Reflected Entropy in Boundary/Interface Conformal Field Theory

Yuya Kusuki

Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125, USA, and RIKEN Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS), Wako, Saitama 351-0198, Japan.

(Dated: June 17, 2022)

Boundary conformal field theory (BCFT) and interface conformal field theory (ICFT) attract attention in the context of the information paradox problem. On this background, we develop the idea of the reflected entropy in BCFT/ICFT. We first introduce the left-right reflected entropy (LRRE) in BCFT and show that its holographic dual is given by the area of the entanglement wedge cross section (EWCS) through AdS/BCFT. We also present how to evaluate the reflected entropy in ICFT. By using this technique, we can show the universal behavior of the reflected entropy in some special classes. Furthermore, we clarify what is the holographic dual of boundary primary correlation functions by using this LRRE/EWCS duality.

I. INTRODUCTION

The entanglement entropy (EE) plays a significant role in quantum information, condensed matter, and quantum gravity \[\text{[1]}\]. This quantity captures the bipartite entanglement between a subsystem \(A\) and its complement \(\bar{A}\). The EE is defined by the von-Neumann entropy for the reduced density matrix \(\rho_A \equiv \text{tr}_{\bar{A}} \rho\) as \(S(\bar{A}) = -\text{tr}_A \log \rho_A\).

One interesting direction to develop this idea is finding a tripartite entanglement measure. Recently, as one of them, the reflected entropy is introduced by \[\text{[2]}\]. This quantity is applied to various (1+1)-d setups \[\text{[2,3]}\], (2+1)-d setups \[\text{[9,11]}\], and arbitrary dimensional setups \[\text{[12,13]}\]. One of the significant features of the reflected entropy is that this quantity has a nice bulk dual, the minimal area of the cross section in the entanglement wedge \[\text{[2]}\]. It means that like the EE, one can probe the entanglement structure of quantum gravity by a simple calculation of the area. Another feature is that mostly bipartite entanglement patterns imply that the difference between the reflected entropy and the mutual information is close to zero, \(S_R - I \approx 0\) \[\text{[14,15]}\]. Inspired by this sensitivity to tripartite entanglement, the difference \(S_R - I\) is studied in \[\text{[7,12,13]}\], called the Markov gap.

In this article, we develop the idea of the reflected entropy in boundary CFT (BCFT) and interface CFT (ICFT). BCFT is introduced in \[\text{[18]}\] and developed in many works. In this article, we particularly focus on the left-right entanglement, which is mainly explored in BCFT \[\text{[19,21]}\]. Interface CFT (ICFT) is a class of CFTs where two (possibly different) CFTs are connected along an interface \[\text{[22,24]}\]. The entanglement entropy in ICFT is studied in various (1+1)-d setups \[\text{[25–29]}\]. If one considers the reflected entropy in BCFT/ICFT, one may have several questions, for example, can we directly extract the entanglement wedge cross section between the subsystem and the island (see FIG.5)? how can we evaluate the reflected entropy in ICFTs? We answer these questions.

There is another motivation to investigate the reflected entropy in BCFT/ICFT. Recent progress on the information paradox problem is provided in a class of toy models where the black hole and a non-gravitational bath CFT are glued along the (asymptotic) boundary, which is called the island model \[\text{[30,32]}\]. This model is related to BCFT/ICFT through the AdS/BCFT and the braneworld holography \[\text{[33–47]}\]. There are several works about the reflected entropy in the island model \[\text{[17,48–51]}\]. In this context, our new measure in BCFT and new technique in ICFT have the potential to provide a new understanding of the island model.

II. LEFT-RIGHT MUTUAL INFORMATION

The left-right entanglement entropy (LREE) is defined by a reduced density matrix obtained by tracing over the right moving sector \[\text{[19,21]}\].

\[
S^{(l/r)}(A) \equiv -\text{tr}(\rho^{(L)}(A) \log \rho^{(L)}(A) - \rho^{(R)}(A) \log \rho^{(R)}(A)),
\]

where \(\rho^{(L)} \equiv \text{tr}_R \rho\). One can generalize this quantity by considering a reduced density matrix obtained by tracing over the right moving sector and a part of the left moving sector,

\[
S^{(L)}(A) \equiv -\text{tr}(\rho^{(L)}(A) \log \rho^{(L)}(A)),
\]

where \(\rho^{(L)}(A) \equiv \text{tr}_{A} \rho\). This quantity can be calculated by the replica trick in the same way as in \[\text{[19,21]}\]. One can also calculate it by a correlation function with chiral twist operators \[\text{[52]}\]. With this quantity, one can introduce an interesting quantum information quantity, which we call the left-right mutual information (LRMI),

\[
I^{(l/r)}(A) \equiv S^{(L)}(A) + S^{(R)}(A) - S(A).
\]

The physical interpretation is in the following. Let us consider a local excitation that creates a pair of left and right movers. The LRMI increases if both of them are included in the subsystem \(A\). That is, the LRMI counts the number of such pairs (see FIG.1).

In CFTs with time-like boundary, the LRMI has a nice picture. Let us consider the LRMI on a half-plane \(\mathbb{R} \times b > 0\) (see the left of FIG.2). In a similar way to the state-operator correspondence, a conformal boundary can be described by a linear combination of the Ishibashi states \[\text{[18]}\].

\[
|B\rangle = \sum_i b_i |\bar{i}\rangle.
\]
The explicit form of the Ishibashi state is
\[|i\rangle \equiv \sum_N |i; N\rangle \otimes U|i; N\rangle, \]
(5)
where \(|i; N\rangle\) is a state in the Verma module \(i\) labeled by \(N\), and \(U\) is an anti-unitary operator. By unfolding the Ishibashi states (which we will denote by \(|\bar{i}\rangle \equiv \sum_N |i; N\rangle \otimes U|\bar{i}; N\rangle\)), we obtain an interface-like CFT where the interface-like operator \(I(B) = \sum_i b_i |\bar{i}\rangle\) inserted along the line \(z = 0\) (see the right of FIG. 2). In this picture, the LRMI is just the mutual information between \(A_1\) and \(A_2\) (\(A_1\) is defined in the right of FIG. 2) in this interface-like CFT.

For the later use, we first show the calculation of the LREE for the whole system in our language. The LREE for a system in a strip with size \(L\) can be evaluated by the boundary primary correlator with two chiral twist operators,
\[S^{(l/r)} = \lim_{n \to 1} \frac{1}{1 - n} \log \frac{\langle \sigma_i^n (L) \sigma_j^n (L) \rangle_{\text{strip}}}{\langle \bar{\sigma}_i^n \rangle_{\text{strip}}}, \]
(6)
where we denote the boundary primary by the superscript \(b\).

The coefficient of the two-point function can be evaluated by the conformal map to a cylinder \([20]\) as
\[\alpha_{\sigma_i^n} = \frac{\sum |b_i|^2 S_{i0}}{\sum |b_i|^2 S_{i0}} \pi, \]
(7)
where \(S_{i0}\) is the modular \(S\) matrix and \(h_i\) is the conformal dimension of the twist operator \(h_i = \frac{c}{2\pi} (n - \frac{1}{2})\). While one sometimes includes the cutoff parameter \(\epsilon^{2n}\) into the coefficient, we split this contribution from the coefficient in this article. For example, in a diagonal RCFT, we obtain
\[S^{(l/r)} = \frac{c}{6} \log \frac{L}{\epsilon} - \left(\sum_i S_{i1}^2 \log \frac{S_{i1}^2}{S_{i0}} \right), \]
(8)
where we label the Cardy state by \(a\). The constant term is called the topological entanglement entropy. For special boundary states, the same constant term can also be found in \((2+1)-d\) TQFTs as the topological entanglement entropy \([20]\).

Let us move on to the LREE for a subsystem \(A = [a, b]\), that is, the LRMI. Except for some special models, the calculation of the LRMI is difficult. To show a concrete calculation of the LRMI, we focus on the holographic CFT. The entropy \(S_A\) can be evaluated by a correlation function of four chiral twist operators with the interface-like operator \(I(B)\),
\[\langle \bar{\sigma}_n (z_1) \sigma_n (z_2) I(B) \sigma_n (z_1) \bar{\sigma}_n (z_2) \rangle. \]
(9)
This correlation function can be expanded as
\[g^n \sum_P C_{\sigma_n}^p \mathcal{F}_P^{V/V} (1 - z), \]
(10)
where the sum runs over boundary primaries and \(\mathcal{F}_P^{V/V} (z)\) is the Virasoro block with the cross ratio \(z \equiv \frac{z_1 z_2}{1 - z_1 z_2}\). The \(g\)-function represents a disk partition function \([54]\). In this holographic CFT, the sum can be approximated by just the vacuum block if \(z\) is enough large. The bulk-boundary OPE coefficient \(C_{\sigma_n}^p\) can be evaluated by the unwrapping procedure \([54]\).

Note that the unwrapping procedure does not change the profile of the boundary \([54]\). The entropy \(S^{(L)}_A\) is completely fixed by the conformal symmetry. As a result, we obtain
\[I^{(l/r)}(A) = \max \left(\frac{c}{6} \log \frac{(b - a)^2}{4ab} - 2 \log g, 0 \right). \]
(11)
The trivial case, \(I^{(l/r)}(A) = 0\), is given by the vacuum block approximation of the dual-channel.

III. LEFT-RIGHT REFLECTED ENTROPY

In a similar way to the LRMI, one can introduce another related quantity, left-right reflected entropy (LRRE), which is a generalization of reflected entropy introduced in \([21]\) (a similar notion was introduced in Chern-Simons theories \([11]\)). To define the LRRE, we consider a canonical purification of a state
\(\rho_A \) in a doubled Hilbert space \(\mathcal{H}_A \otimes \mathcal{H}_A^* \). The LRRE is defined by the reduced density matrix obtained from \(|\sqrt{\rho_A}^\perp| \) by tracing over the right moving sector,

\[
S_R^{(l/r)}(A) = -\text{tr}\rho_A^{(L)} \log \rho_A^{(L)}, \tag{12}
\]

where \(\rho_A^{(L)} \) is the reduced density matrix of \(\rho_{AA^*} = |\sqrt{\rho_A}^\perp| / \sqrt{\rho_A} \) after tracing over the right moving sector. The physical interpretation of the LRRE is similar to the LRMI.

In the holographic CFT, the correlation function \((14) \) in the same way, one can find the holographic dual of the LRRE. The reflected entropy has a nice bulk interpretation. One can un-wrap the \(m \)-fold branch cut by the conformal transformation \(z \rightarrow z^m \). This un-wrapping leads to a sphere with one interface line (black line) and the \(n \)-fold branch cut (red line), whose edge is attached to the interface. This is completely the same as the setup studied in [2]. Using the technique in [25, 26], one can evaluate this partition function.

The OPE coefficient \(C_{\sigma^{-1}\sigma^b\sigma^{-1}\sigma^b} \) can be evaluated by the un-wrapping trick [54] (see also [2]). Since the un-wrapping procedure does not affect the interface, we have

\[
C_{\sigma^{-1}_{\sigma^A}\sigma^b_{\sigma^B}\sigma^{-1}_{\sigma^A}\sigma^b_{\sigma^B}} = (2m)^{-4h_n} \alpha_{\sigma_n}, \tag{17}
\]

where \(\alpha_{\sigma_n} \) is defined in (7). The reason why we obtain the coefficient \(\alpha_{\sigma_n} \) is explained in FIG.4. Thus, the reflected entropy is given by

\[
S_R^{(l/r)}(A) = \frac{c}{3} \log \left(\frac{b}{a} \right) + \text{const.}, \tag{18}
\]

which completely matches twice the area of the entanglement wedge cross section defined in FIG.5 up to constant. In a sim-
similar way, one can also evaluate the LRRE in the limit of the adjacent intervals \(1 - z = \frac{4ab}{(a+b)^2} \ll 1\). For example, the LRRE for the Cardy state \(|a\rangle\) in a diagonal RCFT in this limit is given by

\[
S^{(l/r)}_L(A) \to \frac{c}{6} \log \frac{(a+b)^2}{ab} - 2 \left(\sum_i S^2_{ai} \log \frac{S^2_{ai}}{S^0_{ai}} \right). \tag{19}
\]

The second term comes from the coefficient \(\alpha_{\sigma_n}\) in \([17]\). The second term is equal to twice the LRRE \([8]\), which is consistent with the fact \(S_L(A, A) = 2S(A)\). In the limit of the adjacent intervals, one can find that the Markov gap \([17]\) has the following form,

\[
S^{(l/r)}_L(A) - I^{(l/r)}_R(A) = \frac{c}{3} \log 2 + \cdots. \tag{20}
\]

This universal term can also be found in a special tripartition setup \([15]\). The additional terms \(\cdots\) depend on the details of the boundary.

Note that in the holographic CFT, the LRRE for a finite subsystem satisfies the inequality (analog of \([17]\) in CFTs without boundary),

\[
S^{(l/r)}_L(A) - I^{(l/r)}_R(A) \geq \frac{c}{6} \log 2 \times (# \text{ of cross section boundaries}). \tag{21}
\]

It is claimed that the reflected entropy is more sensitive to multipartite entanglement \([14, 15]\). The \(O(c)\) difference between the reflected entropy and the mutual information implies that there must be a large amount of tripartite entanglement in our tripartition setup associated with the division of the left/right moving sectors.

IV. REFLECTED ENTROPY IN INTERFACE CFT

In a similar way to the LRRE, we can define the reflected entropy in an interface CFT, i.e., \(\text{CFT}_1 \otimes \text{CFT}_2\) with central charge \(c_1\) and \(c_2\) (see our setup in FIG. 6),

\[
S_L(A, B) = \lim_{n,m \to 1} \frac{1}{1-n} \log \frac{Z_{n,m}}{(Z_{1,1})^n}, \tag{22}
\]

where the partition function is expressed in terms of \((\not{c})\) twist operators as

\[
Z_{n,m} = \left\langle \sigma_{lA} (u_1) \sigma_{gA}^{-1} (v_1) I(A) \sigma_{gB} (u_2) \sigma_{gB}^{-1} (v_2) \right\rangle_{\text{CFT} \otimes \text{mnt}}, \tag{23}
\]

where we take the intervals \(A = [u_1, v_1]\) and \(B = [u_2, v_2]\) with \(u_1 < v_1 < u_2 < v_2\). Since the calculation of the reflected entropy is still difficult in general, we focus on the case where the correlation function is approximated by the single block, as in the holographic CFT or in the limit of the adjacent intervals. In a similar way to the BCFT case, one may approximate the correlation function in the holographic CFT as

\[
\frac{Z_{n,m}}{(Z_{1,1})^n} = C^2_{g_{A}^{-1} g_{B} g_{A} g_{B}^{-1}} |\mathcal{F}^{V}(2h_n'(1-z))|^2, \tag{24}
\]

where \(h'_n = \frac{c_{ab}}{24(n-1)}\). This is true for topological defects but in general, could not be true. This is because one cannot organize the descendant contributions in the same way as CFT without defects. One thing we can say for sure is that the leading contribution in the limit of the adjacent intervals \(z \to 1\) is given by

\[
\frac{Z_{n,m}}{(Z_{1,1})^n} = C^2_{g_{A}^{-1} g_{B} g_{A} g_{B}^{-1}} |(1-z)^{2h'_n}|^2. \tag{25}
\]

The effective central charge \(c_{\text{eff}} \in [0, \min(c_1, c_2)]\) depends on a profile of the interface (see \(23\)). Consequently, the reflected entropy in the limit of the adjacent intervals \(1 - z = \frac{4ab}{(a+b)^2} \ll 1\) is given by

\[
S_L(A, B) = \frac{c_{\text{eff}}}{3} \log \frac{(a+b)^2}{ab} + \text{const.}. \tag{26}
\]

The OPE coefficient can be obtained by the unwrapping procedure (see FIG. 4). For the same reason as the entanglement entropy, it is difficult to evaluate the OPE coefficient (more precisely, an analog of \(\alpha_{\sigma^n}\)) in generic interface CFTs. Nevertheless, in a specific case, topological interface, we can give...
In this section, we address the issue of what is the bulk dual of boundary primary correlation functions by using the LRRE/EWCS duality. One possible approach is to investigate the boundary primary two-point function through the bulk-boundary OPE. As we saw in the previous section, the LRRE precisely evaluates the bulk-boundary OPE. It implies that the EWCS in FIG. 5 practically describes the boundary primary correlation. In other words, the holographic dual of the boundary primary correlation is described by the geodesics in the bulk. At first glance, one may provide some other candidates. One may think that the holographic dual of the boundary primary is localized on the brane. This expectation comes from the double holography, where the gravity localized on the ETW brane corresponds to the boundary of the CFT. If this is true, one may expect that the holographic dual of the boundary primary correlation is localized on the brane. However, looking at the AdS$_3$ slicing of AdS$_5$,

$$ds^2 = d\rho^2 + L^2 \cosh^2 \left(\frac{\rho}{L} \right) ds^2_{\text{AdS}_3},$$

one can obtain

$$S_R^{(l/r)}(A) = \frac{c}{3} \cosh \left(\frac{\rho_0}{L} \right) \log \left(\frac{b}{a} \right) + \text{const..}$$

where $\frac{\rho_0}{L} = \log g$. This cannot match (28) even up to constant. One may also consider the EWCS outside the ETW brane, whose intuition comes from the relation between BCFT and ICFT [70]. But this breaks the inequality $S_R \geq I$. Consequently, we propose that the holographic dual of the boundary primary correlation is given by the geodesics (not localized on the ETW brane).

VI. DISCUSSIONS

In this article, we develop the idea of reflected entropy in BCFT/ICFT. We propose some remaining questions and interesting future works. It would be interesting to investigate the reflected entropy in various setups with boundaries or interfaces, which would tell us about the multipartite entanglement between bulk and boundary/interface. In the holographic CFT, one can explicitly evaluate the reflected entropy in BCFT/ICFT, which has the potential to identify the profile of the holographic interface in the CFT language. An interesting future work is to apply our analysis to the island model, which is essentially a special class of BCFT/ICFT. From such an analysis, one may be able to understand the multipartite entanglement structure of the island model. It is known that the LREE in (1+1)-d CFT has a nice interpretation in (2+1)-d TQFT [11, 20, 74]. It would be interesting to find the TQFT picture of the LRRE.

ACKNOWLEDGMENTS

We thank Jonah Kudler-Fram, Yuhan Liu, Shinsei Ryu, Ramanjot Sohal, Kotaro Tamaoka, and Zixia Wei for fruitful discussions and comments. YK is supported by Burke Fellowship (Brinson Postdoctoral Fellowship).
Note1, more precisely, \(S_R \sim I \approx 0 \) implies no W-like entanglement. It does not imply no GHZ entanglement.

Note2, we can formally define the chiral twist operator by the partition function associated with the replica manifold shown in the vacuum energy of the closed string sector of the cylinder.

Note3, this conformal dimension can be obtained by evaluating the \(g \)-function in progress (????).

Note4, this \(g \)-function is not defined in the orbifold CFT \(C^{\otimes n}/\mathbb{Z}_n \), but in the seed CFT \(C \).

Note5, this conformal dimension can be obtained by evaluating the \(g \)-function of the closed string sector of the cylinder partition function associated with the replica manifold shown in the right of FIG 4.

Note6, the same technique can be found in [25,26].

Note7, work in progress (????).
[68] C. Bachas, Z. Chen, and V. Papadopoulos, JHEP 11, 095 (2021), 2107.00965.
[69] C. Bachas and V. Papadopoulos, JHEP 04, 262 (2021), 2101.12529.
[70] T. Anous, M. Meineri, P. Pelliconi, and J. Sonner (2022), 2202.11718.
[71] T. Takayanagi, Phys. Rev. Lett. 107, 101602 (2011), 1105.5165.
[72] M. Fujita, T. Takayanagi, and E. Tonni, JHEP 11, 043 (2011), 1108.5152.
[73] A. Karch and L. Randall, JHEP 05, 008 (2001), hep-th/0011156.
[74] T. Nishioka, T. Takayanagi, and Y. Taki, JHEP 09, 015 (2021), 2107.01797.
[75] M. Hoogeveen and B. Doyon, Nucl. Phys. B 898, 78 (2015), 1412.7568.