Evaluation of the mental health status of community healthcare workers during the COVID-19 outbreak

Jianshu Zhang, RN, MN, Xuexue Deng, RN, MN, Hong Liu, RN, BN, Xiaoru Xu, RN, BN, Ronghua Fang, RN, BN*

Abstract
Coronavirus disease 2019 (COVID-19) has rapidly spread across China and many countries worldwide, and community healthcare workers at the front lines of disease control are under high physical and mental pressure. This study investigated the mental health status of community healthcare workers during the COVID-19 outbreak in Sichuan Province, China. This cross-sectional study, which was conducted from February 8 to 18, 2020, involved 450 healthcare workers in 18 community hospitals who had worked for more than 1 year. A self-designed demographic data questionnaire and Symptom Checklist 90 (SCL-90) were provided to the participants through links and quick response codes. The respondents completed and submitted the questionnaires online. Binary logistic regression was used to analyze multiple factors related to the SCL-90 scores of these community healthcare workers in China. For the 450 community healthcare workers who completed the study, the median scores in each SCL-90 factor were lower than the Chinese norms, and 119 (26.4%) participants were SCL-90 positive. Among them, 178 participants were doctors and had the highest scores on most SCL-90 factors except for obsessive compulsiveness, hostility, phobic anxiety, and psychotism (P < 0.05). The top 3 positive items for doctors working in the community were obsessive compulsiveness, others, and somatization, and those among nurses were obsessive compulsiveness, others, and hostility. Sex, type of workers, and occupational exposure risk to COVID-19 were independent risk factors for the mental health status of the community healthcare workers. Overall, the community healthcare workers experienced psychological problems during the COVID-19 outbreak in Sichuan Province, China. More attention should be paid to the mental health of these workers, and their mental status should be regularly assessed. Psychological interventions should be provided to those with serious mental problems through networks or telephone visits.

Abbreviations: I-S = interpersonal sensitivity, O-C = obsessive compulsiveness, P-A = phobic anxiety, P-I = paranoid ideation, SCL-90 = Symptom Checklist 90.

Keywords: community healthcare workers, COVID-19, mental health

1. Introduction
Coronavirus disease 2019 (COVID-19) has rapidly spread across China and many countries worldwide due to its strong infectivity and high incidence of crowd susceptibility. COVID-19 can spread via cough or respiratory droplets, contact with bodily fluids or contaminated surfaces, and aerosol propagation.[1,2] According to the guidelines by the National Health Commission of the People’s Republic of China, pneumonia caused by COVID-19 is included as a Group B infectious disease; however, the current guidelines indicate that COVID-19 is a Group A infectious disease, which is a category reserved for highly infectious pathogens, such as cholera and plague.[3] Currently, the main source of infection is those infected with the virus, and asymptomatic carriers may be infectious. Recent case analyses show that even after recovery from acute illness, patients can shed high amounts of the virus and infect others. The incubation time of SARS-CoV-2 is approximately 4.5 to 15.6 days.[3] On January 23, 2020, the Chinese government shut down Wuhan, suspending public transportation and subway services. The residents were required to wear masks in public places and quarantine at home.[4] As of January 26, 2020, 30 provinces initiated a level-1 public health emergency response to control COVID-19. Isolation, quarantine, social distancing, and community containment played a pivotal role in public health measures during the COVID-19 outbreak. Fever observation rooms have been established at stations, airports, and ports to detect the body temperature of passengers entering and leaving the area and implement observation/registration of those...
suspected of having COVID-19. In accordance with the law, the government is adopting compulsory measures to restrict all types of the congregation, such as limiting going out and partying, and people must wear masks outside to ensure public health safety during the outbreak.

The first batch of cases subsequently identified had no exposure to or any relationship with the Huanan Wholesale Market of Wuhan; thus, the person-to-person transmission was confirmed. Moreover, nosocomial infections in some healthcare workers were reported. In a case series of 138 patients treated in a Wuhan hospital, 40 patients were healthcare workers. Another patient undergoing surgery in a hospital in Wuhan infected 14 healthcare workers before fever onset. As of February 25, 2020, in total, 3387 healthcare workers had become infected, and 18 died. Outside of China, Singapore reported the first 25 locally transmitted cases, and 17 cases were likely related to occupational exposure.

During the COVID-19 outbreak, the primary care system has adopted actions, such as active monitoring and screening, initial screening of patients with fever, door-to-door follow-up and home isolation of close contacts and confirmed patients after discharge, investigation of suspected close contacts, transport of confirmed/suspected patients to designated, isolated hospitals, and so on. Because community-based professionals serve a large population in different workplaces, they are at a higher risk of occupational exposure than the general population. As of February 11, 2020, the government of Sichuan Province reported 436 confirmed cases with 1 death. The rapid spread of the disease, isolation, and overwhelming and sensational news headlines and images increase feelings of helplessness, fear, anxiety, depression, guilt, and nervousness. Nearly 4 million medical personnel involved in primary care in China play important roles in the prevention and control of the COVID-19 epidemic.

In general, there is a severe shortage of protective equipment, such as disposable surgical masks/N95 respirators, face shields, goggles, gowns, and gloves. Many healthcare workers at the front lines of hospitals and public health services are at risk of infection while caring for patients who are seriously ill, fearful, or bereaved. As a result of long working hours and high work intensity, their bodies and minds are under great pressure and burden. In addition to physical exhaustion, healthcare workers also experience psychological pressures, such as frustration, depression, helplessness, anxiety, and fear, similar to the general population. Recently, many studies have investigated public health; however, few studies explored the relationship between variables and mental health in community healthcare workers in mainland China. Medical staff working in the community have expended considerable effort during the COVID-19 outbreak; however, their roles are underappreciated, and limited attention is paid to their physical and mental health. The present study investigated the psychological crisis of community healthcare workers in mainland China at the front line of preventing COVID-19 spread in an attempt to attract more attention to these professionals and offer solutions to improve their mental health status.

2. Subjects and methods

2.1. Study design

A cross-sectional study design was applied.

2.2. Participant demographics

Convenience sampling was used. All healthcare workers who worked in a community hospital in Sichuan Province, China, between February 8 and 18, 2020, were initially considered for inclusion. Eighteen community hospitals in Sichuan Province were selected. Eight of these community hospitals were located in Chengdu (the capital city), and 10 were located in other cities in Sichuan Province. In total, 450 healthcare workers were invited to participate in the survey. The inclusion criteria were as follows: (1) signed a contract with the community; (2) engaged in frontline work and worked for the community for more than 1 year; (3) possessed a work license; and (4) agreed to participate in this investigation. Participants were excluded if they were taking drugs, such as anxiolytics or antidepressants.

2.3. Ethics committee approval and patient consent

The Ethics Committee of West China Hospital Sichuan University approved this study and its methods in February 2020 under approval number 2020(325). All participants provided signed informed consent.

2.4. Data collection

For the data collection, the following two questionnaires were given to each participant: a demographic data survey and Symptom Checklist 90 (SCL-90). The electronic questionnaires were provided to the participants through links and quick response codes. The respondents completed and submitted the questionnaires online. The database was built using EpiData 3.1 software (EpiData–Comprehensive Data Management and Basic Statistical Analysis System, EpiData Association, Odense, Denmark), and we double-checked and input the data.

2.4.1. Demographic data. The demographic data, including information regarding sex, age, work location, educational background, marital status, the presence of children, history of chronic disease, type of workers, type of contract, working years, job title, personal monthly income, family monthly income, participation in a public health emergency before COVID-19, and occupational risk of exposure to COVID-19 were collected based on a self-designed questionnaire. The assessment of the occupational exposure risk depends on the degree of working exposure to infected or suspected patients; for example, if a healthcare professional works at a fever clinic or epidemic area, his/her occupational risk of exposure to COVID-19 is very high.

2.4.2. Symptom Checklist 90. This study adopted the SCL-90, which was developed by Derogatis et al. and translated into Chinese by Wang et al. The Cronbach α coefficient of the factors of SCL-90 ranges from 0.77 to 0.99 indicating good reliability. The questionnaire includes 90 items divided into the following 10 factors: somatization, obsessive compulsiveness (O-C), interpersonal sensitivity (I-S), depression, anxiety, hostility, phobic anxiety (P-A), paranoid ideation (P-I), psychoticism, and others (sleeping and eating). The severity of each item is rated on a Likert 5-point scale ranging from 1 = not at all to 5 = most severe. The total score is the sum of the scores of the 90 items, and the average score of each factor equals the total score of the items included in the factor subscale divided by the number of items. If a factor’s average score is ≥2, it is positive. The number of positive items refers to the total number of items with a score ≥2 and the average score ≥2. The severity of each factor is calculated as follows: slight if ≥0.5, moderate if ≥1, severe if ≥1.5, and very severe if ≥2.
number of negative items refers to the total number of items with a score of 1. In the Chinese population, if the total score is >160, the number of positive items is >43, and if any factor’s average score is >2 points, the person is defined as SCL-90 positive and considered to possibly have mental health problems. A questionnaire with all 90 items completed is deemed valid.

2.5. Statistical analysis

SPSS software (Version 20.0, IBM Inc., Armonk, NY) was used for the statistical analyses. The quantitative data were compared with the Wilcoxon test, and the results are presented as the median and interquartile range (IQR). The qualitative data were compared with the χ²-test, and the results are presented as frequencies and percentages. Logistic regression was used to analyze the association between the SCL-90 scores and relevant factors, such as age, education, marital status, types of workers, working years, job title, manager position, contract, income, occupational risk of exposure to COVID-19, and prior participation in a public health emergency. The odds ratios and 95% confidence intervals (CIs) were calculated by logistic regression. A p-value <0.05 was considered significant.

3. Results

3.1. Demographic characteristics of the participants and SCL-90 scores

The data were collected from 18 community hospitals in Sichuan Province (8 in the capital city and 10 in other cities), and in total, 450 participants were included in this study, all of whom completed the survey (Figure 1). Among the study participants, 392 were female, 178 were doctors with a median age of 37.5 years, 201 worked in the provincial capital city Chengdu, and 275 (61.1%) had not previously participated in a public health emergency. The number of SCL-90-positive community healthcare workers was 119 (26.4%). The χ²-test was employed to compare the demographic data and number of SCL-90-positive staff. This analysis suggested that the type of workers and occupational risk of exposure to COVID-19 affected the number of SCL-90-positive personnel (P < 0.05). The doctors had a higher positive rate than the nurses and others, and healthcare workers under a high exposure risk had higher odds of being SCL-90 positive. No significant differences were observed in the other variables, as indicated in Table 1.

3.2. Comparison of SCL-90 scores with Chinese norms

In the comparison of the SCL-90 scores between healthcare workers during the COVID-19 outbreak and Chinese norms, the Wilcoxon rank-sum test showed that the healthcare workers had lower scores than ordinary Chinese workers with significant differences (P < 0.05). The factor interpersonal sensitivity (I-S) exhibited the largest deviation (Table 2).

3.3. Comparison of mental health status among different types of workers

The average SCL-90 scores of the doctors were 112.5 (IQR 97.00–138.25), with 42 positive item scores (IQR 14.00–87.00); both scores were significantly higher than those of nurses and others (P < 0.01) (Table 3). There were also significant differences among different types of workers with regard to somatization, I-S, depression, anxiety, P-I, and others (P < 0.05); again, the doctors exhibited higher scores than the nurses and others.

3.4. Comparison of the positive items of each factor among different types of workers

The χ²-test was applied to detect differences in the positive items of each factor among different types of workers. The doctors had significantly higher positive items related to somatization and others than the nurses and others (P < 0.05); the other factors were not significant (Table 4). The top 3 positive items among the doctors working in the community were O-C, others, and somatization; those among the nurses were O-C, others, and hostility; and those among others were O-C, hostility, and I-S/depression/others (Table 5).

3.5. Logistic regression analysis of multiple factors related to the SCL-90 scores

Binary logistic regression was used to analyze the SCL-90 scores of the healthcare workers. The factors included in the logistic model were sex, type of work, the presence of chronic disease, type of contract, personal monthly income, occupational risk of exposure to COVID-19, and participation in a public health emergency before COVID-19. We found that sex, type of work, and occupational risk of exposure to COVID-19 were independent risk factors among community healthcare workers for being SCL-90-positive (P < 0.05), which led to psychological problems (Table 6).

4. Discussion

COVID-19 is widespread and highly infectious. The main route of transmission is through respiratory droplets and contact, and the population is generally susceptible to COVID-19. While facing this public health emergency, healthcare workers not only work under high pressure and intensity but also cope with a tense relationship with patients.

The present study shows that healthcare workers experienced mental health problems during their fight against COVID-19 in...
Table 1
Demographic characteristics of the participants and SCL-90 scores.

Variables	n (%)	n (%)	\(x^2\)	P
Sex				
Male	58 (12.9)	11 (19.0)	1.910	0.167
Female	392 (87.1)	108 (27.6)		
Age range, y				
18-25	57 (12.7)	12 (21.1)	0.000	0.997
26-35	167 (37.1)	50 (30.0)		
36-45	134 (29.8)	32 (23.9)		
≥46	92 (20.4)	25 (27.2)		
City				
Chengdu	201 (44.7)	57 (28.4)	0.682	0.409
Other cities	249 (55.3)	62 (24.9)		
Working duration, y				
1-5	85 (18.9)	19 (22.4)	0.592	0.442
6-10	113 (25.1)	32 (28.3)		
11-15	71 (15.8)	18 (25.4)		
16-20	54 (12.0)	13 (21.1)		
>20	127 (28.2)	37 (29.1)		
Type of workers				
Doctors	178 (39.6)	62 (34.8)	5.208	0.022
Nurses	221 (49.1)	45 (23.4)		
Others	51 (11.3)	12 (23.5)		
Education				
Polytechnic school	35 (7.9)	9 (25.7)	0.130	0.718
College	246 (54.7)	65 (26.4)		
Undergraduate	166 (36.9)	45 (27.1)		
Postgraduate	3 (0.7)	0		
Job title				
Registered	45 (10.3)	8 (17.8)	0.111	0.740
Primary	210 (46.7)	50 (23.8)		
Intermediate	138 (30.7)	46 (33.3)		
Subsenior	57 (12.7)	15 (26.3)		
Manager position				
None	254 (56.4)	70 (27.6)		
Group leader	36 (8.0)	7 (19.4)	0.821	0.365
Head nurse/doctor	92 (20.4)	23 (25.3)		
Others	68 (15.1)	19 (27.9)		
Marital status				
Married	371 (82.5)	93 (25.1)	2.106	0.147
Unmarried	68 (15.1)	22 (32.4)		
Divorced	9 (2.0)	3 (33.3)		
Widowed	2 (0.4)	1 (50.0)		
Presence of children				
Yes	344 (76.4)	89 (25.9)	0.245	0.620
No	106 (23.6)	30 (28.3)		
History of chronic disease				
Yes	36 (8.0)	14 (38.9)	3.108	0.078
No	414 (92.0)	105 (25.4)		
Type of contract				
Authorized strength contract	213 (47.3)	65 (30.5)	3.517	0.061
Fixed contract	217 (48.2)	50 (23.0)		
No fixed contract	20 (4.4)	4 (20.0)		
Personal monthly income, yuan				
<3000	78 (17.3)	18 (23.1)	0.553	0.457
3000-4999	233 (51.8)	71 (30.5)		
5000-7999	126 (28.0)	27 (21.4)		
8000-9999	10 (2.2)	1 (10.0)		
≥10,000	3 (0.7)	2 (66.7)		
Family monthly income, yuan				
<3000	59 (13.1)	14 (23.7)	0.276	0.599
3000-4999	147 (32.7)	37 (25.2)		
5000-7999	135 (30.0)	40 (23.6)		
8000-9999	59 (13.1)	14 (23.7)		
≥10,000	50 (11.1)	14 (28.0)		
Occupational exposure\(^\d\)				
Low	41 (9.1)	3 (7.3)	11.540	0.001
Moderate	231 (51.3)	50 (23.8)		
High	84 (18.7)	30 (35.7)		
Very high	94 (20.9)	31 (33.0)		
Participation in public health\(^\d\)				
Yes	175 (38.9)	55 (31.4)	3.649	0.056
No	275 (61.1)	64 (23.3)		

\(^\d\) The number (percentage) of people who were SCL-90 positive.

\(^\d\) Occupational exposure = occupational risk of exposure to COVID-19.

\(^\d\) Participation in public health = participation in a public health emergency before COVID-19.
community hospitals in Sichuan Province, China, and that 26.4% of the community healthcare workers were SCL-90 positive. However, we found that the median scores of each SCL-90 factor were lower than the Chinese norms, as presented in Table 2, indicating that most participants had a good mental health status. Although another survey of healthcare workers in Wuhan showed that they had higher SCL-90 scores than the Chinese norms,[21] the findings indicated that the psychological status of healthcare workers in community hospitals in Sichuan Province was rather better than that of the healthcare workers in Wuhan. First, COVID-19 was more severe in Wuhan than in any other city in China, and medical staff members were subject to high physical and mental pressure. Second, healthcare workers in Sichuan Province may have better psychological resilience due to their experiences with treating patients after two strong earthquakes (Wenchuan magnitude 8 earthquake in 2008 and Mount Lu magnitude 7 earthquake in 2013). In addition, the healthcare workers in our study had lower scores in each factor of SCL-90.

Table 2

Comparison of SCL-90 scores during the COVID-19 outbreak and Chinese norms.

Factors	This study (n=450, median)	Chinese norms (n=1388, median)	Z	P
Average	1.18	1.44	−9.101	0.000
Somatization	1.17	1.37	−6.223	0.000
O-C	1.30	1.62	−6.534	0.000
I-S	1.11	1.65	−11.630	0.000
Depression	1.15	1.50	−9.302	0.000
Anxiety	1.10	1.39	−6.468	0.000
Hostility	1.17	1.48	−8.369	0.000
P-A	1.00	1.23	−5.250	0.000
P-I	1.00	1.43	−11.843	0.000
Psychoticism	1.05	1.29	−8.543	0.000

Average = average total score, I-S = interpersonal sensitivity, O-C = obsessive compulsiveness, P-A = phobic anxiety, P-I = paranoid ideation.

Table 3

Comparison of the total scores, factor scores, and positive item scores among different types of workers (n=450).

Dimension score	Doctors (n=178) Median (IQR)	Nurses (n=221) Median (IQR)	Others (n=51) Median (IQR)	H	P
Total	112.5 (97.00–138.25)	105 (94.00–120.50)	103 (94.00–120.00)	9.985	0.007
Positive item	42 (14.00–87.00)	27 (8.00–56.50)	24 (8.00–55.00)	10.513	0.005
Somatization	1.25 (1.00–1.58)	1.08 (1.00–1.33)	1.08 (1.00–1.33)	11.592	0.003
O-C	1.50 (1.10–1.90)	1.30 (1.10–1.60)	1.30 (1.10–1.60)	5.777	0.056
I-S	1.22 (1.00–1.56)	1.11 (1.00–1.33)	1.11 (1.00–1.33)	12.740	0.002
Depression	1.23 (1.00–1.62)	1.15 (1.00–1.38)	1.15 (1.00–1.31)	9.015	0.011
Anxiety	1.20 (1.00–1.5)	1.10 (1.00–1.3)	1.10 (1.00–1.30)	8.580	0.014
Hostility	1.17 (1.00–1.54)	1.17 (1.00–1.33)	1.17 (1.00–1.50)	5.285	0.071
P-A	1.14 (1.00–1.43)	1.00 (1.00–1.29)	1.00 (1.00–1.29)	2.765	0.251
P-I	1.17 (1.00–1.32)	1.00 (1.00–1.17)	1.00 (1.00–1.17)	8.396	0.015
Psychoticism	1.10 (1.00–1.3)	1.00 (1.00–1.2)	1.00 (1.00–1.20)	4.360	0.113
Others	1.29 (1.00–1.71)	1.14 (1.00–1.43)	1.29 (1.00–1.57)	9.847	0.007

I-S = interpersonal sensitivity, O-C = obsessive compulsiveness, P-A = phobic anxiety, P-I = paranoid ideation.

Table 4

Comparison of the positive items of each factor among different types of workers.

Factors	Doctors n (%)	Nurses n (%)	Others n (%)	x²	P
Somatization	22 (12.4)	6 (2.7)	2 (3.9)	15.435	0.000
O-C	38 (21.3)	33 (14.9)	6 (11.8)	4.021	0.134
I-S	19 (10.7)	15 (6.8)	3 (5.9)	2.391	0.303
Depression	20 (11.2)	16 (7.2)	3 (5.9)	2.552	0.279
Anxiety	11 (6.2)	8 (3.6)	1 (2.0)	2.357	0.308
Hostility	18 (10.1)	19 (8.6)	4 (7.8)	0.385	0.825
P-A	10 (5.6)	12 (5.4)	1 (2.0)	1.184	0.553
P-I	12 (6.7)	8 (3.6)	1 (2.0)	3.106	0.212
Psychoticism	7 (3.9)	7 (3.2)	0	2.038	0.361
Others	34 (19.1)	21 (9.5)	3 (5.9)	10.606	0.005

I-S = interpersonal sensitivity, O-C = obsessive compulsiveness, P-A = phobic anxiety, P-I = paranoid ideation.
than ordinary Chinese citizens during the COVID-19 outbreak, as reported by Tian et al.\cite{22} This finding may be related to the experience and occupational education of medical staff, allowing them to have a more stable state of mind than normal people, especially under circumstances of public emergency events. Despite the different degrees of psychological problems, the healthcare workers in Sichuan Province had a better mental status than ordinary people.

In addition, we found that the type of workers was an independent risk factor for psychological problems among community healthcare workers in this study. Doctors had a higher occurrence rate of mental health symptoms than nurses and others, which is not consistent with the research findings reported by Wang et al.\cite{23} but consistent with those reported by Lu et al.\cite{24} and Chan and Huak.\cite{25} This finding may be related to community doctors having higher work exposure to the virus than any other staff in the community hospital during the COVID-19 outbreak, such as working at a fever clinic for a long time. After the severe acute respiratory syndrome (SARS) outbreak, the social status of nurses improved, and good social support had a positive effect on their mental health.\cite{26} Technicians and pharmacists also had no direct contact with patients, resulting in a lower occurrence rate of mental health symptoms. Thus, the psychological status of community physicians during the COVID-19 outbreak deserves more attention. We also found that sex was a risk factor for the mental health status of community healthcare workers, and women were more likely to experience mental health symptoms than men, which is consistent with several other studies.\cite{27, 28} This finding may be related to the characteristics of sex, whereby women must bear the pressure of both family and work.\cite{27} Indeed, more attention should be paid to the mental health and anti-stress ability of women working in community hospitals.

The occupational risk of exposure to COVID-19 was also an independent risk factor for psychological problems among the community healthcare workers. Community healthcare workers with different occupational risks of exposure to COVID-19 had different levels of mental health problems; as presented in Table 1, people working under low risk had the lowest occurrence rate of positive symptoms. The present recommendations classify exposure risk as 4 levels according to Dai et al.\cite{11} According to Dai’s research, positions at a very high-risk level include working at fever clinics in epidemic areas, transferring confirmed/suspected patients, and collecting throat swab samples from suspected patients. Positions at a high-risk level include working at clinics in nonepidemic areas, transferring close contacts, and performing follow-up visits with isolated close contacts and recovered patients. Working at an outpatient/inpatient department, pharmacy or laboratory has a moderate risk level. Screening for people returning to town and performing physical examinations of workers are low-risk positions. Similar to the study by Lee et al.\cite{29} who investigated healthcare workers during the Middle East respiratory syndrome (MERS) outbreak, staff who performed more MERS-related work had more severe mental health problems, even over time. During the COVID-19 outbreak, community healthcare workers are at the front line of disease prevention and control, and managers should pay attention to the psychological problems of those in these positions, especially persons in positions of high occupational exposure risk. More shifts and frequent breaks should be provided.

Wang et al.\cite{23} reported that the top 3 factors were O-C, depression, and somatization among doctors and O-C, hostility, and somatization among nurses, which slightly differs from our findings; this outcome may be due to differences in the survey sample characteristics. Measures should be selected according to specific characteristics to promote the mental health of community healthcare workers during the COVID-19 outbreak.

COVID-19 is a new, extremely contagious disease, and public health measures, such as early detection and quarantining patients, can be effective in containing the outbreak. Therefore, maintaining the mental health of people, especially medical workers, is important. Long and intensive work, great pressure and fear can trigger mental health disorders, such as anxiety,

Table 5

Top 3 positive items among different types of workers.

Type of workers	Ranked first factor n (%)	Ranked second factor n (%)	Ranked third factor n (%)
Doctors	O-C 38 (21.3)	Others 34 (19.1)	Somatization 22 (12.4)
Nurses	O-C 33 (14.9)	Others 21 (9.5)	Hostility 19 (8.6)
Others	O-C 6 (11.8)	Hostility4 (7.8)	I-S/depression/others 3 (5.9)

I-S = interpersonal sensitivity, O-C = obsessive compulsiveness.

Table 6

Logistic regression analysis of the risk factors of the mental health status of community healthcare workers.

Variable	B	Std. error	Wald	P	OR (95% CI)
Sex	-1.150	0.419	7.521	0.006	0.317 (0.139, 0.720)
Type of workers					
Others	Reference				
Nurses	0.826	0.430	3.691	0.055	2.285 (0.983, 5.308)
Doctors	-0.461	0.429	1.158	0.282	0.630 (0.272, 1.461)
Occupational exposure	-0.333	0.137	5.868	0.015	0.717 (0.548, 0.938)
Constant	1.023	0.107	91.603	0.000	2.782

Occupational exposure = occupational risk of exposure to COVID-19.
depression, and posttraumatic stress disorder.16 Schwartz et al.40 reported that healthcare workers’ anxiety level increased following news of medical workers who were affected or died in 2003 during the SARS outbreak in Taiwan. In addition, a range of psychiatric morbidities was reported during the early phase of the SARS outbreak, including persistent depression, anxiety, panic attacks, psychomotor excitement, psychotic symptoms, delirium, and even suicide.31–33

Furthermore, long exposure to many infected patients or suspected cases increases the risk of infection, which, in turn, worsens mental health problems. These at-risk groups should also be given adequate social and mental health support. To fight against COVID-19, effective actions must be taken. First, the Chinese government showed a clear attitude and exacted decisive measures for COVID-19 epidemic control, which strengthened the faith of healthcare workers. State media should respond to the concerns of public opinion, clarify the facts and publicize the truth in a timely manner to avoid panic caused by false news regarding the epidemic situation. Second, establishing and improving psychological coping mechanisms are urgent. A new Internet-based psychological crisis intervention model integrating physicians, psychiatrists, psychologists, and social workers into Internet platforms to provide psychological interventions to people who experienced mental health problems during the COVID-19 outbreak is necessary.34 Third, healthcare workers are encouraged to face their stress appropriately so that positive actions adopted to overcome the problem can be effective.35 Additionally, similar to the general population, healthcare workers working in community hospitals are vulnerable to disease and rumors. Jiang et al.36 even found that front-line healthcare workers had the same mental health status as patients with severe symptoms of COVID-19. A member of parliament in Singapore highlighted what he termed disgraceful actions against healthcare workers stemming from fear and panic,37 similar to actions in China. A nurse was forbidden from entering the community after a night shift because people thought that she might spread the virus to others. Medical personnel may lack awareness of the COVID-19 outbreak, and coupled with the lack of protective equipment, high work intensity, great pressure, easy overfatigue, nervousness, and anxiety, resistance can decline. Most community healthcare workers lack experience in the prevention and control of such a contagious disease.38 In our study, only 38.9% of the study participants had previously experienced a public health emergency; these people should receive more attention to solve their psychological crises.

The COVID-19 outbreak will be a long-term battle. These at-risk groups should also be given adequate social and mental health support, which are needed but sometimes overlooked. We should focus on the emergency response to community healthcare workers and build a stress response intervention system in the future. Furthermore, managers should pay more attention to community hospital staff’s mental health. It is necessary to provide vocational training and regular assessment. For those who have serious mental problems, psychological interventions should be provided through networks or telephone visits.

In summary, this study found that community healthcare workers experienced psychological problems during the outbreak of COVID-19 in China. Doctors had the highest occurrence rate of mental health symptoms compared with nurses and others. Furthermore, the mental health status of community healthcare workers was influenced by their sex and occupational risk of exposure to COVID-19. More attention should be paid to the mental health of these individuals, and this problem should be solved with effective actions.

5. Limitations

This study had several limitations that may have affected the outcomes. First, recruitment through convenience sampling limits the generalizability of the results. Second, the study data were obtained from a single province in southwestern China, resulting in a rather small sample size. The findings may have been more robust if we had obtained samples from more provinces.

Acknowledgments

We thank all the healthcare workers who participated in the study.

Author contributions

Conceptualization: Ronghua Fang.
Data curation: Jianshu Zhang, Xiaoru Xu.
Investigation: Jianshu Zhang, Xiaoru Xu.
Methodology: Ronghua Fang.
Project administration: Xuexue Deng.
Supervision: Xuexue Deng.
Writing – original draft: Jianshu Zhang, Hong Liu.
Writing – review & editing: Jianshu Zhang, Ronghua Fang.

References

[1] Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 2020;382:1199–207.
[2] Lauer SA, Grantz KH, Bi Q, et al. The incubation period of Coronavirus Disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med 2020;172:577–82.
[3] China National Health Commission. Announcement of national health commission of the People’s Republic of China [in Chinese]. Available at: http://www.nhc.gov.cn/jkj/s7916/202001/44a3b8245e8049d2837a4f27529cd386.shtml [accessed February 6, 2020].
[4] Wuhan Government. Announcement of the prevention and control headquarters of pulmonary infection by novel corona virus [inChinese]. Available at: http://www.wuhan.gov.cn/hbgovinfo/zwgk_8263/rzzg/202001/t20200112_304065.html [accessed February 6, 2020]; http://www.nhc.gov.cn/xcs/s3574/202002/s3297d7ab7a2f4690a1d35b66982333af3.shtml [accessed 19 February 2020].
[5] Chan JF, Yuan S, Koh KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020;395:514–23.
[6] Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: adescriptive study. Lancet 2020;395:507–13.
[7] Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020;323:1061–9.
[8] WHO. Novel coronavirus (2019-nCoV) situation report-2. January 22, 2020. Available at: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200122-sitrep-2-2019-ncov.pdf [accessed February 6, 2020].
[9] Alice Su. Doctors and Nurses fighting Coronavirus in China die of both infection and fatigue. Los Angeles Times (February 25, 2020). Available at: https://www.latimes.com/world-nation/story/2020-02-25/doctors-fighting-coronavirus-in-china-die-of -both-infection-and-fatigue [accessed March 20,2020].
[10] Ministry of Health Singapore Press Releases. Available at: https://www.moh.gov.sg [accessed February 14, 2020].
[11] Dai H, Fang R, Lei Y, et al. Recommendation on exposure risks and protection of primary care professionals in coronavirus disease outbreak. Sichuan Med J 2020;41:1–3. [in Chinese].

[12] The people's government of Sichuan Province. As of 24 hours on 11 February, a total of 436 confirmed cases of pneumonia from novel coronavirus have been reported in our province [in Chinese] Available at: http://www.sc.gov.cn/10462/12771/2020/02/12/abf7280686b4a1096cc2d875b26c169b.shtml [accessed March 20, 2020].

[13] Zhou X. Psychological crisis interventions in Sichuan Province during the 2019 Novel Coronavirus (2019-nCoV) outbreak. Psychiatry Res 2020;286:112895.

[14] Shigemura J, Ursano R, Morganstein J, et al. Public responses to the 2014 Ebola outbreak and mental health consequences and target populations. Psychiatry Clin Neurosci 2020;74:281–2.

[15] Bao Y, Sun Y, Meng S, et al. 2019-nCoV epidemic: address mental health care to empower society. Lancet 2020;395:e37–8.

[16] Shultz JM, Baingana F, Neria Y. The 2014 Ebola outbreak and mental health: current status and recommended response. JAMA 2015;313:567.

[17] Derogatis LR, Lipman RS, Covi L. SCL-90: an outpatient psychiatric rating scale-preliminary report. Psychopharmacol Bull 1973;9:13–28.

[18] Wang Z. Symptom checklist (SCL-90). Shanghai Psychiatry 1984;2:67–70. [in Chinese].

[19] Li X, Zai J, Wang X, et al. Potential of large scale mediumsized regional general hospital in Singapore. Occup Med 2004;54:190–6.

[20] Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-nCoV in Japan: mental health consequences and target populations. Psychiatry Clin Neurosci 2020;74:281–2.

[21] Wang J, Cheng YQ, Zhou Z, et al. Psychological status of Wuhan medical staff in fighting against COVID-19. Med J Wuhan Univ 2020;41:547–50.

[22] Tian F, Li H, Tian S, et al. Psychological symptoms of ordinary Chinese citizens based on SCL-90 during the level I emergency response to COVID-19. Psychiatry Res 2020;288:112992.

[23] Wang Z, Ye Y, Shen Z, et al. The analysis of symptom checklist (SCL-90) for female medical staff. Chin J Occup Dis 2018;36:745–8. [in Chinese].

[24] Lu YC, Shu BC, Chang YY, et al. The mental health of hospital workers dealing with severe acute respiratory syndrome. Psychother Psychosom 2006;75:370–5.

[25] Chan AO, Hauk CY. Psychological impact of the 2003 severe acute respiratory syndrome outbreak on health care workers in a medium sized regional general hospital in Singapore. Occup Med 2004;54:190–6.

[26] Mak WW, Law RW, Woo J, et al. Social support and psychological adjustment to SARS: the mediating role of self-care self-efficacy. Psychol Health 2009;24:161–74.

[27] Luo X, Tian Z, Tao G, et al. Investigation on mental health status of primary healthcare staffs in northern areas of Jiangsu Province. Jiangsu J Prevent Med 2018;029:396–9. [in Chinese].

[28] Zahlawi T, Roome AB, Chan CW, et al. Psychosocial support during displacement due to a natural disaster: relationships with distress in a lower-middle income country. Int Health 2019;11:472–9.

[29] Lee SM, Kang WS, Cho AR, et al. Psychological impact of the 2015 MERS outbreak on hospital workers and quarantined hemodialysis patients. Compreh Psychiatry 2018;87:123–7.

[30] Schwartz J, King CC, Yen MY. Protecting health care orkers during the COVID-19 coronavirus outbreak – lessons from Taiwan’s SARS response. Clin Infect Dis 2020;71:858–60.

[31] Wang Y, Yang Y, Li W, et al. Timely mental health care for the 2019 novel coronavirus outbreak is urgently needed. Lancet Psychiatry 2020;7:228–9.

[32] Mauder R, Hunter J, Vincent L, et al. The immediate psychological and occupational impact of the 2003 SARS outbreak in a teaching hospital. CMAJ 2003;168:1245–51.

[33] Wong TW, Yau JK, Chan CL, et al. The psychological impact of severe acute respiratory syndrome outbreak on healthcare workers in emergency departments and how they cope. Eur J Emerg Med 2005;12:13–8.

[34] Zhang J, Wu W, Zhao Z, et al. Recommended psychological crisis intervention response to the 2019 novel coronavirus pneumonia outbreak in China: a model of West China Hospital. Precis Clin Med 2020;3:3–8.

[35] Chen H, Zhou Q, Liu X, et al. Analysis of stress situation of medical staff and correspondent strategies in the COVID-19 epidemic situation. Chin J Occup Dis 2020;30:566–70.

[36] Wang J, Zhou M, Liu F. Exploring the reasons for healthcare workers infected with novel coronavirus disease 2019 (COVID-19) in China. J Hosp Infect 2020;105:100–1.