Angle-dependent normalization of neutron-proton differential cross sections

J.J. de Swarta and R.G.E. Timmermansb

aInstitute for Theoretical Physics, University of Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

bTheory Group, KVI, University of Groningen, Zernikelaan 25, 9747 AA Groningen, The Netherlands

(March 30, 2022)

Abstract

Systematic errors in the database of np differential cross sections below 350 MeV are studied. By applying angle-dependent normalizations with the help of the energy-dependent Nijmegen partial-wave analysis PWA93, the χ^2-values of some seriously flawed data sets can be reduced significantly at the expense of a few degrees of freedom. It turns out that in these special cases the renormalized data sets can be made statistically acceptable such that they do not have to be discarded any longer in partial-wave analyses of the two-nucleon scattering data.

11.80.Et, 13.75.Cs, 21.30.-x
I. INTRODUCTION

A measurement of the differential cross section for elastic neutron-proton (np) scattering is notoriously difficult. It is even so difficult that almost none of the data sets measured at energies below the pion-production threshold is completely free of systematic flaws. In partial-wave analyses (PWA’s) of the np scattering data [1,2] some of these flaws do not give rise to sizable systematic contributions to χ^2. Data sets with such minor flaws will not distort too much the statistics [3] in these PWA’s, and therefore such sets can be included in the database; examples are the LAMPF data [4] and the TRIUMF data [5]. Some flaws, on the other hand, are so serious that their contribution to χ^2 dominates over the statistical contribution to the extent that the standard rules of statistics no longer apply. Consequently, such data sets [6–10] must be excluded from the databases used in PWA’s. This is of course an unfortunate and undesirable situation, especially in view of the waste of investment and effort involved in these experiments.

In this paper we present the “adnorm” method. This is a method of Angle-Dependent NORMalization [11] to treat certain systematically-flawed np differential cross sections. This adnorm method is meant to be used only in good, energy-dependent PWA’s. We will show that the application of this method to certain data sets, which were previously unacceptable in energy-dependent PWA’s, can give impressive results. The values of χ^2 drop dramatically and can even become statistically acceptable. This implies that these data sets can, instead of discarding them, from now on be included in the np database. The salvation of these systematically-flawed data sets [6–10] is a major accomplishment of our adnorm method.

In recent publications [13–16] we pointed out that the Uppsala data at 162 MeV [8,9] contain unexplained large systematic errors. Also some other np differential cross section measurements appeared to have systematic errors similar (but not identical) to the Uppsala data; the Princeton [6] and Freiburg [7,10] data are prominent examples.

In the following we will compare the data in the standard way with the energy-dependent Nijmegen partial-wave analysis PWA93 [1]. First of all we will establish that these flawed data sets have significant, smoothly angle-dependent, systematic errors. Since we have no explanation for these systematic experimental errors, we must simply accept the fact that certain data have such errors. We are surprised, however, that so many np differential cross sections have such similar, angle-dependent systematic errors. Then we will apply the adnorm method to these data and demonstrate that this method can correct for some of such systematic errors. In order to save two sizable data sets, which became almost acceptable after using the adnorm method, we changed slightly the definition of an individual outlier. This has nothing to do with the adnorm method, but it is a measure taken in the same spirit: Try to be as frugal as possible with data sets, and do not omit them from the data base, unless absolutely necessary. In this way we obtain normalized data sets that are statistically acceptable and that can be included henceforth in the np databases for PWA’s.

II. NORMALIZATION

An np differential cross section $\sigma(\theta, \text{expt})$, consisting of N_{data} data points, is called experimentally normalized, when for this data set the normalization has actually been measured. In that case, it has an experimental norm $N(\text{expt}) = 1.00$ with a corresponding experimental
error $\delta N(\text{expt})$. This norm and error are included as a datum in the data base. For backward
np scattering this error is often of the order of 4% or larger. In the Nijmegen PWA’s we also
determine for each data set the normalization $N(pwa)$ with an error $\delta N(pwa)$. This is a
\textit{calculated} normalization (for a discussion of these points see Ref. [16]). This error $\delta N(pwa)$
is in most cases less than 1% [1]. When these two normalizations $N(\text{expt})$ and $N(pwa)$
differ by more than 3 standard deviations (s.d.), we remove the experimental normalization
and its error from the database. The data set is then “floated”, which means in practice
that a very large normalization error is assigned to the data set. A data set is also floated
when its normalization has not been measured at all. In the case of floated data the calcu-
lated normalization $N(pwa)$ is determined solely by the angular distribution. The number
of degrees of freedom N_{df} for a set with N_{data} data points is then $N_{df} = N_{data} - 1$. For
the determination of the calculated normalization $N(pwa)$ we have sacrificed one degree of
freedom.

For seriously flawed data sets one cannot get a sufficiently low value of χ^2 by merely
adjusting or floating the normalization. Such data sets are then omitted from the data
base for PWA’s. The main point of this paper is the observation that for some of such
unacceptable data sets we can introduce an \textit{angle-dependent} normalization $N(\theta)$ in such a
way that we essentially sacrifice two or more degrees of freedom to obtain significant drops
in the value of χ^2. Such a sacrifice is unfortunately necessary in our attempt to save these
data sets from being discarded otherwise.

In the adnorm method we have to make assumptions when we are trying to parametrize
the angular dependence of the systematic errors. We first map the experimental angular
interval $[\theta_{\text{min}}, \theta_{\text{max}}]$ onto the interval $[-1, 1]$. This mapping can be done in many ways. We
consider the two mappings

\begin{equation}
 x = (\theta - \theta_+) / \theta_-, \tag{1}
\end{equation}

with $\theta_\pm = (\theta_{\text{max}} \pm \theta_{\text{min}})/2$, and

\begin{equation}
 x = (\cos \theta - z_+) / z_- \tag{2},
\end{equation}

with $z_\pm = (\cos \theta_{\text{max}} \pm \cos \theta_{\text{min}})/2$.

For the discrete set of N_{data} data points $x_i \ (i = 1, N_{\text{data}})$ on the x-interval $[-1, 1]$ we define
the inner product $(x, y) = (1/N_{\text{data}}) \sum_i x_i y_i$. This allows us to construct the polynomials
$S_n(x) = \sum_{i=0}^{n} a_i x^i$, which are orthogonal with respect to this inner product and normalized
such that $a_n = 1$. Next we expand $N(\theta)$ in these orthogonal polynomials $S_n(x)$ on this
discrete set of data points. We write

\begin{equation}
 N(\theta) = N_0 \left[1 + f(\theta) \sum_{n=1}^{p} c_n S_n(x) \right]. \tag{3}\end{equation}

We allow for the introduction of an extra function $f(\theta)$. In practical cases we make the
simplest choice $f(\theta) \equiv 1$, but \textit{e.g.} $f(\theta) = 1/\sigma(\theta, pwa)$ could also be a suitable choice. The
expansion in orthogonal polynomials gives exactly the same $N(\theta)$ as a power series expansion
up to the same power p. In the case of a power series expansion the coefficients N_0 and
c_n vary very much with the value of p, this is not the case anymore for an expansion in
orthogonal polynomials. The normalization N_0 and the p adnorm parameters $c_n \ (n = 1, p)$
and their errors are determined by the least-squares method, where the data are compared
with PWA93. In an actual PWA such data sets contribute with \(N_{df} = N_{data} - (1 + p) \) degrees of freedom. The \(\chi^2 \) that results when \(p \) adnorm parameters are introduced is called \(\chi^2_p \). When the standard angle-independent normalization (with zero adnorm parameters) is applied, the \(\chi^2 \) is called \(\chi^2_0 \).

How many adnorm parameters \(c_n \) do we have to introduce? The basic rule is that each introduced parameter should cause a significant drop in \(\chi^2 \). We apply a 3 s.d. criterion: We introduce the parameter \(c_n \) only when \(\chi^2_{n-1} - \chi^2_n \geq 9 \). The parameter is then significant. This procedure of introducing additional parameters stops when no significant drop in \(\chi^2 \) can be achieved anymore. When we end up with nonzero adnorm parameters, then we have shown that there are significant angle-dependent systematic errors present in the data, and we have explicitly parametrized these systematic errors. We have convinced ourselves that the final result of the parametrization is essentially independent of our specific assumptions. The renormalized differential cross sections, obtained by different ways of parametrization, were statistically practically the same.

III. UPPSALA DATA

Let us see how this procedure works out for the Uppsala data [9] at \(T_L = 162 \) MeV. At this neutron beam energy the \(np \) differential cross section was measured in five overlapping angular regions. We ordered these sets by increasing neutron scattering angles and called the sets 1 to 5, where set 1 contains the data at the most forward angles and set 5 at the most backward angles [16]. These data were then compared to PWA93. We removed the point at 93° from set 2 because it contributes more than 9 (3 s.d.) to \(\chi^2 \).

In Table I we list the number of data \(N_{data} \) in each set, the value \(\chi^2_0 \) obtained by just applying the standard angle-independent normalization (all adnorm parameters \(c_n \equiv 0 \)), the values of \(\chi^2_p(\theta) \) obtained by applying the \(\theta \)-adnorm method of Eq. 1, and the values of \(\chi^2_p(z) \) obtained by applying the \(z \)-adnorm method of Eq. 2.

From this Table I we see that the fits of the sets 1 and 4 improve significantly (a drop in \(\chi^2 \) of much more than 9) when introducing only one adnorm parameter \(c_1 \). For sets 2 and 3 this is not true, and we will therefore take \(c_1 \equiv 0 \) for these two sets. For set 5 we need two \(\theta \)-adnorm parameters, while only one \(z \)-adnorm parameter is necessary. After the \(\theta \)-adnorm method is applied with only one adnorm parameter the slope of the angle-dependent normalization \(N(\theta) \) is called \(\alpha \). The value of this slope can be found in the next-to-last row of Table I. This slope is used to compare systematic errors in different experiments. It is important to note that the slope for set 1 is positive, while the slopes for the sets 4 and 5 are negative. In the last row is given the variation in % of the normalization \(N(\theta) \) in the case \(p=1 \) over the interval \([\theta_{min}, \theta_{max}]\).

The combined data set has \(N_{data} = 87 \) and when normalized in the standard angle-independent way (no adnorm parameters) we obtain \(\chi^2_0 = 243 \). This value is 12 s.d. higher than the expectation value \(\langle \chi^2 \rangle = 82(13) \). The value for \(\chi^2 \) drops to \(\chi^2(\theta) = 92 \) after introducing four \(\theta \)-adnorm parameters \((c_1 \text{ for each of the sets 1 and 4, and } c_1 \text{ and } c_2 \text{ for set 5})\). With the \(z \)-adnorm method it drops to \(\chi^2(z) = 94 \) after introducing three \(z \)-adnorm parameters \((c_1 \text{ for each of the sets 1, 4, and 5})\). The difference between the two adnorm methods is minor. In order to demonstrate this, we calculated the \(\chi^2(\text{dif}) \) for the difference between the two differential cross sections obtained by the two adnorm methods. This \(\chi^2(\text{dif}) \)
is very low, only 0.8 for the total data set. The conclusion is that the large systematic errors of unknown origin present in the Uppsala data can be corrected for by using one of the adnorm methods. The drop of about 150 in χ^2 resulting from the introduction of only 3 z-adnorm (or 4 θ-adnorm) parameters is impressive.

To present the data in a similar way as was done by the Uppsala group [9], we averaged the data in the overlap regions between the different sets. The difference $\Delta \sigma(\theta) = N(\theta) \sigma(\theta, \text{expt}) - \sigma(\theta, \text{pwa})$ normalized in the various ways discussed, is presented in Fig. 1. In the top panel we show the data normalized in the Uppsala way and we get $\chi^2 = 393$ for the 54 data points. In the middle panel of Fig. 1 we show the data normalized in the standard angle-independent way. This leads to $\chi^2_0 = 135$. In the bottom panel of Fig. 1 we present the data normalized with the θ-adnorm method. We obtain then $\chi^2 = 59$. From Fig. 1 one clearly sees the difference between the various ways the data have been normalized, and the enormous improvement obtained with the adnorm method.

IV. FREIBURG DATA

Another place where the angle-dependent normalization procedure works impressively is the abundant Freiburg data [7,10]. This data set consists of 4 different measurements (labeled expt I to expt IV) of np differential cross sections, each at 20 beam energies between $T_L = 199.9$ and 580.0 MeV, with a spacing of about 20 MeV. Because we compare with PWA93 we can only study data with energies less than 350 MeV, i.e. the 8 energies from 199.9 MeV to 340.0 MeV. Because of their too high individual contribution to χ^2 (more than 3 s.d.) we remove from the database the four data points (expt, T_L, θ) = (II, 261.9 MeV, 154.96°), (II, 300.2 MeV, 148.34°), (II, 340.0 MeV, 148.07°), and (III, 199.9 MeV, 144.32°). For the total Freiburg data set we are left then with 859 data points.

In Table II we present the χ^2_0/N_{data} values for these 4 experiments at 8 energies after the standard angle-independent normalization. It is clear that χ^2_0 for most of these 32 data sets is much too high. For the total data set of 859 points we find $\chi^2_0 = 2139$, which is 32 s.d. higher than the expectation value $\langle \chi^2_0 \rangle = 827(41)$. Therefore, the total Freiburg data set would normally be discarded in PWA’s. However, we can try the adnorm method. The results of applying the θ-adnorm method are presented in Table III. The first striking observation is the enormous drop in χ^2, from 2139 to 831, for the 859 data points. This drop was achieved by introducing next to the original 32 normalizations N_0 also 45 θ-adnorm parameters. This implies on the average a drop of no less than 29 per adnorm parameter.

Looking at the four experiments separately, one sees that expt I and expt IV have values for $\chi^2(\theta)$ that are smaller than their expectation value (-0.8 s.d. and -0.8 s.d.), that expt II has a $\chi^2(\theta)$ that is 0.6 s.d. higher than its expectation value, and that expt III has a $\chi^2(\theta)$ that is 3.3 s.d. higher than its expectation value. This, unfortunately, means that expt III would have to be excluded from the database for PWA93. For the remaining 647 points of expt I, II, and IV we expect $\langle \chi^2 \rangle = 588(34)$. We get $\chi^2(\theta) = 571$, which is an excellent result. We have checked explicitly that the χ^2-distribution of the renormalized Freiburg data is in very good agreement with the theoretical expectation [3]. With the z-adnorm method we got similar results. Using 46 z-adnorm parameters and 32 normalizations we reached $\chi^2(z) = 832$ for the 859 data points. Also in this case expt III should be omitted from the
database for PWA’s. In Table III we also present the values of the slope α of the data at $T_L = 199.9$ MeV after applying the θ-adnorm method with $p = 1$.

The conclusion is that the Freiburg data set, when compared to PWA93 using the adnorm method, has three statistically acceptable experiments and one, expt III, that is statistically not acceptable. However, one must realize that if this expt III were included in a new PWA, then it might possibly have a statistically acceptable value of χ^2.

We would like to point out that also this expt III can be saved, when we are willing to bend a little our rule for individual outliers. In the Introduction we already pointed out that this has nothing to do with the adnorm method, but only with our wish not to discard data unless it is absolutely necessary. When for expt III a 2.5 s.d. rule is used instead of a 3 s.d. rule, we must remove also the three data points (III, 199.9 MeV, 133.95°), (III, 240.2 MeV, 149.25°), and (III, 340.0 MeV, 130.47°) as more than 2.5 s.d. outliers. In Table III the most right column of expt III contains the relevant information for this case. For the 209 data points left from expt III we have the expectation value $\langle \chi^2 \rangle = 191(20)$, and we find $\chi^2(\theta) = 238$, which is 2.3 s.d. higher than expected. Therefore, expt III is now also statistically acceptable. The conclusion is that the four Freiburg experiments, consisting of 856 datapoints, can be made statistically acceptable with the adnorm method and using the 2.5 s.d. rule for outliers.

V. PRINCETON DATA

Finally, we consider the Princeton data [6]. This relatively old data set is generally not included in PWA’s and these data were e.g. also discarded in the final version of PWA93. We can, however, revisit these data with the adnorm method. The results are given in Table IV. After we have removed two data points ($T_L = 313$ MeV, $\theta = 168.1^\circ$ and 170.3°) as more than 3 s.d. outliers, the total set contains 156 data points, divided over 9 energies below $T_L = 350$ MeV. When we normalize these data in the standard manner we get $\chi^2_0 = 582$. This is about 25 s.d. higher than the expectation value. Next we applied the θ-adnorm method. This required 14 additional adnorm parameters. The expectation value is then $\langle \chi^2 \rangle = 133(16)$. We obtain $\chi^2(\theta) = 195$, which is still 3.9 s.d. too high. Therefore the Princeton data, unfortunately, cannot be saved by the adnorm method alone, despite the enormous improvement in χ^2 from 582 to 195, which amounts on the average to a drop of 28 per adnorm parameter. Using the z-adnorm method gives similar results.

However, when again we are willing to bend our rule for individual outliers a little, we can also save these data. According to the 2.5 s.d. rule the three data points (T_L, θ) = (224 MeV, 131.6°), (239 MeV, 139.7°), and (257 MeV, 178.6°) must also be omitted. There are then 153 data points left, which leads to the expectation value $\langle \chi^2 \rangle = 130(16)$. The second entries in Table IV give the relevant information for this case. We obtain $\chi^2(\theta) = 169$, which is 2.4 s.d. higher than expected.

VI. DISCUSSION AND CONCLUSIONS

About the adnorm method that we proposed here, the question could be raised: “Is it successful because it corrects for experimental errors, or perhaps because it corrects for
unknown biases in the PWA’s?” We claim that we correct for unknown systematic experimental errors. To demonstrate this we defined the slope parameter \(\alpha = (1/N_0)(dN(\theta)/d\theta) \) for the case \(p = 1 \). Looking at the different problematic experiments in about the same angular region and at about the same energy, we note significant differences. In the backward direction \([150^\circ, 180^\circ]\) there are several experiments at about the same energy. These are the Uppsala set 5 at 162 MeV, the Freiburg expt’s I and II at 199.9 MeV, and the Princeton data at 182 MeV. The values of \(10^3 \alpha \) are \(-4.9(5), -2.8(4), -2.5(4), \) and \(-0.7(4) \), respectively. These slopes do not agree! The disagreement between the Uppsala sets 1 and 2 and the Freiburg expt IV is worse. Uppsala set 1 covers the angular region \([73^\circ, 107^\circ]\) and has \(\alpha = 3.7(8) \times 10^{-3} \). Uppsala set 2 covers \([89^\circ, 129^\circ]\) and has \(\alpha = 0.3(7) \times 10^{-3} \). The Freiburg expt IV covers \([81^\circ, 124^\circ]\) and has \(\alpha = -1.9(3) \times 10^{-3} \), which is even of the opposite sign as the values for the Uppsala sets 1 and 2. When one wants to blame PWA93 for the discrepancy and claim that the Uppsala and Freiburg data are in agreement, then one should at least find the same values for \(\alpha \). Because the \(\alpha \) values for these experiments are significantly different, we can conclude that the Uppsala and Freiburg data are not in agreement with each other. It is then also clear that the discrepancies must be of experimental origin.

In conclusion, we have shown that many of the measurements of the \(np \) differential cross section suffer from similar systematic errors. These errors are mostly so large that the corresponding data sets cannot be included in PWA’s. However, it turned out that these systematic errors have a smooth angular dependence, which can easily be parametrized. This allowed us then to use the adnorm method to correct for these systematic errors. In many cases this gave rise to impressive drops in the values of \(\chi^2 \) for several of the seriously flawed data sets. Many of the data sets became statistically acceptable after application of the adnorm method and therefore can now be included in the data base for PWA’s. However, some of the sets required also a slight change in the definition of outlier to make them acceptable. In this manner, several \(np \) data sets [8–10,6] can be saved from oblivion.

ACKNOWLEDGMENTS

We thank M.C.M. Rentmeester, Th.A. Rijken, and R.A. Bryan for helpful discussions. The research of R.G.E.T. was made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences (KNAW).
REFERENCES

[1] V.G.J. Stoks, R.A.M. Klomp, M.C.M. Rentmeester, and J.J. de Swart, Phys. Rev. C 48, 792 (1993); http://NN-Online.sci.kun.nl.

[2] R.A. Arndt, I.I. Strakovsky, and R.L. Workman, Phys. Rev. C 50, 2731 (1994); Phys. Rev. C 62, 034005 (2000); http://gwdac.phys.gwu.edu.

[3] J.R. Bergervoet, P.C. van Campen, W.A. van der Sanden, and J.J. de Swart, Phys. Rev. C 38, 15 (1988).

[4] B.E. Bonner, J.E. Simmons, C.L. Hollas, C.R. Newsom, P.J. Riley, G. Glass, and M. Jain, Phys. Rev. Lett. 41, 1200 (1978).

[5] R.K. Keeler, R. Dubois, E.G. Auld, D.A. Axen, M. Comyn, G. Ludgate, L.P. Robertson, J.R. Richardson, D.V. Bugg, J.A. Edgington, W.R. Gibson, A.S. Clough, N.M. Stewart, and B. Dieterle, Nucl. Phys. A377, 529 (1982).

[6] P.F. Shepard, T.J. Devlin, R.E. Mischke, and J. Solomon, Phys. Rev. D 10, 2735 (1974).

[7] W. Hürster, Th. Fisher, G. Hammel, K. Kern, M. Kleinschmidt, I. Lehmann, H. Schmitt, L. Schmitt, and D.M. Sheppard, Phys. Lett. B90, 367 (1980).

[8] T.E.O. Ericson, B. Loiseau, J. Nilsson, N. Olsson, J. Blomgren, H. Condé, K. Elmgren, O. Jonsson, L. Nilsson, P.-U. Renberg, A. Ringbom, T. Rönnqvist, C. Tibell, and R. Zorro, Phys. Rev. Lett. 75, 1046 (1995).

[9] J. Rahm, J. Blomgren, H. Condé, S. Dangtip, K. Elmgren, N. Olsson, T. Rönnqvist, R. Zorro, A. Ringbom, G. Tibell, O. Jonsson, L. Nilsson, P.-U. Renberg, T.E.O. Ericson, and B. Loiseau, Phys. Rev. C 57, 1077 (1998).

[10] J. Franz, E. Rössle, H. Schmitt, and L. Schmitt, Physica Scripta T87, 14 (2000).

[11] Angle-dependent normalization has been proposed previously by the Zürich group [12] for the analysis of their pp cross sections measured at very low energies.

[12] Ch. Thomann, J.E. Benn, and S. Münch, Nucl. Phys. A303, 457 (1978).

[13] M.C.M. Rentmeester, R.A.M. Klomp, and J.J. de Swart, Phys. Rev. Lett. 81, 5253 (1998).

[14] J.J. de Swart, M.C.M. Rentmeester, and R.G.E. Timmermans, πN Newsletter 13, 96 (1997); nucl-th/9802084.

[15] M.C.M. Rentmeester, Nucl. Phys. A631, 431c (1998).

[16] M.C.M. Rentmeester, R.G.E. Timmermans, and J.J. de Swart, Phys. Rev. C 64, 034004 (2001).
TABLES

TABLE I. Results for the Uppsala data at 162 MeV.

set	1	2	3	4	5	total
N_{data}	18	20	18	16	15	87
χ^2_0	38	35	18	35	117	243
$\chi^2(\theta)/p$	15/1	35/0	18/0	15/1	9/2	92
$\chi^2(z)/p$	15/1	35/0	18/0	16/1	10/1	94
$10^3 \alpha$	3.7(8)	0.3(7)	$-1.5(6)$	$-2.2(5)$	$-4.9(5)$	
var in %	12.8	3.2	5.4	7.0	12.2	

TABLE II. The values of χ^2_0/N_{data} for the 32 Freiburg data sets $[T_L,\text{expt}]$ and the totals per experiment.

T_L (MeV)	expt I	expt II	expt III	expt IV
199.9	71/27	58/27	44/25	57/22
219.8	66/27	42/28	71/27	64/22
240.2	76/27	50/30	53/27	73/23
261.9	82/27	40/30	65/27	122/23
280.0	68/27	56/32	57/26	132/24
300.2	65/27	102/32	74/27	62/24
320.1	47/27	63/33	82/26	70/24
340.0	47/27	60/33	70/27	50/24
total	522/216	471/245	516/212	630/186

TABLE III. The values of $\chi^2(\theta)/p$ (p is the number of adnorm parameters) for the 32 Freiburg data sets $[T_L,\text{expt}]$, the totals per experiment, their expectation value, and the slope α. The last column for expt III gives $\chi^2(\theta)$ after three additional data points were removed.

T_L (MeV)	expt I	expt II	expt III	expt IV	
199.9	29/1	21/1	44/0/37	13/2	
219.8	26/2	23/1	31/1/31	16/2	
240.2	23/2	30/1	28/1/21	18/2	
261.9	24/2	16/2	27/2/27	32/1	
280.0	15/2	36/1	26/1/26	19/1	
300.2	24/2	44/1	31/2/31	25/1	
320.1	20/1	36/2	33/2/33	16/1	
340.0	18/2	33/1	40/1/32	14/1	
total	179/14	239/10	260/10/238	153/11	
$\langle \chi^2(\theta) \rangle$	194(20)	227(21)	194(20)/191	167(18)	
s.d.	-0.8	0.6	3.3 / 2.3	-0.8	
$10^3 \alpha$	$-2.8(4)$	$-2.5(4)$	$-1.1(5)$	$-1.9(3)$	
T_L(MeV)	N_{data}	χ^2_0	p	$\chi^2(\theta)$	$10^3 \alpha$
-----------	------------	------------	-----	-----------------	---------------
182	14	11	0	11	$-0.7(4)$
196	16	49	2	27	$-1.2(3)$
210	16	43	1	14	$-1.9(4)$
224	16/15	71/67	1	24/16	$-2.6(4)$
239	18/17	46/37	1	22/14	$-1.9(4)$
257	19/18	90/61	2	32/22	$-1.7(3)$
284	19	114	2	21	$-2.4(3)$
313	17	76	2	20	$-2.2(3)$
344	21	82	3	24	$-2.1(4)$
total	156/153	582/540	14	195/169	

TABLE IV. Results for the Princeton data.
FIG. 1. Uppsala data at 162 MeV. Top panel: Uppsala’s normalization. Middle panel: standard normalization using PWA93. Bottom panel: normalized using the adnorm method.