Marine Microbial Pharmacognosy: Prospects and Perspectives

K. Mohanrasu, R. Guru Raj Rao, M. Sudhakar, Rathinam Raja, J. Jeyakanthan, and A. Arun

Abstract

Modern scientific advancements and research on marine microbes has revealed their significance as producers of therapeutic products useful in treating various human diseases. Microbes in marine habitat have evolved to adapt to the harsh condition that prevails in the ocean. Their struggle to compete for space and nutrients has paved way for the synthesis of different novel enzymes possessing distinctive characteristics. Thus, marine habitat hosts many remarkable microorganisms that offer unique biologically active compounds, enzymes endowed with astonishing properties, and mechanism to survive in extreme environmental conditions. The utilization of marine biotic resources grows at an extraordinary growth rate of 12% per annum and is evident from about 4900 patents filed connected with marine genetic resources and 18,000 natural compounds. This concern has boosted research all over the world to explore the untapped potential hidden in marine microbes, which has lot of biotechnological
applications that includes bioactive compounds (metabolites) for therapeutics, novel enzymes, cosmetics, and nutraceuticals. This book chapter will meticulously deliberate the utilization of marine resources by biotechnological applications for therapeutics like antibiotics, chemical compounds, biopolymer, enzymes, and various microbial biomedical purposes such as drug delivery and tissue engineering from marine biota (bacteria, fungi, and algae).

Keywords

Microbial Pharmacognosy · Bioactive compounds · Biomedical application

5.1 Introduction

The ocean engulfs about 70% of the area on planet earth whereas the aquatic ecosystem houses nearly 80% of living organisms on the whole biosphere. The marine environment hosts 178,000 different species of microorganisms (34 phyla) as reported by the United Nations Environment Programme on Global Biodiversity Assessment (UEPA 2006). The marine unicellular organisms play a crucial role in the conservation and sustainability of the marine ecosystem. The marine microbes are competent in enduring from volcanic eruptions to Antarctic glacier, and they possess numerous distinctive adaptations compared to the terrestrial microbes. Marine microbes adapt to environmental variations like high salt concentration, extreme temperature, low or higher concentrations of organic matter, high hydrostatic pressure, and other external physiochemical factors. Due to their continued exposure to various environmental changes, they have developed unique defense and survival mechanisms employing secondary metabolites that can sense, adopt, and protect them from such harsh conditions.

Microbes are the modern day marvel, whose potential has not been fully explored, yet they offer extensive application in diverse fields like heavy metal bioremediation (Rainbow 1995), antibiotics and enzyme production (Okami 1986), biodegradation and bioremediation of hydrocarbons (Mohanrasu et al. 2018), biosurfactant production (Maneerat and Phetrong 2007), degradation of plastic debris (Mohanrasu et al. 2018), anti-biofilm activity (Jiang et al. 2011), and polyhydroxybutyrate (bioplastics) synthesis (Arun et al. 2006). Recently, researchers have discovered a number of novel metabolites from marine bioresources including macro or micro algae, bacteria, and fungi that are used as antimicrobial, anti-obesity, antitumorous, antidiabetic, immunological, and therapeutic potential biomolecules. For example, the *Pseudomonas* genus serves as a wellspring of bioactive compounds such as andrimid, bushrin, moiramides, phthalate, pseudopeptide, phloroglucinol, phenazine, pyrroles, pyrrolidinedione, phenanthrene, quinolone, and zafrin for the treatment of many diseases (Romanenko et al. 2008).

The marine microbial biosphere delivers a variety of biomolecules that cater diverse novel biologically active compounds for pharmaceutical applications. This
chapter exclusively focuses on biologically active compounds synthesized by marine microbes for pharmaceutical applications; we highlight the varieties of biological compounds from marine-based algae, bacteria, and fungi (Fig. 5.1 and Table 5.1).

5.2 Past, Present of Marine Microbial Pharmacognosy

In today’s modern world, with increasing population and demanding food industry, marine habitat acts as a crucial food source that caters around 90 million tons of food per year. Due to the huge biodiversity, marine environment offers a variety of biologically active compounds that could be efficiently employed to treat new diseases. Emerging infectious diseases with newly emerging drug-resistant microbial strains demand pristine compounds that would be tailored by marine microbes as researchers have shifted their interest toward the quest for bioactives from marine
Table 5.1 Novel bioactive compounds produced by marine microbes

Source	Compound	Activity	Literature
Micromonospora sp.	Thiocoraline	Antitumor, antimicrobial	Romero et al. (1997)
Streptomyces sp.	Salinamides	Anti-inflammatory	Moore et al. (1999)
Streptomyces sp.	Himalomycins	Antibacterial	Maskey et al. (2003)
Streptomyces sp. KS3	Komodoquinone A	Neuritogenic	Itoh et al. (2003)
Streptomyces sp. BD21-2	Bonactin	Antimicrobial	Schumacher et al. (2003)
Salinispora tropica	Salinosporamide A	Anticancer	Feling et al. (2003)
Streptomyces sp. B8652	Complex compounds	Anticancer, antimalarial	Maskey et al. (2004)
Verrucosispora	Abyssomicin C	Antibacterial	Riedlinger et al. (2004)
Verrucosispora sp.	Abyssomicins	Antibacterial	Riedlinger et al. (2004)
Streptomyces aureovercillatus	Aureovercillactam	Antitumor	Mitchell et al. (2004)
Verrucosispora maris	Abyssomicin C	Antibacterial	Bister et al. (2004)
Streptomyces sp. M045	Chinikomycins	Antitumor	Li et al. (2005)
Streptomyces sp.	Glyciapyrroles	Antibacterial	Macherla et al. (2005)
Streptomyces sp.	10α,11-dihydroxyamorph-4-ene, 10α,15-dihydroxyamorph-4-en-3-one, and 5α,10α,11-trihydroxyamorph-3-one	Antitumor	Macherla et al. (2005)
Thermoactinomyces sp.	Mechercharmycins	Antitumor	Kanoh et al. (2005)
Streptomyces sp. CNQ-085	Daryamides	Antitumor, antifungal	Asolkar et al. (2008)
Streptomyces CNQ766	Actinofuranones	Cytotoxic	Cho et al. (2006)
Streptomyces sp. KORDI-3238	Streptokordin	Anticancer	Jeong et al. (2006)
Streptomyces corchorusii AUBN1/7	Tetracenomycin D	Cytotoxic	Adinaryan et al. (2006)
Streptomyces sp. QD518	Selina-4(14),7(11)-dien-8,9-dio	Anticancer	Wu et al. (2006)
Streptovercillium	Butenolides	Cytotoxic	Li et al. (2006)
Streptomyces sp. NTK 937	Caboxamycin	Anticancer	Hohmann et al. (2009c)
Streptomyces sp.	Piericidins	Anticancer	Hayakawa et al. (2007)
Source	Compound	Activity	Literature
--------------------	---	-------------------	-----------------------------------
Nocardopsis lucentensis	Lucentamycins	Cytotoxic	Cho et al. (2007)
Streptomyces sp.	Essramycin	Antibacterial	El-Gendy et al. (2008a, b)
Marinispora sp.	Lynamicins	Antibacterial	McArthur et al. (2008)
Salinispora arenicola	Saliniketals	Anticancer	
Salinispora arenicola	Arenicolides	Antitumor	Williams et al. (2007)
Brevibacillus laterosporus	2-alkylidene-5-alkyl-4-oxazolidinones, lipoxazolidinone A, lipoxazolidinone B	Antimicrobial	Macherla et al. (2007)
Salinispora pacifica CNS-237	Pacificanones	Cytotoxic	Oh et al. (2008)
Salinispora pacifica CNS-237	Pseudomonas stutzeri	antimicrobial	Uzair et al. (2008)
Streptomyces sp.	Piperazimycins	Cytotoxic	Miller et al. (2007)
Marinispora sp. (NPS12745)	Lyncamicins B, Lyncamicins C	Antimicrobial	McArthur et al. (2008)
Salinispora arenicola	Arenamides	Cytotoxic	Asolkar et al. (2008)
Streptomyces sp.	Cyclomarines	Anti-inflammatory	Schultz et al. (2008)
Pseudomonas stutzeri	Zafrin	antimicrobial	
Nocardia sp.	Ayamycin	Antifungal	El-Gendy et al. (2008a, b)
Streptomyces sannurensis	Marinopyrroles A, Marinopyrroles B	Cytotoxic & MRSA	Hughes et al. (2008)
Verrucosispora sp.	Proximincis	Cytostatic	Fiedler et al. (2008)
Streptomyces sp. CNQ-418	Marinopyrroles	Antibacterial	Hughes et al. (2008)
Streptomyces sp. Merv8102	Essramycin	Antibacterial	El-Gendy et al. (2008a, b)
Streptomyces sp.	Mansouramycins	Cytotoxic	Hawas et al. (2009)
Streptomyces sp.	Albidopyrone	Cytotoxic	Hohmann et al. (2009a)
Streptomyces sp.	Carboxamycin	Antibacterial, cytotoxic	Hohmann et al. (2009b)
Streptomyces sp.	2-Allyloxyphenol	Antimicrobial, antioxidant	Arumugam et al. (2010)
Dermacoccus sp.	Dermacozines	Cytotoxic, radical scavenging	Abdel-Mageed et al. (2010)
Streptomyces sp.	ML-449	Cytotoxic	Jørgensen et al. (2010)
sources. Though terrestrial plants and microbes have severed as an important source in last couple of decades for biomedical drug discovery and health, the untapped potentials of marine microbes have emerged as widespread resources. 1940s penicillin was discovered by Alexander Fleming whereas the in same decade penicillinase (resistant to penicillin antibiotic) produced by *Staphylococcus aureus* was reported similarly in 1950. To counter this drug resistance, modern pharmaceutical industry has ventured the use of marine environments to foster the next generation of antibiotics. Scientists have isolated in the 1950s the first marine bioactive compounds (spongouridine and spongothymidine) from *Cryptotheca crypta* (Caribbean sponge) and demonstrated its significant anti-cancer and anti-viral properties (Leary et al. 2009). Since, the discovery of marine bioactive metabolites, several interesting molecules were isolated from marine environment, which was evident from accelerated research that resulted in a diverse array of applications like pharmacology, biology, biochemistry, organic chemistry, and ecology (Leary et al. 2009).

Source	Compound	Activity	Literature
Nocardiopsis sp.	TP-1161	Antibacterial	Engelhardt et al. (2010)
Actinomadura sp.	Halomadurones A–D	Potent Nrf2-ARE activation	Wyche et al. (2014)
Nocardiopsis sp.	Nocapyrones H–J	Pro-inflammatory factor, stronger inhibitory effect on nitric oxide	Kim et al. (2014)
Micrococcus sp.	Microluside A	Antibacterial activity	Eltamany et al. (2014)
Micromonospora sp.	MBJ-0003	Moderate cytotoxicity	Kawahara et al. (2014)
Actinomycetospora chlora	Thiasporines A–C	Cytotoxicity	Fu and MacMillan (2015)
Nocardiopsis sp.	Diketopiperazine 1	Sterol O-acyltransferase inhibitor	Kobayashi et al. (2015)
Verrucosispora sp.	Glycerol 1-hydroxy-2,5-dimethyl benzoate	Anti-MRSA activity	Huang et al. (2016)
Micromonospora sp.	Quinoline alkaloid	Antibacterial activity	Thi et al. (2016)
Pseudonocardia carboxydivorans	Branimycins B and C	Antibacterial activities	Braña et al. (2017)
Nocardiopsis sp.	Nocazines F and G	Excellent cytotoxicity	Sun et al. (2017)
The marine diversity has immense untapped potential, awaits for researchers to unravel it, recently more than 1277 new compounds has been published in 432 papers during 2016 alone and a peak 17% rise in research output during 2018 compared to latter 1490 novel compounds from 477 papers (Blunt et al. 2018). The enormous evolution of technologies in the field of marine biotechnology leads to tremendous therapeutic potent compound breakthroughs from the marine ecosystem. Scientists have found numerous deleterious components possess astonishing therapeutic novel value compounds that are castoff as predator defense mechanisms by marine microbes. Many marine microorganisms have been rigorously investigated over the past 50 years from which 270,000 natural products and 30,000 compounds have been isolated among which 9 compounds have been approved as medical drugs (Blunt et al. 2011; Gerwick and Moore 2012; Rangel and Falkenberg 2015).

5.3 Pharmacological Potential Biomaterials from Marine Algae

Humans had utilized algae mainly for nutrients (protein) produced by Spirulina (Chlorophyta). Marine microalgae are mainly classified into three types based on the pigmentation as red (Khan et al. 2015). With the development of improved technologies, a diverse array of application for algae has been recognized from health care, cosmetics, and pharmaceutical. Polyunsaturated fatty acids (PUFAs) from microalgae have started gaining commercial value (Roy and Pal 2015). There are several compounds isolated from algae that are promising bio alternatives to the existing drug, which exhibits higher efficacy, with nearly less side-effects, and some of them are briefly discussed. The primary producers of marine algae n-3 PUFA have several health benefits such as in treating cardiovascular diseases, brain development, function and as healing for inflammatory conditions. Awad (2000) segregated 3–0-β-D-glucopyranosyl stigmasta-5,25-diene compound from green alga Ulva lactuca, which have potential anti-inflammatory activity. The bioactive compound, Isorawsonol have been isolated by Chen et al. (1994) from tropical green alga Arrainvill arawsonii that exhibited potential anticancer and immunosuppressive effects (Chen et al. 1994).

Cycloeudesmol isolated from marine alga Chondria oppositclada exhibited potent antibiotic activity against Staphylococcus aureus (Fenical and Sims 1974). Ascosalipyrolidinones A and B isolated from green alga Ulva spp. presented potential antiplasmodial activity against Plasmodium falciparum strains NF-54 and K1 (Osterhage et al. 2000). Halitunal compound isolated from Halimeda tuna displays antiviral toward murine coronavirus A59 in in vitro condition (Koehn et al. 1991). Two new compounds, Capisterones A and B, are triterpene sulfate esters isolated from green alga Penicillus capitatus, which shows antifungal activity against marine algal pathogen Lindra thallasiae (Puglisi et al. 2004).

The brown algae color is mainly due to the presence of xanthophyll and fucoxanthin pigments, which mask the presence of other pigments (chlorophyll a and c, β carotenes). Currently there are 1200 compounds reported from brown algae (Phaeophyceae). Leptosins K, K1, and K2 compounds from Sargassum tortile
exhibited antitumor activity against sarcoma 180 as cites and cytotoxicity against cultured P388 cells (Takahashi et al. 1995). The compound Stypoldione from *Stypopodium zonale* brown alga is found to possess ichthyotoxic effect (Gerwicket al. 1979). Cis-dihydroxy tetrahydrofuran isolated from brown alga *Notheia anomala* found in southern coast of Australia showed nematocidal activity against parasitic nematodes such as *Trichostrongylus scolubriformis* and *Haemonchus contortus* (Capon et al. 1998). Lobophorolide isolated from brown alga *Lobophora variegata* possesses potent anti-fungal activity against *C. albicans* and is highly specific against *Dendrobothia salina* and *Lindra thalassiae* (Kubanek et al. 2003).

Lopophorins A and B compounds from brown alga *Lobophora variegata* compound illustrated good anti-inflammatory activity (Jiang et al. 1999). *Dictyota paffii* isolated compound displayed strong anti-human syncytial virus (HSV)-1 activity and moderate activity against human immunodeficiency virus (HIV)-1 reverse transcriptase (Pereira et al. 2004); *Dictyota dichotoma* obtained compounds such as diterpenes, dictyolactone, and sanadaol that showed algicidal activity against dinoflagellate *Alexandrium catanella* (Finer et al. 1979); Ecklonia cava derived 8,8‴- bieckol (Fukuyama et al. 1989); and 8,4‴- bieckol showed activity against HIV-I and fucosterol from *Pelvetia siliquosa* that displayed antidiabetic activity (Lee et al. 2004).

In red algae, the presence of pigments phycoerythrin and phycocyanin are responsible for red coloration, whereas those compounds suppress other pigments xanthophylls, β- carotene, and chlorophyll a and thus are termed as red algae (Bold and Wynne 1985). The red algae *Portieria hornemanii* produced halmon (polyhalogenated monoterpane) and showed antitumor activity in in vitro condition (Fuller et al. 1992). The red algae *Gigartina tenella* compounds Sulquinovosyl diacylglycerol, sulfolipid KM043, and KM043 are a class of 6-sulf-α-D-quinovopyranosyl-(1→3)-1,2 diacylglycerol (SQDG) compounds and have potential antiviral activity against HIV-I reverse transcriptase (Ohata et al. 1998). Chondriamide C and 3- indol acrylamide were isolated from red algae *Chondria atropurpurea* and displayed antiviral activity against HIV-1 and fucosterol from *Pelvetia siliquosa* that displayed antidiabetic activity (Lee et al. 2004).

The red alga *Symphyocladia latiuscula* produce cyclohexanone shown free radical scavenging activity (Choi et al. 2000). *Digenea simplex* derived amino acid (α-alkokainic acid) shown potent neurophysiological activity in mammals (Biscoe et al. 1975; Ferkany and Coyle 1985). *Laurencia pinnata* synthesized compound Laurepinacine and isolaurepinacin showed insecticidal activity (Fukuzawa and Masamune 1981). *Laurencia brongniarti* derived four polybrominated indoles has a potential antimicrobial activity against *Saccharomyces cerevisiae* and *Bacillus subtilis* (Carter et al. 1978). *Tichocarpus crinitus* red algae obtained tichocarpols A and B showed antioxidant activity against *Stronglylocentrotus intermedius* (Ishii et al. 2004).

Fucoxanthin is a member of carotenoid present in various species of brown algae exhibited different pharmaceutical applications such as antioxidant activity,
anticancer, anti-inflammatory, antiobesity, neuroprotective effect, antiangiogenic, and skin protective effect (Kim and Pangestuti 2011). The marine algae–derived sulfated polysaccharides are the source for numerous health beneficial activities such as antioxidant, anticoagulant, anti-allergic, anti-human immunodeficiency virus, immunomodulating activities, and anticancer activities (Ngo and Kim 2013).

5.4 Marine Bacteria: A Promising Resource for Biomedical Application

Ever since the inception of mankind, nature has been nourishing us with valuable resources for the sustainability of humans by providing necessity for survival like food, shelter, and protection. Extensive screening of marine actinobacteria was started from early 1969 to formulate antagonistic compounds (Weyland 1969). Early evidence shows members of actinomycetes like *Aeromicrobium marinum*, *Dietzia*, *Marinophilus*, *Rhodococcus*, *Salinibacterium*, *Salinispora*, *Solwaraspora*, *Streptomyces*, *Verrucosispora*, *Arthrobacter*, *Streptomyces*, *Corynebacterium*, *Frankia*, *Micrococcus*, and *Micromonospora* synthesize numerous important compounds that have a huge variety of pharmaceutical applications (Solanki et al. 2008).

Marine actinobacteria are the main source for novel secondary metabolites, around the 1970s there were only 11 genera of actinomycetes reported and then in 2005 the number rose to 100 whereas in 2010 the numbers doubled to around 220. The reason behind such a sharp increase in genera is the advancements in sequencing techniques that revealed novel actinomycetes (Subramani and Aalbersberg 2013). Actinobacteria are filamentous, Gram-positive bacteria belonging to the Actinomycetaceae family. *Streptomyces* are known for their unsurpassed amount of secondary metabolite productions that account for 80% actinobacterial natural products (Manivasagan et al. 2014a, b). The marine actinobacteria are found in diverse biological sources (seawater and sediment, sponges, seaweeds, fish, mollusks, and mangroves) and several reports indicated that marine actinobacteria have several biotechnological applications such as antitumor agents, antibiotics, enzyme, immunosuppressive agents, and pigments (Fenical and Jensen 2006; Bull and Stach 2007; Dharmaraj 2010; Mayer et al. 2011).

The extensive search of bioactive compounds from microorganisms has led to the discovery of 23,000 antibiotics, and several reports have been published related to marine actinobacteria that are biologically active molecules (Lam 2006; Solanki et al. 2008; Zotchev 2012; Manivasagan et al. 2014a, b; Subramani and Sipkema 2019) Apparently, only minor fraction of marine actinomycetes natural products were discovered, but with recent sophisticated techniques made accessibility for isolation and identification of numerous bioactive compounds, which are in pipelines for antimicrobial, anticancer, anti-inflammatory and neuromodulating drugs.
5.4.1 Antibacterial Activity

Typically, antibacterial activity implies any element that kills the bacteria or inhibits bacterial growth or it will help to inhibit or kill the infectious diseases causing antibiotic-resistant microorganisms. Riedlinger et al. (2004) isolated novel polycyclic polyketide (Abyssomicin C) antibiotic from *Verrucosispora* sp., a potent inhibitor of p-aminobenzoic acid biosynthesis that will lead to inhibition of folic acid biosynthesis, an earlier stage inhibition than the well-known synthetic sulfa drugs. Abyssomicin C has potential antibacterial activity against vancomycin-resistant, against Gram-positive bacteria and multi-drug resistant *Staphylococcus aureus*. A novel compound, bonactin displays antimicrobial activity against both Gram-positive and Gram-negative bacteria that are obtained from the liquid culture of *Streptomyces* sp. BD21–2, the culture was accumulated from Kailua Beach, Oahu, Hawaii (Schumacher et al. 2003).

El-Gendy et al. (2008a, b) isolated *Streptomyces* sp. Merv8102 from sediments of the Mediterranean Sea at the Egyptian Coast and extracted Essramycin (triazolopyrimidine) antibiotic. The compounds shown antibacterial activities against Gram-positive, Gram-negative bacteria like as *Bacillus subtilis* (ATCC 6051), *Escherichia coli* (ATCC 10536), *Staphylococcus aureus* (ATCC 6538), *Pseudomonas aeruginosa* (ATCC 10145), and *Micrococcus luteus* (ATCC 9341). Hughes et al. (2008) isolated *Streptomyces* sp. CNQ-418 from La Jolla, California, and extracted densely halogenated and axially chiral metabolites of marinopyrroles A that contain uncommon bispyrrole structure. The marinopyrroles have potential antibacterial activity against methicillin-resistant *Staphylococcus aureus* (MRSA). Caboxamycin is a new antibiotic (benzoxazole) produced by *Streptomyces* sp., are isolated from deep-sea sediments of Canary Basin has inhibitory activity against Gram-positive bacteria (Hohmann et al. 2009a, b, c).

5.4.2 Antifungal Activity

Several unique structural features of bioactive compounds were obtained from a variety of marine actinomycetes, yet research is conducted to find the novel antibiotics against pathogenic fungi (Subramani and Sipkema 2019). The common saprophytic nature *Streptomyces* species are significant to produce complex antibiotics and biopolymers (Wanner 2009). In south China, the sponge (*Craniella australiensis*) associated Marine *Streptomyces* sp. DA11 was found to produce chitinase enzyme that exhibited antifungal activities against *Candida albicans* and *Aspergillus niger* (Han et al. 2009).

Daryamides are a novel antifungal compound isolated from marine sediment *Streptomyces* strain, CNQ-085, that shows antifungal activities against *Candida albicans* with moderate or weak cytotoxicity against human colon carcinoma cell line HCT-116 (Asolkar et al. 2008). The antibiotic N-(2-hydroxyphenyl)-2-phenazinamine (NHP) was obtained from *Nocardia dassonvillei*, which has antifungal activity against *C. albicans* (Gao et al. 2012). Numerous compounds revealed
antifungal activity such as Trioxacarcins, Bonactin, Aureoverticillactam, Rapamycin, FK520 Ascomycin, and Jinggangmycin against some clinically important pathogens like *Aspergillus flavus*, *Trichoderma ressei*, *C. albicans*, *Aspergillus niger*, and *Alternaria alternate*.

5.4.3 Anticancer Activity

In recent years, cancer has been the second leading disease with high fatality of about 9.6 million death in 2018. Thus a huge urge for anticancer compounds have raised, result in diverse avenue of researchers extending further pursuit in finding novel anticancer compounds from actinobacteria. Cancer is one of the leading human health problems, breast cancer is responsible for second most causes of deaths in women (Ravikumar et al. 2010). Several therapeutic treatments are available to counter cancer, which includes immunotherapy, radiotherapy, and chemotherapy even though cancer could not be defeated till date as a major issue for mankind (Gillet et al. 2007). Salinosporamide A has shown inhibitory effects against various malignant cell types that were isolated from *Salinispora tropica* in oceanic sediments (Prudhomme et al. 2008). Salinosporamide A is a proteasome inhibitor which leads to apoptosis in multiple myeloma cells, subsequently entered to phase I of human trials for solid tumors, multiple myeloma and lymphoma (Jensen et al. 2007; Feling et al. 2003). Stritzke et al. (2004) isolated *Streptomyces* sp. B6007 from mangrove sediment in Papua New Guinea, acquired caprolactones, which showed moderate cytotoxicity and low cytotoxicity against cancer cells. Miller et al. (2007) isolated *Streptomyces* sp. CNQ-593 from marine sediments in Guam, and piperazimycins A-C (cyclic hexadepsipeptides) were extracted from the fermentation broth of a *Streptomyces* sp. with cytotoxic activities against the human colon carcinoma HCT-116 cell line with cytotoxicity of GI50 of 76 ng/mL for each. Piperazimycin A also exhibits potent vitro biological activity against multiple (60) cancer cell lines. *Nocardiopsis lucentensis* strain CNR-712 produced Lucentamycins 3-methyl-4-ethyldene proline-containing peptides and Lucentamycins showed cytotoxicity against HCT-116 cell line (IC50 values of 0.20 and 11 μM) (Cho et al. 2007).

5.4.4 Cytotoxic and Cytostatic Activity

Salinosporamide A has shown potential cytotoxicity against HCT-116 human colon carcinoma, MDA-MB-435 breast cancer, SF-539 CNS cancer, NCI-H226 non-small cell lung cancer, and SK-MEL-28 melanoma cells (Feling et al. 2003). Two new polyketides furanones A and B have been isolated from fermentation broth of *Streptomyces* CNQ766, found in the marine sediments displayed weak in vitro cytotoxicity against macrophages and splenocyte T-cells (Cho et al. 2006). *Nocardiopsis lucentensis* strain CNR-712 isolated from the sediment of saline pond in Bahamas exhibits Lucentamycins compound (3-methyl-4-
ethylidene-proline-containing peptides) that showed cytotoxicity against colon carcinoma HCT-116 cell line (IC50 values of 0.20 and 11 μM) (Cho et al. 2007). Arenamides A is a cyclohexa depsipeptide, isolated from the fermented broth of actinobacterial *S. arenicola* CNT-088 strain obtained from a depth of 20 m marine sediments in Kandavu Island chain, Fiji. Arenamides A possess weak in vitro cytotoxicity against human colon carcinoma HCT-116 (IC50 values of 13.2 and 19.2 g/mL) (Asolkar et al. 2008). The cyclic hexadepsipeptides, Piperazimycins were obtained from *Streptomyces* sp. CNQ-593 fermentation broth, exhibited in vitro cytotoxic against human colon carcinoma HCT-116 cell line melanoma (average LC50 of 0.3 μM), leukemia cell line (average LC50 of 31.4 μM), prostate cell lines (average LC50 of 0.6 μM), and central nervous system (average LC50 of 0.4 μM), respectively. Proximicins A, B, and C produced by *Verrucosispora* strain MG-37, *Verrucosispora maris* AB-18-032, displayed strong cyostatic effect against various human tumor cell lines such as hepatocellular carcinoma Hep G2 (GI50 of 0.82, 9.5, and 0.78 μM), adenocarcinoma AGS (GI50 of 0.6, 1.5 and 0.25 μM), and hepatocellular carcinoma Hep G2 (GI50 of 0.82, 9.5, and 0.78 μM, respectively) (Schneider et al. 2008).

5.4.5 Anti-Inflammatory and Anti-Parasitic Activity

One of the major challenges faced by developing tropical countries are infectious diseases that is one of the foremost causes of death. About 335 infectious diseases were reported between 1940 to 2004 (Jones et al. 2008). The prominent new discovery of effective bioactive compounds from marine environment has started countering the burden of infectious disease. Abdelmohsen et al. (2010) reported 90 actinomycetes from 11 different species with anti-infective activities against clinically potential organisms such as Gram-negative (*Escherichia coli, Pseudomonas aeruginosa*), Gram-positive (*E. faecalis, S. aureus*) bacteria, human parasites (*Leishmania major, Trypanosoma brucei*), and fungi (*C. albicans*). Globally, the parasitic disease is one of the major health problems to humans, and it is responsible for one million deaths every year and it is almost close to the number of deaths caused by AIDS (Antoszczak et al. 2019; Bhatti et al. 2016). The tropical disease caused by parasitic protozoa *Leishmania*, the species are *Leishmania major, L. amazonensis, Leishmania aethiopica, L. tropica, Leishmania mexicana, Leishmania braziliensis, Leishmania donovani*, and *Leishmania Mexicana*. Pimentel-Elardo et al. (2010) obtained secondary metabolites form marine sponge associated *Streptomyces* sp. that showed antiparasitic activities against *T. brucei* (staurosporine IC500.022 μM; valinomycin IC500.032 μM; butenolide IC5031.77 μM) and *L. major* (staurosporine IC505.30 μM; valinomycin IC50 < 0.11 μM;).
5.4.6 Antimalarial and Antiviral Activity

Malaria remains one of the devastating infectious diseases globally caused by protozoan parasites of the *Plasmodium* genus, and its species include *Plasmodium vivax*, *Plasmodium falciparum*, *Plasmodium ovale*, *Plasmodium malariae*, and *Plasmodium knowlesi* that are together responsible for two million deaths with 300 million clinical cases annually. The global prevalence evidently showed that *P. falciparum* causes higher mortality rates compared to other species of *Plasmodium* (World Health Organisation 2014). The potential peptide from *Streptomyces* sp. LK3 (JF710608) was isolated from a Nicobar marine sediment sample that exhibited antiplasmodial activity with IC50: 25.78 mg/ml (Karthik et al. 2014). Marinacarbolines (A – D) compounds are produced by *Marinactinospora thermotolerans* SCSIO 00652 which belongs to *Nocardiopsacea* family, exhibited antiplasmodial activity against *Plasmodium falciparum* with IC50 values ranging from 1.92 to 36.03 μM (Huang et al. 2011). Marine actinobacteria *Streptomyces nitrosporeus* derived compound benzastatin exhibits antiviral activity against simplex virus type 1 (HSV-1), *Vesicular stomatitis virus* (VSV), *Herpes simplex* virus type 2 (HSV-2) with EC50 values of 1.92, 1.99, and 0.53 μg/mL (Lee et al. 2007).

5.4.7 Antioxidant and Anti-Angiogenesis

Antioxidant compounds retard or prevent the oxidation of lipid. The marine isolate *Nocardiopsis alba* produced (Z)-1-((1-hydroxypenta-2,4-dien-1-yl)oxy) anthracene-9,10-dione compound showed significant in vitro antioxidant capacity (Janardhan et al. 2014). The *Streptomyces VITSVK5* spp. was isolated by marine sediment at the Marakkanam coast in the Bay of Bengal, India, with a compound 5-(2,4-dimethylbenzyl)pyrrolidin-2-one (DMBPO), which exhibited significant antioxidant activity (50.10% at 5 μg/ml DMBPO) (Saurav and Kannabiran 2012). Secondary metabolites, Dermacozines A-G (phenazine compounds) were obtained from *Dermacoccus*, which shows significant antioxidant properties (Pathom-Aree et al. 2006). Angiogenesis is an essential step for the formation of new blood vessels from pre-existing vessels and it is a vital step for tumor cell proliferation (Risau 1997). *Streptomyces* sp. isolated from the deep-sea sediment at Ayu Trough exhibit Streptopyrrolidine compounds with significant anti-angiogenesis activity (Shin et al. 2008). The compound Cyclo-(L-Pro-L-Met) was isolated from fermentation broth of a marine-derived actinomycete *Nocardiopsis* sp. 03 N67 showed anti-angiogenesis activity against human umbilical vein endothelial cells (HUVECs) (Shin et al. 2010).

5.4.8 Exopolysaccharides (EPSs)

Polysaccharides are high molecular weight polymers that are vital material for synthesizing microbial and plant cell walls, and they can be produced as both intracellular or extracellular polysaccharides (EPSs) during extreme environmental
conditions. These natural polysaccharides have an exceptional physical characteristic that has extensive applications in the pharmaceutical field. Okutani (1984, 1992) reported polysaccharides from *Vibrio* and *Pseudomonas* with antitumor, antiviral, and immunostimulant activities. *A. infernus* produced exopolysaccharide displaying anticoagulant property (Senni et al. 2011).

5.4.9 Biosurfactants

Biosurfactants or biological surfactants are microbial compounds with a wide range of structural variety (fatty acids, glycolipids, lipopeptides, phospholipids and neutral lipids, polysaccharide-protein complexes) produced by bacteria, yeast, and fungi (Mnif and Ghribi 2015). Initially, biosurfactants are used in pollution remediation and some surface-active compounds are used as anti-adhesive agents against several pathogens, anti-biofilm against human multi-drug resistant pathogens, antibacterial, antifungal, antiviral, and anti-cancer activities (Singh and Cameotra 2004).

5.4.10 Microbial Biopolymers

The microbial origin naturally occurring biopolymers are produced by variety of microorganisms, most of them are of bacterial sourced biopolymers. Bacterial polyhydroxyalkanoates (PHAs) are polyesters synthesized by a wide variety of 300 Gram-positive and Gram-negative species as a carbon/energy storage material (Rehm 2003). Due to its microbial origin, PHB is gaining more interest in medical applications. The unique properties of these polymers are utilized as drug carriers, biocontrol agents, antibacterials, tissue engineering, biodegradable implants, anticancer agents, and also as memory enhancers (Ray and Kalia 2017).

5.5 Pharmacological Effects of Marine Fungi-Derived Biomaterials

Marine fungi are rich in diversity of species, phylogenetic distribution and natural products (NPs) whereas in recent years extensive research has provided thorough data about marine resources (Richards et al. 2012; Imhoff 2016; Rämä et al. 2016; Taylor and Cunliffe 2016). The diverse physical and chemical growth conditions of fungi are the prime reason for the production of novel drugs whereas certain marine fungal metabolic pathways are entirely distinct from terrestrial fungi (Kijjoa and Sawangwong 2004; Abdel-Lateff 2008). Marine Fungi are a potential producer of secondary metabolites like peptides, alkaloids, terpenes, and mixed biosynthesis compounds. Two new indole alkaloids, (2–3, 3- dimethylprop-1- ene)-epicostaclavine and (2–3, 3-dimethylprop-1-ene)-costaclavine, are known compounds of costaclavine, fumgaclavine with antibacterial activity obtained from *Aspergillus fumigates* (Kossuga et al. 2012).
Several marine fungi such as *Trimmatostroma salinum*, *Phaeotheca triangularis*, *Aureobasidium pullulans*, *Hortaea werneckii*, and *Cryptococcus liquefaciens* produce photo-protective compounds (mycosporines). These compounds absorb UV in the range of 310–320 nm (Kogej et al. 2006). Zopfiellamide A is a pyrrolidinone derivative; it was obtained from marine fungi *Zopfiella latipes*, which inhibits the growth of Gram-negative *Acinetobacter calcoaceticus* and Gram-positive *Bacillus subtilis*, *Bacillus brevis*, *Corynebacterium insidiosum*, *B. licheniformis*, *Micrococcus luteus*, *Corynebacterium insidiosum*, *Arthrobacter citreus*, *Mycobacterium phlei*, and *Streptomyces* sp. (Daferner et al. 2002). Marine fungal antiviral compounds such as phomasetin, equisetin, and integric acid showed significant anti-HIV activities based on bioassay experiments, and Sansalvamide A compound obtained from *Fusarium* sp. was found against pathogenic poxvirus *Molluscum contagiosum* (MCV) (IC50 = 124 μM) (Hwang et al. 1999).

5.6 Conclusion

This chapter provides firsthand information of marine microbial products and its marine genetic resources of commercial interest. The marine microbes possess potentially untapped resources, and if utilized properly they will lead to the discovery of novel compounds that can revolutionize the pharmaceutical industry. In recent years, a number of patents and scientific publications have demonstrated the importance of marine genetic resources to the scientific community. The remarkable new methodologies of underwater exploration, bioassays, recent technology in cultivation of marine microorganisms combined with proteomics, genomics, DNA shuffling, combinatorial chemistry, bioinformatics, and DNA shuffling are used to rapidly screen the bioactive compounds from marine microbes. Marine microbes can produce chemically unique secondary metabolites, will have greatest impact on marine natural products (MNP), and will eventually lead to revealing unexplored pharmaceutical significant bioactive compounds. As a result of improved methodologies in marine microbes and bioactive metabolites isolation has led to successful pipelines in pharmaceutical fields, Carrol et al. (2019) clearly elucidated that in last 10 years there is about 41% jump in discoveries of MNP was observed.

References

Abdel-Lateff A (2008) Chaetominedione, a new tyrosine kinase inhibitor isolated from the algicolous marine fungus Chaetomium sp. Tetrahedron Lett 49:6398–6400
Abdel-Mageed WM, Milne BF, Wagner M, Schumacher M, Sandor P, Pathom-aree W, Goodfellow M, Bull AT, Horikoshi K, Ebel R, Diederich M (2010) Dermacozines, a new phenazine family from deep-sea dermacocci isolated from a Mariana Trench sediment. Org Biomol Chem 8:2352–2362
Abdelmohsen UR, Pimentel-Elardo SM, Hanora A, Radwan M, Abou-El-Ela SH, Ahmed S et al (2010) Isolation, phylogenetic analysis and anti-infective activity screen-ing of marine sponge-associated actinomycetes. Mar Drugs 8:399–412
Adinaryan G, Venkateshan MR, Bpiraju VV, Sujatha P, Premkumar J, Ellaiah P, Zeeck A (2006) Cytotoxic compounds from the marine actinobacterium. Bio Org Khim 32:328–334
Antoszczak M, Steverding D, Huczyński A (2019) Anti-parasitic activity of polyether ionophores. Eur J Med Chem 166:32–47
Arunugam M, Mitra A, Jaisankar P, Dasgupta S, Sen T, Gachhui R, Mukhopadhyay UK, Mukherjee J (2010) Isolation of an unusual metabolite 2-allyloxyphenol from a marine actinobacterium, its biological activities and applications. Appl Microbiol Biotechnol 86:109–117
Arun A, Murrugappan R, Ravindran AD, Veeramanikandan V, Balaji S (2006) Utilization of various industrial wastes for the production of poly-b-hydroxy butyrate (PHB) by Alcaligenes eutrophus. Afr J Biotechnol 5(17)
Asolkar RN, Frebel KC, Jensen PR, Fenical W, Kondratyuk TP, Park E-J, Pezzuto JM (2008) ArenamidesA-C, cytotoxic NF B inhibitors from the marine Actinomycete Salinispora arenicola. J Nat Prod 72:396–402
Awad NE (2000) Biologically active steroid from the green alga Ulva lactuca. Phytother Res 14:641–643
Bhatti AB, Usman M, Kandi V (2016) Current scenario of HIV/AIDS, treatment options, and major challenges with compliance to antiretroviral therapy. Cureus 8:1–12
Biscoe TJ, Evans RH, Headley PM, Martin M, Watkins JC (1975) Domic and quisqualic acids as potent amino acids excitants of frog and rat spinal neurons. Nature 255:166–167
Bister B, Bischoff D, Ströbele M, Riedlinger J, Reicke A, Wolter F, Bull AT, Zäher H, Fiedler HP, Süßmuth RD (2004) Abyssomicin C-A polycyclic antibiotic from a marine Verrucosispora strain as an inhibitor of the p-aminobenzoic acid/tetrahydrofolate biosynthesis pathway. Angew Chem Int Ed Engl 43:2574–2576
Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2011) Marine natural products. Nat Prod Rep 28:196–268
Blunt JW, Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR (2018) Marine natural products. Nat Prod Rep 35:8–53
Bold HC, Wynne MJ (1985) Introduction to the algae: structure and reproduction, 2nd edn. Prentice-Hall Inc., Englewood Cliffs, NJ, pp 1–33
Braña AF, Sarmiento-Vizcaíno A, Pérez-Victoria I, Otero L, Fernández J, Palacios JI, Martín J, de la Cruz M, Díaz C, Vicente F, Reyes F (2017) Branimycins B and C, antibiotics produced by the abyssal actinobacterium Pseudonocardia carboxydivorans M-227. J Nat Prod 80:569–573
Bull AT, Stach JE (2007) Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 15:491–499
Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR (2019) Natural product reports. Nat Prod Rep 36:122–173
Carter GT, Rinehart JR, Li LH, Kuentzel SL (1978) Brominated indoles from Laurencia Brongniartii. Tetrahedron Lett 19:4479–4482
Chen IL, Gerwick WH, Schatzman R, Laney M (1994) Isorawsonol and related IMO dehydrogenase inhibitors from the tropical alga Avrainvillea rawsoni. J Nat Prod 57:947–952
Cho JY, Williams PG, Kwon HC, Williams PG, Kauffman CA, Jensen PR, Fenical W (2006) Actinofuranones A and B, polyketides from a marine derived bacterium related to the genus Streptomyces (Actinomycetales). J Nat Prod 69:425–428
Cho JY, Williams PG, Kwon HC, Jensen PR, Fenical W (2007) Lucentamycins AD, cytotoxicpeptides from the marine-derived actinomycete Nocardioopsis lucentensis. J Nat Prod 70:1321–1328
Choi JS, Park HJ, Jung HA, Chung HY, Jung JH, Choi WC (2000) A cyclohexanoyl bromophenol from the red alga Symphyocladia latiuscula. J Nat Prod 63:1705–1706
Daferner M, Anke T, Sterner O (2002) Zopfiellamides A and B, antimicrobial pyrrolidinone derivatives from the marine fungus Zopfiella latipes. Tetrahedron 58:7781–7784
Davty D, Entz W, Fernandez R, Mariezcurrena R, Mombrú AW, Saldana J et al (1998) A new indol derivative from the red alga Chondra atropurpurea. Isolation, structure determination, and anthelmintic activity. J Nat Prod 61:1560–1563

Desjardine K, Pereira A, Wright H, Matainaho T, Kelly M, Andersen RJ (2007) Tauramamide, a lipopeptide antibiotic produced in culture by Brevisbacillus laterosporus isolated from a marine habitat: structure elucidation and synthesis. J Nat Prod 70:1850–1853

Dharmaraj S (2010) Marine Streptomyces as a novel source of bioactive substances. World J Microbiol Biotechnol 26:2123–2139

El-Gendy MM, Shaaban M, Shaaban KA, El-Bondkly AM, Laatsch H (2008a) Ess-ramycin: a first triazolopyrimidine antibiotic isolated from nature. J Antibiot 61:149–157

El-Gendy MM, Dawas UW, Jaspar M (2008b) Novel bioactive metabolites from a marine derived bacterium Nocardia sp. ALAA 2000. J Antibiot 6:379

Eltamany EE, Abdelmohsen UR, Ibrahim AK, Hassanean HA, Hentschel U, Ahmed SA (2014) New antibacterial xanthone from the marine sponge-derived Micrococcus sp. EG45. Bioorg Med Chem Lett 24:4939–4942

Engelhardt K, Degnesh KF, Kemmler M, Brenholdt H, Fjærvik E, Klinkenberg G, Sletta H, Ellingsen TE, Zotev SB (2010) Production of a new tripeptide antibiotic, TP-1161, by a marine Nocardiosis. Appl Environ Microbiol 76:4969–4976

Feling RH, Buchanan GO, Mincer TJ, Kauffman CA, Jensen PR, Fenical W (2003) Sinusporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus Salinispora. Angew Chem Int Ed Engl 42:355–357

Fenical W, Jensen PR (2006) Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2:666–673

Fenical W, Sims J (1974) Cycloedesmol, an antibiotic cyclopropane conatinin sequiterpene from the marine alga, Chondriaoppositiclada Dawson. Tetrahedron Lett 13:1137–1140

Ferkany JW, Coyle JT (1985) Kainic acid selectively stimulates the release of endogenous excitatory amino acids. J Pharmacol Exp Ther 225:399–406

Fiedler HP, Brunnter C, Riedlinger J, Bull AT, Knutsen G, Goodfellow M, Jones A, Maldonado L, Pathom-Aree W, Beil W, Schneider K (2008) Proximicin A, B and C, novel aminofuran antibiotic and anticancer compounds isolated from marine strains of the actinomycete Verrucosispora. J Antibiot 61:158

Finer I, Clardy J, Fenical W, Finer J, Clardy J, Fenical W et al (1979) Structures of dictyodial and dictyolactone, unusual marine diterpenoids. J Org Chem 44:2044–2047

Fu P, MacMillan JB (2015) Thiasporines A–C, thiazine and thiazole derivatives from a marine-derived Actinomycetospora chlora. J Nat Prod 78:548–551

Fukuyama Y, Kodama M, Miura I, Fukuyama Y, Kodama M, Miura I et al (1989) Antiplasmin inhibitor. V. Structures of novel dimeric eckols isolated from the brown alga Ecklonia kurome Okamura. Chem Pharm Bull 37:2438–2440

Fukuzawa A, Masamune T (1981) Laureppinacin and isolaureppinacin: new acetylenic cyclic ethers from the marine alga, Chondriaoppositiclada Dawson. Tetrahedron Lett 13:1137–1140

Frohnmey JW, Cardellina JH, Kato Y, Brinen LS, Clardy J, Snader KM et al (1992) A pentahalogenated monoterepenic from the red alga Portieria hornemannii produced a novel cytotoxicity profile against a diverse panel of human tumor celllins. J Med Chem 35:3007–3011

Gao X, Lu Y, Xing Y, Ma Y, Lu J, Bao W, Wang Y, Xi TA (2012) A novel antitumor and antifungal phenazine derivative from a marine actinomycete BM-17. Microbiol Res 167:616–622

Gerwick WH, Moore BS (2012) Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol 19:85–98

Gillet J-P, Effertth T, Remacle J (2007) Chemotherapy-induced resistance by ATP-binding cassette transporter genes. Biochim Biophys Acta (BBA) – Rev Cancer 1775:237–262

Han Y, Yang B, Zhang F, Miao X, Li Z (2009) Characterization of antifungal chitinase from marine Streptomycyes sp., DA11 associated with South China Sea sponge Cranellaaustraliensis. Mar Biotechnol 11(1):132–140
Hawas UW, Shaaban M, Shaaban KA, Speitling M, Maier A, Kelter G, Fiebig HH, Meiners M, Helmke E, Laatsch H (2009) Mansouramycins A–D, cytotoxic isoquinolonequinones from a marine Streptomyces. J Nat Prod 72:2120–2124

Hayakawa Y, Shirasaki S, Kawasaki T, Matsuo Y, Adachi K, Shizuri Y (2007) Structures of new cytotoxic antibiotics, picromycins C7 and C8. J Antibiot 60:201

Hohmann C, Schneider K, Bruntner C, Brown R, Jones AL, Goodfellow M, Krämer M, Imhoff JF, Nicholson G, Fiedler HP, Süssmuth RD (2009a) Albidopyrone, a new α-pyrone-containing metabolite from marine-derived Streptomyces sp. NTK 937. J Antibiot 62:75

Hohmann C, Schneider K, Bruntner C, Irran E, Nicholson G, Bull AT, Jones AL, Brown R, Stach JE, Goodfellow M, Beil W (2009b) Caboxamycin, a new antibiotic of the benzoxazole family produced by the deep-sea strain Streptomyces sp. NTK 937. J Antibiot 62:99

Hohmann C, Schneider K, Bruntner C, Irran E, Nicholson G, Bull AT, Jones AL, Brown R, Stach JE, Goodfellow M, Beil W (2009c) Caboxamycin, a new antibiotic of the benzoxazole family produced by the deep-sea strain Streptomyces sp NTK 937 & ast. J Antibiot 62:99–104

Huang H, Yao Y, He Z, Yang T, Ma J, Tian X, Li Y, Huang C, Chen X, Li W, Zhang S (2011) Antimalarial β-carboline and indolactam alkaloids from Marinactinospora thermotolerans, a deep sea isolate. J Nat Prod 74:2122–2127

Huang P, Xie F, Ren B, Wang Q, Wang J, Wang Q, Abdel-Mageed WM, Liu M, Han J, Oyeleye A, Shen J (2016) Anti-MRSA and anti-TB metabolites from marine-derived Verrucosispora sp. MS100047. Appl Microbiol Biotechnol 100:7437–7447

Hughes CC, Prieto-Davo A, Jensen PR, Fenchl W (2008) The marinopyrroles, antibiotics of an unprecedented structure class from a marine Streptomyces sp. Org Lett 10:629–631

Hwang Y, Rowley D, Rhodes D, Gertsch J, Fenchl W, Bushman F (1999) Mechanism of inhibition of a poxvirus topoisomerase by the marine natural product sansalvamide A. Mol Pharmacol 55:1049–1053

Imhoff JF (2016) Natural products from marine fungi - still an underrepresented resource. Mar Drugs 14(1):19

Ishii T, OKino T, Suzuki M, Machiguchi M (2004) Tichocarpols A and B, two novel phenylpropanoids with feeding-deterrent activity from the red alga Tichocarpus crinitus. J Nat Prod 67:1764–1766

Itoh T, Kinoshita M, Aoki S, Kobayashi M (2003) Komodoquinone A, a novel neuritogenic anthracycline, from marine Streptomyces sp. KS3. J Nat Prod 66:1373–1377

Janardhan A, Kumar AP, Viswanath B, Saigopal DVR, Narasimha G (2014) Production of bioactive compounds by actinomycetes and their antioxidant properties. Biotechnol Res Int:1–8

Jensen PR, Williams PG, Oh DC, Zeigler L, Fenchl W (2007) Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl Environ Microbiol 73 (4):1146–1152

Jeong SY, Shin HJ, Kim TS, Lee HS, Park SK, Kim HM (2006) Streptokordin, a new cytotoxic compound of the methylpyridine class from a marine-derived Streptomyces sp. KORDI-3238. J Antibiot 59:234

Jiang Z-D, Jensen PR, Fenchl W (1999) Lobophorins A and B, a new anti-inflammatory macrolides produced by a tropical marine bacterium. Bioorg Med Chem Lett 9:2003–2006

Jiang P, Li J, Han F, Duan G, Lu X (2011) Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101. PLoS One 6:1–11

Jørgensen H, Degnes KF, Dikiy A, Fjærvik E, Klinkenberg G, Zotchev SB (2010) Insights into the evolution of macro lactam biosynthesis through cloning and comparative analysis of the biosynthetic gene cluster for a novel macro cyclic lactam, ML-449. Appl Environ Microbiol 76:283–293

Jones KE, Patel NG, Levy MA, Storeygaard A, Balk D, Gittleman JL et al (2008) Global trends in emerging infectious diseases. Nature 451(7181):990–993

Kanoh K, Matsuo Y, Adachi K, Imagawa H, Nishizawa M, Shizuri Y (2005) Mechercharmycins A and B, cytotoxic substances from marine-derived Thermoactinomyces sp. YM3-251. J Antibiot 58:289
Karthik L, Kumar G, Keswan T, Bhattacharyya CSS, Rao KB (2014) Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PLoS One 9:1–13
Kawahara T, Itoh M, Izumikawa M, Kozone I, Sakata N, Tsuchida T, Shin-ya K (2014) New hydroxamate metabolite, MBJ-0003, from Micromonospora sp. 29867. J Antibiot 67:261
Khan S, Kong C, Kim J, Kim S (2015) Protective effect of Amphiroa dilatata on ROS induced oxidative damage and MMP expressions in HT1080 cells. Biotechnol Bioprocess Eng 1:191–198
Kijjoa A, Sawangwong P (2004) Drugs and cosmetics from the sea. Mar Drugs 2:73–82
Kim SK, Pangestuti R (2011) Biological activities and potential health benefits of fucoxanthin derived from marine brown algae. In: Advances in food and nutrition research, vol 64. Academic Press, Cambridge, MA, pp 111–128
Kim Y, Ogura H, Akasaka K, Oikawa T, Matsuura N, Imada C, Yasuda H, Igarashi Y (2014) Nocapyrones: α- and γ-Pyrone from a Marine-Derived Nocardiopsis sp. Mar Drugs 12:4110–4125
Kobayashi K, Fukuda T, Terahara T, Harunari E, Imada C, Tomoda H (2015) Diketopiperazines, inhibitors of sterol O-acyltransferase, produced by a marine-derived Nocardiopsis sp. J Antibiot 68:638
Koehn E, Gunasekera SP, Niel DN, Cross SS (1991) Halitunal, an unusual diterpene Aldehyde from the marine alga Halimeda tuna. Tetrahedron Lett 32:169–172
Kogej T, Gostinčar C, Volkman M, Gorbushina AA, Gunde-Cimerma N (2006) Mycosporines in extremophile fungi–novel complementary osmolytes? Environ Chem 3:105–110
Kossuga MH, Romminger S, Xavier C, Milanetto MC, Valle MZ, Pimenta EF et al (2012) Evaluating methods for the isolation of marine-derived fungal strains and production of bioactive secondary metabolites. Rev Bras Farm 22(2):257–267
Kubanek I, Jensen PR, Keifer PA, Sullards MC, Collins DO, Fenical W (2003) Seaweed resistance to microbial attack: a targeted chemical defense against marine fungi. Proc Natl Acad Sci 100:6916–6921
Lam KS (2006) Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9:245–251
Leary D, Vierros M, Hamon G, Arico S, Monagle C (2009) Marine genetic resources: a review of scientific and commercial interest. Mar Policy 33:183–194
Lee YS, Shin KH, Kim BK, Lee S (2004) Antidiabetic activities of fucosterol from Pelvetia siliculosus. Arch Pharm Res 27:1120–1122
Lee J-G, Yoo I-D, Kim W-G (2007) Differential antiviral activity of benzastatin C and its dechlorinated derivative from Streptomyces nitrosporeus. Biol Pharm Bull 30(4):795–797
Li F, Maskey RP, Qin S, Sattler I, Fiebig HH, Maier A, Zeeck A, Laatsch H (2005) Chinikomycins A and B: isolation, structure elucidation, and biological activity of novel antibiotics from a marine Streptomyces sp. isolate M045, 1. J Nat Prod 68:349–353
Li DH, Zhu TJ, Liu HB, Fang YC, Gu QQ, Zhu WM (2006) Four butenolides are novel cytotoxic compounds isolated from the marine-derived bacterium, Streptovercillium luteovercillatum. J Nat Prod 70:1454–1457
López Y, Cepas V, Soto SM (2018) The marine ecosystem as a source of antibiotics. In: Rampelotto P, Trincone A (eds) Grand challenges in marine biotechnology. Grand challenges in biology and biotechnology. Springer, Cham
Macherla VR, Liu J, Bellows C, Teisan S, Nicholson B, Lam KS, Potts BC (2005) Glaciapyrroles A, B, and C, pyrrolosesquiterpenes from a Streptomyces sp. isolated from an Alaskan marine sediment. J Nat Prod 68:780–783
Macherla VR, Liu J, Sunga M, White DJ, Grodberg J, Teisan S, Lam KS, Potts BC (2007) Lipoxazolidinones A, B, and C: antibacterial 4-oxazolidinones from a marine actinomycete isolated from a Guam marine sediment. J Nat Prod 70:1454–1457
Maneerat S, Phetrong K (2007) Isolation of biosurfactant-producing marine bacteria and characteristics of selected biosurfactant. Songklanakarin J Sci Technol 29:781–791
Manivasagan P, Kang KH, Sivakumar K, Li-Chan EC, Oh HM, Kim SK (2014a) Marine actinobacteria: an important source of bioactive natural products. Environ Toxicol Pharmacol 38:172–188
Manivasagan P, Venkatesan J, Sivakumar K, Kim SK (2014b) Pharmacologically active secondary metabolites of marine actinobacteria. Microbiol Res 169:262–278
Maskey RP, Helmke E, Laatsch H (2003) Himalomycin A and B: isolation and structure elucidation of new fridamycin type antibiotics from a marine Streptomyces isolate. J Antibiot 25:56
Maskey RP, Helmke E, Kayser O, Fiebig HH, Maier A, Busche A, Laatsch H (2004) Anti-cancer and antibacterial trioxacarcins with high anti-malaria activity from a marine streptomycete and their absolute stereochemistry. J Antibiot 57:771–779
Mayer AM, Rodriguez AD, Berlinck RG, Fusetani N (2011) Marine pharmacology in 2007–8: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimarial, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous system, and other miscellaneous mechanisms of action. Comp Biochem Physiol C Toxicol Pharmacol 153:191–222
McArthur KA, Mitchell SS, Tsueng G, Rheingold A, White DJ, Grodberg J, Lam KS, Potts BC (2008) Lynamicins A–E, chlorinated bisindole pyrrole antibiotics from a novel marine Actinomycete. J Nat Prod 71:1732–1737
Miller ED, Kauffman CA, Jensen PR, Fenical W (2007) Piperazimycins: cytotoxic hexadepsipeptides from a marine-derived bacterium of the genus Streptomyces. J Org Chem 72 (2):323–330
Mitchell SS, Nicholson B, Teisan S, Lam KS, Potts BC (2004) Aureoverticillactam, a novel 22-atom macrocyclic lactam from the marine actinomycete Streptomyces aureoverticillatus. J Nat Prod 67:1400–1402
Mohanrasu K, Premnath N, Prakash GS, Sudhakar M, Boobalan T, Arun A (2018) Exploring multi potential uses of marine bacteria: an integrated approach for PHB production, PAHs and polyethylene biodegradation. J Photochem Photobiol 185:55–65
Mnif I, Ghribi D (2015) Review lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications. Pept Sci 104:129–147
Moore BS, Trischman JA, Seng D, Kho D, Jensen PR, Fenical W (1999) Salinamides, antiinflammatory depsipeptides from a marine Streptomyces. J Org Chem 64(2):323–330
Ngo DH, Kim SK (2013) Sulfated polysaccharides as bioactive agents from marine algae. Int J Biol Macromol 62:55–65
Oh DC, Gontang EA, Kauffman CA, Jensen PR, Fenical W (2008) Salinipyrone and pacificanones, mixed-precursor polyketides from the marine actinomycete Salinispora pacifica. J Nat Prod 71:570–575
Ohata K, Mizushima Y, Hirata N, Ohta K, Mizushima Y, Hirata N et al (1998) Sulphoquinovosyl diacylglycerol, KM043, a new potent inhibitor of eukaryotic DNA polymerases and HIV reverse transcriptase type from a marine red alga Gigartina tenella. Chem Pharm Bull 46:684–686
Okami Y (1986) Marine microorganisms as a source of bioactive agents. Microb Ecol 12:65–78
Okutani K (1984) Antitumor and immunostimulant activities of polysaccharides produced by a marine bacterium of the genus Vibrio. Bull Jap Soc Sci Fish 50:1035–1037
Okutani K (1992) Antiviral activities of sulfated derivatives of a fucosamine-containing polysaccharide from a marine bacterium of the genus Vibrio. Bull Jap Soc Sci Fish 50:1035–1037
Osterhage C, Kaminsky R, Koeing GM, Wright AD (2000) Ascosalipyrrolidinone A, an antimicrobial alkaloid, from the obligate marine fungus Ascochyta salicorniae. J Org Chem 65:6412–6417
Pathom-aree W, Nogi Y, Ward AC, Horikoshi K, Bull AT, Goodfellow M (2006) Dermacoccus barathri sp. nov. and Dermacoccus profundii sp. nov., novel actinomycetes isolated from deep-sea mud of the Mariana Trench. Int J Syst Evol Microbiol 56(10):2303–2307
Pereira HS, Leao-Ferreira LR, Moussatche N, Pereira H, Leão-Ferreira LR, Moussatché N et al (2004) Antiviral activity of diterpenes isolated from the Brazilian marine alga Dictyota menstrualis against human immunodeficiency virus type 1 (HIV-1). Antivir Res 64:69–76
Pimentel-Elardo SM, Kozytska S, Bugni TS, Ireland CM, Moll H, Hentschel U (2010) Anti-parasitic compounds from *Streptomyces* sp. strains isolated from Mediterranean sponges. Mar Drugs 8(2):373–380

Prudhomme J, McDaniel E, Ponts N, Bertani S, Fenical W, Jensen P et al (2008) Marine actinomycetes: a new source of compounds against the human malaria parasite. PLoS One 3 (6):2335

Puglisi MP, Tan LT, Jensen PR, Fenical W (2004) Capisterones A and B from the tropical green Alga *Penicillus capitatus*: unexpected anti-fungal defenses targeting the marine pathogen *Lindra thallasiae*. Tetrahedron 60:7035–7039

Rainbow PS (1995) Bio monitoring of heavy metal availability in the marine environment. Mar Pollut Bull 31:183–192

Rämä T, Davey M, Norden J, Halvorsen R, Blaalid R, Mathiassen G (2016) Fungi sailing the Arctic Ocean: speciose communities in North Atlantic driftwood as revealed by high throughput amplicon sequencing. Microb Ecol 72:295–304

Rangel M, Falkenberg M (2015) An overview of the marine natural products in clinical trials and on the market. J Coast Life Med 3:421–428

Ravikumar S, Gnanadesigan M, Thajuddin N, Chakkaravarthi V, Banerjee B (2010) Anti-cancer property of sponge associated actinomycetes along Palk Strait. J Pharm Res 3(10):2415–2417

Ray S, Kalia VC (2017) Biomedical applications of polyhydroxyalkanoates. Indian J Microbiol 57:261–269

Rehm BHA (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376:15–33

Richards TA, Jones MDM, Leonard G, Bass D (2012) Marine fungi: their ecology and molecular diversity. Annu Rev Mar Sci 4:495–522

RI C, Barrow RA, Rochfort S, Capon RJ, Barrow RA, Rochfort S et al (1998) Marine nematodes: tetrahydrofuran from a southern Australian brown alga, *Nothea anomal*. Tetrahedron 5:2227–2242

Riedlinger J, Reicke A, Zähner HA, Krisman B, Bull AT, Maldonado LA, Ward AC, Good fellow M, Bister B, Bischoff D, Süssmuth RD (2004) Abyssomicins, inhibitors of the para-aminobenzoic acid pathway produced by the marine *Verrucosispora* strain AB-18-032. J Antibiot 57:271–279

Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

Romanenko LA, Uchino M, Tebo BM, Tanaka N, Frolova GM, Mikhailov VV (2008) *Pseudomonas marincola* sp. nov., isolated from marine environments. Int J Syst Evol Microbiol 58:706–710

Romero F, Espliego F, Jp B, De Quesada TG, Grávalos D, De La Calle FE, Fernández-Puentes JL (1997) Thiocoraline, a new depsipeptide with antitumor activity produced by a marine *Micromonospora*. J Antibiot 50:734–737

Roy SS, Pal R (2015) Microalgae in aquaculture: a review with special references to nutritional value and fish dietetics. Proc Zool Soc 68(1):1–8

Saurav K, Kannabiran K (2012) Cytotoxicity and antioxidant activity of 5-(2, 4-dimethylbenzyl) pyrrolidin-2-one extracted from marine *Streptomyces* VITSVK5 spp. Saudi J Biol Sci 19:81–86. Vancouver

Schneider K, Keller S, Wolter FE, Röglin L, Beil W, Seitz O, Nicholson G, Bruntnen C, Riedlinger J, Fiedler HP, Süssmuth RD (2008) Proximicins A, B, and C—antitumor furan analogues of netropsin from the marine actinomycete *Verrucosispora* induce upregulation of p53 and the cyclin kinase inhibitor p21. Angew Chem Int Ed 47(17):3258–3261

Schultz AW, Oh DC, Carney JR, Williamson RT, Udwary DW, Jensen PR, Gould SJ, Fenical W, Moore BS (2008) Biosynthesis and structures of cyclomarins and cyclomarazaines, prenylated cyclic peptides of marine actinobacterial origin. J Am Chem Soc 130:4507–4516

Schumacher RW, Talmage SC, Miller SA, Sarris KE, Davidson BS, Goldberg A (2003) Isolation and structure determination of an antimicrobial ester from a marine sediment-derived bacterium. J Nat Prod 66:1291–1293
Senni K, Pereira J, Gueniche F, Delbarre-Ladrat C, Sinquin C, Ratiskol J, Godeau G, Fischer AM, Helley D, Collicc-Jouault S (2011) Marine polysaccharides: a source of bioactive molecules for cell therapy and tissue engineering. Mar Drugs 9:1664–1681

Shin HJ, Kim TS, Lee HS, Park JY, Choi IK, Kwon HJ (2008) Streptopyrrolidine, an angiogenesis inhibitor from a marine-derived Streptomyces sp. KORDI-3973. Phytochemistry 69:2363–2366

Shin HJ, Mondol MM, Yu TK, Lee HS, Lee YJ, Jung HJ, Kim JH, Kwon HJ (2010) An angiogenesis inhibitor isolated from a marine-derived actinomycete, Nocardiopsis sp. 03N67. Phytochem Lett 3:194–197

Singh P, Cameotra SS (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22(3):142–146

Solanki R, Khanna M, Lal R (2008) Bioactive compounds from marine actinomycetes. Indian J Microbiol 48:410–431

Stritzke K, Schulz S, Laatsch H, Helmke E and Beil W (2004) Novel caprolactones from a marine Streptomyces. J Nat Prod 67:395–401

Subramani R, Aalbersberg W (2013) Culturable rare actinomycetes: diversity, isolation and marine natural product discovery. Appl Microbiol Biotechnol 97:9291–9321

Subramani R, Sipkema D (2019) Marine rare actinomycetes: a promising source of structurally diverse and unique novel natural products. Mar Drugs 17:249

Sun M, Chen X, Li W, Lu C, Shen Y (2017) New diketopiperazine derivatives with cytotoxicity from Nocardiopsis sp. YM M13066. J Antibiot 70:795

Takahashi C, Minoura K, Yamada T, Numata A, Kushida K, Shingu T, Hagishita S, Nakai H, Sato T, Harada H (1995) Potent cytotoxic metabolites from a Leptosphaeria species. Structure determination and conformational analysis. Tetrahedron 51(12):3483–3498

Taylor JD, Cunliffe M (2016) Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance. ISME J 10:2118–2128

Thi QV, Tran VH, Mai HDT, Le CV, Hong MLT, Murphy BT, Chau VM, Pham VC (2016) Antimicrobial metabolites from a marine-derived actinomycete in Vietnam's East Sea. Nat Prod Commun 11:49–51

United States Environmental Protection Agency (2006) Marine ecosystems. http://www.epa.gov/bioiweb1/aquatic/marine.html

Uzair B, Ahmed N, Ahmad VU, Mohammad FV, Edwards DH (2008) The isolation, purification and biological activity of a novel antibacterial compound produced by Pseudomonas stutzeri. FEMS Microbiol Lett 279:243–250

Wanner LA (2009) A patchwork of Streptomyces species isolated from potato common scab lesions in North America. Am J Potato Res 86(4):247–264

Weyland H (1969) Actinomycetes in North Sea and Atlantic Ocean sediments. Nature 222:858

Williams PG, Asolkar RN, Kondratyuk T, Pezzuto JM, Jensen PR, Fenical W (2007) Saliniketals A and B, bicyclic polyketides from the marine actinomycete Salinispora arenicola. J Nat Prod 70:83–88

World Health Organisation (2014) Antimicrobial resistance: 2014 global report on surveillance. World Health Organization, Geneva

Wu SJ, Fotso S, Li F, Qin S, Kelter G, Fiebig HH, Laatsch H (2006) N-Carboxamido-staurosporine and Selina-4 (14), 7 (11)-diene-8, 9-diol, New Metabolites from a Marine Streptomyces sp. J Antibiot 59:331

Wyche TP, Piotrowski JS, Hou Y, Braun D, Deshpande R, McIlwain S, Ong IM, Myers CL, Guzei IA, Westler WM, Andes DR (2014) Forazoline A: marine-derived polyketide with antifungal in vivo efficacy. Angew Chem Int Ed 53:11583–11586

Zotchev SB (2012) Marine actinomycetes as an emerging resource for the drug development pipelines. J Biotechnol 158:168–175