Calculation of Magnetic Penetration Depth Length $\lambda(T)$ in High Tc Superconductors

Jae-Weon Lee1, In-Ho Lee2, and Sang Boo Nam3

1 Superconductivity Group, Korea Research Institute of Standards and Science, Doryong-dong 1, Yusung-ku, Taejon 305-600 Korea
2 Korea Institute for Advanced Study, Cheong Raeng Ri, Dongdaco Moon Ku, Seoul 130-012, Korea.

The notion of a finite pairing interaction energy range via Nam, results in the incomplete condensation in which not all states participate in pairings. The states not participating in pairings are shown to yield the low energy states responsible for the linear T dependence of superelectron density at low T in a s-wave superconductor. We present extensive quantitative calculations of $\lambda(T)$ for all T ranges, in good agreements with experiments. It is not necessary to have nodes in the order parameter, to account for the linear T dependence of $\lambda(T)$ at low T in high Tc superconductors.

PACS: 74.72.-h, 74.25.Ha, 74.25.Nf

One of crucial parameters in a superconductor is the magnetic penetration depth length $\lambda(T)$ which reflects the condensation carrier density, superelectron density ρ_s, in the London model as

$$\rho_s(T)/\rho_s(0) = [\lambda(0)/\lambda(T)]^2.$$

(1)

The $\rho_s(T)$ plays an important role for understanding the nature of condensation. In the Gorter and Casimir two fluid model (GC), $\rho_s(T)$ varies as $1 - (T/T_c)^4$. But the BCS-$\rho_s(T)$ has an activation form at low T via the order parameter Δ which indicates the excitation energy gap. The measurements of $\lambda(T)$ at low T in high T_c superconductors (HTS) are compatible with neither the BCS result nor the GC picture. Data indicate the linear T dependence of $\rho_s(T)$ at low T. This linear T dependence of $\lambda(T)$ is in fact taken as providing evidence that the order parameter has nodes, suggesting the d-wave pairing state. On the other hand, one of us has shown that the notion of a finite pairing interaction energy range T_d results in the incomplete condensation and the low energy states responsible for the linear T dependence of $\rho_s(T)$ at low T in a s-wave superconductor. Moreover, the incomplete condensation yields the multi-connected superconductors (MS) which can account for the π-phase shift in Pb-YBCO SQUID and 1/2 fluxoid quantum in the YBCO ring with three grain boundary junctions.

Recently, the oxygen isotope effect, $T_c \propto M^{-\alpha}$ with $\alpha = 0.4 \sim 0.49$ in LSCO single crystal, suggests the electron-phonon interaction would play an important role for understanding superconductivity in cuprate materials. And the BSCCO bicrystal c-axis twist Josephson junction experiment indicates the dominant order parameter contains the s-wave and not d-wave component. Moreover, no node in the order parameter is observed in the angular dependence of the non-linear transverse magnetic moment of YBCO in the Meissner state. On the other hand, the scanning tunneling microscope imaging the effects of individual zinc impurity atoms on superconductivity in BSCCO shows the four fold symmetric quasiparticle cloud, indicating the d-wave component.

But no four fold is observed in the same system. Perhaps, the observation of may be a reflection of the Fermi surface.

It is highly desirable to carry out quantitative calculations of $\lambda(T)$ for all T ranges to see the accountability of finite T_d picture for $\lambda(T)$ data of HTS. In this letter, we present extensive quantitative calculations of $\lambda(T)$ for all T ranges in good agreements with data of HTS. For this, it is worthy to recapitulate the pertinent results for the notion of a finite T_d.

To see the phase transition, the transition temperature T_c should be a finite value, that is, neither zero nor infinite. To have a finite value of T_c, the pairing interaction energy range T_d should be finite, since T_c is scaled with T_d within the pairing theory. In other words, the order parameter $\Delta(k, \omega)$ may be written as

$$\Delta(k, \omega) = \begin{cases} \Delta & \text{for } \varepsilon_k < T_d \\ 0 & \text{for } \varepsilon_k > T_d \end{cases}$$

for all frequencies ω. Here ε_k is the usual normal state excitation energy with the momentum k, measured with respect to the Fermi level.

FIG. 1. Schematic diagram showing the order parameter Δ in the finite pairing interaction energy ranges T_d view.
Here the natural units of $\hbar = c = k_B = 1$ are used. Later we use $\Delta(T)$ with T for Δ as well. Note that w has no constraint and that in the case of pairings of carriers via the electron-phonon interaction, the T_d corresponds to the Debye temperature. However, the nature of T_d in HTS is still unknown. Our results are not depending on the nature of T_d. The order parameter Δ is the solution of the BCS like equation \[\Delta = \int_0^{T_d} \frac{d\epsilon}{E} \tanh \frac{\beta E}{2}, \] where $E = (\epsilon^2 + \Delta^2)^{1/2}$, $\beta = 1/T$, and g corresponds to the BCS coupling parameter $N(0)V_{BCS}$. The solution of Δ for g are shown in the unit of T_d in Fig. 2.

$\Delta(T)$ for Δ as a function of g and T.

The equation for T_c from Eq. (3) via $\Delta(T_c) = 0$ may be written as

$$1/g = (2/\pi) \sum_j (2/j) \tan^{-1}(y/j),$$

where $y = T_d/\pi T_c$, and sum is over the positive odd integers j. The factor of arctangent function makes the sum converge. For large y, Eq. (4) yields the BCS result $T_c(BCS)$. The quantitative calculations of T_c are given in Fig. 3, together with the BCS $T_c(BCS)$. Unlike the BCS result of $T_c(BCS)$, the T_c from Eq. (3) does not have any upper limit. The fact is that for large $g > 2.32$, T_c increases with increasing g as $T_c = g T_d/2$. One interesting value of $g = 0.657$ yields $T_c = 100$ K with $T_d = 400$ K which is of the order of the Debye temperature in HTS. This value of g may be realized in YBCO by considering the electron-phonon interaction of the order of $\lambda_p = 1.3 \sim 2.3$.

$\Delta(T) = 0$ as a function of T_c. As is shown in Fig. 4, $\Delta(T)/T_c$ is a function of g or T_c/T_d, and increases with increasing g or T_c/T_d. In the range of $g < 0.2$ or $T_c/T_d < 0.0076$, it has a constant BCS value. In fact, this range corresponds to the case of low T_c superconductors(LTS). In the range of $0.5 < g < 1.5$ it increases almost in a linear of g, and has a saturated value of 2 for large g.

$\Delta(0)/T_c$ versus g.

FIG. 4. The BCS parameter $\Delta(0)/T_c$ versus g. As is shown in Fig. 4, $\Delta(0)/T_c$ is a function of g or T_c/T_d, and increases with increasing g or T_c/T_d. In the range of $g < 0.2$ or $T_c/T_d < 0.0076$, it has a constant BCS value. In fact, this range corresponds to the case of low T_c superconductors(LTS). In the range of $0.5 < g < 1.5$ it increases almost in a linear of g, and has a saturated value of 2 for large g.

In the sprit of Bardeen [20], the normal fluid density $\rho_n(T) = \rho - \rho_s(T)$, within the pairing theory, may be written as

$$\rho_n(T) = \rho_s(T) \Delta(T)/T_c, \quad \Delta(T)/T_c = \frac{\sinh(1/g)}{1/g}. \tag{5}$$
\[\rho_n(T)/\rho = 2 \int_0^\infty d(\omega/T)n(\omega)f(\omega/T)\left[1 - f(\omega/T)\right], \]

where \(f(x) \) is the usual Fermi function \(1/[1+e^{x} \exp(x)] \) and the density of states \(n(\omega) = N(\omega)/N(0) \) is given by \((8)\)

\[n(\omega) = q(\omega/T_d) + n_{BCS}(\omega)r(\omega/T_d), \tag{7} \]

\(q(\omega/T_d) = (2/\pi) \tan^{-1}(\omega/T_d), \tag{8} \)

\[r(\omega/T_d) = (2/\pi) \tan^{-1}[n_{BCS}(\omega)T_d/\omega], \tag{9} \]

\[n_{BCS}(\omega) = \text{Re}\{\omega/(\omega^2 - \Delta^2)^{1/2}\}. \tag{10} \]

Physically, \(\rho_n(T) \) would be resulted from the single particle excitation not pairs. Thus, the factor \(f(x) \) in Eq. \((3)\) is the occupation probability of the state \(|k\uparrow\rangle \) and the factor \([1 - f(x)] \) is the unoccupation probability of the partner state, say, \(| - k\downarrow\rangle \), and vice versa, respectively. The factor 2 comes from the spin sum. The states of Eq. \((8)\) are reflections of states being not participated in pairings. A word of caution is in order. The \(T \) results in the linear interaction parts. Physically, the sum of spectral weights outside \(T_d < |\epsilon_k| \), result in the states of Eq. \((8)\). Thus, the low energy states are realized. In other words, carriers which do not participate in pairings yield the linear \(T \) dependence of \(\rho_n(T) \) at low \(T \). In fact, these states results in the linear \(T \) dependence of \(\lambda(T) \) at low \(T \). To see this, by inserting Eq. \((3)\) into Eq. \((3)\), one can get the variation of \(\lambda(T) \) at low \(T \) as \((11)\)

\[\Delta\lambda/\lambda(0) = \frac{1}{2}\rho_n(T)/\rho = (T/T_c)(T_c/T_d)(2/\pi) \ln 2, \tag{11} \]

similar to the result by d-wave picture \((4)\).

\[[\Delta\lambda/\lambda(0)]_d = (T/T_c)(T_c/\Delta_0) \ln 2 \tag{12} \]

via \(n_d(\omega) = \omega/\Delta_0 \), where \(\Delta_0 \) is the maximum value (antinode) of the order parameter.

For the quantitative calculations of \(\lambda(T) \), we have determined \(T_c/T_d \) or \(g \) [Eq. \((3)\)] via Eq. \((13)\), by taking the slope of \([\lambda(0)/\lambda(T)]^2 \) near zero temperature. Once \(g \) or \(T_c/T_d \) is set, no adjustable parameter is used in our calculations of Eq. \((3)\).

As is shown in Fig. \((3)\) we have obtained good agreements between calculations and data of BSCCO by Lee et al \((2)\), HBCCO by Panagopoulos et al \((3)\) and LSCO by Panagopoulos et al \((4)\), and Sr214 by Bonalde et al \((5)\), respectively. We picked up not all of data points in the papers for clarity. Bonalde et al \((5)\) reported that their data at low \(T \) vary as \(T^2 \) which are resulted from scatterings by impurities or defects. In a finite \(T_d \) picture, the impurity scatterings make some states at the Fermi level not participate in pairings, and result in the \(T^2 \) term in \(\lambda(T) \) at low \(T \) \((21)\).

\[R(z) = \int_0^\infty \frac{[n_{BCS}(\omega) - n(\omega)] d\omega}{\Delta}, \tag{13} \]

\[= \int_0^\Delta n(\omega) d\omega/\Delta \]

FIG. 5. The temperature dependence of \([\lambda(0)/\lambda(T)]^2 \) (solid lines) compared with the experimental data for HBCCO \(\Delta \), BSCCO \(\square \), LSCO \(\ast \) and Sr214 \(\circ \).

However, as shown in Fig. \((3)\) we have obtained poor agreement near \(T_c \) between calculation and data of YBCO by Hardy et al \((1)\) and anisotropic data of YBCO by Kamal et al \((3)\). The YBCO b case is good.

FIG. 6. \([\lambda(0)/\lambda(T)]^2 \) (solid line) compared with data for bulk YBCO \(\bigcirc \), and a- and b-axes, respectively \(\triangledown \).
Thus, the linear range stated before, this range corresponds to the case of LTS. For all the quantitative calculations account very well for data observed in LTS.

In Fig. 7 is shown the fraction of states, \(R(z) \), being not participated in pairings versus \(g \).

In Fig. 7, it is shown \(R(z) \) as a function of \(g \). In the range of \(g < 0.2 \) or \(T_c/T_d < 0.0076 \), \(R(z) \) is negligible. As stated before, this range corresponds to the case of LTS. Thus, the linear \(T \) dependence of \(\lambda(T) \) at low \(T \) is hardly observed in LTS.

In summary, even though the model of Eq. (2) is ideal, the quantitative calculations account very well for data for all \(T \) ranges without any adjustable parameter, except for YBCO data near \(T_c \). Perhaps, the Fermi surface effect would play an important role for \(\lambda(T) \) in the case of YBCO. Of course, the retardation and non-local effects should be taken into account as well for improvement. In all, the calculations are quite satisfactory and theoretically sound. We suggest the pairing interaction energy range \(T_d \) in HTS may be of the order of 1 ~ 2 times \(T_c \). The linear \(T \) dependence of \(\lambda(T) \) at low \(T \) does not imply nodes in the order parameter, contrary to general belief.

In the spirit of a finite \(T_d \), it is recently shown \(\Delta(\omega) \) that the spinless impurity scatterings suppress \(T_c \) and destroy superconductivity. Some states at the Fermi level are shown not to participate in pairings when there are scattering centers such as impurities, and result in the linear \(T \) term in the specific heat at low \(T \). The quantitative calculations \(\Delta(\omega) \) account well for the reduction of \(T_c \) and the specific heat data \(\Delta(T) \) in the Zn-doped YBCO, respectively.

We thank KRISS members for their warm hospitalities at KRISS. Specially JWL thanks Dr. Y. H. Lee for his kindness and SBN thanks Drs J. C. Park and Y. K. Park for various discussions. This work is supported in part by KOFST.

* Correspondence address: wonkinam@kriss.re.kr

[1] W. N. Hardy et al., Phys. Rev. Lett. 60, 3999 (1993).
[2] S. Kamal et al., Phys. Rev. B 58, R8933 (1998).
[3] S. Lee et al., Phys. Rev. Lett. 77, 735 (1996).
[4] C. Panagopoulos et al., Phys. Rev. B 53, R2999 (1996).
[5] C. Panagopoulos et al., Phys. Rev. B 60, 14617 (1999).
[6] I. Bonalde et al., Phys. Rev. Lett. 85, 4775 (2000).
[7] D. J. Scalapino, Phys. Rep. 250, 329 (1995).
[8] S. B. Nam, Phys. Lett. A193, 111 (1994), ibid(E) A197, 458 (1995). The density of states \(N(\omega) \) is obtained by the sum over \(k \) (the integral with respect to \(\epsilon_k \)) of spectral weights (the imaginary parts of the Green’s function). The usual method to get \(N(\omega) \) is taking the residues at the poles in the Green’s function, via \(1/X = \text{P}/X + \text{ir}\delta(X) \), where \(\text{P} \) stands for the principal value. However, in the case of a finite \(T_d \), with the order parameter \(\Delta \) of Eq. (3), the \(\Delta \) is not useful, since the pole \(\epsilon_k(\omega) \) in the superconducting Green’s function, has multi-values for a given \(\omega \). To see the inadequacy of the \(\Delta \), let us consider \(\omega = T_d \). The pole \(\epsilon_k(\omega) \) via \(\epsilon_k^2(\omega) = \omega^2 - \Delta^2 \), has different values at \(\epsilon_k = T_d - 0 \) and \(\epsilon_k = T_d + 0 \), respectively. Thus, the \(\Delta \) is useless, since the \(\Delta \) is valid only in the case of the pole having the same value for the left and right of it, respectively. One way to get \(N(\omega) \) is to carry out the \(\epsilon_k \) integral of the imaginary part of the Green’s function on the contour of two fan (eight) shape of the real and imaginary axes in the \(\epsilon_k \) plane, with the causality condition, as described in this reference, yielding the states of Eq. (6). On the other hand, the decay type of \(\Delta \) outside \(T_d \) may be imagined, but such a type function can not be a self-consistent solution of the order parameter equation. The \(\Delta \) of Eq. (6) is a solution of the order parameter equation.

[9] S. B. Nam, J. Korean Phys. Soc. 31, 426 (1997).
[10] S. B. Nam, Prog. in Supercond. 2, 11 (2000).
[11] S. B. Nam, Phys. Lett. A198, 447 (1995).
[12] D. A. Wollman et al., Phys. Rev. Lett. 71, 2134 (1993).
[13] C. C. Tsuei et al., Phys. Rev. Lett. 73, 593 (1994).
[14] J. hofer et al., Phys. Rev. Lett. 84, 4192 (2000).
[15] Q. Li et al., Phys. Rev. Lett. 83, 4160 (2000).
[16] A. Bhattacharya et al, Phys. Rev. Lett. 82, 3132 (1999).
[17] S. H. Pan et al., Nature 403, 746 (2000).
[18] A. Yazdani et al., Phys. Rev. Lett. 83, 176 (1999).
[19] W. Weber and L. I. Mattheiss, Phys. Rev. B 37, 599 (1988).
[20] J. Bardeen, Phys. Rev. Lett. 1, 399 (1958).
[21] S. B. Nam, Bull. Am. Phys. Soc 45, 256 (2000).
[22] I. Lee et al., to be published.
[23] Gang Xiao et al, Phys. Rev. Lett. 60 , 1446 (1994).
[24] K. A. Moler et al, Phys. Rev. B 55, 3954 (1997).
[25] D. L. Sisson et al, Phys. Rev. B 61, 3604 (2000).