CASE REPORT

A case of combined soft tissue and intraosseous venous malformation of the thumb treated with sclerotherapy using a bone marrow aspiration needle

Kosuke Ishikawa1, Satoru Sasaki1, Hiroshi Furukawa2, Munetomo Nagao1, Daisuke Iwasaki1, Munezumi Fujita1, Noriko Saito1, Akihiko Oyama2 & Yuhei Yamamoto2

1Center for Vascular Anomalies, KKR Sapporo Medical Center Tonan Hospital, Kita 1, Nishi 6, Chuou-ku, Sapporo, 060-0001, Japan, and 2Department of Plastic and Reconstructive Surgery, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan

Abstract
Vascular malformations of bone are complex lesions that can cause deformity and pain. A combined soft tissue and intraosseous venous malformation of the left thumb in a girl was treated with two sessions of ethanol sclerotherapy using a bone marrow aspiration needle under fluoroscopic guidance.

Keywords: Ethanol, fluoroscopy, hand, intraosseous infusions, sclerosing solutions, sclerotherapy, vascular malformations

History
Received 10 September 2014
Revised 18 November 2014
Accepted 20 December 2014
Published online 16 March 2015

Introduction
Venous malformations (VM) are the most common vascular malformations caused by faulty development during vascular morphogenesis [1]. Although most VM are located in the skin and subcutaneous tissues, they also involve underlying muscles, joints and bones [2]. Intraosseous VM of an extremity can cause structural weakening of the bone and chronic pain. Treatment of VM includes conservative treatment, sclerotherapy, and surgical resection [2]. However, recurrence and deformity requiring amputation are common problems. We present a patient with combined soft tissue and intraosseous VM of the thumb, treated with sclerotherapy using a bone marrow aspiration needle under fluoroscopic guidance.

Case report
A 16-year-old, right-handed female patient presented with a congenital bluish swelling in the pulp of the left thumb (Figure 1). On clinical examination, the swelling was soft, painful and non-pulsatile. On Doppler ultrasonography, the swelling was composed of anechoic channels with low velocity flow. A plain radiograph showed radiolucent lesions in the distal phalanx of the left thumb (Figure 2). Magnetic resonance imaging (MRI) showed lesions in the palmar soft tissue and the distal phalanx of the left thumb (Figure 3). The interphalangeal joint of the left thumb was also involved. The lesions were hypointense on T1-weighted images, hyperintense on T2-weighted images, and enhanced after administration of contrast material. Based on the MRI findings, a diagnosis of combined soft tissue and intraosseous VM was made. Sclerotherapy using polidocanol or absolute ethanol had been performed seven times for the soft tissue lesion of the left thumb at another hospital.

We performed two sessions of sclerotherapy under general anesthesia with the interval of 10 months for the relief of pain. Without a tourniquet, direct puncture of the intraosseous lesion was performed with a bone marrow aspiration needle, then water-soluble contrast material was injected under fluoroscopic guidance to confirm the absence of any dangerous venous drainage (Figure 4). Subsequently, a sclerosing solution mixture of absolute ethanol with contrast material at a 4:1 ratio was injected into the lesion, 0.5 ml at a time. The total volume of sclerosing solution used per treatment session was 7 ml and 5.5 ml, respectively. Five months after the first sclerotherapy, MRI showed reduced volume of the soft tissue
lesion of the left thumb. Nine months after the first sclerotherapy, a plain radiograph showed reduced radiolucent lesions in the distal phalanx of the left thumb (Figure 5). Two years after the last sclerotherapy, the patient had neither swelling nor pain of the left thumb, with no postoperative complications (Figure 6). There was no limitation of growth or joint motion of the left thumb compared to the normal side.
Discussion

The management of VM in hands is particularly difficult because of problems related to function, potential damage to the blood supply as well as aesthetic concerns. Distal lesions of upper extremity are likely to be deeper, infiltrating muscle and bone. Sclerotherapy for distal lesions is not recommended because of the high risk of terminal ischemic necrosis [3]. Radical resection of VM may result, however, in an extensive anatomic and functional defect [4]. Hill et al. [5] reported a 47% recurrence rate even after radical resection and patients had to undergo further surgery. Carlsen and Jones [4] treated a massive VM of the thumb by radical resection and reconstruction with a toe transfer after four attempts at sclerotherapy.

In the treatment of aneurysmal bone cysts, Rastogi et al. [6], reported the efficacy of percutaneous sclerotherapy using a bone marrow aspiration needle under fluoroscopic guidance. Our case demonstrated the feasibility of percutaneous sclerotherapy for combined soft tissue and intraosseous VM by using the bone marrow aspiration needle. Sclerotherapy can obliterate the intraosseous vascular lesions and lead to new bone formation [7]. Although complete resolution of the lesion is unlikely, sclerotherapy often provides enough improvement in pain and function to forestall the morbidity of radical resection on a long-term basis [8]. We believe sclerotherapy is a reasonable option for initial treatment of symptomatic combined soft tissue and intraosseous VM, even for distal lesions of extremities. However, since sclerotherapy on the palmar surface of the hand can complicate later operative intervention [9], the benefits and risks must be weighed accordingly.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

References

[1] Dubois J, Soulez G, Oliva VL, Berthiaume MJ, Lapierre C, Therasse E. Soft-tissue venous malformations in adult patients: imaging and therapeutic issues. Radiographics 2001;21: 1519–31.
[2] Mulliken JB, Fishman SJ, Burrows PE. Vascular anomalies. Curr Probl Surg 2000;37:517–84.
[3] Mendonca DA, McCafferty I, Nishikawa H, Lester R. Venous malformations of the limbs: the Birmingham experience, comparisons and classification in children. J Plast Reconstr Aesthet Surg 2010;63:383–9.
[4] Carlsen B, Jones NF. Radical resection of a massive venous malformation of the thumb and immediate reconstruction with a microsurgical toe transfer. J Hand Surg Am 2007;32:1587–91.
[5] Hill RA, Pho RW, Kumar VP. Resection of vascular malformations. J Hand Surg Br 1993;18:17–21.
[6] Rastogi S, Varshney MK, Trikha V, Khan SA, Choudhury B, Safaya R. Treatment of aneurysmal bone cysts with percutaneous sclerotherapy using polidocanol. A review of 72 cases with long-term follow-up. J Bone Joint Surg Br 2006;88:1212–16.
[7] Yakes WF. Diagnosis and management of vascular malformations of bone. In Mattassi R, Loose DA, Vaghi M, editors. Hemangiomas and vascular malformations: an atlas of diagnosis and treatment. Milan: Springer-Verlag Italia; 2009. p 319–24.
[8] Crawford EA, Slotcavage RL, King JJ, Lackman RD, Ogilvie CM. Ethanol sclerotherapy reduces pain in symptomatic musculoskeletal hemangiomas. Clin Orthop Relat Res 2009;467:2955–61.
[9] Greene AK. Chapter 11. Venous malformation. In Greene AK, editor. Vascular anomalies: classification, diagnosis, & management. St. Louis: Quality Medical Publishing, Inc; 2013. p 135–56.