COEFFICIENT ESTIMATES AND THE FEKETE-SZEGŐ PROBLEM FOR CERTAIN CLASSES OF POLYHARMONIC MAPPINGS

J. CHEN, A. RASILA, AND X. WANG *

Abstract. We give coefficient estimates for a class of close-to-convex harmonic mappings, and discuss the Fekete-Szegő problem of it. We also introduce two classes of polyharmonic mappings $\mathcal{H}S_p$ and $\mathcal{H}C_p$, consider the starlikeness and convexity of them, and obtain coefficient estimates on them. Finally, we give a necessary condition for a mapping F to be in the class $\mathcal{H}C_p$.

1. Introduction

Let D denote the unit disk $\{z : |z| < 1, z \in \mathbb{C}\}$, and let \mathcal{A} be the class of functions of the form

$$f(z) = z + \sum_{j=2}^{\infty} a_j z^j,$$

which are analytic in D. Denote by \mathcal{S} the subclass of \mathcal{A} consisting of functions $f \in \mathcal{A}$, which are univalent. A continuous mapping $f = u + iv$ is a complex-valued harmonic mapping in a domain $D \subset \mathbb{C}$ if both u and v are real harmonic in D, i.e., $\Delta u = \Delta v = 0$, where Δ is the complex Laplacian operator

$$\Delta = 4 \frac{\partial^2}{\partial z \partial \bar{z}} := \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}.$$

For a simply connected domain D, we can write f in the form $f = h + \bar{g}$, where h and g are analytic (see [14]). A necessary and sufficient condition for f to be locally univalent and sense-preserving in D is that $|h'(z)| > |g'(z)|$ for all $z \in D$.

A continuous complex-valued mapping F in D is biharmonic if the Laplacian of F is harmonic, i.e., F satisfies the equation $\Delta(\Delta F) = 0$. It can be shown that in a simply connected domain D, every biharmonic mapping has the representation

$$F(z) = G_1(z) + |z|^2 G_2(z),$$

where both G_1 and G_2 are harmonic in D.

2000 Mathematics Subject Classification. Primary: 30H10, 30H30; Secondary: 30C20, 30C45.

Key words and phrases. harmonic mapping, polyharmonic mapping, coefficient estimates, the Fekete-Szegő problem.

* Corresponding author.

The research was partly supported by NSF of China (No. 11071063) and Hunan Provincial Innovation Foundation for Postgraduates (No. 125000-4242).
More generally, a complex-valued mapping F of a domain D is called polyharmonic (or p-harmonic) if F satisfies the equation $\Delta^p F = \Delta(\Delta^{p-1} F) = 0$ for some $p \in \mathbb{N}^+$. In a simply connected domain, a mapping F is polyharmonic if and only if F has the following representation:

$$F(z) = \sum_{k=1}^{p} |z|^{2(k-1)} G_k(z),$$

where each G_k is harmonic, i.e., $\Delta G_k(z) = 0$ for $k \in \{1, \ldots, p\}$ (see [7, 8]). Obviously, when $p=1$ (resp. $p=2$), F is harmonic (resp. biharmonic). The properties of biharmonic mappings have been investigated by many authors (see [2, 3, 4, 12, 18, 20, 23]). We refer to [7, 8, 9, 10, 11] for the discussions on polyharmonic mappings and [13, 14] for the basic properties of harmonic mappings.

We use S_H to denote the class consisting of univalent harmonic mappings in D. Such mappings can be written in the form

$$(1.2) \quad f(z) = h(z) + g(z) = z + \sum_{j=2}^{\infty} a_j z^j + \sum_{j=1}^{\infty} b_j z^j,$$

with $|b_1| < 1$. Let S_H^* and C_H be the subclasses of S_H, where the images of $f(\mathbb{D})$ are starlike and convex, respectively. If $b_1 = 0$, then S_H, S_H^* and C_H reduce to the classes $S_H^0, S_H^{0,*}$ and C_H^0, respectively. See also [14].

A classical theorem of Fekete and Szegö [16] states that for $f \in S$ of the form (1.1), the functional $|a_3 - \lambda a_2^2|$ satisfies the following inequality:

$$|a_3 - \lambda a_2^2| \leq \begin{cases} 3 - 4\lambda, & \lambda \leq 0, \\ 1 + 2e^{-\frac{3\lambda}{2}}, & 0 \leq \lambda \leq 1, \\ 4\lambda - 3, & \lambda \geq 1. \end{cases}$$

This inequality is sharp in the sense that for each real λ there exists a function in S such that equality holds (see [11, 21]). Thus the determination of sharp upper bounds for the nonlinear functional $|a_3 - \lambda a_2^2|$ for any compact family \mathcal{F} of functions in A is often called the Fekete-Szegő problem for \mathcal{F}. Many researchers have studied the Fekete-Szegő problem for analytic close-to-convex functions (see [19, 21, 22]). A natural question is whether we can get similar generalizations to harmonic close-to-convex mappings.

In [13], Clunie and Sheil-Small obtained the following result:

Proposition 1. ([13, Lemma 5.11]) If $f = h + g \in C_H$, then there exist angles α and β such that

$$\text{Re} \left\{ (e^{i\alpha} h'(z) + e^{-i\alpha} g'(z)) (e^{i\beta} - e^{-i\beta} z^2) \right\} > 0$$

for all $z \in \mathbb{D}$.

Our purpose of this paper is twofold. In Section 3, we obtain coefficient estimates of a class of close-to-convex harmonic mappings and, as an application, show upper bounds for the Fekete-Szegő functionals $|a_3 - \lambda a_2^2|$ and $|b_3 - \lambda b_2^2|$. The main results in this section are Theorems 1 and 2. In Section 4, first we obtain two sufficient conditions for mappings $F \in \mathcal{H}_p$ to be starlike with respect to the origin and convex,
respectively, given in Theorems are \([\text{3}]\) and \([\text{4}]\). Then, we establish some coefficient estimates for two classes of polyharmonic mappings \(\mathcal{HS}_p\) and \(\mathcal{HC}_p\). Our main results are Theorems \([\text{5}]\) and \([\text{6}]\). Finally, we obtain a generalization of Proposition \([\text{1}]\) to the class \(\mathcal{HC}_p\), which is Theorem \([\text{7}]\).

2. Preliminaries

In \([\text{5}]\), Avci and Zlotkiewicz introduced the class \(\mathcal{HS}\) of univalent harmonic mappings \(f\) with the series expansion \((1.2)\) such that

\[
\sum_{j=2}^{\infty} j(|a_j| + |b_j|) \leq 1 - |b_1|, \quad (0 \leq |b_1| < 1),
\]

and the subclass \(\mathcal{HC}\) of \(\mathcal{HS}\), where

\[
\sum_{j=2}^{\infty} j^2(|a_j| + |b_j|) \leq 1 - |b_1|, \quad (0 \leq |b_1| < 1).
\]

These two classes constitute a harmonic counterparts of classes introduced by Goodman \([\text{17}]\). They are useful in studying questions of so-called \(\delta\)-neighborhoods originally considered by Ruscheweyh \([\text{20}]\) (see also \([\text{25}]\)) and in constructing explicit \(k\)-quasiconformal extensions of mappings (see Fait et al. \([\text{15}]\)).

We denote by \(\mathcal{H}_p\) the set of polyharmonic mappings \(F\) in \(\mathbb{D}\) with the form:

\[
(2.1) \quad F(z) = \sum_{k=1}^{p} z^{2(k-1)}(h_k(z) + g_k(z)) = \sum_{k=1}^{p} z^{2(k-1)} \sum_{j=1}^{\infty} (a_{k,j}z^j + b_{k,j}z^j),
\]

where \(a_{1,1} = 1, \ |b_{1,1}| < 1\). We say that a univalent polyharmonic mapping \(F\) with \(F(0) = 0\) is starlike with respect to the origin if the curve \(F(re^{i\theta})\) is starlike with respect to the origin for each \(r \in (0,1)\). The following result gives a convenient characterization of this property.

Proposition 2. (\([\text{24}]\)) If \(F\) is univalent, \(F(0) = 0\) and \(\frac{\partial}{\partial \theta}\arg F(re^{i\theta}) > 0\) for \(z = re^{i\theta} \neq 0\), then \(F\) is starlike with respect to the origin.

A univalent polyharmonic mapping \(F\) with \(F(0) = 0\) and \(\frac{\partial}{\partial \theta}F(re^{i\theta}) \neq 0\) whenever \(r \in (0,1)\), is said to be convex if the curve \(F(re^{i\theta})\) is convex for each \(r \in (0,1)\).

Proposition 3. (\([\text{24}]\)) If \(F\) is univalent, \(F(0) = 0\), \(\frac{\partial}{\partial \theta}F(re^{i\theta}) \neq 0\) whenever \(r \in (0,1)\), and \(\frac{\partial}{\partial \theta} \arg \left(\frac{\partial}{\partial \theta}F(re^{i\theta})\right) > 0\) for \(z = re^{i\theta} \neq 0\), then \(F\) is convex.

In \([\text{25}]\), J. Qiao and X. Wang introduced the class \(\mathcal{HS}_p\) of polyharmonic mappings \(F\) of the form \((2.1)\) satisfying the condition

\[
(2.2) \quad \begin{cases}
\sum_{k=1}^{p} \sum_{j=2}^{\infty} (2(k-1) + j)(|a_{k,j}| + |b_{k,j}|) \leq 1 - |b_{1,1}| - \sum_{k=2}^{p} (2k-1)(|a_{k,1}| + |b_{k,1}|), \\
0 \leq |b_{1,1}| + \sum_{k=2}^{p} (2k-1)(|a_{k,1}| + |b_{k,1}|) < 1,
\end{cases}
\]

\]
and the subclass \mathcal{HC}_p of \mathcal{HS}_p, where
\begin{equation}
\left\{ \begin{array}{l}
\sum_{k=1}^{p} \sum_{j=2}^{\infty} (2(k-1) + j^2) \left(|a_{k,j}| + |b_{k,j}| \right) \leq 1 - |b_{1,1}| - \sum_{k=2}^{p} (2k-1)(|a_{k,1}| + |b_{k,1}|), \\
0 \leq |b_{1,1}| + \sum_{k=2}^{p} (2k-1)(|a_{k,1}| + |b_{k,1}|) < 1.
\end{array} \right.
\end{equation}

Obviously, for any $F \in \mathcal{HS}_p$, we have $|F(z)| < 2|z|$ for $z \in \mathbb{D}$. For $p = 1$, the classes \mathcal{HS}_p and \mathcal{HC}_p reduce to \mathcal{HS} and \mathcal{HC}, respectively. An important property of these classes is given by the following result.

Theorem A. (\cite[Theorem 3.1]{25}) Suppose $F \in \mathcal{HS}_p$. Then F is univalent and sense preserving in \mathbb{D}.

3. **Coefficient estimates for a class of close-to-convex harmonic mappings**

In this section, we will consider the coefficient estimates and the Fekete-Szegő problem of mappings of the class \mathcal{F}, defined as follows. In \cite{6}, Bharanedhar and Ponnusamy obtained the following result:

Theorem B. (\cite[Theorem 1]{6}) Let $f = h + \overline{g}$ be a harmonic mapping of \mathbb{D}, with $h'(0) \neq 0$, which satisfies
\begin{equation}
g'(z) = e^{i\theta}zh'(z) \quad \text{and} \quad \text{Re} \left(1 + z \frac{h''(z)}{h'(z)} \right) > -\frac{1}{2}
\end{equation}

for all $z \in \mathbb{D}$. Then f is a univalent close-to-convex mapping in \mathbb{D}.

We use \mathcal{F} to denote the class of harmonic mapping f in \mathbb{D} of the form \cite{12}, satisfying 3.1. Let \mathcal{H} and \mathcal{G} be the subclasses of \mathcal{F}, where
\begin{equation}
\mathcal{H} = \{ F = h + \overline{g} : F \in \mathcal{F} \quad \text{and} \quad g \equiv 0 \}
\end{equation}

and
\begin{equation}
\mathcal{G} = \{ F = h + \overline{g} : F \in \mathcal{F} \quad \text{and} \quad h \equiv 0 \}.
\end{equation}

Lemma 1. The classes \mathcal{H}, \mathcal{G} and \mathcal{F} are compact.

Proof. Suppose that $f_n = h_n + \overline{g_n} \in \mathcal{F}$ and that $f_n \to f$ uniformly on compact subsets of \mathbb{D}. It follows from Hurwitz’s theorem that f is harmonic, and therefore it has a canonical representation $f = h + \overline{g}$. It is easy to see that $h_n \to h$ and $g_n \to g$ locally uniformly, and that $h'(0) = 1$ and $g'(z) = e^{i\theta}zh'(z)$. Because
\begin{equation}
\text{Re} \left(1 + z \frac{h''(z)}{h'(z)} \right) > -\frac{1}{2}
\end{equation}
in \mathbb{D}, it follows that when $n \to +\infty$, then we have
\begin{equation}
\text{Re} \left(\frac{3}{2} + z \frac{h''(z)}{h'(z)} \right) \geq 0
\end{equation}
for all $z \in \mathbb{D}$. It suffices to show that the equation in (3.2) cannot hold for any $z \in \mathbb{D}$. Obviously, the function $\text{Re} \left(\frac{3}{2} + z \frac{h''(z)}{h'(z)} \right)$ is harmonic in \mathbb{D}. By the maximum principle, if $\text{Re} \left(\frac{3}{2} + z_0 \frac{h''(z)}{h'(z)} \right) = 0$ for some $z_0 \in \mathbb{D}$, then $\text{Re} \left(\frac{3}{2} + z \frac{h''(z)}{h'(z)} \right) \equiv 0$, and hence

$$\frac{3}{2} + z \frac{h''(z)}{h'(z)} \equiv iC$$

for some real constant C. That is a contradiction. Hence,

$$\text{Re} \left(\frac{3}{2} + z \frac{h''(z)}{h'(z)} \right) > -\frac{1}{2}$$

for all $z \in \mathbb{D}$, and the proof is complete. \hfill \Box

Theorem 1. Let f be of the form (1.2) satisfying (3.1). Then

$$(3.3) \quad |a_j| \leq \frac{j + 1}{2} \quad \text{and} \quad |b_j| \leq \frac{j - 1}{2}$$

for all $j = 1, 2, \ldots$.

Proof. Since $\text{Re} \left(\frac{3}{2} + z \frac{h''(z)}{h'(z)} \right) > 0$, then there exists an analytic function $p_1(z) = c_0 + c_1 z + c_2 z^2 + \ldots$, such that

$$(3.4) \quad z \frac{h''(z)}{h'(z)} = p_1(z) - \frac{3}{2} = c_1 z + c_2 z^2 + \ldots,$$

and $\text{Re}\{p_1(z)\} > 0$. Then (3.4) implies that

$$j(j+1)a_{j+1}z^j = (ja_j c_1 + (j-1)a_{j-1}c_2 + \ldots + a_1 c_j)z^j$$

for $j = 1, 2, \ldots$, and hence,

$$a_{j+1} = \frac{1}{j(j+1)} \sum_{\gamma=1}^{j} \gamma a_{\gamma} c_{j+1-\gamma}.$$

Because $p_1(z) = c_0 + c_1 z + c_2 z^2 + \ldots$, and $\text{Re} p_1(z) > 0$, then by [12, Lemma 1, p. 50], we have $|c_j| \leq 2\text{Re}\{c_0\} = 3$ for all $j = 1, 2, \ldots$. If we write $a_1 = 1$, it follows that

$$|a_j| \leq \frac{j + 1}{2} \quad \text{for all} \quad j = 1, 2, \ldots.$$

By (3.4), $g'(z) = e^{i\theta} h'(z)$, and therefore $\sum_{j=1}^{\infty} jb_j z^{j-1} = e^{i\theta} \sum_{j=1}^{\infty} ja_j z^j$. Thus, we have

$$b_1 = 0, \quad jb_j = e^{i\theta} (j - 1) a_{j-1} \quad \text{for all} \quad j = 2, 3, \ldots.$$

Then, we obtain

$$|b_j| = \frac{j - 1}{j} |a_{j-1}| \leq \frac{j - 1}{2} \quad \text{for all} \quad j = 1, 2, \ldots.$$

\hfill \Box
Now, we are ready to establish upper bounds for the Fekete-Szegő functionals
\(|a_3 - \lambda a_2^2|\) and \(|b_3 - \lambda b_2^2|\).

Theorem 2. Let \(f\) be of the form (1.2) and satisfy (3.1). Then

(3.5) \[|a_3 - \lambda a_2^2| \leq \max \left\{ \frac{1}{2} \frac{|8 - 9\lambda|}{4}, \frac{|8 - 9\lambda|}{4} \right\} \text{ and } |b_3 - \lambda b_2^2| \leq 1 + \frac{|\lambda|}{4}\]

for all \(\lambda \in \mathbb{R}\).

Proof. Let

\[p_2(z) = \frac{2}{3} \left(\frac{3}{2} + z \frac{h''(z)}{h'(z)} \right),\]

where \(h(z) = z + \sum_{j=1}^{\infty} a_j z^j\). Then by simple calculations, we obtain

(3.6) \[p_2(z) = 1 + 2 \left(3 a_2 z + (6 a_3 - 4 a_2^2) z^2 + \ldots \right)\]

Write \(p_2(z) = 1 + u_1 z + u_2 z^2 + \ldots\). Because \(\text{Re} \, p_2(z) > 0\), then by [24, formula (10), p. 166], we have

\[|u_2 - \frac{u_1^2}{2}| \leq 2 - \frac{|u_1|^2}{2}\]

It follows from (3.6) that

\[a_2 = \frac{3}{4} u_1 \text{ and } a_3 = \frac{1}{4} u_2 + \frac{3}{8} u_1^2.\]

Hence,

(3.7) \[|a_3 - \lambda a_2^2| = \left| \frac{1}{4} u_2 + \frac{3}{8} u_1^2 - \frac{9}{16} \lambda u_1^2 \right| \leq \frac{1}{4} \left(2 - \frac{1}{2} |u_1|^2 + \frac{|8 - 9\lambda|}{4} |u_1|^2 \right)\]

If \(\frac{|8 - 9\lambda|}{4} < \frac{1}{2}\), then (3.7) implies

\[|a_3 - \lambda a_2^2| \leq \frac{1}{2}.\]

Equality is attained if we choose \(a_2 = 0\) and \(a_3 = \pm \frac{1}{2}\).

If \(\frac{|8 - 9\lambda|}{4} \geq \frac{1}{2}\), then it follows from [14, Lemma 1, p. 50] that \(|u_1| \leq 2 \text{Re} \{p_2(0)\} = 2\) and (3.7) that

\[|a_3 - \lambda a_2^2| \leq \frac{1}{2} + \frac{1}{4} \left(\frac{|8 - 9\lambda|}{4} - \frac{1}{2} \right) |u_1|^2 \leq \frac{|8 - 9\lambda|}{4}.\]

Choosing \(a_2 = \pm \frac{3}{2}\) and \(a_3 = 2\) in (3.7) shows that the result is sharp.
Since \(g'(z) = e^{i\theta} z h'(z) \), we have
\[
\sum_{j=1}^{\infty} j b_j z^{j-1} = e^{i\theta} \sum_{j=1}^{\infty} j a_j z^j.
\]

Obviously, \(b_2 = \frac{e^{i\theta}}{2} a_1 = \frac{e^{i\theta}}{2} \) and \(b_3 = \frac{2 e^{i\theta}}{3} a_2 \). Hence, (3.3) implies
\[
|b_3 - \lambda b_2^2| = \left| \frac{2 e^{i\theta}}{3} a_2 - \frac{\lambda e^{2i\theta}}{4} \right| \leq \frac{2}{3} |a_2| + \left| \frac{\lambda}{4} \right| \leq 1 + \left| \frac{\lambda}{4} \right|.
\]

If \(\lambda \geq 0 \), then equality is attained when \(b_3 = -e^{2i\theta} \), i.e. \(a_2 = -\frac{3}{2} e^{i\theta} \). If \(\lambda < 0 \), then equality is attained when \(b_3 = e^{2i\theta} \), i.e. \(a_2 = \frac{3}{2} e^{i\theta} \).

Remark 1. Both equalities in (3.5) are attained when \(a_2 = \frac{3}{2} \) and \(b_3 = e^{i\theta} \) or \(a_2 = -\frac{3}{2} \) and \(b_3 = -e^{i\theta} \), but only in the case \(|8 - 9\lambda| \geq 2\) and \(\theta = 2k\pi \), where \(k \in \mathbb{Z} \).

4. Coefficient estimates for two classes of polyharmonic mappings

Let \(L \) denote the following differential operator defined on the class of complex-valued \(C^1 \) functions:
\[
L = z \frac{\partial}{\partial z} - \overline{z} \frac{\partial}{\partial \overline{z}}.
\]

An important property of the operator \(L[F] \) is that it behaves with respect to polyharmonic mappings much like the operator \(z f'(z) \) defined for analytic functions (see [4, Corollary 1(3)]).

Theorem 3. Each mapping \(F \in \mathcal{HS}_p \) is starlike with respect to the origin.

Proof. Let \(F \in \mathcal{HS}_p \) be of the form (2.1). It follows from Theorem A that
\[
J_F(0) = 1 - |b_{1,1}|^2 > 0.
\]

By computation, we have
\[
\begin{align*}
\frac{\partial}{\partial \theta} \left(\arg F(re^{i\theta}) \right) &= \frac{\partial}{\partial \theta} \left[\operatorname{Im} \left(\log F(re^{i\theta}) \right) \right] \\
&= \operatorname{Im} \left[\frac{\partial}{\partial \theta} \left(\log F(re^{i\theta}) \right) \right] \\
&= \operatorname{Im} \left[\frac{iz F_z(z) - i\overline{z} F_{\overline{z}}(z)}{F(z)} \right] \\
&= \operatorname{Re} \left[\frac{L[F(z)]}{F(z)} \right] \\
&= \operatorname{Re} \left[\sum_{k=1}^{p} \left| z \right|^{2(k-1)} \sum_{j=1}^{\infty} \left(j a_{k,j} z^j - j b_{k,j} z^j \right) \right] \\
&= \operatorname{Re} \left[\sum_{k=1}^{p} \left| z \right|^{2(k-1)} \sum_{j=1}^{\infty} \left(a_{k,j} z^j + b_{k,j} z^j \right) \right].
\end{align*}
\]
By (4.1) and (4.2), we obtain
\[
\lim_{z \to 0} \frac{\partial}{\partial \theta} \left(\arg F(re^{i\theta}) \right) = \lim_{z \to 0} \frac{1 - \overline{b_{1,1}}z}{1 + \overline{b_{1,1}}z} \left(1 + \frac{b_{1,1}z}{\overline{b_{1,1}}} \right) = \lim_{z \to 0} \frac{\Re \left(\frac{1 - \overline{b_{1,1}}z}{1 + \overline{b_{1,1}}z} \right) \left(1 + \frac{b_{1,1}z}{\overline{b_{1,1}}} \right)}{\left| 1 + \frac{b_{1,1}z}{\overline{b_{1,1}}} \right|^2}.
\]
(4.3)

Therefore, by (4.2), (4.3) and the continuity of \(F \), it follows from Theorem A that each mapping \(F \) is univalent in \(\mathbb{D} \). Hence, each mapping \(F \) is starlike with respect to the point \(z = 0 \).

It follows from Theorem A that each \(F \in \mathcal{HS}_p \) is univalent in \(\mathbb{D} \). Then, we have that \(F(z) \neq 0 \) for \(z \in \mathbb{D} \setminus \{0\} \), and the function \(\Re \frac{L[F(z)]}{F(z)} \) is continuous in \(\mathbb{D} \setminus \{0\} \). Therefore, by (4.2), (4.3) and the continuity of \(F \) in \(\mathbb{D} \setminus \{0\} \), we see the condition \(\frac{\partial}{\partial \theta} \left(\arg F(re^{i\theta}) \right) > 0 \) for all \(z \in \mathbb{D} \setminus \{0\} \) is equivalent to

\[
\frac{L[F(z)]}{F(z)} \neq \frac{\zeta - 1}{\zeta + 1}
\]

(4.4)

for all \(z \in \mathbb{D} \setminus \{0\} \) and all \(\zeta \in \mathbb{C} \) with \(|\zeta| = 1 \) and \(\zeta \neq -1 \). Hence, (4.4) holds if and only if

\[
\Phi(z) := (\zeta + 1)L[F(z)] - (\zeta - 1)F(z) \neq 0
\]

for all \(z \in \mathbb{D} \setminus \{0\} \) and all \(|\zeta| = 1 \). Calculations show that

\[
|\Phi(z)| = \left| (\zeta + 1) \sum_{k=1}^{p} |z|^{2(k-1)} \sum_{j=1}^{\infty} j(a_{k,j}z^j - \overline{b_{k,j}z^j}) \right| - (\zeta - 1) \sum_{k=1}^{p} |z|^{2(k-1)} \sum_{j=1}^{\infty} \left(a_{k,j}z^j + \overline{b_{k,j}z^j} \right)
\]

\[
= \sum_{k=1}^{p} |z|^{2(k-1)} \sum_{j=1}^{\infty} \left((j + 1 + \zeta(j - 1))a_{k,j}z^j - (j - 1 + \zeta(j + 1))b_{k,j}z^j \right). \]

If \(F \) is the identity, obviously, we have \(|\Phi(z)| = 2|z| \). If \(F(z) = z + \overline{b_{1,1}}z \), then

\[
|\Phi(z)| = 2 \left| z - \zeta \overline{b_{1,1}}z \right| \geq 2|z|(1 - |b_{1,1}|).
\]

If \(F \) is not an affine mapping, then

\[
|\Phi(z)| > |z| \left(2 - 2|b_{1,1}| - 2 \sum_{k=1}^{p} \sum_{j=2}^{\infty} j(|a_{k,j}| + |b_{k,j}|) - 2 \sum_{k=2}^{p} (|a_{k,1}| + |b_{k,1}|) \right).
\]

Hence, each mapping \(F \in \mathcal{HS}_p \) is starlike with respect to the point \(z = 0 \). \(\square \)

Theorem 4. Each mapping \(F \in \mathcal{HC}_p \) is convex.
Proof. Let $F \in \mathcal{HC}_p$ be of the form (2.1). By (4.2), we have

$$
\frac{\partial}{\partial \theta} \left[\arg \left(\frac{\partial}{\partial \theta} F(re^{i\theta}) \right) \right] = \text{Re} \frac{L \left[\frac{\partial}{\partial \theta} F(re^{i\theta}) \right]}{L[F(z)]}
$$

(4.5)

Then by (4.1) and (4.5), we have

$$
\lim_{z \to 0} \frac{\partial}{\partial \theta} \left[\arg \left(\frac{\partial}{\partial \theta} F(re^{i\theta}) \right) \right] = \lim_{z \to 0} \frac{1 + \frac{b_{1,1} \bar{z}}{z}}{1 - \frac{b_{1,1} \bar{z}}{z}}
$$

(4.6)

$$
= \lim_{z \to 0} \frac{1 - |b_{1,1}|^2}{\left| 1 - \frac{b_{1,1} \bar{z}}{z} \right|^2} \geq \frac{1 - |b_{1,1}|^2}{(1 + |b_{1,1}|)^2} > 0.
$$

If F is the identity, obviously, we have $|L[F(z)]| = |z|$. If $F(z) = z + b_{1,1} z$, then

$$
|L[F(z)]| = |z - \bar{b}_{1,1} z| \geq |z|(1 - |b_{1,1}|).
$$

If F is not an affine mapping, then

$$
|L[F(z)]| = \left| \sum_{k=1}^{p} |z|^{2(k-1)} \sum_{j=1}^{\infty} \left(j a_{k,j} z^j - j b_{k,j} z^j \right) \right|
$$

$$
> |z| \left(1 - |b_{1,1}| - \sum_{k=1}^{p} \sum_{j=2}^{\infty} j \left(|a_{k,j}| + |b_{k,j}| \right) - \sum_{k=2}^{p} j \left(|a_{k,1}| + |b_{k,1}| \right) \right).
$$

Therefore, $F \in \mathcal{HC}_p$ implies $L[F(z)] \neq 0$ for $z \in \mathbb{D} \setminus \{0\}$, and hence the function $\text{Re} \frac{L[L[F(z)]]}{L[F(z)]}$ is continuous in $\mathbb{D} \setminus \{0\}$. Therefore, by (4.5), (4.6) and the continuity of $L[F(z)]$ in $\mathbb{D} \setminus \{0\}$, we see the condition $\frac{\partial}{\partial \theta} \left[\arg \left(\frac{\partial}{\partial \theta} F(re^{i\theta}) \right) \right] > 0$ for all $z \in \mathbb{D} \setminus \{0\}$ is equivalent to

$$
\text{Re} \frac{L[L[F(z)]]}{L[F(z)]} \neq \frac{\zeta - 1}{\zeta + 1}
$$

(4.7)

for all $z \in \mathbb{D} \setminus \{0\}$ and all $\zeta \in \mathbb{C}$ with $|\zeta| = 1$ and $\zeta \neq -1$. Hence, (4.7) holds if and only if

$$
\Psi(z) := (\zeta + 1)L[L[F(z)]] - (\zeta - 1)L[F(z)] \neq 0
$$
for all \(z \in \mathbb{D} \setminus \{0\} \) and all \(|\zeta| = 1 \). Calculations show that

\[
|\Psi(z)| = (\zeta + 1) \sum_{k=1}^{p} |z|^{2(k-1)} \sum_{j=1}^{\infty} j^{2} |a_{k,j}z^{j} + \overline{b_{k,j}z^{j}}|
\]

\[
-(\zeta - 1) \sum_{k=1}^{p} |z|^{2(k-1)} \sum_{j=1}^{\infty} j |a_{k,j}z^{j} - \overline{b_{k,j}z^{j}}|
\]

\[
= \sum_{k=1}^{p} |z|^{2(k-1)} \sum_{j=1}^{\infty} \left(j^{2} + j + \zeta(j^{2} - j) \right) a_{k,j}z^{j} + \left(j^{2} - j + \zeta(j^{2} + j) \right) \overline{b_{k,j}z^{j}}.
\]

If \(F \) is the identity, obviously, we have \(|\Psi(z)| = 2|z| \). If \(F(z) = z + \overline{b_{1,1}z} \), then

\[
|\Psi(z)| = 2 \left| z + \zeta \overline{b_{1,1}z} \right| \geq 2|z|(1 - |b_{1,1}|).
\]

If \(F \) is not an affine mapping, then

\[
|\Psi(z)| > |z| \left(2 - 2|b_{1,1}| - 2 \sum_{k=1}^{p} \sum_{j=2}^{\infty} j^{2} (|a_{k,j}| + |b_{k,j}|) - 2 \sum_{k=2}^{p} (|a_{k,1}| + |b_{k,1}|) \right).
\]

It follows that each mapping \(F \in \mathcal{HC}_{p} \) is convex. \(\square \)

Example 1. Let \(F_{1}(z) = z + \frac{1}{3}z + \frac{1}{6}z^{2}z \). Then \(F_{1} \) is convex. See also Figure 1.

It is well known that the coefficients of every starlike mapping \(f \in S_{H}^{*0} \) of the form (1.2) satisfy the sharp inequalities

\[
|a_{j}| \leq \frac{(2j + 1)(j + 1)}{6}, \quad |b_{j}| \leq \frac{(2j - 1)(j - 1)}{6}, \quad ||a_{j}| - |b_{j}|| \leq j
\]

for \(j = 2, 3, \ldots \) (see [27]). The coefficients of each mapping \(f \in C_{H}^{0} \) satisfy the sharp inequalities

\[
|a_{j}| \leq \frac{j + 1}{2}, \quad |b_{j}| \leq \frac{j - 1}{2}, \quad \text{and} \quad ||a_{j}| - |b_{j}|| \leq 1
\]

for \(j = 2, 3, \ldots \) (see [13]).

Next, we obtain similar results for mappings in \(\mathcal{HS}_{p} \) and \(\mathcal{HC}_{p} \).

Theorem 5. The coefficients of every mapping \(F \in \mathcal{HS}_{p} \) satisfy the sharp inequalities

\[
\sum_{k=1}^{p} (|a_{k,j}| + |b_{k,j}|) \leq \frac{1}{j}
\]

for all \(j = 2, 3, \ldots \).

Proof. Let \(F \in \mathcal{HS}_{p} \) be of the form (2.1). By (2.2), we have

\[
\sum_{k=1}^{p} j(|a_{k,j}| + |b_{k,j}|) \leq \sum_{k=1}^{p} \sum_{j=2}^{\infty} (2(k - 1) + j)(|a_{k,j}| + |b_{k,j}|) \leq 1.
\]
Figure 1. The images of \mathbb{D} under the mappings $F_1(z) = z + \frac{4}{3} \pi + \frac{1}{6} |z|^2 \pi$ (left) and $F_2(z) = z + \frac{2}{3} e^{\pi i}$. It follows that
\[
\sum_{k=1}^{p}(|a_{k,j}| + |b_{k,j}|) \leq \frac{1}{j}
\]
for $j = 2, 3, \ldots$. \hfill \qed

Example 2. Let $F_2(z) = z + \frac{j}{j^2} e^{i\varphi}$ for all $j = 2, 3, \ldots$ and $\varphi \in \mathbb{R}$. Then $F_2 \in \mathcal{HS}$ is univalent, sense preserving and starlike with respect to the origin. Obviously, the coefficients of F_2 satisfy (4.8). See Figure 1 for the case where $j = 3$ and $\varphi = \pi/6$.

The above example shows that the coefficient estimate (4.8) is sharp for $p = 1$.

Theorem 6. The coefficients of each mapping $F \in \mathcal{HC}_p$ satisfy the sharp inequalities
\[
\sum_{k=1}^{p}(|a_{k,j}| + |b_{k,j}|) \leq \frac{1}{j^2}
\]
for $j = 2, 3, \ldots$.

Proof. The proof of Theorem 6 is similar to the proof of Theorem 5 and we will omit it. \hfill \qed

Example 3. Let $F_3(z) = z + \frac{2}{j} e^{j \varphi}$ for all $j = 2, 3, \ldots$ and $\varphi \in \mathbb{R}$. Then $F_3 \in \mathcal{HC}$ is a univalent, sense preserving and convex harmonic mapping. Obviously, the coefficients of F_3 satisfy (4.9). See Figure 2 for the case where $j = 3$ and $\varphi = \pi/6$.

This example shows that the coefficient estimate (4.9) is sharp for $p = 1$.

Now, we are ready to generalize Proposition 1 to the polyharmonic mappings of the class \mathcal{HC}_p.
Obviously, the mapping $F_1(z) = z + \frac{4}{9} |z|^2 z = \mathcal{H}C_2$ (see Figure 1). Let $\alpha = \beta = 0$. Then F_1 satisfies the inequality (4.10).

However, the mapping $F_4(z) = z + \frac{4}{9} |z|^2 z + \frac{1}{4} \overline{z} = \mathcal{H}C_2$ (see Figure 2) also satisfies the inequality (4.10) for $\alpha = \beta = 0$ with $a_{2,1} = \frac{1}{9}$.

Theorem 7. If $F \in \mathcal{H}C_p$ and $a_{k,1} = 0$ for $k \in \{2, \ldots, p\}$, then there exist angles α and β such that

$$\text{Re} \left\{ \left(e^{i\alpha} \sum_{k=1}^{p} |z|^{2(k-1)} h_k'(z) + e^{-i\alpha} \sum_{k=1}^{p} |z|^{2(k-1)} g_k'(z) \right) (e^{i\beta} - e^{-i\beta} z^2) \right\} > 0$$

for all $z \in \mathbb{D}$.

Proof. Let $F \in \mathcal{H}C_p$ be of the form (2.1), fix $r \in (0, 1)$, and let

$$F_r(z) = \sum_{k=1}^{p} r^{2(k-1)} \left(h_k(z) + g_k(z) \right) = \sum_{j=1}^{\infty} \sum_{k=1}^{p} \left(a_{k,j} r^{2(k-1)} z^j + b_{k,j} r^{2(k-1)} \overline{z}^j \right), \quad z \in \mathbb{D}.$$

Then F_r is harmonic. By the hypothesis and (2.3), $F \in \mathcal{H}C_p$ implies

$$\sum_{j=2}^{\infty} \sum_{k=1}^{p} r^{2(k-1)} \left| a_{k,j} r^{2(k-1)} \right| + \sum_{j=2}^{\infty} \sum_{k=1}^{p} b_{k,j} r^{2(k-1)} \leq 1 - \sum_{k=1}^{p} \left| b_{k,j} r^{2(k-1)} \right|,$$

i.e., $F_r \in C_H$ (see [3]). Then Proposition 1 implies that there exist angles α and β such that

$$\text{Re} \left\{ \left(e^{i\alpha} \sum_{k=1}^{p} r^{2(k-1)} h_k'(z) + e^{-i\alpha} \sum_{k=1}^{p} r^{2(k-1)} g_k'(z) \right) (e^{i\beta} - e^{-i\beta} z^2) \right\} > 0$$

for all $z \in \mathbb{D}$. Let $r = |z|$. The result is proved. \hfill \square

Example 4. Obviously, the mapping $F_3(z) = z + \frac{4}{9} |z|^2 z \in \mathcal{H}C_2$ (see Figure 1). Let $\alpha = \beta = 0$. Then F_3 satisfies the inequality (4.10).

However, the mapping $F_4(z) = z + \frac{4}{9} |z|^2 z + \frac{1}{4} \overline{z} = \mathcal{H}C_2$ (see Figure 2) also satisfies the inequality (4.10) for $\alpha = \beta = 0$ with $a_{2,1} = \frac{1}{9}$.

![Figure 2](image-url)
Remark 2. The proof of Theorem 7 requires a somewhat unnatural additional assumption concerning the coefficients $a_{k,1}$. It is not obvious if the result holds without this assumption.

REFERENCES

1. H. R. Abdel, D. Gawad and K. Thomas, The Fekete-Szegő problem for strong close-to-convex functions. Proc. Amer. Math. Soc. 114 (1992), 345-349.
2. Z. Abdulhadi and Y. Abu Muhanna, Landau’s theorem for biharmonic mappings. J. Math. Anal. Appl. 338 (2008), 705-709.
3. Z. Abdulhadi, Y. Abu Muhanna and S. Khuri, On univalent solutions of the biharmonic equation. J. Inequal. Appl. 5 (2005), 469-478.
4. Z. Abdulhadi, Y. Abu Muhanna and S. Khuri, On some properties of solutions of the biharmonic equation. Appl. Math. Comput. 177 (2006), 346-351.
5. Y. Avci and E. Zlotkiewicz, On harmonic univalent mappings. Ann. Univ. Mariae Curie Skłodowska (Sect A) 44 (1990), 1-7.
6. S. V. Bharanedhar and S. Ponnusamy, Coefficient conditions for harmonic univalent mappings and hypergeometric mappings. arXiv:1109.0925v2.
7. Sh. Chen, S. Ponnusamy and X. Wang, Bloch and Landau’s theorems for planar p-harmonic mappings. J. Math. Anal. Appl. 373 (2011), 102-110.
8. Sh. Chen, S. Ponnusamy and X. Wang, Landau’s theorem for p-harmonic mappings in several complex variables. Ann. Polon. Math. 103 (2012), 67-87.
9. J. Chen, A. Rasila and X. Wang, On polyharmonic univalent mappings. In press, Math. Rep. (Bucur.) arXiv:1302.2018.
10. J. Chen, A. Rasila and X. Wang, Starlikeness and convexity of polyharmonic mappings. In press, Bull. Belg. Math. Soc. Simon Stevin. arXiv:1302.2398.
11. J. Chen, A. Rasila and X. Wang, Landau’s theorem for polyharmonic mappings. J. Math. Anal. Appl. 409 (2014), 934-945.
12. J. Chen and X. Wang, On certain classes of biharmonic mappings defined by convolution. Abstr. Appl. Anal. 2012, Article ID 379130, 10 pages. doi:10.1155/2012/379130
13. J. G. Clunie and T. Sheil-Small, Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A. I. 9 (1984), 3-25.
14. P. Duren, Harmonic Mappings in the Plane. Cambridge University Press, Cambridge, 2004.
15. M. Fait, J. Krzyż and J. Zygmunt, Explicit quasiconformal extensions for some classes of univalent functions. Comment. Math. Helv. 51 (1976), 279-285.
16. M. Fekete and G. Szegő, Eine bemerkung über ungerade schlichte functionen. J. London Math. Soc. 8 (1933), 85-89.
17. A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8 (1957), 588-601.
18. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media. Prentice-Hall, Englewood Cliffs, NJ, USA, 1965.
19. F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions. Proc. Amer. Math. Soc. 20 (1969), 8-12.
20. S. A. Khuri, Biorthogonal series solution of Stokes flow problems in sectorial regions. SIAM J. Appl. Math. 56 (1996), 19-39.
21. W. Koepp, On the Fekete-Szegő problem for close-to-convex functions. Proc. Amer. Math. Soc. 101 (1987), 89-95.
22. W. Koepp, On the Fekete-Szegő problem for close-to-convex functions II. Arch. Math. 49 (1987), 420-433.
23. W. E. Langlois, Slow Viscous Flow. Macmillan, New York, NY, USA, 1964.
24. C. Pommerenke, Univalent Functions. Vandenhoeck and Ruprecht, Göttingen, 1975.
25. J. Qiao and X. Wang, On \(p \)-harmonic univalent mappings (in Chinese). *Acta Math. Sci.* **32A** (2012), 588-600.

26. S. Ruscheweyh, Neighborhoods of univalent functions. *Proc. Amer. Math. Soc.* **18** (1981), 521-528.

27. T. Sheil-Small, Constants for planar harmonic mappings. *J. London Math. Soc.* **42A** (1990), 237-248.

J. Chen, Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081, People’s Republic of China.

E-mail address: jiaolongchen@sina.com

A. Rasila, Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081, People’s Republic of China, and Department of Mathematics and Systems Analysis, Aalto University, P. O. Box 11100, FI-00076 Aalto, Finland.

E-mail address: antti.rasila@iki.fi

X. Wang, Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081, People’s Republic of China.

E-mail address: xtwang@hunnu.edu.cn