Supplementary Information

Intron retention in the *Drosophila melanogaster* Rieske iron sulfur protein gene generates a new protein

Alisson M. Gontijo, Veronica Miguela, Michael F. Whiting, R. C. Woodruff, Maria Dominguez

Supplementary Figures S1-S8
Supplementary Tables S1-S6
Supplementary Discussion
Supplementary References
Supplementary Figure S1.

Drosophila melanogaster
1. EZ30 Ethiopia Zway
2. P4 Perysburgh OH recomb. allele 1
3. RVC-4 Riverside CA USA #3871
4. Tana12 Madagascar Antarasambolo
5. Kivu Uganda Kisoro
6. Cornmark NY USA #3850
7. EZ51 Ethiopia Zway
8. Kyoc70 Kenya Malindi New Market
9. EV Ellenville NY 3851
10. Hikone-A-S
11. P4 Perysburg OH allele 2
12. Kyoc6 Kenya Malindi New Market
13. RC1 Riverside CA USA #3855
14. Flores9 #3747. Gemza #4508
15. BG02 Bogota Colombia #3842
16. ZS11 Zimbabwe Senega
17. PB Perysburg OH USA
18. Oregon R4
19. Canton-S, Kornba Dam-3 #3853
20. P7 Perysburg OH USA
21. Reids-1 Madeira Portugal #3866

Drosophila simulans
Dam1. ZOM Malawi, Zomba
Dam2. Kib11 Uganda Kibale forest
Dam3. #4736
Dam4. Genome Reference (w1118)
Dam5. MZ48 Madagascar
Dam6. Tana10 Madagascar Antarasambolo
Supplementary Figure S1. Alignment of a segment of the RFeSP locus spanning intron2. Only one line per haplotype is shown for D. melanogaster (Dmel). There are 16 haplotypes for intron2a and 4 haplotypes for intron2b. The number (n) of times each haplotype was found is depicted. The 5' splice donor and 3' splice acceptor are shown as black arrows, while the putative branch point is shown with a black arrowhead. Nucleotides: G in magenta, C in dark blue, A in yellow, and T in cyan. Key deletions are depicted by dark bars on the left. Note that a phylogenetically informative polymorphic insertion/deletion (indel) in the D. simulans complex (Dsim compl.) was found on the 3' region of the intron2. This polymorphic indel has apparently become differentially fixed in either D. mauritiana (Dmau) or in D. sechelia (Dsech). Dsim1, Dsim2, and so on correspond to different D. simulans lines [Dsim1= ZOM4 Malawi. Zomba, Dsim2 = Kib11 Uganda Kibale forest, Dsim3 = #4736, Dsim4 = Genome Reference (Strain 14021-0251.195 Dsim[w[501]], Dsim5 = M258 Madagascar, Dsim6 = Tana10 Madagascar Anananarivo]. Dyak1 and Dyak2 correspond to the 14021-0261-00 genome reference and 14021-0261-01 D. yakuba lines, respectively. Other taxa: D. tessieri (Dtes), D. erecta (Dere), D. orena (Dore), D. santomea (Dsan). D. melanogaster lines (from left to right columns, group according to haplotype: intron2a alleles: 1st Column: EZ39 Ethiopya Ziway; 2nd Column: P4 Perrysburg Ohio recombinant allele 1 (P4 strain was heterozygote); 3rd Column: RVC-4 Riverside CA USA #3871; 4th Column: Tana12 Madagascar Antananarivo; 5th Column: Kis4 Uganda Kisoro; 6th Column: Commank NY USA #3850; 7th Column: EZ61 Ethiopia Ziway; 8th Column: Ky070 Kenya Malindi New Market; 9th Column: EV Ellenville NY 3851; 10th Column: Hikone-A-S, Hikone-R 4267, Hikone-A-W, PVM Madeira Portugal #3861 and Zarate Argentina; 11th Column: P4 Perrysburg Ohio allele 2; 12th Column: Ky036 Kenya Malindi New Market; 13th Column: RC1 Riverside CA USA #3865; 14th Column: Florida-9 #2374 and Crimea #4266; 15th Column: BOG2 Bogota Colombia #3842, w^1118^ Urbana-S #4272, ZS11 Zimbabwe Sengwa Wildlife Reserve, Kis3 Uganda Kisoro; 16th Column: ZS15 Zimbabwe Sengwa Wildlife Reserve, 17th Column: P8 Perrysburg Ohio USA; intron2b alleles: 18th column: Oregon #5, INPA7 Manaus (this strain was heterozygote for intron2 types but had predominant intron2b), Swedish-C #4271, TW3 Varna NY USA #3874, MO1 Monroe County NY USA #3857, Q12 Israel #3864, Ber2 Bermuda #3840, MWA Madeira Wisconsin USA #3859, CA1 Capetown South Africa #3846, BV1 Blacksburg Virginia #3845, VAG1 Athens #3875, Samarkand #4270, Harwich #4264, M2 Australia #3855, Amherst-3 #4265, pi2cP #2384, BS1 Barcelona Spain #3844, Lausanne-S #4268, PYR-3 Pyrenees Spain #3863, Berlin-K #8522, P1 Perryburg Ohio USA, Koriba Dam #3854, P10 Perryburg Ohio, USA (majority intron2b but has traces of intron2a), P7 Perryburg Ohio USA, RSVP10 Brasil Santa Maria, Tana11 Madagascar Antananarivo, SP Brasil Sao Jose do Rio Preto, #3884 wild 3B; 19th Column: Canton-2 and Koriba Dam-3 #3853; 20th Column: P7 Perryburg Ohio USA; 21th Column: Reids-1 Madeira Portugal #3866. Exact descriptions and origins of each line can be found in Supplementary Data S1.
Supplementary Figure S2. Rate of nonsynonymous (dN) and synonymous (dS) polymorphisms in a 191-bp fragment of the RFeSP locus of D. melanogaster lines. dN/dS ratios are shown for intron2a group alleles (a) and intron2b group alleles (b). dN/dS ratios can be a robust method of inferring evolutionary processes acting on coding regions, if one considers the limitations of applying these measurements to intraspecies polymorphism studies. Interestingly, all of the eight coding region polymorphisms that were found segregating in D. melanogaster RFeSP were found in intron2a group alleles, while none were found in RFeSP alleles of the intron2b group. For intron2a alleles, the average values obtained were: dN = 0.0069 ± 0.0001, dS = 0.0691 ± 0.0202, and dN/dS = 0.1121, which although not statistically significant (Fisher’s exact tests, p > 0.1, considering dNObserved = dSObserved as the null hypothesis), roughly indicated a 9-fold excess of possible synonymous polymorphisms over nonsynonymous ones.
Supplementary Figure S3. Lack of association between intron2 allelic groups with the chromosomal inversion In(2L)t. (a) Scheme of the Standard chromosome 2L and the breakpoints of the In(2L)t inversion. The localization of the RFeSP locus in the Standard chromosome is depicted. Primer pairs are depicted as “A-D”. The presence of the In(2L)t is diagnosed by the amplification of a ~250-bp fragment. (b) Screening of subset of intron2a lines for In(2L)t. (c) Screening of a subset of intron2b lines for In(2L)t.
Supplementary Figure S4. Association between intron2 allelic groups with the gene copy polymorphism at the Or22 locus. (a) Scheme of the Or22 gene copy polymorphisms in D. melanogaster and genetic distance from RFeSP on the Chr2L26. In D. melanogaster, Or22 segregates either as a long or a short variant26. The long variant has a duplicated Or22 (Or22a and Or22b), and occurred in 74% of the strains in our study. The short variant consists of a single chimeric Or22a/b, occurring in 26% of the lines. (b) Linkage disequilibrium between RFeSP and Or22 for all RFeSP groups (see text). $X^2 = 13.982$. (c) Linkage disequilibrium between RFeSP and Or22 for all RFeSP intron2a groups (see text). $X^2 = 9$. Shown is the normalized D value and the Chi-square goodness of fit test.
Supplementary Figure S5. Synteny conservation of the \textit{RFeSP} chromosomal region. Synteny conservation of the RFeSP chromosomal region between \textit{D. melanogaster} and \textit{D. grimshawi}. Magenta arrows indicate key conserved syntenic genes. The localization of the \textit{RFeSP} locus is depicted by a Cyan arrow. Genome sequences were obtained from the UCSC Genome Browser. http://genome.ucsc.edu/ The \textit{D. melanogaster} assembly used was the Apr. 2006 (BDGP R5/dm3) Assembly. The \textit{D. grimshawi} assembly used was the Aug. 2005 (Agencourt prelim/droGri1) Assembly.
Supplementary Figure S6. RFeSP-RA codons were biased by negative selection on RFeSP. An example of a correlation between codon usage bias and the fixation of PTC loss in the cryptic coding sequence of RFeSP-RA. Shown is the PTC loss that happened following the Tyr_{199} mutation described in Figure 3b (main text). Red shows a bias for the TAU codon and blue shows a preference for the TAC codon.
Supplementary Figure. S7. Targeted mutagenesis completely eliminates splicing from the intron2bΔ62 locus. Agarose gel showing products of an RT-PCR with cDNA isolated from S2 cells transiently transfected with Noble::TagRFP-T fusions and mutants. Lane 1: pUAST-Noble-TagRFP-T. Lane 2: pUAST-NobleW164STOP-TagRFP-T fusion. Lane 3: pUAST-NobleOPT-TagRFP-T, which has no splice sites, at the cost of a Val159Ile mutation. Note that the presence of a STOP codon within intron2 (Lane 2) visibly favors splicing in comparison with the wild-type locus.
Supplementary Figure S8. Noble is probably processed and requires an intact N-terminus to reach the mitochondria. (a) Gal-4 inducible transgenes used to study Noble function in vitro and in vivo. In pUAST-Noble-TagRFP-T, TagRFP-T is inserted posteriorly to the RFeSP termination codon, but in frame to Noble. Nevertheless, in addition to Noble-TagRFP-T, the production of non-tagged RFeSP is expected from spliced pUAST-Noble-TagRFP-T (since this construct carries the intron2bΔ62). The predicted MW of Noble::TagRFP-T is ≈56 kDa. In pUAST-VisGreen-RFeSP/Noble, VisGreen was inserted N-terminally following the Methionine. Thus both RFeSP and Noble should be produced concomitantly, with a predicted MW of ≈52 and ≈56 kDa, respectively. (b) Proteins from S2 cells transiently transfected with different plasmids were separated in a 10% SDS-Page gel and subject to Western Blotting with anti-GFP. Green arrows show two specific bands found after transient transfection with pUAST-VisGreen-RFeSP/Noble. Transient transfections were carried out with equimolar ratios of: 1) pMT-Gal4+ pUAST; 2) pMT-Gal4 + pUAST-TagRFP-T-CG9925-HA; 3) pMT-Gal4 + pUAST-Noble-TagRFP-T; and 4) pMT-Gal4 + pUAST-VisGreen-RFeSP/Noble. (c) Same as in b, but the Western Blot was probed with anti-TagRFP-T. Red arrows point to specific bands found after transient transfection with Noble-TagRFP-T or TagRFP-T-CG9925-HA. Transfection 2 was performed to demonstrate that the anti-TagRFP-T antibody indeed recognizes TagRFP-T. The predicted MW of the TagRFP-T-CG9925-HA fusion is 128 kDa. Noble-TagRFP-T was found as a single band migrating slightly above 50 kDa, which is nevertheless under the predicted size of the fusion protein (~55 kDa), strongly suggesting that Noble is N-terminally processed. (d) Protein alignment of a fragment of RFeSP homologues from diverse taxa (from top to bottom: Homo sapiens, Mus musculus, Gallus gallus, Danio rerio, Aedes aegypti, Anopheles gambiae, Culex pipiens, Drosophila melanogaster, D. yakuba, D. willistoni, D. virilis, D. grimshawi, and Caenorhabditis elegans). The putative MPP processing signal RX-XHXD55-56 (the hyphen stands at the putative cleavage site, depicted with a pair of scissors on the alignment) is depicted by a red box. (e-j) VisGreen-RFeSP/Noble do not associate with mitochondria in D. melanogaster salivary gland cells in vivo. We used the ey-Gal4 driver to activate pUAST-VisGreen-RFeSP/Noble and pUAST-Noble-TagRFP-T in salivary glands. (e,g,h,j) VisGreen-RFeSP/Noble in green. (f,g,i,j) Mitochondria were visualized indirectly via Noble-TagRFP-T (in red). (h-j) Same as in e-g but with an enhanced brightness and contrast. Bar = 30 μm in panels e-j.
Supplementary Table S1. Complete list of lines and stocks of *D. melanogaster* and closely related *Drosophila* species used in this study.

Lines (REF# Codes)	Description	Species	Origin	Obtained from or Collected by (date)
1	Canton-S	*D. melanogaster*	Bloomington	
3	Hikone-A-S	*D. melanogaster*	Bloomington	
4	Hikone-A-W	*D. melanogaster*	Bloomington	
2057	y¹; Gr22b¹ Gr22d¹ cn¹ CG33964¹¹¹¹ bw¹ sp¹ LysC¹ MstProx¹ GsdD5¹ Rb6⁰	*D. melanogaster*	Bloomington	
5	Oregon-R-C	*D. melanogaster*	Bloomington	
2374	Florida-9	*D. melanogaster*	Bloomington	
2384	pi; <P>	*D. melanogaster*	Bloomington	
3840	BER 2, Bermuda	*D. melanogaster*	Bloomington	
3842	BOG 2, Bogota, Colombia	*D. melanogaster*	Bloomington	
3844	BS-1, Barcelona, Spain	*D. melanogaster*	Bloomington	
3845	BV1, Blacksburg, Virginia	*D. melanogaster*	Bloomington	
3846	CA1, Capetown, South Africa	*D. melanogaster*	Bloomington	
3850	CO 7, Commack, New York, USA, 1961	*D. melanogaster*	Bloomington	
3851	EV, Ellenville, New York, USA	*D. melanogaster*	Bloomington	
3853	KSA 3, Koriba Dam, South Africa	*D. melanogaster*	Bloomington	
3854	KSA 4, Koriba Dam, South Africa	*D. melanogaster*	Bloomington	
3855	M2, Australia	*D. melanogaster*	Bloomington	
3857	MO 1, Monroe County, New York, USA	*D. melanogaster*	Bloomington	
3859	MWA 1, Madera, Wisconsin, USA	*D. melanogaster*	Bloomington	
3860	NO 1, New Orleans, Louisiana, USA	*D. melanogaster*	Bloomington	
3861	PVM, Madeira, Portugal	*D. melanogaster*	Bloomington	
3863	PYR 3, Pyrenees, Spain	*D. melanogaster*	Bloomington	
3864	Q2, Israel	*D. melanogaster*	Bloomington	
3865	RC1, Riverside, California, USA	*D. melanogaster*	Bloomington	
3866	Reids 1, Madeira, Portugal	*D. melanogaster*	Bloomington	
3871	RVC 4, Riverside, California, USA	*D. melanogaster*	Bloomington	
3874	TW 3, Varna, New York, USA	*D. melanogaster*	Bloomington	
3875	VAG 1, Athens	*D. melanogaster*	Bloomington	
3880	Wild 2A, Painesville, Ohio, USA	*D. melanogaster*	Bloomington	
3884	Wild 3B, Mt. Sterling, Ohio, USA	*D. melanogaster*	Bloomington	
Stock number	Description	Species	Stock center	
-------------	-------------	---------	--------------	
4264	Harwich	D. melanogaster	Bloomington	
4265	Amherst 3	D. melanogaster	Bloomington	
4266	Crimea	D. melanogaster	Bloomington	
4267	Hikone-R, high DMN demethylase activity	D. melanogaster	Bloomington	
4268	Lausanne-S	D. melanogaster	Bloomington	
4270	Samarkand	D. melanogaster	Bloomington	
4271	Swedish-C	D. melanogaster	Bloomington	
4272	Urbana-S	D. melanogaster	Bloomington	
4736	D. simulans C147.4	D. melanogaster	Bloomington	
7193	w[+]; P[w+mc]=sqh-EYFP-Golgi3	D. melanogaster	Bloomington	
7194	w[+]; P[w+mc]=sqh-EYFP-Mito3	D. melanogaster	Bloomington	
7195	w[+]; P[w+mc]=sqh-EYFP-ER3	D. melanogaster	Bloomington	
8442	UAS-mitoGFP	D. melanogaster	Bloomington	
8522	Berlin-K	D. melanogaster	Bloomington	
14021-0241.01	Dmau/wild-type	D. mauritiana	Drosophila species stock center.	
14021-0251.195	Dsim/w[501]	D. simulans	USA Drosophila species stock center.	
14021-0248.25	Dsec/wild-type	D. sechellia	Cousin Island, Seychelles Drosophila species stock center.	
14021-0245-01	Dore/wild-type	D. orena	Bafut, Ngemba, Cameroon Drosophila species stock center.	
14021-0257-00	Dtei/wild-type	D. teissieri	Drosophila species stock center.	
14011-0111-49	Dper/wild-type	D. persimilis	Mount. St. Helena, California, U.S.A. Drosophila species stock center.	
14021-0271-00	Dstol/wild-type	D. santomea	Obo Natural Reserve, submontane forest, San Tome and Príncipe Island (Africa). Drosophila species stock center.	
14024-0371-13	Dana(In3R)A	D. ananassae	Hawaii, USA. Drosophila species stock center.	
14021-0261-00	Dyak/wild-type	D. yakuba	Ivory Coast Drosophila species stock center.	
14021-0261-01	Dyak/wild-type	D. yakuba	Between Liberia and Ivory Coast, Liberia. Drosophila species stock center.	
14021-0224-01	Dere/wild-type	D. erecta.	Drosophila species stock center.	
14011-0121-94	Dpse/wild-type	D. pseudoobscura	Anderson, Mesa Verde, Colorado, USA. Drosophila species stock center.	
14027-0461.02	Dele/wild-type	D. elegans	Okinawa, Japan. Drosophila species	
Stock Code	Stock Type	Stock Name	Country/Location	
------------	------------	------------	-----------------	
14022-0271.00	Dlutf/wild-type	D. lutescens	Mito, Honshu, Japan	
14022-0311.14	Dtak/wild-type	D. takahashi	Yun Shui, Taiwan	
14022-0301.01	Dpsh/wild-type	D. pseudotakahashi	Atherton Tableland, North Queensland, Australia	
14023-0311.00	Dsz/wild-type	D. suzukii	Hachijo Island, Tokyo	
14026-0451.05	Deug/wild-type	D. eugracilis	Kuala Belalong, Ulu Temburong National Park, Brunei	
14023-0011.00	Dfuy/wild-type	D. fayumai	Kuala Belalong, Ulu Temburong Ntl. Park, Brunei	
14029-0011.00	Dprs/wild-type	D. prostipennis	Kuala Belalong, Ulu Temburong National Park, Brunei	
14023-0331.01	Dluc/wild-type	D. lucipennis	Wulai, Taiwan	
14023-0311.00	Dsuz/wild-type	D. suzukii	Hachijo Island, Tokyo	
14028-0701.00	Dtsa/wild-type	D. tsacasi	Ivory Coast	
14025-0441.00	Dfic/wild-type	D. ficsphila,	stock center	

From the Dominguez Lab.

Upf mutant 25G

Upf mutant 14J

Canton-S-BU

P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16

C1, C2

Perrysburg, OH, USA.

Cleveland, OH, USA.

R.C. Woodruff (Fall 2009)

C. Schloterrer lab.

Jean David (March 2008); Donated from C. Schloterrer lab.

Jean David (March 2008); Donated from C. Schloterrer lab.

Artyom Kopp

C. Niessinger (March 2001); Donated from C. Schloterrer lab.

M. Imhof (March 2001); Donated from C. Schloterrer lab.

J. Pool (Winter 2008/9);
Code	Species	Location	Date	Source
EZ61	*D. melanogaster*	Ethiopia, Ziway	Winter 2008/10;	Donated from C. Schloterrer lab.
Tana11	*D. melanogaster*	Madagascar, Antananarivo	March 2008;	Donated from C. Schloterrer lab.
Tana12	*D. melanogaster*	Madagascar, Antananarivo	March 2008;	Donated from C. Schloterrer lab.
Kyo36	*D. melanogaster*	Kenya, Malindi New Market	July 2001;	Donated from C. Schloterrer lab.
Kyo70	*D. melanogaster*	Kenya, Malindi New Market	July 2001;	Donated from C. Schloterrer lab.
Kis3	*D. melanogaster*	Uganda, Kisoro	March 2001;	Donated from C. Schloterrer lab.
Kis4	*D. melanogaster*	Uganda, Kisoro	March 2001;	Donated from C. Schloterrer lab.
ZS11	*D. melanogaster*	Zimbabwe, Sengwa Wildlife Res.	C. F. Aquadro (1990);	Donated from C. Schloterrer lab.
ZS15	*D. melanogaster*	Zimbabwe, Sengwa Wildlife Res.	C. F. Aquadro (1990);	Donated from C. Schloterrer lab.
INPA-7	*D. melanogaster*	Manaus, AM, Brazil	E. Loreto (2006-2008)	
Sao Jose	*D. melanogaster*	São Jose Rio Preto, SP, Brazil	E. Loreto (2006-2008)	
RS-V10	*D. melanogaster*	Santa Maria, RS, Brazil	E. Loreto (2006-2008)	
Zaraté	*D. melanogaster*	Argentina	E. Loreto (2006-2008)	
Supplementary Table S2. Values of DNA polymorphism and frequency spectrum neutrality tests for all *D. melanogaster* (Dmel) *RFeSP intron2* alleles together, as well as *intron2a* and *intron2b* groups separately. *D. simulans* (Dsim) *RFeSP intron2* alleles are shown as comparison. The *D. tiessieri RFeSP intron2* was used as an outgroup.

	Neutrality Tests (T)													
	m\(^a\)	S\(^b\)	k\(^c\)	\(θ_π\)\(^d\)	\(θ_s\)\(^e\)	D\(^f\)	\(D_2\)\(^g\)	\(D_3\)\(^h\)	F\(^i\)\(^*\)	F\(^i\)	H\(^j\)	Y\(^k\)\(^*\)	Y\(^k\)\(^*\)	
Dmel														
All	57	28	21	5.78	6.05	-0.14	-1.44	-1.64	-1.10	-1.21	0.26	0.69	0.75	
	(0.516)\(^3\)	(0.072)	(0.059)	(0.137)	(0.130)	(0.441)	(0.804)	(0.819)						
2a	26	21	17	3.99	5.50	-0.99	-0.93	-1.08	-1.03	-1.10	0.25	-0.76	-0.54	
	(0.164)	(0.168)	(0.188)	(0.150)	(0.158)	(0.434)	(0.240)	(0.319)						
2b	31	3	4	0.25	0.74	-1.55	-1.51	-1.60	-1.64	-1.71	-0.30	-1.37	-1.33	
	(0.033)	(0.033)	(0.026)	(0.033)	(0.031)	(0.389)	(0.078)	(0.090)						
Dsim	6	18	6	7.73	7.88	-0.12	-0.10	-0.41	-0.10	-0.38	-0.61	-0.15	-0.04	
	(0.478)	(0.470)	(0.421)	(0.485)	(0.446)	(0.180)	(0.545)	(0.317)						

\(^a\) m = number of sequences analyzed. A ~300-bp sequence around the *RFeSP intron2* was used (fig. S1).

\(^b\) S = number of segregating sites. Insertions and deletions were counted as one segregating site.

\(^c\) k = number of haplotypes

\(^d\) \(θ_π\) = diversity estimator, as in (41)

\(^e\) \(θ_s\) = diversity estimator, as in (41)

\(^f\) D = Tajima’s D (57)

\(^g\) \(D_2\) = Fu and Li’s \(D_2\) as described in (58)

\(^h\) \(D_3\) = Fu and Li’s \(D_3\) as described in (58)

\(^i\) F = Fay and Wu’s \(Y^*\) as described in (59)

\(^j\) \(Y^*\) = Achaz’s \(Y^*\) Y as described in (41)

\(^k\) For each Test (T) p value = P(Tobs > Ttheo) according to 100000 coalescence simulations (41)
Supplementary Table S3. Survey of 222 nucleotides from the *RFeSP-RA* and *RFeSP-RB* overlapping coding sequence. Sequence starts on the first Ala₁₇₇ codon of *RFeSP-RA* (which is about where the 3rd exon of *RFeSP-RB* begins) and ends in the Glu codon of *RFeSP-RA* (which is equivalent to the STOP codon of *RFeSP-RB*).

aa #	aa^a	codon	possible PTC mutation	RFeSP-RA	preferred codon^b	resulting aa	resulting codon	RFeSP-RB	translat. change^c	codon bias	no PTC^d	neutral
Exon3 starts on “C”												
177		GCA										
178		ACG										
179	Cys	TGT	TGA		Val	GTG	GTG	Glu	GAG	1	2	
180		GAT										
181	Glu	CAA	TAA		Iso	ATC	ATC	Iso	ATT	1	2	
182		GCC										
183	Arg	CGA	TGA		Pro	CCC	CCC/CCG	Pro	CCT	1	2	
184		GTG										
185		GCT										
186		GGT										
187		GGT										
188		CAT										
189		CGG										
190		AGT										
191		GTC										
192		CAC										
193		GCA										
194		TCT										
195		GGG										
196		CTG										
197		TGT										
198		GCC										
199		CAT										
200		CGC										
201	Glu	GAA	TAA	Ala	GCG	GCC/GCG	Ala	GCT	1	2		
202		CGC										

^a aa: amino acid; ^b codon: codon; ^c translat. change: translation change; ^d no PTC: no PTC (premature termination codon).
203	CGG															
204	Arg	CGA	TGA	Gly	GGC	GGC	Gly	GGT								
205		CTG														
206		GGG														
207	Trp	TGG	TGA	Gly	GGC	GGC	Asp	GAC								
208		CTA														
209		CTA														
210		CTG														
211		CCC														
212		CTG														
213		CCA														
214		CGG														
215		CTC														
216		CCA														
217		CTA														
218	Arg	CGA	TGA	Tyr	TAC	TAC	Tyr	TAT								
219		CGC														
220		CTC														
221		CGG														
222	Lys	AAG	TAG	Gly	GGA	GGC	Gly	GGT								
223		GAT														
224		CGG														
225	Glu	CAA	TAA	Arg	CGC	CGC/CGG	Arg	CGT								
226		GGG														
227		ACC														
228		GCG														
229		GCC														
230		CCT														
231	Glu	CAA	TAA	Leu	CTC	CGT/CTC	Leu	CTA								
232		CTT														
233	Gly	GGA	TGA	Leu	TTG	CGT/CTC	Phe	TTT								
234		GGT														
235		GCC														
Exon3 ends on first “G”	236	CAC	3													
-------------------------	-----	-----	---													
237	CCA	3														
238	Arg	CGA	TGA	His	CAC	CAC	His	CAT	1	2						
239	GTT	3														
240	CCC	3														
241	Glu	CAA	TAA	Pro	CCC	CCC/CCG	Pro	CCT	1	2						
242	Arg	CGA	TGA	Asn	AAC	AAC	Asn	AAT	1	2						
243	GGG	3														
244	TCT	3														
245	TCT	3														
246	CGT	3														
247	GGT	3														
248	CGG	3														
249	CTA	3														

| Glu | GAG | TAG | PTC | TAG/TAG/TAA | Tyr | TAT | 1 | 2 |

TOTAL	74 aa	222 nt	4	10	207	1
P(N)	0.0060	0.0150	0.9775	0.0015		

a Number of nucleotides affected by the specific type of mutation.

b Only aa that can change to PTCs (premature translation termination codons) in RFeSP-RA are listed.

c According to (42).

d Mutations that would affect translation, such as inducing an aa change or removing the original STOP codon from RFeSP-RB.

e Mutations that do not induce a PTC in the reading frame of RFeSP-RA.

f P(N) is the probability of the respective type of mutation amongst possible nucleotide substitutions in this 222 nucleotide stretch.

For each set there is only one nucleotide substitution that would result in a PTC (e.g., GGA must mutate to GGT, and not GGC or GGG to convert Lys22, of RFeSP-PA into a induce a PTC), therefore, the probability of a “neutral” mutation to RFeSP-RB inducing a PTC on RFeSP-RA is $1/222 \times 1/3 = 0.0015$.

20
Supplementary Table S4. List and origin of *Non-Drosophilinae* insects used in this study.

Code	Order	Family	Genus	Species
Nser1^a	Megaloptera	Corydalidae	Nigronia	serricornis
Bcol1^a	Mecoptera	Boreidae	Boreus	coloradensis
Phel1^a	Mecoptera	Panorpidae	Panorpa	helena
Hapi1^a	Mecoptera	Bittacidae	Hylobittaus	apicalis
DI43^a	Diptera	Asilidae	Sarapogon	fletcheri
Psycho1^b	Diptera	Psychodidae		
Tipula^b	Diptera	Tipulidae	Tipula	sp.
Sipho_Ctenocephalides^c	Siphonaptera	Pulicidae	Ctenocephalides	canis

^a Collected and classified by the Whiting lab

^b Collected and classified by A. Gontijo in El Campello, Spain.

^c DNA Sample donated by Dr. Michael J. Raupach Forschungsmuseum Alexander Koenig DNA-Bank
Supplementary Table S5. List of primers used in this study.

Primer name	Primer sequence
Sequencing primers (RFeSP)	
Dmelanogaster:	
RFeSP alternative1 left	AAACGATAAACAGCTCTCTCTAGCC
RFeSP alternative1 right	GAGGGCAAGTCGGTTACTTTCA
Dpersimilis	
RFeSP al1 persi left	AAACGATAAACACTGTAATGT
RPeSP al1 perypseudo right	GAGGGCAAGTCGGTGACATTCA
Dananassae:	
RFeSP al1 anana left	AAACGATAAACAGCTCTCT
RFeSP al1 anana right	GAGGGCAAGTCGGTGACATTCA
Dpseudoosbcura:	
RFeSP al1 pseudo left	AAACGATAAACACACTGTAAAT
RPeSP al1 perypseudo right	GAGGGCAAGTCGGTGACATTCA
Degenerate primers:	
RFeSP deg forw1	GAYAATHCCIGARGGNAA
RFeSP deg rev2	RTGRGAIGGRCARTARTA
RFeSP deg rev2OK	RTGRCAIGGRCARTARTA
RFeSP primers	
RFeSP left	ATCGGTGCACACTCCGATGA
RFeSP right	GCGATCCGGAGGTAGTGAT
RFeSP general left	GTTCGTACGACTGTTCTC
RFeSP general right	TGACGTAAGCAGCCGAC
RFeSP large-isoform left	CTCTAGCCGACACGAGAAG
RFeSP large-isoform right	CGGAGGCTGATGATGAGGT
RFeSP alternative1 left	AAACGATAACAGCTCCTCTAGCC
RFeSP alternative1 right	GAGGGCAAGTCGGTTACTTTCA
RFeSP alternative2 left	CAACCTCCGATGACCA
RFeSP alternative2 right	CAATCGCCAGGCACACC
Supplementary Table S6. List of the Accession numbers or references for all sequences used in this study.

Organism	Accession number reference
Homo sapiens	NP_005994.2
Mus musculus	NP_079986.1
Gallus gallus	NP_001005843.1
Danio rerio	NP_001096664.1
Acrysthosiphon pism	NP_001156726.1
Pediculus humanus corporis	XP_002430151.1
Graphocephala atropunctata	ABD98746.1
Apis melifera	XP_394657.1
Nosonia vitripennis	XP_001607363.1
Tribolium castaneum	NP_001164310.1
Bombyx mori	NP_001106738.1
Plutella xylostella	ACF21937.1
Aedes aegypti	CH477279.1
Anopheles gambiae	XP_319708.4
Culex pipiens quinquefasciatus	XP_001867379.1
Armigeres subalbatus	EU205098 (ASAP ID ACN-0185249)
Phlebotomus papatasi	Jun09 >gnl.til1948740609 >gnl.til1949783636>gnl.til1948738511
Lutzomyia longipalpis	>gnl.til2009434506 name!272012802
Glossina morsitans	ADD20226.1, Supercontig_0001640 GeneDB; cn1072 chr IGGG1
Rhagoletis pomonella	EZ137853 (contig21634)
Drosophila melanogaster	NP_722715.1
D. sechellia	XP_002041717.1
D. simulans (named herein Dsim4)	XP_002077770.1
D. yakuba (named herein Dyak1)	XP_002087556.1
D. erecta	XP_001968304.1
D. ananassae	XP_001963250.1
D. pseudoobscura	XP_002132913.1
D. persimilis	XP_002020736.1
D. willistoni	XP_002064944.1
D. virilis	XP_002051732.1
D. mojavensis	XP_002001879.1
D. grimshawi	XP_001988905.1
Caenorhabditis elegans	NP_501361.1
Supplementary Discussion

The relationship between Tipulidae and other Diptera and its possible implications on the intron2 evolutionary course

In our analyses of the evolution of *RFeSP intron2*, *Tipula* sp. was placed basal to both Culicomorpha and Psychodomorpha based on the apparent consensus between morphological and molecular data\(^{27, 28, 45-47}\). Tipulidae (crane flies) have been traditionally placed as sister to all other Diptera based on morphological characters\(^{27}\). Molecular studies do not disagree with this, but clearly show that lower Diptera diverged very quickly, so that support for the branching relationships between these families is generally low\(^{45}\). However, it has been suggested that Tipulomorpha might not be the earliest branching infra-order in Diptera. This position has been recently attributed to Deuterophlebiidae\(^{45}\), which has not been sampled in the current study. The establishment of a more solid relationship between early branching Diptera will allow the conclusion whether or not *intron2* at Asp\(_{158}\) is a synapomorphy of Diptera or not. The importance of these relationships for the correct tracing of the history of *intron2* is reflected in the following possibility: if Tipulomorpha are indeed basal to Culicomorpha and Psychodomorpha, the crane flies could have fixed an intermediary state between the loss of the 70-nt upstream intron that is found in the other Antliophora taxa and the gain of the dipteran *Asp\(_{158}\) intron2*. This type of change could provide evidence of a smoother transition than the severe *RFeSP* locus remodeling that we have proposed during the divergence of Diptera from other Antliophora. If on the other hand, Tipulomorpha are not basal to Culicomorpha, the absence in *Tipula* sp. could reflect a simple secondary loss. Additional sampling in Tipulomorpha could shed light into this question. That *intron2* at
Asp$_{158}$ is found in both Culicomorpha and Psychodomorpha strongly suggests that it was present in an early Dipteran ancestor. It will be interesting to increase sampling in lower Diptera to narrow down this problem. Actually, it might be that this intron helps resolve these polytomies, or strengthen poorly supported branches.
Supplementary References

55. Hartl, F.U., Schmidt, B., Wachter, E., Weiss, H., Neupert, W. Transport into mitochondria and intramitochondrial sorting of the Fe/S protein of ubiquinol-cytochrome c reductase. *Cell.* **47**, 939-951 (1986).

56. Brandt, U., Yu, L., Yu, C.A., Trumpower, B.L. The mitochondrial targeting presequence of the Rieske iron-sulfur protein is processed in a single step after insertion into the cytochrome bc1 complex in mammals and retained as a subunit in the complex. *J. Biol. Chem.* **268**, 8387-8390 (1993).

57. Tajima, F. Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism. *Genetics.* **123**, 585-595 (1989).

58. Fu, Y.X., Li, W.H. Statistical tests of neutrality of mutations. *Genetics.* **133**, 693-709 (1993).

59. Fay, J.C., Wu, C.I. Hitchhiking under positive Darwinian selection. *Genetics.* **155**, 1405-1413 (2000).