Global, regional, and national progress towards Sustainable Development Goal 3.2 for neonatal and child health: all-cause and cause-specific mortality findings from the Global Burden of Disease Study 2019

Summary

Background Sustainable Development Goal 3.2 has targeted elimination of preventable child mortality, reduction of neonatal death to less than 12 per 1000 livebirths, and reduction of death of children younger than 5 years to less than 25 per 1000 livebirths, for each country by 2030. To understand current rates, recent trends, and potential trajectories of child mortality for the next decade, we present the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 findings for all-cause mortality and cause-specific mortality in children younger than 5 years of age, with multiple scenarios for child mortality in 2030 that include the consideration of potential effects of COVID-19, and a novel framework for quantifying optimal child survival.

Methods We completed all-cause mortality and cause-specific mortality analyses from 204 countries and territories for detailed age groups separately, with aggregated mortality probabilities per 1000 livebirths computed for neonatal mortality rate (NMR) and under-5 mortality rate (U5MR). Scenarios for 2030 represent different potential trajectories, notably including potential effects of the COVID-19 pandemic and the potential impact of improvements preferentially targeting neonatal survival. Optimal child survival metrics were developed by age, sex, and cause of death across all GBD location-years. The first metric is a global optimum and is based on the lowest observed mortality, and the second is a survival potential frontier that is based on stochastic frontier analysis of observed mortality and Healthcare Access and Quality Index.

Findings Global U5MR decreased from 71.2 deaths per 1000 livebirths (95% uncertainty interval [UI] 68.3–74.0) in 2000 to 37.1 (33.2–41.7) in 2019 while global NMR correspondingly declined more slowly from 28.0 deaths per 1000 livebirths (26.8–29.5) in 2000 to 17.9 (16.3–19.8) in 2019. In 2019, 136 (67%) of 204 countries had a U5MR at or below the SDG 3.2 threshold and 133 (65%) had an NMR at or below the SDG 3.2 threshold, and the reference scenario suggests that by 2030, 154 (75%) of all countries could meet the U5MR targets, and 139 (68%) could meet the NMR targets. Deaths of children younger than 5 years totalled 9.65 million (95% UI 9.05–10.30) in 2000 and 5.05 million (4.27–6.02) in 2019, with the neonatal fraction of these deaths increasing from 39% (3.76 million [95% UI 3.53–4.02]) in 2000 to 48% (2.42 million; 2.06–2.86) in 2019. NMR and U5MR were generally higher in males than in females, although there was no statistically significant difference at the global level. Neonatal disorders remained the leading cause of death in children younger than 5 years in 2019, followed by lower respiratory infections, diarrhoeal diseases, congenital birth defects, and malaria. The global optimum analysis suggests NMR could be reduced to as low as 0.80 (95% UI 0.71–0.86) deaths per 1000 livebirths and U5MR to 1.44 (95% UI 1.27–1.58) deaths per 1000 livebirths, and in 2019, there were as many as 1.87 million (95% UI 1.35–2.58; 37% [95% UI 32–43]) of 5.05 million more deaths of children younger than 5 years than the survival potential frontier.

Interpretation Global child mortality declined by almost half between 2000 and 2019, but progress remains slower in neonates and 65 (32%) of 204 countries, mostly in sub-Saharan Africa and south Asia, are not on track to meet either SDG 3.2 target by 2030. Focused improvements in perinatal and newborn care, continued and expanded delivery of essential interventions such as vaccination and infection prevention, an enhanced focus on equity, continued focus on poverty reduction and education, and investment in strengthening health systems across the development spectrum have the potential to substantially improve U5MR. Given the widespread effects of COVID-19, considerable effort will be required to maintain and accelerate progress.

Funding Bill & Melinda Gates Foundation.

Copyright © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.
Introduction

Under-5 mortality rate (USMR) and neonatal mortality rate (NMR) are important indicators reflecting multiple aspects of societal wellbeing such as access to nutrition and food; basic infrastructure such as housing, water, and sanitation; education; agency; financial security; access to preventive and treatment health services; and future human capital. The UN Millennium Development Goals (MDGs) are credited with mobilising global action on child health, and manifested as an unprecedented, accelerated reduction in child mortality and resulted on child health, and manifested as an unprecedented, accelerated reduction in child mortality and resulted.

SDG 3.2 explicitly prioritises ending preventable child deaths. Therefore, based on all-cause and cause-specific mortality estimates from GBD 2019, this study introduces a novel, reproducible, and holistic heuristic for quantifying optimal child survival. Within this framework are two complementary cause-specific benchmarks: a global optimum, based on the lowest observed neonatal and under-5 mortality, and a survival potential frontier, based on stochastic frontier analysis of observed mortality and the Healthcare Access and Quality Index. The latter allows for comparing performance between similar countries, and specifically helps those countries with high mortality to establish intermediate goals.

Implications of all the available evidence

The prevention of child deaths accelerated in the MDG era. In the emerging SDG period, progress to prevent child deaths remains slowest in neonates. The study findings highlight regions with potential imbalances in health priorities. The findings can also identify causes of death with the most potential for reduction, and those with the greatest need for resources, expertise, and service delivery, or for basic research into prevention and treatment. To reach the SDG targets by 2030, policy makers must focus on balancing priorities between early newborn care while continuing prenatal and older child health initiatives. Strengthening quality health systems and ensuring effective investment in high-burden countries are imperative in order to scale up interventions. Equally pressing are the needs to examine within-country disparities and pursue integrative action on other determinants of health.

Research in context

Evidence before this study

During the Millennium Development Goal (MDG) era (2000–15), numerous organisations comprehensively described global progress in reducing child and neonatal mortality (MDG 4), but the early Sustainable Development Goal (SDG) period has seen few comparable efforts to track progress and none to date have attempted to quantify the preventable portion of child mortality (SDG 3.2). Past preventable mortality analyses have focused on health-care delivery, or were limited to high-income countries and adult populations. The most recent child mortality report from the UN Inter-agency Group for Child Mortality Estimation (UNIGME), published in 2017 for the year 2015, reports on all-cause mortality only. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) is the only annual assessment of trends in all-cause mortality and cause-specific mortality by detailed age groups for all locations with a population greater than 50,000 people from 1990 to the present that is compliant with the Guidelines for Accurate and Transparent Health Estimates Reporting.

Added value of this study

This analysis presents levels and trends in all-cause and cause-specific neonatal and under-5 mortality from 2000 to 2019. Multiple future health scenarios for child mortality in 2030 were constructed to represent potential trajectories, including the potential impacts of the COVID-19 pandemic and scenarios with targeted improvements in neonatal survival. Additionally, this study presents for the first time all-cause mortality estimates for granular age groups of 0–6 days, 7–27 days, 1–5 months, 6–11 months, 12–23 months, and 2–4 years. This study presents the potential impacts of the COVID-19 pandemic and scenarios with targeted improvements in neonatal survival. Additionally, this study presents for the first time all-cause mortality estimates for granular age groups of 0–6 days, 7–27 days, 1–5 months, 6–11 months, 12–23 months, and 2–4 years.

SDG 3.2 explicitly prioritises ending preventable child deaths. Therefore, based on all-cause and cause-specific mortality estimates from GBD 2019, this study introduces a novel, reproducible, and holistic heuristic for quantifying optimal child survival. Within this framework are two complementary cause-specific benchmarks: a global optimum, based on the lowest observed neonatal and under-5 mortality, and a survival potential frontier, based on stochastic frontier analysis of observed mortality and the Healthcare Access and Quality Index. The latter allows for comparing performance between similar countries, and specifically helps those countries with high mortality to establish intermediate goals.

Implications of all the available evidence

The prevention of child deaths accelerated in the MDG era. In the emerging SDG period, progress to prevent child deaths remains slowest in neonates. The study findings highlight regions with potential imbalances in health priorities. The findings can also identify causes of death with the most potential for reduction, and those with the greatest need for resources, expertise, and service delivery, or for basic research into prevention and treatment. To reach the SDG targets by 2030, policy makers must focus on balancing priorities between early newborn care while continuing prenatal and older child health initiatives. Strengthening quality health systems and ensuring effective investment in high-burden countries are imperative in order to scale up interventions. Equally pressing are the needs to examine within-country disparities and pursue integrative action on other determinants of health.
There has not yet been a comprehensive assessment of NMR and U5MR in the SDG era. Selected publications assessed interim progress towards part of SDG 3.2 or provided projections to 2030, but none have been comprehensive with respect to cause, age, trends, geography, and progress towards 2030 targets. The comprehensive nature of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 lends itself to a detailed analysis of levels, trends, and drivers of change for specific age groups, causes, and locations. Additionally, there has not been any previous effort, to our knowledge, to empirically explore the concept of preventable mortality in children. Although preventable death has been theoretically defined since the early 2000s, the definitions has usually been through a healthcare delivery lens rather than a more holistic lens of preventability that might be interpreted as the intended wording of SDG 3.2. Furthermore, although the Organisation for Economic Co-operation and Development (OECD) and Eurostat convened to provide a more uniform approach to interpreting avoidable deaths in 2019, this was with a singular focus on high-income countries and the adult population.

In this study, based on GBD 2019, we have three objectives. First, we aim to present a detailed, comprehensive numerical assessment of progress towards SDG 3.2 targets for all-cause NMR and U5MR at the global, regional, and national level, including a series of scenarios that reflect possible trends over the next decade including the potential effects of the COVID-19 pandemic on young children. Second, we aim to evaluate comparative progress in cause-specific mortality in neonates and children from 2000 to 2019 to highlight successes and potential focus areas for improvement. Third, we aim to better define a holistic focus of preventable mortality by exploring two different measures of optimal child survival that can both inform global progress and provide a benchmark for intermediate progress evaluation in high-mortality settings. In so doing, this study seeks to meet the needs of an expansive, integrative SDG agenda, and to highlight the locations, age groups, and causes of preventable deaths, to inform policy and public health priorities aiming to achieve SDG 3.2. This manuscript was produced as part of the GBD Collaborator Network and in accordance with the GBD Protocol.

Methods
Overview
This study is compliant with the Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER) appendix p 9). A brief summary of each component of our study is described below. Extensive methodological details are provided in the appendix (pp 10–86).

Dimensions of the GBD study
GBD 2019 includes all-cause and cause-specific mortality by age and sex for 204 countries and territories, 21 of which were estimated at the subnational level from 1990 to 2019, inclusive. Results in this study are presented only for countries and territories. All-cause mortality estimation covers six under-5 age groups: 0–6 days (early neonatal), 7–27 days (late neonatal), 1–5 months, 6–11 months, 12–23 months, and 2–4 years. Cause-specific mortality estimates cover four age groups: early neonatal, late neonatal, late neonatal, and the under-5 age group (0–4 years), to best align with the SDG under-5 and neonatal targets. Similarly, we focus on results for the aggregate neonatal age group (<28 days) and the under-5 age group (0–4 years), to best align with the SDG under-5 and neonatal targets.

Injuries, and Risk Factors Study (GBD) 2019 lends itself to a detailed analysis of levels, trends, and drivers of change for specific age groups, causes, and locations.
of four levels (appendix p 87). Some conditions only result in fatal burden (eg, sudden infant death syndrome), whereas others cause only disability (eg, scabies); most causes have both fatal and non-fatal burden. Comprehensive methods for cause-specific mortality estimation for GBD have been previously described and are detailed in the appendix (p 35). We present most results at level 3 because this level is sufficiently detailed to reflect important cause groupings for the age groups presented in this analysis (eg, neonatal disorders and congenital birth defects), but not so detailed as to obscure important groupings of related conditions.

Scenarios for 2030 and beyond
USMR and NMR were projected for six scenarios, all computed at the national level, up to 2030 as previously described. The first three scenarios represent the reference, better-than-reference, and worse-than-reference scenarios, while a fourth represents the 2030 NMR and USMR in the absence of COVID-19. The remaining two scenarios are intended to assess outcomes for interventions that focus only on specific age groups, to evaluate if opportunity is greater in a particular age group than in others, and to show the limits of achievement when efforts do not consider distinct needs of different age groups. For the first of these age-specific scenarios, neonatal mortality is at the better-than-reference level and remaining under-5 mortality stays at reference level (neonatal scenario), and for the second, mortality for children aged 28–364 days is at the better-than-reference level and neonatal mortality stays at the reference level (child scenario). Many strategies to address neonatal mortality are fundamentally different from strategies targeting older infants and children, so these two scenarios are a broad representation of those differences.

Assessment of optimal survival potential
Our approach to inform an assessment of preventable mortality focused on the quantification of two different measures of optimal child survival based on historical trends. The first measure, what we term the global optimum, represents a universal level at which all additional mortality is theoretically avoidable given current medical knowledge and technology. This is analogous to the GBD method used for estimating global standard life expectancy. The second measure, what we term the survival potential frontier, aims to quantify the amount of mortality that is avoidable given the country’s level of Healthcare Access and Quality (HAQ) Index, thereby accounting for the differential resources available for health investment in different locations.

First, we calculated the global optimum for NMR and USMR based on the aggregate of the lowest observed age-specific and cause-specific mortality rates in locations with populations higher than 10 000 children younger than 5 years (to remove noise associated with small numbers) between 2000 and 2019, scaling them to match an all-cause mortality minimum that was calculated using the same approach. The scaling step was added to account for potential differences due to small numbers in low-mortality settings or geographical differences in cause assignment that can occur between, for example, subcauses of neonatal disorders. This method is analogous to that used by GBD to calculate a global standard life expectancy for the purposes of calculating years of life lost and therefore can be interpreted to represent the optimum potential for reductions in child mortality based on current technology and health delivery systems.

Second, to help with developing intermediate goals and to evaluate progress in higher-mortality settings, we calculated a survival potential frontier using stochastic frontier analysis to evaluate the historical relationship between cause-specific neonatal and under-5 mortality rates and HAQ Index, which is an aggregate metric of health system performance across all age groups combined. The specific formulation of the stochastic frontier analysis is described in detail in the appendix (p 70), but briefly, it uses a spline to estimate the expected lower bound of mortality for a given value of HAQ Index. Stochastic frontier analysis was chosen to quantify system inefficiency because of its flexibility in shape, its assumption of performance possibilities given static system inputs, and the fact that it allows for random effects in the model rather than assuming uniformity of inputs across locations.

All components of the analysis are based on 1000 draws of the posterior distribution of the quantity of interest by age, sex, location, and year. Point estimates are the mean of the draws, and 95% uncertainty intervals (UIs) represent the 2.5th and 97.5th percentiles.

Presentation of results
Results are presented by country, GBD super-region, and Socio-demographic Index (SDI) quintile. SDI is a composite index of income per capita, educational attainment, and inverse fertility, and it is used to categorise countries into SDI quintiles: low SDI (ie, low income per capita, low educational attainment, high fertility), low-middle SDI, middle SDI, high-middle SDI, and high SDI. Full results for GBD 2019 are available in an online visualisation at GBD Compare and for download from the GBD Results Tool.

Role of the funding source
The funders of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report.

Results
All-cause mortality and progress towards SDG 3.2
Over the past two decades, there has been a substantial decrease in global deaths of children younger than 5 years, from 9·65 million (95% UI 9·05–10·30) in 2000,
SDI regions	Neonatal deaths	NMR	Under-5 deaths	USMR						
	2000	2015	2019	2030*	2000	2015	2019	2019	2030*	
Global	3'760'000	2'820'000	2'420'000	1'79'	9'650'000	6'100'000	5'090'000	37'1	29'6	
	(3'530'000–4'040'000)	(2'480'000–3'210'000)	(2'060'000–2'860'000)	(16'3–19'8)	(9'500'000–10'300'000)	(6'150'000–6'910'000)	(5'200'000–6'200'000)	(33'2–41'7)		
Low SDI	1'260'000	1'190'000	1'110'000	2'70'	4'010'000	3'040'000	2'670'000	71'8	40'0	
	(1'190'000–1'340'000)	(1'030'000–1'370'000)	(918'000–1'340'000)	(24'0–30'8)	(2'780'000–2'260'000)	(1'640'000–2'520'000)	(2'220'000–2'340'000)	(16'2–18'2)		
Low-middle SDI	1'480'000	1'020'000	841'000	217	3'390'000	1'890'000	1'490'000	42'0	30'3	
	(883'000–1'170'000)	(768'000–985'000)	(768'000–985'000)	(19'7–24'0)	(1'340'000–3'630'000)	(1'640'000–2'150'000)	(1'260'000–1'750'000)	(37'8–46'7)		
Middle SDI	777'000	479'000	368'000	10	1'730'000	912'000	686'000	18'9	27'3	
	(419'000–546'000)	(312'000–432'000)	(312'000–432'000)	(11'9–11'2)	(1'610'000–1'850'000)	(803'000–1'040'000)	(5'830'000–8'100'000)	(17'1–21'0)		
High-middle SDI	199'000	104'000	78'000	5	427'000	197'000	150'000	9'36	612	
	(187'000–213'000)	(67'100–90900)	(67'100–90900)	(47'1–55'5)	(400'000–455'000)	(180'000–217'000)	(130'000–172'000)	(8'66–10'2)		
High SDI	435'000	30'500	26'800	2	84'400	55'800	48'000	4'70	502	
	(416'100–45'300)	(29'300–37'100)	(29'300–37'100)	(25'2–27'0)	(54'200–57'600)	(44'500–53'200)	(44'500–53'200)	(45'6–48'6)		
	G6D super-regions									
Central Europe, eastern Europe, and central Asia	57'800	39'400	30'800	5'88	127'000	77'900	61'100	11'5	9'34	
	(35'300–61'800)	(35'300–43'800)	(26'400–36'000)	(53'5–56'2)	(70'200–86'900)	(70'200–86'900)	(52'200–72'100)	(10'4–12'8)		
Region	2000	2015	2019	2030*	2000	2015	2019	2030*	2019	2030*
-----------------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------
Neonatal deaths										
Czech Republic	275	174	159	1.45	1.08	4.83	3.42	2.93	2.64	1.87
Hungary	572	252	173	2.09	1.37	1.020	1.489	3.36	4.00	2.80
Montenegro	77.4	181	15.1	2.29	1.60	1.16	2.98	24.9	3.74	2.58
North	22.6	155	5.22	4.13	399	191	8.51	600		
Macedonia	203	24-170	99.9	4.70	4.69	366-434	215.263	155-290	79.29-100	
Poland	952	787	2.35	1.36	3.250	3.770	3.85	2.60		
Romania	290	884	690	3.98	3.17	5.130	1.790	24.9	8.03	5.89
Serbia	865	269	196	2.45	1.47	1590	454	334	4.12	2.42
Slovakia	236	174	141	2.52	1.85	533	364	301	5.83	2.32
Slovenia	57.9	31.4	23.8	1.26	0.930	96.1	49.4	38.1	1.98	1.43
Eastern Europe	18.000	1300	73.40	3.37	2.41	3.500	21.600	35.900	6.87	5.29
Belarus	746	328	244	2.38	1.51	1.510	730	562	53.1	3.64
Estonia	67.4	197	15.1	1.14	0.710	142	46.0	35.6	2.65	1.64
Latvia	139	55.4	41.0	2.14	1.54	272	108	82.8	4.21	3.01
Lithuania	156	70.8	48.6	1.80	1.20	369	155	110	4.01	2.83
Moldova	734	374	278	8.64	6.69	12.40	5.26	39.9	12.2	8.96
Russia	124000	7040	4990	3.00	2.19	24.500	15.200	11.000	6.53	5.04
Ukraine	3760	2300	1720	4.45	3.45	6.440	4.770	3500	8.76	7.05
High income	476000	354000	312000	2.78	2.39	889000	635000	556000	495	4.14
Australasia	1060	886	794	2.14	1.77	1980	351	1380	3.73	2.96
Australia	863	710	647	2.08	1.68	1550	1220	1110	3.57	2.80
New Zealand	199	175	147	2.46	2.21	431	313	270	4.53	3.80

(Continued from previous page)

(Table continues on next page)
Geographic Region	2000	2015	2019	2020*	NMR	Under-5 deaths	USMR
Neonatal deaths							
High-income Asia	3830	1730	1430	1041	810	9500	4440
(Continued from previous page)							
Pacific	(3530–4140)	(1590–1870)	(1290–1590)	(990–1-08)	(9190–9820)	(4240–4659)	(3350–4000)
Brunei	364	347	319	485	443	708	668
Japan	2100	964	782	870	640	5290	2740
(1850–2370)	(880–1050)	(657–880)	(850–890)	(5190–5410)	(2650–2830)	(2060–2450)	
Singapore	95.7	58.8	50.5	880	650	198	123
South Korea	1600	673	567	137	115	3320	1390
(495–774)	(468–658)	(123–1351)	(3660–4200)	(1370–1690)	(1100–1490)		
High-income	9190	16800	15200	361	329	35400	25900
North America	(18700–21000)	(15800–17700)	(14000–16500)	(352–3-67)	(35200–35700)	(29000–29800)	(24600–28700)
Canada	1200	1220	1130	298	266	2040	2010
(1120–1280)	(1140–1310)	(996–1250)	(863–10)	(2000–2090)	(1960–2060)	(1640–2010)	
Greenland	9.98	4.92	4.10	5.14	3.78	18.8	9.09
(8.56–11.5)	(3.88–6.22)	(2.66–6.22)	(3.74–6.97)	(15.9–22.0)	(7.09–11.6)	(4.97–11.4)	
USA	18700	15500	14000	367	336	33400	27590
(17500–18900)	(14600–16400)	(13000–15300)	(62.3–73)	(33000–33600)	(27200–27800)	(23000–26700)	
Southern Latin America	9300	6180	5240	538	430	17100	11100
(9060–9520)	(5950–6420)	(4140–5640)	(508–572)	(1600–1700)	(10900–11300)	(7600–11600)	
Argentina	4380	4210	389	467	3340	37100	7420
(7150–7610)	(4590–5020)	(330–560)	(290–410)	(19300–21700)	(8580–8840)	(61100–6900)	
Chile	3420	907	398	331	2840	1960	1560
(1360–1500)	(1090–1180)	(686–1200)	(3.4–4–65)	(2750–2390)	(1880–2030)	(1200–2020)	
Uruguay	493	240	211	454	337	884	439
(442–546)	(207–276)	(154–286)	(2.9–4–59)	(818–955)	(395–486)	(289–516)	
Western Europe	13500	9810	8550	200	161	24900	17000
(13000–14000)	(9300–10300)	(7370–9960)	(1.9–2–10)	(24700–25200)	(16600–17300)	(12900–16800)	
Andorra	1.11	0.585	0.516	0.820	0.540	2.59	1.30
(0.900–1.35)	(0.469–0.729)	(0.384–0.674)	(0.690–0.988)	(2.663–3.15)	(1.086–1.62)	(0.783–1.14)	
Austria	238	186	166	190	152	445	307
(217–273)	(170–201)	(141–160)	(169–210)	(4270–4632)	(294–322)	(252–316)	
Belgium	343	258	230	189	148	690	480
(303–387)	(222–291)	(189–279)	(1.78–201)	(2666–715)	(457–502)	(354–505)	
Cyprus	43.4	287	273	180	131	773	49.3
(38.7–48.6)	(24–433)	(19–36–6)	(1.42–2.24)	(69–6–87)	(422–573)	(35–632)	
Denmark	216	157	145	231	190	371	237
(187–245)	(143–171)	(118–178)	(2.12–2.52)	(258–396)	(221–255)	(179–264)	
Finland	136	65.4	84.9	138	860	244	125
(124–148)	(59.4–71.9)	(49.3–70.5)	(1.08–1.29)	(230–258)	(17–134)	(94.0–139)	
France	2515	1740	1480	905	726	4160	2170
(1910–2270)	(1590–1900)	(1270–1720)	(1.95–2–16)	(4080–4250)	(3040–3190)	(2980–2960)	
Germany	2110	1610	1440	195	164	4120	2730
(1920–2280)	(1490–1730)	(1320–1580)	(1.88–203)	(4050–4190)	(2600–2790)	(2520–2670)	

(Table continues on next page)
Country	Neonatal deaths	NMR	Under-5 deaths	U5MR					
	2000	2015	2019	2030*	2000	2015	2019	2030*	
Greece	390 (261,418)	242 (223,262)	188 (152,233)	1.7 (1.99-2.38)	217 (167,671)	154 (131,190)	643 (8.48-13.8)	339 (6.21-15.5)	484 (160-248)
Iceland	9.77	6.69	6.28	1.45	1.20	139	10.9	9.95	
Ireland	221 (201,241)	157 (141,175)	124 (97.7-157)	2.04 (1.88-2.21)	1.60 (364-407)	385 (234-274)	253 (160-248)		
Israel	483	369	331	1.72	1.27	920	285		
Italy	870	770	770	1.75	1.20	2930 (2930-3030)	1670 (190-14-800)		
Luxembourg	14	9.02	8.56	1.32	1.00	273	16.7		
Malta	19.7	187	163	3.80	3.08	311	27.7		
Monaco	0.477	0.297	0.287	1.02	0.830	1.26	0.808	0.727	
Netherlands	777	425	345	1.37	1.94	1280	893-135		
Norway	155	801	132	1.01	1.10	294	166		
Portugal	405	178	129	1.61	1.08	841	313		
San Marino	0.977	0.655	0.606	1.95	1.57	1.83	1.2		
Spain	1090	760	603	1.63	1.20	2130	1400		
Sweden	193	165	165	1.41	1.12	357	357		
Switzerland	269	263	227	2.57	2.26	457	375		
UK†	2510	2070	1920	2.45	2.09	4440	3470		
Latin America and Caribbean	1810000	1120000 (948000-131000)	939000 (749000-116000)	956600 (8.28-11.1)	770000 (369000-427000)	397000 (2260000-231000)			
Andean Latin America	22700	14900	12600	9.42	7.58	56000	29600		
Bolivia	6710	5560	4840	14.8	12.2	18300	11400		
Ecuador	5400	3050	2720	7.74	6.22	31900	5980		
Peru	10600	6290	5010	7.61	5.92	264000	12200		

(Table continues on next page)
Country	Neontal deaths	NMR	Under-5 deaths	U5MR
Caribbean				
Antigua and Barbuda	13.4 (16-19.4)	93 (14-16.6)	35.3 (16-32.1)	38.8 (28-45)
The Bahamas	38 (31-45.1)	281 (20-43.2)	608 (150-300)	7.6 (3-13.2)
Barbados	40.6 (33-54.8)	270 (18-35.3)	27.1 (2-32.2)	4.6 (2.4-6)
Belize	87.6 (76-101)	72.9 (56-83.9)	3.9 (2-7)	12.4 (7-20)
Bermuda	1.43 (1.1-1.8)	1.66 (1.1-2.2)	2.9 (1.9-4.2)	3.1 (2.4-4.4)
Cuba	608 (553-664)	236 (198-291)	2.2 (1.8-2.9)	10.2 (5.8-16.6)
Dominican	15.8 (12-19.4)	146 (11-18.6)	16.2 (13-19.3)	19.0 (15-30)
Dominican Republic	557 (460-6490)	391 (2800-3530)	1.9 (1.4-2.3)	2.8 (2.6-3.6)
Grenada	19.8 (15-25.6)	341 (20-48)	3.5 (2.5-4.5)	2.3 (1.9-2.7)
Guyana	418 (35-490)	217 (151-303)	3.0 (2-6.9)	3.0 (2-6.9)
Haiti	8840 (7890-9890)	9810 (8020-12 900)	24.0 (20-30.8)	25.4 (20-30.8)
Jamaica	732 (57-913)	545 (407-670)	2.6 (2.0-3.2)	6.6 (5.6-7.6)
Puerto Rico	42 (39-467)	128 (94-171)	5.0 (4.1-6.7)	1.0 (0.7-1.3)
Saint Kitts and Nevis	12.2 (10-14.5)	8.4 (6.5-10.8)	7.0 (5.5-9.1)	12.7 (9.8-16.1)
Saint Lucia	38.1 (30-46.9)	217 (12-9.2)	10.6 (8.9-12.6)	17.4 (14.0-21.2)
Saint Vincent and the Grenadines	35.3 (29-41.9)	181 (13-22.1)	9.4 (8.2-10.6)	18.4 (16.4-20.2)
Suriname	246 (210-287)	155 (129-215)	16.8 (14.1-20.0)	25.7 (21.6-30.3)
Trinidad and Tobago	372 (274-393)	265 (130-218)	10.1 (8.8-12.1)	15.2 (12.7-18.3)
Virgin Islands	14.9 (12.1-17.2)	7.08 (5.5-9.8)	4.6 (3.9-6.4)	3.6 (2.7-4.2)
Central Latin America	70.00 (61.400-79.900)	40600 (34.000-48.200)	3.0 (2.0-4.0)	3.0 (2.0-4.0)
Colombia	13.400 (11.300-15.700)	6610 (5200-8340)	6.6 (5.2-8.1)	6.7 (5.7-7.8)
Costa Rica	553 (503-606)	412 (375-462)	5.0 (4.3-5.4)	7.9 (7.6-8.2)

(Continued from previous page)
Neonatal deaths and NMR Under-5 deaths

Country	2000	2015	2019	2030*	2000	2015	2019	2030*
El Salvador	1770	792	593	526	386	4290	1680	1240
Guatemala	7130	3830	3440	835	622	18100	10400	8870
Honduras	3300	2590	2180	936	753	6880	4500	3970
Mexico	3530	1200	1570	744	612	6980	37000	30900
Nicaragua	1580	660	400	484	400	1200	1120	8870
Panama	630	539	490	642	498	1430	1100	8400
Venezuela	590	560	420	883	764	11700	9770	7220
Tropical Latin America	70000	29600	23000	53000	23000	17000	16600	128000
Brazil	7800	4500	3610	45000	35000	19600	77700	62800
Paraguay	1900	893	333	453	586	2500	1370	1200
North Africa and Middle East	298000	182000	152000	122000	11333	9822	682000	582000
Afghanistan	3890	3490	3740	250	195	1200	83800	81400
Algeria	1560	1360	1070	120	104	29400	22200	17300
Bahain	645	479	307	326	157	158	126	873
Egypt	4050	1540	1180	555	311	84400	72600	47400
Iran	3370	1800	9140	627	519	60800	29300	15200
Iraq	22300	3050	12300	19400	39900	20700	17200	15000
Jordan	2160	2070	2130	850	672	3650	3540	3640
Kuwait	262	369	310	509	446	5000	6590	5550
Lebanon	1050	684	521	482	365	1920	980	989
Libya	1650	560	458	562	443	3240	1470	1110
Monaco	2200	9820	6760	111	792	40800	16200	11100
Oman	478	504	418	538	425	926	958	809

(Table continues on next page)
Country	2000	2015	2019	2019*	2020*
Articles	146	43	652	39	75
	(5910–9040)	(5970–9450)	(5970–9450)	(5970–9450)	(5970–9450)
	(5910–9040)	(5970–9450)	(5970–9450)	(5970–9450)	(5970–9450)
	(5910–9040)	(5970–9450)	(5970–9450)	(5970–9450)	(5970–9450)
	(5910–9040)	(5970–9450)	(5970–9450)	(5970–9450)	(5970–9450)
	(5910–9040)	(5970–9450)	(5970–9450)	(5970–9450)	(5970–9450)
	(5910–9040)	(5970–9450)	(5970–9450)	(5970–9450)	(5970–9450)
	(5910–9040)	(5970–9450)	(5970–9450)	(5970–9450)	(5970–9450)
	(5910–9040)	(5970–9450)	(5970–9450)	(5970–9450)	(5970–9450)
	(5910–9040)	(5970–9450)	(5970–9450)	(5970–9450)	(5970–9450)

(Table continues on next page)
Country	2000	2015	2019	2030*	2000	2015	2019	2030*
Marshall Islands	24.5	5.05	10.5	35.6	28.4	42.2	6.85	281.7
Federated States of Micronesia	34.0	5.05	10.5	35.6	28.4	42.2	6.85	281.7
Fiji	217	198	177	10.0	8.70	471	432	387
Guam	20.2	24.6	23.6	7.18	7.31	413	460	439
Kiribati	54.1	48.5	44.5	14.6	12.0	157	116	101
Marshall Islands	24.5	5.05	10.5	35.6	28.4	42.2	6.85	281.7
Nauru	5.85	3.71	3.04	10.1	8.58	177	8.94	703
Niue	0.415	0.224	0.205	8.12	6.92	101	0.520	0.472
Northern Mariana Islands	9.67	2.73	2.22	4.40	3.89	175	600	469
Palau	3.22	1.52	1.35	6.04	5.15	7.78	3.72	2.77
Papua New Guinea	46.90	62.80	65.80	19.6	16.8	14,400	17,600	17,600
Samoa	30.9	24.0	22.3	6.24	5.35	51.1	49.9	46.4
Solomon Islands	325	272	245	11.5	9.36	767	593	519
Tokelau	0.406	0.139	0.119	3.19	2.71	0.961	0.338	0.286
Tonga	26.9	17.5	14.5	6.36	5.37	56.4	37.2	22.5
Tuvalu	4.62	1.70	1.42	6.60	5.65	30.6	35.0	29.2
Vanuatu	99.6	93.4	88.3	11.6	7.23	263	30.0	185
Indonesia	115.0	66.90	52.40	13.7	10.5	260.0	129.0	98.9
Laos	730.8	396.0	347.0	19.9	12.8	216.0	8.80	70.0
Malaysia	2.460	2.340	1930	3.55	2.82	4840	4270	3410
Maldives	134	99.9	81.9	9.58	8.08	241	169	140

(Table continues on next page)
Country	2000	2015	2019	2013*	2013	2019	2013*
Mauritius	228	120	304	8.07	6.79	349	192
Myanmar	4830	26600	222000	21.6	16.2	135000	55000
Philippines	37800	31200	274000	10.2	8.59	87100	69000
Seychelles	12.6	12.7	10.7	7.15	6.12	20.6	20.3
Sri Lanka	3300	1750	1300	4.37	3.16	5880	3060
Thailand	7780	2790	2120	3.68	2.39	16100	6030
Timor-Leste	966	622	602	15.5	12.4	3150	1340
Vietnam	2270	12300	9700	6.83	5.21	43300	27600
Sub-Saharan Africa	112000	109000	102000	27.9	23.6	402000	307000
Central sub							
Saharan Africa							
Angola	28700	26200	24000	217	16.9	11600	7300
Central African	770	8600	7770	39.3	35.4	28300	26900
Congo	3400	3240	2680	18.4	15.3	12100	7540
Equatorial	1090	795	683	37.7	14.4	3710	1890
Guinea	886	1300	1060	(429-952)	14.8	3140	1890
Gabon	1140	795	680	15.8	13.5	2940	1660
Eastern sub	424000	378000	353000	24.9	20.6	145000	94000
Saharan Africa	392000	457000	448000	(286000-439000)	21.6	19.3	343000
Burundi	10700	11100	11700	24.0	19.3	43300	32100
Comoros	934	553	469	27.3	22.0	2140	1050
Djibouti	864	863	790	21.2	17.2	2620	2080
Eritrea	4530	4220	3870	19.3	15.7	16900	11300
Ethiopia	144000	110000	97900	26.6	21.5	42600	29900

(Continued from previous page)

Country	2000	2015	2019	2013*	2013	2019	2013*
Central sub							
Saharan Africa							
DR Congo	81900	74700	64700	22.0	17.6	34600	222000
Equatorial	1090	795	683	37.7	14.4	3410	1890
Guinea	886	1300	1060	(429-952)	14.8	3140	1890
Gabon	1140	795	680	15.8	13.5	2940	1660
Eastern sub	424000	378000	353000	24.9	20.6	145000	94000
Saharan Africa	392000	457000	448000	(286000-439000)	21.6	19.3	343000
Burundi	10700	11100	11700	24.0	19.3	43300	32100
Comoros	934	553	469	27.3	22.0	2140	1050
Djibouti	864	863	790	21.2	17.2	2620	2080
Eritrea	4530	4220	3870	19.3	15.7	16900	11300
Ethiopia	144000	110000	97900	26.6	21.5	42600	29900

(Continued on next page)
Country	Neonatal deaths 2000	Neonatal deaths 2015	Neonatal deaths 2019	Under-5 deaths 2000	Under-5 deaths 2015	Under-5 deaths 2019	Under-5 deaths 2030*	Under-5 deaths 2030*	NMR 2000	NMR 2015	NMR 2019	NMR 2030*	USMR 2000	USMR 2015	USMR 2019	USMR 2030*
Kenya	32000	29200	26400	19.7	16.3	99300	64500	54100	40.6	39.8	37.5	33.6	488	431	413	366
Madagascar	21400	21100	19800	23.0	18.7	70600	55100	48200	566	533	46.3	41.8	548	512	480	444
Malawi	19500	14700	13700	25.0	19.6	80000	38600	31800	591	575	51.2	47.4	655	621	599	571
Mozambique	34600	30400	29000	25.8	20.2	130000	88900	76500	69.4	67.8	60.5	57.1	800	751	736	711
Rwanda	11100	7490	7030	19.9	15.1	47000	18800	16300	466	433	40.0	37.3	520	490	461	438
Somalia	20800	25800	27000	30.9	25.2	77700	81300	80600	95.4	92.2	89.8	87.9	1073	1037	1006	976
South Sudan	13100	13100	12000	33.0	29.7	47100	41400	33100	92.6	90.1	88.3	86.7	1151	1114	1079	1048
Tanzania	52100	52300	50000	23.9	20.0	186000	133000	118000	57.1	55.3	53.5	51.8	677	645	623	600
Uganda	42600	43000	40800	25.6	21.9	163000	107000	91700	584	564	55.8	54.3	734	706	677	652
Zambia	14600	13800	13300	21.1	17.4	63200	36000	31500	53.8	52.2	51.0	49.7	643	617	593	576
Southern sub-Saharan Africa	45700	41000	35900	21.4	19.9	128000	83800	70700	42.0	40.6	39.4	38.4	500	476	456	440
Botswana	1200	1070	1000	20.7	18.8	33600	21900	2000	41.3	39.6	38.0	36.6	500	465	433	409
Eswatini	746	557	506	16.9	14.8	3160	1680	1400	47.3	45.4	44.0	42.7	593	558	530	510
Lesotho	2330	1540	1350	28.6	24.7	53800	35700	3050	644	631	618	605	822	785	750	732
Namibia	1250	1100	1020	16.2	14.3	36100	24800	2200	35.0	34.1	33.3	32.7	454	431	411	395
South Africa	30300	25300	21400	20.7	18.5	80600	47100	38500	369	354	344	335	463	436	412	397
Zimbabwe	9850	11400	10500	23.4	22.1	31600	26600	23600	52.4	51.4	50.6	49.8	650	620	595	575
Western sub-Saharan Africa	522000	557000	525000	32.5	27.8	193000	172000	153000	95.9	93.0	90.7	89.1	117	110	104	101
Benin	12300	15600	15400	39.5	36.8	40000	45700	42000	85.0	81.8	79.4	77.2	1036	993	957	926
Burkina Faso	21500	26000	26900	28.6	24.0	99300	100000	98800	109	107	105	104	1418	1355	1303	1262
Cameroon	20900	23400	21700	24.2	18.6	80000	75400	64000	71.7	70.1	68.7	67.3	950	917	886	860

(Continued from previous page)
Table: Neonatal and under-5 deaths in 2000, 2015, and 2019, by country, GBD region, GBD super-region, and SDI, and at the global level for both sexes combined; and neonatal mortality rate in 2019 with reference scenario for 2030

Country	2000	2015	2019	2030*	2000	2015	2019	2019	2030*	
	Neatnat deaths	NMR	Under-5 deaths	USMR						
	2000	2015	2019	2030*	2000	2015	2019	2019	2030*	
Cape Verde	226	125	103	9.46	7.65	647	246	187	17.0	11.6
Chad	180	2360	2540	3.22	2.69	7660	8460	8560	113	83.2
Côte d’Ivoire	35300	34500	30400	34.2	28.3	10100	7890	6480	73.3	48.2
The Gambia	2020	1610	140	19.4	14.7	5460	3330	2710	37.8	23.2
Ghana	24100	21600	19800	231	19.5	66800	52900	44300	52.2	40.5
Guinea	17600	15100	14600	30.6	23.4	61800	51300	45400	97.1	67.1
Guinea-Bissau	2700	2210	1980	31.5	24.3	86300	5280	44300	71.2	45.6
Liberia	53100	3660	3220	23.6	18.3	21000	10800	8280	60.9	37.8
Mali	29400	36400	38600	38.5	32.0	104000	111000	110000	118	86.2
Mauritania	8100	3100	2610	23.9	18.9	9290	5860	4660	42.8	29.2
Niger	26200	28300	30600	26.8	21.1	138000	121000	110000	111	71.1
Nigeria	27100	29400	27700	36.4	32.0	101000	88600	77300	104	78.0
São Tomé and Príncipe	108	71.9	66.8	12.1	9.77	386	160	119	25.4	17.4
Senegal	13900	12900	11700	25.0	20.1	43800	27100	22800	49.3	32.6
Sierra Leone	1000	870	8030	28.6	20.8	391000	279000	283000	102	67.7
Togo	720	6720	5930	24.9	19.0	73700	18500	15000	62.2	41.8

Count data are given to three significant figures. Data in parentheses are 95% uncertainty intervals. NMR=neonatal mortality rate. USMR=under-5 mortality rate. SDI=Socio-demographic Index. GBD=Global Burden of Diseases, Injuries, and Risk Factors Study. *Reference scenario. †Subnational analyses are done in these countries and data is available in the appendix (p 109).
to 6·10 million (5·35–6·91) in 2015, and to 5·05 million (4·27–6·02) in 2019 (table). Of these deaths, 3.76 million (95% UI 3·53–4·02; 39%) in 2000, 2·82 million (2·48–3·20; 46%) in 2015, and 2·42 million (2·06–2·86; 48%) in 2019 occurred in neonates (aged <28 days). In each year analysed, the largest share of the global deaths of children younger than 5 years occurred in the sub-Saharan Africa and south Asia super-regions. Although U5MR declined in each successive period in all super-regions, the proportion of global deaths in children younger than 5 years in these two super-regions increased from 73% (7·07 million deaths [95% UI 6·57–7·59]) in 2000 to 80% (4·04 million [3·64–4·86]) deaths in 2019. The share of under-5 deaths also shifted towards lower SDI groups in this period, with the proportion of under-5 deaths in the low SDI quintile increasing from 42% (4·01 million deaths [95% UI 3·78–4·26]) in 2000 to 53% (2·67 million deaths [2·22–3·24]) in 2019.

Global U5MR and NMR both are falling short of SDG targets. Global U5MR declined from 71·2 (95% UI 68·3–74·0) in 1990 to 37·1 (95% UI 33·2–41·7) deaths per 1000 livebirths in 2019, with corresponding changes in NMR from 28·0 (95% UI 26·8–29·5) in 1990 to 17·9 (16·3–19·8) deaths per 1000 livebirths (table). The countries with the highest U5MR in 2019 were Central African Republic, Mali, and Chad, whereas Andorra, Singapore, and Slovenia were found to have the lowest U5MR. As for 2019 neonatal mortality, the highest rate was observed in Pakistan, followed by Mali and Central African Republic. The countries with the lowest 2019 NMR were Andorra, Japan, and Singapore. U5MR and NMR declined in every country between 2000 and 2019, apart from Dominica, Guam, and Northern Mariana Islands (appendix p 311).

We found evidence of accelerated reduction in global USMR, but the largest number of deaths, as well as the slowest progress, occurred in the early neonatal age group (figure 1A, B). In all SDI quintiles, decline in NMR lagged behind mortality declines in other age groups (figure 1C, D). There is evidence of relative progress in neonatal mortality in the time period between 2015 and 2019, compared with between 2000 and 2015, but early neonatal progress in this more recent time period is still slower than overall under-5 progress in low SDI settings (figure 1D). The proportion of neonatal death broadly increases as SDI increases: in 2019, in the low SDI quintile, 1·11 million (41%) of 2·67 million deaths in children younger than 5 years were neonatal deaths, and in the high SDI quintile 26 800 (55%) of 48 600 deaths in children younger than 5 years were neonatal deaths (appendix p 120).

In 2015, 128 (63%) of 204 countries already had an USMR below the SDG 3·2 threshold of 12 neonatal deaths per 1000 livebirths (figure 2A). By 2019, eight additional countries—Syria, Uzbekistan, Guatemala, Philippines, Guyana, Nauru, Vanuatu, and Solomon Islands—had a USMR below this threshold, making a total of 136 (67%; table). In 2015, 126 (62%) of 204 countries had an NMR below the SDG 3.2 threshold of 12 neonatal deaths per 1000 livebirths (figure 2B). By 2019, an additional seven countries—Syria, Iraq, Kyrgyzstan, Uzbekistan, Morocco, Solomon Islands, and Vanuatu—had achieved an NMR below this threshold, making a total of 133 (65%).

Under-5 mortality in each analysed year was somewhat higher in males than in females, although this difference was not statistically significant at the global level (appendix p 99). USMR declined in both males and females in the periods between 2000 and 2015, and between 2015 and 2019 (appendix p 99). The 2019 male-to-female ratio of USMR does not change meaningfully with SDI; this ratio ranges from 1·08 in low-middle SDI to 1·18 in high SDI in 2019 (appendix p 99).

www.thelancet.com Vol 398 September 4, 2021
Figure 2: Map of individual countries’ progress toward achieving the Sustainable Development Goals 3.2 target of (A) reducing neonatal mortality rate to the threshold of 12 neonatal deaths per 1000 livebirths, and reducing under-5 mortality rate to the threshold of 25 under-5 deaths per 1000 livebirths (B), under the reference scenario.
Levels and trends in cause-specific mortality

The leading level 3 causes of global under-5 mortality in 2019 were neonatal disorders, which accounted for 37.3% (95% UI 35.6–38.8) of deaths in children younger than 5 years, followed by lower respiratory infections (13.3% [12.1–14.4]), diarrhoeal diseases (9.9% [8.3–11.6]), congenital birth defects (9.4% [8.0–11.8]), and malaria (7.1% [3.5–12.0]; figure 3; appendix p 100). Leading subcauses of neonatal disorders and congenital birth defects and leading global aetiologies of lower respiratory infections and diarrhoeal disease can be found in the appendix (pp 106, 121).

Of the 15 level 3 causes that accounted for more than 30,000 global under-5 deaths in 2019, the greatest reduction in deaths between 2000 and 2015 was observed in measles, which saw a –9.2% (95% UI –10.4 to –8.0) mean annual percentage change (appendix p 129). Measles was followed by protein-energy malnutrition (–6.5% [–8.2 to –4.7]) and HIV/AIDS (–6.0% [–6.9 to –5.0]). Among these same 15 high-mortality causes, and for the period 2015–19, the three with the greatest reduction in deaths were measles (–11.3% [95% UI –13.7 to –9.0]), HIV/AIDS (–10.2% [–12.3 to –7.8]), and tuberculosis (–7.8 [–9.9 to –5.6]). In 2019, causes of death varied by age, sex, and SDI (figure 3; appendix p 100). The most common level 3 causes of death in children younger than 5 years were congenital birth defects, lower respiratory infections, and diarrhoeal disorders in the high SDI quintile, and neonatal disorders, congenital birth defects, and sudden infant death syndrome in the low SDI quintile (appendix p 100). The level 3 causes with the largest male-to-female ratio of mortality in the under-5 age group at the global level in 2019 were vascular intestinal disorders (5.99) and inguinal, femoral, and abdominal hernia (2.90), and those with the lowest ratio were gallbladder and biliary diseases (0.29) and pancreatitis (0.29; appendix p 100).

Scenarios for 2030 and beyond

In our reference scenario, by 2030, 154 (75%) of 204 countries are projected to have a U5MR lower than the SDG threshold of 25 under-5 deaths per 1000 livebirths, and 139 (68%) are expected to have an NMR lower than the SDG threshold of 12 neonatal deaths per 1000 livebirths (figure 2, appendix p 93).
scenario, 164 (80%) countries would reach the SDG U5MR target, and 145 (71%) countries would reach the SDG NMR target (appendix p 93). In the neonatal scenario, 155 (76%) countries would meet the U5MR target, and in the child scenario, 158 (77%) countries would meet the U5MR target. In the counterfactual scenario without the COVID-19 pandemic, our results suggest 154 (75%) countries would have a U5MR below the SDG threshold and 140 (69%) countries would have an NMR below the SDG threshold by 2030.

Global optimum and survival potential frontier

There were an estimated 9.45 million (95% UI 8.86–10.05) under-5 deaths more than the global optimum in 2000 and 4.85 million (4.09–5.80) more than the global optimum in 2019 (appendix p 130). These deaths represent 98% of all 9.65 million under-5 deaths in 2000 and 96% of all 5.05 million under-5 deaths in 2019. In 2019, only 198 000 (95% UI 169 000–224 000) under-5 deaths worldwide were below the global optimum, and of these 108 000 (93 000–122 000; 55%) were neonatal deaths. Based on this analysis, and on current technology and health delivery systems, the global optimum NMR is 0.80 (95% UI 0.71–0.86) and the global optimum U5MR is 1.44 (95% UI 1.27–1.58). Sex differences in mortality are similar below the global optimum as compared to overall mortality, with an NMR male-to-female ratio of 1.05 (95% UI 1.00–1.09) and a U5MR male-to-female ratio of 1.12 (95% UI 1.05–1.18).

16 causes of death have a global optimum of zero deaths and are therefore classified as 100% preventable by this framework. With the exceptions of forces of nature and conflict and terrorism, all of these preventable deaths are infectious conditions. If all countries reduced mortality to the global optimum, the leading level 3 global under-5 causes of death would be neonatal disorders; congenital birth defects; lower respiratory infections; sudden infant death syndrome; and endocrine, metabolic, blood, and immune disorders.

When looking at mortality along the spectrum of HAQ Index, our analysis suggests that in 2000, as many as 1.50 million (95% UI 1.31–1.72) neonatal deaths were above the survival potential frontier, accounting for 40% (95% UI 37–43) of 3.76 million neonatal deaths. In the same year, analysis suggests that 3.94 million (95% UI 3.49–4.40) under-5 deaths were above the survival potential frontier: 41% (95% UI 39–43) of 9.65 million under-5 deaths). In 2019, the number of deaths occurring...
above the survival potential frontier was smaller, but the fraction of the overall mortality above the survival potential frontier remained similar: 0·88 million (95% UI 0·62–1·20; 36% [95% UI 0·30–0·42]) of 2·42 million neonatal deaths and 1·87 million (1·35–2·58; 37% [32–43]) of 5·05 million under-5 deaths (figure 4). If all 204 countries were to improve performance to meet the survival potential frontier without changing their HAQ Index level from 2019, 143 (70%) would have mortality below the NMR SDG threshold and 149 (73%) would have mortality below the USMR SDG threshold, and 43 (70%) out of 61 countries not achieving both SDG targets would be from the sub-Saharan Africa super-region. The countries where USMR lags the most relative to HAQ Index in 2019 are Nigeria, Turkey, and Maldives. The countries where NMR lags the most relative to HAQ Index in 2019 are Maldives, Turkey, and Azerbaijan. The countries with the most success at preventing under-5 mortality and neonatal mortality relative to their HAQ Index are Cook Islands, United Arab Emirates, and Tokelau (figure 4).

Global under-5 mortality above the survival potential frontier in 2019 consisted of 1·56 million (95% UI 1·11–2·17; 83%) deaths due to communicable, maternal, neonatal, and nutritional (CMNN) diseases, 0·23 million (0·15–0·33; 12%) deaths due to non-communicable diseases, and 0·08 million (0·06–0·11; 5%) deaths due to injuries (appendix p 130). If all regions had mortality rates at their survival potential frontier levels in 2019, the distribution of under-5 deaths would skew slightly towards non-communicable diseases but would not fundamentally change; 2·58 million (95% UI 2·35–2·81; 81%) deaths would be due to CMNN diseases, 0·46 million (0·40–0·52; 15%) deaths would be due to non-communicable diseases, and 0·13 million (0·11–0·15; 4%) deaths would be due to injuries (appendix p 130). Of the 48 level 3 causes that were accountable for more than 5000 global under-5 deaths in 2019, those with the lowest proportion of cause-specific deaths above the survival potential frontier were sudden infant death syndrome (27% [95% UI 0·15–0·43] of SIDS deaths above the survival potential frontier), other malignant neoplasms (28% [21–36]), varicella and herpes zoster (29% [23–36]), and congenital birth defects (30% [23–37]; appendix p 94). Of the same 48 causes, those with the highest proportion of cause-specific deaths above the survival potential frontier were invasive non-typhoidal salmonella, other neglected tropical diseases, haemoglobinopathies and haemolytic anaemias, and malaria, all with over 50% above the survival potential frontier. The leading causes of death overall were also those with the highest above-survival potential frontier mortality rates, and the rank order would remain similar even if all regions had cause-specific mortality rates at their survival potential frontier levels in 2019: 33% of each of neonatal disorders and lower respiratory infections deaths were above the survival frontier (neonatal disorders ranked first and lower respiratory infections ranked second in both observed and expected), while 40% of diarrhoea deaths were above the frontier (ranked third in observed and fourth in expected; appendix p 94).

Discussion

Main findings

 Declines of U5MR and NMR have continued to accelerate worldwide. Of 204 countries, our reference scenario suggests that, by 2030, 154 (75%) are likely to meet the USMR SDG target and 139 (68%) the NMR SDG target. However, the concomitant findings of growing relative inequity and a large remaining proportion of preventable deaths shows there is much more work to be done. If every country were at the global optimum in 2019, global USMR would have been 1·44 (95% UI 1·27–1·58) deaths per 1000 livebirths and NMR would have been 0·80 (95% UI 0·71–0·86) deaths per 1000 livebirths.

Thankfully, although children have been found to be at risk of developing multisystem inflammatory syndrome as result of COVID-19, they appear to be less at risk of severe illness and death. It is important to reiterate, however, how the complex, multisector determinants of health that substantially affect child survival could be negatively affected by COVID-19, an understanding that is likely to continue to evolve in the coming months and years. Risks include, but are not limited to, the potential disruption of routine perinatal and clinical care for children, worsened in-facility outcomes due to overburdened medical systems, loss of caretakers from the pandemic impacting child health and wellbeing, suspended vaccination campaigns, financial and economic pressures leading to food insecurity and malnutrition, disruption of supply chains leading to decreased availability of highly active antiretroviral therapy medications for HIV/AIDS, interrupted prevention of mother-to-child transmission programmes, decreased malaria prevention and treatment, and disruption of domestic economies and education systems. Mitigating these risks will require even more focus and attention on an equilibrium strategy for neonatal and child health.

Our analysis suggests the need for a five-pronged strategy to optimise child survival in the SDG era that augments community-based strategies and efforts to address social determinants of health (eg, education, family planning, financial security) that proved effective during the MDG era. The central theme is that, to achieve SDG targets by 2030, investments should strive for equilibrium and overall system strengthening, with a particular focus on inequality, rather than simply shifting attention to individual priorities.

Comprehensive neonatal care

Neonatal deaths comprise an increasing share of global under-5 deaths, indicating a generalised need to improve...
neonatal programmes along the entire SDI spectrum. Although not explicitly stated in SDG targets or in our analysis, reductions in stillbirths should also be targeted through comprehensive maternal and neonatal care. Reducing early neonatal mortality, and stillbirth mortality, should start with expansion of community and facility-based strategies targeted towards pregnancy, labour, delivery, and the postnatal period. Nepal is an example of a country that explicitly prioritised the neonatal period and integrated community and facility-based approaches, leading to accelerated improvements in neonatal and under-5 mortality. The first step is encouraging and supporting facility-based delivery by skilled providers with the training and resources available to perform resuscitative efforts for women and neonates when needed. Basic activities include skin-to-skin contact, timely breathing assistance for intrapartum asphyxia, chlorhexidine umbilical cord cleansing for sepsis prevention, and early screening for congenital birth defects. Improvements also need to be made to neonatal care after delivery. Advancements are needed for in-hospital activities such as intensive care for prematurity, advanced resuscitation for intrapartum asphyxia, full support for sepsis beyond antibiotics, breastfeeding education and support, and surgical care for neonatal emergencies and birth defects that have been shown to be associated with improved neonatal survival. Postnatal check-ups are also required for prompt diagnosis and treatment of new illnesses that can be life-threatening in young neonates. Crosscutting, longitudinal neonatal care is not possible without augmenting hospital infrastructure, supply chains, and qualified health-care workers, and must be accounted for in national health plans.

Optimising health systems to scale up interventions

Providing technology and supplies alone, without coordinated investment in the strengthening of health systems, will be insufficient for achieving the SDG targets. Moving beyond survival is the cornerstone of the SDGs, which requires enabling environments, as outlined in the UN Global Strategy for Women’s, Children’s and Adolescents’ Health 2016–30 agenda. Per our analysis, more than 90% of countries have the potential to achieve the SDG targets by optimising their current health systems. Efforts to counter shortages and retain skilled health-care workers, reinforce facility infrastructure and supplies including oxygen, develop and strengthen referral networks, and expand integrated services are needed to achieve access and quality of care for improving survival rates for children younger than 5 years, particularly around the time of birth. Liberia is an example of a country that has made important progress in health system strengthening. Despite the odds of civil war and the Ebola virus epidemic, Liberia heavily invested in paying and supervising community health workers, providing medical supply chains to remote areas, and creating a health information system, leading to better survival.

Continued investment and scale-up of community-based initiatives

Community-based strategies such as primary health-care promotion and integrated management of childhood illness are an important pillar of prevention. Successful community activities include vaccination campaigns, insecticide-treated bednets for malaria, and mother-to-child HIV/AIDS transmission prevention. Further efforts are required, however, to increase uptake and coverage of additional community-based activities such as ensuring optimal maternal nutrition and iron and folic acid supplementation (to target low birthweight and neural tube defects), reducing household air pollution and second-hand smoke, *Haemophilus influenzae* type B and pneumococcal vaccination, and access to antibiotics for lower respiratory infections. Similarly, treatment campaigns for diarrhoea such as oral rehydration solution, zinc, and rotavirus vaccines have been successful, but must be accompanied by reductions in malnutrition and improvements in clean water and sanitation to achieve more than 90% reduction in rates of diarrhoea from the 2015 levels.

Targeting inequity across and within countries

Relative inequity has grown over the 29 years since the first GBD study, with the 51 countries in the Countdown to 2030 initiative in sub-Saharan Africa and south Asia now accounting for 80% of all child mortality and facing stark within-country disparities. Within-country disparities exist throughout the SDI spectrum and are related to race and ethnicity, urban-rural geography, mother’s education, and income. Global and national achievement of SDG 3.2 will hinge on our collective ability to target inequality both across and within countries.

Progress for the countries in the Countdown to 2030 programme is monitored by key intervention coverage milestones, but must be met with national ownership and effective international investment. On an international level, the World Bank’s Global Financing Facility is an example of a performance-based, country-led mechanism to strengthen health systems and multisectoral approaches, but the promise of this programme has not reached countries like Central African Republic and Chad, which are not only the furthest from achieving the SDG targets with lowest key intervention coverage, but are also cited as receiving the least development assistance funding. These countries contrasts with countries like Rwanda and Bangladesh. In Rwanda, a revised national health policy successfully aligned international donors to nationally driven goals of comprehensive child health care and health system strengthening, and were associated with a dramatic reduction in under-5 mortality. In Bangladesh, the
government partnered with domestic and international non-governmental organisations to target areas of the country most in need with delivering known interventions, performing local effectiveness research, and prioritising women’s empowerment.28

Peru and Brazil are examples of middle and high-middle SDI countries that have targeted inequity internally. Peru substantially reduced under-5 mortality by adopting the 2002 Acuerdo Nacional,28 a national health policy targeting extreme poverty that deployed health workers to impoverished communities, completed community-based intervention research to increase perinatal care coverage, and codified collective responsibility for improving health outcomes. Brazil sanctioned governmental conditional cash transfers targeting prenatal care, immunisation, child health check-ups, and nutritional education.28 Although the specific solutions for targeting inequity and marginalised populations vary, the essential component is that the efforts to increase equity must be explicit, sustained, and universal because it is present throughout the world.

Prioritising research into specific causes of child mortality

Many of the leading causes of death are also the source of the most mortality above both the global optimum and the survival potential frontier, include neonatal disorders, congenital birth defects, sudden infant death syndrome, many childhood cancers, and important infections like lower respiratory infections, diarrhoea, and meningitis. These causes are prime targets for additional dedicated primary research on disease mechanisms for effective prevention, detection, and treatment. Sudden infant death syndrome is particularly notable as only 27% of the mortality burden is above the survival potential frontier, it is the top cause of death in older infants and children in the high SDI quintile, and comparatively little is known about its pathophysiology.

This entire analysis draws on the overall strength and rigour of GBD 2019, the only comprehensive analysis of fertility, population, mortality, and outcomes for specific diseases and injuries that currently exists. The UN Inter-agency Group for Child Mortality Estimation last published estimates for 201723 but has not reported on causes of mortality since 2015,21,22 at which time there was broad agreement in the top causes of death globally, but some important differences existed in cause categories that limited our ability to make direct comparisons.

Measuring preventable death with the intersection of HAQ Index and SDG targets has not been explored in previous literature and necessarily extends beyond the scope of the OECD and Eurostat taskforce that only focuses on adult health outcomes.39 This method is more holistic than previous avertable mortality frameworks such as the Countdown to 2030 report that analysed only a composite coverage index of specific interventions, but did not measure the health system performance as a whole.4 Uses of our preventable mortality analyses include being able to identify the causes with the most potential for improvement (largest proportion above the global optimum or stochastic frontier analysis), the regions with potential imbalances in health priorities (largest ratio above frontier or discrepancies in ratio between neonates and children aged 1–59 months), causes where there are needs for better distributional allocation of resources, expertise, or delivery (those where the frontier is largely flat until decreasing sharply in high HAQ Index settings), and the causes where there is the greatest need for basic research into prevention and treatment (largest proportion below the global optimum). This preventable death framework thus introduces a novel, useful, and potentially powerful tool for developing comprehensive, evidence-based strategies for advancing child survival on multiple fronts.

Limitations

This analysis has several limitations. First, it shares the limitations of the overall GBD analysis,7 including it being a descriptive study; limitations on data availability because of reporting lags or because of disruptions in settings with conflict, natural disasters, or domestic governance crises; variable data granularity with respect to age, sex, and cause detail; varying quality and completeness of mortality reporting systems; and the core GBD assumption of each death having only a single underlying cause, where, clinically, there is close interrelatedness of many causes, especially in the very young.

Second, our future health scenario analyses are benchmarked against past trends and are ecological in nature. This limits the ability of the analysis to be used for causal inference, and also means it is limited in its ability to capture disruptions that could arise as a consequence of future crises, such as the COVID-19 pandemic. Third, although our framework for preventable mortality is conceptually simple, reproducible, and a powerful tool for tracking context-specific progress, it is also limited by its inherently retrospective nature, its inability to parse competing risks or factors that might influence geographical variability, and that it does not make special consideration for causes like vaccine-preventable diseases that some experts contend are entirely preventable.

Finally, the definition of livebirth has varied in countries and over time. Although our study has utilised a large amount of empirical data on death in the under-5 age groups, directly or indirectly measured, such information is based on potentially different definitions of livebirths, thus affecting the accuracy of our results. Although we do account for source specific biases, difference in definitions of livebirths as one of them, in our USMR estimation process, future model development should be done to explicitly account for the effect of definition of livebirths on the accurate estimation of mortality in the under-5 age groups.

www.thelancet.com Vol 398 September 4, 2021 891
Future directions

Future work is required to measure and understand the direct (severe illness and death) and indirect (determinants of health) effects of COVID-19 on child mortality. First, this work will include collecting data on disruptions in basic childhood health services (eg, vaccines, integrated management of childhood illness, well-child visits), nutritional status (eg, food supply and distribution), perinatal health (eg, maternal and neonatal care), and socioeconomic indicators such as fertility, education, and household income. A second direction is to work towards an integrated framework for women’s, maternal, and child health because of the inherent links between the health of mothers and their children. Third, integrating information from prevention and intervention trials into developing future health scenarios is a priority in order to provide information to motivated policy makers as to what their most effective options might be. Fourth, following the momentum of the Institute for Health Metrics and Evaluation’s Local Burden of Disease project, developing increasing local estimates of cause-specific and age-specific disease burden is crucial to guide local efforts at improving child survival, and assess within-country disparities further.

Achieving SDG 3.2 will require focus on equilibrium, which will involve balancing early newborn care with continuing prenatal and older child health initiatives, strengthening quality health systems, scaling up interventions, addressing within-country disparities, and pursuing integrative action on social determinants of health. All these steps forward promote the SDG agenda as to what their most effective options might be. Fourth, following the momentum of the Institute for Health Metrics and Evaluation’s Local Burden of Disease project, developing increasing local estimates of cause-specific and age-specific disease burden is crucial to guide local efforts at improving child survival, and assess within-country disparities further.

GDH 2019 Under-S Mortality Collaborators

Katherine R Paulson, Tahiyah Alam, Kelly Bienhoff, Molly R Nixon, Simon I Hay, Christopher J L Murray, Haidong Wang, and Nicholas J Kassembaum managed the estimation or publication process. Katherine R Paulson, Aruna M Kamath, and Nicholas J Kassembaum wrote the first draft of the manuscript. Katherine R Paulson, Tahiyah Alam, Kelly Bienhoff, Haidong Wang, and Nicholas J Kassembaum had primary responsibility for applying analytical methods to produce estimates. Katherine R Paulson, Aruna M Kamath, Haidong Wang, and Nicholas J Kassembaum had primary responsibility for seeking, cataloguing, extracting, or cleaning data, and designing or coding figures and tables. Please see the appendix (p 71) for individual authors’ contributions to the research. All authors had full access to all data in the study and had final responsibility for the decision to submit for publication.

www.thelancet.com Vol 398 September 4, 2021
Sciences (S Mohammadi PhD), Zanjan University of Medical Sciences, Zanjan, Iran; Department of Biology (S Athari MPH), Department of Nutrition and Food Science (Glebszechko), University of Medical Sciences, Maragheh, Iran; Department of Health System and Health Economics (D D Atnafu MPH), Department of Internal Medicine (Y M Bezabih MD), Department of Reproductive Health and Population Studies (E W Mengesha MPH), Bahir Dar University, Bahir Dar, Ethiopia; Department of Forensic Medicine (A Atreya MD), Lumbini Medical College, Palpa, Nepal; Department of Social Welfare (M S Attereya PhD), Keimyung University, Daegu, South Korea; School of Business (Prof M Ausloos PhD), Department of Health Sciences (P H Lee PhD), University of Leicester, Leicester, UK; Department of Statistics and Econometrics (Prof M Ausloos PhD), EHEP School of Health Sciences (E Jenabi PhD), Department of Public Health and Allied Sciences, Ho, Ghana; Department of Nursing (Y A Nayeem MSc, W S Shiferaw MSc), Department of Public Health (L Getachew MPH), Debere Berhan University, Debere Berhan, Ethiopia; Department of Environmental Health Engineering (G Azarian PhD), Autism Spectrum Disorders Research Center (F Jenaif PhD), Department of Biostatistics (N Kamiyari MSc), Department of Midwifery (S Masoumi PhD), Research Center for Molecular Medicine (A Taherkhani PhD), Hamadan University of Medical Sciences, Hamadan, Iran; Kasturba Medical College, Mangalore (D B B MD, R Holla MD, J Padubidri MD, P Rathi MD), Manipal College of Pharmaceutical Sciences (Prof M D Janaod PhD), Department of Nephrology (Prof S Nagaraju DM), Department of Health Information Management (B Reshmi PhD), Manipal Academy of Higher Education, Manipal, India (B Reshmi PhD), Department of Forensic Science (A D Badiye MSc, N Kapoor MSc), Government Institute of Forensic Science, Nagpur, India: Unit of Biochemistry (A A Baig PhD), University Sultan Zainal Abidin (Sultan Zainal Abidin University), Kuala Terengganu, Malaysia; Department of Hypertension (Prof M Banach PhD), Medical University of Lodz, Lodz, Poland; Polish Mothers’ Memorial Hospital Research Institute, Lodz, Poland (Prof M Banach PhD); Department of Non-communicable Diseases (P C Banik MPH), Bangladesh University of Health Sciences, Dhaka, Bangladesh; School of Psychology (Prof S L Barker-Collo PhD), University of Auckland, Auckland, New Zealand; Barcelona Institute for Global Health (Prof Q Bassat MD), University of Barcelona, Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain (Prof Q Bassat MD, A Koyanagi MD), School of Public Health (S Basu PhD, Prof S Saxena MD), Department of Surgery and Cancer (Prof A C Davis PhD), Imperial College Business School (D Kusuma DSc), Department of Primary Care and Public Health (Prof A Majumdar MD, R Palladino MD, Prof S Rawal MD), WHO Collaborating Centre for Public Health Education and Training (D L Rawal MD), Imperial College London, London, UK; Department of Psychiatry (Prof B T Baune PhD), Institute for Epidemiology and Social Medicine (A Karch MD), University of Münster, Münster, Germany; Department of Psychiatry (Prof B T Baune PhD), Melbourne Medical School, Melbourne, VIC, Australia; School of Public Health (Prof N Bedi MD, Dr D Y Patil University, Mumbai, India; Department of Neurosciences (E Beghi MD, E Pupillo PharmD), Department of Environmental Health Sciences (S Gallus DSc, A Lugo PhD), Laboratory of Neurological Disorders (G Giussani PhD, Mario Negri Institute for Pharmacological Research, Milano MD), AUSL Romagna, Ravenna, Italy; School of the Environment (Prof M L Bell PhD), Department of Genetics (S Pawar PhD), Yale University, New Haven, CT, USA; Department of Industrial Engineering (S Bendik PhD), Hacettepe University, Istanbul, Turkey; Nuffield Department of Population Health (D A Bennett PhD, B Lacey PhD), Nuffield Department of Clinical Medicine (N J Henry BS), Centre for Tropical Medicine and Global Health (S Leywyck PhD), Big Data Institute (E M Pourjour PhD), Maragheh: University of Medical Sciences, Maragheh, Iran; Department of Health System and Health Economics (D D Atnafu MPH), Department of Internal Medicine (Y M Bezabih MD), Department of Reproductive Health and Population Studies (E W Mengesha MPH), Bahir Dar University, Bahir Dar, Ethiopia; Department of Forensic Medicine (A Atreya MD), Lumbini Medical College, Palpa, Nepal; Department of Social Welfare (M S Attereya PhD), Keimyung University, Daegu, South Korea; School of Business (Prof M Ausloos PhD), Department of Health Sciences (P H Lee PhD), University of Leicester, Leicester, UK; Department of Statistics and Econometrics (Prof M Ausloos PhD), EHEP School of Health Sciences (E Jenabi PhD), Department of Public Health and Allied Sciences, Ho, Ghana; Department of Nursing (Y A Nayeem MSc, W S Shiferaw MSc), Department of Public Health (L Getachew MPH), Debere Berhan University, Debere Berhan, Ethiopia; Department of Environmental Health Engineering (G Azarian PhD), Autism Spectrum Disorders Research Center (F Jenaif PhD), Department of Biostatistics (N Kamiyari MSc), Department of Midwifery (S Masoumi PhD), Research Center for Molecular Medicine (A Taherkhani PhD), Hamadan University of Medical Sciences, Hamadan, Iran; Kasturba Medical College, Mangalore (D B B MD, R Holla MD, J Padubidri MD, P Rathi MD), Manipal College of Pharmaceutical Sciences (Prof M D Janaod PhD), Department of Nephrology (Prof S Nagaraju DM), Department of Health Information Management (B Reshmi PhD), Manipal Academy of Higher Education, Manipal, India (B Reshmi PhD), Department of Forensic Science (A D Badiye MSc, N Kapoor MSc), Government Institute of Forensic Science, Nagpur, India: Unit of Biochemistry (A A Baig PhD), University Sultan Zainal Abidin (Sultan Zainal Abidin University), Kuala Terengganu, Malaysia; Department of Hypertension (Prof M Banach PhD), Medical University of Lodz, Lodz, Poland; Polish Mothers’ Memorial Hospital Research Institute, Lodz, Poland (Prof M Banach PhD); Department of Non-communicable Diseases (P C Banik MPH), Bangladesh University of Health Sciences, Dhaka, Bangladesh; School of Psychology (Prof S L Barker-Collo PhD), University of Auckland, Auckland, New Zealand; Barcelona Institute for Global Health (Prof Q Bassat MD), University of Barcelona, Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain (Prof Q Bassat MD, A Koyanagi MD), School of Public Health (S Basu PhD, Prof S Saxena MD), Department of Surgery and Cancer (Prof A C Davis PhD), Imperial College Business School (D Kusuma DSc), Department of Primary Care and Public Health (Prof A Majumdar MD, R Palladino MD, Prof S Rawal MD), WHO Collaborating Centre for Public Health Education and Training (D L Rawal MD), Imperial College London, London, UK; Department of Psychiatry (Prof B T Baune PhD), Institute for Epidemiology and Social Medicine (A Karch MD), University of Münster, Münster, Germany; Department of Psychiatry (Prof B T Baune PhD), Melbourne Medical School, Melbourne, VIC, Australia; School of Public Health (Prof N Bedi MD, Dr D Y Patil University, Mumbai, India; Department of Neurosciences (E Beghi MD, E Pupillo PharmD), Department of Environmental Health Sciences (S Gallus DSc, A Lugo PhD), Laboratory of Neurological Disorders (G Giussani PhD, Mario Negri Institute for Pharmacological Research, Milano MD), AUSL Romagna, Ravenna, Italy; School of the Environment (Prof M L Bell PhD), Department of Genetics (S Pawar PhD), Yale University, New Haven, CT, USA; Department of Industrial Engineering (S Bendik PhD), Hacettepe University, Istanbul, Turkey; Nuffield Department of Population Health (D A Bennett PhD, B Lacey PhD), Nuffield Department of Clinical Medicine (N J Henry BS), Centre for Tropical Medicine and Global Health (S Leywyck PhD), Big Data Institute (E M Pourjour PhD), Maragheh: University of Medical Sciences, Maragheh, Iran; Department of Health System and Health Economics (D D Atnafu MPH), Department of Internal Medicine (Y M Bezabih MD), Department of Reproductive Health and Population Studies (E W Mengesha MPH), Bahir Dar University, Bahir Dar, Ethiopia; Department of Forensic Medicine (A Atreya MD), Lumbini Medical College, Palpa, Nepal; Department of Social Welfare (M S Attereya PhD), Keimyung University, Daegu, South Korea; School of Business (Prof M Ausloos PhD), Department of Health Sciences (P H Lee PhD), University of Leicester, Leicester, UK; Department of Statistics and Econometrics (Prof M Ausloos PhD), EHEP School of Health Sciences (E Jenabi PhD), Department of Public Health and Allied Sciences, Ho, Ghana; Department of Nursing (Y A Nayeem MSc, W S Shiferaw MSc), Department of Public Health (L Getachew MPH), Debere Berhan University, Debere Berhan, Ethiopia; Department of Health Policy Planning and Management (M A Ayaare PhD), University of Health and Allied Sciences, Ho, Ghana; Department of Nursing (Y A Nayeem MSc, W S Shiferaw MSc), Department of Public Health (L Getachew MPH), Debere Berhan University, Debere Berhan, Ethiopia; Department of Environmental Health Engineering (G Azarian PhD), Autism Spectrum Disorders Research Center (F Jenaif PhD), Department of Biostatistics (N Kamiyari MSc), Department of Midwifery (S Masoumi PhD), Research Center for Molecular Medicine (A Taherkhani PhD), Hamadan University of Medical Sciences, Hamadan, Iran; Kasturba Medical College, Mangalore (D B B MD, R Holla MD, J Padubidri MD, P Rathi MD), Manipal College of Pharmaceutical Sciences (Prof M D Janaod PhD), Department of Nephrology (Prof S Nagaraju DM), Department of Health Information Management (B Reshmi PhD), Manipal Academy of Higher Education, Manipal, India (B Reshmi PhD), Department of Forensic Science (A D Badiye MSc, N Kapoor MSc), Government Institute of Forensic Science, Nagpur, India: Unit of Biochemistry (A A Baig PhD), University Sultan Zainal Abidin (Sultan Zainal Abidin University), Kuala Terengganu, Malaysia; Department of Hypertension (Prof M Banach PhD), Medical University of Lodz, Lodz, Poland; Polish Mothers’ Memorial Hospital Research Institute, Lodz, Poland (Prof M Banach PhD); Department of Non-communicable Diseases (P C Banik MPH), Bangladesh University of Health Sciences, Dhaka, Bangladesh; School of Psychology (Prof S L Barker-Collo PhD), University of Auckland, Auckland, New Zealand; Barcelona Institute for Global Health (Prof Q Bassat MD), University of Barcelona, Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain (Prof Q Bassat MD, A Koyanagi MD), School of Public Health (S Basu PhD, Prof S Saxena MD), Department of Surgery and Cancer (Prof A C Davis PhD), Imperial College Business School (D Kusuma DSc), Department of Primary Care and Public Health (Prof A Majumdar MD, R Palladino MD, Prof S Rawal MD), WHO Collaborating Centre for Public Health Education and Training (D L Rawal MD), Imperial College London, London, UK; Department of Psychiatry (Prof B T Baune PhD), Institute for Epidemiology and Social Medicine (A Karch MD), University of Münster, Münster, Germany; Department of Psychiatry (Prof B T Baune PhD), Melbourne Medical School, Melbourne, VIC, Australia; School of Public Health (Prof N Bedi MD, Dr D Y Patil University, Mumbai, India; Department of Neurosciences (E Beghi MD, E Pupillo PharmD), Department of Environmental Health Sciences (S Gallus DSc, A Lugo PhD), Laboratory of Neurological Disorders (G Giussani PhD, Mario Negri Institute for Pharmacological Research, Milano MD), AUSL Romagna, Ravenna, Italy; School of the Environment (Prof M L Bell PhD), Department of Genetics (S Pawar PhD), Yale University, New Haven, CT, USA; Department of Industrial Engineering (S Bendik PhD), Hacettepe University, Istanbul, Turkey; Nuffield Department of Population Health (D A Bennett PhD, B Lacey PhD),
Network, Florence, Italy (G Carreras PhD); Research Unit on Applied Molecular Biosciences (UCIBIO) (Prof F Carvalho PhD, V M Costa PhD, J P Silva PhD), Department of Chemical Sciences (V A Couto MD, D Ribeiro PhD), Laboratory of Toxicology (Prof D Dias da Silva PhD), Associated Laboratory for Green Chemistry (LAQV) (Prof E Fernandes PhD, M Freitas PhD), Department of Chemistry (M Pinheiro PhD), University of Porto, Porto, Portugal; Epidemiology and Public Health Evaluation Group (C A Castederra-Orjuela MD), Department of Public Health (Prof P P De la Hoz PhD), National University of Colombia, Bogota, Colombia; Department of Medicine (G Castelippi PhD), University of Udine, Udine, Italy; Department of Mental Health (G Castelippi PhD), Healthcare Agency “Friuli Occidentale”, Pordenone, Italy; Mary MacKillop Institute for Health Research (Prof E Cerin PhD), Australian Catholic University, Melbourne, VIC, Australia; School of Public Health (Prof E Cerin PhD), Centre for Suicide Research and Prevention (Prof P Yip PhD), Department of Social and Work Social Administration (Prof P Yip PhD), University of Hong Kong, Hong Kong, China; College of Medicine (J Chang PhD), National Taiwan University, Taipei, Taiwan; Department of Nursing (J Chang PhD), National Taiwan University Hospital, Taipei, Taiwan; Department of Microbiology & Infection Control (S Chatterjee MD), Medanta Medcity, Gurugram, India; Department of Public Health (S Chuttu PhD), Teixa American University, Georgetown, Guyana; Global Institute of Public Health (Prof D Chuttu PhD), Thuringia University, Germany; Research Department (S Chuttu PhD), Dr D Y Patil University, Pune, India; Heidelberg Institute of Global Health (HIGH) (S Chen DSc, B Moazen MSc, S Mohammed PhD), Department of Ophthalmology (Prof J Bonas MD, S Panda-Jonas MD), Heidelberg University, Germany; Biomedical Information and Communication (Prof M Kumar PhD), Seoul National University Hospital, Seoul, South Korea; Center for Biomedicine and Community Health (D Chu PhD), VNU-International School, Hanoi, Vietnam; Department of Public Health (Prof M Cirillo MD, Prof I Lavicolì PhD, R Palladino MD), University of Naples Federico II, Naples, Italy; Nova Medical School (J Conde PhD), Nova University of Lisbon, Lisbon, Portugal; College of Environmental Sciences and Engineering (Prof H Dai PhD), Peking University, Beijing, China; Department of Research (A Pandey PhD), Public Health Foundation, India, Gurugram, India (Prof L Dandona MD, Prof R Dandona PhD, G Kumar PhD); Indian Council of Medical Research, New Delhi, India (Prof L Dandona MD); Department of Pathology (P Daneshpajouhnejad MD), Department of Radiology and Radiological Science (N Hafezi-Nejad MD, O Sialaat MD, S Sheikhhosseini MD), Johns Hopkins University, Baltimore, MD, USA; Department of Pediatrics (Prof G L Damstard MD), Center for Health Policy & Center for Primary Care and Outcomes Research (Prof J A Salomon PhD), Stanford University, Stanford, CA, USA; Department of Population and Development (A C Davila-Cervantes PhD), Latin American Faculty of Social Sciences Mexico, Mexico City, Mexico; Ear Institute (Prof A C Davis), Division of Psychology and Language Sciences (M Kumar PhD), Medical Research Council Clinical Trials Unit (N M Noor MRCP), University College London, London, UK; Health Research Institute (K Davletov PhD), Al Farabi Kazakh National University, Almaty, Kazakhstan; Australian Institute for Suicide Research and Prevention (Prof D De Leo DSc), Griffith University, Mount Gravatt, QLD, Australia; Centre for Interdisciplinary Research in Basic Sciences (F Deeba PhD), Jamia Millia Islamia, Delhi, India; St Paul’s Eye Unit (N Dervenis MD), Royal Liverpool University Hospital, Liverpool, UK; Department of Ophthalmology (N Dervenis MD), Aristotle University of Thessaloniki, Thessaloniki, Greece; National Centre for AIDS and STD Control (K Desha DrPH), Save the Children, Kathmandu, Nepal; Centre for Atmospheric Sciences (S Dey PhD), Indian Institute of Technology Delhi, New Delhi, India; Department of Community Medicine (Prof S D Dharmaratne MD), University of Peradeniya, Peradeniya, Sri Lanka; Department of Pharmacy Practice (S Dhingra PhD), National Institute of Pharmaceutical Education and Research, India; Department of Microbiology (G P Dhungana MSc), Far Western University, Mahendranagar, Nepal; Faculty of Veterinary Medicine and Zootechnology (Prof D Diaz PhD), Autonomous University of Sinaloa, Culiacan Rosales, Mexico; Institute of Microbiology and Immunology (E Dubljanić PhD), Faculty of Medicine (M Ilic PhD, Prof M M Santric-Milicevic PhD), School of Public Health and Health Management (Prof M M Santric-Milicevic PhD), University of Belgrade, Serbia; School of Medicine (Prof A R Duras MD), Institute of Collective Health (Prof D Rasella PhD), Federal University of Bahia, Salvador, Brazil; Department of Internal Medicine (Prof A R Duras PhD), Escola Bahiana de Medicina e Saude Publica (Bahiana School of Medicine and Public Health), Salvador, Brazil; Department of Social Services (A W Elan MSc), Tufts Medical Center, Boston, MA, USA; School of Health Sciences (J H Edmaz PhD), Universiti Sains Malaysia (University of Science Malaysia), Kubang Kerian, Malaysia; Division of Urology (S Efekharzadeh MD), Children’s Hospital of Philadelphia, Philadelphia, PA, USA; Biomedical Informatics and Medical Statistics Department (I El Sayed PhD), Pediatric Dentistry and Dental Public Health Department (Prof M El Tantawi PhD), Alexandria University, Alexandria, Egypt; Division of Cardiology (Y I Elgendy MD), Massachusetts General Hospital, Boston, MA, USA; Department of Microbiology and Immunology (S Enany PhD), Suez Canal University, Ismailia, Egypt; Faculty of Health (O Eyawo PhD), York University, Toronto, BC, Canada; Department of Virology (S Ezzekouri PhD), Pasteur Institute of Morocco, Casablanca, Morocco; Department of Biology and Biotechnology “Lazzaro Spallanzani” (P S Faris PhD), University of Pavia, Pavia, Italy; Department of Biology (P S Faris PhD), Cihan University-Erbil, Erbil, Iraq; Research Center for Environmental Determinants of Health (N Fatuhi PhD), Third Department of Pediatrics (Prof A Kamali PhD, A Kazemi Karyani PhD, M Moradi PhD, Prof M Pirsaei PhD, Prof E Sadeghi PhD, K Sharafi PhD, S Soilani PhD), Clinical Research Development Center (S Maleki MSC, M Naderi PhD), Substance Abuse Prevention Research Center (B Mansouri PhD), Department of Rehabilitation and Sports Medicine (M Mozaffari PhD), Department of Anatomical Sciences (M R Salahshoor PhD), Department of Vascular and Endovascular Surgery (M Sobhieh MD), Department of Health Education and Health Promotion (A Zapour PhD), Kermanshah University of Medical Sciences, Kermanshah, Iran; College of Medicine and Public Health (N K Faulk MSc, Prof P Ward PhD), Southgate Institute for Health and Society (F H Tesfay PhD), Flinders University, Adelaide, SA, Australia; Institute of Resource Governance and Social Change, Kupang, Indonesia (N K Faulk MSc); Department of Environmental Health Engineering (M Fazlzaheh PhD), Ardabil University of Medical Science, Ardabil, Iran; National Institute for Stroke and Applied Neurosciences (Prof V I Feigin PhD), Auckland University of Technology, Auckland, New Zealand; Third Department of Neurology (E V Gnedovskaya PhD), Research Center of Neurology, Moscow, Russia (Prof V I Feigin PhD, Prof M A Piradov DSc); School of Nursing (T Y Ferrede MSc), School of Midwifery (G Kasahass MSc); Hawassa University, Hawassa, Ethiopia; Division of Neurology (S Fresnshitehnnejad PhD), School of International Development and Global Studies (Prof S Yaya PhD), University of Ottawa, Ottawa, ON, Canada; Research Center on Public Health (P Ferrand MD), University of Milano Bicocca, Monza, Italy; Psychiatry Department (I Filip MD), Kaiser Permanente, Fontana, CA, USA; School of Health Sciences (I Filip MD), AT Still University, Mesa, AZ, USA; Institute of Gerontological Health Services and Nursing Research (F Fischer PhD), Ravensburg-Weingarten University of Applied Sciences, Weingarten, Germany; James Cancer Hospital (J I Fisher PhD), Ohio State University, Columbus, OH, USA; Institute of Gerontology (N A Foigt PhD), National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine; Department of Child Dental Health (Prof M O Folyan FYWACS), Obafemi Awolowo University, Ile-Ife, Nigeria; Department of Medical Parasitology (M Foroutan PhD), Abadan Faculty of Medical Sciences, Abadan, Iran; School of Public Health, Medical, and Veterinary Sciences (R C Franklin PhD), James Cook University, Douglas, QLD, Australia; School of Global Public Health (S D Friedman BA, E K Peprah PhD), New York University, New York, NY, USA; Department of Dermatology (T Fukumoto PhD), Kobe University, Kobe, Japan; Department of Cardiovascular Medicine (M G Mad MD), Department of Internal Medicine (V Jain MD), Cleveland Clinic, Cleveland, OH, USA; Gilling School of Global Public Health (M G Mad MD), University of North Carolina Chapel Hill, Chapel Hill, NC, USA; Department of Community Medicine (Prof A M Gaidhani MD, Prof Z Quazi Syed PhD), Department of Medicine (S Gaidhani PhD), Department of Ophthalmology (Prof D Singhal MD), Datta Meghe Institute of Medical Sciences,
Articles

Medical Sciences (NUMS), Rawalpindi, Pakistan; Department of Community Medicine (C D Uneskonkwo MPH), Alex Ekweuere Federal University Teaching Hospital Abakaliki, Abakaliki, Nigeria; Department of Cardiovascular, Endocrine-metabolic Diseases and Aging (B Unim PhD), National Institute of Health, Rome, Italy; Amity Institute of Biotechnology (E Upadhyay PhD), Amity University Rajasthan, Jaipur, India; Clinical Cancer Research Center (S Valadan Tahbaz PhD, S Yavazadeh Jabbari MD), Milad General Hospital, Tehran, Iran; Velez Sarasfield Hospital, Buenos Aires, Argentina (Prof P R Valdez ME), UKK Institute, Tampere, Finland (Prof T J Vasankari MD); Raffles Neuroscience Centre (Prof N Venketasubramanian MBBS), Raffles Hospital, Singapore, Singapore; Yong Loo Lin School of Medicine (Prof N Venketasubramanian MBBS), National University of Singapore, Singapore, Singapore; Department of Community Medicine and Family Medicine (M Verma MD), All India Institute of Medical Sciences, Bathinda, India; Department of Medical and Surgical Sciences (Prof F S Violante MD), University of Bologna, Bologna, Italy; Occupational Health Unit (Prof F S Violante MD), Sant’Orsola Malpighi Hospital, Bologna, Italy; Faculty of Information Technology (B Unim PhD), Ho Chi Minh City University of Technology (HUTECH).

Ho Chi Minh City, Vietnam; Center of Excellence in Behavioral Medicine (G T Vu BA), Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam; Foundation University Medical College (Prof Y Waheed PhD), Foundation University Islamabad, Islamabad, Pakistan; Demographic Change and Aging Research Area (A Werdecker PhD), Competence Center of Mortality-Follow-Up of the German National Cohort (R Westerman DSc), Federal Institute for Population Research, Wiesbaden, Germany; Department of Community Medicine (N D Wickramasinghe MD), Rajarata University, Anuradhapura, Sri Lanka; Department of Orthopaedics (Prof A Wu MD), Wenzhou Medical University, Wenzhou, China; Department of Behavior and Operation Management (Y Xie MD), Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Beijing, China; Division of Cardiology (S Yandrapalli MD), New York Medical College, Valhalla, NY, USA; Division of Cardiology (S Yandrapalli MD), Westchester Medical Center, Valhalla, NY, USA; Health Services Management Research Center (V Yazdi-Feyzabad PhD), Department of Health Management, Policy, and Economics (Y Yazdi-Feyzabadi PhD), Kerman University of Medical Sciences, Kerman, Iran; Department of Neuroepidemiology (N Yonemoto MPH), National Center of Neurology and Psychiatry, Kodaira, Japan; Department of Public Health (N Yonemoto MPH), Juntendo University, Tokyo, Japan; Department of Preventive Medicine (Prof S Yoon PhD), Korea University, Seoul, South Korea; Department of Health Policy and Management (Prof M Z Younis PhD), Jackson State University, Jackson, MS, USA; School of Medicine (Prof M Z Younis PhD), Tsinghua University, Beijing, China; Department of Epidemiology and Biostatistics (Prof C Yu PhD), School of Medicine (Z Zhang PhD), School of Health Sciences (X G Zhao PhD), Wuhan University, Wuhan, China; Technology Enabled Girl Ambassadors (TEGA) Programme (S S Yusuf MPH), GIRL Effect, London, UK; Maternal and Child Health Division (S Zaman MPH), International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh; Addiction Department (Prof M S Zastrozhina PhD), Pediatrics Department (A Zastrozhina PhD), Russian Medical Academy of Continuous Professional Education, Moscow, Russia; School of Public Health (Y Zhang PhD), Hubei Province Key Laboratory of Occupational Hazard Identification and Control (Y Zhang PhD), Wuhan University of Science and Technology, Wuhan, China; School of Biology and Pharmaceutical Engineering (X G Zhao PhD), Wuhan Polytechnic University, Wuhan, China.

Declaration of interests

Robert Ancuceanu reports consulting fees from AbbVie and AstraZeneca; payment or honoraria for lectures, presentations, speakers’ bureaus, manuscript writing, or educational events from Sandoz and AbbVie; support for attending meetings and/or travel from AbbVie and AstraZeneca, all outside the submitted work. Marcel Ausloos reports grants or contracts from Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084, outside the submitted work. Ettore Beghi reports grants or contracts paid to their institutions from ALSA, the Italian Ministry of Health and SOBI; payment or honoraria for lectures, presentations, speakers’ bureaus, manuscript writing, or educational events from Arvel/Therapeutics; support for attending meetings and/or travel from ILAE and EAN, all outside the submitted work. Reinhard Busse reports leadership or fiduciary role in other board, society, committee, or advocacy group, paid or unpaid with the Robert Koch Institute as member of the scientific advisory committee, German Burden 2020 project, all outside the submitted work. Joao Conde reports grants or contracts from the European Research Council grant agreement No 848325 (ERC starting grant); patents planned issued or pending for TRPV2 antagonists WO2019054891 - Instituto de Medicina Molecular (PT), Hydrogel Particles, Compositions, and Methods- WO US US2017033304A1 - Massachusetts Institute of Technology (USA), and Theranostic nanoprobe for overcoming cancer multidrug resistance and methods- WO US WO2016134232A1 - Massachusetts Institute of Technology (USA), all outside the submitted work. Irina Filip reports payment or honoraria for lectures, presentations, speakers’ bureaus, manuscript writing, or educational events from Ancivena Medical and Clinical Research Institute. Claudius Herteliu reports grants or contracts from Romanian National Authority for scientific research and innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084, research grant (October, 2018, to September, 2022), understanding and modelling time-space patterns of psychology-related inequalities and polarisation, and project number PN-III-P2-2.1-SOL-2020-2-0351, research grant (June, 2021, to October, 2021), approaches within public health management in the context of COVID-19 pandemic, and from the Ministry of Labour and Social Justice Romania, project number 30/PSCD/2018, research grant (September, 2018 to June, 2019), agenda for skills Romania 2020–25, all outside the submitted work. Sheikh Mohammed Shariful Islam reports grants or contracts from National Health and Medical Research Council (NHMRC) and National Heart Foundation of Australia Fellowships, outside the submitted work. Jacke Jerzy Jozwiak reports payment or honoraria for lectures, presentations, speakers’ bureaus, manuscript writing, or educational events from Teva, AstraZeneca, and Toshiba, all outside the submitted work.

Nicholas Kassebaum reports support for the present manuscript from the Bill & Melinda Gates Foundation as grant funding for the GBD. Kewal Krishnan reports grant support from the UK Crossroads Project, all outside the submitted work. Seithikurippu R Pandi-Perumal reports payment or honoraria for lectures, presentations, speakers’ bureaus, manuscript writing, or educational events from the Italian Ministry of Health and SOBI; payment or honoraria for lectures, presentations, speakers’ bureaus, manuscript writing, or educational events from Arvel/Therapeutics; support for attending meetings and/or travel from ILAE and EAN, all outside the submitted work. Shuhei Nomura reports support for the present manuscript from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT) as grant funding. Adrian Pana reports grants or contracts from Romanian National Authority for Scientific Research and Innovation, CNDS-UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0084, research grant (October, 2018, to September, 2022), understanding and modelling time-space patterns of psychology-related inequalities and polarisation, and project number PN-III-P2-2.1-SOL-2020-2-0351, research grant (June, 2021, to October, 2021), approaches within public health management in the context of COVID-19 pandemic, all outside the submitted work.

Senthikurippu R Pandi-Penumula reports payment or honoraria for lectures, presentations, speakers’ bureaus, manuscript writing, or educational events for the volumes he edited; leadership or fiduciary role in other board, society, committee, or advocacy group, paid or unpaid, with Somnogen Canada, Toronto, Canada, as the President and Chief Executive Officer, all outside the submitted work. Thomas Pilgrim reports grants or contracts from Biotronik, Boston Scientific, and Edwards Lifesciences; payment or honoraria for lectures, presentations, speakers’ bureaus, manuscript writing, or educational events from Biotronik, Boston Scientific, and HighLifeSAS; and being proctor for Medtronic and Boston Scientific, all outside the submitted work.
Articles

P119/00588, P119/00815, DTS18/00032, ERA-PerMed-JTC2018 (KIDNEY-ATTACK AC18/00664 and PERSTIGAN AC18/00071, ISC11-BETIC RED/REN RD16/00099, Sociedad Española de Nefrología, FRIAT, Comunidad de Madrid en Biomedicina B2017/BMD-368 CIFRA2-CA. Jagdish Rao Padubidri acknowledges the Manipal Academy of Higher Education Mangalore, Mangalore, India for their constant support. George C Patton is supported by an NHMRC senior principal research fellowship. Albertro Raggi is supported by a grant from the Italian Ministry of Health (Ricerca Corrente, Fondazione Istituto Neurologico C. Besta, Linea 4 Outcome Research: dagli Indicatori alle Raccomandazioni Cliniche). Bhageerathy Reshmi acknowledges support from Manipal College of Health Professions, Manipal, India. Daniela Ribeiro acknowledges the financial support from the European Union (FEDER funds through COMPETE, POCI-01-0145-FEDER-029253). Abdallah M Sany acknowledges the support from the Egyptian Fullbright Mission Program, and being a member of the Egyptian Young Academy of Sciences and Technology. Davide Satin and Silvia Schizavolin acknowledge support from a grant by the Italian Ministry of Health (Ricerca Corrente, Fondazione Istituto Neurologico C Besta, Linea 4 Outcome Research: dagli Indicatori alle Raccomandazioni Cliniche). Francesca Giulia Magnani acknowledges support by a grant from the Italian Ministry of Health GR2016-02163049. Peng Sha and Bingyu Li acknowledge support by the Shenzhen Social Science Fund (Grant No SZ2020CD015) and the Shenzhen Science and Technology Program (Grant QGTD2019092172815662). Azziz Sheikh acknowledges the support of the Health Data Research UK BREATHE Hub. João Pedro Silva acknowledges support from grant number UIDB/04378/2020 from the Applied Molecular Biosciences Unit (UCIBIO), supported through Portuguese national funds via FCT/MCTES. David A Fleet acknowledges support from the James F and Sarah T Fries Foundation, The Bizzell Group. Mohammad Reza Sohghiyeh acknowledges support from the Clinical Research Development center of Imam Reza Hospital Kermanshah University of Medical Sciences, Iran. Joan B Soriano acknowledges support from the Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES). Instituto de Salud Carlos III (ISCIII), Madrid, Spain. Gizachew Assefa Tessema is a recipient of the Australian National Health and Medical Research Council (NHMRC) investigator grant (APP1193716). Riaza Uddin is supported by an Alfred Deakin Postdoctoral Research Fellowship. Bhaskarun Unnikrishnan acknowledges Katurba Medical College, Mangalore, India. Charles Shay Wyssonge is supported by the South African Medical Research Council. Sojib Bin Zaman received a scholarship from the Australian Government Research Training Program (RTF) in support of his academic career. Yunguan Zhang acknowledges the Science and Technology Research Project of Hubei Provincial Department of Education (grant number Q2020104) and Middel Aged Technology Innovation Team Project of Hubei Provincial Department of Education (grant number T20200013).

Editorial note: the Lancet Group takes a neutral position with respect to territorial claims in published maps and institutional affiliations.

References

1 UN Children’s Fund. The State of the World’s Children 2008: child survival. New York, USA: United Nations Children’s Fund, 2007.
2 Wang H, Bhutta ZA, Coates MM, et al. Global, regional, national, and selected subnational levels of stillbirths, neonatal, infant, and under-5 mortality, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1725–74.
3 Transforming Our World: the 2030 Agenda for Sustainable Development. In: Rosa W, eds. A new era in global health. New York, USA: Springer Publishing Company, 2017.
4 Every Woman Every Child. The global strategy for women’s, children’s and adolescents’ health. 2016–2030. 2015. https://www.everywomaneverychild.org/wp-content/uploads/2017/10/EWC_GSUupdate_Full_EN_2017_web-1.pdf (accessed Nov 20, 2020).
5 WHO. Reaching the every newborn 2020 milestones: country progress, plans and moving forward. Geneva: World Health Organization, 2017.
6 Boerma T, Requejo J, Victoria CG, et al. Countdown to 2030: tracking progress towards universal coverage for reproductive, maternal, newborn, and child health. Lancet 2018; 391: 1538–48.
7 Kruk ME, Gage AD, Arsenault C, et al. High-quality health systems in the Sustainable Development Goals erz: time for a revolution. Lancet Glob Health 2019; 6: e1396–252.
8 Institute for Health Metrics and Evaluation (IHME). Financing global health 2019: tracking health spending in a time of crisis. 2020. http://www.healthdata.org/policy-report/financing-global-health-2019-tracking-health-spending-time-crisis (accessed Nov 18, 2020).
9 Lozano R, Fullman N, Abate D, et al. Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392: 2091–138.
10 Lawn JE, Blencowe H, Kinnay MV, Bianchi F, Graham WJ. Evidencing the future for maternal and newborn health. Lancet Glob Health 2016; 4: e306–13.
11 Hug L, Alexander M, You D, Alkema L. National, regional, and global levels and trends in neonatal mortality between 1990 and 2017, with scenario-based projections to 2030: a systematic analysis. Lancet Glob Health 2019; 7: e768–78.
12 You D, Hug L, Ejdemery S, et al. Global, regional, and national levels and trends in under-5 mortality between 1990 and 2015, with scenario-based projections to 2030: a systematic analysis by the UN Interagency Group for Child Mortality Estimation. Lancet 2015; 386: 2275–86.
13 McArthur JW, Rasmussen K, Yamey G. How many lives are at stake? Assessing 2030 sustainable development goal trajectories for maternal and child health. BMJ 2018; 360: k373.
14 Nolte E, McKee M. Does health care save lives? Avoidable Mortality Revisited. London: Nuffield Trust, 2004.
15 Tobias M, Yeh L-C. How much does health care contribute to health gain and to health inequality? Trends in amenable mortality in New Zealand 1981–2004. Aust N Z J Public Health 2009; 33: 70–78.
16 Organisation for Economic Co-operation. Avoidable mortality: OECD/Eurostat lists of preventable and treatable causes of death. 2019. https://www.oecd.org/health/health-systems/Avoidable-mortality-2019-Joint-OECD-Eurostat-List-preventable-treatable-causes-of-death.pdf (accessed Nov 20, 2020).
17 Stevens GA, Alkema L, Black RE, et al. Guidelines for accurate and transparent health estimates reporting: the GATHER statement. Lancet 2016; 388: e19–23.
18 Dicker D, Nguyen G, Abate D, et al. Global, regional, and national age-sex-specific mortality and life expectancy, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392: 1684–715.
19 Wang H, Liddell CA, Coates MM, et al. Global, regional, and national levels of neonatal, infant, and under-5 mortality during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014; 384: 957–79.
20 Vos T, Lim SS, Ababfi C, et al. Global burden of 169 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396: 1204–22.
21 Bill & Melinda Gates Foundation. 2020 Goalkeepers Report: COVID-19, a global perspective. September 2020. https://www.gatesfoundation.org/goalkeepers/report/2020-report/#GlobalPerspective (accessed Nov 20, 2020).
22 Dielemann JL, Sadat N, Chang AY, et al. Trends in future health financing and coverage: future health spending and universal health coverage in 188 countries, 2016–40. Lancet 2018; 391: 1783–98.
23 Fullman N, Yearwood J, Abay SM, et al. Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: a systematic analysis from the Global Burden of Disease Study 2016. Lancet 2018; 391: 2236–71.
24 Wang H, Abbas KM, Abasfard M, et al. Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1990–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396: 1160–203.
25 Feldstein LR, Rose EB, Horwitz SM, et al. Multisystem inflammatory syndrome in U.S. children and adolescents. N Engl J Med 2020; 383: 334–46.
26 United Nations. Policy Brief: the impact of COVID-19 on children. April, 2020. https://unsdg.un.org/resources/policy-brief-impact-covid-19-children (accessed Nov 20, 2020).

27 Bhutta ZA, Das JK, Bahl R, et al. Can available interventions end preventable deaths in mothers, newborn babies, and stillbirths, and at what cost? Lancet 2014; 384: 347–70.

28 Exemplars in Global Health. Under-five mortality. 2017. https://www.exemplars.health/topics/under-five-mortality (accessed Nov 16, 2020).

29 Akseer N, Lawn JE, Keenan W, et al. Ending preventable newborn deaths in a generation. Int J Gynaecol Obstet 2015; 131 (suppl 1): 543–48.

30 World Health Organization. Birth defects: report by the secretariat. 2010. https://apps.who.int/iris/handle/10665/2378 (accessed Nov 16, 2020).

31 Mangipudi S, Leather A, Seedat A, Davies J. Oxygen availability in sub-Saharan African countries: a call for data to inform service delivery. Lancet Glob Health 2020; 8: e1121–24.

32 Phillips DE, Bhutta ZA, Binagwaho A, et al. Learning from exemplars in global health: a road map for mitigating indirect effects of COVID-19 on maternal and child health. BMJ Glob Health 2020; 5: e003430.

33 Costello A, Dalgish S. Towards a grand convergence for child survival and health: a strategic review of options for the future building on lessons learnt from IMNCI. Geneva: World Health Organization, 2016.

34 Denno DM, Paul SL. Child health and survival in a changing world. Pediatr Clin North Am 2017; 64: 735–54.

35 Kanschera V, Oakley GP Jr, Brent RL. Urgent global opportunities to prevent birth defects. Semin Fetal Neonatal Med 2014; 19: 153–60.

36 Troeger C, Blacker B, Khalil IA, et al. Estimates of the global, regional, and national morbidity, mortality, and etiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis 2018; 18: 1191–210.

37 Black R, Fontaine O, Lamberti L, et al. Drivers of the reduction in childhood diarrhoea mortality 1980–2015 and interventions to eliminate preventable diarrhoea deaths by 2030. J Glob Health 2019; 9: 020801.

38 Burstein R, Henry NJ, Collison ML, et al. Mapping 123 million neonatal, infant and child deaths between 2000 and 2017. Nature 2019; 574: 353–58.

39 Golding N, Burstein R, Longbottom J, et al. Mapping under-5 and neonatal mortality in Africa, 2000–15: a baseline analysis for the Sustainable Development Goals. Lancet 2017; 390: 2171–82.

40 Liu L, Oza S, Hogan D, et al. Global, regional, and national causes of under-5 mortality in 2000–15: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet 2016; 388: 3027–35.