Minohara, M., Hikita, Y., Bell, C., Inoue, H., Hosoda, M., Sato, H. K., Kumigashira, H., Oshima, M., Ikenaga, E., & Hwang, H. Y. (2017). Dielectric collapse at the LaAlO$_3$/SrTiO$_3$ (001) heterointerface under applied electric field. *Scientific Reports, 7*, Article 9516. https://doi.org/10.1038/s41598-017-09920-9

Publisher's PDF, also known as Version of record

License (if available): CC BY

Link to published version (if available): 10.1038/s41598-017-09920-9

Link to publication record on the Bristol Research Portal

PDF-document

This is the final published version of the article (version of record). It first appeared online via Nature at https://www.nature.com/articles/s41598-017-09920-9. Please refer to any applicable terms of use of the publisher.

University of Bristol – Bristol Research Portal

General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/brp-terms/
Dielectric collapse at the LaAlO$_3$/SrTiO$_3$ (001) heterointerface under applied electric field

M. Minohara$^{1,7}$, Y. Hikita$^1$, C. Bell$^{1,8}$, H. Inoue$^2$, M. Hosoda$^{1,3}$, H. K. Sato$^{1,3}$, H. Kumigashira$^4$, M. Oshima$^5$, E. Ikenaga$^6$ & H. Y. Hwang$^{1,2}$

The fascinating interfacial transport properties at the LaAlO$_3$/SrTiO$_3$ heterointerface have led to intense investigations of this oxide system. Exploiting the large dielectric constant of SrTiO$_3$ at low temperatures, tunability in the interfacial conductivity over a wide range has been demonstrated using a back-gate device geometry. In order to understand the effect of back-gating, it is crucial to assess the interface band structure and its evolution with external bias. In this study, we report measurements of the gate-bias dependent interface band alignment, especially the confining potential profile, at the conducting LaAlO$_3$/SrTiO$_3$ (001) heterointerface using soft and hard x-ray photoemission spectroscopy in conjunction with detailed model simulations. Depth-profiling analysis incorporating the electric field dependent dielectric constant in SrTiO$_3$ reveals that a significant potential drop on the SrTiO$_3$ side of the interface occurs within ~2 nm of the interface under negative gate-bias. These results demonstrate gate control of the collapse of the dielectric permittivity at the interface, and explain the dramatic loss of electron mobility with back-gate depletion.

Since the discovery of a variety of interfacial electronic states between insulating and non-magnetic (001)-oriented LaAlO$_3$ and SrTiO$_3$, such as high-mobility metallic states$^1$, superconductivity$^{16-17}$, and magnetism$^{4-7}$, the origin of these properties has been widely discussed$^{18,19}$. Given the robust insulating character of LaAlO$_3$, it is generally understood that the electron gas forms on the SrTiO$_3$ side of the interface$^{16-17}$. Indeed, an in situ photoemission spectroscopy (PES) study revealed downward band bending toward the interface in the SrTiO$_3$. Notable in this system is the dramatic tunability of the interfacial conductivity using external electric fields, attracting considerable attention for fundamental studies, as well as device applications$^{16,18}$. The application of a back-gate voltage $V_g$ tunes multiple parameters in the system simultaneously, including the superconducting transition temperature, the carrier density, the Hall mobility and the confining electric field$^{3,18,20-23}$. In order to understand how these changes are inter-related, especially the dramatic loss of Hall mobility with back-gate depletion$^{20}$, knowledge of the band alignment and potential profile changes with gating is essential.

In this study, we analyze the depth profile of the potential on the SrTiO$_3$ side of LaAlO$_3$/SrTiO$_3$ (001) heterojunctions using synchrotron radiation PES for various $V_g$. A schematic of the experimental setup is shown in Fig. 1. Depth resolution was achieved by varying the energy of the synchrotron-radiation light source - both soft x-ray PES (SX-PES) and hard x-ray PES (HAX-PES) were utilized - combined with precise tuning of the incident and emission angles$^{24}$. Analysis of the SX-PES and HAX-PES core-level spectra with negative $V_g$ reveals an abrupt downward shift of the potential, narrowing the electron confinement to within ~2 nm of the LaAlO$_3$/SrTiO$_3$ interface. These results explain why back-gate depletion modulates the mobility far more strongly than the carrier density, and suggests this is a generic feature of nonlinear dielectrics that can be utilized in device structures.

1Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA. 2Geballe Laboratory for Advanced Materials, Department of Applied Physics, Stanford University, Stanford, California, 94305, USA. 3Department of Advanced Materials Science, The University of Tokyo, Kashiwa, Chiba, 277-8561, Japan. 4Photon Factory, Institute of Materials Structure Science (IMSS), High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, 305-0801, Japan. 5Department of Applied Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan. 6Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, Sayo, Hyogo, 679-5198, Japan. 7Present address: Photon Factory, Institute of Materials Structure Science (IMSS), High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, 305-0801, Japan. 8Present address: H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK. Correspondence and requests for materials should be addressed to M.M. (email: minohara@post.kek.jp)
Results

Photoemission core-level spectroscopy of LaAlO$_3$/SrTiO$_3$. The measured Ti 2p core-level spectra of the LaAlO$_3$/SrTiO$_3$ heterostructures at $V_g = 0$ V and a bare SrTiO$_3$ (001) substrate are shown in Fig. 2. The characteristic probing depth $\lambda$, based on the theoretical study of Tanuma et al.\textsuperscript{25}, was tuned by changing the irradiation photon energy ($h\nu$) and the photoelectron emission angle ($\theta$) with respect to the surface normal. $h\nu$ was 1.2 keV ($\lambda = 2.0$ nm for $\theta = 0$ degree) and 7.9 keV ($\lambda = 10$ nm for $\theta = 0$ degree), $\theta$ was varied from 0 to 80 degrees (also see Fig. 1). The Ti 2p core-level spectra from the LaAlO$_3$/SrTiO$_3$ sample are shifted towards more positive relative binding energy from that of the bare SrTiO$_3$ substrate with no observable Ti$^{3+}$ component, as previously found\textsuperscript{17}.

As the probing depth becomes shallower ($\lambda < 10$ nm), no significant peak shift or broadening characteristic to potential variation, was observed within the experimental resolution of 50 meV. These results together with the gate-tunable transport properties\textsuperscript{20} imply that the potential profile varies on the scale of 10 nm or more in the SrTiO$_3$ from the LaAlO$_3$/SrTiO$_3$ heterointerface. By assuming that all carriers detected from Hall effect under no applied bias ($n_{2D} \sim 2 \times 10^{13}$ cm$^{-2}$) reside within 0.4 nm of SrTiO$_3$ surface and fully contribute to the Ti$^{3+}$ signal, the estimated total volume of Ti$^{3+}$ is still below its practical detection limit of 2~3 at.%. Moreover, the possible carrier distribution, which is interrelated with the potential profile, experimentally prohibits the observation of any Ti$^{3+}$ states present.

Figure 3 show the measured Ti 2p core-levels using (a) SX-PES and (b) HAX-PES with $-100$ V $\leq V_g \leq 100$ V. For all $V_g$, the gate leakage current through the SrTiO$_3$ during the PES measurements was less than 10 nA. The binding energy of the SrTiO$_3$ core-level spectra were normalized to those of the LaAlO$_3$ spectra, which minimizes possible artifacts from the PES measurements, such as fluctuations of the photon energy. For negative $V_g$, the Ti 2p core-level first shifts to more positive relative binding energy from $V_g = 0$ V before saturating at $+0.1 \sim +0.2$ eV in the case of SX-PES, while it remains unchanged for the HAX-PES. Both SX-PES and HAX-PES measurements show no Ti 2p core-level shift for positive $V_g$. Similar results were also obtained in the Sr 3d core-level measurements. The change of the Ti 2p core-level peak position are plotted as a function of $V_g$ in Fig. 3(c) and (d), showing a total energy shift $\sim +0.15$ eV for $V_g < 0$ V for the SX-PES without any hysteresis.

Qualitatively we can examine these results by considering the simultaneous tuning of the sheet carrier density and the potential profile due to the application of negative $V_g$. Considering the SrTiO$_3$ substrate as a capacitor dielectric between the back gate contact and the interface conducting layer, $V_g < 0$ V corresponds to depletion of carriers at the interface resulting in a downward shift of the Fermi energy ($E_F$) towards the conduction band bottom. At the same time however the band-bending is enhanced by the gating. This shifts the center of the electron distribution closer to the interface. For fixed sheet carrier density, $n_{2D}$, the increased confinement shifts $E_F$ upwards in energy, opposite to the effect of depletion. Since the SX-PES Ti 2p core-level shifts to higher binding energy for $V_g < 0$ V the band-bending induced upshift in $E_F$ is dominant. Indeed the dielectric constant of SrTiO$_3$ at room temperature $\varepsilon_r(T = 300 \text{ K}) \sim 350$, gives a total carrier density change of $\sim 2 \times 10^{10}$ cm$^{-2}$ for $V_g = -50$ V. This
is just 0.14% of the measured total Hall sheet carrier density in this sample. The magnitude of the energy shift clearly depends on the probing depth of the PES measurement compared to the characteristic length scale of the confinement potential narrowing. Hence the lack of an observable shift in the HAX-PES data suggests that the most significant changes in the confining potential occur in the topmost layers of the SrTiO3.

Self-consistent simulation for the core-level spectra and potential profile. In order to quantitatively analyze these scenarios, we simulated the potential profile in SrTiO3 as a function of the depth (z) from the interface based on a modified Thomas-Fermi screening model, using the PES data to constrain the results. The scheme of self-consistent calculation is as follows: for a trial potential Φ(z), the carrier density profile n(z) is calculated using

\[ n(z) = \int_{\varepsilon = 0}^{\infty} D(\varepsilon) f(\varepsilon) d\varepsilon, \]

where \( D(\varepsilon) \) is the density of states at electron energy \( \varepsilon \) from the conduction band minimum which is calculated via \( D(\varepsilon) = (2m^* / h^2)^{3/2} \varepsilon(z)^{1/2} / 2\pi^2 \), where \( m^* \) is the effective mass of SrTiO3, \( h \) is Plank's constant divided by \( 2\pi \), and \( \varepsilon(z) \) is based on \( \Phi(z) \) and \( f(\varepsilon) \) is the Fermi-Dirac function. Following ref. 16, we use the three-dimensional form of the density of states. The potential is obtained by solving Poisson's equation

\[ \frac{\partial}{\partial z} \left( \varepsilon_0 \varepsilon(E) \frac{\partial \Phi(z)}{\partial z} \right) = -e_n(z). \]

\( \varepsilon_0 \) is the vacuum permittivity, \( \varepsilon_0(E) \) is the electric field (E) dependent relative permittivity of bulk SrTiO3, and \( e_0 \) is the elemental charge. Here, we assumed other sources of charge, e.g. holes, extrinsic donors and acceptors, are negligible. Equations (1) and (2) were solved self-consistently with a convergence criterion of 0.01% throughout the whole depth region. For each \( V_g \), the two boundary conditions used are \( \Phi(z = 0) = 0 \) and \( \frac{\partial \Phi(z)}{\partial z} \big|_{z = \infty} = 0 \). The former is equal to the energy shift of the Ti 2p core-level peak position in the SX-PES spectra at the appropriate \( V_g \), and the latter is 0 V/m and 1 × 10^5 V/m, for \( V_g = 0 \) and −50 V respectively, given the 0.5 mm SrTiO3 substrate thickness. In order to compare the experimentally obtained spectra with our model, we introduce an evaluation function known as the core-level intensity spectrum \( I(E) \). This is generally computed according to...

Figure 2. Ti 2p core-level spectra of LaAlO3/SrTiO3 heterostructures without bias gate voltage. The relative binding energy is given with respect to the Ti 2p core-level spectra of a bare SrTiO3 substrate as reference (black line). \( \lambda \) is the probing depth controlled by photon energy and emission angle; \( \lambda = 1.6 \) and 10 nm are obtained by HAX-PES (\( h\nu = 7.9 \) keV) with \( \theta = 80 \) and 0 degrees, respectively, while others (\( \lambda = 2.0, 1.4 \) and 1.0 nm) are SX-PES (\( h\nu = 1.2 \) keV) results with varied angles at \( \theta = 0, 45, \) and 60 degrees, respectively.
where $C(E)$ represents a core-level spectrum described by a Voigt function peaked at $E_0$, which in this case we set to zero as we are interested only in the relative change in the spectrum at different $V_g$, not in the absolute value of $E_0$. The final best fit result is determined by minimizing the sum of the squares of the difference between the measured and calculated forms of the $I(E)$ for both the SX-PES and HAX-PES measurements.

The electric field ($\mathcal{E}$) dependent local nonlinear permittivity of SrTiO$_3$, $\varepsilon_r(\mathcal{E}, z)$, must be considered as discussed in previous reports. First we attempted to utilize the reported form of $\varepsilon_r(\mathcal{E})$ in our simulation (Fig. 4(c) inset). However when $n_{2D}$ was constrained to the measured value from Hall effect, satisfactory agreement with the PES spectra was not possible. Even allowing $n_{2D}$ to be a free parameter (allowing for the possibility of localized charge not contributing to the Hall measurement), no value could reasonably fit the spectra and other features such as the core-level shift in Fig. 3(c) (see supplementary materials). The key point is that the reported bulk form of $\varepsilon_r(\mathcal{E})$ did not accurately reproduce the nonlinearity of the dielectric permittivity inferred from the data.

As an alternative, we then assumed a smoothly varying dielectric constant as a function of distance from the interface $\varepsilon_r(z)$ for $V_g = 0$ and $-50$ V based on a simple sigmoid function, which was used as a physically reasonable qualitative form. The self-consistently solved potential and carrier density profiles are shown in Fig. 4(a) and (b). Here the errors of the simulated parameters were estimated with a threshold of 3% increase in the total squared error from the minimum value, except for the error in $\Phi(0)$ which was directly taken from the experimental error in the PES spectra. The comparison between the experimental spectra (open symbols) and the best-fit simulated spectra (solid lines) from the obtained potential profiles are shown in Fig. 4(d) and (e). Good agreement is observed for both the SX-PES and HAX-PES data. The main panel of Fig. 4(c) shows the best fit $\varepsilon_r(z)$ for $V_f = 0$ and $-50$ V in these simulations, and the insets of Fig. 4(c) shows the extracted $\varepsilon_r(z)$.

From these simulations, close to the interface, we find a relatively abrupt potential shift of $-0.15$ eV inside the SrTiO$_3$ for $V_g = -50$ V compared to $V_g = 0$ V. As shown in the inset of Fig. 4(a), the potential crosses $E_F$ around $z = 6$ nm and $2$ nm for $V_g = 0$ and $-50$ V, the former is in good agreement with previous experimental and theoretical estimates of the electron gas thickness being < 10 nm.

Figure 3. Ti 2$p$ core-level spectra of LaAlO$_3$/SrTiO$_3$ heterostructures measured using (a) SX-PES ($h\nu = 1.2$ keV, $\theta = 0$ degree) and (b) HAX-PES ($h\nu = 7.9$ keV, $\theta = 0$ degree) with applied gate voltage. Plots of relative binding energy (B.E.) shift between (c) Ti 2$p$ and La 4$d$ core-level spectra (filled circles), Ti 2$p$ and Al 2$p$ (open triangles) for SX-PES data, and (d) Ti 2$p$ and La 4$d$ core level spectra (filled circles) from HAX-PES data. The error bars in (c,d) were obtained from the accuracy of the peak fitting. The two sets of data points correspond to the forward and backward voltage sweeps to evaluate a possible hysteresis.
Discussion

Experimentally a significant change of the potential around the interface occurred only for $V_g < 0 \text{V}$, and not $V_g > 0 \text{V}$. Based on these calculation results, we can explain this asymmetry by considering the magnitude of $\mathbf{E}$ around $z = 0$. For $V_g = 0 \text{V}$, $\mathbf{E}$ is not large enough to significantly reduce $\varepsilon_r$, and positive $V_g$ only tends to decrease the interfacial electric field. The resultant changes in the band-bending and position of $E_F$ are therefore relatively small and below the PES resolution. This is in stark contrast to the case of $V_g < 0 \text{V}$, where $E(z = 0)$ is large enough to reduce $\varepsilon_r$, which self-consistently enhances the confinement leading to significant changes in the potential which are measurable by SX-PES.

Quantitatively, the collapse of $\varepsilon_r$ with $E$ obtained in the analysis above is more rapid than reported for non-doped SrTiO$_3^{16,30–32}$ and Nb doped SrTiO$_3^{27}$; the latter being somewhat more strongly affected for a given $E$ than the former one. This has important implications for calculations of electron accumulation layers in any...
SrTiO₃-based heterostructure. We note that our self-consistent approach is the same as the one of Copie et al., who utilized the literature form of $\varepsilon_r(\tilde{E})$14. The $\varepsilon_r(\tilde{E})$ relationship reported by Yamamoto et al.23 has also been successfully used to model the depletion layer in metal/SrTiO₃ Schottky junctions2. An important difference between the Schottky depletion layer and the LaAlO₃/SrTiO₃ is the existence of free electrons in the latter, which can screen applied electric fields in addition to the lattice polarization which is the only possibility in the former. Indeed, a recent theoretical study has noted the interplay between electron density changes and lattice polarization34. In order to clarify these points, direct microscopic investigations of the lattice polarization with gate voltage are essential. Noting the large changes in potential over just a few lattice parameters, the failure of the prior experimental measurements of $\varepsilon_r(\tilde{E})$ to capture our data likely reflect the need to explicitly consider $\varepsilon_r$ on short length scales, and include nonlocal effects35, 36. In this sense, our model employing $\varepsilon_r(z)$ is one of the approximations implicitly incorporating the effect of $k$-dependence of $\varepsilon_r$. Despite the flexibility in the functional form of $\varepsilon_r$, an abrupt drop in the potential at the interface is an essential feature required to reproduce our spectroscopic results.

Finally we note the intriguing point that when the electric displacement field $D(\tilde{E})$ is calculated using the new functional form of $\varepsilon_r(\tilde{E})$, $\tilde{E}$ is multi-valued for $0.02 < D \leq 0.08 \text{ Cm}^{-2}$, as shown in Fig. 4(f). Although the underlying physics and effects of such an electrostatic instability are currently not clear, it is possible that the presence of multiple metastable dielectric states in SrTiO₃ close to the interface could induce local structural phase transitions37 and associated effects in resistive switching properties38, in addition to creating an unstable potential profile at the interface. The collapse of $\varepsilon_r$ around the interface, simultaneously enhancing the electron confinement and impurity scattering, especially at low temperatures, explains the substantial decrease in the mobility39 and enhanced localization32 that has been previously observed for back-gating. The strong contrast with top-gating40 suggests that this nonlinear dielectric response provides new device switching approaches in oxide heterostructures.

**Methods**

The LaAlO₃/SrTiO₃ was fabricated on TiO₂-terminated SrTiO₃ (001) substrates by pulsed laser deposition as described elsewhere40. During LaAlO₃ depositions, the substrate was kept at a temperature of 800 °C, and the ambient oxygen pressure was maintained at $1 \times 10^{-3}$ Torr. The LaAlO₃ thickness is 10 unit cells (~4 nm), which is the identical sample used in our previous transport study using back-gate41. SX-PES and HAX-PES synchrotron radiation measurements were carried out under applied $V_g$ at beamline BL2C of the Photon Factory, KEK, Japan and beamline BL47XU of SPring-8, Japan, respectively. The SX-PES and HAX-PES spectra were recorded using a Scienta SES-2002 electron energy analyzer, and a Scienta R-4000 electron energy analyzer, respectively. All PES measurements were performed at room temperature. A schematic of the experimental setup is shown in Fig. 1. $V_g$ was applied from the back of the 0.5 mm thick SrTiO₃ substrate during the PES measurements, with the LaAlO₃/SrTiO₃ interface grounded using Al wire bonding via a gold-coated copper plate. The back of the SrTiO₃ substrate was electrically contacted to this copper plate using silver epoxy.

**References**

1. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO₃/SrTiO₃ heterointerface. *Nature* **427**, 423–426 (2004).
2. Reyren, N. J. et al. Superconducting interfaces between insulating oxides. *Science* **317**, 1196–1199 (2007).
3. Caviglia, A. D. et al. Electric field control of the LaAlO₃/SrTiO₃ interface ground state. *Nature* **456**, 624–627 (2008).
4. Brinkman, A. et al. Magnetic effects at the interface between non-magnetic oxides. *Nat. Mater.* **6**, 493–496 (2007).
5. Dikin, D. A. et al. Coexistence of superconductivity and ferromagnetism in two dimensions. *Phys. Rev. Lett.* **107**, 056802 (2011).
6. Ariando et al. Electronic phase separation at the LaAlO₃/SrTiO₃ interface. *Nat. Commun.* **2**, 188 (2011).
7. Bert, J. A. et al. Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO₃/SrTiO₃ interface. *Nat. Phys.* **7**, 761–771 (2011).
8. Schlom, D. G. & Mannhart, J. Interface takes charge over Si. *Nat. Mater.* **10**, 168–169 (2011).
9. Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. *Nat. Mater.* **11**, 103–113 (2012).
10. Nakagawa, N., Hwang, H. Y. & Muller, D. A. Why some interfaces cannot be sharp. *Nat. Mater.* **5**, 204–209 (2006).
11. Willmott, P. R. et al. Structural basis for the conducting interface between LaAlO₃ and SrTiO₃. *Phys. Rev. Lett.* **99**, 155502 (2007).
12. Kalabukhov, A. et al. Effect of oxygen vacancies in the SrTiO₃ substrate on the electrical properties of the LaAlO₃/SrTiO₃ interface. *Phys. Rev. B* **75**, 121404(R) (2007).
13. Siemons, W. et al. Origin of charge density at LaAlO₃ on SrTiO₃ heterointerfaces: possibility of intrinsic doping. *Phys. Rev. Lett.* **98**, 196802 (2007).
14. Herranz, G. et al. High mobility in LaAlO₃/SrTiO₃ heterostructures: origin, dimensionality, and perspectives. *Phys. Rev. Lett.* **98**, 216803 (2007).
15. Basletic, M. et al. Mapping the spatial distribution of charge carriers in LaAlO₃/SrTiO₃ heterostructures. *Nat. Mater.* **7**, 621–625 (2008).
16. Copie, O. et al. Towards two-dimensional metallic behavior at LaAlO₃/SrTiO₃ interfaces. *Phys. Rev. Lett.* **102**, 216804 (2009).
17. Yoshimatsu, K., Yasuhara, R., Kumigashira, H. & Oshima, M. Origin of metallic states at the heterointerface between the band insulators LaAlO₃ and SrTiO₃. *Phys. Rev. Lett.* **101**, 026802 (2008).
18. Thiel, S., Hammerl, G., Schmehl, A., Schneider, C. W. & Mannhart, J. Tunable quasi-two-dimensional electron gases in oxide heterostructures. *Science* **313**, 1942–1945 (2006).
19. Cen, C. et al. Nanoscale control of an interfacial metal-insulator transition at room temperature. *Nat. Mater.* **7**, 298–302 (2008).
20. Bell, C. et al. Dominant mobility modulation by the electric field effect at the LaAlO₃/SrTiO₃ interface. *Phys. Rev. Lett.* **103**, 226802 (2009).
21. Reyren, N. et al. Gate-controlled spin injection at LaAlO₃/SrTiO₃ interfaces. *Phys. Rev. Lett.* **108**, 186802 (2012).
22. Joshua, A., Pecker, S., Ruhman, J., Altman, E. & Hani, S. A universal critical density underlying the physics of electrons at the LaAlO₃/SrTiO₃ interface. *Nat. Commun.* **3**, 1129 (2012).
23. Rakhmilevitch, D. et al. Anomalous response to gate voltage application in mesoscopic LaAlO₃/SrTiO₃ devices. *Phys. Rev. B* **87**, 125409 (2013).
24. Minohara, M., Horiba, K., Kumigashira, H., Ikenaga, E. & Oshima, M. Depth profiling the potential in perovskite oxide heterostructures by photoemission spectroscopy. *Phys. Rev. B* **85**, 165108 (2012).
25. Tanuma, S., Powell, C. J. & Penn, D. R. Calculation of electron inelastic mean free paths. (IMFPs) VII. Reliability of the TPP-2M IMFP predictive equation. Surf. Interface Anal. 35, 268–275 (2003).

26. Biscaras, J. et al. Two-dimensional superconducting phase in LaTiO$_3$/SrTiO$_3$ heterostructures induced by high-mobility carrier doping. Phys. Rev. Lett. 108, 247004 (2012).

27. Yamamoto, T. et al. Effect of the field dependent permittivity and interfacial layer on Ba$_x$K$_{1-x}$BiO$_3$/Nb-doped SrTiO$_3$ Schottky junctions. Jpn. J. Appl. Phys. 36, L390–L393 (1997).

28. Su, S., You, J. H. & Lee, C. Electron transport at interface of LaAlO$_3$ and SrTiO$_3$ band insulators. J. Appl. Phys. 113, 093709 (2013).

29. Reich, K. V., Schecter, M. & Shklovskii, B. I. Accumulation, inversion, and depletion layers in SrTiO$_3$. Phys. Rev. B 91, 115303 (2015).

30. Neville, R. C., Hoe insensitive, B. A. & Mayor, C. A. Permittivity of strontium titanate. J. Appl. Phys. 43, 2124–2131 (1972).

31. Ang, C., Guo, R., Bhalla, A. S. & Cross, L. E. Effect of electric field and post-treatment on dielectric behavior of SrTiO$_3$ single crystal. J. Appl. Phys. 87, 3937–3940 (2000).

32. Christen, H. M., Mannhart, J., Williams, E. J. & Gerber, C. Dielectric properties of sputtered SrTiO$_3$ films. Phys. Rev. B 49, 12095–12104 (1994).

33. Hikita, Y., Kozuka, Y., Susaki, T., Takagi, H. & Hwang, H. Y. Characterization of the Schottky barrier in SrRuO$_3$/Nb/SrTiO$_3$ junctions. Appl. Phys. Lett. 90, 143507 (2007).

34. Khalsa, G. & Macdonald, A. H. Theory of the SrTiO$_3$ surface state two-dimensional electron gas. Phys. Rev. B 86, 125121 (2012).

35. Stengel, M. & Spaldin, N. A. Origin of the dielectric dead layer in nanoscale capacitors. Nature 443, 679–682 (2006).

36. Hamann, D. R., Muller, D. A. & Hwang, H. Y. Lattice-polarization effects on electron-gas charge densities in ionic superlattices. Phys. Rev. B 73, 195403 (2006).

37. Rössle, M. et al. Electric-field-induced polar order and localization of the confined electrons in LaAlO$_3$/SrTiO$_3$ heterostructures. Phys. Rev. Lett. 110, 136805 (2013).

38. Wu, S. et al. Nonvolatile resistive switching in Pt/LaAlO$_3$/SrTiO$_3$ heterostructures. Phys. Rev. X 3, 041027 (2013).

39. Hosoda, M., Hikita, Y., Hwang, H. Y. & Bell, C. Transistor operation and mobility enhancement in top-gated LaAlO$_3$/SrTiO$_3$ heterostructures. Appl. Phys. Lett. 103, 103507 (2013).

Acknowledgements
The authors are grateful to R. Yasuhara, and S. Toyoda for experimental support, M. S. Bahramy, R. Takahashi, and M. Lippmann for the useful discussions. This work was supported by the Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering, under contract DE-AC02-76SF00515 (experimental work of M.M., Y.H., C.B., H.I., M.H., H.K.S. and H.Y.H.); and by ONR-MURI number N00014-12-1-0976 for modeling and simulations. The experiments with synchrotron radiation were carried out under the approval of Photon Factory Program Advisory Committee (Proposal Nos. 2010G503, and 2008S2-003) and SPring-8 Japan Synchrotron Radiation Research Institute (Proposal No. 2010B1696).

Author Contributions
M.M., Y.H., and M.H. performed PES measurements. Samples were fabricated by C.B., and H.K.S. and H.I. assisted with the simulation of the PES spectra and potential profile. H.K., M.O., and E.I. assisted with the PES measurements at beamlines. Y.H., C.B., and H.Y.H. assisted with the planning, measurements and analysis of the study.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-09920-9

Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017