Potential of house yard plants as an alternative for dengue vector control in the tsunami area settlement of Banda Aceh City

Elita Agustina1,2*, Amin Setyo Leksono3, Zulfaidah Penata Gama3, Bagyo Yanuwiadi3, Mauliza Sukma2

1Doctoral Program, Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia.
2Department of Biology Education, Faculty of Education and Teacher Training, Universitas Islam Negeri Ar-Raniry, Banda Aceh, Indonesia.
3Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, Indonesia.

ARTICLE INFO
Received on: 06/02/2022
Accepted on: 07/07/2022
Available Online: 05/11/2022

Key words: Aedes, attractant, dengue vector control, house yard plants, potential repellent.

ABSTRACT
The rebuilding of settlements after the 2004 Aceh tsunami has created a new home environment. Human activities and behavior in managing new home environments have inadvertently contributed to creating new habitats for Aedes. One of the factors that support and limit the presence of Aedes is the plants around the house. Plants also influence mosquitoes in a place; they are known as mosquito-attracting plants and mosquito-repellent plants. This study aimed to determine the potential of house yard plants as an alternative to dengue hemorrhagic fever vector control in the tsunami settlement area of Banda Aceh City. This research is an explorative survey using 200 house yards in the tsunami area settlement of Banda Aceh City. The result of the study found two species of Aedes (Aedes aegypti and Aedes albopictus) and 63 families of house yard plants with 150 species in the tsunami area settlement of Banda Aceh City. Totally, 63 families have the potential as dengue vector repellents and 17 as dengue vector attractants. Plants in the tsunami settlements of Banda Aceh City have the potential as an alternative for controlling dengue vectors.

INTRODUCTION
Aceh Province in Indonesia experienced the most severe earthquake and tsunami disaster in 2004. After the tsunami infrastructure development occurred rapidly in Banda Aceh City. Banda Aceh City became the administrative center of Aceh Province and was the most tsunami-affected area. Residential settlement development continues to increase yearly in Banda Aceh City (Gadeng et al., 2019). The return of the community to new settlements with all the activities of daily life has created a habitat for Aedes and an explosion of cases of dengue hemorrhagic fever (DHF). Reports from the Ministry of the Health Republic of Indonesia revealed that cases of dengue fever in Aceh continued to increase after the tsunami (Ministry of Health Indonesia, 2007).

Cases of dengue fever in Banda Aceh City after the tsunami from 2005 to 2007 experienced a significant increase. The explosion of very high dengue cases occurred in 2010, with 759 cases after the return of the community to new housing in 2009 (Agustina et al., 2021).

This condition is related to the high population of Aedes and other supporting factors that caused the presence of Aedes in the tsunami’s neighborhood area of Banda Aceh City. Aedes is an invasive species that can adapt to and interact with the surrounding environment. The invasive species interactions vary in space and time and depend on local conditions (Cunze et al., 2018).

Mosquitoes exist around humans because of the availability of breeding places, eating, and resting habitats. Therefore, it is necessary to have control efforts oriented to the habitat conditions and the necessities of life for it. The life of Aedes depends on plants. Plants are resting places and sources of food for male and female Aedes aegypti and Aedes albopictus Skuse (Agustina et al., 2019). Plants can serve as attractors or repels, and each type has a different attraction. Mosquitoes come to plants because smells or colors attract them to get food (Barredo and DeGennaro, 2020).
Data collection

This research begins with a preliminary survey using an exploratory method to determine the condition of the houses in the Meuraxa Subdistrict and Syiah Kuala Subdistrict, Banda Aceh City. Purposive sampling was used to sample 200 sample houses. The selection was houses suspected of having an Aedes breeding place and plants in the yard. The collection of house yard plants involved the larva monitoring community in each village. To determine secondary metabolites that attract or repel Aedes using a literature study, all plants found in the house yards were collected and documented. The data were then summarized, and the results of the studies arranged in the tabular form of the list of secondary metabolites in plants that can function as repellents or attractants.

Data analysis

The data from this research are presented and analyzed using descriptive statistics.

Statistical analysis

Statistical analysis for calculation of graph and table data was carried out with Microsoft Excel.

RESULTS AND DISCUSSION

The results of 200 houses in the tsunami area settlement of Banda Aceh City found 150 species and 63 families of house yard plants (Fig. 2). The category of plant habitus found in the study area comprised herbs (44%), shrubs (32%), and trees (24%) (Fig. 3). The tsunami disaster caused the coast to be badly damaged, and almost all the vegetation was destroyed and lost. After the tsunami, much vegetation of the damaged coastal area naturally changed (succession), namely, the emergence of pioneer plant species such as herbs, shrubs, and trees (Suryawan, 2007).

The family’s highest number of species are from the group Araceae (14 species), Euphorbiaceae (8 species), Asparagaceae (7 species), Lamiaceae (6 species), Apocynaceae (5 species), Arecaceae (5 species), Fabaceae (4 species), Myrtaceae (4 species), Portulacaceae (4 species), Solanaceae (4 species), and Zingiberaceae (4 species) (Fig 2). Many species in this family found at the research sites are related to the COVID-19 pandemic. Restrictions on activities outside the home during the COVID-19 pandemic have provided much free time at home and made many people take up new hobbies such as caring for ornamental plants and business opportunities for buying and selling plants. Plants in pots are obtained easily by ordering through online media or direct purchase. Residents in the tsunami area of Banda Aceh City planted the Araceae family such as Aglaonema and other species because they follow trends and other aspects such as the benefits that they can filter air pollution at home and are easy to maintain (Zahara and Win, 2020).

The families Apocynaceae, Arecaceae, Asparagaceae, Euphorbiaceae, Fabaceae, Lamiaceae, Myrtaceae, Portulacaceae, Solanaceae, and Zingiberaceae are species commonly grown by communities in tsunami areas for various needs or uses such as food crops, medicine, ornamental plants, and traditional ceremonies. Home gardens have contributed to increasing food security, social, cultural, health, and economic community (Du Toit et al., 2022; Galhena et al., 2013). Table 1 and Figure 4 shows that 63 families...
have potential as *Aedes* mosquito repellent plants. 16 families have potential as *Aedes* attractants. Analysis of the determination of the plant acting as a repellent or attractant based on the content of secondary metabolites obtained information from the literature study sought.

Potential of house yard plants as repellent of *Aedes* spp.

The repellants used by the public to prevent mosquito bites are synthetic repellants, one of which contains diethyltoluamide (DEET). These compounds can protect longer than other synthetic and botanical repellents. This synthetic active ingredient has health effects such as contact urticaria, skin eruptions, and encephalopathy. Plants around us have potential as insecticides, but it is necessary to identify bioactive molecules that have the effect of repelling or killing disease-transmitting vectors (Athuman et al., 2016).

Plant parts studied for their repellent content were the roots, stems, leaves, and flowers. Research on protecting from the bites of *A. aegypti*, *Anopheles minimus* Theobald, and *Culex quinquefasciatus* Say using essential oils showed different responses from mosquito species. The group of plant essential oils used was *Zingiber cassumunar* Roxb. (Zingiberaceae), *Ocimum basilicum* L. (Lamiaceae), and *Cymbopogon nardus* L. (Poaceae). These three essential oils are effective as repellents and food inhibitors against *A. minimus*, *C. quinquefasciatus*, and *A. aegypti*. However, the period of protection against *A. Aegypti* is lower than other mosquito species (Phasomkusolsil and Soonwera, 2010). The *Z. cassumunar* essential oil consists of sabinene, b-pinene, caryophyllene oxide, and caryophyllene (Bhuiyan et al., 2008). In the basil leaf extract of *O. basilicum*, the active compounds are flavonoids, saponins, tannins, and essential oils, which are considered toxic to mosquitoes (Ramayanti et al., 2017). The stems and leaves of citronella contain a toxin, and that substance can act as a repellent (Arcani et al., 2017). Essential oil *Z. cassumunar* was tested at several concentrations showing that the higher the concentration, the higher the activity to repel mosquitoes (Yulianis et al., 2018).

Volatile oils from four plant species *Curcuma longa* L. (Zingiberaceae), *Citrus hystrix* DC. (Rutaceae), *Cymbopogon winterianus* Jowitt, and *Ocimum americanum* added with 5% the vanillin showed a repellent effect against *A. aegypti*, *Anopheles dirus* Peyton & Harrison, and *C. quinquefasciatus*. The volatile oils of turmeric, lemongrass, and basils were able to repel the three mosquito types for 8 hours, while the kaffir lime oil was effective...
Figure 2. Plant families found in study area.
in repelling mosquitoes for up to 3 hours (Tawatsin et al., 2001). One of the plants that contain biologically active ingredients and can be used as an alternative controller is turmeric. The essential oils of turmeric can be used as natural insecticides to replace chemicals to kill mosquito larvae. In addition, the essential oil is also effective as a mosquito repellent for Aedes (Aseptianova, 2019). The essential oil content in kaffir lime leaves is citronellal, citronellol, linalool, and geraniol compounds (Munawaroh and Astuti, 2010). The largest components produced in citronella oil are citronellal, citronellol, and geraniol (Eden et al., 2018). The components of basil oil (O. americanum) are linalool, neral, citral, β-caryophyllene, α-humulene, and germacrene-d (Hapsari and Feroniasanti, 2019). The compounds contained in all the plants above have the potential and act as mosquito repellents and larvicides.

Table 1. Families of plants that have the potential dengue vector control in the tsunami area settlement of Banda Aceh City.

Family	Botanical name	Part of the plant is used	Secondary metabolic compounds	Potential dengue vector control	Reference
Acanthaceae	*Graptophyllum pictum* L. *Ruellia simplex* L.	Leaf, Leaf	Anthocyanin, chlorophyll, carotenoids, alkaloids, terpenoids, phenols, fiber, saponins, flavonoids, nitrogen, organic carbon, lignans, coumarins, triterpenes, sterols, phenolic glycosides, phenylethanolamines, megastigmane glycosides, benzoxazinoid glucosides	√	(Lestari et al., 2015)
					(Samy et al., 2015)
Adiantaceae	*Adiantum capillus-veneris* L.	Leaf, Rhizome/roots	Triterpenoids, hydroxy adianalone, tetrahydroxy triterpenoid epoxide (adianaldehyde), isoadianol, isoadianalone, isoglucofuranone, doxyhopane hydroxyadionone	√	(Al-snafi, 2015)
					(Taha and Ali, 2020)
Agavaceae	*Cordyline terminalis* (L.) Kunth	Leaf	Steroidal saponins, apogepins	√	(Simmons-boyce and Tinto, 2007)
Alismataceae	*Echinodorus palaeofolius* Nees & Mart. JF Macbr.	Leaf	Tannin, flavonoid, terpenoids, phenolic	√	(Behera et al., 2021)
Amaranthaceae	*Celosia cristata* L. *Gomphrena globosa* L. *Amaranthus hyochondriacus* L.	Leaf	Diterpenoid, triterpenoid, trinortriterpenoid D-laktosa, enneanortiterpenoid heksanortriterpenoid, oktanortriterpenoid	√	(Iwuagwu et al., 2019)
Anacardiaceae	*Mangifera indica* L.	Flower, Fruit	Terpenoids, benzenoids, fruktosa, humulene, myrcene (E)-caryophyllene, terpinolena	√	(Gouagna et al., 2010)
					(Meza et al., 2020)

Continued
Family	Botanical name	Part of the plant is used	Secondary metabolic compounds	Potensial dengue vector control	Reference
			α-pinene, limonene		
			α-phellandrene, p-cymene, heptane, β-pinene, ledene, α-gurjunene, limonene, γ-terpinene, careene, trans (β)-caryophyllene, monoterpenes	√	(Asadollahi et al., 2019)
Annonaceae	*Spondias dulcis* G.Forst	Leaf	Flavonoids, triterpenes, sterols, leucoanthocyanes, polyphenols, polysaccharides		(Alwala et al., 2010)
	Annona muricata L.	Seeds	Isoeugenol, ropenylguaiacol, phenylpropanoid, sesquiterpene		
	Annona squamosa L.	Leaf	Isoeugenol, ropenylguaiacol, phenylpropanoid, sesquiterpene		(Polya, 2003)
	Spondias dulcis G.Forst	Leaf	Linoleic acid, 3-N-butylphthalide, butylidenephthalide	√	
	Annona muricata L.	Seed	Terpenoids, benzenoids, fruktosa		(Champakaew et al., 2016)
	Annona squamosa L.	Seed	Terpenoids, benzenoids, fruktosa		
	Annona muricata L.	Tuber	Terpenoid, alkaloid, lipofilik, flavonoid, steroid, tanin, saponin, carbohydrates		(Suparman et al., 2017)
	Annona squamosa L.	Tuber	Terpenoid, alkaloid, lipofilik, flavonoid, steroid, tanin, saponin, carbohydrates		(Gonathi et al., 2014)
	Annona muricata L.	Leaf	Phenylacetaldehyde, benzaldehyde and (E)-2-nonenal		(Otiyenoburu et al., 2012)
	Annona squamosa L.	Leaf	Phenylacetaldehyde, benzaldehyde and (E)-2-nonenal		
	Adenium obesum (Forssk.) Roem & Schult.	Leaf	Phenylacetaldehyde, benzaldehyde and (E)-2-nonenal		
	Chaturantus roseus L.	Leaf	Phenylacetaldehyde, benzaldehyde and (E)-2-nonenal		
	Allamanda cathartica L.	Leaf	Phenylacetaldehyde, benzaldehyde and (E)-2-nonenal		
	Calotropis gigantea (L.)W.T Aiton.	Leaf	Phenylacetaldehyde, benzaldehyde and (E)-2-nonenal		
	Ceropegia woodii Schltr.	Leaf	Phenylacetaldehyde, benzaldehyde and (E)-2-nonenal		
	Anthurium crystallinum Liden & Andre.	Leaf	Phenylacetaldehyde, benzaldehyde and (E)-2-nonenal		
	Anthurium plowmanii Croat.	Leaf	Phenylacetaldehyde, benzaldehyde and (E)-2-nonenal		
Araceae	*Philodendron selloum* K. Koch.	Leaf	Phenylacetaldehyde, benzaldehyde and (E)-2-nonenal		
	Zamioculcas zamifolia (Lodd.) Engl.	Leaf	Phenylacetaldehyde, benzaldehyde and (E)-2-nonenal		
	Caladium bicolor (W.Ait.) Vent.	Leaf	Phenylacetaldehyde, benzaldehyde and (E)-2-nonenal		
	Monstera adansonii Schott.	Leaf	Phenylacetaldehyde, benzaldehyde and (E)-2-nonenal		
	Epipremnum aureum Lind & Andre.	Leaf	Phenylacetaldehyde, benzaldehyde and (E)-2-nonenal		
Araliaceae	*Dieffenbachia* sp.	Leaf	Phenylacetaldehyde, benzaldehyde and (E)-2-nonenal		
	Alocasia cucculata (Lour.) Schott.	Leaf	Phenylacetaldehyde, benzaldehyde and (E)-2-nonenal		
	Alocasia sp.	Leaf	Phenylacetaldehyde, benzaldehyde and (E)-2-nonenal		
	Homalomena rubescens (Roxb) Kunth.	Leaf	Phenylacetaldehyde, benzaldehyde and (E)-2-nonenal		
	Syngonium podophyllum Schott.	Leaf	Phenylacetaldehyde, benzaldehyde and (E)-2-nonenal		
	Alocasia sanderiana W. Bull.	Leaf	Phenylacetaldehyde, benzaldehyde and (E)-2-nonenal		
	Epipremnum aureum Lind & Andre.	Leaf	Phenylacetaldehyde, benzaldehyde and (E)-2-nonenal		
	Alocasia cucculata (Lour.) Schott.	Leaf	Phenylacetaldehyde, benzaldehyde and (E)-2-nonenal		
	Alocasia sp.	Leaf	Phenylacetaldehyde, benzaldehyde and (E)-2-nonenal		
Araliaceae	*Homalomena rubescens* (Roxb) Kunth.	Leaf	Phenylacetaldehyde, benzaldehyde and (E)-2-nonenal		
	Syngonium podophyllum Schott.	Leaf	Phenylacetaldehyde, benzaldehyde and (E)-2-nonenal		
	Alocasia sanderiana W. Bull.	Leaf	Phenylacetaldehyde, benzaldehyde and (E)-2-nonenal		
	Epipremnum aureum Lind & Andre.	Leaf	Phenylacetaldehyde, benzaldehyde and (E)-2-nonenal		
Araliaceae	*Polyscias scutellaris* (Burm.f.) Fosberg.	Leaf	Phenylacetaldehyde, benzaldehyde and (E)-2-nonenal		
	Scheflera arboricola (Hayata) Merr.	Leaf	Phenylacetaldehyde, benzaldehyde and (E)-2-nonenal		

Continued
Family	Botanical name	Part of the plant is used	Secondary metabolic compounds	Potensial dengue vector control	Reference
Araucariaceae	*Araucaria heterophylla* (Salisb.) Franco.	Leaf	Beyerene, caryophyllene oxide, α-pinene, germacrene, kaurene, 13-epi-dolabradiene, (E)-caryophyllene, caryophyllene oxide, (E)-β-farnesene, rimuene, dolabradiene, copaene, gurjunene, α-cadinene, sandaracopimara, 15-diene	√	(Verma et al., 2014)
	Cyrtostachys lakka Becc.				
	Chrysocalcarpus lutescens H. Wendl.				
Areceae	*Rhapis excels* (Thunb.) A. Henry	Flower	Limonene, cineole, trans-β-ocimene, cis-β-ocimene, linalool oxide, linalool.	√	(Stashenko and Martinez, 2018)
	Areca catechu L.				
	Cocos nucifera L.				
Asparagaceae	*Sansevieria trifasciata* Hort.				
	Chlorophytum comosum	Leaf			
	(Thunb.) Jacques				
	Chlorophytum amanitense Engl.				
	Asparagus setaceus (Kunth) Jessop.				
	Agave gigantea (Vent.) D. Dietr				
	Dracaena marginata Lam.				
	Dracaena reflexa Lam.				
Asphodelaceae	*Aloe vera* L.	Leaf		√	(Lubis et al., 2018)
	Helianthus annus L.	Leaf			
	Chromolaena odorata (L.) R.M. King & H. Rob.	Leaf			
		Leaf			
Asteraceae	*Tegetes erecta* L.	Leaf		√	(Choudhri et al., 2018)
	Chromolaena odorata (L.) R.M. King & H. Rob.	Flower			
		Leaf			
Balsaminaceae	*Impatiens balsamina* L.	Leaf		√	(Hariyanto et al., 2018)
		Leaf			
Begoniaceae	*Begonia* sp.	Leaf		√	(Murugesan et al., 2016)
		Leaf			
Bromeliaceae	*Ananas comosus* L.	Leaf		√	(Oliveira-Júnior et al., 2017)
	Cryptanthus sp.				
	Neoregelia sp.				
	Aechmea sp.				
Family	Botanical name	Part of the plant is used	Secondary metabolic compounds	Potensial dengue vector control	Reference
----------------	--	----------------------------	--	--------------------------------	-----------------------------------
Cactaceae	*Opuntia cochenillifera* (L.) Mill. *Echinocactus grusonii* Hildm. *Euphorbia trigona* Mill.	Stem	Flavonoid, steroid, phenolic, anthocyanins	√	(Alves et al., 2017)
			Carbohydrates, proteins, amino acids, steroids, alkaloids, phenolics, flavonoids, tannins, terpenoids	√	(Kanase and Vishwakarma, 2018)
Cannaceae	*Canna indica* L.	Leaf	Flavonoid, alkaloid, tannin, saponin, steroid	√	(Marini and Sitorus, 2019)
Caricaceae	*Carica papaya* L. *Cnidoscolus aconitifolius* Mill. *Rhooe discolor* L’Her. *Tradescantia pallida* (Rose) D.R. Hunt. *Callisia fragrans* (Lindl) *Woodson.*	Leaf	Alkaloid, carbohydrate, glycosides, tannins, steroid, flavonoids, saponins	√	(Nikam et al., 2013)
Commelinaceae	*Ipomoea aquatic* Forssk.	Leaf	Flavonoids, amino acids, alkaloids, lipids, steroids, saponin, phenols, reducing sugar, tannins, β-carotene, glycosides	√	(Malakar and Choudhury, 2015)
Convolvulaceae			Fenol, flavonoid, tannin, saponin, alkaloid, α-amyrin acetate, friedelin, glutinol, dotriacantanol, phytol, stigmasta, β-sitosterol, isorhamnetin, dihydroxypropyl tetradecanoate, eriodictyol, gallic acid, quercetin, kaempferol-3-O-rutinoside, isovitexin	√	(Singh et al., 2019) (Saleh et al., 2014)
Crassulaceae	*Kalanchoe pinnata* L.	Leaf	Terpinen-4-ol	√	(Giatropoulos et al., 2013)
			β-sitosteryl, β-glucopyranoside, palmitate, hydroxy-trans-cinnamate esters, hydroxy-cis-cinnamate esters, β-sitosterol, unsaturated triacylglycerols, methyl fatty acid esters, flavan 3-ols, flavanones, flavanone, flavone, isoflavones, biflavonoids, methyltetrahydrohinokiflavone	√	(Santos et al., 2015) (Afifi et al., 2021)
Cupressaceae	*Thuja orientalis* L.	Leaf	Steroids, clerodane diterpenes, quinones, cyanidins, phenolics, diarylheptanoids	√	(Salehi et al., 2019)
Dioscoreaceae	*Dioscorea japonica* Thunb.	Rhizome	Hexanal , limonene, β-pinene, (E)-β-Ocimene, (E)- linalool oxide, (E)- β-farnesene, glucose, galaktoce, rhamnose, fruktoce, maltoce, sukroce	√	(Nyasembe et al., 2012)
Euphorbiaceae	*Acalypha hispida* Burm.f. *Codiaeum variegatum* (L.) A. Juss. *Jatropha curcas* L. *Manihot esculenta* Crantz. *Pedilanthus tithymaloides* (L.) Poit. *Pedilanthus pringlei* Robins *Euphorbia milii* Des. Moul. *Escoecaria cochinchinensis* Lour.	Leaf, Flower	Alkaloids, tannins, flavonoid, saponins, glycosides, terpenoids, sterol	√	(Idris et al., 2014)
Family	Botanical name	Part of the plant	Secondary metabolic compounds	Potencial dengue vector control	Reference
---------------	--	-------------------	---	----------------------------------	---
Fabaceae	*Caesalpinia pulcherrima* (L.) Swartz.	Leaf, Flower	Linalool oxide, β-ocimene, 2-hexenol, hexanal, benzaldehyde, β-myrcene, indole	√	(Nyasembe et al., 2018)
	Tamarindus indica L.	Leaf	Cyanogenic glucosides (prunasin, linamarin, lotaustralin, proacacipetalin), alkaloid (indole, erythrina)	√	(Wink, 2013)
	Vigna sinensis (L.) Savi ex Hausskn.	Leaf, Flower	Phenols, glutathione, β-aminosobutyric acid, β-sitosteran	√	(Liu et al., 2019)
	Macroptilium atropurpureum (Moc. & Sesse ex DC.) Urb.	Leaf	Succrose, raffinose, galactinol, glucose, fructose, inositol	√	(Muller et al., 1997)
Gesneriaceae	*Episcia reptans* Mart.	Leaf	Linalool, neral, sitra, mentol isokariofilen, α-humulen, menthol, isomenthene, cineole, pine, limonene	√	(Phasomkusolsil and Soonwera, 2010)
		Leaf	Neomenthol, eukaliptu, p-cimene, γ-terpinene, α-terpinene, α-dihuen, E-α bergamotene, methyl eugenol, E-β ocmene	√	(Ramayanti et al., 2017)
		Leaf, Flower	Linalool oxide, β-ocimene, 2-hexenol, hexanal, benzaldehyde, β-myrcene	√	(Nyasembe et al., 2018)
Gnetaceae	*Gnetum gnemon* L.	Leaf	Linalool, neral, sitra, mentol isokariofilen, α-humulen, menthol, isomenthene, cineole, pine, limonene	√	(Fajar et al., 2019)
	Colesus atropurpureus (L.) Benth. *Clerodendrum thomsoniae* Balf.f.	Leaf, Flower	Benzopryrene, alkaloid, flavonoid, saponin, tannin, Quinone, triterpenoid, Glycoside, Coumarin	√	(Ervina et al., 2019)
Lamiaceae	*Coleus atropurpureus* (L.) Benth. *Clironia tenuifolia* Balf.f.	Leaf, Flower	Carbohydrates, glycosides, quinones, steroids, flavonoids, naphthoquinone derivatives, Aliphatic, triterpenes, sterols, Phenolic, coumarins, xanthones	√	(Sharma and Goel, 2018)
	Mentha piperita Balf.	Leaf, Flower	Neomenthol, eukaliptu, p-cimene, γ-terpinene, α-terpinene, α-dihuen, E-α bergamotene, methyl eugenol, E-β ocmene	√	(Phasomkusolsil and Soonwera, 2010)
	Ocimum africanum Lour.	Leaf, Flower	Benzopryrene, alkaloid, flavonoid, saponin, tannin, Quinone, triterpenoid, Glycoside, Coumarin	√	(Fajk et al., 2019)
	Orthosiphon aristatus (Fr. et Balf.)	Leaf	Benzopryrene, alkaloid, flavonoid, saponin, tannin, Quinone, triterpenoid, Glycoside, Coumarin	√	(Ervina et al., 2019)
	Plectranthus amboinicus (Lour.) Spreng.	Leaf, Flower	Carbohydrates, glycosides, quinones, steroids, flavonoids, naphthoquinone derivatives, Aliphatic, triterpenes, sterols, Phenolic, coumarins, xanthones	√	(Phasomkusolsil and Soonwera, 2010)
Lauraceae	*Cinnamomum burmannii* (Nees. & T. Nees) Blume.	Leaf, Bark	Linalool oxide, β-ocimene, 2-hexenol, hexanal, benzaldehyde, β-myrcene	√	(Fajk et al., 2019)
		Leaf	Trans-cinnamaldehyde, cinnamyl acetate, cinnamal alcohol, trans-cinnamic acid, α-Linoleic acid, α-Copaene	√	(Ervina et al., 2019)
		Leaf, Flower	Benzopryrene, alkaloid, flavonoid, saponin, tannin, Quinone, triterpenoid, Glycoside, Coumarin	√	(Phasomkusolsil and Soonwera, 2010)
Lythraceae	*Lawsonia inermis* L.	Leaf, Fruit	Carbohydrates, glycosides, quinones, steroids, flavonoids, naphthoquinone derivatives, Aliphatic, triterpenes, sterols, Phenolic, coumarins, xanthones	√	(Phasomkusolsil and Soonwera, 2010)
Malvaceae	*Hibiscus rosa-sinensis* L.	Leaf, Flower, Root	Flavonoid, alkaloid, triterpenes, phenolic	√	(Ferreira et al., 2019)
	Waltheria indica L.	Leaf	Benzopryrene, alkaloid, flavonoid, saponin, tannin, Quinone, triterpenoid, Glycoside, Coumarin	√	(Fajk et al., 2019)
		Leaf	Linoleic acid, octadecenoic acid	√	(Onyenekwe et al., 2013)
Marantaceae	*Calathea sp.*	Leaf	Saponin, tannin, fenolic	√	(Hidayatullah et al., 2015)
Moraceae	*Ficus benjamina* L.	Leaf	Flavonoid, alkaloid, saponin, steroid, tannin, terpenoid	√	(Hikma and Ardiansyah, 2018)
	Ficus carica L.	Leaf	Alkaloids, flavonoids, saponins, steroids, tannins, phenolics, terpenoids	√	(Aliyu et al., 2016)
Moringaceae	*Moringa oleifera* L.	Leaf	Alkaloids, saponins, flavonoids, polyphenols, reducing sugars	√	(Onyenekwe et al., 2013)
Musacea	*Musa paradisiaca* L.	Stem	Alkaloids, saponins, flavonoids, polyphenols, reducing sugars	√	(Onyenekwe et al., 2013)
Family	Botanical name	Part of the plant is used	Secondary metabolic compounds	Potensial dengue vector control	Reference
--------------	------------------------------	---------------------------	---	---------------------------------	--
Myrtaceae	Syzygium aqueum (Burm.f.) Alston.	Leaf	Fenolat, flavonoid, tannin, saponin, alkaloid, flavonoid	✓	(Rahayu et al., 2021)
	Syzygium oleina Wight.	Leaf	Alkaloid, flavonoid, tannin, terpenoid, fenol, saponin	✓	(Ranjana et al., 2021)
	Syzygium cumini L. Psidium guajava L.	Leaf	Phytosterols, terpenes, carbohydrates, linalool	✓	(Abarca-Vargas and Petricevich, 2018)
	Nephrolepis sp.	Leaf	Alkaloids, bibenzyls, phenanthrenes, stilbenoids, flavonoids, saponins, anthocyanins, polysaccharides glycosides, tannins, coumarin, quinine, steroids, terpinoids, saponin, anthroquinone	✓	(Teoh, 2016)
	Cymbidium chloranthum Lind.	Leaf	Phenolic, 4-allyl phenylacetate, isoeugenol, eugenol	✓	(Alighiri et al., 2018)
	Dendrobium aggregatum Roxb.	Leaf	Phenolic, 4-allyl phenylacetate, isoeugenol, eugenol	✓	(Alighiri et al., 2018)
	Cymbodium sp.	Flower	Phenolic, 4-allyl phenylacetate, isoeugenol, eugenol	✓	(Alighiri et al., 2018)
Oleaceae	Jasminum sambac (L.) Aiton.	Leaf	Monoterpene (methyl jasmonate)	✓	(Xu et al., 2014)
	Olea europaea (Mill.) L.	Leaf	Alkaloids, bibenzyls, phenanthrenes, stilbenoids, flavonoids, saponins, anthocyanins, polysaccharides glycosides, tannins, coumarin, quinine, steroids, terpinoids, saponin, anthroquinone	✓	(Teoh, 2016)
	Averrhoa bilimbi L. Averrhoa carambola L.	Leaf, Fruit	Saponin, tannin, steroid, flavonoid, alkaloids, carbohydrates, phenols	✓	(Hasim et al., 2019)
	Pandanus amaryllifolius Roxb.	Leaf	Alkaloids, saponin, flavonoids, tannin, polifenol	✓	(Cahyadi et al., 2016)
	Saurops androgynus L.	Leaf	Alkaloids, flavonoids, phenols, terpenoids, glycosides	✓	(Fikri and Purnama, 2020)
	Piper batle L.	Leaf	Phenolic, 4-allyl phenylacetate, isoeugenol, eugenol	✓	(Alighiri et al., 2018)
	Piper crocatum Ruiz & Pav.	Leaf	Phenolic, 4-allyl phenylacetate, isoeugenol, eugenol	✓	(Alighiri et al., 2018)
	Cymbopogon nardus (L.) Rendle. Elesineindica sp.	Leaf, Stem, Flower	α-pinene, limonene, p-Cymene, nonanal, benzyaldehyde, α- and β-pinene, 3-carene, caryophyllene, limonene, nonanal	✓	(Wondwosen et al., 2017)
	Portulaca oleracea L.	Leaf	Phenolic alcohols, aldehydes, hydroxylicinic acids, alcohols, acylquinic acids, cinnamic acid amides, coumarins, flavonoids, lignans, naphthoquinones, amino acids, tetrahydroisoxquinoline, terpenoids, alkaloids, phenolic acids, coumarins, β-carot acid polysaccharides, ω-fatty acid	✓	(Balabanova et al., 2020)
	Portulacaria grandiflora Hook.	Leaf	Phenolic alcohols, aldehydes, hydroxylicinic acids, alcohols, acylquinic acids, cinnamic acid amides, coumarins, flavonoids, lignans, naphthoquinones, amino acids, tetrahydroisoxquinoline, terpenoids, alkaloids, phenolic acids, coumarins, β-carot acid polysaccharides, ω-fatty acid	✓	(Balabanova et al., 2020)
	Portulacaria afra (L.) Jaq.	Leaf	Phenolic alcohols, aldehydes, hydroxylicinic acids, alcohols, acylquinic acids, cinnamic acid amides, coumarins, flavonoids, lignans, naphthoquinones, amino acids, tetrahydroisoxquinoline, terpenoids, alkaloids, phenolic acids, coumarins, β-carot acid polysaccharides, ω-fatty acid	✓	(Balabanova et al., 2020)
	Iresine herbstii Hook.	Leaf	Phenolic alcohols, aldehydes, hydroxylicinic acids, alcohols, acylquinic acids, cinnamic acid amides, coumarins, flavonoids, lignans, naphthoquinones, amino acids, tetrahydroisoxquinoline, terpenoids, alkaloids, phenolic acids, coumarins, β-carot acid polysaccharides, ω-fatty acid	✓	(Balabanova et al., 2020)
	Punica granatum L.	Leaf	Phenolic alcohols, aldehydes, hydroxylicinic acids, alcohols, acylquinic acids, cinnamic acid amides, coumarins, flavonoids, lignans, naphthoquinones, amino acids, tetrahydroisoxquinoline, terpenoids, alkaloids, phenolic acids, coumarins, β-carot acid polysaccharides, ω-fatty acid	✓	(Balabanova et al., 2020)
	Ziziphus mauritiana Lam.	Leaf	Phenolic alcohols, aldehydes, hydroxylicinic acids, alcohols, acylquinic acids, cinnamic acid amides, coumarins, flavonoids, lignans, naphthoquinones, amino acids, tetrahydroisoxquinoline, terpenoids, alkaloids, phenolic acids, coumarins, β-carot acid polysaccharides, ω-fatty acid	✓	(Balabanova et al., 2020)
	Rosa sp.	Flower	Linalool, geraniol, citronellol	✓	(Rosnaeni and Hendranata, 2010)
Family	Botanical name	Part of the plant is used	Secondary metabolic compounds	Potensial dengue vector control	Reference
----------------	---	---------------------------	--	---------------------------------	---------------------------------
Rubiaceae	*Morinda citrifolia* L. *Gardenia augusta* Merr.	Seed	Alkaloid, saponin, tannin, glycoside	√	(Setya and Harningsih, 2019)
		Flower	sesquiterpene (γ-elemene, α-farnesene, β-farnesene, trans-farnesol)		(Polya, 2003)
Rutaceae	*Citrus hystrix* DC. *Citrus aurantifolia* (Christm.)	Leaf	Sitronelal, sitronelol, linalool, geraniol	√	(Tawatsin et al., 2001)
	Murraya koenigii (L.) Spreng.				(Manawaroh and Astuti, 2010)
					(Adrianto et al., 2014)
Sapindaceae	*Dimocarpus longan* Lour.	Leaf	Alkaloids, glycoside, saponin, carboxylic acids, flavanoids, flavonols, terpenoids	√	(Govindarajanan and Sivakumar, 2012)
Sapotaceae	*Manilkara kauki* (L.) Dubard *Mimosops elengi* L.	Leaf, Bark, Root	Alkaloids, tannin, carboxylic acids, flavanoids, flavonoids, terpenoids		(Pratiwi et al., 2021)
					(Singh et al., 2015)
Scrophulariaceae	*Russelia equisetiformis* Schltdl. & Cham.	Leaf	Alkaloids, flavonoids, saponins, tannins, steroids, terpenoids		(Riaz et al., 2012)
Solanaceae	*Capsicum annuum* L. *Solanum melongena* L.	Flower	sesquiterpene (γ-elemene, α-farnesene, β-farnesene, trans-farnesol)		(Polya, 2003)
	Solanum lycopersicum (L.) *Solanum torvum* Sw.	Leaf	sesquiterpene (γ-elemene, α-farnesene, β-farnesene, trans-farnesol)		(Polya, 2003)
Thymelaeaceae	*Phaleria macrocarpa* (Scheff.) Boerl.	Fruit	Terpen (isopropenoid), alkaloid, benzofenon, quercetin, mahkoside, benzophenone, mangiferin	√	(Alara et al., 2016)
			Terpenoids, flavonoids, lignans, sterols, polyphenols, Phytol, pentadecaneone, α-philanthren, isoelemicin, linalool, mentadiene, ethyl hexanoate, Benz aldehyde		(Handayani et al., 2021)
Urticaceae	*Pellonia annamica* Gagnep.	Leaf	d-α-peladren, d-sabien, cineol bornol, zingiberen, trimeron sesquiterpen alcohol, α-atlanton, γ-atlanton, sabinine, b-pinene, caryophyllene oxide, caryophyllene	√	(Ibrahim et al., 2018)
Zingiberaceae	*Alpinia galanga* L. *Zingiber officinale* Rose, *Curcuma longa* L. *Kaempferia galanga* L.	Leaf	sesquiterpene (γ-elemene, α-farnesene, β-farnesene, trans-farnesol)	√	(Aseptianova, 2019)
					(Phasomkusolsil and Soonwera, 2021)
					(Bhuiyan et al., 2008)
The community has traditionally used *Tagetes minuta* L. (Asteraceae) to repel mosquitoes. The essential oil from *T. minuta* showed the presence of limonene, camphene, and verbenone as the main constituents. The essential oil of *T. minuta* is effective in repelling mosquitoes (Athuman et al., 2016). *Mentha piperita* L. (Lamiaceae) oil has potential as a larvicidal and repellent of *A. aegypti* (Manh and Tuyet, 2020). The *M. piperita* oil contains pulegone, menthone, menthol, carvone, 1,8-cineole, limonene, and β-caryophyllene (Singh and Pandey, 2018).

The study of the potential of *O. Americanum* and *Blumea alata* (D.Don) DC. (Asteraceae) extracts as a source of mosquito repellent showed that *O. Americanum* gave 100% repellency for 1.5 hours, *B. alata* for 2 hours, and a mixture of *O. Americanum* and *Blumea alata* for 2.5 hours. The *O. Americanum* extract contains linalool, neral, citral, isocaryophyllene, and humulene, while *B. alata* contains terpinene-4-ol, germacrene-D, sabine, and terpinen-4-ol. The compound components contained in both types of plants potentially have mosquito protection power (Kazembe et al., 2012). The addition of the concentration of *Evodia suaveolens* Scheff. (Rutaceae) essential oil increases the protection power as a repellent. The addition of 1.5 ml of *E. suaveolens* essential oil has 81% protection against *A. aegypti*. The ingredients in *Evodia* leaves are linalool, and pinene can repel mosquitoes such as *A. aegypti*, which causes DHF (Simaremure et al., 2017).

The infusion of the leaves of the fragrant *Pandanus amaryllifolius* Roxb. (Pandanaceae) has the power to repel the laying of the eggs of the *Aedes* spp. The optimum concentration effective for repelling mosquito eggs is in the range of 4.5 to 5 ml/l. *Pandanus* leaves have a fragrant aroma that affects preventing oviposition against *Aedes* spp. The contents of compounds in *Pandanus* are alkaloids, saponins, flavonoids, tannins, and polyphenols (Cahyadi et al., 2016). *Illicium verum* Hook.f. (Illiciaceae) contains an essential oil that can be used as a repellent of *A. aegypti*. The results showed that the clove flower essential oil at concentrations of 10%, 20%, 30%, 40%, and 50% was able to protect against the bites of *A. aegypti* for 1–2 hours. The contents of the essential oil of the clove flower are cineole, linalool, and limonene. The clove flower extract contains the linalool compound that has mosquito repellent properties from the distinctive aroma it produces. The linalool compound is a kind of stable alkali. The clove flower oil often is used as a fragrance for soaps and perfumes. Mosquitoes do not like the aroma of the clove flower essential oil and linalool compounds because they cause irritation to the mosquito’s body parts and damage the mosquito’s nervous system (Lestari et al., 2019). The *Pogostemon cablin* Benth (Lamiaceae) oil has major (patchouli alcohol) and minor (patchoulen, guaien, sychellen, and caryophyllene) components. These minor components can potentially act as repellants or as attractants to insects. The activity of *Culex* sp. using patchouli oil showed that the repellency activity had better protection than synthetic DEET (Nidianti et al., 2014).

Insect bioassay results showed that the essential oil and extract of *Nepeta parnassica* Heldr & Sart (Lamiaceae) were highly active against *Aedes cretinus* Edwards and *Culex pipiens* L.. The protective power of *N. parnassica* extracts against *A. cretinus* was for 3 hours, while for *C. pipiens* the protective power was up to 2 hours after application. Analysis essential oil *N. parnassica*, dominated by oxygenated monoterpenes, 4α,7α,7β-nepetalactone, 1,8-cineole, dichloromethane-methanol, and 4α,7β,7αβ-nepetalactone as the main constituents. The content of dichloromethane-methanol and 4αα,7α,7β-nepetalactone isolated from *N. parnassica* showed very high mosquito repellency for at least 2 hours against both types of mosquitoes. This study demonstrated the potential use of essential oil extracts, especially dichloromethane-methanol and 4αα,7α,7β-nepetalactone *N. parnassica*, as control agents for *A. cretinus* and *C. pipiens* (Gkinis et al., 2014).

The *Angelica sinensis* Oliv. (Apiaceae) extract has potential as a repellent against female *A. aegypti*. The results of the GC-MS analysis revealed that the *A. sinensis* extract contains at least 21 phytochemical compounds, and the main constituent is 3-N-butylphthalalide. The protective power of the *A. sinensis* extract provides an average protection time of 2.0–6.5 hours against *A. aegypti*. The combination of *A. sinensis* extracts with 5% vanillin can increase to 4.0–8.5 hours (Champakaw et al., 2016).

Potential of houses yard plants as attractant of *Aedes* spp.

One of the effective biological control strategies is necessary to do by finding and identifying attractant compounds produced by plants. Attractive flowers, intense aromas, and nectar content need to find metabolites that attract or repel mosquitoes (Peach and Gries, 2020). If plant-based chemicals can be identified, especially those from plants that are attractive to mosquitoes, these plants can serve as bait in mosquito control and surveillance programs (Nyasembe et al., 2012). Each mosquito species has a

Figure 4. Families of plants that have the potential dengue vector control in study area.
particular preference for plant sources of nutrients. Mosquitoes can detect general and plant-specific chemical cues within their ecological range. The ability of mosquitoes to detect chemical compounds in certain plants will find suitable host plants for them. The interaction of mosquitoes with plants provides information on mosquito control strategies that target plant-eating behavior like attractive toxic sugar baits and the resulting odor (Nyasembe et al., 2018).

The volatile compound released by the host plant is attractive to mosquitoes. This compound attracts both male and female mosquitoes. Mosquitoes prefer volatile compounds produced by plants; for example, A. gambiae can detect certain chemical compounds from plants (Pachuwah, 2016). The visual appearance of flowers and the volatile compounds released by them are cues for mosquitoes to distinguish and locate host plants. Some species of mosquitoes, such as A. gambiae, C. P. piapi, and A. aegypti, can detect and respond to certain compounds from plants, detect and respond to volatile compounds from plants. Flower volatile organic compounds are mainly composed of four chemical groups: aromatics, monoterpenes, sesquiterpenes, and fatty acid derivatives (Yu et al., 2015).

Female A. aegypti prefer ovitraps with jenu [Derris elliptica (Wall.) Benth.] leaf extract to lay their eggs compared to other ovitraps. This plant from the Fabaceae family has the potential to be an attractant to A. aegypti in the oviposition process. Methyl eugenol compounds such as sex pheromones are effective at attracting insects and influencing insect behavior, such as searching for a mate, searching for food, and laying eggs. Visual and olfactory integration affects oviposition search media behavior, but the olfactory signal is more influential than visuals. The olfactory organ of the mosquito is the sensilla (hair), and these spread all over its body surface. Sensilla are mostly in many mosquito antennae, and this organ is sensitive to the smell of chemical compounds (Wibowo and Astuti, 2015).

Analysis of the extract of Silene otites L. (Caryophyllaceae) using gas chromatography-mass spectrometry identified 35 compounds. Most of the extract compounds are monoterpenoids, fatty acid derivatives, and benzene. Phenyl acetaldehyde was the most dominant compound found in S. otites flowers. The test results of a mixture of S. otites flower aroma extract compounds on male and female Cx. p. piapi showed different responses. Oxide compounds linalool (furanoids) and linalool showed strong responses in male and female mosquitoes. The compound (Z)-3-hexenyl acetate had positive responses only from female mosquitoes. Male mosquitoes showed moderate responses to compound (Z)-3-hexenyl acetate. Female mosquitoes have a moderate reaction to benzaldehyde and methyl salicylate compounds. Meanwhile, the lilac aldehyde, lilac alcohol, and linalool oxide (pyranoid) compounds had moderate responses from both sexes of mosquitoes (Jhumur et al., 2008).

The extract Asclepias syriaca L. (Asclepiadaceae) showed significant orientation of male and female Cx. p. piapi. The mixture compounds of benzaldehyde, phenylacetaldehyde, and (E)-2-nonenal most attracted mosquito responses. Therefore, we recommend further research to examine the potential use of synthetic floral scent mixtures for monitoring or controlling disease-transmitting mosquitoes (Otioburu et al., 2012). The maiz/Zeas mays L. (Poaceae) crop contributes to the prevalence of malaria mosquitoes and exacerbates malaria transmission in sub-Saharan Africa. Pollen from corn serves as a food source for Anopheles larvae and imago. Female mosquitoes can detect breeding sites where corn pollen is abundant. The Anopheles mosquito uses olfactory cues to locate, distinguish, and select breeding sites by utilizing volatile compounds to guide it. The pollen is a source of energy and attractant mosquitoes. Pollen contains pinene, limonene, p-cymene, nonanal, and benzaldehyde compounds (Wondwosen et al., 2017).

The selections of the oviposition site strongly influence the reproductive success and population dynamics of Anopheles, a vector for malaria in female mosquitoes. Mosquitoes choose oviposition sites at different spatial scales, starting with selecting the habitat to search. Anopheles arabiensis Patton larvae were the most common species found in various grassy habitats. The highest larva density in habitats was found overgrown by Echinochloa pyramidalis (Lam.) Hitchc. & Chase (Poaceae). This condition caused the volatile compounds of E. pyramidalis grass to be more attractive than Typha (Typhaceae) and Cyperus (Cyperaceae). The preference is shown by Anopheles culicoides Coetzee & Wilkerson and A. arabiensis prove volatile grass compounds in larval habitat vegetation have an effect in the selection of oviposition sites (Asmare et al., 2017).

CONCLUSION

This study shows that various house yard plants have secondary metabolites that have the potential to control adult Aedes. Plants in the tsunami settlement area of Banda Aceh City contain secondary metabolites that function as repellents and attractants of adult Aedes. However, further testing is necessary in the laboratory to ensure Aedes’ preference for plants in the yard and the secondary metabolite content of each plant. This research information can be an alternative to Aedes control and elimination. Plants in the house yard in the tsunami settlement area of Banda Aceh City have the potential to be used as a strategy for controlling disease-transmitting vectors.

ACKNOWLEDGMENTS

The authors express their deepest gratitude to the volunteer team “Jumantik instar 3 UINAR” and the residents of the Asoe Nanggre Village, Meuraxa Subdistrict, and Rukoh Village, Syiah Kuala Subdistrict, in the tsunami area of Banda Aceh City.

AUTHORS’ CONTRIBUTIONS

All authors made substantial contributions to conception and design, acquisition of data, or analysis and interpretation of data; took part in drafting the article or revising it critically for important intellectual content; agreed to submit to the current journal; gave final approval of the version to be published; and agree to be accountable for all aspects of the work. All the authors are eligible to be an author as per the international committee of medical journal editors (ICMJE) requirements/guidelines.

FUNDING

This research was supported by the MoRA Scholarship for Islamic Higher Education (MoRA-SIHE).
CONFLICTS OF INTEREST
The authors declare that there are no conflicts of interest.

ETHICAL APPROVALS
This study does not involve experiments on animals or human subjects.

DATA AVAILABILITY
All data generated and analyzed are included within this research article.

PUBLISHER'S NOTE
This journal remains neutral with regard to jurisdictional claims in published institutional affiliation.

REFERENCES
Abarca-vargas R, Petricevich VL. Bougainvillea genus: a review on phytochemistry, pharmacology, and toxicology. eCAM, 2018; 1–17.
Adrianto H, Yotropanoto S, Hamidah H. Effectivity of kaffir lime (Citrus hystrix), nasamaran Mandarin (Citrus amblycarpa), and pomelo (Citrus maxima) leaf extract against Aedes aegypti larvae. Aspirator J, 2014; 6(1):1–6.
Affi N, Moawad A, Hassan M, Al Amir D, Elwekeel A, Amin E. Phytochemical content and biological activity of the genus Cuscas, family Cucadaceae: a review. Pharm Sci Asia, 2021; 48(4):300–19.
Agustina E, Leksono AS, Gama ZP, Yanuwiadi B. Analysis of climatic variability and dengue hemorrhagic fever incidence at the Tsunami Area Banda Aceh City. IOP Conf Ser Earth Environ Sci, 2021; 948(1):012076; doi:10.1088/1755-1315/948/1/012076
Agustina E, Sari W, Ofreza A. The preferred plant by Aedes in houseyard of Kopelma Village Banda Aceh. Aspirator J, 2019; 11(1):59–66.
Ahditya I, Purwani KI. Pengaruh ekstrak daun mangan kobong (Nothopanax scutellatum) sebagai larvasida nyamuk Culex sp. J Sain Seni ITS, 2015; 4(2):32–6.
Akter M, Huda MK, Hoque MM. Investigation of secondary metabolites of nine medicinally important orichs of Bangladesh. JPP, 2018; 7(5):602–6.
Al-Staie AE. The chemical constituents and pharmacological effects of Adiantum capillus-veneris—a review. Asian J Pharm Sci Technol, 2015; 5(2):106–111.
Alara O, Alara J, Olare O. Review on Phaleria macrocarpa pharmacological and phytochemical properties. Drug Des, 2016; 5(3):1–5.
Alighiri D, Cahyono E, Eden WT, Kasuma E, Supardi KI. Study on the improvement of essential oil quality and its repellent activity of betel leaves oil (Piper betle L.) from Indonesia. Orient J Chem, 2018; 34(6): 2913–2926.
Aliyu A, Chukwuma UD, Ofure OK. Phytochemical content and biological activity of the genus Cycas, family Cycadaceae: a review. Asian J Pharm Sci Technol, 2017; 37(4):536–43.
Alorange AV. Characterization and evaluation of repellent effect of essential oil of Phaleria macrocarpa. Orient J Chem, 2018; 7(5):602–6.
Aseptianova. Pengaruh ekstrak daun kunyit (Curcuma longa Linn.) sebagai insektisida elektrik terhadap mortalitas nyamuk Culex sp. L. Pro-Life, 2019; 6(1):44–54.
Asmare Y, Hill SR, Hopkins RJ, Tekie H, Ignell R. The role of grass volatiles on oviposition site selection by Anopheles arabiensis and Anopheles coluzzi. Malar J, 2017; 16(1):1–9.
Athuman I, Innocent E, Machumi F, Augustino S. Repellency properties of oils from plants traditionally used as mosquito repellents in Longido district, Tanzania. IJMR, 2016; 3(2): 04–08.
Barredo E, DeGennaro M. Not just from blood: Mosquito nutrient acquisition from nectar sources. Tren in Parasitol J, 2020; 36(5):473–84.
Balabanova V, Hristov I, Zheleva-dimitrova D, Sugareva P, Lozanov V, Gevenrova R. Bioinformatic insight into Portulaca oleracea L. (Purslane) of Bulgarian and greek origin. Acta Biol Cracov Ser Bot, 2020; 62(1):1–16.
Behera T, Mounika M, Ratnakar M, Choudhari SS, Madhuri V, Kumar S. Antibacterial activity of Butomomos latifolia : a plant of sand dune. In: Devi RS, Mahanti P, Kumar S (eds.). Medico bioweld of India, Vol. IV. Ambika Prasad Research Foundation, Odisha, India, pp 62–9, 2021.
Bhuiyan MNI, Chowdhury JU, Begum J. Volatile constituents of essential oils isolated from leaf and rhizome of Zingiber cassumunar Roxb. Bangladesh J Pharmacol, 2008; 3(2):69–73.
Biswas KK, Sharmin N, Rabbi MA. Evaluation of insecticidal activity of Lawsonia inermis Linn. against the red flour beetle, Tribolium castaneum (Herbst). NPAU, 2016; 12(1):8–11.
Boate UR, Abalis OR. Review on the bio-insecticidal properties of some plant secondary metabolites: types, formulations, modes of action, advantages and limitations. AJRIZ, 2020; 3(4):27–60.
BPS. Master file wilayah Provinsi Aceh 2019. BPS, Aceh, Indonesia, 2019.
Cahyadi A, Wahdaningsih S, Natalia D. Daya tolak infusa daun pandan wangi (Pandanus amaryllifolius) terhadap peletakan telur nyamuk Aedes spp. JFFI, 2016; 2(1):65–71.
Champakaev D, Junkum A, Chaiithong U, Jitpakdi A, Riyong D, Wannasan A, Intirach J, Muangmoon R, Chansang A, Tuutew B, Pitasawat B. Assessment of Angelica sinensis (Oliv.) diels as a repellent for personal protection against mosquitoes under laboratory and field conditions in northern Thailand. Parasite Vectors, 2016; 9(373):1–14.
Choudhri P, Rani M, Sangwan RS, Kumar R, Kumar A, Chhokar V. De novo sequencing, assembly and characterisation of Aloe vera transcriptome and analysis of expression profiles of genes related to saponin and anthraquinone metabolism. BMC Genom, 2018; 19(427):1–21.
Cunze S, Kochmann J, Koch LK, Klimpel S. Niche conservatism of Aedes albopictus and Aedes aegypti—two mosquito species with different invasion histories. Sci Rep, 2018; 8(7733):1–10.
Dhivya R, Manimegalai K. Mosquito repellent activity of Calotropsis gigantea (Apocynaceae) flower extracts against the filarial vector Culex quinquefasciatus. Hygeia J, 2013; 5(2):56–62.
Dormon L, Mulatier M, Carassco D, Cohuet A. Mosquito attractants. J Chem Ecol, 2021; 47(4-5): 351–393.
Du Toit MJ, Rendón O, Cologna V, Cilliers SS, Dallimer L. Why home gardens fail in enhancing food security and dietary diversity. Front Ecol Evol, 2022; 10(804523):1–13.
Eden WT, Alighiri D, Cahyono E, Supardi KI, Wijayati N. Fractionation of Java citronella oil and citronellal purification by batch vacuum fractional distillation. IOP Conf Ser Mater Sci, 2018; 349(12):012067; doi:10.1088/1755-1315/349/12/012067.
Ervina M, Han LS, Diva J, Caroline TS, Tewfik L. Optimization of water extract of Cinnamomum burmannii bark to ascertain its in vitro antiadipose and antioxidant activities. Biocatal Agric Biotechnol, 2019; 19(101152):1–7.
Fajar A, Ammar GA, Hamzah M, Manunung R, Abdah MY. Effect of tree age on the yield, productivity, and chemical composition of essential oil from Cinnamomum burmannii. CRBB, 2019; 1(1):17–22.
Ferreira MLD, Fernandes DA, Nunes FC, Rolim YM, Silva CM, Albuquerque JBL, Souza MFV. Phytochemical study of Witheria vicosissima and evaluation of its larvicidal activity against Aedes aegypti. Rev bras farmacogn, 2019; 29(5):582–90.
Fikri F, Purnama MTE. Pharmacology and phytochemistry overview on Sauropus androgynus. Sys Rev Pharm, 2020; 11(6):124–8.
Gadeng AN, Nandi, Hafizul FM. The Development of Settlement in the Tsunami Red Zone Area of Banda Aceh City. KnE Soc Sci, 2019; 1–13.
Galhena DH, Freed R, Maredi KM. Home gardens: a promising approach to enhance household food security and wellbeing. Agricul Food Secur, 2013; 2(8):1–13.
Giatropoulos A, Pitarokili D, Papaioannou F, Papachristos DP, Koliopoulous G, Emmanouel N, Tzakou O, Michaelakis A. Essential oil composition, adult repellency and larvicidal activity of eight Cupressaceae species from Greece against Aedes albopictus (Diptera: Culicidae). Parasitol Res, 2013; 112:1113–23.

Gkinis G, Michaelakis A, Koliopoulous G, Ioannou E, Tzakou O, Roussis V. Evaluation of the repellent effects of Nepeta pannassica extract, essential oil, and its major nepetalactone metabolite against mosquitoes. Parasitol Res, 2014; 113(3):1127–34.

Gomathi R, Indrakumar I, Karpagam S. Larvicidal activity of Monitera adansonii plant extracts against Culex quinquefasciatus. JPP, 2014; 3(1):160–2.

Gouagna LC, Poueme RS, Dabiré KR, Ouédraogo JB, Fontenille D, Simard F. Patterns of sugar feeding and host plant preferences in adult males of An. gambiae (Diptera: Culicidae). J Vector Ecol, 2010; 35(2):267–276.

Govindarajan M, Sivakumar R. Repellent properties of Cardiospermum halicacabum Linn. (Family: Sapindaceae) plant leaf extracts against three important vector mosquitoes. Asian Pac J Trop Biomed, 2012; 2(8):602–607.

Handayani R, Purnamasari W, Mun‘im A. Optimization of ionic liquid-microwave assisted extraction method of Mahkota Dewa (Phaleria macrocarpa (Schef.f.) Boerl.) fruit pulp. J Appl Pharm Sci, 2021; 11(02):059–65.

Hapsari IP, Feronasianti YML. Phytochemical screening and in vitro antibacterial activity of sweet basil leaves (Ocimum basilicum L.) essential oil against Catheterium acerens ATCC 11827. AIP Conf Proc, 2019; 2099(1):020017; doi:10.1063/1.5098412

Hariyanto, Fajriaty I, Wijaya T, Hafizh, M. The potential ethnomedicine plant of Impatiens balsamina leaves from Pontianak, West Kalimantan, Indonesia for wound healing. Nusantara Biosci, 2018; 10(1):58–64.

Hasim, Arifin YY, Andrianto D, Faridah DN. Ethanol extracts of Averrhoa bilimbi leaf demonstrated anti-inflammatory activity. JATP, 2019; 8(3):86–93.

Hidayatullah, Anam S, Tandah MR. Chemical compounds profile and antibacterial activity of methanolic extract of bamban (Donax canniformis (G.Fors.) K.Schum.) leaf against Staphylococcus aureus. Galenika, 2015; 2(1):141–148.

Hikma SR, Ardiyangsa S. Combination of keelor leaf extract (Moringa oleifera Lamk) with tin leaf extract (Ficus carica Linn.) as larvasida on Aedes aegypti larva. Medicera, 2018; 1(2):94–102.

Ibrahim M, Rehman K, Razaqz A, Hussain, I, Farooq T, Hussain A, Akash MSH. Investigations of phytochemical constituents and their pharmacological properties isolated from the genus Urtica : critical review and analysis. CRE, 2018; 28(1):22–66.

Idris M, Mudi S, Datti Y. Phytochemical screening and mosquito repellent activity of the stem bark extracts of Euphorbia Balsamifera (Ait.). CSJ, 2014; 5(2):46–51.

Iwuwgu MO, Ogbonna NC, Okechukwu UH. Insecticidal effects of some plant leaf extracts in the control of insect field pests of Amaranthus hybridus L.. Int J Plant Sci Hor, 2019; 1:71–9.

Jayaprakash A. Punica granatum : a review on phytochemicals, antioxidant and antimicrobial properties. JAIR, 2017; 5(9):132–8.

Jhunur MS, Döttörl S, Jingen, A. Floral odors of Silene oitae: their variability and attractiveness to mosquitoes. J Chem Ecol, 2008; 34(1):14–25.

Kanase V, Vishwakarma S. Treatment of various diseases by Silene otites (Diptera : Culicidae). Parasitol Res, 2014; 113(3):1127–34.

Kazembe T, Chaibva M, Komariah RH, Sitorus H. Repellent potency of Marigold (Tagetes erecta L.) leaves extract against Aedes aegypti mosquito. Balaba, 2018; 14(1):53–62.

Kazembe T, Chaibva M, Komariah RH, Sitorus H. Some plants potentially as repellent in Indonesia. Spirakel, 2019; 11(1):24–33.

Meza FC, Roberts JM, Sobly IS, Okumu FO, Tripet F, Bruce TJ. Behavioural and electrophysiological responses of female Anopheles gambiae mosquitoes to volatiles from a mango bait. J Chem Ecol, 2020; 46:387–96.

Ministry of Health Indonesia. Indonesia health profile 2005. Departemen Kesehatan RI, Jakarta, Indonesia, 2007.

Muller GC, Junnila A, Traore MM, Traore SF, Doumbia S, Sissoko F, Dembele SM, Schlein Y, Arheart KL, Revay EE, Kravchenko VD, Beier JC. The invasive shrub Prospis juliflora enhances the malaria parasite transmission capacity of Anopheles mosquitoes: a habitat manipulation experiment. Malar J, 2017; 16(237):2–9.

Muller J, Sprenger N, Bortlik K, Boioler T, Wiemken A. Desiccation increases sucrose levels in Ramonda and Habera, two genera of resurrection plants in the Gesneriaceae. Physiol J, 1997; 100:153–8.

Munawaroh S, Astuti P. Ekstraksi minyak daun jeruk purut (Citrus hystrix D.C.) dengan pelarut etanol dan N-heksana. JKT UNNES, 2010; 2(1):73–8.

Murugesan S, Irunladi K, Siva V, Mehalingam P. A short review on ethnomedicinal uses, phytochemistry and pharmacology of Begonia malabarica Lam. Int J Bot Stud, 2016; 1(6):16–7.

Nidianti E, Utomo EP, Himawan T. Studi interaksi molekul komponen minyak nilam dengan reseptor olfaktori sebagai repellent nyamuk Culex sp. secara in silico dan in vitro. J Ilmu Kimia UIB, 2014; (12):227–33.

Nikam M, Mundada P, Kadam D, Jadhav S, Aparadh V. Comparative screening of various solvent for phytochemical testing using some commelinaecae members. Int Res J Pharm App Sci, 2013; 3(2):18–20.

Nyasembe V O, Cheseto X, Kaplan F, Foster WA, Teal PEA, Tumlinson JH, Borgemeister C, Torto B. The invasive American weed partenium hysterophorus can negatively impact malaria control in Africa. PLoS One, 2015; 10(9):1–5.

Nyasembe VO, Chouassi DP, Pirk CWW, Sole CL, Torto B. Host plant forensics and olfactory-based detection in Afro-tropical mosquito disease vectors. PLoS Negl Trop Dis, 2018; 12(2):1–21.

Nyasembe VO, Teal PE, Mukabana WR, Tumlinson JH, Torto B. Behavioural response of the malaria vector Anopheles gambiae to host plant volatiles and synthetic blends. Parasit Vectors, 2012; 5(234):1–11.

Onyenekwe PC, Okereke OE, Owolewa SO. Phytochemical screening and effect of Musa paradisiaca stem extrude on rat haematological parameters. Curr Res J Biol Sci, 2013; 5(1):26–9.

Otenoburu PE, Ebrahimi B, Phelan PL, Foster WA. Analysis and optimization of a synthetic milkweed floral attractant for mosquitoes. J Chem Ecol, 2012; 38(7):873–81.

Pachuwah P. The role of floral and fruit scent compounds as mosquito attractants : developing new methods for monitoring mosquito populations. Thesis. KwaZulu-Natal University, Pietermaritzburg, South Africa, 2016.
Agustina et al. / Journal of Applied Pharmaceutical Science 12 (11); 2022: 122-137

Singh SK, Patel JR, Dangi A. Physicochemical, qualitative and quantitative determination of secondary metabolites and antioxidant potential of *Kalanchoe pinnata* (Lam.) Pers. leaf extracts. JDDT, 2019; 9(1):220–4.

Singh P, Pandey AK. Prospective of essential oils of the genus Mentha as biopesticides: a review. Front. Plant Sci, 2018; 9(1295):1–14.

Singh V, Pandey VN, Shukla K. Quantitative estimation of secondary metabolites from *Mimusops elengi* L. JSER, 2015; 5(7):13–5.

Stashenko E, Martinez JR. The expression of biodiversity in the secondary metabolites of aromatic plants and flowers growing in Colombia. In: El-Shemy H (ed.). Potential of essential oils. Intechopen, London, UK, pp 196–58, 2018.

Suluvoy JK, Grace VMB. Phytochemical profile and free radical nitric oxide (NO) scavenging activity of *Averrhoa bilimbi* L. fruit extract. 3 Biotech, 2017; 7(85):1–11.

Suparman A, Rupa D, Zulfadiai. Identification of secretory structure and histochemical of family Araceae as medicinal plants by Dayak Kenyah Tribe. AST, 2017; 2(1):26–30.

Suryawin F. Study on condition of vegetation and physical condition of coastal area to support conservation effort in Nanggroe Aceh Darussalam. Thesis. IPB, Bogor, Indonesia, 2007.

Taha MA, Ali AAB. The first study for the acaricidal activity of alcoholic extracts of *Adiantum capillus-veneris* and *Funaria hygrometrica* against *Argas persicus*. Egypt Acad J Biol Sci, 2020; 12(2):203–17.

Teoh ES. Secondary metabolites of plants. In: Teoh ES (ed.). Medicinal Orchard of Asia. Springer International Publishing, Cham, Switzerland, pp 559–59, 2016.

Verma RS, Padalia RC, Goswani P, Verma SK, Chauhan A, Darokar MP. Chemical composition and anti-bacterial activity of foliage and resin essential oils of *Araurcia cunninghamii* Aiton ex D.Don and *Araurcia heterophylla* (Salisb.) Franco from India. Indus Crop Prod, 2014; 61:410–6.

Wang Z, Yang R, Li Pi, Yang Z, Ling R, Shen T, Peng W, Yang Q, Yan J. A homoisoflavonoid and a fatty acid in common purslane (*Portulaca oleracea*) synergistically inhibit growth of *Spodoptera litura* larvae. Pest Manag Sci, 2020; 76:1513–22.

Wibowo SG, Astuti EP. Oviposition preference of *Aedes aegypti* against various leaf extract as an attracting. Balaba, 2015; 11(01):23–8.

Wink M. Evolution of secondary metabolites in legumes (Fabaceae). S Afr J Bot, 2013; 89:164–75.

Yeowdosen B, Hill SR, Birgersson G, Seyoum E, Tekie H, Iggeln R. The (a)range of attraction: gravid *Anopheles arabiensis* are attracted and oviposit in response to maize pollen odours. Malar J, 2017; 16(1):1–9.

Xu F, Cho YM, Rosa ADL, Leal WS. Mosquito odorant receptor for DEET and methyl jasmonate. PNAS, 2014; 111(46):16592–7.

Yu BT, Ding YM, Mo JC. Behavioural response of female *Culex pipiens* pellens to common host plant volatiles and synthetic blends. Parasit Vectors, 2015; 8(589):1–8.

Yulianis, Dachriyanus, Putra AA. Uji aktifitas antinyamuk minyak atsiri sereh dapur dalam bentuk semprot. JIT, 2018; 12(11):78–83.

Zahara M, Win CC. Review : the effect of plant growth regulators on micropropagation of *Agaonema* sp. JTHORT, 2020; 3(2):96–100.

How to cite this article: Agustina E, Leksono AS, Gama ZP, Yanuwiabi B, Sukma M, Potential of house yard plants as an alternative for dengue vector control in the tsunami area settlement of Bandra Aceh City. J Appl Pharm Sci, 2022; 12(11):122–137.

Peach DAH, Gries G. Mosquito phytophagy–sources exploited, ecological function, and evolutionary transition to haematophagy. Entomol Exp Appl, 2020; 168:120–36.

Phasomksosil S, Soonwera M. Insect repellent activity of medicinal plant oils against *Aedes aegypti* (Linn). *Anopheles minimus* (Theobald) and *Culex quinquefasciatus* say based on protection rate and biting rate. Southeast Asian J Trop Med Public Health, 2010; 41(4):831–40.

Polly G. Biochemical targets of plant bioactive compounds : A pharmacological reference guide to sites of action and biological effects. CRC Press, Boca Raton, FL, 2003.

Pratiwi N, Retnosari R, Prabaningtyas S. Preliminary study on antibacterial activity of sawo kecik (Manilkara kauki (L.) Dubard) roots. Egypt Acad J Biol Sci, 2020; 12(2):203–17.

Prityanka P, Bhatt S, Dhyani DS, Jain A. Phytochemical studies of the secondary metabolites of *Ziziphus mauritiana* Lam. leaves. Int J Curr Pharm Res, 2012; 4(3):153–5.

Rahayu SE, Darmawanan A, Putri VAL. Potential of Jamlang leaf extract (*Syzygium cuminii* L.) as larvacide for control of *Aedes aegypti* mosquito larva. Biosaintropis, 2021; 6(2):26–33.

Ramayanti I, Layal K, Pratiwi PU. Effectiveness test of basil leaf (*Ocimum basilicum*) extract as bioinsecticide in mosquito coil to mosquito *Aedes aegypti* death. AMS, 2017; 3(2):6–10.

Ravaomanarivo LHR, Razafindralava HA, Rahirimalala FN, Rasohalavanelonaina B, Ravelonandro PH, Mavingu P. Efficacy of seed extracts of *Annona squamosa* and *Annona muricata* (Annonaceae) for the control of *Aedes albopictus* and *Culex quinquefasciatus*. Asian Pac J Trop Biomed, 2014; 4(10):798–806.

Renjana E, Nikmatullah M, Firdiana ER, Ningrum LW, Angio MH. The Potential of *Nepheleopsis* spp. as medicinal plant, a collection of Purwodadi botanical garden, based on ethnomedicine and phytochemical studies. BPN, 2021; 27(1):1–10.

Riaz M, Rasool N, Bukhari IH, Shahid M, Zahoor F, Gilani MA, Zubair M. Antioxidant , antimicrobial and cytotoxicity studies of *Russelia equisetiformis*. AJMR, 2012; 6(27):5700–7.

Rosnaeni MH, Hendranata KF. Repellent effect of lavender, rose and rosemary oil on *Aedes aegypti* mosquitoes. Medika Planta, 2010; 1(1):67–74.

Sae K, Kakouei A, Hajati RJ, Pourshamsian K, Babakhani B. Investigating the effect of height on essential oils of *Urtica dioica* L. (case study : Ramsar, Mazandaran, Iran). Orient J Chem, 2011; 27(4):1345–50.

Saleem H, Htar TT, Naidu R, Zengin G, Ahmad I, Ahemad N. Phytochemical profiling, antioxidant, enzyme inhibition and cytotoxic potential of *Bougainvillea glabra* flowers. Nat Prod Research, 2019; 1:7.

Saleh MM, Ghoneim MM, Kotth S, EL-Hela AA. Biologically active secondary metabolites from *Kalanchoe tomentosae*. JBPJR, 2014; 3(6):136–40.

Salehi B, Sener B, Kili M, Sharifi-Rad J, Naz R, Yousaf Z, Mudau FN, Fokou PVT, Ezzat SM, Bishbishhy MHE, Taheri Y, Lucariello G, Durazzo A, Lucarini M, Suleria HAR, Santini A. Dioscorea plants : a genus rich in vital metabolites from Family Dioscoreaceae. NPC, 2007; 2(1): 99–114.