Can we measure θ_{23} octant in 3+1 scheme?

Sanjib Kumar Agarwalla1,2,*, Sabya Sachi Chatterjee1,2,1,†, and Antonio Palazzo3,4,‡

1 Institute of Physics, Sachivalaya Marg, Sainik School Post, Bhubaneswar 751005, India
2 Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
3 Dipartimento Interateneo di Fisica “Michelangelo Merlin,” Via Amendola 173, 70126 Bari, Italy
4 Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70126 Bari, Italy

*sanjib@iopb.res.in, †sabya@iopb.res.in, ‡palazzo@ba.infn.it

Abstract. Current 3ν global fits predict two degenerate solutions for θ_{23}: one lies in lower octant ($\theta_{23} < \pi/4$), and the other belongs to higher octant ($\theta_{23} > \pi/4$). Here, we study how the measurement of θ_{23} octant would be affected in the upcoming Deep Underground Neutrino Experiment (DUNE) if there exist a light eV-scale sterile neutrino. We show that in 3+1 scheme, a new interference term in $\nu_{\mu} \rightarrow \nu_e$ oscillation probability can spoil the chances of measuring θ_{23} octant completely.

Keywords: Octant of θ_{23}, sterile neutrino, Long-Baseline experiments

Introduction: The resolution of octant of θ_{23} is one of the fundamental problems in neutrino oscillation. Long-baseline (LBL) experiments can resolve this octant ambiguity of θ_{23} with the help of $\nu_{\mu} \rightarrow \nu_e$ appearance channel, and the vital information coming from $\nu_{\mu} \rightarrow \nu_{\mu}$ disappearance channel also play an important role. Interestingly, at present, there are short-baseline anomalies which hint towards the existence of light eV-scale sterile neutrino. Here, we expound in detail the capability of proposed LBL experiment DUNE to measure θ_{23} octant considering one light eV-scale sterile neutrino along with three active neutrinos.

Theoretical framework: In the 3+1 scheme, a new a mass eigenstate ν_4 appears on top of 3ν framework whose mixing is parametrized as

$$U = R_{34} R_{24} R_{14} R_{23} R_{12},$$ \hspace{1cm} (1)

where R_{ij} (\tilde{R}_{ij}) is a real (complex) rotation in the (i,j) plane. The details of the parametrization of U can be seen in [4].

*Speaker, corresponding author.
†According to the present 3ν best-fit [5], θ_{23} can have two solutions: one < $\pi/4$, labelled as lower octant (LO), and other > $\pi/4$, known as higher octant (HO).
In [4], it was shown that the 4-flavor appearance probability can be approximately expressed as the sum of three terms
\[P_{4\nu}^{\mu e} \simeq P_0 + P_1 + P_2, \]
which in vacuum appears as
\[P_0 \simeq 4 s_{23}^2 s_{13}^2 \sin^2 \Delta, \]
\[P_1 \simeq 8 s_{13} s_{12} c_{12} s_{23} c_{23} (\alpha \Delta) \sin \Delta \cos(\Delta \pm \delta_{13}), \]
\[P_2 \simeq 4 s_{14} s_{24} s_{13} s_{23} \sin \Delta \sin(\Delta \pm \delta_{13} \mp \delta_{14}). \]
where \(\Delta \equiv \Delta m_{31}^2 L/4E \) and \(\alpha \equiv \Delta m_{21}^2/\Delta m_{31}^2 \). In the double sign, the upper (lower) sign corresponds to neutrinos (antineutrinos). The new interference term \(P_2 \) is governed by the interference between the atmospheric frequency and the large frequency related to the new mass eigenstate [4] which gets averaged out by the finite energy resolution of the detector. Recent global fits [5,6,7] suggests \(s_{13} \sim s_{14} \sim s_{24} \sim 0.15 (\sim \epsilon) \) and \(\alpha = 0.03 (\sim \epsilon^2) \) implying \(P_0 \sim \epsilon^2, P_1 \sim \epsilon^3, P_2 \sim \epsilon^3 \). An experiment can measure the octant of \(\theta_{23} \) even in the presence of unknown CP-phases, if there is a difference between the probabilities corresponding to the different octants, i.e.
\[\Delta P \equiv P_{\mu e}^{\text{HO}}(\delta_{13}^{\text{HO}}, \delta_{14}^{\text{HO}}) - P_{\mu e}^{\text{LO}}(\delta_{13}^{\text{LO}}, \delta_{14}^{\text{LO}}) \neq 0, \]
where one of the two octants should be considered to generate data and the other octant should be used to simulate the theoretical model. From the expression of \(P_{4\nu}^{\mu e} \), \(\Delta P \) can be written as,
\[\Delta P = \Delta P_0 + \Delta P_1 + \Delta P_2. \]
\(\Delta P_0 \) is positive-definite. \(\Delta P_1 \) and \(\Delta P_2 \) depends on the CP-phases and can be both positive or negative. These terms can be expressed as
\[\Delta P_0 \simeq 8 \eta s_{13}^2 \sin^2 \Delta, \]
\[\Delta P_1 = 4 s_{13} s_{12} c_{12} (\alpha \Delta) \sin \Delta \left[\cos(\Delta \pm \phi^{\text{HO}}) - \cos(\Delta \pm \phi^{\text{LO}}) \right], \]
\[\Delta P_2 = 2 \sqrt{2} s_{14} s_{24} s_{13} s_{23} \sin \Delta \left[\sin(\Delta \pm \psi^{\text{HO}}) - \sin(\Delta \pm \psi^{\text{LO}}) \right]. \]
In above, \(\phi = \delta_{13} \) and \(\psi = \delta_{13} - \delta_{14} \) with the appropriate superscripts LO or HO. The term \(\eta \) is a positive definite angle and dictates the deviation from maximal mixing as \(\theta_{23} = \frac{\pi}{4} \pm \eta \), where +(-) corresponds to HO (LO). If we need to measure the octant of \(\theta_{23} \), the contribution coming from \(\Delta P_0 \) must not get cancelled completely in cases where the sum of \(\Delta P_1 \) and \(\Delta P_2 \) gives a negative contribution.

Results and discussion: Simulations for DUNE have been performed considering a total 248 kt.MW.yr of exposure, divided equally between \(\nu \) and \(\bar{\nu} \) mode. In fig[1] we show the bi-event plot. The ellipses (colored blobs) correspond to the 3\(\nu \) (3+1 scheme) where, \(\sin^2 \theta_{23} = 0.42 \) (0.58) has been assumed as a benchmark value for the LO (HO). Since mass hierarchy can be measured relatively easily in DUNE, we can only concentrate on one of the two hierarchies,

\[\text{In fig[1] we notice an small overlap between normal hierarchy (NH) and inverted hierarchy (IH) blobs which can be eliminated using the spectral information available in DUNE (see [8]).}\]
Fig. 1: Bi-event plot for DUNE. The ellipses (colored blobs) correspond to the 3ν ($3+1$ scheme). $\sin^2 \theta_{23} = 0.42 (0.58)$ is taken as benchmark value for LO (HO). In cases of ellipses (colored blobs), the running parameter(s) is δ_{13} ($\delta_{13} & \delta_{14}$). In the $3+1$ case, $\theta_{34} = 0^0$ has been assumed. This figure has been taken from [10].

say normal hierarchy. While going from 3ν to $3+1$ scheme, the ellipses becomes blobs because of the convolution of different combinations of $\delta_{13} & \delta_{14}$ (see [8,9]). In this figure, we see a substantial overlap between LO and HO blobs due to the presence of the term ΔP_2, which depends on the new CP-phase δ_{14}. For detailed discussion, see [10].

Fig 2 depicts the discovery reach of θ_{23} octant in $[\sin^2 \theta_{23}, \delta_{13}]$ (true) plane assuming NH as true choice. Left (right) panel shows the results for 3ν ($3+1$) scheme. In 3ν case, a minimum 2σ sensitivity can be achieved if $\sin^2 \theta_{23}$ (true) $<$ 0.47 and $\sin^2 \theta_{23}$ (true) \gtrsim 0.55 irrespective of the choice of δ_{13} (true). But, in $3+1$ case we hardly have any octant sensitivity in the entire $[\sin^2 \theta_{23}, \delta_{13}]$ (true) plane.

Conclusions: In this work, we have studied the impact of a light eV-scale sterile neutrino in measuring the octant of θ_{23} at DUNE. The sensitivity towards θ_{23} octant can be completely lost if there is active-sterile oscillations.

Acknowledgments: S.S.C. would like to thank the organizers of XXII DAE-BRNS HEP Symposium 2016 for giving an opportunity to present this work. S.K.A. is supported by the DST/INSPIRE Research Grant [IFA-PH-12], Department of Science & Technology, India. A.P. is supported by the grant “Future In Research” Beyond three neutrino families, Fondo di Sviluppo e Coesione 2007-2013, APQ Ricerca Regione Puglia, Italy, Programma regionale a sostegno della specializzazione intelligente e della sostenibilità sociale ed ambientale. A.P. acknowledges partial support by the research project TAsP funded by the Instituto Nazionale di Fisica Nucleare (INFN).
Fig. 2: Discovery potential for excluding the wrong octant in $[\sin^2 \theta_{23}, \delta_{13}]$ (true) plane assuming NH as true choice. The left (right) panel corresponds to the 3ν (3+1) case. In 3-flavor scenario, we marginalize over $(\theta_{23}, \delta_{13})$ (test). In 3+1 case, in addition, we marginalize over δ_{14} (true) and δ_{14} (test) fixing $\theta_{14} = \theta_{24} = 90$ and $\theta_{34} = 0$. This figure has been taken from [10].

References

1. G.L. Fogli and E. Lisi: Tests of three flavor mixing in long baseline neutrino oscillation experiments. Phys. Rev. D 54, 3667 (1996) [hep-ph/9604415]
2. Sanjib Kumar Agarwalla, Suprabh Prakash, and S.Uma Sankar: Resolving the octant of θ_{23} with T2K and NOνA. JHEP 1307 (2013) 131 [arXiv: 1301.2574]
3. K.N. Abazajian (UC, Irvine) et al.: Light Sterile Neutrinos: A White Paper. [arXiv: 1204.5379]
4. N. Klop and A. Palazzo: Imprints of CP violation induced by sterile neutrinos in T2K data. Phys. Rev. D91 (2015) no.7, 073017 [arXiv: 1412.7524]
5. F. Capozzi, E. Lisi, A. Marrone, D. Montanino, and A. Palazzo: Neutrino masses and mixings: Status of known and unknown 3ν parameters. Nucl. Phys. B908, 218 (2016) [arXiv: 1601.07777]
6. C. Giunti, M. Laveder, Y.F.Li, and H.W.Long: Pragmatic view of Short-Baseline Neutrino Oscillations. Phys. Rev. D88, 073008 (2013)
7. J. Kopp, P.A.N. Machado, M. Maltoni, and T. Schwetz: Sterile Neutrino Oscillations: The Global Picture. JHEP 1305 (2013) 050
8. Sanjib Kumar Agarwalla, Sabya Sachi Chatterjee and Antonio Palazzo: Physics Reach of DUNE with a Light Sterile Neutrino. JHEP 1609 (2016) 016 [arXiv: 1603.03759]
9. Sanjib Kumar Agarwalla, Sabya Sachi Chatterjee, Arnab Dasgupta and Antonio Palazzo: Discovery Potential of T2K and NOνA in the Presence of a Light Sterile Neutrino. JHEP 1602 (2016) 111 [arXiv: 1601.05995]
10. Sanjib Kumar Agarwalla, Sabya Sachi Chatterjee and Antonio Palazzo: Octant of θ_{23} in danger with a light sterile neutrino. Phys.Rev.Lett. 118 (2017) no.3, 031804 [arXiv: 1605.04299]