Reconstruction of the Korean Asbestos Job Exposure Matrix

Dongmug Kang,1,2,3 Saemi Jung,1,*, Yun-Ji Kim,2 Juyoung Kim,4 Sangjun Choi,5 Se Yeong Kim,1 Youngki Kim1

1Department of Occupational and Environmental Medicine, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam, Republic of Korea
2Department of Preventive and Occupational Medicine, School of Medicine, Pusan National University, Busan, Republic of Korea
3Environmental Health Center for Asbestos, Pusan National University Yangsan Hospital, Yangsan, Gyeongsangnam, Republic of Korea
4Colorbot Co., Busan, Republic of Korea
5Department of Occupational Health, Catholic University of Daegu, Gyeongsan, Gyeongsangbuk, Republic of Korea

ARTICLE INFO

Article history:
Received 26 December 2019
Received in revised form 29 July 2020
Accepted 8 September 2020
Available online 20 September 2020

Keywords:
asbestos
job-exposure matrix
occupational exposure
Korea

ABSTRACT

Background: A job-exposure matrix (JEM) is an important surrogate indicator to evaluate past exposure levels. Although a Korean asbestos JEM has been constructed previously, this JEM includes only a few industrial and occupational groups. This study aimed to reconstruct the JEM by integrating the latest organized data to improve its utility.

Methods: We used recent Korean standard industry and occupation codes and extracted 36 articles from a systematic literature review to initiate the reconstruction of the previous Korean asbestos JEM. The resulting data consisted of 141 combinations of industrial and occupational groups. Data from the Netherlands’s JEM were also reviewed and categorized into 70 industrial and 117 occupational groups by matching with the Korean data. We also utilized Germany’s data, which consisted of 10 industrial and 14 occupational groups.

Results: The reconstructed Korean asbestos JEM had 141 combinations of industries and occupations. The time periods are from the 1980s to the 2000s in 10-year intervals. Most of the data were distributed between the 1990s and the 2000s. Occupations with high exposure to asbestos included knitting and weaving machine operators, automobile mechanics or assemblers, ship mechanics or assemblers, mineral ore and stone products processing mechanics, and metal casting machine operators or mold makers.

Conclusions: The reconstructed Korean asbestos JEM has expanded the type and duration of the occupational groups of the previous JEM and can serve as an important reference tool for evaluating asbestos exposure and designing compensation and prevention policies in Korea.

© 2020 Occupational Safety and Health Research Institute, Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Asbestos is a group of natural fibrous silicate minerals that are resistant to heat, fire, corrosion, and electricity. Because of these properties, it has been globally used in industry. As asbestos continues to be used for decades, there have been growing concerns about its health effects, and studies on occupational and environmental exposure to the compound have been conducted. Asbestos is known to cause asbestos-related diseases (ARDS), such as malignant mesothelioma, lung cancer, laryngeal cancer, ovarian cancer, asbestososis, and pleural disease (pleural plaque and pleural thickening) [1]. Asbestososis was first recognized in the 1930s, lung cancer in the 1950s, and malignant mesothelioma in the 1960s [2]. The International Agency for Research on Cancer classified asbestos as a group 1 carcinogen [3]. ARDs have a dose–response relationship, with a long latency between exposure and disease. ARDs, including asbestosis and cancers, have a minimum latency period of 10 years. Therefore, the estimation of past exposure before the onset of the disease is important to clarify the association between the exposure and the disease [4]. However, direct exposure assessment has limitations due to time, technical, and spatial constraints [5]. As a countermeasure, a job-exposure matrix (JEM) can be used as a tool for assessing past exposure levels.

* Corresponding author. Department of Occupational and Environmental Medicine, Pusan National University Yangsan Hospital, 20, Geumo-ro, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do 50612, Republic of Korea.
E-mail address: saemi.bright@gmail.com (S. Jung).
A JEM is designed to link information on occupation and exposure to specific workplace hazards [6]. It was first introduced in 1941 [7] and has been used extensively in occupational epidemiological studies since the 1980s [8]. The advantage of using a JEM is that it reduces a differential information bias using standardized industry/job titles in certain circumstances such as case–control studies between cases and controls [9].

In Korea, asbestos imports have increased since the 1970s and began to be used in various occupations as industrialization started. The Saemaeul movement was one of the national programs of industrialization. As a new town program of the movement, the thatched roofs in rural area were replaced with slate roofs made by asbestos. As the exposure to asbestos increased and the asbestos-related health problem had been emerged, studies began to be performed after the 1980s, leading to the first compensation case for ARDs in 1993. Data on asbestos exposure at the time were limited, and this led to the construction of the Korean asbestos JEM [10]. Other countries such as the Netherlands and Germany also developed their own JEM. However, the Korean asbestos JEM remained limited in terms of data. This study aims to reconstruct the previous Korean asbestos JEM by integrating recent Korean data and data from the Netherlands’ and Germany’s JEM to improve the utility of the tool.

2. Materials and methods

To reconstruct the previous asbestos JEM, we combined the previous asbestos general population JEM (GPJEM), a systematic literature review, and extracted the Netherlands’ and Germany’s JEM data and showed it to the reconstructed Korean asbestos JEM for comparison (Fig. 1). Finally, the reconstructed asbestos JEM was composed of 141 combinations of industrial and occupational groups.

2.1. Korean measurement data

We referred to the most recently published GPJEM. The data resource of the GPJEM is composed of the Korean literature from 1984 to 1996, the Graduate School of Public Health Seoul National University database, which contains the exposure information between 1995 and 2006, and the Korean Occupational Safety and Health Agency database between 2005 and 2008 [10].

2.2. The systematic literature review

In addition, a systematic literature review of Korean and international databases was performed.

2.2.1. Inclusion criteria

- Any literature about asbestos exposure levels in the workplace, including abstracts, journal articles, books, conference papers, related publications, and related conferences

Fig. 1. Composition of data for new construction of the asbestos JEM.

Fig. 2. Flow of the systemic literature review and data extraction.
- The search terms were “asbestos” and “Korea” for until 2017 in Korea.
- Any literature or abstract published in Korean or English

2.2.2. Search databases
- Research Information Sharing Service (www.riss.kr)
- Google Scholar (http://scholar.google.co.kr/)

2.2.3. Review process
An information retrieval strategy was used, and duplicate articles were excluded. The final selection was performed in two steps: exclusion of the article after reviewing the title and abstract and exclusion of the article after reading the full text.

2.2.4. Data extraction
Among 76 articles selected in the systematic literature review, 26 were excluded because of overlap between the measured data and other data, and 14 were excluded because of absence of information on the time period. Finally, we analyzed 36 articles and used the obtained data of the weighted arithmetic mean for the reconstruction of the previous Korean asbestos JEM. A flow chart of the literature inclusion process is shown in Fig. 2.

2.3. The asbestos JEM of other countries

2.3.1. The Netherlands’ data
We gathered data from the Netherlands’ JEM based on the study of Swuste et al [12] to reconstruct the Korean asbestos JEM. The data consisted of 70 industries, 309 occupations, and a total exposure period of 50 years, from 1945 to 1994, divided into five-year intervals. We converted these data into 70 industries and 91 occupations with the same periods by matching the Standard Industry Codes and Standard Classification of Occupations codes based on International Standard Classification of Occupations 88 (ISCO-88) with Korean codes based on ISCO-88. We used the website http://www.asbestkaart.nl by the Asbestos Victims Institute, which offers raw data of asbestos exposure [13], and finally classified the Netherlands’ industrial and occupational categories into 70 industrial and 117 occupational groups and an additional seven subcategories. For these matched data, we assigned the Netherlands’ ID by arranging the codes based on the 10th Korea Standard Industry Code (KSIC) and the 7th Korea Standard Classification of Occupations (KSOC). The exposure level was divided into seven codes: “0,” no exposure; “a,” 0–0.5 fibers/cm³; “b,” 0.5–1 fibers/cm³; “c,” 1–2 fibers/cm³; “d,” 2–5 fibers/cm³; “e,” 5–10 fibers/cm³; and “f,” ≥10 fibers/cm³.

2.3.2. Germany’s data
For data from Germany’s JEM, we referred to the BK-Report 1/2013 Faserjahre [14] and converted German Standard Industry Codes and Standard Classification of Occupations codes into Korean codes. After translating German to Korean, we matched the German JEM data with appropriate KSIC and KSOC categories. Exposure levels were included in the reconstructed JEM.

2.3.3. Listing of the Netherlands and German JEM in the Korean asbestos JEM table
We extracted 84 combinations of the Netherlands’ JEM data and 11 combinations of Germany’s JEM data. Among them, we represented the matched 49 Netherlands’ data and six Germany’s JEM data with the most similar combination of Korean JEM data.

Table 1

Exposure groups	1980	1990	2000
E1	6(42.9)	5(9.3)	6(51.5)
E2	7(50.0)	7(13.0)	31(26.5)
E3	0(0.0)	28(51.9)	34(29.1)
E4	1(7.1)	14(25.9)	46(39.3)
Total	14(100)	54(100)	117(100)

E1: ≥1 fibers/cm³; E2: 0.1–1 fibers/cm³; E3: 0.01–0.1 fibers/cm³; and E4: <0.01 fibers/cm³.

3. Results

For Korean data, we designated the exposure level into four categories: E1, ≥1 fibers/cm³; E2, 0.1–1 fibers/cm³; E3, 0.01–0.1 fibers/cm³; and E4, <0.01 fibers/cm³. The number of industrial and occupational combinations (IOCs) was 14 in the 1980s, which increased to 54 in the 1990s and 117 in the 2000s. The number of occupational groups with a highly exposed level (E1) was six (42.9%) in 1980s, five (9.3%) in 1990s, and six (5.1%) in 2000s. (Table 1). The proportions of over 0.1 f/cc that was the current occupational exposure limit of Korea were the highest as 92.9% in the 1980s, then decreased to 22.3% in the 1990s, and was 31.6% in 2000s.

A newly constructed asbestos JEM table for 141 IOCs was established (Table 2). There were the industrial code and name (the 10th KSIC) of 2017, which was relevant to ISCO-88 and the occupational code and name (the 7th KSOC) of 2017. The concentrations of asbestos were represented for three periods, the 1980s, 1990s, and 2000s. There were three IOCs which contains concentration data in 2010s, and they were added in the 2000s tab. It also contains estimated exposure values and levels to compare data from the Netherlands’ and Germany’s JEM. Netherlands’ data and Germany’s data were added to the most relevant combination of industry and occupation for comparison.

The list of IOCs with the highest exposure level (E1) by years is provided in Table 2. In the 1980s, they were grinding and mixing machine operators of the asbestos mining industry (IOC 2), textile production and processing machine operators of the asbestos textile industry (IOC 48), machine operators of the asbestos (cement) industry (IOC 52), metal casting machine operators of the iron and steel industry (IOC 56), ship assemblers of the ship industry (IOC 91), and store salespersons of motor vehicle parts and accessories (IOC 110). In the 1990s, highly exposed groups were weaving machine operators of fiber fabrics (IOC 6), machine operators of wood and paper (IOC 15), plastic products (IOC 34), the asbestos textile industry (IOC 48), and automobile mechanics of repair services of motor vehicles (IOC 139). In the 2000s, highly exposed groups were paper products machine operators (IOC 10), painting machine operators of manufacture of paperboard boxes and containers (IOC 13), grinding and mixing machine operators of synthetic resin and other plastic materials (IOC 19), machine operators of surface-active agents (IOC 24), construction stonemasons (IOC 43), and automobile paint mechanics (IOC 87). All E1 occupations in the 2000s were jobs handling talc-containing asbestos. Asbestos textile processing operation (IOC 48) had the highest exposure level, 7.46 f/cc in the 1980s and in Netherlands’ with a peak of 5–10 f/cc from the 1940s to 1960s.

4. Discussion

This study aimed to construct a new Korean asbestos JEM by comparing data from the Netherlands’ and Germany’s JEM, which led to the expansion of the previous JEM to 141 combinations of...
Table 2
The newly constructed asbestos JEM.

IOC numbers	Industry (KSIC, 10th) Code	Name	Occupation (KSOC, 7th) Code	Name	Exposure or sampling description	Concentration (f/cc)	References	The Netherlands (NL), Germany (DE) data
1	07290	Mining of Other Non-metal Ores n.e.c. 91002	Mining Laborers	Asbestos mining	0.235	Moon, 1979 [21]		
2	07290	Mining of Other Non-metal Ores n.e.c. 83121	Chemical Material Grinding and Mixing Machine Operators	Asbestos grinding mill	2.94	Moon, 1979 [21]		
3	07290	Mining of Other Non-metal Ores n.e.c. 78412	Quarrymen		0.006	Yoon, 2011 [38]		
4	10301	Processing and Preserving of Fruit and Vegetables, Pickled Food 71052	Side Dish Makers		0.013	Choi, 2006 [32]		
5	13102	Spinning of wool 8211	Textile Processing Machine Operators	Handling talc-containing asbestos	0.74	KOSHA DB		
6	13213	Weaving of Man-Made Fiber Fabrics 82211	Weaving Machine Operators		1.52	SNU DB		
7	13993	Manufacture of Special Yarns and Tire Cord Fabrics 8211	Textile Processing Machine Operators		0.073	SNU DB		
8	15219	Manufacture of Other Footwear 721	Textile and Leather Related Workers	Area sampling in factory building construction with asbestos-containing material	0.026	KOSHA DB		
9	17129	Manufacture of Other Paper and Paperboard 89132	Paper Machine Operators	Handling talc-containing asbestos	0.810 0.009 0.005	SNU DB		

(continued on next page)
IOC numbers	Industry (KSIC, 10th)	Occupation (KSOC, 7th)	Exposure or sampling description	Concentration (f/cc)	References	The Netherlands (NL), Germany (DE) data
10	17129	Manufacture of Other Paper and Paperboard	8914 Paper products production machine operators Handling talc-containing asbestos	1.61	KOSHA DB	19(Manufacture of Coke, hard-coal and lignite fuel briquettes and Refined Petroleum Products) and 21332(Chemisty Technicians): 0–0.5 (1945–1984) (NL)
11	17221	Manufacture of Paper Sacks and Paper Bags	84219 Painting Machine Operators n.e.c.	0.113	KOSHA DB	
12	17222	Manufacture of Paperboard Boxes and Containers	89141 Box and Envelope Making Machine Operators	0.452	KOSHA DB	
13	17222	Manufacture of Paperboard Boxes and Containers	84219 Painting Machine Operators n.e.c. Handling talc-containing asbestos	1.51	KOSHA DB	
14	17902	Manufacture of Sanitary Paper Products	89144 Sanitary Paper Products Machine Operators	0.116	KOSHA DB	
15	17909	Manufacture of Other Articles of Paper and Paperboard n.e.c.	89190 Wood and Paper Related Machine Operators n.e.c.	3.544	SNU DB	
16	20111	Manufacture of Basic Organic Petrochemicals	83219 Chemical Products Production Machine Operators n.e.c.	0.010	SNU DB	19(Manufacture of Coke, hard-coal and lignite fuel briquettes and Refined Petroleum Products) and 21332(Chemistry Technicians): 0–0.5 (1945–1984) (NL)
17	424	Interior and Building Completion	7824 Construction Carpenters	0.012	KOSHA DB	311(Building of Ships and Boats) and 7824(Construction Carpenters): production of asbestos plaster, sealant production 1–2 (1945–1974), 0.5–1 (1975–1979), 0–0.5 (1980–1994) (NL)
18	2030	Manufacture of Synthetic Rubber and of Plastics in Primary Forms	8312 Chemical Material Processing Machine Operators Manufacturing of synthetic resin	0.113	KOSHA DB	
19	20302	Manufacture of Synthetic Resin and Other Plastic Materials	83121 Chemical Material Grinding and Mixing Machine Operators Handling talc-containing asbestos	1.06	KOSHA DB	
20	20302	Manufacture of Synthetic Resin and Other Plastic Materials	83124 Chemical Material Distiller and Reactor Operators Handling talc-containing asbestos	0.73	KOSHA DB	
21	20302	Manufacture of Synthetic Resin and Other Plastic Materials	84219 Painting Machine Operators n.e.c. Handling talc-containing asbestos	0.690	KOSHA DB	
22 20302 Manufacture of Synthetic Resin and Other Plastic Materials 83239 Plastic Products Production Machine Operators n.e.c. Mixing of epoxy resin 0.861 0.043 0.043 SNU DB

23 20421 Manufacture of General Paints and Similar Products 83121 Chemical Material Grinding and Mixing Machine Operators Manufacturing of paint 0.619 KOSHA DB

24 20431 Manufacture of Surface-Active Agents 83213 Detergents Production Machine Operators Handling talc-containing asbestos 2.45 KOSHA DB

25 20493 Manufacture of Adhesives and Gelatin 83121 Chemical Material Grinding and Mixing Machine Operators Handling talc-containing asbestos 0.055 KOSHA DB

26 20499 (20111) Manufacture of All Other Chemical Products n.e.c. 83219 Painting Machine Operators n.e.c. 0.010 SNU DB

27 21300 Manufacture of Pharmaceutical Goods Other Than Medicaments 83211 Pharmaceutical Products Production Machine Operators 0.016 SNU DB

28 221 Manufacture of Rubber Products 83239 Plastic Products Production Machine Operators n.e.c. 0.110 KOSHA DB

29 22111 Manufacture of Tires and Tubes 83221 Tire Production Machine Operators Handling talc-containing asbestos 0.658 KOSHA DB

30 22191 Manufacture of Industrial Un-vulcanized Rubber Products 83229 Tire and Rubber Products Production Machine Operators Handling talc-containing asbestos 0.961 KOSHA DB

31 22199 Manufacture of Other Rubber Products n.e.c. 83222 Rubber Products Production Machine Operators n.e.c. 0.012 0.012 SNU DB

32 20301 Manufacture of Synthetic Rubber 83222 Rubber Products Production Machine Operators Handling talc-containing asbestos 0.468 KOSHA DB

33 22232 Manufacture of Packaging Plastics and Shipping Containers 83231 Plastic Catapulting Machine Operators 0.008 SNU DB

34 22250 Manufacture of Foamed Plastic Products 83239 Plastic Products Production Machine Operators 5.12 SNU DB

(continued on next page)
IOC numbers	Industry (KSIC, 10th)	Occupation (KSOC, 7th)	Exposure or sampling description	Concentration (f/cc)	References	The Netherlands (NL), Germany (DE) data	
35	22299	Manufacture of Other Plastic Products n.e.c.	Plastic Products Production Machine Operators n.e.c.	0.012 0.012	SNU DB	2229-Manufacture of Other Plastic Products): asbestos gaskets, electric isolation. 1 – 2 (1945 – 1969), 0.5 – 1 (1970 – 1974), 0 – 0.5 (1975 – 1994) (NL)	
36	20302	Manufacture of synthetic resin and other plastic materials	Plastic Products Production Machine Operators n.e.c.	Manufacturing of brake lining	0.043 0.043	SNU DB	
37	23199	Manufacture of All Other Glass and its Products n.e.c.	Glass and Glass Products Machine Operators n.e.c.	Working around mercury filling and air vent machines	0.007	KOSHA DB	
38	23211	Manufacture of Pottery and Ceramic Household or Ornamental Ware	Pottery and Porcelain Products Production Machine Operators n.e.c.		0.006	KOSHA DB	
	23229	Manufacture of Other Refractory Ceramic Products	Glass and Glass Products Machine Operators n.e.c.		0.064	Choi, 2006 [32]	
39	23229	Manufacture of Other Refractory Ceramic Products	Brick and tile molding machine operators		0.0642	SNU DB	
	23324	Manufacture of Celulose Fiber Cement Products	Cement and Lime Production Related Machine Operators	Extruding molding of cement	0.013	KOSHA DB	
40	23325	Manufacture of Concrete Roofing Tiles, Bricks and Blocks	Brick and Tile Production Machine Operators		0.059	Choi, 2006 [32]	
Page	Code	Activity	Industry	Occupation	Asbestos Exposure	Notes	
------	------	----------	----------	------------	------------------	-------	
43	2391	Cutting, Shaping and Finishing of Stone	78230	Construction Stonemasons	Handling talc-containing asbestos	1.18 KOSHA DB	311(Building of Ships and Boats) and 7824(Construction Carpenters): Production of asbestos plaster, sealant production. 12(1945–1974), 0.5–1(1975–1979), 0–0.5(1980–1994) (NL)
44	23911	Manufacture of Stone Products for Construction	84341	Mineral Ore and Stone Processing Machine Operators	Manufacturing of asbestos slates	0.46 0.74 0.145 Paik, 1989 [23] Paik, 1991 [24] Oh, 1993 [25] Park, 1995 [27] Choi, 1998 [29]	23911 (Manufacture of Stone Products for Construction) and 93001(Packing Laborers): 2–5 (1945–1969), 1–2 (1970–1974), 0.5–1 (1975–1979), 0–0.5 (1980–1994) (NL) 23911 (Manufacture of Stone Products for Construction) and 141 (Construction, Electricity and Production Related Managers): 1–2(1945–1974), 0–0.5(1975–1994), (NL)
45	23919	Manufacture of Other Stone Products	78230	Construction Stonemasons		0.400 Choi, 2006 [32]	
46	23992	Manufacture of Abrasive Articles	84392	Brightener Production Machine Operators		0.807 0.56 Choi, 2006 [32] SNU DB	
47	7121	Quarrying of Monumental and Building Stone	84341	Mineral Ore and Stone Processing Machine Operators		0.912 Yoon, 1993 [41]	
48	23994	Manufacture of Asbestos, Mineral Wools and Other Similar Products	821, 8221	Textile Production and Processing Machine Operators	Manufacturing of asbestos textile, knitting and waving machine operators	7.48 2.55 0.14 Choi, 2006 [32] Lim, 1999 [42] KOSHA DB	13213(Weaving of Man-Made Fiber Fabrics) and 8211(Textile Processing Machine Operators): 5–10 (1945–1969), 2–5 (1970–1974), 0.5–1 (1975–1984), 0–0.5 (1985–1994) (NL) 13213(Weaving of Man-Made Fiber Fabrics) and 8221(Knitting and Weaving Machine Operators): 5–10 (1945–1969), 2–5 (1970–1974), 0.5–1 (1975–1984), 0–0.5 (1985–1994) (NL)

(continued on next page)
IOC numbers	Industry (KSIC, 10th)	Occupation (KSOC, 7th)	Exposure or sampling description	Concentration (f/cc)	References	The Netherlands (NL), Germany (DE) data		
50	23994 Manufacture of Asbestos, Mineral Wools and Other Similar Products	84159 Metal Processing Machine Operators n.e.c.		0.025	Jung, 1994 [26]	13993 (Manufacture of Special Yarns and Tire Cord Fabrics) and Administrative and management support managers, n.e.c.: Asbestos textile industry, other production activities, asbestos insulation pipeline production/office management/indirect exposure pollution 1–2 (1945–1974); 0.5–1 (1975–1979), 0–0.5 (1980–1994) (NL)		
51	23994 Manufacture of Asbestos, Mineral Wools and Other Similar Products	84322 Brick and Tile Production Machine Operators		0.03	SNU DB			
52	23994 Manufacture of Asbestos, Mineral Wools and Other Similar Products	8433 Cement and Mineral Products Production Machine Operators	Manufacturing of asbestos gaskets	1.7	0.78	0.018	Choi, 2017 [10]	KOSHA DB
53	23999 Manufacture of Other Unclassified Nonmetallic Minerals n.e.c.	84399 Nonmetal Products Related Production Machine Operators n.e.c.		0.069	0.069	SNU DB		
54	24119 (24111) Manufacture of Other Basic Iron and Steel (Manufacture of Basic Iron)	84141 Ore and Metal Furnace Operators		0.008	0.008	SNU DB		
55	24121 Manufacture of Hot Rolled, Drawn and Extruded Iron or Steel Products	84151 Rolling Mill Operators		0.04	0.04	SNU DB		
56	2431 Cast of Iron and Steel	84110 Metal Casting Machine Operators	Welding with asbestos cloth	1.54	Paik, 1989 [23]			
57	25119 Manufacture of Other Structural Metal Products	84213 Metal Product Painting Machine Operators		0.211	KOSHA DB			
Page	Code	Description	NAICS Code	Task	Exposure Value	Database		
------	------	-------------	-------------	------	----------------	----------		
58	25911 (25999)	Manufacture of Powder Metallurgic Products	84159	Melting of metal powders	0.003	KOSHA DB		
59	25912 (24)	Forging of Metal/ Manufacture of Basic Metal Products	74130	Forge Hammer smiths and Forging Press Workers	0.008	KOSHA DB		
60	25913	Manufacture of Metal Pressed and Stamped Products	84151	Rolling Mill Operators	0.007	SNU DB		
61	25921	Heat Treatment of Metals	84155	Metal Heat Treatment Furnace Operators	0.034	KOSHA DB		
62	25923	Coating and Similar Treatment of Metals	84229	Plating and Metal Spraying Machine Operators n.e.c.	0.117	KOSHA DB		
63	25934	Manufacture of Saws, Saw Blades and Interchangeable Tools	74110	Die and Mold Makers	0.009	SNU DB		
64	26299	Manufacture of Other Electronic Valves, Tubes and Electronic Components n.e.c.	86321	Electronic Parts Production Equipment Operators	0.011	SNU DB		
65	2642	Manufacture of Broadcasting and Wireless Telecommunication Apparatuses	86409	Electrical, Electronic Parts and Products Assembler n.e.c.	0.028	SNU DB		
66	26529	Manufacture of Other Sound Equipment	86402	Audio-Visual Equipment Assemblers	0.022	SNU DB		
67	27216	Manufacture of Industrial Process Control Equipment	76224	Electrical Control Unit Fitters and Mechanics	0.001	KOSHA DB		

(continued on next page)
IOC numbers	Industry (KSIC, 10th)	Occupation (KSOC, 7th)	Exposure or sampling description	Concentration (f/cc)	References	The Netherlands (NL), Germany (DE) data
68	27216 Manufacture of Industrial Process Control Equipment	85101 Lathe Machine Operators	Operation of milling machines for electromagnetic clutches	0.002	KOSHA DB	
69	28111 Manufacture of Electric Motors and Generators	86401 Electrical Equipment Assemblers		0.014 0.072	Choi, 2006	SNU DB
70	28119 Manufacture of Other Electric Motors, Generators and Transformers	85109 Metal Work Machinery Operators n.e.c.		0.065 0.075	Lee, 2013 [40]	
71	28119 Manufacture of Other Electric Motors, Generators and Transformers	8610, 86311 Power Generation and Distribution Equipment Operators, Electrical Parts Production Equipment Operators	Manufacturing of rotary machine parts	0.004	Choi, 2006 [32]	KOSHA DB
72	28302 Manufacture of Other Insulated Wire and Cable	86402 Audio-Visual Equipment Assemblers		0.358	KOSHA DB	2811 (Manufacture of Electric Motors, Generators and Transformers) and thermal power plant operators: 3.33, 3.55, 8.88, 1.11 (1956–1974) (DE)
73	28303 Manufacture of Insulated Codes Sets and Other Conductors for Electricity	86401 Electrical Equipment Assemblers	Extrusion of electric cables	0.125	KOSHA DB	28302 (Manufacture of Other Insulated Wire and Cable) and 141 (Construction, Electricity and Production Related Managers): 1–2 (1945–1974), 0–0.5 (1975–1994) (NL)
74	28410 Manufacture of Electric Lamps and Electric Bulbs	86312 Electrical Products Production Equipment Operators	Manufacturing lamps for cars	0.203	KOSHA DB	
75	28422 Manufacture of General Electric Lighting Fixture	86401 Electrical Equipment Assemblers	Manufacturing of general lamps	0.020	KOSHA DB	
76	28519 Manufacture of Other Domestic Electric Appliances	86312 Electrical Products Production Equipment Operators		0.005	SNU DB	
77	29132 Manufacture of Pumps and Compressors	88904 Air Compressor Operators		0.005	SNU DB	
78	29133 Manufacture of Taps, Valves and Similar Products	8510 Metal Work Machinery Operators		0.556	KOSHA DB	
Code	Description	NAICS Code	Occupation	Exposure to Asbestos		
------	-------------	------------	------------	-------------------		
79	Manufacture of Other Work trucks, Lifting and Handling Equipment	8544	General Machinery Assemblers	0.009		
80	Manufacture of Agricultural and Forestry Machinery	83239	Plastic Products Production Machine Operators n.e.c.	0.003		
81	Manufacture of Agricultural and Forestry Machinery	85442	Agricultural Machinery Assemblers	0.046		
82	Manufacture of Machinery for Food, Beverage and Tobacco Processing	811	Food Processing Related Machine Operators	0.008		
83	Manufacture of Other Special Purpose Machinery, n.e.c.	85441	Industry Machinery Assemblers	0.113		
84	Manufacture of Passenger Motor Vehicles	85410	Automobile Assemblers	0.023		
85	Manufacture of Parts and Accessories for Motor Vehicles and Engines	74130	Forge Hammersmiths and Forging Press Workers	0.001		
86	Manufacture of Parts and Accessories for Motor Engines	85421	Automobile Engine Assemblers	0.07		
87	Manufacture of Other Parts and Accessories for Motor Vehicles n.e.c.	75105	Automobile Paint Mechanics	1.05		
88	Manufacture of Other Parts and Accessories for Motor Vehicles n.e.c.	85429	Automobile Parts Assemblers n.e.c.	0.18		
89	Manufacture of Other Parts and Accessories for Motor Vehicles n.e.c.	85429	Automobile Parts Assemblers n.e.c.	0.42		
90	Building of steel ships	75220	Ship Mechanics	0.13		
91	Manufacture of Sections for Ships	85432	Ship Assemblers	1.23		

(continued on next page)
IOC numbers	Industry (KSIC, 10th)	Occupation (KSOC, 7th)	Exposure or sampling description	Concentration (f/cc)	References	The Netherlands (NL), Germany (DE) data
92	31322 Manufacture of Aircraft Parts and Accessories	85433 Aircraft Assemblers	0.010	SNU DB	313-Manufacture of Aircraft, Spacecraft and its Parts and 7521-Aircraft Mechanics: 0.5–1 (1945–1979), 0–0.5 (1980–1984) (NL)	
93	3320 Manufacture of Musical Instruments	73031 Musical Instrument Makers and Repairers	0.019	0.022	Lee, 2013 [40]	
94	33999 Other Manufacturing n.e.c.	83124 Chemical Material Distiller and Reactor Operators	Melting and molding	0.836	Choi, 2006 [32]	
95	3511 Electric Power Generation	8610 Power Generation and Distribution Equipment Operators	Maintenance workers in power plants	0.004	KOSHA DB	Power Plant Machinery Manufacturing and Thermal Power Plant Operators: 1–2 (1945–1979), 0.5–1 (1980–1989), 0–0.5 (1990–1994) (NL) 3.33, 3.55, 8.88, 1.11 (1956–1974) (DE) Maintenance and asbestos insulation and friction materials/maintenance (heating) plants and machinery/installation and repair of boilers and turbines, maintenance (heating) plants and machinery
96	3511 Electric Power Generation	23519 Machine Engineers and Researchers n.e.c.	0.004	Choi, 2006 [32]		
97	36010 Collection, Purification and Distribution of Water to Household	8810 Water Treatment Plant Operators	0.066	Choi, 2006 [32]	36-Water Supply and 792-Plumber: 1–2 (1945–1979), 0.5–1 (1980–1984), 0–0.5 (1990–1994) (NL)	
98	38120 Hazardous Waste Collection	8820 Recycling Machine and Incinerator Operators	Waste treatment	0.003	Choi, 2006 [32]	0–0.5 (1945–1994) (NL)
99	38120 Hazardous Waste Collection	91001 Construction Laborers	Sampling after dismantling asbestos	0.005	KOSHA DB	742-Cleaning and Pest Control Services of Building and Industrial Facilities) and 941-Cleaners and Sanitation Workers: Asbestos water way cleaning 0–0.5 (1945–1994) (NL)
100	382 Waste Treatment Services	8820 Recycling Machine and Incinerator Operators	0.016	KOSHA DB		
101	38220 Disposal of Hazardous Waste	88209 Recycling Machine and Incinerator Operator n.e.c.	Crushing waste-containing asbestos	0.013	KOSHA DB	
Code	Work Description	Industry Code	Exposure Level	Source		
-------	--	----------------	----------------	--------		
102	Installation of Environmental Hygiene Treatment Appliances	88209	0.002	KOSHA DB		
103	Apartment Building Construction	772	0.039	SNU DB		
104	Other Civil Engineering Construction	23123	0.004	Choi, 2006 [32]		
105	Wrecking and Demolition of Buildings and Other Structures	78293	0.042	Choi, 2006 [32]		
106	Excavating and earthmoving	78499	0.001	Choi, 2006 [32]		
107	Steel Reinforcing and Reinforced Concrete Works	7822	0.001	Choi, 2006 [32]		
108	Pavement Works	7836	0.001	Choi, 2006 [32]		
109	Scaffolding and Frame Works	78291	0.021	Choi, 2006 [32]		
110	Sale of Motor Vehicle New Parts and Accessories	52129	1.42	Paik, 1989 [23]		

(continued on next page)
IOC numbers	Industry (KSIC, 10th)	Occupation (KSOC, 7th)	Exposure or sampling description	Concentration (f/cc)	References	The Netherlands (NL), Germany (DE) data		
111	471	Retail Sale in Non-Specialized Stores	5211 Owners and Supervisors of Small Stores	0.0002 0.003	Kim, 2002 [43]	466(Wholesale of Construction Materials, Hardware and Heating and Air Conditioning Equipment); and Construction Materials Salesperson: 2 –5(1945 –1969), 1–2(1970 –1979), 0–0.5(1980 –1994) (NL)		
112	47119	Retail Sale in Other Non-Specialized Large Stores	5211 Owners and Supervisors of Small Stores	0.0053	Lee, 2010 [36]			
113	501	Sea and Coastal Water Transport	8760 Ship Workers and Related Workers		NL	501(Sea and Coastal Water Transport) and 8760(Ship Workers and Related Workers): 0.5–1(1945 –1974), 0–0.5(1975 –1984) (NL) 501(Sea and Coastal Water Transport) and 86104(Power Generation Turbine Operators): Turbine adjusters, asbestos pipes and pump insulation exposed in ship engine room 2–5(1945 –1974), 1–2(1975 –1979), 0.5–1(1980 –1994), 0–0.5(1990 –1994) (NL)		
114	50122	Coastal freight water transport	92101 Freight Loading and Lifting Laborers		DE/NL	50203(Harbour Passenger Transport) and 92101(Freight Loading and Lifting Laborers): 13.87(1965–1967), 26.61(1973–1976), 8.4(1977–1983) (DE) 5294(Cargo Handling) and 92101(Freight Loading and Lifting Laborers): 2–5(1945 –1969), 1–2(1970 –1979), 0–0.5(1980 –1994) (NL)		
115	52911	Supporting, Railway Transport Activities	31262 Railway Transport Clerks	Sampling in the station office 0.008 0.003	Byeon, 2003 [30] Lee, 2013 [40]			
116	79211 (52911)	Supporting, Railway Transport Activities	7523 Locomotive and Electric Train Mechanics	Maintenance of locomotive and electric trains 0.002	KOSHA DB	491(Inter urban Rail Transportation) and 75319(Industrial Machinery Fitters and Mechanics n.e.c.); 0–0.5(1945–1984) (NL)		
117	52911	Supporting, Railway Transport Activities	75232 Railroad train mechanics		SNU DB	0–0.5 (1945–1984) (NL)		
118	52915	Operation of Vehicle Parking Facilities	52132 Passenger Ticket Salespersons		Lee, 2010 [36]			
119	59141	Motion Picture Exhibition	28399 Drama, Film and Video Related Workers n.e.c.		Choi, 2011 [37]			
Code	Industry Code	Industry Description	Occupation Code	Occupation Description	Sampling Weight	Source 1	Source 2	Source 3
------	---------------	---	----------------	--	----------------	----------	----------	----------
120	6022	Broadcasting via Cable, Satellite and Other Broadcasting	2250	Telecommunication and Broadcast Transmissions Equipment Technicians	0.005	SNU DB		
121	68211	Residential Property Management	85201	Cooler and Heater Related Machine Operators	0.002	Choi, 2017 [10]		
122	95119	Other Maintenance and Repair Services of General Machinery	75351	Building Boiler Fitters and Mechanics	0.006	Shim, 2008 [33]		
123	70129	Research and Experimental Development On Other Engineering	13114	Engineering Research Managers	0.112	KOSHA DB		
124	72122	Environmental Consulting and Related Engineering Services	15301	Environmental Service Related Managers	0.001	Choi, 2006 [32]		
125	74100	Business Facilities Support Management Services	12090	Public and Business Administration Managers	0.0015	Choi, 2006 [32]		
126	75290	Other Tourist Assistance and Reservation Services	52132	Passenger Ticket Salespersons	0.01	Lee, 2004 [31]		
127	84213	Regulation of Activities of Environment Affairs	21125	Astronomy and Space Science Researchers	0.4705	Choi, 2006 [32]		
128	85	Education	252	School Teachers	0.00036 0.003 0.004	Park, 2009 [34]	Park, 2010 [35]	
129	85501	General Subject Educational Institute	25419	Liberal Arts and Language Instructors n.e.c.	0.007	Choi, 2011 [37]		
130	8610	Hospital Activities General Hospitals	24302 24	General Nurses Health, Social Welfare and Religion Related Occupations	0.00049(2010): 0.002	Choi, 2017 [10]	Lee, 2004 [31]	86103(Dental Hospitals) and 24530(Dental Hygienist): 0 – 0.5(1955 – 1984) (NL)
131	87210	Child Day Care Services	24720	Child Care Teachers	0.007 (2010): 0.001	Lee, 2010 [36]	Park, 2012 [39]	
132	90211	Library and Archives Activities	28221	Librarians	0.002	Park, 2012 [39]		
OGI33	90221	Museum Operation	28211	Curators	0.001	Park, 2012 [39]		
OGI34	91131	Other Complex Sports Facility Operation	28691	Sports Instructors and Trainers	0.006	Choi, 2011 [37]		

(continued on next page)
IOC numbers	Industry (KSIC, 10th)	Occupation (KSOC, 7th)	Exposure or sampling description	Concentration (f/cc)	References	The Netherlands (NL), Germany (DE) data	
135	95119 (50130) Other Maintenance and Repair Services of General Machinery	75220 Ship Mechanics	Repair of ships	0.23	0.006	0.138	Paik, 1989 [23] SNUDB (2000): 1.423 Yoon, 2004 [44]
						311(Building of Ships and Boats) and 7522(Ship Mechanics): 1–2(1945–1974), 0–0.5(1975–1989) (NL) 501(Sea and Coastal Water Transport) and 8760(Ship deck crew and related personnel): 0.5–1(1945–1974), 0–0.5(1975–1984) (NL)	
136	95119 (50130) Other Maintenance and Repair Services of General Machinery	79222 Ship Plumbers		0.488			Shim, 2008 [33] 311(Building of Ships and Boats) and 792(Plumber): 1–2(1945–1979), 0.5–1(1980–1984), 0–0.5(1985–1994) (NL)
137	95119 Other Maintenance and Repair Services of General Machinery	75220 Ship Mechanics	Repair of auto-vehicle brake lining and handling talc-containing asbestos	0.062			Shim, 2008 [33]
138	95211 General Repair Services of Motor Vehicles	75105 Automobile Paint Mechanics		0.88			KOSHA DB
139	95212 Repair Services of Motor Vehicles Specializing in Parts	7510 Automobile Mechanics		0.93	1.05	0.08	Paik, 1989 [23] Paik, 1991 [24] 952(Maintenance and Repair Services of Motor Vehicles and Motorcycles) and 75201(Motorcycle Repairers): 0–0.5(1945–1989) (NL)
140	96121 Saunas	42234 Bathing Attendants		0.007 (2010): 0.002	Lee, 2010 [36] Park, 2012 [39] 9691(Washing and Dry Cleaning Services) and 8230(Laundry Related Machine Operators): Laundry iron and table made of asbestos fibers 0–0.5(1945–1989) (NL)		
141	96991 Wedding Chapel Services	42320 Wedding Ceremony Workers		0.004			Choi, 2011 [37]

DB, database; IOC, Industrial and Occupational Combination; KOSHA, Korea Occupational Safety and Health Agency; KSIC, Korea Standard Industry Code; KSOC, Korean Standard Classification of Occupations; JEM, job-exposure matrix; SNU, Seoul National University; n.e.c, not elsewhere classified.

DBs were referred from Choi, 2017 [10].
industries and occupations. As it includes data of longer periods, more diverse industries, and occupations, it reflects the exposure estimate of asbestos in Korea more accurately.

4.1. Trends of asbestos consumption and exposure levels in Korea

The occupation groups with high asbestos exposure levels include knitting and weaving machine operators, automobile mechanics or assemblers, ship mechanics or assemblers, mineral ore and stone products processing mechanics, and metal casting machine operators or mold makers. This result is consistent with the national industrialized characteristics of Korea. In Korea, the asbestos textile weaving and brake lining production began to increase in the 1970s. With the acceleration of industrialization since the 1980s, asbestos imports increased, and asbestos use peaked in the 1990s [15]. In asbestos textile factories, the use of asbestos increased when the operations of J Chemical, Asia’s largest textile factory located in Busan, was transferred from Tatsuta of Nichias in Japan and Rex in Germany to Korea in 1971 and 1981, respectively [16]. In 2000s, the portion of occupational groups over 0.1f/cc exposure increased compared with that in 1990s. We found the reason that the data in the Korean Occupational Safety and Health Agency database were measured in talc-containing occupations; therefore, the highly exposed occupational groups were included making a biased trend in the proportion.

4.2. Cause of the time lag of periods with high exposure levels between Europe and Korea

As mentioned before, different sets of data cover asbestos exposure from the 1980s to the 2000s in Korea, 1945 to 1994 in the Netherlands, and the 1960s to the 2000s in Germany. While asbestos exposure levels peaked in the 1990s in Korea, most of the data from the Netherlands and Germany showed peak exposure levels from the 1950s to the 1970s. This finding could be due to the difference in asbestos usage patterns between Europe and Asia. One study estimated the proportion of asbestos use in Asia to be 14% in 1920–1970, 33% in 1971–2000, and 64% in 2000–2007, and these periods are later than those in Europe [17]. In a comparative analysis of asbestos use and exposure data for Germany and Korea, the asbestos exposure level in Korea in 1981 was comparable with that of Germany in 1974 [16,18]. Regarding categories of exposure levels, the highest level in Korea was classified as E1 (≥1 fibers/cm³); however, in the Netherlands, the highest exposure level was “F” (>10 fibers/cm³) and the lowest was “A” (0–0.5 fibers/cm³), which is higher than the highest level (E1) in Korea. Therefore, a quantitative comparison of exposure levels between Korea and the Netherlands is less meaningful; however, it can be used to identify trends associated with increasing or decreasing asbestos exposure levels.

4.3. Comparison with other JEMs (Finland, Australia, etc.)

There have also been trials to construct a systematic JEM for occupational asbestos exposure in other countries. Finnish National Job-Exposure Matrix, one of the most widely used JEMs, was constructed in the 1990s and contains 74 chemical, physical, biological, ergonomic, and socio-psychological factors, covering 311 occupational categories for the period 1945–1997. In Australia, an asbestos JEM was used for assessing occupational asbestos exposure and contains 537 combinations from 224 occupational categories and 60 industrialized categories and 4 time periods (1943–1966, 1967–1986, 1987–2003, and ≥2004) [19], which is called SYN-JEM, and the quantitative SYN-JEM for five carcinogens including asbestos was developed by modeling of personal measurements in previous JEM data, for the periods between 1971 and 2009 [20]. We could have used the asbestos JEM of Australia for this study as they have a large number of combinations; however, we could not access their raw data. However, compared with these foreign JEMs, the reconstructed asbestos JEM in this study estimated the exposure levels for 141 combinations by period and combined the Netherlands’ and Germany’s data as references for estimating asbestos exposure. As asbestos production and usage periods in Korea are different from those in Europe, we were not able to perform a direct comparison. Nevertheless, the reconstructed Korean asbestos JEM is a large-scale JEM that can represent asbestos exposure in Korea and other Asian countries.

4.4. Advantages and limitations

The reconstructed Korean asbestos JEM expands the previous 112 combinations to 141 combinations. The strength of this study is that we can estimate asbestos exposure during periods that are not covered by Korean data by referring to the Netherlands’ and Germany’s data. However, caution is required when interpreting estimates with a small data sample size, and it should be noted that asbestos exposure in Korea is different from those in countries of other continents. The narrow period of overlap between the Korean data and the Netherlands’ or Germany’s data is also a major cause of inaccurate estimates.

4.5. Further study

Analyzing the asbestos exposure using the reconstructed Korean JEM showed the highest exposure level in most occupations in the 1980s, which gradually decreased until the 2010s; however, some occupations emerged as highly exposed groups in the 2000s. Further research on these new asbestos occupational groups and a close follow-up study are necessary. A diverse approach for data on past exposure levels before the 1980s is also needed.

5. Conclusions

The reconstructed Korean asbestos JEM has expanded the type and duration of the occupational groups to 141 combinations for periods between the 1980s and 2010s. This JEM can serve as an important reference tool for evaluating asbestos exposure in Korean workers and providing basic data for compensation and prevention policies for asbestos-exposed workers.

Author contribution

Jung S wrote the manuscript. Kang DM designed the study and helped in the drafting and critical revision of the manuscript. Choi S performed data collection and extraction. Kim YJ analyzed the data.

Conflicts of interest

All authors have no conflicts of interest to declare.

Acknowledgments

This study was supported by the Korea Occupational Safety and Health Agency and the Ministry of Environment.

Appendix 1. summary of final references selected in the JEM
References	Study ID	Title	Amount of measurement	Working environment
[21]	Moon YH, 1979	Epidemiological survey of asbestosis in asbestos miners and the inhabitants	0.092316–0.38465 fiber/cm³ inside the mine, 2.267–5.966 fiber/cm³ at the annex factory, and at outside of the office it was 3.882 fiber/cm³	Forty-one workers in asbestos mine and the annex factory in Korea
[22]	National Institute of Labor Science Ministry of Labor, 1984	Survey report of working environment at several factories	Asbestos textile industry: - Mixing: 9.71 fiber/cc (0.62–24.80 fiber/cc) - Weaving: 8.77 fiber/cc (1.17–30.73 fiber/cc) - Carding: 3.46 fiber/cc (0.65–7.85 fiber/cc) Slate manufacturing: 0.4 fiber/cc (0.12–0.57 fiber/cc) Brake-lining manufacturing: 1.7 fiber/cc (1.14–1.85 fiber/cc)	Measured in six asbestos textile plants, one slate manufacturing plant, and one automobile product manufacturing plants between 1984.4.21 and 1984.9.20
[23]	Paik NW, 1989	Workers Exposure to Asbestos in Korean Asbestos Industries	Slate manufacturing industry: - Mixing: 0.49–0.56 fiber/cc - Processing: 0.35–1.23 fiber/cc - Molding(Wet): 0.13 fiber/cc Asbestos textile industry: - Fiberizing, mixing: 0.23–3.67 fiber/cc - Carding: 0.08–9.44 fiber/cc - Spinning: 0.30–9.73 fiber/cc - Twisting: 0.08–14.90 fiber/cc - Weaving: 1.34–5.60 fiber/cc Shipbuilding industry: - Without removing asbestos materials: 0.01–0.12 fiber/cc - With removing asbestos materials: 0.09–2.45 fiber/cc - Automobile maintenance industry: 0.03–4.26 fiber/cc - Automobile product manufacturing: 0.16–5.56 fiber/cc - Asbestos related industry: 0.01–4.30 fiber/cc	Workers of 11 plants which is asbestos slate manufacturing, asbestos textile, automobile maintenance, automobile product manufacturing, and asbestos-related industries
[24]	Paik NW, 1991	Characterization of Worker Exposure to Airborne Asbestos in Asbestos Industry	Large variation of asbestos level was found by plants: 0.5 to over 10 fiber/cc	Eleven plants including asbestos textile, brake-lining manufacturing, slate manufacturing, and automobile maintenance shop
[25]	Oh SM, 1993	A study on worker exposure level and variation to asbestos in some asbestos industries	Geometric means of airborne asbestos concentration - Textile industry: 1.42 fiber/cc (0.07–6.10 fiber/cc) - Brake lining manufacturing industry: 0.19 fiber/cc (<0.01–2.67 fiber/cc) - Slate manufacturing industry: 0.08 fiber/cc (0.025–0.67 fiber/cc)	Seventeen plants including asbestos textile, brake-lining manufacturing, slate manufacturing, and automobile maintenance shop
[26]	Jung JY, 1994	A case of asbestosis, pleural effusion and lung cancer caused by long-term occupational asbestos exposure	Asbestos concentration in workplace: 0.01–0.08 fiber/cc	A case of asbestosis and lung cancer of who were occupationally exposed in asbestos for 11 years.
Park JI, 1995
A study of exposure among asbestos textile workers and estimation of their historical exposures
Among 56 samples
- Average concentration: 1.54f/cc (0.03 – 11.58f/cc)
By processing
- Weaving: 4.29f/cc (2.61 – 11.58f/cc)
- Spinning: 2.22f/cc (0.41 – 8.93f/cc)
- Carding: 1.98f/cc (0.23 – 10.93f/cc)
- Twisting: 1.65f/cc (0.21 – 9.83f/cc)
- Mixing: 0.48f/cc (0.22 – 1.20f/cc)

Paik DM, 1995
Prevalence of asbestosis in Korean asbestos industry
Asbestos textile: 0.2 – 1.3f/cc
Brake-lining: 0.7 – 1.0f/cc
Ship repairing: 6.3 – 7.8f/cc

Choi JK, 1998
The production, the use, the number of workers, and exposure level of asbestos in Korea
The record of air-borne asbestos
- Textile industry: 6.7f/cc (1984), 1.2f/cc (1993)
- Construction materials and asbestos textile: 1.7f/cc (1984), 0.55f/cc (1996)

Byeon SH, 2003
A study on asbestos fibers and the notice of inhabitant in the Bu-Pyung station
Six samples (43%) exceeded Environmental Production Agency criteria of 0.01f/cc

Lee YG, 2010
Concentration and Physical Chemical Properties of Fiber particles in Indoor and Outdoor Air
Geometric mean:
- Elementary school: 0.00108f/cc
- Middle school: 0.00105f/cc
- High school: 0.00107f/cc

Activity-based sampling: 216 samples in three mines

Lee SH, 2010
Concentration and Physical Chemical Properties of Fiber phase particles in Indoor and Outdoor Air
Geometric mean:
- Elementary school: 0.00108f/cc
- Middle school: 0.00105f/cc
- High school: 0.00107f/cc

735 sites in school, seven sites in hospital, and four sites in kindergarten constructed before 2005

Lee SH, 2010
Concentration of asbestos fiber in Indoor Air according to the School's construction year
Geometric mean: < 0.01f/cc
By constructed year:
- Before 1969: 0.00028f/cc
- 1970s: 0.0040f/cc
- 1980s: 0.0035f/cc
- 1990s: 0.0030f/cc

108 sites of elementary, middle, and high school

Lee GY, 2013
Airborne Asbestos Fiber Concentration in Korean Asbestos-Related Industry from 1994 to 2006
Asbestos textile: 2.14 f/cc (0.02 – 15.6 f/cc)
Building materials: 0.26 f/cc (0.01 – 1.01 f/cc)
Brake-lining manufacturing: 0.15 f/cc (0.01 – 0.93 f/cc)
Commutator producing: 0.14 f/cc (0.03 – 1.36 f/cc)
Airborne asbestos fiber concentrations in asbestos textile, brake-lining, commutator, and building materials manufacturing industries, and some other asbestos-related industries in Korea

(continued on next page)
References

1. Jamrozik E, de Klerk N, Musk AW. Asbestos-related disease. Intern Med J 2011;41:372–80.
2. Becklake MR. Asbestos-related diseases of the lung and other organs: their epidemiology and implications for clinical practice. Am Rev Respir Dis 1976;114:187–227.
3. IARC monographs on the evaluation of the carcinogenic risk of chemicals to man: Asbestos. Lyon (France): WHO; 1977.
4. Olsson AC, Vermeulen R, Schuz J, Kromhout H, Pesch B, Peters S, Behrens T, Portengen L, Mirabelli D, Gustavsson P, Kendzia B, Almasnja J, Luszcz V, Vlaanderen J, Stucker C, Van den Brandt PA. A case-referent study among Finnish woodworkers. Scand J Work Environ Health 1985;11(6):409–15.
5. Yim HW, Roh Y, Lee WC. The construction of job exposure matrix. J Korean Soc Occup Environ Hyg 2001;11(2):161–8.
6. Choi S, Kang D, Park D, Lee H, Choi B. Developing asbestos job exposure matrix using occupation and industry specific exposure data [1984–2008] in Republic of Korea. Saf Health Work 2017;8(1):105–15.
7. Swuste P, Dahhan M, Burdorf A. Linking expert judgement and trends of asbestos exposure data (1984-2008) in Republic of Korea. Ann Occup Hyg 2019;63(1):9–33.
8. Partanen T, Kauppinen T, Nurminen M, Nickels J, Hernberg S, Hakulinen T, Pukkala E, Savonen E. Formaldehyde exposure and respiratory and related cancers. A case-referent study among Finnish woodworkers. Scand J Work Environ Health 1988;15(Suppl. 1):409–15.
9. van Oyen SCPS, Alfonso H, Fritschi L, de Klerk NH, Reid A, Franklin P, Gordon L. Characterization of worker exposure to airborne asbestos in the asbestos industry. J Korean Soc Occup Environ Hyg 1991;1(2):144.
10. Peters S, Vermeulen R, Portengen L, Olsson A, Krendzka D, Vincent R, Savary S, Lavaud J, Cattaneo A, Mirabelli D, Plato N, Foveille J, Pesch B, Brüning T, Straif K, Kromhout H. SYN-JEM: A quantitative job-exposure matrix for asbestos exposure in the asbestos industry. J Korean Soc Occup Environ Hyg 2019;15(9):737–48.
11. Peters S, Vermeulen R, Portengen L, Olsson A, Krendzka D, Vincent R, Savary S, Lavaud J, Cattaneo A, Mirabelli D, Plato N, Foveille J, Pesch B, Brüning T, Straif K, Kromhout H. SYN-JEM: A quantitative job-exposure matrix for five lung carcinogens. Ann Occup Hyg 2016;60:795–811.
12. Moon YH. Epidemiological survey of asbestosis in asbestos miners and the inhabitants. Korean Cent J Med 1979;37(3) [in Korean].
13. National Institute of Labor Science. Investigation of hazard environment of occupational asbestos exposure. Korean J Public Health. 42;115-121. [in Korean].
14. Safl Health Work. 2021;12:74–95.
15. Jamrozik E, de Klerk N, Musk AW. Asbestos-related disease. Intern Med J 2011;41:372–80.
16. Becklake MR. Asbestos-related diseases of the lung and other organs: their epidemiology and implications for clinical practice. Am Rev Respir Dis 1976;114:187–227.
17. IARC monographs on the evaluation of the carcinogenic risk of chemicals to man: Asbestos. Lyon (France): WHO; 1977.
18. Olsson AC, Vermeulen R, Schuz J, Kromhout H, Pesch B, Peters S, Behrens T, Portengen L, Mirabelli D, Gustavsson P, Kendzia B, Almasnja J, Luszcz V, Vlaanderen J, Stucker C, Van den Brandt PA. A case-referent study among Finnish woodworkers. Scand J Work Environ Health 1985;11(6):409–15.
19. Yim HW, Roh Y, Lee WC. The construction of job exposure matrix. J Korean Soc Occup Environ Hyg 2001;11(2):161–8.
20. Choi S, Kang D, Park D, Lee H, Choi B. Developing asbestos job exposure matrix using occupation and industry specific exposure data [1984–2008] in Republic of Korea. Saf Health Work 2017;8(1):105–15.
21. Swuste P, Dahhan M, Burdorf A. Linking expert judgement and trends of asbestos exposure data (1984-2008) in Republic of Korea. Ann Occup Hyg 2019;63(1):9–33.
22. Partanen T, Kauppinen T, Nurminen M, Nickels J, Hernberg S, Hakulinen T, Pukkala E, Savonen E. Formaldehyde exposure and respiratory and related cancers. A case-referent study among Finnish woodworkers. Scand J Work Environ Health 1988;15(Suppl. 1):409–15.
23. van Oyen SCPS, Alfonso H, Fritschi L, de Klerk NH, Reid A, Franklin P, Gordon L. Characterization of worker exposure to airborne asbestos in the asbestos industry. J Korean Soc Occup Environ Hyg 1991;1(2):144.
24. Peters S, Vermeulen R, Portengen L, Olsson A, Krendzka D, Vincent R, Savary S, Lavaud J, Cattaneo A, Mirabelli D, Plato N, Foveille J, Pesch B, Brüning T, Straif K, Kromhout H. SYN-JEM: A quantitative job-exposure matrix for asbestos exposure in the asbestos industry. J Korean Soc Occup Environ Hyg 1991;1(2):144–53 [in Korean].
25. Peters S, Vermeulen R, Portengen L, Olsson A, Krendzka D, Vincent R, Savary S, Lavaud J, Cattaneo A, Mirabelli D, Plato N, Foveille J, Pesch B, Brüning T, Straif K, Kromhout H. SYN-JEM: A quantitative job-exposure matrix for five lung carcinogens. Ann Occup Hyg 2016;60:795–811.
26. Moon YH. Epidemiological survey of asbestosis in asbestos miners and the inhabitants. Korean Cent J Med 1979;37(3) [in Korean].
27. National Institute of Labor Science. Investigation of hazard environment of occupational asbestos exposure. Korean J Public Health. 42;115-121. [in Korean].
28. Paik NW, Park DM, Cho JK, Son MA, Im JY, Lee WJ, Moon YH, Park JS, Choi BS. Prevalence of asbestosis in Korean asbestos industry. Ann Occup Environ Med 1995;7(1):46–57 [in Korean].
[29] Choi JK, Paik DM, Paik NW. The production, the use, the number of workers and exposure level of asbestos in Korea. Korean Ind Hyg Assoc J 1998;8(2): 242–3 [in Korean].

[30] Byeon SH. A Study on asbestos fibers and the notice of inhabitant in the Bupyang station. Korean J Sanit 2003;18(1):8–14 [in Korean].

[31] Lee YG. A study on the actual condition of indoor air quality in multi-use facilities. J Air-Cond Refrig Eng 2004;33(6):24–31 [in Korean].

[32] Choi SJ. Study for prevention of health effect on asbestos (II); 2006 [in Korean].

[33] Shim SH. A study on exposure to asbestos a shipbuilding repair business. J Environ Hlth Sci 2008;34(1):108–15 [in Korean].

[34] Park JH. The concentration of asbestos fiber in indoor air according to the school’s construction year. Kor Environ Sci Soc Conf 2009;18(1):71–2 [in Korean].

[35] Park JH, Suh JM. Characterizations of airborne fiber particle concentration in public facilities and schools. J Environ Sci 2010;19(4):509–16 [in Korean].

[36] Lee SH, Park JH, Jung YH, Yang SM, Park HE, Kim HK. Concentration and physical chemical properties of fiber phase particles in indoor and outdoor air. J Environ Sci 2010;19(1):47–9 [in Korean].

[37] Choi IS. A study of indoor air quality of public facilities in Chung-Nam area. [in Korean].

[38] Yoon YS. Comparison of asbestos exposure and risk assessment according to asbestos mine types in Korea. Doctoral Dissertation. Seoul: Catholic University of Korea; 2011 [in Korean].

[39] Park HE, Park JH, Kim HG. Concentration characteristics of indoor and outdoor airborne total fiber particles and identification of asbestos in Gyeong-nam provinces. J Korean Soc Occup Environ Hyg 2012;22(2):119–27 [in Korean].

[40] Lee GY. Comparison of asbestos exposure and risk assessment according to asbestos mine types in Korea. J Korean Soc Occup Environ Hyg 2013;23(2):123–6 [in Korean].

[41] Yoon B, Park KL, Lee WC, Lim Y, Kim KA. Epidemiological survey on the environment and health status in asbestos factories. Ann Occup Environ Med 1993;5(1):137–51 [in Korean].

[42] Lim HS, Cho HJ. A case of lung cancer occurred among asbestos workers in a steel manufacturing factory. Acad Dongguk Univ 1999;18:311–21 [in Korean].

[43] Kim JH, Jung HJ, Paik SH. A study on asbestos concentration of underground shops in daejeon area. J Korea Soc Environ Admin 2002;8(2):207–15 [in Korean].

[44] Yoon DY, Kang JU, Lee HJ, Kim JJ, Son JE, Jung KY, Kim JY, No MS. A case of lung cancer caused by long-term Asbestos exposure. Ann Occup Environ Med 2004;16(4):499–507 [in Korean].