On the structure of formal balls of the balanced quasi-metric domain of words

Salvador Romaguera¹, Oscar Valero²

¹Instituto Universitario de Matemática Pura y Aplicada,
Universitat Politècnica de València, 46022 Valencia, Spain
E-mail: sromague@mat.upv.es

²Departamento de Ciencias Matemáticas e Informática,
Universidad de las Islas Baleares, 07122 Palma, Spain
E-mail: o.valero@uib.es

Abstract

In “Denotational semantics for programming languages, balanced quasi-metrics and fixed points” (International Journal of Computer Mathematics 85 (2008), 623-630), J. Rodríguez-López, S. Romaguera and O. Valero introduced and studied a balanced quasi-metric on any domain of (finite and infinite) words, denoted by q_b. In this paper we show that the poset of formal balls associated to q_b has the structure of a continuous domain.

AMS Classification: 03G10, 06A06, 54E35
ACM Classification: F.4.3, F.3.2

1 Introduction and preliminaries

Throughout this paper the symbols \mathbb{R}^+ and \mathbb{N} will denote the set of all non-negative real numbers and the set of all positive integer numbers, respectively.

*The authors thank the support of Ministry of Economy and Competitiveness of Spain, Grant MTM2012-37894-C02-01
Our basic references for quasi-metric spaces are [5, 11], for general topology it is [8] and for domain theory is [9].

In 1998, Edalat and Heckmann [7] established an elegant connection between the theory of metric spaces and domain theory by means of the notion of a (closed) formal ball.

Let us recall that a formal ball for a set X is simply a pair (x, r), where $x \in X$ and $r \in \mathbb{R}^+$. The set of all formal balls for X is denoted by B_X.

Edalat and Heckmann observed that, given a metric space (X, d), the relation \sqsubseteq_d defined on B_X as

$$(x, r) \sqsubseteq_d (y, s) \Leftrightarrow d(x, y) \leq r - s,$$

for all $(x, r), (y, s) \in B_X$, is a partial order on B_X. Thus (B_X, \sqsubseteq_d) is a poset.

In particular, they proved the following.

Theorem 1 ([7]). For a metric space (X, d) the following are equivalent:

1. (X, d) is complete.
2. (B_X, \sqsubseteq_d) is a dcpo.
3. (B_X, \sqsubseteq_d) is a continuous domain.

Later on, Aliakbari et al. [1], and Romaguera and Valero [20] studied the extension of Edalat-Heckmann’s theory to the framework of quasi-metric spaces.

Let us recall that a quasi-metric space is a pair (X, d) where X is a set and $d : X \times X \to \mathbb{R}^+$ satisfies the following conditions for all $x, y, z \in X$:

1. $x = y \Leftrightarrow d(x, y) = d(y, x) = 0$;
2. $d(x, y) \leq d(x, z) + d(z, y)$.

The function d is said to be a quasi-metric on X.

If the quasi-metric d satisfies for all $x, y \in X$ the condition

1. $x = y \Leftrightarrow d(x, y) = 0$,

then d is called a T_1 quasi-metric and the pair (X, d) is said to be a T_1 quasi-metric space.

If d is a quasi-metric on a set X, then function d^s defined as $d^s(x, y) = \max\{d(x, y), d(y, x)\}$ for all $x, y \in X$, is a metric on X.

Next we recall some notions and properties of domain theory which will useful later on.
A partially ordered set, or poset for short, is a (non-empty) set \(X \) equipped with a (partial) order \(\sqsubseteq \). It will be denoted by \((X, \sqsubseteq)\) or simply by \(X \) if no confusion arises.

A subset \(D \) of a poset \(X \) is directed provided that it is non-empty and every finite subset of \(D \) has upper bound in \(D \).

A poset \(X \) is said to be directed complete, and is called a dcpo, if every directed subset of \(X \) has a least upper bound. The least upper bound of a subset \(D \) of \(X \) is denoted by \(\sqcup D \) if it exists.

Let \(X \) be a poset and \(x, y \in X \); we say that \(x \) is way below \(y \), in symbols \(x \ll y \), if for each directed subset \(D \) of \(X \) having least upper bound \(\sqcup D \), the relation \(y \sqsubseteq \sqcup D \) implies the existence of some \(u \in D \) with \(x \sqsubseteq u \).

A poset \(X \) is called continuous if for each \(x \in X \), the set \(\downarrow x := \{ y \in X : y \ll x \} \) is directed with least upper bound \(x \).

A continuous poset which is also a dcpo is called a continuous domain or, simply, a domain.

In the sequel we shall denote by \(\Sigma \) a non-empty alphabet and by \(\Sigma^\infty \) the set of all finite and infinite words (or strings) on \(\Sigma \). We assume that the empty word \(\phi \) is an element of \(\Sigma^\infty \), and denote by \(\sqsubseteq \) the prefix order on \(\Sigma^\infty \). In particular, if \(x \sqsubseteq y \) and \(x \neq y \), we write \(x \sqsubset y \). For each \(x, y \in \Sigma^\infty \) we denote by \(x \sqcap y \) the longest common prefix of \(x \) and \(y \), and for each \(x \in \Sigma^\infty \) we denote by \(\ell(x) \) the length of \(x \). In particular, \(\ell(\phi) = 0 \).

It is well known that \(\Sigma^\infty \) endowed with the prefix order has the structure of a domain.

Usually it is defined a distinguished complete metric \(d_B \) on \(\Sigma^\infty \), the so-called Baire metric (or Baire distance), which is given by

\[
d_B(x, x) = 0 \text{ for all } x \in \Sigma^\infty, \quad \text{and} \quad d_B(x, y) = 2^{-\ell(x \sqcap y)} \text{ for all } x, y \in \Sigma^\infty \text{ with } x \neq y.
\]

(We adopt the convention that \(2^{-\infty} = 0 \)).

Observe that \((B\Sigma^\infty, \sqsubseteq d_B)\) is also a domain by Theorem 1 above.

Recall that the classical Baire metric (or Baire distance) provides a suitable framework to obtain denotational models for programming languages and parallel computation \[2, 3, 4, 10\] as well as to study the representation of real numbers by means of regular languages \[13\]. However, the Baire metric is not able to decide if a word \(x \) is a prefix of another word \(y \), or not, in general. In order to avoid this disadvantage, some interesting and useful quasi-metric modifications of the Baire metric has been constructed. For instance:
(A) The quasi-metric d_w defined on Σ^∞ as (compare \cite{12, 15, 18, 20, etc.})
$$d_w(x, y) = 2^{-\ell(x \cap y)} - 2^{-\ell(x)} \text{ for all } x, y \in \Sigma^\infty.$$

(B) The quasi-metric d_0 defined on Σ^∞ as (compare \cite{12, 16, 20, 21, etc.})
$$d_0(x, y) = 0 \text{ if } x \text{ is a prefix of } y,$$
$$d_0(x, y) = 2^{-\ell(x \cap y)} \text{ otherwise.}$$

(C) The T_1 quasi-metric q_b defined on Σ^∞ as (compare \cite{16})
$$q_b(x, y) = 2^{-\ell(x)} - 2^{-\ell(y)} \text{ if } x \text{ is a prefix of } y,$$
$$q_b(x, y) = 1 \text{ otherwise.}$$

Observe that in Examples (A) and (B) above, the fact that a word x is a prefix of another word y is equivalent to say that the distance from x to y is exactly zero, so this condition can be used to distinguish between the case that x is a prefix of y and the remaining cases for $x, y \in \Sigma^\infty$. Observe also that $(d_0)^s$ coincides with the Baire metric while $(d_w)^s$ does not.

Nevertheless, if $x, y, z \in \Sigma^\infty$ satisfy $x \sqsubseteq y \sqsubseteq z$, one obtains $d_w(x, z) = d_w(y, z) = d_0(x, z) = d_0(y, z) = 0$, and it is not possible to decide which word of the two, x or y, provides a better approximation to z. The quasi-metric q_b as constructed in (C) saves this inconvenience because if $x \sqsubseteq y \sqsubseteq z$, it follows that $\ell(x) < \ell(y) < \ell(z)$, and thus $q_b(y, z) < q_b(x, z)$. Moreover, for $x \neq \phi$, x is a prefix of y if and only if $q_b(x, y) < 1$, so this condition also allows us to distinguish between the case that x is a prefix of y and the rest of cases (see \cite{16} Remark 3). We also point out that, contrarily to d_w and d_0, the quasi-metric q_b has rich topological and distance properties; in particular, it is a balanced quasi-metric in the sense of Doitchinov \cite{6}, and consequently its induced topology is Hausdorff and completely regular \cite{16} Theorem 1 and Remark 4.

By \cite{19} Theorem 3.1 (see also \cite{20} p. 461), $(\mathcal{B}\Sigma^\infty, \sqsubseteq_{d_w})$ is a domain. On the other hand, it was shown in \cite{20} Example 3.1 that $(\mathcal{B}\Sigma^\infty, \sqsubseteq_{d_0})$ is a domain. In the light of these results, it seems natural to wonder if $(\mathcal{B}\Sigma^\infty, \sqsubseteq_{q_b})$ is also a domain. Here we show that, indeed, this is the case.

2 The results

In the rest of the paper, given a quasi-metric space (X, d), the way below relation associated to \sqsubseteq_d will be denoted by \ll_d.

4
Lemma 1 ([1]). For any quasi-metric space \((X, d)\) the following holds:

\[(x, r) \ll_d (y, s) \Rightarrow d(x, y) < r - s.\]

Lemma 2. Let \((X, d)\) be a quasi-metric space. If there is \((x, r) \in BX\) such that \((x, r + s) \ll_d (x, r)\) for all \(s > 0\), then \(\downarrow (x, r)\) is directed and \((x, r) = \sqcup \downarrow (x, r)\).

Proof. Obviously \(\downarrow (x, r) \neq \emptyset\). Now let \((y, s), (z, t) \in BX\) such that \((y, s) \ll_d (x, r)\) and \((z, t) \ll_d (x, r)\). By Lemma 1, \(d(y, x) < s - r - \varepsilon\) and \(d(z, x) < t - r - \varepsilon\) for some \(\varepsilon > 0\). Thus \((y, s) \sqsubseteq_d (x, r + \varepsilon)\) and \((z, t) \sqsubseteq_d (x, r + \varepsilon)\). Since \((x, r + \varepsilon) \in \downarrow (x, r)\), we conclude that \(\downarrow (x, r)\) is directed.

Finally, let \((z, t)\) be an upper bound of \(\downarrow (x, r)\). In particular, we have that \((x, r + 1/n) \sqsubseteq_d (z, t)\) for all \(n\), so \(d(x, z) \leq r - t + 1/n\) for all \(n\). Hence \(d(x, z) \leq r - t\), i.e., \((x, r) \sqsubseteq_d (z, t)\). Consequently \((x, r) = \sqcup \downarrow (x, r)\).

A net \((x_\alpha)_{\alpha \in \Lambda}\) in a quasi-metric space \((X, d)\) is called left K-Cauchy ([17, 22] (or simply, Cauchy [13]) if for each \(\varepsilon > 0\) there is \(\alpha_\varepsilon \in \Lambda\) such that \(d(x_\alpha, x_\beta) < \varepsilon\) whenever \(\alpha_\varepsilon \leq \alpha \leq \beta\). The notion of a left K-Cauchy sequence is defined in the obvious manner.

Let \((X, d)\) be a quasi-metric space. An element \(x \in X\) is said to be a Yoneda-limit of a net \((x_\alpha)_{\alpha \in \Lambda}\) in \(X\) if for each \(y \in X\), we have \(d(x, y) = \inf_{\alpha} \sup_{\beta \geq \alpha} d(x_\beta, y)\). Recall that the Yoneda-limit of a net is unique if it exists.

A quasi-metric space \((X, d)\) is called Yoneda-complete if every left K-Cauchy net in \((X, d)\) has a Yoneda-limit, and it is called sequentially Yoneda-complete if every left K-Cauchy sequence in \((X, d)\) has a Yoneda-limit.

Lemma 3 ([20, Proposition 2.2]). A \(T_1\) quasi-metric space is Yoneda-complete if and only if it is sequentially Yoneda-complete.

Proposition 1. The quasi-metric space \((\Sigma^\infty, q_b)\) is Yoneda-complete.

Proof. Since \((\Sigma^\infty, q_b)\) is a \(T_1\) quasi-metric space it suffices to show, by Lemma 3, that it is sequentially Yoneda-complete. To this end, let \((x_n)_{n \in \mathbb{N}}\) be a left K-Cauchy sequence in \((\Sigma^\infty, q_b)\). Then, there is \(n_1 \in \mathbb{N}\) such that \(q_b(x_n, x_m) < 1\) whenever \(n_1 \leq n \leq m\). So, \(x_n\) is a prefix of \(x_m\), i.e., \(x_n \sqsubseteq x_m\), whenever \(n_1 \leq n \leq m\).
Now we distinguish two cases.

Case 1. There exists \(n_0 \geq n_1 \) such that \(x_n = x_{n_0} \) for all \(n \geq n_0 \). Then, it is clear that
\[
q_b(x_{n_0}, y) = \inf_n \sup_{m \geq n} q_b(x_m, y).
\]
for all \(y \in X \).

Case 2. For each \(n \geq n_1 \) there exists \(m > n \) such that \(x_n \sqsubseteq x_m \). In this case, there exists \(x = \sqcup \{ x_n : n \geq n_1 \} \), and \(\ell(x) = \infty \). We shall show that \(x \) is the Yoneda-limit of the sequence \((x_n)_{n \in \mathbb{N}} \).

Indeed, we first note that \(q_b(x_n, x) = 2^{-\ell(x_n)} \) for all \(n \geq n_1 \), and hence
\[
\sup_{m \geq n} q_b(x_m, x) = \sup_{m \geq n} 2^{-\ell(x_m)} = 2^{-\ell(x_n)},
\]
whenever \(n \geq n_1 \). Therefore
\[
\inf_n \sup_{m \geq n} q_b(x_m, x) = \inf_n 2^{-\ell(x_n)} = 0 = q_b(x, x).
\]

Finally, let \(y \in \Sigma^\infty \) such that \(y \not= x \). Since \(\ell(x) = \infty \) it follows that \(x \) is not a prefix of \(y \), and thus for each \(n \in \mathbb{N} \) there exists \(m \geq \max\{n, n_1\} \) such that \(x_m \) is not a prefix of \(y \), so \(q_b(x_m, y) = 1 \). We conclude that
\[
\inf_n \sup_{m \geq n} q_b(x_m, y) = 1 = q_b(x, y).
\]

This finishes the proof.

Lemma 4 \((\mathbb{P}) \). Let \((X, d) \) be a quasi-metric space.

(a) If \(D \) is a directed subset of \(BX \), then \((y(y, r))(y, r) \in D \) is a left \(K \)-Cauchy net in \((X, d) \).

(b) If \(BX \) is a dcpo and \(D \) is a directed subset of \(BX \) having least upper bound \((z, s) \), then \(s = \inf\{r : (y, r) \in D\} \) and \(z \) is the Yoneda-limit of the net \((y(y, r))(y, r) \in D \).

(c) If \((X, d) \) is Yoneda-complete, the poset \((BX, \sqsubseteq_d) \) is a dcpo.

Proposition 2. For each \(x \in \Sigma^\infty \) such that \(\ell(x) < \infty \), each \(u \in \mathbb{R}^+ \) and each \(v > 0 \), we have
\[
(x, u + v) \ll_{q_b} (x, u).
\]

Proof. Let \(x \in \Sigma^\infty \) with \(\ell(x) < \infty \), \(u \in \mathbb{R}^+ \) and \(v > 0 \), and let \(D \) be a directed subset of \((BS^\infty, \sqsubseteq_{q_b}) \) whose least upper bound \((z, s) \) satisfies
\[(x, u) \sqsubseteq q_b \ (z, s).\] (The existence of least upper bound is guaranteed by Proposition 1 and Lemma 4(c)). We shall show that there exists \((y, r) \in D\) such that \((x, u + v) \sqsubseteq q\ (y, r)\).

We first note that, by Lemma 4 (a), there exists \((y_1, r_1) \in D\) such that \(q_b(y_{(y,r)}, y_{(y',r')} < 1\) whenever \((y, r), (y', r') \in D\) with \((y_1, r_1) \sqsubseteq q_b \ (y, r) \sqsubseteq q_b \ (y', r').\) Therefore, by the definition of \(q_b\), we deduce that \(y_{(y,r)}\) is a prefix of \(y_{(y',r')}\) whenever \((y, r) \sqsubseteq q_b \ (y, r) \sqsubseteq q_b \ (y', r').\)

Furthermore, by Lemma 4 (b), we have \(s = \inf \{r : (y, r) \in D\}\), and there exists \((y_0, r_0) \in D\), with \((y_1, r_1) \sqsubseteq q_b \ (y_0, r_0)\), such that \(y_{(y,r)}\) is a prefix of \(z\) whenever \((y_0, r_0) \sqsubseteq q_b \ (y, r)\).

Now we distinguish two cases.

Case 1. \(x\) is a prefix of \(z\). Since, by assumption, \(\ell(x) < \infty\), there exists \((y, r) \in D\) such that \((y_0, r_0) \sqsubseteq q_b \ (y, r)\), \(r < s + v\), and \(x\) is a prefix of \(y_{(y,r)}\). Then

\[q_b(x, y_{(y,r)}) = 2^{-\ell(x)} - 2^{-\ell(y_{(y,r)})} \leq 2^{-\ell(x)} - 2^{-\ell(z)} = q_b(x, z) \leq u - s < u + v - r,\]

and hence \((x, u + v) \sqsubseteq q_b \ (y, r)\).

Case 2. \(x\) is not a prefix of \(z\). Since, by assumption, \((x, u) \sqsubseteq q_b \ (z, s)\), we deduce that \(q_b(u, z) = 1 \leq u - s\). Choose \((y, r) \in D\) such that \(r < s + v\). Then

\[q_b(x, y_{(y,r)}) \leq 1 \leq u - s < u + v - r,\]

and hence \((x, u + v) \sqsubseteq q_b \ (y, r)\). The proof is complete.

Theorem. The poset of formal balls \((B^{\Sigma^\infty}, \sqsubseteq q_b)\) is a domain.

Proof. From Proposition 1 and Lemma 4 (c) it follows that the poset \((B^{\Sigma^\infty}, \sqsubseteq q_b)\) is a dcpo, so it is only necessary to prove that is also a continuous poset.

To this end we distinguish two cases.

Case 1. Let \((x, r) \in B^{\Sigma^\infty}\) such that \(\ell(x) < \infty\). By Proposition 2 and Lemma 2, \(\sqsubseteq (x, r)\) is a directed subset of \((B^{\Sigma^\infty}, \sqsubseteq q_b)\) for which \((x, r)\) is its least upper bound.

Case 2. Let \((x, r) \in B^{\Sigma^\infty}\) be such that \(\ell(x) = \infty\). Choose a sequence \((x_n)_{n \in \mathbb{N}}\) of elements of \(\Sigma^\infty\) such that \(\ell(x_n) = n\), \(x_n \sqsubseteq x_{n + 1}\) and \(x_n \sqsubseteq x\) for all \(n \in \mathbb{N}\). By Lemma 4 (a), \((x_n)_{n \in \mathbb{N}}\) is a left K-Cauchy sequence, of distinct elements, in \((\Sigma^\infty, q_b)\), and, by Lemma 4 (b), \(x\) is its Yoneda-limit.
Similarly to the proof of Proposition 2 we shall show that \((x, 2^{-n} + r) \ll_{q_b} (x, r)\) for all \(n \in \mathbb{N}\), which implies, in particular, that \(\downarrow (x, r) \neq \emptyset\).

Indeed, let \(D\) be a directed subset of \((\mathbf{B}^{\Sigma^\infty}, \sqsubseteq_{q_b})\) with least upper bound \((z, t)\) such that \((x, r) \sqsubseteq_{q_b} (z, t)\). Then \(t \leq r\), and, by Lemma 4 (b), \(t = \inf\{s : (y, s) \in D\}\), and there exists \((y_0, s_0) \in D\) such that \(y_{(y,s)}\) is a prefix of \(z\) whenever \((y_0, s_0) \sqsubseteq_{q_b} (y, s)\).

If \(x = z\), from the fact that \(x_n\) is a prefix of \(x\) we deduce the existence of some \((y, s) \in D\) such that \((y_0, s_0) \sqsubseteq_{q_b} (y, s), s < t + 2^{-\ell(y_{(y,s)})}\), and \(x\) is a prefix of \(y_{(y,s)}\). Therefore

\[
q_b(x_n, y_{(y,s)}) = 2^{-n} - 2^{-\ell(y_{(y,s)})} \leq 2^{-n} + t - s \leq 2^{-n} + r - s,
\]

so that \((x, 2^{-n} + r) \sqsubseteq_{q_b} (y, s)\).

If \(x \neq z\) we have \(q_b(x, z) = 1 \leq r - t\). Let \((y, s) \in D\) such that \(s < t + 2^{-n}\). Then

\[
q_b(x_n, y_{(y,s)}) \leq 1 \leq r - t < r + 2^{-n} - s,
\]

so that \((x, 2^{-n} + r) \sqsubseteq_{q_b} (y, s)\).

Next we show that \(\downarrow (x, r)\) is directed. Indeed, let \((y, s), (z, t) \in \mathbf{B}^{\Sigma^\infty}\) be such that \((y, s) \ll_{q_b} (x, r)\) and \((z, t) \ll_{q_b} (x, r)\). Since \((x, 2^{-n} + r)_{n \in \mathbb{N}}\) is an ascending sequence in \((\mathbf{B}^{\Sigma^\infty}, \sqsubseteq_{q_b})\) with least upper bound \((x, r)\), there exists \(k \in \mathbb{N}\) such that \((x_k, 2^{-k} + r)\) is an upper bound of \((y, s)\) and \((z, t)\). From the fact, proved above, that \((x_k, 2^{-k} + r) \ll_{q_b} (x, r)\), we deduce that \(\downarrow (x, r)\) is directed.

Finally, let \((z, t)\) be an upper bound of \(\downarrow (x, r)\). Then \(q_b(x_n, z) \leq 2^{-n} + r - t\) for all \(n \in \mathbb{N}\). Since \(q_b(x, z) = \inf_n \sup_{m \geq n} q_b(x_m, z)\), we deduce that \(q_b(x, z) \leq r - t\), and thus \((x, r) \sqsubseteq_{q_b} (z, t)\). Therefore \((x, r)\) is the least upper bound of \(\downarrow (x, r)\).

We conclude that \((\mathbf{B}^{\Sigma^\infty}, \sqsubseteq_{q_b})\) is a domain.

References

[1] M. Aliakbari, B. Honari, M. Pourmahdian, M.M. Rezaai, The space of formal balls and models of quasi-metric spaces, Mathematical Structures in Computer Science 19 (2009), 337-355.

[2] J.W. de Bakker, E.P. de Vink, Control Flow Semantics, Cambridge, Massachusetts: MIT Press, 1996.
[3] J.W. de Bakker, E.P. de Vink, A metric approach to control flow semantics, in: Proc. 11th Summer Conference on General Topology and Applications, Annals of the New York Academy of Sciences 806 (1996), 11-27.

[4] J.W. de Bakker, E.P. de Vink, Denotational models for programming languages: Applications of Banach’s fixed point theorem. Topology and its Applications 85 (1998), 35-52.

[5] S. Cobzaș, Functional Analysis in Asymmetric Normed Spaces, Birkhäuser, Springer Basel, 2013.

[6] D. Doitchinov, On completeness in quasi-metric spaces, Topology and its Applications 30 (1988), 127-148.

[7] A. Edalat, R. Heckmann, A computational model for metric spaces, Theoretical Computer Science 193 (1998), 53-73.

[8] R. Engelking, General Topology, Monografie Mat., Vol. 60, Polish Scientific Publishers, Warszawa, 1977.

[9] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, D.S. Scott, Continuous Lattices and Domains, Encyclopedia of Mathematics and its Applications, Vol. 93, Cambridge University Press, 2003.

[10] G. Kahn, The semantics of a simple language for parallel processing, in: Proc. IFIP Congress, Stockholm, Sweden, Amsterdam: Elsevier and North-Holland, 1974, pp. 471-475.

[11] H.P.A. Künzi, Nonsymmetric distances and their associated topologies: About the origins of basic ideas in the area of asymmetric topology, in: C.E. Aull, R. Lowen (Eds.), Handbook of the History of General Topology, Vol. 3, Kluwer, Dordrecht, 2001, pp. 853-968.

[12] H.P.A. Künzi, Nonsymmetric topology, Bolyai Soc. Math. Stud. 4, Topology, Szekszár, 1993. Budapest, Hungary, 1995, pp. 303-338.

[13] H.P.A. Künzi, M.P. Schellekens, On the Yoneda completion of a quasi-metric spaces, Theoretical Computer Science 278 (2002), 159-194.

[14] P. Lecomte, M. Rigo, On the representation of real numbers using regular languages, Theory of Computing Systems, 35 (2002), 13-38.
[15] S.G. Matthews, Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications, Annals of the New York Academy of Sciences 728 (1994), 183-197.

[16] J. Rodríguez-López, S. Romaguera, O. Valero, Denotational semantics for programming languages, balanced quasi-metrics and fixed points, International Journal of Computer Mathematics 85 (2008), 623-630.

[17] S. Romaguera, Left K-completeness in quasi-metric spaces, Mathematische Nachrichten 157 (1992), 15-23.

[18] S. Romaguera, M. Schellekens, Partial metric monoids and semivaluation spaces, Topology and its Applications 153 (2005), 948-962.

[19] S. Romaguera, O. Valero, A quantitative computational model for complete partial metric spaces via formal balls, Mathematical Structures in Computer Science 19 (2009), 541-563.

[20] S. Romaguera, O. Valero, Domain theoretic characterisations of quasi-metric completeness in terms of formal balls, Mathematical Structures in Computer Science 20 (2010), 453-472.

[21] M.B. Smyth, Quasi-uniformities: Reconciling domains with metric spaces, in: M. Main et al. (Eds), Mathematical Foundations of Programming Language Semantics, Third Workshop, Tulanem, 1987. Lecture Notes in Computer Science (Berlin: Springer), Vol. 298, 1988, pp. 236-253.

[22] Ph. Sünderhauf, Quasi-uniform completeness in terms of Cauchy nets, Acta Mathematica Hungarica 69 (1995), 47-54.