Case report

Flow-volume loop abnormality detecting a previously unrecognized right upper lobe tracheal bronchus

Shannon Ruzycki a, Willis H. Tsai a, b, Warren J. Davidson a, b, *

a Department of Medicine, University of Calgary, Alberta, Canada
b Department of Community Health Sciences, University of Calgary, Alberta, Canada

A B S T R A C T

Tracheal bronchus is a rare anatomic variant in which a bronchus originates from the trachea. Patients may be asymptomatic or present with a variety of respiratory symptoms. We present a case of a patient who presented with a history of poorly controlled asthma and a persistent abnormality of the flow-volume loop. Bronchoscopy revealed a tracheal bronchus with narrowed right-sided bronchial orifices. An unrecognized tracheal bronchus may result in serious complications during elective or emergent endotracheal intubation. Spirometry testing may reveal abnormalities of the flow-volume loop associated with altered airflow. Relying on spirometric values without assessing the shape of the flow-volume loop may lead to misdiagnosis and inappropriate management of lung pathology.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Correct assessment of the flow-volume loop morphology is a requisite component of spirometry interpretation. Classic flow-volume loop shapes have been described for obstructive and restrictive lung pathology as well as for certain anatomic abnormalities. Identification of an unusual pattern by spirometry may lead to an alternate diagnosis and a change in management.

Case presentation

A 33 year old female was referred to the outpatient Respiratory clinic for further management of poorly controlled asthma. She had had persistent symptoms of wheezing and cough since early childhood. Her past medical history included a hemicolectomy for ulcerative colitis, chronic sinusitis, and gastroesophageal reflux. She had been intubated three times, once emergently in the intensive care unit and twice electively for general anesthesia, with no complications. She had had no hospital admissions for her respiratory symptoms. She was an ex-smoker with a seven pack year history. There was a history of limitation in activity due to dyspnea along with nocturnal symptoms of cough and wheeze. She denied a history of recurrent lung infections.

Physical examination revealed normal vital signs including a room air oxygen saturation of 96%. Her respiratory exam was unremarkable. Spirometry was performed. Both the expiratory and inspiratory phases were abnormal (Fig. 1). The inspiratory curve demonstrated mild plateauing. There was a reduction in the initial peak expiratory flow. The expiratory slope was less steep than in flow-volume loops from normal patients. Near end-expiration, the flow rate increased. This pattern was consistently found on repeated spirometric maneuvers. Post-bronchodilator forced expiratory volume in one second (FEV1) was 2.73 L (92% predicted), forced vital capacity (FVC) was 3.64 L (105% predicted), and FEV1/FVC was 0.75. There was no significant bronchodilator response. Previous spirometry tests were reviewed and this flow-volume abnormality was found on all tests, although it had not been reported. The finding prompted re-examination of the patient’s previous chest radiographs, which had been interpreted as normal. However, upon review, a complete right upper lobe bronchus was seen originating from the trachea (Fig. 2). Bronchoscopy was performed, confirming the right-sided tracheal bronchus (Fig. 3). The orifice of the tracheal bronchus and the right mainstem bronchus were narrowed. Computerized tomography (CT) scan of the chest was performed for an unrelated indication. Curved multiplanar reformatted images demonstrated the true right tracheal bronchus (Fig. 4).
Discussion

Tracheal bronchus describes various bronchial abnormalities originating from the trachea or main bronchus [1]. Right tracheal bronchus has a prevalence estimated at 0.1–2% in bronchoscopic reports, and are more common than left sided anomalies [2,3]. A complete right upper lobe bronchus originating from the trachea, referred to as a true right tracheal bronchus or “pig bronchus”, is less common than other forms with an estimated prevalence of 0.2% [1]. Patients with a tracheal bronchus may be asymptomatic but have also been reported to present with dyspnea, persistent cough or wheeze mimicking asthma or COPD, recurrent pneumonias, bronchiectasis, or hemoptysis. An unrecognized tracheal bronchus may result in serious complications during elective or emergent endotracheal intubation if the bronchus is excluded by the endotracheal tube or, less commonly, if the tracheal bronchus itself is intubated, excluding the rest of the lung. This has lead to persistent hypoxemia, atelectasis, or lung collapse during intubation [4,5]. Tracheal bronchi may be found incidentally on investigations performed for other indications, or unexpectedly as an explanation for symptoms that had been attributed to more common respiratory conditions.

No classic shape has been described for the flow-volume loop in tracheal bronchus. We found one case report of spirographic abnormalities associated with a tracheal bronchus [6]. The spirogram showed a straighter initial expiratory phase suggestive of main airways obstruction [6]. Unfortunately, no flow-volume loop was provided for comparison with our result. In our case, the volume–time curve demonstrated the same pattern (Fig. 5). The expiratory limb recorded in our patient appears to have two
pressures reduce airway diameter, resulting in a degree of air
bronchoscopy. During forced expiration, the elevated pleural
tracheal bronchus and right mainstem bronchus that was seen on
thoracic inlet. The shape of the expiratory limb of our patient's
the proximal location of the narrowed tracheal bronchus to the
normal slope at the end of the exhalation.

The subtle plateauing of the inspiratory limb is likely related to
the proximal location of the narrowed tracheal bronchus to the
thoracic inlet. The shape of the expiratory limb of our patient's
spirogram may be attributed to the narrowing of the orifice of the
tracheal bronchus and right mainstem bronchus that was seen on
bronchoscopy. During forced expiration, the elevated pleural
pressures reduce airway diameter, resulting in a degree of airflow
obstruction. Given the proximal displacement of the tracheal
bronchus relative to the right mainstem bronchus, the reduction in
expiratory flow as the narrowed right-sided bronchi approach their
smallest size, will occur at different times and explain the reduced
slope in the expiratory curve.

The patient's symptoms of exertional dyspnea, wheeze, and
cough, have been described in other patients with a unilaterally
stenosed mainstem bronchus. These symptoms are likely mani-
festations of large airway obstruction, and can be mistaken for
asthma if analysis of the flow-volume loop has not been performed
[7,8]. A similar case to ours involving a patient who was found to
have distal tracheal stenosis and a tracheal bronchus has been
previously presented by Hosker et al. [6]. This patient presented
with obstructive symptoms and evidence of main airways
obstruction on spirometry. The evaluating team postulated that the
patient's wheeze and exertional breathlessness were more fully
explained by the coexisting tracheal stenosis than the presence of
the tracheal bronchus [6]. This conclusion is supported by the
observation that many tracheal bronchi are incidental
findings on imaging performed for other reasons and are asymptomatic [9].
Thus, our patient's clinical presentation may be better explained by

distinct rates of flow, an initial, reduced rate, followed by a near
normal slope at the end of the exhalation.

Relying on spirometric values without assessing the shape of the
flow-volume loop may lead to misdiagnosis and inappropriate
management of lung pathology. Case reports describe patients who
have been treated unsuccessfully as asthmatics, with multiple
medications and often systemic steroids, when further examination
of the flow-volume loop morphology led to additional in-
vestigations and alternate diagnoses [10,11].

Our case highlights the importance of close review of abnormal
flow-volume loops, especially in patients who have suboptimal
response to usual medications. Although our patient had a clinical
diagnosis of asthma, the response to conventional medical therapy
was suboptimal. Furthermore, the shape of the expiratory portion of
the flow-volume loop suggested additional pathology. Although
the patient had been intubated three times without complication,
the discovery of the displaced tracheal bronchus may have clinical
implications for further endotracheal tube insertions. In addition,
the patient's bronchial anatomy may contribute to respiratory
symptoms which had previously been attributed to asthma. The
morphology of the flow-volume loop should be examined closely to
ensure consistency with the patient's diagnosis. Further investi-
gation with imaging or bronchoscopy may be useful in patients
with an abnormal flow-volume loop and symptoms refractory to
usual medical therapy.

Fig. 5. Volume–time curve demonstrating a slight reduction in the initial expiratory
phase. There was no significant difference between pre (blue) and post (red) bron-
chodilator curves.

References

[1] Ghaye B, Szapiro D, Fanchamps J, Dondelinger R. Congenital bronchial ab-
normalities revisited. Radiographics 2001;21:105–19.
[2] Ritsema GH. Ectopic right bronchus: indications for bronchography. AJR Am J
Roentgenol 1983;140:671–4.
[3] Lee D, Kim Y, Kim H, Lim S. Right upper lobe tracheal bronchus: anesthetic
challenge in one-lung ventilated patients — a report of three cases. Korean J
Anesthesiol 2013;64(5):448–50.
[4] O'Sullivan B, Frassica J, Rayder S. Tracheal bronchus: a cause of prolonged
atelectasis in intubated children. Chest 1998;113(2):537–40.
[5] Pribble C, Dean J. An unusual cause of intraoperative hypoxemia. J Clin Anesth
1994;6:247–9.
[6] Hosker H, Clague H, Morriss G. Ectopic right upper lobe bronchus as a cause of
breathlessness. Thorax 1987;42:473–4.
[7] Seccombe LM, Polley L, Rogers PG, Ing AJ. All that wheezes is not asthma: the
value of curves. Thorax 2012;67:564–5.
[8] Mazzei JA, Barro A, Mazzei ME, Portas T, Esteva H. Biphase flow volume curve
due to obstruction of main bronchus by bronchogenic cyst. Respir Med CME
2011;4:116–8.
[9] Dave MH, Gerber A, Bailey M, Gysin C, Hoeve H, Hammer J, et al. The preva-
ence of tracheal bronchus in pediatric patients undergoing rigid bronchos-
copy. J Bronchol Interv Pulmonol 2014;21(1):26–31.
[10] Ravenna F, Caramori G, Panella G, Papi A, Renea G, Adcock IM, et al. An un-
usual case of congenital short trachea with very long bronchi mimicking
bronchial asthma. Thorax 2002;57:372–3.
[11] Ozkaya S, Sengul B, Hamsici S, Findik S, Sahin U, Gumus A, et al. Right sided
arcus aorta as a cause of dyspnea and chronic cough. Multidiscip Respir Med
2012;7(1).