A NOTE ON THE MORDELL-WEIL RANK MODULO n

TIM AND VLADIMIR DOKCHITSER

Abstract. Conjecturally, the parity of the Mordell-Weil rank of an elliptic curve over a number field K is determined by its root number. The root number is a product of local root numbers, so the rank modulo 2 is (conjecturally) the sum over all places of K of a function of elliptic curves over local fields. This note shows that there can be no analogue for the rank modulo 3, 4 or 5, or for the rank itself. In fact, standard conjectures for elliptic curves imply that there is no analogue modulo n for any $n > 2$, so this is purely a parity phenomenon.

Surely, otherwise somebody would have spotted it by now. — Tom Fisher

It is a consequence of the Birch–Swinnerton-Dyer conjecture that the parity of the Mordell-Weil rank of an elliptic curve E over a number field K is determined by its root number, the sign in the functional equation of the L-function. The root number is a product of local root numbers, which leads to a conjectural formula of the form

$$\text{rk} E/K \equiv \sum_v \lambda(E/K_v) \mod 2,$$

where λ is an invariant of elliptic curves over local fields, and v runs over the places of K. One might ask whether there is a local expression like this for the rank modulo 3 or modulo 4, or even for the rank itself. The purpose of this note is to show that, unsurprisingly, the answer is ‘no’.

The idea is simple: if the rank modulo n were a sum of local $\mathbb{Z}/n\mathbb{Z}$-valued invariants, then $\text{rk} E/K$ would be a multiple of n whenever E is defined over \mathbb{Q} and K/\mathbb{Q} is a Galois extension where every place of \mathbb{Q} splits into a multiple of n places. However, for small $n > 2$ it is easy to find E and K for which this property fails (Theorem 2). In fact, if one believes the standard heuristics concerning ranks of elliptic curves in abelian extensions, it fails for every $n > 2$ and every E/\mathbb{Q} (Theorems 9, 13).

This kind of argument can be used to test whether a global invariant has a chance of being a sum of local terms. We will apply it to other standard invariants of elliptic curves and show that the parity of the 2-Selmer rank, the parity of the rank of the p-torsion and $\dim_{E_p} \II[2]$ modulo 4 cannot be expressed as a sum of local terms (Theorem 6). Finally, we will also comment on L-functions all of whose local factors are nth powers and discuss the parity of the analytic rank for non-self-dual twists of elliptic curves (Remarks 4,7).

Our results only prohibit an expression for the rank as a sum of local terms. Local data does determine the rank, see Remark 15.

2000 Mathematics Subject Classification. 11G05 (Primary) 11G40 (Secondary).
1. Mordell-Weil rank is not a sum of local invariants

Definition. Suppose \((K, E) \mapsto \Lambda(E/K)\) is some global invariant of elliptic curves over number fields\(^1\). We say it is a sum of local invariants if

\[\Lambda(E/K) = \sum_v \lambda(E/K_v), \]

where \(\lambda\) is some invariant of elliptic curves over local fields, and the sum is taken over all places of \(K\).

Implicitly, \(\Lambda\) and \(\lambda\) take values in some abelian group \(A\), usually \(\mathbb{Z}\). Moreover \(\lambda(E/K_v)\) should be 0 for all but finitely many \(v\).

Example. If the Birch–Swinnerton-Dyer conjecture holds (or if \(\mathbb{X}\) is finite, see \([4]\)), then the Mordell-Weil rank modulo 2 is a sum of local invariants with values in \(\mathbb{Z}/2\mathbb{Z}\). Specifically, for an elliptic curve \(E\) over a local field \(k\) write \(w(E/k) = \pm 1\) for its local root number, and define \(\lambda\) by \((-1)^{\lambda(E/k)} = w(E/k)\). Then

\[\text{rk}\ E/K \equiv \sum_v \lambda(E/K_v) \mod 2. \]

An explicit description of local root numbers can be found in \([9]\) and \([4]\).

Theorem 1. The Mordell-Weil rank is not a sum of local invariants.

This is a consequence of the following stronger statement:

Theorem 2. For \(n \in \{3, 4, 5\}\) the Mordell-Weil rank modulo \(n\) is not a sum of local invariants (with values in \(\mathbb{Z}/n\mathbb{Z}\)).

Lemma 3. Suppose \(\Lambda : (\text{number fields}) \rightarrow \mathbb{Z}/n\mathbb{Z}\) satisfies \(\Lambda(K) = \sum_v \lambda(K_v)\) for some function \(\lambda : (\text{local fields}) \rightarrow \mathbb{Z}/n\mathbb{Z}\). Then \(\Lambda(F) = 0\) whenever \(F/K\) is a Galois extension of number fields in which the number of places above each place of \(K\) is a multiple of \(n\).

Proof. In the local expression for \(\Lambda(F)\) each local field occurs a multiple of \(n\) times. \(\square\)

Proof of Theorem 2. Take \(E/\mathbb{Q} : y^2 = x(x+2)(x-3)\), which is 480a1 in Cremona’s notation. Writing \(\zeta_p\) for a primitive \(p\)-th root of unity, let

\[F_n = \begin{cases}
\text{the degree 9 subfield of } \mathbb{Q}(\zeta_{13}, \zeta_{103}) & \text{if } n = 3, \\
\text{the degree 25 subfield of } \mathbb{Q}(\zeta_{11}, \zeta_{241}) & \text{if } n = 5, \\
\mathbb{Q}(-\sqrt{1}, \sqrt{41}, \sqrt{73}) & \text{if } n = 4.
\end{cases} \]

Because 13 and 103 are cubes modulo one another, and all other primes are unramified in \(F_3\), every place of \(\mathbb{Q}\) splits into 3 or 9 in \(F_3\). Similarly \(F_4\) and \(F_5\) also satisfy the assumptions of Lemma 3 with \(n = 4, 5\). Hence, if the Mordell-Weil rank modulo \(n\) were a sum of local invariants, it would be

\(^1\)Meaning that if \(K \cong K’\) and \(E/K\) and \(E'/K'\) are isomorphic elliptic curves (identifying \(K\) with \(K'\)), then \(\Lambda(E/K) = \Lambda(E'/K')\).
A NOTE ON THE MORDELL-WEIL RANK MODULO n

$0 \in \mathbb{Z}/n\mathbb{Z}$ for E/F_n. However, 2-descent shows that $\text{rk} E/F_3 = \text{rk} E/F_5 = 1$ and $\text{rk} E/F_4 = 6$ (e.g. using Magma [1], over all minimal non-trivial subfields of F_n).

Remark 4. The L-series of the curve $E = 480a1$ used in the proof over $F = F_4 = \mathbb{Q}(\sqrt{-1}, \sqrt{17}, \sqrt{89})$ is formally a 4th power, in the sense that each Euler factor is:

$$L(E/F,s) = 1 \cdot \left(\frac{1}{1-3s} \right)^4 \left(\frac{1}{1-5s} \right)^4 \left(\frac{1}{1-11s} \right)^4 \left(\frac{1}{1+6s} \right)^4 \cdots.$$

However, it is not a 4th power of an entire function, as it vanishes to order 6 at $s = 1$. Actually, it is not even a square of an entire function: it has a simple zero at $1 + 2.1565479\ldots i$.

In fact, by construction of F, for any E/\mathbb{Q} the L-series $L(E/F,s)$ is formally a 4th power and vanishes to even order at $s = 1$ by the functional equation. Its square root has analytic continuation to a domain including $\text{Re} \ s > \frac{3}{2}$, $\text{Re} \ s < \frac{1}{2}$ and the real axis, and satisfies a functional equation $s \leftrightarrow 2 - s$, but it is not clear whether it has an arithmetic meaning.

Lemma 5. Suppose an invariant $\Lambda \in \mathbb{Z}/2^k\mathbb{Z}$ is a sum of local invariants. Let $F = K(\sqrt{\alpha_1}, \ldots, \sqrt{\alpha_m})$ be a multi-quadratic extension in which every prime of K splits into a multiple of 2^k primes of F. Then for every elliptic curve E/K,

$$\Lambda(E/K) + \sum_D \Lambda(E_D/K) = 0,$$

where the sum is taken over the quadratic subfields $K(\sqrt{D})$ of F/K, and E_D denotes the quadratic twist of E by D.

Proof. In the local expression for the left-hand side of the formula each local term (λ of a given elliptic curve over a given local field) occurs a multiple of 2^k times. \hfill \Box

Theorem 6. Each of the following is not a sum of local invariants:

- $\dim_{\mathbb{F}_2} \text{III}(E/K)[2] \mod 4$,
- $\text{rk}(E/K) + \dim_{\mathbb{F}_2} \text{III}(E/K)[2] \mod 4$,
- $\dim_{\mathbb{F}_2} \text{Sel}_2 E/K \mod 2$,
- $\dim_{\mathbb{F}_p} E(K)[p] \mod 2$ for any prime p.

Here III is the Tate-Shafarevich group and Sel$_2$ is the 2-Selmer group.

Proof. The argument is similar to that of Theorem 2

For the first two claims, apply Lemma 5 to $E : y^2 + y = x^3 - x$ (37a1) with $K = \mathbb{Q}$ and $F = \mathbb{Q}(\sqrt{-1}, \sqrt{17}, \sqrt{89})$. The quadratic twists of E by $1, -17, -89, 17 \cdot 89$ have rank 1, and those by $-1, 17, 89, -17 \cdot 89$ have rank 0; the twist by $-17 \cdot 89$ has $\text{III}(2) = 4$ and the other seven have trivial III 2. The sum over all twists is therefore 2 mod 4 in both cases, so they are not sums of local invariants.
For the parity of the 2-Selmer rank and of dim $E[2]$ apply Lemma 3 to $E : y^2 + xy + y = x^3 + 4x - 6$ (14a1) with $K = \mathbb{Q}$, $F = \mathbb{Q}(\sqrt{-1}, \sqrt{17})$ and $n = 2$. The 2-torsion subgroup of E/F is of order 2 and its 2-Selmer group over F is of order 8.

Finally, for dim $F[p]_E \mod 2$ for $p > 2$ take any elliptic curve E/\mathbb{Q} with $\text{Gal}(\mathbb{Q}(E[p])/\mathbb{Q}) \cong \text{GL}_2(\mathbb{F}_p)$, e.g. $E : y^2 = x^3 - x^2 + x$ (24a4), see [10] 5.7.2. Let K be the field obtained by adjoining to \mathbb{Q} the coordinates of one p-torsion point and $F = K(\sqrt{-1}, \sqrt{17})$. Because F does not contain the pth roots of unity, $\text{dim}_{\mathbb{F}_p} E(F)[p] = 1$. So, by Lemma 3 the parity of this dimension is not a sum of local invariants. □

Remark 7. The functional equation expresses the parity of the analytic rank as a sum of local invariants not only for elliptic curves (or abelian varieties), but also for their twists by self-dual Artin representations. However, for the parity of the rank of non-self-dual twists there is presumably no such expression.

For example, let χ be a non-trivial Dirichlet character of $(\mathbb{Z}/7\mathbb{Z})^\times$ of order 3. Then there is no function $(k, E) \mapsto \lambda(E/k) \in \mathbb{Z}$ defined for elliptic curves over local fields k, such that for all elliptic curves E/\mathbb{Q},

$$\text{ord}_{s=1} L(E, \chi, s) \equiv \sum_v \lambda(E/Q_v) \mod 2.$$

To see this, take

$$E/\mathbb{Q} : y^2 + y = x^3 + x^2 + x \ (19a3), \quad K = \mathbb{Q}, \quad F = \mathbb{Q}(\sqrt{-1}, \sqrt{17})$$

and apply Lemma 5. The twists of E, E_{-1} and E_{17} by χ have analytic rank 0, and that of E_{-17} has analytic rank 1, adding up to an odd number.

2. Expectations

We expect the Mordell-Weil rank modulo n not to be a sum of local terms for any $n > 2$ and any class of elliptic curves. Theorems 9 and 13 below show that this is a consequence of modularity of elliptic curves, the known cases of the Birch–Swinnerton-Dyer conjecture and standard conjectures for analytic ranks of elliptic curves.

Notation. For a prime p we write Σ_p for the set of all Dirichlet characters of order p. We say that $S \subset \Sigma_p$ has density α if

$$\lim_{x \to \infty} \frac{|\{\chi : \chi \in S \mid N(\chi) < x\}|}{|\{\chi : \chi \in \Sigma_p \mid N(\chi) < x\}|} = \alpha,$$

where $N(\chi)$ denotes the conductor of χ.

Conjecture 8 (Weak form of [3] Conj. 1.2). For $p > 2$ and every elliptic curve E/\mathbb{Q}, those $\chi \in \Sigma_p$ for which $L(E, \chi, 1) = 0$ have density 0 in Σ_p.

Theorem 9. Let E/Q be an elliptic curve and p an odd prime. Assuming Conjecture 8 there is no function $k \mapsto \lambda(E/k) \in \mathbb{Z}/p\mathbb{Z}$ defined for local fields k of characteristic 0, such that for every number field K,

$$\text{rk } E/K \equiv \sum_v \lambda(E/K_v) \mod p.$$

Lemma 10. Let p be a prime number and $S \subset \Sigma_p$ a set of characters of density 0 in Σ_p. For every $d \geq 1$ there is an abelian extension F_d/Q with Galois group $G \cong \mathbb{F}_p^d$, such that no characters of G are in S.

Proof. Without loss of generality, we may assume that if $\chi \in S$ then $\chi^n \in S$ for $1 \leq n < p$. When $d = 1$, take F_1 to be the kernel of any $\chi \in \Sigma_p \setminus S$. Now proceed by induction, supposing that F_{d-1} is constructed. Writing Ψ for the set of characters of $\text{Gal}(F_{d-1}/Q)$, the set

$$S_d = \bigcup_{\psi \in \Psi} \{ \phi \psi : \phi \in S \}$$

still has density 0. Pick any $\chi \in \Sigma_p \setminus S_d$, and set F_d to be the compositum of F_{d-1} and the degree p extension of Q cut out by χ. It is easy to check that no character of $\text{Gal}(F_d/Q)$ lies in S. □

Proof of Theorem 9. Pick a quadratic field $Q(\sqrt{D})$ such that the quadratic twist E_D of E by D has analytic rank 1, which is possible by [2, 8, 11]. By Conjecture 8 the set S of Dirichlet characters χ of order p such that $L(E_D, \chi, 1) = 0$ has density 0. Apply Lemma 10 to S with $d = 3$. Every place of Q splits in the resulting field $F = F_3$ into a multiple of p places ($Q(\sqrt{D})$ has no \mathbb{F}_p^3-extensions, so every prime has to split).

Arguing by contradiction, suppose the rank of E mod p is a sum of local invariants. Because in F/Q and therefore also in $F(\sqrt{D})/Q$ every place splits into a multiple of p places,

$$\text{rk } E/F \equiv 0 \mod p \text{ and } \text{rk } E/F(\sqrt{D}) \equiv 0 \mod p$$

by Lemma 8. Therefore $\text{rk } E_D/F = \text{rk } E/F(\sqrt{D}) - \text{rk } E/F$ is a multiple of p. On the other hand,

$$L(E_D/F, s) = \prod_{\chi} L(E_D, \chi, s),$$

the product taken over the characters of $\text{Gal}(F/Q)$. By construction, it has a simple zero at $s = 1$. Because F is totally real of odd degree over Q, by Zhang’s theorem [12] Thm. A, E_D/F has Mordell-Weil rank $1 \neq 0 \mod p$, a contradiction. □

Conjecture 11 (Goldfeld [6]). For every elliptic curve E/Q, those $\chi \in \Sigma_2$ for which $\text{ord}_{s=1} L(E, \chi, s) > 1$ have density 0 in Σ_2.

Conjecture 12. Every elliptic curve E/Q has a quadratic twist of Mordell-Weil rank 2.
Theorem 13. Let E/\mathbb{Q} be an elliptic curve. Assuming Conjectures 11 and 12, there is no function $k \mapsto \lambda(E/k) \in \mathbb{Z}/4\mathbb{Z}$ defined for local fields k of characteristic 0, such that for every number field K,
$$\text{rk } E/K \equiv \sum_v \lambda(E/K_v) \mod 4.$$

Proof. Let $\mathbb{Q}(\sqrt{D})$ be a quadratic field such that the quadratic twist $E' = E_D$ of E by D has Mordell-Weil rank 2 (Conjecture 12). The set S of those $\chi \in \Sigma_2$ for which $\text{ord}_s = 1 L(E', \chi, s) > 1$ has density 0 (Conjecture 11).

Let P be the set of primes where E' has bad reduction union $\{\infty\}$, and apply Lemma 10 to S with $d = 5 + 3|P|$. The resulting field F_d has a subfield \mathbb{F}_2^4-extensions, so the condition that a given place in P splits completely drops the dimension by at most 3. By the same argument, every place of \mathbb{Q} splits in F into a multiple of 4 places.

Arguing by contradiction, suppose the rank of E mod 4 is a sum of local invariants. Because in F/\mathbb{Q} and therefore also in $F(\sqrt{D})/\mathbb{Q}$ every place splits into a multiple of 4 places,
$$\text{rk } E/F \equiv 0 \mod 4 \text{ and } \text{rk } E/F(\sqrt{D}) \equiv 0 \mod 4$$
by Lemma 8. Therefore $\text{rk } E'/F = \text{rk } E/F(\sqrt{D}) - \text{rk } E/F$ is a multiple of 4. Now we claim that E'/F has rank 2 or 33, yielding a contradiction.

Let $\mathbb{Q}(\sqrt{m}) \subset F$ be a quadratic subfield. The root number of E' over $\mathbb{Q}(\sqrt{m})$ is 1, because the root number is a product of local root numbers and the places in P split in $\mathbb{Q}(\sqrt{m})$. (The local root number is +1 at primes of good reduction.) So
$$L(E'/\mathbb{Q}(\sqrt{m}), s) = L(E'/\mathbb{Q}, s) L(E_m'/\mathbb{Q}, s)$$
vanishes to even order at $s = 1$. Hence the 31 twists of E' by the non-trivial characters of $\text{Gal}(F/\mathbb{Q})$ have the same analytic rank 0 or 1, by the choice of F. By Kolyvagin’s theorem [7], their Mordell-Weil ranks are the same as their analytic ranks, and so $\text{rk } E'/F$ is either $2 + 0$ or $2 + 31$. \(\square\)

Remark 14. In some cases, it may seem reasonable to try and write some global invariant in $\mathbb{Z}/n\mathbb{Z}$ as a sum of local invariants in $\mathbb{Z}/m\mathbb{Z}$, i.e. to allow denominators in the local terms. For instance, one could ask whether the parity of the rank of a cubic twist (as in Remark 7) can be written as a sum of local invariants of the form $a_3 \mod 2\mathbb{Z}$.

However, introducing a denominator does not appear to help. First, the prime-to-n part m' of m adds no flexibility, as can be seen by multiplying the formula by m'. (For instance, if there were a formula for the parity of the rank of a cubic twist as a sum of local terms in $a_3 \mod 2\mathbb{Z}$, then multiplying it by 3 would yield a formula for the same parity with local terms in $\mathbb{Z}/2\mathbb{Z}$.) As for the non-prime-to-n part, e.g. the proofs of Theorems 9 and 13 immediately adapt to local invariants in $1/p\mathbb{Z}/p\mathbb{Z}$ and $1/2^k\mathbb{Z}/4\mathbb{Z}$, by increasing d by k.

Remark 15. The negative results in this paper rely essentially on the fact
that we allow only additive formulae for global invariants in terms of local
invariants. Although Theorem 1 shows that there is no formula of the form
\[\text{rk} E/K = \sum_v \lambda(E/K_v), \]
the Mordell-Weil rank is determined by the set \(\{E/K_v\}_v \) of curves over local
fields. In other words,
\[\text{rk} E/K = \text{function}(\{E/K_v\}_v). \]
In fact, for any abelian variety \(A/K \) the set \(\{A/K_v\}_v \) determines the \(L \)
function \(L(A/K, s) \) which is the same as \(L(W/Q, s) \) where \(W \) is the Weil
restriction of \(A \) to \(Q \). By Faltings’ theorem [5] the \(L \)-function recovers \(W \)
up to isogeny, and hence also recovers the rank \(\text{rk} A/K (= \text{rk} W/Q) \).

Acknowledgements. The first author is supported by a Royal Society
University Research Fellowship. The second author would like to thank
Gonville & Caius College, Cambridge.

References
[1] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I: The user language,
J. Symb. Comput. 24, No. 3-4 (1997), 235–265.
[2] D. Bump, S. Friedberg, and J. Hoffstein, Nonvanishing theorems for \(L \)-functions of
modular forms and their derivatives, Invent. Math. 102 (1990), 543–618.
[3] C. David, J. Fearnley, H. Kisilevsky, Vanishing of \(L \)-functions of elliptic curves over
number fields, in Ranks of Elliptic Curves and Random Matrix Theory, LMS Lecture
Note Series, 341, Cambridge University Press (2007), 247–259.
[4] T. Dokchitser, V. Dokchitser, Root numbers and parity of ranks of elliptic curves,
2009, arxiv: 0906.1815.
[5] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent.
Math. 73 (1983), no. 3, 349–366.
[6] D. Goldfeld, Conjectures on elliptic curves over quadratic fields, Springer Lect. Notes
751 (1979), 108–118.
[7] V. A. Kolyvagin, Euler systems, The Grothendieck Festschrift, Prog. in Math.,
Boston, Birkhauser (1990).
[8] M. R. Murty and V. K. Murty, Mean values of derivatives of modular \(L \)-series, Annals
of Math. 133 (1991), 447–475.
[9] D. Rohrlich, Galois Theory, elliptic curves, and root numbers, Compos. Math. 100
(1996), 311–349.
[10] J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques,
Invent. Math. 15 (1972), no. 4, 259–331.
[11] J.-L. Waldspurger, Correspondences de Shimura et quaternions, Forum Math. 3
(1991), 219–307.
[12] S. Zhang, Heights of Heegner points on Shimura curves, Annals of Math. 153 (2001),
27–147.

ROBINSON COLLEGE, CAMBRIDGE CB3 9AN, UNITED KINGDOM
E-mail address: t.dokchitser@dpmms.cam.ac.uk

EMMANUEL COLLEGE, CAMBRIDGE CB2 3AP, UNITED KINGDOM
E-mail address: v.dokchitser@dpmms.cam.ac.uk