Abstract. The diatomic Fermi-Pasta-Ulam-Tsingou (FPUT) lattice is an infinite chain of alternating particles connected by identical nonlinear springs. We prove the existence of micropteron traveling waves in the diatomic FPUT lattice in the limit as the ratio of the two alternating masses approaches 1, at which point the diatomic lattice reduces to the well-understood monatomic FPUT lattice. These are traveling waves whose profiles asymptote to a small periodic oscillation at infinity, instead of vanishing like the classical solitary wave. We produce these micropteron waves using a functional analytic method, originally due to Beale, that was successfully deployed in the related long wave and small mass diatomic problems. Unlike the long wave and small mass problems, this equal mass problem is not singularly perturbed, and so the amplitude of the micropteron’s oscillation is not necessarily small beyond all orders (i.e., the traveling wave that we find is not necessarily a nanopteron). The central challenge of this equal mass problem hinges on a hidden solvability condition in the traveling wave equations, which manifests itself in the existence and fine properties of asymptotically sinusoidal solutions (Jost solutions) to an auxiliary advance-delay differential equation.

1. Introduction

1.1. The diatomic FPUT lattice. A diatomic Fermi-Pasta-Ulam-Tsingou (FPUT) lattice is an infinite one-dimensional chain of particles of alternating masses connected by identical springs. These lattices, also called mass dimers, are a material generalization of the finite lattice of identical particles studied numerically by Fermi, Pasta, and Ulam [FPU55] and Tsingou [Dau08]; such lattices are valued in applications as models of wave propagation in discrete and granular materials [Bri53, Kev11].

We index the particles and their masses by \(j \in \mathbb{Z} \) and let \(u_j \) denote the position of the \(j \)th particle. After a routine nondimensionalization, we may assume that the \(j \)th particle has mass

\[
 m_j = \begin{cases}
 1, & j \text{ is odd} \\
 m, & j \text{ is even}
 \end{cases}
\]

and that each spring exerts the force \(F(r) = r + r^2 \) when stretched a distance \(r \) from its equilibrium length. Newton’s law then implies that the position functions \(u_j \) satisfy the...
We sketch a diatomic FPUT lattice in Figure 1.

We are interested in the existence and properties of traveling waves in diatomic lattices in the limit as the ratio of the two alternating masses approaches 1. Specifically, we define the relative displacement between the jth and the $(j + 1)$st particle to be

$$r_j := u_{j+1} - u_j,$$

and then we make the traveling wave ansatz

$$r_j(t) = \begin{cases} p_1(j - ct), & j \text{ is even} \\ p_2(j - ct), & j \text{ is odd} \end{cases}$$

Here p_1 and p_2 are the traveling wave profiles and $c \in \mathbb{R}$ is the wave speed.

When the masses are identical, the lattice reduces to a monatomic lattice, which, due to the work of Friesecke and Wattis [FW94] and Friesecke and Pego [FP99, FP02, FP04a, FP04b] is known to bear solitary traveling waves, i.e., waves whose profiles vanish exponentially fast at spatial infinity; see also Pankov [Pan05] for a comprehensive overview of monatomic traveling waves. Our interest, then, is to determine how the monatomic solitary traveling wave changes when the mass ratio is close to 1.

1.2. **Parameter regimes.** We derive our motivation for this equal mass situation from two recent papers studying traveling waves in diatomic lattices under different limits. Faver and Wright [FW18] fix the mass ratio1 and consider the long wave limit, i.e., they look for traveling waves where the wave speed is close to a special m-dependent threshold called the “speed of sound” and where the traveling wave profile is close to a certain KdV sech2-type soliton. Hoffman and Wright [HW17] fix the wave speed and consider the small mass limit, in which the ratio of the alternating masses approaches zero, thereby reducing the lattice from diatomic to monatomic2. Figure 3 sketches the bands of long wave (in yellow) and

1They work with $w := 1/m > 1$; after rescaling and relabeling the lattice, we may equivalently think of their results for $m \in (0, 1)$.

2This is not the same monatomic lattice that results from the equal mass limit; the springs in this small mass limiting lattice are double the length of the original springs in the diatomic lattice, and so they exert twice the original force. This factor of 2 ends up affecting the wave speed of the traveling waves that Hoffman and Wright construct: theirs have speed close to $\sqrt{2}$.
small mass (in red) traveling waves and indicates, roughly, how they depend on wave speeds and mass ratios.

In both problems, the solitary wave that exists in the limiting case perturbs into a traveling wave whose profile asymptotes to a small amplitude periodic oscillation or “ripple.” That is, the wave is not “localized” in the “core” of the classical solitary wave, and so, per Boyd [Boy98], it is a nonlocal solitary wave. Moreover, the long wave and small mass problems are singularly perturbed, which causes the amplitude of their periodic ripples to be small beyond all orders of the long wave/small mass parameter. So, these nonlocal traveling waves are, in Boyd’s parlance, nanopterons; see [Boy98] for an overview of the nanopteron’s many incarnations in applied mathematics and nature.

The question of the equal mass limit then follows naturally from the success of these two studies. It was raised in the conclusion of [FW18], where the authors wondered if the diatomic long wave profiles would converge to those found by Friesecke and Pego in the monatomic long wave limit [FP99], and appears as far back as Brillouin’s book [Bri53], which examines both the small and equal mass limits for lattices with linear spring forces.

The articles [FW18] and [HW17] both derive their nanopteron traveling waves via a method due to Beale [Bea91] for a capillary-gravity water wave problem. Beale’s method was later adapted by Amick and Toland [AT92] for a model singularly perturbed KdV-type fourth order equation. More recently, Faver [Fav, Fav18] used Beale’s method to study the long wave problem in spring dimer lattices (FPUT lattices with alternating spring forces but constant masses), and Johnson and Wright [JW] adapted it for a singularly perturbed Whitham equation.

Although the equal mass problem is not, ultimately, singularly perturbed, its structure has enough in common with these predecessors that we are able to adapt Beale’s method to this situation, too. We discover that the monatomic traveling wave perturbs into a “micropteron” traveling wave as the mass ratio hovers around 1. Boyd uses this term to refer to a nonlocal solitary wave whose ripples are only algebraically small in the relevant small parameter, not small beyond all algebraic orders. We do not find such small beyond all orders estimates in our equal mass problem, and so we consciously avoid using the term “nanopteron” for our profile.

We sketch this micropteron wave in Figure 2 and provide in Figure 3 an informal, but evocative, cartoon comparing the three families of nonlocal solitary waves (long wave, small mass, equal mass) that now exist for the diatomic FPUT lattice. We state our main result below in Theorem 1.2.

Beyond these nanopteron problems, wave propagation in diatomic and more generally heterogeneous lattices has received considerable recent attention; we mention, among others, the papers [CBCPS12, BP13, Qin15, VSWP16, SV17, Wat19, Lus] for theoretical and numerical examples of waves in FPUT lattices under different material regimes. See [GMWZ14] for a discussion of long wave KdV approximations in polyatomic FPUT lattices and [GSWW19] for a further discussion of the metastability of these waves in diatomic lattices. The paper [HMSZ13] studies a regular perturbation problem in monatomic FPUT lattices in which the spring force is perturbed from a known piecewise quadratic potential; the resulting solutions are asymptotic, like ours, to a sinusoid whose amplitude is algebraically small. Lattice differential equations abound in contexts beyond the FPUT model that we study here; see, for example, [HMSSVV] for a survey of traveling wave results for the Nagumo lattice equation and related models.
1.3. The traveling wave problem. After making the traveling wave ansatz (1.1.3) for the original equations of motion (1.1.2), we write \(1/m = 1 + \mu \) for \(\mu \in (-1, 1) \) and make the linear change of variables

\[
\rho_1 = \frac{p_1 + p_2}{2} \quad \text{and} \quad \rho_2 = \frac{p_1 - p_2}{2}
\]

to obtain the equivalent system

\[
\mathcal{G}_c(\rho, \mu) = 0.
\]

The details of this change of variables are discussed in Appendix B. For now, we focus on the definitions and properties of the operators \(D_\mu \) and \(Q \).

First, let \(S^d \) be the “shift-by-\(d \)” operator defined by \((S^d f)(x) := f(x + d) \) and set

\[
A := S^1 + S^{-1}, \quad \delta := S^1 - S^{-1}.
\]

Then we have

\[
D_\mu := \frac{1}{2} \begin{bmatrix}
(2 + \mu)(2 - A) & \mu \delta \\
-\mu \delta & (2 + \mu)(2 + A)
\end{bmatrix}.
\]

Next, we define

\[
Q(\rho, \dot{\rho}) = \begin{pmatrix}
Q_1(\rho, \dot{\rho}) \\
Q_2(\rho, \dot{\rho})
\end{pmatrix} := \begin{pmatrix}
\rho_1 \dot{\rho}_1 + \rho_2 \dot{\rho}_2 \\
\rho_1 \dot{\rho}_2 + \rho_2 \dot{\rho}_1
\end{pmatrix}.
\]

The version (1.3.1) is particularly useful because it preserves a number of symmetries. Namely, \(\mathcal{G}_c \) maps

\[
\{\text{even functions}\} \times \{\text{odd functions}\} \times \mathbb{R} \to \{\text{even mean-zero functions}\} \times \{\text{odd functions}\}.
\]

We prove these symmetries in Appendix B. We say that a function \(f \) is “mean-zero” if \(\hat{f}(0) = 0 \); here \(\hat{f} \) is the Fourier transform of \(f \), and our conventions for the Fourier transform are outlined in Appendix A.1.
When $\mu = 0$, the diatomic lattice reverts to a monatomic lattice, and the traveling wave problem (1.3.1) reduces to
\[
\begin{align*}
 c^2 \rho_1'' + (2 - A)(\rho_1 + \rho_1^2 + \rho_2^2) &= 0, \\
 c^2 \rho_2'' + (2 + A)(2\rho_1\rho_2) &= 0.
\end{align*}
\]
If we take $\rho_2 = 0$, then the second equation is satisfied, and the first becomes
\[
c^2 \rho_1'' + (2 - A)(\rho_1 + \rho_1^2) = 0.
\]
This is the equation for the traveling wave profile of a monatomic FPUT lattice. For $|c| \gtrsim 1$, it has an even exponentially decaying (or localized) solution due to Friesecke and Pego [FP99], which we call ς_c. We discuss the properties of ς_c in greater detail in Theorem 6.1.
1.4. Linearizing at the Friesecke-Pego solution. If we set \(\varsigma_c := (\varsigma_c, 0) \), we see that \(G_c(\varsigma_c, 0) = 0 \). Then for \(\mu \) small, we are interested in solutions \(\rho \) to \(G_c(\rho, \mu) \) that are close to the Friesecke-Pego solution \(\varsigma_c \). In order to perturb from \(\varsigma_c \), we first define Sobolev spaces of exponentially localized functions.

Definition 1.1. Let

\[
\begin{align*}
H^r_q := \{ f \in H^r(\mathbb{R}) \mid \cosh^q(\cdot)f \in H^r(\mathbb{R}) \}, \\
\| f \|_{H^r_q} &= \| f \|_{r,q} := \| \cosh^q(\cdot)f \|_{H^r(\mathbb{R})}.
\end{align*}
\]

and

\[
E^r_q := H^r_q \cap \{ \text{even functions} \} \quad \text{and} \quad O^r_q := H^r_q \cap \{ \text{odd functions} \}.
\]

For a function \(f = (f_1, f_2) \in H^r_q \times H^r_q \), we set

\[
\| f \|_{r,q} := \| f_1 \|_{r,q} + \| f_2 \|_{r,q}.
\]

Under this notation, we have \(\varsigma_c \in \bigcap_{r=0}^\infty E^r_q \) for \(q \) sufficiently small. We set \(\rho = \varsigma_c + \varrho \), where \(\varrho = (\varrho_1, \varrho_2) \in E^2_q \times O^2_q \), and compute that \(G_c(\varsigma_c + \varrho, \mu) = 0 \) if and only if \(\varrho_1 \) and \(\varrho_2 \) satisfy the system

\[
c^2 \varrho'' + D_0 \varrho + 2D_0 Q(\varsigma_c, \varrho) = R_c(\varrho, \mu) = \left(\begin{array}{c} R_{c,1}(\varrho, \mu) \\ R_{c,2}(\varrho, \mu) \end{array} \right).
\]

The right side \(R_c(\varrho, \mu) \) is “small” in the sense that it consists, roughly, of linear combinations of terms of the form \(\mu \), \(\mu \varrho \), and \(\varrho^2 \).

The first component of this system has the form

\[
c^2 \varrho'' + (2 - A)(1 + 2\varsigma_c) \varrho_1 = R_{c,1}(\varrho, \mu).
\]

The operator \(\mathcal{H}_c \) is the linearization of the monatomic traveling wave problem at \(\varsigma_c \). Proposition 3.1 from [HW17] tells us that, for \(q \) sufficiently small, \(\mathcal{H}_c \) is invertible from \(E^{r+2}_q \) to \(E^r_{q,0} \) for any \(r \geq 0 \), where

\[
E^r_{q,0} := \left\{ f \in E^r_q \mid \widehat{f}(0) = 0 \right\}.
\]

In some sense, this can be seen as a spectral stability result for the monatomic wave; see also Lemma 4.2 in [FP04a] and Lemma 6 in [HM17] for Fredholm properties of \(\mathcal{H}_c \), under different guises, in exponentially weighted Sobolev spaces. It follows that (1.4.3) is equivalent to

\[
\varrho_1 = \mathcal{H}_c^{-1} R_{c,1}(\varrho, \mu),
\]

which is a fixed point equation for \(\varrho_1 \) on the function space \(E^r_q \). We now attempt to construct a similar fixed point equation for \(\varrho_2 \); our failure in this attempt will be quite instructive.

1.5. The operator \(\mathcal{L}_c \). The second component of (1.4.2) is

\[
c^2 \varrho'' + (2 + A)(1 + 2\varsigma_c) \varrho_2 = R_{c,2}(\varrho, \mu).
\]

The operator \(\mathcal{L}_c \) is the sum of a constant-coefficient second-order advance-delay differential operator and a nonlocal term, which we write more explicitly as

\[
\mathcal{L}_c f = c^2 f'' + (2 + A)f + 2(2 + A)(\varsigma_c f).
\]
The minus sign on Σ_c is purely for convenience. If \mathcal{L}_c were invertible from $O^r_{q^2}$ to O^r_q, then (1.5.1) would rearrange to a fixed point equation for ϱ_2, which we could combine with (1.4.4) to get a fixed point problem for ϱ. In this attempt we fail: \mathcal{L}_c is injective but not surjective.

1.5.1. Injectivity. We first sketch how, at least in the case $|c| \gtrsim 1$, the operator \mathcal{L}_c is injective from $O^r_{q^2}$ to O^r_q. We begin with the constant-coefficient part \mathcal{B}_c. This operator is a Fourier multiplier with symbol

$$\tilde{\mathcal{B}}_c(k) := -c^2k^2 + 2 + 2\cos(k).$$

That is, if $f \in L^2$ or $f \in L^2_{\text{per}}$, then

$$\tilde{\mathcal{B}}_c f(k) = \tilde{\mathcal{B}}_c(k) \hat{f}(k).$$

See Appendix A.1.1 for further definitions and properties of Fourier multipliers. A straightforward application of the intermediate value theorem yields a unique $\omega_c > 0$ such that $\tilde{\mathcal{B}}_c(\omega_c) = 0$. This Fourier condition in fact characterizes the range of \mathcal{B}_c: using results of Beale (phrased as Lemma A.3 in this paper) and some further properties of $\tilde{\mathcal{B}}_c$ from Proposition 4.2, one can show that \mathcal{B}_c is invertible from $O^r_{q^2}$ to the subspace

$$\mathcal{D}^r_{c,q} := \{ f \in O^r_q \mid \hat{f}(\omega_c) = 0 \}.$$

Next, when $|c| \gtrsim 1$, the Friesecke-Pego solution ς_c is small in the sense that $\|\varsigma_c\|_{L^\infty} = \mathcal{O}((c-1)^2)$; see part (v) of Proposition D.2. Consequently, the operator Σ_c is also small. However, Σ_c does not map $O^r_{q^2}$ to $\mathcal{D}^r_{c,q}$; otherwise, we could use the Neumann series to invert $\mathcal{B}_c - \Sigma_c$. Nonetheless, one can parley the smallness of Σ_c and the invertibility of \mathcal{B}_c into a coercive estimate of the form

$$\mathcal{L}_c f = g, \ f \in O^2_q, \ g \in O^0_q \implies \|f\|_{2,q} \leq C(c,q) \|g\|_{0,q},$$

which implies that \mathcal{L}_c is injective on O^2_q and, by the containment $O^r_{q^2} \subseteq O^2_q$ for $r \geq 0$, on O^r_q for all $r \geq 0$.

1.5.2. A characterization of the range of \mathcal{L}_c. We show, abstractly, that \mathcal{L}_c is not surjective from $O^r_{q^2}$ to O^r_q. Since the operator Σ_c localizes functions, it is compact from $O^r_{q^2}$ to O^r_q, and so the Fredholm index of $\mathcal{L}_c = \mathcal{B}_c + \Sigma_c$ equals the index of \mathcal{B}_c. The Fourier analysis in Section 1.5.1 shows that the index of \mathcal{B}_c is -1, so \mathcal{L}_c also has index -1. Since \mathcal{L}_c is injective, we conclude that \mathcal{L}_c has a one-dimensional cokernel in O^r_q and thus is not surjective.

However, we can characterize the range of \mathcal{L}_c in O^r_q more precisely. Classical functional analysis tells us there is a nontrivial bounded linear functional $\tilde{\varsigma}_c$ on O^0_q such that

$$\mathcal{L}_c f = g, \ f \in O^r_{q^2}, \ g \in O^r_q \iff \tilde{\varsigma}_c [g] = 0.$$

Let

$$\mathcal{Z}^* := \{ f \in L^1_{\text{loc}} \mid \text{sech}^q(\cdot) f \in L^2 \} \cap \{ \text{odd functions} \}.$$

The Riesz representation theorem then furnishes an nonzero function $\tilde{\varsigma}_c \in \mathcal{Z}^*$ such that

$$\tilde{\varsigma}_c [g] = \int_{-\infty}^{\infty} g(x) \tilde{\varsigma}_c(x) \, dx, \ g \in O^0_q.$$
It follows that $L^*_c \tilde{z}_c = 0$, where

$$L^*_c g := B_c g + 2 \zeta_c(x)(2 + A)g,$$

is the L^2-adjoint of L_c. We conclude from (1.5.5) the “solvability condition”

$$L_c f = g, f \in O_q^{r+2}, g \in O_q^r \iff \int_{-\infty}^{\infty} g(x) \tilde{z}_c(x) \, dx = 0.$$

It appears, then, that our attempt to solve the traveling wave problem $G_c(\rho, \mu) = 0$ by perturbing from the Friesecke-Pego solution ζ_c will fail, since L_c is not surjective. Moreover, although we can characterize the range of L_c precisely via (1.5.7), all we know about \tilde{z}_c is that $L^*_c \tilde{z}_c = 0$ and $\tilde{z}_c \in \mathcal{Z}_q^*$. The kernel of L^*_c in \mathcal{Z}_q^* must be one-dimensional, as otherwise, L^*_c would have Fredholm index -2 or lower, and so \tilde{z}_c is unique up to scalar multiplication. But this function space \mathcal{Z}_q^* is quite large — it contains, for example, all odd functions in L^2 and L^∞ — and so further features of \tilde{z}_c are not immediately apparent.

To determine our next steps, we look back to the work of our predecessors in the long wave [FW18] and small mass [HW17] problems. In each of these problems, an operator similar to L_c appears; each of these operators on O_q^{r+2} has a one-dimensional cokernel in O_q^r because of a solvability condition like (1.5.7). Moreover, the authors were able to construct odd solutions in W^2,∞ to their versions of $L^*_c g = 0$ that asymptote to a sinusoid. We refer to such solutions as “Jost solutions,” due to their similarity to the classical Jost solutions for the Schrödinger equation [RS79]. Seeing how the Jost solutions in the long wave and small mass problems are determined both guides us to the features of the Jost solution that we seek for L^*_c and help us appreciate what is intrinsically different about L^*_c when compared to its analogues in the prior nanopteron problems.

1.5.3. Jost solutions in the long wave limit [FW18]. The analogue of L_c in this problem is, roughly, the operator

$$W_c f := (1 + \varepsilon^2)\varepsilon^2 f'' + \mathcal{M}_c f,$$

where $\varepsilon \approx 0$ and \mathcal{M}_c is a Fourier multiplier with the real-valued symbol $\tilde{M}(\varepsilon \cdot)$, i.e., $\mathcal{M}_c f(k) = \tilde{M}(\varepsilon k) \hat{f}(k)$. The wave speed is intrinsically linked to the small long wave parameter ε, and so c does not appear here. Since W_c is a Fourier multiplier with real-valued symbol $\tilde{W}_c(k) := -(1 + \varepsilon^2)\varepsilon^2 k^2 + \tilde{M}(\varepsilon k)$, it is self-adjoint in L^2. An intermediate value theorem argument similar to the one referenced in Section 1.5.1 gives the existence of a unique $\Omega_c > 0$ such that $W_c(K) = 0$ if and only if $K = \pm \Omega_c$, and so $W_c \sin(\Omega_c \cdot) = W_c \cos(\Omega_c \cdot) = 0$. That is, the Jost solutions are exactly sinusoidal.

1.5.4. Jost solutions in the small mass limit [HW17]. Here the analogue of L_c is, roughly,

$$T_c(m) f := c^2 m f'' + (1 + 2 \zeta_c(x))f + m \mathcal{M}_m f + m \mathcal{J}_m(\zeta_c(x) f).$$

We take $m \approx 0$, where m is the mass ratio of the diatomic lattice, per (1.1.1). The operators \mathcal{M}_m and \mathcal{J}_m are Fourier multipliers that are $O(1)$ in m, so the perturbation terms $m \mathcal{M}_m$ and $m \mathcal{J}_m$ are indeed small, but Hoffman and Wright found it essential to retain these terms rather than absorb them into their analogues of our right side $R_{c,2}$ from (1.5.1). Here the
exponentially localized function \(\zeta \) is the Frieseeke-Pego solitary wave profile corresponding to the monatomic lattice formed by taking \(m = 0 \) in (1.1.1).

The \(L^2 \)-adjoint of \(T_c(m) \) is

\[
T_c(m)^* g = S_c(m) g + m M_mg + m \zeta(x) J_mg.
\]

Hoffman and Wright construct a nontrivial solution to \(T_c(m)^* g = 0 \) as follows. First, they show that \(S_c(m) \) vanishes on certain asymptotically sinusoidal functions, i.e., there exists \(f_c^m \in W^{2,\infty} \) such that

\[
S_c(m) f_c^m = 0 \quad \text{and} \quad \lim_{x \to \infty} |f_c^m(x) - \sin(\Omega_c^m(x + \theta_c^m))| = 0
\]

for some critical frequency \(\Omega_c^m \) and phase shift \(\theta_c^m \). This solution \(f_c^m \) is indeed a classical Jost solution for the Schrodinger operator \(S_c(m) \). The proof of the asymptotics in (1.5.8) uses a polar coordinate decomposition that closely relies on the structure of \(S_c(m) \) as a second-order linear differential operator.

Second, it is clear that \(T_c(m)^* \) is a small nonlocal perturbation of \(S_c(m) \). Using these facts, Hoffman and Wright perform an intricate variation of parameters argument (which again relies on the differential operator structure of \(S_c(m) \)) in an asymptotically sinusoidal subspace of \(W^{2,\infty} \) to construct a function \(\gamma_c^m \in W^{2,\infty} \) with the properties that

\[
T_c(m)^* \gamma_c^m = 0 \quad \text{and} \quad \lim_{x \to \infty} |\gamma_c^m(x) - \sin(\Omega_c^m(x + \vartheta_c^m))| = 0
\]

for some (new) phase shift \(\vartheta_c^m \), which is a small perturbation of \(\theta_c^m \). A corollary to this analysis is the frequency-phase shift “resonance” relation \(\sin(\Omega_c^m \vartheta_c^m) \neq 0 \) for almost all values of \(m \) close to zero, which turns out, in a subtle and surprising way, to be critical for their subsequent analysis.

1.5.5. \textit{Toward Jost solutions for the equal mass operator} \(L_c^* \). Unlike the long wave operator \(\mathcal{W}_c \), the operator \(L_c^* \) is not a “pure” Fourier multiplier as it has the variable-coefficient piece \(\Sigma_c^* \). And unlike the small mass operator \(T_c(m)^* \), we cannot decompose \(L_c^* \) as the sum of a classical differential operator and a perturbation term that is small in \(\mu \). So, we cannot directly import prior results to produce the Jost solutions of \(L_c^* \).

Our approach is to take advantage of two particular aspects of the structure of \(L_c^* \). First, the constant-coefficient part \(B_c \) is an advance-delay operator formed by a simple linear combination of shift operators. The Fredholm properties of such operators have received significant attention from Mallet-Paret [MP99]. Next, the variable-coefficient piece \(\Sigma_c^* \) is both exponentially localized and small for \(|c| \gtrsim 1 \). These facts are sufficient to solve the equation \((B_c - \Sigma_c^*)f = 0\) in a class of “one-sided” exponentially weighted Sobolev spaces, whose features we specify below in Definition 2.2.

In broad strokes, then, we first use an adaptation of Mallet-Paret’s theory due to Hupkes and Verduyn-Lunel [HL07] to invert \(B_c \) on these one-sided spaces and, moreover, obtain a precise formula for its inverse. Next, it turns out that \(\Sigma_c^* \) does map between these one-sided spaces\(^3\) and so, since \(\Sigma_c^* \) is still “small,” we are able to invert \(B_c - \Sigma_c^* \) with the Neumann series. This procedure yields a function \(\gamma_c \in W^{2,\infty} \) that satisfies \(L_c^* \gamma_c = 0 \) and is asymptotic to a phase-shifted sinusoid of frequency \(\omega_c \) at \(\infty \), where \(\omega_c \) is the “critical frequency” of \(B_c \) that appeared in Section 1.5.1. The exact formulas that we enjoy for the inverses of \(B_c \) and then \(B_c - \Sigma_c^* \) permit us to calculate an asymptotic expansion for the phase shift.

\(^3\)Unlike its failure to map between \(Q^r_{q+2} \) and \(\mathcal{D}^{r}_{c,q} \), as we saw in Section 1.5.1.)
1.6. Main result for the case \(|c| \gtrsim 1\). Now that we understand precisely the range of \(\mathcal{L}_c\), as well as its lack of surjectivity, we can confront again the traveling wave problem \(\mathcal{G}_c(\rho, \mu) = 0\) from (1.3.1), which we seek to solve for \(\rho \approx \varsigma_c\) and \(\mu \approx 0\). The general structure of this problem, most especially the solvability condition (1.5.7), puts us in enough concert with our predecessors in [FW18] and [HW17] that we may follow their modifications of a method due to Beale [Bea91] for solving problems with such a solvability condition. Specifically, we replace the perturbation ansatz \(\rho = \varsigma_c + \varphi\) with the nonlocal solitary wave anzatz \(\rho = \varsigma_c + a \phi^\mu[a] + \eta\), where \(\eta = (\eta_1, \eta_2)\) is exponentially localized and \(a \phi^\mu[a]\) is a periodic solution to the traveling wave problem with amplitude roughly \(a\) and frequency (very) roughly \(\omega_c\). Of course, proving the existence of periodic traveling wave solutions is a fundamental part of our analysis.

Under Beale’s ansatz, one easily finds a fixed point equation for \(\eta_1\), similar to how we converted (1.4.3) into (1.4.4). Then we can extract from the solvability condition a fixed point equation for \(a\), and, in turn, an equation for \(\eta_2\). We carry out this construction in Section 5, where we prove (as Theorem 5.4) a more technical version of our main theorem below.

Theorem 1.2. Suppose \(|c| \gtrsim 1\). For \(|\mu|\) sufficiently small, there are functions \(\Upsilon^\mu_{c,1}, \Upsilon^\mu_{c,2}, \varphi^\mu_{c,1}, \varphi^\mu_{c,2} \in \mathcal{C}_\infty^\infty(\mathbb{R})\) such that the traveling wave profiles

\[
\rho^\mu_{c,1} := \varsigma_c + \Upsilon^\mu_{c,1} + \varphi^\mu_{c,1} \quad \text{and} \quad \rho^\mu_{c,2} := \Upsilon^\mu_{c,2} + \varphi^\mu_{c,2}
\]

satisfy \(\mathcal{G}_c((\rho^\mu_{c,1}, \rho^\mu_{c,2}), \mu) = 0\). The functions \(\Upsilon^\mu_{c,1}\) and \(\Upsilon^\mu_{c,2}\) are exponentially localized, while \(\varphi^\mu_{c,1}\) and \(\varphi^\mu_{c,2}\) are periodic. The amplitude of all four functions is \(O(\mu)\).

When \(\mu = 0\) and our lattice is monatomic, the micropteron in Theorem 1.2 reduces to the Friesecke-Pego solitary wave. We remark that the stability of these micropteron traveling wave solutions for the equal mass limit, as well as the stability of the long wave and small mass nanopterons, is an intriguing open problem; see [JW] for some initial forays into this arena.

1.7. Toward the case \(|c| \gg 1\). Throughout this introduction, we have assumed that \(|c|\) is close to 1. This first allows us to summon a Friesecke-Pego solitary wave solution \(\varsigma_c\) for the monatomic problem and next shows, through the coercive estimate (1.5.4), that \(\mathcal{L}_c\) is injective from \(O_q^{r+2}\) to \(O_q^r\). Third, taking \(|c|\) close to 1 is fundamental for the Neumann series argument that allows us to invert \(\mathcal{B}_c - \Sigma_c^*\) in the one-sided spaces. Ostensibly, then, it appears that we are working with two small parameters, \(\mu\) and \(|c| - 1\), in our equal mass problem.

This turns out, from a certain point of view, to be superfluous. In Section 2, we present four simple and natural hypotheses that, if satisfied for an arbitrary wave speed \(|c| > 1\) guarantee a micropteron solution in the equal mass limit. All of these hypotheses are satisfied for \(|c| \gtrsim 1\). Among these hypotheses is the existence of an exponentially localized and spectrally stable traveling wave solution for the monatomic problem with wave speed possibly much greater than 1; this is the origin of the dashed blue line in Figure 3. We emphasize that the existence of the Jost solutions to \(\mathcal{L}_c^* g = 0\) is not one of these hypotheses; their construction, for an arbitrary \(|c| > 1\), follows from a weaker hypothesis.
This approach has several advantages and justifications over working only in the near-sonic regime $|c| \gtrsim 1$. First, it decouples the starring small parameter μ from the deuteragonist $|c| - 1$; after all, we are interested in the equal mass limit, not the near-sonic limit. Next, it frees us from overreliance on the Friesecke-Pego traveling wave and leaves our results open to interpretation and invocation in the case of high-speed monatomic traveling waves. For example, Herrmann and Matthies [HM15, HM17, HM19] have developed a number of results on the asymptotics, uniqueness, and stability of solitary traveling wave solutions to the monatomic FPUT problem (albeit with different spring forces from ours) in the “high-energy limit,” which inherently assumes a large wave speed. Additionally, the original monatomic solitary traveling wave of Friesecke and Wattis [FW94] does not come with a near-sonic restriction on its speed, and so, in principle, that wave could have speed much greater than 1. Further study of the existence and properties of solutions to the monatomic traveling wave problem in the high wave speed regime remains an interesting open problem, and we are eager to see how our hypotheses may exist in concert with future solutions to that problem.

1.8. Remarks on notation. We define some basic notation that will be used throughout the paper.

- The letter C will always denote a positive, finite constant; if C depends on some other quantities, say, q and r, we will write this dependence in function notation, i.e., $C = C(q, r)$. Frequently C will depend on the wave speed c, in which case we write $C(c)$.

- We employ the usual big-O notation: if $x_\epsilon \in \mathbb{C}$ for $\epsilon \in \mathbb{R}$, then we write $x_\epsilon = O(\epsilon^p)$ if there are constants $\epsilon_0, C(\epsilon_0, p) > 0$ such that
 \[0 < \epsilon < \epsilon_0 \implies |x_\epsilon| \leq C(\epsilon_0, p)\epsilon^p. \]

- Next, we need a c-dependent notion of big-O notation. Suppose that $x_\mu^c \in \mathbb{C}$ for $c, \mu \in \mathbb{R}$. Then we write $x_\mu^c = O_c(\mu^p)$ if there are constants $\mu_c, C(c, p) > 0$ such that
 \[|\mu| \leq \mu_c \implies |x_\mu^c| \leq C(c, p)|\mu|^p. \]

- If \mathcal{X} and \mathcal{Y} are normed spaces, then $\mathcal{B}(\mathcal{X}, \mathcal{Y})$ is the space of bounded linear operators from \mathcal{X} to \mathcal{Y} and $\mathcal{B}(\mathcal{X}) := \mathcal{B}(\mathcal{X}, \mathcal{X})$.

1.9. Outline of the remainder of the paper. Here we briefly discuss the structure of the rest of the paper.

- Section 2 contains the precise statements of the four hypotheses under which we will work.

- Section 3 constructs a family of small-amplitude periodic traveling wave solutions to the traveling wave problem (1.3.1) that possess a number of uniform estimates in the small parameter μ. These periodic traveling waves exist for arbitrary $|c| > 1$.

- Section 4 characterizes the range of L_c as an operator from O_q^{r+2} to O_q^r by constructing a Jost solution for $L_c^*g = 0$.

Footnote: In fact, a third small parameter also lurks in nonlocal solitary wave problems: the precise decay rate q of the exponentially localized spaces E_q^r and O_q^r. Our hypotheses make explicit the decay rates that we employ and highlight the relationships between the rates at different stages of the problem.
Section 5 converts the nonlocal solitary wave equations of Section 5.1 into a fixed point problem, which we then solve with a modified contraction mapping argument.

Section 6 shows that the four main hypotheses of Section 2 are valid in the case $|c| \gtrsim 1$.

The appendices contain various technical proofs and ancillary background material.

2. The Traveling Wave Problem for Arbitrary Wave Speeds

In this section we discuss the four hypotheses that are sufficient to guarantee micropteron traveling wave solutions in the equal mass limit for arbitrary wave speeds. Throughout, we fix $c \in \mathbb{R}$ with $|c| > 1$. Since $|c|$ may not be close to 1, we are not guaranteed a monatomic traveling wave solution from Friesecke and Pego, and so we make its existence our first hypothesis.

Hypothesis 1. There exist $q, \varsigma(c) > 0$ and a real-valued function $\varsigma_c \in E_{q,\varsigma(c)}^2 \cap E_{r,\varsigma(c)}^0 \cap E_{-r,\varsigma(c)}^0$ such that

\[
c^2 \varsigma''_c + (2 - A)(\varsigma_c + \varsigma_c^2) = 0.
\]

That is, ς_c is an exponentially localized traveling wave profile with wave speed c for the monatomic FPUT equations of motion. With ς_c satisfying (2.0.1), it follows that if $\varsigma_c := (\varsigma_c, 0)$, then $G_c(\varsigma_c, 0) = 0$. A straightforward bootstrapping argument, discussed in Appendix F.1, endows arbitrary regularity to ς_c.

Proposition 2.1. The monatomic traveling wave solution ς_c from Hypothesis 1 also satisfies $\varsigma_c \in \bigcap_{r=1}^{\infty} E_{q,\varsigma(c)}^r$.

Next, we add the invertibility of the linearization of the monatomic traveling wave problem at ς_c as a hypothesis for the situation when $|c|$ is not necessarily close to 1.

Hypothesis 2. There exists $q_{\mathcal{H}}(c) \in (0, \min\{1, q, \varsigma(c)\})$ such that the operator \mathcal{H}_c from (1.4.3) is invertible from $E_{q_{\mathcal{H}}(c)}^2$ to $E_{q_{\mathcal{H}}(c)}^0$.

In Section 1.5.5, we claimed that the key to characterizing the range of \mathcal{L}_c, defined in (1.5.1), was the invertibility of its L^2-adjoint, \mathcal{L}_c^*, defined in (1.5.6), on a class of one-sided exponentially weighted spaces. Now we make precise the definitions of these spaces and the weights for which \mathcal{L}_c^* needs to be invertible.

Definition 2.2. For $q \in \mathbb{R}$ and m, $r \in \mathbb{N}$, we define

\[
W^{r,\infty}_q(\mathbb{R}, \mathbb{C}^m) := \{ f \in L^1_{\text{loc}}(\mathbb{R}, \mathbb{C}^m) \mid e^{-q} f \in W^{r,\infty}(\mathbb{R}, \mathbb{C}^m) \}
\]

and

\[
L^\infty_q(\mathbb{R}, \mathbb{C}^m) := W^{0,\infty}_q(\mathbb{R}, \mathbb{C}^m).
\]

When $m = 1$, we write just $W^{r,\infty}_q$ and L^∞_q. We set

\[
\|f\|_{W^{r,\infty}_q(\mathbb{R}, \mathbb{C}^m)} := \|e^{-q} f\|_{W^{r,\infty}(\mathbb{R}, \mathbb{C}^m)}.
\]

Hypothesis 3. There exists $q_{\mathcal{L}}(c) \in (0, \min\{q_{\mathcal{H}}(c), q(c)/2, 1\})$ such that the operator \mathcal{L}_c^* is invertible from $W^{2,\infty}_{q_{\mathcal{L}}(c)}$ to $L^\infty_{-q_{\mathcal{L}}(c)}$.

Assuming this hypothesis we obtain a precise characterization of the range of \mathcal{L}_c. We prove this theorem in Section 4.
Proposition 2.3. There is a nonzero odd function \(\gamma_c \in W^{2,\infty} \) (a “Jost solution” to \(L_*^c g = 0 \)) such that for \(f \in O_q^{r+2} \) and \(g \in O_q^r \), with \(r \geq 0 \) and \(q \in [q_L(c),1) \), we have

\[
L_*^c f = g \iff \int_{-\infty}^{\infty} g(x)\gamma_c(x) \, dx = 0.
\]

Moreover, \(\gamma_c \) is asymptotically sinusoidal in the sense that, for some \(\theta_c \in \mathbb{R} \),

\[
\lim_{x \to \infty} |\gamma_c(x) - \sin(\omega_c(x + \theta_c))| = \lim_{x \to \infty} |(\gamma_c)'(x) - \omega_c \cos(\omega_c(x + \theta_c))| = 0.
\]

Last, like Hoffman and Wright, we need one more condition on the interaction between the critical frequency \(\omega_c \) from Section 1.5.1 and the phase shift \(\theta_c \) of the Jost solution to \(L_*^c f = 0 \) from Theorem 2.3. This condition arises in practice much later for quite a technical reason; see Section 5.3.

Hypothesis 4. \(\sin(\omega_c \theta_c) \neq 0 \).

All four hypothesis hold when \(|c| \gtrsim 1 \); we give the proof of the next theorem in Section 6. The verification of Hypotheses 1 and 2 is merely a matter of quoting results from [FP99] and [HW17]. On the other hand, verifying Hypotheses 3 and 4 relies on results from [HL07], and the proof of their validity is among the central technical results of this paper.

Theorem 2.4. There exists \(c_* > 1 \) such that Hypotheses 1, 2, 3, and 4 hold if \(|c| \in (1,c_*) \).

Under these hypotheses we retain the existence of micropterons in the equal mass limit. We prove the next theorem, our central result, as Theorem 5.4.

Theorem 2.5. Suppose that Hypotheses 1, 2, 3, and 4 hold for some \(|c| > 1 \). Then the results of Theorem 1.2 remain true.
and
\[O'_{\text{per}} := \{ f \in H^r_{\text{per}} \mid f \text{ is odd} \}. \]

Set \(\rho(x) = \phi(\omega x) \), where \(\phi \in E^r_{\text{per,0}} \times O^r_{\text{per}} \subseteq H^r_{\text{per}}(\mathbb{R}, \mathbb{C}^2) \) and \(\omega \in \mathbb{R} \). Under this scaling, the problem \(G_c(\rho, \mu) = 0 \) becomes
\[
(3.0.3) \quad \boxed{c^2 \omega^2 \phi'' + D_\mu[\omega] \phi + D_\mu[\omega] Q(\phi, \phi) = 0,}
\]
where
\[
D_\mu[\omega] := \frac{1}{2} \begin{pmatrix}
(2 + \mu)(1 - A[\omega]) & \mu \delta[\omega] \\
-\mu \delta[\omega] & (2 + \mu)(1 + A[\omega])
\end{pmatrix},
\]
with
\[
A[\omega] := S^\omega + S^{-\omega} \quad \text{and} \quad \delta[\omega] := S^\omega - S^{-\omega}.
\]

As in the proofs of periodic solutions for the long wave problems (Theorems 4.1 in [FW18] and 3.1 in [Fav]) and the small mass problem (Theorem 5.1 in [HW17]), we first look for solutions to the linear problem, which is
\[
(3.0.4) \quad \boxed{c^2 \omega^2 \phi'' + D_\mu[\omega] \phi = 0.}
\]
Observe that if \(\Gamma^\mu_c[\omega] \phi = 0 \), then taking the Fourier transform yields
\[
(3.0.5) \quad c^2 \omega^2 k^2 \hat{\phi}(k) = \widetilde{D}_\mu[\omega k] \hat{\phi}(k),
\]
where
\[
(3.0.6) \quad \widetilde{D}_\mu[K] := \begin{pmatrix} (2 + \mu)(1 - \cos(K)) & i \mu \sin(K) \\ -i \mu \sin(K) & (2 + \mu)(1 + \cos(K)) \end{pmatrix}.
\]
Thus \(\Gamma^\mu_c[\omega] \phi = 0 \) with \(\phi \) nonzero if and only if, for some \(k \in \mathbb{Z} \), \(\hat{\phi}(k) \neq 0 \) is an eigenvector of the matrix \(\widetilde{D}_\mu[\omega k] \in \mathbb{C}^{2 	imes 2} \) corresponding to the eigenvalue \(c^2 \omega^2 k^2 \).

We compute that the eigenvalues of \(\widetilde{D}_\mu[K] \) are \(\lambda^\pm_\mu(K) \), where
\[
(3.0.7) \quad \lambda^\pm_\mu(K) := 2 + \mu \pm \sqrt{\mu^2 + 4(1 + \mu) \cos^2(K)}.
\]
These are the same eigenvalues studied in [FW18], [HW17], and [Fav]. See Figure 4 for a sketch of the curves \(\lambda^\pm_\mu(K) \) against \(c^2 K^2 \).

So, \(\Gamma^\mu_c[\omega] \phi = 0 \) with \(\hat{\phi}(k) \neq 0 \) if and only if
\[
c^2 \omega^2 k^2 = \lambda^-_\mu(\omega k) \quad \text{or} \quad c^2 \omega^2 k^2 = \lambda^+_\mu(\omega k).
\]

We will prove below in Proposition C.2 that if \(|c| > 1 \), then the first equality above can never hold, at least over an appropriate \(c \)-dependent range of \(\mu \), while the second holds precisely at \(\omega = \omega^\mu_c/k \), \(k \in \mathbb{Z} \setminus \{0\} \), for a certain “critical frequency” \(\omega^\mu_c > 0 \), which is an \(O_c(\mu) \) perturbation of the frequency \(\omega_c \) from Section 1.5.1. We elect to take \(\omega = \omega^\mu_c \) (i.e., \(k = \pm 1 \)) so that the frequency of our periodic solutions is close to \(\omega_c \); this is important in our construction of the micropterons in Section 5.

We now highlight several important properties of \(\omega^\mu_c \), both contained in and proved as part of Lemma C.1.

Proposition 3.1. (i) For all \(|c| > 1 \), there is \(\mu_0(c) > 0 \) such that if \(|\mu| \leq \mu_0(c) \), then there is a unique number \(\omega^\mu_c > 0 \) such that \(c^2 (\omega^\mu_c)^2 = \lambda^\pm_\mu(\omega^\mu_c) \).
Figure 4. Sketches of the graphs of the eigencurves $\lambda^\pm_\mu(K)$ and the parabola c^2K^2 for different cases on $|c|$ and $|\mu|$. When $|c| < 1$, $\lambda^\pm_\mu(K)$ may have more intersections with c^2K^2 than just $K = \pm \omega^\mu_c$. Note that when $\mu = 0$, the curves λ^\pm_0 intersect at odd multiples of $\pi/2$, but this does not affect the eigenvalue analysis, since the critical frequencies ω^μ_c are contained in $(-\pi/2, \pi/2)$.

(ii) There are numbers $0 < A_c < B_c < \pi/2$ such that $A_c < \omega^\mu_c < B_c$ for all $|\mu| \leq \mu_\omega(c)$.

(iii) If $|c| \in (1, \sqrt{2}]$, then $A_c \geq 1$.

(iv) $\omega^\mu_c - \omega_c = O_c(\mu)$.

Remark 3.2. The restriction $|c| \in (1, \sqrt{2}]$ will appear in several technical estimates throughout the rest of the paper. This is merely to ensure the convenient lower bound $\omega^\mu_c > 1$, which will be useful when we verify the four hypotheses for $|c| \gtrsim 1$.
Following the methods of our predecessors, we will use this critical frequency ω_{μ}^c in a modified Crandall-Rabinowitz-Zeidler bifurcation from a simple eigenvalue argument [CR71, Zei95] to construct the exact periodic solutions to the full problem $\mathcal{G}_c(\rho, \mu) = 0$. Here is our result, proved in Appendix C.

Proposition 3.3. For each $|c| > 1$, there are $\mu_{\text{per}}(c) \in (0, \min\{\mu_{w}(c), 1\})$ and $a_{\text{per}}(c) > 0$ such that for all $|\mu| \leq \mu_{\text{per}}(c)$, there are maps

$$
\omega_{\mu}^c[: [-a_{\text{per}}(c), a_{\text{per}}(c)] \to \mathbb{R} \\
\psi_{\mu,1}^c[: [-a_{\text{per}}(c), a_{\text{per}}(c)] \to \mathcal{C}_\text{per}^\infty \cap \{\text{even functions}\} \\
\psi_{\mu,2}^c[: [-a_{\text{per}}(c), a_{\text{per}}(c)] \to \mathcal{C}_\text{per}^\infty \cap \{\text{odd functions}\}
$$

with the following properties.

(i) If

$$(3.0.8) \quad \phi_{\mu}^c[a](x) := \left(\begin{array}{c} \psi_{\mu,1}^c[a]\cos(\omega_{\mu}^c[a]x) \\
\psi_{\mu,2}^c[a]\sin(\omega_{\mu}^c[a]x) \end{array} \right) + \left(\begin{array}{c} \psi_{\mu,1}^c[a](\omega_{\mu}^c[a]x) \\
\psi_{\mu,2}^c[a](\omega_{\mu}^c[a]x) \end{array} \right),$$

where $\psi_{\mu}^c = \mathcal{O}_c(\mu)$ is defined below in (C.1.17), then $\mathcal{G}_c(a\phi_{\mu}^c[a], \mu) = 0$.

(ii) $\omega_{c}^\mu[0] = \omega_{c}^\mu$.

(iii) $\psi_{\mu,1}^c[0] = \psi_{\mu,2}^c[0] = 0$.

(iv) For each $r \geq 0$, there is $C(c, r) > 0$ such that if $|a|, |\hat{a}| \leq a_{\text{per}}$ and $|\mu| \leq \mu_{\text{per}}(c)$, then

$$(3.0.9) \quad |\omega_{c}^\mu[a] - \omega_{c}^\mu[\hat{a}]| + \|\psi_{\mu,1}^c[a] - \psi_{\mu,1}^c[\hat{a}]\|_{W^{r,\infty}} + \|\psi_{\mu,2}^c[a] - \psi_{\mu,2}^c[\hat{a}]\|_{W^{r,\infty}} \leq C(c, r)|a - \hat{a}|.$$

For later use, we isolate two additional estimates on the periodic solutions and their frequencies; the proof follows directly from Proposition 3.3.

Corollary 3.4. Under the notation of Proposition 3.3, we have

$$(3.0.10) \quad \sup_{|\mu| \leq \mu_{\text{per}}(c)} |\omega_{\mu}^c[a]| + \|\phi_{\mu}^c[a]\|_{W^{r,\infty}} < \infty.$$

and

$$(3.0.11) \quad \sup_{|\mu| \leq \mu_{\text{per}}(c)} \|\psi_{\mu}^c[a]\|_{W^{r,\infty}} \leq C(c, r)|a|.$$

We emphasize that our periodic solutions persist for $\mu = 0$, i.e., for the monatomic lattice. Such persistence at the zero limit of the small parameter was impossible in the long wave and small mass limits, as there the analogue of the critical frequency diverged to $+\infty$ as the small parameter approached zero. This cannot happen in our problem, due to the bounds on ω_{μ}^c in part (ii) in Proposition 3.1.

We also note that the existence of periodic solutions to the monatomic traveling wave problems has already been established by Friesecke and Mikikits-Leitner [FML15] in the long wave limit using a construction inspired by [FP99]. These periodic traveling waves are close to a KdV cnoidal profile, whereas when $\mu = 0$, the expansion (3.0.8) says that the periodic solutions from Proposition 3.3 are, to leading order in the amplitude parameter a, close to $(0, \sin(\omega_{c}^\mu))$.
4. Analysis of the Operators L_c and L_c^*

Proposition 2.3 characterized the range of L_c, defined in (1.5.2), as an operator from O_q^{r+2} to O_q^r. In this section we prove that theorem, which we restate below with some additional details.

Theorem 4.1. Let $|c| > 1$ satisfy Hypotheses 1 and 3.

(i) The operator L_c is injective from O_q^{r+2} to O_q^r for each $r \geq 0$ and $q \geq q_L(c)$.

(ii) There is a nonzero odd function $\gamma_c \in W^{2, \infty}$ such that for $f \in O_q^{r+2}$ and $g \in O_q^r$, with $r \geq 0$ and $q \in [q_L(c), 1)$, we have

$$
L_c f = g \iff \int_{-\infty}^{\infty} g(x) \gamma_c(x) \, dx = 0.
$$

Moreover, $L_c^* \gamma_c = 0$, where L_c^* is the L^2-adjoint of L_c and was defined in (1.5.6).

(iii) The function γ_c satisfies the limits

$$
\lim_{x \to \infty} |\gamma_c(x) - \sin(\omega_c(x + \vartheta_c))| = \lim_{x \to \infty} |(\gamma_c)'(x) - \omega_c \cos(\omega_c(x + \vartheta_c))| = 0.
$$

(iv) The functional ι_c is bounded on O_q^r for any q, $r \geq 0$, i.e., there is $C(c, q, r) > 0$ such that

$$
|\iota_c[f]| \leq C(c, q, r) \|f\|_{r,q}, \quad f \in O_q^r.
$$

Throughout the proof of this theorem, we will use a number of properties of the symbol B_c of the operator B_c, which are proved in Appendix D.1.

Proposition 4.2. For $|c| > 1$, the function

$$
B_c(z) := -c^2 z^2 + 2 + 2 \cos(z)
$$

has the following properties.

(i) Let $q_B = 1$. Then for $z \in S_{3q_B} := \{z \in \mathbb{C} \mid |\text{Im}(z)| \leq 3q_B\}$, we have $B_c(z) = 0$ if and only if $z = \pm \omega_c$, where $\omega_c \in (\sqrt{2}/|c|, \pi/2)$ was previously studied in Section 1.5.1. The zeros at $z = \pm \omega_c$ are simple. Additionally,

$$
\inf_{|c| \in (1, \sqrt{2})} |(\widetilde{B}_c)'(\omega_c)| > 0.
$$

(ii) The function $1/\widetilde{B}_c$ is meromorphic on the strip S_{3q_B}. The only poles of $1/\widetilde{B}_c$ in S_{3q_B} are $z = \pm \omega_c$, and each of these poles is simple.

(iii) There exists $r_B(c) > 0$ such that if $z \in S_{3q_B}$ with $|z| \geq r_B(c)$, then

$$
\frac{1}{|B_c(z)|} \leq \frac{2}{|\text{Re}(z)|^2}.
$$

Moreover,

$$
r_0 := \sup_{|c| \in (1, \sqrt{2})} r_B(c) < \infty.
$$
(iv) There is a constant $C_B > 0$ such that if $0 < |q| \leq q_B$, then

\[
(4.0.8) \quad \sup_{|c| \in (1, \sqrt{2})} \left\| \tilde{\mathcal{F}}^{-1} \left[\frac{1}{B_c(-\cdot + iq)} \right] \right\|_{L^1} \leq C_B \frac{1}{|q|}.
\]

Last, we mention two useful properties of the one-sided exponentially weighted spaces from Definition 2.2. First, if $q > 0$ and $f \in W^{r,\infty}_q(\mathbb{R}, \mathbb{C}^m)$, then f vanishes at $-\infty$, and if $f \in W^{r,\infty}_{-q}(\mathbb{R}, \mathbb{C}^m)$, then f vanishes at ∞. Next, the Sobolev embedding and some calculus tell us that the two-sided exponentially weighted spaces H^r_q, defined in (1.4.1), are continuously embedded in $W^{r-1,\infty}_{\pm q}$ for $r \geq 1$.

Now we are ready to prove Theorem 4.1. We distribute the proof over the remainder of this section.

4.1. Injectivity of \mathcal{L}_c^*: $O^{r+2}_q \to O^r_q$. Recall from the definition of the H^r_q spaces in (1.4.1) that if $0 \leq r_1 \leq r_2$ and $0 \leq q_1 \leq q_2$, then $O^{r_2}_q \subseteq O^{r_1}_q$. Since we take $q_L(c) \leq q$ and $r \geq 0$, it therefore suffices to prove that \mathcal{L}_c is injective from $O^{2q_L(c)}_q$ to $O^{q_L(c)}_q$.

We do this by considering \mathcal{L}_c and \mathcal{L}_c^* as unbounded operators on L^2 with domain $O^{2q_L(c)}_q$. For convenience, we recall that

\[
(4.1.1) \quad \mathcal{L}_c^*f = c^2 f'' + (2 + A) f + 2\zeta_c(x)(2 + A)f.
\]

Suppose $\mathcal{L}_c^*f = 0$ for some $f \in O^{2q_L(c)}_q$. Then

\[
f'' = -\frac{(2 + A)f + 2\zeta_c(x)(2 + A)f}{c^2}.
\]

Since $\zeta_c \in \cap_{r=0}^\infty E^r_q(c)$, we can bootstrap from this equality to obtain $f \in \cap_{r=0}^\infty O^r_q(c)$. In particular, we have $f \in O^3_{q_L(c)} \subseteq W^{2,\infty}_{-q_L(c)}$. Hypothesis 3 then implies that $f = 0$, and so \mathcal{L}_c^* must be injective. That is, 0 is not an eigenvalue of \mathcal{L}_c^*, and so 0 is also not an eigenvalue of \mathcal{L}_c. Hence \mathcal{L}_c is injective on $O^{2q_L(c)}_q$.

4.2. A solution to $\mathcal{L}_c^*f = 0$. To obtain the forward implication in (4.0.1), it suffices to find a function γ_c with $\mathcal{L}_c^*\gamma_c = 0$. We will construct a very particular γ_c that will give us the asymptotics (4.0.2). We do this in three steps. First, we find a function f_c satisfying $\mathcal{L}_c^*f_c = 0$ using methods derived from [MP99]. Then the structure of the operator \mathcal{L}_c^* guarantees that $\tilde{f}_c(x) := f_c(x) - f_c(-x)$ also satisfies $\mathcal{L}_c^*\tilde{f}_c = 0$. Last, since the function ζ_c and all the coefficients in \mathcal{L}_c^* are real-valued, the functions $\text{Re}[\tilde{f}_c]$ and $\text{Im}[\tilde{f}_c]$ satisfy $\mathcal{L}_c^*\text{Re}[\tilde{f}_c] = \mathcal{L}_c^*\text{Im}[\tilde{f}_c] = 0$ as well. We will show that a rescaled version of either $\text{Re}[\tilde{f}_c]$ or $\text{Im}[\tilde{f}_c]$ has the sinusoidal asymptotics (4.0.2).

Consider the problem $\mathcal{L}_c^*f = 0$ and make the ansatz

\[
f(x) = e^{i\omega_c x} + g(x),
\]

where $g \in L^\infty_{-q_L(c)}$. Per (i) of Proposition 4.2, we have $\mathcal{B}_ce^{i\omega_c} = 0$, so $\mathcal{L}_c^*f = 0$ if and only if

\[
(4.2.1) \quad \mathcal{L}_c^*g = \Sigma_c e^{i\omega_c}.
\]
We use the definition of Σ^* in (4.1.1) and the property $e^{q(c)}|_{\mathbb{C}} \in L^\infty$ to obtain $\Sigma^* e^{i\omega c} \in L_{-qC(c)}^\infty$. Let $[\mathcal{L}_c]^\dagger$ be the inverse of \mathcal{L}_c^* from $W_{-qC(c)}^2$ to $L_{-qC(c)}^\infty$, per Hypothesis 2. If we set

$$g_c := [\mathcal{L}_c]^\dagger \Sigma^* e^{i\omega c} \quad \text{and} \quad f_c := e^{i\omega c} + g_c$$

then $\mathcal{L}_c f_c = 0$.

4.3. Asymptotics of f_c at $\pm \infty$. Since $g_c \in W_{-qC(c)}^2$ with $q_C(c) > 0$, we know that g_c vanishes at ∞. Thus we have the asymptotics

$$(4.3.1) \quad \lim_{x \to \infty} |f_c(x) - e^{i\omega_c x}| = 0.$$

Now we need the asymptotics of f_c at $-\infty$. For this, we turn to the methods of Mallet-Paret in [MP99]. Specifically, we follow the proof of his Proposition 6.1. We rewrite (4.2.1) as

$$(4.3.2) \quad \mathcal{B}_c g_c = \frac{\Sigma^* (g_c + e^{i\omega c})}{h_c}.$$

Since $g_c \in W_{-qC(c)}^2$, we have $e^{q(c)}|_{\mathbb{C}} g_c \in L^\infty$. The Laplace transform $\mathcal{L}_- [g_c]$ is therefore defined and analytic on $\text{Re}(z) < -q_c(c)$; the definition and some essential properties of this Laplace transform are given in Appendix A.2. The bounds on $q_c(c)$ from Hypothesis 3 ensure that we may find $q_\gamma(c) > 0$ with

$$q_c(c) < q_\gamma(c) = \min \{ q_c(c), -q_c(c), q_\gamma \}.$$

Since $e^{q(c)}|_{\mathbb{C}}, e^{q(c)}|_{\mathbb{C}}, g_c \in L^\infty$ with $q_c(c) < q_\gamma(c) - q_c(c)$, it follows that $e^{(q_c(c) - q_c(c))}|_{\mathbb{C}} h_c \in L^\infty$, and therefore $\mathcal{L}_- [h_c] = \mathcal{L}_- [\mathcal{B}_c g_c]$ is defined and analytic on $|\text{Re}(z)| < (q_c(c) - q_c(c))$. Elementary properties of the Laplace transform give the bounds

$$(4.3.3) \quad \sup_{|\text{Re}(z)| \leq q_\gamma(c)} |\mathcal{L}_- [\mathcal{B}_c g_c](z)| < \infty.$$

Next, we use the formula (A.2.2) for the inverse Laplace transform to write

$$g_c(x) = \frac{1}{2\pi i} \int_{\text{Re}(z) = q_\gamma(c)} \mathcal{L}_- [g_c](-z) e^{xz} \, dz.$$

Then we apply the Laplace transform \mathcal{L}_- to our advance-delay problem (4.3.2) and find

$$\tilde{\mathcal{B}}_c(i\omega_c) \mathcal{L}_- [g_c](z) = \mathcal{R}_c(z) + \mathcal{L}_- [h_c](z) = \mathcal{R}_c(z) + \mathcal{L}_- [\mathcal{B}_c g_c](z),$$

where the remainder term \mathcal{R}_c arises from the identities (A.2.3) and (A.2.5) for the Laplace transform under derivatives and shifts, respectively. More precisely, we have

$$(4.3.6) \quad \mathcal{R}_c(z) := 2 \int_0^1 \left(g_c(x)e^{z(1-x)} + g_c(-x)e^{z(x-1)} \right) \, dx - z g_c(0) - g_c'(0)$$

and we note that \mathcal{R}_c is entire.

Part (i) of Lemma 4.2 tells us that $\tilde{\mathcal{B}}_c(i\omega_c) \neq 0$ for $0 < |\text{Re}(z)| < q_\gamma$ and so $\tilde{\mathcal{B}}_c(i\omega_c) \neq 0$ for $0 < |\text{Re}(z)| < q_\gamma(c)$ and $z \neq \pm i\omega_c$. We can therefore solve for $\mathcal{L}_- [g_c](z)$ in (4.3.5) and find

$$\mathcal{L}_- [g_c](z) = \frac{\mathcal{R}_c(z) + \mathcal{L}_- [\mathcal{B}_c g_c](z)}{\tilde{\mathcal{B}}_c(i\omega_c)}, \quad 0 \leq |\text{Re}(z)| < q_\gamma, \quad z \neq \pm i\omega_c.$$
For $x < 0$, the formula (4.3.4) for g_c then becomes

$$
(4.3.7) \quad g_c(x) = \frac{1}{2\pi i} \int_{\text{Re}(z) = q_\gamma(c)} e^{-xz} \frac{\mathcal{J}_c(z)}{\mathcal{B}_c(iz)} \, dz,
$$

where

$$
\mathcal{J}_c(x, z) := (\mathcal{R}_c(-z) + \mathcal{L}_c[-B_c g_c][-z]).
$$

This integrand is meromorphic on an open set containing $|\text{Re}(z)| < q_\gamma(c)$; it has simple poles at $z = \pm i\omega_c$ and is analytic elsewhere. Moreover, the quadratic decay of $\mathcal{B}_c(z)$ for $|z|$ large from part (iii) of Lemma 4.2, the estimate (4.3.3), and the definition of \mathcal{R}_c in (4.3.6) imply

$$
\sup_{|k| \leq q_\gamma(c)} \lim_{|q| \to \infty} \left| \frac{e^{-x(k+iq)}\mathcal{J}_c(k+iq)}{\mathcal{B}_c(ik-q)} \right| = 0, \quad x < 0.
$$

We can therefore shift the contour of the integral in (4.3.4) from $\text{Re}(z) = q_\gamma(c)$ to $\text{Re}(z) = -q_\gamma(c)$ and obtain from the residue theorem that

$$
(4.3.8) \quad g_c(x) = \frac{1}{2\pi i} \int_{|\text{Re}(z)| = -q_\gamma(c)} e^{-xz} \frac{\mathcal{J}_c(x, z)}{\mathcal{B}_c(-iz)} \, dz + \alpha_c e^{i\omega_c x} + \beta_c e^{-i\omega_c x},
$$

where

$$
(4.3.9) \quad \alpha_c e^{i\omega_c x} = 2\pi i \text{Res} \left(\frac{e^{-xz} \mathcal{J}_c(x, z)}{\mathcal{B}_c(-iz)} ; z = i\omega_c \right)
$$

and

$$
(4.3.10) \quad \beta_c e^{-i\omega_c x} = 2\pi i \text{Res} \left(\frac{e^{-xz} \mathcal{J}_c(x, z)}{\mathcal{B}_c(-iz)} ; z = -i\omega_c \right).
$$

Since \mathcal{B}_c has simple zeros at $z = \pm i\omega_c$ by part (i) of Lemma 4.2, and since $\mathcal{J}_c(x, \cdot)$ and $e^{x\cdot}$ are analytic on $|\text{Re}(z)| \leq q_\gamma(c)$, these residues are

$$
\text{Res} \left(\frac{\mathcal{J}_c(x, z)}{\mathcal{B}_c(-iz)} ; z = \pm i\omega_c \right) = \frac{e^{\pm i\omega_c x} \mathcal{J}_c(\mp i\omega)}{i(\mathcal{B}_c)'(\pm i\omega)}.
$$

The strategy of the remainder of Mallet-Paret’s proof of his Proposition 6.1 in [MP99] shows that both $r_c(x)$ and $r'_c(x)$ from (4.3.8) vanish as $x \to -\infty$. Thus

$$
(4.3.11) \quad \lim_{x \to -\infty} |f_c(x) - e^{i\omega_c x} - \alpha_c e^{i\omega_c x} - \beta_c e^{-i\omega_c x}| = 0.
$$

Remark 4.3. The limitation of this approach is that we do not have an explicit formula for g_c, and so we cannot calculate further the residues in (4.3.9) and (4.3.10). When $|c| \geq 1$, we can use the Neumann series and results from [HL07] to produce an explicit formula for $(\mathcal{B}_c - \Sigma^*_c)^{-1}$; we do this in Sections 6.3.2 and 6.3.3. In turn, this does give a formula for g_c and, ultimately, α_c and β_c.

On the other hand, we point out that our proof here does not use the fact that g_c solves the monatomic traveling wave problem; instead, we need only the decay property $e^{q_\gamma(c)|z|} g_c \in L^\infty$. The methods of this section could therefore be applied to much more general advance-delay operators than \mathcal{L}_c^*; indeed, Mallet-Paret’s results in [MP99] are phrased for a very broad class of such operators.
4.4. The phase shift revealed. With f_c from (4.2.2), the structure of \mathcal{L}_c^* implies that $\tilde{f}_c(x) := f_c(x) - f_c(-x)$ also satisfies $\mathcal{L}_c^* \tilde{f}_c = 0$. Setting

$$\mathcal{E}_c(x) := e^{i\omega_c x} - (e^{-i\omega_c x} + \alpha_c e^{-i\omega_c x} + \beta_c e^{i\omega_c x}),$$

we have

$$\lim_{x \to \infty} \left| \tilde{f}_c(x) - \mathcal{E}_c(x) \right| = 0. \tag{4.4.2}$$

This follows by estimating

$$\left| \tilde{f}_c(x) - [e^{i\omega_c x} - (e^{-i\omega_c x} + \alpha_c e^{-i\omega_c x} + \beta_c e^{i\omega_c x})] \right|$$

$$= \left| f_c(x) - f_c(-x) - [e^{i\omega_c x} - (e^{-i\omega_c x} + \alpha_c e^{-i\omega_c x} + \beta_c e^{i\omega_c x})] \right|$$

$$\leq \left| f_c(x) - e^{i\omega_c x} \right| + \left| f_c(-x) - (e^{-i\omega_c x} + \alpha_c e^{-i\omega_c x} + \beta_c e^{i\omega_c x}) \right|$$

and using the limits (4.3.1) and (4.3.11).

Now we claim

$$\mathcal{E}_c(x) \neq 0, \quad x \in \mathbb{R}. \tag{4.4.3}$$

We prove this claim in Section 4.6. Then either $\text{Re}[\mathcal{E}_c]$ or $\text{Im}[\mathcal{E}_c]$ does not vanish identically on \mathbb{R}. We assume that $\text{Im}[\mathcal{E}_c]$ does not vanish. If it is $\text{Re}[\mathcal{E}_c]$ that does not vanish, then the proof still proceeds along the lines of what follows below.

Set $\tilde{f}_c(x) := \text{Im}[\tilde{f}_c(x)] = \text{Im}[f_c(x) - f_c(-x)]$. Then $\mathcal{L}_c^* \tilde{f}_c = 0$ and, from (4.4.2), we have

$$\lim_{x \to \infty} \left| \tilde{f}_c(x) - \text{Im}[\mathcal{E}_c(x)] \right| = 0. \tag{4.4.4}$$

Write

$$\alpha_c = \alpha_{c,r} + i\alpha_{c,i} \quad \text{and} \quad \beta_c = \beta_{c,r} + i\beta_{c,i},$$

where $\alpha_{c,r}, \alpha_{c,i}, \beta_{c,r}, \beta_{c,i} \in \mathbb{R}$. Then

$$\text{Im}[\mathcal{E}_c(x)] = (2 + \alpha_{c,r} - \beta_{c,r}) \sin(\omega_c x) - (\alpha_{c,i} + \beta_{c,i}) \cos(\omega_c x). \tag{4.4.5}$$

Now we need the identity

$$A \sin(\omega x) + B \cos(\omega x) = \sqrt{A^2 + B^2} \sin \left(\omega x + \arctan \left(\frac{B}{A} \right) \right), \tag{4.4.6}$$

valid for $A, B, \omega \in \mathbb{R}$ with $A \geq 0$ (in the case $A = 0$, we interpret $\arctan(B/0) = \arctan(\pm \infty) = \pm \pi/2$). Since $\text{Im}[\mathcal{E}_c]$ does not vanish identically, at least one of the coefficients $(2 + \alpha_{c,r} - \beta_{c,r}), (\alpha_{c,i} + \beta_{c,i})$ is nonzero. We then apply the identity (4.4.6) directly to (4.4.5) and conclude that

$$\gamma_c := \frac{\text{sgn}(2 + \alpha_{c,r} - \beta_{c,r})(2 + \alpha_{c,r} - \beta_{c,r})}{\sqrt{(2 + \alpha_{c,r} - \beta_{c,r})^2 + (\alpha_{c,i} + \beta_{c,i})^2}} \tilde{f}_c$$

satisfies $\mathcal{L}_c^* \gamma_c = 0$ and

$$\lim_{x \to \infty} \left| \gamma_c(x) - \sin(\omega_c(x + \vartheta_c)) \right| = 0, \tag{4.4.7}$$
where
\[\vartheta_c := \frac{1}{\omega_c} \arctan \left(\frac{\alpha_{c,i} + \beta_{c,i}}{2 + \alpha_{c,r} - \beta_{c,r}} \right). \]

Since \(\mathcal{L}_c^* \gamma_c = 0 \), we have the forward implication of (4.0.1) in part (ii) of Theorem 4.1, and also (4.4.7) implies the first limit in the asymptotics (4.0.2) from part (iii). Proving the second limit in (4.0.2) is essentially a matter of establishing the limit (4.4.4) with \(\tilde{f}_c(x) \) replaced by \(\partial_x[\tilde{f}_c'(x)] \) and \(\Im[\mathcal{E}_c(x)] \) replaced by \(\Im[\mathcal{E}_c'(x)] \). The validity of this limit with derivatives, in turn, is a consequence of the two representations for \(f_c \); first, per (4.2.2), as \(f_c(x) = e^{i\omega_c x} + g_c(x) \), where \(g_c \) and \(g_c' \) vanish at \(\infty \), and, next, with \(g_c \) replaced by its expression in (4.3.8), in which \(r_c \) decays at \(-\infty \).

Last, since \(f_c \) and \(f_c' \) are asymptotic to bounded functions at \(\pm\infty \) by (4.3.1) and (4.3.11), it follows that \(\gamma_c, \gamma_c' \in \mathcal{L}_c \), which implies (4.0.3). This proves part (iv).

4.5. Characterization of the range of \(\mathcal{L}_c \) as an operator from \(O_q^{r+2} \) to \(O_q^r \). Here we prove the reverse implication in (4.0.1). In Section 1.5.2, we argued\(^5\) that the cokernel of \(\mathcal{L}_c \) in \(O_q^r \) was one-dimensional, and we characterized the range of \(\mathcal{L}_c \) via

\[
\mathcal{L}_c f = g, \quad f \in O_q^{r+2}, \quad g \in O_q^r \iff \int_{-\infty}^{\infty} g(x) \tilde{\gamma}_c(x) \, dx = 0
\]

for some odd function \(\tilde{\gamma}_c \in L^1_{\text{loc}} \) with \(\text{sech}^q(\cdot) \tilde{\gamma}_c \in L^2 \). On the other hand, we constructed in Section 4.4 an odd nontrivial function \(\gamma_c \in W^{2,\infty} \) such that

\[
\int_{-\infty}^{\infty} (\mathcal{L}_c f)(x) \gamma_c(x) \, dx = 0
\]

for all \(f \in O_q^{r+2} \). The functions \(\gamma_c \) and \(\tilde{\gamma}_c \) must be linearly dependent, as otherwise the functionals \(\iota_c \) and \(\tilde{\iota}_c \) would be linearly independent and \(\mathcal{L}_c \) would have a cokernel of dimension at least 2. The characterization (4.5.1) therefore implies (4.0.1).

4.6. Proof of the claim (4.4.3). Fix \(q \in [q_\text{c}(z), q_\text{b}) \) and suppose the claim is false, so that \(\mathcal{E}_c(x) = 0 \) for all \(x \). Then (4.4.2) and the exponential decay of \(g_c \) imply that \(f_c(x) = f_c(x) - f_c(-x) \) vanishes exponentially fast at \(\pm\infty \), so \(f_c \in W^{2,\infty} \). But \(\mathcal{L}_c^* f_c = 0 \), so Hypothesis 3 forces \(\tilde{f}_c = 0 \). That is, \(f_c \) must be even.

Now observe that \(\mathcal{L}_c^* f_c = \mathcal{L}_c^* f_c = 0 \), where \(f_c \) and its complex conjugate \(\overline{f}_c \) are linearly independent since they asymptote, respectively, to \(e^{i\omega_c x} \) and \(e^{-i\omega_c x} \) at \(\infty \). The functionals

\[\tilde{\iota}_{c,1}[g] := \int_{-\infty}^{\infty} g(x) f_c(x) \, dx \quad \text{and} \quad \tilde{\iota}_{c,2}[g] := \int_{-\infty}^{\infty} g(x) \overline{f_c(x)} \, dx, \]

defined for \(g \in H_q^0 \), are therefore also linearly independent. Moreover, \(\tilde{\iota}_{c,1}[\mathcal{L}_c f] = \tilde{\iota}_{c,2}[\mathcal{L}_c f] = 0 \) for all \(f \in H_q^2 \).

\(^5\)This argument used the injectivity of \(\mathcal{L}_c \) that was established in Section 1.5.1 for the restricted case \(|c| \geq 1\). Now we may rely on part (i) of Theorem 4.1 to obtain injectivity for arbitrary \(c \) assuming Hypothesis 3, and the results of Section 1.5.2 remain true.
The methods of Section 1.5.2 can be adapted to show that L_c has a two-dimensional cokernel in H^0_q when considered as an operator from H^2_q to H^0_q. Consequently, if \tilde{z} is any functional on H^0_q such that $\tilde{z}[L_c f] = 0$ for all $f \in H^2_q$, then \tilde{z} must be a linear combination of $\tilde{z}_{c,1}$ and $\tilde{z}_{c,2}$. On the other hand, with \tilde{z}_c and $\tilde{\tilde{z}}_c$ from (4.5.1), we already have $\tilde{z}_c[L_c f] = 0$ for all $f \in H^2_q$, and so \tilde{z}_c must be a linear combination of $\tilde{z}_{c,1}$ and $\tilde{z}_{c,2}$. But then the odd function $\tilde{\tilde{z}}_c$ must be a linear combination of f_c and \tilde{f}_c, and so $\tilde{\tilde{z}}_c$ is even, a contradiction.

5. The Micropteron Fixed Point Problem

5.1. Beale’s ansatz. We study our problem $G_c(\rho, \mu) = 0$ from (1.3.1) under Beale’s ansatz

$$\rho = \varsigma_c + a \phi^\mu_c[a] + \eta,$$

where

- $\varsigma_c = (\varsigma_c, 0)$ solves $G_c(\varsigma_c, 0) = 0$, per Hypothesis 1.
- $\phi^\mu_c[a]$ is periodic, $a \in \mathbb{R}$ with $|a| \leq a_{\text{per}}(c)$, $|\mu| \leq \mu_{\text{per}}(c)$, and $G_c(a \phi^\mu_c[a], \mu) = 0$ by Proposition 3.3.
- $\eta \in E^r_q \times O^r_q$ with $r \geq 2$ and $q > 0$ to be specified later.

We expand $G_c(\varsigma_c + a \phi^\mu_c[a] + \eta, \mu)$ using the bilinearity (B.0.4) of Q and the following decomposition of D_μ from (1.3.2) as the sum of a diagonal operator and a small perturbation term:

$$D_\mu = D_0 + \mu \left[\begin{array}{cc} (2 - A)/2 & \delta \\ -\delta & (2 + A)/2 \end{array} \right].$$

Next, we cancel a number of terms with the existing solutions

$G_c(\varsigma_c, 0) = 0$ and $G_c(a \phi^\mu_c[a], \mu) = 0$.

After some further rearrangements, we find that $G_c(\varsigma_c + a \phi^\mu_c[a] + \eta) = 0$ is equivalent to

$$c^2 \eta'' + D_0 \eta + 2D_0 Q(\varsigma_c, \eta) = -\mu \tilde{D}(\varsigma_c + Q(\varsigma_c, \varsigma_c)) - \mu \tilde{D} C_0 \eta - 2Q(\varsigma_c, \eta) - 2aD_\mu Q(\varsigma_c, \phi^\mu_c[a])$$

$$- 2aD_\mu Q(\phi^\mu_c[a], \eta) - D_\mu Q(\eta, \eta).$$

Recalling the definitions of H_c in (1.4.3) and L_c in (1.5.1), we see that the left side of this equation is just the diagonal operator $\text{diag}(H_c, L_c)$ applied to η. Then we can rewrite (5.1.1) in the componentwise form

$$(5.1.2) \left\{ \begin{array}{l} H_c \eta_1 = \sum_{k=1}^{5} h^\mu_{c,k}(\eta, a) \\ L_c \eta_2 = \sum_{k=1}^{5} \ell^\mu_{c,k}(\eta, a), \end{array} \right.$$
where the multitude of terms on the right side are

\[
\begin{align*}
 h_{c,1}^\mu(\eta, a) &:= -\mu \mathcal{D}(s_c + \mathcal{Q}(s_c, s_c)) \cdot e_1 \\
 \ell_{c,1}^\mu(\eta, a) &:= -\mu \mathcal{D}(s_c + \mathcal{Q}(s_c, s_c)) \cdot e_2 \\
 h_{c,2}^\mu(\eta, a) &:= -\mu \mathcal{D}(\eta - 2\mathcal{Q}(s_c, \eta)) \cdot e_1 \\
 \ell_{c,2}^\mu(\eta, a) &:= -\mu \mathcal{D}(\eta - 2\mathcal{Q}(s_c, \eta)) \cdot e_2 \\
 h_{c,3}^\mu(\eta, a) &:= -2a\mathcal{D}_\mu\mathcal{Q}(s_c, \phi_c^\mu[a]) \cdot e_1 \\
 \ell_{c,3}^\mu(\eta, a) &:= -2a\mathcal{D}_\mu\mathcal{Q}(s_c, \phi_c^\mu[a]) \cdot e_2 \\
 h_{c,4}^\mu(\eta, a) &:= -2a\mathcal{D}_\mu\mathcal{Q}(\phi_c^\mu[a], \eta) \cdot e_1 \\
 \ell_{c,4}^\mu(\eta, a) &:= -2a\mathcal{D}_\mu\mathcal{Q}(\phi_c^\mu[a], \eta) \cdot e_2 \\
 h_{c,5}^\mu(\eta, a) &:= -\mathcal{D}_\mu\mathcal{Q}(\eta, \eta) \cdot e_1 \\
 \ell_{c,5}^\mu(\eta, a) &:= -\mathcal{D}_\mu\mathcal{Q}(\eta, \eta) \cdot e_2.
\end{align*}
\]

(5.1.3)

There are, indeed, many terms here, but the salient features are that \(h_{c,k}^\mu(\eta, a) \in E_{q,0}^r \) and \(\ell_{c,k}(\eta, a) \in O_q^r \) for \(\eta \in E_q^r \times O_q^r \) and \(a \in \mathbb{R} \) and that most of these terms are “small.” For example, \(h_{c,1}^\mu \) is \(O_\epsilon(\mu) \), \(h_{c,2}^\mu \) is, very roughly, of the form \(\mu_1 \eta \), and \(h_{c,4}^\mu \) and \(h_{c,5}^\mu \) are quadratic in \(\eta \) and \(a \). The terms \(h_{c,3}^\mu \) and \(\ell_{c,3}^\mu \) are more complicated and merit more precise analysis later. We will use the explicit algebraic structure of the terms and their smallness frequently in our subsequent proofs.

5.2. Construction of the equation for \(\eta_1 \). We first extend Hypothesis 2 to allow \(\mathcal{H}_c \) to be invertible over a broader range of exponentially localized spaces. The proof of the next proposition is in Appendix F.2.

Proposition 5.1. Assume Hypotheses 1 and 2. There exist \(q^*_H(c) \) and \(\mathcal{H}_c \) such that for any \(q \in [q^*_H(c), q^*_{\mathcal{H}_c}(c)] \) and \(r \geq 0 \), the operator \(\mathcal{H}_c \) is invertible from \(E_{q,0}^{r+2} \) to \(E_q^r \).

From now on we fix \(q \in (\max\{q_L(c), q^*_H(c)\}, \min\{q_L(c), q^*_H(c)\}, 1) \). Since \(q^*_H(c) < \min\{q_L(c), q^*_H(c)\} \) and \(q_L(c) < \min\{q_L(c), q_H(c), 1\} \), Proposition 5.1 tells us that \(\mathcal{H}_c \) is invertible from \(E_{q,0}^{r+2} \) to \(E_{q,0}^r \) for any \(r \geq 0 \). We then invert \(\mathcal{H}_c \) in the first equation in (5.1.2) to obtain a fixed point equation for \(\eta_1 \):

\[
\eta_1 = -\mathcal{H}^{-1}_c \sum_{j=1}^6 h_{c,j}(\eta, a) =: \mathcal{N}^\mu_{c,1}(\eta, a).
\]

(5.2.1)

5.3. Construction of the fixed point equations for \(a \). From the system (5.1.2), the unknowns \(\eta_2 \) and \(a \) must satisfy

\[
\mathcal{L}_c \eta_2 = \sum_{k=1}^5 \ell_{c,k}(\eta, a)
\]

(5.3.1)

We formally differentiate the right side of (5.3.1) to isolate a term containing a factor of \(a \):

\[
(5.3.2) \quad \frac{\partial}{\partial a} \left[\sum_{k=1}^5 \ell_{c,k}(\eta, a) \right]_{\eta=0,a=0} = \frac{\partial}{\partial a} \left[\ell_{c,3}(\eta, a) \right]_{\eta=0,a=0} = -2\mathcal{D}_\mu \mathcal{Q}(s_c, \phi_c^\mu[0]) \cdot e_2 =: -\chi_a^\mu.
\]

We calculate this formal derivative by recalling the definitions of \(\ell_{c,1}^\mu, \ldots, \ell_{c,5}^\mu \) in (5.1.3) and observing that all the terms except \(\ell_{c,3}^\mu \) are either constant in \(a \) or quadratic in \(\eta \) and \(a \), in which case their derivatives with respect to \(a \) at \(\eta = 0 \) and \(a = 0 \) are zero. We expect, therefore, that the term

\[
\ell_{c,3}^\mu(\eta, a) + a\chi_a^\mu
\]
will be roughly quadratic in a. We could then write
\[
\sum_{k=1}^{5} \ell_{c,k}^\mu(\eta, a) = -a\chi_c^\mu + \sum_{k=1, k\neq 3}^{5} \ell_{c,k}^\mu(\eta) + (\ell_{c,3}^\mu(\eta, a) + a\chi_c^\mu).
\]

However, it turns out to be more convenient not to work with χ_c^μ but instead with
\[
(5.3.3) \quad \chi_c := \chi_c^0 = 2D_0 Q(\zeta_c, \phi_c^0[0]) \cdot e_2 = (2 + A)(\zeta_c \sin(\omega_c)).
\]

We now set
\[
(5.3.4) \quad \tilde{\ell}_{c,k}^\mu(\eta, a) := \begin{cases}
\ell_{c,k}^\mu(\eta, a), & k \neq 3 \\
\ell_{c,3}^\mu(\eta, a) + a\chi_c, & k = 3,
\end{cases}
\]
so that (5.3.1) is equivalent to
\[
(5.3.5) \quad L_c \eta_2 + a\chi_c = \sum_{k=1}^{5} \tilde{\ell}_{c,k}^\mu(\eta, a).
\]

Then we apply the functional ι_c, defined in (4.0.1), to both sides of (5.3.5) to find
\[
(5.3.6) \quad a\iota_c[\chi_c] = \sum_{k=1}^{5} \iota_c[\tilde{\ell}_{c,k}^\mu(\eta, a)].
\]

The asymptotics (4.0.2) on γ_c give us an explicit formula for $\iota_c[\chi_c]$, which we prove in Appendix F.3:
\[
(5.3.7) \quad \iota_c[\chi_c] = (2c^2\omega_c - \sin(\omega_c)) \sin(\omega_c \vartheta_c)
\]

Since $|c| > 1$, we have
\[
(5.3.8) \quad 2c^2\omega_c - \sin(\omega_c) > \omega_c - \sin(\omega_c) > 0.
\]

We assumed in Hypothesis 4 that $\sin(\omega_c \vartheta_c) \neq 0$, and so we have $\iota_c[\chi_c] \neq 0$. Then (5.3.6) is equivalent to
\[
(5.3.9) \quad a = \frac{1}{\iota_c[\chi_c]} \sum_{k=1}^{5} \iota_c[\tilde{\ell}_{c,k}^\mu(\eta, a)] =: \mathcal{N}_{c,3}^\mu(\eta, a).
\]

5.4. **Construction of the fixed point equation for η_2.** We substitute the fixed point equation (5.3.9) for a into (5.3.5) to find
\[
(5.4.1) \quad L_c \eta_2 = \sum_{k=1}^{5} \tilde{\ell}_{c,k}^\mu(\eta, a) - a\chi_c = \sum_{k=1}^{5} \tilde{\ell}_{c,k}^\mu(\eta, a) - \frac{1}{\iota_c[\chi_c]} \iota_c \left[\sum_{k=1}^{6} \tilde{\ell}_{c,k}^\mu(\eta, a) \right] \chi_c.
\]

If we set
\[
(5.4.2) \quad \mathcal{P}_c f := f - \frac{\iota_c[f]}{\iota_c[\chi_c]} \chi_c,
\]
then (5.4.1) can be written more succinctly as
\[
(5.4.3) \quad L_c \eta_2 = \mathcal{P}_c \sum_{k=1}^{5} \tilde{\ell}_{c,k}^\mu(\eta, a).
\]
It is obvious from the definition of χ_c in (5.3.3) that $\chi_c \in \cap_{\tau=0}^{\infty} O^r_{q_c(c)} \subseteq \cap_{\tau=0}^{\infty} O^r_q$, and so $P_c f \in O^r_q$ for any $f \in O^r_q$. Also, a straightforward calculation shows that $\iota_c [P_c f] = 0$.

Now, recall that in Section 5.2 we specified q so that $q \in (q_c(c), 1)$. Then part (ii) of Theorem 4.1 implies that $P_c f$ is in the range of L_c. Conversely, if $L_c f = g$, then $\iota_c [g] = 0$ and so $P_c g = g$. That is, $P_c [O^r_q] = L_c [O^r_q + 2]$. The injectivity of L_c on O^r_q for $r \geq 1$, established as part (i) of Theorem 4.1, then implies that L_c is bijective from $O^r_q + 2$ to $P_c [O^r_q]$. The functional ι_c is continuous on O^r_q by part (iv) of Theorem 4.1, and the subspace

$$P_c [O^r_q] = L_c [O^r_q + 2] = \iota_c^{-1} (\{0\}) \cap O^r_q$$

is closed in O^r_q. Hence the inverse of L_c from $P_c [O^r_q]$ to $O^r_q + 2$ is a bounded operator, which we denote by L_c^{-1}.

We are now able to rewrite (5.4.3) as a fixed point equation for η_2:

$$(5.4.4) \quad \eta_2 = L_c^{-1} P_c \sum_{k=1}^{5} \overline{\iota}^{\mu}_{c,k} (\eta, a) =: N^\mu_{c,2} (\eta, a).$$

With our previously constructed equations (5.2.1) for η_1 and (5.3.9) for a, this gives us a fixed point problem for our three unknowns from Beale’s ansatz:

$$(5.4.5) \quad (\eta, a) = (N^\mu_{c,1} (\eta, a), N^\mu_{c,2} (\eta, a), N^\mu_{c,3} (\eta, a)) =: N^\mu_c (\eta, a).$$

5.5. **Solution of the full fixed point problem.** We will solve the fixed point problem (5.4.5) using the following lemma, which was stated and proved as Lemma 4.10 in [JW].

Lemma 5.2. Let X_0 and X_1 be reflexive Banach spaces with $X_1 \subseteq X_0$. For $r > 0$, let $B(r) := \{ x \in X_1 \mid \| x \|_{X_1} \leq r \}$. Suppose that for some $r_0 > 0$, there is a map $N : B(r_0) \rightarrow X_1$ with the following properties.

(i) $\| x \|_{X_1} \leq r_0 \implies \| N(x) \|_{X_1} \leq r_0$.

(ii) There exists $\alpha \in (0, 1)$ such that

$$\| x \|_{X_0} = \| x \|_{X_1} \leq r_0 \implies \| N(x) - N(\hat{x}) \|_{X_0} \leq \alpha \| x - \hat{x} \|_{X_0}.$$

Then there exists a unique $x_\ast \in X_1$ such that $\| x_\ast \|_{X_1} \leq r_0$ and $x_\ast = N(x_\ast)$.

To invoke this lemma, we first need to specify the underlying Banach spaces. With $q_{H}^*(c)$ and $q_H^*(c)$ from Proposition 5.1, we fix $q_\ast(c) \in (q_c(c), q_H^*(c))$ and $\overline{q}_\ast(c) \in (q_H(c), q_\ast(c))$. Let

$$X^r := \begin{cases} E_{q_\ast(c)}^1 \times O^{r}_{q_\ast(c)} \times \mathbb{R}, & r = 0 \\ E_{q_\ast(c)}^r \times O^{r}_{q_\ast(c)} \times \mathbb{R}, & r \geq 1 \end{cases}$$

and, for $r \geq 1$ and $\tau > 0$, set

$$U^r_{\tau, \mu} := \{ (\eta, a) \in X^r \mid \| \eta \|_{r, q_\ast(c)} + |a| \leq \tau |\mu| \}.$$

The spaces X^r are Hilbert spaces and therefore they are reflexive, and the sets $U^r_{\tau, \mu}$ are the balls of radius $\tau |\mu|$ centered at the origin in X^r.

The next proposition shows that N^μ_c satisfies the estimates from Lemma 5.2. Its proof is in Appendix G.2.
Proposition 5.3. Assume that $|c| > 1$ satisfies Hypotheses 1, 2, 3, and 4. There exist $\mu_*(c)$, $\tau_c > 0$ such that if $|\mu| \leq \mu_*(c)$, then the following hold.

(i) $(\eta, a) \in U^1_{\tau_c, \mu} \implies N^\mu_c(\eta, a) \in U^1_{\tau_c, \mu}$.

(ii) $(\eta, a), (\hat{\eta}, \hat{a}) \in U^1_{\tau_c, \mu} \implies \|N^\mu_c(\eta, a) - N^\mu_c(\hat{\eta}, \hat{a})\|_{\chi^0} \leq \frac{1}{2}\|(\eta, a) - (\hat{\eta}, \hat{a})\|_{\chi^0}$.

(iii) For any $\tau > 0$, there is $\tilde{\tau} > 0$ such that

$$(\eta, a) \in U^1_{\tau_c, \mu} \cap U^\tau_{\tau_c, \mu} \implies N^\mu_c(\eta, a) \in U^\tau_{\tau_c, \mu}.$$

Lemma 5.2 therefore applies to produce a unique $(\eta^\mu_c, a^\mu_c) \in U^1_{\tau_c, \mu}$ such that $(\eta^\mu_c, a^\mu_c) = N^\mu_c(\eta^\mu_c, a^\mu_c)$. We then bootstrap with part (iii) of Proposition 5.3 to conclude that η^μ_c is smooth, and so we obtain our main result.

Theorem 5.4. Assume that $|c| > 1$ satisfies Hypotheses 1, 2, 3, and 4 and take $\mu_*(c)$ and τ_c from Proposition 5.3. Then for each $|\mu| \leq \mu_*(c)$, there exists a unique $(\eta^\mu_c, a^\mu_c) \in U^1_{\tau_c, \mu}$ such that $(\eta^\mu_c, a^\mu_c) = N^\mu_c(\eta^\mu_c, a^\mu_c)$. Moreover, $\eta^\mu_c \in \cap_{\tau=0}^{\infty} F^r_{q_\tau(c)} \times O^r_{q_\tau(c)}$ and, for each $r \geq 0$, there is $C(c, r) > 0$ such that

$$\|\eta^\mu_c\|_{r, q_\tau(c)} + |a^\mu_c| \leq C(c, r)\|\mu\|.$$

Remark 5.5. The estimate (5.5.1) shows that the amplitude of the ripple is $a^\mu_c = O_c(\mu)$, which is not necessarily small beyond all orders of μ. Recall from (5.3.9) that, roughly, $a^\mu_c = \nu_c|V^\mu_c(\eta^\mu_c, a^\mu_c)|$, where V^μ_c maps $O^r_q \times \mathbb{R}$ to O^r_q. Per (4.0.3), we have an estimate of the form

$$|a^\mu_c| = |\nu_c|V^\mu_c(\eta^\mu_c, a^\mu_c)| \leq C(c, r)\|V^\mu_c(\eta^\mu_c, a^\mu_c)\|_{r, q_\tau(c)}.$$

The analogues of ν_c in the lattice nanopteron problems [FW18], [HW17], and [Fav] all depended on μ and, if we denote one of these functionals by ν_μ, roughly had an estimate of the form

$$|\nu_\mu(f)| \leq C(q, r)|\mu|^r\|f\|_{r, q}$$

for $f \in H^r_q$. The proof of this estimate parallels the Riemann-Lebesgue lemma and closely relied on the fact that the analogue in those problems of the critical frequency ω^μ_c was roughly $O(\mu^{-1})$. In turn, this “high frequency” estimate hinged on the existence of a singular perturbation in the problem. Our equal mass problem is not singularly perturbed, our critical frequency ω^μ_c remains bounded as $\mu \to 0$, and our ripple is not necessarily small beyond all orders of μ.

6. The Proof of Theorem 2.4: Verification of the Hypotheses for $|c| \geq 1$

6.1. Verification of Hypothesis 1. We extract the following result from Theorem 1.1 in [FP99].

Theorem 6.1 (Friesecke & Pego). There exist $\epsilon_{FP} > 0$, $q_{FP} \in (0, 1)$ such that if $\epsilon \in (0, \epsilon_{FP})$, then there exists a unique positive function $c_\epsilon \in \cap_{\tau=1}^{\infty} E^r_{\epsilon q_{FP}}$ with the following properties.

(i) If

$$c_\epsilon := \left(1 + \frac{\epsilon^2}{24}\right)^{1/2},$$

(6.1.1)
then
\[c_\epsilon^{\prime\prime\prime} + (2 - A)(c_\epsilon + \epsilon^2 c_\epsilon) = 0. \]

(ii) If
\[\sigma(x) := \frac{1}{4} \text{sech}^2 \left(\frac{x}{2} \right), \]
then for each \(r \geq 0 \), there is a constant \(C(r) > 0 \) such that
\[\left\| \frac{1}{\epsilon^2} c_\epsilon \left(\frac{\cdot}{\epsilon} \right) - \sigma \right\|_{H^r} \leq C(r) \epsilon^2 \]
for all \(0 < \epsilon < \epsilon_{FP} \).

We set
\[q_\epsilon(c_\epsilon) := \epsilon q_{FP} \]
in Hypothesis 1. We remark that Friesecke and Pego label the decay rate for their profile \(c_\epsilon \) as \(b_0(c) \); part (c) of their Theorem 1.1 and their detailed proof in Lemma 3.1 reveal that, with \(c_\epsilon \) from (6.1.1), they have \(b_0(c_\epsilon) = O(\epsilon) \). It is convenient for us to make explicit this order-\(\epsilon \)-dependence and rewrite this decay rate as \(b_0(c_\epsilon) = \epsilon q_{FP} \).

6.2. Verification of Hypothesis 2. As we mentioned in Section 1.4 when we met the operator \(\mathcal{H}_{c_\epsilon} \), the invertibility of \(\mathcal{H}_{c_\epsilon} \) for \(|c| \approx 1 \) arises from Proposition 3.1 in [HW17]. Here is that proposition.

Proposition 6.2 (Hoffman & Wright). There exists \(\epsilon_{HWr} \in (0, \epsilon_{FP}] \) such that for \(0 < \epsilon < \epsilon_{HWr} \), \(r \geq 0 \), and \(0 < q < \epsilon q_{FP} \), the operator \(\mathcal{H}_{c_\epsilon} \), defined in (1.4.3), is invertible from \(E^{r+2}_{q} \) to \(E^{r}_{q,0} \).

For the precise value of the decay rate in Hypothesis 2, we will set
\[q_{\mathcal{H}}(c_\epsilon) := \frac{\epsilon q_{FP}}{2}. \]
Recalling the definition of \(q_\epsilon(c_\epsilon) \) in (6.1.4) and that we took \(q_{FP} < 1 \) in Theorem 6.1, we have \(q_{\mathcal{H}}(c_\epsilon) < \min\{1, q_\epsilon(c_\epsilon)\} \).

We wish to point out that the crux of the proof of Proposition 6.2 by Hoffman and Wright is a clever factorization of \(\mathcal{H}_{c_\epsilon} \) as a product of two operators, one of which is invertible from \(E^{r+2}_{q} \) to \(E^{r}_{q,0} \) due to Fourier multiplier theory proved by Beale in [Bea80] (which later appears as Lemma A.3 in this paper), and the other of which is ultimately a small perturbation of an operator that Friesecke and Pego [FP99] prove is invertible from \(E^{r} \) to \(E^{r} \). Hoffman and Wright apply operator conjugation (cf. Appendix D of [Fav18]) to extend the invertibility of this second operator from \(E^{r}_{q} \) to \(E^{r}_{q} \). It is interesting to note that this perturbation argument is the only time that Hoffman and Wright need to assume that their wave speed is particularly close to 1; for the rest of their paper, the small parameter \(|c| - 1 \) does not play an explicit role, as it does for us in the concrete verification of our four main hypotheses.

We also note that we are writing \(\epsilon q_{FP} \) for the decay rate of our Friesecke-Pego solitary wave profile \(c_\epsilon \); Hoffman and Wright use the notation \(b_c \) for the decay rate of their Friesecke-Pego profile, which they denote by \(\sigma_c \). In turn, this \(b_c \) is equal to what Friesecke and Pego call \(b_0(c) \).

6.3. Verification of Hypothesis 3 in the case \(|c| \geq 1 \).
6.3.1. Preliminary remarks. We will choose our decay rates q to depend in a very precise way on ϵ. First, let

$$(6.3.1) \quad b := \min \left\{ \frac{1}{8}, \frac{a}{4}, \frac{q_{FP}}{4} \right\},$$

where the constant a is defined below in Lemma D.1. Next, let

$$(6.3.2) \quad \epsilon_B := \min \left\{ \frac{\epsilon_{HWa}}{2b}, \frac{1}{2b} \right\},$$

where the threshold ϵ_{HWa} comes from Lemma D.1. Last, for $0 < \epsilon < \epsilon_B$, define

$$(6.3.3) \quad q_{\epsilon} := \frac{b}{\epsilon}.$$

These definitions ensure the useful bound

$$(6.3.4) \quad 0 < q_{\epsilon} < \min \left\{ \frac{\epsilon}{4}, \frac{a\epsilon}{2}, \frac{\epsilon q_{FP}}{4}, 1 \right\}$$

and also, per (6.1.1), $1 < |c_\epsilon| \leq \sqrt{2}$.

6.3.2. Inversion of the operator B_{c_ϵ}. Here is our precise statement about the invertibility of B_{c_ϵ}. Its proof relies on Theorem E.1, due to Hupkes and Verduyn Lunel [HL07].

Proposition 6.3. For $0 < \epsilon < \epsilon_B$, the operator B_{c_ϵ} is invertible from $W^2_{-q_\epsilon} \to L^\infty_{-q_\epsilon}$ and from $W^2_{q_\epsilon} \to L^\infty_{q_\epsilon}$. These spaces were defined in Definition 2.2. We denote the inverse from $L^\infty_{-q_\epsilon}$ to $W^2_{-q_\epsilon}$ by $[B_{c_\epsilon}]^{-1}$ and from $L^\infty_{q_\epsilon}$ to $W^2_{q_\epsilon}$ by $[B_{c_\epsilon}]^+$. These operators have the estimates

$$(6.3.5) \quad \|[B_{c_\epsilon}]^\pm\|_{B(L^\infty_{\pm q_\epsilon}, W^2_{\pm q_\epsilon})} = O(\epsilon^{-1}).$$

Proof. We convert the problem $B_{c_\epsilon}f = g$ with $f \in W^2_{-q_\epsilon}, g \in L^\infty_{-q_\epsilon}$ to an equivalent first-order system. Let

$$(6.3.6) \quad \mathcal{A}_\epsilon := \begin{bmatrix} 0 & 1 \\ -2 & 0 \end{bmatrix} + \begin{bmatrix} 0 \\ -2/c^2 \end{bmatrix} S1 + \begin{bmatrix} 0 & 0 \\ -2/c^2 & 0 \end{bmatrix} S^{-1},$$

Then $B_{c_\epsilon}f = g$ is equivalent to

$$(6.3.7) \quad \frac{\partial_z[f] - \mathcal{A}_\epsilon f}{\Lambda f} = g, \quad \mathcal{A}_\epsilon := \begin{pmatrix} f \\ f' \end{pmatrix}, \quad g := \begin{pmatrix} 0 \\ g \end{pmatrix}.$$

Now set

$$(6.3.8) \quad \Delta_\epsilon(z) := z \mathbb{1} - (A_0(c) + A_1(c)e^z + A_1(c)e^{-z}) = \begin{bmatrix} z & -1 \\ -c^2(2 + 2 \cosh(z)) & z \end{bmatrix}$$

and observe that

$$(6.3.9) \quad \det(\Delta_\epsilon(z)) = z^2 + \frac{1}{c^2}(2 + 2 \cosh(z)) = \frac{1}{c^2} \tilde{B}_\epsilon(iz),$$

where \tilde{B}_ϵ is defined in (4.0.4).

Using the terminology of Theorem E.1, the determinant of the characteristic equation of (6.3.7) is $\tilde{B}_\epsilon(iz)/c^2$. By (6.3.4), we have $0 < q_{\epsilon} < 1$, and so Proposition 4.2 implies that

[Note: The rest of the content continues similarly, discussing further implications and proofs related to the invertibility of B_{c_ϵ}.]
\(\tilde{\mathcal{B}}_{\epsilon} (iz) \neq 0 \) for \(0 < |\text{Re}(z)| < q_{\epsilon} \). We have therefore satisfied the hypotheses of Theorem E.1 for the system (6.3.7), and so we conclude that \(\Lambda_{\epsilon} \) is invertible from \(W_{-q_{\epsilon}}^{1,\infty} \) to \(L_{-q_{\epsilon}}^{\infty} \).

We will refer to this inverse as \((\Lambda_{\epsilon}^+)^{-1} \). More precisely, given \(g \in L_{q_{\epsilon}}^{\infty} \), let \((\Lambda_{\epsilon}^+)^{-1} g \) be the unique element of \(W_{-q_{\epsilon}}^{1,\infty} \) such that \(\Lambda_{\epsilon} [(\Lambda_{\epsilon}^+)^{-1} g] = g \). Likewise, given \(g \in L_{-q_{\epsilon}}^{\infty} \), let \((\Lambda_{\epsilon}^-)^{-1} g \) be the unique element of \(W_{q_{\epsilon}}^{1,\infty} \) such that \(\Lambda_{\epsilon} [(\Lambda_{\epsilon}^-)^{-1} g] = g \). If we set

\[
\delta_{\epsilon} := \frac{b_{\epsilon}}{2},
\]

where \(b \) was defined in (6.3.1), then (E.1.5) gives a formula for \((\Lambda_{\epsilon}^+)^{-1} g \):

\[
(6.3.10) \quad (\Lambda_{\epsilon}^+)^{-1} g (x) = \frac{1}{2\pi i} \int_{\pm q_{\epsilon} + \delta_{\epsilon} + i\infty}^{\pm q_{\epsilon} + \delta_{\epsilon} - i\infty} e^{xz} \Delta_{\epsilon} (z)^{-1} \mathcal{L}_+ [g] (z) \, dz,
\]

\[
+ \frac{1}{2\pi i} \int_{\pm q_{\epsilon} - \delta_{\epsilon} - i\infty}^{\pm q_{\epsilon} - \delta_{\epsilon} + i\infty} e^{xz} \Delta_{\epsilon} (z)^{-1} \mathcal{L}_- [g] (z) \, dz.
\]

The function \(\Delta_{\epsilon} \) was defined in (6.3.8).

Now, recall that we have converted the one-dimensional problem \(\mathcal{B}_{\epsilon} f = g \) to the vectorized equation \(\Lambda_{\epsilon} f = g \) with \(f = (f, f') \) and \(g = (0, g) \), and so we are really interested in solving \(\Lambda_{\epsilon} f = g \) for the first component of \(f \). We therefore take the dot product of (6.3.10) with the vector \(e_1 = (1, 0) \) and use the definition of \(\Delta_{\epsilon} \) in (6.3.8) to find

\[
(6.3.11) \quad [\mathcal{B}_{\epsilon}^\pm]^{-1} g := ((\Lambda_{\epsilon}^+)^{-1} g) \cdot e_1 = \frac{1}{2\pi i} \int_{\pm q_{\epsilon} + \delta_{\epsilon} + i\infty}^{\pm q_{\epsilon} + \delta_{\epsilon} - i\infty} \mathcal{K}_{\epsilon} (x, z) \mathcal{L}_+ [g] (z) \, dz
\]

\[
+ \frac{1}{2\pi i} \int_{\pm q_{\epsilon} - \delta_{\epsilon} - i\infty}^{\pm q_{\epsilon} - \delta_{\epsilon} + i\infty} \mathcal{K}_{\epsilon} (x, z) \mathcal{L}_- [g] (z) \, dz,
\]

where

\[
(6.3.12) \quad \mathcal{K}_{\epsilon} (x, z) := \frac{e^{xz}}{\tilde{\mathcal{B}}_{\epsilon} (iz)}.
\]

As above, given \(g \in L_{\pm q_{\epsilon}}^{\infty} \), the function \([\mathcal{B}_{\epsilon}^\pm]^{-1} g\) is the unique element of \(W_{\pm q_{\epsilon}}^{1,\infty} \) to satisfy \(\mathcal{B}_{\epsilon} [[\mathcal{B}_{\epsilon}^\pm]^{-1} g] = g \). Note that, in fact, \([\mathcal{B}_{\epsilon}^\pm]^{-1} g \in W_{\pm q_{\epsilon}}^{2,\infty} \), since \(\partial^2 x [([\mathcal{B}_{\epsilon}^\pm]^{-1} g)] = \partial^2 x [(\Lambda_{\epsilon}^+)^{-1} g \cdot e_2] \in L_{\pm q_{\epsilon}}^{\infty} \).

Last, we prove the operator norm estimate (6.3.5). Part (i) of Theorem E.1 and some matrix-vector arithmetic imply the existence of a function \(\mathcal{G}_{\epsilon} \in \cap_{p=1}^{\infty} L^p \) such that

\[
(6.3.13) \quad ([\mathcal{B}_{\epsilon}^\pm]^{-1} g)(x) = e^{q_{\epsilon} x} \int_{-\infty}^{\infty} e^{-q_{\epsilon} s} \mathcal{G}_{\epsilon} (x-s) g(s) \, ds,
\]

where

\[
\mathcal{G}_{\epsilon} (k) = \frac{1}{\tilde{\mathcal{B}}_{\epsilon} (-k + iq_{\epsilon})}.
\]

We have

\[
\|([\mathcal{B}_{\epsilon}^\pm]^{-1} g)\|_{W_{\pm q_{\epsilon}}^{2,\infty}} = \|[\mathcal{B}_{\epsilon}^\pm]^{-1} g\|_{L_{\pm q_{\epsilon}}^{\infty}} + \|\partial^2 x [([\mathcal{B}_{\epsilon}^\pm]^{-1} g)]\|_{L_{\pm q_{\epsilon}}^{\infty}}.
\]
We calculate
\[\partial_x^2[[B_{c \epsilon}]^{-1} g] = g - \frac{(2 + A)[B_{c \epsilon}]^{-1} g}{c^2}, \]
and so
\[\| \partial_x^2[[B_{c \epsilon}]^{-1} g] \|_{L^\infty_{\pm q \epsilon}} \leq \| g \|_{L^\infty_{\pm q \epsilon}} + C \| [B_{c \epsilon}]^{-1} g \|_{L^\infty_{\pm q \epsilon}}. \]
Next, we estimate from (6.3.13) that
\[\| [B_{c \epsilon}]^{-1} \|_{L^\infty_{\pm q \epsilon}} \leq \| \mathcal{H} \|_{L^1} = \left\| \bar{B}^{-1} \left[\frac{1}{\bar{B}_{c \epsilon}(- \cdot + i q \epsilon)} \right] \right\|_{L^1} \leq \frac{C_B}{q \epsilon} = O(\epsilon^{-1}). \]
The last inequality comes from (4.0.8).

6.3.3. Inversion of $B_{c \epsilon} - \Sigma_{c \epsilon}^*$ with the Neumann series. Now consider the operator $B_{c \epsilon} - \Sigma_{c \epsilon}^*$ from $W^{-2, \infty}_{-q \epsilon}$ to $L^{-\infty}_{-q \epsilon}$. For simplicity, let
\[(6.3.14) \quad \mathcal{M} := 2(2 + A) \quad \text{and} \quad \tilde{\mathcal{M}}(k) = 2(2 + 2 \cos(k)), \]
so
\[\Sigma_{c \epsilon}^* f = \zeta_{c \epsilon}(x) \mathcal{M} f. \]
By part (v) of Proposition D.2 we estimate, for $f \in W^{-2, \infty}_{-q \epsilon}$,
\[\| \Sigma_{c \epsilon}^* f \|_{L^\infty_{-q \epsilon}} \leq \| e^{q \epsilon \zeta_{c \epsilon}} \mathcal{M} f \|_{L^\infty} \leq C \epsilon^2 \| e^{q \epsilon \zeta_{c \epsilon}} \mathcal{M} f \|_{L^\infty_{-q \epsilon}} \leq C \epsilon^2 \| f \|_{W^{-2, \infty}_{-q \epsilon}}. \]
That is,
\[\| \Sigma_{c \epsilon}^* \|_{B(W^{-2, \infty}_{-q \epsilon}, L^\infty_{-q \epsilon})} = O(\epsilon^2). \]
We may therefore invert $B_{c \epsilon} - \Sigma_{c \epsilon}^*$ from $W^{-2, \infty}_{-q \epsilon}$ to $L^{-\infty}_{-q \epsilon}$ using the Neumann series. This verifies Hypothesis 3 for $|c| \gtrsim 1$. Specifically, we set $q_L(c \epsilon) := q \epsilon$ from (6.3.3) and note from (6.3.4) that $q \epsilon < \min\{ q(c \epsilon), q_H(c \epsilon), 1 \}$.

6.4. Verification of Hypothesis 4. To compute the phase shift $\vartheta_{c \epsilon}$ from Theorem 4.1, we at first follow our methods from Section 4.2 of a particular solution to $(B_{c \epsilon} - \Sigma_{c \epsilon}^*) f = 0$. However, now we can use the Neumann series to get an explicit formula for the inverse of this operator from $W^{-2, \infty}_{-q \epsilon}$ to $L^{-\infty}_{-q \epsilon}$, namely,
\[[(B_{c \epsilon} - \Sigma_{c \epsilon}^*)]^{-1} = [B_{c \epsilon} \left(1 - [B_{c \epsilon}]^{-1} \Sigma_{c \epsilon}^* \right)]^{-1} = (1 - [B_{c \epsilon}]^{-1} \Sigma_{c \epsilon})^{-1} = \sum_{k=0}^{\infty} (1 - [B_{c \epsilon}]^{-1} \Sigma_{c \epsilon})^k [B_{c \epsilon}]^{-1}. \]

As we did in Section 4.2, make the ansatz $f(x) = e^{i \omega_{c \epsilon} x} + g(x)$, where $g \in W^{-2, \infty}_{-q \epsilon}$. Then $(B_{c \epsilon} - \Sigma_{c \epsilon}^*) f = 0$ if and only if
\[(6.4.1) \quad (B_{c \epsilon} - \Sigma_{c \epsilon}^*) g = \Sigma_{c \epsilon}^* e^{i \omega_{c \epsilon}}. \]
The Neumann series implies
\[(6.4.2) \quad g_{c \epsilon} := [(B_{c \epsilon} - \Sigma_{c \epsilon}^*)]^{-1} \Sigma_{c \epsilon}^* e^{i \omega_{c \epsilon}} = \sum_{k=0}^{\infty} \left([B_{c \epsilon}]^{-1} \Sigma_{c \epsilon} \right)^{k+1} e^{i \omega_{c \epsilon}}. \]
and if we set, as before,
\[f_{c \epsilon}(x) := e^{i \omega_{c \epsilon} x} + g_{c \epsilon}(x), \]
then
\[(6.4.3) \quad (\mathcal{B}_{c_\varepsilon} - \Sigma^*_c) f_\varepsilon = 0 \quad \text{and} \quad \lim_{x \to -\infty} |f_\varepsilon(x) - e^{i\omega_{c_\varepsilon} x}| = 0.\]

Now we need asymptotics on \(f_\varepsilon\) as \(x \to -\infty\). To develop these limits, we exploit a formula that relates \(\mathcal{B}^-_{c_\varepsilon}\) to \(\mathcal{B}^+_{c_\varepsilon}\). The proof is in Appendix E.2. Roughly speaking, this is motivated by our change of contours that converted the inverse Laplace transform (4.3.7) to (4.3.8).

Proposition 6.4. There exists \(\epsilon_{\text{res}} \in (0, \epsilon_B]\) such that for \(0 < \epsilon < \epsilon_{\text{res}}\) and \(h \in L^\infty_{\text{loc}}\), we have \(\zeta_c h \in L^\infty_{\text{loc}}\) and
\[
(6.4.4) \quad [\mathcal{B}^-_{c_\varepsilon}]^{-1}[\zeta_c h](x) = [\mathcal{B}^+_{c_\varepsilon}]^{-1}[\zeta_c h](x) + \alpha_\varepsilon[h] e^{i\omega_{c_\varepsilon} x} + \beta_\varepsilon[h] e^{-i\omega_{c_\varepsilon} x},
\]
where the linear functionals \(\alpha_\varepsilon\) and \(\beta_\varepsilon\) are defined as
\[
(6.4.5) \quad \alpha_\varepsilon[h] := -i \left(\mathcal{L}[\zeta_c h](i\omega_{c_\varepsilon}) + \mathcal{L}[\zeta_c h](-i\omega_{c_\varepsilon}) \right) \left(\mathcal{B}_{c_\varepsilon}'(i\omega_{c_\varepsilon}) \right),
\]
and
\[
(6.4.6) \quad \beta_\varepsilon[h] := i \left(\mathcal{L}[\zeta_c h](i\omega_{c_\varepsilon}) + \mathcal{L}[\zeta_c h](-i\omega_{c_\varepsilon}) \right) \left(\mathcal{B}_{c_\varepsilon}'(-i\omega_{c_\varepsilon}) \right).
\]

The functionals \(\alpha_\varepsilon\) and \(\beta_\varepsilon\) satisfy the estimate
\[
(6.4.7) \quad \max \{|\alpha_\varepsilon[h]|, |\beta_\varepsilon[h]|\} \leq C \epsilon \|h\|_{L^\infty_{\text{loc}}}.
\]

Recall that \(f_\varepsilon\) has the form \(f_\varepsilon(x) = e^{i\omega_{c_\varepsilon} x} + g_\varepsilon(x)\), where, from the definition of \(g_\varepsilon\) above in (6.4.2),
\[
(6.4.8) \quad g_\varepsilon = \sum_{k=0}^{\infty} ([\mathcal{B}^-_{c_\varepsilon}]^{-1}\Sigma^*_c)^{k+1} e^{i\omega_{c_\varepsilon} x} = [\mathcal{B}^-_{c_\varepsilon}]^{-1}[\zeta_c \mathcal{M} h_\varepsilon], \quad h_\varepsilon := \sum_{k=0}^{\infty} ([\mathcal{B}^-_{c_\varepsilon}]^{-1}\Sigma^*_c)^{k+1} e^{i\omega_{c_\varepsilon} x}.
\]

We use Proposition 6.4 to rewrite \(g_\varepsilon\) as
\[
(6.4.9) \quad g_\varepsilon(x) = [\mathcal{B}^+_{c_\varepsilon}]^{-1}[\zeta_c \mathcal{M} h_\varepsilon](x) + \alpha_\varepsilon[\mathcal{M} h_\varepsilon] e^{i\omega_{c_\varepsilon} x} + \beta_\varepsilon[\mathcal{M} h_\varepsilon] e^{-i\omega_{c_\varepsilon} x}.
\]

This is the analogue of (4.3.8).

Since the image of \([\mathcal{B}^+_{c_\varepsilon}]^{-1}\) consists of functions that decay to zero at \(-\infty\), we have, as in (4.3.11),
\[
(6.4.10) \quad \lim_{x \to -\infty} \left| f_\varepsilon(x) - \left(e^{i\omega_{c_\varepsilon} x} + \alpha_\varepsilon[\mathcal{M} h_\varepsilon] e^{i\omega_{c_\varepsilon} x} + \beta_\varepsilon[\mathcal{M} h_\varepsilon] e^{-i\omega_{c_\varepsilon} x} \right) \right| = 0.
\]

It is possible to obtain very precise estimates on the coefficients on \(e^{\pm i\omega_{c_\varepsilon} x}\) in (6.4.10); the proof is in Appendix E.3.

Proposition 6.5. There exists \(\epsilon_\theta \in (0, \epsilon_B]\) such that for all \(0 < \epsilon < \epsilon_\theta\), there are numbers \(\theta_{\varepsilon,0} = O(1), \theta^\varepsilon = O(1), \text{ and } \theta^- = O(1)\) with
\[
\alpha_\varepsilon[\mathcal{M} g_\varepsilon] = i \epsilon \theta^\varepsilon + \epsilon^2 \theta^\varepsilon^+ \quad \text{and} \quad \beta_\varepsilon[\mathcal{M} g_\varepsilon] = \epsilon^2 \theta^-.
\]

Moreover, \(\theta_{\varepsilon,0} \in \mathbb{R}\), and there are constants \(C_1, C_2 > 0\) such that
\[
0 < C_1 < \theta^\varepsilon_{\varepsilon,0} < C_2 < \infty
\]
for all such \(\epsilon\).
Set $\tilde{f}_\epsilon(x) := \text{Im}[f_\epsilon(x) - f_\epsilon(-x)]$ and write

$$\theta_\epsilon^+ = \theta_{\epsilon,r}^+ + i\theta_{\epsilon,i}^+ \quad \text{and} \quad \theta_\epsilon^- = \theta_{\epsilon,r}^- + i\theta_{\epsilon,i}^-$$

with $\theta_{\epsilon,r}^+, \theta_{\epsilon,i}^+ \in \mathbb{R}$. The limits (6.4.3) and (6.4.10) imply

$$\lim_{x \to \infty} \left| \tilde{f}_\epsilon(x) - \left[(2 + \epsilon^2(\theta_{\epsilon,r}^+ - \theta_{\epsilon,r}^-)) \sin(\omega_{c_\epsilon}x) - \epsilon(\theta_{\epsilon,0}^+ + \epsilon\theta_{\epsilon,i}^+ + \epsilon\theta_{\epsilon,i}^-) \cos(\omega_{c_\epsilon}x) \right] \right| = 0.$$

As in Section 4.4, then, the identity (4.4.6) implies that a rescaled version of \tilde{f}_ϵ, which we call γ_ϵ, satisfies both $(B_{\epsilon, c} - \Sigma_{c_\epsilon}^*)\gamma_\epsilon = 0$ and

$$\lim_{x \to \infty} |\gamma_\epsilon(x) - \sin(\omega_{c_\epsilon}(x + \vartheta_{c_\epsilon})))| = 0,$$

where

$$\vartheta_{c_\epsilon} := -\frac{1}{\omega_{c_\epsilon}} \arctan\left(\epsilon \left(\frac{\theta_{\epsilon,0}^+ + \epsilon\theta_{\epsilon,i}^+ + \epsilon\theta_{\epsilon,i}^-}{2 + \epsilon^2(\theta_{\epsilon,r}^+ - \theta_{\epsilon,r}^-)} \right) \right).$$

Since $\theta_{\epsilon,0}^+$ is nonzero and $O(1)$, it follows from properties of the arctangent that we can write

$$\vartheta_{c_\epsilon} = \epsilon \vartheta_{\epsilon,0},$$

where, for some constant $C_\vartheta > 0$, we have

$$0 < \frac{1}{C_\vartheta} < |\vartheta_{\epsilon,0}| < C_\vartheta < \infty$$

for all $0 < \epsilon < \epsilon_0$.

At last, we may verify Hypothesis 4 for $|c| \gtrsim 1$. By part (ii) of Proposition 3.1, we have $A_{c_\epsilon} < \omega_{c_\epsilon} < B_{c_\epsilon} < \pi/2$ for all $|\mu| \leq \mu_{\text{per}}(c_\epsilon)$. From part (iii) of that proposition, we deduce the additional bound $1 < A_{c_\epsilon}$ for $0 < \epsilon < \epsilon_0$. Then

$$0 < \frac{\epsilon \omega_{c_\epsilon}}{C_\vartheta} < \epsilon \omega_{c_\epsilon} |\vartheta_{\text{cep},0}| < C_\vartheta \epsilon \omega_{c_\epsilon} < \pi$$

for ϵ small enough, and so

$$\sin(\omega_{c_\epsilon} \vartheta_{c_\epsilon}) = \sin(\epsilon \omega_{c_\epsilon} \vartheta_{\epsilon,0}) > 0.$$

\textbf{Appendix A. Transform Analysis}

\textbf{A.1. Fourier analysis.} If $f \in L^1(\mathbb{R}, \mathbb{C}^m)$, we set

$$\mathcal{F}[f](k) = \hat{f}(k) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-ikx} \, dx$$

and

$$\mathcal{F}^{-1}[f](x) = \check{f}(x) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(k) e^{ikx} \, dk.$$
In either case, with \((S^d f)(x) := f(x + d)\), we have the identity
\[
\hat{S^d f}(k) = e^{ikd}\hat{f}(k).
\]

A.1.1. Fourier multipliers. We first work on the periodic Sobolev spaces \(H^r_{\text{per}}(\mathbb{R}, \mathbb{C}^m)\) from (3.0.1). Take \(r, s \geq 0\) and suppose that \(\hat{M}: \mathbb{R} \to \mathbb{C}^{m \times m}\) is measurable with
\[
\sup_{k \in \mathbb{R}} \frac{\|\hat{M}(k)\|}{(1 + k^2)^{(r-s)/2}} < \infty.
\]
Then Fourier multiplier \(M\) with symbol \(\hat{M}\), defined by
\[
(Mf)(x) := \sum_{k=\infty}^{\infty} e^{ikx} \hat{M}(k)\hat{f}(k),
\]
i.e., by
(A.1.1)
\[
\hat{Mf}(k) = \hat{M}(k)\hat{f}(k),
\]
is a bounded operator from \(H^r_{\text{per}}(\mathbb{R}, \mathbb{C}^m)\) to \(H^s_{\text{per}}(\mathbb{R}, \mathbb{C}^m)\).

We will need some calculus on “scaled” Fourier multipliers. Let \(M\) be the Fourier multiplier with symbol \(\hat{M}\). For \(\omega \in \mathbb{R}\), define \(M[\omega]\) to be the Fourier multiplier with symbol \(\hat{M}(\omega k)\), i.e.,
\[
\hat{M}[\omega]f(k) := \hat{M}(\omega k)\hat{f}(k).
\]
Last, for a function \(g: \mathbb{R} \to \mathbb{C}^m\), let
(A.1.2) \(\text{Lip}(g) := \sup_{x, x \in \mathbb{R}} \frac{|g(x) - g(\hat{x})|}{x - \hat{x}}\).

The methods of Appendix D.3 of [Fav18] prove the next lemma.

Lemma A.1. Let \(\hat{M}: \mathbb{R} \to \mathbb{C}^{m \times m}\) be measurable.

(i) Suppose \(\text{Lip}(\hat{M}) < \infty\). Then
\[
\|(M[\omega] - M[\omega])f\|_{H^r_{\text{per}}(\mathbb{R}, \mathbb{C}^m)} \leq \text{Lip}(\hat{M}) \|f\|_{H^r_{\text{per}}(\mathbb{R}, \mathbb{C}^m)} |\omega - \hat{\omega}|.
\]

(ii) Suppose \(\hat{M}\) is differentiable with \(\text{Lip}(\hat{M}') < \infty\). Fix \(\omega_0 \in \mathbb{R}\) and let \(\partial_\omega M[\omega_0]\) be the Fourier multiplier with symbol \(k\hat{M}'(\omega_0 k)\), i.e.,
\[
\hat{\mathfrak{F}}[\partial_\omega M[\omega_0]f](k) = k\hat{M}'(\omega_0 k)\hat{f}(k).
\]
Then
\[
\|(M[\omega_0 + \omega] - M[\omega_0] - \omega \partial_\omega M[\omega_0])f\|_{H^r_{\text{per}}(\mathbb{R}, \mathbb{C}^m)} \leq \text{Lip}(\hat{M}')\omega^2 \|f\|_{H^r_{\text{per}}(\mathbb{R}, \mathbb{C}^m)}.
\]

Next, we discuss some properties of the adjoint of a Fourier multiplier on periodic Sobolev spaces.

Lemma A.2. Suppose that \(M \in \mathcal{B}(H^r_{\text{per}}(\mathbb{R}, \mathbb{C}^m), H^s_{\text{per}}(\mathbb{R}, \mathbb{C}^m))\) is a Fourier multiplier with symbol \(\hat{M}: \mathbb{R} \to \mathbb{C}^{m \times m}\).
(i) The adjoint operator $\mathcal{M}^* \in \mathcal{B}(H^s_{\text{per}}(\mathbb{R}, \mathbb{C}^m), H^r_{\text{per}}(\mathbb{R}, \mathbb{C}^m))$, i.e., the operator \mathcal{M}^* satisfying
\[
\langle \mathcal{M}f, g \rangle_{H^s_{\text{per}}(\mathbb{R}, \mathbb{C}^m)} = \langle f, \mathcal{M}^*g \rangle_{H^r_{\text{per}}(\mathbb{R}, \mathbb{C}^m)}, \quad f \in H^r_{\text{per}}(\mathbb{R}, \mathbb{C}^m), \quad g \in H^s_{\text{per}}(\mathbb{R}, \mathbb{C}^m),
\]
is given by
\[
\widehat{\mathcal{M}^*}g(k) = \frac{1}{(1 + k^2)^{r-s}}\widehat{\mathcal{M}}(k)^*\widehat{g}(k),
\]
where $\widehat{\mathcal{M}}(k)^* \in \mathbb{C}^{m \times m}$ is the conjugate transpose of $\widehat{\mathcal{M}}(k) \in \mathbb{C}^{m \times m}$.

(ii) Suppose that $\mathcal{M} \in \mathcal{B}(H^s_{\text{per}}(\mathbb{R}, \mathbb{C}^m), H^r_{\text{per}}(\mathbb{R}, \mathbb{C}^m))$ is a Fourier multiplier with symbol $\widehat{\mathcal{M}}: \mathbb{R} \to \mathbb{C}^{m \times m}$. Suppose as well that \mathcal{M} has a one-dimensional kernel spanned by ν with $\widehat{\nu}(k) = 0$ for all but finitely many k and that $\widehat{\mathcal{M}}(k)$ is self-adjoint for all $k \in \mathbb{R}$. Then the adjoint \mathcal{M}^* from part (i) has a one-dimensional kernel in $H^r_{\text{per}}(\mathbb{R}, \mathbb{C}^m)$ spanned by ν^*, whose Fourier coefficients are
\[
\widehat{\nu}^*(k) := (1 + k^2)^{(r-s)/2}\widehat{\nu}(k).
\]

Last, we state a slight generalization of a result for Fourier multipliers on the exponentially weighted spaces H^r_q from (1.4.1). In this case, a Fourier multiplier on H^r_q (or H^r) is, of course, defined as before by (A.1.1). For $0 < q < q_0$, write
\[
S_{q, q_0} := \{z \in \mathbb{C} \mid q \leq |\text{Im}(z)| \leq q_0\}.
\]

Lemma A.3 (Beale). Let $0 < q_0 < q_1 < q_2$ and suppose that $\widehat{\mathcal{M}}: \mathbb{R} \to \mathbb{C}$ is a measurable function with the following properties.

(\text{M1}) The function $\widehat{\mathcal{M}}$ is analytic on the strips S_{0,q_1} and S_{q_1,q_2}.

(\text{M2}) The function $\widehat{\mathcal{M}}$ has finitely many zeros in \mathbb{R}, all of which are simple. Denote the collection of these zeros by $\mathfrak{P}_\mathcal{M}$.

(\text{M3}) There exist C, $z_0 > 0$ and $s \geq 0$ such that if $z \in S_{0,q_1} \cup S_{q_1,q_2}$ with $|z| \geq z_0$, then
\[
C|\text{Re}(z)|^s \leq |\widehat{\mathcal{M}}(z)|.
\]

Now let \mathcal{M} be the Fourier multiplier with symbol $\widehat{\mathcal{M}}$. There exist $q_*, q_{**} > 0$ with $q_1 \leq q_* < q_{**} \leq q_2$ such that if $q \in [q_*, q_{**}]$, then, for any $r \geq 0$, \mathcal{M} is invertible from H^{r+s}_q to the subspace
\[
\mathcal{D}_{\mathcal{M}, q}^r := \left\{ f \in H^r_q \mid z \in \mathfrak{P}_\mathcal{M} \Rightarrow \hat{f}(z) = 0 \right\}
\]
and, for $f \in \mathcal{D}_{\mathcal{M}, q}^r$,
\[
\|\mathcal{M}^{-1}f\|_{r+s,q} \leq \left(\sup_{k \in \mathbb{R}} \frac{(1 + k^2)^{s/2}}{|\widehat{\mathcal{M}}(k \pm iq)|} \right) \|f\|_{r,s}.
\]

There are two additional special cases.

(i) If $q_1 = q_2$, then the result above is true for all $0 < q \leq q_2$.

(ii) If $\mathfrak{P}_\mathcal{M} = \{0\}$ and 0 is a double zero of $\widehat{\mathcal{M}}$, then the result above is still true if we replace H^r_q and H^{r+s}_q by E^r_q and E^{r+s}_q throughout.
This lemma was proved by Beale as Lemma 3 in [Bea80] in the particular case (i).

A.2. The Laplace transform. Suppose \(f \in L^1_{\text{loc}}(\mathbb{R}, \mathbb{C}^m) \) with \(e^{-a}f \in L^\infty(\mathbb{R}, \mathbb{C}^m) \). We set

\[
\mathcal{L}_+[f](z) := \int_0^\infty f(s)e^{-sz} \, ds, \quad \text{Re}(z) > a
\]

and

\[
\mathcal{L}_-[f](z) := \int_0^\infty f(-s)e^{sz} \, ds, \quad \text{Re}(z) < a.
\]

These Laplace transforms have the following useful properties. First, \(\mathcal{L}_+[f] \) is analytic on \(\text{Re}(z) > a \) and \(\mathcal{L}_-[f] \) is analytic on \(\text{Re}(z) < a \). In particular, if \(e^{-a}f \in L^\infty(\mathbb{R}, \mathbb{C}^m) \) with \(a > 0 \), then \(\mathcal{L}_+[f] \) and \(\mathcal{L}_-[g] \) are defined and analytic on the common strip \(|\text{Re}(z)| < a \).

Next, we have the inverse formulas

\[
\frac{f(x^+) + f(x^-)}{2} = \frac{1}{2\pi i} \int_{\text{Re}(z)=b} \mathcal{L}_+[f](z)e^{xz} \, dz, \quad x > 0, \ b > a
\]

and

\[
\frac{f(x^+) + f(x^-)}{2} = \frac{1}{2\pi i} \int_{\text{Re}(z)=b} \mathcal{L}_-[f](z)e^{-xz} \, dz, \quad x < 0, \ b > -a,
\]

where

\[
f(x^+) := \lim_{t \to x^+} f(t).
\]

If \(f \) is differentiable, then

\[
\mathcal{L}_+[f](z) = \mp f(0) + z\mathcal{L}_+[f](z).
\]

Last, the Laplace transform interacts with shift operators via the identities

\[
\mathcal{L}_+[S^d f](z) = e^{zd}\mathcal{L}_+[f](z) - e^{zd} \int_0^d f(s)e^{-sz} \, ds
\]

and

\[
\mathcal{L}_-[S^d f](z) = e^{zd}\mathcal{L}_-[f](z) + e^{zd} \int_{-d}^0 f(-s)e^{sz} \, ds.
\]

Appendix B. Derivation of the Traveling Wave Problem (1.3.1)

Under the traveling wave ansatz (1.1.3), the original equations of motion (1.1.2) for the diatomic FPUT lattice convert to the system

\[
\begin{cases}
 c^2 p_1'' = -((1+w)(p_1+p_2^2) + (wS^1 + S^{-1})(p_2 + p_1)^2) \\
 c^2 p_2'' = (wS^{-1} + S^1)(p_1 + p_1^2) - (1+w)(p_2 + p_2^2).
\end{cases}
\]

(B.0.1)

Here we define \(w := 1/m \). With \(p = (p_1, p_2) \), (B.0.1) compresses into

\[
c^2 \mathbf{p}'' + L_w \mathbf{p} + L_w \mathbf{p}^2 = 0, \quad L_w := \begin{bmatrix} (1+w) & -(wS^1 + S^{-1}) \\ -(wS^{-1} + S^1) & (1+w) \end{bmatrix}.
\]

(B.0.2)

For \(f = (f_1, f_2) \) and \(g = (g_1, g_2) \), we use the notation

\[
f^2 := \begin{pmatrix} f_1^2 \\ f_2^2 \end{pmatrix} \quad \text{and} \quad fg := \begin{pmatrix} f_1g_1 \\ f_2g_2 \end{pmatrix}.
\]
We note that (B.0.2) is the same system that was derived in equation (2.4) in [FW18].

Set

\[J := \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \]

so \(J^{-1} = J/2 \). If we substitute \(p = J\rho \) with \(\rho = (\rho_1, \rho_2) \), then (B.0.2) becomes

\[c^2 J\rho'' + L_w J\rho + L_w(J\rho)^2 = 0. \]

Multiplying through by \(J^{-1} \), this is equivalent to

(B.0.3) \[c^2 \rho'' + \frac{1}{2} JL_w J\rho + \frac{1}{2} JL_w(J\rho)^2 = 0. \]

Setting \(w = 1 + \mu \) for \(|\mu| < 1 \) and

\[D_\mu = \frac{1}{2} JL_{1+\mu} J \quad \text{and} \quad Q(\rho, \dot{\rho}) := (J\rho) \cdot (J\dot{\rho}) \]

we see that (B.0.3) is equivalent to (1.3.1). One easily checks that for functions \(\rho, \dot{\rho}, \text{ and } \ddot{\rho} \) and scalars \(a \), we have

(B.0.4)

\[Q(a\rho, \dot{\rho}) = aQ(\rho, \dot{\rho}), \quad Q(\rho, \dot{\rho}) = Q(\ddot{\rho}, \rho) \quad \text{and} \quad Q(\rho + \dot{\rho}, \ddot{\rho}) = Q(\rho, \ddot{\rho}) + Q(\ddot{\rho}, \rho), \]

and so \(Q \) is indeed symmetric and bilinear.

Last, we discuss the even-odd symmetries of \(G_c \). First, observe that if \(f \) is even, then \(Af \) is even and \(\delta f \) is odd, while if \(f \) is odd, then \(Af \) is odd and \(\delta f \) is even. So, if \(\rho_1 \) and \(\rho_2 \) are odd and \(\rho = (\rho_1, \rho_2) \), then \((D_\mu \rho) \cdot e_1 \) is even and \((D_\mu \rho) \cdot e_2 \) is odd, where \(e_1 = (1, 0) \) and \(e_2 = (0, 1) \). Likewise, if \(\rho_1 \) and \(\dot{\rho}_1 \) are even and \(\rho_2 \) and \(\dot{\rho}_2 \) are odd, then \(Q(\rho, \dot{\rho}) \cdot e_1 \) is even and \(Q(\rho, \dot{\rho}) \cdot e_2 \) is odd. We conclude that \(G_c(\rho, \mu) \cdot e_1 \) is even and \(G_c(\rho, \mu) \cdot e_2 \) is odd when \(\rho_1 \) is even and \(\rho_2 \) is odd.

Next, if \(f \) is integrable on \(\mathbb{R} \) or \(2P \)-periodic and integrable on \([-P, P]\), then \((2-A)f \) and \(\delta f \) are “mean-zero” in the sense that

\[\int_{-\infty}^{\infty} ((2-A)f)(x) \, dx = \int_{-P}^{P} ((2-A)f)(x) \, dx = \int_{-\infty}^{\infty} (\delta f)(x) \, dx = \int_{-P}^{P} (\delta f)(x) \, dx = 0. \]

Thanks to the structure of \(D_\mu \), all terms in \(G_c(\rho, \mu) \cdot e_1 \) contain either a factor of \(2-A \) or \(\delta \), and so \(G_c(\rho, \mu) \cdot e_1 \) is always mean-zero. We conclude that the symmetries in (1.3.4) hold.

APPENDIX C. Existence of Periodic Solutions

C.1. Linear analysis. We begin with two propositions that study the linearization \(\Gamma^n_c[\omega] \) defined in (3.0.4). The first of these contains all the technical details needed to prove Proposition 3.1.

Lemma C.1. For each \(|c| > 1\), there is \(M(c) > 0 \) with the following properties.

(i) The functions \(\lambda^\pm_\mu \) defined in (3.0.7) are even, real-valued, and bounded on \(\mathbb{R} \) with

\[0 \leq \lambda^-_\mu(K) \leq \begin{cases} 2(1+\mu), & \mu \in (-1, 0] \\ 2, & \mu \in [0, 1] \end{cases} \]

Proof.
and

(C.1.2) \[
\begin{cases}
2, & \mu \in (-1,0] \\
2(1+\mu), & \mu \in [0,1)
\end{cases}
\leq \lambda_\mu^+(K) \leq 2 + 2(1+\mu)
\]

for all \(K \in \mathbb{R} \). For \(\mu \neq 0 \), \(\lambda_\mu^+ \) are differentiable on \(\mathbb{R} \), while \(\lambda_0^+ \) are continuous on \(\mathbb{R} \) and differentiable except at the points \(K = (2j+1)\pi/2, j \in \mathbb{Z} \).

(ii) For \(|\mu| < M(c) \), the functions

\[
K \mapsto \Lambda_\mu^\pm(K,\mu) := c^2K^2 - \lambda_\mu^\pm(K)
\]

are strictly increasing on \((0,\infty)\).

(iii) \(\Lambda_0^-(K,\mu) = 0 \) if and only if \(K = 0 \).

(iv) For all \(|\mu| \leq M(c) \), there is a unique \(\omega_c^\mu > 0 \) such that \(\Lambda_0^+(\omega_c^\mu,\mu) = 0 \). Moreover, there are numbers \(0 < A_c < B_c < \pi/2 \) such that \(A_c < \omega_c^\mu < B_c \) for each such \(\mu \). This root \(\omega_c^\mu \) also satisfies the cruder bounds

(C.1.3) \[
\sqrt{\frac{2}{c^2(1+\mu)}} \leq \omega_c^\mu \leq \sqrt{\frac{2(2+\mu)}{c^2(1+\mu)}}.
\]

(v) \(\omega_c^\mu - \omega_c = O_c(\mu) \).

Proof. (i) We recall that the eigenvalue curves \(\lambda_\mu^\pm \) were defined in (3.0.7). Restricting \(|\mu| \leq 1 \), we have

(C.1.4) \[
|\mu| \leq \sqrt{\mu^2 + 4(1+\mu)\cos^2(K)} \leq \sqrt{\mu^2 + 4(1+\mu)} = \sqrt{(2+\mu)^2} = 2 + \mu.
\]

Then

\[
0 \leq \lambda_\mu^-(K) \leq 2 + \mu - |\mu| = \begin{cases} 2(1+\mu), & \mu \in (-1,0) \\ 2, & \mu \in [0,1). \end{cases}
\]

This proves (C.1.1).

Next, we use (C.1.4) to bound

\[
2 + \mu + |\mu| \leq \lambda_\mu^+(K) \leq 2(2+\mu),
\]

where

\[
2 + \mu + |\mu| = \begin{cases} 2, & \mu \in (-1,0) \\ 2(1+\mu), & \mu \in [0,1). \end{cases}
\]

This proves (C.1.2).

(ii) We prove this separately for the cases \(\mu \in (-1,0) \), \(\mu \in (0,1) \), and \(\mu = 0 \). First, when \(\mu \neq 0 \), the derivatives \((\lambda_\mu^\pm)' \) satisfy

(C.1.5) \[
|(\lambda_\mu^\pm)'(K)| = 4(1+\mu) \left| \frac{\sin(K)\cos(K)}{\sqrt{\mu^2 + 4(1+\mu)\cos^2(K)}} \right|.
\]
The case $\mu \in (-1,0]$. We rewrite (C.1.5) as

$$| (\lambda^\pm_\mu)'(K) | = 2 \left(\frac{2(1 + \mu)}{2 + \mu} \right) | \sin(K) | \sqrt{ \frac{1 - \sin^2(K)}{1 - \frac{4(1 + \mu)}{(2 + \mu)^2} \sin^2(K)} }.$$

We can check that

$$0 < \frac{2(1 + \mu)}{2 + \mu} \leq 1 \quad \text{and} \quad 0 < \frac{4(1 + \mu)}{(2 + \mu)^2} \leq 1$$

for $\mu \in (-1,0]$ and we also have the estimate

$$\sup_{0 \leq s \leq 1} \frac{1 - s}{1 - rs} \leq 1$$

when $0 < r < 1$. Combining these estimates, we find

$$(C.1.6) \quad | (\lambda^\pm_\mu)'(K) | \leq 2 | \sin(K) | \leq 2 |K|.$$

Taking $K > 0$, we have

$$\partial_K [\Lambda^\pm_\mu(K,\mu)] = 2c^2 K - (\lambda^\pm_\mu)'(K) \geq 2c^2 K - 2K = 2(c^2 - 1)K > 0.$$

The case $\mu \in (0,1)$. We claim

$$(C.1.7) \quad \sup_{0 \leq s \leq 1} \frac{s}{\sqrt{\mu^2 + 4(1 + \mu)s^2}} \leq \frac{1}{2}$$

when $\mu \in (0,1)$. This inequality is equivalent to

$$0 \leq \mu^2 + 4\mu s^2$$

for all $s \in [0,1]$, and this clearly holds for $\mu \in (0,1)$. Hence (C.1.7) is true, and we use that estimate on (C.1.5) to find

$$(C.1.8) \quad | (\lambda^\pm_\mu)'(K) | = 4(1 + \mu) | \sin(K) | \frac{| \cos(K) |}{\sqrt{\mu^2 + 4(1 + \mu) \cos^2(K)}} \leq 4(1 + \mu) |K| \frac{1}{2} = 2(1 + \mu) |K|.$$

Now we estimate

$$\partial_K [\Lambda^\pm_\mu(K,\mu)] = 2c^2 K - (\lambda^\pm_\mu)'(K) > 2c^2 K - 2(1 + \mu)K = 2(c^2 - (1 + \mu))K > 0.$$

This last inequality holds if $c^2 - (1 + \mu) > 0$, and we can ensure this by taking $|\mu| < (c^2-1)/4$. So, we take our threshold for μ to be

$$(C.1.9) \quad M(c) := \min \left\{ 1, \frac{c^2 - 1}{4} \right\}$$

and assume in the following that $|\mu| \leq M(c)$. Note that $M(c) \to 0^+$ as $|c| \to 1^+$, and so the μ-interval over which we work necessarily shrinks as $|c| \to 1^+$.

The case $\mu = 0$. We have

$$\Lambda^\pm_\mu(K,0) = c^2 K^2 - 2 \mp 2 | \cos(K) |,$$

and so the maps $\Lambda^\pm_\mu(\cdot,0)$ are differentiable on all intervals of the form

$$(C.1.10) \quad \left(\frac{(2j + 1)\pi}{2}, \frac{(2j + 3)\pi}{2} \right).$$
with derivative equal to
\[2c^2K \pm 2\sin(K), \]
with the \(\pm \) sign depending on the particular interval. Since
\[2c^2K \pm 2\sin(K) > 0 \]
for all \(K > 0 \), and so we conclude that the maps \(\Lambda_\pm^c(\cdot, 0) \) are strictly increasing on all intervals of the form (C.1.10). Since the maps \(\Lambda_\mp^c(\cdot, 0) \) are continuous, it follows that they are strictly increasing on all of \((0, \infty)\) and therefore have at most one real root.

(iii) This follows from part (ii), the calculation \(\Lambda_-^c(0, \mu) = 0 \), and the evenness of \(\Lambda_-^c(\cdot, \mu) \).

(iv) Using the bounds (C.1.2) on \(\lambda_\mu^+ \), it is straightforward to show that \(\lambda_\mu^+(K, \mu) < 0 \) for \(K < \sqrt{2/c^2(1 + \mu)} \) and \(\lambda_\mu^+(K, \mu) > 0 \) for \(K > \sqrt{2(2 + \mu)/c^2(1 + \mu)} \). Consequently, there exists \(\omega_\mu^c \in [\sqrt{2/c^2(1 + \mu)}, \sqrt{2(2 + \mu)/c^2(1 + \mu)}] \) such that \(\lambda_\mu^+(\omega_\mu^c, \mu) = 0 \). This \(\omega_\mu^c \) is necessarily unique because \(\lambda_\mu^+(\cdot, \mu) \) is strictly increasing on \((0, \infty)\).

We now want sharper, uniform bounds of the form \(0 < A_c < \omega_\mu^c < B_c < \pi/2 \), which the estimates on \(\omega_\mu^c \) in the preceding paragraph do not necessarily give. Let
\[A_c := \frac{\sqrt{2}}{|c|}. \]
Since \(|c| > 1 \), we have \(A_c < \sqrt{2} < \pi/2 \). The bound (C.1.2) implies \(-\lambda_\mu^+(K) \leq -2 \) for all \(K \), and so if \(0 < K \leq A_c \), then
\[\Lambda_\mu^+(K, \mu) < 2 - \lambda_\mu^+(K) \leq 0. \]
In particular, \(\Lambda_\mu^+(A_c, \mu) < 0 \).

We use (C.1.2) again to estimate
\[\Lambda_\mu^+(\frac{\pi}{2}, \mu) = \frac{c^2 \pi^2}{4} - (2 + \mu + |\mu|) \geq 2(c^2 - (1 + |\mu|)) \geq 2(c^2 - (1 + M(c)) > 0 \]
by the definition of \(M(c) \) in (C.1.9).

All together, we have the chain of inequalities
\[\Lambda_\mu^+(A_c, \mu) \leq 0 < c^2 - (1 + M(c)) < \Lambda_\mu^+(\frac{\pi}{2}, \mu) , \]
and so the intermediate value theorem produces \(B_c^\mu \in (A_c, \pi/2) \) such that
\[\Lambda_\mu^+(B_c^\mu, \mu) = c^2 - (1 + M(c)) > 0. \]
A second application of the intermediate value theorem then yields \(\omega_\mu^c \in (A_c, B_c^\mu) \) such that \(\Lambda_\mu^+(\omega_\mu^c, \mu) = 0 \). This, of course, the same \(\omega_\mu^c \) that we initially found using the cruder bounds above.

Now let
\[B_c := \sup_{|\mu| \leq M(c)} B_c^\mu. \]
We want to show \(A_c < B_c < \pi/2 \). The first inequality is obvious since \(A_c < B_c^\mu \). If \(B_c = \pi/2 \), then we may take a sequence \((\mu_n(c)) \) in \([-M(c), M(c)]\) such that
\[\lim_{n \to \infty} B_c^\mu_n(c) = \frac{\pi}{2} \quad \text{and} \quad \lim_{n \to \infty} \mu_n(c) = \overline{\mu}(c). \]
for some \(\overline{m}(c) \in [-M(c), M(c)] \). In that case, (C.1.13) and the continuity of \(\Lambda^+ \) on \(\mathbb{R} \times [-M(c), M(c)] \) imply

\[
c^2 - (1 + M(c)) = \lim_{n \to \infty} \Lambda^+ (B^\mu_n(c), \mu_n(c)) = \Lambda^+ \left(\frac{\pi}{2}, \overline{m}(c) \right) \geq 2(c^2 - (1 + M(c)))
\]

by (C.1.12). This is, of course, a contradiction.

(v) Now we show that \(\omega^\mu_c - \omega_c = \mathcal{O}_c(\mu) \). If \(\omega_c = \omega^\mu_c \), then there is nothing to prove, so assume \(\omega_c \neq \omega^\mu_c \). Recall that \(\omega_c \) satisfies

\[
c^2 \omega_c^2 - (2 + 2 \cos(\omega_c)) = 0
\]

and \(\omega^\mu_c \) satisfies

\[
c^2 (\omega^\mu_c)^2 - \lambda^+ (\omega^\mu_c) = 0.
\]

Subtracting these two equalities and using the definition of \(\lambda^+ \) in (3.0.7), we obtain

\[
c^2 (\omega_c - \omega^\mu_c) + \mu - 2 \cos(\omega_c) + \sqrt{\mu^2 + 4(1 + \mu) \cos^2(\omega_c^\mu)} = 0.
\]

Taylor-expanding the square root and using the uniform bound \(0 < A_c < \omega^\mu_c < B_c \) from part (iv), this rearranges to

(C.1.14) \[
(\omega_c - \omega^\mu_c) \left(c^2 (\omega_c + \omega^\mu_c) - 2 \left(\frac{\cos(\omega_c) - \cos(\omega^\mu_c)}{\omega_c - \omega^\mu_c} \right) \right) = \mathcal{O}_c(\mu).
\]

Since the cosine has Lipschitz constant equal to 1, we have

\[
\sup_{|\mu| \leq M(c)} \frac{2}{2} \left| \frac{\cos(\omega_c) - \cos(\omega^\mu_c)}{\omega_c - \omega^\mu_c} \right| \leq 2.
\]

From part (iv), specifically (C.1.11), we have \(\sqrt{\mu}/|c| \leq \omega^\mu_c \). Likewise, since \(\tilde{B}_c(\omega_c) = 0 \) with \(\tilde{B}_c \) defined in (1.5.3), one can extract the inequality \(\sqrt{\mu}/|c| \leq \omega_c \). Specifically, the proof is in Appendix D.1 in the context of the proof of part (i) of Proposition 4.2. Thus

\[
c^2 (\omega_c + \omega^\mu_c) \geq 2\sqrt{\mu} |c| > 2
\]

whenever \(|c| > 1 \), and so we have

\[
\inf_{|\mu| \leq M(c)} \left| c^2 (\omega_c + \omega^\mu_c) - 2 \left(\frac{\cos(\omega_c) - \cos(\omega^\mu_c)}{\omega_c - \omega^\mu_c} \right) \right| > 0.
\]

We conclude from (C.1.14) that \(\omega_c - \omega^\mu_c = \mathcal{O}_c(\mu) \). \(\square \)

The next lemma contains the remaining details that we need for the quantitative bifurcation argument that we will carry out in the following sections. To phrase this lemma, we need the definitions of the periodic Sobolev spaces \(H^r_{\text{per}} \), \(E^r_{\text{per}} \), and \(O^r_{\text{per}} \) from the start of Section 3. In this appendix only, we abbreviate

\[
\|f\|_r := \|f\|_{H^r_{\text{per}} \times H^r_{\text{per}}}.
\]

We also need to recall the definition of the operator \(\Gamma^\mu_c[\gamma^\mu_c] \) from (3.0.4).

Lemma C.2. For each \(|c| > 1 \), there is \(\mu_{\text{per}}(c) \in (0, M(c)] \) such that the following hold.
(i) There exists \(v^\mu_c \in \mathbb{R} \) such that if
\[
\nu^\mu_c := \begin{pmatrix} v^\mu_c \cos(\cdot) \\ \sin(\cdot) \end{pmatrix},
\]
then the kernel of \(\Gamma_c^\mu[\omega^\mu_c] \) in \(E^r_{\text{per,0}} \times O^r_{\text{per}} \) is spanned by \(\nu^\mu_c \) for all \(r \geq 2 \). Moreover, there is a constant \(C_v(c) > 0 \) such that \(|v^\mu_c| \leq C_v(c) \mu \).

(ii) Given \(f \in E^r_{\text{per,0}} + O^r_{\text{per}} \) and \(g \in E^r_{\text{per,0}} + O^r_{\text{per}} \), we have \(\Gamma_c^\mu[\omega^\mu_c]f = g \) if and only if \(\langle g, \nu^\mu_c \rangle = 0 \).

(iii) For each \(r \geq 0 \), there is a constant \(C(c, r) > 0 \) such that if \(f \in E^r_{\text{per,0}} + O^r_{\text{per}} \) and \(g \in E^r_{\text{per,0}} + O^r_{\text{per}} \) with
\[
\Gamma_c^\mu[\omega^\mu_c]f = g \quad \text{and} \quad \langle f, \nu^\mu_c \rangle = 0,
\]
then \(\|f\|_{r+2} \leq C(c, r)\|g\|_r \). In particular, given \(g \in E^r_{\text{per,0}} + O^r_{\text{per}} \) satisfying \(\langle g, \nu^\mu_c \rangle = 0 \), there is a unique \(f \in E^r_{\text{per,0}} + O^r_{\text{per}} \) with \(\Gamma_c^\mu[\omega^\mu_c]f = g \) and \(\langle f, \nu^\mu_c \rangle = 0 \), and, for this \(f \), we write \(f = \Gamma_c^\mu[\omega^\mu_c]^{-1}g \).

(iv) There is a constant \(C(c) > 0 \) such that \(|\langle \partial_\omega \Gamma_c^\mu[\omega^\mu_c] \nu^\mu_c, \nu^\mu_c \rangle| \geq C(c) \).

Proof. (i) Suppose \(\Gamma_c^\mu[\omega^\mu_c] \phi = 0 \), for some nonzero \(\phi = (\phi_1, \phi_2) \in E^r_{\text{per,0}} + O^r_{\text{per}} \). Let \(k \in \mathbb{Z} \) such that \(\widehat{\phi}(k) \neq 0 \). Then \(\widehat{\phi}(k) \) is an eigenvector of \(\tilde{D}_c[\omega^\mu_c]k \), and so it follows that
\[
c^2(\omega^\mu_c)k^2 - \lambda^\mu_-(\omega^\mu_c)k = 0 \quad \text{or} \quad c^2(\omega^\mu_c)k^2 - \lambda^\mu_+(\omega^\mu_c)k = 0.
\]
In the first case, part (iii) of Lemma C.1 tells us that \(\omega^\mu_ck = 0 \), and consequently \(k = 0 \). But we know \(\widehat{\phi}(0) = 0 \) since \(\phi_1 \in E^r_{\text{per,0}} \), and we have \(\widehat{\phi}(0) = 0 \) since \(\phi_2 \) is odd. Then \(\widehat{\phi}(0) = 0 \), a contradiction.

It therefore must be the case that the second equality in (C.1.16) holds, and so \(\omega^\mu_ck = \pm \omega^\mu_c \) by part (iv) of Lemma C.1. Hence \(k = \pm 1 \) and \(\widehat{\phi}(k) = 0 \) for \(|k| \neq 1 \). So, with \(e_k(x) := e^{ikx} \), we may write
\[
\phi = \widehat{\phi}(-1)e_{-1} + \widehat{\phi}(1)e_1 = \begin{pmatrix} \widehat{\phi}_1(-1)e_{-1} + \widehat{\phi}_1(1)e_1 \\ \widehat{\phi}_2(-1)e_{-1} + \widehat{\phi}_2(1)e_1 \end{pmatrix} = \begin{pmatrix} \widehat{\phi}_1(1)(e_{-1} + e_1) \\ \widehat{\phi}_2(1)(e_1 - e_{-1}) \end{pmatrix} = \begin{pmatrix} 2\widehat{\phi}_1(1)\cos(\cdot) \\ 2i\widehat{\phi}_2(1)\sin(\cdot) \end{pmatrix}.
\]

Here we have used the assumption that \(\phi_1 \) is even and \(\phi_2 \) is odd.

We know that \(\widehat{\phi}(1) \) is an eigenvector of \(\tilde{D}_c[\omega^\mu_c] \) corresponding to the eigenvalue \(\lambda^\mu_+(\omega^\mu_c) \). Using the definition of this matrix in (3.0.6), we conclude there is a \(a \in \mathbb{C} \) such that
\[
\widehat{\phi}(1) = a \begin{pmatrix} iv^\mu_c \\ 1 \end{pmatrix}, \quad v^\mu_c = \frac{\mu \sin(\omega^\mu_c)}{\lambda^\mu_+(\omega^\mu_c) - (2 + \mu)(1 - \cos(\omega^\mu_c))},
\]
provided that the term in the denominator of \(v^\mu_c \) is nonzero. It is, in fact, bounded below away from zero. If we assume
\[
|\mu| \leq \min \left\{ \frac{1}{2}, M(c) \right\} =: M_1(c),
\]
then
\[
\lambda^\mu_+(\omega^\mu_c) - (2 + \mu)(1 - \cos(\omega^\mu_c)) = \sqrt{\mu^2 + 4(1 + \mu)\cos^2(\omega^\mu_c) + (2 + \mu)\cos(\omega^\mu_c)} \geq \sqrt{2}\cos(B_c)
\]
This gives the desired estimate \(|v^\mu_c| \leq C_v(c)|\mu| \).
We conclude that if $\Gamma_c^\mu[\omega_c^\mu]\phi = 0$, then

$$\phi = \begin{pmatrix} 2\hat{\phi}_1(1) \cos(\cdot) \\ 2i\hat{\phi}_2(1) \sin(\cdot) \end{pmatrix} \quad \text{and} \quad \hat{\phi}(1) = a \begin{pmatrix} iv_c^\mu \\ 1 \end{pmatrix},$$

thus

$$\phi = 2ai \begin{pmatrix} v_c^\mu \cos(\cdot) \\ \sin(\cdot) \end{pmatrix},$$

and so the kernel of $\Gamma_c^\mu[\omega_c^\mu]$ is spanned by the vector ν_c^μ.

(ii) Recall that the symbol of $\Gamma_c^\mu[\omega_c^\mu]$ is

$$-c^2(\omega_c^\mu k)^2 + \tilde{D}_\mu[\omega_c^\mu k],$$

and this is a self-adjoint matrix in $\mathbb{C}^{2\times 2}$ by the definition of \tilde{D}_μ in (3.0.6). Moreover, by part (i), the kernel of $\Gamma_c^\mu[\omega_c^\mu]$ is one-dimensional and spanned by ν_c^μ from (C.1.15), where $\nu_c^\mu(k) = 0$ for $k \neq \pm 1$. If we denote by $\Gamma_c^\mu[\omega_c^\mu]^\ast$ the adjoint of $\Gamma_c^\mu[\omega_c^\mu]$ from $E_{\text{per},0}^2 \times O_{\text{per}}^0$ to $E_{\text{per},0}^0 \times O_{\text{per}}^0$, Lemma A.2 tells us that the kernel of $\Gamma_c^\mu[\omega_c^\mu]^\ast$ is spanned by the function $(\nu_c^\mu)^\ast$ whose Fourier coefficients are

$$\widehat{(\nu_c^\mu)^\ast}(k) = (1 + k^2)^{(2-0)/2} \nu_c^\mu(k) = \begin{cases} 2\nu_c^\mu(k), & |k| = 1 \\ 0, & |k| \neq 1. \end{cases}$$

That is, the kernel of $\Gamma_c^\mu[\omega_c^\mu]^\ast$ is just spanned by ν_c^μ.

Now we show

(C.1.19) \[\Gamma_c^\mu[\omega_c^\mu]f = g, \quad f \in E_{\text{per},0}^{r+2} \times O_{\text{per}}^{r+2}, \quad g \in E_{\text{per},0}^r \times O_{\text{per}}^r \iff \langle g, \nu_c^\mu \rangle_0 = 0. \]

The forward implication is clear from the containment $E_{\text{per},0}^r \times O_{\text{per}}^r \subseteq E_{\text{per},0}^0 \times O_{\text{per}}^0$. For the reverse, take $g \in E_{\text{per},0}^r \times O_{\text{per}}^r$ and suppose $\langle g, \nu_c^\mu \rangle_0 = 0$. Classical functional analysis tells us there is $f \in E_{\text{per},0}^2 \times O_{\text{per}}^2$ such that $\Gamma_c^\mu[\omega_c^\mu]f = g$. We then use the structure of $\Gamma_c^\mu[\omega_c^\mu]$ to bootstrap until we have $f \in E_{\text{per},0}^{r+2} \times O_{\text{per}}^{r+2}$.

(iii) If $\Gamma_c^\mu[\omega_c^\mu]f = g$, then for $k \in \mathbb{Z} \setminus \{0\}$ we have

(C.1.20) \[\left(\mathbb{1} - \frac{1}{c^2(\omega_c^\mu)^2 k^2} \tilde{D}_\mu[\omega_c^\mu k] \right) \hat{f}(k) = -\frac{1}{c^2(\omega_c^\mu)^2 k^2} \hat{g}(k). \]

Here $\mathbb{1}$ is the 2×2 identity matrix, and we may ignore the case $k = 0$ since $\hat{f}(0) = \hat{g}(0) = 0$. In this part of the proof, we will denote the ∞-norm of a matrix $A \in \mathbb{C}^{2\times 2}$ by $\|A\|$ and the 2-norm of a vector $v \in \mathbb{C}^2$ by $|v|$.

Our goal is to show that

(C.1.21) \[\sup_{|k| \geq 2} \frac{1}{c^2(\omega_c^\mu)^2 k^2} \tilde{D}_\mu[\omega_c^\mu k] \leq 1, \]

in which case the matrix on the left in (C.1.20) is invertible by a Neumann series argument, and, moreover, this inverse is uniformly bounded in k. This will show $|\hat{f}(k)| \leq C(c)|\hat{g}(k)|$ for $|k| \geq 2$, and then we will handle the case $|k| = 1$ separately.

We begin with the case $|k| \geq 2$. The estimate (C.1.3) yields

(C.1.22) \[\frac{1}{c^2(\omega_c^\mu)^2} \leq \frac{1 + \mu}{2}, \]
while the definition of $\widetilde{D}_\mu[K]$ in (3.0.6) implies
\begin{equation}
(C.1.23) \quad \left\| \widetilde{D}_\mu[\omega^\mu_{\epsilon} k] \right\| \leq 2(2 + \mu).
\end{equation}
We combine (C.1.22) and (C.1.23) and assume
\begin{equation}
(C.1.24) \quad |\mu| \leq \min \left\{ \frac{1}{10}, M_1(c) \right\} =: M_2(c)
\end{equation}
to find
\begin{equation}
\left\| \frac{1}{c^2(\omega^\mu_{\epsilon})^2} \widetilde{D}_\mu[\omega^\mu_{\epsilon} k] \right\| \leq \frac{(1 + \mu)(2 + \mu)}{k^2} \leq \frac{3}{k^2} \leq \frac{3}{4}
\end{equation}
for $|k| \geq 2$. This proves (C.1.21).

Now we show $|\hat{f}(\pm 1)| \leq C_c|\tilde{g}(\pm 1)|$. It is here that we need the additional hypothesis in part (iii) that $\langle f, \nu^\mu_{\epsilon} \rangle_0 = \langle g, \nu^\mu_{\epsilon} \rangle_0 = 0$, which implies
\begin{equation}
(C.1.25) \quad \hat{f}_2(1) = -iv^\mu_{\epsilon} \hat{f}_1(1) \quad \text{and} \quad \hat{g}_2(1) = -iv^\mu_{\epsilon} \hat{g}_1(1).
\end{equation}
This allows to rearrange the equality $\hat{f}[\Gamma^\mu_{\epsilon}[\omega^\mu_{\epsilon}]f](1) \cdot e_1 = \hat{g}(1) \cdot e_1$ into
\begin{equation*}
(-c^2(\omega^\mu_{\epsilon})^2 + (2 + \mu)(1 - \cos(\omega^\mu_{\epsilon})) - iv^\mu_{\epsilon} \mu \sin(\omega^\mu_{\epsilon})) \hat{f}_1(1) = \hat{g}_1(1).
\end{equation*}
Some straightforward calculus proves
\begin{equation*}
cK^2 - 2(1 - \cos(K)) > K^2 - 2(1 - \cos(K)) > 2 \cos(1) - 1 > 0
\end{equation*}
for $K > 1$, so it follows that
\begin{equation*}
| -c^2(\omega^\mu_{\epsilon})^2 + (2 + \mu)(1 - \cos(\omega^\mu_{\epsilon})) - iv^\mu_{\epsilon} \mu \sin(\omega^\mu_{\epsilon}) | \geq \frac{2 \cos(1) - 1}{2},
\end{equation*}
provided that
\begin{equation}
(C.1.26) \quad |\mu| < \min \left\{ \frac{2 \cos(1) - 1}{8}, \frac{2 \cos(1) - 1}{4C_c(c)}, M_2(c) \right\} =: M_3(c).
\end{equation}
This shows
\begin{equation*}
|\hat{f}_2(1)| \leq C(c)|\hat{g}_1(1)|.
\end{equation*}
If $v^\mu_{\epsilon} = 0$, then (C.1.25) provides $\hat{f}_2(1) = 0 = \hat{g}_2(1)$, and there is nothing more to prove. Otherwise, we have
\begin{equation*}
\frac{1}{|v^\mu_{\epsilon}|} |\hat{f}_2(1)| = |\hat{f}_1(1)| \leq C(c)|\hat{g}_1(1)| = \frac{1}{|v^\mu_{\epsilon}|} |\hat{g}_2(1)|,
\end{equation*}
and so $|\hat{f}_2(1)| \leq C(c)|\hat{g}_2(1)|$. The estimates for $k = -1$ follow by the even-odd symmetry of f and g.

Last, if $g \in E^r_{\text{per},0} \times O^r_{\text{per}}$ with $\langle g, \nu^\mu_{\epsilon} \rangle_0 = 0$, then part (ii) gives $f \in E^{r+2}_{\text{per},0} \times O^{r+2}_{\text{per}}$ such that $\Gamma^\mu_{\epsilon}[\omega^\mu_{\epsilon}]f = g$. Requiring $\langle f, \nu^\mu_{\epsilon} \rangle_0 = 0$ is enough to make f unique; the proof is a straightforward exercise in Hilbert space theory.

\begin{enumerate}[(iv)]
\item A lengthy calculation using patient matrix-vector multiplication along with the identity
\begin{equation*}
\mathfrak{F}[\partial_{\omega} \Gamma^\mu_{\epsilon}[\omega^\mu_{\epsilon}]\nu^\mu_{\epsilon}](k) = -2c^2 \omega^\mu_{\epsilon} k \nu^\mu_{\epsilon}(k) + k \widetilde{D}_\mu(\omega^\mu_{\epsilon} k) \nu^\mu_{\epsilon}(k),
\end{equation*}
the definition of ν^μ_{ϵ} in (C.1.15), the fact that $\nu^\mu_{\epsilon}(k) = 0$ for $|k| \neq 1$, and the definition of \widetilde{D}_μ in (3.0.6) and its corresponding componentwise derivative \tilde{D}_μ yields
\end{enumerate}
\[\langle \partial \Gamma^\mu_c [\omega^\mu_c] \nu^\mu_c, \nu^\mu_c \rangle_0 = -\left(c^2 \omega^\mu_c + \sin(\omega^\mu_c) \right) + \mu \sin(\omega^\mu_c) \left(\left(v^\mu_c \right)^2 - 1 \right) + 4 v^\mu_c + \mu \cos(\omega^\mu_c) \]

\[+ 2 \sin(\omega^\mu_c) \left(\left(v^\mu_c \right)^2 + 4 v^\mu_c + \mu \cos(\omega^\mu_c) \right). \]

Since \(v^\mu_c = \mathcal{O}_c(\mu) \), it follows that \(II = \mathcal{O}_c(\mu) \) and \(III = \mathcal{O}_c(\mu) \). And since \(0 < A_c < \omega^\mu_c < B_c \), we have

\[c^2 \omega^\mu_c + \sin(\omega^\mu_c) > c^2 A_c + \sin(A_c). \]

It follows that for \(|\mu| \) small, say, \(|\mu| \leq \mu_{\text{per}}(c) \leq M_3(c) \), we have

\[| \langle \partial \Gamma^\mu_c [\omega^\mu_c] \nu^\mu_c, \nu^\mu_c \rangle_0 | \geq \frac{c^2 A_c + \sin(A_c)}{2} > 0. \]

\[\square \]

C.2. Bifurcation from a simple eigenvalue. We are now ready to solve the periodic traveling wave problem \(\Phi^\mu_c(\phi, \omega) = 0 \) posed in (3.0.3). We follow [HW17] and [CR71] and make the revised ansatz

\[\phi = a\nu^\mu_c + a\psi \quad \text{and} \quad \omega = \omega^\mu_c + \xi. \]

where \(a, \xi \in \mathbb{R} \) and \(\langle \nu^\mu_c, \psi \rangle_0 = 0 \). Then our problem \(\Phi^\mu_c(\phi, \omega) = 0 \) becomes

\[\Phi^\mu_c(a\nu^\mu_c + a\psi, \omega^\mu_c + \xi) = 0. \]

After some considerable rearranging, we find that \(\psi \) and \(a \) must satisfy

\[\Gamma^\mu_c [\omega^\mu_c] \psi = \mathcal{R}^\mu_{c,1}(\xi) + \mathcal{R}^\mu_{c,2}(\xi) + \mathcal{R}^\mu_{c,3}(\psi, \xi) + \mathcal{R}^\mu_{c,4}(\psi, \xi) + a\mathcal{R}^\mu_{c,5}(\psi, \xi), \]

where

\[\mathcal{R}^\mu_{c,1}(\xi) := -2 c^2 \omega^\mu_c \xi (\nu^\mu_c)^\mu \]

\[\mathcal{R}^\mu_{c,2}(\xi) := - (\mathcal{D}_\mu [\omega^\mu_c + \xi] - \mathcal{D}_\mu [\omega^\mu_c]) \nu^\mu_c \]

\[\mathcal{R}^\mu_{c,3}(\psi, \xi) := - c^2 [(\nu^\mu_c)^\mu + (2 \omega^\mu_c + \xi) \psi \mu] \]

\[\mathcal{R}^\mu_{c,4}(\psi, \xi) := - (\mathcal{D}_\mu [\omega^\mu_c + \xi] - \mathcal{D}_\mu [\omega^\mu_c]) \psi \]

\[\mathcal{R}^\mu_{c,5}(\psi, \xi) := - \mathcal{D}_\mu [\omega^\mu_c + \xi] \mathcal{Q}(\nu^\mu_c + \psi, \nu^\mu_c + \psi). \]

This is roughly the same system that Hoffman and Wright study when they construct periodic solutions for the small mass problem; specifically, its analogue appears in equation (B.9) in [HW17]. Our goal, like theirs, is to rewrite (C.2.1) as a fixed point argument in the unknowns \(\psi \) and \(\xi \) on the space \(E^2_{\text{per},0} \times O^2_{\text{per}} \times \mathbb{R} \) with \(\mu \) as a small parameter and \(c \) fixed. We intend to use the following lemma, proved in [FW18] as Lemma C.1.

Lemma C.3. Let \(\mathcal{X} \) be a Banach space and for \(r > 0 \) let \(\mathfrak{B}(r) = \{ x \in \mathcal{X} : \| x \| \leq r \} \).
(i) For $|\mu| \leq \mu_0$ let $F_\mu : \mathcal{X} \times \mathbb{R} \to \mathcal{X}$ be maps with the property that for some $C_1, a_1, r_1 > 0$, if $x, y \in \mathcal{B}(r_1)$ and $|a| \leq a_1$, then

\begin{equation}
\sup_{|\mu| \leq \mu_0} \|F_\mu(x, a)\| \leq C_1 (|a| + \|x\| + \|x\|^2)
\end{equation}

\begin{equation}
\sup_{|\mu| \leq \mu_0} \|F_\mu(x, a) - F_\mu(y, a)\| \leq C_1 (|a| + \|x\| + \|y\|) \|x - y\|
\end{equation}

Then there exist $a_0 \in (0, a_1], r_0 \in (0, r_1]$ such that for each $|\mu| \leq \mu_0$ and $|a| \leq a_0$, there is a unique $x_\mu^a \in \mathcal{B}(r_0)$ such that $F_\mu(x_\mu^a, a) = x_\mu^a$.

(ii) Suppose as well that the maps $F_\mu(\cdot, a)$ are Lipschitz on $\mathcal{B}(r_0)$ uniformly in a and μ, i.e., there is $L_1 > 0$ such that

\begin{equation}
\sup_{|\mu| \leq \mu_0, \|x\| \leq r_0} \|F_\mu(x, a) - F_\mu(x, \hat{a})\| \leq L_1 |a - \hat{a}|
\end{equation}

for all $|a|, |\hat{a}| \leq a_0$. Then the mappings $[-a_0, a_0] \to \mathcal{X} : a \mapsto x_\mu^a$ are also uniformly Lipschitz; that is, there is $L_0 > 0$ such that

\begin{equation}
\sup_{|\mu| \leq \mu_0} \|x_\mu^a - x_\mu^{\hat{a}}\| \leq L_0 |a - \hat{a}|
\end{equation}

for all $|a|, |\hat{a}| \leq a_1$.

Unlike Hoffman and Wright, we cannot invoke this lemma immediately as the terms $R_{\mu,1}^\mu$ and $R_{\mu,2}^\mu$ do not have the right structure. Namely, they contain linear terms in ξ that have no companion factor of μ, and so these terms will not be small enough to achieve the estimates (C.2.3) and (C.2.4). Due to a different scaling inherent to the small mass limit, this was not an issue for Hoffman and Wright.

Therefore, we begin to modify the problem (C.2.1) as follows. Let

\begin{equation}
\varpi_\mu^\mu \psi := \frac{\langle \psi, \nu_\mu^\mu \rangle_0}{\|\nu_\mu^\mu\|^2_0} \nu_\mu^\mu \quad \text{and} \quad \Pi_\mu^\mu := 1 - \varpi_\mu^\mu.
\end{equation}

The definition of ν_μ^μ in (C.1.15) ensures that the denominator of ϖ_μ^μ is bounded away from zero uniformly in μ. Then (C.2.1) holds if and only if both

\begin{equation}
\varpi_\mu^\mu \Gamma_\mu^\mu [\omega_\mu^\mu] \psi = \varpi_\mu^\mu [R_{\mu,1}(\xi) + R_{\mu,2}(\xi) + R_{\mu,3}(\psi, \xi) + R_{\mu,4}(\psi, \xi) + aR_{\mu,5}(\psi, \xi)]
\end{equation}

and

\begin{equation}
\Pi_\mu^\mu \Gamma_\mu^\mu [\omega_\mu^\mu] \psi = \Pi_\mu^\mu [R_{\mu,1}(\xi) + R_{\mu,2}(\xi) + R_{\mu,3}(\psi, \xi) + R_{\mu,4}(\psi, \xi) + aR_{\mu,5}(\psi, \xi)].
\end{equation}

Since $\langle \Gamma_\mu^\mu [\omega_\mu^\mu] \psi, \nu_\mu^\mu \rangle_0 = 0$ by (C.1.19), the first equation (C.2.8) is equivalent to

\begin{equation}
-R_{\mu,1}(\xi, \omega_\mu^\mu) + R_{\mu,2}(\xi) = \varpi_\mu^\mu [R_{\mu,3}(\psi, \xi) + R_{\mu,4}(\psi, \xi) + aR_{\mu,5}(\psi, \xi)]
\end{equation}

Observe that

\begin{equation}
-R_{\mu,1}(\xi) - R_{\mu,2}(\xi) = \xi (2d^2 \omega_\mu^\mu \nu_\mu^\mu + \partial_\omega \varnothing_{\mu,1}[\omega_\mu^\mu] \nu_\mu^\mu) + \varnothing_{\mu,2}[\omega_\mu^\mu + \xi] - \varnothing_{\mu,3}[\omega_\mu^\mu] \xi \partial_\omega \varnothing_{\mu,1}[\omega_\mu^\mu] \nu_\mu^\mu,\end{equation}

\begin{equation}
R_{\mu,5}(\xi)
\end{equation}
where the derivative $\partial_\mu \Gamma_c^\mu[\omega_c^\mu]$ of a scaled Fourier multiplier is discussed in Appendix A.1.1. Consequently, (C.2.8) is really equivalent to

$$\xi = \frac{1}{\langle \partial_\mu \Gamma_c^\mu[\omega_c^\mu, \nu_c^\mu, \nu_c^\mu]_0 \rangle} \omega_c^\mu [R_{c,3}^\mu(\psi, \xi) + R_{c,4}^\mu(\psi, \xi) + aR_{c,5}^\mu(\psi, \xi) + R_{c,6}^\mu(\xi)],$$

and part (iv) of Proposition C.2 guarantees that $|\langle \partial_\mu \Gamma_c^\mu[\omega_c^\mu, \nu_c^\mu, \nu_c^\mu]_0 \rangle|$ is bounded away from zero uniformly in μ.

Now we construct the fixed point equation for ψ. By definition of Π_c^μ in (C.2.7) and part (ii) of Proposition C.2, we have

$$\Pi_c^\mu \Gamma_c^\mu[\omega_c^\mu] \psi = \Gamma_c^\mu[\omega_c^\mu] \psi,$$

so that (C.2.9) is equivalent to

$$\Gamma_c^\mu[\omega_c^\mu] \psi = \Pi_c^\mu [R_{c,1}^\mu(\xi) + R_{c,2}^\mu(\xi) + R_{c,3}^\mu(\psi, \xi) + R_{c,4}^\mu(\psi, \xi) + aR_{c,5}^\mu(\psi, \xi)].$$

Next, it is obvious from the definition of Π_c^μ that $\langle \Pi_c^\mu f, \nu_c^\mu \rangle = 0$. Consequently, there exists a solution ψ to (C.2.12), but, since $\Gamma_c^\mu[\omega_c^\mu]$ has a nontrivial kernel by part (i) of Proposition C.2, this solution is not unique. Part (iii) of that proposition, however, allows us to force uniqueness by taking ψ to be the solution of (C.2.12) that also satisfies $\langle \psi, \nu_c^\mu \rangle = 0$. Hence the ψ that we seek must satisfy

$$\psi = \Gamma_c^\mu[\omega_c^\mu]^{-1} \Pi_c^\mu [R_{c,1}^\mu(\xi) + R_{c,2}^\mu(\xi) + R_{c,3}^\mu(\psi, \xi) + R_{c,4}^\mu(\psi, \xi) + aR_{c,5}^\mu(\psi, \xi)].$$

As with our construction of the fixed-point equation for ξ, the terms $R_{c,1}$ and $R_{c,2}$ are too large in ξ. However, by (C.2.11) we may replace ξ by $\Xi_\mu^\mu(\psi, \xi, a)$, which will turn out to correct this overshoot. So, our equation for ψ is

$$\psi = \Gamma_c^\mu[\omega_c^\mu]^{-1} \Pi_c^\mu [R_{c,1}^\mu(\Xi_\mu^\mu(\psi, \xi, a)) + R_{c,2}^\mu(\Xi_\mu^\mu(\psi, \xi, a)) + R_{c,3}^\mu(\psi, \xi) + R_{c,4}^\mu(\psi, \xi) + aR_{c,5}^\mu(\psi, \xi)].$$

It is worthwhile pointing out now that

$$\|\Gamma_c^\mu[\omega_c^\mu]^{-1} \Pi_c^\mu \psi\|_{r+2} \leq C(c, r) \|\psi\|,$$

by the estimate in part (iii) from Lemma C.2.

C.3. Solution of the fixed-point problem. The fixed-point problem

$$\begin{cases}
\psi = \Psi_\mu^\mu(\psi, \xi, a) \\
\xi = \Xi_\mu^\mu(\psi, \xi, a)
\end{cases}$$

is now in a form amenable to Lemma C.3. One first shows that Ξ_μ^μ satisfies the estimates (C.2.3), (C.2.4), and (C.2.5) using, chiefly, the calculus on Fourier multipliers from Lemma A.1 and the techniques of Appendices B of [HW17] and C of [FW18]. Then one establishes the same estimates on Ψ_μ^μ, using the existing estimates on Ξ_μ^μ along the way. Since the techniques so closely resemble those of [HW17] and [FW18], we omit the details.

One can think of the condition $|\langle \partial_\mu \Gamma_c^\mu[\omega_c^\mu, \nu_c^\mu, \nu_c^\mu]_0 \rangle| > 0$ as, ultimately, a quantitative version of the “bifurcation condition” from the original theorem of Crandall and Rabinowitz, namely, part (d) of Theorem 1.7 in [CR71], when their Banach spaces are specified to be Hilbert spaces.
D.1. Proof of Proposition 4.2.

D.1.1. The proof of part (i). Observe that

\[\tilde{B}_c(0) = 4 > 0 \quad \text{and} \quad \tilde{B}_c\left(\frac{\pi}{2}\right) = -\frac{c^2\pi^2}{4} + 2 < -\frac{8}{4} + 2 = 0. \]

The intermediate value theorem furnishes \(\omega_c \in (0, \pi/2) \) such that \(\tilde{B}_c(\omega_c) = 0 \). Since \(0 < \omega_c < \pi/2 \), we can rewrite the relation \(\tilde{B}_c(\omega_c) = 0 \) as

\[\omega_c = \sqrt{\frac{2 + 2\cos(\omega_c)}{c^2}} > \sqrt{\frac{2}{c^2}} = \sqrt{\frac{2}{|c|}}, \]

and so we have the refined bounds \(\sqrt{2}/|c| < \omega_c < \pi/2 \). Next, for \(k \in \mathbb{R} \), we calculate

\[|(\tilde{B}_c)'(k)| = 2c^2k - \sin(k)| > 0 \]

since \(c^2 > 1 \). This shows that the zeros at \(z = \pm \omega_c \) are simple and, moreover, unique in \(\mathbb{R} \).

The bound (4.0.5) follows by estimating

\[|(\tilde{B}_c)'(\omega_c)| \geq 2(c^2A_c - \sin(A_c)) \geq 2(1 - \sin(1)). \]

Now we prove that \(z = \pm \omega_c \) are the only zeros of \(\tilde{B}_c \) on a suitably narrow strip in \(\mathbb{C} \). For \(k, q \in \mathbb{R} \), we compute

\[\tilde{B}_c(k + iq) = -c^2(k^2 - q^2) + 2 + (e^{-q} + e^q)\cos(k) + i(-2c^2kq + (e^{-q} - e^q)\sin(k)). \]

We claim for a suitable \(q_B > 0 \), if \(|q| \leq 3q_B \), then \(I_c(k, q) = 0 \) if and only if \(k = 0 \). But

\[R_c(0, q) = q^2 + e^q + e^{-q} > 0 \]

for all \(q \in \mathbb{R} \), and so, if our claim is true, then \(\tilde{B}_c(z) \neq 0 \) for \(|\text{Im}(z)| \leq 3q_B \).

So, we just need to prove the claim about \(I_c \). Observe that, for \(q \neq 0 \), \(I_c(k, q) = 0 \) if and only if

\[(D.1.1) \quad \frac{2c^2q}{e^{-q} - e^q} = \text{sinc}(k) := \frac{\sin(k)}{k}. \]

Elementary calculus tells us

\[\text{sinc}(k) > -\frac{1}{4}, \quad k \in \mathbb{R} \quad \text{and} \quad 2\frac{q}{e^{-q} - e^q} < -\frac{1}{4}, \quad |q| \leq 3. \]

So, we set \(q_B = 1 \) and find that for \(|q| \leq 3q_B \) and any \(k \in \mathbb{R} \)

\[\frac{2c^2q}{e^{-q} - e^q} < \frac{2q}{e^{-q} - e^q} < -\frac{1}{4} < \text{sinc}(k). \]

Hence (D.1.1) cannot hold for \(|q| \leq 3q_B \).

With part (i) established, part (ii) follows at once.
D.1.2. The proof of part (iii). The reverse triangle inequality implies
\[|\tilde{B}_c(z)| \geq c^2|z|^2 - |2 + 2\cos(z)| \]
We estimate
\[|2 + 2\cos(z)| \leq 2 + 2e^{2q_B} \leq 2 + 2e^2 \]
for \(z \in S_{2q_B} \), since we assumed \(q_B = 1 \). Hence
\[|\tilde{B}_c(z)| \geq c^2|z|^2 - (2 + 2e^2). \]
Now take
\[|z| \geq \sqrt{\frac{2 + 2e^2}{e^2 - 1/2}} =: r_B(c) \]
to find that
\[\frac{1}{2}|z|^2 \leq c^2|z|^2 - (2 + 2e^2) \leq |\tilde{B}_c(z)|. \]

D.1.3. The proof of part (iv). Residue theory tells us that

\[(D.1.2) \quad \frac{1}{\tilde{B}_c(z)} = \frac{1}{(\tilde{B}_c)'(\omega_c)(z - \omega_c)} + \frac{1}{(\tilde{B}_c)'(-\omega_c)(z + \omega_c)} + \Re_c(z), \quad z \in S_{3q_B} \setminus \{\pm \omega_c\}, \]

where \(\Re_c \) is analytic on \(S_{3q_B} \).

We need two elementary Fourier transforms. Let \(\alpha, \beta \in \mathbb{C} \) with \(\Re(\alpha) > 0 \) and \(\Re(\beta) < 0 \) and define

\[e^\alpha(x) := \begin{cases} e^{\alpha x}, & x < 0 \\ 0, & x \geq 0 \end{cases} \quad \text{and} \quad e^\beta(x) := \begin{cases} 0, & x < 0 \\ e^{\beta x}, & x \geq 0. \end{cases} \]

Then
\[\hat{e}_\alpha(k) = \frac{1}{\sqrt{2\pi}(\alpha - ik)} \quad \text{and} \quad \hat{e}_\beta(k) = -\frac{1}{\sqrt{2\pi}(\beta - ik)}. \]

Since
\[\frac{1}{-k + iq \pm \omega_c} = \frac{i\sqrt{2\pi}}{\sqrt{2\pi}((-q \pm i\omega_c) - ik)}, \]
we have

\[(D.1.3) \quad \hat{\delta}^{-1} \left[\frac{1}{-\cdot + iq \pm \omega_c} \right](x) = \begin{cases} i\sqrt{2\pi}e^{(-q \pm i\omega_c)x}, & x < 0 \\ 0, & x \geq 0 \end{cases} \]
if \(q < 0 \) and

\[(D.1.4) \quad \hat{\delta}^{-1} \left[\frac{1}{-\cdot + iq \pm \omega_c} \right](x) = \begin{cases} 0, & x < 0 \\ i\sqrt{2\pi}e^{(-q \pm i\omega_c)x}, & x \geq 0 \end{cases} \]
if \(q > 0 \). In either case, using the decomposition (D.1.2) and the transforms (D.1.3) and (D.1.4), we bound

\[(D.1.5) \quad \|\hat{\delta}^{-1} \left[\frac{1}{\tilde{B}_c(-\cdot + iq)} \right]\|_{L^1} \leq \sqrt{2\pi} \left(\frac{1}{|q + i\omega_c|} + \frac{1}{|q - i\omega_c|} \right) + \|\hat{\delta}^{-1}[\Re_c(-\cdot + iq)]\|_{L^1}, \]
where
\[(D.1.6) \quad \mathfrak{F}^{-1}[R_c(-\cdot + iq)](x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ikx} R_c(-k+iq) \, dk = -\frac{e^{-qx}}{\sqrt{2\pi}} \int_{\text{Im}(z)=q} e^{-ixz} R_c(z) \, dz.\]

We claim that
\[(D.1.7) \quad \sup_{1<|c|\leq \sqrt{2}} \|\mathfrak{F}^{-1}[R_c(-\cdot + iq)]\|_{L^1(\mathbb{R}_+)} < \infty.\]

If this estimate holds, then (D.1.5) will establish the desired estimate (4.0.8). We first prove (D.1.7) for the $L^1(\mathbb{R}_-)$ case and then comment briefly on how to proceed with the similar $L^1(\mathbb{R}_+)$ estimate. Observe that R_c vanishes as $|\text{Re}(z)| \to \infty$, since the other three functions in (D.1.2), where R_c is defined implicitly, all vanish as $|\text{Re}(z)| \to \infty$. Moreover, R_c is analytic on the strip S_{3q_B}. We can therefore shift the integration contour in (D.1.6) from $\text{Im}(z) = q$ to $\text{Im}(z) = 2q_B$ and obtain
\[
\int_{\text{Im}(z)=q} e^{-ixz} R_c(z) \, dz = e^{2q_B x} \int_{-\infty}^{\infty} e^{ikx} R_c(k+2iq_B) \, dk.
\]

From (D.1.6), we conclude
\[(D.1.8) \quad \mathfrak{F}^{-1}[R_c(-\cdot + iq)](x) = -\frac{e^{(2q_B-q)x}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ikx} R_c(k+2iq_B) \, dk,\]

Since $2q_B - q > 0$, we will have (D.1.7) in the $L^1(\mathbb{R}_-)$ case if we can show
\[(D.1.9) \quad \sup_{1<|c|\leq \sqrt{2}} \left| \int_{-\infty}^{\infty} e^{ikx} R_c(k+2iq_B) \, dk \right| < \infty.\]

The integral $\int_{-\infty}^{\infty} e^{ikx} R_c(-k+2iq_B) \, dk$ in (D.1.9) is the inverse Fourier transform of $R_c(-\cdot + 2iq_B)$, which we may estimate using the implicit definition of R_c in (D.1.2): We have
\[
|\mathfrak{F}^{-1}[R_c(-\cdot + 2iq_B)](x)| \leq \left| \mathfrak{F}^{-1} \left[\frac{1}{B_c(-\cdot + 2iq_B)} \right] (x) \right| + \left| \frac{1}{(B_c)^{(\omega_c)}} \mathfrak{F}^{-1} \left[\frac{1}{(-\cdot + 2iq_B - \omega_c)} \right] (x) \right| + \left| \frac{1}{(B_c)^{(-\omega_c)}} \mathfrak{F}^{-1} \left[\frac{1}{(-\cdot + 2iq_B + \omega_c)} \right] (x) \right|
\]

The quantities I, II, and III are uniformly bounded for $1 < |c| \leq \sqrt{2}$ due to the calculations of the specific Fourier transforms in (D.1.3) and (D.1.4) and the bounds (4.0.5). We obtain a uniform bound for I over $1 < |c| \leq \sqrt{2}$ by estimating the integral $\int_{-\infty}^{\infty} (1/|B_c(-k + 2iq_B)|) \, dk$ over the intervals $(-\infty, r_0]$ and $[r_0, \infty)$, where r_0 is defined in (4.0.7), with the quadratic estimate (4.0.6) and then over the interval $[-r_0, r_0]$ just by bounding $1/|B_c(-k + 2iq_B)|$ uniformly in c for $|k| \leq r_0$. This proves (D.1.9).
To study $\|\mathcal{F}^{-1} [\mathcal{H}_\epsilon (-\cdot +iq)] \|_{L^1(\mathbb{R}_+)}$, we repeat the work above, except we shift the contour in (D.1.6) to $\text{Im}(z) = -2q_H$, so that

$$
\int_{-\infty}^{\infty} e^{ikx} \mathcal{H}_\epsilon (-k + iq) \, dk = -e^{-(2q_H + q)x} \int_{-\infty}^{\infty} e^{-ikx} \mathcal{H}_\epsilon (k - 2iq_H) \, dk.
$$

Then we obtain an estimate analogous to (D.1.9), which in turn proves (D.1.7) for $L^1(\mathbb{R}_+)$.

D.2. Additional estimates on the Friesecke-Pego solitary wave ζ_{ϵ}. We deduce the following lemma from Lemmas 3.1 and 3.2 in [HW08].

Lemma D.1 (Hoffman & Wayne). There exist $\epsilon_{\text{HWa}} \in (0, \epsilon_{FP})$ and a, $C > 0$ such that

$$
\left\| e^{(a/\epsilon)} \left(\frac{1}{\epsilon^2} \zeta_{\epsilon} \left(\frac{\cdot}{\epsilon} \right) - \sigma \right) \right\|_{H^1} \leq C \epsilon^2
$$

for $0 < \epsilon < \epsilon_{\text{HWa}}$.

Now we prove a bevy of estimates on ζ_{ϵ}, all of which say either that ζ_{ϵ} is “small” in a certain norm or that ζ_{ϵ} and $\epsilon^2 \sigma(\cdot)$, where σ was defined in (6.1.2), are “close” in some norm.

Proposition D.2. There is $C > 0$ such that the following estimates hold for all $\epsilon \in (0, \epsilon_{\text{HWa}})$.

- (i) $\| e^{a/\epsilon} (\zeta_{\epsilon} - \epsilon^2 \sigma(\cdot)) \|_{L^2} \leq C \epsilon^{7/2}$.
- (ii) $\| \zeta_{\epsilon} - \epsilon^2 \sigma(\cdot) \|_{L^1} \leq C \epsilon^{7/2}$.
- (iii) $\| \zeta_{\epsilon} \|_{L^1} \leq C \epsilon$.
- (iv) $\| \zeta_{\epsilon} - \epsilon^2 \sigma(\cdot) \|_{L^\infty} \leq C \epsilon^2$.
- (v) $\| \zeta_{\epsilon} \|_{L^\infty} \leq C \epsilon^2$.
- (vi) $\| \epsilon q \zeta_{\epsilon} \|_{L^\infty} \leq C \epsilon^2$ for $0 < q < \min\{\epsilon/2, a\}$.

Proof. (i) We use the evenness of the integrand and substitute $u = \epsilon x$ to find

$$
\| e^{a/\epsilon} (\zeta_{\epsilon} - \epsilon^2 \sigma(\cdot)) \|_{L^2}^2 = \int_{-\infty}^{\infty} e^{2a|u|} |\zeta_{\epsilon}(x) - \epsilon^2 \sigma(\epsilon x)|^2 \, dx = 2\epsilon^3 \int_{0}^{\infty} e^{2au/\epsilon} \left| \frac{1}{\epsilon^2} \zeta_{\epsilon} \left(\frac{u}{\epsilon} \right) - \sigma(u) \right|^2 \, du
$$

\[\leq 2\epsilon^3 \int_{-\infty}^{\infty} e^{2au/\epsilon} \left| \frac{1}{\epsilon^2} \zeta_{\epsilon} \left(\frac{u}{\epsilon} \right) - \sigma(u) \right|^2 \, du + 2\epsilon^3 \left\| e^{(a/\epsilon)} \left(\frac{1}{\epsilon^2} \zeta_{\epsilon} \left(\frac{\cdot}{\epsilon} \right) - \sigma \right) \right\|^2_{L^2} \leq C \epsilon^7.
$$

(ii) The Cauchy-Schwarz inequality implies

$$
\| \zeta_{\epsilon} - \epsilon^2 \sigma(\cdot) \|_{L^1} = \int_{-\infty}^{\infty} |\zeta_{\epsilon}(x) - \epsilon^2 \sigma(\epsilon x)| \, dx = \int_{-\infty}^{\infty} e^{-a|x|} (\epsilon^2 \sigma(\cdot)|\zeta_{\epsilon}(x) - \epsilon^2 \sigma(\epsilon x)|) \, dx
$$

\[\leq \left(\int_{-\infty}^{\infty} e^{-2a|x|} \, dx \right)^{1/2} \left(\int_{-\infty}^{\infty} e^{2a|x|} \left| \zeta_{\epsilon}(x) - \epsilon^2 \sigma(\epsilon x) \right|^2 \, dx \right)^{1/2}. \]
The first integral on the second line is just a constant (depending on \(a\)), and the second integral is \(O(\epsilon^{7/2})\) by part (i).

(iii) This follows directly from part (ii) and the calculation \(\|\sigma(\epsilon)\|_{L^1} = O(\epsilon^{-1})\).

(iv) The Sobolev embedding and the Friesecke-Pego estimate (6.1.3) imply

\[
\left\| \frac{1}{\epsilon^2} \sigma_{\epsilon} \left(\frac{\cdot}{\epsilon} \right) - \sigma \right\|_{L^\infty} \leq C \epsilon^2,
\]

and then rescaling gives the desired estimate.

(v) This follows directly from part (iv) and the calculation \(\|\sigma(\epsilon \cdot)\|_{L^1} = O(\epsilon^{-1})\).

(vi) First, we have

\[
\left\| e^q \varsigma_{\epsilon} \right\|_{L^\infty} \leq \left\| e^q \varsigma_{\epsilon} \right\|_{L^\infty(\mathbb{R}_+)} + \left\| e^q \varsigma_{\epsilon} \right\|_{L^\infty(\mathbb{R}_-)}.
\]

Since \(q > 0\), part (v) gives

\[
\left\| e^q \varsigma_{\epsilon} \right\|_{L^\infty(\mathbb{R}_-)} \leq \left\| \varsigma_{\epsilon} \right\|_{L^\infty(\mathbb{R}_-)} \leq \left\| \varsigma_{\epsilon} \right\|_{L^\infty} \leq C \epsilon^2.
\]

Next,

\[
\text{(D.2.1)} \quad \left\| e^q \varsigma_{\epsilon} \right\|_{L^\infty(\mathbb{R}_+)} \leq e^2 \left\| e^q \sigma(\epsilon \cdot) \right\|_{L^\infty(\mathbb{R}_+)} + \left\| e^q (\varsigma_{\epsilon} - \epsilon^2 \sigma(\epsilon \cdot)) \right\|_{L^\infty(\mathbb{R}_+)}.
\]

Since \(0 < q < \epsilon/2\) and \(x \geq 0\), we have

\[
|e^q \sigma(\epsilon x)| \leq C e^{q x} e^{-\epsilon x} \leq C e^{-\epsilon x/2} \leq C,
\]

hence \(\left\| e^q \sigma(\epsilon \cdot) \right\|_{L^\infty(\mathbb{R}_+)} = O(1)\). For the other term in (D.2.1), we rewrite

\[
\left\| e^q (\varsigma_{\epsilon} - \epsilon^2 \sigma(\epsilon \cdot)) \right\|_{L^\infty(\mathbb{R}_+)} \leq \left\| e^q (\varsigma_{\epsilon} - \epsilon^2 \sigma(\epsilon \cdot)) \right\|_{L^\infty(\mathbb{R}_+)} \leq \left\| e^q (\varsigma_{\epsilon} - \epsilon^2 \sigma(\epsilon \cdot)) \right\|_{L^\infty}
\]

\[
= \epsilon^2 \left\| \left(\frac{1}{\epsilon^2} \varsigma_{\epsilon} \left(\frac{\cdot}{\epsilon} \right) - \sigma \right) \right\|_{L^\infty} \leq C \epsilon^4
\]

by Lemma D.1. \(\Box\)

Appendix E. Some Proofs for the Verification of Hypotheses 3 and 4 in the Case \(|c| \geq 1\)

E.1. Background from the theory of modified functional differential equations.

We extract the content of the following theorem from Theorem 3.2 and Proposition 3.4 in [HL07].

Theorem E.1 (Hupkes & Verduyn Lunel). Let \(A_0, A_1, \ldots, A_n \in \mathbb{C}^{m \times m}\) and let \(d_0 < d_1 < \cdots < d_n\) be real numbers. For \(f \in W^{1,\infty}\), define

\[
\text{(E.1.1)} \quad \Lambda f := f' - \sum_{j=1}^n A_j S^{d_j} f.
\]

Let

\[
\text{(E.1.2)} \quad \Delta(z) := z - \sum_{j=1}^n e^{d_j z} A_j \in \mathbb{C}^{m \times m},
\]
where 1 is the $m \times m$ identity matrix. We call Δ the characteristic matrix corresponding to the system (E.1.1). Suppose that $q \in \mathbb{R}$ with $\det[\Delta(z)] \neq 0$ for $\Re(z) = q$. Then Λ is an isomorphism between $W_q^{1,\infty}(\mathbb{R}, \mathbb{C}^m)$ and $L_q^\infty(\mathbb{R}, \mathbb{C}^m)$, where these spaces were defined in Definition 2.2. We denote its inverse by Λ_q^{-1}. Moreover, we have two formulas for Λ_q^{-1}.

(i) There is a function $\mathcal{G}_q \in \cap_{p=1}^\infty L^p(\mathbb{R}, \mathbb{C}^{m \times m})$ such that for $g \in L_q^\infty(\mathbb{R}, \mathbb{C}^{m \times m})$,

$$
(\Lambda_q^{-1}) (x) = e^{qx} \int_{-\infty}^\infty e^{-qs} \mathcal{G}_q(x-s)g(s) \, ds
$$

Moreover,

$$
(\Lambda_q^{-1}) (k) = \Delta(ik + q)^{-1}, \quad k \in \mathbb{R}.
$$

(ii) Given $\delta \in (0, |q|)$ and $g \in L_q^\infty(\mathbb{R}, \mathbb{C}^m)$, we have

$$
(\Lambda_q^{-1} g)(x) = \frac{1}{2\pi i} \int_{q+\delta-i\infty}^{q+\delta+i\infty} e^{xz} \Delta(z)^{-1} \mathcal{L}_+[g](z) \, dz + \frac{1}{2\pi i} \int_{q-\delta-i\infty}^{q-\delta+i\infty} e^{xz} \Delta(z)^{-1} \mathcal{L}_-[g](z) \, dz,
$$

where \mathcal{L}_\pm are the Laplace transforms defined in Appendix A.2.

E.2. Proof of Proposition 6.4. That $\varsigma_c g \in L_{q_c}^\infty$ for $g \in L_{-q_c}^\infty$ is a straightforward consequence of part (vi) of Proposition D.2.

E.2.1. Residue theory. Take $R > 0$ so large that $0 < \omega_{c_1} < R$ for all $0 < \epsilon < \epsilon_B$ and consider the contour $\gamma_{c,1}(R) + \gamma_{c,2}(R) + \gamma_{c,3}(R) + \gamma_{c,4}(R)$ sketched in Figure 5. The residue theorem tells us

$$
\frac{1}{2\pi i} \int_{\gamma_{c,1}(R) + \gamma_{c,2}(R) + \gamma_{c,3}(R) + \gamma_{c,4}(R)} K_c(x, z) \mathcal{L}_+ [\varsigma_c g](z) \, dz = \text{Res} (K_c(x, z) \mathcal{L}_+ [\varsigma_c g](z); z = i\omega)
$$

$$
+ \text{Res} (K_c(x, z) \mathcal{L}_- [\varsigma_c g](z); z = -i\omega).
$$

By the inverse formulas in (6.3.11), we can write

$$
[B_{c,1}^{-1}][\varsigma_c g](x) = -\frac{1}{2\pi i} \lim_{R \to \infty} \left(\int_{\gamma_{c,1}(R)} K_c(x, z) \mathcal{L}_+ [\varsigma_c g](z) \, dz + \int_{\gamma_{c,3}(R)} K_c(x, z) \mathcal{L}_+ [\varsigma_c g](z) \, dz \right)
$$

and

$$
[B_{c,1}^{-1}][\varsigma_c g](x) = \frac{1}{2\pi i} \lim_{R \to \infty} \left(\int_{\gamma_{c,1}(R)} K_c(x, z) \mathcal{L}_+ [\varsigma_c g](z) \, dz + \int_{\gamma_{c,3}(R)} K_c(x, z) \mathcal{L}_- [\varsigma_c g](z) \, dz \right).
$$

If we can show that

$$
\lim_{R \to \infty} \int_{\gamma_{c,1}(R)} K_c(x, z) \mathcal{L}_+ [\varsigma_c g](z) \, dz = \lim_{R \to \infty} \int_{\gamma_{c,3}(R)} K_c(x, z) \mathcal{L}_- [\varsigma_c g](z) \, dz = 0
$$

(E.2.4)
then we can combine (E.2.1), (E.2.2), and (E.2.3) to conclude
\[(E.2.5)\]

\[
\left[B - c \epsilon \right] - 1 \left[\varsigma c \epsilon g \right](x) = \left[B + c \epsilon \right] - 1 \left[\varsigma c \epsilon g \right](x) - \operatorname{Res}(K c \epsilon(x, z) \mathcal{L}_c \left[\varsigma c \epsilon g \right](z); z = i \omega c)
\]

\[
- \operatorname{Res}(K c \epsilon(x, z) \mathcal{L}_c \left[\varsigma c \epsilon g \right](z); z = -i \omega c)
\]

\[
- \operatorname{Res}(K c \epsilon(x, z) \mathcal{L}_c \left[\varsigma c \epsilon g \right](z); z = -i \omega c).
\]

We will then be able to massage the right side of (E.2.5) into our desired formula (4.3.8). So, we commence with the residue theory.

E.2.2. Calculation of the residues (E.2.1). Recall from part (i) of Proposition 4.2 that

\[
| (\tilde{B}_c) c'(\pm i \omega c) | \geq b_B > 0
\]

for \(0 < \epsilon < \epsilon_B\) and \(|\mu| \leq \mu_B(c)\). This hypothesis and the definition of \(K c\) in (6.3.12) ensures that \(K c(x, z) \mathcal{L}_c \left[\varsigma c \epsilon g \right](z)\) has simple poles at \(z = \pm i \omega c\) and so

\[(E.2.6) \quad \operatorname{Res}(K c(x, z) \mathcal{L}_c \left[\varsigma c \epsilon g \right](z); z = i \omega c) = i \left(\frac{\mathcal{L}_c \left[\varsigma c \epsilon g \right](i \omega c)}{(\tilde{B}_c)'(\omega c)} \right) e^{i \omega c x}
\]

and

\[(E.2.7) \quad \operatorname{Res}(K c(x, z) \mathcal{L}_c \left[\varsigma c \epsilon g \right](z); z = -i \omega c) = -i \left(\frac{\mathcal{L}_c \left[\varsigma c \epsilon g \right](-i \omega c)}{(\tilde{B}_c)'(-\omega c)} \right) e^{-i \omega c x}.
\]

E.2.3. Estimates on the Laplace transforms in (E.2.6) and (E.2.7). Throughout this section, we will need the estimates on \(\varsigma c\) from Proposition D.2.

We calculate

\[
| \mathcal{L}_c \left[\varsigma c \epsilon g \right](\pm i \omega c) | = \left| \int_0^{\infty} e^{\mp i \omega c s} \varsigma c(s) g(s) \, ds \right| \leq \int_0^{\infty} \varsigma c(s) |g(s)| \, ds.
\]
Now we multiply by \(1 = e^{\eta s} e^{-\eta s}\) to find
\[
\int_0^\infty \zeta_c(s) |g(s)| \, ds = \int_0^\infty e^{-\eta s} \zeta_c(s) e^{\eta s} |g(s)| \, ds \leq \|g\|_{L^\infty_{\eta s}} \int_0^\infty e^{-\eta s} \zeta_c(s) \, ds
\]
\[
\leq \|g\|_{L^\infty_{\eta s}} \int_0^\infty \zeta_c(s) \, ds \leq \|g\|_{L^\infty_{\eta s}} \|\zeta_c\|_{L^1} \leq C\|g\|_{L^\infty_{\eta s}}.
\]

Here we need to recall from Theorem 6.1 that \(\zeta_c > 0\), so \(\|\zeta_c\|_{L^1} = \int_{-\infty}^\infty \zeta_c(x) \, dx\).

The situation for \(L^-\) is slightly different. With the same manipulations as above, we find
\[
|L^-[\zeta_c g](\pm i\omega_c)| \leq \|g\|_{L^\infty_{\eta s}} \int_0^\infty e^{\eta s} \zeta_c(s) \, ds.
\]

Now the exponential contains the positive factor \(q_c\), so we cannot blithely ignore it. Instead, we bound this integral as
\[
\int_0^\infty e^{\eta s} \zeta_c(s) \, ds \leq \varepsilon^2 \int_0^\infty e^{\eta s} \sigma(\varepsilon s) \, ds + \int_0^\infty e^{\eta s} |\zeta_c(s) - \varepsilon^2 \sigma(\varepsilon s)| \, ds.
\]

Since \(\sigma(X) = \text{sech}^2(X/2)/4\), we use the estimates on \(q_c\) from (6.3.4) to bound
\[
I_{\varepsilon,1} \leq C\varepsilon^2 \int_0^\infty e^{\eta s} e^{-\varepsilon s} \, ds \leq C\varepsilon^2 \int_0^\infty e^{-\varepsilon s/2} \, ds = O(\varepsilon).
\]

Next, we rewrite
\[
I_{\varepsilon,2} = \int_0^\infty (e^{\eta s - a\varepsilon s})(e^{a\varepsilon s} |\zeta_c(s) - \varepsilon^2 \sigma(\varepsilon s)|) \, ds
\]
\[
\leq \left(\int_0^\infty e^{2(q - a\varepsilon)s} \, ds \right)^{1/2} \left(\int_0^\infty e^{2\alpha s} |\zeta_c(s) - \varepsilon^2 \sigma(\varepsilon s)|^2 \, ds \right)^{1/2}.
\]

We appeal again to (6.3.4) to find
\[
I_{\varepsilon,3} \leq \left(\int_0^\infty e^{-2\alpha s} \, ds \right)^{1/2} = O(\varepsilon^{-1/2}).
\]

Last, since \(0 \leq e^{a\varepsilon s} \leq e^{\varepsilon s}\) for \(0 \leq \varepsilon \leq 1\) and \(s \geq 0\), we use part (i) of Proposition D.2 to estimate
\[
I_{\varepsilon,4} \leq \left(\int_0^\infty e^{2\varepsilon s} |\zeta_c(s) - \varepsilon^2 \sigma(\varepsilon s)|^2 \, ds \right)^{1/2} \leq \|e^{\alpha l}(\zeta_c - \varepsilon^2 \sigma(\varepsilon))\|_{L^2} \leq C\varepsilon^2.
\]

Combining all these estimates, we conclude
\[
(E.2.8) \quad |L_{\pm}[\zeta_c g](\pm i\omega_c)| \leq C\varepsilon \|g\|_{L^\infty_{\eta s}}.
\]
The limits (E.2.4). We prove only that
\[(E.2.9) \lim_{R \to \infty} \int_{g^+_c(R)} K_\epsilon(x, z) \mathcal{L}_+[\varsigma_\epsilon, g](z) \, dz = 0,\]
the other cases being similar. We parametrize the line segment \(g^+_c(R)\) by
\[\varsigma_\epsilon(t, R) := (1-t)(q_\epsilon + \delta_\epsilon + iR) + t(-q_\epsilon + \delta_\epsilon + iR) = -2q_\epsilon t + \delta_\epsilon + q_\epsilon + iR,\]
and so the line integral in (E.2.9) over \(g^+_c(R)\) is
\[\int_0^1 K_\epsilon(x, \varsigma_\epsilon(t, R)) \mathcal{L}_+[\varsigma_\epsilon, g](\varsigma_\epsilon(t, R)) \, dt.\]
To establish (E.2.9), it suffices, of course, to show that
\[(E.2.10) \lim_{R \to \infty} \max_{0 \leq t \leq 1} |K_\epsilon(x, \varsigma_\epsilon(t, R)) \mathcal{L}_+[\varsigma_\epsilon, g](\varsigma_\epsilon(t, R))| = 0.\]
The methods of Section E.2.3 can be adapted to show that \(|\mathcal{L}_+[\varsigma_\epsilon, g](\varsigma_\epsilon(t, R))|\) is bounded above by a constant independent of \(t\) or \(R\) (but dependent on \(g\) and \(\epsilon\), although that does not matter here). Next, we refer to the definition of \(K_\epsilon\) in (6.3.12) to estimate
\[|K_\epsilon(x, -2q_\epsilon t + \delta_\epsilon + q_\epsilon + iR)| \leq \frac{e^{x(-2q_\epsilon t + \delta_\epsilon)}}{B_c(i\varsigma_\epsilon(t, R))}\]
The numerator on the right side above is independent of \(R\) and bounded in \(t\). We can infer from the quadratic estimates on \(\widehat{B}_c\) in (4.0.6) that the denominator is \(O(R^2)\) uniformly in \(t\), and so the whole expression above vanishes as \(R \to \infty\).

Conclusion of the proof of Proposition 6.4. Since we have established the vanishing of the integrals in (E.2.4), we may use the residues computed in (E.2.6) and (E.2.7) and the strategy outlined in Section E.2.1 to conclude from (E.2.5) that
\[\mathcal{B}_c^{-1}[\varsigma_\epsilon, g](x) = \mathcal{B}_c^{+1}[\varsigma_\epsilon, g](x) + \left(\frac{\mathcal{L}_+[\varsigma_\epsilon, g](i\omega_\epsilon) + \mathcal{L}_-[\varsigma_\epsilon, g](i\omega_\epsilon)}{(\mathcal{B}_c')(-\omega_\epsilon)}\right) e^{i\omega_\epsilon x} + i \left(\frac{\mathcal{L}_+[\varsigma_\epsilon, g](-i\omega_\epsilon) + \mathcal{L}_-[\varsigma_\epsilon, g](-i\omega_\epsilon)}{(\mathcal{B}_c')(-\omega_\epsilon)}\right) e^{-i\omega_\epsilon x}.\]
The estimates on the functionals \(\alpha_\epsilon\) and \(\beta_\epsilon\) in (6.4.7) then follow from the estimates on the Laplace transforms in Section E.2.3, particularly (E.2.8).

Proof of Proposition 6.5.

Refined estimates on \(\alpha_\epsilon\). The functional \(\alpha_\epsilon\) was defined in (6.4.5). Using the expression for \(g_\epsilon\) from (6.4.8), we have
\[\alpha_\epsilon[\mathcal{M}g_\epsilon] = \alpha_\epsilon[\mathcal{M}e^{i\omega_\epsilon \cdot \cdot}] + \alpha_\epsilon \left[\mathcal{M} \sum_{k=1}^{\infty} \left(\mathcal{B}_c^{-1}\Sigma_\epsilon^k\right)^k e^{i\omega_\epsilon \cdot \cdot}\right].\]
Since $\mathcal{M}e^{i\omega_{c}\epsilon} = \widetilde{\mathcal{M}}(\omega_{c})e^{i\omega_{c}\epsilon}$, per (6.3.14), we can calculate the first term just by computing

$$\alpha_{\epsilon}[e^{i\omega_{c}\epsilon}] = -i\epsilon\widetilde{\mathcal{M}}(\omega_{c}) \left(\frac{\mathcal{L}[s_{c}\epsilon^{i\omega_{c}\epsilon}](i\omega_{c}) + \mathcal{L}[s_{c}\epsilon^{i\omega_{c}\epsilon}](i\omega_{c})}{(\mathcal{B}_{c}\epsilon)'(\omega_{c})} \right).$$

The Laplace transforms are

$$\mathcal{L}[s_{c}\epsilon^{i\omega_{c}\epsilon}](i\omega_{c}) = \int_{0}^{\infty} e^{\pm i\omega_{c}\epsilon} s_{c}(s) e^{\pm i\omega_{c}\epsilon} ds = \int_{0}^{\infty} s_{c}(s) ds \frac{||s_{c}||_{L^{1}}}{2}.$$

Here we needed the result from Theorem 6.1 that ς_{c} is positive. Thus

(E.3.1) \[\alpha_{\epsilon}[\mathcal{M}e^{i\omega_{c}\epsilon}] = -i\epsilon \left(\frac{\widetilde{\mathcal{M}}(\omega_{c})}{(\mathcal{B}_{c}\epsilon)'(\omega_{c})} \right) \left(\frac{||s_{c}||_{L^{1}}}{\epsilon} \right) =: i\epsilon_{\epsilon,0}, \]

and we note that $\theta_{\epsilon,0}^{+}$ is real. The uniform boundedness of ω_{c}, the estimate (4.0.5), the definition of $\widetilde{\mathcal{M}}$ in (6.3.14), and part (iii) of Proposition D.2 tell us there are $C_{1}, C_{2} > 0$ such that

$$0 < C_{1} \leq |\theta_{\epsilon,0}^{+}| \leq C_{2} < \infty$$

for all $0 < \epsilon < \epsilon_{B}$.

Now we show

(E.3.2) \[\alpha_{\epsilon} \left[\mathcal{M} \sum_{k=1}^{\infty} ([\mathcal{B}_{c}^{-1}]^{*} \Sigma_{c}^{*})^{k} e^{i\omega_{c}\epsilon} \right] = O(\epsilon^{2}). \]

This holds if there exists $C = O(1)$ such that

(E.3.3) \[|\alpha_{\epsilon}[\mathcal{M}([\mathcal{B}_{c}^{-1}]^{-1} \Sigma_{c}^{*})^{k} e^{i\omega_{c}\epsilon}]| \leq C^{k} \epsilon^{k+1}. \]

In that case, we have

(E.3.4) \[\epsilon_{\epsilon,0} = \min \left\{ \epsilon_{B}, \frac{1}{2C} \right\}, \]

in which case the geometric series in (E.3.4) converges for\footnote{We are, admittedly, being rather cavalier about what C is. In Section 1.8, we agreed that C would denote any constant that is $O(1)$ in ϵ; now we are restricting our range of ϵ based on one of these C. To be more precise, we could trace the lineage of the C defining $\epsilon_{res,1}$ in (E.3.5) back to three sources: the estimates in Proposition 6.3 on $[\mathcal{B}_{c}^{-1}]^{-1}$, in (6.4.7) on α_{ϵ}, and in Proposition D.2 on ς_{c}.} $0 < \epsilon < \epsilon_{res,1}$. We conclude

(E.3.5) \[\epsilon_{res,1} := \min \left\{ \epsilon_{B}, \frac{1}{2C} \right\}, \]

where $\theta_{\epsilon,0}^{+} \in \mathbb{R} \setminus \{0\}$ and $\theta_{\epsilon}^{+} = O(1)$.

So, we only need to prove (E.3.3). Fix some $h \in L_{c}^{\infty} \cup L_{c}^{\infty}$. Then

(E.3.6) \[\alpha_{\epsilon} \left[\mathcal{M}[\epsilon_{c}]^{h} \right] = i\epsilon \theta_{\epsilon,0}^{+} + \epsilon^{2} \theta_{\epsilon}^{+}, \]

where $\theta_{\epsilon,0}^{+} \in \mathbb{R} \setminus \{0\}$ and $\theta_{\epsilon}^{+} = O(1)$.

Then we set

(E.3.7) \[||s_{c}, h||_{L_{c}^{\infty}} \leq C \epsilon^{2} \min \left\{ ||h||_{L_{c}^{\infty}}, ||h||_{L_{c}^{\infty}} \right\}, \]

for if $h \in L_{c}^{\infty}$, then

$$||\epsilon^{q_{c}}s_{c}, h||_{L_{c}^{\infty}} \leq ||s_{c}, h||_{L_{c}^{\infty}} ||\epsilon^{q_{c}}h||_{L_{c}^{\infty}} \leq C \epsilon^{2} ||h||_{L_{c}^{\infty}}.$$
by part (v) of Proposition D.2. Otherwise, if \(h \in L^\infty \), we can use the estimate \(\|e^{\delta t} \zeta_{\varepsilon_c}\|_{L^\infty} \leq C \varepsilon \) from part (vi) of that proposition to bound \(\|\zeta_{\varepsilon_c} h\|_{L^\infty_{\varepsilon_c}} \leq C \varepsilon^2 \|h\|_{L^\infty}. \)

Next, we estimate
\[
(E.3.8) \quad \| [B^{-}_{\varepsilon_c}]^{-1} \zeta_{\varepsilon_c} h \|_{L^\infty_{\varepsilon_c}} \leq \| [B^{-}_{\varepsilon_c}]^{-1} \zeta_{\varepsilon_c} h \|_{L^2_{\varepsilon_c}} \leq C \varepsilon^{-1} \|\zeta_{\varepsilon_c} h\|_{L^\infty_{\varepsilon_c}} \leq C \varepsilon \min\{ \|h\|_{L^\infty}, \|h\|_{L^\infty_{\varepsilon_c}} \}
\]
by Proposition 6.3 and (E.3.7). Last, we use the estimate (6.4.7) on \(\alpha_{\varepsilon} \) to bound
\[
(E.3.9) \quad | \alpha_{\varepsilon} [M[B^{-}_{\varepsilon_c}]^{-1} \zeta_{\varepsilon_c} h] | \leq C \varepsilon \| [B^{-}_{\varepsilon_c}]^{-1} \zeta_{\varepsilon_c} h \|_{L^\infty_{\varepsilon_c}} \leq C \varepsilon^2 \min\{ \|h\|_{L^\infty}, \|h\|_{L^\infty_{\varepsilon_c}} \}
\]
by (E.3.8).

If we rewrite
\[
M([B^{-}_{\varepsilon_c}]^{-1} \Sigma_{\varepsilon_c}^*)^k e^{i \omega_{\varepsilon_c}} = M[B^{-}_{\varepsilon_c}]^{-1} \zeta_{\varepsilon_c} M([B^{-}_{\varepsilon_c}]^{-1} \Sigma_{\varepsilon_c}^*)^{k-1} e^{i \omega_{\varepsilon_c}}.
\]
and take
\[
h = M([B^{-}_{\varepsilon_c}]^{-1} \Sigma_{\varepsilon_c}^*)^{k-1} e^{i \omega_{\varepsilon_c}},
\]
then we can induct on \(k \) and use (E.3.9) to obtain our desired estimate (E.3.3).

E.3.2. Refined estimates on \(\beta_{\varepsilon} \). The functional \(\beta_{\varepsilon} \) was defined in (6.4.6). We have
\[
\beta_{\varepsilon}[Mg_{\varepsilon}] = \tilde{M}_{\varepsilon}(\zeta_{\varepsilon_c} \beta_{\varepsilon}[e^{i \omega_{\varepsilon_c}}] + \beta_{\varepsilon} \left[M \sum_{k=1}^{\infty} ([B^{-}_{\varepsilon_c}]^{-1} \Sigma_{\varepsilon_c}^*)^k e^{i \omega_{\varepsilon_c}} \right].
\]
The methods of Appendix E.3.1 show
\[
\beta_{\varepsilon} \left[M \sum_{k=1}^{\infty} ([B^{-}_{\varepsilon_c}]^{-1} \Sigma_{\varepsilon_c}^*)^k e^{i \omega_{\varepsilon_c}} \right] = O(\varepsilon^2);
\]
all we have to do is replace \(\alpha_{\varepsilon} \) with \(\beta_{\varepsilon} \). However, now we will show that \(\beta_{\varepsilon}[e^{i \omega_{\varepsilon_c}}] = O(\varepsilon^2) \) as well.

We begin with the Laplace transforms in the definition of \(\beta_{\varepsilon}[e^{i \omega_{\varepsilon_c}}] \):
\[
(L.3.10) \quad \mathcal{L}_{+}[\zeta_{\varepsilon_c} e^{i \omega}](−i \omega_{\varepsilon_c}) = \int_{0}^{\infty} e^{−(i \omega_{\varepsilon_c})s} \zeta_{\varepsilon_c}(s)e^{i \omega_{\varepsilon_c} s} \, ds = \int_{0}^{\infty} e^{i \omega_{\varepsilon_c} s} \zeta_{\varepsilon_c}(s) \, ds
\]
\[
= \int_{0}^{\infty} \cos(2 \omega_{\varepsilon_c} s) \zeta_{\varepsilon_c}(s) \, ds + i \int_{0}^{\infty} \sin(2 \omega_{\varepsilon_c} s) \zeta_{\varepsilon_c}(s) \, ds.
\]
We decompose
\[
I_{\varepsilon,1} = \frac{\varepsilon^2}{2} \int_{-\infty}^{\infty} \cos(2 \omega_{\varepsilon_c} s)\sigma(\varepsilon s) \, ds + \int_{0}^{\infty} \cos(2 \omega_{\varepsilon_c} s)(\zeta_{\varepsilon_c}(s) − \varepsilon^2 \sigma(\varepsilon s)) \, ds.
\]
Note that the evenness of the integrand allows us to integrate over all of \(\mathbb{R} \) in \(I_{\varepsilon,3} \). Moreover, after changing variables with \(u = \varepsilon s \) in \(I_{\varepsilon,3} \), evenness also implies
\[
I_{\varepsilon,3} = \frac{\varepsilon}{2} \int_{-\infty}^{\infty} \cos \left(\frac{2 \omega_{\varepsilon_c} u}{\varepsilon} \right) \sigma(u) \, du = \frac{\varepsilon}{2} \tilde{\sigma} \left(\frac{2 \omega_{\varepsilon_c}}{\varepsilon} \right).
\]
MICROPTERONS IN DIATOMIC FPJT LATTICES

Since $\sigma \in \cap_{r=1}^{\infty} H^1_r$ and ω_{cs} is bounded uniformly in ϵ, a variant on the Riemann-Lebesgue lemma (specifically, Lemma A.5 in [FW18]) shows $I_{\epsilon,3} = O(\epsilon^2)$. Next, we estimate directly

(E.3.11) $|I_{\epsilon,4}| \leq \|s_{\epsilon c} - \epsilon^2 \sigma(\epsilon \cdot)\|_{L^1} \leq C \epsilon^2$

by part (ii) of Proposition D.2.

We make the same decomposition on $I_{\epsilon,2}$ from (E.3.10) and use the L^1-estimate as in (E.3.11) to find

$$|I_{\epsilon,2}| \leq \left| \int_0^{\infty} \sin(2\omega_{cs} s) \sigma(\epsilon s) \, ds \right| + C \epsilon^2.$$

An L^1-estimate on $\int_0^{\infty} \sin(2\omega_{cs} s) \sigma(\epsilon s) \, ds$ will cost us a power of ϵ and reduce the estimate on $I_{\epsilon,2}$ to only $O(\epsilon)$. We can do better by changing variables with $u = \epsilon s$ and integrating by parts to find

$$\epsilon^2 \int_0^{\infty} \sin(2\omega_{cs} s) \sigma(\epsilon s) \, ds = \epsilon \int_0^{\infty} \sin \left(\frac{2\omega_{cs} u}{\epsilon} \right) \sigma(u) \, du$$

$$= \epsilon \left(-\frac{\epsilon}{2\omega_{cs}} \cos \left(\frac{2\omega_{cs} u}{\epsilon} \right) \sigma(u) \right) \bigg|_{u=0}^{u=\infty} + \frac{\epsilon}{2\omega_{cs}} \int_0^{\infty} \cos \left(\frac{2\omega_{cs} u}{\epsilon} \right) \sigma(u) \, du$$

$$= \frac{\epsilon^2 \sigma(0)}{2\omega_{cs}} + \epsilon^2 \int_0^{\infty} \cos \left(\frac{2\omega_{cs} u}{\epsilon} \right) \sigma(u) \, du.$$

This is plainly $O(\epsilon^2)$.

We have

$$\mathcal{L}_- [s_{\epsilon c} e^{i\omega_{cs} \cdot}] (-i\omega_{cs}) = \mathcal{L}_+ [s_{\epsilon c} e^{i\omega_{cs} \cdot}] (i\omega_{cs}) = O(\epsilon^2),$$

and so we conclude that for some $\epsilon_{res} \leq \epsilon_{res,1}$ and all $\epsilon \in (0, \bar{\epsilon})$, we have

(E.3.12) $\beta_{\epsilon} [\mathcal{M} g_{\epsilon}] = \epsilon^2 \theta_{\epsilon}^-$,

where $\theta_{\epsilon}^- = O(1)$.

APPENDIX F. PROOFS INVOLVED IN THE CONSTRUCTION OF THE NONLOCAL SOLITARY WAVE PROBLEM

F.1. Proof of Proposition 2.1. We simply rearrange (2.0.1) into

(F.1.1) $s''_{\epsilon c} = \frac{(A - 2)(s_{\epsilon c} + s^2_{\epsilon c})}{\epsilon^2}.$

The operator $(A - 2)/\epsilon^2$ maps E^r_q into E^r_q for any q and r. Since $s_{\epsilon c} \in E^2_{q_k(\epsilon)}$, we also have $s^2_{\epsilon c} \in E^2_{q_k(\epsilon)}$, and so (F.1.1) implies $s''_{\epsilon c} \in E^2_{q_k(\epsilon)}$, i.e., $s_{\epsilon c} \in E^4_{q_k(\epsilon)}$. We continue to bootstrap with (F.1.1) to obtain $s_{\epsilon c} \in \cap_{r=1}^{\infty} E^r_{q_k(\epsilon)}.$
F.2. Proof of Proposition 5.1. First we study an auxiliary Fourier multiplier. Let
\[\widetilde{\mathcal{M}}_c(z) := -c^2z^2 + 2 - 2\cos(z). \]
Clearly \(\widetilde{\mathcal{M}}_c \) is entire and one can check that \(\widetilde{\mathcal{M}}_c \) has a double zero at \(z = 0 \) and no other zeros on \(\mathbb{R} \). Next, as in the proof of part (iii) of Proposition 4.2, one can show the existence of \(C(c) \), \(z_0(c) > 0 \) such that if \(q_H(c) \leq |\text{Im}(z)| \leq \min\{q_c(c), 1\} \) and \(|z| \geq z_0(c) \), then
\[\left| C(c)\Re(z) \right|^2 \leq |\widetilde{\mathcal{M}}_c(z)|. \]
Lemma A.3 then provides \(q_H^*(c), q_H^{**}(c) \) such that \(q_H^*(c) < q_H(c) < q_H^{**}(c) < \min\{q_c(c), 1\} \) such that for \(q \in [q_H^*(c), q_H^{**}(c)] \) and \(r \geq 0 \), the Fourier multiplier \(\mathcal{M}_c \) with symbol \(\mathcal{M}_c \) is invertible from \(E^r_{q+2} \) to \(E^r_{q,0} \).

Now we are ready to prove the proposition. Fix \(q \in [q_H^*(c), q_H^{**}(c)] \) and \(r \geq 0 \). Since \(q \geq q_H^*(c) > q_H(c) \), we have \(E^r_{q+2} \subseteq E^2_{q_H(c)} \), and so \(\mathcal{H}_c \) is injective from \(E^r_{q+2} \) to \(E^r_{q,0} \). For surjectivity, take \(g \in E^r_{q,0} \). Then \(g \in E^0_{q_H(c),0} \), so there exists \(f \in E^2_{q_H(c)} \) such that \(\mathcal{H}_c f = g \).

Next, we need to show that \(f \) that \(f \in E^r_{q+2} \). We rearrange the equality \(\mathcal{H}_c f = g \) into
\[\mathcal{M}_c f = 2(A - 2)\varsigma_c f + g. \]
Since \(\varsigma_c \in E^2_{q_H(c)} \) and \(f \in E^2_{q_H(c)} \), and since \(q \leq q_H^{**} < q_c(c) \), we have \(\varsigma_c f \in E^2_{q_H(c),q_H(c)} \subseteq E^2_q \). Then \(2(A - 2)\varsigma_c f + g \in E^0_{q,0} \), and so
\[f = \mathcal{M}_c^{-1}[2(A - 2)\varsigma_c f + g] \in E^2_q. \]
If \(r = 0 \), then we are done; otherwise, we rearrange the equality \(\mathcal{H}_c f = g \) into the different form
\[f'' = \frac{1}{c^2}(A - 2)(1 + 2\varsigma_c)f + g, \]
and we may bootstrap from this equality until we achieve \(f \in E^r_{q+2} \).

F.3. Proof of the formula 5.3.7. We use the definition of \(\chi_e \) in (5.3.3), the definitions of \(\mathcal{B}_c \) and \(\Sigma_c \) in (1.5.2), the definition of \(\Sigma_c^* \) in (4.1.1), the fundamental property \((\mathcal{B}_c - \Sigma_c^*)\gamma_c = 0 \), and the evenness of \(\mathcal{B}_c \gamma_c \sin(\omega_e \cdot) \) to calculate
\[\iota_c[\chi_e] = 2\lim_{R \to \infty} \int_0^R \left(c^2\gamma''_e(x) + (2 + A)\gamma_e(x) \right) \sin(\omega_e x) \ dx. \]
Now we integrate by parts. First, we use the formula (as stated in Appendix D of [HW17])
\[\int_0^R f''(x)g(x) \ dx = f'(R)g(R) - f(R)g'(R) + \int_0^R f(x)g''(x) \ dx, \]
valid for \(f \) and \(g \) odd, to rewrite
\[(F.3.1) \quad 2c^2 \int_0^R \gamma_e''(x) \sin(\omega_e x) \ dx = 2c^2(\gamma'_e(R) \sin(\omega_e R) - \omega_e \gamma_e(R) \cos(\omega_e R)) \]
\[- 2c^2\omega^2_e \int_0^R \gamma_e(x) \sin(\omega_e x) \ dx. \]
Observe
\[(F.3.2) \quad -\omega^2_e \int_0^R \gamma_e(x) \sin(\omega_e x) \ dx = \int_0^R \gamma_e(x) \partial_x^2 \sin(\omega_e \cdot)(x) \ dx. \]
We have another formula, easily established through direct calculation and \(u\)-substitution:

\[
\int_{0}^{R} (Af)(x)g(x) \, dx = \int_{0}^{R} f(x)(Ag)(x) \, dx + \frac{1}{2} \int_{R}^{R+1} f(x)(S^{-1}g)(x) \, dx - \frac{1}{2} \int_{R-1}^{R} f(x)(S^{1}g)(x) \, dx + \frac{1}{2} \int_{0}^{R} f(x)(S^{1}g)(x) \, dx.
\]

We combine (F.3.1) and (F.3.2), apply (F.3.3), and use \(B^*_c = \mathcal{B}_c\) to find

\[
\iota_c[x_c] = 2c^2 \lim_{R \to \infty} (\gamma_c'(R) \sin(\omega_c R) - \omega_c \gamma_c(R) \cos(\omega_c R))
\]

\[
+ 2 \lim_{R \to \infty} \int_{0}^{R} \gamma_c(x)(\mathcal{B}_c \sin(\omega_c \cdot))(x) \, dx
\]

\[
+ \left(\int_{-1}^{0} \gamma_c(x) \sin(\omega_c(x+1)) \, dx - \int_{0}^{1} \gamma_c(x) \sin(\omega_c(x-1)) \, dx \right)
\]

\[
+ \lim_{R \to \infty} \left(\int_{R}^{R+1} \gamma_c(x) \sin(\omega_c(x-1)) \, dx - \int_{R-1}^{R} \gamma_c(x) \sin(\omega_c(x+1)) \, dx \right).
\]

We can evaluate exactly each of the four terms above. Trigonometric identities and the asymptotics of \(\gamma_c\) from (4.0.2) give

\[
\lim_{R \to \infty} (\gamma_c'(R) \sin(\omega_c R) - \omega_c \gamma_c(R) \cos(\omega_c R)) = \omega_c \sin(\omega_c \vartheta_c).
\]

Next, since \(\mathcal{B}_c e^{\pm i\omega_c} = 0\), we have

\[
\lim_{R \to \infty} \int_{0}^{R} \gamma_c(x)(\mathcal{B}_c \sin(\omega_c \cdot))(x) \, dx = 0,
\]

and so the second term is zero. For the third term, we rewrite the integrals using the addition formula for sine and then use the evenness of \(\gamma_c \sin(\omega_c \cdot)\) and the oddness of \(\gamma_c \cos(\omega_c \cdot)\) to show that the resulting integrals all add up to zero.

Last, we rewrite the first integral in the fourth term as

\[
\int_{R}^{R+1} \gamma_c(x) \sin(\omega_c(x-1)) \, dx = \int_{R}^{R+1} \left(\gamma_c(x) - \sin(\omega_c(x + \vartheta_c)) \right) \sin(\omega_c(x-1)) \, dx
\]

\[
+ \int_{R}^{R+1} \sin(\omega_c(x + \vartheta_c)) \sin(\omega_c(x-1)) \, dx,
\]

where

\[
\left| \int_{R}^{R+1} \left(\gamma_c(x) - \sin(\omega_c(x + \vartheta_c)) \right) \sin(\omega_c(x-1)) \, dx \right| \leq \max_{R \leq x \leq R+1} |\gamma_c(x) - \sin(\omega_c(x + \vartheta_c))| \to 0
\]
as $R \to \infty$ by the asymptotics of γ_c in (4.0.2). Similar manipulations in the other integral in the fourth term and a host of trig identities then yield
\[
\lim_{R \to \infty} \left(\int_{R}^{R+1} \gamma_c(x) \sin(\omega_c(x-1)) \, dx - \int_{R-1}^{R} \gamma_c(x) \sin(\omega_c(x+1)) \, dx \right)
\]
\[
= \lim_{R \to \infty} \left(\int_{R}^{R+1} \sin(\omega_c(x + \vartheta_c)) \sin(\omega_c(x-1)) \, dx - \int_{R-1}^{R} \sin(\omega_c(x + \vartheta_c)) \sin(\omega_c(x+1)) \, dx \right) = -\sin(\omega_c \vartheta_c) \sin(\omega_c).
\]

All together, we have
\[
\iota_c[\chi_c] = (2c^2 \omega_c - \sin(\omega_c)) \sin(\omega_c \vartheta_c),
\]
and this is exactly the formula (5.3.7). The preceding calculation of $\iota_c[\chi_c]$ is similar to the work in Appendix D of [HW17], except there the small parameter μ appeared throughout the calculations as well, which allowed Hoffman and Wright to ignore some terms analogous to those in (F.3.4).

Appendix G. Proof of Proposition 5.3

G.1. **General estimates in H^r_q.** We begin with a collection of very useful estimates that we will invoke throughout the proof of Proposition 5.3. Most of these estimates follow from straightforward calculus and occasional recourses to the norms
\[
f \mapsto \|f\|_{L^2} + \|\cosh(q \cdot) \partial^r_q[f]\|_{L^2}, \quad \text{and} \quad f \mapsto \|f\|_{L^2} + \|\cosh^q(\cdot) \partial^r_q[f]\|_{L^2},
\]
which are equivalent on H^r_q to the norm defined in (1.4.1). Further details of the proof are given in Appendix C.3.3 of [Fav18].

Proposition G.1.
(i) If $f \in H^r_q$ and $g \in W^{r,\infty}$, then
\[
\|fg\|_{r,q} \leq \|f\|_{r,q}\|g\|_{W^{r,\infty}}.
\]
(ii) If $f, g \in H^r_q$, then
\[
\|fg\|_{r,q} \leq \|\sech(q \cdot)\|_{W^{r,\infty}} \|fg\|_{r,q} \|g\|_{r,q}.
\]
(iii) If $f \in W^{r,\infty}$ and $\omega \in \mathbb{R}$, then
\[
\|f(\omega \cdot)\|_{W^{r,\infty}} \leq \left(\max_{0 \leq k \leq r} |\omega|^k \right) \|f\|_{W^{r,\infty}}.
\]
(iv) If $f \in H^r_{q_2}; g \in W^{r,\infty}; \omega, \dot{\omega} \in \mathbb{R};$ and $0 < q_1 < q_2$, then
\[
\|f \cdot (g(\omega \cdot) - g(\dot{\omega} \cdot))\|_{r,q_1} \leq C(r, q_2 - q_1) \left(\max_{0 \leq k \leq r} \text{Lip}(\partial^k_x[g]) \right) \|f\|_{r,q_2} \|g\|_{W^{r,\infty}} |\omega - \dot{\omega}|,
\]
where the Lipschitz constant $\text{Lip}(\cdot)$ was defined in (A.1.2).
(v) If $f \in H^r_{q_2}; g, \dot{g} \in W^{r,\infty}; \omega, \dot{\omega} \in \mathbb{R};$ and $0 < q_1 < q_2$, then
\[
\|f \cdot (g(\omega \cdot) - \dot{g}(\omega \cdot))\|_{r,q_1}
\]
\[\leq C(r, q_2 - q_1) \| f \|_{r, q_2} \left(\max_{0 \leq k \leq r} \text{Lip}(\partial_x^k[g]) \right) \| g \|_{W^{r, \infty}} |\omega - \hat{\omega}| + \left(\max_{0 \leq k \leq r} |\hat{\omega}|^k \right) \| g - \hat{g} \|_{W^{r, \infty}}. \]

We refer to parts (iv) and (v) as “decay borrowing” estimates, as they permit us to achieve a Lipschitz estimate on a product starting in a space of lower decay by “borrowing” from the decay rates of one of the faster-decaying functions in the product. A version of part (iv) in particular was stated and proved as Lemma A.2 in [FW18]. From this proposition we immediately deduce two estimates for our quadratic nonlinearity \(Q \) from (1.3.3).

Lemma G.2. (i) If \(\rho, \dot{\rho} \in H^r_q \times H^r_q \), then
\[
\| Q(\rho, \dot{\rho}) \|_{r, q} \leq C(r, q) \| \rho \|_{r, q} \| \dot{\rho} \|_{r, q}
\]
(ii) If \(\rho \in H^r_q \times H^r_q \) and \(\phi \in W^{r, \infty}_r \times W^{r, \infty}_r \), then
\[
\| Q(\rho, \phi) \|_{r, q} \leq C(r, q) \| \rho \|_{r, q} \| \phi \|_{W^{r, \infty}_r \times W^{r, \infty}_r}.
\]

Proposition G.1 also allows us to relate \(\chi^\mu_c \) from (5.3.2) and \(\chi_c \) from (5.3.3).

Lemma G.3. For any \(q \in (0, q_\varsigma(c)) \) and \(r \geq 0 \), there is a constant \(C(c, q, r) > 0 \) such that
\[
\| \chi^\mu_c - \chi_c \|_{r, q} \leq C(c, q, r) |\mu|
\]
for all \(|\mu| \leq \mu_{per}(c) \).

Proof. Recall that
\[
\chi^\mu_c = 2D_\mu Q(\varsigma_c, \phi^\mu_c[0]) \cdot e_2 \quad \text{and} \quad \chi_c = 2D_0 Q(\varsigma_c, \phi^0_c[0]) \cdot e_2.
\]
Then
\[
\chi^\mu_c - \chi_c = (D_\mu - D_0) Q(\varsigma_c, \phi^\mu_c[0]) \cdot e_2 + D_0 Q(\varsigma_c, \phi^\mu_c[0] - \phi^0_c[0]) \cdot e_2.
\]
From the definition of \(D_\mu \) in (1.3.2), the uniform bounds on the periodic solutions from (3.0.10), and the product estimate (G.1.7), we estimate that if \(0 < q < q_\varsigma(c) \), then
\[
\| I \|_{r, q} \leq C(c, r) |\mu|.
\]
Next, we have
\[
\phi^\mu_c[0] = \begin{pmatrix} v^\mu_c \cos(\omega^\mu_c) \\ \sin(\omega^\mu_c) \end{pmatrix} \quad \text{and} \quad \phi^0_c[0] = \begin{pmatrix} 0 \\ \sin(\omega_c) \end{pmatrix},
\]
per (3.0.8) and the estimate \(v^\mu_c = O_c(\mu) \). We use this to calculate
\[
II = (2 + A)(\varsigma_c \cdot (\sin(\omega^\mu_c) - \sin(\omega_c))).
\]
Then we use the decay-borrowing estimate (G.1.4) with the condition \(0 < q < q_\varsigma(c) \) as well as part (iv) of Proposition 3.1 to find
\[
\| II \|_{r, q} \leq C(c, q, r) |\omega^\mu_c - \omega_c| \leq C(c, q, r) |\mu|. \]

G.2. Proof of Proposition 5.3. We rely on the following lemma, which we prove in the next three sections. We inherit the general techniques from the myriad nanoparticle estimates in [FW18], [HW17], [Fav], and [JW].

Lemma G.4. For all $r \geq 1$, there are constants $C(c, r)$, $C(c) > 0$ such that the following estimates hold for any $|\mu| \leq \mu_{\text{per}}(c)$.

(i) If $\eta \in E_{q,(c)}^r \times O_{q,(c)}^r$ and $|a| \leq a_{\text{per}}(c)$, then

\[
\|\mathcal{N}_{\tau\phi}^{\mu}(\eta, a)\|_{X^r} \leq C(c, r)(|\mu| + |\mu|\|\eta\|_{r,q,(c)} + |\mu||a| + |a|\|\eta\|_{r,q,(c)} + \|\eta\|^2_{r,q,(c)} + a^2).
\]

(ii) If $\eta, \hat{\eta} \in E_{q,(c)}^1 \times O_{q,(c)}^1$ and $|\hat{a}| \leq a_{\text{per}}(c)$, then

\[
\|\mathcal{N}_{\tau\phi}^{\mu}(\eta, a) - \mathcal{N}_{\tau\phi}^{\mu}(\hat{\eta}, \hat{a})\|_{X^\tau} \leq C(c, r)(|\mu| + |\mu|\|\eta\|_{1,q,(c)} + \|\hat{\eta}\|_{1,q,(c)})(|\eta - \hat{\eta}|_{1,\tau,(c)} + |a - \hat{a}|).
\]

(iii) If $\eta \in E_{q,(c)}^r \times O_{q,(c)}^r$ and $|a| \leq a_{\text{per}}(c)$, then

\[
\|\mathcal{N}_{\tau\phi}^{\mu}(\eta, a)\|_{X^{r+1}} \leq C(c, r)(|\mu| + |\mu|\|\eta\|_{r,q,(c)} + |\mu||a| + |a|\|\eta\|_{r,q,(c)} + \|\eta\|^2_{r,q,(c)} + a^2).
\]

Now we prove Proposition 5.3. Set

\[
\tau_c = 6C(c, 1)
\]

with $C(c, 1)$ from part (i) of Lemma G.4, and let

\[
\mu_*(c) := \min \left\{ 1, \frac{1}{\tau_c}, \frac{1}{\tau_c^2}, \frac{a_{\text{per}}(c)}{\tau_c}, \frac{1}{2C(c)(1 + 4\tau_c)} \right\},
\]

with $C(c)$ from part (ii) of the same lemma. Note in particular that if $|\mu| \leq \mu_*(c)$ and $(\eta, a) \in \mathcal{U}_{r,\mu}$, then

\[
|a| \leq \|\eta\|_{r,q,(c)} + |a| \leq \tau_c|\mu| \leq a_{\text{per}}(c),
\]

and so $\mathcal{N}_{\tau\phi}^{\mu}(\eta, a)$ is well-defined.

Proof of (i). Assume $|\mu| \leq \mu_*(c)$ and $(\eta, a) \in \mathcal{U}_{1,\mu}^1$. We estimate from (G.2.1) with $r = 1$ that

\[
\|\mathcal{N}_{\tau\phi}^{\mu}(\eta, a)\|_{1,q,(c)} \leq C(c, 1)(1 + 3\tau_c|\mu| + 2\tau_c^2|\mu|)|\mu| \leq 6C(c, 1)|\mu| = \tau_c|\mu|.
\]

That is, $\mathcal{N}_{\tau\phi}^{\mu}(\eta, a) \in \mathcal{U}_{1,\mu}^1$.

Proof of (ii). Next, let $(\eta, a), (\hat{\eta}, \hat{a}) \in \mathcal{U}_{1,\mu}^1$. We estimate from (G.2.2) that

\[
\|\mathcal{N}_{\tau\phi}^{\mu}(\eta, a) - \mathcal{N}_{\tau\phi}^{\mu}(\hat{\eta}, \hat{a})\|_{1,\tau,(c)} \leq C(c)|\mu|(1 + 4\tau_c)(|\eta - \hat{\eta}|_{1,\tau,(c)} + |a - \hat{a}|) < \frac{1}{2}(|\eta - \hat{\eta}|_{1,\tau,(c)} + |a - \hat{a}|).
\]

Proof of (iii). Finally, let $(\eta, a) \in \mathcal{U}_{1,\mu}^1 \cap \mathcal{U}_{r,\mu}^r$, where $\tau > 0$ is arbitrary. Then (G.2.3) implies

\[
\|\mathcal{N}_{\tau\phi}^{\mu}(\eta, a)\|_{r,q,(c)} \leq C(c, r)(1 + 3\tau|\mu| + 2\tau^2|\mu|)|\mu| \leq C(c, r)(1 + 3\tau + 2\tau^2)|\mu|.
\]

With

\[
\tilde{\tau} := C(c, r)(1 + 3\tau + 2\tau^2),
\]

we see that $\mathcal{N}_{\tau\phi}^{\mu}(\eta, a) \in \mathcal{U}_{\tilde{\tau},\mu}^{r+1}$.
G.3. Mapping estimates. In this appendix we prove part (i) of Lemma G.4. The definitions of \(\mathcal{N}_{c,1}^\mu \) in (5.2.1), \(\mathcal{N}_{c,2}^\mu \) in (5.4.4), and \(\mathcal{N}_{c,3}^\mu \) in (5.3.9) imply
\[
\| \mathcal{N}_{c,1}^\mu(\eta, a) \|_{r,q,(c)} \leq \| \mathcal{H}_c^{-1} \|_{B(E_{q,(c)},0^r,E_{q,(c)}^{r+2})} \sum_{k=1}^{5} \| h_{c,k}^\mu(\eta, a) \|_{r,q,(c)},
\]
\[
\| \mathcal{N}_{c,2}^\mu(\eta, a) \|_{r,q,(c)} \leq \| \mathcal{L}_c^{-1} \|_{B(O_{q,(c)},O_{q,(c)}^{r+2})} \sum_{k=1}^{5} \| \tilde{\eta}_{c,k}^\mu(\eta, a) \|_{r,q,(c)},
\]
and
\[
| \mathcal{N}_{c,3}^\mu(\eta, a) | \leq \frac{1}{|\ell_c[\chi_c]|} \| \mathcal{O}_c \|_{r,q,(c)} \sum_{k=1}^{5} \| \tilde{\eta}_{c,k}^\mu(\eta, a) \|_{r,q,(c)}.
\]
Then to obtain the estimate (G.2.1), it suffices to find bounds of the form
\[
\| h_{c,k}^\mu(\eta, a) \|_{r,q,(c)} + \| \tilde{\eta}_{c,k}^\mu(\eta, a) \|_{r,q,(c)} \leq C(c,r) \mathcal{R}_{\text{map}}(\| \eta \|_{r,q,(c)}, a, \mu), \quad k = 1, \ldots, 6,
\]
where for \(a, \mu, \rho \in \mathbb{R} \), we define
\[
\mathcal{R}_{\text{map}}(\rho, a, \mu) := |\mu| + |\mu \rho| + |\mu a| + |a \rho| + a^2 + \rho^2.
\]
We do this in the following sections; throughout, we recall that these \(h_{c,k}^\mu \) and \(\tilde{\eta}_{c,k}^\mu \) terms were defined in (5.1.3) and (5.3.4).

G.3.1. Mapping estimates for \(h_{c,1}^\mu \) and \(\tilde{\eta}_{c,1}^\mu \). Since \(\varsigma_c \in \cap_{r=0}^{\infty} E_{q,(c)}^r \) we have
\[
\| h_{c,1}^\mu(\eta, a) \|_{r,q,(c)} + \| \tilde{\eta}_{c,1}^\mu(\eta, a) \|_{r,q,(c)} = |\mu| \| \mathcal{D}(\varsigma_c + \mathcal{Q}(\varsigma_c, \varsigma_c)) \|_{r,q,(c)} = \mathcal{O}_c(\mu).
\]

G.3.2. Mapping estimates for \(h_{c,2}^\mu \) and \(\tilde{\eta}_{c,2}^\mu \). We use (G.1.2) to estimate
\[
\| h_{c,1}^\mu(\eta, a) \|_{r,q,(c)} \leq C(c,r) |\mu| \| \eta \|_{r,q,(c)} + C(c,r) |\mu| \| \varsigma \eta \|_{r,q,(c)} \leq C(c,r) |\mu| \| \eta \|_{r,q,(c)}.
\]

G.3.3. Mapping estimates for \(h_{c,3}^\mu \). The estimates for this term and its counterpart \(\tilde{\eta}_{c,3}^\mu \) are probably the most intricate of all the mapping estimates. First, we compute
\[
(G.3.1) \quad h_{c,3}^\mu(\eta, a) = -2a \mathcal{D}_\mu \mathcal{Q}(\varsigma_c, \phi_c^\mu(a)) \cdot e_1 = -a(2 + \mu)(2 - A) (\varsigma_c \phi_c^{\mu}(a)] - \mu a (\varsigma_c \phi_c^{\mu}(a)] \frac{aI}{aI},
\]

The bound (3.0.10) on \(\| \phi_c^\mu(a) \|_{W_{r,\infty}} \) from Proposition 3.3 and the product estimate (G.1.1) from Proposition G.1 tell us
\[
(G.3.2) \quad \| II \|_{r,q,(c)} \leq C(c,r) |\mu|.
\]

Now we use the expansion (3.0.8) in Proposition 3.3 to write
\[
\phi_c^{\mu}(a) = v_c^{\mu} \cos(\omega_c^{\mu}[a] \cdot) + \psi_c^{\mu}(a)(\omega_c^{\mu}[a] \cdot),
\]
We then use the product estimate (G.1.1) and this expansion to bound
\[
\| I \|_{r,q,(c)} \leq C(c,r) \| \varsigma \phi_c^{\mu}(a) \|_{r,q,(c)}
\]
\[
\leq C(c,r) \| v_c^{\mu} \|_{W_{r,\infty}} + C(c,r) \| \psi_c^{\mu}(a) \|_{W_{r,\infty}}
\]
\[
\leq C(c,r) \| \phi_c^{\mu}(a) \|_{W_{r,\infty}} + C(c,r) \| \psi_c^{\mu}(a) \|_{W_{r,\infty}}.
\]
The estimate \(v_c^\mu = O_c(\mu) \) and the bounds on \(|\omega_c^\mu[a]| \) from (3.0.10) give
\[
|v_c^\mu||\cos(\omega_c^\mu[a] \cdot |W_{c,r}) \leq C(c, r)|\mu|.
\]

Last, from the uniform bound (3.0.11) on \(\psi_c^\mu \) and the scaling estimate (G.1.3), we have
\[
\|\psi_c^\mu[a](\omega_c^\mu[a] \cdot |W_{c,r}) \leq C(c, r)|a|
\]
and thus
\[(G.3.3)
\|I\|_{r,q_\ast(c)} \leq C(c, r)(|\mu| + |a|).
\]

We conclude
\[
\|h_c^\mu(\eta, a)\|_{r,q_\ast(c)} \leq |a|(\|I\|_{r,q_\ast(c)} + \|II\|_{r,q_\ast(c)}) \leq C(c, r)(|a\mu| + a^2).
\]

G.3.4. Mapping estimates for \(\tilde{\ell}_{c,3}^\mu \). Recall the definitions of \(\tilde{\ell}_{c,3}^\mu \) in (5.3.4) and of \(\chi_c^\mu \) from (5.3.3) and \(\chi_c^\mu \) from (5.3.2). Then
\[
\tilde{\ell}_{c,3}^\mu(\eta, a) = -2a\mathcal{D}_\mu \mathcal{Q}(\chi_c, \phi_c^\mu[a]) \cdot e_2 + a\chi_c
\]
\[
= -2a\mathcal{D}_\mu \mathcal{Q}(\chi_c, \phi_c^\mu[a] - \phi_c^\mu[0]) \cdot e_2 + a(\chi_c - \chi_c^\mu)
\]
\[
= \mu a\delta(\chi_c \cdot (\phi_c^\mu[a] - \phi_c^\mu[0])) - a(2 + \mu)(2 + A)(\sigma_c \cdot (\phi_c^\mu[a] - \phi_c^\mu[0])) + a(\chi_c - \chi_c^\mu).
\]

We know from Lemma G.3 that \(\|III\|_{r,q_\ast(c)} \leq C(c, q_\ast(c), r)|\mu| \), so we only need to estimate the terms \(I \) and \(II \).

We can use the triangle inequality and the periodic bounds (3.0.10) to obtain the crude estimate
\[
|\mu a||I\|_{r,q_\ast(c)} \leq C(c, r)|\mu a|,
\]
but we need to do more work with \(II \). From the periodic expansion (3.0.8) and part (iii) of Proposition 3.3, we calculate
\[
\phi_c^\mu[a] - \phi_c^\mu[0] = (\sin(\omega_c^\mu[a] \cdot |W_{c,r}) - \sin(\omega_c^\mu[0] \cdot |W_{c,r}) \) + \psi_c^\mu[a](\omega_c^\mu[a] \cdot |W_{c,r})
\]
Then
\[
\|II\|_{r,q_\ast(c)} \leq C(c, r)\|\chi_c \cdot (\sin(\omega_c^\mu[a] \cdot |W_{c,r}) - \sin(\omega_c^\mu[0] \cdot |W_{c,r}) \|_{r,q_\ast(c)} + \|\psi_c^\mu[a](\omega_c^\mu[a] \cdot |W_{c,r})\|_{r,q_\ast(c)}.
\]

We use (3.0.10), (3.0.11), and (G.1.3) to estimate
\[
V \leq C(c, r)|a|.
\]

To estimate \(IV \), we exploit the condition \(\chi_c \in \cap_{\epsilon > 0}(E_{q_\ast(c)}^\epsilon \cap E_{q_\ast(c)}^\epsilon) \) with \(q_\ast(c) < q(c) \). Since this inequality is strict, we may call on the decay borrowing estimate (G.1.4) to find
\[
\|IV\|_{r,q_\ast(c)} \leq C(c, r)|\chi_c|_{r,q_\ast(c)}|\omega_c^\mu[a] - \omega_c^\mu[0]|.
\]
Then we use (3.0.9) to conclude
\[
\|IV\|_{r,q_\ast(c)} \leq C(c, r)|a|.
\]
We put all these estimates together to find
\[\| \tilde{\varphi}_{\cdot,3}^\mu (\eta, a) \|_{r,q,(c)} \leq C(c, r)(|\mu a| + a^2). \]

G.3.5. **Mapping estimates for \(h_{c,4}^\mu \) and \(\tilde{\varphi}_{c,4}^\mu \).** These terms are roughly quadratic of the form \(a \eta \). We first use the estimate (G.1.7) in Lemma G.2 to find
\[\| h_{c,4}^\mu (\eta, a) \|_{r,q,(c)} + \| \tilde{\varphi}_{c,4}^\mu (\eta, a) \|_{r,q,(c)} \leq 2|a|\| D_\mu \mathcal{Q}(\phi_e^\mu[a], \eta) \|_{r,q,(c)} \]
\[\quad \leq C(c, r)|a|\| \phi_e^\mu[a] \|_{W^{r,\infty}} \| \eta \|_{r,q,(c)}. \]

Next, we use the estimate (3.0.10) on \(\| \phi_e^\mu[a] \|_{W^{r,\infty}} \) to conclude
\[\| h_{c,4}^\mu (\eta, a) \|_{r,q,(c)} + \| \tilde{\varphi}_{c,4}^\mu (\eta, a) \|_{r,q,(c)} \leq C(c, r)|a|\| \eta \|_{r,q,(c)}. \]

G.3.6. **Mapping estimates for \(h_{c,5}^\mu \) and \(\tilde{\varphi}_{c,5}^\mu \).** These terms are both quadratic in \(\eta \), and so we estimate simultaneously
\[\| h_{c,5}^\mu (\eta, a) \|_{r,q,(c)} + \| \tilde{\varphi}_{c,5}^\mu (\eta, a) \|_{r,q,(c)} \leq \| D_\mu \mathcal{Q}(\eta, \eta) \|_{r,q,(c)} \leq C(c, r)\| \eta \|_{r,q,(c)}^2 \]
by (G.1.7) in Lemma G.2.

G.4. **Lipschitz estimates.** In this appendix we prove part (ii) of Lemma G.4. By the same reasoning from the start of Appendix G.3, it suffices to find bounds of the form
\[\| h_{c,k}^\mu (\eta, a) - h_{c,k}^\mu (\hat{\eta}, \hat{a}) \|_{1, \bar{\eta},(c)} + \| \tilde{\varphi}_{c,k}^\mu (\eta, a) - \tilde{\varphi}_{c,k}^\mu (\hat{\eta}, \hat{a}) \|_{1, \bar{\eta},(c)} \]
\[\leq C(c, r)R_{\text{lip}}(\| \eta \|_{1, \bar{\eta},(c)}, \| \hat{\eta} \|_{1, \bar{\eta},(c)}, |a|, |\hat{a}|)(|\eta - \hat{\eta}|_{1, \bar{\eta},(c)} + |a - \hat{a}|), \quad k = 1, \ldots, 6, \]
where for \(\rho, \hat{\rho}, a, \hat{a}, \mu \in \mathbb{R} \) we set
\[R_{\text{lip}}(\rho, \hat{\rho}, a, \hat{a}, \mu) := |\mu| + |\rho| + |\hat{\rho}| + |a| + |\hat{a}|. \]

G.4.1. **Lipschitz estimates for \(h_{c,1}^\mu \) and \(\tilde{\varphi}_{c,1}^\mu \).** This is obvious because these terms are constant in both \(\eta \) and \(a \).

G.4.2. **Lipschitz estimates for \(h_{c,2}^\mu \) and \(\tilde{\varphi}_{c,2}^\mu \).** This is obvious because these terms are linear in \(\eta \) and come with a factor of \(\mu \).

G.4.3. **Lipschitz estimates for \(h_{c,3}^\mu \).** First we write
\[h_{c,3}^\mu (\eta, a) - h_{c,3}^\mu (\hat{\eta}, \hat{a}) = (a - \hat{a})D_\mu \mathcal{Q}(\mathbf{s}_c, \phi_c^\mu[a]) \cdot \mathbf{e}_1 + \hat{a}D_\mu \mathcal{Q}(\mathbf{s}_c, \phi_c^\mu[a] - \phi_c^\mu[\hat{a}]) \cdot \mathbf{e}_1 \]
\[(a - \hat{a})I + \hat{a}II \]
The methods of Appendix G.3.3, specifically, the decomposition (G.3.1) and the estimates (G.3.3) and (G.3.2), carry over to yield
\[(G.4.1) \quad \| I \|_{1, \bar{\eta},(c)} \leq C(q, c)(|\mu| + |a|). \]

Next, we estimate \(II \) using techniques similar to those in Appendix G.3.4. Rewrite
\[II = -(2 + \mu)(2 - A)(\mathbf{s}_c \cdot (\phi_{c,1}^\mu[a] - \phi_{c,1}^\mu[\hat{a}])) - \mu\delta (\mathbf{s}_c \cdot (\phi_{c,2}^\mu[a] - \phi_{c,2}^\mu[\hat{a}])) \]
\[- (2 + \mu)(2 - A)(III) \]
\[\mu\delta(IV) \]
We will estimate only III explicitly; the estimates on IV are the same. We have

\[III = \sum_{c} (\nu^\mu \cos(\omega^\mu_c[a] \cdot) - \nu^\mu \cos(\omega^\mu_\hat{c}[\hat{a}] \cdot)) + \sum_{c} (\psi^\mu_{c,1}[a] (\omega^\mu_c[a] \cdot) - \psi^\mu_{c,1}[\hat{a}] (\omega^\mu_\hat{c}[\hat{a}] \cdot)) \]

Apply the decay borrowing estimates (G.1.4) to \(III_1 \) and (G.1.5) to \(III_2 \) and use the periodic Lipschitz estimates (3.0.9) and the estimate \(v_\mu = \mathcal{O}_c(\mu) \) to conclude

(G.4.2) \[\| III_1 \|_{1,\eta}(c) \leq C(c)|\mu|a - \hat{a}|. \]

Combine this estimate and its omitted counterpart on IV with (G.4.1) to conclude

\[\| h^\mu_{c,3}(\eta, a) - h^\mu_{c,3}(\hat{\eta}, \hat{a}) \|_{1,\eta}(c) \leq C(c)(|\mu| + |a| + |\hat{a}|)|a - \hat{a}|. \]

G.4.4. Lipschitz estimates for \(\tilde{\ell}^\mu_{c,3} \). From the definitions of \(\tilde{\ell}^\mu_{c,3} \) in (5.3.4), we compute

\[
\begin{align*}
\tilde{\ell}^\mu_{c,3}(\eta, a) - \tilde{\ell}^\mu_{c,3}(\hat{\eta}, \hat{a}) &= (-2D_\mu \mathcal{Q}(\zeta_c, \phi^\mu_c[a]) \cdot e_2 + a \chi_c) - (-2D_\mu \mathcal{Q}(\zeta_c, \phi^\mu_c[\hat{a}]) \cdot e_2 + \hat{a} \chi_c) \\
&= (-2D_\mu \mathcal{Q}(\zeta_c, \phi^\mu_c[a]) \cdot e_2 + a \chi_c) - (-2D_\mu \mathcal{Q}(\zeta_c, \phi^\mu_c[\hat{a}]) \cdot e_2 + \hat{a} \chi_c) + (a - \hat{a})(\chi_c - \chi^\mu_c)
\end{align*}
\]

We know from Lemma G.3 that

\[\| II \|_{1,\eta}(c) \leq C(c)|\mu|, \]

and so we just work on \(I \), which, using the definition of \(\chi^\mu_c \) in (5.3.2), is

\[I = 2D_\mu \mathcal{Q}(\zeta_c, a(\phi^\mu_c[0] - \phi^\mu_c[a]) - \hat{a}(\phi^\mu_c[0] - \phi^\mu_c[\hat{a}])) \cdot e_2. \]

Adding zero, we have

\[a(\phi^\mu_c[0] - \phi^\mu_c[a]) - \hat{a}(\phi^\mu_c[0] - \phi^\mu_c[\hat{a}]) = a(\phi^\mu_c[0] - \phi^\mu_c[a]) + (a - \hat{a})(\phi^\mu_c[0] - \phi^\mu_c[a]), \]

and therefore

\[
\begin{align*}
\| \tilde{\ell}^\mu_{c,2}(\eta, a) - \tilde{\ell}^\mu_{c,2}(\hat{\eta}, \hat{a}) \|_{1,\eta}(c) &\leq C|a| \| \sum_{c} (\phi^\mu_{c,2}[a] - \phi^\mu_{c,2}[\hat{a}]) \|_{1,\eta}(c) \\
&\leq C|a - \hat{a}| \| \sum_{c} (\phi^\mu_{c,2}[a] - \phi^\mu_{c,2}[\hat{a}]) \|_{1,\eta}(c) \\
&\leq C|a - \hat{a}| IV
\end{align*}
\]

For both III and IV, we use the decay borrowing estimate (G.1.5) and the periodic Lipschitz estimate (3.0.9) to bound

\[III \leq C|a - \hat{a}| \quad \text{and} \quad IV \leq C|\hat{a}|. \]
G.4.5. **Lipschitz estimates for \(h_{c,4}^\mu \) and \(\tilde{h}_{c,4}^\mu \)**. We compute

\[
\| h_{c,4}^\mu(\eta, a) - h_{c,4}^\mu(\tilde{\eta}, \tilde{a}) \|_{1, \eta_c(c)} + \| \tilde{h}_{c,4}^\mu(\eta, a) - \tilde{h}_{c,4}^\mu(\tilde{\eta}, \tilde{a}) \|_{1, \eta_c(c)} \\
= 2 \| a D_\mu Q(\phi^\mu_c[a], \eta) - \tilde{a} D_\mu Q(\tilde{\phi}^\mu_c[\tilde{a}], \tilde{\eta}) \|_{1, \eta_c(c)}
\]

\[
\leq \frac{C|a - \tilde{a}|}{C|a - \tilde{a}|} \| Q(\phi^\mu_c[a], \eta) \|_{1, \eta_c(c)} + \frac{C|\tilde{a}|}{C|\tilde{a}|} \| Q(\phi^\mu_c[a] - \phi^\mu_c[\tilde{a}], \eta) \|_{1, \eta_c(c)} + \frac{C|\tilde{a}|}{C|\tilde{a}|} \| Q(\phi^\mu_c[\tilde{a}], \eta - \tilde{\eta}) \|_{1, \eta_c(c)}.
\]

We estimate

\[
I \leq C(c) \| \eta \|_{1, \eta_c(c)} \quad \text{and} \quad III \leq C(c) \| \eta - \tilde{\eta} \|_{1, \eta_c(c)}
\]

with the product estimate (G.1.7) on \(Q \) and the periodic bounds (3.0.10). For \(II \), recall that \(\eta, \tilde{\eta} \in E^1_{\eta_c(c)} \times O^1_{\eta_c(c)} \subseteq E^1_{q_\eta(c)} \times O^1_{q_\eta(c)} \). We can therefore invoke the decay borrowing estimate (G.1.5) and the periodic Lipschitz estimate (3.0.9) to conclude

\[
II \leq C|a - \tilde{a}| \| \eta \|_{1, \eta_c(c)}.
\]

G.4.6. **Lipschitz estimates for \(h_{c,5}^\mu \) and \(\tilde{h}_{c,5}^\mu \)**. These estimates follow immediately from the quadratic estimate (G.1.6) for \(Q \).

G.5. **Bootstrap estimates.** Since \(H^1_c \in B(E^r_{q_\eta(c), 0}, E^{r+2}_{q_\eta(c)}) \) and \(L^{-1}_c P_c \in B(O^r_{q_\eta(c)}, O^{r+2}_{q_\eta(c)}) \), we have

\[
\| N_{c,1}^\mu(\eta, a) \|_{r+1, q_\eta(c)} + \| N_{c,2}^\mu(\eta, a) \|_{r+1, q_\eta(c)} \leq C(c, r) \sum_{k=1}^{5} \| h_{c,k}^\mu(\eta, a) \|_{r, q_\eta(c)}
\]

\[
+ C(c, r) \sum_{k=1}^{5} \| h_{c,k}^\mu(\eta, a) \|_{r, q_\eta(c)}.
\]

The individual mapping estimates above show that each of these eleven terms on the right is bounded by \(C(c, r) R_{\text{map}}^\mu(\| \eta \|_{r, q_\eta(c)}, a) \), and so we conclude that (G.2.3) also holds.

References

[AT92] C. J. Amick and J. F. Toland. Solitary waves with surface tension. I. Trajectories homoclinic to periodic orbits in four dimensions. *Arch. Rational Mech. Anal.*, 118(1):37–69, 1992.

[Bea80] J. Thomas Beale. Water waves generated by a pressure disturbance on a steady stream. *Duke Math. J.*, 47(2):297–323, 1980.

[Bea91] J. Thomas Beale. Exact solitary water waves with capillary ripples at infinity. *Comm. Pure Appl. Math.*, 44(2):211–257, 1991.

[Boy98] John P. Boyd. *Weakly Nonlocal Solitary Waves and Beyond-All-Orders Asymptotics*, volume 442 of *Mathematics and Its Applications*. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1998.

[BP13] Matthew Betti and Dmitry E. Pelinovsky. Periodic traveling waves in diatomic granular chains. *J. Nonlinear Sci.*, 23(5):689–730, 2013.

[Bri53] Léon Brillouin. *Wave Propagation in Periodic Structures*. Dover Phoenix Editions, New York, NY, 1953.
Martina Chirilus-Bruckner, Christopher Chong, Oskar Prill, and Guido Schneider. Rigorous description of macroscopic wave packets in infinite periodic chains of coupled oscillators by modulation equations. *Discrete Contin. Dyn. Syst. Ser. S*, 5(5):879–901, 2012.

Michael G. Crandall and Paul H. Rabinowitz. Bifurcation from simple eigenvalues. *J. Functional Analysis*, 8:321–340, 1971.

Thierry Dauxois. Fermi, Pasta, Ulam, and a mysterious lady. *Physics Today*, 61(1):55–57, 2008.

Timothy E. Faver. Nanopteron-stegoton traveling waves in spring dimer Fermi-Pasta-Ulam-Tsingou lattices. arXiv preprint arXiv:1511.00942. Accepted to Quarterly of Applied Mathematics in 2019.

Timothy E. Faver. Nanopteron-stegoton traveling waves in mass and spring dimer Fermi-Pasta-Ulam-Tsingou lattices. PhD thesis, Drexel University, Philadelphia, PA, May 2018.

Thierry Dauxois. Fermi, Pasta, Ulam, and a mysterious lady. *Physics Today*, 61(1):55–57, 2008.

Timothy E. Faver. Nanopteron-stegoton traveling waves in spring dimer Fermi-Pasta-Ulam-Tsingou lattices. *J. Dyn. Diff. Equat.*, 27(627-652), 2015.

G. Friesecke and A. Mikikits-Leitner. Cnoidal waves on Fermi-Pasta-Ulam lattices. *J Dyn. Diff. Equat.*, 27:1601–1627, 1999.

G. Friesecke and L. R. Pego. Solitary waves on FPU lattices. I. Qualitative properties, renormalization and continuum limit. *Nonlinearity*, 15(4):1343–1359, 2002.

G. Friesecke and R. L. Pego. Solitary waves on Fermi-Pasta-Ulam lattices. II. Howland-type Floquet theory. *Nonlinearity*, 17(1):207–227, 2004.

G. Friesecke and R. L. Pego. Solitary waves on Fermi-Pasta-Ulam lattices. IV. Proof of stability at low energy. *Nonlinearity*, 17(1):229–251, 2004.

E. Fermi, J. Pasta, and S. Ulam. Studies of nonlinear problems. *Lect. Appl. Math.*, 12:143–56, 1955.

Gero Friesecke and Jonathan A. D. Wattis. Existence theorem for solitary waves on lattices. *Comm. Math. Phys.*, 161(2):391–418, 1994.

Timothy E. Faver and J. Douglas Wright. Exact diatomic Fermi-Pasta-Ulam-Tsingou solitary waves with optical band ripples at infinity. *SIAM Journal on Mathematical Analysis*, 50(1):182–250, 2018.

Jeremy Gaison, Shari Moskow, J. Douglas Wright, and Qimin Zhang. Approximation of polyatomic FPU lattices by KdV equations. *Multiscale Model. Simul.*, 12(3):953–995, 2014.

Nickolas Giardetti, Amy Shapiro, Stephen Windle, and J. Douglas Wright. Metastability of solitary waves in diatomic FPUT lattices. *Mathematics in Engineering*, 1(3):419–433, 2019.

H.J. Hupkes and S.M.V. Lunel. Center manifold theory for functional differential equations of mixed type. *J. Dyn. Diff. Equat.*, 19(2):497–560, 2007.

M. Herrmann and K. Matthies. Asymptotic formulas for solitary waves in the high-energy limit of FPU-type chains. *Nonlinearity*, 28:2767–2789, 2015.

M. Herrmann and K. Matthies. Uniqueness of solitary waves in the high-energy limit of FPU-type chains. In Gurevich P., Hell J., Sandstede B., and Scheel A., editors, *Patterns of dynamics*, volume 205 of Springer Proceedings in Mathematics & Statistics, pages 3–15. Springer, 2017.

M. Herrmann and K. Matthies. Stability of high-energy solitary waves in Fermi-Pasta-Ulam-Tsingou chains. *Trans. Amer. Math. Soc.*, 372:3425–3486, 2019.

Herem Jan Hupkes, Leonardo Morelli, Willem M. Schouten-Straatman, and Erik S. Van Vleck. Traveling waves and pattern formation for spatially discrete bistable reaction-diffusion equations. Preprint available at http://www.math.leidenuniv.nl/~hupkes/lservw.pdf.

M. Herrmann, K. Matthies, H. Schwetlick, and J. Zimmer. Subsonic phase transition waves in bistable lattice models with small spinodal region. *SIAM J. Math. Anal.*, 45:2625–2645, 2013.

A. Hoffman and C.E. Wayne. Counterpropagating two-soliton solutions in the Fermi-Pasta-Ulam lattice. *Nonlinearity*, 21:2911–2947, 2008.

Aaron Hoffman and J. Douglas Wright. Nanopteron solutions of diatomic Fermi-Pasta-Ulam-Tsingou lattices with small mass-ratio. *Physica D: Nonlinear Phenomena*, 2017.

Mathew A. Johnson and J. Douglas Wright. Generalized solitary waves in the gravity-capillary Whitham equation. arXiv preprint arXiv:1807.1149v1.
Reference	Title
[Kev11]	P. G. Kevrekidis. Non-linear waves in lattices: past, present, future. *IMA J. Appl. Math.*, 76(3):389–423, 2011.
[Lus]	Christopher J. Lustri. Nanoptera and Stokes curves in the 2-periodic Fermi-Pasta-Ulam-Tsingou equation. arXiv preprint arXiv:1905.07092.
[MP99]	J. Mallet-Paret. The Fredholm alternative for functional differential equations of mixed type. *Journal of Dynamics and Differential Equations*, 11(1):1–47, 1999.
[Pan05]	Alexander Pankov. *Travelling Waves and Periodic Oscillations in Fermi-Pasta-Ulam Lattices*. Imperial College Press, Singapore, 2005.
[Qin15]	Wen-Xin Qin. Wave propagation in diatomic lattices. *SIAM J. Math. Anal.*, 47(1):477–497, 2015.
[RS79]	Michael Reed and Barry Simon. *Methods of modern mathematical physics. III*. Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. Scattering theory.
[SV17]	Yuli Starosvetsky and Anna Vainchtein. Solitary waves in FPU lattices with alternating bond potentials. *Mechanics Research Communications*, 2017.
[VSWP16]	Anna Vainchtein, Yuli Starosvetsky, J. Douglas Wright, and Ron Perline. Solitary waves in diatomic chains. *Phys. Rev. E*, 93, 2016.
[Wat19]	Jonathan A. D. Wattis. Asymptotic approximations to travelling waves in the diatomic Fermi-Pasta-Ulam lattice. *Mathematics in Engineering*, 1(2):327–342, 2019.
[Zei95]	Eberhard Zeidler. *Applied functional analysis*, volume 109 of *Applied Mathematical Sciences*. Springer-Verlag, New York, 1995. Main principles and their applications.

Mathematical Institute, University of Leiden, P.O. Box 9512, 2300 RA Leiden, The Netherlands, t.e.faver@math.leidenuniv.nl

Mathematical Institute, University of Leiden, P.O. Box 9512, 2300 RA Leiden, The Netherlands, hhupkes@math.leidenuniv.nl