Review

Metastatic prostate cancer remains incurable, why?

Liang Dong a,b,1, Richard C. Zieren a,c,1, Wei Xue b, Theo M. de Reijke c, Kenneth J. Pienta a,*

a The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
b Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
c Department of Urology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands

Received 8 May 2018; received in revised form 18 July 2018; accepted 12 September 2018
Available online 29 November 2018

Abstract Metastatic prostate cancer patients present in two ways—with already disseminated disease at the time of presentation or with disease recurrence after definitive local therapy. Androgen deprivation therapy is given as the most effective initial treatment to patients. However, after the initial response, almost all patients will eventually progress despite the low levels of testosterone. Disease at this stage is termed castration resistant prostate cancer (CRPC). Before 2010, the taxane docetaxel was the first and only life prolonging agent for metastatic CRPC (mCRPC). The last decade has witnessed robust progress in CRPC therapeutics development. Abiraterone, enzalutamide, apalutamide and sipuleucel-T have been evaluated as first- and second-line agents in mCRPC patients, while cabazitaxel was approved as a second-line treatment. Radium-223 dichloride was approved in symptomatic patients with bone metastases and no known visceral metastases pre- and post-docetaxel. However, despite significant advances, mCRPC remains a lethal disease. Both primary and acquired resistance have been observed in CRPC patients treated by these new agents. It could be solely cell intrinsic or it is possible that the clonal heterogeneity in treated tumors may result from the adaptive responses to the selective pressures within the tumor microenvironment. The aim of this review is to list current treatment agents of CRPC and summarize recent findings in therapeutically resistance mechanisms.

© 2019 Editorial Office of Asian Journal of Urology. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author.
E-mail address: kpienta1@jhmi.edu (K.J. Pienta).
Peer review under responsibility of Second Military Medical University.
1 These authors contribute equally to this work.

https://doi.org/10.1016/j.ajur.2018.11.005
2214-3882/© 2019 Editorial Office of Asian Journal of Urology. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Prostate cancer (PCa) is the most common cancer and the second and third leading cause of cancer death in American and European men, respectively [1,2]. Approximately 160,000 new diagnoses of PCa and over 29,000 deaths are estimated to occur in the United States in 2018. In 2012, 400,000 European men were newly diagnosed with PCa out of a global 1.1 million new cases [3,4]. Though the reported incidence and mortality rate of PCa in Asian countries including China is much lower than in Western countries, the PCa incidence rate has increased rapidly in China with an annual 12.6% change since 2000 [5]. The 5-year survival rate of non-metastatic PCa is 98.9% (measured between 2005 and 2011), however, the rate in patients with metastatic PCa on initial diagnoses is less than 30% and remains low [2,6,7].

Metastatic patients present in two ways—with already disseminated disease at the time of presentation or with disease recurrence after definitive local therapy. Androgen deprivation therapy (ADT) is given as the most effective initial treatment to patients, however, after the initial response, almost all patients will eventually progress despite the low levels of testosterone in the systemic circulation following a median 18–24 months of ADT [8]. Disease at this stage is termed castration resistant PCa (CRPC). The median survival for CRPC is now in the range of 15–36 months, although exact survival rates vary depending on disease burden once a patient enters the state of castration resistance [9,10]. Terms such as hormone-resistant PCa or hormone-independent PCa were also used to describe this stage, but after it has been demonstrated that androgen receptor (AR) signaling still remains actively supporting the survival and growth of PCa cells, these terms have been largely abandoned [11]. The current official definition of CRPC by the European Association of Urology (EAU) guideline is biochemical progression (three consecutive rises in prostate-specific antigen [PSA], 1 week apart resulting in two 50% increases over the nadir and a PSA >2 ng/mL) or radiological progression (appearance of two or more new bone lesions on bone scan or a soft tissue lesion using Response Evaluation Criteria in Solid Tumors [RECIST] in the presence of serum testosterone <50 ng/dL or 1.7 nmol/L) [12].

The reasons why PCa progresses to castration resistance are still not fully understood. When mechanisms of resistance were delineated, many novel therapeutic approaches were successfully developed that improved survival. For example, “supra-castration” agents were developed once it was understood that ADT could not block all the androgen synthesis in a patient’s body despite an obvious drop in serum testosterone level. PCa cells can still get androgen support from an increased synthesis of androgens in the tumor microenvironment or from adrenal androgen precursors. In addition, a series of alterations of AR signaling have been observed, including increased AR expression, AR gene mutations (which cause ligand promiscuity and activation by glucocorticoids or even AR antagonists), and also AR variants that are constitutively active in absence of ligands [11,13–15].

Before 2010, the taxane docetaxel had been the first and only life prolonging agent for metastatic CRPC (mCRPC) [16]. The last decade has witnessed robust progress in CRPC therapeutics development. Five new drugs have shown efficiency in improving overall survival, leading to their licensing for the treatment of mCRPC. Abiraterone, enzalutamide and sipuleucel-T have been evaluated as first- and second-line agents in mCRPC patients, while cabazitaxel was approved as a second-line treatment. Apalutamide has recently been approved by United States Food and Drug Administration (FDA) for treatment of patients with non-metastatic CRPC (nmCRPC), which could also be promising for mCRPC treatment in the near future. Radium-223 dichloride (radium-223) was approved in symptomatic patients with bone metastases and no known visceral metastases pre- and post-docetaxel [15,17]. Though the armamentarium now holds many new weapons, we are still facing the challenges of when to choose what weapon and against which enemy. For example, approximately 15%–25% of patients with CRPC do not respond to first-line treatment with the “supra-castration” agents abiraterone or enzalutamide [18].

One of Dr. Donald S. Coffey’s most favorite and famous aphorisms was “If this is true, what does it imply?”. This philosophy inspires us to keep pursuing the underlying mechanism behind resistance. Despite significant advances, mCRPC remains a lethal disease. What does this imply? Dr. Coffey believed that dissecting tumor heterogeneity was a key to deciphering cancer therapeutic resistance. Resistance to a therapy could be solely cell intrinsic and, therefore, present in a treatment-naive setting (primary resistance), or it is possible that the clonal heterogeneity in treated tumors may result from the adaptive responses to the selective pressures within the tumor microenvironment (acquired resistance) [19,20]. How to precisely select therapies and arrange them in an appropriate order for a single patient based on the understanding of tumor heterogeneity and resistance mechanisms is one of the most important challenges for current CRPC treatment. The aim of this review is to list current treatment agents of CRPC and summarize recent findings in therapeutic resistance mechanisms.

2. Current treatment patterns for CRPC

As a member of the nuclear receptor superfamily of ligand-activated transcription factors, AR is a key regulator of normal prostate function as well as cancer development. For decades we have known that PCa cell proliferation is inhibited when low serum levels of testosterone and dihydrotestosterone (DHT) are maintained [21,22]. Many studies have revealed that AR regulated genes participate in various cellular processes that contribute to the initiation and progression of PCa [23].

Bilateral orchietomy is a traditional and still accepted cost-effective form of ADT with relatively few side effects [24]. In the 20th century, several androgen-axis targeting agents have been developed as alternatives to surgical castration. Subgroups include androgen biosynthesis inhibitors, agonists of the gonadotropin-releasing hormone (GnRH), and estrogens. Over the years, several chemotherapeutic agents and, in case of bone metastasis, bisphosphonates were applied in a complementary manner to ADT. However, oncologic outcomes remained poor. In 2004 the chemotherapeutic docetaxel was approved for
metastatic PCa, which marginally but significantly improved overall survival. Although the effect was moderate, it was the start of an arms race against CRPC. In a short time, more drugs were approved by the FDA such as GnRH antagonists, a new chemotherapy (cabazitaxel), bone-directed therapies (zoledronic acid, denosumab, radium-223), a new androgen biosynthesis inhibitor (abiraterone), new AR blockers (enzalutamide, apalutamide) and immunotherapy (sipuleucel-T). Table 1 presents an overview of current FDA approved therapies. Many more therapeutic agents are currently under clinical evaluation.

2.1. ADT

2.1.1. Estrogens

Estrogens inhibit testosterone production [21]. In clinical practice it lost popularity decades ago, mainly due to cardiovascular side-effects such as thromboembolic events [25]. In lower doses these events may occur less frequently and treatment costs are low compared to other forms of ADT, however in the currently increasing complexity of the therapeutic mCRPC landscape, it might be too late for a “comeback” into routine clinical practice [15,26–28]. It is argued that the parenteral administration of estradiol bypasses the hepatic first-pass effect and may reduce the risk of adverse effects. In a Scandinavian trial, the use of intramuscular administered polyestradiol phosphate (PEP) in mCRPC patients was found to be equally effective compared to continuous ADT. Although there was no significant increase in cardiovascular mortality in the PEP group compared to the ADT group, there was a significant increase in non-fatal cardiovascular events (p < 0.05) [29]. Transdermal estrogen administration is currently being investigated [30].

2.1.2. GnRH analogues

After the start of GnRH analogue therapy, testosterone production briefly increases as a result of stimulation of follicle-stimulating hormone and luteinizing hormone, also referred to as a flare, which can cause symptoms such as pain in men with a heavy disease burden. Through a feedback loop, GnRH receptors are then desensitized and downregulated. Until this effect is established, an AR

Table 1	Approved pharmacologic therapies in PCa.		
Agent name	Target	FDA approved year	
Chemotherapy	Estramustine	Anti-tubulin, lowering LH + FSH through competitive GnRH receptor binding	1981
	Mitoxantrone	DNA synthesis, DNA repair	1996
	Docetaxel	Anti-tubulin, AR signaling disruption	2004
	Cabazitaxel	Anti-tubulin	2010
Androgen deprivation therapy	Ketoconazole	CYP 17 inhibition	Non-FDA approved
	Abiraterone	CYP 17 inhibition	2011
	Leuprolrel	Lowering LH + FSH through desensitization of pituatory gland	1989
	Goserelin	Lowering LH + FSH through desensitization of pituatory gland	1989
	Histrelin	Lowering LH + FSH through desensitization of pituatory gland	1991
	Triptorelin	Lowering LH + FSH through desensitization of pituatory gland	2000
	Buserelin	Lowering LH + FSH through desensitization of pituatory gland	Non-USA
	Abarelix	Lowering LH + FSH through competitive GnRH receptor binding	2003
	Degarelix	Lowering LH + FSH through competitive GnRH receptor binding	2008
	Cyproterone	Competitive inhibition of AR	Non-USA
	Flutamide	Competitive inhibition of AR	1989
	Bicalutamide	Competitive inhibition of AR	1995
	Nilutamide	Competitive inhibition of AR	1996
	Enzalutamide	Competitive inhibition of AR	2012
	Apalutamide	Competitive inhibition of AR	2018
Bone health agent	Pamidronate	Inhibition of bone resorption	1991
	Zoledronic acid	Inhibition of bone resorption	2003
	Denosumab	RANKL-antibody	2010
Bone-directed agent	Radium-223 dichloride	Hydroxyapatite osteoblastic bone metastases	2013
Immunotherapy	Sipuleucel-T	Prostatic acid phosphatase	2010
	Pembroluzimab	PD-1 receptor of lymphocytes in MSI-H patients	2017

FDA, United States Food and Drug Administration; LH, luteinizing hormone; FSH, follicle-stimulating hormone; GnRH, gonadotropin-releasing hormone; AR, androgen receptor; CYP, cytochrome P450; RANKL, receptor activator of nuclear factor kappa-B ligand; PD-1, programmed cell death protein 1; MSI-H, microsatellite instablility-high; PCa, prostate cancer.

* Off-label used in second line, but not approved.

* Used outside of USA, but not available in USA, so not FDA-approved.
antagonist, such as bicalutamide, may be prescribed to counter a flare and the associated clinical consequences [31]. GnRH analogues remain the most prescribed first-line therapy for metastatic PCa [12,15,32]. The continuous use of GnRH analogues with an AR antagonist has been termed continuous androgen blockade (CAB).

2.1.3. GnRH antagonists
Abarelix and degarelix antagonize the GnRH receptor, causing a direct inhibitory effect on testosterone metabolism. Therefore, no concomitant use of an AR blocker is necessary with this form of ADT [33].

2.1.4. Androgen biosynthesis inhibitors
CYP17A1, belonging to the cytochrome P450 family, is found in nearly all steroidogenic tissues. This enzyme has both 17α-hydroxylase activity and 17,20-lyase activity. CYP17A1 inhibitors antagonize the production of testosterone and DHT [34]. Ketoconazole, mainly used as a systemic antifungal agent, is a CYP17A1 inhibitor. Due to hepatotoxic side effects and low impact on survival, the off-label use as second-line ADT in PCa has disappeared from clinical practice [32,35]. A new CYP17A1 inhibitor, abiraterone, was FDA approved as first- and second-line therapy in mCRPC [36–38]. The COU-301 trial compared the use of abiraterone and prednisone 10 mg with placebo and prednisone 10 mg in patients with progression after prior treatment with ADT and docetaxel. Abiraterone improved survival compared to placebo (15.8 months vs. 11.2 months, respectively). Additionally, time to PSA progression and progression-free survival were improved in the abiraterone group [39]. The COU-302 trial evaluated abiraterone with prednisone in patients that showed progression under ADT, but had no prior treatment with docetaxel. Overall survival in the abiraterone group was 34.7 months versus 30.3 months in the placebo group. The most common grade 3–4 adverse events were cardiac disorders (8% in abiraterone vs. 4% in placebo group), hepatotoxicity (6% vs. <1%) and hypertension (5% vs. 3%) [40]. Concomitant administration of prednisone helps to prevent side effects related to accumulation of upstream mineralocorticoids such as hypertension, hypokalemia and fluid retention [41]. The LATITUDE study tried the addition of abiraterone plus prednisone 5 mg to ADT compared with ADT alone in newly diagnosed high-risk metastatic PCA patients. After 30.4 months ADT plus abiraterone and prednisone significantly improved survival and secondary outcomes [42]. The same improvement has been demonstrated in the STAMPEDE study, although the patients included had different tumor characteristics [43]. With the acceptance of abiraterone as treatment of early stage disease, head-to-head comparisons of drugs and specific combinations and sequences have become even more important.

2.1.5. Androgen receptor blockers
Competitive binding to the AR inhibits the proliferative effect of the AR pathway. There are two types of AR blockers: Steroidal (cyproterone acetate) and non-steroidal, including flutamide, bicalutamide, enzalutamide and apalutamide. Cyproterone acetate was the first steroidal AR blocker used to treat advanced PCa in Europe. It competes with androgens for binding to the AR and has anti-gonadotropic capacity as well. However, many severe adverse events have been observed with the use of cyproterone acetate (cardiovascular complications, liver failure, etc.), and that largely limits its clinical use [44,45]. On the other hand, many non-steroidal AR blockers have demonstrated high efficacy in treatment, as well as good drug tolerance.

While bicalutamide, nilutamide and flutamide were utilized in conjunction with GnRH inhibitors and were not approved in the mCRPC setting, newer agents bind AR with greater affinity, changing the landscape of treatment. Enzalutamide, approved as first- and second-line therapy in mCRPC, targets the AR with higher affinity compared to bicalutamide and also inhibits nuclear translocation, DNA-binding and recruitment of coactivators [46]. In the AFFIRM trial, patients that were treated with enzalutamide after progression under chemotherapy had a better overall survival than placebo (18.4 months vs. 13.6 months respectively; p < 0.001). All secondary endpoints, such as PSA response, soft-tissue response (following RECIST), progression-free survival and time to first skeletal-related event were significantly improved by enzalutamide. In the enzalutamide group five seizures occurred (0.6%). Other adverse events more common in that group were: Fatigue, diarrhea, musculoskeletal pain and hot flashes [47]. The seizures are thought to be caused by inhibition of gamma-aminobutyric acid A (GABA-A) receptors in the brain [48]. Recent post hoc analysis of the TERRAIN trial evaluating chemo-naive mCRPC patients demonstrated that more adverse effects occur in patients older than 75 years compared to younger patients [49]. Elderly patients on enzalutamide had a higher incidence of atrial fibrillation (12.1% vs. 0.8%), urinary tract infection (20.7% vs. 2.4%), falls (12.1% vs. 4.0%) and decreased appetite (15.5% vs. 6.4%). Therefore, caution is advised when prescribing AR blockers to patients older than 75 years that are already prone to falls or have cardiovascular comorbidity.

Recently the FDA approved apalutamide, also a second-generation AR antagonist with similar effects as enzalutamide, for nmCRPC. The phase III trial (SPARTAN) compared 806 nmCRPC patients on apalutamide with 401 placebo controls. Non-metastatic was determined as a negative technetium-99m bone scan and negative CT scan. CRPC was defined as PSA-doubling in 10 months or less under continuous ADT (bilateral orchiectomy, GnRH analogues or GnRH antagonists). The primary endpoint was median metastasis-free survival (MFS) [50]. The MFS was 40.5 months in the apalutamide group versus 16.2 months in placebo with a hazard ratio (HR) of metastasis or death of 0.28 (95% confidence interval (CI), 0.23–0.35; p < 0.0001). The time to symptomatic progression was longer with apalutamide than with placebo (HR, 0.45; 95% CI, 0.32–0.63; p < 0.001). Apalutamide was associated with higher rates of grade 3–4 adverse event than placebo (45.1% vs. 34.2%, respectively). Most common were fatigue (30.4% vs. 21.1%), rash (23.8% vs. 5.5%), falls (15.6% vs. 9.0%), fracture (11.7% vs. 6.5%), hypothyroidism (8.1% vs. 2.0%) and seizure (0.2% vs. 0%) [51]. In 2017 phase II results were published of the mCRPC study arm that compared the use of apalutamide with (n = 25) and without (n = 21) prior abiraterone plus prednisone (AAP). PSA response rates after 12 weeks were 88% for AAP-naïve patients and 22% in patients that were
treated with AAP. Median time to progression was 18.5 and 3.8 months, respectively. While awaiting for phase III results, these data suggested that apalutamide may be effective in early stage CRPC [52].

2.2. Chemotherapy

Cytotoxic therapy has an important role in the treatment of metastatic disease. Benefits include increase in time to progression, symptom relief, and overall survival [53–55]. After docetaxel was approved in 2004, estramustine and mitoxantrone (improved symptom relief only) fell into abeyance. Docetaxel is a taxane that stabilizes microtubules. During the process of mitosis these filaments divide the chromosomes evenly. By binding the β-tubulin dimers, docetaxel prevents the separation of chromosomes, triggering mitotic arrest and subsequent apoptosis [56]. Additionally, docetaxel disrupts AR signaling [57]. The initial response rate to docetaxel is 45%–50% [16,58,59]. In the TAX 327 trial, docetaxel with prednisone prolonged median survival of patients that had progressed under ADT compared to mitoxantrone with prednisone (19.2 months vs. 16.3 months, respectively; p = 0.004).

In metastatic but hormone naïve patients, the role of docetaxel in the earlier, advanced stage of PCa was studied in the CHAARTED trial [60]. The effect of ADT was compared with ADT plus docetaxel. Adding docetaxel to ADT in this early stage improved overall survival (57.6 months vs. 47.2 months for ADT alone; HR, 0.72; 95% CI, 0.59–0.89; p = 0.0018). With additional analysis, improvement in survival was seen only in high-volume disease defined as presence of visceral and/or ≥ four bone metastases (51.2 months vs. 34.4 months with only ADT; p = 0.001). In low-volume disease no survival benefit was observed, however, the study was not powered for these subgroup analyses [61].

The multi armed STAMPEDE study compared standard of care (ADT and optional local RT if applicable) with and without docetaxel. A median overall survival of 81 months with docetaxel was reported versus 71 months with standard of care (p = 0.022). Grade 3–5 adverse events occurred in 52% in the docetaxel group versus 32% in the control group [62]. Other recently published data from the STAMPEDE investigators on hormone-naïve and advanced PCa, compared standard of care with prednisone plus either abiraterone or docetaxel. No difference in overall or PCa-specific survival was found. The occurrence of symptomatic skeletal and severe adverse events were similar [63].

Cabazitaxel, another taxane, was approved in 2010 after the TROPIC trial. In mCRPC patients that had ADT and showed progression under docetaxel, it compared cabazitaxel (25 mg/m² every 3 weeks) with prednisone versus mitoxantrone with prednisone. Overall survival was 15.1 months on cabazitaxel versus 12.7 months on mitoxantrone. PSA response in the cabazitaxel group was 39.2% vs. 17.8%. Common adverse events of cabazitaxel were febrile neutropenia (9%) and diarrhea (47%) [64]. The PROSELICA trial demonstrated non-inferiority of a lower dose, 20 mg/m² every 3 weeks. The median survival in the 20 mg/m² dose group was 13.4 months versus 14.5 months when on 25 mg/m². The lower dose group had worse secondary outcomes, such as PSA response 29.5% versus 42.9% on 25 mg (p = 0.001). Grade 3–4 adverse events after low dose were 39.7% versus 54.5% after high dose. Neutropenia occurred in 66.6% in low dose versus 88.6% in high dose [65]. Prior use of abiraterone does not seem to impact the response to cabazitaxel [66]. A phase II trial reported a 34.9% PSA response rate in a 10 mg/m² weekly treatment schedule and reported a lower toxicity, 14.2% neutropenia and 35.7% diarrhea [67].

2.3. Immunotherapy

In 2010 the first active cellular immunostimulant, sipuleucel-T, was approved as a first-line therapy for non-to minimally-symptomatic mCRPC [68–70]. Mononuclear blood cells are harvested through leukapheresis. The cells, including antigen-presenting cells, are activated with the antigen prostatic acid phosphatase (PAP) and granulocyte-macrophage colony stimulating factor ex vivo. The autologous, activated product is reinfused three times [71]. The IMPACT trial demonstrated a 4.1-month increase in overall survival in the sipuleucel-T group (25.8 months vs. 21.7 months in placebo). HR for death in the sipuleucel-T group was 0.78 (95% CI, 0.61–0.98; p = 0.03). Grade 3–5 adverse events were equal compared to the placebo-group. Overall events that occurred significantly more frequent included chills, fever and headache [72,73].

The IgG4-antibody pembrolizumab was recently FDA approved for all mismatch repair (MMR) deficient tumors. Although more common in gastro-intestinal and endometrium cancer, literature on MMR deficiency in metastatic PCa suggests an incidence rate of 2%–12% [74–76]. Pembrolizumab inhibits the programmed cell death protein 1 (PD-1) on T-lymphocytes. MMR deficient tumors can activate the PD-1 receptor, which functions as an autoimmune suppressor, thereby causing the immune system to tolerate the tumor [77,78]. For PCa, the outcomes of a phase I study reported an overall response rate of 13% [78]. Preliminary data of a phase II trial showed that 20% of mCRPC patients had a PSA decrease when pembrolizumab was added to enzalutamide after progression [77]. Only in one of two exceptional responders was evidence of MMR deficiency found.

2.4. Bone health agents

Bisphosphonates, like pamidronate and zoledronic acid, can inhibit osteoclast activity. They affect cell survival and cytokoskeletal dynamics. A study by Saad et al. [79], demonstrated fewer skeletal-related events (SRE) in mCRPC treated with zoledronic acid compared to placebo (33.2% vs. 44.2% respectively, p = 0.021). However, a randomized controlled trial (n = 1 904) compared it to the antibody denosumab (approved in 2010), in which the latter showed a delay in on-study SRE (17.1 months vs. 20.7 months on zoledronic acid; HR, 0.82; 95% CI, 0.71–0.95; p = 0.0002 for non-inferiority; p = 0.008 for superiority) [80]. The total numbers of adverse events were equal (both 97%), but the denosumab group had more serious events (63% vs. 60%) such as hypocalcaemia (13% on denosumab vs. 6% on zoledronic acid; p < 0.0001). In this study the
occurrence of osteonecrosis of the jaw (ONJ), a severe side effect of treatment with denosumab or bisphosphonates in oncologic doses, did not differ significantly between the denosumab group (2%) and the zoledronic acid group (1%, \(p = 0.09 \)). This corresponds with the risk of developing ONJ in oncologic patients in the literature \([81]\). The therapeutic target of denosumab, RANKL, is an essential protein for formation, function, and survival of osteoclasts. The addition of radium-223 to denosumab seems to improve overall survival 2 months, without difference in adverse events. However, a survival benefit of denosumab alone has not been reported \([82–84]\). The addition of zoledronic acid to docetaxel has no proven benefit \([62]\). A retrospective cohort showed that concomitant use of denosumab (42.4%) or zoledronic acid (21.3%) with other relatively new agents is common clinical practice for CRCP. Sipuleucel-T was most often combined with denosumab and cabazitaxel with zoledronic acid \([84]\).

2.5. Radionuclide therapy

Radium-223 dichloride is an \(\alpha \)-particle emitter. It selectively targets areas of bone turnover, i.e. bone metastases, as it gets built into hydroxyapatite as a calcium substitute. The emitted high energy \(\alpha \)-particles radiate within 100 \(\mu \)m and induce irreversible DNA double-strand breaks \([85,86]\). In 2013 the ALSYMPCA-trial compared placebo versus radium-223 in addition to standard of care. The included castration-resistant patients had two or more bone symptomatic nodes and no visceral metastases. The radium-223 group had an improved overall survival of 3.6 months (14.9 vs. 11.3) with a HR of 0.70 (95% CI, 0.58–0.83; \(p < 0.001 \)) \([87]\). The effect of radium-223 on overall survival compared to placebo was more outspoken without prior docetaxel-use, but in both groups a significant effect was seen. There were more adverse events after docetaxel use (62% after docetaxel, 54% no prior docetaxel). Events were mostly hematological side effects, specifically thrombocytopenia occurred more often after prior usage of docetaxel (9% vs. 3%) \([88]\).

3. Therapeutic resistance in CRPC

3.1. Mechanisms of resistance to new generation hormonal therapies

As introduced above, abiraterone acetate can effectively block CYP17A1, inhibiting androgen synthesis, whereas enzalutamide, as a potent AR inhibitor, can reduce nuclear translocation of the AR complex and subsequent DNA binding. If primary resistance is defined as a treatment failure within the first 3 months after initiation, the primary resistance rates of abiraterone and enzalutamide in CRPC patients are about 15% and 25%, respectively. Acquired resistance typically develops after 9–15 months of treatment with either agent \([18]\). Generally, the mechanisms of abiraterone and/or enzalutamide resistance can be summarized in three main categories: AR driven mechanisms, AR bypass mechanisms and AR independent mechanisms (Table 2).

3.1.1. AR driven mechanisms

In some CRPC patients treated by abiraterone and/or enzalutamide, AR signaling is still playing an active role in supporting PCA cell survival that can be up-regulated by: 1) Androgen biosynthesis, 2) AR amplification/overexpression and stabilization, 3) AR mutation, and/or 4) AR splice variants.

Table 2 Mechanisms of resistance to new generation hormonal therapies.

AR driven mechanisms	AR bypass mechanisms	AR independent mechanisms
Androgen biosynthesis up-regulation	By glucocorticoid receptor	Neuroendocrine differentiation
AR amplification/overexpression	By progesterone receptor	Crosstalk with other pathways
AR stabilization		
AR mutation		
AR splice variants		

AR, androgen receptor.
intratumoral androgen levels and reactivating AR signaling in abiraterone-treated CRPC tumors.

3.1.1.2. AR amplification/overexpression and stabilization. The AR gene is located on chromosome Xq11–12. AR is a 110-kDa nuclear protein that contains 918 acid residues and binds the androgen response element (ARE) [98]. Increased copy number and expression of AR may increase AR responses to low androgens levels. About 80% of CRPC patients showed high levels of AR expression [99]. A study showed that in CRPC patients who had disease progression during treatment with abiraterone, enzalutamide or other therapy, 45% had AR overexpression. It was demonstrated that AR overexpression was much more common in the enzalutamide group compared to the abiraterone group (53% vs. 17%) [100]. Another study showed that high level of AR expression before treatment was related to poor prognosis when treated with enzalutamide [101]. One mechanism that may contribute to AR overexpression is the upregulation of retinoic acid receptor-related orphan receptor γ (ROR-γ), which can promote AR expression by recruiting the AR coactivators SRC-1 and SRC-3 [102]. On the other hand, at low androgen levels, HER2 and HER3 may play a role in stabilizing the AR and promote binding to ARE. It has been demonstrated that HER2 stabilizes AR protein through PI3K/AKT signaling. Also, enhanced treatment responses were observed in xenograft models blocking HER2 using lapatinib in combination with abiraterone [103,104].

3.1.1.3. AR mutation. Clonal selection of tumor cells can determine the expansion of both AR somatic mutations and aberrant transcription. AR mutations occur in approximately 12%–48% of CRPC patients receiving enzalutamide or abiraterone [99,105]. Romanel et al. [106] found that outcomes with abiraterone were much better in patients who had the wild-type AR gene than in those who had AR mutations by looking at circulating tumor DNA (ctDNA). In a recent study, Wyatt et al. [105] also found that the detection of AR amplification and heavily mutated AR in ctDNA from patients treated with enzalutamide was associated with worse progression-free survival. There are three different types of mutations in the ligand-binding domain (LBD) of AR that are relatively well studied. The first is the F876L mutation that was found both in cell lines and patient samples treated with enzalutamide that could convert enzalutamide and apalutamide from an antagonist into a partial agonist [107–109]. With this mutation, these two agents are actually activating AR instead of inhibiting it. The antiandrogen withdrawal syndrome (AAWS) is defined as a further significant (>50%) reduction in PSA values after the discontinuation of antiandrogen therapy, which can be explained by AR mutations shifting the antiandrogen activity from antagonist to agonist. Several studies have reported AAWS after discontinuation of abiraterone or enzalutamide [110–112]. The second one is the L701H mutation that results in activation of the AR by glucocorticoids such as prednisone [113]. As mentioned above, since prednisone is recommended to be given with abiraterone, this mutation may contribute to the resistance to abiraterone. The third one is the mutation of T877A and T878A that causes AR activation by progesterone [91,113]. Since serum level of progesterone is increased during treatment with abiraterone, this mutation may play a role in abiraterone resistance [114]. Recently, Liu et al. [115] performed molecular dynamics simulations to generate an ensemble view of the dynamic properties and binding mechanism of enzalutamide with wild type (WT)/mutant ARs. They found that helix 12 (H12), which lies on the top of the AR LBD like a cover, plays an important role for the function of enzalutamide. Enzalutamide will act as an AR antagonist when its C-ring locates near to H12, however, it will become an agonist when the C-ring is near to helix 11 or the Loop 11–12.

3.1.1.4. AR splice variants (AR-Vs). Many alternatively spliced AR-Vs lack the C-terminal LBD, but retain the transactivating N-terminal domain, leading to constitutive activation in the absence of ligands [116]. AR-V7 and AR-V567 are the most common variants found in CRPC patients. The expression level of AR-V7 is higher in mCPRC patients (15%) compared to hormone naive ones, and it can increase under the use of either abiraterone (55%) or enzalutamide (50%), which implies that both primary and acquired resistance to these agents could be associated with AR-V7 [117–119]. Antonarakis et al. [120] first reported the analysis of AR-V7 with a circulating tumor cell (CTC) assay to predict the response of abiraterone or enzalutamide. The results demonstrated a significantly worse response and treatment outcome in patients who harbored AR-V7 in their CTCs. Later, it was shown that it is feasible to detect AR-V7 mRNA transcript in whole blood without the CTC enrichment step, and AR-V7 protein level by immunohistochemistry (IHC) in patient biopsy samples and CTCs [121–123]. Positive AR-V7 status or high expression level was associated with worse treatment outcomes in all these studies. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling has been implicated in mediating resistance to enzalutamide by increasing AR-Vs expression in PCA cells [124,125]. Downregulation of NF-κB/p52 can regain the sensitivity to enzalutamide. A recent study identified AR-V-preferential binding sites (ARVPBS) and a series of genes preferentially transactivated by AR-Vs in CRPC cells by integrated chromatin immunoprecipitation coupled sequencing (ChIP-seq) and RNA sequencing (RNA-seq) analysis [126]. They found ARVPBS exclusively overlapped with AR binding sites in castration-resistant tumors in patients and AR-V preferentially-activated genes were upregulated in abiraterone resistant patient specimens. It still remains unclear if AR-Vs directly contribute to resistance or simply are an indicator of a tumor under stress as it tries to evolve around androgen inhibitors.

3.1.2. AR bypass mechanisms

The glucocorticoid receptor (GR) has been identified as a crucial mechanism to bypass AR blockade by abiraterone or enzalutamide [127,128]. Because of the shared response elements with AR in multiple gene targets, GR is able to drive expression of those genes independent of AR. Arora et al. [127] found that GR expression was upregulated in 30% of patient tumors after 8-week
enazalutamide treatment compared to only 10% before therapy, and higher levels of the GR protein were associated with worse outcomes. A recent study also showed that GR is significantly increased upon long-term abiraterone or enzalutamide treatment in the majority of preclinical models, and patients with high GR experience shortened progression-free survival [129]. As glucocorticoids (like prednisone) are currently widely used in combination with docetaxel, cabazitaxel, and abiraterone to treat mCRPC patients, simultaneous application of GR antagonists is being studied. Similarly, the progesterone receptor (PR) and AR have 88% sequence homology in the LBD and share response elements in multiple gene targets [130,131]. Since both serum levels of progesterone and expression of PR are increased in mCRPC patients, and it has been shown that high PR expression in PCa cells is an independent poor prognostic factor, PR has been identified as another potential mechanism to bypass AR blockade by abiraterone or enzalutamide.

3.1.3. AR independent mechanisms

Neuroendocrine PCa (NEPC) is increasingly recognized as a subset of CRPC that demonstrates resistance to both abiraterone and enzalutamide by shedding its dependence on the AR pathway and acquires histological features of neuroendocrine differentiation (NED) [132–134]. In newly diagnosed PCa, the percentage of NEPC is <2%. However, 20%–25% of patients with mCRPC treated with next generation hormonal therapy relapse with tumor cells that have at least partial features of NED [135]. NEPC is recognized by the expression of biomarkers such as chromogranin A (CHGA), neuron-specific enolase (NSE) and synaptophysin (SYP), while not expressing luminal prostate differentiation markers such as PSA [136–138]. Because of this, NEPC is often suspected in patients with increasing disease burden despite low or moderately rising PSA levels. Recently, Wang et al. [139] observed high levels of NSE and CHGA in enzalutamide-resistant xenografts. The study demonstrated a positive feedback loop between NED in CRPC and tumor-associated macrophages (TAMs). Enzalutamide can elevate high mobility group box 1 (HMGB1) levels and enzalutamide-induced HMGB1 expression can facilitate TAM recruitment and polarization and drive NED via β-catenin stabilization. Interleukin-6 (IL-6) secreted by HMGB1 can augment NED and directly promote HMGB1 transcription by STAT3.

Several pathways other than AR signaling have been suggested to play a role in abiraterone or enzalutamide resistance. Many studies have confirmed that the PI3K-akt-mTOR signaling pathway is strongly related to PCa progression [140,141]. AR and PI3K/akt pathways are involved in reciprocal feedback regulation, which means inhibition of one pathway will activate the other, providing a potential mechanism of resistance to AR inhibitors [141]. Both preclinical and early clinical data demonstrated that the combination use of AKT inhibition and abiraterone/prednisone may improve the treatment outcome, particularly in those with PTEN loss [141,142]. Wang et al. [143] recently published whole-exome sequencing and RNA-seq data from metastatic lesions before initiating abiraterone/prednisone in mCRPC patients. They found that genes in the Wnt/β-catenin pathway were more frequently mutated in non-responders and mRNA expression of cell cycle regulatory genes was increased in non-responders. Interestingly, Wnt/β-catenin signaling and therapeutic resistance have also been reported in many other cancer types. Another recent study by Pal et al. [144] identified the transforming growth factor β (TGFβ) and cyclin D1 (CCND1) signaling pathways as significantly upregulated in drug resistant CTCs in mCRPC patients who received abiraterone or enzalutamide.

3.2. Chemoresistance

Chemoresistance to the taxanes still remains an area that is poorly understood and underexploited in the treatment of PCa.

3.2.1. Multi drug resistance transporters

Docetaxel and cabazitaxel binding to free tubulin takes place in the cytoplasm and adequate intracellular concentrations are important to stabilize the microtubules [57]. Membrane proteins transport docetaxel from extra to intracellular, and vice versa. Downregulation of influx transporter activity or upregulation of efflux transporters can play a crucial role in taxane efficacy.

3.2.1.1. Efflux transporters. Multidrug resistance (MDR) transporters of the adenosine triphosphate binding cassette (ABC) family drive chemoresistance. These transporter proteins can promote the efflux of multiple drugs, e.g. docetaxel, causing intracellular concentrations and subsequent efficacy to decrease. Higher expression of ABC transporters is related to disease progression [145–148]. P-glycoprotein (P-gp) is a well-known MDR protein and is encoded by the mdr1/ABCB1 gene. Docetaxel is a known ligand for the P-gp and this knowledge aided the development of cabazitaxel that has a lower affinity for P-gp. P-gp itself has gained interest as a potential therapeutic target [149]. Preclinical data suggest that ABCB1 expression might play a key role in cross resistance of cabazitaxel after docetaxel and inhibition of ABCB1 resensitizes cell lines to cabazitaxel [150].

3.2.1.2. Influx transporters. The organic anion-transporting polypeptide (OATP) is an SLCO-encoded membrane protein, and that can transport androgen. In PCa, SLCO genes are highly expressed and genetic variants (SLCO1B3 and SLCO2B1) are associated with worse outcomes [152]. de Morree et al. [153] determined intracellular concentrations of docetaxel and cabazitaxel in patient-derived xenograft mouse models to further evaluate the role of SLCO in mCRPC. SLCO1B3 was significantly downregulated in a docetaxel-resistant tumor, while overexpression was related to higher intracellular concentrations, suggesting that loss of SLCO1B3 may drive drug resistance through decreased influx.

3.2.2. Apoptotic escape

The cytotoxic effect of taxanes relies on the cell’s response to mitotic arrest and proceeding to apoptosis [56].
However, if the cell survives an oncogenic effect may occur. The BCL-2 family consists of pro- and anti-apoptotic proteins. Bcl-2 is an inhibitor of apoptosis. Expression of this mitochondrial membrane protein is associated with cell survival [154]. Yoshino and others [155–157] discussed how upregulation of the anti-apoptotic Bcl-2 protein may predict poor outcomes of PCa and may predict response to taxanes. Additionally, phenotypic variants can prevent activation of the apoptotic pathway. For example, altered forms of the binding site can counter the effect of docetaxel on the tubules. The microtubules are not stabilized and mitotic arrest followed by apoptosis will not occur. High expression of the tubulin isomer III is correlated with impaired docetaxel-binding and worse outcomes in patients on docetaxel therapy [155,158,159].

3.3. Resistance against other therapies

Overall, resistance to PCa therapies remains poorly understood. Since data suggest that prior therapies may affect the response to secondary treatment, i.e., cross resistance, the field needs to better understand how the order and duration of each therapeutic affects downstream treatment [17,160]. In addition, there is an increasing appreciation that the tumor microenvironment plays a critical role in how a tumor responds to a therapeutic attack [161].

3.3.1. Mechanisms of resistance to immune checkpoint inhibitors

The past few years has witnessed rapid clinical progress in the field of immune checkpoint inhibitors. Blocking the cytotoxic T lymphocyte-associated protein 4 (CTLA-4) and/or the programmed cell death ligand 1 (PD-1/PDL-1) pathway using monoclonal antibodies has resulted in unprecedented rates of long-lasting treatment responses in patients with different cancer types by releasing negative regulators of immune activation that limit antitumor responses [162–164]. Several early clinical trials demonstrated that mCRPC seemed to have an intrinsic resistance to immune checkpoint blockade [165,166]. Recently, trials applying checkpoint inhibitors in selected mCRPC patients or in combination with other drugs have started to show favorable results in survival improvement [77,78]. A recent review summarized three main mechanisms of resistance to immune checkpoint inhibitors: 1) Insufficient generation of antitumor T-cells (lack of sufficient or suitable neo-antigens, impaired processing or presentation of tumor antigens and impaired intratumoral immune infiltration), 2) inadequate function of tumor-specific T cells (impaired interferon γ signaling, metabolic/inflammatory mediators, immune suppressive cells and alternate immune checkpoints), and 3) impaired formation of T-cell memory (severe T-cell exhaustion and T-cell epigenetic changes) [167].

Many studies have found that the intratumoral T-cell infiltration of PCa is generally low, which may be one of the intrinsic resistance mechanisms [168]. Lack of suitable neo-antigens and alterations in antigen processing and/or presentation is associated with impaired antitumor immune response. Mutational burden is a tumor-intrinsic feature correlated with antitumor immune response. Tumor types with high mutation burdens, such as melanoma, lung cancer and urothelial cancer, are among those with highest response rates to checkpoint inhibitors [169,170]. For the same reason, DNA-MMR deficiency leading to microsatellite instability (MSI) is associated with enhanced response to PD-1 blockade [171]. Unfortunately, MMR deficiency is present in only 2%–12% of mCRPC patients [74–76].

Myeloid-derived suppressor cells (MDSCs) are known to play important roles in tumor immune evasion [172]. It has been shown that the abundance of circulating MDSCs correlates with PSA levels and metastasis in PCa patients [173,174]. Last year, Lu et al [175], demonstrated that robust synergistic responses could be achieved in mCRPC mouse models when immune checkpoint blockade (anti-CTLA4 and anti-PD1) was combined with MDSC-targeted therapy (caboazantinib and BEZ235), while the single use of either one of them engendered only modest efficacy.

3.3.2. Cross resistance

According to the approved drug list (Table 1) it seems that even if an mCRPC patient suffers disease recurrence during or after first-line treatment, he will still have many options. However, it is still unknown if the deployment of subsequent treatments may be negatively affected by initial treatment choice. It has been reported that cross resistance exists between abiraterone and enzalutamide. This means that if one is used as first-line treatment and fails, then the other’s efficacy will largely be decreased in second line [176,177]. The rate of response to abiraterone after treatment with enzalutamide is less than 10%, whereas the response rate for enzalutamide after abiraterone is 15%–30%. Though few studies have proved underlying mechanisms of this cross resistance, AR mutation and AR-Vs acquired during the first-line treatment may contribute to the resistance of second agent.

Both abiraterone and enzalutamide have a cross resistance effect on docetaxel [178]. However, interestingly, though both docetaxel and cabazitaxel are taxanes, cabazitaxel seems to retain its antitumor activity in mCRPC progressing after docetaxel, abiraterone or enzalutamide [179]. Preclinical evidence has also shown impaired efficacy of docetaxel in abiraterone- and enzalutamide-resistant cell lines. The potential mechanism is that the taxanes inhibit tubulin-dependent AR nuclear translocation [180]. A recent preclinical study used docetaxel-resistant cell lines to test response to cabazitaxel [150]. They found that docetaxel resistance conferred cross-resistance to cabazitaxel via increased expression of ABCB1, a drug efflux pump. Inhibition of ABCB1 function by the small molecule inhibitor can re-sensitize taxane-resistant cells to cabazitaxel treatment.

4. Summary and strategies to overcome the resistance

Currently, the diverse heterogeneity of CRPC still results in lethal disease. Though PCa becomes resistant to every known therapy, many new agents and strategies are under investigation. For example, seviteronel (VT-464) is a non-steroidal 17, 20-lyase inhibitor that has higher selectivity for the inhibition of 17, 20-lyase over hydroxylase. Compared to abiraterone, the interference with
corticosteroid production is reduced [181]. Darolutamide (ODM-201) is an AR antagonist with higher affinity to the AR than enzalutamide or apalutamide. It can inhibit mutated AR (AR F877L, H875Y/T878A, and F877/T878A mutants) associated with enzalutamide resistance [182]. EPI-506 (ralaniten acetate) is a first-in-class small molecule transcription inhibitor of the AR N-terminal domain that just passed phase I and phase I-II trial last year [183]. Preclinical studies have demonstrated its activity against both full length and resistance-related AR species, including AR-V7. BRD4 is a bromodomain and extraterminal (BET) family protein that is a critical AR coregulator. Preclinical studies have demonstrated that BRD4 expression is associated with patient outcome and BET inhibitors can reduce AR splicing and AR-V7 expression by regulating alternative splicing, abrogating AR signaling and inhibiting growth of CRPC patient derived models [184,185]. Bipolar androgen therapy (BAT) is based on the hypothesis that a low testosterone environment and AR overexpression will induce vulnerability of CRPC cells to supraphysiological levels of androgens that can inhibit growth and promote cell death [186,187]. Testosterone injections and concurrent ADT are used to obtain rapid cycling between extremes of high and low levels of testosterone. A phase III study applying BAT and enzalutamide to mCRPC patients is ongoing. The frequency of germline DNA repair alterations in unselected men with advanced PCA is about 12%. The poly (adenosine diphosphate ribose) polymerase (PARP) inhibitor olaparib (AZD-2281) has been shown to offer high response rates in patients who no longer responded to standard treatments for mCRPC and have defects in DNA repair genes [188–190]. Immune checkpoint inhibitors are in multiple trials now, especially among mCRPC patients with DNA MMR deficiency and/or MSI-high. Prostate specific membrane antigen (PSMA) is a transmembrane glycoprotein overexpressed in PCas. The degree of PSMA expression positively correlates with tumor stage and is significantly increased in mCRPC. Lutetium-177 [177Lu]-PSMA-617 (LuPSMA), is a small molecule inhibitor that binds with high affinity to PSMA. The short-range 1 mm path length of the β-particle emitted by 177Lu enables effective delivery of radiation to the cancer while minimizing damage to surrounding normal tissues. Several clinical trials have demonstrated that this novel therapy is well tolerated and effective with 45%–57% of patients achieving a PSA decline of 50% or more [191–193]. Besides innovating new therapeutics, exploring the combination and sequential use of existing agents is also of great importance. Many promising clinical trials are ongoing, which aim to compare two agents head-to-head or identify a certain combination or sequence of agents. For example, there are clinical trials investigating the efficacy of enzalutamide with or without abiraterone and prednisone (NCT01949337) and enzalutamide with or without atezolizumab (NCT03016312) in mCRPC patients. In CRPC patients with bone metastasis, enzalutamide with or without radium-223 (NCT02194842) and abiraterone with or without radium-223 (NCT02043678) are being tested [160,194]. A consensus on mCRPC drug sequencing was recently made by 61 multidisciplinary cancer physicians and scientists from 21 countries [195]. Fig. 1 demonstrates an example of sequenced therapies for a patient with CRPC in 2018.

Figure 1 A potential sequence of therapies for mCRPC patients in 2018. In mCRPC, the first-line treatment options include: Abiraterone, enzalutamide, sipuleucel-T or docetaxel. Additional options include: Bone anti-resorptive therapy with denosumab or zolendronic acid, and immunotherapy with pembroluzimab after DNA sequencing for DNA-MMR and MSI. If symptomatic bone metastases without organ involvement are present, radium-223 can be added. Cabazitaxel can be chosen as a second-line chemotherapy. MMR, mismatch repair; MSI, microsatellite instability; mCRPC, metastatic castration-resistant prostate cancer.

Author’s contribution

Study concept and design: Wei Xue, Theo M. de Reijke and Kenneth J. Pienta.

Data acquisition: Liang Dong and Richard C. Zieren.

Data analysis: Liang Dong and Richard C. Zieren.

Drafting of manuscript: Liang Dong and Richard C. Zieren.

Critical revision of the manuscript: Wei Xue, Theo M. de Reijke and Kenneth J. Pienta.

Conflicts of interest

The authors declare no conflict of interest.

Acknowledgments

Liang Dong is supported by Shanghai Natural Science Fund exploration project (17ZR1447400) and Shanghai Jiao Tong University medicine-engineering cross project (YG2016QN56); Richard C. Zieren is supported by Stichting Cure for Cancer foundation, Amsterdam, The Netherlands. We appreciate all the inspiring moments and wonderful memories given by our Chief, Dr. Donald S. Coffey. We thank the editors for the opportunity to contribute to this special issue of the Asian Journal of Urology dedicated to Dr. Coffey.

References

[1] Arnold M, Karim-Kos HE, Coebergh JW, Byrnes G, Antilla A, Ferlay J, et al. Recent trends in incidence of five common cancers in 26 European countries since 1988: analysis of the European cancer observatory. Eur J Cancer 2015;51:1164–87.
[2] Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin 2018;68:7–30.

[3] Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Parkin DM, editors. GLOBOCAN 2012 Cancer incidence and mortality worldwide: sources, methods and major patterns. IARC Press; 2013.

[4] Bray F, Ferlay J, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394–424.

[5] de Bono JS, Chaplin DJ. The role of next-generation sequencing in prostate cancer. Clin Adv Hematol Oncol 2015;13:871–882.

[6] Zaidi H, Rosenthal R, Chung YM, et al. Androgen receptor splice variants in prostate cancer. J Clin Oncol 2017;35:2061–2069.

[7] Talaat M, Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, van der Kwast T, et al. EAU guidelines on prostate cancer. Part II: Metastatic and advanced disease. Eur Urol 2016;69:911–935.

[8] Reis LO, Zani EL, Garcia-Pedrero HA. Estrogen therapy in patients with prostate cancer: a contemporary systematic review. Int Urol Nephrol 2018;50:993–1003.

[9] Paukku P, Kallio S, Lankila T, et al. Transdermal oestradiol as a method of androgen suppression for prostate cancer within the STAMPEDE trial platform. BJU Int 2018;121:680–689.

[10] Miller WL, Auchus RJ, Geller DH. The regulation of 17,20-lyase activity. Steroids 1997;62:133–138.

[11] Basch E, Loblaw DA, Oliver TK, Carducci M, Chen RC, Sciarra A, Fasulo A, Ciardi A, Petrangeli E, Gentilucci A, et al. Antiandrogen withdrawal alone or in combination with ketoconazole in androgen-independent prostate cancer patients: a phase III trial (CALGB 9583). J Clin Oncol 2004;22:1025–1031.

[12] Attard G, Beldegrun AS, de Bono JS. Selective blockade of androgenic steroid synthesis by novel lyase inhibitors as a therapeutic strategy for treating metastatic prostate cancer. BJU Int 2005;96:1241–1249.
Metastatic prostate cancer remains incurable, why?

[37] de Bono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L, et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 2011;364:1995–2005.

[38] Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de Souza P, et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med 2013;368:138–48.

[39] Fizazi K, Scher HI, Molina A, Logothetis CJ, Chi KN, Jones RJ, et al. Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol 2012;13:983–92.

[40] Ryan CJ, Smith MR, Fizazi K, Saad F, Mulders PFA, Sternberg CN, et al. Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapy-naive men with metastatic castration-resistant prostate cancer (COU-AA-302): final overall survival analysis of a randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol 2015;16:152–60.

[41] Attard G, Reid AH, Auchus RJ, Hughes BA, Cassidy AM, Thompson E, et al. Clinical and biochemical consequences of CYP17A1 inhibition with abiraterone given with and without exogenous glucocorticoids in castrate men with advanced prostate cancer. J Clin Endocrinol Metab 2012;97:507–16.

[42] Fizazi K, Tran N, Fein L, Matsubara N, Rodriguez-Antolin A, Alekseev BY, et al. Abiraterone plus prednisone in metastatic, castration-sensitive prostate cancer. N Engl J Med 2017;377:352–60.

[43] James ND, de Bono JS, Spears MR, Clarke NW, Mason MD, Dearnaley DP, et al. Abiraterone for prostate cancer not previously treated with hormone therapy. N Engl J Med 2017;377:338–51.

[44] Nour E, Mehdi K, Hanene J, Hammami A, Ben Slama A, Ali J. Fatal acute liver failure induced by cyproterone acetate: a new case. Presse Med 2017;46:1231–2.

[45] Guo C, Yeh S, Niu Y, Li G, Zheng J, Li L, et al. Targeting androgen receptor versus targeting androgens to suppress castration resistant prostate cancer. Cancer Lett 2017;397:133–43.

[46] Shore ND, Chowdhury S, Villers A, Klotz L, Siemens DR, Phung D, et al. Efficacy and safety of enzalutamide versus bicalutamide for patients with metastatic prostate cancer (TERRAIN): a randomised, double-blind, phase 2 study. Lancet Oncol 2016;17:53–63.

[47] Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K, et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 2012;367:1187–97.

[48] Foster WR, Car BD, Shi H, Levesque PC, Obermeier MT, Gan J, et al. Drug safety is a barrier to the discovery and development of new androgen receptor antagonists. Prostate 2011;71:480–8.

[49] Siemens DR, Klotz L, Heidenreich A, Chowdhury S, Villers A, Baron B, et al. Efficacy and safety of enzalutamide vs. Bicalutamide in younger and older patients with metastatic castration resistant prostate cancer in the TERRAIN trial. J Urol 2018;199:147–54.

[50] Xie W, Regan MM, Buyse M, Halabi S, Kantoff PW, Sartor O, et al. Metastasis-free survival is a strong surrogate of overall survival in localized prostate cancer. J Clin Oncol 2017;35:3097–104.

[51] Smith MR, Saad F, Chowdhury S, Oudard S, Hadaschik BA, Graff JN, et al. Apalutamide treatment and metastasis-free survival in prostate cancer. N Engl J Med 2018;378:1408–18.

[52] Rathkopf DE, Antonarakis ES, Shore ND, Tuttone RF, Alumkal JJ, Ryan CJ, et al. Safety and antitumor activity of apalutamide (ARH-509) in metastatic castration-resistant prostate cancer with and without prior abiraterone acetate and prednisone. Clin Cancer Res 2017;23:3544–51.

[53] Kantoff PW, Halabi S, Conaway M, Picus J, Kirshner J, Hars V, et al. Hydrocortisone with or without mitoxantrone in men with hormone-refractory prostate cancer: results of the cancer and leukemia group B 9182 study. J Clin Oncol 1999;17:2506–13.

[54] Berry W, Dakhil S, Modiano M, Gregurich M, Asmar L. Phase III study of mitoxantrone plus low dose prednisone versus low dose prednisone alone in patients with asymptomatic hormone refractory prostate cancer. J Urol 2002;168:2439–43.

[55] Ernst DS, Tannock IF, Winquist EW, Venner PM, Reynolds MJ, Moore MJ, et al. Randomized, double-blind, controlled trial of mitoxantrone/prednisone and cladrounate versus mitoxantrone/prednisone and placebo in patients with hormone-refractory prostate cancer and pain. J Clin Oncol 2003;21:3335–42.

[56] Cortes JE, Pazdur R. Docetaxel. J Clin Oncol 1995;13:2643–55.

[57] Thadani-Mulerio M, Nanus DM, Giannakakou P. Androgen receptor on the move: boarding the microtubule expressway to the nucleus. Cancer Res 2012;72:4611–5.

[58] Petrylak DP, Tangen CM, Hussain MH, Lara Jr PN, Jones JA, Taplin ME, et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 2004;351:1513–20.

[59] Berthold DR, Pond GR, Soban F, de Wit R, Eisenberger M, Tannock IF. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: updated survival in the TAX 327 study. J Clin Oncol 2008;26:242–5.

[60] Sweeney CJ, Chen YH, Carducci MA, Liu G, Jarrard DF, Eisenberger M, et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N Engl J Med 2015;373:737–46.

[61] Kyriakopoulos CE, Chen YH, Carducci MA, Liu G, Jarrard DF, Hahn NM, et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer: long-term survival analysis of the randomized phase III E3805 CHAARTED trial. J Clin Oncol 2018;36:1080–7.

[62] James ND, Sydes MR, Clarke NW, Mason MD, Dearnaley DP, Spears MR, et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, mulatiarm, multistage, platform randomised controlled trial. Lancet 2016;387:1163–77.

[63] Sydes MR, Spears MR, Mason MD, Clarke NW, Dearnaley DP, de Bono JS, et al. Adding abiraterone or docetaxel to long-term hormone therapy for prostate cancer: directly randomised data from the STAMPEDE multi-arm, multi-stage platform protocol. Ann Oncol 2018;29:1235–48.

[64] de Bono JS, Oudard S, Ozgüroğlu M, Hansen S, Machiels JP, Kokai I, et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial. Lancet 2010;376:1147–54.

[65] Eisenberger M, Hardy-Bessard AC, Kim CS, Geczi L, Ford D, Mourey L, et al. Phase III study comparing a reduced dose of cabazitaxel (20 mg/m²) and the currently approved dose (25 mg/m²) in postdocetaxel patients with metastatic castration-resistant prostate cancer—PROSELICA. J Clin Oncol 2017;35:3198–206.

[66] Saad F, Winquist E, Hubay S, Berry S, Assi H, Levesque E, et al. Efficacy, quality of life, and safety of cabazitaxel in Canadian metastatic castration-resistant prostate cancer patients treated or not with prior abiraterone. Can Urol Assoc J 2016;10:102–8.

[67] Climent MA, Perez-Valderrama B, Mellado B, Fernandez Parra EM, Fernandez Calvo O, Ochoa de Olza M, et al. Weekly cabazitaxel plus prednisone is effective and less toxic for ‘unfit’ metastatic castration-resistant prostate cancer:
phase II Spanish Oncology Genitourinary Group (SOGUG) trial. Eur J Cancer 2017;57:30–7.

[68] Roca H, Craig MJ, Ying C, Varsos ZS, Czarnieski P, Alva AS, et al. IL-4 induces proliferation in prostate cancer PC3 cells under nutrient-depletion stress through the activation of the JNK-pathway and survivin up-regulation. J Cell Biochem 2012;113:1569–80.

[69] Strasner A, Karin M. Immune infiltration and prostate cancer. Front Oncol 2015;5:128.

[70] Lu H, Bowler N, Harshyne LA, Craig Hooper D, Krishn SR, Kurtoglu S, et al. Exosomal alphavbeta6 integrin is required for monocyte M2 polarization in prostate cancer. Matrix Biol 2018;70:20–35.

[71] Patel PH, Kockler DR. Sipuleucel-T: a vaccine for metastatic, asymptomatic, androgen-independent prostate cancer. Ann Pharmacother 2008;42:91–8.

[72] Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010;363:411–22.

[73] Kawalec P, Paszulewicz A, Holko P, Pilc A. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. A systematic review and meta-analysis. Arch Med Sci 2012;8:767–75.

[74] Pritchard CC, Morrissey C, Kumar A, Zhang X, Smith C, Coleman I, et al. Complex MSH2 and MSH6 mutations in hypermutated microsatellite unstable advanced prostate cancer. Nat Commun 2014;5:4988.

[75] Pritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, Beltran H, et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med 2016;375:443–53.

[76] Guedes LB, Antonarakis ES, Schweizer MT, Mirkeshti N, Almutairi F, Park JC, et al. MSH2 loss in primary prostate cancer. Clin Cancer Res 2017;23:6863–74.

[77] Graff JN, Alumkal JJ, Drake CG, Thomas GV, Redmond WL, Farhad M, et al. Early evidence of anti-PD-1 activity in enzalutamide-resistant prostate cancer. Oncotarget 2016;7:52810–7.

[78] Maia MC, Hansen AR. A comprehensive review of immunotherapies in prostate cancer. Crit Rev Oncol Hematol 2017;113:292–303.

[79] Saad F, Gleason DM, Murray R, Tchekmedyan S, Venner P, Lacombe L, et al. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J Natl Cancer Inst 2002;94:1458–68.

[80] Fizazi K, Carducci M, Smith M, Damião R, Brown J, Karsh L, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomized, double-blind study. Lancet 2011;377:813–22.

[81] QJ WX. Tang LN, He AN, Yao Y, Shen Z. Risk of osteonecrosis of the jaw in cancer patients receiving denosumab: a meta-analysis of seven randomized controlled trials. Int J Clin Oncol 2014;19:403–10.

[82] Saad F, Carles J, Gillessen S, Heidenreich A, Heinrich D, Gratt J, et al. Radium-223 and concomitant therapies in patients with metastatic castration-resistant prostate cancer: an international, early access, open-label, single-arm phase 3b trial. Lancet Oncol 2016;17:1306–16.

[83] Vignani F, Bertaglia V, Buttiglieri C, Tucci M, Scagliotti GV, Di Maio M. Skeletal metastases and impact of anticanic and bone-targeted agents in patients with castration-resistant prostate cancer. Cancer Treat Rev 2016;44:61–73.

[84] Liede A, Wade S, Lethen J, Hernandez RK, Warner D, Abernethy AP, et al. An observational study of concomitant use of emerging therapies and denosumab or zoledronic acid in prostate cancer. Clin Ther 2018;40:536–49. e3. https://doi.org/10.1016/j.clinthera.2017.12.015.

[85] Henriksson G, Breistol K, Bruland OS, Fodstad O, Larsen RH. Significant antitumor effect from bone-seeking, alpha-particle-emitting (223)Ra demonstrated in an experimental skeletal metastases model. Cancer Res 2002;62:3120–5.

[86] Bruland OS, Nilsson S, Fisher DR, Larsen RH. High-linear energy transfer irradiation targeted to skeletal metastases by the alpha-emitter 223Ra: adjuvant or alternative to conventional modalities? Clin Cancer Res 2006;12(20 Pt 2); 6250s–7s.

[87] Parker C, Nilsson S, Heinrich D, Helle SI, O’ Sullivan JM, Fossa SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med 2013;369:213–23.

[88] Hoskin P, Sartor O, O’Sullivan JM, Johannessen DC, Helle SI, Logue J, et al. Efficacy and safety of radium-223 dichloride in patients with castration-resistant prostate cancer and symptomatic bone metastases, with or without previous docetaxel use: a prespecified subgroup analysis from the randomised, double-blind, phase 3 ALSYMPCA trial. Lancet Oncol 2014;15:1397–406.

[89] Buttiglieri C, Tucci M, Bertaglia V, Vignani F, Bironzo P, Di Maio M, et al. Understanding and overcoming the mechanisms of primary and acquired resistance to abiraterone and enzalutamide in castration resistant prostate cancer. Cancer Treat Rev 2015;41:884–92.

[90] Mostaghel EA, Marck BT, Plymate SR, Vessella RL, Balk S, Matsumoto AM, et al. Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clin Cancer Res 2011;17:5913–25.

[91] Cai C, Chen S, Ng P, Bubley GJ, Nelson PS, Mostaghel EA, et al. Intratumoral de novo steroid synthesis activates androgen receptor in castration-resistant prostate cancer and is upregulated by treatment with CYP17A1 inhibitors. Cancer Res 2011;71:6503–13.

[92] Grist E, de Bono JS, Attard G. Targeting extra-gonadal androgens in castration-resistant prostate cancer. J Steroid Biochem Mol Biol 2015;145:157–63.

[93] Liu C, Lou W, Zhu Y, Yang JC, Nadiminty N, Gaikwad NW, et al. Intracrine androgens and AKR1C3 activation confer resistance to enzalutamide in prostate cancer. Cancer Res 2015;75:1413–22.

[94] Attard G, Swennenhuis JF, Olmos D, Reid AH, Vickers E, A’Hern R, et al. Characterization of ERG, AR and PTEN gene status in circulating tumor cells from patients with castration-resistant prostate cancer. Cancer Res 2009;69:2912–8.

[95] Attard G, de Bono JS, Logothetis CJ, Fizazi K, Mukherjee SD, Penson DF, et al. Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer patients treated with enzalutamide-resistant prostate cancer. Clin Cancer Res 2015;21:1621–7.

[96] Powell K, Semaan L, Conley-LaComb MK, Asangani I, Wu YM, Ginsburg KB, et al. ERG/AKR1C3/AR constitutes a feed-forward loop for AR signaling in prostate cancer cells. Clin Cancer Res 2015;21:2569–79.

[97] Xiao L, Wang Y, Xu K, Hu H, Xu Z, Wu D, et al. Nuclear receptor LRH-1 functions to promote castration-resistant growth of prostate cancer via its promotion of intratumoral androgen biosynthesis. Cancer Res 2018;78:2205–18.

[98] Baumann CT, Lim CS, Hager GL. Intracellular localization and trafficking of steroid receptors. Cell Biochem Biophys 1999;31:119–27.

[99] Watling KK, Urbanucci A, Visakorpi T. Androgen receptor (AR) aberrations in castration-resistant prostate cancer. Mol Cell Endocrinol 2012;360:38–43.
Azad AA, Volik SV, Wyatt AW, Haegert A, Le Bihan S, Bell RH, et al. Androgen receptor gene aberrations in circulating cell-free DNA: biomarkers of therapeutic resistance in castration-resistant prostate cancer. Clin Cancer Res 2015;21:2315–24.

Azad AA, Wyatt AW, Volik SV, Haegert A, Le Bihan S, Bell RH, et al. Genomic analysis of circulating cell-free DNA (cfDNA) to investigate mechanisms of resistance to enzalutamide (EZH) in metastatic castration-resistant prostate cancer (mCRPC) patients (pts). J Clin Oncol 2015;33 (Suppl. 7):157. http://ascopubs.org/doi/abs/10.1200/jco.2015.33.7_suppl.157.

Wang J, Zou JX, Xue X, Cai D, Zhang Y, Duan Z, et al. ROR gamma drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer. Nat Med 2016;22:488–96.

Mellinghoff IK, Vivanco I, Kwon A, Tran C, Wongvipat J, Sawyer YL. HER2/neu kinase-dependent modulation of androgen receptor function through effects on DNA binding and stability. Cancer Cell 2004;6:517–27.

Chen L, Mooso BA, Jathal MK, Madhav A, Johnson SD, van Spyk E, et al. Dual EGFR/HER2 inhibition sensitizes prostate cancer cells to androgen withdrawal by suppressing ErbB3. Clin Cancer Res 2011;17:6218–28.

Wyatt AW, Azad AA, Volik SV, Annala M, Beja K, McConoghy B, et al. Genomic alterations in cell-free DNA and enzalutamide resistance in castration-resistant prostate cancer. JAMA Oncol 2016;2:1598–606.

Romanel A, Gasi Tandefelt D, Coneduca V, Jayaram A, Nordahl Melbo-Jorgensen C, et al. Androgen receptor gene aberrations in circulating cell-free DNA and enzalutamide resistance in castration-resistant prostate cancer. Eur Urol 2018;73:715–23.

Antonarakis ES, Lu C, Luber B, Wang H, Chen Y, Nakazawa M, et al. Androgen receptor splice variant 7 and efficacy of taxane chemotherapy in patients with metastatic castration-resistant prostate cancer. JAMA Oncol 2015;1:582–91.

Role of androgen receptor variants in prostate cancer: report from the 2017 mission androgen receptor variants meeting. Eur Urol 2018;73:715–23.
Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J, et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med 2016;22:298–305.

Pal SK, He M, Lan L, Yang L, Pillai R, Twardowski P, et al. Synaptophysin expression on circulating tumor cells in patients with castration-resistant prostate cancer undergoing treatment with abiraterone acetate or enzalutamide. Urol Oncol 2018;36:162 e1–162.e6. https://doi.org/10.3389/fonc.2014.00060.

Wang C, Peng G, Huang H, Liu F, Kong DP, Dong KQ, et al. Blocking the feedback loop between neuroendocrine differentiation and macrophages improves the therapeutic effects of enzalutamide (MDV3100) on prostate cancer. Clin Cancer Res 2018;24:708–23.

Carver BS, Chapinski C, Wongvipat J, Hieronymus H, Chen Y, Chandarlapaty S, et al. Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell 2011;19:575–86.

Thomas C, Lamoureux F, Crafter C, Davies BR, Beraldi E, Fazi L, et al. Synergistic targeting of PI3K/akt pathway and androgen receptor axis significantly delays castration-resistant prostate cancer progression in vivo. Mol Cancer Ther 2013;12:2342–55.

deo Bono JS, Di Giorgi U, Massard C, Bracarda S, Nava L, et al. ABCB1 mediates cabazitaxel-docetaxel cross-resistance in advanced prostate cancer. Mol Cancer Ther 2017;16:2257–66.

Hagenbuch B, Meier PJ. The superfAMILY of organic anion transporting polypeptideS. Biochim Biophys Acta BBA Biomembr 2003;1609:1–18.

Wright JL, Kwon EM, Ostrander EA, Montgomery B, Line DW, Vessella RL, et al. Expression of SLCO transport genes in castration resistant prostate cancer and impact of genetic variation in SLCO1B3 and SLCO2B1 on prostate cancer outcomes. Cancer Epidemiol Biomarkers Prev 2011;20:619–27.

de Morree ES, Bottcher R, van Soest RJ, Aghai A, de Ridder CM, Gibson AA, et al. Loss of SLCO1B3 drives taxane resistance in prostate cancer. Br J Cancer 2016;115:674–81.

Reed JC. Bcl-2 and the regulation of programmed cell death. J Cell Biol 1994;124:1–6.

Galletti E, Magnani M, Renzulli ML, Botta M. Paclitaxel and docetaxel resistance: molecular mechanisms and development of new generation taxanes. ChemMedChem 2007;2:920–42.

Seruga B, Ocaná A, Tannock IF. Drug resistance in metastatic castration-resistant prostate cancer. Nat Rev Clin Oncol 2011;8:12–23.

Yoshino T, Shiina H, Urakami S, Kikuno N, Yonedu T, Shigeno K, et al. Bcl-2 expression as a predictive marker of hormone-refractory prostate cancer treated with taxane-based chemotherapy. Clin Cancer Res 2006;12:6116–24.

Hwang C. Overcoming docetaxel resistance in prostate cancer: a perspective review. Ther Adv Med Oncol 2012;4:329–40.

Tsourlakis MC, Weigand P, Grupp K, Kluh M, Steurer S, Schöllm T, et al. Bcl2-Tubulin overexpression is an independent predictor of prostate cancer progression tightly linked to ERG fusion status and PTEN deletion. Am J Pathol 2014;184:609–17.

Lorente D, Mateo J, Perez-Lopez R, de Bono JS, Attard G. Sequencing of agents in castration-resistant prostate cancer. Lancet Oncol 2015;16:e279–92.

valkenburg K, de Groot AE, Pienta KJ. Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol 2018;15:366–81.

Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12:252–64.

Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 2015;27:450–61.

Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 2017;168:707–23.

Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh AJM, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol 2014;15:700–12.

Beer TM, Kwon ED, Drake CG, Fizazi K, Logothetis C, Gravis G, et al. Randomized, double-blind, phase III trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J Clin Oncol 2017;35:40–7.

Jenkins RW, Barbie DA, Flaherty KT. Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer 2018;118:9–16.

Bronte V, Kasic T, Gri G, Gallana K, Borsellino G, Marigo I, et al. Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. J Exp Med 2005;201:1257–68.

Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. Mutational heterogeneity in cancer and...
the search for new cancer-associated genes. Nature 2013; 499:214–8.

[170] Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science 2015;348:69–74.

[171] Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015;372:2509–20.

[172] Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009;9:162–74.

[173] Vuk-Pavlovic S, Bulur PA, Lin Y, Qin R, Szumlanski CL, Zhao X, et al. Immunosuppressive CD14+HLA-DRlow–monocytes in prostate cancer. Prostate 2010;70:443–55.

[174] Hossain DM, Pal SK, Moreira D, Duttagupta P, Zhang Q, Won H, et al. TLR9-Targeted STAT3 silencing abrogates immunosuppressive activity of myeloid-derived suppressor cells from prostate cancer patients. Clin Cancer Res 2015;21:3771–82.

[175] Lu X, Horner JW, Paul E, Wang X, Troncoso P, Deng P, et al. Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature 2017;543:728–32.

[176] Noonan KL, North S, Bitting RL, Armstrong AJ, Ellard SL, Chi KN. Clinical activity of abiraterone acetate in patients with metastatic castration-resistant prostate cancer progressing after enzalutamide. Ann Oncol 2013;24:1802–7.

[177] Petrelli F, Coinu A, Borgonovo K, Cabiddù M, Ghilardi M, Lonati V, et al. Enzalutamide after docetaxel and abiraterone acetate treatment in prostate cancer: a pooled analysis of 10 case series. Clin Genitourin Cancer 2015;13:193–8.

[178] de Bonis JS, Smith MR, Saad F, Rathkopf DE, Mulders FPA, Small EJ, et al. Subsequent chemotherapy and treatment patterns after abiraterone acetate in patients with metastatic castration-resistant prostate cancer: post hoc analysis of CU-302. Eur Urol 2017;71:656–64.

[179] Al Nakouzi N, Le Moulec S, Albige J, Wang C, Beuzeboc P, Gross-Goupil M, et al. Cabazitaxel remains active in patients progressing after docetaxel followed by novel androgen receptor pathway targeted therapies. Eur Urol 2015;68:228–35.

[180] Gan L, Chen S, Wang Y, Watahiki A, Bohrer L, Sun Z, et al. Inhibition of the androgen receptor as a novel mechanism of taxol chemotherapy in prostate cancer. Cancer Res 2009;69:8386–94.

[181] Maity SN, Titus MA, Gyftaki R, Wu G, Lu JF, Ramachandran S, et al. Targeting of CYP17A1 lyase by VT-464 inhibits adrenal and intratumoral androgen biosynthesis and tumor growth of castration resistant prostate cancer. Sci Rep 2016;6:35354.

[182] Fizazi K, Massard C, Bono P, Jones R, Kataja V, James N, et al. Activity and safety of ODM-201 in patients with progressive metastatic castration-resistant prostate cancer (ARADES): an open-label phase 1 dose-escalation and randomised phase 2 dose expansion trial. Lancet Oncol 2014;15:975–85.

[183] Chi KH, Vaishampayan UN, Gordon MS, Smith DC, Rudinski E, Haas-Amatsaleh AD, et al. Efficacy, safety, tolerability, and pharmacokinetics of EPI-506 (ralaniten acetate), a novel androgen receptor (AR) N-terminal domain (NTD) inhibitor, in men with metastatic castration-resistant prostate cancer (mCRPC) progressing after enzalutamide and/or abiraterone. J Clin Oncol 2017;35:5032–32.

[184] Welti J, Sharp A, Yuan W, Dolling DI, Nava Rodrigues D, Figueiredo I, et al. Targeting bromodomain and extra-terminal (BET) family proteins in castration resistant prostate cancer (CRPC). Clin Cancer Res 2018;24:3149–62.

[185] Pawar A, Gollavilli PN, Wang S, Asangani IA. Resistance to BET inhibitor leads to alternative therapeutic vulnerabilities in castration-resistant prostate cancer. Cell Rep 2018;22:2236–45.

[186] Schweizer MT, Antonarakis ES, Wang H, Ajiboye AS, Spitz A, Cao H, et al. Effect of bipolar androgen therapy for asymptomatic men with castration-resistant prostate cancer: results from a pilot clinical study. Sci Transl Med 2015;7:269ra2. https://doi.org/10.1126/scitranslmed.3010563.

[187] Wilken N, Scovell JM, Ramasamy R. Re: effect of bipolar androgen therapy for asymptomatic men with castration-resistant prostate cancer: results from a pilot clinical study. Eur Urol 2015:68:538–9.

[188] Mateo J, Carreira S, Sandhu S, Miranda S, Moskop H, Perez-Lopez R, et al. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med 2015;373:1697–708.

[189] Karzai F, Madan RA, Owens H, Couvillon A, Hankin A, Williams M, et al. A phase 2 study of olaparib and durvalumab in metastatic castrate-resistant prostate cancer (mCRPC) in an unselected population. J Clin Oncol 2018;36(Suppl. 6):163. http://ascopubs.org/doi/abs/10.1200/JCO.2018.36.6_suppl.163.

[190] Antonarakis ES. Germline DNA repair mutations and response to hormonal therapy in advanced prostate cancer. Eur Urol 2017;72:43–4.

[191] Hofman MS, Violett J, Hicks RJ, Ferdinandus J, Thang SP, Akhurst T, et al. [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol 2018;19:825–33.

[192] Fendler WP, Rahbar K, Herrmann K, Kratochwil C, Elber M. [177Lu]-PSMA radioligand therapy for prostate cancer. J Nucl Med 2017;58:1196–200.

[193] Ahmadzadehfar H, Wegen S, Yordanova A, Fimmers R, Kürpig S, Eppard E, et al. Overall survival and response pattern of castration-resistant metastatic prostate cancer to multiple cycles of radioligand therapy using [177Lu]-Lu-PSMA-617. Eur J Nucl Med Mol Imaging 2017;44:1448–54.

[194] Armstrong CM, Gao AC. Adaptive pathways and emerging strategies overcoming treatment resistance in castration resistant prostate cancer. Asian J Urol 2016;3:185–94.

[195] Gillessen S, Attard G, Beer TM, Beltran H, Boss A, Britow R, et al. Management of patients with advanced prostate cancer: the report of the Advanced Prostate Cancer Consensus Conference APCCC 2017. Eur Urol 2018;73:178–211.