Meningioma: The Unusual Growth in a Transsexual Patient after Estrogen-Progesterone Therapy

Hamid Borghei-Razavi1*, Valente Fragoza-Padilla1, Gunnar Hargus2, Sahar Bakhti3 and Uta Schick1

1Department of Neurosurgery, Clemens Hospital, Münster, Germany
2Institute of Neuropathology, Münster University, Münster, Germany
3Department of Neurosurgery, Iran University of Medical Science, Tehran, Iran

Introduction

The frequency of meningioma is nearly twice as high in females as in males [1]. This difference in incidence is partly explained by molecular and immunohistochemical studies indicating that meningioma is sensitive to hormones. Approximately 70% of meningiomas express progesterone receptors and 30% express estrogen receptors [2-4]. It has also been observed that meningioma cells tend to proliferate when exposed to estrogen and progesterone [4].

Although cross-sex hormone treatment is an important component of medical treatment of transsexual patients, several adverse effects are associated with its use, such as osteoporosis, cardiovascular disease, hormone-dependent tumors (e.g., lactotroph adenomas), breast and prostate carcinomas. Specifically, research on Hormone Replacement Therapy (HRT) indicates that the risk of developing meningioma may be higher in transsexual patients due to relatively high doses of sex hormones [5,6].

In this article, we report a case of meningioma in a male-to-female transsexual patient undergoing HRT and propose that exposure to estradiol may have promoted fast meningioma tumor cell growth in an unusual manner. Thus, we hypothesize that the risk of developing a hormone-dependent tumor such as meningioma should be taken into account when evaluating potential candidates and examining patients undergoing male-to-female HRT.

Case Report

A 56-year-old male-to-female transsexual patient reported progressive severe left parietal headache during the previous 1.5 years. The neurological exam detected no abnormalities, but a review of clinical history revealed that the patient had been treated with Progynova (containing 2 g estradiol) for 8 years as well as cyproterone acetate, an anti-androgenic drug with semi-progesterone effects.

An initial Magnetic Resonance Imaging (MRI) exam in April 2011 showed positive evidence of a temporopolar meningioma (Figure 1). Consequently, the physician ordered the withdrawal of all hormonal medication. However, the patient, out of concern about losing female phenotype, continued to take Progynova.

A follow-up MRI occurring 6 months later showed that the temporal mass had unexpectedly increased in volume (Figure 2, Table 1). Therefore, the tumor was completely resected without any complication. Histopathology showed a transitional meningioma (WHO grade I) that was progesterone receptor-positive and estrogen receptor-negative (Figure 3).

Discussion

Cross-sex hormonal therapy is a fundamental component of

Keywords: Meningioma; Progesterone receptors; Estrogen receptors hormone therapy; Temporal-polar region; Medial pre-optic nucleus; Ventromedial nucleus; Cross-sex hormone treatment; Tumor incidence; Hormone replacement therapy; Semi-progesterone effects; Cyproteron acetate; Progynova; Transsexual patient

Received: August 11, 2014; Accepted: August 28, 2014; Published: September 10, 2014

*Corresponding author: Hamid Borghei-Razavi, Department of Neurosurgery, Clemens Hospital, Academic Hospital of Münster University, Duesbergweg 124, 48153 Münster, Germany, Tel: 0049-251-9760; E-mail: h.borghei-razavi@clemenshospital.de

Figure 1: Initial MRI on April 2011 showing left Temporopolar Meningioma.
the endocrine regimen recommended for transsexual patients, but several studies associate HRT with a higher risk of developing intracranial meningioma (Table 2) [7-9]. Indeed, current endocrinological practice, the presence of pituitary adenomas contraindicates HRT and indicates that prolactin levels should be routinely monitored in male-to-female transsexuals [8,10].

More detailed molecular and immunohistochemical research provides evidence that meningiomas are hormone-sensitive tumors, with 70% of cells expressing progesterone receptors and around 30% expressing estrogen receptors [2-4]. Many of these studies also report that human meningioma cells proliferate when exposed to progesterone and estrogen [4]. Most meningiomas express functional progesterone rather than estrogen receptors [1,11] and show growth during the progesterone-predominant luteal phase [12].

Other studies have investigated the effects of estradiol treatment on progesterone receptors. Estradiol up-regulates progesterone receptors through α-estradiol receptors and can also stimulate hypothalamic progesterone receptors in the Medial Pre optic Nucleus (MPN) [13]. Some studies show that estradiol plays an important role in the ontogenic expression of progesterone receptors during postnatal uterine maturation in rats [14]. However, another study investigated the functionality of progesterone or estradiol receptors using polymerase chain reaction and provided evidence of a non-functional progesterone receptor in vitro [15].

In experiments performed in rats during their growth phase, males expressed high levels of progesterone receptors in the MPN, whereas females had virtually no progesterone receptors, suggesting that exposure to estradiol has sex-dependent effects. The same study also found that the expression of progesterone receptors in the adult ventromedial nucleus depends on estradiol. Therefore, regulation of progesterone receptor expression through estradiol depends on age, sex, and brain region [16].

Most studies suggest that progesterone may contribute to meningioma pathogenesis, and trials of anti-progesterone treatment for inoperable meningiomas have shown excellent results. As a result, anti-progesterone drugs and the discontinuation of synthetic progesterone have been shown to inhibit meningioma cell growth, and the discontinuation of cyproterone acetate induces an abrupt regression of the tumor [17]. Accordingly, anti-progesterone therapy (e.g., Mifepristone, RU486) shows promise as a hormonal treatment for sphenoid ridge meningioma [18].

In experiments performed in rats during their growth phase, males expressed high levels of progesterone receptors in the MPN, whereas females had virtually no progesterone receptors, suggesting that exposure to estradiol has sex-dependent effects. The same study also found that the expression of progesterone receptors in the adult ventromedial nucleus depends on estradiol. Therefore, regulation of progesterone receptor expression through estradiol depends on age, sex, and brain region [16].

Most studies suggest that progesterone may contribute to meningioma pathogenesis, and trials of anti-progesterone treatment for inoperable meningiomas have shown excellent results. As a result, anti-progesterone drugs and the discontinuation of synthetic progesterone have been shown to inhibit meningioma cell growth, and the discontinuation of cyproterone acetate induces an abrupt regression of the tumor [17]. Accordingly, anti-progesterone therapy (e.g., Mifepristone, RU486) shows promise as a hormonal treatment for sphenoid ridge meningioma [18].

In experiments performed in rats during their growth phase, males expressed high levels of progesterone receptors in the MPN, whereas females had virtually no progesterone receptors, suggesting that exposure to estradiol has sex-dependent effects. The same study also found that the expression of progesterone receptors in the adult ventromedial nucleus depends on estradiol. Therefore, regulation of progesterone receptor expression through estradiol depends on age, sex, and brain region [16].

Most studies suggest that progesterone may contribute to meningioma pathogenesis, and trials of anti-progesterone treatment for inoperable meningiomas have shown excellent results. As a result, anti-progesterone drugs and the discontinuation of synthetic progesterone have been shown to inhibit meningioma cell growth, and the discontinuation of cyproterone acetate induces an abrupt regression of the tumor [17]. Accordingly, anti-progesterone therapy (e.g., Mifepristone, RU486) shows promise as a hormonal treatment for sphenoid ridge meningioma [18].

In experiments performed in rats during their growth phase, males expressed high levels of progesterone receptors in the MPN, whereas females had virtually no progesterone receptors, suggesting that exposure to estradiol has sex-dependent effects. The same study also found that the expression of progesterone receptors in the adult ventromedial nucleus depends on estradiol. Therefore, regulation of progesterone receptor expression through estradiol depends on age, sex, and brain region [16].

Most studies suggest that progesterone may contribute to meningioma pathogenesis, and trials of anti-progesterone treatment for inoperable meningiomas have shown excellent results. As a result, anti-progesterone drugs and the discontinuation of synthetic progesterone have been shown to inhibit meningioma cell growth, and the discontinuation of cyproterone acetate induces an abrupt regression of the tumor [17]. Accordingly, anti-progesterone therapy (e.g., Mifepristone, RU486) shows promise as a hormonal treatment for sphenoid ridge meningioma [18].
Despite the presence of progesterone-positive receptors and a low grade tumor in our patient, we consider that the contraindicated use of estradiol by the patient may have contributed to the unusually fast tumor growth. The tumor in our patient was progesterone receptor-positive and estrogen receptor-negative (Figure 3). However, the patient had been treated with Progynova containing 2 g estradiol and Cyproterone acetate, which is an anti-androgenic drug and has semi-progesterone effects (Table 3). In reviewing the literature, we found studies that examined the effects of estradiol on progesterone receptors experimentally. This literature indicates that estradiol up-regulates estrogen and progesterone receptors [13] and can induce expression of hypothalamic progesterone receptors [19]. As a result, we believe that the indirect effect of estrogen on progesterone receptors (i.e., up-regulation of progesterone receptors in the tumor and hypothalamus) changed the natural history of the meningioma and enhanced tumor growth in our patient.

The average annual growth rate for most meningiomas is about 4 mm per year [20]. In our case, the tumor grew 10 mm in 6 months (Table 1). Thus, despite immunohistochemical evidence that the meningioma was progesterone receptor-positive and estrogen receptor-negative, we propose that estradiol may have an effect on meningioma growth (Table 3).

Given that the prevalence of meningioma in U.S. men is 5:100,000 and the prevalence of male-to-female transsexuals is almost 1:10,000,000,000, this suggests that such an occurrence may not be coincidental [7]. Hence, in male-to-female transsexual patients undergoing HRT who are found to have a meningioma, the cessation of all sex hormones, not only progestin’s, is advised.

References

1. Claus EB, Bond ML, Schildkraut JM, Wiemels JL, Wrensch M, Black PM. Epidemiology of intracranial meningioma. Neurosurgery. 2005; 57(3):1088–1095.

2. Bielshewyn S, Crook EJ, Jaackel KA. Is there an association between meningioma and hormone replacement therapy? J Clin Oncol. 2008; 26(2):279–92. doi: 10.1200/JCO.2007.14.2133.

3. Hsu DW, Efird JT, Hedley-Whyte ET. Progesterone and estrogen receptors in meningiomas: prognostic considerations. J Neurosurg. 1997; 86(1):13–20. doi: 10.3171/jns.1997.86.1.00113.

4. Speirs V, Boyle-Walsh E, Fraser WD. Constitutive co-expression of estrogen and progesterone receptor mRNA in human meningiomas by RT-PCR and response of in vitro cell cultures to steroid hormones. Int J Cancer. 1997; 72(5):714–9.

5. Gooren LJ, Giltay EJ, Bunck MC. Long-term treatment of transsexuals with cross-sex hormones: extensive personal experience. J Clin Endocrinol Metab. 2008;93(1):19–25. doi: 10.1210/jc.2007-1809.

6. Moore E, Wisniewski A, Dols A. Endocrine treatment of transsexual people: a review of treatment regimens, outcomes, and adverse effects. J Clin Endocrinol Metab. 2003; 88(8):3467–73. doi: 10.1210/jc.2002-021967.

7. Deipoli AR, Han SJ, Parsa AT. Development of a symptomatic intracranial meningioma in a male-to-female transsexual after initiation of hormone therapy. J Clinical Neuroscience. 2010; 17(10):1324–6. doi: 10.1016/j.jocn.2010.01.036.

8. Gazzeri R, Galarza M, Gazzeri G. Growth of a meningioma in a transsexual patient after estrogen-progestin therapy. N Engl J Med. 2007; 357(23):2411–2. doi: 10.1056/NEJMct0711938.

9. Cebula H, Pham TQ, Boyer P, Frolich S. Regression of meningiomas after discontinuation of cyproterone acetate in a transsexual patient. Acta Neurochir (Wien). 2010; 152(11):1955–6. doi: 10.1007/s00701-010-1877-2.

10. Liu AS, Hwang SL, Howng SL. Intracranial meningioma and breastcancer. J Clin Neurosci. 2003;10(5):553–6.

11. Wahab M, Al-Azzawi F. Meningioma and hormonal influences. Climacteric. 2003;6(4):285–92.

12. Olson JJ, Beck DW, Schlechte J, Loh PM. Hormonal manipulation of meningiomas in vitro. J Neurosurg. 1986; 65(1):99–107. doi: 10.3171/jns.1986.65.1.0099.

13. RomeoRD, WagnerCK, Jansen HT, DiedriSL, SiskCL. Estradiol induces hypothalamic progesterone receptors but does not activate mating behaviour in male hamsters (Mesocricetus auratus) before puberty. Behavioral Neurosci. 2002;16(2):198–205.

14. Ohta Y, Fukazawa Y, Sato T, Tomomi Sato, Atsushi Suzuki, Naomi Nishimura, and Taisen Iguchi. Effect of estrogen on ontogenic expression of progesterone and estrogen receptors in rat uterus. Zoological Sci 1996;13(1):143–9. doi: 10.1093/zoolsci/13.1.143.

15. Adams EF, Schrell UM, Fallbusch R, Thierauf P. Hormonal dependency of cerebral meningiomas. Part 2: In vitro effect of steroids, bromocriptine, and epidermalgrowth factor on growth dependency of cerebral meningiomas. Part 2: In vitro effect of steroids, bromocriptine, and epidermalgrowth factor on growth.

16. Quadros PS, Wagner CK. Regulation of progesterone receptor expression by estradiol is dependent on age, sex and region in the rat brain. Endocrinology 2008;149(6):3054–61. doi: 10.1210/en.2007-1133.

17. Gonçalves AM, Page P, Domigo V, Meder JF, Oppenheim C. Abrupt regression of a meningioma after discontinuation of cyproterone treatment. AJNR Am J Neuroradiol. 2010; 31(8):1504–5. doi: 10.3174/jnr.2010.010787.

18. De Keizer RJW, Smit JWA. Mifepristone treatment in patients with surgically incurable sphenoid-ridge meningioma: a long-term follow-up. EyeLondEngl. 2004;18(9):954–8. doi: 10.1038/sj.eye.6701370.

19. Nguyen BL, Hatier R, Jeannvoie G, Roux M, Grignon G, Pasqualini JR. Effect of estradiol on the progesterone receptor and on morphological ultra structures in the fetal and new born uterus and ovary of the rat. Acta Endocrinol 1980;117(2):249–259.

20. Rubin G, Hersoncici Z, Laviv Y, Jackson S, Rappaport Zh. Outcome of untreated meningiomas. Isr Med Assoc J [IMA]. 2011;13(3):157–60.