QUASIDUALIZING MODULES

BETHANY KUBIK

Abstract. We introduce and study “quasidualizing” modules. An artinian R-module T is quasidualizing if the homothety map $\hat{R} \to \text{Hom}_R(T, T)$ is an isomorphism and $\text{Ext}^i_R(T, T) = 0$ for each integer $i > 0$. Quasidualizing modules are associated to semidualizing modules via Matlis duality. We investigate the associations via Matlis duality between subclasses of the Auslander class and Bass class and subclasses of derived T-reflexive modules.

Introduction

Let R be a commutative local noetherian ring with maximal ideal \mathfrak{m} and residue field $k = R/\mathfrak{m}$. The \mathfrak{m}-adic completion of R is denoted \hat{R}, the injective hull of k is $E = E_R(k)$, and the Matlis duality functor is $(-)^\vee = \text{Hom}_R(-, E)$.

The motivation for this work comes from the study of semidualizing modules. Semidualizing modules were first introduced by Vasconcelos [8]. A finitely generated R-module C is semidualizing if the homothety map $R \to \text{Hom}_R(C, C)$ is an isomorphism and $\text{Ext}^i_R(C, C) = 0$ for each integer $i > 0$. For example, R is always a semidualizing R-module. Therefore duality with respect to R is a special case of duality with respect to a semidualizing module, as is duality with respect to a dualizing R-module when R has one. One the other hand, Matlis duality is not covered in this way. The goal of this paper is to remedy this by introducing and studying the “quasidualizing” modules: An artinian R-module T is quasidualizing if the homothety map $\hat{R} \to \text{Hom}_R(T, T)$ is an isomorphism and $\text{Ext}^i_R(T, T) = 0$ for each integer $i > 0$; see Definition 1.14. For example, E is always a quasidualizing module.

This paper is concerned with the properties of quasidualizing modules and how they compare with the properties of semidualizing modules. For instance, the next result gives a direct link between quasidualizing modules and semidualizing modules via Matlis duality; see Theorem 3.1.

Theorem A. If R is complete, then the set of isomorphism classes of semidualizing R-modules is in bijection with the set of isomorphism classes of quasidualizing R-modules by Matlis duality.

Following the literature on semidualizing modules, we use quasidualizing modules to define other classes of modules. For instance, given an R-module M, we consider the class $G_M^{\text{full}}(R)$ of “derived M-reflexive R-modules” and their subclasses $G_M^{\text{noeth}}(R)$ and $G_M^{\text{artin}}(R)$ of noetherian modules and artinian modules respectively. We also consider subclasses of the Auslander class $A_M(R)$ and the Bass class $B_M(R)$.

2010 Mathematics Subject Classification. Primary 13D07, 13E10, 13J10.

Key words and phrases. quasidualizing, semidualizing, Matlis duality, Hom, tensor product, artinian, noetherian.
Section 1 for definitions. Some relations between these classes are listed in the next result which is proved in Section 3.

Theorem B. Assume R is complete, and let T be a quasidualizing R-module. Then we have the following inverse equivalences and equalities

(i) $B^{\noeth}(R) \rightsquigarrow \mathcal{A}^{\noeth}(R) = \mathcal{A}^{\noeth}(R)$;

(ii) $B^{\noeth}(R) \rightsquigarrow \mathcal{A}^{\noeth}(R) = \mathcal{A}^{\noeth}(R)$;

(iii) $B^{\noeth}(R) \rightsquigarrow \mathcal{A}^{\noeth}(R) = \mathcal{A}^{\noeth}(R)$; and

(iv) $B^{\noeth}(R) \rightsquigarrow \mathcal{A}^{\noeth}(R) = \mathcal{A}^{\noeth}(R)$.

As a consequence of the previous result, we conclude that the classes $\mathcal{G}^{\noeth}(R)$ and $\mathcal{A}^{\noeth}(R)$ are substantially different. For instance, as we observe next $\mathcal{G}^{\noeth}(R)$ satisfies the two-of-three condition, while the class $\mathcal{G}^{\noeth}(R)$ does not; see Theorem 3.13.

Theorem C. Assume that R is complete, and let T be a quasidualizing R-module. Then $\mathcal{G}^{\noeth}(R)$ satisfies the two-of-three condition, that is, given an exact sequence of R-module homomorphisms $0 \rightarrow L_1 \rightarrow L_2 \rightarrow L_3 \rightarrow 0$ if any two of the modules are in $\mathcal{G}^{\noeth}(R)$, then so is the third.

In Section 1 we provide some definitions and background material. Section 2 describes properties related to quasidualizing modules, and Section 3 describes the relations between the different classes of modules using Matlis duality as well as Theorem C.

1. **Background material**

Definition 1.1. We say that an R-module L is Matlis reflexive if the natural biduality map $\delta^R_L : L \rightarrow L^\vee^\vee$, given by $l \mapsto [\phi \mapsto \phi(l)]$.

Fact 1.2. Let L be an R-module. The natural biduality map δ_L is injective; see [6, Theorem 18.6(i)]. If L is Matlis reflexive, then L^\vee is Matlis reflexive.

Fact 1.3. Assume R is complete and let L be an R-module. If L is artinian, then L^\vee is noetherian. If L is noetherian, then L^\vee is artinian. Since R is complete, both artinian modules and noetherian modules are Matlis reflexive; see [6, Theorem 18.6(v)].

Lemma 1.4. Let L and L' be R-modules such that L is Matlis reflexive. Then for all $i \geq 0$ we have the isomorphisms

$\Ext^i_R(L', L) \cong \Ext^i_R(L^\vee, L^\vee)$ and $\Ext^i_R(L', L^\vee) \cong \Ext^i_R(L, L^\vee)$.

Proof. For the first isomorphism, since L is Matlis reflexive, by definition the map $\Ext^i_R(L', \delta_L) : \Ext^i_R(L', L) \rightarrow \Ext^i_R(L', \Hom_R(L^\vee, E))$
is an isomorphism. A manifestation of Hom-tensor adjointness yields the following isomorphisms
\[\text{Ext}_R^i(L', \text{Hom}_R(L^\vee, E)) \cong \text{Ext}_R^i(L' \otimes_R L^\vee, E) \cong \text{Ext}_R^i(L^\vee, L'^\vee). \]
The composition of these maps provides us with the isomorphism \(\text{Ext}_R^i(L', L) \cong \text{Ext}_R^i(L^\vee, L'^\vee). \)

For the second isomorphism, the fact that \(L \) is Matlis reflexive explains the second step in the following sequence \(\text{Ext}_R^i(L', L^\vee) \cong \text{Ext}_R^i(L^\vee, L'^\vee) \cong \text{Ext}_R^i(L, L'^\vee). \)
The first step follows from the first isomorphism since \(L^\vee \) is an isomorphism. A manifestation of Hom-tensor adjointness yields the following

Fact 1.5. Assume \(R \) is complete and let \(A \) and \(A' \) be artinian \(R \)-modules. Then \(\text{Hom}_R(A, A') \) is noetherian. This can be deduced using [5, Theorem 2.11].

Fact 1.6. Let \(L \) be an \(R \)-module. Then \(L \) is artinian over \(R \) if and only if it is artinian over \(\hat{R} \). See [5, Lemma 1.14].

Lemma 1.7. Assume \(R \) is artinian and let \(L \) be an \(R \)-module. Then the following are equivalent

(i) \(L \) is noetherian over \(R \);
(ii) \(L \) is finitely generated over \(R \); and
(iii) \(L \) is artinian.

Proof. The equivalence (i) \(\iff \) (ii) is standard; see [1, Propositions 6.2 and 6.5].

For the implication (ii) \(\implies \) (iii), assume that \(L \) is finitely generated over \(R \). Then there exists an \(n \in \mathbb{N} \) and a surjective map \(R^n \to L \) so that we have \(L \cong \text{Im}(\phi) \cong R^n / \text{Ker}(\phi) \). Since \(R \) is artinian, \(R^n \) is artinian. Thus \(L \) is artinian because the quotient of an artinian module is artinian; see [1, Proposition 6.3].

For the implication (iii) \(\implies \) (i), assume that \(L \) is artinian. Then there exists an \(n \in \mathbb{N} \) such that \(L \to E^n \); see [2, Theorem 3.4.3]. Since \(R \) is artinian, we have \(R^\vee \cong E \) is noetherian over \(\hat{R} \) by Fact 1.3 where the isomorphism follows from [6, Theorem 18.6 (iv)]). Hence we have that \(E^n \) is noetherian over \(\hat{R} = R \) since \(R \) is artinian. Since any submodule of a noetherian module is noetherian, we conclude that \(L \) is noetherian over \(R \); see [1, Proposition 6.3].

Lemma 1.8. Assume \(R \) is complete and let \(A \) be an artinian \(R \)-module. Then there exists an injective resolution \(I \) of \(A \) such that for each \(i \geq 0 \) we have \(I_i \cong E^{b_i} \) for some \(b_i \in \mathbb{N} \). Furthermore, \(I^\vee \) is a free resolution of \(A^\vee \).

Proof. Since \(A \) is artinian, we have the map \(A \to E^{b_0} \) for some \(b_0 \geq 1 \); see [2, Theorem 3.4.3]. Because the finite direct sum of artinian modules is artinian, \(E^{b_0} \) is artinian and we have \(E^{b_0} / A \to E^{b_1} \) for some \(b_1 \geq 0 \). Recursively we can construct an injective resolution of \(A \) such that for each \(i \geq 0 \) we have \(I_i \cong E^{b_i} \) for some \(b_i \in \mathbb{N} \).

Next we show that \(I^\vee \) is a free resolution of \(A^\vee \). The fact that \(I_i \cong E^{b_i} \) explains the first step in the following sequence
\[I^\vee_i = \text{Hom}_R(I_i, E) \cong \text{Hom}_R(E^{b_i}, E) \cong \text{Hom}_R(E, E)^{b_i} \cong \hat{R}^{b_i} \cong R^{b_i}. \]
The second step is standard. The third step is from [6, Theorem 18.6(iv)], and the last step follows from the assumption that \(R \) is complete. The desired conclusion follows from the fact that \((-)^\vee \) is exact.
Definition 1.9. Let L, L' and L'' be R-modules. The Hom-evaluation morphism
\[\theta_{L,L'',L'} : L \otimes_R \text{Hom}_R(L',L'') \to \text{Hom}_R(\text{Hom}_R(L,L'),L'') \]
is given by $a \otimes \phi \mapsto [\beta \mapsto \phi(\beta(a))]$.

Fact 1.10. The Hom-evaluation morphism $\theta_{L,L'',L'}$ is an isomorphism if the modules satisfy one of the following conditions:
(a) L is finitely generated and L'' is injective; or
(b) L is finitely generated and projective.
See [4, Lemma 1.6] and [7, Lemma 3.55].

Definition 1.11. An R-module C is semidualizing if it satisfies the following
(i) C is finitely generated;
(ii) the homothety morphism $\chi_C^R : R \to \text{Hom}_R(C,C)$, defined by $r \mapsto [c \mapsto rc]$, is an isomorphism; and
(iii) one has $\text{Ext}_R^i(C,C) = 0$ for all $i > 0$.

Remark 1.12. Let $\mathcal{S}_0(R)$ denote the set of isomorphism classes of semidualizing R-modules.

Example 1.13. The ring R is always semidualizing.

Definition 1.14. An R-module T is quasidualizing if it satisfies the following
(i) T is artinian;
(ii) the homothety morphism $\chi_T^R : \hat{R} \to \text{Hom}_R(T,T)$, defined by $r \mapsto [t \mapsto rt]$, is an isomorphism; and
(iii) one has $\text{Ext}_R^i(T,T) = 0$ for all $i > 0$.

Remark 1.15. The homothety morphism χ_T^R is well defined since T is artinian implying by Fact 1.6 that T is an \hat{R}-module.

Remark 1.16. Let $\mathcal{Q}_0(R)$ denote the set of isomorphism classes of quasidualizing modules.

Example 1.17. The injective hull of the residue field E is always quasidualizing. See [2, Theorem 3.4.1] and [8, Theorem 18.6(iv)] for conditions (i) and (ii) of Definition 1.14. Since E is injective by definition, we have $\text{Ext}_R^i(E,E) = 0$ for all $i > 0$ satisfying the last condition.

Definition 1.18. Let M be an R-module. Then an R-module L is derived M-reflexive if
(i) the natural biduality map $\delta_L^M : L \to \text{Hom}_R(\text{Hom}_R(L,M),M)$ defined by $l \mapsto [\phi \mapsto \phi(l)]$ is an isomorphism; and
(ii) one has $\text{Ext}_R^i(L,M) = 0 = \text{Ext}_R^i(\text{Hom}_R(L,M),M)$ for all $i > 0$.

We write $\mathcal{G}_M^{\text{full}}(R)$ to denote the class of all derived M-reflexive R-modules, $\mathcal{G}_M^{\text{artin}}(R)$ to denote the class of all Matlis reflexive derived M-reflexive R-modules, $\mathcal{G}_M^{\text{noeth}}(R)$ to denote the class of all noetherian derived M-reflexive R-modules.

Remark 1.19. When $M = C$ is a semidualizing R-module, the class $\mathcal{G}_M^{\text{noeth}}(R)$ is the class of totally C-reflexive R-modules, sometimes denoted $\mathcal{G}_C(R)$.
Definition 1.20. Let L and L' be R-modules. We say that L is in the Bass class $B_{L'}(R)$ with respect to L' if it satisfies the following:

(i) the natural evaluation homomorphism $\xi_{L'}^L : \text{Hom}_R(L', L) \otimes_R L' \to L$, defined by $\phi \otimes l \mapsto \phi(l)$, is an isomorphism; and

(ii) one has $\text{Ext}^i_R(L', L) = 0 = \text{Tor}^i_R(L', L)$ for all $i > 0$.

We write $B_{L'}^\text{mat}(R)$ to denote the class of all Matlis reflexive R-modules in the Bass class with respect to L'.

We write $B_{L'}^\text{artin}(R)$ to denote the class of all artinian R-modules in the Bass class with respect to L'.

Definition 1.21. Let L and L' be R-modules. We say that L is in the Auslander class $A_{L'}(R)$ with respect to L' if it satisfies the following:

(i) the natural homomorphism $\gamma_{L'}^L : L \to \text{Hom}_R(L', L' \otimes_R L)$, which is defined by $l \mapsto [l' \mapsto l' \otimes l]$, is an isomorphism; and

(ii) one has $\text{Tor}^i_R(L', L) = 0 = \text{Ext}^i_R(L', L)$ for all $i > 0$.

We write $A_{L'}^\text{mat}(R)$ to denote the class of all Matlis reflexive R-modules in the Auslander class with respect to L'. We write $A_{L'}^\text{artin}(R)$ to denote the class of all artinian R-modules in the Auslander class with respect to L'.

2. Quasidualizing Modules

We begin with a few preliminary results pertaining to quasidualizing modules.

Proposition 2.1. Let T be an R-module. Then T is a quasidualizing R-module if and only if T is a quasidualizing \hat{R}-module.

Proof. We need to check the equivalence of three conditions. For the first condition, T is an artinian R-module if and only if T is an artinian \hat{R}-module by Fact 1.6. For the rest of the proof we assume without loss of generality that T is artinian.

For the second condition, we have the equality $\text{Hom}_R(T, T) = \text{Hom}_{\hat{R}}(T, T)$ from the fact that T is \mathfrak{m}-torsion and [3, Lemma 1.5(a)]. This explains the equality in the following commutative diagram.

$$
\begin{array}{ccc}
\hat{R} & \xrightarrow{\chi_T^R} & \text{Hom}_R(T, T) \\
\downarrow \cong & & \downarrow = \\
\hat{R} & \xrightarrow{\chi_T^\hat{R}} & \text{Hom}_{\hat{R}}(T, T)
\end{array}
$$

Since $\hat{R} \cong \hat{R}$, we have $\chi_T^\hat{R}$ is an isomorphism if and only if χ_T^R is an isomorphism.

For the last condition, Lemma 1.8 implies that there exists an injective resolution I of T such that for each $i \geq 0$ we have $I_i \cong E^{b_i}$ for some $b_i \in \mathbb{N}$. For all $i \geq 0$, the modules T and I_i are artinian and hence \mathfrak{m}-torsion. By [3, Lemma 1.5(a)], we have the equality $\text{Hom}_{\hat{R}}(T, I_i) = \text{Hom}_R(T, I_i)$ and I is an injective resolution of T over \hat{R}. This explains the first and second steps in the next display:

$$
\text{Ext}^i_{\hat{R}}(T, T) \cong \text{H}_{-i}(\text{Hom}_{\hat{R}}(T, I_i)) \cong \text{H}_{-i}(\text{Hom}_R(T, I_i)) \cong \text{Ext}^i_R(T, T).
$$

The third step is by definition. Thus we have $\text{Ext}^i_{\hat{R}}(T, T) = 0$ for all $i > 0$ if and only if $\text{Ext}^i_R(T, T) = 0$ for all $i > 0$. \qed
Proposition 2.2. The following conditions are equivalent:

(i) \(E \) is a semidualizing \(R \)-module;
(ii) \(R \) is a quasidualizing \(R \)-module;
(iii) \(E \) is a noetherian \(R \)-module;
(iv) \(R \) is an artinian ring;
(v) \(\Omega_0(R) = \mathcal{S}_0(R) \); and
(vi) \(\Omega_0(R) \cap \mathcal{S}_0(R) \neq 0 \).

Proof. (iii) \(\iff \) (iv) By [6, Theorem 18.6 (ii)] we have \(\text{len}_R(R) = \text{len}_R(E) \), where \(\text{len}_R(L) \) denotes the length of an \(R \)-module \(L \). Since \(R \) is noetherian by assumption, we have \(R \) is artinian if and only if \(R \) has finite length if and only if \(R^\vee = E \) has finite length (by the equalities above), if and only if \(E \) is noetherian over \(R \) (since \(E \) is artinian; see [2, Theorem 3.4.1]). That is, \(R \) is artinian if and only if \(E \) is noetherian over \(R \).

(i) \(\implies \) (iii) If \(E \) is a semidualizing \(R \)-module, then \(E \) is noetherian over \(R \) by definition.

(iv) \(\implies \) (i) Assume that \(R \) is artinian. Then \(E \) is finitely generated by the equivalence (iii) \(\iff \) (iv). We have \(R \cong \hat{R} \) since \(R \) is artinian, and \(\hat{R} \cong \text{Hom}_R(E, E) \) by [6, Theorem 18.6 (iv)] explaining the unspecified isomorphisms in the following commutative diagram.

\[
\begin{array}{ccc}
R & \xrightarrow{\chi_R^E} & \text{Hom}_R(E, E) \\
\cong & & \cong \\
\hat{R} & \downarrow & \\
& \chi_{\hat{R}}^E &
\end{array}
\]

Hence we conclude that the homothety morphism \(\chi_R^E \) is an isomorphism. Since \(E \) is injective, we have that \(\text{Ext}_R^i(E, E) = 0 \) for all \(i > 0 \). Thus \(E \) is a semidualizing \(R \)-module.

(iv) \(\implies \) (v) Assume that \(R \) is artinian, and let \(L \) be an \(R \)-module. We show that \(L \) is a semidualizing module if and only if \(L \) is a quasidualizing module. We need to check the equivalence of three conditions. For the first condition, \(L \) is finitely generated if and only if \(L \) is artinian by Lemma [1.7]. For the second condition, the fact that \(R \) is artinian implies that \(\hat{R} \cong R \). This explains the unlabeled isomorphism in the following commutative diagram.

\[
\begin{array}{ccc}
R & \xrightarrow{\cong} & \hat{R} \\
\chi_R^L & & \chi_{\hat{R}}^L \\
\downarrow & & \downarrow \\
\text{Hom}_R(L, L) & &
\end{array}
\]

Thus the map \(\chi_L^R \) is an isomorphism if and only if the map \(\chi_{\hat{R}}^L \) is an isomorphism. The Ext vanishing conditions are equivalent by definition.

For the implication (iv) \(\implies \) (i), assume that \(\Omega_0(R) = \mathcal{S}_0(R) \). The \(R \)-module \(R \) is always semidualizing. Then by assumption it is also a quasidualizing \(R \)-module.

The implication (iii) \(\implies \) (iv) is evident since \(R \) is an artinian ring if and only if it is an artinian \(R \)-module. For the implication (iii) \(\implies \) (vi), if \(R \) is a quasidualizing \(R \)-module, then the intersection \(\Omega_0(R) \cap \mathcal{S}_0(R) \) is nonempty since \(R \) is also a semidualizing \(R \)-module.
For the implication (vi) \(\implies\) (ii), assume that the intersection \(\mathcal{Q}_0(R) \cap \mathcal{S}_0(R)\) is nonempty. Let \(L \in \mathcal{Q}_0(R) \cap \mathcal{S}_0(R)\). Then \(L\) is artinian and noetherian, so it has finite length. Since \(L\) is artinian, it is \(m\)-torsion and by [5] Fact 1.2(b) we have \(\text{Supp}_R(L) \subseteq \{m\}\). Since \(L\) is a semidualizing \(R\)-module, the map \(R \to \text{Hom}_R(L, L)\) is an isomorphism so we have \(\text{Ann}_R(L) \subseteq \text{Ann}_R(R) = 0\). This explains the second step in the following sequence

\[
\text{Supp}_R(L) = V(\text{Ann}_R(L)) = V(0) = \text{Spec}(R).
\]

Thus \(\text{Spec}(R) = \text{Supp}_R(L) \subseteq \{m\} \subseteq \text{Spec}(R)\) and we conclude that \(\text{Spec}(R) = \{m\}\). Thus [1] Theorem 8.5 implies that \(R\) is artinian. \(\square\)

3. Classes of Modules and Matlis Duality

This section explores the connections between the class of quasidualizing \(R\)-modules and the class of semidualizing \(R\)-modules as well as connections between different subclasses of \(\mathcal{A}_M(R), \mathcal{B}_M(R), \text{ and } \mathcal{G}_M^{\text{full}}(R)\). The instrument used to detect these connections is Matlis Duality.

Theorem 3.1. Assume that \(R\) is complete. Then the maps \(\mathcal{S}_0(R) \xrightarrow{(\cdot)^\vee} \mathcal{Q}_0(R)\) are inverse bijections.

Proof. Let \(C \in \mathcal{S}_0(R)\). We show that \(C^\vee \in \mathcal{Q}_0(R)\). Fact [1,3] implies that \(C^\vee\) is artinian. In the following commutative diagram, the unspecified isomorphisms are from Hom-tensor adjointness and the commutativity of tensor product

\[
\begin{array}{ccc}
R & \xrightarrow{\chi_C^{R^\vee}} & \text{Hom}_R(C^\vee, \text{Hom}_R(C, E)) \\
\downarrow{\chi_{R^\vee}} & & \downarrow{\cong} \\
\text{Hom}_R(C, C) & \cong & \text{Hom}_R(C^\vee \otimes_R C, E) \\
\cong & & \cong \\
\text{Hom}_R(C, \text{Hom}_R(C^\vee, E)) & \cong & \text{Hom}_R(C \otimes_R C^\vee, E).
\end{array}
\]

Since \(C \in \mathcal{S}_0(R)\), it follows that \(\chi_C^{R^\vee}\) is an isomorphism. Fact [1,3] implies that the map \(\delta_C^{E_R}\), and by extension the map \(\text{Hom}_R(C, \delta_C^{E_R})\), is an isomorphism. Hence we can conclude from the diagram that \(\chi_C^{R^\vee}\) is an isomorphism.

For the last condition, Lemma [1,4] explains the first step in the following sequence

\[
\text{Ext}_R^1(C^\vee, C^\vee) \cong \text{Ext}_R^1(C, C) = 0.
\]

The second step follows from the fact that \(C\) is a semidualizing module. Thus \(C^\vee\) is a quasidualizing module.

A similar argument shows that given a quasidualizing \(R\)-module \(T\), the module \(T^\vee\) is semidualizing. Fact [1,3] implies that \(C \cong C^\vee\) and \(T \cong T^\vee\), so that the given maps \(\mathcal{S}_0(R) \xrightarrow{(\cdot)^\vee} \mathcal{Q}_0(R)\) and \(\mathcal{Q}_0(R) \xrightarrow{(\cdot)^\vee} \mathcal{S}_0(R)\) are inverse equivalences. \(\square\)

Example 3.2. Assume that \(R\) is Cohen-Macaulay and complete and admits a dualizing module \(D\). The fact that \(D\) is dualizing means that \(D\) is semidualizing and has finite injective dimension. Therefore, by Theorem 3.1 we conclude that \(D^\vee\) is quasidualizing.
Proposition 3.3. Assume that R is complete and let T be a quasidualizing R-module. Then the maps $\mathcal{B}_T^\text{mr}(R) \xrightarrow{(-)^\vee} \mathcal{G}_T^\text{mr}(R)$ are inverse bijections.

Proof. Let M be a Matlis reflexive R-module. We show that if $M \in \mathcal{B}_T^\text{mr}(R)$ then $M^\vee \in \mathcal{G}_T^\text{mr}(R)$. Fact 1.2 implies that M^\vee is Matlis reflexive. There are three remaining conditions to check.

First we show that $\text{Ext}_R^i(M^\vee, T) = 0$ for all $i > 0$. Since T is artinian and R is complete, Fact 3.3 implies that T is Matlis reflexive, so we have

$$\text{(3.3.1)} \quad \text{Ext}_R^i(M^\vee, T) \cong \text{Ext}_T^i(T^\vee, M).$$

by Lemma 1.3. We have $\text{Ext}_R^i(T^\vee, M) = 0$ for all $i > 0$ since $M \in \mathcal{B}_T^\text{mr}(R)$. Thus we conclude $\text{Ext}_R^i(M^\vee, T) = 0$ for all $i > 0$.

Next we show that the map δ_M^T is an isomorphism. The fact that $M \in \mathcal{B}_T^\text{mr}(R)$ implies the map ξ_M^T is an isomorphism. Therefore the map $\text{Hom}_R(\xi_M^T, E)$ in the following commutative diagram is an isomorphism

$$\begin{array}{ccc}
M^\vee & \xrightarrow{\text{Hom}_R(\xi_M^T, E)} & \text{Hom}_R(\text{Hom}_R(T^\vee, M) \otimes_R T^\vee, E) \\
\downarrow{\delta_M^T} & & \downarrow{=} \\
\text{Hom}_R(\text{Hom}_R(M^\vee, T), T) & \xrightarrow{=} & \text{Hom}_R(\text{Hom}_R(T^\vee, M), T).
\end{array}$$

The unspecified isomorphisms are from Hom-tensor adjointness and the isomorphism (3.3.1). Hence we conclude from the diagram that δ_M^T is an isomorphism.

For the last condition, let I be an injective resolution of T such that for each $i \geq 0$ we have $I_i \cong E^{b_i}$ for some $b_i \in \mathbb{N}$. Lemma 1.8 implies that I^\vee is a free resolution of T^\vee. This explains steps (2) and (6) in the following sequence

$$\text{Ext}_R^i(\text{Hom}_R(M^\vee, T), T) \xrightarrow{(1)} \text{Ext}_R^i(\text{Hom}_R(T^\vee, M), T)$$

$$\xrightarrow{(2)} \text{H}_{-i}(\text{Hom}_R(\text{Hom}_R(T^\vee, M), I))$$

$$\xrightarrow{(3)} \text{H}_{-i}(\text{Hom}_R(\text{Hom}_R(T^\vee, M), I^\vee))$$

$$\xrightarrow{(4)} \text{H}_{-i}(\text{Hom}_R(\text{Hom}_R(T^\vee, M) \otimes_R I^\vee, E))$$

$$\xrightarrow{(5)} \text{Hom}_R(\text{H}_i(I^\vee \otimes_R \text{Hom}_R(T^\vee, M)), E)$$

$$\xrightarrow{(6)} \text{Hom}_R(\text{Tor}_i^R(T^\vee, \text{Hom}_R(T^\vee, M)), E).$$

Step (1) follows from the isomorphism (3.3.1). Step (3) follows from the fact that any finite direct sum of artinian modules is artinian; thus I_j is artinian for all j and we can apply Fact 1.3. Step (4) follows from Hom-tensor adjointness, and step (5) follows from the fact that E is injective and homology commutes with exact functors. Since $M \in \mathcal{B}_T^\text{mr}(R)$, we have $\text{Tor}_i^R(M, \text{Hom}_R(T^\vee, M)) = 0$ for all $i > 0$. Hence we conclude that

$$\text{Ext}_R^i(\text{Hom}_R(M^\vee, T), T) \cong \text{Hom}_R(\text{Tor}_i^R(M, \text{Hom}_R(T^\vee, M)), E) = 0$$

for all $i > 0$.

Given an R-module $M' \in \mathcal{G}_T^{noeth}(R)$, the argument to show that $M' \in \mathcal{B}_T^{noeth}(R)$ is similar. Since M and M' are Matlis reflexive, that is $M \cong M^{\vee \vee}$ and $M' \cong M'^{\vee \vee}$, we conclude that the maps $\mathcal{B}_T^{noeth}(R) \xrightarrow{(\cdot)^{\vee}} \mathcal{G}_T^{noeth}(R)$ and $\mathcal{B}_T^{mr}(R) \xrightarrow{(\cdot)^{\vee}} \mathcal{G}_T^{mr}(R)$ are inverse equivalences.

Corollary 3.4. Assume that R is complete and let T be a quasidualizing R-module. Then the following maps are inverse bijections

\[
\mathcal{B}_T^{noeth}(R) \xrightarrow{(\cdot)^{\vee}} \mathcal{G}_T^{artin}(R) \quad \text{and} \quad \mathcal{B}_T^{artin}(R) \xrightarrow{(\cdot)^{\vee}} \mathcal{G}_T^{noeth}(R).
\]

Proof. Fact 1.3 implies that if N is a noetherian R-module, then N^\vee is an artinian R-module and $N \cong N^{\vee \vee}$. Furthermore, if A is an artinian R-module, then A^\vee is a noetherian R-module and $A \cong A^{\vee \vee}$. Together with Proposition 3.3 this implies that the maps $\mathcal{B}_T^{noeth}(R) \xrightarrow{(\cdot)^{\vee}} \mathcal{G}_T^{artin}(R)$ are inverse bijections. The proof for $\mathcal{B}_T^{artin}(R) \xrightarrow{(\cdot)^{\vee}} \mathcal{G}_T^{noeth}(R)$ is similar.

Proposition 3.5. Assume that R is complete and let T be a quasidualizing R-module. Then the maps $\mathcal{B}_T^{mr}(R) \xrightarrow{(\cdot)^{\vee}} \mathcal{G}_T^{mr}(R)$ are inverse bijections.

Proof. Let M be a Matlis reflexive R-module. We show that if $M \in \mathcal{G}_T^{mr}(R)$, then $M^\vee \in \mathcal{B}_T^{mr}(R)$. First we show that the map δ_M^T is an isomorphism. The fact that M is Matlis reflexive implies that the map δ_M^T in the following commutative diagram is an isomorphism

\[
\begin{array}{ccc}
M & \xrightarrow{\delta_M^T} & M^{\vee \vee} \\
\downarrow & & \downarrow \cong \\
\text{Hom}_R(\text{Hom}_R(M, T^\vee), T^{\vee \vee}) & \cong & \text{Hom}_R(\text{Hom}_R(T, M^\vee) \otimes_R T, E) \\
\end{array}
\]

The unspecified isomorphisms are from Hom-tensor adjointness and Lemma 1.4.

Since $M \in \mathcal{G}_T^{mr}(R)$, we have that the map δ_M^T is an isomorphism. Hence $(\delta_M^T)^{\vee}$ is an isomorphism. Since E is faithfully injective, this implies that $\xi_{M^\vee}^T$ is an isomorphism.

Next we show that $\text{Ext}_R^i(T, M^\vee) = 0$ for all $i > 0$. Since M is Matlis reflexive, Lemma 1.4 explains the first step in the following sequence $\text{Ext}_R^i(T, M^\vee) \cong \text{Ext}_R^i(M, T^\vee) = 0$. The second step follows from the fact that $M \in \mathcal{G}_T^{mr}(R)$.

\[
\text{Ext}_R^i(T, M^\vee) = 0.
\]

Since M and M' are Matlis reflexive, that is $M \cong M^{\vee \vee}$ and $M' \cong M'^{\vee \vee}$, we conclude that the maps $\mathcal{B}_T^{noeth}(R) \xrightarrow{(\cdot)^{\vee}} \mathcal{G}_T^{noeth}(R)$ and $\mathcal{B}_T^{mr}(R) \xrightarrow{(\cdot)^{\vee}} \mathcal{G}_T^{mr}(R)$ are inverse equivalences.
Lastly, we show that $\text{Tor}^R_i(T, \text{Hom}_R(T, M^{\vee})) = 0$ for all $i > 0$. The commutativity of tensor product explains the first step in the following sequence

$$\text{Tor}^R_i(T, \text{Hom}_R(T, M^{\vee}))^\vee \cong \text{Tor}^R_i(\text{Hom}_R(T, M^{\vee}), T)^\vee$$

$$\cong \text{Ext}^i_R(\text{Hom}_R(T, M^{\vee}), T^{\vee})$$

$$\cong \text{Ext}^i_R(\text{Hom}_R(M, T^{\vee}), T^{\vee})$$

$$= 0.$$

The second step follows from [5, Remark 1.9] and the third step follows from Lemma 1.3. The last step follows from the fact that $M \in G_{T^{\vee}}^m(R)$. Given an R-module $M' \in B_{T}(R)$, the argument to show that $M^{\vee} \in G_{T^{\vee}}^m(R)$ is similar but easier. Since M and M' are Matlis reflexive, we conclude that the maps $B_{T}(R) \xrightarrow{(-)^\vee} G_{T^{\vee}}^m(R)$ and $G_{T^{\vee}}^m(R) \xrightarrow{(-)^\vee} B_{T}(R)$ are inverse equivalences. \square

Corollary 3.6. Assume that R is complete and let T be a quasidualizing R-module. Then the following maps are inverse bijections

$$B_{T}^{\text{noeth}}(R) \xrightarrow{(-)^\vee} G_{T^{\vee}}^m(R)$$

and

$$B_{T}^{\text{artin}}(R) \xrightarrow{(-)^\vee} G_{T^{\vee}}^m(R).$$

The next proposition establishes the relationship between a subclass of the Auslander class and a subclass of the derived reflexive modules.

Proposition 3.7. If R is complete and T is a quasidualizing R-module, then

$$G_{T^{\vee}}^m(R) = A_{T}^m(R).$$

Proof. Let M be a Matlis reflexive R-module. We show that M satisfies the defining conditions of $G_{T^{\vee}}^m(R)$ if and only if M satisfies the defining conditions of $A_{T}^m(R)$. For the isomorphisms, consider the following commutative diagram

$$\begin{array}{ccc}
M & \xrightarrow{\delta_M^{\vee}} & \text{Hom}_R(\text{Hom}_R(M, T^{\vee}), T^{\vee}) \\
\gamma_M^{\vee} & \downarrow & \cong \\
\text{Hom}_R(T, T \otimes_R M) & \equiv & \text{Hom}_R(\text{Hom}_R(T, T \otimes_R M), (T \otimes_R M)^{\vee}) \\
\cong & \downarrow & \equiv \\
\text{Hom}_R(T, \text{Hom}_R((T \otimes_R M)^{\vee}, E)) & \equiv & \text{Hom}_R(T, \text{Hom}_R(M, T^{\vee}), E))
\end{array}$$

The unspecified homomorphisms are Hom-tensor adjointness. The module $T \otimes_R M$ is artinian by [5, Lemma 1.19 and Theorem 3.1]. Fact 1.3 implies that the map $\delta_T^{E \otimes_R M}$, and hence the map $\text{Hom}_R(T, \delta_T^{E \otimes_R M})$, is an isomorphism. Therefore the map γ_M^{\vee} is an isomorphism if and only if the map $\delta_M^{T^{\vee}}$ is an isomorphism.

Next we show that for all $i > 0$ we have $\text{Ext}^i_R(M, T^{\vee}) = 0$ if and only if $\text{Tor}^R_i(M, T) = 0$. By [5, Remark 1.9], we have $\text{Ext}^i_R(M, T^{\vee}) \cong \text{Tor}^R_i(M, T)^{\vee}$. Because the Matlis dual of a module is zero if and only if the module is zero, we conclude that $\text{Ext}^i_R(M, T^{\vee}) = 0$ if and only if $\text{Tor}^R_i(M, T) = 0$ for all $i > 0$.

Next we show that for all $i > 0$ we have $\text{Ext}^i_R(\text{Hom}_R(M, T^{\vee}), T^{\vee}) = 0$ if and only if $\text{Ext}^i_R(T, M \otimes_R T) = 0$. Hom-tensor adjointness explains the first step in the
following sequence
\[\text{Ext}_R^i(Hom_R(M, T^\vee), T^\vee) \cong \text{Ext}_R^i((M \otimes_R T)^\vee, T^\vee) \]
\[\cong \text{Ext}_R^i(T^\vee, (M \otimes_R T)^\vee) \]
\[\cong \text{Ext}_R^i(T, M \otimes_R T). \]

The second step follows from Lemma 1.4 and the fact that \(T \) is artinian and thus Matlis reflexive. The third step follows from the fact that \(T \) and \(M \otimes_R T \) are artinian and hence Matlis reflexive; see [5, Corollary 3.9].

Corollary 3.8. Assume that \(R \) is complete and let \(T \) be a quasidualizing \(R \)-module. Then \(G_{T^\vee}^{\text{noeth}}(R) = A_{T^\vee}^{\text{noeth}}(R) \) and \(G_{T^\vee}^{\text{artin}}(R) = A_{T^\vee}^{\text{artin}}(R) \).

Proposition 3.9. If \(R \) is complete and \(T \) is a quasidualizing \(R \)-module, then \(G_{T^\vee}^{\text{mr}}(R) = A_{T^\vee}^{\text{mr}}(R) \).

Proof. Let \(M \) be a Matlis reflexive \(R \)-module. We show that \(M \) satisfies the defining conditions of \(G_{T^\vee}^{\text{mr}}(R) \) if and only if \(M \) satisfies the defining conditions of \(A_{T^\vee}^{\text{mr}}(R) \).

For the isomorphisms, consider the following commutative diagram

\[
\begin{array}{ccc}
M & \xrightarrow{\delta^T_M} & \text{Hom}_R(M, T) \\
\downarrow \gamma_M & & \downarrow \text{Hom}_R(M, T) \\
\text{Hom}_R(T^\vee, T^\vee \otimes_R M) & \cong & \text{Hom}_R(T^\vee, \delta_E^T \otimes_M) \\
\downarrow \text{Hom}_R(T^\vee, \delta_E^T \otimes_M) & & \downarrow \text{Hom}_R(M, T) \\
\text{Hom}_R(T^\vee, (T^\vee \otimes_R M)^{\vee\vee}) & \cong & \text{Hom}_R(Hom_R(M, T), \delta_E^T) \\
\downarrow \cong & & \downarrow \cong \\
\text{Hom}_R(Hom_R(M, T^\vee), T^\vee) & \cong & \text{Hom}_R(Hom_R(M \delta_E^T, T^\vee), T^\vee)
\end{array}
\]

where the unlabeled isomorphisms are Hom-tensor adjointness and Hom-swap. Since \(T \) is artinian and hence Matlis reflexive, both the right hand map and the bottom map are isomorphisms. The module \(T^\vee \otimes_R M \) is Matlis reflexive by [5, Corollary 3.6]. Thus the map \(\delta_E^T \otimes_M \) and hence the map \(\text{Hom}_R(T^\vee, \delta_E^T \otimes_M) \) is an isomorphism. Therefore the map \(\gamma_M^T \) is an isomorphism if and only if the map \(\delta_M^T \) is an isomorphism.

Next we show that for all \(i > 0 \) we have \(\text{Ext}_R^i(M, T) = 0 \) if and only if \(\text{Tor}_i^R(T^\vee, M) = 0 \). The fact that \(T \) is artinian and hence Matlis reflexive explains the first step in the following sequence

\[\text{Ext}_R^i(M, T) \cong \text{Ext}_R^i(M, T^\vee) \cong \text{Tor}_i^R(M, T^\vee)^\vee \cong \text{Tor}_i^R(T^\vee, M)^\vee. \]

The second step follows from [5, Remark 1.9] and the last step follows from the commutativity of the tensor product. Because the Matlis dual of a module is zero if and only if the module is zero, we conclude that \(\text{Ext}_R^i(M, T) = 0 \) if and only if \(\text{Tor}_i^R(T^\vee, M) = 0 \) for all \(i > 0 \).
Next we show that for all \(i > 0 \) we have \(\text{Ext}^i_R(\text{Hom}_R(M, T), T) = 0 \) if and only if \(\text{Ext}_R(T^\vee, T^\vee \otimes_R M) = 0 \). The fact that \(T \) is artinian and hence Matlis reflexive explains the first and third steps in the following sequence

\[
\text{Ext}^i_R(\text{Hom}_R(M, T), T)
\cong \text{Ext}^i_R(\text{Hom}_R(M, T^\vee \otimes E), T)
\cong \text{Ext}^i_R(\text{Hom}_R(M \otimes T^\vee, E), T^\vee)
\cong \text{Ext}^i_R(T^\vee, M \otimes T^\vee).
\]

The second step follows from Hom-tensor adjointness and the last step follows from Lemma [14].

Corollary 3.10. Assume that \(R \) is complete and let \(T \) be a quasidualizing \(R \)-module. Then \(G^\text{noeth}_T(R) = A^\text{noeth}_T(R) \) and \(G^\text{artin}_T(R) = A^\text{artin}_T(R) \).

The above results show that the classes \(G^\text{mr}_T(R), G^\text{artin}_T(R), \) and \(G^\text{noeth}_T(R) \) do not exhibit some of the same properties as the class \(G^\text{noeth}_C(R) \), where \(C \) is semidualizing. For instance, we consider the following property. We say a class of \(R \)-modules \(\mathcal{C} \) satisfies the two-of-three condition if given an exact sequence of \(R \)-module homomorphisms \(0 \to L_1 \to L_2 \to L_3 \to 0 \), when any two of the modules are in \(\mathcal{C} \), so is the third. The two-of-three condition holds for some classes of modules and not for others. For example, the class of noetherian modules and the class of artinian modules both satisfy the two-of-three condition. On the other hand, the class \(G^\text{noeth}_C(R) \) does not satisfy the two-of-three condition when \(C \) is semidualizing.

In contrast, the next result shows that the class \(G^\text{full}_T(R) \) satisfies the two-of-three condition when the ring is complete. This is somewhat surprising since the definitions of \(G^\text{noeth}_C(R) \) and \(G^\text{full}_T(R) \) are so similar. First we need a lemma. In the language of [3], is says that quasidualizing implies faithfully quasidualizing.

Lemma 3.11. Let \(L \) and \(T \) be \(R \)-modules such that \(T \) is quasidualizing. If one has \(\text{Hom}_R(L, T) = 0 \), then \(L = 0 \).

Proof. Assume that \(\text{Hom}_R(L, T) = 0 \).

Case 1: \(T = E \). Because \(\text{Hom}_R(L, E) = 0 \), we have \(L^\vee \otimes = 0 \). Since the map \(\delta^E_L : L \to L^\vee \) is injective by Fact [12], we conclude that \(L = 0 \).

Case 2: \(R \) is complete. Then \(T \) is Matlis reflexive and we have \(0 = \text{Hom}_R(L, T) \cong \text{Hom}_R(T^\vee, L^\vee) \) from Lemma [13]. Since \(T^\vee \) is semidualizing by Proposition [31], we have \(L^\vee = 0 \) by [3] Proposition 3.6]. By Case 1, we conclude that \(L = 0 \).

Case 3: the general case. The first step in the following sequence is by assumption

\[
0 = \text{Hom}_R(L, T) \cong \text{Hom}_R(L, \text{Hom}_R(T, T)) \cong \text{Hom}_R(\hat{R} \otimes_R L, T).
\]

The second step follows from the fact that \(T \) is artinian and hence has an \(\hat{R} \) structure and the third step is from Hom-tensor adjointness. Since \(T \) is a quasidualizing \(\hat{R} \)-module, we can apply Case 2 to conclude that \(\hat{R} \otimes_R L = 0 \). Then \(L = 0 \) because \(\hat{R} \) is faithfully flat over \(R \). □

Question 3.12. Does a version of Lemma [3,11] hold for \(T \otimes_R \) as in [3]?

Theorem 3.13. Assume that \(R \) is complete and let \(T \) be a quasidualizing \(R \)-module. Then \(G^\text{full}_T(R) \) satisfies the two-of-three condition.
Proof. Let
(3.13.1) \[0 \to L_1 \xrightarrow{f} L_2 \xrightarrow{g} L_3 \to 0 \]
be an exact sequence of \(R\)-module homomorphisms and let \((-)^T = \text{Hom}_R(-, T)\). There are two conditions to check and three cases. We will deal with the case when \(L_1, L_2 \in \mathcal{G}_T^{\text{full}}(R)\). The case where \(L_2, L_3 \in \mathcal{G}_T^{\text{full}}(R)\) is similar. The case where \(L_1, L_3 \in \mathcal{G}_T^{\text{full}}(R)\) is also similar but easier.

Assume that \(L_1, L_2 \in \mathcal{G}_T^{\text{full}}(R)\). Then we have \(\text{Ext}^i_R(L_1, T) = 0 = \text{Ext}^i_R(L_2, T)\) for all \(i > 0\). The following portion of the long exact sequence in \(\text{Ext}^i_R(-, T)\) associated to the short exact sequence (3.13.1) shows that Ext
\[\text{Ext}^i_R(L_1, T) \to \text{Ext}^i_R(L_2, T) \to \text{Ext}^i_R(L_1, T) \to \cdots \]
shows that Ext
\[\text{Ext}^i_R(L_3, T) = 0 \] for all \(i > 1\). For the case where \(i = 1\), we apply \((-)^T\) to the following portion of the long exact sequence
\[0 \to (L_1)^T \to (L_2)^T \to (L_1)^T \to \text{Ext}^1_R(L_3, T) \to 0 \]
to obtain exactness in the top row of the following commutative diagram
\[\begin{array}{cccccc}
0 & \to & (\text{Ext}^1_R(L_3, T))^T & \xrightarrow{L_3^T} & (L_1)^T & \xrightarrow{L_2^T} & (L_2)^T \\
0 & \xrightarrow{L_1^T} & L_1 & \xrightarrow{f} & L_2 & \xrightarrow{g} & L_3
\end{array} \]
Since \(f\) is an injective map, the diagram shows that \(L_2^T\) is an injective map. Hence we have \((\text{Ext}^1_R(L_3, T))^T = 0\). From Lemma 3.11 we conclude that \(\text{Ext}^1_R(L_3, T) = 0\).

Next we show that \(\text{Ext}^1_R(\text{Hom}_R(L_3, T), T) = 0\) for all \(i > 0\). From the argument above we have the exact sequence
(3.13.3) \[0 \to (L_3)^T \to (L_2)^T \to (L_1)^T \to 0. \]
In a similar, but easier, manner than above, the long exact sequence in \(\text{Ext}^i_R(-, T)\) shows that if \(L_1, L_2 \in \mathcal{G}_T^{\text{full}}(R)\), then \(\text{Ext}^i_R(\text{Hom}_R(L_3, T), T) = 0\) for all \(i > 0\).

Lastly, we show that the map \(L_3^T\) is an isomorphism. From the short exact sequence (3.13.1) and as a consequence of the above argument together with the short exact sequence (3.13.3), we obtain the following commutative diagram with exact rows
\[\begin{array}{cccccc}
0 & \to & (L_1)^T & \xrightarrow{L_1^T} & L_1 & \xrightarrow{f} & L_2 & \xrightarrow{g} & L_3 & \to 0 \\
0 & \xrightarrow{L_3^T} & (L_1)^T & \xrightarrow{L_2^T} & (L_2)^T & \xrightarrow{L_3^T} & (L_3)^T & \to 0
\end{array} \]
Since \(L_1, L_2 \in \mathcal{G}_T^{\text{full}}(R)\), the maps \(L_1^T\) and \(L_2^T\) are isomorphisms. By the Snake Lemma, we conclude that \(L_3^T\) is an isomorphism. \(\square\)

Corollary 3.14. Assume that \(R\) is complete and let \(T\) be a quasidualizing \(R\)-module. Then \(\mathcal{G}_T^{\text{art}}(R) = \mathcal{A}_T^{\text{art}}(R)\), \(\mathcal{G}_T^{\text{noeth}}(R) = \mathcal{A}_T^{\text{noeth}}(R)\), and \(\mathcal{G}_T^{mrf}(R)\) satisfy the two-of-three condition.

Proof. Apply Theorem 3.13 and Corollary 3.10. \(\square\)
References

1. M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR 0242802 (39 #4129)

2. E. E. Enochs and O. M. G. Jenda, *Relative homological algebra*, de Gruyter Expositions in Mathematics, vol. 30, Walter de Gruyter & Co., Berlin, 2000. MR 1753146 (2001h:16013)

3. H. Holm and D. White, *Foxby equivalence over associative rings*, J. Math. Kyoto Univ. **47** (2007), no. 4, 781–808. MR 2413065

4. T. Ishikawa, *On injective modules and flat modules*, J. Math. Soc. Japan **17** (1965), 291–296. MR 0188272 (32 #5711)

5. B. Kubik, M. J. Leamer, and S. Sather-Wagstaff, *Homology of artinian and mini-max modules, I*, J. Pure Appl. Algebra **215** (2011), no. 10, 2486–2503.

6. H. Matsumura, *Commutative ring theory*, second ed., Studies in Advanced Mathematics, vol. 8, University Press, Cambridge, 1989. MR 90i:13001

7. Joseph J. Rotman, *An introduction to homological algebra*, second ed., Universitext, Springer, New York, 2009. MR 2455920 (2009i:18001)

8. W. V. Vasconcelos, *Divisor theory in module categories*, North-Holland Publishing Co., Amsterdam, 1974, North-Holland Mathematics Studies, No. 14, Notas de Matemática No. 53. [Notes on Mathematics, No. 53]. MR 0498530 (58 #16637)

Bethany Kubik, Department of Mathematical Sciences, 601 Thayer Road #222, West Point, NY 10996 USA
E-mail address: bethany.kubik@usma.edu
URL: http://www.dean.usma.edu/departments/math/people/kubik/