COVID-19 and the Renin-Angiotensin-Aldosterone System – Invited Review

Angiotensin-converting enzyme 2, the complement system, the kallikrein-kinin system, type-2 diabetes, interleukin-6, and their interactions regarding the complex COVID-19 pathophysiological crossroads

Martijn Hoevenaar1, Dolf Goossens1 and Janne Roorda2

Abstract

Because of the current COVID-19-pandemic, the world is currently being held hostage in various lockdowns. ACE2 facilitates SARS-CoV-2 cell-entry, and is at the very center of several pathophysiological pathways regarding the RAAS, CS, KKS, T2DM, and IL-6. Their interactions with severe COVID-19 complications (e.g. ARDS and thrombosis), and potential therapeutic targets for pharmacological intervention, will be reviewed.

Keywords

COVID-19, angiotensin-converting enzyme 2, renin angiotensin aldosterone system, complement system, kallikrein-kinin system, thrombosis, interleukin-6, diabetes

Date received: 24 June 2020; accepted: 11 November 2020

Introduction

The aim of this review is to create a framework of different interconnected pathways that constitute the complex COVID-19 pathophysiological crossroads, as well as the interactions with common comorbidities (T2DM in particular).

First the SARS-CoV-2 virus and COVID-19 (including severe complications) will be introduced. Then, the COVID-19 relation with the RAAS will be reviewed, and a preliminary framework will be established. This framework will subsequently be expanded with the CS and the KKS. The interactions between COVID-19, T2DM, and IL-6, will be reviewed in light of this framework. Finally, some potential targets for therapeutic intervention will be discussed.

Abbreviations are listed at the end.

COVID-19

SARS-CoV-2 is a ssRNA+ enveloped virus from the beta-coronavirus family, with a structural surface spike (S) glycoprotein that primarily binds to the N-terminal domain of ACE2, predominantly, but not exclusively, on type-II pneumocytes. SARS-CoV-2 decreases surface ACE2 expression through directly binding to ACE2, followed by TMPRSS2-mediated proteolytic cleavage and subsequent endocytosis. TMPRSS2 is essential for SARS-CoV-2 membrane fusion and subsequent cell-entry, but other proteases (such as Furin) may facilitate SARS-CoV-2 cell-entry as well. Surface ACE2 is further reduced via shedding, caused by Ang-II-mediated upregulation of ADAM-17 and androgen-mediated upregulation of TMPRSS2. Reduced ACE2 expression may also be modulated epigenetically via
DNA-methylation processes,12,13 or via crosstalk with T2DM-induced hyperglycemia.14,15

The SARS-CoV-2-related disease is commonly referred to as COVID-19.1,7,16 Common COVID-19 symptoms are fever, dry cough, sore throat, dyspnea, headache, and myalgia.1,12,17 Some atypical symptoms are anosmia (loss of smell)18–20 and diarrhea (which may present earlier than respiratory conditions).1,5,17 Different sex and age groups have very biased severity and mortality of COVID-19, with male, old age, and comorbidity being the most affected.1,14,15 T2DM, hypertension, and CVD are common COVID-19 comorbidities (which are likely related to a dysregulated RAAS)5,6,21 and are associated with ARDS15,22,23 and high fatality.1,22,24 Currently, there is no approved and effective medication against COVID-19.16,22,25

The protective mechanism during the early stages of a (viral) infection predominantly occurs through the innate immune system.26–28 COVID-19 primarily suppresses the innate immune system, enabling the uncontrolled spread of the virus during the initial stages.27,29 This explains a mild (sometimes even asymptomatic) presentation early on.27,28,30 The high effectiveness of the innate immune system in children possibly explains why COVID-19 doesn’t seem to affect them as much (if at all).27,28,30 Differences in immunity27,28,31 and gene expression12,22 may contribute to COVID-19 severity. Severe COVID-19 complications are associated with excessive and dysregulated host immune responses, which may contribute to the development of lethal CRS and ARDS.12,34

Acute respiratory distress syndrome

ARDS, the most severe form of ALI,35–37 is a clinical syndrome of noncardiogenic pulmonary edema.38–40 ARDS is characterized by an excessive inflammatory response,41–43 damage to both alveolar epithelial48,40,41 and vascular endothelial49,44,45 cells, the subsequent breakdown of the alveolar-capillary barrier integrity,38,42,46 impaired AFC,40,41,45 excessive interstitial and parenchymal neutrophil migration,38,43,45 and activation of alveolar macrophages, platelets, and pro-coagulant processes.42,47,48 This may result in diffuse alveolar damage,42,49 pulmonary fibrosis,37,50 and impaired gas exchange,42,51 leading to (refractory) hypoxemia,35,38,42 and possibly organ dysfunction.40,47,52

Uncontrolled inflammation leads to excessive and prolonged activation of neutrophils,38,43,45 which are immune cells that play an important role in the regulation of IL-6 signaling44,45 in the pathology of pulmonary inflammatory disorders.38,43,56 Neutrophil-mediated ROS production (via NADPH oxidase),44,58 plays an essential part in the immune response against pathogens via NET formation and direct cellular damage.59–61 Excessive neutrophil recruitment therefore contributes significantly to the severity of inflammatory pneumonia.56,60,62

In AFC, alveolar fluid is cleared via an ENaC-mediated osmotic gradient.80,41,63 Disruption of ENaCs can lead to impaired AFC.32,62,64

The ECM is important for the epithelial and endothelial barrier function, since it regulates intercellular interactions and controls the migration of fluid and molecules in the interstitial space.42,65 Changes in ECM composition affect the mechanical properties of tight-junctions in alveolar epithelial and vascular endothelial cells, modulating the alveolar-capillary barrier function.42,66 Excess deposition of ECM proteins can lead to pulmonary fibrosis,37,42,50 which may lead to chronic impairment of pulmonary function in ARDS survivors.50 The amount of alveolar epithelial damage and impaired AFC capability are associated with impaired gas exchange and higher mortality.41,42,62 Injury of the alveolar epithelium (not the vascular endothelium) determines the progression to pulmonary fibrosis.42,67,68 Currently there is no specific treatment for post-ARDS pulmonary fibrosis other than supportive therapy.50,69

ARDS is one of the leading causes of death in ICU patients.38,40,41 Current ARDS therapy mainly constitutes supportive treatments, such as mechanical ventilation.31,70,71 This is predominantly effective in less severe cases, and may have serious side-effects.38,70,71 High tidal volume mechanical ventilation upregulates ACE expression and Ang-II activity,71 activates JNK and ERK1/2,72 and increases pulmonary parenchymal IL-6 levels via excessive alveolar distention.70 Mechanical ventilation may promote ventilator-induced ALI, which is characterized by inflammation, increased vascular permeability, interstitial pulmonary edema, parenchymal infiltration, fibrosis, and thrombosis.42,48,71

The COVID-19-related ARDS may present atypically, in the sense that there is relatively well-preserved pulmonary compliance (despite the severity of hypoxemia), and systemic features of a hypercoagulable state.73–75 To understand how and why, a trinity of interconnected systems will be discussed, starting with the RAAS.

Renin angiotensin aldosterone system

To explain why changes in ACE2 and Ang-II levels are important in COVID-19, we need to discuss their interactions with other relevant systems, as well as their relation to comorbidities and complications.

If we exclusively focus on the RAAS, it is best described as a regulatory system with two axes that control vasoconstriction and vasodilation,3,76,77 which play an essential role in maintaining hemodynamic homeostasis.64,78,79 The classical ACE/Ang-II/AT1R axis promotes vasoconstriction.77,80,81 Renin increases Ang-I, which is subsequently converted to Ang-II by ACE,35,77,82 after which Ang-II exerts its cellular effects (predominantly via the AT1R).38,79,83 The counterregulatory ACE2/Ang-(1-7)/MasR axis promotes vasodilation.3,76,77 ACE2 converts Ang-II to Ang-(1-7), which exerts its cellular effects predominantly via the MasR.94,79,80
In a perfectly balanced RAAS, neither ACE nor ACE2 should be considered good or bad, as they are both required to maintain healthy homeostasis. Since ACE is required for either axis, Ang-II and ACE2 should be considered to be the main effectors of the RAAS. This balance can go either way, meaning low ACE2/high Ang-II or high ACE2/low Ang-II. Since only low ACE2/high Ang-II is relevant regarding COVID-19, the focus will be on that type of RAAS imbalance in particular.

Ang-II will be considered first, after which ACE2 will be discussed.

Angiotensin-II

Ang-II is considered to be the major player in the ACE/Ang-II/AT1R axis. A dysregulated RAAS (and associated elevated Ang-II levels) has many detrimental effects. Ang-II upregulates Aldosterone production and promotes hypertension, CVD, and fibrosis. Furthermore, elevated Ang-II levels increase PKC-mediated ROS production via NADPH oxidase and ΔΨM depolarization (through PKC-mediated modulation of KATP channels). Ang-II-mediated ROS production stimulates ERK1/2, JNK, and p38-MAPK, subsequently initiating crosstalk with NF-κB (Figure 1).

ERK1/2, JNK and p38-MAPK are members of the MAPK family, and are preferentially activated by inflammation and environmental stresses (JNK and p38-MAPK in particular). MAPK signaling plays a crucial role in regulating cell apoptosis, inflammatory responses, and cell-cell junction formation. NF-κB is a transcription factor family that plays an important immunoregulatory role, and modulates the production of inflammatory cytokines and NADPH oxidase subunits.

Ang-II-induced ROS production effectively induces insulin resistance, and exacerbates T2DM. Insulin resistance impairs the PI3K/Akt/eNOS pathway, subsequently reducing glucose uptake and NO production. Insulin signaling, and the role of Ang-II in insulin resistance, will be further discussed in the T2DM section. To understand the importance of Ang-II-mediated reduction of NO bioavailability in COVID-19, we will first consider the vascular endothelium.

Vascular permeability

The inner surface of the vascular tree is lined with a continuous monolayer of endothelial cells (joined together by tight-junctions), forming a protective selective permeability barrier between the circulating blood and the extravascular tissue. The endothelium is a metabolically active homeostatic organ, regulating the tone, structure and permeability of the vascular system in response to different stimuli (e.g. shear stress, ACh, and insulin).

Limited vascular permeability is a function of a balanced endothelial phenotype, which constitutes smooth muscle relaxation, as well as low platelet activation and low fibrin formation. Endothelial dysfunction disrupts this balance and predisposes the vascular wall to inflammation, platelet activation, dysregulated coagulation, thrombosis, and increased vascular permeability.

Both the disruption of endothelial tight-junctions and impaired NO bioavailability are two important causes of endothelial dysfunction and increased vascular permeability. ROS-mediated MAPK signaling is responsible for disruption of endothelial tight-junctions. Impaired NO bioavailability occurs via eNOS uncoupling, reduced eNOS activity, or ROS-scavenging. Prolonged and excessive vascular permeability can result in tissue damage, organ dysfunction, or even death.

Impaired NO bioavailability plays a role in thrombosis, due to the hampering effect of NO on ROS-mediated upregulation of platelet activation, suggesting that either decreased NO bioavailability or increased ROS production is able to induce thrombosis.

Endothelial dysfunction...
initiates the coagulation pathway by activating platelets and pro-coagulant cascades, while reducing anti-coagulant components and fibrinolysis. This results in pulmonary capillary microthrombi and fibrin deposition in parenchymal and interstitial compartments, which is characterized by observed high D-dimer and von Willebrand Factor in some COVID-19 patients.

During an inflammatory state, endothelial cells release von Willebrand Factor, which represents an important thrombotic risk factor. Von Willebrand Factor is a large adhesive glycoprotein, synthesized by endothelial cells, and is critical for platelet adhesion and aggregation. ABO blood group genes affect von Willebrand Factor expression, as well as their susceptibility to proteolytic degradation via ADAMTS13. This is a possible explanation why ABO blood group type may be differentially related to COVID-19 severity.

Ang-II-mediated ROS production and decreased NO bioavailability promote vascular permeability and thrombosis, which are essential components of ARDS. These are linked to COVID-19 complications. ACE2 is a homologue of ACE, and a key component of the RAAS. ACE2 is a two-part type-I transmembrane protein, consisting of a glycosylated extracellular N-terminal domain (containing the SARS-CoV-2-binding carboxypeptidase site), and an intracellular C-terminal cytoplasmic tail. The extracellular catalytic domain of ACE2 can be cleaved and released by ADAM-17 or TMPRSS2. ACE2 is widely expressed in the heart, kidneys, lungs, CNS, and intestines, and is present in type-II pneumocytes and endothelial cells. ACE2 is predominantly membrane-bound, although it does exist, with a short half-life, in soluble form.

Increased ACE2 expression, upregulating the ACE2/Ang-(1-7)/MasR axis, has multiple beneficial effects, for example, mitigation of hypertension, CVD, T2DM, inflammation, and ARDS. Low ACE2 expression has been associated with hypertension, CVD, T2DM, inflammation, and ARDS, which happen to be risk factors for (severe) COVID-19 complications. Since ACE2 is the SARS-CoV-2 cell-entry point, there has been speculation that elevated ACE2 expression may increase susceptibility for SARS-CoV-2 infection. ACE2 expression is higher in females than in males, and declines with age (in men more so than in women). This can be explained by the upregulation of ACE2 expression by Estrogen, and the X-chromosomal location of the ACE2 gene (which is regulated epigenetically via DNA methylation). DNA methylation is associated with biological age, which suggests that biological age may be a more accurate risk factor for severe COVID-19 complications compared to chronological age. This pattern of ACE2 expression may partly explain why elevated ACE2 levels possibly have no negative effects on COVID-19 susceptibility. Additionally, there is a negative correlation between ACE2 expression and COVID-19 fatality. SARS-CoV-2-induced downregulation of ACE2 expression may especially be detrimental in people with comorbidities, since they initially have a lower ACE2 baseline. Additional COVID-19-mediated ACE2 deficiency may amplify the RAAS dysregulation, resulting in upregulation of Ang-II, which is indeed significantly elevated in COVID-19 patients. In the lungs, such dysregulation can induce the progression of inflammatory and thrombotic processes, because Ang-II is now unopposed by ACE2. This suggests that ACE2 may not be the culprit in COVID-19, but may actually have an important protective role, despite the ACE2-mediated cell-entry mechanism of SARS-CoV-2.

Although many effects of ACE2 have been attributed to the downregulation of Ang-II levels, other substrates play a major role in ACE2-related functions as well. The framework we have now established consists of the following hypothesis: "a SARS-CoV-2-induced RAAS imbalance, comprised of reduced ACE2 expression (and a subsequent elevated Ang-II activity), plays a role in severe COVID-19 complications."

There are still many loose ends in this narrative. In order to connect these, two more systems will be discussed, that is, the CS and the KKS. The CS and the KKS are linked. The KKS and the RAAS are linked as well. The RAAS, CS, and KKS, form a trinity of systems with several regulatory axes contributing to severe COVID-19 complications.
Complement system

The CS is an important component of the innate immune system, involved in host defense against micro-organisms, clearance of immune complexes and removal of apoptotic cells,149–151 and is intrinsically linked to the coagulation pathway.21,151,152 The CS is a key mediator of lung damage during (corona virus) infections, raising the possibility that CS activation may play a role in severe COVID-19 complications.16,74,153

Although most CS components are synthesized in the liver, type-II pneumocytes provide local CS proteins.154–156 The CS components C1, C3α, C5α, as well as the C5b-C9 MAC, all contribute to increased endothelial permeability.107,151,156 The CS can be activated via three pathways, that is, the classical, lectin, or alternative pathway.154,159,160 The classical pathway entails the creation of immune complexes with IgM/IgG antibodies, binding predominantly to pathogenic antigens.107,159,161 C1 binds to the antibody and forms C3 and C5, via initiating a series of enzymatic cascades.107,154,156 C3 and C5 are both cleaved to C3α/C3b and C5α/C5b respectively.107,154,160 C3α and C5α act as chemotactic agents for phagocytes.107,151,154 C3b is involved in opsonization of pathogens that are subsequently destroyed by phagocytes.107,154,159 C5α-C9 forms a MAC that induces cell-lysis by punching holes through their membranes.107,154,161 The lectin pathway involves the interaction of MBL with the pathogen (or the surface of a pathogen-infected cell), followed by the subsequent binding and activation of MASp2, directly activating similar CS cascades as in the classical pathway.21,153,154 The alternative pathway involves a spontaneous conformation change of C3, and after a short cascade, C3 is cleaved into C3α and C3b, without the use of antibodies, leading to similar cascades as the classical pathway.151,154,163 The CS is inhibited by the SerPin C1 INH via inhibition of C1 in the classical pathway, MASp2 in the lectin pathway, and C3b in the alternative pathway.107,149,164

Excessive CS activation can lead to inflammation and (excessive) neutrophil recruitment via opsonization and (via C3α- and C5α-mediated)107,153,156 chemotaxis.16,148,153 Excessive CS activation (on the endothelial surface) can lead to vascular problems, for example, endothelial damage (via MAC-induced lysis),148,154 vascular permeability,107,148,154 thrombosis,148,151,152 (diffuse) TMA,159,162,165 and DIC.161,166,167 This is how excessive CS activation exacerbates ARDS,16,74,154 pulmonary fibrosis,50,160,169 and possibly organ dysfunction.51

In at least a subset of severe COVID-19 patients an excessive CS activation is found via the lectin pathway,153,170,171 as demonstrated by elevated C5α-C9 MAC components, MBL-MASP2 in the pulmonary microvasculature, and parenchymal neutrophils.74 This is consistent with sustained and systemic CS activation and an associated pro-coagulant state.21,174 A possible modus operandi for additional CS activation via the lectin pathway in COVID-19 is the binding of SARS-CoV-2 N-proteins to MASp2.153 This leads to excessive CS activity,153,171 further exacerbating CS-mediated MAC formation, inflammation, and concurrent activation of the coagulation pathway,21,74 resulting in ARDS16,153 and thrombosis148,170 (Figure 2). The observed high D-dimer and von Willebrand Factor (and its associated thrombotic activity) in severe COVID-19 patients,111,119,120 can at least be partially explained by excessive CS activation (and associated MAC-mediated endothelial dysfunction), followed by an activated coagulation pathway.74,153,159

Our framework can now be expanded with the hypothesis: “an excessive CS activation plays a significant role in severe COVID-19 complications.”

The CS is not only linked to the coagulation pathway,151,161,166 but to the KKS as well107,148,149 which will be discussed next.

Kallikrein-kinin system

The KKS, like the CS, is an important part of the innate immune system,149,172,173 and is activated during inflammation.148,164,174 The KKS consists of Hageman Factor (Factor XII), PK, HK, the proteolytic KK enzymes, and
effector peptides, such as BK (and its active metabolite des-Arg⁹-BK). Factor XII gets activated via inflammatory processes and converts to Factor XIIa, which in turn converts PK into KK, initiating the kinin cascade107,149,164 (cleaving HK to generate BK and other metabolites, such as des-Arg⁹-BK).107,149,164 Factor XIIa also turns Factor XI into Factor XIa, subsequently activating the coagulation pathway, linking it to the KKS.107,149,175 KK turns Factor XIIa into Factor XII f, which initiates the CS via C1r cleavage, linking the KKS directly to the CS.107,149,176 KK also turns pro-Renin into Renin, linking the KKS directly to the RAAS.64,177,178 All these processes are inhibited by the SerPin C1 INH.107,149,164

The kinin BK is not very stable, and is easily degraded by ACE.81,85,88 Another kinin, des-Arg⁹-BK, is much more stable than BK,148,164,179 but can be degraded by ACE2.25,56,64 This shows another direct link between the KKS and the RAAS.36,75,81

KKS signaling is mediated by two receptors, B2R and B1R.85,148,180 While the B2R is ubiquitously expressed in most healthy tissues, B1R is synthesized de-novo and upregulated as a consequence of tissue injury or inflammatory processes.81,164,180 BK is the primary ligand for B2R, whereas des-Arg⁹-BK is the primary ligand for B1R.85,107,148

Kinins are potent inflammatory mediators,36,88,164 increasing vascular permeability85,180,181 and neutrophil recruitment.56,149,174 This may lead to inflammation,25,148,180 edema,75,164,180 and pain.85,164,174 Uncontrolled and excessive KKS activation, or abnormal kinin degradation, can cause an acute accumulation of BK and/or des-Arg⁹-BK, leading to excessive inflammation.56,107,148 Excessive KKS activation may also promote T2DM via (MAPK-mediated)181–183 destruction of pancreatic Langerhans islets,85,184,185 and increase vascular permeability.85,107,148 This results in exacerbated edema,85,107,164 neutrophil migration,56,148,174 thrombosis,148,186,187 ARDS,150,187,188 and possibly even organ dysfunction.25,187,189

The KKS and the CS are intrinsically linked at multiple levels, and are both activated during (vascular) inflammation (i.e. via gC1q R, which binds both C1s and HK).107,148,149 Simultaneous and uncontrolled excessive activation of both the KKS and CS (on the endothelial surface) is largely responsible for increased vascular permeability and edema.107,148,149 KK, which cleaves HK and subsequently releases BK, also cleaves and activates C3.148,190,191 The KKS107,148,149 and CS150–152 are both intrinsically linked to the coagulation pathway. The endothelial permeability-inducing effect of the C5b-C9 MAC is regulated by BK.107,192,193 The KKS and CS are both inhibited by C1 INH.148,149,164

ACE2 degrades the otherwise stable des-Arg⁹-BK.56,64,81 SARS-CoV-2 reduces ACE2 expression.3,6,125 A reduction in pulmonary ACE2 subsequently increases Ang-II5,125,194 and impairs the degradation of the des-Arg⁹-BK/B1R axis of the KKS.6,25,56 This exacerbates neutrophil migration6,148,174 and ARDS.75,56,75 The des-Arg⁹-BK/B1R axis of the KKS is not affected by corticosteroids,195–197 which means that as long as the virus is present, ACE2 will not be, and the kinin-induced ARDS will persist.75

We now have established multiple connections between the RAAS, CS, KKS, and the coagulation pathway. In our trinity of systems, the RAAS3,76,77 controls vasoconstriction and vasodilation, whereas the KKS85,180,181 and the CS107,158,198 control vascular permeability and vasodilation. ACE2 is the one ring that rules them all75 (Figure 3). The SerPin C1 INH effectively suppresses the KKS,107,149,164 the coagulation pathway,107,150,152 and all three pathways of the CS.150,152,176

Our framework can now be further expanded with the hypothesis: “a SARS-CoV-2-induced reduction of ACE2 expression directly causes a disruption and excessive activation of the KKS, which is not only able to further activate an already active CS, but directly plays a significant role in the exacerbation of severe COVID-19 complications.” Next, the T2DM interactions with our trinity of systems will be discussed.
Type-2 diabetes mellitus

T2DM is considered to be a metabolic disease, comprising insulin resistance and pancreatic β-cell dysfunction, resulting in insulin deficiency and subsequent hyperglycemia. 99,104,199 T2DM is characterized by comorbid conditions of CVD99,104,200 and hypertension. 89,201,202 T2DM is also associated with vascular problems, for example, endothelial dysfunction, vascular permeability, platelet dysfunction, and hypercoagulation.113,203,204 This can be partially contributed to a dysregulated RAAS5,94,105 (low ACE24,5,82 and high Ang-II79,94,106). CVD is the main complication of T2DM.114,204,205 However, clinical CVD can also precede the development of T2DM,200,206,207 suggesting that T2DM and CVD may both have an underlying cause, for example, a chronic low-grade inflammatory state,199,208,209 insulin resistance,53,210,211 or a dysregulated RAAS.86,89,133

Obesity

In T2DM, macrophage infiltration into expanding adipose tissue and pancreatic islets,212–214 as well as macrophage polarization toward the M1 phenotype99,215,216 (as a result of IL-6 trans signaling),53,214,217 is involved in the development of chronic low-grade inflammation in obese individuals.199,208,218 Visceral adipose tissue in particular, is characterized by high secretion of inflammatory cytokines, and T2DM patients have more visceral adipose tissue than nondiabetics,53,98,219 Furthermore, inflammatory cytokines in adipose tissue stimulate JNK and NF-κB,99,214,220 which induces insulin resistance.89,199,221 Finally, the RAAS may be disrupted in expanding visceral adipose tissue, exacerbating inflammation and insulin resistance.6,222,223

Insulin resistance

P(γTyr)IRS-1 is required for insulin-stimulated activation of the PI3K/Akt/eNOS pathway99,206,224 and multiple downstream effectors that promote glucose uptake and NO production.112,225,226 NO has vasoprotective effects,79,227,228 and its bioavailability depends on the balance between the rate of its eNOS-mediated production and its ROS-mediated inactivation.104,109,229

Increased P(Ser)IRS-1 and decreased P(γTyr)IRS-198,224,230 (both induced by JNK and ERK1/2,) disrupt insulin signaling,94,199,206 preventing activation of the PI3K/Akt/eNOS pathway.99,115,231 Chronic P(Ser)IRS-1 also targets IRS-1 for degradation or migration to inaccessible subcellular compartments.54,89,232

Hyperinsulinemia, caused by insulin resistance, activates both JNK230,232,233 and ERK1/2.88,234,235 Subsequently this further stimulates P(Ser)IRS-1,97,99,230 which is how hyperinsulinemia exacerbates insulin resistance.94,232,235

Hyperinsulinemia also upregulates Ang-II, which is how insulin resistance may disrupt the RAAS.89,237,238

Ang-II-mediated ROS production increases P(Ser)IRS-179,88,94 and decreases P(γTyr)IRS-1,86,89,105 effectively inducing insulin resistance.87,239,240 (Figure 1). A vicious cycle between the RAAS and insulin resistance has now been created.89,241,242

Insulin resistance is a risk factor for T2DM,86,206,232 obesity,85,98,106 hypertension,88,89,105 and CVD.87,210,243

β-Cell dysfunction

The progression from insulin resistance to T2DM implicates the inability of pancreatic β-cells to compensate for increased insulin demand.53,221,244

Sustained JNK activation causes pancreatic β-cell dysfunction,230,232 especially in obese individuals with an exacerbated inflammatory milieu.99,199,221

IL-6 increases the proliferation of α-cells and apoptosis of β-cells in the pancreas,3,245,246 suggesting a link between IL-6 and T2DM.208,218,247 The role of IL-6 in the proliferation of α-cells may initially compensate for the impaired β-cells in T2DM and contributes to limit hyperglycemia.53,245,248

Hyperglycemia increases IL-6 levels, both systemically and locally in pancreatic Langerhans islets,52,249,250 and promotes β-cell death91,246,251 (Figure 1).

In T2DM, the KKS is activated and kinins cause damage to pancreatic Langerhans islets, suggesting a link between the KKS and T2DM.85

Furthermore, in T2DM, ACE2 expression is downregulated,15,133 and increased Ang-II plays a part in reducing β-cell function via ROS-mediated apoptosis,89,252 suggesting a link between RAAS disruption and T2DM.64,86,88

Hyperglycemia

Pancreatic β-cell dysfunction leading to T2DM results in insulin deficiency and subsequent hyperglycemia,104,115,221 which has a plethora of detrimental effects.

Hyperglycemia increases the production of IL-6,53,55,250 and AGEs104,113,253,254 (which are expressed on the surface of many cell types, including endothelial, epithelial, and immune cells),62,113,255 and subsequently increases PKC-mediated55,256,257 ROS production via NADPH oxidase.118,203,258

Hyperglycemia-mediated ROS production stimulates ERK,104,259–261 JNK,99,262,263 and p38-MAPK,264–266 subsequently initiating crosstalk with NF-κB86,104,267 (Figure 1). This ROS-mediated MAPK signaling downregulates ACE2,14,15,268 and upregulates ACE,14,268,269 Ang-II,89,268,270 ADAM-17,5,271,272 and IL-6.114,249,267 It also disrupts endothelial tight-junctions,45,108,257 and reduces NO bioavailability (via eNOS uncoupling),113,273,274 decreased NO production,55,115,267 and NO scavenging.104,109,275 Hyperglycemia-mediated ROS production effectively promotes endothelial dysfunction,104,108,113 Therefore hyperglycemia increases vascular
permeability, and subsequently promotes (pulmonary) edema.

Hyperglycemia also promotes thrombosis, via platelet activation, increased coagulation factors, and decreased fibrinolysis.

Furthermore, hyperglycemia (even short-term) dysregulates both the innate and adaptive immune system. This may affect neutrophil-IL-6 signaling, chemotaxis, phagocytosis, respiratory burst, anti-microbial activity, and production of inflammatory cytokines. This creates a milieu in which SARS-CoV-2 can flourish.

Finally, hyperglycemia also interferes with the CS, upregulating expression of several CS component genes, hindering C3b-mediated opsonization and Ig-function via glycation.

Well-controlled blood-glucose levels reduce the risk of severe COVID-19 complications. Therefore, our framework can now be further expanded with the hypothesis: “T2DM-induced hyperglycemia is not only just a risk factor for severe COVID-19 complications, but is actually exacerbated (possibly even induced) by COVID-19.”

Next, the role of IL-6 signaling, and the interactions with T2DM and COVID-19 complications, will be discussed.

Interleukin 6

IL-6 has both pro- and anti-inflammatory characteristics. Dysregulated or excessive IL-6 signaling is considered to be involved in insulin resistance, β-cell dysfunction, T2DM, and CVD.

Various cell types can locally produce IL-6, which can be transported through the circulation, affecting more distant regions in the body. Immune cells are simultaneously both sources and targets of IL-6. Beta-coronavirus infection of immune cells, for example, monocytes, macrophages, and dendritic cells, will result in their activation and subsequent secretion of IL-6.

To exert its physiological effects, IL-6 utilizes both the classic and trans signaling pathway. In classic signaling, IL-6 binds to mIL-6R and forms a complex with gp130, after which downstream signaling is mediated via JAK and STAT3. In trans signaling, extracellular sIL-6R can bind to IL-6, forming a complex with gp130, after which downstream signaling is mediated via JAK and STAT3 in cells that do not express mIL-6R (such as endothelia and pancreatic α and β cells). IL-6 classic signaling is mostly involved in anti-inflammatory activities, whereas IL-6 trans signaling is mostly involved in pro-inflammatory activities.

Most cells express gp130, while mIL-6R is mostly found on monocytes, macrophages, neutrophils, and α- and β-cells of pancreatic Langerhans islets. The widespread expression of gp130 on most cell types, including endothelial cells, dramatically expands the range of IL-6 target cells using trans signaling. In order to prevent a systemic response to IL-6 trans signaling, sgpl30 specifically blocks trans signaling without affecting classic signaling, and basically constitutes a physiological buffer for circulating IL-6.

IL-6 activates ERK, JNK, and p38-MAPK, subsequently initiating crosstalk with NF-κB (Figure 1). This IL-6-mediated MAPK signaling decreases P(Tyr)IRS-1 and increases P(Ser)IRS-1, inducing insulin resistance and impairing NO production. IL-6-mediated MAPK signaling also disrupts endothelial tight-junctions and induces endothelial cell contraction.

Therefore, IL-6 effectively increases vascular permeability and exacerbates edema and lung injury/ARDS. The lack of mIL-6R on endothelial cells indicates trans signaling as the main mechanism involved in the detrimental effects of IL-6 on vasculature.

IL-6 also induces epigenetic changes (regarding genes involved in insulin signaling) via DNMT-induced alteration of DNA methylation patterns, promoting endothelial dysfunction and insulin resistance.

IL-6 levels are significantly elevated in COVID-19 patients. IL-6 plays an important role in CRS, exacerbates ARDS, and predicts mortality.

Our framework can now be further expanded with the hypothesis: “Excessive IL-6 trans signaling significantly contributes to severe COVID-19 complications.” In the last section, we will briefly discuss some potential attractive therapeutic targets and their pharmacological interactions.
Pharmacological interactions

Due to the lack of approved targeted medication for COVID-19,16,22,309 and developing an effective and safe vaccine may require some time, it is recommended to explore multiple potential therapeutic targets to mitigate severe COVID-19 complications.

TMPRSS2 inhibition

Since TMPRSS2 is essential for SARS-CoV-2 membrane fusion and subsequent cell-entry,23,7 inhibition of TMPRSS2 activity can potentially prevent severe COVID-19 complications.3,8,310 Nafamostat Mesylate, a clinically approved and safe medication for pancreatitis, inhibits TMPRSS2-mediated SARS-CoV-2 envelope-membrane fusion and subsequent cell-entry.3,311,312 Nafamostat Mesylate may also protect against thrombosis and DIC via its anti-coagulant properties.3,313

ACE inhibition/angiotensin II receptor blockage

Both ACE-inhibitors and ARBs reduce hypertension,85,96,129 CVD,80,96,129 pneumonia,314–316 insulin resistance (and T2DM).85,86,106 They also increase ACE2 expression1,76,80 and mitigate pulmonary edema.71,317,318 ACE-inhibitors however, also inhibit BK degradation, subsequently increasing BK, possibly increasing vascular permeability75,107,149 and systemic acquired angioedema.75,149,319

Because ACE-inhibitors and ARBs upregulate ACE2 expression,1,76,80 and SARS-CoV-2 uses ACE for cell-entry,3,6,8 it has been speculated that ACE-inhibitors and ARBs can have negative effects in COVID-19 patients.140–142 Studies however, show no association between both ACE-inhibitors and ARBs, and increased susceptibility for COVID-19 or the severity of its complications.320–322

Various experimental models37,71,76 show that rhsACE2 activates the protective ACE2/Ang-(1–7)/MasR-axis of the RAAS,71,76,80 degrades des-Arg9-BK,75 and improves ARDS symptoms.44,71,82 Therapeutic use of rhsACE2 in COVID-19 patients may have beneficial effects, such as effectively sequestering circulating viral particles to prevent S-protein interactions with membrane-bound ACE2, while simultaneously rebalancing the RAAS into a more protective equilibrium.6,76,323 Clinical-grade rhsACE2 can significantly inhibit SARS-CoV-2 infections in vitro (in a dose-dependent manner), reduce viral load by a factor of 1.000 – 5.000,324 and is currently being tested in a phase-II trial in Europe.5,127

Complement/kinin inhibition

Inhibiting an excessively active CS may reduce severe COVID-19 complications, for example, ARDS,153 pulmonary fibrosis,30,154 (diffuse) TMA,159,171 and DIC.74,191,153 Eculizumab is a monoclonal antibody that binds to C5 and prevents cleavage into C5a and C5b, as well as the formation of the C5b-9 MAC,16,74,325 and may also reduce the risk of TMA,162,163,165 and DIC.166,326

Inhibiting the KKS, either by inhibiting kinin production or blocking B1R/B2R, may improve COVID-19-induced ARDS.25,75,327 Since B1R is upregulated during inflammation,56,107,180 and des-Arg9-BK is much more stable than BK,148,164 the des-Arg9-BK/B1R axis is of major importance in vascular permeability during inflammation.164 Unfortunately, there currently is no approved B1R-inhibitor available.25,75,327 Icatibant is a selective B2R antagonist, traditionally used for hereditary angioedema,75,107,164 and may improve severe COVID-19 complications.75,327 B2R inhibition, besides reducing the KKS, also reduces the CS.148

C1Inhi inhibits the activation of both the CS and KKS,148 qualifying it as an attractive potential therapeutic option for severe COVID-19 complications. Plasma-derived C1Inhi, a first-line therapy for hereditary angioedema, appears to be safe.328 Ruconest, a recombinant human C1-esterase-inhibitor, has achieved some good preliminary results in treating COVID-19 patients, according to a press release.329

Interleukin 6 inhibition

IL-6 inhibition mitigates vascular permeability and alveolar-capillary barrier disruption.70,116,309 Tocilizumab is a monoclonal antibody, mainly used for the treatment of rheumatoid arthritis,22,308,330 It inhibits IL-6305,306,331 via binding to both mIL-6R and sIL-6R, resulting in complete blockade of both classic and trans IL-6 signaling pathways.287,308,330 Disruption of both pro- and anti-inflammatory activities of IL-6 may cause side-effects, for example, secondary (bacterial or fungal) infections, liver malfunction, or hypercholesterolemia.313,208 Despite the possible side-effects, preliminary studies show that Tocilizumab appears to be effective and safe regarding severe COVID-19 complications.22,306,309 Tocilizumab however, seems less effective in hyperglycemic patients.332

Sgp130Fc (a recombinant version of sgp130) specifically blocks IL-6 trans signaling, without affecting the anti-inflammatory and protective classical IL-6 signaling.53,208,288 Therefore sgp130Fc may result in better therapeutic outcomes with fewer undesired side-effects.53,208,333 Studies show that Tocilizumab has demonstrated robust efficacy in the treatment of several autoimmune and inflammatory conditions,53,288 with fewer side-effects than global IL-6-inhibitors.53,208,333 Sgp130Fc may potentially have therapeutic benefits for COVID-19-induced ARDS.333

Summary

We have established the concluding framework regarding the COVID-19 pathophysiological crossroads: “COVID-19 disrupts the RAAS balance via reduction of...
ACE2 expression and a subsequent elevation of Ang-II. COVID-19-induced reduction of ACE2 expression induces excessive activation of the KKS and subsequently the CS. T2DM-induced hyperglycemia is not only just a risk factor for severe COVID-19 complications, but is actually exacerbated (possibly even induced) by COVID-19. Ang-II, excessive KKS and CS activation, hyperglycemia, and IL-6 trans signaling, all contribute significantly to severe COVID-19 complications (e.g. ARDS and thrombosis/DIC).” The RAAS, CS, and KKS, and the coagulation pathway, are all intrinsically connected sensitive systems, with ACE2 as master regulator. Elevated ACE2 baseline levels may protect from severe COVID-19 complications.

There are no effective approved medications against COVID-19 yet, and a vaccine may be a long way off. However, several attractive therapeutic targets in the RAAS, CS, and KKS have shown promising preliminary results against severe COVID-19 complications.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iDs
Martijn Hoevenaar https://orcid.org/0000-0003-1906-703X
Dolf Goossens https://orcid.org/0000-0003-0417-991X
Janne Roorda https://orcid.org/0000-0002-6624-6666

References
1. Kakodkar P, Kaka N and Baig M. A comprehensive literature review on the clinical presentation, and management of the pandemic coronavirus disease 2019 (COVID-19). Cureus 2020; 12(4): e7560.
2. Lukassen S, Chua RL, Trefzer T, et al. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. *EMBO J* 2020; 39(10): e105114.
3. Xiao L, Sakagami H and Miwa N. ACE2: the key molecule for understanding the pathophysiology of severe and critical conditions of COVID-19: demon or angel? *Viruses* 2020; 12(5): 491.
4. Chen J, Jiang Q, Xia X, et al. Individual variation of the SARS-CoV2 receptor ACE2 gene expression and regulation. *Aging Cell* 2020; 19(7): e13168.
5. Gheblawi M, Wang K, Viveiros A, et al. Angiotensin converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system. *Circ Res* 2020; 126(10): 1456–1474.
6. Verdecchia P, Cavallini C, Spanevello A, et al. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. *Eur J Intern Med* 2020; 76: 14–20.
7. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. *Cell* 2020; 181(2): 271–280.
8. Stopsaek KH, Mucci LA, Antonarakis ES, et al. TMPRSS2 and COVID-19: serendipity or opportunity for intervention? *Cancer Discov* 2020; 10: 1–4.
9. Ma Y, Huang Y, Wang T, et al. ACE2 shedding and furin abundance in target organs may influence the efficiency of SARS-CoV-2 entry. *ChinaXiv* 2020; 202002.00082v1.
10. Patel VB, Clarke N, Wang Z, et al. Angiotensin II induced proteolytic cleavage of myocardial ACE2 is mediated by TACE/ADAM-17: a positive feedback mechanism in the RAS. *J Mol Cell Cardiol* 2014; 66: 167–176.
11. Lin B, Ferguson C, White JT, et al. Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. *Cancer Res* 1999; 59(17): 4180–4184.
12. Corley MJ and Ndhlolvu LC. DNA methylation analysis of the COVID-19 host cell receptor, angiotensin I converting enzyme 2 (ACE2) in the respiratory system reveal age and gender differences. *Preprints* 2020; 2020030295.
13. Pruimboom L. Methylation pathways and SARS-CoV-2 lung infiltration and cell membrane-virus fusion are both subject to epigenetics. *Front Cell Infect Microbiol* 2020; 10: 290.
14. Lin M, Gao P, Zhao T, et al. Calcitriol regulates angiotensin-converting enzyme and angiotensin converting-enzyme 2 in diabetic kidney disease. *Mol Biol Rep* 2016; 43(5): 397–406.
15. Pal R and Bhansali A. COVID-19, diabetes mellitus and ACE2: the conundrum. *Diabetes Res Clin Pract* 2020; 162: 108132.
16. Diurno F, Numis F, Porta G, et al. Eculizumab treatment in patients with COVID-19: preliminary results from real life ASL Napoli 2 Nord experience. *Eur Rev Med Pharmacol Sci* 2020; 24(7): 4040–4047.
17. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *Lancet* 2020; 395(10223): 497–506.
18. Brann D, Tsukahara T, Weinreb C, et al. Non-neural age and gender differences. *Cancer Discov* 2020; 10: 1–4.
19. Lechien JR, Chiesa-Estomba CM, De Siat DR, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. *Eur Arch Otorhinolaryngol* 2020; 277: 2251–2261.
20. Vaira LA, Salzano G, Deiana G, et al. Anosmia and ageusia: common findings in COVID-19 patients. *BioRxiv* 2020.
21. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *Lancet* 2020; 395(10223): 497–506.
22. Brann D, Tsukahara T, Weinreb C, et al. Non-neural expression of SARS-CoV-2 entry genes in the olfactory epithelium suggests mechanisms underlying anosmia in COVID-19 patients. *BioRxiv* 2020.
23. Lechien JR, Chiesa-Estomba CM, De Siat DR, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. *Eur Arch Otorhinolaryngol* 2020; 277: 2251–2261.
Barabutis N, Verin A and Catravas JD. Regulation of diabetes. Cell Metab 2020; 31(6): 1068–1077.e3.

Wang Z, Du Z and Zhu F. Glycosylated hemoglobin is associated with systemic inflammation, hypercoagulability, and prognosis of COVID-19 patients. Diabetes Res Clin Pract 2020; 164: 108214.

Tolouian R, Vahed SZ, Ghiyasvand S, et al. COVID-19 interactions with angiotensin-converting enzyme 2 (ACE2) and the kinin system; looking at a potential treatment. J Renal Inj Prev 2020; 9(2): e19.

Champananavar R and Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 2017; 39(5): 529–539.

Mosaddeghi P, Negahdaripour M, Dehghani Z, et al. Therapeutic approaches for COVID-19 based on the dynamics of interferon-mediated immune responses. Preprints 2020; 2020030206.

Prompetchara E, Ketloy C and Palaga T. Immune responses in COVID-19 and potential vaccines: lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol 2020; 38: 1–9.

Zheng M, Gao Y, Wang G, et al. Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol 2020; 17: 533–535.

Abdulamir AS and Hafidh RR. The possible immunological pathways for the variable immunopathogenesis of COVID-19 infections among healthy adults, elderly and children. Electron J Gen Med 2020; 17(4): em202.

Deng X, Yu X and Pei J. Regulation of interferon production as a potential strategy for COVID-19 treatment. arXiv 2020; 2003.00751.

Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis 2020; 71(15): 762–768.

Ruan Q, Yang K, Wang W, et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020; 46: 846–848.

Zhang H, Wang X, Fu Z, et al. Potential factors for prediction of disease severity of COVID-19 patients. medRxiv 2020.

Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature 2005; 436(7047): 112–116.

Imai Y, Kuba K and Penninger JM. The discovery of angiotensin-converting enzyme 2 and its role in acute lung injury in mice. Exp Physiol 2008; 93(5): 543–548.

Kuba K, Imai Y and Penninger JM. Angiotensin-converting enzyme 2 in lung diseases. Curr Opin Pharmacol 2006; 6(3): 271–276.

Bao H, Gao F, Xie G, et al. Angiotensin-converting enzyme 2 inhibits apoptosis of pulmonary endothelial cells during acute lung injury through suppressing MIR-4262. Cell Physiol Biochem 2015; 37(2): 759–767.

Barabutis N, Verin A and Catravas JD. Regulation of pulmonary endothelial barrier function by kinases. Am J Physiol Lung Cell Mol Physiol 2016; 311(5): L832–L845.

Lai JB, Qiu CF, Chen CX, et al. Inhibition of c-Jun N-terminal kinase signaling pathway alleviates lipopolysaccharide-induced acute respiratory distress syndrome in rats. Chin Med J (Engl) 2016; 129(14): 1719–1724.

Deng J, Wang DX, Deng W, et al. The effect of endogenous angiotensin II on alveolar fluid clearance in rats with acute lung injury. Can Respir J 2012; 19(5): 311–318.

Herrero R, Sanchez G and Lorente JA. New insights into the mechanisms of pulmonary edema in acute lung injury. Ann Transl Med 2018; 6(2): 32.

Yu X, Lin Q, Qin X, et al. ACE2 antagonizes VEGFα to reduce vascular permeability during acute lung injury. Cell Physiol Biochem 2016; 38(3): 1055–1062.

Li Y, Cao Y, Zeng Z, et al. Angiotensin-converting enzyme 2/angiotensin-(1-7)/Mas axis prevents lipopolysaccharide-induced apoptosis of pulmonary microvascular endothelial cells by inhibiting JNK/Mas axis. Angiogen Inflammopharmacology 2016; 2003.00751.

Frantzeskaki F, Armaganidis A and Orfanoes SE. Immunothrombosis in acute respiratory distress syndrome: cross talks between inflammation and coagulation. Respiration 2017; 93(3): 212–225.

Rusu L and Minshall RD. Endothelial cell von Willebrand factor secretion in health and cardiovascular disease. In: Lenasi H (ed) Endothelial dysfunction: old concepts and new challenges. 1st ed. London: IntechOpen, 2018, p.147.

Cardinal-Fernández P, Lorente JA, Ballén-Barragán A, et al. Acute respiratory distress syndrome and diffuse alveolar damage. New insights on a complex relationship. Ann Am Thorac Soc 2017; 14(6): 844–850.

Silasi-Mansat R, Zhu H, Georgescu C, et al. Complement inhibition decreases early fibrogenic events in the lung of septic baboons. J Cell Mol Med 2015; 19(11): 2549–2563.

Radermacher P, Maggiore SM and Mercat A. Fifty years of research in ARDS. Gas exchange in acute respiratory distress syndrome. Am J Respir Crit Care Med 2017; 196(8): 964–984.

Zhang H and Baker A. Recombinant human ACE2: acing out angiotensin II in ARDS therapy. Crit Care 2017; 21: 305.

Akbari M and Hassan-Zadeh V. IL-6 signalling pathways and the development of type 2 diabetes. Inflammopharmacology 2018; 26(3): 685–698.

Balakrishnan A, Gururupasad KP, Satyamoorthy K, et al. Interleukin-6 determines protein stabilization of DNA methyltransferases and alters DNA promoter methylation of genes associated with insulin signaling and angiogenesis. Lab Invest 2018; 98(9): 1143–1158.

Jafar N, Edriss H and Nugent K. The effect of short-term hyperglycemia on the innate immune system. Am J Med Sci 2016; 351(2): 201–211.
56. Sodhi CP, Wohlford-Lenane C, Yamaguchi Y, et al. Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg⁴ bradykinin/BKBR1R axis and facilitates LPS-induced neutrophil infiltration. *Am J Physiol Lung Cell Mol Physiol* 2018; 314(1): L17–L31.

57. Babior B, Lambeth J and Nauseef W. The neutrophil NADPH oxidase. *Arch Biochem Biophys* 2002; 397(2): 342–344.

58. Zhang GX, Lu XM, Kimura S, et al. Role of mitochondria in angiotensin II-induced reactive oxygen species and mitogen-activated protein kinase activation. *Cardiovasc Res* 2007; 76(2): 204–212.

59. Nguyen GT, Green ER and Mecsas J. Neutrophils to the rescue: mechanisms of NADPH oxidase activation and bacterial resistance. *Front Cell Infect Microbiol* 2017; 7: 373.

60. Pechous RD. With friends like these: the complex role of neutrophils in the progression of severe pneumonia. *Front Cell Infect Microbiol* 2017; 7: 160.

61. Sheppard FR, Kelher MR, Moore EE, et al. Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. *J Leukoc Biol* 2005; 78(5): 1025–1042.

62. Hamacher J, Hadizamani Y, Borgmann M, et al. Cytokine-matrix interactions in pulmonary inflammation. *Front Immunol* 2018; 8: 1644.

63. Trac PT, Thai TL, Linck V, et al. Alveolar nonselective channels are ASIC1a/c–ENaC channels and contribute to AFC. *Am J Physiol Lung Cell Mol Physiol* 2017; 312(6): L797–L811.

64. Jia H. Pulmonary angiotensin-converting enzyme 2 (ACE2) and inflammatory lung disease. *Shock* 2016; 46(3): 239–248.

65. Alexander J and Elrod JW. Extracellular matrix, junctional integrity and matrix metalloproteinase interactions in endothelial permeability regulation. *J Anat* 2002; 200(6): 561–574.

66. Pelosi P, Rocco PR, Negrini D, et al. The extracellular matrix of the lung and its role in edema formation. *An Acad Bras Cienc* 2007; 79(2): 285–297.

67. Kulkarni T, De Andrade J, Zhou Y, et al. Alveolar epithelial disintegrity in pulmonary fibrosis. *Am J Physiol Lung Cell Mol Physiol* 2016; 311(2): L185–L191.

68. Parimon T, Yao C, Stripp BR, et al. Alveolar epithelial type II cells as drivers of lung fibrosis in idiopathic pulmonary fibrosis. *Int J Mol Sci* 2020; 21(7): 2269.

69. Araya J and Nishimura SL. Fibrogenic reactions in lung disease. *Annu Rev Pathol* 2010; 5: 77–98.

70. Gurkan OU, He C, Zielinski R, et al. Interleukin-6 mediates pulmonary vascular permeability in a two-hit model of ventilator-associated lung injury. *Exp Lung Res* 2011; 37(10): 575–584.

71. Wang D, Chai XQ, Magnussen CG, et al. Renin-angiotensin-system, a potential pharmacological candidate, in acute respiratory distress syndrome during mechanical ventilation. *Palm Pharmacol Ther* 2019; 58: 101833.

72. Cohen TS, Lawrence GG, Khasgiwala A, et al. MAPK activation modulates permeability of isolated rat alveolar epithelial cell monolayers following cyclic stretch. *PLoS One* 2010; 5(4): e10385.
and diabetes prevention. Curr Vasc Pharmacol 2008; 6(4): 301–312.
89. Olivares-Reyes JA, Arellano-Plancarte A and Castillo-Hernandez JR. Angiotensin II and the development of insulin resistance: implications for diabetes. Mol Cell Endocrinol 2009; 302(2): 128–139.
90. Ebrahimian T, Li MW, Lemarié CA, et al. Mitogen-activated protein kinase-activated protein kinase 2 in angiotensin II-induced inflammation and hypertension: regulation of oxidative stress. Hypertension 2011; 57(2): 245–254.
91. Wen H, Gwathmey JK and Xie LH. Oxidative stress–mediated effects of angiotensin II in the cardiovascular system. World J Hypertens 2012; 2(4): 34–44.
92. Dikalov SI and Nazarewicz RR. Angiotensin II-induced production of mitochondrial reactive oxygen species: potential mechanisms and relevance for cardiovascular disease. Antioxid Redox Signal 2013; 19(10): 1085–1094.
93. Izawa Y, Yoshizumi M, Fujita Y, et al. ERK1/2 activation by angiotensin II inhibits insulin-induced glucose uptake in vascular smooth muscle cells. Exp Cell Res 2005; 308(2): 291–299.
94. Andreozzi F, Laratta E, Sciacqua A, et al. Angiotensin II impairs the insulin signaling pathway promoting production of nitric oxide by inducing phosphorylation of insulin receptor substrate-1 on Ser312 and Ser616 in human umbilical vein endothelial cells. Circ Res 2004; 94(9): 1211–1218.
95. Oudit GY, Kassiri Z, Patel MP, et al. Angiotensin II-mediated oxidative stress and inflammation mediate the age-dependent cardiomyopathy in ACE2 null mice. Cardiovasc Res 2007; 75(1): 29–39.
96. Eguchi S, Dempsey PJ, Frank GD, et al. Activation of MAPks by angiotensin II in vascular smooth muscle cells metalloprotease-dependent EGF receptor activation is required for activation of ERK and p38 MAPk but not for JNK. J Biol Chem 2001; 276(11): 7957–7962.
97. De Fea K and Roth RA. Modulation of insulin receptor substrate-1 tyrosine phosphorylation and function by mitogen-activated protein kinase. J Biol Chem 1997; 272(50): 31400–31406.
98. Guo XX, An S, Yang Y, et al. Emerging role of the Jun N-terminal kinase interactome in human health. Cell Biol Int 2018; 42(7): 756–768.
99. Yung JHM and Giacca A. Role of c-Jun N-terminal kinase (JNK) in obesity and type 2 diabetes. Cells 2020; 9(3): 706.
100. Harper C, Woodcock D, Lam C, et al. Temperature regulates NF-kB dynamics and function through timing of A20 transcription. Proc Natl Acad Sci USA 2018; 115(22): E5243–E5249.
101. Pires BR, Silva RC, Ferreira GM, et al. NF-kappaB: two sides of the same coin. Genes (Basel) 2018; 9(1): 24.
102. Amrather J, Racchumi G and Iadecola C. NF-kB regulates phagocytic NADPH oxidase by inducing the expression of gp91phox. J Biol Chem 2006; 281(9): 5657–5667.
103. Manea A, Manea S, Gafencu A, et al. Regulation of NADPH oxidase subunit p22(phox) by NF-kB in human aortic smooth muscle cells. Arch Physiol Biochem 2007; 113(4–5): 163–172.
104. Saad MI, Abdelkhalak TM, Saleh MM, et al. Insights into the molecular mechanisms of diabetes-induced endothelial dysfunction: focus on oxidative stress and endothelial progenitor cells. Endocrine 2015; 50(3): 537–567.
105. Folli F, Kahn CR, Hansen H, et al. Angiotensin II inhibits insulin signaling in aortic smooth muscle cells at multiple levels. A potential role for serine phosphorylation in insulin/angiotensin II crosstalk. J Clin Invest 1997; 100(9): 2158–2169.
106. Folli F, Saad M, Velloso L, et al. Crosstalk between the complement and the kinin system in vascular permeability. Exp Clin Endor Diabetes 1999; 107(2): 133–139.
107. Bossi F, Peerschke EI, Ghebrehiwet B, et al. Cross-talk between the complement and the kinin system in vascular permeability. Immunol Lett 2011; 140(1–2): 7–13.
108. Chattopadhyay R, Dyukova E, Singh NK, et al. Vascular endothelial tight junctions and barrier function are disrupted by 15(S)-hydroxyicosatetraenoic acid partly via protein kinase C-mediated zona occludens-1 phosphorylation at threonine 770/772. J Biol Chem 2014; 289(6): 3148–3163.
109. Loscalzo J. Oxidative stress in endothelial cell dysfunction and thrombosis. Pathophysiol Haemost Thromb 2002; 32(5–6): 359–360.
110. Yau JW, Teoh H and Verma S. Endothelial cell control of thrombosis. BMC Cardiovasc Disord 2015; 15(1): 130.
111. Tang N, Bai H, Chen X, et al. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost 2020; 18(5): 1094–1099.
112. Dinnemler S, Fleming I, Fisslthaler B, et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 1999; 399(6736): 601–605.
113. Setter SM, Campbell RK and Cawoon CJ. Biochemical pathways for microvascular complications of diabetes mellitus. Ann Pharmacother 2003; 37(12): 1858–1866.
114. Pechlivan N and Ajjan RA. Thrombosis and vascular inflammation in diabetes: mechanisms and potential therapeutic targets. Front Cardiovasc Med 2018; 5: 1.
115. Fouty B. Diabetes and the pulmonary circulation. Am J Physiol Lung Cell Mol Physiol 2008; 295(5): L725–L726.
116. Alsaffar H, Martino N, Garrett JP, et al. Interleukin-6 promotes a sustained loss of endothelial barrier function via Janus kinase-mediated STAT3 phosphorylation and decoy protein synthesis. Am J Physiol Cell Physiol 2018; 314(5): C589–C602.
117. Lee WL and Slutsky AS. Sepsis and endothelial permeability. N Engl J Med 2010; 363(7): 689–691.
118. Madamanchi N, Hakim Z and Runge M. Oxidative stress in atherogenesis and arterial thrombosis: the disconnect between cellular studies and clinical outcomes. J Thromb Haemost 2005; 3(2): 254–267.
119. Escher R, Breakey N and Lämmlé B. Severe COVID-19 infection associated with endothelial activation. Thromb Res 2020; 190: 62.
120. Zachariah U, Nair S, Goel A, et al. Targeting raised von Willebrand factor levels and macrophage activation in severe COVID-19: consider low volume plasma exchange and low dose steroid. Thromb Res 2020; 192: 2.
121. Franchini M, Capra F, Targher G, et al. Relationship between ABO blood group and von Willebrand factor levels: from biology to clinical implications. *Thromb J* 2007; 5(1): 14.

122. Zhao J, Yang Y, Huang HP, et al. Relationship between the ABO blood group and the COVID-19 susceptibility. *Clin Infect Dis*. Epub ahead of print August 2020. DOI: 10.1093/cid/ciaa1150.

123. Shatanawi A, Lemtalsi T, Yao L, et al. Angiotensin II limits NO production by upregulating arginase through a p38 MAPK-ATF-2 pathway. *Eur J Pharmacol* 2015; 746: 106–114.

124. Deng J, Wang DX, Deng W, et al. Regulation of alveolar fluid clearance and ENaC expression in lung by exogenous angiotensin II. *Respir Physiol Neurobiol* 2012; 181(1): 53–61.

125. Silhov F, Sarlon G, Dehoro JC, et al. Downregulation of ACE2 induces overstimulation of the renin-angiotensin system in COVID-19: should we block the renin-angiotensin system? *Hypertens Res* 2020; 43: 854–856.

126. Chappel M and Ferrario C. ACE and ACE2: their role to balance the expression of angiotensin II and angiotensin-(1-7). *Kidney Int* 2006; 70(1): 8–10.

127. Alhenc-Gelas F and Drueke TB. Blockade of SARS-CoV-2 infection by recombinant ACE2-Ig. *Biorxiv* 2020; 106–114.

128. Jia HP, Look DC, Tan P, et al. Ectodomain shedding of ACE2 in the regulation of glycemia. *J Pathol* 2013; 65(9): 730–738.

129. Zhao J, Yang Y, Huang HP, et al. Relationship between coronavirus disease 2019, aging, and cardiovascular disease: insights from cardiovascular aging science. *JAMA Cardiol* 2020; 5(7): 747–748.

130. Bastolla U. The differential expression of the ACE2 receptor across ages and gender explains the differential lethality of SARS-Cov-2 and suggests possible therapy. *Preprint arXiv*: 200407224 2020.

131. Jarcho JA, Ingelfinger JR, Hamel MB, et al. Inhibitors of the renin-angiotensin-aldosterone system and Covid-19. *N Engl J Med* 2020; 382: 2462–2464.

132. AlGhatrif M, Cingolani O and Lakatta EG. The dilemma of coronavirus disease 2019, aging, and cardiovascular disease: insights from cardiovascular aging science. *JAMA Cardiol* 2020; 5(7): 747–748.

133. Gwathmey-Williams T, Pendergrass K, Rose J, et al. Angiotensin-(1-7)-ACE2 attenuates reactive oxygen species formation to angiotensin II within the cell nucleus. *Hypertension* 2010; 55(1): 166.

134. Xia H, Suda S, Bindom S, et al. ACE2-mediated reduction of oxidative stress in the central nervous system is associated with improvement of autonomic function. *PLoS One* 2011; 6(7): e22682.

135. Al Ghatri M, Cingolani O and Lakatta EG. The dilemma of coronavirus disease 2019, aging, and cardiovascular disease: insights from cardiovascular aging science. *JAMA Cardiol* 2020; 5(7): 747–748.

136. Xia H, Suda S, Bindom S, et al. ACE2-mediated reduction of oxidative stress in the central nervous system is associated with improvement of autonomic function. *PLoS One* 2011; 6(7): e22682.

137. Yu X, Cui L, Hou F, et al. Angiotensin-converting enzyme 2-angiotensin (1-7)-Mas axis prevents pancreatic acinar cell inflammatory response via inhibition of the p38 mitogen-activated protein kinase/nuclear factor-κB pathway. *Int J Mol Med* 2018; 41(1): 409–420.

138. Gwathmey-Williams T, Pendergrass K, Rose J, et al. Angiotensin-(1-7)-ACE2 attenuates reactive oxygen species formation to angiotensin II within the cell nucleus. *Hypertension* 2010; 55(1): 166.

139. Xia H, Suda S, Bindom S, et al. ACE2-mediated reduction of oxidative stress in the central nervous system is associated with improvement of autonomic function. *PLoS One* 2011; 6(7): e22682.

140. Al Ghatri M, Cingolani O and Lakatta EG. The dilemma of coronavirus disease 2019, aging, and cardiovascular disease: insights from cardiovascular aging science. *JAMA Cardiol* 2020; 5(7): 747–748.
Ciceri F, Beretta L, Scandroglio AM, et al. Microvascular
Meliconi R, Senaldi G, Sturani C, et al. Complement
Gu H, Mickler EA, Cummings OW, et al. Crosstalk
Srichaikul T, Puwasatien P, Puwasatien P, et al.
Kurosawa S and Stearns-Kurosawa DJ. Complement,
Charignon D, Späth P, Martin L, et al. Icatibant, the brady-
Kenawy HI, Boral I and Bevington A. Complement-
Kolev M, Le Friec G and Kemper C. Complement-tapping
Campbell CM and Kahwash R. Will complement inhibi-
Williams T. Vascular permeability changes induced by
Campbell CM and Kahwash R. Will complement inhibi-
Kaplan AP and Joseph K. Complement, kinins, and hered-
Mohammed BM, Matafonov A, Ivanov I, et al. An update

Pandya PH and Wilkes DS. Complement system in lung
rhesis? Circulation 2020; 141(22): 1739–1741.

Kolev M, Le Friece G and Kemper C. Complement-tapping
new sites and effector systems. Nat Rev Immunol

Kenawy HI, Boral I and Bevington A. Complement-
hoeveraar et al. 2020; 22(2): 95–97.

Czermak BJ, Lentsch AB, Bless NM, et al. Synergistic

Strunk RC, Eidlen DM and Mason RJ. Pulmonary alveolar
type II epithelial cells synthesize and secrete proteins of the classical and alternative complement pathways. J Clin Invest 1988; 81(5): 1419–1426.

Czermak BJ, Lentsch AB, Bless NM, et al. Synergistic enhancement of chemokine generation and lung injury by C5a or the membrane attack complex of complement. Am J Pathol 1999; 154(5): 1513–1524.

Williams T. Vascular permeability changes induced by complement-derived peptides. Agents Actions 1983; 13(5–6): 451–455.

Campbell CM and Kahwash R. Will complement inhibition be the new target in treating COVID-19 related systemic thrombosis? Circulation 2020; 141(22): 1739–1741.

Kolev M, Le Friece G and Kemper C. Complement-tapping into new sites and effector systems. Nat Rev Immunol 2014; 14(12): 811–820.

Kenawy HI, Boral I and Bevington A. Complement-coagulation cross-talk: a potential mediator of the physiological activation of complement by low pH. Front Immunol 2015; 6: 215.

Hofer J, Rosales A, Fischer C, et al. Extra-renal manifestations of complement-mediated thrombotic microangiopathies. Front Pediatr 2014; 2: 97.

Brookebank V and Kavanagh D. Complement C5-inhibiting therapy for the thrombotic microangiopathies: accumulating evidence, but not a panacea. Clin Kidney J 2017; 10(5): 600–624.

Charignon D, Späth P, Martin L, et al. Icatibant, the bradykinin B2 receptor antagonist with target to the intercon-

Park MH, Caselman N, Ulmer S, et al. Complement-

Kuroswa S and Stearns-Kurosawa DJ. Complement, thrombotic microangiopathy and disseminated intravascular

Srichaikul T, Puwasatien P, Puwasatien P, et al. Complement changes and disseminated intravascular coagulation in Plasmodium falciparum malaria. Lancet 1975; 305(7910): 770–772.

Gu H, Mickler EA, Cummings OW, et al. Crosstalk between TGF-β1 and complement activation augments epithelial injury in pulmonary fibrosis. FASEB J 2014; 28(10): 4223–4234.

Meliconi R, Senaldi G, Sturani C, et al. Complement activation products in idiopathic pulmonary fibrosis: relevance of fragment Ba to disease severity. Clin Immunol Immunopathol 1990; 57(1): 64–73.

Ciceri F, Beretta L, Scandroglio AM, et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc 2020; 22(2): 95–97.

Gavriliaki E and Brodsky RA. Severe COVID-19 infection and thrombotic microangiopathy: success doesn’t come easily. Br J Haematol 2020; 189(6): e222–e265.

Oehmcke-Hecht S and Köhler J. Interaction of the human contact system with pathogens—an update. Front Immunol 2018; 9: 312.

Wu Y. The plasma contact system as a modulator of innate immunity. Curr Opin Hematol 2018; 25(5): 389–394.

Ehrenfeld P, Millan C, Matus C, et al. Activation of kinin B1 receptors induces chemotaxis of human neutrophils. J Leukoc Biol 2006; 80(1): 117–124.

Mohammed BM, Matafonov A, Ivanov I, et al. An update on factor XI structure and function. Thromb Res 2018; 161: 94–105.

Kaplan AP and Joseph K. Complement, kinins, and hereditary angioedema: mechanisms of plasma instability when C1 inhibitor is absent. Clin Rev Allergy Immunol 2016; 51(2): 207–215.

Sealey JE, Atlas SA, Laragh JH, et al. Human urinary kallikrein converts inactive to active renin and is a possible physiological activator of renin. Nature 1978; 275(5676): 144–145.

Yokosawa N, Takahashi N, Inagami T, et al. Isolation of completely inactive plasma prorenin and its activa-
tion by kallikreins: a possible new link between renin and kallikrein. Biochim Biophys Acta 1979; 569(2): 211–219.

Cyr M, Lepage Y, Blais C, Jr, et al. Bradykinin and des-
Arg(9)-bradykinin metabolic pathways and kinetics of activation of human plasma. Am J Physiol Heart Circ Physiol 2001; 281(1): H275–H283.

Duka I, Shenouda S, Johns C, et al. Role of the B(2) receptor of bradykinin in insulin sensitivity. Hypertension 2001; 38(6): 1355–1360.

Bernier SG, Haldar S and Michel T. Bradykinin-regulated interactions of the mitogen-activated protein kinase pathway with the endothelial nitric-oxide synthase. J Biol Chem 2000; 275(39): 30707–30715.

Christopher J, Velarde V and Jaffa AA. Induction of B(1)-

Kuo SW, Wang SC, Peng CL, et al. Complement regulation and pathogenesis of systemic lupus erythematosus. Clin Rev Allergy Immunol 2016; 51(2): 207–215.

Yiu WH, Wong DW, Chan LY, et al. Tissue kallikrein mediates pro-inflammatory pathways and activation of protease-activated receptor-4 in proximal tubular epithelial cells: cellular mechanisms of MAP kinase activation. Hypertension 2001; 38(3): 602–605.

Yiu WH, Wong DW, Chan LY, et al. Tissue kallikrein mediates pro-inflammatory pathways and activation of protease-activated receptor-4 in proximal tubular epithelial cells. PLoS One 2014; 9(2): e88984.

Tijdiane N, Gaboury L and Couture R. Cellular localisa-
tion of the kinin B1R in the pancreas of streptozotocin-
treated rat and the anti-diabetic effect of the antagonist SSR240612. PLoS One 2016; 397(4): 323–336.

Zuccollo A, Navarro M, Frontera M, et al. The involve-
ment of kallikrein-kinin system in diabetes type I (insuli-
tary angioedema: mechanisms of plasma instability when

Zuccollo A, Navarro M, Frontera M, et al. The involve-
ment of kallikrein-kinin system in diabetes type I (insuli-
tary angioedema: mechanisms of plasma instability when

Wu Y. Contact pathway of coagulation and inflammation. Thromb J 2015; 13(1): 17.

Schmaier AH. A novel antithrombotic mechanism mediated by the receptors of the kallikrein/kinin and renin-angiotensin systems. Front Med (Lausanne) 2016; 3: 61.

Schmaier AH. Physiologic activities of the contact activation system. Thromb Res 2014; 133: S41–S44.
189. Ruiz S, Vardon-Bouhes F, Buléon M, et al. Kinin B1 receptor: a potential therapeutic target in sepsis-induced vascular hyperpermeability. J Transl Med 2020; 18: 174.

190. Irmscher S, Döring N, Halder LD, et al. Kallikrein cleaves C3 and activates complement. J Innate Immun 2018; 10(2): 94–105.

191. Oikonomopoulou K, DeAngelis RA, Chen H, et al. Induction of complement C3a receptor responses by kallikrein-related peptidase 14. J Immunol 2013; 191(7): 3858–3866.

192. Bossi F, Fischetti F, Durigutto P, et al. The terminal complement complex induces vascular leakage: in vitro and in vivo evidence. In: 9th European meeting on complement in human disease (eds MR Daha and CJM Melief), Trieste, Italy, 2003, pp.178–179.

193. Bossi F, Fischetti F, Pellis V, et al. Platelet-activating factor and kinin-dependent vascular leakage as a novel functional activity of the soluble terminal complement complex. J Immunol 2004; 173(11): 6921–6927.

194. Varagic J, Ahmad S, Nagata S, et al. ACE2: angiotensin II/angiotensin-(1-7) balance in cardiac and renal injury. Curr Hypertens Rep 2014; 16(3): 420.

195. Bernstein JA and Moellman J. Emerging concepts in the diagnosis and treatment of patients with undifferentiated angioedema. Int J Emerg Med 2012; 5(1): 39.

196. Craig TJ, Bernstein JA, Farkas H, et al. Diagnosis and treatment of bradykinin-mediated angioedema: outcomes from an angioedema expert consensus meeting. Int Arch Allergy Immunol 2014; 165(2): 119–127.

197. Depetri F, Tedeschi A and Cugno M. Angioedema and emergency medicine: from pathophysiology to diagnosis and treatment. Eur J Emerg Med 2019; 59: 8–13.

198. Luo HY, Wead WB, Yang S, et al. Nitric oxide mediates C5a-induced vasodilation in the small intestine. Microcirculation 1995; 2(1): 53–61.

199. Hameed I, Masoodi SR, Mir SA, et al. Type 2 diabetes mellitus: from a metabolic disorder to an inflammatory cardiovascular disease prior to clinical diagnosis of type 2 diabetes. World J Diabetes 2015; 6(4): 598–612.

200. Hu FB, Stampfer MJ, Haffner SM, et al. Elevated risk of cardiovascular disease associated with a pro-inflammatory pathway of obesity. J Clin Invest 2014; 3(4): 422–431.

201. Han MS, Lee YS, et al. The role of macrophages in obesity-associated islet inflammation and ß-cell abnormalities. Nat Rev Endocrinol 2019; 16: 81–90.

202. Ying W, Fu W, et al. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2011; 117(1): 175–184.

203. Pereira SS and Alvarez-Leite JJ. Low-grade inflammation, obesity, and diabetes. Curr Obes Rep 2014; 3(4): 44–56.

204. Visceral adipose tissue gene expression of serum adipokines that predict type 2 diabetes. Obesity (Silver Spring) 2013; 21(5): 884–889.

205. Mancini SJ, White AD, Bijland S, et al. Activation of AMP-activated protein kinase rapidly suppresses multiple pro-inflammatory pathways in adipocytes including IL-1 receptor-associated kinase-4 phosphorylation. Mol Cell Endocrinol 2017; 440: 44–56.

206. Andreozzi F, Laratta E, Procopio C, et al. Interleukin-6 impairs the insulin signaling pathway, promoting production of nitric oxide in human umbilical vein endothelial cells. Mol Cell Biol 2007; 27(6): 2372–2383.

207. Stern MP. Diabetes and cardiovascular disease: the “common soil” hypothesis. Diabetes 1995; 44(4): 369–374.

208. Qu D, Liu J, Lau CW, et al. IL-6 in diabetes and cardiovascular complications. Br J Pharmacol 2014; 171(5): 3595–3603.

209. Ziegler D. Type 2 diabetes as an inflammatory cardiovascular disorder. Curr Mol Med 2005; 5(3): 309–322.

210. Adeva-Andany MM, Martinez-Rodriguez J, Gonzalez-Lucan M, et al. Insulin resistance is a cardiovascular risk factor in humans. Diabetes Metab Syndr 2019; 13(2): 1449–1455.

211. Johnson AM and Olefsky JM. The origins and drivers of insulin resistance. Cell 2013; 152(4): 673–684.

212. Ehses JA, Perren A, Eppler E, et al. Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 2007; 56(9): 2356–2370.

213. Shi J, Fan J, Su Q, et al. Cytokines and abnormal glucose and lipid metabolism in type 2 diabetes. Front Endocrinol 2019; 10: 703.

214. Ying W, Fu W, Lee YS, et al. The role of macrophages in obesity-associated islet inflammation and ß-cell abnormalities. Nat Rev Endocrinol 2019; 16: 81–90.

215. Lumeng CN, Bodzin JL and Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007; 117(1): 175–184.

216. Pereira SS and Alvarez-Leite JJ. Low-grade inflammation, obesity, and diabetes. Curr Obes Rep 2014; 3(4): 422–431.

217. Han MS, White A, Perry RJ, et al. Regulation of adipose tissue inflammation by interleukin 6. Proc Natl Acad Sci USA 2020; 117(6): 2751–2760.

218. Klover PJ, Zimmers TA, Koniaris LG, et al. Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes 2003; 52(11): 2784–2789.

219. Samaras K, Botelho NK, Chisholm DJ, et al. Subcutaneous and visceral adipose tissue gene expression of serum adipokines that predict type 2 diabetes. Obesity (Silver Spring) 2010; 18(5): 884–889.

220. Mancini SJ, White AD, Bijland S, et al. Activation of AMP-activated protein kinase rapidly suppresses multiple pro-inflammatory pathways in adipocytes including IL-1 receptor-associated kinase-4 phosphorylation. Mol Cell Endocrinol 2017; 440: 44–56.

221. Lanuza-Masdeu J, Arévalo MI, Vila C, et al. In vivo JNK phosphorylation in pancreatic ß-cells leads to glucose intolerance caused by insulin resistance in pancreas. Diabetes 2013; 62(7): 2308–2317.

222. Frigolet ME, Torres N and Tovar AR. The renin-angiotensin system in adipose tissue and its metabolic consequences during obesity. J Nutr Biochem 2013; 24(12): 2003–2015.

223. Marcus Y, Shefer G and Stern N. Adipose tissue renin-angiotensin system as a therapeutic target for type 2 diabetes. Obesity (Silver Spring) 2013; 21(5): 884–889.
full activation of insulin-stimulated phosphatidylinositol 3-kinase activity and translocation of GLUT4 in adipose cells. Endocrinology 2001; 142(7): 2833–2840.

225. Fulton D, Gratton JP, McCabe TJ, et al. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 1999; 399(6736): 597–601.

226. Zeng G, Nyström FH, Ravichandran LV, et al. Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation 2000; 101(13): 1539–1545.

227. Gewallig MT and Kojda G. Vasoprotection by nitric oxide: mechanisms and therapeutic potential. Cardiovasc Res 2002; 55(2): 250–260.

228. Yasa M and Türkseven S. Vasoprotective effects of nitric oxide in atherosclerosis. FABAD J Pharm Sci 2005; 30(1): 41.

229. Versari D, Daghini E, Virdis A, et al. Endothelial dysfunction as a target for prevention of cardiovascular disease. Diabetes Care 2009; 32(suppl 2): S314–S321.

230. Aguirre V, Uchida T, Yenush L, et al. The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. J Biol Chem 2000; 275(12): 9047–9054.

231. Richey JM. The vascular endothelium, a benign restrictive barrier? No! Role of nitric oxide in regulating insulin action. Diabetes 2013; 62(12): 4006–4008.

232. Aguirre V, Werner ED, Giraud J, et al. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem 2002; 277(2): 1531–1537.

233. Lee YH, Giraud J, Davis RJ, et al. c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem 2003; 278(5): 2896–2902.

234. Hong OK, Lee SH, Rhee M, et al. Hyperglycemia and hyperinsulinemia have additive effects on activation and proliferation of pancreatic stellate cells: possible explanation of islet-specific fibrosis in type 2 diabetes mellitus. J Cell Biochem 2007; 101(3): 665–675.

235. Wang Y, Zhu Y, Zhang L, et al. Insulin promotes proliferation, survival, and invasion in endometrial carcinoma by activating the MEK/ERK pathway. Cancer Lett 2012; 322(2): 223–231.

236. Pirola L, Johnston A and Van Obberghen E. Modulators of insulin action and their role in insulin resistance. Int J Obes Relat Metab Disord 2003; 27(3): S61–S64.

237. Giacchetti G, Sechi LA, Rilli S, et al. The renin-angiotensin-aldosterone system, glucose metabolism and diabetes. Trends Endocrinol Metab 2005; 16(3): 120–126.

238. Samuelsson AM, Bollano E, Mobini R, et al. Hyperinsulinemia: effect on cardiac mass/function, angiotensin II receptor expression, and insulin signaling pathways. Am J Physiol Heart Circ Physiol 2006; 291(2): H787–H796.

239. Henriksen EJ and Prasannarong M. The role of the renin-angiotensin system in the development of insulin resistance in skeletal muscle. Mol Cell Endocrinol 2013; 378(1–2): 15–22.

240. Huisamen B, Pérèl S, Friedrich S, et al. ANG II type I receptor antagonism improved nitric oxide production and enhanced eNOS and PKB/Akt expression in hearts from a rat model of insulin resistance. Mol Cell Biochem 2011; 349(1–2): 21–31.

241. Hsu N and Wyne K. Renin-angiotensin-aldosterone system in diabetes and hypertension. J Clin Hypertens (Greenwich) 2011; 13(4): 224–237.

242. Muniyappa R and Yavuz S. Metabolic actions of angiotensin II and insulin: a microvascular endothelial balancing act. Mol Cell Endocrinol 2013; 378(1–2): 59–69.

243. Ormazabal V, Nair S, Elfeky O, et al. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol 2018; 17(1): 122.

244. Kasuga M. Insulin resistance and pancreatic β cell failure. J Clin Invest 2006; 116(7): 1756–1760.

245. Ellingsgaard H, Ehses JA, Hammar EB, et al. Interleukin-6 regulates pancreatic α-cell mass expansion. Proc Natl Acad Sci USA 2008; 105(35): 13163–13168.

246. Ota H, Iyata-Hironaka A, Yamauuchi A, et al. Pancreatic β cell proliferation by intermittent hypoxia via up-regulation of Reg family genes and HGF gene. Life Sci 2013; 93(18–19): 664–672.

247. Senn JJ, Klover PJ, Nowak IA, et al. Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 2002; 51(12): 3391–3399.

248. Ellingsgaard H, Hauselmann I, Schuler B, et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med 2011; 17(11): 1481–1489.

249. Devaraj S, Venugopal SK, Singh U, et al. Hyperglycemia induces monocyte release of interleukin-6 via induction of protein kinase C-α and -β. Diabetes 2005; 54(1): 85–91.

250. Esposito K, Nappo F, Marfella R, et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation 2002; 106(16): 2067–2072.

251. Oh YS, Lee YJ, Park EY, et al. Interleukin-6 treatment induces beta-cell apoptosis via STAT3-mediated nitric oxide production. Diabetes Metab Res Rev 2011; 27(8): 813–819.

252. Ramalingam L, Menikdiwela K, LeMieux M, et al. The renin angiotensin system, oxidative stress and mitochondrial function in obesity and insulin resistance. Bichim Biophys Acta Mol Basis Dis 2017; 1863(5): 1106–1114.

253. Muniyappa R and Quon MJ. Insulin action and insulin resistance in vascular endothelium. Curr Opin Clin Nutr 2007; 10(4): 523–530.

254. Yamagishi S. Role of advanced glycation end products (AGEs) and receptor for AGEs (RAGE) in vascular damage in diabetes. Exp Gerontol 2011; 46(4): 217–224.

255. Tilton RG. Diabetic vascular dysfunction: links to glucose-induced reductive stress and VEGF. Microcirc Res Tech 2002; 57(5): 390–407.

256. Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, et al. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis 2018; 9(2): 1–9.

257. Yuan SY, Breslin JW, Perrin R, et al. Microvascular permeability in diabetes and insulin resistance. Microcirculation 2007; 14(4–5): 363–373.

258. Thallas-Bonke V, Thorpe SR, Coughlan MT, et al. Inhibition of NADPH oxidase prevents advanced
glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-α-dependent pathway. *Diabetes* 2008; 57(2): 460–469.

259. Kumar P, Rao GN, Pal BB, et al. Hyperglycemia-induced oxidative stress induces apoptosis by inhibiting PI3-kinase/Akt and ERK1/2 MAPK mediated signaling pathway causing downregulation of 8-oxoG-DNA glycosylase levels in glial cells. *Int J Biochem Cell Biol* 2014; 53: 302–319.

260. Xu Z, Sun J, Tong Q, et al. The role of ERK1/2 in the development of diabetic cardiomyopathy. *Int J Mol Sci* 2016; 17(12): 2001.

261. Yu T, Jhun BS and Yoon Y. High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission. *Antioxid Redox Signal* 2011; 14(3): 425–437.

262. Heim TW, Xu W, Xu X, et al. Acute and chronic hyperglycemia elicit JIP1/JNK-mediated endothelial vasodilator dysfunction of retinal arterioles. *Invest Ophthalmo Vis Sci* 2016; 57(10): 4333–4340.

263. Yang P, Cao Y and Li H. Hyperglycemia induces iNOS via different pathways. *J Clin Invest* 1999; 103(2): 185–195.

264. Martinez N, Vallerskog T, West K, et al. Glucose or hyperglycemia activates p38 mitogen-activated protein kinase via different pathways. *J Intern Med* 2002; 103(2): 118–123.

265. Montani MSG, Granato M, Cuomo L, et al. High glucose and hyperglycemic sera from type 2 diabetic patients impair DC differentiation by inducing ROS and activating Wnt/β-catenin and p38 MAPK. *Biochim Biophys Acta* 2016; 1862(4): 805–813.

266. Arcambal A, Taille J, Rondeau P, et al. Hyperglycemia modulates redox, inflammatory and vasoactive markers through specific signaling pathways in cerebral endothelial cells: insights on insulin protective action. *Free Radic Bio Med* 2019; 130: 59–70.

267. Lavrentyev EN, Estes AM and Malik KU. Mechanism of high glucose-induced angiotensin II production in rat vascular smooth muscle cells. *Circ Res* 2007; 101(5): 455–464.

268. Pan Y, Huang Y, Wang Z, et al. Inhibition of MAPK-mediated ACE expression by compound C66 prevents STZ-induced diabetic nephropathy. *J Cell Mol Med* 2014; 18(2): 231–241.

269. Fiordaliso F, Leri A, Cesselli D, et al. Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death. *Diabetes* 2001; 50(10): 2363–2375.

270. Li R, Uttwarw L, Gao B, et al. High glucose up-regulates ADAM17 through HIF-1α in mesangial cells. *J Biol Chem* 2015; 290(35): 21603–21614.

271. Restaino RM, Castorena-Gonzalez JA, Marshall KD, et al. ADAM17 and impaired endothelial insulin signaling in type 2 diabetes. *FASEB J* 2017; 31(suppl 1): 837-12.

272. Meza CA, La Favor JD, Kim DH, et al. Endothelial dysfunction: is there a hyperglycemia-induced imbalance of NOX and NOS? *Int J Mol Sci* 2019; 20(15): 3775.

273. Thum T, Fraccarollo D, Schultheiss M, et al. Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes. *Diabetes* 2007; 56(3): 666–674.

274. Fakhruddin S, Alanazi W and Jackson KE. Diabetes-induced reactive oxygen species: mechanism of their generation and role in renal injury. *J Diabetes Res*. Epub ahead of print January 2017. DOI: 10.1155/2017/8379327.

275. Clemen J, Xiang L, Lu S, et al. Effects of acute and chronic hyperglycemia on lung capillary permeability. *FASEB J* 2015; 29(suppl 1): 863-22.

276. Giri B, Dey S, Das T, et al. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: an update on glucose toxicity. *Biomed Pharmacother* 2018; 107: 306–328.

277. Lemkes BA, Hermanides J, DeVries JH, et al. Hyperglycemia: a prothrombotic factor? *J Thromb Haemost* 2010; 8(8): 1663–1669.

278. Bus P, Chua JS, Klessens CQ, et al. Complement activation in patients with diabetic nephropathy. *Kidney Int Rep* 2018; 3(2): 302–313.

279. Mauriello CT, Hair PS, Rohn RD, et al. Hyperglycemia inhibits complement-mediated immunological control of *S. aureus* in a rat model of peritonitis. *J Diabetes Res* 2014; 2014: 762051.

280. Ren H, Yang Y, Wang F, et al. Association of the insulin resistance marker TyG index with the severity and mortality of COVID-19. *Cardiovasc Diabetol* 2020; 19: 58.

281. Pandolfi R, Barreira B, Moreno E, et al. Role of acid sphingomyelinase and IL-6 as mediators of endotoxin-induced pulmonary vascular dysfunction. *Thorax* 2017; 72(5): 460–471.

282. Fontes JA, Rose NR and Čiháková D. The varying faces of IL-6: from cardiac protection to cardiac failure. *Cytokine* 2017; 33(11): 571–577.

283. Hou T, Tier BC, Ray S, et al. Roles of IL-6-gp130 signaling in vascular inflammation. *Curr Cardiol Rev* 2008; 4(3): 179–192.

284. Desai TR, Leeper NJ, Hynes KL, et al. Interleukin-6 causes endothelial barrier dysfunction via the protein kinase C pathway. *J Surg Res* 2002; 104(2): 118–123.

285. Rincon M. Interleukin-6: from an inflammatory marker to a target for inflammatory diseases. *Trends Immunol* 2012; 33(11): 571–577.

286. Moore JB and June CH. Cytokine release syndrome in severe COVID-19. *Science* 2020; 368(6490): 473–474.

287. Wolf J, Waetzig GH, Chalaris A, et al. Different soluble forms of the interleukin-6 family signal transducer gp130 fine-tune the blockade of interleukin-6 trans-signaling. *J Biol Chem* 2016; 291(31): 16186–16196.

288. Rose-John S. IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. *Int J Biol Sci* 2012; 8(9): 1237–1247.

289. Hung MJ, Cherng WJ, Hung MY, et al. Interleukin-6 inhibits endothelial nitric oxide synthase activation and...
increases endothelial nitric oxide synthase binding to stabilized caveolin-1 in human vascular endothelial cells. *J Hypertens* 2010; 28(5): 940–951.

291. Al-Sadi R, Ye D, Boivin M, et al. Interleukin-6 modulation of intestinal epithelial tight junction permeability is mediated by JNK pathway activation of claudin-2 gene. *PLoS One* 2014; 9(3): e85345.

292. Nuruishi K, Nishimura F, Yamada-Nuruishi H, et al. C-Jun N-terminal kinase (JNK) inhibitor, SP600125, blocks interleukin (IL)-6-induced vascular endothelial growth factor (VEGF) production: cyclosporine A partially mimics this inhibitory effect. *Transplantation* 2003; 76(9): 1380–1382.

293. Zhou S, Du X, Xie J, et al. Interleukin-6 regulates iron-related proteins through c-Jun N-terminal kinase activation in BV2 microglial cell lines. *PLoS One* 2017; 12(7): e0180464.

294. Shen TNY, Kanazawa S, Kado M, et al. Interleukin-6 stimulates Akt and p38 MAPK phosphorylation and fibroblast migration in non-diabetic but not diabetic mice. *PLoS One* 2017; 12(5): e0178232.

295. Zauberman A, Zipori D, Krupsky M, et al. Stress activated protein kinase p38 is involved in IL-6 induced transcriptional activation of STAT3. *Oncogene* 1999; 18(26): 3886–3893.

296. Nandipati KC, Subramanian S and Agrawal DK. Protein kinases: mechanisms and downstream targets in inflammation-mediated obesity and insulin resistance. *Mol Cell Biochem* 2017; 426(1–2): 27–45.

297. Nieto-Vazquez I, Fernandez-Veledo S, De Alvaro C, et al. Dual role of interleukin-6 in regulating insulin sensitivity in murine skeletal muscle. *Diabetes* 2008; 57(12): 3211–3221.

298. Birukova AA, Shah AS, Tian Y, et al. Selective role of vinculin in contractile mechanisms of endothelial permeability. *Am J Respir Cell Mol Biol* 2016; 55(4): 476–486.

299. Cohen SS, Min M, Cummings EE, et al. Effects of interleukin-6 on the expression of tight junction proteins in isolated cerebral microvessels from yearling and adult sheep. *Neuroimmunomodulation* 2013; 20(5): 264–273.

300. Goldman JL, Sammani S, Kempf C, et al. Pleiotropic effects of interleukin-6 in a “two-hit” murine model of acute respiratory distress syndrome. *Palm Circ* 2014; 4(2): 280–288.

301. Klein CL, Hoke TS, Fang WF, et al. Interleukin-6 mediates lung injury following ischemic acute kidney injury or bilateral nephrectomy. *Kidney Int* 2008; 74(7): 901–909.

302. Mao S, Sun J, Gu T, et al. Hymoponylation of interleukin-6 (IL-6) gene increases the risk of essential hypertension: a matched case-control study. *J Hum Hypertens* 2017; 31(8): 530–536.

303. Balakrishnan A, Satyamoorthy K and Joshi MB. Role of IL-6/JAK/STAT pathway in inducing vascular insulin resistance. *Mol Cytogenet* 2014; 7(1): P96.

304. Balakrishnan A, Satyamoorthy K and Joshi MB. Inflammation induced insulin resistance is associated with DNA methylation changes in vascular endothelial cells. *Can J Biotechnol* 2017; 1: 104.

305. Coomes EA and Haghbayan H. Interleukin-6 in COVID-19: a systematic review and meta-analysis. *Rev Med Virol* 2020; e2141.
321. Mancia G, Rea F, Ludergnani M, et al. Renin-angiotensin-aldosterone system blockers and the risk of Covid-19. *N Engl J Med* 2020; 382(25): 2431–2440.

322. Reynolds HR, Adhikari S, Pulgarin C, et al. Renin-angiotensin-aldosterone system inhibitors and risk of Covid-19. *N Engl J Med* 2020; 382(25): 2441–2448.

323. Batlle D, Wysocki J and Satchell K. Soluble angiotensin-converting enzyme 2: a potential approach for coronavirus infection therapy? *Clin Sci (Lond)* 2020; 134(5): 543–545.

324. Monteil V, Kwon H, Prado P, et al. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. *Cell* 2020; 181(4): 905–913.

325. Risitano AM, Mastellos DC, Huber-Lang M, et al. Complement as a target in COVID-19? *Nat Rev Immunol* 2020; 20(6): 343–344.

326. Abe T, Sasaki A, Ueda T, et al. Complement-mediated thrombotic microangiopathy secondary to sepsis-induced disseminated intravascular coagulation successfully treated with eculizumab: a case report. *Medicine (Baltim)* 2017; 96(6): e6056.

327. Roche JA and Roche R. A hypothesized role for dysregulated bradykinin signaling in covid-19 infection. *FASEB J* 2020; 34(6): 7265–7269.

328. Farkas H, Kőhalmi KV, Visy B, et al. Clinical characteristics and safety of plasma-derived C1-inhibitor therapy in children and adolescents with hereditary angioedema—a long-term survey. *J Allergy Clin Immunol Pract* 2020; 8(7): 2379–2383.

329. Pharming Group NV. Pharming reports encouraging results from use of RUCONEST in COVID-19 patients. *Press Release*, https://www.pharming.com/nl/node/185#:~:text=Pharming%20Group%20N.V.,the%20University%20Hospital%20Basel%20Switzerland (2020, accessed 24 June 2020).

330. Tanaka T, Ogata A and Narazaki M. Tocilizumab: an updated review of its use in the treatment of rheumatoid arthritis and its application for other immune-mediated diseases. *Clin Med Insights Ther* 2013; 5: CMT-S9282.

331. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. *Lancet* 2020; 395(10229): 1033–1034.

332. Marfella R, Paolillo P, Sardu C, et al. Negative impact of hyperglycemia on tocilizumab therapy in COVID-19 patients. *Diabetes Metab* 2020; 46(5): 403–405.

333. Magro G. SARS-CoV-2 and COVID-19: is interleukin-6 (IL-6) the ‘culprit lesion’of ARDS onset? What is there besides tocilizumab? *Cytokine X* 2020; 2(2): 100029.

Appendix

Abbreviations

Abbreviation	Description
ΔΨ_M	Mitochondrial membrane potential
A-AComplex	Antigen–antibody complex
ACE	Angiotensin-converting enzyme
ACh	Acetylcholine
ADAM-17	A disintegrin and metalloprotease domain 17
ADAMTS13	ADAM with a thrombospondin type 1 motif, member 13
AFC	Alveolar fluid clearance
AGE	Advanced glycation end product
Akt	Protein kinase B
ALI	Acute lung injury
Ang	Angiotensin
ARB	AT1R blocker
ARDS	Acute respiratory distress syndrome
AT1R	Ang-II type 1 receptor
B1/2R	Bradykinin receptor 1/2
BK	Bradykinin
C1_{INH}	C1 inhibitor
CNS	Central nervous system
COVID-19	Coronavirus disease 2019
CRS	Cytokine release syndrome (cytokine storm)
CS	Complement system
CVD	Cardiovascular disease
DIC	Disseminated intravascular coagulation
DNA	Desoxymethyltransferase
DNMT	DNA methyltransferase
ECM	Extracellular matrix
ENaC	Epithelial sodium channel
eNOS	Endothelial nitric oxide synthase
ERK	Extracellular signal-regulated kinase
HK	High molecular weight kininogen
HT	Hypertension
ICU	Intensive-care unit
IG	Immunoglobulin
IL-6	Interleukin 6
IR	Insulin resistance
IRS-1	Insulin receptor substrate 1
JAK	Janus kinase
JNK	c-Jun N-terminal kinase
K_{ATP}	Membrane potassium channels
KK	Kallikrein
KKS	Kallikrein-kinin system
MAC	Membrane attack complex
MAPK	Mitogen-activated protein kinase
MASP2	MBL serine protease 2
MasR	Mas receptor
MBL	Mannose-binding lectin
(m/s)IL-6R	(membrane-bound/soluble) IL-6 receptor
NADPH	Nicotinamide adenine dinucleotide phosphate
NET	Neutrophil extracellular trap
NF-κB	Nuclear factor κ light-chain-enhancer of activated B cells
Abbreviation	Description
-------------	-------------
N-P	SARS-CoV-2-produced N-proteins
NO	nitric oxide
PI3K	phosphatidyl inositol-4,5-bisphosphate 3-kinase
PK	prekallikrein
PKC	protein kinase C
P(Ser/Tyr)IRS-1	serine/tyrosine phosphorylation of IRS-1
RAAS	renin angiotensin aldosterone system
RAGE	receptor for AGE
rhsACE2	recombinant human soluble ACE2
RNA	ribonucleic acid
ROS	reactive oxygen species
SARS-CoV-2	severe acute respiratory syndrome coronavirus 2
SerPin	serine protease inhibitor
SSRNA+	positive-sense, single-stranded RNA
STAT	signal transducer and activator of transcription
T2DM	type-2 diabetes mellitus
TJ	(endothelial) tight-junction(s)
TMA	thrombotic microangiopathy
Tmprss2	transmembrane protease serine 2
VC	vasoconstriction
VD	vasodilation
VP	vascular permeability