Title
AGN and Starburst in bright Seyfert galaxies: From IR photometry to IR spectroscopy

Permalink
https://escholarship.org/uc/item/2m72x2jn

Journal
Revista Mexicana de Astronomía y Astrofísica: Serie de Conferencias, 37

ISSN
1405-2059

Authors
Spinoglio, L
Tommasin, S
Malkan, MA

Publication Date
2010-12-01

Peer reviewed
AGN AND STARBURST IN BRIGHT SEYFERT GALAXIES: FROM IR PHOTOMETRY TO IR SPECTROSCOPY

Luigi Spinoglio,1 Silvia Tommasin,1 and Matthew A. Malkan2

RESUMEN
Favor de proporcionar un resumen en español. If you are unable to translate your abstract into Spanish, the editors will do it for you. Infrared photometry and later infrared spectroscopy provided powerful diagnostics to distinguish between the main emission mechanisms in galaxies: AGN and Starburst. After the pioneering work on infrared photometry with IRAS in the far-IR and the S.Pedro Martir and ESO ground-based work in the near-IR, ISO photometry extended up to 200µm the coverage of the galaxies energy distributions. Then Spitzer collected accurate mid-infrared spectroscopy on different samples of galaxies. We will review the work done on the 12µm galaxy sample since the times of IRAS photometry to the new Spitzer spectroscopy. The main results on the multifrequency data of 12µm selected Seyfert galaxies are presented and discussed in the light of unification and evolution models. The spectroscopic work of Spitzer will soon be complemented at longer wavelengths by the Herschel spectrometers and in the future by SPICA at higher redshift.

ABSTRACT
Infrared photometry and later infrared spectroscopy provided powerful diagnostics to distinguish between the main emission mechanisms in galaxies: AGN and Starburst. After the pioneering work on infrared photometry with IRAS in the far-IR and the S.Pedro Martir and ESO ground-based work in the near-IR, ISO photometry extended up to 200µm the coverage of the galaxies energy distributions. Then Spitzer collected accurate mid-infrared spectroscopy on different samples of galaxies. We will review the work done on the 12µm galaxy sample since the times of IRAS photometry to the new Spitzer spectroscopy. The main results on the multifrequency data of 12µm selected Seyfert galaxies are presented and discussed in the light of unification and evolution models. The spectroscopic work of Spitzer will soon be complemented at longer wavelengths by the Herschel spectrometers and in the future by SPICA at higher redshift.

Key Words: Galaxies: Active — Galaxies: Starbursts — Infrared: Galaxies

1. INTRODUCTION
The interrelationship between star formation and accretion onto massive black holes is crucial to understanding galaxy formation and evolution. On a cosmic scale, the evolution of supermassive black holes appears tied to the evolution of the star-formation rate [Marconi et al 2004, Merloni et al 2004]. The growth of bulges through star formation may be directly linked to the growth of black holes through accretion [Heckman et al 2004]. On a local scale, evidence is mounting that star formation and nuclear activity are linked. Two possible evolutionary progressions can be predicted: HII/Starburst galaxies → Seyfert 2 [Storchi-Bergmann et al 2001], Kauffmann et al 2003), or a fuller scenario of HII/Starburst galaxies → Seyfert 2 → Seyfert 1 [Hunt & Malkan 1999, Levenson et al 2001, Krongold et al 2002]. These predict that galaxy interactions, leading to the concentration of a large gas mass in the circumnuclear region of a galaxy, trigger starburst emission. Then mergers and bar-induced inflows can bring fuel to a central black hole, stimulating AGN activity. While relatively young (∼ 1 Gyr) stellar populations are found in more than half of Seyfert 2s [Schmitt et al 1999, González Delgado et al 2001, Raimann et al 2003], they are also found in broad-lined AGNs [Kauffmann et al 2003]. However, any firm conclusion cannot rely on optical spectra of optically selected samples of galaxies. Photometric mid-IR studies [Edelson Malkan & Rieke 1987, Maiolino et al 1993] did indeed find that Seyfert 2s galaxies more often have enhanced star formation than Seyfert 1s and the near and far-IR observations

1Istituto di Fisica dello Spazio Interplanetario, INAF, Via Fosso del Cavaliere 100, I-00133, Roma, Italy (luigi.spinoglio, silvia.tommasin@ifsi-roma.inaf.it).
2Astronomy Division, University of California, Los Angeles, CA 90095-1547, USA (malkan@astro.ucla.edu).
of the 12µm galaxy sample (Spinoglio et al 1995) show systematic differences between type 1’s and type 2’s spectral energy distributions. However, detailed infrared spectroscopy is necessary to better separate the star formation and accretion components in the energy budget of active galaxies and strengthen the hypothesis of an evolutionary difference between different types of active galaxies. Better understanding the star formation versus accretion connection requires mid-infrared spectroscopy of representative samples of active galaxies in the local universe. This is because active galactic nuclei (AGNs) are often very dusty, locally and even at high redshifts (Priddey et al 2003; Bertoldi et al 2003). Similarly, star formation activity, which often coexists with AGN activity, is also heavily enshrouded in dust.

We review in this article the great amount of observational work that has been done on the 12µm galaxy sample and in particular on its subsample of active galaxies.

2. THE 12µM ACTIVE GALAXIES SAMPLE

The sample that is less biased and most representative of the local active galaxies populations is selected from the 12µm Galaxy Sample (12MGS), an IRAS-selected all-sky survey flux-limited to 0.22 Jy at 12µm (Rush, Malkan & Spinoglio 1993, hereafter RMS) and form the complete sub-samples of Seyfert 1s and Seyfert 2s of the entire 12MGS. This is essentially a bolometric flux-limited survey outside the galactic plane, because of the empirical fact that all galaxies emit a constant fraction of their total bolometric luminosity at 12µm. This fraction is ∼ 9-13% for AGNs and ∼ 7-8% for normal and starburst galaxies, independent of star formation activity (Spinoglio et al 1995). For Seyfert galaxies and quasars, this can be seen in Figure I which shows the spectral energy distributions of 13 active galaxies normalized to their bolometric flux: the minimum scatter among the different types of galaxies appears in the range 7-12µm (Spinoglio & Malkan 1989). For the different types of 12µm selected galaxies, normal, Seyfert, starburst galaxies and LINERs, compared to a small sample of PG quasars, the spectral energy distributions normalized to their bolometric fluxes are shown in Figure 2. Finally, the 12MGS is less subject to contamination by high star-formation rate objects than other infrared samples defined at longer wavelengths (Hunt & Malkan 1999).

12 µm selection finds obscured objects via re-radiation of their primary emission by dust. An alternative way of finding obscured AGN is by selecting directly on their accretion radiation at hard X-rays, insensitive to all but the heaviest intrinsic absorption. However, unlike the 12MGS, as shows Figure 3 the hard X-ray selected samples miss most of the Compton thick objects ($N_H > 10^{24}$ cm$^{-2}$).

The 12MGS contains 53 Seyfert 1s and 63 Seyfert 2s (RMS). This sample has a complete set of observations at virtually every wavelength: full IRAS and near-IR coverage (RMS; Spinoglio et al 1995), X rays (Rush et al 1996), optical spectroscopy, radio (Rush Malkan & Edelson 1996), optical/IR imaging (Hunt & Malkan 1999), Hunt et al 1999, 100-200µm far-infrared photometry from ISOPHOT.
Fig. 3. Luminosity-Hydrogen absorption column density plane of the 12µm Seyfert (squares) detected at hard X-rays. Hard-X-ray selected AGNs, from IBIS (triangles) and Bat (circles), are shown for comparison.

(Spinoglio Andreani & Malkan 2002). In the recent years 10µm imaging (Gorjian et al. 2004), 2.8-4.1µm slit spectroscopy (Imanishi 2003; Imanishi & Alonso-Herrero 2004) optical spectropolarimetry (Tran 2001; Tran 2003) radio observations (Thean et al. 2000; Thean et al. 2001) and Spitzer low resolution spectra (Buchanan et al 2006) have been collected for most of the Seyfert galaxies in our sample. Finally a first article on the high resolution Spitzer spectra has been published (Tommasin et al. 2008) and another one is completing the mid-infrared spectral coverage of almost all the sample (Tommasin et al. 2009).

2.1. The 12µm and the line luminosity functions of Seyfert galaxies

The 12µm luminosity function of the Seyfert galaxies of the 12MGS has been derived by RMS. There is no significant difference between the two types of Seyfert, as one can see from Figure 4 except for the fact that at the highest luminosities (L > 10^{12} L_{\odot}) only type 1’s are found. We note, however, that this can be due to the inclusion in this latter class of the few blazars and quasars present in the 12MGS.

The analysis of the optical and ultraviolet emission line spectra has been done recently (Rodriguez et al 2009). The luminosity functions of all the narrow lines for which there is enough statistics ([OIII]λ5007Å, [OII]λ3727Å, [OIII]λ4959Å, [OII]λ3727Å and [SII]λλ6717+6734Å) are the same for both types of Seyfert’s. Only the Hα and Hβ luminosity functions show more Seyfert 1’s at high luminosities compared to Seyfert 2’s. This difference can be understood because type 1’s have substantial emission in both these lines from their Broad Line Regions. The luminosity functions for Hα, Hβ, [OIII]λ5007Å and [OII]λ3727Å are displayed in Figure 5.

The agreement between the 12µm continuum and the narrow lines luminosity functions testifies that these quantities are all isotropic and are not affected by the geometry or disk/torus orientation. This also implies that the 12µm selection is not biased against or in favor of Seyfert types 1 or types 2.

Fig. 4. The 12µm luminosity function of Seyfert galaxies (RMS).

Fig. 5. Emission line luminosity functions for Hα, Hβ, [OIII]λ5007Å and [OII]λ3727Å for the 12µm selected Seyfert galaxies (Rodriguez et al 2009). Triangles represent Seyfert 1’s and squares Seyfert 2’s.
3. INFRARED PHOTOMETRY

3.1. Total near-infrared fluxes

Infrared photometry has been used to isolate star formation and accretion processes. A large observational effort has been done to observe in the J, H, K and, in some cases, L bands as many as 321 galaxies from the 12µm galaxy sample (Spinoglio et al 1995).

At the 2.1m telescope of the S. Pedro Martir Observatory, thanks to a collaboration with Luis Carrasco and Elsa Recillas, we observed the northern galaxies, while those of the southern hemisphere were observed at the 1m ESO telescope (La Silla, Chile).

To be able to compare the large beam IRAS data (RMS) with the near-IR data, derive spectral energy distributions and build meaningful color-color diagrams, we have computed the near-IR total fluxes using growth curves (Spinoglio et al 1995). Combining the IRAS and near-IR data we were able to derive the spectral energy distributions (SED) of hundreds of galaxies. As presented in the previous section, we show in Figure 2 the average SEDs, normalized to their bolometric flux, of normal, Seyfert and starburst galaxies, as well as LINERs and PG quasars.

We have found that color-color diagrams are very effective in separating the different galaxy types. The usual [J - H] versus [H - K] color-color diagram shown in Figure 6 can separate many Seyfert galaxies from normal galaxies: at 2.2µm the strong thermal emission from hot dust grains illuminated by the active nucleus rises above starlight from red giants, peaking in the H photometric band and dominating the stellar component in galaxies.

In Figure 7 we show the [H - L] color versus the 60µm/25µm flux ratio. This plot can separate nor-

![Fig. 6. [J - H] vs. [H - L] diagram with Seyfert 1’s (filled squares), Seyfert 2’s (open squares), Normal’s (crosses) (Spinoglio et al 1995).](image)

![Fig. 7. Composite near-far-IR color-color diagram: the [H - L] color versus the 60µm/25µm flux ratio (Spinoglio et al 1995).](image)

![Fig. 8. Color-color diagram separating Seyfert 1’s, 2’s and starburst galaxies. The dotted line shows a mixture of the NGC1068 torus model colors (Pier & Krolik 1993) and the average galactic colors. The symbols are the same as in the previous figure (Spinoglio et al 1995).](image)
mal and starburst galaxies from Seyfert type 1 and PG quasars, because the former have steep far-IR slopes and bluer near-IR spectra, while the latter have flatter far-IR SEDs and redder near-IR slopes. As most Seyfert 1’s are located at the lower right part of the diagram, while most type 2’s lie in the upper left corner, where only a few Seyfert 1’s are found (most of which are nearby Messier galaxies) demonstrate that the SEDs of the two Seyfert populations are indeed different.

In Figure 8 we show the 60µm/12µm versus the 25µm/2.2µm, as suggested previously for an analysis of the CfA Seyfert galaxies [Edelson Malkan & Rieke 1987], where it is clear a segregation of the Seyfert type 1’s in the lower left part of the diagram, at the flatter spectral slopes: 30/48 type 1s and only 5/52 type 2s occupy this region. The presence of an optically thickedge-on torus [Pier & Krolik 1993] would indeed steepen the SED by absorbing high energy radiation and re-emitting it at longer wavelengths.

3.2. Bolometric luminosities of Seyfert and normal galaxies

Spinoglio et al (1995) determined for the first time the bolometric luminosities of a large sample of galaxies, both Seyfert and normal galaxies. One of their most important result is the linear relation found between the 12µm and bolometric luminosities for both Seyfert and normal galaxies.

To obtain reliable bolometric luminosities for the galaxies, we have used the IRAS [60-100µm] color to predict the far-IR turnover. Figure 9 shows the correlation between color temperature and IRAS spectral index. From the fit shown, we derived the relation:

\[T_{\text{color}} = 11.4 \times (\alpha_{60-100\mu m} + 4.67) K \]

We then computed the submillimeter fluxes beyond 100µm assuming a graybody at the derived color temperature, with a dust emissivity \(\varepsilon \propto \lambda^{-1} \).

Fig. 9. Least squares fit of the spectral index \(\alpha_{60-100\mu m} \) as a function of the color temperature, assuming graybody emission [Spinoglio et al 1995].

Fig. 10. 12µm vs bolometric luminosity for Seyfert 1’s (filled squares) and 2’s (open squares). The line represents the least squares fit to all data, except Arp220 [Spinoglio et al 1995].

For the Seyfert galaxies, the relation between the 12µm and the bolometric luminosity is shown in Figure 10 with a slope of 1.09 (with a regression coefficient of R=0.95). We notice that a similar relation between bolometric luminosity and the other IRAS bands monochromatic luminosities is poorer compared to the 12µm band: at 25µm the slope is 1.19 (R=0.90), at 60µm the slope is 1.19 (R=0.91) and at 100µm the slope is 1.13 (with a poorer R=0.93).

For the normal galaxies, the relation between the 12µm and the bolometric luminosity is shown in Figure 11 with a slope of 1.06 (with a regression coefficient of R=0.94). A similar relation between bolometric luminosity and the other IRAS bands monochromatic luminosities is poorer compared to the 12µm band: at 25µm the slope is 1.15 (R=0.93), at 60µm the slope is 1.12 (R=0.94) and at 100µm the slope is 1.11 (with a poorer R=0.89).
Fig. 11. 12µm vs bolometric luminosity for normal galaxies (crosses), starburst’s (asterisks) and LINERs (open circles). The line represents the least squares fit to all data (Spinoglio et al 1995).

3.3. Extending to 200µm with ISO

With the launch of the Infrared Space Observatory, we were able to collect far-infrared photometry between 100 and 200µm for the 12µm galaxies (Spinoglio Andreani & Malkan 2002). We have followed Rowan-Robinson & Crawford (1989) in using the 12-25-60-100 µm colors to identify those galaxies in our sample that closely resemble the SEDs of the quiescent cirrus disk, the starburst component, and the pure Seyfert nucleus. For each of the three types of galaxies - the normal spirals, the starburst galaxies, and the Seyfert 1’s - we have selected those objects lying in the two IRAS color-color diagrams close (i.e., within 0.2 mag) to the colors of pure disk, starburst, and Seyfert components (Rowan-Robinson & Crawford 1989). We have plotted in Figure[12] the average 12-200µm SEDs for each class. A strong distinction is apparent out to 200µm between the quiescent disk component and the starburst component. These components represent the extremes of minimal and maximal recent star formation found in the least and most luminous galaxies, respectively. The pure Seyfert spectrum is rather similar to the pure starburst spectrum between 100 and 200µm. Both show a relative lack of cold dust, and the Seyferts spectra tend to be weaker at 120µm.

The Seyfert 2’s are spread all around the IRAS color-color diagrams. As can be seen in Figure[12] some of them (SY2/SBN) have IRAS spectra close to the pure starburst template. And indeed, their ISOPHOT far-infrared spectra also match the pure starburst spectrum well, since their infrared continuum appears to be dominated from dust around star-forming regions. Those Seyfert 2’s with IRAS colors

Fig. 12. The average spectral energy distributions of Seyfert, starburts and normal galaxies, normalized to the 100µm flux (Spinoglio Andreani & Malkan 2002).

Fig. 13. [200 - 100µm] color vs. the 60µm excess diagram of galaxies belonging to the 12µm galaxy sample (Spinoglio Andreani & Malkan 2002).
like quiescent cirrus disks (SY2/DISK) also resemble pure disks in the 100-200µm region. Again, it appears that the Seyfert 2 nucleus contributes a minor fraction of the observed far-infrared luminosity in those objects.

We have chosen as the indicator of enhanced recent star formation, which warms dust around HII regions, the 60µm excess as the ratio of the observed 60µm flux to the flux that a source would have at 60µm from power-law interpolation of the flux between 12 and 100µm. Figure 13 shows the [200 - 100µm] color versus the 60µm excess.

While this diagram does not separate the galaxies of different classes perfectly, it nevertheless shows that they cluster preferentially in different regions of the diagram. Seyfert 1’s (excluding six objects of the CfA sample) cluster in a no 60µm excess region with a color [200 - 100µm] < 0. The starburst galaxies cluster in the central area of the diagram and have all 60µm excess. Normal galaxies and nearby spirals have no 60µm excess (except two objects) and a [200 - 100µm] color between -0.5 and +0.5. Seyfert 2’s are widely spread all over the diagram, but with a 60µm excess generally higher than Seyfert 1’s.

We suggest that the diagram shown in Figure 13 can be used to separate the starburst-dominated objects from the AGN-dominated ones. Objects located in the upper right part of the diagram are likely starburst-dominated, while those at the left, having a fainter excess, are the AGN-dominated objects. We suggest that starburst activity in galaxies, i.e., with high rates of current star formation, results in excess emission in the 60µm band accompanied by a general heating of the galactic interstellar medium and thus a decrease of the [200 - 100µm] color.

4. INFRARED SPECTROSCOPY

Mid-IR and far-IR spectroscopy of fine-structure emission lines are powerful tools to understand the physical conditions in galaxies.

Figure 14 shows the critical density (i.e. the density for which the rates of collisional and radiative de-excitation are equal) of a line versus the ionization potential of its ionic species. It shows how these lines can measure density and ionization of the gas: the ratio of lines with similar critical density, but different ionization potential, measures the ionization, while the ratio of lines with similar ionization potential, but different critical density, measures the density (Spinoglio & Malkan 1992). Lines from different emission regions in galaxies are shown with different symbols. Infrared spectroscopy has a thorough diagnostic power for gas with densities from 10^2 cm$^{-3}$ to 10^8 cm$^{-3}$ and ionization potentials up to 350 eV, using the so called coronal lines. Moreover, increasing its wavelength, an IR spectral line becomes more insensitive to dust extinction, and can therefore probe regions highly obscured at optical or even near-to-mid infrared wavelengths.

Besides the ionic fine-structure lines, the mid-IR spectrum of galaxies also contains strong features due to the emission of Polycyclic Aromatic Hydrocarbons (Puget & Leger 1989), hereafter PAH. These features have been observed in ultraluminous IR galaxies with the ISO SWS spectrometer (Genzel et al 1998). They are present while star formation is active and disappear when illuminated by the strong ionizing field of active nuclei.

4.1. Far-IR spectroscopy with ISO-LWS

Far-infrared spectroscopy has been so far collected by the LWS spectrometer onboard of ISO (Kessler et al 1996) only on a few bright active and ultraluminous IR galaxies, showing an unexpected sequence of features from strong [OIII]52, 88 µm and [NIII]57 µm line emission to detection of only faint [CII]157µm line emission and [OI]63 µm in absorption, and molecular lines almost always in absorption (Fischer et al 1999).

A few studies have been dedicated to individual galaxies, e.g. M82 (Colbert et al 1999), Arp220 (González-Alfonso et al 2004),
Fig. 15. ISO-LWS line ratio diagram (Spinoglio et al 2003). Seyfert 1’s: blue, Seyfert 2’s: green, starburst galaxies: red. Pink crosses: nearby galaxies (Negishi et al 2001). Grid: starburst models with different densities and ionization parameter. Vertical hatched area: the [CII]/[OI] ratio for PDR models (log n=2-6 cm\(^{-3}\), log G\(_0\)=3). Horizontal hatched area: the [OIII]/[OI] ratio for AGN models (log U=-2.5, log n= 3, 4 cm\(^{-3}\)).

NGC1068 (Spinoglio et al 2003), Mrk231 (González-Alfonso et al 2008). A systematic far-infrared spectroscopic survey of Seyfert and ULIRGs will have to wait for the Herschel mission. However the few data available already revealed the diagnostic power of the FIR fine structure lines. Figure 15 (Spinoglio et al 2003) shows the [CII]/[OI] ratio versus the [OIII]/[OI]63\(\mu m\) ratio. Normal galaxies cluster together with the Seyfert’s having strong starburst emission (e.g. NGC1068) and coincide with predicted ratios for typical starburst galaxies. However, at lower values of the [CII]/[OI] ratio, most of the AGN are clustering in a strip with higher ratio of [OI]/[CII] compared to starburst galaxies. This may arise from X-Ray Dissociation Regions (XDRs), whose [OI]/[CII] ratios are larger than in PDRs. Thus the 3 strongest FIR emission lines can separate the 3 basic energy sources in galaxies: a) the AGN produces strongly emission from highly ionized gas, with [OIII] being prominent in the NLR, but also unusually strong [OI]63\(\mu m\) because this neutral line is strong in XDRs (Meijerink et al 2007), and has a very high critical density (~ 10^7 cm\(^{-3}\)). All the classical Seyfert galaxies in Figure 15 lie in the bottom part of the diagram, below any of the starburst models. b) recent star formation, which produces [OIII] in the high-excitation HII regions, as well as strong [CII]158\(\mu m\) in the PDRs which tend to surround these star forming regions; and c) pure PDR emission from the quiescent disk of the spiral galaxy, which produces strong [CII] and [OI] emission, but no [OIII]. The most quiescent spirals lie in the upper left side of the diagram (Negishi et al 2001).

4.2. Mid-IR spectroscopy with Spitzer

In the very rich mid-infrared spectra of active galaxies we can identify various indicators of AGN dominance, e.g. the line ratios of [NeV]/[NeII], [NeV]/[SiII], [OIV]/[NeII], as well as indicators of star formation dominance, e.g. the PAH emission bands, the H\(_2\) rotational lines and nebular emission lines mainly originated in HII regions, e.g. from [SII] and [NeII].

Fig. 16. Comparison of the observed and modelled spectra for three sample Seyfert galaxies: (Hainline et al. 2009).

The diagnostic power of the mid-IR fine structure lines can be quantified from the decomposition of the observed spectra in terms of three different photoionized components (Hainline et al. 2009): (a) AGN model: with metallicity Z solar, spectral slope \(\alpha=-1.7\), density \(n=10^3\), and ionization potential: \(logU = -2\) (Groves et al 2004); (b) Starburst model: with metallicity Z = 2 \(\times\) Z\(_\odot\), age range = 0.1 – 6 Myr, \(logR = (M_d/M_\odot)/(P_0/k) = -6\), (Donita et al 2006); (c) a Coronal line region model (CLR): \(logU = 0\) at the inner radius of the region and
spectral slope $\alpha = -1.0$ (Spinoglio & Malkan 1992).

Figure 16 shows such a decomposition for the mid-IR spectra of three sample objects: IRASF15091-2107 for which a strong CLR is present, NGC513 for which a strong Starburst component is necessary to fit the data and Mrk6, which is almost a ”pure” AGN.

The first results of the Spitzer spectroscopic survey of the Seyfert galaxies of the 12µm sample (Tommasin et al. 2008) show a clear inverse trend between the indicator of AGN dominance, the $[\text{NeV}]14.3\mu m/[\text{NeII}]12.8\mu m$ line ratio, and the equivalent width of the 11.25µm PAH feature, which can be considered as an indicator of the star formation dominance, as shown in Figure 17. Here the Seyfert galaxies have been reclassified, following the results of spectropolarimetry (author?) (Tran 2001, Tran 2003), in type 1's (including the classical Seyfert 1's and the hidden Broad Line Region Seyfert 2's, as discovered through spectropolarimetry) and ”pure” type 2's (for which a BLR was not detected). Most of the type 1 objects, including both Seyfert 1s and hidden Broad Line Region Seyfert 2s, are located at high values of the $[\text{NeV}]14.3\mu m/[\text{NeII}]12.8\mu m$ line ratio and very low or absent PAH emission.

Another diagnostic diagram using both spectroscopic and photometric results is shown in Figure 18: the spectral index between 25 and 60µm $\alpha_{\text{60µm}-\text{25µm}}$ versus the $[\text{NeV}]14.3\mu m/[\text{NeII}]12.8\mu m$ line ratio. A clear trend shows that when the AGN dominance increases, the spectral index flattens. Most of type 1 objects appear to be concentrated in the upper right part of the diagram, at high values of AGN dominance and flat mid-to-far-IR slopes.

The two channels of the Spitzer high-resolution spectrometer: SH 9.6-19.5µm with slit size 4.7$''$ × 11.3$''$ and LH 19-39µm with slit size 11.1$''$ × 22.3$''$.

Fig. 17. $[\text{NeV}]14.3\mu m/[\text{NeII}]12.8\mu m$ line ratio versus the equivalent width of the 11.25µm PAH. (Tommasin et al. 2008; Tommasin et al. 2009).

Fig. 18. The mid-to-far-IR spectral index $\alpha_{\text{60µm}-\text{25µm}}$ versus the $[\text{NeV}]14.3\mu m/[\text{NeII}]12.8\mu m$ line ratio. (Tommasin et al. 2008).

Fig. 19. $[\text{NeII}]12.8\mu m$ line equivalent width as a function of the source extendedness (Tommasin et al. 2008).
allow multi-aperture photometry in the overlapping parts (19.0-19.5 µm). The ratio of the flux measured in LH to that measured in SH gives the extendedness of the source. We used this measure of the extendedness of the source to estimate the line emitting regions (Tommasin et al 2008). In Figure 19 we plot the [NeII]12.8 µm line equivalent width as a function of the source extendedness. We notice that those sources showing a significant mid-IR extendedness are type 2 objects or non-Seyfert galaxies and have the highest [NeII]12.8 µm line equivalent width. An high [NeII]12.8 µm line equivalent width is a measure of a strong star formation component. This is not the case for the high excitation lines, originated from the AGN, such as [NeV] and [OIV], for which no apparent trend appears between source extendedness and line EWs (Tommasin et al 2008).

5. ANALYSIS OF THE 12µM SAMPLE MULTI-FREQUENCY DATASET

The 12MGS has been observed extensively from the radio to the X-rays and we can use the large set of data to search for correlations between different observed quantities. To show an example, we want to relate the X-ray luminosity, measuring the accretion, to the bolometric luminosity, as given by the 12µm luminosity. We plot in Figure 20 the unabsorbed 2-10 keV luminosity and the 12µm luminosity.

Following the finding of Spinoglio & Malkan (1989) and Spinoglio et al (1995) that the 12µm luminosity is linearly proportional to the bolometric luminosity, at a given \(L_{\text{bol}} \) in Figure 20 a sequence can be identified with decreasing accretion luminosity: from Seyfert 1’s → HBLR-Seyfert 2’s → pure Seyfert 2’s. Although these results are to be considered preliminary, as no statistical method has yet been applied, most Seyfert 1’s have:

\[0.1 \times L(12\mu m) < L(2-10\text{keV}) < L(12\mu m) \]

Most HBLR-Seyfert 2’s have:

\[0.01 \times L(12\mu m) < L(2-10\text{keV}) < 0.1 \times L(12\mu m) \]

Most pure Seyfert 2’s and non-Seyfert’s have:

\[L(2-10\text{keV}) < 0.01 \times L(12\mu m) \]

We preliminarily suggest that black hole accretion, as measured by X-rays, is the dominant mechanism determining the observational nature of a galaxy: when accretion is not an important energy source, we have galaxies without Seyfert nuclei, dominated by stellar evolution processes (called here non-Seyfert’s), then when accretion increases we have a sequence from the pure Seyfert 2’s, to the HBLR-Seyfert 2’s and finally when accretion dominates the bolometric luminosity, we have the Seyfert 1’s.

In an analogous way, we try to correlate the IRAS 60µm luminosity (measuring the integrated star formation activity) and the \(\text{H}_2 \) S(1) line luminosity

Fig. 20. Corrected (unabsorbed) X-ray (2-10 keV) luminosity as a function of the 12µm luminosity. The three lines from the top to the bottom indicate the loci of \(L(2-10\text{keV}) = L(12\mu m) \) (upper); \(L(2-10\text{keV}) = 0.1 \times L(12\mu m) \) (middle); and \(L(2-10\text{keV}) = 0.01 \times L(12\mu m) \) (lower), which are used in the text to roughly separate the different objects.

Fig. 21. Total 60µm luminosity as a function of the \(\text{H}_2 \) 17µm line luminosity. The two lines from the top to the bottom are least squares fits of the non-Seyfert galaxies and of the Seyfert 1’s, respectively (see the text).
(typical star formation indicator) in Figure 21.

Most Seyfert 1’s and HBLR-Seyfert 2’s have:
\[L(H_2) \sim 5 \times 10^{-4} \times L(60\mu m) \]

Most pure Seyfert 2’s and non-Seyfert have:
\[L(H_2) \sim 10^{-4} \times L(60\mu m) \]

If we make least squares fits to the two extreme populations of Seyfert type 1’s and non-Seyfert galaxies, we obtain a sequence of two almost parallel lines of the form
\[\log(L(60\mu m)) = a \times \log(L(H_2)) + b \]

from the bottom to the top:
- for Seyfert 1’s: \(a=0.905, b=7.325\), with a regression coefficient of \(R=0.928\);
- for non-Seyfert’s: \(a=1.030, b=2.797\), with \(R=0.925\).

There are two interpretations of this behavior: either the more active galaxies (type 1’s) have enhanced \(H_2\) emission (Rigopoulou et al. 2002), or at a given \(H_2\) luminosity, type 2’s (and non-Sy) have \(L(60\mu m)\) 5 times higher than type 1’s, because of an enhanced star formation process.

6. SPECTROSCOPY OF HIGHER REDSHIFT GALAXIES WITH HERSCHEL & SPICA

To understand how the two processes of black hole accretion and star formation shared the energy budget during galaxy evolution, we need to separate these two processes along the history of galaxies, and -to do this- rest-frame near-to-mid infrared spectroscopy is needed on galaxies as a function of their redshift. We predicted the line intensities of Seyfert and starburst galaxies at increasing redshift, considering the ISO spectra of three local template objects: NGC1068 (Alexander et al. 2000), SN1068 (Spinoglio et al. 2005), the prototypical Seyfert 2 galaxy, containing both an AGN and a starburst; NGC6240 (Lutz et al. 2003), a bright starburst with obscured AGN and M82 (Forster Schreiber et al. 2001). Colbert et al. 1999), the prototypical starburst galaxy. We then computed the line intensities as a function of redshift (in the range \(z=0.1-5\)), assuming that the line luminosities scale as the bolometric luminosity and that there is a luminosity evolution proportional to the \((z+1)^2\), consistent with the Spitzer results at least up to redshift \(z=2\) (Perez-Gonzalez et al. 2003).

For simplicity, we adopted an Einstein-De Sitter model Universe, with \(\Omega_k = \Omega_{\text{vac}} = 0\) and \(\Omega_M = 1\),

\[H_0 = 75 \text{ km s}^{-1} \text{ Mpc}^{-1} \]

The luminosity distances have been derived using:
\[d_L(z) = \frac{(2c/H_0) \cdot [1 + z - (1 + z)^{1/2}]}{1 + \frac{z}{(1+z)}} \]

The results for the three template objects are reported in a graphical form in Figure 22, where the intensities of selected lines are plotted as a function of the redshift. Among the brightest lines are shown the [SIV]10.5\(\mu m\), the [NeII]12.8\(\mu m\) and the [OIII]52\(\mu m\) diagnostic for the stellar/HII regions; the [NeV]24.3\(\mu m\) and the [OIV]25.9\(\mu m\), for the AGN component, the [OI]63\(\mu m\) and the [SII]33.5\(\mu m\), for the photodissociation regions and the OH and H\(_2\) rotational lines for the warm molecular component.

The 5\(\sigma\), 1 hour sensitivities of the PACS and SPICA spectrometers,

\[H_0 = 75 \text{ km s}^{-1} \text{ Mpc}^{-1} \]

The results for the three template objects are shown in the figure for comparison.

It is clear from the figure that the PACS spectrometer will be able to observe only the most favor-
able object (NGC6240) up to z=2 in the brightest line ([OI]63µm), while the SPICA spectrometers goal sensitivities will allow deep infrared spectroscopic studies for all templates at z ∼ 1-2 for most lines and at z even higher for the brightest lines.

Acknowledgements: This work has been funded in Italy by the Italian Space Agency (ASI).

REFERENCES

[1] Alexander, T. et al 2000, ApJ, 536, 710
[2] Bertoldi, F., Carilli, C., Cox, F., et al 2003, A&A, 406, L55
[3] Buchanan, C. et al 2006, AJ, 132, 401
[4] Colbert et al.1999, ApJ, 511, 721
[5] Dopita, M.A., Fischera, J., & Sutherland, R.S. et al. 2006, ApJS, 167, 177
[6] Edelson, R.A., Malkan, M.A., Rieke, G.H., 1987, ApJ, 321, 233
[7] Fischer, J. et al. 1999, Ap&SS, 266, 91
[8] Forster Schreiber et al 2001, ApJ, 552, 544
[9] Genzel, R. et al.1998, ApJ, 498, 579
[10] González-Alfonso, E., et al 2004, ApJ, 613, 247
[11] González-Alfonso, E., et al 2008, ApJ, 679, 303
[12] González Delgado, R., Heckman, T., & Leitherer, C. 2001, ApJ, 546, 845
[13] Gorjian, V. et al. 2004, ApJ, 605, 156
[14] Groves, B.A., Dopita, M. A., & Sutherland, R.S. 2004, ApJS, 153, 9
[15] Hailine, K., Malkan, M.A., Spinoglio, L. & Tommasin, S. 2009, in preparation
[16] Heckman, T.M., Kauffmann, G., Brinchmann, J., et al 2004, ApJ, 613, 109
[17] Hunt, L.K., & Malkan, M.A. 1999, ApJ, 516, 660
[18] Hunt, L.K. et al.1999, ApJ, 510, 637
[19] Kauffmann, G., Heckman, T.M., Tremonti, C. et al. 2003, MNRAS, 346, 1055
[20] Kessler, M. et al.1996, A&A, 315, L27
[21] Krüger, V., Dultzin-Hacyan, D., & Marziani, P. 2002, ApJ, 572, 169
[22] Lutz, D. et al. 2003, A&A, 409, 867
[23] Imanishi, M. 2003, ApJ, 599, 918
[24] Imanishi, M. & Alonso-Herrero, A. 2004, ApJ, 614, 122
[25] Levenson, N.A., Weaver, K.A., & Heckman, T.M. 2001, ApJ, 550, 230
[26] Maiolino, R., Ruiz, M., Rieke, G.H., Keller, L.D. 1995, ApJ, 466, 561
[27] Marconi, A., Risaliti, G., Gilli, R., et al 2004, MNRAS, 351, 169
[28] Meierink et al. 2007, A&A, 461, 793
[29] Merloni, A., Rudnick, G., & Di Matteo, T. 2004, MNRAS, 354, 37
[30] Nakagawa, T. 2004, Advances in Space Research, 34, 645
[31] Negishi T. et al. 2001, A&A, 375, 566
[32] Perez-Gonzalez, P.G. et al 2005, ApJ, 630, 82
[33] Pier E.A. & Krolik, J.H. 1993, ApJ, 418, 673
[34] Priddey, R.S., Isaak, K.G., McMahon, R.G., Robson, E.I., & Pearson, C.P. 2003, MNRAS, 344, L74
[35] Puget, J.-L. & Leger, A. 1989, ARA&A, 27, 161
[36] Rainmann, D., Storchi-Bergmann, T., González Delgado, R. M., Cid Fernandes, R., Heckman, T., Leitherer, C., & Schmitt, H. 2003, MNRAS, 339, 772
[37] Rigopoulou, D., Kunze, D., Lutz, D., Genzel, R., & Moorwood, A.F.M. 2002, A&A, 389, 374
[38] Rodriguez, D. R., Malkan, M. A., Jensen, L., Spinoglio, L., Rush, B. 2008, in preparation
[39] Rowan-Robinson, M., & Crawford, J. 1989, MNRAS, 238, 523
[40] Rush, B., Malkan, M.A., & Spinoglio, L. 1993, ApJS, 89, 1 (RMS).
[41] Rush, B., Malkan, M.A.; Fink, H.H., Voges, W. 1996, ApJ, 471, 190
[42] Rush, B., Malkan, M.A., Edelson, R. A., 1996, ApJ, 473, 130
[43] Schmitt, H., Storchi-Bergmann, T., & Cid Fernandes, R. 1999, MNRAS, 303, 137
[44] Shu, X. W. et al 2007, ApJ, 657,167
[45] Spinoglio, L. & Malkan, M.A. 1989, ApJ, 342, 83
[46] Spinoglio, L. & Malkan, M.A. 1992, ApJ, 399, 504 (SM92)
[47] Spinoglio, L., Malkan, M.A., Rush, B., Carrasco, L., Recillas-Cruz, E. 1995, ApJ, 453, 616
[48] Spinoglio, L., Andreani, P., Malkan, M.A. 2002, ApJ, 572, 105
[49] Spinoglio L., Malkan, M. A., Smith, H. A., et al. 2003, Active Galactic Nuclei: from Central Engine to Host Galaxy, Meudon, France, July 23-27, 2002, Eds.: S. Collin, F. Combes and I. Shlosman. ASP (Astronomical Society of the Pacific), Conference Series, Vol. 290, p. 557
[50] Spinoglio, L., Malkan, M.A., Smith, H.A., Gonzalez-Alfonso, E., Fischer, J. 2005, ApJ, 623, 123
[51] Storchi-Bergmann, T., et al 2001, ApJ, 559, 147
[52] Swinyard, B., Nakagawa, T. et al. 2008, Experimental Astronomy, in press
[53] Thean, A. et al. 2000,MNRAS, 314, 573
[54] Thean, A. et al. 2001, MNRAS, 325, 737
[55] Tommasin, S., Spinoglio, L., Malkan, M.A., Smith, H., Gonzalez-Alfonso, E. & Charmandaridis, V. 2008, ApJ, 676, 836.
[56] Tommasin, S., Spinoglio, L., Malkan, M.A., Smith, H. 2009, in preparation
[57] Tran, H.D., 2001, ApJ, 554, L19
[58] Tran, H.D., 2003, ApJ, 583, 632