Distinct histone H3 modification profiles correlate with aggressive characteristics of salivary gland neoplasms

Aroonwan Lam-Ubol1 & Ekarat Phattarataratip2*

Post-translational modification of histones is the crucial event that affect many tumor-specific traits. A diverse type of histone modifications had been reported in different cancers with prognostic implications. This study aimed to examine the degree of histone H3 modifications in salivary gland neoplasms and their associations with tumor pathologic characteristics and proliferative activity. The expression of H3K9Ac, H3K18Ac, H3K9Me3 and Ki-67 in 70 specimens of salivary gland neoplasms, consisting of 30 mucoepidermoid carcinoma (MEC), 20 adenoid cystic carcinoma (ACC) and 20 pleomorphic adenoma (PA), were investigated immunohistochemically. The immunohistochemical scoring of 3 histone modification types and Ki-67 labeling index were determined. Overall, MEC demonstrated elevated H3K9Ac level compared with benign PA. Increased H3K9Me3 in MEC was positively correlated with small nest invasion at tumor front, advanced pathologic grade, and elevated proliferative index. In addition, the significant upregulation of all 3 types of histone H3 modification was noted in solid subtype of ACC and associated with increased cell proliferation. This study indicates that salivary gland neoplasms differentially acquire distinct patterns of histone H3 modification, which impact prognostically relevant cancer phenotypes. The hyperacetylation and methylation of histone H3 could be underpinning the prognostically worsen solid type of ACC, and the trimethylation of H3K9 may be involved in aggressive characteristics of MEC.

Tumorigenesis is a multistep process, shaped by both the genetic and epigenetic input. The genetic mutations involving the activation of oncogenes and inactivation of tumor suppressor genes have long been considered the central molecular pathogenesis of cancer. Increasing evidence has indicated the critical role of disrupted epigenetic phenomena, leading to the epigenomic instability that triggers the tumor formation. Post-translational modification primarily at the N-terminal amino acid tails of the core H3 and H4 is the one of the vital events that can alter the structure and function of genome and impact the transcription of various target genes, responsible for cancer-specific characteristics. Differential histone modifications along with their prognostic implication had been reported in various cancers. Acetylation and methylation involving lysine residue have been the most intensely studied histone modifications. Histone acetylation is known to diminish histone-DNA affinity and thereby releases chromatin configuration to enhance gene transcription. In contrast, histone methylation can affect chromatin structures differently, depending on the site and type of amino acid residues methylated. The hypermethylation of histone H3 lysine 9 (H3K9) is particularly associated with the compact chromatin formation and transcriptional repression of target genes. Aberrant expression of histone modifications as well as responsible enzymes, such as histone methyltransferases (HMT), histone acetyltransferase (HAT), and histone deacetylase (HDAC) were reported in several types of cancer. Suv39H1 and SETDB1, the two main HMTs that catalyzed heterochromatic H3K9Me3 deposition, were shown to be overexpressed in selected cancers. In addition, the upregulation of a number of HDACs were reported and inhibitors of histone modification enzymes had been developed for anti-cancer use with variable success.

The effect of histone modification appears to be tumor type-specific, suggesting that these changes may govern distinct underlying mechanisms in different neoplasms. In addition, conflicting results have been reported within the same tumor type. In non-small cell lung cancers, the decreased acetylated histone H3 lysine 9 (H3K9Ac) and trimethylated histone H3 lysine 9 (H3K9me3) were associated with clinically recurrent lesions. However,

1Department of Oral Surgery and Oral Medicine, Faculty of Dentistry, Srinakharinwirot University, 114 Sukhumvit 23 Wattana, Bangkok 10110, Thailand. 2Department of Oral Pathology, Faculty of Dentistry, Chulalongkorn University, Henri-Dunant Road, Pathumwan, Bangkok 10330, Thailand. *email: Ekarat.P@chula.ac.th
in patients with stage I lung adenocarcinoma, the lower level of H3K9Ac appeared to be associated with better disease-free and overall survival.

In breast cancers, lower levels of lysine acetylation and methylation were predominantly seen in those with poor prognosis, including the HER-2-positive and basal cell carcinomas. Leszinski et al. reported that the level of H3K9Me3 was upregulated in breast cancers, but down-regulated in colorectal cancers. However, in the invasive portion of colorectal cancers, the H3K9Me3 was shown to be upregulated, and this finding was correlated with enhanced lymph node metastasis. In gastric adenocarcinoma, high levels of H3K9Me3 was correlated with the increased cancer stage, lymphovascular invasion, recurrence and poor survival.

The acetylated histone H3 lysine 18 (H3K18Ac) was increased in primary and metastatic prostate cancer specimens, compared with benign lesions. Bianco-Miotto et al. reported the association between high H3K18Ac and increased prostate cancer relapse. Conversely, in low-grade prostate cancers, the combination of lower H3K18Ac and acetylated histone H4 lysine 12 (H4K12Ac) levels correlated with the increased recurrence. Low H3K18Ac expression was correlated with better prognosis of esophageal squamous cell carcinoma patients, but could predict renal cell carcinoma progression. In pancreatic cancer, Manuyakorn et al. showed that low H3K18Ac was associated with poor survival in stage I and II pancreatic adenocarcinomas, whereas a more recent study by Juliano et al. reported the association between high H3K18Ac and advanced clinical staging as well as poor survival.

Salivary gland neoplasms, representing 5% of head and neck neoplasms, constitute a unique group of benign and malignant entities with diverse tumor types, cells of origin, molecular genetic background, and clinical behavior. Most epigenetic studies involving salivary gland neoplasms have focused on the DNA methylation with a handful of studies examining the roles of histone modification in their progression. Wagner et al. reported that salivary gland malignancies were frequently hypoacetylated at H3K9, compared with benign tumors, and this was correlated with the increased Ki67 index. In adenoid cystic carcinoma (ACC), the increased H3K9Me3 was noted in the solid subtype and was an independent predictor of poor disease-free survival. Moreover, aberrant expression of a few HMTs and HDACs were reported in salivary gland neoplasms. These data suggested that distinct histone modifications may play essential roles in salivary gland tumor progression. Additionally, several targeted therapies directed against specific types of histone modification are currently available and may provide promising prospect for patients with neoplasms of appropriate epigenetic signature. Therefore, the objectives of this study were to explore the pattern of global histone H3 modifications (H3K9Ac, H3K18Ac and H3K9Me3) in benign and malignant salivary gland neoplasms and analyze their associations with proliferative activity and prognostically-relevant pathologic characteristics.

Materials and methods

Tissue samples. The tissue samples were retrieved from the Department of Oral Pathology archival cases from 2000 to 2021. The inclusion criteria were that patients diagnosed with mucoepidermoid carcinomas (MEC), ACC and pleomorphic adenomas (PA) with complete pertinent clinical records and adequate paraffin-embedded tissue specimens. All microscopic slides were reviewed based on the 2017 World Health Organization Classification of Head and Neck tumor criteria. Microscopic grading of MEC was based on the Brandwein et al. histopathological criteria. Prognostically relevant histopathological characteristics, namely <25% intracystic components, perineural, vascular or bone invasions, necrosis, mitotic index >4/10 high power fields (HPFs), anaplasia and tumor front invasion in small nests were recorded. Histopathologically, ACCs were evaluated and categorized into 3 groups; the cribriform, tubular or solid subtypes. Cases with more than 30% of tumor showing solid sheet arrangement were categorized as the solid subtype. The remaining cases were classified into either cribriform or tubular subtypes, based on the predominant microscopic pattern. The study was approved by the Human Research Ethics Committee (HREC-DCU 2019-082).

Immunohistochemical staining methods. The 2-µm tissue sections were deparaffinized. The antigen retrieval was performed by incubating slides with 1 mM Citrate buffer (pH 6.0) for 5 min in a pressure cooker. Slides were then incubated with 3% hydrogen peroxide for 10 min, followed by 30-min incubation with bovine serum albumin. The primary antibody was added and incubated at 4 °C overnight. The antibodies used were rabbit polyclonal anti-histone H3 (acetyl K18) (clone ab1191; dilution 1:400), anti-histone H3 (acetyl K9) (clone ab10812; dilution 1:1000), anti-histone H3 (tri-methyl K9) (clone ab8898; dilution 1:400) (Abcam, Cambridge, UK) and mouse monoclonal anti-Ki-67 (clone MIB-1, 1:100 dilution) (Agilent Dako, Glostrup, Denmark) antibodies. This was followed by a 60-min incubation with goat anti-rabbit secondary antibody (clone P0448, Agilent Dako, Santa Clara, CA) for 3 types of histone modification tested, or the EnVision + System-HRP Labelled Polymer Anti-mouse (K4001, Agilent Dako, Glostrup, Denmark) for Ki-67 staining. Slides were then incubated for 1 min with diaminobenzidine (Liquid DAB + Substrate Chromogen System, K3468, Agilent Dako, Santa Clara, CA) and counterstained with Mayer’s Haematoxylin. Slides were rinsed with phosphate-buffered saline between each step. Oral squamous cell carcinoma tissues were used as positive controls. Immunostainings of adjacent normal salivary gland tissues were examined for comparison purpose. Negative controls are prepared using isotype-matched control antibodies.

Immunohistochemical scoring. The immunohistochemical staining was evaluated and agreed upon by two experienced pathologists who were blinded from the patient clinical data. For scoring histone modification levels, both the intensity and distribution of positive nuclear staining in tumor cells were examined. The staining intensity of each case was categorized into one of the following levels: 0 = no positive staining; 1 = mild intensity; 2 = moderate intensity and 3 = strong intensity. The percentage of positive tumor cells of each case was recorded. The H-score was calculated as previously described by multiplying the staining intensity level and the percent-
The proliferative activity of salivary gland neoplasms. Ki-67 expression was determined to assess the proliferative activity of tumor cells. As expected, PA exhibited low proliferative activity, with Ki-67 LI ranging from 0–1.4 (mean = 0.11). In contrast, MEC and ACC showed higher Ki-67 LI, ranging from 0 to 25.38 (mean = 1.66) and from 0 to 17.9 (mean = 2.33), respectively. Notably, the intermediate-to-high grade MECs displayed greater proliferative activity (mean LI = 2.66) than low-grade cases (mean LI = 0.52). In addition, the solid-subtyped ACCs demonstrated increased proliferative activity (mean LI = 7.31), compared with ACCs with cribriform/tubular subtype (mean LI = 0.19). In normal salivary gland tissue, Ki-67 was not detectable (Fig. 1).

Table 1. Demographic data of the study population.
Levels of histone H3 modifications in salivary gland neoplasms. Overall, we found nuclear expression of H3K9Ac in the majority of salivary gland neoplasms studied, constituting 93.3% of MECs, 85% of ACCs and 80% of PAs. The mean H3K9Ac H-scores for MEC, ACC and PA were 102.3 ± 71.2, 89.0 ± 87.4 and 39.5 ± 43.7, respectively. When compared the H3K9Ac expression between malignant and benign neoplasms, the malignant neoplasms demonstrated significantly higher H3K9Ac level (p = 0.003). Remarkably, H3K9Ac scores of MEC were significantly higher than those of PA (p = 0.004) (Figs. 2, 3).

H3K18Ac nuclear expression could be detected in neoplastic cells in all specimens, except one case of ACC. The mean H3K18Ac H-scores for MEC, ACC and PA were 147.7 ± 75.0, 115.5 ± 98.3 and 114.0 ± 87.8, respectively. No statistically significant differences were noted among the three neoplasms and between malignant and benign groups (Figs. 2, 4).

The nuclear expression of H3K9Me3 was observed in all specimens. The mean H3K9Me3 H-scores for MEC, ACC and PA were 152.7 ± 68.8, 168.0 ± 105.8 and 123.5 ± 72.8 respectively. Although PA appeared to express lower level of H3K9Me3, no statistically significant differences were detected among the three neoplasms and between malignant and benign neoplasms (Figs. 2, 5).

Figure 1. Ki-67 expression in salivary gland neoplasms. (A,B) Normal salivary gland tissue; (C,D) PA; (E,F) low-grade MEC; (G,H) high-grade MEC; (I,J) ACC, cribriform/tubular subtype; (K,L) ACC, solid subtype.

Figure 2. Level of histone H3 modifications in salivary gland neoplasms. (A) H3K9Ac; (B) H3K18Ac; (C) H3K9Me3. *Represents statistically significant difference at p < 0.05.
The cellular distribution for all types of histone modifications was investigated in both neoplasms and adjacent normal salivary gland tissues. Normal ductal and myoepithelial cells showed positive nuclear expression of all 3 markers tested. Positive stainings were also consistently detected in serous acinar cells, while normal mucous acini were largely non-reactive. In ACC and PA cases, histone modifications were variably seen in both neoplastic ductal and myoepithelial cells. In MEC, the positive immunoreactivity was relatively diverse among cases. These histone H3 modifications were noted primarily in the epidermoid and intermediate cells and variably expressed in neoplastic mucous cells (Figs. 3, 4, 5).

The comparison between histone H3 modifications and histopathologic characteristics of malignant salivary gland neoplasms. Distinct histopathologic features of malignant salivary gland neoplasms can infer differences in tumor behavior. Therefore, we investigated the correlation between histone modification profiles and prognostically relevant histopathologic features of MEC and ACC. The results are summarized in Table 2. Significantly, we noted the upregulation of H3K9Me3 in MEC cases showing small nest invasion at tumor front \((p = 0.017)\), the pattern indicative of more invasive cancer characteristics, and those with advanced pathologic grades \((p = 0.028)\).

Remarkably in ACC, we found the statistically significant increase in all 3 types of histone H3 modifications, the H3K9Ac \((p = 0.012)\), H3K9Me3 \((p = 0.041)\) and H3K18Ac \((p = 0.002)\), in the highly aggressive solid subtype, compared with the cribriform/tubular subtypes.

The correlation between histone H3 modifications and Ki-67 in salivary gland neoplasms. We investigated the relationships between the differential histone H3 modifications and the proliferative activity of salivary gland malignancies. The levels of histone modification were categorized into high (H-score >150) and low (H-score ≤150) groups. Remarkably, both the MEC and ACC with high level of histone H3 modifications demonstrated higher Ki-67 LI than those with low expression level. The differences reached statistically significant levels for H3K9Me3 in MEC and for all three histone H3 modifications in ACC (Figure 6). These data indicated that MECs with upregulated H3K9Me3 and ACCs with increased H3K9Ac, H3K18Ac and H3K9Me3 demonstrated higher tumor proliferative activity. The correlation between these histone H3 modifications and Ki-67 proliferative index was in concordance with the findings regarding their associations with aggressive pathologic characteristics described above.
Predictive values of differential histone H3 modification in malignant salivary gland neoplasms. Since the levels of H3K9Me3 in MEC and H3K9Ac, H3K18Ac, H3K9Me3 in ACC were significantly associated with the aggressive pathologic characteristics and increased proliferative activity, we further assessed their predictive values using ROC curves and corresponding AUC values (Figure 7). We found that H3K18Ac exhibited the highest AUC value (0.917) in predicting solid type ACC, followed by H3K9Ac (AUC = 0.851) and H3K9Me3 (AUC = 0.792), respectively. Moreover, all three histone H3 modifications demonstrated excellent AUC values in predicting high Ki-67 ACC (0.933, 0.973 and 0.921 for H3K9Ac, H3K18Ac and H3K9Me3, respectively). In addition, H3K9Me3 demonstrated good (0.808) and fair (0.752) AUC values in predicting high Ki-67 MEC and high-grade MEC, respectively. These data suggested that H3K9Ac, H3K18Ac and H3K9Me3 could be promising prognostic indicators for the aggressive phenotypes of salivary gland malignancies.

Correlation among 3 types of histone H3 modification in salivary gland neoplasms. The correlations among the histone H3 modification levels were analyzed in each tumor. The levels of H3K9Ac, H3K18Ac and H3K9Me3 showed significant correlation within the same tumor types as shown in Table 3. Interestingly, in ACC the strong correlations were observed among all 3 histone H3 modification types tested. In addition, the levels between H3K9Ac and H3K9Me3 and between H3K9Ac and H3K18Ac were highly correlated in MEC and PA, respectively.

Discussion
To our knowledge, this is the first study to simultaneously examine 3 distinct modifications of histone H3, the H3K9Ac, H3K18Ac and H3K9Me3, in the most common benign and malignant salivary gland tumors. Significantly, we demonstrate the novel findings that the upregulated H3K9Me3 is associated with the pathologically aggressive phenotypes and increased proliferative activity of both MEC and ACC. Overexpression of H3K9Me3 is detected in MEC cases showing invasive growth pattern as well as advanced pathologic grade, and in ACCs with the highly aggressive solid subtype. In addition to the H3K9Me3 upregulation, the solid-subtyped ACCs are also hyperacetylated at both H3K9 and H3K18, and these histone modifications are positively correlated with the proliferative index of tumor cells. Our findings substantiate that from the previous study showing amplified H3K9Me3 level in ACC cases with solid histopathologic pattern, distant metastasis and poor patient survival23.
Overall, our data further advocate that the increased H3 trimethylation at lysine residue 9, as well as H3 acetylation at lysine residue 9 and 18, could be involved in the progression of these malignancies.

Methylation of histone often leads to the repressive mark, which suppresses gene expression\(^2\). H3K9Me3 is known to be associated with the heterochromatin and transcriptional silencing. During tumorigenesis, this modification could therefore regulate oncogenes or tumor suppressor genes and dictate their functions\(^3\). The prognostic impact of H3K9Me3 has been noted in other cancers, such as gastric adenocarcinoma\(^4\), pancreatic cancer\(^5\) and esophageal squamous cell carcinoma\(^6\). Selected mechanisms were proposed for the oncogenic role of H3K9Me3. Overexpression of H3K9Me3 and/or its methyltransferases, SETDB1 or SUV39H1/2, was shown to silence the expression of tumor suppressor genes, including p53\(^7\), HoxA3\(^8\), Kruppel-like transcription factor 6 (KLF6)\(^9\) and p15INK4B and E-cadherin\(^10\) in liver cancer cells, melanoma, liposarcoma and acute myeloid leukemia, respectively. Paschall et al. reported that the upregulated H3K9Me3 suppressed Fas expression in metastatic colon cancers and involved in cancer chemoresistance\(^11\). A study on verticillin A, a selective inhibitor of SUV39H1, reported its effect on the increased FAS transcription and apoptosis of colon carcinoma cells\(^12\). However, it has not yet been tested in human or in the context of salivary gland tumors. In addition, the downregulation of SETDB1 could impede cancer cell proliferation in those of lung\(^13\), breast\(^14\) and prostate gland\(^15\). A previous study in lung cancer also observed the association between the increased methylation of H3K9 and epithelial cell adhesion molecule (EpCAM) silencing, the event of which promoted cancer invasion and metastasis\(^16\). Notably, EpCAM was shown to be downregulated in high-grade MEC showing aggressive pathologic characteristics\(^17\). Moreover, in salivary gland malignancies, the reduced expression of several tumor

Figure 5. H3K9Me3 in salivary gland neoplasms. (A) Normal salivary gland tissue; (B) PA; (C) low-grade MEC; (D) high-grade MEC; (E,F) MEC with invasion into small nests at tumor fronts; (G) ACC, cribriform/tubular subtype; (H) ACC, solid subtype.
Table 2. The association between 3 types of histone H3 modifications and pathologic characteristics of MEC and ACC. Significant values are in [bolditalics].

Pathologic characteristics	H3K9Ac		H3K18Ac		H3K9Me3	
MEC (N = 30)						
H-score	102.3 ± 71.2	147.7 ± 75	152.7 ± 68.8			
P-value		0.257		0.017		
Pathologic grading						
Low (N = 14)	93.6 ± 49.1		130.7 ± 67.5	162.5 ± 80.1	125.7 ± 53.5	176.3 ± 73.5
Intermediate/high (N = 16)	110.0 ± 87.0					0.372
< 25% cystic component		0.476		0.028		
Yes (N = 9)	80.0 ± 56.3	154.4 ± 79.5	153.3 ± 65.0			
No (N = 21)	111.9 ± 75.9	144.8 ± 74.8	152.4 ± 71.9			
Tumor front invasion into small nests		0.552		0.028		
Yes (N = 16)	115.0 ± 85.087	163.1 ± 79.5	175.0 ± 74.3	127.1 ± 53.6		
No (N = 14)	0.9 ± 50.4	130.0 ± 68.0				
Anaplasia		0.158		0.413		
Yes (N = 7)	65.7 ± 55.0	127.1 ± 81.4	157.1 ± 61.8	151.3 ± 72.0		
No (N = 23)	113.5 ± 72.8	153.9 ± 73.7				
> 25% cystic component		0.46		0.777		
Yes (N = 2)	60.0 ± 84.9	100.0 ± 113.1	120.0 ± 127.3			
No (N = 28)	105.4 ± 70.9	151.1 ± 73.4	155.0 ± 66.3			
Vascular invasion		0.733		0.333		
Yes (N = 1)	120	180	210			
No (N = 29)	101.7 ± 72.4	146.6 ± 76.1	150.7 ± 69.1			
Perineural invasion		0.46		0.662		
Yes (N = 0)		N/A		N/A		
No (N = 30)	102.3 ± 71.2	147.7 ± 75.0	152.7 ± 68.8			
Necrosis		0.662		0.662		
Yes (N = 2)	70.0 ± 99.0	115.0 ± 134.4	115.0 ± 120.2	155.4 ± 66.6		
No (N = 28)	104.6 ± 70.7	150.0 ± 72.7				
ACC (N = 20)		0.012		0.041		
H-score	89.0 ± 87.4	115.5 ± 98.3	168.0 ± 105.8			
8 HPF		0.002		0.041		
Yes (N = 2)	0.6 ± 75.2	70.7 ± 81.0	132.9 ± 106.9			
No (N = 30)	39.5 ± 43.7	114.0 ± 87.8	123.5 ± 72.8			

Figure 6. Ki-67 proliferative index of salivary gland malignancies according to the level of histone H3 modification. (A) MEC; (B) ACC. *Represents statistically significant difference at p < 0.05.
Figure 7. Receiver operating characteristic (ROC) curves and area under curves (AUC). The predictive assessments of the H3K9Me3 level and advanced pathologic grade MEC (A), the H3K9Me3 level and MEC with high Ki-67 proliferative index (B), the levels of 3 histone H3 modification and solid subtype of ACC (C), and the levels of 3 histone H3 modification and ACC with high Ki-67 proliferative index (D).

Table 3. Correlation among 3 types of histone H3 modification in salivary gland neoplasms.
suppressor genes such as CDKN2A/p16, APC, Mint1, PGP9, RAR-β, Timp3 have been reported. In conjunction with our data, it should be of interest in future studies to investigate the functional involvement of hyper-trimethylated H3K9 on EpCAM and other tumor suppressor genes in relation to progression of salivary gland cancers. Additionally, the expression of SUV39H and SEDTB1 in salivary gland malignancies should be of value for potential application of targeted treatment in patients with these cancers.

In the present study, we also note the significantly greater H3K9Ac level in MEC than benign PA, and that the solid-typed ACCs upregulated both H3K9Ac and H3K18Ac. Previous studies demonstrated variable roles of histone acetylation in carcinogenesis. Acetylation of histone leads to the open chromatin and increased gene expression. Its effects can be varied, depending on the acetylation sites as well as the tumor types. While the association between diminished H3K9Ac and poor prognosis had been observed in selected malignancies, such as those of breast4 and oral mucosa45, studies in gastric adenocarcinoma46, grade I lung adenocarcinoma47 and colorectal cancer48 reported findings corresponding to ours, that the hyperacetylated H3K9 inferred worse cancer outcomes. Regarding H3K18Ac, its overexpression was associated with poor prognostic factors in several cancers, including thyroid cancer49, prostate cancer50, glioma51, hepatocellular carcinoma52, and oral squamous cell carcinoma53. Nevertheless, other types of cancer, including breast cancer54 and colorectal cancer55 demonstrated a reverse relationship, and varying results among studies were observed in pancreatic cancer56.

In addition to the H3K9Me3, our findings supported the potential role of H3K9Ac and H3K18Ac in solid-typed ACC formation and the significantly increased tumor cell proliferation. Hyperacetylation at these histone sites could activate transcription of certain oncogenic pathways. Interestingly, a study in liver cancer model showed that tumor cells that failed at H3K9Ac/H3K9Me3 transition, could lead to the hyperacetylation of H3K9 and increased expression of many oncoproteins such as Kras, Ercc1, Cd6, Usp39, and Mapre352. In addition, previous studies reported that levels of H3K9Ac and H3K18Ac were correlated with the increased transcription of genes, which could be involved in salivary gland carcinogenesis, such as NOTCH1 (both H3K9Ac and H3K18Ac)534, MUC1 (H3K9Ac)55, c-MYB (H3K9Ac)56 and EGFR downstream protein (H3K18Ac)54759. Moreover, the MECT1-MAML2 fusion oncogene commonly detected in MEC50, was shown to recruit and activate activity of CBP/p300, which is an H3K18 acetyltransferase61,62. However, the exact mechanisms are not yet known. These data could establish the foundation for future research on the roles these histone modifications may play in ACC progression.

Histone H3 acetylation in salivary gland tumors had been investigated by a handful of studies with variable results. Corresponding to our findings, Kishi et al. demonstrated that global H3 acetylation was frequent in MEC (71.4%) and ACC (76.5%)63. However, Xia et al. reported that low H3K9Ac expression in ACC was correlated with poor prognosis64. These variable findings could be resulted from the differences in tissue source and immunohistochemical evaluation scheme. In this study, we used whole tissue specimens to quantify the levels of histone modification, based on both the tissue distribution and staining intensity. While examining these tissue sections, we noticed discernable variation in the distribution and intensity of immunoreactivity within the same sections. This could be due to the inherent cellular heterogeneity of salivary gland neoplasms, since each tumor is distinctly composed of the admixture of several cell types with different morphologic features and contrasting levels of histone modification from one area to another. H3K9Ac expression in particular was shown to be heterogeneous in tissue specimens, especially those from high-grade tumors65. This heterogeneous pattern of expression could well be affected by sampling (whole tissue sections vs. tissue microarray) and immunohistochemical staining scoring methods66.

Studies on the level of key enzymes responsible for these modified histones are limited. SETDB1 gene expression was shown to be higher in PA tissues, compared with normal salivary glands67. A recent study on HDACs reported the association of HDAC-2 with better overall survival of patients with salivary gland malignancies, whereas the increased HDAC-6 expression indicated poor prognosis68. However, the interpretation of these findings in relation to global histone modification data may not be straightforward. Both HDAC-2 and HDAC-6 were known to be able to deacetylate H3K96567, H3K1868, as well as other histone and non-histone proteins69–71. Due to their complex substrate specificity and largely undetermined recognition sites, investigating the correlation of among the expression of all HDACs and their substrates would be challenging and yet to be further investigated72.

Our data strongly support the connection that acetylation of histone H3 plays in salivary gland carcinogenesis and could shed some light on potential novel treatment. There have been clinical trials using HDAC inhibitor in treating ACC and MEC with limited success72,73. Vorinostat, an HDAC inhibitor, efficiently disrupted the tumorigenesis. Hyperacetylation and trimethylation of histone H3 are associated with the increased tumor proliferation74,75. In conclusion, our results support that epigenetic alteration is crucial for the regulation of salivary gland tumorigenesis. Hyperacetylation and trimethylation of histone H3 are associated with the increased tumor proliferative ability and the aggressive solid-subtyped formation in ACC and could be used as potential prognostic
markers or future targeted therapy of this neoplasm. Notably, H3K9Me3 could be involved in the increased cancer proliferation, invasive characteristics, and advanced grade of MEC.

Data availability

The datasets used and analyzed during the current study available from the corresponding author on reasonable request.

Received: 15 May 2022; Accepted: 25 August 2022
Published online: 05 September 2022

References

1. Baxter, E., Windloch, K., Gannon, F. & Lee, J. S. Epigenetic regulation in cancer progression. Cell Biosci. 4, 45. https://doi.org/10.1186/2045-3701-4-45 (2014).
2. Barlesi, F. et al. Global histone modifications predict prognosis of resected non-small cell lung cancer. J. Clin. Oncol. 25, 4358–4364. https://doi.org/10.1200/JCO.2007.11.2599 (2007).
3. Darnodorean, S. et al. Dysregulation of Sirtuin 2 (SIRT2) and histone H3K18 acetylation pathways associates with adverse prostate cancer outcomes. BMC Cancer 17, 874. https://doi.org/10.1186/s12885-017-3853-9 (2017).
4. Elsheikh, S. E. et al. Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res. 69, 3802–3809. https://doi.org/10.1158/0008-5472.CAN-08-3907 (2009).
5. Gezer, U. et al. Characterization of H3K9me3- and H4K20me3-associated circulating nucleosomal DNA by high-throughput sequencing in colorectal cancer. Tumour Biol. 34, 329–336. https://doi.org/10.1007/s13277-012-0554-4 (2013).
6. Juliano, C. N. et al. H4K12 and H3K18 acetylation associates with poor prognosis in pancreatic cancer. Appl. Immunohistochem. Mol. Morpho. 24, 337–344. https://doi.org/10.1097/PAI.0b013e3182040019 (2016).
7. Leszinski, G., Gezer, U., Siegele, B., Stoetzer, O. & Holdenrieder, S. Relevance of histone marks H3K9me3 and H4K20me3 in cancer. Anticancer Res. 32, 2199–2205 (2012).
8. Manuyakorn, A. et al. Cellular histone modification patterns predict prognosis and treatment response in resectable pancreatic adenocarcinoma: Results from RTONG 9704. J. Clin. Oncol. 28, 1358–1365. https://doi.org/10.1200/JCO.2009.24.5639 (2010).
9. Mosashvili, D. et al. Global histone acetylation levels: Prognostic relevance in patients with renal cell carcinoma. Cancer Sci. 101, 2664–2669. https://doi.org/10.1111/j.1349-7006.2010.01717.x (2010).
10. Park, Y. S. et al. The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Ann. Surg. Oncol. 15, 1968–1976. https://doi.org/10.1245/s10434-008-9227-9 (2008).
11. Paydar, P. et al. Epigenetic modulation of RBCA-1 and MGMT genes, and histones H4 and H3 are associated with breast tumors. J. Cell Biochem. 120, 13726–13736. https://doi.org/10.1002/jcb.28645 (2019).
12. Seligson, D. B. et al. Global histone modification patterns predict risk of prostate cancer recurrence. Nature 435, 1262–1266. https://doi.org/10.1038/nature03672 (2005).
13. Song, J. S., Kim, Y. S., Kim, D. K., Park, S. I. & Jang, S. J. Global histone modification pattern associated with recurrence and disease-free survival in non-small cell lung cancer patients. Pathol. Int. 62, 182–190. https://doi.org/10.1111/j.1440-1827.2011.02776.x (2012).
14. Tzao, C. et al. Prognostic significance of global histone modifications in resected squamous cell carcinoma of the esophagus. Mod. Pathol. 22, 252–260. https://doi.org/10.1038/modpathol.2008.172 (2009).
15. Black, J. C. & Whestine, J. R. Chromatin landscape: Methylation beyond transcription. Epigenetics 6, 9–15. https://doi.org/10.4161/epi.6.1.13331 (2011).
16. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837. https://doi.org/10.1016/j.cell.2007.05.009 (2007).
17. Yang, C. et al. Histone methyltransferase and drug resistance in cancers. J. Exp. Clin. Cancer Res. 39, 173. https://doi.org/10.1186/s13046-020-01682-x (2020).
18. Cheng, Y. et al. Targeting epigenetic regulators for cancer therapy: Mechanisms and advances in clinical trials. Signal Transduct. Target Ther. 4, 62. https://doi.org/10.1038/s41392-019-0095-0 (2019).
19. Torrano, J., Al Emran, A., Hammerlindl, H. & Schader, H. Emerging roles of H3K9me3, SETDB1 and SETDB2 in therapy-induced cellular reprogramming. Clin. Epigenetics 11, 43. https://doi.org/10.1186/s13277-018-0644-y (2019).
20. Yokoyama, Y. et al. Cancer-associated upregulation of histone H3 lysine 9 trimethylation promotes cell motility in vitro and drives tumor formation in vivo. Cancer Sci. 104, 889–895. https://doi.org/10.1111/cas.12166 (2013).
21. Bianco-Miotto, T. et al. Global levels of specific histone modifications and an epigenetic gene signature predict prostate cancer progression and development. Cancer Epidemiol. Biomarkers Prev. 19, 2611–2622. https://doi.org/10.1158/1055-9966.EPI-10-0555 (2010).
22. Wagner, V. P. et al. Reduced chromatin acetylation of malignant salivary gland tumors correlates with enhanced proliferation. J. Oral Pathol. Med. 46, 792–797. https://doi.org/10.1111/j.1600-0714.2017.01557.x (2017).
23. Xia, R. et al. High expression of H3K9me3 is a strong predictor of poor survival in patients with salivary adenoid cystic carcinoma. Arch. Pathol. Lab. Med. 137, 1761–1769. https://doi.org/10.1085/arpa.2012-0704-0A (2013).
24. Aniello, F. et al. Expression of four histone lysine-methyltransferases in parotid gland tumors. Anticancer Res. 26, 2063–2067 (2006).
25. Pouloudi, D. et al. Clinical significance of histone deacetylase (HDAC)-1, -2, -4 and -6 expression in salivary gland tumors. Diagn. Pathol. 14, 13390/doi.org/10.1186/s11305-017-0517 (2021).
26. Brandwein, M. S. et al. Mucoepidermoid carcinoma: A clinicopathologic study of 80 patients with special reference to histological grading. Am. J. Surg. Pathol. 25, 835–839. https://doi.org/10.1097/00000478-20010700-00001 (2001).
27. McCarty, K. S. Jr., Miller, L. S., Cox, E. B., Konrath, J. & McCarty, K. S. Estrogen receptor analyses: Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Arch. Pathol. Lab. Med. 109, 716–721 (1985).
28. Larsen, S. R., Bjornsdal, K., Godballe, C. & Krogdahl, A. Prognostic significance of Ki-67 in salivary gland carcinomas. J. Oral Pathol. Med. 41, 598–602. https://doi.org/10.1111/j.1607-0174.2012.01148.x (2012).
29. Wienczek, J. K., Zheng, S., Morrison, Z. & Yeh, R. F. Differentially expressed genes are marked by histone 3 lysine 9 trimethylation in human cancer cells. Oncogene 27, 2412–2421. https://doi.org/10.1038/onc.2008.295 (2008).
30. Monaghan, L. et al. The emerging role of H3K9me3 as a potential therapeutic target in acute myeloid leukemia. Front Oncol. 9, 705. https://doi.org/10.3389/fonc.2019.00705 (2019).
31. Lu, C. et al. Contrasting roles of H3K4me1 and H3K9me3 in regulation of apoptosis and gemcitabine resistance in human pancreatic cancer cells. BMC Cancer 18, 149. https://doi.org/10.1186/s12885-018-4061-y (2018).
32. Zhou, M. et al. H3K9me3, H3K36me3, and H4K20me3 expression correlates with patient outcome in esophageal squamous cell carcinoma as epigenetic markers. Dig. Dis. Sci. 64, 2147–2157. https://doi.org/10.1007/s10620-019-05529-2 (2019).
33. Fei, Q. et al. Histone methyltransferase SETDB1 regulates liver cancer cell growth through methylation of p53. *Nat. Commun.* **6**, 6561. https://doi.org/10.1038/ncomms6561 (2015).
34. Ceol, C. J. et al. The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. *Nature** 471, 513–517. https://doi.org/10.1038/nature09806 (2011).
35. Keung, E. Z. et al. Increased H3K9me3 drives dedifferentiated phenotype via KLF6 repression in liposarcoma. *J. Clin. Invest.* **125**, 2985–2978. https://doi.org/10.1172/JCI77976 (2015).
36. Lakshmi, K. et al. Knockdown of SETDB1 inhibits breast cancer progression by miR-381-3p-related regulation. *Biol. Res.* **51**, 39. https://doi.org/10.1186/s40659-018-0189-0 (2018).
37. Sun, Y. et al. Histone methyltransferase SETDB1 is required for prostate cancer cell proliferation, migration and invasion. *Asian J. Androl.* **16**, 319–324. https://doi.org/10.4103/0971-778X.122812 (2014).
38. Wu, M. et al. H3K9 histone methyltransferase G9a promotes lung cancer invasion and metastasis by silencing the cell adhesion molecule Ep-CAM. *Cancer Res.* **70**, 7830–7840. https://doi.org/10.1158/0008-5472.CAN-10-0833 (2010).
39. Ashktorab, H. et al. Hypoacetylation of acetyl-histone H3 (H3K9ac) as marker of poor prognosis in oral cancer. *Histopathology* **71**, 278–286. https://doi.org/10.1111/his.13218 (2017).
40. Lai, Q. et al. SETDB1 accelerates tumourigenesis by regulating the WNT signalling pathway. *Ann. Diagn. Pathol.* **24**, 62–67. https://doi.org/10.1016/j.an迪adiagpath.2016.05.007 (2016).
41. Jin, Q. et al. Histone modifications and markers define heterogeneous groups of colorectal carcinomas and affect responses to HDAC inhibitors in vitro. *Am. J. Cancer Res.* **6**, 664–676 (2016).
42. Puppin, C. et al. Levels of histone acetylation in thyroid cancers. *Biochem. Biophys. Res. Commun.* **411**, 679–683. https://doi.org/10.1016/j.bbrc.2011.06.182 (2011).
43. Liu, B. L. et al. Global histone modification patterns as prognostic markers to classify glioma patients. *Cancer Epidemiol. Biomarkers Prev.* **19**, 2888–2898. https://doi.org/10.1158/1055-9965.EPI-10-0454 (2010).
44. Lee, H. S. et al. SIRT7, H3K18ac, and ELK4 immunohistochemical expression in hepatocellular carcinoma. *Cancer Epidemiol. Biomarkers Prev.* **20**, 337–344. https://doi.org/10.1158/1055-9966.EPI-10-0892 (2011).
45. Chen, Y. W. et al. Histone modification patterns correlate with outcome in oral squamous cell carcinoma. *Ann. Diagn. Pathol.* **24**, 2708–2716. https://doi.org/10.1016/j.an迪adiagpath.2016.08.060-7 (2009).
46. Winkler, R. et al. Histone deacetylases and their inhibitors in cancer biology and treatment. *Brief Bioinform.* **15**, 963–977. https://doi.org/10.1093/bib/bbt060 (2014).
47. Milazzo, G. et al. Histone deacetylases (HDACs): Evolution, specificity, role in transcriptional complexes, and pharmacological actionability. *Genes* https://doi.org/10.3390/genes11050556 (2020).
72. Goncalves, P. H. et al. A phase 2 study of vorinostat in locally advanced, recurrent, or metastatic adenoid cystic carcinoma. *Oncotarget* **8**, 32918–32929. https://doi.org/10.18632/oncotarget.16464 (2017).
73. Rodriguez, C. P. et al. A phase II trial of pembrolizumab and vorinostat in recurrent metastatic head and neck squamous cell carcinomas and salivary gland cancer. *Clin. Cancer Res.* **26**, 837–845. https://doi.org/10.1158/1078-0432.CCR-19-2214 (2020).
74. Wagner, V. P. et al. Targeting histone deacetylase and NFκB signaling as a novel therapy for Mucoepidermoid Carcinomas. *Sci. Rep.* **8**, 2065. https://doi.org/10.1038/s41598-018-20345-w (2018).
75. Zhang, P. Y. et al. Dicer interacts with SIRT7 and regulates H3K18 deacetylation in response to DNA damaging agents. *Nucleic Acids Res.* **44**, 3629–3642. https://doi.org/10.1093/nar/gkv1504 (2016).
76. Dos Santos, E. S., Ramos, J. C., Normando, A. G. C., Mariano, F. V. & Paes Leme, A. F. Epigenetic alterations in salivary gland tumors. *Oral Dis.* **26**, 1610–1618. https://doi.org/10.1111/odi.13253 (2020).

Acknowledgements

We would like to thank Mr. Somchai Yodsanga for technical laboratory assistance.

Author contributions

Both E.P. and A.L. contributed equally to the study conception and design as well as data collection and analysis. Both authors wrote, reviewed on the previous versions of manuscript and approved the final manuscript.

Funding

This study was funded by the Faculty Research Grant (DRF 64008), Faculty of Dentistry, Chulalongkorn University. All experimental design, data collection, and data analysis were performed by the researchers independently without any involvement from the funding organization.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to E.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022