Administration of some probiotic strains in the rearing water enhances the water quality, performance, body chemical analysis, antioxidant and immune responses of Nile tilapia, *Oreochromis niloticus*

Mohammed A. E. Naiel1 · Mohamed F. Abdelghany2 · Doaa K. Khames3 · Samah A. A. Abd El-hameed4 · Enas M. G. Mansour5 · Ali S. M. El-Nadi6 · Adel A. Shoukry7

Received: 25 April 2022 / Accepted: 4 July 2022 / Published online: 2 August 2022 © The Author(s) 2022

Abstract

The performance, efficiency of consumed feed, body chemical composition, survival rate, antioxidant and immunity parameters of Nile tilapia (*Oreochromis niloticus*) reared in probiotic-treated water were studied. Two hundred apparently healthy Nile tilapia (20 ± 0.3 g) juveniles were reared for 70 days in five different treatments, with five replications as the control group (clean water) and four test groups with two probiotics strains (*Bacillus toyonensis* and *Geobacillus stearothermophilus*) at two different levels (1 or 2 × 10⁵ CFU ml⁻¹) applied in rearing water. Fish reared in water supplemented with *G. stearothermophilus* at low level demonstrated significantly enhanced (p < 0.05) growth performances in terms of final body weight (FBW), weight gain (WG), daily weight gain (DWG), specific growth rate (SGR), and relative growth rate (RGR) compared to the control group. In the same context, supplied fish rearing water a lower amount of *G. stearothermophilus* (GS1) remarkably reduced feed conversion ratio values when compared to the control group. In contrary, all other feed efficiency parameters increased significantly when *G. stearothermophilus* (GS1) water was added at low amount in the compartment with the untreated group. Moreover, probiotic water additives significantly reduced the range and median levels of unionized ammonia (NH₃) in water when compared to the untreated group. According to the findings of the body chemical composition, treated tilapia water with a high level of *B. toyonensis* had significantly higher crude protein and fat levels, as well as lower ash levels, than the control group. When compared to the control group, probiotic-water supplementation significantly improved oxidative status and immunological activity at all bacterial dosage levels, with the fish group enriched with a high level of *G. stearothermophilus* recording the maximum values of both antioxidant and immune activity. Finally, results reveal that water treated with *B. toyonensis* or *G. stearothermophilus* as a probiotic promoted Nile tilapia growth and health status, and this technology may be applied to stimulate tilapia productivity in culture farms.

Keywords Probiotic · Tilapia · Performance · Immunity · Antioxidant status

1 Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
2 Department of Fish Production, Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
3 Fish Nutrition and Feed Technology Department, Central Lab. for Aquaculture Research, Agriculture Research Center, Abbassa, Abu-Hamad 44661, Sharkia, Egypt
4 Fish Health and Management Department, Central Lab. for Aquaculture Research, Agriculture Research Center, Abbassa, Abu-Hamad 44661, Sharkia, Egypt
5 Limnology Department, Central Lab. for Aquaculture Research, Agriculture Research Center, Abbassa, Abu-Hamad 44661, Sharkia, Egypt
6 Fish Nutrition Lab, Animal Production Department, National Research Center, Dokki, Giza, Egypt
7 Botany Department (Microbiology), Faculty of Agriculture, Al-Azhar University, Cairo 11651, Egypt
Introduction

During the past several decades, aquaculture industry has made substantial contributions to the animal protein production sector in almost all country across the globe, accounting for about half of all seafood consumed annually (FAO 2021). The global development of intensive culture farms, with their damaging discharges of organic and inorganic wastes, has resulted in epidemic outbreaks of several infectious diseases, degradation of the natural ecosystem, particularly eutrophication, fishery breakdown, and reduced biodiversity (Ahmed et al. 2019; Shafique et al. 2021). Furthermore, releasing excessive levels of ammonia in association with poor pond management in intensive culture farms may have a severe influence on fish productivity and overall health condition through deteriorating quality of rearing water (Negm et al. 2021; Abdel-Latif et al. 2022). Consequently, stress may depress the immune system and cause oxidative damage of farmed fish (Raza et al. 2022); therefore, developing new techniques to mitigate these harmful effects on fish is essential.

Because of the harmful ecological impact of chemical, synthetic medicine and antibiotics, as well as the creation of mutagenic resistant bacterial strains and deleterious effects on fish health status, their use to suppress infectious diseases or improving water quality is no longer advised (Pepi and Focardi 2021; El-Kady et al. 2022). Thus, the application of eco-friendly water additives, such as probiotic supplements, to enhance the growth, antioxidant status and immune responses of farmed fish species, has gained much more attention during recent years (Zokaeifar et al. 2014; Naiel et al. 2022b). The use of probiotics is one of the alternative strategies to immunological prophylactic management in aquaculture, and it is regarded as a supplemental technique or alternative to the use of vaccinations and drugs (Naiel et al. 2021). Some Bacillus bacteria species such as Bacillus subtilis, B. cereus, B. coagulans, B. clausii, B. megaterium, B. licheniformis, B. circulans, B. aerius and B. polymyxa are the common probiotics employed for growth and health improvement in fish (Jahangiri and Esteban 2018). The application of Bacillus has been revealed to have the most effectiveness influences against infectious diseases, sustain survival, and promote growth for a wide variety of fish species (Sun et al. 2010; Andani et al. 2012; Wu et al. 2012; Adorian et al. 2019; Naiel et al. 2022c). In addition, recent research has shown the efficacy of probiotic water supplements to produce inhibitory chemicals, boost immunity, and prevent pathogen invasion in the ecosystem and fish gut (Cha et al. 2013; Reda and Selim 2015; Sutthi et al. 2018; Zaineldin et al. 2018). Also, Zhou et al. (2010) investigated that supplemented tilapia rearing water with probiotic could enhance growth and enhances immune responses. Specifically, Bacillus toyonensis is a member of the Bacillus cereus group and has been applied for many years as a feed additive of both fish and animals (Markowiak and Śliżewska 2018). Furthermore, B. toyonensis has previously been identified as an antibacterial agent capable of preventing diarrhea infections caused by E. coli strains as well as other infectious diseases such as salmonellosis, campylobacteriosis, and coccidiosis (Yilmaz et al. 2022). Despite the scarcity of knowledge on G. stearothermophilus' function in fish production, it demonstrates powerful effectiveness in biosorption of heavy metals from industrial waste water (Chatterjee et al. 2010) and enhancing water quality physiochemical features (Hlordzi et al. 2020). Till now, the majority of research examining the properties of probiotics in fish aquaculture have employed dietary supplementation, with little consideration given to the potentially positive benefits of direct probiotic administration in water. Thus, the main purpose of the current study was to evaluate the impact of two isolated probiotic strains (B. toyonensis and G. stearothermophilus) on water quality, growth performance, feed utilization, whole fish body proximate constitution, redox status and immune responses in Nile tilapia fish.

Material and methods

Bacterial strains isolation

O. niloticus fish samples were gathered by randomly from earthen ponds nearby Abbassa village. Internal organs (liver and intestine), gills and skin (body slime) swab samples were collected and grown on MRS and M17 agar medium plates for 72 h at 35 °C. During this study, the isolated probiotic strains (Bacillus toyonensis, and Geobacillus stearothermophilus) were cultivated in the laboratory and routinely evaluated for purity based on their morphological and biochemical properties as ascribed by Garrity et al. (2005). The isolated probiotics (B. toyonensis and G. stearothermophilus) were developed and quantified on specific nutrient agar (MRS and M17 agar media plates) employing spore staining with the spread plate technique (Austin et al. 1995).

Molecular identification of the isolated bacterial strains

The extraction and determination of the genomic DNA quantity

The DNA extraction was applied using the i-genomic BYF DNA extraction Mini Kit. As mentioned before, the DNA genomic was extracted from a pure culture of an isolated...
bacterial strain after it was cultivated on Nutrient broth medium overnight (iNtRON Biotechnology Inc., South Korea). According to Sambrook et al. (1989) procedure, the extracted DNA was determined by estimating the UV-absorbance at wave length of 260 and 280 nm using a spectrophotometer (Shimadzu model UV-240) to unify the DNA quantity and purity.

The PCR partial amplification and sequencing of 16S ribosomal RNA gene

The Maxima Hot Start PCR Master Mix (Thermo K1051) was used to amplify the 16S ribosomal gene, and the nucleotide sequences of the 16S primers utilized were 27F primer-5’-AGAGTTTGATCCTGCGCTCAG-3’ and 1492R primer-5’ TACGGTACCTTGTAGCCAGCTT -3’. To each PCR vial containing 10 µL of 2X PCR Master Mix, 2 µL of each used primer (10 pmol/µl) and 2 µL of the purified DNA sample (40 ng/ µl) were blended. Using sterile distilled water, the total volume of the amplification was completed to 20 µl. The amplification protocol was carried out as follows: (1) denaturation at 95 °C for five min; (2) thirty-five cycles each consists of the following segments; (3) denaturation at 95 °C for one min, then (4) primer annealing for two min. at 52 °C and polymerization at 72 °C for two min. Finally, hold the PCR at 4 °C. The amplified DNA products were electrophoresed for roughly 2 h at a constant 100 V on a 1.0 percent agarose gel with 1X TBE (Tris–borate-EDTA) buffer. The detected bands were estimated using a 100-bp H3 RTU ladder (Cat. No.DM003-R500 Genedirex, Taiwan).

DNA purification after PCR amplification of 16S gene and identification of isolated probiotic

MEGAquick-spinTM Plus Total Fragment DNA Purification Kit, iNtRON Biotechnology Inc., South Korea, purified the bands obtained after PCR amplification that were responsible for 16S RNA genes. After DNA separation from the bacterial strains (2isolates) and concentration determination by spectrophotometer, the 16S primers were employed to amplify the region of the rDNA gene. After amplification, approximately 1500 bp was obtained, as illustrated in Fig. 1. Then, the purified PCR products were sequenced using a forward primer on an ABI 3730xl DNA sequencer (GATC Company, Germany) using forward primer; Sequence 1 [Bacillus toyonensis, 16S ribosomal RNA gene, partial sequence, GenBank accession number MZ427468.1] and Sequence 2 [Geobacillus steaothermophilus, 16S ribosomal RNA gene, partial sequence, GenBank accession number MZ427469.1] as indicated in Table 1. All strains were stored at − 20 °C in dehydrated cultured media (LB: Broth, Miller, Luria–Bertani, Sigma-Aldrich, Millipore, SAFC, Milli-Q, Supelco, BioReliance, Roche) containing 15% glycerol (v/v) until use, as reported by Zokaeifar et al. (2014). The density of prepared cell suspensions was estimated using a spectrophotometer at 600 nm and also correlated to colony-forming units (CFU) using a spread plate technique.

Phylogenetic analysis

The DNA sequences of the bacterial isolates were compared to sequences in the NCBI GenBank database (http://www.ncbi.nlm.nih.gov) using the Basic Local Alignment Search Tool (BLAST). The sequence was compared to those of reference taxa found in public databases, and the evolutionary distance was calculated using NCBI Neighbor Joining. The phylogenetic trees of the both isolated probiotic strains are listed in Figs. 2 and 3.

Experimental design and rearing conditions

Healthy juvenile O. niloticus were provided by the Abbassa private hatchery, Egypt, and the experiment was conducted at the wet laboratory of fish nutrition and feed technology department, central Lab. for Aquaculture Research, Abbassa, Abu-Hammad, Egypt. The fish were acclimatized for approximately 2 weeks in 1000-l tanks before the start of the trial. After the acclimation period, the average weight of the fish was 20 ± 0.3 g, and the fish were randomly allocated into twenty-five 100-l aquariums, each containing 10 fish. All tilapia fish were fed a commercial diet (32% protein; North Africa ALLER TIL-PRO 32% EX) three times daily (8:00 a.m., 16:00 p.m., and 24:00 p.m.) at 3% body weight. Five treatments were achieved, each with five replications. Each bacterial strains were cultivated in freshwater nutrient broth for 48 h at 37 °C. Fresh colonies were
gathered via centrifugation at 5000 rpm for 15 min, then the obtained supernatants were discarded, and pellets were washed twice in neutral phosphate buffer saline (pH 7.4) before being suspended in PBS at a density of 1 × 10^5 CFU/ml for application. The probiotic strains (*B. toyonensis* and *G. stearothermophilus*) were added to the rearing water in equal portions to achieve a final concentration of around 1 or 2 × 10^5 CFU ml^-1. The lower concentration was chosen based on prior reports (Nikoskelainen et al. 2001; Bernard et al. 2013); the higher level was chosen considering higher doses are frequently assumed to be more beneficial (Zhou et al. 2010). The fish group that did not receive any probiotic supplements served as the control group. The trial was performed for a 70-day duration, and probiotics were supplied to the rearing water twice a week to keep the level in the fish rearing water stable.

Water quality measurements

Daily, a Pro Quatro Multiparameter Meter (YSI Incorporated, 1700/1725 Brannum Lane, Yellow Springs, OH 45387 USA) was being applied to monitor and recorded dissolved oxygen (DO), temperature, pH, total dissolved solids (TDS), and conductivity (EC) in all aquariums. Also, the total ammonia (TAN) levels were estimated in all rearing aquarium using a specific test kit (Model HI28049, Hach, USA). The unionized ammonia level (NH3-N) was calculated according to the Henderson–Hasselbalch relationship equation when the water pH and temperature were measured (USEPA 2013). Each water sample was recorded at various intervals during the day (08:00, 10:00, 12:00, 14:00, 16:00, and 18:00) on a regular basis.

Growth parameters and survival percentage

The successful live fish biomass was weighing every 2 weeks to determine the growth indices. The following formulae were applied to calculate the final body weight (FW), weight gain (WG), daily weight gain (DWG), specific growth rate (SGR), relative growth rate (RGR), and survival rate (SR);

\[
\text{WG} = W_f - W_0,
\]

\[
\text{SGR} = \frac{(L_n W_f - L_n W_0)}{n} \times 100,
\]

\[
\text{DWG} = \frac{W_G}{n},
\]

\[
\text{RGR} = \left(\frac{W_f - W_0}{W_f} \right) \times 100.
\]

\[
\text{SR} = 100 \times \frac{\text{final live number of fish}}{\text{initial live number of fish}}.
\]

Feed efficiency indices

Total Feed intake (TFI)\(\left(\frac{\text{g feed}}{\text{fish}} \right) = \frac{FI}{N} \),

where FI is the consumed diets during the feeding trial and N is the total fish number.

Feed conversion ratio (FCR)\(= \frac{\text{TFI}}{\text{WG}} \),

Feed Efficiency ratio (FER)\(= \frac{\text{WG}}{\text{TFI}} \),

Protein efficiency ratio (PER)\(= \frac{\text{WG}}{\text{PI}} \),

where PI is the protein intake (g),

Protein productive value (PPV\%)\(= 100 \times \frac{\text{protein gain}}{\text{consumed protein}}. \)

Whole body chemical analysis

Fish samples were collected at the end of the trial period to determine the proximate analyses of the fish body, including moisture, dry matter, crude protein, ether extract, and ash contents. All chemical components of fish bodies were determined based on a dry matter basis using the AOAC (2005) technique.

Blood sampling procedure

By the end of the experiment, nine fish from each treated group (three fish per aquaria) were randomly sampled after being fasted for 24 h. Prior to collecting blood samples from the caudal vein using a 1-ml sterile syringe, the fish was sedated for 3 min with 95 mg l^-1 clove oil (Oleum, Cairo, Egypt), as reported by Adeshina et al. (2016). The pooled blood sample was mixed with dipotassium salt of EDTA as an anticoagulant (0.5 mg ml^-1 blood) and transferred

Strain	Accession number	Closest phylogenetic relative	Identity %
Bacillus toyonensis	MZ427468.1	*Bacillus toyonensis*	99.28
Geobacillus stearothermophilus	MZ427469.1	*Geobacillus stearothermophilus*	99.11
into Eppendorf tubes before being centrifuged (3000×g for 15 min) to determine antioxidant and immune markers. The obtained serum was stored at 20 °C until it was needed.

Antioxidant and immune parameters

Superoxide dismutase (SOD) and catalase (CAT) concentration in prepared serum were estimated via commercial colorimetric kits (Bio-diagnostic Co., Cairo, Egypt) and following the method reported by Nishikimi et al. (1972) and Aebi (1984), respectively.

Nitric oxide (NO) level was detected as the method described by Rajaraman et al. (1998). The respiratory burst test was determined as ascribed by Siwicki et al. (1985) method, whereas 0.1 ml of the heparinized blood was mixed with an equal volume of 0.2% nitro blue tetrazolium (NBT) solution in a microtiter plate. Following 30-min incubation at room temperature (25 °C), 0.05 ml of the mixture was added to 1 ml N, N dimethylformamide. The solution was mixed and centrifuged at 3000 rpm for 5 min. The optical density was measured at 540 nm in a spectrophotometer.

The serum lysozyme activity was estimated via applying turbidity procedure (Schäperclaus 1992). Establishing the calibration curve by prepared a serial dilution of the standard lysozyme from hen egg white (Fluka, Switzerland) and mixed with *Micrococcus lysodeikticus* (ATCC NO. 1698 Sigma) suspension. Ten microliters of serum or standard solution was blended with 200 µl of *Micrococcus* suspension (35 mg of *Micrococcus* dry powder per 95 ml of 1/15 M phosphate buffer + 0.5 ml of NaCl solution). The alterations in the extinction were determined at 546 nm via quantifying the extinction directly after supplying the solution which stimulate the lysozyme (start of the reaction) and after 20-min incubation of the preparation under examination at 40 °C (end of the reaction). The lysozyme values were calculated based on the extinction induced and calibration curve.

Statistical procedure

The Shapiro–Wilk test was applied to prove that the collected and calculated data followed the normal distribution (Razali and Wah 2011). After that, all data were analyzed using one-way ANOVA, and differences between treatments were assessed using Tukey’s range test. All analytical methods were achieved using SPSS v.22, and the obtained results were shown as mean ± standard error.
from the antioxidant and immune activity were subjected to the one-way ANOVA followed by Dunnett’s multiple comparison of group means to compare the probiotic supplemented groups and the control group, so long as the ANOVA showed significance differences.

Results

Growth performance and survival

The effects of two probiotic strains supplemented into tilapia fish rearing water on performance parameters were studied over a 70-day period (Table 2). At the beginning of the trial, there were no detectable significant variations in initial body weight ($P > 0.05$) values between the treatment and control groups. However, at the end of the experiment, there were significant changes ($P < 0.05$ or 0.001) in the final body weight (FW), weight body gain (WG), daily weight gain (DWG), relative growth rate (RGR), and specific growth rate (SGR) of fish between the probiotic treatments and control groups (Table 1). The GS1-treated group had higher values for all growth indicators when compared to the other treated or non-treated groups. In the same context, there was a significant difference ($P > 0.05$) in the survival percentage between the probiotic-treated groups and the control group, whereas both probiotic groups administered with a low bacterial count (BT1 and GS1) exhibited better survival rates.

Feed efficiency

Feed utilization characteristics including feed intake (FI), feed conversion ratio (FCR), feed efficiency ratio (FER), protein intake (PI), protein efficiency ratio (PER), and protein productive value (PPV) of tilapia fish were assessed and statistically examined (Table 3). Significant variations in feed consumption and protein intake were detected in fish reared in water supplemented with higher levels of $B. toyonensis$ (BT2) compared to the untreated group. The fish grown in water supplied with a lower amount of $G. stearothermophilus$ (GS1) had the lowest FCR values when compared to the control group. In contrast, tilapia fish kept in water with a lower quantity of $G. stearothermophilus$ (GS1) demonstrated higher FER, PER, and PPV values than the untreated group.

Body chemical composition

There were no significant variations in the dry matter percentage of all experimental groups, whether probiotic supplemented or unsupplemented (Table 4). While crude protein and lipids levels considerably ($P > 0.05$ or 0.001) improved in all treatment groups as compared to the control group, with the BT2 group exhibiting higher values, followed by GS2 and BT1, respectively. In contrast, all probiotic supplemented groups had significantly ($P < 0.001$) reduced ash concentrations than the control group, with BT2 being the lowest observed group.

Table 2 Data of growth performance and survival of tilapia fish reared in treated water with or without probiotics for 70 days

Parameters	Treatments	P value				
	CTR	BT$_1$	BT$_2$	GS$_1$	GS$_2$	
IW (g)	20.41 ± 0.13	20.47 ± 0.12	20.26 ± 0.01	20.67 ± 0.03	20.51 ± 0.16	0.446
FW (g)	44.19 ± 0.26	54.36 ± 0.75	53.10 ± 1.31	58.97 ± 0.83	52.40 ± 1.04	< 0.001
WG (g)	23.78 ± 0.27	33.89 ± 0.83	32.84 ± 1.29	38.30 ± 0.86	31.89 ± 0.97	< 0.001
DWG (g)	0.34 ± 0.04	0.48 ± 0.12	0.47 ± 0.18	0.55 ± 0.12	0.46 ± 0.39	< 0.001
SGR (g d$^{-1}$)	1.10 ± 0.12	1.40 ± 0.26	1.38 ± 0.35	1.50 ± 0.22	1.33 ± 0.25	0.001
RGR (%)	1.17 ± 0.18	1.66 ± 0.47	1.62 ± 0.64	1.85 ± 0.45	1.56 ± 0.05	0.013
SR (%)	86.67 ± 3.33	100 ± 0.00	96.67 ± 3.33	100 ± 0.00	96.67 ± 3.33	0.021

CTR, control fish group reared in clean water; BT$_1$, fish group reared in supplemented water with $B. toyonensis$ at level 1 × 105 CFU ml$^{-1}$; BT$_2$, fish group reared in supplemented water with $B. toyonensis$ at level 2 × 105 CFU ml$^{-1}$; GS$_1$, fish group reared in supplemented water with $G. stearothermophilus$ at level 1 × 105 CFU ml$^{-1}$; GS$_2$, fish group reared in supplemented water with $G. stearothermophilus$ at level 2 × 105 CFU ml$^{-1}$; IW, initial weight; FW, final weight; WG, weight gain; DWG, daily weight gain; SGR, specific growth rate; RGR, relative growth rate; SR, survival rate

Within each row, means with the different superscript(s) are significantly different ($P < 0.05$, 0.01 or 0.001); Data were presented as mean ± SE
Water quality criteria

During the trial period, no difference was recorded in the range or median values of water temperature (TEMP), dissolved oxygen (DO), total dissolved solids (TDS), electric conductivity (EC), and pH values due to the administration of different probiotic strains to fish rearing water and the control group (Table 5). Probiotic water additions considerably decreased the unionized ammonia (NH3) range and median values in water when compared to control group.

Immune responses

The effects of enriched tilapia rearing water with two different probiotic strains (BT, *B. toyonensis* and GS, *G. stearothermophilus*) at two levels (1 or 2 × 10⁵ CFU ml⁻¹) on some immune parameters including nitric oxide (NO), NBT, and lysozyme concentrations are illustrated in Fig. 4. When compared to the control group, NO levels in all probiotic-treated groups improved significantly (*P* < 0.001) at any administration level, while the GS2 group recorded the highest NO concentration. On the other hand, the NBT values revealed no significant differences between the treated groups and the control group, with the exception of the BT2 group, which significantly (*P* < 0.05) enhanced the NBT level compared to the untreated group, whereas lysozyme activity increased significantly (*P* < 0.01 or 0.001) in all fish groups supplemented with probiotics as water additives when compared to the control group.

Antioxidative remarks

The influences of fortified tilapia rearing water with two different probiotic strains (BT, *B. toyonensis* and GS, *G. stearothermophilus*) at two levels (1 or 2 × 10⁵ CFU ml⁻¹) on some antioxidative parameters including superoxide dismutase (SOD), glutathione peroxidase (GPx), and total antioxidant capacity (TAC) are illustrated in Fig. 5. When compared to the control group, SOD and GPx activities improved significantly (*P* < 0.001 or 0.01) in all probiotic-treated groups at any administration level, whereas TAC values revealed no significant differences between the treated groups and the control group.

Table 3 Feed utilization measurements of tilapia fish reared in treated water with or without probiotics for 70 days

Parameters	Treatments	CTR	BT₁	BT₂	GS₁	GS₂	*P* value
FI (g)	42.43 ± 1.24	50.03 ± 0.67	52.77 ± 0.52	50.67 ± 0.58	50.87 ± 0.46	< 0.001	
PI (g)	12.58 ± 0.37	14.83 ± 0.20	15.65 ± 0.15	15.02 ± 0.17	15.08 ± 0.14	< 0.001	
FCR (g/g)	1.89 ± 0.03	1.48 ± 0.03	1.61 ± 0.06	1.33 ± 0.04	1.60 ± 0.06	0.005	
FER (g/g)	56.08 ± 1.04	67.71 ± 1.13	62.21 ± 1.23	75.64 ± 1.36	62.72 ± 1.22	< 0.001	
PER (g/g)	1.89 ± 0.03	2.28 ± 0.04	2.09 ± 0.07	2.55 ± 0.08	2.12 ± 0.07	< 0.001	
PPV (%)	14.14 ± 1.38	17.15 ± 0.63	14.89 ± 0.43	19.31 ± 0.83	14.86 ± 0.52	0.001	

CTR, control fish group reared in clean water

BT₁, fish group reared in supplemented water with *B. toyonensis* at level 1 × 10⁵ CFU ml⁻¹

BT₂, fish group reared in supplemented water with *B. toyonensis* at level 2 × 10⁵ CFU ml⁻¹

GS₁, fish group reared in supplemented water with *G. stearothermophilus* at level 1 × 10⁵ CFU ml⁻¹

GS₂, fish group reared in supplemented water with *G. stearothermophilus* at level 2 × 10⁵ CFU ml⁻¹

*Within each row, means with the different superscript(s) are significantly different (*P* < 0.05, 0.01 or 0.001); Data were presented as mean ± SE

Table 4 Body chemical analysis of tilapia fish reared in treated water with or without probiotics for 70 days

Parameters	Treatments	CTR	BT₁	BT₂	GS₁	GS₂	*P* value
Dry matter	24.43 ± 0.73	24.73 ± 0.94	25.16 ± 0.16	24.42 ± 0.02	24.36 ± 0.16	0.063	
Crude protein	62.40 ± 0.18	64.57 ± 0.12	65.68 ± 0.13	63.66 ± 0.11	64.66 ± 0.03	0.002	
Crude lipids	17.43 ± 0.73	19.55 ± 0.55	19.86 ± 0.69	19.32 ± 0.58	19.73 ± 0.17	0.001	
Ash	18.15 ± 0.32	13.88 ± 0.11	12.46 ± 0.19	15.02 ± 0.85	13.61 ± 0.36	< 0.001	

CTR, control fish group reared in clean water

BT₁, fish group reared in supplemented water with *B. toyonensis* at level 1 × 10⁵ CFU ml⁻¹

BT₂, fish group reared in supplemented water with *B. toyonensis* at level 2 × 10⁵ CFU ml⁻¹

GS₁, fish group reared in supplemented water with *G. stearothermophilus* at level 1 × 10⁵ CFU ml⁻¹

GS₂, fish group reared in supplemented water with *G. stearothermophilus* at level 2 × 10⁵ CFU ml⁻¹

*Within each row, means with the different superscript(s) are significantly different (*P* < 0.05, 0.01 or 0.001); data were presented as mean ± SE
stearothermophilus) at two different concentrations (1 or 2 × 10^5 CFU ml⁻¹) on some oxidative remarks including catalase (CAT) and super oxide dismutase (SOD) levels are presented in Fig. 5. In compartment with the untreated group, CAT concentrations in all probiotic-treated groups increased significantly (P < 0.001) at any administration level, while the GS2 group exhibited the highest values of CAT activity. Probiotic supplementation of tilapia rearing water significantly increased SOD activity, with low level probiotic addition (BT1 followed by GS1) recording the highest SOD values.

Discussion

The physicochemical characteristics of fish rearing water are critical indications of water quality and the efficacy of a culture system in sustaining fish output (Negm et al. 2021). The findings of our investigation indicated that all water physicochemical feature ranges were confirmed to be within acceptable limits for tilapia production as previously reported by Boyd and Tucker (2012). Dissolved oxygen (DO) is a vital water quality characteristic that maintains all living organisms, including cichlid fish species (Zink et al. 2011). Furthermore, fish and other aquatic species are found to be stressed, sensitive to infectious diseases and grow slowly under low dissolved-oxygen levels (≥4 mg/l) (Boyd 2011). Our results indicate that probiotic administration into fish rearing water has no effect on DO levels. The capability of Bacillus bacterial strains to modify DO is via lowering of the fish's stress level as indicated in antioxidant levels, resulting in reduced oxygen use in all bacterial-treated groups (Hlordzi et al. 2020). Furthermore, the photosynthetic process is controlled by bacterial water administration, which frees CO₂ and bicarbonates, resulting in increased carbonates and DO level and, consequently, modifying water pH, thereby releasing carbonates raised water pH level via hydrolysis process (Sunitha and Padmavathi 2013). This attribution was found to be confirmed by our findings regarding the preservation of pH levels in all bacterial-treated groups in a profitable range without the need of daily water exchange (exchanged complete water every 2 weeks). Furthermore, these findings are consistent with those of Zhou et al. (2010) study on tilapia fish water treated with probiotic.

Unionized ammonia (NH₃) and other nitrogenous waste are key factors in intensive aquaculture systems (Datta 2012), and recognizing their dynamics is a vital for the sustainability of the aquaculture system and preventing fish from sudden death (Naiel et al. 2022b). Our results show that treated tilapia water could reduce ammonia range and median levels in rearing water. These results found to be in line with Khademzade et al. (2020) findings that administered shrimp pond with two bacterial strains (Pediococcus acidilactici and Bacillus cereus) significantly reduced nitrogenous concentration. In addition, John et al. (2020) reported that introducing probiotic strains (B. amyloliquefaciens, B. cereus, and Pseudomonas stutzeri) into Oreochromis mossambicus rearing water significantly reduced ammonia concentration. The Bacillus species had the ability to remove the different types of nitrogen from fish wastewater (Liu et al. 2020) and play a vital role on modulating nitrogen cycle through ammonification, nitrification, and denitrification as well as nitrogen fixation (Rout et al. 2017; Yousuf et al.

Table 5 Water quality criteria of tilapia fish reared in treated water with or without probiotics for 70 days

Parameters	CTR	BT₁	BT₂	GS₁	GS₂							
TEMP (°C)	26–28	27.14	27–28	27.57	26–28	27.42	26–28	27.17	26–28	27.22		
DO (mg/l)	6–6.1	6.2	5.9–6.4	6.2	5.9–6.4	6.21	5.9–6.4	6.21	6–6.3	6.42	6–6.4	6.15
pH	7.1–7.4	7.2	7.1–7.4	7.2	7–7.3	7.12	7–7.4	7.18	7–7.4	7.14		
TDS (µg/l)	297–310	311.5	312–327	319.5	397–410	401.28	450–491	468.28	491–512	506.5		
NH₃ (mg/l)	0.002–0.009	0.007	0.001–0.006	0.004	0.001–0.005	0.003	0.002–0.007	0.005	0.001–0.009	0.005		
EC (μS/l)	0.49–0.49	0.477	0.49–0.49	0.479	0.591–0.612	0.602	0.069–0.732	0.668	0.707–0.762	0.729		

CTR, control fish group reared in clean water
BT1, fish group reared in supplemented water with B. toyonensis at level 1 × 10^5 CFU ml⁻¹
BT2, fish group reared in supplemented water with B. toyonensis at level 2 × 10^5 CFU ml⁻¹
GS1, fish group reared in supplemented water with G. stearothermophilus at level 1 × 10^5 CFU ml⁻¹
GS2, fish group reared in supplemented water with G. stearothermophilus at level 2 × 10^5 CFU ml⁻¹

Data were presented as R, rate and M, median; TEMP, temperature; DO, dissolved oxygen; TDS, total dissolved solids; NH₃, unionized ammonia; EC, electric conductivity
For instance, applied *B. amyloliquefaciens* DT into fish pond transformed organic form of nitrogen into ammonium (Hui et al. 2019), which *B. cereus* PB8 could remove nitrite from shrimp rearing water (Barman et al. 2018). The presence of heterotrophic nitrifying bacteria could stimulate the Coenzyme Q to obtain electrons from external carbon sources during the oxidation of ammonia to nitrite. Thus, the elimination of ammonia level in fish rearing water might be linked with the absorption of carbonaceous molecule via improving the heterotrophic bacteria development. In the same context, Li et al. (2019) demonstrated that *Bacillus cereus* showed higher carbon dioxide uptake and ammonia removal capacities by activating the heterotrophic nitrification pathway.

In the existing research, the use of two separate probiotic strains in the fish culture water had a positive influence on the growth and efficiency of consumed feed in Nile tilapia. Early reports have also shown that enriched Nile tilapia rearing water with probiotics markedly improved growth and promoted productivity (Kord et al. 2021, 2022; Van Doan et al. 2021; Deng et al. 2022). Furthermore, Kord et al. (2022) indicated that incorporating probiotics into fish water increased the total count of *Bacillus* spp. in fish gastric tract, indicating that probiotics might...
play a significant role in promoting fish growth, health, and immunity. Moreover, Ghanei-Motlagh et al. (2021) confirmed that the relation between inclusion of probiotics into rearing water and improving the nutritional state of fish could be attributed to the ability of *Bacillus* spp. as a probiotic on promoting the digestive enzymes secretions, modulating intestinal microbial population, generated some vitamins, stimulating appetite and ingested the nutrient components that had not been digested. Also, the relevance of *Bacillus* sp. as a probiotic and its function in promoting fish growth, gut health, and immunity is well previously documented (Kuebutornye et al. 2019; Maas et al. 2021).

Superoxide dismutase (SOD) and catalase (CAT) activity are essential oxidative mediators that assist fish in dealing with the harmful effects of intracellular oxidative stress. Biologically, they could help to preserve the cell homeostasis through eliminating any abnormalities induced by free radical production (Naiel et al. 2022a). For instance, SOD catalyzes the superoxide radicles dismutation to alleviate their hazards (Islam et al. 2021), whereas CAT ameliorate fish cells from damage caused by the accumulation of free radicals (David et al. 2008). According to our CAT and SOD activities results, the inclusion of several probiotic strains in the fish raising water considerably prompting the fish's protection capability against oxidative damage. Similar results have been reported that when *Bacillus* spp. supplied as water additives (alone or mixture and live or heat-killed), the redox status was improved largely to some extent in some fish species (Taoka et al. 2006; Ye et al. 2011). Higher levels of both antioxidant enzymes might be attributed to *Bacillus* bacterial strains' ability to reduced algae growth, decreased organic load, increased nutrient concentration, increased beneficial bacterial population, inhibition of potential pathogens, and increased dissolved oxygen concentration (Verschuere et al. 2000; Hlordzi et al. 2020).

Specifically, probiotic-enriched fish rearing water was revealed to be linked to probiotic bacteria's ability to improve water quality (Mohammadi et al. 2021; Tabassum et al. 2021), which indirectly promotes oxidative status and immune response of cultured fish.

Owing to our research results, the inclusion of probiotics into fish rearing water significantly boosted nitric oxide (NO), and LYZ activities. The NO has an active protective role against virus infections, stimulating viral clearance and fast host recovery (Eddy 2005). Furthermore, LYZ is a key component of the innate immune defense mechanism, which might be activated to combat pathogenic bacterial infections (Li et al. 2021). Significant increases in the activity of both immunity indices in the present investigation demonstrated the immunostimulatory action of these probiotic strains in boosting the fish immune system and enhancing the fish's ability to eliminate infections. Also, improvement in LYZ activity indicated that supplied fish rearing water with probiotics may promote the fish's lytic activity against gram-positive and gram-negative disease-causing bacteria (Kord et al. 2022).

In the same context, El-Kady et al. (2022) demonstrated that applied commercial probiotics into fish rearing water significantly stimulate LYZ activity as well as phagocytic activities. In fact, it is well known that the cell wall of some *Bacillus* bacterial strains are covered by a thick layer of a murein (peptidoglycan) (Tocheva et al. 2013), that have the ability to...
produce LYZ (Höltje 1996). Thus, these findings may reflect the various features of the probiotics employed.

Conclusion

The current trial exhibits that fish reared in water supplied with two different probiotic Bacillus spp. strains (B. toyonensis and G. stearothermophilus) had higher growth performance and feed efficiency than the control group, as well as stimulate immunity and antioxidant status and enhanced water quality criteria. However, additional research into the possibility of adding probiotics into water to promote fish health is required.

Authors’ contributions All authors have an equal contribution to the conceptualization, implementation, and the outputs of this research work presented in this manuscript.

Funding Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB). All of the authors affirm that they did not receive any type of funding to carry out this experiment.

Data Availability All related data were available under reasonable request from the corresponding author.

Code availability Not applicable.

Declarations

Ethics approval The animal ethics guidelines were followed and approved from the Zagazig university animal ethics committee.

Consent to participate All the authors equally participated to prepare the manuscript in all stages.

Consent for publication All the authors approved to submit the final version of the manuscript to Applied Water Science Journal.

Conflict of interest The authors declare that they have no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abdel-Latif HM, El-Ashram S, Yilmaz S, Nuiel MA, Kari ZA, Hamid NKA, Dawood MA, Novosad J, Kucharczyk D (2022) The effectiveness of Arthrosira platensis and microalgae in relieving stressful conditions affecting finfish and shellfish species: an overview. Aquac Rep 24:101135

Adeshina I, Jenyo-Oni A, Emikpe B (2016) Use of eugenia caryophyllata oil as anaesthetic in farm raised African catfish Clarias gariepinus juveniles. Egypt J Exp Biol (zool) 12:71–76

Adorian TJ, Jamalí H, Farsani HG, Darvishi P, Hasanpour S, Bagheri T, Roozbehfar R (2019) Effects of probiotic bacteria Bacillus on growth performance, digestive enzyme activity, and hematological parameters of Asian sea bass, Lates calcarifer (Bloch). Probiotics Antimicrob Proteins 11:248–255

Aebi H (1984) [13] Catalase in vitro. Methods Enzymol 105:121–126

Ahmed N, Thompson S, Glaser M (2019) Global aquaculture productivity, environmental sustainability, and climate change adaptability. Environ Manage 63:159–172

Andani H, Tukmechi A, Meshkini S, Sheikhzadeh N (2012) Antagonistic activity of two potential probiotic bacteria from fish intestines and investigation of their effects on growth performance and immune response in rainbow trout (Oncorhynchus mykiss). J Appl Ichthyol 28:728–734

AOAC (2005) Official methods of Analysis of The Association of Official Analytical Chemist, Inc., Washington, USA, pp 587–601

Austin B, Stuckey L, Robertson P, Effendi I, Griffith D (1995) A probiotic strain of Vibrio alginolyticus effective in reducing diseases caused by Aeromonas salmonicida, Vibrio anguillarum and Vibrio ordali. J Fish Dis 18:93–96

Barman P, Bandyopadhyay P, Kati A, Paul T, Mandal AK, Mondal KC, Mohapatra PKD (2018) Characterization and strain improvement of aerobic denitrifying EPS producing bacterium Bacillus cereus PB88 for shrimp water quality management. Waste Biomass Valoriz 9:1319–1330

Bernard V, Nurhidayu A, Ina-Salwany M, Yasser A (2013) Bacillus cereus; JAQ04 strain as a potential probiotic for red tilapia; Oreochromis species. Asian J Anim Vet Adv 8:395–400

Boyd CE, Tucker CS (2012) Pond aquaculture water quality management. Springer Science & Business Media, Berlin

Boyd C (2011) Dissolved oxygen requirements in aquatic animal respiration

Cha J-H, Rahimnejad S, Yang S-Y, Kim K-W, Lee K-J (2013) Evaluation of Bacillus spp. as dietary additives on growth performance, innate immunity and disease resistance of olive flounder (Paralichthys olivaceus) against Streptococcus iniae and as water additives. Aquaculture 402:50–57

Chatterjee S, Bhattacharjee I, Chandra G (2010) Biosorption of heavy metals from industrial waste water by Geobacillus thermodenitrificans. J Hazard Mater 175:117–125

Datta S (2012) Management of water quality in intensive aquaculture. Respiration 6:602

David M, Munaswamy V, Halappa R, Marigoudar SR (2008) Impact of sodium cyanide on catalase activity in the freshwater exotic carp, Cyprinus carpio (Linnaeus). Pestic Biochem Physiol 92:15–18

Deng Y, Verdegem MC, Eding E, Kokou F (2022) Effect of rearing systems and dietary probiotic supplementation on the growth and gut microbiota of Nile tilapia (Oreochromis niloticus) larvae. Aquaculture 546:737297

Eddy F (2005) Role of nitric oxide in larval and juvenile fish. Comp Biochem Physiol a: Mol Integr Physiol 142:221–230

El-Kady AA, Magouz FI, Mahmoud SA, Abdel-Rahim MM (2022) The effects of some commercial probiotics as water additive on water quality, fish performance, blood biochemical parameters,
expression of growth and immune-related genes, and histology of Nile tilapia (*Oreochromis niloticus*). *Aquaculture* 546:737249

FAO (2021) State of world aquaculture 2020 and regional reviews: FAO webinar series. FAO Aquaculture Newsletter, pp 17–18

Garrity GM, Brenner DJ, Krieg N, Staley J, Manual B (2005) Systematic bacteriology. The proteobacteria, part C: the alpha-, beta-, delta-, and epsilonproteobacteria, Bergey’s Manual of Systematics and Molecular Biology. 2.

Ghanei-Motlagh R, Mohammadian T, Gharibi D, Khosravi M, Mahmoudi E, Zaree A, El-Matbouli M, Menanteau-Ledouble S (2021) Quorum quenching probiotics modulated digestive enzymes activity, growth performance, gut microbiota, haematochemical parameters and resistance against *Vibrio harveyi* in Asian seabass (*Lates calcarifer*). *Aquaculture* 531:735874

Hlordzi V, Kuebutornye FK, Afriyie G, Abareke ED, Lu Y, Chi S, Anokyeawea MA (2020) The use of *Bacillus* species in maintenance of water quality in aquaculture: a review. *Aquac. Rep* 18:100503

Höltje J (1996) Bacterial lysozymes. *EXS* 75:65–74

Hui C, Wei R, Jiang H, Zhao Y, Xu L (2019) Characterization of the ammonification, the relevant protease production and activity in a high-efficiency ammonifier *Bacillus amyloliquefaciens* DT. *Int Biodeterior Biodegrad* 142:11–17

Islam MN, Rauf A, Fahad FI, Mitra S, Olatunde A, Shariati (1996) Bacterial lysozymes. *EXS* 75:65–74

Höltje J (1996) Bacterial lysozymes. *EXS* 75:65–74

Hui C, Wei R, Jiang H, Zhao Y, Xu L (2019) Characterization of the ammonification, the relevant protease production and activity in a high-efficiency ammonifier *Bacillus amyloliquefaciens* DT. *Int Biodeterior Biodegrad* 142:11–17

Islam MN, Rauf A, Fahad FI, Mitra S, Olatunde A, Shariati MA, Rebezo M, Rengasamy KR, Mubarak MS (2021) Superoxide dismutase: an updated review on its health benefits and industrial applications. *Crit Rev Food Sci Nutr* 1–19

Jahangiri L, Esteban MA (2018) Administration of probiotics in the water in finish aquaculture systems: a review. *Fishes* 3:33

John EM, Krishnapriya K, Sankar T (2020) Treatment of ammonia and nitrite in aquaculture wastewater by an assembled bacterial consortium. *Aquaculture* 526:735390

Khademzade O, Zakeri M, Hagh M, Moussavi SM (2020) The effects of water additive *Bacillus cereus* and *Pediococcus acidilactici* on water quality, growth performances, economic benefits, immunohematology and bacterial flora of whiteleg shrimp (*Penaeus vannamei* Boone, 1931) reared in earthen ponds. *Aquac Res* 51:1759–1770

Kord MI, Stour TM, Omar EA, Farag AA, Nour AAM, Khalil HS (2021) The immunostimulatory effects of commercial feed additives on growth performance, non-specific immune response, antioxidants assay, and intestinal morphometry of Nile tilapia, *Oreochromis niloticus*. *Front Physiol* 11:627499

Kord MI, Mauls S, Stour TM, Omar EA, Farag AA, Nour AAM, Hasimina OJ, Abdel-Tawwab M, Khalil HS (2022) Impacts of water additives on water quality, production efficiency, intestinal morphology, gut microbiota, and immunological responses of Nile tilapia fingerlings under a zero-water-exchange system. *Aquaculture* 547:737503

Kuebutornye FK, Abarike ED, Lu Y (2019) A review on the application of *Bacillus* as probiotics in aquaculture. *Fish Shellfish Immunol* 87:820–828

Li D, Liang J, Xing X, Wu C, Zhou R (2019) Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitriﬁcation-denitriﬁcation bacterium, *Klebsiella* sp. TN-10. *Appl Biochem Biotechnol* 188:540–546

Li L, Cardoso JC, Felix RC, Mateus AP, Canário AV, Power DM (2019) Fish lysozyme gene family evolution and divergent function in early development. *Dev Comp Immunol* 114:103772

Liu T, He X, Jia G, Xu J, Quan X, You S (2020) Simultaneous nitrification and denitrification process using novel surface-modiﬁed suspended carriers for the treatment of real domestic wastewater. *Chemosphere* 247:125831

Maas RM, Verdegem MC, Debnath S, Marchal L, Schrama JW (2021) Effect of enzymes (phytase and xylanase), probiotics (*Bacillus amyloliquefaciens*) and their combination on growth performance and nutrient utilisation in Nile tilapia. *Aquaculture* 533:736226

Markowiak P, Śliżewska K (2018) The role of probiotics, prebiotics and synbiotics in animal nutrition. *Gut Pathogens* 10:1–20

Mohammadi G, Raﬁee G, Tavabe KR, Abelal-Latif HM, Dawood MA (2021) The enrichment of diet with beneﬁcial bacteria (single-or multi-strain) in biofloc system enhanced the water quality, growth performance, innate immune responses, and disease resistance of Nile tilapia (*Oreochromis niloticus*). *Aquaculture* 539:736640

Naiel MA, Farag MR, Gewida AG, Elnakeeb MA, Amer MS, Alagawany M (2021) Using lactic acid bacteria as an immunostimulants in cultured shrimp with special reference to *Lactobacillus* spp. *Aquac. Int* 29:219–231

Naiel MA, Abd El-hameed SA, Arisha AH, Negm SS (2022a) Gym Arabian-enriched diet modulates growth, antioxidant defenses, innate immune response, intestinal microbiota and immune related genes expression in tilapia fish. *Aquaculture* 556:738249

Naiel MA, Gewida AG, Merwad A-AM, Abelal-Hamid EA, Negm SS, Alagawany M, Farag MR (2022b) The effects of various organic fertilizers with or without adsorbents on the productivity, antioxidant status and immune responses of Nile tilapia raised in cement ponds. *Aquaculture* 548:737593

Naei MA, Shehata AM, El-kholy AI, El-Naggar K, Farag MR, Alagawany M (2022c) The mitigating role of probiotics against the adverse effects of suboptimal temperature in farmed fish: a review. *Aquaculture* 550:737877

Negm SS, Ismael AE, Ahmed AI, Aseyl AME, Naiel MA (2021) The efficiency of dietary *Sargassum aquifolium* on the performance, innate immune responses, antioxidant activity, and intestinal microbiota of Nile Tilapia (*Oreochromis niloticus*) raised at high stocking density. *J Appl Physiol* 33:4067–4082

Nikoskelainen S, Ouewehand A, Salminen S, Bylund G (2001) Protection of rainbow trout (*Oncorhynchus mykiss*) from furunculosis by *Lactobacillus rhamnosus*. *Aquaculture* 198:229–236

Nishikimi M, Rao NA, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. *Biochem Biophys Res Commun* 46:849–854

Pepi M, Focardi S (2021) Antibiotic-resistant bacteria in aquaculture and climate change: a challenge for health in the Mediterranean area. *Int J Environ Res Public Health* 18:5723

Rajaraman V, Nonnecke BJ, Franklin ST, Hammell DC, Horst RL (1998) Effect of vitamins A and E on nitric oxide production by blood mononuclear leukocytes from neonatal calves fed milk replacer 1, 2, 3. *J Dairy Sci* 81:3278–3285

Raza SHA, Abdelnour SA, Alotaibi MA, AlGabbani Q, Naiel MA, Shokrollahi B, Noreldin AE, Jhejo AR, Shah MA, Alagawany M (2022) MicroRNAs mediated environmental stress responses and toxicity signs in teleost fish species. *Aquaculture* 546:737310

Razali NM, Wah YB (2011) Power comparisons of Shapiro–Wilk, Kolmogorov–Smirnov, Lilliefors and Anderson–Darling tests. *J Stat Model Anal* 2:21–33

Reda RM, Selim KM (2015) Evaluation of *Bacillus amyloliquefaciens* on the growth performance, intestinal morphology, hematology and body composition of Nile tilapia, *Oreochromis niloticus*. *Aquac. Int* 23:203–217

Rout PR, Bhunia P, Dash RR (2017) Simultaneous removal of nitrogen and phosphorous from domestic wastewater using *Bacillus cereus* GS-5 strain exhibiting heterotrophic nitrification, aerobic denitrification and denitrifying phosphorous removal. *Bioresour Technol* 244:484–495

Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

Schäpers Claus W (1992) Fish diseases. *CRC Press, Boca Raton*
Shafique L, Abdel-Latif HM, Hassan F-u, Alagawany M, Naiel MA, Dawood MA, Yilmaz S, Liu Q (2021) The feasibility of using yellow mealworms (*Tenebrio molitor*): towards a sustainable aquafeed industry. Animals 11:811

Siwicki A, Studnicka M, Ryka B (1985) Phagocytic ability of neutrophils in carp (*Cyprinus carpio* L). Bamidgeh 37:123–128

Sun Y-Z, Yang H-L, Ma R-L, Lin W-Y (2010) Probiotic applications of two dominant gut *Bacillus* strains with antagonistic activity improved the growth performance and immune responses of grouper *Epinephelus coioides*. Fish Shellfish Immunol 29:803–809

Sunitha K, Padmavathi P (2013) Influence of probiotics on water quality and fish yield in fish ponds. Int J Pure Appl Sci Technol 19:48

Sutthi N, Thaimuangphol W, Rodmongkoldee M, Leelapatra W, Panase P (2018) Growth performances, survival rate, and biochemical parameters of Nile tilapia (*Oreochromis niloticus*) reared in water treated with probiotic. Comp Clin Pathol 27:597–603

Taoka Y, Maeda H, Jo J-Y, Jeon M-J, Bai SC, Lee W-J, Yuge K, Koshio S (2006) Growth, stress tolerance and non-specific immune response of Japanese flounder *Paralichthys olivaceus* to probiotics in a closed recirculating system. Fish Sci 72:310–321

Tocheva EI, López-Garrido J, Hughes HV, Fredlund J, Kuru E, Van-Nieuwenhze MS, Brun YV, Pogliano K, Jensen GJ (2013) Peptidoglycan transformations during *Bacillus subtilis* sporulation. Mol Microbiol 88:673–686

USEPA (2013) Aquatic life ambient water quality criteria for ammonia–freshwater. EPA-822-R-13-001. United States Environmental Protection Agency, Office of Water, Office of…

Van Doan H, Wangkahart E, Thaimuangphol W, Panase P, Sutthi N (2021) Effects of Bacillus spp. mixture on growth, immune responses, expression of immune-related genes, and resistance of Nile Tilapia against *Streptococcus agalactiae* infection. Probiotics Antimicrob Proteins, 1–16

Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64:655–671

Wu Z, Feng X, Xie L, Peng X, Yuan J, Chen X (2012) Effect of probiotic *Bacillus subtilis* Ch9 for grass carp, *Ctenopharyngodon idella* (Valenciennes, 1844), on growth performance, digestive enzyme activities and intestinal microflora. J Appl Ichthyol 28:721–727

Ye JD, Wang K, Li FD, Sun YZ (2011) Single or combined effects of fructo- and mannan oligosaccharide supplements and *Bacillus clausii* on the growth, feed utilization, body composition, digestive enzyme activity, innate immune response and lipid metabolism of the Japanese flounder *Paralichthys olivaceus*. Aquac Nutr 17:e902–e911

Yilmaz S, Yilmaz E, Dawood MA, Rings E, Ahmadifar E, Abdel-Latif HM (2022) Probiotics, prebiotics, and symbiotics used to control *vibriosis* in fish: a review. Aquaculture 547:737514

Yousuf J, Thajudeen J, Rahman M, Krishnankutty S, Alikanj AP, Abdulla MHA (2017) Nitrogen fixing potential of various heterotrophic *Bacillus* strains from a tropical estuary and adjacent coastal regions. J Basic Microbiol 57:922–932

Zaineldin AI, Hegazi S, Koshio S, Ishikawa M, Bakr A, El-Keredy AM, Dawood MA, Dossou S, Wang W, Yukan Z (2018) *Bacillus subtilis* as probiotic candidate for red sea bream: growth performance, oxidative status, and immune response traits. Fish Shellfish Immunol 79:303–312

Zhou X, Tian Z, Wang Y, Li W (2010) Effect of treatment with probiotics as water additives on tilapia (*Oreochromis niloticus*) growth performance and immune response. Fish Physiol Biochem 36:501–509

Zink IC, Benetti DD, Douillet PA, Margulies D, Sholley VP (2011) Improvement of water chemistry with *Bacillus* probiotics inclusion during simulated transport of yellowfin tuna yolk sac larvae. N Am J Aquac 73:42–48

Zokaeifar H, Babaei N, Saad CR, Kamarudin MS, Sijam K, Balcazar JL (2014) Administration of *Bacillus subtilis* strains in the rearing water enhances the water quality, growth performance, immune response, and resistance against *Vibrio harveyi* infection in juvenile white shrimp, *Litopenaeus Vannamei*. Fish Shellfish Immunol 36:68–74

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.