This is a repository copy of Risk of mature B-cell neoplasms and precursor conditions after joint replacement: a report from the Haematological Malignancy Research Network.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/153506/

Version: Published Version

Article:
Kane, Eleanor orcid.org/0000-0002-7438-9982, Painter, Daniel orcid.org/0000-0002-3936-7569, Smith, Alexandra orcid.org/0000-0002-1111-966X et al. (4 more authors) (2019)
Risk of mature B-cell neoplasms and precursor conditions after joint replacement: a report from the Haematological Malignancy Research Network. International Journal of Cancer. ISSN 1097-0215

https://doi.org/10.1002/ijc.32765

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Risk of mature B-cell neoplasms and precursor conditions after joint replacement: A report from the Haematological Malignancy Research Network

Eleanor Kane,1, Daniel Painter1, Alexandra Smith1, Maxine Lamb1, Steven E. Oliver1,2, Russell Patmore3 and Eve Roman1

1Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, United Kingdom
2Hull York Medical School, York, United Kingdom
3Queens Centre for Oncology, Castle Hill Hospital, Hull, United Kingdom

Associations between previous joint replacement and B-cell lymphoid malignancies have been reported, but despite numerous reports, associations with the disease subtypes have received little attention. Using a UK-based register of haematological malignancies and a matched general population-based cohort, joint replacements from linked hospital inpatient records were examined. Cases diagnosed 2009–2015 who were aged 50 years or more were included; 8,013 mature B-cell neoplasms comprising myeloma (n = 1,763), diffuse large B-cell lymphoma (DLBCL, n = 1,676), chronic lymphocytic leukaemia (CLL, n = 1,594), marginal zone lymphoma (MZL, n = 957), follicular lymphoma (FL, n = 725) and classical Hodgkin lymphoma (CHL, n = 255), together with monoclonal gammopathy of uncertain significance (MGUS, n = 2,138) and monoclonal B-cell lymphocytosis (MBL, n = 632). Odds ratios (OR) and 95% confidence intervals (95%CI) were calculated relative to 10 age- and sex-matched controls using conditional logistic regression. Having had a joint replacement before diagnosis was associated with myeloma (OR = 1.3, 95% CI 1.1–1.5, p = 0.008) and MGUS (OR = 1.3, 95% CI 1.1–1.5, p < 0.001). Excluding replacements in the year before diagnosis, the MGUS risk remained, elevated where two or more joints were replaced (OR = 1.5, 95% CI 1.2–2.0, p = 0.001), with hip (OR = 1.2, 95% CI 1.0–1.5, p = 0.06) or knee replacements (OR = 1.5, 95% CI 1.2–1.8, p < 0.001). Associations with CHL and two or more replacements (OR = 2.7, 95% CI 1.3–5.6, p = 0.005) or hip replacements (OR = 1.9, 95% CI 1.0–3.4, p = 0.04); and between DLBCL and knee replacements (OR = 1.3, 95% CI 1.0–1.6, p = 0.04) were also observed. Our study reports for the first time a relationship between joint replacements and MGUS; while absolute risks of disease are low and not of major public health concern, these findings warrant further investigation.

Introduction
Including chronic lymphocytic leukaemia (CLL), myeloma and more than 90% of lymphomas, mature B-cell malignancies account for around 60% of all haematological cancers.1,2 With diverse epidemiological features, treatment pathways, and outcomes these cancers comprise a heterogeneous group of over 50 subtypes.3 For some subtypes, environmental risk factors are well established; including biological (e.g. certain infections), physical (e.g. ionising radiation) and chemical (e.g. pesticides) agents.3–7 A number of familial predisposition syndromes and genetic risk factors have also been implicated, as have several acquired comorbidities (e.g. autoimmunity)
What’s new?
While lymphoid malignancies are increased in persons with previous joint replacements, data on associations with particular diagnostic subtypes is lacking. Here, the authors investigated the relationship between joint replacement and mature B-cell neoplasms and their precursor conditions in an established cohort of patients with haematological malignancies linked to national healthcare records. Previous joint replacement was associated with subsequent elevated risk of myeloma, monoclonal gammopathy of uncertain significance, and Hodgkin lymphoma subtypes of haematological disease. While the findings indicate that absolute risks are low, joint replacement procedures are increasing and disentangling the underlying reasons behind these associations warrants further investigation.

Methods
Cases were from the UK Haematological Malignancy Research Network (HMRN, www.hmrn.org), a specialist register initiated in September 2004 which provides real-world data on all haematological cancers and precursor conditions that can be generalised to the UK as a whole.39 HMRN collects all diagnoses, including progressions and transformations, reported and coded to the latest WHO ICD-O3 by clinical specialists.40 Set in a catchment population of 4 million people served by 14 hospitals, the network registers ~2,400 haematological malignancy diagnosed each year. In order to facilitate comparisons with the general population, HMRN also has a general-population cohort; patients diagnosed between January 1, 2009 and December 31, 2015 were each matched on age and sex to 10 unaffected individuals from the same catchment population.11 HMRN operates under a legal basis that permits full treatment and outcome data to be collected from clinical records without explicit consent, and all cases and controls are linked to nationwide information on deaths, cancer registrations and Hospital Episode Statistics (HES). This report includes 10,783 patients aged 50 years or over newly diagnosed with a mature B-cell malignancy or precursor condition between 1 January 2009 and 31 December 2015 and their age- and sex-matched controls (n = 107,830). The malignancies included were myeloma (n = 1,763), DLBCL (n = 1,676), CLL (n = 1,594), MZL (n = 957), FL (n = 725) and CHL (n = 255); and the precursor conditions were MGUS (n = 2,138) and MBL (n = 632); and all controls were assigned a “pseudodiagnosis date” equivalent to the date of diagnosis of their matched case.

Joint replacements are among the most common surgical operations conducted in patients over 40 years.41 In England, around two-thirds of joint replacements are funded by the NHS,42 which are recorded with the date of the operation in HES Admitted Patient Care (HES-APC), regardless of whether they are performed by the NHS or the independent sector. For the present analysis, all joint replacement operations performed between April 1, 1997 and before the date of diagnosis (patient cohort members), or the corresponding pseudodiagnosis date (comparator cohort members) were extracted using OPCS4 codes (OPCS Classification of Interventions and Procedures Version 4 codes43) relating to joint replacement operations (Table 1). Focus was on the commonest prosthetics (hip, knee, shoulder, elbow or ankle); with data on primary replacements, resurfacing procedures, revisions, conversions and any other related operation included. Laterality of each procedure was also extracted, with coincident bilateral operations being counted twice, once for each side. As well as examining joint replacements up to diagnosis/pseudodiagnosis, analyses were repeated excluding any joint replacements that occurred in the year before the date of diagnosis/pseudodiagnosis.
or 5 years before diagnosis/pseudodiagnosis. To quantify associations between joint replacements and malignancy, odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using conditional logistic regression. Since cohort members could have replacements in different types of joints, risk estimates for specific joints were adjusted for whether or not they had had replacements in other joints. All analyses were conducted using Stata 15.1.

Ethics approval
HMRN has ethical approval from Leeds (West) Research Ethics Committee (reference 04/Q1205/69) and the Health Research Authority Confidentiality Advisory Group under Section 251 of the NHS Act (2006; reference PIAG 1-05 (h)/2007).

Data availability
The data that support the findings of our study are available from the corresponding author upon reasonable request.

Results
Joint replacements occurred in 995/10783 (9.2%) cases and 9179/107830 (8.5%) controls prior to the date of diagnosis/pseudodiagnosis. Osteoarthritis was the most frequent indication for the first replacement (75.5% among cases, 76.7% among controls), Table 1.

Joint	Joint-specific replacement operations	Replacement operations where joint identified separately (+ Z codes)
Hip	W37–W39, W46–W48, W93–W95	(W05, W43–W45, W55, W58, W91.3, W91.8)
Knee	W40–W42, O18	(W76.5, W77.3–W77.5, W77.8–W77.9, W78.7, W84.4–W84.6)
Shoulder	W49–W51, W96–W98, O06–O08	(W69.1, W81.2–W81.4)
Elbow	W52–W54, O21–O26	(W70.1, W81.5)
Ankle	O32	(W85.6, W85.8)

Operations were recorded using OPCS4 versions 4.2–4.7. Codes for primary joint replacements end with 0.1, 0.8 or 0.9 except in the shoulder, where the codes W50.4, W51.5, W96.5 and W98.6 also define primary replacements/resurfacing. Laterality was identified using the codes Z94.1, Z94.2, Z94.3 for bilateral; right- and left-sided operations, respectively.

Joint	Joint-specific replacement operations	Replacement operations where joint identified separately (+ Z codes)
Hip	W37–W39, W46–W48, W93–W95	(W05, W43–W45, W55, W58, W91.3, W91.8)
Knee	W40–W42, O18	(W76.5, W77.3–W77.5, W77.8–W77.9, W78.7, W84.4–W84.6)
Shoulder	W49–W51, W96–W98, O06–O08	(W69.1, W81.2–W81.4)
Elbow	W52–W54, O21–O26	(W70.1, W81.5)
Ankle	O32	(W85.6, W85.8)

Table 1. OPCS4 Codes for operations involving a joint replacement in the hip, knee, shoulder, elbow or ankle

Table 2. Risk of mature B-cell neoplasms and precursor conditions after a joint replacement in the hip, knee, ankle, shoulder or elbow up to diagnosis/pseudodiagnosis date or up to 1 or 5 years before diagnosis/pseudodiagnosis date

	Up to diagnosis	Up to 1 year before diagnosis	Up to 5 years before diagnosis
	Cases n % Cases % Controls OR (95% CI)	Cases % Controls OR (95% CI)	Cases % Controls OR (95% CI)
Mature B-cell neoplasms			
Total	8,013 8.7 8.4 1.0 (1.0–1.1)	7.7 7.5 1.0 (0.9–1.1)	4.8 4.5 1.1 (1.0–1.2)
Myeloma	1,763 10.2 8.3 1.3 (1.1–1.5)	8.6 7.5 1.2 (1.0–1.4)	5.0 4.5 1.1 (0.9–1.4)
Diffuse large B-cell lymphoma	1,676 9.4 9.1 1.0 (0.9–1.2)	8.5 8.0 1.1 (0.9–1.3)	5.4 4.7 1.2 (0.9–1.5)
Chronic lymphocytic leukaemia	1,594 7.0 8.1 0.8 (0.7–1.0)	6.3 7.3 0.9 (0.7–1.1)	4.1 4.4 0.9 (0.7–1.2)
Marginal zone lymphoma	957 9.5 8.6 1.1 (0.9–1.4)	8.5 7.7 1.1 (0.9–1.4)	4.8 4.8 1.0 (0.7–1.4)
Follicular lymphoma	725 7.2 7.6 0.9 (0.7–1.3)	6.3 6.7 0.9 (0.7–1.3)	3.2 3.9 0.8 (0.5–1.2)
Classical Hodgkin lymphoma	255 9.0 6.5 1.4 (0.9–2.3)	7.8 5.9 1.4 (0.8–2.3)	6.7 3.5 2.0 (1.2–3.5)
Precursor conditions			
Monoclonal gammopathy of undetermined significance	2,138 11.4 9.1 1.3 (1.1–1.5)	10.2 8.1 1.3 (1.1–1.5)	7.0 4.9 1.5 (1.2–1.8)
Monoclonal B-cell lymphocytosis	632 8.4 8.1 1.0 (0.8–1.4)	7.9 7.3 1.1 (0.8–1.5)	5.1 4.3 1.2 (0.8–1.7)

Odds ratios (OR) and 95% confidence intervals (95% CI) comparing HMRN cases aged 50 or over and diagnosed 2009–2015 to 10 individually age-sex matched controls were estimated using conditional logistic regression.

Table 2. Risk of mature B-cell neoplasms and precursor conditions after a joint replacement in the hip, knee, ankle, shoulder or elbow up to diagnosis/pseudodiagnosis date or up to 1 or 5 years before diagnosis/pseudodiagnosis date

Int. J. Cancer: 00, 00–00 (2019) © 2019 The Authors. International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC
with fractures accounting for a further 11.3% in both cases and controls. Although no association with joint replacement was observed for all mature B-cell neoplasms combined (OR = 1.0, 95%CI 1.0–1.1, p = 0.33), the risk varied by subtype, being highest for myeloma (OR = 1.3, 95%CI 1.1–1.5, p = 0.008) and CHL (OR = 1.4, 95%CI 0.9–2.3, p = 0.13), but below or close to unity

![Figure 1](https://wileyonlinelibrary.com...)

Figure 1. Mature B-cell neoplasms and precursor conditions diagnosed 2009–2015 aged 50 or over and their age-sex matched controls with one or more operations involving a joint prosthesis in the hip, knee, ankle, shoulder or elbow up to 1 year before diagnosis/pseudodiagnosis, odds ratios (OR) and 95% confidence intervals (CI), distributed by number of joints replaced, number of years between first joint replacement and diagnosis/pseudodiagnosis and specific joint(s) replaced. Boxes are weighted to the total number of cases and controls. [Color figure can be viewed at wileyonlinelibrary.com]
Table 3. Risk of monoclonal gammopathy of uncertain significance by subtype after a joint replacement in the hip, knee, ankle, shoulder or elbow up to 1 year before diagnosis/pseudodiagnosis date

MGUS	IgM MGUS	Non-IgM MGUS						
Controls (%)	Cases (%)	OR (95% CI)	Controls (%)	Cases (%)	OR (95% CI)	Controls (%)	Cases (%)	OR (95% CI)
n = 21,380 (100)	n = 2,138 (100)		n = 3,420 (100)	n = 342 (100)		n = 16,550 (100)	n = 1,655 (100)	
None	19,647 (91.9)	1.0 (ref)	3,161 (92.4)	1.0 (ref)	15,202 (91.9)	1.0 (ref)		
Any	1,733 (8.1)	1.0 (0.8–1.3)	259 (7.6)	1.0 (0.8–1.3)	1,348 (8.1)	1.0 (0.8–1.3)		
95% CI	71.9–92.2	1.0 (0.8–1.3)	259 (7.6)	1.0 (0.8–1.3)	1,348 (8.1)	1.0 (0.8–1.3)		
Years before diagnosis of first joint replacement								
1 to <5	685 (3.2)	1.0 (0.8–1.3)	114 (3.3)	1.0 (0.8–1.3)	523 (3.2)	1.0 (0.8–1.3)		
5+	1,048 (4.9)	1.0 (0.8–1.3)	145 (4.2)	1.0 (0.8–1.3)	825 (5.0)	1.0 (0.8–1.3)		
Joint(s) replaced								
Hip	911 (4.3)	1.0 (0.8–1.3)	133 (3.9)	1.0 (0.8–1.3)	721 (4.4)	1.0 (0.8–1.3)		
Knee	866 (4.1)	1.0 (0.8–1.3)	134 (3.9)	1.0 (0.8–1.3)	668 (4.0)	1.0 (0.8–1.3)		

Odds ratios (OR) and 95% confidence intervals (95%CI) comparing HMRN cases aged 50 or over and diagnosed 2009–2015 to 10 individually age-sex matched controls were estimated using conditional logistic regression.
replacements and subsequent MGUS, myeloma and CHL. We found that the risk of both MGUS and CHL were increased with joint replacements several years before diagnosis, while that for myeloma was present with replacements in the year before diagnosis and less so with replacements at earlier times; this latter observation leaving open the possibility that some procedures may have been carried out on patients whose myeloma had not yet been detected. In all cases, the associations increased with increasing numbers of replacements; MGUS and myeloma were associated with both hip and knee, whereas CHL was primarily linked with hip. Neither DLBCL nor MZL were associated with joint replacements overall, although increased risks were observed for knee and shoulder replacements, respectively. Consistent with the heterogeneity of B-cell neoplasms, we found no associations for the other most common subtypes.

In contrast to most population-based registers, HMRN has world-class centralised diagnostics, following strict condition-specific criteria for accuracy and consistency across the spectrum of haematological malignancies; MGUS, for example, is diagnosed with the presence of neoplastic plasma cells in the bone marrow in addition to detectable paraprotein in peripheral blood. Our study was also specifically designed to make robust comparisons between patients with haematological malignancies and the general population; HMRN’s controls comprise age- and sex-matched individuals randomly sampled from the study’s catchment population, and both HMRN’s cases and controls are linked to the same nationwide administrative databases. This case–control approach, novel among the studies of joint replacements recipients,28–38 yielded large numbers of cases in well-defined diagnostic categories. With healthcare data available from April 1, 1997, our study captured primary replacements for any major joint through to the date of diagnosis/pseudodiagnosis (January 1, 2009, to December 31, 2015), and so unlike others, was able to examine associations with the number, as well as specific joints replaced, as well as the time since the first replacement.

Prior studies have followed joint replacement recipients from their first hip or knee replacement for average periods of around 4–8 years postoperation.28–38 In agreement with national data on joint replacements,45 we found that the median age at the first joint replacement was around 70 years of age; no differences of note were detected between cases and controls, or by disease subtype. Seventy years of age is also around the median age at which B-cell neoplasms are diagnosed, apart from CHL where the median age at diagnosis is 41.2 We did not find associations in the year leading up to diagnosis, with the exception of myeloma; increased risks were instead found where the first joint was replaced five or more years before the diagnosis. Consequently, joint replacement recipients tended to be diagnosed with a B-cell condition at later ages (mean age of 77.2); with our analysis restricted to persons aged 50 or over, the comparison for CHL was a mean age of 76.5 among recipients compared to 67.2 overall. In the absence of associations closer to diagnosis (1 to <5 years), these observations are consistent with a longer latency between joint replacement and the diagnosis of a B-cell condition.

While our study has many strengths, weaknesses may have arisen through the use of HES data to define our exposure. In England, hospital data are available back to the year 1997 and for our cohorts, this timeframe covered more than a decade of secondary healthcare records before diagnosis/pseudodiagnosis (2009–2015). We believe this is sufficient coverage to identify the majority of individuals aged 50 or over who had previous major prosthetic work recorded in HES. HES records operations funded by the NHS in England, so joint replacement operations performed outside England or funded privately cannot be accounted for. Although the impact of the former may be minimal, privately funded replacements comprise a reasonable proportion of all major joint replacement operations, currently around a third of the total.42 However, since case and control distributions of socioeconomic status at the time of the first joint replacement were similar, and in contrast to some other cancers, haematological malignancies are not related to socioeconomic status, cases having joint replacements conducted outside the NHS more (or less) often than controls seems unlikely. A criticism common to previous studies is the healthy recipient effect, whereby persons undergoing major surgery to replace a joint are healthier than the general population, introducing bias in prospective cohorts at the point of ascertainment. Here, individuals were ascertained at the time of haematological malignancy diagnosis/pseudodiagnosis typically several years postimplant, minimising any healthy recipient effect except perhaps in the year prior, where no decreased risks were found. Our reliance on OPCS clinical codes for joint replacements meant that the type of prosthetic could not be specified; metal-on-metal prosthetics (MoM) are one type to have received attention, but where MoM recipients were compared to those who received other types, the risk of lymphoproliferative cancer was found to be no different.46–49

In this first study to examine whether joint replacements are related to mature B-cell neoplasms and precursor conditions, we found the most consistent associations for myeloma, MGUS and CHL. Across these three subtypes, associations were, on the whole, present after joint replacements several years before diagnosis; with multiple primary replacements; and with replacements in the hip and knee joints. Contrary to these observations, we found little or no evidence that joint replacements were associated with the other subtypes, namely DLBCL, MZL, CLL, FL and MBL. Conducted in a period when the number of joint replacements performed is increasing,50 our findings must be considered in the context of low absolute risk of any of these diagnosis and should not raise major public health concerns; nevertheless, whether the prosthetics or the underlying reasons for the procedures are the likely explanation warrants further investigation.
References

1. Swerdlow S, Campo E, Harris N, et al. WHO clas-
ification of Tumours of Haematopoietic and lym-
phoid tissues. Lyon: France: World Health
Organization, 2017.

2. Smith A, Howell D, Patmore R, et al. Incidence of
haematological malignancy by sub-type: a report
from the Haematological Malignancy Research
Network. Br J Cancer 2011;105:1684–92.

3. Hjalgrim H, Askling J, Sørensen P, et al. Risk of
Hodgkin’s disease and other cancers after infec-
tious mononucleosis. J Natl Cancer Inst 2000;92:
1522–8.

4. Patel P, Hanson DL, Sullivan PS, et al. Adult and
adolescent spectrum of disease project and HIV
Outpatient Study Investigators. Incidence of types
of cancer among HIV-infected persons compared
with the general population in the United States,
1992–2003. Ann Intern Med 2008;148:728–36.

5. Stolte M, Bayerdörffer E, Morgner A, et al. Helio-
bacillus and gastric MALT lymphoma. Gut
2002;50(Suppl 3)iii19–ii24.

6. Richardson DB, Sugiyama H, Wing S, et al. Posi-
tive associations between ionizing radiation and
lymphoma mortality among men. Am J Epidemiol
2009;169:969–76.

7. Pahwa M, Beane Freeman LE, Spinelli JJ, et al.
Phylophosphate use and associations with non-
Hodgkin lymphoma major histological sub-types:
findings from the north American pooled project.
Scand J Work Environ Health 2019;45:600–609.

8. Sud A, Chattopadhyay S, Thomsen H, et al. Anal-
ysis of 153,115 patients with hematological malig-
nancies refines the spectrum of familial risk.
Blood 2019;134:960–9.

9. Anderson LA, Gadalla S, Morton LM, et al. Popu-
lation-based study of autoimmune conditions and
the risk of specific lymphoid malignancies. Int J
Cancer 2009;125:398–405.

10. Kristinsson SY, Landgren O, Sjöberg J, et al. Auto-
immunity and risk for Hodgkin’s lymphoma by sub-
type. Haematologica 2009;94:1468–9.

11. Kane E, Painter D, Smith A, et al. The impact of
rheumatological disorders on lymphomas and
myeloma: a report on risk and survival from the
UK’s population-based haematological malig-
nancy research network. Cancer Epidemiol 2019;
59:236–43.

12. O’Byrne JM, Morton LM, Pfeiffer RM, et al. Incr-
ased risk for lymphoid and myeloid neo-
plasms in elderly solid-organ transplant recipients.
Cancer Epidemiol Biomarkers Prev 2010;19:
1229–37.

13. Clarke CA, Morton LM, Lynch C, et al. Risk of
lymphoma subtypes after solid organ transplanta-
tion in the United States. Br J Cancer 2013;109:
280–8.

14. Baeklund E, Smedby KE, Sutton L-A, et al. Lym-
phoma development in patients with autoimmune and
inflammatory disorders—what are the driving
forces? Semin Cancer Biol 2014;24:611–70.

15. Cerhan JR, Kricker A, Palhiel O, et al. Medical his-
tory, lifestyle, family history, and occupational risk
factors for diffuse large B-cell lymphoma: the
InterLymph non-Hodgkin lymphoma subtypes
project. J Natl Cancer Inst Monogr 2014;2014:
15–25.

16. Morton LM, Slager SL, Cerhan JR, et al. Etiologic
heterogeneity among non-Hodgkin lymphoma
subtypes: the InterLymph non-Hodgkin
lymphoma subtypes project. J Natl Cancer Inst
2014;106:1340–44.

17. Hellgren K, Baeklund E, Backlin C, et al. Rheu-
matoid arthritis and risk of malignant lymphoma:
are the risk still increased? Arthritis Rheumatol
(Hoboken, NJ) 2017;69:700–8.

18. Vermeulen R, Hosniëfs JS, Bodinier B, et al. Pre-
diagnostic blood immune markers, incidence and
progression of B-cell lymphoma and multiple
myeloma: Univariate and functionally informed
multivariate analyses. Int J Cancer 2018;143:
1335–47.

19. Bracci PM, Benavente Y, Turner J, et al. Medical
history, lifestyle, family history, and occupational
risk factors for marginal zone lymphoma: the
InterLymph non-Hodgkin lymphoma subtypes
project. J Natl Cancer Inst Monogr 2014;2014:
52–65.

20. Goldin LR, McMasters ML, Caporaso NE. Precur-
sors to lymphoproliferative malignancies. Cancer
Epidemiol Biomarkers Prev 2013;22:533–9.

21. Mouhieddine TH, Weeks LD, Ghobrial IM. Mono-
oclonal gammopathy of undetermined signifi-
cance. Blood 2019;133:2484–94.

22. Strati P, Shanafelt TD. Monoclonal B-cell lymph-
cytosis and early-stage chronic lymphocytic leu-
mia: diagnosis, natural history, and risk strati-
fication. Blood 2015;126:5454–62.

23. Dhodapkar MV. MGUS to myeloma: a mysterious
gammopathy of underexplored significance. Blood
2016;128:2599–606.

24. Rawstron AC. Occult B-cell lymphoproliferative
disorders. Histopathology 2011;58:81–9.

25. International Agency for Research on Cancer, ed.
IARC monographs on the evaluation of carcino-
genic risks to humans, Volume 74: Surgical
implants and other foreign bodies. Lyon: Inter-
ational Agency for Research on Cancer, 1999.

26. Matharu GS, Pandit HG, Murray DW, et al. Ad-
verse reactions to metal debris in patients with
primary total hip replacement compared with non
metal-on-metal hips: a retrospective observational
study of 3340 revisions for adverse reactions to
metal debris from the National Joint Registry for
England, Wales, Northern Ireland and the Isle of Man.
BMC Musculoskelet Disord 2016;17:495.

27. Granchi D, Savarino LM, Ciapetti G, et al. Biolog-
ical effects of metal degradation in hip
arthroplasties. Crit Rev Toxicol 2018;48:170–93.

28. Gillespie WJ, Frampton CM, Henderson RJ, et al.
The incidence of cancer following total hip replace-
ment. J Bone Joint Surg Br 1988;70:539–42.

29. Visuri T, Koskenvuo M. Cancer risk after Mcke-
Farrar total hip replacement. Orthopedics 1991;14:
37–42.

30. Lewold S, Olsson H, Gustafson P, et al. Overall
cancer incidence not increased after prosthetic
knee replacement: 14,551 patients followed for
25 years. Eur J Cancer 2012;48:1061–71.

31. Brewster DH, Stockton DL, Reeke A, et al. Risk of
cancer following total primary hip replacement
or primary resurfacing arthroplasty of the hip: a
retrospective cohort study in Scotland. Br J Cancer
2013;109:1883–90.

32. Smith A, Roman E, Howell D, et al. The Haematological Malignancy Research Network (HMNR): a new information strategy for population epidemiology and health service research. Br J Haematol 2010;148:739–53.

33. Richards SJ, Jack AS. The development of inte-
grated haematopathy laboratories: a new
approach to the diagnosis of leukaemia and lym-
phoma. Clin Lab Haematol 2003;25:337–42.

34. National Joint Registry for England, Wales, North-
ern Ireland and the Isle of Man. 15th annual report.
Surgical data to 31 December 2017. NJR Centre,
Hemel Hempstead, 2018.

35. National Joint Registry for England, Wales,
Northern Ireland and the Isle of Man. Joint
replacement statistics. 2019. Available from:
http://www.njrcentre.org.uk/njrcentre/Patients/
Joint-replacement-statistics. Accessed 3 June 2019.

36. NHS Classifications Service, Department of
Health, Health & Social Care Information Centre.
OPCS classification of interventions and procedures
Version 4.7: Vol 1 & 2. Great Britain: The Statio-
nery Office, 2014.

37. Stata-Corp. Stata Statistical Software: Release 15.
College Station, TX: Stata-Corp, 2017.

38. National Joint Registry for England, Wales,
Northern Ireland and the Isle of Man. Summary of
key facts about joint replacement during the
2017 calendar year. Available from:
http://www.
njrreports.org/Portal0/PDFdownloads/NJR%20
Summary%20Key%20Facts%202017.pdf.

39. Hunt LP, Blom AW, Matharu GS, et al. The risk of
developing cancer following metal-on-metal hip
replacement compared with non metal-on-
metal hip bearings: findings from a prospective
national registry “the National Joint Registry of
England, Wales, Northern Ireland and the Isle of
Man.”, PLoS One 2018;13:e0204356.

40. Levičí V, Milošek I, Zadník V. Risk of cancer
after primary total hip replacement: the influence
of bearings, cementation and the material of the
stem. Acta Orthop 2018;89:234–9.

41. Ekmann E, Laaksonen I, Eiskelmen A, et al. Mid-
term risk of cancer with metal-on-metal hip
replacements not increased in a Finnish popula-
ation. Acta Orthop 2018;89:575–9.
49. Smith AJ, Dieppe P, Porter M, et al. Risk of cancer in first seven years after metal-on-metal hip replacement compared with other bearings and general population: linkage study between the National Joint Registry of England and Wales and Hospital Episode Statistics. *BMJ* 2012;344:e2383.

50. Patel A, Pavlou G, Mújica-Mota RE, et al. The epidemiology of revision total knee and hip arthroplasty in England and Wales; a comparative analysis with projections for the United States. A study using the National Joint Registry dataset. *Bone Joint J* 2015;97-B:1076–81.