Knowledge of basic life support among Medical and Dental students: A comparative study

AM Amrutha¹*, Mangasuli Vijayalaxmi¹, Khatari Bhagyashree²,
MR Nagendra Gowda³, Chandra Bhoovana²

¹ Assistant Professor, Department of Community Medicine, Basaveshwara Medical College and Hospital, Chitradurga, Karnataka, India
² Post Graduate, Department of Community Medicine, Basaveshwara Medical College and Hospital, Chitradurga, Karnataka, India
³ Professor and Head, Department of Community Medicine, Basaveshwara Medical College and Hospital, Chitradurga, Karnataka, India

Abstract

Basic life support (BLS) is the medical procedures and skills which are used to save the victim from life-threatening emergencies until medical care is provided at the hospital. BLS procedures include cardiopulmonary resuscitation (CPR), bleeding control, artificial ventilation and basic airway management. Fatal medical emergencies may occur at any time. However, there are no set standards introduced in India to date. These life-saving maneuvers can be given through the structured resuscitation programs, which are lacking in the academic curriculum. The present study assessed the level of awareness toward basic life support (BLS) among medical and dental students. A cross-sectional study was carried out among dental and medical students in 2019. The study participants were people of the age group between 18-25 years. A convenient sample size of 250 was studied. A total of 250 subjects of age groups 18-25 years were analyzed in the study. The majority of students were not aware of BLS, with medical students fairing slightly better than dental students. The present study demonstrates poor knowledge among medical and dental students regarding BLS and showed the urgent need for continuous refreshing courses for this critical topic.

Keywords: Knowledge; basic life support; medical students; dental students

Introduction

Life-threatening emergencies can occur anytime and anywhere. The lack of coaching and incompetence to handle these emergencies can have tragic consequences. Basic resuscitation skills, including prompt and effective CPR (CPR), increases the survival rate following cardiac arrest. Theoretical knowledge with practical demonstrations and regular practice with up-to-date recommendations is vital in maintaining the potential...
of basic life support (BLS) and advanced life support (ALS) providers. Saving people's lives involves a sequence of steps that constitute the chain of survival. This includes four stages:

- Early approach to a cohesive medical emergency
- Early initiation of BLS
- Early defibrillation
- ALS

Sudden cardiac arrest is the most common cause of death worldwide with a large variation in survival rates between different communities. Early detection of cardiac arrest and initiation of CPR has been shown to decrease mortality and morbidity.

In recent years several publications have highlighted the deficiencies in CPR quality, both out-of-hospital and in-hospital, which have partly been addressed in the newest BLS guidelines. Individuals in the community at least the health professionals should know how to perform BLS as they encounter such situations very often. This study was aimed to explore the level of knowledge towards BLS among medical, dental students in BMCH, Chitradurga.

Materials & Methods

Study type
Cross-sectional study

Sample size
All undergraduate students studying in the dental and medical college of BMCH, Chitradurga.

Study duration
3 months (April to September 2019)

Sampling method
Convenient sampling method of all medical and dental students of BMCH, Chitradurga.

Study population
Undergraduate students studying in medical and dental college BMCH, Chitradurga.

Study tool
The self-administered, semi-structured, pretested questionnaires were used. A Questionnaire was prepared to encompass 2 main domains:

1. Demography and professional qualification of the participant
2. Theoretical and practical knowledge of the participants related to BLS (20 MCQ's)

Inclusion criteria
Undergraduate students studying in the medical and dental college of BMCH, Chitradurga.

Exclusion criteria
- Students not available or absent
- Students who do not give consent

Data collection. The students were approached in their lecture halls and recruited for the study. A total of 150 medical undergraduate students and 100 dental undergraduate students were sampled. The purpose of the study was explained to the respondents and their verbal and written consents to participate in the study were sought and obtained before the questionnaires were administered. The confidentiality of the participants was guaranteed, and they were informed that the data will be analysed at a group level in order to de-identify the participants.

Data analysis. The collected data were calculated with MS Excel and then statistical analysis was made by statistical package for social science (SPSS) 20 version. Qualitative data were presented in frequencies and percentages. Quantitative data were presented in means and standard deviation. Chi-square test was applied as a test of significance for qualitative data and t-test/ANOVA test was a test of significance for quantitative data. The level of significance was set at p value <0.05.

Knowledge about First response in an emergency	MBBS	BDS	P value
Open airway	21 (14%)	30 (30%)	<0.001
Start chest compression	18 (12%)	28 (28%)	
Look for safety	107 (71.3%)	34 (34%)	
Give two breathing	4 (2.7%)	8 (8%)	
Immediate action if found unresponsive			
Start CPR	79 (52.7%)	60 (60%)	0.04
Activate EMS	47 (31.5%)	17 (17%)	
Recovery position	19 (12.7%)	15 (15%)	
Observe	5 (3.3%)	8 (8%)	
Results

In our study, among 250 subjects mean age was 19.79 years with S.D.1.4 and the majority were females (63.6%).

Overall, the respondents showed a poor level of knowledge with respect to first response in an emergency; the proportion of correct answers varied greatly, with significant differences between MBBS and BDS and data shown in Table 1.

Table 2 Shows the knowledge of study participants about CPR in adults and neonates/infants/children. It is clear that, both MBBS and BDS students have very poor knowledge about CPR.

Knowledge about CPR	MBBS	BDS	P value	
Location for chest compression	Left side of chest	43 (28.7%)	45 (45%)	0.02
	Right side of chest	8 (5.3%)	7 (7%)	
	Mid chest	65 (43.3%)	36 (36%)	
	Xiphisternum	34 (22.7%)	12 (12%)	
Mouth to mouth CPR	Mouth mask ventilation and chest compression	21 (14%)	9 (9%)	<0.001
	Chest compression only	26 (17.3%)	22 (22%)	
	Bag mask ventilation with chest compression	19 (12.7%)	46 (46%)	
	No CPR	84 (54%)	23 (23%)	
Depth of compression	1.5-2 inch	32 (54.7%)	30 (30%)	
	2.5-3 inch	43 (28.7%)	30 (30%)	<0.001
	1-1.5 inch	18 (12%)	26 (26%)	
	0.5-1 inch	7 (4.7%)	14 (17%)	
Rate of compression in adults and children during CPR	100/min	21 (14%)	20 (20%)	
	120/min	100 (66.7%)	34 (34%)	<0.001
	80/min	18 (12%)	27 (27%)	
	70/min	11 (7.3%)	19 (19%)	

Knowledge about CPR in neonates/infants/children	MBBS	BDS	P value	
Location for chest compression in infants	One finger breadth below nipple line	49 (32.7%)	30 (30%)	0.02
	One finger breadth above nipple line	27 (18%)	21 (21%)	
	Inter mammary line	44 (29.3%)	21 (21%)	
	Xiphisternum	30 (20%)	28 (28%)	
Infant rescue breathing	Mouth to mouth with nose pinched	90 (60%)	53 (53%)	0.07
	Mouth to mouth and nose	8 (5.3%)	11 (11%)	
	Mouth to nose	3 (2%)	7 (7%)	
	Mouth to mouth without nose pinched	49 (32.7%)	29 (29%)	
Depth of compression in children	1.5-2 inch	36 (24%)	28 (28%)	
	2.5-3 inch	21 (14%)	14 (14%)	0.24
	One half to one third depth of chest	55 (36.7%)	25 (25%)	
	0.5-1 cm	38 (25.3%)	33 (33%)	
Depth of compression in neonates	1 and 1/2 inches	32 (21.3%)	12 (12%)	
	2 and 1/2 inches	28 (18.7%)	13 (13%)	0.07
	1/2-1 cm	49 (32.7%)	50 (50%)	
	1/2-1/3 depth	41 (27.3%)	25 (25%)	

https://ijpccr.com/
Table 4. Knowledge about choking

Knowledge about choking	MBBS	BDS	P value	
First response for choking in adults	Give abdominal thrusts	70(46.7%)	13(13%)	<0.001
	Give chest compressions	14(9.3%)	17(17%)	
	Confirm foreign body	18(12%)	24(24%)	
	Give back blows	48(32%)	46(46%)	
First response for choking in infants	Start CPR	6(4%)	6(6%)	0.718
	Try removing foreign body	49(32.7%)	32(32%)	
	Back blows & compressions	87(58%)	54(54%)	
	Give water	8(5.3%)	8(8%)	
First response to a submerged adult in freshwater	CPR for 2min	36(24%)	10(10%)	
	CPR for 1min	10(6.7%)	15(15%)	0.008
	Abdomen compression	97(64.7%)	67(67%)	
	Keep him in recovery position	7(4.7%)	8(8%)	

Discussion

The present study was done to understand the awareness of BLS among medical and dental students. Among 250 subjects, 60% belong to MBBS and 40% from BDS. A study using a similar questionnaire by S Chandrasekaran et al. (9) was conducted among 1054 participants in Tamil Nadu. Table 5 shows a detailed comparison of the two studies.

The participants displayed poor knowledge in our study as well as in similar studies conducted by Chandrasekaran et al. (9), Srinivas et al. (10), Sudeep et al. (11), Aroor et al. (12), Zaheer et al. (13) and Alanazi et al. (14).

Conclusion

From our study, we conclude that lack of awareness regarding BLS among medical and dental students is a serious issue that needs to be addressed promptly. BLS and other resuscitation skills should be part of the undergraduate curriculum and students should master the skills during their studies. More research is warranted in our setup also involving other medical personnel and to determine an appropriate and efficient course design.

Table 5. Comparison between the present study and study by Chandrasekaran et al.

Sl. No	Questions	% of Right responses in our study	% of Right responses in Chandrasekaran et al. (9)
1	Abbreviation of BLS	90.4	68.6
2	First response if the person is found unresponsive	56.4	41.1
3	Immediate action	25.6	10.6
4	Location for chest compression	40.4	26.1
5	Location for chest compression in infants	31.6	27.1
6	Mouth to mouth CPR	42.8	16.6
7	Infant rescue breathing	07.6	14.2
8	Depth of compression	17.6	33.3
9	Depth of compression in children	32.0	17.0
10	Depth of compression in neonates	26.4	64.5
11	Rate of compression	16.4	35.1
12	Rate of CPR single rescuer in adults	52.4	14.9
13	Rate of chest compression to ventilation in newborn	16.0	25.5
14	AED abbreviation	35.6	33.5
15	EMS abbreviation	80.0	56.0
16	First response for choking in adults	16.8	16.4
17	First response for choking in infants	56.4	29.6
18	First response to as a submerged adult in freshwater	06.0	12.9
19	Response for slurred speech and weakness of right upper limb	44.8	43.7
20	Differential diagnosis for retrosternal pain, sweating, vomiting	57.6	54.2

https://ijpccr.com/
References

1) Kharsan V. The Ability of Oral & Maxillofacial Surgeons to Perform Basic Life Resuscitation in Chattisgarh. *Journal of Clinical and Diagnostic Research*. 2015;9(2):58–60. doi:10.7860/jcdr/2015/12630.3603.

2) Hunter PL. Cardiac arrest in the dental surgery. *British Dental Journal*. 1991;170(8):284–284. doi:10.1038/sj.bdj.4807511.

3) Lombardi G. Outcome of out-of-hospital cardiac arrest in New York City. The Pre-Hospital Arrest Survival Evaluation (PHASE) Study. *JAMA: The Journal of the American Medical Association*. 1994;271(9):678–683. doi:10.1001/jama.271.9.678.

4) Sasson C, Rogers MAM, Dahl J, Kellermann AL. Predictors of Survival From Out-of-Hospital Cardiac Arrest. *Circulation: Cardiovascular Quality and Outcomes*. 2010;3(1):63–81. doi:10.1161/circoutcomes.109.889576.

5) Rajapakse R, Noč M, Kersnik J. Public knowledge of cardiopulmonary resuscitation in Republic of Slovenia. *Wiener klinische Wochenschrift*. 2010;122(23–24):667–672. doi:10.1007/s00508-010-1489-8.

6) Bobrow BJ, Spaitie DW, Berg RA, Stolz U, Sanders AB, Kern KB, et al. Chest Compression–Only CPR by Lay Rescuers and Survival From Out-of-Hospital Cardiac Arrest. *JAMA*. 2010;304(13):1447–1447. doi:10.1001/jama.2010.1392.

7) International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations (CoSTR). 2005.

8) Eftekhar T, Sunde K, Steen PA. Effects of Interrupting Precordial Compressions on the Calculated Probability of Defibrillation Success During Out-of-Hospital Cardiac Arrest. *Circulation*. 2002;105(19):2270–2273. doi:10.1161/01.cir.0000016362.42586.fe.

9) Chandrasekaran S, Kumar S, Bhat S, Saravanakumar, Shabbir M, Chandrasekaran VP. Awareness of basic life support among medical, dental, nursing students and doctors. *Indian Journal of Anaesthesia*. 2010;54(2):121–121. doi:10.4103/0019-5049.63650.

10) Kotekar N, Rao S, Srinivas HT. A survey of basic life support awareness among final year undergraduate medical, dental, and nursing students. *International Journal of Health & Allied Sciences*. 2014;3(2):91–91. doi:10.4103/2278-344x.132692.

11) Sudeep CB, Sequeira PS, Jain J, Jain V, Maliyil M. Awareness of basic life support among students and teaching faculty in a dental college in Coorg. *Karnataka Int Dent J Stud Res*. 2013;2:4–9.

12) Aroor A, Saya R, Attar N, Saya G, Ravinanthanan M. Awareness about basic life support and emergency medical services and its associated factors among students in a tertiary care hospital in South India. *Journal of Emergencies, Trauma, and Shock*. 2014;7(3):166–166. doi:10.4103/0974-2700.136857.

13) Zaheer H, Haque Z. Awareness about BLS (CPR) among medical students: Status and requirements. *J Pak Med Assoc*. 2009;59:57–66.

14) Alansari A, Alsalmeh M, Alsonsali O, Alamrshdi AM, Alabadi A, Al-Sulami M. Poor basic life support awareness among medical and college of applied medical sciences students necessitates the need for improvement in standards of BLS training and assessment for future health care providers. *Middle East J Sci Res*. 2014;21:848–54.