STABILITY OF THE L^p-NORM OF THE CURVATURE TENSOR AT KÄHLER SPACE FORMS

SOMA MAITY

ABSTRACT. We consider the Riemannian functional defined on the space of Riemannian metrics with unit volume on a closed smooth manifold M given by $R_p(g) := \int_M |R(g)|^p dv_g$ where $R(g), dv_g$ denote the corresponding Riemannian curvature, volume form and $p \in [2, \infty)$. We prove that R_p restricted to the space of Kähler metrics attains its local minima at a metric with constant holomorphic sectional curvature.

1. Introduction

Let M be a closed smooth manifold of dimension $n \geq 3$ and \mathcal{M}_1 be the space of Riemannian metrics with unit volume on M endowed with the $C^{2,\alpha}$-topology for any $\alpha \in (0, 1)$. In this paper we study the following Riemannian functional:

$$R_p(g) = \int_M |R(g)|^p dv_g$$

where $R(g)$ and dv_g denote the corresponding Riemannian curvature tensor and volume form, $p \in [2, \infty)$. Let \mathcal{M}_k denote the space of Kähler metrics with unit volume on M. Consider $C^{2,\alpha}$-topology on it.

Theorem. Let (M, g) be a closed Kähler manifold with constant holomorphic sectional curvature and $p \in [2, \infty)$. Then (M, g) is a strict local minimizer for R_p restricted to \mathcal{M}_k i.e. there exists a neighborhood U of g in \mathcal{M}_k such that for any $\tilde{g} \in U$

$$R_p(\tilde{g}) \geq R_p(g).$$

The equality holds if and only if there exists a biholomorphism ϕ of M such that $\tilde{g} = \phi^* g$.

Remark : If (M, g) is a Kähler manifold with constant negative holomorphic sectional curvature then there are finite number of biholomorphisms of M. Hence there exists a neighborhood U_1 of g in \mathcal{M}_k such that for any $\tilde{g} \in U_1$, $R_p(\tilde{g})$ is strictly greater than $R_p(g)$.

Definition : Let (M, g) be a Kähler manifold. A symmetric 2-tensor h on M is called a Kähler variation of g if there exists a one-parameter family of Kähler metrics $g(t)$ on M with $g(0) = g$ and $\frac{d}{dt}g(t)|_{t=0} = h$.

Let \mathcal{K} denote the space of Kähler variations of g and \mathcal{V} denote the space of symmetric 2-tensors orthogonal to the tangent space of the orbit of g under the action of the group of diffeomorphisms of M. First we prove that the Hessian of R_p has a positive lower bound when it is restricted to the space of unit vectors in $\mathcal{K} \cap \mathcal{V}$. The gradient of R_p is given by

$$\nabla R_p = -p\delta^D d^*|R|^{p-2} R - p|R|^{p-2} \hat{R} + \frac{1}{2} |R|^p g + (\frac{p}{n} - \frac{1}{2}) ||R||^p g$$

Key words and phrases. Riemannian functional, critical point, stability, local minima.
For the notations we refer to Section 2. Every closed irreducible symmetric space is a critical point for R_p. The Hessian at a critical point of R_p is given by

$$H(h_1, h_2) = \langle (\nabla R_p)'_g(h_1), h_2 \rangle \quad \forall \ h_1, h_2 \in S^2(T^*M)$$

where $S^2(T^*M)$ denotes the space of symmetric 2-tensor fields on M and $(\nabla R_p)'_g(h_1)$ denotes the derivative of ∇R_p at g along h_1. A Riemannian metric g is called rigid if the kernel of H restricted to $V \times V$ is zero and it is called stable if H restricted to the products of unit vectors of V has a positive lower bound. It is difficult to investigate rigidity and stability of R_p for any arbitrary irreducible symmetric space. The strict stability of R_p has been obtained for Riemannian manifolds with constant sectional curvature and their suitable products for certain values of p [SM].

Let δ_g denote the divergence operator acting on $S^2(T^*M)$. The main result of this paper is the following.

Proposition. Let (M, g) be a Riemannian manifold with constant holomorphic sectional curvature c. Then there exists a positive constant $k(c, p)$ such that for any $h \in K$ with $\text{tr}(h) = 0$ and $\delta_g(h) = 0$.

$$H(h, h) \geq k\|h\|^2$$

where $\|\cdot\|$ denotes the L^2-norm on $S^2(T^*M)$ defined by g. The condition $\delta_g(h) = 0$ and $\text{tr}(h) = 0$ implies that $h \in K \cap V$ ([AB] Lemma 4.57).

Remark: For any $p \in [2, \frac{n}{2})$, if the first eigenvalue of the Laplacian of a compact hyperbolic manifold satisfies a lower bound then it is a local minimizer for R_p [SM]. In the spherical case, this holds for all $p \in [2, \infty)$. The extra condition in case of a compact hyperbolic manifold is required to prove the stability of R_p restricted to the conformal metrics. Since the only Kähler metrics in the conformal class of g are constant multiples of g, no extra condition is required to prove stability of R_p restricted to the Kähler variations.

Next we prove the existence of a local minimizing neighborhood of g. The idea of proof is based on the work of Gursky and Viaclovsky in [GV]. Some crucial observations about the space of Kähler variations and Kähler metrics are required here which are given in Lemma 4 and 5. Finally we end up with the following question.

Question: Is R_p stable for any compact Hermitian symmetric space?

2. **Proof**

2.1. **Preliminaries:** Let $\{e_i\}$ be an orthonormal basis at a point of M. \hat{R} is a symmetric 2-tensor defined by $\hat{R}(x, y) = \sum R(x, e_i, e_j, e_k)R(y, e_i, e_j, e_k)$.

Define $\hat{\hat{R}} : S^2(T^*M) \rightarrow S^2(T^*M)$ by

$$\hat{\hat{R}}(h)(x, y) := \sum R(e_i, x, e_j, y)h(e_i, e_j)$$

Let D and D^* be the Riemannian connection and its formal adjoint. Let $\Gamma(V)$ denote the space of sections of a vector bundle V and Λ^p denote the space of p-forms on M. Next we define some differential operators.
The divergence operator δ_g on $S^2(T^*M)$ and its formal adjoint δ_g^* are defined by

$$\delta_g(h)(x) = -D_{e_i} h(e_i, x)$$

$$\delta_g^*\omega(x, y) := \frac{1}{2}(D_{xy} + D_{yx})$$

Let g_t be a one-parameter family of metrics with $\frac{d}{dt}(g_t)_{t=0} = h$ and $T(t)$ be a tensor depending on g_t. Then $\frac{d}{dt}T(t)_{t=0}$ is denoted by $T'(h)$. Define $\Pi_h(x, y) = \frac{d}{dt}D_x y_{t=0}$ and $\bar{\tau}_h(x, y) := R'_g(h)(x, e_i, y, e_i)$ where x, y are two fixed vector fields. The suffix h will be omitted when there will not be any ambiguity.

W is a 3-tensor defined by,

$$W_h(x, y, z) := \langle (D^*)'(h)(R)(x, y, z)$$

$$- \sum[R(y, z, \Pi_h(e_i, e_i, w) + R(y, z, e_i, \Pi_h(e_i, w)) + R(z, e_i, \Pi_h(y, e_i), w) + R(e_i, y, \Pi_h(z, e_i), w) + R(e_i, y, e_i, \Pi_h(z, w))]]$$

Next we prove some lemma which will be used in the proof of the proposition. Let (M, g) be a symmetric two tensor field such that $\delta_g(h) = 0$ and $tr(h) = 0$. Then from the equation (4.1) in [SM] we have,

$$H(h, h) = p|R|^p - 2 \langle (\bar{\tau}_h, \delta^D d^D h) + \langle W_h, d^D h \rangle \rangle - \langle (\bar{R}_p)'(h), h \rangle + \frac{|R|^2}{n} ||h||^2$$

(2.1)

Next we compute each terms appeared in the above expression. We denote $T(e_{i_1}, e_{i_2}, ..., e_{i_k})$ by $T_{i_1i_2...i_k}$ where T is a k-tensor. Let $h \in S^2(T^*M)$ with $\delta_g(h) = 0$ and $tr(h) = 0$. Then we have the following lemma.

Lemma 1. $\bar{\tau}_h = \frac{1}{2}(D^* Dh + 2\lambda h)$

Proof. From [AB] 1.174(c), we have,

$$2(R'_g(h))_{p_{q_{i_{j}}}} = [(D_{q_{i{j}}}^2 h)_{p_{i}} + (D_{p_{i}}^2 h)_{q_{i}} - (D_{q_{i}}^2 h)_{i_{i}} - (D_{i_{i}}^2 h)_{p_{q_{i}}} + h_{i_{j}} R_{p_{i_{j}}} - h_{q_{j}} R_{p_{i_{j}}}]$$

Therefore,

$$\bar{\tau}_h(x, y) = \frac{1}{2} \sum [D_{e_i, y}^2 h(x, e_i) + D_{x, e_i}^2 h(y, e_i) + D_{x, e_i}^2 h(x, e_i) - D_{e_i, e_i}^2 h(x, y)$$

$$+ h(R(x, e_i, y, e_i) - h(R(x, e_i, e_i), y)]$$

Applying Ricci identity we have,

$$D_{e_i, y}^2 h(x, e_i) - D_{y, e_i}^2 h(e_i, x) = h(R(e_i, y, x), e_i) + h(R(e_i, y, e_i), x)$$

Notice that

$$\sum_i D_{y, e_i}^2 h(e_i, x) = -D \delta_g h(y, x) = 0$$

$$\sum_i h(R(e_i, y, x), e_i) = -R(x, y)$$
and
\[\sum_i h(R(e_i, y, e_i), x) = \sum_j r(y, e_j)h(x, e_j) = \lambda h(x, y). \]

We also have,
\[\sum_i D^2_{e_i e_i} h(x, y) = -D^* Dh(x, y) \]
and
\[\sum_i D^2_{x y} h(e_i, e_i) = Ddtr(h) = 0 \]

Combining all these results the lemma follows. \(\square\)

Lemma 2. \(\delta D^D h = 2D^* Dh + 2\lambda h - 2\circ R(h)\)

Proof. From the identity 2.8 in [MB] we have,
\[\delta D^D h_{pq} = 2D^* Dh_{pq} - 2\delta_g^\circ h_{pq} + \sum_i (r_{pi}h_{iq} + r_{qi}h_{ip}) - 2\sum_{i,j} R_{piqj}h_{ij} \]
\[= 2D^* Dh_{pq} + 2\lambda h_{pq} - 2\circ R(h)_{pq} \]
\(\square\)

Lemma 3. \(\delta W = 2[\lambda D^* Dh + \lambda^2 h + D^* D(\circ R(h)) - \circ R(\circ R(h))]\)

Proof. From the proof of Lemma 4.1 (ii) in [SM] we have,
\[(W, d^D h) = 2\sum (R_{ij\Pi_{ikl}} - R_{li\Pi_{ikj}} - R_{lii \Pi_{kj}}) (d^D h)_{jkl} \]

Now,
\[\sum R_{lii \Pi_{kj}} d^D h_{jkl} = \sum C_{kjm} R_{liim} d^D h_{jkl} \]
\[= -\sum r_{lm} C_{kjm} d^D h_{jkl} \]
\[= -\lambda \sum C_{kjm} d^D h_{jkm} \]
\[= -\frac{\lambda}{2} \sum [C_{kjm} - C_{mjk} d^D h_{jkm}] \]
\[= -\frac{\lambda}{2} d^D h_{jkm} d^D h_{jkm} \]

Therefore,
\[-2\int_M \sum R_{lii \Pi_{kj}} d^D h_{jkl} d v_g = \|d^D h\|^2 \]

Using the previous lemma we have,
\[-2\int_M \sum R_{lii \Pi_{kj}} d^D h_{jkl} d v_g = 2[\lambda \|Dh\|^2 + \lambda^2 \|h\|^2 - \lambda \langle h, \circ R(h) \rangle] \]

Now,
\[\sum (R_{ij\Pi_{ikl}} - R_{li\Pi_{ikj}}) d^D h_{jkl} = \frac{1}{2} \sum D_k h_{mi} (R_{ijml} - R_{limj}) d^D h_{jkl} \]
Since $DR = 0$, $\sum_{m,i} D_k h_{mi} R_{ijml} = D_k \hat{R} (h)_{jl}$.

Therefore,

$$\sum (R_{ijkl} - R_{iklj}) d^D h_{jkl} = \sum D_k \hat{R} (h)_{jl} d^D h_{jkl} = (D \hat{R} (h), Dh) - D_k \hat{R} (h)_{jl} D_l h_{jk}$$

Applying integration by parts,

$$\int_M D_k \hat{R} (h)_{jl} D_l h_{jk} dv_g = - \int_M \hat{R} (h)_{jl} D^2 h_{ij} dv_g.$$

Since $\delta_g h = 0$, using Ricci identity,

$$\sum [D^2 h_{ij} - D^2 h_{ji}] = \sum [h_{ml} R_{ijml} + h_{mi} R_{ijml}] + D\delta_g h_{jl} = \lambda h_{jl} - \hat{R} (h)_{jl}$$

Therefore,

$$\langle \delta^D W, h \rangle = 2\lambda \|Dh\|^2 + \lambda^2 \|h\|^2 + \langle \hat{R} (h), D^* Dh \rangle - \| \hat{R} (h) \|^2$$

Hence the lemma follows. \hfill \Box

Combining Lemma 1-3 and using (2.1) we obtain that if (M, g) is an irreducible symmetric space and h is a symmetric two tensor with $\delta_g h = 0$ and $tr (h) = 0$ then

$$H(h, h) = p \|R\|^{p-2} \|D^* Dh\|^2 + \lambda \|Dh\|^2 - 3 \langle \hat{R} (h), D^* Dh \rangle + \frac{|R|^2}{n} \|h\|^2$$

$$- 2\lambda \langle h, \hat{R} (h) \rangle + 2 \| \hat{R} (h) \|^2 \] - p |R|^{p-2} \langle (\hat{R}) (h), h \rangle$$

Next we will study H on the space of Kähler variations. For the definition of Kähler variation we refer to the introduction. A Kähler variation h is characterized the following two equations.

(k1) $h(Jx, Jy) = h(x, y)$

(k2) $J(\Pi h (x, y)) = \Pi h (x, Jy)$

Consider a closed Kähler manifold (M, g) with constant holomorphic sectional curvature. We can choose an orthonormal basis of the form $\{e_1, Je_1, ..., e_m, Je_m\}$. With respect to this basis R is given by

$$R(e_i, e_j, e_k) = R(e_i, Je_j, Je_k) = R(e_i, Je_j, e_k) = 0 \text{ if } k \notin \{i, j\}. $$

$$R(e_i, e_j, e_i, e_j) = R(e_i, Je_j, e_i, Je_j) = R(Je_i, Je_j, Je_i, Je_j) = c.$$

$$R(e_i, Je_i, e_j, Je_j) = 2c \text{ for } i \neq j.$$

$$R(e_i, Je_i, e_i, Je_i) = 4c \text{ where } c \text{ is a real number.}$$
Similarly we have,

\[\delta_h = \text{some expression} \]

Hence

\[\text{For detail computation we refer to Lemma 4.1 (i) in [SM]. Define a (4,0) curvature tensor } Q \text{ as} \]

\[Q(v_q, v_i, v_j, v_k) = D^2_{v_i,v_j} h(v_q, v_k) + D^2_{v_q,v_k} h(v_i, v_j) - D^2_{v_i,v_q} h(v_j, v_k) - D^2_{v_j,v_k} h(v_q, v_i) \]

To prove the proposition using the formula (2.2) one needs to compute the term \(\langle (\tilde{R}_g)'(h), h \rangle \). Let \(h \) be a Kähler variation with \(tr(h) = 0 \) and \(\delta_g(h) = 0 \).

\[\tilde{R}_{pq} = g^{i_1 i_2} g^{j_1 j_2} g^{k_1 k_2} R_{pij_1 k_1} R_{qij_2 k_2} \]

Differentiating each terms and evaluating it in an orthonormal basis \(\{v_i\} \) and using

\[(g^{ij})' = -g^{im} h_{mn} g^{nj} \]

we have,

\[(\tilde{R}_g)'(h)_{pq} = -h_{mn} (R_{pmij} R_{qmnj} + R_{pinj} R_{qimj} + R_{pijm} R_{qijn}) + (R'_g h)_{pijk} R_{qijk} + R_{pijk} (R'_g h)_{qijk} \]

For detail computation we refer to Lemma 4.1 (i) in [SM]. Define a (4,0) curvature tensor \(Q \) as

\[Q(v_q, v_i, v_j, v_k) = D^2_{v_i,v_j} h(v_q, v_k) + D^2_{v_q,v_k} h(v_i, v_j) - D^2_{v_i,v_q} h(v_j, v_k) - D^2_{v_j,v_k} h(v_q, v_i) \]

Hence

\[R'_g(h)(v_q, v_i, v_j, v_k) = \frac{1}{2} Q(v_q, v_i, v_j, v_k) + \frac{1}{2} \sum_m [h(v_k, v_m) R(v_q, v_i, v_j, v_m) - h(v_m, v_j) R(v_q, v_i, v_k, v_m)] \]

Next define a (2,0) tensor,

\[S(v_p, v_q) = \frac{1}{2} \sum_{i,j,k} R(v_p, v_i, v_j, v_k) Q(v_q, v_i, v_j, v_k) \]

Therefore,

\[\langle (\tilde{R}_g)'(h), h \rangle = -\sum h_{pq} h_{mn} (R_{pmij} R_{qmnj} + R_{pinj} R_{qimj} + R_{pijm} R_{qijn}) + 2(h, S) + \sum h_{pq} h_{mk} R_{pijk} R_{qijk} \]

Next we switch to a basis of the form \(\{e_1, Je_1, e_2, Je_2, \ldots\} \) to use the nice form of the curvature tensor.

\[S(e_p, e_q) = \sum_i R(e_p, e_i, e_p, e_i) Q(e_q, e_i, e_p, e_i) + \sum_{p \neq i} R(e_p, Je_i, e_p, Je_i) Q(e_q, Je_i, e_p, e_i) \]

\[+ \sum_{p \neq i} R(e_p, Je_i, e_p, e_i) Q(e_q, e_i, e_p, e_i) + \sum_{p \neq i} R(e_p, Je_i, e_p, e_i) Q(e_q, e_i, e_p, e_i) \]

\[= c \sum_{i \neq p} [Q(e_q, e_i, e_p, e_i) + Q(e_q, e_i, e_p, e_i) + Q(e_q, e_i, e_p, e_i) + Q(e_q, e_i, e_p, e_i) - Q(e_q, e_i, e_p, e_i) - Q(e_q, e_i, e_p, e_i)] + 4cQ(e_q, e_p, e_p, e_p) \]

Similarly we have,

\[S(e_p, Je_q) = c \sum_{i \neq p} [Q(Je_q, e_i, e_p, e_i) + Q(Je_q, e_i, e_p, e_i) + Q(Je_q, e_i, e_p, e_i) \]

\[- Q(Je_q, e_i, e_p, e_i) + 2Q(Je_q, e_p, e_i, e_i)] + 4cQ(e_q, e_p, e_p, e_p) \]
\[S(Je_p, e_q) = c \sum_{i \neq p} [Q(e_q, Je_i, Je_p, Je_i) + Q(Je_q, e_i, Je_p, e - i) + Q(e_q, Je_i, e_p, e_i) \\
- Q(Je_q, e_i, e_p, Je_i) + 2Q(e_q, e_p, Je_i, e_i)] + 4cQ(e_q, e_p, Je_p, e_p) \]

\[S(Je_p, Je_q) = c \sum_{i \neq p} [Q(Je_q, Je_i, Je_p, Je_i) + Q(Je_q, e_i, Je_p, e_i) + Q(Je_q, Je_i, e_p, e_i) \\
- Q(Je_q, e_i, e_p, Je_i) + 2Q(Je_q, e_p, Je_i, e_i)] + 4cQ(Je_q, e_p, Je_p, e_p) \]

Define \(r_Q \) by trace of \(Q \) in 2nd and 3rd entries. Therefore,

\[(S, h) = c \sum h(e_p, e_q)[Q(e_q, e_i, Je_p, Je_i) - Q(e_q, Je_i, Je_p, e_i) + 2Q(e_q, Je_p, e_i, Je_i)] \\
+ c \sum h(Je_p, Je_q)[Q(Je_q, e_i, Je_p, e_i) - Q(Je_q, e_i, Je_p, e_i) + 2Q(Je_q, Je_p, e_i, Je_i)] \\
+ c \sum h(Je_p, Je_q)[Q(Je_q, Je_i, e_p, e_i) - Q(Je_q, Je_i, e_p, e_i) + 2Q(Je_q, e_p, Je_i, e_i)] \\
+ c \sum h(Je_p, e_q)[Q(e_q, Je_i, e_p, e_i) - Q(e_q, e_i, e_p, Je_i) + 2Q(e_q, e_p, Je_i, e_i)] \\
+ c(r_Q, h) \]

\[\sum_i Q(e_q, Je_p, e_i, Je_i) = \sum_i \left[D_{Je_p, e_i}^2 h(e_q, Je_i) + D_{Je_p, Je_i}^2 h(e_q, e_i) - D_{Je_q, e_i}^2 h(Je_p, Je_i) - D_{Je_q, Je_i}^2 h(e_q, e_i) \right] \]

By a simple calculation we have,

\[D_{x,y}^2 h(Jw, Jz) = D_{x,y} h(w, z) \] (2.3)

Therefore,

\[\sum_i \left[D_{Je_p, e_i}^2 h(e_q, Je_i) - D_{Je_p, Je_i}^2 h(e_q, e_i) \right] = \sum_i \left[-D_{Je_q, e_i}^2 h(Je_q, e_i) - D_{Je_p, Je_i}^2 h(Je_q, Je_i) \right] \\
= 2\delta_y^* \delta_g h(Je_p, Je_q) \\
= 0 \]

and

\[\sum_i \left[D_{Je_q, e_i}^2 h(Je_p, e_i) - D_{Je_q, Je_i}^2 h(Je_p, Je_i) \right] = -\sum_i \left[D_{Je_q, e_i}^2 h(e_p, Je_i) + D_{e_q, e_i}^2 h(e_p, e_i) \right] \\
= 2\delta_y^* \delta_g h(e_q, Je_p) \\
= 0 \]

Hence,

\[\sum_i Q(e_q, Je_p, e_i, Je_i) = 0 \]

Similarly,

\[\sum_i Q(Je_q, Je_p, e_i, Je_i) = \sum_i Q(e_q, e_p, Je_i, e_i) = \sum_i Q(e_q, e_p, Je_i, e_i) = 0 \]
Next,
\[\sum_i [Q(Je_q, e_i, Je_p, Je_i) - Q(Je_q, Je_i, Je_p, e_i)] \]
\[= \sum_i [D_{e_i, Je_q} h(e_i, Je_i) + D_{Je_q, Je_i} h(e_i, Je_p) - D_{e_i, Je_i} h(Je_q, Je_p)] \]
\[+ D_{Je_i, e_i} h(Je_q, Je_p) - D_{Je_q, e_i} h(Je_i, Je_p) - D_{Je_i, Je_p} h(Je_q, e_i)] \]

Applying Ricci identity we have,
\[\sum_i [D_{e_i, Je_q} h(Je_q, Je_i) - D_{e_i, Je_i} h(Je_q, Je_p)] \]
\[= \sum_{i,j} [h(Je_j, e_p)R(Je_i, e_i, eq, Je_j) + h(Je_j, eq)R(e_i, e_i, ep, Je_i)] \]
\[= \sum_i \sum_j [h(Je_q, e_p)R(Je_i, e_i, eq, Je_q) + h(Je_p, eq)R(Je_i, e_i, ep, Je_p)] \]
\[= 0 \]
\[\sum_i [D_{e_i, ep} h(Je_q, Je_i) - D_{Je_i, ep} h(Je_q, e_i)] \]
\[= \sum_i [D_{e_i, ep} h(Je_q, Je_i) - D_{Je_i, ep} h(Je_q, e_i)] \]
\[+ \sum_i [D_{Je_i, e_i} h(Je_q, e_i) - D_{Je_i, ep} h(Je_q, e_i)] \]
\[= \sum_{i,j} [h(e_i, e_j)R(e_i, ep, Je_q, e_j) + h(Je_q, e_j)R(e_i, ep, Je_i, e_j)] \]
\[+ \sum_{i,j} [h(e_i, Je_q)R(Je_p, Je_i, Je_q, Je_j) + h(e_j, Je_q)R(Je_p, Je_i, e_i, e_j)] \]
\[= -2c(m + 1)h(e_p, Je_q) \]
\[\sum_i [D_{Je_i, e_i} h(e_i, Je_p) - D_{Je_i, e_i} h(Je_i, Je_p)] = -\sum_i [D_{Je_i, e_i} h(Je_i, Je_p) + D_{Je_q, e_i} h(e_i, Je_p)] \]
\[= \delta_g \delta_g h(Je_p, Je_q) \]
\[= 0 \]

Hence,
\[\sum_i [Q(Je_q, e_i, Je_p, Je_i) - Q(Je_q, Je_i, Je_p, e_i)] = -2c(m + 1)h(e_p, Je_q) \]

Following similar computation we have,
\[\sum_i [Q(e_q, e_i, Je_p, Je_i) - Q(e_q, Je_i, Je_p, e_i)] = -2c(m + 1)h(e_p, e_q) \]
\[\sum_i [Q(Je_q, Je_i, e_p, e_i) - Q(Je_q, e_i, ep, Je_i)] = -2c(m + 1)h(Je_p, Je_q) \]

and
\[\sum_i [Q(e_q, Je_i, e_p, e_i) - Q(e_q, e_i, ep, Je_i)] = -2c(m + 1)h(Je_p, e_q) \]
Hence

\((S, h) = c(r_Q, h) - 2c^2(m + 1)|h|^2 \)

Next we will compute the term \((r_Q, h)\).

\[
\begin{align*}
 r_Q(e_p, e_q) &= \sum_i [Q(e_p, e_i, e_q, e_i) + Q(e_p, Je_i, e_q, Je_i)] \\
 &= \sum_i [D^2_{e_i, e_q} h(e_p, e_i) + D^2_{e_p, e_i} h(e_i, e_q) + D^2_{Je_i, e_q} h(e_p, Je_i) + D^2_{e_p, Je_i} h(e_q, e_i)] \\
 - \sum_i [D^2_{e_p, e_q} (e_i, e_i) + D^2_{e_i, e_i} h(e_p, e_q) + D^2_{e_p, e_q} h(Je_i, e_i)] \\
- \sum_i [D^2_{e_p, e_i} h(e_i, e_q) + D^2_{e_p, Je_i} h(e_q, Je_i)] = 2\delta_y^*\delta_y h(e_p, e_q) = 0 \\
\end{align*}
\]

Now applying Ricci identity to the remaining terms after adding the term \(2\delta_y^*\delta_y h = 0\), we have

\[
\begin{align*}
\sum_i [D^2_{e_i, e_q} h(e_p, e_i) + D^2_{Je_i, e_q} h(e_p, Je_i)] \\
= \sum_i [R(e_i, e_q, e_p, e_j)h(e_j, e_i) + R(e_i, e_q, e_i, e_j)h(e_j, e_p)] \\
+ R(Je_i, e_q, e_p, Je_j)h(Je_j, Je_i) + R(Je_i, e_q, Je_i, e_j)h(e_j, e_p)] \\
= (\lambda + 6c)h(e_p, e_q) \\
= 2c(m + 4)h(e_p, e_q)
\end{align*}
\]

Hence

\[
 r_Q(e_p, e_q) = D^* Dh(e_p, e_q) + 2c(m + 4)h(e_p, e_q)
\]

Similarly computing the other coefficients of \(r_Q\) we get

\[
 r_Q = D^* Dh + 2(m + 4)h
\]

Therefore,

\[
 (S, h) = c|Dh|^2 + 6c^2|h|^2
\]

Next a simple calculation gives,

\[
 - \sum h_{pq} h_{mn} (R_{pimj} R_{qni} + R_{pimj} R_{qni} + R_{pijm} R_{qijn}) + \sum h_{pq} h_{mn} R_{pimj} R_{qijn} = - \sum [h_{mn} h_{pq} R_{pimj} R_{qijn} + h_{mn} h_{pq} R_{pimj} R_{qjni}]
\]
Since h, R are invariant under the action of J,

$$\sum h_{mn}h_{pq}R_{prij}R_{qijn}$$

\[= 4\sum h(e_p, e_q)h(e_m, e_n)[R(e_p, e_m, e_i, e_j)e_i, e_n, e_i, e_j] + R(e_p, J e_m, e_i, J e_j)R(e_q, J e_n, e_i, J e_j)]
\[+ 4\sum h(J e_p, e_q)h(J e_m, e_n)[R(e_p, e_m, e_i, e_j)e_i, e_n, e_i, e_j] + R(J e_p, e_m, J e_i, e_j)R(e_q, e_n, J e_i, J e_j)]
\[= 16(m + 1)c^2 \sum [h^2(e_p, e_q) + h^2(J e_p, e_q)]
\[= 8c^2(m + 1)|h|^2$$

Therefore,

$$\langle (\tilde{R}^i(h), h) = 2c||Dh||^2 - 12c^2m||h||^2$$

From the formula (2.2) we obtain,

$$H(h, h) = p|R|^{p-2}||D^* Dh||^2 + 2c(m - 3)||Dh||^2 + 4c^2m(4m + 5)||h||^2$$

\[= p|R|^{p-2}||D^* Dh + (m - 3)ch||^2 + (15m^2 + 14m + 6)c^2||h||^2$$

where k is a positive constant. Hence, the proof of the Proposition follows. \hfill \Box

2.3. Proof of the main Theorem: Next we prove the existence of a local minimizing neighborhood around g. Let \mathcal{H} denote the space of holomorphic vector fields on M. If (M, g) is a closed Kähler Einstein manifold then by a theorem by Lichnerowicz the dimension of \mathcal{H} is finite. If (M, g) is a Kähler manifold with constant negative holomorphic sectional curvature then $\mathcal{H} = 0$ [AB] Proposition 2.138.

Lemma 4. Let (M, g) be a Kähler Einstein manifold with positive scalar curvature. Then

$$\mathcal{K}_g = \mathbb{R} \oplus \delta^*(\mathcal{H}) \oplus (\mathcal{K}_g \cap \delta^{-1}(0) \cap tr^{-1}(0)).$$

Proof. It is easy to see that $\delta^*(\mathcal{H}) \subset \mathcal{K}_g$. Let $h \in \mathcal{K}_g$ and x, y, z are three vector fields. Then

$$\Pi_h(J x, J y) = -\Pi_h(x, y).$$

Hence

$$\langle \Pi_h(e_i, e_i), z \rangle + \langle \Pi_h(J e_i, J e_i), z \rangle = 0.$$
This implies,
\[D_zh(e_i, e_i) + D_z(Je_i, Je_i) = 2[D_{Je_i}h(z, Je_i) + D_{e_i}h(z, e_i)] \]

Therefore,
\[dtrh(z) + 2\delta g h(z) = 0 \] (2.4)

When \(h = \delta_g^* \omega \) for some one form \(\omega \) then
\[2\delta g \delta_g^* \omega = d\delta \omega \] (2.5)

Any one form \(\omega \) also satisfies the following identity.
\[2\delta g \delta_g^* \omega + \delta d \omega = 2D^*D \omega \] (2.6)

Using Böchner technique on the space of one forms we have
\[\Delta \omega = D^*D \omega + \lambda \omega. \] (2.7)

where \(\lambda \) denotes the Einstein constant. Lichnerowicz’s criterion for holomorphic vector fields says that \(\omega^\sharp \) is a holomorphic vector field if and only if
\[\frac{1}{2} \Delta \omega = \lambda \omega \] (2.8)

Combining the equations (2.5)-(2.8) we have that \(\delta_g^* \omega \) is a Kähler variation if and only if \(\omega^\sharp \) is a holomorphic vector field. We also have that if \(\omega^\sharp \) is a holomorphic vector field then so is \(\delta_g^* \omega \). (2.4) implies that if \(fg \) is a Kähler variation for some smooth function \(f \) on \(M \) then \(f \) is a constant function. Now the proof follows from the decomposition given in [AB] Lemma 4.57.

The following lemma is analogous to the Lemma 2.10 in [GV].

Lemma 5. For Kähler metric \(\tilde{g} = g + \theta_1 \) in a sufficiently small \(C^{l+1,\alpha} \)-neighborhood of the Kähler Einstein metric \(g \) \((l \geq 1) \), there is an automorphism \(\phi \) of \(M \) and a constant \(c \) such that

\[\tilde{\theta} = e^c \phi^* \tilde{g} - g \]

satisfies, \(\delta_g \tilde{\theta} = 0 \) and \(tr(\tilde{\theta}) = 0 \)

Proof. Consider the map \(\mathcal{N} : \mathcal{H} \times \mathbb{R} \times \mathcal{K} \to \mathcal{H} \times \mathcal{R} \) given by,

\[\mathcal{N}(x, t, \theta) = \mathcal{N}_0(x, t) = (\delta_g [\phi_{x,1}^*(g + \theta)], e^t \int_M tr_g [\phi_{x,1}^*(g + \theta)]dv_g - nV(g)) \]

where \(\phi_{x,1} \) denotes the diffeomorphism obtained by following the flow generated by the vector field \(x \) for unit time. Linearizing this map in \((x, t) \) at \((0, 0, 0) \) we obtain,

\[\mathcal{N}'_0(y, s) = (\delta_g L_g(y), snV(g)) \]

\[= \frac{1}{2} \delta_g \delta_g^*(y), snV(g) \]

where \(L \) denotes Lie derivative. It is easy to see that \(\mathcal{N}' \) is surjective. By implicit function theorem, given a \(\theta_1 \) small enough there exists \(x \in \mathcal{H} \) and a real number \(t \) such that

\[\delta_g [\phi_{x,1}^*(g + \theta_1)] = 0 \quad \text{and} \quad e^t \int_M tr_g [\phi_{x,1}^*(g + \theta_1)] = nV(g) \]

Let \(\phi = \phi_{x,1} \) and \(\tilde{\theta} = e^t \phi^*(g + \theta_1) - g \). Then \(\phi \) and \(\tilde{\theta} \) satisfies the conditions given in the Lemma. □
Let \mathcal{M} denote the space of Riemannian metrics on M, \mathcal{R}_p denote the Riemannian functional defined by volume normalization of \mathcal{R}_p on \mathcal{M} and \tilde{H}_g its 2nd derivative at g. Let $\mathcal{W} = (\mathcal{K}_g \cap \delta_{\tilde{g}}^{-1}(0) \cap \text{tr}^{-1}(0))$. To complete the proof of the main theorem we recall some results from [SM].

Let g be a Riemannian metric on M with unit volume. There exists a neighborhood U of g in \mathcal{M}_1 such that for any $\tilde{g} \in U$ and $h \in \mathcal{W}$,

$$|\tilde{H}_g(h, h) - \tilde{H}_g(h, h)| \leq C \|\tilde{g} - g\|_{C^{2,\alpha}}^4 \|h\|_{L^2}^2$$

where

$$\|h\|_{L^2}^2 = \|D^2h\|^2 + \|Dh\|^2 + \|h\|^2.$$

Using the Proposition one can prove that if (M, g) is a metric with constant holomorphic sectional curvature then there exists a positive constant k_1 such that for every $h \in (\mathcal{K}_g \cap \delta_{\tilde{g}}^{-1}(0) \cap \text{tr}^{-1}(0))$

$$\tilde{H}_g(h, h) \geq k_1 \|h\|_{L^2}^2.$$

Now consider a neighborhood U of g in the space of Kähler metrics where Lemma 5 and 6 holds. Let $\tilde{g} \in U$. Using Lemma 5 we have a Kähler metric g_0 in U such that $g - g_0 \in \mathcal{W}$. Now consider $\gamma(t) = tg_0 + (1 - t)g$. Since $\tilde{H}_\gamma(t)$ restricted to the space \mathcal{W} is positive definite integrating \tilde{H} along $\gamma(t)$ we obtain the main theorem. For detail description we refer to the proof of Proposition 3 in [SM].

Remark : If (M, g) is a Kähler manifold with constant negative holomorphic sectional curvature then there are finitely many biholomorphisms of M. So the space of Kähler metrics intersect the orbit of group of diffeomorphisms of g in finitely many points. In this case Lemma 4 and 5 are not required to prove the main theorem.

Acknowledgement: I wish to thank Harish Seshadri for several discussions. This work is financially supported by UGC Center for Advanced Studies.

References

[AB] Arthur L. Besse, *Einstein manifolds*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3)[Results in Mathematics and Related Areas (3)], Volume 10, Springer-Verlag, Berlin, (1987).

[GV] Matthew J. Gursky and Jeff A. Viaclovsky, *Rigidity and stability of Einstein metrics for quadratic functionals*, arXiv:1105.4648v1 [math.DG] 23 May 2011.

[MB] M. Berger, *Quelques formules de variation pour une structure riemannienne*, Ann. Sci. Ecole Norm. Sup. 4ème série, Volume 3 (1970), 285-294.

[SM] Soma Maity, *On the stability of the L^p-norm of curvature tensor*, arXive:1201.1691[math.DG] 15 March 2012.

Department of Mathematics, Indian Institute of Science, Bangalore-12, India

E-mail address: somamaity@math.iisc.ernet.in