Bloated square well: Symmetric Fermi-type potential

Zafar Ahmed1,*, Sachin Kumar2, Tarit Goswami3, and Sarthak Hajirnis4

1Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
*Homi Bhabha National Institute, Mumbai 400 094, India
2Theoretical Physics Section, Bhabha Atomic Research Centre, Mumbai 400 085, India
3Department of Computer Science and Engineering, Jalpaiguri Govt. Engineering College, Jalpaiguri, West Bengal 735102, India
4Department of Physics, The Institute of Science, Mumbai, India, 400032

(Dated: April 5, 2019)

Abstract

We utilize the amenability of the Fermi-type potential profile in Schrödinger equation to construct a symmetric well as \(V(x) = -U_n/[1+\exp([-x]/b)] \), \(U_n=V_n[1+\exp[-a/b]] \). For \(b = 0 \), the potential is square (rectangular) well, when \(b \) increases the potential is bloated to acquire round edges or to become thinner around the origin and thicker at the base. We define \(\alpha = a/b \), \(\beta_n = b\sqrt{2\mu U_n}/\hbar \), we find \(\beta_n \) values for which critically the well has \(n \)-node half bound state at \(E=0 \). Consequently, this fixed well has \(n \) number of bound states. Also we derive a semi-classical expression \(G(\alpha, \beta) \) such that the Fermi well has either \([G] \) or \([G]+1 \) number of bound states. Here \([.]\) indicates the integer part.

Historically, many phenomena of the microscopic world have been comprehended by hypothesizing that the smallest system is trapped in a potential \(V(x) \). Quantized energies of bound states are obtained by solving the Schrödinger equation

\[
\frac{d^2\psi(x)}{dx^2} + \frac{2m}{\hbar^2} [E - V(x)]\psi(x) = 0, \quad (1)
\]

for \(V(x) \). Textbooks in quantum mechanics demonstrate this by using a square (rectangular) well of depth \(V_0 \) and width \(2a \). It is found \([1]\) that the effective radius parameter \(G' = 2\pi^{-1}\sqrt{\frac{2mV_0a^2}{\hbar^2}} \) of the square well determines the number of bound states as \([G'] + 1 \), where \([.]\) denotes integer part.

Inspired by the low energy scattering of neutron and proton, the concept of scattering-length and the formation of deuteron \([2,3]\), one can define a \(n \)-node Half Bound State (HBS) \([4]\) \(\psi_* \) at \(E = 0 \), for a symmetric well as \(\psi_*(\pm\infty,W_n) = A \) (constant) such that

\[
\psi_*(x = 0,W_n) = 0 \text{ or } \psi'_*(x = 0,W_n) = 0, \quad W_n = \sqrt{2\mu V_0a^2/\hbar} \quad (2)
\]

according to whether \(n(\geq 1) \) is odd or even, respectively. Also odd (even) \(n \) defines an odd (even) parity HBS. It turns out that when in an square well \(W_n = n\pi/2, n = 1,2,3,.. \) \([4]\), \(n \)-node HBS exists at \(E = 0 \) and the potential well has \(n \) number of bound
states. When W_n is slightly increased from these critical values, the well starts possessing one more bound state at an energy a little below $E = 0$. A well has at most one HBS ψ_* and its existence is critical.

Flügge’s book [5] introduces a Fermi-type potential well as an interesting solvable central potential for s-wave. We propose to use it as a symmetric one dimensional potential

$$V(x) = -V_0 \frac{1 + e^{-a/b}}{1 + e^{(|x|-a)/b}}, \quad V_0, a, b > 0. \quad (3)$$

$V(0) = -V_0$, $V(\pm \infty) = 0$ and in the limit when $b \rightarrow 0$, $V(x)$ is a rectangular well. In Fig. 1, three instances ($b = 0.1, 0.5, 1$) of $V(x)$ are plotted for $V_0 = 5$ and $a = 3$ to show that it becomes rectangular well with rounded edge, it then spills out of the rectangle to become bell-shaped, further it becomes well which is sharp around the origin and wide on the base.

In this article, we utilize the available exact analytic solutions [5] of the Schrödinger equation (1) for the Fermi well potential (3) to study its bound states and HBS. We find an expression for the effective parameter $G(V_0, a, b)$ from semi-classical consideration for the bloated square well (3). In this well, we fix the values of V_0 and a and vary b to find that the bloated well has equal or more number of bound states than that of the rectangular well. Students will find it interesting that any combination of V_0, a, b leading to G will have the number of bound states as $\lfloor G \rfloor$, or $\lfloor G \rfloor + 1$. Further, we fix $\alpha = a/b$ and find values of β, so that the well (3) has n-node HBS at $E = 0$ and hence n number of bound states. We calculate the corresponding value of G and see that either G or $\lfloor G \rfloor + 1$ equals n. An analytic formula for semi-classical eigenvalues will also derived.

For a square well, it is often not realized that this exact quantum mechanical criterion [1] also comes from semi-classical quantization rule that at a discrete energy $E = E_n$

$$\pi^{-1} \int_{x_1}^{x_2} dx \sqrt{\frac{2m}{\hbar^2} [E_n - V(x)]} = n + 1/2, \quad (4)$$

where x_1 and x_2 are real classical turning points such that $V(x_1) = E_n = V(x_2)$. Here, n gives the quantum number of the discrete energy bound state. The eigenvalues E_n obtained by (4) are only approximate. When a potential well vanishes asymptotically the value of n corresponding to $E = 0$ can give an excellent estimate of the number of bound states in the well. Therefore the integral

$$G = \pi^{-1} \int_{-\infty}^{\infty} dx \sqrt{-\frac{2mV(x)}{\hbar^2}} \quad (5)$$

gives us an effective parameter G. We will see that an arbitrary potential well $V(x)$ (other than a square well) which vanishes or saturates to a constant value(s) asymptotically on two sides will have either G or $G + 1$ number of bound states. This dichotomy is due to the approximate nature of the semi-classical quantization (4).

For the square well G equals G'. The function G which is actually proportional to the area enclosed by $\sqrt{-V(x)}$ on the x-axis for the symmetric Fermi well can be obtained as

$$G(V_0, a, b) = 4\pi^{-1} \beta \sinh^{-1} e^{\beta z}, \quad \beta = \sqrt{\frac{2mU_0 b^2}{\hbar^2}} \quad (6)$$

where $U_0 = V_0[1 + e^{-a/b}]$. For fixed values of V_0 and a, $G(b)$ can be seen to be an increasing function of b justifying that the square well has the least number of bound states. For large values of z, we have $\sinh^{-1} e^z \sim$
FIG. 1: Three modifications of the Fermi well $V(x)$ (3). We fix $V_0 = 5, a = 3$ and vary b as 0.1 (black, solid), 0.5 (red, dashed), 1 (blue, short-dashed).

TABLE I: Bound state calculations using Eq. (13,14)

n	V_0	b	a	G
3	0.7564	2	1	3
4	0.2565	2	2	3
6	0.5	1.1072	2	3
6	3.4427	1	6.4	3
7	3.5511	1	6.5	3
7	3.6612	1	6.6	3
8	2.9781	2	8.4	4
9	3.0901	2	8.5	4
9	3.2005	2	8.6	4

$z + \log 2$. In the limiting case when $b \to 0$, $G(V_0, a, 0) = G'$. In the sequel, we will use symbols V_{0n}, U_{0n}, and β_n to mean that these parameters are fixed to have just n number of bound states critically. If these are increased slightly the well will have one more bound state slightly below $E = 0$.

I. BOUND STATES

The Schrödinger equation (1) for the Fermi potential (3) can be transformed by introducing [5]

$$y = \frac{1}{1 + e^{(\frac{1-x-a}{b})}}$$

and $\psi(x) = y''(1-y)^{\mu} \phi(y)$, (7) to the Gauss hyper geometric equation [6]

$$y(1-y)\phi''(x) + [(2\nu+1) - (2\nu+2\mu+2)y] \phi(x) - (\nu+\mu)(\nu+\mu+1) \phi(x) = 0.$$

Fig. 2: HBS $\psi_+(x)$ for symmetric Fermi well potential (3) for 4 and $\beta_1 = 0.3697, \beta_2 = 0.6905, \beta_3 = 0.9947, \beta_4 = 1.2913$

Here, we have $\nu = kb, \mu = ik'b$, with

$$k = \sqrt{-\frac{2mE}{\hbar^2}}$$

and $k' = \sqrt{\frac{2m(E + U_0)}{\hbar^2}}$. (9)

The second order linear differential equation (8) has two linearly independent solutions

$$\phi_1(y) = {}_2F_1[\nu + \mu, \nu + \mu + 1; 2\nu + 1; y(x)],$$

$$\phi_2(y) = \frac{1}{(1-y)^{2\nu}} {}_2F_1[\nu - \mu, \nu - \mu + 1; 1-2\nu; y(x)].$$

(10)
for (3) can be written as

\[\psi(x) = x^2 + x^3 \]

Notice that when \(x \to \infty \), \(y \sim e^{-|x|} \) and \(2F_1 \to 1 \). Therefore, the solution of (1) for (3) can be written as

\[\psi(x, E) = C' y^\nu (1 - y)^\mu 2F_1[\nu + \mu, \nu + \mu + 1; 2\nu + 1; y], \tag{12} \]

which satisfies Dirichlet condition \(\psi(\pm \infty) = 0 \) representing bound state correctly. On the other hand, the solution due to the other \(2F_1(x) \) in Eq. (10) is unacceptable as it diverges as \(e^{k|x|} \) when \(x \sim \infty \). The potential (3) being symmetric, the solutions of (1) should be of definite parity. The even parity solutions are given as

\[\psi'(0, E_{2n}) = 0, \quad \psi_{2n} = \psi(|x|, E_{2n}), \quad n = 0, 1, \ldots, \tag{13} \]

and the odd parity solutions are characterized by

\[\psi(0, E_{2n+1}) = 0, \quad \psi_{2n+1} = \text{sgn}(x) \psi(|x|, E_{2n+1}). \tag{14} \]

For the Fermi potential the semi-classical eigenvalues can be obtained from Eq. (4) as

\[F(E) = \frac{2\beta\sqrt{2}}{\pi} \left[\sqrt{\omega + \tanh(\alpha/2)} + \sqrt{\omega - \tanh(\alpha/2)} \right] = n + 1/2, \]

\[\omega(E) = (1 + \frac{2E}{U_0}), \quad \alpha = \frac{a}{b}, \quad \beta = b\sqrt{\frac{2mU_0}{\hbar^2}} \tag{15} \]

II. HALF BOUND STATES (HBS)

For HBS, we set \(E = 0 \) or \(\nu = 0 \) \(\mu = i\beta \) in Eq. (12) to get

\[\psi(x, \beta) = C(1 - y)^{i\beta} 2F_1[i\beta, i\beta + 1, 1; y] = C 2F_1[i\beta, -i\beta; 1; y/(y - 1)] \tag{16} \]

when \(|x| \to \infty, \quad y \to 0 \), then \(\psi_*(\infty) \to C \) which is nothing but the boundary condition on HBS (see above Eq. (2)). Next, the conditions that

\[\psi_*(0, \beta_n) = 0 \quad \text{and} \quad \psi'_*(0, \beta_n) = 0, \tag{17} \]

for odd and even node solitary HBS of the well (3) at \(E = 0 \). For all the calculations here, we taken \(2m/\hbar^2 = 1(eV \hat{A}^2)^{-1} \), energies \((E, V_0, U_0) \) are in \(eV \) and lengths \((a, b) \) are in \(\hat{A} \). The Table I, is based on exact bound state eigenvalue calculations using Eqs. (13,14). Various combinations of \((V_0, a, b) \) giving rise to the same value of \(G \) (6) which allow the
TABLE II: For different values of α and β studying number of bound states

α	n	β_n	G	α	n	β_n	G
1	1	0.8774	1.4238	1	0.6226	1.3679	
2	1.4975	2.4302	2	1.0000	2.4166		
3	2.1402	3.4731	3	1.5723	3.4541		
4	2.7494	4.4617	4	2.0281	4.4555		
5	3.3789	5.4833	5	2.4907	5.4716		
6	3.9892	6.4735	6	2.9449	6.4694		
7	4.6142	7.4787	7	3.4046	7.4794		
8	5.2255	8.4798	8	3.8586	8.4767		

α and β to possess $[G]$ or $[G]+1$ number of bound states. Most often it turns out that if the fractional part of G namely $\{G\}$ is $<1/2$, $n = [G]$, otherwise $n = [G]+1$.

The Table II, is based on calculations for the solitary n-node HBS at $E = 0$ of the Fermi wells using Eq. (17). The critical β_n values for four values of α have been calculated and the corresponding value of the effective parameter G are given. In Fig. 2, for $\alpha = 4$, four n-node HBS for the critical values of $\beta_n (n = 1, 2, 3, 4)$ are presented. These four potentials are characterized with $\beta_1 = 0.30697, \beta_2 = 0.6905, \beta_3 = 0.9947$, and $\beta_4 = 1.2913$ (see Table II), The corresponding number of nodes are 1,2,3 and 4, and so are the corresponding number of bound states $[G]$. An inaccurate value of β may lead to the non-vanishing of $\psi_n(x)$ or its derivative at $x = 0$, this would disturb the definite parity of the HBS. If β is slightly increased from β_n, the well will have $n+1$ bound states, the last one will be at an energy little below $E = 0$.

Fig. 3, three bound states and one HBS with three nodes are presented when $\alpha=2$ and $\beta=1.5723(1.572333)$. The plot of HBS is very sensitive to accurate value of β which is root of Eq. (17). Notice that 3-node HBS means three bound states in the potential well. In Fig. 3, the eigenfunctions of 3 bound states ($E_0 = -1.6202, E_1 = -0.7786, E_2 = -0.2244$) and the solitary 3-node HBS at $E = 0$ are presented. The corresponding semi-classical bound state eigenvalues obtained from Eq. (15) are $-1.5827, -0.7612, -0.2023$, which are approximate but in a good agreement with the exact ones given above.

CONCLUSION

One dimensional symmetric Fermi potential has been presented here as a bloated square well potential to study its bound states and the critical n-node half bound states. To the best of our knowledge, this as a one-dimensional potential well has been left out in the literature so far. Moreover, our discussion of the number of bound states in this well semi-classically and in terms of n-node half bound state is instructive.

REFERENCES
[1] Merzbacher E, *Quantum Mechanics* (John Wiley and Sons, Inc.: New York, 1970), 2nd edition.

[2] Blatt J M and Weisskopf V F, *Theoretical Nuclear Physics* 1st edn (London: Wiley, 1952) p 68.

[3] Ahmed Z, ‘Studying the scattering length by varying the depth of the potential well’ Am. J. Phys. 78 418 (2010).

[4] Ahmed Z, Sharma V, Sharma M, Singhal A, Kaiwart R, and Priyadarshani P, ‘The paradoxical zero reflection at zero energy’ Eur. J. Phys. 38 (2017) 025401 (2017).

[5] Flugge S, 1994 *Practical Quantum Mechanics* (Springer Verlag, Berlin Heidelberg) Prob. 64.

[6] Abramowitz and I. A. Stegum, *Hand book of Mathematical Functions* (Dover, 1965) pp. 256-259.