Title

Moving in on human motor cortex. Characterizing the relationship between body parts with non-rigid population Response Fields.

Authors

Wouter Schellekens¹,², Carlijn Bakker¹, Nick F. Ramsey¹, Natalia Petridou²

Affiliations

1: Department of Neurology and Neurosurgery, Brain Center, UMC Utrecht, Netherlands

2: Radiology department, Center for Image Sciences, UMC Utrecht, Netherlands

Corresponding author

Name: Wouter Schellekens

Email: W.Schellekens@umcutrecht.nl

Phone: +31 88 755 1353

Postal address: Q101.132, P.O.Box 85500, 3508 GA, Utrecht, Netherlands
Abstract

For cortical motor activity, the relationships between different body part representations is unknown. Through reciprocal body part relationships, functionality of cortical motor areas with respect to whole body motor control can be characterized. In the current study, we investigate the relationship between body part representations within individual neuronal populations in motor cortices, following a 7 Tesla fMRI 18-body-part motor experiment in combination with our newly developed non-rigid population Response Field (pRF) model and graph theory. The non-rigid pRF metrics reveal somatotopic structures in all included motor cortices covering frontal, parietal, medial and insular cortices and that neuronal populations in primary sensorimotor cortex respond to fewer body parts than secondary motor cortices. Reciprocal body part relationships are estimated in terms of uniqueness, clique-formation, and importance. We report unique response profiles for the knee, a clique of body parts surrounding the ring finger, and a central role for the shoulder and wrist. These results reveal associations among body parts from the perspective of the central nervous system, while being in agreement with intuitive notions of body part usage.
1. Introduction

When we move an individual limb or body part like one of our fingers, many different cortical areas in frontal and parietal lobes show elevated levels of activity [1–4]. However, it is far from clear how the many different brain regions contribute to motor output. Even in primary motor cortex (M1), which shows the highest correlation with localized muscle activity [5,6], it is not fully understood how the neuronal activity contributes to the actual movement [7–9].

Exemplary of this lack in understanding is that M1 has been reported to exhibit both a somatotopic organization (i.e. the orderly topography of cortical body part representations, [4,10–14]), as well as efferent connections exceeding the range of individual body parts or localized muscle groups [15–17]. In our previous study, we proposed that a Gaussian population Receptive Field (pRF) model may help to reconcile these multiple M1 interpretations [18]. Our pRF model showed that M1 neuronal populations (i.e. small ensembles of neurons within MR-voxels) can both contain a preferred finger representation (pRF center) constituting the somatotopy, as well as connections to adjacent fingers reflected by the pRF size. How fingers or other body parts relate to each other within small neuronal populations can illustrate how motor cortices are wired and what functions they perform with respect to individual body part movements. Since many body parts can move in conjunction, the mutual relation between different body parts is not trivial. Our previous study investigated the movement of fingers only and, additionally, assumed a rigid order of fingers (from thumb to little finger), predefining the internal pRF structure. The limited number of body parts in combination with an a priori assumption on their reciprocal relations prevents quantification of body part relationships. Thus, while our previous study indicates that pRF modeling is able to model cortical motor activity, it is unknown how body parts relate to each other and how body parts are ordered within the response profile of neuronal populations.

In the current study, we investigate the relationship between body part representations in human motor cortices following an 18-body-part motor task, using pRF modeling and high-field 7 Tesla Blood-Oxygenation-Level-Dependent (BOLD) fMRI. At this point we note that in light of cortical motor activity the term ‘population Response Field’ is better suited than ‘population Receptive Field’, since cortical motor activity cannot be solely receptive in nature. Hence, the abbreviation pRF will refer to ‘population Response Field’ from here on. We postulate that reciprocal relationship between body parts can be elucidated by estimation of the internal structure of whole-body pRFs. Conventional pRF modeling tries to fit a Gaussian pRF across a rigid functional space, e.g. visual field locations [19] or auditory frequencies [20], which has also been applied to finger space in combination with somatosensory [21] and motor tasks [18]. However, to adequately assess the internal structure of neuronal populations with respect to motor activity, we cannot simply assume
that each pRF consists of a rigid ordering or body parts, e.g. similar to the conventional
cortical homunculus ordering of body parts [22]. Therefore, we developed a novel non-rigid
pRF method that does not assume a rigid ordering of body parts. Rather than fitting a
variable Gaussian function along an unchanging dimension of body parts, variably positioned
body parts are fitted within a static Gaussian shaped pRF. The non-rigid pRF method can be
regarded as a Gaussian shaped theoretical response field, which is populated with a set of
functions (body part movements in the current study). Properties that are common to
conventional pRF methods, such as pRF center and size, can likewise be extracted from the
non-rigid pRF method on the basis of position, number and spread of functions within the
theoretical response field. Additionally, the non-rigid pRF approach allows for the
investigation of pRF composition: one can address which body parts constitute the total pRF,
including the proximity between body parts. Thus, the novel non-rigid pRF center allows for
estimation of conventional pRF properties such as pRF center and size, and allows for the
investigation of occurrence and proximity of body part representations within a pRF without
making assumptions on the intrinsic structure of the pRF.

In order to estimate a whole-body pRF, eighteen body parts were selected for
movement that encompass the lower limb, midsection, upper limb and face. The distribution
of selected body parts is not uniform in terms of physical size, but was instead determined by
the ability to be moved on cue. Therefore, the upper limb and face consist of more body parts
that are cued for movement, compared to the lower limb and midsection. In order of
appearance on the cortical homunculus, those body parts are: toes, ankle, knee, abdomen,
shoulder, elbow, wrist, little finger, ring finger, middle finger, index finger, thumb, forehead,
eyelid, nostril, lip, jaw, and tongue (Figure 1A). Each neuronal population will represent these
body part movements within its pRF in its own unique way. Through averaging the pRFs
from neuronal populations with the same body part preference (i.e. pRF center), the mean
body part pRF is obtained, which represents the average response profile for any given body
part movement. The relationship between body parts can then be assessed with graph
theory on the basis of the mean body part pRF [23–25]. Whole-body graphs are constructed
by correlation of the mean body part pRFs, representing the linkage and connection strength
between body parts. For each body part representation we calculate graph theory metrics
that reflect relevant aspects of body part relations: the connectivity (degree), clustering
coefficient and betweenness centrality coefficient. The connectivity metric estimates the
connectedness of body parts based on the similarity of their respective mean body part
pRFs: the larger the connectivity, the more similar a body part’s response field is compared
to other body parts. The clustering metric is a measure of ‘clique-formation’, representing the
interconnectedness of a body part and its neighboring body parts [26,27]. Betweenness
Centrality is a measure of body part importance: here it represents the (indirect) involvement of a particular body part when other body parts move [28,29]. Lastly, we define modules of body part representations, based on shared characteristics of the mean body part pRFs (Figure 1B & 1C), using Louvain modularity [30,31].

Figure 1

Body parts & body graphs.
In the current study, we investigate the relationships among 18 different body parts in the following subregions of human motor areas: primary motor cortex (M1), primary somatosensory cortex (S1), supplementary motor area (SMA), dorsal and ventral premotor cortex (PMd & PMv, respectively), insular cortex (Insula), and superior and inferior parietal cortex (sPC & iPC, respectively). Body part relationships are scrutinized in several distinct ways. Using our novel non-rigid pRF model, we first estimate pRF center and size, approximating the neuronal population’s body part preference and the size of the population’s response field. We hypothesize that the non-rigid pRF centers reveal somatotopic structures in cortical motor areas that have previously been reported to exhibit a somatotopy: M1, S1, SMA and the insula [4,11–14]. Additionally, we hypothesize that the non-rigid pRF sizes will be smallest for primary sensorimotor cortices (M1 & S1), since activity profiles from primary sensorimotor cortices are thought to correlate to individual body parts to a greater extent than activity from secondary motor cortices [32,33]. Second, we quantify relationships between body parts as observed within the non-rigid pRF. We hypothesize that body parts that are adjacent on the cortical homunculus share a high proximity within response fields. Finally, the graph theory metrics describe the relations of body part representations in different cortical areas from the brain’s perspective. The uniqueness of body parts is given by the connectivity measure, the cliqueness is given by the clustering coefficient and the importance is given by the betweenness centrality coefficient. The modules reflect which body part response profiles share similar characteristics.
2 Results

2.1 pRF center

The pRF center reflects the preferred body part for each neuronal population with respect to the 18 body parts that were moved during the fMRI experiment. The majority of body part movements entailed a simple flexion-extension movement (Table 1). On the basis of the preferred body parts, somatotopic structures in the left (contralateral) hemisphere can be observed from both a lateral and medial point of view (Figure 2). Somatotopic structures are most prominent in M1 and S1, reflected by a significant gradual change in preferred body part along the direction of the central sulcus (i.e. pRF center gradients: \( t(7) = 20.43, p < 0.001 \), and \( t(7) = 126.77, p < 0.001 \), for M1 and S1 respectively). Evidence for somatotopic structures is also observed for areas SMA and Insula (\( t(7) = 4.77, p = 0.002 \), and \( t(7) = 8.84, p < 0.001 \), respectively). Additionally, somatotopic structures are observed in the 4 remaining areas covering premotor and parietal cortex: PMd (\( t(7) = 7.57, p < 0.001 \)), PMv (\( t(7) = 4.43, p = 0.003 \)), iPC (\( t(7) = 3.87, p = 0.006 \)), and sPC (\( t(7) = 5.56, p < 0.001 \)). For comparison, we have obtained similar pRF center maps using the conventional pRF method (Supplementary Figure 1), which correlate significantly with the main pRF center map, derived from the non-rigid pRF model (\( R = .89, p < 0.001 \)).

| Body part | Forward movement                                      | Backward movement        |
|-----------|-------------------------------------------------------|--------------------------|
| 1 Toes    | Flexion                                               | Extension                |
| 2 Ankle   | Flexion                                               | Extension                |
| 3 Knee    | Extension                                             | Flexion                  |
| 4 Abdomen | Muscle contraction/pushing outwards                   | Muscle relaxation        |
| 5 Shoulder| Flexion                                               | Extension                |
| 6 Elbow   | Flexion                                               | Extension                |
| 7 Wrist   | Flexion                                               | Extension                |
| 8 Little finger | Flexion                              | Extension                |
| 9 Ring finger | Flexion                              | Extension                |
| 10 Middle finger | Flexion                              | Extension                |
| 11 Index finger | Flexion                              | Extension                |
| 12 Thumb  | Flexion                                               | Extension                |
| 13 Forehead | Muscle contraction/pulling upards                      | Muscle relaxation        |
| 14 Eyelid | Closing eyelid                                        | Opening eyelid           |
| 15 Nose   | Flaring nostrils                                       | Relaxation nostrils       |
| 16 Lips   | Pouting lips                                          | Relaxation lips           |
| 17 Jaw    | Opening jaw                                           | Closing jaw              |
| 18 Tongue | Moving tongue to the right                            | Moving tongue to the center |

Table 1

The table describes the movements that were made for each body part condition. Subjects viewed a single forward movement cue and a single backward movement cue per event.

Graph theory statistics
The pRF centers are shown on an average subject pial surface (left) and inflated surface (right) from a lateral point of view (top) and medial point of view (bottom). Colors indicate the body part that was estimated as the pRF center. The ROIs are denoted by the lines drawn on the surfaces: primary motor cortex (M1), primary somatosensory cortex (S1), supplementary motor area (SMA), dorsal premotor cortex (PMd), ventral premotor cortex (PMv), Insula/Sylvian fissure (Insula), inferior parietal cortex (iPC), and superior parietal cortex (sPC).

### 2.2 pRF size

The pRF size is a single metric that reflects the distribution of body parts within a response field. The unit for pRF size approximates body part density within a response field, which means that a neuronal population with a pRF size of 1 has approximately 1 body part in its response field. The pRF size differs per cortical area ($F_{(7,10)} = 23.02$, $p < 0.001$), showing that neuronal populations in M1 and S1 on average have the smallest pRF sizes (Figure 3). Furthermore, pRF sizes vary depending on the neuronal population’s pRF center (Figure 4), showing that a neuronal population’s preference for a particular body part affects the population’s pRF size ($F_{(17,15)} = 28.10$, $p < 0.001$). Neuronal populations that prefer the fingers display relatively large pRF sizes (mean pRF size 5 fingers = 7.69, SD = 1.88), whereas neuronal populations that prefer the knee consistently display smallest pRF sizes (mean pRF size knee = 4.84, SD = 1.46). Without grouping neuronal populations by their preferred body part we observed small-to-large pRF size gradients in SMA ($t_{(7)} = 6.69$, $p = 0.001$) and Insula ($t_{(7)} = 5.70$, $p = 0.003$, Figure 3), but not in any of the other cortical areas. Finally, the pRF size maps derived from the non-rigid and conventional pRF methods correlate significantly ($R = .78$, $p < 0.001$, see Supplementary Figure 2), although pRF sizes estimated by the conventional pRF method tend to be larger on average. Larger pRF sizes...
for the conventional pRF method are likely caused by a widening of the Gaussian shape to encompass non-adjacent body parts.

Figure 3

pRF size maps

The pRF size is shown on an average subject pial surface (left) and inflated surface (right) from a lateral point of view (top) and medial point of view (bottom). Colors indicate the pRF size. The ROIs are denoted by the lines drawn on the surfaces: primary motor cortex (M1), primary somatosensory cortex (S1), supplementary motor area (SMA), dorsal premotor cortex (PMd), ventral premotor cortex (PMv), Insula/Sylvian fissure (Insula), inferior parietal cortex (iPC), and superior parietal cortex (sPC).

Figure 4

pRF size and cortical coordinates per pRF center
For each ROI the mean cortical coordinates (red circles) and mean pRF size (blue squares) are plotted versus the estimated pRF centers (horizontal axis). Both the depicted coordinates and pRF size values were calculated as the mean value across neuronal populations with the same pRF center (horizontal axis). Error bars denote the S.E.M. across subjects.

### 2.3 Response field quantification

The pRF center and size summarize specific aspects of the complete response field. Additionally, we investigate the positioning of all body part representations within response fields. We ensured that the movement order of body parts during scanning was randomized to prevent body parts from being coupled to one another on the basis of the experimental design. Regardless of the experimental decoupling of body parts, the full response fields show that for any given body part at the pRF center, if another body part is proximate on the cortical homunculus, it is also proximate to that specific pRF center ($F_{16,19} = 103.41, p < 0.001$). In other words, neuronal populations that have a preference for some body part $P$ often contain body parts in their response fields that are adjacent to $P$ on the cortical homunculus (Figure 5), thereby revealing a functional adjacency of body part representations in human motor cortices.
For each ROI (columns), the complete response field was normalized and averaged over all vertices sharing the same pRF centers (rows), creating the mean body part pRF (i.e. 18 body part positions per pRF center and ROI). The bars denote the proximity of body parts to the center of the response field. The higher the bar, the closer the corresponding body part is to the response field’s center. For each mean body part pRF, the body part equal to the pRF center is depicted by the orange bar, and is by definition closest to the response field center. The Error bars denote the S.E.M. across subjects.

The observed functional adjacency of body part representations does not perfectly mirror the cortical homunculus ordering of body parts, especially in cortical areas outside M1 and S1 (Figure 5, e.g. PMv). We use graph theory to investigate the relationships between body part representations. Weighted graphs are constructed for every ROI by correlation of the mean body part pRFs (Figure 5), creating body part nodes and the connections between them. We then extract connectivity, clustering, and betweenness centrality coefficients from the whole-body graphs. We found that connectivity values differed significantly across body parts ($F_{(17,119)} = 3.56, p < 0.001$) and cortical areas ($F_{(7,49)} = 7.85, p < 0.001$, Figure 6A). In particular, we found that the knee was less connected within the graphs compared to other body parts ($t_{(119)} = -5.22, p < 0.001$). The connectivity averages of cortical areas reveal that body parts in M1 and S1 are less interconnected ($t_{(49)} = -4.58, p < 0.001$ and $t_{(49)} = -4.03, p < 0.001$, respectively), while body parts in PMv have above average connectivity values ($t_{(49)} = 4.05, p < 0.001$). Next, the clustering coefficient differed across body parts ($F_{(17,119)} = 2.40, p = 0.003$), with the ring finger having significantly larger clustering coefficients ($t_{(119)} = 3.04, p = 0.004$). No clustering effects were observed across cortical areas ($F_{(7,49)} = 1.35, p = 0.249$, Figure 6B). Finally, we found that betweenness centrality coefficients differ across body parts and cortical areas ($F_{(17,119)} = 2.56, p = 0.002$ and $F_{(17,49)} = 11.88, p < 0.001$, respectively). The shoulder and the wrist exhibited larger betweenness centrality coefficients compared to all other body parts ($t_{(119)} = 3.36, p = 0.001$ and $t_{(119)} = 3.73, p < 0.001$, respectively). Additionally, body parts in M1 and S1 contain on average larger centrality coefficients ($t_{(49)} = 6.13, p < 0.001$ and $t_{(49)} = 5.43, p < 0.001$), while average centrality coefficients in PMv and sPC are significantly smaller compared to other areas ($t_{(49)} = -3.26, p = 0.002$ and $t_{(49)} = -2.66, p = 0.010$, respectively. Figure 6C).
Figure 6

Graph theory results

Whole-body-graphs are presented per ROI (from left to right) and for the connectivity, clustering and betweenness centrality coefficients (from top to bottom). The colors of each node in the graphs correspond to a specific body part given by the schematic at the far right. The connections between any 2 body part nodes was calculated per ROI and shown here through the lines connecting the nodes. The thicker the line the stronger the connection between body parts. (A) Connectivity values per body part node and ROI are depicted. The size of the body part nodes presents the size of the connectivity value per node. (B) Clustering coefficients have the same layout and graphs as the connectivity values. Here the size of the body part node reflects the strength of the clustering coefficient. (C) The size of the body part nodes in the ROI graphs reflects the strength of the betweenness centrality coefficient.

By viewing body part pRFs as a connected graph we can, additionally, look for modules in the network. Modules are a measure of segregation, but unlike the clustering coefficient, act on multiple body parts in the network simultaneously. Hence, a qualitative analysis can be performed on the existence of modules consisting of multiple body parts. Body parts within the same module are assigned the same integer value and are indicated by different colors in Figure 7. Using Louvain modularity, we find that particularly in M1 and S1 the cluster assignment of body parts is in agreement with the physical distance of body parts and with co-occurrence of body parts in real-life movements: a toes-ankle-knee cluster; a shoulder-elbow cluster; a cluster of the wrist and the 5 fingers; a forehead-eyelid-nose cluster; and a lip-jaw-tongue cluster (Figure 7). The only difference between M1 and S1 clustering is found at the abdomen, which is clustered together with the bottom half of the face (i.e. lip, jaw, and tongue) in M1, and forms its own cluster in S1. Please note, that the cluster assignments are purely based on the Louvain Modularity method, and their resemblance to somatotopic and physical structuring of body parts emphasizes specific commonalities among response profiles. Clusters derived from the other cortical areas differ...
each in their own way. Some clusters appeared relatively consistent across the separate brain regions, namely the toes-ankle-cluster cluster (observed in M1, S1 and sPC), the forehead-eyelid-nose cluster (observed in M1, S1, Insula, iPC, and sPC) and the lip-jaw-tongue cluster (M1, S1, Insula, and iPC). All areas except PMv reveal specific clusters of physically proximate body parts. Area PMv has only two clusters of body parts, that do not directly relate to each other from either a physical or functional perspective. For the remaining areas, the combination of non-rigid pRF estimation and graph theory confirms clusters of physically and functionally related body parts and reveal subtle differences in the cortical representation of our body.

Figure 7
Body part modules

For each ROI, different modules are represented by different colors. Note that the colors only define a cluster of nodes within one graph, and any correspondence of colors between graphs is purely accidental. The whole-body graph layout is presented at the outmost right indicating the node-body part relationship.
3 Discussion

3.1 General discussion

The aim of the current study was to gain insight into relations between representations of body parts in human sensorimotor cortex. We deployed our novel non-rigid population Response Field (pRF) model to investigate motor cortical activity with fMRI, accompanying an 18-body-part motor task. The pRF centers represent the preferred body part of individual neuronal populations and on the basis of pRF centers we provide strong evidence for previously observed whole-body somatotopic structures in M1, S1, SMA and Insula/Sylvian fissure (Figure 2). In addition, we provide new evidence for the presence of somatotopic structures in other motor-related cortical areas: PMd, PMv, sPC and IPC (Figure 4). In line with expectations, pRF sizes are smaller in primary sensorimotor cortex compared to other frontal and parietal motor areas, indicating that neuronal populations in primary sensorimotor cortex code for fewer body parts than secondary motor cortices (Figures 3 & 4). Non-rigid pRF modeling reveals a high degree of cross-correspondence among body parts. PRF center body parts are frequently neighbored by body parts that are proximate from either a physical or cortical homunculus ordering’s perspective (Figure 5). However, the internal structure of response fields is not uniform among body part representations or cortical areas. With the use of graph theory, we find that there are consistent differences in connection strength, clustering and betweenness centrality coefficients among body parts and cortical areas (Figure 6). Furthermore, body part modules can be distinguished on the basis of the mean body part pRFs, revealing that predominantly primary sensorimotor cortex contains modules that are in agreement with the physical proximity of body parts (Figure 7). Thus, the non-rigid pRF model exposes coherent but different functional relations between body part representations across several cortical areas involved in motor functioning.

3.2 pRF center & size

The pRF center reflects a neuronal population’s preferred body part, which allows for the assessment of somatotopic structures in brain regions. On the basis of previous studies [4,11,12,14,34], we expected somatotopies in M1, S1, SMA, and near the insular cortex. The clearest somatotopies are indeed observed in these areas, although evidence of a somatotopic arrangement is observed for the other included cortical areas as well (i.e. PMd, PMv, IPC and sPC). It needs to be mentioned that, except for M1 and S1, the parcellation of included cortical areas is rather coarse, which likely influences results on somatotopic arrangement. Cortical parcellations that are too large or too small in size risk incorporating multiple or incomplete functionally distinct brain regions, respectively. The current results putatively reveal multiple somatotopic structures in regions SMA and Insula. SMA is known
to consist of two separate regions: pre-SMA and SMA proper [35,36], which might each
represent the whole body in full. The region denoted insula, which covers the region
enclosed by the Sylvian fissure up to the parietal operculum, likely contains the secondary
somatosensory cortex (S2), which is believed to contain a whole-body somatotopy as well
[37–39]. The selection of regions of interest (ROI) often is an arbitrary and non-trivial
process, which could be aided in future studies by the current pRF center results.

The changes in pRF size across the left hemisphere reveal several striking similarities
with changes in pRF centers. The outer borders of primary sensorimotor cortex are
accompanied by a sudden change in pRF size: primary somatosensory cortex displays
relatively small pRF sizes, whereas secondary motor cortices and parietal cortex show
substantially larger pRF sizes, indicating that neuronal populations in primary sensorimotor
cortex are involved with fewer body parts than other motor related areas. Neuronal
populations in M1 have efferent connections to localized motor units and muscle groups
[6,15,40–42] and might relate directly to ‘muscle fields’ demonstrated in animal studies
[43,44], whereas S1 activity likely portrays localized proprioceptive feedback information
following movements [45,46]. In contrast, premotor cortex and SMA are thought to be
involved in motor planning and motor sequences, which would yield an integration of multiple
body parts that are not necessarily physically connected [2,47–49]. Additionally, small-to-
large pRF size gradients are observed in SMA and the insular cortex. The function of these
pRF size gradients, and whether they are part of a single functional area or denote the
borders between functionally distinct brain regions, remains to be investigated.

With respect to body parts, we found that pRF sizes are largest for the 5 fingers and
smallest for the knee. PRF size is a measure of body part representation within neuronal
populations and the larger pRF sizes for the fingers indicate that all fingers populate the
response fields of all neuronal populations representing the fingers. Thus, fingers may be
physically small in size, but because there are many and are often used conjointly, the larger
pRF size reflects their joint integration [1,50]. Conversely, the knee is heavily involved in
walking and sitting down - actions that are notoriously difficult to test in an MR-scanner - and
may actually be integrated with other body parts and movement types that have simply not
been tested currently [51]. Moreover, it is probable that neuronal populations, especially in
secondary motor cortices, prefer specific movement types that are not captured by the
simple flexion-extension instruction presented here [52–54]. Altering the set of movement
types might change the estimated pRF size.

3.3 Body part relationships
Where the pRF center and size present a useful summary of population response fields, the graph theory metrics reveal additional inter-body-part relationships characterized by connectivity, clustering and betweenness centrality coefficients. The knee exhibited the lowest connectivity values, which means that given the performed movements the knee response profile is relatively unique across all included motor related cortical areas. The low connectivity value for the knee matches the smaller pRF size for neuronal populations, preferring the knee. The ring finger was found to have a significantly larger clustering coefficient, reflecting the interconnectedness of the ringer finger and the direct neighboring body parts of the ring finger. The large clustering coefficient of the ring finger indicates clique-formation of predominantly the fingers and the upper limb. It is not particularly obvious why the ringer finger is appreciated as the center of clique-formation of the fingers and upper limb, but this might relate to previous findings showing relatively enlarged cortical representations for the ring finger in S1 during somatosensation [55]. One possible explanation might be that the ring finger’s constrained freedom of movement [56–58] could result in the ring finger acting as a ‘common denominator’ for various multi-digit movements, leading to the observed digit interconnectedness surrounding the ring finger [59,60]. On the basis of betweenness centrality coefficients the shoulder and wrist are characterized as central, and therefore as important body parts. The involvement of frontal and parietal cortex in upper limb motor control has been demonstrated before [61–63]. However, current results show that the shoulder and wrist are of relative greater importance to the central nervous system in direct comparison with other body parts. Thus, the increased levels of centrality for the shoulder and wrist signify the relative importance of upper limb control within the human motor repertoire from a cortical computation perspective [54,64–66].

Averaged over cortical areas, we observe that body parts representations in primary somatosensory cortex are characterized by relatively unique response profiles and relate fairly directly to corresponding localized physical body parts [1,67]. The high correspondence with individual body parts is plausibly also the reason for large betweenness centrality coefficients, signifying that at the scale of individual body part control each body part representation is important. Additionally, we observed body part modules in M1 and S1 that are in agreement with physical body part adjacency. Since modules are solely based on response profile similarities, they reflect motor planning, motor execution and proprioceptive feedback information [68–70]. The only difference between M1 and S1 is observed for the abdomen, which forms a cluster together with the articulatory body parts lip, jaw and tongue in M1, while forming its own module in S1. Additionally, the wrist is considered part of the fingers in M1 and S1, rather than part of the shoulder and elbow module. The fact that the wrist and shoulder are part of different modules in primary somatosensory cortex combined
with their relative importance compared to other body parts (increased betweenness centrality coefficients) could suggest that both body parts act as the leading joint in hand/arm movements relative to their respective module [64,71,72]. Beyond primary sensorimotor cortex, distinctions between body parts are less prominent with PMv showing the least clear body part distinctions. PMv has on average the largest connectivity values and relatively low betweenness centrality coefficients, indicating a lack of body part differentiation. Body part response profiles might be so similar, that it can be disputed if PMv motor calculations involve body part representations at all. Such interpretation is supported by the observed PMv modules, consisting of just two large groups of body parts that do not obviously relate to one another (Figure 7). These findings agree well with the notion that PMv is positioned relatively high up the cortical hierarchy during motor processes, performing abstract rather than body part motivated computations [3,73–75]. The body part modules that are observed for the remaining cortical areas are a mixture of physically adjacent and distant body part combinations, requiring further research to elaborate on their functions.

3.4 Non-rigid pRF model

In sensory cortices, such as visual and auditory cortex, much knowledge has been gained using population Receptive Field modeling and fMRI [19,20,76–79]. However, visual and auditory modalities exhibit a clear continuous relationship between sensation (through the retina and cochlea, respectively) and cortical representation, whereas our body and movements of body parts do not exhibit such an obviously clear connection to cortical representation despite the coarse somatotopic arrangement of corticospinal tracts [80,81]. Population Receptive Field modeling capitalizes on the relation between sensation and cortical representation, but the advantages of population Receptive Field modeling have eluded the sensorimotor system in absence of such relationship. We modified the population Receptive Field model to accommodate the lack of a predefined somatic ordering, while maintaining the ability to extract meaningful features: the non-rigid population Response Field model. Instead of finding the best fit of a Gaussian shaped receptive/response field over a rigid dimension of functional features (e.g. visual field locations, auditory frequencies, body parts), the non-rigid pRF model finds the best fit of functional features within a static Gaussian shaped response field. The rationale for modeling neuronal activity in this manner revolves around the concept of having to - or actually – not having to define the reciprocal relation between selected functional features a priori. It needs to be mentioned that we do make the assumption that the shape of the response field is Gaussian. The choice for a Gaussian shape is motivated based on the successful application of Gaussian response profiles in neuroscientific research [82–84], although other shapes might provide a more accurate display of neuronal functioning. The strength of the non-rigid pRF model lies in its...
ability to find the correspondence among functional features, quantified as relative distance of functional features from the response field’s center or from each other. The positioning of functional features within the response field allows for the assessment of pRF center and size, which correlate significantly with the pRF center and size derived from a conventional pRF model using a rigid cortical homunculus-like ordering of body parts. There are, however, several noteworthy differences between the non-rigid and conventional pRF models: the conventional pRF model returns a center value on a continuous, rather than discrete, feature dimension. It can, therefore, return a fractioned value for the pRF center, allowing the center to be positioned between two body parts. Furthermore, the pRF sizes were on average larger for the conventional compared to the non-rigid pRF model. This finding likely illustrates that the conventional pRF model is forced to widen its Gaussian shape to encompass body parts that are not adjacent with respect to the cortical homunculus ordering of body parts.

We have not compared our non-rigid pRF model with the commonly used general linear model (GLM) approach. However, from a theoretical stance we argue that it does not differ with respect to estimated amplitude per functional feature (i.e. per condition). It does differ with respect to the correspondence among features. A standard GLM returns regression coefficients per feature and binary statistical tests can be performed to identify significantly deviating signals [85–87]. However, a GLM does not inform on the correspondence or clustering of features within a neuronal population. One thing the non-rigid pRF does have in common with a standard GLM-analysis is that it can be readily applied to any set of features. Thus, when the intrinsic structure of a response field with respect to a set of features is unknown or subject to investigation, the non-rigid pRF method provides information on cross-correspondence among features within neuronal populations, through which metrics such as pRF center and size and even complex feature networks can be derived.

3.5 Conclusions

Accompanying an 18-body-part motor task, we present evidence for somatotopic organizations in cortical areas M1, S1, SMA, PMd, PMv, Insula, iPC and sPC on the basis of non-rigid pRF centers. Additionally, non-rigid pRF sizes vary across the contralateral hemisphere, showing that neuronal populations in M1 and S1 are involved with fewer body parts compared to the other cortical areas. Furthermore, our novel non-rigid pRF method reveals exactly how all 18 body parts are represented in each neuronal population’s response field. Using graph theory we were able to define the relationship between body parts in human motor cortex, revealing that the knee is represented by a relatively unique response field, digits of the hand cluster around the ring finger, and that the shoulder and elbow occupy a relatively important role in motor cortex. The novel non-rigid pRF model
together with graph theory network quantification provides a powerful tool for investigation of
neuronal population response fields, when the relationship among selected functions is not
known beforehand.
4 Material & Methods

4.1 Participants & Task

Eight healthy volunteers (mean age = 24 years, female = 3) participated in this study. All participants gave written informed consent before entering the study. The protocol was approved by the local ethics committee of the University Medical Center Utrecht, in accordance with the Declaration of Helsinki (2013).

The participants carried out a movement task in a Philips 7 Tesla MRI scanner that required the separate movement of 18 different body parts. Instructions were projected on a screen in the scanner bore, which were viewed through prism glasses. The movement cues were presented using two different screen images: one image showing the torso, arm and hand, and another image showing a face on the left and a foot/leg on the right. Each of these images was used to present 9 different motion cues (Figure 8). When the movement of any body part was cued, a green circle was presented for 1 second over the cued body part, at which point the participant was to move the cued body part to an instructed position. One second later a red circle was shown for 1 second, during which the participant moved the cued body part back to the starting position. For most body parts the movement procedure meant a single flexion movement, followed by an extension movement. However, there were exceptions such as the abdomen, forehead and eyelid movement instructions (see Table 1).

Furthermore, since participants were supine and the knee was supported with a cushion, the knee was first extended and then flexed. Each motion cue was repeated 9 times and the movement order was pseudo-randomized, to prevent systematic sequences. The inter cue interval was 10 seconds, except for 1 randomly chosen repetition per condition, when the interval was lengthened to 14.7 seconds. The participants practiced the task several times outside the scanner until they felt comfortable with the task.
4.2 Image acquisition

Scanning was performed on a 7 Tesla Philips Achieva scanner (Philips Healthcare, Best, Netherlands) with a 2-channel volume transmit coil and a 32-channel receive headcoil (Nova Medical, MA, USA). Functional MRI (fMRI) measurements were obtained using a whole-brain echo-planar imaging (EPI) sequence with the following parameters: SENSE factor=3.5, TR=2100 ms, TE = 27 ms, flip angle = 70°, axial orientation, interleaved slice acquisition, FOV (AP, FH, LR) = 208.8 x 41.6 x 208.8 mm³. The acquired matrix had the following dimensions: 132 x 26 x 132, voxel size: 1.75 x 1.75 x 1.75 mm³. The functional session was split in 2 runs (torso/arm/hand and head/leg, figure 1), consisting of 428 functional scans each (i.e. 856 functional scans in total) per participant. Following the functional sessions, a T1-weighted volume of the whole brain (0.8 x 0.8 x 0.8 mm³, FOV = 238 x 238 x 238) and a whole-brain proton density volume (0.98 x 0.98 x 1.0 mm³, FOV = 256 x 256 x 190) were acquired.
4.3 Image processing

The T1-weighted volume was divided by the proton density volume in order to correct for macroscopic field inhomogeneities present in the T1-weighted volume [88]. The corrected T1-weighted volume was used to construct 3D surface meshes of the white matter and pial surfaces using Freesurfer (http://surfer.nmr.mgh.harvard.edu/, [89]). The functional volumes were corrected for slice time acquisition, head movements, and geometric distortions using the FSL functions Slicetimer, Mcflirt, and Top-up, respectively [90]. Afterwards, the preprocessed functional volumes were projected onto the Freesurfer surface meshes, where only those voxels were selected that overlapped with estimated cortical grey matter. This procedure resulted in a timeseries per surface vertex (sometimes also referred to as ‘surface nodes’). The timeseries from both runs (i.e. torso/arm/hand & head/leg) were concatenated, high-pass filtered with a cut off at 0.01 Hz and rescaled to percent BOLD signal change.

The non-rigid and conventional pRF analyses (see below) were performed in subject space (i.e. on the surface mesh generated per subject). However, the pRF analyses’ output was projected on an average subject surface mesh generated with Freesurfer. The average subject surface mesh was also used to draw regions of interest (ROI). We used the Brodmann area atlas supplied by Freesurfer [91] to draw the borders of M1 (BA4a, BA4p) and S1 (BA3a, BA3b, BA1). The borders of other cortical areas were less strictly defined, although PMd, PMv, iPC and sPC were primarily based on the Destrieux atlas [92], while areas SMA simply covered the medial side of the left hemisphere and area insula covered the cortical region enclosed by the lateral sulcus ranging from frontal to parietal operculum.

4.4 Non-rigid pRF analysis

For the main analysis, we developed a novel population Response Field (pRF) model that does not assume reciprocal relations between body parts, unlike more conventional pRF methods. The non-rigid pRF model does not try to fit a Gaussian function over a rigid functional dimension of e.g. body parts, rather it keeps the Gaussian function constant and finds the best fit of body parts within:

\[
g(x_i) = \exp \left( - \frac{(x_0 - dx_i)^2}{2 \sigma^2} \right), \quad x_i \in N, x_0 = 0, \sigma = 1, dx_i \in \{\mathbb{R}_{\geq 0}|\mathbb{R}_{\leq 10}\} \tag{1}
\]

Where \( N \) is the list of body parts indexed from 1 to 18. Parameters “\( x_0 = 0 \)” and “\( \sigma = 1 \)” are the center and size of the Gaussian response field respectively and are, thus, held constant. The placing of the body parts within this Gaussian shape is controlled through \( dx_i \), which denotes the distance of each body part \( x_i \) to the center of its response field \( (x_0 = 0) \). This means that a body part with a distance of \( dx = 0 \) is at the center of a neuronal population’s
response field. The larger $dx_i$ becomes, the further away it is from the response field’s center.

Please note, that we only fit body parts in 1 side of the Gaussian function (i.e. positive values only). We could have allowed $dx_i$ to be negative, but with a symmetrical Gaussian it would have had no effect on the estimated fit, but it does imply a left/right-hand side relationship that we cannot verify. Hence, values of $dx_i \geq 0$ are accepted during fitting. Furthermore, there was a limit applied to the maximum value of $dx_i = 10$ at which point the static Gaussian function with a standard deviation of 1 has a value of near zero. The limit prevented conditions from reaching unnecessarily large $dx_i$ values. Afterwards, the Gaussian function $g(x_i)$ was multiplied by the 2-dimensional movement task design matrix (body parts * time) and summed over the body parts (2):

$$r(t) = \sum_{i \in N} s(x_i, t) \cdot g(x_i)$$  \hspace{1cm} (2)

Where $r(t)$ is the effective timeseries, $s(x_i, t)$ is the movement task design matrix and $g(x_i)$ is the non-rigid Gaussian model. The effective timeseries $r(t)$ is then convolved with a canonical hemodynamic response function (HRF) (3):

$$p(t) = r(t) \ast h(t)$$  \hspace{1cm} (3)

Where $p(t)$ is the predicted timeseries, $r(t)$ the effective timeseries and $h(t)$ is the canonical HRF. Finally, the predicted timeseries $p(t)$ is compared with the observed fMRI timeseries $y(t)$:

$$y(t) = \beta \cdot p(t) + \epsilon$$  \hspace{1cm} (4)

Where $y(t)$ is the observed fMRI timeseries of a given vertex, $p(t)$ is the predicted non-rigid pRF timeseries, $\beta$ is a scalar, and $\epsilon$ is measurement noise. We used the Levenberg-Marquardt algorithm (LMA), which is the least-square minimization algorithm [93] used to find the best parameter fits (Figure 9).
pRF fitting procedure

The schematic shows the different steps in the fitting procedure. The different body parts are fitted in one half of a static Gaussian response field model (non-rigid pRF model), which is multiplied by the motor task onset design matrix (Motor task). The multiplication generates the estimated pRF response amplitude for each condition in time (pRF response), which is convolved with a canonical hemodynamic response function (HRF). This results in predicted timeseries (Prediction), which is contrasted with the observed fMRI timeseries (Data). Using the LMA, the position of the body parts in the non-rigid pRF model is updated in order to obtain the best fit.
Each vertex \( v \) was assigned a pRF center, which was the index of the body part (ranging from 1 to 18) with the lowest distance to the center \( x_0 \). In case of multiple body parts with the lowest distance to \( x_0 \), the pRF center was calculated as the mean index of the multiple body parts and rounded to the nearest whole integer:

\[
pRFC(v) = D(dx_v) \quad (5)
\]

\[
D(dx_v) = \begin{cases} 
\min(dx_v), & |\min(dx_v)| = 1 \\
\frac{\sum_{i=1}^{\min(dx_v)} i}{|\min(dx_v)|}, & |\min(dx_v)| > 1 
\end{cases} \quad (6)
\]

Where \( pRFC(v) \) is the pRF center for vertex \( v \), \( dx_v \) is the 18-element array of body part distances to the Gaussian response field center \( x_0 \) estimated for vertex \( v \). The function \( '\min()' \) returns the minimum value of an array and \( '|\min()|' \) returns the cardinality of elements with the lowest value. The pRF size was estimated as the sum of normalized distances \( (P(dx_v)) \) of body parts that were in range of the full-width-at-half-maximum (FWHM) of the response field:

\[
pRFS(v) = \sum P(dx_v) \quad (7)
\]

\[
P(dx_v) = \begin{cases} 
\frac{(-dx_v+dx_{\text{max}})}{dx_{\text{max}}}, & dx_v \leq FWHM/2 \\
0, & dx_v > FWHM/2 
\end{cases} \quad (8)
\]

Where \( dx_v \) is the 18-element array of relative distances to the response field center \( x_0 \) estimated at vertex \( v \). \( dx_{\text{max}} \) is the maximum value that \( dx_v \) could attain (i.e. \( dx_{\text{max}}=10 \)), and with a static Gaussian standard deviation of \( \sigma=1 \) the FWHM=2.355. Since body parts were only fitted in one side of the Gaussian shaped response field, only body parts that were in range of half the width at half maximum were included in the pRF size calculation: \( dx_v \leq FWHM/2 \).

We, additionally, performed the conventional pRF analysis for comparison purposes. The only difference with the non-rigid pRF model is the Gaussian model function and the parameters that are fitted with the LMA. Instead of function (1), function (9) is inserted in the pipeline:

\[
g(x_i) = \exp \left( -\frac{(x_0-x_i)^2}{2\sigma^2} \right), \quad x_i \in N, \quad x_0 \in \{\mathbb{R}_{\geq 1} \cap \mathbb{R}_{\leq 18}\}, \quad \sigma \in \{\mathbb{R}_{>0}\} \quad (9)
\]

Here \( x_i \) is the rigid indexation of a body part (1=toes, 18=tongue) and is not updated during the fitting procedure. Parameter \( x_0 \) is the pRF center, and \( \sigma \) denotes the pRF size of the...
neuronal population. The best model fit for the conventional pRF model was obtained by continuously updating parameters $x_0$ and $\sigma$ from equation (9).

### 4.5 Graph theory

The non-rigid pRF analysis returns the following parameters for each surface mesh vertex $v$: pRF center, pRF size, and the distance of all 18 body parts to the response field center ($dx_v$).

For each vertex a goodness-of-fit F-statistic was calculated for the obtained pRF fit with respect to the measured vertex’ fMRI timeseries. Only vertices showing a significant goodness-of-fit F-statistic, false discovery rate (FDR) corrected, were selected for further analyses and were mapped to the average subject surface mesh. Per cortical area, the mean response field of the 18 body parts was calculated as follows:

$$\mu dx_i = \frac{\sum_{v \in V_i} P(dx_v)}{|V_i|}, \{v \in V_i \mid pRFC(v) = i\}$$  \hspace{1cm} (10)

Where $\mu dx_i$ is the averaged 18-element array of normalized distances ($P(dx_v)$) of a set of vertices ($V_i$) where the pRF center is equal to body part $x_i$ ($pRFC(v) = i$). Thus, the averaged distances array $\mu dx_i$ is calculated for each cortical area and each body part being at the center. This results in 8x18 (ROIs x body parts) average response fields, each containing the relative distance of the 18 body parts (see also Figure 5).

To construct weighted graphs of body parts, we calculated the 18x18 correlation matrix of average response fields of each body part for each ROI separately. The Pearson correlation coefficient served as the connection strength, or weights, between body parts. As a final step, the correlation matrix needed to be thresholded to remove low and negative correlation coefficients. This is an arbitrary process, and we chose to include only positive values with a cut-off at the lowest 5% of correlation coefficients per cortical area. Disregarding negative and the lowest 5% of positive correlation coefficients resulted in connected graphs without islands, while removing spurious connections [23,94]. At the end of this procedure, we have 8 (for each ROI) weighted graphs with 18 nodes each. The 18 nodes represent the body parts. Whether or not node $i$ was connected to node $j$, thus, depended on the correlation of average response fields $\mu dx_i$ with $\mu dx_j$.

Graph theory offers many metrics, of which some represent similar ideas. We chose the commonly used metrics Connectivity, Clustering and Betweenness Centrality as measures of body part information distribution. All graph metrics were calculated per subject, per graph (i.e. ROI), per node (i.e. body part representation). The connectivity of node $i$ in a weighted graph is equal to its weighted degree ($k$):

$$k_i^w = \sum_{j \in N} w_{ij}$$ \hspace{1cm} (11)
Where \( N \) is the set of nodes in the graph (i.e. 18 body parts), and \( w_{ij} \) is the weight between node \( i \) and node \( j \). The weighted clustering coefficient measures segregation of nodes from the network. First, the weighted geometric triangles \( (t) \) around node \( i \) are calculated:

\[
t_i^w = \frac{1}{2} \sum_{h \in N} \left( W_{ih} W_{ih} W_{jh} \right)^\frac{1}{3} \quad (12)
\]

The weighted clustering coefficient \( (C) \), then is calculated by normalization of the weighted geometric triangles around node \( i \) using the weighted degree \( (k) \).

\[
C_i^w = \frac{1}{n} \sum_{i \in N} \frac{2t_i^w}{k_i^w (k_i^w - 1)} \quad (13)
\]

Finally, the betweenness centrality is assessed. The betweenness centrality coefficient reflects the centrality of the position of nodes in the network on the basis of path length and the fraction of shortest paths passing through a node. First, the shortest weighted path length between any two nodes is assessed:

\[
d_{ij}^w = \min_\{\sum_{u \in P_{ij}} f(W_{uv})\} \quad (14)
\]

Where \( f(W_{uv}) \) is a mapping function from weight to length. In our study the inverse of the weight was used. Then, \( g_{w_{ij}} \) is the shortest weighted path between nodes \( i \) and \( j \). The shortest weighted path was found through an extensive search of each graph. Now with the shortest weighted path length, the weighted characteristic path length \( (L) \) is assessed for each node:

\[
L_i^w = \frac{1}{n} \sum_{i \in N} \frac{\sum_{j \neq i} d_{ij}^w}{n-1} \quad (15)
\]

The betweenness centrality coefficient \( (b) \) for node \( i \) is then calculated as follows:

\[
b_i = \frac{1}{(n-1)(n-2)} \sum_{h,j \in N} \sum_{h \neq j, h \neq i, j \neq i} \frac{\rho_{hj}(i)}{\rho_{hj}} \quad (16)
\]

Where \( \rho_{hj} \) is the number of shortest paths through nodes \( h \) and \( j \), and \( \rho_{hj}(i) \) is the number of shortest paths through nodes \( h \) and \( j \) that also pass through node \( i \). Last, Louvain modularity was calculated as follows:

\[
Q_w = \frac{1}{\sum_{i,j \in N} W_{ij}} \left[ W_{ij} - \frac{k_i^w k_j^w}{L_i^w} \right] \delta_{m_i,m_j} \quad (17)
\]

Where the network is fully subdivided in \( m \) modules, \( m_i \) is the network containing node \( i \), and \( \delta_{m_i,m_j} = 1 \) if \( m_i = m_j \) and \( \delta_{m_i,m_j} = 0 \) if \( m_i \neq m_j \). \( w_{ij} \) is the number of edges between nodes \( i \) and
$j$ and $l_\omega$ is the total number of edges in the graph. Modular structures are found by iteratively optimizing $Q^\omega$.

### 4.6 Statistical analysis

The first test verified the presence of somatotopic structures. A somatotopic structure is defined as a series of cortical body part representations that show a gradual shift in cortical location. The pRF center value was used for this together with the x/y-coordinates of the flattened average subject cortical surface mesh. For the majority of ROIs, it was not a priori known in which cortical direction, if any, a somatotopy could be observed. To try to account for that, we automatically rotated each ROI, so that the mean coordinate of vertices having the toes, ankle, or knee as pRF center pointed south (i.e. low vertical coordinates) and the mean coordinate of vertices with the lip, jaw, or tongue as pRF center pointed north (i.e. high vertical coordinates). Using a linear regression per subject and ROI on the pRF center versus rotated vertical coordinates, we assess the existence of somatotopic structures: regression coefficients significantly larger than zero indicate a gradual increase of pRF center with rotated vertical coordinates, which was tested with a student’s t-test across subjects per ROI. We carried out the same linear regression analysis with pRF size over rotated vertical coordinates to test for gradual changes in pRF size per cortical location (i.e. pRF size gradients). Additionally, pRF size was also analyzed using a repeated measures analysis of variance (ANOVA). The average pRF size per pRF center was calculated first: i.e. an average of pRF size values across voxels with the same pRF center per ROI per subject. The pRF center and ROIs were added as factors in the repeated measures ANOVA, allowing us to test for the effects of pRF center and ROI on pRF sizes across subjects. The final analyses performed on the common pRF metrics center and size were a series of correlation analyses. In the first analysis, the non-rigid pRF centers were correlated with the non-rigid pRF sizes. The pRF center and size maps were averaged over the number of subjects, creating 2 single maps with a value per surface vertex. These maps were correlated with each other using Pearson correlation, resulting in a single correlation value of which the statistical significance was calculated with the number of non-zero surface vertices minus 2 as the degrees of freedom (significance threshold was Bonferroni corrected). Similarly, correlation values were calculated between the averaged non-rigid pRF center map and the averaged conventional pRF center map, and the averaged non-rigid pRF size map with the averaged conventional pRF size map.

Next, we tested whether there was an effect of body part (i.e. the cortical homunculus ordering) on distance to the center of the response field. For each body part being at the response field center, we averaged the distance of body parts that were one step away on
the homunculus ordering. Then, the distance of body parts that were two steps away, and so until the maximum ordering distance of 17 body parts was reached. Using a repeated measures ANOVA with a priori specified linear contrast we tested if the distance from the response field center would increase (linearly) with increasing distance regarding the cortical homunculus.

Finally, we tested for significance of all graph theoretical metrics (connectivity, clustering and betweenness centrality coefficients) separately, using a 2-way repeated measures ANOVA per metric with nodes (body parts) and ROI as factors. Additionally, deviation contrasts were defined beforehand, testing for significant differences of any node’s or ROI’s metric compared to the averaged corresponding metric of all other nodes or ROIs.

All statistical tests were performed using JASP (https://jasp-stats.org).
Acknowledgments

This work was supported by the National Institute Of Mental Health of the National Institutes of Health under Award Number R01MH111417.

We like to thank Mariana Pedroso Branco and Janne Luppi, who helped with data acquisition.
Competing Interests

This work was supported by the National Institute Of Mental Health of the National Institutes of Health. Authors are employed by the University Medical Center Utrecht, Netherlands.
Author contributions

Conceptualization: WS, NP, NR

Data acquisition: WS, CB

Analysis: WS, CB

Writing: WS
Supplementary figures

Supplementary figure 1

Conventional pRF center maps

The conventional pRF centers are shown on the average subject pial surface (left) and inflated surface (right) from a lateral point of view (top) and medial point of view (bottom). Colors indicate the body part that was estimated as the pRF center. The ROIs are denoted by the lines drawn on the surfaces: primary motor cortex (M1), primary somatosensory cortex (S1), supplementary motor area (SMA), dorsal premotor cortex (PMd), ventral premotor cortex (PMv), Insula/Sylvian fissure (Insula), inferior parietal cortex (iPC), and superior parietal cortex (sPC).

Supplementary figure 2

Conventional pRF size maps

The conventional pRF size is shown on the average subject pial surface (left) and inflated surface (right) from a lateral point of view (top) and medial point of view (bottom). Colors indicate the pRF size. The ROIs are denoted by the lines drawn on the surfaces: primary motor cortex (M1), primary somatosensory cortex (S1), supplementary motor area (SMA), dorsal premotor cortex (PMd), ventral premotor cortex (PMv), Insula/Sylvian fissure (Insula), inferior parietal cortex (iPC), and superior parietal cortex (sPC).
References

1. Yokoi A, Arbuckle SA, Diedrichsen J. The role of human primary motor cortex in the production of skilled finger sequences. J Neurosci. 2018;38: 1430–1442. doi:10.1523/JNEUROSCI.2798-17.2017

2. Li N, Chen T-W, Guo Z V., Gerfen CR, Svoboda K. A motor cortex circuit for motor planning and movement. Nature. 2015;519: 51–56. doi:10.1038/nature14178

3. Chouinard PA, Paus T. The Primary Motor and Premotor Areas of the Human Cerebral Cortex. Neurosci. 2006;12: 143–152. doi:10.1177/1073858405284255

4. Cunningham DA, Machado A, Yue GH, Carey JR, Plow EB. Functional somatotopy revealed across multiple cortical regions using a model of complex motor task. Brain Res. 2013;1531: 25–36. doi:10.1016/j.brainres.2013.07.050

5. Griffin DM, Hudson HM, Belhaj-Saïf A, McKiernan BJ, Cheney PD. Do corticomotoneuronal cells predict target muscle EMG activity? J Neurophysiol. 2008;99: 1169–1186. doi:10.1152/jn.00906.2007

6. Griffin DM, Hoffman DS, Strick PL. Corticomotoneuronal cells are "functionally tuned." Science (80- ). 2015;350: 667–670. doi:10.1126/science.aaa8035

7. Omrani M, Kaufman MT, Hatsopoulos NG, Cheney PD. Perspectives on classical controversies about the motor cortex. J Neurophysiol. 2017;118: 1828–1848. doi:10.1152/jn.00795.2016

8. Sanes JN, Schieber MH. Orderly somatotopy in primary motor cortex: does it exist? Neuroimage. 2001;13: 968–974. doi:10.1006/nimg.2000.0733

9. Graziano MSA. Ethological Action Maps: A Paradigm Shift for the Motor Cortex. Trends Cogn Sci. 2016;20: 121–132. doi:10.1016/j.tics.2015.10.008

10. Penfield W, Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain. 1937;60: 389–443. doi:10.1093/brain/60.4.389

11. Zeharia N, Hofstetter S, Flash T, Amedi A. A Whole-Body Sensory-Motor Gradient is Revealed in the Medial Wall of the Parietal Lobe. J Neurosci. 2019;39: 7882–7892. doi:10.1523/JNEUROSCI.0727-18.2019

12. Zeharia N, Hertz U, Flash T, Amedi A. New Whole - Body Sensory - Motor Gradients
35

Revealed Using Phase-Locked Analysis and Verified Using Multivoxel Pattern Analysis and Functional Connectivity. J Neurosci. 2015;35: 2845–2859. doi:10.1523/JNEUROSCI.4246-14.2015

13. Tal Z, Geva R, Amedi A. Positive and Negative Somatotopic BOLD Responses in Contralateral Versus Ipsilateral Penfield Homunculus. Cereb cortex. 2017;27: 962–980. doi:10.1093/cercor/bhx024

14. Meier JD, Aflalo TN, Kastner S, Graziano MS a. Complex organization of human primary motor cortex: a high-resolution fMRI study. J Neurophysiol. 2008;100: 1800–12. doi:10.1152/jn.90531.2008

15. Rathelot J-A, Strick PL. Muscle representation in the macaque motor cortex: An anatomical perspective. Proc Natl Acad Sci. 2006;103: 8257–8262. doi:10.1073/pnas.0602933103

16. Rathelot J-A, Strick PL. Subdivisions of primary motor cortex based on cortico-motoneuronal cells. Proc Natl Acad Sci U S A. 2009;106: 918–23. doi:10.1073/pnas.0808362106

17. Lemon R. The output map of the primate motor cortex. Trends Neurosci. 1988;11: 501–506. doi:10.1016/0166-2236(88)90012-4

18. Schellekens W, Petridou N, Ramsey NF. Detailed somatotopy in primary motor and somatosensory cortex revealed by Gaussian population receptive fields. Neuroimage. 2018;179: 337–347. doi:10.1016/j.neuroimage.2018.06.062

19. Dumoulin SO, Wandell BA. Population receptive field estimates in human visual cortex. Neuroimage. 2008;39: 647–60. doi:10.1016/j.neuroimage.2007.09.034

20. Thomas JM, Huber E, Stecker GC, Boynton GM, Saenz M, Fine I. Population receptive field estimates of human auditory cortex. Neuroimage. 2015;105: 428–439. doi:10.1016/j.neuroimage.2014.10.060

21. Puckett AM, Bollmann S, Junday K, Barth M, Cunnington R. Bayesian population receptive field modeling in human somatosensory cortex. Neuroimage. 2020;208: 116465. doi:10.1016/j.neuroimage.2019.116465

22. Penfield W, Rasmussen T. The cerebral cortex of man; a clinical study of localization of function. Macmillan. 1950.

23. Rubinov M, Sporns O. Complex network measures of brain connectivity: Uses and
interpretations. Neuroimage. 2010;52: 1059–1069. doi:10.1016/j.neuroimage.2009.10.003

24. Van Den Heuvel MP, Stam CJ, Kahn RS, Hulshoff Pol HE. Efficiency of functional brain networks and intellectual performance. J Neurosci. 2009;29: 7619–7624. doi:10.1523/JNEUROSCI.1443-09.2009

25. Bassett DS, Sporns O. Network neuroscience. Nat Neurosci. 2017;20: 353–364. doi:10.1038/nn.4502

26. Wang Y, Vandenberghe R, Dupont P. Comparison of different generalizations of clustering coefficient and local efficiency for weighted undirected graphs. Neural Comput. 2017;29: 313–331. doi:10.1162/NECO

27. Masuda N, Sakaki M, Ezaki T, Watanabe T. Clustering coefficients for correlation networks. Front Neuroinform. 2018;12: 1–13. doi:10.3389/fninf.2018.00007

28. Mason O, Verwoerd M. Graph theory and networks in biology. IET Syst Biol. 2007;1: 89–119. doi:10.1049/iet-syb:20060038

29. Barthélemy M. Betweenness centrality in large complex networks. Eur Phys J B. 2004;38: 163–168. doi:10.1140/epjb/e2004-00111-4

30. Newman MEJ. Fast algorithm for detecting community structure in networks. Phys Rev. 2004;69: 066133.

31. Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci U S A. 2006;103: 8577–8582. doi:10.1073/pnas.0601602103

32. Sadato N, Yonekura Y, Waki A, Yamada H, Ishii Y. Role of the supplementary motor area and the right premotor cortex in the coordination of bimanual finger movements. J Neurosci. 1997;17: 9667–9674. doi:10.1523/jneurosci.17-24-09667.1997

33. Nachev P, Kennard C, Husain M. Functional role of the supplementary and premotor motor areas. Nat Rev Neurosci. 2008;9: 856–869. doi:10.1038/nrn2478

34. Zeharia N, Hertz U, Flash T, Amedi A. Negative blood oxygenation level dependent homunculus and somatotopic information in primary motor cortex and supplementary motor area. Proc Natl Acad Sci U S A. 2012;109: 18565–18570. doi:10.1073/pnas.1119125109
35. Kim JH, Lee JM, Jo HJ, Kim SH, Lee JH, Kim ST, et al. Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: Functional connectivity-based parcellation method. Neuroimage. 2010;49: 2375–2386. doi:10.1016/j.neuroimage.2009.10.016

36. Picard N, Strick PL. Motor areas of the medial wall: A review of their location and functional activation. Cereb Cortex. 1996;6: 342–353. doi:10.1093/cercor/6.3.342

37. Sanchez Panchuelo RM, Besle J, Schluppeck D, Humberstone M, Francis S. Somatotopy in the Human Somatosensory System. Front Hum Neurosci. 2018;12: 1–14. doi:10.3389/fnhum.2018.00235

38. Eickhoff SB, Grefkes C, Zilles K, Fink GR. The somatotopic organization of cytoarchitectonic areas on the human parietal operculum. Cereb Cortex. 2007;17: 1800–1811. doi:10.1093/cercor/bhl090

39. Ruben J, Schwie mann J, Deuchert M, Meyer R, Krause T, Curio G, et al. Somatotopic Organization of Human Secondary Somatosensory Cortex. Cereb Cortex. 2001;11: 463–473. doi:10.1093/cercor/11.5.463

40. Kakei S, Hoffman DS, Strick PL. Muscle and Movement Representations in the Primary Motor Cortex. Science (80- ). 1999;285: 2136–2139. doi:10.1126/science.285.5436.2136

41. Georgopoulos AP, Pellizzer G, Poliakov A V., Schieber MH. Neural coding of finger and wrist movements. J Comput Neurosci. 1999;6: 279–288. doi:10.1023/A:1008810007672

42. Asanuma H, Rosén I. Topographical organization of cortical efferent zones projecting to distal forelimb muscles in the monkey. Exp Brain Res. 1972;14: 243–256. doi:10.1007/BF00816161

43. Fetz EE, Cheney PD. Muscle fields of primate corticomotoneuronal cells. J Physiol (Paris). 1978.

44. Fetz EE, Cheney PD. Muscle Fields and Response Properties of Primate Corticomotoneuronal Cells. Prog Brain Res. 1979. doi:10.1016/S0079-6123(08)60814-6

45. Kim SS, Gomez-Ramirez M, Thakur PH, Hsiao SS. Multimodal interactions between proprioceptive and cutaneous signals in primary somatosensory cortex. Neuron.
46. Salas MA, Bashford L, Kellis S, Jafari M, Jo H, Kramer D, et al. Proprioceptive and cutaneous sensations in humans elicited by intracortical microstimulation. Elife. 2018;7: 1–11. doi:10.7554/eLife.32904

47. Tanji J, Shima K. Role for supplementary motor area cells in planning several movements ahead. Lett to Nat. 1994;371: 413–416.

48. Cunnington R, Windischberger C, Deecke L, Moser E. The preparation and execution of self-initiated and externally-triggered movement: A study of event-related fMRI. Neuroimage. 2002;15: 373–385. doi:10.1006/nimg.2001.0976

49. Shenoy K V., Sahani M, Churchland MM. Cortical control of arm movements: A dynamical systems perspective. Annu Rev Neurosci. 2013;36: 337–359. doi:10.1146/annurev-neuro-062111-150509

50. Pruszynski JA, Kurtzer I, Nashed JY, Omrani M, Brouwer B, Scott SH. Primary motor cortex underlies multi-joint integration for fast feedback control. Nature. 2011;478: 387–390. doi:10.1038/nature10436

51. Simonsen EB. Contributions to the understanding of gait control. Dan Med J. 2014;61: 1–23.

52. Rotte M, Kanowski M, Heinze HJ. Functional magnetic resonance imaging for the evaluation of the motor system: Primary and secondary brain areas in different motor tasks. Stereotact Funct Neurosurg. 2002;78: 3–16. doi:10.1159/000063834

53. Mayer A, Baldwin MKL, Cooke DF, Lima BR, Padberg J, Lewenfus G, et al. The Multiple Representations of Complex Digit Movements in Primary Motor Cortex Form the Building Blocks for Complex Grip Types in Capuchin Monkeys. J Neurosci. 2019;39: 6684–6695. doi:10.1523/JNEUROSCI.0556-19.2019

54. Graziano MSA, Aflalo TN. Mapping behavioral repertoire onto the cortex. Neuron. 2007;56: 239–251. doi:10.1016/j.neuron.2007.09.013

55. Martuzzi R, van der Zwaag W, Farthouat J, Gruetter R, Blanke O. Human finger somatotopy in areas 3b, 1, and 2: A 7T fMRI study using a natural stimulus. Hum Brain Mapp. 2014;35: 213–226. doi:10.1002/hbm.22172

56. Hager-Ross C, Schieber MH. Quantifying the independence of human finger movements: Comparisons of digits, hands, and movement frequencies. J Neurosci.
Van Duinen H, Gandevia SC. Constraints for control of the human hand. J Physiol. 2011;589: 5583–5593. doi:10.1113/jphysiol.2011.217810

Van Den Noort JC, Van Beek N, Van Der Kraan T, Veeger DJHEJ, Stegeman DF, Veltink PH, et al. Variable and asymmetric range of enslaving: Fingers can act independently over small range of flexion. PLoS One. 2016;11: 1–18. doi:10.1371/journal.pone.0168636

Fuglevand AJ. Mechanical properties and neural control of human hand motor units. J Physiol. 2011;589: 5595–5602. doi:10.1113/jphysiol.2011.215236

Hu X, Suresh NL, Xue C, Rymer WZ. Extracting extensor digitorum communis activation patterns using high-density surface electromyography. Front Physiol. 2015;6: 1–9. doi:10.3389/fphys.2015.00279

Kaas JH, Stepniewska I, Gharbawie O. Cortical networks subserving upper limb movements in primates. Eur J Phys Rehabil Med. 2012;48: 299–306.

di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G. Understanding motor events: a neurophysiological study. Exp Brain Res. 1992;91: 176–180. doi:10.1007/BF00230027

Ferri S, Rizzolatti G, Orban GA. The organization of the posterior parietal cortex devoted to upper limb actions: An fMRI study. Hum Brain Mapp. 2015;36: 3845–3866. doi:10.1002/hbm.22882

Dounskaia N, Shimansky Y. Strategy of arm movement control is determined by minimization of neural effort for joint coordination. Exp Brain Res. 2016;234: 1335–1350. doi:10.1007/s00221-016-4610-z

Hernandez-Castillo CR, Maeda RS, Pruszynski JA, Diedrichsen J. Sensory information from a slipping object elicits a rapid and automatic shoulder response. J Neurophysiol. 2020;123: 1103–1112. doi:10.1152/jn.00672.2019

Dominici F, Popa T, Ginanneschi F, Mazzocchio R, Rossi A. Cortico-motoneuronal output to intrinsic hand muscles is differentially influenced by static changes in shoulder positions. Exp Brain Res. 2005;164: 500–504. doi:10.1007/s00221-005-2270-5

Yokoi A, Diedrichsen J. Neural Organization of Hierarchical Motor Sequence
Representations in the Human Neocortex. Neuron. 2019;103: 1178-1190.e7.
doi:10.1016/j.neuron.2019.06.017

68. Fetz EE. Are movement parameters recognizably coded in the activity of single neurons? Behav Brain Sci. 1992;15: 679–690.

69. Elsayed GF, Lara AH, Kaufman MT, Churchland MM, Cunningham JP. Reorganization between preparatory and movement population responses in motor cortex. Nat Commun. 2016;7: 1–15. doi:10.1038/ncomms13239

70. Murakami M, Vicente MI, Costa GM, Mainen ZF. Neural antecedents of self-initiated actions in secondary motor cortex. Nat Neurosci. 2014;17: 1574–1582.
doi:10.1038/nn.3826

71. Dounskaia N. Control of human limb movements: The leading joint hypothesis and its practical applications. Exerc Sport Sci Rev. 2010;38: 201–208.
doi:10.1097/JES.0b013e3181f45194

72. Ambike S, Schmiedeler JP. The leading joint hypothesis for spatial reaching arm motions. Exp Brain Res. 2013;224: 591–603. doi:10.1007/s00221-012-3335-x

73. Kurata K. Hierarchical Organization Within the Ventral Premotor Cortex of the Macaque Monkey. Neuroscience. 2018;382: 127–143.
doi:10.1016/j.neuroscience.2018.04.033

74. Binkofski F, Buccino G. The role of ventral premotor cortex in action execution and action understanding. J Physiol Paris. 2006;99: 396–405.
doi:10.1016/j.jphysparis.2006.03.005

75. Kurata K. Information processing for motor control in primate premotor cortex. Behav Brain Res. 1994;61: 135–142. doi:10.1016/0166-4328(94)90154-6

76. Harvey BM, Dumoulin SO. The relationship between cortical magnification factor and population receptive field size in human visual cortex: constancies in cortical architecture. J Neurosci. 2011;31: 13604–12. doi:10.1523/JNEUROSCI.2572-11.2011

77. McKetton L, DeSimone K, Schneider KA. Larger auditory cortical area and broader frequency tuning underlie absolute pitch. J Neurosci. 2019;39: 2930–2937.
doi:10.1523/JNEUROSCI.1532-18.2019

78. Merkel C, Hopf JM, Schoenfeld MA. Spatial elongation of population receptive field profiles revealed by model-free fMRI back-projection. Hum Brain Mapp. 2018;39: 
Silva MF, Brascamp JW, Ferreira S, Castelo-Branco M, Dumoulin SO, Harvey BM. Radial asymmetries in population receptive field size and cortical magnification factor in early visual cortex. Neuroimage. 2018;167: 41–52. doi:10.1016/j.neuroimage.2017.11.021

Hazzaa NM, Mancini L, Thornton J, Yousry TA. Somatotopic organization of corticospinal/corticobulbar motor tracts in controls and patients with tumours: A combined fMRI–DTI study. NeuroImage Clin. 2019;23: 101910. doi:10.1016/j.nicl.2019.101910

Holodny AI, Watts R, Korneinko VN, Pronin IN, Zhukovskiy ME, Gor DM, et al. Diffusion tensor tractography of the motor white matter tracts in man: Current controversies and future directions. Ann N Y Acad Sci. 2005;1064: 88–97. doi:10.1196/annals.1340.016

Kaplan DM. Explanation and description in computational neuroscience. Synthese. 2011;183: 339–373. doi:10.1007/s11229-011-9970-0

Rodieck RW, Stone J. Analysis of receptive fields of cat retinal ganglion cells. J Neurophysiol. 1965;5: 833–848.

Spitzer H, Hochstein S. A Complex-Cell Receptive-Field Model. J Neurophysiol. 1985;53: 1266–1286.

Friston KJ, Frith CD, Turner R, Frackowiak RSJ. Characterizing evoked hemodynamics with fMRI. Neuroimage. 1995;2: 157–165. doi:http://dx.doi.org/10.1006/nimg.1995.1018

Josephs O, Turner R, Friston K. Event-Related fMRI. Hum Brain Mapp. 1997;5: 243–248.

Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SCR, Frackowiak RSJ, et al. Analysis of fMRI time-series revisited. Neuroimage. 1995. pp. 45–53. doi:10.1006/nimg.1995.1007

Van de Moortele P-F, Auerbach EJ, Olman C, Yacoub E, Ugurbil K, Moeller S. T1 weighted brain images at 7 Tesla unbiased for proton density, T2* contrast and RF coil receive B1 sensitivity with simultaneous vessel visualization. Neuroimage. 2009;46: 432–446. doi:10.1016/j.neuroimage.2009.02.009.T
89. Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis: I. Segmentation and surface reconstruction. Neuroimage. 1999;9: 179–194. doi:10.1006/nimg.1998.0395

90. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. Review FSL. Neuroimage. 2012. doi:10.1016/j.neuroimage.2011.09.015

91. Fischl B, Rajendran N, Busa E, Augustinack J, Hinds O, Yeo BTT, et al. Cortical folding patterns and predicting cytoarchitecture. Cereb Cortex. 2008;18: 1973–1980. doi:10.1093/cercor/bhm225

92. Destrieux C, Fischl B, Dale A, Halgren E. Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage. 2010;53: 1–15. doi:10.1016/j.neuroimage.2010.06.010

93. Markwardt CB. Non-linear Least-squares Fitting in IDL with MPFIT. Astron Data Anal Softw Syst XVIII ASP Conf Ser. 2009;411: 251. doi:10.1101/2020.11.12.379339

94. Van Den Heuvel MP, Mandl RCW, Stam CJ, Kahn RS, Hulshoff Pol HE. Aberrant frontal and temporal complex network structure in schizophrenia: A graph theoretical analysis. J Neurosci. 2010;30: 15915–15926. doi:10.1523/JNEUROSCI.2874-10.2010