ULTRA-RELATIVISTIC GRAZING COLLISIONS OF BLACK HOLES

U. SPERHAKE, V. CARDOSO, F. PRETORIUS, E. BERTI, T. HINDERER and N. YUNES

1 Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA
2 Department of Physics and Astronomy, The University of Mississippi, University, MS 38677, USA
3 CENTRA, Dept. de Física, Inst. Sup. Técnico, Av. Rovisco Pais 1, Lisbon, 1049, Portugal
4 Department of Physics, Princeton University, Princeton, NJ 08544, USA

∗ E-mail: sperhake@tapir.caltech.edu

We study gravitational wave emission, zoom-whirl behavior and the resulting spin of the remnant black hole in highly boosted collisions of equal-mass, non spinning black-hole binaries with generic impact parameter.

Keywords: Black Holes, Numerical Relativity

Introduction: Ultra-relativistic black hole (BH) scattering simulations are of high interest for a variety of areas in contemporary physics. These include attempts to resolve the hierarchy problem by adding extra dimensions, the resulting possibility to produce BHs in particle colliders and ultra high-energy cosmic ray interactions with the atmosphere, the AdS/CFT correspondence, as well as fundamental aspects of black-hole dynamics. Here we summarize results obtained for highly boosted collisions of BH binaries with generic impact parameter, see also Refs. 10,11.

Simulations: We have performed our numerical simulations using the LEAN code, which employs the moving puncture method. The code is based on the Cactus toolkit, uses CARPET mesh-refinement, a spectral solver for BH initial data and Thornburg’s AHFinderDirect. For more details see 12. We set up a coordinate system such that the BHs start on the x-axis separated by a coordinate distance d and with radial (tangential) momentum \(P_x \) \((P_y) \). The impact parameter is \(b \equiv L/P = P_y d/P \), where \(P \) is the linear momentum of either hole and \(L \) the initial angular momentum. Our set of simulations consists of three sequences, characterized by \(d \) and the Lorentz boost \(\gamma \equiv (1 - v^2)^{-1/2} \): (1) \(\gamma = 1.520 \) \((v = 0.753) \) and \(d/M = 174.1 \); (2) \(\gamma = 1.520 \) \((v = 0.753) \) and \(d/M = 62.4 \); (3) \(\gamma = 2.933 \) \((v = 0.940) \) and \(d/M = 23.1 \), where \(M \) is the total BH mass. Along each sequence we increase the impact parameter starting from the head-on limit \(b = 0 \).

Results: For all sequences we identify three distinct regimes in the \(b \) parameter
space: (i) immediate mergers, (ii) non-prompt mergers and (iii) the scattering regime where no common apparent horizon forms. These regimes are separated by two special values of b, the threshold of immediate merger b^* and the scattering threshold b_{scat}. Roughly speaking, for $b < b^*$, the holes merge within the first encounter, whereas for $b^* < b < b_{\text{scat}}$ they do not, but radiate enough energy to enter a bound state that eventually results in merger. In the left panel of Fig. 1 we illustrate these regimes by plotting the trajectories of one binary member, respectively, for three simulations of sequence 1 with $b/M = 3.34, 3.39$ and 3.40. Analysis of the entire sequences 1 and 2 shows that merger occurs only for $b/M < 3.4$, consistent with the estimate $b_{\text{crit}}/M \sim (2.5 \pm 0.5)/v$ of Shibata et al.\cite{Shibata11}. For sequence 3, however, we obtain $2.3 \lesssim b_{\text{scat}}/M \lesssim 2.4$, indicating that Ref.\cite{Shibata11} might overestimate b_{scat} for large γ. We emphasize in this context the excellent agreement of our findings with the point-particle approximation\cite{point-particle} a cross section estimate from high-energy scattering off a Kerr BH with $j \simeq 0.98$ gives $b_{\text{scat}}/M \simeq 2.36$.

The notion of a threshold of immediate merger arises in the context of the geodesic limit. The argument is that this threshold should generically be accompanied by behavior akin to zoom-whirl orbits in the geodesic limit\cite{zoom-whirl}. The number of “whirls” exhibits exponential dependence on the impact parameter according to $n = C - \Gamma \ln |b - b^*|$, where C is a constant and Γ is inversely proportional to the Lyapunov instability exponent of the limiting spherical orbit; see Ref.\cite{zoom-whirl} for details.

We have analyzed sequence 1 by estimating the number of orbits n in the whirl phase using (a) the puncture trajectories (n_p) and (b) the gravitational wave flux (n_{GW}); cf. Fig. 1 in\cite{point-particle}. These two estimates are shown in the center and right panel of Fig. 1 and indicate that the above mentioned relationship between n and b is valid with a slope $\Gamma \sim 0.2$ to within 50%.

The threshold of immediate merger b^* appears to also play a special role when we consider GW emission and final spin in cases where merger occurs: both quantities show maxima for $b \sim b^*$. For $v \sim 0.75$ the radiated energy increases from $\sim 2.2\%$ of the total energy of the system for $b = 0$ to $\gtrsim 23\%$ near b^*. Even for

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Left panel: Puncture trajectories for an immediate merger ($b = 3.34 \, M < b^*$), a non-prompt merger ($b^* < b = 3.39 \, M < b_{\text{scat}}$) and a scattering orbit ($b = 3.40 \, M > b_{\text{scat}}$). Center and right panel: Estimated number of orbits n_p and n_{GW} as functions of distance from b^* for immediate and non-prompt merger cases in sequence 1.}
\end{figure}
this comparatively small boost we thus exceed the maximum of $14 \pm 4\%$ reported for ultra relativistic head-on collisions10. For sequence 3 with $v \sim 0.94$ and $b \sim b^*$ the radiated energy is $35 \pm 5\%$. Extrapolation to $v = 1$ indicates enormous luminosities $\gtrsim 0.1$ corresponding in physical units to $\sim 3.6 \times 10^{58}$ erg s$^{-1}$. Similarly we observe a maximum in the final spin of the post-merger hole near b^*. For sequence 2 and $2.7 \lesssim b/M \lesssim b^*/M$ we obtain a dimensionless spin parameter $j_{\text{fin}} > 0.9$. For example, $b = 3.04 M$ results in $j_{\text{fin}} = 0.96 \pm 0.03$, close to extremal and larger than any values reported so far in the literature24,25.

Acknowledgements

This work was supported by FCT-Portugal through project PTDC/FIS/64175/2006, NSF grants PHY-0745779, PHY-0601459, PHY-0652995, PHY-090003 and PHY-0900735, the Alfred P. Sloan Foundation and the Sherman Fairchild foundation to Caltech. Computations were performed at TeraGrid in Texas, Magerit in Barcelona, the Woodhen cluster at Princeton University and HLRB2 Garching.

References

1. N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Lett. B\textbf{429}, 263 (1998).
2. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Lett. B \textbf{436}, 257 (1998).
3. L. Randall and R. Sundrum, Phys. Rev. Lett. \textbf{83}, 3370 (1999).
4. T. Banks and W. Fischler, Phys. Rev. D \textbf{66}, p. 044011 (2002).
5. D. M. Eardley and S. B. Giddings, Phys. Rev. D \textbf{66}, p. 044011 (2002).
6. J. M. Maldacena, Adv. Theor. Math. Phys. \textbf{2}, p. 231 (1997).
7. E. Witten, Adv. Theor. Math. Phys. \textbf{2}, 253 (1998).
8. S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Phys. Lett. B \textbf{428}, 105 (1998).
9. U. Sperhake et al., Phys. Rev. Lett. \textbf{103}, p. 131102 (2009).
10. U. Sperhake et al., Phys. Rev. Lett. \textbf{101}, p. 161101 (2008).
11. M. Shibata, H. Okawa and T. Yamamoto, Phys. Rev. D \textbf{78}, p. 101501(R) (2008).
12. U. Sperhake, Phys. Rev. D \textbf{76}, p. 104015 (2007).
13. J. G. Baker et al., Phys. Rev. Lett. \textbf{96}, p. 111102 (2006).
14. M. Campanelli, C. O. Lousto, P. Marronetti and Y. Zlochower, Phys. Rev. Lett. \textbf{96}, p. 111101 (2006).
15. Cactus Computational Toolkit homepage: \url{http://www.cactuscode.org/}.
16. E. Schnetter, S. H. Hawley and I. Hawke, Class. Quantum Grav. \textbf{21}, 1465 (2004).
17. Carpet Code homepage: \url{http://www.carpetcode.org/}.
18. M. Ansorg, B. Brügmann and W. Tichy, Phys. Rev. D \textbf{70}, p. 064011 (2004).
19. J. Thornburg, Phys. Rev. D \textbf{54}, 4899 (1996).
20. J. Thornburg, Class. Quantum Grav. \textbf{21}, 743(21 January 2004).
21. E. Berti et al. (2010), \url{arXiv:1003.0812 [gr-qc]}.
22. F. Pretorius and D. Khurana, Class. Quantum Grav. \textbf{24}, S83 (2007).
23. R. Grossman and J. Levin, Phys. Rev. D \textbf{79}, p. 043017 (2008).
24. J. Healy, P. Laguna, R. A. Matzner and D. M. Shoemaker, Phys. Rev. Lett. \textbf{103}, p. 131101 (2009).
25. S. Dain, C. O. Lousto and Y. Zlochower, Phys. Rev. D \textbf{78}, p. 024039 (2008).
26. M. C. Washik et al., Phys. Rev. Lett. \textbf{101}, p. 061102 (2008).