Case Report

A Misdiagnosis of Traumatic Hypersupination of the Distal Radioulnar Joint: A Case Report

Vipin Asopa, 1,2 Robert J. Douglas, 2 Andrew D. Saies, 2 and James S. Church 1

1 Chelsea and Westminster Hospital, 369 Fulham Road, London, SW10 9NH, UK
2 Sportsmed SA, 32 Payneham Road, Stepney, Adelaide, SA 5069, Australia

Correspondence should be addressed to Robert J. Douglas; rabs01@hotmail.com

Received 4 October 2013; Accepted 11 November 2013

1. Introduction

In the normal wrist, supination occurs with rotation of the concave distal radius about the convex ulna in an arc of up to 220 degrees [1]. The interosseous membrane and triangular fibrocartilage act as stabilisers while the dorsal and volar radioulnar ligaments tighten to provide rotational stability [2, 3]. Posterior-anterior (PA) radiography of the normal wrist will show the ulnar styloid projecting away from the distal radioulnar joint (DRUJ) with the groove for the tendon of extensor carpi ulnaris (ECU) radial to the ulnar styloid [4]. On the normal anterior-posterior (AP) view, the ulnar styloid usually overlies the central portion of the distal ulna [5]. Following trauma, this complex can become disrupted and give rise to a traumatic hypersupination injury of the DRUJ, and on a PA radiograph, the ulna styloid can be found to lie within the ulna notch of the radius.

2. Case Report

A 19-year-old female was seen in the accident and emergency department following a fall onto her dominant right outstretched hand. There was no apparent hypersupination of the wrist at the time of injury. She reported pain in the wrist and denied previous trauma. On examination, the patient had mild swelling of the wrist with tenderness over the distal radioulnar joint, and limitation of forearm pronation. It was therefore not possible to obtain the standard PA wrist radiograph and an AP radiograph of the supine forearm was performed. This revealed the ulnar styloid to be lying adjacent to the ulnar notch of the radius. Treatment of this injury requires manipulation of the joint, under anaesthesia or sedation. We describe a case where posttraumatic radiological investigation of a patient with an anatomical variation of the wrist when in supination resembled a traumatic hypersupination injury of the distal radioulnar joint. A review of the literature has revealed this to be the first reported case of this type.
Figure 1: On arrival AP radiograph of the injured right wrist demonstrating the abnormal appearance of the ulnar styloid: it is lying adjacent to the ulnar notch of the radius.

Figure 2: AP radiograph of the contralateral left wrist demonstrating the abnormal appearance of the ulnar styloid in supination. The lie of the ulnar styloid in supination is identical to that of the injured right wrist.

Figure 3: PA radiograph of the injured right wrist demonstrating normal anatomical alignment of the ulnar styloid.

Figure 4: PA view of the right wrist demonstrating the abnormal lie of the ulnar styloid, following a hypersupination injury. (Reproduced by the kind permission of the British Editorial Society of Bone and Joint Surgery, from Graham et al. [2]).

3. Discussion

In this case, PA X-ray of the right wrist undertaken in the ED demonstrated that the ulnar styloid was found to lie within the ulnar notch of the ulna. A review of the radiological literature [6] revealed that this has only previously been described in cases of traumatic hypersupination (Figure 4).

Cadaveric studies have demonstrated that hypersupination injury of the DRUJ causes the tearing of the volar radioulnar ligament, separation of the triangular fibrocartilage complex, and subluxation of the tendon of ECU, allowing the radius to rotate such that the ulnar styloid lies within the sigmoid notch [2, 7].
4. Conclusion

Given that the patient made a rapid recovery, and the symmetrical appearance of the AP wrist radiographs, it must be concluded that this case represents an anatomical variation of normal. To the best of our knowledge, this appears to be the first reported case of an anatomical variation of this type.

Our "take home message" for the emergency physician, orthopaedic surgeon, and radiologist is to be aware of the possibility of variations of this type, and to radiographically examine the contralateral joint prior to pursuing other radiological modalities if there is any doubt in the initial diagnosis.

Consent

Written informed consent was obtained from the patient for the publication of this paper and accompanying images.

Conflict of Interests

The authors declare that they have no conflict of interests.

References

[1] W. H. Bowers, "The distal radioulnar joint," in Green's Operative Hand Surgery, D. P. Green, R. N. Hotchkiss, and W. C. Pederson, Eds., pp. 986–1032, Churchill Livingstone, Philadelphia, Pa, USA, 4th edition, 1999.
[2] H. K. Graham, G. F. McCoy, and R. A. B. Mollan, "A new injury of the distal radio-ulnar joint," Journal of Bone and Joint Surgery B, vol. 67, no. 2, pp. 302–304, 1985.
[3] L. D. Ward, C. G. Ambrose, M. V. Masson, and F. Levaro, "The role of the distal radioulnar ligaments, interosseous membrane, and joint capsule in distal radioulnar joint stability," Journal of Hand Surgery, vol. 25, no. 2, pp. 341–351, 2000.
[4] V. M. Metz, M. Fuchsjager, and S. M. Metz-Schimmerl, "Radiography of the wrist and hand," in Fundamentals of Hand and Wrist Imaging, G. Guglielmi, C. van Kuijk, and H. K. Genant, Eds., pp. 1–26, Springer, Berlin, Germany, 2001.
[5] L. A. Gilula, F. A. Mann, J. H. Dobyns, and Y. Yin, "Wrist terminology as defined by the international wrist investigators' workshop (IWIW)," The Journal of Bone & Joint Surge, vol. 84, supplement 1, pp. S1–S66, 2002.
[6] T. E. Keats and M. W. Anderson, Atlas of Normal Roentgen Variants that May Simulate Disease, Elsevier Mosby, Philadelphia, Pa, USA, 9th edition, 2013.
[7] R. M. Szabo, "Distal radioulnar joint instability," Journal of Bone and Joint Surgery A, vol. 88, no. 4, pp. 884–894, 2006.
Submit your manuscripts at http://www.hindawi.com