A rapid and accurate method for the detection of four aminoglycoside modifying enzyme drug resistance gene in clinical strains of *Escherichia coli* by a multiplex polymerase chain reaction

Yaoqiang Shi \(^1\), Chao Li \(^1\), Guangying Yang \(^1, 2\), Xue-shan Xia \(^1, 2\), Xiaqin Mao \(^3\), Yue Fang \(^1, 2\), A-Mei Zhang \(^*\) \(^1, 2\), Yuzhu Song \(^*\) \(^1, 2\)

\(^1\) Faculty of life science and technology, Kunming University of Science and Technology, Kunming, Yunnan, China
\(^2\) Molecular Medicine Center of Yunnan Province, Kunming, Yunnan, China
\(^3\) The First People's Hospital of Yunnan Province, Kunming, Yunnan, China

Corresponding Authors: A-Mei Zhang, Yuzhu Song
Email address: zam1980@yeah.net, yuzhusong@kmust.edu.cn

Background. Antibiotics are highly effective drugs used in the treatment of infectious diseases. Aminoglycoside antibiotics are one of the most common antibiotics in the treatment of bacterial infections. However, the development of drug resistance against those medicines is becoming a serious concern. **AIM:** This study aimed to develop an efficient, rapid, accurate, and sensitive detection method that is applicable for routine clinical use. **Methods.** *Escherichia coli* was used as a model organism to develop a rapid, accurate, and reliable multiplex polymerase chain reaction (M-PCR) for the detection of four aminoglycoside modifying enzyme (AME) resistance genes *Aac(6')*-Ib, *Aac(3')*-II, *Ant(3'')*-Ia, and *Aph(3')*-Ia. M-PCR was used to detect the distribution of AME resistance genes in 237 clinical strains of *E. coli*. The results were verified by simplex polymerase chain reaction (S-PCR). **Results.** Results of M-PCR and S-PCR showed that the detection rates of *Aac(6')*-Ib, *Aac(3')*-II, *Ant(3'')*-Ia, and *Aph(3')*-Ia were 32.7%, 59.2%, 23.5%, and 16.8%, respectively, in 237 clinical strains of *E. coli*. Compared with the traditional methods for detection and identification, the rapid and accurate M-PCR detection method was established to detect AME drug resistance genes. This technique can be used for the clinical detection as well as the surveillance and monitoring of the spread of those specific antibiotic resistance genes.
A rapid and accurate method for the detection of four aminoglycoside modifying enzyme drug resistance gene in clinical strains of *Escherichia coli* by a multiplex polymerase chain reaction

Yaoqiang Shi\(^1,2,a\), Chao Li\(^1,2,a\), Guangying Yang\(^1,2\), Xue-shan Xia\(^1,2\), Xiaoqin Mao\(^3\), Yue Fang\(^1,2\), A-Mei Zhang\(^1,2,*\), Yuzhu Song\(^1,2,*\)

\(^1\) Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China

\(^2\) Molecular Medicine Center of Yunnan Province, Kunming, 650500, Yunnan, China

\(^3\) First People’s Hospital of Yunnan Province, Kunming, 650500, Yunnan, China

\(a\) Author Yaoqiang Shi, author Chao Li contributed equally to this manuscript

\(*\) Corresponding author

Dr. A-Mei Zhang, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China. Tel/Fax: 86-871-65939528; E-mail: zam1980@yeah.net

Dr. Yuzhu Song, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China. Tel/Fax: 86-871-65939528; E-mail: yuzhusong@kmust.edu.cn
Abstract

Background. Antibiotics are highly effective drugs used in the treatment of infectious diseases. Aminoglycoside antibiotics are one of the most common antibiotics in the treatment of bacterial infections. However, the development of drug resistance against those medicines is becoming a serious concern.

AIM: This study aimed to develop an efficient, rapid, accurate, and sensitive detection method that is applicable for routine clinical use.

Methods. Escherichia coli was used as a model organism to develop a rapid, accurate, and reliable multiplex polymerase chain reaction (M-PCR) for the detection of four aminoglycoside modifying enzyme (AME) resistance genes Aac(6')-Ib, Aac(3)-II, Ant(3'')-Ia, and Aph(3')-Ia. M-PCR was used to detect the distribution of AME resistance genes in 237 clinical strains of E. coli. The results were verified by simplex polymerase chain reaction (S-PCR).

Results. Results of M-PCR and S-PCR showed that the detection rates of Aac(6')-Ib, Aac(3)-II, Ant(3'')-Ia, and Aph(3')-Ia were 32.7%, 59.2%, 23.5%, and 16.8%, respectively, in 237 clinical strains of E. coli. Compared with the traditional methods for detection and identification, the rapid and accurate M-PCR detection method was established to detect AME drug resistance genes. This technique can be used for the clinical detection as well as the surveillance and monitoring of the spread of those specific antibiotic resistance genes.

Keywords: Molecular detection; Polymerase chain reaction; Multiplex polymerase chain reaction; Aminoglycoside modifying enzyme drug resistance gene
Introduction

With the abuse and misuse of antibiotics, bacterial tolerance is becoming an increasingly serious concern (Ferri et al. 2017; Levin-Reisman et al. 2017), leading to the emergence of a series of drug-resistant bacteria (multi-drug-resistance [MDR], extensively-drug-resistant [XDR], and pan-drug-resistant [PDR]) (Healey et al. 2016; Planet 2017). MDR is defined as acquired non-susceptibility to at least one agent in three or more antimicrobial categories. XDR is defined as non-susceptibility to at least one agent in all but two or fewer antimicrobial categories. PDR is defined as non-susceptibility to all agents in all antimicrobial categories (Magiorakos et al. 2012). Aminoglycoside antibiotics (Amikacin, Gentamicin, Tobramycin, Kanamycin, Netilmicin, Streptomycin, and Neomycin.) (Doi et al. 2016; Krause et al. 2016; Yadegar et al. 2009) are mainly used to treat infections caused by aerobic Gram-negative bacteria, such as Escherichia coli and Klebsiella pneumoniae, and non-fermenters like Pseudomonas aeruginosa (Jana & Deb 2006; Magnet & Blanchard 2005; Zavascki et al. 2017). However, bacteria can easily develop tolerance to aminoglycoside antibiotics due to the production of aminoglycoside modifying enzymes (AMEs) (Haidar et al. 2016; Khosravi et al. 2017) and the rapid transmission of AME resistance genes in pathogenic bacteria (Ramirez & Tolmasky 2010). The severity of antibiotic tolerance has become a global worldwide concern.

The theme of World Health Day in 2011 was "Combat Drug Resistance: No action today, No cure tomorrow" (Chellat et al. 2016; Tseng et al. 2012), whereas that in 2018 was "Change Can’t Wait. Our Time with Antibiotics is Running Out". In such a severe situation of drug resistance,
there is an urgent need to identify the species of bacteria and their drug resistance genes accurately and quickly to guide clinical drug use (Brossier et al. 2017; Mu et al. 2016). This need led to the establishment of a rapid, accurate, and economical method to detect pathogens and their drug resistance as early as possible. Such a technique is helpful for the rational use of drugs in clinical practice, as well as of great clinical significance to control and shorten the course of the disease (Laamiri et al. 2016).

Although the traditional method for bacterial resistance identification is simple and economical, identification is completed in about 4-7 days (Jami Al-Ahmadi & Zahmatkesh Roodsari 2016; Phaneuf et al. 2013). It includes several steps, such as bacterial culture, single colony isolation, colony morphology observation, biochemical identification, and serotype identification (Panek et al. 2016). The accuracy of this method is low, and errors easily occur (Tuttle et al. 2011). The main methods used to test drug sensitivity include the disk diffusion method, E-test, dilution method (agar and broth dilution method), and automatic instruments (Biswas 2016; Ghosh et al. 2015). Such methods have the advantages of low cost, easy operation, and strong flexibility. However, they also feature some inevitable disadvantages, such as slow, empirical dependence. With the development of biological science and technology, many new biological technologies have entered people's lives. Interspecific and intraspecific conserved nucleic acid sequences have been discovered in succession (Nagar & Hahsler 2013), and various bioinformatics and molecular biological techniques based on nucleic acid amplification have been used to identify pathogens; an example of such techniques is polymerase chain reaction (PCR), which has become the gold standard (Tuttle et al. 2011).
Multiplex polymerase chain reaction (M-PCR) (Chamberlain et al. 1988), usually means that two or more pairs of primers exist in one PCR reaction system at the same time; it can amplify multiple target bands at one time (Henegariu et al. 1997). Its reaction principle, operation steps, and general composition of the required reagents are basically the same as those of simplex PCR (S-PCR). To date, M-PCR has been widely used in many fields, such as scientific research and disease diagnosis, especially in the simultaneous detection of pathogenic microorganisms, hereditary diseases, and oncogenes (Azizi et al. 2016; Skodvin et al. 2017). What's more, M-PCR can also be used in the simultaneous detection of multidrug resistance genes in pathogenic bacteria (Hong et al. 2009). Compared with traditional drug sensitivity test and S-PCR, M-PCR is fast, efficient, and able to timely guide the clinical antibiotic therapy (Chavada & Maley 2015; Lee et al. 2014; Park & Ricke 2015). M-PCR has higher efficiency than S-PCR, and the former can detect a variety of pathogenic bacteria or drug-resistant genes simultaneously in one reaction system (Kim et al. 2017). At the same time, M-PCR can reduce any experimental errors that may occurs during the experiment.

Among the AME resistance genes, \textit{Aac(6')-Ib}, \textit{Aac(3)-II}, \textit{Ant(3'')-Ia}, and \textit{Aph(3')-Ia} are the most widely distributed (Costello et al. 2019; Haldorsen et al. 2014; Nasiri et al. 2018; Odumosu et al. 2015; Ojdana et al. 2018; Vaziri et al. 2011; Xiao & Hu 2012). Given that the M-PCR can detect multiple genes simultaneously, we aimed to develop a M-PCR system for the detection of the four most widely spread AME genes. The reaction system was verified in 237 clinical \textit{E. coli} strains.

Materials and methods
Bacterial strains and culture

The 237 clinical strains of *E. coli* used in this study were provided, isolated, cultured, and identified by the First People's Hospital of Yunnan Province. All the strains were cultured in Luria-Bertani (LB) liquid medium in a shaking incubator at 37°C and 180 rpm for 12 h. The bacterial genome was extracted using the TIANamp genomic DNA kit following the manufacturer's protocol and then stored at -40°C for further experiments.

Search of drug resistance genes searching and design of primers

Four AME resistance genes *Aac(6′)-Ib*, *Ant(3′′)-Ia*, *Aph(3′)-Ia*, and *Aac(3)-II* were downloaded from the Comprehensive Antibiotic Resistance Database (https://card.mcmaster.ca/). The primers were designed according to the conservative region and synthesized by TSINGKE Biological Technology. The primers sequences are shown in Table 1.

Establishment of S-PCR reaction system

S-PCR was performed using 2X Tsingke Master Mix, which was purchased from Tsingke Biotech Co., Ltd. (Kunming, China). According to the manufacturer's protocol, the S-PCR reaction system containing 12.5 µL of 2X Tsingke Master Mix, 1 µL of primers (10 µM), and 1 µg of DNA template from each strain was added with nuclease-free water up to 25 µL. The reactions were performed in a GeneAmp PCR System 9700 (Thermo Fisher Scientific, Inc., Waltham, MA, USA) with the following amplification conditions: pre-denaturation at 95°C for 5 min; 30 cycles of denaturation at 95°C for 30s, annealing at 57°C, 59°C, 56°C, and 57°C (*Aac(6′)-Ib*, *Ant(3′′)-Ia*, *Aph(3′)-Ia*, and *Aac(3)-II*) for 30s; extension at 72°C for 30s; and a final extension at 72°C for 7 min. The S-PCR products were verified using gel electrophoresis on a
2% agarose gel and stained with GelStain (Beijing Transgen Biotech Co., Ltd., Beijing, China).

Construction and verification of positive plasmids

The positive plasmids with resistance genes were constructed as described in a previous study (Li et al. 2019). In brief, the DNA fragments of the target genes were obtained by PCR reactions using the genomic DNA of *E. coli* as a template. The target fragment was inserted into the pMD 19-T simple vector and transformed into *JM109*-competent cells. The positive clones were selected for overnight culture to extract plasmids. Finally, the copies of recombinant plasmids were calculated.

Sensitivity and accuracy evaluation of S-PCR

After the positive plasmids were constructed, the sensitivity of S-PCR reactions was evaluated using the serially diluted 10-fold positive plasmids. According to the resistance gene information of 237 clinical strains of *E. coli* provided by the First People's Hospital of Yunnan Province, the strains with *Aac(6')-Ib, Ant(3'')-Ia, Aph(3')-Ia,* and *Aac(3)-II* resistance genes were screened to evaluate accuracy.

Establishment of M-PCR reaction system and accuracy evaluation of M-PCR

The M-PCR was performed by using a Multiplex PCR kit (Nanjing Vazyme Biotechnology Co., Ltd., Nanjing, China). According to the manufacturer's protocol, the M-PCR reaction system containing 25µL of 2X Multiplex Buffer, 10µL of 5X Multiplex GC Enhancer, 1 µL of each primer (10 µM), 1 µL of Multiplex DNA polymerase, and 1 µg of DNA template from each strain, was added with nuclease-free water up to 50 µL. The reactions were performed in a GeneAmp PCR System 9700 (Thermo Fisher Scientific, Inc., Waltham, MA, USA) with the
following amplification conditions: pre-denaturation at 95 °C for 5 min, followed by 30 cycles of
denaturation at 95 °C for 30 s, annealing at 60 °C for 3 min, extension at 72 °C for 3 min, and a
final extension at 72 °C for 30 min. The M-PCR products were verified by gel electrophoresis on
2% agarose gel and stained with GelStain (Beijing Transgen Biotech Co., Ltd., Beijing, China).
Based on the drug sensitivity information of 237 clinical strains of \(E. \text{coli} \), five isolates
(1611NY0004, 1611UR0282, 1611SP0549, 1611UR0062, and 1611UR0215) previously tested
for the \(\text{Aac(6')}\-Ib, \text{Ant(3'')}\-Ia, \text{Aph(3')}\-Ia, \text{and Aac(3)}\-II \) by S-PCR were tested for the M-PCR.

Sensitivity evaluation of M-PCR

The sensitivity of M-PCR was performed by using gradient dilution plasmids and bacterial
solution. The four equal concentration plasmids with \(\text{Aac(6')}\-Ib, \text{Ant(3'')}\-Ia, \text{Aph(3')}\-Ia, \text{and Aac(3)}\-II \) resistance genes were mixed together and serially diluted to 10-fold (10^8-10^0). \(E. \text{coli} \)
1611NY0004 was selected as the representive strain for sensitivity evaluation. The stain was
cultured in LB liquid medium to \(\text{OD}_{600}=1 \), and the colony-forming units of bacterial solution
were calculated by the plate count method. The bacterial solution was serially diluted as 10-fold
(10^8-10^0).

M-PCR detection for clinical samples

All the 237 clinical \(E. \text{coli} \) strains were provided and identified by the First People's Hospital
of Yunnan Province and used in the accuracy evaluation of S-PCR and M-PCR.

Results

Establishment of S-PCR reaction system

The positive plasmids with drug resistance genes (\(\text{Aac(6')}\-Ib, \text{Ant(3'')}\-Ia, \text{Aph(3')}\-Ia, \text{and} \)
Aac(3)-II were successfully constructed, with 3×10⁹, 4×10⁹, 5×10⁹, and 4×10¹⁰ copies/μL (114.5, 141.2, 156.8, and 153.2 ng/μL), respectively. The S-PCR reaction template comprised the serially diluted plasmids. Meanwhile, the four drug resistance genes were detected in the clinical strains of E. coli, and the bacterial solution was the S-PCR template. As shown in Figure 1, the limitation for the detection of the four drug resistance genes was 10⁰ copies/μL. The accuracy rate for the detection of drug resistance genes was 100% (partially representative results), which was consistent with the hospital data (Supplement Table 1).

Establishment of M-PCR reaction system

After the S-PCR reaction system was established and optimized (data not shown), the M-PCR reaction system was constructed. As shown in Figure 2, Aac(6')-Ib, Ant(3'')-Ia, Aph(3')-Ia, and Aac(3)-II with 112, 180, 317, and 379 bp, respectively, were amplified successfully. E. coli 1611NY0004 with the four drug resistance genes was used as the positive control template for the M-PCR reaction. In the M-PCR reaction system, the four drug resistance genes could be amplified well simultaneously.

Accuracy evaluation of M-PCR

The five clinical E. coli strains (1611NY0004, 1611UR0282, 1611SP0549, 1611UR0062, and 1611UR0215) with four resistance genes were screened for the accuracy evaluation of M-PCR. The four equal concentration plasmids with Aac(6')-Ib, Ant(3'')-Ia, Aph(3')-Ia, and Aac(3)-II resistance genes were mixed together as the positive control. As shown in Figure 3, the four resistance genes were successfully amplified by M-PCR in the tested strains, which was consistent with the resistance gene information provided by the hospital.
Sensitivity evaluation of M-PCR

The gradient dilution of plasmids and bacterial solution was used in the sensitivity evaluation of M-PCR. The gradient dilution of plasmids was the mixture of the four equal concentration plasmids with \textit{Aac(6')-Ib}, \textit{Ant(3'')-Ia}, \textit{Aph(3')-Ia}, and \textit{Aac(3)-II} resistance gene and then serially diluted as 10-fold (108-100 copies/mL). The \textit{E. coli 1611NY0004} strain was used in the gradient 10-fold (108-100 CFU/mL) dilution of bacterial solution for sensitivity evaluation. As shown in Figure 4, the detection system could reach the detection limit of 100 copies/mL or 100 CFU/mL at the plasmid level and bacterial liquid level.

Detection of clinical samples by multiplex PCR

All the 237 \textit{E. coli} strains were detected by S-PCR and M-PCR. The detection results and the accuracy are shown in Supplemental Table 1. The results showed that the detection rates of \textit{Aac(6')-Ib}, \textit{Aac(3)-II}, \textit{Ant(3'')-Ia}, and \textit{Aph(3')-Ia} were 32.7\%, 59.2\%, 23.5\%, and 16.8\% in 237 clinical strains of \textit{E. Coli}, respectively. These values were consistent with the gene information of the strains given by the hospital.

Discussion

Antibiotics are considered the most effective drugs in the treatment of infectious diseases (Elder et al. 2016). The emergence of antibiotics changed the outcome of infectious diseases and extended life expectancy (Wagner & Maynard 2018). However, given the overuse and misuse of antibiotics, MDR strains have emerged (Elder et al. 2016). Therefore, rapid and accurate methods for the detection of bacterial resistance are urgently needed, and the use of antibiotics or antibiotic therapy should be more standardized and technically, where possible, monitored. With
The development of molecular biology and bioinformatics, the detection methods of bacterial drug resistance genes, including PCR, loop-mediated isothermal amplification, and whole genome sequencing (WGS) (Moran et al. 2017; Su et al. 2019), have increased (Tamburro & Ripabelli 2017). Although WGS is gradually reaching maturity, while sequencing costs are drastically decreasing, it is however still relatively costly, complex in operation and requires for analysis specialised personnel like bioinformaticians, which limits its popularization and application (Quainoo et al. 2017). M-PCR is widely used in the identification and drug resistance detection of bacteria for its rapid, sensitive, economy-friendly, and high-effect characteristics (Pham et al. 2017).

Aminoglycoside antibiotics are one of the most widely used antibiotics, and the main reason for aminoglycoside antibiotic resistance is the production of AM. Aminoglycoside antibiotic resistance is related to the AME drug resistance genes $Aac(6{'})-Ib$, $Aac(3)-II$, $Ant(3'')-Ia$, and $Aph(3{'})-Ia$ (Zarate et al. 2018). Thus, this study designed primers for the four drug resistance genes and constructed a four-drug resistance genes detection system, which greatly improved the detection efficiency and shortened the detection time.

The MDR gene detection system was established successfully in this experiment, and it exhibited the advantages of high efficiency, rapidity, and high performance-to-price ratio compared with the S-PCR reaction system. The MDR gene detection system also fully met the requirements for the clinical detection of pathogens and drug resistance. In this experiment, the four drug-resistant genes were identified in the five representative $E. coli$ MDR bacteria by M-PCR. The results obtained by M-PCR were consistent with those of S-PCR, thereby indicating
the accuracy of M-PCR. The M-PCR detection system was applied to the detection of 237 clinical strains of *E. coli*. On the basis of the drug resistance gene information given by the hospital, the accuracy rate of M-PCR could reach 100%; the detection rates of *Aac(6')-Ib, Aac(3)-II, Ant(3'')-Ia*, and *Aph(3')-Ia* were 32.7%, 59.2%, 23.5%, and 16.8%, respectively. These findings indicated the potential of reintroducing additional resistant genes into the M-PCR system to detect numerous genes at a time. Even the specific genes of the bacteria could be added into the M-PCR system for the identification of bacterial species. From the detection rate of the four aminoglycoside modifying enzyme resistance genes, *Aac(3)-II* had the highest detection rate in the 237 clinical strains of *E. coli*. This result suggested that the resistance of three aminoglycoside antibiotics gentamicin, tobramycin, and netilmicin resistance is widespread in bacterial infections and should be avoided.

In conclusion, the M-PCR system developed in this study could amplify the four genes with very extremely high sensitivity to 10^{0} copies. The sensitivity rate of M-PCR was higher than that of most previously reported studies, which proved the sensitivity of this technique. Moreover, the M-PCR detection method greatly reduced the detection time and improved the detection efficiency. M-PCR in this study demonstrated high sensitivity and efficiency, low price, and other characteristics but not one-to-one correspondence between genotype and phenotype. Therefore, simply detecting genes failed to completely determine the phenotype, but the four genes selected genes had the highest prevalence of aminoglycoside antibiotic resistance. We conducted the simultaneous detection of these four genes to compensate for the limitations of detecting one gene, thereby making our methodology reliable and persuasive. Our method was
established to assist medical institutions to predict drug resistance, to provide an accurate
direction for clinical drug selection, and to meet the needs of both doctors and patients for rapid
diagnosis. In the future, we will propose a rapid drug sensitivity identification technique based
on phenotype. We will also combine traditional detection methods with modern molecular
techniques, starting from the phenotype, for the accurate identification of bacterial drug
resistance.

Acknowledgments

We are grateful for the strains donated and the drug resistant information provided by the
First People's Hospital of Yunnan Province.

References

Azizi O, Shahcheraghi F, Salimizand H, Modarresi F, Shakibaie MR, Mansouri S,
Ramazanzadeh R, Badmasti F, and Nikbin V. 2016. Molecular Analysis and Expression
of bap Gene in Biofilm-Forming Multi-Drug-Resistant Acinetobacter baumannii. Rep
Biochem Mol Biol 5:62-72.

Biswas B. 2016. Clinical Performance Evaluation of Molecular Diagnostic Tests. J Mol Diagn
18:803-812. 10.1016/j.jmoldx.2016.06.008

Brossier F, Sougakoff W, and French National Reference Center for M. 2017. Molecular
detection methods of resistance to antituberculosis drugs in Mycobacterium tuberculosis.
Med Mal Infect 47:340-348. 10.1016/j.medmal.2017.04.008

Chamberlain JS, Gibbs RA, Ranier JE, Nguyen PN, and Caskey CT. 1988. Deletion screening of
the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids
Res 16:11141-11156.

Chavada R, and Maley M. 2015. Evaluation of a Commercial Multiplex PCR for Rapid Detection of Multi Drug Resistant Gram Negative Infections. Open Microbiol J 9:125-135. 10.2174/1874285801509010125

Chellat MF, Raguz L, and Riedl R. 2016. Targeting Antibiotic Resistance. Angew Chem Int Ed Engl 55:6600-6626. 10.1002/anie.201506818

Costello SE, Deshpande LM, Davis AP, Mendes RE, and Castanheira M. 2019. Aminoglycoside-modifying enzyme and 16S ribosomal RNA methyltransferase genes among a global collection of Gram-negative isolates. J Glob Antimicrob Resist 16:278-285. 10.1016/j.jgar.2018.10.020

Doi Y, Wachino JI, and Arakawa Y. 2016. Aminoglycoside Resistance: The Emergence of Acquired 16S Ribosomal RNA Methyltransferases. Infect Dis Clin North Am 30:523-537. 10.1016/j.idc.2016.02.011

Elder DP, Kuentz M, and Holm R. 2016. Antibiotic Resistance: The Need For a Global Strategy. J Pharm Sci 105:2278-2287. 10.1016/j.xphs.2016.06.002

Ferri M, Ranucci E, Romagnoli P, and Giaccone V. 2017. Antimicrobial resistance: A global emerging threat to public health systems. Crit Rev Food Sci Nutr 57:2857-2876. 10.1080/10408398.2015.1077192

Ghosh R, Nagavardhini A, Sengupta A, and Sharma M. 2015. Development of Loop-Mediated Isothermal Amplification (LAMP) assay for rapid detection of Fusarium oxysporum f. sp. ciceris - wilt pathogen of chickpea. BMC Res Notes 8:40. 10.1186/s13104-015-0997-z
Haidar G, Alkroud A, Cheng S, Churilla TM, Churilla BM, Shields RK, Doi Y, Clancy CJ, and Nguyen MH. 2016. Association between the Presence of Aminoglycoside-Modifying Enzymes and In Vitro Activity of Gentamicin, Tobramycin, Amikacin, and Plazomicin against Klebsiella pneumoniae Carbapenemase- and Extended-Spectrum-beta-Lactamase-Producing Enterobacter Species. *Antimicrob Agents Chemother* 60:5208-5214. 10.1128/AAC.00869-16

Haldorsen BC, Simonsen GS, Sundsfjord A, Samuelsen O, and Norwegian Study Group on Aminoglycoside R. 2014. Increased prevalence of aminoglycoside resistance in clinical isolates of Escherichia coli and Klebsiella spp. in Norway is associated with the acquisition of AAC(3)-II and AAC(6')-Ib. *Diagn Microbiol Infect Dis* 78:66-69. 10.1016/j.diagmicrobio.2013.10.001

Healey KR, Zhao Y, Perez WB, Lockhart SR, Sobel JD, Farmakiotis D, Kontoyiannis DP, Sanglard D, Taj-Aldeen SJ, Alexander BD, Jimenez-Ortigosa C, Shor E, and Perlin DS. 2016. Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance. *Nat Commun* 7:11128. 10.1038/ncomms11128

Henegariu O, Heerema NA, Dlouhy SR, Vance GH, and Vogt PH. 1997. Multiplex PCR: critical parameters and step-by-step protocol. *Biotechniques* 23:504-511. 10.2144/97233rr01

Hong Y, Liu T, Lee MD, Hofacre CL, Maier M, White DG, Ayers S, Wang L, Berghaus R, and Maurer J. 2009. A rapid screen of broth enrichments for Salmonella enterica serovars enteritidis, Hadar, Heidelberg, and Typhimurium by Using an allelotyping multiplex PCR that targets O- and H-antigen alleles. *J Food Prot* 72:2198-2201.
Jami Al-Ahmadi G, and Zahmatkesh Roodsari R. 2016. Fast and specific detection of Pseudomonas Aeruginosa from other pseudomonas species by PCR. *Ann Burns Fire Disasters* 29:264-267.

Jana S, and Deb JK. 2006. Molecular understanding of aminoglycoside action and resistance. *Appl Microbiol Biotechnol* 70:140-150. 10.1007/s00253-005-0279-0

Khosravi AD, Jenabi A, and Montazeri EA. 2017. Distribution of genes encoding resistance to aminoglycoside modifying enzymes in methicillin-resistant Staphylococcus aureus (MRSA) strains. *Kaohsiung J Med Sci* 33:587-593. 10.1016/j.kjms.2017.08.001

Kim TH, Hwang HJ, and Kim JH. 2017. Development of a Novel, Rapid Multiplex Polymerase Chain Reaction Assay for the Detection and Differentiation of Salmonella enterica Serovars Enteritidis and Typhimurium Using Ultra-Fast Convection Polymerase Chain Reaction. *Foodborne Pathog Dis* 14:580-586. 10.1089/fpd.2017.2290

Krause KM, Serio AW, Kane TR, and Connolly LE. 2016. Aminoglycosides: An Overview. *Cold Spring Harb Perspect Med* 6. 10.1101/cshperspect.a027029

Laamiri N, Fallgren P, Zohari S, Ben Ali J, Ghram A, Leijon M, and Hmila I. 2016. Accurate Detection of Avian Respiratory Viruses by Use of Multiplex PCR-Based Luminex Suspension Microarray Assay. *J Clin Microbiol* 54:2716-2725. 10.1128/JCM.00610-16

Lee N, Kwon KY, Oh SK, Chang HJ, Chun HS, and Choi SW. 2014. A multiplex PCR assay for simultaneous detection of Escherichia coli O157:H7, Bacillus cereus, Vibrio parahaemolyticus, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus in Korean ready-to-eat food. *Foodborne Pathog Dis* 11:574-580. 10.1089/fpd.2013.1638
Levin-Reisman I, Ronin I, Gefen O, Braniss I, Shoresh N, and Balaban NQ. 2017. Antibiotic tolerance facilitates the evolution of resistance. Science 355:826-830. 10.1126/science.aaj2191

Li C, Shi Y, Yang G, Xia X-s, Mao X, Fang Y, Zhang A-M, and Song Y. 2019. Establishment of loop-mediated isothermal amplification for rapid detection of Pseudomonas aeruginosa. EXPERIMENTAL AND THERAPEUTIC MEDICINE:6. 10.3892/etm.2018.6910

Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, and Monnet DL. 2012. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268-281. 10.1111/j.1469-0691.2011.03570.x

Magnet S, and Blanchard JS. 2005. Molecular insights into aminoglycoside action and resistance. Chem Rev 105:477-498. 10.1021/cr0301088

Moran RA, Anantham S, Holt KE, and Hall RM. 2017. Prediction of antibiotic resistance from antibiotic resistance genes detected in antibiotic-resistant commensal Escherichia coli using PCR or WGS. J Antimicrob Chemother 72:700-704. 10.1093/jac/dkw511

Mu XQ, Liu BB, Hui E, Huang W, Yao LC, Duo LB, Sun WY, Li GQ, Wang FX, and Liu SL. 2016. A rapid loop-mediated isothermal amplification (LAMP) method for detection of the macrolide-streptogramin type B resistance gene msrA in Staphylococcus aureus. J Glob Antimicrob Resist 7:53-58. 10.1016/j.jgar.2016.07.006
Nagar A, and Hahsler M. 2013. Fast discovery and visualization of conserved regions in DNA sequences using quasi-alignment. *BMC Bioinformatics* 14 Suppl 11:S2. 10.1186/1471-2105-14-S11-S2

Nasiri G, Peymani A, Farivar TN, and Hosseini P. 2018. Molecular epidemiology of aminoglycoside resistance in clinical isolates of *Klebsiella pneumoniae* collected from Qazvin and Tehran provinces, Iran. *Infect Genet Evol* 64:219-224. 10.1016/j.meegid.2018.06.030

Odumosu BT, Adeniyi BA, and Chandra R. 2015. Occurrence of aminoglycoside-modifying enzymes genes (aac(6')-I and ant(2'')-I) in clinical isolates of *Pseudomonas aeruginosa* from Southwest Nigeria. *Afr Health Sci* 15:1277-1281. 10.4314/ahs.v15i4.29

Ojdana D, Sienko A, Sacha P, Majewski P, Wieczorek P, Wieczorek A, and Tryniszewska E. 2018. Genetic basis of enzymatic resistance of *E. coli* to aminoglycosides. *Adv Med Sci* 63:9-13. 10.1016/j.advms.2017.05.004

Panek J, Frac M, and Bilinska-Wielgus N. 2016. Comparison of Chemical Sensitivity of Fresh and Long-Stored Heat Resistant *Neosartorya fischeri* Environmental Isolates Using BIOLOG Phenotype MicroArray System. *PLoS One* 11:e0147605. 10.1371/journal.pone.0147605

Park SH, and Ricke SC. 2015. Development of multiplex PCR assay for simultaneous detection of *Salmonella* genus, *Salmonella* subspecies I, *Salm. Enteritidis*, *Salm. Heidelberg* and *Salm. Typhimurium*. *J Appl Microbiol* 118:152-160. 10.1111/jam.12678

Pham NT, Ushijima H, Thongprachum A, Trinh QD, Khamrin P, Arakawa C, Ishii W, Okitsu S,
Komine-Aizawa S, and Hayakawa S. 2017. Multiplex PCR for the Detection of 10 Viruses Causing Encephalitis/Encephalopathy and its Application to Clinical Samples Collected from Japanese Children with Suspected Viral. Clin Lab 63:91-100. 10.7754/Clin.Lab.2016.160630

Phaneuf CR, Oh K, Pak N, Saunders DC, Conrardy C, Landers JP, Tong S, and Forest CR. 2013. Sensitive, microliter PCR with consensus degenerate primers for Epstein Barr virus amplification. Biomed Microdevices 15:221-231. 10.1007/s10544-012-9720-1

Planet PJ. 2017. Life After USA300: The Rise and Fall of a Superbug. J Infect Dis 215:S71-S77. 10.1093/infdis/jiw444

Quainoo S, Coolen JPM, van Hijum S, Huynen MA, Melchers WJG, van Schaik W, and Wertheim HFL. 2017. Whole-Genome Sequencing of Bacterial Pathogens: the Future of Nosocomial Outbreak Analysis. Clin Microbiol Rev 30:1015-1063. 10.1128/CMR.00016-17

Ramirez MS, and Tolmasky ME. 2010. Aminoglycoside modifying enzymes. Drug Resist Updat 13:151-171. 10.1016/j.drup.2010.08.003

Skodvin B, Aase K, Brekken AL, Charani E, Lindemann PC, and Smith I. 2017. Addressing the key communication barriers between microbiology laboratories and clinical units: a qualitative study. J Antimicrob Chemother 72:2666-2672. 10.1093/jac/dkx163

Su M, Satola SW, and Read TD. 2019. Genome-Based Prediction of Bacterial Antibiotic Resistance. J Clin Microbiol 57. 10.1128/JCM.01405-18

Tamburro M, and Ripabelli G. 2017. High Resolution Melting as a rapid, reliable, accurate and
cost-effective emerging tool for genotyping pathogenic bacteria and enhancing molecular epidemiological surveillance: a comprehensive review of the literature. *Ann Ig* 29:293-316. 10.7416/ai.2017.2153

Tseng SH, Lee CM, Lin TY, Chang SC, Chuang YC, Yen MY, Hwang KP, Leu HS, Yen CC, and Chang FY. 2012. Combating antimicrobial resistance: antimicrobial stewardship program in Taiwan. *J Microbiol Immunol Infect* 45:79-89. 10.1016/j.jmii.2012.03.007

Tuttle MS, Mostow E, Mukherjee P, Hu FZ, Melton-Kreft R, Ehrlich GD, Dowd SE, and Ghannoum MA. 2011. Characterization of bacterial communities in venous insufficiency wounds by use of conventional culture and molecular diagnostic methods. *J Clin Microbiol* 49:3812-3819. 10.1128/JCM.00847-11

Vaziri F, Peerayeh SN, Nejad QB, and Farhadian A. 2011. The prevalence of aminoglycoside-modifying enzyme genes (aac (6')-I, aac (6')-II, ant (2")-I, aph (3')-VI) in *Pseudomonas aeruginosa*. *Clinics (Sao Paulo)* 66:1519-1522.

Wagner EK, and Maynard JA. 2018. Engineering therapeutic antibodies to combat infectious diseases. *Curr Opin Chem Eng* 19:131-141. 10.1016/j.coche.2018.01.007

Xiao Y, and Hu Y. 2012. The major aminoglycoside-modifying enzyme AAC(3)-II found in *Escherichia coli* determines a significant disparity in its resistance to gentamicin and amikacin in China. *Microb Drug Resist* 18:42-46. 10.1089/mdr.2010.0190

Yadegar A, Sattari M, Mozafari NA, and Goudarzi GR. 2009. Prevalence of the genes encoding aminoglycoside-modifying enzymes and methicillin resistance among clinical isolates of *Staphylococcus aureus* in Tehran, Iran. *Microb Drug Resist* 15:109-113.
Zarate SG, De la Cruz Claure ML, Benito-Arenas R, Revuelta J, Santana AG, and Bastida A. 2018. Overcoming Aminoglycoside Enzymatic Resistance: Design of Novel Antibiotics and Inhibitors. *Molecules* 23. 10.3390/molecules23020284

Zavascki AP, Klee BO, and Bulitta JB. 2017. Aminoglycosides against carbapenem-resistant Enterobacteriaceae in the critically ill: the pitfalls of aminoglycoside susceptibility. *Expert Rev Anti Infect Ther* 15:519-526. 10.1080/14787210.2017.1316193
Figure legend

Figure 1 The sensitivity and accuracy evaluation of *Aac(6')-Ib, Ant(3'')-Ia, Aph(3')-Ia,* and *Aac(3)-II* resistance genes by S-PCR. The serially diluted positive plasmids with resistance gene were used as the template in the sensitivity evaluation of S-PCR, at the concentrations from 3×10^9 to 4×10^{10} copies/μL respectively, with nuclease-free water used as template for NC. Meanwhile, the four resistance genes were detected in the 237 clinical strains of *E. coli*, the bacterial solution as the S-PCR template. All experiments were repeated six times. NC, negative control; M, marker.

Figure 2 Establishment of M-PCR reaction system. From lane 1 to 4, the positive plasmids with *Aac(6')-Ib, Ant(3'')-Ia, Aph(3')-Ia,* and *Aac(3)-II* respectively were used as the template for M-PCR amplification. *E. coli* 1611NY0004 with the four drug resistance genes was used as the template for M-PCR reaction in lane 5, with nuclease-free water used as template for NC. NC, negative control; M, marker.

Figure 3 The accuracy evaluation of M-PCR. From lane 2 to 6, the template for the accuracy evaluation of M-PCR were the bacterial solution of the 5 clinical strains (1611NY0004, 1611UR0282, 1611SP0549, 1611UR0062, 1611UR0215) with four resistance genes. The four equal concentration plasmids with *Aac(6')-Ib, Ant(3'')-Ia, Aph(3')-Ia,* and *Aac(3)-II* resistance genes were mixed together as the positive control in lane 1, with nuclease-free water used as template for NC. PC, positive control; NC, negative control; M, marker.

Figure 4 The sensitivity evaluation of M-PCR. (A) The four equal concentration plasmids with *Aac(6')-Ib, Ant(3'')-Ia, Aph(3')-Ia,* and *Aac(3)-II* resistance genes were mixed, and serially
diluted as 10-fold (1×10^8-1×10^0), as the sensitivity evaluation of M-PCR. The nuclease-free water used in lane 10 as template for NC. (B) The *E. coli* 1611NY0004 strain with four resistance genes was used as the template for the sensitivity evaluation of M-PCR. The bacterial solution was serially diluted as 10-fold (1×10^8-1×10^0). The nuclease-free water used in lane 10 as template for NC. NC, negative control; M, marker.
Table 1 Primers used in this study

Primer	Region	Length
Primer1	Region1	100bp
Primer2	Region2	200bp
Primer3	Region3	300bp
Primer4	Region4	400bp
Table 1 Primers used in this study

Gene	Primers	Sequence (5′–3′)	Product size (bp)	Annealing temperature (°C)
Aac(6')-I	Aac(6')-I-F	AAACCCCGCTTTTCTCGTAGC	112	57
	Aac(6')-I-R	AAACCCCGCTTTTCTCGTAGC		
Ant(3')	Ant(3')-F	CCGTTTCTGAACAGGATC	180	59
	Ant(3')-R	CCCAGTCGGCAGCGACATC		
Aph(3')	Aph(3')-F	CAAGATGGATTGCACGCAGG	317	56
	Aph(3')-R	TTCAGTGACACGTCGAGCA		
Aac(3)-II	Aac(3)-II-F	GCTCGGTTGGATGACAAAGC	379	57
	Aac(3)-II-R	AGGCAGACTTCACCGTTTTCTT		
Figure 1

Figure 1 The sensitivity and accuracy evaluation of $Aac(6')-I_b$, $Ant(3'')-I_a$, $Aph(3')-I_a$, and $Aac(3)-II$ resistance genes by S-PCR.

The serially diluted positive plasmids with resistance gene were used as the template in the sensitivity evaluation of S-PCR, at the concentrations from $3 \times 10^9 - 3 \times 10^0$, $4 \times 10^9 - 4 \times 10^0$, $5 \times 10^9 - 5 \times 10^0$, and $4 \times 10^{10} - 4 \times 10^{10}$ copies/μL respectively, with nuclease-free water used as template for NC. Meanwhile, the four resistance genes were detected in the 237 clinical strains of $E. coli$, the bacterial solution as the S-PCR template. All experiments were repeated six times. NC, negative control; M, marker.
Figure 2 Establishment of M-PCR reaction system.

From lane 1 to 4, the positive plasmids with $\text{Aac}(6')$-Ib, $\text{Ant}(3'$$)$-Ia, $\text{Aph}(3')$-Ia, and $\text{Aac}(3)$-II respectively were used as the template for M-PCR amplification. $E. \text{coli}$ 1611NY0004 with the four drug resistance genes was used as the template for M-PCR reaction in lane 5, with nuclease-free water used as template for NC. NC, negative control; M, marker.
Figure 3

From lane 2 to 6, the template for the accuracy evaluation of M-PCR were the bacterial solution of the 5 clinical strains (1611NY0004, 1611UR0282, 1611SP0549, 1611UR0062, 1611UR0215) with four resistance genes. The four equal concentration plasmids with \textit{Aac(6')-Ib}, \textit{Ant(3'')-Ia}, \textit{Aph(3')-Ia}, and \textit{Aac(3)-II} resistance genes were mixed together as the positive control in lane 1, with nuclease-free water used as template for NC. PC, positive control; NC, negative control; M, marker.
Figure 4

Figure 4 The sensitivity evaluation of M-PCR.

(a) The four equal concentration plasmids with Aac(6')-Ib, Ant(3'')-Ia, Aph(3')-Ia, and Aac(3)-Il resistance genes were mixed, and serially diluted as 10-fold (1×10^8-1×10^0), as the sensitivity evaluation of M-PCR. The nuclease-free water used in lane 10 as template for NC. (b) The *E. coli 1611NY0004* strain with four resistance genes was used as the template for the sensitivity evaluation of M-PCR. The bacterial solution was serially diluted as 10-fold (1×10^8-1×10^0). The nuclease-free water used in lane 10 as template for NC. NC, negative control; M, marker.