Hybrid InAs nanowire–vanadium proximity SQUID

P Spathis, S Biswas, S Roddaro, L Sorba, F Giazotto and F Beltram

NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, I-56126 Pisa, Italy

E-mail: panayotis.spathis@sns.it

Received 9 November 2010, in final form 29 December 2010
Published 2 February 2011
Online at stacks.iop.org/Nano/22/105201

Abstract

We report the fabrication and characterization of superconducting quantum interference devices (SQUIDs) based on InAs nanowires and vanadium superconducting electrodes. These mesoscopic devices are found to be extremely robust against thermal cycling and to operate up to temperatures of ∼2.5 K with reduced power dissipation. We show that our geometry allows one to obtain nearly-symmetric devices with very large magnetic field modulation of the critical current. All these properties make these devices attractive for sensitive magnetometry applications and quantum circuit implementation.

(A some figures in this article are in colour only in the electronic version)

A normal conductor (N) experiences superconducting correlations when in the vicinity of a superconductor (S). Owing to this proximity effect a gap ε_G in the density of states (DOS) opens up in the N region, whose amplitude can be modulated by the phase of the superconducting order parameter [1]. This can be readily done by applying a magnetic field to a loop geometry [2–6]. Based on this principle, the superconducting quantum interference proximity transistor (SQUIPT) [7] was recently demonstrated. In this novel type of interferometer the phase-modulated DOS of a N metal in good contact with a superconducting loop is sensed by tunnel-coupled superconducting leads. This device operates similarly to a SQUID and shows good sensitivity [7]. DC proximity SQUIDs have also been realized [8–11]. In all these examples, the SNS weak links are diffusive and belong to the long-junction limit. In this case, the N-region length is larger than the superconducting coherence length and governs the properties of the junctions. In this paper, we present hybrid proximity DC SQUIDs, in which the weak link between vanadium (V) superconducting electrodes consists of an indium arsenide (InAs) nanowire (NW). We shall show that these weak links are in the intermediate-length junction regime and make it possible to reach rather high operating temperatures and sensitivity values. Also, since the spin–orbit coupling of InAs NWs is important [12], the present devices could be used for the experimental demonstration of Majorana fermions, as recently proposed in [13].

Highly-doped InAs NWs (with charge density $n = 1.8 \pm 0.8 \times 10^{19}$ cm$^{-3}$) grown by chemical beam epitaxy were used for this study. The NWs have diameters of 90 ± 10 nm and are around 2.5 μm long. Figure 1(a) shows a scanning electron micrograph (SEM) of a typical device obtained by e-beam lithography and subsequent e-beam evaporation of Ti/V (15/120 nm) in a UHV chamber. The transparency of the contacts is tuned by a passivation step of the InAs NW surface with a NH$_4$S$_x$ solution. The structure consists of a superconducting loop interrupted by two weak links obtained on a single NW, thus defining the SQUID. Weak links are colored in red in the magnified SEM image (inset of figure 1(a)). The additional outer V contacts on the NW are not used in this study. The length of the weak links is typically between $L = 20$ and 50 nm, and the diffusion constant of the NWs [14] is $D = 0.02$ m2 s$^{-1}$. Consequently, the associated Thouless energy $E_{\text{Th}} = \hbar D/L^2$ is about one order of magnitude larger than the vanadium superconducting gap ($\Delta \sim 700 \mu$eV). Thus, the present links are not in the long-junction limit. The transport properties of these devices were measured in a filtered 3He refrigerator (two-stage RC and π-filters at 244 mK) using a standard four-wire technique.

Below the transition temperature of the V contacts ($T_c \sim 4.6$ K), a proximity effect can occur in the weak links. Figure 1(b) shows several current–voltage (I–V) characteristics measured at 244 mK in the presence of a magnetic field applied perpendicularly to the plane of the ring. Data plotted were taken with one of the measured devices (dev. C) and correspond to several magnetic field values. Dissipationless current flow is observed, and demonstrates DC
Josephson coupling in the device. This coupling is modulated by the applied field as expected from the interference between the split superconducting wavefunction along the arms of the loop. From these $I-V$s we can extract the critical current I_c, defined as the average of the maximum switching current for positive and negative bias, and the retrapping current I_t. Hysteresis is observed for critical currents above a threshold value (around 250 nA for dev. C) and can be linked to electronic heating in the N region which occurs when the junction switches to the resistive branch [15]. A similar behavior was also observed in InN NWs proximized by niobium electrodes [16]. The devices measured here exhibit critical currents ranging from 200 to 350 nA. With N-state resistance values between $R_n = 200$ and 300 Ω, the product eI_nR_n reaches roughly 100 μeV $\sim 0.14\Delta$. This energy is predicted to scale from 10.82E_{Th} to 2.07Δ when going from the long ($E_{\text{Th}} \ll \Delta$) to the short ($\Delta \ll E_{\text{Th}}$) diffusive limit [17, 18]. Therefore, our results indicate that the present junctions are in the intermediate regime. We believe this stems either from a residual Schottky barrier, or an oxide layer at the NW/V interfaces.

Figure 2(a) shows a color plot of the voltage measured as a function of magnetic field and biasing current when the latter is ramped from 0 to both positive and negative values (dev. C). In this way, we focus solely on the switching current.

The Josephson coupling region displays zero-voltage drop (shown as green). A clear Φ_0 periodicity can be observed, where $\Phi_0 = h/2e$ is the flux quantum. In our devices, this period corresponds to a magnetic field of ~ 1.4 Oe through an effective area of 14.6 μm², close to the geometrical area of 12.2 μm² inferred from the SEM image. Figure 2(b) displays the corresponding critical current versus magnetic field, together with the results of two other samples (dev. A and B). The modulation depth of the critical current can be defined as $(I^\text{max} - I^\text{min})/I^\text{max}$ where I^max and I^min are the maximum and minimum critical current over one flux quantum. For all devices it is 95%). In addition, we find that the following relation holds:

$$I_c(\Phi) = \sqrt{I^2_{c1} + I^2_{c2} + 2I_{c1}I_{c2}\cos\left(\frac{2\pi\Phi}{\Phi_0}\right)}$$

where I_{c1} and I_{c2} are the critical currents of each weak link (see fit in figure 2(b)). Equation (1) is expected to hold for junctions with conventional sinusoidal current-phase relations [19] (CPR) and negligible inductance. For fully-transparent short diffusive SNS junctions whose CPR is given by $I \propto \cos(\delta/2)\tan^{-1}\sin(\delta/2)$, where δ is the phase difference across the junction [17, 20], the critical current of a SQUID can be modulated only up to 81% even for perfectly symmetric junctions [21]. Our results thus show that a residual barrier lowering the transmissivity of the NW/V contacts can renormalize the Thouless energy and modify the CPR [20, 22] towards the sinusoidal limit. In addition, a very small critical current asymmetry of the two weak links is obtained from the fit ($I_{c1}/I_{c2} = 0.95$). This stems from the fact that they are obtained by proximizing two close and homogeneous sections of a single NW, and is a key advantage of our device. This almost-complete I_c modulation also occurs because the external flux effectively modulates the phase difference on both weak links. To this end, we first reduced the self-inductance of the loop (L_G) by choosing the geometry so that $L_G \sim 2.5$ pH, and $2L_GL_c/\Phi_0 \sim 6 \times 10^{-4}$. A second requirement is that the kinetic inductance of the superconducting loop L_K be negligible compared to that of the weak links L_N [23, 24]. Their ratio is given by $L_K/L_N \sim (\xi_G/\Delta) \times (R^N_0/R^S_0)$, where R^N_0 and R^S_0 are the normal state resistance of the superconducting loop and the N part, respectively. The minigap amplitude is expected to reach the superconducting gap in the short diffusive limit, so that $\xi_G/\Delta < 1$. Moreover, due to the presence of the InAs NW, we estimate $R^S_0 \sim 0.3R^N_0$. This ratio is indeed rather small and hinders phase-gradient establishment along the S loop [25], and allows therefore a proper phase biasing of the SQUID.

To operate the SQUID as a flux-to-voltage transformer, we current biased it above I_c. The critical current periodicity thus transforms in a Φ_0-periodic modulation of the voltage drop developed across the SQUID. Figure 2(c) shows these modulations for biasing currents ranging between 355 and 655 nA. An important figure of merit of the SQUID is given by the maximum of the flux-to-voltage transfer function, max
|∂V/∂Φ| plotted figure 2(d). A non-monotonic behavior is obtained similarly to the case of SQUIDs with conventional Josephson tunnel junctions [19]. The optimum biasing current for dev. C is ∼425 nA, where the transfer function attains values as high as 20 μV/Φ₀. Furthermore, the corresponding power dissipation is of the order of a few tens of pW, making these devices attractive for applications such as quantum computing [21]. By reducing the normal state resistance of the junctions, one could in principle further limit the power dissipation.

Figure 3(a) shows the switching (open symbols) and the retrapping current (solid dots) for the three devices as a function of temperature. The overall decrease of the critical current is similar for all devices and is the one typically observed for diffusive junctions in the intermediate-length limit [17]. In addition, the hysteresis disappears above 600 mK. This indicates one advantage of the present SNS junctions over conventional tunnel-junction SQUIDs, since the former do not require a shunting resistance to avoid hysteresis. DC Josephson coupling can be observed up to ∼2.5 K for dev. C. The other devices show lower critical currents and DC Josephson effect up to lower temperatures. This stems from the fact that the weak links differ slightly from one device to another. Variations in the intrinsic NW diameter, the etching conditions and the resulting weak link length L_w can modify the Thouless energy value. Similar temperatures were also reported in previous studies on V/Cu/V junctions [26]. Figure 3(b) shows the voltage modulation of dev. C versus Φ for some representative bath temperatures. Oscillations of the transfer functions were observed up to 4.6 K (data not shown). Therefore, using NW-based weak links approaching the short diffusive limit allows us to benefit from the higher T_c of vanadium. Figure 3(c) shows the maximum of the transfer function as a function of temperature for dev. C. At 1 K, values exceeding 20 μV/Φ₀ are obtained. The flux noise spectral density SΦ inversely depends on the squared transfer function through SΦ = S_V/|∂V/∂Φ|^2, where S_V is the voltage noise spectral density of the interferometer [27]. Assuming that the noise of our device is essentially of Johnson type, we can give an estimate of the intrinsic noise as S_1/2_V = √(4k_B T R), where R is the resistance of the SQUID. At 0.25 K, R ranges from 200 to 300 Ω, giving S_1/2_V ~ 50–65 pV Hz^{−1/2}. The expected noise sensitivity S_1/2 should then be S_1/2 = 1–1.5 μΦ₀ Hz^{−1/2}, similar to standard SQUIDs. However, in our experimental setup, we are limited by the intrinsic noise of the voltage preamplifier (~1.2 nV Hz^{−1/2}), which would translate to a maximum sensitivity of S_1/2 ~ 26 μΦ₀ Hz^{−1/2}. Dedicated noise measurements should be carried out to further investigate this effect.

Before concluding, we would like to remark that these structures could eventually be used for the observation of Majorana fermions. Several theoretical studies have shown that these exotic states could be realized in proximized semiconductors in the presence of strong spin–orbit coupling [13], and structures similar to the one presented here have been proposed to observe them. Adding electrostatic
gating control on the wire would allow one to modify its chemical potential, as well as the spin–orbit interaction, and test these predictions.

In summary, we have presented the implementation and characterization of DC SQUIDs based on InAs NWs and vanadium electrodes. The combination of these materials allowed us to obtain improved characteristics and higher operation temperatures. Using a single NW to define the two weak links of the interferometer enables us to obtain an almost full modulation of the critical current. Importantly, these devices showed no degradation upon repeated thermal cycling. We believe these nanostructures may find uses in magnetometry applications and quantum circuit implementations where low noise and reduced dissipation are required.

Acknowledgments

We acknowledge F Taddei for fruitful discussions and partial financial support from NanoSciERA project ‘Nanofridge’ and Fondazione Monte dei Paschi di Siena.

References

[1] Zhou F, Charlat P, Spivak B and Pannetier B 1998 Density of states in superconductor-normal metal-superconductor junctions J. Low Temp. Phys. 110 841–50

[2] Pothier H, Guéron S, Esteve D and Devoret M H 1994 Flux-modulated Andreev current caused by electronic interference Phys. Rev. Lett. 73 2488–91

[3] Dimoulas A, Heida J P, van Wees B J, Klapwijk T M, v d Graaf W and Borghs G 1995 Phase-dependent resistance in a superconductor-two-dimensional-electron-gas quasiparticle interferometer Phys. Rev. Lett. 74 602–5

[4] Petreshov V T, Antonov V N, Delsing P and Claeson T 1995 Phase controlled conductance of mesoscopic structures with superconducting mirrors Phys. Rev. Lett. 74 5268–71

[5] le Sueur H, Joyez P, Pothier H, Urbina C and Esteve D 2008 Phase controlled superconducting proximity effect probed by tunneling spectroscopy Phys. Rev. Lett. 100 197002

[6] Baselmans J J A, van Wees B J and Klapwijk T M 2001 Controllable π SQUID Appl. Phys. Lett. 79 2940–2

[7] Giazotto F, Peltonen T J, Meschke M and Pekola J P 2010 Superconducting quantum interference proximity transistor Nat. Phys. 6 254–9

[8] Angers L, Chiiodi F, Montambaux G, Ferrier M, Guéron S, Bouchiat H and Cuevas J C 2008 Proximity dc squids in the long-junction limit Phys. Rev. B 77 165408

[9] van Dam J A, Nazarov Y V, Bakkers E P A M, De Franceschi S and Kouwenhoven L P 2006 Supercurrent reversal in quantum dots Nature 442 667–70

[10] Cleuziou J-P, Wernsdorfer W, Bouchiat V, Ondarcuhu T and Monlihoux M 2006 Carbon nanotube superconducting quantum interference device Nat. Nanotechnol. 1 53–9

[11] Girò C, Bouchiat V, Naaman O, Zhang Y, Crommie M F, Zettl A and Siddiqi I 2009 Tunable graphene dc superconducting quantum interference device Nano Lett. 9 198–99

Figure 3. (a) Critical current dependence versus temperature for all devices (open symbols). The retrapping current is also plotted (solid dots). (b) $V(\Phi)$ at several bath temperatures for $I = 425$ nA (curves are horizontally offset for clarity) and (c) corresponding maximum $|\partial V/\partial \Phi|$ for dev. C.
[12] Fasth C, Fuhrer A, Samuelson L, Golovach V N and Loss D 2007 Direct measurement of the spin–orbit interaction in a two-electron InAs nanowire quantum dot
Phys. Rev. Lett. **98** 266801

[13] Lutchyn R M, Sau J D and Das Sarma S 2010 Majorana fermions and a topological phase transition in semiconductor–superconductor heterostructures
Phys. Rev. Lett. **105** 077001

[14] Roddaro S, Pescaglini A, Ercolani D, Sorba L, Giazotto F and Beltram F 2010 InAs nanowire hot-electron Josephson transistor doi:10.1007/s12274-010-0077-6

[15] Courtois H, Meschke M, Peltonen J T and Pekola J P 2008 Origin of hysteresis in a proximity Josephson junction
Phys. Rev. Lett. **101** 067002

[16] Frielinghaus R, Batov I E, Weides M, Kohlstedt H, Calarco R and Schäfers T 2010 Josephson supercurrent in Nb/InN-nanowire/Nb junctions
Appl. Phys. Lett. **96** 132504

[17] Kulik I 1970 Macroscopic quantization and proximity effect in S–N–S junctions
JETP Lett.—USSR **30** 944

[18] Dubos P, Courtois H, Pannetier B, Wilhelm F K, Zaikin A D and Schön G 2001 Josephson critical current in a long mesoscopic S–N–S junction
Phys. Rev. B **63** 064502

[19] Clarke J and Braginski A I 2004 *The SQUID Handbook* (Berlin: Wiley–VCH)

[20] Heikkilä T T, Särkkä J and Wilhelm F K 2002 Supercurrent-carrying density of states in diffusive mesoscopic Josephson weak links
Phys. Rev. B **66** 184513

[21] Vijay R, Levenson-Falk E M, Slichter D H and Siddiqi I 2010 Approaching ideal weak link behavior with three dimensional aluminum nanobridges
Appl. Phys. Lett. **96** 223112

[22] Hammer J C, Cuevas J C, Bergeret F S and Belzig W 2007 Density of states and supercurrent in diffusive SNS junctions: Roles of nonideal interfaces and spin-flip scattering
Phys. Rev. B **76** 064514

[23] van Wees B J, den Hartog S G and Morpurgo A F 1996 Comment on ‘phase controlled conductance of mesoscopic structures with superconducting mirrors’
Phys. Rev. Lett. **76** 1402

[24] Belzig W, Shaikhайдarov R, Petrushov V V and Nazarov Y V 2002 Negative magnetoresistance in Andreev interferometers
Phys. Rev. B **66** 220505

[25] Vijay R, Sau J D, Cohen M L and Siddiqi I 2009 Optimizing anharmonicity in nanoscale weak link Josephson junction oscillators
Phys. Rev. Lett. **103** 087003

[26] García C P and Giazotto F 2009 Josephson current in nanofabricated V/Cu/V mesoscopic junctions
Appl. Phys. Lett. **94** 132508

[27] Likharev K 1986 *Dynamics of Josephson Junctions and Circuits* (London: Gordon and Breach)