Updates on the Diagnosis and Management of Glaucoma

Isabella V. Wagner, BS; Michael W. Stewart, MD; and Syril K. Dorairaj, MBBS

Abstract

Glaucoma is the leading cause of blindness throughout the world (after cataracts); therefore, general physicians should be familiar with the diagnosis and management of affected patients. Glaucomas are usually categorized by the anatomy of the anterior chamber angle (open vs narrow/closed), rapidity of onset (acute vs chronic), and major etiology (primary vs secondary). Most glaucomas are primary (ie, without a contributing comorbidity); however, several coexisting ophthalmic conditions may serve as the underlying etiologies of secondary glaucomas. Chronic glaucoma occurs most commonly; thus, regular eye examinations should be performed in at-risk patients to prevent the insidious loss of vision that can develop before diagnosis. Glaucoma damages the optic nerve and retinal nerve fiber layer, leading to peripheral and central visual field defects. Elevated intraocular pressure (IOP), a crucial determinant of disease progression, remains the only modifiable risk factor; thus, all current treatments (medications, lasers, and operations) aim to reduce the IOP. Pharmacotherapy is the usual first-line therapy, but noncompliance, undesirable adverse effects, and cost limit effectiveness. Laser and surgical treatments may lower IOP significantly over long periods and may be more cost effective than pharmacotherapy, but they are plagued by greater procedural risks and frequent treatment failures. Traditional incisional procedures have recently been replaced by several novel, minimally invasive glaucoma surgeries with improved safety profiles and only minimal decreases in efficacy. Minimally invasive glaucoma surgeries have dramatically transformed the surgical management of glaucoma; nevertheless, large, randomized trials are required to assess their long-term efficacy.
enlargement but normal IOP and no other signs of glaucoma are classified as glaucoma suspects.

The risk factors and pathogenesis that underly glaucoma have been well described in the literature; however, the biological basis of the disease remains incompletely understood. The biomechanical and vascular theories of glaucoma propose that elevated IOP compromises axonal integrity at the optic nerve head (ONH), which leads to ganglion cell apoptosis.5 The biomechanical theory posits that abnormally narrow scleral fenestrations at the ONH limit axoplasmic flow, whereas the vascular theory states that decreased perfusion pressure leads to hypoxia and ischemic damage of the ONH.5,7,11 Both theories include IOP as a risk factor; however, one-third of patients with glaucoma have normal IOPs (normal tension glaucoma).5 Glaucoma has been associated with Alzheimer disease12 and a loss of cognitive function,13 which suggests that neurodegeneration may contribute to the pathogenesis.5 However, despite the different pathogenetic theories, elevated IOP consistently contributes to disease progression and remains the only treatable risk factor.5,7

The goal of glaucoma treatment is to lower IOP with medications, laser procedures, and/or operation. First-line therapy is usually pharmacotherapy, with laser and surgical procedures added for further IOP reduction in eyes with inadequate initial responses. Incisional operations consist of filtration procedures (eg, trabeculectomy) or tube shunt implantation, both of which reroute aqueous humor flow past the damaged angle into the subconjunctival space forming a filtration bleb.14 Traditional incisional operations lower the IOP effectively; however, complication rates, including scar tissue proliferation, endophthalmitis, and conjunctival hemorrhage, are high. The IOP-lowering effect often decreases over time, which results in high 5-year reoperation rates (trabeculectomy, 15.1%; tube shunt implantation, 14.0%; EX-PRESS shunt, 18.3%).12-17 These high reoperation rates speak to the need for procedures that increase conventional aqueous outflow while protecting the conjunctiva from surgical manipulation. This has led to the development of several conjunctival sparing, minimally invasive glaucoma surgeries (MIGSs) for the treatment of primary open-angle glaucoma (POAG). Minimally invasive glaucoma surgeries do not reduce IOP as well as traditional filtering procedures, but they have excellent safety profiles.18

We believe that because of the expanding treatment options and increasing worldwide prevalence of glaucoma, an updated commentary on glaucoma and its treatment options is important for medical physicians. In this article, we provide a comprehensive updated review of the diagnosis and management of adult glaucoma through 2022.

METHODS
A broad literature search with no time frame was carried out in PubMed with the following key words: “glaucoma prevalence,” “glaucoma risk factors,” “glaucoma diagnosis,” “glaucoma management,” “open-angle glaucoma,” angle-closure glaucoma,” “secondary glaucoma,” “tonometry,” “glaucoma medication,” “conventional aqueous outflow,” “unconventional aqueous outflow,” “glaucoma laser procedures,” “trabeculectomy,” “glaucoma tube shunt surgery,” and “minimally invasive glaucoma surgery.” Identified articles and their references were scrutinized, and those relevant to the subject matter were selected.
DIAGNOSIS OF GLAUCOMA

Types of Glaucoma

Glaucoma may be broadly categorized as open-angle glaucoma (OAG) and angle-closure glaucoma (ACG). Primary OAG and primary ACG are seen most frequently; however, several ocular conditions cause secondary glaucomas (Table 1).

Most eyes with glaucoma have diminished conventional aqueous outflow despite a normal gonioscopic appearance of the iridocorneal angle. These OAGs are slowly progressive optic neuropathies in which ONH cupping gradually increases and peripheral visual field loss develops. The most common type of glaucoma—the POAG—affects 74% of patients with glaucoma. Outflow resistance may be modulated by hydrodynamic pore-substrate interactions within the inner wall of the Schlemm canal, and patients with POAG have been found to have reduced pore density.

Several types of secondary OAG occur much less frequently than POAG. Pigmentary glaucoma occurs when friction between the lens zonules and iris pigment epithelium releases pigment granules that lodge in the TM and increase outflow resistance. Exfoliative glaucoma, the most common form of secondary OAG, occurs when microscopic clumps of protein fibers are synthesized within the eye and clog the TM. Exfoliation material has also been found in the heart, kidney, liver, and lungs. Other forms of secondary OAG include uveitic and traumatic glaucomas, use of ocular or systemic corticosteroids, and antineoplastic drugs. Increased episcleral venous pressure due to conditions such as carotid-cavernous sinus fistulas may cause OAG.

Angle-closure glaucomas are rapidly progressive ocular neuropathies characterized by the occlusion of at least 270° of the iridocorneal angle. Angle-closure glaucomas are only one-third as common as OAGs; however, they are responsible for approximately 50% of all glaucoma-induced blindness. Primary ACG, which arises from pupillary block (appositional closure of the iridocorneal angle that results from an increasing pressure differential between the anterior and posterior chambers of the eye) or plateau iris (an anteriorly positioned ciliary body that causes contact between the iris and TM with resultant angle crowding), has a global prevalence of 0.6%. Primary ACG occurs most frequently in women, Asians, people with hypermetropic (short) eyes and people with shallow anterior chambers. Affected patients require urgent treatment (usually laser iridotomy) to reverse obstruction of the angle.

Several secondary types of ACG are seen. Neovascular glaucoma, new blood vessels that occlude the angle, may develop from central retinal vein occlusion or diabetic retinopathy and generally carries a poor visual prognosis. Phacomorphic glaucoma...
TABLE 1. Common Glaucoma Types are Listed According to Whether the Anterior Chamber Angle is Open or Closed

Glaucoma type	Clinical features
Open-angle glaucoma	Normal iridocorneal angle; no iris occlusion
Primary open angle (includes normal	ONH degeneration and decrease of aqueous outflow with no apparent etiology
tension glaucoma)	
Pigmentary	Widespread deposition of pigment within the iris and corneal endothelium
	Homogenous pigmentation of TM
	Transillumination defects of iris
Exfoliative	Deposition of exfoliative, dandruff-like material onto the anterior segment structures (eg, zonules, pupillary margin, TM, anterior lens surface)
	Accelerated visual deterioration
Uveitic	Anterior chamber inflammation; excessive elevation of IOP
	Preperimetric, mild optic disk changes
Traumatic	Premature cataract after blunt-force trauma
	Angle recession
	Hyphema
Induced by steroids	IOP spike after the use of topical/systemic steroids
	Increased production of extracellular matrix material (elastin, type IV collagen, and glycosaminoglycans)
	Frequently asymptomatic
Induced by antineoplastic drugs	IOP spike after the use of taxane agents (docetaxel, paclitaxel)
Induced by increased episcleral venous	Dilated episcleral veins
pressure	Resistance to antiglaucoma medications
Angle-closure glaucoma	Closed iridocorneal angle; iris occlusion
Primary angle closure	Appositional angle closure (pupillary block) or observed contact between TM and iris (plateau iris)
Neovascular	Neovascularization within the anterior segment and over the iridocorneal angle
	Retinal ischemia
	Poor visual prognosis
Phacomorphic	Presence of a thick, mature cataract
Induced by iridocorneal endothelial	Secondary corneal edema
syndrome	Iris stroma irregularities
	Peripheral anterior synechiae
	Resistance to antiglaucoma medications
Induced by iris tumor/ciliary body	Synechial angle narrowing because of mass enlargement
tumor/Soemmering ring	Opacification of the posterior capsule
	Pupillary block
Induced by medications	Pupillary block—induced angle closure after the use of adrenergic agonists and anticholinergic agents
	Plateau iris—induced angle closure after the use of cholinergic and sulfonamide agents

*aIOP, intraocular pressure; ONH, optic nerve head; TM, trabecular meshwork.

*bCan be associated with an open or closed iridocorneal angle.
involves angle-closure because of lens intumescence (advanced cataract), and cataract removal typically leads to good visual recovery. \(^37\) Angle-closure may be caused by corneal endothelium abnormalities (eg, iridocorneal endothelium syndromes) \(^38\) or large iris or ciliary body masses. \(^39\) Several medications, including anticholinergics, may precipitate ACG in eyes with preexisting narrow angles. \(^1,40\)

Differentiating between OAG and ACG is usually done via gonioscopic examination with slit lamp viewing. \(^41\) Gonioscopy has long been the gold standard for visualizing the anterior chamber angle (ACA); however, challenges, including lens-eye contact, lack of objective measurements, a steep learning curve, and inconsistent interpretations between physicians, exist. \(^41,42\) Advanced ACA imaging techniques including swept-source optical coherence tomography (OCT), goniphotography systems, and deep learning algorithms have been developed to overcome the limitations of gonioscopy. \(^43\)

Examination

Approximately 50% of individuals in the resource-limited countries are unaware that they have glaucoma, underscoring the importance of patient awareness education in diagnosis and management. \(^3,44,45\) The diagnosis of glaucoma involves risk assessment, measurement of visual acuity, IOP, and corneal thickness, OCT imaging of the retinal nerve fiber layer (RNFL) and ONH, and visual field testing. Because most patients with glaucoma are asymptomatic for years, it is recommended that those with risk factors (advanced age, family history, non-White race, high IOP, and steroid use) be referred to an eye care provider for a glaucoma assessment. \(^3,5\)

Intraocular pressure needs to be monitored regularly in patients at a high risk of developing glaucoma. It is commonly measured using rebound tonometry (iCare ic100; iCare) or the “gold standard” Goldmann applanation tonometry. The iCare tonometer measures IOP-dependent rebound velocity after brief corneal contact, whereas Goldmann applanation tonometry measures the force required to flatten a 3.06-mm diameter segment of the cornea. \(^46\) Agreement in measurements is good between the 2 devices; however, the reliability of the iCare decreases at higher IOPs and with thicker central corneas. \(^47-49\) Normal IOP ranges from 11 to 21 mm Hg \(^50\); however, IOP should be evaluated with consideration of optic nerve defects and/or high central cornea values. \(^51\) Up to 50% of glaucomatous eyes have normal IOP measurements, \(^3,52\) which emphasizes the importance of performing additional diagnostic imaging when indicated.

Making the diagnosis of glaucoma, particularly at an early stage, can be difficult because there is no uniform standard for diagnosis. \(^3\) Structural changes of early glaucoma can be seen with OCT imaging of the optic nerve and macula, and functional changes in advanced glaucoma can be detected with visual field testing. Normal appearances of the ONH, RNFL, and visual field are shown in Figure 2A, C, and E, respectively. All glaucomas are defined by ONH degeneration with disc excavation (Figure 2B) and RNFL thinning (Figure 2D). \(^53\) Optic nerve head damage is characterized by thinning of the neuroretinal rim, usually in the superior and inferior quadrants, although the remainder of the ONH may remain pink with a normal neuroretinal rim. \(^3,53\) Glaucomatous damage leads to retinal ganglion cell apoptosis, which can be seen as thinning between the internal limiting membrane and ganglion cell layer on OCT. \(^53\) As glaucoma progresses, ONH and RNFL abnormalities cause visual field defects (Figure 2F). Visual field defects are often not observed in the early stages of glaucoma because peripheral vision and Snellen visual acuity are preserved until RNFL damage reaches an advanced stage. \(^51\)

A general correlation between OCT imaging and visual field examination can be observed; however, there is no widely accepted method for comparing the two, \(^54\) and diagnosing glaucoma is ultimately up to the discretion of the physician. Once glaucoma has been diagnosed, its severity must be categorized—typically as mild, moderate, or severe. Because all glaucoma types present with structural damage, most classification systems grade severity on the basis of functional visual field abnormalities. Most recently (2015), the *International Classification of Diseases, Tenth Revision*, released a grading system that associates mild glaucoma with a general...
absence of visual field defects, moderate glaucoma with visual field abnormalities in 1 hemifield (but outside 5° of fixation), and severe glaucoma with abnormalities in both hemifields and visual field loss within 5° of fixation.55

MANAGEMENT OF GLAUCOMA

Medical Therapy

Guidelines from the American Academy of Ophthalmology Preferred Practice Pattern (2020) state that an initial IOP reduction of 20%-30% is a suitable goal to slow disease progression, even in eyes with normal tension glaucoma.56 The IOP must be carefully monitored during each follow-up visit, and the IOP control goal should be lowered further if progression continues.56

Intraocular pressure—lowering medications have been the first-line therapy for most patients with glaucoma for several decades (Table 2). Pharmacotherapy for glaucoma has evolved significantly over the past several decades with the introduction of topical carbonic anhydrase inhibitors (CAIs), beta blockers, prostaglandin analogs, and alpha agonists.57 These medications have greater effectiveness and more favorable safety profiles than the older topical (pilocarpine) and systemic (oral CAIs) treatments.57 In accordance with the generally accepted pharmacotherapy principles, the desired IOP range should be achieved with the fewest medications and least adverse effects.5 Because of their tendency to induce glaucoma, ocular and systemic corticosteroids should be administered with caution in at-risk patients.29

Prostaglandin analogs (PGAs) are the most commonly used medications for the treatment of OAG and ocular hypertension. Prostaglandin analogs compensate for decreased TM outflow by increasing outflow through the uveoscleral pathway,58 where aqueous humor moves through the ciliary muscle into the supraciliary and suprachoroidal spaces.59 Prostaglandin analogs are administered once daily, are well tolerated, and have limited systemic adverse effects.5,58 The main ocular adverse effects are eyelash growth, iris pigmentation, and uveitis.60 Because most PGAs do not target the primary outflow pathway (TM), concerns have been raised about their long-term efficacy.57 The recently approved latanoprostene bunod 0.024% may target the TM rather than the uveoscleral pathway,57,60 and compared with timolol 0.5% over 3 months of follow-up, it has superior IOP-lowering efficacy and a comparable safety profile.57,61,62 Prostaglandin analogs are a significant improvement over cholinergic agonists (such as pilocarpine), which induce miosis and increase conventional outflow by decreasing outflow resistance.63 Pilocarpine, a mainstay of glaucoma treatment in the 1970s and 1980s, needed to be administered 4 times per day, a difficult regimen to maintain, which contributed to its being supplanted by beta blockers and PGAs.3

Both CAIs and beta blockers lower the IOP by targeting the aqueous humor production in the ciliary body. After topical administration, CAIs penetrate the cornea and reach the ciliary body epithelium, where they reduce the production of bicarbonate ions.64 The CAIs (dorzolamide 2% and brinzolamide 1%) are administered 2 or 3 times daily,64 but they are generally less effective than PGAs and beta blockers, which limits their use as first-line therapy. Systemic CAIs (methazolamide and acetazolamide) are highly effective, which makes them useful in the treatment of ACG; however, their use is limited by their high incidence of adverse effects that cause 50% of patients to become intolerant after 1 month.

Beta adrenergic antagonists (beta blockers) block the sympathetic nerve endings in the ciliary body epithelium, which decreases the production of aqueous.65 Beta blockers may be nonselective or cardioselective (β1 selective), the latter of which is well tolerated in patients with asthma and chronic obstructive pulmonary disease.65 The advantages of beta blockers include their relatively low cost and once-daily administration.3,5 Topically administered beta blockers enter the venous circulation but escape the first-pass metabolism in the liver, which predisposes the patient to pulmonary (bronchial constriction) and cardiac (arrhythmias) disturbances.5,56 Systemic absorption can be lessened by eyelid closure or gentle punctal occlusion for 2 minutes after topical administration.3

Topical alpha-adrenergic agonists (brimonidine and iopidine) reduce the IOP by
decreasing the aqueous humor production and increasing the outflow. They are administered 2 or 3 times daily and are usually used as second-line agents in combination with other drugs. A retrospective study found that combination treatment (CAI+PGA) was more prevalent in everyday practice than alpha-2 agonists + PGA, suggesting that the administration of alpha-2 agonists may be accompanied by more adverse effects.

Rho kinase inhibitors are a recently introduced medication class that uses a combined mechanism of increasing the conventional outflow and decreasing the episcleral venous pressure. Netarsudil 0.02%, a rho kinase inhibitor approved by the US Food and Drug Administration in 2017, has IOP-lowering efficacy comparable with that of timolol 0.5%, but with more frequent adverse effects.

Pharmacotherapy is an effective short-term treatment strategy; however, limitations to long-term use include cost, adverse effects, and failure to reach the target IOP. Nonadherence to the administration schedule is another significant issue because fewer than half of...
Class	Medications	Adverse effects	Contraindications
Prostaglandin analogs	Bimatoprost, Latanoprost, Tafluprost, Travoprost, Unoprostone, Latanoprostene Bunod	Eyelash growth, Iris darkening, Keratitis, Conjunctival keratitis, Uveitis	Hypersensitivity to ingredients
Cholinergic agonists	Pilocarpine, Carbachol	Myopia, Angle closure, Cataract, Retinal detachment	Miosis, Bradycardia, Retinal detachment, Asthma, Inflammatory eye disease
Carbonic anhydrase inhibitors	First generation (systemic): Acetazolamide, Methazolamide, Dichlorphenamide	First generation (systemic): Renal calculi, Stevens-Johnson syndrome	Allergy to sufa-containing medications (both), Adrenal insufficiency, metabolic acidosis (systemic inhibitors only), Sickle cell disease (topical inhibitors only)
	Second generation (topical): Brinzolamide, Dorzolamide	Second generation (topical): Corneal edema, Metallic taste	
Beta adrenergic antagonists	Nonselective: Carboeol, Levobunolol, Metipranolol, Timolol	Congestive heart failure, Exercise intolerance, Hypotension, Bronchospasm, Bradycardia	Cardiovascular disease, Asthma, Diabetes mellitus, Chronic obstructive pulmonary disease
	β1-selective: Betaxolol		
Alpha adrenergic agonists	Apraclonidine, Brimonidine	Hypotension, Fatigue, Allergic conjunctivitis	Monoamine oxidase inhibitor therapy
Rho kinase inhibitors	Netarsudil	Keratitis, Conjunctival hemorrhage, Corneal verticillata	None
Hyperosmotic agents	Glycerol, Mannitol, Isosorbide	Congestive heart failure, Renal failure, Nausea, Vomiting, Headache	Cardiovascular disease, Renal failure

Common antiglaucoma medications decrease the intraocular pressure by decreasing aqueous humor production or increasing outflow.
the patients with glaucoma regularly use anti-
glaucoma medications as prescribed after 1
year.5,71

Laser Therapy

When pharmacotherapy fails to achieve the
target IOP and prevent vision loss, laser
and surgical procedures are indicated. Laser
procedures effectively lower the IOP and
minimize the long-term costs that are associ-
ated with the long-term use of multiple
pressure-lowering medications.5 A variety
of laser procedures can be performed in
glaucomatous eyes, with the procedure of
choice depending on the etiology of the dis-
ease (Table 3).

Laser trabeculoplasty and ab-interno exci-
mer trabeculostomy (Glautec AG) are both
indicated for OAG that is refractory to phar-
macotherapy. Laser trabeculoplasty—multiple
spots of thermal laser applied directly to the
TM—induces favorable structural changes
that increase the aqueous humor out-
flow.72 Argon laser trabeculoplasty, developed in
1979, uses a with a blue-green continuous-
wave laser (488 and 514 nm) to disrupt the
TM, whereas selective laser trabeculoplasty
(SLT), developed in 1995, uses low energy,
brief duration, large spots from a green,
frequency-doubled laser to target melanin-
containing cells and spare the TM tissue.73

Selective laser trabeculoplasty has largely sup-
planted argon laser trabeculoplasty because of
its favorable safety profile, comparable IOP-
lowering efficacy, and ability for repeated
treatment applications.74 More recently intro-
duced laser trabeculoplasty procedures include
titanium-sapphire laser trabecu-
plasty and pattern scanning trabeculoplasty.
Limited short-term data suggest that both the
procedures have efficacy and safety profiles
similar to that of SLT.74 Laser trabeculoplasty
procedures are generally preferred over opera-
tions because they are less invasive and
possess better safety profiles.3,74 Ab-interno exci-
mer trabeculostomy is a MIGS similar to
laser trabeculoplasty that uses a 308-nm
XeCl excimer laser to create microperforations
in the TM and inner wall of the Schlemm
canal.75 Excimer trabeculostomy has a compara-
able safety profile and IOP-lowering efficacy
similar to SLT over 2 years.75

Patients with ACG require different laser
procedures from those with OAG. A laser pe-
ripheral iridotomy creates a hole in the pe-
ripheral iris and is often performed to
eliminate pupillary block,76 whereas a laser
peripheral iridoplasty uses low-power laser
burns to relieve appositional angle closure
(by shrinking the peripheral iris) in cases
where laser peripheral iridotomy is ineffect-
ive.77 When combined, both treatments
have been shown to be safe and effective in
lowering the IOP in eyes with acute primary
ACG refractory to pharmacotherapy.76 For
eyes refractory to all other medical, surgical,
and laser therapies, a series of cyclodestruc-
tive procedures that damage the ciliary body
epithelium and decrease the IOP by reducing
the aqueous humor secretion may be the final
treatment option.79 These procedures consist of
endoscopic cytophotocoagulation (Endo
Optiks), continuous-wave diode laser (IRI-
DEX Corp), or the newest alternative, Micro-
Pulse transscleral laser therapy (IRIDEX
Corp), which selectively targets the pig-
mented tissue of the ciliary body epithe-
lium.79 Cyclodestructive procedures are also
useful for the secondary forms of glaucoma,
such as uveitic, traumatic, or neovascular
glaucoma; however, these procedures come
have considerable risks and are particularly
difficult to titrate.79

Surgical Treatment

Operations are usually performed when med-
ical and laser treatments have failed to achieve
adequate IOP reduction. Surgical options
consist of the traditional, bleb-based IOP-
lowering operations (trabeculectomy and
tube shunt implantation) and the newer,
conjunctiva-sparing MIGSs (Table 4). Bleb-
based operations can effectively lower IOP;
however, they may develop bleb-related com-
lications and may have high reoperation
rates. As a result, the current role of traditional
procedures in the era of evolving MIGSs is un-
clear. Surgeons’ perspectives are changing80; a
recent practice preferences survey from the
American Glaucoma Society (2017) found
that trabeculectomy has fallen out of favor,
with tube shunt implantation reported as the
preferred incisional surgical treatment in 7 of
8 surgical centers.81 When prospective MIGS
trials are completed, the pendulum may swing in favor of MIGSs.80

Trabecular Outflow Resistance

The juxtacanalicular tissue within the TM is the primary source of outflow resistance in eyes with POAG, with the inner wall of the Schlemm canal serving as an additional line of resistance.82-84 To improve the aqueous outflow and lower the IOP, surgeons bypass the TM by directing the aqueous flow directly into the Schlemm canal or by rerouting the fluid from the anterior chamber into the subconjunctival space.

Traditional Incisional Operations

Trabeculectomy—the “gold standard” surgical glaucoma procedure for several decades—is the creation of a partial thickness scleral flap with excision of a segment of TM to create an alternate drainage route from the anterior chamber to the subconjunctival space.85,86 Trabeculectomy can produce outstanding IOP control, particularly in eyes where an IOP near the low teens is targeted to slow glaucoma progression.87,88 Trabeculectomy may be performed together with cataract extraction (CE) and/or administration of mitomycin C (MMC) on the surface of the sclera to prevent postoperative conjunctival fibrosis.89

TABLE 3. Laser Procedures for the Treatment of Glaucoma

Laser procedure	Preferred use	Pros	Cons
Laser trabeculoplasty	Open-angle glaucoma	• Performed in-office	• Decrease in efficacy over time
• Argon laser trabeculoplasty		• Minimally invasive	• May cause transient IOP spikes and anterior uveitis
• Selective laser trabeculoplasty		• Newer methods protect the TM tissue	
• MicroPulse laser trabeculoplasty			
• Titanium-sapphire laser trabeculoplasty			
• Pattern scanning trabeculoplasty			
Excimer laser trabeculostomy	Open-angle glaucoma	• Performed in-office	• Not sufficient to relieve the angle closure caused by multiple mechanisms
		• Minimally invasive	• May promote cataract progression
		• Minimizes tissue fibrosis	
Laser peripheral iridotomy	Angle-closure glaucoma (pupillary block)	• Performed in-office	• May cause atrophic iris scarring and loss of visual acuity
		• Highly effective in the treatment of pupil block —induced angle closure	• May develop Urets-Zavalia syndrome
Laser peripheral iridoplasty	Angle-closure glaucoma (plateau iris)	• Performed in-office	• May cause atrophic iris scarring and loss of visual acuity
		• Can relieve appositional angle closure after an LPI	• May develop Urets-Zavalia syndrome
		• Effective in the treatment of angle closure caused by multiple mechanisms	
Cyclodestructive procedures	Glaucoma refractory to surgical treatment	• High IOP-reducing efficacy from mechanism targeting ciliary body	• Associated with a series of complications (hyphema, macular edema, mydriasis, decrease in visual acuity, keratitis, etc)
• Endoscopic cyclophotocoagulation			• May require multiple treatments
• Continuous-wave diode transscleral laser			• Performed in the operating room
• MicroPulse diode transscleral laser therapy			

IOP, intraocular pressure; LPI, laser peripheral iridotomy; TM, trabecular meshwork.
Procedure	Type	Pros	Cons
Trabeculectomy	Incisional operation	• Excellent IOP control	• Bleb-related complications
	Antimetabolite-associated	• Can adjust the rate of fluid flow	
Ex-PRESS mini shunt operation	Incisional operation	• Favorable safety profile to trabeculectomy	• Bleb-related complications
		• Minimal IOP fluctuations	• High incidence of erosion, displacement, and hypotony
Valved drainage implants	Incisional operation	• Immediate IOP reduction	• Bleb-related complications
• Ahmed FP7 valve		• Valve reduces hypotony-associated complications during early postoperative period	• Malfunctioning of the valve may result in hypotony
• Ahmed FP8 valve			
• Pars plana Ahmed			
Nonvalved drainage implants	Incisional operation	• Greater surface area promotes sustained reduction of IOP	• Bleb-related complications
• Molteno glaucoma drainage device			• Delayed encapsulation and high incidence of hypotony in older Molteno and Baerveldt
• Baerveldt glaucoma implant			models
• Ahmed ClearPath drainage device			
• PAUL glaucoma implant			
Trabecular bypass	MIGSs targeting the trabecular outflow pathway	• Low risk of hypotony	• Does not achieve IOP reduction comparable to trabeculectomy
• iStent		• Favorable safety profile	• Not suitable for severe glaucoma
• iStent inject		• Effective for mild and moderate glaucoma	• High risk of fibrosis
• iStent inject W			
• Hydrus Microstent			
Canaloplast	MIGSs targeting the trabecular outflow pathway	• Low complications rates	• Generally not suitable for severe glaucoma
• Ab-externo canaloplasty without tensioning suture		• ABC: safer and easier than ab-externo approach	
• Ab-externo canaloplasty with tensioning suture			
• ABC			
Ab-interno trabeculotomy; goniotomy	MIGSs targeting the trabecular outflow pathway	• Goniotomy: clean excision of TM limits fibrosis and closure	
• Trabectome			
• Goniotome			
• Gonioscopy assisted transluminal trabeculotomy			

Continued on next page
Procedure	Type	Pros	Cons
iAccess (Glaukos)	MIGSs targeting the trabecular outflow pathway	Targets all 3 points of outflow resistance (TM, Schlemm canal, collector channels)	
Kahook Dual Blade goniotomy	MIGSs targeting the trabecular outflow pathway	Ease of use	No long-term efficacy
Kahook Dual Blade Glide	MIGSs targeting the trabecular outflow pathway	Combined TM excision and delivery of viscoelastic promotes high IOP reduction	Potential risk of fibrosis
Trabeculotomy/viscodilation	MIGSs targeting the trabecular outflow pathway	Greater IOP-lowering efficacy than angle-based MIGS	Bleb-related complications
OMNI Surgical System	MIGSs targeting the trabecular outflow pathway	Suitable for severe glaucoma	Subconjunctival fibrosis
Goniotomy/viscodilation	MIGSs targeting the trabecular outflow pathway	Greater IOP-lowering efficacy than angle-based MIGS	High risk of transient IOP spikes and fibrosis
STREAMLINE Surgical System	MIGSs targeting the subconjunctival space		
Ab-interno subconjunctival implant	MIGSs targeting the subconjunctival space		
XEN45 gel stent	MIGSs targeting the subconjunctival space		
PRESERFLO microshunt	MIGSs targeting the subconjunctival space		
Ab-interno suprachoroidal implant	MIGSs targeting the suprachoroidal space	Greater IOP-lowering efficacy than angle-based MIGS	High risk of transient IOP spikes and fibrosis
CyPass MicroStent (withdrawn)	MIGSs targeting the suprachoroidal space		
iStent SUPRAc glaucoma implant	MIGSs targeting the suprachoroidal space		
MINject	MIGSs targeting the suprachoroidal space		
STARfo glaucoma implant	MIGSs targeting the suprachoroidal space		
SOLX gold shunt (SOLX, Inc)	MIGSs targeting the suprachoroidal space		

aIOP, intraocular pressure; MIGS, minimally invasive glaucoma surgery; TM, trabecular meshwork.
bProcedures have been divided into traditional filtration operations (creation of a scleral flap and filtration bleb) and newly emerging microinvasive glaucoma operations.
cStill in development.
Trab-MMC alone, trab-MMC+CE, and trab-MMC in pseudophakic eyes were found to produce comparable IOP reductions and success rates after 5 years; however, other studies have found lower success rates with trab-MMC in pseudophakic eyes, probably because of postoperative inflammation after CE.

Tube shunt implantation, an alternative to trabeculectomy, has gained popularity in recent years. The implantation of tube shunts, often referred to as glaucoma drainage devices (GDDs), creates a permanent sclerostomy to drain the aqueous humor into the subconjunctival space. The advantages of GDDs over trabeculectomy include decreased conjunctival scarring (by diverting aqueous drainage to the equatorial region of the eye and away from the limbus) and the formation of a permanent bleb (plate tube). Most GDD designs are modeled after the early Molteno implant and may be valved (promotes unidirectional flow) or nonvalved (passive-acting). The Ahmed Baerveldt Comparison and Ahmed Versus Baerveldt studies compared the safety and efficacy of the valveless Baerveldt 350-mm2 GDD (Johnson & Johnson) to that of the valved Ahmed-FP7 GDD (New World Medical Inc). Both devices were effective in reducing the IOP and the need for IOP-lowering medications, although a favorable IOP decrease, medication burden reduction, and safety profile (but with a higher incidence of hypotony) were seen with the valveless Baerveldt 350-mm2 GDD at 5 years. Recent advancements in valveless GDD operation include the development of the Ahmed ClearPath GDD (New World Medical Inc) and PAUL glaucoma implant (PGI; Advanced Ophthalmic Innovations). The Ahmed ClearPath GDD has several unique design features, such as a flexible, low-lying plate with anterior suture points to increase the ease of implantation, and a prethreaded 4-0 polypropylene ripcord to mitigate the risk of hypotony that has been reported in other GDD studies. The PGI GDD has a smaller plate that occupies less space in the ACA and a relatively large endplate surface area through which the aqueous humor can be absorbed. Early outcome data with the Ahmed ClearPath GDD and PGI found mean IOP reductions of 43% and 51.6% at 6 months, respectively.

Both trabeculectomy and GDD implantation are effective treatment options for refractory glaucoma—eyes with poor results after both pharmacotherapy and laser. A 3-year comparison of trabeculectomy and tube shunt operation found that both techniques effectively lower the IOP (trabeculectomy: 49.5%; tube: 41.4%), with the tube group having a better safety profile. In surgically naive eyes with refractory glaucoma, the Primary Tube vs Trabeculectomy study found trabeculectomy to be superior, whereas the Tube vs Trabeculectomy study reported similar outcomes in both groups at 5 years postoperatively in eyes that were not surgically naive; however, eyes in the tube group had lower failure and reoperation rates. Frequent complications within the early postoperative period included choroidal effusion (Tube, 14%; Trab, 13%) and shallow anterior chamber (Tube, 10%; Trab, 10%), and late postoperative complications included persistent corneal edema (Tube, 16%; Trab, 9%) and bleb encapsulation (Tube, 2%; Trab, 6%). Many of the eyes needed postoperative interventions (Tube: 25%, Trab: 70%). Craven et al estimated that 25% of patients treated with trabeculectomy or a tube shunt needed additional interventions to address surgical failure.

Minimally Invasive Glaucoma Surgeries

The potential complications and surgical failures seen with traditional incisional operations speak to the need for better procedures for mild-to-moderate glaucoma that are minimally invasive yet durable. This has led to the introduction of MIGSs, which have revolutionized glaucoma care over the past decade. This group of novel procedures may sufficiently lower the IOP to delay or minimize the need for traditional incisional procedures, and they are more suitable for patients with mild-to-moderate glaucoma. Minimally invasive glaucoma surgeries can be performed together with cataract operation, which makes them a valuable option for glaucomatous eyes with advanced cataracts (from aging, phacomorphic glaucoma, traumatic glaucoma, etc). Unlike the
traditional filtration procedures, MIGSs are relatively simple to perform because they require surgical skills similar to those required for modern-day cataract surgery, and they can be performed by cataract surgeons who are not glaucoma fellowship trained. Minimally invasive glaucoma surgeries have favorable safety profiles and are less invasive than traditional incisional operations. One of the management challenges with performing MIGSs lies in whether to bypass or enhance the conventional aqueous outflow because the currently available MIGS devices target 1 of the 3 pressure-lowering mechanisms: (1) the trabecular outflow pathway, referring to “angle-based” MIGSs that reroute the aqueous flow toward the Schlemm canal; (2) the subconjunctival space, referring to MIGSs that create a drainage pathway, diverting the aqueous humor to the subconjunctival space; (3) the suprachoroidal space, referring to MIGSs that increase the uveoscleral pathway outflow and divert the aqueous flow toward the suprachoroidal space.

MIGSs Targeting the Trabecular Outflow Pathway

Approximately 50%-75% of the outflow resistance lies within the TM and the inner wall of the Schlemm canal, whereas the remainder resides within the Schlemm canal and its distal collector channels. This identifies the conventional outflow pathway as an attractive first target for the treatment of glaucoma. Angle-based MIGSs take advantage of the lower resistance within the Schlemm canal and divert the aqueous flow to the canal, thereby bypassing most of the outflow resistance. Despite this, however, a significant proportion of outflow resistance remains, thereby making these procedures unsuitable for patients with severe glaucoma who require significant IOP reduction. Minimally invasive glaucoma surgeries that target the trabecular outflow pathway fall within the categories of trabecular bypass implant, ab-interno canaloplasty, ab-interno trabeculotomy (AIT), goniotomy, and the more recently introduced combined goniotomy/viscodilation and trabeculotomy/viscodilation procedures.

The iStent (Glaukos Corporation), the first trabecular bypass implant, has produced excellent results when implanted into glaucomatous eyes that are well-controlled on 1 IOP-lowering medication. Additional IOP lowering is observed when placing more than 1 stent, which led to the development of the iStent inject and iStent inject W. A study comparing the early outcomes of the iStent and iStent inject reported favorable IOP (iStent, 4.3%; iStent inject, 19.1%) and medication reduction results (iStent, 72.2%; iStent inject, 94.1%) in the iStent inject group at 12 months, with a similar safety profile observed in both the groups. Ab-interno canaloplasty is typically performed with the iTrack microcatheter (Nova Eye Medical), and a retrospective comparison with ab externo canaloplasty (iTrack with a 9-0 prolene tensioning suture) found comparable safety and efficacy. Ab-interno trabeculotomy and goniotomy procedures bring the anterior chamber, Schlemm canal, and distal collector channels into direct communication through the disruption or partial excision of the TM. The Trabectome (Neomedix), a long-standing AIT procedure, uses electrocauterization to ablate the TM and has been documented to safely and effectively reduce the IOP. Recent advancements in excisional goniotomy include the Kahook Dual Blade (KDB; New World Medical) and KDB Glide (New World Medical) devices. Although limited data on KDB Glide exist within the literature, several studies of KDB have shown that it has a favorable safety profile and similar effectiveness to AIT procedures.

Angle-based MIGS procedures are easy to perform and have favorable safety profiles, but compared with traditional trabeculectomy, they have more limited abilities to lower IOP. Distal outflow (collector channels and episcleral veins), which is often overlooked in the treatment of glaucoma, may play a pivotal role in IOP control and is unaffected by canalicular-based MIGS procedures. Studies with bovine and monkey eyes have found that collector channels may alter the pressure distribution within the Schlemm canal, suggesting that the aqueous outflow may depend on the location of these distal elements. Resistance within the Schlemm canal and the collector channels...
appears to limit the outflow increase of trabecular bypass procedures to 13%-26% and IOP reduction to the mid-teens, but a greater pressure decrease is expected if a moderate dilation of the Schlemm canal and the collector channels is achieved.84,113,114 Goniotomy and trabeculotomy may be performed concurrently with the implantation of an ophthalmic visco-surgical device (STREAMLINE Surgical Systems, New World Medical; OMNI360 Surgical Systems, Sight Sciences) to the Schlemm canal to reduce the distal outflow resistance and promote further IOP reduction.84,113,114 Interim analyses of the STREAMLINE and OMNI trials have shown effective, sustained IOP reductions and meaningful medication reductions at 6 and 12 months, respectively.115,116

\textbf{MIGSs Targeting the Subconjunctival Space}

Minimally invasive glaucoma surgeries devices within this category work similarly to trabeculectomy by diverting the aqueous humor flow directly into the subconjunctival space.100 The main disadvantage of this strategy is the potential for subconjunctival fibrosis, which for trabeculectomy may be prevented by the intraoperative application of MMC.105 Subconjunctival MIGS devices, which are designed based on the Hagen-Poiseuille equation, include the ab-internally implanted XEN45 gel stent (Allergan) and the ab-externally implanted PRESERFLO microshunt (Santen). Both devices produce comparable safety profiles, IOP reductions, and overall surgical success at 2 years.117 The analysis of both implantation approaches with an experimental microfluidic system found higher outflow resistance and less predictable bleb formation with ab-interno implantation. This may affect the long-term IOP control and could direct the development of future subconjunctival-based MIGS devices.118

\textbf{MIGSs Targeting the Suprachoroidal Space}

The third category of MIGSs aims to increase the uveoscleral outflow.100 The uveoscleral pathway is not limited by the pressure “floor” formed by episcleral venous pressure; thus, diverting the aqueous humor into the suprachoroidal space could have a greater lower IOP capacity.119 Unfortunately, current studies have yet to realize such results. After the recall of CyPass (Alcon) in 2018 because of corneal endothelial cell loss from malpositioned devices, most suprachoroidal MIGSs are still under investigation.119 A review of recent studies indicates favorable safety profiles and effective short-term IOP reductions to the mid-teens with the iStent SUPRA (Glaukos Corporation), STARflo (iSTAR Medical), and gold implant (SOLX, Inc). Longer follow-ups and more robust trial designs are still required for the US Food and Drug Administration approval of suprachoroidal MIGSs,120 and long-term efficacy may be limited by fibroblast migration and proliferation.121

\textbf{CONCLUSION}

The pathogenesis of glaucoma is multifactorial and incompletely understood, and diagnosis methods and management strategies are constantly being improved. Treatment outcomes, safety profiles, and recovery times have improved with the introduction of MIGSs. Future work should aim to develop MIGS devices with greater IOP-lowering capabilities than traditional incisional operations.

\textbf{POTENTIAL COMPETING INTERESTS}

The authors report no competing interests.

\textbf{ACKNOWLEDGMENTS}

The authors acknowledge Jason S. Calhoun, COA, for the ultrasound biomicroscopy image (Figure 1).

\textbf{Abbreviations and Acronyms.} ACA, anterior chamber angle; \textit{ACG}, angle-closure glaucoma; \textit{AIT}, ab-interno trabeculotomy; \textit{CAL}, carbuncular anhydrase inhibitor; \textit{CE}, cataract extraction; \textit{GDD}, glaucoma drainage device; \textit{IOP}, intraocular pressure; \textit{KDB}, Kahook Dual Blade; \textit{MIGS}, minimally invasive glaucoma surgery; \textit{MMC}, mitomycin C; \textit{OAG}, open-angle glaucoma; \textit{OCT}, optical coherence tomography; \textit{ONH}, optic nerve head; \textit{PGA}, prostaglandin analog; \textit{PGI}, PAUL glaucoma implant; \textit{POAG}, primary open-angle glaucoma; \textit{RNFL}, retinal nerve fiber layer; \textit{SLT}, selective laser trabeculoplasty; \textit{TM}, trabecular meshwork.

\textbf{Correspondence:} Address to Syril K. Dorairaj, MBBS, Department of Ophthalmology, 4500 San Pablo Rd., Jacksonville, FL 32224 (dorairaj.syril@mayo.edu).

\textbf{ORCID}

Isabella V. Wagner: \\https://orcid.org/0000-0001-5386-3692

Mayo Clín Proc Inn Qual Out 632 December 2022;6(6):618–635 doi.org/10.1016/j.mayocpiqo.2022.09.007

www.mcpiqojournal.org
REFERENCES

1. Kang JM, Tanna AP. Glaucoma. Med Clin North Am. 2021;105(3):493-510.
2. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081-2090.
3. Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma: a review. JAMA. 2014;311(18):1901-1911.
4. Hollands H, Johnson D, Hollands S, Simel DL, Jainpia D, Sharma S. Do findings on routine examination identify patients at risk for primary open-angle glaucoma? The rational clinical examination systematic review. JAMA. 2013;309(19):2035-2040.
5. Stein JD, Khawaja AP, Weizer JS. Glaucoma in adults-screening, diagnosis, and management: a review. JAMA. 2021;325(2):164-174.
6. Sunderland DK, Sapra A. Physiology, aqueous humor circulation. In: StatPearls [Internet]. StatPearls Publishing; 2022. [cited 2021 May 20].
7. Sit AJ, Liu JH. Pathophysiology of glaucoma and continuous measurements of intraocular pressure. Mol Cell Biomech. 2009;6(1):57-69.
8. Goel M, Picciani RG, Lee RK, Bhattacharya SK. Aqueous humor dynamics: a review. Open Ophthalmol J. 2010;4:432-59.
9. Khazaeni B, Khazaeni L. Acute closed angle glaucoma. In: StatPearls [Internet]. StatPearls Publishing; 2022. [cited 2021 May 20].
10. Stovall C, Burgwyn CF, Tamr AM, Ethier CR, Lasker/IARF Initiative on Astrocytes and Glaucomatous Neurodegeneration Participants. Biomechanical aspects of axonal damage in glaucoma: a brief review. Exp Eye Res. 2017;157:13-19.
11. Flammer J, Orgul S, Costa VP, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21(4):359-393.
12. Helmer C, Malet F, Rougier MB, et al. Is there a link between open-angle glaucoma and dementia? The Three-City-Alenier cohort. Ann Neurol. 2013;74(2):171-179.
13. Koc F, Mutlu ZA, Gallacher J, et al. Association of retinal nerve fiber layer thinning with current and future cognitive decline: a study using optical coherence tomography. JAMA Neurol. 2018;75(10):1198-1205.
14. Rodgers CD, Meyer AM, Rosenberg NC, et al. The impact of conjunctival flap method and drainage cannula diameter on bleb survival in the rabbit model. PLoS One. 2018;13(3):e0196968.
15. Lee DA, Higginbotham EJ. Glaucoma and its treatment: a review. Am J Health Syst Pharm. 2005;62(7):691-699.
16. Craven ER, Singh IP, Yu TM, Rhoen S, Sadruddin OR, Sheybani A. Repopulation rates and disease costs for primary open-angle glaucoma patients in the United States treated with incisional glaucoma surgery. Ophthalmol Glaucoma. 2012;5(3):297-305.
17. Gedde SJ, Herndon LW, Brandt JD, et al. Postoperative complications in the Tube Versus Trabeculectomy (TVT) study during five years of follow-up. Am J Ophthalmol. 2012;153(5):804-814.e1.
18. Brandão LM, Grieshaber MC. Update on minimally invasive glaucoma surgery (MIGS) and new implants. J Ophthalmol. 2019;2019:20358915.
19. Kwon YH, Fingert JH, Kuehn MH, Alvard WL. Primary open-angle glaucoma. N Engl J Med. 2009;360(1):111-1124.
20. Vajaranant TS, Wu S, Torres M, Varma R. The changing face of primary open-angle glaucoma in the United States: demographic and geographic changes from 2011 to 2050. Am J Ophthalmol. 2012;154(2):303-314.e3.
Lindén C, Alm A. Prostaglandin analogues in the treatment of glaucoma. Am J Ophthalmol. 2006;142(2):332-334.

Joseph J, Ve RS, Pai HV, et al. Agreement and repeatability of the iCare rebound tonometer in measuring intraocular pressure with three types of application tonometers. Am J Ophthalmol. 2006;142(2):212-215.

Gao F, Liu X, Zhao Q, Pan Y. Comparison of the iCare rebound tonometer and the Goldmann application tonometer. Exp Ther Med. 2017;13(5):1912-1916.

Machetele R, Morligh M, Patel BC. Intraocular pressure. In: StatPearls [Internet]. StatPearls Publishing. 2022. https://www.ncbi.nlm.nih.gov/books/NBK532237/. Accessed June 21, 2022.

Cohen LP, Pasquale LR. Clinical characteristics and current treatment of glaucoma. Cold Spring Harb Perspect Med. 2014;4(6):a017236.

Weinreb RN, Khaw PT. Primary open-angle glaucoma. Curr Opin Ophthalmol. 2019;30(5):398-411.

Weinreb RN, Scassellati SF, or Zitolin BS, Vittitow J, Weinreb RN. Comparison of latanoprostene bunod 0.024% and timolol maleate 0.5% in open-angle glaucoma as recorded by the United Kingdom General Practitioner Research Database. Clin Ophthalmol. 2008(2):321-329.

Brooks AM, Gilles WE. Ocular beta-blockers in glaucoma management. Clinical pharmacological aspects. Drugs Aging. 1992(2):308-221.

Brooks AM, Gilles WE. Ocular beta-blockers in glaucoma management. Clinical pharmacological aspects. Drugs Aging. 1992(2):308-221.
85. Binbrahim IH, Bergström AK. The role of trabeculectomy in enhancing glaucoma patient’s quality of life. Oman J Ophthalmol. 2017;10(3):150-154.
86. Rotchford AP, King AJ. Moving the goal posts definitions of success after glaucoma surgery and their effect on reported outcome. Ophthalmology. 2010;117(1):18-23. e3.
87. Al Habash A, Aljasim LA, Owaidhah O, Edward DP. A review of the efficacy of Mitomycin C in glaucoma filtration surgery. Clin Ophthalmol. 2019;15:1945-1951.
88. Kansal V, Armstrong JJ, Hurtik CM. Trends in glaucoma filtration procedures: a retrospective administrative health records analysis over a 13-year period in Canada. Clin Ophthalmol. 2020;14:501-508.
89. Pantalon A, Ferran C, Tarcoveanu F, Chiselita D. Success of trabeculectomy in advanced open angle glaucoma. Clin Ophthalmol. 2021;15:2219-2229.
90. Mathew RG, Parvizi S, Murdoch IE. Success of trabeculectomy surgery in relation to cataract surgery: 5-year outcomes. Br J Ophthalmol. 2019;103(10):1395-1400.
91. Ogata-Iwao M, Inatani M, Takihara Y, Inoue T, Iwao K, Tanihara H. A prospective comparison between trabeculectomy with Mitomycin C and phacotrabeculectomy with Mitomycin C Acta Ophthalmol. 2013;91(6):e500-e501.
92. Wang J, Barton K. Aqueous shunt implantation in glaucoma. Taiwan J Ophthalmol. 2017;77(3):30-137.
93. Melancon S, Fiore PM. Molteno implant surgery in refractory glaucoma. Surv Ophthalmol. 1990;34(6):441-448.
94. Christakis PG, Zhang D, Budenz DL, et al. Five-year pooled data analysis of the Ahmed Baerveldt comparison study and the Ahmed versus Baerveldt study. Am J Ophthalmol. 2017;176:118-126.
95. Grover DS, Kahook MY, Seibold LK, et al. Clinical outcomes of Ahmed ClearPath implantation in glaucomatous eyes: a novel valveless glaucoma drainage device. J Glaucoma. 2022;31(5):335-339.
96. Vallabhi NA, Mason F, Yu JTS, et al. Surgical technique, perioperative management and early outcome data of the PAUL® glaucoma drainage device. Eye (Lond). 2022;36(10):1905-1910.
97. Gedde SJ, Schifferman JC, Feuer WJ, et al. Treatment outcomes in the Tube Versus Trabeculectomy (TVT) study after five years of follow-up. Am J Ophthalmol. 2012;153(5):789-803.e2.
98. Gedde SJ, Feuer WJ, Lim KS, et al. Treatment outcomes in the primary Tube versus trabeculectomy study after 3 years of follow-up. Ophthalmology. 2020;127(3):333-345.
99. Toonkar MN, Mattow C, Singh K, et al. American Glaucoma Society position paper: microinvasive glaucoma surgery. Ophthalmol Glaucoma. 2020;3(1):1-6.
100. Pereira ICF, van de Wijdeven R, Wyss HM, Beckers HMJ, den Toonder JPM. Conventional glaucoma implants and the new MIGS devices: a comprehensive review of current options and future directions. Eye (Lond). 2021;35(2):3202-3221.
101. Luthra JA, Meyer PAR, Khatri TZ, Martin KR. The effects of trabecular bypass surgery on conventional aqueous outflow, visualized by hemoglobin video imaging. J Glaucoma. 2020;29(8):665-666.
102. Battista SA, Lu Z, Hofmann S, Fredo T, Overby DR, Gong H. Reduction of the available area for aqueous humor outflow and increase in meshwork herniations into collector channels following acute IOP elevation in bovine eyes. Invest Ophthalmol Vis Sci. 2008;49(12):5346-5352.
103. Johnson M. What controls aqueous humour outflow resistance? Exp Eye Res. 2006;82(4):545-557.
104. Rosenquist R, Epstein D, Melamed S, Johnson M, Grant WM. Outflow resistance of enucleated human eyes at two different perfusion pressures and different extents of trabeculectomy. Curr Eye Res. 1998;9(12):233-240.
105. Grant WM. Experimental aqueous perfusion in enucleated human eyes. Arch Ophthalmol. 1963;73:783-801.
106. Guedes RAP, Gravina DM, Lake JC, Guedes VMP, Chauhaba A. One-year comparative evaluation of iStent or iStent inject implantation combined with cataract surgery in a single center. Adv Ther. 2019;36(10):2797-2810.
107. Gallardo MJ, Supnet RA, Ahmed IK. Circumferential viscodilation of Schlemm’s canal for open-angle glaucoma: ab-interno vs ab externo canaloplasty with tensioning suture. Clin Ophthalmol. 2018;12:2493-2498.
108. Schelbini EM, Kaleem MA, Swamy R, Saeedi OJ. Microinvasive glaucoma surgery: an evidence-based assessment. Expert Rev Ophthalmol. 2017;12(4):331-343.
109. Barry M, Alahmadi MW, Alahmadi M, Al-Muzaini A, Al-Mohammad M. The safety of the Kahooke Dual Blade in the surgical treatment of glaucoma. Cureus. 2020;12(1):e6682.
110. Doranj S, Tam MD, Balasubramani GM. Twelve-month outcomes of excisional goniotomy using the Kahooke Dual Blade® in eyes with angle-closure glaucoma. Clin Ophthalmol. 2019;13:1779-1785.
111. Durr GM, Töteberg-Harms M, Lewis R, Fea A, Marolo P, Ahmed IK. Current review of excimer laser Trabeculostomy. Eye Vis (Lond). 2020;7:24.
112. Lu Z, Zhang Y, Fredo TF, Gong H. Similar hydrodynamic and morphological changes in the aqueous humor outflow pathway after washout and Y27632 treatment in monkey eyes. Exp Eye Res. 2011;93(4):397-404.
113. Zhou J, Smedley GT. A trabecular bypass flow hypothesis. J Glaucoma. 2005;14(1):74-83.
114. Zhou J, Smedley GT. Trabecular bypass: effect of Schlemm canal and collector channel dilation. J Glaucoma. 2006;15(5):446-455.
115. Hirsch L, Catlar J, Vold S, et al. Canaloplasty and trabeculotomy ab interno with the OMINI system combined with cataract surgery in open-angle glaucoma: 12-month outcomes from the ROMEO study. J Cataract Refract Surg. 2021;47(7):907-915.
116. Lazzano-Gomez G, Garg SJ, Yeu E, Kahook MY. Interim analysis of STREAMLINE® surgical systematic clinical outcomes in eyes with glaucoma. Clin Ophthalmol. 2022;16:1313-1320.
117. Scheres LM, Kujić-Aleksiv S, Ramdas WD, et al. XEN® Gel Stent compared to PRESERFLO® MicroStent implanta- tion for primary open-angle glaucoma: two-year results. Acta Ophthalmol. 2021;99(3):e433-e440.
118. Lee RMH, Bourrell Y, Eames I, Brocchiini S, Khaw PT. The implications of an ab interno versus ab externo surgical approach on outflow resistance of a subconjunctival drainage device for intrascleral pressure control. Trans Vis Sci Technol. 2019;8(3):58.
119. Shah M. Micro-invasive glaucoma surgery – an intervention glaucoma revolution. Eye Vis (Lond). 2019;6:29.
120. Kammer JA, Mundy K. Suprachoroidal devices in glaucoma surgery. Middle East Afr J Ophthalmol. 2015;22(1):45-52.
121. Vinod K. Suprachoroidal shunts. Cureus Ophthalmol. 2018;6(6):618-635.