The Effect of Iron on the Primary Root Elongation of Arabidopsis during Phosphate Deficiency$^{1[W][OA]}$

James T. Ward, Brett Lahner, Elena Yakubova, David E. Salt, and Kashchandra G. Raghothama*
Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907–1165

Root architecture differences have been linked to the survival of plants on phosphate (P)-deficient soils, as well as to the improved yields of P-efficient crop cultivars. To understand how these differences arise, we have studied the root architectures of P-deficient Arabidopsis (Arabidopsis thaliana Columbia-0) plants. A striking aspect of the root architecture of these plants is that their primary root elongation is inhibited when grown on P-deficient medium. Here, we present evidence suggesting that this inhibition is a result of iron (Fe) toxicity. When the Fe concentration in P-deficient medium is reduced, we observe elongation of the primary root without an increase in P availability or a corresponding change in the expression of P deficiency-regulated genes. Recovery of the primary root elongation is associated with larger plant weights, improved ability to take up P from the medium, and increased tissue P content. This suggests that manipulating Fe availability to a plant could be a valuable strategy for improving a plant’s ability to tolerate P deficiency.

Phosphate (P) deficiency is a major constraint to crop production (Raghothama, 1999). Crop varieties that are adapted to P-deficient soils have been shown to have shallower, more highly branched root systems to maximize foraging in the relatively P-rich topsoil (Liao et al., 2001; Lynch and Brown, 2001). Further, it has been shown that uptake of P is greatly enhanced in barley (Hordeum vulgare) and peanut (Arachis hypogaea) cultivars that develop long root hairs compared to those that form short root hairs (Wissuwa and Ae, 2001; Gahoonia and Nielsen, 2004). Members of the Proteaceae and a few species in seven other families known for their P efficiency also develop cluster roots, a specialized root architecture consisting of many densely spaced rootlets (Lamont, 2003; Shane and Lambers, 2005). At present, little is known about how these root architecture differences arise during P deficiency.

One line of inquiry into this problem has been to study the root architecture changes that occur when the model plant Arabidopsis (Arabidopsis thaliana), specifically the Columbia (Col-0) accession, is subjected to P deficiency. It has been established that, under P deficiency, the elongation of the Arabidopsis primary root is inhibited (López-Bucio et al., 2002; Sánchez-Calderón et al., 2005; Jain et al., 2007). This response to P deficiency is rather unique to Arabidopsis accessions like Col-0. Most other plants allocate more resources to their roots during P deficiency and actually have longer roots. Maize (Zea mays) under P deficiency showed no reduction or slight enhancement in root elongation (Mollier and Pellerin, 1999). Similarly, elongation of the roots of rice (Oryza sativa) is observed during P deficiency (Shimizu et al., 2004). Further, a survey of 14 monocots and dicots in solution culture revealed that all the species tested had some degree of primary root elongation during P deficiency (Narayan and Reddy, 1982). On the other hand, primary root inhibition is a well-documented response to the toxicity of a number of nutrients, including iron (Fe; Marschner, 1995).

Arabidopsis root architecture during P-deficiency conditions has not previously been thoroughly investigated in the context of how it is influenced by the specific and nonspecific interactions P has with other nutrients. Nutrient interactions have been shown to be important for the manifestation of deficiency and toxicity symptoms in many plants (Marschner, 1995). In some cases, deficiency and toxicity symptoms can be alleviated by increasing or decreasing another nutrient concentration, as in the case of adding extra potassium (K) to ameliorate Fe toxicity in rice (Li et al., 2001). There are a number of lines of evidence to suggest that nutrient interactions could be affecting the growth of Arabidopsis on P-depleted medium. For example, there is an increase in the expression of the ferritin Fe storage gene, AtFER1, and a decrease in the expression of the high-affinity Fe transporter, AtIRT1, observed in the P microarray analysis that correlates with the increase in tissue concentration of Fe in P-deficient plants (Mission et al., 2005).

Fe is always a concern for studies of P because it can interact with P in the soil/growth medium, at the root surface, and within the plant. About one-third of
agricultural soils are P deficient because of the precipitation of P at least in part by Fe (Von Vexhall and Mutert, 1998). In nutrient solutions, P and Fe interact to form precipitates that result in reductions in the availability of both nutrients (Dalton et al., 1983). On the root surfaces, plaques of Fe form that act as a barrier to movement of P into the root (Zhang et al., 1999). Within the plant, P retention in the roots increases and P translocation to the shoot decreases in a concentration-dependent manner when Fe is absorbed at the same time as the P (Cumbus et al., 1977; Mathan and Amberger, 1977).

It has also been shown in plants that Fe is normally linked with P when it is bound in ferritin, which suggests that the ferritin-bound Fe is a potential plant sink for P (Waldo et al., 1995). It has been demonstrated that chlorosis can be induced in leaves by high P concentrations even when the levels of total Fe are comparable to those of healthy green leaves because P has made the Fe unavailable for the chloroplasts (DeKock et al., 1979). Besides these reports, the antagonistic interactions of P and Fe may manifest themselves in ways that have not been appreciated.

Here, we present evidence that the primary root growth inhibition of Arabidopsis (Col-0) during P deficiency is due to Fe toxicity in the root tip. When Fe is removed in P-deficient medium, the primary root continues to grow even though other tested aspects of the plant’s response to P deficiency are unchanged. Further, when Fe is removed, there is overall improved growth of the plants on P-deficient medium. This suggests that manipulating the interactions P has with Fe within the plant root could be a novel way of improving the P nutrition of crops.

RESULTS

The Effect of the Interaction of P and Fe in the Nutrient Medium on the Growth of Arabidopsis

Several lines of evidence suggest that Fe could be interacting with P and influencing the growth of Arabidopsis (Col-0). To explore this, experiments were designed to examine the growth and root architecture of Arabidopsis on the medium with reduced concentrations of both P and Fe. The medium used in this study was based on the original Murashige and Skoog medium, as published by Murashige and Skoog (1962). Further, it was identical to that used by López-Bucio et al. (2002) for their work on the root architecture of Arabidopsis Col-0 ecotype during P deficiency. Four concentrations of added P were used: 1,000 μM (I), 100 μM (II), 10 μM (III), and 0 μM (IV); and two concentrations of added FeEDTA: 100 μM (a) and 10 μM (b). We observed that on medium containing 100 μM Fe, root elongation was directly correlated with the amount of P added to the medium. The shortest roots developed at the lowest P concentrations (Fig. 1, A and B). This observation was similar to that reported by López-Bucio et al. (2002), Sánchez-Calderón et al. (2005), and Jain et al. (2007).

In contrast, on medium containing only 10 μM Fe, the root architecture of Arabidopsis was markedly different and not correlated with the amount of P added to the medium (Fig. 1, A and B). There was no reduction in the primary root elongation when P was reduced in the medium. The marginally shortest primary roots were of plants grown on medium containing 1,000 μM P. These plants were chlorotic and likely Fe deficient because of the high P to Fe ratio in this medium.

The P content of tissues from plants grown with either 100 or 10 μM Fe was found to be proportional to the amount of P added to the medium (Fig. 1C). There were slight increases in the P content of plants grown on low Fe medium when compared to the P content of plants grown on normal Fe medium; however, even when plants with similar P content were compared, there was still much greater primary root growth when Fe was reduced in the medium. When root length is plotted against P content (Fig. 1D), it becomes evident that the root lengths of the plants grown on normal and low Fe medium lie on two separate nonparallel lines and that there is no correlation between primary root length and P content ($r^2 = 0.19$).

However, unlike P, root length is correlated with the plant’s Fe content (Fig. 1, E and F). There is an increase in the Fe content of Arabidopsis when grown on medium with less added P, as previously reported in the microarray studies (Mission et al., 2005). Moreover, when the Fe content of plants is plotted against their root lengths, it is clear that root length is strongly correlated with tissue concentration of Fe ($r^2 = 0.99$).

Dry weights of the plants grown on normal and reduced Fe medium were found to be reduced for all the plants grown on medium with reduced concentrations of P. Dry weights were slightly larger for plants grown on low Fe medium than for normal Fe medium, except at the highest concentration of P. This suggests that, even though root elongation was independent of the P added to the medium, overall growth as measured by dry weight was not (Fig. 1G). When the total P taken up by the seedling is computed from the dry weight data and the tissue P concentration, it shows that the plants grown on low Fe medium were able to acquire at some concentrations more than twice as much P for their growth compared to plants grown on medium with normal levels of Fe (Fig. 1H).

In conjunction with the other experiments, attempts were made to model medium with either 1,000 μM (P+) or 0 μM (P−) P and either 100 μM (Fe+) or 10 μM (Fe−) Fe using the Visual Minteq chemical speciation and equilibrium computer program to determine whether the changes observed in the elemental composition of the plants were a consequence of the experimental design or mechanistic
and associated with P deficiency (Allison et al., 1991; Parker et al., 1995). The predicted percent of the ions in their bioavailable form in the medium were calculated, with the assumption that, in most cases, the bioavailable forms were the ions in their free unassociated states. Verification of the computer predictions came in the form of their broad agreement with the elemental analysis of actual plants (Fig. 2).

When P was removed from medium with Fe, there was a 25% increase in the availability of free Fe, which supports our conclusion that reduced primary root elongation is due to Fe excess caused by an increase in Fe bioavailability. Furthermore, when Fe was reduced in the low P medium, the availability of free P was predicted to change by <2%, whereas the free Fe availability decreased by 60%. The predicted lack of a large increase in free P availability when Fe is reduced in the medium suggests that increased root elongation under these conditions is not due to an increase in free P availability as was recently suggested by Svistoonoff et al. (2007).

In addition to computer modeling, experiments with Dowex-purified agar were also done to show that neither a change in the availability of P nor impurities of P in medium were affecting the experiments with reduced P and Fe (Supplemental Fig. S1). These experiments again support the conclusion that it is not the absence of P, but the increased availability of Fe, that is responsible for the root inhibition that is normally observed when plants are grown on P-depleted medium.
Regulation of P Starvation-Responsive Genes in Arabidopsis Plants Grown on Low P and Low Fe Medium

To determine whether plants with elongated primary roots were P stressed at the molecular level, the expression of a number of P-responsive genes was assessed. RNA was isolated from the plants grown on the previously discussed medium. In addition, transgenic Arabidopsis plants containing a GUS reporter driven by the Pht1;4 promoter as a marker of P deficiency were grown under the same conditions and analyzed for their reporter gene expression (Karthikeyan et al., 2002). Six nutrient-responsive genes and an elongation factor (EF1a) were amplified with gene-specific primers. Four of these genes are known to be expressed at increased levels under P deficiency: Pht1;4, a high-affinity P transporter; At4, a riboregulator; ACP5, a purple acid phosphatase; and P AP23, a purple acid phosphatase. One of the genes is known to be down-regulated by P deficiency: UBC24, a ubiquitin-conjugating E2 ligase. The seventh is up-regulated by Fe deficiency: IRT1, the high-affinity Fe transporter.

As expected, plants grown on low P medium showed clear regulation of the genes known to respond to P deficiency (Fig. 3A; Supplemental Fig. S2). GUS activity was also found to be enhanced in plants grown on medium containing low P (Fig. 3B). Significantly, the Fe status of the medium had no effect on the response to low P as monitored by the expression of P-responsive genes and GUS activity. This confirms that primary root elongation is not correlated with P deficiency under our experimental conditions (Fig. 3A; Supplemental Fig. S2).

The results with the transgenic plants highlight the likely reason that long-rooted seedlings acquire more P from P-deficient medium. They have increased capacity to explore the plate when compared to the short-rooted plants grown on low P, normal Fe medium. The ability of plants grown on medium containing reduced P and reduced Fe to take up P was confirmed using [33P]. It was found that plants growing on medium containing low P and low Fe took up more than twice as much [33P] as plants grown on medium with low P and normal amounts of Fe (Fig. 3C).

Effect of Additional Fe on Plants Grown on P-Sufficient Medium

The results of our previous experiments suggested that plants grown on medium containing sufficient P, but Fe added in excess of normal, would be short rooted but not P deficient. To test this, transgenic pht1;4::gus plants that had been grown on P-sufficient medium with double the concentration of Fe (1,000 μM P, 100 μM FeEDTA; P+Fe+ = 1,000 μM P, 100 μM FeEDTA; P−Fe− = 0 μM P, 10 μM FeEDTA; P−Fe− = 0 μM P, 10 μM FeEDTA). The free unassociated state of the ion in most cases is assumed to be the bioavailable form of the ion. The Visual Minteq predictions include the 20 μM of P and 10 μM of Fe introduced as impurities with the agar. However, by convention, they are not included as part of the basal nutrient solution recipe. The elemental analysis of 9-d-old seedlings was determined by ICP-MS.

Modified MS Medium	P− Fe−	1 mM	0.1 mM	0.01 mM	2.0 mM	0.15 mM	0.015 mM	0.0015 mM	5 μM	0.5 μM	0.05 μM	0.005 μM	10 μM	1 μM	0.1 μM
P− Fe+	0.01 mM	0.015 mM	0.02 mM	0.025 mM	0.03 mM	0.035 mM	0.04 mM	0.045 mM	0.05 mM	0.055 mM	0.06 mM	0.065 mM	0.07 mM	0.075 mM	
P− Fe−	0.01 mM	0.015 mM	0.02 mM	0.025 mM	0.03 mM	0.035 mM	0.04 mM	0.045 mM	0.05 mM	0.055 mM	0.06 mM	0.065 mM	0.07 mM	0.075 mM	
P− Fe+	0.01 mM	0.015 mM	0.02 mM	0.025 mM	0.03 mM	0.035 mM	0.04 mM	0.045 mM	0.05 mM	0.055 mM	0.06 mM	0.065 mM	0.07 mM	0.075 mM	
P− Fe−	0.01 mM	0.015 mM	0.02 mM	0.025 mM	0.03 mM	0.035 mM	0.04 mM	0.045 mM	0.05 mM	0.055 mM	0.06 mM	0.065 mM	0.07 mM	0.075 mM	
P− Fe+	0.01 mM	0.015 mM	0.02 mM	0.025 mM	0.03 mM	0.035 mM	0.04 mM	0.045 mM	0.05 mM	0.055 mM	0.06 mM	0.065 mM	0.07 mM	0.075 mM	
P− Fe−	0.01 mM	0.015 mM	0.02 mM	0.025 mM	0.03 mM	0.035 mM	0.04 mM	0.045 mM	0.05 mM	0.055 mM	0.06 mM	0.065 mM	0.07 mM	0.075 mM	

Figure 2. Comparison of the concentration of ions added to medium as salts, with the predicted percentage of the ions in their bioavailable form in the medium, and with the tissue ion content of plants grown on the medium. P+Fe+ = 1,000 μM P, 100 μM FeEDTA; P+Fe− = 1,000 μM P, 10 μM FeEDTA; P−Fe− = 0 μM P, 10 μM FeEDTA. The free unassociated state of the ion in most cases is assumed to be the bioavailable form of the ion. The Visual Minteq predictions include the 20 μM of P and 10 μM of Fe introduced as impurities with the agar. However, by convention, they are not included as part of the basal nutrient solution recipe. The elemental analysis of 9-d-old seedlings was determined by ICP-MS.

Figure 3. Comparison of the concentration of ions added to medium as salts, with the predicted percentage of the ions in their bioavailable form in the medium, and with the tissue ion content of plants grown on the medium. P+Fe+ = 1,000 μM P, 100 μM FeEDTA; P+Fe− = 1,000 μM P, 10 μM FeEDTA; P−Fe− = 0 μM P, 10 μM FeEDTA. The free unassociated state of the ion in most cases is assumed to be the bioavailable form of the ion. The Visual Minteq predictions include the 20 μM of P and 10 μM of Fe introduced as impurities with the agar. However, by convention, they are not included as part of the basal nutrient solution recipe. The elemental analysis of 9-d-old seedlings was determined by ICP-MS.

Figure 4. Comparison of the concentration of ions added to medium as salts, with the predicted percentage of the ions in their bioavailable form in the medium, and with the tissue ion content of plants grown on the medium. P+Fe+ = 1,000 μM P, 100 μM FeEDTA; P+Fe− = 1,000 μM P, 10 μM FeEDTA; P−Fe− = 0 μM P, 10 μM FeEDTA. The free unassociated state of the ion in most cases is assumed to be the bioavailable form of the ion. The Visual Minteq predictions include the 20 μM of P and 10 μM of Fe introduced as impurities with the agar. However, by convention, they are not included as part of the basal nutrient solution recipe. The elemental analysis of 9-d-old seedlings was determined by ICP-MS.
P-deficient medium than short-rooted plants (Figs. 1H and 3C). It is also supported by the similar changes in the tissue concentrations of nutrients, particularly the reductions in the concentrations of K and magnesium (Mg), of the short-rooted plants grown on P-sufficient medium with double the concentration of Fe compared to the short-rooted plants grown on P-deficient medium with the normal concentration of Fe (Figs. 2 and 4F).

Fe Is Inhibiting the Elongation of the Primary Root

Computer modeling and elemental analysis showed that the availability and tissue content of several other nutrients besides P and Fe were unintentionally altered in plants grown on medium with reduced P and Fe content (Fig. 2). These changes were investigated as potential causes or contributing factors in the primary root inhibition observed during P deficiency.

One source of these changes is that, in Murashige and Skoog-based nutrient solutions, Fe is solubilized by the addition of equal molar amounts of the chelator EDTA. EDTA balances the availability of Fe with the availability of the other metals in the medium because binding of metals is nonspecific and concentration dependent (Chaney, 1988). In accordance with this expectation, computer modeling predicted that the availability of several metals (manganese [Mn], cobalt [Co], and zinc [Zn]) were increased in addition to Fe in medium containing low P and normal levels of Fe (Fig. 2). However, computer modeling also predicted that the availability of these metals was increased in low P, low Fe medium (Fig. 2). Therefore, toxicity of these metals was ruled out as the cause of the primary root inhibition during P deficiency. This was further confirmed by the substitution of HBED, a chelator that only has limited interactions with the other metals (Supplemental Fig. S3).

Computer modeling predicted no major changes in the availability of K, Mg, and sodium (Na), but elemental analysis showed that there were large reductions in the tissue concentrations of these ions in seedlings grown on low P, normal Fe medium (Fig. 2). P deficiency was ruled out as the primary cause of the reduction of these nutrients because the severe reductions in these nutrients were observed only in short-rooted plants. However, it was still not known whether deficiencies of K and Mg were involved in, or the cause of, the primary root inhibition when P was removed from normal Fe medium. K is of particular interest because it has been previously implicated in cell expansion and root growth (Ashley et al., 2006). However, raising the medium and tissue concentrations of K and Mg did not rescue the root elongation as compared to that of the plants grown on low P and low Fe medium (Supplemental Fig. S4). This shows that reduced accumulations of K and Mg are not the causes of the inhibition of primary root elongation.

Primary Root Growth Inhibition Is a Response to the Locally High Concentrations of Fe within the Root

All of the evidence supports the conclusion that inhibition of the primary root growth of plants grown on medium containing reduced P is caused by Fe toxicity. However, it was not known whether the response was based on the whole plant Fe status or just on the Fe status of the root. To investigate this, a split-plate experiment was performed in which the top half of a petri dish contained either solidified 1,000 μM
P and 100 μM Fe (P+Fe+) or 0 μM P and 10 μM Fe (P−Fe−) medium, and the bottom half of the dish contained either solidified 1,000 μM P, 100 μM FeEDTA or 100 μM FeSO₄. A, Representative 9-d-old seedlings for each of the treatments. B, Primary root lengths as measured for 15 plants for each of the treatments using the ImageJ program. C, Dry weights as determined for three groups of 10 plants for each treatment with these weights divided to determine individual seedling weights. D, Their tissue P concentrations as determined by ICP-MS for each of the treatments. E, Tissue Fe concentrations as determined by ICP-MS for each of the treatments. F, Tables of the tissue K and Mg concentrations as determined by ICP-MS for each of the treatments. Lowercase letters indicate significance by a two-factor ANOVA and Tukey’s post-hoc analysis at a P < 0.05. Scale bar = 10 mm.

Effect on Root Growth in the Fe Hyperaccumulating Mutant frd3 of Reducing P in the Medium

Based on the previous experiments, we predicted that the frd3 Arabidopsis (Col-0) mutant, known to hyperaccumulate Fe in the roots (Rogers and Guerinot, 2002), should manifest hypersensitivity to root inhibition when grown on medium with reduced Fe. This mutant was found to have increasingly shorter roots compared to Col-0 wild type as Fe concentrations were raised from 10 μM to 100 μM in P-deficient medium (Fig. 5B). At 100 μM Fe, the primary root length of frd3 was severely reduced compared to wild type. However, at 10 μM Fe, their primary roots were only slightly shorter than that of wild type (Fig. 5C).

Differences in the Response of the Llagostera-0 Accession to P Deficiency Are Because It Has Increased Tolerance to Fe

The Llagostera-0 (Ll-0) accession of Arabidopsis was previously identified as an accession that does not display the primary root inhibition normally observed for Col-0 of Arabidopsis when grown on medium containing reduced P (Chevalier et al., 2003). Based on the evidence presented here that the primary root inhibition is actually due to root Fe toxicity, we predicted that the LI-0 accession is actually more resistant to root Fe toxicity.

Initially, on the basal medium used for this study, Ll-0 did not respond differently from the Col-0 accession. It was determined that the medium used by Chevalier et al. (2003), on which Ll-0 showed resistance to primary root inhibition, did not contain ammonia as the nitrogen source, unlike the basal medium used in our study. This led to the removal of the ammonia from all of the media used in the experiments with LI-0. Ammonia is known to reduce the pH of the rhizosphere, which would be expected to increase Fe availability.

After removal of the ammonia from the medium, LI-0 displayed the expected improvement in primary root elongation. At 50 μM Fe, the primary root of LI-0 was more than twice that of Col-0 (Fig. 6, A and B). Elemental analysis of the LI-0 and Col-0 plants established that the increased resistance to Fe toxicity-induced root inhibition was not due to Fe exclusion. The LI-0 had approximately 60% higher tissue concentrations of Fe on medium concentrations of Fe (50 and 75 μM) in which there was increased elongation of the primary root of LI-0 compared to Col-0 (Fig. 6, C and D).

DISCUSSION

In this study, the interactions of P and Fe were evaluated by assessing the growth of Arabidopsis Col-0 accession on medium in which the concentrations of P and Fe were varied simultaneously. Normally, when
P is removed from medium in which the Fe concentration is unaltered, the growth of the primary root of the Col-0 accession is inhibited (López-Bucio et al., 2002; Sánchez-Calderón et al., 2005; Jain et al., 2007). Further, when the available Fe is also reduced in low P medium, the primary root of the Col-0 ecotype continues to grow. It has been suggested that this is due to increase in the availability of P in the medium with reduced Fe (Svistoonoff et al., 2007). However, we conclude from the evidence presented here that the primary root elongation observed in Col-0 when grown on low P and Fe medium is, in fact, due to the elimination of Fe toxicity in the root.

Root lengths are found to show no correlation with the tissue concentrations of P or with the regulation of known P-responsive genes when plants grown on low Fe medium are considered. However, root lengths show a strong negative correlation with tissue concentrations of Fe, indicative of a response to Fe toxicity sensed by the roots in the absence of P. In support of this hypothesis, the frd3 mutant, known to hyperaccumulate Fe in the roots, was found to be hypersensitive to inhibition of root elongation in low P medium. Furthermore, the L1-0 accession of Arabidopsis, previously observed not to display the short root phenotype on medium containing low P, was found in this study to be more resistant to the inhibition of root elongation by Fe.

Many studies have shown that the primary root response of Arabidopsis during P deficiency is completely separate from the systemically controlled changes in gene expression (Linkohr et al., 2002; Ticconi et al., 2004; Jain et al., 2007). This study suggests that the two responses are separate because they are likely regulated by two different nutrients. Reduced primary root growth is due to Fe toxicity, whereas changes in
the expression of genes involved in P nutrition are governed by P. However, this still leaves open the question of how the activity of P affects that of Fe beyond just limiting its availability in the medium. A recent report used x-ray probe microscopy to show that the localization and association of the Fe within the plant was different in P-deficient plants (Hirsch et al., 2006). In P-sufficient Arabidopsis (Col-0) plants, the Fe was localized to the vacuole where it was associated with P, K, calcium (Ca), Zn, and sometimes nickel (Ni). In P-deficient Arabidopsis (Col-0) plants, the Fe was found in the plastid likely bound to ferritin, and no Fe complexes with other elements were observed. The vacuoles under P-deficient conditions were largely free of Fe (Hirsch et al., 2006). The significance of this change in localization of the Fe remains to be investigated.

The split-plate results reported here are in agreement with the study by Svistoonoff et al. (2007), which showed that root tip contact with Fe in the absence of P is all that is necessary and sufficient for primary root inhibition. In their study, they reported that the absence of detectable expression of a multicopper oxidase (At1g23010) in the root tip in the Bay-0 accession of Arabidopsis allowed for the primary root elongation of this accession during P deficiency.

Figure 6. The primary root response of the Col-0 and Ll-0 accessions to increasing concentrations of Fe in P− medium without NH₄⁺. I = 0 μM P, 100 μM FeEDTA; II = 0 μM P, 75 μM FeEDTA; III = 0 μM P, 50 μM FeEDTA; IVa = 0 μM P, 25 μM FeEDTA; V = 0 μM P, 10 μM FeEDTA. A, Representative 9-d-old seedlings of the Col-0 accession (a) compared to representative seedlings of the Ll-0 accession (b) from the different treatments. B, Primary root lengths of the Col-0 and Ll-0 seedlings as measured for 15 plants for each of the treatments using the ImageJ program. C, Tissue P concentrations as determined by ICP-MS of the short-rooted Col-0 plants compared to the long-rooted Ll-0 plants grown on medium II and medium III. D, Tissue Fe concentrations as determined by ICP-MS of the short-rooted Col-0 plants compared to the long-rooted Ll-0 plants grown on medium II and medium III. Lowercase letters indicate significance by a two-factor ANOVA and Tukey’s post-hoc analysis at a P < 0.05. Scale bar = 10 mm.
Role of Iron in Phosphate Stress Response

(MATERIALS AND METHODS

Growth Medium

The P-sufficient, normal Fe control medium used for this study was a modified Murashige and Skoog medium that contained 2.06 mM ammonium nitrate, 1.88 mM potassium nitrate, 0.15 mM magnesium sulfate, 0.1 mM manganese sulfate, 0.05 mM zinc sulfate, 0.1 mM cupric sulfate, 0.3 mM calcium chloride, 5.0 μM potassium iodide, 0.1 μM cobalt chloride, 0.1 mM FeEDTA, 1 mM potassium phosphate, 0.1 mM boric acid, 1.0 mM sodium molybdate, 1.5% Suc, and 1.2% agar (Sigma A1296; lot 110K0195). The pH of the medium was adjusted to 5.7 before autoclaving.

Medium with lower concentrations of P were made by substituting potassium sulfate for the potassium phosphate so that the level of K in the medium remained at 2.88 mM. Concentrations of Fe were adjusted by manipulating the concentration of FeEDTA. Other reagents were added or substituted in the basal medium as noted in the text: EDTA (Mallinkrodt 4931–02); HBED [N,N-dil(2-hydroxybenzyl)ethylenediamine-N,N’-diacetic acid monohydrochloride hydrate; Strem Chemicals reagent no. 07–0422] or phytic acid sodium salt from corn (Sigma P8810).

The FeEDTA and FeHBED were added as stock solutions. FeEDTA was made by dissolving ferrous sulfate in a solution of sodium EDTA so that the Fe(II) and EDTA were in equal molar proportions. FeHBED was made by dissolving ferric sulfate in a solution of HBED so that the Fe(III) and HBED were in equal molar proportions.

An 8.35 mM stock concentration of phytic acid was made, adjusted to a pH of 5.7, and filtered sterilized. This was added to autoclaved medium to the appropriate final concentration.

Plant Material and Growth Conditions

Seeds of the Col-0 and Ll-0 accessions of Arabidopsis (Arabidopsis thaliana), and those of the frd3 mutant, were surface sterilized with 70% and then 50% household bleach solutions, and cold stratified for 2 d at 4°C. They were then sown directly on the medium on which their growth was being evaluated. These plates were placed vertically in a growth room under fluorescent lights with 16-h days and 8-h nights and a temperature of 25°C and leaf temperature of 24°C. The plates were scanned into Adobe Photoshop with an Epson Perfection 2400 scanner. After photo documentation, the seedlings were collected for root measurements, dry weight, inductively coupled plasma-mass spectrometry (ICP-MS) analysis, and other assays.

Purification of Agar

Agar (Sigma A1296; lot 110K0195) was rinsed several times and then left in distilled water. Dowex G55 (Sigma D3053) beads were loaded into dialysis bags and then circulated in the agar and water suspension overnight. The beads were removed and the agar rinsed several more times. The agar was drained over cheesecloth, squeezed of as much water as possible, and allowed to dry at room temperature. Purified and unpurified agars were analyzed by ICP-MS for their P and Fe content to demonstrate that the purification had been effective. The growth of Arabidopsis plants on washed and unwashed agars was also assessed on full nutrient medium to confirm that there were no unintended consequences of the purification.

Visual Minteq Analysis

Visual Minteq analysis was done according to Parker et al. (1995) using the ion concentrations of the modified Murashige and Skoog solution used in this study. Multiple analyses with different concentrations of ferric and ferrous Fe were considered. In all cases, the proportional increases in the availability of Fe in low P medium were the same. The results of the analysis when all of the Fe is in the ferrous form are presented. An extra 20 μM of P and an extra 10 μM of Fe were added to all the calculations to account for the impurities that were measured in the agar used in the medium preparations.

Primary Root Length Measurements

An Epson Perfection 2400 scanner was used to capture images of 15 to 20 seedlings with their roots spread out on agar plates. The image files were converted into the JPEG format and opened in the Imagej computer program. Imagej is a free image analysis program that evolved from software developed at the National Institutes of Health, Bethesda, MD (Rasband, 1997–2006). The scale was set for the picture within the program. Then the drawing tools were used to trace over the primary roots. Based on the scale, the program automatically calculated the length of the root.
Dry Weight Determination

Three groups of 10 9-d-old seedlings representing the different growth conditions were placed inside preweighed Eppendorf tubes. The plants were dried to constant weight at 65°C. The weights of the pools of seedlings were determined by subtracting the total weights by the weights of the tube. The individual weights of the seedlings were obtained by dividing the pooled weights by 10.

ICP-MS Elemental Profiling

Elemental profiling via ICP-MS was done on three groups of 10 seedlings that were 9 d old for each condition. Tissue concentrations were determined for lithium (Li), boron (B), Na, Mg, P, K, calcium (Ca), Fe, Co, copper (Cu), Zn, arsenic (As), selenium (Se), molybdenum (Mo), and cadmium (Cd). Plant tissue was placed into weighed Pyrex tubes and dried at 90°C overnight. The samples (0.5–1.0 mg) were digested with 0.25 mL of concentrated HNO3 at 110°C for 2 h. Each sample was diluted to 2.0 mL with 18 MΩohm water and analyzed on an Elan DRCE ICP-MS (Perkin-Elmer). Methane was used as a collision cell gas to measure Fe. Gallium and indium were used as internal standards, added to the digestion acid bottle to a concentration of 20 ppb. National Institute of Standards and Technology traceable single element ICP standards (Ultra Scientific) were used to make up the calibration standards.

[^3P] Uptake Studies

[^3P] uptake studies were done according to Mission et al. (2004) using 12 groups of 10 seedlings for each treatment. Briefly, 9-d-old seedlings were harvested from plates, rinsed at room temperature for 10 min in 5 mM MES, 0.1 mM CaCl2 solution with a pH of 5.7, and transferred to the [^3P] uptake solution containing 5 mM MES, 0.1 mM CaCl2, and 50 μM KH2PO4 at a pH of 5.7 with 0.15 μCi/mL to 0.2 μCi/mL of[^3P]. The plants were allowed to take up P for 2 h at room temperature. Then the plants were desorbed of any remaining radioactivity for 30 min at 4°C in a solution of 5 mM MES, 0.1 mM CaCl2, 1 mM KH2PO4, pH 5.7. Plants were transferred to preweighed scintillation vials, dried overnight at 65°C, and their weights determined the following day. Scintillation cocktail was added to the vials and the radioactivity counted in a Beckman LS8000 scintillation counter. The counts were normalized to the previously determined dry weights.

GUS Staining

GUS staining was done as described in Karthikeyan et al. (2002). Whole seedlings were incubated in GUS staining solution at 37°C overnight. The following day the stained seedlings were transferred to 70% (v/v) ethanol/C176 overnight. The stained seedlings were then washed in 100% (v/v) ethanol/C176 for 2 h. Each sample was diluted to 2.0 mL with 18 MΩohm water and analyzed on an Elan DRCE ICP-MS (Perkin-Elmer). Methane was used as a collision cell gas to measure Fe. Gallium and indium were used as internal standards, added to the digestion acid bottle to a concentration of 20 ppb. National Institute of Standards and Technology traceable single element ICP standards (Ultra Scientific) were used to make up the calibration standards.

Reverse Transcription-PCR

Total RNA was extracted with phenol and guanidine thiocyanate. Reverse transcription (RT) and subsequent PCRs were done according the protocols supplied with the Superscript II RNase H– reverse transcriptase (Invitrogen; catalog no. 18064–014). PCR was done for 20 to 25 cycles depending on the gene. The genes and their primers are listed in Supplemental Table S1.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Effect of the purification of the agar on primary root elongation used to make medium without added P or Fe.

Supplemental Figure S2. RT-PCR of RNA isolated from 9-d-old wild-type seedlings for P-responsive genes in addition to the results presented in Figure 3.

Supplemental Figure S3. Growth of wild-type seedlings on P-deficient medium when the iron chelator is altered.

ACKNOWLEDGMENTS

We would like to thank Aiqin Cao and Ballachanda N. Devaiah for their valuable help in preparing and editing this manuscript, and Mike Poling for his assistance in plant growth analysis. We also gratefully acknowledge Carla Delatorre for providing protocols for purifying the agar. Last, we also thank the Arabidopsis Biological Resource Center at The Ohio State University for providing the seeds for ecotypes and Athikkattuvasan S. Karthikeyan for providing the seeds to the Pht1;4<<GUS plants used in this study.

Received March 1, 2008; accepted April 23, 2008; published May 8, 2008.

LITERATURE CITED

Allison JD, Brown DS, Novo-Gradac KJ (1991) MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems: version 3.0. User’s manual. Environmental Research Laboratory, Office of Research and Development, USEPA, Athens, Georgia. http://www.lwr.ktl.se/English/OurSoftware/vminteq (May 16, 2008)

Ashley MK, Grant M, Grabov A (2006) Plant responses to potassium deficiencies: a role for potassium transport proteins. J Exp Bot 57: 425–436

Chaney RL (1988) Plants can utilize iron from Fe,N,N′-di-(2-hydroxybenzoyl)-ethylenediamine-N,N′-diacetic acid, a ferric chelate with 106 greater formation constant than Fe-EDDHA. J Plant Nutr 11: 1033–1050

Chevalier F, Pata M, Nacry P, Doumas P, Rossignol M (2003) Effects of phosphate availability on the root system architecture: large scale analysis of the natural variation between Arabidopsis accessions. Plant Cell Environ 26: 1839–1850

Cumbus JP, Hornsey DJ, Robinson LW (1977) The influence of phosphorus, zinc, and manganese on absorption and translocation of iron in watercress. Plant Soil 48: 651–660

Dalton CC, Iqbal K, Turner DA (1983) Iron phosphate precipitation in Murashige and Skoog media. Physiol Plant 57: 472–476

DeKock PC, Hall A, Inskon RHE (1979) Active iron in plant leaves. Ann Bot (Lond) 43: 737–740

Foth HD, Ellis BG (1997) Soil Fertility. Lewis Publishers, Boston

Gahoonia TS, Nielsen NE (2004) barley genotypes with long root hairs provide the seeds for ecotypes and Athikkattuvasan S. Karthikeyan for providing the seeds to the Pht1;4<<GUS plants used in this study.

Gharehgozi H, Rubigo G, YannX, CaoA, Brown KM, Lynch JP (2001) Effect of phosphorus availability on basal root shallowness in common bean. Plant Soil 232: 69–79

Hirsh J, Marin E, Floriani M, Chiarenza S, Richaud P, Nussaume L, Thibaud MC, Hornsey DJ, Robinson LW (1977) The influence of phosphorus, zinc, and manganese on absorption and translocation of iron in watercress. Plant Soil 48: 651–660

Hoopers JC, Dean JJD (2004) Ferrooxidase activity in a laccase-like multi-copper oxidase from Liriodendron tulipifera. Plant Physiol Biochem 42: 27–33

Jain A, Poling MD, Karthikeyan AS, Blakeslee JF, Peer WA, Li H, Yang X, Luo A (2001) Ameliorating effect of potassium on iron toxicity in hybrid rice. J Plant Nutr 24: 1849–1860

Kochian LV, Piñeros MA, Hoekenga OA (2005) The physiology, genetics, and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274: 175–195

Lamont BB (2003) Structure, ecology, and physiology of root clusters—a review. Plant Soil 248: 1–19

Li H, Yang X, Luo A (2001) Ameliorating effect of potassium on iron toxicity in hybrid rice. J Plant Nutr 24: 1849–1860

Liao H, Rubio G, Yan X, Cao A, Brown KM, Lynch JP (2001) Effect of phosphorus availability on basal root shallowness in common bean. Plant Soil 232: 69–79

Supplemental Table S1. List of primers used for RT-PCR of P- and Fe-responsive genes.

Supplemental Figure S4. Growth of wild-type seedlings on medium containing elevated levels of K and Mg.
Linkohr BI, Williamson LC, Fitter AH, Leyser HMO (2002) Nitrate and phosphate availability and distribution have different effects on root system architecture of Arabidopsis. Plant J 26: 751–760

López-Bucio J, Hernández-Abreu E, Sánchez-Calderón L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol 129: 244–256

Lynch JP, Brown KM (2001) Topsoil foraging—an architectural adaptation of plants to low phosphorus availability. Plant Soil 237: 225–237

Marschner H (1995) Mineral Nutrition of Higher Plants, Ed 2. Academic Press, London

Mathan KK, Amberger A (1977) Influence of iron on the uptake of phosphorus by maize. Plant Soil 46: 413–422

Mission J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, et al (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA 102: 11934–11939

Mission J, Thibaud MC, Bechtold N, Raghothama KG, Nussaume L (2004) Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants. Plant Mol Biol 55: 727–741

Mollier A, Pellerin S (1999) Maize root system growth and development as influenced by phosphorus deficiency. J Exp Bot 50: 487–497

Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15: 473–497

Narayan A Reddy BK (1982) Effect of phosphorus deficiency on the form of plant root system. In A Scaife, ed, Plant Nutrition, Vol 2. Commonwealth Agricultural Bureau, Slough, UK, pp 412–417

Parker DR, Chaney RL, Norvell WA (1995) Chemical equilibrium models: applications to plant nutrition research. In RH Loeppert, AP Schwab, S Goldberg, eds, Chemical Equilibrium and Reaction Models. Soil Science Society of America, Madison, WI, pp 163–200, 253–269

Raghothama KG (1999) Phosphorus acquisition. Annu Rev Plant Physiol 50: 665–693

Rasband WS (1997–2006) ImageJ. U.S. National Institutes of Health, Bethesda, MD. http://rsb.info.nih.gov/ij/ (May 16, 2008)

Rogers EE, Guerinot ML (2002) FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis. Plant Cell 14: 1787–1799

Sahrawat KL (2004) Iron toxicity in wetland rice and the role of other nutrients. J Plant Nutr 27: 1471–1504

Sánchez-Calderón L, López-Bucio J, Chacón-López A, Cruz-Ramírez A, Nieto-Jacobo E, Dubrovsky JG, Herrera-Estrella L (2005) Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiol 46: 174–184

Shane MW, Lambers H (2005) Cluster roots: a curiosity in context. Plant Soil 274: 101–125

Shimizu A, Yanagihara S, Kawasaki S, Ikehashi H (2004) Phosphorus deficiency-induced root elongation and its QTL in rice (Oryza sativa L.). Theor Appl Genet 109: 1361–1368

Swistoonoff S, Creff A, Reymond M, Sigoillot-Claude C, Ricaud L, Blanchet A, Nussaume L, Desnos T (2007) Root tip contact with low-phosphate media reprograms plant root architecture. Nat Genet 39: 792–796

Ticconi CA, Delatorrre CA, Lahner B, Salt DE, Abel S (2004) Arabidopsis pdr2 reveals a phosphate-sensitive checkpoint in root development. Plant J 37: 801–814

Von Vexhall HR, Mutert E (1998) Global extent, development, and economic impact of acid soils. In RA Date, NJ Grundon, GE Rayment, Probert ME, eds, Plant-Soil Interactions at Low pH: Principles and Management. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 5–19

Waldo GS, Wright E, Wang ZH, Briat JF, Theil EC, Sayers DE (1995) Formation of the ferritin iron mineral occurs in plastids. Plant Physiol 109: 797–802

Wissuwa M, Ae N (2001) Genotypic differences in the presence of hairs on roots and gynophores of peanuts (Arachis hypogaea L.) and their significance for phosphorus uptake. J Exp Bot 52: 1703–1710

Zhang X, Zhang F, Mao D (1999) Effect of iron plaque outside roots on nutrient uptake by rice (Oryza sativa L.): phosphorus uptake. Plant Soil 209: 187–192