forças friccionais e reatância (Xrs, forças elásticas e inertiais). Estes componentes da Zrs podem ser calculados por transformações.
matemáticas da relação entre pressão e fluxo no domínio da frequência. (5)

A Técnica de Oscilações Forçadas (do inglês, Forced Oscillations Technique - FOT) permite avaliar Z_ν por meio de R_ν e X_ν, a partir de uma manobra respiratória em volume corrente. (6) A vantagem da avaliação por uma via não invasiva torna esse método particularmente apropriado para pacientes com baixo nível de cooperação (2), elemento importante para avaliação pulmonar de crianças. (7)

Apesar das diferenças entre processos de mensuração, espirometria e FOT são métodos que apresentam informações complementares e não intercambiáveis. (3) Ao observar resultados da FOT, faz-se necessário suscitar novos estudos para elucidar resultados inéditos contribuindo com os diagnósticos em pneumologia. Com isso, o objetivo deste trabalho foi revisar a utilidade clínica deste método na avaliação pulmonar de crianças asmáticas.

METODOLOGIA

Trata-se de uma revisão narrativa de literatura, construída a partir de 4 etapas: o estabelecimento do período de tempo à ser contemplado, a escolha da base de dados analisada, a caracterização das palavras-chave utilizadas e a filtragem dos estudos pertinentes. Dada a sistematização, os critérios de inclusão ficaram estabelecidos da seguinte forma: estudos de abrangência cronológica entre os anos de 1950 e 2019, com população amostral entre 3 a 18 anos de idade, portadores de asma e que utilizaram a oscilometria como forma de avaliação.

A busca bibliográfica foi realizada entre novembro de 2019 e janeiro de 2020, nas bases de dados: Medical Literature Analysis and Retrieval System Online (MEDLINE) e Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS). Foi utilizada como estratégia de busca a combinação dos seguintes Medical Subject Headings (MeSH) terms: “asthma”, “oscillometry” e “child” cruzados por meio dos conectores booleanos AND e OR.

Os artigos incluídos nesta revisão foram sumarizados por autor, equipamento utilizado na avaliação, amostra, objetivo e principais resultados. Descritos de forma sucinta, em tabela, para auxílio na visualização de cada trabalho selecionado.

Este estudo exclui trabalhos de revisão narrativa, integrativa, sistemática e meta-análise e diretrizes operacionais. Quanto aos aspectos éticos, não se faz necessária a submissão ao Comitê de Ética, uma vez que, foram utilizados dados bibliográficos de artigos indexados em bases de dados. O fluxograma 1 apresenta os critérios metodológicos.

RESULTADOS

A partir da busca nas bases de dados foram localizados 101 artigos, após leitura dos resumos e revisão íntegra, incluiu-se 18 artigos que contemplam as características metodológicas especificadas para este trabalho. Os estudos selecionados estão apresentados no quadro 1.
Quadro 1. Sumarização dos resultados.

Autores	Equipamento na Avaliação	Amostra	Objetivo	Resultados	
*Dobois et al., 1956 (8)	FOT 2-15 cm/s	10 indivíduos	Observar a impedância respiratória em resposta ao fluxo de ar.	Caracterização das vias aéreas como sistema de resistência-capacitância.	
Wanner et al., 1977 (7)	FOT em 10 Hz, espirometria e plethysmografia, pré e pós BD.	13 crianças entre 7 e 13 anos, com histórico de asma.	Demonstrar ação broncodilatadora.	O pico de broncodilatação ocorre após 2 minutos de administração do medicamento.	
Lebecque et al., 1987 (6)	FOT entre 6-26 Hz, espirometria e teste de provocação histamínica.	31 crianças entre 7 e 17 anos, sendo 19 do gênero feminino.	Analisar a relação entre FEV1 e VEF, durante o teste de provocação de histamina.	A FOT apresenta capacidade de avaliar a reatividade de vias aéreas provocada pelo teste histamínico.	
Marchal et al., 1994 (9)	FOT entre 6-32 Hz, Pré e pós BD.	35 crianças entre dois anos e meio e 17 anos com histórico de asma, sendo 23 com asma leve e 12 com asma moderada a grave.	Comparar técnicas padrão e geradora de cabeça na avaliação da resposta pulmonar a agentes broncotoxínicos.	O gerador de cabeça melhora a sensibilidade da FOT na avaliação das respostas broncotoxínicas em crianças.	
Masurek et al., 1995 (10)	FOT entre 10-20 Hz em conjunto com espirometria, Pré e pós BD.	75 crianças entre 5,5 e 13 anos, 53 com histórico de asma, 40 homens.	Avaliar o uso do gerador de cabeça na avaliação broncodilatadora em crianças.	O gerador de cabeça apresenta maior capacidade em demonstrar a reversibilidade da obstrução.	
Thammir et al., 2007 (11)	FOT entre 4-48 Hz e readúncia entre 6, 8 e 10 Hz, Pré e pós BD.	288 crianças, com idade entre 3,5 e 6,6 anos, dos quais 210 eram portadores de doenças respiratórias.	Caracterizar a resposta broncodilatadora por meio da FOT em saudáveis e compará-la com diferentes grupos de doenças respiratórias.	Recomenda delimitar -40% e 65% como resposta positiva de BD para reatividade e resistência, respectivamente.	
Meraz et al., 2007 (12)	IOS entre 5H-15 Hz.	40 crianças de faixa etária entre 2 e 5 anos, com histórico de asma.	Caracterizar parâmetros osclométricos sensíveis de função pulmonar e estabelecer estimativas para constrição e não constrição.	O estudo demonstrou sucesso em evidenciar a capacidade de diferenciação entre vias constritas e não constritas.	
Souza et al., 2009 (1)	Espirometria e FOT entre 4-32 Hz.	40 crianças, 20 controles e 20 asmáticos.	Investigar alterações nas propriedades resistivas e reativas do sistema respiratório em asmáticos e avaliar a contribuição da FOT no diagnóstico da asma.	A FOT descreve adequadamente as alterações fisiopatológicas da asma, demonstrando potencial na avaliação da mecânica pulmonar em asmáticos.	
Harrison et al., 2010 (2)	FOT em 6-9 Hz e plethysmografia, Pré e pós BD.	59 crianças com histórico de sibilos e 24 controles saudáveis, com idades entre 3 e 6 anos.	Detectar anormalidades na função pulmonar e na broncodilatação em pré-escolares, utilizando a FOT e medidas de resistência específica em vias aéreas.	Nenhuma das técnicas foi capaz de identificar função pulmonar diminuída ou reversibilidade ao broncodilatador em crianças com história de sibilância.	
Autor(es)	Ano	Técnica e Detalhes	Respiratórios	Enfase	Notas
----------	-----	--------------------	---------------	-------	-------
Pék et al., 2012 (4)		FOT em 4.24 Hz e espirometria realizadas após teste de histamina e metacolina em aerosol.	20 asmáticos, entre 5 e 18 anos.	Comparar a sensibilidade entre FOT e espirometria na detecção de hiper-reactividade em asmáticos.	Ambas apresentam capacidade de avaliar broncoresistência. Podem ser consideradas para a detecção de hiper-reactividade em asmáticos.
Stulze et al., 2012 (13)		Espirometria e FOT em 5 Hz, pré e pós administração de metacolina.	48 crianças com bronquite, entre 3 e 6 anos, com quadro de sintomas recorrente e episódios múltiplos de tosse, superior a 6 semanas.	Avaliar a associação entre índices espirométricos e de IOS em um protocolo curto de provocação de metacolina.	Um protocolo curto para o teste de metacolina é viável em crianças. O IOS detectou 70-80% dos pacientes que correspondem ao exame de espirometria.
Murakami et al., 2014 (14)		Espirometria, inalação forçada de NO e FOT entre 5-35 Hz, pré e pós BD.	132 crianças, com idade entre 10,06 e 17,78 anos, 98% asmáticos, sendo 88% homens.	Avaliar alterações brônquicas utilizando a FOT.	Determinar as relações entre a variabilidade da FOT e gravidade da asma e o controle dos sintomas em escolares asmáticos e comparar medidas da variabilidade do FOT com as de crianças sem asma.
Robinson et al., 2014 (5)		O FOT foi realizado em 6 Hz, sendo triplicado em cada ocasião de teste.	60 crianças asmáticas, com idade entre 10,4±1,22.		Alterações em índices de reatividade e resistência presentes na FOT refletem a reversibilidade brônquica.
Ioan et al., 2015 (15)		FOT em 8 Hz, pré e pós BD, com gerador pálido e gerador de cabeça.	85 crianças, 58% asmáticas, com idade em 8,1±1,5.	Testar o impacto do artefato na capacidade do FOT em diagnosticar asma em crianças.	Em crianças asmáticas, o artefato das vias aéreas superiores afeta significativamente as medidas do FOT.
Czóvek et al., 2016 (16)		FOT entre 4-26 Hz.	101 crianças, 26% asmáticos.	Encontrar descritores de Zrs na respiração que sejam indicadores sensíveis de obstrução das vias aéreas durante a respiração em VC.	A nova medida da FT/AR detecta obstruções das vias aéreas com alta sensibilidade e especificidade, sendo adequada para uso em testes de FP em crianças.
*Heijermans-Klijn Rentzhog et al., 2017 (3)		Espirometria, FOT entre 5-19 Hz.	294 indivíduos, desses 234 portadores de pneumoepatias, com idade entre 13 a 39 anos.	Analisar a associação entre variáveis de FP, obtidas por espirometria e FOT, diagnóstico e controle de asma.	Medidas de resistência da FOT e espirometria apresentaram níveis semelhantes de sensibilidade no diagnóstico da asma.
Starczewska-Dymek et al., 2018 (17)		FOT em 8 Hz, pré e pós BD.	53 crianças com asma controlada, 53 com asma não controlada de início precoce e 45 controles saudáveis, de idade entre 2 e 6 anos.	Avaliar parâmetros de Xo e Re, em grupos de crianças saudáveis e crianças com asma controlada e não controlada.	Rrs e Xo, obtidas pelo FOT discriminaram pacientes com asma de crianças saudáveis.
Sol et al., 2019 (18)		Espirometria e IOS entre 5-20 Hz.	819 crianças, com idade entre 4 e 18 anos, sendo 600 asmáticas.	Identificar a diferença entre mensurações inspiratórias e expiratórias obtidas utilizando IOS entre crianças com e sem asma.	A análise inspiratória expiratória diferenciou crianças asmáticas de controles, refletindo estreitamento em vias aéreas em asmáticos durante a expiração.

cps: Ciclos Por Segundo, Hz: Hertz, BD: Broncodilatador, IOS: Oscilometria Por Impulso, FOT: Técnica de Oscilações Forçadas, VEF1: Volume Expiratório Forçado no Primeiro Segundo, Rrs: Resistência Respiratória, Xrs: Reatância respiratória, *: Estudos de amostragem mesclada.
DISCUSSÃO

TÉCNICA DE OSCILAÇÕES FORÇADAS
A FOT foi proposta em 1956 a partir da elaboração de um método que permitisse avaliar propriedades mecânicas do sistema respiratório. A caracterização da impedância respiratória é constituída a partir da análise de seus componentes: resistência (R_n) e reatância (X_n). Estes valores são obtidos por meio da sobreposição de oscilações de pressão sobre a ventilação no período da avaliação. (8) Uma das principais vantagens deste método é a facilidade da realização das manobras, sendo exigido apenas que o indivíduo realize incursões respiratórias em volume corrente para que possam ser obtidos os dados de impedância do sistema respiratório. (9)

IMPEDEÂNCIA PULMONAR
A Z_n demonstra a carga mecânica total oferecida pelo sistema respiratório, bem como suas propriedades resistivas, elásticas e interativas. A impedância é composta pela R_n e X_n, sendo determinada em oscilações multifrequenciais. (1,17) A R_n descreve a dispersão total de energia, englobando a soma do produto das resistências newtonianas relacionadas às vias aéreas, ao tecido pulmonar e à parede torácica, bem como a resistência que resulta da redistribuição do gás. (8) A X_n descreve o acúmulo de energia no sistema respiratório, a energia potencial está associada à complacência respiratória (C_n), enquanto energia cinética é descrita pela Inertância respiratória (I_n). (9) A I_n está relacionada à energia envolvida na aceleração e desaceleração do fluido (ar) nas vias aéreas assim como do tecido pulmonar. (1)

A medida da impedância pela FOT baseia-se na resposta às oscilações de pressão aplicadas nas vias aéreas. Estes impulso são gerados por um alto-falante e induzem um fluxo oscilatório onde a amplitude da onda é inversamente proporcional a impedância mecânica do sistema respiratório (Z_n). (15) Frequências mais elevadas representam a impedância de regiões mais centrais, enquanto frequências baixas descrevem áreas centrais e periféricas do sistema respiratório. (71)

Os diferentes meios de avaliação por esta ferramenta apresentam benefícios específicos. A análise por ondas monofrequenciais são adequadas para avaliação instantânea da respiração, uma vez que esta permite observar as alterações presentes na via aérea durante um ciclo respiratório. Este método de avaliação contempla propriedades resistivas e elásticas do sistema respiratório. (5,7,13,15,17)

Os estudos que utilizaram avaliação multifrequencial e representam a maior parte dos trabalhos analisados (71%), esse tipo de análise pode ser caracterizada com lenta, uma vez que representa a média do comportamento do sistema respiratório ao longo de vários ciclos ventilatórios, gerando resultados mais detalhados. Os índices obtidos a partir desta análise contemplam R_n e X_n em várias frequências, permitindo avaliação de índices associados à resistência total, não homogeneidade e complacência dinâmica do sistema respiratório. (1-4,6,8,9,12,14,16,18)

APLICABILIDADE EM ASMÁTICOS
Apesar de sua criação em meados de 1950, os primeiros estudos envolvendo a análise direta da asma em crianças, por intermédio da FOT, apareceram no ano de 1970. Os estudos iniciais mostraram que crianças asmáticas apresentavam aumento da resistência total do sistema respiratório em decorrência da diminuição do calibre das vias aéreas. Esta característica é melhor descrita em medidas de baixa frequência, que incluem vias aéreas centrais e periféricas. (1,3,7)

A complacência total do sistema respiratório também apresenta aumento em crianças asmáticas, fator associado ao aumento da resistência das vias aéreas periféricas como destacado anteriormente. Contudo, essa modificação também é aliada ao conjunto de alterações anatomo-patológicas causado pelo remodelamento brônquico, fator que restringe a elasticidade das vias aéreas e pode restringir a contracção excessiva da musculatura lisa dos brônquios. (14) A heterogeneidade da ventilação, comumente alterada em doenças obstrutivas pulmonares, também reduz a complacência respiratória pelo aprisionamento aéreo, afetando a reatância respiratória observada pela FOT. (1,10,19)

A R_n e a X_n são marcadores indiretos de obstrução bronquial e tem boa sensibilidade para avaliar vias aéreas periféricas. (12,17) A redução da resistência após a inalação de broncodilatador tem boa sensibilidade e excelente especificidade para asma em crianças. (11,21)

FOT E ESPIROMETRIA NA ASMA
O teste de espirometria é o mais utilizado na avaliação de distúrbios obstrutivos das vias aéreas, entretanto, apresenta restrições em faixas etárias inferiores a seis anos, ainda que a American Thoracic Society (ATS) e European Respiratory Society (ERS) tenham estabelecido critérios de aceitabilidade e reprodutibilidade mais flexíveis para esse grupo. (1)

Neste âmbito, a capacidade da FOT de apresentar uma avaliação não-invasiva e em volume corrente das particularidades mecânicas do sistema respiratório é de grande interesse clínico. Pesquisas demonstram a capacidade dessa técnica de ser empregada em crianças menores de 2 anos, o que pode antecipar o diagnóstico de doenças respiratórias, permitindo a elaboração de estratégias adequadas mais precocemente. (19) A FOT apresenta capacidade equivalente à espirometria para caracterizar a função pulmonar, tanto em crianças asmáticas, quanto em saudáveis. Em doenças de vias aéreas periféricas, a FOT apresentou maior poder de análise, ainda que, as variáveis obtidas pela espirometria, como o VEF, apresentem maior eficácia para demonstrar informações sobre diagnóstico e níveis de controle. (4)

CONSIDERAÇÕES FINAIS
A FOT apresenta alto índice de sensibilidade na avaliação do sistema respiratório, podendo ser uma ferramenta promissora na avaliação da função pulmonar de crianças asmáticas. Parte do seu sucesso se deve a simplicidade do método, por ser um modelo não-invasivo de fácil aplicação e pouca necessidade de colaboração do paciente. Em crianças asmáticas, essa técnica mostrou maior acurácia na avaliação de vias aéreas periféricas de menor calibre, podendo ser aplicada como método complementar a espirometria para en-
corpar o diagnóstico, possibilitando compreender melhor a doença e sua progressão.

Declaração de conflito de interesses: Nada a declarar.

REFERÊNCIAS

1. Souza GAF de, Faria ÁCD, Lopes AJ, Jansen JM, Silva EC da, Melo PL de. Técnica de oscilações forçadas na avaliação funcional de crianças asmáticas. Pulmão RJ. 2009;18(3):133–8.

2. Harrison J, Gibson AM, Johnson K, Singh G, Skoric B, Ranganathan S. Lung function in preschool children with a history of wheezing measured by forced oscillation and plethysmographic specific airway resistance. Pediatr Pulmonol [Internet]. 2010 Nov [cited 2015 Dec 28];45(11):1049–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20848582

3. Heijkenskjöld Rentzhog C, Janson C, Berglund L, Borres MP, Nordvall L, Alving K, et al. Overall and peripheral lung function assessment by spirometry and forced oscillation technique in relation to asthma diagnosis and control. Clin Exp Allergy [Internet]. 2017 Dec 1 [cited 2019 Nov 2];47(12):1546–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28940832

4. Peták F, Czövek D, Novák Z. Spirometry and forced oscillations in the detection of airway hyperreactivity in asthmatic children. Pediatr Pulmonol [Internet]. 2012 Oct;47(10):956–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22451241

5. Robinson PD, Brown NJ, Turner M, Van Asperen P, Selvadurai H, King GG. Increased day-to-day variability of forced oscillatory resistance in children with wheezing or persistent pediatric asthma. Chest [Internet]. 2014;146(4):974–81. Available from: http://ovidsp.ovid.com/ovidweb.cgi?JspPage=reference&DB=medline&NEWS=N&AN=24991854

6. Lebecque F, Spier S, Lapierre JG, Lamarre A, Zinman R, Coates AL. Histamine challenge test in children using forced oscillation to measure total respiratory resistance. Chest. 1987;92(2):313–8.

7. Wanner A, Zarzecki S, Marks MB. Continuous measurement of respiratory resistance in asthmatic children. Respiration. 1977;34(2):61–8.

8. Dubois AB, Brody AW, Lewis DH, Burgess BF. Oscillation mechanics of lungs and chest in man. J Appl Physiol. 1956;8(6):587–94.

9. Marchal F, Mazurek H, Habib M, Duuvier C, Doreille J, Peslin R. Input respiratory impedance to estimate airway hyperreactivity in children: Standard method versus head generator. Eur Respir J. 1994;7(3):601–7.

10. Mazurek HK, Marchal F, Doreille J, Hatahet R, Monerey-Vautrin D, Monin P. Specificity and sensitivity of respiratory impedance in assessing reversibility of airway obstruction in children. Chest. 1995;107(4):996–1002.

11. Thamrin C, Gangell CL, Udombittipong K, Kusel MMH, Patterson H, Fukushima T, et al. Assessment of bronchodilator responsiveness in preschool children using forced oscillations. Thorax [Internet]. 2007;62(9):814–9. Available from: http://www.pubmedcentral.nih.gov/article-render.fcgi?artid=2117298&tool=pmcentrez&render-type=abstract

12. Meraz E, Nazeran H, Dione B, Menendez R, Ortiz G, Goldman M. Modeling human respiratory impedance in hispanic asthmatic children. In: Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings. 2007. p. 4251–4.

13. Schulze J, Smith HJ, Fuchs J, Herrmann E, Dressler M, Rose MA, et al. Methacholine challenge in young children as evaluated by spirometry and impulse oscillometry. Respir Med. 2012;106(5):627–34.

14. Murakami K, Habukawa C, Kurosawa H, Takekura T. Evaluation of airway responsiveness using colored three-dimensional analyses of a new forced oscillation technique in controlled asthmatic and nonasthmatic children. Respir Investig [Internet]. 2014 Jan [cited 2019 Aug 4];52(1):57–64. Available from: https://linkinghub.elsevier.com/retrieve/pii/S02212534513000919

15. Ioan I, Coutier L, Bonabel C, Albrecht J, Demoulin B, Marchal F, et al. Airway obstruction, upper airway artifact and response to bronchodilator in asthmatic and healthy children. Pediatr Pulmonol. 2015;50(11):1053–9. doi: 10.1002/ppul.23131. Epub 2014 Nov 10. PMID: 25384559.

16. Czövek D, Shackleton C, Hontos Z, Taylor K, Kumar A, Chacko A, et al. Tidal changes in respiratory resistance are sensitive indicators of airway obstruction in children. Thorax [Internet]. 2016 Oct [cited 2017 May 26];71(10):907–15. Available from: http://thorax.bmj.comlookup/doi/10.1136/thoraxjnl-2015-208182

17. Starczewska-Dymek L, Bozek A, Jakalski M. The usefulness of the Forced Oscillation Technique in the Diagnosis of Bronchial Asthma in Children. Can Respir J. 2018;2018.

18. Sol IS, Kim YH, Kim S, Kim JD, Choi SH, Kim KW et al. Assessment of within-breath impulse oscillometry parameters in children with asthma. Pediatr Pulmonol. 2019 Feb;54(2):117-124. doi: 10.1002/ppul.24201. Epub 2018 Dec 10. PMID: 30536749.

19. Kaczka DW, Lutchin KR, Hontos Z. Emergent behavior of regional heterogeneity in the lung and its effects on respiratory impedance. Volume 110, Journal of Applied Physiology. 2011. p. 1473–81.

20. Downie SR, Salome CM, Verbanck S, Thompson BR, Berend N, King GG, et al. Effect of methacholine on peripheral lung mechanics and ventilation heterogeneity in asthma. J Appl Physiol [Internet]. 2013/02/02. 2013 Mar 15 [cited 2019 Dec 1];114(6):770–7. Available from: https://www.ncbi.nlm.nih.gov/pubmed/23372144

21. Beydon N, Davis SD, Lombardi E, Allen JL, Arets HGM, Aurora P, et al. An Official American Thoracic Society/European Respiratory Society Statement: Pulmonary function testing in preschool children. Am J Respir Crit Care Med [Internet]. 2007 Jun 15;175(12):1304–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17545458