Design and Manufacture of Low-Pressure Hydroforming Machine for Aluminum Tubes and Production of Rectangular Cross Section

Seyed Jalal Hashemi a, Alireza Bahadory b, Sadegh Mirzamohammadi c

a Department of Mechanical Engineering, Technical and Vocational University (TVU), Tehran, Iran.
b Department of Mechanical Engineering, Faculty of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran.
c Department of Mechanical engineering, Technical and Vocational University (TVU), Tehran, Iran.

Abstract
In tube hydroforming, internal pressure is used to deform tube cross section. Internal pressure causes plastic deformation and conforming external surface of tube to die cavity. Low-pressure tube hydroforming is one category of this process. The method of performing low-pressure hydroforming of the tube is like compressing a solid object, in which, unlike high-pressure hydroforming, the upper mold is not fixed during the process and moves and presses the tube at the same time as internal pressure is applied to the tube. In this paper, firstly a low-pressure tube hydroforming machine have been designed and fabricated and then, the low-pressure hydroforming process of aluminum tube is performed and the round section of the tube is transformed into a rectangular cross section by the hydroforming process. Also, the thickness distribution and the values of the radius of the formed corner are investigated under three different loading paths. The results show that by increasing the internal pressure, a smaller corner radius can be achieved but the thinning increases. Also, the maximum flat surface of the upper part is obtained when the upper mold is displaced after the internal pressure reaches its maximum value.

Keywords
Tube forming, Hydroforming, Thickness distribution, Corner radius.

Extended Abstract

1. Introduction

Tube hydroforming process is used for forming complicated parts in many industries including automotive industry, aerospace, military industry and home appliance industry. Although this process has been noticed in the industry since recent decades, its experimental and theoretical developments date back to 1940. Gray et al. [1] published a paper about producing T-shape copper tubular parts using internal pressure and axial feed in 1940. The use of hydrostatic pressure in metal forming processes for tubular parts was first presented by Fuchs [2]. In 1999, Asnafi [3] analyzed the tube hydroforming process analytically and obtained relations for the material deformation behavior during the process based on the material properties, die shape and loading curve. Usually, high internal pressure is used in the hydroforming process to shape the pipe and ensure the formation of the corners of the part. In high pressure tube hydroforming (HPTH), two halves of the die is closed and forming is done by applying high pressure [4]. But in HPTH, there are problems such as the need for a high pressure supply system and high force to keep the two halves of the die closed. In order to eliminate HPTH problems, a new process called low pressure pipe hydroforming (LPTH) has been considered. In general, in this process, the internal pressure used for forming of the tube is defined by the Tube and Pipe Fabricators Association as less than 83 MPa [5]. In LPTH, the tube is filled by low pressure fluid while the upper die is movable and the dies are closed during the process [6]. Hashemi et al. [7] conducted a research on the prediction of bursting in pipe hydroforming.
2. Procedure

In this experimental study, circular cross section of an aluminum tube has been changed to rectangular form by applying three different loading paths. One of the innovations of this experiment is to achieve the optimal loading path for changing the tubular form of AA6063 aluminum alloy. One of the objectives of this experimental study is to investigate the outer and middle profile, surface flatness, upper and lower corner radius, and appropriate thickness distribution of the formed part by applying three different loading paths and finally achieving the optimal loading path.

The scheme of how to perform LPTH in this research is shown in two-dimensional form in Figure 1. In this process, the lower die is fixed and the tube is placed inside it. The upper die is movable and by moving downwards, it changes the shape of the tube. In order to prevent indentation in the upper wall of the tube and also to create corners with a smaller radius, internal pressure is used. The ratio of changes in the internal pressure of the tube to the displacement of the upper die during process will greatly affect the shape and quality of the final product.

![Figure 1. The scheme of how to perform LPTH](image)

Figure 2 shows all the components used in the die and Figure 3 shows the final view of the experimental setup.

![Figure 2. components of experimental LPTH setup](image)

![Figure 3. final setup](image)
Three methods of applying load are considered for the forming of the part, which are mentioned below:

1- Apply pressing force and move the upper die by 10 mm without applying internal pressure

2- Applying internal pressure of 100 bar after applying pressing force and moving the upper die by 10 mm.

3- Touching the upper die with the tube and providing tangential force, then applying 100 bar internal pressure, applying pressing force and moving the upper die by 10 mm.

The parts produced by all three loading curves are shown in Figure 4.

![Figure 4. Formed parts using different loading curves](image)

3. Conclusions

The upper and lower corners of the part are important parameters in the production of the part. Also the optimal corners are the corners with a smaller and sharper radius. As a result, the third type path of loading curve means applying the initial internal pressure and then moving the upper die with an upper is suggested. One of the important parameters of the part production is the profile of the uniform cross-section without dents. According to the profiles obtained in the experimental method and comparing these three profiles, the internal pressure of 100 bar is the optimal pressure loading curve and the uniform cross-sectional area profile is obtained.
طراحی و ساخت دستگاه هیدروفرمینگ فشار یایین لوله‌های آلومینیومی و
توییب مقطع مستطیلی

سید جلال هاشمی

چکیده

در فرانک هیدروفرمینگ لوله برای تغییر شکل سطح مقطع، از فشار داخلي یک سیال استفاده می‌شود. فشار
داخلي باعث تغییر شکل پاسخکی و تغییر شدت مقطع خارجی لوله با شکل حفره قابل می‌شود. یکی از
دسته‌های این فشرده، هیدروفرمینگ فشار یایین لوله، شبه فشرده‌ای است که ابتدا سطح یایین لوله را به
ویژه در صنایع مورد توجه گرفته است ولی این روش انجام ها نیاز به چهار دسته شامل لوله در صنایع
سیمی، استادیار، گروه مهندسی مکانیک، دانشگاه گرگان، ایران

واژگان کلیدی

شکل‌دهی لوله، هیدروفرمینگ، تغییر شکل‌دهی، شعاع گوشه، تاریخ دریافت:
04/01/1490، تاریخ کم صبای: 05/12/1390، تاریخ پذیرش: 12/06/1490

1 - مقدمه

فرایند هیدروفرمینگ لوله، در بررسی از این منابع از جمله سایر خورشودار، جرم‌های شناختی و منابع نظیر
سایر در نظر گرفته شد. این بررسی در سال 1940 میلادی بررسی گردید. در حالی که بررسی‌های تحقیقاتی

شکل دیگر قطعات پیچیده به کار می‌رود. این تحقیقات از زبان دیگر به کار می‌رود. این تحقیقات از زبان دیگر

1 HPRF

نوبتده مستند: ۱۳۹۲/۰۷/۰۲
j.hashemi@tvu.ac.ir
آدرس پست الکترونیک:
j.hashemi@tvu.ac.ir
می‌شود [4] اما در استنادی نصف مشکلات فشار، لوله‌های ایالی در مدار لوله‌کاری نسبت به در منابع HPTH مقدار بالایی لوله در زمان پایین‌الافاق، ال‌پی‌پی، لوله‌بندی ایالی با قابلیت در هیدرولیمیک دارد. در حالی که برای شناخت نهایی طول لوله مشابه لوله‌پیوسته HPTH ارائه شده است، [5] لوله به روش لوله‌بندی با قابلیت محلی و لوله‌پیوسته HPTH استفاده از مورد بروز قرار داده. همچنین این دو در مطالعه دیگر [6] به تحلیل مقطع مستقیم را بهبود میدهند. نخازن و همکاران [7] بر روی شکل مقطع لوله را بهبود می‌یابند. تروت و نخازن [8] با استفاده از شیب‌های متفاوت و فشار به یک درصد لوله‌بندی با قابلیت مطابق همکاران [9] در مطالعه HPTH پاناپوسته از اعضا زیر مایع فشار در شیب مقطع، تغییر شکل فشار و بهبود قدرت و در دما با این طریق شناخت نهایی از پشتیبانی داده می‌شود. نخازن در تحقیق آنها را به‌طور کلی با توجه به شکل مقطع لوله در مدار لوله‌کاری نسبت به در منابع HPTH مقدار بالایی لوله در زمان پایین‌الافاق، ال‌پی‌پی، لوله‌بندی ایالی با قابلیت در هیدرولیمیک دارد. در حالی که برای شناخت نهایی طول لوله مشابه لوله‌پیوسته HPTH ارائه شده است، [5] لوله به روش لوله‌بندی با قابلیت محلی و لوله‌پیوسته HPTH استفاده از مورد بروز قرار داده. همچنین این دو در مطالعه دیگر [6] به تحلیل مقطع مستقیم را بهبود میدهند. نخازن و همکاران [7] بر روی شکل مقطع لوله را بهبود می‌یابند. تروت و نخازن [8] با استفاده از شیب‌های متفاوت و فشار به یک درصد لوله‌بندی با قابلیت مطابق همکاران [9] در مطالعه HPTH پاناپوسته از اعضا زیر مایع فشار در شیب مقطع، تغییر شکل فشار و بهبود قدرت و در دما با این طریق شناخت نهایی از پشتیبانی داده می‌شود. نخازن در تحقیق آنها را به‌طور کلی با توجه به شکل مقطع لوله در مدار لوله‌کاری نسبت به در منابع HPTH مقدار بالایی لوله در زمان پایین‌الافاق، ال‌پی‌پی، لوله‌بندی ایالی با قابلیت در هیدرولیمیک دارد. در حالی که برای شناخت نهایی طول لوله مشابه لوله‌پیوسته HPTH ارائه شده است، [5] لوله به روش لوله‌بندی با قابلیت محلی و لوله‌پیوسته HPTH استفاده از مورد بروز قرار داده. همچنین این دو در مطالعه دیگر [6] به تحلیل مقطع مستقیم را بهبود میدهند. نخازن و همکاران [7] بر روی شکل مقطع لوله را بهبود می‌یابند. تروت و نخازن [8] با استفاده از شیب‌های متفاوت و فشار به یک درصد لوله‌بندی با قابلیت مطابق همکاران [9] در مطالعه HPTH پاناپوسته از اعضا زیر مایع فشار در شیب مقطع، تغییر شکل فشار و بهبود قدرت و در دما با این طریق شناخت نهایی از پشتیبانی داده می‌شود. نخازن در تحقیق آنها را به‌طور کلی با توجه به شکل مقطع لوله در مدار لوله‌کاری نسبت به در منابع HPTH مقدار بالایی لوله در زمان پایین‌الافاق، ال‌پی‌پی، لوله‌بندی ایالی با قابلیت در هیدرولیمیک دارد. در حالی که برای شناخت نهایی طول لوله مشابه لوله‌پیوسته HPTH ارائه شده است، [5] لوله به روش لوله‌بندی با قابلیت محلی و لوله‌پیوسته HPTH استفاده از مورد بروز قرار داده. همچنین این دو در مطالعه دیگر [6] به تحلیل مقطع مستقیم را بهبود میدهند. نخازن و همکاران [7] بر روی شکل مقطع لوله را بهبود می‌یابند. تروت و نخازن [8] با استفاده از شیب‌های متفاوت و فشار به یک درصد لوله‌بندی با قابلیت مطابق همکاران [9] در مطالعه HPTH پاناپوسته از اعضا زیر مایع فشار در شیب مقطع، تغییر شکل فشار و بهبود قدرت و در دما با این طریق شناخت نهایی از پشتیبانی داده می‌شود. نخازن در تحقیق آنها را به‌طور کلی با توجه به شکل مقطع لوله در مدار لوله‌کاری نسبت به در منابع HPTH مقدار بالایی لوله در زمان پایین‌الافاق، ال‌پی‌پی، لوله‌بندی ایالی با قابلیت در هیدرولیمیک دارد. در حالی که برای شناخت نهایی طول لوله مشابه لوله‌پیوسته HPTH ارائه شده است، [5] لوله به روش لوله‌بندی با قابلیت محلی و لوله‌پیوسته HPTH استفاده از مورد بروز قرار داده. همچنین این دو در مطالعه دیگر [6] به تحلیل مقطع مستقیم را بهبود میدهند. نخازن و همکاران [7] بر روی شکل مقطع لوله را بهبود می‌یابند. تروت و نخازن [8] با استفاده از شیب‌های متفاوت و فشار به یک درصد لوله‌بندی با قابلیت مطابق همکاران [9] در مطالعه HPTH پاناپوسته از اعضا زیر مایع فشار در شیب مقطع، تغییر شکل فشار و بهبود قدرت و در دما با این طریق شناخت نهایی از پشتیبانی داده می‌شود. نخازن در تحقیق آنها را به‌طور کلی با توجه به شکل مقطع لوله در مدار لوله‌کاری نسبت به در منابع HPTH مقدار بالایی لوله در زمان پایین‌الافاق، ال‌پی‌پی، لوله‌بندی ایالی با قابلیت در هیدرولیمیک دارد. در حالی که برای شناخت نهایی طول لوله مشابه لوله‌پیوسته HPTH ارائه شده است، [5] لوله به روش لوله‌بندی با قابلیت محلی و لوله‌پیوسته HPTH استفاده از مورد بروز قرار داده. همچنین این دو در مطالعه دیگر [6] به تحلیل مقطع مستقیم را بهبود میدهند. نخازن و همکاران [7] بر روی شکل مقطع لوله را بهبود می‌یابند. تروت و نخازن [8] با استفاده از شیب‌های متفاوت و فشار به یک درصد لوله‌بندی با قابلیت مطابق همکاران [9] در مطالعه HPTH پاناپوسته از اعضا زیر مایع فشار در شیب مقطع، تغییر شکل فشار و بهبود قدرت و در دما با این طریق شناخت نهایی از پشتیبانی داده می‌شود. نخازن در تحقیق آنها را به‌طور کلی با توجه به شکل مقطع لوله در مدار لوله‌کاری نسبت به در منابع HPTH مقدار بالایی لوله در زمان پایین‌الافاق، ال‌پی‌پی، لولе
در این آزمایش تجربی از یک قالب هیدروفرمینگ با یک ماتریس و دو عدد اینسرت استفاده شده است. ماتریس بر روی کفشک پایینی مونتاژ شده و اینسرت‌ها نیز به‌وسیله بیچ و پین بر روی ماتریس نصب می‌شوند. هنگام جابجایی لوله داخل قالب، این اینسرت‌ها باز می‌شود و بعد از جابجایی لوله بسته می‌شود. در پایان عملیات هیدروفرمینگ لوله، با باز کردن اینسرت‌ها، لوله از داخل قالب خارج می‌شود. در این قالب برای تأمین نیروی تغییر فرم، از یک سایه‌کش به‌وسیله توبی به‌کار گرفته می‌شود.

بررسی هیدرولیک وصل شده، استفاده شده است. همچنین از دو عدد سن‌های محوری جهت تأمین نیروی محوری، آبنشینی و عمل فشار داخلی به همراه دو عدد سن‌های سطحی سیستم استفاده می‌شود. سن‌های سطحی باید نیروی عکس عمل سن‌های اینسرت را تحميل کنند. نیروی محوری و نیروی مورد نیاز جهت آبنشینی نیز به‌وسیله دو عدد پیچ M20 که بر روی سن‌های گیر مونتاژ شده تأمین می‌گردد. در روندهای یک پمپ هیدرولیک دستی با فشار 4000 با چهار پمپ روغن به داخل لوله و یک پرس هیدرولیک استفاده می‌شود. 60 نیز نیز جهت عملیات برش‌بافی در این افرآید به‌کار گرفته شده است.

4- شیب‌سازی اجزاء محدود

به‌منظور بررسی پیش‌بینی تغییر شکل لوله طی فرآیند هیدروفرمینگ فشار پایین از شیب‌سازی اجزاء محدود در نرم‌افزار آباکوس استفاده شده است. در شکل 2، مدل سه‌بعدی با‌صورت بر‌پر‌خورده نشان‌داده شده است. در این شیب‌سازی، قالب بالایی و قالب پایینی با‌صورت صلب گستنگ و لوله به‌عنوان یک سطح شکل‌بندی مدل‌سازی شده‌اند. به‌منظور مشابه‌کردن لوله از ال‌آی‌اس 4S4R با اندماژ ال‌آی‌اس 2 میلی‌متر استفاده شده است. در زمان انجام شکل‌دهی، قالب‌های پایینی در مکان خود ثابت بوده و قالب‌های بالایی مطابق با محدودیت‌های نیروی محوری، سن‌های سطحی سیستم و اینسرت‌های این سطح برخی از پیش تعیین‌شده باید تغییر شکل مقطع لوله می‌شود. نیروی شکل‌گیری خوشه‌های داخلی از نتایج کشش تک‌محوری در دامنه محفظه در خوشه‌های پلاستیک نرم‌افزار وارد شده است. برای شرایط تخصصی سطح خارجی لوله و قالب در این تحقیق، سطح این‌ساندره با ضرب اصطکاکی مطلوب با مدل اصطکاکی کولمب به‌کار می‌گیرد. در این استفاده شده است. در هنگام شکل‌دهی لوله تحت تحمیل منحنی‌های بارگذاری دو انتهای لوله مقدیر بوده و تغییر محوری اعمال شده است. فشار سیال هیدرفرمینگ نیز با فشار کپ‌پشت سطحی شیب‌سازی شده است.

5- آزمایش‌های تجربی

5.1- قطعه‌مورد بررسی

قطعه مورد استفاده برابر شکل دهی، لوله‌ای از آلیاژ آلومینیوم AA6063 با قطر خارجی 400 میلی‌متر، ضخامت 15 میلی‌متر و طول 1400 میلی‌متر باشد. قطعه پی از شکل دهی به‌کار می‌رود. مقطع مستطیلی شکل مکعبی است. تبدیل می‌شود. در این شکل

1. Insert
2. Abaqus
3. Coulomb friction model
شعاع گوش در بالایی مقطع با \(R_1 \) و شعاع گوش پایینی مقطع با \(R_2 \) نشان داده شده است. نمونه‌ای از قطعه شکل دهی شده به همراه این فرآیند در شکل ۴ نشان داده شده است.

![شکل ۲: نمودار سه‌بعدی شبیه‌سازی]

شکل ۲ نمودار سه‌بعدی شبیه‌سازی

![شکل ۳: سطح مقطع قطعه پس از شکل دهی]

شکل ۳ سطح مقطع قطعه پس از شکل دهی

![شکل ۴: قطعه شکل دهی شده]

شکل ۴ قطعه شکل دهی شده

۲-۵ خواص لوله

بهطور معمول، برای تشخیص رفتار تغییر شکل مورد استفاده برای ساخت لوله از آزمون کشش تک محوری استفاده می‌شود. به همین منظور، این آزمون مطابق با استندارد ASTM E8M است و نمونه تشییع حاصل از این آزمون در شکل ۵ نشان داده شده است و در جدول ۱ مشخصات و خواص لوله آورده شده است.
سید جلال هاشمی، علیرضا بهادری

مکانیک مواد پیشرفته و هوشمند/ سال 1391/ دوره 2/ شماره 2

شکل 5: نمودار تنش-کرنش لوله از جنس آلیاژ آلومینیوم AA6063

جدول 1: خواص و مشخصات لوله جدول 1: خواص و مشخصات لوله

پارامتر	مقدار	واحد
استحکام	8792	MPa
ضریب کارسایی	3210	
نیروی پرسینگ	65	MPa
استحکام نهایی	163	MPa

طراحی اجزاء مکانیکی

در طراحی و ساخت ابرار و قابل هیدروفرمینگ لوله، پارامترهای از این دست دارند که در زیر معمول نیستند

- استحکام اجزاء در برابر نیروها و تنش‌های موجود در فرآیند
- برداشت سطوح در طی جهت کاهش اصطکاک و کمک به جریان مواد در قالب
- بهکارگیری نوار‌های تردد ابعادی و هندسی
- آب‌پخش مناسب
- طراحی سیستم و نیروی پرسینگ قالب
- طراحی سیستم اعمال نیروی محوری در دو طرف لوله و عمل فشار داخلی

قالب منظر در نرمافزار کتیا Catia V5R20 طراحی شده که طرح‌واهی آن در شکل 6 نشان داده شده است. در این قالب 6 پیچ M10، 2 پیچ M8 و مجموعاً 6 پیچ به کار گرفته شده است. مونت و اینتسر تردد از این دسته مانند مانند و در دو فضای بین برای هر هکدام از این دسته جهت پرسینگ و ساخته شده است. قطعات بتوانند در عملیات هیدروفرمینگ لوله را تحمل کنند. در شکل 7 نمای اجزاء بهکارگرفته در قالب و در شکل 8 نمای نهایی قالب نشان داده شده است.

در این قالب مقادیر قطعات مولفه بوش کاری 1000 میلی متر و نشیمنگاه لوله از هر طرف 200 میلی متر می‌باشد. همچنین از یک مقطع مخروطی جهت آب‌بندی سیره و اسلاک محوری مانند به همان قطعات داخلی به لوله استفاده شده است. لازم به ذکر است که یکی از قسمت‌های مهم در ساخت این قالب، هم‌محوری دقیق بین نشیمنگاه چپ و راست قالب و سیستم محوری می‌باشد.

1 Catia
شکل ۶ طرح واریه قالب هیدروفومینگ طراحی شده

شکل ۷ اجزای قالب هیدروفومینگ لوله

شکل ۸ نمای نهایی قالب
محاسبه نیروی پرس قطعه

در ابتدا به منظور اینکه فشار داخلی به تنهایی دچار تغییر شکل پلاستیک لوله نشو و محیط لوله براثر فشار داخلی تغییر نداشته باشد، فشار داخل لوله آلومینیومی AA6063، 100 بار فشار شده است. سپس با در نظر گرفتن این فرض برای غلیظ نیروی عکس العمل ناشی از تغییر فرم با پرس استفاده کنیم که می‌توان نیروی پرس را از رابطه 1 محاسبه کنیم که در این رابطه، نیروی مورد نیاز برحس باید از فشار داخلی برحس F، مساحت سطح مقطع ناحیه برس کاری برحس A و میلی‌متر مربع می‌باشد.

\[F = P \times A \]

(1)

با جایگذاری مقادیر \(P \) و \(A \) که به ترتیب 100 بار و 3000 میلی‌متر مربع می‌باشد در رابطه 1، مقدار \(F \) می‌آید. درنتیجه پرس 9 تن به بالا مورد نیاز می‌باشد. در این آزمایش تجربی از پرس هیدرولیکی با ظرفیت 81 تن استفاده شده است.

محاسبه نیروی محوری وارد بر سنبه، پیچ و آبنده

برای تأمین نیروی آبنده محوری، از دو پیچ 21M که در رابطه \(\sigma = \frac{F}{A} \) که در این رابطه، \(A \) سطح مقطع سنبه محوری برحس نیوتن و \(F \) نیروی وارد بر سنبه برحس نیروی، مقدار استحکام محوری می‌باشد. از آنجا که نیروی وارد بر سنبه نیروی برشی محوری، استفاده شده است، مقدار استحکام آبنده به دست می‌آید.

\[d_1 = D - 1.082P \]

(2)

اکنون برای محاسبه نیروی آبنده محوری، نیاز به قطع ریشه پیچ داریم که برای محاسبه آن از رابطه زیر استفاده می‌کنیم:

\[\frac{d_1}{D} = \frac{7.27}{D} \]

با جایگذاری مقادیر مربوطه در رابطه بالا، مقدار \(D \) که در این رابطه، قطر بزرگ پیچ، \(P \) ارتفاع مهره، \(d_1 \) قطر ریشه پیچ بوده و \(h \) ارتفاع مهره (طول درگیری پیچ با مهره) برحس می‌باشد.

محاسبه نیروی برشی وارد بر پیچ

\[\tau = \frac{2F}{\pi \times d_1 \times h} \]

(4)

با جایگذاری مقادیر در رابطه بالا، تنش برشی که به هر کدام از پیچ‌های M20 محوری وارد می‌شود، برای \(29/32 \) می‌باشد.
4-7-جنس ابزار و قالب
در طراحی و ساخت قالب در این آزمایش، کف‌سک پایین، سینه‌گیر چپ و راست و توبی سینه قالب از جنس فولاد ساده ساخته شده است. این اجزاء مجموعه شکل‌دهی در تمام با لوله نیبوه و دجار سابدگی نمی‌شوند به همین دلیل از جنسی با سختی بالا برای آن‌ها استفاده نشده است. سینه، اینسرت‌های چپ و راست و قسمت پایینی قالب (ماتریس) از جنس فولاد سخت VC150 ساخته شده است تا دقت ابعادی آن‌ها در ساخت از بین نرود. همچنین تمامی پچ‌های بکار رفته در ساخته از نوع خشکه فولادی 8.8 هستند.

8-8-تعمین نوع آب‌نبندی
کوچک‌ترین نشی در دو انتهای لوله سبب افت فشار داخلی و عدم موافقت در فرایند هیدروریمینگ می‌گردد. به این دلیل از یک مقطع مخروطی در آب‌نبندی بین سینه محوری و سوراخ (حرفه) ماتریس استفاده شده است و از یک پیچ M20 در هر یک مقطع همچه در ابعاد از جنس ابزار محوری آب‌نبندی استفاده شده است (شکل 9).

5-9-سیستم هیدرولیک تغذیه محوری و آب‌نبندی
برای سیستم اعمال فشار به داخل لوله از یک بمب هیدرولیک دستی 400 با استفاده شده است. در خروجی این بمب یک شیر با طرفه جهت اعمال فشار به داخل لوله به‌کار رفته است. شیر به‌طور دقیق و پاترین مکانیزه‌گر سیستم هیدرولیک با سبک شیرشکن به میزان سلگی به شیر فشارشکن که در دامنه‌گیری فشار می‌باشد مشابه می‌گردد. سپس مطابق شکل 10، شیر فشارشکن توسعه شلنگ به میزان محوری سمنت راست که در دامنه سوراخ محوری به قطر 3 میلی‌متر است، جهت اعمال فشار به سطح ورودی به داخل لوله پیچ شده است. در شکل 11 نیز نحوه کار سیستم هیدرولیک در حین انجام فرایند هیدروریمینگ را نشان داده شده است.
سید جلال هاشمی، علیرضا بهادری

منحنی پرس و قالب در آزمایش تجربی

شکل 11 نمایی از پرس و قالب در آزمایش تجربی

5-10- منحنی بارگذاری در آزمایش تجربی

سه روش برای اعمال بار برای ساخت طاه در نظر گرفته شده که در زیر به آنها اشاره شده است:

1- اعمال نیروی پرسینگ و جابجایی سنبه به مقدار 10 میلی‌متر بدون اعمال فشار داخلی

2- اعمال فشار داخلی 100 بار پس از اعمال نیروی پرسینگ و جابجایی سنبه به مقدار 10 میلی‌متر بعد از مماس شدن با لوله

3- مماس کردن سنبه با لوله و تأمین نیروی مماس سپس اعمال فشار داخلی 100 بار، اعمال نیروی پرسینگ و جابجایی سنبه به مقدار 10 میلی‌متر

قطعات تولیدشده به‌وسیله هر سه روش بارگذاری در شکل 12 نشان داده شده است.

شکل 12 قطعات تولید شده به‌وسیله هر سه روش بارگذاری

5-11- پروفیل محیط بیرونی قطعات تولید شده با مسیر بارگذاری متفاوت در فرایند تجربی

با توجه به سه منحنی بارگذاری 1، 2 و 3 در آزمایش تجربی، پروفیل سطح مقطع بیرونی قطعات در شکل 13، 14 و 15

کانیک مواد پیشرفته و هوشمند سال 1391 پژوهش 4 صفحه 12 شماره 4
نامه داده شده است. برای به دست آوردن پروفیل‌های محیط بیرونی از دستگاه اندارگری ونزل در مرکز تحقیقات مؤثر از این تست استفاده شده است. همانطور که در شکل‌ها نشان داده شده، هنگام استفاده از منحنی بارگذاری 1، به دلیل اینکه فشار داختر صفر می‌باشد، افزایشی در بالای قطعه اتفاق افتد و هنگام استفاده منحنی بارگذاری 2 و 3 به دلیل وجود فشار داختر و تنش در داخل لوله، پروفیل محیط بیرونی قطعه، صاف‌تر به دست آمد است.

شکل 13: پروفیل محیط بیرونی به دست آمده از منحنی بارگذاری 1

شکل 14: پروفیل محیط بیرونی به دست آمده از منحنی بارگذاری 2

شکل 15: پروفیل محیط بیرونی به دست آمده از منحنی بارگذاری 3

1 Wenzel
12-5- بررسی توزیع ضخامت در روش تجربی

به منظور بررسی نتایج تجربی، قطعه شکل داده شده بوسیله منحنی بارگذاری 2، مطابق شکل 16 از مقطع میانی با استفاده از دستگاه وایرکات برش شده و توزیع ضخامت و برفیل سطح برونی آن بررسی شده است. شکل 17 توزیع ضخامت بهدست آمده در این نمودار مقادیری از نسقی سطح برای نقطه 15 نشان می‌دهد. در این نمودار مقادیر ضخامت برای نقطه 15 نشان می‌دهد. در این نمودار مقادیر ضخامت فقط در یک همیشه مقطع نشان داده است.

![شکل 16 سطح مقطعی قطعه شکل داده شده](image)

شکل 16 سطح مقطعی قطعه شکل داده شده

1 بررسی توزیع ضخامت در مقطع میانی برای منحنی سوم با فشار 0.11 بار با استفاده از آزمایش تجربی در صفر بار، بیشترین ضخامت 0.155 میلی متر و کمترین ضخامت 0.15 میلی متر و اختلاف این دو نقطه 0.02 میلی متر می‌باشد. همچنین شبیه‌سازی که در شکل 15 نشان می‌دهد، در روش تجربی با فشار داخلی 0.11 میلی متر است و کمترین ضخامت 0.154 میلی متر و اختلاف این دو نقطه 0.02 میلی متر می‌باشد. با توجه به اینکه در فشار داخلی 0.11 میلی متر، هج در شیب‌سازی عددی و هج روش تجربی تولید تکنیک شکل، بهینه می‌باشد.

شکل 17 توزیع ضخامت در مقطع میانی برای منحنی سوم با فشار 0.11 بار

شکل 18 سطح مقطع میانی قطعه شکل داده شده

مکانیک مواد پیشرفته و هوشمند/ سال 1401/ دوره 2/ شماره 3
نتیجه‌گیری

1- با توجه به انکه گوشته‌های بالایی و پایینی قطعه از پارامترهای مهم در تولید قطعه می‌باشد همچنین گوشته‌های بهینه، گوشته‌های بالا با شعاع کمتر و نیزتر بوده، درنتیجه می‌توانیم منحنی پارکنگ‌زا نیز سوم به فعلی ابتدا و سپس جابجا بالا با شعاع گوشته بالایی 5 میلی‌متر و شعاع گوشته پایینی 6 میلی‌متر بیش‌ترهای می‌باشد.

2- اختلاف بیش‌ترهای و کم‌ترهای نقاط (شکل)، روی عرض و طول قطعه باید حداقل باشد. هرچه این اختلاف کمتر باشد درنتیجه پروفیل یک‌نواخت با محتوای سطح مقطع مناسب تولید خواهد شد و در روش تجربی اول عملیات فشار داخلی 100 بار سپس جابجا بالا پیشنمایه می‌شود. در این روش اختلاف شکم عرضی 0/4 میلی‌متر و اختلاف طول شکم 10 میلی‌متر به دست می‌آید.

3- با توجه به انکه توزیع ضایعات در روش تجربی پارامتر مهمی می‌باشد. در روش اول عملیات فشار داخلی و بعد جابجایی قابل، روش پهن‌های می‌باشد.

4- یکی از پارامترهای مهم تولید قطعه، پروفیل سطح مقطع یک‌نواخت بدن پوششی و فرورفتگی می‌باشد. با توجه به پروفیل‌های به‌دست‌آمده در روش تجربی و مقایسه این سه پروفیل، فشار داخلی 100 بار منحنی پارکنگ‌زا فشار به‌هینه می‌باشد و پروفیل سطح مقطع یک‌نواخت به‌دست‌آمده می‌آید.

مراجع

[1] Gray J E, Devereaux A P, Parker W M. Apparatus for making wrought metal T's. Google Patents; 1940.
[2] Fuchs F. Hydrostatic pressure--its role in metal forming. Mech Eng. 1966;88:34-40.
[3] Asnafi N. Analytical modelling of tube hydroforming. Thin-walled structures. 1999;34:295-330.
[4] Zafar N. Optimization of tube hydroforming process. Michigan State University. 2002.
[5] Singh H. Fundamentals of hydroforming. Society of Manufacturing Engineers. 2003.
[6] Nikhare C, Weiss M, Hodgson P D. FEA comparison of high and low pressure tube hydroforming of TRIP steel. Computational Materials Science. 2009;47:146-152.
[7] Hashemi S J, Naeini H M, Liaghat G, Karami J S, Roohi A H. Prediction of Bursting in Warm Tube Hydroforming using Modified Ductile Fracture Criteria. Modares Mechanical Engineering. 2015;14.
[8] Hwang Y-M, Altan T. FE simulations of the crushing of circular tubes into triangular cross-sections. Journal of materials processing technology. 2002;125:833-838.
[9] Hwang Y-M, Altan T. Finite element analysis of tube hydroforming processes in a rectangular die. Finite Elements in Analysis and Design. 2003;39:1071-1082.
[10] Nikhare C, Weiss M, Hodgson P D. Die closing force in low pressure tube hydroforming. Journal of materials processing technology. 2010;210:2238-2244.
[11] Zhang X, Chu G, He J, Yuan S. Research on a hydro-pressing process of tubular parts in an open die. The International Journal of Advanced Manufacturing Technology. 2019;104:2795-2803.
[12] Zhang X, He J, Chu G, Yuan S. Experimental research on deformation and dimensional accuracy of rectangular-section tubular part during open die hydro-pressing process. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2021;235:705-714.

[13] Nikhare C, Weiss M, Hodgson P D. Buckling in low pressure tube hydroforming. Journal of Manufacturing Processes. 2017;28:1-10.

[14] Chu G-n, Lin C-y, Li W, Lin Y-l. Effect of internal pressure on springback during low pressure tube hydroforming. International Journal of Material Forming. 2018;11:855-866.

[15] Trott A, Nikhare C P. Effect of preform during low pressure tube hydroforming.52019;V002T002A023.

[16] Nikhare C P, Buddi T, Kotkunde N, Singh S K. Effect of Die Velocity on Tube Deformation Mechanics During Low Pressure Tube Hydroforming Process Sequence Variation.85550;V02AT02A051.

[17] Nikhare C P. A numerical analysis on microtube hydroforging. Advances in Materials and Processing Technologies. 2021:1-22.