EIGENVALUES OF THE DRIFTED LAPLACIAN ON COMPLETE METRIC MEASURE SPACES

XU CHENG AND DETANG ZHOU

Abstract. Let $(M^n, g, e^{-f} dv)$ be a complete smooth metric measure space with the (∞)-Bakry-Émery Ricci curvature tensor $\text{Ric}_f \geq \frac{a}{2} g$, where constant a is positive. It is known that the spectrum of the drifted Laplacian Δ_f on M is discrete and the first nonzero eigenvalue of Δ_f has lower bound $\frac{a}{2}$. In this paper, we proved that if the lower bound $\frac{a}{2}$ is achieved with multiplicity k, $1 \leq k \leq n$, then M is isometric to $\Sigma^{n-k} \times \mathbb{R}^k$ for some complete $(n-k)$-dimensional manifold Σ.

1. Introduction

The well-known Lichnerowicz theorem [13] states that if the Ricci curvature of a closed, i.e., compact and without boundary, Riemannian manifold (M^n, g) of dimension $n \geq 2$ satisfies $\text{Ric} \geq (n-1)a$, where a is a positive constant, then the first nonzero eigenvalue of the Laplacian Δ satisfies $\lambda_1 \geq na$. Obata’s Theorem [20] states that equality holds if and only if the manifold is an n-dimensional sphere with constant sectional curvature a. Observe that if a complete Riemannian manifold M has Ricci curvature bounded from below by a positive constant, then M must be compact.

One may ask whether a phenomenon corresponding to Lichnerowicz-Obata’s theorem would happen for complete smooth metric measure spaces $(M^n, g, e^{-f} dv)$ with the (∞)-Bakry-Émery Ricci curvature tensor $\text{Ric}_f = \text{Ric} + \nabla^2 f \geq \frac{a}{2} g$, where a is a positive constant. Recall that a complete smooth metric measure space $(M^n, g, e^{-f} dv)$ is a complete n-dimensional Riemannian manifold (M^n, g) together with a weighted volume form $d\mu = e^{-f} dv$ on M, where f is a smooth function on M and dv the volume element induced by the metric g. For an $(M, g, e^{-f} dv)$, a suitable operator on M is the drifted Laplacian $\Delta_f = \Delta - \langle \nabla f, \nabla \cdot \rangle$ since it is a densely defined self-adjoint operator in the space $L^2(e^{-f} dv)$ of square integrable functions on M with respect to the measure $e^{-f} d\sigma$.

2000 Mathematics Subject Classification. Primary: 58J50; Secondary: 58E30. Both the authors are partially supported by CNPq and Faperj of Brazil.
that is, for \(u, w \in C^\infty_c(M) \),
\[
\int_M u \Delta_f w e^{-f} dv = -\int_M \langle \nabla u, \nabla w \rangle e^{-f} dv.
\]

For \((M, g, e^{-f} dv)\), when \(\text{Ric}_f \geq \frac{a}{2} g\), constant \(a > 0\). It is known that \(M\) is not necessary to be compact. One of examples is the shrinking Gaussian soliton \((\mathbb{R}^n, g_{\text{can}}, |x|^2)\) with the canonical Euclidean metric \(g_{\text{can}}\), \(f = \frac{|x|^2}{4}\). Hence one must deal with complete manifolds including noncompact case, which is different from Lichnerowicz-Obata’s theorem. A basic fact is the discreteness of the spectrum of \(\Delta_f\) for \((M, g, e^{-f} dv)\) with \(\text{Ric}_f \geq \frac{a}{2} g\), \(a > 0\), which was pointed out by Hein-Naber in [10] (see Theorem 4 of the present paper). So the spectrum of \(\Delta_f\) is just the set of points which are both eigenvalues of \(\Delta_f\) in \(L^2(e^{-f} dv)\) with finite multiplicity and the isolated points of the spectrum (cf [9] Definition 10.1). Since the weighted volume \(\int_M e^{-f} dv\) of \(M\) is finite ([16], cf [23]), 0 is the least eigenvalue with multiplicity one and nonzero constant functions are the associated eigenfunctions. Thus the set of all eigenvalues of \(\Delta_f\), counted with multiplicity, is an increasing sequence
\[
0 = \lambda_0(\Delta_f) < \lambda_1(\Delta_f) \leq \cdots
\]
with \(\lambda_i(\Delta_f) \to \infty\) as \(i \to \infty\). Moreover, there exists a countable orthonormal base \(\{\psi_i\}\) of \(L^2(e^{-f} dv)\) so that each \(\psi_i\) is an eigenvector of \(\Delta_f\) associated with the eigenvalue \(\lambda_i\).

On the other hand, it has been known that for such \(M\), a Poincaré inequality holds on it with spectrum gap \(\frac{a}{2}\), cf [13], [22] (see Section 2 for details). Therefore an observation of the above facts leads the following Lichnerowicz type theorem for \(\Delta_f\):

Theorem 1. (Barky-Émery [1]) Let \((M^n, g, e^{-f} dv)\) be a complete smooth metric measure space with \(\text{Ric}_f \geq \frac{a}{2} g\), where \(a\) is a positive constant. Then the first nonzero eigenvalue, denoted by \(\lambda_1(\Delta_f)\), of \(\Delta_f\) on \(M\) in \(L^2(e^{-f} dv)\) satisfies
\[
\lambda_1(\Delta_f) \geq \frac{a}{2}.
\]

Observe that the lower bound \(\frac{a}{2}\) can be achieved by some \((M, g, e^{-f} dv)\), for instance:

Example 1. Gauss shrinking soliton \((\mathbb{R}^n, g_{\text{can}}, |x|^2)\) with \(\text{Ric}_f = \frac{1}{2}\), \(\lambda_1(\Delta_f) = \frac{1}{2}\) with multiplicity \(n\).
Example 2. Cylinder shrinking solitons: $S^{n-k}(\sqrt{2(n-k-1)}) \times \mathbb{R}^k$, $n-k \geq 2, k \geq 1$ with the product metric and $f = \frac{|t|^2}{4}, t \in \mathbb{R}^k$. Here $S^{n-k}(\sqrt{2(n-k-1)})$ is the $(n-k)$-dimensional round sphere with radius $\sqrt{2(n-k-1)}$. By a direct calculation, $\text{Ric}_f = \frac{1}{2}, \lambda_1(\Delta_f) = \frac{1}{2}$ with multiplicity k.

In this paper we study the rigidity of equality in (1) and give the geometric characteristic of the equality. More precisely, we prove that

Theorem 2. Let $(M^n, g, e^{-f}dv)$ be a complete smooth metric measure space with $\text{Ric}_f \geq \frac{a}{2}g$, where a is a positive constant. If the equality in (1) holds and $\lambda_1(\Delta_f) = \frac{a}{2}$ with multiplicity k, $1 \leq k \leq n$, then M is a noncompact manifold which is isometric to $\Sigma^{n-k} \times \mathbb{R}^k$ with the product metric for some complete $(n-k)$-dimensional manifold Σ satisfying that $\text{Ric}_\Sigma \geq \frac{a}{2}$ and $\lambda_1(\Delta_\Sigma) > \frac{a}{2}$. Also, the function f must be, by an isometry, for $(x_1, \ldots, x_{n-k+1}, t_1, \ldots, t_k) \in \Sigma^{n-k} \times \mathbb{R}^k$,

$$f(x_1, \ldots, x_{n-k+1}, t_1, \ldots, t_k) = f(x_1, \ldots, x_{n-k+1}, 0, \ldots, 0) + \frac{a}{4} \sum_{i=1}^{k} t_i^2.$$

In the above Ric_Σ and $\lambda_1(\Delta_\Sigma)$ denote the Barky-Émery Ricci curvature of Σ and the first nonzero eigenvalue of the drifted Laplacian Δ_f on Σ respectively. Here the restriction of f on Σ is still denoted by f.

From Theorem 2 we see that if the lower bound $\frac{a}{2}$ of the first nonzero eigenvalue is achieved with multiplicity k, then M must split off an Euclidean space according to the multiplicity. To prove Theorem 2 we use the Bochner formula, the approach taken to prove the Lichnerowicz-Obata theorem. This method lets us be able to not only prove Theorem 2 but also to give a different proof of Theorem 1. Theorem 2 also gives the rigidity of spectrum gap or Poincaré inequality. It is known that for $(M^n, g, e^{-f}dv)$ with $\text{Ric}_f \geq \frac{a}{2}g$, the Poincaré inequality holds, that is, for all $u \in H^1_f(M)$ with $\int_M u e^{-f}dv = 0$, it holds that

$$\int_M |\nabla u|^2 e^{-f}dv \geq \frac{a}{2} \int_M u^2 e^{-f}dv,$$

where $H^1_f(M)$ denotes the weighted Sobolev space (see its definition in Section 2). Theorem 2 can be written in the following equivalent form:

Theorem 3. Let $(M^n, g, e^{-f}dv)$ be a complete smooth metric measure space with $\text{Ric}_f \geq \frac{a}{2}g$, where a is a positive constant. Let E denote the subspace of the functions in $H^1_f(M)$ so that Poincaré inequality (2) achieves the equality. If the dimension of E is k, $1 \leq k \leq n$, then M
and f must be the same as the ones respectively in the conclusion in Theorem 2.

Further, in Section 4, we discuss the special case: gradient shrinking Ricci solitons, namely $\text{Ric}_f = \frac{1}{2}$. We obtain an upper bound estimate of $\lambda_1(\Delta_f)$ for noncompact gradient shrinking Ricci solitons (Theorem 5). In addition, in Section 5 we discuss self-shrinkers in the Euclidean space \mathbb{R}^{n+1}. We apply the results in Section 2 to self-shrinkers of mean curvature flow in the Euclidean space \mathbb{R}^{n+1}. We show that if the maximum of the principal curvatures of an immersed self-shrinker in \mathbb{R}^{n+1} is strictly less than $\frac{1}{2}$, then the immersion is proper and the spectrum of the induced drifted Laplacian is discrete (Corollary 4).

Finally we would like to mention that for compact Riemannian manifolds with $\text{Ric}_f \geq \frac{a}{2}$, Andrews-Ni [2], and Futaki-Li-Li [7] obtained lower bound estimates for $\lambda_1(\Delta_f)$, which depends on the diameter of the manifolds. The authors of [2] stated, by constructing examples, that their estimates are sharp when Bakry-Émery Ricci tensor is not constant (see details in [8], [2] and [7]). On the other hand, the spectrum properties of Δ_f and the Laplacian Δ on complete $(M, g, e^{-f}dv)$ with various conditions on Ric_f have been studied (cf [4], [14], [17], [18], [19], [12] and the references therein). One interesting fact is that contrary to the drifted laplacian, the essential spectrum of the Laplacian for the gradient shrinking Ricci solitons is $[0, +\infty)$ ([14], [6]).

The rest of this paper is organized as follows: In Section 2 as a preparation, we give the proof of Theorem 2. In Section 3 we prove Theorem 2. In Section 4 we prove Theorem 5. In Section 5 we prove Corollary 4. In Appendix, we prove Proposition 1 for the sake of completeness of proof.

Acknowledgment. The authors would like to thank Aaron Naber for giving them the idea to prove Theorem 4 and useful suggestions.

2. Compact embedding of weighted Sobolev space and discreteness of spectrum

In this section, we give some known results as preparation. Let $(M^n, g, e^{-f}dv)$ be an n-dimensional complete smooth metric measure space. Denote by μ the measure induced by the weighted volume element $e^{-f}dv$, i.e., $d\mu = e^{-f}dv$. Suppose that $\mu(M) = \int_M e^{-f}dv < \infty$. Denote by $L^2_f(M)$ and $H^1_f(M)$ the closures of the space $C^\infty_c(M)$ of the smooth compactly-supported functions on M, with respect to the
following norms respectively:

\[\|u\|_{L^2_f(M)} := \left(\int_M u^2 d\mu \right)^{\frac{1}{2}}, \]

\[\|u\|_{H^1_f(M)} := \left(\int_M (u^2 + |\nabla u|^2) d\mu \right)^{\frac{1}{2}}. \]

\(L^2_f(M) \) and \(H^1_f(M) \) are Hilbert spaces. In particular, \(H^1_f(M) \) is Sobolev space with respect to measure \(d\mu = e^{-f} dv \). Further, suppose that a logarithmic Sobolev inequality holds on \((M, g, e^{-f} dv)\), that is, there exists a positive constant \(C \) such that,

\[\int_M u^2 \log u^2 d\mu \leq C \int_M |\nabla u|^2 d\mu, \]

for all \(u \in C^\infty_c(M) \) satisfying \(\int_M u^2 d\mu = \mu(M) \).

With the above assumptions, it is known that the embedding of \(H^1_f(M) \hookrightarrow L^2_f(M) \) is compactly embedded and equivalently the spectrum of \(\Delta_f \) on \(L^2_f(M) \) is discrete.

Proposition 1. Let \((M, g, e^{-f} dv)\) be a complete smooth metric measure space with finite total measure \(\mu(M) = \int_M e^{-f} dv \). Suppose that the logarithmic Sobolev inequality (3) holds on \((M, g, e^{-f} dv)\). Then the inclusion \(H^1_f(M) \subset L^2_f(M) \) is compactly embedded and equivalently the spectrum of \(\Delta_f \) on \(L^2_f(M) \) is discrete.

When \((M, g, e^{-f} dv)\) has Ric \(\geq \frac{a}{2} \), \(a > 0 \), Bakry-Émery [1] showed that a logarithmic Sobolev inequality (3) with \(C = \frac{4}{a} \) is satisfied if the weighted volume \(\mu(M) = \int_M e^{-f} dv \) is finite. Recently it was obtained by Morgan [16] that its weighted volume \(\int_M e^{-f} dv \) is finite (also see its proof in [23]). Hence the following logarithmic Sobolev inequality holds on \(M \):

\[\int_M u^2 \log u^2 d\mu \leq \frac{4}{a} \int_M |\nabla u|^2 d\mu, \]

for all \(u \in C^\infty_c(M) \) satisfying \(\int_M u^2 d\mu = \mu(M) \).

These facts together with Proposition 1 imply the following result.

Theorem 4. (Hein-Naber) Let \((M, g, e^{-f} dv)\) be a complete smooth metric measure space with Ric \(\geq \frac{a}{2} \), where constant \(a \) is positive. Then the inclusion \(H^1_f(M) \subset L^2_f(M) \) is compactly embedded and equivalently the spectrum of \(\Delta_f \) in \(L^2_f(M) \) is discrete.
3. First nonzero eigenvalue estimate

Before we prove Theorem 2, we include a proof of Theorem 1 using Poincaré inequality. It is known that in general for a complete measure space \((M, g, \mu)\) with finite total measure, a logarithmic Sobolev inequality \((1)\) with constant \(C\) will implies a Poincaré inequality (cf [11] Prop 2.1), that is, for any \(u \in H_1^f(M)\),

\[
\int_M u^2 d\mu \leq \frac{C}{2} \int_M |\nabla u|^2 d\mu, \int_M ud\mu = 0.
\]

Here constant \(\frac{2}{C}\) is so-called spectrum gap.

Proof of Theorem 1. We have known that the weighted volume \(\mu(M) = \int_M e^{-f} dv\) is finite and the logarithmic Sobolev inequality \((1)\) holds. So Poincaré inequality holds with spectrum gap \(\frac{a}{2}\). By Theorem 4, the spectrum of \(\Delta_f\) is discrete and hence the variational characterization of \(\lambda_1(\Delta_f)\) states that

\[
\lambda_1(\Delta_f) = \inf_{u \not\equiv 0, u \in H_1^f(M)} \left\{ \frac{\int_M |\nabla u|^2 d\mu}{\int_M u^2 d\mu}; \int_M ud\mu = 0 \right\}.
\]

By Poincaré inequality, we get that the lower bound of \(\lambda_1(\Delta_f)\) is just spectrum gap \(\frac{a}{2}\).

\[\square \]

Now we prove Theorem 2 whose proof also give a direct proof of Theorem 1 without using Poincaré inequality.

Proof of Theorem 2. It suffices to consider, by a scaling of metric \(g\), the case of \((M, g, e^{-f})\) with \(\text{Ric}_f \geq \frac{1}{2}\). Assume that \(u\) is a nonconstant eigenfunction of \(\Delta_f\) corresponding to an eigenvalue \(\lambda\), i.e.,

\[
\Delta_f u + \lambda u = 0, \quad \int_M u^2 d\mu < \infty,
\]

where \(d\mu = e^{-f} dv\). It is known that \(u \in H_1^f \cap C^\infty(M)\). By \(\text{Ric}_f \geq \frac{1}{2}\), \(\square\) and the weighted Bochner formula:

\[
\Delta_f |\nabla u|^2 = |\nabla^2 u|^2 + \langle \nabla u, \nabla (\Delta_f u) \rangle + \text{Ric}_f(\nabla u, \nabla u),
\]

we have

\[
\Delta_f |\nabla u|^2 \geq |\nabla^2 u|^2 + \left(\frac{1}{2} - \lambda \right) |\nabla u|^2.
\]

If \(M\) is compact, integrating \(\square\), we have

\[
\int_M |\nabla^2 u|^2 d\mu + \int_M \left(\frac{1}{2} - \lambda \right) |\nabla u|^2 d\mu \leq 0.
\]
If M is noncompact, we claim that (8) also holds. Given a fixed point $p \in M$, let B_R denote the geodesic sphere of M of radius R centered at p. Let ϕ be the nonnegative cut-off function satisfying that ϕ is 1 on B_R, $|\nabla \phi| \leq 1$ on $B_{R+1} \setminus B_R$, and $\phi = 0$ on $\Sigma \setminus B_{R+1}$. Multiplying (7) by ϕ^2 and then integrating, we get

$$\int_M \phi^2 \Delta f |\nabla u|^2 d\mu \geq \int_M \phi^2 |\nabla^2 u|^2 d\mu + \left(\frac{1}{2} - \lambda \right) \int_M \phi^2 |\nabla u|^2 d\mu. \tag{9}$$

On the other hand, by the weighted Green formula,

$$\int_M \phi^2 \Delta f |\nabla u|^2 d\mu = - \int_M \langle \nabla \phi^2, \nabla |\nabla u|^2 \rangle d\mu$$

$$= 4 \int_M \phi \langle \nabla \nabla \phi \nabla u, \nabla u \rangle d\mu$$

$$= 4 \int_M \phi (\nabla^2 u)(\nabla \phi, \nabla u) d\mu. \tag{10}$$

By $2ab \leq \varepsilon a^2 + \frac{b^2}{\varepsilon}$, for any $\varepsilon > 0$,

$$2\phi(\nabla^2 u)(\nabla \phi, \nabla u) = 2 \sum_{i,j=1}^n \phi(\nabla^2 u)_{ij} \phi_i u_j$$

$$\leq \sum_{i,j=1}^n \left[\varepsilon \phi^2 (\nabla^2 u)^2_{ij} + \frac{1}{\varepsilon} \phi_i^2 u_j^2 \right]$$

$$= \varepsilon \phi^2 |\nabla^2 u|^2 + \frac{1}{\varepsilon} |\nabla \phi|^2 |\nabla u|^2. \tag{11}$$

In the above, the subscripts i, j denote the covariant derivatives with respect to e_i, e_j respectively, where $\{e_i\}$ denotes a local orthonormal frame on M. Substituting (11) into (10), we have

$$\int_M \phi^2 \Delta f |\nabla u|^2 d\mu \leq 2\varepsilon \int_M \phi^2 |\nabla^2 u|^2 d\mu + \frac{2}{\varepsilon} \int_M |\nabla \phi|^2 |\nabla u|^2 d\mu. \tag{12}$$

Combining (9) and (12), it holds that

$$(1 - 2\varepsilon) \int_M \phi^2 |\nabla u|^2 d\mu \leq \frac{2}{\varepsilon} \int_M |\nabla \phi|^2 |\nabla u|^2 d\mu + (\lambda - \frac{1}{2}) \int_M \phi^2 |\nabla u|^2 d\mu.$$

Noting $\int_M |\nabla u|^2 < \infty$ and letting $R \to \infty$ in the above inequality, by the monotone convergence theorem, we have $\int_M |\nabla^2 u|^2 d\mu < \infty.$
Furthermore, observe that

\[|2\phi(\nabla^2 u)(\nabla \phi, \nabla u)| = 2| \sum_{i,j=1}^{n} \phi(\nabla^2 u)_{ij} \phi_i u_j | \]

\[\leq \varepsilon \sum_{i,j=1}^{n} \phi^2(\nabla^2 u)_{ij} |\phi_i| + \frac{1}{\varepsilon} \sum_{i,j=1}^{n} |\phi_i| |u_j^2| \]

\[\leq \varepsilon \sqrt{n\phi^2} |\nabla^2 u| |\nabla \phi| + \frac{\sqrt{n}}{\varepsilon} |\nabla \phi||\nabla u|^2. \]

So (13) implies that

\[|\int_M \phi^2 \Delta_f |\nabla u|^2 d\mu| = |4 \int_M \phi(\nabla^2 u)(\nabla \phi, \nabla u) d\mu| \]

\[\leq 2\varepsilon \sqrt{n} \int_M \phi^2 |\nabla^2 u|^2 |\nabla \phi| d\mu + \frac{2\sqrt{n}}{\varepsilon} \int_M |\nabla \phi||\nabla u|^2 d\mu \]

\[\leq 2\varepsilon \sqrt{n} \int_{M \setminus \bar{B}_{R+1}} |\nabla^2 u|^2 d\mu + \frac{2\sqrt{n}}{\varepsilon} \int_{M \setminus \bar{B}_{R+1}} |\nabla u|^2 d\mu. \]

Letting \(R \to \infty \) in (14), the right side converges to zero. Thus

\[\lim_{R \to \infty} \int_M \phi^2 \Delta_f |\nabla u|^2 d\mu \to 0. \]

Letting \(R \to \infty \) in (9), using the dominate convergence theorem, we have (8):

\[\int_M |\nabla^2 u|^2 d\mu + \left(\frac{1}{2} - \lambda \right) \int_M |\nabla u|^2 d\mu \leq 0. \]

So the claim holds. Since \(u \) is not constant, from (8), \(\lambda \geq \frac{1}{2} \). This implies that \(\lambda_1(\Delta_f) \geq \frac{1}{2} \), as in Theorem 1.

Now we consider the case of the equality. From the proof, \(\lambda = \frac{1}{2} \) if and only if

\[\nabla^2 u = 0, \]

\[\text{Ric}_f(\nabla u, \nabla u) = \frac{1}{2} |\nabla u|^2 \]

\[\Delta_f u + \frac{1}{2} u = 0, \quad \int_M u^2 d\mu < \infty. \]

By (15), \(\Delta u = 0 \) and hence by (17),

\[- \langle \nabla f, \nabla u \rangle + \frac{1}{2} u = 0. \]

Thus \(u \) is a nonconstant harmonic function and \(M \) must be noncompact. Moreover, (15) together with the fact \(u \) is not constant means
that ∇u is a nontrivial parallel vector field and hence implies that M must be isometric to a product manifold $\Sigma^{n-1} \times \mathbb{R}$ for some complete manifold Σ. Besides u is constant on the level set $\Sigma \times \{t\}, t \in \mathbb{R}$. Without lost of generality, suppose that $\Sigma := u^{-1}(\{0\})$. By passing an isometry, we may assume that $M = \Sigma^{n-1} \times \mathbb{R}$. Take $(x, t) \in \Sigma^{n-1} \times \mathbb{R}$.

From (18), $\frac{\partial f}{\partial t} = t^2$. So

$$f(x, t) = \frac{t^2}{4} + f(x, 0).$$

From (19), for any vector field $X \in T\Sigma$ and the unit normal ν to Σ, it holds that

$$\nabla^2 f(X, \nu) = 0, \quad \nabla^2 f(\nu, \nu) = \frac{1}{2},$$

$$\nabla^2 f(X, X) = (\nabla^\Sigma)^2 f(X, X).$$

Here and thereafter we denote still by f the restriction of f on the corresponding submanifolds, for instance, $f|_{\Sigma}$ by f. Also the superscripts Σ, \mathbb{R} denote the corresponding geometric quantities of Σ and \mathbb{R} respectively, for instance, ∇^Σ denotes the connection of Σ. By a direct computation, the Ricci curvature satisfies that on Σ

$$\text{Ric}(X, X) = \text{Ric}^\Sigma(X, X), \quad \text{Ric}(\nu, \nu) = \text{Ric}(\nu, X) = 0.$$

Therefore

$$\text{Ric}^\Sigma_f \geq \frac{1}{2}.$$

By Theorem 4, the spectrum of Δ^Σ_f on Σ for $L^2(\Sigma)$ is also discrete. By direct computation, we have the identity:

$$\Delta_f u(x, t) = \Delta^\Sigma_f u|_{\Sigma \times \{t\}}(x) + \Delta^\mathbb{R}_f u|_{\{x\} \times \mathbb{R}}(t)$$

$$= \Delta^\Sigma_f u|_{\Sigma \times \{t\}}(x) + \left(\frac{d^2}{dt^2} - \frac{t}{2} \frac{d}{dt}\right)u|_{\{x\} \times \mathbb{R}}(t),$$

where by abuse of notations, Δ^Σ_f and $\Delta^\mathbb{R}_f$ denote the drifted Laplacians of $\Sigma \times \{t\}$ and $\{x\} \times \mathbb{R}$, which act on functions $u|_{\Sigma \times \{t\}}$ and $u|_{\{x\} \times \mathbb{R}}$ respectively. By the theory of functional analysis, the discreteness of the spectrum of Δ^Σ_f implies that there exists a complete orthonormal system for space $L^2(\Sigma, e^{-\int f \, d\sigma})$ consisting of eigenfunctions of Δ^Σ_f, where $d\sigma$ is the volume element of Σ induced by the metric of Σ. Also, for the operator $\frac{d^2}{dt^2} - \frac{t}{2} \frac{d}{dt}, t \in \mathbb{R}$, it is known that its spectrum on $L^2(\mathbb{R}, e^{-\frac{t^2}{4}} dt)$ is discrete and the so-called Hermite polynomials are orthonormal eigenfunctions, which form a complete orthonormal system for space $L^2(\mathbb{R}, e^{-\frac{t^2}{4}} dt)$. By these facts and (20), one can verify that the products of the orthonormal eigenfunctions of Δ^Σ_f and the
orthonormal eigenfunctions of $\frac{d^2}{dt^2} - \frac{k^2}{4} \frac{\partial}{\partial t}$ are the eigenfunctions of Δ_f and, by a standard argument, form a complete orthonormal system for space $L^2(M, e^{-f} dv)$. Therefore the eigenvalues $\sigma(\Delta_f)$ of M counted with multiplicity are just the sums of the corresponding eigenvalues $\sigma(\Delta^R_f)$ of Σ and $\sigma(\Delta^R_f)$ of R counted with multiplicity. It is known that

$$\sigma(\Delta^R_f) = \{0, \frac{1}{2}, 1, \frac{3}{2}, \cdots\},$$

where the first nonzero eigenvalue $\frac{1}{2}$ has multiplicity one. Hence

$$\sigma(\Delta^M_f) = \{0, \frac{1}{2}, \min\{\lambda_1(\Delta^\Sigma_f), 1\}, \cdots\},$$

where $\lambda_1(\Delta^\Sigma_f)$ is the first nonzero eigenvalue of Δ^Σ_f.

To conclude the proof, we claim that if the multiplicity of $\lambda_1(\Delta_f) = \frac{1}{2}$ is k, then M is isometric to $\Sigma^{n-k} \times \mathbb{R}^k$ with $\operatorname{Ric}^{\Sigma^{n-k}} \geq \frac{1}{2}$, $\lambda_1(\Delta^{\Sigma^{n-k}}_f) > \frac{1}{2}$, and

$$f(x_1, \ldots, x_{n-k+1}, t_1, \ldots, t_k) = f(x, 0) + \frac{1}{4} \sum_{i=1}^{k} t_i^2,$$

where $(x, t) = (x_1, \ldots, x_{n-k+1}, t_1, \ldots, t_k) \in \Sigma^{n-k} \times \mathbb{R}^k$.

In the following proof, we will use Σ^j with superscript j to distinguish different Σ, whose dimension is j. We will prove the claim by induction.

First suppose that the multiplicity $k = 1$. By the proof before, we know that $M = \Sigma^{n-1} \times \mathbb{R}$, $\operatorname{Ric}^{\Sigma^{n-1}} \geq \frac{1}{2}$ and f is as in (19). From (21), we know that $\lambda_1(\Delta^{\Sigma^{n-1}}_f) > \frac{1}{2}$. So the claim holds for $k = 1$.

Next suppose that the conclusion of the claim holds for multiplicity $k - 1$ and $\lambda_1(\Delta_f) = \frac{1}{2}$ has multiplicity k. Then we have that $M = \Sigma^{n-1} \times \mathbb{R}$ with $\operatorname{Ric}^{\Sigma^{n-1}} \geq \frac{1}{2}$ and $f = \frac{t_k^2}{4} + f|_{\Sigma^{n-1}}$, where $t_k \in \mathbb{R}$. By (21), $\lambda_1(\Delta^{\Sigma^{n-1}}_f) = \frac{1}{2}$ must have multiplicity $k - 1$. Hence by hypothesis of induction, $\Sigma^{n-1} = \Sigma^{n-k} \times \mathbb{R}^{k-1}$ with $\operatorname{Ric}^{\Sigma^{n-k}} \geq \frac{1}{2}$, $\lambda_1(\Delta^{\Sigma^{n-k}}_f) > \frac{1}{2}$ and

$$f|_{\Sigma^{n-1}}(x_1, \ldots, x_{n-k+1}, t_1, \ldots, t_{k-1}) = f(x, 0) + \frac{1}{4} \sum_{i=1}^{k-1} t_i^2,$$

where $(x_1, \ldots, x_{n-k+1}, t_1, \ldots, t_{k-1}) \in \Sigma^{n-k} \times \mathbb{R}^{k-1}$. Thus $M = \Sigma^{n-k} \times \mathbb{R}^k$ and f is as (22). So the conclusion of the claim holds for k. Therefore by induction, the claim is proved. Thus we complete the proof of theorem.

Theorem 2 has the following corollaries.
Corollary 1. Let \((M^n, g, e^{-f} dv)\) be a closed smooth metric measure space with \(\text{Ric}_f \geq \frac{a^2}{2} g\), where constant \(a\) is positive, then the first nonzero eigenvalue \(\lambda_1(\Delta_f)\) of \(\Delta_f\) satisfies
\[
\lambda_1(\Delta_f) > \frac{a^2}{2}.
\]

Corollary 2. Let \((M^n, g, e^{-f} dv)\) be a complete smooth metric measure space with \(\text{Ric}_f \geq \frac{a^2}{2} g\), where constant \(a\) is positive. If \(\frac{a^2}{2}\) is the first nonzero eigenvalue \(\lambda_1(\Delta_f)\) with multiplicity \(n-1\), then \(M\) is isometric to the Euclidean space \(\mathbb{R}^n\) and \(f\) can be expressed as
\[
(23) \quad f(x_1, \ldots, x_n) = \varphi(x_1) + \frac{a(x_2^2 + \cdots + x_n^2)}{4},
\]
where \(\varphi\) is smooth function satisfying \(\varphi'' \geq \frac{a^2}{2}\).

Proof. From Theorem 2, \(M\) is isometric to \(\Sigma \times \mathbb{R}^{n-1}\). \(\Sigma\) has dimension 1. Meanwhile it is known by [16] that the fundamental group \(\pi_1(M)\) is finite. So \(\Sigma\) must be \(\mathbb{R}\), not a circle and \(M\) is isometric to \(\mathbb{R}^n\). In this case, \(\text{Ric}_f = \nabla^2 f\). Using the general expression of \(f\) in Theorem 2 we obtain (23) by direct computation.

With Theorem 2 we may further estimate for other eigenvalues:

Corollary 3. Let \((M, g, e^{-f} dv)\) be a complete smooth metric measure space with \(\text{Ric}_f \geq \frac{1}{2}\). Suppose that the first nonzero eigenvalue \(\lambda_1(\Delta_f) = \frac{1}{2}\) with multiplicity \(k\). If the splitting \(M = \Sigma^{n-k} \times \mathbb{R}^k\), \(k \geq 1\), satisfies that \(\Sigma\) is compact and \(f\) is constant on \(\Sigma\), then the next eigenvalue \(\lambda_2(\Delta_f)\) of \(\Delta_f\) on \(M\) satisfies \(\lambda_2(\Delta_f) \geq \frac{1}{2} \frac{n-k}{n-k-1}\). Moreover the equality holds if and only if \(\Sigma\) is isometric to the round sphere \(S^{n-k}\) in with radius \(\sqrt{2(n-k-1)}\).

Proof. Since \(f\) is constant on \(\Sigma\), \(\text{Ric}^\Sigma = \text{Ric}_f^\Sigma \geq \frac{1}{2}\) on \(\Sigma\) and \(n-k \geq 2\). Analogous to the proof of Theorem 2 the eigenvalues of \(\sigma(\Delta_f)\) of \(M\) are the sums of the corresponding eigenvalues \(\sigma(\Delta_f^\Sigma)\) of \(\Sigma\) and \(\sigma(\Delta_f^{\mathbb{R}^k})\) of \(\mathbb{R}^k\) with restricted \(f\) on \(\Sigma\) and \(\mathbb{R}^k\) respectively. By Theorem 2 we know that
\[
f = \sum_{i=1}^{k} t_i^2 \frac{1}{4} + f|_{\Sigma},
\]
where \((t_1, \ldots, t_k) \in \mathbb{R}^k\). In this case
\[
\sigma(\Delta_f^{\mathbb{R}^k}) = \{0, \frac{1}{2}, \ldots, \frac{1}{2}, 1, \cdots\}.
\]
\[\sigma(\Delta f^\Sigma) = \{0, \frac{1}{2}, \ldots, \frac{1}{2}, \min\{\lambda_1(\Delta f^\Sigma), 1\}, \ldots\}, \]

where \(\frac{1}{2} \) has multiplicity \(k \). On the other hand, Note that \(\text{Ric}^\Sigma \geq \frac{1}{2} \) and \(f \) is constant on \(\Sigma \). By Lichnerowicz theorem,

\[\lambda_1(\Delta f^\Sigma) = \lambda_1(\Delta f^\Sigma) \geq \frac{n-k}{2(n-k-1)}. \]

Observe that \(\frac{n-k}{2(n-k-1)} \leq 1 \). (24) implies that \(\lambda_2(\Delta f) \geq \frac{1}{2} \frac{n-k}{n-k-1} \), and by Obata theorem, the equality holds if and only if \(\Sigma^{n-k} \) is isometric to the round sphere \(S^{n-k} \). The radius is determined by the curvature directly.

\[\Box \]

4. GRADIENT SHRINKING RICCI SOLITON CASE

Let \((M^n, g) \) be a Riemannain manifold and \(f \) is a smooth function on \(M \). The quadruple \((M, g, f, \rho) \) is called a \textit{gradient shrinking Ricci soliton} if

\[\text{Ric}_f = \rho g, \]

where constant \(\rho > 0 \). Theorem 4 states that the spectrum of the drifted Laplacian \(\Delta f \) is discrete and the essential spectrum is empty.

By a scaling \(g \) one can normalize \(\rho = \frac{1}{2} \) so that

\[\text{Ric}_f = \frac{1}{2} g. \]

It is known that (25) implies the following identities about complete gradient shrinking solitons.

\[R + \Delta f = \frac{n}{2}, \]

\[R + |\nabla f|^2 - f = C_0 \]

for some constant \(C_0 \). Here \(R \) denotes the scalar curvature of \((M, g) \). For gradient shrinking Ricci solitons, we may give the upper bound estimate of the first nonzero eigenvalue of \(\Delta f \) as follows.

\textbf{Theorem 5.} Let the quadruple \((M, g, f, \frac{1}{2}) \) be a complete noncompact gradient shrinking Ricci soliton. Then 1 is an eigenvalue of \(\Delta f \) and a translation of \(f \) with some constant is an associated eigenfunction. Moreover the first nonzero eigenvalue \(\lambda_1(\Delta f) \) of \(\Delta f \) on \(M \) satisfies \(\frac{1}{2} \leq \lambda_1(\Delta f) \leq 1 \).
Proof. Without loss of generality, by adding the constant $C_0 - \frac{n}{2}$ to f, by (27), we can assume that f satisfies
\[
R + |\nabla f|^2 - f = \frac{n}{2}.
\]
Then (26) and (28) imply
\[
\Delta f + f = 0.
\]
From [3], we know that for a fixed point $p \in M$ there exists a constant C such that
\[
\lim_{x \to +\infty} \frac{f(x)}{r^2(x)} = \frac{1}{4},
\]
and the volume $\text{vol}(B_p(r)) \leq Cr^n$, where $r(x)$ is the distance function from p and $B_p(r)$ is the geodesic ball of radius r centered at p. These facts together with $R \geq 0$ implies that $f \in H^1_1(M)$. Thus f is an eigenfunction associated the eigenvalue 1. By Theorem 1, we complete the proof.

5. self-shrinkers in Euclidean space

We will give some remarks related to self-shrinkers in Euclidean space. Recall an immersed hypersurface (M^n, g) is called a self-shrinker in the Euclidean space \mathbb{R}^{n+1}, if it satisfies that
\[
H = -\frac{\langle x, \nu \rangle}{2},
\]
where x denotes the position vector in \mathbb{R}^{n+1}, ν is the outer unit normal to M, and H is the mean curvature of M, defined by $H = \text{tr}A = \sum_{i=1}^{n} \langle \nabla e_i \nu, e_i \rangle$. It is known that the self-shrinker M is an f-minimal hyper surface in \mathbb{R}^{n+1} with $f = \frac{|x|^2}{4}$ (cf [5]). Directly from the Gauss equations,

\[
\text{Ric}_f = \frac{1}{2} g - A^2,
\]
where A denotes the shape operator of M, defined by $AX = \nabla_X \nu, X \in TM$. Theorems 1 and 4 have the following corollary.

Corollary 4. Let M^n be a complete self-shrinker in \mathbb{R}^{n+1}. If the principle curvatures $\eta_i, i = 1, \ldots, n$, of A satisfy $\sup_i \eta_i^2 \leq \delta < \frac{1}{2}$, then

- M has finite weighted volume, namely, $\int_M e^{-\frac{|x|^2}{4}} dv$, polynomial volume growth and properly immersed.
The logarithmic Sobolev inequality holds, that is, for all $u \in H^1_f(M)$ satisfying \(\int_M u^2 d\mu = \int_M e^{-f} dv \),

\[
\int_M u^2 \log u^2 e^{-f} dv \leq \frac{4}{1 - 2\delta} \int_M |\nabla u|^2 e^{-f} dv.
\]

The spectrum of $\Delta_f = \Delta - \frac{g}{2}\langle x, \nabla \cdot \rangle$ on M is discrete.

Proof. Since all eigenvalues, that is, principle curvatures, of A satisfy $\sup_i \eta_i^2 \leq \delta < \frac{1}{2}$, then

$$\text{Ric}_f \geq \frac{1}{2} - 2\delta g.$$ By [16], M has finite weighted volume. By [6], M is equivalently properly immersed and with the polynomial volume growth. By [1], we known that logarithmic Sobolev inequality (1) holds on M with constant $\frac{4}{1 - 2\delta}$. Moreover by Theorem 4, the spectrum of Δ_f is discrete.

Remark 1. It is interesting to compare a self-shrinker with a minimal submanifolds M in Euclidean space \mathbb{R}^{n+p}. It is well-known that M inherits Sobolev inequalities from \mathbb{R}^{n+p}. Since a self-shrinker Σ can be considered as an f-minimal submanifold in $(\mathbb{R}^{n+p}, g_{can}, e^{-f} dv)$ with $f = \frac{|x|^2}{4}$ which enjoys logarithmic Sobolev inequality (3) with respect the measure $e^{-f} dv$, we ask if Σ inherits a logarithmic Sobolev inequality (3) from \mathbb{R}^{n+p}.

6. **Appendix**

In this section, we give a proof of Proposition 1. We first recall some needed facts in measure theory. Let $(\Omega, \mathcal{F}, \mu)$ denote measure space with finite total measure, i.e., $\mu(\Omega) < \infty$. Let $L^p(\mu)$ denote the Banach space of classes of measurable, real-valued functions on Ω, whose p-th power is μ-integrable. Recall that a subset K of $L^1(\mu)$ is called uniformly integrable if given $\varepsilon > 0$, there is a $\delta > 0$ so that $\sup\{\int_E |f| d\mu : f \in K\} < \varepsilon$ whenever $\mu(E) < \delta$. It is known that

Lemma 1. (De La Vallée Poussin theorem, cf [13]) A subset K of $L^1(\mu)$ is uniformly integrable if and only if there exists a non-negative convex function Q with $\lim_{t \to \infty} \frac{Q(t)}{t} = \infty$ so that

$$\sup\{ \int_\Omega Q(|f|) d\mu : f \in K\} < \infty.$$
Now let \((M^n, g, e^{-f}dv)\) be a complete smooth metric measure space. With the same notations as in Section 2, assume that
\[\mu(M) = \int_M e^{-f}dv \]
is finite and the logarithmic Sobolev inequality \((\mathbf{3})\) holds on \((M, g, e^{-f}dv)\) for all \(u \in C_c^\infty(M)\) satisfying
\[\int_M u^2d\mu = \mu(M), \]
where \(d\mu = e^{-f}dv\).

Remark 2. Logarithmic Sobolev inequality \((\mathbf{3})\) holds for \(u \in H^1_f(M)\) with
\[\int_M u^2d\mu = \mu(M). \]
In fact, for such \(u\), there exists a sequence \(\{u_k\}\),
\(u_k \in C_c^\infty(M)\) satisfying that
\[\int_M u_k^2d\mu = \mu(M) \]
and \(u_k \rightarrow u\) in \(H^1_f(M)\). This implies that
\[\int_M |\nabla u_k|^2d\mu \rightarrow \int_M |\nabla u|^2d\mu, \]
Since \(u_k \rightarrow u\) in \(H^1_f(M)\), there is a subsequence of \(u_k\), still denoted by \(u_k\), satisfies \(u_k\) a.e. converges to \(u\). Note that \(t \log t \geq a_0, t \in [0, \infty)\) for some constant \(a_0\), and \(\mu(M) < \infty\). By Fatou’s lemma and \((\mathbf{3})\),
\[
0 \leq \int_M (u^2 \log u^2 - a_0)d\mu \\
\leq \lim \inf \int_M (u_k^2 \log u_k^2 - a_0)d\mu \\
\leq \lim \inf \left(C \int_M |\nabla u_k|^2d\mu \right) - \int_M a_0d\mu \\
= C \int_M |\nabla u|^2d\mu - a_0\mu(M) \\
< \infty.
\]
So \(\int_M u^2 \log u^2d\mu\) exists and
\[
\int_M u^2 \log u^2d\mu \leq C \int_M |\nabla u|^2d\mu.
\]
Hence \((\mathbf{3})\) holds for \(u \in H^1_f(M)\) with \(\int_M u^2 = \mu(M)\).

Now we prove compact embedding of \(H^1_f(M)\) in \(L^2_f(M)\).

Proof of Proposition 4. It is known that the identical map \(H^1_f(M) \rightarrow L^2_f(M)\) is an embedding (cf. \([9]\), Section 4.1). So it suffices to prove that any sequence of \(\{u_k\}_{k=1}^\infty\) bounded in \(H^1_f(M)\)-norm has a subsequence converging in \(L^2_f(M)\) to a function \(u \in L^2_f(M)\). From the standard Sobolev space theory, it is true when \(M\) is a compact manifold with or without \(C^1\) boundary. So we only assume that \(M\) is noncompact. Let \(\{D_i\}\) be a compact exhaustion of \(M\) with \(C^1\) boundary \(\partial D_i\) for each \(i\). It is known that the embedding \(H^1_f(\Omega_i) \subset L^2_f(\Omega_i)\) is compact, that is,
\{u_k\}, restrict to \(\Omega_i\), has a subsequence converging in \(L^2_{\Omega_i}(\Omega_i)\). Note that an \(L^2\) convergence sequence has an a.e. convergent subsequence. By passing to a diagonal subsequence, there exists a subsequence of \(\{u_k\}\), still denoted by \(\{u_k\}\), and a function \(u\) defined on \(M\) so that \(\{u_k\}\) a.e. converges to \(u\) on each \(D_i\) and hence on \(M\). By Fatou’s lemma, \(\int_M u^2 d\mu \leq \liminf \int_M u_k^2 < \infty\), that is \(u \in L^2_f(M)\). On the other hand, by assumption of theorem and Remark 2 before the theorem, the functions in \(H^1_f(M)\) also satisfies logarithmic Sobolev inequality (3). This fact together with the boundedness of \(H^1_f(M)\)-norm of \(u_k\) implies that there exists a constant \(C\) satisfying

\[\int_M u_k^2 \log u_k^2 d\mu \leq C.\]

Take \(Q(t) = t \log t - a_0, t \in [0, \infty)\). One can see that \(Q(t)\) and \(\{u_k^2\}\) satisfy the conditions of De La Vallée Poussin theorem and thus \(\{u_k^2\}\) is uniformly integrable.

Now with the facts of a.e. convergence of \(\{u_k\}\) to \(u\) and the uniform integrability of \(\{u_k^2\}\), by an argument using Egorov’s theorem, similar to the proof of Vitali convergence theorem, one can prove that \(\int_M |u_k - u|^2 \to 0\), that is, \(u_k \to u\) in \(L^2_f(M)\). Therefore the embedding \(H^1_f(M) \hookrightarrow L^2_f(M)\) is compact.

By the standard theory in PDE (cf [9] Theorem 10.20), the compact embedding of \(H^1_f(M)\) is equivalent to the discreteness of spectrum of \(\Delta_f\). Thus we complete the proof.

\[\square\]

References

[1] D Bakry and M Émery, \textit{Diffusions hypercontractives, Seminaire de probabilites, XIX, 1983/84}, Lecture Notes in Math. \textbf{1123} (1985), 177-206.

[2] Ben Andrews and Lei Ni, \textit{Eigenvalue comparison on Bakry-Emery manifolds}, arXiv:1111.4967v1 [math.AP] 21 Nov 2011.

[3] Huai-Dong Cao and Detang Zhou, \textit{On complete gradient shrinking Ricci solitons}, J. Differential Geom. \textbf{85} (2010), no. 2, 175–185. MR2732975

[4] Nelia Charalambous and Zhiqin Lu, \textit{The essential spectrum of the Laplacian}, arXiv:1211.3225, 2012.

[5] Xu Cheng, Tito Mejia, and Detang Zhou, \textit{Eigenvalue estimate and compactness for closed f-minimal surfaces}, arXiv:1210.8448v1 [math.DG] 31 Oct 2012.

[6] Xu Cheng and Detang Zhou, \textit{Volume estimate about shrinkers}, Proc. AMS.

[7] Akito Futaki, Haizhong Li, and Xiang-Dong Li, \textit{On the first eigenvalue of the Witten–Laplacian and the diameter of compact shrinking solitons}, Ann Glob Anal Geom, online, 2013.

[8] Akito Futaki and Y Sano, \textit{Lower diameter bounds for compact shrinking Ricci solitons}, The Asian Journal of Mathematics \textbf{17} (2013), no. 1, 17–32.
[9] Alexander Grigoryan, Heat Kernel and Analysis on Manifolds, American Mathematical Soc., 2009 (English).
[10] Hans-Joachim Hein and Aaron Naber, New logarithmic Sobolev inequalities and an -regularity theorem for the Ricci flow, arXiv:1205.0380v1 [math.DG] 2 May 2012.
[11] Michel Ledoux, Concentration of measure and logarithmic Sobolev inequalities, Séminaire de probabilités de Strasbourg 33 (1999), 120–216.
[12] Leonardo Silvares, On the essential spectrum of the Laplacian and the drifted Laplacian, arXiv:1302.1834v1 [math.DG] 7 Feb 2013.
[13] André Lichnerowicz, Géométrie des groupes de transformations, Travaux et Recherches Mathématiques, III. Dunod, Paris, 1958 (French). MR0124009 (23 #A1329)
[14] Zhiqin Lu and Detang Zhou, On the essential spectrum of complete non-compact manifolds, J. Funct. Anal. 260 (2011), no. 11, 3283-3298.
[15] P. Meyer, Probability and Potentials, Blaisdell Publishing Co., 1966.
[16] Frank Morgan, Manifolds with Density. 1118.53022., Notices of the Amer. Math. Soc. 52 (2005), no. 8, 853-868. MR2161354
[17] Ovidiu Munteanu and Jiaping Wang, Smooth metric measure spaces with non-negative curvature, Comm. Anal. Geom. 19 (2011), no. 3, 451–486. MR2843238
[18] ______, Analysis of weighted Laplacian and applications to Ricci solitons, preprint [arXiv:1112.3027], 2011.
[19] ______, Geometry of manifolds with densities, preprint [arXiv:1211.3996], 2012.
[20] Morio Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333–340. MR0142086 (25 #5479)
[21] Guiseppe Da Prato and Jerzy Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, 2008 (English).
[22] C Villani, Optimal Transportation: Old and New, Springer, 2009.
[23] Guofang Wei and Will Wylie, Comparison geometry for the Bakry-Emery Ricci tensor, J. Differential Geom. 83 (2009), no. 2, 377–405. MR2577473 (2011a:53064)

Instituto de Matematica, Universidade Federal Fluminense, Niterói, RJ 24020, Brazil
E-mail address: xcheng@impa.br
E-mail address: zhou@impa.br