Results of studies of samples of boiled-smoked loin with different injection levels

M F Khayrullin¹, A V Curcan¹, A A Nesterenko², M P Zhuravlev¹ and A V Rystakov¹

¹ K G Razumovsky Moscow State University of technologies and management (the First Cossack University), 73 Zemlyanoy Val, Moscow, 109004, Russian Federation
² Kuban State Agrarian University, 13 Kalinina str., Krasnodar, 350044, Russian Federation

E-mail: khairullin-mars@ya.ru

Abstract. Today, the production of boiled-smoked pork products is aimed at using intensive salting methods using technological methods of injection with multi-component brines and subsequent mechanical processing. This makes it possible to improve both the organoleptic characteristics of pork products (tenderness, consistency) and the economic indicators of the efficiency of the enterprises. The article presents the results of studies of the effect of multicomponent brines on the main functional and technological characteristics of boiled-smoked pork products. The influence of multicomponent brines on such indicators as the output of the finished product, physical and chemical indicators, organoleptic indicators has been studied.

1. Introduction
At the present stage of food industry development, the meat industry occupies one of the leading places in the food industry and is constantly introducing new types of meat products [1-9]. Meat industry enterprises are engaged in the production of a wide range of products, introducing scientific research [10-17]. The main categories of products are meat and offal, semi-finished products, sausages, canned meat. The range of meat products is constantly expanding and corresponds to the basic principles of food combinatorics [16-25]. At the enterprises of the industry, new approaches are being introduced to ensure the quality and safety of products [24-32].

Delicacy meat products made from pork in the form of whole muscle products: loin, ham, brisket are very popular with Russian consumers. The market for meat delicacies is saturated and highly competitive; quality is one of the most important indicators of the competitiveness of products.

The production of whole-muscle gourmet products is the most rational use of raw meat, the ability to preserve the original type of raw materials and balance its final composition.

One of the mandatory and defining operations in the production of boiled-smoked delicacies is the ambassador, which is currently carried out by injecting brines into the thickness of the raw material with the use of subsequent mechanical processing (massaging, tumbling, tenderizing).

During the salting operation, an organoleptic profile is formed in meat products: taste, aroma, smell, consistency, color, as well as such technological characteristics as the output and physicochemical composition of the finished product.
The intensity of change depends directly on the speed and uniformity of the distribution of the components of the curing mixture and their concentration. Moreover, the severity of these changes largely depends on the nature of the distribution of curing substances, the concentration of table salt and a number of other factors.

The ambassador protects the meat from spoilage, has preservative properties, by reducing the activity of water and suppressing the development of microflora, as a result of salt exposure.

The aim of the research is to study the influence of multicomponent brines on the quality of boiled-smoked pork delicacies.

2. Materials and methods
Figure 1 shows a diagram of the production of the investigated boiled-smoked pork delicacies.

![Diagram of the production of boiled-smoked delicacies](image)

Figure 1. Scheme of the production of boiled-smoked delicacies.
The brine preparation (the brine recipe is shown in Table 1) was carried out on the brine preparation plant. The device for preparing brine is a container with a connected circulation pump, the components are introduced through a funnel. The device consists of a container with a volume of 400 liters, to which a circulation pump is connected, dry components are fed through a funnel connected by a pipeline.

The container is filling up. Dry components are fed into a funnel, mixed, circulating through the volume of the tank, using a circulation pump, which also, pumping the brine through the pipeline, ensures its supply to the injector.

The preparation time for the brine is 3-7 minutes. The rapid and homogeneous mixing of the liquid and dry brine components is based on the physical Venturi principle, which is the pressure drop when a liquid or gas stream flows through the constricted part of the pipe.

After the brine is ready, it is fed into the injector using a circular pump.

When making up the brine, part of the water is replaced with flake ice to lower the brine temperature. Flake ice is added to the brine until the brine temperature reaches –2 °C.

Table 1. Recipe of multicomponent brines using complex food additives.

Brine name	Ingredient name	Quantity of ingredient per 1001 of brine, kg
№ 1 Zaltech	NaNO₂,	2.776
	NaCl	3.493
	Selzbauch Premium Mix	3
	Preservative	0.4
	Drinking water	90.331
	NaNO₂, 0.9%	2.776
	NaCl	3.493
№ 2 Wiberg	Means for stuffing ham comix 4060	5
	Preservative	0.4
	Drinking water	88.3
	NaNO₂,	2.7
	NaCl	3.3
№ 3 Control sample	Complex mixture	6
	Preservative	0.4
	Drinking water	87.6

3. Results and discussion

Within the framework of these studies, the ingredient composition of the injection brine was determined, designed for a 30% injection level of raw materials and providing a product output of 105%.

In the course of the research, brines containing 3.5% sodium chloride and 2.8% nitrite salt were taken, and in the first variant, the different content of the complex additive of the company Zaltech is 2.5, 2.75 and 3%; in the second variant, the content of the Wiberg complex additive is 4.5, 4.75 and 5%.

The required content of these complex additives was determined based on the recommendations of the manufacturers.

During the experiment, at each technological stage, we determined the mass of the samples, the output and water-holding capacity of the finished products after they were cooled to 6 °C.

Table 2 shows the values of the output of control samples and test samples from chilled pork, sprinkled with brines of the control composition and brines with the use of Zaltech and Wiberg additives.

It was found that with an increase in the content of complex food additives in the composition of the injection brine, the output of the finished product in the samples increases. At the same time, the values in the sample with the complex additive Zaltech remain higher than the values of the control sample and the sample with the complex additive Wiberg.
Table 2. The output of the finished product depending on the concentration of the complex additive.

Brine	Content of complex additives in brines, %
Zaltech	2.5
	2.75
	3
99.2±1.07	102.5±1.3
4.5	4.75
101.7±1.9	103.75±1.07
Wiberg	5
Control sample	7
104.1±1	

When complex food additives containing animal protein are introduced into the brine, an increased output of the finished product is noted compared to the control sample containing only hydrocolloids.

According to the data obtained, in order to achieve the target output of 105%, 3% of Zaltech complex additive and 5% of Wiberg complex additive must be added to the brines.

Organoleptic testing was carried out immediately after preparation and after 6 days of storage at a temperature of 6 °C. It showed that the samples containing Zaltech additive were juicy, had a delicate texture, and a slightly pronounced ham taste. Samples containing Wiberg additives are inferior to Zaltech samples in taste characteristics, samples are similar in rheological properties.

Assessment of the organoleptic characteristics of the finished product showed that all samples have high indicators of appearance, consistency, including in the cut. The consistency is uniform and there is no broth in the thickness of the product.

The results are shown in table 3.

Table 3. The results of the organoleptic evaluation of the samples sprinkled with brines.

Sample name	Appearance	Sectional color	Taste	Smell	Consistency	Overall score
Zaltech	5	4.5	4.7	4.7	4.8	4.74
Wiberg	5	4.2	4.5	4.6	4.5	4.56
Control sample	5	4.2	4.5	4.5	4.6	4.56

Thus, in the course of experimental studies, it was found that the use of brines containing complex mixtures from Zaltech and Wiberg makes it possible to obtain a given output of experimental products. It should be noted that brine with Zaltech additive is most effective when added to brine at a dosage of 3%.

As evidenced by the data of the literature review, to intensify the salting process, mechanical processing of raw materials is used.

As a mechanical treatment, vacuum massaging was selected, with the following mode, rotation frequency 8 rpm, cycle duration 30 minutes, rotation 20 minutes, rest 10 minutes.

Meat raw material after extrusion with brine, in the ratio of 30% brine to raw meat, was sent for massaging. For the experiment, the massaging time was 2, 4 and 6 hours.

Based on the data obtained, the following conclusion can be drawn: when massaging for 2 hours, a decrease in mass by 1.8% is observed, with an increase in the duration of the operation to 4 hours and 6 hours, an increase in the mass of the massaged raw material is observed due to the redistribution of brine components throughout the volume of raw meat.
Thus, it is possible to note the relationship between the duration of massaging and the amount of bound brine and, therefore, the relationship between the duration of massaging and the output of the finished product, and the maximum amount of bound brine and minimum losses were observed in the sample after 6 hours of massaging.

The main technological operations for the production of boiled-smoked products are the processes of salting, cooking, smoking, etc. The degree of product structure change is determined not only by the technological stages, but also by the product composition.

During heat treatment, proteins coagulate, that is, their coagulation, which directly affects their ability to retain moisture. At the next stage, the influence of complex brines on changing the composition and properties of finished products was considered.

Experimental samples from pork loin, sprinkled with brines in an amount of 30% to the mass of raw materials, brines containing additives from Zaltech and Wiberg, and a control sample, after massaging, were heat treated at a temperature of 85-90 °C until a temperature in the thickness of the product reached 72.5 °C. After that, the samples were cooled to a temperature of 20 °C, followed by smoking. The finished samples were cooled to a temperature of 4-6 °C and investigations were carried out.

Samples made of pork loin according to the proposed technology (figure 3), the formulation of which included functional additives Zaltech and Wiberg at dosages of 3 and 5%, respectively, were characterized by the following physicochemical parameters and the output of finished boiled-smoked pork loin (table 4).

| Table 4. Physicochemical parameters of boiled-smoked pork loin. |
|------------------|-----------------|-----------------|----------------|
| Indicators | Zaltech | Composition | Control sample |
| Protein content, % | 22.2 | 22.03 | 19.85 |
| Fat content, % | 3.5 | 3.8 | 3 |
| Moisture contents, % | 69.6 | 70 | 50.3 |
| NaCl, % | 2.2 | 1.9 | 2.1 |

![Figure 2. Change in the mass of raw meat during the operation of massaging.](image)
The use of Zaltech and Wiberg additives in the brines had a significant effect on the moisture content in the finished product. The animal protein contained in Zaltech and Wiberg supplements allows you to bind additional units of moisture. The effect of higher fat and protein content in experimental samples is also related to this.

No significant differences were found in the content of table salt.

4. Conclusion
The qualitative and quantitative composition of multicomponent brines for injecting pork loin in an amount of 30% by weight of raw materials has been determined. It was found that in order to obtain a given output of the finished product of 105%, it is necessary to use, in addition to the main curing components, complex food additives from Zaltech and Wiberg in the amount of 3 and 5% per 100 liters of brine.

It was found that the optimal duration of massaging pork loin with an injection level of 30% by weight of raw materials, at a massager rotation frequency of 8 rpm in a mode of 20 minutes of rotation and 10 minutes of rest, was 6 hours. Further mechanical action led to disruption of the integrity of muscle fibers and weight loss of pork loin.

Evaluation of the organoleptic characteristics of the finished product showed that all samples have high indicators of appearance, consistency, including in the cut. The consistency is uniform and there is no broth in the thickness of the product.

Studies of samples of boiled-smoked loin with an injection level of 30% to the mass of raw materials for physical and chemical indicators indicate the high nutritional value of products. The use of Zaltech and Wiberg additives in the brines did not have a significant effect on the moisture content in the finished product. The loin injected with brines containing functional additives with pork protein exceeded the control in protein content, so the addition of Zaltech additive to the brine in an amount of 3% by weight of the brine resulted in an increase in the protein content of the finished product by 0.3% compared to the control sample.

References
[1] Kallas Z et al. 2017 Measuring Consumers’ Preferences for Traditional and Innovative Pork Product Agriculturae Conspectus Scientificus 82(2) 1-5
[2] Ouali A et al. 2013 Biomarkers of meat tenderness: Present knowledge and perspectives in regards to our current understanding of the mechanisms involved Meat Science 95 854-70
[3] Lebret B and Faure J 2015 La viande et les produits du porc : comment satisfaire des attentes qualitatives variées? INRA Prod. Anim. 28(2) 111-4
[4] Rebezov M, Naumova N, Lukin A, Alkhamova G and Khayrullin M 2011 Food behavior of consumers (for example, Chelyabinsk) Voprosy Pitaniia 80(6) 23-6
[5] Garmatyk K, Susol R, Broshkov M, Panikar Ih and Susol L 2020 Assessment of the quality of modern commercial pork products Chemistry of food products and materials 14(2) 41-7
[6] Kulmakova N, Orlov V, Ivanitskiy A, Sevastyanova N and Mongush S 2019 Pork production technology optimization based on mathematical modelling E3S Web of Conferences 6-9
[7] Kassymov S, Rebezov M, Ikonnikova A, Fedin I, Rodionov I, Rukhadze S and Bokuchava O 2020 Using of pumpkin and carrot powder in production of meat cutlets: effect on chemical and sensory properties International Journal of Psychosocial Rehabilitation 24(4) 1663-70 doi:10.37200/IJPR/V24I4/PR201274
[8] Szyndler-Nedza M, Nowicki J and Malopolska M 2019 The production system of high quality pork products – an example Animal Science 58(2) 181-98
[9] Nesterenko A, Kenijz N, Rebezov M, Omarov R and Shlykov S 2020 Production technology for smoked sausages using protein-fat emulsion International Transaction Journal of Engineering, Management, & Applied Sciences & Technologies 11(12) 11A12A 1-8 doi:10.14456/ITJEMAST.2020.226
[10] Okuskhanova E, Rebezov M, Yessimbekov Zh, Suychinov A, Semenova N, Rebezov Y,
Gorelik O and Zinina O 2017 Study of water binding capacity, pH, chemical composition and microstructure of livestock meat and poultry Annual Research & Review in Biology 14(3) 1-7 doi:10.9734/ARRB/2017/34413

[11] Omarov R, Shlykov S, Rebezov M, Sorokin A and Khlopova Y 2020 Technology Development of Whipped Drink based on Biomodified Blood Plasma International Transaction Journal of Engineering Management & Applied Sciences & Technologies 11(14) 11A14R 1-9 doi:10.14456/ITJEMAST.2020.285

[12] Assenova B et al. 2020 Effect of germinated wheat (triticum aestivum) on chemical, amino acid and organoleptic properties of meat pate Potravinarstvo 14 503-9 https://doi.org/10.5219/1273

[13] Kabulov B, Kassymov S, Moldabayeva Zh, Rebezov M, Zinina O, Chernyshenko Yu, Arduvanova F, Peshcherov G, Makarov S and Vasyukova A 2020 Developing the formulation and method of production of meat frankfurters with protein supplement from meat by-products EurAsian Journal of BioSciences 14(1) 213-8 doi:10.31838/jcr.07.02.30

[14] Nesterenko A, Goushchin V, Koshechaev A, Kenijz N, Rebezov M and Khayrullin M 2020 Electromagnetic treatment of fresh sausage meat and starter cultures in summer sausage production International Journal of Advanced Science and Technology 29(9S) 1173

[15] Nesterenko A, Koshechaev A, Kenijz N, Akopyan K, Rebezov M and Okuskhanova E 2020 Biomodification Of Meat For Improving Functional-Technological Properties Of Minced Meat Research Journal of Pharmaceutical, Biological and Chemical Sciences 9(6) 95-105 WOS:000496307000013

[16] Sydykova M, Nurymkhan G, Gaptar S, Rebezov Y, Khayrullin M, Nesterenko A and Gazeev I 2019 Using of lactic acid bacteria in the production of sausage products: modern conditions and perspectives International Journal of Pharmaceutical Research 11(1) 1073-83

[17] Zinina O, Rebezov M, Khayrullin M, Neverova O and Bychkova T 2020 Functional and technological indicators of fermented minced meat IOP Conf. Ser.: Earth Environ. Sci. 548 082010 doi:10.1088/1755-1315/548/8/082010

[18] Okuskhanova E, Rebezov Y, Khayrullin M, Nesterenko A, Mironova I, Gazeiev I, Nigmatyanov A and Goncharov A 2019 Low-calorie meat food for obesity prevention International Journal of Pharmaceutical Research 11(1) 11589-92

[19] Abilmazhina B, Rebezov M, Fedoseeva N, Belookov A, Belookova O, Mironova I, Nigmatyanov A and Gizatova N 2020 Study chemical and vitamin composition of horsemeat cutlets with addition of pumpkin International Journal of Psychosocial Rehabilitation 24(8) 7614-21 doi:10.37200/IJP/R/24B8/PR280773

[20] Igenbayev A, Okuskhanova E, Nurgazezova A, Rebezov Ya, Kassymov S, Nurymkhan G, Tazeddinova D, Mironova I, Rebezov M 2019 Fatty Acid Composition of Female Turkey Muscles in Kazakhstan Journal of World’s Poultry Research 9(2) 78-81 doi:10.36380/jwpr.2019.9

[21] Okuskhanova E, Assenova B, Rebezov M, Yessimbekov Zh, Kulushтайева B, Zinina O and Stuart M 2016 Mineral composition of deer meat pâté Pakistan Journal of Nutrition 15(3) 217-22 doi:10.3923/pjn.2016.217.222

[22] Kamberova A et al. 2020 Improvement of quality characteristics of turkey pâté through optimization of a protein rich ingredient: physicochemical analysis and sensory evaluation Food Sci. Technol [online] [cited 2020-10-16], Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0101-20612020005022201&lng=en&nrm=iso https://doi.org/10.1590/fst.00720

[23] Vladimirzova Z O and Borisovich R M 2016 A Biotechnological Processing of Collagen Containing By-products of Bovine Animals Research Journal of Pharmaceutical Biological and Chemical Sciences 7(1) 1530-4

[24] Zinina O et al. 2020 Sensory, physical and chemical characteristics of fermented minced meat IOP Conf. Ser.: Earth Environ. Sci. 548 082012 doi:10.1088/1755-1315/548/8/082012

[25] Akhmetova S, Suleimenova M and Rebezov M 2019 Mechanism of an improvement of business
processes management system for food production: case of meat products enterprise

Entrepreneurship and sustainability issues 7(2) 1015-35 doi:10.9770/jesi.2019.7.2(16)

[26] Kabulov B, Kuderinova N, Kassymov S, Mustafayeva A, Khayrullin M, Kuzmina A, Vorobeva A, Pavlov A and Ermolaev V 2019 Effect of mechanical processing of minced meat on the change of output stress International Journal of Mechanical and Production Engineering Research and Development 9(5) 333-42

[27] Kuramshina N, Rebezov M, Kuramshin E, Tretyak L, Topuria G, Kulikov D, Evtushenko A, Harlap S and Okuskhanova E 2019 Heavy metals content in meat and milk of Orenburg region of Russia International Journal of Pharmaceutical Research 11(1) 1301-5 doi:10.21668/health.risk/2019.2.04.eng

[28] Assenova B, Okuskhanova E, Rebezov M, Korzhikenova N, Yessimbekov Zh and Dragoev S 2016 Trace and toxic elements in meat of maral (red deer) grazing in Kazakhstan Research Journal of Pharmaceutical, Biological and Chemical Sciences 7(1) 1425-33

[29] Duyssembaev S, Serikova A, Okuskhanova E, Ibragimov N, Bekturova N, Ikimbayeva N, Rebezov Y, Gorelik O and Baybalinova M 2017 Determination of Cs-137 Concentration in Some Environmental Samples around the Semipalatinsk Nuclear Test Site in the Republic of Kazakhstan Annual Research & Review in Biology 15(4) 1-8 doi:10.9734/ARRB/2017/35239

[30] Okuskhanova E, Smolnikova F, Kassymov S, Zinina O, Mustafayeva A, Rebezov M, Rebezov Y, Tazeddinova D, Galieva Z and Maksimiuk N 2017 Development of minced meat ball composition for population from the unfavorable ecological regions Annual Research & Review in Biology 13(3) 1-9 doi:10.9734/ARRB/2017/33337

[31] Rebezov M et al. 2020 Improvement of Laboratory Services When using Sample Preparation in Microwave System International Journal of Current Research and Review 12(16) 29-33 doi:10.31782/IJCRR.2020.12167

[32] Kabulov B, Kuderinova N, Kassymov S, Mustafayeva A, Khayrullin M, Kuzmina A, Vorobeva A, Pavlov A and Ermolaev V 2019 Effect of mechanical processing of minced meat on the change of output stress International Journal of Mechanical and Production Engineering Research and Development 9(5) 333-42