Seven novel mutations in the long isoform of the *USH2A* gene in Chinese families with nonsyndromic retinitis pigmentosa and Usher syndrome Type II

Wenjun Xu, Hanjun Dai, Tingting Lu, Xiaohui Zhang, Bing Dong, Yang Li

Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, China

Purpose: To describe the clinical and genetic findings in one Chinese family with autosomal recessive retinitis pigmentosa (arRP) and in three unrelated Chinese families with Usher syndrome type II (USH2).

Methods: One family (FR1) with arRP and three unrelated families (F6, F7, and F8) with Usher syndrome (USH), including eight affected members and seven unaffected family individuals were examined clinically. The study included 100 normal Chinese individuals as normal controls. After obtaining informed consent, peripheral blood samples from all participants were collected and genomic DNA was extracted. Genotyping and haplotyping analyses were performed on the known genetic loci for arRP with a panel of polymorphic markers in family FR1. In all four families, the coding region (exons 2–72), including the intron-exon boundary of the *USH2A* (Usher syndrome type –2A protein) gene, was screened by PCR and direct DNA sequencing. Whenever substitutions were identified in a patient, a restriction fragment length polymorphism (RFLP) analysis, single strand conformation polymorphism (SSCP) analysis, or high resolution melt curve analysis (HRM) was performed on all available family members and on the 100 normal controls.

Results: The affected individuals presented with typical fundus features of retinitis pigmentosa (RP), including narrowing of the vessels, bone-spicule pigmentation, and waxy optic discs. The electroretinogram (ERG) wave amplitudes of the available probands were undetectable. Audiometric tests in the affected individuals in family FR1 were normal, while indicating moderate to severe sensorineural hearing impairment in the affected individuals in families F6, F7, and F8. Vestibular function was normal in all patients from all four families. The disease-causing gene in family FR1 was mapped to the *USH2A* locus on chromosome 1q41. Seven novel mutations (two missenses, one 7-bp deletion, two small deletions, and two nonsenses) were detected in the four families after sequencing analysis of *USH2A*.

Conclusions: The results further support that mutations of *USH2A* are also responsible for non-syndromic RP. The mutation spectrum among Chinese patients might differ from that among European Caucasians.

Retinitis pigmentosa (RP) is a heterogeneous group of retinal dystrophies, characterized by progressive degeneration of the photoreceptors. Clinical features include progressive night blindness, constriction and gradual loss of the peripheral visual field, and eventual loss of visual acuity. With an incidence of 1 in 3,500, RP can be inherited as an autosomal recessive (arRP), an autosomal dominant (adRP), or an X-linked recessive (xLRP) pattern [1,2].

RP can be classified as syndromic and nonsyndromic RP, based on whether or not extra-ocular diseases exist. Nonsyndromic arRP is caused by the mutations of 32 identified genes [1,2]. Syndromic RP includes more than 30 different syndromes [1,2]. The most common syndrome is Usher syndrome (USH), which is also an autosomal recessive disorder characterized by sensorineural hearing loss, variable vestibular dysfunction, and visual impairment due to retinitis pigmentosa [2,3]. Clinically, USH is subdivided into three types: USH type I (USH1), USH type II (USH2), and USH type III (USH3). USH1 is the most severe form of this disease and is characterized by congenital profound hearing loss, prepuberal onset of RP, and vestibular dysfunction. Patients with USH2 experience congenital moderate to severe hearing impairment, and postpuberal onset of RP with intact vestibular function. Patients with USH3 show progressive postlingual hearing loss, later onset of RP, and variable vestibular dysfunction. Of the three clinical types, USH2, which accounts for more than half of all patients with USH, is the most common form of USH [2-4]. To date, reports indicate that three genes (*USH2A* [Usher syndrome type –2A protein], *GPR98* [G-protein coupled receptor 98], and *DFNB31* [CASK-interacting protein CIP98 isoform 1]) are responsible for USH2, and most USH2 patients have mutations in *USH2A* [3-9].

USH2A, located on chromosome 1q41, has two alternatively spliced isoforms: a short *USH2A* isoform a, consisting of 21 exons, and a long *USH2A* isoform b, consisting of 51 additional exons at the 3′ end of *USH2A* [5, 9]. The protein usherin, encoded by USH2A isoform b, is a
Primer	Forward sequence (5’-3’)	Reverse sequence (5’-3’)	Products (bp)	Tm (°C)
Exon 2	GCCCTGGGATGAGCTTCAG	GGTTTGGAAATCAGGCTTG	840	62
Exon 3	CACACCTGAACGTGACACATACC	CTGCTGCAAGTTTTGGAGTACG	840	63
Exon 4	GTTCCTCCAGCTGAGAAAGAGTA	GTGGTATTTTGGTCAGGCTCTAG	382	62
Exon 5	GTAAGTATTGCTGTTGTAACAG	CAGCATTTACTCCTTCGCTTCC	173	62
Exon 6	CGTATGTCATTTGTTGAAGG	GGCATTTTGGATTCAAAACCA	432	58
Exon 7	TTTGAAATCTAAATTTTCAAGTTG	TGTTGGTGAAGGGAGAAAGTCTC	372	64
Exon 8	CACCATTTGATTTGCTGCTGC	GTGCTTTGCACTTTTGAATTTGC	370	62
Exon 9	CAACATGTGTTAGAATGTTGAG	GTGTTGGTTGGAGTACAGTTGAG	367	62
Exon 10	TGATATGTCCTTTACTCCTTCG	GCATTGTAAGTAAAGCAGACACAG	356	62
Exon 11	TGTACGATTTGTTGAAAGG	GCAATTGCTTTATTGCTGTTCA	371	62
Exon 12	CCTGTCTTGTACCTAAATGAGC	TTTCAGTTGGAATATGAGATGTA	323	58
Exon 13	GCAAACCTGCTTTGCAAGAGCCC	GTCAGATGGCAAAACGCAAAAC	816	58
Exon 14	GGAAGTATTGTCCTTGTGATAG	GAAATTTGATTCTTGACTGCTG	379	64
Exon 15	AAGCCTGCTTACTCTGCAATGCT	TTCTGATGTTGCAATATGAGGAG	360	58
Exon 16	GAACTCCGCTTACAGAAAGACC	CCACAACCAGCATTACATGCTC	354	64
Exon 17	GAGAAGAAGGCAGTTACGAAATG	GATTCATCATTGCACTTCTGACCA	626	64
Exon 18	AGATGAAAAACCCCTTGGGATGATG	GGAAGGATTGCACTTTAGHGAGG	378	62
Exon 19	TCAGAAACATACAAAAGGAGTTGGA	TGCCCTGTCTTTACATCATAGAG	379	60
Exon 20	TGGTGGTCTGTGCTACAAATCCC	GAGTTATGGAAGGGGAGAGAACA	381	64
Exon 21	AGCCATAAGATACCAGTACGAGCA	GCATCTAAAGGCGCTGTTAC	502	64
Exon 22	CCTGCTTTGCTGTCAGGTTGC	GCTGAGAAGGCTATCCAGTAC	451	62
Exon 23	CAGGAAAGGCAGATTTGATGCG	CCCAAAGGCAAACCAGTTAC	447	58
Exon 24	CCTAAGGGAATGTTGGGACA	CTTGGAAGGCTTATGGGACA	371	58
Exon 25	TGTGAATCAATAGGCTTTCGAG	TGTGGCCTTGTGAGAATGAC	459	58
Exon 26	GGTCTTCGCTTTGCTCAGTTGC	TTTCAGTTGCACTTTGAGTGGT	722	62
Exon 27	TGCTTCGAGGAACTGCAATGTT	GGTGCTCTGGTATTGGCTGAG	497	62
Exon 28,29	TGCTGCAAGAGGCAAAATGGA	GCTTCAGGGTAAATGTCCCTCC	579	62
Exon 30	TGCGGCCATAAAGGTGAAG	TGACGCTTTCCACTCATTTAG	434	58
Exon 31	GCAGAAAGGGGAGAAATGGCAG	CAAATTTAGGGTGGGTTGCTG	392	64
Exon 32	TGATTTTCTTGTGTGGCTCTG	GCATTCTGTTAATATTTTGAGC	357	58
Exon 33	TGAAAGCCATATTTGATTATGAC	CCTGCTTGATGAATCTAC	392	58
Exon 34	ATTTCCCTTTGGCCCTCCAG	AGGATGGGAGAGGATTCTTCAG	512	56
Exon 35	TTGGGAGAAATGAAAGGATGAC	CCAATTTCCTCCCAACTAGAG	431	62
Exon 36	AAAATCAACTCAAGAGTGCTTGCC	CCTGCGTTGAAAGGCTAGTGGC	352	62
Exon 37	TGTGCTTTGAGTACCTGCTG	AAGCAGACCTGTTGATCAAGG	434	60
Exon 38	TTGTAGGCGAGTCACCACTGAG	TGTGAGCTGTTGATGAAGCAGC	614	64
Exon 39	CAGAGCTTCAAGGAAATGGCAAG	AAGTTCCATGCGGAAGAGAACCTC	526	54
Exon 40	TGAGATCCTTACGTGATGCGAGA	GGCATTCTCCTTGTTGCTG	373	58
Exon 41	TGTGCTTTACCAAGTGTTGCA	AAGGCGAATAACCCAGTTTCT	890	58
Exon 42	GCAAAATTTCTAGGCGCTTCTG	AAAGGCTCTTTGATTCTTCAC	492	62
Exon 43	ATGCGCAGAACAGCCGTAAG	AGCCGTCGCAAAGGCAATAG	469	62
Exon 44	TTTTGTAGAGGGGGTGAAGG	TGTGACATGGGGGAGGTTG	367	58
Exon 45	CATTTCCAAAAACAAAGGCTCCTC	TTAGCCCTACCCCTTCTC	464	58
Primer	Forward sequence (5′-3′)	Reverse sequence (5′-3′)	Products (bp)	Tm (°C)
--------	-------------------------	--------------------------	---------------	---------
Exon 46	TCATCATATCCACTTGGTCAC	CCCTCTCTCTTTCCCTTCC	599	54
Exon 47	AGGGAAGGTGGGATTCTAGAC	TGTCATGGCTGAGGATACCC	280	59
Exon 48	CCTCACTGATGGATGGTATTTC	CTTCTCTTTCCGTTGGAATTC	530	54
Exon 49	TCCGATAGCTCCTGAAAATACA	TTGTGAGAGGAGGGTGTTTG	432	56
Exon 50	ACCGTGTAGTGATGGATGTG	TTGGAAAGAACATGTTTTTCC	678	54
Exon 51	ATCCCAGCAACTGCTTAGAC	AAAGCTTCTCCCTGAGACAG	552	62
Exon 52	TGCCGAGCTGCGAAAATCTG	GCCCTCAAAGTATGAGAAATTG	564	54
Exon 53	TCCTCCTCTGCTACTCT	GGTGAGTGCATAGGGAATTT	500	56
Exon 54	ATGCTATTTTCTTCAGAACC	TCTCCTCCCTCCAGCATAGG	428	54
Exon 55	AAGGGAAATAGCTCTCCTCAAG	CCCCCCAAACAAATACTCAG	396	62
Exon 56	AGCCCTTTAGAGGTCTCAGACC	CAAGCCCTGAAAGATAGGAC	422	54
Exon 57	GGGGATGGTGTTGACTTTTG	ATGGCCAAATAGGGAGAAG	382	56
Exon 58	GCCAAAGGTCTTGGCAATTTTG	TTTATCCAGGAGACCCACTATG	399	62
Exon 59	GACCACTATTGTCTGGCCATCT	GCCGACTGTTGATTTTTCTGG	488	54
Exon 60	TGCAAGAGCCAGAGTTAAA	GATTCTCCTGGTTGGAGCA	343	54
Exon 61	TGCACCAGGAAAGAAGACAGC	TTAATCCCGTGACTACATTGC	638	54
Exon 62	TGTGGCACATGAGGTCTCAGAG	TGAAGGGAGTTTTCCACAG	417	60
Exon 63-A	AGTGTTAAAAAGGGGCTAAGT	GGAATCTACAAGGTTGGAGAGA	600	54
Exon 63-B	ATTCATGGTATGGATGCTTG	CCAATTCTCCAGGCAATTTATTT	591	59
Exon 63-C	GAATGGAGGTGTTGCTACAGCTA	GCCTGAGCCATAGAAAAAGGTC	600	58
Exon 64	AACATCTGCGCTACGGCAAG	AGTGCCTTTTCAAATTTGTC	602	62
Exon 65	TGTCTTTTGTTGCGGCAATTTC	ACCGTAGGCAACTGAGAAGACG	440	58
Exon 66	TGAGGAGGGTGACTTCTTG	CTTGAGGAGTCAGGAGTAG	445	60
Exon 67	GAGCAGTCTCTGCAAATTG	TCCCCAAGAAATCTCTCT	579	56
Exon 68	GTTTGAGATGGTGCTTCTTG	GTTGAAGCTGGGGAACAGA	344	60
Exon 69	CGTCATACTTGTCTTGGGAATTC	CAACACCTTGGCAACATTTCTC	338	60
Exon 70	ATCCAAATAGCAGGGGCAAG	CCTCTCTGGTCCTCCACAC	462	60
Exon 71	GCTGCTAATCTCTGTAGGTTGACA	TAAGTGCTAGGGAGGAGTGTG	499	56
Exon 72	TGAGGCTTCTGAGGCTTAC	CTGCCAACAGAACCAGAAGTG	651	58
transmembrane protein, which has 5,202 amino acids [9]. The usherin is transiently expressed in the stereocilia of cochlear hair cells, suggesting an important role in their maturation [4,9-11]. In mammalian photoreceptors, the usherin is expressed specifically in the connecting cilia, which links the inner and outer retinal segments; this would appear to indicate that it is crucial for the long-term maintenance of photoreceptors [9-11].

Since identification of USH2A, several studies have indicated that mutations of this gene can cause a significant proportion of non-syndromic recessive RP [12-20].

This study investigated a Chinese family with nonsyndromic arRP. After haplotyping analysis, the disease-causing gene was mapped to the USH2A region. Mutations screening of the USH2A gene, corresponding to the USH2A isoform b, was then performed in this nonsyndromic RP family and in three USH2 families. Seven novel mutations were identified.

METHODS

Clinical data and sample collection: This study adhered to the tenets of the Declaration of Helsinki for research involving human subjects. The Beijing Tongren Hospital Joint Committee on Clinical Investigation approved the study. One Chinese family with nonsyndromic RP and three unrelated Chinese families with USH were referred to Beijing Tongren Hospital. After informed consent was obtained, each participant underwent careful ophthalmologic examinations, including best-corrected visual acuity testing using E decimal charts, slit-lamp biomicroscopy, fundus examination with dilated pupils, visual field testing, and electroretinogram (ERG) examination. Three probands from the three families

Primer	Sequence (5'-3')
U11 SSCP	F: TGATGCAGGAAGGAAGCTGTG
U11 SSCP	R: CCTGGCAATATGAGTCTTC
U32 HRM	F: ATCCCTTCCAGTTCTTTG
U32 HRM	R: CAGATAGGAAACCGCTGGAT
U38 SSCP	F: AATTGGCCAGTCAACTCG
U38 SSCP	R: GCACCAAAGGGTTGTCTC
U48 PAGE	F: TGGATCCATGCCGCTAAAAC
U48 PAGE	R: CACTTGGAGTCTTGAGTAGA

Abbreviations: U represents USH2A; the number represents the name of the exon; F represents forward; R represents reverse.
with USH underwent audiometric testing, including otoscopy and standard pure-tone audiometry, and vestibular tests. The patients with nonsyndromic arRP were given audiometric tests after the disease gene was mapped to chromosome 1q41, where the USH2A gene is located. Clinical diagnosis of USH2 was based on the clinical history, typical RP fundus appearance, sensorineural hearing impairment, and intact vestibular function. Peripheral blood was obtained by venipuncture, and genomic DNA was extracted according to standard phenol protocols.

Genotyping and haplotyping analysis: Genotyping was performed with 50 microsatellite markers from autosomes for the known arRP loci in family FR1 (Appendix 1). Then, genotyping and haplotyping analysis was performed with another six microsatellite markers - D1S237, D1S419, D1S556, D1S229, D1S227, and D1S2860 - around the USH2A gene. The fine mapping primer sequences were obtained from the Human Genome Database (GDB). Pedigree and haplotype maps were constructed using Cyrillic V. 2.0 software.

Mutation screening of the USH2A gene: Mutation screening was performed in all four families using direct DNA sequence analysis. The coding region (exons 2–72) and the exon-intron boundaries of USH2A were amplified by PCR in the probands of the four families. For direct sequencing, amplicons were purified (Shenneng Bocai PCR purification kit; Shenneng, Shanghai, China). An automatic fluorescence DNA sequencer (ABI, Prism 373A; Perkin Elmer, Foster City, CA), used according to the manufacturer’s instructions, sequenced the purified PCR products in both the forward and reverse directions. Nucleotide sequences were compared with the published cDNA sequence of the USH2A gene (GenBank NM_206933.2). For USH2A, cDNA numbering +1 corresponds to A in the ATG translation initiation codon in RefSeq (AY481573.1).

Restriction fragment length polymorphism analysis: Variations (c.2802T>G, c.8232G>C, c.3788G>A, and c.14403C>G) found in the sequencing were confirmed with the restriction endonucleases Hinc II (TaKaRa, Dalian, China), HpyCH4V, BsaI, and SpeI (New England Biolabs, Ipswich, MA), respectively, which were used in all available family members and in the 100 normal controls.

Single strand conformation polymorphism: To validate the variations (c.1876C>T and c.7123delG) found in the sequencing, a single strand conformation polymorphism (SSCP) analysis was performed in all available family members and in the 100 normal controls. As the PCR fragments used in SSCP analysis were between 150 and 300 bp, two pairs of specific primers were designed for detecting mutations in exon 11 and exon 38 (Table 2).

High-resolution melt curve analysis: To confirm the variation (c.6249delT) found in the sequencing, a high-resolution melt curve analysis (HRM) was performed in the available family members and in the 100 normal controls. Primer sequences

Figure 2. The appearance of the fundus in two patients with non-syndromic retinitis pigmentosa (RP) or Usher syndrome type II (USH2). A: Fundus appearance of patient 077066 from family one (FR1), shows typical retinal degeneration with attenuation of the retinal vessels, irregular pigment clumps in the retina, and waxy pallor of the optic nerve head. B: Fundus appearance of patient 019092 from family F8.
Family number	Proband	Best corrected visual acuity (R/L)	Onset age of night blindness (year)	Fundus appearance	Onset age of hearing loss (year)	Hearing impairment	Cataract	Visual field	ERG	Vestibular function
FR1	077006	0.4/0.4	25	RP	Normal hearing	Normal	Both eyes	N/A	Wave undetectable	Normal
F6	073001	0.5/0.4	13	RP	5	Moderate (sp)	No	N/A	N/A	Normal
F7	019082	1.0/1.0	17	RP	1	Moderate (sp)	No	10°	N/A	Normal
F8	019092	0.6/0.6	12	RP	8	Moderate (sp)	No	10–15°	Wave undetectable	Normal

Abbreviations: R represents right eye; L represents left eye; SP represents slight progressive; N/A represents data not available.
DNA change	Exon	Protein change	Type of nucleotide change	Family number	Frequency	Source
c.2802T>G	13	p.C934W	Heterozygous	FR1	2/200	This study
c.8232G>C	42	p.W2744C	Heterozygous		0/200	This study
c.1876C>T	11	p.R626X	Heterozygous	F6	0/190	[24]
c.6249delT	32	p.I2084fs	Heterozygous		0/200	This study
c.3788G>A	17	p.W1263X	Heterozygous	F7	0/200	This study
c.9492_9498delTGATGAT	48	p.D3165fs	Heterozygous		0/200	This study
c.7123delG	38	p.G2375fs	Heterozygous	F8	0/200	This study
c.14403C>G	66	p.Y4801X	Heterozygous		0/200	This study

The “Frequency” column, shows the number of chromosomes.
Figure 3. A direct sequencing analysis of the coding region of the Usher syndrome type IIA (USH2A) gene. A: Sequence presents the heterozygous missense mutation c.2802T>G (p.C934W) detected in patient 077006. B: Sequence shows the heterozygous missense mutation c.8232G>C (p.W2744C) identified in patient 077006. C: Sequence presents the heterozygous nonsense mutation c.1876C>T (p.R626X) identified in patient 073001. D: Sequence shows the heterozygous nonsense mutation c.3788G>A (p.W1263X) detected in patient 019082. E shows the heterozygous, one-base-deletion mutation c.6249delT (p. I2084fs) in patient 073001; F is the corresponding wild-type sequence. G presents a heterozygous 7 bp deletion mutation c.9492_9498del TGATGAT (p. D3165fs) in patient 019082; H shows the corresponding wild-type sequence. I presents the heterozygous, one-base-deletion mutation c.7123delG (p. G2375fs) in patient 019092; J shows the corresponding wild-type sequence. K: Sequence shows the heterozygous nonsense mutation c.14403C>G (p. Y4801X) detected in patient 019092.
were designed to obtain the best HRM performance, avoiding hairpin and primer–dimer formation as much as possible, and keeping the amplicon length under 250 base pairs. One pair of specific primers was designed for detecting a mutation in exon 32 (Table 2). The 10 μl reaction mixture consisted of 5 μl SsoFast EvaGreen Supermix (Bio-Rad Laboratories, Hercules, CA), 1 μl genomic DNA (10–150 ng/μl), 0.5 μl forward primer (10 pmol/μl), 0.5 μl reverse primer (10 pmol/μl), and 3 μl double distilled water. PCR cycling and an HRM analysis were performed on the Rotor-Gene 6000™ (Corbett Research, Mortlake, NSW, Australia) [22].

Bioinformatics analysis: Garnier-Osguthorpe-Robson (GOR) software was used to predict the effect of the mutation on the secondary structure of USH2A [23]. This method infers the secondary structure of a sequence by calculating the probability for each of the four structure classes (helix, sheet, turn, and loop), based on the central residue and its neighbors from the calculated matrices [23].

RESULTS

Clinical findings: This study identified one Chinese family, consisting of four patients and one unaffected relative, diagnosed with non-syndromic RP, and three unrelated Chinese families, including four patients and six unaffected relatives diagnosed with USH2. The inheritance pattern in the families was autosomal recessive (Figure 1). All the patients had experienced night blindness and vision acuity impairment. The patients with USH2 had hearing impairment in early childhood. Ophthalmoscopic examination demonstrated attenuation of the retinal vessels, bone-spicule pigmentation in the fundus, and waxy pallor of the optic nerve head (Figure 2). The wave amplitudes of the ERG of the probands were indistinguishable from the baseline. Audiometric tests indicated moderate to severe sensorineural hearing impairment in the patients with USH2; in contrast, the results from the patients with non-syndromic arRP were normal. Vestibular functions of all the patients were normal. The detailed clinical information for each family’s proband is summarized in Table 3.

Genotyping results: Family FR1 was genotyped with 50 polymorphic markers around the known arRP loci. The mapping results excluded the other known arRP loci with the exception of the USH2A. Further genotyping and haplotyping analysis for the six markers (D1S237, D1S419, D1S556, D1S229, D1S227, and D1S2860) suggested that the USH2A
gene might be the disease-causing gene in this family (Figure 1).

Mutation analysis: Sequencing of the USH2A gene revealed 17 sequence variants in this study, eight of which were pathogenic mutations (Table 4). All eight pathogenic mutations were heterozygous; seven of them were first detected in the current study (Figure 3 and Table 4). Using RFLP, SSCP, or HRM analysis, the eight mutations co-segregated with the affected individuals and carriers, but not with the unaffected individuals and normal controls (two bands). Analyses did not detect the other seven mutations in the 100 normal controls, with the exception of p.C934W, which was identified in its heterozygous state in two individuals among the 100 normal controls (Table 4).

Four different combinations of heterozygous mutations were detected in the four families. In family FRI (non-syndromic arRP), two missense mutations, c.2802T>G (p.C934W) and c.8232G>C (p.W2744C), were detected in different alleles of patient 077006 (Figure 4, Figure 5, Figure 6). Using the GOR method, the results for secondary structure prediction suggested that p.C934W replaced two β sheets “E” with two coils “C” at amino acids 935 and 940, respectively. Mutation p.W2744C substituted a β sheet “E” and two turn sheets “T” for three coils “C” at amino acids 2745, 2747, and 2748, respectively (Figure 7). For the three USH2 families (F6, F7, and F8), one allele carried nonsense mutations, c.1876C>T (p.R626X), e.3788G>A (p.W1263X), and c.1876C>T (p.R626X), e.3788G>A (p.W1263X), and c.
14403C>G (p. Y4801X), respectively, while the other allele harbored deletion mutations c.6249delT (p. I2084fs), c.9492_9498delTGATGAT (p. D3165fs), and c.7123delG (p. G2375fs), respectively (Figure 1, Figure 3, Figure 4, Figure 5, Figure 6).

In addition to the eight pathogenic mutations detected in this study, nine nonpathogenic sequence variants were also identified. Table 5 summarizes these variants based on their nature and frequency.

DISCUSSION

This study detected eight different mutations of the USH2A gene isoform b in one non-syndromic arRP family and in three USH2 families. Scandinavian, French, European, and Canadian studies [12,14,16,24-26] previously reported the nonsense mutation p.R626X. The remaining seven mutations were first identified in this study.

Rivolta et al. first reported that about 4.5% of 225 patients from North America with non-syndromic recessive RP carried the missense mutation p.C759F [12]. Then, Bernal et al. found...
Table 5. Presumed nonpathogenic variants of the Usher syndrome type II A (USH2A) gene found in this study.

Exon	Nucleotide change	Codon	rs number	Family number	Allele frequency	Source
2	c.373A>G	p.A125T	rs10779261	F6	N/A	[14]
3	c.504A>G	p.T168T	rs4253963	F7	267/720	[20]
21	c.4457A>G	p.K1486R	rs1805049	F7	76/180	[24]
28	IVS27–34delC		rs71556647	FR1	N/A	[c]
32	c.6317T>C	p.L2106T	rs6657250	FR1, F6, F7, F8	N/A	[29]
34	c.6506T>C	p.L2169T	rs10864219	FR1, F8	27/100	[15]
48	IVS48+78C>T			FR1	N/A	This study
52	c.10232A>C	p.E3411A	rs10864198	FR1	23/64*	[27]
63	c.12612G>A	p.T4204T	rs2797235	FR1, F8	N/A	[27]

Abbreviations: N/A represents data not available; the asterisk indicates that the allele frequency referred to patients.
that there was a similar detecting frequency (4.6%) for p.C759F in Spanish patients [13]. Two novel missense mutations, p.C934W and p.W2744C, were found in family FR1. Although p.C934W was identified (in a heterozygous state) in two individuals among the 100 normal controls, both mutations have been classified as deleterious-effect missense mutations with several lines of evidence. Both mutations co-segregated with the phenotype of family FR1 and both residues (C934 and W2744), located in the 8th Lam EGF domains and in the 14th FN3 repeat of the usherin, respectively, were highly conserved in different species (Figure 8). The results of GOR suggested that p.C934W and p.W2744C lead to secondary structure changes around residues 934 and 2744, which might interfere with the correct folding of the usherin (Figure 7). As the results of audiometric tests for the patients from family FR1 were normal, the two compound missense mutations might be responsible for RP without hearing loss.

Three different compound heterozygous mutations were identified in three families (F6, F7, and F8) with USH2 and all six mutations directly or indirectly resulted in premature termination of the USH2A translation. This is consistent with Dreyer et al. [25] previous observation that patients carrying compound heterozygous mutations (either two truncating or one truncating combined with one missense) in exon 22–72 presented the Usher type II phenotype. In contrast to the patients from the three USH2 families, the patients in FR1 carried two missense mutations. A recent study in a cohort of 272 Spanish patients with non-syndromic RP resulted in the identification of two mutant alleles of the USH2A gene in nine patients, with seven of them carrying either homozygous missense mutations or two heterozygous missense mutations [18]. In a large Chinese family, four patients carrying one truncating combined with one missense mutation (p.G1734R) exhibited RP with hearing loss, while the only person harboring the homozygous misense mutation (p.G1734R) presented RP without hearing loss [19]. However, this phenomenon was not observed in one Israeli family with three non-syndromic RP patients carrying one missense mutation and one truncating mutation [15].

As in our previous study [21], with the exception of one mutation (p.R626X), the other mutations identified in the current study were novel and were spread relatively evenly along the USH2A gene (Figure 9). These results indicate that the mutation spectrum for the USH2A gene among Chinese or Asian patients differs from the mutation spectrum among European Caucasians. The common mutations, p. E767fs for USH2 and p.C759F for arRP in Caucasians, are not detected in Chinese and Japanese patients [12-14,16,18,19,21,27-29].

In conclusion, our results further support previous indications that the mutations of the USH2A gene are also responsible for non-syndromic RP in Chinese patients. The
mutation spectrum among Chinese patients appears to differ from that among European Caucasians.

ACKNOWLEDGMENTS
We thank the patients and their families for participation in this study. The study was supported by the Beijing National Science Foundation (No. 07G0069 and No. 07G0069). The funding organization had no role in the design or conduct of this research.

REFERENCE
1. Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet 2006; 368:1795-809. [PMID: 17113430]
2. Ayuso C, Millan JM. Retinitis pigmentosa and allied conditions today: a paradigm of translational research. Genome Med. 2010; 2:34. [PMID: 20519033]
3. Saihan Z, Webster AR, Luxon L, Bitner-Glindzicz M. Update on Usher syndrome. Curr Opin Neurol 2009; 22:19-27. [PMID: 19165952]
4. Yan D, Liu XZ. Genetics and pathological mechanisms of Usher syndrome. J Hum Genet 2010; 55:327-35. [PMID: 20379205]
5. Eudy JD, West MD, Yao S, Hoover DM, Rehm HL, McDermont M, Yan D, Ahmad I, Cheng JJ, Ayuso C, Cremers C, Davenport S, Moller C, Talmadge CB, Beisel KW, Tamayo M, Morton CC, Swaroop A, Kimberling WJ, Sumegi J. Mutation of a gene encoding a protein with extracellular matrix motifs in Usher syndrome type IIa. Science 1998; 280:1753-7. [PMID: 9624053]
6. Ebermann I, Scholl HP, Charbel Issa P, Becirovic E, Lampropet J, Jurkies B, Millian JM, Aller E, Mitter D, Bolz H. A novel gene for Usher syndrome type 2: mutations in the long isoform of whirin are associated with retinitis pigmentosa and sensorineural hearing loss. Hum Genet 2007; 121:203-11. [PMID: 17171570]
7. Weston MD, Liuendij MK, Humphrey KD, Moller C, Kimberling WJ. Mutations in the VLGR1 gene implicate G-protein signaling in the pathogenesis of Usher syndrome type II. Am J Hum Genet 2004; 74:357-66. [PMID: 14740321]
8. Kremer H, van Wijk E, Mærker T, Wolfrum U, Roepman R. Usher syndrome: molecular links of pathogenesis, proteins and pathways. Hum Mol Genet 2006; 15:R262-70. [PMID: 16987892]
9. van Wijk E, Pennings RJ, te Brinke H, Claassen A, Yntema HG, Hoeftsoo LH, Cremers FP, Cremers CW, Kremer H. Identification of 51 novel exons of the Usher syndrome type 2A (USH2A) gene that encode multiple conserved functional domains and that are mutated in patients with Usher syndrome type II. Am J Hum Genet 2004; 74:738-44. [PMID: 15051529]
10. Reiners J, Nagel-Wolfrum K, Jürgens K, Mærker T, Wolfrum U. Molecular basis of human Usher syndrome: Deciphering the meshes of the Usher protein network provides insights into the pathomechanisms of the Usher disease. Exp Eye Res 2006; 83:97-119. [PMID: 16545802]
11. Liu X, Bulgakov OV, Darrow KN, Pawlyk B, Adamsian M, Liberman MC, Li T. Usherin is required for maintenance of retinal photoreceptors and normal development of cochlear hair cells. Proc Natl Acad Sci USA 2007; 104:4413-8. [PMID: 17360538]
12. Rivolta C, Swenko EA, Berson EL, Dryja TP. Missense mutation in the USH2A gene: Associations with recessive retinitis pigmentosa without hearing loss. Am J Hum Genet 2000; 66:1975-8. [PMID: 10775529]
13. Bernal S, Ayuso C, Antinolo G, Gimenez A, Borrego S, Trujillo MJ, Marcos I, Calaf M, Del Rio E, Baiget M. Mutations in USH2A in Spanish patients with autosomal recessive retinitis pigmentosa: high prevalence and phenotypic variation. J Med Genet 2003; 40:e4. [PMID: 12525556]
14. Seyehdahmadi BJ, Rivolta C, Keene JA, Berson EL, Dryja TP. Comprehensive screening of the USH2A gene in Usher
syndrome type II and non-syndromic recessive retinitis pigmentosa. Exp Eye Res 2004; 79:167-73. [PMID: 15325563]

15. Kaiserman N, Obolensky A, Banin E, Sharam D. Novel USH2A mutations in Israeli patients with retinitis pigmentosa and Usher syndrome type 2. Arch Ophthalmol 2007; 125:219-24. [PMID: 17296898]

16. Baux D, Larrieu L, Blanchet C, Hamel C, Ben Salah S, Vielle A, Gilbert-Dussardier B, Holder M, Calvas P, Philip N, Edery P, Bonneau D, Claustres M, Malcolm S, Roux AF. Molecular and in silico analyses of the full-length isoform of usherin identify new pathogenic alleles in Usher type II patients. Hum Mutat 2007; 28:781-9. [PMID: 17405132]

17. McGee TL, Seyedahmadi BJ, Sweeney MO, Dryja TP, Berson EL. Novel mutations in the long isoform of the USH2A gene in patients with Usher syndrome type II or non-syndromic retinitis pigmentosa. J Med Genet 2010; 47:499-506. [PMID: 20507924]

18. Ávila-Fernández A, Cantalapiedra D, Aller E, Vallespin E, Aguirre-Lamban J, Blanco-Kelly F, Corton M, Riveriro-Alvarez R, Allikmet R, Trujillo-Tiebas MJ, Millan Jm, Cremers FPM, Ayuso C. Mutation analysis of 272 Spanish families affected by autosomal recessive retinitis pigmentosa using a genotyping microarray. Mol Vis 2010; 16:2550-8. [PMID: 21151602]

19. Liu X, Tang Z, Li Z, Yang K, Gan G, Zhang Z, Liu J. Novel USH2A compound heterozygous mutations cause RP/USH2 in a Chinese family. Mol Vis 2010; 16:454-61. [PMID: 20309401]

20. Clark GR, Crowe P, Muszynska D, O'Prey D, O'Neill J, Alexander S, Willoughby CE, McKay GJ, Silvestri G, Simpson DA. Development of a diagnostic genetic test for simplex and autosomal recessive retinitis pigmentosa. Ophthalmology 2010; 117:2169-77.e3. [PMID: 20591486]

21. Dai H, Zhang X, Zhao X, Deng D, Dong B, Wang J, Li Y. Identification of five novel mutations in the long isoform of the USH2A gene in Chinese families with Usher syndrome type II. Mol Vis 2008; 14:2067-75. [PMID: 19023448]

22. Maltese P, Canestrari E, Palmaa L, Ruzzo A, Corini F, Menotta M, Andreonic F, Latiano A, Annese V, Magnani M. High resolution melting (HRM) analysis for the detection of ER22/23EK, BclI, and N363S polymorphisms of the glucocorticoid receptor gene. J Steroid Biochem Mol Biol 2009; 113:269-74. [PMID: 19429432]

23. Garnier J, Gibrat JF, Robson B. GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol 1996; 266:540-53. [PMID: 8743705]

24. Weston MD, Eudy JD, Fujita S, Yao S, Usami S, Cremers C, Greenberg J, Ramesar R, Martini A, Moller C, Smith RJ, Sunegi J, Kimberling WJ. Genomic structure and identification of novel mutations in usherin, the gene responsible for Usher syndrome type IIa. Am J Hum Genet 2000; 66:1199-210. [PMID: 10729113]

25. Dreyer B, Brox V, Tranebjærg L, Rosenberg T, Sadeghi AM, Möller C, Nilssen Ø. Spectrum of USH2A mutations in Scandinavian patients with Usher syndrome type II. Hum Mutat 2008; 29:451. [PMID: 18273898]

26. Ebermann I, Koenekoop RK, Lopez I, Bou-khzam L, Pigeon R, Bolz HJ. An USH2A founder mutation is the major cause of Usher syndrome type 2 in Canadians of French origin and confirms common roots of Quebecois and Acadians. Eur J Hum Genet 2009; 17:80-4. [PMID: 18665195]

27. Aller E, Jaijo T, Beneyto M, Nájera C, Oltra S, Ayuso C, Baiget M, Carballo M, Antiñolo G, Valverde D, Moreno F, Vilela C, Collado D, Pérez-Garrigues H, Navea A, Millán JM. Identification of 14 novel mutations in the long isoform of USH2A in Spanish patients with Usher syndrome type II. J Med Genet 2006; 43:e55. [PMID: 17085681]

28. Dreyer B, Tranebjærg L, Brox B. Rosenberg T, Möller C, Beneyto M, Weston MD, Kimberling WJ, Nilssen Ø. A common ancestral origin of the frequent and widespread 2299delG USH2A mutation. Am J Hum Genet 2001; 69:228-34. [PMID: 11402400]

29. Nakaniishi H, Ohtsubo M, Iwasaki S, Hotta Y, Mizuta K, Mineta H, Minoshima S. Identification of 11 novel mutations in USH2A among Japanese patients with Usher syndrome type 2. Clin Genet 2009; 76:383-91. [PMID: 19737284]
Appendix 1. 50 markers used in the known arRP genotyping.

To access the table, click or select the words “Appendix 1.” This will initiate the download of a pdf archive that contains the table.