Hyperhomocysteinemia and Ischemic Stroke: A Potential Dose-Response Association—A Systematic Review and Meta-analysis

Marte Holmen1 Anne-Mette Hvas1,2 Johan F. H. Arendt1, 2

1 Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus, Denmark
2 Department of Clinical Medicine, Aarhus University, Aarhus, Denmark

TH Open 2021;5:e420–e437.

Address for correspondence Anne-Mette Hvas, PhD, Department of Clinical Biochemistry, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus North, DK-8200, Denmark (e-mail: anne-mette.hvas@clin.au.dk).

Introduction

The comprehension that elevated homocysteine (Hcy) in plasma might predispose to arterial or venous thromboembolism emerged more than 40 years ago, when patients with homocysteinuria were observed to have a high risk of early vascular disease.1 This led to extensive research regarding the role of Hcy in cardiovascular

Abstract

Background and Purpose Previous studies suggest an association between increased homocysteine (Hcy) and risk of ischemic stroke. Yet, it remains unknown whether a dose-response association exists between Hcy levels and risk of ischemic stroke.

Methods Systematic literature searches were performed in PubMed, Embase, Scopus, and Web of Science. Inclusion criteria were studies investigating ischemic stroke risk in an adult population with measured Hcy levels. We computed odds ratios (ORs) for a 5 µmol/L increase in Hcy levels using a random effects meta-analysis.

Results In total, 108 studies met the inclusion criteria of which 22 were rated as high-quality studies, and 20 studies included a dose-response analysis. Hcy levels were analyzed either as a continuous or categorical variable. The majority of the studies found an increased risk of ischemic stroke when comparing the highest-to-lowest Hcy strata. A graded association was observed over the Hcy strata, indicating a dose-response association, with the most apparent effect when Hcy levels exceeded approximately 15 µmol/L. No studies explored a potential nonlinear association between Hcy levels and ischemic stroke. Six studies were included in a meta-analysis, showing an OR of 1.43 (95% confidence interval [CI]: 1.28–1.61) per 5 µmol/L increase in Hcy levels.

Conclusion This review and meta-analysis indicate a dose-response association between Hcy levels and ischemic stroke. An evident increase in effect measures was observed when Hcy levels exceeded 15 µmol/L, indicating a nonlinear association between ischemic stroke and Hcy levels. This nonlinear association warrants further study.

This study is registered with clinical trial (https://www.crd.york.ac.uk/prospero/; unique identifier: CRD42019130371).

Keywords
► stroke/prevention
► cerebrovascular disease
► homocysteine
► meta-analysis

Introduction

The comprehension that elevated homocysteine (Hcy) in plasma might predispose to arterial or venous thromboembolism emerged more than 40 years ago, when patients with homocysteinuria were observed to have a high risk of early vascular disease.1 This led to extensive research regarding the role of Hcy in cardiovascular

received May 7, 2021
accepted after revision July 19, 2021
DOI https://doi.org/10.1055/s-0041-1735978.
ISSN 2512-9465.
disease (CVD) and whether elevated Hcy is a modifiable risk factor.

Elevation of Hcy levels may be caused by several factors, including deficiency of vitamin B6, folate, and/or vitamin B12, due to insufficient intake or absorption, renal insufficiency, several drugs, lifestyle factors, such as smoking and alcohol intake, or genetic factors. Among fasting individuals, normal Hcy levels commonly range from 5 to 15 µmol/L. Animal studies have demonstrated that elevated Hcy levels leads to complex changes within the blood vessel wall, with increased oxidative stress, proinflammatory effects, and endothelial dysfunction, indicating that an association between increased Hcy and CVD is biologically plausible. Several studies have investigated the potential association between elevated Hcy concentration and risk of CVD, including stroke, but results are inconsistent.

The Norwegian Vitamin Trial indicated that treatment with folic acid and vitamin B combination therapy effectively lowered Hcy levels by 28%, but no effect was found on the incidence of ischemic stroke. The Vitamin Intervention for Stroke Prevention trial demonstrated similar results, with no significant reduction in the risk of stroke among patients treated with B-vitamin combinations. In contrast, the China Stroke Primary Prevention Trial reported a 24% risk reduction for ischemic stroke in the group that received folic acid treatment. While a Cochrane review from 2017 found a small reduction in risk of stroke in patients treated with B12, folate and B6 vitamins compared with patients receiving placebo.

Systematic reviews of observational studies have reported a dose-response related association between Hcy levels and the risk of stroke, independent of other cardiovascular risk factors. The most recent literature investigating the dose-response relationship between stroke and Hcy levels was performed in 2002; however, this review did not differentiate between ischemic stroke and hemorrhagic stroke. Therefore, we performed a systematic review and meta-analysis to assess the dose-response association between Hcy levels and the risk of ischemic stroke.

Methods

The present systematic review and meta-analysis was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The protocol was published in the Prospero database (ID: CRD42019130371).

Literature Search

Searches in PubMed, Embase, Scopus, and Web of Science were performed on May 8, 2020. Where possible, filters were applied to remove nonhuman studies, and non-English language publications. No limits were set with regard to publication year. Free-text and the Medical Subject Headings (MeSH) terms or Emtree-preferred terms were used. Search combinations included terms related to the following search categories: Hcy, thromboembolism, biomarker, and adult human population. The complete search combinations used in PubMed is provided hereinafter. Similar search combinations were used for searches in the remaining three databases.

PubMed

Search ((((“Homocysteine”[Mesh] OR “Hyperhomocysteinemia”[Mesh] OR homocysteine”[Mesh] OR hyperhomocyst)) AND (“Embolism and Thrombosis”[Mesh] OR “Myocardial Infarction”[Mesh] OR “Acute Coronary Syndrome”[Mesh] OR “Brain Ischemia”[Mesh] OR “Stroke”[Mesh] OR “Deep vein thrombosis” OR “pulmonary embolism” OR “lung embolism” OR thrombosis OR embolism OR thromboembolism OR stroke OR “acute stroke” OR “brain infarction” OR “cerebral infarction” OR “brain ischemia” OR “cerebral ischemia” OR “ischemic stroke” OR “intracranial embolism” OR “intracranial thrombosis” OR apoplexy OR “cerebrovascular accident” OR “cerebral stroke” OR “myocardial infarction” OR “myocardi um infarct” OR “heart infarct” OR “heart infarction” OR “acute coronary syndrome” OR “acute myocardial infarction” OR “brain embolism” OR “cardiovascular stroke” OR “heart attack” OR “acute myocardial infarct” OR “acute heart infarction”))) AND (“Biomarkers”[Mesh] OR “Blood”[Mesh] OR blood OR serum OR plasma OR biomarker OR “biological marker” OR “blood level” OR “blood levels”))) AND (((“Humans”[Mesh] OR adult[MeSH Terms] OR adults[All Fields] OR adult[All Fields] OR patients[All Fields] OR patient[All Fields] OR humans[All Fields] OR human[All Fields])) AND ([Danish][Language] OR Norwegian[Language] OR English[Language] OR swedish[Language])) NOT ((comment[Publication Type] OR congress[Publication Type] OR letter[Publication Type] OR “Case Reports”[Publication Type]))

Initially, all thromboembolic events were included as outcome, as seen in our search combinations, resulting in a large number of eligible articles (Fig. 1). Therefore, our inclusion/exclusion criteria were revised after screening of abstracts to include only articles with ischemic stroke as outcome for this review. This choice was based on results found in the 2017 Cochrane review which showed a potential association between Hcy and ischemic stroke in randomized trials of B-vitamin treatment.

Our inclusion criteria were studies investigating ischemic stroke events in patients with measured plasma Hcy providing original data on adult human populations. Both interventional and observational studies were included, including randomized trials, cohort, cross-sectional, and case-control studies. The accepted endpoint was acute ischemic stroke, including all subtypes. The exclusion criteria were as follows: nonoriginal literature, reviews, meta-analyses, guidelines, case studies, conference abstracts, and letters/editorials/comments without original data; missing information on Hcy concentration or studies including hyper-Hcy as a binary variable; endpoint of transient cerebral ischemia and atherosclerotic lesions without sign of thrombosis, and silent brain infarction; and language other than English.

First, 100 abstracts were randomly selected and screened independently by the three authors for either exclusion or inclusion to full-text screening. Any disagreement was solved by consensus. Screening of the remaining abstracts
was performed by MH. Similarly, 50 randomly selected articles proceeding to full text screening were read in full by all authors, and any disagreement was solved by consensus. Remaining papers were screened by MH for inclusion or exclusion, and in case of doubt, all three authors discussed the study in question.

Data Extraction and Quality Assessment

Data extraction from the included articles was performed by M.H. and verified by A.M.H. and J.F.H.A. Study quality was assessed by all three authors using the Study Quality Assessment Tools for Observational Cohort and Cross-Sectional studies and for Case-Control studies, National Heart, Lung, and Blood Institute, National Institute of Health, the United States. Each study was rated good, fair or poor according to the estimated risk of bias. Disagreement between authors was solved by consensus.

Data Synthesis

We performed a meta-analysis of odds ratios (ORs) in which Hcy was included as a continuous linear variable. Hcy increments was standardized to 5 µmol/L. A random effects model was used to obtain a summary OR as a measure of the relative risk. Forest plots and funnel plots were used to visualize the data.

Results

In total, 108 original articles were included in the review. Of these, 22 articles rated good, 47 fair and 39 poor. Screening of abstracts and inclusion of articles are shown in Fig. 1. Articles rated good were grouped according to study design of which 18 were case-control studies and 4 were observational cohort studies, as presented in Tables 1–3. Only articles rated good are reported on and discussed in this

Fig. 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram.
Table 1 Case-control studies investigating the association between ischemic stroke and homocysteine levels, \(n = 18 \)

Study (year)	Study population	Hcy results (µmol/L)	Outcome and diagnostic criteria of ischemic stroke	Matched variables and adjusted covariates (Adj)
	Cases: \(n \), mean age ± SD, % male	Timing of blood sampling\(^a\)		
	Controls: \(n \), mean age ± SD, % male			
Campbell et al (2006)\(^10\)	Cases: \(n = 252 \), mean age = 67 ± 8 years 73% male Controls: \(n = 544 \), mean age = 66 ± 8 years 73% male	Cases, median Hcy: 16.3 µmol/L (IQR: 13.3–20.0) Controls, median Hcy: 16.3 µmol/L (IQR: 13.3–19.2) Timing: at baseline; prior to outcome Mean follow-up till outcome: 3.9 years	Outcome: ischemic stroke Diagnostic criteria: CT scan within 3 weeks, autopsy	Matched: age (within 5 years), sex, treatment allocated (perindopril-based/ placebo, mono/dual therapy), region, most recent qualifying event at randomization Adj: matched variables, systolic blood pressure, total cholesterol, current smoking, diabetes mellitus, peripheral arterial disease, antihypertensive medication other than β-blockers, calcium channel blockers, diuretics
Cui et al (2008)\(^19\)	Cases: \(n = 101 \), mean age = 68.7 years Male % = not stated Controls: \(n = 101 \), mean age = 67.7 Male % = not stated	Cases: 13.8 µmol/L Controls: 12.5 µmol/L Timing: prior to outcome (13–15 years)	Outcome: CVD, subclassified into ischemic stroke Diagnostic criteria: ICD9 codes 433–434, ICD10 code I63	Matched: sex, age, community, year of serum storage Adj: BMI, serum total and HDL-cholesterol, alcohol, smoking status, history of hypertension, diabetes
Eikelboom et al (2000)\(^23\)	Cases: \(n = 219 \), mean age = 66.1 ± 12.4 years 64% male Controls: \(n = 205 \) 60% male, mean age = 67.0 ± 11.8 years	Cases: 12.4 µmol/L (11.7–13.2) Controls: 10.5 µmol/L (10.0–11.0) Timing: within 7 days of outcome	Outcome: ischemic stroke Diagnostic criteria: CT scan within 3 weeks, autopsy	Matched: none Adj: age, sex, creatinine, red cell folate, serum folate, pyridoxine cobalamin, MTHFR genotype, smoking, hypertension, diabetes mellitus, hypercholesterolemia, previous vascular events
Fallon et al (2003)\(^21\)	Study population: male smokers Cases: \(n = 212 \), mean age = 58.9 ± 5.2 years Controls: \(n = 212 \), mean age = 58.8 ± 5.3 years	Cases: 13.3 µmol/L (12.6–13.9) Controls: 12.6 µmol/L (12.0–13.2) Timing: prior to outcome	Outcome: ischemic stroke Diagnostic criteria: medical records, ICD9 codes 433–434 Register of causes of death	Matched: age (4-year range) Adj: all case/control pairs: systolic + diastolic blood pressures, total serum cholesterol, education, BMI, smoking: duration + cigarettes smoked daily + debut age, trial treatment group 120 case/control pairs: further adj. for serum folate, B6, alcohol
Haltmayer et al (2002)\(^20\)	Study population: male patients with symptomatic PAD Cases: \(n = 50 \), mean age = 69.8 years (25–75th percentile, 61.7–73.8) Controls: \(n = 400 \), mean age = 66.6 years (25–75th percentile, 57.6–73.1)	Cases median Hcy: 18.6 µmol/L (25–75th percentile, 13.7–23.1) Controls: 15.1 µmol/L (25–75th percentile, 12.4–18.5) Timing: after outcome (5 months–21 years)	Outcome: ischemic stroke Diagnostic criteria: medical reports + additional CT scans	Matched: none Adj: age, BMI, hypertension, diabetes mellitus, current smoking, carotid stenosis >50%, total cholesterol, HDL-cholesterol, serum triglycerides

(Continued)
Study (year)	Study population	Hcy results (µmol/L)	Outcome and diagnostic criteria of ischemic stroke	Matched variables and adjusted covariates (Adj)
Hultdin et al (2011)	Cases: n = 321 ischemic stroke n = 60 hemorrhagic stroke Male 55.8% with ischemic stroke, mean age = 55.0 ± 8.1 years Controls: n = 788, 58.6% male, mean age = 55.0 ± 8.0 years	Cases: 12.8 µmol/L (±SD 5.6) Controls: 12.7 µmol/L (±SD 7.7) Timing: prior to outcome, average time to outcome >4 years	Outcome: first ever stroke, subclassified into ischemic and hemorrhagic stroke Diagnostic criteria: ICD-9 codes 430–438, CT, MRI scan, autopsy	Matched: age, sex Adj: BMI, hypertension
Iso et al (2004)	Cases: n = 90, 61% male, mean age = 65.9 years Controls: n = 294, 61% male, mean age = 66.0 years	Cases: 9.8 µmol/L (9.1–10.4) Controls: 9.0 µmol/L (8.7–9.4) Timing: at inclusion, years prior to outcome	Outcome: Stroke (subclassification: hemorrhagic, lacunar, large-artery occlusive, embolic) Diagnostic criteria: stroke identified with CT, ICD9 diagnosis codes 430–438, self-reporting	Matched: sex, age, community, year of serum stored, fasting status Adj: hypertension status, BMI, current alcohol intake, cigarette smoking status, serum total cholesterol levels, log-transformed triglyceride levels, quartiles of CRP, serum glucose category
Kaplan et al (2008)	Study population: Postmenopausal women Cases: n = 972, mean age = not stated Controls: n = 972, mean age = not stated	Cases, median Hcy: 8.5 µmol/L (IQR: 3.7) Controls, median Hcy: 8.2 µmol/L (25–75th percentile, 6.6–10.2) Timing: prior to outcome	Outcome: first ever ischemic stroke Diagnostic criteria: self-reporting, reports by family, medical records	Matched: age, race/ethnicity Adj: aspirin use, BMI, diabetes, systolic blood pressure, smoking, high cholesterol requiring medication, antihypertensive medication, fasting glucose, LDL, HDL
Khan et al (2008)	Study population: Afro-American population of the United Kingdom Total group: n = 457, 56% male, mean age = 65.4 ± 12.2 years Cases (ischemic stroke group): n = 408, Male % = not stated, mean age = not stated Controls (nonischemic stroke group): n = 179, 62.0% male, mean age = 65.4 ± 7.4 years	Cases: 14.3 µmol/L (±SD 8.8) Controls: 11.8 µmol/L (±SD 5.7) Timing: after outcome	Outcome: stroke, including subclassification Diagnostic criteria: CT or MRI scan. Subtyping of stroke using TOAST criteria	Matched: age and sex Adj: age, sex, hypertension, diabetes, hypercholesterolemia, smoking, B12, folate, eGFR
Li et al (2003)	Cases: n = 1,832 stroke patients; cerebral thrombosis: n = 807, lacunar infarction: n = 513, intracerebral hemorrhage: n = 503, 63.5% male, mean age = 60.3 ± 9.4 years Controls: n = 1,832, 57.4% male, mean age = 59.6 ± 8.8 years	Cases, median Hcy: cerebral thrombosis: 14.7 µmol/L (range: 207.8) Lacunar infarct: 14.8 µmol/L (range: 115.4) Controls, median Hcy: 12.8 µmol/L (range: 123.2) Timing: 6 weeks after outcome	Outcome: Stroke (subclassification: cerebral thrombosis, lacunar infarction, cerebral hemorrhage) Diagnostic criteria: CT/MRI scan, ICD 9 diagnosis codes 430–438	Matched: age (5-year range), community of residence Adj: age, sex, blood pressure, BMI, cigarette smoking, glucose, total cholesterol, triglycerides, glomerular filtration rate
Study (year)	Study population	Hcy results (µmol/L)	Outcome and diagnostic criteria of ischemic stroke	Matched variables and adjusted covariates (Adj)
----------------------	---	--	---	---
Liang et al (2017)	Study population: 377 patients with essential hypertension	Cases: 19.11 µmol/L (±SD 9.70)	Outcome: ischemic stroke	Matched: age and sex
		Hypertensive controls: 13.24 µmol/L (±SD = 5.96)	Diagnosis criteria: MRI scan within 24 hours	Adj: age, sex, systolic + diastolic blood
		Normotensive controls: 12.78 µmol/L (±SD = 8.00)	Timing: at admission for outcome	pressure, cigarette smoking
	Study population: 114 patients	Cases: 19.11 µmol/L (±SD 9.70)		
		Hypertensive controls: 13.24 µmol/L (±SD = 5.96)		
		Normotensive controls: 12.78 µmol/L (±SD = 8.00)		
		Timing: at admission for outcome		
Loffredo et al (2005)	Study population: 163 patients with nonvalvular atrial fibrillation	Cases: 18.1 µmol/L (±SD 9.0)	Outcome: ischemic stroke, occurring > 3 months prior to inclusion	Matched: none
		Controls: 15.4 µmol/L (±SD = 9.3)	Diagnosis criteria: CT scan, medical records	Adj: sex, hypertension, diabetes mellitus,
		Timing: at inclusion, after outcome		dyslipidemia, smoking habits, prior coronary
				heart disease, left ventricular ejection
				fraction, left atrium diameter, oral
	Study population: 22 patients	Cases, median Hcy: 10.01 µmol/L (IQR: 7.9–13.2)		anticoagulants, aspirin, predictors of Hcy,
		Controls, median Hcy: 8.48 µmol/L (IQR: 7.28–10.91)		fibrinogen levels
		Timing: within 96 hours of onset of stroke symptoms		
Rueda-Clausen et al	Study population: 238 patients	Cases, median Hcy: 10.01 µmol/L (IQR: 7.9–13.2)		Matched: age, sex, region of residence
(2012)		Controls, median Hcy: 8.48 µmol/L (IQR: 7.28–10.91)		Adj: age, sex, pack year of smoking, plasma
		Timing: within 96 hours of onset of stroke symptoms		creatinine levels, waist to hip ratio,
	Study population: young adults	Cases: 13.0 µmol/L	Outcome: ischemic stroke	Matched: age (2 years range), sex
(2002)	(20–50 years)	Controls: 11.8 µmol/L (mean: 7.6 years) after outcome	(subclassification: lacunar, artherothrombotic,	Adj: age, sex, hypertension, serum creatinine,
	Cases: 109, 71.6% male, mean age = 43.8 ± 5.87 years	Timing: 3 months–30 years	cardioembolic, undetermined)	total protein, folate, B12
	Controls: 88, 71.6% male, mean age = 43.1 ± 6.60 years		Diagnostic criteria: CT/MRI scan	
	Study population: 3,090 patients with preexisting	Cases, median Hcy: 16.4 µmol/L (IQR: 12.7–14.3)	Outcome: first ever ischemic stroke	Matched: age, sex
Tanne et al (2003)	Study population: 3,090 patients with preexisting	Cases, median Hcy: 16.4 µmol/L (IQR: 12.7–14.3)	Diagnostic criteria: CT/MRI scan	Adj: age, sex, diabetes mellitus, hypertension,
(2003)	Study population: 3,090 patients with preexisting	Cases, median Hcy: 16.4 µmol/L (IQR: 12.7–14.3)	within 1 week	hyperlipidemia, B12
	Study population: 3,090 patients with preexisting	Cases, median Hcy: 16.4 µmol/L (IQR: 12.7–14.3)	Outcome: ischemic stroke, including	Matched: age, sex, benafibrate/placebo
	Study population: 3,090 patients with preexisting	Cases, median Hcy: 16.4 µmol/L (IQR: 12.7–14.3)	subclassifications	study medication (benafibrate/placebo)
Study (year)	Study population	Hcy results (µmol/L)	Outcome and diagnostic criteria of ischemic stroke	Matched variables and adjusted covariates (Adj)
--------------	------------------	----------------------	--	---
Tascilar et al (2009)	Cases: large-vessel atherosclerotic stroke: n = 103, 68% male, mean age = 61.19 ± 14.20 years Cardioembolic stroke: n = 37, 45.9% male, mean age = 73.35 ± 10.72 years Controls: n = 37, 37.8% male, mean age = 53 ± 7.45 years	Cases: large-vessel atherosclerotic stroke: 13.94 µmol/L (±SD = 6.56) Cardioembolic stroke: 14.96 µmol/L (±SD = 5.94) Controls: 10.98 µmol/L (±SD = 2.91) Timing: within 24 hours of outcome	Outcome: large-vessel atherosclerotic stroke + cardioembolic stroke Diagnostic criteria: CT/MRI scan	Matched: none Adj: sex, smoking, hypertension, diabetes mellitus, hyperlipidemia
Verhoef et al (1994)	Patients: n = 109, mean age = 61.9 ± 9.1 years Controls: n = 427, mean age = 59.2 ± 8.9 years	Cases: 1.1 µmol/L (±SD = 4.0) Controls: 10.6 µmol/L (±SD = 3.4) Timing: at inclusion, follow-up 5 years, outcome within these 5 years	Outcome: ischemic stroke Diagnostic criteria: medical reports, confirmed by CT scan, autopsy	Matched: age, smoking habits Adj: age, smoking habits, diabetes, hypertension, Quetelet's index, aspirin assignment, total cholesterol-to-HDL cholesterol ratio, time since the last meal before the blood was drawn

Abbreviations: Adj, adjusted; BMI, body mass index; CRP, C-reactive protein; CT, computed tomography; CVD, cardiovascular disease; eGFR, estimated glomerular filtration rate; Hcy, homocysteine; HDL, high density lipoprotein; ICD, International Classification of Diseases; IQR, interquartile range; LDL, low density lipoprotein; MRI, magnetic resonance imaging; MTHFR, methylenetetrahydrofolate reductase; PAD, peripheral arterial disease; SD, standard deviation; TOAST, Trial of Org 10172 in Acute Stroke Treatment.

Note: Hcy levels is indicated as mean (95% confidence interval) unless otherwise specified. Age is indicated as mean ± standard deviation unless otherwise specified.

*aTiming of blood sampling refers to time of blood sampling used to determine Hcy concentration in subjects, indicating if blood sampling occurred prior to outcome or after outcome.
Table 2 Summary of results reported in studies analyzing dose-response relationship between ischemic stroke and homocysteine, n = 20

Study (year)	Outcome	Stratum 1 (µmol/L) effect measure (95% CI)	Stratum 2 (µmol/L) effect measure (95% CI)	Stratum 3 (µmol/L) effect measure (95% CI)	Stratum 4 (µmol/L) effect measure (95% CI)	Stratum 5 (µmol/L) effect measure (95% CI)	Increments, effect measure (95% CI)
Bostom et al (1999)	Nonhemorrhagic stroke	13–9.25 Ref.	9.26–11.43 RR = 1.22 (0.73–2.01)	11.44–14.24 1.31 (0.79–2.16)	14.24–219.84 1.79 (1.11–2.89)	Per 5 µmol/L OR = 1.49 (1.01–2.18)	
Cui et al (2008)	Ischemic stroke	>10.5 Ref.	10.5–12.4 OR = 1.83 (0.54–6.28)	12.5–15.2 1.85 (0.57–5.98)	>15.3 4.35 (1.12–16.9)		
Eikelboom et al (2000)	Ischemic stroke					Per 5 µmol/L OR = 2.7 (1.4–5.1)	
Fallon et al (2003)	Ischemic stroke	3.1–10.5 Ref.	10.6–12.6 OR = 1.7 (0.9–3.1)	12.7–15.4 1.9 (1.1–3.2)	15.4–86.2 2.1 (1.1–3.9)	Per 4.7 µmol/L OR = 1.4 (1.1–1.7)	
Fallacon et al (2003)	Ischemic stroke	3.1–10.5 Ref.	10.6–12.6 OR = 1.2 (0.6–2.4)	12.7–15.4 1.9 (1.0–3.6)	15.4–86.2 2.0 (1.0–4.0)		
Haltmayer et al (2002)	Ischemic stroke					Per 5 µmol/L OR = 1.37 (1.13–1.67)	
Hultdin et al (2011)	Ischemic stroke	Ref.	Men: 10.3 Women: 9.5 OR = 0.99 (0.63–1.54)	Men: 12.6 Women: 11.7 OR = 1.08 (0.70, 1.69)	Men: 15.3 Women: 14.3 OR = 0.86 (0.54–1.37)		
Iso et al (2004)	Ischemic stroke	4.1–7.0 Ref.	7.0–8.7 OR = 1.36 (0.60–3.09)	8.7–11.0 1.45 (0.60–3.49)	11.0–47.3 3.89 (1.60–9.46)	Per 5 µmol/L OR = 1.52 (1.07–2.14)	
Kaplan et al (2008)	First ever ischemic stroke	<6.6 Ref.	– OR = 1.15 (0.86–1.52)	– 1.23 (0.93–1.64)	>10.4 1.26 (0.95–1.68)		
Khan et al (2008)	Ischemic stroke					Per 1 µmol/L increase in log Hcy: OR = 4.02 (2.13–7.57)	
Liang et al (2017)	Ischemic stroke					Per SD increase in log Hcy: OR = 1.62 (1.17–2.25)	
Loffredo et al (2005)	Ischemic stroke	4.6–7.5 Ref.	9.7–14.1 OR = 0.75 (0.31–1.82)	14.3–18.6 1.30 (0.55–3.07)	18.7–67.1 2.73 (1.23–6.08)	Per 1 µmol/L OR = 1.056 (1.00–1.12)	
Petri et al (1996)	Ischemic stroke					Per 1 unit in log Hcy: OR = 2.44 (1.04–5.75)	
Rueda-Clausen et al (2012)	Ischemic stroke	≤12.69 Ref.	>12.69 OR = 8.97 (4.07–19.75)				
Shi et al (2018)	Ischemic stroke	≤9.65 Ref.	9.65 ≤ 11.9 HR = 0.77 (0.42–1.40)	11.9 ≤ 15.5 1.52 (0.89–2.62)	>15.5 1.76 (1.11–3.08)		
Shimizu et al (2002)	Ischemic stroke	<10.4 Ref.	10.4–13.6 OR = 2.0 (0.9–4.4)	>13.6 4.0 (1.8–8.9)	>14.95 4.3 (1.5–12.6)	Per 1 µmol/L increase in log Hcy: OR = 5.17 (1.96–13.63)	
Tan et al (2002)	First ever ischemic stroke	<9.6 Ref.	9.6–12.0 OR = 0.94	12.1–14.95 3.2	>14.95 4.3 (1.5–12.6)	Per 1 µmol/L increase in log Hcy: OR = 5.17 (1.96–13.63)	
Tanne et al (2003)	Ischemic stroke	<11.4 Ref.	11.4–13.2 OR = 1.48 (0.44–5.46)	13.3–17.4 2.11 (0.58–8.75)	>17.4 4.62 (1.32–18.86)	Per 1 µmol/L increase in ln Hcy: OR = 3.41 (1.08–12.30)	

(Continued)
of which four studies collected blood within 7 days of outcome, and 2 studies within 24 hours of outcome.

Case-Control Studies

Of the 18 case-control articles rated as good, seven studies subclassified ischemic stroke, and 1 reported CVD with subanalyses for ischemic stroke, and 10 studies performed no subclassification of ischemic stroke.

The timing of blood sampling for measurement of Hcy levels varied among studies. Eight studies performed blood sampling prior to outcome, 9, 18, 19, 21, 105, 110, 112; 10 studies performed blood sampling after outcome, 20, 22, 23, 106–109, 113–115 of which four studies collected blood within 7 days of outcome, and 2 studies within 24 hours of outcome.

Studies with Effect Measures Based on Homocysteine Strata

Eleven studies stratified Hcy levels into several strata, estimating the risk of ischemic stroke in the lowest stratum compared with the higher strata (Table 2). Nine out of 11 studies found an increased risk of ischemic stroke when comparing patients in the highest versus lowest Hcy level strata. Two studies found no association between risk of ischemic stroke and Hcy level, whereas one did not.

Studies with Effect Measures Based Homocysteine Increments

Ten studies included Hcy as a continuous variable and presented effect measures based on various increments of Hcy (Table 2). All studies found an association between increasing Hcy levels and odds of ischemic stroke, despite variations in the Hcy level increments that were employed.

Six studies included analysis of ischemic stroke subclasses. Among these, four studies showed an association between small-vessel disease and/or large-vessel disease, and three studies demonstrated an association with cardioembolic stroke.

Two studies did not include effect measures illustrating the dose-response association between ischemic stroke and Hcy levels.

Overall, in studies comparing Hcy strata, effect measures were clearly elevated when Hcy level reached 15 µmol/L and above.

Cohort Studies

Four cohort studies were rated as good. Mean follow-up time ranged from 18 months to 9.9 years. Two studies included patients with CVD, with subanalyses for ischemic stroke. Zee et al did not find an association when comparing quintiles of Hcy levels in the population, whereas Petri et al found increased risk of ischemic stroke.

Table 2 (Continued)

Study (year)	Outcome	Stratum 1 (µmol/L)	Effect measure	Stratum 2 (µmol/L)	Effect measure	Stratum 3 (µmol/L)	Effect measure	Stratum 4 (µmol/L)	Effect measure	Stratum 5 (µmol/L)	Effect measure
Tascilar et al (2009)	Large-vessel atherosclerotic stroke	≤ 9.20	Ref.	> 9.20	OR = 0.813 (0.286–2.310)	Ref.	> 12.40	OR = 1.285 (0.406–4.067)	Ref.	> 23.105	OR = 2.449 (0.660–9.095)
Verhoef et al (1994)	Ischemic stroke	< 8.57	HR = 1.2 (0.7–2.0)	≤ 8.57	HR = 1.27 (0.63–2.00)	≤ 10.19	HR = 1.24 (0.79–1.96)	≤ 14.05	HR = 1.27 (0.80–2.00)	≤ 22.108	HR = 1.27 (0.80–2.00)

Abbreviations: CI, confidence interval; Hcy, homocysteine; HR, hazard ratio; OR, odds ratio; Ref., reference value; RR, risk ratio; SD, standard deviation.
Table 3 Cohort studies investigating the association between ischemic stroke and homocysteine levels, n = 4

Study (year)	Study population: n, % male, mean age	Hcy-results (µmol/L)	Outcome and diagnostic criteria of ischemic stroke	Adjusted covariates
Bostom et al (1999)	Study population: elderly patients, n = 1947, 40.5% male, mean age = 70 ± 7 years	Mean Hcy: 12.65 ± 1.19 µmol/L Timing: at study inclusion, prior to outcome	Outcome: total stroke, non-hemorrhagic stroke, atherothrombotic brain infarctions Diagnostic criteria: CT scan	Age, sex, diabetes, cigarette smoking, systolic blood pressure, prior coronary heart disease, prior atrial fibrillation
Shi et al (2018)	Study population: acute stroke patients Ischemic stroke: n = 2,587, 70.0% male, mean age = 60.7 ± 10.5 years Follow-up time: median 18 months	Hcy: within 3 days of ischemic stroke: 14.4 ± 10.3 µmol/L 3 months after ischemic stroke: 14.3 ± 10.0 µmol/L Timing: within 24 hours of outcome, and again three months after	Outcome: recurrence of ischemic stroke, including subclassification Diagnostic criteria: CT scan. Subtyping using TOAST criteria	Age, sex, smoking status, low-density lipoprotein cholesterol level, CRP level, apolipoprotein B/Apolipoprotein AI ratio, presence of hypertension, type-2 diabetes mellitus, coronary artery disease, obesity
Petri et al (1996)	Study population: systemic lupus erythematosus patients Cases: n = 29, 14% male, mean age = 38.6 ± 15.2 years Controls: n = 308, 7.1% male, mean age = 34.5 ± 11.3 years Follow-up time: 1,619 person-years (mean 4.8 ± 1.7 years)	Cases: 10.26 ± 1.91 µmol/L Controls: 7.41 ± 1.88 µmol/L Timing: at inclusion, prior to outcome	Outcome: stroke, arterial or venous thrombotic events Diagnostic criteria of ischemic stroke: CT/MRI scan	Age, sex, race, obesity, hypercholesterolemia, hypertension, diabetes, renal insufficiency, lupus anticoagulant
Zee et al (2007)	Study population: healthy white women: n = 24,968 Mean age stratified for MTHFR genotype (CC, CT, TT): CC = 54.7 ± 7.1 years; CT = 54.7 ± 7.2 years; TT = 54.7 ± 7.2 years Follow-up time: mean follow-up of 9.9 ± 1.3 years, 246, 852 person-years	Hcy: stratified for MTHFR genotype (CC, CT, TT): 11.1 ± 4.3 µmol/L, 11.4 ± 4.9 µmol/L, 12.3 ± 6.1 µmol/L Timing: at inclusion, prior to outcome	Outcome: ischemic stroke Diagnostic criteria: medical records, the National Death Index, autopsy reports, death certificates, reports from family	Age, smoking status, systolic blood pressure, total cholesterol, HDL cholesterol, diabetes mellitus, hormone use

Abbreviations: CRP, C-reactive protein; CT, computed tomography; CVD, cardiovascular disease; Hcy, homocysteine; HDL, high density lipoprotein; MRI; magnetic resonance imaging; MTHFR, methylenetetrahydrofolate reductase; TOAST, Trial of Org 10172 in Acute Stroke Treatment.

Note: Hcy levels are indicated as mean ± standard deviation unless otherwise specified. Age is indicated as mean ± standard deviation unless otherwise specified.

*Timing of blood sampling, refers to time of blood sampling used to determine Hcy concentration in subjects, indicating if blood sampling occurred prior to outcome or after outcome.
with increasing Hcy levels. Bostom et al included elderly patients with stroke and found an association for both non-hemorrhagic stroke and atherothrombotic brain infarction, when comparing the highest quartile of Hcy to the lowest quartile. Shi et al investigated recurrence of ischemic stroke as outcome, with enrolment at admission for first ever stroke. Blood sampling was performed at 3 days and 3 months after enrollment. An association between the risk of recurrent ischemic stroke (within 12–36 months) and Hcy levels was found, when comparing the highest and lowest Hcy quartiles in blood samples performed 3 months after the enrollment.

Meta-analysis of Dose-Response Association
Eleven studies included Hcy as a continuous variable of which six were included in the meta-analysis. We normalized ORs to increments of 5 µmol/L in Hcy. The remaining five studies performed log transformation of Hcy levels prior to statistical analysis and were therefore not included in the meta-analysis. The studies included in the meta-analysis reported similar results and included similar numbers of patients. All adjusted for age, sex, main CVD risk factors (diabetes, hypertension, hypercholesterolemia, smoking, and body mass index [BMI]), with an exception of Eikelboom et al that did not adjust for BMI. Eikelboom et al was the only study that adjusted for renal insufficiency. We performed a random effect analysis, resulting in an OR of 1.43 (95% confidence interval [CI]: 1.28–1.61; \(I^2 = 0.0\% \), \(p = 0.492 \)). A funnel plot for the meta-analysis is provided in Fig. 3, as the resulting funnel plot was severely asymmetric.

Results reported in studies rated fair and further supported the observations reported in studies rated good.

Discussion
The present study indicates a dose-response association between Hcy levels and the risk of ischemic stroke. It was apparent that risk estimates reported in studies were notably higher when reaching Hcy levels above 15 µmol/L, indicating a possible nonlinear association between Hcy and ischemic stroke. Both studies rated good and fair supported this observation.

Studies have shown that Hcy levels increase in patients within 1-week poststroke. This could explain some of the differences observed between cases and controls in the case-control studies where blood sampling was performed in cases during hospitalization for stroke. Moreover, Hcy levels have been shown to increase in critically ill patients. In this review, no difference in means was observed when comparing Hcy levels in blood samples obtained during the acute phases and convalescence phases of ischemic stroke, but based on the aforementioned previous studies, timing of blood sampling should be considered when evaluating Hcy as an exposure.

Five studies showed an association between small- and large-vessel diseases when subclassifying stroke using the...
Table 5 Summary of results reported in studies rated fair analyzing dose-response relationship between ischemic stroke and homocysteine

Study (year)	Outcome	Stratum 1 (µmol/L), effect measure (95% CI)	Stratum 2 (µmol/L), effect measure (95% CI)	Stratum 3 (µmol/L), effect measure (95% CI)	Stratum 4 (µmol/L), effect measure (95% CI)	Increments, effect measure (95% CI)
Case-control studies						
Atanassova et al (2007)24	Ischemic stroke	–	–	–	–	Per 1 µmol/L OR = 1.22 (1.03–1.44)
Delport et al (1997)26	Ischemic stroke	>10.53 Ref.	<10.53 OR = 3.7 (0.8–16.7)	–	–	
Hassan et al (2004)28	Lacunar infarction	>10.3 Ref.	10.3–13.0 OR = 1.42 (0.70–2.89)	13.1–15.9 OR = 2.02 (1.37–2.99)	>15.9 2.06 (1.53–2.78)	
Ma (2017)x42	Ischemic stroke	4.29–10.7 OR = 0.43 (0.25–0.75)	10.74–13.71 OR = 1.15 (0.69–1.92)	13.73–53.99 OR = 0.69 (0.42–1.14)	–	
Parnetti et al (2004)50	Ischemic stroke	–	–	–	–	Per 1 µmol/L OR = 1.425 (1.300–1.562)
Perini et al (2005)51	Ischemic stroke	0–10 Ref.	10.1–13.2 OR = 2.1 (p < 0.001)	13.3–18.6 2.8 (p < 0.001)	>18.6 6.74 (3.78–12.02)	
Perini et al (2005)51	Small artery stroke	0–10 Ref.	10.1–13.2 OR = 3.9 (1.6–8.2)	13.3–18.6 5.9 (2.6–14.4)	>18.6 16.4 (6.9–44.3)	
Perini et al (2005)51	Large artery stroke	0–10 Ref.	10.1–13.2 OR = 1.5 (0.8–2.6)	13.3–18.6 2.7 (1.4–4.7)	>18.6 4.9 (2.4–9.8)	
Perini et al (2005)51	Cardioembolic stroke	0–10 Ref.	10.1–13.2 OR = 1.6 (0.7–3.4)	13.3–18.6 3.0 (1.3–6.4)	>18.6 7.1 (3.6–22.1)	
Wang et al (2015)58	Ischemic stroke	<15 Ref.	≥15 OR = 0.99 (0.64–1.51)	–	–	Per 5 µmol/L OR = 1.15 (1.01–1.28)
Yadav et al (2017)61	Ischemic stroke	<12 Ref.	≥12 OR = 0.37 (0.16–0.83)	–	–	
Yoo et al (1998)65	Ischemic stroke	<15.5 Ref.	≥15.5 OR = 1.70 (1.48–1.95)	–	–	
Cross-sectional studies						
Kario et al (2001)30	Ischemic stroke	–	–	–	–	Per 1 SD increase OR = 2.16 (1.30–3.59)
Wang et al (2014)59	Ischemic stroke	<15 Ref.	15–30 OR = 0.80 (0.59–1.074)	>30 OR = 0.91 (0.49–1.67)	–	Per 5 µmol/L OR = 0.99 (0.92–1.06)

Abbreviations: CI, confidence interval; OR, odds ratio; SD, standard deviation.
Note: numbers in parentheses after OR are 95% confidence intervals unless otherwise specified.
*Ma et al divided participants in regard to their EPHX2 G860A genotype into grouping of the Additive, Resissive and Dominant genotype model.
Trial of Org 10172 in Acute Stroke Treatment (TOAST) criteria (Tables 1 and 3). This finding indicates that the effect of Hcy could depend on the underlying etiologically of ischemic stroke. Large randomized controlled trails investigating the effect of Hcy-lowering B-vitamin treatment have not demonstrated an effect on vascular outcomes or stroke. Notably, reevaluation of data suggests that the effect of Hcy-lowering treatment could vary between outcomes, with a more beneficial effect on stroke than other CVD outcomes. Subclassifying stroke further could help clarifying which etiologies of stroke are affected by Hcy, and which patients could potentially benefit from Hcy-lowering treatment. As such, the clinical relevance of assessing Hcy in stroke patients or screening for hyperhomocysteinemia to prevent stroke remains undetermined. Taken together with the conflicting results on the effect of Hcy-lowering vitamin treatment, this may also explain why measuring plasma Hcy is not recommended in most clinical guidelines on ischemic stroke.

The most recent review of the literature found a 59% increased risk of stroke when Hcy increased 5 µmol/L. We report a similar increased risk of 43% (95% CI: 1.28–1.61) when standardizing reported ORs and using the same Hcy increments of 5 µmol/L. The studies included in the present review assumed a linear association between Hcy levels and ischemic stroke; however, without describing this further or commenting on the hidden assumption of a linear association. As we observed a clear elevation in risk when surpassing 15 µmol/L, our results question this assumption of a linear association.

Additionally, several studies performed a logarithmic transformation of Hcy levels prior to statistical analysis, indicating that they initially observed a nonlinear association with ischemic stroke risk, but without exploring this further.

To assess publication bias, we performed a funnel plot of our meta-analysis (Fig. 3). Generally, at least 10 studies with varying sample sizes should be included for the test to have the power to distinguish chance from true asymmetry. Even though only six studies were included in the meta-analysis, we included the funnel plot as it was severely asymmetric. This could indicate publication bias, but it

Fig. 2 Forest plot of risk of ischemic stroke per 5 µmol/L increase in plasma homocysteine. CI, confidence interval; OR, odds ratio.

Fig. 3 Funnel plot of studies included in meta-analysis investigating the risk of ischemic stroke per 5 µmol/L increase in homocysteine.
may also result from an overestimation of the effect of Hcy because of small study populations.123

Several large randomized controlled trials of Hcy-lowering treatment report mainly no effect on risk of CVD.12–14,124 These studies were excluded in the inclusion process of this review, as Hcy levels were not reported in the studies.

Strengths and Limitations

One of the strengths of the present systematic review was the strict requirement of outcome definition required for inclusion. Numerous studies investigating the relationship between Hcy and stroke do not differentiate between hemorrhagic or ischemic stroke in their outcome variable which could lead to a reduction of estimates toward the null.10,125,126 Second, this review only included multivariable adjusted risk estimates.

Some limitations have to be considered as well. First, statistical analyses were not normalized across studies and a meta-analysis of the dose-response relationship was only based on six studies. Second, the strategies for choosing control groups varied between hospital- and community-based controls; this could lead some studies to include a healthier control group compared with others. Third, we were not able to take into account differences in laboratory methods for measuring Hcy levels, and in turn, differences in reference intervals between studies. Forth, Hcy levels are influenced by a vast array of environmental and genetic factors, but most studies only adjusted effect measures for the main known cardiovascular risk factors, age, sex, hypertension, diabetes, cholesterol, smoking status, and BMI. However, six studies adjusted for renal function23,106,109,113,115,117 and additional nutritional factors, such as folate and vitamin B12 levels, were adjusted in six studies.21–23,106,108,109. We were not able to further assess the possible differential impact of the etiology of elevated Hcy levels and the association with ischemic stroke. Furthermore, lipid-lowering medication, such as fibrates, commonly prescribed for patients in risk of CVD, might influence the Hcy levels.227 Any potential influence of lipid-lowering drugs on the association between Hcy and ischemic stroke was not assessed.

Conclusion

The present review and meta-analysis indicate that a non-linear association could exist between Hcy levels and the risk of ischemic stroke. This implies that the risk of ischemic stroke increases when Hcy exceeds a certain level. Identifying this cut-off point would be of strong clinical interest, as it could help distinguish which patients could benefit of Hcy-lowering treatment.

Funding

This study was supported by grants from Redordati Rare Diseases. The funders of the study had no role in study design, data collection, data analysis, data interpretation, or manuscript preparation.

Conflict of Interest

M.H. has no conflicts of interest. A.M.H. has no conflicts of interest regarding the present paper but has the following general conflicts for interest: has received speaker’s fees from CSL Behring, Bayer, Boehringer-Ingelheim, Bristol-Myers Squibb, and Astellas, and unrestricted research support from Octapharma and CSL Behring.

J.F.H.A. has no conflicts of interest regarding the present paper but has the following conflicts of interest outside the present work: received a speaker’s fee within the last 36 months from Siemens Healthineers, Denmark, and a speaker’s fee within the last 36 months from Teva Denmark A/S.

References

1 McCully KS. Atherogenesis and the chemical pathology of homocysteine. European Journal of Laboratory Medicine 1996; 4:121–128
2 Welch GN, Lonsalzo J. Homocysteine and atherothrombosis. N Engl J Med 1998;338(15):1042–1050
3 Ansari R, Mahta A, Mallack E, Luo J. Hyperhomocysteinemia and neurologic disorders: a review. J Clin Neurol 2014;10(04): 281–288
4 Refsum H, Ueland PM, Nygård O, Vollset SE. Homocysteine and cardiovascular disease. Annu Rev Med 1998;49:31–62
5 Faraci FM, Lentz SR. Hyperhomocysteinemia, oxidative stress, and cerebral vascular dysfunction. Stroke 2004;35(02):345–347
6 Ungvari Z, Csiszar A, Edwards JG, et al. Increased superoxide production in coronary arteries in hyperhomocysteinemia: role of tumor necrosis factor-alpha, NAD(P)H oxidase, and inducible nitric oxide synthase. Arterioscler Thromb Vasc Biol 2003;23(03):418–424
7 Eberhardt RT, Forgione MA, Cap A, et al. Endothelial dysfunction in a murine model of mild hyperhomocyst(e)inemia. J Clin Invest 2000;106(04):483–491
8 Hankey GJ, Elkeboom JW. Homocysteine and vascular disease. Lancet 1999;354(9176):407–413
9 Verhoef P, Hennekens CH, Malinow MR, Kok FJ, Willett WC, Stampler MJ. A prospective study of plasma homocystein(e) and risk of ischemic stroke. Stroke 1994;25(10):1924–1930
10 Alfthan G, Pekkanen J, Jauhiainen M, et al. Relation of serum homocysteine and lipoprotein(a) concentrations to atherosclerotic disease in a prospective Finnish population based study. Atherosclerosis 1994;106(01):9–19
11 Ebbing M, Banaa KH, Arnesen E, et al. Combined analyses and extended follow-up of two randomized controlled homocysteine-lowering B-vitamin trials. J Intern Med 2010;268(04):367–382
12 Toole JF, Malinow MR, Chambless LE, et al. Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: the Vitamin Intervention for Stroke Prevention (VISP) randomized controlled trial. JAMA 2004;291(05):565–575
13 Huo Y, Li J, Qin X, et al; CSPT Investigators. Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China: the CSPT randomized clinical trial. JAMA 2015;313(13):1325–1335
14 Martí-Carvajal AJ, Solá I, Lathyris D, Dayer M. Homocysteine-lowering interventions for preventing cardiovascular events. Cochrane Database Syst Rev 2017;8:CD006612
15 Wald DS, Law M, Morris JK. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 2002; 325(7374):1202
Hyperhomocysteinemia and Ischemic Stroke

Kristensen B, Malm J, Nilsson TK, et al. Hyperhomocysteinemia and hypofibrinolysis in young adults with ischemic stroke. Stroke 1999;30(05):974–980
genotype in young adults with spontaneous cervical artery dissection and atherothrombotic stroke. Stroke 2002;33(03):664–669
53 Press RD, Beamer N, Evans A, DeLoughery TG, Coull BM. Role of a common mutation in the homocysteine regulatory enzyme methylenetetrahydrofolate reductase in ischemic stroke. Diagn Mol Pathol 1999;8(01):54–58
54 Rahman A, Gupta RD, Quarashi FA, Saha UK, Miah MNA, Ali Z. Relationship between homocysteine and ischemic stroke. Journal of Medicine (Bangladesh) 2013;14:47–51
55 Tarantittisak T, Sura T, Moleerogpoom W, Hanchaipiboolk S. Plasma homocysteine and ischemic stroke patients in Thailand. J Med Assoc Thai 2007;90(06):1183–1187
56 Ustundag M, Orak M, Gologlu C, Ozurtk E, Tamam Y, Kale E. The role of serum ferritin, pro-brain natriuretic peptide and homocysteine levels in determining ischemic stroke subtype, severity and mortality. Hong Kong J Emerg Med 2010;17:13–21
57 Vayá A, Ejarque I, Tembl J, Corella D, Laib Z. Hyperhomocysteinemia, obesity and cryptogenic stroke. Clin Hemorheol Microcirc 2011;47(01):53–58
58 Wang C, Han L, Wu Q, et al. Association between homocysteine and incidence of ischemic stroke in subjects with essential hypertension: a matched case-control study. Clin Exp Hypertens 2015;37(07):557–562
59 Wang CY, Chen ZW, Zhang T, et al. Elevated plasma homocysteine level is associated with ischemic stroke in Chinese hypertensive patients. Eur J Intern Med 2014;25(06):538–544
60 Xia XS, Li X, Wang L, Wang JZ, Ma JP, Wu CJ. Supplementation of folic acid and vitamin B12 reduces plasma levels of asymmetric dimethylarginine in patients with acute ischemic stroke. J Clin Neurosci 2014;21(09):1580–1590
61 Yadav BK, Yadav R, Chang H, et al. Genetic polymorphisms rs699947, rs1570360, and rs3025039 on the VEGF gene are correlated with extracranial internal carotid artery stenosis and ischemic stroke. Ann Clin Lab Sci 2017;47(02):144–155
62 Yang TH, Chang CY, Hu ML. Various forms of homocysteine and oxidative status in the plasma of ischemic-stroke patients as compared to healthy controls. Clin Biochem 2004;37(06):494–499
63 Yang Z, Wang L, Zhang W, Wang X, Zhou S. Plasma homocysteine involved in methylation and expression of thrombomodulin in cerebral infarction. Biochem Biophys Res Commun 2016;473(04):1218–1222
64 Yao Y, Gao LJ, Zhou Y, et al. Effect of advanced age on plasma homocysteine levels and its association with ischemic stroke in non-valvular atrial fibrillation. J Geriatr Cardiol 2017;14(12):743–749
65 Yoo JH, Chung CS, Kang SS. Relation of plasma homocyst(e)ine to cerebral and cerebrovascular atherosclerosis. Stroke 1998;29(12):2478–2483
66 Zhang F, Li X, Dong Q, Wang Y, Zhang H. Risk of acute cerebral infarction and plasma asymmetrical dimethylarginine and homocysteine levels: a clinical correlation analysis of Chinese population. J Stroke Cerebrovasc Dis 2014;23(09):2225–2232
67 Zhang H, Zhao X, Wang C, et al. A preliminary study of the association between apolipoprotein E promoter methylation and atherosclerotic cerebral infarction. J Stroke Cerebrovasc Dis 2019;28(04):1056–1061
68 Zhu F, Jin XP, Zhu M, et al. Matrix metalloproteinase 10 gene polymorphism and atherothrombotic cerebral infarction risk in a Han Chinese population. Int J Clin Exp Med 2013;6(07):567–575
69 Adunsky A, Weitzman A, Fleissig Y, et al. The relation of plasma total homocysteine levels to prevalent cardiovascular disease in older patients with ischemic stroke. Aging (Milano) 2000;12(01):48–52
70 Akpulu A, Nyame P. Plasma homocysteine as a risk factor for strokes in Ghanaian adults. Ghana Med J 2009;43(04):157–163
71 Al-Allawi NA, Avo AS, Jubrael JM. Methylenetetrahydrofolate reductase C677T polymorphism in Iraqi patients with ischemic stroke. Neurourol India 2009;57(05):631–635
72 Araki A, Sako Y, Fukushima Y, Matsumoto M, Asada T, Kita T. Plasma sulphhydril-containing amino acids in patients with cerebrovascular infarction and in hypertensive subjects. Atherosclerosis 1989;79(2,3):139–146
73 Salem-Berrabah OB, Mrissa R, Machghoul S, et al. Hyperhomocysteinaemia, C677T MTHFR polymorphism and ischemic stroke in Tunisian patients. Tunis Med 2010;88(09):655–659
74 Brattström L, Lindgren A, Israelsson B, et al. Hyperhomocysteinaemia in stroke: prevalence, cause, and relationships to type of stroke and stroke risk factors. Eur J Clin Invest 1992;22(03):214–221
75 Celikbilek A, Ismailogullari S, Zararsiz G. Neutrophil to lymphocyte ratio predicts poor prognosis in ischemic cerebrovascular disease. J Clin Lab Anal 2014;28(01):27–31
76 Cingozbay BY, Yigner O, Cebeci BS, Kardesoglu E, Demiralp E, Dinçtürk M. Role of homocysteine for thromboembolic complication in patients with non-valvular atrial fibrillation. Blood Coagul Fibrinolysis 2002;13(07):609–613
77 Coull BM, Malinow MR, Beamner N, Sexton G, Nordt F, de Garmo P. Elevated plasma homocyst(e)ine concentration as a possible independent risk factor for stroke. Stroke 1990;21(04):572–576
78 El Kossi MM, Zakhary MM. Oxidative stress in the context of acute cerebrovascular stroke. Stroke 2000;31(08):1889–1892
79 Fatima S, Memon SF, Ansari AK, Baloch AH. Hyperhomocysteinemia as a risk factor for ischemic stroke. J Liaquat Uni Med Health Sci 2012;11:158–161
80 Fekih-Mrissa N, Mrad M, Klai S, et al. Methylenetetrahydrofolate reductase (C677T and A1298C) polymorphisms, hyperhomocysteinemia, and ischemic stroke in Tunisian patients. J Stroke Cerebrovasc Dis 2013;22(04):465–469
81 Karakurum Goksel B, Karatas M, Nebioglu A, et al. Subclinical hypothyroidism, hyperhomocysteinemia and dyslipidemia: investigating links with ischemic stroke in Turkish patients. Neurrol Res 2007;29(08):871–876
82 Han SC, Guo Y, Sun GJ, Gu YY. Relation of plasma homocysteine with folic acid and vitamin b12 in patients with cerebral infarction. Zhongguo Linchuang Kangfu 2002;6:2970–2971
83 Karabulut KU, Bayir A, Kara F, Ak A. The levels of serum b12, folic acid and homocysteine in the thromboembolic diseases. J Clin Anal Med 2017;8:130–133
84 Kokocinska D, Cierpka L, Chmiel B, et al. The usefulness of assessing the serum levels of homocysteine in diagnosis of atherosclerosis. Acta Angiologica 2005;11:114–120
85 Li FS, Luo XW, Jia LH, et al. Relativity of the type and grade of stroke with the serum homocysteine level. Zhongguo Linchuang Kangfu 2004;8:1974
86 Liang X, Zhao X, Wang C, et al. The association between homocysteine and ischemic stroke with folic acid and vitamin B12 in patients with cerebral infarction. Zhongguo Linchuang Kangfu 2002;6:2970–2971
87 Li FS, Luo XW, Jia LH, et al. Relativity of the type and grade of stroke with the serum homocysteine level. Zhongguo Linchuang Kangfu 2002;6:2970–2971
88 Liu JG, Zhang ZC, Gao HF, Liu HX, Tan XM. Relationship between hyperhomocysteinemia and cerebral stroke in young and middle-aged people. Zhongguo Linchuang Kangfu 2005;9:221–223
89 Moghaddasi M, Mamarabadi M, Mirzadeh S, Freydoonnejad AA, Razjouyan H. Homocysteine, vitamin B12 and folate levels in Iranian patients with ischemic stroke. Neurol Res 2010;32(09):953–956
90 Mykhaloko OJ, Mykhaloko IJ. Some biochemical changes in patients with acute ischemic stroke. Ukr Biochem J 2017;89:31–35
91 Nagar AP, Verma I, Kaur S, Nagar A, Gupta S, Avasthi G. Homocysteine–risk factor for ischemic stroke? Indian J Physiol Pharmacol 2009;53(01):34–38
92 Omrani HQ, Shandiz EE, Qabai M, Chaman R, Fard HA, Qaffarpoo M. Hyperhomocysteinemia, folate and B12 vitamin in Iranian patients with acute ischemic stroke. ARYA Atheroscler 2011;7(03):97–101
Khan U, Crossley C, Kalra L, et al. Homocysteine and its relation-

Shimizu H, Kiyohara Y, Kato I, et al. Plasma homocyst(e)ine

Yi L, Huang Y, Wu T, Wu J. A magnetic nanoparticles-based

Wu GH, Kong FZ, Dong XF, et al. Association between hyper-

Unal E, Mungan S, Bilen S, et al. The effects of lipoprotein(a) and

Sun JZ, Xu Y, Lu H, Zhu Y. Polymorphism of the methylenetet-

Sönmezler A, Ula

Peng H, Huang Q, Li Y, et al. Study on the relationship between plasma homocysteine and acute cerebral vascular disease. J Tongji Med Univ 2000;20(04):330–331

Sawula W, Banecka-Majkutewicz Z, Kadziński L, et al. Homocys-
teine level and metabolism in ischemic stroke in the population of Northern Poland. Clin Biochem 2009;42(06):442–447

Sönmezler A, Ulaş T, Dal MS, Demir ME, Karababa IF, Büyükha-
tıpoğlu H. Plasma homocysteine levels in patients with acute ischemic stroke: A cross-sectional study. Türkiye Klinikerleri Jour-
nal of Medical Sciences 2013;33:384–388

Sun JZ, Xu Y, Lu H, Zhu Y. Polypharmacology of the methylenetetrahydrofolate reductase gene association with homocysteine and ischemic stroke in type 2 diabetes. Neurol India 2009;57(05):589–593

Sun WP, Zhao JX, Wan Q, Wei D, Yu YX. Association of hyper-

homocysteinemia and stroke with atherosclerosis and small artery occlusion depends on homocysteine metabolism-related vitamin levels in Chinese patients with normal renal function. Metab Brain Dis 2017;32(03):859–865

Yi L, Huang Y, Wu T, Wu J. A magnetic nanoparticles-based method for DNA extraction from the saliva of stroke patients. Neural Regen Res 2013;8(32):3036–3046

Yingdong Z, Zhigang Z, Yang L. Association of plasma homocys-
teine level and N5,N10-methylenetetrahydrofolate reductase gene polymorphism with cerebral infarction. Chin Med Sci J 2002;17(04):231–235

Zhang W, Zhang X. Correlation between the youth cerebral in-

Tanne D, Haim M, Goldbourt U, et al. Prospective study of serum homocysteine and risk of ischemic stroke among patients with preexisting coronary heart disease. Stroke 2003;34(03):632–636

Shimizu H, Kiyohara Y, Kato I, et al. Plasma homocyst(e)ine concentrations and the risk of subtypes of cerebral infarction. The Hisayama study. Cerebrovasc Dis 2002;13(01):9–15

Tasclar N, Ekem S, Aciman E, et al. Hyperhomocysteinemia as an independent risk factor for cardioembolic stroke in the Turkish population. Tohoku J Exp Med 2009;218(04):293–300

Tan NC, Venkatesubramanian N, Saw SM, Tjia HT. Hyperhomo-
cyst(e)inemia and risk of ischemic stroke among young Asian adults. Stroke 2002;33(08):1956–1962

Khan U, Crossley C, Kalra L, et al. Homocysteine and its relation-

Campbell DJ, Woodward M, Chalmers JP, et al. Soluble vascular cell adhesion molecule 1 and N-terminal pro-B-type natriuretic peptide in predicting ischemic stroke in patients with cerebrovascular disease. Arch Neurol 2006;63(01):60–65

Hultdin J, Van Gulpen B, Winkvist A, et al. Prospective study of first stroke in relation to plasma homocysteine and MTHFR 677C>T and 1298A>C genotypes and haplotypes - evidence for an association with hemorrhagic stroke. Clin Chem Lab Med 2011;49(09):1555–1562

Kaplan RC, McGinn AP, Baird AE, et al. Inflammation and hemo-

Rueda-Clausen CF, Córdoba-Porras A, Bedoya G, et al. Increased plasma levels of total homocysteine but not asymmetric dimethylarginine in Hispanic subjects with ischemic stroke FREE-VI sub-study. Eur J Neurol 2012;19(03):417–425

Li Z, Sun L, Zhang H, et al; Multicenter Case-Control Study in China. Elevated plasma homocysteine was associated with hemor-

Zee RY, Mora S, Cheng S, et al. Homocysteine, 5,10-methylene-
thio-l-arginine in Hispanic subjects with ischemic stroke FREC-VI sub-study. Eur J Neurol 2012;19(03):417–425

Li Z, Sun L, Zhang H, et al; Multicenter Case-Control Study in China. Elevated plasma homocysteine was associated with hemor-

Bostom AG, Rosenberg IH, Silbershatz H, et al. Nonfasting plasma total homocysteine levels and stroke incidence in elderly persons: the Framingham Study. Ann Intern Med 1999;131(05):352–355

Zee RY, Mora S, Cheng S, et al. Homocysteine, 5,10-methylene-
thiotetrahydrofolate reductase gene C677T polymorphism was a risk factor for thrombotic stroke: a Multicenter Case-Control Study in China. Stroke 2003;34(09):2085–2090

Shi Z, Liu S, Guan Y, et al. Changes in total homocysteine levels after acute stroke and recurrence of stroke. Sci Rep 2018;8(01):6993

Pietr M, Roubenoff R, Dallal GE, Nadeau MR, Selhub J, Rosenberg IH. Plasma homocysteine as a risk factor for atherothrombotic events in systemic lupus erythematosus. Lancet 1996;348(8987):1395–1400

Petrie IJ, Refsum H, Morris RW, Ebrahim SB, Ueland PM, Shaper AG. Prospective study of serum total homocysteine concentra-
tion and risk of stroke in middle-aged British men. Lancet 1995;346(8987):1395–1398

Spence JD. Homocysteine-lowering therapy: a role in stroke prevention? Lancet Neurol 2007;6(09):830–839

Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-

Thomson CD, Weijenberg MP, van den Berg M, Jakobs C, Feskens EJ, Kromhout D. Serum homocysteine and risk of coronary heart disease and cerebrovascular disease in elderly men: a 10-year follow-up. Arterioscler Thromb Vasc Biol 1998;18(12):1895–1901

22 Spence JD. Homocysteine-lowering therapy: a role in stroke prevention? Lancet Neurol 2007;6(09):830–839

23 Sterne JA, Sutton AJ, Ioannidis JP, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-

analyses of randomised controlled trials. BMJ 2011;343:d4002

24 Kong X, Huang X, Zhao M, et al. Platelet count affects efficacy of folate acid in preventing first stroke. J Am Coll Cardiol 2018;71(19):2136–2146

25 Perry JJ, Refsum H, Morris RW, Ebrahim SB, Ueland PM, Shaper AG. Prospective study of serum total homocysteine concentra-
tion and risk of stroke in middle-aged British men. Lancet 1995;346(8987):1395–1398

26 Stehouwer CD, Weijenberg MP, van den Berg M, Jakobs C, Feskens EJ, Kromhout D. Serum homocysteine and risk of coronary heart disease and cerebrovascular disease in elderly men: a 10-year follow-up. Arterioscler Thromb Vasc Biol 1998;18(12):1895–1901
Sahebkar A, Pirro M, Reiner Ž, et al. A systematic review and meta-analysis of controlled trials on the effects of statin and fibrate therapies on plasma homocysteine levels. Curr Med Chem 2016;23(39):4490–4503

Cao L, Guo Y, Zhu Z. Study of the inflammatory mechanisms in hyperhomocysteinemia on large-artery atherosclerosis based on hypersensitive c-reactive protein—a study from southern china. J Stroke Cerebrovasc Dis 2019;28(07):1816–1823

Dai Z, Jiao Y, Fan Q, Qi A, Xiao L, Li J. Homocysteine, interleukin-1β, and fasting blood glucose levels as prognostic markers for diabetes mellitus complicated with cerebral infarction and correlated with carotid intima-media thickness. Exp Ther Med 2020;19(02):1167–1174

Wei GJ, Yuan MQ, Jiang LH, et al. A genetic variant of mir-34a contributes to susceptibility of ischemic stroke among Chinese population. Front Physiol 2019;10:432

Alkali NH, Watt H, Bwala SA, Gadzama A. Association of plasma homocysteine and ischaemic stroke in a nigerian population. Pakistan J Med Sci 2006;22:405–408