Experimental and Theoretical Study of Pinostrobin as Copper Corrosion Inhibitor at 1 M H$_2$SO$_4$ Medium

Saprizal Hadisaputra$^{1, *}$, Agus Abhi Purwoko1, Aliefman Hakim1, Rosita Wati2, Dina Asnawati2, Yuniar Ponco Prananto3

1Chemistry Education Division, Faculty of Treacher Training and Science Education, University of Mataram, Jalan Majapahit No 62, Mataram, 83125, Indonesia.
2Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Mataram, Jalan Majapahit No 62, Mataram, 83125, Indonesia.
3Department of Chemistry, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang 65145, East Java, Indonesia.

*Corresponding author: rizal@unram.ac.id

Abstract. The effect of variations in concentration and temperature on the efficiency of pinostrobin corrosion inhibition of copper in 1M H$_2$SO$_4$ was studied using an experimental and theoretical approach. Pinostrobin was isolated from the Boesenbergia rotunda L rhizome and was tested for corrosion inhibition of copper in acidic medium. Variations in the concentration of 300 ppm, 400 ppm, and 500 ppm and temperature (308 K, 318 K, and 328 K) were carried out in the weight loss method of corrosion inhibition test. Pinostrobin crystals were isolated with a yield of 57.65 %, a melting point of 98.5 °C and with a purity of 100 %. The optimum corrosion inhibition efficiency of pinostrobin is 65.71 % at a concentration of 500 ppm and a temperature of 328 K. The activation energy value of $E_a < 80$ kJ.mol$^{-1}$ indicates the adsorption of pinostrobin on copper surfaces is physical and spontaneously $\Delta G_{ads} < -20$ kJ.mol$^{-1}$. The effect of substituent on the efficiency of corrosion inhibition from pinostrobin was studied using density functional theory. The addition of NH$_2$ increased the efficiency of corrosion inhibition to 73.07 %, whereas the addition of NO$_2$ substituents decreased the efficiency of inhibition to 60.97 %. Experimental and theoretical studies have a good correlation in explaining the efficiency of corrosion inhibition from pinostrobin.

1. Introduction
Corrosion is an electrochemical process that occurs between metals and corrosive environments such as sulfuric acid that will reduce the quality of the metal. The corrosion process results in economic and environmental losses [1]. The rate of corrosion can be inhibited by the addition of inhibitors. Of the various types of inhibitors, organic inhibitors are preferred because they are efficient, environmentally friendly and non-toxic. Organic corrosion inhibitors usually have heteroatom N, O, P, S and bonds which allow the inhibitor to coat the metal surface to inhibit corrosion [2-9].

The use of natural ingredients as corrosion inhibitors has been widely used [10-15]. One of them is pinostrobin which is isolated from the Boesenbergia pandurata Roxb rhizome [16]. Pinostrobin qualifies as a good corrosion inhibitor and has not been widely tested as a corrosion inhibitor [17]. Therefore, this study focuses on the application of pinostrobin as a corrosion inhibitor to copper metal in 1 M H$_2$SO$_4$ medium by weight loss method. In addition to experimental tests, a theoretical study...
was also carried out to examine the effect of substituents on the efficiency of corrosion inhibition of pinostrobin compounds. Theoretical studies have proven capable of bridging aspects that are difficult to explain experimentally [18-21].

2. Methodology

2.1. Experimental Section

2.1.1. Pinostrobin Isolation. Isolation of pinostrobin was carried based on modification of methods from the literature [17]. The Boesenbergia rotunda L rhizome powder was soaked with n-hexane solvent. The extraction results are then evaporated using a rotary evaporator. The obtained viscous extract was allowed to form crystals and purified by recrystallization with methanol. Pinostrobin crystals were further identified by the melting point test and gas chromatography-mass spectroscopy GCMS.

2.1.2. Weight Loss Test. The prepared copper plates were prepared, weighed and then immersed in 1 M H$_2$SO$_4$ medium and an inhibitor solution with concentrations of 0, 300, 400 and 500 ppm and at temperatures of 308 K, 318 K and 328 K. Soaking of the copper plate was then washed with distilled water and acetone then dried and weighed. Inhibition efficiency values are calculated based on the equation

$$\%IE = \frac{C_{Ro} - C_{Ri}}{C_{Ro}} \times 100\%$$ \hspace{1cm} (1)

where \(\%IE\) is the efficiency of inhibition, \(C_{Ro}\) is the rate of corrosion without inhibitors and \(C_{Ri}\) the rate of corrosion with inhibitors.

2.2. Theoretical Section

All geometry optimizations of pinostrobin compounds are carried out using Gaussian 09 [23]. Geometry optimization is not followed by re-optimization in the solution phase because it has little effect on the structure and energy, so that only a single point of the solution phase is carried out on the gas phase geometry [24-28]. Calculation of quantum chemical parameters based on Koopman's theorem which explains the relationship between ionization potential (I), electron affinity (A) and orbital energy (\(E_{HOMO}\) and \(E_{LUMO}\))[29-30]. Koopman's equation is as follows:

$$I = -E_{HOMO}$$ \hspace{1cm} (2)

$$A = -E_{LUMO}$$ \hspace{1cm} (3)

Electronegativity is obtained based on equation 4 [31]:

$$\chi = \frac{E_{HOMO} + E_{LUMO}}{2}$$ \hspace{1cm} (4)

Furthermore, the inhibition efficiency is calculated based on the equation [32]:

$$I_{add} \% = \frac{I_{Pl} - I_{X-Pl}}{I_{Pl}} \times 100\%$$ \hspace{1cm} (5)

$$IE_{add} \% = I_{add} \% - IE_{Pl} \%$$ \hspace{1cm} (6)

$$I_{theor} \% = IE_{Pl} \% + %IE_{add} \%$$ \hspace{1cm} (7)
where I_{PI} is the percentage of ionization potential, $Ieadd\%$ is the percentage of inhibition efficiency, $IE_{p}\%$ is the percentage of inhibition efficiency of experimental results and $IE_{theo}\%$ is the theoretical efficiency of inhibition. The structure of pinostrobin is depicted in Figure 1.

![Figure 1. Structure of Pinostrobin (PN).](image1)

3. Results and Discussion

3.1. Experimental Study

Pinostrobin was successfully isolated from boesenbergia rotunda L rhizome with a yield of 57.65%. The melting point test shows that the isolated pinostrobin melting point is 98.5 °C. Pinostrobin identification was continued using GC-MS and the pinostrobin chromatogram is depicted in Figure 2. It shows a peak with a percentage of 100% which means that pinostrobin has high purity. Spectroscopic results also obtained $m/e = 270$ according to the relative molecular mass of pinostrobin [33].

![Figure 2. Pinostrobin chromatogram.](image2)

Weight loss test begins with the process of immersion of copper plates in a 1 M H_2SO_4 corrosive medium with pinostrobin concentrations of 0, 300, 400 and 500 ppm. Figure 3 shows the effectiveness of pinostrobin inhibition has increased at concentrations of 300 and 400 ppm. The amount of
pinostrobin that coats the copper surface increases so that the attack of corrosive solutions is blocked. The optimum inhibition efficiency of pinostrobin in copper corrosion is 65.35%.

Figure 3. The concentration of inhibitors versus the efficiency of pinostrobin corrosion inhibition.

Activation energy E_a, change in enthalpy values ΔH and entropy ΔS and adsorption free energy ΔG^{ads} are used to determine the overall energy changes in physical and chemical processes between the initial and final states in the corrosion inhibition process. Positive ΔH and ΔS values indicate the reaction is endothermic but takes place spontaneously. This is reinforced by the negative value of ΔG^{ads} indicating the reaction takes place spontaneously shown in Table 1.

Concentration (ppm)	E_a (kJ.mol$^{-1}$)	ΔH (kJ.mol$^{-1}$)	ΔS (J.mol$^{-1}$)
0	-16.35	0.42	50.43
300	-4.89	7.78	71.21
400	-12.45	4.74	60.79
500	12.57	10.39	76.79

Table 2. Value of free energy adsorption.

Temperature (K)	K_{ads}	ΔG_{ads}^0 (kJ.mol$^{-1}$)
308	0.3607	-7.70
318	1.2555	-11.20
328	0.2205	-6.80

Table 2 shows the process of pinostrobin adsorption on copper surfaces takes place spontaneously because the value of adsorption free energy increases with increasing temperature. At 318 K temperature, there was a decrease in adsorption free energy of -11.2 kJ / mol. A decrease in the value of ΔG^{ads} at 318 K indicates an equilibrium has occurred. A negative ΔG^{ads} value indicates that the adsorption process is a spontaneous process. The value of $\Delta G^{\text{ads}} < -20$ kJ / mol indicates that adsorption occurs physically, while the value of $\Delta G^{\text{ads}} > -20$ kJ / mol indicates the occurrence of chemisorption [34]. Table 3 shows that ΔG^{ads} is negative, which means that the adsorption of pinostrobin on the copper surface is physically adsorption.
The mechanism of interaction between pinostrobin and the copper surface can be determined based on isotherm adsorption. Figure 4 shows the log θ vs. log C plot at different temperatures showing the adsorption of pinostrobin on the copper surface following the Freundlich adsorption. Adsorption isotherm Freundlich explained that on the surface of the metal a multilayer layer is formed from the inhibitor molecule and is heterogeneous, that is, each active group on the metal surface has a different ability to adsorb. This also corresponds to the negative value of ΔG^{0}_{ads} which indicates the adsorption occurs physically.

3.2. Theoretical Study

Table 3 shows the validation of the theoretical calculation method by comparing the bonding distance and the binding angle based on theoretical and experimental. The average difference between the bonding distance and the binding angle of pinostrobin between experiment and theoretical is relatively small 0.021 Å and 1.753°, respectively. This shows a match between theoretical results and experiments. Based on these results, the density functional theory method at B3LYP/6-311++G(d, p) theory level meets the requirements for use in the system under study.

Bonds	Exp* (Å)	Theory (Å)	Angle	Exp* (°)	Theory (°)
O1-C2	1.441	1.444	C2-O1-C9	119	116.5
O2-C4	1.232	1.242	O1-C2-C3	112	110.0
C3-C4	1.530	1.518	C3-C2-C1'	114.6	113.0
C5-C6	1.405	1.389	O2-C4-C3	121	120.8
C6-C7	1.384	1.401	C3-C4-C10	118.1	115.7
C8-C9	1.405	1.390	O3-C5-C10	119.8	120.5
C1'-C2	1.353	1.511	C5-C6-C7	115.5	119.5
C2'-C3'	1.400	1.394	O4-C7-C8	125.4	123.3
C5'-C6'	1.390	1.395	C7-C8-C9	119.1	118.5
C3'-C4'	1.400	1.396	O1-C9-C10	121.2	121.6
C1'-C6'	1.406	1.399	C4-C10-C5	124.3	121.1
C9-C10	1.384	1.415	C5-C10-C9	116.8	118.1
C7-C8	1.401	1.405	C2-C1'-C6'	121.5	119.7
Table 4. Quantum chemical parameters the B3LYP method on the 6-311++ G(d, p) basis set.

Parameters	PN	PN-NH₂	PN-NO₂
E_{HOMO} (eV)	-6.3856	-5.6705	-6.8461
E_{LUMO} (eV)	-1.4756	-1.5943	-2.1891
E_{gap} (eV)	-4.9100	-4.7620	-4.6570
I (eV)	6.3856	5.6705	6.8461
χ (eV)	3.9306	3.6324	4.5176
ΔN(eV)	0.1118	0.2079	-0.0080
IE_{theor} (%)	65.71	73.07	60.09

Figure 5. Visualization of pinostrobin HOMO, LUMO, and ESP and their derivatives.

4. Conclusion
The efficiency of pinostrobin corrosion inhibition in acid medium is influenced by concentration and temperature. Weight loss test on isolated pinostrobin produces a maximum inhibition efficiency of 65.71%. The result is less efficient considering the pinostrobin concentration applied is also high at 400 ppm. Pinostrobin adsorption on copper surfaces follows Freundlich isotherm adsorption and physical adsorption. Efforts to improve the efficiency of pinostrobin corrosion inhibition can be done by adding an electron donor group to pinostrobin. The addition of NH₂ for instant increase the efficiency of corrosion inhibition by 8 %. In contrast, the addition of electron withdrawal group NO₂ causes a decrease in efficiency of up to 5%.
Acknowledgments
This research was financially supported by Hibah Penelitian Dasar RISTEKDIKTI Indonesia 2019, and their support is gratefully acknowledged.

References
[1] Revie R W 2008 Corrosion and corrosion control: an introduction to corrosion science and engineering (John Wiley & Sons).
[2] Qiang Y, Zhang Z, Guo L, Xu S, Feng L, Obot I B and Chen S 2017 J. Clean. Prod. 152 17-25.
[3] Mobin M and Rizvi M 2017 Carbohydr. Polym. 160 172-183.
[4] Douadi T, Hamani H, Daoud D, Al-Noaimi M and Chafaa S 2017 J. Taiwan Inst. Chem. Eng. 71 388-404.
[5] Bhawasar J, Jain P, Valladares-Cisneros M G, Cuevas-Arteaga C and Rani M 2018 Int. J. Electrochem. Sci. 13 3200-3209.
[6] Albrakaty R H, Wazzan N A and Obot I B 2018 Int. J. Electrochem. Sci. 13 3535-3554.
[7] Mendonça G L, Costa S N, Freire V N, Casciano P N, Correia A N and de Lima-Neto P 2017 Corros. Sci. 115 41-55.
[8] Guo L, Obot I B, Zheng X, Shen X, Qiang Y, Kaya S and Kaya C 2017 Applied Surf. Sci. 406 301-306.
[9] Shetty S K and Shetty A N 2017 J. Mol. Liq. 225 426-438.
[10] Hadisaputra S, Purwoko AA, Ilhamsyah I, Hamdiani S, Suhendra D, Nuryono N and Bundjali B 2018 Int. J. Corros. Scale Inhib. 7 633-647
[11] Hadisaputra S, Purwoko A A, Rahmawati, Asnawati D, Ilhamsyah I, Hamdiani S and Nuryono N 2019 Int. J. Electrochem. Sci., 14 11110 – 11121
[12] Marzorati S, Verotta L and Trasatti S P 2019 Molecules, 24 48.
[13] Noor E A, Al-Moubarak A H and Al-Ghamdi A A 2019 Arab J Sci Eng., 44 237-250.
[14] Raghavendra N 2019 J. Bio-and Tribo-Corrosion, 5 54.
[15] Bourouei M M, Chettouh S, Chouchane T and Khellaf N 2019 J Bio-and Tribo-Corrosion, 5 28.
[16] Hakim A, Kadarohman A and Syah Y M 2015 J. Chem. Edu. 93 193-196.
[17] Hakim A, Andayani Y and Rahayuan B D 2018 Journal of Physics: Conference Series 1095 012039
[18] Hadisaputra S, Purwoko A A, Hamdiani S and Nuryono N 2019 IOP Conference Series: Materials Science and Engineering 509 012129
[19] Hamdiani S, Rohimah I H, Nuryono, Purwoko AA and Savalas L R T 2019 Asian. J. Chem. 31 555-558
[20] Hadisaputra S, Purwoko A A, Wajdi F, Sumarlan I and Hamdiani S 2019 Int. J. Corros. Scale Inhib., 8, 3, 673–688
[21] Hadisaputra S, Purwoko A A, Rahmawati, Hamdiani S, Prananto Y P and Nuryono 2019 IOP Conference Series: Materials Science and Engineering 546 032011
[22] Frisch M J, Trucks GW, Schlegel HB, Scuseria G, Robb MA, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Cliffrd S, Ochterski J, Petersson GA, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I R, Gomperts R, Martin L, Fox D J, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M P, Gill MW, Johnson B, Chen W, Wong MW, Andres J L, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA 2004 Gaussian 03; (Gaussian, Inc. Wallingford, CT, 6492).
[23] Hadisaputra S, Canaval L R, Pranowo H D and Armunanto R 2014 Indones. J. Chem. 14 199-208.
[24] Saha SK, Hens A, Murmu NC and Banerjee P 2016 J Mol Liq. 215 486-495.
[25] Hadisaputra S, Canaval L R, Pranowo H D, and Armunanto R 2014 Monatsh Chem Chem Mon. 145 737-745.
[26] Purwoko A A, Setiaawati V R and Hadisaputra S, 2019 *IOP Conference Series: Materials Science and Engineering* **509** 012130

[27] Hadisaputra S, Pranowo H D and Armunanto R 2012 *Indones. J. Chem.* **12** 207-216.

[28] Hadisaputra S, Hamdiani S, Kurniawan M A and Nuryono N 2017 *Indones. J. Chem.* **17** 431-438.

[29] Koopmans T 1934 *Physica*, 1(1-6), 104-113.

[30] Foresman J B and Frisch A 1996 Exploring chemistry with electronic structure methods: a guide to using Gaussian.

[31] Pauling L 1960 *The Nature of the Chemical Bond* Ithaca, NY: Cornell university press, p. 3175-3187.

[32] Obayes H R, Alwan G H, Alobaidy A H, Al-Amiery M, Kadhum A A and Mohamad A B 2004 *Chem. Cent. J*. **8** 21.

[33] Yamovoi V I, Kul'magambetova E A, Kulyyasov A T, Turdybekov K M and Adekenov S M 2001 *Chemistry of natural compounds*, **37** 424-427.

[34] Lukovits I, Kalman E and Zucchi F 2001 *Corrosion*, **57** 3-8.