Data article

Experimental data on strength properties of mussel shell concretes and specimen size effect

Costas A. Anagnostopoulos*, Denis Cabja, Chrysi A. Papadimitriou

Department of Environmental Engineering, International Hellenic University, Sindos, 57400 Thessaloniki, Greece

A R T I C L E I N F O

Article history:
Received 1 February 2021
Revised 6 March 2021
Accepted 9 March 2021
Available online 15 March 2021

Keywords:
Grout
Concrete
Superplasticiser
Acrylic resin
Mussel shells
Size effect

A B S T R A C T

In the present project two series of laboratory tests were performed. The first series aimed at investigating the feasibility of using waste mussel shells as aggregates in the production of concrete. Specimens were prepared by using various types of cements and shells of different size. Their 28-day unconfined compressive strength and stress-strain response was evaluated and compared with the one of specimens composed with compatible calcareous sand or gravel. The second series was carried out on specimens of cement grouted soils with different particle sizes to assess how the size of specimens used for strength testing influences the measured strength and stress-strain response. The model that was utilized to relate the size effect on the compressive strength is the one proposed by Carpinteri.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

* Corresponding author.
E-mail address: kanagnos@cie.teithe.gr (C.A. Anagnostopoulos).

https://doi.org/10.1016/j.dib.2021.106954

2352-3409/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Specifications Table

Specification	Description
Subject	Civil and Structural Engineering
Specific subject area	Construction Materials
Type of data	Tables, figures
How data were acquired	Laboratory tests
Data format	Raw, calculated, analysed, tabulated, plotted
Parameters for data collection	Data were obtained from unconfined compression tests on grouted soil specimens and on specimens of natural aggregate concretes, mussel shell concretes and mussel shell concretes proportioned with different amounts of acrylic resin alone or in combination with a superplasticiser.
Description of data collection	Unconfined compressive strength, elastic modulus and porosity of natural aggregate or mussel shell concretes were measured in relation to the aggregate size, cement type and additive dosages. Unconfined compressive strength and elastic modulus values of different diameter grouted soil specimens were collected and a model evaluating the size effect on strength is proposed.
Data source location	Faculty of Environmental Engineering, International Hellenic University, Thessaloniki, Greece
Data accessibility	With the article

Value of the Data

- This data allows for the comparison between the strength properties of natural aggregate concretes and that of mussel shell aggregate concretes over a wide range of mix compositions.
- It highlights the effect of some parameters, such as aggregate size, cement type and acrylic resin content either combined or not with a superplasticiser on the strength properties of mussel shell concretes.
- The report presented herein will provide guidelines and directions for future research contributions concerning the use of waste mussel shells for the partial or total replacement of natural aggregates in non-structural concrete.

1. Data Description

Table 1 presents the compositions of the three cement types and mussel shell used in the experiments. Table 2 lists the mix proportions of the natural or mussel shell concretes. Table 3 shows the porosity of the concretes. Tables 4-6 summarize the 28-day compressive strength and elastic modulus of the various concretes. Fig. 1 depicts the different fractions of mussel shell aggregates used for the production of mussel shell concretes.

![Mussel shell fractions](image)

Fig. 1. Mussel shell fractions; (a) Gravel 4.76/12.7 mm; (b) Gravel 2.38/4.76 mm; and (c) Sand 1.19/2.38 mm.
Table 1
Composition of cements and mussel shells.

Oxides (%)/Components (%)	Cement type	Mussel shells	Parameter	Concentration
SiO₂	I	Organic content	7.5 %	
Al₂O₃	II/B-M	Dry content	99.1%	
Fe₂O₃	IV/B (P-W)	Kjeldahl Nitrogen	0.57 %	
CaO		Ca (as Ca₃O₅)	97.1 %	
MgO		K	148.8 mg/kg	
K₂O		Mg	1600.2 mg/kg	
Na₂O		Cd	0.1 mg/kg	
Na₂Oeq		Cr	1.1 mg/kg	
SO₃		Cu	37.4 mg/kg	
LOI		Pb	0.6 mg/kg	
Clinker		Zn	2.8 mg/kg	
Limestone	4.7	Ni	0.2 mg/kg	
Pozzolan	0	P	152.8 mg/kg	
Fly ash	0			
Gypsum	5			

Table 2
Mix proportions and notations.

Notation	Water/Cement ratio	Water (kg/m³)	Water (kg/m³)	Coarse gravel aggregates (kg/m³)	Coarse gravel aggregates (kg/m³)	Sand aggregates (kg/m³)	Type of cement
S1	0.5	249	498	1451	-	-	CEM I 52.5 N
S2	0.5	259	518	-	1475	-	CEM I 52.5 N
S3	0.5	298	596	-	1475	-	CEM I 52.5 N
S4	0.5	249	498	1451	-	1414	CEM II/B-M 42.5 N
S5	0.5	259	518	-	1475	-	CEM II/B-M 42.5 N
S6	0.5	298	596	-	1475	-	CEM II/B-M 42.5 N
S7	0.5	249	498	1451	-	1414	CEM IV/B (P-W) 32.5 N
S8	0.5	259	518	-	1475	-	CEM IV/B (P-W) 32.5 N
S9	0.5	298	596	-	1475	-	CEM IV/B (P-W) 32.5 N
M1	0.5	405	810	760	-	-	CEM I 52.5 N
M2	0.5	285	570	-	1129	-	CEM I 52.5 N
M3	0.5	285	570	-	1129	-	CEM I 52.5 N
M4	0.5	405	810	760	-	-	CEM II/B-M 42.5 N
M5	0.5	285	570	-	1129	-	CEM II/B-M 42.5 N
M6	0.5	285	570	-	1129	-	CEM II/B-M 42.5 N
M7	0.5	405	810	760	-	-	CEM IV/B (P-W) 32.5 N
M8	0.5	285	570	-	1129	-	CEM IV/B (P-W) 32.5 N
M9	0.5	285	570	-	1114	-	CEM IV/B (P-W) 32.5 N

Table 3
Porosity of different concretes.

Notation	Porosity (%)	Notation	Porosity (%)
S1	9.6	M1	11.8
S2	9.7	M2	12.1
S3	9.4	M3	12.7
S4	8.25	M4	8.8
S5	8.5	M5	8.76
S6	8	M6	8.5
S7	10.7	M7	13.1
S8	10.6	M8	12.7
S9	12.5	M9	14.2
Table 4
Mechanical parameters of the reference and mussel shell concretes.

Notation	Compressive strength (MPa)	Elastic modulus(GPa)	Notation	Compressive strength (MPa)	Elastic modulus(GPa)
S_1	14.87	7.1	M_1	10.13	5.05
S_2	14.34	7.3	M_2	10.56	5.13
S_3	14.52	6.93	M_3	10.8	5.33
S_4	14.27	7.05	M_4	9.84	5.5
S_5	13.46	7.4	M_5	10.57	5.8
S_6	12.43	7.2	M_6	10.43	5.95
S_7	12.5	6.96	M_7	8.82	4.46
S_8	12.03	6.02	M_8	7.47	4.15
S_9	11.97	5.91	M_9	7.2	3.6

Table 5
Mechanical parameters of the unmodified and AR-modified mussel shell concretes.

Notation	0% AR	0.5% AR	1% AR	1.5% AR				
Notation	Compressive strength (MPa)	Elastic modulus(GPa)						
M_2	10.56	5.13	13.83	6.13	12.13	5.91	10.11	5.24
M_3	10.8	5.33	12.25	5.98	12.74	5.56	9.92	5.24
M_4	10.57	5.8	12.18	6.83	10.65	6.7	10.2	6.41
M_5	10.43	5.95	13.28	7	12.84	6.82	12.21	6.53
M_6	7.47	4.15	10.24	5.32	8.52	5.2	7.4	4.45
M_7	7.2	3.6	8.28	5.07	7.68	4.49	6.88	4.09

Table 6
Mechanical parameters of the unmodified and AR-modified mussel shell concretes containing superplasticiser.

Notation	0% AR	0.5% AR + 0.2% PCE	1% AR + 0.2% PCE	1.5% AR + 0.2% PCE				
Notation	Compressive strength (MPa)	Elastic modulus(GPa)						
M_2	10.56	5.13	16.88	6.5	17.33	6.65	15.81	6.3
M_3	10.8	5.33	15.78	6.3	16.2	6.45	14.64	6.15
M_4	10.57	5.8	13.88	7.2	12.2	6.95	11.55	6.8
M_5	10.43	5.95	14.81	7.1	13.37	6.84	12.82	6.71
M_6	7.47	4.15	10.76	5.66	9.9	5.35	9.5	5
M_7	7.2	3.6	10.81	5.57	9.46	5.22	9.17	4.8

Table 7
Index properties of soils.

Soil	D_{max} (mm)	D_{min} (mm)	D_{50} (mm)	Uniformity coefficient C_u	Curvature coefficient C_v
Soil 1	12.7	4.76	8	0.88	1.7
Soil 2	4.76	2.38	3.4	0.86	1.41
Soil 3	2.38	1.19	1.8	1.04	1.25
Soil 4	1.19	0.42	0.8	0.89	1.62
Soil 5	12.7	0.42	3.1	1.6	5.33

Table 7 lists the index properties of the soils utilised for the laboratory injection tests. A schematic representation of the experimental arrangement for the grouting of soil columns is shown in Fig. 2. Figs. 3–7 present the experimental and predicted values of compressive strength in relation to the diameter of the specimens, the values of characteristic parameters f_t and l_{ch}
Fig. 2. Setup for the grouting of soil specimens.

Fig. 3. Experimental and theoretical data of compressive strength of S_1 grouted soil specimens.

Fig. 4. Experimental and theoretical data of compressive strength of S_2 grouted soil specimens.
Fig. 5. Experimental and theoretical data of compressive strength of S_3 grouted soil specimens.

Fig. 6. Experimental and theoretical data of compressive strength of S_4 grouted soil specimens.

Fig. 7. Experimental and theoretical data of compressive strength of S_5 grouted soil specimens.
C.A. Anagnostopoulos, D. Cabja and C.A. Papadimitriou / Data in Brief 35 (2021) 106954

Fig. 8. Relationship between \(l_{ch} \) and \(D_{\text{max}} \) for the different soils.

Fig. 9. Relationship between \(l_{ch} \) and \(D_{60} \) for the different soils.

of Carpinteri’s model and the correlation coefficient \(R^2 \). Figs. 8 and 9 show the relation between soil’s \(D_{\text{max}} \) and \(l_{ch} \), and soil’s \(D_{60} \) and \(l_{ch} \), respectively.

More detailed information concerning the strength parameters of the tested materials can be found in the supplementary Excel files (https://data.mendeley.com/drafts/hcxk298h2h/1).

2. Experimental Design, Materials and Methods

For the purpose of this study, three types of Portland cement (code-named CEM I 52.5 N, CEM II/B-M 42.5 N and CEM IV/B (P-W) 32.5 N according to EN 197-1) were selected. The substances of these cements are presented in Table 1 both in terms of oxides and raw materials utilized for their production. For the preparation of natural aggregate concretes (reference concretes) and mussel shell concretes, natural and waste mussel shell aggregates were used. Natural aggregates came from crushed limestone. Mussel shell aggregates were produced by hydration of waste mussel shells in an oven at 110 °C for 24 h, and afterwards by crushing and sieving the dry material. The size fractions used for both natural or mussel shell aggregates were a sand fraction of 1.19-2.38 mm, and two gravels, with a 2.38-4.76 mm fraction, and a 4.76-12.7 mm fraction (Fig. 1). The composition of mussel shells is presented in Table 1. All the studied concretes were composed with a constant water to cement mass ratio equal to 0.5. The details of the compositions of the different concretes are given in Table 2.

A new generation polycarboxylate ether-type (PCE) dispersant was chosen as superplasticiser [1]. The dosage of PCE was kept constant and equal to 0.2% by cement mass for all concrete
mixes. An acrylic resin polymer latex (AR), a commercial product of methyl methacrylate–acrylic acid copolymer was utilized as a polymer additive in M_2, M_3, M_5, M_6, M_8 and M_9 concretes [2]. Its dosage varied from 0 to 1.5% by cement mass.

The preparation of concrete specimens, curing and storage followed the instructions of ASTM C 192-18. The assessment of the unconfined compressive strength and elastic modulus of the different concrete mixes was performed at 28 days of curing on cubic specimens (150mm x150mm x150mm) under a constant displacement rate of 0.16 %/min. A servohydraulic compression device was used for all the unconfined compression tests. It incorporates an axial deformation transducer (LVDT) and a load measuring apparatus connected to a data logger interfaced with a computer and data acquisition software for the automatic recording of stress-strain during the test. The elastic modulus was calculated from the linear part of the compressive stress-strain curve according to the suggestions of ASTM C 469-10. Porosity of concrete specimens was estimated with the use of vacuum saturation technique conforming to ASTM C 1202-19.

For the injection experiments, five poorly graded limestone soils with a relative density of 95% were used in the injection experiments. The cement used for the preparation of grouts was CEM I 52.5 N. A polycarboxylate ether-type superplasticiser was selected as additive.

Injections were carried out on reconstituted soil columns with diameters of 3.6, 4.5, 5.9, 7, 9.6, 11.9, 15.5 and 20cm, and constant length-to-diameter ratio of 2. The experimental set-up used for the grouting of soil specimens was constructed as described in ASTM D 4320-04 for the adequate laboratory simulation of the grouting process (Fig. 2). The preparation of soil columns was made as suggested by Anagnostopoulos et al. [3]. A total of 140 injections were performed using grouts with water to cement mass ratio of 0.4, superplasticised with 1% PCE by weight of cement. During the injection, the grouting pressure was kept constant and equal to 0.5 atm. Injection process ended when no further flow of the grout from the upper outlet hose of soil column occurred. The grouted specimens were left in the moulds for 3 days in a vertical position to harden and then demoulded. Afterwards, they were stored in a moist cabinet with a temperature of 23 °C and relative humidity of 95% until the day of testing. These cylindrical specimens were tested under compression at an axial displacement rate of 0.1%/min in order to estimate the compressive strength and elastic modulus at 28 days of curing (Figs. 3-7). The multifractal scaling law (MFSL), proposed by Carpinteri [4], was used to fit the experimental compressive strength values and it has the following form:

\[
\sigma_u = \sigma_0 \left(1 + \frac{l_{ch}}{d}\right)^{1/2}
\]

where \(\sigma_u\) is the laboratory measured compressive strength, \(d\) is the specimen diameter, \(\sigma_0\) is the asymptotic value of compressive strength and \(l_{ch}\) is the characteristic internal length of the material. The microstructural characteristic length \(l_{ch}\) is considered to be proportional to the maximum aggregate size \(D_{max}\). \(l_{ch} = a\ D_{max}\), as proposed by Carpinteri [5]. In order to determine the two constants, \(\sigma_0\) and \(l_{ch}\), and to achieve the best fitting of the experimental values, a non linear regression analysis was conducted. The values of the two constants and the correlation coefficients \(R^2\) for each grouted soil are shown in Figs. 3-7. The experimental values of elastic modulus are presented in the supplementary Excel file (https://data.mendeley.com/drafts/hcxc298h2h/1).

Each of the reported strength values correspond to the average value of triplicates with standard deviation less than 5% from the average value of all tested specimens manufactured from the same concrete mixture or grouted sand.

Ethics Statement

Not applicable.
Data Accessibility

https://data.mendeley.com/drafts/hcxk298h2h/1

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

We would like to thank International Hellenic University in supporting the write up of this research. We would also like to appreciate the editors and anonymous reviewer for their constructive comments.

References

[1] C.A. Anagnostopoulos, Effect of different superplasticisers on the physical and mechanical properties of cement grouts, Constr. Build. Mater. 50 (2014) 162–168.
[2] C.A. Anagnostopoulos, M. Tsiatis, Experimental data on the properties of polymer-modified cement grouts using epoxy and acrylic resin emulsions, Data Brief 9 (2016) 463–469.
[3] C.A. Anagnostopoulos, G. Sapidis, M. Tsiatis, A. Tsarosi, Physical and mechanical properties of injected granular soil with thick superplasticised grouts, Res. J. Appl. Sci. Eng. Tech. 10 (4) (2015) 425–437.
[4] A. Carpinteri, Fractal nature of material microstructure and size effects on apparent mechanical properties, Mech. Mater. 18 (2) (1994) 89–101.
[5] A. Carpinteri, B. Chiaia, Multifractal scaling laws in the breaking behaviour of disordered materials, Chaos Solitons Fract. 8 (2) (1997) 135–150.