High frequency of mutations in ‘dyshormonogenesis genes’ in severe congenital hypothyroidism

Nina Makretskaya1*, Olga Bezlepkina1, Anna Kolodkina1, Alexey Kiyaev2, Evgeny V. Vasilyev3, Vasily Petrov1, Svetlana Kalinenkova3, Oleg Malievsky4, Ivan I. Dedov1, Anatoly Tiulpakov1

1 Department and Laboratory of Inherited Endocrine Disorders, Endocrinology Research Centre, Moscow, Russian Federation, 2 Department of Polyclinic Pediatrics, Ural State Medical University, Ekaterinburg, Russian Federation, 3 Genetics Laboratory, Moscow Regional Research and Clinical Institute, Moscow, Russian Federation, 4 Department of Hospital Pediatrics, Republican Children’s Clinical Hospital, Ufa, Russian Federation

* makretsyan@gmail.com

Abstract

Objective

Results of the screening of disease causative mutations in congenital hypothyroidism (CH) vary significantly, depending on the sequence strategy, patients’ inclusion criteria and bioinformatics. The objective was to study the molecular basis of severe congenital hypothyroidism, using the next generation sequencing (NGS) and the recent guidelines for assessment of sequence variants.

Design

243 patients with CH (TSH levels at neonatal screening or retesting greater than 90 mU/l) and 56 control subjects were included in the study.

Methods

A custom NGS panel targeting 12 CH causative genes was used for sequencing. The sequence variants were rated according to American College of Medical Genetics and Genomics (ACMG) guidelines.

Results

In total, 48 pathogenic, 7 likely pathogenic and 57 variants of uncertain significance were identified in 92/243 patients (37.9%), while 4 variants of uncertain significance were found in 4/56 control subjects (7.1%). 13.1% (12/92) of the cases showed variants in ‘thyroid dysgenesis’ (TD) genes: TSHR, n = 6; NKX2-1, n = 2; NKX2-5, n = 1; PAX8, n = 3. The variants in ‘dyshormonogenesis’ (DH) genes were found in 84.8% (78/92) of cases: TPO, n = 30; DUOX2, n = 24; TG, n = 8; SLC5A5, n = 3; SLC26A4, n = 6; IYD, n = 1. 8 patients showed oligogenic variants. The majority of variants identified in DH genes were monoallelic.
Conclusions
In contrast to earlier studies demonstrating the predominance of TD in severe CH, the majority of variants identified in our study were in DH genes. A large proportion of monoallelic variants detected among DH genes suggests that non-mendelian mechanisms may play a role in the development of CH.

Introduction
Congenital hypothyroidism (CH) is a partial or complete loss of function of the thyroid gland that affects infants from birth, being the most common inborn endocrine disorders, with a prevalence of 1 in 3000–4000 newborns [1]. Historically, insights into the etiology of CH were given by the results of scintigraphy and ultrasonography studies, according to which, thyroid dysgenesis (TD) was defined in 80–85% of patients, while the remaining 15–20% of cases were believed to be due to thyroid dyshormonogenesis (DH) [2,3]. At least 12 genes have been described that are involved in the pathogenesis of CH, part of which were shown to be involved in thyroid dysgenesis (TD) [4] (TSHR [5], PAX8 [6], NKX2-5 [7], FOXE1 [8], NKX2-1 [9,10]), while the others were linked to the defects in biosynthesis of thyroid hormones, i.e. dyshormonogenesis (DH) (TPO [11], IYD [12], SLC26A4 [13], TG [14], SLC5A5 [15], DUOX2 [16], DOUXA2 [17]) [18]. Studies on the molecular basis of CH in the pre-NGS era were usually performed in patients with specific clinical or thyroid imaging characteristics and were focused on a limited number of genes and (or) a small number of cases. Such studies revealed molecular origin of CH in less than 10% of cases [19–22]. The introduction of the next generation sequencing (NGS) made the studies in CH more efficient and showed a higher rate of mutations in subjects with CH [23–28].

In the current paper we present results of NGS in 243 Russian patients with CH. In this study covering the largest patients’ cohort reported to date we have included cases only with severe CH (TSH at diagnosis > 90 mU/L). Assessment of pathogenicity of sequence variants was based on the American College of Medical Genetics and Genomics (ACMG) guidelines [29], which eliminated from analysis single nucleotide variants with minor allele frequency (MAF) greater than 0.001.

Subjects and methods
Subjects
This study was approved by the local ethics committee of the Endocrinology Research Centre (Protocol №12 dated 22.10.2014). Informed written consents were obtained from the patients or (and) the parents.

243 patients (94 males, 149 females) with severe CH, defined as TSH levels at neonatal screening or re-testing greater than 90 mU/L, were included in the study. At the time of the study the age of the patients ranged from 4 weeks to 18 years (median, 4.5 years).

56 subjects (24 males, 32 females) were included in the control group. The inclusion criteria were normal levels of TSH and free T4, no thyroid antibodies, no changes according to the thyroid ultrasound.

DNA sequencing
Genomic DNA was extracted from peripheral leukocytes using PureLink® Genomic DNA Mini Kits (Thermo Scientific, USA). A custom Ion Ampliseq™ panel (Ion Torrent, Thermo
Scientific, USA) targeting 12 genes associated with hypothyroidism (TPO, PAX8, NKX2-5, IYD, SLC26A4, TG, FOXE1, NKX2-1, DUOX2, DOUXA2, TSHR, SLC5A5) was used for DNA library preparation. Sequencing was performed using Personal Genome Machine (PGM) semiconductor sequencer (Ion Torrent, Thermo Scientific, USA). Bioinformatics analysis was carried out using Torrent Suite 4.2.1 (Thermo Scientific, USA) and ANNOVAR ver. 2014 Nov12 software packages [30]. The results of the NGS were confirmed by Sanger sequencing using Genetic Analyzer 3130 sequencer (Life Technologies, USA). Interpretation of the sequencing results and assessment of the pathogenicity of sequence variants were performed according to the ACMG guidelines [29]. Sequence variants rated as ‘benign’ or ‘likely benign’ were excluded from the analysis. A description of the sequence variants was carried out in accordance with the recommendations of den Dunnen and Antonarakis [31].

MLPA
A multiplex ligation-dependent probe amplification (MLPA) was carried out on 24 patients: one patient with suspected deletion of multiple exons in PAX8 gene, as determined by the NGS coverage analysis; and 23 patients with a single heterozygous mutation in TPO or TSHR genes. SALSA MLPA probemix P319 set (genes TPO, PAX8, FOXE1, NKX2-1 and TSHR, MRC-Holland, Netherlands) and a standard set of reagents SALSA MLPA EK1-FAM (MRC-Holland, Netherlands) were used. Data processing was carried out using software Coffalyser.Net (MRC-Holland, Netherlands).

Statistical analysis
Pearson $\chi^2$ and odds ratio were applied to analyze the results of the study.

Results
NGS identified 63 different sequence variants in 92 of 243 patients (37.9%). Homozygous variants were identified in 12.0% (11/92), compound heterozygous variants in 13.0% (12/92), heterozygous variants in 66.3% (61/92), 8.7% variants were identified in two genes (8/92). 84.8% (78/92) variants were in the DH genes (TPO, IYD, SLC26A4, TG, SLC5A5, DUOX2, DOUXA2), 13.1% (12/92) of the variants were identified in the TD genes (Fig 1). Variants in two groups of genes were identified in 2 patients (2.1%, 2/92).

In our study the majority of variants were found in TPO gene (in 30 of 92 patients, 32.6%) (Table 1). Defects in TPO gene included insertions and deletions with frameshift (n = 4), nonsense variants (n = 1), missense variants (n = 13), splice-site variants (n = 2). No deletions or insertions were identified in patients from this group using MLPA. The second most frequent findings were changes in DUOX2 gene (26.1%, 24/92), we identified a deletion with frameshift, 2 nonsense and 7 missense variants (Table 2). 8 patients (8.7%) showed variants in TG gene. The range of variants in TG included missense (n = 5), nonsense (n = 1), and splicing (n = 1) (Table 1). In total, variants in SLC5A5, SLC26A4 and IYD genes were detected in 10 patients (10.9%) (Table 1).

Frequency distribution of variants in genes associated with TD was as follows: TSHR 6.5% (6/92), NKX2-1 2.2% (2/92), NKX2-5 1.1% (1/92), PAX8 3.3% (3/92). In our study, a deletion with frameshift and 4 missense variants were detected in TSHR (Table 2). MLPA was conducted in the patients with a single heterozygous variant (N71, N72-1, N72-2) and showed no extended deletions or insertions. We found one deletion with frameshift and one missense variant in NKX2-1 gene and one heterozygous missense variant in NKX2-5 gene (Table 2). In three cases mutations in PAX8 were detected (Table 2), 2 of which were missense variants, and
in one patient (N79) an extended deletion in the gene was suspected by NGS and subsequently confirmed by MLPA. There were no mutations in DOUXA2 or FOXE1 genes.

Mutations in two genes were revealed in 8 patients (8.7%) (Table 3). The most frequent combinations of variants in DH genes were TG and TPO (3 cases). 2 cases showed a combination of variants in DH and TD genes: TG and PAX8 (1 case), and TSHR and DUOX2 in 1 case.

In the control group, 4 heterozygous missense variants (7.1%) with uncertain significance were identified (Table 4). In comparison with the control group, the mutation rate in patients with CH was significantly higher (Pearson’s χ² (p < 0.01), odds ratio = 7.9, confidence interval 2.7–22.6.

In the group of patients with variants in one of DH genes, the most frequent pattern according to the ultrasound was hypoplasia of the thyroid gland, 32.0% (23/72), different forms of goiter, including multinodular, were identified in 26.4% (19/72), 11.1% of cases (8/72) had normal volume of the thyroid according to WHO criteria [32,33]. Thyroid aplasia was revealed in 6.9% (5/72) and ectopia in 1.4% (1/72). We were unable to obtain data of the thyroid size in 22.2% (16/72) of cases. The majority of cases with variants in TD genes showed hypoplasia or aplasia of the thyroid gland (75.0%, 9/12), three patients with variants in TSHR gene had normal thyroid volume.

**Discussion**

Recent studies have shown that the frequency of gene defects associated with CH is substantially higher than previously estimated, and ranges from 33.0% to 61.5% [24–28]. However,
| Subjects | Gene | NT alteration | AA alteration | Pathogenicity | Zygosity | ExAC | gnomAD | HGMD | Thyroid gland | Associated abnormalities |
|----------|------|--------------|---------------|---------------|----------|------|-------|------|---------------|------------------------|
| N1       | TPO  | c.1181_1182insCGGC | p. A397PfsX76 | P             | Het      | NA   | 0.000523 | NA   | hypoplasia    | None                   |
| N2       | TPO  | c.1181_1182insCGGC | p. A397PfsX76 | P             | Het      | NA   | 0.000523 | NA   | goiter        | None                   |
| N3       | TPO  | c.1181_1182insCGGC | p. A397PfsX76 | P             | Het      | NA   | 0.000523 | NA   | multinodular goiter | None                   |
| N4       | TPO  | c.1181_1182insCGGC | p. A397PfsX76 | P             | Het      | NA   | 0.000523 | NA   | None         | None                   |
| N5       | TPO  | c.1181_1182insCGGC | p. A397PfsX76 | P             | Het      | NA   | 0.000523 | NA   | goiter        | None                   |
| N6       | TPO  | c.1851delC | p. S617RfsX23 | P             | Het      | NA   | NA     | NA   | goiter        | None                   |
| N7       | TPO  | c.2618+1G>T |              | P             | Het      | NA   | NA     | NA   | hypoplasia    | None                   |
| N8       | TPO  | c.A1898T   | p.D633V      | US            | Het      | NA   | NA     | NA   | goiter        | None                   |
| N9       | TPO  | c.C1449A   | p.N483K      | US            | Het      | NA   | NA     | NA   | aplasia       | None                   |
| N10      | TPO  | c.C265T   | p.R89X       | P             | Het      | NA   | 0.000008 | Reported | hypoplasia    | None                   |
| N11      | TPO  | c.C443T   | p.A148V      | US            | Het      | 0.000049 | 0.000043 | NA   | aplasia       | None                   |
| N12      | TPO  | c.G1581T   | p.W527C      | LP            | Het      | NA   | 0.000069 | Reported | goiter        | None                   |
| N13      | TPO  | c.G1751A   | p.R584Q      | US            | Het      | 0.000082 | 0.000072 | NA   | hypoplasia    | None                   |
| N14      | TPO  | c.G1994A   | p.R665Q      | LP            | Het      | 0.000025 | 0.000024 | Reported | goiter        | None                   |
| N15      | TPO  | c.G2017A   | p.E673K      | US            | Het      | 0.00011 | 0.00009  | NA   | hypoplasia    | None                   |
| N16      | TPO  | c.G2017A   | p.E673K      | US            | Het      | 0.00011 | 0.00009  | NA   | hypoplasia    | None                   |
| N17      | TPO  | c.G2017A   | p.E673K      | US            | Het      | 0.00011 | 0.00009  | NA   | NA           | None                   |
| N18      | TPO  | c.G2017A   | p.E673K      | US            | Het      | 0.00011 | 0.00009  | NA   | NA           | None                   |
| N19      | TPO  | c.T289C    | p.S97P       | US            | Het      | NA   | NA     | NA   | goiter        | None                   |
| N20      | TPO  | c.C208G    | p.P70A       | US            | Het      | 0.000071 | 0.000086 | NA   | Normal        | None                   |
| N21      | TPO  | c.T289C    | p.S97P       | US            | Het      | NA   | NA     | NA   | hypoplasia    | None                   |
| N22-1    | TPO  | c.G1042A   | p.G348R      | US            | ComHet   | NA   | NA     | NA   | hypoplasia    | None                   |
| TPO      | c.G1465A | p.A489T    |              | US            | NA      | 0.000037 | NA   | None         | None                   |
| N22-2    | TPO  | c.G1042A   | p.G348R      | US            | ComHet   | NA   | NA     | NA   | hypoplasia    | None                   |
| TPO      | c.G1465A | p.A489T    |              | US            | NA      | 0.000037 | NA   | None         | None                   |
| N23      | TPO  | c.1851delC | p. S617RfsX23 | P             | ComHet   | NA   | NA     | NA   | Normal        | None                   |
| TPO      | c.2422delT | p. C808AsX24 | P             | NA      | 0.000016 | NA   | None     | None   | None         | None                   |
| N24      | TPO  | c.2422delT | p. C808AsX24 | P             | ComHet   | NA   | 0.000016 | NA   | NA           | None                   |
| TPO      | c.C208G   | p.P70A      |              | US            | NA      | 0.000071 | 0.000086 | NA   | None         | None                   |
| N25      | TPO  | c.C265T   | p.R89X       | P             | ComHet   | NA   | 0.000008 | Reported | multinodular goiter | Sensorineural hearing loss |
| TPO      | c.1181_1182insCGGC | p. A397PfsX76 | P             | NA      | 0.000523 | NA   | None     | None   | None         | None                   |
| N26      | TPO  | c.T391C   | p.S131P      | LP            | ComHet   | 0.000058 | 0.000049 | Reported | multinodular goiter | None                   |
| TPO      | c.2386+2T>G |          | LP            | NA      | NA     | NA   | None     | None   | None         | None                   |
| N27-1    | TPO  | c.667_669delGAT | p.D223del | P             | ComHet   | NA   | NA     | NA   | goiter        | None                   |

(Continued)
| Subjects | Gene | NT alteration | AA alteration | Pathogenicity | Zygosity | ExAC | gnomAD^ | HGMD^ | Thyroid gland | Associated abnormalities |
|----------|------|---------------|---------------|--------------|----------|------|---------|--------|----------------|--------------------------|
| N27-2    | TPO  | c.667_669delGAT | p.D223del     | P            | ComHet   | NA   | NA      | goiter | None          |                          |
| N28      | TPO  | c.2422delT    | p.C808AsfX24  | P            | NA       | 0.000016 | NA      | goiter | None          |                          |
| N29      | DUOX2| c.2895_2898del| p.S965fsX30   | P            | Het      | 0.0029 | NA      | Reported | hypoplasia    | None                     |
| N30      | DUOX2| c.2895_2898del| p.S965fsX30   | P            | Hom      | 0.0029 | NA      | Reported | goiter        | None                     |
| N31      | DUOX2| c.2895_2898del| p.S965fsX30   | P            | Het      | 0.0029 | NA      | Reported | hypoplasia    | None                     |
| N32      | DUOX2| c.2895_2898del| p.S965fsX30   | P            | Het      | 0.0029 | NA      | Reported | aplasia       | None                     |
| N33      | DUOX2| c.2895_2898del| p.S965fsX30   | P            | Hom      | 0.0029 | NA      | Reported | NA            | None                     |
| N34      | DUOX2| c.2895_2898del| p.S965fsX30   | P            | Het      | 0.0029 | NA      | Reported | hypoplasia    | None                     |
| N35      | DUOX2| c.2895_2898del| p.S965fsX30   | P            | Het      | 0.0029 | NA      | Reported | Normal        | None                     |
| N36      | DUOX2| c.2895_2898del| p.S965fsX30   | P            | Hom      | 0.0029 | NA      | Reported | hypoplasia    | None                     |
| N37      | DUOX2| c.2895_2898del| p.S965fsX30   | P            | Hom      | 0.0029 | NA      | Reported | goiter        | None                     |
| N38      | DUOX2| c.2895_2898del| p.S965fsX30   | P            | Hom      | 0.0029 | NA      | Reported | Normal        | None                     |
| N39      | DUOX2| c.2895_2898del| p.S965fsX30   | P            | Hom      | 0.0029 | NA      | Reported | Normal        | None                     |
| N40      | DUOX2| c.2895_2898del| p.S965fsX30   | P            | Het      | 0.0029 | NA      | Reported | hypoplasia    | None                     |
| N41      | DUOX2| c.2895_2898del| p.S965fsX30   | P            | Hom      | 0.0029 | NA      | Reported | NA            | None                     |
| N42      | DUOX2| c.2895_2898del| p.S965fsX30   | P            | Het      | 0.0029 | NA      | Reported | Normal        | None                     |
| N43      | DUOX2| c.2895_2898del| p.S965fsX30   | P            | Het      | 0.0029 | NA      | Reported | Normal        | None                     |
| N44      | DUOX2| c.A4637G      | p.E1546G      | US           | Het      | 0.00084 | 0.00081 | NA      | NA            | None                     |
| N45      | DUOX2| c.C1126T      | p.R376W       | US           | Het      | 0.00012 | 0.00008 | Reported | aplasia       | None                     |
| N46      | DUOX2| c.C1294T      | p.R432C       | US           | Het      | NA       | 0.000004 | NA      | NA            | None                     |
| N47      | DUOX2| c.C3250T      | p.R1084X      | P            | Het      | 0.000099 | 0.000087 | NA      | hypoplasia    | None                     |
| N48      | DUOX2| c.C3970T      | p.P1324S      | US           | Het      | NA       | 0.000008 | NA      | hypoplasia    | None                     |
| N49      | DUOX2| c.G1040A      | p.R347K       | US           | Het      | 0.000034 | 0.000018 | NA      | NA            | None                     |
| N50      | DUOX2| c.A4637G      | p.E1546G      | US           | Het      | 0.00084 | 0.00081 | NA      | hypoplasia    | None                     |
| N51      | DUOX2| c.T1366C      | p.W456R       | US           | Het      | NA       | NA       | NA      | NA            | None                     |
| N52      | DUOX2| c.2895_2898del| p.S965fsX30   | P            | ComHet   | NA      | NA      | Reported | NA            | None                     |
| DUOX2    |     | c.C2056T      | p.Q686X       | P            | NA       | 0.000004 | Reported | NA      | None          |                          |
| N53      | TG   | c.5401+2T>C   | P             | Het          | NA       | NA       | NA      | goiter | None          |                          |

(Continued)
these studies were limited by either the number of genes selected for analysis \[27,28\] or the number of the patients included in the study \[24,25,27\]. In addition, relatively soft filtering criteria for selection of pathogenic variants have been reported, allowing for MAF as high as 0.01 \[24,26–28\]. In the current study, using an NGS panel for 12 CH genes associated both with thyroid dysgenesis and dyshormonogenesis disorders, we have assessed the spectrum of gene defects in Russian subjects with severe CH, regardless of the thyroid anatomy findings. We have used more stringent criteria for selection of potentially pathogenic sequence variants, which were based on the recent ACMG guidelines \[29\]. As the result, from the analysis were excluded all single nucleotide variants with MAF greater than 0.001. For instance, P303R variant in DUOX2 gene (rs151261408, MAF = 0.01), rated as likely pathogenic by Lof et al \[24\], was found in our cohort in 24 of 243 subjects (not shown). This variant previously shown to have no effect on DUOX2 function by \textit{in vitro} experiments \[34\] is classified as BS1, BS3 (benign) by ACMG rating \[29\] and excluded from analysis.

The results of the study demonstrate the genetic heterogeneity of CH and a high incidence of cases with pathogenic or potentially pathogenic variants in one of the CH candidate genes (37.9%), both in patients with thyroid dysgenesis and goiter and normal size of the gland. In

### Table 1. (Continued)

| Subjects | Gene | NT alteration | AA alteration | Pathogenicity | Zygosity | ExAC\(^c\) | gnomAD\(^a\) | HGMD\(^b\) | Thyroid gland | Associated abnormalities |
|----------|------|---------------|---------------|---------------|----------|-----------|-------------|-------------|----------------|------------------------|
| N54 TG   | c.C2338A | p.Q780K       | US            | Het           | NA       | NA        | NA          | hypoplasia   | None            |
| N55 TG   | c.G1900A | p.G634R       | US            | Het           | 0.00049  | 0.0005    | NA          | aplasia      | None            |
| N56 TG   | c.G2776T | p.E926X       | P             | Het           | NA       | NA        | NA          | goiter       | None            |
| N57 TG   | c.G2977A | p.A993T       | US            | Het           | 0.00033  | 0.00039   | NA          | Normal       | None            |
| N58 TG   | c.G2977A | p.A993T       | US            | Het           | 0.00033  | 0.00039   | NA          | hypoplasia   | None            |
| N59 TG   | c.T2200A | p.S734T       | US            | Het           | 0.000017 | 0.00022   | NA          | hypoplasia   | None            |
| N60 TG   | c.G455A  | p.R152H       | US            | Het           | 0.00068  | 0.00072   | 0.000022    | NA           | None            |
| N61-1 SLC5A5 | c.C1906T | p.R636X | P             | Hom           | NA       | 0.00011   | NA          | hypoplasia   | None            |
| N61-2 SLC5A5 | c.C1906T | p.R636X | P             | Hom           | NA       | 0.00011   | NA          | hypoplasia   | None            |
| N62 SLC5A5 | c.469delA | p.N157fs | P             | ComHet        | NA       | NA        | NA          | goiter       | None            |
| N63 SLC26A4 | c.A1246C | p.T416P | LP            | Het           | 0.00021  | 0.0002    | Reported \[48\] | NA           | None            |
| N64 SLC26A4 | c.A736C | p.N246H | US            | Het           | 0.0000082| 0.000004  | NA          | NA          | Sensorineural hearing loss |
| N65 SLC26A4 | c.G483A | p.D495N | US            | Het           | NA       | NA        | NA          | hypoplasia   | None            |
| N66 SLC26A4 | c.G441A | p.M147I | US            | Het           | 0.00051  | 0.0006060 | Reported \[50\] | NA           | None            |
| N67 SLC26A4 | c.G441A | p.M147I | US            | Het           | 0.00051  | 0.0006060 | Reported \[50\] | goiter       | None            |
| N68 SLC26A4 | c.G2219T | p.G740V | US            | Het           | 0.00027  | 0.00029   | Reported \[51\] | NA           | None            |

\(\text{Continued}\)
general, according to Exome Aggregation Consortium (ExAC) data (http://exac.broadinstitute.org/), the majority of CH genes (DH genes, in particular) show higher than expected variant counts (low intolerance to variation) [35]. To evaluate the chances of having a variant in one of CH genes in subjects without CH we have sequenced the candidate genes in 56 subjects with normal thyroid function and demonstrated a significantly lower rate of variants compared to the CH group (OR = 7.9, p < 0.01).

Moreover, according to the results of our study, the most frequent findings in severe CH were variants in DH genes 84.8% (78/92), while only 13.1% (12/92) of cases were associated with variants in TD genes, which contradicts to the expected distribution of etiological forms based on the results of ultrasound and scintigraphy [2,3]. The more prevalence of mutations in DH genes compared to TD genes have been also reported in other NGS-based studies [24,25,27,28].

The majority of TD disorders were originally described as autosomal recessive, however, a large proportion of variants identified in our study, both using targeted NGS and additional screening of extended deletions by MLPA, were heterozygous. Existence of additional mutation in non-coding regions of the studied genes can not be completely ruled out. Another possible explanation could be non-Mendelian mechanisms of inheritance, such as autosomal monoallelic expression (AME) [36–38]. Initially, autosomal monoallelic expression of the mutant allele was described for TPO gene [36]. The subsequent study by Magne et al. demonstrated AME on average for 22 genes [16–32] expresses in the thyroid [39]. Monoallelic mutations in TD genes in subjects with CH have been reported by others [25,26]. Fan et al. identified 9 cases with mutations in TG gene, all of which were heterozygous [25].

### Table 2. Summary of nucleotide variants in TD genes, characteristics and clinical manifestations.

| Subjects | Gene | NT alteration | AA alteration | Pathogenicity | ExAC^ | gnomAD^ | HGMD^ | Thyroid gland | Associated abnormalities |
|----------|------|---------------|---------------|---------------|-------|---------|-------|---------------|-------------------------|
| N70-1    | TSHR | c.141delC     | p.I47fs       | P             | Hom   | NA      | NA    | aplasia       | None                    |
| N70-2    | TSHR | c.141delC     | p.I47fs       | P             | Hom   | NA      | NA    | aplasia       | None                    |
| N71      | TSHR | c.C484G       | p.P162A       | LP            | Het   | 0.00017 | 0.000137 | Reported [53] | hypoplasia               |
| N72-1    | TSHR | c.G902A       | p.C301Y       | US            | Het   | 0.000032 | NA    | Normal        | None                    |
| N72-2    | TSHR | c.G902A       | p.C301Y       | US            | Het   | 0.000032 | NA    | Normal        | None                    |
| N73      | TSHR | c.C1532T      | p.TS11M       | US            | ComHet| 0.000033 | 0.000033 | NA            | Normal                  |
| TSHR     | c.T1697G | p.V566G     | US            | NA            | NA    | NA      | NA    | NA            | None                    |
| N74      | NXX2-1 | c.628_772del  | P             | Het           | NA    | NA      | NA    | hypoplasia    | chorea                  |
| N75      | NXX2-1 | c.A1180G      | p.T394A       | US            | Het   | 0.000037 | NA    | aplasia       | None                    |
| N76      | NXX2-5 | c.G676A       | p.D226N       | US            | Het   | 0.000032 | NA    | hypoplasia    | None                    |
| N77      | PAX8  | c.A701G       | p.E234G       | US            | Het   | 0.000037 | NA    | hypoplasia    | None                    |
| N78      | PAX8  | c.G440A       | p.C147Y       | US            | Het   | NA      | NA    | hypoplasia    | None                    |
| N79      | PAX8  | chr2:113973574_114036498del | P | Het | NA | NA | hypoplasia | None |

* The Human Gene Mutation Database (HGMD®) (http://www.hgmd.cf.ac.uk) [52]
* ExAC database (http://exac.broadinstitute.org) [36]
* gnomAD database (http://gnomad.broadinstitute.org/)

Pathogenicity: US, Uncertain significance; P, Pathogenic; LP, Likely pathogenic (pathogenicity rated according to ACMG guidelines [29], sequence variants rated as ‘benign’ or ‘likely benign’ were excluded from the analysis); NT, nucleotide; AA, amino acid; NA, not available; Het, heterozygous; ComHet, compound heterozygous; Hom, homozygous.

NCBI Reference Sequences (www.ncbi.nlm.nih.gov/nuccore): TSHR, NM_000369; NXX2-1, NM_001079668; NXX2-5, NM_004387; PAX8, NM_003466.

https://doi.org/10.1371/journal.pone.0204323.t002
Another unexpected finding was the absence of goiter in some patients with defects in DH genes. A similar observation has been made by Kühnen et al. who detected a homozygous missense mutation in \( \text{SLC26A4} \) gene in patients with thyroid hypoplasia [40]. The authors suggested a role of severe postnatal iodine deficiency as a possible explanation of this phenomenon [41]. Another reason for the absence of enlargement of the thyroid can be anti-goitrogenic effect of levothyroxine.

### Table 3. Digenic mutations, characteristics and clinical manifestations.

| Subjects | Gene  | NT alteration | AA alteration   | Pathogenicity | Zygosity | ExAC\(^*\) | gnomAD\(^\wedge\) | HGMD\(^\#\) | Thyroid gland | Associated abnormalities |
|----------|-------|---------------|----------------|---------------|----------|------------|----------------|------------|---------------|-------------------------|
| N80      | \( \text{PAX8} \) | c.C74T       | p.P25L          | US            | Het      | NA         | NA            | NA         | hypoplasia    | None                    |
| N80      | \( \text{TG} \)     | c.C961T      | p.R321X         | P             | Het      | NA         | NA            | NA         | hypoplasia    | None                    |
| N81      | \( \text{TG} \)     | c.C6553T     | p.R2185W        | US            | Het      | NA         | 0.000048      | NA         | hypoplasia    | None                    |
| N81      | \( \text{TPO} \)    | c.C208G      | p.P70A          | US            | Het      | 0.00072    | 0.00086       | NA         | hypoplasia    | None                    |
| N82      | \( \text{IYD} \)    | c.C818T      | p.T273M         | US            | Het      | 0.00013    | 0.00011       | NA         | hypoplasia    | None                    |
| N82      | \( \text{TG} \)     | c.G2977A     | p.A993T         | US            | Het      | 0.00033    | 0.00039       | NA         | hypoplasia    | None                    |
| N83      | \( \text{DUOX2} \)  | c.2895_2898del| p.59656X30     | P             | Het      | 0.0029     | NA            | Reported [46] | hypoplasia    | None                    |
| N83      | \( \text{TSHR} \)   | c.G733A      | p.G245S         | US            | Het      | 0.00014    | 0.00009       | Reported [54] | hypoplasia    | None                    |
| N84      | \( \text{TG} \)     | c.G455A      | p.R152H         | US            | Het      | 0.00068    | 0.00073       | NA         | goiter        | None                    |
| N84      | \( \text{TPO} \)    | c.C290G      | p.S97X          | P             | Het      | NA         | NA            | NA         | goiter        | None                    |
| N85      | \( \text{DUOX2} \)  | c.A4603G     | p.R1535G        | US            | Het      | 0.00027    | 0.00029       | NA         | goiter        | None                    |
| N85      | \( \text{TPO} \)    | c.C962T      | p.T321I         | US            | Het      | NA         | NA            | NA         | goiter        | None                    |
| N86      | \( \text{DUOX2} \)  | c.2895_2898del| p.59656X30     | P             | Hom      | 0.0029     | NA            | Reported [46] | goiter        | None                    |
| N86      | \( \text{SLC26A4} \) | c.G441A     | p.M147I         | US            | Het      | 0.00051    | 0.0006        | Reported [50] | goiter        | None                    |
| N87      | \( \text{TG} \)     | c.C481T      | p.P1494L        | US            | Het      | 0.00054    | 0.00047       | NA         | goiter        | None                    |
| N87      | \( \text{TPO} \)    | c.G1450A     | p.V484M         | US            | Het      | NA         | NA            | NA         | goiter        | None                    |

\(^*\) The Human Gene Mutation Database (HGMD\(^\#\)) (http://www.hgmd.cf.ac.uk) [52]
\(^\wedge\)ExAC database (http://exac.broadinstitute.org) [36]
\(^\#\)gnomAD database (http://gnomad.broadinstitute.org/)

Pathogenicity: US, Uncertain significance; P, Pathogenic; LP, Likely pathogenic (pathogenicity rated according to ACMG guidelines [29], sequence variants rated as ‘benign’ or ‘likely benign’ were excluded from the analysis); NT, nucleotide; AA, amino acid; NA, not available; Het, heterozygous; ComHet, compound heterozygous; Hom, homozygous.

NCBI Reference Sequences (www.ncbi.nlm.nih.gov/nucleotide): TPO, NM_000547; DUOX2, NM_014080; TG, NM_003235; SLC26A4, NM_000441; IYD, NM_203395; TSHR, NM_000369; PAX8, NM_003466.

https://doi.org/10.1371/journal.pone.0204323.t003

### Table 4. Control group.

| Subjects | Gene  | NT alteration | AA alteration   | Pathogenicity | Zygosity | ExAC\(^*\) | gnomAD\(^\wedge\) | HGMD\(^\#\) |
|----------|-------|---------------|----------------|---------------|----------|------------|----------------|------------|
| C1       | \( \text{DUOX2} \)  | c.C4632G     | p.H1544Q       | US            | Het      | NA         | NA            | NA         |
| C2       | \( \text{IYD} \)     | c.A281G      | p.Y94C         | US            | Het      | 0.000025   | 0.00004       | NA         |
| C3       | \( \text{SLC26A4} \) | c.C1232G     | p.A411G        | US            | Het      | NA         | NA            | NA         |
| C4       | \( \text{TG} \)      | c.A6853G     | p.N2285D       | US            | Het      | NA         | NA            | NA         |

\(^*\) The Human Gene Mutation Database (HGMD\(^\#\)) (http://www.hgmd.cf.ac.uk) [52]
\(^\wedge\)ExAC database (http://exac.broadinstitute.org) [36]
\(^\#\)gnomAD database (http://gnomad.broadinstitute.org/)

Pathogenicity: US, Uncertain significance; P, Pathogenic; LP, Likely pathogenic (pathogenicity rated according to ACMG guidelines [29], sequence variants rated as ‘benign’ or ‘likely benign’ were excluded from the analysis); NT, nucleotide; AA, amino acid; NA, not available; Het, heterozygous; ComHet, compound heterozygous; Hom, homozygous.

NCBI Reference Sequences (www.ncbi.nlm.nih.gov/nucleotide): DUOX2, NM_014080; TG, NM_003235; SLC26A4, NM_000441; IYD, NM_203395; TSHR, NM_000369; PAX8, NM_003466.

https://doi.org/10.1371/journal.pone.0204323.t004
Similar to some previous reports [24–28,41], we identified patients with digenic mutations. The development of hypothyroidism in such cases is explained by synergistic heterozygosity, so the presence of heterozygous mutations in several genes can lead to cross-loss of enzyme activity [42]. In our study digenic mutations were found in 8 patients. Interestingly, goiter in this group was identified only in patients with 2 mutations of DH genes, while patients with mutations both in DH and TD genes showed a decrease in the volume of the gland.

In summary, a targeted next generation sequencing in patients with severe CH revealed potentially pathogenic sequence variants in more than a third of the cases, with a preponderance of those in genes associated with thyroid dyshormonogenesis.

Supporting information

S1 Fig. Sanger confirmation of sequence variants identified by NGS. A) TPO c.1181_1182 insCGGC; B) TPO c.1851delC; C) TPO c.G1581T; D) TPO c.G1994A; E) TPO c.G2017A; F) TPO c.G1042A; G) TPO c.667_669delGAT; H) TPO c.2422delT; I) TPO c.A719T; J) DUOX2 c.2895_2898del; K) DUOX2 c.A4637G.

S2 Fig. Sanger confirmation of sequence variants identified by NGS. A) DUOX2 c.C1126T; B) DUOX2 c.C1294T; C) DUOX2 c.C3250T; D) DUOX2 c.C3970T; E) DUOX2 c.G1040A; F) DUOX2 c.T1366C; G) TG c.C2338A; H) TG c.G2977A; I) SLC5A5 c.C1906G; J) SLC5A5 c.G441A.

S3 Fig. Sanger confirmation of sequence variants identified by NGS. A) SLC26A4 c.G2219T; B) IYD c.C448T; C) TSHR c.A1180G; D) TSHR c.C484G; E) TSHR c.C1532T; F) TSHR c.C6553T; G) NKX2-1 c.628_772del; H) NKX2-1 c.A1180G; I) NKX2-1 c.G676A; J) PAX8 c.A701G; K) PAX8 c.G440A; L) PAX8 c.C74T.

S4 Fig. Sanger confirmation of sequence variants identified by NGS. A) TG c.C961T; B) TG c.C6553T; C) TSHR c.G733A; D) TG c.G455A; E) DUOX2 c.A4603G; F) TG c.C4481T; G) TPO c.G1450A; H) TPO c.C4437G; I) TPO c.T391C.

S5 Fig. MLPA result. PAX8 chr2:113973574_114036498del.

Author Contributions

Conceptualization: Ivan I. Dedov, Anatoly Tiulpakov.
Data curation: Nina Makretskaya.
Formal analysis: Nina Makretskaya.
Investigation: Evgeny V. Vasilyev, Vasily Petrov.
Resources: Olga Bezlepkina, Anna Kolodkina, Alexey Kiyaev, Svetlana Kalinenkova, Oleg Malievsky.
Supervision: Ivan I. Dedov.
Writing – original draft: Nina Makretskaya, Anatoly Tiulpakov.
References

1. Troublanc JE. Comparison of epidemiological data on congenital hypothyroidism in Europe with those of other parts in the world. Horm Res. 1992; 38: 230–235. https://doi.org/10.1159/000182549 PMID: 1307742

2. Devos H, Rodd C, Gagne N, Laframboise R, Van Vliet G. A search for the possible molecular mechanisms of thyroid dysgenesis: sex ratios and associated malformations. J Clin Endocrinol Metab. 1999; 84: 2502–2506. https://doi.org/10.1210/jcem.84.7.5831 PMID: 10404827

3. Bubuteishvili L, Garel C, Czernichow P, Leger J. Thyroid abnormalities by ultrasonography in neonates with congenital hypothyroidism. J Pediatr. 2003; 143(6): 759–764. https://doi.org/10.1067/S0022-3476(03)00537-7 PMID: 14657824

4. Nettore IC, Cacace V, De Fusco C, Colao A, Macchia PE. The molecular causes of thyroid dysgenesis: a systematic review. J Endocrinol Invest. 2013; 36(8): 654–664. https://doi.org/10.3275/8973 PMID: 23698639

5. Vassart G, Parmentier M, Libert F, Dumont J. Molecular genetics of the thyrotropin receptor. Trends Endocr. Metab. 1991; 2: 151–156. https://doi.org/10.1016/1043-2760 (91)90006-9

6. Macchia P E, Lapi P, Krude H, Pirro MT, Missero C, Chiovato L, et al. PAX8 mutations associated with congenital hypothyroidism caused by thyroid dysgenesis. Nature Genet. 1998; 19: 83–86. https://doi.org/10.1038/ng0598-83 PMID: 9590296

7. Dentele M, Cordeddu V, Rosica A, Ferrara A M, Santarpia L, Salvatoreet D, et al. Missense mutation in the transcription factor NKX2-5: a novel molecular event in the pathogenesis of thyroid dysgenesis. J. Clin. Endocr. Metab. 2006; 91: 1428–1433. https://doi.org/10.1210/jc.2005-1350 PMID: 16418214

8. Clifton-Bligh RJ, Wentworth JM, Heinz P, Crisp MS, John R, Lazarus JH, et al. Mutation of the gene encoding human TTF-2 associated with thyroid agenesis, cleft palate and choanal atresia. Nature Genet. 1998; 19: 399–401. https://doi.org/10.1038/1294 PMID: 9697705

9. Acebron A, Aza-Blanc P, Rossi DL, Lamas L, Santisteban P. Congenital human thyroglobulin defect due to low expression of the thyroid-specific transcription factor TFF-1. J. Clin. Invest. 1995; 96: 781–785. https://doi.org/10.1172/JCI1118123 PMID: 7635972

10. Nettore IC, Mirra P, Ferrara AM, Sibilio A, Pagliara V, Kay CS, et al. Identification and functional characterization of a novel mutation in the NKX2-1 gene: comparison with the data in the literature. Thyroid. 2013; 23(6): 675–682. https://doi.org/10.1089/thy.2012.0267 PMID: 23379327

11. Abramowicz MJ, Targovnik HM, Varela V, Cochaux P, Krawiec L, Pisarev MA, et al. Identification of a mutation in the coding sequence of the human thyroid peroxidase gene causing congenital goiter. J. Clin. Invest. 1992; 90: 1200–1204. https://doi.org/10.1172/JCI115981 PMID: 1401057

12. Moreno JC, Klooijwijk W, van Toor H, Pinto G, D’Alessandro M, Lèger A, et al. Mutations in the iodotyrosine deiodinase gene and hypothyroidism. New Eng. J. Med. 2008; 358: 1811–1818. https://doi.org/10.1056/NEJMoa0706819 PMID: 18434651

13. Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nature Genet. 1997; 17: 411–422. https://doi.org/10.1038/ng1297-411 PMID: 9398842

14. Ieiri T, Cochaux P, Targovnik HM, Suzuki M, Shimoda S-I, Perret J, et al. A 3-prime splice site mutation in the sine deiodinase gene and hypothyroidism. New Eng. J. Med. 2002; 347: 95–102. https://doi.org/10.1056/NEJMoa012752 PMID: 12110737

15. ZampronI I, Grasberger H, Cortinovis F, Vigone MC, Chiumello G, Mora S, et al. Biallelic inactivation of the dual oxidase maturation factor 2 (DUOXA2) gene as a novel cause of congenital hypothyroidism. J. Clin. Endocr. Metab. 2008; 93: 605–610. https://doi.org/10.1210/jc.2007-2020 PMID: 18042646

16. Szinnai G. Clinical Genetics of Congenital Hypothyroidism. Paediatric Thyroidology. Endocr Dev. Basel, Karger. 2014; 26: 60–78. https://doi.org/10.1159/000363156 PMID: 25231445

17. Narumi S, Muroya K, Asakura Y, Adachi M, Hasegawa T. Throid transcription factor mutations and congenital hypothyroidism: systematic genetic screening of a population-based cohort of Japanese patients. J Clin Endocrinol Metab. 2010; 95: 1981–1985. https://doi.org/10.1210/jc.2009-2373 PMID: 20157192

18. Narumi S, Muroya K, Abe Y, Yasui M, Asakura Y, Adachi M, et al. TSHR mutations as a cause of congenital hypothyroidism in Japan: a population-based genetic epidemiology study. J Clin Endocrinol Metab. 2009; 94: 1317–1323. https://doi.org/10.1210/jc.2008-1767 PMID: 19158199
21. Al Taji E, Biebermann H, Limanova Z, Hnikova O, Zikmund J, Dame C, et al. Screening for mutations in transcription factors in a Czech cohort of 170 patients with congenital and early-onset hypothyroidism: identification of a novel PAX8 mutation in dominantly inherited early-onset non-autoimmune hypothyroidism. European Journal of Endocrinology. 2007; 156: 521–529. https://doi.org/10.1530/EJE-06-0709 PMID: 17468187

22. Bakker B, Bikker H, Vulsma T, de Randamie JS, Wiedijk BM, De Vijlder JJ. Two decades of screening for congenital hypothyroidism in The Netherlands: TPO gene mutations in total iodide organification defects (an update). J Clin Endocrinol Metab. 2000; 85: 3708–37128. https://doi.org/10.1210/jcem.85.10.6878 PMID: 11061528

23. Narumi S, Hasegawa T. Unveiling the genetic landscape of congenital hypothyroidism. Program of the 9th Joint Meeting of Pediatric Endocrinology, Milan, Italy, 2013, Abstract 54-24. Hormone Research in Pediatrics. 2013; 80 (suppl 1): 6.

24. Löf C, Patryka K, Kuulasmaa T, Vangipurapu J, Undeutsc h H, Jaeschke H, et al. Detection of Novel Gene Variants Associated with Congenital Hypothyroidism in a Finnish Patient Cohort. Thyroid. 2016; 26(9): 1215–1224. https://doi.org/10.1089/thy.2016.0016 PMID: 27373559

25. Fan X, Fu C, Shen Y, Li C, Luo S, Li Q, et al. Next-generation sequencing analysis of twelve known causative genes in congenital hypothyroidism. Clin Chim Acta. 2017; 468: 76–80. https://doi.org/10.1016/j.cca.2017.02.009 PMID: 28215547

26. de Filippis T, Gelmini G, Paraboschi E, Vigone MC, Di Frenna M, Marelli F, et al. A frequent oligogenic involvement in congenital hypothyroidism. Hum Mol Genet. 2017; 26(13): 2507–2514. https://doi.org/10.1093/hmg/ddx145 PMID: 28444304

27. Nicholas AK, Serra EG, Cangul H, Alyaarubi S, Ullah I, Schoenmakers E, et al. Comprehensive Screening of Eight Known Causative Genes in Congenital Hypothyroidism With Gland-in-Situ. J Clin Endocrinol Metab. 2016; 101(12): 4521–4531. https://doi.org/10.1210/jc.2016-1879 PMID: 26709262

28. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in medicine. 2015; 17(5): 405–424. https://doi.org/10.1038/gim.2015.30 PMID: 25741868

29. Wang K, Li M, Hakonarson H. ANNOVAR: Functional annotation of genetic variants from next-generation sequencing data. Nucleic Acids Research. 2010; 38: e164. https://doi.org/10.1093/nar/gkq603 PMID: 20601685

30. den Dunnen JT, Dalgleish R., Maglott D., Hart R. K., Greenblatt M., McGowan-Jordan J., et al. HGVS Recommendations for the Description of Sequence Variants: 2016 Update. Hum Mutat. 2016; 37: 564–569. https://doi.org/10.1002/humu.22981 PMID: 26931183

31. World Health Organization & International Council for Control of Iodine Deficiency Disorders. Recommended normative values for thyroid volume in children aged 6–15 years. Bulletin of the World Health Organization. 1997; 75(2): 95–97. Available from: http://www.who.int/iris/handle/10665/54562 PMID: 9185360

32. Zimmermann MB, Hess SY, Molinari L, De Boenst D, Delange F, Braverman LE, et al. New reference values for thyroid volume by ultrasound in iodine-sufficient schoolchildren: a World Health Organization/Nutrition for Health and Development Iodine Deficiency Study Group Report. Am J Clin Nutr. 2004; 79: 231–237. https://doi.org/10.1093/ajcn/79.2.231 PMID: 14749228

33. Muzza M, Rabbiosi S, Vigone MC, Zampron I, Cirello V, Maffini MA, et al. The clinical and molecular characterization of patients with dyshormonogenic congenital hypothyroidism reveals specific diagnostic clues for DUOX2 defects. J Clin Endocrinol Metab. 2014; 99(3): E544–553. https://doi.org/10.1210/jc.2013-3618 PMID: 24423310

34. Fugazzola L, Cerutti N, Mannavola D, Vannuccchi G, Fallini C, Persani L, et al. Monoallelic Expression of Mutant Thyroid Peroxidase Allele Causing Total Iodide Organification Defect. J Clin Endocrinol Metab. 2003; 88(7): 3264–3271. https://doi.org/10.1210/jc.2002-021377 PMID: 12843174

35. Bakker B, Bikker H, Hennekam RCM, Lommen EJP, Schipper MGJ, Vulsma T, et al. Maternal isodisomy for chromosome 2p causing severe congenital hypothyroidism. J Clin Endocrinol Metab. 2001; 86: 1164–1168. https://doi.org/10.1210/jcem.86.3.7313 PMID: 11238503
38. Kotani T, Umeki K, Yamamoto I, Ohtaki S, Adachi M, Tachibana K. Iodide organification defects resulting from cosegregation of mutated and null thyroid peroxidase alleles. Mol Cell Endocrinol. 2001; 182(1): 61–68. https://doi.org/10.1016/S0303-7207(01)00547-0 PMID: 11500239

39. Magne F, Ge B, Larriève-Vanier S, Van Vliet G, Samuels ME, Pastinen T, et al. Demonstration of Autosomal Monolelic Expression in Thyroid Tissue Assessed by Whole-Exome and Bulk RNA Sequencing. Thyroid. 2016; 26(6): 852–859. https://doi.org/10.1089/thy.2016.0009 PMID: 27125219

40. Kühnen P, Turan S, Fröhler S, Güran T, Abali S, Biebermann H, et al. Identification of PENDRIN (SLC26A4) Mutations in Patients With Congenital Hypothyroidism and “Apparent” Thyroid Dysgenesis. J Clin Endocrinol Metab. 2014; 99(1): 169–176. https://doi.org/10.1210/jc.2013-2376

41. Sriphrapradang C, Tennenbaum-Rakover Y, Weiss M, Barkoff MS, Admoni O, Kawthar D, et al. The Coexistence of a Novel Inactivating Mutant Thyrotropin Receptor Allele with Two Thyroid Peroxidase Mutations: A Genotype-Phenotype Correlation. J Clin Endocrinol Metab. 2011; 96(6): 1001–1006. https://doi.org/10.1210/jcem.2011-0127 PMID: 21490078

42. Vockley J. Metabolism as a complex genetic trait, a systems biology approach: implications for inborn errors of metabolism and clinical diseases. J Inherit Metab Dis. 2008; 31: 619–629. https://doi.org/10.1007/s10545-008-1005-8 PMID: 18836848

43. Yapakçı E, Tulgar Kınık S, Pohlenz J. Intrauterine Teatment of an Infant with Fetal Goitre. Journal of Pediatric Endocrinology and Metabolism. 2011; 23(7): 651–660. https://doi.org/10.1515/JPED.2010.23.7.651

44. Nascimento AC, Guedes DR, Santos CS, Knobel M, Rubio IG, Medeiros-Neto G. Thyroperoxidase Gene Mutations in Congenital Goitrous Hypothyroidism with Total and Partial Iodide Organification Defect. Thyroid. 2003; 13(12): 1145–1151. https://doi.org/10.1089/10507250360731550 PMID: 14751036

45. Rodrigues C, Jorge P, Soares JP, Santos I, Salomão R, Madeira M, et al. Mutation screening of the thyroid peroxidase gene in a cohort of 55 Portuguese patients with congenital hypothyroidism. Eur J Endocrinol. 2005; 152: 193–198. https://doi.org/10.1530/eje.1.01826 PMID: 15794925

46. Moreno JC, Bikker H, Kempers MJ, van Trotsenburg AS, Baas F, de Vlijder JJ, et al. Inactivating Mutations in the Gene for Thyroid Oxidase 2 (THOX2) and Congenital Hypothyroidism. N Engl J Med. 2002; 347: 95–102. https://doi.org/10.1056/NEJMoa012752 PMID: 12110737

47. Vigone MC, Fugazzola L, Zamproni I, Passoni A, Di Candia S, Chiurnello G, et al. Persistent mild hypothyroidism associated with novel sequence variants of the DUOX2 gene in two siblings. Hum. Mutat. 2005; 26: 395. https://doi.org/10.1002/humu.9372 PMID: 16134168

48. Kosiugi S, Bhayana S, Dean HJ. A Novel Mutation in the Sodium/Iodide Symporter Gene in the Largest Family with Congenital Hypothyroidism. J Pediatr. 2000; 137(1): 114–115. https://doi.org/10.1016/S0022-3476(00)00516-0 PMID: 10507250360731550

49. Van Hauwe P, Everett LA, Coucke P, Scott DA, Kraft ML, Ris-Stalpers C, et al. Two Frequent Missense Mutations in Pendred Syndrome. Hum Mol Genet. 2005; 14: 1683–1689. https://doi.org/10.1093/hmg/ddi168

50. Jonard L, Niasme-Grare M, Bonnet C, Feldmann D, Rouillon I, Loundon N, et al. Screening of SLC26A4, FOXI1 and KCNJ10 genes in unilateral hearing impairment with ipsilateral enlarged vestibular aqueduct. International Journal of Pediatric Otorhinolaryngology. 2010; 74(9): 1049–1053. https://doi.org/10.1016/j.ijporl.2010.06.002 PMID: 206521367

51. Albert S, Blons H, Jonard L, Feldmann D, Chauvin, Loundon N, et al. SLC26A4 gene is frequently involved in nonsyndromic hearing impairment with enlarged vestibular aqueduct in Caucasian populations. European Journal of Human Genetics. 2006; 14: 773–779. https://doi.org/10.1038/sj.ejhg.5201611 PMID: 16570074

52. Stenson PD, Mort M, Ball EV, Evans K, Hayden M, Heywood S, et al. The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet. 2017; 136: 665–677. https://doi.org/10.1007/s00439-017-1779-6 PMID: 28349240

53. Sunthornthepvarakul T, Gottschalk ME, Hayashi Y, Refetoff S. Resistance to Thyrotropin Caused by Mutations in the Thyrotropin-Receptor Gene. N Engl J Med. 1995; 332: 155–160. https://doi.org/10.1056/NEJM199501193320105 PMID: 7528344

54. Yuan ZF, Mao HQ, Luo YF, Wu YD, Shen Z, Zhao ZY. Thyrotropin Receptor and Thyroid Transcription Factor-1 Genes Variant in Chinese Children with Congenital Hypothyroidism. Endocrine Journal. 2008; 55(2): 415–423. https://doi.org/10.1507/endocjr.K07E-064 PMID: 18379122