A giant impact as the likely origin of different twins in the Kepler-107 exoplanet system

Aldo S. Bonomo, Li Zeng, Mario Damasso, Zoë M. Leinhardt, Anders B. Justesen, Eric Lopez, Mikkel N. Lund, Luca Malavolta, Victor Silva Aguirre, Lars A. Buchhave, Enrico Corsaro, Thomas Denman, Mercedes Lopez-Morales, Sean M. Mills, Annelies Mortier, Ken Rice, Alessandro Sozzetti, Andrew Vanderburg, Laura Affer, Torben Arentoft, Mansour Benbakoura, François Bouchy, Jørgen Christensen-Dalsgaard, Andrew Collier Cameron, Rosario Cosentino, Courtney D. Dressing, Xavier Dumasque, Pedro Figueira, Aldo F. M. Fiorenzano, Rafael A. García, Rasmus Handberg, Avet Harutyunyan, John A. Johnson, Hans Kjeldsen, David W. Latham, Christophe Lovis, Mia S. Lundkvist, Savita Mathur, Michel Mayor, Giusi Micela, Emilio Molinari, Fatemeh Motalebi, Valerio Nascimbeni, Chantanelle Nava, Francesco Pepe, David F. Phillips, Giampaolo Piotto, Ennio Poretti, Dimitar Sasselov, Damien Ségransan, Stéphane Udry and Chris Watson

1INAF–Osservatorio Astrofisico di Torino, Pino Torinese, Italy. 2Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA. 3School of Physics, University of Bristol, HH Wills Physics Laboratory, Bristol, UK. 4Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Aarhus C, Denmark. 5NASA Goddard Space Flight Center, Greenbelt, MD, USA. 6Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Padua, Italy. 7INAF—Osservatorio Astronomico di Padova, Padua, Italy. 8DTU Space, National Space Institute, Technical University of Denmark, Kongens Lyngby, Denmark. 9INAF—Osservatorio Astrofisico di Catania, Catania, Italy. 10Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA. 11The Department of Astronomy, The California Institute of Technology, Pasadena, CA, USA. 12Centre for Exoplanet Science, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK. 13SUPA, Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, UK. 14Department of Astronomy, The University of Texas at Austin, Austin, TX, USA. 15INAF—Osservatorio Astronomico di Palermo, Palermo, Italy. 16IFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France. 17Université Paris Diderot, AIMP, Sorbonne Paris Cité, CEA, CNRS, Gif-sur-Yvette, France. 18Observatoire Astronomique de l’Université de Genève, Versoix, Switzerland. 19INAF—Fundación Galileo Galilei, Breña Baja, Spain. 20Astronomy Department, University of California Berkeley, Berkeley, CA, USA. 21European Southern Observatory, Vitacura, Chile. 22Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Porto, Portugal. 23Zentrum für Astronomie der Universität Heidelberg, Heidelberg, Germany. 24Departamento de Astrofísica, Universidad de La Laguna, Tenerife, Spain. 25Instituto de Astrofísica de Canarias, La Laguna, Tenerife, Spain. 26INAF—Osservatorio Astronomico di Cagliari, Selargiüs, Italy. 27INAF—Osservatorio Astronomico di Brera, Merate, Italy. 28Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, UK. *e-mail: aldo.bonomo@inaf.it
A giant impact as the likely origin of different twins in the Kepler-107 exoplanet system

Aldo S. Bonomo 1,2, Li Zeng 2, Mario Damasso 1, Zoë M. Leinhardt 3, Anders B. Justesen 4, Eric Lopez 5, Mikkel N. Lund 3, Luca Malavolta 6,7, Victor Silva Aguirre 4, Lars A. Buchhave 8, EnricoCorsaro 9, Thomas Denman 3, Mercedes Lopez-Morales 8, Sean M. Mills 10, Annelies Mortier 12, Ken Rice 13, Alessandro Sozzetti 1, Andrew Vanderburg 10, Laura Affer 15, Torben Arentoft 4, Mansour Benbakoura 16,17, François Bouchy 18, Jørgen Christensen-Dalsgaard 4, Andrew Collier Cameron 11, Rosario Cosentino 19, Courtney D. Dressing 20, Xavier Dumusque 18, Pedro Figueira 21,22, Aldo F. M. Fiorenzano 19, Rafael A. García 16,17, Rasmus Handberg 4, Avet Harutyunyan 19, John A. Johnson 10, Hans Kjeldsen 4, David W. Latham 10, Christophe Lovis 18, Mia S. Lundkvist 4,23, Savita Mathur 24,25, Michel Mayor 18, Giusi Micela 15, Emilio Molinari 26, Fatemeh Motalebi 16, Valerio Nascimbeni 6,7, Chantanelle Nava 10, Francesco Pepe 18, David F. Phillips 10, Giampaolo Piotto 6,7, Ennio Poretti 19,27, Dimitar Sasselov 10, Damien Ségransan 18, Stéphane Udry 18 and Chris Watson 28

1INAF—Osservatorio Astrofisico di Torino, Pino Torinese, Italy. 2School of Physics, University of Bristol, HH Wills Physics Laboratory, Bristol, UK. 3Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Aarhus C, Denmark. 4NASA Goddard Space Flight Center, Greenbelt, MD, USA. 5Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Padua, Italy. 6INAF—Osservatorio Astronomico di Padova, Padua, Italy. 7INAF—Osservatorio Astronomico di Cagliari, Selargius, Italy. 8DTU Space, National Space Institute, Technical University of Denmark, Kongens Lyngby, Denmark. 9INAF—Osservatorio Astrofisico di Catania, Catania, Italy. 10Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA. 11The Department of Astronomy, The California Institute of Technology, Pasadena, CA, USA. 12Centre for Exoplanet Science, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK. 13SUPA, Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, UK. 14Department of Astronomy, The University of Texas at Austin, Austin, TX, USA. 15INAF—Osservatorio Astronomico di Palermo, Palermo, Italy. 16IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France. 17Université Paris Diderot, AIMP Sorbonne Paris Cité, CEA, CNRS, Gif-sur-Yvette, France. 18Observatoire Astronomique de l’Université de Genève, Versoix, Switzerland. 19INAF—Fundación Galileo Galilei, Breña Baja, Spain. 20Astronomy Department, University of California Berkeley, Berkeley, CA, USA. 21European Southern Observatory, Vitacura, Chile. 22INAF—Centro de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Porto, Portugal. 23Zentrum für Astronomie der Universität Heidelberg, Heidelberg, Germany. 24Departamento de Astrofísica, Universidad de La Laguna, Tenerife, Spain. 25Instituto de Astrofísica de Canarias, La Laguna, Tenerife, Spain. 26INAF—Osservatorio Astronomico di Brera, Merate, Italy. 27INAF—Osservatorio Astronomico di Bologna, Bologna, Italy. 28Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, UK. *e-mail: aldo.bonomo@inaf.it
A giant impact as the likely origin of different twins in the Kepler-107 exoplanet system

Aldo S. Bonomo1, Li Zeng2, Mario Damasso3, Zoë M. Leinhardt4, Anders B. Justesen4, Eric Lopez5, Mikkel N. Lund5, Luca Malavolta6,7, Victor Silva Aguirre4, Lars A. Buchhave8, Enrico Corsaro9, Thomas Denman3, Mercedes Lopez-Morales10,11, Sean M. Mills11, Annelies Mortier\superscript{12}, Ken Rice13, Alessandro Sozzetti14, Andrew Vanderburg10,14, Laura Affer15, Torben Arentoft4, Mansour Benbakoura16,17, Francois Bouchy18, Jørgen Christensen-Dalsgaard4, Andrew Collier Cameron12, Rosario Cosentino19, Courtney D. Dressing20, Xavier Dumusque18, Pedro Figueira21,22, Aldo F. M. Fiorenzano19, Rafael A. Garcia16,17, Rasmus Handberg4, Avet Harutyunyan19, John A. Johnson10, Hans Kjeldsen1, David W. Latham10, Christophe Lovis18, Mia S. Lundkvist23, Savita Mathur24,25, Michel Mayor18, Giusi Micela15, Emilio Molinari18, Valerio Nascimbeni6,7, Chantanelle Nava10, Francesco Pepe18, David F. Phillips10, Giampaolo Piotto10, Ennio Poretti19,27, Dimitar Sasselov10, Damien Ségransan18, Stéphane Udry18 \& Chris Watson28

1INAF–Osservatorio Astrofisico di Torino, via Osservatorio 20, 10025 Pino Torinese, Italy; 2Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA; 3School of Physics, University of Bristol, HI Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, UK; 4Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark; 5NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA; 6Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Vicolo dell’Osservatorio 3, I-35122 Padova, Italy; 7INAF—Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova, Italy; 8DTU Space, National Space Institute, Technical University of Denmark; 9INAF - Osservatorio Astronomico di Brera, via E. Bianchi 46, 23807 Merate (LC), Italy; 10INAF—Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90124 Palermo, Italy; 11Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712, USA; 12INAF—Osservatorio Astronomico di Cagliari, Via della Scienza 5 —I-09047 Selargius (CA), Italy; 13INAF – Osservatorio Astronomico di Brera, via E. Bianchi 46, 23807 Merate (LC), Italy; 14INAF—Osservatorio Astrofisico di Catania, via S. Sofia 78, 95123, Catania, Italy; 15INAF—Osservatorio Astrofisico di Bologna, Via A. Bassi 8, I-40127 Bologna, Italy; 16INAF—Fundación Galileo Galilei, Rambla José Ana Fernandez Pérez 7, E-38712 Breña Baja, Spain; 1710 Astronomy Department, University of California Berkeley, Berkeley, CA 94720-3411, USA; 18Centre for Exoplanet Science, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK; 19SUPA, Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH93HJ, UK; 20Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712, USA; 21INAF—Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90124 Palermo, Italy; 22IRFU, CEA, Université Paris-Saclay, F-91911 Gif-sur-Yvette, France; 23Université Paris Diderot, AIM, Sorbonne Paris Cité, CEA, CNRS, F-91191 Gif-sur-Yvette, France; 24Observatoire Astronomique de l’Université de Genève, 51 ch. des Maillettes, 1290 Versoix, Switzerland; 25INAF—Fundación Galileo Galilei, Rambla José Ana Fernandez Pérez 7, E-38712 Breña Baja, Spain; 26Astronomy Department, University of California Berkeley, Berkeley, CA 94720-3411, USA; 27European Southern Observatory, Alonso de Cordova 3107, Vitacura, Region Metropolitana, Chile; 28Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto, Portugal; 29Zentrum für Astronomie der Universität Heidelberg, Landessternwarte, Königstuhl 12, 69117 Heidelberg, Germany; 30Departamento de Astrofísica, Universidad de La Laguna, E-38206, Tenerife, Spain; 31Instituto de Astrofísica de Canarias, C/ Via Láctea s/n, E-38205, La Laguna, Tenerife, Spain; 32INAF—Osservatorio Astronomico di Cagliari, Via della Scienza 5 —I-09047 Selargius (CA), Italy; 33INAF – Osservatorio Astronomico di Brera, via E. Bianchi 46, 23807 Merate (LC), Italy; 34Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, UK. *e-mail: aldo.bonomo@inaf.it
Supplementary Figure 1: **Transits of the Kepler-107 planets.** Phase-folded transits of the four Kepler-107 planets with the best-fit model (red solid line) and residuals. For illustration purposes, data were binned in phase bins of 30, 45, 85, and 110 s for planets b, c, d, and e.
Supplementary Figure 2: Kepler light curve. Kepler long-cadence photometric measurements showing low-amplitude variations due to the rotational modulation of small photospheric active regions.
Supplementary Figure 3: **Weighted autocorrelation function of the Kepler light curve.** The peak at ~14 d might be the stellar rotation period.
Supplementary Figure 4: **Peakbagging fit for Kepler-107.** The power density spectrum centred on the region of excess power from solar-like oscillations is shown in grey, with a 1μHz smoothed version overlain in black. The best fitting model from the peakbagging is shown in red. The frequencies and angular degree of the individual modes are indicated by the coloured markers.
Supplementary Figure 5: **HARPS-N radial-velocity time series.** Radial velocities gathered with the HARPS-N high-accuracy and high-precision spectrograph at the Telescopio Nazionale Galileo (La Palma, Spain) as a function of time.
Supplementary Figure 6: **Generalized Lomb-Scargle periodograms of the radial-velocity and activity indicator time series measured by HARPS-N.** The panels show, from top to bottom, the periodograms of the RV time series, the spectral window centred at the highest peak at 13.8 d in the RV, the periodograms of the activity indexes $\log(R'_{HK})$, full-width at half maximum (FWHM) and bisector (BIS) of the averaged line profile. Vertical dashed lines indicate the orbital periods of Kepler-107b (green), c (red), d (pink), and e (blue). The horizontal dotted lines show the theoretical false alarm probabilities of 0.1% and 1%.
Supplementary Figure 7: **Generalized Lomb-Scargle periodograms of real and simulated radial-velocity time series.** The top panel shows the periodogram of the HARPS-N RV data (the same as in previous figure). The other panels display, from top to bottom, the averaged periodograms of simulated RVs at the real observation epochs by assuming three different values for the mass of Kepler-107b (see Methods): $M_{p,b} = M_{p,c} (9.4 M_\oplus)$, $M_{p,b} = 0.5 M_{p,c} (4.7 M_\oplus)$, and $M_{p,b} = 0.33 M_{p,c} (3.1 M_\oplus)$. These periodograms are less noisy than the real one (top panel) mainly because of the averaging effect. Vertical dashed lines indicate the orbital periods of Kepler-107b (green), c (red), d (pink), and e (blue).
Supplementary Figure 8: **Transit Timing Variations.** The panels show, from top to bottom, the variations of the mid-transit epochs of Kepler-107b, c, and e. Those of planet d could not be computed because of the very low signal-to-noise ratio of its individual transits. At the achieved precision, no significant trends are seen.
Supplementary Table 1: **Priors on the free parameters of the two radial-velocity models.**

Parameter	4 Keplerians + 1 Sinusoid	4 Keplereians + Gaussian Process regression
P_b (d)	$\mathcal{N}(3.1800218, 2.9 \times 10^{-6})$	$\mathcal{N}(3.1800218, 2.9 \times 10^{-6})$
$T_{c,b} - 2,450,000 \text{ (BJD$_{TDB}$)}$	$\mathcal{N}(5701.08414, 3.7 \times 10^{-4})$	$\mathcal{N}(5701.08414, 3.7 \times 10^{-4})$
K_b (m/s)	$\mathcal{U}[0, +\infty]$	$\mathcal{U}[0, 10]$
P_c (d)	$\mathcal{N}(5701.08414, 3.7 \times 10^{-4})$	$\mathcal{N}(5701.08414, 3.7 \times 10^{-4})$
$T_{c,c} - 2,450,000 \text{ (BJD$_{TDB}$)}$	$\mathcal{N}(5697.01829, 7.9 \times 10^{-4})$	$\mathcal{N}(5697.01829, 7.9 \times 10^{-4})$
K_c (m/s)	$\mathcal{U}[0, +\infty]$	$\mathcal{U}[0, 10]$
P_d (d)	$\mathcal{N}(5697.01829, 7.9 \times 10^{-4})$	$\mathcal{N}(5697.01829, 7.9 \times 10^{-4})$
$T_{c,d} - 2,450,000 \text{ (BJD$_{TDB}$)}$	$\mathcal{N}(5702.9547 \pm 0.0060)$	$\mathcal{N}(5702.9547 \pm 0.0060)$
K_e (m/s)	$\mathcal{U}[0, +\infty]$	$\mathcal{U}[0, 10]$
P_e (d)	$\mathcal{N}(5702.9547 \pm 0.0060)$	$\mathcal{N}(5702.9547 \pm 0.0060)$
$T_{c,e} - 2,450,000 \text{ (BJD$_{TDB}$)}$	$\mathcal{N}(5694.48550, 4.6 \times 10^{-4})$	$\mathcal{N}(5694.48550, 4.6 \times 10^{-4})$
K_{e} (m/s)	$\mathcal{U}[0, +\infty]$	$\mathcal{U}[0, 10]$
P_{sin} (d)	$\mathcal{U}(13.6, 14.6)$	
$T_{0,sin} - 2,450,000 \text{ (BJD$_{TDB}$)}$	$\mathcal{U}(0, +\infty)$	
K_{sin} (m/s)	$\mathcal{U}(0, +\infty)$	
h (m/s)	$\mathcal{U}[0, 10]$	
θ (d)	$\mathcal{U}[12, 16]$	
w (d)	$\mathcal{U}[0, 1]$	
λ (d)	$\mathcal{U}[0, 1500]$	
RV jitter (m/s)	$\mathcal{U}[0, +\infty]$	$\mathcal{U}[0, 10]$
V_r (km/s)	$\mathcal{U}[0, +\infty]$	$\mathcal{U}[5500, 5750]$

Notes:
$\mathcal{N}(\mu, \sigma)$: normal distribution with mean μ and standard deviation σ
$\mathcal{U}[a, b]$: uniform distribution between a and b values.
Supplementary Table 2: **Results of the radial-velocity modelling.** Error bars and upper limits refer to 1σ uncertainties.

Parameter	4 Keplerians + 1 Sinusoid	4 Keplerians + Gaussian Process regression
K_b (m/s)	1.32 ± 0.57	1.39 ± 0.50
K_c (m/s)	3.06 ± 0.57	3.15 ± 0.50
K_d (m/s)	< 1.1	< 0.9
K_e (m/s)	1.95 ± 0.82	2.56 ± 0.71
$M_{p,b} (M_\oplus)$	3.51 ± 1.52	3.67 ± 1.32
$M_{p,c} (M_\oplus)$	9.39 ± 1.77	9.64 ± 1.49
$M_{p,d} (M_\oplus)$	< 3.8	< 3.1
$M_{p,e} (M_\oplus)$	8.6 ± 3.6	11.3 ± 3.1
P_{in} (d)	$14.10^{+0.28}_{-0.30}$	
$T_{0,\sin}$ - 2,450,000 (BJD$_{TDB}$)	6827.7 ± 1.3	
K_{as} (m/s)	2.41 ± 0.70	
h (m/s)		$1.77^{+1.35}_{-0.05}$
θ (d)		$14.27^{+3.38}_{-3.40}$
ω (d)		0.61 ± 0.26
λ (d)		867^{+296}_{-492}
RV jitter (m/s)	< 0.8	< 0.9
V_r (m/s)	5644.23 ± 0.45	$5644.30^{+0.14}_{-0.06}$
Supplementary Table 3: Stellar photospheric abundances relative to the Sun.

Element	[X/H]	Abundance [dex]	Number of lines
NaI	0.400	± 0.070	3
MgI	0.358	± 0.049	3
AlI	0.389	± 0.014	2
SiI	0.361	± 0.039	14
CaI	0.313	± 0.031	12
ScI	0.441	± 0.007	3
ScII	0.425	± 0.093	6
TiI	0.350	± 0.062	24
TiII	0.359	± 0.051	6
MnI	0.437	± 0.063	5
CrI	0.352	± 0.047	21
CrII	0.253	± 0.077	3
VI	0.426	± 0.010	6
CoI	0.452	± 0.028	8
NiI	0.406	± 0.025	40
Supplementary Table 4: Measurements of radial velocity and activity indexes.

Time (BJD\textsubscript{UTC} - 2,450,000)	RV (m/s)	σRV (m/s)	FWHM (m/s)	BIS (m/s)	log(R'\textsubscript{HK})	σlog(R'\textsubscript{HK})
6829.641319	5640.11	3.97	7796.31	24.90	-4.994	0.080
6831.546838	5639.56	3.26	7812.65	8.89	-5.058	0.070
6832.592840	5649.14	3.77	7803.99	6.29	-5.046	0.086
6845.598973	5640.18	3.01	7820.68	13.08	-5.084	0.066
6846.641739	5637.14	3.74	7819.36	7.02	-5.037	0.076
6847.633230	5643.25	6.30	7823.76	-5.93	-5.336	0.320
6849.586407	5642.12	5.67	7824.36	3.06	-5.085	0.154
6850.637493	5639.78	5.61	7806.19	18.41	-5.029	0.132
6851.632235	5646.18	3.42	7809.08	-3.65	-5.078	0.078
6852.63376*	5654.00	5.06	7797.71	5.36	-5.036	0.128
6853.635316*	5652.50	4.14	7812.85	12.61	-4.955	0.078
6862.570003	5646.30	4.13	7816.29	6.92	-5.234	0.148
6863.531728	5647.75	4.48	7837.46	19.71	-5.111	0.124
6864.538823	5647.43	3.19	7803.21	6.28	-5.079	0.072
6866.541785	5642.30	5.84	7815.92	14.80	-5.266	0.241
7180.680532*	5643.37	3.72	7799.86	17.13	-5.060	0.083
7181.593700	5650.47	5.40	7836.01	-10.56	-5.007	0.123
7182.557541	5646.70	3.31	7814.09	5.08	-5.194	0.098
7183.584880	5635.22	4.96	7831.50	30.06	-5.104	0.129
7185.572111	5646.34	4.81	7799.70	-2.05	-5.070	0.123
7186.594367	5640.02	3.18	7783.43	0.97	-5.139	0.083
7188.656460	5635.67	4.57	7782.68	2.48	-4.955	0.092
7189.648563	5638.90	7.85	7795.30	-18.51	-5.248	0.326
7190.663098	5647.35	3.43	7799.31	5.55	-5.060	0.080
7191.663534	5642.24	3.32	7792.51	10.11	-5.052	0.073
7192.660186	5642.85	3.47	7809.78	12.46	-5.233	0.117
7193.662207	5640.42	3.09	7796.18	8.44	-5.051	0.064
7195.654431	5651.19	4.00	7815.44	15.26	-5.192	0.124
7221.605328	5642.08	2.91	7782.88	6.56	-5.155	0.075
7222.541535	5642.96	3.84	7780.88	17.27	-5.089	0.100
7223.715037	5634.17	9.55	7802.50	8.70	-4.841	0.187
7227.604988	5650.87	3.75	7791.80	1.63	-5.013	0.078
7228.609294	5648.84	5.40	7818.43	8.34	-5.067	0.141
7230.660140	5644.82	5.03	7818.98	7.37	-5.057	0.136
7254.608600	5657.08	5.64	7831.29	4.92	-4.927	0.123
7256.614319	5640.75	5.04	7799.96	-0.71	-4.984	0.107
7257.617068	5644.00	6.71	7822.25	0.99	-5.189	0.272

Continued on next page
Supplementary Table 4 - continued from previous page

Time (BJD$_{UTC}$-2,450,000)	RV (m/s)	σRV (m/s)	FWHM (m/s)	BIS (m/s)	log(R'_{HK})	σlog(R'_{HK})
7267.552112	5647.20	3.78	7815.64	13.86	-5.131	0.101
7269.515188	5653.99	3.99	7817.17	-1.37	-5.013	0.072
7270.498495	5641.88	3.70	7804.91	13.73	-5.033	0.059
7271.501443	5641.57	3.12	7805.10	17.01	-5.309	0.247
7272.540536	5636.45	5.08	7798.88	12.80	-5.049	0.074
7273.516979	5647.84	3.59	7818.20	-0.50	-5.125	0.091
7301.493922	5638.15	3.60	7808.70	15.82	-5.028	0.137
7302.495732	5631.49	5.92	7812.62	32.53	-5.164	0.200
7498.703402	5650.04	6.04	7804.65	24.01	-4.905	0.091
7499.715106*	5648.31	5.01	7771.64	23.71	-5.449	0.235
7521.650229	5642.85	4.35	7778.49	6.61	-5.012	0.084
7522.698371	5646.94	3.91	7795.96	27.16	-5.089	0.161
7525.687954	5644.80	5.77	7799.45	8.90	-4.966	0.156
7526.688837	5635.56	6.95	7799.03	13.43	-4.961	0.105
7527.660506*	5644.00	5.12	7784.03	8.00	-5.262	0.182
7528.680232*	5647.21	4.63	7789.27	23.25	-5.118	0.157
7529.691289*	5649.94	5.25	7792.05	33.71	-4.968	0.134
7530.694093*	5641.97	6.03	7822.29	25.68	-5.242	0.202
7557.662814*	5649.88	5.14	7802.55	-7.13	-4.955	0.146
7558.633191*	5641.31	6.84	7794.55	41.52	-5.019	0.157
7559.616508*	5650.48	7.19	7802.48	7.84	-5.103	0.245
7565.585627	5644.46	8.22	7799.69	9.43	-5.093	0.071
7566.606557	5644.40	3.11	7785.22	1.69	-5.085	0.131
7573.530542	5647.73	4.91	7805.09	7.86	-5.075	0.111
7573.551734	5640.74	4.42	7774.72	23.15	-4.964	0.064
7574.521167	5638.21	3.49	7803.44	12.80	-5.061	0.108
7574.541491	5633.35	4.56	7787.33	14.86	-5.080	0.104
7576.512913	5645.31	4.33	7784.56	9.36	-5.014	0.072
7576.533388	5645.57	3.77	7793.50	9.41	-6.314	3.430
7602.413100	5644.28	7.23	7787.16	9.54	-5.147	0.166
7602.433285	5639.18	5.34	7809.63	-3.55	-5.290	0.140
7614.424583*	5641.24	3.79	7795.82	7.68	-5.100	0.088
7614.447303*	5646.04	3.67	7811.11	-12.32	-5.032	0.116
7617.419103*	5647.99	4.95	7785.28	-20.50	-4.968	0.107
7617.441696*	5647.10	5.20	7770.38	-36.37	-5.158	0.170
7618.415801*	5641.99	5.57	7775.99	-64.62	-5.148	0.244
7618.437109*	5637.68	7.67	7814.93	-16.78	-5.062	0.076
7619.391064*	5635.79	3.50	7804.13	-17.10	-5.113	0.085

Continued on next page
Time (BJD_{UTC}-2,450,000)	RV (m/s)	σRV (m/s)	FWHM (m/s)	BIS (m/s)	log(R'_{HK})	σlog(R'_{HK})
7619.413876*	5640.07	3.47	7788.45	-0.28	-5.117	0.109
7651.362036*	5652.12	4.11	7811.95	7.79	-4.985	0.070
7651.382707*	5649.98	3.65	7783.03	1.69	-5.246	0.120
7652.360994	5649.98	3.59	7808.77	6.72	-4.996	0.061
7652.382047	5650.90	3.40	7794.89	9.01	-5.092	0.184
7653.365426	5640.99	6.26	7803.50	12.56	-4.977	0.151
7653.386397	5649.11	6.68	7796.38	16.06	-5.111	0.120
7654.364440	5644.77	4.48	7791.02	-2.01	-5.321	0.226
7654.385528	5646.10	4.99	7791.52	-3.24	-5.124	0.178
7655.403210	5646.98	5.81	7786.50	16.71	-5.268	0.339
7655.425003	5642.61	7.34	7795.17	24.01	-5.045	0.081
7656.357283	5650.08	3.71	7767.62	4.63	-5.208	0.131
7656.378463	5649.12	3.92	7808.16	-30.68	-4.924	0.147
7658.395272	5634.23	7.73	7794.18	14.02	-5.079	0.217
7658.415573	5632.06	7.95	7775.04	-3.57	-5.136	0.141
7659.433207	5636.31	4.74	7798.11	-5.26	-5.044	0.122
7659.454318	5632.62	5.13	7772.62	-4.62	-5.186	0.090
7661.374576	5642.01	3.19	7790.73	10.60	-5.039	0.065
7661.395478	5640.21	3.19	7790.11	5.15	-5.176	0.089
7669.359450	5645.77	3.27	7793.04	-0.61	-5.400	0.160
7669.379947	5644.30	3.44	7767.81	-0.68	-5.190	0.197
7670.382276	5645.13	5.63	7807.98	9.98	-5.114	0.150
7670.403398	5635.47	5.21	7769.91	5.61	-4.935	0.069
7671.353842	5647.08	3.87	7778.44	5.99	-5.163	0.094
7671.374605	5649.73	3.38	7795.49	12.10	-5.121	0.090
7672.357559	5648.41	3.44	7760.09	3.41	-4.991	0.071
7672.378241	5643.34	3.53	7771.20	0.38	-5.073	0.089
7673.359389	5643.28	4.03	7797.50	8.51	-5.264	0.133
7673.380719	5641.43	3.91	7802.90	21.48	-5.052	0.090
7699.345433	5649.22	4.34	7750.61	-15.18	-5.018	0.143
7706.370203	5652.20	6.33	7790.39	10.95	-5.000	0.130
7721.345665	5641.33	5.95	7780.78	10.85	-5.062	0.099
7727.324829	5640.16	3.99	7813.98	12.55	-4.976	0.123
7728.330556	5646.56	5.57	7793.96	-4.52	-4.949	0.111
7729.315081	5636.67	5.75	7820.37	-0.95	-5.113	0.175
7861.716662	5650.46	6.27	7803.22	-14.40	-5.088	0.130
7863.730901	5643.20	5.73	7814.61	6.50	-5.075	0.082
7864.667902	5632.46	3.98	7807.42	19.87	-5.195	0.272

Continued on next page
Supplementary Table 4 - continued from previous page

Time (BJD\textsubscript{UTC}-2,450,000)	RV (m/s)	σRV (m/s)	FWHM (m/s)	BIS (m/s)	log(R\textsubscript{HK}’)	σlog(R\textsubscript{HK}’)
7865.685104	5631.66	7.97	7856.53	6.00	-4.777	0.160

Notes:
*: observations corrected for moonlight contamination.