Olive (Olea europaea L.) is among the oldest of Mediterranean fruit crops. Many different genotypes are currently cultivated throughout the warm temperate regions of the world. Bartolini et al. (1998) lists 1200 cultivars with more than 3000 different common names in germplasm collections located in 24 countries. This diversity is due to local selection of outstanding genotypes and subsequent cloning. Names of cultivars refer mainly to some morphological traits, particularly of the fruit, or their supposed location of origin or their practical utility (Barranco and Rallo, 1984). This leads to the presence of a high number of homonyms and synonyms in olive. The diversity of cultivars and the confusion in naming require precise methods of discrimination for cultivar identification and classification.

Classical approaches for identifying olive cultivars are based on morphology (Barranco and Rallo 1984; Cimato et al., 1993; Leitão, 1988; Prevost et al., 1993; Tous and Romero, 1993). Although these markers provide a very useful tool for identification, they have limitations because of environmental influences, and the need for extensive observations of mature plants.

Recently, enzyme markers have provided an alternative means of olive cultivar identification due mainly to the high level of polymorphism found in this species. Most of these studies have been conducted using pollen extracts (Pontikis et al., 1980; Trujillo et al., 1995). However, use of pollen limits sample collection to mature trees at the time of flowering. Ouazzani et al. (1993) used successively leaf allozymes to study genetic variation in cultivated and wild olives. However enzyme systems of leaves showed a lower level of polymorphism than pollen allozymes and protein extraction was more laborious (Putumi et al., 1994).

Randomly amplified polymorphic DNA (RAPD) analysis were performed on the main Mediterranean cultivars of olive (Olea europaea L.) from the Germplasm Bank of the Centro de Investigación y Formación Agraria “Alameda del Obispo” in Cordoba, Spain. One hundred and ninety reproducible amplification fragments were identified using 46 random primers followed by agarose gel electrophoresis. Some 63.2% of the amplification products were polymorphic, with an average of 2.6 RAPD markers obtained for each primer. The combination of polymorphic markers resulted in 244 banding patterns. The high degree of polymorphism detected made identification of all the cultivars (51) possible by combining the RAPD banding patterns of just only four primers: OPA-01, OPK-08, OPX-01, and OPX-03. Cultivar-specific RAPD markers and banding patterns were also found. A dendrogram based on unweighted pair-group method cluster analysis was constructed using a similarity matrix derived from the RAPD amplification products generated by the 46 primers. Three major groups of cultivars could be distinguished by RAPD analysis: 1) cultivars from east and northeast Spain, 2) Turkish, Syrian, and Tunisian cultivars, and 3) the majority of common olive cultivars in Spain. The dendrogram thus showed a good correlation between the banding patterns of olive cultivars and their geographic origin. A higher level of polymorphism was observed when polyacrylamide gel electrophoresis was used to separate the amplification products. Thus, adequate use of RAPD technology offers a valuable tool to distinguish between olive cultivars.
cation studies (Bogani et al., 1994; Fabbri et al., 1995; Vergari et al., 1996; Wiesman et al., 1998). Increasingly polyacrylamide gel electrophoresis (PAGE) is being used for resolving DNA fragments in identification studies of other species (Bassam et al., 1991a; Caetano-Anollés and Bassam, 1997; Caetano-Anollés et al., 1991; Filippis et al., 1996; Harada et al., 1993; Ronning et al., 1995).

A germplasm bank that currently includes 329 cultivars ob-

Table 1. Olive cultivars analyzed, including their registration number (RN) in the collection, the countries of origin, and the banding patterns obtained with the primers OPA-01, OPK-08, OPX-01, and OPX-03 in agarose.

Cultivars	RN	Origin	OPA-01	OPK-08	OPX-01	OPX-03
Alfafara	605	Spain	A	H	E	H
Aloreña	829	Spain	---	I	E	B
Arbequina	231	Spain	H	E	G	H
Ascolana Tenera	62	Italy	A	J	K	B
Ayvalik	97	Turkey	D	E	G	J
Bical	387	Spain	C	E	E	H
Blanqueta	11	Spain	G	E	B	L
Çakir	96	Turkey	D	I	G	F
Carolea	736	Italy	C	H	G	B
Castellana	576	Spain	F	D	J	H
Changlot Real	15	Spain	F	E	J	F
Chemlali	744	Tunisia	B	E	B	I
Chetoui	113	Tunisia	D	F	B	I
Cobrançosa	124	Portugal	A	J	J	H
Coratina	79	Italy	E	E	E	I
Cordovil de Serpa	131	Portugal	G	I	G	F
Cornicabra	10	Spain	A	G	K	H
Domat	94	Turkey	G	E	B	G
Empeltre	13	Spain	G	E	H	E
Farga	12	Spain	A	E	I	C
Frantoio	80	Italy	G	I	F	I
Galega	128	Portugal	C	J	K	H
Gemlik	92	Turkey	A	B	Z	H
Gerboui	538	Tunisia	G	E	B	F
Gordal Sevillana	234	Spain	F	E	K	A
Hojiblanca	2	Spain	C	G	J	H
Kaissy	140	Syria	F	B	G	A
Kalamon	105	Greece	F	E	B	J
Konserovilia	219	Greece	D	E	B	G
Koroneiki	218	Greece	B	G	B	D
Leccino	82	Italy	C	E	J	H
Lechin de Granada	54	Spain	A	H	H	H
Lechin de Sevilla	5	Spain	F	A	E	I
Manzanilla Cacereña	430	Spain	F	I	K	H
Manzanilla Sevillana	21	Spain	F	L	J	H
Memecik	93	Turkey	D	E	B	F
Meski	115	Tunisia	D	I	G	B
Moraiolo	78	Italy	D	I	H	I
Morisca	17	Spain	A	J	B	H
Morrut	224	Spain	A	L	J	E
Picholine Maroçaine	101	Morocco	A	J	K	H
Picual	9	Spain	F	H	J	H
Picudo	3	Spain	---	K	J	H
Sevillanca	227	Spain	F	K	B	B
Sourani	364	Spain	E	I	J	B
Uslu	788	Syria	E	D	A	

1Letters represent the banding patterns for each primer.
2Missing data.
tained from 16 Mediterranean countries was established in the CIFA, Alameda del Obispo, Cordoba, Spain, in 1970. This collection now represents one of the largest olive collections in the world (del Río and Caballero, 1994). Furthermore, the number of accessions maintained in this germplasm bank is increasing due to a current EU project (RESGEN CT, 96/97) aimed at collecting new genetic resources from 11 Mediterranean countries. Consequently, an easy and reliable method is required to characterize this large and diverse collection of genotypes. Therefore, the objective of this study was to assess the capacity of RAPD markers to discriminate and classify olive cultivars in various germplasm banks. The capacity of two separation matrices (AGE and PAGE) to detect polymorphism in olive and hence to discriminate between cultivars was also compared.

Material and Methods

Plant Material. For RAPD–AGE 51 cultivars of olive, constituting a representative sample of the genetic diversity found in the germplasm bank of the CIFA Alameda del Obispo in Córdoba, Spain, were used (Table 1). These cultivars were chosen on the basis of their different geographic origins and economic importance within the Mediterranean region. All of the cultivars had been described previously and identified by standard morphological descriptions (Barranco and Rallo, 1984). Among them, homonyms such as ‘Lechín de Sevilla’ and ‘Lechín de Granada’; ‘Manzanilla de Sevilla’ and ‘Manzanilla Cacereña’; ‘Verdial de Badajoz’, ‘Verdial de Vélez-Málaga’, and ‘Verdial de Huevar’ were also included. For RAPD–PAGE only 46 of the 51 cultivars were used because DNA of ‘Aloreña’, ‘Sourani’, ‘Verdial de Badajoz’, ‘Verdial de Velez-Málaga’, and ‘Picudo’ was not available.

DNA Extraction. Genomic DNA was extracted from young leaf tissue collected in Spring 1997, following the method of Murray and Thompson (1980) with modifications, in particular an increase in the concentration of sodium bisulphite from 20 mM to 40 mM. DNA was extracted three times for each cultivar. Estimation of DNA concentration and quality was based on the visual method of Sambrook et al. (1989) in which DNA samples, separated by 0.8% AGE in TBE buffer (100 mM Tris-HCl, 89 mM boric acid, 1 mM Na₂EDTA, pH 8.3), were stained with ethidium bromide (0.5 µg·mL⁻¹) and band intensities were compared to lambda DNA standards (50, 100, 200, and 300 ng·µL⁻¹).

Polymerase Chain Reaction. Ninety five decamer oligonucleotides from kits A, C, D, E, K, Q, R, S, X, and Z (Operon Technologies, Alameda, Calif.) were screened by PCR amplification on agarose. Comparison of band resolution on polyacrylamide and agarose was performed with four primers from the kits

![Fig. 1. RAPD amplification products and schematic representation of the banding patterns obtained with the primers (A and B) OPA-01 and (C and D) OPK-08 under AGE. The selected amplification fragments are indicated with arrows. The letters at the bottom of the photographs correspond to the banding patterns. The lane at the right end of the gel corresponds to the molecular marker (M). In the representation of banding patterns, the molecular weight (M.W.) is indicated on the Y-axis.](image-url)
E, X, and Z. DNA was amplified in 20 μL reaction mixtures containing 20-40 ng of template DNA, 0.05 U AmpliTaq DNA polymerase Stoffel fragment (PE Biosystem, Foster City, Calif.), 0.75 mM each of dNTP (Roche, Basel, Switzerland), 20 μM of the primer, 25 mM MgCl₂, 50 mM KCl and 10 mM Tris-HCl, (pH 8.3). The reactions were performed in a thermal cycler (PE Biosystem, GeneAmp PCR System 9600, Norwalk, Conn.) programmed for 1 cycle of 1 min at 94 °C followed by 40 cycles of 20 s at 94 °C, 20 s at 35 °C and 2 min at 72 °C, for denaturing, primer annealing, and extension, respectively. The last cycle was followed by incubation for 6 min at 72 °C. All the reactions were conducted three times using DNA of different extractions and different lots of the AmpliTaq DNA polymerase.

Separation and visualization of the amplification products. Agarose gels (AGE) (Seakem, Nusieve, FMC, Rockland, Maine) of 25 × 15 cm (2% w/v) were prepared and run in TBE, pH 8.3, (100 mM Tris-HCl, 89 mM boric acid, and 1 mM Na₂EDTA) buffer at 120 V for 3.3 h stained with ethidium bromide (0.5 mg·mL⁻¹) and photographed under ultraviolet (UV) light using a DC 120 Digital Camera (Kodak, Rochester, N.Y.).

Polyacrylamide gels (PAGE) of 18 × 16 cm containing 10% acrylamide, 0.126% piperazine diacrylamide crosslinker in 0.375 mM Tris-HCl, pH 8.8, were separated in Tris glycine (0.025 mM Tris, and 0.192 mM glycine) at 30 mA per gel for 3.5 h. The DNA was visualized by silver staining as described by Bassam et al., (1991b). Gels were photographed using a digital camera as described previously. Molecular sizes of the amplification products were estimated using a 123-base pair (bp) DNA ladder (Sigma Chem. Co. St. Louis, Mo.).

Data analysis. For gel analyses and accurate visualization of the bands, Whole Band Analyzer (Biomage, Ann Arbor, Mich.) was used. Whole Band Matcher from the same manufacturer was used for computing band sizes and for automated data output. RAPD bands were scored as 1 (present) or 0 (absent) in a binary matrix for each primer. A conservative criterion for the selection of bands was used. Only reproducible and well-defined bands were considered as potential polymorphic markers. The amplification banding patterns of two cultivars ('Arbequina' and 'Lechín de Sevilla') and bulked DNA were used as standards for comparing different gels. Banding patterns, i.e., the different combinations of bands obtained for each primer, were designated by the name of the respective primer followed by a capital letter (Figs. 1 and 2). The level of polymorphism of the primer (polymorphic bands per total bands), relative frequency of polymorphic bands (cultivars where a polymorphic bands = present/total number of cultivars) were calculated. Relative frequency of banding patterns (number of cultivars with the same banding pattern/total number of cultivars) were also calculated.

Jaccard’s (1908) coefficient of similarity was calculated, and the cultivars were grouped by cluster analysis using the unweighted pair-group method (UPGMA). The computer program used was SYSTAT Version 7.0/1977 from SPSS, Inc., Chicago, Ill.
Table 2. Selected primers in agarose gel electrophoresis, their polymorphism (P) to the total number of bands (T), and the number of banding patterns obtained.

Primers	P/T	Banding patterns	Primers	P/T	Banding patterns
OPA-01	4/4	8	OPK-19	2/5	4
OPA-02	4/4	8	OPK-20	2/4	3
OPA-05	2/3	4	OPQ-09	3/6	8
OPA-10	2/5	4	OPQ-10	3/3	5
OPC-09	2/6	6	OPQ-14	2/2	4
OPC-11	3/5	6	OPQ-15	2/3	4
OPC-15	1/3	2	OPQ-17	1/4	2
OPD-01	3/3	8	OPR-01	2/4	4
OPD-03	3/4	7	OPR-06	2/2	3
OPD-05	4/5	7	OPR-07	2/3	4
OPE-02	3/6	6	OPR-09	3/4	5
OPE-07	3/4	5	OPR-13	3/4	5
OPE-14	2/4	3	OPR-20	2/6	3
OPE-20	1/3	2	OPS-03	3/4	5
OPK-02	2/3	3	OPS-11	2/3	3
OPK-04	3/7	5	OPS-14	1/3	2
OPK-08	4/4	12	OPX-01	5/7	12
OPK-11	2/4	3	OPX-03	5/5	13
OPK-12	2/5	4	OPZ-07	2/3	2
OPK-14	3/3	5	OPZ-11	5/6	10
OPK-16	6/8	15	OPZ-12	2/2	4
OPK-17	4/5	10	OPZ-18	1/4	2
OPK-18	1/3	2	OPZ-19	1/2	2
Total	64/101	135	Total	56/89	109

Results

STUDY OF RAPD—AGE VARIABILITY IN OLIVE. Forty-six decamer oligonucleotide primers were selected from the 95 screened (Table 2). Selection was based on the quality of the amplifications, level of polymorphism, and consistency of the pattern of amplification in the three replications.

A total of 120 polymorphisms (2.6 polymorphic markers per primer) out of 190 reproducible products (4.1 fragments per primer) were obtained from the 46 primers when resolved in AGE (Table 2). The molecular weight of the amplification products varied from 117-bp (OPZ-18) to 1242-bp (OPC-11). The number of bands per primer ranged from two (OPQ-14, OPR-06, OPZ-12, and OPZ-19) to eight (OPK-16), whereas the number of polymorphic bands per primer ranged from 1 to 6, corresponding to 63.2% of the amplification products. High variability in the frequency of polymorphic bands in the cultivars studied was observed. This frequency varied from 0.02 (bands present in only one cultivar of the 51 studied) to 0.96 (bands absent in only one cultivar of the 51 studied). In general, the average frequency of the above-mentioned bands was high (0.42).

Table 3. Unique bands with their molecular weight (the criteria used to score them and the cultivars identified).

Unique markers (AGE)	Identification criteria	Cultivar identified
OPD-05.869	Presence	Frantoio
OPE-07.371	Absence	Coratina
OPK-19.731	Absence	Zaity
OPK-19.584	Presence	Zaity
OPK-02.731	Presence	Frantoio
OPK-20.506	Presence	Uslu
OPQ-09.522	Absence	Morisca
OPS-11.466	Presence	Koroneiki
OPZ-11.583	Presence	Farga
The selected primers yielded 247 banding patterns (5.4 per primer). The number of banding patterns per primer ranged from 2 (OPK-08, OPZ-19) to 15 (OPK-16). Relative frequency of the banding patterns varied from 0.02 to 0.88. Average frequency of the banding patterns was low (0.2). Forty six unique banding patterns were found. These resulted either from the unique RAPD markers or from different combinations of polymorphic bands found (Tables 3 and 4).

Cultivar identification with RAPD–AGE markers. The variability found allowed identification of the cultivars in various independent ways: a) unique RAPD markers, b) unique banding patterns, and c) combination of the banding patterns provided by different primers.

The presence of nine unique RAPD markers made identification of seven cultivars possible (Table 3), while 25 cultivars were identified by means of 46 unique banding patterns (Table 4). Most of the cultivars identified by unique markers and unique banding patterns correspond to those most important economically in the Mediterranean region. This is very important for identification of the cultivars included in the study. Furthermore, the combination of eight additional primers (OPA-10, OPC-11, OPC-15, OPD-01, OPD-03, OPD-05, OPE-02, and OPK-14) which, in general, produced a smaller banding pattern (See Table 2) proved to be another way for identification of all the genotypes. Other combinations of primers could provide other possibilities for identification of the cultivars. The homonyms considered in this study: ‘Lechin de Granada’ and ‘Lechin de Sevilla’; ‘Manzanilla Cacereña’ and ‘Manzanilla de Sevilla’; ‘Verdial de Badajoz’, ‘Verdial de Huelva’ and ‘Verdial de Vélez-Málaga’, could be discriminated clearly and independently by only one or two primers.

Genetic relationships among olive cultivars. In the dendrogram constructed by UPGMA cluster analysis (Fig. 3), similarity coefficients between all possible pairs of genotypes ranged from 0.71 to 0.96. From this dendrogram, most of the cultivars could be classified into three major groups.

Group 1 consisted of the cultivars ‘Farga’, ‘Changlot Real’, ‘Morrut’ ‘Blanqueta’, ‘Empeltre’, and ‘Arbequina’. Those cultivars come from the regions of Catalonia, Valencia and Aragón, which are situated in eastern and northeast Spain.

Group 2 was composed of two branches; one of them comprised one Greek (‘Konservolia’), one Italian (‘Carolea’), and two Turkish (‘Memecik’ and ‘Gemlik’) cultivars; the other branch included most of the cultivars from central and southern Spain (‘Gordal Sevillana’, ‘Verdial de Huelva’, ‘Manzanilla de Sevilla’, ‘Pical’, ‘Verdial de Badajoz’, ‘Alfalfa’, ‘Bical’, ‘Castellana’, ‘Morisca’, ‘Picudo’, ‘Manzanilla Cacereña’, ‘Cornicabra’, ‘Lechin de Granada’ and ‘Hojiblanca’) and some others from Morocco (‘Picholine Marocaine’), Portugal (‘Cobrançosa’), and Italy (‘Leccino’).

Group 3 included four Turkish cultivars, ‘Ulusl’, ‘Çakir’ ‘Ayyalik’, and ‘Domat’ from the six Turkish ones included in the study, two cultivars from Syria, ‘Sourani’ and ‘Kassy’, two Tunisian cultivars, ‘Gerboui’ and ‘Meski’, and the Portuguese cultivar ‘Cordovil de Serpa’. The subgroup formed by the cultivars ‘Ascolana Tenera’, ‘Aloreña’, and ‘Villalonga’ was added to this group. The cultivars ‘Chetoui’ and ‘Chemlali’, both from Tunisia, showed a high level of similarity (0.9) as did the Turkish cultivar ‘Çakir’ and the Portuguese one ‘Cordovil de Serpa’ (0.96).

Several pairs of cultivars branched in the dendrogram at low values of similarity (0.72 to 0.78), i.e., they represent some small groups relatively unrelated to the main groups. This was the case for: ‘Lechin de Sevilla’ and ‘Verdial de Vélez Málaga’, both from Spain; ‘Moraiolo’ (Italy) and ‘Coroneiki’ (Greece); ‘Kalamos’ (Greece) and ‘Sevillana’ (Spain); and ‘Coratina’ and ‘Frantoio’, both from Italy. Two cultivars, ‘Zaity’ (Syria) and ‘Galega’ (Portugal), were added to the dendrogram at low values of similarity. RAPD analysis indicated evidence of relationship for most of the cultivars, according to their geographic origin.

Polymorphism level and resolving capacity of polyacrylamide versus agarose. Although the rate of migration of RAPD amplification products in agarose and polyacrylamide gels was different, some similarities of RAPD profiles in both systems were found (Figs. 2c and 4). As expected, PAGE showed bands that were better-separated and more defined than AGE for all the primers tested except OPX-1, as indicated for OPX-3 (Figs. 2c and 4). This improved resolution capacity of PAGE resulted in the appearance of new scorable bands (Table 5).

The increase in polymorphism led to a greater discrimination
Table 5. Comparison of the number of polymorphic bands obtained with polyacrylamide and agarose.

Primers	Polyacrylamide	Agarose
OPE-02	9	3
OPX-01	5	5
OPZ-03	10	5
OPZ-19	4	1
Total	28	14

In summary, RAPD markers provide highly discriminating and reliable DNA markers for management of olive germplasm banks. Identification of olive cultivars in germplasm banks will be possible with few combinations of carefully selected primers and results herein demonstrate that RAPD technique can be useful in classification. Moreover, the high number of unique markers observed in this study represents a very useful tool for certification of plant material in the nursery industry as true-to-type, for paternity tests, and in future, for genetic mapping.

Literature Cited

Barranco, D. 1997. Variedades y patrones, p. 59–80. In: D. Barranco, R. Fernández-Escobar, and L. Rallo (eds.). El cultivo del olivo. Mundiprensa y Junta de
Lopez-Valenzuela, J.A., O. Martinez, and O. Paredes-Lopez. 1997. Geographic differentiation and embryo type identification in Mangifera indica L. HortScience 32:1105–1108.

Loukas, M. and C. B. Krimbas. 1983. History of olive cultivars based on their genetic distances. J. Hortic. Sci. 58:121–127.

Lu, Z.-X., G.L. Reighard, W.V. Baird, A.G. Abbott, and S. Rajapakse. 1996. Identification of peach rootstock cultivars by RAPD markers. HorticScience 31:127–129.

Machado, M.A., F.H. Coletta, M.N. Targon, and J.J. Pompeu. 1996. Genetic relationship of Mediterranean mandarins (Citrus deliciosa Tenore) using RAPD markers. Euphytica 92:321–326.

Mekuria, G.T., G.G. Collins, and M. Sedgley. 1999. Genetic variability between different accessions of some common commercial olive cultivars. J. Hortic. Sci. Biotechnol. 74:309–314.

Murray, M.G. and W.F. Thompson. 1980. Rapid isolation on high molecular weight plant DNA. Nucleic Acids Res. 8:4321–4325.

Nicese, F.P., J.J. Hormaza, and C.H. McGranahan. 1998. Molecular characterization and genetic relatedness among walnut (Juglans regia L.) genotypes based on RAPD markers. Euphytica 101:199–206.

Ortiz, A., R. Renaud, I. Calzada, and E. Ritter. 1997. Analysis of plum cultivars with RAPD markers. J. Hortic. Sci. 72: I–9.

Ouazzani, N., R. Lumaret, P. Villemar, and di F. Giusto. 1993. Leaf allozyme variation in cultivated and wild olive trees (Olea europaea L.). J. Hered. 84:34–42.

Patumi, M., G. Fontanazza, R. Nucci, and C. Vaccaro. 1994. Preliminary studies on isozymatic and enzymatic activities isolated from olive plant. Acta Hortic. 356:95–97.

Pontikis, C.A., M. Loukas, and G. Kousounis. 1980. The use of biochemical markers to distinguish olive cultivars. J. Hortic. Sci. 55:333–343.

Prevost, G., G. Bartolini, and C. Messeri. 1993. Italian olive cultivars and their synonyms. Menegazzo edition. Lucca. Italy.

Rallo, L. and F. Cidraacs. 1978. Mejora vegetal del olivo. II Seminario Oleícola Internacional. Ministerio de Agricultura, Madrid, Spain. p. 26–43.

Ronning, C.M., R.J. Schnell, and D.N. Kuhn. 1995. Inheritance of random amplified polymorphic DNA (RAPD) in Theobroma cacao L. J. Amer. Soc. Hortic. Sci. 120:681–686.

Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular cloning: A laboratory manual. Cold Spring Harbor Lab. Press, Cold Spring Harbor, N.Y.

Tous, J. and A. Romero. 1993. Variedades del Olivo. Fundación “La Caixa”, Barcelona, Spain.

Trujillo, I., R. de la Rosa, L. Rallo, and A. Belaj. 1999. Selection of RAPD markers for olive (Olea europaea L.) cultivar identification. In: L.T. Metzidakis and D.G. Voyiatzis. (eds.). Proc. 3rd Intl. ISHS Symp. on Olive Growing. Acta Hortic 475:495–498.

Trujillo, I., L. Rallo, and P. Arus. 1995. Identifying olive cultivars by isozyme analysis. J. Amer. Soc. Hortic. Sci. 120:318–324.

Vergari, G., M. Patumi, and G. Fontanazza. 1996. Use of RAPD markers in the characterisation of olive germplasm. Olivieae 60:19–22.

Warburton, M.L. and F.A. Bliss. 1996. Genetic diversity in peach (Prunus persica L. Batch) revealed by randomly amplified polymorphic DNA (RAPD) markers and compared to inbreeding coefficients. J. Amer. Soc. Hortic. Sci. 121:1002–1019.

Weeden, N.F., G.M. Timmerman, M. Hemmat, B.E. Kneen, and B.A. Lodhi. 1992. Inheritance and reliability of RAPD markers. Application of RAPD technology to plant breeding. p. 12–17. Crop. Sci. Soc. Amer. Madison. Wis.

Welsh, J. and M. McClelland. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 18:7213–7218.

Wiesman, Z., N. Avidan, S. Lavee, and B. Quebedeaux. 1998. Molecular characterization of common olive varieties in Israel and the West bank using randomly amplified polymorphic DNA (RAPD) markers. J. Amer. Soc. Hortic. Sci. 123:837–841.

Williams, J.K., A.R. Kubelik, J.K. Livak, J.A. Rafalski, and S.V. Tingey. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 18:6531–6535.

Williams, J.K., A.R. Kubelik, J.A. Rafalski, and S.V. Tingey. 1991. Genetic analysis with RAPD markers. p. 431–439. In: J.W. Bennett and L.L. Lazur (eds). More gene manipulation in Fungi. Academic Press, New York.

Zohary, D. and P. Spiegel-Roy. 1975. Beginning of fruit growing in the old world. Science, 187:319–327.