Risk Analysis Characterization of Benzene and Demographic Factors toward Immunoglobulin A

Abdul Rohim Tualeka¹,², Juliana Jalaludin², Frans Salesman³, Atjo Wahyu⁴, Tukiran Tukiran⁵, Sabar Setiawan⁶, Dwi Ananto Wibatra⁷, Herlina Novita Hasyim¹

¹Department of Occupational Health and Safety, Faculty of Public Health, Airlangga University, Surabaya, Indonesia; ²Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; ³Citra Husada Mandiri Kupang, Institute of Health Sciences, Manafe Street No. 17, Kayu Putih Village, Oebobo Subdistrict, Kupang, Indonesia; ⁴Department of Occupational Health and Safety, Faculty of Public Health, Hasanuddin University, Makassar, Indonesia; ⁵Department of Chemical, Faculty of Science and Mathematics, University of Negeri Surabaya, Surabaya, Indonesia; ⁶Faculty of Public Health, University of West Nusa Tenggara, Mataram City, Nusa Tenggara, Indonesia; ⁷Department of Nursing, Health Polytechnics of Ministry Health, Surabaya, Indonesia

Abstract

BACKGROUND: Research on risk assessment at industrial sites has experienced growth during the end of this year. But in Indonesia, there is still limited research on risk assessment, especially regarding the importance of measuring non-carcinogenic risk assessment in the workplace. Benzene exposure is believed to reduce levels of immunoglobulin A (IgA) in workers.

AIM: The purpose of this study was to analyse the relationship between risk quotient (RQ) of non-carcinogenic risk assessment of benzene and demographic factors on IgA levels.

MATERIAL AND METHODS: The subjects of the study were shoe craftsmen who were at risk of benzene exposure. The study design was cross-sectional with a total population of 20 workers. Measurement of IgA levels by Immunoturbidimetric Assay with a normal standard of 2 mg/ml. Calculation of non-carcinogenic (RQ) risk characteristics with a comparison between risk agent non-carcinogenic intake with RfD or RIC benzene.

RESULTS: The majority of the study subjects aged over 45 years and had a working period of ≥ 25 years. There were 2 location points that had a threshold value exceeding the benzene standard (> 0.05 ppm), and 40% of the subjects had decreased IgA levels. Age and working periods had a significant relationship to IgA levels (p = 0.027; p = 0.047), while benzene and RQ levels did not have a significant relationship with IgA levels (p = 0.179; p = 0.436).

CONCLUSION: Increasing age and working period can reduce IgA levels in the body. Further research is needed on risk assessment, especially on the safe limits of benzene concentration in the workplace to find out how long exposure forms a non-carcinogenic or carcinogenic risk in workers’ bodies exposed to benzene.

Introduction

Research on risk assessment in industrial environments has begun to develop in recent years. The importance of knowledge about hazard risk is a very important term to avoid accidents. Risk assessment studies such as RQ of noncarcinogenic risk assessment intake, or risk characteristics of carcinogenic effects (ECR) have begun to develop, but in Indonesia, this research is still limited.

Benzene is the most important ingredient in the chemical industry. Benzene is present in solvents for waxes, resins, rubber, plastics, rubber, paint, glue [1], [2]. Benzene is non-polar and insoluble in water, but soluble in organic solvents such as diethyl ether, carbon tetrachloride or hexane [3]. Benzene evaporates into the air very quickly, dissolves little in water, and is highly flammable [1], [4]. Long-term exposure to benzene can reduce levels of Immunoglobin A (IgA).

Immunoglobin A (IgA) is the main serum immunoglobulin and a class of antibodies that are...
Material and Methods

The research subjects were all shoe craftsmen who were in Tambak Oso Wilangun Village, Surabaya with the inclusion criteria were workers in a healthy condition, workers who were not pregnant, and did not have the habit of drinking alcohol.

This study was a cross-sectional study with sampling using a total population (total sampling) of workers located in Tambak Oso Wilangun Surabaya Village, amounting to 20 people with research carried out in November-December 2017. Before data collection, this study was approved by the Faculty of Public Health’s ethics committee, Airlangga University, Surabaya with ethics number 516-KEPK.

Independent variables were RQ of non-carcinogenic benzene, while the dependent variable was the IgA level of shoe craftsmen. Measurement of IgA levels was carried out by ImmunoTurbidimetric Assay by Parahita Laboratory with normal IgA standard values between 2-3 mg/ml. The subjects demographic data were also collected in the form of age, gender, length of work and length of service.

RQ was calculated by dividing the noncarcinogenic risk agent with its RfD or RfC with the equation [14], [15]:

\[\text{RQ} = \frac{I}{\text{RfC or RfD}} \]

Notes:
- I: non-cancer intake from the calculation of exposure (mg/kg/day);
- RfC: reference concentration (mg/kg/day).

RfC value of benzene is 0.03 mg/m³ for non-carcinogenic effects and CSF benzene is 5.5 x 10⁻⁴ for the effect of cancer [16]. However, RfC value must be converted into units of mg/kg/day first by dividing it by the American default weight of 70 kg and multiplying it by the inhalation rate of 20 m³/hour. So, we get the equation as below:

\[\text{RfC conversion} = 0.03 \frac{\text{mg}}{\text{m}^3} \times \frac{1}{70} \text{kg} \times 20 \frac{\text{m}^3}{\text{day}} \]

Calculation of intake was carried out in the exposure analysis by entering the variable values needed in the calculation. The data needed in the intake calculation were benzene concentration, intake rate, body weight, exposure time, the frequency of exposure, and duration of exposure. The concentration of benzene in the air was measured using Flame Ionization Detector gas chromatography (GC/FID) conducted by the Laboratory of the Occupational Health and Safety Technical Implementation Unit (UPT K3) Surabaya with a standard of 0.5 ppm [17]. All of these values were included in the intake formula as below:

\[\text{Intake} = \frac{C \times R \times t \times f \times D \times t \times t_{\text{avg}}}{W} \]

Notes:
- I: Intake of the number of risk agents that individuals received per body weight per day (mg/kg/day); C: Concentration of risk agent mg/m³; R: The intake rate, US-EPA default: 0.83 m³/day; tE: Daily, hour/day exposure time; IE: Annual exposure frequency, day/year; Dt: Duration of exposure, real-time or 30 years (default lifespan projection) or 70 years (US-EPA life expectancy default); Wb: Weight, kg; t avg: Average time period, 30 years x 365 days/year (non-carcinogen) or 70 years x 365 days/year (carcinogens).
If the RQ value ≤ 1, then it shows the respondent exposed to benzene is still safe and has no health risk due to benzene exposure. Whereas, if the value of RQ > 1, then this indicates that respondents have health risks due to exposure to benzene.

Data analysis used analysis of Pearson Product Moment, Spearman’s Rank and Contingency Coefficient C with SPSS version 20. Correlation numbers ranged from -1 to +1. The closer to 1 the correlation is getting close to perfect. The interpretation of correlation numbers according to is as the value of r: 0-0.199: very weak; 0.20-0.399: weak; 0.40-0.599: medium; 0.60-0.79: strong and 0.80-1.0: very strong [18].

Results

The gender of men and women is equal to 10 people (50%) as shown in Table 1. Gender had an insignificant relationship with a decrease in IgA concentration (r = 0.386; p = 0.174) as shown in Table 2.

Table 1: Univariate Analysis of Research (n = 20)

Variable	n = 20 (%)	Mean	Min-Max
Demography Characteristics			
Age			
< 45 years	7 (35)	46.50	23-63 years
≥ 45 years	13 (65)		
Gender			
Man	10 (50)		
Woman	10 (50)		
Working Periods			
< 25 years	9 (45)	25.575	2.5-43 years
≥ 25 years	11 (55)		
Working Time			
≤ 8 hours/day	6 (30)	10.25	6-14 hours/day
> 8 hours/day	14 (70)		
Benzene Concentration*			
> 0.5 ppm	2 (10)	0.0129 – 2.3330 ppm	
< 0.5 ppm	6 (30)		
Levels of IgA			
< 2 mg/ml	8 (40)		
≥ 2 mg/ml	8 (40)		
> 3 mg/ml	4 (20)		
Risk of Non-Carcinogenic			
RQ < 1	7 (35)		
RQ ≥ 1	13 (65)		

Except for the benzene concentration variable, benzene concentration was not measured individually but measured the location of the workplace in 8 locations.

As many as 30% of subjects had a working time of ≤ 8 hours/day, and as many as 14 people had a work duration > 8 hours/day (mean ± 10.25 hours/day; maximum = 6 hours/day; minimum = 4 hours/day) as shown in Table 1. However, the results of the correlation analysis showed that the working time variable had an insignificant relationship with a decrease in IgA concentration (r = - 0.244; p = 0.300) as shown in Table 2.

There were 2 measurement points (25%) with benzene vapour levels exceeding TLV (Threshold Limit Value) and 6 measurement points (75%) with benzene vapour levels below NAB (max-min = 0.1212 ± 2.3330 ppm) as shown in Table 1. Benzene levels at location 5 (measurement points 5 and 6) exceeded the threshold limit value set by Regulation of the Minister of Manpower and Transmigration No.13/MEN/X/2011. There was no significant relationship between benzene vapour levels and IgA levels (r = 0.313 and p = 0.179) as shown in Table 2.

The value of IgA concentration in blood serum workers in the footwear home industry in Tambow Osowilangun Surabaya, namely 8 workers (40%) experienced a decrease in IgA concentration, 8 workers (40%) had normal IgA concentrations and 4 workers (20%) experienced an increase in IgA concentration as shown in Table 1.

The RQ calculation for the 20 workers was obtained by RQ > 1, which was 65%, meaning that 13 people (65%) had the effect of non-cancer exposure due to benzene exposure as shown in Table 1. There was a significant relationship between the analysis of non-carcinogenic risk characteristics with a decrease in IgA levels (r = 0.567; p = 0.043) as shown in Table 2.

Table 2: Bivariate Analysis of Independent Variables with IgA Levels

Variable	p-value	Pearson correlation (r)
Age (years)	0.027	0.494
Gender	0.174	0.398
Working periods (years)	0.047**	0.449
Working time (hours/day)	0.300	-0.344**
Benzene Concentration	0.179	0.313
RQ of Non-Carcinogenic Benzene	0.436	-0.184*

*p-value <0.05; **Correlation is negative with the intention that the independent and dependent variables are antagonistic, for example, the greater the RQ value, the lower the IgA level.

Discussion

The majority of subjects were more than 45 years of age. Age has a significant correlation with decreased IgA levels. This is consistent with other studies which state that one of the determinant factors that affect the immune system is age [19]. Older age is usually also accompanied by a decrease in resistance to toxins and viruses because it is followed by a decrease in the immune system both adaptive and innate immune response [20], [21]. Workers who
are less than 18 years of age should not work in an environment exposed to benzene, because the age of bone marrow resistance to the toxic effects of benzene is still low. The older age of labour, the higher the risk of benzene poisoning [22].

Gender does not have a significant relationship with decreased IgA levels. This is contrary to other studies stating that gender is one of the determinant factors that affect the immune system with women having a stronger immune system than men because of the presence of androgens in men that are immunosuppressive and do not fluctuate to old age [19]. However, this study is in line with other studies that show no effect of IgA values on female workers exposed to benzene in the shoe industry because there are still other variables that have a significant relationship with decreasing IgA concentrations in male workers in this study [23]. Benzene exposure in individuals is different. This is caused by several factors of each itself, including age, gender, weight, endurance, healthy life behaviour, length of exposure, the frequency of exposure, duration of exposure and work that has been done previously do [11].

Working period variables have a significant relationship with a decrease in IgA concentration. This is consistent with other studies stating that one of the factors that influence benzene exposure is the work period/duration of exposure [11]. Benzene exposure for each is influenced by the length of work/exposure time each day [11]. Conversely, the variable duration of work had an insignificant relationship with a decrease in IgA concentration. It can be assumed that there are still other variables that have a significant relationship with a decrease in IgA concentration.

The results of the study stated that the majority of benzene levels were still in the normal range (< 0.5 ppm) with only 2 location points that exceeded the standard limit. RQ calculation shows that the majority of respondents had RQ values greater than normal (RQ > 1). This is consistent with other studies that also in the shoe industry shows 60% of respondents have a normal RQ value above [24].

Toxins or benzene that enters through inhalation will get an initial immune response from lymphocytes and Antigen Presenting Cell (APC) in the lungs before finally being metabolised in the liver and bone marrow. Cells will present antigens (APC), so they can induce CD4-helper T cells which will morphofunctional as Th2-CD4 by inducing IL4. Benzene in the induction of T-CD4 cells is possible to directly cause T cell death and reduce the formation of mature B cells as a site for the formation of immunoglobulin A [19], [25], [26].

Benzene levels and non-carcinogenic risk assessment measurements did not have a significant relationship with the reduction of IgA levels. This has a difference with other studies which stated a decrease in serum IgA and IgG in workers exposed to painting or benzene [10]. The thing that makes the difference is that in this study, the majority of the location points studied is still at the safe benzene threshold. Although there are 2 places that have more benzene levels than TLV (location points 5 and 6), this is not comparable to the number of proportions in 6 locations that are still within normal limits. The limitations of this study also lie in the minimum sample in the study, which is 20 samples, which should be in the study of statistical or correlation analysis of a minimum of 30 research samples [18], [27].

These research also measured at eight locations whereas should be focusing on the riskiest locations. The volatile nature of benzene and the influence of the presence of air ventilation can also affect the absorption of benzene through inhalation [1], [28], [29], [30], [31]. The thing that affects again is the average working period for workers who are still 26 years old. The possibility of having a working period of around 26 years still has not shown the non-carcinogenic effects seen in haematological or decreased IgA levels, although the results showed that there had been a decrease of 8 workers. Therefore, further research is needed to give a new finding based on risk assessment such as calculating safe limits of workers not to be exposed to non-carcinogenic risks, calculation of Excess Cancer Risk (ECR) benzene and its association with IgA serum and other follow-up studies in the form of factors that influence the reduction of IgA in workers exposed to benzene.

In conclusion, the majority of research subjects were over 45 years of age, working ≥ 25 years, working time > 8 hours/day. There were 2 location points that had a threshold value exceeding the benzene standard (> 0.05 ppm), and 40% of subjects had decreased IgA levels. Age and tenure had a significant relationship to IgA levels, while benzene and RQ levels did not have a significant relationship with IgA levels. This research is still limited regarding small samples and benzene levels measurement is not based on per person/research subject but location. Further research is needed on risk assessment, especially the safe limits of benzene concentration in the workplace to find out how long the exposure to benzene poses non-carcinogenic and carcinogenic risks in the body of workers exposed to benzene.

Ethical Clearance

The study was approved by the institutional Ethical Board of the Public Health, Airlangga University with ethics number 516 KEK.
Acknowledgement

Thanks for Wulan Meidikayanti and Fathma Tualeka for helping to edit this article. Some of the results of this article have been previously published in the results of the thesis “Analysis of the Relationship of Exposure to Benzene Vapor and Trans Levels, Tran Muconic Acid Urine with Decreased Immunoglobulin A Workers of Shoe Craftsmen in Tambak Oso Wilangun Village” at http://repository.unair.ac.id/61400/

References

1. World Health Organization (WHO), Early Diagnosis of Occupational Diseases. Jakarta: EGC, 1995.
2. Leo and Rosen. Benzene, 2010. Available at on: http://www.cancer.org/Cancer/CancerCauses/OtherCarcinogens/IntheWorkplace/benzene. (Accessed on August 11, 2018).
3. The Agency for Toxic Substances and Disease Registry (ATSDR), Benzene, 2000. Available at http://www.atsdr.cdc.gov/oesm/benzene/docs/benzene.pdf. Accessed on August 11, 2018.
4. Castleman Bl, Ziem GE. American conference of governmental industrial hygienists: Low threshold of credibility. American journal of industrial medicine. 1994; 26(1):133-43. https://doi.org/10.1002/ajim.470260112
5. Wool JM, Kerr MA. The function of immunoglobulin A in immunity. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland. 2006; 208(2):270-82. https://doi.org/10.1002/path.1877 PMid:16362365
6. Paul WE. Fundamental Immunology. Seventh Edition. Philadelphia: Lippincott Williams & Wilkins, A Wolters Kluwer Business, 2013.
7. Kirkeleit J, Ulvestad E, Riise T, Bratveit M, and Moen B.E. Acute Suppression of Serum IgM and IgA in Tank Workers Exposed to Benzene. Journal compilation_2006 Blackwell Publishing Ltd. Scandinavian Journal of Immunology. 2006; 64(6):690-698. https://doi.org/10.1111/j.1365-3083.2006.01858.x PMid:17083627
8. White KL, Munson AE. Serum immunoglobulin levels of CD-rats and CD-1 mice exposed to benzene 14 vapor. Medical College of Virginia, Dept. Pharmacology and Toxicology. 1983. Performed for the American 15 Petroleum Institute, API Med. Res. Publ. No. 30-32848, dd. 06-01-1983. Provided by API.
9. NAS/COT Subcommittee for AEGLS, Benzene: Interim Acute Exposure Guideline Levels 10 (AEGLs), 2009.
10. Ibrahim KS, Amer NM, Ei-dossuky EA, Emara AM, Abd El-Fattah, Abd El-Samei M, Shathy EM, Hepatic Dysfunction and Immune Suppression among Egyptian Workers Occupationally Exposed to Benzene. International Public Health Forum. 2014; 1(4):1.
11. Susilowati B. Health Risks to Benzene Exposure to Leather Shoes Industry Workers at PIK Pulogadung Skripsi. Depok: Universitas Indonesia, 2011. PMCid:PMC3210158
12. Rendy NA. Health Risk Analysis of Benzene Exposure on Gas Station Worker at Pancoran Mas Depok 2011. Jakarta, Indonesia University, 2011.
13. Triyadi D, Nurjazuli N, Hanan LD. Health Risk Analysis due to Benzene Exposure through Inhalation in Gas Station Fuel Private Vocational Assembly around The Area of Diponegoro University, Semarang. Journal of Public Health. 2016; 4(4):907-916
14. Louvar JF, Louvar BD. Health and environmental risk analysis: fundamentals with applications. Upper Saddle River, NJ: Prentice Hall, 1998. PMid:965303
15. Tualeka AR. Risk Assesment. Surabaya: Graha Ilmu Mulia, 2015.
16. Environmental Protection Agency (EPA). Toxicological Review of Benzene (Noncancer Effects). IARC Monographs Supplement, 2002.
17. The Republic of Indonesia, Regulation of the Minister of Manpower and Transmigration Number PER.13 / MEN / X / 2011 of 2011 concerning Physical Threshold and Chemical Factor Threshold Value at Work: Jakarta, 2011.
18. Sugiyono. Administrative Research Methods. Bandung: Alfabeta, 2010.
19. Baratawidjaja, KG. Basic of Immunology. Jakarta: Faculty of Medicine, Indonesia University, 2004.
20. Castelo-Branco C, Several I. The immune system and aging: a review. Gynecological Endocrinology. 2014; 30(1):16-22. https://doi.org/10.3109/09513590.2013.852531 PMid:24219599
21. Fuentes E, Fuentes M, Alarcon M & Palomo I. Immune system dysfunction in the elderly. Anais da Academia Brasileira de Ciências. 2017; 89(1):285-299. https://doi.org/10.1590/0001-3765201720160487 PMid:28423084
22. Fakhrrinrur. Relation of Trans Level, Trans-Muconic Acid (TT-Ma) in Urine with Hematological Profile of Coco Gas Station Workers Pertama MOR V. Tesis. Surabaya: FKM- Airlangga University, 2016.
23. Bogadi-Sare A, Zavalic M, Trosic I, Turk R, Kontosic I, Jelicic I. Study of Some Immunological Parameters in Workers Occupationally Exposed to Benzene. Springer. Internation Arch Occupational Environment Health. 2000; 73:397-400. https://doi.org/10.1007/s0042020000126
24. Fährudi, H. Risk of Cancer and Non-Cancer Suffering for Benzene-Exposed Workers at the Home Shoes Industry Oso Wilangun Village, Surabaya. The Indonesian Journal of Occupational Safety and Health. 2017; 6(1):68-77.
25. Tualeka, AR. Toxicology of Industry. Surabaya : Graha Ilmu Mulia, 2013.
26. Mc Hale C.M, Zhang L and Smith M.T. Current Understanding of the Mechanism of Benzene-Induced Leukemia in Humans: Implication for Risk Assessment. Carcinogenesis. 2012; 33(2):240-252. https://doi.org/10.1093/carcin/bgr297 PMid:22166497 PMCID:PMC3271273
27. Mahmud. Educational Research Methods. Bandung: Pustaka Setia, 2011.
28. Weisel CP. Benzene exposure: an overview of monitoring methods and their findings. Chemico-biological interactions. 2010; 184(1-2):58-66. https://doi.org/10.1016/j.chembi.2009.12.030 PMid:20056112 PMCID:PMC409673
29. Jafari MJ, Karimi A & Azari MR. The role of exhaust ventilation systems in reducing occupational exposure to organic solvents in a paint manufacturing factory. Indian journal of occupational and environmental medicine. 2008; 12(2):82. https://doi.org/10.4103/0019-5278.43266 PMid:20040984 PMCID:PMC2796753
30. Maryiantari ES. Risk Assessment of Toluene Exposure to Shoe Craftsmen in Tambak Oso Wilangun Village Surabaya. Thesis. Surabaya: Master Program K3, Faculty of Public Health, Universitas Airlangga, 2016.
31. Syafar M & Abdul WW. Analysis of Benzene Concentration Effect of Workplace to The Phenol Concentration in Urine of Painting Workshop Labours in Makassar Indonesia. International Journal of Science: Basic and Applied Research. 2015; 21(2):439-445.