New absolute magnitude calibrations for W Ursa Majoris type binaries

Z. Eker¹,²,*, S. Bilir³, E. Yaz³, O. Demircan², and M. Helvacı¹

¹ TÜBİTAK National Observatory, Akdeniz University Campus, 07058 Antalya, Turkey
² Çanakkale Onsekiz Mart University, Faculty of Sciences and Arts, Ulupınar Astrophysical Observatory, 17100 Çanakkale, Turkey
³ İstanbul University, Faculty of Sciences, Department of Astronomy and Space Sciences, 34119 İstanbul, Turkey

The dates of receipt and acceptance should be inserted later

Key words: stars: distances, (stars:) binaries: eclipsing

Parallaxes of W UMa stars in the Hipparcos catalogue have been analyzed. 31 W UMa stars, which have the most accurate parallaxes ($\sigma_\pi/\pi < 0.15$) which are neither associated with a photometric tertiary nor with evidence of a visual companion, were selected for re-calibrating the Period–Luminosity–Color (PLC) relation of W UMa stars. Using the Lutz–Kelker (LK) bias corrected (most probable) parallaxes, periods $(0.26 < P^{(day)} < 0.87)$, and colors $(0.04 < (B-V)_0 < 1.28)$ of the 31 selected W UMa, the PLC relation have been revised and re-calibrated. The difference between the old (revised but not bias corrected) and the new (LK bias corrected) relations are almost negligible in predicting the distances of W UMa stars up to about 100 parsecs. But, it increases and may become intolerable as distances of stars increase. Additionally, using $(J-H)_0$ and $(H-K_s)_0$ colors from 2MASS (Two Micron All Sky Survey) data, a PLC relation working with infrared data was derived. It can be used with infrared colors in the range $-0.01 < (J-H)_0 < 0.58$, and $-0.10 < (H-K_s)_0 < 0.18$. Despite 2MASS data are single epoch observations, which are not guaranteed at maximum brightness of the W UMa stars, the established relation has been found surprisingly consistent and reliable in predicting LK corrected distances of W UMa stars.

1 Introduction

Low-mass contact binaries, popularly known as W Ursae Majoris (W UMa) stars are easy to recognize by a light curve with equal (or nearly equal) depths of minima which are wide enough to touch one another. Even if the total luminosity produced solely by the more massive component, there could be different masses hidden under the visible surface (Rucinski, 1985, 1993). Even though the effective temperature is the same on the surfaces of components, there could be different masses hidden under the common atmospheres. Their mass-ratios span from almost unity ($V753$ Mon, $q=0.973$, Rucinski, Lu & Mochmacki, 2000) to very small values as small as $q=0.066$ (SX Crv, Rucinski et al., 2001). Therefore, W UMa binaries are non-equilibrium systems exchanging mass and energy between the components. Hence, despite such an external simplicity, their internal structure is rather complex.

External simplicity and the observational properties of W UMa systems were the basic reasons for establishing an absolute magnitude calibration by Rucinski (1994). The calibration uses two observational quantities, the orbital period and intrinsic color, e.g. $(B-V)$ or $(V-I)$. The period and the color are correlated through a combined effect of geometry, Kepler’s third law and main-sequence relationships. The calibration, which is in the form of $M_V = M_V(\log P, B-V)$, has been widened later to include a metallicity term $[Fe/H]$ (Rucinski, 1995). Those earlier calibrations were based on 18 systems, mostly members of high galactic latitude open clusters and of visual binaries, including only three nearby W UMa systems with known trigonometric parallaxes, 44i Boo B, VW Cep and ϵ CrA.

After Hipparcos parallaxes became available, the Period–Luminosity–Color (PLC) relation has been re-calibrated with 40 nearby W UMa systems in the solar neighborhood with parallaxes having relative errors from 2.7 to 24%. With this new data, the accuracy of the calibration (±0.25 mag at a predicted M_V) was claimed: “it is no longer limited by the parallax data but, paradoxically, by the lack of reliable photometric data” (Rucinski & Duerbeck, 1997). However, later, Rucinski (2000) argued: at earlier times, when limited information was available, it seemed that metallicity dependence did exist (Rucinski, 1995). But later when extensive data for many globular clusters were examined, the metallicity term $[Fe/H]$ become obsolete (Rucinski, 2000). At least, solar neighborhood calibration works well for contact systems of different metallicities at level of uncertainty $\sigma = \pm0.28$ mag. Thus, there is no need to keep the metallicity term in PLC relation (Rucinski, 2004). At last, after metallicity term was dropped, the color term was also removed, and the relation is transformed to a much simpler form by Rucinski (2006), when estimating spatial density

* Corresponding author: e-mail: eker@tug.tug.tubitak.gov.tr
 DOI DOI

© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
of contact binaries based on the ASAS survey as a necessity because the lack of color indices in the ASAS data. This calibration was established from 21 systems of good Hipparcos \((\sigma_\pi/\pi < 0.12)\) data which were carefully chosen as being free of triple and multiple systems.

PLC relation provides absolute magnitudes of contact binaries if their de-reddened colors and periods are known. Consequently, PLC relation has many practical usages. It is useful not only in calculating space velocities and space densities of W UMa (Bilir et al. 2005; Gettel, Geske & McKay 2006; Rucinski 2002) stars but also for confirming or disproving of contact binaries in stellar clusters (Rucinski 1998, 2000). Moreover, it permits W UMa stars to be used as standard candles. In fact, through PLC relation, W UMa stars become more likely to be used as standard candles than RR Lyr stars because W UMa stars are 24000 times more common than RR Lyr stars (Rucinski & Duerbeck, 1997).

Unfortunately, random errors, presumably symmetric on the measured parallaxes, do not provide symmetric uncertainties on the computed distances. Therefore, a measured trigonometric parallax is very likely to be larger than the true parallax. The problem has already been noticed and studied by Lutz & Kelker (1973). Assuming a uniform space distribution of stars and a Gaussian distribution of observed parallaxes over a true parallax, Lutz & Kelker (1973) have revealed that there exists a systematic error in the computed distances which depends only upon the ratio \(\sigma_\pi/\pi\), where \(\pi\) is the observed parallax. However, this crucial study has not produced proper response in the literature. Many studies including existing PLC calibration were completed without even discussing the Lutz-Kelker bias. Jerzykiewicz (2001) has shown that only the careful studies which used parallaxes with \(\sigma_\pi/\pi < 0.1\) could be excused since the bias would be negligible. Otherwise, not taking the Lutz-Kelker bias into account would either alter the conclusions or invalidate them altogether if relative larger errors were involved.

Standard Lutz-Kelker corrections become significant if \(\sigma_\pi/\pi > 0.05\) (Maiz Apellaniz, 2005). Therefore, Period-Luminosity relation of Rucinski (2006), which relies on 21 W UMa stars with sufficiently accurate \((\sigma_\pi/\pi < 0.12)\) parallaxes, may not be incorrect. The classical PLC relation of Rucinski & Duerbeck (1997), which was founded on parallaxes of 40 W UMa stars with relative errors from 2.7 to 24%, definitely needs to be re-calibrated. This study aims to improve existing PLC relation by not only correcting it according to Lutz-Kelker bias but also refining the sample of W UMa stars by eliminating the ones which have less reliable parallaxes because of belonging to multiple systems.

Moreover, applicability of the PLC relation at infrared colors are investigated. Being based on similar principles, a similar relation (PLC) for cataclysmic variables (CV) has already been established by using \((J-H)\) and \((H-K_s)\) colors from 2MASS (Two Micron All Sky Survey) data and proved to be useful for estimating CV distances by Ak et al. (2007). Despite, 2MASS data are compiled from single epoch observations, which are not guaranteed to be at maxima, the relation which uses \((J-H)\) and \((H-K_s)\) colors of 2MASS photometric system have been found to be as useful as the existing relation which involve \((B-V)\) and \((V-I)\) colors (Rucinski, 2004). The advantage of this new relation is that it is less effected by de-reddening problems.

2 Data

There are 751 W UMa binaries listed in the revised edition of the GCVS. Only 144 of them were found to have trigonometric parallaxes in the Hipparcos catalogue (ESA, 1997). Nine of them could be discarded right away because their relative errors \((\sigma_\pi/\pi > 1)\) are intolerable. For the rest (135 systems), the distribution of relative parallax errors have been shown in Fig. 1.

Calibration process of PLC relation requires both accuracy of calibration data and statistical significance. While statistical significance requires as many as possible W UMa stars, accuracy of input data, on the other hand, demands using only the data of W UMa stars with the most accurate parallaxes. Therefore, an optimized upper limit for the relative error of parallaxes needs to be determined.

2.1 Lutz-Kelker bias corrected parallaxes

It is known that a standard Lutz-Kelker (LK) correction \(\Delta M_V >\), which corrects mean absolute magnitude of a sample, is significant if \(\sigma_\pi/\pi > 0.05\) and increases as \(\sigma_\pi/\pi\) increases. Corrections were claimed to diverge and became incomputable if \(\sigma_\pi/\pi \geq 0.175\) (Brown et al., 1997; Lutz & Kelker, 1973, 1975; Maiz Apellaniz, 2005; Norgaard Nielsen, 1978; Oudmaijer, Groenewegen & Schrijver, 1998; Smith, 1987; Abt, 2003). Standard LK bias primarily computes an expected value of parallaxes, which stands for the mean of the true parallax distribution of an uniformly distributed sample of
Here, we are interested in the most probable value of the true parallax (π_0) for a single star which has an observed parallax (π) and associated error (σ_π). As for estimating distances, one can transform the posterior probability of the true parallax to that of the distance and use it to find the most probable distance (Smith, 1987a). Considering that this might not be the case, we are interested in the most probable distance (π_0) and its associated standard error (σ_{π_0}).

\[
\pi_0 = \pi(\frac{1}{2} + \frac{1}{2}\sqrt{1 - 16(\sigma_\pi/\pi)^2}),
\]

is the relation between the most probable true parallax (computed) and the observed parallax (π) and its associated standard error (σ_{π_0}).

Although Eq. 1 is valid mathematically for $\sigma_\pi/\pi \leq 0.25$, only the most probable true parallaxes of the systems with $\sigma_\pi/\pi \leq 0.175$ (standard LK limit), and corresponding distances ($d_0 = 1/\pi_0$) were computed and displayed in Table 1.

2.2 Other observational data

In addition to LK bias corrected parallaxes, the most reliable orbital periods and intrinsic colors are needed to revise the PLC relation. Orbital periods and spectral types are mostly from the catalog of Pribulla, Kreiner & Tremko (2003), while the maximum visual brightnesses (V_{max}) were taken from Pribulla & Rucinski (2006). Intrinsic $(B - V)$ colors of main sequence stars were taken from Neill Reid's WEB page. In addition to these visual photometric data, the infrared brightnesses J, H, and K_s magnitudes were taken from the Point-Source Catalogue and Atlas (Cutri et al. 2003, Skrutskie et al. 2006), which is based on the Two Micron All Sky Survey (2MASS) observations. The 2MASS photometric system comprises Johnsons $J (1.25 \mu m)$ and $H (1.65 \mu m)$ bands with the addition of $K_s (2.17 \mu m)$ band, which is bluer than Johnsons K-band. Infrared data are for establishing PLC relation at infrared wavelengths.

The color excess $E(B-V)$, although a relatively small quantity, can affect the calibration in a systematic way. It has already been noticed by Rucinski & Duerbeck (1997) that the color excesses were likely underestimated in previous studies (Rucinski & Kaluzny, 1981; Rucinski, 1983). Therefore, we have carefully re-investigated the color excess of the stars in Table 1 using three independent methods. The first method uses spectral types to estimate intrinsic color of a system. The second method uses the color excess found from the literature directly, which are the estimates from the hydrogen column density or main-sequence fitting. The third method computes the color excess from Schlegel et al. (1998) maps by using NASA Extragalactic Database. Since sample W UMa stars are relatively nearby, the color excesses according to Schlegel et al. (1998) need to be reduced. First, $E_{\infty}(B-V)$ color excess in the galactic latitude (b) and longitude (l) was taken from Schlegel et al. (1998). Then, the total absorption towards the star in the galactic disk in the V-band was evaluated as

$$A_v(b) = 3.1E_{\infty}(B-V),$$

where the subscript symbolizes up to infinity but actually it is up to the edge of our galaxy in the line of sight. Thirdly,
the interstellar absorption up to the star distance \(d\) is calculated according to Bahcall & Soneira (1980)

\[
A_d(b) = A_\infty(b) \left[1 - e^{\left(-\frac{d \sin(b)}{H} \right)} \right],
\]

where \(H\) is the scaleheight for the interstellar dust which is adopted to be 100 pc as usual (see e.g. Mendez & van Altena, 1998). Finally, the color excess for the star at the distance \(d\) is estimated as

\[
E_d(B - V) = A_d(b) / 3.1.
\]

It is demonstrated (Fig. 2) that the first method usually over-estimates the color excess with respect to the other two methods. The color excesses from the literature and the values computed using Schlegel et al. (1998) extinction maps agree with each other. Literature values could not be trusted especially if they are zero, which could be the cases because the color excess was ignored blindly. On the other hand, values computed by the method of Schlegel et al. (1998) extinction maps are not trusted at low galactic latitudes (\(|b| < 10^\circ\)) due to local inhomogeneities of galactic disc. Therefore, care was given to \(E(B - V)\) values of all stars one by one and the most trustable value was selected. Adopted values are usually the ones which are taken from the literature where the source references are given or the method of inquiry is indicated (Table 2).

Once color excesses are known, then the intrinsic colors and the interstellar absorption in the \(V\)-band were computed as

\[
(B - V)_0 = (B - V) - E(B - V),
\]

\[
A_V = 3.1E(B - V).
\]

Consequently, de-reddening of the infrared bands becomes ready using the relations given by Fiorucci & Munari (2003), i.e.,

\[
J_0 = J - 0.887E(B - V),
\]

\[
(J - H)_0 = (J - H) - 0.322E(B - V),
\]

\[
(H - K_s)_0 = (H - K_s) - 0.183E(B - V).
\]

2.3 Formation of the final calibration list

Regarding the accuracy, today’s technology is capable of determining a visual brightness within the accuracy of few millimagnitudes. Because of O’Connell’s effect, which could be several millimagnitudes (Davidre & Milone, 1984), the maximum visual brightness \((V_{max})\) of W UMa stars have additional uncertainties. Error contribution of a visual brightness, even if it is in the order of several millimagnitudes, is negligible compared to the other contributing errors. For example, uncertainties of \(E(B - V)\), which contributes to the uncertainty of interstellar absorption through \(A_V = 3.1E(B - V)\), are in the order of 0.01 – 0.02 mag (Rucinski & Duerbeck, 1997; Rucinski, 2002, 2006). The uncertainty of \(A_V\), however, is not only due to the uncertainty of \(E(B - V)\), but also due to the uncertainty of the coefficient in front of \(E(B - V)\). Depending upon the position of a star relative to the Sun in the galactic plane, there could be cases where the coefficient could be as small as 2.75 and as big as 3.52 (Cardelli, Clayton & Mathis, 1989). Therefore a rough estimate of the uncertainty of \(A_V\) is in average 0.06 magnitudes. Even if the error contribution of \(A_V\) is overestimated to be 0.1 mag, it would still be smaller than the uncertainty contribution of a 10% parallax error, which is 0.217 mag.

There are 29 W UMa systems with \(\sigma_v / \pi < 0.10\) in Table 1, which could be considered statistically significant at least at the limit. However, Pribulla & Rucinski (2006) have found that up to 59% of W UMa stars have companions. Actually, one of the criteria of multiplicity for Pribulla & Rucinski (2006) was the large error of the observed parallax. Trigonometric parallaxes are frequently wrong for these systems because complexity of the multiple orbital motions shows itself both at proper motion and parallax measurements. Therefore, W UMa binaries which are known to be associated with companions were excluded as Rucinski (2006) did when establishing PL relation. W UMa which are known to have companions are marked in Table 1. The 13 out 29 stars with \(\sigma_v / \pi < 0.10\) are marked, so after removing them, the 16 W UMa systems left would definitely not satisfy statistical significance. We decided to include all systems up to the limit \(\sigma_v / \pi < 0.15\), which means uncertainties in the absolute magnitudes would be better than 0.33 mag. This process provided us with 31 W UMa stars after removing the ones with companions, which we think satisfy statistical significance and accuracy for re-calibrating the PLC relation. W UMa stars with larger parallax errors are not included to avoid adding stars with less accurate absolute magnitudes.

In Table 2, LK corrected absolute magnitudes \(M_V\) and \(M_J\) for 31 W UMa stars were computed with most probable true parallaxes and adopted color excess \(E(B - V)\). The uncorrected absolute magnitudes \([M_V(Hip)]\) and \([M_J(Hip)]\) were also listed just for comparison. Fig. 3 compares corrected and uncorrected distances of the calibration sample.
Table 2 Calibration sample and data used in recalibration of the PLC relation for W UMa stars.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	
	Name	π	σ_π/π	P	S_pT	(B-V)_T	E(B-V)_T	E(B-V)	V_0,m	J	(J-H)_T	M(J)	M(V)	M(J)	M(J)	M(J)	M(J)	M(J)	M(J)	
---	------	------	------	------	------	--------	--------	--------	-------	------	--------	------	------	------	------	------	------	------	------	------
1	c CrA	33.32	0.028	0.59114070	F2V	0.35	0.046	0.000	0.048	4.74	0.396	0.046	8.052	0.264	0.090	0.212	0.211	1.92	1.798	
2	V972 Her	16.16	0.038	0.44309740	F4V	0.42	0.046	0.123	6.62	0.466	0.046	5.785	0.149	0.103	2.532	2.519	1.798			
3	AE Phe	20.36	0.040	0.36272724	F9V	0.53	0.111	0.005	7.56	0.641	0.001	6.577	0.289	0.107	4.118	4.104	3.131			
4	DO Cha	12.46	0.045	0.68144600	F7V	0.50	0.032	0.024	7.61	0.535	0.032	6.634	0.250	0.067	3.006	2.988	2.101			
5	S Ant Ara	13.15	0.053	0.68435500	A9V	0.30	0.058	0.010	6.087	0.235	0.010	6.087	0.235	0.010	1.097	1.097	0.975			
6	OU Ser	17.10	0.055	0.29676450	F9/GOV	0.56	0.075	0.011	8.10	0.635	0.010	6.946	0.264	0.112	4.260	4.234	3.129			
7	V759 Cen	15.66	0.059	0.39399912	F9V	0.56	0.034	0.017	7.40	0.594	0.020	6.530	0.242	0.063	3.342	3.311	2.517			
8	GR Vir	18.53	0.063	0.34699650	F7-8V	0.30	0.058	0.010	7.61	0.641	0.010	6.577	0.289	0.107	4.118	4.104	3.131			
9	V757 Cen	20.36	0.040	0.36272724	F9V	0.53	0.111	0.005	7.56	0.641	0.001	6.577	0.289	0.107	4.118	4.104	3.131			
10	YY Eri	17.10	0.055	0.29676450	F9/GOV	0.56	0.075	0.011	8.10	0.635	0.010	6.946	0.264	0.112	4.260	4.234	3.129			
11	IS CMa	11.10	0.075	0.37656400	F8V	0.53	0.092	0.010	7.61	0.535	0.032	6.634	0.250	0.067	3.006	2.988	2.101			
12	CP Hyi	8.20	0.072	0.47940600	F0V	0.32	0.027	0.016	7.187	0.010	0.009	2.367	2.320	1.789						
13	YY CrB	13.38	0.078	0.34704100	F9V	0.53	0.092	0.010	6.40	0.358	0.010	5.785	0.149	0.103	2.879	2.868	2.18			

Fig. 3 Comparing corrected and uncorrected (Hipparcos) distances of W UMa stars with parallax errors σ_π/π < 0.15.
the observed colors and adopted color excesses \(E(B-V) \), of the stars in Table 2, the coefficients of the linear equation

\[
M(V)_{NEW} = a \log P + b(B-V)_0 + c,
\]

have been determined as \(a = -3.88(\pm 0.62), b = 3.36(\pm 0.34) \) and \(c = 0.0044(\pm 0.14) \) by a regression analysis with a correlation coefficient \(R^2 = 0.959 \) and standard deviation \(s = 0.27 \). According to the regression analysis it can be concluded that the internal error of the new relation is \(s.e. = s/\sqrt{N} = 0.27/\sqrt{31} = 0.048 \) mag. That is, in a case if periods and intrinsic colors are errorless, then the standard error of predicted \(M_V \) is expected to be \(\pm 0.048 \) mag. The standard error of \(M_V \) should become larger if errors are introduced through orbital periods and intrinsic colors appearing in the relation.

3.3 Comparing PLC relations with and without LK bias

Comparing PLC relations of same format with and without LK bias may help to analyze and study the effect of LK bias on the PLC relation. There could be two basic types of comparison: The two relations may be compared on their own grounds to see how good their predicting powers are according to their own conditions; or they could be compared to see what the difference is in predicting true absolute magnitudes.

Consequently, for the first type of comparison, the \(M(V)_{NEW} \) points are plotted against the corrected absolute magnitudes coming from the corrected parallaxes in Fig. 4b. Although, the correlation coefficient is slightly better \((R^2 = 0.928) \) and the standard deviation \(s = 0.32 \) is smaller, the appearance of Fig. 4b is not much different Fig. 4a. Both figures are consistent with each other. Thus, LK correction is justified.

The difference between the two PLC relations can be observed better in Fig. 5 where the predictions of both relations are plotted against the corrected absolute magnitudes. Although both data sets remain within the \(2\sigma \) reliability limit, it is clearly shown in Fig. 5 that the PLC relation of \textbf{Rucinski & Duerbeck (1997)} systematically underestimates the absolute brightness of the same sample stars.

A similar comparison can be done on a distance scale rather than a magnitude scale. Fig. 6 displays such a comparison. It is clearly shown that the PLC relation of \textbf{Rucinski & Duerbeck (1997)} underestimates the distances with respect to the predictions of the PLC relation from this study especially when the distances are large. If the distances are smaller than 100 pc, apparently, the difference becomes negligible. This must be because; LK corrections become noticeable if \(\sigma_\pi/\pi > 0.05 \) and increases as \(\sigma_\pi/\pi \) increases.

3.4 Calibrating PLC relation using 2MASS data

PLC relation of W UMa stars could be calibrated using different color indices and color excesses. A PLC relation using \((V - I)_0 \) already exists \textbf{(Rucinski 2004)}. The advantage of shifting PLC relation towards the infrared colors is
Absolute visual magnitudes predicted by two PLC relations (Rucinski & Duerbeck 1997 and this work) plotted against the absolute visual magnitudes directly from Pogson’s relation using LK bias corrected parallaxes. The dashed-dotted and dashed lines represent prediction limits for $\pm 1\sigma$ and $\pm 2\sigma$, respectively.

The distances according to both PLC relations are plotted against the LK bias corrected distances. Obvious; extinction is less, so uncertainty of interstellar absorption becomes relatively reduced.

The method of calibration is the same. Absolute magnitudes, and then intrinsic colors through (8) and (9) were computed using the data in Table 2 for the same sample (31 stars). Finally a regression analysis is done for determining the numerical coefficients. It has been tried for many different forms of the relation such as; with one color or both $(J - H)_0$ and $(H - K_s)_0$ and even to include $(B - V)_0$ color besides the terms of $\log P$ including a free constant. The highest correlation have been found with the following

$$M(J) = a \log P + b(J - H)_0 + c(H - K_s)_0 + d,$$

(11)

where $a = -3.17(\pm 0.62)$, $b = 3.84(\pm 0.62)$, $c = 1.81(\pm 1.16)$ and $d = 0.24(\pm 0.14)$, which gives a correlation coefficient $R^2 = 0.927$ and a standard deviation $s = 0.26$ mag. Consequently, the internal error of the relation is ± 0.047 mag. Since best correlation was achieved by using two rather than a single color term, it seems using two color terms increases the correlation. This is expected because each color term contributes to improving the correlation. The constant term which has an absolute value comparable to its uncertainty may not be real so it can be avoided in the relation.

The predicted $M(J)$ values by Eq. 11 are plotted against LK corrected absolute magnitudes (Fig. 7). Despite, 2MASS data are single epoch observations, which were not guaranteed to be at the maximum brightness phase of the systems, the calibration gave reliable relation which can be used in predicting the true distances of W UMa stars from their periods and infrared colors. It is even more interesting that the standard deviation of data and the internal error of the PLC relation in infrared are slightly smaller than the standard deviation and internal error of the PLC relation in the visual although the PLC relation is slightly less correlated at infrared.

The distance predictions of the PLC relation are compared to LK bias corrected distances in Fig. 8. The internal error of the relation is ± 0.022. The PLC relation at infrared could have been improved more if maximum brightnesses at these infrared colors were available.

4 Conclusions

In this study, a statistical bias, which is classically known as Lutz-Kelker (LK) bias, has been introduced to the PLC relation of W UMa stars. Since parallax errors remain after a LK bias correction, studies such as ours, should still be careful in setting up an upper limit on the reliability of input parallax data. In this study, we have preferred to work with parallax data more accurate than 15%.

Using LK corrected parallaxes (or distances), we have re-calibrated the classical PLC relation of Rucinski & Duerbeck (1997). The new relation has been compared with the classical relation. It has been found that old and new relations are nearly equivalent in predicting a distance up to about 100 parsecs. The difference between the predictions increases.
Fig. 7 Predicted $M(J)$ are compared to LK corrected absolute magnitude. The dashed-dotted and dashed lines represent prediction limits for $\pm 1\sigma$ and $\pm 2\sigma$, respectively.

Fig. 8 Distances predicted by the PLC relation in the infrared are compared to the LK corrected distances. We have also produced a PLC relation which can be used by 2MASS data. Despite 2MASS data are single epoch observations, which are not guaranteed to be at the maximum brightness phase of the W UMa stars in the calibration sample (Table 2), the established relation has been found surprisingly consistent and reliable to predict LK corrected distances. This new relation is valid in the ranges $0.26 < P(\text{day}) < 0.87$, $-0.04 < (B-V)_0 < 1.28$ and $0.43 < M(V) < 6.55$.

We have also produced a PLC relation which can be used by 2MASS data. Despite 2MASS data are single epoch observations, which are not guaranteed to be at the maximum brightness phase of the W UMa stars in the calibration sample (Table 2), the established relation has been found surprisingly consistent and reliable to predict LK corrected distances. This new relation is valid in the ranges $0.26 < P(\text{day}) < 0.87$, $-0.01 < (J-H)_0 < 0.58$, $-0.10 < (H-K_s)_0 < 0.18$ and $0.54 < M(J) < 4.63$. Observers are encouraged to obtain light and color curves of W UMa stars at 2MASS colors. If the apparent magnitudes at maximum brightness phases of W UMa stars are provided with 2MASS colors, the current PLC relation using infrared colors could be improved to provide more reliable distances.

5 Acknowledgments

This work has been partially supported by TÜBİTAK 104T508 and 106T688. We would also like to thank Prof. Dr. Utku Coşkunoğlu and Başar Coşkunoğlu correcting the english grammar and linguistics of the manuscript. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

References

Ak, T., Bilir, S., Ak, S., Retter, A.: 2007, NewA 12, 446
Bahcall, J. N., Soneira, R. M.: 1980, ApJS 44, 73
Bilir, S., Karataş, Y., Eker, Z., Demircan, O.: 2005, MNRAS 357, 497
Bilir, S., Güver, T., Aslan, M.: 2006, AN 327, 693
Bilir, S., Ak, S., Karaali, S., Cabrera-Lavers, A., Chonis, T. S., Gaskell, C. M.: 2008, MNRAS 384, 1178
Brown, A. G. A., Arenou, F., van Leeuwen, F., Lindegren, L., Luri, X.: 1997, Proceedings of the ESA Symposium “Hipparcos - Venice 97”, 13-16 May, Venice, Italy, ESA SP-402 (July 1997), p.63
Cardelli, J. A., Clayton, G. C., Mathis, J. S.: 1989, ApJ 345, 245
Cutri, R. M. et al.: 2003, VizieR On-Line Data Catalog: II/246, Originally published in: University of Massachusetts and Infrared Processing and Analysis Center David, T. J., Milone, E. F.: 1984, ApJS 55, 571

© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.an-journal.org
ESA: 1997, The Hipparcos and Tycho Catalogues, ESA SP-1200. ESA, Noordwijk
Fiorucci, M., Munari, U.: 2003, A&A 401, 781
Gettel, S. J., Geske, M. T., Mckay, T. A.: 2006, AJ 131, 621
Jerzykiewicz, M.: 2001, AcA 51, 151
Lutz, T. E., Kelker, D. H.: 1973, PASP 85, 573
Lutz, T. E., Kelker, D. H.: 1975, PASP 87, 617
Maiz Apellaniz, J.: 2005, Proceedings of the Gaia Symposium “The Three-Dimensional Universe with Gaia” (ESA SP-576). Held at the Observatoire de Paris-Meudon, 4-7 October 2004. Editors: C. Turon, K.S. O’Flaherty, M. A. C. Perryman, p.179
Mendez, R. A., van Altena, W. F.: 1998, A&A 330, 910
Nordström, B., Mayor, M., Andersen, J., Holmberg, J., Pont, F., Jorgensen, B. R., Olsen, E. H., Udry, S., Mowlavi, N.: 2004, A&A 418, 989
Norgaard-Nielsen, H.U.: 1978, A&A 65, 287
Oudmaijer, R. D., Groenewegen, M. A. T., Schrijver, H.: 1998, MNRAS 294L, 41
Pribulla, T., Kreiner, J. M., Tremko, J.: 2003, CoSka 33, 38
Pribulla, T., Rucinski, S. M.: 2006, AJ 131, 298
Rucinski, S. M., Kaluzny, J.: 1981, AcA 31, 409
Rucinski, S. M.: 1983, A&A 127, 84
Rucinski, S. M.: 1985, in Interacting Binary Stars, eds. J. E. Pringle and R. A. Wade (Cambridge, Cambridge Univ. Press), p.85 and 113
Rucinski, S. M.: 1993, in the Realm of Interacting Binary Stars, eds. J. Shade, Y. Kondo and G. McClusky (Dordrecht, Kluwer), p.11
Rucinski, S. M.: 1994, PASP 106, 462
Rucinski, S. M.: 1995, PASP 107, 648
Rucinski, S. M., Duerbeck, H. W.: 1997, PASP 109, 1340
Rucinski, S. M.: 1998, AJ 116, 2998
Rucinski, S. M.: 2000, AJ 120, 319
Rucinski, S. M., Lu, W., Mochmacki, S. W.: 2000, AJ 120, 1133
Rucinski, S. M., Lu, W., Mochmacki, S. W., Ogloza, W., Stachowski, G.: 2001, AJ 122, 1974
Rucinski, S. M.: 2002, PASP 114, 1124
Rucinski, S. M.: 2004, NewAR 48, 703
Rucinski, S. M.: 2006, MNRAS 368, 1319
Schlegel, D. J., Finkbeiner, D. P., Davis, M.: 1998, ApJ 500, 525
Skrutskie, M. F., et al.: 2006, AJ 131, 1163
Smith, H. Jr.: 1987a, A&A 171, 336
Smith, H. Jr.: 1987b, A&A 188, 233
Smith, H. Jr.: 2003, MNRAS 338, 891