A peer-reviewed version of this preprint was published in PeerJ on 9 June 2020.

View the peer-reviewed version (peerj.com/articles/9235), which is the preferred citable publication unless you specifically need to cite this preprint.

Coil DA, Neches RY, Lang JM, Jospin G, Brown WE, Cavalier D, Hampton-Marcell J, Gilbert JA, Eisen JA. 2020. Bacterial communities associated with cell phones and shoes. PeerJ 8:e9235 https://doi.org/10.7717/peerj.9235
Bacterial communities associated with cell phones and shoes

David A Coil Corresp., 1, Russell Y Neches 1, Jenna M Lang 1, Guillaume Jospin 1, Wendy E Brown 2,3, Darlene Cavalier 3,4, Jarrad Hampton-Marcell 5, Jack A Gilbert 6, Jonathan A Eisen Corresp. 7

1 Genome Center, UC Davis, Davis, California, United States
2 Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States
3 Science Cheerleaders, Inc, United States
4 SciStarter.org, United States
5 Argonne National Laboratory, University of Chicago, Lemont, Illinois, United States
6 Department of Surgery, University of Chicago, Chicago, Illinois, United States
7 Genome Center, Department of Evolution and Ecology, Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California, United States

Corresponding Authors: David A Coil, Jonathan A Eisen
Email address: dcoil@ucdavis.edu, jaeisen@ucdavis.edu

Background: Every human being carries with them a collection of microbes, a collection that is likely both unique to that person, but also dynamic as a result of significant flux with the surrounding environment. The interaction of the human microbiome (i.e., the microbes that are found directly in contact with a person in places such as the gut, mouth, and skin) and the microbiome of accessory objects (e.g., shoes, clothing, phones, jewelry) is of potential interest to both epidemiology and the developing field of microbial forensics. Therefore, the microbiome of personal accessories are of interest because they serve as both a microbial source and sink for an individual, they may provide information about the microbial exposure experienced by an individual, and they can be sampled non-invasively.

Findings: We report here a large-scale study of the microbiota found on cell phones and shoes. Cell phones serve as a potential source and sink for skin and oral microbiota, while shoes can act as sampling devices for the microbial environmental experience. Using 16S rRNA gene sequencing, we characterized the microbiota of thousands of paired sets of cell phones and shoes from individuals at sporting events, museums, and other venues around the United States.

Conclusions: We place this data in the context of previous studies and demonstrate that the microbiota of phones and shoes are different. This difference is driven largely by the presence of “environmental” taxa (taxa from groups that tend to be found in places like soil) on shoes and human-associated taxa (taxa from groups that are abundant in the human microbiome) on phones. This large dataset also contains many novel taxa, highlighting the fact that much of microbial diversity remains uncharacterized, even on commonplace objects.
Corresponding Authors:

David A Coil
451 Health Sciences Drive, Davis, CA, 95618, USA
Email address: coil.david@gmail.com

Jonathan A Eisen
451 Health Sciences Drive, Davis, CA, 95618, USA
Email address: jaeisen@ucdavis.edu

Running title: Cell phone and shoe bacteria
Abstract

Background: Every human being carries with them a collection of microbes, a collection that is likely both unique to that person, but also dynamic as a result of significant flux with the surrounding environment. The interaction of the human microbiome (i.e., the microbes that are found directly in contact with a person in places such as the gut, mouth, and skin) and the microbiome of accessory objects (e.g., shoes, clothing, phones, jewelry) is of potential interest to both epidemiology and the developing field of microbial forensics. Therefore, the microbiome of personal accessories are of interest because they serve as both a microbial source and sink for an individual, they may provide information about the microbial exposure experienced by an individual, and they can be sampled non-invasively.

Findings: We report here a large-scale study of the microbiota found on cell phones and shoes. Cell phones serve as a potential source and sink for skin and oral microbiota, while shoes can act as sampling devices for microbial environmental experience. Using 16S rRNA gene sequencing, we characterized the microbiota of thousands of paired sets of cell phones and shoes from individuals at sporting events, museums, and other venues around the United States.

Conclusions: We place this data in the context of previous studies and demonstrate that the microbiota of phones and shoes are different. This difference is driven largely by the presence of "environmental" taxa (taxa from groups that tend to be found in places like soil) on shoes and human-associated taxa (taxa from groups that are abundant in the human microbiome) on phones. This large dataset also contains many novel taxa, highlighting the fact that much of microbial diversity remains uncharacterized, even on commonplace objects.

Keywords

16S rRNA gene, cell phones, shoes, citizen science, biogeography, human microbiome, Illumina, taxonomy, microbial dark matter, ASV
Introduction

Recent years have dramatically expanded our understanding of the human microbiome (e.g. (McDonald et al., 2018)), the microbiome of the built environment around us (e.g. (National Academies of Sciences, Engineering, and Medicine et al., 2017)), and the interactions between the two (e.g. (Leung & Lee, 2016)). This understanding has implications for fields ranging from medicine to forensics to architecture. In addition to the millions of microbes that we carry around each day, the majority of people on the planet now possess a cell phone. Previous work on the microbiome associated with phones has shown that people share a much greater percentage of their microbes with their own phone than with the phones of others (Meadow, Altrichter & Green, 2014). As for the environment around us, shoes (or other foot coverings) act in some ways as microbial sampling devices. We have previously described data suggesting this to be the case, as well as demonstrated that the microbiome of cell phones and shoes from the same person are quite distinct (Lax et al., 2015).

Throughout 2013-2014, we organized public events around the United States for the purpose of swabbing surfaces of the built environment and collecting bacteria for isolation via culturing. Cultured isolates from these samples were screened and a subset of them were sent to the International Space Station (ISS) for growth in microgravity (Coil et al., 2016). As part of the public outreach component of this project, we engaged the public in helping collect these swabs, as well as in swabbing their cell phones and shoes for a nationwide microbial biogeography study. Thousands of people participated in this project, and we initially collected ~3500 paired cell phone/shoe samples. The intent of examining bacteria on cell phones and shoes was twofold; firstly to scale up the results of previous studies on shoes and phones and to look for patterns in the biogeography at a national scale. The second was to engage people in thinking about cell phones as being a proxy for sampling the microbes found on a person and their shoes as being a proxy for sampling the microbes found in a person’s environment. However, given the logistical constraints, disparate sampling sites/personnel, and Institutional Review Board (IRB) waiver limitations, we were very constrained in what metadata we could collect. In the end, the only information retained for each sample was the physical location (GPS coordinates), rough age of participants, sample object type (cell phone or shoe), and event (basketball game, museum visit,
etc.). Swabs from these samples were sent back to the laboratory, DNA was extracted from them, and the DNA was used for 16s rRNA gene PCR amplification and sequencing. To our knowledge, this represents the largest collection of bacterial community sequencing data associated with cell phones or shoes.

Materials and Methods

Sample collection

Cell phone and shoe samples were collected on sterile cotton swabs (Puritan cotton tipped #25-806) and participants were instructed to “swab for about 15 seconds as if trying to clean the object”. Swabs were kept at room temperature by necessity and then sent overnight to the University of Chicago, where they were kept at -80 °C until processing. DNA extractions, library preparation, and Illumina sequencing (paired-end 150 bp) were performed exactly as described in our previous work using swabs from the ISS (Lang et al., 2017). In brief: samples were prepared using Mo BIO UltraClean kits, DNA extracted using Zymo ZR-96 kits, DNA amplified using EMP barcoded primer sets targeting the V4 region of the 16S rRNA gene, amplicons were cleaned and pooled and sequenced on an Illumina MiSeq platform.

Data processing/validation

Data from our study reported here was combined with comparable data from a few other microbiome studies: a study of swabs of the International Space Station, (Lang et al., 2017), a study examining the microbiomes of both cell phones and their owners (Meadow, Altrichter & Green, 2014), and a study we conducted of the microbiome of cell phones and shoes (Lax et al., 2015).

All datasets were prepared by following the DADA2 protocols (regular or big data, depending on the size of the dataset) (Callahan et al., 2016a). All four data sets were pre-processed separately, and each lane of our large dataset was also pre-processed individually to account for error patterns from different runs or machines. Reads longer than 150 base pairs (bp) were trimmed
down to 150 bp before processing with DADA2. Low quality regions of reads were removed by trimming bases that did not satisfy a Q2 quality score. The reads were also trimmed down to a length of 145 bp. Reads containing Ns were discarded and we used two expected errors to filter the overall quality of the read (rather than averaging quality scores) (Edgar & Flyvbjerg, 2015). Only forward reads were considered for this study in order to have uniform data sets (since some of the data sets only had forward reads). Error models were calculated using one million reads for the three published data sets. Our samples were additionally separated into sequencing lanes. Each lane was dereplicated individually according to the DADA2 “BigData” protocol to generate amplicon sequence variants (ASVs). The ISS samples were pre-processed using the standard workflow using all the reads available and dereplicating all the samples at the same time. All seven sequence tables were merged to generate a single biom-like table for statistical analyses. ASVs were assigned taxonomy using the dada2 function “assignTaxonomy” and the Silva (NR v132) database (Quast et al., 2013; Yilmaz et al., 2014; Glöckner et al., 2017). ASVs that were taxonomically assigned to mitochondria or chloroplast were removed. We excluded the ASVs not represented in 5% of our samples or those with “unidentified” Phyla assignments. Very closely related ASVs were merged using both a phylogenetic tree based approach and the taxonomic labels comparisons (tip_glom and tax_glom functions from phyloseq). Samples were excluded if they did not contain at least one ASV after the filtering. Finally, the resulting ASV table was selected for only those ASVs assigned to the bacterial kingdom using the subset_taxa function.

Alignment of the observed sequences was performed using Clustal Omega (Goujon et al., 2010; Sievers et al., 2011), and an approximate maximum likelihood phylogeny was constructed using FastTree2 (Price, Dehal & Arkin, 2009, 2010). Metadata was loaded from the mapping files for each of the four studies as tab-delimited tables, and relevant columns were extracted using Pandas (McKinney & Others, 2010) (retained values were: Age, City, Date, Event, Gender, Hand, Module, Run, Sample, Sport, State, Study, Surface, Time, Touches, Type, Wash). OTU filtering, taxonomic agglomeration, and ordination was performed using phyloseq (McMurdie & Holmes, 2013) using Callahan et al. as a guide (Callahan et al., 2016b). Variable importance measures were estimated by training a random forest classifier (Breiman, 2001; Geurts, Ernst & Wehenkel, 2006; Pedregosa et al., 2011) on the ASV counts and extracting the attribute
importance values from the trained classifiers (Janitza, Strobl & Boulesteix, 2013). The PCoA
ordination of the ASV data was generated using the ordinate and plot_ordination functions from
Phyloseq. We exported the ordination coordinates and averaged values for cell phones and shoes
separately to find the centroid of the two data spreads. We plotted a line bisecting
perpendicularly the segment between the two centroids to highlight the separation between the
two groups. We used ggplot2 to overlay this line on the sample and taxa (at the phylum level)
versions of the PCoA (Wickham, 2010). We ran an ANalysis Of SIMilarity (ANOSIM) test
available through the vegan R package to assess the similarities between the phone and shoe
samples using Bray-Curtis distances and 999 permutations (Oksanen et al., 2011).

Results/Discussion

In total, ~3500 swabs were collected for this study at 38 events (see Table 1 for details). Of
these, some samples were lost in transit and a further 864 samples were excluded from
sequencing due to an irretrievable loss of the sample ID data. Sequencing was done on 2,486
samples with 599,386,254 paired end reads generated across four lanes of Illumina HiSeq
PE150.

Following the DADA2 protocol, we combined the data from our 2,486 samples with data from
three other microbiome studies (439 samples and 57,864,099 reads) and then carried out quality
filtering on the combined data set which resulted in 2,673 samples moving forward for further
analysis. For subsequent analysis on this combined data set, we only used the forward reads
because some of the comparison studies only reported forward reads. These reads were then used
to identify amplicon sequence variants (ASVs). 227,629 unique ASVs were identified and
taxonomic assignments were made for these ASVs using the Silva NR v132 database. Using
Phyloseq, those ASVs that were assigned to mitochondria or chloroplasts (in total 72,400 or 32%
of the ASVs) were excluded from further analysis, resulting in 155,229 remaining ASVs. ASVs
present in too few samples (less than 5%) were removed, keeping 1,928 ASVs. We grouped
closely-related taxa separated by a cophenetic distance smaller than 0.4, further reducing to 291
ASVs. ASVs that were taxonomically assigned to anything that was not bacteria were also
excluded (289 ASVs remaining).
The ASV based filtration reduced the total number of samples to 2,630 (since some samples did not contain any of these final ASVs). In total, these 289 unique ASVs included 64,067,941 of the initial reads. For some analyses, we further reduced this final data set by including only samples from this study. This resulted in 40,432,677 reads representing 223 unique ASVs from 2,185 samples.

In order to examine and visualize differences between samples, we plotted a PCoA ordination of samples based on sample to sample Bray-Curtis distances of the microbial communities in those samples (FIGURE 1). A quick examination of the plot revealed that cell phones (green) and shoes (black) appear to group separately (something seen in prior studies); this is supported by ANOSIM statistical analysis which showed a significance of 0.001 for this separation of shoes and phones. Visual examination suggests that floor samples (light blue) group with shoes (as expected), while spacecraft (yellow) group with phones, presumably because both of these communities have major contributions from human associated taxa. However, we did not test the significance of these groupings.

As an alternative method for examining the potential importance of the metadata variables (sample type, sport, location, and sequencing run) we utilized variable importance measures (VIMs). These VIMs were estimated by training a random forest classifier (Breiman, 2001; Geurts, Ernst & Wehenkel, 2006; Pedregosa et al., 2011) to assign samples to their metadata categories (sample type, city, state, sequencing run and sport) based on their ASV counts, and extracting the variable importance values from the trained classifiers (Janitza, Strobl & Boulesteix, 2013). Note that variable importance analysis is a distinct application of random forests from the more widely-used classification application. Extracting VIMs not does not include the optimization and benchmarking steps required to use random forests in their predictive capacity. Sample feature importances indicate that the sample type (shoe or phone) was the most predictive of the observed community structure, followed by the geographic location of the sample (Supplemental Figure 1). The sport played at the venue where the sample was collected is less predictive of the community structure than the sequencing run. Overall, these results support and extend our previous findings that the microbiomes of shoes and phones...
are distinct. Interestingly, the city where an event took place was more predictive of community
structure than state, suggesting the possibility that there are local biogeography effects in
patterning the microbial community. Further analysis of this large dataset may reveal more
detailed patterns, such as the influence of geographic location on microbial communities

To further examine the differences between cell phones and shoes we identified the centroids of
the two data spreads, after first removing all the data from previous studies (FIGURE 2). The
line in this figure represents the bisection of these two centroids, to highlight their separation.
We then used this bisection line to examine in more detail the taxa that contribute to the
separation of shoe and phone samples.

We did this by generating a series of plots showing only the ASVs belonging to each phylum
separately (FIGURE 3). The line in each plot is the same as in the sample plot in Figure 2 and
those ASVs to the top/left can be considered to be driving the “shoe” portion of the PCoA and
the ASVs to the bottom/right can be considered to drive the “phone” portion of the PCoA. These
plots (and the underlying data) show some interesting phyla-specific patterns. Some phyla (e.g.,
Bacteroides and Firmicutes) have many ASVs on both sides of the line, indicating that there are
ASVs from these phyla that are biased towards shoes and others that are biased towards phones.

Two phyla (Tenericutes and Fusobacteria) contain only ASVs that are skewed towards phones.
We believe this is likely due to these ASVs being human associated taxa. For example, the
taxonomic assignments of the Fusobacteria ASVs were *Leptotrichia* (n=2) and *Fusobacterium*
(n=1); these two genera are generally found in animal microbiomes including the oral
microbiome of humans and other mammals. The two Tenericutes ASVs were both taxonomically
assigned to the *Mycoplasma* genus; many members of this genus are animal associated.

In contrast, there are many phyla (Acidobacteria, Cyanobacteria, Deinococcus-Thermus,
Planctomycetes, Fibrobacteres, Nitrospirae, Chloroflexi, Armatimonadetes, and
Gemmatimonadetes) which include only ASVs that are skewed towards shoes. We presume that
these ASVs from these phyla represent taxa from the broader environment (e.g., soil) that would
be picked up by shoes. Examination of the taxonomic assignments for these ASVs supports this possibility, with genera assignments including taxa commonly found in water or soil such as *Chroococcidiopsis, Oscillatoria, Chroococcidiopsis, Truepera, Deinococcus, Longimicrobium, Gemmatirosa, Gemmatimonas, Nitrospira,* and *Planctomyces.*

Novel evolutionary lineages

One of the reasons we chose to sample cell phones and shoes is that they are such commonplace objects used by so many people all around the world. The fact that they are so commonplace makes them useful in the context of crowdsourcing and participatory microbiology projects: many people have both of them, one can use them as a way to get people to think about microbes hidden in the world around them, and they have potential for various forensic types of analyses.

In relation to this, we examined how many (if any) of these microbes present in such everyday objects were from any of the so-called “microbial dark matter” branches in the tree of life. The term “microbial dark matter” or MDM for short is used in this context to refer to major evolutionary lineages for which few or no representatives have ever been grown in the lab or studied in detail (Rinke et al., 2013). To examine the MDM in these samples, we examined the taxonomic annotation of ASVs and identified those that were assigned to phyla or candidate phyla that are generally viewed as MDM lineages. The phyla we focused on were: *Aegiribacteria, AncK6, Armatimonadetes, Atribacteria, BRC1, Caldiserica, Calditrichaeota,* *Chrysiogenetes, Cloacimonetes, Coprothermobacteraeota, Dadabacteria, Dependentiae,* *Diapherotrites, Edwardsbacteria, Elusimicrobia, Entotheonellaeota, Fervidibacteria, FCPU426, GAL15, Hydrogenedentes, Latescibacteria, Margulisbacteria, Nanoarchaeaeota, Nitrospinae, Omnitrophiceota, Patescibacteria, PAUC34f, Rokubacteria, Rsahf231, WOR-1, WPS-2, WS1, WS2, WS4,* and *Zixibacteria.* We also then examined the distribution patterns of these ASVs across samples and the whether they showed any skew between phones and shoes (Supplemental Table 1).

This analysis of ASVs assigned to MDM lineages revealed that in fact quite a large number of ASVs found in our study were from such MDM groups. In some cases, these ASVs assigned to these groups are quite rare - for example ASVs from WOR-1, Edwardsbacteria and
Diapherotrites was found to be present in one sample each. However, some were present in a much wider range of samples, and we focused most of our attention on those. Of the nine MDM phyla for which ASVs were found to be present in at least 10% of samples (Armatimonadetes, Patescibacteriam, WPS-2, Entotheonellaeota, Dependenciae, BRC1, Rokubacteria, Latescibacteria, Elusimicrobia), all were found more often in shoe samples than phone samples. This is not surprising given that (1) phone samples tend to be enriched for human associated microbes, only a few of which are in current MDM groups and (2) many MDM lineages are known to be found in soil, which is presumably abundant on shoes. Two of these widespread MDM phyla (Armatimonadetes, Patescibacteriam) were found to have ASVs present in almost 50% of samples. Twelve classes and thirteen orders were found to be present in more than 10% of samples. Of these, all were skewed towards shoe samples except two taxa (Gracilibacteria within Patescibacteria, and Absconditabacteriales within Gracilibacteria).

Overall these results show that though MDM is frequently portrayed as mostly coming from remote, isolated, or extreme environments, a remarkable fraction of people are traveling around with representatives from these groups on commonplace objects.

Conclusion.

These data support previous work by ourselves and others demonstrating that the microbiome of cell phones and shoes are distinct, even when belonging to the same person. In this analysis, we also highlight which phyla are most responsible for the observed differences in microbial communities between phones and shoes. This difference is driven largely by the presence of “environmental” taxa (taxa from groups that tend to be found in places like soil) on shoes and human-associated taxa (taxa from groups that are abundant in the human microbiome) on phones. Lastly, we show that a number of “microbial dark matter” taxa are present, even abundant, on these commonplace objects.
Availability of Supporting Data

All raw sequencing data has been deposited at NCBI under BioProject PRJNA470730 (https://www.ncbi.nlm.nih.gov/sra/SRP145522). All data analysis, supporting files and intermediate analysis files are available at Zenodo: (https://zenodo.org/record/1419350#.W6Uy5PIRdEY). An interactive visualization of this data is available at www.phinch.org.

Acknowledgements

The authors would like to thank the many Science Cheerleaders who ran the sampling events. In particular, we’d like to thank Bart Leahy who coordinated the coordinators. We would also like to thank SciStarter and Science Cheerleaders, Inc. for being partners in this work. And finally, we would like to thank the thousands of people who gave willingly their time and their samples as part of participating in this study.
Breiman L. 2001. Random Forests. *Machine learning* 45:5–32.

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016a. DADA2: High-resolution sample inference from Illumina amplicon data. *Nature methods* 13:581–583.

Callahan BJ, Sankaran K, Fukuyama JA, McMurdie PJ, Holmes SP. 2016b. Bioconductor Workflow for Microbiome Data Analysis: from raw reads to community analyses. *F1000Research* 5:1492.

Coil DA, Neches RY, Lang JM, Brown WE, Severance M, Cavalier D, Eisen JA. 2016. Growth of 48 built environment bacterial isolates on board the International Space Station (ISS). *PeerJ* 4:e1842.

Edgar RC, Flyvbjerg H. 2015. Error filtering, pair assembly and error correction for next-generation sequencing reads. *Bioinformatics* 31:3476–3482.

Geurts P, Ernst D, Wehenkel L. 2006. Extremely randomized trees. *Machine learning* 63:3–42.

Glöckner FO, Yilmaz P, Quast C, Gerken J, Beccati A, Ciuprina A, Bruns G, Yarza P, Peplies J, Westram R, Ludwig W. 2017. 25 years of serving the community with ribosomal RNA gene reference databases and tools. *Journal of biotechnology* 261:169–176.

Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R. 2010. A new bioinformatics analysis tools framework at EMBL–EBI. *Nucleic acids research* 38:W695–W699.

Janitza S, Strobl C, Boulesteix A-L. 2013. An AUC-based permutation variable importance measure for random forests. *BMC bioinformatics* 14:119.
Lang JM, Coil DA, Neches RY, Brown WE, Cavalier D, Severance M, Hampton-Marcell JT, Gilbert JA, Eisen JA. 2017. A microbial survey of the International Space Station (ISS). *PeerJ* 5:e4029.

Lax S, Hampton-Marcell JT, Gibbons SM, Colares GB, Smith D, Eisen JA, Gilbert JA. 2015. Forensic analysis of the microbiome of phones and shoes. *Microbiome* 3:21.

Leung MHY, Lee PKH. 2016. The roles of the outdoors and occupants in contributing to a potential pan-microbiome of the built environment: a review. *Microbiome* 4:21.

McDonald D, Hyde E, Debelius JW, Morton JT, Gonzalez A, Ackermann G, Aksenov AA, Behsaz B, Brennan C, Chen Y, DeRight Goldasich L, Dorrestein PC, Dunn RR, Fahimipour AK, Gaffney J, Gilbert JA, Gogul G, Green JL, Hugenholtz P, Humphrey G, Huttenhower C, Jackson MA, Janssen S, Jeste DV, Jiang L, Kelley ST, Knights D, Kosciolek T, Ladau J, Leach J, Marotz C, Meleshko D, Melnik AV, Metcalf JL, Mohimani H, Montassier E, Navas-Molina J, Nguyen TT, Peddada S, Pevzner P, Pollard KS, Rahnavard G, Robbins-Pianka A, Sangwan N, Shorenstein J, Smarr L, Song SJ, Spector T, Swafford AD, Thackray VG, Thompson LR, Tripathi A, Vázquez-Baeza Y, Vrbanac A, Wischmeyer P, Wolfe E, Zhu Q, American Gut Consortium, Knight R. 2018. American Gut: an Open Platform for Citizen Science Microbiome Research. *mSystems* 3. DOI: 10.1128/mSystems.00031-18.

McKinney W, Others. 2010. Data structures for statistical computing in python. In: *Proceedings of the 9th Python in Science Conference*. Austin, TX, 51–56.

McMurdie PJ, Holmes S. 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. *PloS one* 8:e61217.

Meadow JF, Altrichter AE, Green JL. 2014. Mobile phones carry the personal microbiome of their owners. *PeerJ* 2:e447.
National Academies of Sciences, Engineering, and Medicine, National Academy of Engineering, Division on Engineering and Physical Sciences, Health and Medicine Division, Division on Earth and Life Studies, Board on Infrastructure and the Constructed Environment, Board on Environmental Studies and Toxicology, Board on Life Sciences, Committee on Microbiomes of the Built Environment: From Research to Application. 2017. *Microbiomes of the Built Environment: A Research Agenda for Indoor Microbiology, Human Health, and Buildings*. National Academies Press.

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H. 2011. vegan: Community ecology package. *R package version*: 117–118.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay É. 2011. Scikit-learn: Machine Learning in Python. *Journal of machine learning research: JMLR* 12:2825–2830.

Price MN, Dehal PS, Arkin AP. 2009. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. *Molecular biology and evolution* 26:1641–1650.

Price MN, Dehal PS, Arkin AP. 2010. FastTree 2--approximately maximum-likelihood trees for large alignments. *PloS one* 5:e9490.

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. *Nucleic acids research* 41:D590–6.

Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F, Darling A, Malfatti S, Swan BK, Gies EA, Dodsworth JA, Hedlund BP, Tsiamis G, Sievert SM, Liu W-T, Eisen
JA, Hallam SJ, Kyrpides NC, Stepanauskas R, Rubin EM, Hugenholtz P, Woyke T. 2013. Insights into the phylogeny and coding potential of microbial dark matter. *Nature* 499:431–437.

Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Molecular systems biology* 7:539.

Wickham H. 2010. *ggplot2: Elegant Graphics for Data Analysis*. Springer New York.

Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J, Ludwig W, Glöckner FO. 2014. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. *Nucleic acids research* 42:D643–8.
Table 1: Sample Collection Information. “Age” is a rough approximation based on attendees of the event (A=Adult, K=Kid, M=Mixed). “n=” refers to the number of samples that were actually sequenced. “Event title or location” is how the samples are referenced in the data files.
Age	City	State	n=	Date	Event title or Location	Description
A	Palmdale	CA	19	7/19/2013	TeachersInSpace	Teachers in Space summer workshop at Aero Institute
K	San Diego	CA	14	8/24/2013	PWCoronado	Pop Warner Cheer Organization: Coronado Islanders
K	Monrovia	CA	31	9/24/2013	Wildrose	Wildrose Elementary School
K	Castro Valley	CA	12	9/29/2013	PWGladiators	Pop Warner Cheer Organization: Castro Valley Gladiators
M	San Francisco	CA	147	11/2/2013	BASF	Bay Area Science Festival
A	Denver	CO	33	5/8/2013	DMNS	Denver Museum of Nature and Science
K	Fountain	CO	37	10/10/2013	ColeMiddle	Cole Middle School
A	Washington	DC	13	4/12/2013	YNDC	Yuri’s Night party at Science Club in Washington D.C.
M	Washington	DC	50	9/14/2013	SmithsonianAirSpace	Women in Space Day/Smithsonian Museum of Air and Space
M	Washington	DC	280	4/25/2014	SciEngFest	USA Science and Engineering Festival
A	Fort Lauderdale	FL	16	8/14/2013	Broward	STEM Teacher Event
K	Orlando	FL	40	9/7/2013	PWBrantley	Pop Warner Cheer Organization: Lake Brantley Patriots
A	Miami	FL	28	9/25/2013	MiamiDolphins	Miami Dolphins NFL football game
K	Atlanta	GA	33	4/27/2013	Girl Scouts	Girl Scouts at Atlanta Science Festival
K	Potlatch	ID	25	10/10/2013	Potlatch	Potlatch Junior High School
A	Longmeadow	MA	10	9/26/2013	Tufts	Tufts University Pediatric Infectious Diseases Hospital
M	Baltimore	MA	24	5/4/2014	KidneyFoundation	Kidney Foundation Walk at the Baltimore Zoo
A	Columbia	MD	69	6/9/2013	HowardCCC	Howard County Community Challenge
A	Landover	MD	6	10/29/2013	Redskins	Washington D.C. NFL football game
A	Durham	NC	36	4/12/2013	YNNC	Yuri’s Night party at Museum of Life and Science in Durham, NC
A	Durham	NC	246	2/17/2014	ScienceOnline	Science Online scientific conference - NC State University
A	New York	NY	40	4/16/2013	YNNY	Yuri’s Night party at National Arts Club in New York, NY
K	Chittenango	NY	35	9/4/2013	PWBears	Pop Warner Cheer Organization: Chittenango Bears
A	Tulsa	OK	78	9/11/2013	TulsaCCBio	Tulsa Community College Bio Class
K	Salem	OR	20	10/4/2013	Project	
----	-----------	------	-------	-----------	---	
M	Philadelphia	PA	5	4/20/2013	PhillyScienceFest	
M	Philadelphia	PA	72	4/25/2013	PhillipsGame	
A	Philadelphia	PA	10	5/23/2013	CHF	
A	Philadelphia	PA	3	5/30/2013	FranklinInstitute	
A	Philadelphia	PA	17	6/4/2013	PhillyANS	
A	Philadelphia	PA	72	2/18/2014	76ers	
M	Philadelphia	PA	33	4/26/2014	DiscoveryDays	
M	Philadelphia	PA	23	4/30/2014	DrexelLibrary	
M	Philadelphia	PA	171	5/3/2014	PhillySciFest	
M	San Antonio	TX	84	4/12/2013	SPURS	
M	Houston	TX	171	4/14/2014	YYCPA	
K	Unknown		13	4/23/2014	KidScoop	
M	Dulles	VA	70	9/28/2013	NSFSTEM	

Chapman Hill Elementary School
Philadelphia Science Festival 2013
Philadelphia Phillies MLB baseball game
The Academy of Natural Sciences at Drexel University
Science at the Sixers - Philadelphia 76ers NBA basketball game
NaturePalooza - at The Schuylkill Center for Environmental Education
Philadelphia Science Festival: Katharine Drexel Library
Philadelphia Science Festival 2014
San Antonio Spurs NBA basketball game
Young Women's College Preparatory Academy
Nationwide competition through KidScoop magazine
National Science Foundation, STEM Careers Fair; Dulles Town Center
Figure 1

Principal coordinate (PCoA) plot of all samples

FIGURE 1: Principal coordinate (PCoA) analysis plot of the Bray-Curtis distances of 16S rRNA gene sequence based ASVs for all samples, colored by the type of sample.
Figure 2

Principal coordinate (PCoA) plot of samples in this study

FIGURE 2: Principal coordinate (PCoA) analysis plot of the Bray-Curtis distances of 16S rRNA gene sequence based ASVs for cell phone and shoe samples from only this study, colored by sample origin. The line is the bisection of the centroids of the two sample types (phones and shoes).
Figure 3

Principal coordinate (PCoA) plot of the ASVs for Phyla identified from this study.

FIGURE 3: Principal coordinate (PCoA) analysis plot of the Bray-Curtis distances of 16S rRNA gene sequence based ASVs for Phyla identified from this study (Taxa version of Figure 2). This is showing a split representation of individual Phyla to prevent overlapping points. The line represents the split between cell phone and shoe samples from Figure 2.
Supplemental Figure 1: Importance of metadata variables (attribute importance analysis)
Supplemental Table 1. MDM (Microbial dark matter) phyla distribution summarized for shoes vs. phones
Phylum	%cell	%shoe	#samples	% of Samples
Armatimonadetes	26.3	73.7	1068	47.8
Patescibacteria	36.7	63.3	1041	46.6
WPS-2	15.8	84.2	404	18.1
Entotheonellaeota	25.3	74.7	360	16.1
Dependentiae	19.7	80.3	356	15.9
BRC1	11.1	88.9	352	15.8
Rokubacteria	29.0	71.0	352	15.8
Latescibacteria	29.1	70.9	278	12.4
Elusimicrobia	25.9	74.1	259	11.6
RsaHf231	10.7	89.3	103	4.6
Nanoarchaeaeota	32.4	67.6	71	3.2
Omnitrophicaeota	36.0	64.0	50	2.2
Hydrogenedentes	23.3	76.7	43	1.9
WS4	26.5	73.5	34	1.5
Zixibacteria	39.1	60.9	23	1.0
FCPU426	21.7	78.3	23	1.0
WS2	31.3	68.8	16	0.7
Nitrospinae	30.8	69.2	13	0.6
GAL15	63.6	36.4	11	0.5
Dadabacteria	10.0	90.0	10	0.4
Atribacteria	50.0	50.0	6	0.3
Margulisbacteria	33.3	66.7	6	0.3
Coprothermobacteraeota	33.3	66.7	6	0.3
	Value1	Value2	Value3	Value4
----------------	--------	--------	--------	--------
Caldiserica	50.0	50.0	4	0.2
Calditrichaeota	0.0	100.0	4	0.2
Cloacimonetes	25.0	75.0	4	0.2
WS1	0.0	100.0	3	0.1
PAUC34f	50.0	50.0	2	0.1
AncK6	100.0	0.0	2	0.1
Acetothermia	0.0	100.0	2	0.1
Diapherotrites	0.0	100.0	1	0.0
Edwardsbacteria	100.0	0.0	1	0.0
WOR-1	0.0	100.0	1	0.0