Perinatal Environmental Health Education Intervention to Reduce Exposure to Endocrine Disruptors: The PREVED Project

HOURIA EL OUAZZANI (elhouria.sp@gmail.com)
CHU Poitiers: Centre Hospitalier Universitaire de Poitiers

Simon Fortin
CHU Poitiers: Centre Hospitalier Universitaire de Poitiers

Nicolas Venisse
CHU Poitiers: Centre Hospitalier Universitaire de Poitiers

Antoine Dupuis
CHU Poitiers: Centre Hospitalier Universitaire de Poitiers

Steeve Rouillon
AP-HP: Assistance Publique - Hopitaux de Paris

Guillaume Cambien
CHU Poitiers: Centre Hospitalier Universitaire de Poitiers

Anne-Sophie Gourgues
CHU Poitiers: Centre Hospitalier Universitaire de Poitiers

Pascale Pierre-Eugène
CHU Poitiers: Centre Hospitalier Universitaire de Poitiers

Sylvie Rabouan
CHU Poitiers: Centre Hospitalier Universitaire de Poitiers

Virginie MIGEOT
CHU Poitiers: Centre Hospitalier Universitaire de Poitiers

Marion Albouy-Llaty
CHU Poitiers: Centre Hospitalier Universitaire de Poitiers

Research

Keywords: Environmental health promotion, Pregnancy, Endocrine Disruptors, Lifestyle change intervention, RE-AIM, bisphenol A, Parabens

Posted Date: October 18th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-961558/v1
Abstract

Background

Environmental health promotion interventions may reduce endocrine disruptor (ED) exposure. PREVED (PREgnancy, preVention, Endocrine Disruptors) project was developed to improve knowledge, to enhance risk perception and to change exposure behavior. Our objective was to present the phases of PREVED project using the RE-AIM method.

Methods

PREVED intervention consisted of 3 workshops during pregnancy. Reach, adoption, and implementation phases were assessed with qualitative studies. Efficacy study consisted of a three-arm randomized controlled trial (RCT) on 268 pregnant women: i) control group (leaflet) ii) intervention group in neutral location iii) intervention group in contextualized location. The main outcome was the percentage evolution of participants who reported consuming canned food. Secondary outcomes were evolution of psycho-social scores, evolution of ED presence in urine and ED presence in colostrum.

Results

The intervention adoption was centered on upper-privileged women, but implementation assessment showed that key features (highly practical intervention) seemed to be carried out and had initiated some behavior changes. A total of 268 pregnant women participated in the intervention and 230 on randomized controlled trial (control group: 86 and intervention groups: 172). We found no significant differences in consumption of canned food and in percentage of women having a decrease of bisphenol A or parabens in urine, but we found significant increase in the evolution of risk perception score and overall psychosocial score in intervention groups (respectively: +15.73 control versus +21.03 intervention, p=0.003 and +12.39 versus +16.20, p=0.02). We found a significant difference in percentage of women with butylparaben detection between control group and intervention groups (13% versus 3%, p=0.03).

Conclusion

PREVED intervention is the first intervention research dedicated to perinatal environmental health education in France. By sharing know-how/experience in a positive non-alarmist approach, it improved risk perception, which is a key to behavior change aiming to reduce perinatal ED exposure. Including women in precarious situations stay a major issue.

Trial registration number: Retrospectively registered on 31 July 2017 (when the first participant was enrolled in this non-drug intervention, ClinicalTrials.gov was centered in therapeutic trials): NCT03233984 - URL: https://clinicaltrials.gov/ct2/show/NCT03233984

Contributions To The Literature
This study was the first intervention research assessing a perinatal environmental health education program in France using the RE-AIM method. PREVED intervention aimed to raise awareness among pregnant women of endocrine disruptors exposure.

While our main purpose was to reduce consumption of canned food, we noted instead an improvement in risk perception, a key function of behavior change.

The inclusion of underprivileged population in health promotion programs remain a major issue.

Background

Endocrine disruptors (EDs) are present everywhere in our daily life. Defined by the World Health Organization (WHO) as “exogenous substance or mixture that alters function(s) of the endocrine system and consequently causes adverse health effects in an intact organism, or its progeny, or (sub)populations”, they are widely distributed. Even at very low doses, EDs are likely to have endocrine-disrupting effects [1], and exposure to mixed EDs may have synergistic effects, for example, on fetal testes [2].

Pregnant women are exposed to many EDs such as Bisphenol A (BPA) and its chlorinated derivatives (ClxBPA) by dermal and oral route [3]. Indeed, BPA is found in plastics and water [4], ClxBPA are found in tap water due to water purification process using chlorine [5].

They are also exposed to parabens (PBs) through cosmetics and personal care products [6]. Only a few women change or intend to change their consumption habits during pregnancy [7].

Intrauterine exposure to environmental factors such as EDs is likely to have health consequences. As described in the Developmental Origins Hypothesis of Health and Diseases (DOHaD) theory, this exposure affect not only fetal development (nervous system disturbance, prematurity), but also the fetus’ future life (behavioral disturbances, early puberty) [1].

While late health promotion interventions have only a moderate impact, early interventions significantly reduce this risk [8]. Preventing exposure to environmental chemicals is a priority for reproductive health professionals and pregnant women [9]. Every mother-to-be should be particularly aware of exposure sources and their potential risks for her fetus; she should know how to minimize this exposure [10]. A few studies examining how to limit ED exposure used restrictive diet [11–13]. To our knowledge, no study has been aimed at reducing ED exposure by a health education program among pregnant women.

The purpose of the PREVED (PREgnancy preVention Endocrine Disrupters) project was to develop, implement and evaluate a health education program focused on environmental health and ED exposure during pregnancy. The evaluation of this program used the best assessment tools, thereby facilitating understanding of the mechanism of action and intervention transferability.

Methods
1. PREVED Project

PREVED project is a population health intervention research (PHIR) on environmental health education for pregnant women carried out in France from 2015 to 2021, with three phases: development, implementation, and evaluation according to the “Reach, Efficacy, Adoption, Implementation, and Maintenance” (RE-AIM) method [14]. The entire PREVED methodology is described elsewhere [15, 16].

2. RE-AIM method

RE-AIM method proposes an intervention framework integrating macroscopic (political, environmental and organizational components) and individual components [14].

2.1. Reach, Adoption, and Implementation assessment

Educational interventions are complex [17] because there are many components that interact with one another; their assessment process should include reach, adoption, and implementation.

Intervention depends on the behavior of both beneficiaries and facilitators, the number of people targeted, the number and variability of outcomes and its flexibility to be customized [18]. Glasgow et al. recommend the RE-AIM evaluation model in which: “Reach” represents the percentage and characteristics of targeted people, “Effectiveness” refers to the assessment of positive and negative consequences, including behavior, quality of life, satisfaction of beneficiaries and physiological judgement criteria, “Adoption” represents the proportions and representativeness of the intervention contexts and “Implementation” represents the extent to which the intervention was delivered as expected. The actual evaluation by the beneficiaries themselves (effectiveness) is the result of 'Efficacy*Implementation'. “Maintenance” means maintaining long-term behavioral change at the individual and community levels [14].

Reach in PREVED project was defined by the number and diversity of pregnant women participating in the program. Their characteristics included age, gender, marital status, body mass index, educational level, place of birth and precariousness EPICES score [19].

Program adoption was defined by a mixed approach: i) quantitative with the number of offered workshops and the number of participants among eligible women; ii) qualitative with an inductive methodological approach applied between January and April 2017, using the tensions characterizing the study; for example, the need to avoid alarmist approaches. A qualitative survey of ethnographic type was carried out as part of a master 2 in sociology, with immersion in the field of training, maintenance of a logbook, and data collection of 33 documents and writings, 5 participant observations and 11 semi-directional interviews.

Implementation was assessed with a qualitative study carried out between November 2017 and February 2018 using different approaches: observations from 11 workshops (7 neutral and 4 contextualized), interviews with 3 facilitators and 4 pregnant women, and satisfaction assessment of 18 workshops.
representing the views of 111 participants. This study analyzed the key features of program delivery as adaptations during workshops to meet specific needs of participants, behavioral techniques to engage them and remove barriers. It clarified the way the program sought to make pregnant women change their lifestyle choices and how they perceived workshops.

Maintenance was defined as the extent to which programs had potential for sustainability. It was measured by the number of workshops done after the end of the study, the number of sites continuing to deliver the program and the efficacy outcomes evolution.

Effectiveness was measured by merging efficacy and implementation evaluations.

2.2. Efficacy assessment

2.2.1. Efficacy study design

To assess **efficacy**, an open-label monocentric, randomized controlled trial (RCT), parallel-designed was conducted. Eligible women were identified from the list of pregnancy declarations centralized by “Protection Maternelle et Infantile” or PMI (maternal and child protection). The modalities of recruitment were detailed in the protocol article [16]. Central random blind-generated allocation with 1:1:1 ratio was performed based on fixed blocks of three before t0. The allocation sequence was generated on Microsoft EXCEL® (function RAND). Pregnant women were randomly assigned to one of the three groups in 1st trimester of pregnancy: i) Control group (leaflet on EDs) ii) Intervention group in neutral location (leaflet on EDs and collective workshops in a meeting room) iii) Intervention group in contextualized location (leaflet on EDs and collective workshops in the real-life pedagogical apartment).

Three workshops were conducted during the 2nd and 3rd trimester of pregnancy, they focused on three themes: i) indoor air quality (animated by a medical advisor for indoor environments) ii) nutrition (animated by dietician trained in environmental health) iii) personal care products (animated by a cosmetologist).

2.2.2. Efficacy study outcomes

Main outcome was percentage evolution of participants who reported consuming canned food before and after intervention. This percentage was determined through a consumption questionnaire (Q1) developed by our research team [3] and administered at t0, t+2 months and t+14 months. Q1 explored the various food consumption that could be a source of exposure to EDs.

Secondary outcomes were mean score evolution of psychosocial dimensions such as risk perception, self-esteem, sense of coherence, locus of control. These scores were determined through a psychosocial questionnaire (Q2) also developed by our research team: the PREVED© questionnaire [15], and administered at t0, t+2 months and t+14 months. Q2 was structured on the basis of the Health Belief Model (HBM) [20] and explores: i) ED knowledge; ii) Risk from EDs; iii) Risk Assessment of EDs; iv)
Perceived Ability to avoid ED exposure. The efficacy of the program was therefore assessed in terms of the knowledge, attitudes, and practices (KAP) of participants towards ED exposure.

Finally, we assessed urinary presence or concentration of BPA, chlorinated derivatives of BPA (ClxBPA) monochloro, dichloro, trichloro and tetrachloroBPA (MClBPA, DCI BPA, TCBPA and TCTh BPA respectively), and PBs (methyl-ethy- propyl- and butyl-PB, MePB, EtPB, PrPB and BuPB respectively) at t0, t+2 months, at childbirth and t+14 months; and presence or concentration in colostrum of BPA, ClxBPA, MePB, EtPB, PrPB and BuPB at childbirth.

BPA and ClxBPA in urine samples were assayed by Ultra High-Performance Liquid Chromatography coupled with tandem Mass Spectrometry (LC-MS/MS) according to the method developed and validated by our team [21]. The description of sampling, transport, and storage of samples before analysis is detailed in the protocol article [16] (Additional File 1).

To compare groups, a first variable defined whether each sample was below the LoD (Limit of Detection), above the LoQ (Limit of Quantification) or between these two thresholds. A second dynamic variable between two urinary stages defined three categories of development: decreasing variable (e.g. drop from superior to LoQ to below LoD), stability of the variable or rising variable (e.g. from below LoD to an intermediate level between LoD and LoQ). Whenever possible, for left-censored data less than 80%, data imputation by minimum of LoQ divided by two (LoQ / 2 for samples below the LoQ) and by Truncation k-Nearest Neighbor imputation (kNN-TN) was performed [22], enabling quantitative analysis.

2.2.3. Statistical analysis

Intervention exposure was defined as “having participated in at least two workshops”. Sensibility analysis was defined being exposed, if having participated in at least one workshop.

A descriptive analysis was performed on sociodemographic data, questionnaire scores and on presence or concentrations of EDs, with mean and standard deviation for quantitative variables, and percentage for qualitative variables; paired t-tests were used to compare mean differences and χ2-test was used to compare percentages.

The Q1 mainly quantifies the number of a) canned tuna/week; b) preserved sweetcorn/week; c) other canned food/week; d) total canned food consumption/week; e) canned drinks/day; f) plastic drink bottles/week. We compared the evolution from before to after intervention of these consumptions between control group (Group 1) and intervention groups (Group 2+3).

The Q2 mainly quantifies an overall psychosocial score summing four sub-scores: ED knowledge; Perceived Ability to avoid ED exposure; Risk from EDs (Perceived severity score) and Risk Assessment of EDs (Perceived vulnerability score). A risk perception score was calculated based on perceived severity and vulnerability [15].
Main ED presence or concentration statistics were performed between control group (Group 1) and intervention groups (Group 2+3). Additional analysis was performed for sub-group analysis (Group 2 versus Group 3).

We performed statistical modelling with risk perception as dependent variable and EDs risk perception determinants [23], such as socio-economic status and age, as independent variables, with linear multiple regression. We performed the same statistical modelling with overall psychosocial score.

Per-protocol (PP) analysis was performed to assess the effect of workshops on consumption, psychosocial variables, and ED presence or concentrations. Depending on the conditions of use, χ² or Fisher tests were carried out for percentage comparison. After imputation of ED concentration, Student or Wilcoxon tests were carried out for mean comparison. We used ANOVA (analysis of variance) to compare means of the groups.

The number of participants was calculated using a two-sided test (α = 0.05 and β = 0.20), according to EDDS (Endocrine Disruptors Deux-Sèvres) cohort results [3]. Our hypothesis was that intervention would decrease the percentage of women who consumed canned food by 23 points. Then, 58 participants were required for each group for a total of 174 pregnant women. We expected 20% lost to follow-up. In fine, 210 participants were required to be included in our study. Due to major colostrum loss, we included 63 supplementary participants. This amendment was approved by the Personal Protection Committee (protocol version 10 approved on 15/05/2018).

Statistical analyses were performed using SAS 9.4® (Statistical Analysis Software 9.4, SAS Institute Inc, Cary, North Carolina, USA), Microsoft EXCEL® (2010, Bellevue, Washington, USA) and open-source software R (version 4.0.5).

Results

1. Reach, Adoption, and Implementation

1. Reach

The absolute number of pregnant women participating in PREVED program was 268, but 230 women were included in PREVED study. Their characteristics included age, gender, marital status, body mass index, educational level, country of birth and EPICES score are presented in Table 1.
Table 1
Characteristics of PREVED cohort pregnant women

	Control Group (n=78)	Intervention Group (n=152)		
	n1	%	n2	%
Maternal age (years)				
<30	14	17.9	29	19.1
30-34	35	44.9	73	40.0
≥35	29	37.2	50	32.9
Mean \(\pm\) SD	33.1	± 4.3	32.8	± 4.0
Marital status				
Married/ Cohabiting / Civil partnership	78	100.0	152	100.0
Parity				
Nulliparous	19	24.4	50	32.9
1 child	25	32.1	60	39.5
≥ 2 children	34	43.4	42	27.6
Women's BMI (kg/m²)				
< 18.5	4	5.1	13	8.6
18.5 - 25	59	75.6	112	73.7
25-30	13	16.7	21	13.8
> 30	2	2.6	6	3.9
Mean \(\pm\) SD	22.4	± 3.2	22.6	± 3.7
Did you finish your studies?				
Non	11	14.1	8	5.3
Oui	67	85.9	141	92.8
Women's educational level				
None	1	1.3	0	0.0
Primary, secondary school (<12th grade)	1	1.3	2	1.3
Certificate of Professional Competence	0	0.0	1	0.7
	Control Group (n=78)	Intervention Group (n=152)		
---	---	---		
French baccalaureate (12th grade)	3 3.8	9 5.9		
French baccalaureate +2 (12–14th grade)	10 12.8	22 14.5		
Higher education (>14th grade)	59 75.6	112 73.7		
Other	4 5.1	6 3.9		
Country of birth				
Metropolitan France	70 89.7	144 94.7		
Overseas France	2 2.6	0 0.0		
Other	6 7.7	8 5.3		
EPICES score				
Precarious situation (≥30.17)	8 10.3	22 14.5		
No precarious situation (<30.17)	70 89.7	130 85.5		
Mean ± SD	8.3 ± 11.1	9.3 ± 12.2		
Smoking				
Three months before conception				
No	64 82.1	113 74.3		
Yes	14 17.9	39 25.7		
During the first trimester				
No	69 88.5	130 85.5		
Yes	9 11.5	22 14.5		
Alcohol consumption				
Before conception				
No	4 5.1	26 17.1		
Yes	74 94.9	127 83.6		
Drinking more than 4 glasses during the 1st trimester * (n = 73 for control group; 147 for intervention group)				
Never	69 94.5	124 84.4		
Consumption of canned tuna (/week)	Control Group (n=78)	Intervention Group (n=152)		
-----------------------------------	----------------------	---------------------------		
Very rarely	4 5.5	20 13.6		
Once a month	0 0.0	1 0.7		
Two or three times a month	0 0.0	2 1.4		

Consumption of preserved sweetcorn (/week)	Control Group (n=78)	Intervention Group (n=152)
At the first visit		
No	24 30.8	43 28.3
Yes	54 69.2	109 71.7
Mean ; ± SD * (n1 = 54 ; n2 = 108)	1.8 ± 1.7	1.8 ± 1.1
At the second visit		
No	46 59.0	84 55.3
Yes	32 41.0	68 44.7
Mean ; ± SD * (n1 = 32 ; n2 = 68)	1.5 ± 0.8	1.7 ± 1.0

Consumption of other canned food (/week)	Control Group (n=78)	Intervention Group (n=152)
At the first visit		
No	18 23.1	28 18.4
Yes	60 76.9	124 81.6
Mean ; ± SD* (n1 = 59 ; n2 =123)	2.9 ± 2.9	2.3 ± 2.2
	Control Group	Intervention Group
--------------------------------------	---------------	--------------------
	(n=78)	(n=152)
At the second visit		
No	35	44.9
Yes	43	55.1
Mean ; ± SD* (n1 = 43 ; n2 = 93)	2.2 ± 1.9	2.0 ± 1.4
Total canned food consumption (/week)		
At the first visit		
Mean ; ± SD* (n1 = 71 ; n2 = 142)	4.7 ± 4.7	4.7 ± 3.8
At the second visit		
Mean ; ± SD* (n1 = 59 ; n2 = 119)	2.9 ± 2.3	3.4 ± 2.4
Consumption of canned drink products (/day)		
At the first visit		
No	66	84.6
Yes	12	15.4
Mean ; ± SD* (n1 = 13 ; n2 = 28)	1.7 ± 1.7	1.5 ± 1.3
At the second visit (n1 = 77 ; n2 = 151)		
No	65	84.4
Yes	12	15.6
Mean ; ± SD* (n1 = 12 ; n2 = 22)	1.4 ± 0.7	1.7 ± 1.4
Consumption of consumption of plastic drink bottles (/week)		
At the first visit		
No	45	57.7
Yes	33	42.3
Mean ; ± SD* (n1 = 33 ; n2 = 72)	1.4 ± 1.1	1.4 ± 0.9
At the second visit * (n1 = 78 ; n2 = 151)		
No	41	52.6
Yes	37	47.4
Mean ; ± SD* (n1 = 43 ; n2 = 93)	2.2 ± 1.9	2.0 ± 1.4
Consumption of fresh fruit and vegetables (/day)	Control Group (n=78)	Intervention Group (n=152)
--	----------------------	-----------------------------
Mean ; ± SD* (n1 = 37 ; n2 = 68)	1.4 ± 1.1	1.5 ± 1.1
Consumption of organic fruit and vegetables		
At the first visit		
No	14	17.9
Yes	64	82.1
At the second visit		
No	12	15.4
Yes	66	84.6
Consumption of fast food (/month)		
At the first visit		
No	38	48.7
Yes	40	51.3
Mean ; ± SD* (n1 = 40 ; n2 = 82)	1.6 ± 1.0	1.6 ± 0.9
At the second visit		
No	35	44.9
Yes	43	55.1
Mean ; ± SD* (n1 = 30 ; n2 = 73)	1.53 ± 0.8	1.6 ± 1.3
Consumption of ready-made meals (/week)		
At the first visit		
No	38	48.7
Yes	40	51.3
Mean ; ± SD* (n1 = 28 ; n2 = 39)	1.5 ± 0.9	1.5 ± 1.2
Control Group (n=78) | Intervention Group (n=152)
---|---

At the second visit

No* (n1 = 40 ; n2 = 91) | 37 | 92.5 | 82 | 90.1
Yes | 3 | 7.5 | 9 | 9.9
Mean ; ± SD* (n1 = 21 ; n2 = 23) | 1.5 | ± 1.4 | 1.3 | ± 0.8

*Missing data; SD: standard deviation

1. Program adoption

1.2.1. Quantitative analysis

A total of 436 workshops were held during the period from May 2017 to August 2019: 287 in 2017, 103 in 2018 and 46 in 2019. A total of 232 (53%) workshops were held in contextualized location compared to 204 (47%) in neutral location (Table 2).

Table 2
Adoption of the workshops. PREVED Study

Workshop1	Workshop2	Workshop3	Total	
	Indoor air quality	Food	Care Product	(n Workshops)
Total (n Workshops)	148	145	143	436
Neutral location	69	69	66	204
Contextualized location	79	76	77	232
2017	95	95	97	287
2018	36	35	32	103
2019	17	15	14	46

In fine, 135 (60 in neutral location, 75 in contextualized location) of pregnant women followed the workshop among 4393 eligible women who received informative postal mail with a prepaid envelope.

1.2.2. Qualitative analysis

Our ultimate purpose being to reach all pregnant women including disadvantaged populations, we chose an underprivileged and multicultural neighborhood of Poitiers city (France) with families from low
socioeconomic and educational status to implement the intervention. However, the ethnographic study noted exclusion of the most vulnerable populations. It appeared that the intervention had omitted a thorough diagnosis of its needs within a given territory.

1. Implementation

The qualitative study showed that the workshops offered a friendly and dynamic atmosphere what foster exchanges. The adaptability of workshops facilitators was appreciated by the participants. Indeed, a great deal of information sharing, and a lot of interaction occurred in a convivial atmosphere. The participants considered the contents highly practical and concrete. They said they had initiated some changes. The key features of program delivery seemed to be respected with adaptations made during delivery to meet the specific needs of participants. While the objectives of the workshops appeared clear and sufficient, they were perceived as too numerous. The contents in the contextualized place seemed clear and accessible, reassuring and not guilt-inducing.

2. Efficacy: RCT Results

After randomization, three participants declined to participate. We excluded three other participants because of missing data. Most analyses were carried out on data from 230 participants: 78 randomized in control group (Group 1) and 152 in intervention groups (Group 2+3). Figure 1 shows the flow chart of PREVED study.

All participants were in a relationship; their average age was 33 years. A minority was in precarious situations (10.3% in Group 1 and 14.5% in Group 2+3). Table 1 presents socio-demographic data.

1. Intent-to-treat (ITT) analysis

Table 3 presents the results of the Q1 analysis. Consumption in 2nd and 3rd trimester between Group 1 and Group 2+3 was different for preserved sweetcorn (p=0.02) and for ready-made meals (24.7% versus 9.3%, p=0.01). We found no significant difference in consumption of total canned food, canned tuna, other canned food, canned drinks, and plastic drink bottles. Table 4 presents the results of the Q2 analysis. We found no significant difference between Group 1 and Group 2+3 in risk perception score evolution or overall psychosocial score evolution. However, we noted a positive trend in both control and intervention groups. The subjective knowledge on EDs of Group 1 increased significantly more than Group 2+3.
	Control Group (n=78)	Intervention Group (n=152)	p		
	n1	%	n2	%	
Consumption of canned tuna (/week) * (N=169)					
Decrease	34	57.6	72	65.4	0.47
Stable	9	27.1	21	19.1	
Increase	16	15.3	17	15.5	
Consumption of canned tuna (/week)					
No Consumption in T2 and T3	19	24.4	41	27.0	0.10
Consumption in T2 and No Consumption in T3	27	34.6	43	28.3	
Consumption in T2 and T3	27	34.6	66	43.4	
No Consumption in T2 and Consumption in T3	5	6.4	2	1.3	
Consumption of preserved sweetcorn (/week) * (N=137)					
Decrease	28	62.2	56	60.9	0.84
Stable	94	20.0	22	23.9	
Increase	8	17.8	14	15.2	
Consumption of preserved sweetcorn (/week)					
No Consumption in T2 and T3	33	42.3	60	39.5	0.02
Consumption in T2 and No Consumption in T3	25	32.1	32	21.1	
Consumption in T2 and T3	14	17.9	54	35.5	
No Consumption in T2 and Consumption in T3	6	7.7	6	3.9	
Consumption of other canned food (/week) * (N=198)					
Decrease	38	56.7	66	50.4	0.69
Stable	15	22.4	35	26.7	
Increase	14	20.9	30	22.9	
Consumption of other canned food (/week)					
No Consumption in T2 and T3	10	12.8	20	13.1	0.15
	Control Group (n=78)	Intervention Group (n=152)	p		
--------------------------------------	----------------------	-----------------------------	----		
	n1	%	n2	%	
Consumption in T2 and No Consumption in T3	25	32.0	35	23.0	
Consumption in T2 and T3	35	44.9	89	58.6	
No Consumption in T2 and Consumption in T3	8	10.3	8	5.3	
Total canned food consumption (/week) * (N=227)					
Decrease	51	68.0	92	63.9	0.41
Stable	8	10.7	25	17.4	
Increase	16	21.3	27	18.7	
Consumption of canned drink products (/day) * (N=55)					
Decrease	7	43.7	21	53.8	0.66
Stable	2	12.5	6	15.4	
Increase	7	43.7	12	30.8	
Consumption of canned drink products (/day) * (N=228)					
No Consumption in T2 and T3	61	79.2	113	74.8	0.43
Consumption in T2 and No Consumption in T3	4	5.2	16	10.6	
Consumption in T2 and T3	8	10.4	11	7.3	
No Consumption in T2 and Consumption in T3	4	5.2	11	7.3	
Consumption of consumption of plastic drink bottles (/week) * (N=136)					
Decrease	11	23.9	27	30.0	0.76
Stable	20	43.5	36	40.0	
Increase	15	32.6	27	30.0	
Consumption of consumption of plastic drink bottles (/week) * (N=229)					
No Consumption in T2 and T3	32	41.0	60	39.7	0.71
Consumption in T2 and No Consumption in T3	9	11.5	22	14.6	
Consumption in T2 and T3	24	30.8	51	33.8	
No Consumption in T2 and Consumption in T3	13	16.7	18	11.9	
Consumption of fresh fruit and vegetables (/day)					
	Control Group	Intervention Group			
--	---------------	---------------------	---		
	(n=78)	(n=152)			
	n1	%	n2	%	p
Decrease					
Stable	18	23.1	35	23.0	0.73
Increase	27	34.6	60	39.5	
	33	42.3	57	37.5	
Consumption of organic fruit and vegetables (/day)					
No Consumption in T2 and T3	7	9.0	21	13.8	0.75
Consumption in T2 and No Consumption in T3	5	6.4	8	5.3	
Consumption in T2 and T3	59	75.6	111	73.0	
No Consumption in T2 and Consumption in T3	7	9.0	12	7.9	
Consumption of fast food (/month) * (N=134)					
Decrease	17	40.5	32	34.8	0.09
Stable	22	52.4	39	42.4	
Increase	3	7.1	21	22.8	
Consumption of fast food (/month)					0.7
No Consumption in T2 and T3	35	44.9	61	40.1	
Consumption in T2 and No Consumption in T3	12	15.4	19	12.5	
Consumption in T2 and T3	28	35.9	63	41.4	
No Consumption in T2 and Consumption in T3	3	3.9	9	5.9	
Consumption of ready-made meals (/week) * (N=80)					
Decrease	13	43.3	30	60.0	0.35
Stable	11	36.7	8	16.0	
Increase	6	20.0	12	24.0	
Consumption of ready-made meals (/week) * (N=228)					
No Consumption in T2 and T3	47	61.0	101	66.9	0.01
Consumption in T2 and No Consumption in T3	2	2.6	11	2.3	
Consumption in T2 and T3	19	24.7	14	9.3	
	Control Group	Intervention Group	p		
-----------------------	-----------------	--------------------	----		
	(n=78)	(n=152)			
n1					
n2					
%					
%					
No Consumption in T2 and Consumption in T3	2	2.6	11	7.3	
*Missing data					
1- Endocrine Disrupting Chemicals knowledge (score/40.5)	Control Group (n1=78)	Intervention Group (n2=152)	p		
--	------------------------	----------------------------	----		
Δm*	IC 95%	Δm*	IC 95%		
Sources of exposure to Endocrine Disrupting Chemicals (score/22)	+2.15	[+1.48 ; 2.82]	+1.97	[+1.54 ; 2.40]	0.64
Definition of endocrine disruptors (score/7)	+0.44	[+0.16 ; 0.71]	+0.36	[+0.20 ; 0.52]	0.63
Ability to name molecules (score/6.5)	+0.77	[+0.54 ; 1.00]	+0.83	[+0.66 ; 0.99]	0.69
Pathways of exposure to Endocrine Disrupting Chemicals (score/5)	+0.19	[+0.07 ; 0.31]	+0.23	[+0.15 ; 0.31]	0.59
2- Perceived Ability to avoid chemical exposure (/100)	+7.09	[+2.33 ; 11.85]	+5.11	[+1.80 ; 8.42]	0.50
3-Risk from Endocrine Disrupting Chemicals (perceived severity score/100) to:					
The health of pregnant women	+7.16	[+1.40 ; 12.91]	+7.61	[+3.28 ; 11.94]	0.90
The newborn health	+8.09	[+2.28 ; 8.54]	+5.41	[+2.28 ; 8.54]	0.31
The adolescent health	+7.56	[+3.50 ; 11.63]	+4.73	[+2.05 ; 7.41]	0.24
The adult health	+6.06	[+1.38 ; 10.74]	+4.47	[+0.87 ; 8.08]	0.60
4- Risk Assessment of Endocrine Disrupting Chemicals:					
Perceived vulnerability score/1400	+275.60	[+229.20 ; 322.00]	+256.40	[+228.60 ; 284.20]	0.46
Perceived vulnerability score/100	+19.69	[+16.37 ; 23.00]	+18.31	[+16.33 ; 20.30]	0.46
Risk perception score (3+4) / 100	+19.50	[+17.12 ; 22.78]	+18.76	[+16.68 ; 20.84]	0.51
Global Score (1+2+3+4): Score / 100	+15.63	[+13.21 ; 18.05]	+14.45	[+13.00 ; 15.91]	0.38
Subjective Knowledge on Endocrine Disrupting Chemicals (score/100)	Control Group (n1=78)	Intervention Group (n2=152)	p		
---	---	---	---	---	---
	Δm*	IC 95%	Δm*	IC 95%	
Subjective Knowledge on Endocrine Disrupting Chemicals (score/100)	+28.24	[+24.23 ; +32.26]	+19.77	[+16.51 ; +23.03]	0.002

The information received on Endocrine Disrupting Chemicals were (score/100)

Understandable* (n=74 ; 142)	-1.65	[-8.33 ; +5.03]	-1.35	[-6.14 ; +3.45]	0.99
Scientific* (n=74 ; 142)	-2.39	[-7.39 ; +2.61]	+2.15	[-0.87 ; +5.18]	0.10
Realistic* (n=74 ; 142)	+3.96	[-1.01 ; +8.93]	-0.36	[-3.85 ; +3.12]	0.15
Stressful* (n=74 ; 142)	-1.91	[-6.05 ; +2.24]	-3.34	[-5.80 ; -0.88]	0.53
Complete* (n=73 ; 142)	+6.30	[0.18 ; +12.78]	+11.70	[+7.72 ; +15.68]	0.14

Events during the pregnancy you are daily concerned with (score/100)

Events during the pregnancy you are daily concerned with (score/100)	Control Group (n=78 ; 151)	Intervention Group (n2=152)	p		
	Δm*	IC 95%	Δm*	IC 95%	
Pregnancy pain	-7.13	[-13.09 ; -1.17]	-0.93	[-5.07 ; +3.22]	0.09
The consequences of consumption of toxic substances for the child* (n=77 ; 151)	+1.64	[-7.16 ; +10.43]	+1.18	[-4.61 ; +6.97]	0.93
Infectious diseases* (n=76 ; 152)	-8.25	[-14.79 ; -1.71]	-6.80	[-11.53 ; -2.07]	0.72
Genetic diseases	-5.5	[-11.60 ; +0.50]	-5.48	[-9.63 ; -1.33]	0.98
Child illnesses linked to chemical exposure	-1.73	[-7.31 ; +3.85]	+0.22	[-3.06 ; +3.50]	0.52

Concept of a healthy baby

Concept of a healthy baby	Control Group (n=78 ; 151)	Intervention Group (n2=152)	p		
	Δm*	IC 95%	Δm*	IC 95%	
Healthy birth weight* (n=78 ; 151)	+5.21	[-0.63 ; +11.04]	-3.25	[-7.75 ; +1.25]	0.03
Full-term birth	+3.05	[-3.05 ; +9.15]	-1.47	[-5.51 ; +2.56]	0.21
Normal Intelligence Quotient (IQ)	+6.08	[-0.60 ; +12.75]	+6.19	[+1.76 ; +10.63]	0.98
Ability to have children	+7.50	[+1.18 ; +13.82]	+1.91	[-1.70 ; +5.51]	0.13
	Control Group (n1=78)	Intervention Group (n2=152)	p		
--------------------------------------	-----------------------	-----------------------------	-----		
	Δm^*	IC 95%	Δm^*	IC 95%	
Normal puberty	+4.73	[+0.19 ; +9.27]	+1.64	[-2.15 ; +5.44]	0.33
Normal Weight (no obesity; no overweight)	+1.24	[-2.80 ; +5.28]	+0.37	[-3.51 ; +4.24]	0.76
No asthma	+3.36	[-0.91 ; +7.63]	+0.96	[-3.06 ; +4.98]	0.42
No behavior disorders	+3.69	[-1.50 ; +8.89]	+4.64	[+0.41 ; +8.87]	0.79
Can play like all the other children	-1.14	[-6.57 ; +4.28]	-0.21	[-4.47 ; +4.05]	0.80
Not get sick so often	+3.03	[-2.16 ; +8.22]	+0.05	[-4.18 ; +4.28]	0.40
Able to make friends and fit in	-0.99	[-6.32 ; +4.34]	+5.54	[+1.54 ; +9.53]	0.06
Successful professional life	+0.53	[-5.12 ; +6.17]	+5.96	[+1.94 ; +9.98]	0.12
Successful emotional life	-1.35	[-7.03 ; +4.33]	+5.32	[+1.59 ; +9.05]	<0.05

Efforts towards avoiding chemical exposure

Financially	-2.30	[-7.25 ; +2.63]	
In terms of time* (n=77 ; 152)	+6.36	[+0.98 ; +11.75]	+3.11
In terms of comfort* (n=77 ; 152)	-1.00	[-8.12 ; +6.12]	-2.05

Locus of control

Internal locus of control (score/6)	+0.02	[-0.03 ; +0.08]	-0.03		
External locus of control: chance (score/3)	-0.01	[-0.10 ; +0.08]	+0.01	0.83	
External locus of control: medical personnel (score/4)	+0.06	[-0.02 ; +0.14]	-0.03	[-0.08 ; +0.02]	0.06

Sense of Coherence
Table 5 presents the results of the urine ED analysis between 2nd and 3rd trimester. Out of 225 participants who underwent urine measurement, we did not find a significant difference in percentage of women having a decrease of BPA (26% control group versus 24% intervention groups, \(p=0.94 \)) or MePB presence (19% control group versus 32% intervention groups, \(p=0.09 \)). Table 6 presents the comparison results between neutral location (Group 2) and contextualized location (Group 3): no significant difference in ED levels was observed. Table 7 presents the comparison results of the colostrum analysis. Out of 147 pregnant women with colostrum measurement, we found a significant difference in percentage of women with BuPB detection between control group and intervention groups (13% versus 3%, \(p=0.03 \)).

	Control Group (n1=78)	Intervention Group (n2=152)	\(p \)		
	\(\Delta m^* \)	IC 95\%	\(\Delta m^* \)	IC 95\%	\(p \)
Comprehensive (score/5)	-0.06	\([-0.24 ; +0.13]\)	+0.06	\([-0.07 ; +0.19]\)	0.28
Meaningful (score/4)	-0.03	\([-0.18 ; +0.13]\)	+0.02	\([-0.11 ; +0.14]\)	0.67
Manageable (score/4)	-0.16	\([-0.32 ; +0.01]\)	-0.09	\([-0.20 ; +0.03]\)	0.46
Rosenberg Self-Esteem Scale (score /40)	+0.56	\([-0.05 ; +1.18]\)	+0.49	\([+0.01 ; 0.96]\)	0.85
Assessment of anxiety in general (score/100)	-3.74	\([-7.65 ; +0.16]\)	-1.05	\([-3.66 ; +1.56]\)	0.25
Anxiety evolution: before and after the questionnaire (score/100)	-6.65	\([-12.35 ; -0.96]\)	-4.76	\([-8.93 ; -0.60]\)	0.60
Important risk taking about					
Professional life	-2.62	\([-7.40 ; +2.17]\)	-1.63	\([-5.19 ; +1.94]\)	0.75
Sport activities	+3.81	\([+0.42 ; +7.20]\)	-0.09	\([-3.02 ; +2.83]\)	0.11
Sexual practices	+1.26	\([-1.34 ; +3.85]\)	+0.97	\([-1.25 ; +3.20]\)	0.88
Road traffic	-0.81	\([-3.84 ; +2.22]\)	+2.24	\([-0.57 ; +5.05]\)	0.15
Use of substance	+0.82	\([-2.10 ; +3.74]\)	-0.15	\([-2.56 ; +2.26]\)	0.63

* \(\Delta m \): mean difference
Table 5
Urine biomarkers and exposition: Univariate analysis between 2nd and 3rd trimester (Intent-to-treat analysis) PREVED study.

	Control Group (n=80)	Intervention Group (n=145)	p		
	N	%	N	%	
Bisphenol A (BPA)					
Rising indicator	25	31	47	32	0.94
Same indicator	34	43	63	44	
Decline indicator	21	26	35	24	
BPA Mono-Chlorinated (MCBPA)					
Rising indicator	15	19	34	23	
Same indicator	48	60	67	46	0.13
Decline indicator	17	21	44	31	
BPA Di-Chlorinated (DCBPA)					
Rising indicator	22	27	37	26	
Same indicator	39	49	75	52	0.91
Decline indicator	19	24	44	22	
BPA Tri-Chlorinated (TCBPA)					
Rising indicator	13	16	22	15	
Same indicator	55	69	99	68	0.94
Decline indicator	12	15	24	17	
BPA Tetra-Chlorinated (TTBPA)					
Rising indicator	14	17	22	15	
Same indicator	47	59	88	61	0.90
Decline indicator	19	24	35	24	
MethylParaben (MePB)					
Rising indicator	15	19	28	19	
Same indicator	50	62	71	49	0.08
Decline indicator	15	19	46	32	
EthylParaben (EtPB)					
	Control Group (n=80)	Intervention Group (n=145)	p		
--------------------------	----------------------	-----------------------------	---------		
	N	%	N	%	
Rising indicator	22	27	29	20	
Same indicator	35	44	59	41	0.22
Decline indicator	23	29	57	39	
PropylParaben (PrPB)					
Rising indicator	8	10	22	15	
Same indicator	62	78	99	68	0.33
Decline indicator	10	12	24	17	
ButylParaben (BuPB)					
Rising indicator	2	3	2	1	
Same indicator	77	96	139	96	0.64
Decline indicator	1	1	4	3	
Table 6
Urine biomarkers and exposition, Univariate analysis between 2nd and 3rd trimester, Subgroup analysis for contextualized and non-contextualized, intent-to-treat analysis, PREVED study.

	Non-Contextualized Group (n = 68)	Contextualized Group (n = 77)	p		
	n	%	n	%	
Bisphenol A (BPA)					
Rising indicator	24	32	23	30	0.41
Same indicator	31	47	32	42	
Decline indicator	13	21	22	28	
BPA Mono-Chlorinated (MCBPA)					
Rising indicator	19	28	15	19	
Same indicator	29	43	38	50	0.47
Decline indicator	20	29	24	31	
BPA Di-Chlorinated (DCBPA)					
Rising indicator	18	26	19	25	
Same indicator	33	49	42	55	0.75
Decline indicator	17	25	16	20	
BPA Tri-Chlorinated (TCBPA)					
Rising indicator	11	16	11	14	
Same indicator	44	65	55	72	0.66
Decline indicator	13	19	11	14	
BPA Tetra-Chlorinated (TTBPA)					
Rising indicator	15	22	7	9	
Same indicator	39	57	49	64	0.09
Decline indicator	14	21	21	27	
MethylParaben (MePB)					
Rising indicator	13	19	15	19	
Same indicator	34	50	37	48	0.97
	Non-Contextualized Group	Contextualized Group	p		
--------------------------	--------------------------	----------------------	-----		
	(n = 68)	(n = 77)			
	n	%	n	%	
Decline indicator	21	31	25	33	
EthylParaben (EtPB)					
Rising indicator	18	26	11	14	0.16
Same indicator	27	40	32	42	
Decline indicator	23	34	34	44	
PropylParaben (PrPB)					
Rising indicator	12	18	10	13	0.67
Same indicator	46	68	53	69	
Decline indicator	10	14	14	18	
ButylParaben (BuPB)					
Rising indicator	1	1	1	1	0.99
Same indicator	65	96	74	96	
Decline indicator	2	3	2	3	
Table 7
Colostrum biomarkers and exposition in univariate analysis, intention to treat (ITT), PREVED study.

	Control Group	Intervention Group	p
	(n BPA = 45) (n Parabens = 39)	(n BPA = 102) (n Parabens = 88)	
	N %	N %	
Bisphenol A (BPA)	Superior to LoD: 34 76	Superior to LoD: 79 77	0.80
	Inferior to LoD: 11 24	Inferior to LoD: 23 23	
BPA Mono-Chlorinated (MCBPA)	Superior to LoD: 18 40	Superior to LoD: 49 48	0.37
	Inferior to LoD: 27 60	Inferior to LoD: 53 52	
BPA Di-Chlorinated (DCBPA)	Superior to LoD: 22 49	Superior to LoD: 47 46	0.75
	Inferior to LoD: 23 51	Inferior to LoD: 55 54	
BPA Tri-Chlorinated (TCBPA)	Superior to LoD: 29 64	Superior to LoD: 66 65	0.98
	Inferior to LoD: 16 36	Inferior to LoD: 36 35	
BPA Tetra-Chlorinated (TTBPA)	Superior to LoD: 20 44	Superior to LoD: 55 54	0.29
	Inferior to LoD: 25 56	Inferior to LoD: 47 46	
MethylParaben (MePB)	Superior to LoD: 36 92	Superior to LoD: 76 86	0.51
	Inferior to LoD: 3 8	Inferior to LoD: 12 14	
EthylParaben (EtPB)	Superior to LoD: 27 69	Superior to LoD: 49 56	0.15
	Inferior to LoD: 12 31	Inferior to LoD: 39 44	
PropylParaben (PrPB)	Superior to LoD: 13 33	Superior to LoD: 26 30	0.66

LoD: Limit of Detection
	Control Group	Intervention Group	p
	(n BPA = 45) (n Parabens = 39)	(n BPA = 102) (n Parabens = 88)	
N	%	N	%
Inferior to LoD	26	62	70
ButylParaben (BuPB)			
Superior to LoD	5	2	3
0.03			
Inferior to LoD	34	86	97
LoD : Limit of Detection			

After imputation by LoQ divides by two of censored data, we found no significant differences in mean concentrations of MePB in urine, either in BPA or MePB concentration in colostrum (Table 8). After imputation by kNN-TN, we found no significant differences in mean concentrations of MePB in urine and colostrum, but we found a statistical difference in BPA mean concentrations (Table 8).
Table 8
Univariate analysis, after data imputation (intent-to-treat analysis) PREVED study.

	Control Group	Intervention Group	p		
	(n = 93)	(n = 132)			
	Mean (ng/mL)	n	Mean (ng/mL)	n	
LoQ divides by two (LoQ/2)					
MethylParaben (MePB)					
Second trimester (Urine)	15.8	86	13.6	171	0.85
Third trimester (Urine)	7	80	14.8	146	0.69
Birth (Colostrum)	0.28	39	0.21	88	0.27
One Year (Urine)	3	35	0.4	72	0.27
Bisphenol A (BPA)					
Birth (Colostrum)	1.16	45	1	102	0.99
Truncation k-Nearest Neighbor (kNN-TN)					
MethylParaben (MePB)					
Second trimester (Urine)	16	86	13.8	171	0.86
Third trimester (Urine)	6.8	80	14.3	146	0.08
Birth (Colostrum)	0.3	39	0.27	88	0.38
One Year (Urine)	1,4	35	0.4	72	0.29
Bisphenol A (BPA)					
Birth (Colostrum)	1.53	45	1,21	102	0.048

1. Per-Protocol-Analysis

The PP analysis found a significant increase in the evolution of both risk perception score and a significant difference between groups (+15.73 control group versus +21.03 intervention group, p=0.003) and overall score (+12.39 control group versus +16.2 intervention group, p=0.02) (Table 9). Both significant differences were confirmed by a multivariate analysis that included age, educational attainment, and maternal figure. Linear regression found only significant relationship between intervention groups and scores (data not shown).
Table 9
Consumption and Psychosocial variables (Per-Protocol analysis) PREVED study.

Consumption Questionnaire	Control Group (n1=81)	Intervention Group (n2=149)	p		
	N	%	N	%	
Consumption of canned tuna (/week) * (N=169)					
Decrease	40	65.6	66	61.1	0.83
Stable	12	19.7	25	23.2	
Increase	9	14.7	26	15.7	
Consumption of preserved sweetcorn (/week) * (N=137)					
Decrease	27	60.0	57	62.0	0.94
Stable	11	24.4	20	21.7	
Increase	7	15.6	15	16.3	
Consumption of other canned food (/week) * (N=198)					
Decrease	41	58.6	63	49.2	0.44
Stable	15	21.4	35	27.4	
Increase	14	20.00	30	23.4	
Total canned food consumption (/week) * (N=227)					
Decrease	50	66.8	93	65.0	0.94
Stable	12	15.8	21	14.7	
Increase	14	18.4	29	20.3	
Consumption of canned drink products (/day) * (N=55)					
Decrease	13	61.9	15	44.1	0.05
Stable	0	0.0	8	23.5	
Increase	8	38.1	11	32.4	
Consumption of consumption of plastic drink bottles (/week) * (N=136)					
Decrease	15	30.6	23	26.4	0.85
Stable	20	40.8	36	41.4	
	Control Group	Intervention Group			
--------------------------------	------------------------	--------------------------	----		
	(n1=81)	(n2=149)			
	N %	N %	p		
Increase	14 28.6 %	28 32.2 %			
Consumption of fresh fruit and					
vegetables (/day)					
Decrease	21 25.9 %	32 21.5 %	0.67		
Stable	31 38.3 %	56 37.6 %			
Increase	29 35.8 %	61 40.9 %			
Consumption of fast food					
(/month) * (N=134)					
Decrease	16 33.3 %	33 38.4 %	0.12		
Stable	19 39.6 %	42 48.8 %			
Increase	13 27.1 %	11 12.8 %			
Consumption of ready-made meals					
(/week) * (N=80)					
Decrease	15 57.7 %	28 51.8 %	0.45		
Stable	4 15.4 %	15 27.8 %			
Increase	7 26.9 %	11 20.4 %			
Psychosocial questionnaire					
1- Endocrine Disrupting Chemicals knowledge (score/40.5)**	+3.22 [+2.52 ; +3.93]	+3.57 [+2.99 ; +4.14]	0.47		
2- Perceived Ability to avoid chemical exposure (/100)**	+7.09 [+2.33 ; +11.85]	+5.11 [+1.80 ; +8.42]	0.50		
3- Risk from Endocrine Disrupting Chemicals (severity score/100)**	+15.61 [+10.64 ; 20.58]	+21.69 [+18.67 ; +24.70]	0.03		
4- Risk Assessment of Endocrine Disrupting Chemicals (vulnerability score/1400)**	+222.00 [+187.00 ; +257.10]	+285.10 [+253.60 ; +316.6]	0.008		
Risk perception score (3+4)/100**	+15.73 [+12.96 ; +18.51]	+21.03 [+18.99 ; +23.07]	0.003		
Global Score (1+2+3+4)/100**	+12.39 [+10.57 ; +14.21]	+16.2 [+14.55 ; +17.83]	0.002		

*Missing data ** Δm: mean difference CI: Confidence Interval
We compared mean scores between the three groups (Table 10), and we found the same results with an increase of the risk perception score among each group after intervention: +16.2 in Group 1, +20.3 in Group 2 (neutral location) and +21.4 in Group 3 (contextualized location) (p=0.02), and an increase of the overall psychosocial score after intervention: +12.7 in Group 1, +16.0 in Group 2 and +16.4 in Group 3 (p=0.03). We also found that fast-food consumption increased significantly after intervention among 32.7% of the participants of Group 1, versus 10.5% in Group 2 and 5.3% in Group 3 (p=0.004).
Table 10
Consumption and Psychosocial variables by groups (Per Protocol analysis) PREVED study.

	0 or 1 workshop (n1=92)	2 or 3 workshops in neutral location (n2=60)	2 or 3 workshops in contextualized location (n3=75)	p		
N	**%**	**N**	**%**			
Consumption Questionnaire						
Consumption of canned tuna (/week) *						
Decrease	42	29	33	57.9	0.90	
Stable	14	8	14	24.6		
Increase	9	7	10	17.5		
Consumption of preserved sweetcorn (/week) *						
Decrease	28	26	29	67.4	0.63	
Stable	13	11	6	14.0		
Increase	7	7	8	18.6		
Consumption of other canned food (/week) *						
Decrease	46	20	36	57.1	0.16	
Stable	16	19	15	23.8		
Increase	19	13	12	19.1		
Total canned food consumption (/week) *						
Decrease	55	37	48	67.6	0.60	
Stable	13	12	8	11.3		
Increase	19	9	15	21.1		
Consumption of canned drink products (/day) *						
Decrease	13	6	8	50.0	0.03	
Stable	0	6	2	12.5		
Increase	9	4	6	37.5		
Consumption of consumption of plastic drink bottles (/week) *						
Decrease	16	9	12	27.3	0.94	
Stable	21	16	18	40.9		
0 or 1 workshop (n1=92)	2 or 3 workshops in neutral location (n2=60)	2 or 3 workshops in contextualized location (n3=75)				
-------------------------	---	--				
N	%	N	%	N	%	
Increase	18	32.7	9	26.5	14	31.8

Consumption of fresh fruit and vegetables (/day)

	N	%
Decrease	25	27.2
Stable	35	38.0
Increase	32	34.8

- **p = 0.68**

	N	%
Decrease	16	21.3
Stable	27	36.0
Increase	32	42.7

Consumption of fast food (/month)*

	N	%
Decrease	19	34.6
Stable	18	32.7
Increase	18	32.7

- **p = 0.004**

	N	%
Decrease	13	34.2
Stable	23	60.5
Increase	2	5.3

Consumption of ready-made meals (/week)*

	N	%
Decrease	13	44.0
Stable	4	44.0
Increase	3	12.0

- **p = 0.07**

	N	%
Decrease	11	44.0
Stable	11	44.0
Increase	3	12.0

Psychosocial questionnaire

	N	%
Risk perception score / 100**	+16.18	+16.00
	[-24.23 ; +58.45]	[-16.00 ; +48.37]
Global Score/100**	+21.41	+16.40
	[-9.15 ; +56.52]	[-13.1 ; +45.5]

- **p = 0.019**

	N	%
Risk perception score / 100**	+20.27	+16.00
	[-16.00 ; +48.37]	[-6.9 ; +38.0]
Global Score/100**	+21.41	+16.40
	[-9.15 ; +56.52]	[-13.1 ; +45.5]

- **p = 0.026**

*Missing data ** Δm: mean difference CI: Confidence Interval

In urine ED PP analysis (Table 11), we did not find a significant difference in percentage of women having a decrease of BPA (23% *versus* 33%, p=0.85) or PBs, e.g. MePB presence (20% Group 1 *versus* 33% Group 2+3, p=0.09). In Colostrum ED PP analysis (Table 12), we found a statistical difference in percentage of women having BuPB detection (13% Group 1 *versus* 3% Group 2+3, p=0.01).
Table 11
Urine biomarkers and exposition, Univariate analysis between 2nd and 3rd trimester, intervention group with at least two workshop (Per Protocol analysis) PREVED study.

	Control Group	Intervention Group	p		
	(n = 93)	(n = 132)			
	n	%	n	%	
Bisphenol A (BPA)					
Rising indicator	28	30	44	33	0.85
Same indicator	42	45	55	42	
Decline indicator	23	25	33	25	
BPA Mono-Chlorinated (MCBPA)					
Rising indicator	17	18	32	24	0.21
Same indicator	54	58	61	46	
Decline indicator	22	24	39	30	
BPA Di-Chlorinated (DCBPA)					
Rising indicator	22	24	37	28	0.74
Same indicator	48	52	66	50	
Decline indicator	23	24	29	22	
BPA Tri-Chlorinated (TCBPA)					
Rising indicator	15	16	20	15	0.94
Same indicator	64	69	90	68	
Decline indicator	14	15	22	17	
BPA Tetra-Chlorinated (TTBPA)					
Rising indicator	17	18	19	14	0.73
Same indicator	54	58	81	61	
Decline indicator	22	24	32	25	
MethylParaben (MePB)					
Rising indicator	19	20	24	18	0.09
Same indicator	56	60	65	49	
	Control Group	Intervention Group			
--------------------------	---------------	---------------------	---		
	(n = 93)	(n = 132)	p		
n	%	n	%		
Decline indicator	18	20	43	33	
EthylParaben (EtPB)					
Rising indicator	22	24	29	22	
Same indicator	42	45	52	39	0.51
Decline indicator	29	31	51	39	
PropylParaben (PrPB)					
Rising indicator	11	12	19	14	0.11
Same indicator	73	78	88	67	
Decline indicator	9	10	25	19	
ButylParaben (BuPB)					
Rising indicator	3	3	1	1	
Same indicator	89	96	127	96	0.37
Decline indicator	1	1	4	3	
Table 12
Colostrum biomarkers and exposition in univariate analysis, intervention group with at least two workshop (Per Protocol analysis) PREVED study.

	Control Group (n BPA = 56) (n Parabens = 48)	Intervention Group (n BPA = 91) (n Parabens = 79)	p		
	N	%	N	%	
Bisphenol A (BPA)					
Superior to LoD	42	75	71	78	0.67
Inferior to LoD	14	25	20	22	
BPA Mono-Chlorinated (MCBPA)					
Superior to LoD	23	41	44	48	0.39
Inferior to LoD	33	59	47	52	
BPA Di-Chlorinated (DCBPA)					
Superior to LoD	26	46	43	47	0.92
Inferior to LoD	30	54	48	53	
BPA Tri-Chlorinated (TCBPA)					
Superior to LoD	39	70	56	62	0.32
Inferior to LoD	17	30	35	38	
BPA Tetra-Chlorinated (TTBPA)					
Superior to LoD	29	52	46	51	0.88
Inferior to LoD	27	48	45	49	
MethylParaben (MePB)					
Superior to LoD	44	92	68	86	0.34
Inferior to LoD	4	8	11	14	
EthylParaben (EtPB)					
Superior to LoD	31	65	45	57	0.40
Inferior to LoD	17	35	34	43	
PropylParaben (PrPB)					
Superior to LoD	14	29	25	32	0.77

LoD : Limit of Detection
In PP analysis defined by at least one workshop, urine ED analysis (Table 13), we found a significant difference in percentage of women having a decrease of MePB presence (18% Group 1 versus 33% Group 2+3, p=0.04). In Colostrum ED analysis (Table 14), we found a statistical difference in percentage of women having BuPB detection (14% Group 1 versus 1% Group 2+3, p=0.007).
Table 13
Urine biomarkers and exposition, Univariate analysis between 2nd and 3rd trimester, intervention group with at least one workshop (Per Protocol analysis) PREVED study.

	Control Group	Intervention Group	p		
	(n = 88)	(n = 137)			
	n	%	n	%	
Bisphenol A (BPA)					
Rising indicator	28	32	44	32	0.76
Same indicator	38	43	59	43	
Decline indicator	22	25	34	25	
BPA Mono-Chlorinated (MCBPA)					
Rising indicator	16	18	33	24	0.25
Same indicator	51	58	64	47	
Decline indicator	21	24	40	29	
BPA Di-Chlorinated (DCBPA)					
Rising indicator	22	25	37	27	0.85
Same indicator	44	50	70	51	
Decline indicator	22	25	30	22	
BPA Tri-Chlorinated (TCBPA)					
Rising indicator	15	17	20	14	0.84
Same indicator	60	68	94	69	
Decline indicator	13	15	23	17	
BPA Tetra-Chlorinated (TTBPA)					
Rising indicator	15	17	21	15	0.88
Same indicator	51	58	84	61	
Decline indicator	22	25	32	24	
MethylParaben (MePB)					0.04
Rising indicator	17	19	26	19	
Same indicator	55	63	66	48	
	Control Group (n = 88)	Intervention Group (n = 137)	p		
--------------------------	------------------------	-----------------------------	-----		
	n	%	n	%	
Decline indicator	16	18	45	33	
EthylParaben (EtPB)					
Rising indicator	22	25	29	22	
Same indicator	40	45	54	39	0.32
Decline indicator	26	30	54	39	
PropylParaben (PrPB)					
Rising indicator	10	11	20	15	
Same indicator	69	79	92	67	0.16
Decline indicator	9	10	25	18	
ButylParaben (BuPB)					
Rising indicator	2	2	2	1	
Same indicator	85	97	131	96	0.66
Decline indicator	1	1	4	3	
Table 14
Colostrum biomarkers and exposition in univariate analysis, intervention group with at least one workshop (Per Protocol analysis) PREVED study.

	Control Group	Intervention Group	p		
	(n BPA = 51) (n Parabens = 44)	(n BPA = 96) (n Parabens = 83)			
	N	%	N	%	
Bisphenol A (BPA)					
Superior to LoD	39	76	74	77	0.93
Inferior to LoD	12	24	22	23	
BPA Mono-Chlorinated (MCBPA)					
Superior to LoD	21	41	46	48	0.43
Inferior to LoD	30	59	50	52	
BPA Di-Chlorinated (DCBPA)					
Superior to LoD	25	49	44	46	0.71
Inferior to LoD	26	51	52	54	
BPA Tri-Chlorinated (TCBPA)					
Superior to LoD	34	67	61	64	0.71
Inferior to LoD	17	33	35	36	
BPA Tetra-Chlorinated (TTBPA)					
Superior to LoD	25	49	50	52	0.72
Inferior to LoD	26	51	46	48	
MethylParaben (MePB)					
Superior to LoD	41	93	71	86	0.32
Inferior to LoD	3	7	12	14	
EthylParaben (EtPB)					
Superior to LoD	30	68	46	55	0.16
Inferior to LoD	14	32	37	45	
PropylParaben (PrPB)					
Superior to LoD	13	30	26	31	0.84

LoD : Limit of Detection
### Control Group (n BPA = 51) (n Parabens = 44)	Intervention Group (n BPA = 96) (n Parabens = 83)	\(p \)
N	%	N
Inferior to LoD	31	70
ButylParaben (BuPB)		
Superior to LoD	6	14
Inferior to LoD	38	86

LoD : Limit of Detection

3. Maintenance

The ITT analysis of consumption outcomes after one year from childbirth found no significant difference. However, we found in PP analysis that 42.7% of participants in intervention group, versus 39% in control group, significantly increased their consumption of canned tuna, and 46% had a stable consumption, versus 36% in control group (\(p = 0.04 \)).

We found no significant difference for the intervention's impact on the evolution of risk perception (\(p = 0.19 \) in ITT analysis and \(p = 0.58 \) in PP analysis). However, we found a significant effect of time. The risk perception score increased significantly during the follow-up time (\(p <0.0001 \) in ITT and PP analysis) with mean scores of 62.25, 69.23 and 69.40 measured in the control group respectively in the second, third trimester of pregnancy and one year after childbirth, versus 64.10, 69.50 and 70.31 in the intervention group in ITT analysis (66.45, 68.89 and 69.78 versus 61.74, 69.81 and 70.00 in analysis PP).

Out of 107 pregnant women who underwent urine measurement at one year after childbirth, we found a significant difference in percentage of women having a decrease of MePB presence (17% control group versus 44% intervention group, \(p=0.02 \)) in ITT analysis (Table 15) but not in PP analysis (Table 16).
Table 15
Urine biomarkers and exposition: Univariate analysis between 2nd trimester and one year (intent-to-treat analysis) PREVED study.

	Control Group	Intervention Group		
	(n = 35)	(n = 72)		
N	**%**	**N**	**%**	**p**
Bisphenol A (BPA)				
Rising indicator	11	14	19	
Same indicator	11	36	50	0.16
Decline indicator	13	22	31	
BPA Mono-Chlorinated (MCBPA)				
Rising indicator	5	11	15	
Same indicator	18	23	32	0.14
Decline indicator	12	38	53	
BPA Di-Chlorinated (DCBPA)				
Rising indicator	2	7	9	
Same indicator	21	40	56	0.77
Decline indicator	12	25	35	
BPA Tri-Chlorinated (TCBPA)				
Rising indicator	3	2	3	
Same indicator	25	56	78	0.40
Decline indicator	7	14	19	
BPA Tetra-Chlorinated (TTBPA)				
Rising indicator	9	9	13	
Same indicator	21	44	61	0.14
Decline indicator	5	19	26	
MethylParaben (MePB)				
Rising indicator	12	17	24	
Same indicator	17	23	32	**0.02**
Decline indicator	6	32	44	
Paraben	Control Group	Intervention Group		
--------------------	---------------	--------------------		
	(n = 35)	(n = 72)		
EthylParaben (EtPB)				
Rising indicator	15	20		
Same indicator	11	37		
Decline indicator	9	15		
	43	**51**		
	20	**21**		
	28	0.14		
PropylParaben (PrPB)				
Rising indicator	4	15		
Same indicator	25	47		
Decline indicator	6	10		
	12	**65**		
	15	**14**		
	21	0.48		
ButylParaben (BuPB)				
Rising indicator	2	3		
Same indicator	32	66		
Decline indicator	1	3		
	5	**92**		
	3	4		
	3	**92**		
	4	0.89		
Table 16
Urine biomarkers and exposition: Univariate analysis between 2nd trimester and one year, intervention group with at least two workshop (Per Protocol analysis) PREVED study.

	Control Group (n = 43)	Intervention Group (n = 64)	p		
	N	%	N	%	
Bisphenol A (BPA)	N = 43	N = 64	p		
Rising indicator	12	28	13	20	0.48
Same indicator	16	37	31	49	0.48
Decline indicator	15	35	20	31	0.31
BPA Mono-Chlorinated (MCBPA)		N = 43	N = 64	p	
Rising indicator	6	14	10	16	0.35
Same indicator	20	46	21	33	0.35
Decline indicator	17	40	33	51	0.35
BPA Di-Chlorinated (DCBPA)		N = 43	N = 64	p	
Rising indicator	3	7	6	10	0.91
Same indicator	25	58	36	56	0.91
Decline indicator	15	35	22	34	0.91
BPA Tri-Chlorinated (TCBPA)		N = 43	N = 64	p	
Rising indicator	3	7	2	3	0.65
Same indicator	32	74	49	77	0.65
Decline indicator	8	19	13	20	0.65
BPA Tetra-Chlorinated (TTBPA)		N = 43	N = 64	p	
Rising indicator	9	21	9	14	0.37
Same indicator	27	63	38	59	0.37
Decline indicator	7	16	17	27	0.37
Methylparaben (MePB)	N = 43	N = 64	p		
Rising indicator	14	33	15	23	0.09
Same indicator	19	44	21	33	0.09
Discussion

1. Main results

PREVED is the first intervention research dedicated to perinatal environmental health education in France. The development, implementation, and evaluation of the PREVED project showed interesting results in terms of reach, adoption, and effectiveness.

1.1. Reach and Adoption

We noted a lack of social diversity of participants. Despite the specific recruitment strategies through PMI department involved in DisProSe Consortium, the underprivileged population reached was limited.

The choice of collective workshops has many benefits. Peer education is an important health education instrument that facilitates development of new skills, acquisition of experiential knowledge and promotion of health behavior change through experience sharing and social support [26, 27].

1.2. Effectiveness = Efficacy*Implementation
In the efficacy study, we found an effect on fast-food consumption, on risk perception score and on MePB presence in urines. In the implementation evaluation, we found that the key features seemed to be carried out.

We did not find any significant effect on canned food consumption. However, the Q1 questions did not specify which kind of food containers. In fact, participants in workshops were encouraged to avoid metal food containers and to replace them by glass jars as much as possible, a point that was not clarified in the leaflet.

A more pronounced fast-food consumption effect was observed in the intervention groups with a major effect in contextualized location (Group 3).

The contextualized intervention was implemented in a pedagogical apartment, which was close to real-life. Home-based educational intervention on health could improve emotional care for chronic patients and their caregivers, especially for groups in precarious situations [28, 29]. Likewise, home-like environment could create added value in health promotion interventions [30, 31].

However, we did not find major differences between Group 2 and Group 3. In fact, we noted that the apartment used for contextualized intervention was insufficiently exploited during workshops. The difference between the two intervention groups was consequently small, and our objective of promoting experimental knowledge was not fully attained.

The increased of risk perception scores and a significant difference between control group and intervention groups were highlighted. This increase was maintained even more than a year from the intervention. In practice, risk perception represents a major lever and determinant of health behavior and motivation to change [30]; elevated risk perception could promote healthier and safer behaviors [33, 34]. This may explain the reduction of the consumption of canned tuna observed in long-term. Furthermore, both the interaction and sharing of experiences between participants are likely to contribute to favorable evolution. Involvement in health education processes depends largely on social factors such as peer support, especially within existing groups, and choice of a relatively familiar environment [33].

In PP and ITT analysis, a difference in BuPB presence in colostrum between control group and intervention groups was only highlighted (13% versus 1%, p=0.03), as it was not significant for other EDs. In urine, we found no significant decrease between 2nd and 3rd trimesters. There were higher percentage of women having a decrease in MePB presence in the intervention groups, between control group and intervention groups (19% control group versus 32% intervention groups, p=0.09). For BPA and ClxBPA, intervention failed to demonstrate a reduced detection level. We did not find that contextualization of workshops influenced biomarker levels in urine or colostrum. Urinary BPA detection percentage (43% 2nd trimester) was lower than studies looking at pregnant women in France in 2011 (74%) [34] and in 2016 (100%) [35]. That said, among Canadian pregnant women, detected BPA in first trimester was 43% [36]. Concerning colostrum, in our study, BPA was detected at 77%, close to an American study on women who had just given birth [37]. However, comparison to the literature is complicated: detection percentage varies
greatly (from 17–100%) due mainly to various analytical methods. ClxBPA, which is less studied than BPA, showed detection percentages close to those found in pregnant women of the EDDS cohort [3]. We detected more pronouncedly for 2nd trimester in PREVED study than in EDDS study: MCBPA (57% PREVED versus 34% EDDS), DCBPA (42% versus 34%), TCBPA (21% versus 35%) and TTBPA (31% versus 18%). In colostrum, because of the lipophilic nature and bioaccumulation of ClxBPA, we expected to find higher percentages of detection than those found. They were higher than those of EDDS (MCBPA 46% PREVED versus 18% EDDS, DCBPA 47% versus 23%, TCBPA 66% versus 17% and TTBPA 51% versus 2%) [3].

Regarding PBs, proportions were lower than in other studies: a Japanese study [38], found stronger detection of MePB in pregnant women than our study (71% PREVED versus 94% Japanese study), EtPB (59% versus 81%), PrPB (22% versus 89%) and BuPB (3% versus 54%). Similarly, in EDDS study on detection of biomarkers in urine at 2nd trimester of pregnancy in France, detection percentage was higher than in the PREVED study: MePB (71% PREVED versus 97% EDDS), EtPB (59% versus 77%), PrPB (22% versus 84%) and BuPB (3% versus 64%). First two PBs (MePB and EtPB) are most widely used in cosmetics, since many cosmetic products combine these ingredients so as to increase their antimicrobial potential [39]. In colostrum, we found the same detection gradient for PBs. Are comparably detected for 2nd trimester in PREVED and in EDDS: MePB (88% PREVED versus 90% EDDS), EtPB (60% versus 50%), PrPB (31% versus 30%) and BuPB (5% versus 27%). As mentioned above, a drop in PBs occurred at different times for MePB in urines, which was found in ITT and PP analysis.

Other RCTs aimed at reducing ED exposure through an intervention. A first study carried out in 2011 found a decreased in BPA detection percentages with a canned-food-excluded-diet in young adult population [11]. Another study, carried out in 2013, did not find any decreased in children and their parents’ urinary phthalates and BPA concentrations [13]. Two other studies carried out were aimed at reducing BPA and phthalate exposure in family members or young adult population, by avoiding plastic packaging and canned food. Both showed decreased mean concentrations for BPA in urine, by 66% for family members [12] and by 79% for young adults respectively [40]. To our knowledge, only one RCT has been carried out in pregnant women in view of reducing phthalate exposure by eating only fresh and organic diet, without founding any decrease [41].

2. Strengths and limits

2.1. Evaluation model

We adopted a parallel RCT with a randomization at individual level, with both quantitative and qualitative analyses. Our choices in this PHIR are questionable. Some authors have recommended in complex interventions to choose stepped-wedge cluster randomized trial where clusters are randomly allocated to different sequences, with each sequence defining the timing of cluster switch from the control to the experimental condition [42]. Even if individual randomization is rarely well-adapted to PHIR because interventions of interest are generally delivered at a group level (e.g. schools, health centers, geographical...
areas) [42], our targeted population (pregnant women) was not an identifiable group, and group contamination was consequently not possible.

Experimental methods for the evaluation of complex interventions, such as RCT, are the reference methods because they seek to determine the effects of the intervention with high internal validity, avoiding confusion bias. The RCT is clearly an option for PHIR [42] even if it has some drawbacks: i) interventions are often carried out in the same controlled environment, excluding the interaction between intervention and environment from analysis; ii) the recruited individuals are highly motivated, decreasing external validity [43]; iii) the focus of the trial is on effectiveness (efficacy), which de facto excludes adaptation factors, targets achieved and institutionalization; iv) RCTs are also limited for the study of behavioral factors [44] because the outcome is highly dependent on health determinants (individual characteristics, cultural and social environment and health systems); v) the standardization of the intervention, as expected in trials, is not favorable from a continuous learning perspective, which requires variation of the intervention [43].

Instead of RCT, some authors propose alternative assessment models such as the “out of control” test method, where only key functions are standardized while the form is adaptive [43] or RCT adaptations such as cluster randomized trials, pragmatic trials, cluster and pragmatic or non-RCT designs (quasi-experimental, cohort, realistic evaluation, case-cohort studies) [17]. These new evaluation models raise questions of feasibility, acceptability, fairness and sustainability of interventions and their adaptation to the results of qualitative studies, which provide better understanding of how and why we obtain these assessment results [44]. The process studies are largely designed to assess contextual factors and causative mechanisms [18].

We chose the RE-AIM model because it provided a solid framework to assess the implementation of the PREVED project. It enabled simultaneous examination of both participant-level outcome data and detailed organizational and site-level data [45].

2.2. Outcome choice of the randomized control trial

The main outcome was canned food consumption and not biomarker presence or concentration. A pre/post comparison of biomarker presence could have been a relevant primary endpoint, as suggested by a California study in which a diet devoid of deleterious packages for three days led to a significant decrease in urinary concentrations of BPA metabolites from an average of 3.7 ng/mL to 1.2 ng/mL [12]. However, other studies suggest that urinary BPA concentrations may vary during pregnancy [46–48], while urinary PB concentrations are minimally impacted [49]. These studies have not explored changed consumption patterns that may have occurred between two samples. As a result, it is difficult to conclude that changes in urinary concentrations are due solely to the physiology of pregnancy. Colostrum, which begins to form in the middle of pregnancy [50], may be a good biomarker of cumulative pregnancy exposure to lipophilic molecules such as BPA, Clx-BPA and PBs. However, it is a rare and difficult matrix to collect under the conditions required to avoid BPA contamination (manual sampling, without gloves or breast pumps): only, a single sample can be taken. That is why before/after comparison of biomarker
presence in urine, was not the primary outcome in the PREVED study. We preferred to choose various outcomes: consumption, psychosocial and biomarkers with an interdisciplinary contribution of analytical chemistry, social psychology, epidemiology, sociology, and health promotion disciplines.

2.3. Construction

1.3.1. Consortium

The consortium creation involving the actors in the evaluation system from the construction of the intervention as part of a continuous improvement approach (researchers, field actors, decision-makers) has enabled scientific projects to mature, as recommended [51]. The solution science of the PHIR is strongly embodied in the practices and especially in the ability to support the meeting and sharing between different expertise to promote their hybridization and thereby the production of new expertise and a non-unidirectional transfer of knowledge [52]. However, in the PREVED project, this did not suffice insofar as there was a lack of exchange between partners; it could be called an epistemic misunderstanding [53]. As it is recommended that evaluation should be considered and built at the same time as the intervention itself, the consortium focused too early on the evaluation phase, which appeared too rigid to build an action of environmental health promotion.

1.3.2. Behavior theory model

The conception of PREVED workshops was based on the HBM including 12 behavior modification techniques from the taxonomy of Michie et al. [54]. According to the Medical Research Council, the main components of an intervention include the development of a theoretical model to better understand the change process [18]. Also, it has been interesting in PREVED project to integrate sociocultural and economic factors [55], particularly social determinants of health and local context [56] using a solid theoretical base and a consistent and rigorous methodology [57].

1.3.3. Diagnosis with Pregnant women

According to PREVED sociologic study, the project omitted a thorough diagnosis of our target population of pregnant women's needs. The behavior of pregnant women has been the subject of a normative and stereotypical approach. Despite the qualitative study on 12 women conducted before the cross-sectional study, a deeper exploration of lifestyle should have been performed. In citizen science, co-creation approach is recommended [58].

1.3.4. Public Heath deployment

As part of evidence-based-health-promotion [59], this study could contribute to health policy deployment of the environmental health intervention in the care pathway during pregnancy. However, while this type of intervention has been disseminated in maternities, there is evidence of its impact. With PREVED project, we have proposed effective intervention on risk perception and behavior change. To integrate these workshops into the pregnant women's care pathway, it is necessary to involve medical doctors, nurses and/or midwives. However, preventive medical recommendations of ED exposure avoidance
during pregnancy are not yet being followed [60]. Medical doctors are not educating pregnant women on environmental risk prevention [7] because they are essentially focused on infectious biological risks. They also usually have non-specialized experimental knowledge of emergent risks. However, they have recently become increasingly cognizant of those risks [61].

We have previously recommended to educate pregnant women using simple words, taking the time to understand their representations, and questioning them about their knowledge, risk perception and behavior (pre/post-test). This exchange could use an educational tool, which could be part of the PREVED® questionnaire to help health professionals [15]. This new tool, which has been informatized in a smartphone via QR code available in general practitioners’ (GP) waiting rooms, has been tested and perceived by GPs as useful to initiate a discussion about environmental health with patients [62].

That said, we have described and reported on our public health interventions with the TIDieR tool which, like other tools (Astaire, Trend ..), does not make the distinction between key function (potentially transferable dimensions) and form (dimensions associated with translation with a specific context) proposed by Villeval, who introduced a “key function/implementation/context” model, which makes a distinction between transferable element assessment and context-specific element assessment [63]. This model is the best alternative for transferability insofar as it takes into account the context [64].

Conclusion

PREVED intervention is the first intervention research dedicated to perinatal environmental health education in France. Results from program adoption at the institutional level, in terms of participant reach and effectiveness (efficacy*implementation), suggest that the program could be widely implemented. However, it is necessary to co-construct the intervention along with a targeted population, which could consist in young women before pregnancy or more broadly, young people. Maintenance evaluation should contribute to the conservation of this intervention in the health pathways.

Abbreviations

ANOVA
analysis of variance
BPA
Bisphenol A
BuPB
Butylparaben
ClxBPA
Chlorinated derivatives of Bisphenol A
DCBPA
Dichlorobisphenol A
DisProSe
Dispositif partenarial de recherche interventionnelle en Promotion de la Santé environnementale

DOHaD
Developmental Origins Hypothesis of Health and Diseases

EDDS cohort
Endocrine Disruptors Deux-Sèvres cohort

EDs
Endocrine disruptors

EPICES
Évaluation de la précarité et des inégalités de santé dans les Centres d’examens de santé

EtPB
Ethylparaben

GP
general practitioners

HBM
Health Belief Model

ITT analysis
Intent-to-treat analysis

KAP
Knowledge, attitudes, and practices

kNN-TN
Truncation k-Nearest Neighbor imputation

LC-MS/MS
Liquid Chromatography with tandem Mass Spectrometry

LoD
Limit of Detection

LoQ
Limit of Quantification

MCBPA
Monochlorobisphenol A

MePB
Methylparaben

PB
Paraben

PP analysis
Per-protocol analysis

PHIR
Population health intervention research

PMI
Protection Maternelle et Infantile

PREVED
Declarations

1. Ethics approval and consent to participate

The RCT conducted to assess efficacy was approved by Ethics Committee of the University Hospital of Poitiers, France (Approval N° 2015-18 RR/MLB/LB) and by Committee for Personal Protection – Ouest III (Approval N° 2015-A00031-48).

The study was registered on the clinical trials website ‘ClinicalTrials.gov’: NCT03233984.

All participants provided written, informed consent. They were free to leave the RCT at any time.

2. Consent for publication

Not applicable

3. Availability of data and materials

Dataset used for performing statistical analysis could be provided on reasonable request.

4. Competing interests
The authors declare that they have no actual or potential competing interests.

5. Funding

This study was supported by "Fondation de France" (Grant No. 2015 00060744).

6. Authors' contributions

MAL was the methodological referent of PREVED project. St Ro., MAL, VM., Sy Ra. designed the study protocol. HEO, St Ro, MAL, VM and Sy Ra participated in design and validation of the intervention.

MAL enrolled the participants which were randomly assigned to one of the three groups by ASG. HEL generated allocation sequence.

St Ro and MAL designed the questionnaires. St Ro, AD and NV developed analytical methods for EDs determination. GC and PPE contributed to sample analysis. HEO, SF and MAL conducted statistical data analysis and drafted the manuscript.

All authors offered critical revisions to the manuscript and approved the version to be published.

7. Acknowledgements

The authors wish to thank the Biological Resource Centre of the University Hospital of Poitiers (no. BB-0033-00068) for storing samples.

They would like to thank: Adeline Valliccioni, midwife student, Nathalie Morin, and Adeline David from "Mutualité française Poitou-Charentes", Christophe Malvault from IREPS, Sylvie Bonniol from PMI, "l'Agence Régionale de la Santé – Nouvelle Aquitaine", and DREAL Nouvelle-Aquitaine for their help. They would like to thank Fabrice Pierre, Jean-Benoit Hardouin and Line Enjalbert for their contribution.

The authors likewise wish to thank: Jimmy Ardonin, Amélie Cant, Camille Gatien, Alexia Koudou, Sandy Bertin, Louise Mignet and Marion Gorgun for their participation, and Jeffrey Arsham for his help in preparation of the English version of this manuscript.

The authors would like to thank all the members of DisProSE Consortium: Celine Airaud, Marion Albouy-Llaty, Lydie Ancelot, Christine Berthome, Sylvie Bonniol, Delphine Charier, Yves Cottet, Marc-Hubert Depret, Marie-Laure Guilleminot, Jean-Benoit Hardouin, Helene Le Turdu, Christophe Malvault, Virginie Migeot, Nathalie Morin, François Nivault, Sylvie Rabouan and Lynda Sifer-Rivière.

They wish to thank the participating pregnant women and the participating maternities.

References
1. Barouki R, Gluckman PD, Grandjean P, et al. Developmental origins of non-communicable disease: Implications for research and public health. Environ Health. 2012;11:42.

2. Gaudriault P, Mazaud-Guittot S, Lavoué V, et al. Endocrine Disruption in Human Fetal Testis Explants by Individual and Combined Exposures to Selected Pharmaceuticals, Pesticides, and Environmental Pollutants. Environ Health Perspect. 2017;125:087004.

3. Albouy-Llaty M, Dupuis A, Grignon C, et al. Estimating drinking-water ingestion and dermal contact with water in a French population of pregnant women: the EDDS cohort study. J Expo Sci Environ Epidemiol. 2015;25:308–16.

4. Wang H, Liu Z-H, Zhang J, et al. Human exposure of bisphenol A and its analogues: understandings from human urinary excretion data and wastewater-based epidemiology. Environ Sci Pollut Res Int. 2020;27:3247–56.

5. Plattard N, Dupuis A, Migeot V, et al. An overview of the literature on emerging pollutants: Chlorinated derivatives of Bisphenol A (ClxBPA). Environ Int. 2021;153:106547.

6. Biesterbos JWH, Dudzina T, Delmaar CJE, et al. Usage patterns of personal care products: Important factors for exposure assessment. Food Chem Toxicol. 2013;55:8–17.

7. Marie C, Lémery D, Vendittelli F, et al. Perception of Environmental Risks and Health Promotion Attitudes of French Perinatal Health Professionals. IJERPH. 2016;13:1255.

8. Hanson M, Gluckman P. Developmental origins of noncommunicable disease: population and public health implications. Am J Clin Nutr. 2011;94:1754S–1758S.

9. Di Renzo GC, Conry JA, Blake J, et al. International Federation of Gynecology and Obstetrics opinion on reproductive health impacts of exposure to toxic environmental chemicals. International Journal of Gynecology Obstetrics. 2015;131:219–25.

10. Bellingham M, Sharpe RM. Chemical Exposures During Pregnancy: Dealing with Potential, but Unproven, Risks to Child Health. Scientific Impact Paper 37, https://www.rcog.org.uk/en/guidelines-research-services/guidelines/sip37/ (2013, accessed 11 February 2021).

11. Carwile JL. Canned Soup Consumption and Urinary Bisphenol A: A Randomized Crossover Trial. JAMA. 2011;306:2218.

12. Rudel RA, Gray JM, Engel CL, et al. Food packaging and bisphenol A and bis(2-ethylhexyl) phthalate exposure: findings from a dietary intervention. Environ Health Perspect. 2011;119:914–20.

13. Sathyanarayana S, Alcedo G, Saelens BE, et al. Unexpected results in a randomized dietary trial to reduce phthalate and bisphenol A exposures. J Expo Sci Environ Epidemiol. 2013;23:378–84.

14. Glasgow RE, Harden SM, Gaglio B, et al. RE-AIM Planning and Evaluation Framework: Adapting to New Science and Practice With a 20-Year Review. Front Public Health. 2019;7:64.

15. Rouillon S, El Ouazzani H, Hardouin J-B, et al. How to Educate Pregnant Women about Endocrine Disruptors? Int J Environ Res Public Health; 17. Epub ahead of print 24 2020. DOI: 10.3390/ijerph17062156.
16. El Ouazzani H, Rouillon S, Venisse N, et al. Impact of perinatal environmental health education intervention on exposure to endocrine disruptors during pregnancy - PREVED study: study protocol for a randomized controlled trial. Epub ahead of print 8 March 2021. DOI: 10.21203/rs.3.rs-51269/v1.

17. Minary L, Trompette J, Kivits J, et al. Which design to evaluate complex interventions? Toward a methodological framework through a systematic review. BMC Med Res Methodol. 2019;19:92.

18. Craig P, Dieppe P, Macintyre S, et al. Developing and evaluating complex interventions: the new Medical Research Council guidance. Int J Nurs Stud. 2013;50:587–92.

19. Sass C, Moulin J-J, Guéguen R, et al. Le score Epices: un score individuel de précarité. Construction du score et mesure des relations avec des données de santé, dans une population de 197 389 personnes. BEH; 14.

20. Rosenstock IM. Historical origins of the Health Belief Model. In: The Health belief model and personal health behavior. Thorofare: Slack; 1974.

21. Grignon C, Venisse N, Rouillon S, et al. Ultrasensitive determination of bisphenol A and its chlorinated derivatives in urine using a high-throughput UPLC-MS/MS method. Anal Bioanal Chem. 2016;408:2255–63.

22. De Keizer J, Paul J, Albouy M, et al. Simulation et imputation de plusieurs variables corrélées dans un contexte de données manquantes de façon non aléatoires (MNAR). Revue d’Épidémiologie et de Santé Publique 2021; 69: S32–S33.

23. Rouillon S, El Ouazzani H, Rabouan S, et al. Determinants of Risk Perception Related to Exposure to Endocrine Disruptors during Pregnancy: A Qualitative and Quantitative Study on French Women. Int J Environ Res Public Health 15. Epub ahead of print 11 2018. DOI: 10.3390/ijerph15102231.

24. Nisbeth Jensen M, Fage-Butler AM. Antenatal group consultations: Facilitating patient-patient education. Patient Educ Couns. 2016;99:1999–2004.

25. Petosa RL, Smith DLH. Peer Mentoring for Health Behavior Change: A Systematic Review. American Journal of Health Education. 2014;45:351–7.

26. Novak I. Effective home programme intervention for adults: a systematic review. Clin Rehabil. 2011;25:1066–85.

27. Mankikar D, Campbell C, Greenberg R. Evaluation of a Home-Based Environmental and Educational Intervention to Improve Health in Vulnerable Households: Southeastern Pennsylvania Lead and Healthy Homes Program. Int J Environ Res Public Health; 13. Epub ahead of print 9 September 2016. DOI: 10.3390/ijerph13090900.

28. Morelli A, Dilani A. Health Promotion by Design in Elderly Care. The International Academy for Design and Health 2005; 287–299.

29. Monson K, Moeller-Saxone K, Humphreys C, et al. Promoting mental health in out of home care in Australia. Health Promotion International. 2020;35:1026–36.

30. Ferrer R, Klein WM. Risk perceptions and health behavior. Curr Opin Psychol. 2015;5:85–9.
31. Gaube S, Lermer E, Fischer P. The Concept of Risk Perception in Health-Related Behavior Theory and Behavior Change. In: Raue M, Streicher B, Lermer E, editors Perceived Safety: A Multidisciplinary Perspective. Cham: Springer International Publishing, pp. 101–118.

32. Waters EA, McQueen A, Cameron LD. Perceived Risk and its Relationship to Health-Related Decisions and Behavior. The Oxford Handbook of Health Communication, Behavior Change, and Treatment Adherence. Epub ahead of print 30 October 2013. DOI: 10.1093/oxfordhb/9780199795833.013.013.

33. Lawlor ER, Cupples ME, Donnelly M, et al. Implementing community-based health promotion in socio-economically disadvantaged areas: a qualitative study. J Public Health (Oxf). 2020;42:839–47.

34. Dereumeaux C, Saoudi A, Pecheux M, et al. Biomarkers of exposure to environmental contaminants in French pregnant women from the Elfe cohort in 2011. Environ Int. 2016;97:56–67.

35. SPF. Imprégnation de la population française par les bisphénols A, S et F: Programme national de biosurveillance, Esteban 2014-2016, https://www.santepubliquefrance.fr/import/impregnation-de-la-population-francaise-par-les-bisphenols-a-s-et-f-programme-national-de-biosurveillance-esteban-2014-2016 (accessed 19 July 2021).

36. Arbuckle TE, Marro L, Davis K, et al. Exposure to Free and Conjugated Forms of Bisphenol A and Triclosan among Pregnant Women in the MIREC Cohort. Environ Health Perspect. 2015;123:277–84.

37. Zimmers SM, Browne EP, O'Keefe PW, et al. Determination of free Bisphenol A (BPA) concentrations in breast milk of U.S. women using a sensitive LC/MS/MS method. Chemosphere. 2014;104:237–43.

38. Shirai S, Suzuki Y, Yoshinaga J, et al. Urinary excretion of parabens in pregnant Japanese women. Reprod Toxicol. 2013;35:96–101.

39. Charnock C, Finsrud T. Combining esters of para-hydroxy benzoic acid (parabens) to achieve increased antimicrobial activity. J Clin Pharm Ther. 2007;32:567–72.

40. Peng C-Y, Tsai E-M, Kao T-H, et al. Canned food intake and urinary bisphenol a concentrations: a randomized crossover intervention study. Environ Sci Pollut Res Int. 2019;26:27999–8009.

41. Barrett ES, Velez M, Qiu X, et al. Reducing Prenatal Phthalate Exposure Through Maternal Dietary Changes: Results from a Pilot Study. Matern Child Health J. 2015;19:1936–42.

42. Giraudieu B, Alberti C. Is randomized trial design adapted to population health intervention research? Glob Health Promot. 2021;28:86–8.

43. Villeval M, Bidault E, Shoveller J, et al. Enabling the transferability of complex interventions: exploring the combination of an intervention's key functions and implementation. Int J Public Health. 2016;61:1031–8.

44. Glasgow RE, Vogt TM, Boles SM. Evaluating the public health impact of health promotion interventions: the RE-AIM framework. Am J Public Health. 1999;89:1322–7.

45. Nhim K, Gruss SM, Porterfield DS, et al. Using a RE-AIM framework to identify promising practices in National Diabetes Prevention Program implementation. Implement Sci. 2019;14:81.

46. Braun JM, Smith KW, Williams PL, et al. Variability of Urinary Phthalate Metabolite and Bisphenol A Concentrations before and during Pregnancy. Environ Health Perspect. 2012;120:739–45.
47. Fisher M, Arbuckle TE, Mallick R, et al. Bisphenol A and phthalate metabolite urinary concentrations: Daily and across pregnancy variability. J Expo Sci Environ Epidemiol. 2015;25:231–9.

48. Jusko TA, Shaw PA, Snijder CA, et al. Reproducibility of urinary bisphenol A concentrations measured during pregnancy in the Generation R Study. J Expo Sci Environ Epidemiol. 2014;24:532–6.

49. Smith KW, Braun JM, Williams PL, et al. Predictors and variability of urinary paraben concentrations in men and women, including before and during pregnancy. Environ Health Perspect. 2012;120:1538–43.

50. Neville MC, Morton J, Umemura S. Lactogenesis. The transition from pregnancy to lactation. Pediatr Clin North Am. 2001;48:35–52.

51. Affeltranger B. Recherche interventionnelle en santé des populations: l’expérience de l’INCa, file:///C:/Users/mablo/Downloads/43263_spf00001015.pdf (2013).

52. Terral P, Ferron C, Potvin L. Leçons d’un colloque: les enjeux épistémiques et politiques de la recherche interventionnelle en santé des populations. Glob Health Promot. 2021;28:62–5.

53. Gaborit E, Terral P, Génolini J-P. Étudier de près les modes de coordination pour construire un partenariat visant à réduire les inégalités épistémiques. Glob Health Promot. 2021;28:39–46.

54. Michie S, Richardson M, Johnston M, et al. The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: building an international consensus for the reporting of behavior change interventions. Ann Behav Med. 2013;46:81–95.

55. Davis R, Campbell R, Hildon Z, et al. Theories of behaviour and behaviour change across the social and behavioural sciences: a scoping review. Health Psychol Rev. 2015;9:323–44.

56. Potvin L, Gendron S, Bilodeau A, et al. Integrating social theory into public health practice. Am J Public Health. 2005;95:591–5.

57. Sumner JA, Carey RN, Michie S, et al. Using Rigorous Methods to Advance Behaviour Change Science. Nat Hum Behav. 2018;2:797–9.

58. Roche J, Bell L, Galvão C, et al. Citizen Science, Education, and Learning: Challenges and Opportunities. Front Sociol. 2020;5:613814.

59. Juneau C-E, Jones CM, McQueen DV, et al. Evidence-based health promotion: an emerging field. Glob Health Promot. 2011;18:79–89, 122–133, 157–168.

60. Rouillon S, Deshayes-Morgand C, Enjalbert L, et al. Endocrine Disruptors and Pregnancy: Knowledge, Attitudes and Prevention Behaviors of French Women. Int J Environ Res Public Health; 14. Epub ahead of print 06 2017. DOI: 10.3390/ijerph14091021.

61. Albouy-Llaty M, Rouillon S, El Ouazzani H, et al. Environmental Health Knowledge, Attitudes, and Practices of French Prenatal Professionals Working with a Socially Underprivileged Population: A Qualitative Study. Int J Environ Res Public Health; 16. Epub ahead of print 16 2019. DOI: 10.3390/ijerph16142544.

62. Rafidison D. Evaluation de l’utilisation du questionnaire PREVED (Pregnancy prevention endocrine disruptor) par les médecins généralistes. Thesis in medicine, University of Poitiers, http://petille.univ-
63. Villeval M. Do the key functions of an intervention designed from the same specifications vary according to context? Investigating the transferability of a public health intervention in France, https://implementationscience-biomedcentral-com.proxy.insermbiblio.inist.fr/track/pdf/10.1186/s13012-019-0880-8.pdf (2019, accessed 7 June 2021).

64. Squires JE, Graham I, Bashir K, et al. Understanding context: A concept analysis. J Adv Nurs. 2019;75:3448–70.

Figures

![Flow Chart – PREVED Study](image)

Figure 1

Flow Chart – PREVED Study

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

- SupplementarymaterialPREVED.docx
- TIDieRCheclistPREVED.docx