SINGULAR CURVES OVER A FINITE FIELD AND WITH MANY POINTS

E. BALLICO

Abstract. Recently Fukasawa, Homma and Kim introduced and studied certain projective singular curves over \(\mathbb{F}_q \) with many extremal properties. Here we extend their definition to more general non-rational curves.

1. Introduction

Fix a prime \(p \) and a \(p \)-power \(q \). Recently S. Fukasawa, M. Homma and S. J. Kim introduced a family of singular rational curves defined over \(\mathbb{F}_q \), with many singular points over \(\mathbb{F}_q \) and, conjecturally, some extremal properties. In this paper we discuss a similar type of curves, discuss their extremal properties and, in some cases, show that they are, more or less, the curves introduced in [5]. The zeta-function \(Z_Y(t) \) of a singular curve \(Y \) is explicitly given in terms of the Frobenius on a “topological” invariant \(H^1_{\text{ét}}(Y, \mathbb{Q}_\ell) \) ([2], [1], p. 2, [8], [12]). Hence \(Z_Y(t) \) does not detect the finer invariants of the singular points of \(Y \) (it does not distinguish between unibranch points defined over the same extension of \(\mathbb{F}_q \); in particular it does not distinguish between a smooth point and a cusp). Using gluing of points of the normalization with the same residue field we may define a “minimal” singular curve with prescribed normalization and prescribed zeta-function.

Let \(Y \) be a geometrically integral projective curve defined over \(\mathbb{F}_q \). Let \(u : C \to Y \) denote the normalization. Since any finite field is perfect, \(C \) and \(u \) are defined over \(\mathbb{F}_q \). Hence for every integer \(n \geq 1 \) we have \(u(C(\mathbb{F}_q^n)) \subseteq Y(\mathbb{F}_q^n) \) and for each \(P \in Y(\mathbb{F}_q^n) \) the scheme \(u^{-1}(P) \) is defined over \(\mathbb{F}_q^n \). Hence the finite set \(u^{-1}(P)_{\text{red}} \) is defined over \(\mathbb{F}_q \) (but of course if \(\sharp(u^{-1}(P)_{\text{red}}) > 1 \) the points of \(u^{-1}(P)_{\text{red}} \) may only be defined over a larger extension of \(\mathbb{F}_q \)). We are interested in properties of the set \(Y(\mathbb{F}_q) \) knowing \(C \). A. Weil’s study of the zeta-function of smooth projective curves was extended to the case of singular curves ([2]). We will use the very useful and self-contained treatment given by Y. Aubry and M. Perret ([1]). There are infinitely many curves \(Y' \) defined over \(\mathbb{F}_q \), with \(C \) as their normalization and with the same zeta-function (see Examples 1, 2 and Lemma 2). However, given \(Y \), there is one natural such curve if we prescribe also the sets \(u^{-1}(P)_{\text{red}} \) as subsets of \(C(\mathbb{F}_q) \). Let \(w_s : Y_s \to Y \) be the seminormalization of \(Y \) ([2], [1]). We recall that \(Y_s \) is an integral projective curve with \(C \) as its normalization and that \(u = w_s \circ u_s \), where \(u_s : C \to Y_s \) is the normalization map. Over an algebraically closed field the one-dimensional seminormal singularities with embedding dimension \(n \geq 1 \) are exactly the singularities formally isomorphic to the local ring at the origin of the union of the coordinate axis in \(\mathbb{A}^n \). Even over a finite field the curve we will study...
is defined in this way, i.e. the curves $C_{[q,n]}$, $n \geq 2$, defined below are obtained in the same way, i.e. the gluing process introduced by C. Traverso ([9]) gives always a seminormal curve and if the base field is algebraically closed, then all seminormal curve singularities are obtained in this way (over an algebraically closed base field a more general construction is given in [7], p. 70). We call axial singularities the curve singularities obtained in this way. Hence by definition we say that (Y,P) is an axial singularity with embedding dimension n if and only if over \overline{F}_q it is formally isomorphic at P to the germ at 0 of the union of of the n axis of \mathbb{A}^n. An axial singularity of embedding dimension $n > 2$ is not Gorenstein. An axial singularity of embedding dimension 2 is an ordinary double point except that over a non-algebraically closed base field, say \mathbb{F}_q, we need to distinguish if the two branches of Y at P (or the two lines of its tangent cone) are defined over \mathbb{F}_q or not (in the latter case each of them is defined over \mathbb{F}_{q^2}). Similarly, for an axial singularity (Y,P) of embedding dimension $t \geq 2$ defined over \mathbb{F}_q, the t lines of the tangent cone (P,Y) are defined over \mathbb{F}_{q^t} and their union is defined over \mathbb{F}_q. In the examples we are interested in, none of these lines will be defined over a field \mathbb{F}_{q^e} with $e < t$. If $P \in Y$ is a singular point, then we may associate a non-negative integer $p_a(Y,P)$ (usually called the arithmetic genus of the singularity or the drop of genus the singular point P) such that $p_a(Y) = p_a(C) + \sum_{P \in \text{Sing}(Y)} p_a(Y,P)$. When Y is an axial singularity with embedding dimension n, then $p_a(Y,P) = n - 1$.

We fix q, C and an integer $n \geq 2$. We construct a singular curve $C_{[q,n]}$ with C as its normalization and $\sharp(C_{[q,n]}(\overline{F}_q))$ very large in the following way. Fix an integer t such that $2 \leq t \leq n$. For each $P \in C(\overline{F}_q) \setminus C(\overline{F}_{q^{t-1}})$ the orbit of the Frobenius F_q has order t, say $\{P, \ldots, F_q^{t-1}(P)\}$. Let $C_{[q,n]}$ be the only curve obtained by gluing each of these orbits (for all possible $t \leq n$) (see Remark 4). By construction $C_{[q,n]}$ is a seminormal curve defined over \mathbb{F}_q, each singular points of $C_{[q,n]}$ is defined over \mathbb{F}_q and $\sharp(C_{[q,n]}(\overline{F}_q)) = N_1 + \sum_{i=2}^n (N_i - N_{i-1})/i$, where $N_i := \sharp(C(\overline{F}_{q^i}))$. Fix $P \in C_{[q,n]}$ with embedding dimension $t \geq 2$. The Frobenius F_q acts on the local ring $C_{C_{[q,n]},P}$ and hence on the t branches of $C_{[q,n]}$ at P (i.e. the t smooth branches through 0 of the tangent cone of $C_{[q,n]}$ at P). Since P is an axial singularity, the action of Frobenius is the restriction to $u^{-1}(P)$ of the action of the Frobenius $F_q : C(\overline{F}_q) \rightarrow C(\overline{F}_q)$. Hence this action is cyclic, i.e. it has a unique orbit. Thus if $O = u(P)$ with $P \in C(\overline{F}_q) \setminus C(\overline{F}_{q^{t-1}})$, then $p_a(C_{[q,n]}) = t - 1$ and none of the t branches of $C_{[q,n]}$ at $u(O)$ is defined over a proper subfield of \mathbb{F}_{q^t}. See Propositions 2, 3, Question 1 and Remark 2 for the relations between \mathbb{F}_{q^t} and the curves B and B_n studied in [5].

2. THE CURVES $C_{[q,n]}$ AND THEIR MAXIMALITY PROPERTIES

Let $u : C \rightarrow Y$ denote the normalization map. We often write $u^{-1}(P)$ instead of $u^{-1}(P)_{\text{red}}$. Set $\Delta_Y := \sharp(u^{-1}(\text{Sing}(Y)(\overline{F}_q))) - \sharp(\text{Sing}(Y)(\overline{F}_q))$. The zeta-function $Z_Y(t)$ of Y is the product of the zeta-function $Z_C(t)$ of C and a degree Δ_Y polynomials whose inverse roots are roots of unity ([2], [1], Theorem 2.1 and Corollary 2.4). Let ω_i, $1 \leq i \leq 2g$, be the inverse roots of numerator of $Z_C(t)$ and β_j, $1 \leq j \leq \Delta_Y$ the inverse roots of the polynomial $Z_Y(t)/Z_C(t)$. For every integer $n \geq 1$ we have

$$\#(Y(\mathbb{F}_{q^n})) = q^n + 1 - \sum_{i=1}^{2g} \omega_i^n - \sum_{j=1}^{\Delta_Y} \beta_j^n$$
Proof. We have \(z(C(F_q^n)) = q^n + 1 - \sum_{i=1}^{2g} \omega_i \). Recall that \(|\beta_j| = 1 \) for all \(j \). Hence among all curves with fixed normalization \(C \) and with fixed \(\Delta_Y \) the integer \(z(Y(F_q^n)) \) is maximal (resp. minimal) for a curve with \(\beta_j = -1 \) for all \(j \) (resp. \(\beta_j = 1 \)) for all \(j \), if any such curve exists. If \(\beta_j = -1 \) for all \(j \), then for all odd (resp. even) positive integers \(n \) among all curves with fixed normalization \(C \) and with fixed \(\Delta_Y \) the value \(z(Y(F_q^n)) \) is maximal (resp. minimal). If \(\beta_j = 1 \) for all \(j \), then for every \(n > 0 \) the value \(z(Y(F_q^n)) \) is minimal among all curves with fixed normalization \(C \) and with fixed \(\Delta_Y \).

Lemma 1. Let \(Y \) be a geometrically integral projective curve and \(u : C \to Y \) its normalization. The degree \(\Delta_Y \) polynomial \(Z_Y(t)/Z_C(t) \) has all its inverse roots equal to \(-1\) if and only if for each \(P \in \text{Sing}(Y) \) either \(z(u^{-1}(P)) = 1 \) or \(P \in Y(F_q^n) \) and \(u^{-1}(P) \) is formed by two points of \(C(F_q^n) \) (in the latter case these two points are exchanged by the Frobenius and they are in \(C(F_q^n) \setminus C(F_q) \)).

Proof. For each \(Q \in C(F_q^n) \) let \(d_Q \) be the minimal integer \(x > 0 \) such that \(Q \in C(F_q^{nx}) \). The explicit form of the polynomial \(Z_Y(t)/Z_C(t) \) is given in [1, Theorem 2.1]. \(Z_Y(t)/Z_C(t) \) is a product of polynomials, each of them associated to a different singular point of \(Y \). Hence it is sufficient to consider separately the contribution of each singular point of \(Y \). Fix \(P \in \text{Sing}(Y) \) and call \(Z_P(t) \) the associated polynomial. Let \(d_P \) be the minimal integer \(t \geq 1 \) such that \(P \in Y(F_q^{nt}) \). We have \((1 - t^{d_P})Z_P(t) = \prod_{Q \in u^{-1}(P)}(1 - t^{d_Q}). \) Since \(Y \) is defined over \(F_q \), the orbit of \(P \) by the Frobenius of \(Y \) has order \(d_P \). For any point \(P' \neq P \) in this orbit, say \(F_q^n(P) \) for some \(x \in \{1, \ldots, d_P - 1\} \) we have \(u^{-1}(P') = F_q^n(u^{-1}(P)) \). Hence \(d_Q \geq d_P \) for each \(Q \in u^{-1}(P) \) and for each \(Q \in u^{-1}(P') \).

First assume \(z(u^{-1}(P)) = 1 \). The only point, \(Q \), of \(u^{-1}(P) \) is defined over \(F_q^{d_P} \). Since \(d_{u(Q)} \leq d_Q \), we get \(d_Q = d_P \). We easily get that \(z(u^{-1}(P)) = 1 \) if and only if the constant 1 is the factor of \(Z_Y(t)/Z_C(t) \) associated to the orbit of \(P \). Hence from now on we assume \(\alpha := z(u^{-1}(P)) \geq 2 \).

If \(d_Q > d_P \) for some \(Q \in u^{-1}(P) \) and either \(d_P \geq 2 \) or \(d_Q \geq 3 \), then we get that \((1 - t^{d_P})Z_P(t) \) has a root of order \(> \max(d_P, 2) \) and hence \(Z_P(t) \) has a root \(\neq -1 \). Now assume \(d_P \geq 2 \) and \(d_Q = d_P \) for all \(Q \in u^{-1}(P) \). We get \(Z_P(t) = (1 - t^{d_P})^\alpha \). Since we assumed \(\alpha \geq 2 \), even in this case \(Z_P(t) \) has a root \(\neq -1 \).

Now assume \(d_P = 1 \). It remains to analyze the case \(d_Q \in \{1, 2\} \) for any \(Q \in u^{-1}(P) \). If \(d_Q = 1 \) for at least one \(Q \in u^{-1}(P) \), then \(Z_P(1) = 0 \). If \(d_Q = 2 \) for all \(Q \in u^{-1}(P) \), then \(Z_P = (1 + t)(1 - t^2)^\alpha - 1 \) has \(\alpha - 1 \) roots equal to 1.

Remark 1. Fix \(q, g, C \) with genus \(g \) and an integer \(n \geq 2 \). Set \(N_i := z(C(F_q^n)) \). We have \(z(C_{[q,n]}(F_q^n)) = N_1 + \sum_{i=2}^{n} (N_i - N_{i-1})/i , \) i.e.

\[
(2) \quad z(C_{[q,n]}(F_q^n)) = \sum_{i=1}^{n-1} \frac{N_i}{i+1} + N_n/n
\]

Now assume that \(g > 0 \) and that \(q \) is a square. If \(C \) is a minimal curve for \(F_q \), then it is a minimal curve for each \(F_q^n \), \(i \geq 2 \) (use that \(C \) is minimal if and only if \(Z_C(t) = \frac{1 - t^{2g}}{(1 - t)^g} \)). Hence for fixed \(q \) and \(n \) the integer \(z(C_{[q,n]}(F_q^n)) \) is minimal varying \(C \) among all smooth curves of genus \(g \) if and only if \(C \) is a minimal curve. Now we assume \(n \geq 3 \) and generalize the construction of the curve \(C_{[q,n]} \). Fix a positive integer \(s \leq n - 2 \) and integers \(t_1, \ldots, t_s \) such that \(2 \leq t_1 < \cdots < t_s \leq n \).
Let \(C_{[q,t_1,\ldots,t_s]} \) be the curve obtained from \(C \) gluing only the \(F_q \)-orbits of the points of \(C(\mathbb{F}_q) \setminus C(\mathbb{F}_q^{-1}) \). We get

\[
\sharp(C_{[q,t_1,\ldots,t_s]}(\mathbb{F}_q)) = N_1 + \sum_{t \in \{t_1,\ldots,t_s\}} (N_t - N_{t-1})/t.
\]

Recall that \(N_1 \) is maximal if and only if each \(N_t \) with \(t \) odd is maximal and each \(N_t \) with \(t \) even is minimal \((\text{[H0]}, \text{[5]}, \text{Theorem 10.1})\). Hence if all \(t_i \) are odd, then \(\sharp(C_{[q,t_1,\ldots,t_s]}) \) is maximal if and only if \(C \) is a maximal curve.

In the case \(q = 0 \) we get the following result.

Proposition 1. For every integer \(n \geq 2 \) we have \(\sharp(\mathbb{P}^1_{[q,n]}) = q + 1 + \sum_{t=2}^n (q^t - q^{t-1})/(t-1)/t \).

Proposition 2. The curve \(\mathbb{P}^1_{[q,2]} \) is isomorphic over \(\mathbb{F}_q \) to the plane curve \(B \subset \mathbb{P}^2 \) defined in \([4]\) and \([5]\).

Proof. Let \(u : \mathbb{P}^1 \to \mathbb{P}^1_{[q,2]} \) denote the normalization map. The normalization map \(\Phi : \mathbb{P}^1 \to B \) is unramified, because the composition of it with the inclusion \(B \to \mathbb{P}^2 \) is unramified \((\text{part (i) of } \text{[5]}, \text{Theorem 2.2})\). By \([5]\), part (iii) of Theorem 2.2, \(B \) is a degree \(q + 1 \) plane curve with \((q^2 - q)/2 \) singular points and \(\Phi(P) = \Phi(Q) \) with \(P \neq Q \) if and only if \(u(P) = u(Q) \). Hence the universal property of the seminormalization gives the existence of a morphism \(\psi : \mathbb{P}^1_{[q,2]} \to B \) such that \(\psi \) is a bijection. Since \(p_n(\mathbb{P}^1_{[q,2]}) = (q^2 - q)/2 \), we have \(p_n(\mathbb{P}^1_{[q,2]}) = p_n(B) \). Hence \(\psi \) is an isomorphism.

Proposition 3. Fix an integer \(n \geq 3 \). Then \(\mathbb{P}^1_{[q,n]} \) is the seminormalization of the curve \(B_n \subset \mathbb{P}^n \), defined in \([5]\), \(\S 6 \), and there is a birational morphism \(\psi_{q,n} : \mathbb{P}^1_{[q,n]} \to B_n \) defined over \(\mathbb{F}_q \) such that \(\psi_{q,n} : \mathbb{P}^1_{[q,n]}(K) \to B_n(K) \) is bijective for every field \(K \supseteq \mathbb{F}_q \).

Proof. Let \(u : \mathbb{P}^1 \to \mathbb{P}^1_{[q,n]} \) and \(\Phi_n : \mathbb{P}^1 \to B_n \) denote the normalization maps. By \([5]\), part (ii) of Theorem 6.4, each point \(P \in \text{Sing}(B_n) \) corresponds to an integer \(t \in \{2, \ldots, n\} \) and an orbit of the Frobenius on \(\mathbb{P}^1(\mathbb{F}_q') \setminus \mathbb{P}^1(\mathbb{F}_q^{-1}) \). Hence the definition of \(\mathbb{P}^1_{[q,n]} \) and the universal property of the seminormalization gives a birational morphism \(\psi_{q,n} : \mathbb{P}^1_{[q,n]} \to B_n \) defined over \(\mathbb{F}_q \) such that \(\psi_{q,n} : \mathbb{P}^1_{[q,n]}(K) \to B_n(K) \) is bijective for every field \(K \supseteq \mathbb{F}_q \).

Question 1. We guess that \(\psi_{q,n} \) is an isomorphism.

Remark 2. Fix a prime power \(q \) and the integer \(n \geq 3 \). Let \(\Phi_n : \mathbb{P}^1 \to B_n \) denote the normalization map. By \([5]\), part (i) of Theorem 6.4, \(\Phi_n \) is unramified \((\text{this is a necessary condition for being } \psi_{q,n} \text{ an isomorphism})\). The following conditions are equivalent:

\begin{enumerate}
 \item the morphism \(\psi_{q,n} \) is an isomorphism;
 \item \(p_n(B_n) = p_n(\mathbb{P}^1_{[q,n]}) \);
 \item for each \(P \in \text{Sing}(B_n) \), say with \(P = \Phi_n(Q) \) and \(Q \in \mathbb{P}^1(\mathbb{F}_q') \setminus \mathbb{P}^1(\mathbb{F}_q^{-1}) \), the singularity \((B_n, P) \) has arithmetic genus \(t - 1 \);
 \item for each \(P \in \text{Sing}(B_n) \), say with \(P = \Phi_n(Q) \) and \(Q \in \mathbb{P}^1(\mathbb{F}_q') \setminus \mathbb{P}^1(\mathbb{F}_q^{-1}) \), the tangent cone \(C(P, B_n) \subset \mathbb{P}^n \) is formed by \(t \) lines through \(P \) spanning a \(t \)-dimensional linear subspace.
\end{enumerate}
Example 1. Fix a geometrically integral projective curve Y of P and assume \triangle would have v:

Remark 3. unramified, we have the fibers of ν need to add some conditions on the curve questions raised in [5], Remark 2.5. Examples 1, 2 and Lemma 2 show that we $\#$ and δ equality holds only if each singular point of Y be the degree of the polynomial \sharp.

Proposition 4. Let C be a smooth and geometrically irreducible projective curve defined over \mathbb{F}_q. Set $\delta := \sharp(C(\mathbb{F}_q^2)) - \sharp(C(\mathbb{F}_q))$. Let Y a projective curve defined over \mathbb{F}_q with C as its normalization. We have $\sharp(Y(\mathbb{F}_q)) \geq \sharp(C(\mathbb{F}_q)) + \delta$ and $p_a(Y) \leq g + \delta$ if and only if Y is isomorphic to $C_{[q,2]}$ over \mathbb{F}_q.

Proof. The “ if ” part is true, because $p_a(C_{[q,2]}) = g + \delta$ and $\sharp(C_{[q,2]}(\mathbb{F}_q)) = g + \delta$. Assume $\sharp(Y(\mathbb{F}_q)) \geq \sharp(C(\mathbb{F}_q)) + \delta$ and $p_a(Y) \leq g + \delta$. Let $u : C \rightarrow Y$ be the normalization map. The morphism u is defined over \mathbb{F}_q, i.e. over a field on which Y is defined, because any finite field is perfect. We have $\sharp(\text{Sing}(Y)) \leq p_a(Y) - \delta$ and equality holds only if each singular point of Y is formally isomorphic over \mathbb{F}_q either to a node or an ordinary cusp. Set $\delta_Y := \sharp(u^{-1}(\text{Sing}(Y)(\mathbb{F}_q)) - \sharp(\text{Sing}(Y)(\mathbb{F}_q))$. The polynomial $Z_Y(t)/Z_C(t)$ has degree δ_Y and $\sharp(Y(\mathbb{F}_q)) \leq \sharp(C(\mathbb{F}_q)) + \delta_Y$ and equality holds if and only if each inverse root of $Z_Y(t)/Z_C(t)$ is equal to -1. Since $\delta_Y \leq p_a(Y) - g$, we get $\delta_Y = \delta$ and $p_a(Y) = g + \delta$. Since $p_a(Y) = g + \delta$ and $\sharp(\text{Sing}(Y)(\mathbb{F}_q)) \geq \delta$, we get $\text{Sing}(Y)(\mathbb{F}_q) = \text{Sing}(Y)(\mathbb{F}_q)$, $\sharp(\text{Sing}(Y)(\mathbb{F}_q)) = \delta$ and that for each $P \in \text{Sing}(Y)(\mathbb{F}_q)$ the set $u^{-1}(P)$ is formed by two points of $C(\mathbb{F}_q) \setminus C(\mathbb{F}_q)$ exchanged by the Frobenius (Lemma 1). Since $p_a(Y) = g + \sharp(\text{Sing}(Y)(\mathbb{F}_q))$ and $\sharp(u^{-1}(P)) \geq 2$ for each $P \in \text{Sing}(Y)(\mathbb{F}_q)$, we also get that Y is nodal. Hence Y is seminormal. The structure of the fibers of $u^{-1}(P)$, $P \in \text{Sing}(Y)(\mathbb{F}_q)$, gives $Y = C_{[q,2]}$.

Proposition 5. Let Y be a geometrical integral projective curve defined over \mathbb{F}_q and with only seminormal singularity. Let $u : C \rightarrow Y$ be the normalization map. Let δ_Y be the degree of the polynomial $Z_Y(t)/Z_C(t)$. Assume $2\delta_Y \leq \sharp(C(\mathbb{F}_q^2)) - \sharp(C(\mathbb{F}_q))$.

We have $\sharp(Y(\mathbb{F}_q)) \leq \sharp(C(\mathbb{F}_q))$ and equality holds if and only if Y is isomorphic to $C_{[q,2]}$ over \mathbb{F}_q.

Proof. We have $\sharp(Y(\mathbb{F}_q)) \leq \sharp(C(\mathbb{F}_q)) + \delta_Y$ and equality holds if and only if each inverse root of $Z_Y(t)/Z_C(t)$ is equal to -1. Hence we may assume $2\delta_Y = \sharp(C(\mathbb{F}_q^2)) - \sharp(C(\mathbb{F}_q))$. Since Y has only seminormal singularities, u is unramified. Since u is unramified, we have $\sharp(u^{-1}(P)) \geq 2$ for all $P \in \text{Sing}(Y)$. Hence Lemma 1 gives that the fibers of u are the fibers of the normalization map $C \rightarrow C_{[q,2]}$. Since Y and $C_{[q,2]}$ are seminormal, we get that they are isomorphic. They are isomorphic over \mathbb{F}_q, because u is defined over \mathbb{F}_q and the seminormalization is defined over \mathbb{F}_q.

Remark 3. In the case $C \cong \mathbb{P}^1$ Propositions 4 and 5 are partial answers to a question raised in [4], Remark 2.5. Examples 1, 2 and Lemma 2 show that we need to add some conditions on the curve Y, not only to fix the normalization \mathbb{P}^1 and assume $\delta_Y \leq (q^2 - q)/2$.

Example 1. Fix a geometrically integral projective curve A defined over \mathbb{F}_q and $P \in A(\mathbb{F}_q)$. Now we define a geometrically integral projective curve Y defined over \mathbb{F}_q and a morphism $v : A \rightarrow Y$ defined over \mathbb{F}_q, such $v \setminus A \setminus \{P\}$ is an isomorphism onto $Y \setminus v(P)$, but v is not an isomorphism. Notice that for each such pair (Y,v) we would have $p_a(Y) > p_a(A)$ and that for every integer $t \geq 1$ induces a bijection $A(\mathbb{F}_q^t) \rightarrow Y(\mathbb{F}_q^t)$. To define Y and v it is sufficient to define them in a neighborhood of P in A and the glue to it the identity map $A \setminus \{P\} \rightarrow A \setminus \{P\}$. Fix an embedding $j : A \hookrightarrow \mathbb{P}^r$, $r \geq 3$, and take a projection of $j(A)$ into \mathbb{P}^2 from an $(r-3)$-dimensional
linear subspace not containing $j(P)$, but intersecting the Zariski tangent space of $j(A)$ at $j(P)$.

Example 2. Fix a geometrically integral projective curve A defined over \mathbb{F}_q and any point $P \in A_{\text{reg}}(\mathbb{F}_q)$. Let t be the minimal integer $t \geq 1$ such that $P \in A(\mathbb{F}_q^t)$. We assume $t \geq 2$, because the case $t = 1$ is covered by Example 1. Hence the orbit of P by the action of the Frobenius F_q has order t (it is $\{P, F_q(P), \ldots, F_{q}^{t-1}(P)\}$). Let Y denote the only curve and $\nu: A \to Y$ the only morphism obtained in the following way. We fix a bijection of sets $\nu: A \to Y$ and use it to define a topology on the set Y. Now we define Y as a ringed space. On $Y \setminus \nu(\{P, F_q(P), \ldots, F_{q}^{t-1}(P)\})$ we assume that ν is an isomorphism of local ringed spaces. For each $Q \in \{P, F_q(P), \ldots, F_{q}^{t-1}(P)\}$ we impose that $\mathcal{O}_{Y,Q}$ is the local ring of a unibranch singular point and that ν is the normalization map (it may be done using the method of Example 1 with Q instead of P and \mathbb{F}_q^t instead of \mathbb{F}_q). We need to do the construction simultaneously over all $Q \in \{P, F_q(P), \ldots, F_{q}^{t-1}(P)\}$ and in such a way that the morphism is defined over \mathbb{F}_q. As in Example 1 it is sufficient to define νU, where U is a neighborhood of $\{P, F_q(P), \ldots, F_{q}^{t-1}(P)\}$. There is an embedding $j: A \to \mathbb{P}^r$, $r \geq t + 2$, such that the t lines $T_{q,j}(j(A), Q \in \{P, F_q(P), \ldots, F_{q}^{t-1}(P)\}$, are linearly independent. Since j is defined over \mathbb{F}_q the Frobenius F_q of \mathbb{F}_q^t acts on $j(A)$ and on the tangent developable of A. Since $j(P)$ is defined over \mathbb{F}_q. Hence $T_{j(P),j(A)}(\mathbb{F}_q^t) \setminus j(P)$ has $(d^t - 1)/q - 1 - 1$ elements. Fix any $O \in T_{j(P),j(A)}(\mathbb{F}_q^t) \setminus j(P)$. For each $x \in \{1, t - 1\}$, $F_{q,x}(O) \in T_{j(F_{q,x}(P),j(A)}(\mathbb{F}_q^t) \setminus j(F_{q,x}(P))$. Since the t tangent lines are linearly independent, the linear space $E := \langle O, F_{q,x}(O), \ldots, F_{q,1}^{t-1}(O) \rangle$ has dimension $t - 1$. Since E is F_q-invariant, it is defined over \mathbb{F}_q. Let $\pi : \mathbb{P}^r \setminus E \to \mathbb{P}^{r-t}$ denote the linear projection from E. Since E is defined over \mathbb{F}_q, π is defined over \mathbb{F}_q. Hence the integral projective curve $T := \pi(j(A) \setminus E \cap j(A)) \subseteq \mathbb{P}^{r-t}$ is defined over \mathbb{F}_q. Since the t tangent lines are linearly independent and $O \neq j(P)$, we have $E \cap j(P) = \emptyset$. Hence $E \cap j(U) = \emptyset$ for a sufficiently small neighborhood U of $\{P, F_q(P), \ldots, F_{q}^{t-1}(P)\}$. Assume for the moment that $\pi[j(A) \setminus j(A) \cap E$ is birational onto its image. Since $\pi[j(A) \setminus j(A) \cap E$ is birational onto its image, it is separable. Hence only finitely many points of $j(A_{\text{reg}})$ have a tangent line intersecting E. Restricting if necessary $U \subseteq A_{\text{reg}}$ we may assume that for no other point $Q \in j(U)(\mathbb{F}_q)$ the Zariski tangent space $T_{j(Q),j(A)}$ intersects E. Since $\pi[j(A) \setminus j(A) \cap E$ is birational onto its image, it is generically injective. Hence restricting $U \subseteq A_{\text{reg}}$ we may assume that $\pi[j(U)$ is injective and an isomorphism outside $\{j(P), j(F_q(P)), \ldots, j(F_{q}^{t-1}(P))\}$. At these points the curve T has a cusp, but perhaps not an ordinary cusp, i.e., it is a unibranch singular point. Hence to conclude the example it is sufficient to find j such that $\pi[j(A) \setminus j(A) \cap E$ is birational onto its image. We take as j is a linearly normal embedding of degree $d > \max\{2p_a(A) - 2, p_a(A) + t\}$. Since $d > \max\{2p_a(A) - 2, p_a(A) + t\}$, Riemann-Roch gives $r = d - p_a(A)$. Assume that $\pi[j(A) \setminus j(A) \cap E$ is not birational onto its image and call $x \geq 2$ its degree. Thus $\deg(T) \leq d/x \leq d/2$. Since $j(A)$ spans \mathbb{P}^r, T spans \mathbb{P}^{r-t}. Hence $\deg(T) \geq r - t = d - p_a(A) - t$. Hence $(d - p_a(A) - t) \geq 2(d - p_a(A) - t)$, contradicting our assumption $d > p_a(A) + t$.

Lemma 2. Fix an integer $y > 0$. Let A be a geometrically integral projective curve defined over \mathbb{F}_q. Assume $A_{\text{reg}}(\mathbb{F}_q) \neq \emptyset$ and fix $P \in A_{\text{reg}}(\mathbb{F}_q)$. Then there are a
geometrically integral projective curve Y and a morphism $u : A \to Y$ defined over \mathbb{F}_q such that u induces an isomorphism of $A \setminus \{P\}$ onto $Y \setminus u(P)$ and $p_a(Y) = p_a(A) + y$.

Proof. Let m be the maximal ideal of the local ring $O_{A,P}$. By assumption $O_{A,P}/m \cong \mathbb{F}_q$ and $\mathbb{F}_q \cdot 1 \subset O_{A,P}$. Hence the \mathbb{F}_q-vector space $O_{A,P}$ is the direct sum of its subspaces $\mathbb{F}_q \cdot 1$ and m. Set $O_{Y,u(P)} := \mathbb{F}_q \cdot 1 + m^{y+1} \subset O_{A,P}$. It is easy to check that $O_{Y,u(P)}$ is a local ring with m^{y+1} as its maximal ideal. Since $P \in A_{reg}$, $O_{A,P}$ is a DVR. Hence m/m^{y+1} is a \mathbb{F}_q-vector space of dimension y. We take Y the same topological space as Y, but with $O_{Y,u(P)}$ at the point $u(P)$ associated to P instead of $O_{A,P}$. With this definition of u we have $\dim_{\mathbb{F}_q} (u_*(O_A)/O_Y) = y$. Hence $p_a(Y) = p_a(A) + y$.

\[\square \]

Remark 4. Fix q, C and an integer $n \geq 2$. Here we explain one way to check the existence of the curve $C_{[q,n]}$. We obtain $C_{[q,n]}$ in finitely many steps each of them similar to the one described in Example 2. We use z steps, where z is the number of orbits of F_q in $C(\mathbb{F}_{q^n}) \setminus C(\mathbb{F}_q)$. At each of the steps we glue together one of these orbit. We do not need any notion of gluing, except that set-theoretically in each step one of these orbits is sent to a single point and for all other points the map is an isomorphism. Fix $Q \in C(\mathbb{F}_{q^n}) \setminus C(\mathbb{F}_q)$ and assume $Q \in C(\mathbb{F}_{q^n}) \setminus C(\mathbb{F}_{q^{n-1}})$. Hence $\{Q,F_q(Q),\ldots,F_q^{n-1}(Q)\}$ is the orbit of Q for the action of F_q. Call A the geometrically integral curve arising in the steps at which we want to glue this orbit. Hence there is a geometrically integral projective A curve defined over \mathbb{F}_q with C as its normalization (call $u : C \to A$) and $u(Q) \in A_{reg}$ (in the previous steps if any) the maps where isomorphism at each point of $\{Q,F_q(Q),\ldots,F_q^{n-1}(Q)\}$. Set $P := u(Q)$. Since u is defined over \mathbb{F}_q and u is an isomorphism in a neighborhood of $u^{-1}(\{P,F_q(P),\ldots,F_q^{n-1}(P)\})$, we have $\{P,F_q(P),\ldots,F_q^{n-1}(P)\} \subset A_{reg}$ and these t points are distinct. Hence $P \in A_{reg}(\mathbb{F}_{q^n}) \setminus A_{reg}(\mathbb{F}_{q^{n-1}})$. As in Example 2 we get several curves Y and morphism $v : A \to Y$ defined over \mathbb{F}_q, sending $\{P,F_q(P),\ldots,F_q^{n-1}(P)\}$ to a single point, O, of Y and induces an isomorphism of $A \setminus \{P,F_q(P),\ldots,F_q^{n-1}(P)\}$ onto $Y \setminus \{O\}$. Let A_1 be the seminormalization of Y in A. Then we use A_1 instead of A. After z steps we get $C_{[q,n]}$. To get $C_{[q,n]}$ we get an existence property for the seminormalization. The result does not depend from the order of the gluing. Hence $C_{[q,n]}$ depends only from q, C and n. Hence the curves $\mathbb{P}^1_{[q,n]}$ depends only from q and n.

References

[1] Y. Aubry and M. Perret, A Weil theorem for singular curves, in: R. Pellikaan, M. Perret and S. Vladut (Eds.), Arithmetic geometry and coding theory (Luminy, 1993), 1–7, de Gruyter, Berlin, 1996.
[2] E. D. Davis, On the geometric interpretation of seminormality. Proc. Amer. Math. Soc. 68 (1978), no. 1, 1–5.
[3] P. Deligne, La conjecture de Weil. II. Publ. Math. IHES 52 (1980), 137–252.
[4] S. Fukasawa, Galois points for non-reflexive plane curve of low degree, preprint.
[5] S. Fukasawa, M. Homma and S. J. Kim, Rational curves with many rational points over a finite field, arXiv:1108.4227.
[6] Hirschfeld, J. W. P., Korchmáros and G. Torres, F.: Algebraic curves over a finite field. Princeton Series in Applied Mathematics. Princeton University Press, Princeton, NJ, 2008.
[7] J.-P. Serre, Groupes algébriques et corps de classes. Hermann, Paris, 1959.
[8] K.-O. Stöhr, On the poles of regular differentials of singular curves. Bol. Soc. Brasil. Mat. (N.S.) 24 (1993), no. 1, 105–136.
[9] C. Traverso, Seminormality and Picard group, Ann. Scuola Norm. Sup. Pisa (3) 24 (1970), 585–595.
[10] P. A. Viana and J. E. A. Rodrigues, Eventually minimal curves. Bull. Braz. Math. Soc. (N.S.) 36 (2005), no. 1, 39–58.

[11] M. A. Vitulli, Weak normality and seminormality. Commutative algebra — Noetherian and non-Noetherian perspectives, 441–480, Springer, New York, 2011.

[12] W. A. Zúñiga-Galindo, Number of rational points of a singular curve, Proc. Amer. Math. Soc. 126 (1998), no. 9, 2549–2556.

DEPT. OF MATHEMATICS, UNIVERSITY OF TRENTO, 38123 POVO (TN), ITALY
E-mail address: ballico@science.unitn.it