1. Introduction

In deregulated power system, large amount of power transactions forces the system to operate close to its design limits. This makes power system more vulnerable to potential failures thereby jeopardizing system reliability [1]. The system reliability is under constant threat from system contingencies, unpredictable load variations, operational issues, growing complexities of network, higher service level demanded by customers, etc., [2,3]. Hence, new methods and tools need to be devised to measure, monitor, and improve power system reliability. The newer technologies in data management, communication, and control methods together with emerging soft computing tools provide us powerful capabilities to improve system reliability.

The current literature survey deals with the new emerging areas of power system reliability. The paper is sub divided into nine different sub topics. The first topic deals with overview of power system reliability. This is followed by reliability assessment of generation, transmission and distribution systems, simulation/modeling for reliability assessment through soft computing techniques, economic
aspect of reliability evaluation and its enhancement using FACTS devices, reliability assessment of smart grid and also of hybrid/standalone renewable energy systems.

Following sections presents current status of researches in these important areas of power system reliability analysis.

2. Overview of Power System Reliability

This section deals with general introduction to power system reliability assessment. Reliability is the ability of a power network to return to a steady state condition from a sudden disturbance. The major parameters are voltage and frequency deviations. Other indicators are based on magnetic and kinetic assessment of power system [4]. The reliability of generation, transmission, and distribution systems need to be considered from planning stage itself [5,6]. In the literature, reliability assessment using probabilistic indices are suggested which are hierarchical in nature [7–18]. Reactive power plays a vital role in voltage instability and voltage collapse. A reliability assessment model has been developed by taking into account active and reactive power flow [19–22]. Different approaches for reliability improvements could be component redundancy, multiple power flow path, site testing, maintenance, and protection failure improvements [23–25]. A sequential Monte-Carlo simulation has been used for adequacy and security evaluation of power system [26–28]. A stochastic flow network modeling has been used for determination of co-related failures in transmission system [12,29]. A composite reliability evaluation of generation and transmission system has been carried out using capacity related cut sets [30,31]. Deterministic as well as probabilistic models have been formulated to assess reliability of composite system [32,33]. Mathematical formula has been developed for determination of reliability of n-feeder ring bus and triple bus distribution system [34,35].

3. Reliability Assessment of Generation and Transmission System

The reliability of entire power network is dependent upon reliability of generation and transmission system. For evaluation of generator reliability, various reliability indices are used. The papers in this section present reliability assessment using various indices in techniques such as Monte Carlo simulation, Neural Network, Game Theory etc.

The relationship between generator unit reliability and capital investment is used to determine system backup capacity [36,37]. Addition of renewable generation system introduces uncertain behavior in the power network. To estimate reliability of combined-conventional generation and renewable generation, the maximum power delivering transfer capacity of transmission system and various load points have been found using deliverable capacity probability table of multistate transmission providers [14,38]. For evaluation of generation reliability, various techniques such as Game Theory, Monte-Carlo Simulation, Neural Network, etc., have been used [39–45]. Reliability assessment of bilateral, pool, and hybrid market have been estimated through various techniques [46–50]. Demand side reliability assessment based on incentive, prices, etc., have been analyzed to lower undesirable effect of failures [41,51–54].

4. Reliability Assessment of Distribution System

The next important link in the chain after Generation and Transmission system is distribution system. The reliability of distribution system is evaluated considering various parameters such as cost of operation, supply interruption, mechanical failure rate, repaired time, load shedding, and load curtailment policies, etc.

General method of reliability evaluation consists of calculation of reliability indices for a given distribution network under different operating conditions [55–59]. This gives basic information about system reliability.

Reliability of distribution system having distributed generation is dependent on number of units, their location and capacity in each location. Reliability is assured through Bayesian network diagnostic interference method [60–62]. Reliability of such systems has also been evaluated through allocation of dispatchable distributed generator unit, considering cost of installation, operation, and interruption [63]. Another way of assessing reliability of distributed power generation is by considering load shedding and load curtailment policies [64]. Impact of conventional and renewable distributed generation on reliability of future distribution system can be evaluated by distributed generation adequacy, transition rate, mechanical failure rate and starting switching probability through Markov cut set algorithm [64,65].

Predictive reliability assessments of a distribution network have been done using historical outage data and mathematical models [1,66]. Average interruption duration has been taken as a measure of reliability [67,68]. In case of smart grid, reliability assessment of power system components, renewable generation, and communication infrastructure have been considered for reliability evaluation [69]. Evaluation of distribution system reliability is compared for three distribution systems viz. radial, ring, and flower using standard seven reliability indices. The result indicates that flower network exhibits better reliability [70,71].
Evaluation of distribution reliability of various customer sectors such as residential, small industrial, and commercial due to radial and sub transmission outages (considering component failures and weather) have been used to understand their impact on reliability of distribution configuration [72,73].

A new approach to reliability assessment of distribution network has been carried out by considering random repair time omission at load points for radial distribution system [74]. A study of reliability of general n-feeder ring bus system revealed that triple bus configuration has higher reliability [34]. Impact of station related failures on reliability of distribution network is found not to be significant [75].

Value based reliability planning is used to decide minimum reliability required from customer perspective [76]. Maintenance practices have been found to have profound influence over reliability of distribution network [72,77,78]. Reliability improvement of distributed generation system can be carried out by optimal feeder routing in distribution network [79,80]. Reliability of distribution network employing tele-controlled switches and microgrids by calculation of reliability indices have been evaluated [81,82]. Now-a-days large number of research is being undergoing in the field of modern or active distribution network where distributed generation (DG) is connected directly to the distribution network [33,83,84].

5. Reliability Assessment Through Simulation/Modeling

Those Simulation/Modeling is an integral part of reliability evaluation process. This section attempts to collate such various techniques used in the literature successfully.

Most of the papers surveyed use some simulation or modeling approach for determination of reliability indices of generation, transmission, and distribution systems under different parameter sets or operating conditions.

Monte-Carlo simulation technique has been used widely for determination of reliability of generating units [85–88]. This technique has also been used for reliability assessment of composite/bulk electric power system [44,88–101]. This technique has also been used for reliability evaluation of distribution system based on some operational parameter sets [27,67,74,102–105]. Markov Chain model is another technique which has been used for assessment of reliability of power systems [106–109]. Apart from Monte-Carlo simulation and Markov chain model techniques, Bayesian network technique have also been widely reported in literature [110–114]. Other methods reported in literature are graph theoretical approach [79,115], Taylor Series [116] and hybrid techniques [117–125]. For testing the reliability of protection systems in smart grid, a model checking approach is proposed [126].

6. Reliability Assessment through Soft Computing Techniques

For efficient and faster assessment of reliability of complex power networks with different constraints leads to higher level of computation complexity. Hence, newer tools based on soft computing techniques are being used. This section attempts to collate such techniques used for reliability evaluation.

Some popular computing techniques are reviewed here for reliability assessment of power system. Reliability assessment using fuzzy set has been used for determination of reliability performance metrics [18,127–142]. Similarly, Genetic algorithm [131,143–145], Artificial neural network [146], Firefly algorithm [147], Ant colony algorithm [148,149], Particle swarm optimization algorithm [90,148,150–152], Artificial immune system algorithm [148], Bacterial inspired evolutionary algorithm [153], Differential evaluation algorithm [154], Strength pareto evolutionary algorithm [155] have also been used in reliability assessment.

7. Economic Aspects of Reliability Evaluation

This section deals with reliability evaluation of economic aspects of power systems viz. interruption cost, power backup cost, investment cost of additional power component, replacement cost of aging equipment, etc.

Reliability evaluation of power system is also carried out based on some economic criteria such as interruption cost [84,156–167], backup capacity cost [36,42], cost of early warning system [168], risk of capacity deficit [101], investment cost of additional power component including addition of renewable generation system [80,168–173], replacement cost of aging transmission equipment [174], optimal maintenance cost [175,176], uncertain unit commitment cost [177].

8. Reliability Enhancement using Facts Devices

Flexible Alternating Current Transmission System (FACTS) devices are extensively used for power flow enhancement, voltage stability improvement, oscillation damping, etc. These are excellent devices for reliability enhancement as well. Hence, this section enumerates uses of various FACTS devices for reliability improvement.

Use of FACTS devices in transmission system shows overall improvement in system reliability [178]. The analysis was carried out using effective load duration curve
at demand point [179]. An indirect way of evaluation of system reliability is by use of FACTS devices for stability improvement [180].

Thyristor Controlled Series Compensator (TCSC) finds large application in reliability improvement of transmission system [181–183]. The assessment is based on calculation of reliability indices. Unified Power Flow Controller (UPFC) control setting and modes can be used to improve system reliability during post contingency condition. UPFC enhances system dynamic response through damping of rotor angle oscillations [184]. The system load carrying capacity risk is significantly reduced due to incorporation of UPFC [185,186]. Distributed Power Flow Controller (DPFC), a derivative of UPFC has also been used for reliability improvement at a relatively lower cost [184].

Inclusion of Interline Power Flow Controller (IPFC) improves system reliability calculated at load point and system levels [187].

Use of Static Series Voltage Regulator (SSVR) shows improvement in reliability of distribution system. However, the effect is dependent on capacity and location of SSVR [188].

Combination of FACTS devices such as TCSC and UPFC have shown significant improvement in reliability of system compared to other combination of FACTS devices [189,190]. The change in parameter setting of FACTS devices has shown significant impact on system reliability [191].

Reliability of Wind farm connected grid has been improved using Static Synchronous Compensator (STATCOM) due to efficient reactive power compensation [192–194]. Similarly, use of SVC shows improvement in reliability through improvement in power system adequacy [195].

9. Reliability Assessment of Smart Grid

Development of Smart Grid is taken place at faster speed all over the world. The reliability of smart grid can be enhanced by monitoring power system components, repair rates of components, improved communication infrastructure, robustness of cyber power networks etc.

9.1. Smart Grid

Reliability of smart grid can be improved by monitoring component reliability [126]. Reliability is estimated using multiple state Markov chain model incorporating failure and repair rates of power components. Reliability of smart distribution network can be evaluated using Pseudo-Sequential Monte Carlo simulation (PSMCS) incorporating reliability models of power system components and communication infrastructure. This method can be used to assess reliability of failure in a smart distribution network [69,196].

Smart grid uses digital communication system for data connectivity. The reliability of cyber-power networks in a smart grid can be assessed by an optimization model that maximized data connectivity in a cyber network with multiple data sources [197,198].

9.2. Micro Grid

Presence of Microgrid reduces failure rate and its duration and helps to improve reliability of distribution network. Due to isolated operation from upstream network there is significant improvement of reliability of internal as well as external customers. Adequacy calculation of conventional and renewable distributed generators in a microgrid can be estimated using stochastic models using load shedding and load curtailment techniques [64,81,199]. A probabilistic model of power system operation by predictive analysis of the microgrid reliability is also proposed [200].

9.3. Phasor Measurement Unit (PMU)

Due to non-availability of PMU statistics pertaining to field failure data and repair rate, reliability assessment of PMU system can be done with Fuzzy Monte Carlo simulation which uses statistics of extremes. A method to compute transient probability can be done using hidden Markov model. To improve data reliability in Wide Area Measurement system (WAMS), both the PMU data measurement and data transfer have to be reliable. To estimate reliability of failure of PMU and transmission branches, concept of observability reliability can be utilized. This is based on evaluation of loss of data expectation index. For overall evaluation of reliability of PMU, hierarchical Markov modeling is generally used [201–204]. Probability of failure of data transmission can be minimized by optimal placement of PMU and Phasor Data Concentrator (PDC) in a hierarchical structured WAMS [205]. Another method for reliability improvement of PMU placement can be done using Integer Linear Programming (ILP) Algorithm which tries to balance two conflicting objectives i.e. minimization of number of PMU’s and maximization of observable reliability [206,207].

9.4. Demand Response

Demand response helps to improve electricity service reliability without load shedding especially when operational limits are violated. Distribution system reliability and electricity prices are impacted by demand response and smart
metering in a microgrid. Higher price responsive demand side resources increases system reliability [208,209].

10. Reliability Assessment of Hybrid/Standalone Renewable Energy Systems

With fast depletion of fossil fuels, there is increasing use of renewable energy into the power system. The addition of renewable energy system greatly affects the system reliability due to variable nature of these power generation systems. Each type of renewable energy system has its own issues. Majority of power network depend upon solar, wind, or hybrid system. Hence, these sections have been dealt separately.

10.1. Solar

Reliability assessment of conventional power generation system with photovoltaic system is evaluated taking into account effect of hourly fluctuations on output of photovoltaic system. The algorithm can be used to determine loss of load expectations of the combined system [210].

Reliability assessment of independent grid connected Photo Voltaic (PV) system is carried out with respect to failure of components using fault tree method with an exponential probability distribution function [211,212]. Power system reliability performance can be improved with the addition of solar PV system. However, reliability improvement is significant if some energy storage system is carried along with PV solar cells [213,214]. Reliability of solar PV system can be improved by optimizing power production through its operation at its maximum power point [215].

10.2. Wind

Reliability assessment of wind power generation can be done by predicting wind speed through a time series model using Auto-Regressive Moving Average (ARMA) or Monte-Carlo simulation. This allows the reliability assessment of wind power generation system. The method helps to predict the reliability of wind power system [163,216–223].

Quantum of wind penetration level can be decided based on reliability assessment by obtaining probabilistic quantitative indices which take into account load operation [148,157,224,225].

In the literature, reliability assessment of power electronic converters for wind energy conversion system takes into account component reliability of converters with temperature as stress factor. It also considers semiconductor power losses based on switching and conduction losses. This can help to identify least reliable component in any converter [226]. Reliability of wind power generators can be determined by deciding on type and number of wind turbine generators, including capital maintenance, operating cost, and consumer interruption cost. Significant economic and reliability benefits can be obtained by choosing appropriate combination of number and type of wind generators at different sites [169]. Another approach of estimating reliability of wind energy integration can be carried out by considering wind speed, wind variability, generation facility, turbine forced outage, and available transmission capacity [38,227–230].

10.3. Hybrid

Reliability of power system grid can be improved by incorporating hybrid system composed of Photovoltaic module, Proton exchange membrane fuel cells and Hydrogen storage tank.

Reliability of small power system can be improved using hybrid system consisting of solar energy and small hydro. Solar power as a single source has a reliability lesser than 50% but the same can be improved by adding storage capacity, such as small hydro. A combination of solar power with small hydro is desirable for higher reliability than isolated solar power source [170,231,232].

Generation adequacy reliability evaluation of hybrid hydro and wind farm incorporating time series wind speed model have been carried out. The overall model combines quantitative assessment of six configurations with different wind farm capacities. Water reservoir volumes and water inflow is also used to predict the reliability of the hybrid system. Result indicates that system adequacy decreases when hybrid combination takes inadequate reservoir capacities and water inflows [233]. A composite system comprising wind and solar PV generation which incorporates multiple correlations amongst wind speeds, insolation, bus/regional load curves have also been tried to evaluate composite generation and transmission system reliability. Result indicates that accurate model of multiple correlations increases the reliability evaluation of the composite system [234]. Another probabilistic model of composite wind generation and hydrogen storage system have been investigated to determine amount of secondary/tertiary generating reserve required to maintain a certain level of reliability [235].

Reliability evaluation of composite solar PV and pump storage power plant can be used to improve power supply reliability by devising optimal pump storage power plant operation pattern [236].
11. Reliability Assessment in Deregulated Power Systems

Power systems reliability assessment and enhancement is being influenced by the deregulated energy market, as competitive electricity market influences system reliability. This section deals with the assessment of reliability in deregulated or restructured power system.

An analytical probabilistic model for reliability evaluation of the energy market and a methodology for incorporating the market reliability studies by Markov modeling based on market performance indices is proposed [37, 237]. Monte Carlo simulation is also used in deregulated power system for reliability evaluation [44, 238–240]. Due to large number of bilateral transactions in deregulated power systems, and resulting line outages, reliability of the system is reduced. This reliability is also being decremented by removing the redundancy in order to achieve minimum energy cost. As the minimum cost is the basic criterion for Independent power producers (IPPs) in deregulated power system, high standard of power system reliability can’t be maintained [241]. There is also a need to determine transmission reliability margin in deregulated power system which ensures the transmission system for reasonable range of uncertainty in operating conditions of the power system [242]. Concept of demand side management (DSM) is present in deregulated power system and it has improved the nodal as well as overall reliability of the system [54, 243, 244]. Another concept of demand-price elasticity also emerged with the deregulation, where price of electricity interacts mutually with load. The demand price elasticity improves the system reliability along with reduction in volatility of nodal spot price [245, 246]. Power flow tracing which was previously used for transmission pricing in competitive market is proposed for reliability evaluation in deregulated power system [247].

12. APS in Current Research

Based on papers reviewed, following areas require further focus to fill gaps in current research. Some of the areas suggested for further exploration are listed below:

- A Markov model for repairable multi-state system with fuzzy Bayesian interval estimator for fuzzy system reliability evaluation could be considered for further exploration.
- A further extension of multi-level redundancy allocation problem could be by considering a complex configuration or difficult level of case design so as to closely mimic real world system.
- Artificial neural network-based systems could use better training samples to improve accuracy of the performance.
- Accuracy of models employing particle swarm optimization for reliability estimation of maintenance scheduling process could be further improved by tailoring the reliability estimation to behavior of specific user or roles.
- A more comprehensive analysis of different systems and networks could be carried out by considering other meta-heuristics such as Artificial Immune System (AIS), Differential Evaluation (DE), Gravitational Search Algorithm (GSA), Tabu Search (TS), Firefly Algorithm (FFA), Bacteria Foraging Algorithm (BFA) etc.
- In the area of assessment of maintenance failure rate and repair time reliability assessment could focus on reliability of power system components based on aging, uncertainty in power generation system, etc.
- Reliability assessment of type of maintenance appropriate for components of large scale solar photovoltaic systems could be explored.
- Reliability assessment of renewable energy systems such as solar and wind could be explored by incorporating meteorological model taking into account movement of cloud patterns, wind flow patterns, etc.
- Monte-Carlo simulation methodology could be used to investigate optimum failure rate and repair time for distribution components considering associated costs. These indices could serve as benchmark for power distribution companies.
- Reliability assessment of customer weighted failure frequencies and downtimes together with system average failure frequencies and downtimes could incorporate more variables so that the accuracy of prediction model could be improved further.
- Optimal placement of distributed generation for time varying loads incorporate switching operations, protection system failures in the event of faults.
- Evaluation of reliability of PMU with fuzzy Monte-Carlo technique could be used to improve accuracy of results.
- Evaluation of reliability of PMU for transient probability (for better observability of whole system) could be done using HMM.
- Reliability evaluation of systems using digital relays having annunciation and corrective measures can be carried out for improvement of wide area system reliability.
- Probabilistic reliability assessment of power system operation could combine fuzzy set theory and probability methods to deal with both randomness and fuzziness in time varying and/or condition dependent data modeling.
Based on the papers reviewed, gaps in research are also indicated in this paper.

Disclosure statement

No potential conflict of interest was reported by the authors.

ORCID

Fahad Iqbal http://orcid.org/0000-0002-9336-9098

References

[1] Chowdhury AA, Koval DO. Value-based distribution system reliability planning. IEEE Trans Ind Appl. 1998;34(1):23–29.
[2] Sun Y, Member S, Cheng IL, et al. Power system operational reliability evaluation based on real-time operating state. 7th Int Power Eng Conf IPEC 2005. 2005: 722–727.
[3] Siirto O, Hyvärinen M, Loukkalathi M, et al. Improving reliability in an urban network. Electr Power Syst Res. 2015;120:47–55.
[4] Drouineau M, Maïzi N, Mazauric V. Impacts of intermittent sources on the quality of power supply: the key role of reliability indicators. Appl Energy. 2014;116:333–343.
[5] Su CT, Lii GR. Reliability planning for composite electric power systems. Electr Power Syst Res. 1999;51(1):23–31.
[6] Levitin G, Lisnianski A. Optimal modernization of power system subject to reliability and capacity requirements. Electr Power Syst Res. 1999;50(3):183–190.
[7] Debnath K, Goel L. Power system planning – a reliability perspective. Electr Power Syst Res. 1995;34(3):179–185.
[8] Endrenyi J, Anders GJ, Leite da Silva AM. Probabilistic evaluation of the effect of maintenance on reliability – an application. IEEE Trans Power Syst. 1998;13(2):576–583.
[9] Chang L, Wu Z. Performance and reliability of electrical power grids under cascading failures. Int J Electr Power Energy Syst. 2011;33(8):1410–1419.
[10] Billinton R, Aboreshaid S. Voltage stability considerations in composite power system reliability evaluation. IEEE Trans Power Syst. 1998;13(2):655–660.
[11] Allen EH, Ilic MD. Reserve markets for power systems reliability. IEEE Trans Power Syst. 2000;15(1):228–233.
[12] Lin YK, Chang PC, Fiondella L. A study of correlated failures on the network reliability of power transmission systems. Electr Power Energy Syst. 2012;43:954–960.
[13] Pandey MK, Billinton R. Electric power system reliability criteria determination in a developing country – an investigation in Nepal. IEEE Trans Energy Convers. 2000;15(3):342–347.
[14] Wang P, Billinton R. Reliability assessment of a restructured power system considering the reserve agreements. IEEE Trans Power Syst. 2004;19(2):972–978.

Table 1. Numbers and year of publication of surveyed papers.

Category	Number of papers	Year (From–To)
Overview of power systems reliability	33	1995–2017
Reliability assessment of generation and transmission system	20	2004–2016
Reliability assessment of distribution system	33	1996–2017
Reliability assessment through simulation/Modeling	47	1997–2016
Reliability assessment through soft computing techniques	32	1999–2016
Economic aspects of reliability evaluation	27	1996–2017
Reliability enhancement using FACTS devices	18	1999–2016
Reliability assessment of smart grid	18	2009–2017
Reliability assessment of hybrid/Standalone renewable energy system	33	1995–2016
Reliability assessment in deregulated power system	12	1998–2015

13. Conclusion

This paper is a bibliographical survey of 247 publications covering the period 1995–2017 (up to first 5 months). The survey is subdivided into ten different topics with each topic describing the overview of related literature more precisely in Table 1. The information collated here covering past 22 years will be of immense help to researchers working in the field of power system reliability, practicing engineers, postgraduate, and doctoral level students.

- New models for optimal power system operation planning could incorporate variables, such as protective device location, switching of these devices, future growth scenarios, and risk analysis to build robust reliability model.
- Estimation of future load growth in power system could be applied to multimode systems instead of single node systems.
- Further investigation is needed to study the effect of maintenance on repair in predefined time based maintenance oriented systems to understand the impact of maintenance on component failure.
- Impact of large scale deployment of energy storage devices in renewable energy systems could be studied for reliability evaluation. This could help in planning of energy storage and renewable energy source integration, expansion, economic feasibility analysis, etc.
- Reliability assessment of maintenance system could be studied involving human failure, partial failure, and catastrophic failure.
[15] Billinton R, Zhang W. Load duration curve incorporation in the reliability evaluation of bulk power systems. Electr Power Compon Syst. 2002;30(1):89–105.

[16] Goel L, Billinton R. Impacts of pertinent factors on reliability worth indices in an electric power system. Electr Power Syst Res. 1997;41(2):151–158.

[17] Li W, Zhou J. Probabilistic reliability assessment of power system operations. Electr Power Compon Syst. 2008;36(10):1102–1114.

[18] Kavousifard A, Samet H. Consideration effect of uncertainty in power system reliability indices using radial basis function network and fuzzy logic theory. Neurocomputing 2011;74(17):3420–3427.

[19] Safdarian A, Fotuhi-Firuzabad M, Aminifar F, et al. A new formulation for power system reliability assessment with AC constraints. Int J Electr Power Energy Syst. 2014;56:298–306.

[20] Verma AK, Srividya A, Ravi Kumar HM. "A framework using uncertainties in the composite power system reliability evaluation," Electr Power Compon Syst., 30, 7, pp. 679–691, 2002.

[21] Wang P, Qin W, Han X, et al. "Reliability assessment of power systems considering reactive power sources," 2009 IEEE Power Energy Soc Gen Meet., 2009, p. 1–7.

[22] Qin W, Wang P, Han X, et al. Reactive power aspects in reliability assessment of power systems. IEEE Trans Power Syst. 2011;26(1):85–92.

[23] Schiffl G. Power reliability. Strateg Plan Energy Environ. 2002;22(2):56–72.

[24] Jiang K, Singh C. New models and concepts for power system reliability evaluation including protection system failures. IEEE Trans Power Syst. 2011;26(4):1845–1855.

[25] Du X, Liu W. "Evaluation of power system reliability based on the maintenance state," 4th Int Conf Electr Util Deregul Restruct Power Technol; 2011. p. 1016–1020.

[26] Rei AM, Leite da Silva AM, Jardim JL, et al. Static and dynamic aspects in bulk power system reliability evaluations. IEEE Trans Power Syst. 2000;15(1):189–195.

[27] Goel L, Ou Y. Reliability worth assessment in radial distribution systems using the Monte Carlo simulation technique. Electr Power Syst Res. 1999;51(1):43–53.

[28] Cheng D, Zhu D, Broadwater RP, et al. A graph trace based reliability analysis of electric power systems with time-varying loads and dependent failures. Electr Power Syst Res. 2009;79(9):1321–1328.

[29] Liu H, Sun Y, Wang P, et al. A novel state selection technique for power system reliability evaluation. Electr Power Syst Res. 2008;78(6):1019–1027.

[30] Abdelaziz AR. Reliability evaluation in operational planning of power systems. Electr Mach Power Syst. 1997;25(4):419–428.

[31] Hong Y-Y, Lee L-H. Reliability assessment of generation and transmission systems using fault-tree analysis. Energy Convers Manag. 2009;50(11):2810–2817.

[32] Maghraby HM, Farag AS, Cheema AN. Reliability equivalents for ac adequacy evaluation of large power systems. Electr Mach Power Syst. 1998;26(5):507–527.

[33] Moeni-Aghtaie M, Farzin H, Fotuhi-Firuzabad M, et al. Generalized analytical approach to assess reliability of renewable-based energy hubs. IEEE Trans Power Syst. 2017;32(1):368–377.

[34] Lazim MT, Zeidan M. Reliability evaluation of ring and triple-bus distribution systems-General solution for n-feeder configurations. Int J Electr Power Energy Syst. 2013;47:78–84.

[35] Bhowmik S, Goswami SK, Bhattacherjee PK. A new power distribution system planning through reliability evaluation technique. Electr Power Syst Res. 2000;54(3):169–179.

[36] Wu ZQ. Reliability transaction and pricing under power system deregulation. 3rd Int Conf Deregul Restruct Power Technol DRPT. 2008;2008:268–273.

[37] Ehsani A, Ranjbar AM, Jafari A, et al. Reliability evaluation of deregulated electric power systems for planning applications. Reliab Eng Syst Saf. 2008;93:1473–1484.

[38] Mehrbadi A, Wang P, Goel L. Reliability evaluation of power systems considering restructuring and renewable generators. IEEE Trans Power Syst. 2012;27(1):243–250.

[39] Haroonabadi H, Barati H. Generation reliability evaluation in deregulated power systems using game theory and neural networks. Smart Grid Renew Energy 2012;3:89–95.

[40] Hemmati R, Hooshmand RA, Khodabakhshian A. Reliability constrained generation expansion planning with consideration of wind farms uncertainties in deregulated electricity market. Energy Convers Manag. 2013;76:517–526.

[41] Soleymani S, Ranjbar AM, Shirani AR. Strategic bidding of generating units in competitive electricity market with considering their reliability. Int J Electr Power Energy Syst. 2008;30(3):193–201.

[42] Zhao Q, Wang P, Goel L, et al. Impacts of contingency reserve on nodal price and nodal reliability risk in deregulated power systems. IEEE Trans Power Syst. 2013;28(3):2497–2506.

[43] Ding Y, Cheng L, Zhang Y, et al. Operational reliability evaluation of restructured power systems with wind power penetration utilizing reliability network equivalent and time-sequential simulation approaches. J Mod Power Syst Clean Energy 2014;2(4):329–340.

[44] Haroonabadi H, Haghfam M-R. Generation reliability assessment in power markets using Monte Carlo simulation and soft computing. Appl Soft Comput. 2011;11:5292–5298.

[45] Pourahmadi F, Fotuhi-Firuzabad M, Dehghanian P, "Application of game theory in reliability centered maintenance of electric power systems," IEEE Trans Ind Appl. 2016;53(2):936–946.

[46] Ding Y, Lisianski A, Wang P, et al. Dynamic reliability assessment for bilateral contract electricity providers in restructured power systems. Electr Power Syst Res. 2009;79(10):1424–1430.

[47] Ding Y, Wang P. Reliability and price risk assessment of a restructured power system with hybrid market structure. IEEE Trans Power Syst. 2006;21(1):108–116.

[48] Ding Y, Wang P, Goel L, Billinton R, et al. Reliability assessment of restructured power systems using reliability network equivalent and pseudo-sequential simulation techniques. Electr Power Syst Res. 2007;77(12):1665–1671.
systems. Int J Electr Power Energy Syst. 2014;63:124–131.

[50] Boongnong T, Yokoyama A. Reliability assessment of composite power system in deregulated environment considering hybrid market transaction models. Int Conf Power Syst Technol POWERCON2006. 2006;1:1–6.

[51] Nikzad M, Mozafari B. Reliability assessment of incentive- and priced-based demand response programs in restructured power systems. Int J Electr Power Energy Syst. 2014;56:83–96.

[52] Goel L, Aparna VP, Wang P. A framework to implement supply and demand side contingency management in reliability assessment of restructured power systems. IEEE Trans Power Syst. 2007;22(1):205–212.

[53] Goel L, Wu Q, Wang P. Nodal price volatility reduction and reliability enhancement of restructured power systems considering demand-price elasticity. Electr Power Syst Res. 2008;78(10):1655–1663.

[54] Mansouri A, Aazami A, Omidian A, et al. Evaluation of power system reliability considering direct load control effects. Int J Electr Comput Eng. 2013;3(2):254–259.

[55] Li F. Distributed processing of reliability index assessment and reliability-based network reconfiguration in power distribution systems. IEEE Trans Power Syst. 2005;20(1):230–238.

[56] Dialynas EN, Michos DG. Impact of supply restoration procedures on the reliability performance of power distribution systems. Electr Power Syst Res. 1996;39(2):111–121.

[57] Zheng H, Cheng Y, Gou B, et al. Impact of automatic switches on power distribution system reliability. Electr Power Syst Res. 2012;83(1):51–57.

[58] Arya R. Estimation of distribution system reliability indices neglecting random interruption duration incorporating effect of distribution generation in standby mode. Int J Electr Power Energy Syst. 2014;63:270–275.

[59] Duan D-L, Ling X-D, Wu X-Y, et al. Reconfiguration of distribution network for loss reduction and reliability improvement based on an enhanced genetic algorithm. Int J Electr Power Energy Syst. 2015;64:88–95.

[60] Gao L, Zhou Y, Li C, et al. Reliability assessment of distribution systems with distributed generation based on bayesian networks. Engineering Review. 2014;34(1):55–62.

[61] Zhu D, Broadwater RP, Tam KS, et al. Impact of DG placement on reliability and efficiency with time-varying loads. IEEE Trans Power Syst. 2006;21(4):419–427.

[62] Kumar D, Samantaray SR, Kamwa I, et al. Reliability-constrained based optimal placement and sizing of multiple distributed generators in power distribution network using cat swarm optimization. Electr Power Compon Syst. 2014;42(2):149–164.

[63] Awad ASA, El-Fouly THM, Salama MMA. Optimal distributed generation allocation and load shedding for improving distribution system reliability. Electr Power Compon Syst. 2014;42(6):576–584.

[64] Conti S, Nicolosi R, Rizzo SA. Generalized systematic approach to assess distribution system reliability with renewable distributed generators and microgrids. IEEE Trans Power Deliv. 2012;27(2):261–270.

[65] Al-Muhaini M, Heydt GT. Evaluating future power distribution system reliability including distributed generation. IEEE Trans Power Deliv. 2013;28(4):2264–2272.

[66] Billinton R, Feng Z. Distribution system reliability risk assessment using historical utility data. Electr Power Compon Syst. 2007;35(6):693–713.

[67] Arya R, Tiwary A, Choube SC, et al. A smooth bootstrapping based technique for evaluating distribution system reliability indices neglecting random interruption duration. Int J Electr Power Energy Syst. 2013;51:307–310.

[68] Dashti R, Yousefi S. Reliability based asset assessment in electrical distribution systems. Reliab Eng Syst Saf. 2013;112:129–136.

[69] Celli G, Ghiani E, Pilo F, et al. Reliability assessment in smart distribution networks. Electr Power Syst Res. 2013;104:164–175.

[70] Billinton R, Cui L, Pan Z, et al. Probability distribution development in distribution system reliability evaluation. Electr Power Compon Syst. 2002;30(9):907–916.

[71] Goel L. A comparison of distribution system reliability indices for different operating configurations. Electr Mach Power Syst. 1999;27(9):1029–1039.

[72] Yssaad B, Khiat M, Chaker A. Reliability centered maintenance optimization for power distribution systems. Int J Electr Power Energy Syst. 2014;55:108–115.

[73] Gupta R, Goel L. Reliability impacts of subtransmission and radial configurations on the distribution system. Electr Mach Power Syst. 1999;27(7):721–736.

[74] Arya LD, Choube SC, Arya R, et al. Evaluation of reliability indices accounting omission of random repair time for distribution systems using Monte Carlo simulation. Int J Electr Power Energy Syst. 2012;42(1):533–541.

[75] Wang P, Billinton R. Impacts of station-related failures on distribution system reliability. Electr Power Compon Syst. 2001;29(11):965–976.

[76] Chowdhury AA, Koval DO. Current practices and customer value-based distribution system reliability planning. IEEE Trans Ind Appl. 2004;40(5):1174–1182.

[77] Bertling L, Allan R, Eriksson R. A reliability-centred asset maintenance method for assessing the impact of maintenance in power distribution systems. IEEE Trans Power Syst. 2005;20(1):75–82.

[78] Abdul Rahman F, Varuttamaseni A, Kintner-Meyer M, et al. Application of fault tree analysis for customer reliability assessment of a distribution power system. Reliab Eng Syst Saf. 2013;111:76–85.

[79] Kumar D, Samantaray SR, Joos G. Reliability assessment based graph theoretical approach for feeder routing in power distribution networks including distributed generations. Int J Electr Power Energy Syst. 2014;57:11–30.

[80] Meneses CAP, Mantovani JRS. Improving the grid operation and reliability cost of distribution systems with dispersed generation. IEEE Trans Power Syst. 2013;28(3):2485–2496.

[81] Conti S, Rizzo SA, El-Saadany EF, et al. Reliability assessment of distribution systems considering telecontrolled switches and microgrids. IEEE Trans Power Syst. 2014;29(2):598–607.
[82] Hajian-Hoseinabadi H, Golshan MEH, Shayanfar HA. Composite automated distribution system reliability model considering various automated substations. Int J Electr Power Energy Syst. 2014;54:211–220.

[83] Farzin H, Fotuhi-Firuzabad M, Moeini-Aghtaie M. Reliability studies of modern distribution systems integrated with renewable generation and parking lots. IEEE Trans Sustainable Energy 2017;8(1):431–440.

[84] Heidari A, Agelidis VG, Xia M, et al. Reliability optimization of automated distribution networks with probability customer interruption cost model in the presence of DG units. IEEE Trans Smart Grid. 2017;8(1):305–315.

[85] Salehfar H, Trihadi S. Application of perturbation analysis to sensitivity computations of generating units and system reliability. IEEE Trans Power Syst. 1998;13(1):152–158.

[86] Salehfar H, Trihadi S. Animated Monte Carlo simulation for teaching power generating system reliability analysis. IEEE Trans Educ. 1998;41(2):130–140.

[87] Moazzami M, Hemmati R, Highghatzdar Fesharaki F, et al. Reliability evaluation for different power plant busbar layouts by using sequential Monte Carlo simulation. Int J Electr Power Energy Syst. 2013;53:987–993.

[88] Bak Jensen B, Bech J. Models for probabilistic power transmission system reliability calculation. IEEE Trans Power Syst. 1999;14(3):1166–1171.

[89] Maghraby HAM, Allan RN. Application of DC equivalents to the reliability evaluation of composite power systems. IEEE Trans Power Syst. 1999;14(1):355–361.

[90] Ashok Bakkiyaraj R, Kumarappan N. Optimal reliability planning for a composite electric power system based on Monte Carlo simulation using particle swarm optimization. Int J Electr Power Energy Syst. 2013;47:109–116.

[91] Billinton R, Wangdee W. Predicting bulk electricity system reliability performance indices using sequential Monte Carlo simulation. IEEE Trans Power Deliv. 2006;21(2):909–917.

[92] Shu Z, Jirutitijaroen P, Da Silva AML, et al. Accelerated state evaluation and latin hypercube sequential sampling for composite system reliability assessment. IEEE Trans Power Syst. 2014;29(4):1692–1700.

[93] Billinton R, Wangdee W. Delivery point reliability indices of a bulk electric system using sequential Monte Carlo simulation. IEEE Trans Power Deliv. 2006;21(1):345–352.

[94] Edimu M, Alvehag K, Gaunt CT, et al. Analyzing the performance of a time-dependent probabilistic approach for bulk network reliability assessment. Electr Power Syst Res. 2013;104:156–163.

[95] Dzobo O, Gaunt CT, Herman R. Investigating the use of probability distribution functions in reliability-worth analysis of electric power systems. Int J Electr Power Energy Syst. 2012;37(1):110–116.

[96] Luo X, Singh C, Patton AD. Power system reliability evaluation using learning vector quantization and Monte Carlo simulation. Electr Power Syst Res. 2003;66(2):163–169.

[97] Wangdee W, Billinton R. Impact of load shedding philosophies on bulk electric system reliability analysis using sequential Monte Carlo simulation. Electr Power Compon Syst. 2006;34(3):355–368.

[98] Hua B, Bie Z, Au SK, et al. Extracting rare failure events in composite system reliability evaluation via subset simulation. IEEE Trans Power Syst. 2015;30(2):753–762.

[99] Rodrigues AB, Da Silva MG. Probabilistic assessment of available transfer capability based on Monte Carlo method with sequential simulation. IEEE Trans Power Syst. 2007;22(1):484–492.

[100] Billinton R, Tang X. Selected considerations in utilizing Monte Carlo simulation in quantitative reliability evaluation of composite power systems. Electr Power Syst Res. 2004;69(2–3):205–211.

[101] Tomasson E, Soder L. “Improved importance sampling for reliability evaluation of composite power systems,” IEEE Trans Power Syst. 2016;32(3):2426–2434.

[102] Vitorino RM, Jorge HM, Neves LP. Loss and reliability optimization for power distribution system operation. Electr Power Syst Res. 2013;96:177–184.

[103] Chunyang L, Xun C, Xiaoshan Y. “Reliability analysis of a power system based on the multi-state system theory,” Reliab Maintainab Safety, 2009. ICRM 2009. 8th Int Conf. 2009;95–98.

[104] Conti S, Rizzo SA. Monte Carlo simulation by using a systematic approach to assess distribution system reliability considering intentional islanding. IEEE Trans Power Deliv. 2015;30(1):64–73.

[105] Brown RE, Taylor TM. Modeling the impact of substations on distribution reliability. IEEE Trans Power Syst. 1999;14(1):349–354.

[106] Pevatolo A, Tironi E, Valade I. Semi-Markov processes for power system reliability assessment with application to uninterruptible power supply. IEEE Trans Power Syst. 2004;19(3):1326–1333.

[107] van Casteren JFL, Bollen MHJ, Schmieg ME. Reliability assessment in electrical power systems: the Weibull-Markov stochastic model. IEEE Trans Ind Appl. 2000;36(3):911–915.

[108] Liu Y, Singh C. Reliability evaluation of composite power systems using Markov cut-set method. IEEE Trans Power Syst. 2010;25(2):777–785.

[109] Lisnianski A, Elmakias D, Laredo D, et al. A multi-state Markov model for a short-term reliability analysis of a power generating unit. Reliab Eng Syst Saf. 2012;98(1):1–6.

[110] Chapman JL. A matrix representation of system structure with application to computational reliability assessments. Qual Eng. 2013;25(4):418–436.

[111] Dukhovny A, Marichal J-L. Reliability of systems with dependent components based on lattice polynomial description. Stoch Model 2012;28(1):167–184.

[112] Daemi T, Ebrahimi A. Evaluation of components reliability importance measures of electric transmission systems using the Bayesian network. Electr Power Compon Syst. 2012;40(12):1377–1389.

[113] Daemi T, Ebrahimi A, Fotuhi-Firuzabad M. Constructing the Bayesian network for components reliability importance ranking in composite power systems. Int J Electr Power Energy Syst. 2012;43(1):474–480.

[114] Yu DC, Nguyen TC, Haddawy P. Bayesian network model for reliability assessment of power systems. IEEE Trans Power Syst. 1999;14(2):426–432.
[115] Dev N, Kachhwaha SS, Attri R. Development of reliability index for combined cycle power plant using graph theoretic approach. Ain Shams Eng J. 2014;5(1):193–203.

[116] Zhao Y, Fan F, Wang J, et al. Uncertainty analysis for bulk power systems reliability evaluation using Taylor series and nonparametric probability density estimation. Int J Electr Power Energy Syst. 2015;64:804–814.

[117] Miki T, Okitsu D, Kushida M, et al. Development of a hybrid type assessment method for power system dynamic reliability. 1999 IEEE Int Conf Syst Man, Cybern. 1999;1:968–973.

[118] Pindoriya NM, Jirutitijaroen P, Srinivasan D, et al. Composite reliability evaluation using Monte Carlo simulation and least squares support vector classifier. IEEE Trans Power Syst. 2011;26(4):2483–2490.

[119] Abdelaziz AR. Power system reliability using network decomposition. Electr Mach Power Syst. 1997;25(4):411–417.

[120] Aravindhababu P, Neela R. A reliable and fast-decoupled weighted least square estimation for power systems. Electr Power Compon Syst. 2008;36(11):1200–1207.

[121] Xiang Y, Wang L, Fu T. A preliminary study of power system reliability considering cloud service reliability. 2014 Int Conf Power Syst Technol. Powercon 2014. p. 2031–2036.

[122] Kozine IO. Prior reliability assessments based on coherent imprecise probabilities. Int J Gen Syst. 2001;30(3):283–307.

[123] Khan ME. Bulk load points reliability evaluation using a security based model. IEEE Trans Power Syst. 1998;13(2):456–463.

[124] Zhang W, Billinton R. Application of an adequacy equivalent method in bulk power system reliability evaluation. IEEE Trans Power Syst. 1998;13(2):661–666.

[125] Roy D, Dasgupta T. A continuous approximation for evaluating reliability of complex systems under stress strength model. Commun Stat – Simul Comput. 2000;29(3):829–844.

[126] Hamman ST, Hopkinson KM, Farud JE. A model checking approach to testing the reliability of smart grid protection systems. IEEE Trans Power Delivery. 2016;32(6):2408–2415.

[127] Kumar M, Yadav SP, Kumar S. Fuzzy system reliability evaluation using time-dependent intuitionistic fuzzy set. Int J Syst Sci. 2013;44(1):50–66.

[128] Li Z, Kapur KC. Continuous-state reliability measures based on fuzzy sets. IIE Trans. 2012;44(11):1033–1044.

[129] Barmurungsethapong W, Pongpulponsak A. System reliability for non-repairable multi-state series parallel system using fuzzy Bayesian inference based on prior interval probabilities. Int J Gen Syst. 2015;44(4):442–456.

[130] Verma AK, Kumar HMR, Keshavan BK. A fuzzy logic approach to security-based bulk power system reliability evaluation. Electr Mach Power Syst. 2000;28(1):45–54.

[131] Abdelaziz AR. A fuzzy-based power system reliability evaluation. Electr Mach Power Syst. 1999;27(3):271–278.

[132] Lang BP, Pahwa A. Power distribution system reliability planning using a fuzzy knowledge-based approach. IEEE Trans Power Deliv. 2000;15(1):279–284.

[133] Liu Y, Huang H-Z. Reliability assessment for fuzzy multi-state systems. Int J Syst Sci. 2010;41(4):365–379.

[134] Goel L, Wu Q, Wang P. Fuzzy logic-based direct load control of air conditioning loads considering nodal reliability characteristics in restructured power systems. Electr Power Syst Res. 2010;80(1):98–107.

[135] Halilčević SS, Gubina F, Gubina AF. The composite fuzzy reliability index of power systems. Eng Appl Artif Intell. 2011;24(6):1026–1034.

[136] Gharavi H, Ardahali MM, Ghanbari-Tichi S. Imperial competitive algorithm optimization of fuzzy multi-objective design of a hybrid green power system with considerations for economics, reliability, and environmental emissions. Renew Energy 2015;78:427–437.

[137] Farahat MA, Al-Shammari BM. Power system reliability evaluation and quality assessment by fuzzy logic technique. Univ Power Eng Conf. 2004;1:478–483.

[138] Sharma RK, Kumar D, Kumar P. Fuzzy modeling of system behavior for risk and reliability analysis. Int J Syst Sci. 2008;39(6):563–581.

[139] Panchal D, Kumar D. Reliability analysis of CHU system of coal fired thermal power plant using fuzzy λ-t approach. Procedia Eng. 2014;97:2323–2332.

[140] Verma AK, Srividya A, Deka BC. Composite system reliability assessment using fuzzy linear programming. Electr Power Syst Res. 2005;73(2):143–149.

[141] Dehghanian P, Fotuhi-Firuzabad M, Bagheri-Shouraki S, et al. Critical component identification in reliability centered asset management of power distribution systems via fuzzy AHP. IEEE Syst J. 2012;6(4):593–602.

[142] Aghili SJ, Hajian-Hoseinabadi H. The reliability investigation considering data uncertainty; An application of fuzzy transformation method in substation protection. Int J Electr Power Energy Syst. 2014;63:988–999.

[143] Su CT, Lii GR. Reliability planning employing genetic algorithms for an electric power system. Appl Artif Intell. 1999;13(8):763–776.

[144] Gupta N, Swarnkar A, Niazi KR. Distribution network reconfiguration for power quality and reliability improvement using Genetic Algorithms. Int J Electr Power Energy Syst. 2014;54:664–671.

[145] Zhao W, Tao T, Zio E. System reliability prediction by support vector regression with analytic selection and genetic algorithm parameters selection. Appl Soft Comput J. 2015;30:792–802.

[146] Amjady N, Ehsan M. Evaluation of power systems reliability by an artificial neural network. IEEE Trans Power Syst. 1999;14(1):287–292.

[147] Shareef H, Ibrahim AA, Salman N, et al. Power quality and reliability enhancement in distribution systems via optimum network reconfiguration by using quantum firefly algorithm. Int J Electr Power Energy Syst. 2014;58:160–169.

[148] Wang L, Singh C. Population-based intelligent search in reliability evaluation of generation systems with wind power penetration. IEEE Trans Power Syst. 2008;23(3):1336–1345.

[149] Leite da Silva AM, Rezende LS, da Fonseca Manso LA, et al. Reliability worth applied to transmission expansion planning based on ant colony system. Int J Electr Power Energy Syst. 2010;32(10):1077–1084.
[150] Puzis R, Shritz D, Elovici Y. A particle swarm model for estimating reliability and scheduling system maintenance. Enterp Inf Syst. 2014;1–29.

[151] Paliwal P, Patidar NP, Nema RK. Determination of reliability constrained optimal resource mix for an autonomous hybrid power system using Particle Swarm Optimization. Renew Energy. 2014;63:194–204.

[152] Abdì H, Dehnave E, Mohammadi F. Dynamic economic dispatch problem integrated with demand response (DEDDR) considering non-linear responsive load models. IEEE Trans Smart Grid. 2016;7(6):2586–2595.

[153] Hsieh TJ. Hierarchical redundancy allocation for multi-level reliability systems employing a bacterial-inspired evolutionary algorithm. Inf Sci (Ny). 2014;288(1):174–193.

[154] Arya R, Choube SC. Differential evolution based technique for reliability design of meshed electrical distribution networks. Int J Electr Power Energy Syst. 2013;48:10–20.

[155] Mori H, Kakuta H. Modified SPEA2 for probabilistic reliability assessment in smart grids. Procedia Comput Sci. 2011;6:435–440.

[156] Rios SM, Vidal VP, Kiguel DL. Bus-based reliability indices and associated costs in the bulk power system. IEEE Trans Power Syst. 1998;13(3):719–724.

[157] Karki R, Billinton R. Cost-effective wind energy utilization for reliable power supply. IEEE Trans Energy Convers. 2004;19(2):435–440.

[158] Anders GJ, Leite da Silva AM. Cost related reliability measures for power system equipment evaluation. IEEE Trans Power Syst. 2000;15(2):654–660.

[159] Billinton R, Zhang W. Cost-related evaluation of interconnected bulk power systems using an equivalent approach. Electr Mach Power Syst. 2000;28(9):793–810.

[160] Wang P, Billinton R, Goel L. Unreliability cost assessment of an electric power system using reliability network equivalent approaches. IEEE Trans Power Syst. 2002;17(3):549–556.

[161] Wu L, Shahidehpour M, Li T. Cost of reliability analysis based on stochastic unit commitment. Power Syst IEEE Trans. 2008;23(3):1364–1374.

[162] Billinton R, Zhang W. Cost related reliability evaluation of bulk power systems. Int J Electr Power Energy Syst. 2001;23(2):99–112.

[163] Abul’Wafa AR. Reliability/cost evaluation of a wind power delivery system. Electr Power Syst Res. 2011;81(4):873–879.

[164] Azad AK, Misra RB. A new approach to evaluate reliability and production cost of a power generating system. Comput Elect Eng. 1996;22(5):343–351.

[165] Goel L. Power system reliability cost/benefit assessment and application in perspective. Comput Electr Eng. 1998;24(5):315–324.

[166] Chowdhury AA, Koval DO. Application of customer interruption costs in transmission network reliability planning. IEEE Trans Ind Appl. 2001;37(6):1590–1596.

[167] Crozier JT, Wisdom WN. A power quality and reliability index based on customer interruption costs. IEEE Power Eng Rev. 1999;59–61.

[168] Mohammad R, Kalam A, Akella R. A cost-effective early warning system for improving the reliability of power systems. 2013 Proc Annu Reliab Maintainab Symp. 2013;1–6.

[169] Xie K, Billinton R. Determination of the optimum capacity and type of wind turbine generators in a power system considering reliability and cost. IEEE Trans Energy Convers. 2011;26(1):227–234.

[170] Maheri A. A critical evaluation of deterministic methods in size optimisation of reliable and cost effective standalone hybrid renewable energy systems. Reliab Eng Syst Saf. 2014;130:159–174.

[171] Ramirez-Rosado JJ, Bernal-Agustin JL. Reliability and costs optimization for distribution networks expansion using an evolutionary algorithm. IEEE Trans Power Syst. 2001;16(1):111–118.

[172] Anejia YP, Chandrasekaran R, Nair KPK. Minimal-cost system reliability with discrete-choice sets for components. IEEE Trans Reliab. 2004;53(1):71–76.

[173] Leoni AR, Bowen JE. Improving safety and reliability via cost-effective upgrades of existing systems. IEEE Trans Ind Appl. 2007;43(1):130–138.

[174] Awadallah SKE, Milanovic JV, Jarman PN. Reliability based framework for cost-effective replacement of power transmission equipment. IEEE Trans Power Syst. 2014;29(5):2549–2557.

[175] Li F, Brown RE. A cost-effective approach of prioritizing distribution maintenance based on system reliability. IEEE Trans Power Deliv. 2004;19(1):439–441.

[176] Abeygunawardane SK, Jurutitijaroen P. Application of probabilistic maintenance models for selecting optimal inspection rates considering reliability and cost tradeoff. IEEE Trans Power Deliv. 2014;29(1):178–186.

[177] Wang B, Li Y, Watada J. Supply reliability and generation cost analysis due to load forecast uncertainty in unit commitment problems. IEEE Trans Power Syst. 2013;28(3):2242–2252.

[178] Billinton R, Cui Y. Adequacy assessment of composite power systems with FACTS devices using a DC load flow method. Electr Power Compon Syst. 2004;32(11):1137–1149.

[179] Moon S-P, Lee J-G, Jeon D-H, et al. Probabilistic reliability evaluation of the FACTS devices applied power systems. J Int Council Electr Eng. 2011;1(4):459–462.

[180] Mohanty AK, Barik AK. Power system stability improvement using FACTS devices. Int J Mod Eng Res. 2009;1(2):666–672.

[181] Billinton R, Fotuhi-Firuzabad M, Faried SO. Power system reliability enhancement using a thyristor controlled series capacitor. IEEE Trans Power Syst. 1999;14(1):369–374.

[182] Verma AK, Srividiya A, Deka BC. Impact of a FACTS controller on reliability of composite power generation and transmission system. Electr Power Syst Res. 2004;72(2):125–130.

[183] Fotuhi-Firuzabad M, Billinton R, Faried SO. Subtransmission system reliability enhancement using a thyristor controlled series capacitor. IEEE Trans Power Deliv. 2000;15(1):443–449.

[184] Rajabi-Ghahnavieh A, Fotuhi-Firuzabad M, Shahidehpour M, et al. UPFC for enhancing power system reliability. IEEE Trans Power Deliv. 2010;25(4):2881–2890.

[185] Gopinath B, Tom AM, Kumar SS. Enhancing power system reliability using unified power flow controller. Indian J Appl Res. 2013;3(11):160–163.
[186] Billinton R, Fotuhi-Firuzabad M, Faried SO, et al. Impact of unified power flow controllers on power system reliability. IEEE Trans Power Syst. 2000;15(1):410–415.

[187] Moghadas S, Kazemi A, Fotuhi-Firuzabad M, et al. Composite system reliability assessment incorporating an interline power-flow controller. IEEE Trans Power Deliv. 2008;23(2):1191–1199.

[188] Hosseini M, Shayanfar HA, Fotuhi-Firuzabad M. Reliability improvement of distribution systems using SSVR. ISA Trans. 2009;48(1):98–106.

[189] T SK, Sankar V. Enhancement of reliability analysis for a 6-bus composite power system using the combination of TCSC & UPFC. Int Conf Recent Trends Power, Control Instrum Eng. 2013:502–507.

[190] Kumar TS, Sankar V. Improvement in reliability of composite power system using TCsc, Upfc Of 6 bus Rbts – a comparison. IOSR J Electr Electron Eng. 2012;1(4):46–53.

[191] SVP, Sahu SK, Jayalaxmi A. “Particle swarm optimization based composite power system reliability analysis using FACTS. Int J Electron Electr Eng. 2014;3(2):105–109.

[192] Jayam AP, Ardeshna NK, Choudhury BH. Application of STATCOM for improved reliability of power grid containing a wind turbine. 2008 IEEE Power Energy Soc Gen Meet – Converg Deliv Electr Energy 21st Century. 2008;1–7.

[193] Chen HC, Cheng PT. A DC bus voltage balancing technique for the cascaded H-bridge STATCOM with improved reliability under grid faults. IEEE Trans Ind Appl. 2016;52(2):1263–1270.

[194] Aly M, Ahmed EM, Shoyama M. Thermal and reliability assessment for wind energy systems with DSTATOMC functionality in resilient microgrids. IEEE Trans Sustainable Energy 2016;8(3):953–965.

[195] Shaalan AM, Abdulqadersurrati M. Effect of SVC on composite power system reliability level. Int J Adv Res Electr Electron Instrum Eng. 2012;1(6):563–573.

[196] Falahati B, Member S, Fu Y, et al. Reliability modeling and evaluation of power systems with smart monitoring. IEEE Trans Smart Grid. 2013;4(2):1087–1095.

[197] Falahati B, Fu Y. Reliability assessment of smart grids considering indirect cyber-power interdependencies. IEEE Trans Smart Grid. 2014;5(4):1677–1685.

[198] Falahati B, Fu Y, Wu L. Reliability assessment of smart grid considering direct cyber-power interdependencies. IEEE Trans Smart Grid. 2012;3(3):1515–1524.

[199] Costa PM, Matos MA. Assessing the contribution of microgrids to the reliability of distribution networks. Electr Power Syst Res. 2009;79(2):382–389.

[200] Xu X, Wang T, Mu L, et al. Coordinated Operation of Concentrated Solar Power and Wind Resources for the Provision of Energy and Reserve Services,” IEEE Trans Power Systems. 2016;32(4):3176–3184.

[201] Murthy C, Roy DS, Mohanta DK. Reliability evaluation of phasor measurement unit: a system of systems approach. Electr Power Compon Syst. 2015;43(4):437–448.

[202] Murthy C, Mishra A, Ghosh D, et al. Reliability analysis of phasor measurement unit using hidden Markov model. IEEE Syst J. 2014;8(4):1293–1301.

[203] Dehghani M, Goel L, Li W. PMU based observability reliability evaluation in electric power systems. Electr Power Syst Res. 2014;116:347–354.

[204] Wang Y, Li W, Lu J. Reliability analysis of phasor measurement unit using hierarchical Markov modeling. Electr Power Compon Syst. 2009;37(5):517–532.

[205] Rana AS, Thomas MS, Senroy N. Reliability evaluation of WAMS using Markov-based graph theory approach. IET Gener Transm Distrib. 2017;11(11):2930–2937.

[206] Fesharaki FH, Hooshmand RA, Khodabakhshian A. A new method for simultaneous optimal placement of PMUs and PDCs for maximizing data transmission reliability along with providing the power system observability. Electr Power Syst Res. 2013;100:43–54.

[207] Wang Y, Wang C, Li W, et al. Reliability-based incremental PMU placement. IEEE Trans Power Syst. 2014;29(6):2744–2752.

[208] Saffarian A, Degefa MZ, Lehtonen M, et al. Distribution network reliability improvements in presence of demand response. IET Gener Transm Distrib. 2014;8(12):2027–2035.

[209] Joung M, Kim J. Assessing demand response and smart metering impacts on long-term electricity market prices and system reliability. Appl Energy 2013;101:441–448.

[210] Jain A, Tripathy SC, Balasubramanian R. Reliability and economic analysis of a power generation system including a photovoltaic system. Energy Convers Manag. 1995;36(3):183–189.

[211] Ahadi A, Ghadimi N, Mirabbasi D. Reliability assessment for components of large scale photovoltaic systems. J Power Sources 2014;264:211–219.

[212] Zhang P, Wang Y, Xiao W, et al. Reliability evaluation of grid-connected photovoltaic power systems. IEEE Trans Sustainable Energy 2012;3(3):379–389.

[213] Koh LH, Yong GZ, Peng W, et al. Impact of energy storage and variability of PV on power system reliability. Energy Procedia 2013;33:302–310.

[214] Petrone G, Spagnuolo G, Teodorescu R, et al. Reliability issues in photovoltaic power processing systems. IEEE Trans Ind Electron. 2008;55(7):2569–2580.

[215] Shenoy PS, Kim KA, Johnson BB, et al. Differential power processing for increased energy production and reliability of photovoltaic systems. IEEE Trans Power Electron. 2013;28(6):2968–2979.

[216] Heshmati A, Najafi HR, Aghaebrahimi MR, et al. Wind farm modeling for reliability assessment from the viewpoint of interconnected systems. Electr Power Compon Syst. 2012;40(3):257–272.

[217] Soleymani S, Mosayebian ME, Mohammad S. A combination method for modeling wind power plants in power systems reliability evaluation. Comput Electr Eng. 2015;41:28–39.

[218] Wangdee W, Billinton R. Reliability assessment of bulk electric systems containing large wind farms. Int J Electr Power Energy Syst. 2007;29(10):759–766.

[219] Shi WH, Chen J. Reliability assessment of interconnected generation systems based on hourly wind speed probability model. Energy Procedia 2011;12:819–827.

[220] Leite AP, Borges CLT, Falcao DM. Probabilistic wind farms generation model for reliability studies applied to Brazilian sites. IEEE Trans Power Syst. 2006;21(4):1493–1501.

[221] Billinton R, Wangdee W. Reliability-based transmission reinforcement planning associated with large-scale wind farms. IEEE Trans Power Syst. 2007;22(1):34–41.
Aihara R, Yokoyama A, Nomiyama F, et al. Impact of operational scheduling of pumped storage power plant considering excess power on power supply reliability in a power system with a large penetration of photovoltaic generations. J Int Counc Electr Eng. 2011;1(1):85–90.

Ehsani A, Ranjbar AM, Jafari A, et al. Reliability evaluation of deregulated power system considering competitive electricity market. Iran J Sci Technol Trans B, Eng. 2007;31(B6):603–616.

Cheng JWM, McGillis DT, Galinana FD. Power system reliability in a deregulated environment. Can Conf Electr Comput Eng. 2000;1:765–768.

Arifujaman M. Reliability comparison of power electronic converters for grid-connected 1.5 kW wind energy conversion system. Renew Energy 2013;57:348–357.

Zhang Y, Chowdhury AA, Koval DO. Probabilistic wind energy modeling in electric generation system reliability assessment. IEEE Trans Ind Appl. 2011;47(3):1507–1514.

Zhang Y, Zhu S, Chowdhury AA. Reliability modeling and control schemes of composite energy storage and wind generation system with adequate transmission upgrades. IEEE Trans Sustainable Energy 2011;2(4):520–526.

Thapa S, Karki R, Billinton R. Utilization of the area risk concept for operational reliability evaluation of a wind-integrated power system. IEEE Trans Power Syst. 2013;28(4):4771–4779.

Sulaeman S, Benidris M, Mitra J, et al. A wind farm reliability model considering both wind variability and turbine forced outages. IEEE Trans Sustainable Energy 2016;8(2):629–637.

Rajabi-Ghahnavieh A, Nowdeh SA. Optimal PV–FC hybrid system operation considering reliability. Int J Electr Power Energy Syst. 2014;60:325–333.

Ehnberg SGJ, Bollen MHJ. Reliability of a small power system using solar power and hydro. Electr Power Syst Res. 2005;74(1):119–127.

Karki R, Hu P, Billinton R. Reliability evaluation considering wind and hydro power coordination. IEEE Trans Power Syst. 2010;25(2):685–693.

Qin Z, Li W, Xiong X. Incorporating multiple correlations among wind speeds, photovoltaic powers and bus loads in composite system reliability evaluation. Appl Energy 2013;110:285–294.

Pelacchi P, Poli D. The influence of wind generation on power system reliability and the possible use of hydrogen storages. Electr Power Syst Res. 2010;80(3):249–255.

Negra NB, Holmstrm O, Bak-Jensen B, et al. Aspects of relevance in offshore wind farm reliability assessment. IEEE Trans Energy Convers. 2007;22(1):159–166.

Qin Z, Li W, Xiong X. Generation system reliability evaluation incorporating correlations of wind speeds with different distributions. IEEE Trans Power Syst. 2013;28(1):551–558.

Karki R. Renewable energy credit driven wind power growth for system reliability. Electr Power Syst Res. 2007;77(7):797–803.

Ding Y, Singh C, Goel L, et al. Short-term and medium-term reliability evaluation for power systems with high penetration of wind power. IEEE Trans Sustainable Energy 2014;5(3):896–906.

Arifujaman M. Reliability comparison of power electronic converters for grid-connected 1.5 kW wind energy conversion system. Renew Energy 2013;57:348–357.

Zhang Y, Chowdhury AA, Koval DO. Probabilistic wind energy modeling in electric generation system reliability assessment. IEEE Trans Ind Appl. 2011;47(3):1507–1514.

Zhang Y, Zhu S, Chowdhury AA. Reliability modeling and control schemes of composite energy storage and wind generation system with adequate transmission upgrades. IEEE Trans Sustainable Energy 2011;2(4):520–526.

Thapa S, Karki R, Billinton R. Utilization of the area risk concept for operational reliability evaluation of a wind-integrated power system. IEEE Trans Power Syst. 2013;28(4):4771–4779.

Sulaeman S, Benidris M, Mitra J, et al. A wind farm reliability model considering both wind variability and turbine forced outages. IEEE Trans Sustainable Energy 2016;8(2):629–637.

Rajabi-Ghahnavieh A, Nowdeh SA. Optimal PV–FC hybrid system operation considering reliability. Int J Electr Power Energy Syst. 2014;60:325–333.

Ehnberg SGJ, Bollen MHJ. Reliability of a small power system using solar power and hydro. Electr Power Syst Res. 2005;74(1):119–127.

Karki R, Hu P, Billinton R. Reliability evaluation considering wind and hydro power coordination. IEEE Trans Power Syst. 2010;25(2):685–693.

Qin Z, Li W, Xiong X. Incorporating multiple correlations among wind speeds, photovoltaic powers and bus loads in composite system reliability evaluation. Appl Energy 2013;110:285–294.

Pelacchi P, Poli D. The influence of wind generation on power system reliability and the possible use of hydrogen storages. Electr Power Syst Res. 2010;80(3):249–255.

Aihara R, Yokoyama A, Nomiyama F, et al. Impact of operational scheduling of pumped storage power plant considering excess power on power supply reliability in a power system with a large penetration of photovoltaic generations. J Int Counc Electr Eng. 2011;1(1):85–90.

Ehsani A, Ranjbar AM, Jafari A, et al. Reliability evaluation of deregulated power system considering competitive electricity market. Iran J Sci Technol Trans B, Eng. 2007;31(B6):603–616.

Cheng JWM, McGillis DT, Galinana FD. Power system reliability in a deregulated environment. Can Conf Electr Comput Eng. 2000;2:765–768.

Arifujaman M. Reliability comparison of power electronic converters for grid-connected 1.5 kW wind energy conversion system. Renew Energy 2013;57:348–357.

Zhang Y, Chowdhury AA, Koval DO. Probabilistic wind energy modeling in electric generation system reliability assessment. IEEE Trans Ind Appl. 2011;47(3):1507–1514.

Zhang Y, Zhu S, Chowdhury AA. Reliability modeling and control schemes of composite energy storage and wind generation system with adequate transmission upgrades. IEEE Trans Sustainable Energy 2011;2(4):520–526.

Thapa S, Karki R, Billinton R. Utilization of the area risk concept for operational reliability evaluation of a wind-integrated power system. IEEE Trans Power Syst. 2013;28(4):4771–4779.

Sulaeman S, Benidris M, Mitra J, et al. A wind farm reliability model considering both wind variability and turbine forced outages. IEEE Trans Sustainable Energy 2016;8(2):629–637.

Rajabi-Ghahnavieh A, Nowdeh SA. Optimal PV–FC hybrid system operation considering reliability. Int J Electr Power Energy Syst. 2014;60:325–333.

Ehnberg SGJ, Bollen MHJ. Reliability of a small power system using solar power and hydro. Electr Power Syst Res. 2005;74(1):119–127.

Karki R, Hu P, Billinton R. Reliability evaluation considering wind and hydro power coordination. IEEE Trans Power Syst. 2010;25(2):685–693.

Qin Z, Li W, Xiong X. Incorporating multiple correlations among wind speeds, photovoltaic powers and bus loads in composite system reliability evaluation. Appl Energy 2013;110:285–294.

Pelacchi P, Poli D. The influence of wind generation on power system reliability and the possible use of hydrogen storages. Electr Power Syst Res. 2010;80(3):249–255.