IQGAP1 promotes anoikis resistance and metastasis through Rac1-dependent ROS accumulation and activation of Src/FAK signalling in hepatocellular carcinoma

Chun-fen Mo¹, Jun Li², Shu-xia Yang¹, Hui-jie Guo¹, Yang Liu¹, Xing-yan Luo¹, Yan-tang Wang¹, Min-hui Li¹, Jing-yi Li³,4 and Qiang Zou¹

BACKGROUND: Hepatitis B virus (HBV) has a crucial role in the progression of hepatocellular carcinoma (HCC). Tumour cells must develop anoikis resistance in order to survive before metastasis. This study aimed to investigate the mechanism of IQGAP1 in HBV-mediated anoikis evasion and metastasis in HCC cells.

METHODS: IQGAP1 expression was detected by immunohistochemistry, real-time PCR and immunoblot analysis. Lentiviral-mediated stable upregulation or knockdown of IGAQP1, immunoprecipitation, etc. were used in function and mechanism study.

RESULTS: IQGAP1 was markedly upregulated in HBV-positive compared with HBV-negative HCC cells and tissues. IQGAP1 was positively correlated to poor prognosis of HBV-associated HCC patients. IQGAP1 overexpression significantly enhanced the anchorage-independent growth and metastasis, whereas IQGAP1-deficient HCC cells are more sensitive to anoikis. Mechanistically, we found that HBV-induced ROS enhanced the association of IQGAP1 and Rac1 that activated Rac1, leading to phosphorylation of Src/FAK pathway. Antioxidants efficiently inhibited IQGAP1-mediated anoikis resistance and metastasis.

CONCLUSIONS: Our study indicated an important mechanism by which upregulated IQGAP1 by HBV promoted anoikis resistance, migration and invasion of HCC cells through Rac1-dependent ROS accumulation and activation of Src/FAK signalling, suggesting IQGAP1 as a prognostic indicator and a novel therapeutic target in HCC patients with HBV infection.

© The Author(s), under exclusive licence to Cancer Research UK 2020, corrected publication 2021

Received: 21 June 2019 Revised: 1 April 2020 Accepted: 18 June 2020 Published online: 07 July 2020

1Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China; 2Department of Gastroenterology, The first affiliated hospital of Chengdu medical college, Chengdu, China; 3Department of Urology, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China and 4School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, China

Correspondence: Chun-fen Mo (mochunfen@cmc.edu.cn) or Jing-yi Li (lijingyi@cmc.edu.cn) or Qiang Zou (qiangzou99@gmail.com)

These authors contributed equally: Chun-fen Mo, Jun Li, Shu-xia Yang
IQGAP1 promotes anoikis resistance and metastasis through Rac1-dependent... Chun-fen Mo et al.

Cdc42

Although IQGAP1 contains a domain that is similar to Ras-GAPs, IQGAP1 does not act as a traditional GAP. For example, IQGAP1 can stabilise Cdc42 in its GTP-bound form, thereby increasing active Cdc42. High levels of IQGAP1 are observed in various tumours. Notably, upregulated IQGAP1 levels are detected in tumour budding foci at the invasive front of colorectal and ovarian tumours compared to central tumour regions and normal tissues, suggesting a critical role of IQGAP1 in tumour invasion and metastasis. However, it remains unknown whether IQGAP1 is involved in HBV-mediated HCC progression.

Here, we showed that IQGAP1 was upregulated in HBV-positive compared with HBV-negative HCC cells and tissues. High level of IQGAP1 was closely related to poor prognosis of HBV-associated HCC patients. Enforced IQGAP1 expression significantly enhanced the anchorage-independent growth, migration and invasion of HCC cells, whereas IQGAP1-deficient HCC cells are more sensitive and vulnerable to anoikis. Mechanistically, we demonstrated that HBV augmented the association of IQGAP1 and Rac1, leading to increased intracellular levels of ROS that subsequently accelerated the phosphorylation of Src kinase, and ultimately activated FAK signalling. Collectively, our findings revealed that IQGAP1 promoted HBV-mediated anoikis resistance and metastasis through Rac1-dependent ROS accumulation and activation of Src/FAK pathway, implicating IQGAP1 as both a potential therapeutic target and a predictor of survival in HBV-associated HCC patients.

METHODS

Cell culture and reagents

HepG2, HepG2.2.15 (which stably transfect HBV genome) and Huh7 cells were maintained in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% foetal bovine serum (GE Healthcare), separated by SDS-PAGE, and transferred on to PVDF membranes (Millipore). The membranes were blocked for 1 h at room temperature with 5% non-fat milk in TBS buffer and incubated at 4 °C overnight with indicated primary antibodies. The following antibodies were used: Src (#2123, Cell Signalling Technology), cleaved PARP (Cell signalling Technology, #5625), p-Src (#6943, Cell Signalling Technology), p-FAK (#8556, Cell Signalling Technology), Rac1 (#8631, Cell signalling Technology), cleaved caspase-3 (Cell Signalling Technology, #9664), FAK (#13009, Cell Signalling Technology), IQGAP1 (ab86064, Abcam), FLAG (F7425, Sigma) and β-actin (sc-7777, Santa Cruz Biotechnology). The immunoblot signals were detected with the ImmobilonTM Western Chemiluminescent HRP Substrate (Millipore). The relative densitometric analyses of western blotting images were performed by Image J software as described in the website of the University of Queensland (https://di.uq.edu.au/community-and-alumni/sparq-ed/sparq-ed-services/using-imagej-quantify-blots).

Rac1 activity assay

Rac1 activity assay was examined using the Active Rac1 Detection kit as described previously.

Anoikis assays in vitro

HCC cells were resuspended in normal DMEM medium and placed on poly-HEMA-coated plates to prevent cell adhesion. The addition of growth factor-reduced Matrigel (BD Biosciences) to medium restores the integrin signalling in suspension as described previously.

In vivo anoikis assay

Female BALB/c nu/nu mice (6 week old) were purchased from the Chengdu Dashuo Biotechnology Corporation and raised in specific pathogen-free conditions. All animal experiments were carried out at the Animal Center of Chengdu Medical College. Animal experimental procedures were approved by the Instrumental Animal Care and Use Committee of Chengdu Medical College. For the experimental mouse anoikis metastasis model, the indicated HCC cells (2 × 10⁶ cells/100 μl) were injected into nude mice (five mice each group) through the tail vein. The mice were monitored daily and euthanised by CO₂ asphyxiation about 4 weeks after injection to examine the lung metastasis of tumour cells. The tumour metastases were confirmed by H&E staining and quantified based on visual examination and manual counting of formalin-fixed lungs. For mouse peritoneal cavity model, indicated HCC cells (5 × 10⁶ cells/100 μl) were intra peritoneally injected into nude mice as described previously.

When tumour cells developed detectable ascites, mice were randomly divided into four groups (five mice each group). PP2 (5 mg/kg) or Y15 (30 mg/kg) was dosed by intraperitoneal injection daily, and the control group received an equal volume of vehicle. After treatment for 72 h, the mice were euthanised by CO₂ asphyxiation, and ascites fluid was collected and centrifuged. GFP-positive cells were sorted by flow cytometer and analysed by trypan blue exclusion assay.
IQGAP1 promotes anoikis resistance and metastasis through Rac1-dependent... Chun-fen Mo et al.

Fig. 1 IQGAP1 is upregulated in HBV-associated HCC cells and tissues. a, b, The qRT-PCR and immunoblot analysis of IQGAP1 levels in HBV-positive HCC cells (HepG2.2.15 and HepAD38-Tet) and HBV-negative cells (HepG2 and HepAD38-Tet). c, IQGAP1 levels in Huh7 cells transfected with HBV1.3 or vector plasmid were determined by qPCR and immunoblot analysis. d, Representative images of IQGAP1 expression in clinical normal and HCC tissues obtained by immunohistochemical analysis. e, Immunoblot analysis of IQGAP1 protein levels in adjacent normal, HBV-negative and HBV-positive tissues of HCC patients. f, The overall survival curves of HBV-associated HCC patients with low- or high-IQGAP1 expression levels. Data were mean ± standard deviation (SD) from at least three independent experiments. **P < 0.01 and ***P < 0.001.

Statistical analysis
All quantitative data were presented as the mean ± SD. Student’s t-test and one-way ANOVA test were used to compare quantitative variables where appropriate. Pearson χ² test was used to compare qualitative variables. Kaplan–Meier analysis with log-rank test was used to calculate the patients’ survival rates. Statistical analyses were performed using SPSS software version 22.0. P-value < 0.05 was considered to be statistically significant.

RESULTS
Upregulation of IQGAP1 by HBV infection correlates with malignant progression and poor prognosis of HBV-associated HCC patients
To clarify the role of IQGAP1 in HBV-induced HCC, we first detected IQGAP1 levels in different HCC cell lines. As shown in Fig. 1a, both the mRNA and protein expressions of IQGAP1 were markedly increased in HBV-producing cell line HepG2.2.15 than HepG2 cell. Likewise, higher IQGAP1 expressions were observed in non-tetracycline-treated HepAD38 cells compared to tetracycline-treated HepAD38 cells (Fig. 1b). Moreover, Hep3B cells transfected with the 1.3-fold HBV replicative genome (HBV1.3) plasmids showed elevated expressions of IQGAP1 (Fig. 1c). Next, we determined the expression of IQGAP1 protein in HCC patients. Immunohistochemical analysis demonstrated that IQGAP1 protein was predominantly localised in the cytoplasm in adjacent normal tissues, and with partial nuclear staining in HCC tissues (Fig. 1d). IQGAP1 protein was increased in HCC tissues compared to adjacent normal tissues (Fig. 1d). Notably, higher levels of IQGAP1 were observed in HBV-positive than HBV-negative HCC tissues (Fig. 1d). Similar results were verified by immunoblotting analysis (Fig. 1e). Next, we investigated IQGAP1 level in HCC tissues using the TCGA database. TCGA liver cancer dataset showed that there was no significant difference between IQGAP1 mRNA levels in normal and HCC tissues, while IQGAP1 mRNA was upregulated in

Table 1. Correlation between the clinicopathological characteristics and IQGAP1 in HCC.

Characteristic	High-IQGAP1 expression (n = 58)	Low-IQGAP1 expression (n = 56)	P-value
Age ≤60	38 (49.4%)	39 (50.6%)	0.638
Gender			
Male	44 (53.7%)	38 (46.3%)	0.342
Female	14 (43.8%)	18 (56.2%)	
HBsAg Positive	6 (24.0%)	19 (76.0%)	0.002
Positive	52 (58.4%)	37 (41.6%)	
AFP (ng/ml)			0.025
≤200	19 (38.8%)	30 (61.2%)	
>200	39 (60.0%)	26 (40.0%)	
Differentiation			0.146
Well	6 (50.0%)	6 (50.0%)	
Moderate	30 (44.1%)	38 (55.9%)	
Poor	22 (64.7%)	12 (35.3%)	
Tumour size ≤5 cm	12 (29.3%)	29 (70.7%)	0.001
>5 cm	46 (63.0%)	27 (37.0%)	
Tumour number			0.034
Solitary	28 (42.4%)	38 (57.6%)	
Multiple	30 (62.5%)	18 (37.5%)	
BCLC stage 0–A	20 (37.0%)	34 (63.0%)	0.005
6–C	38 (63.3%)	22 (36.7%)	
Cirrhosis			0.552
No	8 (44.4%)	10 (55.6%)	
Yes	50 (52.1%)	46 (47.9%)	
IQGAP1 promotes anoikis resistance and metastasis through Rac1-dependent...

HBV-positive compared to HBV-negative HCC tissues (Supplementary Fig. S1a). These results implied that IQGAP1 protein stability may be dysregulated during HCC progression. To test this probability, immortal hepatocyte cell line LO2, HCC cells HepG2 and HepG2.2.15 were treated with a eukaryote protein synthesis inhibitor Cycloheximide, respectively. We found decreased degradation rate of IQGAP1 protein in HepG2 and HepG2.2.15 cells compared to LO2 cells (Supplementary Fig. S1b). Moreover, IQGAP1 protein in HepG2.2.15 cells was more stable than that in HepG2 cells, suggesting that HBV infection increased IQGAP1 protein stability (Supplementary Fig. S1b). Thus, we speculated that HBV could promote IQGAP1 upregulation through enhancing the transcription and protein stability of IQGAP1. Based on the clinicopathological information, we found that a higher level of IQGAP1 expression, and we found that HCC patients with high IQGAP1 expression had shorter overall survival when compared with the low IQGAP1-expressing group (Fig. 1f). Therefore, these data indicate that increased IQGAP1 expression caused by HBV infection is associated with the malignant progression and poor prognosis of HCC patients.

IQGAP1 enhances anoikis resistance and metastasis
To assess whether IQGAP1 contributes to HBV-induced anoikis resistance, we examined the expression of IQGAP1 in HepG2 and HepG2.2.15 cells following detachment. IQGAP1 mRNA and protein levels were increased in HepG2 and HepG2.2.15 cells after detachment (Fig. 2a). However, the addition of Matrigel to detached HCC cells mitigated the elevated expressions of IQGAP1, suggesting a potential correlation between IQGAP1 and anoikis (Fig. 2a). Next, we ectopically expressed IQGAP1 in non-HBV-producing HepG2 cells and knocked down IQGAP1 in HBV-producing HepG2.2.15 cells, respectively (Fig. 2b). Enforced IQGAP1 expression markedly promoted anchorage-independent growth of HepG2 cells, while repression of IQGAP1 reduced the resistance to anoikis in HepG2.2.15 cells (Fig. 2c). Moreover, IQGAP1 silence substantially inhibited the increased anchorage-independent growth of Huh7 cells transfected with HBV1.3 plasmids (Supplementary Fig. S2a). The similar phenomenon was confirmed by trypan blue exclusion test (Fig. 2d and Supplementary Fig. S2b). The upregulation of IQGAP1 effectively reduced the expressions of cleaved caspase-3 and cleaved PARP in HepG2 cells during ECM detachment (Fig. 2e). The converse results were observed in IQGAP1-deficient HepG2.2.15 cells (Fig. 2e). In addition, HBV replication induced the reduced activation of caspase-3 and PARP that was inversed by IQGAP1 knockdown after detachment (Supplementary Fig. S2c). As shown in Fig. 2f, overexpression of IQGAP1 significantly enhanced the migratory and invasive capacities of HepG2 cell, whereas IQGAP1 suppression in HepG2.2.15 cells caused a significant decline in cell migration and invasion. These data imply that IQGAP1 facilitates anoikis resistance and metastasis in HCC cells.
IQGAP1-induced anoikis resistance and metastasis is dependent on ROS accumulation.

As oxidative stress has a critical role in HBV-induced HCC progression and anoikis resistance, we next determined whether IQGAP1 could affect ROS production in HCC cells. Compared with control, both H$_2$O$_2$ and O$_2^*$ levels were increased in IQGAP1-overexpressing HCC cells (Fig. 3a,b). However, IQGAP1-deficient cells showed less ROS levels (Fig. 3a,b). Similar results were observed in mitochondrial ROS assay (Fig. 3c). Moreover, upregulated IQGAP1 caused elevated ATP generation, while IQGAP1 suppression diminished ATP production (Fig. 3d). The levels of two major redox buffers GSH and NADPH were decreased in IQGAP1-overexpressing HepG2 cells under detachment conditions (Fig. 3e,f). Conversely, IQGAP1-knockdown cells exhibited higher GSH and NADPH amounts (Fig. 3e,f). These results imply that IQGAP1 increased ROS accumulation and ATP production, but reduced antioxidative capacity in detached HCC cells.

To further elucidate the involvement of ROS in IQGAP1-mediated anoikis resistance and metastasis, HepG2 and HepG2.2.15 cells were treated with oxidant agent H$_2$O$_2$ or antioxidant agent NAC in a dose-dependent manner, respectively. Indeed, the anchorage-independent growth of HepG2 cells was obviously increased following lower-dose H$_2$O$_2$ treatment (10 and 20 μM), however, higher doses of H$_2$O$_2$ (more than 50 μM) resulted in cytotoxic effect (Supplementary Fig. S3a). NAC treatment induced markedly increased apoptosis of HepG2.2.15 cells after detachment (Supplementary Fig. S3b), suggesting that modest levels of ROS act as indispensable roles for maintaining cell survival in response to detachment. Next, we determine whether ROS were required for IQGAP1 function. As shown in Fig. 3g, the protective effect of IQGAP1 overexpression against anoikis was reversed by 20 mM NAC treatment in HepG2 cells, while 10 μM H$_2$O$_2$ treatment partially restored the anchorage-independent growth in IQGAP1-deficient HepG2.2.15 cells. NAC administration resulted in decreased survival and increased cleaved caspase-3 and cleaved PARP protein levels of HepG2 cells in the presence of IQGAP1, whereas exogenous addition of H$_2$O$_2$ significantly attenuated the elevated cell death rate and activation of caspase-3 and PARP in IQGAP1-silenced HepG2.2.15 cells upon detachment (Fig. 3h,i). In addition, transwell assay showed that NAC compromised the capacity of IQGAP1 to promote migration and invasion (Fig. 3j). Conversely, H$_2$O$_2$ effectively rescued the effect of IQGAP1 knockdown on the motility of HepG2.2.15 cells (Fig. 3j). Our results demonstrate that ROS accumulation is required for the development of IQGAP1-mediated anoikis resistance and metastasis in HCC cells.

The activation of Rac1 is essential for IQGAP1-mediated anoikis resistance and metastasis.

Because IQGAP1 has been shown to bind of Rac1, we examined whether HBV altered the interaction of IQGAP1 with Rac1. The amounts of Rac1 co-immunoprecipitated with IQGAP1 were markedly increased in HepG2.2.15 cells compared to HepG2 cells (Supplementary Fig. S4a). Consistently, transient transfection of Huh7 cells with HBV1.3-fold genome also promoted the association of IQGAP1 with Rac1 (Supplementary Fig. S4b). Moreover, we found that the elevated levels of GTP-bound Rac1 were observed in IQGAP1-overexpressing HepG2 cells, while IQGAP1 suppression...
IQGAP1 promotes anoikis resistance and metastasis through Rac1-dependent....

IQGAP1 augments anoikis resistance and metastasis through Rac1-dependent effects in HCC cells. a, b Indicated HCC cells were transfected with EGFP-Rac1T17N (dominant-negative Rac1 mutant) or EGFP-Rac1Q61L (dominant-active Rac1 mutant) plasmid, respectively. The production of intracellular ROS was determined by DCF and DHE assay. c The mitochondrial ROS levels in indicated HCC cells were examined by MitoSOX Red staining assay. d–f Indicated HCC cells were transfected, maintained in suspension condition and then intracellular ATP (d), reduced GSH (e) and NADPH (f) levels were measured. g Indicated HCC cells were transfected with EGFP-Rac1T17N or EGFP-Rac1Q61L plasmid, respectively. Soft agar colony formation assays were performed. h Indicated HCC cells were transfected as in g, maintained in suspension condition, and then followed by trypan blue assay. i Indicated HCC cells were transfected, maintained as in g, and analysed by western blotting with indicated antibodies. j Indicated HCC cells were transfected as in g, and then followed by transwell assays. The results were expressed as mean ± SD from at least three independent experiments. ***P < 0.001.

abrogated the capability of HBV to activate Rac1 in HepG2.2.15 cells (Supplementary Fig. S4c). Next, we investigated the effect of ROS on IQGAP1-mediated Rac1 activation. Immuno precipitation assay showed that the interaction between IQGAP1 and Rac1 was enhanced in response to H2O2 stimulus, whereas NAC treatment repressed IQGAP1 binding to Rac1 both in HepG2 and HepG2.2.15 cells (Supplementary Fig. S4d). Besides, NAC significantly compromised the capacity of IQGAP1 to activate Rac1 (Supplementary Fig. S4e). In contrast, reduced Rac1 activity caused by IQGAP1 knockdown was partially alleviated by H2O2 in HepG2.2.15 cells (Supplementary Fig. S4e). Our results suggest that IQGAP1 contributes to the activation of Rac1, and this procedure is regulated by ROS.

To further evaluate the effect of Rac1 in IQGAP1-mediated HCC progression, IQGAP1-overexpressing HepG2 cells were transfected with RacT17N (dominant-negative mutant) plasmid and IQGAP1-deficient HepG2.2.15 cells were transfected with RacQ61L (constitutively active mutant) plasmid. The efficiency of these plasmids was validated by immunoblot analysis (Supplementary Fig. S5). Our results showed that overexpression of RacT17N attenuated the increased ROS levels caused by IQGAP1 in HepG2 cells (Fig. 4a–c). Conversely, transfection of RacQ61L in IQGAP1 knockdown HepG2.2.15 cells has the opposite effect (Fig. 4a–c). RacT17N dramatically reversed the elevated ATP generation triggered by upregulated IQGAP1 in HepG2 cells. In contrast, RacQ61L overcame decreased intracellular ATP levels caused by IQGAP1 silencing (Fig. 4d). Moreover, IQGAP1-induced reduced contents of GSH and NADPH were significantly prevented by RacT17N mutant in HepG2 cells, while RacQ61L mutant resulted in obviously suppression of GSH and NADPH levels in IQGAP1-deficient HepG2.2.15 cells under detachment conditions (Fig. 4e, f).

In addition, RacT17N mutant eliminated IQGAP1-induced the enhanced anchorage-independent growth of HepG2 cells, while RacQ61L mutant rescued the anoikis resistance of IQGAP1-deficient HepG2.2.15 cells (Fig. 4g, h). Similar results were observed in immunoblot analysis and transwell assay (Fig. 4i, j). These observations indicate that Rac1 is a pivotal downstream effector of IQGAP1 to regulate anoikis evasion and metastasis in HCC cells.

IQGAP1 augments anoikis resistance and metastasis through Src/FAK pathway

Accumulating evidence demonstrated that the activation of Src/FAK signalling was involved in the aggressive progression of HCC.30–32 To gain insight into the molecular mechanisms by which IQGAP1 promotes anoikis resistance and metastasis, we determined whether IQGAP1 could activate Src/FAK signalling. Ectopic expression of IQGAP1 increased Src Tyr416 and FAK Tyr925 in HepG2 cells upon detachment, which were reversed by NAC treatment or overexpression of RacT17N mutant, respectively (Fig. 5a, b). Conversely, H2O2 administration or Rac1 activation restored the levels of p-Src and p-FAK in IQGAP1-deficient HepG2.2.15 cells (Fig. 5a, b). We next used PP2 (a Src family kinases inhibitor) or Y15 (a specific inhibitor of FAK) to evaluate the effects of Src/FAK signalling on IQGAP1-mediated anoikis resistance. The efficiency of these inhibitors was validated by immunoblot analysis (Supplementary Fig. S6). IQGAP1 overexpression triggered the elevated anchorage-independent growth of HCC cells after detachment was alleviated significantly by PP2 or Y15 treatment (Fig. 5c, d). Consistently, PP2 or Y15 treatment

Table 1: Relative Protein Level

Protein	Control	RacT17N	RacQ61L
Caspase 3	100	**50**	**0**
Cleaved PARP	0	**150**	**300**
β-actin	100	**100**	**100**

Note: Values are relative to the control group. **P < 0.01.
IQGAP1 promotes anoikis resistance and metastasis through Rac1-dependent... Chun-fen Mo et al.

effectively reversed IQGAP1-induced the reduced cleavage of caspase-3 and PARP (Fig. 5e). Similar results were obtained from transwell assay (Fig. 5f). Moreover, HepG2.2.15 cells transfected with siRNA targeting Src or FAK showed decreased cell survival in the presence of IQGAP1 (Supplementary Fig. S7a–d). Silence of Src or FAK was able to prevent enhanced migratory and invasive capacities caused by IQGAP1 in HepG2.2.15 cells (Supplementary Fig. S7e). These data imply that the activation of Src/FAK pathway is essential for IQGAP1-mediated anoikis resistance and metastasis in HCC cells.

IQGAP1 promotes anoikis resistance and metastasis in vivo

To illustrate the effect of IQGAP1 on anoikis resistance in vivo, the GFP-expressed HCC cells were intraperitoneally injected into nude mice. At the appropriate time, tumour cells were collected by flow cytometer and were subjected to trypan blue exclusion assay. As shown in Fig. 6a, IQGAP1-overexpressing HepG2 cells displayed lowered apoptosis than control cells, which were reversed by introduction of dominant-negative Rac1T17N mutant. Oppositely, IQGAP1-knockdown inhibited the anchorage-independent growth of HepG2.2.15 cells, and these effects were inverted by overexpression of constitutively active Rac1Q61L mutants (Fig. 6a). Moreover, disruption of Src or FAK activation effectively reversed the effect of IQGAP1 on anoikis resistance in vivo (Fig. 6b). To further determine if IQGAP1 can enhance the metastasis in vivo, indicated HCC cells were injected into the tail vein of nude mice. Rac1T17N mutant abrogated IQGAP1-enhanced lung metastatic potential of HepG2 cells (Fig. 6c). However, Rac1Q61L mutant restored the ability of IQGAP1-deficient HepG2.2.15 cells to establish metastases (Fig. 6c). In addition, we also confirmed that Src/FAK pathway activation was necessary for IQGAP1-mediated metastasis in vivo (Fig. 6d). These data indicate that IQGAP1 promotes anoikis resistance and metastasis via Rac1/Src/FAK axis in vivo.

DISCUSSION

Accumulating evidence indicates that HBV can orchestrate the activity of cytoskeleton-associated protein of host cells for virus infection, replication and dissemination. IQGAP1 is an evolutionarily conserved multifunction scaffold protein that regulates cytoskeleton remodelling, cellular motility and cell...
IQGAP1 promotes anoikis resistance and metastasis through Rac1-dependent... Chun-fen Mo et al.

IQGAP1 promotes anoikis resistance and metastasis through Rac1-dependent... Chun-fen Mo et al.

Moreover, overexpression of IQGAP1 significantly increased the apoptotic tolerance of HCC cells upon detachment, whereas IQGAP1 suppression resulted in reduced anchorage-independent growth, migratory and invasive capacities of HBV-producing HCC cells. Together, our data implicated IQGAP1 as a potential marker for HCC aggressiveness and a favourable predictor for HBV-associated HCC development. A recent study demonstrated that HBV-induced ROS enhanced the binding of IQGAP1 to Rac1, leading to stabilising the active GTP-bound form of Rac1, and ultimately activation of Rac1. Moreover, our data also showed that active Rac1 was required for IQGAP1-mediated ROS production. Based on these observations, we speculated a positive-feedback loop developed between ROS levels and Rac1 activity in HBV-associated HCC during detachment. Hence, disruption of this feedback loop may be a potential therapeutic strategy to prevent HCC progression. Indeed, antioxidant NAC treatment significantly abolished ROS production and Rac1 activity, leading to increased apoptosis of HCC cells upon detachment.

FAK is a non-receptor protein tyrosine kinase that localises to focal adhesions and plays a critical role in many physical processes, including cell attachment, growth, metastasis and survival. Thus, IQGAP1 has been implicated in varied virus pathogenesis, including HIV, Ebola and Marburg virus. In the present study, we reported that IQGAP1 levels were upregulated in HBV-positive HCC tissues compared with HBV-negative HCC tissues, and higher expression of IQGAP1 was associated with poor prognosis of HBV-associated HCC patients. IQGAP1 expression was positively correlated with the expressions of HBsAg and AFP, tumour size and number, and BCLC stage. Moreover, overexpression of IQGAP1 significantly increased the apoptotic tolerance of HCC cells upon detachment, whereas IQGAP1 suppression resulted in reduced anchorage-independent growth, migratory and invasive capacities of HBV-producing HCC cells. Together, our data implicated IQGAP1 as a potential marker for HCC aggressiveness and a favourable predictor for HBV-associated HCC patients’ survival.

Oxidative stress is one of the vital factors involved in HBV-associated HCC development. A recent study demonstrated that HBV-triggered ROS accumulation resulted in Snail-mediated epigenetic silence of SOCS3 that activated IL-6/STAT3 signalling pathway to accelerate hepatocarcinogenesis. Furthermore, reduced expressions of antioxidant molecules including catalase and superoxide dismutase were associated with poor prognosis in HBV-related HCC patients. Here, we reported that moderate levels of ROS rescued the anchorage-independent growth, migration and invasion in IQGAP1-deficient HCC cells, suggesting that ROS were key downstream regulators of IQGAP1. Our results further support that ROS can act as essential second messengers in various signalling pathways that tune cell proliferation and survival. As excess ROS levels can cause oxidative damage and cell death, cancer cells need to appropriately modify intracellular ROS levels to survive during metastatic progression. Here, we confirmed that HBV-induced ROS enhanced the binding of IQGAP1 to Rac1, leading to stabilising the active GTP-bound form of Rac1, and ultimately activation of Rac1. Moreover, our data also showed that active Rac1 was required for IQGAP1-mediated ROS generation. In addition, it has been shown that Rac1 interacted directly with p67phox, which in turn contributed to the assembly of NADPH oxidase complexes, resulting in the production of ROS. Based on these observations, we speculated a positive-feedback loop developed between ROS levels and Rac1 activity in HBV-associated HCC during detachment. Hence, disruption of this feedback loop may be a potential therapeutic strategy to prevent HCC progression. Indeed, antioxidant NAC treatment significantly abolished ROS production and Rac1 activity, leading to increased apoptosis of HCC cells upon detachment.

Fig. 6 IQGAP1 enhances anoikis resistance and metastasis of HCC cells in vivo. a Indicated HCC cells transfected with Rac1T17N or Rac1Q61L plasmid were intraperitoneally injected into nude mice. The GFP-positive HCC cells were collected from ascites fluid and sorted by flow cytometer. The apoptotic rates of the tumour cells were counted with the trypan blue exclusion assay. b Effect of PP2 or Y15 on IQGAP1-mediated anoikis resistance in mouse peritoneal cavities model. c Indicated HCC cells were transfected as in a, and i.v. injected via tail veins of BALB/c nude mice. Photographs show H&E staining of dissected lung tissues 8 weeks after inoculation. d Effect of PP2 or Y15 on IQGAP1-mediated anoikis resistance in experimental mouse lung metastasis model. The results were expressed as mean ± SD from at least three independent experiments. ***p < 0.001.
apoptosis. These observations suggest that Src/FAK signalling may act as redox sensors to integrate cell survival and metastasis. Conversely, inactivation of Src or FAK notably blocked IQGAP1-induced anchorage-independent growth and motility of HCC cells. As anoikis escape provides a selective advantage of cancer cells to distant dissemination and colonisation, our data suggest that interruption of the IQGAP1/Rac1/Src/FAK pathway might be effective for suppressing tumour growth and metastasis in chronically HBV-infected patients.

In conclusion, our current study demonstrates that high level of IQGAP1 positively correlates with aggressive HCC phenotypes and poor clinical outcome of HBV-associated HCC patients. We delineate a molecular mechanism by which HBV-induced IQGAP1 expression increased Rac1 activity and ROS accumulation that activates Src/FAK pathway, leading to enhanced anchorage-independent growth and metastasis of HCC cells. Taken together, our findings highlight the significance of IQGAP1 in HBV-mediated HCC progression and implicate IQGAP1 as a promising biomarker for the individualised management of patients with HBV-associated HCC.

AUTHOR CONTRIBUTIONS
C.F.M., J.L. and S.X.Y. designed the project and performed all the experiments. H.J.G. and T.W. provided clinical samples. C.F.M. wrote the manuscript. C.F.M., S.X.Y., L. and M.H.L. interpreted data and revised the manuscript. J.Y.L. and Q.Z. supervised the research.

ADDITIONAL INFORMATION
Ethics approval and consent to participate Tumour tissues samples were collected from HCC patients who underwent surgical resection at the First Affiliated Hospital of Chengdu Medical College (Chengdu, China). The patients agreed to enter the study and signed the informed consent. This study was approved by the Committee for Ethical Review of Research involving Human Subjects of the First Affiliated Hospital of Chengdu Medical College and was performed in accordance with the Declaration of Helsinki. The clinical pathological information of HCC patients was summarised in Table 1. All animal experiments were performed in accordance with relevant guidelines and regulations and approved by the Institutional Animal Care and Use Committee of Chengdu Medical College.

Consent to publish Not applicable.

Data availability The datasets generated and/or analysed during the current study are not publicly available but are available from the corresponding author on reasonable request.

Competing interests The authors declare no competing interests.

Funding information This study was supported by the National Natural Science Foundation of China (81402944, 81702446, 81871300), Application and Basic Project of Science and Technology Department of Sichuan Province (2018JY0440, 2017JY0174) and Research Fund of Chengdu Medical College (CYZ16-01).

IQGAP1 promotes anoikis resistance and metastasis through Rac1-dependent... Chun-fen Mo et al.

Supplementary information is available for this paper at https://doi.org/10.1038/s41416-020-0970-z.

Note This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution 4.0 International (CC BY 4.0).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

REFERENCES
1. Siegel, R., Ma, J., Zou, Z. &Jemal, A. Cancer statistics, 2014. CA Cancer J. Clin. 64, 9–29 (2014).
2. Youn, Y. H., Park, S. H., Moon, K. B., Jeon, J. H., Cho, H. S. & Kim, H. S. The last ten years of advancements in plant-derived recombinant vaccines against hepatitis B. Int. J. Mol. Sci. 17, 1715 (2016).
3. Yuan, P., Chen, P. & Qian, Y. Evaluation of anti-viral therapy performed after curative therapy in patients with HBV-related hepatocellular carcinoma: an updated meta-analysis. Can. J. Gastroenterol. Hepatol. 2016, 5234969 (2016).
4. Jia, Q., Dong, Q. & Qin, L. CCN: core regulatory proteins in the microenvironment that affect the metastasis of hepatocellular carcinoma? Oncotarget 7, 1203–1214 (2016).
5. Collins, N. L., Reginato, M. J., Paulus, J. K., Sgorio, D. C., Labarer, J. & Brugge, J. S. G1/S cell cycle arrest provides anoikis resistance through Erk-mediated Bim suppression. Mol. Cell. Biol. 25, 5282–5291 (2005).
6. Horowitz, J. C., Rogers, D. S., Sharma, V., Vittal, R., White, E. S., Cui, Z. et al. Combined activation of FAK and AKT by transforming growth factor-beta1 confers an anoikis-resistant phenotype to myofibroblasts. Cell Prolif. 40, 761–771 (2007).
7. Fofaria, N. M. & Sivastava, S. K. Critical role of STAT3 in melanoma metastasis through anoikis resistance. Oncotarget 5, 7051–7064 (2014).
8. Xu, J., Liu, H., Chen, L., Wang, S., Zhou, L., Yun, X. et al. Hepatitis B virus X protein confers resistance of hepatoma cells to anoikis by up-regulating and activating p21-activated kinase 1. Gastroenterology 143, 199–212 (2012).
9. Weinberg, F., Hamanaka, R., Wheaton, W. W., Weinberg, S., Joseph, J., Lopez, M. et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl Acad. Sci. USA 107, 8788–8793 (2010).
10. Schafer, Z. T., Grassian, A. R., Song, L., Jiang, Z., Gerhart-Hines, Z., Irie, H. Y. et al. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. Nature 461, 109–113 (2009).
11. Ren, J. H., Chen, X., Zhou, L., Tao, N. N., Zhou, H. Z., Liu, B. et al. Protective role of SirT1in3 (SIRT3) in oxidative stress mediated by hepatitis B virus X protein expression. PLoS ONE 11, e0150961 (2016).
12. Schinziari, V., Barnaba, V. & Picone, S. Chronic hepatitis B virus and hepatitis C virus infections and cancer: synergy between viral and host factors. Clin. Microbiol. Infect. 21, 969–974 (2015).
13. Lim, W., Kwon, S. H., Cho, H., Kim, S., Lee, S., Ryu, W. S. et al. HBx targeting to mitochondria and ROS generation are necessary but insufficient for HBV-induced cyclooxygenase-2 expression. J. Mol. Med. 88, 359–369 (2010).
14. Cho, M. Y., Cheong, J. Y., Lim, W., Jo, S., Lee, Y., Wang, H. J. et al. Prognostic significance of catase expression and its regulatory effects on hepatitis B virus X protein (HBx) in HBV-related advanced hepatocellular carcinomas. Oncotarget 5, 12233–12246 (2014).
15. Briggs, M. W. & Sacks, D. B. IQGAP proteins are integral components of cytoskeletal regulation. EMBO Rep. 4, 571–574 (2003).
16. Johnson, M., Sharma, M. & Henderson, B. R. IQGAP1 regulation and roles in cancer. Cell Signal. 21, 1471–1478 (2009).
17. White, C. D., Brown, M. D. & Sacks, D. B. IQGAPs in cancer: a family of scaffold proteins underlying tumorigenesis. FEBS Lett. 583, 1817–1824 (2009).
18. David, S., Ghosh, C. C., Mukherjee, A. & Parikh, S. M. Angiopoietin-1 requires IQ domain GTPase-activating protein 1 to activate Rac1 and promote endothelial barrier defense. Arterioscler. Thromb. Vasc. Biol. 31, 2643–2652 (2011).
19. Brown, M. D., Bry, L., Li, Z. & Sacks, D. B. IQGAP1 regulates Salmoneilla invasion through interactions with actin, Rac1, and Cdc42. J. Biol. Chem. 282, 30265–30272 (2007).
20. Dong, P., Nabetahima, K., Nishimura, N., Kawakami, T., Hachisuga, T., Kawarabayashi, T. et al. Overexpression and diffuse expression pattern of IQGAP1 at invasion fronts are independent prognostic parameters in ovarian carcinomas. Cancer Lett. 243, 120–127 (2006).
21. Nabetahima, K., Shimao, Y., Inoue, T. & Koono, M. Immunohistochemical analysis of IQGAP1 expression in human colorectal carcinomas: its overexpression in carcinomas and association with invasion fronts. Cancer Lett. 176, 101–109 (2002).
IQGAP1 promotes anoikis resistance and metastasis through Rac1-dependent... Chun-fen Mo et al.

10

22. Lupberger, J., Mund, A., Kock, J. & Hildt, E. Cultivation of HepG2.2.15 on Cytodex-3: higher yield of hepatitis B virus and less subviral particles compared to conventional culture methods. J. Hepatol. 45, 547–552 (2006).

23. Ladner, S. K., Otto, M. J., Barker, C. S., Zalfert, K., Wang, G. H., Guo, J. T. et al. Inducible expression of human hepatitis B virus (HBV) in stably transfected hepatoblastoma cells: a novel system for screening potential inhibitors of HBV replication. Antimicrob. Agents Chemother. 41, 1715–1720 (1997).

24. Yuan, K., Lei, Y., Chen, H. N., Chen, Y., Zhang, T., Li, K. et al. HBV-induced ROS accumulation promotes hepatocarcinogenesis through Snail-mediated epigenetic silencing of SOCS3. Cell Death Differ. 23, 616–627 (2016).

25. Li, K., Mo, C., Gong, D., Chen, Y., Huang, Z., Li, Y. et al. DDX17 nucleocytoplasmic shuttling promotes acquired gefitinib resistance in non-small cell lung cancer cells via activation of beta-catenin. Cancer Lett. 400, 194–202 (2017).

26. Mo, C., Wang, L., Zhang, J., Numazawa, S., Tang, H., Tang, X. et al. The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-shocked mice. Antioxid. Redox Signal. 20, 574–588 (2014).

27. Zhao, X., Fu, J., Xu, A., Yu, L., Zhu, J., Dai, R. et al. Gankyrin drives malignant transformation of chronic liver damage-mediated fibrosis via the Rac1/JNK pathway. Cell Death Dis. 6, e1751 (2015).

28. Pedanou, V. E., Gobeil, S., Tabaries, S., Simone, T. M., Zhu, L. J., Siegel, P. M. et al. Tyrosine phosphorylation of CD13 regulates inflammatory cell-cell adhesion and monocytocyte trafficking. J. Immunol. 191, 3903–3912 (2013).

29. Panera, N., Crudele, A., Romito, I., Gnani, D. & Alisi, A. Focal adhesion kinase: insights into molecular roles and functions in hepatocellular carcinoma. Int. J. Mol. Sci. 18, 99 (2017).

30. Kim, S., Kim, H. Y., Lee, S., Kim, S. W., Sohn, S., Kim, K. et al. Hepatitis B virus x protein induces perinuclear mitochondrial clustering in microtubule- and Dynamin-dependent manners. J. Virol. 81, 1714–1726 (2007).

31. Park, E. K., Park, M. J., Lee, S. H., Li, Y. C., Kim, J., Lee, J. S. et al. Cholesterol depletion induces anoikis-like apoptosis via FAK down-regulation and caveolae internalization. J. Pathol. 218, 337–349 (2009).

32. Azam, F. & Koulaouzidis, A. Hepatitis B virus and hepatocarcinogenesis. Ann. Hepatol. 7, 125–129 (2008).