INTRODUCTION

Demand for natural-based additive in modern broiler production is increasing, in line with the increasing consumer awareness of healthy animal products. In the past, broiler producers received many benefits from the use of antibiotics at sub-therapeutic doses as growth-promoting (AGPs) additive, particularly related to the effect on cost-effective production (Allen et al., 2013). However, since antibacterial resistance has become a global issue due to the extensive use of AGPs, their applications in the poultry feed industry have been prohibited massively (Abudabos et al., 2019). Since then, significant progress in investigating antibiotics alternatives for broiler chickens has been prompted by scientists worldwide, including the use of propolis, the resinous and balsamic substances produced by bees which have received a growing interest in the last decades.

Propolis is a complex resinous substance produced by honey bees for the purpose of building honeycombs in the hives and is known to contain more than 300 chemical compounds (Przybylak & Karpinski, 2019).
Among the biological and pharmacological properties, polyphenols and terpenoids groups are considered to be the most potent antioxidant, antimicrobial, immunomodulatory, and anti-inflammatory compounds (Pimenta et al., 2015; Silva et al., 2017). There are two mechanisms of propolis in modulating broiler metabolism: the first mechanism is attributed to the direct action as antimicrobial activity. The second mechanism is related to the immune-stimulating effects, facilitating the activation of the natural defense system of the animal (Sforcin, 2016). In regard to its antibacterial effect, substances of propolis were reported to effectively disrupt the permeability of the cellular membrane and adenosine triphosphate (ATP) production of bacteria (Przybyłek & Karpiński, 2019). In broiler, propolis supplementation is beneficial for balancing the microbial composition of the digestive system, whether offered in the form of extract or crude propolis (Eyng et al., 2017). The authors also suggest that propolis supplementation also has the potential to improve nutrient utilization by enhancement of enzyme secretion as well as absorptive functions. Another advantage is that propolis does not have any residue or toxic effect on the carcass, which is beneficial for human health (Deni et al., 2005).

In general, previous studies reported an improvement in immunological indices, intestinal microbial composition, and broiler performance by using a diet supplemented with propolis (Attia et al., 2014; Attia et al., 2017; Zafarnejad et al., 2017). Since promoting the growth of beneficial bacteria could enhance intestinal health, this mechanism is suggested to improve nutrient digestibility (Ao & Chotc, 2013; Seven et al., 2012). Moreover, it has been demonstrated that propolis supplements reduce the negative effects of heat stress in broiler chickens due to their antioxidant properties as well as macrophages activation and antibody synthesis (Eyng et al., 2015). Since there are large variations in propolis properties according to their origins, different pieces of evidence may exist. For instance, Eyng et al. (2014) reported contrary results that the inclusion of propolis extract impaired digestive enzyme secretion at the pre-starter phase, especially sucrose activity, thus lowered broiler performance at this stage. However, a recovery effect was observed at the finisher phase reflected by the improvement effect in the broiler receiving propolis. Also, Eyng et al. (2017) did not find any effect on intestinal microbiota and broiler performance by supplementing both raw propolis and ethanolic extract of propolis, although they found changes in the caecal bacterial composition. From this point of view, inconsistent results from available studies need to be elucidated.

A quantitative review can facilitate to summarize and explain the factors causing the different effects. A meta-analysis is a statistical tool that is being increasingly popular to be used in the area of animal nutrition. This statistically robust method facilitates researchers to integrate available studies and summarize the effect of size from different studies quantitatively, thus increase statistical power and reduce publication bias (Sauvant et al., 2008). By integrating studies examining the effect of propolis inclusion in the broiler diets, it can contribute to explaining the gap of knowledge synthesized from this meta-analysis. Therefore, this study aimed to quantify the effect of diet supplemented with propolis on broiler performance, nutrient digestibility, and carcass characteristics according to inclusion levels using meta-analysis.

MATERIALS AND METHODS

Literature Search

Studies containing information about the use of propolis in broiler diet were retrieved from the online scientific database of Science Direct, PubMed Central, and Google Scholar (Table 1). In searching the literature, we used a combination of several keywords and Boolean statement as follow: “propolis” [MeSH Terms] OR “propolis” [All Fields] AND broiler [All Fields] AND performance [All Fields] AND digestibility [All Fields]. Relevant articles were downloaded according to their title and further reviewed for database development. Several inclusion criteria were determined in order to select the suited articles as well as to reduce the publication bias. To be eligible, the article has to be: (1) published in English in a peer-reviewed academic journal to ensure the quality; (2) reported the level of propolis supplementation in the diet; (3) reported the mean value, variations (standard deviation or standard error of means), number of replications, and number of birds used in the experiment; and (4) provided a clear methodology particularly the environmental situation. At this stage, articles that did not meet the prerequisite criteria were excluded from the study. Data were compiled with LibreOffice version 6.3.6.2. After carefully reviewing the database, a total of 39 studies met our pre-determined criteria and therefore were used for analysis. These studies are composed of 58 experiments consisting of 196 data lines.

The parameters included in the database were growth performance at the starter and finisher phases [e.g. body weight (BW), average daily gain (ADG), daily feed intake (DFI), feed conversion ratio (FCR), and mortality], nutrients digestibility [e.g., apparent metabolizable energy (AME), calcium digestibility (CD), crude-protein digestibility (CPD), ether-extract digestibility (EED), nitrogen digestibility (ND), dry-matter digestibility (DMD), organic-matter digestibility (OMD), and phosphorus digestibility (PD)], and carcass characteristics (carcass, breast, legs, wings, abdominal fat, cecum, cloaca, esophagus and crop, gizzard, heart, liver, proventriculus, spleen, and thymus).

Statistical Analysis

Data with different units were transformed into the same measurement units prior to analysis. The summary of the data was processed using the linear mixed model method (St-Pierre, 2001), whereas the experimental studies were declared as a random effect, and the level of supplemental propolis was set as fixed effects. The mathematical model of the linear mixed model is as follows:
Table 1. Studies using propolis as an additive on broiler chickens included for meta-analysis

No.	Levels	Strain	Sex	Period (day)	References		
				Starter	Finisher	Total	
1	0-4000	ROSS 308	Male	1-28	29-42	1-42	Açıkgöz et al. (2005)
2	0-1000	ROSS 308	As hatched	1-21	22-47	1-47	Ziaran et al. (2005)
3	0-250	ROSS 308	As hatched	1-21	22-42	1-42	Shalmany & Shivazad (2006)
4	0-1500	ROSS 308	Male	1-21	22-42	1-42	Tekeli et al. (2010)
5	0-5000	ROSS 308	As hatched	-	-	1-42	Seven & Seven (2008)
6	0-3000	ROSS 308	Mixed	3-21	22-41	3-41	Seven et al. (2008)
7	0-200	ROSS 308	Male	1-21	22-42	1-42	Daneshmand et al. (2012)
8	0-1000	ROSS 308	As hatched	3-21	22-41	3-41	Seven et al. (2012)
9	0-500	Cobb 500	Male	1-21	-	-	Eynig et al. (2014)
10	0-750	ROSS 308	Male	1-21	22-42	1-42	Mahmoud et al. (2013)
11	0-2500	ROSS 308	Male	-	-	1-28	Abbas (2014)
12	0-300	Arbor Acres	Mixed	1-21	22-35	1-35	Attia et al. (2014)
13	0-500	Cobb 500	Male	1-21	-	1-42	Duarte et al. (2014)
14	0-5000	Cobb 500	Male	1-21	-	1-42	Eynig et al. (2014)
15	0-500	Cobb 500	Mixed	-	-	1-42	Abou-Zeid et al. (2015)
16	0-200	ROSS 308	Male	1-21	22-42	1-42	Daneshmand et al. (2015)
17	0-4000	Cobb 500	Male	-	-	1-21	Eynig et al. (2015)
18	0-200	ROSS 308	As hatched	1-21	22-42	1-42	Torki et al. (2015)
19	0-5000	Cobb 500	Male	1-21	-	1-21	Eynig et al. (2017)
20	0-400	ROSS 308	Mixed	1-21	22-42	1-42	Haščík et al. (2016)
21	0-3000	ROSS 308	Male	1-21	22-42	1-42	Hosseini et al. (2016)
22	0-300	ROSS 308	Male	1-21	22-42	1-42	Ghesari et al. (2017)
23	0-570	ROSS 308	Male	1-21	22-28	1-28	Biavatti et al. (2003)
24	0-1000	ROSS 308	Mixed	1-21	22-42	1-42	Taheri et al. (2005)
25	0-1000	ROSS 308	Mixed	1-21	22-42	1-42	Seven et al. (2010)
26	0-3000	ROSS 708	Male	-	-	1-42	Mahmoud et al. (2017)
27	0-1200	ROSS 308	Female	-	-	16-20	Sahin & Ozturk (2017)
28	0-2000	ROSS 308	Male	1-24	25-42	1-42	Shaddel-Tili et al. (2017)
29	0-4000	ROSS 308	Male	1-21	22-42	1-42	Chegini et al. (2018)
30	0-3000	ROSS 308	Male	-	-	1-35	Kinasib et al. (2018)
31	0-1000	ROSS 308	Mixed	1-21	22-42	1-42	Klarić et al. (2018)
32	0-1000	Cobb 500	As hatched	1-21	22-42	1-42	Al-Sultan et al. (2019)
33	0-500	Iraqi local rooster	Male	-	-	-	Khati et al. (2019)
34	0-400	ROSS 308	Mixed	1-21	22-42	1-42	Haščík et al. (2019)
35	0-3000	ROSS 308	As hatched	1-21	22-42	1-42	Hassan et al. (2018)
36	0-400	Cobb 500	Mixed	1-21	22-49	1-49	Rabie et al. (2018)
37	0-800	Cobb 500	Mixed	-	-	-	Abdelsalam et al. (2019)
38	0-1000	ROSS 308	Mixed	1-21	22-42	1-42	Alani et al. (2019)
39	0-1000	ROSS 308	Mixed	1-21	22-42	1-42	Prakatut et al. (2019)

1) $Y_{ij} = \beta_0 + \beta_1 Level_{ij} + \text{Experiment}_{i} + \text{ExperimentLevel}_{ij} + \varepsilon_{ij}$

2) $Y_{ij} = \beta_0 + \beta_1 Level_{ij} + \beta_2 Level_{ij} + \text{Experiment}_{i} + \text{ExperimentLevel}_{ij} + \varepsilon_{ij}$

where 1) is mathematical model of the linear mixed model (LMM) order 1; 2) is a mathematical model of LMM order 2; fixed effect is $\beta_0 + \beta_1 Level_{ij}$ (ordo 1) and $\beta_0 + \beta_1 Level_{ij} + \beta_2 Level_{ij}$ (ordo 2); random effect is Experiment_{i} and $\text{ExperimentLevel}_{ij}$ (ordo 1 and 2); Y_{ij} is dependent variable, β_0 is value when level intersects the Y axis for all random effect combinations; β_1 is coefficient of the 1st order level; β_2 is coefficient of the 2nd order level; $Level_{ij}$ is increased level of random effect; Experiment_{i} is experiment at i, and ε_{ij} is model error.

The statistical models used are p-values, root mean square errors (RMSE), and Akaike information criterion (AIC). The significance was denoted when p<0.05 and when 0.05<p<0.10, it was declared as a tendency. The data were analyzed using a script built using R version 3.6.3 software with the “nlme” package (Pinheiro et al., 2020; R Core Team 2020).
RESULTS

Broiler Performance and Carcass Characteristics

In the present meta-analysis, the effect of propolis supplementation on broiler performance was evaluated during starter and finisher periods. As shown in Table 2, propolis supplementation linearly increased the ADG, BW, and DFI of broiler chickens both in starter and finisher phases, giving a significant improvement in final broiler performance (p<0.01). This study also suggested that there was a dependent relationship between daily gain with the levels of propolis supplementation, as shown with a significant quadratic effect (Table 2, p<0.05). In addition, feed conversion ratio (FCR) also decreased linearly as propolis inclusion increased at starter and finisher periods (p<0.01). The positive effect of propolis was also noticed on mortality throughout the period of broiler chickens as the mortality tends to decrease at starter and finisher periods and consequently at the final period in a quadratic manner (p<0.1). When the carcass characteristics were evaluated, no effect was observed on carcass yield, abdominal fat, digestive organs, and most of the visceral organs such as liver, thymus, and heart (p>0.05). However, breast meat and spleen weight linearly increased with increasing propolis supplementation (p<0.05).

Nutrient Digestibility

The effect of propolis supplementation on nutrient digestibility was investigated during the starter and finisher phases, where the regression models are presented in Table 3. At the starter phase (day 1 up to 21 d of age), increasing levels of propolis linearly reduced digestibility of dry matter (DMD) and organic matter (OMD) (p<0.01). At the finisher phase, the DMD is quadratically affected by the levels of propolis (p<0.01). OMD, on the other hand, tends to increase at a linear pattern (p<0.1) as propolis level increased. In addition, there was also a tendency to decrease crude protein digestibility (CPD) as a result of propolis supplementation (p<0.1). In this study, we confirmed a marginal increase in apparent metabolizable energy (AME) as affected by propolis

Table 2. Regression equations on the effect of dietary propolis supplementation (mg/kg diet) on broiler chicken performances

Outcome variables	Unit	Model	N	Parameter estimates	Model estimates	Interpretation							
				Intercept	SE_intercept	Slope	SE_slope	p-value	RMSE	AIC¹	Trend	X²	Y³
Broiler performance at starter period													
Bodyweight	g	Q	103	723.7	32.9	439.6	132.11	0.001	2.42	1,205.2	Max.	2,135	770.6
ADG	g/h/d	Q	105	29.6	1.2	22.9	6.02	<0.001	2.49	571.6	Max.	2,245	32.14
DFI	g/h/d	Q	101	47.1	2.1	20.8	6.25	0.001	2.15	585.8	Max.	2,173	49.40
FCR	L	101	1.59	0.03	-0.40	0.22	0.071	2.39	-140.8	Min.	2,405	1.55	
Mortality (%)	Q	8	4.25	3.29	-319.5	149.00	0.099	0.95	47.9	Min.	519.9	-4.05	
Broiler performance at finisher period													
Bodyweight	g	Q	86	2,064.2	61.43	2,203.8	463.09	<0.001	1.87	1,151.2	Max.	1,762	2,258
ADG	g/h/d	Q	81	73.4	3.84	62.4	15.39	<0.001	1.57	564.9	Max.	1,656	78.6
DFI	g/h/d	Q	77	152.4	7.92	45.9	32.82	0.168	1.75	649.81	Max.	1,451	155.8
FCR	Q	77	2.08	0.04	-1.05	0.51	0.045	2.00	-51.38	Min.	2,041	1.97	
Mortality (%)	Q	8	7.89	4.84	-127.8	36.5	0.025	0.95	32.5	Min.	426.4	5.16	
Broiler performance at overall period													
Bodyweight	g	Q	151	2,143.7	85.1	835.9	242.02	0.001	2.08	2,034.9	Max.	2,322.4	2,240.8
ADG	g/h/d	Q	151	61.2	4.4	24.1	7.03	0.001	1.90	1,019.3	Max.	2,273.2	63.9
DFI	g/h/d	Q	147	140.7	20.8	20.1	9.91	0.046	2.22	1,195.4	Max.	2,350.1	143.0
FCR	Q	147	2.1	0.1	-0.4	0.23	0.065	2.13	-45.5	Min.	2,422.2	2.01	
Mortality (%)	Q	27	5.9	1.7	-9.2	4.68	0.065	1.28	144.9	Neg.			

Note: ADG= Average daily gain; AIC= Akaike information criterion; DFI= Daily feed intake; FCR=feed conversion ratio; Int= Intercept; L= Linear; Max.= maximum; Min.= minimum; N= number of data; Neg.= Negative; Q= quadratic; RMSE= Root mean square errors; SE= standard error; AIC¹= an estimator of the relative quality of statistical models for a given set of data; Y³= predicted optimal outcome of the response parameter as influenced by dietary propolis supplementation (mg/kg); Y³= predicted optimal level of dietary propolis supplementation (mg/kg).
Broiler Performance and Carcass Characteristics

Among naturally occurring feed additives, propolis has been acknowledged for its beneficial effect on broiler growth and health. As confirmed in this meta-analysis, our findings supported previous experiments in which propolis improved broiler performance both in normal conditions and when the animals were situated under heat stress challenge (Tatli Seven et al., 2008; Seven et al., 2012). The explanation regarding the positive impact of propolis incorporated in the diet on the broiler chicken performances is attributed to the multiple mechanisms associated with active compounds presented in the propolis. Propolis contains a very complex chemical composition (Abdelsameea et al., 2013), including vita-

Table 3. Regression equations on the effect of dietary propolis supplementation (mg/kg diet) on nutrient digestibility (%)

No.	Variables	Model	N	Parameter estimates	Model estimates	Interpretation							
				Intercept	SE Intercept	Slope	SE slope	p-value	RMSE	AIC¹	Trend	X²	Y³
1.	Carcass	L	83	74.12	1.68	2.33	1.45	0.114	2.00	360.9	Pos.	3.284.5	30.8
2.	Breast	Q	34	29.26	2.39	9.44	3.03	0.005	1.36	129.4	Pos.	Max.	
3.	Legs	L	20	27.60	4.13	-2.74	1.29	0.053	1.49	76.9	Neg.		
4.	Wings	L	24	16.35	3.46	3.00	2.32	0.212	1.73	113.4	Pos.		
5.	Abdominal fat	L	59	1.50	0.12	-0.10	0.31	0.752	1.40	29.8	Neg.		
6.	Cecum	L	15	0.34	0.09	-0.12	0.13	0.356	1.12	-40.5	Neg.		
7.	Cloaca	L	11	0.24	0.01	0.07	0.04	0.151	1.22	-51.3	Pos.		
8.	Esophagus and crop	L	20	0.42	0.07	0.004	0.03	0.906	1.19	-59.9	Pos.		
9.	Gizzard	L	69	1.64	0.09	0.06	0.09	0.556	1.45	-48.8	Pos.		
10.	Heart	L	52	0.53	0.09	0.10	0.08	0.222	1.44	-135.8	Pos.		
11.	Liver	L	82	2.17	0.11	-0.04	0.14	0.776	1.44	-1.6	Neg.		
12.	Proventriculus	L	28	0.44	0.06	-0.03	0.06	0.599	1.04	-75.9	Neg.		
13.	Spleen	L	44	0.13	0.01	0.07	0.02	0.008	1.30	-211.6	Pos.		
14.	Thymus	L	24	0.39	0.09	0.01	0.13	0.956	1.46	-47.8	Pos.		

Note: AIC= Akaike information criterion; N= number of data; Neg.= Negative; Pos.= Positive; Q= quadratic; RMSE= Root mean square errors; SE= standard error; AIC¹= an estimator of the relative quality of statistical models for a given set of data; X²= predicted optimal level of dietary propolis supplementation (mg/kg); Y³= predicted optimal outcome of the response parameter as influenced by dietary propolis supplementation (mg/kg); % BW= % body weight.

Table 4. Regression equations on the effect of dietary propolis supplementation (mg/kg diet) on nutrient digestibility (%)

Variables	Unit	Model	N	Parameter estimates	Model estimates	Interpretation							
				Intercept	SE Intercept	Slope	SE slope	p-value	RMSE	AIC¹	Trend	X²	Y³
Nutrient digestibility in the starter period													
DMD	%	L	6	74.51	3.74E-15	-1.25	8.01E-17	<0.001	297.45	-398.0	Neg.		
OMD	%	L	6	77.00	1.45E-15	-0.95	8.01E-17	<0.001	297.45	-403.7	Neg.		
Nutrient digestibility in the finisher period													
DMD	%	Q	10	75.78	3.35	-25.66	3.57	0.006	0.74	46.36	Min.	2.381.1	72.7
OMD	%	Q	12	77.52	2.75	-28.04	9.92	0.047	0.94	65.81	Min.	2.401.4	74.2
CPD	%	Q	12	74.29	4.90	-37.73	17.12	0.092	0.88	79.29	Min.	2.453.5	69.7
EED	%	Q	10	81.99	4.02	-31.07	6.11	0.123	0.75	53.72	Min.	2.127.4	78.7
ND	%	Q	10	57.27	2.59	12.53	5.28	0.055	0.97	61.34	Pos.		
CAD	%	Q	10	43.61	0.36	-6.33	4.10	0.183	1.14	25.85	Min.	3.661.1	42.4
PD	%	L	10	48.84	0.55	3.50	1.31	0.037	0.97	32.23	Pos.		
AME	%	L	10	11.62	0.19	1.43	0.65	0.071	1.12	15.17	Pos.		

Note: AIC= Akaike information criterion; AME= apparent metabolizable energy; CAD= calcium digestibility; CPD= crude protein digestibility; DMD= dry matter digestibility; EED= ether extract digestibility; ND= Nitrogen digestibility; OMD= Organic matter digestibility; PD= Phosphor digestibility; L= Linear; Max.= maximum; Min.= minimum; N= number of data; Neg.= Negative; Q= quadratic; RMSE= Root mean square errors; SE= standard error; AIC¹= an estimator of the relative quality of statistical models for a given set of data; X²= predicted optimal level of dietary propolis supplementation (mg/kg); Y³= predicted optimal outcome of the response parameter as influenced by dietary propolis supplementation (mg/kg).
mins, minerals, amino acids, and a number of bioactive compounds (Attia et al., 2014; Nasution et al., 2015; Attia et al., 2017). The beneficial effect of phenolic compounds presented in the propolis is known to have multiple pharmacological functions, such as antibacterial, immunomodulator, and antioxidants (Wang et al., 2004; Dziedzic et al., 2013; Eyng et al., 2015). The presence of vitamins, amino acids, and trace elements such as Zn also contributed to the improved growth performance of poultry (Seven et al., 2012; Hidayat et al., 2020).

As an antioxidant, several authors have reported that propolis could alleviate the negative effect of heat stress and improved antioxidant parameters such as the activities of superoxide dismutase (SOD), malondialdehyde (MDA), and catalase (CAT) (Seven et al., 2012). Improvement of antioxidant status can further promote body protein synthesis, decrease oxidative stress, and it is can also enhance the digestive enzyme activity (Seven et al., 2012; Attia et al., 2017). In addition, the immunomodulatory effect of propolis allows broiler chickens to activate the macrophages and stimulate antibody secretion as well as improve lymphoid organ weight (Eyng et al., 2015), thereby improving the gut health of broiler chickens (Kleczek et al., 2014). Intestinal macrophages are the first phagocytic cells responsible for initiating and developing the innate immune system by inhibiting pathogens as well as clearing the bacterial metabolite products that is essential to protect against prolonged inflammation and to maintain immune homeostasis (Wang et al., 2019).

Furthermore, these mechanisms play an important role in improving the intestinal health of chickens, where the process of nutrients absorption from the digested feed is carried out there. Temizer et al. (2017) reported that propolis could perform an anti-bacterial function, thereby reducing the number of pathogenic bacteria in the gut, as reported by Kačániová et al. (2012). The function of propolis as an anti-bacterial has an effect on improving intestinal health, which in turn increases the absorption of nutrients by the intestine (Tayeb & Sulaiman, 2014) so that the effect is to increase the efficiency of using feed as shown in this study.

Nutrient Digestibility

It has been suggested that propolis could indirectly improve nutrient digestibility (Eyng et al., 2014). This effect is attributable to the role of propolis to modulate intestinal bacteria by enriching beneficial bacteria and suppressing pathogenic bacteria (Guo et al., 2003). A good bacterial composition can promote the secretion of digestive enzymes and the immune system, thus improve nutrient digestion and absorption in the intestine (Romier et al., 2009). There is a well-explained mechanism regarding the effect of microbial stimulation on enzyme secretion. Modulation of intestinal microbiota to promote a higher beneficial bacterial population provides several advantages. First, good bacteria can produce antimicrobial substances such as bacteriocins and short-chain fatty acids (SCFA) that can inhibit the growth of pathogens by disrupting the environment for the growth of pathogenic microbes (Jha et al., 2020).

Second, the bacteria are able to secrete extracellular enzymes such as amylase, xylanase, protease, and lipase. In addition, balancing microbial population also contribute to improving intestinal integrity and immunity (Oakley et al., 2016). Moreover, active compounds of propolis such as flavonoids were also suggested to have a growth hormone activity because they have an aglycone hydroxyl group (Przybyłek & Karpinski, 2019).

In the present study, we found contrary results with the available literature, especially at the starter phase, whereas propolis decreased the digestibility of DM and OM. However, these results were in agreement with the study of Eyng et al. (2014), who reported a detrimental effect of propolis on broiler chickens during the first week of life. According to the literature, however, we did not find any effect on enzyme secretion and activity since there was no available information. Thus, we suggested that the mechanism underlying how propolis disrupts DM, OM, and CP digestibility and broiler growth can be connected with enzyme secretion and the negative effect of propolis on palatability. In the first week of life, broilers secrete very low digestive enzymes (Noy & Sklan, 1999). Thus they need a diet with easily degradable ingredients such as broken rice, and soy-protein isolate to stimulate indigenous enzyme secretion and activity (Ebling et al., 2015). Introducing a diet containing various bioactive compounds was less favorable to pre-starter broilers that may disrupt enzyme secretion to degrade the feed to release nutrients. The second reason is regarding the negative effect of propolis on palatability. In these regards, studies reported that propolis inclusion reduced feed intake on broilers (Seven et al., 2008; Eyng et al., 2014). Another study demonstrated that supplementing a diet with a high level of propolis suppressed protein digestion and growth (Açikgöz et al., 2005). The reason to elucidate the adverse effect of propolis on DM, OM, and CP digestibility is that antibiotics or most alternatives do not directly benefit nutrient digestibility (Mountzouris et al., 2010). In the case of increasing nutrient utilization caused by AGP, it was promoted by reducing metabolic activities of the digestive bacteria (Miles et al., 2006). Instead, the protective effect in the intestinal barrier resulted from alternative AGP had different modes of action whereas consequently required a higher energy cost by microbes for their growth (Attia et al., 2017).

For the finisher phase, most of the previous findings where dietary propolis improved nutrient digestibility (Seven et al., 2012; Chegini et al., 2019) were confirmed in the present results, especially for EE and phosphorus digestibility. There were some possible reasons explaining how propolis or its properties improved nutrient utilization in the finisher phase. First, it can be related to the enzyme stimulating effect. Seven et al. (2012) found a remarkable increase in digestive enzyme activities of saccharase, amylase, and phosphatase on broiler chickens treated with a propolis-supplemented diet. This effect was not found in the starter phase, probably because enzyme secretion in the starter period is very low (Noy & Sklan, 1999), thus adding a less palatable additive such as propolis decreased nutrient digestion as was shown in the current result (Table 3).
Second, antioxidant effects could also partially explain the improvement of protein digestibility by interfering with oxidative protein denaturation. Moreover, propolis also exhibited a synergistic effect for protective actions on the intestinal barrier as a result of the ability of their substances such as phenolic compounds and flavonoids in modulating the gut ecosystem, enhancing absorptive capacity thus increase nutrient absorption (Prakatur et al., 2019). To support this theoretical reason, there were a number of pieces of evidence showing a significant improvement in length, high, and wide of the villi in the duodenum, jejunum, and ileum of broiler chickens receiving propolis treatment in their diet (Wang et al., 2007; Tekeli et al., 2010; Eyring et al., 2014; Prakatur et al., 2019). These parameters indicate a higher proliferation in the intestinal mucosa, whereas it is a clear indicator of better nutrient utilization. Furthermore, this result was also highly related to the major findings that propolis inclusion improved broiler performance at the finisher phase (Eyring et al., 2014).

CONCLUSION

Dietary propolis supplementation was effective to improve broiler chicken performances during the starter and finisher periods. The most optimum supplementary levels for to obtain optimum body weight and feed conversion ratio were between 1.66-2.13 g/kg diets. Dietary propolis supplementation was also effective to improve nutrient digestibility at the finisher phase rather than the starter phase as reflected by the substantial increase in phosphorus digestibility. However, as the effect of increasing propolis supplementation in the starter phase was negative, it can be taken into consideration for future studies.

CONFLICT OF INTEREST

The authors (i.e., Nahrowi and Anuraga Jayanegara) serve as editorial boards of the Tropical Animal Science Journal, but they have no role in the decision to publish this article. The authors also declare that there is no conflict of interest with any financial, personal, or other relationships with other people or organization related to the material discussed in the manuscript.

REFERENCES

Abbas, R. J. 2014. Effect of dietary supplementation with differing levels of propolis on productivity and blood parameters in broiler chicks. Basrah Journal of Veterinary Research 1:164-180. https://doi.org/10.33762/bvetr.2014.98808

Abdelsameea, A. A., L. A. Mahgoub, & S. M. A. Raouf. 2013. Study of the possible hepatoprotective effect of propolis against the hepatotoxic effect of atorvastatin in albino rats. ZUMJ 19:388-396. https://doi.org/10.21608/zumj.2013.4306

Abdelsalam, A. M., A. Abd ElAzim, A. M. R. Othman, & E. M. Omar. 2019. Blood hematological and biochemical parameters and humoral immunity as affected by added dietary propolis supplementation of Cobb broiler chicks. Egypt. J. Nutr. Feed. 22:215-221. https://doi.org/10.21608/ ejnf.2019.103495

Abou-Zeid, A., S. El-Damarawy, Y. Mariey, & S. El-Kasass. 2015. Effect of dietary propolis supplementation on performance and activity of antioxidant enzymes in broiler chickens. Egypt. J. Nutr. Feed. 18:391-400. https://doi.org/10.21608/ijnf.2015.104498

Abudabos, A. M., E. O. S. Hussein, M. H. Ali, & M. Q. Al-Ghadi. 2019. The effect of some natural alternative to antibiotics on growth and changes in intestinal histology in broiler exposed to Salmonella challenge. Poult. Sci. 98:1441-1446. https://doi.org/10.3392/ps/pey449

Açıkgoz, Z., B. Yücel, & Ö. Altan. 2005. The effects of propolis supplementation on broiler performance and feed digestibility. Arch. Geflugelk. 69:117-122. https://doi.org/10.1057/i.1998001.00022

Alani, A. A. T., A. S. A. Alheeti, & E. N. S. Alani. 2019. Comparison between effect of adding propolis and antibiotic in broiler chickens on productive performance and carcass traits. IOP Conf. Ser. Earth Environ. Sci. 388:012032. https://doi.org/10.1088/1755-1315/388/1/012032

Allen, H. K., U. Y. Levine, T. Loof, M. Bandrick, & T. A. Casey. 2013. Treatment, promotion, commotion: Antibiotic alternatives in food-producing animals. Trends Microbiol. 21:114-119. https://doi.org/10.1016/j.tim.2012.11.001

Al-Sultan, S. I., S. M. Abdel-Raheem, S. M. S. Abd-Allah, & A. M. Edris. 2019. Alleviation of chronic heat stress in broilers by dietary supplementation of novel feed additive combinations. Slov. Vet. Res. 56:269-279. https://doi.org/10.2673/SVR-766-2019

Ao, Z. & M. Choc. 2013. Oligosaccharides affect performance and gut development of broiler chickens. Asian-Australas. J. Anim. Sci. 26:116-121. https://doi.org/10.5713/ajas.2012.12414

Attia, Y.A., A.E.A. Al-Hamid, M.S. Ibrahim, M.A. Al-Harthi, F. Bovera, & A.S. Elnaggar. 2014. Productive performance, biochemical and hematological traits of broiler chickens supplemented with propolis, bee pollen, and mannan oligosaccharides continuously or intermittently. Livest. Sci. 164:87-95. https://doi.org/10.1016/j.livsci.2014.03.005

Attia, Y. A., H. Al-Khalifa, M. S. Ibrahim, A. E. A. Al-Hamid, M. A. Al-Harthi, & E. Al-Naggar. 2017. Blood hematological and biochemical constituents, antioxidant enzymes, immunity and lymphoid organs of broiler chicks supplemented with propolis, bee pollen and mannan oligosaccharides continuously or intermittently. Poult. Sci. 96:4182-4192. https://doi.org/10.3382/ps/pex173

Biavatti, M. W., M. H. Bellaver, L. Volpato, C. Costa, & C. Bellaver. 2003. Preliminary studies of alternative feed additives for broilers: Alternanthera brasiliaca extract, propolis extract and linseed oil. Rev. Bras. Cienc. Avic. 5:147-151. https://doi.org/10.1590/S1516-635X2003000200009

Chegini, S., A. Kiani, & H. Rokni. 2018. Alleviation of thermal and overcrowding stress in finishing broilers by dietary propolis supplementation. Ital. J. Anim. Sci. 17:377-385. https://doi.org/10.1080/1828051X.2017.1360753

Chegini, S., A. Kiani, & H. Rokni. 2019. Effects of propolis and stocking density on growth performance, nutrient digestibility, and immune system of heat-stressed broilers. Ital. J. Anim. Sci. 18:868-876. https://doi.org/10.1080/1828051X.2018.1483750

Daneshmand, A., G. H. Sadeghi, & A. Karimi. 2012. The effects of a combination of garlic, oyster mushroom and propolis extract in comparison to antibiotic on growth performance, some blood parameters and nutrients digestibility of male broilers. Rev. Bras. Cienc. Avic. 14:141-147. https://doi.org/10.1590/S1516-635X2012000200009

Daneshmand, A., G. H. Sadeghi, A. Karimi, A. Vaziry, & S. A. Ibrahim. 2015. Evaluating complementary effects of ethanol extract of propolis with the probiotic on growth performance, immune response and serum metabolites in...
male broiler chickens. Livest. Sci. 178:195-201. https://doi.org/10.1016/j.livsci.2015.04.012

Duarte, C. R. A., C. Eyng, A. E. Murakami, & T. C. Santos. 2014. Intestinal morphology and activity of digestive enzymes in broilers fed crude propolis. Can. J. Anim. Sci. 94:105-114. https://doi.org/10.4141/cjas2013-059

Dziedzic, A., R. Kubina, R. D. Wojtyczka, A. Kabala-Dzik, M. Tanasiewicz, & T. Morawiec. 2013. The antibacterial effect of ethanol extract of polish propolis on mutans streptococci and lactobacilli isolated from saliva. Evid. Based Complement. Alternat. Med. 2013:1-12. https://doi.org/10.1155/2013/681891

Denli, M., S. Cankaya, S. Silici, F. Okan, & A. N. Ulucok. 2005. Effect of dietary addition of Turkish propolis on the growth performance, carcass characteristics and serum variables of quail (Coturnix coturnix japonica). Asian-Australas. J. Anim. Sci. 18:848-854. https://doi.org/10.5713/ajas.2005.848

Ebling, P. D., A. M. Kessler, A. P. Villanueva, G. C. Pontalli, G. Farina, & A. M. L. Ribeiro. 2015. Rice and soy protein isolate in pre-starter diets for broilers. Poult. Sci. 94:2744-2752. https://doi.org/10.3382/ps/pev279

Eyng, C., A. E. Murakami, C. R. A. Duarte, & T. C. Santos. 2014. Effect of dietary supplementation with an ethanolic extract of propolis on broiler intestinal morphology and digestive enzyme activity. J. Anim. Physiol. Anim. Nutr. (Berl). 98:393-401. https://doi.org/10.1111/jpn.12116

Eyng, C., A. E. Murakami, A. A. Pedroso, C. R. A. Duarte, & K. P. Picoli. 2017. Caecal microbiota of chickens fed diets containing propolis. J. Anim. Physiol. Anim. Nutr. 101:484-492. https://doi.org/10.1111/jpn.12570

Eyng, C., A. E. Murakami, T. C. Santos, T. G. V. Silveira, R. B. Pedroso, & D. A. L. Lourengo. 2015. Immune responses in broiler chicks fed propolis extraction residue-supplemented diets. Asian-Australas. J. Anim. Sci. 28:135-142. https://doi.org/10.5713/ajas.14.0066

Gheisari, A., S. Shahrvand, & N. Landy. 2017. Effect of ethanolic extract of propolis as an alternative to antibiotics as a growth promoter on broiler performance, serum biochemistry, and immune responses. Vet. World. 10:249-254. https://doi.org/10.14202/vetworld.2017.249-254

Guo, F.C., B.A. Williams, R.P. Kwakkel, & M.W.A. Verstegen. 2003. In vitro fermentation characteristics of two mushroom species, an herb, and their polysaccharide fractions, using chicken cecal contents as inoculum. Poult. Sci. 82:1608-1615. https://doi.org/10.1093/ps/82.10.1608

Haszik, P., L. Trembecká, M. Bobko, M. Kacaníová, J. Cubon, S. Kunova, & O. Bucko. 2016. Effect of diet supplemented with propolis extract and probiotic additives on performance, carcass characteristics and meat composition of broiler chickens. Potravinarstvo 102:223-231. https://doi.org/10.5219/581

Haszik, P., A. Pavelkova, H. Arpsasova, J. Cubon, M. Kacaníová, & S. Kunová. 2019. The effect of bee products and probiotic on meat performance of broiler chickens. J. Microbiol. Biotechnol. Food Sci. 9:88-92. https://doi.org/10.15414/jmbfsv.2019.9.1.88-92

Hassan, R. I. M., G. M. M. Mosaad, & H. Y. Abd El-Wahab. 2018. Effect of feeding propolis on growth performance of broilers. J. Adv. Vet. Res. 3:154-160.

Hidayat, C., S. Sumiati, A. Jayanegara, & E. Wina. 2020. Effect of zinc on the immune response and production performance of broilers: a meta-analysis. Asian-Australas. J. Anim. Sci. 33:465-479. https://doi.org/10.5713/ajas.19.0146

Hosseini, S.M., M. V. Aghzandi, S. Ahani, & R. Nourmohammadi. 2016. Effect of bee pollen and propolis (bee glue) on growth performance and biomarkers of heat stress in broiler chickens reared under high ambient temperature. J. Anim. Feed Sci. 25:45-50. https://doi.org/10.22558/jafs.65586/2016

Jha, R., R. Das, S. Oak, & P. Mishra. 2020. Probiotics (Direct-Feed Microbials) in poultry nutrition and their effects on nutrient utilization, growth and laying performance, and gut health: a systematic review. Animals 10:1863. https://doi.org/10.3390/ani101101863

Kačaníová, M., K. Rovná, H. Arpsasová, J. Čuboň, L. Hleba, J. Pochop, S. Kunová, & P. Haščík. 2012. In vitro and In vivo antimicrobial activity of propolis on the microbiota from gastrointestinal tract of chickens. J. Environ. Sci. Heal. - Part A 47:1665-1671. https://doi.org/10.1080/10934529.2011.687248

Khfajá, S. S. O., T. K. Aljanabi, & S. M. Suhaillaltaie. 2019. Evaluation the impact of different levels of propolis on some reproductive features in Iraqi local roosters. Adv. Anim. Vet. Sci. 7:82-87. https://doi.org/10.17582/journal.aavs/2019/7.2.82.87

Khodanazary, A., A. Tata & M. Khezri. 2011. Effects of different dietary levels of propolis on performance, carcass characteristics and immunity response of broiler chickens. J. Ethnopharmacol. 2:30-33.

Kinasih, I., U. Julita, Y. Suryani, T. Cahayanto, D. S. Annisa, A. Yuliawati, & R. E. Putra. 2018. Addition of black soldier fly larvae (Hermetia illucens L.) and propolis to broiler chicken performance. IOP Conf. Ser. Earth Environ. Sci. 187:012026. https://doi.org/10.1088/1755-1315/187/1/012026

Klaric, I., M. Domacinovic, V. Šerić, I. Miškulin, M. Pavić, & K. Paradinović. 2018. Effects of bee pollen and propolis on performance, mortality, and some haematological blood parameters in broiler chickens. Slov. Vet. Res. 55:23-34. https://doi.org/10.26873/SVR-385-2018

Kleczek, K., E. Wilkwicz-Wawro, K. Wawro, W. Makowski, D. Murawska, & M. Wawro. 2014. The effect of dietary propolis supplementation on the growth performance of broiler chickens. Pol. J. Nat. Sci. 29:105-117.

Mahmoud, U. T., M. A. Abdel-Rahman, & M. H. A. Darwish. 2013. The effect of Chinese propolis supplementation onross broiler performance and carcass characteristics. J. Adv. Vet. Res. 3:154-160.

Mahmoud, U. T., O. A. Amen, T. J. Applegate, & H. W. Cheng. 2017. Brazilian propolis effects on growth, productivity performance, gut characteristics and physiological changes in broiler chickens. Int. J. Poult. Sci. 16:169-179. https://doi.org/10.3923/ijps.2017.169.179

Miles, R. D., G. D. Butcher, P. R. Henry, & R. C. Littell. 2006. Effect of antibiotic growth promoters on broiler performance, intestinal growth parameters, and quantitative morphology. Poult. Sci. 85:476-483. https://doi.org/10.1093/ps/85.5.476

Mountzouris, K. C., P. Tsitsikos, I. Palamidi, A. Arvaniti, M. Mohini, G. Schatzmayr, & K. Fegers. 2010. Effects of probiotic inclusion levels in broiler nutrition on growth performance, nutrient digestibility, plasma immunoglobulins, and cecal microflora composition. Poult. Sci. 89:58-67 https://dx.doi.org/10.3382/ps.2009-00308

Nasution, A. Y., P. Adi, & P. A. Santosa. 2015. Effect of propolis extract on levels of SGOT (serum glutamic oxaloacetic transaminase) and SGPT (serum glutamic pyruvic transaminase) in white rats (Rattus norvegicus) wistar strain on a high-fat diet. Majalah Kesehatan FKUB 2:120-126.

Noy, Y. & D. Sklan. 1999. Energy utilization in newly hatched chicks. Poult. Sci. 78:1750-1756. https://doi.org/10.1093/ps/78.12.1750

Oakley, B. B. & M. H. Kogut. 2016. Spatial and temporal changes in the broiler chicken cecal and fecal microbiomes and correlations of bacterial taxa with cytokine gene expression. Front. Vet. Sci. 3:11. https://doi.org/10.3389/fvets.2016.00011
