In-situ synthesis of graphene on surface of copper powder by rotary CVD and its application in fabrication of reinforced Cu-matrix composites

Qiao Xiao1,2, Xiaou Yi1, Bo Jiang2, Zehua Qin1,2, Jun Hu1,2, Yong Jiang1,2, Huijun Liu1,2, Bin Wang1,2 and Danqing Yi1,2*

1School of Materials Science and Engineering, Central South University, Changsha, P.R. China
2Key Laboratory of Nonferrous Metal Materials Sciences and Engineering, Ministry of Education, Central South University, Changsha, P.R. China
3School of Materials Science and Engineering, University of Science and Technology Beijing, P.R. China

Abstract

A novel approach has been developed for fabricating graphene (Gr) reinforced Cu composites. First, graphene was synthesized in-situ on surface of micron-sized copper powder through rotary chemical vapor deposition (RCVD). Then, the composite powders were hot pressed into bulk Gr-Cu composite pieces in vacuum. During RCVD, methane flow rate controlled the number of layers in synthesized graphene. Analyses of Raman spectroscopy suggested that graphene with varied layer numbers were formed on Cu powder surface. The as-fabricated graphene exhibited a ‘wrinkle’ type morphology with a homogeneous distribution observed by field emission scanning electron microscopy (SEM). After hot pressing, the structure and morphology of graphene were preserved in the Gr-Cu bulk composites, as confirmed by high-resolution transmission electron microscopy (HRTEM). Physical and mechanical properties of these bulk composites were studied. They were nearly fully densified and featured with an increase of more than 30% in hardness, as well as similar electrical conductivity and thermal conductivity as compared with pure Cu. The mechanism therein was discussed.

Introduction

Graphene (Gr), a two-dimensional single layer of carbon atoms densely packed in a honeycomb lattice [1], has generated considerable interest in recent years, owing to its outstanding comprehensive performance such as high modulus, thermal conductivity and electrical conductivity [2]. Its applications have been demonstrated in various fields such as microelectronic devices, transparent and flexible electrodes, electronic/chemical sensors, catalysts, energy conversion/storage, as well as reinforcing fillers in composites.

Particularly, graphene has been widely introduced into many metal matrix composites in order to overcome the performance limits of conventional structural materials [3]. To take advantage of its promising properties, one must ensure a homogeneous distribution of graphene and a good interfacial bonding with the matrix [4]. However, these requirements are often difficult to meet due to agglomeration in graphene [5] and its poor wetting with metals [1]. In order to mitigate these problems, various fabrication techniques have been introduced, including liquid metallurgy [6], powder metallurgy [7-11], electrochemical deposition [12], molecular level mixing [13,14] and in-situ synthesis through chemical vapor deposition (CVD) [15]. Among these, powder metallurgy is one of the most popular methods due to its simplicity and convenience. Nevertheless, it does not naturally lead to good mixing and must be handled with great cares to retain the integrity of graphene [16]. Recently, Chen and his coworkers [5] employed molecular-level mixing and spark plasma sintering to fabricate Gr-Cu composites. They reported that the copper matrix had been strengthened evidently by the addition of graphene. However, this method involved a complex pre-treatment of graphene using strong acid and base, which introduced many defects in material and degraded its initial properties.

Superior to other methods, the fabrication strategy based on in-situ synthesis of graphene on metal powders through CVD followed by hot consolidation is not only simple and low cost, and more importantly, easy to achieve the desired dispersion of graphene [17] and good interfacial bonding with metal matrices [18]. So far, most in-situ CVD work in literature has been reported for developing carbon nanotubes (CNTs) and carbon nanofibers (CNFs) reinforced metal matrix composites [17-21], very few was dealt with Gr-metal matrix bulk composites [15] despite of some for in-situ CVD synthesis of Gr-metal composite powders [22-25].

Owing to the excellent thermal and electrical conductivity of graphene and copper, it is nature to develop graphene reinforced Cu composites. Resorting to an effective fabrication method, one shall expect to achieve an excellent combination of high strength and high electrical/thermal conductivity as compare to pure copper. Great efforts have been made to fabricate such material [13], but unfortunately, all Gr-Cu composites fabricated by various methods have not yet realized the desired high electrical and thermal conductivity despite of a remarkable increase in strength. Poor interfacial bonding between...
graphene and copper is the key issue, as indicated by many researchers [5,10]. So, it is still demanded to develop an effective fabrication method to achieve reliable interfacial bonding.

In the current study, we employed a novel process to produce high quality Gr-Cu bulk composites with improved interfacial bonding. This approach involved in-situ synthesis of Gr-Cu composite powders using rotary chemical vapor deposition (RCVD) and the fabrication of Gr-Cu bulk composites by vacuum hot pressing. The schematic of fabrication process is given in Figure 1. In the RCVD process, two kinds of Gr-Cu composite powders were fabricated with different flow rates of methane. The micron-sized copper powder was initially placed in a specially-designed, rotary quartz tube with a round belly in the middle, rather than on a stationary quartz boat, so that it could spread evenly and interact sufficiently with reaction gases. Compared to the stationary CVD, the RCVD could treat a larger amount of composite powders per batch, thereby improving the deposition efficiency. Besides that, graphene could be synthesized and deposited more homogeneously on surface of Cu powder, enabling a perfect mixing of them. After consolidation by vacuum hot pressing, both single layer graphene and multilayer graphene were deeply embedded in the Cu matrix. The hot-pressed Gr-Cu bulk composites were nearly fully densified, exhibited higher hardness and almost the same electrical and thermal conductivity of pure Cu [Figure 1].

Experimental

Pretreatment of Cu powder

Raw copper powder was spherical with an average particle size of 32 μm and a purity of 99.6 wt.%. The powder was first ultrasonic cleaned in 3M acetic acid solution for 10 min, followed by 3–5 washes in distilled water. Then, ultrasonic cleaning was repeated in alcohol and isopropanol for 10 min, respectively. Finally, the powder was dried in vacuum. These procedures can effectively remove organic contaminants and oxides on powder surfaces (Figure S1 in supporting information), in favor of the uniform nucleation of graphene on copper.

Production of Gr-Cu composite powders

A rotary quartz-tube furnace was used for in-situ synthesis of graphene on surface of copper powder. The central isothermal zone spans over 200 mm, about ⅕ of the total length of the tube (Figure S2 in supporting information). Pre-treated Cu powder (~15 g) was placed in this region. Detailed procedure for the RCVD of graphene under ambient pressure is described as follows (Figure S3 in supporting information).

1. Fix the spinning speed of quartz tube to 18 r min⁻¹ until the end of graphene growth. Purge the tube with Ar (600 scm, standard-state cubic centimeter per minute) for 5 min to remove air and heat it to 800°C under a constant flow of 450 sccm Ar and 150 sccm H₂.
2. Hold the tube temperature at 800°C for 30min.
3. Raise the tube temperature to 1000°C. Introduce CH₄ into the reactor tube, at a flow rate of 1 sccm for batch one and 4 sccm for batch two. Maintain the flow rate ratio of H₂ to CH₄ at 30 and the total gas flow rate (Ar+H₂+CH₄) at 600sccm.
4. After 45 min, cut the flow of CH₄ and cool the furnace to room temperature in flowing Ar (450 sccm) and H₂ (150sccm).

Fabrication of Gr-Cu bulk composites

Gr-Cu composite powders were ground in an agate mortar, heat treated at 500°C for 30 min and then consolidated into Φ 20 mm discs by hot pressing in vacuum (30 MPa, 900°C, 60 min). Control sample of pure Cu was also prepared under the same pressing process, using pre-treated Cu powder.

Characterization

The presence and quality of graphene in composite powders were validated and examined by Raman spectroscopy (HORIBA Lab RAM HR). Morphological observation of the Gr-Cu composite powders was carried out using field emission scanning electron microscopy (SEM, FEI Nova Nano 230). Optical microscopy (OM, LEICA MC 120 HD) and high-resolution transmission electron microscopy (HRTEM, Titan G²60-300) were employed to observe the microstructure of the hot-pressed Gr-Cu bulk composites. The concentration of carbon in bulk composites was examined by infrared absorption using carbon and sulfur determinators (LECO CS 600).

The density of composites was measured by the Archimedes' method. The relative density was calculated as the ratio of experimental bulk density and theoretical density. Vickers hardness (HV) testing was performed using a digital hardness tester (HVS-5) at a load of 10 N and a dwell time of 10 s. Electrical conductivity was tested on an eddy current conductivity meter (FQR-7501A). Thermal conductivity measurements were carried out on a laser-flash apparatus (NETZSCH LFA 457MiroFlash).

Results and discussion

Microstructure of Gr-Cu composite powders and bulk composites

Two batches of Gr-Cu composite powders were synthesized in-situ through RCVD, at the CH₄ flow rates of 1 and 4 sccm, respectively. They were specified as P₁ and P₂. Analysis of Raman spectroscopy confirmed the presence and quality of graphene in these powders. The results are presented in Figure 2a and 2b. The main features in the Raman spectra of composite powders were labelled as peaks 'D', 'G' and '2D' in correspondence with Raman shifts at around 1360, 1583 and 2723 cm⁻¹, respectively. Peak D is associated with the vibrations of carbon atoms with dangling bonds for the in-plane termination of disordered graphite, and its intensity increases with the increase of defects [26]. Vibrations in all sp²-bonded carbon atoms in a 2D hexagonal lattice and the double resonance (DR) process give rise to peak G and peak 2D, respectively [27]. Here, as the CH₄ flow rate rising from 1 to 4 sccm, the intensity ratio of peak D to peak G, I_D/I_G, increased from 0.12 to 0.27, implying that structural defects were present in the synthesized graphene and that the number density of defects was proportional to the flow rate of CH₄. According to literature [28], a significant change in the shape and intensity of peak 2D would be present when shifting from single-layer to multilayer graphene. In addition, the intensity ratio of peak G to peak 2D, I_G/I_2D, increases with the layer number. A I_G/I_2D value greater than 1 is indicative of more than one layer [29]. In Figure 2a, the I_G/I_2D ratios of P₁ and P₂ were calculated to be 1.56 and 1.96, respectively, suggesting that the lower the CH₄ flow rate, the fewer the number of layers. The full width at half maximum (FWHM) of peak 2D in P₁ and P₂ (Figure 2b) were measured to be 71.48 cm⁻¹ and 61.87 cm⁻¹, separately. Combining these features with the high-intensity peak G, the weak peak D and the sharp and near-symmetric appearance of peak 2D, we were able to conclude that multilayer graphene have been
Xiao Q (2017) In-situ synthesis of graphene on surface of copper powder by rotary CVD and its application in fabrication of reinforced Cu-matrix composites

Figure 1. Schematic of fabrication process of Gr-Cu composites: (a) in-situ synthesis of Gr-Cu composite powders by RCVD, (b) fabrication of Gr-Cu bulk composites by vacuum hot pressing.

Figure 2. (a) Raman spectra and (b) peak 2D of P₁ and P₂, (c) SEM image of anisolated particle of P₁, (d) the high magnification image of the powder surface (inset image is higher magnification). (In-situ synthesized Gr-Cu composite powders produced by RCVD with 1 and 4 sccm CH₄ were designated as P₁ and P₂, respectively.)
synthesized through RCVD, and the number of graphene layers and
defect densities were tunable by the flow rate of CH₄.

The SEM image of an isolated particle of P₁ is shown in Figure
2c. Under a higher magnification, the particle was covered by a net
of ‘wrinkles’, as indicated by arrows in Figure 2d. These ‘wrinkles’
possibly formed during the cooling, owing to the difference in thermal
expansion coefficients between Cu and graphene [30]. The uniform
spread of the ‘wrinkles’ suggested that the distribution of graphene
was rather homogeneous on surface of Cu powder. The inset image
of Figure 2d reveals the detailed surface features of the P₁ particle. The
high transparency of graphene net therein indicated that the in-situ
synthesized graphene at the lower flow rate of CH₄ had only a few layers
of atoms, being consistent with the Raman analysis in Figure 2a and 2b.

Gr-Cu bulk composites C₁ and C₂ were then fabricated from
composite powders P₁ and P₂ by vacuum hot pressing. For a comparison,
a control bulk sample of C₀ was also prepared using pre-treated copper
powder. Microstructural characterization of these composites was
carried out using TEM and HRTEM. Figure 3a shows the representative
morphology of graphene exposed at the edge of ion-weakened pore in C₁. Wrinkles and folds were easily visible on graphene surface
with a large specific surface area and two-dimensional high aspect
ratio sheet geometry. The ultrahigh transparency of graphene film
indicated that it probably consisted of only a small number of atomic
layers. Figure 3b is an HRTEM image of a graphene sheet. The presence
of hexagonal patterns and non-regular hexagonal rings of carbon
atoms were evident on the top of Cu lattice, indicating the successful
preparation of single layer graphene sheet with some structural
defects. The graphene/copper interface structure is characterized in
Figure 3c. Multilayer graphene was found to be curved, suggesting a
good flexibility. The graphitic sheets in graphene were evident and the
interlayer spacing among which was measured to be ~0.35 nm, very close
to the ideal value of 0.34 nm, suggesting a good crystallinity. The lattice
fringes of the matrix exhibiting an interlayer spacing of ~0.25 nm most
likely represented the (110) planes of Cu. Combined with Figure 3b and
3c, one can conclude that both single-layer and well-crystallized multilayer
graphene have been firmly embedded inside the Cu matrix, despite of
the mechanical destruction during grinding and hot pressing. This shall
be attributed to the high stability of in-situ synthesized graphene and its
improved interfacial bonding with copper which were resulted from the
RCVD and vacuum hot pressing. Nevertheless, amorphous carbon was
also observed. This possibly gave rise to peak D in the Raman spectra in
Figure 2a, and may account for why the electrical and thermal conductivity
of composites were lower than one initially expected (Figure 4).

The performance of Gr-Cu bulk composites

The carbon content and the relative densities of hot-pressed pure
Cu (C₀) and Gr-Cu bulk composites (C₁ and C₂) are summarized in
Table 1. The carbon content of the composite can be tuned conveniently
by adjusting the concentration of carbon source gas. As the flow
rate of CH₄ increases, the carbon content in the composite increases
accordingly. The relative densities of composites were found to be fairly
high, ~99.0 and 99.6%, in contrast to 96.0% of pure Cu. This suggested
that the in-situ synthesized graphene through RCVD was beneficial for
the subsequent hot consolidation of Gr-Cu composite powders, and
the latter possessed a good sintering ability [Table 1].

![Figure 3](image-url)
A summary of the comparison is given in Table S1 (supporting information). The remarkable strengthening achieved in this work shall be related to several factors as follows. Primarily, due to the use of RCVD, fine-sized copper powders were well wrapped by the in-situ synthesized graphene which can effectively impede grain growth and thus reduce the final grain size of Cu matrix as shown in Figure S4 (supporting information). The grain size refinement resulted in a high density of grain boundaries which effectively hindered dislocation movements [5]. In addition, graphene with ultra-high strength and homogeneous distribution in the Cu matrix may act as effective obstacle for preventing dislocation movements, therefore contributing to the strengthening of matrix [13]. Furthermore, the significant mismatch of thermal expansion coefficients (CTE) between graphene and copper matrix (in-plane CTE is $-6 \times 10^{-6} \text{K}^{-1}$ for graphene at 300 K and $24 \times 10^{-6} \text{K}^{-1}$ for Cu) may induce lattice distortion with a high dislocation density at the interface [14], further enhancing the strength. Finally, an increase in hardness was related to the improved interfacial bonding between Gr and Cu matrix (as suggested by TEM/HREM results in Figure 3). Compared with traditional fabrication methods such as powder metallurgy [7,9-11,31,32], carbonaceous nano-fillers were only mechanically mixed with metal powders prior to hot consolidation. Thus, the interfacial bonds with the metal matrix were not expected to be high [17], leading to a lower strengthening efficiency in the composites (Table S1 in supporting information).

The results of electrical and thermal conductivity measurements of hot-pressed pure Cu (C_0) and Gr-Cu bulk composites (C_1 and C_2) are compared in Figure 4. The conductivity values decreased slightly with increasing graphene content in the Gr-Cu composites. Specifically, the electrical and thermal conductivity values of C_2 were 72.02% IACS and 186.71 W m$^{-1}$ K$^{-1}$, respectively, decreased by -3.6 and 7.8% compared with C_0 (74.69% IACS and 202.46 W m$^{-1}$ K$^{-1}$). The decrease in conductivity induced by graphene addition can be ascribed to the following reasons. First, the mean free path of electrons and heat carriers was reduced due to the reduction of grain size (Figure S4 in supporting information) [33].

Second, the interface between graphene and copper acted as a scattering center of electron transmission [10] and a thermal insulation barrier to heat flowing [5]. Third, the electrical and thermal conductivity

Table 1. Carbon content and densities in hot-pressed pure Cu and Gr-Cu bulk composites.

Material	Carbon content [in wt.%]	Carbon content [in vol.%]	Theoretical density [g cm$^{-3}$]	Measured density [g cm$^{-3}$]	Relative density [%]
C_0	0.0	0	8.94	8.58	96.0
C_1	0.015	0.070	8.93	8.89	99.6
C_2	0.026	0.115	8.93	8.84	99.0

The strengthening efficiency, R, that measures the strengthening effect of a given volume fraction of reinforcement on the matrix can be evaluated by Equation (1) [6]:

$$R = \frac{(H - H_m)}{V_fH_m}$$ (1)

where H and H_m are the hardness of composite and the matrix, respectively. V_f is the volume fraction of the reinforcement. In the present study, the strengthening efficiency R was calculated to be 454 and 282 for 0.070 and 0.115 vol.% graphene in C_1 and C_2, respectively. Note that this evaluation was rather rough and shall be regarded as the combined consequence of many important influences, such as interface bonding nature, relative density, and structural defect of graphene. For example, less structural defects indicate less loss of the intrinsic strength of graphene layers [14]. According to the above analysis, C_1 had a higher relative density than C_0 and the in-situ synthesized graphene therein had less structural defects. Consequently, the strengthening effect of graphene shall be more pronounced in C_1. Furthermore, it was worth noting that the strengthening efficiency of graphene in C_2 was remarkably higher than the literature data of Gr-Cu, Gr-Al, Gr-Mg bulk composites fabricated through other methods [5,7-9,11,14,31,32]. A summary of the comparison is given in Table S1 (supporting information).
Xiao Q (2017) In-situ synthesis of graphene on surface of copper powder by rotary CVD and its application in fabrication of reinforced Cu-matrix composites

of graphene itself deteriorate significantly with increasing defects. Therefore, a poorer conductivity was found in the 0.115 vol.% Gr-Cu composite (C1) which contained more defective graphene (Figure 2a). Nevertheless, the reduction in electrical/thermal conductivity caused by graphene addition was subtle. This shall be contributed to a very limited amount of porosity inside composites (Table 1 and Figure S4 in supporting information), an interlinked pathway of electrons and heat carriers induced by the well-dispersed graphene (Figure 2d) and the improved interfacial bonding between in-situ synthesized graphene and Cu matrix (Figure3).

Conclusions

In summary, Gr-Cu composite powders with multilayer graphene homogeneously dispersed on surface of Cu powder have been successfully prepared by RCVD. The Gr-Cu bulk composites with high quality interfacial bonding between graphene and Cu matrix were fabricated by hot pressing. They were nearly fully densified (ca. 99.0% of theoretical density) and featured with an increase of more than 30% inhardness compared with pure Cu. High electrical conductivity (96.0% of pure Cu) and high thermal conductivity (92.0% of pure Cu) were also achieved.

It is worth mentioning that more work needs to be done to further improve the quality of graphene and its interfacial bonding with metal matrix by optimizing the RCVD parameters, such as the concentration of carbon source gas, the concentration ratio of hydrogen to carbon source gas and the spinning speed of quartz tube, and by replacing spherical metal powder with other-shaped (such as flaky) metal powder.

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (Grant No. 51474244) and the Shenzhen Science and Technology Project (Grant No. JCYJ20140509142357196) for providing financial support, and the Center for Analysis and Testing of Central South University for TEM and HRTEM characterizations.

References

1. Moghadam AD, Omrani E, Menezes PL, Rohatgi PK. (2015) Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene-A review. Compos Part B-Eng 77: 402-420.
2. Soldano C, Mahmood A, Dujardin E. (2010) Production, properties and potential of graphene. Carbon 48: 2127-2150.
3. Kumar HGP, Xavior MA. (2014) Graphene reinforced metal matrix composite (GRMMC): a review. Pro Eng 97: 1033-1040.
4. Neubauer E, Kitzmantel E, Hulman M, Angerer P. (2010) Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes. Compos Sci Technol 70: 2228-2236.
5. Chen F, Ying J, Wang Y, Du S, Liu Z, et al. (2016) Effects of graphene content on the microstructure and properties of copper matrix composites. Carbon 96: 836-842.
6. Chen LY, Komishi H, Feihrenbacher A, Ma C, Xu JQ, et al. (2012) Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites. Scr Mater 67: 29-32.
7. Wang J, Li Z, Fan G, Pan H, Chen Z, et al. (2012) Reinforcement with graphene nanosheets in aluminum matrix composites. Scr Mater 66: 594-597.
8. Tang Y, Yang X, Wang R, Li M. (2014) Enhancement of the mechanical properties of graphene-copper composites with graphene-nickel hybrids. Mater Sci Eng A 599: 247-254.
9. Rashad M, Pan F, Tang A, Asif M (2014) Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method. Prog Nat Sci-Mater 24: 101-108.
10. Jang R, Zhou X, Fang Q, Liu Z. (2016) Copper-graphene bulk composites with homogeneous graphene dispersion and enhanced mechanical properties. Mater Sci Eng A 654: 124-130.
11. Li JL, Xiong YC, Wang XD, Yan SJ, Yang C, et al. (2015) Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling. Mater Sci Eng A 626: 400-405.
12. Jagannadham K. (2012) Electrical conductivity of copper-graphene composite films synthesized by electrochemical deposition with exfoliated graphene platelets. J Vac Sci Technol B 30: 03D109-1-9.
13. Hwang J, Yoon T, Jin SH, Lee J, Kim T, et al. (2013) Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv Mater 25: 6724-6729.
14. Zhang D, Zhan Z. (2016) Strengthening effect of graphene derivatives in copper matrix composites. J Alloy Compd 654: 226-233.
15. Nasibulina AG, Koltsova T, Nasibulina LI, Anoshkin IV, Semenchka A, et al. (2013) A novel approach to composite preparation by direct synthesis of carbon nanomaterial on matrix or filler particles. Acta Mater 61: 1862-1871.
16. Tjong SC. (2013) Recent progress in the development and properties of novel metal nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater Sci Eng R 74: 281-350.
17. He C, Zhao N, Shi C, Du X, Li J, et al. (2007) An approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites. Adv Mater 19: 1128-1132.
18. Kang J, Nash P, Li J, Shi C, Zhao N. (2009) Achieving highly dispersed nanofibres at high loading in carbon nanofibre-metal composites. NanoTechnology 20: 235607. [Crossref]
19. Yang X, Liu E, Shi H, Chen L, Li J, et al. (2013) Fabrication of carbon nanotube reinforced Al composites with well-balanced strength and ductility. J Alloy Compd 563: 216-220.
20. Nasibulina LI, Koltsova TS, Jooentakanen T, Nasibulina AG, Tolochko OV, et al. (2010) Direct synthesis of carbon nanofibers on the surface of copper powder. Carbon 48: 4559-4562.
21. Kang J, Nash P, Li J, Shi C, Zhao N, et al. (2009) The effect of heat treatment on mechanical properties of carbon nanofiber reinforced copper composite matrix composites. J Mater Sci 44: 5602-5608.
22. Li Y, Shi W, Chopra N. (2016) Functionalization of multilayer carbon shell-encapsulated gold nanoparticles for surface-enhanced Raman scattering sensing and DNA immobilization. Carbon 100: 165-177.
23. Liu Y, Hu Y, Zhang J. (2014) Few-layer graphene-encapsulated metal nanoparticles for surface-enhanced Raman spectroscopy. J Phys Chem C 118: 8993-8998.
24. Wang S, Huang X, He Y, Huang H, Wu Y, et al. (2012) Synthesis, growth mechanism and thermal stability of copper nanoparticles encapsulated by multi-layer graphene. Carbon 50: 2119-2125.
25. Kang J, Li J, Shi C, Nash P, Chen D, et al. (2009) In situ synthesis of carbon onion/ nanotube reinforcements in copper composites. J Alloy Compd 476: 869-873.
26. Ferrari AC, Basko DM. (2013) Raman spectroscopy as a versatile tool forstuding the properties of graphene. Nat Nanotechnol 8: 235-246.
27. Malard LM, Pimenta MA, Dresselhaus GS, Dresselhaus MS. (2009) Raman spectroscopy in graphene. Phys Rep 473: 51-87.
28. Ferrari AC, Meyer JC, Scardaci V, Cisarighi C, Lazzeri M, et al. (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97: 187401. [Crossref]
29. Robertson AW, Warner JH. (2011) Hexagonal single crystal domains of few-layer graphene on copper foils. Nano Lett 11: 1182-1189. [Crossref]
30. Wang Z, Liu Z, Monne MA, Wang S, Yu Q, et al. (2016) Interfacial separation and electrochemical delamination of CVD grown multilayer graphene for recyclable use of Cu powder. RSC Adv 6: 24865-24870.
31. Li JF, Zhang L, Xiao JK, Zhou KC. (2015) Sliding wear behavior of copper-based composites reinforced with graphene nanosheets and graphite. Trans Nonferrous Met Soc China 25: 3354-3362.
32. Bartolucci SF, Paras J, Rafiee MA, Rafiee J, Lee S, et al. (2011) Graphene-aluminum nanocomposites. Mater Sci Eng A 528: 7933-7937.
33. Golb P, Ning H, Li X, Lu CY, Novoselov KS, et al. (2014) Thermal properties of graphene-copper-graphene heterogeneous films. Nano Lett 14: 1497-1503. [Crossref]

Copyright: ©2017 Xiao Q. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.