HEIGHT BOUND AND PREPERIODIC POINTS
FOR JOINTLY REGULAR FAMILIES OF RATIONAL MAPS

CHONG GYU LEE

Abstract. Silverman [14] proved a height inequality for jointly regular family of rational maps and the author [10] improved it for jointly regular pairs. In this paper, we provide the same improvement for jointly regular family; let $h : \mathbb{P}^n(\mathbb{Q}) \to \mathbb{R}$ be the logarithmic absolute height on the projective space, let $r(f)$ be the D-ratio of a rational function f which is defined in [10] and let \{f_1, \ldots, f_k\} be a finite set of rational maps which is defined over a number field K. If the intersection of all indeterminacy loci of f_i is empty, then

\[\sum_{i=1}^k \deg f_i h(f_i(P)) > \left(1 + \frac{1}{r}\right) f(P) - C \]

where $r = \max_i r(f_i)$.

1. Introduction

Let K be a number field and $h : \mathbb{P}^n(K) \to \mathbb{R}$ be the logarithmic absolute height on the projective space. If $f : \mathbb{P}^n(K) \to \mathbb{P}^n(K)$ is a morphism defined on K, then we can make a good estimate of the height $h(P)$ with $h(f(P))$. We can define the degree of given morphism algebraically;

Definition 1.1. Let $g : V(K) \to W(K)$ be a rational map. Then, we define the degree of f to be \[\deg g := [\mathcal{C}(V(K)) : g^*\mathcal{C}(W(K))] \]

where $\mathcal{C}(V(K)), \mathcal{C}(W(K))$ is the function field on $V(K)$ and $W(K)$ respectively.

If $f : \mathbb{P}^n(K) \to \mathbb{P}^n(K)$ is a morphism on a projective space, we can find the degree from geometric information;

\[f^*H = \deg f \cdot H \text{ in } \text{Pic}(\mathbb{P}^n). \]

Then, the functorial property of the Weil height machine will prove the Northcott’s theorem. The author refer [15, Theorem B.3.2] to the reader for the details of the Weil height machine.

Theorem 1.2 (Northcott [12]). If $f : \mathbb{P}^n(\mathbb{Q}) \to \mathbb{P}^n(\mathbb{Q})$ is a morphism defined over a number field K, then there are two constants C_1 and C_2, which are independent of point P, such that

\[\frac{1}{\deg f} h(f(P)) + C_1 > h(P) > \frac{1}{\deg f} h(f(P)) - C_2 \]

Date: April 27, 2010.

1991 Mathematics Subject Classification. Primary: 37P30 Secondary: 11G50, 32H50, 37P05.

Key words and phrases. height, rational map, preperiodic points, jointly regular family.
for all \(P \in \mathbb{P}^n(\overline{\mathbb{Q}}) \).

If \(f \) is not a morphism but a rational map, then the functoriality breaks down; two height functions \(h_f \cdot H(P) \) and \(h_H(f(P)) \) are not equivalent. Hence, Northcott’s Theorem is not valid for rational maps. (However, we still have \(h(P) > \frac{1}{\deg f} h(f(P)) + C_2 \) by the triangular inequality. See [15, Proposition B.7.1].)

Silverman [14] suggested a way of studying height for rational maps using jointly regular family.

Definition 1.3. Let \(S = \{ f_1, \ldots, f_k \mid f_i : \mathbb{P}^n(\overline{\mathbb{K}}) \rightarrow \mathbb{P}^n(\overline{\mathbb{K}}) \} \) and \(Z(f) \) be the indeterminacy locus of \(f \). We say \(S \) is jointly regular when
\[
\bigcap_{i=1}^k Z(f_i) = \emptyset.
\]
We also say that a finite set of affine morphisms \(S' = \{ g_1, \ldots, g_k \mid g_i : \mathbb{A}^n(\mathbb{K}) \rightarrow \mathbb{A}^n(\mathbb{K}) \} \) is jointly regular if corresponding set of rational maps \(S = \{ f_i \mid f_i \text{ is the meromorphic extension of } g_i \in S' \} \) is jointly regular.

Then, a jointly regular set will bring an upper bound of \(h(P) \);

Theorem 1.4 (Silverman, 2006). Let \(\{ f_1, \ldots, f_k \mid f_i : \mathbb{A}^n(\mathbb{K}) \rightarrow \mathbb{A}^n(\mathbb{K}) \} \) be a jointly regular family of rational maps defined over \(K \). Then, there is a constant \(C \) satisfying
\[
\sum_{l=1}^k \frac{1}{\deg f_l} h(f_l(P)) > h(P) - C
\]
for all \(P \in \mathbb{A}^n(\overline{\mathbb{K}}) \).

In this paper, we will improve Theorem 1.4.

Theorem 1.5. Let \(H \) be a hyperplane of \(\mathbb{P}^n(\overline{\mathbb{K}}) \), let \(S = \{ f_1, \ldots, f_k \mid f_i : \mathbb{A}^n(\mathbb{K}) \rightarrow \mathbb{A}^n(\mathbb{K}) \} \) be a jointly regular family of affine automorphisms defined over a number field \(K \) and let \(r(f) \) be \(D \)-ratio of \(f \). Suppose that \(S \) has at least two elements and \(r = \max_{i} r(f_i) \). Then, there is a constant \(C \) satisfying
\[
\sum_{l=1}^k \frac{1}{\deg f_l} h(f(P)) > \left(1 + \frac{1}{r} \right) h(P) - C
\]
for all \(P \in \mathbb{A}^n(\overline{\mathbb{K}}) \).

Thus, Silverman’s result for preperiodic points [14, Theorem 4] is also improved;

Theorem 1.6. Let \(S = \{ f_1, \ldots, f_k \mid f_i : \mathbb{A}^n(\mathbb{K}) \rightarrow \mathbb{A}^n(\mathbb{K}) \} \) be jointly regular and let \(\Phi \) be the monoid of rational maps generated by \(S \). Define
\[
\delta_S := \left(\frac{1}{1 + 1/r} \right) \sum_{l=1}^k \frac{1}{\deg f_l}
\]
where $r = \max\{r(f_i)\}$.

If $\delta_S < 1$, then,

$$\text{Preper}(\Phi) := \bigcap_{f \in \Phi} \text{Preper}(f)$$

is a set of bounded height.

From now on, we will let K be a number field, let H be an infinity hyperplane of \mathbb{A}^n in the projective space $\mathbb{P}^n(K)$ and let f be an affine automorphism unless stated otherwise.

Acknowledgements. It is a part of my Ph.D. dissertation. The author would like to thank my advisor Joseph H. Silverman for his overall advice.

2. Preliminaries

We need two main ingredients of this paper, the theory of resolution of indeterminacy and the D-ratio of rational maps. For details, the author refers readers to [11] and [3, II.7] for the resolution of indeterminacy and blowups, and [10] for the D-ratio.

2.1. Blowup and resolution of indeterminacy.

Theorem 2.1 (Resolution of Indeterminacy). Let $f : V \to W$ be a rational map between proper varieties such that V is nonsingular. Then there is a proper nonsingular variety \tilde{V} with a birational morphism $\pi : \tilde{V} \to V$ which satisfy that $\phi = f \circ \pi : \tilde{V} \to W$ is a morphism.

For notational convenience, we will define the followings;

Definition 2.2. Let $f : \mathbb{P}^n \dashrightarrow \mathbb{P}^n$ be a rational map and let V be a blowup of \mathbb{P}^n with a birational morphism $\pi : V \to \mathbb{P}^n$. We say that a pair (V, π) is a resolution of indeterminacy of f if $f \circ \pi : V \to \mathbb{P}^n$ is extended to a morphism ϕ. And we call the extended morphism $\phi := f \circ \pi$ a resolved morphism of f.

Definition 2.3. Let $\pi : W \to V$ be a birational morphism. We say π is a monoidal transformation if its center scheme is a smooth irreducible subvariety.

Theorem 2.4 (Hironaka). Let $f : X \to Y$ be a rational map between proper varieties such that V is nonsingular. Then, there is a sequence of proper varieties X_0, \ldots, X_m such that

1. $X_0 = X$.
2. $\rho_i : X_i \to X_{i-1}$ is a monoidal transformation.
3. If T_i is the center of blowup of X_i, then $\rho_0 \circ \cdots \circ \rho_i(T_i) \subset Z(f)$ on X.
4. f is extended to a morphism $\tilde{f} : X_m \to Y$ on X_m.
(5) Consider the composition of all monoidal transformation: \(\rho : X_m \to X \). Then, the underlying set of the center of blowup for \(X_m \) is exactly \(Z(f) \) on \(X \).

Proof. See [4, Question (E) and Main Theorem II]. \(\square \)

Definition 2.5. Let \(\pi : V \to \mathbb{P}^n \) be a birational morphism. Then, we define \(\mathfrak{I} \) is the center scheme of \(\pi \) if its corresponding ideal sheaf \(\mathcal{S} \) generates \(V \):

\[
V = \text{Proj} \bigoplus_{d \geq 0} \mathcal{S}^d.
\]

Definition 2.6. Let \(\pi : \tilde{V} \to V \) be a birational morphism with center scheme \(\mathfrak{I} \) and let \(D \) be an irreducible divisor of \(V \). We define the proper transformation of \(D \) by \(\pi \) to be

\[
\pi^# D = \pi^{-1}(D \cap U)
\]

where \(U = V - Z(\mathfrak{I}) \) and \(Z(\mathfrak{I}) \) is the underlying subvariety made by the zero set of the ideal \(\mathfrak{I} \).

2.2. \(\mathbb{A}^n \)-effectiveness and the \(D \)-ratio.

Proposition 2.7. Let \(\pi : V \to \mathbb{P}^n \) be a birational morphism which is a composition of monoidal transformation. Then, \(\text{Pic}(V) \) is a free \(\mathbb{Z} \)-module. Furthermore, let \(H \) be a hyperplane on \(\mathbb{P}^n \) and let \(E_i \) be the proper transformation of the exceptional divisor of \(i \)-th blowup. Then,

\[
\{ H_V = \pi^# H, E_1, \cdots, E_r \}
\]

is a linearly independent generator of \(\text{Pic}(V) \).

Proof. [3, Exer.II.7.9] shows that

\[
\text{Pic}(\tilde{X}) \simeq \text{Pic}(X) \oplus \mathbb{Z}
\]

if \(\pi : \tilde{X} \to X \) is a monoidal transformation. More precisely,

\[
\text{Pic}(\tilde{X}) = \{ \pi^# D + nE \mid D \in \text{Pic}(X) \}.
\]

Now suppose that \(X_0 = \mathbb{P}^n \), \(\rho_i : X_i \to X_{i-1} \) is a monoidal transformation. Then, we get the desired result. \(\square \)

Definition 2.8. Let \(V \) be a blowup of \(\mathbb{P}^n \), \(H \) be a fixed hyperplane of \(\mathbb{P}^n \) and

\[
\text{Pic}(V) = \mathbb{Z}H_V \oplus \mathbb{Z}E_1 \oplus \cdots \oplus \mathbb{Z}E_r.
\]

Then, we define the \(\mathbb{A}^n \)-effective cone

\[
\text{AFE}(V) = \mathbb{Z}^{\geq 0}H_V \oplus \mathbb{Z}^{\geq 0}E_1 \oplus \cdots \oplus \mathbb{Z}^{\geq 0}E_r
\]

where \(\mathbb{Z}^{\geq 0} \) is the set of nonnegative integers. We say a divisor \(D \) of \(V \) is \(\mathbb{A}^n \)-effective if \(D \in \text{AFE}(V) \) and denote it by

\[
D \succ 0.
\]

Moreover, we will say

\[
D_1 \succ D_2
\]

if \(D_1 - D_2 \) is \(\mathbb{A}^n \)-effective.
Proposition 2.9. Let V be a blowup of \mathbb{P}^n with birational morphism $\pi : V \to \mathbb{P}^n$ and $D, D_i \in \text{Pic}(V)$.

1. (Effectiveness) If D is \mathbb{A}^n-effective, then D is effective.
2. (Boundedness) If D is \mathbb{A}^n-effective, then $h_D(P)$ is bounded below on $V \setminus (H_V \cup (\bigcup_{i=1}^r E_i))$.
3. (Transitivity) If $D_1 \triangleright D_2$ and $D_2 \triangleright D_3$, then $D_1 \triangleright D_3$.
4. (Functoriality) If W is a blowup of V, a map $\rho : W \to V$ is a birational morphism and $D_1 \triangleright D_2$, then $\rho^*D_1 \triangleright \rho^*D_2$.

Proof. See [10, Proposition 3.3]

Definition 2.10. Let $f : \mathbb{P}^n \dashrightarrow \mathbb{P}^n$ be a rational map with $Z(f) \subset H$, let (V, π_V) be a resolution of indeterminacy of f and let ϕ_V be a resolved morphism.

\[
\begin{array}{c}
V \\
\pi_V \\
\mathbb{P}^n \xrightarrow{f} \mathbb{P}^n \\
\phi_V
\end{array}
\]

Suppose that

\[
\pi_V^*H = a_0H_V + \sum_{i=1}^r a_iE_i \quad \text{and} \quad \phi_V^*H = b_0H_V + \sum_{i=1}^r b_iE_i
\]

where a_i, b_i are nonnegative integers. If all b_i are nonzero for all i satisfying $a_i \neq 0$, we define the D-ratio of ϕ_V,

\[
r(\phi_V) = \deg \phi_V \cdot \max_i \left(\frac{a_i}{b_i} \right).
\]

Otherwise; if there is an i satisfying $a_0 \neq 0$ and $b_i = 0$, define

\[
r(\phi_V) = \infty.
\]

Lemma 2.11. Let (V, π_V) and (W, π_V) be resolutions of indeterminacy with resolved morphisms $\phi_V = f \circ \pi_V$ and $\phi_W = f \circ \pi_W$ respectively.

\[
\begin{array}{c}
W \\
\pi_W \\
\mathbb{P}^n \xrightarrow{f} \mathbb{P}^n \\
\phi_W \quad \phi_V
\end{array} \quad \begin{array}{c}
V \\
\pi_V \\
\mathbb{P}^n \xrightarrow{f} \mathbb{P}^n
\end{array}
\]

Then,

\[
r(\phi_V) = r(\phi_W).
\]

Proof. See [10, Lemma 4.3]

Definition 2.12. Let $f : \mathbb{P}^n \dashrightarrow \mathbb{P}^n$ be a rational map with $Z(f) \subset H$. Then, we define the D-ratio of f,

\[
r(f) = r(\phi_V)
\]

for any resolution of indeterminacy (V, π_V) of f with resolved morphism ϕ_V.
Proposition 2.13. Let \(f, g : \mathbb{P}^n \rightarrow \mathbb{P}^n \) be rational maps with \(Z(f), Z(g) \subset H \). Then,

1. \(r(f) = 1 \) if \(f \) is a morphism.
2. \(r(f) \in [1, \infty] \).
3. \(\frac{r(f)}{\deg f} \cdot \frac{r(g)}{\deg g} \geq \frac{r(g \circ f)}{\deg(g \circ f)} \).
4. If \(g \) is a morphism and \(f \) is a rational map on \(\mathbb{P}^n \), then \(r(g \circ f) = r(f) \).

Example 2.14. Let \(f : \mathbb{A}^n \rightarrow \mathbb{A}^n \) be an affine automorphism with the inverse map \(f^{-1} : \mathbb{A}^n \rightarrow \mathbb{A}^n \). Then, \(r(f) = \deg f \times \deg f^{-1} \). (For details, see [9].) For example, a Hénon map

\[
\begin{align*}
 f_H(x, y, z) &= (z, x + z^2, y + x^2) \\
 f_H^{-1}(x, y, z) &= (y - x^2, z - (y - x^2)^2, x).
\end{align*}
\]

Thus,

\[
r(f_H) = r(f_H^{-1}) = \deg f_H \times \deg f_H^{-1} = 2 \times 4 = 8.
\]

Example 2.15. Let \(f[x, y, z] = [x^2, yz, z^2] \). Then, the indeterminacy locus is \(P = [0, 1, 0] \). Then, the blowup \(V \) along closed scheme corresponding ideal sheaf \((yz, x^2) \) will resolves indeterminacy, which is a successive blowup along \(P \) and \(H^\# \cap E_1 \).

\[
\begin{align*}
 f_1[x, y, z][x_1, z_1] &= [x_1x, z_1y, z_1z] \\
 \phi &= f_2[x, y, z][x_1, z_1][x_2, z_2] = [x_2, z_2y, x_2z_1^2]
\end{align*}
\]

Let \(E_1, E_2 \) be the exceptional divisors on each step.

Then, the intersection number \(E_2^2 = -1, E_1^2 = -2, (H^\#)^2 = -1, H^\# \cdot E_1 = 0 \) and \(H^\# \cdot E_2 = E_1 \cdot E_2 = 1 \)

Furthermore,

\[
\begin{align*}
 H^\# \cdot \phi^*H &= \phi_*H^\# \cdot H = 0, \\
 E_1 \cdot \phi^*H &= \phi_*E_1 \cdot H = 0, \\
 E_2 \cdot \phi^*H &= \phi_*E_2 \cdot H = 1.
\end{align*}
\]

Since \(\text{Pic}(V) = \langle H^\#, E_1, E_2 \rangle \), we may assume that

\[
\phi^*H = aH^\# + bE_1 + cE_2
\]
Then, by previous facts,
\[\phi^* H \cdot H^# = -a + c = 0, \quad \phi^* H \cdot E_1 = a - 2b = 0. \]

Therefore,
\[\phi^* H = 2H^# + E_1 + 2E_2, \quad \pi^* H = H^# + E_1 + 2E_2 \]
and hence
\[r(f) = 2 \times 1 = 2 \]

3. Jointly Regular Families of Rational maps

Proof of Theorem 1.5. For notational convenience, let
- \(d_l = \deg f_l \)
- \(r_l = r(f_l) \)
- \((V_l, \pi_l)\) be a resolution of indeterminacy of \(f_l \) constructed by Theorem 2.4; assume \(\pi_l \) is a composition of monoidal transformation and \(\{ \pi_l^# H = H_{V_l}, E_{l1}, \ldots, E_{ls_l} \} \) is the generator of \(\text{Pic}(V_l) \) given by Proposition 2.7
- \(\phi_l \) be the resolved morphism of \(f_l \) on \(V_l \).

\[\pi_l^* H = a_0 H_{V_l} + \sum_{i=1}^{s_l} a_{li} E_{li} \quad \text{and} \quad \phi_l^* H = b_0 H_{V_l} + \sum_{i=1}^{s_l} b_{li} E_{li} \]
in \(\text{Pic}(V_l) = \mathbb{Z}\pi_l^# H \oplus \mathbb{Z}E_{l1} \oplus \cdots \oplus \mathbb{Z}E_{ls_l} \).

We can easily check that \(a_0 = 1 \) and \(b_0 = d_l \) from \(\pi_{ls_l} \phi_l^* H = H \) and \(\pi_{ls_l} \phi_l^* H = \text{deg} \phi_l \cdot H \) For details, see [10, Proposition 4.5.(2)].

Let \(T_l \) be the center scheme of blowup for \(V_l \) and \(W \) is the blowup of \(\mathbb{P}^n \) whose center scheme is \(\sum T_l \). Then, \(W \) is a blowup of \(V_l \) for all \(l \). Furthermore, since the underlying set of \(T_l \) is exactly \(Z(f_l) \), the underlying set of \(\sum T_l = \cup Z(f_l) \). Let \(\rho_l : W \to V_l, \pi_W \) be the monoidal transformations defined by construction of \(W \):

Then, still \(W \) is a blowup of \(\mathbb{P}^n \) and hence \(\text{Pic}(W) \) is generated by \(\pi_W \) and the irreducible components of the exceptional divisor:

\[\text{Pic}(W) = \mathbb{Z}\pi_W^# H \oplus \mathbb{Z}F_1 \oplus \cdots \oplus \mathbb{Z}F_s \]
where \(F_j \) are irreducible components of exceptional divisor of \(W \). Thus, we can represent \(\pi_w^*H \) as follows:

\[
\pi_w^*H = \pi_w^#H + \sum_{j=1}^{s} \alpha_j F_j.
\]

To describe \(\phi_i^*H \) precisely, let’s define sets of indices

\[
\mathcal{I}_l = \{1 \leq j \leq s \mid \pi_W(F_j) \subset Z(f_l)\} \quad \text{and} \quad \mathcal{I}_l^c = \{1 \leq j \leq s \mid \pi_W(F_j) \not\subset Z(f_l)\}.
\]

By definition, it is clear that

\[
\mathcal{I}_l \cup \mathcal{I}_l^c = \{1, \cdots, s\} \quad \text{and} \quad \mathcal{I}_l \cap \mathcal{I}_l^c = \emptyset.
\]

Thus, we can say

\[
\tilde{\phi}_l^*H = d_l \pi_w^#H + \sum_{j=1}^{s} \beta_{ij} F_j = d_l \pi_w^#H + \sum_{j \in \mathcal{I}_l^c} \beta_{ij} F_j + \sum_{j \in \mathcal{I}_l} \beta_{ij} F_j.
\]

Moreover, we have the following lemmas;

Lemma 3.1.

\[
\bigcup_{l=1}^{k} \mathcal{I}_l = \bigcup_{l=1}^{k} \mathcal{I}_l^c = \{1, \cdots, s\}.
\]

Proof. \(\bigcup_{l=1}^{k} \mathcal{I}_l = \{1, \cdots, s\} \) is clear; because the underlying set of the center scheme of \(W \) is \(\bigcup Z(f_l) \), \(\bigcup \pi_W(F_j) = \pi_W(\bigcup F_j) = \bigcup Z(f_l) \).

Suppose \(\bigcup_{l} \mathcal{I}_l^c \subseteq \{1, \cdots, s\} \). Then, there is an index \(k_0 \) satisfying \(\pi_W(F_{k_0}) \subset Z(f_l) \) for all \(l \).

This implies \(\pi_W(F_{k_0}) \subset Z(f_l) \) for all \(l \) and hence \(\emptyset \neq \pi_W(F_{k_0}) \subset \bigcap_l Z(f_l) \) which contradicts to that \(S \) is jointly regular. \(\square \)

Lemma 3.2. Let \(\alpha_j \) and \(\beta_{ij} \) be the coefficients of \(F_j \) in \(\pi_i^*H \) and \(\tilde{\phi}_l^*H \) respectively. Then,

\[
d_l \frac{\alpha_j}{\beta_{ij}} \leq r_l.
\]

Especially, if \(j \in \mathcal{I}_l^c \), then

\[
d_l \alpha_j = \beta_{ij}.
\]

Proof. By definition of the D-ratio, the first inequality is clear:

\[
 r_l = d_l \cdot \max_i \left(\frac{\alpha_i}{\beta_{li}} \right) \geq d_l \cdot \frac{\alpha_j}{\beta_{ij}}.
\]

Now, suppose that

\[
\rho_{l}^* \pi_i^# H = \gamma_{l00} \pi_w^# H + \sum_{j=1}^{s} \gamma_{l0j} F_j = \gamma_{l00} \pi_w^# H + \sum_{j \in \mathcal{I}_l^c} \gamma_{l0j} F_j + \sum_{j \in \mathcal{I}_l} \gamma_{l0j} F_j
\]

\[
\rho_{l}^* E_{li} = \gamma_{li0} \pi_w^# H + \sum_{j=1}^{s} \gamma_{lij} F_j = \gamma_{li0} \pi_w^# H + \sum_{j \in \mathcal{I}_l^c} \gamma_{lij} F_j + \sum_{j \in \mathcal{I}_l} \gamma_{lij} F_j.
\]
First of all, $\gamma_{l00} = 1$ and $\gamma_{li0} = 0$ for all $i \neq 0$; if $i \neq 0$, $\pi_{W^*}(\rho_i^* E_i) = 0$ because $\pi_W(\rho_i^* E_i) \subset \cup Z(f_l)$. On the other hand,

$$
\pi_W^* \left(\gamma_{l00} \pi_W^# H + \sum_{j=1}^{s_l} \gamma_{lij} F_j \right) = \gamma_{l00} H.
$$

Hence, $\gamma_{li0} = 0$. For γ_{l00}, we have

$$
\pi_W^* (\pi_W^# H) = H
$$

because π_W is one-to-one outside of the center of blowup of W. Therefore,

$$
\pi_W^* (\rho_i^* \pi_i^# H) = \pi_W^* \left(\pi_W^# H - \sum_{j=1}^{s_l} a_{li} \rho_i^* E_{li} \right) = H
$$

and hence $\gamma_{l00} = 1$.

Moreover, because $\pi_i(E_{li}) \subset Z(f_l)$ and $\pi_W(F_j) \not\subset Z(f_l)$ for any $j \in I^c_l$, the multiplicity of $\rho_i(F_j)$ on E_l is zero and hence $\gamma_{lij} = 0$. Thus, we can say

$$
\rho_i^* E_{li} = \sum_{j \in I_l} \gamma_{lij} F_j.
$$

Since $\tilde{\phi}_l = \rho_l \circ \phi_l$ and $\pi_W = \rho_l \circ \pi_l$, we have

$$
\tilde{\phi}_l^* H = \rho_i^* \phi_i^* H = \rho_i^* \left(d_l \pi_i^# H + \sum_{i=1}^{s_l} b_{li} E_{li} \right) = d_l \rho_i^* \pi_i^# H + \sum_{i=1}^{s_l} b_{li} \rho_i^* E_{li}.
$$

Thus,

$$
\pi_{W^*}^* H = \rho_i^* \pi_i^# H
$$

$$
= \rho_i^* \left(\pi_i^# H + \sum_{i=1}^{s_l} a_{li} E_{li} \right)
$$

$$
= \left(\pi_{W^*}^# H + \sum_{j \in I_l} \gamma_{li0j} F_j + \sum_{j \in I^c_l} \gamma_{li0j} F_j \right) + \sum_{i=1}^{s_l} a_{li} \left(\sum_{j \in I_l} \gamma_{lij} F_j \right)
$$

$$
= \pi_{W^*}^# H + \sum_{j \in I^c_l} \gamma_{li0j} F_j + \sum_{j \in I_l} \left(\sum_{i=0}^{s_l} a_{li} \gamma_{lij} \right) F_j.
$$
\begin{align*}
\tilde{\phi}_l^* H &= \rho_1^* \phi_l^* H \\
&= \rho_1^* \left(\pi_i^* H + \sum_{i=1}^{s_l} b_{li} E_{li} \right) \\
&= d_l \left(\pi_i^* H + \sum_{j \in I_i} \gamma_{i0j} F_j + \sum_{j \in I_i^c} \gamma_{i0j} F_j \right) + \sum_{i=1}^{s_l} b_{li} \left(\sum_{j \in I_i} \gamma_{ij} F_j \right) \\
&= d_l \pi_i^* H + \sum_{j \in I_i^c} d_l \gamma_{i0j} F_j + \sum_{j \in I_i} \left(\sum_{i=1}^{s_l} b_{li} \gamma_{ij} \right) F_j.
\end{align*}

Therefore,
\[d_l \alpha_j = d_l \sum_{j \in I_i^c} \gamma_{i0j} = \beta_j \quad \text{for all } j \in I_i^c. \]

\[\square \]

We now complete the proof of Theorem 1.5. Let \(r = \max r_i \). Note that

\[p_0 \pi_i^* H + \sum_{j=1}^{s} p_j F_j \succ q_0 \pi_i^* H + \sum_{j=1}^{s} q_j F_j \]

if \(p_j \geq q_j \) for all \(j = 0, \cdots, s \). Then, we have

\[\sum_{l=1}^{k} \frac{1}{d_l} \tilde{\phi}_l^* H \]

\[> \sum_{l=1}^{k} \pi_i^* H + \sum_{l=1}^{k} \sum_{j \in I_i^c} \alpha_j F_j + \sum_{l=1}^{k} \left(\sum_{j \in I_i} \frac{\alpha_j}{r} F_j \right) \quad (\because \text{Lemma 3.2}) \]

\[> k \pi_i^* H + \sum_{l=1}^{k} \sum_{j \in I_i^c} \alpha_j F_j + \sum_{l=1}^{k} \left(\sum_{j \in I_i} \frac{\alpha_j}{r} F_j \right) \quad (\because r \geq r_l) \]

\[> k \pi_i^* H + \sum_{j=1}^{s} \alpha_j F_j + \frac{1}{r} \sum_{j=1}^{s} \alpha_j F_j \quad (\because \text{Lemma 3.1}) \]

\[> \left(1 + \sum_{j=1}^{s} \frac{1}{r} \right) \pi_i^* H \]

and hence

\[D = \sum_{l=1}^{k} \frac{1}{d_l} \tilde{\phi}_l^* H - \left(1 + \sum \min \frac{1}{r_l} \right) \pi_i^* H \]

is an \(\mathbb{A}^n \)-effective divisor.
Thus, by Proposition 2.9, \(h_D \) is bounded below on \(\pi_W^{-1} A^n \). Therefore, there is a constant \(C \) such that

\[
\begin{align*}
 h_D(Q) &= \sum_{l=1}^{k} \frac{1}{d_l} \sum_{r_l} h(\tilde{\varphi}_l(Q)) - \left(1 + \sum \min \left\{ \frac{1}{r_l} \right\} h_H(Q) \right) \\
 &= k \sum_{l=1}^{k} \frac{1}{d_l} h_H(\tilde{\varphi}_l(Q)) - \left(1 + \sum \min \left\{ \frac{1}{r_l} \right\} h_H(Q) \right) \\
 &> C
\end{align*}
\]

for all \(Q \in \pi_W^{-1}(A^n)(\overline{K}) \). Finally, for \(P = \pi(Q), \tilde{\varphi}_l(Q) = f(P) \) and \(\pi_W(Q) = P \) and hence

\[
\begin{align*}
 \sum_{l=1}^{k} \frac{1}{d_l} h_H(P) - \left(1 + \sum \min \left\{ \frac{1}{r_l} \right\} h_H(P) \right) > C.
\end{align*}
\]

\[\qed \]

Example 3.3. Let

\[
f_1 = (z, y + z^2, x + (y + z^2)^2), \quad f_2 = (x, y^2, z), \quad f_3 = (x^2 + y, y, z^3).
\]

Then, the \(r(f_1) = 8, r(f_2) = 2 \) and \(r(f_3) = 3/2 \). (For details of the D-ratio calculation, see [10].) Therefore,

\[
\begin{align*}
 h((z, y + z^2, x + (y + z^2)^2)) + h((x, y^2, z)) + h((x^2 + y, y, z^3)) &\geq \left(1 + \frac{1}{8} \right) h((x, y, z)) - C
\end{align*}
\]

for some constant \(C \).

Corollary 3.4. Let \(S \) be a jointly regular set of affine morphisms. Then,

\[
\kappa(S) := \liminf_{P \in A^n(K)} \frac{1}{h(P) \to \infty} \sum_{f \in S} \frac{1}{\deg f} h(f(P)) \geq h(P) + \frac{1}{r}
\]

where \(r = \max_{f \in S} r(f) \).

Remark 3.5. Corollary 3.4 may not be the exact limit infimum value. For example, If there is a subset \(S' \subset S \) such that \(S' \) is still jointly regular and \(\max_{f \in S'} r(f) < \max_{f \in S} r(f) \), then

\[
\kappa(S) > \kappa(S') \geq \frac{1}{r'} > 1 + \frac{1}{r'}.
\]

Example 3.6. We have some examples for \(\kappa(S) = 1 + \min_{f \in S} \left(\frac{1}{\deg f} \right) \cdot \frac{1}{\deg f} \):

1. \(S = \{ f, g \} \) where \(f, g \) are morphisms. If \(f, g \) are morphism, then \(r(f) = r(g) = 1 \). Therefore,

\[
\frac{1}{\deg f} h(f(P)) + \frac{1}{\deg g} h(g(P)) = h(P) + h(P) + O(1).
\]

2. \(S = \{ f, f^{-1} \} \) where \(f \) is a regular affine automorphism and \(f^{-1} \) is the inverse of \(f \). It is proved by Kawaguchi. See [6].
4. AN APPLICATION TO ARITHMETIC DYNAMICS

This result is a generalization of [14, Section 4]. The only difference is that we have an improved inequality for jointly regular family. The proof is almost the same.

Fix an integer \(m \geq 1 \) and let \(S = \{ f_1, \cdots, f_k \} \subset \text{Rat}^n(H) \) be a jointly regular family. For each \(m \geq 0 \), let \(W_m \) be the collection of ordered \(m \)-tuples chosen from \(\{ 1, \cdots, k \} \),

\[
W_m = \{ (i_1, \cdots, i_m) \mid i_j \in \{ 1, \cdots, k \} \} = \{ 1, \cdots, k \}^m,
\]

and let

\[
W_* = \bigcup_{m \geq 0} W_m.
\]

Thus \(W_* \) is the collection of words on \(r \) symbols.

For any \(I = (i_1, \cdots, i_m) \in W_m \), let \(f_I \) denote the corresponding composition of the rational maps \(f_1, \cdots, f_k \),

\[
f_I = f_{i_1} \circ \cdots \circ f_{i_m}.
\]

Definition 4.1. We denote the monoid of rational maps generated by \(f_1, \cdots, f_k \) under composition by

\[
\Phi = \{ \phi = f_I \mid I \in W_* \}.
\]

Let \(P \in \mathbb{A}^n \). The \(\Phi \)-orbit of \(P \) is

\[
\Phi(P) = \{ \phi(P) \mid \phi \in \Phi \}.
\]

The set of (strongly) \(\Phi \)-preperiodic points is the set

\[
\text{Preper}(\Phi) = \{ P \in \mathbb{A}^n \mid \Phi(P) \text{ is finite} \}.
\]

Proof of Theorem 1.6. By Theorem 1.5, we have a constant \(C \) such that

\[
0 \leq \left(\frac{1}{1 + \frac{r}{r+1}} \right) \sum_{l=1}^k \frac{1}{d_l} h(f_l(Q)) - h(Q) + C \quad \text{for all } Q \in \mathbb{A}^n.
\]

(1)

Note that if \(r = \infty \), then \(\left(\frac{1}{1 + \frac{r}{r+1}} \right) = 1 \) and theorem holds because of [14, Section 4]. Thus, we may assume that \(r \) is finite.

We define a map \(\mu : W_* \to \mathbb{Q} \) by the following rule:

\[
\mu_I = \mu_{(i_1, \cdots, i_m)} = \prod_{l=1}^k \mathcal{P}_{l,l}^{p_{l,l}}
\]

where \(p_{l,l} = -|\{ t \mid i_t = l \}| \). Then, by definition of \(\delta \) and \(\mu_I \), the following is true:

\[
\delta^m = \left(\frac{r}{r+1} \right)^m \sum_{I \in W_m} \frac{1}{\deg f_{i_1} \cdots \deg f_{i_m}} = \left(\frac{r}{r+1} \right)^m \sum_{I \in W_m} \mu_I.
\]
Let $P \in \mathbb{A}^n(\overline{\mathbb{Q}})$. Then, (1) holds for $f_I(P)$ for all $I \in W_m$:

$$0 \leq \left(\frac{r}{r+1} \right)^k \sum_{l=1}^{k} \frac{1}{d_l} h(f_i(f_I(P))) - h(f_I(P)) + C.$$

and hence

$$0 \leq \sum_{m=0}^{M} \sum_{I \in W_m} \mu_I \left(\frac{r}{r+1} \right)^m \left[\sum_{l=1}^{k} \frac{1}{d_l} h(f_i(f_I(P))) - \left(1 + \frac{1}{r} \right) h(f_I(P)) + C \right].$$

(2)

The main difficulty of the inequality is to figure out the constant term. From the definition of δ, we have

$$\sum_{m=0}^{M-1} \left(\frac{r}{r+1} \right)^m \sum_{I \in W_m} \mu_I = \sum_{m=1}^{M} \delta^m \leq \frac{1}{1-\delta}.$$

Now, do the telescoping sum and most terms in (2) will be canceled;

$$\left(\sum_{m=0}^{M-1} \sum_{I \in W_m} \left(\frac{r}{r+1} \right)^m \mu_I \sum_{l=1}^{k} \frac{1}{d_l} h(f_i(f_I(P))) \right) - \left(\sum_{m=0}^{M} \sum_{I \in W_m} \left(\frac{r}{r+1} \right)^m \mu_I h(f_I(P)) \right)$$

$$= \left(\sum_{m=0}^{M-1} \sum_{I \in W_m} \left(\frac{r}{r+1} \right)^m \mu_I \sum_{l=1}^{k} \frac{1}{d_l} h(f_i(f_I(P))) \right) - \left(\sum_{m=0}^{M-1} \sum_{I \in W_m} \sum_{l=1}^{k} \left(\frac{r}{r+1} \right)^m \frac{\mu_I}{d_l} h(f_i(f_I(P))) \right)$$

$$= 0$$

Therefore, the remaining terms in (2) are

$$0 \leq \left[\sum_{I \in W_M} \left(\frac{r}{r+1} \right)^M \mu_I \sum_{l=1}^{k} \frac{1}{d_l} h(f_i(f_I(P))) \right] - h(P) + \sum_{I \in W_M} \left(\frac{r}{r+1} \right)^M \mu_I C$$

$$\leq \left[\sum_{I \in W_M} \left(\frac{r}{r+1} \right)^M \mu_I \sum_{l=1}^{k} \frac{1}{d_l} h(f_i(f_I(P))) \right] - h(P) + \frac{1}{1-\delta} C,$$

$$\sum_{I \in W_M} \left(\frac{r}{r+1} \right)^M \mu_I \sum_{l=1}^{k} \frac{1}{d_l} = \left(\frac{r}{r+1} \right)^M \sum_{I \in W_{M+1}} \mu_I = \left(1 + \frac{1}{r} \right) \delta^{M+1}.$$

Define the height of the images of P by the monoid Φ:

$$h(\Phi(P)) = \sup_{R \in \Phi(P)} h(R).$$

Then, if $P \in \text{Preper}(\Phi)$, $h(\Phi(P))$ is finite and hence we have an upper bound for $h(P)$:

$$h(P) \leq \left[\sum_{I \in W_M} \left(\frac{r}{r+1} \right)^M \mu_I \sum_{l=1}^{k} \frac{1}{d_l} \right] h(\Phi(P)) + \frac{1}{1-\delta} C$$

$$\leq \left(1 + \frac{1}{r} \right) \delta^{M+1} h(\Phi(P)) + \frac{1}{1-\delta} C.$$
By assumption, \(\delta < 1 \) and \(h(\Phi(P)) \) is finite, so letting \(M \to \infty \) shows that \(h(P) \) is bounded by a constant that depends only on \(S \).

\[\square \]

References

[1] Cutkosky, Steven Dale. *Resolution of singularities*, Graduate Studies in Mathematics, Vol 63, American Mathematics Society, 2004
[2] Fulton, W., *Intersection theory*, Second edition, Springer-Verlag, Berlin, 1998
[3] Hartshorne, R., *Algebraic geometry*, Springer, 1977
[4] Hironaka, H., *Resolution of singularities of an algebraic variety over a field of characteristic zero. I*, Ann. of Math. (2) 79 (1964), 109-203
[5] Kawaguchi, S., *Canonical height functions for affine plane automorphisms*, Math. Ann. 335 2006, no. 2, 285–310
[6] Kawaguchi, S., *Local and global canonical height functions for affine space regular automorphisms*, preprint, [arXiv:0909.3573], 2009.
[7] Lang, S., *Fundamentals of diophantine geometry*, Berlin Heidelberg New York: Springer 1983
[8] Lazarsfeld, R., *Positivity in Algebraic Geometry I*, Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Bd. 48 (Springer, New York, 2004
[9] Lee, C., *The upper bound of height and regular affine automorphisms on \(\mathbb{A}^n \)*, submitted, [arXiv:0909.3107], 2009
[10] Lee, C., *The maximal ratio of coefficients of divisors and an upper bound for height for rational maps*, submitted, [arXiv:1002.3357], 2010
[11] Marcello, S., *Sur la dynamique arithmetique des automorphismes de l’espace affine*, Bull. Soc. Math. France, 131, 229-257, 2003
[12] Northcott, D. G., *Periodic points on an algebraic variety*, Ann. of Math. (2), 51, 167-177, 1950
[13] Shafarevich, I. *Basic Algebraic Geometry*, Springer, 1994
[14] Silverman, J. H. *Height bounds and preperiodic points for families of jointly regular affine maps*, Pure Appl. Math. Q. 2, 2006, no. 1, part 1, 135–145.
[15] Silverman, J. H., Hindry, M. *Diophantine Geometry, An introduction*, Springer 2000
[16] Silverman, J. H. *The arithmetic of Dynamical systems*, Springer, 2007
[17] Weil, A., *Arithmetic on algebraic varieties*, Ann. of Math. (2) 53, 412-444, 1951

Department of Mathematics, Brown University, Providence RI 02912, US

E-mail address: phiel@math.brown.edu