A LOWER BOUND ON DIMENSION REDUCTION FOR TREES IN ℓ_1

JAMES R. LEE AND MOHAMMAD MOHARRAMI

Abstract. There is a constant $c > 0$ such that for every $\varepsilon \in (0, 1)$ and $n \geq 1/\varepsilon^2$, the following holds. Any mapping from the n-point star metric into ℓ_1^d with bi-Lipschitz distortion $1 + \varepsilon$ requires dimension

$$d \geq \frac{c \log n}{\varepsilon^2 \log(1/\varepsilon)}.$$

1. Introduction

Consider an integer $n \geq 1$. The n-node star is the simple, undirected graph $G_n = (V_n, E_n)$ with $|V_n| = n$, where one node has degree $n - 1$ and all other nodes have degree one. We write ρ_n for the shortest-path metric on G_n where each edge is equipped with a unit weight. We use ℓ_1^d to denote the space \mathbb{R}^d equipped with the ℓ_1 norm. Our main theorem follows.

Theorem 1. There is a constant $c > 0$ such that the following holds. Consider any $\varepsilon \in (0, 1/16)$ and $n \geq 1/\varepsilon^2$. Suppose there exists a 1-Lipschitz mapping $f : V_n \to \ell_1^d$ such that $\|f(x) - f(y)\|_1 \geq (1 - \varepsilon)\rho_n(x,y)$ for all $x, y \in V_n$. Then,

$$d \geq \frac{c \log n}{\varepsilon^2 \log(1/\varepsilon)}.$$

One can achieve such a mapping with $d \leq O\left(\frac{\log n}{\varepsilon^2}\right)$, thus the theorem is tight up to the factor of $c/\log(1/\varepsilon)$. In general, de Mesmay and the authors [11] proved that every n-point tree metric admits a distortion $1 + \varepsilon$ embedding into $\ell_1^{C(\varepsilon)\log n}$ where $C(\varepsilon) \leq O((\frac{1}{\varepsilon})^4 \log \frac{1}{\varepsilon})$. For the special case of complete trees where all internal nodes have the same degree (such as the n-star), they achieve $C(\varepsilon) \leq O(\frac{1}{\varepsilon^2})$.

We recall that given two metric spaces (X, d_X) and (Y, d_Y) and a map $f : X \to Y$, one defines the Lipschitz constant of f by

$$\|f\|_{\text{Lip}} = \sup_{x \neq y \in X} \frac{d_Y(f(x), f(y))}{d_X(x, y)}.$$

The bi-Lipschitz distortion of f is the quantity $\text{dist}(f) = \|f\|_{\text{Lip}} : \|f^{-1}\|_{\text{Lip}}$, which is taken as infinite when f is not one-to-one. If there exists such a map f with distortion D, we say that X D-embeds into Y.

1
A finite tree metric is a finite, graph-theoretic tree $T = (V, E)$, where every edge is equipped with a positive length. The metric d_T on V is given by taking shortest paths. Since every finite tree metric embeds isometrically into ℓ_1, one can view the preceding statements as quantitative bounds on the dimension required to achieve such an embedding with small distortion (instead of isometrically).

Such questions have a rich history. Perhaps most famously, if X is an n-point subset of ℓ_2, then a result of Johnson and Lindenstrauss [9] states that X admits a $(1 + \varepsilon)$-embedding into ℓ^n_2 where $d = O\left(\frac{\log n}{\varepsilon^2}\right)$. Alon [2] proved that this is tight up to a $\log(1/\varepsilon)$ factor: If $X \subseteq \ell^n_2$ is an orthonormal basis, then any D-embedding of X into ℓ_1^d requires $d \geq \Omega(\log n)$.

The situation for finite subsets of ℓ_1 is quite a bit more delicate. Talagrand [18], following earlier results of Bourgain-Lindenstrauss-Milman [5] and Schechtman [17], showed that every n-dimensional subspace X of ℓ_1 (and, in particular, every n-point subset) admits a $(1 + \varepsilon)$-embedding into ℓ_1^d, with $d \leq O\left(\frac{n \log n}{\varepsilon^2}\right)$. For n-point subsets, this was improved to $d \leq O\left(\frac{n}{\varepsilon^2}\right)$ by Newman and Rabinovich [15], using the spectral sparsification techniques of Batson, Spielman, and Srivastava [4].

In contrast, Brinkman and Charikar [6] proved that there exist n-point subsets $X \subseteq \ell_1$ such that any D-embedding of X into ℓ_1^d requires $d \geq n^{\Omega(1/D^2)}$ (see also [12] for a simpler argument). Thus the exponential dimension reduction achievable in the ℓ_2 case cannot be matched for the ℓ_1 norm. More recently, it has been show by Andoni, Charikar, Neiman, and Nguyen [3] that there exist n-point subsets such that any $(1 + \varepsilon)$-embedding requires dimension at least $n^{1-O(1/\log(1/\varepsilon))}$. Regev [16] has given an elegant proof of both these lower bounds based on information theoretic arguments. Our proof takes some inspiration from Regev’s approach.

We note that Theorem 1 has an analog in coding theory. Let $U_n = \{e_1, e_2, \ldots, e_n\} \subseteq \ell_1$. Then any $(1 + \varepsilon)$-embedding of U_n into the Hamming cube $\{0, 1\}^d$ requires $d \geq \Omega(\log n)/\varepsilon^2\log(1/\varepsilon)$. This was proved in 1977 by McEliece, Rodemich, Rumsey, and Welch [14] using the Delsarte linear programming bound [8]. The corresponding coding question concerns the maximum number of points $x_1, x_2, \ldots \in \{0, 1\}^d$ which satisfy $(1 - \varepsilon)d/2 \leq \|x_i - x_j\|_1 \leq (1 + \varepsilon)d/2$ for $i \neq j$. Alon’s result for ℓ_2 [2] yields this bound as a special case since $\|x - y\|_2 = \sqrt{\|x - y\|_1}$ when $x, y \in \{0, 1\}^d$.

On the one hand, the lower bound of Theorem 1 is stronger since it applies to the target space ℓ_1^d and not simply $\{0, 1\}^d$. On the other hand, it is somewhat weaker since embedding U_n corresponds to embedding only the leaves of the star graph G_n, while our lower bound requires an embedding of the internal vertex as well. In fact, this is used in a fundamental and crucial way in our proof. Still, in Section 3, we prove the following somewhat weaker lower bound using simply the set U_n.

Theorem 2. There is a constant $c > 0$ such that for every $\varepsilon \in (0, 1)$, for all n sufficiently large, any $(1 + \varepsilon)$-embedding of $U_n \subseteq \ell_1^n$ into ℓ_1^d requires
$$d \geq \frac{c \log n}{\varepsilon \log \frac{1}{\varepsilon}}.$$

For the case of isometric embeddings (i.e., $\varepsilon = 0$), Alon and Pudlák [1] showed that if U_n embeds isometrically in ℓ_1^n, then $d \geq \Omega(\frac{n}{\log n})$. Our proof of Theorem 2 bears some similarity to their approach.

Finally, we mention that if B_h denotes the height-h complete binary tree (which has $2^{h+1} - 1$ nodes), then it was proved by Charikar and Sahai [7] that for every $h \geq 1$ and $\varepsilon > 0$, B_h admits a $(1 + \varepsilon)$-embedding into ℓ_1^d with $d \leq O(h^2/\varepsilon^2)$. It was asked in [13] whether one could achieve $d \leq O(h/\varepsilon^2)$ and this was resolved positively in [11]. From Theorem 1, one can deduce that this upper bound is asymptotically tight up to the familiar factor of $\log(1/\varepsilon)$. This corollary is proved in Section 4.

Corollary 3. For any $\varepsilon > 0$ and $k \geq 2$, the following holds. For h sufficiently large, any $(1 + \varepsilon)$-embedding of the complete k-ary, height-h tree into ℓ_1^d requires
$$d \geq \frac{\Omega(h \log k)}{\varepsilon^2 \log(1/\varepsilon)}.$$

2. Proof of Theorem 1

We will first bound the number of “almost disjoint” probability measures that can be put on a finite set. Then we will translate this to a lower bound for the dimension required for embedding the n-star into ℓ_1^d with distortion $1 + \varepsilon$.

Let X be a finite ground set, and let S be a set of measures X. We say that S is ε-unrelated if, for all distinct elements $\mu, \nu \in S$,
$$\|\mu - \nu\|_{TV} \geq \frac{1}{2}(\mu(X) + \nu(X)) - \varepsilon,$$
where $\|\cdot\|_{TV}$ denotes the total variation distance. The following lemma is an easy corollary of a fact from [16]. We include the proof here for completeness.

Lemma 4. For every $\varepsilon \in (0, 1)$ and $k \in \mathbb{N}$, if there exists a map $f : (V_n, \rho_n) \to \ell_1^k$ with distortion $1 + \varepsilon$, then there exists an ε-unrelated set of probability measures on $\{1, \ldots, 2k + 1\}$ of size $n - 1$.

Proof. Let $r \in V_n$ denote the the vertex of degree $n - 1$. By translation and scaling, we may assume that $f(r) = 0$ and f is 1-Lipschitz. Thus for all vertices $v \in V_n$, we have $\|f(v)\|_1 \leq 1$. For each vertex $v \in V_n \setminus \{r\}$ define the measure μ_v as follows
$$\mu_v(\{i\}) = \begin{cases} \max(0, f(v)_i) & 1 \leq i \leq k \\ \max(0, -f(v)_i) & k + 1 \leq i \leq 2k \\ 1 - \|f(v)\|_1 & i = 2k + 1, \end{cases}$$
where we use $f(v)_i$ to denote the ith coordinate of $f(v)$.

Note that for all $u, v \in V_n \setminus \{r\}$ we have

$$\|\mu_u - \mu_v\|_{TV} = \frac{1}{2} \left(\|f(u) - f(v)\|_1 + \left| (1 - \|f(u)\|_1) - (1 - \|f(u)\|_1) \right| \right) \geq \|f(u) - f(v)\|_1.$$

Since f has distortion $1 + \varepsilon$, for any two distinct vertices $u, v \in V_n$, we have

$$\|f(u) - f(v)\|_1 \geq \left(\frac{2}{1 + \varepsilon} \right) \geq 2(1 - \varepsilon).$$

Therefore the collection $\{\mu_v : v \in V_n \setminus \{r\}\}$ satisfies the conditions of the lemma.

The next lemma is the final ingredient that we need to prove Theorem 1. Let M_k be the set of all measures $\{1, 2, \ldots, k\}$, and let P_k be the set of all probability measures on $\{1, 2, \ldots, k\}$.

Lemma 5. There exists a universal constant $C \geq 1$ such that for $\varepsilon \leq 1/16$, the following holds. If there is an ε-unrelated set $S \subseteq P_k$, then there exists a $\frac{1}{2}$-unrelated set $T \subseteq P_k$ of size at least $\frac{|S|}{14}$ such that for all $\mu \in T$, we have $|\text{supp}(\mu)| \leq \lceil C\varepsilon(\varepsilon + \frac{1}{n}) \rceil$.

Before proving the lemma, we use it to finish the proof of Theorem 1.

Proof of Theorem 1. Suppose that there is a map from the n-star to ℓ_1^d with distortion $1 + \varepsilon$. Then by Lemma 4, there exists an ε-unrelated set of probability measures on $\{2d + 1\}$ of size $n - 1$. Thus by Lemma 5, there must exist a $\frac{1}{2}$-unrelated set S of probability measures on $\{1, \ldots, 2d + 1\}$ of size $\Omega(n)$ such that every measure in S has support size at most

$$\left\lfloor C \cdot \varepsilon \cdot \left(\varepsilon + \frac{1}{n - 1} \right) \cdot (2d + 1) \right\rfloor,$$

for some universal constant $C \geq 1$.

We now divide the problem into two cases. In the case that $C\varepsilon(\varepsilon + \frac{1}{|S|})(2d + 1) < 1$, every measure in S is supported on exactly one element, therefore $|S| \leq 2d + 1$. Hence,

$$d \geq \Omega(|S|) \geq \Omega(n) \geq \Omega\left(\frac{\log n}{\varepsilon^2 \log(1/\varepsilon)}\right),$$

where we have used the assumption that $n \geq 1/\varepsilon^2$.

In the second case, we have $C\varepsilon(\varepsilon + \frac{1}{|S|})(2d + 1) \geq 1$. Since $\frac{1}{|S|} = O(\varepsilon)$, each element $\mu \in S$ has $|\text{supp}(\mu)| \leq O(\varepsilon^2 d)$. Thus for some constant $c > 0$, there are at most $\left(\frac{2d + 1}{\varepsilon^2 d}\right) \leq \exp\left(\frac{O(\varepsilon^2 d \log(1/\varepsilon) d)}{O(\varepsilon^2 d)}\right)$ different supports of size $O(\varepsilon^2 d)$ for the measures in S.

A LOWER BOUND ON DIMENSION REDUCTION FOR TREES IN ℓ_1

Since S is a $\frac{1}{2}$-unrelated set of probability measures, for any $\mu, \nu \in S$, we have

$$\|\mu - \nu\|_{TV} \geq \frac{1}{2}.$$

In particular, if we fix a set $Q \subseteq X$, then by a simple $|Q|$-dimensional volume argument,

$$|\mu \in S : \text{supp}(\mu) \subseteq Q| \leq 3^{|Q|}.$$

All together, we have

$$|S| \leq 3^{O(e^2d)} \cdot e^{O(e^2d \log(1/\varepsilon))} \leq e^{O(e^2d \log(1/\varepsilon))}.$$

Hence, $d \geq \Omega\left(\frac{\log |S|}{\varepsilon^2 \log(1/\varepsilon)}\right)$, completing the proof.

Remark 6. We note that there is a straightforward volume lower bound for large distortions $D \geq 1$: Any D-embedding of the n-star into ℓ_1^d requires $d \geq \Omega\left(\frac{\log n}{\log D}\right)$. This is simply because the maximal number of disjoint ℓ_1 balls of radius $1/D$ that can be packed in an ℓ_1 ball of radius 2 is $(2D)^d$ in d dimensions.

We are left to prove Lemma 5. We start by recalling some simple properties of the total variation distance. For a finite set S and measures $\mu, \nu : 2^S \rightarrow [0, \infty)$, we define

$$\min(\mu, \nu)(T) = \sum_{x \in T} \min\{\mu(\{x\}), \nu(\{x\})\}.$$

For $k \in \mathbb{N}$, and measures $\mu, \nu \in M_k$, we have

$$\|\mu - \nu\|_{TV} = \frac{1}{2}\left(\mu([k]) + \nu([k])\right) - \min(\mu, \nu)([k]),$$

where we use the notation $[k] = \{1, 2, \ldots, k\}$. We also use the following partial order on measures on the set S: $\mu \preceq \nu$, if and only if for all $T \subseteq S$, $\mu(T) \leq \nu(T)$. The following observation is immediate from (1).

Observation 7. Fix $k \in \mathbb{N}$, $\varepsilon > 0$, and measures $\mu, \nu, \mu', \nu' \in M_k$, such that $\mu' \preceq \mu$ and $\nu' \preceq \nu$. If

$$\|\mu - \nu\|_{TV} \geq \frac{1}{2}(\mu([k]) + \nu([k])) - \varepsilon,$$

then

$$\|\mu' - \nu'\|_{TV} \geq \frac{1}{2}(\mu'([k]) + \nu'([k])) - \varepsilon.$$

We will require the following fact in the proof of Lemma 5.

Lemma 8. Consider $\delta \in (0, 1)$ and a finite subset $S \subseteq [0, \infty)$ such that

$$\delta \cdot (|S| - 1) \cdot \sum_{x \in S} x \geq \sum_{x,y \in S, x \neq y} \min(x, y).$$

Then there exists a set $T \subseteq S$, such that $\sum_{x \in T} x \geq \frac{1}{2} \sum_{x \in S} x$ and $|T| \leq \lceil \delta(|S| - 1) \rceil$.

Proof. Let \(n = |S| \), and let \(a_1 \geq \cdots \geq a_n \geq 0 \) be the elements of \(S \) in decreasing order. Then,

\[
\sum_{i=1}^{n} \sum_{j=1}^{n} \min(a_i, a_j) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{\max(i,j)} = \sum_{i=1}^{n} 2(i-1) a_i.
\]

Letting \(k = \lceil \delta(|S| - 1) \rceil \), we have

\[
\sum_{i=1}^{n} \sum_{j=1}^{n} \min(a_i, a_j) \geq \sum_{i=k+1}^{n} 2(i-1) a_i \geq 2k \sum_{i=k+1}^{n} a_i \geq 2\delta(|S| - 1) \sum_{i=k+1}^{n} a_i.
\]

Combining this inequality and (2) implies that \(\sum_{i=k+1}^{n} a_i \leq \frac{1}{2} \sum_{x \in S} x \), therefore \(\sum_{i=1}^{k} a_i \geq \frac{1}{2} \sum_{x \in S} x \). Hence the set \(T = \{a_1, \ldots, a_k\} \) satisfies both conditions of the lemma.

Proof of Lemma. We will show that each of the following statements implies the next one.

I) There exists an \(\varepsilon \)-unrelated set \(S \subseteq P_k \) of size \(n \).

II) There exists an \(\varepsilon \)-unrelated set \(S \subseteq M_k \) of size \(n \) such that
(a) for all \(\mu \in S \), \(\mu([k]) \leq 1 \);
(b) \(\sum_{\mu \in S} \mu([k]) \geq n/4 \);
(c) \(\sum_{\mu \in S} |\text{supp}(\mu)| < (2\varepsilon n + 1)k \);

III) There exists an \(\varepsilon \)-unrelated set \(S \subseteq M_k \) of size at least \(n/14 \) such that
(a) for all \(\mu \in S \), \(|\text{supp}(\mu)| < 14 \left(2\varepsilon + \frac{1}{n} \right) k \);
(b) for all \(\mu \in S \), we have \(\mu([k]) \geq 1/8 \);

IV) There exists a set satisfying all the conditions of the lemma.

For ease of notation, given a subset \(S \subseteq M_k \), we define,

\[
\Delta_S = \sum_{\mu, \nu \in S, \mu \neq \nu} \min(\mu, \nu).
\]

Note that, if for some \(\varepsilon \in [0, 1] \), \(S \subseteq P_k \) is \(\varepsilon \)-unrelated, then (II) implies that

\[
\Delta_S([k]) \leq \sum_{\mu, \nu \in S, \mu \neq \nu} \frac{1}{2} (\mu([k]) + \nu([k])) - \|\mu - \nu\|_TV \\
\leq \sum_{\mu, \nu \in S, \mu \neq \nu} (1 - (1 - \varepsilon)) \\
= \varepsilon |S| \cdot (|S| - 1).
\]
I ⇒ II: Suppose that $S_i \subseteq \mathcal{P}_k$ is ε-unrelated, and let X be a random variable with state space $\{1, \ldots, k\}$ such that

$$\mathbb{P}(X = i) = \frac{\sum_{\mu \in S_i} \mu\{i\}}{|S_i|}.$$

We have

$$\mathbb{E} \left[\frac{\Delta_{S_i}(X)}{\sum_{\mu \in S_i} \mu(X)} \right] = \frac{1}{|S_i|} \sum_{i=1}^{k} \Delta_{S_i}(\{i\}) = \frac{1}{|S_i|} \Delta_{S_i}([k]) \leq \varepsilon(|S_i| - 1),$$

Markov’s inequality implies that

$$\mathbb{P} \left(\frac{\Delta_{S_i}(X)}{\sum_{\mu \in S_i} \mu(X)} \leq 2\varepsilon(|S_i| - 1) \right) \geq \frac{1}{2}.$$

So if we let

$$A = \left\{ i : \frac{\Delta_{S_i}(\{i\})}{\sum_{\mu \in S_i} \mu(\{i\})} \leq 2\varepsilon(|S_i| - 1) \right\},$$

then we have

$$\frac{1}{|S_i|} \sum_{\mu \in S_i} \mu(A) = \sum_{\mu \in S_i} \sum_{i \in A} \mathbb{P}(X = i) \geq \frac{1}{2}. \quad (4)$$

By Lemma 8, for all $i \in A$ there exists a set $W_i \subseteq S_i$ such that $|W_i| \leq \lfloor 2\varepsilon(|S_i| - 1) \rfloor$, and

$$\sum_{\mu \in W_i} \mu(\{i\}) \geq \frac{1}{2} \sum_{\mu \in S_i} \mu(\{i\}). \quad (5)$$

For $\mu \in S_i$, let $Y_{\mu} = \{ i : \mu \in W_i \}$. For any $Y \subseteq S$, define $R_Y : 2^S \rightarrow 2^S$ by $R_Y(T) = T \cap Y$ for elements of Y and zero elsewhere.

Let $S_{II} = \{ \mu \circ R_{Y_{\mu}} \}_{\mu \in S_i}$. Since $\mu \circ R_{Y_{\mu}} \preceq \mu$, S_{II} satisfies II(a). Furthermore, Observation 7 implies that the collection $\{ \mu \circ R_{Y_{\mu}} \}_{\mu \in S_i}$ is ε-unrelated. Furthermore, S_{II} satisfies II(b) because

$$\sum_{\mu \in S_i} \mu(Y_{\mu}) \geq \frac{1}{2} \sum_{i \in A} \sum_{\mu \in S_i} \mu(\{i\}) = \frac{1}{2} \sum_{\mu \in S_i} \mu(A) \geq \frac{1}{4} |S_i|. $$

Finally, condition II(c) holds because

$$\sum_{\mu \in S_i} |\text{supp}(\mu \circ R_{Y_{\mu}})| \leq \sum_{i \in A} |W_i| < 2\varepsilon(|S_i| - 1)|A| + |A| \leq (2\varepsilon|S_i| + 1)k.$$

II ⇒ III: Suppose that $S_{II} \subseteq \mathcal{M}_k$ is an ε-unrelated collection of cardinality n satisfying all the conditions of II. We have $\max\{\mu([k])\}_{\mu \in S_{II}} \leq 1$ and $\sum_{\mu \in S_{II}} \mu([k]) \geq |S_{II}|/4$. Therefore, there exists a subcollection $S' \subseteq S_{II}$ such that for all $\mu \in S'$, we have $\mu([k]) \geq 1/8$, and

$$|S'| \geq \left(\frac{1/4 - 1/8}{1 - 1/8} \right) |S_{II}| \geq \frac{n}{7}. $$

By Markov’s inequality, there exists a collection of measures S_{III} such that $|S_{III}| \geq \frac{1}{2}|S'| \geq \frac{1}{4}|S|$, where for all $\mu \in S_{III}$,

$$\text{supp}(\mu) \leq 2 \frac{\sum_{\mu \in S'} |\text{supp}(\mu)|}{|S'|} \leq 2 \frac{\sum_{\mu \in S_{III}} |\text{supp}(\mu)|}{|S'|} \leq 2 \frac{\sum_{\mu \in S_{III}} |\text{supp}(\mu)|}{|S_{III}|/7} \leq 14k \left(2\varepsilon + \frac{1}{n}\right).$$

The set S_{III} has size at least $\frac{n}{14}$ and by construction satisfies conditions (a) and (b) of III.

III \Rightarrow IV: Suppose $S_{III} \subseteq M_k$ is an ε-unrelated collection of cardinality at least $n/14$. For each measure $\mu \in S_{III}$, let $Z_\mu \subseteq \{1, \ldots, k\}$ be the set of $\lceil 16 \cdot (4k(2\varepsilon + \frac{1}{n})) \\rceil$ elements of $\{1, \ldots, k\}$ that has the largest measures with respect to μ (breaking ties arbitrarily). Since $\varepsilon \leq \frac{1}{8}$, for all $\mu \in S_{III}$ we have

$$\mu(Z_\mu) \geq \frac{1}{8} \left(\frac{16 \cdot (4k(2\varepsilon + \frac{1}{n}))}{14k(2\varepsilon + \frac{1}{n})}\right) = 2\varepsilon. \quad (6)$$

Let $S_{IV} = \{\frac{\mu R_{Z_\mu}}{\mu(Z_\mu)} : \mu \in S_{III}\}$. Clearly $S_{IV} \subseteq P_k$, and $|S_{IV}| \geq \frac{n}{14}$. Moreover, by our construction for all $\bar{\mu} \in S_{IV}$, $|\text{supp}(\bar{\mu})| \leq \lceil 224\varepsilon (2\varepsilon + \frac{1}{n})k \rceil$. To complete the proof we need to show S_{IV} is $\frac{1}{2}$-unrelated. Note that if $\mu, \nu \in S_{III}$, then Observation 7 implies that

$$\min(\nu \circ R_{Z_\nu}, \mu \circ R_{Z_\mu})([k]) \leq \frac{\mu(Z_\mu) + \nu(Z_\mu)}{2} - \|\mu \circ R_{Z_\nu} - \mu \circ R_{Z_\mu}\|_{TV} \leq \varepsilon.$$

Therefore,

$$\frac{\|\mu \circ R_{Z_\mu} - \nu \circ R_{Z_\nu}\|_{TV}}{\mu(Z_\mu) - \nu(Z_\nu)} \leq 1 - \min \left(\frac{\mu \circ R_{Z_\mu}}{\mu(Z_\mu)}, \frac{\nu \circ R_{Z_\nu}}{\nu(Z_\nu)}\right)([k]) \leq 1 - \min \left(\frac{\mu \circ R_{Z_\mu}}{2\varepsilon}, \frac{\nu \circ R_{Z_\nu}}{2\varepsilon}\right)([k]) \geq \frac{1}{2},$$

completing the proof. \qed

3. Nearly Equilateral Sets in ℓ_1^d

We will need the following result of Kahane [10].

Theorem 9. For every $\varepsilon \in (0, 1)$, there exists a mapping $K_\varepsilon : \mathbb{R} \to \ell_2^d$ such that $d \leq O(1/\varepsilon)$ and the following holds: For every $x, y \in \mathbb{R}$,

$$(1 - \varepsilon)\sqrt{|x - y|} \leq \|K_\varepsilon(x) - K_\varepsilon(y)\|_2 \leq \sqrt{|x - y|}.$$

Proof of Theorem Suppose that $f : U_n \to \ell_1^d$ is a $(1 + \varepsilon)$-embedding scaled so that f is 1-Lipschitz. Consider the mapping $g : U_n \to \ell_2^{O(d/\varepsilon)}$ given by

$$g(x) = \left(K_\varepsilon(f(x)_1), K_\varepsilon(f(x)_2), \ldots, K_\varepsilon(f(x)_d)\right),$$
where $f(x)_i$ denotes the ith coordinate of $f(x)$. By Theorem 9, for any $x, y \in U_n$, we have $\|g(x) - g(y)\|_2^2 \leq \|f(x) - f(y)\|_1$. On the other hand,

$$\|g(x) - g(y)\|_2^2 \geq (1 - \varepsilon)^2 \|f(x) - f(y)\|_1 \geq \frac{(1 - \varepsilon)^2}{1 + \varepsilon},$$

implying that $\|g(x) - g(y)\|_2 \geq (1 - \varepsilon)/\sqrt{1 + \varepsilon} \geq 1 - 2\varepsilon$. Thus g is a $(1 + 2\varepsilon)$-embedding of U_n into $\ell_2^{O(d/\varepsilon)}$. But now by 2, for n sufficiently large, we have

$$d \geq \frac{\Omega(\log n)}{\varepsilon \log \frac{1}{\varepsilon}}.$$

\square

4. Extension to k-ary trees

We now prove Corollary 3. Combining the next lemma with Theorem 1 yields the desired result.

Lemma 10. For $h, k \geq 2$, let $B_{h,k}$ be a complete k-ary tree of height h. If $B_{h,k}$ admits a $(1 + \varepsilon)$-embedding into ℓ_1^d for some $0 \leq \varepsilon \leq \frac{1}{8}$, then the $(1 + k^{[h/2]})$-star admits a $(1 + 4\varepsilon)$-embedding into ℓ_1^d.

Proof. Suppose that $f : B_{h,k} \to \ell_1^d$ is a $(1 + \varepsilon)$-embedding. We may assume, without loss, that f is 1-Lipschitz. Letting $n = (1 + k^{[h/2]})$, we construct an embedding $g : V_n \to \ell_1^d$ of the n-star as follows.

Let $r \in V_n$ denote the vertex of degree $n - 1$. We put $g(r) = 0$. Let S be the set of vertices in $B_{h,k}$ at height $[h/2]$ (we use the convention that root has height zero). For any vertex $v \in S$, pick an arbitrary leaf x_v in the subtree rooted at v. Associate to every vertex $w \in V_n \setminus \{r\}$ a distinct element $\tilde{w} \in S$ and put

$$g(w) = \frac{f(x_{\tilde{w}}) - f(\tilde{w})}{h - [h/2]}.$$

Since f is 1-Lipschitz, the same holds for g. Moreover for any two distinct elements $u, v \in S$ we have

$$2(h - [h/2]) + d_{B_{h,k}}(u, v) = d_{B_{h,k}}(u, v) + d_{B_{h,k}}(x_v, v) + d_{B_{h,k}}(x_u, u)$$

$$\leq (1 + \varepsilon)\|f(x_u) - f(x_v)\|_1$$

$$\leq (1 + \varepsilon)\|(f(x_u) - f(u)) - (f(x_v) - f(v))\|_1$$

$$+ (1 + \varepsilon)\|f(u) - f(v)\|_1$$

$$\leq (1 + \varepsilon)\|(f(x_u) - f(u)) - (f(x_v) - f(v))\|_1$$

$$+ (1 + \varepsilon) d_{B_{h,k}}(u, v).$$
Therefore,

\[(1 + \varepsilon)\| (f(x_u) - f(u)) - (f(x_v) - f(v)) \|_1 \geq 2(h - \lceil h/2 \rceil) - \varepsilon d_{B_{h,k}}(u, v) \]

\[\geq 2(h - \lceil h/2 \rceil) - 2\varepsilon \lceil h/2 \rceil \]

\[\geq 2(h - \lceil h/2 \rceil) - 4\varepsilon (h - \lceil h/2 \rceil) \]

\[\geq (2 - 4\varepsilon)(h - \lceil h/2 \rceil). \]

Since \(\varepsilon \leq 1/8 \), the preceding inequality bounds the distortion of \(g \) by \(\frac{1+\varepsilon}{1-2\varepsilon} \leq 1 + 4\varepsilon \), completing the proof. \(\square \)

Acknowledgments. We are grateful to Jiri Matoušek for suggesting the approach of Section 3. This research was partially supported by NSF grant CCF-1217256.

References

[1] N. Alon and P. Pudlák. Equilateral sets in \(l^n_p \). Geom. Funct. Anal., 13(3):467–482, 2003.

[2] Noga Alon. Problems and results in extremal combinatorics. I. Discrete Math., 273(1-3):31–53, 2003. EuroComb’01 (Barcelona).

[3] A. Andoni, M. Charikar, O. Neiman, and H. L. Nguyen. Near linear lower bound for dimension reduction in \(L_1 \). To appear, Proceedings of the 52nd Annual IEEE Conference on Foundations of Computer Science, 2011.

[4] Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava. Twice-ramanujan sparsifiers. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pages 255–262, 2009.

[5] J. Bourgain, J. Lindenstrauss, and V. Milman. Approximation of zonoids by zonotopes. Acta Math., 162(1-2):73–141, 1989.

[6] Bo Brinkman and Moses Charikar. On the impossibility of dimension reduction in \(\ell_1 \). J. ACM, 52(5):766–788, 2005.

[7] Moses Charikar and Amit Sahai. Dimension reduction in the \(\ell_1 \) norm. In 39rd Annual Symposium on Foundations of Computer Science, 2002.

[8] P. Delsarte. An algebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl., (10):vi+i+97, 1973.

[9] William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. In Conference in modern analysis and probability (New Haven, Conn., 1982), volume 26 of Contemp. Math., pages 189–206. Amer. Math. Soc., Providence, RI, 1984.

[10] Jean-Pierre Kahane. Hélices et quasi-hélices. In Mathematical analysis and applications, Part B, volume 7 of Adv. in Math. Suppl. Stud., pages 417–433. Academic Press, New York, 1981.

[11] J. R. Lee, A. de Mesmay, and M. Moharrami. Dimension reduction for finite trees in \(\ell_1 \). Prelim. version in SODA 2012. Preprint: arXiv:1108.2290, 2011.

[12] J. R. Lee and A. Naor. Embedding the diamond graph in \(L_p \) and dimension reduction in \(L_1 \). Geom. Funct. Anal., 14(4):745–747, 2004.

[13] J. Matoušek. Open problems on low-distortion embeddings of finite metric spaces. Online: http://kam.mff.cuni.cz/~matousek/metrop.ps.

[14] Robert J. McEliece, Eugene R. Rodemich, Howard Rumsey, Jr., and Lloyd R. Welch. New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities. IEEE Trans. Information Theory, IT-23(2):157–166, 1977.
[15] Ilan Newman and Yuri Rabinovich. On cut dimension of ℓ_1 metrics and volumes, and related sparsification techniques. CoRR, abs/1002.3541, 2010. Prelim. version in SODA 2012.

[16] Oded Regev. Entropy-based bounds on dimension reduction in L_1. arXiv:1108.1283, 2011.

[17] Gideon Schechtman. More on embedding subspaces of L_p in l_1^n. Compositio Math., 61(2):159–169, 1987.

[18] Michel Talagrand. Embedding subspaces of L_1 into l_1^n. Proc. Amer. Math. Soc., 108(2):363–369, 1990.