Validating local drivers influencing land use cover change in Southwestern Ghana: a mixed-method approach

Isaac Sarfo1,9 · Bi Shuoben2 · Henry Bortey Otchwemah3 · George Darko4 · Emmanuel Adu Gyamfi Kedjanyi5 · Collins Oduro1,9 · Ewumi Azeez Folorunso6 · Mohamed Abdallah Ahmed Alriah2,7 · Solomon Obiri Yeboh Amankwah2 · Grace Chikomborero Ndafira8

Received: 27 September 2021 / Accepted: 3 June 2022 / Published online: 9 July 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Addressing undesirable changes associated with the driving forces of land use cover change are critical to sustainable land management, and the future modeling of land use systems in developing countries. The study accentuates local drivers of land use cover change in Southwestern Ghana using a mixed-method approach. The approach aided in identifying key land-use drivers, using different research strategies for comparisons through confidence level analysis and Analytic Hierarchy Process. We used expert interviews, existing literature and geostatistical tools to ascertain the driving forces triggering such unprecedented changes. Landsat imagery 5 MSS, 4 and 5 TM, 7 ETM + and 8 OLI/TIRS were acquired from the United States Geological Survey’s website. Land-use analysis revealed a decline in forests (− 82.41%) and areas covered by waterbodies (− 27.39%). A fundamental drift in built-up (+ 1288.36%) and farmlands/shrubs (+ 369.81%) areas were also observed. The contribution rate of change analysis revealed built-environment and increasing population contributed the most to surface temperature and land-use change. A steady increase in surface temperature can be attributed to the undesirable changes associated with land-use systems over the past 50 years. Socio-economic development in Southwestern Ghana is fuelling interest in studies related to land use cover change. Biophysical, cultural and technological factors are considered key drivers despite the “medium-to-very low confidence” in results generated. They could potentially impact climate-sensitive sectors that significantly modify land-use systems from the pessimists’ and optimists’ perspectives. Standpoints established through this study will enrich basic datasets for further studies at the continental level.

Keywords Land use · Contribution rate · Confidence level · AHP · Driving forces · Ghana

Introduction
Land use and forest management remain pivotal in achieving the United Nations’ Sustainable Development Goals (SDGs). Studies have comprehensively reflected on the linkage between ‘Sustainability’ and Forest Transition Theory ‘FTT’ (Rudel et al. 2010; Turner et al. 2007; Mather et al. 1998). When viewed through the lens of the SDGs, making gains in FTT application may complement global efforts at achieving SDGs 1 (No Poverty), 2 (End Hunger), 13 (Climate Action), and 15 (Life on Land) in various ways. Meyfroidt and Lambin (2011), in their research on FTT, reinforced the connection between land-use change dynamics and the FTT concept, as echoed by Foley et al. (2005). Arguably, both studies implicitly and explicitly provide opportunities for forest transition to ‘reinstate’ poorer, forest-dependent populations into more favorable socio-economic positions as access to natural capital becomes possible. This must, however, be supported by enabling factors, mainly a corruption-free system. There is also a possibility for a non-realization of the ‘full potential’ of natural resource access alone in reducing poverty, considering arguments brought forward by studies which explore the five capitals model (Gazzola and Querci 2017; Sim et al. 2004; Angelsen and Wunder 2003; Smith and Scherr 2002; Hyden 1998). They argued that effective poverty reduction is achieved when access to all five capitals (Gazzola and Querci 2017) exists, hence, possibly undermining positive forest transition outcomes in poverty alleviation; highly possible in the tropics and less-developed countries.
Systems responsible for the sustainable use of forest resources are essential (Damnyag et al. 2017; FAO 2013) in themselves, and for contributing to forest transition (Waggoner and Ausubel 2001). In the same vein, forest transition can contribute to sustainable forest resource management (Lambin and Meyfroidt 2011). Land cover (LC) requires robust use of the elements of Sustainable Forest Management (SFM): “biomass; flora and fauna; forest health and vitality; productive functions of forest resources; conservative functions of forest resources; ecosystem services; legal, policy and institutional framework” (Nunoo et al. 2016). Various studies support the central idea that efforts geared at the SFM elements remain critical for a fair forest resource use regime across all facets of socio-economic status, underscored by transparency in the context of forest transition (Rudel et al. 2020; Southworth et al. 2012; Lambin and Meyfroidt 2011; Meyfroidt and Lambin 2011). Concepts of “ecoconsumerism” (Meyfroidt and Lambin 2011), and “new corporate environmentalism” (Nasi and Frost 2009), re-emphasize rigorous SFM approaches through forest transition. These ensure land-cover-related benefits mainly ecosystem/ecological service advantages, and forest product use benefits become, and remain (if existent), reality.

The human–environment relationship varies in time and space. Land Use Cover Change (LUCC) is often caused by an interplay of multiple factors (Tolessa et al. 2019; Lambin and Meyfroidt 2011; Sim 2004). The dynamic interactions result in the formation of undesirable changes associated with LUCC. In response to the growing demands of human survival and developmental needs, the earth’s surface is continuously altered. Historically, LUCC in the current age-of-anthropocene evolves from multiple direct and indirect factors (Mensah et al. 2019; Acheampong et al. 2018). These events accelerated substantially with the evolution of farming activities, resulting in the massive clearance of pristine environments. More recently, structural economic policies have driven industrialization, forcing people to migrate to urban centers, thereby resulting in the depopulation of rural areas. This is accompanied by the intensification of agriculture in the most productive lands, and neglect of marginal lands (Damnyag et al. 2017; Saad et al. 2013; Kusimi 2008). When land is transformed from a primary forest to a farm, the loss of forest species within deforested areas occurs. Similarly, undisturbed environments are relatively transformed to more intensive uses, including livestock grazing, and selective tree harvest, among others (Ellis and Pontius 2010). Some areas are often left bare, exposing such areas to unfavorable conditions which often render these areas unproductive.

In recent years, different scholars have applied useful techniques to study LUCC across Ghana. They primarily focused on changes in and around reserves/catchment areas (Gockowski and Sonwa 2011; Alo and Pontius 2008), spatial determinants of classes, and dynamics in future modeling (Addae and Oppelt 2019; Koranteng et al. 2017a, b), along with establishing links between demographic changes and land-use systems (Moller-Jensen and Knudsen 2008). Other researchers have conducted meta-analysis or review studies on land-use systems and water sedimentation (Boakye et al. 2018). Local studies conducted in various towns, districts, and regions have assessed the impacts of urbanization, illegal logging of trees and intensiveness of large scale mining and artisanal or small-scale mining (LSM/ASM) (Owusu-Nimo et al. 2018; Awotwi et al. 2018; Basomni et al. 2015), urban heat islands (Aduah et al. 2012), driving forces and consequences in regional capitals; notably Bolgatanga, Accra, Kumasi (McGregor et al. 2011), Sekondi-Takoradi (Obeng-Odoom 2013) among other municipalities/towns like Kintampo Municipality (Bessah et al. 2019) and New Juaben, respectively. Watershed and other river basin studies around Lake Bosomtwe (Bessah et al. 2020; Amproche et al. 2019; Awotwi et al. 2015; Adjei et al. 2014; Leemhuis et al. 2009) in the Ashanti region of Ghana; Black and White Volta River Basins in the Volta/Oti regions (Tahiru et al. 2020) in the far east; Ankobra, Pra and Densu River Basins (Oti et al. 2020) in the west and Southernmost part of Ghana assessed the impacts of illegal mining (primarily gold and bauxite mining), deforestation among other factors that induce land-cover transitions in these areas. The Southwestern region of Ghana hosts two-thirds of the country’s high forest zone and is most endowed in natural resources among the sixteen (16) administrative regions in Ghana. The agricultural and mineral sectors are critical to the growth and development of Ghana’s economy. Considering Southwestern Ghana’s contribution to the country’s overall Gross Domestic Product (GDP), the region produces almost two-thirds of Ghana’s cocoa (contributing about 30% of the country’s export earnings) among other cash crops, as well as gold, bauxite, diamond and manganese (Owusu-Nimo et al. 2018; Asante-Poku and Angelucci 2013). Ghana is Africa’s leading gold producer (generating a revenue of about 6.2 billion US dollars from exports) unseating South Africa in 2019, coupled with being the second largest producer of cocoa in Africa with discovery of several oil fields for exploration (Geiger et al. 2019). These major commodities that contribute significantly to the country’s GDP remain the mainstay of the study area and the country at large. We sought to ascertain the main drivers of LUCC in Southwestern Ghana using the mixed-method approach (MMA) (1970–2020). Ineffective monitoring and regulation of these drivers could further exacerbate land degradation in the region. This could hamper productivity levels that will influence the country’s GDP. The MMA employs both qualitative and quantitative strategies to identify and analyze both direct and indirect factors that influence LUCC. It does not solely detect changes, but also validates information on dynamics.
in environmental issues that provide strategic directions for policy-makers, and inform the choices of local communities. Contextually, only a few studies have attempted to quantify non-spatial/indirect drivers of LUCC (Kleemann et al. 2017; Jacobs et al. 2015; MA 2005). Long-term residents and expert opinions are key in understanding why LULD in the study area is constantly changing, since the triggering effects constitute direct and indirect forces. Kleemann et al. (2017) focused on urbanization and patterns of change in two regional capitals, both in the northern and southern parts of Ghana. This regional study further introduces the contribution rates of change for each class in Normalized Difference Vegetation Index (NDVI) and Normalized Difference Built-up Index (NDBI) to temperature variations. Additionally, it sought to adopt the Analytical Hierarchy Process (AHP) to compare and assign weights to experts’ judgements in the validation of the key drivers. Hence, employing the MMA to quantify both spatial and non-spatial drivers aimed to enhance comparisons, consistency and confidence in study findings. In the frame of this research, we attempted to address the following research questions:

i. What direct and indirect factors influence LUCC in Southwestern Ghana?
ii. What is the contribution rate of change for each class within the various indices against surface temperature?
iii. How consistent are the findings of expert interviews and literature review, against results from a geospatial analysis that could drive land-cover transitions and land degradation?
iv. Does consistency in the study approach enhance confidence and validity in findings that could be used to test existing theories?

Studies on land-use assessments require a large amount of spatial data and other qualitative tools for effective evaluation and prioritization of alternative decisions. The novelty of this study dwells on the application value of concepts/applications, aimed at identifying and assessing local drivers influencing LUCC in Southwestern Ghana. We replicated and tested the approach, introduced by IPCC’s fifth AR5 Working Group. The integrated approach is holistic and can be tested in other areas.

Methodology

Study area

The study was conducted in Southwestern Ghana as part of a broad study that analyzed the spatiotemporal development of land-use systems and climate variability in Ghana between 1970 and 2020. The study domain (Fig. 1) is located at latitude 5.3902° N and longitude 2.1450° W. It currently covers an approximate surface area of 23,921 km² (9236 m²) representing about 10% of Ghana’s total land surface area. About 75% of Ghana’s high forest vegetation among other natural resources can be found in the region. The study area hosts two administrative regions: the Western North and Western region.

Image classification

In this study, six Landsat images: Landsat 5 MSS, Landsat 4 and 5 TM, Landsat 7 ETM + and Landsat 8 OLI/TIRS, archived for the given period (1970–2020) (Table 1) were acquired from the United States Geological Survey’s (USGS) website (http://earthexplorer.usgs.gov/). ArcGIS 10.6, ENVI 5.0, and 5.3 were used for the image pre-processing. Other image processing and enhancement procedures constituted image mosaicking, calibration, layer stacking, region of interest (ROI) and supervised classification (Table 2) were performed to rectify atmospheric effects and distortions in images. A Maximum-Likelihood Classification Algorithm (MLCA) was employed for preliminary classifications based on the results of the supervised classification.

Change detection analysis

Change detection analysis was run to ascertain the regularity of land-use systems, and their drivers in southwestern Ghana (1970–2020). We applied image differencing, NDVI, post-classification and Geographic Information System (GIS) techniques in determining the spatiotemporal development of land-use systems in the area. LUCC was computed based on the following expressions:

\[
\text{Change in LUCC} (x^2) = \frac{\text{LUCC}_{\text{Current year}} - \text{LUCC}_{\text{Past year}}}{\text{LUCC}_{\text{Past year}}} (1)
\]

\[
\% \text{Change in LUCC} (x^2) = \frac{\text{LUCC}_{\text{Current year}} - \text{LUCC}_{\text{Past year}}}{\text{LUCC}_{\text{Past year}}} \times 100\% (2)
\]

Rate of change in LUCC per year

\[
= \left(\frac{(\text{LUCC}_{\text{Current year}} - \text{LUCC}_{\text{Past year}})}{\text{LUCC}_{\text{Past year}}} \right) \times 100\% / 50 \text{ years}. (3)
\]

The change detection statistics for the study period (1970–2020) was obtained using pixel count, with area in km² and percentages for analysis. This facilitated the generation of statistical data of change occurrence over the years, for each class.
Temperature analysis

Image calibration (radiance)

Radiometric correction (radiance) was done to rectify atmospheric effects and enhance clarity. Gap-filling was performed to remove stripes in images. Distortions in images were removed during the calibration process (Coll et al. 2010). Using the mathematical expression

\[
L_\lambda = \frac{(\text{LMAX}_j - \text{LMIN}_j)}{(\text{QCALMAX} - \text{QCALMIN})} \times (\text{DN} - \text{QCALMIN}) + \text{LMIN}_j,
\]

where \(L_\lambda\) is cell value as radiance in \(\text{W}/(\text{m}^2 \times \text{sr} \times \text{µm})\); \(\text{LMAX}_j\) is the sensor spectral radiance that is scaled to (QCALMAX) in \(\text{W}/(\text{m}^2 \times \text{sr} \times \text{µm})\); \(\text{LMIN}_j\) is the sensor spectral radiance that is scaled to (QCALMIN) in \(\text{W}/(\text{m}^2 \times \text{sr} \times \text{µm})\). (QCALMAX) is the maximum quantized calibrated pixel value to \(\text{LMAX}_j\) [DN]. (QCALMIN) is the minimum quantized calibrated pixel value corresponding to \(\text{LMIN}_j\) [DN]; and QCAL is the quantized calibrated pixel value [DN]. Equation 4 can be observed from header files ETM+ and TM datasets from the USGS website. The \(\text{LMIN}\) and \(\text{LMAX}\) are the spectral radiances for each band at digital numbers (DN) 1 and 255 for Landsat 7 ETM+, 1 and 65,535 for Landsat 8 OLI/TIRS. \(\lambda\) is the wavelength.

Conversion of spectral radiance \((L_\lambda)\) to kelvin with emissivity value

\[
T = \frac{K_2}{\ln\left(\frac{K_1 \times E}{L_\lambda}\right) + 1},
\]

Therefore, \(K_1\) and \(K_2\) become coefficients determined by the effective wavelength of a satellite sensor (Avdan and Jovanovska 2016; Ghulam 2010)

\[
\text{BT} = \frac{K_2}{\ln\left((K_1/K_j) + 1\right)}.\]

Conversion of spectral radiance \((L_j)\) to kelvin with emissivity value from Landsat 8

Since temperature is required in degree Celsius \((^\circ \text{C})\) \((T_\text{C})\), results for various temperatures must be converted from kelvin \((K)\) \((T_\text{B})\) to degree Celsius \((^\circ \text{C})\) \((T_\text{C})\)

\[
T_\text{C} = T_\text{B} - 273.15,
\]

Fig. 1 Location of the study area
Table 1 Description of satellite imagery used for LUCC study in Southwestern Ghana

Imagery type	Year acquired	Resolution (m)	Data source	Path	Row
LANDSAT 5 MSS	1970s	30	USGS	194/195/208/209	054/055/056
LANDSAT 4 TM	1980s	30	USGS	194/195/208/209	054/055/056
LANDSAT 5 TM	1990s	30	USGS	194/195/208/209	054/055/056
LANDSAT 7 ETM+	2000	30	USGS	194/195/208/209	054/055/056
LANDSAT 7 ETM+	2010	30	USGS	194/195/208/209	054/055/056
LANDSAT 8 OLI/TIRS	2020	30	USGS	194/195/208/209	054/055/056

MSS multispectral scanner system, *TM* thematic mapper, *ETM*+ enhanced thematic mapper plus, *OLI/TIRS* operational land imager/thermal infrared sensor

Table 2 Description of land-cover types identified in the study area

Land cover	Description
Forests	Areas dominated by closely knit trees and luxurious vegetative cover. It also encompasses all vegetative areas that expose no bare soil
Built-up areas	Residential, commercial, and industrial areas are classified as built-up areas. Parks, gardens, playing grounds, and lorry stations within communities also fall under this class
Bare land	These are usually patches of land or rocks which are not covered by vegetation. Bare lands are common in and near built-up areas. Lands that have been cleared in readiness for building or farming fall under this class
Farmlands and shrubs	Describes all areas that portray sparsely located trees, shrubs, isolated thickets, and areas with non-tree crops
Water bodies	Comprise rivers, lagoons, lakes, and so on
where T_B is the value at satellite brightness temperature (K) and T_C is temperature in degree Celsius.

Contribution rate of change for the various indices

Reclassification was performed for the understudied indices (NDVI and NDBI) over the given study period (1970–2020). Five classes were generated for each of the indices for each period using ArcMap. The classes were obtained based on value range results from high to low considering the output of the indices. The classes were reclassified based on their value range using the identification tool in ArcMap. This resulted in the identification and classification of forests, farmlands/shrubs, water bodies, bare land and built-up value range within the understudied indices.

After obtaining the various classes based on the value range, the zonal geometry tool in ArcMap was used to obtain the area coverage in square meters for each class. The table obtained was exported to Statistical Package for the Social Sciences (SPSS Inc. Chicago, USA, version 16) for conversion of the area (sq.km), percentage contributions of the various classes, along with existing changes in terms of area coverage for the given years. Using the expressions

$$\text{NDVI} = \frac{(\text{NIR} - \text{RED})}{(\text{NIR} + \text{RED})}, \quad (8)$$

where NIR = near-infrared and RED = red-visible bands (Xu 2007). Again, normalized difference built-up index (NDBI) was expressed as

$$\text{NDBI} = \frac{(\text{SWIR} - \text{NIR})}{(\text{SWIR} + \text{NIR})}, \quad (9)$$

where CRC = contribution rate of change for a given class, over a given study period among the understudied indices, while LUC = land-use class. Here, the value of change for each class given the output indicates the rate of change/contribution. High positive values indicate an increment (rate of contribution) in area coverage for a particular class over the given study period. Contrarily, negative values represent a decline (rate of contribution) in area coverage for a given class. Considering the expression above (Eq. 10), the rate of change (\pm) based on the results generated will indicate which class contributed the most toward change in the area.

Symbol	Level of agreement	Details
√√√	High agreement	Statement is confirmed within one method For expert interviews: $>60\%$ of respondents confirmed For literature: more than two sources confirmed For RS: if study was conducted in the same area with similar scope. Otherwise, not applicable
√√	Medium Agreement	Confirmation and rejection within one method For expert interviews: $<25\%$ of respondents confirmed For literature: confirmation and rejection balanced
√	Low agreement	No data or evidence

Level of evidence	Details
High evidence	All three methods can provide information
Medium evidence	Two methods can provide information
Low evidence	One method can provide information

Table 3 Combinations between agreement and evidence levels for each finding

Table 4 Confidence level table of findings from interviews, remote sensing, and existing literature

Adapted from Kleemann et al. (2017) and Jacobs et al. (2015) based on Mastrandrea et al. (2011) and MA (2005)
Data analysis

The MMA approach was primarily used in IPCC’s fifth assessment report to validate the inconsistencies, associated with the various working groups’ reports on indirect drivers of LUCC (Kleemann et al. 2017; Jacobs et al. 2015). A semi-structured questionnaire was designed and administered to some experts in the study area. “Experts” in this study are defined as individuals with extensive knowledge and experience about the scope of this study, and had lived or worked in the area for more than 20 years. In-depth interviews were conducted among 30 experts to ascertain the major drivers of LUCC. Experts were chosen based on willingness and availability to contribute to the study.

Excel and Statistical Package for Social Sciences (SPSS v.16) software were employed to capture, clean and analyze the data collected. Results from respondents’ knowledge were used to validate the outcome of satellite imagery and existing literature over the given study period (Fig. 2).

Confidence level analysis

To express the validity and reliability of findings, we adopted the confidence level approach provided by Kleemann et al. (2017), and Jacobs et al. (2015), based on Mastrandrea et al. (2011) for the IPCC AR5 and the Millennium Ecosystem Assessment (MA 2005). They established synergy between agreement and evidence levels to examine confidence in avouching study findings (Tables 3 and 4). This parameter is important in correcting the degree of inconsistencies or inaccuracies in various approaches used. The present study moves further to introduce contribution rates of change for each class in the various indices against temperature and LUCC, coupled with AHP to assign weights to expert judgements, which were not employed in the aforementioned studies.

Analytical hierarchy process (AHP) model

The AHP is an analytical tool used to illustrate a phenomenon, examine and advance priorities, based on the user’s discretion to solve complex problems (Saaty 1980). AHP analysis employs six steps formulated by Saaty (1980), and enhanced by Danumah et al. (2016): (i) breaking a complex unstructured problem down into its component factors; (ii) formulation of hierarchical structure; (iii) paired comparison matrix determined by coercing results; (iv) allocating values to subjective judgments and measuring the relative weights of each criterion; (v) systemize results to determine the relative weights of priority variables, and (vi) look out for consistency in assessments and judgments. The unique basic quality of AHP is the calculation of consistency ratio which reduces bias to a larger extent and determines how logical results are. If the consistency ratio is less than or equal to 0.1, then the factor is considered acceptable consistency. However, the AHP approach is built on three levels as evident in Fig. 3. Level 0 (main objective); Level 1 (criteria analysis which constitutes biophysical and proximate/underlying factors), whereas Level 2 lists the elements associated with Level 1 (Danumah et al. 2016; Nejad et al. 2015; Chakraborty and Joshi 2014). In this study, criteria weightings were assigned to judgements from experts to draw a logical conclusion on validating local drivers that influence LULD in Southwestern Ghana.

Principles for selecting each weight factor (AHP)

The ideal intent is to design a matrix that exhibits relative values of Level 2 elements in a hierarchy. Expert opinions or judgments are assigned a number according to Saaty’s scale. A simple, but very pragmatic assumption is that if, for instance, element A is very strongly crucial than element B, then A is assigned or valued as 7. B becomes less important than A; hence, B is valued at 1/7. A pair-wise comparison was done for all the listed factors. Again, relative weights were calculated (eigenvector).

Pairwise comparison

The binary combination is based on Saaty’s (1980) proposition to compare key and potential drivers, while the pair-wise comparison is the basic element of the AHP process. For pairing in each criterion, the preferable element is weighted on a scale ranging from 1 (equally good) to 9 (absolutely better), whereas the less preferred element is assigned a weight, reciprocal to this value. Each score illustrates how better element “X” meets criterion “Y”. The ratings are normalized, and their consistency is being calculated (Table 5).

Development and prioritization matrix

Developing and prioritizing matrix are done to ascertain the eigenvectors (V_p) of each criterion for each item as expressed in Eq. 11

$$V_p = n \sqrt{W_1 x \cdots W_n};$$

(11)

n represents the number of parameters. W_n ratings are the main parameters. The criteria weight (C_p) is measured as

$$C_w = \frac{V_p}{V_p 1 + \cdots + V_p n}. $$

(12)

The sum of criteria weights (C_w) of all parameters of a matrix equals 1 and expressed as a percentage. Normalize the matrix by dividing each element by the sum of the
column, and calculate the mean of each line to determine the priority vector \([C]\). \(\lambda\) is calculated by averaging the value of the consistency vector. It is generated from the summation of products between each element of the Eigenvector and the normalized relative weight.

\[\lambda_{\text{max}} = \frac{[E]}{n} \]

\[\text{CI} = (\lambda_{\text{max}} - n) / (n - 1). \] \hspace{1cm} (14)

The ratio of consistency is the probability that the croak is completed randomly. When \(\text{CR} \leq 10\%\), the results are considered to be pragmatic. However, a \(\text{CR} > 0.1\) indicates the need for revision.

\[\text{CR} = \frac{\text{CI}}{\text{RI}}. \] \hspace{1cm} (15)

The random index (RI) estimations are presented in Table 6.

Accuracy assessment: ground-truthing exercise

Ground-truthing sampled points were taken using a Mobile Data Collection Application (MDC). The samples were imported unto the Southwestern Ghana shapefile in ArcMap for verification. Samples taken for each class (Table 2) were divided/distributed based on area coverage. Thus, bare land (70), built-up areas (177), waterbodies (20), forests (104), and farmlands/shrubs (153) sampled points were taken from the field, making a total of five hundred and twenty-four...
We designed a sampled collection form using a licensed GIS Cloud for the ground-truthing exercise. Using a confusion matrix, we assessed and improved the user and producer’s accuracy assessment technique that culminates randomized, and overall sampled points. The mathematical expression (Eq. 16) adapted from Sarfo et al. (2021) was used in calculating the accuracy assessment:

\[
\text{Accuracy assessment (A.A) = } \frac{\text{ASP}}{\text{TSP}} \times 100, \tag{16}
\]

where:

\(\text{ASP} = \text{number of sample points that accurately fall on each required feature (ASP = 493)}.\)

\(\text{TSP} = \text{number of total sample points generated (TSP = 524)}.\)

\(\text{A.A} = \text{Accuracy assessment } \left(\frac{493}{524} \times 100 = 94.08\%\right).\)

Therefore, the present study had 94% accuracy over the study period considering the samples collected.

Figures 4 and 5 depict areas where the sampled points (524) were taken using the Mobile Data Collection (MDC) Application (see Annex 1), as well as areas where the questionnaires were administered. Considering the characteristics of Southwestern Ghana as presented in Sect. “Study area” (Fig. 1), the sample size for each land class was determined based on the dominance or proportion of coverage of each land cover. Random sampling was performed to obtain information for each class.

Results

Sociodemographic characteristics of respondents

The majority of the respondents interviewed were males (87%), while the remaining quota (13%) represented females in Southwestern Ghana (Table 7). Table 7 shows that 53% of respondents had an age range of 26–40 years, while 47% ranged between 41 and 65 years. In terms of educational background, 27% of respondents had attained secondary education, while 73% had obtained tertiary education with various degrees. Also, most (73%) of the respondents had been living or working in the study area for (± 28) years.
The remaining quota (27%), on the other hand, asserted that they have been living or working in the area for (± 10) years.

Change detection analysis: drivers of land-use cover change

An array of factors that influence land-cover types from the local to the global level are often anthropocentric and biophysical in nature. We identified over eight (8) major factors (proximate/underlying) that drive LUCC in Southwestern Ghana (Tables 8 and 11, Fig. 6). Results presented in Table 9 show an area coverage (sq. km) for each class and evidence of considerable LUCC patterns in Southwestern Ghana between 1970 and 2020 (Fig. 6). The main land-use features that increased progressively over the study period were built-up and farmlands/shrubs (Figs. 7, 10 and 11). Additionally, bare land, waterbodies, and forest areas experienced dynamic ebb over the given period (Fig. 8; Tables 10 and 11).

Interpretation of results based on AHP

The risk factors stated in this study comprised biophysical (natural) and proximate/underlying drivers that influence LUCC in Southwestern Ghana (Table 12). The pair-wise matrices were normalized, along with their generated level of consistencies. The value of consistency ratio (CR) of the drivers on the pair-wise matrix is 0.01. This indicates that the outlined drivers in the pair-wise matrix are reasonably consistent. High Temperature (HT) is given 30.88% weight representing the highest-ranked biophysical driver and in descending order of severity; Bushfires/Wildfires (BFW) having 22.62% weight; Unpredicted/Fluctuations in rainfall patterns (UFRP) given 17.80% weighting; Floods (FI) and Famine (F) assigned 11.16% weighting respectively, whereas soil quality (SQ) obtained 6.37% weighting. The boldened values for the given parameters in Table 12; thus, λ_{max}, CI, and CR indicate the weight and consistency levels of the driving forces, based on experts' judgments. Resultant values indicate pragmatism in responses given, based on a standardized threshold or scale for AHP analysis.
Table 7 Biodata of respondents in Southwestern Ghana

Characteristics	Variables	Frequency (n = 30)	Percentage (%)
Gender	Male	26	86.7
	Female	4	13.3
Age limit	18–25	–	–
	26–40	16	53.3
	41–65	14	46.7
	> 65	–	–
Educational status	No formal education	–	–
	Primary	–	–
	Secondary	8	26.7
	Tertiary	22	73.3
Length of stay/work period	<5 years	–	–
	5–15 years	8	26.7
	16–40 years	22	73.3
	> 40 years	–	–
QN	Institution	Role/capacity	Research interests
QN1	Lands Commission, T	Principal Technical Officer	Land policy and administration, Sustainable Development
QN2	*	Senior Staff	Land tenure systems, management and administration
QN3	*	Planning Officer	Land Use, Population and Demographic studies, and Natural Resource Management
QN4	Minerals Commission, T	Minerals Geological Officer	Geology, Pedology, Resource Use Management and Environmental policy
QN5	*	Senior Staff	Geology, Environmental Policy and Management
QN6	Environmental Protection Agency (EPA), T	Environmental Officer	Environmental Impact Assessment, Env. policy and Management, Land Use
QN7	*	Senior Staff	Remote sensing and land-use change
QN8	Ghana Meteorological Agency, T	Climate Research Officer	Climatology, regional and local land-use planning
QN9	*	Senior Staff	Climate change adaptation and Remote Sensing
QN10	Lands Commission, E	Municipal Stool Lands Officer	Land administration and management, agriculture and Rural development
QN11	*	Senior Staff	Land tenure, rural development and Dev. studies
QN12	*	Principal Technical Director	Land-use change, GIS, Policy Analysis, Soil and water engineering, Regional Planning
QN13	Forestry Commission, E	District Manager	Forestry and Wildlife, Agroforestry and Ecosystem Services
QN14	*	Zonal Co-Ordinator	Forestry and wildlife, regional and local planning, development policy and land use
QN15	Ghana Immigration Service, E	Senior Officer	Population studies, Migration and rural development
QN16	*	Senior Officer	Population studies, Environmental policy and Planning
QN17	Ghana Fire Service, E	Assistant Divisional Officer	Risks and Disaster Management, Remote sensing, Regional land-use planning
QN18	*	Senior Staff	Risks and Disaster Management, network systems and local land-use planning
Again, consistency for the given parameters that drive land degradation and land-cover change entailed Deforestation (D), Settlements (S), Mining/infrastructure (MI), Migration (M) and Population Growth and Distribution (PGD) are given 12.94%, respectively; Agriculture Expansion (AE) and Poverty (P) again received 7.34% weightings; Wood Extraction (WE) and Setting up Profit Oriented Industries (SPOI) obtained 4.12% weightings, while Technology (T); Weak Governance, Monitoring and Enforcement Mechanisms (WGMEM) and Cultural Values, Behaviours and Beliefs (CVBB) received 4.12% weightings. Findings based on CR and CI show experts’ judgements are pragmatic. Hence, results generated from the expert interviews can be used to validate findings from the existing literature and spatial analysis.

Temperature analysis

Figure 9 indicates the temperature range on average was between 27.78 and 20.23 °C in the 1970s. However, the average temperature range for the 1980s was between 30.44 and 27.78 °C, which could be attributed to biophysical factors (i.e., bushfires and prolonged dryness that occurred in the 1980s), which caused a significant increase in surface temperatures in the study area. The range for the 1990s was between 28.88 and 25.4 °C. Average temperature ranges for 2000, 2010, and 2020 were between 30.12 and 23.67 °C, 31.66 and 24.44 °C, as well as 33.76 and 24.54 °C, respectively. Dark red and yellowish areas indicate areas with high or moderately high temperatures, while dark blue areas represent low-temperature regions with transient color zones.

Discussion

Land use cover change in Southwestern Ghana

Per the conversions in various land-cover types observed in Figs. 6, 7, 10 and 11, there is evidence of expansion in farmlands/shrubs and built-up areas over the given period.

Table 7 (continued)

QN	Institution	Role/capacity	Research interests
QN19	Feeder and Urban Roads, T	Senior Transport Officer	Regional and local land-use planning, remote sensing, transportation and network services
QN20	*	Junior Staff	Remote sensing and GIS, Planning and architecture
QN21	NADMO, E	Zonal Co-Ordinator	Risks and Disaster Management, agriculture economics and soil conservation
QN22	*	Senior Staff	Disaster management, Peri-urban Development
QN23	*	Deputy Zonal Co	Land-use planning and Disaster Management
QN24	Physical Planning Department, T	Acting Physical Officer	Land-use planning, GIS, Demography studies and policy analysis
QN25	*	Senior Staff	Landscape patterns, Urban Dev. and Logistics
QN26	Town and Country Planning, T	Senior Staff	Planning, architecture, Physical and Human Geography
QN27	Social Welfare, E	Head of Department	Development studies, sociology and population studies
QN28	*	Senior Staff	Sociology and Rural livelihoods
QN29	Forestry Commission, T	Senior Staff	Ecosystem based services, agroforestry, land-use analysis and resource management
QN30	*	Senior Staff	Natural resource management, environmental science and planning

The distribution above presents the institution/affiliation, role and research interests of the 30 experts who were interviewed using the semi-structured questionnaire.

Location (T) Takoradi, SW Ghana, (E) Enchi, SW Ghana, QN Questionnaire number, *same institution
Additionally, previous studies, policy-driven initiatives, and experts’ assertions highlighted in Tables 7 and 8, respectively, illustrate recurrent changes in the study area. Findings based on geostatistical analysis illustrated a drastic increase in farmlands/shrubs (+ 369.81%) and built-up areas (+ 1288.36%) at the expense of a reduction in forested areas (− 82%), waterbodies (− 27%) and bare land (− 18.06%). Conversely, 73% of experts asserted that there has been a decline in forest areas in Southwestern Ghana over the past 50 years. Results agree with the standpoints of Kusimi (2008), Danmuyag et al. (2017), Kleemann et al. (2017), Acheampong et al. (2018) and Mensah et al. (2019), who attributed the loss of forests areas over the past few decades to several socio-economic factors, namely, rapid urbanization, population growth and distribution, the influx of profit-oriented industries, agriculture, and infrastructure expansion.

Table 8 Area coverage for LUCC in Southwestern Ghana (1970–2020)

LUCC class	1970s	1980s	1990s	2000	2010	2020
Bare land	417.63	320.91	2607.63	2134.04	1928.93	1607.11
Built-up areas	535.26	623.63	750.81	3278.45	4843.33	8212.04
Waterbodies	874.48	3120.54	2420.37	1708.19	1330.68	1192.43
Farmlands and Shrubs	1784.22	5632.85	8006.62	11093.37	10283.95	10391.86
Forests	20312.42	14226.92	10991.20	6124	4439.02	1682.13
Total	23924.01	23924.86	24772.67	24333.05	22835.91	23031.57

The estimated NDVI range for the 1970s was between − 0.96 and 1. The range for the 1980s was between − 0.97 and 0.79. The 1990s had a range of − 0.93 and 0.81; the 2000s had a range of − 0.85 and 0.75; 2010 ranged between − 0.87 and 0.70, and 2020 depicted an NDVI range of − 0.90 and 0.64. Figure 10 illustrates a steady decline in the vegetative index over the study period. Larger values of NDVI represent forest areas due to the higher green biomass of trees and other vegetation. These areas as observed over the study period (1970–2020) constitute mainly forest and wildlife reserves/parks, closed (dense) and open canopies. The decrease in NDVI based on study findings could be attributed to the main drivers highlighted in Table 9. Differences in measurement of vegetation in Southwestern Ghana were visualized in image differencing using NDVI over the given study periods. Areas marked with violet (Fig. 10) represent a highly negative change, thus, major reduction in vegetation cover is as observed in the 1970s and 1980s. Such areas are sub-due to the sea or built-environment. Yellowish and greenish areas indicate areas with moderate and dense vegetation cover, respectively with an increasing rate of agricultural areas (between 2000 and 2020).

Figure 11 illustrates changes in NDBI over the study period in Southwestern Ghana. It is observed that NDBI contributing to the...
ranged between −0.80 and 0.29 in the 1970s. The 1980s had an NDBI range between −0.77 and 0.37, and −0.75 and 0.49 for the 1990s. Again, the NDBI range for the 2000s was between −0.70 and 0.62. A significant increment was observed in 2010 when NDBI ranged between −0.85 and 0.77; the NDBI range for 2020 was between −0.83 and 0.79. There is clear evidence of the continuous expansion of settlements over the study period in the study area. Differences in measurement of built-up areas in Southwestern Ghana were visualized in image differencing using NDBI over the given study period. Dark red and yellowish areas indicate a high presence of a built-environment. Light green and green areas represent areas covered by farmlands and shrubs as well as less dense vegetation. Dark blue areas represent areas covered by forest and wildlife reserves (deciduous and semi-deciduous zones) or water bodies, as shown in Fig. 11.

Given the results in Figs. 10 and 11, along with the contribution rate of change for the various classes among the given indices presented in Table 8, it is evident that built-up areas contributed the most to changes among other classes in NDBI (9.00) and NDVI (6.20), followed by farmlands/shrubs (0.33 and 0.54, about the respective indices) with a decline in area coverage for the other classes over the given study period. Results presented in Table 8 show continuous increase in built-up. Observation in Table 6 and Fig. 9 (LST) elucidates a positive or direct relationship between built-up and LST.

Identified drivers of LUCC based on confidence level results

In this study, results from LUCC analysis (Table 8), early studies (Table 9), and expert interviews revealed a substantial increase in built-up areas. Geo-spatial analysis (Figs. 7 and 11) and observations in Table 11 show that built-up class (+1288.36%) was the highest contributor of change over the last 50 years among other classes. These undesirable and unprecedented changes are associated with population growth, high rate of deforestation as a result of increasing settlements, LSM/ASM activities, and the development of socio-economic infrastructure, which could influence long-term consequences linked to land/soil degradation and climate variability. The distribution (Table 6) according to GSS (2020) shows an increase in population growth rate between 1960 and 1984 (2.1–3.2%), followed by a decline in 2000–2010 (2%). The area has experienced an annual
Table 9 Summary of existing literature on policy-driven factors, major events, and LULD studies in Southwestern Ghana (1970–2020)

Periods	Driving factors	Consequences	Transitions	Source (literature)
1970s	Agricultural expansion (proximate cause)	Increase in small-scale subsistent farming (farmlands and shrubs)	Bare land and forest lands to farmlands and shrubs, small-scale farms as well as settlements	Gockowski and Sonwa (2011); Dickson and Benneh (1988); Hall and Swaine (1976); Ahn (1958)
1970s–1980s	Population growth and distribution (underlying cause)	Increase in human settlements	Bare land and forest lands to farmlands and shrubs, subsistent/medium-scale farms	Damnyag et al. (2017); Gyasi et al. (1994); Brooke (1989); Arhin (1985); Hall and Swaine (1976)
1980s–1990s	Biophysical and climatic factors (i.e., Droughts (1981–1983), Famine, bushfires and higher temperatures) (proximate cause) Economic (Macro-economic Reforms), Socio-political (Policy) and institutional factors (i.e., 1983 (GoG) Economic Recovery Program with support from IMF/World Bank, land tenure systems) (Underlying cause)	Spontaneous immigration and forced settlements from other regions and increase in population led to reduction in natural forests and significant increase in bare land, farmlands and shrubs (Table 8) Loss of biodiversity and health problems. Increasing temperatures (dry climate) and reduced rainfall Redistribution of lands and conversion of natural forests to farmlands. The state and individuals emerged as dominant economic agents in the economy	Forest lands converted to farmlands and shrubs, bare land, and human settlements	Tan and Rockmore 2018; Huq and Tribe 2018; Abbam et al. 2018; Nikoi 2015; Areyetey and Kanbur (2008); Gyasi et al. (1994); Kusi (1991); Brooke (1989); Dei (1988)
1990s–2000	Socio-economic development (i.e., Policies driven toward Ghana’s Vision 2020, poverty reduction (i.e., Core Welfare Indicators Questionnaire (CWlQ) and the Ghana Living Standards Survey (GLSS), improvement in Human Development Indicators (HDIs), export led agricultural production and expansion in foreign investment) (underlying causes) Population pressure (underlying cause) Biophysical and climatic factors (i.e., temperature rise) (Proximate cause)	Development of infrastructure such as transportation networks, education and health facilities Domestic and foreign investment in farming activities Population growth and significant increase in human settlements. High rate of deforestation. Need to meet food demands led to an increase in the rate of farming activities Increase in surface temperatures (Fig. 9) and reduced precipitation due to significant increase in built-up environment (Fig. 8) Loss of biodiversity and health problems	Forests, bare land, farmlands and shrubs converted to settlements/infrastructure, subsistent and medium/large scale farms	Huq and Tribe (2018); Abbam et al. (2018); Damnyag et al. (2017); Koranteng and Zawila-Niedzwieki (2016); Noponen et al. (2014); Gockowski and Sonwa (2011); Kusimi (2008); Gyasi et al. (1994); Kusi (1991)
Periods	Driving factors	Consequences	Transitions	Source (literature)
--------------	--	--	--	--
2000–2010	Adoption of new governance systems (i.e., Adoption of capitalism and free-market (liberals) (Underlying cause)	High rate of deforestation	Farmlands and shrubs, bare land, and forests converted to settlements and infrastructure	Mensah et al. (2019); Acheampong et al. (2018); Huq and Tribe (2018); Abbam et al. (2018); Damnyag et al. (2017); Aduah and Baffoe (2013); Aduah et al. (2012); Gockowski and Sonwa 2011; Kusimi 2008; Aryeetey and Kanbur (2008)
	Rapid population growth (Underlying cause)	Increasing rate of settlements and infrastructure		
	Economic Reforms led to the application for enhanced Highly Indebted Poor Country (HIPC) in 2001, Ghana Poverty Reduction Strategy I (2003–2005) and II. Implementation of sectoral policies designed to promote Sustainable Economic Growth and high incidence of poverty in Ghana. Interventions like the School Feeding Program, NYEP/GYEEA, LEAP, NHIS)	Increase in surface temperatures and a decline in rainfall		
		Decline in farming activities (Table 8)		
		Farmlands and shrubs, bare land, and forests converted to settlements and infrastructure		
		Forests and bare land converted to human settlements and farmlands		
		Efforts channeled toward profit-oriented sectors (i.e., natural resources) have resulted in a decline of other sectors		
2010–2020	Population growth and distribution (Underlying cause)			
	Tree plantation (Afforestation) (i.e., GYEEA, Carbon Sequestration Development Project, REDD + Hotspot Strategy, planting for food and jobs)	Expansion of settlements and infrastructure		
	Infrastructural Development (2010–2016) (i.e., Community Day schools, district and regional hospitals, Roads and railway networks, Storage Facilities-Warehouses, Housing units among others) (proximate cause)	High rate of deforestation		
	Economic policies driven toward Industrialization and fiscal discipline (macro- and micro-economic stability) (i.e., One-district-one factory, reducing Balance of Payment deficits (BoP) and so on. Increase in the prices of some agricultural commodities (i.e., increase in cashew, timber, cocoa producer prices). Encouraging domestic and foreign investors to venture into agriculture and other natural resource or profit-oriented sectors (Underlying cause)	Increase in surface temperature and decline in rainfall		
		Expansion of cultivated lands done on small, medium and large scale to boost exports and provide more raw materials for industries		
		Efforts channeled toward profit-oriented sectors (i.e., natural resources) have resulted in a decline of other sectors		
		Farmlands and shrubs, bare land, and forests converted to settlements and infrastructure		
		Forests and bare land converted to human settlements and farmlands		
		Efforts channeled toward profit-oriented sectors (i.e., natural resources) have resulted in a decline of other sectors		
growth rate of 6.5% (1960–2020), thereby validating experts’ judgements and results from geospatial analysis conducted. Respondents affirmed that there had been a remarkable increase in the human population over the past 50 years.
rapid growth in population based on GSS (2020), Moller-Jensen and Knudsen (2008), and experts interviewed were attributed to the migration of people from nearby regions and border towns of neighboring countries. 53% asserted that migration was the main cause of the increasing population in the region, while 13% revealed high birth rate as the cause; with 33% attributing the reason to both migration and high birth rate. Studies highlighted above revealed people migrated to Southwestern Ghana for greener pastures. Common activities in the area include LSM/ASM, fisheries/agriculture and construction. Moller-Jensen and Knudsen (2008) and Owusu-Nimo et.al (2018) revealed population growth exacerbated pressure on land, minerals and forest resources in the region. Hence, the conversion of forests, bare land and areas covered by waterbodies into built-up (Fig. 7). Competing needs among relevant stakeholders have resulted in several unintended consequences, driving land and forest degradation through farming activities to boost exports, illegal logging of trees and chain sawing of timber plantations, coupled with LSM/ASM activities without prudent post-mining reclamation plans.

Considering the outcome presented in Table 11, it is evident that there is robust evidence and high agreement between the three methods. Spatial results (Figs. 7, 8, 10 and 11) present the contribution rates of various classes or indices (NDBI and NDVI) toward transitions and land or forest degradation. Confidence level analysis based on existing literature (Table 9), expert interviews and spatial analysis (Fig. 4) for SW Ghana; \(\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{}}}}}= \text{High agreement}; \sqrt{\sqrt{\sqrt{}}}= \text{Medium agreement}; \sqrt{\sqrt{}}= \text{Low agreement}; \sqrt{}= \text{No data or evidence}

Table 10 Description of experts’ rank on most influential drivers of LULD in Southwestern Ghana

Driving factors	Frequency (N=22) (%)	Position
Expansion in settlements and social infrastructure: Schools, health facilities,	\(\sqrt{\sqrt{\sqrt{\sqrt{}}}} \) 6 (28)	2nd
transportation networks, housing/real estates, Market and storage facilities,		
drainage systems and so on)	usable width	
Economic factors: Population growth and distribution, micro/macro-economic factors, Mining, illegal logging, incentives/subsidies and so on, market forces/prices, price of commodities on domestic and international market, promoting exports/balance of payment deficit and so on	\(\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{}}}} \sqrt{\sqrt{\sqrt{}}}} \) 8 (36)	1st
Political factors: state policies that promote farming and deforestation and land degradation, weak governance systems, institutional frameworks, land tenure systems, monitoring and enforcement of regulations	\(\sqrt{\sqrt{\sqrt{}} \sqrt{\sqrt{\sqrt{}}}} \) 4 (18)	3rd
Agricultural activities and Technological factors: agro-technical input and efficiency, mining technology, transportation networks	\(\sqrt{\sqrt{\sqrt{}} \sqrt{}} \) 2 (9)	4th
Natural or biophysical factors: Increase in temperature, droughts, wildfires, flooding, fluctuations in rainfall, topography, aspect, slope and so on	\(\sqrt{\sqrt{\sqrt{}} \sqrt{}} \) 2 (9)	5th

Respondents’ assertion of some key driving forces influencing LULD in SW Ghana. The rank (Table 10) among other key parameters highlights the most/least influential factors resulting in substantial LULD over the past 5 decades.

Table 11 Confidence level analysis using the MMA to ascertain local drivers of LULD

Scope: Drivers of LULD	Keywords	Literature Review	Interviews	Spatial Analyses	Confidence level
Proximate Causes	Deforestation	\(\sqrt{\sqrt{\sqrt{\sqrt{}}}} \)	\(\sqrt{\sqrt{\sqrt{\sqrt{}} \sqrt{\sqrt{\sqrt{}}}}} \)	Very High	
	Settlements	\(\sqrt{\sqrt{\sqrt{\sqrt{}} \sqrt{\sqrt{}}}} \)	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	Very High	
	Wood extraction	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}} \sqrt{\sqrt{\sqrt{}}}} \)	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	Medium	
	Setting up profit-oriented industries	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	Medium	
	Mining & Infrastructure	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	Medium	
	Agriculture expansion	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	High	
	Bushfire/Wildfires	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	Medium	
	Farming	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	Medium	
	High temperature	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	Medium	
	Floods	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	Medium	
	Soil Quality	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	Very High	

Underlying Causes	Migration	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	Very High
	Poverty	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	High
	Population growth and distribution	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	Very High
	Weak governance, Monitoring and Enforcement mechanisms	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	Medium
	Technology (Science, research, mining technology, agro-technical change and efficiency, transportation networks)	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	Medium
	Cultural values, behaviour and beliefs	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	\(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \)	Medium

| Effects on some climatic variables | Increasing temperature | \(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \) | \(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \) | Very High |
| | Unpredictable/Fluctuations in rainfall patterns | \(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \) | \(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} \) | Very High |

Confidence level analysis based on existing literature (Table 9), expert interviews and spatial analysis (Fig. 4) for SW Ghana; \(\sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} \sqrt{\sqrt{\sqrt{}}}} = \text{High agreement}; \sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{\sqrt{}}} = \text{Medium agreement}; \sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{}} = \text{Low agreement}; \sqrt{\sqrt{\sqrt{\sqrt{}}} \sqrt{}} = \text{No data or evidence}
Table 12: Measuring consistency of biophysical and proximate/underlying drivers

	D	S	WE	SPOI	MI	AE	M	P	PGD	WGMEM	T	CVBB	CW	WSV	WSV/CW	λ_max	CI	CR
D	0.129	0.129	0.124	0.129	0.147	0.129	0.124	0.129	0.124	0.124	0.124	0.129	1.559	12.046				
S	0.129	0.129	0.124	0.129	0.147	0.129	0.124	0.129	0.124	0.124	0.124	0.129	1.559	12.046				
WE	0.043	0.043	0.041	0.041	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.041	0.041				
SPOI	0.043	0.043	0.041	0.041	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.041	0.041				
MI	0.129	0.129	0.124	0.129	0.147	0.129	0.129	0.129	0.124	0.124	0.124	0.129	1.559	12.046				
AE	0.065	0.065	0.082	0.082	0.065	0.073	0.065	0.073	0.065	0.082	0.082	0.073	0.883	12.026				
M	0.129	0.129	0.124	0.129	0.147	0.129	0.129	0.129	0.124	0.124	0.124	0.129	1.559	12.046				
P	0.065	0.065	0.082	0.082	0.065	0.073	0.065	0.073	0.065	0.082	0.082	0.073	0.956	13.026				
PGD	0.129	0.129	0.124	0.129	0.147	0.129	0.129	0.129	0.124	0.124	0.124	0.129	1.559	12.046				
WGMEM	0.043	0.043	0.041	0.041	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.041	0.041				
T	0.043	0.043	0.041	0.041	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.041	0.041				
CVBB	0.043	0.043	0.041	0.041	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.041	0.041				

Measuring consistency of biophysical drivers

| CW | 0.1116 | 0.3088 | 0.1116 | 0.0637 | 0.2262 | 0.178 |

	F	HT	Fl	SQ	BFW	UFRP	WSV	WSV/CW	λ_max	CI	CR
F	0.1116	0.1029	0.1116	0.1910	0.0754	0.0890	0.6816	6.1063			
HT	0.3349	0.3088	0.3349	0.3184	0.2262	0.3560	1.8792	6.0850			
Fl	0.1116	0.1029	0.1116	0.1910	0.0754	0.0890	0.6816	6.1063			
SQ	0.0372	0.0618	0.0372	0.0637	0.1131	0.0593	0.3723	5.8472			
BFW	0.0558	0.3088	0.3349	0.1273	0.2262	0.3560	1.4091	6.2289			
UFRP	0.2233	0.1544	0.2233	0.1910	0.1131	0.1780	1.0831	6.0841			

Note: The values in bold represent the highest or lowest consistency measures.
degradation. Findings suggest that there is “very high confidence” in the aforementioned drivers identified in this study. Results proved that these economic driving forces causing unprecedented changes in the region are influenced by some macro- and micro-economic factors, primarily state policies, aimed toward poverty alleviation or improving living standards, as presented in Table 9. Intensification and extensification of agricultural activities (Table 11) (Figs. 6 and 7) in the area over the study period have been linked to the citizenry resorting to the use of traditional and reserved lands/forest reserves (encroaching protected areas) among other natural resources as the last means of employment. Damnyag et al. (2017) and Noponen et al. (2014) revealed an increase in producer price of some commodities like cocoa on the international and domestic markets in recent times motivated most locals to venture into farming. This has resulted in cash cropping regimes, influencing land-cover change in the area as several forests are cleared and burnt. Among the major crops cultivated in the area as revealed by experts and existing literature (Damnyag et al. 2017; Noponen et al. 2014) constitute cocoa, rubber, plantain, cassava and cocoyam. However, unfavorable climatic conditions coupled with the rapid increase in LSM/ASM activities commonly known in local terms as “Galamsey (connotes gather and sell)” have propelled most of the youth to venture into mining instead of agriculture today. These factors have rendered most lands and soils unproductive.

Moreover, the geospatial analysis presented in Figs. 6 and 7 between 1980 and 2000 presents significant changes through a reduction in areas covered by natural forests and a substantial increase in farmlands/shrubs and built-environment. Ghana in the early 1980s, specifically 1983, experienced famine along with recorded incidents of wildfires which claimed several forests and farmlands, thereby causing massive shifts in micro-climatic conditions, specifically temperature (Fig. 9). The post-famine period saw the formulation and effective implementation of an “Economic Recovery and Stabilization Program (ERP) in 1983” that boosted agriculture to enhance food production and improve living standards. The provision of basic amenities and the construction of quality transportation networks was intensified. These policies within the said period caused several conversions and modifications of several land-cover types. Despite the amplitude of several structural transformation programs to change Ghana’s economy (2000–2020) from a raw to a manufacturing/industrialized economy, the
country’s commitment to achieving the Millennium Sustainable Development Goals in recent years has significantly altered land-use processes and micro-climatic conditions in the region (Table 9) (Fig. 7) (Abbam et al. 2018; Aduah and Baffoe 2013; Aduah et al. 2012; Logah et al. 2013). It was during the 1980–2000 era that natural factors significantly influenced these modifications. From the lens of the pessimists, despite increasing temperature and recorded incidents of flood events in recent periods (Abbam et al. 2018; Damnayag et al. 2017), major events, such as prolonged dryness and wildfires, degraded most lands and rendered most areas unproductive. The extensiveness of agricultural activities (Fig. 6) (Table 10) due to massive clearing of forest areas through slash and burn have exposed several top soils to wildfires, thereby reducing their fertility rates. These have partly accounted for the decline in cocoa and other cash crops productivity in recent years. Ghana recorded 1 million tons of cocoa production in 2012, with two-thirds of this production evolving from Southwestern Ghana. In recent years, cocoa production in the area has been declining, mainly as a result of these drivers causing modifications and land degradation. Results from the confidence level analysis (Table 11) exhibited “very high-to-very low confidence” in some biophysical factors like temperature, bushfires, floods and soil quality, respectively. The distribution shows that there was limited evidence provided by at least one method. Hence, providing “very high-to-very low confidence” for most direct and indirect drivers identified using the three (3) methods. There was, however, no spatial information on other natural factors other than temperature (Fig. 9), which may partly influence confidence in results despite expert interviews and existing studies presenting evidence and agreement levels. With “very high confidence” changes in temperature based on spatial analysis, expert interviews and empirical literature (Tables 9 and 11) (Abbam et al. 2018; Aduah and Baffoe 2013; Aduah et al. 2012) show temperature as a climatic variable with spatiotemporal attributes which is capable of driving land-cover change and land degradation. In the same vein, there was agreement in results from the expert interviews and early studies, about other contributory factors like institutional/political (governance structures, monitoring and enforcement mechanisms), technology (science and research, agroforestry, climate-smart agriculture, mining operations, transportation networks and technical efficiency), as well as cultural and behavioral (lifestyle, beliefs, traditions and perception) factors. Evidence

Fig. 10 Changes in NDVI over the study period (1970–2020) in Southwestern Ghana
from these two methods, coupled with the level of agreement between them, proved that there is “medium confidence” in the drivers identified. This eventually shows that evidence provided to accentuate major influences of LULD is valid and reliable based on the qualitative and quantitative strategies used.

Damnyag et al. (2017) reported that political and technological factors could sooner or later become dominant drivers from the pessimist and optimist perspectives. They attributed reasons to current trends and advocacy for intensive scientific research and innovation to enhance productivity aimed at meeting global demands. We considered technological, cultural and behavioral factors which are often overlooked or deemed irrelevant in LULD studies as drivers that could be further analyzed and addressed against the unknown. Based on the aforementioned reasons, it is becoming increasingly evident that biophysical (emanating from climate disturbances/stressors), cultural, and technological factors that had “medium-to-very low confidence” (Table 11) could potentially influence food security, land/water resources and livelihoods in the near future. Therefore, these parameters cannot be overlooked, since they could be dominant in causing significant changes to land-cover systems and forest resources in the distant future.

Table 13 presents the strengths and limitations of individual methods that could affect the validity and reliability of study findings. Consequently, the adoption of MMA for analyzing the main drivers of land-cover change and land degradation provides the needed platform for comparative studies. In the present study, we demonstrated that a combination of expert interviews, empirical literature, and spatial analysis can be used to assess and improve confidence in results. Expert interviews and AHP through the use of questionnaires were used to bridge the paucity of information in existing body of knowledge and spatial analysis. The geospatial analysis provided vivid details of changes on the ground (Rindfuss and Stern 1998). This complements the limitation of subjectivity in the other two qualitative research strategies. Again, results from most qualitative research strategies are often regarded as less reliable based on several discretionary factors (Haradhan 2018; Queirós et al. 2017). Weights of importance are given to outcomes generated by quantitative tools. Qualitative methods used in this study aim at deepening our understanding of factors that cannot be quantified with a high rate of flexibility and exploratory

Fig. 11 Changes in NDBI over the study period (1970–2020) in SW Ghana
Table 13 Strengths and limitations of various methods used in our study

Method	Strengths	Limitations
Summary of literature	Entails thematic areas that cover the overall scope of this study and studies linked to land use/climate variability. This approach was used to describe land-use studies and methodologies, carried out in the study area. Studies used either support (build) or reject existing knowledge/positions.	Most studies on land use conducted in SW Ghana are limited to small areas with limited scope. Approaches used in most of the studies differ from one another. May have overlooked some other relevant studies which are not found in most common journals or institutional platforms and databases.
Expert interviews	Using semi-structured questionnaires, primarily focused on major influences in SW Ghana that drive LUCC. It was employed as an approach to validate results from the other two methods used. Provided information about both indirect/underlying (non-spatial) factors that influenced LUCC to bridge knowledge gaps in the other methods and deepen our understanding about the subject matter. Scientific background and professional capacity of experts made it feasible and easy to filter irrelevant information based on inputs given. Concept of “think globally” and “act locally” is adhered to considering land use being considered as a mesoscale element and driver of global climate/environmental change. This approach has a high rate of flexibility and exploratory in its analysis (Queirós et al. 2017). Use of general academic and technical words which respondents were familiar with.	Cultural and behavioral concerns mainly due to the pandemic (COVID-19). Definition of experts as stipulated in this study may be relative/discretional. Despite most interviewees having technical and social science backgrounds, some other drivers which may be known to some other knowledge groups might have been omitted/overlooked.
Geo-spatial analysis	Use of statistics and change detection among the classes used to provide relevant information on spatial distribution of the drivers.	Limited assessment of indirect (non-spatial) drivers of LUCC. Require detailed/advanced datasets to provide more details on multiple factors influencing LUCC. Example: Identify social and economic factors which contributed most to the substantial increase in built-up.
analysis (Haradhan 2018; Queirós et al. 2017). The AHP was used to assign weights to expert judgements, thereby ensuring consistency or accuracy in findings to limit subjectivity. Contextually, satellite imagery is limited in identifying indirect/underlying factors that drive LULD. Here, we resorted to merging both strategies (Table 13), adhering to the strengths of these methods and restricting the limitations in the use of these methods to ensure “high confidence” and “validity” of findings related to LULD drivers at the local or regional level.

Conclusion

The paper primarily analyzes local drivers that influence land-cover change and land degradation in Southwestern Ghana using the mixed-method approach. Conducting studies on microclimates related to LUCC is quite challenging. Local studies of this nature are fundamental to understanding the global earth systems and climate dynamics, along with the courses of action that need to be designed to ensure consistency with scientific explanations. Understanding the direct and indirect drivers of LUCC along with its dynamics and prospects is essential in attaining United Nations’ Sustainable Development Goals. Advocacy and concerns in the wake of our changing climate and observable changes in the earth system propel the need for further studies that improve existing knowledge, bring innovation and inform the decisions of city planners, municipal authorities, researchers and interested organizations. Findings would enrich basic datasets that would assist land-use planners and strategists in future modeling of land-use systems. Based on the confidence level analysis, the following deductions could be made:

- A substantial increase in built-up and farmlands/shrubs areas has contributed to the fundamental shift in forest resources.
- The contribution rate of change analysis revealed built-up areas contributed the most among the given classes for the understudied indices.
- Change in prevailing micro-climatic conditions, specifically surface temperature, can be attributed to the undesirable and unprecedented changes in land-use systems over the past 50 years.
- Biophysical, cultural, and technological factors can be considered as key drivers, despite their “medium-to-very low confidence” in results obtained, as they could potentially impact climate-sensitive sectors that could significantly modify land-use processes.

We presented an objective and a detailed framework to enhance the reliability and validity of study findings using confidence level analysis. The underlying theories for the present study are anchored in sustainable livelihood frameworks, FTT, land use/land degradation and sustainable development. Therefore, the key drivers of LUCC that pose threats to livelihoods and ecosystem services can be examined holistically using an interdisciplinary approach to solve basic problems that stem from regions without incurring unintended consequences. The present study hereby proposes further analyses of LUCC drivers with “medium to very low” confidence levels for further action. Again, local or regional studies of this nature influence global studies (international scientific community) by highlighting valid and reliable contributions or actions that drive significant change.

Annex 1

See Table 14.
Table 14

Ground-truthing sample points using MDC for each class in the study domain

Town Name	Land Cover Type	Latitude	Longitude
Abochia	Forest	5.7724304	-2.7417033
Abochia	Waterbodies	5.7747888	-2.7373905
Aboi Nkwanta	Farmlands/Shrubs	5.7731764	-2.4790277
Aboi Nkwanta	Farmlands/Shrubs	5.7757688	-2.4720021
Aboi Nkwanta	Farmlands/Shrubs	5.7909471	-2.4638667
Aboi Nkwanta	Farmlands/Shrubs	5.7868767	-2.4662858
Aboi Nkwanta	Farmlands/Shrubs	5.7953138	-2.4590688
Aboi Nkwanta	Built-up	5.7976689	-2.4550062
Aboi Nkwanta	Built-up	5.8016515	-2.4493658
Abockia	Built-up	5.7721831	-2.7447494
Abockia	Built-up	5.6247933	-2.223478
Abockia	Built-up	5.6247933	-2.223478
Abockia	Built-up	5.6247933	-2.223478
Abockia	Built-up	5.6247933	-2.223478
Achichire	Built-up	5.7116363	-2.3274181
Achichire	Farmlands/Shrubs	5.7038642	-2.3239394
Achichire	Farmlands/Shrubs	5.6752853	-2.3058358
Achichire	Farmlands/Shrubs	5.6645194	-2.2980422
Achimfo	Bare land	5.779455	-2.7310312
Achimfo	Forest	5.7794714	-2.7303202
Achimfo	Waterbodies	5.7824016	-2.7297608
Achimfo	Built-up	5.7828116	-2.726489
Achimfo	Built-up	5.7831558	-2.7276108
Achimfo	Forest	5.7833488	-2.7290849
Achimfo	Bare land	5.778695	-2.7309494
Achimfo	Waterbodies	5.777884	-2.7319652
Achimfo	Forest	5.7761414	-2.7332229
Achimfo	Forest	5.7749629	-2.7340713
Achimfo	Forest	5.7750415	-2.7378088
Adjakaa	Farmlands/Shrubs	5.7731549	-2.7626148
Adjakaa	Built-up	5.7728571	-2.7612506
Adjakaa	Built-up	5.7726524	-2.7601049
Adjakaa	Built-up	5.7722928	-2.7570706
Adjakaa	Waterbodies	5.7722473	-2.7568632
Adjakaa	Built-up	5.7723433	-2.7526647
Adjakaa	Built-up	5.7726107	-2.7517878
Adjakaa	Built-up	5.7718865	-2.7482012
Adjakaa	Farmlands/Shrubs	5.7729035	-2.7412537
Adjakaa	Built-up	5.7722726	-2.7433313
Adjakaa	Farmlands/Shrubs	5.7727648	-2.75002
Adjakaa	Built-up	5.7728384	-2.7505657
Adjakaa	Farmlands/Shrubs	5.7723826	-2.7529477
Adjakaa	Farmlands/Shrubs	5.7723826	-2.7529477
Adjakaa	Built-up	5.7722726	-2.7567217
Adjakaa	Built-up	5.772843	-2.7610071
Adjakaa	Farmlands/Shrubs	5.774871	-2.763657
Adjakaa	Forest	5.7762445	-2.7642983
Adjakaa	Farmlands/Shrubs	5.7789471	-2.7675303
Adjakaa	Farmlands/Shrubs	5.7801503	-2.7700112
Location	Land Use	Original Value	Change Value
---------------	---------------------------	----------------	--------------
Asankragua	Built-up	5.8054283	-2.432525
Asankragua	Bare land	5.7935903	-2.427006
Asankragua	Farmlands/Shrubs	5.7910534	-2.4235608
Asankragua	Bare land	5.7768976	-2.4191112
Asankragua	Farmlands/Shrubs	5.7656394	-2.4141844
Asantekrom	Built-up	5.7765948	-2.6216944
Asantekrom	Farmlands/Shrubs	5.7731084	-2.6085383
Asantekrom	Farmlands/Shrubs	5.7740441	-2.6109621
Asantekrom	Farmlands/Shrubs	5.7696406	-2.601916
Bawdie	Farmlands/Shrubs	5.6247933	-2.223478
Bawdie	Forest	5.6247933	-2.223478
Bawdie	Built-up	5.6247933	-2.223478
Bawdie	Farmlands/Shrubs	5.6247933	-2.223478
Bawdie	Farmlands/Shrubs	5.6247933	-2.223478
Bawdie	Bare land	5.6247933	-2.223478
Bawdie	Built-up	5.6247933	-2.223478
Bawdie	Bare land	5.6247933	-2.223478
Bawdie	Farmlands/Shrubs	5.6247933	-2.223478
Bawdie	Built-up	5.6247933	-2.223478
Bawdie	Built-up	5.6247933	-2.223478
Bawdie	Farmlands/Shrubs	5.6247933	-2.223478
Bawdie	Bare land	5.6247933	-2.223478
Bawdie	Built-up	5.6247933	-2.223478
Bawdie	Farmlands/Shrubs	5.6247933	-2.223478
Bawdie	Built-up	5.6247933	-2.223478
Bawdie	Built-up	5.6247933	-2.223478
Bawdie	Built-up	5.6247933	-2.223478
Bawdie	Built-up	5.6247933	-2.223478
Bawdie	Built-up	5.6247933	-2.223478
Bawdie	Bare land	5.3170418	-1.998939
Bawdie	Built-up	5.3173893	-1.9905549
Bawdie	Built-up	5.308967	-1.993578
Bawdie	Built-up	5.306455	-1.994467
Bawdie	Built-up	5.306088	-1.994112
Beposo	Built-up	5.11773421	-1.62096462
Beposo	Waterbodies	5.123176862	-1.617846847
Beposo	Built-up	5.123848452	-1.613322879
Beposo	Farmlands/Shrubs	5.123794395	-1.609115739
Beposo	Farmlands/Shrubs	5.123946226	-1.606856831
Beposo	Farmlands/Shrubs	5.121201241	-1.603611216
Beposo	Farmlands/Shrubs	5.11931043	-1.603644784
Beposo	Farmlands/Shrubs	5.110649444	-1.600790656
Beposo	Forest	5.6247933	-2.223478
Beposo	Farmlands/Shrubs	5.6247933	-2.223478
Beposo	Farmlands/Shrubs	5.6247933	-2.223478
Beposo	Built-up	5.6247933	-2.223478
Beposo	Forest	5.6247933	-2.223478
Beposo	Bare land	5.6315684	-2.2280839
Beposo	Farmlands/Shrubs	5.6247933	-2.223478
Beposo	Built-up	5.6247933	-2.223478
Beposo	Built-up	5.6247933	-2.223478
Beposo	Waterbodies	5.6247933	-2.223478
Beposo	Waterbodies	5.1805041	-2.0429004
Bonsa	Built-up	5.1786821	-2.0449472
Bonsa	Farmlands/Shrubs	5.1775916	-2.04999
Bonsa	Forest	5.1742762	-2.0526224
Bonsa	Farmlands/Shrubs	5.1715467	-2.0547386
Bonsa	Forest	5.1702977	-2.0607458
Bonsa	Farmlands/Shrubs	5.1699001	-2.0694848
Bonsa	Built-up	5.158224	-2.0751867
Bonsa	Built-up	5.1555357	-2.0757217
Bonsa	Farmlands/Shrubs	5.1522493	-2.0792259
Bonsa	Forest	5.1513079	-2.0814549
Bonsa	Bare land	5.1479521	-2.0846719
Bonsa	Farmlands/Shrubs	5.1450881	-2.0865302
Bonsa	Bare land	5.1373192	-2.091567
Bonsa	Farmlands/Shrubs	5.1347235	-2.0950671
Bonsa	Bare land	5.1339535	-2.0951517
Bonsa	Built-up	5.1311083	-2.095586
Bonsa	Forest	5.040257	-2.0871845
Bonsa	Forest	5.00367	-2.0680619
Bonsa	Forest	5.0021238	-2.0622763
Bonsa	Forest	5.0030167	-2.0480745
Bonsa	Built-up	4.8990194	-1.9643656
Bonsa	Farmlands/Shrubs	4.8972505	-1.9621961
Bonsa	Built-up	4.8907609	-1.9554344
Bonsa	Built-up	4.8976185	-1.9486254
Bonsa	Built-up	4.8947931	-1.8970939
Bonsa	Built-up	4.8921061	-1.8188959
Table 14 (continued)

Location	Type	Value
Enchi	Built up	5.7812364
Enchi	Built-up	5.7818456
Enchi	Farmlands/Shrubs	5.7839101
Enchi	Bare land	5.7850223
Enchi	Forest	5.7873294
Enchi	Farmlands/Shrubs	5.7911184
Enchi	Farmlands/Shrubs	5.7931413
Enchi	Bare land	5.7952845
Enchi	Farmlands/Shrubs	5.797293
Enchi	Built-up	5.7993413
Enchi	Farmlands/Shrubs	5.8013314
Enchi	Bare land	5.801264
Enchi	Bare land	5.8019052
Enchi	Built-up	5.8041878
Enchi	Bare land	5.8067581
Enchi	Built-up	5.8117791
Enchi	Built-up	5.8165268
Enchi	Built-up	5.8212664
Enchi	Built-up	5.8210413
Enchi	Forest	5.7903133
Enchi	Farmlands/Shrubs	5.7824391
Enchi	Bare land	5.7826888
Enchi	Bare land	5.7825047
Enchi	Bare land	5.7825219
Enchi	Bare land	5.8151338
Enchi	Built-up	5.8152128
Enchi	Waterbodies	5.8193689
Fiaseman	Built-up	5.2934604
Fiaseman	Built-up	5.2892638
Fiaseman	Built-up	5.2895559
Fiaseman	Built-up	5.2791985
Fiaseman	Built-up	5.2720263
Fiaseman	Built-up	5.2668272
Fiaseman	Built-up	5.2640872
Fiaseman	Built-up	5.2609297
Fiaseman	Built-up	5.258688
Fiaseman	Bare land	5.2533505
Fiaseman	Built-up	5.2455448
Fiaseman	Bare land	5.2444319
Fiaseman	Farmlands/Shrubs	5.2402845
Fiaseman	Built-up	5.237618
Fiaseman	Built-up	5.237935
Fiaseman	Farmlands/Shrubs	5.2260888
Fiaseman	Forest	5.2218063

Table 14 (continued)

Location	Type	Value	
Bonsa	Bare land	4.8991231	
Bonsa	Forest	5.126423	
Bonsa	Bare land	5.1012162	
Bonsa	Forest	5.0983034	
Bonsa	Built-up	5.0833997	
Bonsa	Forest	5.0815369	
Bonsa	Forest	5.0378867	
Bonsa	Forest	5.0059842	
Bonsa	Forest	4.9758466	
Brodziak	Bare land	5.7471044	
Brodziak	Forest	5.7454052	
Brodziak	Forest	5.7449032	
Brodziak	Farmlands/Shrubs	5.7439919	
Daboase	Farmlands/Shrubs	5.111464612	
Daboase	Bare land	5.112116687	
Daboase	Bare land	5.11215884	
Daboase	Farmlands/Shrubs	5.112838992	
Daboase	Built-up	5.115987034	
Densam	Farmlands/Shrubs	5.6976839	
Densam	Built-up	5.6830614	
Densam	Forest	5.6708519	
Densam	Farmlands/Shrubs	5.6685109	
Densam	Forest	5.6556802	
Densam	Forest	5.6518927	
Densam	Built-up	5.6403035	
Densam	Built-up	5.6344357	
Densam	Built-up	5.633259	
Densam	Farmlands/Shrubs	5.6247933	
Densam	Farmlands/Shrubs	5.6247933	
Densam	Farmlands/Shrubs	5.6247933	
Densam	Built-up	5.6247933	
Elubo	Farmlands/Shrubs	5.7761464	
Elubo	Forest	5.7742342	
Elubo	Built-up	5.7830923	
Elubo road	Forest	5.7779138	
Enchi	Bare land	5.8218236	
Enchi	Forest	5.8178036	
Enchi	Farmlands/Shrubs	5.81723	
Enchi	Built-up	5.8138331	
Enchi	Forest	5.7971596	
Enchi	Farmlands/Shrubs	5.7882961	
Enchi	Farmlands/Shrubs	5.782555	
Gran	Forest	5.7178788	-2.3514529
--------	---------	-----------	-------------
Gran	Farmlands/Shrubs	5.715202	-2.3470061
Gran	Farmlands/Shrubs	5.7195327	-2.3359171
Gran	Farmlands/Shrubs	5.6922546	-2.3115557
Hiawa	Built-up	5.6247933	-2.2234782
Hiawa	Built-up	5.6247933	-2.2234782
Hiawa	Built-up	5.6247933	-2.2234782
Hiawa	Farmlands/Shrubs	5.6247933	-2.2234782
Hiawa	Farmlands/Shrubs	5.6247933	-2.2234782
Hiawa	Farmlands/Shrubs	5.6247933	-2.2234782
Hiawa	Farmlands/Shrubs	5.6247933	-2.2234782
Hiawa	Waterbodies	5.6247933	-2.2234782
Hiawa	Farmlands/Shrubs	5.6247933	-2.2234782
Hiawa	Built-up	5.6247933	-2.2234782
Huni Ano	Farmlands/Shrubs	5.6247933	-2.2234782
Huni Ano	Forest	5.6247933	-2.2234782
Huni Ano	Built-up	5.6247933	-2.2234782
Huni Ano	Built-up	5.6247933	-2.2234782
Huni Ano	Bare land	5.6247933	-2.2234782
Huni Ano	Bare land	5.6247933	-2.2234782
Jomoro Enchi	Farmlands/Shrubs	5.7651643	-2.5994983
Jomoro Enchi	Built-up	5.7604142	-2.5922528
Jomoro Enchi	Farmlands/Shrubs	5.7602436	-2.5930879
Jomoro Enchi	Bare land	5.7605395	-2.5881754
Jomoro Enchi	Forest	5.7623849	-2.5778447
K Boateng	Forest	5.6626668	-2.2963313
K Boateng	Forest	5.6604762	-2.295102
K Boateng	Built-up	5.6531527	-2.2918049
K Boateng	Forest	5.6485145	-2.2744123
K Boateng	Forest	5.6315369	-2.2410895
K Boateng	Bare land	5.6300531	-2.2269643
K Boateng	Farmlands/Shrubs	5.6247933	-2.2234782
K Boateng	Farmlands/Shrubs	5.7375434	-2.3802338
K Boateng	Forest	5.7247883	-2.3644376
K Boateng	Forest	5.7269672	-2.3665777
K Boateng	Forest	5.7245246	-2.3621037
K Boateng	Farmlands/Shrubs	5.7242997	-2.3600675
K Boateng	Farmlands/Shrubs	5.7198934	-2.3545139
Mando Amenfi	Forest	5.64882	-2.276025
Mando Amenfi	Forest	5.6460341	-2.2694278
Mando Amenfi	Built-up	5.6434423	-2.268532
Mando Amenfi	Forest	5.6321434	-2.2427021
Mando Amenfi	Forest	5.6306463	-2.2390589
Mempeasem	Bare land	5.2214854	-2.0202423
Mempeasem	Bare land	5.2192204	-2.0212039
Mempeasem	Farmlands/Shrubs	5.2066628	-2.0281055
Mempeasem	Bare land	5.1958116	-2.0321357
Mempeasem	Farmlands/Shrubs	5.1888986	-2.036978
Mempeasem	Bare land	5.1869638	-2.0384229
Mempeasem	Built-up	5.182622	-2.0415238
Nsuaem	Bare land	4.8925694	-1.8928628
Nsuaem	Farmlands/Shrubs	4.8920418	-1.888316
Nsuaem	Bare land	4.8934211	-1.834469
Nsuaem	Forest	5.0568485	-2.0970969
Nsuaem	Built-up	5.030064	-2.08665
Nsuaem	Farmlands/Shrubs	5.0052443	-2.0738555
Nsuaem	Built-up	5.0027138	-2.0252846
Nsuaem	Forest	4.9921162	-2.0182078
Nsuaem	Forest	5.0043177	-2.0703931
Nsuaem	Built-up	5.004357	-2.0357449
Nsuaem	Forest	4.9975721	-2.0230747
Nsuaem	Forest	4.9957281	-2.0220048
Nsuaem	Farmlands/Shrubs	4.9840114	-2.0080939
Nya	Farmlands/Shrubs	5.7872277	-2.6717185
Nya	Built-up	5.3253847	-1.9825107
Nya	Bare land	5.7364645	-2.3773603
Nya	Forest	5.7064848	-2.3246181
Nyamitase	Farmlands/Shrubs	5.6247933	-2.223478
Nyamitase	Built-up	5.6247933	-2.223478
Nyamitase	Farmlands/Shrubs	5.6247933	-2.223478
Nyamitase	Built-up	5.6247933	-2.223478
Nyamitase	Built-up	5.6247933	-2.223478
Nyamitase	Built-up	5.6247933	-2.223478
Nyamitase	Built-up	5.6247933	-2.223478
Nyamitase	Built-up	5.6247933	-2.223478
Nyamitase	Bare land	5.6247933	-2.223478
Nyamitase	Bare land	5.7302564	-2.372268
Nyamitase	Farmlands/Shrubs	5.6584121	-2.2941531
Nyamitase	Farmlands/Shrubs	5.6522835	-2.2882657
Nyamitase	Forest	5.6247933	-2.223478
Nyamitase	Waterbodies	5.6247933	-2.223478
Nyamitase	Farmlands/Shrubs	5.6247933	-2.223478
Nyamitase	Built-up	5.6247933	-2.223478
Nyamitase	Built-up	5.6247933	-2.223478
Nyamitase	Built-up	5.6247933	-2.223478
Pantoso	Waterbodies	5.7698637	-2.5709487
Pantoso	Built-up	5.7703918	-2.568473
Pantoso	Forest	5.7708073	-2.5604985
Pantoso	Farmlands/Shrubs	5.7713379	-2.5591144
Pantoso	Built-up	5.7724658	-2.5334899
Pantoso	Built-up	5.7729795	-2.540285
Table 14 (continued)

Region	Land Use	FDR	PDR
Pantoso	Built-up	5.7743097	-2.5313814
Pantoso	Farmlands/Shrubs	5.7731143	-2.5196059
Pantoso	Farmlands/Shrubs	5.7719406	-2.5138686
Pantoso	Bare land	5.7688464	-2.5098793
Pantoso	Farmlands/Shrubs	5.7674725	-2.5011995
Petopeon	Built-up	5.6247933	-2.223478
Petopeon	Built-up	5.6247933	-2.223478
Petopeon	Built-up	5.6247933	-2.223478
Petopeon	Farmlands/Shrubs	5.6247933	-2.223478
Petopeon	Forest	5.6247933	-2.223478
Petopeon	Waterbodies	5.6247933	-2.223478
Petopeon	Bare land	5.6247933	-2.223478
Petopeon	Farmlands/Shrubs	5.6394875	-2.2613292
Petopeon	Built-up	5.6326585	-2.2356167
Petopeon	Forest	5.6337014	-2.2329625
Petopeon	Forest	5.6281978	-2.224905
Petopeon	Farmlands/Shrubs	5.6247933	-2.223478
Petopeon	Built-up	5.6247933	-2.223478
Petopeon	Farmlands/Shrubs	5.6247933	-2.223478
Simpah	Built-up	5.6247933	-2.223478
Simpah	Bare land	4.98107174	-1.70331604
Simpah	Farmlands/Shrubs	4.98384578	-1.69054368
Simpah	Built-up	4.986396853	-1.686000918
Sekondi	Built-up	4.989351823	-1.684250038
Sekondi	Built-up	4.993914186	-1.681770255
Sekondi	Built-up	4.995510854	-1.68083392
Sekondi	Waterbodies	4.996225596	-1.680481145
Sekondi	Bare land	5.011633193	-1.667837511
Sekondi	Farmlands/Shrubs	5.017023195	-1.664991567
Sekondi	Farmlands/Shrubs	5.033433115	-1.662371466
Sekondi	Bare land	5.034447371	-1.661812642
Sekondi	Bare land	5.039296842	-1.659257281
Sekondi	Built-up	5.046485183	-1.659069999
Sekondi	Built-up	5.050055196	-1.65992817
Sekondi	Farmlands/Shrubs	5.053968141	-1.659103704
Sekondi	Bare land	5.056765328	-1.65834984
Sekondi	Bare land	5.059147487	-1.657683855
Sekondi	Farmlands/Shrubs	5.061423299	-1.657446956
Table 14 (continued)

Location	Coverage Type	Number of Total Samples	Number of Total Samples
Takoradi	Built-up	5.00432	-2.0265984
Takoradi	Farmlands/Shrubs	4.935919	-1.979885
Takoradi	Built-up	4.911934	-1.784684
Takoradi	Built-up	4.910024	-1.780805
Takoradi	Built-up	4.908200	-1.777843
Takoradi	Built-up	4.903365	-1.769317
Takoradi	Built-up	4.898594	-1.752906
Takoradi	Built-up	5.624793	-2.223478
Tarkwa	Built-up	5.327893	-1.981664
Tarkwa	Built-up	5.713720	-2.327482
Tarkwa	Forest	5.652761	-2.284442
Tarkwa	Bare land	5.644648	-2.268928
Tarkwa	Built-up	5.639954	-2.262859
Tarkwa	Built-up	5.636459	-2.256053
Tarkwa	Forest	5.648678	-2.277517
Tarkwa	Farmlands/Shrubs	5.625145	-2.223876
Tarkwa	Farmlands/Shrubs	5.624793	-2.223478
Tarkwa	Forest	5.624793	-2.223478
Tarkwa	Farmlands/Shrubs	5.624793	-2.223478
Tarkwa	Farmlands/Shrubs	5.624793	-2.223478
Tarkwa	Farmlands/Shrubs	5.624793	-2.223478
Tarkwa	Farmlands/Shrubs	5.624793	-2.223478
Tarkwa	Farmlands/Shrubs	5.624793	-2.223478
Tarkwa	Farmlands/Shrubs	5.624793	-2.223478
Tarkwa	Farmlands/Shrubs	5.624793	-2.223478
Tarkwa	Farmlands/Shrubs	5.624793	-2.223478
Tarkwa	Farmlands/Shrubs	5.624793	-2.223478
Tarkwa	Farmlands/Shrubs	5.624793	-2.223478
Tarkwa	Bare land	5.795916	-2.676276
Tarkwa	Bare land	5.796574	-2.676574
Tarkwa	Bare land	5.782179	-2.601456
Tarkwa	Bare land	5.780070	-2.658570
Tarkwa	Bare land	5.780637	-2.650816
Tarkwa	Bare land	5.780537	-2.649002
Tarkwa	Bare land	5.777853	-2.6376516
Tarkwa	Farmlands/Shrubs	5.776135	-2.630895

Table 14 (continued)

Location	Coverage Type	Number of Total Samples	Number of Total Samples
Simreso	Forest	5.0141916	-2.0857276
Sureso	Farmlands/Shrubs	5.7421022	-2.3846263
Sureso	Farmlands/Shrubs	5.7403294	-2.3823464
Sureso	Built-up	5.7324284	-2.374951
Sureso	Farmlands/Shrubs	5.7288055	-2.3696199
Sureso	Forest	5.7171815	-2.3309613
Takoradi	Built-up	4.902413017	-1.757937547
Takoradi	Built-up	4.900615895	-1.753039743
Takoradi	Bare land	4.901706137	-1.753217088
Takoradi	Built-up	4.902714391	-1.761149546
Takoradi	Built-up	4.917378186	-1.768600407
Takoradi	Built-up	4.931854443	-1.762745376
Takoradi	Bare land	4.936431517	-1.756667313
Takoradi	Farmlands/Shrubs	4.943385074	-1.752279565
Takoradi	Waterbodies	4.959675202	-1.736686621
Takoradi	Built-up	4.965007662	-1.733043819
Takoradi	Built-up	4.966636212	-1.728443967
Takoradi	Built-up	4.966824295	-1.724046787
Takoradi	Built-up	4.973188531	-1.716764645
Takoradi	Bare land	4.976604337	-1.715101399
Takoradi	Built-up	5.0050532	-2.028768
Takoradi	Forest	4.9658955	-1.9816799
Takoradi	Farmlands/Shrubs	4.9011742	-1.9221394
Takoradi	Bare land	4.892615	-1.8518078
Takoradi	Built-up	4.8931655	-1.8266697
Takoradi	Forest	5.0852533	-2.108588
Takoradi	Forest	5.080348	-2.1092255
Takoradi	Built-up	5.0691614	-2.0982327
Takoradi	Forest	5.0679345	-2.0973289
Takoradi	Forest	5.0619644	-2.0973289
Takoradi	Forest	5.0520178	-2.093893
Takoradi	Forest	5.0018325	-2.0598543
Takoradi	Forest	5.0027671	-2.0503787
Takoradi	Forest	5.0034252	-2.0442872
Takoradi	Forest	4.96908	-1.98471
Takoradi	Forest	4.9403308	-1.978419
Takoradi	Built-up	4.9096871	-1.9731285
Takoradi	Built-up	4.9094822	-1.7947036
Takoradi	Forest	5.0644825	-2.0966442
Takoradi	Forest	5.0499747	-2.0925606
Takoradi	Forest	5.0021585	-2.0558429
Takoradi	Forest	5.0036057	-2.0420698
Takoradi	Farmlands/Shrubs	5.0041353	-2.0374857
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s12665-022-10481-y.

Acknowledgements The authors wish to express their sincere gratitude to Nanjing University of Information Science and Technology (NUIST) for making available relevant materials and creating an enabling environment, needed to complete this research. Special thanks go to the Research Institute for History of Science and Technology under the School of Law and Public Affairs (NUIST), as well as the University of Ghana’s Remote Sensing and GIS (RS/GIS) Laboratory for making available the datasets and appropriate tools, used in accomplishing this academic milestone. The authors would like to thank the handling editor and anonymous reviewers for their careful reviews and helpful remarks. The author extends his gratitude to Dr. Emmanuel Yeboah and Dr. Clement Kwang for their assistance in data acquisition and analysis.

Funding This work was supported by the National Natural Science Foundation of China (No. 41971340 and No. 41271410).

Data availability Data that support study findings are available and would be shared upon request.

Declarations

Conflict of interest The authors declare that they have no competing interests.

References

Abbam T, Johnson FA, Dash J, Padmadas SS (2018) Spatiotemporal variations in rainfall and temperature in Ghana over the twentieth century, 1900–2014. Earth and Space Science 5:120–132. https://doi.org/10.1002/2017ES000327

Acheampong M, Yu Q, Enomah DL, Anchang J, Eduful M (2018) Land use/cover change in Ghana’s oil city: Assessing the impact of neoliberal economic policies and implications for sustainable development goal number one—a remote sensing and GIS approach. Land Use Policy 73:373–384. https://doi.org/10.1016/j.landusepol.2018.02.019

Addae B, Oppelt N (2019) Land-use/land-cover change analysis and urban growth modelling in the Greater Accra Metropolitan Area (GAMA). Ghana Urban Sci 3:26. https://doi.org/10.3390/urbanSci3010026

Adjej PO-W, Buor D, Addrah P (2014) Geo-spatial analysis of land use and land cover changes in the Lake Bosomtwe Basin of Ghana. Ghana J Geog 2014(6):1–23. https://doi.org/10.4314/GJG.V6I1

Aduah MS, Baffoe PE (2013) Remote sensing for mapping land-use/cover changes and urban sprawl in Sekondi-Takoradi, Western Region of Ghana. Int J Eng Sci 66–73

Aduah MS, Mantey S, Tagoe ND (2012) Mapping land surface temperature and land cover to detect urban heat island effect: a case study of Tarkwa, South West Ghana. Res J Environ Earth Sci 68–75.

Ahm PM (1958) Regrowth and swamp vegetation in the western forest areas of Ghana. J West Afr Sci Assoc 4:163–173

Alo CA, Pontius RG Jr (2008) Identifying systematic land-cover transitions using remote sensing and GIS: the fate of forests inside and outside protected areas of Southwestern Ghana. Environ Plan B Plan Des 35:280–295. https://doi.org/10.1068/b32091

Ampro ache AA, Antwi M, Kabo-Bah AT (2020) Geospatial assessment of land use and land cover patterns in the Black Volta Basin. J Remote Sens GIS 9:269. https://doi.org/10.35248/2469-4134.20.9.269

Angelsen A, Wunder S (2003) Exploring the forest-poverty link: key concepts, issues and research implications. CIFOR Occasional Paper No. 40. Center for International Forestry Research, Bogor, Indonesia. https://doi.org/10.17528/cifor/001211

Arhin K (1985) The expansion of cocoa production: the working conditions of migrant cocoa farmers in central and western regions. Institute of African Studies, University of Ghana, Legon

Aryeetey E, Kanbur R (2008) The economy of Ghana: analytical perspectives on stability, growth and poverty. University of Ghana, Legon, p 15-33. https://doi.org/10.7272/j.ct88Ifsh

Asante-Poku, A. & Angelucci, F. (2013). Analysis of Incentives and Disincentives for Cocoa in Ghana; MAFAP, FAO: Rome. Italy. Doi: https://doi.org/10.21955/gatesopenres.1115955.1

Avdan U, Jovanovska G (2016) Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. J Šen 2016:1480307. https://doi.org/10.1155/2016/1480307

Awotwi A, Kumi M, Janssens PE, Yeboah F, Niti IK (2015) Predicting hydrological responses to climate change in the White Volta catchment, West Africa. J Earth Sci Clim Change 6:249

Awotwi A, Anornu GK, Quaye-Ballard JA, Annon T (2018) Monitoring land use and land cover changes due to extensive gold mining, urban expansion, and agriculture in the Pra River Basin of Ghana, 1986–2025. Land Degrad Dev 29:3331–3343. https://doi.org/10.1002/ldr.3093

Basommi PL, Guan Q, Cheng D (2015) Exploring land use and land cover change in the mining areas of Wa East District, Ghana using satellite imagery. Open Geosci 1:618–626. https://doi.org/10.1515/geo-2015-0058

Bessah E, Bala A, Agodzko SK, Okhimame AA, Boakye EA, Ibrahim SU (2019) The impact of crop farmers’ decisions on future land use, land cover changes in Kintampo North Municipality of Ghana. Int J Clim Change Strateg Manag 11:72–87. https://doi.org/10.1108/IJCCSM-05-2017-0114

Bessah E, Raji AO, Taiwo OJ, Agodzko SK, Oloolade OO, Strapasson A (2020) Hydrological responses to climate and land use changes: the paradox of regional and local climate effect in the Pra River Basin of Ghana. J Hydrol Reg Stud 27:100654. https://doi.org/10.1016/j.jhr.2019.100654

Boakye E, Anornu GK, Quaye-Ballard JA, Donkor EA (2018) Land use change and sediment yield studies in Ghana. J Geogr Reg Plan 11:122–133. https://doi.org/10.5897/JGRP2018.0707

Brooke J (1989) Ghana, once ‘hopeless,’ gets at least the look of success. The New York Times Archives. https://www.nytimes.com/1989/01/03/world/ghana-once-hopeless-gets-at-least-the-look-of-success.html

Chakraborty A, Joshi PK (2014) Mapping disaster vulnerability in India using analytical hierarchy process. Geomat Nat Hazards Risk. https://doi.org/10.1080/194775705.2014.897656

Coll C, Galve JM, Sanchez JM, Caselles V (2010) Validation of Landsat-7/ETM+-thermal-band calibration and atmospheric correction with ground-based measurements. IEEE Trans Geosci Rem Sens 48:547–555. https://doi.org/10.1109/TGRS.2009.2024934

Dansugy L, Oدعو AK, Obiri DB, Mohammed Y, Bampoh AA (2017) Assessment of drivers of deforestation and forest degradation in the bia-West-Juabeso landscape, Ghana. Unpublished report, Ministry of Food & Agriculture (MOFA)

Danumah JH, Odaik SN, Saley BM et al (2016) Flood risk assessment and mapping in Ahidjan district using multi-criteria analysis (AHP) model and geoinformation techniques, (cote d’ivoire). Geoenviron Disast 3:10. https://doi.org/10.1186/s40677-016-0044-y

Dei G (1988) Coping with the effects of the 1982–83 drought in Ghana: the view from the village. Africa Dev Afrique et Développement 107–122. http://www.jstor.org/stable/24486648
Obeng-Odoom F (2013) Resource curse or blessing in Africa’s oil cities? Empirical evidence from Sekondi-Takoradi, West Africa. City Cult Soc 4:229–240. https://doi.org/10.1016/j.cscs.2013.07.001

Oti JO, Kabo-Bah AT, Ofosu E (2020) Hydrologic response to climate change in the Densu River Basin in Ghana. Heliyon 6:e04722. https://doi.org/10.1016/j.heliyon.2020.e04722

Owusu-Nimo F, Mantey J, Nyarko KB, Appiah-Effah E, Aubynn A (2018) Spatial distribution patterns of illegal artisanal small scale gold mining (Galamsey) operations in Ghana: a focus on the Western Region. Heliyon. https://doi.org/10.1016/j.heliyon.2018.e00534

Queirós A, Faria D, Almeida F (2017) Strengths and limitations of qualitative and quantitative research methods. Eur J Educ Stud 3(9):369–387. https://doi.org/10.5281/zenodo.887089

Rindfuss RR, Stern PC (1998) Linking remote sensing and social science: the need and the challenges. The National Academy Press, Washington, D.C.

Rudel T, Schneider L, Uriarte M (2010) Forest transitions: an introduction. Land Use Policy 27:95–97. https://doi.org/10.1016/j.landusepol.2009.09.021

Rudel TK, Meyfroidt P, Chazdon R, Bongers F, Sloan S, Grau HR, Schneider L (2020) Whither the forest transition? Climate change, policy responses, and redistributed forests in the twenty-first century. Ambio 49:74–84. https://doi.org/10.1007/s13280-018-01143-0

Saad A, Shariff N, Gairola S (2013) Nature and causes of land degradation and desertification in Libya: need for sustainable land management. Afr J Biotechnol 10:3680–13687. https://doi.org/10.5897/AJB11.1235

Saaty TL (1980) The analytic hierarchy process: planning, priority setting, resource allocation. McGraw-Hill International Book Co., New York. https://doi.org/10.1016/0377-2217(82)90022-4

Sarlo I, Shuoben B, Beibei L et al (2021) Spatiotemporal development of land use systems, influences and climate variability in Southwestern Ghana (1970–2020). Environ Dev Sustain 2021:1–34. https://doi.org/10.1007/s10668-021-01848-5

Sim HC, Appanah S, YounYC (2004) Forests for poverty reduction: opportunities with clean development mechanism, environmental services and biodiversity. In: Proceedings of the workshop, 27–29 August 2003, Seoul National University, Korea. http://www.fao.org/3/ae537e/ae537e00.htm

Smith J, Scherr SJ (2002) Forest carbon and local livelihoods: assessment of opportunities and policy recommendations. Occasional Paper No. 37. Bogor. CIFOR. http://www.cifor.cgiar.org/publications/pdf_files/OccPapers/OP-037.pdf

Southworth J, Nagendra H, Cassidy L (2012) Forest transition pathways in Asia—studies from Nepal, India, Thailand, and Cambodia. J Land Use Sci 7:51–65. https://doi.org/10.1080/1747423X.2010.520342

Tahiru AA, Doke DA, Baatuwuwie BN (2020) Effect of land use and land cover changes on water quality in the Nawuni Catchment of the White Volta Basin, Northern Region, Ghana. Appl Water Sci 10:1–14. https://doi.org/10.1007/s13201-020-01272-6

Tan CM, Rockmore M (2018) Famine in Ghana and its impact. In: Preedy V, Patel V (eds) Handbook of famine, starvation, and nutrient deprivation. Springer, Cham. https://doi.org/10.1007/978-3-319-40007-5_95-1

Tolessa T, Dechassa C, Simane B, Alamerew B, Kidane M (2019) Land use/land cover dynamics in response to various driving forces in Didessa sub-basin, Ethiopia. Geojournal 85:747–760. https://doi.org/10.1007/s10708-019-09990-4

Turner BL, Lambin E, Reenberg A (2007) Land change science special feature: the emergence of land change science for global environmental change and sustainability. Proc Natl Acad Sci USA 104:20666–20671. https://doi.org/10.1073/pnas.0704119104

Waggoner PE, Ausubel JH (2001) How much will feeding more and wealthier people encroach on forests? Popul Dev Rev 27:239–257

Xu H (2007) Extraction of urban built-up land features from Landsat imagery using a thematic-oriented index combination technique. Photogram Eng Remote Sens 73:1381–1391. https://doi.org/10.14358/PER.73.12.1381

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Authors and Affiliations

Isaac Sarfo1,9 · Bi Shuoben2 · Henry Bortey Otchwemah3 · George Darko4 · Emmanuel Adu Gyamfi Kedjanyi5 · Collins Oduro1,9 · Ewumi Azeez Folorunso6 · Mohamed Abdallah Ahmed Alriah2,7 · Solomon Obiri Yeboah Amankwah2 · Grace Chikomborero Ndafira8

Isaac Sarfo
20195129001@nuist.edu.cn

Henry Bortey Otchwemah
henrybortey@gmail.com

George Darko
durowaavivian45@gmail.com

Emmanuel Adu Gyamfi Kedjanyi
20205155004@nuist.edu.cn

Collins Oduro
20205129001@nuist.edu.cn

Ewumi Azeez Folorunso
Efolorunso@frov.jcu.cz

Mohamed Abdallah Ahmed Alriah
m_alriah@nuist.edu.cn

Solomon Obiri Yeboah Amankwah
20195111003@nuist.edu.cn

Grace Chikomborero Ndafira
gracecndafira@yahoo.com

1 Research Institute for History of Science and Technology, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China

2 School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China

3 Pheebes Consult Limited, Accra, Ghana

4 Department of Environment and Biotechnology, Nha Trang University, Nha Trang, Vietnam

5 School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China

6 Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, NaSádkách 1780, 370 05 Ceske Budejovice, Czech Republic

7 Sudan Meteorological Authority, P. O. Box 574, Khartoum, Sudan

8 School of Business Management, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China

9 Organization of African Academic Doctors (OAAD), Off Kamiti Road, P.O. Box 25305000100, Nairobi, Kenya