NFκB Interacts with Serum Amyloid A3 Enhancer Factor to Synergistically Activate Mouse Serum Amyloid A3 Gene Transcription*

Zhanyong Bing, Jianyi H. Huang, and Warren S.-L. Liao‡

From the Department of Biochemistry and Molecular Biology, Program in Genes and Development, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030

We had previously identified a distal regulatory element (DRE) in the mouse serum amyloid A3 (SAA3) promoter that functions as a cytokine-inducible transcription enhancer. Within this DRE, three functional elements interact with CCAAT/enhancer-binding protein (C/EBP) and SAA3 enhancer factor (SEF) transcription factors. In this study, we show that cotransfection of the SEF expression plasmid with an SAA3/luciferase reporter resulted in 3–5-fold activation of the SAA3 promoter. When SEF-transfected cells were further stimulated with conditioned medium or interleukin-1, SAA3 promoter activity was dramatically increased, suggesting that SEF may cooperate functionally with other interleukin-1-inducible transcription factors to synergistically up-regulate SAA3 gene transcription. Indeed, cotransfection of SEF and NFκBp65 expression DNAs resulted in synergistic activation of the SAA3 promoter. Intriguingly, no consensus NFκB-binding site was found in the SAA3 promoter region; rather a putative NFκB-binding sequence with 3-base pair mismatches was identified in the DRE. When this sequence was used in an electrophoretic mobility shift assay, it interacted with NFκBp50, albeit with binding affinities that were several hundredfold lower than that with the consensus NFκB probe. Functional cooperation between SEF and NFκB was further strengthened by the finding that SEF and NFκB formed stable cytokine-inducible protein–protein complexes. Finally, despite its weak binding, mutation of this NFκB-binding site nevertheless dramatically reduced both NFκBp65- and cytokine-mediated induction of SAA3 promoter. Therefore, the molecular basis for the functional synergy between SEF and NFκB may, in part, be the ability of SEF to recruit NFκB through physical interactions that lead to enhancement or stabilization of NFκB binding to the SAA3 promoter element.

A prominent feature of the systemic response to acute inflammation, infection, and tissue injury is the rapid increase in the concentration of a number of plasma proteins collectively termed the acute phase proteins (1). Acute phase proteins can be divided into two groups. The type I acute phase proteins, such as serum amyloid A (SAA)1, C-reactive protein, and complement C3, are induced by interleukin (IL)-1-like cytokines and can be further induced by IL-6-like cytokines. The type II acute phase proteins, including fibrinogen, haptoglobin, and α2-macroglobulin, are induced primarily by the IL-6-like cytokines (1).

Murine SAA genes belong to a small gene family consisting of four active genes (SAA1, SAA2, SAA3, and SAA5) and a pseudogene (2–4). The plasma concentrations of SAA rise from 0.5 μg/ml to more than 1000 μg/ml 24 h after injection of bacterial lipopolysaccharide (5). This large increase in hepatic SAA synthesis is primarily the consequence of increased transcription of SAA genes (6, 7) mediated by the proinflammatory cytokines IL-1, tumor necrosis factor, and IL-6 (1, 8). This dramatic induction has therefore been used as a model system for studying differential gene expression in response to a specific stimulus.

To dissect the molecular mechanisms of SAA gene regulation, we have studied the promoters of the rat SAA1 (9–13) and mouse SAA3 genes (8, 14–17). Our studies of the rat SAA1 promoter have shown the functional importance and cooperative interaction between NFκB and C/EBP proteins in cytokine-induced expression. Mutation of either transcription factor-binding site completely abolished SAA1 promoter activity. Studies on the mouse SAA3 promoter demonstrated that a 350-bp promoter fragment was necessary and sufficient to confer cytokine responsiveness (15). Two regulatory elements were identified in this 350-bp promoter fragment: a proximal response element that contains two adjacent C/EBP-binding sequences and enhances SAA3 gene expression in liver-derived cells (17) and a distal response element (DRE) that confers responsiveness to cytokine induction and has properties of an inducible transcription enhancer (16). The DRE consists of three functionally distinct elements: the A element, a weak binding site for C/EBP family proteins; the B element, which also interacts with C/EBP family proteins but with a much higher affinity; and the C element, which interacts with a constitutive nucleolar factor termed SAA3 enhancer factor (SEF) (14, 16). Functional analyses revealed that all three elements are required for maximum SAA3 promoter activity (16).

We have recently purified SEF and shown by antibody supershift and amino acid sequence analysis that it is identical to the transcription factor LBP-1c/CP2/LSF (14). LBP-1c/CP2/LSF was initially identified as a cellular factor that binds at multiple sites in the human immunodeficiency virus type I

*This work was supported by National Institutes of Health Grant AR38888 (to W. S.-L. L.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Biology, Box 117, Program in Genes and Development, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030. Fax: 713-791-9478; E-mail: wliao@odin.mdacc.tmc.edu.

1 The abbreviations used are: SAA serum amyloid A; IL, interleukin; bp, base pair(s); DRE, distal response element; C/EBP, CCAAT/enhancer-binding protein; SEF, SAA3 enhancer factor; HIV-1, human immunodeficiency virus type I; EMSA, electrophoretic mobility shift assays; CM, conditioned medium.
(HIV-1) long terminal repeat (18, 19), α-globin promoter (20), and SV40 major late promoter (21). It may function either as a transcription activator or a transcription repressor, depending on the promoter context of the gene it regulates and the transcription factors it interacts with. For example, LBP-1c/CP2/LSF stimulates transcription from the SV40 major late promoter (21, 22), whereas it cooperates with YY1 to repress HIV-1 long terminal repeat activity (22). Furthermore, inducers of cell growth can up-regulate the DNA binding activities of LBP-1c/CP2/LSF in human peripheral T lymphocytes, suggesting that it may participate in the regulation of growth-responsive genes (24). In rut pachychromycoma PC12 cells, LBP-1c/CP2/LSF has been shown to physically interact with neural protein Fe65 (25), but the functional significance of such interaction is yet to be determined.

Binding of IL-1 or tumor necrosis factor to their receptors leads to potent activation of the transcription factors AP-1 and NFκB. Activated NFκB can then rapidly translocate into the nucleus and regulate the transcription of target genes (26, 27), including many effectors of the immune, inflammatory, and the acute phase responses. For example, the proinflammatory cytokines tumor necrosis factors-α and -β and IL-1 are not only potent activators of NFκB but are themselves targets of NFκB regulation (28, 29). Other important genes regulated by NFκB include IL-6, IFN-β, the chemokines IL-8 and Gro, which sum mon cells to sites of inflammation (30, 31), and cell surface adhesion proteins such as endothelial leukocyte adhesion molecule-1, vascular cell adhesion molecule-1 (32–35), and the intercellular cell adhesion molecule-1 (36). Many viruses also use NFκB to regulate their own expression. One example is that the expression of HIV-1 is critically dependent on the tandem NFκB sites in its long terminal repeats (37). In almost all cases, NFκB does not function alone. Instead, NFκB often physically associates with other DNA-binding factors and functions cooperatively to regulate transcription of their target genes.

In this study, we sought the molecular mechanisms by which SEF exerts its effect on SAA3 gene transcription in response to cytokine stimulation. We provide evidence that IL-1-induced activation of SAA3 gene transcription requires cooperative interactions between SEF and NFκB. The molecular basis for such functional synergy may be the ability of SEF to physically interact with NFκB and thus recruit NFκB to the active transcription complex.

EXPERIMENTAL PROCEDURES

Cell Culture and Nuclear Extracts—HepG2 cells were cultured in basal medium consisting of minimum essential medium (Life Technologies, Inc.) and Waymouth MAB (3:1 v/v) plus 10% fetal calf serum (38) and were passaged at confluence, approximately once a week. HepG2 nuclear extracts were prepared essentially as described (39), and as modified by Singh and Aggarwal (40). Briefly, exponentially growing cells were washed twice with ice-cold 1/10 phosphate-buffered saline and then recovered in 1 ml of phosphate-buffered saline. After centrifugation for 30 s in a microcentrifuge, the cells were resuspended in 1.2 ml of lysis buffer (10 mM KCl, 10 mM HEPES, pH 7.9, 0.1 mM EDTA, 0.1 mM EGTA, 1 mM dithiothreitol, 0.2 mM phenylmethylsulfonyl fluoride, 0.4 mM NaVO₄, and protease inhibitor mixture; Roche Molecular Biochemicals) and allowed to swell on ice for 20 min. Then 37.5 μl of 10% Nonidet P-40 was added to the cell suspension, and the mixture was mixed vigorously for 10–15 s and centrifuged for 1 min in a microcentrifuge. The nuclear pellets were resuspended in 20–30 μl of ice-cold extraction buffer (0.4 mM NaCl, 20 mM HEPES, pH 7.9, 1 mM EDTA, 1 mM EGTA, and a mixture of protease and phosphatase inhibitors), and the nuclear proteins were extracted by constant mixing by 4 °C for 30 min. Cell debris was then removed by centrifugation, and the nuclear extracts were either used immediately or stored in small aliquots at −70 °C. The protein concentrations of the nuclear extracts were determined by the Bradford method (41).

Electrophoretic Mobility Shift Assays—32P-Labeled C element (4 × 10⁴ cpm) containing a single SEF-binding site was incubated with recombinant NFκBp50 or purified NFκB at 4 °C for 30 min (16). After incubation, the reaction mixtures were loaded onto a 5% polyacrylamide gel (19:1 cross-linking ratio) in 1× glycine buffer and subjected to electrophoresis at 200 V for 90 min at 4 °C. The gel was dried before autoradiography. For oligonucleotide competition experiments, wild type or mutant oligonucleotides corresponding to LBP-1c- or NFκB-binding sites were used as specific competitors (see Table 1).

Plasmids and Oligonucleotides—A DNA fragment containing 165 bp of the 5′-flanking region and 45 bp of the untranslated exon 1 region of mouse SAA3 promoter was inserted into the Smal site of the pGL2-Basic vector (Promega) to generate the pSAA3/Luc(−165). Two mutant constructs, pSAA3/Luc(−165)_mutA and pSAA3/Luc(−165)_mutB, with point mutations in the SEF- and NFκB-binding sites, respectively, were generated by site-directed mutagenesis (Stratagene) with primers that contain mismatches to alter specific nucleotides. The primers with the mutated nucleotides shown in lowercase letters are as follows: mSEF(+), 5′-CTGGCCACATTTTGGAATTCC-3′; mNFκB(+), 5′-GCAGCAATTTGGAAATGC-3′; mNFκB(−), 5′-CCAGATGCGGCATCTTCAAGAATGTCATAGTGGCC-3′; mSEF(−) plus point mutations in the SEF- and NFκB-binding sites, respectively, were generated by site-directed mutagenesis. SEF often fused in frame at the N terminus of SEF cDNA. All constructs were verified by DNA sequencing.

Experimental Procedure—Conditioned medium (CM) was prepared from mixed lymphocyte cultures as described (43). Human peripheral blood mononuclear cells were isolated from multiple healthy donors by centrifugation through Ficoll-Hypaque (density, 1.077 g/cm³) (Life Technologies, Inc.) for 30 min at 680 × g. Isolated cells were washed twice with RPMI 1640 and then cultured at 106 cells/ml of RPMI 1640 supplemented with 0.25% bovine serum albumin and 10 μg/ml phytohemagglutinin (Life Technologies, Inc.). After incubation at 37 °C for 72 h, the CM was separated from the cells by centrifugation and filtration and then stored at −20 °C until use.

Transient Transfection Assay—HepG2 cells (5 × 10⁴) were seeded in 2 ml of culture medium. After overnight incubation, cells were transfected with the indicated plasmid DNAs according to the FuGENE procedure (Roche Molecular Biochemicals). All plasmids used in the transient transfections were prepared by either Cfel digestion or reverse transcription-polymerase chain reaction using total HepG2 RNA as a template. The SEF CDNA was inserted into the Xhol site of a pc2S+MT vector (42), which contains six copies of the Myc epitope fused in frame at the N terminus of SEF cDNA. All constructs were verified by DNA sequencing.

Conditioned Medium Preparation—Conditioned medium (CM) was prepared from mixed lymphocyte cultures as described (43). Human peripheral blood mononuclear cells were isolated from multiple healthy donors by centrifugation through Ficoll-Hypaque (density, 1.077 g/cm³) (Life Technologies, Inc.) for 30 min at 680 × g. Isolated cells were washed twice with RPMI 1640 and then cultured at 106 cells/ml of RPMI 1640 supplemented with 0.25% bovine serum albumin and 10 μg/ml phytohemagglutinin (Life Technologies, Inc.). After incubation at 37 °C for 72 h, the CM was separated from the cells by centrifugation and filtration and then stored at −20 °C until use.

Comunpreparation and Western Blot Analysis—HepG2 nuclear extracts (approximately 500 μg) were preabsorbed with protein A-agarose-coupled beads (Santa Cruz) for 1 h at 4 °C. The preabsorbed beads were then pelleted and discarded. Anti-SEF antibody (−5 μl) was then added to the supernatant and allowed to incubate with the nuclear extract for 2 h at 4 °C. Protein A-agarose-coupled beads were then added to the reaction mixture and incubated for another hour at 4 °C. The beads were pelleted and washed three times with 1× phosphate-buffered saline. Immunoprecipitated proteins were then boiled in sample buffer and loaded onto a 7.5 SDS-polyacrylamide gel. After electrophoresis, the proteins were electroblotted onto polyvinylidene difluoride membranes, and specific proteins were detected in TBST solution (10 mM Tris-HCl, pH 7.5, 250 mM NaCl, and 0.05% Tween 20) containing 2% nonfat dry milk with specific anti-NFκBp65 (1:5000) (Santa Cruz) or anti-SEF (1:1000) antibodies. Positions of NFκBp65 and SEF were visualized with peroxidase-coupled second antibody by the ECL detection system (Amersham Pharmacia Biotech). For reprobing, membranes were stripped in 62 mM Tris-HCl, pH 6.8, 2% SDS, and 100 mM β-mercaptoethanol at 65 °C for 45 min.

RESULTS

Identical DNA Binding Specificity between SEF and LBP-1c/CP2/LSF—Our earlier protein sequencing and antibody
proximately 16-fold. Expression of SEF together with C/EBP individually or in combination. As shown in Fig. 1d, into HepG2 cells with SEF and C/EBP expression. pSAA3/Luc(2)

Experimental reporter gene. pSAA3/Luc(2)

The lowercase characters indicate the substituted bases.

Supershift experiments strongly suggested that SEF is identical to or highly related to the transcription factor LBP-1c/CP2/LSF (14). To further examine whether SEF has the same DNA sequence binding specificities as those of LBP-1c/CP2/LSF, oligonucleotides corresponding to the known LBP-1c/CP2/LSF-binding sites were synthesized (Table I) and used as specific competitors in EMSA to inhibit SEF-DNA complex formation. As shown in Fig. 1A, the wild-type LBP-1c/CP2/LSF-binding sequences from the promoters of α-globin, SV40, and HIV specifically inhibited SEF-DNA complex formation (lanes 3-5), whereas a mutated binding region from the HIV promoter was ineffective as a competitor (lane 6). As expected, wild-type but not mutant SEF-binding sequences specifically competed for complex formation (lanes 7 and 8). Their identical DNA sequence binding specificities further support our conclusion that SEF is identical to LBP-1c/CP2/LSF.

SEF Enhances CM- and IL-1-induced SAA3 Promoter Activity—To investigate the role of SEF in SAA3 gene transcription, the pSAA3/Luc(−165) reporter gene was transfected into HepG2 cells with increasing amounts of SEF expression plasmid. Overexpression of SEF activated SAA3 reporter gene expression in a dose-dependent manner, albeit only 3-5-fold. Intriguingly, stimulation of SEF-transfected cells with CM or IL-1 resulted in dramatic synergistic activation of reporter gene expression. In the absence of cotransfected SEF, CM, and IL-1 induced reporter gene activities by approximately 25- and 10-fold, respectively (Fig. 1B). In SEF-transfected cells, cytokine-induced reporter gene expression was even greater. At 1.0 μg of SEF expression plasmid DNA, CM and IL-1 induced the pSAA3/Luc(−165) reporter gene by more than 80- and 25-fold, respectively. These results indicate that SEF plays an important role in the transcription of SAA3 promoter. More importantly, it suggests that SEF may cooperate with other cytokine-inducible transcription factors to confer synergistic activation on the SAA3 gene promoter.

Overexpression of C/EBPβ with SEF Cannot Confer Synergistic Activation of the SAA3 Gene Promoter—We had previously shown that the C/EBP family of transcription factors, C/EBPα, β, and δ, play a central role in SAA3 gene transcription (16). Although all can induce pSAA3/CAT reporter gene expression, C/EBPδ was the most potent transactivator. Because C/EBPδ is also induced by IL-1 (44), we tested whether C/EBPδ could be the transcription factor that cooperates with SEF and accounts for the synergistic activation of reporter gene expression. pSAA3/Luc(−165) reporter gene was transfected into HepG2 cells with SEF and C/EBPδ expression plasmids, individually or in combination. As shown in Fig. 1C, overexpression of C/EBPδ alone induced the SAA3 promoter by approximately 16-fold. Expression of SEF together with C/EBPδ, however, resulted in additive rather than synergistic activation of reporter gene activity. These results therefore suggest that C/EBPδ may not be the IL-1-induced transcription factor that cooperates with SEF to confer the observed synergistic activation of the SAA3 reporter gene.

NFκB Participates in the Cytokine-mediated Induction of SAA3 Promoter—In addition to activating the C/EBP family of transcription factors, IL-1 is also a potent activator of AP-1 and NFκB (26, 27). Because NFκB has been shown to play a critical role in the regulation of human and rat SAA1 genes as well as the expression of other acute phase genes, we sought to examine whether it might also participate in regulating the SAA3 promoter. To test this possibility, we transfected pSAA3/Luc(−165) reporter DNA into HepG2 cells with the expression

Table I

Oligonucleotide	Sequence*
SAA3-C element	5’-CGATGCACTTTATGGAAATGCTAGAT-3’
SAA3-mC	5’-CGATGCACTTTATCCTATATGCTAGAT-3’
α-Globin	5’-GCGAGCAAGCAGAACGACGACA-3’
SV40 (LSF-280)	5’-ACACCTGGTTCITCTGCCGCTCAGA-3’
HIV-S1W	5’-GTACGTGGTGCTTCTGCTTCTAG-3’
HIV-Stm	5’-GTACGTGGTGCTTCTGCTTCTAG-3’

*The underlined sequences represent the half-sites of the putative SEF-binding sequences. The lowercase characters indicate the substituted bases.
NFκB mediates cytokine-dependent activation of SAA3 promoter. A. NFκB transactivates the SAA3 promoter. pSAA3/Luc(−165) reporter gene was cotransfected into HepG2 cells with indicated amounts of vector DNA, NFκBp65 or NFκBp50 expression DNAs. B. IκBα effectively inhibits cytokine-mediated induction of SAA3 reporter gene. Cells were transfected with SAA3 reporter gene together with indicated combinations of NFκBp65, C/EBPα, or IκBα expression vectors. Transfected cells were stimulated with CM or IL-1 approximately 16 h later. Results were normalized to the activities of the cells transfected with the reporter gene alone, to which a value of 1.0 was assigned.

We had shown previously that deletion of the DRE from the SAA3 promoter completely abolished its cytokine responsiveness (16). To determine whether the DRE might also be necessary for NFκB-mediated activation of the SAA3 promoter, two 5’ deletion mutants of SAA3 promoter constructs were transfected into HepG2 cells with either NFκBp65 expression DNA or vector control. The cells that were cotransfected with the vector control were then either treated with control medium or with CM for 16 h before being harvested to assay for reporter gene activities. The reporter gene constructs used were pSAA3/Luc(−165), pSAA3/Luc(−93), pSAA3/Luc(−63), pSAA3/Luc(DRE-93), and pSAA3/Luc(DRE-63). Results were normalized to the activities of the cells transfected with pSAA3/Luc(−165), to which a value of 1.0 was assigned. B. DRE confers NFκB responsiveness onto a heterologous promoter. HepG2 cells were transfected with pSV1(DRE) alone or with combinations of NFκBp65 and IκBα expression plasmids as indicated. Some transfected cells were treated with basal medium or with IL-1. Results were normalized to the activities of the control cells, to which a value of 1.0 was assigned.

NFκB Mediates the Induction of the SAA3 Promoter through DRE—We had shown previously that deletion of the DRE region from the SAA3 promoter completely abolished its cytokine responsiveness (16). To determine whether the DRE might also be necessary for NFκB-mediated activation of the SAA3 promoter, two 5’ deletion constructs (pSAA3/Luc(−93) and pSAA3/Luc(−63)) and two internal deletion constructs (pSAA3/Luc[DRE-93] and pSAA3/Luc[DRE-63]) of the SAA3 promoter were tested for their responsiveness to transactivation by cotransfected NFκBp65 and to CM stimulation. As expected, the wild-type pSAA3/Luc(−165) reporter was highly responsive to CM stimulation and to transactivation by NFκBp65 (Fig. 3A). However, deletions to positions bp −93 and −63 rendered the promoters completely nonresponsive to both inducing agents. Insertion of the 66-bp DRE sequences in front of these two 5’ deletion constructs restored their responsiveness to NFκB and CM, suggesting that transactivation of the SAA3 promoter by NFκB is mediated through the DRE. To further examine whether DRE was responsible for NFκB-mediated transactivation, we inserted one copy of the DRE se-
sequence in front of a minimal SV40 promoter to create the heterologous promoter construct, pSV1(DRE). When transfected into HepG2 cells, pSV1(DRE) could be induced by IL-1 and by the cotransfected NFκBp65 (Fig. 3B). Consistent with the results obtained with the SAA3 promoter constructs, introduction of IxB also inhibited the responsiveness of the pSV1(DRE) construct to IL-1 and NFκBp65. These results therefore strongly implicate the DRE region of the SAA3 promoter as the central regulatory region that confers NFκB-mediated transactivation.

A Nonconsensus NFκB-binding Site in the C Element Is Required for NFκB-dependent Transactivation—Transcription factors usually exert their effects on gene transcription by binding to the promoter or enhancer regions of their target genes. As DRE conferred NFκB-dependent activation of the SAA3 promoter, we searched the DRE sequence for potential NFκB-binding sites(s). One such site was found within the C element of the DRE; however, it contained three mismatched nucleotides when compared with the consensus NFκB-binding sequence (Fig. 4A). To determine whether this putative NFκB-binding sequence could function as a binding site for NFκB, we incubated 32P-labeled C element with recombinant NFκBp50, and the NFκBp50-C element complexes formed were analyzed by EMSA. For comparison, a consensus NFκB-binding sequence was also radioactively labeled and used in EMSA with NFκBp50. When the consensus NFκB-binding sequence was incubated with NFκBp50, as little as 5 ng of NFκBp50 was sufficient to form a strong DNA-protein complex. In sharp contrast, NFκBp50 binding to the C element was barely detectable even when incubated with 30 ng of the recombinant protein (Fig. 4B). Nevertheless, after longer (3 days) exposure, a weak protein-DNA complex was detected. Furthermore, formation of this protein-DNA complex could be inhibited by the wild-type NFκB-binding consensus oligonucleotides but not by mutant oligonucleotides, indicating that NFκBp50 can specifically interact with the C element despite its low affinity. When compared with that of the consensus sequence, interaction between NFκB and the C element was estimated to be several hundredfold weaker.

Such a weak NFκB-binding site in the DRE was somewhat surprising because, as shown earlier in our cotransfection experiments, NFκB is in fact a very potent transactivator on the SAA3 promoter. To determine whether this weak binding site is functionally important, a mutant reporter gene construct was generated in which the NFκB-binding site was mutated. Because this NFκB-binding site overlapped with that of SEF within the C element (Fig. 4A), we introduced a 2-bp mutation so that it affected only NFκB binding but not SEF binding, as determined by EMSA (data not shown). The resulting construct, pSAA3/Luc(−165)mNFκB, was transfected into HepG2. As shown in Fig. 4C, mutation of this weak NFκB-binding site in the DRE rendered the pSAA3/Luc(−165)mNFκB reporter nonresponsive to transactivation by the cotransfected NFκBp65. Similarly, this mutant construct was also nonresponsive to CM and IL-1 stimulation (Fig. 4D). Taken together, these results strongly indicate that NFκB can bind, albeit very weakly, to a nonconsensus NFκB-binding site in the DRE and that this weak NFκB-binding site is nevertheless functionally important for NFκB- and cytokine-mediated activation of the SAA3 promoter.

Functional Cooperation and Cytokine-induced Association between NFκB and SEF—We showed earlier that SEF dramatically enhanced the CM- and IL-1-mediated induction of an SAA3 reporter gene (Fig. 1B), suggesting that SEF may functionally cooperate with one or more IL-1-inducible transcription factors to synergistically activate the SAA3 promoter. Further, we provided evidence that NFκB plays a key role in mediating the effects of IL-1 (Fig. 2). We therefore investigated whether SEF and NFκB can function cooperatively to activate the SAA3 promoter. Wild-type pSAA3/Luc(−165) reporter gene
was transfected into HepG2 cells with SEF- or NFκB expression plasmids, individually or together. As shown in Fig. 5, cotransfection of the reporter gene with SEF- or NFκB expression DNAs increased the reporter gene activity by approximately 5- and 14-fold, respectively. However, when these two expression vectors were transfected together, the luciferase activity was increased by more than 40-fold, indicating transcriptional synergy between SEF and NFκB. Because of the overlapping nature of their binding sites and their functional cooperation in SAA3 promoter activation, we investigated whether SEF and NFκB in fact physically interact with each other and thus provide an underlying molecular basis for their synergistic activation. Exponentially growing HepG2 cells were serum-starved for 16 h before they were stimulated with either IL-1 or CM for various time periods. After stimulation, cells were harvested and nuclear extracts were prepared and incubated with anti-SEF antibody to immunoprecipitate SEF and its associated proteins. The presence of NFκB in the immune complexes was then determined by Western blotting with anti-p65 antibodies. As shown in Fig. 6, in untreated HepG2 cells, a low level of NFκB was detected in the anti-SEF immunoprecipitates. However, within 5 min of IL-1 or CM stimulation, the amount of NFκB in the immunoprecipitates was increased substantially. The levels of NFκB in the immunoprecipitates were maintained at elevated levels even at 60 min after stimulation (Fig. 6). When these samples were probed with anti-SEF antibodies, the amount of SEF detected in each lane was approximately the same, indicating that differences in the levels of NFκB were not due to unequal loading or uneven immunoprecipitation with anti-SEF. To further demonstrate the specificity of the coimmunoprecipitation procedure, we used preimmune serum in the immunoprecipitation reactions and were not able to detect any NFκB (data not shown). These data therefore indicate that SEF can form protein-protein complexes, directly or indirectly, with NFκB. Further, CM and IL-1 stimulation increases their association with a rapid kinetics. Thus, the transcriptional synergy between SEF and NFκB may be facilitated through their physical interactions.

SEF-binding Site Is Critical for Cytokine-mediated Induction of SAA3 Promoter—To assess its functional importance in conferring the cytokine response, we constructed a reporter gene in which the SEF-binding site was specifically mutated. The resulting construct pSAA3/Luc(−165)mSEF was then assayed for its responsiveness to cytokine stimulation. As shown in Fig. 7, the wild-type pSAA3/Luc(−165) construct showed an approximately 25- and 10-fold increase in luciferase activity when stimulated by CM and IL-1, respectively. In sharp contrast, the pSAA3/Luc(−165)mSEF construct was nonresponsive to cytokine stimulation. This result clearly demonstrates that SEF and its binding site play an important role in conferring maximum cytokine response on the SAA3 promoter.

DISCUSSION

We sought a molecular mechanism for cytokine-induced mouse SAA3 gene expression following acute inflammation or tissue damage by analyzing its regulatory elements in the 5′ promoter regions and their interacting transcription factors. Our earlier studies identified a 66-bp DRE region that could confer cytokine responsiveness and had properties of an inducible transcriptional enhancer. Within the DRE, three functionally distinct regions, referred to as the A, B, and C elements, proved important for SAA3 promoter function. The A element, a weak C/EBP-binding site, appeared to affect the magnitude of SAA3 expression but not its responsiveness to cytokine stimulation. On the other hand, the B element, identified as a strong C/EBP-binding site, was crucial for the basal and cytokine-induced activities of the SAA3 promoter. The C element, which interacts with the constitutive transcription factor SEF, was important for both basal and cytokine-induced activation of SAA3 promoter (16).

In the present study, we analyzed further the function of SEF in SAA3 gene regulation. Surprisingly, whereas SEF by itself can only moderately activate the SAA3/Luc reporter, stimulation of SEF-transfected cells with IL-1 or CM resulted in dramatic synergistic activation of the reporter gene. We interpreted this result as a strong suggestion that SEF cooperates functionally with one or more cytokine-activated transcription factors to up-regulate SAA3 gene transcription. We had previously shown that C/EBPα, an IL-1-inducible transcription factor, could transactivate the SAA3 promoter through the DRE. We therefore tested for functional coopera-
Functional Cooperation between SEF and NFkB

DNA binding or alter sequence specificity of binding. For example, sequence-specific binding of the homeodomain proteins Ubx, Hox, and Ptz-F1 depends on their stable interactions with other sequence-specific transcription factors (61–63). Because the NFkB site in the C element is estimated to be several hundred weaker than that of the consensus NFkB-binding sequence, it raises an intriguing possibility that SEF may participate to stabilize or enhance NFkB binding to this site. Thus, the striking functional synergy between SEF and NFkB may be facilitated by their ability to physically interact with each other and perhaps the ability of SEF to enhance or stabilize NFkB binding to its weak binding site in the DRE. It is interesting to note that in the regulatory regions of both SV40 and HIV-I, binding sites for SEF and NFkB have been described. Although it is not known whether these two factors also function cooperatively to regulate the expression of viral genes, it would be tempting to speculate that SEF may enhance the function of NFkB and thus contribute to the expression of viral genes.

Acknowledgment—We thank Karen Hensley for expert assistance with the figures.

REFERENCES

1. Baumann, H., and Gauldie, J. (1994) ImmunoL Today 15, 74–80
2. de Beer, M. C., Beach, C. M., Shedlofsky, S. I., and de Beer, F. C. (1991) Biochem. J. 260, 45–49
3. Lowell, C. A., Poter, D. A., Stearns, R. S., and Morrow, J. F. (1986) J. Biol. Chem. 261, 848–852
4. Stearns, R. S., Lowell, C. A., Peltzman, C. G., and Morrow, J. F. (1986) Nucleic Acids Res. 14, 797–809
5. Hoffman, J. S., and Benditt, E. P. (1982) J. Biol. Chem. 257, 10510–10517
6. Lowell, C. A., Stearns, R. S., and Morrow, J. F. (1986) J. Biol. Chem. 261, 8453–8461
7. Morrow, J. F., Stearns, R. S., Peltzman, C. G., and Potter, D. A. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 4718–4722
8. Huang, J. H., and Liao, W. S. (1995) J. Interferon. Cytokine. Res. 19, 1403–1411
9. Li, X. X., and Liao, W. S. (1991) J. Biol. Chem. 266, 15192–15201
10. Li, X. X., and Liao, W. S. (1992) Nucleic Acids Res. 20, 4765–4772
11. Li, L., and Liao, W. S. (1999) Biochem. Biophys. Res. Commun. 264, 395–403
12. Lu, S. Y., Rodriguez, M., and Liao, W. S. (1994) Mol. Cell. Biol. 14, 6253–6263
13. Ren, Y., Reddy, S. A., and Liao, W. S. (1999) J. Biol. Chem. 274, 37154–37160
14. Bing, Z., Reddy, S. A., Ren, Y., Qin, J., and Liao, W. S. (1999) J. Biol. Chem. 274, 24649–24656
15. Huang, J. H., Rienhoff, H. H., Jr., and Liao, W. S. (1990) Mol. Cell. Biol. 10, 3619–3625
16. Huang, J. H., and Liao, W. S. (1994) Mol. Cell. Biol. 14, 4475–4484
17. Li, X. X., Huang, J. H., Rienhoff, H. H., Jr., and Liao, W. S. (1999) Mol. Cell. Biol. 19, 6624–6631
18. Malin, M. H., Fenrick, R., Ballard, D. W., Hauber, J., Bohlein, E., and Callen, B. R. (1989) J. Virol. 63, 3213–3219
19. Wu, F. K., Garcia, J. A., Harrich, D., and Gaynor, R. B. (1988) EMBO J. 7, 1801–1807
20. Lima, L., Swendsen, S. L., and Sheffer, M. (1992) Mol. Cell. Biol. 12, 828–835
21. Huang, H. C., Sundseth, R., and Hansen, U. (1996) Genes Dev. 4, 287–298
22. Sundeeth, B., and Hansen, U. (1992) J. Biol. Chem. 267, 7665–7675
23. Romero, F., Gabriel, M. N., and Margolis, D. M. (1997) J. Virol. 71, 9375–9382
24. Volker, J. L., Rameh, L. E., Zhu, Q., DeCaprio, J., and Hansen, U. (1997) J. Virol. 71, 1435–1446
25. Zambrano, N., Monopoli, G., de Candia, P., and Ruso, T. (1998) J. Biol. Chem. 273, 20128–20133
26. Dinarello, C. A. (1986) Blood 66, 2097–2147
27. Kishimoto, T., Tanaka, T., and Akira, S. (1997) Cell 76, 253–262
28. Messer, G., Weiss, E. H., and Baueerle, P. A. (1990) Cytokine 2, 389–397
29. Hiscott, J., Marois, J., Garoufalis, I., D’Addario, M., Roulston, A., Kwan, L., Pepin, N., Lacoste, J., Thuyen, H., Bensi, G., and Penton, F. (1993) Mol. Cell. Biol. 13, 6231–6240
30. Grilli, M., Chiu, J. J., and Lenardo, M. J. (1993) Int. Rev. Cytol. 143, 1–62
31. Joshi-Varve, S. S., Rangnekar, V. V., Sells, S. F., and Rangnekar, V. M. (1993) J. Biol. Chem. 268, 18018–18029
32. Collins, T., Read, M. A., Neish, A. S., Whitley, M. Z., Thanos, D., and Maniatis, T. (1995) FASEB J. 9, 899–909
33. Kannohska, W., Hooft van Huijsduijnen, R., Ghersa, P., DeRaemy-Schenk, A. M., Chen, B. P., Hai, D., Delamarter, J. P., and Whelan, J. (1993) Mol. Cell. Biol. 13, 7180–7190
34. Neish, A. S., Read, M. A., Thanos, D., Pine, R., Maniatis, T., and Collins, T. (1995) Mol. Cell. Biol. 15, 2558–2569
35. Shu, H. B., Agranoff, A. B., Nabel, G. J., Leung, K., Duckett, C. S., Neish, A. S., Collins, T., and Nabel, G. J. (1993) Mol. Cell. Biol. 13, 6283–6288
36. Audijdt, F., Bose, M., Stratowa, C., Voraberger, G., and Auletta, M. (1994) Int. J. Cancer 58, 543–549
37. Nabel, G., and Baltimore, D. (1987) Nature 326, 711–713
38. Darlington, G. J., Wilson, D. R., and Lachman, L. B. (1986) J. Cell. Biol. 103,
39. Schreiber, E., Matthias, P., Muller, M. M., and Schaffner, W. (1989) *Nucleic Acids Res.*, 17, 6419
40. Singh, B., and Aggarwal, B. B. (1995) *J. Biol. Chem.* 270, 24995–25000
41. Bradford, M. M. (1976) *Anal. Biochem.* 72, 248–254
42. Roth, M. B., Zehler, A. M., and Stolk, J. A. (1991) *J. Cell Biol.* 115, 587–596
43. Meisel, A. L., Mehta, S. R., Hauf, S., Franzini, D., Lachman, L. B., and Ford, R. J. (1981) *J. Immunol.* 127, 1058–1064
44. Akira, S., and Kishimoto, T. (1997) *Adv. Immunol.* 65, 1–46
45. Stein, B., Baldwin, A. S., Jr., Ballard, D. W., Greene, W. C., Angel, P., and Herrlich, P. (1993) *EMBO J.* 12, 3879–3891
46. Perkins, N. D., Edwards, N. L., Dunkett, C. S., Agranoff, A. B., Schmid, R. M., and Nabel, G. J. (1993) *EMBO J.* 12, 3551–3558
47. Perkins, N. D., Agranoff, A. B., Pascal, E., and Nabel, G. J. (1994) *Mol. Cell. Biol.* 14, 6570–6583
48. Russo, M. R., Chen, X., Ambrosino, C., Dragonetti, E., Liu, W., Mallardo, M., De Falco, G., Palmieri, C., Franzoso, G., Quinto, I., Venuta, S., and Seela, G. (1996) *J. Biol. Chem.* 271, 22479–22486
49. Stein, B., Cogswell, P. C., and Baldwin, A. S., Jr. (1993) *Mol. Cell. Biol.* 13, 3964–3974
50. LeClair, K. P., Blanar, M. A., and Sharp, P. A. (1992) *Proc. Natl. Acad. Sci. U. S. A.* 89, 8145–8149
51. Franzoso, G., Carlson, L., Brown, K., Daucher, M. B., Bressler, P., and Siebenlist, U. (1996) *EMBO J.* 15, 3403–3412
52. Shen, C. H., and Stavnezer, J. (1998) *Mol. Cell. Biol.* 18(6), 3395–3404
53. Schmitz, M. L., Stelzer, G., Altman, H., Meisterernst, M., and Baeuerle, P. A. (1995) *J. Biol. Chem.* 270, 7219–7226
54. Thanos, D., and Maniatis, T. (1992) *Cell* 71, 777–789
55. Thanos, D., and Maniatis, T. (1995) *Cell* 83, 1091–1100
56. Yie, J., Liang, S., Merika, M., and Thanos, D. (1997) *Mol. Cell. Biol.* 17, 3649–3662
57. Caldenhoven, E., Liden, J., Wissink, S., Van de Stolpe, A., Raaijmakers, J., Koenderman, L., Okret, S., Gustafsson, J. A., and Van der Saag, P. T. (1995) *Mol. Endocrinol.* 9, 401–412
58. De Bosscher, K., Schmitz, M. L., Vanden Berghe, W., Plaisance, S., Fiers, W., and Haegeman, G. (1997) *Proc. Natl. Acad. Sci. U. S. A.* 94, 13504–13509
59. Ray, A., and Prefontaine, K. E. (1994) *Proc. Natl. Acad. Sci. U. S. A.* 91, 782–786
60. Scheinman, R. I., Gualberto, A., Jewell, C. M., Cidlowski, J. A., and Baldwin, A. S., Jr. (1995) *Mol. Cell. Biol.* 15, 943–953
61. Chan, S. K., Jaffe, L., Capovilla, M., Botas, J., and Mann, R. S. (1994) *Cell* 78, 603–615
62. van Dijk, M. A., Peltenburg, L. T., and Murre, C. (1995) *Mech. Dev.* 52, 99–108
63. Yu, Y., Li, W., Su, K., Yussa, M., Han, W., Perrimon, N., and Pick, L. (1997) *Nature* 385, 552–555