Screening of Coulomb Impurities in Graphene

Ivan S. Terekhov,1,2 Alexander I. Milstein,2 Valeri N. Kotov,3 and Oleg P. Sushkov1

1School of Physics, University of New South Wales, Sydney 2052, Australia
2Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia
3Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215

We calculate exactly the vacuum polarization charge density in the field of a subcritical Coulomb impurity, Z|e|r, in graphene. Our analysis is based on the exact electron Green’s function, obtained by using the operator method, and leads to results that are exact in the parameter Zα, where α is the “fine structure constant” of graphene. Taking into account also electron-electron interactions in the Hartree approximation, we solve the problem self-consistently in the subcritical regime, where the impurity has an effective charge Zeff, determined by the localized induced charge. We find that an impurity with bare charge Z = 1 remains subcritical, Zeffα < 1/2, for any α, while impurities with Z = 2, 3 and higher can become supercritical at certain values of α.

PACS numbers: 81.05.Uw, 73.43.Cd

It has been known for a long time that the single electron dynamics in a monolayer of graphite (graphene) is described by a massless two-component Dirac equation. A surge of interest in the problem was caused by the recent successful fabrication of graphene and measurements of transport properties, including an unconventional form of the quantum Hall effect. Due to the Coulomb interaction between electrons, graphene represents a peculiar two-dimensional (2D) version of massless Quantum Electrodynamics (QED). It appears to be much simpler than conventional QED because the interaction is described by the instantaneous Coulomb’s law. On the other hand the Fermi velocity vF ≈ 106 m/s ≈ c/300 (c is the velocity of light), and therefore the “fine structure constant” α = e2/ℏvF ≈ 1, leading to a strong-coupling version of QED. Below we set ℏ = vF = 1. Screening of a charged nucleus due to vacuum polarization is an effect of fundamental importance in QED. This problem was investigated in detail both in the subcritical and supercritical regimes. The problem of charged impurity screening in graphene, which also can be treated in terms of vacuum polarization, has recently received a lot of attention. The induced charge density in a Coulomb field was obtained in coordinate space in three-dimensional (3D) QED. We express the induced charge density via the exact Green’s function in a Coulomb field, calculated within the operator technique. Our main result is an exact expression for the polarization charge, non-perturbative in the parameter Zα, and we explore its physical consequences. The exact result allows us to determine the effective impurity charge Zeff in a self-consistent way. Perhaps most surprisingly, we find that an impurity with bare charge Z = 1 can never become supercritical, i.e. Zeffα < 1/2. In spite of this, screening can be very substantial, i.e. one can have Zeff ≪ 1 for large enough α.

In the present paper we investigate analytically the induced charge density in graphene in the subcritical regime. We use the method of calculation suggested in Ref. [13], where the induced charge density in a strong Coulomb field was obtained in coordinate space in three-dimensional (3D) QED. We express the induced charge density via the exact Green’s function in a Coulomb field, calculated within the operator technique. Our main result is an exact expression for the polarization charge, non-perturbative in the parameter Zα, and we explore its physical consequences. The exact result allows us to determine the effective impurity charge Zeff in a self-consistent way. Perhaps most surprisingly, we find that an impurity with bare charge Z = 1 can never become supercritical, i.e. Zeffα < 1/2. In spite of this, screening can be very substantial, i.e. one can have Zeff ≪ 1 for large enough α.

Electron Green’s function in a Coulomb field. It is convenient, for technical reasons, to introduce a small “electron mass” M which we set to zero at the end of our calculations. This will allow us to avoid some difficulties which appear in the calculation of the induced charge in massless QED [12], and will serve the renormalization purpose. Physically the mass describes a small energy splitting between carbon atoms in the unit cell. We will consider only the half-filled case of graphene, i.e. we set the chemical potential to zero.

The electron Green’s function G(r, r′|ε) in a Coulomb
field satisfies the two-component equation
\[
\left(\epsilon + \frac{Z\alpha}{r} - (\sigma \cdot \mathbf{p}) - \sigma_3 M\right) G(\mathbf{r}, \mathbf{r}'|\epsilon) = \delta(\mathbf{r} - \mathbf{r}'). \tag{1}
\]
Here \(\sigma = (\sigma_1, \sigma_2),\) and \(\sigma_{1,2,3}\) are the Pauli matrices; \(\mathbf{p} = (p_x, p_y)\) is the momentum operator. Following Ref. [25] we represent the solution of Eq. (1) in the form
\[
G(\mathbf{r}, \mathbf{r}'|\epsilon) = -i \left(\epsilon + \frac{Z\alpha}{r} + (\sigma \cdot \mathbf{p}) + \sigma_3 M\right) \times \int_0^\infty ds \frac{k}{\sin(ks)} e^{2i\epsilon Z\alpha} \times \left[\int \frac{r}{r'} \delta(r - r')\delta(\phi - \phi') + \frac{\sqrt{r}}{r'} \delta(\phi - \phi')\right], \tag{2}
\]
where \(\Delta_r\) is the radial part of the Laplace operator and \(K = \partial^2/\partial\phi^2 + (Z\alpha)^2 - iZ\alpha(\sigma \cdot \mathbf{n}), \mathbf{n} = \mathbf{r}/r.\) Then we express \(\delta(\phi - \phi')\) via the projectors \(P_\lambda\) that are eigenfunctions of the operator \(K, K P_\lambda = -\lambda^2 P_\lambda: \)
\[
\delta(\phi - \phi') = \sum_\lambda P_\lambda(\phi, \phi'),
\]
\[
\lambda = \gamma \mp \frac{1}{2}, \quad \gamma = \sqrt{\epsilon^2 - (Z\alpha)^2}, \quad \epsilon = m + 1/2, \tag{3}
\]
and \(m = 0, 1, 2, \ldots\) The explicit form of \(P_\lambda\) for \(\lambda = \gamma - \frac{1}{2}\) is
\[
P_\lambda(\phi, \phi') = \frac{1}{4\pi^2 \gamma} \left(P_{11} P_{22} - P_{21} P_{12}\right), \tag{4}
\]
\[
P_{11} = (\gamma + \epsilon) e^{i(m+1)(\phi - \phi')} + (\gamma - \epsilon) e^{-i(m+1)(\phi - \phi')},
\]
\[
P_{12} = -iZ\alpha \left(e^{-i(m+1)\phi} e^{im\phi'} + e^{i(m+1)\phi} e^{-im\phi'}\right),
\]
\[
P_{11} = P_{22}^*, P_{12} = -P_{21}^*.
\]
The projector with eigenvalue \(\lambda = \gamma + 1/2\) is obtained from (4) by replacing \(\gamma \rightarrow -\gamma.\) After substitution of the expansion (3) into Eq. (2), the problem is reduced to calculation of the action of the operator \(-2is \left[A_1 + k^2 \sqrt{r}\right]\) on \(\sqrt{r} \delta(r - r').\) Here \(k^2 = M^2 - \epsilon^2\) and the operators are defined as: \(A_1 = \frac{r}{2} \left(-\frac{\partial}{\partial r} r \frac{\partial}{\partial r} + \frac{k^2}{r}\right), A_3 = r.\) Along with \(A_2 = -i(r \partial/\partial r + 1/2),\) these operators generate an \(O(2,1)\) algebra, which was considered in Ref. [25] in relation to the 3D Green’s function for the Dirac equation of an electron in a Coulomb field. Therefore we can directly use the operator transformation of that work. As a result we find the following integral representation for the solution of Eq. (1):
\[
G(\mathbf{r}, \mathbf{r}'|\epsilon) = -\left(\epsilon + \frac{Z\alpha}{r} + (\sigma \cdot \mathbf{p}) + \sigma_3 M\right) \times \sum_\lambda P_\lambda(\phi, \phi') \int_0^\infty ds \frac{k}{\sin(ks)} e^{2i\epsilon Z\alpha} \times \exp[ik(r + r') \cot(ks) - i\pi\lambda] J_{2\lambda} \left(\frac{2k\sqrt{r'}}{\sin(ks)}\right). \tag{5}
\]

Here \(J_\nu(x)\) is the Bessel function.

Induced charge. The induced charge density is
\[
\rho_{\text{ind}}(r) = -ieN \int_C \frac{de}{2\pi} \text{Tr}\{G(\mathbf{r}, \mathbf{r}|\epsilon)\}, \tag{6}
\]
where \(G\) is the Green’s function calculated above, and \(N = 4\) reflects the spin and valley degeneracies. The contour of integration \(C\) goes below the real axis in the left half-plane and above the real axis in the right half-plane of the complex \(\epsilon\) plane. Taking into account the analytical properties of the Green’s function, the contour of integration with respect to \(\epsilon\) can be deformed to coincide with the imaginary axis. The integration contour with respect to \(s\) in Eq. (6) can then also be rotated to coincide with the imaginary axis so that it extends from zero to \(-i\infty\) for \(\text{Im}\, \epsilon > 0,\) and from zero to \(i\infty\) for \(\text{Im}\, \epsilon < 0.\) After these transformations and obvious change of variables, we obtain:
\[
\rho_{\text{ind}}(r) = -N \frac{e}{\pi^2 r} \sum_{m=0}^\infty \int_0^\infty ds \int_0^\infty ds' e^{-y \cosh s} \times \left(2Z\alpha \cos(\pi s) \coth \pi s_\nu - \sin(\pi s) \frac{\pi}{k} q I_{2\nu}(y)\right), \tag{7}
\]
where \(k = \sqrt{\epsilon^2 + M^2}, y = 2r/k \sinh s, \mu = 2Z\alpha/k, I_\nu(x)\) is the modified Bessel function of the first kind, and \(I_{2\nu}(y) = dI_{2\nu}(y)/dy.\) We note that \(\rho_{\text{ind}}(r),\) Eq. (7), is an odd function of \(Z\alpha.\)

In fact, the expression (7) is not well defined and the answer depends on the order of integration over \(\epsilon\) and \(s.\) To overcome this problem we follow the usual procedure of QED. We perform the regularization of the integrals introducing a finite upper limit of integration for \(\epsilon,\) and a lower limit of integration for \(s.\) Then we carry out the renormalization using the obvious physical requirement of zero total induced charge. We can satisfy this requirement due to the non-zero mass \(M\) because the induced charge density diminishes rapidly at distances \(r \gg 1/M.\) After renormalization the result is independent of the cutoff parameters and the order of integration. It is technically convenient to do the renormalization in momentum space. All details of calculations which we need to perform are similar to those described in detail in Ref. [13] for the problem of 3D vacuum polarization in QED. Finally, we obtain the renormalized induced charge density in momentum representation \(\rho_{\text{ind}}^R(q/M).\) The leading term of the asymptotics of this function at \(M \rightarrow 0\) (or \(q/M \rightarrow \infty\)) is a constant, \(Q_{\text{ind}}.\) Therefore the induced charge density in coordinate space has the form
\[
\rho_{\text{ind}}(r) = Q_{\text{ind}} \delta(r) + \rho_{\text{distr}}. \tag{8}
\]
For the induced charge Q_{ind} we find

$$Q_{\text{ind}} = eN \left[\frac{\pi}{8} Z\alpha + \Lambda(Z\alpha) \right] \equiv -|e| A(Z\alpha),$$

where $\Gamma(x)$ is the gamma function and $\psi(x) = d \ln \Gamma(x)/dx$. The induced charge Q_{ind} is negative (the function $A(Z\alpha)$ is positive, see below.) The distributed charge density ρ_{distr} in Eq. (8) is positive and at distances $r \ll 1/M$, $\rho_{\text{distr}} \propto M^2 \ln(1/Mr)$. The density vanishes in the limit $M \to 0$, however the total distributed charge is $-Q_{\text{ind}}$. We comment that in conventional 3D QED, the induced charge density also consists of local and distributed parts. In that case the distributed density $\rho_{\text{distr}} \propto -|e| Z\alpha/r^3$ at $r \ll 1/M$ [20]. Interestingly, the signs of the local and distributed charges in 3D QED are different from those in Eq. (8). The difference is in the leading (linear in $Z\alpha$) contribution, while the signs of the next-to-leading contributions (non-linear vacuum polarization) are the same in both cases. Physically this difference is related to the fact that the effective charge e^2 is renormalized (increases at short distances) in conventional QED, while in graphene the charge is not renormalized [8].

The series expansion of the function $A(Z\alpha) = (\pi/2)Z\alpha + 4\Lambda(Z\alpha)$, for small $Z\alpha$ reads

$$A(Z\alpha) = \frac{\pi}{2}(Z\alpha) + 0.783(Z\alpha)^3 + 1.398(Z\alpha)^5 + ... \quad (10)$$

The first term of the expansion in Eq. (10) reflects the linear one-loop polarization contribution [20, 22]. Our coefficient of the $(Z\alpha)^3$ term has an opposite sign with respect to the one found recently in Ref. [22].

The coefficients in the non-linear terms are not small and grow as the order increases; this is in contrast with conventional QED where they are very small and decrease rapidly [12]. The exact function $A(Z\alpha)$ is shown in Fig. 1. For $Z\alpha > 0.3$ our exact result starts to deviate substantially from the linear order and this deviation is particularly strong as the critical value $Z\alpha = 1/2$ is approached. The exact $A(Z\alpha)$ behavior is also stronger than the one found in a recent numerical calculation [20], which also exhibits lattice size dependence. Around the critical value $Z\alpha \sim 1/2$ the function $A(Z\alpha)$ has the following expansion

$$A(Z\alpha) = 1.12 - 1.19 \sqrt{\frac{1}{2} - Z\alpha} - 0.29 \left(\frac{1}{2} - Z\alpha \right)^{3/2} + ... \quad (11)$$

Notice that the induced charge $Q_{\text{ind}} = -|e| A < 0$ has a screening sign, leading to a decrease of the effective impurity charge: $Z_{\text{eff}} = Z - A(Z\alpha)$. In fact complete screening seems possible for $Z = 1$ and $\alpha \approx 1/2$, where $Z_{\text{eff}} = 0$. However we will show that the self-consistent treatment of the problem (within the Hartree approximation) can drastically change this behavior.

Self-consistent screening. Since the induced charge is fully concentrated at the origin, one can easily take into account electron-electron interactions in the Hartree approximation. The Hartree contribution is expected to dominate over the Fock (exchange) contribution for $N \gg 1$ ($N = 4$, from the spin and valley degeneracy in graphene). To find the effective charge Z_{eff} in the Hartree approximation, it is sufficient to solve the following self-consistent equation

$$Z_{\text{eff}} \alpha = Z\alpha - \alpha A(Z_{\text{eff}} \alpha). \quad (12)$$

If one uses the function $A(Z\alpha) = A^{(1)} = \pi(Z\alpha)/2$ calcu-
lated in the one-loop approximation, then this equation is equivalent to the usual random phase approximation \((RPA)\). However, since the exact \(A(Z\alpha)\) accounts for all orders in \(Z\alpha\), Eq. \((12)\) is more accurate than the RPA.

The solution \(Z_{\text{eff}}\) of Eq. \((12)\) is a function of \(Z\) and \(\alpha\). The function \(Z_{\text{eff}}\) versus \(Z\alpha\) is shown in Fig. 2 for different values of the bare charge \(Z\). An impurity with charge \(Z = 1\) represents the most important practical case. Interestingly, the impurity with \(Z = 1\) is subcritical for all values of \(\alpha\), i.e. \(Z_{\text{eff}} < 1/2\). An impurity with \(Z = 2\) becomes critical at \(\alpha_c = 0.568\), and for \(Z = 3\) the critical point is \(\alpha_c = 0.266\). It is clear from \((12)\) that the critical \(\alpha_c\) for a given bare \(Z\) is described by the simple formula \(\alpha_c = 0.5/(Z - A(0.5))\), where \(A(0.5) = 1.12\). The fact that \(A(0.5) > 1\) prevents the impurity with \(Z = 1\) from becoming critical. Ultimately the strongly non-linear variation of \(A(Z\alpha)\) (Fig. 1) is responsible for the large value of \(A(0.5)\) and thus the unconventional behavior in the \(Z = 1\) case.

Even though the supercritical regime is never reached for \(Z = 1\), the screening is very substantial, as shown in Fig. 2 (Inset). For example for \(\alpha = 0.5, Z = 1\), we find \(Z_{\text{eff}}/Z = 0.55\), and similarly for \(Z = 2\). Thus we find quite generally that vacuum polarization screening in graphene is very strong, even in the subcritical regime. The \(Z = 1\) case is the most relevant experimentally, since alkali atoms, such as potassium (K) [10], typically serve as charged scatterers in graphene. For graphene on SiO\(_2\) substrate with typical dielectric constant \(\varepsilon \approx 4\), the value of \(\alpha\) is \(\alpha \approx 0.9\) (using \(\varepsilon^2 \rightarrow 2\varepsilon^2/(1 + \varepsilon)\), while the RPA correction is already taken into account via Eq. \((12)\)). For such large \(\alpha\) the vacuum polarization effect is very strong and could be important for interpretation of experiments [10].

To summarize, we have presented an exact solution of the Coulomb impurity screening problem in graphene in the subcritical regime. The explicit result for the induced vacuum polarization charge, Eq. \((10)\), is valid to all orders in the potential strength \(Z\alpha\). The exact solution, when combined with the Hartree approximation, leads to a self-consistent solution of the impurity problem. An impurity with charge \(Z = 1\) is found to be always in the subcritical regime, where the induced charge is localized at the impurity site. In this regime vacuum polarization screening is very strong and weakens substantially the impurity potential. However impurities with \(Z = 2, 3\) and higher can become supercritical.

We are grateful to A. H. Castro Neto, V. A. Dzuba, V. M. Pereira, J. Nilsson, and B. Uchoa for numerous stimulating discussions. A.I.M. gratefully acknowledges the School of Physics at the University of New South Wales for the warm hospitality and financial support during his visit.

[1] P. R. Wallace, Phys. Rev. 71, 622 (1947).
[2] J. W. McClure, Phys. Rev. 104, 666 (1956).
[3] J. González, F. Guinea, and M. A. H. Vozmediano, Nucl. Phys. B 406, 771 (1993); 424, 595 (1994).
[4] K. S. Novoselov et al., Science 306, 666 (2004).
[5] K. S. Novoselov et al., Nature 438, 197 (2005).
[6] Y. Zhang et al., Nature 438, 201 (2005).
[7] K. S. Novoselov et al., Nature Physics 2, 177 (2006).
[8] S. V. Morozov et al., Phys. Rev. Lett. 97, 016801 (2006).
[9] Y. Zhang et al., Phys. Rev. Lett. 96, 136806 (2006).
[10] J. H. Chen et al., arXiv:0708.2408v1.
[11] E. H. Wichmann and N. M. Kroll, Phys. Rev. 101, 845 (1956).
[12] L. S. Brown, R. N. Cahn, and L. D. McLerran, Phys. Rev. D 12, 581 (1975).
[13] A. I. Milstein and V. M. Strakhovenko, Zh. Eksp. Teor. Fiz. 84, 1247 (1983) [Sov. Phys. JETP 57, 722 (1983)].
[14] Ya. B. Zeldovich and V. S. Popov, Usp. Fiz. Nauk 105, 403 (1971) [Sov. Phys. Usp. 14, 673 (1972)].
[15] D. P. DiVincenzo and E. J. Mele, Phys. Rev. B 29, 1685 (1984).
[16] K. Nomura and A. H. MacDonald, Phys. Rev. Lett. 98, 076602 (2007).
[17] T. Ando, J. Phys. Soc. Japan 75, 074716 (2006).
[18] E. H. Hwang, S. Adam, and S. Das Sarma, Phys. Rev. Lett. 98, 186806 (2007).
[19] M. I. Katsnelson, Phys. Rev. B 74, 201401(R) (2006).
[20] A. V. Shytov, M. I. Katsnelson, and L. S. Levitov, arXiv:0705.4663v2.
[21] V. M. Pereira, J. Nilsson, and A. H. Castro Neto, arXiv:0706.2872v2.
[22] R. R. Biswas, S. Sachdev, and D. T. Son, arXiv:0706.3907v1.
[23] M. M. Fogler, D. S. Novikov, and B. I. Shklovskii, arXiv:0707.1023v2.
[24] A. Kolezhuk et al., Phys. Rev. B 74, 165114 (2006).
[25] A. I. Milstein and V. M. Strakhovenko, Phys. Lett. A 90, 447 (1982).
[26] See, e.g. A. I. Milstein and O. P. Sushkov, Phys. Rev. C 71, 045503 (2005).