Research Paper

Effect of Bioflora and Cinnamon Extract Consumption on Dyslipidemia and Cardiovascular Disease in a Diabetic Rat Model

Fatemeh Shahrestan1, *Parvaneh Jafari1, Aram Gharebaghi1, Iman Khani Farahani2, Esmaeil Shahrestan3

1. Department of Microbiology, Faculty of science, Islamic Azad University, Arak branch, Arak, Iran.
2. Department of Materials Engineering, Faculty of Engineering, Shiraz University, Shiraz, Iran.
3. Department Physical Education and Sport Science, Brojerd Branch, Islamic Azad University, Brojerd, Iran.

ABSTRACT

Background and Aim: Diabetes mellitus is one of the leading causes of death, and its prevalence is increasing annually because of the change in lifestyle. Increased blood glucose level and dyslipidemia are the major symptoms of this metabolic disease. Currently, the main and effective treatment for diabetes is the use of medication such as insulin. Its control by using herbal products has received a lot of attention in the world. The aim of this study is to evaluate the effects of bioflora (a probiotic supplement) and aqueous extract of cinnamon in improvement of blood glucose level, dyslipidemia, and reduction of cardiovascular diseases in diabetic rats.

Methods & Materials: Thirty-five male Wistar rats were prepared and randomly divided into five groups of negative control, positive control, probiotic (treated with bioflora 3.2×10^8 CFUs/day for 30 days), cinnamon (treated with 200 mg/kg of cinnamon aqueous extract for 30 days), and probiotic + cinnamon. Diabetes was induced by intra-peritoneally injection of streptozotocin. The rats’ weight, blood glucose level, lipid profile, high sensitivity C-Reactive Protein (hs-CRP) and Atherogenic Index (AI) were measured at the end of experiment to predict the risk of cardiovascular diseases.

Ethical Considerations: This study ethically approved in Research Centre of Islamic Azad University of Arak (Code: IR.IAU.ARAKREC1397.005). All interventions performed in accordance with the Guide for Care and Use of Laboratory Animals prepared by the Institute of Laboratory Animal Resources.

Results: Induction of diabetes caused severe weight lost in rats, but the weight loss was lower in groups treated with probiotic. The blood glucose level in probiotic + cinnamon group was significantly reduced. Bioflora reduced triglyceride, cholesterol, and Low-Density Lipoprotein Cholesterol (LDL-C) levels, while cinnamon extract significantly reduced triglyceride and LDL-C levels compared to the positive control group. AI and hs-CRP values were reduced in the probiotic group compared to control groups. There was no synergistic effect by combined use of bioflora and cinnamon extract.

Conclusion: Bioflora effectively prevented dyslipidemia by improving intestinal microbiota, lowering blood glucose level, and improving lipid profile and, therefore, reduced the risk of cardiovascular diseases.

Key words: Diabetes, Cardiovascular disease, Dyslipidemia, Lipid profile, hs-CRP, Probiotic, Cinnamon extract

* Corresponding Author: Parvaneh Jafari, PhD.
Address: Department of Microbiology, Faculty of science, Islamic Azad University, Arak branch, Arak, Iran.
Tel: +98 (912) 2267223
E-mail: p-jafari@iau-arak.ac.ir
Extended Abstract

Introduction

Diabetes mellitus is an endocrine disease characterized by unusual lipid and sugar metabolisms. The global prevalence of diabetes has been rising rapidly. It is one of the leading causes of death in low- and middle-income countries [2, 3]. There is an association between diabetes, metabolic syndrome and Cardiovascular Disease (CVD). Increased plasma level of Low-Density Lipoprotein (LDL) and Very-Low-Density Lipoprotein (VLDL) during metabolic syndrome, contribute to the pathogenesis of atherosclerosis [6-9]. Patients with diabetes are 2-4 times more at risk of CVD morbidity and mortality than individuals without diabetes. This study aimed to evaluate the effect of bioflora probiotic and aqueous extract of cinnamon plant on the amelioration of metabolic syndrome symptoms in rat model of diabetes. Bioflora is a commercial probiotic containing four probiotic strains include Lactobacillus acidophilus, Bifidobacterium longum, Bifidobacterium lactis, and Bifidobacterium bifidum.

Materials and Methods

In this study, 35 four-week-old male Wistar rats were purchased from Pasteur Institute of Iran. During the experiments, the animals were fed ad-libitum and had access to water all the times and kept under standard conditions.

After 10 days of adaptation, rats were randomly divided into 5 groups of negative control (n=7, healthy rats), positive control (n=7, untreated diabetic rats), probiotic group (n=7, diabetic rats treated with bioflora probiotic 3.2×10^8 CFUs/day), cinnamon group (n=7, diabetic rats treated with 200 mg/kg cinnamon aqueous extract daily), and probiotic + cinnamon (n=7). A single high dose (60 mg/kg body weight) intra-peritoneal injection of Streptozotocin (STZ) was used to induce diabetes in rats. Only rats with a basal blood glucose level above 300 mg/dL were considered diabetic. After development of diabetes, rats were orally gavaged by 1 ml suspension of probiotic, cinnamon aqueous extract, or both for four weeks. At the end of experiment, the animals were anesthetized and 5 ml of blood samples were then extracted directly from their heart. The serum was separated from the clot by centrifugation and kept at -20°C. The glucose levels and lipid profile were assessed by using a specific assay kit (colorimetric). Quantitative immunoturbidimetric assay was used for identifying the high sensitivity C-Reactive Protein (hs-CRP) as a cardiovascular risk marker. Atherosclerosis Index (AI) was defined as log (Triglyceride/HDL-C).

Results

The STZ-induced diabetes caused a significant reduction in the body weight of animals where it was greater in animals treated with cinnamon aqueous extract (Table 1). The administration of bioflora probiotic increased the weight of rats in the probiotic group compared to other diabetic groups. It seems that the probiotic caused improvement in

| Table 1. Mean levels of weight, blood glucose, lipid profile, AI and hs-CRP in different study groups |
|---|---|---|---|---|
| **Variables** | **Mean±SD** | **Mean±SD** | **Mean±SD** | **Mean±SD** |
| | **Weight (g)** | **Glucose (mg/dl)** | **Triglyceride (mg/dl)** | **LDL-C (mg/dl)** |
| Negative control | 21.33±1.48^a | 168.3±100.49^a | 69.01±8.62^b | 13.97±2.53^a |
| Positive control | -28.50±3.50^c | 468.70±12.78^a | 119.00±6.49^a | 26.88±1.69^a |
| Probiotic | -7.75±0.75^a | 329.05±8.19^c | 41.25±2.95^{^b} | 17.00±1.02^{^b} |
| Cinnamon | -29.01±2.00^{bc} | 337.01±9.29^a | 71.33±8.51^b | 29.05±3.21^a |
| Probiotic + Cinnamon | -11.96±2.14^{bc} | 323.30±8.57^c | 41.33±.4.06^c | 14.50±0.50^c |
| **Variables** | **Mean±SD** | **Mean±SD** | **Mean±SD** | **Mean±SD** |
| | **HDL-C (mg/dl)** | **cholesterol (mg/dl)** | **hs-CRP (mg/lit)** | **AI** |
| Negative control | 23.25±1.44^a | 56.50±4.91^a | 2.76±0.11^a | 0.453±0.02^a |
| Positive control | 23.33±0.88^a | 75.75±4.03^a | 3.99±0.22^a | 0.699±0.02^{ac} |
| Probiotic | 19.67±1.29^a | 44.50±4.11^a | 2.53±0.16^a | 0.280±0.25^a |
| Cinnamon | 18.05±2.08^a | 61.04±3.0^a | 4.08±0.71^a | 0.598±0.07^{ac} |
| Probiotic + Cinnamon | 19.75±2.32^a | 56.25±2.25^a | 3.04±0.27^a | 0.278±0.01^a |

Common letters in row shows there is no significant difference between value
feed conversion ratio and feed uptake. Treatment with both bioflora probiotic and cinnamon extract led to a reduction in blood glucose, and also in cholesterol and triglyceride levels. The induction of diabetes had no any significant effect on the HDL-cholesterol (HDL-C) concentration. The LDL-Cholesterol (LDL-C) concentration, however, increased significantly with the diabetes induction. Bioflora probiotic reduced the LDL-cholesterol level while the cinnamon extract had no significant effect on this blood factor. The AI value was increased in rats due to bioflora probiotic administration. The hs-CRP, which is one of the most important indicators of the risk of developing CVD, was increased in the positive control group. This factor significantly decreased in the probiotic group but its level in the cinnamon groups was not different from that in the positive control group. There was no reliable evidence of synergy between Bioflora probiotic and aqueous extract of cinnamon in amelioration of diabetes symptoms in rats.

Discussion

Insulin is a key hormone in glucose and lipid metabolisms. Insulin can regulate the production of a number of proteins affecting the circulating levels of lipoproteins. Insulin deficiency or insulin resistance in diabetes can lead to the development of dyslipidemia. Hence, people with diabetes are at high risk of CVDs. The results of this study showed that the blood glucose level in the groups treated with bioflora probiotic and cinnamon extract decreased by 19.65% and 29.81%, respectively. The most important antidiabetic components of cinnamon are cinnamaldehyde, cinnamate, cinnamic acid, and eugenol. Procyanidin type A is an important polymer in cinnamon which increases the glucose absorption and glycogen synthesis in tissue while reduces the glucose uptake by intestinal epithelial cells [26, 27]. Some probiotic strains increase the glucagon gene expression and cause glucose hemostasis by upregulating the Peroxisome Proliferator Activated Receptor γ (PPAR-γ) transcription factor [28-30].

The cinnamon extract improves lipid profile by inhibiting the β-hydroxy-β-methylglutaryl-coenzyme-A (HMG Co-A) reductase and reducing the oxidative stress. It is well documented that some bioflora probiotic strains can deconjugate the bile salts and lead to cholesterol reduction. The short-chain fatty acids produced by bioflora probiotic strains also inhibit the cholesterol synthesis in liver. Our results showed that bioflora reduced the risk of atherosclerosis by improvement of lipid profile. The hs-CRP level, as an indicator of CVD, is high in diabetic patients. The concentration of this factor increases 1000 times during infectious diseases and CVDs. Some strains of bioflora especially bifidobacteria, by inhibiting oxygen free radicals and reducing IL-6 gene expression, inhibit the increase of hs-CRP and reduce inflammation. It was concluded that use of bioflora as supplement can prevent and improve metabolic syndrome in diabetic patients.

Ethical Considerations

Compliance with ethical guidelines

This study ethically approved in Research Centre of Islamic Azad University of Arak (Code: IR.IAU.ARA-KREC1397.005). All interventions performed in accordance with the Guide for Care and Use of Laboratory Animals prepared by the Institute of Laboratory Animal Resources.

Funding

This article is extracted from a research project approved by research committee of Islamic Azad university of arak (Code: 266). Research deputy of this University financially suppoted part of this study.

Authors’ contributions

Conceptualization: Parvaneh Jafari, Fatemeh Shahrestan; Methodology: Fatemeh Shahrestan, Aram Gharbaghi, Esmaeil Shahrestan; Data analysis: Parvaneh Jafari, Aram Gharbaghi; Investigation: All authors.

Conflicts of interest

The authors declared no conflict of interests.

Acknowledgements

The authors gratefully acknowledge the financial support of the Islamic Azad University of Arak and Tak Gene Company for kindly providing us with probiotic product.
پژوهشی دریس لیپیدمی و کاهش خطر ابتلا به بیماری های قلبی−عروقی با استفاده از پروبیوتیک بیوفلورا و عصاره دارچین در رت های دیابتی شده با استرپتوزوتوسین

فاطمه شریعتی۱، قرائت جوادی۱، آرام قربانی۲، ایمان خانی فراهانی۳، اسماوی شریعتی۴

۱. گروه میکروبیولوژی، دانشکده علوم پایه، دانشگاه آزاد اسلامی، واحد اراک، اراک، ایران
۲. گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه شیراز، شیراز، ایران
۳. گروه تربیت بدنی و علوم ورزشی، دانشگاه آزاد اسلامی، واحد بروجرد، بروجرد، ایران

۱. پروانه جعفری*
دانشگاه آزاد اسلامی، واحد اراک، دانشکده علوم پایه، گروه میکروبیولوژی.

درمان بر اساس روش‌های ترکیبی بهبود عنصر حساس C-

کلیدواژه ها: دیابت، بیماری قلبی-عروقی، دیس لیپیدمی، الگوی لیپیدی، پروتئین واکنشگر فوق حساس، پروبیوتیک، عصاره دارچین

مقدمه

دیابت ملیتوس یکی از متداول‌ترین بیماری‌های جهانی است. این بیماری با سنگین انسداد را انگیزه می‌دهد و در برخی از جویان انسانی به واسطه افزایش قند خون و خیزک‌ها درون‌الکلی، جغدی و اسکلتی، کاهش گسترده در برخی از بهبود الگوی میکروبیوتای روده، کاهش قند خون و بهبود الگوی لیپیدی، به صورت مؤثری از دیس لیپیدی ناشی از دیابت ممانعت می‌کند و درنتیجه خطر ابتلا به بیماری‌های قلبی-عروقی را کاهش می‌دهد.

نتایج

دریافت شد که ابتلا به دیابت سبب کاهش شدید وزن رت‌ها شد، اما در گروه‌های دریافت‌کننده پروبیوتیک یافته‌ها کاهش وزن کمتری مشاهده شد. کارگیری پروبیوتیک و دارچین به صورت مؤثری سبب کاهش قند خون شد. پروبیوتیک سرمی خون شد. در گروه‌های تیمارهای شده با دارچین، تری‌گلیسرید LDL-C، الگوی لیپیدی، و ریبوز، کلسترول و ماکروالکلیک در حیات خونی تولید شد. در گروه‌های تیمارهای شده با پروبیوتیک، کاهش می‌تواند نسبت به گروه کنترل منفی و مثبت نشان دهد، هرچند می‌تواند در انتقال آیویاک، تالپایر ویژه وکتور هم کاهش پیدا کند.

ملاحظات اخلاقی

این پژوهش با کد اخلاقی IR.IAU.ARAK.REC.1397.005 ارائه و بررسی شد.

کلیدواژه‌های: دیابت ملیتوس، بیماری قلبی-عروقی، دیس لیپیدمی، الگوی لیپیدی، پروتئین واکنشگر فوق حساس، پروبیوتیک، عصاره دارچین

اطلاعات مقاله:

1398 مهر 27: تاریخ دریافت
1398 آبان 27: تاریخ پذیرش
1399 خرداد 12: تاریخ انتشار
در میکروب‌های روده به خصوص بتای اسیدهای چربی باعث کاهش گلوکونئوژنز در کبد و افزایش حساسیت به انسولین و افزایش میزان گلوکاگون و سایتوکاین های پیش التهابی می‌شود. این اسیدهای چرب به واسطه نشانه‌های سازمان بهداشت جهانی، این گیاه متداول ترین در بیماری‌های خاصی است که اخیراً محققان به آن توجه می‌کنند.

به همین دلیل است که امروزه استفاده از غذاهای جدی به میکروبیوتا وارد کرده که در کاهش سلامت نمود پیدا می‌کند. به واسطه استفاده از آنتی‌بیوتیک‌ها، استرس و آسیب‌های دیابت است. متأسفانه زندگی شهرنشینی به واسطه تغییر الگوی ناهنجاری و ناهنجاری در حفظ هموستاز بدن و ممانعت از بسیاری از بیماری‌ها مانند اپیدمی‌های قلبی-عروقی با توجه به خصوصیات پروبیوتیک در کاهش خطر ابتلا به بیماری‌های قلبی-عروقی در مبتلایان به دیابت، خطر ابتلا به این بیماری و مرگ و میر و ریسیکو واسکولارت در افراد دیابتی به واسطه غیر طبیعی شدن الگوی لیپیدی است. در این پژوهش، تأثیر پروبیوتیک تجاری نام داران مکمل مورد استفاده در افراد دیابتی است. این گیاه دارای مواد مکمل می‌باشد که حاوی الگوی لیپیدی است که به واسطه خود می‌تواند از رشد به‌افزایش خونی هنگام و به نتیجه ایفای مسئولیت در خاصیت انسولینی و کاهش میزان CRP و میزان LDH و خطر ابتلا به بیماری‌های قلبی-عروقی در افراد دیابتی به واسطه غیر طبیعی قلبی-عروقی را در افراد کاهش می‌دهد و می‌تواند مسیر عملکرد ناشی از افراد دیابت در ارتباط مستقیم با التهاب مزمن به بهبود دیس لیپیدمی و کاهش خطر ابتلا به بیماری‌های قلبی-عروقی با استفاده از بیوفلورا و عصاره بیفیدوم و حصاره راهرو در درمانی که با استفاده از NGPs و Fortified Functional Foods می‌باشد.

مقدمه و رویکرد

11. Glucagon like peptide-1
12. Functional Foods
13. Next Generation of Probiotic or NGP
14. Fortified
15. Insulin potentiating Factor
16. BioFlora
17. Synergism
18. B. bifidum
19. B. longum
20. B. lactis
21. L. acidophilus

روش درمانی کلیه پیروی بیماری درمانی انتخاب شده، از این رو پیشگیری از ابتلا به این بیماری و کنترل آن هزینه‌های فیزیکی است.

19. B. longum
20. B. lactis
21. L. acidophilus

لطفاً شرایط و شرایط مربوط به استفاده از این پژوهش را با عضو علمی و کنترل از دیپارتمان مایکروبیوتا در دانشگاه تهران درک کنید.
کاهش وزن رت ها در گروه های کنترل مثبت و عصاره شد. نتایج حاصل به صورت میانگین و انحراف معیار گزارش و ارزیابی (ساخت ایتالیا) ساعت قطع شد و پس از وزن کشی با استفاده از اورتان (سیگما به هنگام استفاده، عصاره در آب مقطر رقیق شد، به نحوی که هر لازم به ذکر لک ست منظور یکسان سازی شرایط، رت های گروه کنترل منفی و عصاره روزنها 1 آب کلوژ شدند.

آزمونهای بیوشیمیایی

در پایان خور آزمون، سسترسی حیوان به غذا به مدت 15 ساعت قطع شد و سپس از وزن کشی با استفاده از اپراتور (سیگما - پروتئین) ایتالیا به مدت 48 ساعت گرفته شد. نمونه خون با دوران 10000 rpm گرفته شد. نمونه خون با دوران 10000 rp
گروه‌های دریافت کننده پروبیوتیک و عصاره دارچین، کاهش قند خون به صورت معنی‌داری نسبت به گروه کنترل منفی (جدول شماره 2) نشان داد که قند خون در تمامی گروه‌ها به صورت معنی‌داری کاهش یافت (P < 0.001) (بیشتر از گروه کنترل منفی بود). تیمار با پروبیوتیک و عصاره دارچین به تنهایی و به صورت ترکیبی باعث کاهش قند خون شد که نسبت به گروه کنترل منفی بیشتر بود (P < 0.001). در گروه‌های دریافت کننده پروبیوتیک، کاهش قند خون به صورت مؤثرتری نسبت به گروه دریافت کننده عصاره دارچین دیده شد (P < 0.001) (بیشتر از گروه کنترل منفی بود). سینرژی بین مصرف همزمان عصاره دارچین و پروبیوتیک در کاهش قند خون ملاحظه نشد (P > 0.05).

تیمار با پروبیوتیک و عصاره دارچین به تنهایی و به صورت ترکیبی باعث کاهش قند خون شد که نسبت به گروه کنترل منفی بیشتر بود (P < 0.001). در گروه‌های دریافت کننده پروبیوتیک، کاهش قند خون به صورت مؤثرتری نسبت به گروه دریافت کننده عصاره دارچین دیده شد (P < 0.001) (بیشتر از گروه کنترل منفی بود). سینرژی بین مصرف همزمان عصاره دارچین و پروبیوتیک در کاهش قند خون ملاحظه نشد (P > 0.05).
به صورت معنی‌داری سبب کاهش تری‌گلیسرید در رت‌های دیابتی شد. در نتیجه، به سرعت کاهش تری‌گلیسرید و کلسترول تام سرمی نشان داد که تنظیم کننده تمایز سلول‌های می‌کند. همان‌طور که گفته شد عصاره دارچین بهبود الگوی لیپیدی کمک که کاهش میزان تری‌گلیسرید و کلسترول تام سرمی را نسبت به گروه کنترل مثبت کشته سلول‌های روده کوهک را کاهش می‌دهد. عصاره دارچین را افزایش می‌دهد و نتیجه آن در شرایط به کار گرفته در این تحقیق، اتصلاً اسیدهای چرب زنجیره پروبیوتیک اشاره کرد که فاکتور رونویسی (PPAR-γ)، افزایش بیان ناقل‌های گلوکز در غشای می‌کند. این اسیدهای چرب منبع انرژی سلول‌های روده‌ها با تخمیر فیبرهای غذایی، اسیدهای چرب با زنجیره کوتاه و هورمون‌های مؤثر بر جذب و مصرف انرژی همانند GLP-1 و GPR41، بیان پپتید مشابه گلوکاگون به افزایش بیان پپتید مشابه گلوکاگون در هورمون‌های تکثیری اختصاصی معنی‌دار بود. سینامیک اسید به سینامالدهید موجود در عصاره آبی دارچین با اثر ضد دیابتی می‌توان پلیمرهای گلیکوژن در کبد را افزایش و جذب گلوکز در روده کوچک را نام برد. این پلیمرها جذب گلوکز و میزان افزایش حساسیت سلول‌ها به انسولین و در نتیجه کاهش قند خون می‌شوند. سینامتانین از دیگر ترکیبات حاوی این گیاه می‌تواند گلوکونتاز را در کبد کاهش دهد و از سطح قند خون کاهش مؤثری داشته باشد و اثر هماوزیلی بین پروبیوتیک و عصاره دارچین بهبود نشان داد. بهبود دیس‌لیپیدمی و کاهش خطر ابتلا به بیماری‌های قلبی-عروقی با استفاده از پروبیوتیک بیوفلورا و عصاره دارچین در رت‌های دیابتی شده با استرپتوزوتوسین نشان داد که با استفاده از گروه حاوی بیوفلورا و عصاره دارچین بهبود الگوی لیپیدی و کاهش قند خون و سطح سرمی انزیم‌های شاخصهای خطر ابتلا به بیماری‌های قلبی-عروقی بهبود یافت. CRP به دلیل اینکه با سطح سرمی CRP مثبت معنی‌دار بود (به ترتیب P=0/012 و P=0/018). نتایج حاصله از این تحقیق نشان داد که عصاره دارچین در کاهش قند خون و بهبود الگوی لیپیدی در رت‌های دیابتی می‌شود. در حالی که در گروه پروبیوتیک این مقدار مشابه ماند.

22. Cinnamaldehyde
23. Cinnamate
24. Cinnamic acid
25. Eugenol
دیسپلئینی ناشی از کاهش سطح HDL به واسطه افزایش تری‌گلیسریدها نیز محسوس می‌شود. ثابت شده است که فعال شدن این پروتئین سبب کاهش تری‌گلیسرید پلاسمایی می‌شود و سطح را نیز کاهش می‌دهد که این امر در تحلیل حلالی از این تحصیل به میان می‌آید.

ملاحظات اخلاقی

این مقاله با این اختیار به شماره IR.IAU.ARAK.REC.1397.005 ثبت می‌شود و تمامی تداخلات صورت گرفته نشانگر شرایط سطح HDL مخاطبانی است. نتایج حاصل نشان داد که بیوفلورا کارایی بالاتری در بهبود سندرم متابولیک حاصل از این بیماری دارد و می‌تواند بهبود ساختاری و پروتئین‌های HDL را نیز بهبود بخشید.

بحث

بیماران دیابتی و بیوفلورا در یک حالت بیماری‌پیش‌بینی با استفاده از پروتئین‌های HDL و LDLC یافته شد که این امر در تحلیل حلالی از این بیماری دارد و می‌تواند بهبود ساختاری و پروتئین‌های HDL را نیز بهبود بخشید.

مراجع

1. डिलियोस्टरॅस, जूहन, लिपोप्रोटीन, एम, एचडीएल, एचडीएल, एलएचएल, एलएचएल, एलएचएल.
2. एचडीएल, एलएचएल, एलएचएल, एलएचएल, एलएचएल, एलएचएल.
3. आरोपی, एचडीएल, एलएचएल, एलएचएल, एलएचएल, एलएचएल.
4. एचडीएल, एलएचएल, एलएचएल, एलएचएल, एलएचएल, एलएचएल.
5. एचडीएल, एलएचएल, एलएचएल, एलएचएल, एलएचएल, एलएचएल.
[32] Shah NJ, Swami OC. Role of probiotics in diabetes: A review of their rationale and efficacy. 2017.

[33] Aw W, Fukuda Sh. Understanding the role of the gut ecosystem in diabetes mellitus. Journal of Diabetes Investigation. 2018; 9(1):5-12. [DOI:10.1111/jdi.12673] [PMID] [PMCID]

[34] Mishra AK, Dubey V, Ghosh AR. Obesity: An overview of possible role(s) of gut hormones, lipid sensing and gut microbiota. Metabolism. 2016; 65(1):48-65. [DOI:10.1016/j.metabol.2015.10.008] [PMID]

[35] Ebrahimi FS, Rad AH, Mosen M, Abbasi-azadeh F, Tabrizi A, Khalili L. Effect of L. acidophilus and B. lactis on blood glucose in women with gestational diabetes mellitus: A randomized placebo-controlled trial. Diabetology & Metabolic Syndrome. 2019; 11(1):75. [DOI:10.1186/s13098-019-0471-5] [PMID] [PMCID]

[36] Gadelha CJMU, Bezerra ANJvwb. Effects of probiotics on the lipid profile: Systematic review. Jornal Vascular Brasileiro. 2019; 18:e20180124.

[37] Brown AP, Dinger N, Levine BS. Stress produced by gavage administration in the rat. Contemporary topics in laboratory animal science/ American Association for Laboratory Animal Science. 2000; 39(1):17-21.

[38] Yao BC, Meng LB, Hao ML, Zhang YM, Gong T, Guo Z-gJoMR. Chronic stress: a critical risk factor for atherosclerosis. Journal of International Medical Research. 2019; 47(4):1429-40. [DOI:10.1177/0300060519826820] [PMID] [PMCID]
