Neurospora WC-1 Recruits SWI/SNF to Remodel frequency and Initiate a Circadian Cycle

Bin Wang1, Arminja N. Kettenbach1,2, Scott A. Gerber1,2, Jennifer J. Loros1,3, Jay C. Dunlap1*

1Department of Genetics, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America, 2Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America, 3Department of Biochemistry, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America

Abstract

In the negative feedback loop comprising the Neurospora circadian oscillator, the White Collar Complex (WCC) formed from White Collar-1 (WC-1) and White Collar-2 (WC-2) drives transcription of the circadian pacemaker gene frequency (frq). Although FRQ-dependent repression of WCC has been extensively studied, the mechanism by which the WCC initiates a circadian cycle remains elusive. Structure/function analysis of WC-1 eliminated domains previously thought to transactivate frq expression but instead identified amino acids 100–200 as essential for frq circadian expression. A proteomics-based search for coactivators with WCC uncovered the SWI/SNF (SWItch/Sucrose NonFermentable) complex: SWI/SNF interacts with WCC in vivo and in vitro, binds to the Clock box in the frq promoter, and is required both for circadian remodeling of nucleosomes at frq and for rhythmic frq expression; interestingly, SWI/SNF is not required for light-induced frq expression. These data suggest a model in which WC-1 recruits SWI/SNF to remodel and loop chromatin at frq, thereby activating frq expression to initiate the circadian cycle.

Citation: Wang B, Kettenbach AN, Gerber SA, Loros JJ, Dunlap JC (2014) Neurospora WC-1 Recruits SWI/SNF to Remodel frequency and Initiate a Circadian Cycle. PLoS Genet 10(9): e1004599. doi:10.1371/journal.pgen.1004599

Editor: Achim Kramer, Charité - Universitätsmedizin Berlin, Germany

Received September 20, 2013; Accepted July 13, 2014; Published September 25, 2014

Copyright: © 2014 Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by grants from the National Institutes of Health to JCD and JIL (GM34985 and GM083336) and R01 CA15520 to SAG. We are pleased to acknowledge use of materials generated by P01 GM068087, “Functional Analyses of Model Filamentous Fungi.” The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: jay.c.dunlap@dartmouth.edu

Introduction

Circadian clocks are key cellular mechanisms regulating a wide variety of physiological and molecular activities. Neurospora has been for several decades an excellent model for studies of the eukaryotic circadian clock characteristic of fungi and animals. Neurospora has been of the ATP-dependent chromatin remodeling complexes, was first discovered in Saccharomyces cerevisiae as a 2 MDa complex that alters chromatin structures for essential functions such as transcriptional activation, DNA repair, recombination, and chromosome segregation [14,15]. In yeast SWI/SNF is estimated to control the transcription of no more than 5% of all genes but including the acid phosphatase genes and the MATα-specific genes [16]. The yeast SWI/SNF complex contains one copy each of eleven subunits, except for the SWI3 subunit that is present in two copies; all SWI/SNF subunit-null mutants are viable but display distinguishable phenotypes. SWI2 is a highly conserved DNA-dependent ATPase and the scaffold protein of the complex [17]; swi2 knockout are defective in sporulation and display slow growth on nonfermentable carbon sources [18,19]; swi1 null strains, defective in mating-type switching, display sporulation defects and slow growth [20,21]; snf5 null mutants show reduced growth on glucose and sucrose [22,23]. The SWI/SNF complex can associate with naked DNA or nucleosomes, and is thought not to bind in a sequence specific manner [24–26]. Instead, SWI/SNF is targeted to promoters via acidic domains on the surfaces of gene-specific transcriptional activators rather than via interactions with polyglutamine (polyQ) rich sequences [27]. Yeast SWI/SNF can alter nucleosomal structure in an ATP-dependent manner, which leads to the relief of chromatin-mediated repression of transcription [28,29]. SWI/SNF is able to remodel nucleosomes per se without their disruption, by sliding histone octamers to other sites on the same DNA molecule, or transferring histone octamers to other DNA molecules [26].
Rhythmic histone modifications and chromatin remodeling over a circadian cycle have been reported for a variety of genes in different circadian systems. For example, the promoter regions of Per1 and Per2, central clock components in mammals, undergo rhythmic histone H3 acetylation (K9, K14) [30]. In Neurospora, histone acetylation of the frq promoter oscillates over a circadian cycle and chromatin structure at frq is rhythmically remodeled in a circadian fashion, accompanied by rhythmic binding of WC-2 [31]. The occupancy of the nucleosome neighboring the C box peaks when frq transcription is repressed and decreases just before frq transcription starts [31]. In the same study, an ATP-dependent chromatin remodeler, CLOCKSWITCH (CSW), was identified as a component essential for depositing nucleosomes back to the C box to terminate frq transcription. Another chromatin remodeler, CHD-1, plays a role in methylation and rhythmic expression of frq [32]. Although both CSW and CHD-1 appear to be required for the closure of frq transcription and participate in chromatin remodeling at frq, how the WCC interacts with remodeling factors to relieve chromatin-mediated repression of the C box is still elusive. Consistent with this, there is a several hour lag between the turnover of FRQ and the rapid increase in frq mRNA [33], suggesting that there is more to reinitiation of frq expression than simply relief of repression.

In this study, we identify a previously undescribed N-terminal domain of WC-1, close to but not including the prominent polyglutamine stretch, that acts as the transactivation domain for recruiting SWI/SNF and driving frq transcription; notably, elimination of the N- and C-terminal polyQ stretches does not influence frq circadian transcription and such strains showed a WT circadian phenotype. The SWI1 subunit in the SWI/SNF complex is essential for initiation of frq transcription in a circadian context although interestingly not in response to light, and in a Δswi1 strain chromatin structure adjacent to the C box is less remodeled and the oscillation of the nucleosomal density is abolished, as is the circadian clock.

Results

N- and C-terminal polyQ stretches predicted to be activation domains are not required for WCC circadian function

In the classic model of transcription, transcription factors use their transactivation domains to recruit transcriptional coactivators, e.g. chromatin remodelers and histone acetyltransferases, to release the repressive state of promoter regions [26]. In Neurospora, WC-1 has two polyQ domains located at N- and C- termini respectively that were hypothesized to be transactivation domains (AD) [10,11,34] (Figure 1A). To test the role of the two polyQs in frq expression, we eliminated both of them (aa 16-57 and aa 1097-1128) (Figure S1A) and surprisingly the double deletion strain still showed a wild-type (WT) circadian phenotype (Figure 1B). We further checked FRQ levels in strains held in constant dark (DD) for 16 hours (Circadian Time (CT) 5), a time when newly synthesized FRQ appears in WT. Consistent with the race tube data, FRQ levels in the double deletion strain showed no observable difference from WT and the WC-1 level is comparable with WT (Figure 1D, right-most panel). Collectively, the two polyQ stretches on WC-1 do not influence the stability of WC-1 and are not required for frq transcription and the circadian function of WCC in the dark.

A domain encompassing aa 100-200 in WC-1 is required for frq dark expression

Because, despite prediction, the two polyQ stretches on WC-1 are not transactivation domains, a series of WC-1 deletions were generated to identify the regions needed for frq transcription, and circadian phenotypes of these mutants were monitored by race tube assays (Figure 1A, 1B, and Figure S1B). Of these mutants, only strains bearing deletions overlapping aa 101-200 showed an arrhythmic circadian phenotype (Figure 1B). In the three mutants deleted for these residues, all of which lacked overt rhythmicity, frq mRNA levels were no longer rhythmic and were reduced to or below levels seen in the trough of the wild type rhythm (Figure 1C). New FRQ was not seen at DD16 (16 hours in darkness, circadian time (CT) 5 in the subjective morning when frq expression normally peaks) and only a weak FRQ band or no FRQ at all appeared at DD28 (subjective night, CT17) (Figure 1D); levels of wc-1 mRNA and WC-1 protein were normal. This suggested that the region between aa 101 and 200 has the potential to transactivate frq expression, and to identify these residues four strains bearing smaller deletions were created at intervals of 25 amino acids: Δ100-125, Δ126-150, Δ151-175, and Δ176-200. The Δ100-125 and Δ151-175 strains showed a WT period while Δ126-150 and Δ176-200 displayed a period of 2 hours longer than WT (Figure S1B). Thus, it seems that multiple domains determine the expression level of the frq gene. Interestingly, the Δ163-200 strain that displayed a 25.5 hour period (Figure S1B) and reduced dark FRQ expression (Figure S1C) retained its responsiveness to light for both frq mRNA and FRQ expression respectively (Figure S1D), indicating that this region may only mediate circadian frq expression.

WCC interacts with SWI1 in vivo and in vitro

To identify interaction partners of the WCC and potential co-activators, WC-1 that was epitope-tagged with V5, 10xhistidine, and 3xFLAG was purified from extracts and interacting proteins identified by MS/MS (Wang et al., in preparation); these preliminary mass spectrometry data showed that SWI/SNF subunits copurified with the Neurospora WCC. To validate this interaction in vivo, SWI1 was C-terminally tagged with V5. Immunoprecipitation using WC-2 antibody revealed the anticipated strong interaction with WC-1 as well as an interaction with SWI1 that was dependent on the presence of WC-1 (Figure 2A).

To confirm that the association between this region of WC-1 and SWI/SNF is still robust in vitro, GST alone, GST-WC-1 aa 1-300-6xHis and GST-aa 100-300-6xHis (that lacks the N-terminal polyQs) were cloned, expressed and purified from E. coli.
GST-WC-1 aa 1-300 6xHis and GST-aa 100-300-6xHis were purified with a two-step protocol to obtain the full length polypeptides (Figure 2B). To pull down SWI/SNF, the purified proteins were incubated with a centrifuged cell lysate of a SWI1-V5 strain and the captured proteins analyzed by Western blot.

GST alone failed to pull down SWI1-V5 while GST-WC-1 aa 1-300-6xHis and GST-aa 100-300-6xHis pulled down SWI1 at a similar level (Figure 2C). Negative controls include actin, an abundant nuclear protein, as well as two transcription factors, the GATA zinc finger SRE encoded by NCU07728 and the zinc(2)-Cys(6) bimolecular cluster domain transcription factor COL-23 encoded by NCU07728, both of which are known to bind DNA [X. Zhou and JCD, unpublished]. The data indicate that WC-1 aa 1-300 is able to recruit SWI/SNF and aa 1-100 which contains the polyQs does not contribute to the recruitment. This is consistent with the behavior of yeast SWI/SNF that can be pulled down from crude cell lysates by the acidic transactivation domain but not by the polyQ region of herpes virus VP16 [27]. The isoelectric point (pI) of the Neurospora N-terminal domain aa1-300 is 4.95 and aa 100-300 is 4.41 (predicted by DNAMAN software). The acidic nature of aa 100-300 is consistent with reported acidic activation domains of the VP16 protein, yeast Gcn4p, and yeast Hap4p, which are able to recruit the SWI/SNF complex to release chromatin-mediated repression of transcription [35–37].

To characterize the subunit composition of Neurospora SWI/SNF, V5-tagged SWI1 was purified using a single V5 antibody step and the result showed that several proteins were specifically co-purified with SWI1-V5 in a stoichiometric manner (Figure 2D). These bands were cut out individually and identified by mass spectrometry. The data confirmed the presence of SWI1, SWI2, SWI3, SWP59, SNF5, and SWP73 in the Neurospora SWI/SNF complex and confirmed that the interactions within complex in Neurospora are robust. Like WC-1 and WC-2, SWI1 and SWI2 have constant protein levels over 28 hours in constant dark (Figure S2). Taken together, these data demonstrate that WC-1 binds to SWI/SNF in vivo and WC-1 aa100-300 can specifically recruit SWI/SNF in vitro.

Δswi1 and Δsnf5 show significantly impaired frq expression

To uncover a possible role of SWI/SNF in frq transcription and in circadian rhythm, we obtained all SWI/SNF single gene deletion strains from the yeast genome.org/). FRQ protein expression was examined by Western blot (Figure 3A), and frq mRNA by qRTPCR (Figure 3B) in each SWI/SNF knockout at two times of day: circadian time (CT) 5 (DD16) when newly synthesized FRQ peaks and CT17 (DD28) when old FRQ is hyperphosphorylated and begins to be degraded [33]. In yeast, Snf5p, Swi1p, and Swi2p subunits are contacted by acidic activators such as Gcn4p and Hap4p [38]. Consistent with this, in the deletion strains examined, the FRQ and frq mRNA levels were low and circadian regulation was abolished in Δsnf5, Δswi1, and decreased in Δswp59 (Figure 5).

Consistent with WC-1 transcriptional autoregulation, the known role of FRQ in stabilizing WC-1 [4] and the low levels of FRQ in these strains, WC-1 levels were also correspondingly reduced, although it is also possible that SWI/SNF might directly influence WC-1 expression. Interestingly, although WC-1 levels in Δswi1 were slightly lower than in WT and higher than in Δswp82 (on the same blot), the Δswp82 strain had a normal FRQ level and circadian expression whereas Δswi1 did not (Figure 3A); this suggests that the very low WC-1 level in Δswi1 is sufficient to drive rhythmic frq expression and that the lack of a rhythm lies somewhere else. FRQ and WC-1 levels were similar to those of WT in other SWI/SNF knockouts examined (Figure S3A). Together, based on the low level of frq mRNA and FRQ in Δsnf5, Δswi1, and Δswp59, SWI/SNF complex participates in WCC-dependent frq expression and the SWI1 subunit is specifically involved in this event through its physical interaction with WC-1.

Rhythmic transcription of frq is abolished in Δswi1

To check the circadian significance of swi1, snf5 and swp59, the three deletion strains were backcrossed to the ras-lmut allele that has been widely used to visualize overt circadian rhythms in Neurospora [39]. In race tube assays Δswi1 showed a virtually WT period while, interestingly, both Δswi1 and Δsnf5 were arrhythmic (Figure S3B), grew more slowly, and produced fewer conidia than WT, suggesting that SWI/SNF also plays a role in hyphal growth and asexual spore formation. The slowed growth and reduced conidiation phenotypes of Δswi1 and Δsnf5 are consistent with those of yeast (see Introduction), but also raised the possibility that loss of rhythmicity was an artifact arising from interference of the mutations with the expression of rhythmicity rather than interference with the clock itself. To directly and continuously monitor changes in frq transcription at the level of the core clock, we created strains that bear an optimized luciferase reporter gene driven by the circadian promoter (C box) of frq [40] in Δswi1, Δsnf5, and Δswp59 backgrounds respectively, such that the activity of the complex of WC-1 and WC-2 on the frq promoter could be analyzed in vivo. Consistent with Figure 3, the amplitude of frq promoter:luc transcription was dramatically impaired in Δswi1 while Δswi1 showed a WT phenotype (Figure 4). frq transcription was also impaired in Δsnf5 but
Figure 2. WCC interacts with SWI/SNF in vivo and in vitro. (A) Co-IP demonstrating interaction of WC-1 with SWI1 in vivo. SWI1 was C-terminally tagged with a V5 epitope and immunoprecipitation was performed using WC-2 antibody. WC-1 was pulled down with WC-2 as well as a reduced amount of SWI1. (B) Expression and purification of GST-WC-1 fusion proteins. GST, GST WC-1 1-300 6xHis, and GST WC-1 100-300 6xHis lacking the N-
polyQs were expressed in bacteria and purified. Gel stained with Coomassie Blue. (C) N-terminal fragments of WC-1 extending from 1-300 or 100-300 bind to SWI1 in vitro. Neurospora crude cell lysates were mixed with beads to which the GST-tagged WC-1 fragments were bound, and bound SWI1 was visualized by virtue of a C-terminal V5 tag; see Materials and Methods. GST alone failed to pull down SWI1 while WC-1 aa1-300 or aa 100-300 pulled down SWI1 at a similar level. Likewise negative control proteins actin, and two transcription factors encoded by NCU05051 and NCU07728 were not bound by WC-1 fragments. (D) Affinity purification of the Neurospora SWI/SNF complex showed the presence of different subunits in a 1:1 stoichiometry except for SWI3. SWI1 was tagged with V5 at the C-terminus, centrifuged lyate was incubated with V5 antibody, and the gel was silver-stained. Individual bands were excised and each protein identified via mass spectrometry.

Table 1. Neurospora SWI/SNF subunits and knockouts.

Yeast subunits	Function	P value	Neurospora ortholog	Identity of gene deletion mutants in the whole genome knockout collection	Effect of gene deletion on FRQ expression
SWP59 (ARP9)	Actin related	1.6e-16	NCU08840	FGSC #18403	Reduced
SWP73 (SNF12)	Core subunit, ATPase activity	5.7e-14	NCU03572	FGSC #18763	ND
SW1	Core subunit	4.8e-267	NCU06488	FGSC #11467	ND
SWI2 (SNF2)	Core subunit	9.4e-10	NCU00421	FGSC #11785	Reduced
SNF5	Core subunit	7.4e-09	NCU00421	ND	Reduced
SWW3	Core subunit	7.6e-09	NCU08003	FGSC #21999	ND
SWP82		2.3e-10	NCU03064	FGSC #19756	ND
SWP29 (TAF14/TAF30)		2.3e-06	NCU00444	FGSC #18696	ND

Neurospora homologs were recovered based on similarity to Saccharomyces SWI/SNF subunits. All listed subunits are not essential in Saccharomyces cerevisiae. P value refers to the pBLAST score of the Neurospora ortholog when the yeast protein sequence was used to probe the Neurospora genome. In Neurospora, deletions of non-essential genes are available as homokaryons whereas deletions of essential genes such as swi2 and swi3 are maintained as heterokaryons in which the deletion is mixed within syncytium with nuclei containing a WT copy of the gene.

doi:10.1371/journal.pgen.1004599.s002
this period and this is accompanied by a slightly delayed and steeper increase in SWI/SNF association (using SWI1 as a proxy). Loss of nucleosome components from the region of the C box was tracked by loss of histone H3 which shows a lag of 3–4 hours followed by a rapid disappearance from the C-box region. A working model for initial events in activation of frq transcription consistent with these data posits WC-1 and WC-2 forming an active transcriptional complex on the C box DNA (see also [31]) followed by WCC recruitment of the SWI/SNF complex which initiates active remodeling of the chromatin in the region of the C box.

Nucleosomal density at the C box of the frq promoter increases in Δswi1

We have previously shown that a nucleosome (NucB) partially occludes the C box and blocks frq transcription in the subjective evening/night, and is removed from the C box in the late subjective night/early day when frq transcription is initiated [31] (Figure 6A); this model is consistent with the loss of histone H3 from the region as seen in Figure 5B. In the same study, an ATP-dependent chromatin remodeler, CLOCKSWITCH (CSW), was shown to be necessary for remodeling of the opened C box back to the closed repressive state. Our data suggested that SWI/SNF might be involved in antagonizing CSW in opening the C box for frq transcription. To compare NucB density between WT and Δswi1, nuclei were isolated, micrococcal nuclease (MNase) digested, and mononucleosomal DNA was gel-purified and quantified for real-time PCR (Figure 6B). Four dark time points across two circadian cycles representing circadian oscillations of the NucB density were chosen for comparison: DD4 (CT 16, subjective night when the C box is closed and frq transcription repressed), DD12 (CT 0, subjective morning when the C box is open and frq is transcribed), DD24 (CT 13, subjective evening,
second day), and DD32 (CT 21, late subjective night, second day); these times were chosen based on the peaks and troughs of nucleosome occupancy reported by Belden et al. [31]. NucB level was determined by real-time PCR using a specific primer set against DNA sequences near to the C box and the region of NucB on the mononucleosomal gel-purified DNA. As previously reported [31], NucB density peaked at DD4 and 24 and decreased at DD12 and 32 in WT (Figure 6C), but this oscillation was completely abolished in Δsw1 and NucB density was always higher than WT. To better gauge whether NucB was being moved aside or displaced to truly open up the chromatin at the C box, we applied a nuclease sensitivity assay previously used to probe chromatin structure at this locus [31]. Chromatin was isolated from WT or Δsw1 strains at the same 4 subjective times (corresponding to two successive peaks and troughs in frq expression in WT and the corresponding times in Δsw1) and subjected to limited digestion with micrococcal nuclease (MNase), an enzyme that will cut open DNA but not DNA bound within nucleosomes (Figure 6D). The nucleosome located over the C box (NucB) appears to be rhythmically present in WT but continually present in the Δsw1 background, consistent with the PCR analysis of Figure 6C. In all these data suggest that SWI/SNF is required for remodeling NucB to activate frq transcription in a circadian cycle and that SWI1 plays an essential role in this process. As controls for specificity, the nucleosome near NucB and bracketing the C box (called NucA, [31]) and an untranscribed region (3.305) of Neurospora DNA [31] had a comparable density between WT and Δsw1 across the four time points tested (Figure 6C).

Discussion

In this study, we showed that WC-1 in the WCC recruits SWI/SNF to the frq promoter to aid in remodeling the nucleosome environment of the C box and thereby to initiate a circadian cycle of frq transcription. To identify potential transactivation domains on WC-1 required for frq transcription, a series of WC-1 deletions were generated and studied. Among these, all deletions covering amino acids 101-200 had normal WC-1 levels but displayed severely impaired frq mRNA and FRQ expression in the dark and arrhythmic circadian phenotypes. These data suggest aa 101-200 of WC-1 is a transactivation domain that is essential for circadian expression of frq. A search for coactivators recruited by WC-1 identified SWI/SNF, components of which interact with WC-1 in vivo and in vitro. In addition, the portion of WC-1 containing the transactivation domain is required for recruiting SWI/SNF to the C box.

Affinity purification of the Neurospora SWI/SNF complex identified the expected subunits based on yeast homology predictions (Table 1) as well as the protein encoded by NCU02006 (a highly conserved protein among fungi) and actin (that is also found in mammalian BAF or PBAF complex [45–49]). This complex is sturdy in yeast where deletion of the sites of activation domain contact in the N-terminal SNF5 and the second quarter of SWI1 left the SWI/SNF complex intact [50]. Assuming the Neurospora SWI/SNF complex is similarly robust the data suggest that the arrhythmic clock phenotype of Δsw1 and Δsnf5 may be caused by the loss of transcription factor contact.

A long-standing question brought into focus by this study is how protein-DNA interactions at the C box bring about changes in frq transcription at the TSS, 1.2 kbp away. SWI/SNF, a complex with proven DNA looping capabilities [51,52], provides a clear solution to this question through its ability to facilitate formation of DNA loops; these bring different genomic regions separated by kilobases into close proximity, resulting in sufficient concentrations of each transcription complex to drive transcription [53]. For example, Brg1 (SMCA4), a mouse SWI/SNF subunit, mediates compaction of chromatin into dense loops at the 200 kbp cytokine locus [54] and is also required for the formation of DNA loops across the 150 kbp CIITA locus during interferon-gamma (IFN-gamma)-mediated gene induction [55]. We anticipate that SWI/SNF recruited by the WCC remodels the C box region and brings about DNA looping in a similar manner to bring the C box into proximity with the TSS of frq.

WCC is the primary blue light photoreceptor in the organism [1,2,9], acting at both the C box for circadian feedback and at the PLRE for acute light responses. Interestingly, while both SWI/SNF and aa 101-200 of WC-1 are indispensable for FRQ expression in the dark they have little influence on PLRE-mediated FRQ transcription in constant light. Light-induced FRQ was seen even in the WC-1 Δ1-300 strain; these data also explain the cryptic phenotype of the rhy-2 strain arising from a WC-1 Δ1-264 [56]. WCC in the dark is a heterodimer and when it senses light, it forms a multimer, the light active form, on the PLRE at the frq locus [2,7,57,58]. Thus, it seems that WC-1 might recruit different coactivators in the light than in the dark to activate frq expression. One of the coactivators recruited by the light-activated WCC is NGF-1, a histone acetyltransferase, which plays a role in blue light signal transduction [59]. Also perhaps surprisingly the polyQ domains on the N- and C- termini of WC-1, long predicted to be transactivation domains, are needed for neither light nor dark activities of WC-1. This is consistent with previous work on N-polyQ polymorphisms in wild strains that showed only minor period differences [60], and with findings from other transcription factors such as yeast Gal4 that uses its acidic domain rather than glutamine-rich or proline-rich sequences to recruit SWI/SNF in transcription [27,37,38].

Through the lens provided by this study we can now begin to understand how multiple proteins and complexes with opposing functions coordinate their activities to open/activate and close/repress the frq locus at appropriate circadian phases. We previously reported Clock Switch (CSW) and CHD-1 as chromatin modifiers required for the rhythmic opening and closure of the C box in the frq promoter that leads to rhythmic expression of FRQ [31,32]; CHD-1 also remodels the antisense frq (qfr) promoter and may play a more general role in maintaining chromatin structure at frq as without it expression levels never reach either peak or trough levels seen in WT [32]. WC-1, CSW, and CHD-1 are always present in the cell, and CSW appears to bind to the C box preferentially during the time when frq is becoming active [32]; without WC-1 frq is always inactive and without CSW or CHD-1 frq is always moderately active. In the
Figure 5. The binding of SWI/SNF to the C box relies on aa 1-300 of WC-1 and increases prior to the peak of rq expression. (A) ChIP experiment performed on chromatin isolated at DD16 when frq expression is maximal. WC-1 and WC-2 had a normal binding to the C box of frq in a strain bearing WC-1Δ1-300, while SWI2 binding was impaired in this strain. The annealing positions of the primer set used to detect the C box corresponds to the middle set shown in Figure 6A. Average values are plotted as a percent of total with error bars representing the standard error of the mean (SEM) (n = 3, ***p < 0.0005). Samples were grown for 16 hours in the dark, formaldehyde-crosslinked, and harvested. (B) ChIP was used in a timecourse analysis of the association of WC-2, SWI-1 and histone H3 with the C box. Samples were grown for the indicated number of hours in darkness (DD) prior to harvesting and processing for ChIP as described in (A). Error bars represent the standard error of the mean (= 3).
doi:10.1371/journal.pgen.1004599.g005
SWI/SNF Facilitates frq Expression

A. Subjective day

C box NucA

Subjective night

NucB NucA

B. WT Δswi1

	WT	Δswi1
CT	16	16
DD	4	0
	12	12
	24	24
	32	24
	21	13
	13	0
	21	21

200 bp
100 bp

C. NucB density

Strain and time	Relative Amount
WT DD 4	1.5
WT DD 12	1.2
WT DD 24	1.8
WT Δswi1 DD 24	2.0
Δswi1 DD 32	2.2

D. NucA density

Strain and time	Relative Amount
WT DD 4	1.2
WT DD 12	1.4
WT Δswi1 DD 24	1.6
Δswi1 DD 32	1.8

3.303

M Ncol Ncol

C Box

PLOS Genetics | www.plosgenetics.org 11 September 2014 | Volume 10 | Issue 9 | e1004599
core negative feedback loop, FRQ helps to inactivate WC-1 and prevents WCC from binding to DNA. However, the fact that frq remains moderately active without CSW or CHD-1 indicates that activation/repression of FRQ is more than only binding/inactivation of WCC but also requires the active participation of other factors, perhaps to eject the WCC/SWI/SNF complex from the C box and unloop the DNA. Although both CSW and CHD-1 actively remodel DNA at frq their role in the clock cannot be succinctly stated as activating or repressing: the timing of CSW binding, for instance, coincides with frq activation yet frq is still expressed without it. When present and active, WCC might dominate the competition between activation and repression, recruiting SWI/SNF to activate frq despite the presence of other factors. Not explicitly accounted for yet in this model is the involvement of the frq antisense gtf, whose promoter is also remodeled by CHD-1. A recent publication revealed a novel factor, CATP (Clock ATPase), involved in remodeling chromatin at the C box [61]. The expression of frq in Δatp strains appears to be about a log order greater than in strains lacking SWI/SNF, consistent with CATP acting as an accessory factor to help to open the C box.

A working model based on these data is summarized in Figure 7. In the dark, before frq transcription starts, NucB mostly blocks the C box due to the action of chromatin remodelers that may include CHD-1; when with WC-2, WC-1 binds to the C box in its active form, it recruits SWI/SNF which aids in removing NucB from the C box, stabilizing the active state essential for frq transcription; CSW binds most strongly at this time. Based on the action of SWI/SNF in other systems we anticipate that its action involves DNA looping to bring the TSS into proximity with the C box and WCC. This configuration remains active, with active WC-1 being rapidly turned over, until FRQ depresses activity of WC-1 and reduces its affinity for DNA thereby also stabilizing it. Without WCC bound, the SWI/SNF-mediated looping is reversed by the action of other chromatin remodelers, and NucB returns to cover the C box.

A variety of data suggest that light activation of frq may represent a distinct function. In the light frq mRNA levels are much higher than that in the dark, FRQ does not inhibit this expression, [33,62] and in the light, the FRQ levels are nearly normal in the SWI/SNF deletion strains tested including Δswi1, Δswi3 and Δswi5p9 that severely reduce circadian frq expression. This suggests that the WCC recruited to the PLRE in the light recruits functional coactivators other than SWI/SNF to modify the PLRE in frq transcription. Additionally and consistent with this, the PLRE is located adjacent to the TSS site and WCC acts on these regions neither by looping of the DNA to bring activators to the TSS, nor by wholesale remodeling of chromatin, although epigenetic modifications have been noted [32,39,59]. This suggests that major remodeling and looping induced by SWI/SNF are principal factors distinguishing circadian activators at the C box versus light activators at the PLRE.

Materials and Methods

Strains and growth conditions

328-4 (ras-1Δ A) and 74A (ras-1WT A) were each used as a clock-WT strain in this study. Race tube analyses were carried out as previously described [39]. Race tube medium contains 1×Vogel’s salts, 0.1% glucose, 0.17% arginine, 50 ng/mL biotin, and 1.5% bacto-agar, and liquid culture medium (LCM) is 1×Vogel’s, 0.5% arginine, and 50 ng/mL biotin with glucose at 2%. Race tubes were inoculated and incubated in constant light for 16–24 h at 25°C and then transferred to constant darkness at 25°C. A recipient strain for generating WC-1 deletion series is 21-9 (ras-1Δ; Afrq::hph; Δmus-52::hph; Δafr1-2; Δfrq-1Δ). Neurospera transformation was done as previously described [63]. The wc-1 [knock-in] (wc-1R8) targeting cassette pWB-1-6 was introduced into 21-9 and replacement mutants were backcrossed to 328-4 to obtain homokaryotic strains for race tube analyses. WC-1 and SWI/SNF deletion strains generated by the Neurospera genome project were obtained from Fungal Genetics Stock Center (FGSC) [63].

Protein isolation and detection

Procedures for preparation of protein lysates and Western blots were followed as described [33,64]. For Western blot, 15 milligrams of whole-cell protein lysate was loaded per lane. Anti-V5 antibody (Pierce) was diluted 1:5000 for use as the primary antibody. SWI2 antibody was obtained from Abcam (Ab3749). Protein purification prior to MS/MS analysis was performed using a slightly modified procedure [64].

Immunoprecipitation (IP). IP was done as previously described [64]. In brief, 2 milligrams of total protein were incubated with 50 μL of V5 beads rotating for 2 hours to overnight. The agarose beads were washed with the protein extraction buffer 4 times and eluted with 50 μL of 5× SDS sample buffer at 99°C for 5 min.

GST pull-down assay

WC-1 aa1-300 and 100-300 were each cloned into pGEX4T1 in-frame fused with an N-terminal GST tag, and a hexahistidine tag was added by PCR to the C-termini. The plasmids were expressed in bacteria grown in LB medium with Ampicillin at a concentration of 10 μg/mL for 3 hours and induced with 1 mM IPTG for 1 hour. For WC-1 aa1-300 and 100-300, a cobalt purification step (Pierce) followed by a subsequent glutathione (Thermo Pierce) step was carried out to obtain full length polypeptides. GST was purified with glutathione resin (Thermo Pierce) alone. Neurospera lysates were cleared by centrifugation at 9,000 g for 10 minutes at 4°C. Purified GST, GST-aa1-300, and aa100-300 on glutathione beads were each incubated with 2 milligrams of cleared Neurospera lysate (SWI C-tagged with V5) and rotated for at least 2 hours. The supernatant was removed and the beads were washed three times with the pull-down buffer.
Micrococcal nuclease assays
The micrococcal nuclease assay was performed as described in [31] with modifications. In brief, *Neurospora* nuclei were isolated from tissues cultured for indicated dark time. For each sample, 80 mg of nuclei were digested with micrococcal nuclease (Takara) at the final concentration of 0.1 unit/ml for 1.5 min at 37 degrees. The digestion reaction was stopped by adding a buffer containing 0.2 mg/ml protease K and incubated at 37 degrees overnight. Chromatin DNA was extracted using Gentra Puregene Cell Kit (Qiagen) and cut with *Nco*I. Southern blot was carried out with a digoxigenin-labeled probe as described in [31].

Other techniques
Chromatin immunoprecipitation experiments were done as previously described [31]. Mass Spectrometry was performed as previously described [64]. Luciferase assays were performed as previously described [40]. Nuclear preparations and MNase digestions were performed as reported [31,65].

Supporting Information
Figure S1 Race tube phenotypes of *wc-1* mutants between aa 100-200 and FRQ protein levels in Δ163-200 (A) Amino acid sequence alignment of four fungal WC-1s. When WC-1 sequences from four closely related fungi (*Neurospora crassa*, *Magnaporthe grisea*, *Podospora anserina*, and *Chaetomium globosum*) were aligned, it is clear that the polyQ domains are not conserved. Amino acid sequences were downloaded from the NCBI website and the alignments were performed using the EMBI-EBI on-line tool ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/) (B) Race tube analyses of *wc-1* mutants in the region of aa 100-200. 328-4 (ras-*Iab*) was WT for this assay. Period lengths were as shown +/- SEM. (C) Western blot analysis of FRQ and WC-1 in WT and Δ163-200 in constant light, DD16, and DD28. (D) FRQ is normally induced in response to light in Δ163-200. After a light exposure of 15 minutes, WC-1 underwent hyperphosphorylation and light-induced FRQ was seen after 1 hour light pulse in WT and Δ163-200. (TIF)
Figure S2 Protein levels of WC-1, WC-2, SWI1, and SWI2 in constant dark over one circadian cycle. WC-1, WC-2, SWI1, and SWI2 protein levels were examined by Western blot across 28 hours in the dark. WC-1, WC-2, SWI1, and SWI2 showed relatively even protein levels. 15 μg of total protein lysate were loaded into each lane.

(TIF)

Figure S3 FRQ expression in SWI/SNF single subunit knockouts and race tube phenotypes of Δωt1, Δωt3, and Δωt59 (A) FRQ and WC-1 levels in SWI/SNF deletion strains analyzed by Western blot. Samples were grown in 2% LCM medium, synchronized in the light, transferred to the dark, and harvested at indicated time points. Non-specific bands were shown to demonstrate equal loading. (B) Δωt1, Δωt3, and Δωt59 strains with and without the ras-1Δ mutation grown on standard race tube medium. Black lines marked daily growth fronts of the strains in race tubes. Δωt1 and Δωt53 in the ras-1Δ background displayed conidiation and growth defects.

(TIF)

Acknowledgments

We thank Chris Baker (Jackson labs) and Jillian Emerson for their excellent technical assistance and the Fungal Genetics Stock Center for providing Neurospora knockout strains. We also appreciate suggestions from Zhonghe Liu in Larry Myers’ lab at the Geisel School.

Author Contributions

Conceived and designed the experiments: BW JLI JCD. Performed the experiments: BW ANK SAG. Analyzed the data: BW ANK SAG JLI JCD. Contributed reagents/materials/analysis tools: BW ANK SAG. Wrote the paper: BW JLI JCD.

References

1. Froehlich AC, Lorus JJ, Dunlap JC (2003) Rhythmic binding of a WHITE COLLAR-containing complex to the frequency promoter is inhibited by FREQUENCY. Proc Natl Acad Sci U S A 100: 5914–5919.

2. Froehlich AC, Lorus JJ, Dunlap JC (2002) White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297: 815–819.

3. Lee K, Lorus JJ, Dunlap JC (2000) Interconnected feedback loops in the Neurospora circadian system. Science 289: 107–110.

4. Shi M, Collert M, Lorus JJ, Dunlap JC (2010) FRQ-interacting RNA helicase mediates negative and positive feedback in the Neurospora circadian clock. Genes 186: 351–361.

5. Cheng P, He Q, Wang L, Liu Y (2005) Regulation of the Neurospora circadian clock by an RNA helicase. Genes Dev 19: 234–241.

6. Aronson BD, Johnson KA, Loros JJ, Dunlap JC (1994) Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. Science 263: 1578–1584.

7. Schaffratter T, Haase A, Kaldí K, Scholz J, Fuchs M, et al. (2005) Transcriptional feedback of Neurospora circadian clock gene by phosphorylation-dependent inactivation of its transcription factor. Cell 122: 235–246.

8. He Q, Cha J, Lee HC, Yang Y, Liu Y (2006) CKI and CKII mediate the FREQUENCY-dependent phosphorylation of the WHITE COLLAR complex to close the Neurospora circadian negative feedback loop. Genes Dev 20: 2552–2565.

9. He Q, Cheng P, Yang Y, Wang L, Gardner KH, et al. (2002) White collar-1, a DNA binding transcription factor and a light sensor. Science 297: 840–843.

10. Cheng P, Yang Y, Wang L, He Q, Liu Y (2003) WHITE COLLAR-1, a multifunctional neuronal protein involved in the circadian feedback loops, light sensing, and transcription repression of wc-2. J Biol Chem 278: 3801–3808.

11. Ballario P, Vitorioso P, Magrelli A, Talora C, Cabibbo A, et al. (1996) White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. Embio Journal 15: 1650–1657.

12. Vignali M, Hassan AH, Neely KE, Workman JL (2000) ATP-dependent chromatin-remodelling complexes. Mol Cell Biol 20: 1899–1910.

13. Flaus A, Owen-Hughes T (2001) Mechanisms for ATP-dependent chromatin remodelling. Curr Opin Genet Dev 11: 148–154.

14. Clapier CR, Cairns BR (2009) The biology of chromatin remodelling complexes. Annu Rev Biochem 78: 273–304.

15. de la Serna IL, Ohkawa Y, Imbalzano AN (2006) Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nat Rev Mol Cell Biol 7: 129–140.

16. Owen-Hughes T, Utley RT, Cote J, Peterson CL, Workman JL (1996) Persistent remodeling of nucleosomes by transcriptional activators. Mol Cell 1: 329–340.

17. Laurent BC, Treich I, Carlson M (1993) The yeast SNF2/SWI2 protein has DNA-stimulated ATPase activity required for transcriptional activation. Genes Dev 7: 583–591.

18. Dvor V, Winston F (2004) The SWI/SNF chromatin-remodelling complex is required for ribosomal DNA and telomeric silencing in Saccharomyces cerevisiae. Mol Cell Biol 24: 8227–8235.

19. Stern M, Jensen R, Herzkowitz I (1984) Five SWI genes are required for expression of the HO gene in yeast. J Mol Biol 178: 835–860.

20. Peterson CL, Herzkowitz I (1999) Characterization of the yeast SWI2, SWI3, and SWI5 genes, which encode a global activator of transcription. Cell 8: 573–583.

21. Zhao J, Herrera-Diaz J, Gross DS (2005) Domain-wide displacement of histones by activated heat shock factor occurs independently of Swi/Snf and is not correlated with RNA polymerase II density. Mol Cell Biol 25: 1085–1099.

22. Abrams E, Neigeborn L, Carlson M (1996) Molecular analysis of SNF2 and SNF5, genes required for expression of glucose-repressible genes in Saccharo-

23. Laurent BC, Treich I, Carlson M (1990) The SNF5 protein of Saccharo-

24. Cote J, Peterson CL, Workman JL (1998) Perturbation of nucleosome core structure by the SWI/SNF complex persists after its detachment, enhancing subsequent transcription factor binding. Proc Natl Acad Sci U S A 95: 4947–4952.

25. Quinn J, Fyrberg AM, Ganster RW, Schmidt MC, Peterson CL (1996) DNA-binding properties of the yeast SWI/SNF complex. Nature 379: 844–847.

26. Sudarsanam P, Winston F (2000) The Swi/Snf family nucleosome-remodelling complexes and transcriptional control. Trends Genet 16: 345–351.

27. Neely KE, Hassan AH, Wallberg AE, Steger DJ, Cairns BR, et al. (1999) Activation domain-mediated targeting of the SWI/SNF complex to promoters stimulates transcription from nucleosome arrays. Mol Cell 4: 649–655.

28. Kingston RE, Narlikar GJ (1999) ATP-dependent remodeling and acetylation as regulators of chromatin fluidity. Genes Dev 13: 2339–2352.

29. Peterson CL, Workman JL (2000) Promoter targeting and chromatin remodeling by the SWI/SNF complex. Curr Opin Genet Dev 10: 187–192.

30. Eichegaray JP, Lee C, Wade PA, Reppert SM (2003) Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421: 177–182.

31. Belden WJ, Lorus JJ, Dunlap JC (2007) Execution of the circadian negative feedback loop in Neurospora requires the ATP-dependent chromatin-remodelling enzyme CLOCKSWITCH. Mol Cell 25: 587–600.

32. Belden WJ, Lewis ZA, Selker EU, Lorus JJ, Dunlap JC (2011) CHD1 remodels chromatin and influences transient DNA methylation at the clock gene frequency. PLoS Genet 7: e1002166.

33. Garceau NY, Liu Y, Lorus JJ, Dunlap JC (1997) Alternative initiation of translation and time-specific phosphorylation yield multiple forms of the essential clock protein FREQUENCY. Cell 89: 469–476.

34. Lee K, Dunlap JC, Lorus J (2003) Roles for WHITE COLLAR-1 in circadian and general photoperception in Neurospora crassa. Genetics 163: 103–114.

35. Natarajan K, Jackson BM, Zhou H, Winston F, Hinnebusch AG (1999) Transcriptional activation by Gcr1p involves independent interactions with the SWI/SNF complex and the SRB/mediator. Mol Cell 4: 657–664.

36. Owen-Hughes T, Udby RT, Cote J, Peterson CL, Workman JL (1996) Persistent site-specific remodeling of a nucleosome array by transient action of the SWI/SNF complex. Science 273: 513–516.

37. Yudkovsky N, Logie C, Hahn S, Peterson CL (1999) Recruitment of the SWI/SNF chromatin remodeling complex by transcriptional activators. Genes Dev 13: 2369–2374.

38. Neely KE, Hassan AH, Brown CE, Howe L, Workman JL (2002) Transcription activator interactions with multiple SWI/SNF subunits. Mol Cell Biol 22: 1615–1625.

39. Belden WJ, Larondo LF, Froehlich AC, Shi M, Chen CH, et al. (2007) The band mutation in Neurospora crassa is a dominant allele of ras-1 impairing RAS signaling in circadian output. Genes Dev 21: 1494–1505.

40. Larondo LF, Lorus JJ, Dunlap JC (2012) High-resolution spatiotemporal analysis of gene expression in real time: in vivo analysis of circadian rhythms in Neurospora crassa using a FREQUENCY-luciferase translational reporter. Fungal Genet Biol 49: 681–683.

41. Burns LG, Peterson CL (1997) The yeast SWI/SNF complex facilitates binding of a transcriptional activator to nucleosomal sites in vivo. Mol Cell Biol 17: 4811–4819.
42. Gregory PD, Schmid A, Zavari M, Munsterkotter M, Horz W (1999) Chromatin remodelling at the PHO8 promoter requires SWI-SNF and SAGA at a step subsequent to activator binding. Embo Journal 18: 6407–6414.

43. Kingston RE, Bunker CA, Imbalzano AN (1996) Repression and activation by multiprotein complexes that alter chromatin structure. Genes & Development 10: 905–920.

44. Cosma MP, Tanaka T, Nasmyth K (1999) Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell 97: 299–311.

45. Kwon H, Imbalzano AN, Khavari PA, Kingston RE, Green MR (1994) Nucleosome disruption and enhancement of activator binding by a human SWI/SNF complex. Nature 370: 477–481.

46. Wang W, Cote J, Xue Y, Zhou S, Khavari PA, et al. (1996) Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J 15: 5370–5382.

47. Xue YT, Canman JC, Lee CS, Nie ZQ, Yang DF, et al. (2000) The human SWI/SNF-B chromatin-remodeling complex is related to yeast Rsc and localizes at kinetochores of mitotic chromosomes. Proceedings of the National Academy of Sciences of the United States of America 97: 13015–13020.

48. Lemon B, Inouye C, King DS, Tjian R (2001) Selectivity of chromatin-remodelling cofactors for ligand-activated transcription. Nature 414: 924–928.

49. Prochasson P, Neely KE, Hassan AH, Li B, Workman JL (2003) Targeting activity is required for SWI/SNF function in vivo and is accomplished through two partially redundant activator-interaction domains. Molecular Cell 12: 983–990.

50. Bazett-Jones DP, Cote J, Landel CC, Peterson CL, Workman JL (1999) The SWI/SNF complex creates loop domains in DNA and polynucleosome arrays and can disrupt DNA-histone contacts within these domains. Mol Cell Biol 19: 1470–1478.

51. Zhang Y, Smith CL, Saha A, Grill SW, Mihardja S, et al. (2006) DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC. Mol Cell 24: 559–568.

52. Li G, Ruan X, Awerbach RK, Sandhu KS, Zhong M, et al. (2012) Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148: 84–98.

53. Cai S, Lee CC, Kohwi-Shigematsu T (2006) SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat Genet 38: 1278–1288.

54. Ni Z, Abou El Hassan M, Xu Z, Yu T, Brenner R (2008) The chromatin-remodeling enzyme BRG1 coordinates CIITA induction through many interdependent distal enhancers. Nat Immun 9: 785–793.

55. Toyota K, Onai K, Nakashima H (2002) A new wc-1 mutant of Neurospora crassa shows unique light sensitivity in the circadian rhythm. Molecular Genetics and Genomics 268: 56–61.

56. Chen CH, DeMay BS, Gladfelter AS, Dunlap JC, Loros JJ (2010) Physical interaction between VIVID and white collar complex regulates photoadaptation in Neurospora. Proceedings of the National Academy of Sciences of the United States of America 107: 16715–16720.

57. Malzahn E, Ciprianiis S, Kaldi K, Schafmeier T, Brunner M (2010) Photoadaptation in Neurospora by competitive interaction of activating and inhibitory LOV domains. Cell 142: 762–772.

58. Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, et al. (2006) A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci U S A 103: 10532–10537.

59. Baker CL, Kittenbach AN, Loros JJ, Gerber SA, Dunlap JC (2009) Quantitative proteomics reveals a dynamic interactome and phase-specific phosphorylation in the Neurospora circadian clock. Mol Cell 34: 354–363.

60. Crosthwaite SK, Loros JJ, Dunlap JC (1995) Light-induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript. Cell 81: 1003–1012.

61. Cha J, Zhou M, Liu Y (2013) CATP is a critical component of the Neurospora circadian clock by regulating the nucleosome occupancy rhythm at the frequency locus. EMBO Rep 14: 923–930.

62. Crosthwaite SK, Loros J, Dunlap JC (1995) Light-induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript. Cell 81: 1003–1012.

63. Colot HV, Park G, Turner GE, Ringelberg C, Crew CM, et al. (2006) A high-throughput gene knockout procedure for Neurospora reveals functions for multiple transcription factors. Proc Natl Acad Sci U S A 103: 10532–10537.

64. Baker CL, Kittenbach AN, Loros JJ, Gerber SA, Dunlap JC (2009) Quantitative proteomics reveals a dynamic interactome and phase-specific phosphorylation in the Neurospora circadian clock. Mol Cell 34: 354–363.

65. Crosthwaite SK, Loros J, Dunlap JC (2008) Closing the circadian negative feedback loop: FRQ-dependent clearance of WC-1 from the nucleus. Genes Dev 22: 3196–3204.