SUPPORTING INFORMATION

Covid-19 Automated Diagnosis and Risk Assessment through Metabolomics and Machine Learning

Jeany Delafiori1,2, Luiz Cláudio Navarro2,2, Rinaldo Focaccia Siciliano3,4, Gisely Cardoso de Melo5,6, Estela Natasha Brandt Busanello7, José Carlos Nicolau4, Geovana Manzan Sales1, Arthur Noim de Oliveira1, Fernando Fonseca Almeida Val5,6, Diogo Noim de Oliveira1, Adriana Eguti7, Luiz Augusto dos Santos8, Talia Falcão Dalçóquio9, Adriane Justi Bertolin6, Rebeca Linhares Abreu-Netto5,6, Rocio Salsoso4, Djane Baía-da-Silva5,6, Fabiana G Marcondes-Braga4, Vanderson Souza Sampaio5,6, Carla Cristina Judice10, Fabio Trindade Maranhão Costa10, Nelson Duran11, Mauricio Wesley Perroud7, Ester Cerdeira Sabino12, Marcus Vinicius Guimarães Lacerda5,13, Leonardo Oliveira Reis14, Wagner José Fávaro11, Wuelton Marcelo Monteiro5,6, Anderson Rezende Rocha2,10 and Rodrigo Ramos Catharino1,2

1 Innovare Biomarkers Laboratory, School of Pharmaceutical Sciences, University of Campinas, Campinas, Brazil - Rua Cinco de Junho, 350 - 13083-970 - Cidade Universitária Zeferino Vaz, Campinas/SP - Brazil
2 RECOD Laboratory, Computing Institute, University of Campinas, Campinas, Brazil - Rua Saturnino de Brito, 573 - 13083-852 - Cidade Universitária Zeferino Vaz, Campinas/SP - Brazil
3 Clinical Division of Infectious and Parasitic Diseases, University of São Paulo Medical School, Brazil - Av. Dr. Arnaldo, 455 - 01246-903 - Cerqueira César, São Paulo/SP, Brazil
4 Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil - Av. Dr. Enéas de Carvalho Aguiar, 44 - 05403-900 – Cerqueira César, São Paulo/SP, Brazil
5 Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Brazil - Av. Pedro Teixeira, s/n - 69040-000 - Dom Pedro, Manaus/AM - Brazil
6 Amazonas State University, Manaus, Brazil - Av. Pedro Teixeira, nº 25 - 69040-000 - Dom Pedro, Manaus/AM - Brazil
7 Sumaré State Hospital, Sumaré, Brazil - Av. da Amizade, 2400 - 13175-490 - Jardim Bela Vista, Sumaré/SP, Brazil
8 Paulinia Municipal Hospital, Paulinia, Brasil - Rua Miguel Vicente Cury, 100 - 13140-000 - Nova Paulinia, Paulinia/SP, Brazil
9 Health Surveillance Foundation of Amazonas State, Manaus, Brazil - Av. Torquato Tapajós, 4010 - 69093-018 - Colônia Santo Antônio, Manaus/AM, Brazil
10 Laboratory of Tropical Diseases, Institute of Biology, University of Campinas, Campinas, Brazil - Rua Bertrand Russel, s/n - 13083-970 - Cidade Universitária Zeferino Vaz, Campinas/SP, Brazil
11 Laboratory of Urogenital Carcinogenesis and Immunotherapy, University of Campinas, Campinas, Brazil - Av. Bertrand Russel, s/n - 13083-865 – Cidade Universitária Zeferino Vaz, Campina/SP, Brazil
12 Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil - Avenida Dr. Enéas Carvalho de Aguiar, 470 - 05403-000 – Cerqueira César, São Paulo/SP, Brazil
13 Leónidas and Maria Deane Institute, FIOCRUZ, Manaus, Brazil - Rua Terezina, 476 - 69057-070 - Adrianópolis, Manaus/AM, Brazil
14 UroScience Laboratory, University of Campinas, Campinas, Brazil - Rua Tessália Vieira de Camargo, 126 - 13083-887 - Cidade Universitária Zeferino Vaz, Campinas/SP, Brazil

*corresponding author e-mail: Rodrigo Ramos Catharino, rrc@unicamp.br; Anderson Rezende Rocha, anderson.rocha@ic.unicamp.br

Table of Contents

Mass spectra data pre-processing ... S2
Algorithms selection and tuning ... S4
Markers importance ranking ... S6
Table S1. Performance metrics for tree-based algorithms S8
Table S2. Performance metrics for PLS and SVM algorithms S8
Table S3. Proposed biomarkers to COVID-19 diagnosis model (M1) S9
Table S4. Proposed biomarkers to risk assessment model (M2) S11
Table S5. Proposed biomarkers to low-risk discrimination model (M3) ... S14
Models markers combination – Table S6. Confusion matrix S16
Mass spectra data pre-processing

The pre-processing of mass spectrometry data acquired has the following steps:

1. The scan points included in each .RAW file (Thermo Fisher) are extracted using the Python interface developed by François Allain wrapping Thermo DLLs provided in https://pypi.org/project/pymsfilereader/. We configured the spectrometer to acquire 50 full scans for each replicate, and we acquired 10 replicates per patient sample. Figure 1 below explains the scan points. Scan points are stored in a JSON file with our lab-internally specified format, which will be complemented with the further steps of identification of peaks and final features.

![Scan points of collected raw data.](image)

2. The scan points are then processed looking for spectral peaks, fitting a Gaussian in each peak. Peaks which do not have at least 50% (configurable) of the scan points are considered noise (Figure 2). For the peaks extracted measurements we store: maximum intensity, gaussian peak, FWHM (full wide at half maximum), area. Those data points are also stored in a new expanded JSON file (which includes the previous scans and allows us to visualize all the processing steps made for each peak, if necessary).
3. Using the FWHM collected from all the spectrum, we compute the average peak resolution of the spectrometer, describing it as a linear function of the \(m/z \).

4. After collecting and describing the peaks of each spectrum, we compare the 10 replicates of the patient, discarding peaks that are not consistent across the replicates. Peaks are considered the same if they are superposed in their ranges of FWHM. For comparison, the replicates are normalized with maximum intensity equal to one (for each replicate). Two thresholds are defined for the RMSE error: the feature RMSE threshold and the vector RMSE threshold.

- If a normalized peak has median zero upon the replicates of the same patient, it is considered noise and deleted of all replicates.

- If a peak has the standard deviation of the intensity (measured by the gaussian maximum) greater than feature RMSE threshold then it is considered noise and deleted of all replicates.

- After the two steps above, if the RMSE error of a replicate, computed against the linear regression of all peak values of all replicates of the same patient, is above the vector RMSE threshold, then the replicate is considered to be acquired with bad quality and the entire replicate is discarded.
The previous steps guarantee that the data acquired from the samples are consistent and robust to random noise. Other types of noise and more consistent interferences still can be present and will be eliminated by the machine-learning process.

After identifying the peaks consistently within the replicates of the same patients, we build the bag of peaks (a concept like the bag of words in a text processing). All peaks from all spectra are collected and aligned using the spectrometer resolution at the \(m/z \). Peaks which are superposed at the resolution range are considered the same and represented by their \(m/z \) weighted average (using intensity as the weight). The \(m/z \) representatives in the bag of peaks are considered to be the final features. The feature vector matrix is composed \(F = [f_{i,j}] \) where \(i \) is the index of the \(m/z \), \(j \) is the index of the vector (replicate) and \(f_{i,j} \) is the intensity of the peak represented by the \(m/z(i) \) in the vector(j).

A final pre-processing annotation is performed over the feature vector matrix, discarding features whose number of non-zero intensities are below 10% of the number of vectors. Mass spectra pre-processing data is compiled and available via Zenodo link: https://doi.org/10.5281/zenodo.4329381.

Algorithms selection and tuning

The most important principles of our method are:

1. The ability to compute the feature importance on the predictive model generated by the method; and
2. the optimization process of recursively using the feature importance, discarding less important ones until achieving maximum predictive results, which identifies the features that carry most information about the phenomena under analysis.

With those principles in mind, we devised methods to implement them. For that, we adopted initially decision trees to estimate the variable importance. PLS is also a method which allows us to compute the variable importance in projection (VIP). Then we rely upon methods using combinations of trees such as Random Forests, Extreme Random Forests, Gradient Boosting Decision Forests (XGBoost), ADA Boosting Decision Forests and PLS. All of them seek to implement principle #1 above and point out the most important features for decision-making allowing us to recursively evaluate a set of features, eliminate the less important ones, and iterate (principle #2 above).

In our experiments during the method's design, ADA boosting slightly outperforms its counterparts on selecting the most important features, immediately followed by XGBoost. Extreme Random Forest and Random Forest come next, and PLS prediction performance depends on the linearity of the relations between variables, but it is the best for visualization purposes of the separation between classes in the projection space. Therefore, we adopted ADA boosting for the feature selection, PLS for visualization and XGBoost for
deployment (final classification) if it outperforms ADA in the final results. We note that adopting the two methods and choosing the one with higher confidence in a classification is straightforward as each method gives a classification along with its confidence in doing so.

SVM (Support Vector Machines) are used only at the end of the process to evaluate the prediction performance of the final variables with a completely different algorithm just to assess the richness of the identified features. We hypothesized that if the found features are robust and discriminatory an independent classifier would also offer good classification results, as it is the case here. As an observation, we opted NOT to consider SVM as one candidate for feature selection because this method is not straightforward to be adapted for this intent as it relies upon a transformed geometrical space. The main optimization algorithm can be expressed as a recursive application of the following steps:

1. Compute the best parameters for the current vector length using either random or grid search
 a. Train and validate the algorithm in 10 rounds with the fitting dataset split into training patients (all replicates together) and validate patients. Compute the mean and standard deviations of the confusion matrix metrics considering the metrics Accuracy, Sensitivity, Specificity, Precision, F1-Score, and MCC for a broader view of the performance.
 b. Compute the feature importance by averaging the feature importance in each of the 10 trained models.
 c. Discard features that represent less than 5% of the total summed importance.

 These steps are recursively performed until no features remain in the vector. The length associated with the maximum MCC (we adopt MCC for reference as it is symmetrical on positive and negative class metrics) is chosen and features selected by this method are the candidates of putative biomarkers.

 ![Graph of Most Discriminant Features](image)

 FIGURE S4. Recursive fitting.

Candidates of putative biomarkers are then analyzed by the values distribution and also the m/z are searched in the metabolomics databases verifying if they have a relation with metabolisms which can be applied to the phenomena under analysis. As an example, if there is an m/z related to a known medicine commonly given to patients, it could appear as an important prediction feature, and we must eliminate it from the experiment (depending on the case, restarting the ML method from the beginning eliminating this feature from the feature vectors). This is a selection process based on the prediction power of the molecules present on the samples (represented by the m/z relative intensity measured by the spectrometer).
After selecting putative biomarkers, the process is repeated for the paired features, which computes the relation between the putative biomarkers. The rationale here is to increase robustness to the analyzed biomarkers with respect to the acquisition equipment (e.g., different possible associated acquisition noise). In this way, each biomarker acts as an internal standard for the other biomarkers, making the spectrum independent from equipment and the relative scale, as the prediction model will work over features that represent the relation between biomarkers, mainly on biomarkers which are up-regulated against the down-regulated (in this case, the variation is amplified by the opposite direction of the single biomarkers variation).

Markers importance ranking

ΔJ is a metric we present to meet the requirements for measuring the potential of a single m/z to differentiate the classes of interest (e.g., control v. covid-19) as the probability to present higher intensity values above the median of each class. This measure compares the integral of the probability function (which is the cumulative distribution function CDF) using as a reference point the median of each class. In the ΔJ definition, there is an important condition that above the median, the difference of CDFs keeps the signal, guaranteeing that above the median of the selected class, the cumulative probability is always higher. We can consider ΔJ as a more restrictive measure than Kolmogorov–Smirnov two samples test (which we apply before computing ΔJ).

Machine-learning algorithms perform a multivariate statistical analysis to determine the prediction model at the end, which considers the features selected. On the other hand, for biomarkers, we want to see molecules that present a higher or lower value in the conditions, then ΔJ is a way of measuring the univariate independent contribution of the variable to the model (Figure 5).

We proposed an early version for ΔJ use for Paracoccidioidomycosis diagnosis (https://doi.org/10.1128/mSystems.00258-20).
FIGURE S5. Feature distribution using ΔJ.

Feature m/z 553.3 ranked #0 values distribution

Feature m/z 806.5 ranked #9 values distribution

Cumulative distributions comparison
Table S1. Performance metrics using pairwise features on 10 validation tests for tree-based algorithms.

Algorithm	GDB	M1	M2	M3	ADA	M1	M2	M3	RF	M1	M2	M3	XRF	M1	M2	M3
Vector length	39	32	29	39	32	29	39	32	29	39	32	29	39	32	29	29
# of Estimators	260 (3)	260 (3)	260 (3)	260 (3)	260 (3)	132 (3)	20 (3)	132 (3)	132 (3)	36 (3)	68 (3)					
TN	90 (3)	37 (2)	40 (2)	89 (4)	38 (2)	40 (2)	87 (3)	35 (3)	37 (2)	87 (3)	35 (2)	36 (2)				
FP	5 (2)	6 (2)	2 (1)	6 (3)	5 (2)	2 (1)	8 (3)	8 (3)	5 (2)	7 (3)	8 (2)	6 (3)				
FN	4 (2)	5 (2)	3 (1)	5 (2)	4 (2)	3 (1)	9 (3)	7 (2)	4 (1)	9 (2)	7 (2)	3 (1)				
TP	101 (4)	33 (2)	31 (2)	101 (3)	33 (3)	31 (2)	97 (5)	31 (3)	30 (2)	96 (4)	31 (3)	31 (2)				
Accuracy (%)	95.6 (1.1)	87.1 (2.7)	93.0 (2.3)	94.6 (1.7)	88.7 (3.2)	93.4 (1.8)	91.9 (1.7)	81.9 (3.0)	88.5 (3.7)	91.7 (1.3)	82.1 (3.5)	88.0 (3.3)				
Sensitivity (%)	95.9 (1.8)	87.4 (4.8)	91.6 (4.0)	95.4 (1.6)	88.1 (4.6)	91.8 (3.1)	91.7 (3.0)	82.1 (6.0)	88.5 (3.3)	91.0 (1.9)	82.1 (6.2)	91.1 (4.2)				
Specificity (%)	95.2 (2.1)	86.8 (4.4)	94.5 (2.3)	93.8 (3.5)	89.3 (4.7)	95.0 (2.4)	92.1 (2.9)	81.6 (6.1)	88.4 (5.1)	92.4 (2.7)	82.0 (5.2)	85.0 (5.6)				
Precision (%)	95.3 (1.9)	87.1 (3.7)	94.3 (2.2)	94.1 (3.1)	89.3 (4.2)	94.9 (2.3)	92.1 (2.6)	82.1 (4.5)	88.6 (4.7)	92.4 (2.4)	82.2 (4.1)	86.1 (4.4)				
F1 Score (%)	95.6 (1.1)	87.1 (2.7)	92.9 (2.5)	94.7 (1.7)	88.6 (3.2)	93.3 (1.9)	91.9 (1.7)	81.9 (3.1)	88.5 (3.5)	91.7 (1.3)	82.0 (3.8)	88.4 (3.0)				
MCC	0.91 (0.02)	0.74 (0.05)	0.86 (0.04)	0.89 (0.03)	0.78 (0.06)	0.87 (0.04)	0.84 (0.03)	0.77 (0.06)	0.83 (0.07)	0.84 (0.03)	0.84 (0.07)					

Numbers correspond to individual’s classification average and standard deviations in parenthesis. Abbreviations: ADA – ADA Boosting; GDB – Gradient Tree Boosting; RF – Random Forest; XRF – eXtreme Random Forest; FN – False negative; TN – True negative; TP – True positive; MCC – Mathew’s Correlation Coefficient.

Table S2. Performance metrics using pairwise features on 10 validation tests for PLS and SVM algorithms.

Algorithm	PLS	SVM
Vector length	39	32
TN	82 (6)	36 (2)
FP	13 (4)	6 (2)
FN	6 (2)	8 (2)
TP	99 (3)	30 (3)
Accuracy (%)	90.3 (2.1)	82.5 (2.4)
Sensitivity (%)	94.1 (2.2)	79.6 (5.5)
Specificity (%)	86.6 (4.5)	85.3 (4.4)
Precision (%)	87.7 (3.6)	84.7 (3.6)
F1 Score (%)	90.7 (1.9)	81.9 (2.8)
MCC	0.81 (0.04)	0.65 (0.05)

Numbers correspond to individual’s classification average and standard deviations in parenthesis. Abbreviations: PLS – Partial Least Squares; SVM – Support Vector Machine.
Table S3. Proposed biomarkers to m/z discriminant features elected by Machine Learning algorithm group first by model contribution to COVID-19 diagnosis (M1), followed by molecule class.

Class	Molecule	Exact mass m/z	Correlation	DeltaJ	Molecular Formula	Adduct	Error (ppm)	MSMS	Metlin ID
COVID-19 POSITIVE									
Purine	Deoxyguanosine and/or Adenosine	268.1050	Marker	22.0	C_{16}H_{12}N_{4}O_{4}	[M+H]^+	3.7	236-250-236-240-222-226-150-95	3395 and/or 86
Glycerophospholipid	PG(20:5)§	553.2561	Marker	33.1	C_{20}H_{40}O_{3}P	[M+Na]^+	4.2	299-301-419-521-535-495	80018
	PE(38:4)§	806.5068	Marker	30.2	C_{22}H_{36}N_{2}O_{3}P	[M+K]^+	-3.6	588-241-747-788-623-537	60752
	PC(38:8)§	784.5252	Marker	26.2	C_{26}H_{50}N_{3}O_{4}	[M+H+H2O]^+	-3.7	725-752-724-740-774	59948
Glycerolipid	DG(34:1)§	577.5189	Marker	17.1	C_{21}H_{36}O_{3}	[M+H+H2O]^+	-1.2	559-545-531-447-405-265-195	4260
	DG(34:2)§	575.5031	577.5189	14.9	C_{22}H_{36}O_{3}	[M+H+H2O]^+	-1.4	557-543-529-319-263	58796
	DG(36:3)§	601.5189	577.5189	19.7	C_{24}H_{50}O_{3}	[M+H+H2O]^+	-1.2	527-569-583-555-265	58855
	TG(50:1)§	855.7415	879.7408	18.4	C_{30}H_{100}O_{6}	[M+Na]^+	0.4	599-573-577-551-823	4705
	TG(52:2)§	891.7568	879.7408	26.2	C_{32}H_{102}O_{6}	[M+Na]^+	-0.1	599-625-577-863-603	4798
	TG(52:2)§	897.7310	Marker	25.3	C_{32}H_{102}O_{6}	[M+K]^+	0.2	641-615-321-613-599-627-865	4793
	TG(52:3)§	879.7408	Marker	25.2	C_{32}H_{100}O_{6}	[M+Na]^+	-0.5	623-597-599-577-575-847-861	61738
	TG(52:4)§	893.6987	879.7408	20.2	C_{32}H_{98}O_{6}	[M+K]^+	-0.9	637-613-611-317-623-597-875	4839
	TG(52:4)§	877.7246	879.7408	20.7	C_{32}H_{98}O_{6}	[M+Na]^+	-1.1	597-621-575-599-623-845	4839
	TG(54:4)§	905.7562	879.7408	26.6	C_{34}H_{102}O_{6}	[M+Na]^+	-0.8	623-625-601-603-599-887-873	4994
	TG(54:4)§	921.7297	879.7408	24.4	C_{34}H_{102}O_{6}	[M+K]^+	-1.2	639-641-665-319-367-625-889	101990
Unknown	Peptide 1§	581.3655	Marker	22.9	C_{12}H_{44}N_{2}O_{3}	[M+H]^+	4.3	525-549-489-535-563-435	221206
	Unknown 1	469.3824	Marker	9.7	-	-	-	437-451-329-413-206-290	-
	Unknown 2	822.4814	Marker	22.2	-	-	-	604-386-790-763-766-804-639	-
	Unknown 3	974.6389	Marker	17.5	-	-	-	941-955-675-717-703-689-661	-
	Unknown 4	1121.8588	Marker	22.9	-	-	-	1102-864-836-989	-
COVID-19 NEGATIVE									
Unsaturated Fatty Acid	Tridecadienoic acid	228.1955	Marker	-14.4	C_{13}H_{22}O_{2}	[M+NH]_{4}^{+}	-1.3	211-193-175-109-95	73920
	Eicosatetraenoic acid	345.2183	Marker	-15.3	C_{20}H_{32}O_{2}	[M+K]^+	-2.0	257-299-327-273-287-215	259
Sphingolipids	Sphingosine(14:2)§	242.2110	Marker	-17.5	C_{14}H_{22}NO_{2}	[M+H]^+	-2.1	210-224-225-186-184-175-142	53907
Glycerophospholipid	LysoPC(16:0)§	496.3392	Marker	-14.1	C_{22}H_{50}NO_{3}P	[M+H]^+	-1.2	478-184-419-464	61692
Lipid	m/z	Marker	Retention Time	Exact Mass (Da)	Mass Difference (Da)	Purity (Da)			
----------------------------	---------	---------	----------------	-----------------	----------------------	-------------			
LysoPC(18:2) §	520.3394	496.3392	-17.7	C₂₆H₅₀NO₇P	[M+H]⁺	0.8			
						502-184-461-474-488	61696		
LysoPC(18:1) §	522.3550	496.3392	-15.7	C₂₆H₅₂NO₇P	[M+H]⁺	0.8			
						504-184-490-476	61695		
PAF C-16 and/or LysoPC(18:0) §	524.3706	496.3392	-11.5	C₂₆H₅₄NO₇P	[M+H]⁺	0.8			
						506-299-270-184-492-451-478	34488		
						61694			
PC(O-34:3) §	742.5735	Marker	-18.5	C₂₆H₅₀NO₇P	[M+H]⁺	1.3			
						683-724-696-710-502-559-486-460	40070		
PC(O-34:2) §	744.5892	742.5735	-13.9	C₂₆H₅₂NO₇P	[M+H]⁺	1.3			
						726-712-685-698-659-655-641	62003		
PC(O-36:3) §	770.6043	Marker	-17.0	C₂₆H₅₄NO₇P	[M+H]⁺	1.9			
						752-738-711-724	43415		
PS(O-38:4) §	798.5640	Marker	-35.1	C₂₆H₅₀NO₇P	[M+H]⁺	0.4			
						739-780-766-515-461-752	78718		
Cholesterol	369.3511	Marker	-11.4	C₂₁H₄₆O	[M+H-H₂O]⁺	-2.7			
						343-359-215-273-287-203-189-351-161-175-147-135-229	163		
Dihydroxy-cholenoic acid §	408.3087	Marker	-12.4	C₂₃H₄₈O₄	[M+NH₄]⁺	-5.1			
						319-345-375	84534		
CE(16:0) §	647.5738	Marker	-18.3	C₂₃H₅₆O₂	[M+Na]⁺	0.2			
						591-385-601-615-535-279	41701		
Glycine-Phenylalanine §	261.0644	Marker	-21.2	C₁₁H₁₄N₂O₃	[M+K]⁺	3.1			
						173-215-189-243-233	85897		
Unknown 5	205.0382	Marker	-11.6	-	-	-			
						173-187-188-159-191	-		
Unknown 6	723.6610	Marker	-20.6	-	-	-			
						664-691-677-705-587-540-467-355	-		
Unknown 7	986.9247	Marker	-10.8	-	-	-			
						954-968-688-704-730-674	-		
Table S4. Proposed biomarkers to m/z discriminant features elected by Machine Learning algorithm group first by model contribution to risk assessment (M2), followed by molecule class.

Class	Molecule	Exact Mass m/z	Correlation	ΔJ	Molecular Formula	Adduct	Error (ppm)	MSMS	Metlin ID			
SEVERE												
Purine	Deoxyguanosine and/or Adenosine\(^6\)	268.1054	Marker	27.5	C\(_{10}\)H\(_{15}\)N\(_3\)O\(_4\)	[M+H]\(^+\)	-5.2	236-250-236-240-222-226-150-95	3395 and/or 86			
N-acyl amino acids	N-stearoyl valine	406.3293	Marker	11.7	C\(_{23}\)H\(_{49}\)NO\(_3\)	[M+Na]\(^+\)	-0.2	360-388-362-316-336-266	75504			
Sterol Lipid	Dihydroxy-cholanoyl-glycine\(^4\)	450.3192	406.3293	11.9	C\(_{23}\)H\(_{49}\)NO\(_3\)	[M+H]\(^+\)	4.9	359-404-417-432-377-363	43193			
Unknown	Unknown 8	296.1927	Marker	3.5	-	-	-	264-234-282-278-252-250-224	-			
Unknown	Unknown 9	398.3743	Marker	36.1	-	-	-	319-352-366-380-310-338-326-368-298	-			
Unknown	Unknown 10	541.4215	Marker	6.5	-	-	-	480-439-495-478-509-523-399	-			
Unknown	Unknown 11	617.5984	Marker	15.8	-	-	-	571-599-585-557-525-337	-			
Unknown	Unknown 12	1057.4970	Marker	6.1	-	-	-	1039-1025-989-799	-			
MILD												
N-acyl ethanolamines	Eicosaenoylcolanoylamine	336.3263	Marker	-11.3	C\(_{22}\)H\(_{47}\)NO\(_2\)	[M+H-H\(_2\)O]\(^+\)	0.9	263-281-290-308-304-318	3722			
N-acyl amino acids	Docosanoylcolanoylamine	366.3731	336.3263	-9.4	C\(_{22}\)H\(_{47}\)NO\(_2\)	[M+H-H\(_2\)O]\(^+\)	1.4	334-295-320-336-348	3727			
Glycerophospholipid	N-Linoleoyl glycerine	360.2498	Marker	-12.3	C\(_{20}\)H\(_{43}\)NO\(_3\)	[M+Na]\(^+\)	3.1	314-316-288-330-328-342-184	43426			
LysoPC(18:2)\(^{#\#}\)	LysoPC(18:2)\(^{#\#}\)	520.3401	Marker	-39.1	C\(_{20}\)H\(_{43}\)NO\(_3\)	[M+H]\(^+\)	-0.6	502-184-461-474-488	61696			
LysoPC(18:2)\(^{#\#}\)	LysoPC(18:2)\(^{#\#}\)	542.3222	Marker	-38.5	C\(_{20}\)H\(_{43}\)NO\(_3\)	[M+Na]\(^+\)	-0.9	496-483-524-215	61696			
PC(34:2)\(^{#\#}\)	PC(34:2)\(^{#\#}\)	758.5692	Marker	-11.0	C\(_{22}\)H\(_{48}\)NO\(_4\)	[M+H]\(^+\)	0.3	698-740-419-502-375	39430			
PC(34:2)\(^{#\#}\)	PC(34:2)\(^{#\#}\)	780.5515	Marker	-17.8	C\(_{24}\)H\(_{50}\)NO\(_4\)	[M+Na]\(^+\)	-1.0	721-762-748-734-575	39430			
Arachidonoyl PAF C-16 and/or PC(36:2)\(^{#\#}\)	Arachidonoyl PAF C-16 and/or PC(36:2)\(^{#\#}\)	768.5901	Marker	-32.3	C\(_{24}\)H\(_{49}\)NO\(_3\)P	[M+H]\(^+\)	0.0	736-754-750-740-722-709-724	43414			
PC(36:2)\(^{#\#}\)	PC(36:2)\(^{#\#}\)	786.6008	758.5692	-16.5	C\(_{24}\)H\(_{50}\)NO\(_3\)P	[M+H]\(^+\)	1.0	740-768-740-603-478-401	102731			
PC(36:3)\(^{#\#}\)	PC(36:3)\(^{#\#}\)	784.5867	Marker	-22.3	C\(_{24}\)H\(_{50}\)NO\(_3\)P	[M+H]\(^+\)	-2.0	725-766-693-572-601	39634			
PC(36:4)\(^{#\#}\)	PC(36:4)\(^{#\#}\)	782.5692	758.5692	-19.5	C\(_{24}\)H\(_{50}\)NO\(_3\)P	[M+H]\(^+\)	0.3	723-599-750-764-736	39671			
Eicosapentaenoyl PAF C-16 and/or PC(36:3)	766.5743	Marker	-35.9	C_{46}H_{89}NO_5P	C_{46}H_{89}NO_5P	[M+H]^+	[M+H-H_2O]^+	0.3	1.0	748-720-734-649-721-706	43430	39637
PC(38:3)	812.6163	784.5867	-29.4	C_{46}H_{89}NO_5P	[M+H]^+	0.1	753-794-766-530-502	59780				
Docosahexaenoil PAF C-16 and/or PC(38:4)	792.5914	766.5743	-34.5	C_{46}H_{89}NO_5P	C_{46}H_{89}NO_5P	[M+H]^+	[M+H-H_2O]^+	1.5	-0.9	746-774-760-733-699-783	62936	39544
PC(38:4)	810.6010	758.5692	-24.3	C_{46}H_{89}NO_5P	[M+H]^+	-0.4	751-792-778-627	59436				
PC(38:4)	832.5831	808.5847	-28.2	C_{46}H_{89}NO_5P	[M+Na]^+	-0.5	773-814-800-786-534	39545				
PC(38:5)	808.5847	Marker	-28.1	C_{46}H_{89}NO_5P	[M+H]^+	0.5	749-625-790-776-762	59879				
PC(38:6)	806.5693	758.5692	-21.9	C_{46}H_{89}NO_5P	[M+H]^+	0.1	747-788-623-774-760	39685				
PC(40:4) and/or PC(O-40:6)	820.6215	766.5743	-28.5	C_{46}H_{89}NO_5P	C_{46}H_{89}NO_5P	[M+H-H_2O]^+	0.6	788-761-802-773-637-550-335	75947	40136		
PC(O-34:1)	746.6058	703.5750	-15.8	C_{42}H_{85}NO_5P	[M+H]^+	0.0	728-494-508-714	40013				
PC(O-38:4)	796.6213	703.5750	-29.3	C_{46}H_{89}NO_5P	[M+H]^+	0.3	737-778-764-613	102733				
PC(O-38:5)	794.6060	703.5750	-32.4	C_{46}H_{89}NO_5P	[M+H]^+	-0.3	776-762-748-735-611	40018				
Glycerolipid												
TG(46:5)	786.6563	703.5750	-28.8	C_{46}H_{89}O_5	[M+NH_3]^+	5.5	529-543-559-571-503	99210				
TG(48:4)	816.7036	Marker	-32.4	C_{51}H_{99}O_5	[M+NH_3]^+	4.9	559-757-797-479-573-587	99318				
Sterol Lipid												
Cholesterol	369.3517	Marker	-31.1	C_{27}H_{46}O	[M+H-H_2O]^+	1.1	343-359-215-273-287-203-189-351-161-175-147-135-229	163				
SM(34:1)	703.5750	Marker	-15.2	C_{46}H_{89}N_2O_5P	[M+H]^+	-0.1	685-642-656-671-657-447	83743				
SM(35:1)	717.5904	703.5750	-19.4	C_{46}H_{89}N_2O_5P	[M+H]^+	0.1	699-670-685-419-461	83745				
SM(36:2)	729.5905	703.5750	-21.0	C_{46}H_{89}N_2O_5P	[M+H]^+	0.0	711-699-697-683-592-392	53977				
SM(38:2)	757.6215	703.5750	-28.4	C_{46}H_{89}N_2O_5P	[M+H]^+	0.4	501-529-725-739-698-711-420	83760				
Sphingolipid												
SM(40:1)	809.6519	703.5750	-20.8	C_{46}H_{89}N_2O_5P	[M+Na]^+	-1.5	750-791-777-553-737-425	41589				
SM(40:2)	785.6526	758.5692	-30.4	C_{46}H_{89}N_2O_5P	[M+H]^+	0.6	529-767-739-515	83771				
SM(41:1)	801.6841	703.5750	-31.9	C_{46}H_{89}N_2O_5P	[M+H]^+	0.4	545-531-503-375-754	62432				
SM(42:2)	813.6842	703.5750	-18.7	C_{46}H_{89}N_2O_5P	[M+H]^+	0.2	557-754-767-795	83781				
SM(42:3)	811.6682	758.5692	-19.1	C_{47}H_{91}N_2O_5P	[M+H]^+	0.7	555-529-720-541-751-779-793	83780				
Peptide 2	409.1752	Marker	-11.9	C_{15}H_{30}N_2O_5S	[M+H]^+	-0.2	319-391-377-363-339-333-321	235779				
Unknown												
Unknown 13	266.1720	Marker	-9.0	-	-	-	194-245-234-220-204-212-248	-				
Unknown 14	537.3950	Marker	-4.2	-	-	-	298-284-299-282-520-491-477	-				
Unknown 15	547.5190	Marker	-12.5	-	-	501-503-529-485-487-479-398-515						
Unknown 16	788.6089	Marker	-16.8	-	-	536-616-770 [536]*284-282						
Unknown 17	986.9265	Marker	-33.6	-	-	953-697-703-729-967-673-657						
Unknown 18	1008.9080	Marker	-30.6	-	-	990-976-961-940-891-751-698						

≠ (Carbon number : double bond); § Isomers with the same exact m/z and similar fragmentation profile to be distinguished by FI-MS; * MS3.

Abbreviations: LysoPC – Lysophosphatidylcholine; PAF – Platelet Activating Factor; PC – Phosphatidylcholine; SM – Sphingomyelin; TG – Triacylglycerol.

Table S5. Proposed biomarkers to m/z discriminant features elected by Machine Learning algorithm group first by model contribution to low-risk discrimination (M3), followed by molecule class.
Class	Molecule	Exact Mass m/z	Correlation	ΔJ	Molecular formula	Adduct	Error (ppm)	MSMS	Metlin ID
MILD	PG(20:5) †‡	531.2744	Marker	15.3	C_{26}H_{45}O_5P	[M+H]^+	-5.1	470-489-499-459-349-307-234	80018
Glycerophospholipid	PG(20:5) †‡	553.2561	Marker	25.3	C_{26}H_{45}O_5P	[M+Na]^+	-4.3	299-301-419-521-535-495	80018
	PC(38:8) †‡	784.5252	Marker	26.5	C_{46}H_{76}NO_3P	[M+H-H_2O]^+	3.7	725-752-724-740-774	59948
	PE(38:4) ‡‡§	806.5068	Marker	23.3	C_{43}H_{78}O_3P	[M+K]^+	-3.6	588-241-747-788-623-537	60752
Glycerolipid	DG(34:0) †‡	579.534	Marker	22.6	C_{33}H_{52}O_5	[M+H-H_2O]^+	2.1	533-547-451-563-519-493-475-195	4274
	DG(34:1) †‡	577.5189	Marker	20.4	C_{33}H_{52}O_5	[M+H-H_2O]^+	-1.2	559-545-531-447-405-265-195	4259
	DG(34:2) †‡	575.5031	Marker	21.6	C_{33}H_{52}O_5	[M+H-H_2O]^+	-1.4	557-543-529-393-319-263	58796
	DG(36:2) †‡§	603.534	Marker	16.0	C_{36}H_{72}O_5	[M+H-H_2O]^+	2.0	543-557-529-571-585-235-265-247	64623
	DG(36:3) †‡	601.5189	Marker	24.9	C_{39}H_{90}O_5	[M+H-H_2O]^+	-1.2	527-569-583-555-265	4362
	TG(52:4) ‡‡	877.7246	Marker	19.7	C_{35}H_{90}O_5	[M+Na]^+	1.1	597-621-575-595-599-623-845	4839
Unknown	Peptide 3 ‡†	505.1811	Marker	25.2	C_{28}H_{30}N_6O_7	[M+K]^+	-0.6	371-473-459-283-487-469-441-437	152631
	Unknown 19	214.1414	Marker	18.3	-	-	-	319-353-366-310-309-380-326-338-368-298	-
	Unknown 20	429.3727	Marker	24.5	-	-	-	341-319-165-359-295-401-411-209	-
	Unknown 21	443.3344	Marker	9.9	-	-	-	411-425-397-371-339-309-367-355-433-387	-
	Unknown 22	515.4134	Marker	14.9	-	-	-	469-483-497-381 [469]*207-335-291-261-333	-
	Unknown 23	696.379	Marker	18.6	-	-	-	327-328-649-678-312-384-593-634-664	-
	Unknown 24	851.3977	Marker	25.2	-	-	-	577-551-571-595-623-832-819	-
	Unknown 25	1073.4943	Marker	19.2	-	-	-	1055-1041-883-677-1027	-
	Unknown 26	1169.0771	Marker	25.4	-	-	-	1151-1123-1108-913-575	-
	Unknown 27	1279.5905	Marker	20.2	-	-	-	783-759-496-478-520-1261-886	-
COVID-19 NEGATIVE	Unsaturated Fatty Acid	Eicosatrienoic acid 345.2183	Marker	-14.3	C_{20}H_{34}O_2	[M+K]^+	-2.0	256-257-255-299-327-313-273-287-215	259
Sterol Lipid	Keto-DHEA §	Marker	-19.0	C₁₉H₂₆O₃	[M+Na]⁺	-1.5	279-283-293-281-307-253-271-255-297	263488	
----------------------	-------------	--------	-------	-----------	---------	------	---------------------------------	--------	
Dehydrocholesterol §	367.3361	Marker	-26.7	C₂₇H₄₄O	[M+H-H₂O]⁺	1.1	352-241-227-213-295-285-255-227-219-173	3902	
Dihydroxycholenoic acid §	429.2404	Marker	-23.5	C₂₄H₃₈O₄	[M+K]⁺	-0.5	341-319-165-209-411-401-359-205-271-163	84538	
Peptide 4 §	425.1490	Marker	-11.6	C₁₈H₂₆N₄O₇S	[M+H-H₂O]⁺	1.2	365-393-407-379-337-369	239104	
Unknown									
Unknown 28	398.3743	Marker	-10.0				319-352-366-380-310-309-338-326-298		
Unknown 29	221.1751	Marker	-12.3				175-177-189-203-193		
Unknown 30	984.9091	Marker	-19.2				672-686-702-727-966-952-924-664		

≠ (Carbon number : double bond); § Isomers with the same exact m/z and similar fragmentation profile to be distinguished by FI-MS; * MS3.

Abbreviations: DG - Diacylglycerol; DHEA – Dehydroepiandrosterone; PC – Phosphatidylcholine; PE – Phosphatidylethanolamine; PG – Phosphatidylglycerol; TG – Triacylglycerol.
Models markers combination

We combined the markers found by the M1 model (COVID-19 diagnosis) with the M2 (risk assessment), and M3 (low-risk discrimination) in a single list of biomarkers and performed classification with the separated blind test. The results show some potential for this analysis but with numbers slightly below the full performance obtained with custom-tailored binary detectors. However, we deem the results promising for future work in multiclass research front.

Table S6. Confusion matrix combining markers found by M1 with the M2 and M3 models.

Real Class	Control	Mild	Severe	Inconclusive	Sensitivity
Control	93.9%	2.0%	0%	4.1%	93.9%
Mild	4.9%	63.4%	22.0%	9.8%	63.4%
Severe	0.0%	12.5%	87.5%	0.0%	87.5%
Precision	95.1%	81.3%	79.9%		81.1%