SOME L^2 RESULTS FOR $\overline{\partial}$ ON PROJECTIVE VARIETIES WITH GENERAL SINGULARITIES

NILS ØVRELID AND SOPHIA VASSILIADOU

Abstract. Let X be an irreducible n-dimensional projective variety in \mathbb{CP}^N with arbitrary singular locus. We prove that the L^2-$\overline{\partial}$-$(p,1)$-cohomology groups (with respect to the Fubini-Study metric) of the regular part of X are finite dimensional.

1. Introduction

This paper is the third in a series of papers in which we discuss L^2 existence results for the Cauchy-Riemann operator on the regular part of complex spaces with non-isolated singularities. In [7] we considered the case of a relatively compact, open, Stein subset Ω of a reduced Stein complex space X and studied the equation $\overline{\partial}u = f$ on $\Omega^* = \Omega \setminus A$ where A was a lower dimensional complex analytic set with empty interior containing the singular locus of X and f was a $\overline{\partial}$-closed, square integrable form vanishing to high order on A. In [25] we proved some L^2 existence theorems for $\overline{\partial}$ in the case of product singularities.

In this paper we consider an irreducible n-dimensional projective variety X in \mathbb{CP}^N with arbitrary singular locus $\text{Sing}X$. The regular part of X, denoted by $\text{Reg}X$, inherits a metric from the restriction of the Fubini-Study metric, which we call the ambient metric. We denote by \langle, \rangle_{FS}, $| \cdot |_{FS}$, dV_{FS} respectively the pointwise inner product, norm on multi-(co) vectors and volume element on $\text{Reg}X$ induced by the ambient metric and by $L^2_{p,q}(\text{Reg}X,dV_{FS})$ the space of (p,q) forms on $\text{Reg}X$ that are square-integrable with respect to the ambient metric. We consider the weak $\overline{\partial}$-operator acting on forms on $\text{Reg}X$. Let $Z^{p,q}_{(2)}(\text{Reg}X) := \{ f \in L^2_{p,q}(\text{Reg}X,dV_{FS}) | \overline{\partial}f = 0 \text{ on } \text{Reg}X \}$ and let $f \in Z^{p,q}_{(2)}(\text{Reg}X)$ where $0 \leq p \leq n$ and $1 \leq q \leq n$. We address the question of whether we can solve $\overline{\partial}u = f$ on $\text{Reg}X$ with $u \in L^2_{(p,q-1)}(\text{Reg}X,dV_{FS})$. Our main result is the following theorem:

Theorem 1.1. There exists a closed subspace \mathcal{H} of finite codimension on the space $Z^{p,1}_{(2)}(\text{Reg}X)$ such that for every $f \in \mathcal{H}$ there exists a $u \in L^2_{(p,0)}(\text{Reg}X,dV_{FS})$ such that $\overline{\partial}u = f$ on $\text{Reg}X$.

Pardon and Stern proved in [27] that the L^2-(n,q)-$\overline{\partial}$-cohomology groups of n-dimensional projective varieties with general singularities (with respect to the ambient metric) are finite dimensional for all $q \geq 0$ (more precisely they showed that they are isomorphic to the (n,q)-cohomology groups of a desingularization). To our knowledge Theorem 1.1 is the first result on finite dimensionality of some L^2-(p,q)-$\overline{\partial}$-cohomology groups (with respect to the ambient metric) with $p \neq n$ of such varieties. The case of projective varieties with isolated singularities has been studied by Nagase [17], Ohsawa [18, 19, 20, 21, 22], Pardon [26] and Pardon and Stern [27, 28, 29]. A local analogue of this question for varieties with isolated singularities was
considered by Fornæss [5], Diederich, Fornaess and Vassiliadou [8] and Fornæss, Øvrelid and Vassiliadou [11] (see [3, 7] for extended references). Ohsawa constructed in [23] a complete Kähler metric on a small, Stein, deleted neighborhood of a singular point of a complex space with arbitrary singularities and showed that with respect to that metric, certain L^2-∂-cohomology groups with support conditions vanish there. Few years later, Grant and Milman constructed in [8] a complete Kähler metric on the regular part of a compact complex space with arbitrary singular locus. Grant and Milman’s construction was motivated in part by the hope that this metric might be useful for proving the existence of a Hodge structure on the intersection cohomology of projective varieties with arbitrary singularities. It is not clear to us at this moment whether the local L^2 results for ∂ obtained in [23] (with respect to the specific complete Kähler metric) or Grant and Milman’s complete Kähler metric can be used to understand the global L^2-∂-cohomology groups (with respect to the Fubini-Study metric) we consider in this paper.

Our proof is inspired by the methods employed in [8] and [5]. It is based on the observation that Hörmander’s L^2-theory carries over unchanged to Stein Riemann domains Y over \mathbb{C}^n when we equip Y with the pull back Euclidean metric from \mathbb{C}^n. We look at the affine pieces X_0, X_1, \ldots, X_N of X and for each piece we choose a family of non-degenerate projections (for the definition see Section 2) $\pi_j: X_j \to \mathbb{C}^n$ along with subvarieties Σ_{π_j} such that $\pi_j: X_j\setminus\Sigma_{\pi_j} \to \mathbb{C}^n$ is a local biholomorphism and $\bigcup (X_j\setminus\Sigma_{\pi_j}) = \text{Reg } X$. Now the set $Z_j := X_j\setminus\Sigma_{\pi_j}$ inherits a metric from the pull back of the Euclidean metric in \mathbb{C}^n and let us denote the pointwise norm with respect to this metric by $| \cdot |_j$ and volume element dV_j. Let $(\pi_j, Z_j, \Sigma_{\pi_j})^{M}_{j=1}$ be an enumeration of the various projections of the affine pieces. When $f \in L^2(\text{Reg } X, dV_{FS})$ we can show that f satisfies estimates of the following form:

$$\int_{Z_j} |f|_j^2 e^{-\psi_j} dV_j \leq C \int_{\text{Reg } X} |f|_{FS}^2 dV_{FS},$$

where ψ_j are specific plurisubharmonic functions and C some positive constant independent of j. Then, we may use Hörmander’s L^2-theory to obtain L^2 solutions v_j (with respect to the metric induced on Z_j by the pull back of the Euclidean metric in \mathbb{C}^n) to $\partial v = f$ on Z_j.

The delicate part is to use Łojasiewicz’s inequalities to obtain good control of the boundary behaviour of $| v_j |_j, dV_j$ on Z_j in terms of the Fubini-Study metric. The forms $h_{jj'} := v_j - v_{j'}$ are holomorphic on $Z_j \cap Z_{j'}$. From what we know about their boundary behaviour we can deduce from sheaf-theoretic results that they lie in a finite dimensional vector space of holomorphic p-forms. Since the map $f \to \{h_{jj'}\}_{1 \leq j < j' \leq M}$ is linear, we have that $h_{jj'} = 0$ for all j, j', whenever f lies in a finite codimensional subspace of $Z_{(2)}^{p,1}(\text{Reg } X)$. In this case, we can show that the v_j define an L^2 solution v (with respect to the ambient metric) to $\partial v = f$ on $\text{Reg } X$.

As a by-product of the techniques used in the paper we obtain a weighted L^2-estimate for ∂ on irreducible affine algebraic subvarieties of \mathbb{C}^N. More precisely we prove the following theorem:

Theorem 1.2. Let X be an irreducible, n-dimensional affine subvariety of \mathbb{C}^N and let ψ be a strictly plurisubharmonic function on $\text{Reg } X$ with at most logarithmic growth (i.e. $\psi(z) \leq A \log(1 + ||z||^2) + B$ for some $A, B \geq 0$) and not necessarily bounded from below. Let $Z_{\psi}^{(p,1)} := \{f \in L^2_{\partial,loc}^{(p,1)}(\text{Reg } X, dV_E); \partial f = 0 \text{ on }\text{Reg } X; \int_{\text{Reg } X} |f|^2_E e^{-\psi} dV_E < \infty\}$. Then, there exists a subspace $\mathcal{H} \subset Z_{\psi}^{(p,1)}$ of finite codimension such that for all $f \in \mathcal{H}$ there exists a $u \in L^2_{\partial,loc}^{(p,0)}(\text{Reg } X, dV_E)$ with $\partial u = f$ on $\text{Reg } X$.
\[\int_{\text{Reg}X} |u|^2_E (1 + \|z\|^2)^{-2} e^{-\psi} \, dV_E \leq C \int_{\text{Reg}X} |f|^2_E e^{-\psi} \, dV_E, \]

where \(C \) is some positive constant.

Our main theorem can also be used to prove finite dimensionality results for some local \(L^2-J \)-cohomology groups of varieties with isolated singularities. In particular, let \(X \) be an irreducible \(n \)-dimensional analytic set in \(\mathbb{C}^N \) with an isolated singularity at 0. In [5] (section 9) a question was raised about understanding the \(L^2-J(p, q) \)-cohomology groups (with respect to the Euclidean metric) of the regular part of a small Stein neighborhood of 0 in \(X \) when \(p + q = n \) and \(p, q > 0 \). With the aid of Theorem 1.1 we can prove that when \(p = n - 1, q = 1 \) these groups are finite dimensional.

The paper is organized as follows: In section 2 we describe some geometric facts about affine algebraic varieties and recall some basic concepts about projective varieties. Section 3 deals with the comparison between the Fubini-Study metric and the pull-back metrics \(|\cdot|_J\) that were defined earlier in the introduction. Section 4 contains the estimates for the solutions \(v_j \) to \(\partial v = f \) on \(Z_j \). In Section 5, we show that \(h_{jj'} \) lie in a finite dimensional subspace of the space of holomorphic \((p, 0)\) forms. In Section 6 we prove Theorem 1.2 and finally in section 7 we outline the proof for the finite dimensionality of the local \(L^2-J(n - 1, 1) \)-cohomology groups of a small Stein neighborhood of an isolated singular point of an irreducible \(n \)-dimensional variety of \(\mathbb{C}^N \).

Acknowledgements: This paper was completed while the second author was visiting the Institute of Mathematics at the University of Oslo in June of 2006. She gratefully acknowledges its hospitality and support. She would also like to thank Tom Haines for many fruitful and stimulating discussions and Peter Haskell for a valuable comment on an earlier version of the paper.

2. Some geometric facts about varieties

2.1. Non-degenerate projections. Let \(Y \) be an irreducible, \(n \)-dimensional, affine algebraic variety in \(\mathbb{C}^N \). Let \(L \) be an \(n \)-dimensional linear subspace of \(\mathbb{C}^N \) and \(\pi: \mathbb{C}^N \to L \) be an orthogonal projection.

Definition 2.1. We shall say that \(\pi|_Y : Y \to L \) is a non-degenerate projection on \(Y \), if there exists a point \(p \in \text{Reg}Y \) such that the induced map on tangent spaces \((\pi|_Y)^*: T_pY \to L\) is an isomorphism.

Remark: Every projection \(\pi: \mathbb{C}^N \to L \), where \(L \) is an \(n \)-dimensional subspace of \(\mathbb{C}^N \) can be made non-degenerate on \(Y \) after a slight perturbation.

Definition 2.2. The ramification locus \(\Sigma \) of the above projection consists of all points \(p \in \text{Sing}Y \) as well as those \(p \in \text{Reg}Y \) for which \((\pi|_Y)^*: T_pY \to L\) fails to be an isomorphism.

Another way to think about the non-degenerate projections and their ramification loci is the following: The map \(\pi|_Y : Y \to L \) induces for all \(y \in Y \), a linear map \((\pi|_Y)^*: T_yY \to L\), where \(T_yY \) is the Zariski tangent space at \(y \). As a linear map between vector spaces it has a rank and a corank (the dimension of the kernel of the linear mapping \((\pi|_Y)^*\)).
exists a regular point p in Y such that $\text{rank}((\pi|_Y)_{*,p}) = n$. Under this light we can define the ramification locus of a projection $\pi|_Y : Y \to L$ as follows:

Definition 2.3. The ramification locus of the above projection is the set

$$\Sigma = \{ y \in Y; \text{ corank}((\pi|_Y)_{*,y}) \geq 1 \}.$$

Proposition 2.4. The ramification locus Σ is an algebraic subvariety of Y. When the projection $\pi|_Y : Y \to L$ is non-degenerate on Y then Σ is a proper subvariety of Y.

Proof. The proof of the Proposition is similar to that of Theorem 4 (page 136, Volume II) in Gunning [10] (we just replace holomorphic subvarieties by algebraic and holomorphic map by regular map). The fact that Σ is a proper subvariety of Y when the projection is non-degenerate on Y follows trivially from the definitions. \square

Remark: For a non-degenerate projection on Y, the set $A := \{ y \in \text{Reg}Y; \text{ rank}((\pi|_Y)_{*,y}) = \text{n} \}$ is a non-empty open Zariski dense set in Y. Thus, for most points $y \in \text{Reg}Y$ the projection $\pi|_Y$ is non-degenerate.

2.2. Projections onto the n-coordinate planes.

Let $I := (i_1, \cdots, i_n)$, $1 \leq i_1 < \cdots < i_n \leq N$ be an increasing n-tuple and let I' be its complement in $\{1, 2, \cdots, N\}$. Let L_I be an n-dimensional subspace of \mathbb{C}^N defined by $L_I := \{ (z_1, \cdots, z_N) \in \mathbb{C}^N; \ z_j = 0 \text{ for all } j \in I' \}$ and such that $\pi_I : \mathbb{C}^N \to L_I$, $(z_1, \cdots, z_N) \to (z_{i_1}, \cdots, z_{i_n})$, the projection onto the I coordinates is non-degenerate on Y (we can always assume that after a slight perturbation). Since Y is an irreducible affine variety in \mathbb{C}^N there exists a prime ideal $\mathcal{B} \subset \mathbb{C}[z_1, \cdots, z_N]$ such that $Y = Z(\mathcal{B})$, the zero locus of \mathcal{B}. Let p_1, \cdots, p_s be generators of \mathcal{B}. It is a well-known fact that the germs $p_{1,z}, \cdots, p_{s,z}$ generate $\mathcal{I}_{Y,z}$, the stalk at z of the ideal sheaf of Y, when the latter is viewed as a holomorphic variety; see for example Proposition 13.3.3 in [30]. Let Σ_I denote the ramification locus of π_I and let $y \in \Sigma_I$. The induced map on tangent spaces $(\pi_I|_Y)_{*,y} : T_y Y \to L_I$ sends an element $T_y Y \ni v = (v_1, \cdots, v_N) \to (v_{i_1}, \cdots, v_{i_n})$. We know that the kernel of $((\pi_I|_Y)_{*,y})$ is at least one complex dimensional if and only if all $(N-n) \times (N-n)$ minors of the matrix

$$\begin{pmatrix} \frac{\partial p_i}{\partial z_r}(y) \\ 1 \leq i \leq s, \ i \in I', \ 1 \leq r \leq N \end{pmatrix}$$

have zero determinants. Points $y \in \text{Sing}Y$ are in Σ_I since the rank of the Jacobian $\left(\frac{\partial p_i}{\partial z_r}(y) \right)_{1 \leq i \leq s, \ 1 \leq r \leq N}$ at these points is less that $N - n$.

Proposition 2.5. Let Y be an irreducible, n-dimensional, affine algebraic variety in \mathbb{C}^N. There exist finitely many, complex linear, orthogonal projections $\pi_j : \mathbb{C}^N \to L_j$, with n-dimensional images L_j and a constant $c > 0$ such that:

i) The restriction of π_j's on Y are non-degenerate on Y with ramification locus Σ_j.
ii) For every $z \in \text{Reg} Y$ there exists a j such that $z \notin \Sigma_j$ and such that $(\pi_j)_{\ast, z} : T_z Y \to L_j$ satisfies $\| (\pi_j)_{\ast, z} v \| \geq c \| v \|$ for all $v \in T_z Y$. (Here the norms are the induced Euclidean norms).

In particular ii) implies that $\cap \Sigma_j = \text{Sing} Y$.

Proof. After a slight perturbation we can take as π_j’s the projections onto the (newly defined) n-dimensional coordinate planes in \mathbb{C}^N. Let $I = \{i_1, \cdots, i_n\}$, $1 \leq i_1 < \cdots < i_n \leq N$ be an increasing n-tuple. Let $\pi_I : C^N \to L_I$ be the projection onto the I coordinates. To prove part ii) we need the following lemma.

Lemma 2.6. There exists an absolute constant $c > 0$ such that for each $z \in \text{Reg} Y$ there exists a multi-index I_0 such that $\| (\pi_{I_0})_{\ast, z} v \| \geq c \| v \|$ for all $v \in T_z Y$

Proof. Let $z \in \text{Reg} Y$ and v_1, \cdots, v_n be an orthonormal basis of $T_z Y$. Let $\{e' := e_{i_1} \wedge \cdots \wedge e_{i_n} ; |I| = n\}$ be an orthonormal basis of $\wedge^n C^N$. Consider the expansion of $v_1 \wedge v_2 \cdots \wedge v_n$ in terms of e'. In what follows for abbreviation we shall write π_{I_0} instead of $(\pi_{I_0})_{\ast, z}$. We have

$$1 = \| v_1 \wedge \cdots \wedge v_n \|^2 = \sum_{|I| = n}^\prime \| \pi_{I_0} (v_1) \wedge \cdots \wedge \pi_{I_0} (v_n) \|^2 = \sum_{|I| = n}^\prime D_I$$

where $D_I := G(\pi_{I_0} (v_1), \cdots, \pi_{I_0} (v_n))$ is the Gram determinant of the vectors $\pi_{I_0} (v_1), \cdots, \pi_{I_0} (v_n)$.

Recall that on a unitary space E endowed with a hermitian inner product $(\ , \)$ the Gram determinant of vectors x_1, \cdots, x_p in E is described by:

$$G(x_1, \cdots, x_p) := \text{det} \begin{pmatrix} (x_1, x_1) & \cdots & (x_1, x_p) \\ \vdots & \ddots & \vdots \\ (x_p, x_1) & \cdots & (x_p, x_p) \end{pmatrix}$$

In general $G(x_1, \cdots, x_p) \geq 0$ and equality holds if the vectors x_1, \cdots, x_p are linearly dependent.

Since there are $N \choose n$ terms on the right hand side of equation (2.2.1) there should exist a multi-index I_0 such that $D_{I_0} \geq (N \choose n)^{-1}$. Now if we let $S := \pi_{I_0} \circ \pi_{I_0}: T_z Y \to T_z Y$ we obtain

$$D_{I_0} = \text{det} \left((Sv_1, v_j) \right) = \text{det} S.$$

But S is a positive, symmetric form that has eigenvalues $\{l_j\}$, $0 < l_1 \leq l_2 \cdots \leq l_n \leq 1$ since $\| S \| \leq 1$. Then for all $v \in T_z Y$ we have

$$\| \pi_{I_0} v \|^2 = (Sv, v) \geq l_n \| v \|^2 \geq (\prod_j l_j) \| v \|^2 = D_{I_0} \| v \|^2 \geq (N \choose n)^{-1} \| v \|^2.$$

Remarks: a) Part ii) of the above Proposition can be thought of as a statement about n-planes in \mathbb{C}^N. Recall that the Grassmannian $\text{Gr}(n, N)$ can be covered by open affine sets U_Γ where Γ is a $(N - n)$-dimensional subspace of \mathbb{C}^N. Each U_Γ is defined to be the subset of planes $\Lambda \subset \mathbb{C}^N$ complementary to Γ. Fixing any subspace $\Lambda \subset U_\Gamma$ a subspace $\Lambda' \subset U_\Gamma$ is the graph of a homomorphism $\phi : \Lambda \to \Gamma$, so that $U_\Gamma = \text{Hom}(\Lambda, \Gamma)$ (for more information on this...
the interested reader may look at Lecture 16 in [11]). We shall consider a slightly different covering of the Grassmanian \(\text{Gr}(n,N) \). Let \(L \) be an \(n \)-dimensional subspace as before and let \(L^\perp \) denote its orthogonal complement in \(\mathbb{C}^N \). Let \(B(L,L^\perp) \) denote the set of bounded linear maps from \(L \) to \(L^\perp \). Consider the following local parametrizations:

\[
\phi_L : B(L,L^\perp) \rightarrow \text{Gr}(n,N)
\]

given by \(\phi_L(T) = \text{Graph}(T) \). Let \(\epsilon > 0 \). The set \(\phi_L(\{T; \|T\| < \epsilon\}) \) is an open neighborhood of \(L \) in \(\text{Gr}(n,N) \). Since the latter variety is compact there exist finitely many \(L_1, \cdots, L_K \in \text{Gr}(n,N) \) and open sets \(U_j := \phi_{L_j}(\{T; \|T\| < \epsilon\}) \) such that \(\text{Gr}(n,N) = \bigcup_{j=1}^K U_j \). When \(L \in U_j \), the orthogonal projection \(\pi_j : L \rightarrow L_j \) is bounded from below by \((1 + \epsilon^2)^{-\frac{1}{2}} \). Choosing \(\epsilon \) small enough we can make the constant \(c \) that appears in part ii) of the above proposition to be as close to 1 as we like, using sufficiently many projections. \(\square \)

b) Part ii) of the above Proposition guarantees that \(\bigcap_j \Sigma_j = \text{SingY} \). Hence, \(\{Y \setminus \Sigma_j\}_j \) will cover \(\text{RegY} \).

2.3. Projective spaces and Fubini-Study metric.

A point in \(\mathbb{CP}^N \) is usually written as a homogeneous vector \([Z_0, \cdots, Z_N]\) by which we mean the line spanned by \((Z_0, \cdots, Z_N) \in \mathbb{C}^{N+1} \setminus \{0\}\). For \(i = 0, \cdots, N \) we define

\[
\phi_i : \mathbb{C}^N \rightarrow U_i \subset \mathbb{CP}^N
\]

given by \(\phi_i(z_1, \cdots, z_N) = [z_1 : \cdots : z_i : 1 : z_{i+1} : \cdots : z_N] \).

In particular \(\phi_0(z_1, \cdots, z_N) = [1 : z_1 : \cdots : z_N] \). We set for \(0 \leq i \leq N \),

\[
H_i := \mathbb{CP}^N \setminus \phi_i(\mathbb{C}^N) = \{[Z]; Z_i = 0\}.
\]

On \(\phi_i^{-1}(U_i) \), using the affine coordinates \(z_1, \cdots, z_N \) the Fubini-Study metric takes the form

\[
\left(\sum h_{\mu\nu}(z)dz_{\mu} \otimes d\overline{z}_{\nu} \right) (1 + \|z\|^2)^{-2}
\]

where \(h_{\mu\nu}(z) = (1 + \|z\|^2)\delta_{\mu\nu} - \overline{z}_{\mu} z_{\nu} \), \(\mu, \nu = 1, \cdots, n \). The associated \((1,1)\) Kähler form is described by

\[
\omega = \frac{i}{2} \sum h_{\mu\nu} dz_{\mu} \wedge d\overline{z}_{\nu}.
\]

Let \(\lambda_1, \cdots, \lambda_N \) be the eigenvalues of the restriction of the Fubini-Study metric on the affine piece \(\phi_i^{-1}(U_i) \) with respect to the Euclidean metric. A direct calculation shows that

\[
(1 + \|z\|^2)^{-2} = \lambda_1 \leq \lambda_2 = \cdots = \lambda_N = (1 + \|z\|^2)^{-1}.
\]
Let X be an irreducible n-dimensional projective variety in \mathbb{CP}^N. Set $X_i := \phi^{-1}_i(X \cap U_i) \subset \mathbb{C}^N$. For each i, $i \in \{0, \cdots, N\}$ we shall choose $\{L^i_k\}_{k=1}^{M_i}$, families of n-dimensional complex subspaces of \mathbb{C}^N and orthogonal linear projections $\pi_k^i : \mathbb{C}^N \to L^i_k$ such that $\pi_k^i|_{X_i}$ is non-degenerate on X_i with ramification locus Σ_k^i and such that part ii) of Proposition 2.4 holds for each i. Set $W_k^i := X_i \setminus \Sigma_k^i$. To reduce the number of indices we choose an ordering of the set $\{(i, k); i \in \{0, \cdots, N\}, k = 1, \cdots, M_i\}$ and of the corresponding objects L^i_k, π_k^i, W_k^i such that we have a bijection

$$\Theta : \{1, \cdots, M\} \to \{(i, k) \in \mathbb{N}^2; i \in \{0, \cdots, N\}, 1 \leq k \leq M_i\},$$

$$j \to (i(j), k(j))$$

Let L_1, \cdots, L_M be this ordering of all the n-dimensional subspaces $\{L^i_k\}$ and let π_1, \cdots, π_M be the corresponding projections. In what follows the index $i(j)$ will determine the affine variety X_i that contains W_j, Σ_j.

Let $<, >$, $| |$, dV denote the pointwise inner product, norm on muti-(co)-vectors and volume element on RegX_i induced by the Fubini-Study metric, and let $< >_E$, $| |_E$, dV_E those induced on RegX_i from the Euclidean metric in \mathbb{C}^N and $<, >_j$, $| |_j$, dV_j those pull-backed on $W_j \subset$ Reg$X_{i(j)}$ via π_j from the Euclidean metric on L_j. By the min-max principle we know that the eigenvalues of the restriction of the Fubini-Study metric with respect to the Euclidean metric on RegX_i satisfy

$$(1 + \|z\|^2)^{-2} \leq \lambda_1 \leq \lambda_2 = \cdots = \lambda_n = (1 + \|z\|^2)^{-1}.$$

For $f \in L^2_{p,q,loc}\left(\text{Reg}X_i, dV\right)$ we have

$$(3.0.1) \quad (1 + \|z\|^2)^{-\alpha} f^2_E dV_E \leq |f|^2 \, dV$$

while for a form $u \in L^2_{p,q-1,loc}\left(\text{Reg}X_i, dV_E\right)$ we have

$$(3.0.2) \quad (1 + \|z\|^2)^{-\beta} |u|^2 \, dV \leq |u|^2_E \, dV,$$

where α, β are some non-negative constants that depend only on p, q.

3.1. Comparison between dV_j, dV_E on W_j. The set W_j inherits two metrics. One from the restriction of the Euclidean metric in \mathbb{C}^N and another from the pull-back of the Euclidean metric on L_j via the map π_j. We begin this section by relating the volume elements of these two metrics on W_j.

Lemma 3.1. There exists a smooth function m_j defined on W_j such that

i) $dV_E = m_j \, dV_j$ on W_j.

ii) The function $\log m_j$ is plurisubharmonic on W_j.
Proof. Part i) can be taken as the definition of the function m_j. To prove part ii) of the lemma we need a local description of the function m_j. Without loss of generality we can assume that the n-dimensional subspace L_j corresponds to the n-coordinate plane L_j in \mathbb{C}^N where $I = (1, \ldots, n)$ is an increasing n-tuple. Then $m_j : X_{i(j)} \to L_j$ is the projection onto the first n-coordinates. The ramification locus of this projection is characterized by the vanishing of the determinants of all $(N - n) \times (N - n)$ minors of the matrix
\[
\begin{pmatrix}
\frac{\partial p_i}{\partial z_j} \\
1 \leq i \leq n
\end{pmatrix}
\]
where p_1, \ldots, p_s are the generators of the ideal of the variety $X_{i(j)}$. We can describe the set W_j as
\[W_j = \{ z_0 \in X_{i(j)} : \Delta_K(z_0) \neq 0 \text{ for some multi-index } K : 1 \leq k_1 < \cdots < k_{N-n} \leq s \},\]
where
\[\Delta_K(z_0) := \text{det} \left(\begin{array}{c}
n \times n \\
\frac{\partial p_{k_1}}{\partial z_{n+1}}, \ldots, \frac{\partial p_{k_{N-n}}}{\partial z_N}
\end{array} \right) (z_0).
\]
Let $z_0 \in W_j$. Then there exists a neighborhood V of z_0 in $X_{i(j)}$ that is parametrized as $(z', g_1(z'), \ldots, g_{N-n}(z'))$ for some functions g_j and with $z' = (z_1, \ldots, z_n) \in \pi_{i(j)}(V)$ (by the implicit function theorem). For all $k \in K$ we have that $p_k(z', g_1(z'), \ldots, g_{N-n}(z')) = 0$. The implicit function theorem allows us to compute for all l with $1 \leq l \leq N - n$ and ν with $1 \leq \nu \leq n$,
\[
(3.1.1) \quad \frac{\partial g_k}{\partial z_\nu} (\pi_{i(j)}(z)) = \frac{A_{\nu K_l}(z)}{\Delta_K(z)}
\]
where $A_{\nu K_l}$ is the determinant of the $(N - n) \times (N - n)$ matrix $\left(\frac{\partial p_{k_1}}{\partial z_{n+1}}, \ldots, \frac{\partial p_{k_{N-n}}}{\partial z_N} \right)$ where the l-th column has been replaced by $\top (-\frac{\partial p_{k_1}}{\partial z_{n+1}}, \ldots, -\frac{\partial p_{k_{N-n}}}{\partial z_N})$.

For $i = 1, \ldots, n$ and $z \in V$ we let
\[\zeta_i := e_i + \sum_{k=1}^{N-n} \frac{\partial g_k}{\partial z_i} (z') e_{n+k},\]
where $\{e_i\}_{i=1}^N$ is the standard basis of \mathbb{C}^N. It is not hard to show that $\{\zeta_i\}_{i=1}^n$ form a basis of T_zW_j. Moreover for $1 \leq i \leq n$ we have $(\pi_{i(j)})_* z_i \zeta_i = \tilde{e}_i$, where \tilde{e}_i is the standard basis in L_j. Clearly
\[
(3.1.2) \quad dV_E = \text{det} B \, dV_j,
\]
where $B = (b_{kl})$ is the $n \times n$ matrix with entries $b_{kl} := \langle \zeta_k, \zeta_l \rangle_E$ and \langle, \rangle_E is the pointwise Euclidean inner product on elements of T_zW_j.

Let us look at $\| \Lambda_{i=1}^n \zeta_i \|^2_E$. It follows from the definition of the Euclidean inner product on vectors in $\Lambda_{i=1}^n T_zW_j$ that $\| \Lambda_{i=1}^n \zeta_i \|^2_E = \text{det} B$. Using (3.1.2) we have the following local description of $m_j(z) = \| \Lambda_{i=1}^n \zeta_i \|^2_E$.

Let us also consider the following \(n \times N \) matrix:

\[
C = \begin{pmatrix}
1 & \cdots & 0 & \frac{\partial g_1}{\partial z_1} & \cdots & \frac{\partial g_N}{\partial z_1} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 1 & \frac{\partial g_1}{\partial z_N} & \cdots & \frac{\partial g_N}{\partial z_N}
\end{pmatrix}
\]

To prove ii) we notice that \(m_j(z) = \sum'_{H} |C_H|^2 \), where the summation runs over all multi-indices \(H = (h_1, \ldots, h_n) \) with \(1 \leq h_1 < \cdots < h_n \leq N \) and \(C_H \) are determinants from the \(n \times N \) matrix \(C \) with columns \(h_1, \ldots, h_n \). The \(C_H \)'s are holomorphic functions. Hence \(\log m_j \) is a plurisubharmonic function in a neighborhood of \(z_0 \). \(\square \)

We have seen that \(\{\zeta_j\}_{j=1}^n \) form an orthonormal basis for \(T_z W_j \) with respect to the pull back metric. Let \(\{\lambda_j\} \) be the eigenvalues of the Kähler form \(\omega_E \) of the Euclidean metric on \(W_j \) with respect to the pull-back metric. We have \(1 \leq \lambda_1 \leq \cdots \leq \lambda_n \). For a \((p,q) \) form \(f \) on \(W_j \) we have:

\[
|f|^2_E = \sum_{I,J} \prod_{i \in I} \lambda_i \prod_{j \in J} \lambda_j |f_{IJ}|^2.
\]

Taking into account part i) of the previous lemma and the fact that the eigenvalues \(\{\lambda_j\} \) are greater or equal to 1 we have the following estimate for \((p,q) \)-forms \(f \) with \(p > 0, q > 0 \)

\[
m_j^{-1} |f_j|^2 dV_j \leq |f|^2_E dV_E
\]

In the special case where \(p = 0, q > 0 \) we have a stronger estimate

\[
|f_j|^2 dV_j \leq |f|^2_E dV_E.
\]

3.2. Global Lojasiewicz inequality. In the next section we shall need an upper bound for the function \(m_j \) that was defined in the previous lemma. The upper bound will be obtained by applying a global Lojasiewicz-type inequality obtained first by Brownawell [1] and later improved by Ji, Kollár and Shiffman [14].

Corollary 3.2. (Corollary 6 in [14]) Let \(f_1, \ldots, f_k \in \mathbb{C}[z_1, \ldots, z_n] \) and let \(d_i = \deg f_i \). Let \(Z \subset \mathbb{C}^n \) be the common zero set of these polynomials. Then there is a constant \(C > 0 \) such that

\[
\left(\frac{\text{dist}(z,Z)}{1 + \|z\|^2} \right)^n \leq C \max_i |f_i(z)|
\]

holds for all \(z \in \mathbb{C}^n \). Here \(C \) and \(\overline{B}(n, d_1, \ldots, d_k) \) are positive constants that depend on the \(f_i \) and \(\|z\|^2 := |z_1|^2 + \cdots + |z_n|^2 \).
Recall that \(m_j(z) = \det (\langle \zeta_k, \zeta_i \rangle)_{k,i} \) and \(\langle \zeta_k, \zeta_i \rangle = \delta_{ki} + \sum_{\mu=1}^{N-n} \frac{\partial \rho_k}{\partial x_{2\mu}} (\frac{\partial \rho_k}{\partial x_{2\mu}}) \). Using (3.2.1) we can obtain the following upper bound for \(m_j(z) \):

\[
(3.2.2) \quad m_j(z) \leq \left(1 + |\Delta_K|^{-2} \sum_{\nu=1}^{n} \sum_{l=1}^{N-n} |A_{\nu K_l}|^2 \right)^n
\]

The ramification locus \(\Sigma_j \) is the zero locus of the following set of polynomials \(\{p_1, \ldots, p_s\} \cup \{\Delta_K; \text{for all increasing multi-indices } K, |K| = N-n\} \). Applying (3.2.1) we have for \(z \in W_j \)

\[
(3.2.3) \quad \max K |\Delta_K(z)| \geq C^r_{i(j)} d_E(z, \Sigma_j)^{-\frac{n}{2}} \left(1 + \|z\|^2 \right)^{-\frac{n}{2}}
\]

If we choose for each \(z \in W_j \) the multi-index \(K \) such that \(\Delta_K(z) \) is maximal then using (3.2.3) inequality (3.2.2) will become

\[
(3.2.4) \quad m_j(z) \leq \left(1 + C^{r_2}_{i(j)} d_E(z, \Sigma_j)^{-2\frac{n}{2}} \left(1 + \|z\|^2 \right)^{\frac{n}{2}} \sum_{\nu=1}^{n} \sum_{l=1}^{N-n} |A_{\nu K_l}|^2 \right)^n
\]

Finally there exist constants \(C_{i(j)}, E_{i(j)}, D_j > 0 \) such that

\[
(3.2.5) \quad m_j(z) \leq C_{i(j)} (1 + \|z\|^2)^{D_j} (\min \{1, d_E(z, \Sigma_j)\})^{-E_{i(j)}}
\]

4. \(L^2 \)-solvability for \(\overline{\partial} \) on \(W_j \)

4.1. \(L^2 \)-existence theorem. Hörmander’s \(L^2 \) theory for Stein domains in \(\mathbb{C}^n \) extends naturally to Stein Riemann domains over \(\mathbb{C}^n \) when these are given the pull back metric. In our case \((W_j, \pi_j, L_j) \) are Riemann domains over \(L_j \). Since the sets \(X_i \) are singular though, the \(W_j \)'s are not necessarily Stein. We shall need the following variant of Hörmander’s theory:

Proposition 4.1. Let \(q > 0 \) and \(f \in L^2_{p,q} \) \((W_j, dV_E) \) with \(\overline{\partial} f = 0 \) on \(W_j \). Then there exists a solution \(u \) to \(\overline{\partial} u = f \) on \(W_j \) satisfying the following estimate:

\[
(4.1.1) \quad \int_{W_j} |u_j|^2 (1 + \|\pi_j(z)\|^2)^{q-2} e^{-\psi} dV_j \leq \int_{W_j} |f_j|^2 e^{-\psi} dV_j,
\]

whenever the RHS is finite and \(\psi \) is a plurisubharmonic function on \(W_j \).

Proof. We can choose polynomials \(Q_j(z) \) such that they vanish on \(\Sigma_j \) but do not vanish identically on \(X_i(j) \). Let \(Z(Q_j) \) denote the zero set of \(Q_j \). Then \((X_i(j) \setminus Z(Q_j), \pi_j, L_j) \) is a Stein Riemann domain. Theorem 4.4.2 in [12] (or Theorems 2.2.1 and 2.2.1' in [13]) carries (resp. carry) over almost verbatim to \(W'_j := X_i(j) \setminus Z(Q_j) \) and we obtain the existence of a solution \(u \in L^2_{p,q-1} \) \((W'_j, dV_j) \) to \(\overline{\partial} u = f \) on \(W'_j \) satisfying (4.1.1) with \(W_j \) being replaced by \(W'_j \). We want to show that the solution \(u \) extends to \(W_j \) and satisfies a similar estimate there. Let us look at the set \(W_j \setminus W'_j = W_j \cap Z(Q_j) \). It is a hypersurface in the complex manifold \(W_j \). If we could show that \(u \) is locally in \(L^2 \) (with respect to \(dV_j \)) near \(W_j \setminus W'_j \) then the result would follow from the following lemma:
Lemma 4.2. Let \(\Omega \) be an open subset of \(\mathbb{C}^n \) and \(Y \) an analytic subset of \(\Omega \). Assume that \(v \) is a \((p,q-1)\) form with \(L^2,\text{loc} \) coefficients and \(w \) a \((p,q)\)-form with \(L^1,\text{loc} \) coefficients such that \(\overline{\partial} v = w \) on \(\Omega \setminus Y \) (in the sense of distributions). Then \(\overline{\partial} v = w \) on \(\Omega \).

Proof. This is Lemma 6.9 (page 485) in [2]. \(\square \)

Remark: To be more precise we need to prove a similar lemma where \(\Omega \) is an open set of a complex manifold. But, Lemma 4.2 generalizes quite easily in this case.

Now for every \(z_0 \in W_j \setminus W_j' \) there exists a neighborhood \(U \) of \(z_0 \) in \(X_{i(j)} \) such that \(\pi_j : U \to \pi_j(U) \subset \mathbb{C}^n \) is a biholomorphism and there exists a positive constant \(c_1 \) such that

\[
e^{-\psi(z)} (1 + \|\pi_j(z)\|^2)^{-2} \geq c_1 \quad \text{for all } z \in U.
\]

Hence \(u \in L^2(U \setminus Z(Q_j), dV_j) \) and \(\overline{\partial} u = f \) on \(U \setminus Z(Q_j) \). But then \(\overline{\partial} u = f \) on \(U \) and hence \(\overline{\partial} u = f \) on \(W_j \). \(\square \)

4.2. Estimates for the solution to \(\overline{\partial} u = f \) on \(W_j \). In what follows, we shall use the notation \(L^2_{p,q}(W, \phi, dV_h) \) to denote the Hilbert space of \((p,q)\) forms on a complex hermitian manifold \((W, h)\) for which \(\|f\|^2 := \int_W |f|^2 e^{-\phi} dV_h < \infty \). We shall also use the notation \(a \preceq b \) (resp. \(a \succeq b \)) if there exists an absolute positive constant \(c \) such that \(a \leq c b \) (resp. \(a \geq c b \)), \(a \approx b \) if there exist absolute positive constants \(c, c' \) such that \(a \leq c b \), \(b \leq c' a \).

We shall choose as \(\psi_j(z) := \log m_j(z) + \alpha \log(1 + \|z\|^2) \) where \(\alpha \) is the positive constant that appears in (3.0.1). Then \(e^{-\psi_j} = m_j^{-1} (1 + \|z\|^2)^{-2} \). Let \(f \in L^2_{p,q}(\text{Reg} X, dV_{FS}) \) with \(\overline{\partial} f = 0 \) there. Then \(\phi_{i(j)}^* f \in L^2_{p,q}(\text{Reg} X_{i(j)}, dV) \). Using (3.0.1), (3.1.4) we obtain

\[
m_j^{-1} (1 + \|z\|^2)^{-2} |\phi_{i(j)}^* f_j|^2 dV_j \leq |\phi_{i(j)}^* f|^2 dV.
\]

But this last inequality implies that \(\phi_{i(j)}^* f \in L^2_{p,q}(W_j, \psi_j, dV_j) \). Then we can apply Proposition 4.1 to obtain a solution \(u'_j \in L^2,\text{loc}(W_j) \) that satisfies

\[
\int_{W_j} |u'_j|^2 (1 + \|\pi_j(z)\|^2)^{-2} e^{-\psi_j} dV_j \leq \int_{W_j} |\phi_{i(j)}^* f_j|^2 e^{-\psi_j} dV_j.
\]

Taking into account (3.0.2), Lemma 3.1 i) and the fact that \(\|\pi_j(z)\| \leq \|z\| \) we obtain

\[
(4.2.1) \quad \int_{W_j} m_j^{-2} (1 + \|z\|^2)^{-2-\alpha-\beta} |u'_j|^2 dV \leq \int_{\text{Reg} X} |f|_{FS}^2 dV_{FS}
\]

Using (3.2.3) the last inequality becomes

\[
(4.2.2) \quad \int_{W_j} (1 + \|z\|^2)^{-2-\alpha-\beta-D_j} \left(\min\{1, d_E(z, \Sigma_j)\} \right)^{E_{i(j)}} |u'_j|^2 dV \leq \int_{\text{Reg} X} |f|_{FS}^2 dV_{FS}.
\]

We set \(\Sigma^*_j := \phi_{i(j)}(\Sigma_j) \cup (X \cap H_{i(j)}) \). Then \(\Sigma^*_j \) is a projective subvariety of \(X \). Recall that \(d_E(z, \Sigma_j) > d(\phi_{i(j)}(z), \Sigma^*_j) \) and \(d(\phi_{i(j)}(z), H_{i(j)}) \approx (1 + \|z\|^2)^{-\frac{1}{2}} \) where by \(d(\bullet, \bullet) \) we denote the projective distance. Taking into account these inequalities we obtain

\[
(4.2.3) \quad \int_{\phi_{i(j)}^{-1}(\phi_{i(j)}(W_j))} d(\phi_{i(j)}(z), H_{i(j)})^{D_j} \left(\min\{1, d(\phi_{i(j)}(z), \Sigma^*_j)\} \right)^{E_{i(j)}} |u'_j(z)|^2 dV(z) \leq \int_{\text{Reg} X} |f|_{FS}^2 dV_{FS}
\]
where $D_j' := 2(2 + \alpha + \beta + D_j)$. To relate $d(\phi_{i(j)}(z), H_{i(j)})$ to $d(\phi_{i(j)}(z), \Sigma_j^*)$ we need to recall the notion of regular separation. Following Lojasiewicz (page 242 in [16]) we define:

Definition 4.3. Let (E, F) be closed subsets of a manifold M. We say that (E, F) satisfy the condition of regular separation if for each point $w \in E \cap F$ the following inequality holds true in a neighborhood of the point w

$$\rho(z, E) + \rho(z, F) \geq c \rho(z, E \cap F)^p$$

where c, p are some positive constants.

Theorem 4.4. Every pair of analytic sets of a complex manifold satisfies the condition of regular separation.

Proof. This theorem is proved in [16] (page 244). \qed

Since the sets X, H_i are regularly separated we have for $z \in X_i$

$$d(\phi_{i(j)}(z), H_{i(j)}) \geq c d(\phi_{i(j)}(z), H_{i(j)} \cap X)^p \geq c d(\phi_{i(j)}(z), \Sigma_j^*)^{p(j)}.$$

where c, p are the positive constants that appear in the definition of regular separation.

Pulling back to X via the biholomorphism $\phi_i^{-1} : U_i \to \mathbb{C}^N$ we obtain from (4.2.3)

$$(4.2.4) \quad \int_{\phi_{i(j)}(W_j)} (\min\{1, d(z, \Sigma_j^*)\})^{b_j} |u_j|^2_{FS} dV_{FS} \leq \int_{Reg_X} |f|^2_{FS} dV_{FS},$$

where $b_j := p_{i(j)} D_j' + E_{i(j)}$ and $u_j := (\phi_{i(j)}^{-1})^* u_j'$. Now, since \mathbb{CP}^N has a finite diameter with respect to the Fubini-Study metric we have that $\min\{1, d(z, \Sigma_j^*)\} \approx d(z, \Sigma_j^*)$. Hence $\bar{\partial} u_j = f$ on $\phi_{i(j)}(W_j)$ and from (4.2.4) we see that u_j satisfies

$$(4.2.5) \quad \int_{\phi_{i(j)}(W_j)} d(z, \Sigma_j^*)^{b_j} |u_j|^2_{FS} dV_{FS} \leq \int_{Reg_X} |f|^2_{FS} dV_{FS}.$$

To summarize: We have found solutions u_j that satisfy $\bar{\partial} u_j = f$ in $\phi_{i(j)}(W_j)$ and the estimate $\ref{1.2.25}$. For each j, j' with $1 \leq j < j' \leq M$ we have $\bar{\partial} (u_j - u_{j'}) = 0$ on $\phi_{i(j)}(W_j) \cap \phi_{i(j')}(W_{j'})$. Now, the sets $\phi_{i(j)}(W_j)$ are nonempty, Zariski open in X whose complement in X is Σ_j^*. Set $\Sigma := \cup_{j=1}^M \Sigma_j^*$. We can restrict u_j on $X \setminus \Sigma$. Let $h_{j,j'} := (u_j - u_{j'}) \mid (X \setminus \Sigma)$. Using (4.2.5) we can show that the $h_{j,j'}$’s satisfy the following estimates:

$$(4.2.6) \quad \int_{X \setminus \Sigma} d(w, \Sigma)^{b_{j,j'}} |h_{j,j'}|^2_{FS} dV_{FS} \lesssim \int_{Reg_X} |f|^2_{FS} dV_{FS} < \infty$$

where $b_{j,j'}$ are some positive constants that depend on $b_j, b_{j'}$.

4.3. Construction of the global solution. Let us define the linear mapping
\[
T : Z_{(2)}^{p,1}(\text{Reg}X) \rightarrow (\Omega^p(X \setminus \Sigma))^{(M)}_2
\]
\[
f \rightarrow (h_{j,j'})_{1 \leq j < j' \leq M}
\]

Suppose we could show that the range of \(T \) were finite dimensional. Then \(\mathcal{H} := \text{kern} T \) would be a subspace of \(Z_{(2)}^{p,1}(\text{Reg}X) \) of finite codimension. For an \(f \in \mathcal{H} \) we shall have that \(u_j = u_j' \) on \(X \setminus \Sigma \) which is non-empty, Zariski open subset of \(\phi_i(j)(W_j) \cap \phi_i(j')(W_{j'}) \). But then \(u_j = u_j' \) on \(\phi_i(j)(W_j) \cap \phi_i(j')(W_{j'}) \). To finish the proof of the main theorem it would suffice to show that the \(u_j \)'s determine a global, square-integrable (with respect to the ambient metric) \((p,0) \)-form on \(\text{Reg}X \).

Let \(R \) be a positive real number with \(R > \sqrt{N + 1} \). Then \(\mathbb{CP}^N = \cup_{i=0}^{n} \phi_i(B(0, R)) \), where \(B(0, R) \) is the Euclidean ball centered at the origin in \(\mathbb{C}^N \) and having radius \(R \). Consider the sets \(F_j := \{ z \in X_i(j) \setminus \Sigma_j; \| z \| < R \text{ and } \| (\pi_j)_a z v \| \geq c\| v \| \text{ for all } v \in T_z X_i(j) \} \). Let \(V_j := \phi_i(j)(F_j) \subset \phi_i(j)(W_j) \).

Lemma 4.5. The sets \(V_j \) cover \(\text{Reg}X \).

Proof. Obvious from the definition of the sets \(V_j \). \(\Box \)

When \(z \in F_j \) we have the following upper bound for \(m_j(z); m_j(z) \leq c^{-2n} \). Hence by (4.2.1) we obtain that the solutions \(u_j' \) satisfy the following \(L^2 \)-estimate on \(F_j \)’s:
\[
\int_{F_j} c^{-2n} (1 + R^2)^{-2-\alpha-\beta} |u_j'|^2 dV \leq \int_{\text{Reg}X} |f|^2_{FS} dV_{FS}
\]

Pulling back to \(X \) via \(\phi_i^{-1} \) we see that the solutions \(u_j \) satisfy an \(L^2 \)-estimate (with respect to the ambient metric) on \(V_j \). Since \(u_j = u_j' \) on \(V_j \cap V_{j'} \) and \(\{ V_j \}_j \) cover \(\text{Reg}X \) we obtain a global \((p,0) \) form \(u \) that satisfies \(\overline{\mathcal{F}} u = f \) on \(\text{Reg}X \) and
\[
\int_{\text{Reg}X} |u|^2_{FS} dV_{FS} \leq C \int_{\text{Reg}X} |f|^2_{FS} dV_{FS}.
\]

The next section is devoted to proving that the \(\text{Rang}(T) \) is finite dimensional.

5. **Finite dimensionality of certain holomorphic \(p \)-forms**

The main goal in this section is to prove the following lemma:

Lemma 5.1. Let \(A \) be a nonnegative real number. Let
\[
\mathcal{E}_A := \{ h \in \Omega^p(X \setminus \Sigma); \int_{w \in X \setminus \Sigma} d^A(w, \Sigma) |h(w)|^2_{FS} dV_{FS}(w) < \infty \}.
\]
For any \(A \geq 0 \), \(\mathcal{E}_A \) is a finite dimensional complex vector space.
Proof. The idea of the proof is to “kill” the singularity of \(h \in \mathcal{E}_A \) by tensoring it with a section of an invertible sheaf on \(X \) vanishing to high order on \(\Sigma \) and then use classical finiteness results for \(\Gamma(X, S_k) \) where \(S_k \) is a suitable coherent analytic \(\mathcal{O}_X \)-module.

Let \(p : \mathbb{C}^{N+1} \setminus \{0\} \to \mathbb{C}P^N \) be the standard projection map. In what follows we shall think mostly of \(X \) as a complex compact space. The sheaves on \(X \) that we will consider shall be analytic sheaves. By \(\mathcal{O}_X \) we shall denote the sheaf of holomorphic functions on \(X \). For every positive integer \(l \) we define the twisting sheaf \(\mathcal{O}(l) \) on \(\mathbb{C}P^N \) as follows: if \(U \) is an open subset of \(\mathbb{C}P^N \) in the Euclidean topology then \(\mathcal{O}(l)(U) \) consists of the space of holomorphic functions on \(p^{-1}(U) \) which are homogeneous of degree \(l \). The global holomorphic sections of this sheaf can be naturally identified with homogeneous polynomials \(Q(Z_0, \cdots, Z_N) \) of degree \(l \) in \(\mathbb{C}^{N+1} \). Over \(U_i, \mathcal{O}(l) \) has a trivialization with transition functions \(\left(\frac{Z}{Z_i^l} \right)^l \) on \(U_i \cap U_j \).

We choose a homogeneous polynomial \(P(Z) \) of degree \(d \) that vanishes on \(\Sigma \) but does not vanish identically on \(X \). Let \(k \in \mathbb{N} \) and let \(\sigma^k \) be the section of \(\mathcal{O}(kd) \) that corresponds to \(P(Z)^k \). We shall prove that when \(h \in \mathcal{E}_A \) and \(k \) is a sufficiently large positive integer, \(h \otimes \sigma^k \) extends to a global section \(h \otimes \sigma^k \) of some suitably chosen coherent analytic \(\mathcal{O}_X \)-module \(S_k \). More precisely we shall choose as \(S_k := R^0 \pi_* (\Omega^p_X) \otimes \mathcal{O}_X(\mathcal{O}(kd)) \) where \(\pi : \tilde{X} = \pi^{-1}(X) \) is a desingularization of \(X \) such that \(\Sigma := \pi^{-1}(\Sigma) \) is a divisor with normal crossings, \(\Omega^p_X \) is the sheaf of holomorphic \(p \)-forms on \(\tilde{X} \) and \(\mathcal{O}(kd)|_{\tilde{X}} = i^{-1}(\mathcal{O}(kd)) \) with \(i : X \hookrightarrow \mathbb{C}P^N \).

Let us cover \(X \) by finitely many open affine balls \(\mathcal{U}_\nu \) with \(\mathcal{U}_\nu \subset X \times U_i \) where \(i = i(\nu) \in \{0, \cdots, N\} \). We shall first prove that \(h \otimes \sigma^k \mid_{\mathcal{U}_\nu} \) extends to a section \(S_k(\mathcal{U}_\nu) \). Let us work with inhomogeneous coordinates. Then the section \(\sigma^k \) is represented by \(p_i(z) = Z_r^{-kd} P(Z)^k \) for \(z \in U_i \) and we have \(|p_i(z)|^k \leq C d_E(z, \Sigma)^k \) for \(z \in U_\nu \). When \(h \in \mathcal{E}_A \), \(h \otimes \sigma^k \) is represented over \(\mathcal{U}_\nu \) by \(h p_i^k \) and

\[
\int_{z \in \mathcal{U}_\nu \setminus \Sigma} |h(z) p_i(z)|^2 d_E(z, \Sigma)^{A-2k} dV(z) < \infty
\]

The following pointwise estimates were proven in Lemma 3.1 in [7]:

\[
(5.0.1) \quad c' \ d^c(x, \tilde{\Sigma}) \leq d(\pi(x), \Sigma) \leq C' d(x, \tilde{\Sigma}),
\]

\[
(5.0.3) \quad c \ d^M(x, \tilde{\Sigma}) |v|_{x, \sigma} \leq |\pi_*(v)|_{\pi(x)} \leq C |v|_{x, \sigma}.
\]

for some positive constants \(c', c, C', C, t, M \), where \(c, C, M \) may depend on \(r \) and \(\sigma \) is a real analytic hermitian metric on \(\pi^{-1}(X) \).

For an \(r \)-form \(a \) in \(\mathcal{U}_\nu \setminus \Sigma \) set \(|\pi^* a|_{x, \sigma} := \max \left\{ |< a_{\pi(x)}, \pi_* v > | \mid v \in \wedge^r T_{\pi^{-1}(\mathcal{U}_\nu)}(\tilde{\Sigma}) \right\} \), where \(<,> \) we denote the pairing of an \(r \)-form with a corresponding multi-vector. Using (5.0.3) we obtain:

\[
(5.0.4) \quad c \ d^M(x, \tilde{\Sigma}) |a|_{\pi(x)} \leq |\pi^* a|_{x, \sigma} \leq C |a|_{\pi(x)}
\]
on \(\pi^{-1}(\mathcal{U}_\nu) \), for some positive constant \(M \).
Using the above lemma and choosing k to be sufficiently large we can show that $\pi^*(h p^k) \in L^2_{(p,0)}(\pi^{-1}(U_\nu \setminus \Sigma))$ and thus extends to a holomorphic p-form on $\pi^{-1}(U_\nu)$. But then $h \otimes \sigma^k$ extends uniquely to a section in $S_k(U_\nu)$. The local extensions fit together to a unique global section $h \otimes \sigma^k \in \Gamma(X, S_k)$ extending $h \otimes \sigma^k$. Since the map $h \to (h \otimes \sigma^k)$ is injective and $\Gamma(X, S_k)$ is finite dimensional, the space E_A is finite dimensional as well.

Remark: H. Flenner showed in [3] that holomorphic p-forms on the regular part of a projective variety with general singularities are the push-forward of holomorphic p-forms on \tilde{X}, a desingularization of X, provided that $0 \leq p < \text{codim Sing } X - 1$. In our case we do not need to put any restriction on the range of p since we are tensoring our section h with sections of an invertible sheaf on X. \square

5.1. **Conclusion of proof of Theorem 1.** Clearly we can find an $A > 0$ such that for all $1 \leq j < j' \leq M$, $h_{j,j'} \in E_A$. Combining this with lemma 5.1 we have shown that the $\text{Rang}(T)$ is finite dimensional. Then the main theorem follows by the argument used in Section 4.3.

6. **Proof of Theorem 1.2**

One interesting application of the techniques used in this paper is a derivation of a weighted L^2-estimate for solutions to $\partial u = f$ on the regular part of affine varieties. Our goal in this section is to prove Theorem 1.2.

Proof. According to Proposition 2.4 there exist $\{L_j\}_{j=1}^M$ a finite collection of n-dimensional subspaces of \mathbb{C}^N and orthogonal projections $\pi_j : \mathbb{C}^N \to L_j$ such that:

i) $\pi_j|_X$ is non-degenerate on X with ramification locus Σ_j and

ii) For every $z \in \text{Reg } Y$ there exists a j such that $z \notin \Sigma_j$ and such that $(\pi_j)_{*,z} : T_z Y \to L_j$ satisfies $\|((\pi_j)_{*,z} v)\| \geq c \|v\|$ for all $v \in T_z Y$. (Here the norms are the induced Euclidean norms).

Let us denote by $W_j := X \setminus \Sigma_j$. Then (W_j, π_j, L_j) are Riemann domains and we would like to apply Hörmander’s L^2 theory for \mathcal{F} (in particular Proposition 4.1) to our $f|_{(W_j)}$. Let us define on W_j the function $\psi_j := \psi + \log m_j$. Then ψ_j is plurisubharmonic on W_j and using (3.1.4) we can show that

$$\int_{W_j} m_j^{-1}|f|_j^2 e^{-\psi} \, dV_j \leq \int_{W_j} |f|_E^2 e^{-\psi} \, dV_E < \infty$$

Noticing that $m_j^{-1} e^{-\psi} = e^{-\psi_j}$ we conclude that $f \in L^2_{(p,1)}(W_j, \psi_j, dV_j)$. Hence we can apply Proposition 4.1 to each W_j and obtain a solution v_j to $\partial v = f$ on W_j and v_j satisfies the following estimate:

$$\int_{W_j} |v_j|_j^2 (1 + \|\pi_j(z)\|^2)^{-2} e^{-\psi_j} \, dV_j \leq C \int_{W_j} |f|_E^2 e^{-\psi} \, dV_E < \infty$$

(6.0.1)

Noticing that $\|\pi_j(z)\| \leq \|z\|$ we derive the following estimate from (6.0.1)

$$\int_{W_j} |v_j|_j^2 (1 + \|z\|^2)^{-2} e^{-\psi_j} \, dV_j \leq C \int_{W_j} |f|_E^2 e^{-\psi} \, dV_E < \infty$$
We want to estimate \(v_j \) using the restriction of the Fubini-Study metric on \(\text{Reg}X \). Recall that \(|v_j|_E \geq |v_j|_E, dV_j = m_j^{-1} dV_E \) and \(m_j \leq C_j (1 + \|z\|^2)^{D_j} \min\{1, d_E(z, \Sigma_j)\}^{-E_j} \).

Hence \(|v_j|^2 dV_j \geq C_j^{-1} (1 + \|z\|^2)^{-D_j} \min\{1, d_E(z, \Sigma_j)\} |v_j|^2 dV_E \). Taking into account that \(|v_j|^2 dV_E \geq (1 + \|z\|^2)^{-\beta} |v_j|^2 dV \) we obtain

\[
(6.0.2) \quad e^{-\phi_j} |v_j|^2 dV_j \geq e^{-\psi} C_j^{-2} (1 + \|z\|^2)^{-2D_j-\beta} \min\{1, d_E(z, \Sigma_j)\}^2 E_j |v_j|^2 dV.
\]

We can consider the projective closure \(\text{PCl}(X) \) of \(X \) in \(\mathbb{CP}^N \) and let \(\phi_0 : \mathbb{C}^N \to U_0 \subset \mathbb{CP}^N \) be the corresponding affine chart. Let \(\Sigma_j^* := \phi_0(\Sigma_j) \cup (\text{PCl}(X) \cap H_0) \) and let \(\Sigma := \bigcup \Sigma_j^* \).

Recall that \((1 + \|z\|^2)^{-\frac{1}{2}} \approx d(\phi_0(z), H_0) \geq C' d(\phi_0(z), \Sigma_j^*)^p \) and \(d_E(z, \Sigma_j) > d(\phi_0(z), \Sigma_j^*) \). As in section 4 we can show that

\[
(1 + \|z\|^2)^{-2D_j-\beta} \min\{1, d_E(z, \Sigma_j)\}^2 E_j \geq C'' d(\phi_0(z), \Sigma)^p. \]

Hence the \(v_j \) satisfy the following estimate on \(W_j \)

\[
(6.0.3) \quad \int_{W_j} d(\phi_0(z), \Sigma)^{N_j} e^{-\psi} |v_j|^2 dV \leq C \int_{W_j} |f|^2_E e^{-\psi} dV
\]

where \(N_j \) are some positive constants. Since \(\psi \) has at most logarithmic growth we can bound from below \(e^{-\psi} \geq e^{-D} (1 + \|z\|^2)^{-A} \geq d(\phi_0(z), H_0)^{2A} \geq d(\phi_0(z), \Sigma_j^*)^{2Ap} \). Hence we have

\[
(6.0.4) \quad \int_{W_j} d(\phi_0(z), \Sigma)^{N_j} |v_j|^2 dV \leq C \int_{W_j} |f|^2_E e^{-\psi} dV
\]

where \(N_j \) some positive constants that depend on \(N_j', A \).

Let us look at \(u_j := (\phi_0^{-1})^* v_j \). Then, \(\overline{\partial}(u_j - u_k) = 0 \) on \(\phi_0(W_j) \cap \phi_0(W_k) \). Now, each of the sets \(\phi_0(W_j) \) is a non-empty, Zariski open in \(\text{PCl}(X) \) whose complement is \(\Sigma_j^* \). Let us denote by \(h_{jk} := (u_j - u_k) \mid_{\text{PCl}(X) \setminus \Sigma} \). Then \(\{h_{jk}\}_{1 \leq j < k \leq M} \) are holomorphic p-forms on \(\text{PCl}(X) \setminus \Sigma \) and from (6.0.4) we can see that they satisfy the following estimates

\[
(6.0.5) \quad \int_{w \in \text{PCl}(X) \setminus \Sigma} d(w, \Sigma)^K |h_{jk}(w)|^2_{FS} dV_{FS}(w) < \infty,
\]

where \(K \) is a positive constant that depends on \(N_j, N_k \). But then, lemma 5.1 tells us that the space \(E_K \) of such forms is a finite dimensional complex vector space. Hence we can repeat the argument in section 4.3 and construct a linear operator \(T : Z_{\psi}^{(p,1)} \ni f \mapsto (h_{jk})_{1 \leq j < k \leq M} \in E_K^{(M)} \). Then \(\mathcal{H} := \ker T \) is a finite codimensional subspace of \(Z_{\psi}^{(p,1)} \). For an \(f \in Z_{\psi}^{(p,1)} \), the local solutions \(\{u_j\} \) agree on \(\text{PCl}(X) \setminus \Sigma \), thus they agree on \(\phi_0(W_j) \cap \phi_0(W_k) \).

Hence \(v_j = v_k \) on \(W_j \cap W_k \) and we can define a \((p,0)\)-form \(u \) on \(\bigcup W_j = \text{Reg}X \) that would satisfy \(\overline{\partial} u = f \) on \(\text{Reg}X \). Repeating a similar argument as in the end of section 4.3 we can show that this \(u \) satisfies the desired estimate. \(\square \)

Remarks:

1) The codimension of \(\mathcal{H} \) in \(Z_{\psi}^{(p,1)} \) will increase with \(A \) the constant that appears in the logarithmic growth for \(\psi \) (and in general it will not be finite). Indeed, let us consider the variety \(X := Y \times \mathbb{C} \) where \(Y \) is an irreducible surface in \(\mathbb{CP}^3 \) described by a homogeneous polynomial of degree \(d \geq 3 \). In [3], Fornæss constructed finitely many \(\overline{\partial} \)-closed \((0,1)\) forms...
Let λ on the $\text{Reg} Y$ satisfying: 1) $\lambda \in L^2_{0,1}(\text{Reg} Y \cap B_1(0), dV_E)$ and 2) $\overline{\partial} v = \lambda$ is not solvable in $L^2(\text{Reg} Y \cap B_1(0))$ (here $B_1(0)$ is the unit ball in \mathbb{C}^N centered around 0). For one of these forms λ one can further show that

$$\int_{z \in \text{Reg} Y} |\lambda(z)|^2_E (1 + \|z\|^2)^{-a} dV_E(z) < \infty$$

when $a > 1$. We also have

$$\int_{w \in \mathbb{C}} |w|^{2k} (1 + |w|^2)^{-b} dA(w) < \infty$$

when $b > k + 1$.

Let $m \in \mathbb{N}$. On $\text{Reg} X$ we consider forms $\lambda(z) \otimes p_m(w)$ where $p_m(w)$ is a polynomial in w of degree m and λ is the non-solvable $(0,1)$-form on $\text{Reg} Y$ as above that satisfies (6.0.6). Let us define the function $\psi := A \log (1 + \|z, w\|^2)$ where $A := a + \beta$ and where a is as above and β is chosen such that $\beta > m + 1$ (hence $A > m + 2$). Clearly $\lambda(z) \otimes p_m(w) \in Z^{(0,1)} \otimes \mathcal{H}$ (otherwise the equation $\overline{\partial} v = \lambda$ would have an L^2 solution in a deleted neighborhood of 0 in Y which would contradict the choice of λ). Hence the codimension of \mathcal{H} in $Z_{\psi}^{(0,1)}$ will be greater or equal to $m + 1$ and it will be infinite whenever ψ has faster growth than a logarithmic one.

ii) The following question was posed to the first author by Henkin and Zeriahi: Could it be possible to take as \mathcal{H} in Theorem 1.2 the whole space $Z_{\psi}^{(p,1)}$ when X is non-singular?

7. Another Application of Theorem 1.1

Let X be an irreducible n-dimensional variety in \mathbb{C}^N with an isolated singularity at 0. Let Ω be a small Stein neighborhood of 0 with $\partial \Omega$ smooth. In this section we shall prove that the $L^2_{\overline{\partial}}(n-1,1)$-cohomology group of $\text{Reg} \Omega$ (with respect to the Euclidean metric) is finite dimensional. In what follows by $L^2_{p,q}(\text{Reg} \Omega)$ we denote the space of (p,q) forms on $\text{Reg} \Omega$ that are square-integrable with respect to the restriction of the Euclidean metric on $\text{Reg} \Omega$.

We shall need the following general result:

Proposition 7.1. Under the above assumptions and for any $p, q \in \mathbb{N}$ with $q > 0$ there exists a finite codimensional subspace E_0 of $L^2_{p,q}(\text{Reg} \Omega) \cap \ker \overline{\partial}$ and a linear operator $S : E_0 \ni f \to u_0 \in L^2_{p,q-1}(\Omega \setminus \{0\})$ such that $\overline{\partial} u_0 = f$ on $\text{Reg} \Omega$.

Suppose for the moment that Proposition 7.1 were true. We choose $\chi \in C^\infty(\Omega)$ such that $\chi = 1$ near $\partial \Omega$ and $\chi = 0$ near 0. For an $f \in E_0$ we write $f = \overline{\partial}(\chi u_0) + \overline{\partial}((1-\chi) u_0)$. Let $f_0 := \overline{\partial}((1-\chi) u_0) = (1-\chi) f - \overline{\partial} \chi \wedge u_0$. Then $f_0 \in L^2_{p,q-1}(\text{Reg} \Omega)$ and is $\overline{\partial}$-closed there. Now Ω can be embedded as a subdomain of an irreducible n-dimensional projective variety X' and we may extend f_0 by zero to \tilde{f}_0, a globally defined form on $\text{Reg} X'$ that is $\overline{\partial}$-closed on $\text{Reg} X'$ and square-integrable (with respect to the Fubini-Study metric) there. Let us consider the case where $q = 1$. According to Theorem 1.1 there exists a subspace \mathcal{H} of $Z_{\psi}^{(1)}(\text{Reg} X')$ of finite codimension such that whenever $g \in \mathcal{H}$ we can solve $\overline{\partial} v = g$ with L^2 estimates (with
respect to the Fubini-Study metric) on $\text{Reg} X'$. We apply Theorem 1.1 to \bar{f}_0 and we obtain a solution v to $\bar{\partial} v = \bar{f}_0$ on $\text{Reg} X'$.

Let us consider the map $T : E_0 \to Z^{p,1}_{\{2\}}(\text{Reg} X')$ sending an element $E_0 \ni f \to \bar{f}_0$. Clearly T is a linear map, hence $\text{codim}_{E_0}(T^{-1}(\mathcal{H})) \leq \text{codim}Z^{p,1}_{\{2\}}(\text{Reg} X')(\mathcal{H})$. Setting $E := T^{-1}(\mathcal{H})$ we see that E is of finite codimension in $L^2_{p,1}(\text{Reg} \Omega) \cap \ker(\bar{\partial})$ and when $f \in E$ we can find a $u := \chi u_0 + v_{f|_{\text{Reg} \Omega}} \in L^2_{p,0}(\text{Reg} \Omega)$ satisfying $\bar{\partial} u = f$ on $\text{Reg} \Omega$. Taking $p = n - 1$ we obtain the finite dimensionality of the $L^2_{p,q}(n - 1,1)$-cohomology group of $\text{Reg} \Omega$.

We return now to the proof of Proposition 7.1.

Proof. We consider a desingularization $\pi : \bar{X} \to X$ with exceptional divisor D and let σ be a hermitian metric on \bar{X} and $d\nu_{\sigma}$ the volume element induced by this metric. Let $\mathcal{O}(kD)$ denote the holomorphic line bundle on \bar{X} associated to the divisor kD and let $\Omega := \pi^{-1}(\Omega)$. Choose a hermitian metric h on $\mathcal{O}(kD)$. When $f \in L^2_{p,q}(\text{Reg} \Omega)$, $\pi^* f$ does not necessarily belong to $L^2_{p,q}(\Omega, d\nu_{\sigma})$. However it gives rise to a section $\xi_f \in L^2_{p,q}(\Omega, \mathcal{O}(kD)|_\Omega)$ for some sufficiently large integer k. Moreover, $\bar{\partial} \xi_f = 0$ on $\bar{\Omega}$. Since $\bar{\Omega}$ has strictly pseudoconvex boundary the $L^2_{p,q}$ cohomology groups $H^q_{p,q}(\bar{\Omega}, \mathcal{O}(kD))$ for $q > 0$ are finite dimensional (see for example Theorem 5.11 in [15]). Hence there exists a finite codimensional subspace E of $L^2_{p,q}(\Omega, \mathcal{O}(kD)) \cap \ker(\bar{\partial})$ such that whenever $\xi_f \in E$ there exists $\tau_f \in L^2_{p,q-1}(\bar{\Omega}, \mathcal{O}(kD))$ such that $\bar{\partial} \tau_f = \xi_f$. Choosing τ_f to be the minimal solution we make the map $\xi_f \to \tau_f$ linear. Now $\tau_f|_{\Omega \setminus D}$ determines a form $\bar{\nu}_f \in L^2_{p,q-1}(\bar{\Omega} \setminus \{D\})$. Setting $u_0 := (\pi^{-1})^* \bar{\nu}_f$ we obtain a $u_0 \in L^2_{p,q-1}(\bar{\Omega} \setminus \{0\})$ satisfying $\bar{\partial} u_0 = f$ on $\text{Reg} \Omega$. Moreover the set $E_0 := \{ f \in L^2_{p,q}(\text{Reg} \Omega) \cap \ker(\bar{\partial}) : \xi_f \in E \}$ is a finite codimensional subspace of $L^2_{p,q}(\text{Reg} \Omega) \cap \ker(\bar{\partial})$, since the map $f \to \xi_f$ is injective.

Remark: Arguments similar to the one used in the proof of Proposition 7.1 have already appeared in the works of Nagase [17], Pardon [26] and Pardon and Stern [29] (sections 3,4 of their 1997 preprint).

References

[1] W. D. Brownawell, *Local Diophantine Nullstellens inequalities*, J. Amer. Math. Soc. 1, 311-322, (1988).
[2] J.P. Demailly, *Fibres holomorphes semi-positifs*, Ann. Scient. Écol. Norm. Sup. 4e série, t, 15, 457-511, (1982).
[3] K. Diederich, J. E. Fornæss and S. Vassiliadou, *Local L^2-results for \mathcal{D} on a singular surface*, Math. Scand., 92, (2003), 269-294.
[4] H. Flenner, *Extendability of differential forms on non-isolated singularities*, Invent. Math. 94, 317-326, (1988).
[5] J.E. Fornæss, *L^2-results for \mathcal{D} in a conic*, International Symposium, Complex Analysis and Related Topics, Guanavaca, Operator theory: Advances an Applications, Birkhauser, (1999).
[6] J.E. Fornæss, N. Øvrelid and S. Vassiliadou, *Local L^2-results for \mathcal{D}: The isolated singularities case*, Internat. J. of Math., 16, no. 4, 387-418, (2005).
[7] J.E. Fornæss, N. Øvrelid and S. Vassiliadou, *Semiglobal results for \mathcal{D} on complex spaces with arbitrary singularities*, Proc. of the AMS, 133, no. 8, 2377-2386, (2005).
[8] C. Grant and P. Milman, *Metrics for singular analytic spaces*, Pac. Jour. of Math., vol. 168, no. 1, (1995), 61-155.
[9] P. Griffiths and J. Harris, *Principles of Algebraic Geometry*, John Wiley & Sons, (1978).
[10] R. C. Gunning, *Introduction to holomorphic functions in several complex variables, Vol. II*, Wadsworth and Brooks/Cole Mathematical Series, (1990).
[11] J. Harris, *Algebraic Geometry, A first course* Graduate Text in Mathematics, 133, Springer-Verlag, (1992).
[12] L. Hörmander, *An introduction to Complex Analysis in Several Variables*, North-Holland Mathematical Library, 3rd edition, (1990).
[13] L. Hörmander, *L₂-estimates and existence theorems for the ∂̄ operator*, Acta Math., 113, (1965), 89-152.
[14] S. Ji, J. Kollár and B. Shiffman, *A global Lojasiewicz inequality for algebraic varieties*, Transactions of the AMS, Vol. 329, no. 2, (1992).
[15] J. J. Kohn and H. Rossi, *On the extension of holomorphic functions from the boundary of a complex manifold*, Ann. of Math, 2nd Series, vol. 81, no. 2, (1965), 451-472.
[16] S. Lojasiewicz, *Introduction to Complex Analytic Geometry*, Birkhäuser Verlag, Basel; Boston, Berlin (1991).
[17] M. Nagase, *Remarks on the L₂-Dolbeault cohomology of projective varieties with isolated singularities*, J. Math. Soc. Japan, 41, (1989), 97-116.
[18] T. Ohsawa, *Hodge Spectral Sequence on Compact Kähler spaces*, Publ. RIMS. Kyoto University, 23, (1987), 265-274.
[19] T. Ohsawa, *Supplement to “Hodge Spectral Sequence on Compact Kähler spaces”*, Publ. RIMS. Kyoto University, 27, (1991), 505-507.
[20] T. Ohsawa, *On L₂-cohomology groups of isolated singularities*, Adv. Stud. Pure Math., 22, (1993), 247-263.
[21] T. Ohsawa, *A report on isolated singularities by transcendental methods*, Adv. Stud. Pure Math., 25, (1997), 276-284.
[22] T. Ohsawa, *Some applications of L₂-estimates to complex geometry*, Sugaku Expositions, 12, no.2, (1999), 127-150.
[23] T. Ohsawa, *On the L₂-cohomology of complex spaces*, Math. Zeits. 209, (1992), 519-530.
[24] T. Ohsawa, *On the L₂ cohomology of complex spaces II*, Nagoya Math. Jour., Vol. 127, (1992), 49-59.
[25] N. Øvrelid and S. Vassiliadou, *Solving ∂̄ on product singularities*, Complex Variables and Elliptic Equations, Vol. 51, no. 3, (2006), 225-237.
[26] W. Pardon, *The L₂-bar∂̄-cohomology of an algebraic surface*, Topology, Vol. 28, no. 2, (1989), 171-195.
[27] W. Pardon and M. Stern, *L₂ – ∂̄-cohomology of complex projective varieties*, J. Amer. Math. Soc. 4, (1991), 603-621.
[28] W. Pardon and M. Stern, *Pure Hodge structure on the L₂-cohomology of varieties with isolated singularities*, J. Reine Angew. Math. 533. (2001), 55-80.
[29] W. Pardon and M. Stern, *Pure Hodge structure on the L₂- cohomology of varieties with isolated singularities*, preprint available at [arxiv:math.AG/9711003]
[30] J. L. Taylor, *Several Complex Variables with Connections to Algebraic Geometry and Lie Groups*, Graduate Studies in Mathematics, Volume 46, American Mathematical Society, (2002).

DEPT. OF MATHEMATICS, UNIVERSITY OF OSLO, P.B 1035 BLINDERN, OSLO, N-0316 NORWAY

DEPT. OF MATHEMATICS, GEORGETOWN UNIVERSITY, WASHINGTON, DC 20057 USA

E-mail address: nilsov@math.uio.no, sv46@georgetown.edu