Isolation and characterization of mesenchymal stem cells in orthopaedics and the emergence of compact bone mesenchymal stem cells as a promising surgical adjunct

Albert Anastasio, Marina Gergues, Michael S Lebhar, Pranela Rameshwar, Joseph Fernandez-Moure

Abstract

The potential clinical and economic impact of mesenchymal stem cell (MSC) therapy is immense. MSCs act through multiple pathways: (1) as “trophic” cells, secreting various factors that are immunomodulatory, anti-inflammatory, anti-apoptotic, proangiogenic, proliferative, and chemoattractive; (2) in conjunction with cells native to the tissue they reside in to enhance differentiation of surrounding cells to facilitate tissue regrowth. Researchers have developed methods for the extraction and expansion of MSCs from animal and human tissues. While many sources of MSCs exist, including adipose tissue and iliac crest bone graft, compact bone (CB) MSCs have shown great potential for use in orthopaedic surgery. CB MSCs exert powerful immunomodulatory effects in addition to demonstrating excellent regenerative capacity for use in filling boney defects. CB MSCs have been shown to have enhanced response to hypoxic conditions when compared with other forms of MSCs. More work is needed to continue to characterize the potential applications for CB MSCs in orthopaedic trauma.
INTRODUCTION

Background on mesenchymal stem cells

The osteogenic ability of bone marrow aspirate was first demonstrated by Jones et al.\(^1\) in 1869. This ability was later attributed to the presence of mesenchymal stem cells (MSCs), which are a heterogeneous population of cells defined by surface markers\(^2\) and widely distributed in bone, cartilage, muscle, and other tissues. MSCs isolated from animal models have consistently demonstrated capacity for multi-lineage differentiation, pluri-potency, and differentiation into osteogenic, adipogenic, chondrogenic, and mesenchymal lineages.\(^3\) These findings have profound implications since CB-MSCs have higher biosynthetic activity than their bone marrow-derived counterparts after fracture, and thus, CB-MSCs may be better suited for orthopedic regenerative medicine.

MSCs have been studied for many years and have been found to have a greater orthopedic regenerative capacity compared to other autologous sources. Herein, we describe and review a novel source of MSCs from compact bone and their uses in orthopedic regenerative medicine. This review is best suited for the traumatologist in search of a comprehensive review of this novel sources of MSCs and their potential uses in vitro, in vivo, and clinically.

Citation: Anastasio A, Gergues M, Lebhar MS, Rameshwar P, Fernandez-Moure J. Isolation and characterization of mesenchymal stem cells in orthopaedics and the emergence of compact bone mesenchymal stem cells as a promising surgical adjunct. World J Stem Cells 2020; 12(11): 1341-1353
URL: https://www.wjgnet.com/1948-0210/full/v12/i11/1341.htm
DOI: https://dx.doi.org/10.4252/wjsc.v12.i11.1341
tissue engineering and the opportunity to impact genetic diseases such as Osteogenesis Imperfecta or muscular dystrophy in cell replacement therapy, the number of patients that could be positively impacted by use of MSCs is wide-ranging. Prior to exploring current uses of mesenchymal stem cells in orthopaedic surgery and discussing emerging evidence in support for further research of CB-MSCs within orthopaedics, we will survey current source isolation and characterization techniques of MSCs.

Sourcing of MSCs

Today we have many sources of MSCs, including the two most commonly discussed – iliac crest bone marrow aspirate and adipose tissue. These have shown some benefit in achieving osseous regeneration in some clinical applications. However, there is a wide variation in refining methods and administration techniques within the current literature, and there has yet to be a standardized volume or concentration of MSCs within published data, which has led to varied results.

Mesenchymal progenitor cells have a prevalence of approximately one per 3000 nucleated cells from iliac crest bone marrow aspirate in some studies. This calculates to around 600 progenitor cells per milliliter. This could be further increased to 2500 per milliliter by concentration techniques, such as centrifugation or freezing, or by small volume aspiration. Large amounts of progenitor cells are required for most orthopedic applications, though, which makes bone marrow aspiration impractical. Thus, alternative sources of MSC where yield and osteogenic potential are greater is sought.

Adipose tissue, dental pulp, and umbilical cord MSCs are additional sources that have proven reliable sources of MSCs. All these sources have their own advantages and disadvantages, but one common drawback shared by these sources is donor site surgical intervention required to acquire the cells. Further, while many sources have been identified and used experimentally in orthopedic regeneration what lacks is a consensus on what source is best suited for bony repair. Some studies have shown bone marrow MSCs to be equal to umbilical MSCs, but superior to adipose MSCs. However, there is newer research showing extraction of MSCs from compact or cortical bone. The benefit of this therapy is that it can harvested intra-operatively and can potentially yield a population of cells predisposed to promoting an osteogenic niche. Compact bone has been identified as a viable and reliable source for MSCs. Using discarded bone from laminectomy specimens, Fernandez-Moure et al. demonstrated that CB-MSCs were found in the spine.

Given their origin, this unique population of cells holds significant potential for orthopedic regeneration. With intra-operative refinement techniques, this harvested compact bone could be a source of MSCs that could be administered during the same operative procedure. Theoretically, a surgeon could derive cells from extracted bone and reimplant in the same procedure from the same source, thus overcoming many of the regulatory hurdles associated with a donor procedure. This will decrease costs, anesthesia time, and patient morbidity while giving improved outcomes in skeletal reconstruction. While determination of an ideal source remains an ongoing debate, isolation techniques once a source has been identified is an additional hurdle to the effective implementation of MSCs from various sources.

Isolation techniques of CB-MSCs

Since Friedrichstein identified the isolation of cells of the mesenchymal lineage, many methods for the isolation of mesenchymal progenitor cells have been described (Table 1). The isolation of bone derived MSCs was first described by Robey et al. In this study human bone cell cultures were established by maintaining collagenase-treated, bone fragments in low Ca²⁺ medium and the technique described provided a useful system for the study of osteoblast metabolism in vitro. This method of isolation has been adapted for use in clinical samples. Tuli et al. described a method where reaming debris was taken from the intramedullary canal of femurs undergoing total hip arthroplasty. Reaming debris was then taken and underwent collagenase XI digestion for 3-4 d until cellular material had disappeared. Boney fragments were then transplanted into new flasks and allowed to culture so that cells would migrate out from the bone and onto the plastic surface. Those cells underwent multilineage characterization and immunohistochemical analysis. Similarly, others have used mono-enzyme digest using collagenase I or II as the sole processing agent for MSC isolation. In order to enhance the selectivity of the cell population isolated Gangji et al. coupled a Collagase and Dipase digest with fluorescent assisted cell sorting for MSC specific makers. This method of characterization lead to a homogeneous population of MSCs as defined by the standards of the International Society for
Table 1 Source and isolation methods of mesenchymal stromal cells

Source	Isolation method	Ref.
Bone marrow	Aspirates cultured and media changed every 3-4 d to select for MSCs	[83]
	Aspirates layered over Ficoll-Paque density-gradient and plates in tissue culture dish. Adherent cells maintained with periodic passaging	[84]
	Bone marrow mononuclear cells seeded from single colony-forming unit fibroblasts and selected for by CD105(+)/CD45(-)	[85]
	Sort bone mononuclear cells based on aldehyde dehydrogenase expression (ALDHhighCD45-)	[86]
	Sort based on CD45~/lowCD271+ phenotype following a microbead-based pre-enrichment	[87]
	Layer bone marrow over hyluronic acid followed by centrifugation, collect most superficial layer containing the mononuclear cells	[88]
Compact bone	Trabecular bone fragments rinsed and placed in complete α-MEM/Ham’s F12, confluent monolayers were obtained within 10-20 d	[89-92]
	Bone cell cultures established by treating bone fragments with collagenase in low Ca²⁺ medium	[93, 94]
	Compact bone fragments obtained, cultured, and isolated. CB-MSCs then undergo trypsinization to reveal enhanced osteogenic capacity	[95]
Adipose	Place 10-20 mL of washed adipose tissue in 100 mm Petri dish; dissect out yellow tissue; mince tissue finely and place in enzymatic digestion solution; centrifuge and collect pellet for wash; resuspend in complete culture medium	[96, 97]
	Wash lipoaspirate with PBS; enzymatically digest using collagenase 1A solution; spin down cells, wash and plate in complete medium	[98]
Bone marrow	Aspirates cultured and media changed every 3-4 d to select for MSCs	[99]
	Aspirates layered over Ficoll-Paque density-gradient and plates in tissue culture dish. Adherent cells maintained with periodic passaging	[100]
	Bone marrow mononuclear cells seeded from single colony-forming unit fibroblasts and selected for by CD105(+)/CD45(-)	[101]
	Sort bone mononuclear cells based on aldehyde dehydrogenase expression (ALDHhighCD45-)	[102]
	Sort based on CD45~/lowCD271+ phenotype following a microbead-based pre-enrichment	[103]

MSC: Mesenchymal stromal cell; CB: Compact bone; PBS: Phosphate buffer saline.

Cellular Therapy[34]. Relied solely on cellular migration outward from the boney reamings and the inherent property of stem cell plastic adherence to isolate their cell population. They used the bone reamings of patients with closed diaphyseal femur fractures who were undergoing internal intramedullary nail fixation for cellular extraction without any additional agents. Cells adherent after ten days were transferred to a new flask and grown to confluence prior to phenotype characterization. While no comparison was made to other methods of isolation the authors did demonstrate the capability of the bone reaming derived cells to transform into both neuron-like cells and functional osteoblasts. This suggested that cells derived from the bone itself were capable of transdifferentiation, a characteristic of MSCs.

Various processing agents and isolation methods have been described for the isolation of CB MSCs as well. Zhu et al[25] 2010 described a protocol for the isolation and culture of large numbers of murine MSCs (mMSCs) from compact bones in contrast to mMSCs culture from bone marrow, the bone marrow cavities are flushed at least three times in order to thoroughly deplete hematopoietic cells[18-20]. The mouse compact bones are then dissected into fragments of 1-3 mm³ and digested with collagenase II. The released cells are discarded and the digested bone fragments are cultivated in an MSC culture medium. In contrast to the frequent medium changes in primary culture required in the mouse bone marrow culture technique, the culture medium is not changed until the third day after the initiation of culture[21]. During cultivation, fibroblast-like cells are observed around the collagenase-digested bone fragments within 48 h of cultivation. The mMSC cultures reach 70%-80% confluence within 5 d in the first passage and significant numbers (> 10⁶) of mMSC can be harvested in a short time from one mouse.

This protocol has been modified from the original description by Guo et al[31]. Where muMPC, murine mesenchymal progenitor cells, culture was developed by addition of bone fragments with mouse bone marrow cells in the presence of basic fibroblast growth factor and bone fragment-conditioned medium. They postulate that murine
counterparts were able to be purified with adherent culture of either enzyme-treated bone fragments or the released cells. In the protocol the femurs and tibiae were collected from 2 to 3-wk old C57BL/6 female mice. The epiphyses were removed, bone marrow was flushed out, and the bone cavities were washed thoroughly. In the presence of collagenase II the cells were allowed to migrate out and seed culture plates. Cai et al. expanded upon these methodologies by obtaining compact bone fragments, culturing them, and isolating CB-MSCs. After trypsinization of these cell lines, the cultured fragments exhibited significantly higher proliferation and were accompanied with less CD45 expression but more CD90 and CD44 expressions. Moreover, the capacity for osteogenic and adipogenic differentiation of the MSCs obtained from the cultured compact bone was enhanced when compared to the cells harvested from bone marrow.

Varying methods of cell isolation have been described yet none has been shown to be superior to another. After isolation of MSCs from a donor source, characterization of the obtained cells is necessary to maximize downstream utilization as well as to be able to standardize methodology for future investigation (Table 1).

Characterization techniques

Techniques have been developed to source, isolate, and experimentally assess CB-MSCs.

Many laboratories have developed methods for the extraction and expansion of MSCs from bone. Once isolated, the characterization of the cell population is critical to its downstream uses and potential. The variation of methods used and the variety of tissue sources used has lead to significant differences in the cell population isolated and the need for minimal criteria for the definition of a mesenchymal stromal cell was required to standardize investigation. To address this need, the Mesenchymal and Tissue Stem Cell Committee of the International Society for Cellular Therapy established the minimal criteria by which a cell could be characterized and thus named a mesenchymal stromal cell. Three criteria were proposed: (1) cell adherence to plastic; (2) specific surface antigen expression; and (3) multipotent differentiation.

These criteria allowed for a standard to be set for those working in isolation of CB-MSCs. First, the isolated cells must be adherent to plastic; Second, > 95% of the isolated cells must express CD105, CD73, and CD90 measured with flow cytometry. In addition, the absence of CD45, CD34, CD14 or CD11b, CD79 or CD19 and human leukocyte antigen class II must be documented in < 2% of the cell population; Lastly, the cells must be able to differentiate, under appropriate conditions, into adipocytes, chondrocytes, and osteocytes. Prior to the establishment of the aforementioned standard by the International Society for Cellular Therapy many characterized the cell isolated from the bone by their ability to tri-lineage differentiate. While this proved useful for their translational potential it underestimated the true potential and full character of the cell itself. CB-MSC identified have shown all these characteristics. Further, studies into source specific markers for MSC in addition to those identified are currently underway.

Clinical applications of MSCs in orthopaedic surgery

MSCs have long been utilized in orthopaedic surgery, and their clinical applications are robust. The economic impact that these therapies have the potential to affect is immense. Public health investigations have shown that osteoarthritis is associated with an economic burden of approximately $150 billion (2007 dollars), and is projected to affect 25% of the adult United States Population by 2030. From the standpoint of orthopedic trauma, it has been estimated that 100,000 fractures will go onto non-union each year in the United States alone. Zull et al. looked at direct and indirect costs of reamed intramedullary nailing for tibial fractures compared to casting, casting plus ultrasound, and non-reamed intramedullary nailing. They found that reamed intramedullary nailing led to significant reduction in non-union rates, and calculated an approximate cost of $11800 (Canadian) per non-union case. Beaver et al. looked establish tibial non-unions and calculated their surgical and medical care to cost United States $ 11333 per case. From increasing union rates, enhancing fusions, minimizing bone stock defects after total joints to treating articular cartilage defects, tendinopathies, avascular necrosis or bone cysts, the full impact of applications of MSCs is difficult to quantify both clinically and economically. The possibilities are as diverse as they are fascinating, and the ability to consistently improve even one of these complications or disease processes would have a great impact on the patients that are involved and the healthcare system.

While the field of orthopaedic surgery has pioneered the use MSCs many other fields within medicine have the potential to benefit from the knowledge gained from
working with MSCs (Table 2). Within the field of head and neck surgery, animal research has shown promise with the use of MSCs along with mandibular distraction osteogenesis producing improved total bone production and compact bone ratios in the “regenerate” or bone formed at the distraction site. Liu et al. published a case report of their success using bone marrow aspirated MSCs to treat a patient with poorly controlled diabetes mellitus and a severe post-traumatic infection causing non-healing skin defect in the hand. The wound demonstrated complete healing 10-d after treatment saving the patient from wrist amputation. Using a rat-model of ischemic cardiomyopathy, Tano et al. showed improved cardiac function after application of a pericardial MSCs embedded within a biodegradable carrier membrane.

The use of MSCs for regeneration of the musculoskeletal system is an area of much basic science research and developing clinical applications. Over the past twenty years, MSCs have been used clinically in a variety of scenarios to enhance the outcome for orthopedic patients from the standpoint of both wound healing and pain. Dating back to the 1980s, bone grafting and bone marrow injection into fracture sites has been utilized to enhance union. The use of MSCs in the setting of non-unions and critically sized defects, where bone’s natural regenerative capacity to heal without scarring is impaired due to poor biology and/or biomechanical environment, was the focus of early investigations. Connolly et al. published a case series of 20 tibial non-unions treated with unprocessed bone marrow with 90% demonstrating union at 6-8 mo follow-up. Hernigou et al. discussed the use aspirated iliac crest marrow with centrifugation to separate out osteoprogenitor cells (based on fibroblast colony forming units, CFU-F) for re-injection in sixty tibial non-unions. Fifty-three of the 60 patients went on to union at an average of twelve weeks. Clinical application of MSCs have since expanded, to include healing of high-tibial osteotomies, large bone defects after total hip arthroplasty and trauma, distraction osteogenesis, treatment of avascular necrosis, articular cartilage defects, tendinopathy (patellar, lateral epicondylitis), spinal fusion, and treatment of bone cysts. These findings paved the way for future use and investigations to understand the mechanisms underlying the observed wound healing effects. While MSCs have certainly proved to have widespread efficacy in orthopaedics, CB-MSCs, remain underutilized and under-investigated within the field.

The potential of CB-MSCs

MSCs have widespread uses within orthopaedics, but traditionally, the cortical bone fragment remains underutilized. Emerging developments have allowed for the isolation and characterization of CB-MSCs. Thus, investigation of the efficacy of CB-MSCs in murine models has been undertaken with very promising results. CB-MSCs appear to have beneficial immunomodulatory properties, which indicates that they may have great potential for utilization in cases requiring bone augmentation.

Repair of large bone defects still poses a major challenge for the orthopedic surgeon. For instance, it is widely known that these defects cannot on their own heal or repair themselves to a fully functional tissue. To overcome these issues, orthopedic surgeons generally implant a section of bone tissue. Unfortunately, this can lead to immune rejection or infections. The severity of these potential complications necessitates careful consideration of the immunological milieu surrounding the bone defect. With their diverse biological properties and efficacy, MSCs have long been considered as the ideal cells for cellular therapy. MSCs have the potential of secreting factors such as cytokines and exosomes, to produce varied effects within a specific micro-environment. Once educated, a process also called “licensing”, MSCs turn into anti-inflammatory cells within their niche, which can exert immunosuppressive functions to affect other cells within the immune system.

MSCs have obvious beneficial effects on the inflammatory milieu, and traditionally, these cells have been isolated from bone marrow and adipose derived MSCs. Emerging techniques have allowed for the additional isolation of MSCs from the cortical or compact bone. MSCs harbored within these tissues have been shown to be isolated in large quantities making re-transplantation a clinical reality. Once isolated their osteogenic regenerative potential has been measured and, in vitro, has been shown to be superior to adipose or bone marrow derived MSCs. Blashki et al. demonstrated that MSCs isolated form the cortical bone had greater potential for colony forming unit formation in vitro and greater osteoid generation in vivo. Similarly, Murphy et al. demonstrated an enhanced potential for CFU formation when cortical bone MSCs were cultured on bioactive osteogenic scaffolds. While the potential for osteogenesis was demonstrated in these studies a direct comparison had not established which tissue surface was ideal for osteogenic regeneration.

Moreover, like MSCs obtained from other sources, CB-MSCs appear to have
Table 2 Potential clinical scenarios for use of mesenchymal stromal cell therapy

Ref.	Animal model/methods	Findings	Conclusion	In vitro/in vivo
Ogulur et al.	mCB-MSCs isolated from 6-8 wk old BALB/c mice	mCB-MSCs significantly reduced cellular immune infiltration and presence of goblet cells as well as the thickness of epithelium, smooth muscle layers, and basement membrane in ovallublin-induced chronic asthmatic mice	Inflammation in distal and proximal airways of ovallublin-induced asthmatic mice can be suppressed by use of IV mCB-MSCs	In vivo
Qiao et al.	CB-MSCs isolated from C57BL/6 mice administered to 8-10 wk old BALB/c mice	BALB/c mice exposed to 8 Gy TBI and treated with CB-MSCs showed improved survival, body weight, and CPU-GM counts of bone marrow cells coupled with reduced TBI immunity with increased Treg percentages and decreased IFN-γ, CXC83 and CCR5	CB-MSC transplantation post total body irradiation attenuates radiation-induced hematopoietic toxicity and provides immunoprotection	In vivo
Duran et al.	Cortical bone-derived stem cells from 12 wk old EGFP+ transgenic mice	Improved 6 wk survival post MI procedure (50.4% to 76.5%) from saline to CB-MSC therapy. Increased expression of proangiogenic paracrine factors (bFGF and VEGF) and differentiation into infarct zone	Treatment with CB-MSCs post MI leads to enhanced survival, cardiac function, and remodeling	In vivo
Cheng et al.	MSCs isolated from compact bone of Tg26 HIV-1 transgenic mice	Transplanted Tg26 HIV-1 MSCs were less effective in protecting renal tubular cells compared to healthy mice MSCs in a cisplatin-induced AKI model due to inferior proliferation and decrease in secretion of protective cytokines	Compact bone MSCs infected with HIV-1 had impaired proliferation, differentiation, and function resulting in less therapeutic potential	In vivo
Yamakita et al.	MSCs from compact bone of 5-week-old C57-GFP male mice	Cells cultured in bFGF-conditioned medium demonstrated trilineage differentiation potential even at passage 24 in contrast to leukemia inhibitory factor-conditioned medium	Compact bone MSCs cultured in bFGF-conditioned medium demonstrated bone formation ability in vivo	In vivo
Bakker et al.	Tibial reaming debris from adult female sheep	Treatment with reaming debris, similar to iliac crest, revealed larger callus volume with decreased cartilage in the fracture gap, increased bone volume, and improved toughness at 3 wk with greater torsional stiffness at 6 wk	Reaming debris has characteristics similar to iliac crest bone that allow it to be an excellent replacement for enhancing healing of bone defects fixed with an intramedullary nail	In vivo
Gao et al.	Murine mesenchymal progenitor cells (muMPCs) isolated from 2-5 wk old C57BL/6 female mice tibia/femur compact bone	Collagenase-digested bone fragments produced muMPCs that inhibited Con A-stimulated splenocyte proliferation and suppressed lymphocyte activation by allogeneic cellular stimuli in vitro. In addition, muMPCs improved survival of allogeneic skin grafts in vivo	Using this protocol allows acquiring of muMPCs with similar properties to marrow counterparts, which allows them to be used in future investigations with mouse models	In vivo
Lim et al.	hABMSCs	hABMSCs exposed to low-intensity pulsed ultrasound revealed increased ALP, expression levels of CD29, CD44, COL1, and OCN, and calcium deposition	Treatment with LIPUS could improve the cell viability and osteogenic differentiation of hABMSCs	In vivo
Lim et al.	hABMSCs	hABMSCs treated with extremely low frequency pulsed electromagnetic fields (ELF-PMFs) revealed 15% increased proliferation at day 5, increased ALP, vinculin, vimentin, and CaM expressions, and enhanced mineralization during osteogenesis	Exposing hABMSCs with ELF-PMFs could improve and accelerate the process of early cell proliferation mediated osteogenesis	In vitro
Lim et al.	hABMSCs harvested from human mandibular alveolar bone	hABMSCs exposed to LFDSS for 10-60 min/d demonstrated improved viability, proliferation, and mineralization in culture with osteoblasts. ALP activity and gene expression of IBSP, COL1, OCN, and OPN increased	Proper intensity and exposure time of LFDSS to hABMSCs can improve their differentiation and maturation	In vitro
Soleimani et al.	MSCs isolated from 6-8 wk old BALB/c mouse tibial and femoral bone marrow	The protocol states MSCs should be cultured in Dulbecco's modified Eagle's medium (DMEEM) and fetal bovine serum (FBS) in a 37 °C-5% CO₂ incubator with passage at 2 wk of culture	This protocol allows development of a purified population of MSCs 5 wk after the initiation of culture	In vivo
Dominici et al.	Human multipotent MSC	In standard culture, MSC must be plastic-adherent, express CD105, CD73 and CD90, and lack expression of CD45, CD34, CD14 or CD11b, CD97alpha or CD19 and HLA-DR and demonstrate tridifferentiation	Standard criteria for MSC characterization, will allow for exchange of more uniform data between researchers	In vitro
Wenisch et al.	Mesenchymal stem cells harvested from HRD of 12 adult patients with closed diaphyseal femoral fractures	With neuronal induction, MSCs assumed neuronal morphologies and expressed neuron-specific enolase, beta-III-tubulin, neurofilament-H and HNK-1. Similar to immature neurons, MSCs had features of neuritogenesis and synaptogenesis and lacked electrical signaling	Neuronal induction allowed initiation of the early neuronal differentiation, but exposure to non-neurological stressors led to necrotic alterations	In vitro
Anastasio A et al. Isolation and characterization of MSC in orthopaedics

| Wenisch et al. (2010) | Mesenchymal stem cells harvested from HRD of 12 adult patients with closed diaphyseal femoral fractures | After multiple passages, HRD-derived cells and MSCs maintained a nondifferentiated phenotype and showed osteogenic and neuronal pathway differentiation ability after induction | Human reaming debris provides a multipotent stem cells which have the ability to grow and proliferate in vitro |
| Tuli et al. (2018) | Collagenase-treated human trabecular bone chips | Collagenase-treated trabecular bone fragments contain cells that stain positive for CD73, STRO-1, and CD105, and negative for CD34, CD45, and CD144 with tridifferentiation potential | Trabecular bone-derived cells maintain a nondifferentiated phenotype and display tridifferentiation potential with long-term in vitro culture |

AKI: Acute kidney injury; bFGF: Basic fibroblast growth factor; CBSC: Cortical bone stem cell; CB-MSCs: Compact bone mesenchymal stem cells; CFU-GMC: Colony-forming unit granulocyte/macrophage; LIPUS: Low intensity pulsed ultrasound; MI: Myocardial infarction; TBI: Total body irradiation; VEGF: Vascular endothelial growth factor; HRD: Human reaming debris; hABMSC: Human alveolar bone-derived mesenchymal stem cell; LFDSS: Low fluid dynamic shear stress; ALP: A lkaline phosphatase; HLA: Human leukocyte antigen; HIV: Human immunodeficiency virus.

Excellent immunomodulatory properties. Previously, Guo et al. (2018) performed skin grafting in a mouse model (C57BL/6Alb/c) with or without murine CB-MSCs pre-transfusion in order to determine if these cells had immunosuppressive effects in vitro. Their findings indicated that the delivery of these cells caused a significant increase in survival of allogeneic skin grafts further ascertaining the anti-inflammatory role that these cells exert on the in vivo immune response. Recently, some studies have shown that CB-MSCs are both multipotent and capable of extensive in vitro expansion similar to BM-MSCs, enhancing their therapeutic appeal in the field of orthopedics (2018).

Besides phenotypical properties, CB-MSCs have been shown to share with BM-MSCs functional properties such as tri-differentiation potential in adequate conditions and immune suppression both in vitro and in vivo (2018). For instance, in a mouse model of acute graft-versus-host disease, Zhu et al. (2019) reported a decrease in tissue damage after transference of murine CB-MSCs, potentially altering the phenotype and function of splenic lymphocytes (2019). Similarly, these authors inferred that CB-MSCs also affected functional properties of T lymphocytes and dendritic cells by modulating their migratory behavior leading to a delayed lethal acute graft-versus-host disease reaction (2019). Furthermore, Qiao et al. (2020) demonstrated a significant protective benefit of CB-MSCs in a radiation-induced hematopoietic toxicity mouse model. CB-MSCs acted to alleviate lymphocyte-mediated CFU-GM, colony-forming unit granulocyte/macrophage, inhibition and expand regulatory T cell lineages. They also mitigated T cell chemokine receptor expression and shifted the Th1/Th2 balance toward anti-inflammatory Th2 polarization (2020). In another study, authors investigated the impact of CB-MSCs in airway remodeling and inflammation in experimental ovalbumin-induced mouse model of chronic asthma. The authors infused GFP-labeled murine CB-MSCs which were located in the lungs of OVA group 2 wk after intravenous induction accompanied with a significant Treg response in ovalbumin-treated mice. It is worth noting that increase in Treg cell numbers along with other factors such as cytokines, to be linked to MSC-mediated immunomodulation (2021). Thus murine CB-MSCs could be effective at reducing an allergic inflammation. Furthermore, Shan et al. (2022) demonstrated mitigation of prion disease in brain extracts from infected mice after administrition of CB-MSCs by enhancing microglial activation. Remarkably, the Intra-hippocampus transplantation of CB-MSCs had a small but statistically significant effect on prolonging the survival of mice inoculated with the Chandler prion strain (2022).

CB-MSCs appear to not only have efficacy from an immunomodulatory standpoint, but may serve as an ideal scaffold material adjunct to repair boney defects. CB-MSCs when compared with BM-MSC, are bigger in size, show a lower proliferation rate at early passages, and have a greater commitment toward the osteogenic lineage. This cell source has been shown in vitro to generate greater alkaline phosphatase and calcium deposition in both normoxic and hypoxic conditions (2018). MSCs attached to three-dimensional scaffold designed to mimic the biological and mechanical role of extracellular matrix can be a faster approach to promote bone regeneration (2019). To date, several scaffolds have been used in MSC-based bone augmentation procedures. For these scaffolds, most of the literature reports on hydroxyapatite, β-tricalcium phosphate or a mixture of the two as mineral component interacting with MSCs (2020). These scaffolds for bone engineering should possess key characteristic specifications including: osteo-conductivity, biocompatibility (adequate biological response), biodegradability, easily manufactured and sterilized, easily handled in the surgery room, and cost effective (2020). Moreover, the scaffold should have an architecture that resembles the structure of bone.

Thus, with their vast appealing functional roles, including immunosuppression, CB-
MSCs are ideal cells for cellular therapy in bone tissue engineering. Several researchers have proposed using CB-MSCs and three-dimensional scaffolds and implanting this combination into donor patients. To date, however, very few studies have looked into the use of CB-MSCs and scaffolds for compact bone regeneration. Perhaps with future research, CB-MSCs will be also considered as promising candidates for use in development of bioengineered bone to potentially impact clinical therapy and possibly beneficial to in bone engineering and regeneration[50-50].

CONCLUSION

MSCs hold great promise for regenerative therapies in osteogenic surgery. While there is still debate on the ideal source of MSCs to use in tissue regeneration, the field is still moving in the right direction for clinical applications. Previous work from our lab shows that compared with BM-MSCs and AD-MSCs, CB-MSCs have superior ability to survive in hypoxic conditions while remaining biosynthetically active[37]. CB-MSCs have been demonstrated to have excellent immunomodulatory efficacy in various animal models. More work needs to be continued both in vitro and in vivo to properly characterize these cells and make them functional for tissue engineering and regeneration.

REFERENCES

1 Hernigou P, Poignard A, Manicop O, Mathieu G, Rouard H. The use of percutaneous autologous bone marrow transplantation in nonunion and avascular necrosis of bone. J Bone Joint Surg Br 2005; 87: 896-902 [PMID: 15972899 DOI: 10.1002/jb.4777]
2 Jones E, Yang X. Mesenchymal stem cells and bone regeneration: current status. Injury 2011; 42: 562-568 [PMID: 21489533 DOI: 10.1016/j.injury.2011.03.030]
3 Nöth U, Rackwitz L, Stei nert AF, Tuan RS. Cell delivery therapeutics for musculoskeletal regeneration. Adv Drug Deliv Rev 2010; 62: 765-783 [PMID: 20398712 DOI: 10.1016/j.addr.2010.04.004]
4 Stei nert AF, Rackwitz L, Gilbert F, Nöth U, Tuan RS. Concise review: the clinical application of mesenchymal stem cells for musculoskeletal regeneration: current status and perspectives. Stem Cells Transl Med 2012; 1: 237-247 [PMID: 23197783 DOI: 10.5966/scitm.2011-0036]
5 Fathi E, Farahzadi R, Sheikhzadeh N. Immunophenotypic characterization, multi-lineage differentiation and aging of zebrafish heart and liver tissue-derived mesenchymal stem cells as a novel approach in stem cell-based therapy. Tissue Cell 2019; 57: 15-21 [PMID: 30947959 DOI: 10.1016/j.tice.2019.01.006]
6 Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, Zhao RC, Shi Y. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2008; 2: 141-150 [PMID: 18371435 DOI: 10.1016/j.stem.2007.11.014]
7 Sherman LS, Shaker M, Mariotti V, Rameshwar P. Mesenchymal stromal/stem cells in drug therapy: New perspective. Cytotherapy 2017; 19: 19-27 [PMID: 27765801 DOI: 10.1016/j.jcyt.2016.09.007]
8 Laschke MW, Schunk TE, Scheuer C, Kleer S, Shadmanov T, Eglin D, Alini M, Menger MD. In vitro osteogenic differentiation of adipose-derived mesenchymal stem cell spheroids impairs their in vivo vascularization capacity inside implanted porous polyurethane scaffolds. Acta Biomater 2014; 10: 4226-4235 [PMID: 24998775 DOI: 10.1016/j.actbio.2014.06.035]
9 Corradetti B, Taraballi F, Powell S, Sung D, Minardi S, Ferrari M, Weiner BK, Tasciotti E. Osteoprogenitor cells from bone marrow and cortical bone: understanding how the environment affects their fate. Stem Cells Dev 2015; 24: 1112-1123 [PMID: 25517215 DOI: 10.1089/scd.2014.0351]
10 McDaniel JS, Antebi T, Pilia M, Hurtgen BJ, Belenko S, Necoia C, Cancio LC, Rathbone CR, Batchinsky AJ. Quantitative Assessment of Optimal Bone Marrow Site for the Isolation of Porcine Mesenchymal Stem Cells. Stem Cells Int 2017; 2017: 1836960 [PMID: 28539939 DOI: 10.1155/2017/1836960]
11 Hernigou P, Homma Y, Flouret Lachaniette CH, Poignard A, Allain J, Chevallier N, Rouard H. Benefits of small volume and small syringe for bone marrow aspirations of mesenchymal stem cells. Int Orthop 2013; 37: 2279-2287 [PMID: 23881024 DOI: 10.1007/s00264-013-1727-z]
12 Zhu M, Heydarkhan-Hagvall S, Hedrick M, Benhaim P, Zik Z. Manual isolation of adipose-derived stem cells from human lipopaparites. J Vis Exp 2013; e50585 [PMID: 24121366 DOI: 10.3791/50585]
13 Mahmoudifar N, Doran PM. Mesenchymal Stem Cells Derived from Human Adipose Tissue. Methods Mol Biol 2015; 1340: 53-64 [PMID: 26445830 DOI: 10.1007/978-1-4939-2938-2_3]
14 Odañas S, Elciñ AE, Elciñ YM. Isolation and characterization of mesenchymal stem cells. Methods Mol Biol 2014; 1109: 47-63 [PMID: 24473777 DOI: 10.1007/978-1-4614-9437-9_3]
15 Rajahzadeh N, Fathi E, Farahzadi R. Stem cell-based regenerative medicine. Stem Cell Investig 2019; 6: 19 [PMID: 31463312 DOI: 10.21037/sci.2019.06.04]
16 Caplan AI. Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 2005; 11: 1198-1211 [PMID: 16144456 DOI: 10.1089/ten.2005.11.1198]
17 Osdoby P, Caplan AI. Osteogenesis in cultures of limb mesenchymal cells. Dev Biol 1979; 73: 84-102 [PMID: 527770 DOI: 10.1016/0012-1666(79)90140-4]
18 Aceda A, Mulet-Sierra A, Jomha NM. Hypoxia mediated isolation and expansion enhances the
Anastasio A et al. Isolation and characterization of MSC in orthopaedics

chondrogenic capacity of bone marrow mesenchymal stromal cells. Stem Cell Res Ther 2012; 3: 9 [PMID: 22855753 DOI: 10.1186/s13287-010-0000-8]

19 Pountos I, Coscadden D, Ernery P, Giannoudis PV. Mesenchymal stem cell tissue engineering: techniques for isolation, expansion and application. Injury 2007; 38 Suppl 4: S23-S33 [PMID: 18224734 DOI: 10.1016/s0020-1383(08)70006-8]

20 Osiecki MJ, Michl TD, Kul Babur B, Kabiri M, Atkinson K, Lott WB, Griesser HJ, Doran MR. Packed Bed Bioreactor for the Isolation and Expansion of Placental-Derived Mesenchymal Stromal Cells. PLoS One 2015; 10: e0144941 DOI: 10.1371/journal.pone.0144941

21 Sivathanan KN, Grontos S, Grey ST, Rojas-Canales D, Coates PT. Immune depletion and Hypoxia Preconditioning of Mouse Compact Bone Cells as a Novel Protocol to Isolate Highly Immunosuppressive Mesenchymal Stem Cells. Stem Cells Dev 2017; 26: 512-527 [PMID: 27998209 DOI: 10.1089/scd.2016.0130]

22 Lin M, Liu X, Zheng H, Huang X, Wu Y, Huang A, Zhu H, Hu Y, Mai W, Huang Y. IGF-1 enhances BMSC viability, migration, and anti-apoptosis in myocardial infarction via secreted frizzled-related protein 2 pathway. Stem Cell Res Ther 2020; 11: 22 [PMID: 31918758 DOI: 10.1186/s13287-019-1544-y]

23 Nöth U, Oszyczka AM, Tuli R, Hickok NJ, Danielson KG, Tuan RS. Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J Orthop Res 2002; 20: 1060-1069 [PMID: 12382974 DOI: 10.1016/s0736-0266(02)00019-8]

24 Guo Z, Li H, Li X, Yu X, Wang H, Tang P, Mao N. In vitro characteristics and in vivo immunosuppressive activity of compact bone-derived murine mesenchymal progenitor cells. Stem Cells 2006; 24: 992-1000 [PMID: 16644925 DOI: 10.1634/stemcells.2005-0224]

25 Zhu H, Guo ZK, Jiang XX, Li H, Wang XY, Yao HY, Zhang Y, Mao N. A protocol for isolation and culture of mesenchymal stem cells from mouse compact bone. Nat Protoc 2010; 5: 550-560 [PMID: 20206360 DOI: 10.1038/nprot.2009.238]

26 Nagamuru-Inoue T, He H. Umbilical mesenchymal stem cell's: their advantages and potential clinical utility. World J Stem Cells 2014; 6: 195-202 [PMID: 24772246 DOI: 10.4252/wjsc.v6.i2.195]

27 Fernandez-Moure JS, Corradetti B, Chan P, Van Eps JL, Janecek T, Rameshwar P, Weiner BK, Tasciotti E. Enhanced osteogenic potential of mesenchymal stem cells from the Human Cortical Bone. Stem Cell Res Ther 2015; 6: 203 [PMID: 26503337 DOI: 10.1186/s13287-015-0193-z]

28 Fernandez-Moure JS, Corradetti B, Janecek T, Van Eps J, Burn M, Weiner BK, Rameshwar P and Tasciotti E. Characterization of Mesenchymal Stem Cells from Human Cortical Bone. Cell Transplant 2019; 10: 1245-1437 [PMID: 2087143 DO]
stromal cells by pre-activated lymphocytes and their culture media. Valencic E
Blood 2013; 118(3): 28-37 [PMID: 2369927 DO:
] 10.10102/1564-81035-8]

Beaver R, Brinker MR, Barrack RL. Analysis of the actual cost of tibial nonunions. J La State Med Soc 1997; 149: 200-206 [PMID: 9188214]

Carley M, Butts SC. Update on mandibular distraction osteogenesis. Curr Opin Otolaryngol Head Neck Surg 2014; 22: 276-283 [PMID: 24979370 DOI: 10.1097/MOM.000000000000007]

Liu Y, Liu Y, Wang P, Tian H, Ai J, Liu Y, Zhou Y, Liu Z, Guo W, Yang S. Autologous bone marrow stem cell transplantation for the treatment of postoperative hand infection with a skin defect in diabetes mellitus: A case report. Oncol Lett 2014; 7: 1857-1862 [PMID: 24932248 DOI: 10.3892/ol.2014.1998]

Tao N, Narita T, Kaneko M, Ikeda C, Coppen SR, Campbell NG, Shiraishi M, Shintani M, Suzuki K. Epidermal placement of mesenchymal stromal cell sheets for the treatment of ischemic cardiomyopathy, in vivo proof-of-concept study. Mol Ther 2014; 22: 1864-1871 [PMID: 24930600 DOI: 10.1038/mt.2014.110]

Holley RJ, Tai G, Williamson AJ, Taylor S, Cain SA, Richardson SM, Merry CL, Whetton AD, Ichthy CM, Canfield AE. Comparative quantitative analysis of cell types of human multipolet mesenchymal progenitor cells. Stem Cell Reports 2018; 10: 1505-1512 [PMID: 29742392 DOI: 10.1016/j.stemcr.2018.04.009]

Lin H, Qiu X, Du Q, Li Q, Wang O, Akert L, Wang Z, Liu G, Zhang C, Lei Y. Engineered Microenvironment for Manufacturing Human Pluripotent Stem Cell-Derived Vascularized Soft Tissue. Stem Cells Transl Med 2019; 8: 94-97 [PMID: 30527760 DOI: 10.1002/stem.2018.11.009]

Thambiah MD, Tan MKL, Hui JHP. Role of High Tibial Osteotomy in Carilage Regeneration - Is Correction of Malalignment Mandatory for Success? Indian J Orthop 2017; 51: 588-599 [PMID: 28966382 DOI: 10.4103/ortho.Iorth.260_17]

Munoz JL, Blits SA, Greco S, Ramkisson SH, Ligon KL, Ramsheswara P. Delivery of Functional Anti- miR-9 by Mesenchymal Stem Cell-derived Exosomes to Glioblastoma Multiforme Cells Confers Chemosensitivity. Mol Ther Nucleic Acids 2013; 2: e126 [PMID: 24084846 DOI: 10.1038/mta.2013.60]

Li G, Yuan L, Ren X, Nian H, Zhang L, Han ZC, Li X, Zhang X. The effect of mesenchymal stem cells on dynamic changes of T cell subsets in experimental autoimmune uveoretinitis. Clin Exp Immunol 2013; 173: 28-37 [PMID: 23607419 DOI: 10.1111/cei.12080]

Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate alloregic immune cell responses. Blood 2005; 105: 1815-1822 [PMID: 15494428 DOI: 10.1182/blood-2004-04-1559]

Valencia E, Loganes C, Cesana S, Piccinari E, Gaipa G, Biagi E, Tommasini A. Inhibition of mesenchymal stromal cells by pre-activated lymphocytes and their culture media. Stem Cell Res Ther 2014; 5: 3 [PMID: 24408528 DOI: 10.1186/sctcr392]
Isolation and characterization of MSC in orthopaedics

Ogulur I, Tuli R, Murphy MB. Isolation and characterization of MSC in orthopaedics. J Tissue Eng 2016; 7: 2041731416661196 [PMID: 27579159 DOI: 10.1177/2041731416661196]

Murphy MB, Blaschki D, Buchanan RM, Fan D, De Rosa E, Shah RN, Stupp SJ, Weiner BK, Simmons PJ, Ferrari M, Tasciotti E. Multi-composite bioactive osteogenic sponges featuring mesenchymal stem cells, platelet-rich plasma, nanoporous silicon enclosures, and Peptide amphiphiles for rapid bone regeneration. J Funct Biomater 2011; 2: 39-66 [PMID: 24956163 DOI: 10.3390/jfb20020039]

Shi HZ, Qin XJ. CD4CD25 regulatory T lymphocytes in allergy and asthma. Allergy 2005; 60: 986-995 [PMID: 15969678 DOI: 10.1111/j.1398-9995.2005.00844.x]

Short B, Wagey R. Isolation and culture of mesenchymal stem cells from mouse compact bone. Methods Mol Biol 2013; 946: 335-347 [PMID: 23179842 DOI: 10.1007/978-1-62703-128-8_21]

Short BJ, Brouard N, Simmons PJ. Prospective isolation of mesenchymal stem cells from mouse compact bone. Methods Mol Biol 2009; 482: 259-268 [PMID: 19080936 DOI: 10.1007/978-1-59745-066-7_16]

Majumdar MK, Thiede MA, Haynesworth SE, Bruder SP, Gerson SL. Human marrow-derived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoiesis when differentiated toward stromal and osteogenic lineages. J Hematother Stem Cell Res 2000; 9: 841-848 [PMID: 11177595 DOI: 10.1089/152581600750062264]

Zhang Y, Li C, Jiang X, Zhang S, Wu Y, Liu B, Tang P, Mao N. Human placenta-derived mesenchymal progenitor cells support culture expansion of long-term culture-initiating cells from cord blood CD34+ cells. Exp Hematol 2004; 32: 657-664 [PMID: 15246162 DOI: 10.1016/j.exphem.2004.04.001]

Li H, Guo ZK, Li XS, Hou CM, Tang PH, Mao N. Functional and phenotypic alteration of intrasplenic lymphocytes affected by mesenchymal stem cells in a murine alloencephalo-transplant model. J Cell Physiol 2008; 226: 2531-2541 [PMID: 18635870 DOI: 10.1007/s10868-008-0146-7]

Qiao S, Ren H, Shi Y, Liu W. Allogeneic compact bone-derived mesenchymal stem cell transplantation increases survival of mice exposed to lethal total body irradiation: a potential immunological mechanism. Chin Med J (Engl) 2014; 127: 475-482 [PMID: 24451953]

Cho KS, Roh HJ. Immunomodulatory effects of adipose-derived stem cells in airway allergic diseases. Curr Stem Cell Res Ther 2010; 5: 111-135 [PMID: 19944559 DOI: 10.2174/157488810791268681]

Shan Z, Hirai Y, Nakayama M, Hayashi R, Yamasaki T, Hasebe R, Song CH, Horiuchi M. Therapeutic effect of autologous compact bone-derived mesenchymal stem cell transplantation on prion disease. J Gen Virol 2017; 98: 2615-2627 [PMID: 28874230 DOI: 10.1099/jgv.0.000907]

Fiorentini E, Granchi D, Leonardi E, Baldini N, Ciapetti G. Effects of osteogenic differentiation inducers on in vitro expanded adult mesenchymal stem cells. Int J Artif Organs 2011; 34: 998-1011 [PMID: 22161283 DOI: 10.5301/ijao.5000001]

Khojasteh A, Esmlinejad MB, Nazarian H. Mesenchymal stem cells enhance bone regeneration in rat calvarial critical size defects more than platelet-rich plasma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 106: 356-62; discussion 363 [PMID: 18424120 DOI: 10.1016/j.tripleo.2007.10.017]

Jafarian M, Esmlinejad MB, Khojasteh A, Mashadhi Abbas F, Dehghan MM, Hassanzadneh R, Houshandam B. Marrow-derived mesenchymal stem cells-directed bone regeneration in the dog mandible: a comparison between biphasic calcium phosphate and natural bone mineral. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 105: e14-e24 [PMID: 18442730 DOI: 10.1016/j.tripleo.2008.01.010]

Ayatollahi M, Geramizadeh B, Zakerinia M, Ramzi M, Yaghobi R, Hadadi P, Rezvani AR, Aghdai M, Azarpira N, Karimi H. Human Bone Marrow-Derived Mesenchymal Stem Cell: A Source for Cell-Based Therapy. Int J Oral Transplant Med 2012; 3: 32-41 [PMID: 25013621]

Kastrinaki MC, Andreouki I, Charbord P, Papadaki IA. Isolation of human bone marrow mesenchymal stem cells using different membrane markers: comparison of cloning efficiency, differentiation potential, and molecular profile. Tissue Eng Part C Methods 2008; 14: 333-339 [PMID: 18808875 DOI: 10.1089/teng.tec.08.0173]

Keller L,H. Bone marrow-derived aldehyde dehydrogenase-bright stem and progenitor cells for ischemic repair. Congest Heart Fail 2009; 15: 202-206 [PMID: 19627297 DOI: 10.1111/j.1741-7333.2009.00101.x]

Boxall S, Jones E. The use of multiparameter flow cytometry and cell sorting to characterize native human bone marrow mesenchymal stem cells (MSC). Methods Mol Biol 2015; 1235: 121-130 [PMID: 25388391 DOI: 10.1007/978-1-4939-1785-3_11]

Lee JS, Kim SK, Cha JK, Jung BJ, Choi SB, Choi EY, Kim CS. Novel Technique for Isolating Human Bone Marrow Stem Cells Using Hyaluronic Acid Hydrogel. Tissue Eng Part C Methods 2016; 22: 941-951 [PMID: 27609497 DOI: 10.1089/ten.tec.2016.0214]

Sakaguchi Y, Sekiya I, Yagishita K, Ichinose S, Shinomiya K, Muneta T. Suspended cells from trabecular bone by collagenase digestion become virtually identical to mesenchymal stem cells obtained from marrow aspirates. Blood 2004; 104: 2728-2735 [PMID: 15242873 DOI: 10.1182/blood-2003-12-4452]

Gao X, Uasa A, Tang Y, Lu A, Tan J, Schneppezahl J, Kozemchak AM, Wang B, Cummins JH, Tuan RS, Huard J. A comparison of bone regeneration with human mesenchymal stem cells and muscle-derived stem cells and the critical role of BMP. Biomaterials 2014; 35: 6859-6870 [PMID: 24856105 DOI: 10.1016/j.biomaterials.2014.04.113]

Sottile V, Halleux C, Bassilana F, Keller H, Seuwen K. Stem cell characteristics of human trabecular bone-derived cells. Bone 2002; 20: 699-704 [PMID: 11996907 DOI: 10.1016/s8756-3282(02)00674-9]

Tuli R, Tuli S, Sandi S, Wang ML, Alexander PG, Halsem-Smith H, Hozack WJ, Manner PA, Danielson KG, Tuan RS. Characterization of multipotent mesenchymal progenitor cells derived from human trabecular bone. Stem Cells 2003; 21: 681-693 [PMID: 14595128 DOI: 10.1007/s12266-003-6050-9]

Ogulur I, Gurhan G, Aksoy A, Durukus G, Inci C, Filinte D, Kombak FE, Karace E, Akkoc T. Suppressive effect of compact bone-derived mesenchymal stem cells on chronic airway remodeling in murine model of...
Anastasio A et al. Isolation and characterization of MSC in orthopaedics

asthma. *Int Immunopharmacol* 2014; 28: 101-109 [PMID: 24613203 DOI: 10.1016/j.intimp.2014.02.028]

92 **Duran JM**, Makarewicz CA, Sharp TE, Starosta T, Zhu F, Hoffman NE, Chiba Y, Madesh M, Berretta RM, Kubo H, Houser SR. Bone-derived stem cells repair the heart after myocardial infarction through transdifferentiation and paracrine signaling mechanisms. *Circ Res* 2013; 113: 539-552 [PMID: 23801066 DOI: 10.1161/CIRCRESAHA.113.301202]

93 **Cheng K**, Rai P, Lan X, Plagov A, Malhotra A, Gupta S, Singhal PC. Bone-derived mesenchymal stromal cells from HIV transgenic mice exhibit altered proliferation, differentiation capacity and paracrine functions along with impaired therapeutic potential in kidney injury. *Exp Cell Res* 2013; 319: 2266-2274 [PMID: 23806280 DOI: 10.1016/j.yexcr.2013.06.008]

94 **Yamachika E**, Tsujigiwa H, Matsubara M, Hirata Y, Kita K, Takahatake K, Mizukawa N, Kaneda Y, Nagatsuka H, Iida S. Basic fibroblast growth factor supports expansion of mouse compact bone-derived mesenchymal stem cells (MSCs) and regeneration of bone from MSC in vivo. *J Mol Histol* 2012; 43: 223-233 [PMID: 22203245 DOI: 10.1007/s10735-011-9385-8]

95 **Bakker AD**, Kroeze RJ, Korstjens C, de Kleine RH, Fröike JP, Klein-Nulend J. Reaming debris as a novel source of autologous bone to enhance healing of bone defects. *J Biomed Mater Res A* 2011; 97: 457-465 [PMID: 21491583 DOI: 10.1002/jbm.a.33080]

96 **Lim K**, Hexiu J, Kim J, Seonwoo H, Cho WJ, Choung PH, Chung JH. Effects of electromagnetic fields on osteogenesis of human alveolar bone-derived mesenchymal stem cells. *Biomed Res Int* 2013; 2013: 296019 [PMID: 23862141 DOI: 10.1155/2013/296019]

97 **Lim K**, Kim J, Seonwoo H, Park SH, Choung PH, Chung JH. In vitro effects of low-intensity pulsed ultrasound stimulation on the osteogenic differentiation of human alveolar bone-derived mesenchymal stem cells for tooth tissue engineering. *Biomed Res Int* 2013; 2013: 269724 [PMID: 24195067 DOI: 10.1155/2013/269724]

98 **Lim KT**, Kim J, Seonwoo H, Chang JU, Choi H, Hexiu J, Cho WJ, Choung PH, Chung JH. Enhanced osteogenesis of human alveolar bone-derived mesenchymal stem cells for tooth tissue engineering using fluid shear stress in a rocking culture method. *Tissue Eng Part C Methods* 2013; 19: 128-145 [DOI: 10.1089/tmc.2012.0017]

99 **Wenisch S**, Trinkaus K, Hild A, Hose D, Heiss C, Alt V, Kliisch C, Meissl H, Schnettler R. Immonochemical, ultrastructural and electrophysiological investigations of bone-derived stem cells in the course of neuronal differentiation. *Bone* 2006; 38: 911-921 [PMID: 16418015 DOI: 10.1016/j.bone.2005.10.021]

100 **Wenisch S**, Trinkaus K, Hild A, Hose D, Herde K, Heiss C, Kilian O, Alt V, Schnettler R. Human reaming debris: a source of multipotent stem cells. *Bone* 2005; 36: 74-83 [PMID: 15664005 DOI: 10.1016/j.bone.2004.09.019]
