RELATING COALGEBRAIC NOTIONS OF BISIMULATION∗

SAM STATON

Laboratoire PPS, Université Paris 7
e-mail address: sam.staton@cl.cam.ac.uk

ABSTRACT. The theory of coalgebras, for an endofunctor on a category, has been proposed as a general theory of transition systems. We investigate and relate four generalizations of bisimulation to this setting, providing conditions under which the four different generalizations coincide. We study transfinite sequences whose limits are the greatest bisimulations.

INTRODUCTION

Notions of bisimulation play a central role in the theory of transition systems. The theory of coalgebras provides a setting in which different notions of system can be understood at a general level. In this article I investigate notions of bisimulation at this general level.

To explain the generalization from transition systems to coalgebras, we begin with the traditional presentation of a labelled transition system,

\[(X, (\rightarrow_X) \subseteq X \times L \times X)\]

(for some set L of labels). A labelled transition system can be considered ‘coalgebraically’ as a set X of states equipped with a function $X \rightarrow \mathcal{P}(L \times X)$, into the powerset of $(L \times X)$, assigning to each state $x \in X$ the set $\{(l, x') \mid x \xrightarrow{L} x'\}$. Generalizing, we are led to consider an arbitrary category \mathcal{C} and an endofunctor B on it; then a coalgebra is an object $X \in \mathcal{C}$ of ‘states’, and a ‘next-state’ morphism $X \rightarrow B(X)$.

Coalgebras in different categories. Coalgebras appear as generalized transition systems in various settings. For instance: transition systems for name and value passing process calculi have been studied in terms of coalgebras in categories of presheaves (e.g. [19, 22, 48]); probabilistic transition systems have been modelled by coalgebras for a probability-distribution monad (e.g. [6, 53]); descriptive frames and concepts from modal logic have been studied in terms of coalgebras over Stone spaces (e.g. [1, 9, 32]); basic process calculi with recursion have been modelled using coalgebras over categories of domains [31, 44]; and

1998 ACM Subject Classification: F.3.2, G.2.m.
Key words and phrases: Bisimulation, Coinduction, Category theory, Coalgebra.

* The material in this article is summarized in Sections 1–5 of my extended abstract in CALCO’09 [50].
Research supported by EPSRC grants GR/T22049/01 and EP/E042414/1 and ANR Project CHOCO.
stochastic transition systems have been studied in terms of coalgebras over metric and measurable spaces (see e.g. [12, 16, 52, 53]). Finally, there are questions about the conventional theory of labelled transition systems in a more constructive universe of sets (e.g. [7]).

Notions of bisimulation. Once coalgebras are understood as generalized transition systems, we can consider bisimulation relations for these systems. Recall that, for labelled transition systems \((X, \rightarrow_X)\) and \((Y, \rightarrow_Y)\), a relation \(R \subseteq X \times Y\) is a bisimulation if, whenever \(x R y\), then for all \(l \in L\):

- For \(x' \in X\), if \(x \xrightarrow{L} X x'\) then there is \(y' \in Y\) such that \(y \xrightarrow{L} Y y'\) and \(x' R y'\);
- For \(y' \in Y\), if \(y \xrightarrow{L} Y y'\) then there is \(x' \in X\) such that \(x \xrightarrow{L} X x'\) and \(x' R y'\).

How should the notion of bisimulation be generalized to the case of coalgebras for endofunctors on arbitrary categories? In this article, we identify four notions of bisimulation that have been proposed in the coalgebraic context.

1. A relation over which a suitably compatible transition structure can be defined, as proposed by Aczel and Mendler [2];
2. A relation that is compatible for a suitable ‘relation-lifting’ of the endofunctor, as proposed by Hermida and Jacobs [25];
3. A relation satisfying a ‘congruence’ condition, proposed by Aczel and Mendler [2] and used to obtain their general final coalgebra theorem;
4. A relation which is the kernel of a common compatible refinement of the two systems.

The four notions coincide for the particular case of labelled transition systems. Under certain conditions, the notions are related in the more general setting of coalgebras.

Relationship with the terminal sequence. Various authors have constructed terminal coalgebras as a limit of a transfinite sequence; the initial part of the sequence is:

\[
1 \xleftarrow{1} B(1) \xleftarrow{B(!)} B(B(1)) \xleftarrow{B(B(!))} B(B(B(1))) \xleftarrow{\cdots} \xleftarrow{\cdots} .
\]

Of the notions of bisimulation mentioned above, notions (2) and (3) can often be characterized as post-fixed points of a monotone operator \(\Phi\) on a lattice of relations. In this setting, by Tarski’s fixed point theorem, there is a maximum bisimulation (‘bisimilarity’). It is given explicitly as a limit of a transfinite sequence; the initial part of the sequence is:

\[
X \times Y \supseteq \Phi(X \times Y) \supseteq \Phi(\Phi(X \times Y)) \supseteq \Phi(\Phi(\Phi(X \times Y))) \supseteq \cdots \supseteq \cdots
\]

starting with the maximal relation, that relates everything. Under certain conditions, the steps of the terminal coalgebra sequence are precisely related with the steps of this relation refinement sequence.

Other approaches not considered. In this article we are concerned with internal relations between the state objects of two fixed coalgebras. A relation is itself an object of the base category.

Some authors (e.g. [16]) are concerned with defining an equivalence relation on the class of all coalgebras, by setting two coalgebras as bisimilar if there is a span of surjective homomorphisms between them. Others work with relations as bimodules (e.g. [12, 45, 54]). We will not discuss these approaches here.
Acknowledgements. It has been helpful to discuss the material in this article with numerous people over the last eight years, particularly Marce lo Fiore. Benno van den Berg gave some advice on algebraic set theory. Many of the results in this article are well-known in the case where $C = \text{Set}$. In other cases, some results may be folklore; I have tried to ascribe credit where it is due.

1. Coalgebras: Definitions and examples

Recall the definition of a coalgebra for an endofunctor:

Definition 1.1. Consider an endofunctor B on a category C. A B-coalgebra is given by an object X of C together with morphism $X \to B(X)$ in C.

A homomorphism of B-coalgebras, from (X, h) to (Y, k), is a morphism $f : X \to Y$ that respects the coalgebra structures, i.e. such that $Bf \circ h = k \circ f$.

1.1. Examples. We collect some examples of concepts that arise as coalgebras for endofunctors. For further motivation, see [4, 26, 46].

Coinductive datatypes. Coinductive datatypes can be understood in terms of coalgebras for polynomial endofunctors. A polynomial endofunctor on a category with sums and products is a functor of the following form. (See e.g. Rutten [46, Sec. 10].)

$$X \mapsto \sum_{i \in I} A_i \times X^{n_i}$$

(Here, each A_i is an object of the category, and each n_i is a natural number.)

Transition systems. In the introduction we discussed the correspondence between labelled transition systems and coalgebras for the endofunctor $\mathcal{P}(L \times (-))$. Here, \mathcal{P} is the powerset functor, that acts by direct image. For finite non-determinism, and image-finite transition systems, one can instead consider the endofunctor

$$\mathcal{P}_f(L \times (-))$$

where \mathcal{P}_f is the finite powerset functor, the free semilattice.

Transition systems in toposes and name-passing calculi. Recall that a topos is a category with finite limits and a powerobject construction. By definition, the powerobjects classify relations, and so the coalgebraic characterization of labelled transition systems is relevant in any topos.

In process calculi such as the π-calculus [11], transitions occur between terms with free variables, and those free variables play an important role. Conventional labelled transition systems in the category of sets are inadequate for such calculi. Instead, one can work in a category of covariant presheaves ($C \to \text{Set}$). Various categories have been proposed for C. We will focus on two examples: the category \mathbb{I} of finite sets and injections between them, and the category \mathbb{P}^+ of non-empty finite sets and all functions between them. More sophisticated models of process calculi are found by taking presheaves over more elaborate categories (see e.g. [10, 11, 22, 49]).
In this setting, the object X of states is no longer a set, but a presheaf. For instance, if $X: I \to \mathbf{Set}$, we think of $X(C)$ as the set of states involving the free variables in the set C, and the functorial action of X describes injective renaming of states.

The appropriate endofunctor on these presheaf categories typically has the following form

$$\mathcal{P}(B'(-)) \quad \text{where e.g. } B'(-) = (N \times (-))^N + N \times N \times (-) + (-)$$

with the summands of B' representing input, output, and silent actions respectively. The presheaf N is a special object of names. The interesting question is: what is \mathcal{P}?

- A natural choice is to let \mathcal{P} be the powerobject functor in the presheaf topos $[\mathcal{C},\mathbf{Set}]$. For any presheaf $Y \in [\mathcal{C},\mathbf{Set}]$, and any object $C \in \mathcal{C}$, $(\mathcal{P}(Y))(C)$ is the set of sub-presheaves of $(\mathcal{C}(C, -) \times Y)$. A coalgebra $X \to \mathcal{P}(B'(X))$ is a natural transformation between presheaves, that assigns a behaviour to each state $x \in X(C)$, for $C \in \mathcal{C}$. This behaviour is not only a set of future states for x, but also the future states of $Xf(x)$ for any morphism $f: C \to C'$ in \mathcal{C}.

To understand this more formally, recall that the powerobject \mathcal{P} classifies relations in the following sense. For presheaves X and Y in $[\mathcal{C},\mathbf{Set}]$, there is a bijective correspondence between natural transformations $r: X \to \mathcal{P}(Y)$ and sub-presheaves $R \subseteq X \times Y$. A sub-presheaf $R \subseteq X \times Y$ determines a natural transformation $r: X \to \mathcal{P}(Y)$; for $C \in \mathcal{C}$ and $x \in X(C)$, we have $r_C(x) \in (\mathcal{P}(Y))(C)$:

$$\{ (f, y) \mid (Xf(x), y) \in R(C') \}$$

- The powerobject $\mathcal{P}(X)$ accommodates infinite branching transition systems. To focus on finite branching, we can find a ‘finite’ subfunctor of \mathcal{P}.

The approach taken by Fiore and Turi [19] is to let \mathcal{P} be the free semilattice (henceforth \mathcal{P}_f). This is sometimes called ‘Kuratowski finiteness’. For any presheaf $Y \in [\mathcal{C},\mathbf{Set}]$, and any object $C \in \mathcal{C}$, $(\mathcal{P}_f(Y))(C)$ is the set of finite subsets of $Y(C)$. We have an natural monomorphism $i_Y: \mathcal{P}_f(Y) \to \mathcal{P}(Y)$ into the full powerobject: for $C \in \mathcal{C}$, $S \subseteq (Y(C))$, we define a sub-presheaf $i_{Y,C}(S) \in (\mathcal{P}(Y))(C)$:

$$\{ (f, Yf(y)) \mid f: C \to C', y \in S \}$$

- The free semilattice is too naive on the presheaf category $[\mathbf{F}^+,\mathbf{Set}]$. For example, the π-calculus process $\bar{a} \mid b$ cannot perform a τ-step, but it can perform a τ-step after the substitution $\{ a \mapsto b, b \mapsto b \}$. The construction $\mathcal{P}_f(X)$ is too small to allow this information to be recorded. Indeed, the π-calculus can be described as a coalgebra for the functor $\mathcal{P}(B'(-))$ on $[\mathbf{F}^+,\mathbf{Set}]$, but this coalgebra does not factor through the free semilattice, $\mathcal{P}_f(B'(-))$.

In this situation, a more appropriate finite powerset is the sub-join-semilattice of the powerobject $\mathcal{P}(Y)$ that is generated by the partial map classifier. We will write $\mathcal{P}_{pf}(Y)$ for this — Freyd [20] writes \hat{K}. I gave an algebraic description of this construction in [50], and it has been used by Miculan in his model of the fusion calculus [37].

Frames in modal logic. Let the base category \mathcal{C} be the category of Stone spaces and continuous maps. (A Stone space is a compact Hausdorff space in which the clopen sets form a basis.) Let $K(X)$ be the space of compact subsets of X, with the finite (aka Vietoris) topology. The construction K is made into a functor, acting by direct image. Coalgebras for K can be understood as descriptive general frames. Just as the category of Stone spaces...
is dual to the category of Boolean algebras, the category of K-coalgebras is dual to the category of modal algebras (i.e., Boolean algebras equipped with a meet-preserving operation) — see e.g. [1, 32].

Powersets in algebraic set theory. A general treatment of powersets is suggested by the algebraic set theory of Joyal and Moerdijk [29]. A model of algebraic set theory is a category \mathcal{C} together with a class of ‘small’ maps \mathcal{S} in \mathcal{C}, all subject to certain conditions. An intuition is that a map $f : X \to Y$ is small if its fibres $f^{-1}(y)$ are all small.

In such a situation, an \mathcal{S}-relation is a relation $R \subseteq X \times Y$ for which the projection $R \to X$ is in \mathcal{S}. An endofunctor $\mathcal{P}_\mathcal{S}$ on \mathcal{C} is said to be the \mathcal{S}-powerset if there is an \mathcal{S}-relation $(\ni Y) \subseteq \mathcal{P}_\mathcal{S}(Y) \times Y$ inducing a bijective correspondence between \mathcal{S}-relations ($R \subseteq X \times Y$) and morphisms $X \to \mathcal{P}_\mathcal{S}(Y)$. Further details are given in the appendix.

These ideas cater for the notions of power set discussed so far. For instance:

- Let \mathcal{C} be the category of sets, in the classical sense, and say that a function $f : X \to Y$ is small if for every $y \in Y$ the set $f^{-1}(y)$, i.e. $\{x \in X \mid f(x) = y\}$, is finite. This class \mathcal{S} of maps satisfies all the axioms for small maps given in the appendix. An \mathcal{S}-relation is precisely an image-finite one, and the \mathcal{S}-powerset is the finite powerset.

- For a presheaf category $[\mathcal{C}, \text{Set}]$, the free semilattice construction \mathcal{P}_f is an \mathcal{S}-powerset where \mathcal{S} is the class of natural transformations between presheaves, $\phi : X \to Y$, such that (i) for each $C \in \mathcal{C}$, $y \in Y(C)$, the set $\{x \in X(C) \mid f_C(x) = y\}$ is finite, and (ii) each naturality square is a weak pullback, i.e., if $\phi_{C'}(x') = Y f(y)$ then there is $x \in X(C)$ such that $\phi_C(x) = y$ and $Xf(x) = x'$.\[\begin{array}{ccc} X(C) & \xrightarrow{\phi_C} & Y(C) \\ X(f) \downarrow & & \downarrow Y(f) \\ X(C') & \xrightarrow{\phi_{C'}} & Y(C') \end{array} \] (1.2)

This class \mathcal{S} of morphisms always satisfies Axioms A1–A6 and A9 for small maps, but not (M): monos are not small unless \mathcal{C} is a groupoid.

In the presheaf category $[\mathbb{F}^+, \text{Set}]$, the free semilattice generated by the partial map classifier, \mathcal{P}_{pf}, is more liberal: it classifies the natural transformations between presheaves that satisfy the finiteness condition (i) but the requirement on naturality (ii) is weakened to the situation when f is an injection. This class of morphisms satisfies all the axioms for small maps, including (M). (This argument is quite specific to \mathbb{F}^+.)

- Let \mathcal{C} be the category of Stone spaces, and let $K(X)$ be the space of compact subsets of X. Recall that a continuous map is open if the direct image of an open set is open. The class \mathcal{S} of open maps in the category of Stone spaces satisfies Axioms A1–A6 and A9 for small maps. The evident relation $\exists X \subseteq K(X) \times X$ is an \mathcal{S}-relation, and exhibits each $K(X)$ as an \mathcal{S}-powerset.

(Although the Vietoris construction can be considered over more general spaces, the characterization of K as an \mathcal{S}-powerset is specific to Stone spaces. This raises the question of how best to treat more expressive positive/topological set theories [36] in an algebraic setting.)
Probabilistic transition systems. For any set X, let $D_f(X)$ be the set of sub-probability distribution functions on X, viz., functions from $d: X \to [0,1]$ into the unit interval for which $\{x \in X \mid d(x) \neq 0\}$ is finite and $\sum_{x \in X} d(x) \leq 1$. This construction extends to an endofunctor on \textbf{Set}, with the covariant action given by summation. Coalgebras for D_f are discrete probabilistic transition systems [6, 53].

Systems where the state space has more structure. For continuous stochastic systems, researchers have investigated coalgebras for probability distribution functors on categories of metric or measurable spaces (see e.g. [12, 16, 52, 53]). For recursively defined systems, it is reasonable to investigate coalgebras for powerdomain constructions on a category of domains (in the bialgebraic context, see [31, 44]).

Levy and Worrell [35, 54] have considered endofunctors on categories of preorders, posets, and categories enriched in quantales, in their investigations of similarity.

2. Bisimulation: four definitions

We now recall four notions of bisimulation on the state spaces of coalgebras. The four notions generalize the standard notion of bisimulation for labelled transition systems (i.e. coalgebras for $\mathcal{P}(L \times (-))$ on \textbf{Set}), due to Milner [40] and Park [43]. For all four notions, the maximal bisimulation is the usual notion of strong bisimilarity for labelled transition systems.

To some extent, the different notions of bisimulation have arisen from the examples in Section 1.1 as authors sought coalgebraic notions of bisimulation that were appropriate to the base category and endofunctor under consideration, as well as to the intended applications. For name-passing calculi, coalgebraic bisimulation can be used to capture the bisimulations of Milner, Parrow and Walker [41] and also the open bisimulation of Sangiorgi [47] (see e.g. [19, 50, Sec. 6]); for discrete-space probabilistic systems, coalgebraic bisimulation can describe the probabilistic bisimulation of Larsen and Skou [34] (see e.g. [53]).

Relations in categories. For objects X, Y of a category \mathcal{C}, we let $\text{Rel}_\mathcal{C}(X, Y)$ be the preorder of relations, viz. jointly-monic spans $X \leftarrow R \rightarrow Y$, where $R \leq R'$ if R factors through R'. When \mathcal{C} has products, the preorder $\text{Rel}_\mathcal{C}(X, Y)$ coincides with the preorder of monos into $(X \times Y)$. Relations are most well-behaved in regular categories (see Appendix).

Context. In this section we fix a category \mathcal{C} and consider an endofunctor B on \mathcal{C}. We fix two B-coalgebras, $h: X \to BX$ and $k: Y \to BY$.
2.1. **The lifting-span bisimulation of Aczel and Mendler** [2]. This notion is categorically the simplest. It directly dualizes the concept of congruence from universal algebra.

Definition 2.1. A relation \(R \in \text{Rel}_C(X, Y) \) is an **AM-bisimulation** between \((X, h)\) and \((Y, k)\) if there exists a \(B\)-coalgebra structure on \(R\) that lifts it to a span of coalgebra homomorphisms, as in the following diagram.

\[
\begin{array}{ccc}
X & \xleftarrow{R} & Y \\
\downarrow^{h} & \equiv & \downarrow^{k} \\
BX & \xleftarrow{BR} & BY \\
\end{array}
\]

2.2. **The relation-lifting bisimulation of Hermida and Jacobs** [25]. The following is a simplification of the bisimulation of Hermida and Jacobs, who work in a more general fibrational setting.

Definition 2.2. Let \(C\) have products and images. (See the Appendix for definition.) For any relation \(R \in \text{Rel}_C(X, Y) \), we define the relation \(\bar{BR} \in \text{Rel}_C(BX, BY) \) to be the image of the composite morphism \(BR \to B(X \times Y) \to BX \times BY \). (The construction \(\bar{B} \) is called the “relation lifting” of \(B \).)

A relation \(R \) in \(\text{Rel}_C(X, Y) \) is an **HJ-bisimulation** if there is a morphism \(R \to \bar{B}(R) \) making the following diagram commute.

\[
\begin{array}{ccc}
X & \xleftarrow{R} & Y \\
\downarrow^{h} & \equiv & \downarrow^{k} \\
BX & \xleftarrow{BR} & BY \\
\end{array}
\]

When \(C\) has pullbacks, let \(\Phi^{HJ}(R) \) be the following pullback:

\[
\begin{array}{ccc}
\Phi^{HJ}(R) & \to & BR \\
\downarrow & & \downarrow \\
X \times Y & \xleftarrow{h \times k} & BX \times BY \\
\end{array}
\]

By definition, a relation \(R \) is an **HJ-bisimulation** if and only if \(R \leq \Phi^{HJ}(R) \).

Proposition 2.3. The operator \(\Phi^{HJ} \) on \(\text{Rel}_C(X, Y) \) is monotone. \(\square \)

For illustration, we briefly return to the situation of transition systems, where \(C = \text{Set}\) and \(B = \mathcal{P}(L \times -)\). For any relation \(R \in \text{Rel}_C(X, Y) \), the refined relation \(\Phi^{HJ}(R) \) in \(\text{Rel}_C(X, Y) \) is the set of all pairs \((x, y)\) in \(X \times Y\) for which

(i) \(\forall (l, x') \in h(x). \exists y' \in Y. (l, y') \in k(y) \) and \((x', y') \in R\);

(ii) \(\forall (l, y') \in k(y). \exists x' \in X. (l, x') \in h(x) \) and \((x', y') \in R\).

Thus the operator \(\Phi^{HJ} \) is the construction \(\mathcal{F} \) considered by Milner [39, Sec. 4].
2.3. The congruences of Aczel and Mendler \[2\].

Definition 2.4. A relation R in $\text{Rel}_C(X, Y)$ is an AM-precongruence if for every cospan $(X \xrightarrow{i} Z \xleftarrow{j} Y)$,

\[
\begin{array}{c}
X \xrightarrow{i} Z \\
Y \xleftarrow{j}
\end{array}
\]

if R commutes then so does

\[
\begin{array}{c}
X \xrightarrow{h} BX \\
Y \xleftarrow{k} BY
\end{array}
\]

\[
\begin{array}{c}
BX \xrightarrow{B(i)} BZ \\
BY \xleftarrow{B(j)}
\end{array}
\]

The definition might appear clumsy and unmotivated, but AM-precongruences are of primary interest because of their connection with terminal coalgebras in a general setting, as will become clear in Theorem [1.1].

If C has pushouts, then it is sufficient to check the case where Z is the pushout of R. If C also has pullbacks, let $\Phi_{AM}(R)$ be the pullback of the cospan

\[
\begin{array}{c}
X \xrightarrow{h} BX \\
Y \xleftarrow{k} BY
\end{array}
\]

\[
\begin{array}{c}
BX \xrightarrow{B(i)} BZ \\
BY \xleftarrow{B(j)}
\end{array}
\]

By definition, a relation R is an AM-precongruence if and only if $R \leq \Phi_{AM}(R)$.

Proposition 2.5. The operator Φ_{AM} on $\text{Rel}_C(X, Y)$ is monotone. □

(Note that Φ_{AM} is different from Φ_{HJ}, even when B is the identity functor on Set.)

Our definition differs from that of [2] in that we consider relations between different coalgebras. The connection is as follows: if $(X, h) = (Y, k)$, then an equivalence relation is an AM-precongruence exactly when it is a congruence in the sense of Aczel and Mendler [2] (see Section 4.2).

2.4. Terminal coalgebras and kernel-bisimulations. Many authors have argued that when the category of coalgebras has a terminal object, equality in the terminal coalgebra is the right notion of bisimilarity. Suppose that the category C has pullbacks, and suppose for a moment that there is a terminal B-coalgebra, (Z, z). This induces a relation in $\text{Rel}_C(X, Y)$ as the pullback of the unique terminal morphisms $X \to Z \leftarrow Y$. The relation is sometimes called ‘behavioural equivalence’.

We can formulate a related notion of bisimulation without assuming that there is a terminal coalgebra.

Definition 2.6. Let C have pullbacks. A relation R is a kernel-bisimulation if there is a B-coalgebra (Z, z) and a cospan of homomorphisms, $(X, h) \to (Z, z) \leftarrow (Y, k)$, and R is the pullback of $(X \to Z \leftarrow Y)$.

Aside from the great many works involving terminal coalgebras, various authors (e.g. [24, 31, 33]) have used kernel-bisimulations (though not by this name). (The term ‘cocongruence’ is sometimes used to refer directly to the cospan involved.)
3. Properties of endofunctors

All the definitions of the previous section are relevant when \(\mathcal{C} \) is a regular category. From a categorical perspective, one might restrict attention to endofunctors that are regular, i.e. that preserve limits and covers. But none of the endofunctors in Section 1.1 are regular. We now recall five weaker conditions that might be assumed of our endofunctor \(B \).

(1) The image of a relation under a functor need not again be a relation, and one can restrict attention to endofunctors that preserve relations, i.e., for which a jointly-monic span is mapped to a jointly-monic span.

The remaining restrictions have to do with weak forms of pullback-preservation. To introduce them, we consider a cospan \((A_1 \rightarrow Z \leftarrow A_2)\) in \(\mathcal{C} \), and in particular the mediating morphism \(m: B(A_1 \times_Z A_2) \rightarrow (BA_1) \times_{BZ} (BA_2) \) from the image of the pullback to the pullback of the image:

\[
\begin{array}{ccc}
A_1 \times_Z A_2 & \rightarrow & Z \\
\downarrow \pi_1 & & \downarrow \pi_2 \\
A_2 & \rightarrow & BA_2 \\
\end{array}
\quad
\begin{array}{ccc}
BA_1 \times_{BZ} BA_2 & \rightarrow & BZ \\
\downarrow B\pi_1 & & \downarrow B\pi_2 \\
B(A_1 \times_Z A_2) & \rightarrow & (BA_1) \times_{BZ} (BA_2) \\
\end{array}
\]

Here are some conditions on \(B \), listed in order of decreasing strength.

(2) \(B \) preserves pullbacks if \(m \) is always an isomorphism.

(3) \(B \) preserves weak pullbacks, if \(m \) is always split epi. Gumm [23] describes several equivalent definitions of this term.

(4) \(B \) covers pullbacks if \(m \) is always a cover. The terminology is due to [51]. Note that a split epi is always a cover.

(5) \(B \) preserves pullbacks along monos if \(m \) is an isomorphism when \(A_1 \rightarrow Z \) is monic.

Tying up with relation preservation (1): \(B \) preserves pullbacks if and only if it preserves relations and covers pullbacks (see Carboni et al. [14, Sec. 4.3]).

3.1. Relevance of the properties.

Proposition 3.1.

(1) Let \(\Psi \) be one of the following properties: relation preservation, pullback preservation, weak pullback preservation, preservation of pullbacks along monos. The composition of two endofunctors satisfying \(\Psi \) also satisfies \(\Psi \).

(2) If \(B \) and \(B' \) both cover pullbacks and \(B' \) preserves covers, then the composite \((B'B)\) also covers pullbacks.

Proposition 3.2. Every polynomial endofunctor on an extensive category preserves pullbacks and covers.

Regarding powerset functors from algebraic set theory (see Appendix), we have the following general results.

Proposition 3.3. Let \(\mathcal{C} \) be regular, and let \(S \) be a class of open maps in \(\mathcal{C} \). Suppose that \(P_S \) is an \(S \)-powerset.

(1) The functor \(P_S \) preserves pullbacks along monomorphisms.

(2) If \(S \) contains all monomorphisms \((M) \), then \(P_S \) preserves weak pullbacks.
(3) Let C also be extensive, and let S satisfy the axioms for extensive categories (axioms (A1–6)) and also collection (A9), but not necessarily (M). The functor P_S covers pullbacks.

Proof of Propn. 3.3 I will sketch proofs in the set-theoretic notation. Translation into categorical language is straightforward.

For item (1), consider a pullback square, and its image under P_S.

$$
\begin{array}{c}
f^{-1}(Z') \ar[r] & A \ar[d] \ar[r] & P_S(f^{-1}(Z')) \ar[d] \ar[r] & P_S(A) \ar[d] \ar[r] & \\ Z' \ar[r] & Z \ar[r] & P_S(Z) \ar[r] & P_S(Z) \ar[r] & \end{array}
$$

To see that the right-hand square is a pullback, consider S in $P_S(A)$, for which the direct image $P_Sf(S)$ is in $P_S(Z')$; then, by definition, S is in $P_S(f^{-1}(Z'))$.

For items (2) and (3), consider a cospan (S_1, S_2) in $P_S(A_1) 	imes P_S(Z) P_S(A_2)$ of the canonical morphism. For (S_1, S_2) in $P_S(A_1) 	imes P_S(Z) P_S(A_2)$, note that

$$\forall a_1 \in S_1, \exists a_2 \in S_2. f(a_1) = g(a_2) \quad \text{and} \quad \forall a_2 \in S_2, \exists a_1 \in S_1. f(a_1) = g(a_2)$$

and let

$$s(S_1, S_2) = \{(a_1, a_2) \in (S_1 \times S_2) \mid f(a_1) = g(a_2)\}.$$

Here we have used the separation axiom, which is valid when all monomorphisms are small.

For item (3), we show that the canonical morphism

$$P_S(A_1 \times Z A_2) \to P_S(A_1) \times P_S(Z) P_S(A_2)$$

is a cover. Consider (S_1, S_2) in $P_S(A_1) \times P_S(Z) P_S(A_2)$; we must show that there is S in $P_S(A_1 \times Z A_2)$ whose direct image is (S_1, S_2).

By the (strong) collection axiom, we have T_1 in $P_S(A_1 \times Z A_2)$ such that $\pi_1(T_1) = S_1$ and $\pi_2(T_1) \subseteq S_2$. Similarly, we also have T_2 in $P_S(A_1 \times Z A_2)$ such that $\pi_2(T_2) = S_2$ and $\pi_1(T_2) \subseteq S_1$. Thus $(T_1 \cup T_2)$ is in $P_S(A_1 \times Z A_2)$, and its direct image is (S_1, S_2), as required. Thus Propn. 3.3 is proved.

The free semi-lattice functor \mathcal{F}_I on any topos covers pullbacks, but will only preserve weak pullbacks if the topos is Boolean. In general, the corresponding class of small maps does not contain all monomorphisms, as Johnstone et al. [27, Ex. 1.4] have observed. The counterexample of [27] is easily adapted to the settings of the presheaf categories for name passing, correcting oversights in [19, 22, 45].

On the other hand, the endofunctor \mathcal{F}_{pt} on the presheaf category $[\mathbb{F}^+, \text{Set}]$ does preserve weak pullbacks.

The compact-subspace endofunctor K on Stone spaces covers pullbacks (a consequence of Propn. 3.3) although it does not preserve weak pullbacks, as observed by Bezhanishvili et al. [9].

The probability distribution functor D_I on Set preserves weak pullbacks [12, 53].

More sophisticated continuous settings are problematic. Counterexamples to the weak-pullback-preservation of probability distributions on measurable spaces are discussed in [52]. Plotkin [44] discusses problems with coalegebraic bisimulation in categories of domains: the convex powerdomain does not even preserve monomorphisms. The endofunctors on posets that Levy considers [35] typically do not preserve monomorphisms either.
4. Relating the notions of bisimulation

The purpose of this section is to relate the four notions of bisimulation introduced in Section 2.

Theorem 4.1. Let B be an endofunctor on a category C with finite limits and images.

1. Every AM-bisimulation is an HJ-bisimulation.
2. Every HJ-bisimulation is an AM-precongruence.
3. Every AM-precongruence is contained in a kernel bisimulation that is an AM-precongruence, provided C has pushouts.
4. Every kernel bisimulation is an AM-bisimulation, provided B preserves weak pullbacks.
5. Every kernel bisimulation is an HJ-bisimulation, provided B covers pullbacks.
6. Every kernel bisimulation is an AM-precongruence, provided B preserves pullbacks along monos and C is regular.
7. Every HJ-bisimulation is an AM-bisimulation, provided either
 (i) every epi in C is split, or
 (ii) B preserves relations, or
 (iii) C is regular with a class S of open maps containing all monomorphisms, and there is an S-powerset P_S, and $B(-) \cong P_S(B'(_))$, for a relation preserving functor B'.
 (iv) C is a topos and $B \cong P(B'(_))$, where P is the powerobject of C and B' is an arbitrary endofunctor.

In summary:

![Diagram of the relations between bisimulation notions](image)

Note that the different notions of bisimulation are not, in general, the same. For instance, Aczel and Mendler [2, p. 363] provide an example of an endofunctor on Set for which there is an AM-precongruence that is not an AM-bisimulation. Bezhanishvili et al. [9, Sec. 4] demonstrate that AM-bisimulation is different from HJ-bisimulation for the Vietoris construction on Stone spaces.

4.1. **Proof of Theorem 4.1.** Throughout the proof, we fix two B-coalgebras, $h : X \to BX$ and $k : Y \to BY$.

Item (1) is trivial.
For item (2), let \(R \) be an HJ-bisimulation. Let \((X \to Z \leftarrow Y)\) be a cone over the span \((X \leftarrow R \to Y)\). Consider the following commuting diagrams.

\[
\begin{align*}
\text{(a)} & \quad X & \xrightarrow{h} & BX & \xrightarrow{\Delta} & \Delta X & \xrightarrow{\Delta} \Delta BX & \xrightarrow{\Delta h} & \Delta BX & \xrightarrow{\Delta g} & \Delta BZ & \xrightarrow{\Delta f} & \Delta BZ \\
& \quad R & \xrightarrow{\Delta \gamma} & \Delta BR & \xrightarrow{\Delta \beta} & \Delta BZ \\
& \quad Y & \xrightarrow{k} & BY & \xrightarrow{\Delta \delta} & \Delta BZ \\
\text{(b)} & \quad BX & \xrightarrow{\Delta f} & \Delta BZ & \xrightarrow{\Delta g} & \Delta BZ & \xrightarrow{\Delta h} & \Delta BX & \xrightarrow{\Delta \gamma} & \Delta BR & \xrightarrow{\Delta \beta} & \Delta BR & \xrightarrow{\Delta \delta} & \Delta BY
\end{align*}
\]

The left-hand squares of diagram (a) say that \(R \) is an HJ-bisimulation. The right-hand square of diagram (a) commutes since diagram (b) commutes, and \(BR \to BR \) is epi. Thus the whole of (a) commutes, and \(R \) is an AM-precongruence.

For item (3), let \(R \) be an AM-precongruence. Let \((X \to Z \leftarrow Y)\) be the pushout of the span \((X \leftarrow R \to Y)\). The following diagram commutes; the dotted morphism follows from universality of the pushout.

\[
\begin{align*}
& \quad X & \xrightarrow{h} & BX & \xrightarrow{\Delta f} & \Delta BZ & \xrightarrow{\Delta \gamma} & \Delta BR & \xrightarrow{\Delta \beta} & \Delta BR & \xrightarrow{\Delta \delta} & \Delta BY \\
& \quad R & \xrightarrow{\gamma} & Z & \xrightarrow{\Delta g} & \Delta BZ & \xrightarrow{\Delta \delta} & \Delta BY \\
& \quad Y & \xrightarrow{k} & BY & \xrightarrow{\Delta \delta} & \Delta BZ
\end{align*}
\]

Let \((X \leftarrow R' \to Y)\) be the pullback of \((X \to Z \leftarrow Y)\). By definition, it is a kernel bisimulation. Moreover, the pushout of \((X \leftarrow R' \to Y)\) is \(Z\) again, so \(R'\) is an AM-precongruence.

For items (4), (5) and (6), let \(R \) be a kernel bisimulation, the pullback of a cospan \((X \to Z \leftarrow Y)\), for some coalgebra \((Z, z)\). Note that the following diagram commutes.

\[
\begin{align*}
& \quad X & \xrightarrow{h} & BX & \xrightarrow{\Delta f} & \Delta BZ & \xrightarrow{\Delta \gamma} & \Delta BR & \xrightarrow{\Delta \beta} & \Delta BR & \xrightarrow{\Delta \delta} & \Delta BY \\
& \quad R & \xrightarrow{\gamma} & Z & \xrightarrow{\Delta g} & \Delta BZ & \xrightarrow{\Delta \delta} & \Delta BY \\
& \quad Y & \xrightarrow{k} & BY & \xrightarrow{\Delta \delta} & \Delta BZ
\end{align*}
\]

For item (4), we must show that \(R \) is an AM-bisimulation. We construct a coalgebra structure on \(R \) by considering the morphism \(R \to BR \) induced since \(BR \) is a weak pullback, as in the following diagram.

\[
\begin{align*}
& \quad X & \xrightarrow{h} & BX & \xrightarrow{\Delta f} & \Delta BZ & \xrightarrow{\Delta \gamma} & \Delta BR & \xrightarrow{\Delta \beta} & \Delta BR & \xrightarrow{\Delta \delta} & \Delta BY \\
& \quad R & \xrightarrow{\gamma} & Z & \xrightarrow{\Delta g} & \Delta BZ & \xrightarrow{\Delta \delta} & \Delta BY \\
& \quad Y & \xrightarrow{k} & BY & \xrightarrow{\Delta \delta} & \Delta BZ
\end{align*}
\]

For item (5), we must show that \(R \) is an HJ-bisimulation. This follows from the following fact, which is immediate from the definition of \(BR \), and which is worth recording:

Fact 4.2. If \(B \) covers pullbacks, then

\[
\text{if } \quad X \xrightarrow{R} Z \quad \text{is a pullback, so is } \quad BR \xrightarrow{\Delta \gamma} BZ.
\]
For item (6), we must show that R is an AM-precongruence. This is more involved. We make use of the following lemma.

Lemma 4.3. Consider objects S, S', V, V', and morphisms $p, q, p', q', f, g, f', g'$, making the following three diagrams commute.

\[
\begin{array}{ccc}
S & \xrightarrow{p} & X \\
\downarrow q & & \downarrow f \\
Y & \xrightarrow{g} & V
\end{array}
\quad
\begin{array}{ccc}
S' & \xrightarrow{p'} & BX \\
\downarrow q' & & \downarrow Bf \\
Y & \xrightarrow{k} & BV
\end{array}
\quad
\begin{array}{ccc}
S & \xrightarrow{p} & X \\
\downarrow q & & \downarrow f' \\
W & \xrightarrow{g'} & V'
\end{array}
\]

If the left-hand diagram is a pullback, and B preserves pullbacks along monos, and C is regular, then the following diagram also commutes.

\[
\begin{array}{ccc}
X & \xrightarrow{h} & BX \\
\downarrow & & \downarrow Bf' \\
S' & \xrightarrow{q'} & BV'
\end{array}
\]

Proof of Lemma 4.3. Write $\text{im}(f)$ for the image of $f : X \to V$, etc. Subdivide the pullback (a) as follows.

\[
\begin{array}{ccc}
S & \xrightarrow{\text{im}(p)} & W \\
\downarrow & & \downarrow \text{im}(f) \\
Y & \xrightarrow{\text{im}(q)} & V
\end{array}
\]

Since C is regular, the composite $S \to W$ is regular epi. In this situation, the leftmost pullback is also a pushout, as indicated (see e.g. [13, Thm 5.2].)

Since diagram (b) commutes, and since B preserves pullbacks along monos, we have unique morphisms $S' \to B(\text{im}(p))$ and $S' \to B(\text{im}(q))$ making the following diagram commute.

\[
\begin{array}{ccc}
X & \xrightarrow{h} & BX \\
\downarrow p' & & \downarrow Bf' \\
S' & \xrightarrow{q'} & BV'
\end{array}
\]

Now consider diagram (c). Since W is a pushout, we have a unique morphism $W \to V'$ making the following diagram commute.

\[
\begin{array}{ccc}
\text{im}(p) & \xrightarrow{f'} & X \\
\downarrow & & \downarrow f' \\
S & \xrightarrow{\text{im}(q)} & Y \\
\downarrow & & \downarrow g' \\
W & \xrightarrow{g'} & V'
\end{array}
\]
We can now conclude diagram (d), by combining the previous two diagrams as follows.

\[\begin{array}{c}
X \xleftarrow{h} BX \\
\downarrow_{B'(\text{im}(p))} \quad \downarrow_{Bf'} \\
B'(\text{im}(p)) \quad \downarrow_{Bf'}
\end{array} \]

\[\begin{array}{c}
S' \xrightarrow{p'} \quad \downarrow_{B'(\text{im}(q))} \\
\downarrow_{Bq'} \quad \downarrow_{Bq'} \\
Y \xrightarrow{k} BY
\end{array} \]

Thus Lemma 4.3 is proved. \(\square\)

Returning to the proof of Theorem 4.1, notice that item (6) follows from Lemma 4.3 in the case \(S = S' = R, V = Z\).

Item (7) of Theorem 4.1 gives conditions under which every HJ-bisimulation is an AM-bisimulation. The following fact is crucial here:

Fact 4.4. An HJ-bisimulation \(R\) is an AM-bisimulation if the cover \(BR \rightarrow \bar{BR}\) is split. \(\square\)

Case (7i), where all epis split, is thus trivial, and in case (7iii), where \(B\) preserves relations, the cover is an isomorphism. In cases (7ii) and (7iv), we define a section \(\bar{BR} \rightarrow BR = P_S(B'\bar{R})\) by defining the following composite relation \((\bar{BR} \leftarrow \bullet \rightarrow B'R)\):

\[\begin{array}{c}
\bar{BR} \\
\downarrow_{\bar{BR}} \quad \downarrow_{BX \times BY} \quad \downarrow_{B'X \times B'Y} \\
B'R
\end{array} \]

In case (7iii), we must check that the composite relation is an \(S\)-relation. By the axioms of open maps, it is sufficient to check that all the leftwards morphisms in the composite are in \(S\). The right-most leftwards morphism is in \(S\) because \(B'\) preserves relations, hence it is monic.

This concludes our proof of Theorem 4.1.

4.2. A note about equivalence relations.

When \((X, h) = (Y, k)\) then the maximal bisimulation, when it exists, is often an equivalence relation. Some authors focus attention on those bisimulation relations that are equivalence relations. In this setting, it is reasonable to adjust the definition of kernel bisimulation, so that the two coalgebra homomorphisms \(X \rightarrow Z\) are required to be equal. An appropriate adjustment of Theorem 4.1 still holds even when the pullback-preservation requirements are weakened as follows:

- In item (3), it is not necessary for \(C\) to have pushouts, it is sufficient for \(C\) to have effective equivalence relations (i.e., that every equivalence relation arises as a kernel pair);
- In item (4), it is not necessary for \(B\) to preserve weak pullbacks, it is sufficient for \(B\) to weakly preserve kernel pairs;
- In item (5), it is not necessary for \(B\) to cover pullbacks, it is sufficient that \(B\) covers kernel pairs;
- In item (6), it is not necessary for \(B\) to preserve pullbacks along monos, it is sufficient for \(B\) to preserve monos. (In diagram (4.2), if \(f = g\) then \(W = \text{im}(f) = \text{im}(g)\).)
The conditions are connected: in an extensive regular category, a functor covers pullbacks if and only if it covers kernel pairs and preserves pullbacks along monos. (Gumm and Schröder [24] showed this for Set, and their argument is readily adapted to this more general setting.)

In summary, we have the following situation, when focusing on equivalence relations:

\[
\begin{array}{c}
\text{AM-bisim.} & \xrightarrow{\text{weakly pres. kernel pairs}} & \text{HJ-bisim.} & \xrightarrow{\text{cover k. pairs}} & \text{AM-precong.} & \subseteq & \text{Kernel bisim.} \\
\text{pres. monos} & \xleftarrow{\text{weakly pres. kernel pairs}} & & \end{array}
\]

5. Constructing bisimilarity

In this section we consider a procedure for constructing the maximal bisimulation. We relate it with the terminal sequence, which is used for finding final coalgebras.

Context. In this section we assume that the ambient category \(\mathcal{C}\) is complete and regular. We fix an endofunctor \(B\) on \(\mathcal{C}\), and fix two \(B\)-coalgebras, \(h : X \to BX\) and \(k : Y \to BY\).

5.1. The relation refinement sequence. The greatest HJ-bisimulations can be understood as greatest fixed points of the operator \(\Phi^{HJ}\) on \(\text{Rel}_C(X, Y)\). We define an ordinal indexed cochain \((r_{\beta, \alpha} : R_{\beta}^{HJ} \to R_{\alpha}^{HJ})_{\alpha \leq \beta}\) in \(\text{Rel}_C(X, Y)\), in the usual way:

- **Limiting case**: If \(\lambda\) is limiting, then let \(R_{\lambda}^{HJ} = \bigcap_{\alpha < \lambda} R_{\alpha}^{HJ}\), i.e. the limit of the cochain \((r_{\beta, \alpha} : R_{\beta}^{HJ} \to R_{\alpha}^{HJ})_{\alpha \leq \beta < \lambda}\). In particular, let \(R_{0}^{HJ} = X \times Y\).

- **Inductive case**: let \(R_{\alpha+1}^{HJ} = \Phi^{HJ}(R_{\alpha}^{HJ})\).

We call this cochain the relation refinement sequence. If this sequence is eventually stationary then it achieves the maximal post-fixed point of \(\Phi^{HJ}\), the greatest HJ-bisimulation. (NB. The sequence always converges when \(\text{Rel}_C(X, Y)\) is small, e.g. when \(\mathcal{C}\) is well-powered.)

For the case of the endofunctor \(\mathcal{P}(L \times (-))\) on Set, the relation refinement sequence is a transfinite extension of Milner’s sequence \(\sim_0 \geq \sim_1 \geq \ldots \geq \sim\) (e.g. [33 Sec. 5.7]), studied from an algorithmic perspective by Kanellakis and Smolka [36].

If \(\mathcal{C}\) has pushouts, we can also consider a cochain \((R_{\beta}^{AM} \to R_{\alpha}^{AM})_{\alpha \leq \beta}\) corresponding to the operator \(\Phi^{AM}\). As will be seen, the two sequences of relations often coincide.

(The other notions of bisimulation, AM-bisimulation and kernel bisimulation, cannot be characterized as post-fixed points, in general.)
5.2. The terminal sequence. There is another sequence that is often studied in the coalgebraic setting. The terminal sequence is an ordinal-indexed cochain

\[(z_{\beta,\alpha} : Z_\beta \to Z_\alpha)_{\alpha \leq \beta}\]

that can be used to construct a final coalgebra for an endofunctor (e.g. Worrell [55]). The idea is to begin with the terminal object, and then successively find \(B\)-algebra structures, so that if the sequence converges, i.e. the \(B\)-algebra structure is an isomorphism, then we have a \(B\)-coalgebra structure, and indeed the final such. The cochain commutes and satisfies the following conditions:

- **Limiting case**: \(Z_{\lambda} = \lim \{z_{\beta,\alpha} : Z_\beta \to Z_\alpha \mid \alpha \leq \beta < \lambda\}\), if \(\lambda\) is limiting, in which case the cone \(\{z_{\lambda,\alpha} : Z_\lambda \to Z_\alpha \mid \alpha < \lambda\}\) is the limiting one;
- **Inductive case**: \(Z_{\alpha+1} = B(Z_\alpha)\); and \(z_{\beta+1,\alpha+1} = B(z_{\beta,\alpha}) : Z_{\beta+1} \to Z_{\alpha+1}\).

5.3. Relating the relation and terminal sequences. The coalgebras \((X, h), (Y, k)\) determine two cones

\[(x_\alpha : X \to Z_\alpha)_\alpha \quad (y_\alpha : Y \to Z_\alpha)_\alpha\]

over the terminal sequence. The first cone, \((x_\alpha)_\alpha\) is given as follows.

- **Limiting case**: If \(\lambda\) is a limit ordinal then the morphisms \(x_\alpha : X \to Z_\alpha\) for \(\alpha < \lambda\) form a cocone over the cochain \((z_{\beta,\alpha} : Z_\beta \to Z_\alpha)_{\alpha \leq \beta < \lambda}\), with apex \(X\). We let \(x_\lambda : X \to Z_\lambda\) be the unique mediating morphism. For instance, when \(\lambda = 0\), then \(x_0 : X \to Z_0\) is the terminal map \(X \to 1\).
- **Inductive case**: Let \(x_{\alpha+1}\) be the composite

\[X \xrightarrow{h} BX \xrightarrow{Bz_\alpha} BZ_\alpha = Z_{\alpha+1}\]

The other cone, \((y_\alpha : X \to Z_\alpha)_\alpha\), is defined similarly.

These cones determine another ordinal indexed cochain \((R_\beta \twoheadrightarrow R_\alpha)_{\alpha \leq \beta}\) in \(\text{Rel}_C(X, Y)\). For every ordinal \(\alpha\), let \(R_\alpha\) be the following pullback.

\[
\begin{array}{ccc}
X & \xrightarrow{x_\alpha} & Z_\alpha \\
\downarrow & & \downarrow y_\alpha \\
Y & \xrightarrow{y} & \end{array}
\]

Theorem 5.1. Consider an ordinal \(\alpha\).

1. \(R_\alpha\) contains all the kernel bisimulations and all the AM-precongruences.
2. If \(B\) covers pullbacks, then \(R_\alpha = R_\alpha^{HJ}\).
3. If \(B\) preserves pullbacks along monos, and \(C\) has pushouts, then \(R_\alpha = R_\alpha^{AM}\).

Proof. To see that \(R_\alpha\) contains all the kernel bisimulations, notice that for a cospan of coalgebras, \((X \to Z \leftarrow Y)\), the coalgebra \(Z\) determines a cone over the terminal sequence, just as \(X\) and \(Y\) do. The relation \(R_\alpha\) contains all the AM-precongruences by transfinite induction on \(\alpha\): the limit step is vacuous and the inductive step uses the definition of AM-precongruence. Statements (2) and (3) are also proved by transfinite induction on \(\alpha\): the limit steps use the fact that limits commute with limits; the inductive steps follow from Fact 4.2 and from Lemma 4.3 respectively. \(\square\)
Note. A consequence of Item (3) of Theorem 5.1 is that, if the sequence \((R_\beta \rightarrow R_\alpha)_{\alpha \leq \beta}\) converges, then the result is the greatest AM-precongruence, provided the endofunctor preserves pullbacks along monos and \(C\) has pushouts. In fact, this corollary still holds even if \(C\) does not have all pushouts. This can be proved directly by transfinite induction; the inductive step uses Lemma 4.3.

5.4. Convergence for the relation refinement sequences. By Theorem 5.1, if the terminal sequence converges, then the relation refinement sequence does too. Of course, this is not a sufficient condition. Indeed, even when there is a final coalgebra, the relation refinement sequence may converge before the terminal sequence:

Proposition 5.2. If, for some ordinal \(\alpha\), the morphism \(z_{\alpha+1,\alpha} : Z_{\alpha+1} \rightarrow Z_\alpha\) is monic, then \(R_\alpha = R_{\alpha+1}\).

Proof. We have the following situation.

\[
\begin{array}{ccc}
R_{\alpha+1} & \rightarrow & Z_{\alpha+1} \\
\downarrow & & \downarrow z_{\alpha+1,\alpha} \\
X \times Y & \rightarrow & Z_{\alpha+1} \times Z_\alpha \\
\downarrow \Delta & & \downarrow \Delta \\
Z_{\alpha+1} \times Z_\alpha & \rightarrow & Z_{\alpha+1} \times Z_\alpha \\
\end{array}
\]

The left-hand square is a pullback — this is a rearrangement of the definition of \(R_{\alpha+1}\). The right-hand square is a pullback if and only if \(z_{\alpha+1,\alpha}\) is monic. Thus the outer square is a pullback. Now \(x_\alpha = (x_{\alpha+1} \cdot z_{\alpha+1,\alpha})\) and \(y_\alpha = (y_{\alpha+1} \cdot z_{\alpha+1,\alpha})\), which means that \(R_{\alpha+1} = R_\alpha\). \(\Box\)

If \(C\) is \(\text{Set}\) and \(B\) preserves filtered colimits, then the terminal sequence does not converge until \((\omega + \omega)\), but it becomes monic at \(\omega\). As is well-known, the relation refinement sequence for image-finite transition systems converges at \(\omega\).

For the case when \(C = \text{Set}\) and sets \(X\) and \(Y\) are both finite, the relation refinement sequence will converge before \(\omega\) because the skeleton of \(\text{Rel}_C(X,Y)\) is finite. This is relevant in a slightly more general setting: In a Boolean Grothendieck topos, every descending \(\omega\)-cochain of subobjects from a finitely presentable object is eventually constant.

The presheaf topos \([I, \text{Set}]\), used to model name-passing, is not Boolean. It does, however, have \(\text{Sh}_{\omega}(I)\) as a Boolean subcategory, and this is perhaps a more appropiate universe for name-passing calculi (see e.g. [18]). There, the finitely presentable objects are exactly those objects that can be described by finite ‘named-sets with symmetry’ [18, 21]. Thus the techniques of this article provide a general foundation for the coalgebra-inspired verification procedures of Ferrari, Montanari and Pistore [17].

Appendix A. Some concepts from categorical logic

We recall some concepts from categorical logic: regular categories; and powersets from algebraic set theory.
A.1. **Regular and extensive categories.** An *image* of a morphism \(f : A \to C \) is a monomorphism \(m : B \to C \) through which \(f \) factors, which is minimal in the sense that, if \(f \) factors through any other mono, \(B' \to C \), then \(B \) is a subobject of \(B' \). In this setting, the factoring morphism \(f : A \to B \) is called a *cover*; its image is \(B \overset{id}{\to} B \). A category has *images* if every morphism has an image.

In a category with finite limits, covers are epimorphisms. They serve as a generalization of ‘surjective function’. In this setting, other authors refer to covers as *strong epimorphisms*.

A category with finite limits and images is said to be *regular* if covers are stable under pullback, i.e., if the following diagram is a pullback, and if \(f \) is a cover, then so is \(f' \).

\[
\begin{array}{ccc}
A' & \xrightarrow{g'} & A \\
\downarrow{f'} & & \downarrow{f} \\
B' & \xrightarrow{g} & B \\
\end{array}
\]

(A.1)

Recall that a category is said to be *extensive* if it has coproducts and they are disjoint and stable under pullback (see e.g. [15]).

A.2. **Open maps, powersets, and algebraic set theory.** We now recall an analysis of ‘smallness’ due to Joyal and Moerdijk [28, 29]. (For a more recent introduction to this area of research, see the articles by Awodey [5] and by van den Berg and Moerdijk [8].)

An intuition for this analysis is that a morphism \(f : A \to B \) describes a \(B \)-indexed family of classes — informally, for each element \(b \) of \(B \), we have a class \(f^{-1}(b) \). When we say that a morphism \(f : A \to B \) is small, an intuition is that each fibre \(f^{-1}(b) \) is small. In particular, we say that an object \(A \) is small if the terminal map \(A \to 1 \) is small.

Open maps in regular categories. Let \(C \) be a regular category. A class \(S \) of morphisms in \(C \) is a class of *open maps* if it satisfies the following four axioms. (This numbering follows [28].)

(A1) \(S \) is closed under composition, and all identity morphisms are in \(S \).

(A2) \(S \) is stable under pullback, i.e., in diagram (A.1), if \(f \) is in \(S \), then \(f' \) is also in \(S \).

(A3) (‘Descent’) In diagram (A.1), if \(f' \) is in \(S \) and \(g \) is a cover, then \(f \) is also in \(S \).

(A6) In the following triangle, if \(f \) is in \(S \) and \(e \) is a cover, then \(g \) is also in \(S \).

\[
\begin{array}{ccc}
A & \xrightarrow{e} & A' \\
\downarrow{f} & & \downarrow{g} \\
B & & \\
\end{array}
\]

Most authors assume that \(C \) has additional structure so that the universal quantifier can be interpreted in \(C \). We do not need that in this article.

Sums and open maps. In an extensive regular category, it is appropriate to assume the following additional axioms.

(A4) The maps \(0 \to 1 \) and \(1 + 1 \to 1 \) are in \(S \).

(A5) If \(A \to A' \) and \(B \to B' \) are in \(S \), then so is \((A + B) \to (A' + B') \).
Powersets. Given a regular category C and a class of open maps S, an S-relation is a jointly monic span $(I \leftarrow R \rightarrow A)$ whose left projection is in S.

An S-powerset for an object A of C is an object $P_S(A)$ together with an S-relation $(P_S(A) \leftarrow \exists_A \rightarrow A)$ such that for every S-relation $(I \leftarrow R \rightarrow A)$ there is a unique morphism $I \rightarrow P_S(A)$ making $(R \mapsto I \times A)$ a pullback of $(\exists_A \mapsto P_S(A) \times A)$:

$$
\begin{array}{c}
R \\
\downarrow \\
I \times A \\
\downarrow \\
P_S(A) \times A
\end{array}
\quad \exists_A
$$

It follows from axiom (A2) that morphisms $I \rightarrow P_S(A)$ are in bijective correspondence with S-relations $(I \leftarrow R \rightarrow A)$.

If every object of C has an S-powerset, then the construction P_S extends straightforwardly to a covariant endofunctor on C, as follows. For any morphism $f : A \rightarrow B$, the action $P_S(f) : P_S(A) \rightarrow P_S(B)$ corresponds to the S-relation in the image of the span $(P_S(A) \leftarrow \exists_A \rightarrow A \rightarrow B)$, using axiom (A6).

Separation and collection. There are various axioms and axiom schema that can be assumed as principles for defining sets in a constructive setting. The notes by Aczel and Rathjen [3] provide an overview.

The separation axiom (also known as bounded comprehension) amounts to the following axiom on S.

(M) All monomorphisms in C are in S.

The (strong) collection axiom has the following categorical counterpart, when there is an S-powerset:

(A9) The endofunctor P_S preserves covers.

Further axioms. The axioms above are all that we need in this article. As a foundation of mathematics, these axioms are too weak: one would typically also require that there is a small natural numbers object; that each powerset $P_S(X)$ is small; and that there is a class of all sets, a universal small map.

References

[1] S. Abramsky. A Cook’s tour of the finitary non-well-founded sets. In S. N. Artëmov, H. Barringer, A. S. d’Avila Garcez, L. C. Lamb, and J. Woods, editors, We Will Show Them! Essays in Honour of Dov Gabbay, volume 1, pages 1–18. College Publications, 2005.

[2] P. Aczel and N. Mendler. A final coalgebra theorem. In Proceedings of CTCS’89, volume 389 of Lecture Notes in Comput. Sci., pages 357–365. Springer, 1989.

[3] P. Aczel and M. Rathjen. Notes on constructive set theory. Technical Report 40, Institut Mittag-Leffler, Sweden, 2001.

[4] J. Adámek. Introduction to coalgebra. Theory Appl. of Categ., 14(8):157–199, 2005.

[5] S. Awodey. A brief introduction to algebraic set theory. Bull. Symbolic Logic, 14(3):281–298, 2008.

[6] F. Bartels, A. Sokolova, and E. P. de Vink. A hierarchy of probabilistic system types. Theoret. Comput. Sci., 327(1-2):3–22, 2004.

[7] B. van den Berg and F. De Marchi. Models of non-well-founded sets via an indexed final coalgebra theorem. J. Symbolic Logic, 72(3):767–791, 2007.
[8] B. van den Berg and I. Moerdijk. A unified approach to algebraic set theory. In Proceedings of Logic Colloquium 2006, volume 32 of Lecture Notes in Logic, 2009.

[9] N. Bezhanishvili, G. Fontaine, and Y. Venema. Vietoris bisimulations. J. Logic Comput., 20(5):1017–1040, 2010.

[10] F. Bonchi and U. Montanari. Coalgebraic models for reactive systems. In Proceedings of CONCUR’07, volume 4703 of Lecture Notes in Comput. Sci., pages 364–379, 2007.

[11] M. M. Bonsangue and A. Kurz. Pi-calculus in logical form. In Proceedings of LICS’07, pages 303–312, 2007.

[12] F. van Breugel, C. Hermida, M. Makkai, and J. Worrell. An accessible approach to behavioural pseudometrics. In Proceedings of ICALP’05, volume 3580 of Lecture Notes in Comput. Sci., pages 1018–1030. Springer-Verlag, 2005.

[13] A. Carboni, G. M. Kelly, and M. C. Pedicchio. Some remarks on Maltsev and Goursat categories. Appl. Categ. Structures, 1(4):385–421, 1993.

[14] A. Carboni, G. M. Kelly, and R. J. Wood. A 2-categorical approach to geometric morphisms I. Cah. Topol. Géom. Différ. Catég., XXXII(1):47–95, 1991.

[15] A. Carboni, S. Lack, and R. F. C. Walters. Introduction to extensive and distributive categories. J. Pure Appl. Algebra, 83:145–158, 1993.

[16] V. Danos, J. Desharnais, F. Laviolette, and P. Panangaden. Bisimulation and cocongruence for probabilistic systems. Inform. and Comput., 204(4):503–523, 2006.

[17] G. Ferrari, U. Montanari, and M. Pistore. Minimizing transition systems for name passing calculi: A co-algebraic formulation. In Proceedings of FOSSACS’02, volume 2303 of Lecture Notes in Comput. Sci., pages 129–158. Springer-Verlag, 2002.

[18] M. P. Fiore and S. Staton. Comparing operational models of name-passing process calculi. Inform. and Comput., 204(4):435–678, 2006.

[19] M. P. Fiore and D. Turi. Semantics of name and value passing (extended abstract). In Proceedings of LICS’01, pages 93–104, 2001.

[20] P. Freyd. Numerology in topoi. Theory Appl. of Categ., 16(19):522–528, 2006.

[21] F. Gadducci, M. Miculan, and U. Montanari. About permutation algebras, (pre)sheaves and named sets. Higher-Order Symb. Comput., 19(2–3):283–304, 2006.

[22] N. Ghani, K. Yemane, and B. Victor. Relationally staged computations in calculi of mobile processes. In Proceedings of CMCS’04, volume 106 of Electron. Notes Theor. Comput. Sci., pages 105–120, 2004.

[23] H. P. Gumm. Functors for coalgebras. Algebra Universalis, 45:135–147, 2001.

[24] H. P. Gumm and T. Schröder. Types and coalgebraic structure. Algebra Universalis, 53:229–252, 2005.

[25] C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational setting. Inform. and Comput., 145(2):107–152, 1998.

[26] B. Jacobs and J. Rutten. A tutorial on coalgebras and coinduction. EATCS Bulletin, 62:222–259, 1997.

[27] P. Johnstone, J. Power, T. Tsujishita, H. Watanabe, and J. Worrell. On the structure of categories of coalgebras. Theoret. Comput. Sci., 260(1-2):87–117, 2001.

[28] A. Joyal and I. Moerdijk. A completeness theorem for open maps. Ann. Pure Appl. Logic, 70(1):51–86, 1994.

[29] A. Joyal and I. Moerdijk. Algebraic Set Theory. Cambridge University Press, 1995.

[30] P. C. Kanellakis and S. A. Smolka. CCS expressions, finite state processes, and three problems of equivalence. Inform. and Comput., 86:43–68, 1990.

[31] B. Klin. Adding recursive constructs to bialgebraic semantics. J. Log. Algebr. Program., 60–61:259–286, 2004.

[32] C. Kupke, A. Kurz, and Y. Venema. Stone coalgebras. Theoret. Comput. Sci., 327(1-2):109–134, 2004.

[33] A. Kurz. Logics for Coalgebras and Applications to Computer Science. PhD thesis, Ludwig-Maximilians-Universität München, 2000.

[34] K. G. Larsen and A. Skou. Bisimulation through probabilistic testing (preliminary report). In Proceedings of POPL’89, pages 344–352. ACM Press, 1989.

[35] P. B. Levy. Similarity quotients as final coalgebras. Available from the author’s webpage, October 2010.

[36] T. Libert and O. Esser. On topological set theory. Math. Log. Q., 51(3):263–273, 2005.

[37] M. Miculan. A categorical model of the Fusion calculus. In Proceedings of MFPS XXIV, volume 218 of Electron. Notes Theor. Comput. Sci., pages 275–293, 2008.
[38] R. Milner. A calculus of communicating systems, volume 92 of Lecture Notes in Comput. Sci., Springer-Verlag, 1980.
[39] R. Milner. Calculi for synchrony and asynchrony. Theoret. Comput. Sci., 25:267–310, 1983.
[40] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[41] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I and II. Inform. and Comput., 100(1):1–77, 1992.
[42] L. S. Moss. Coalgebraic logic. Ann. Pure Appl. Logic, 96:277–317, 1999.
[43] D. Park. Concurrency and automata on infinite sequences. In Proceedings of Theoretical Computer Science: 5th GI Conference, volume 104 of Lecture Notes in Comput. Sci., pages 167–183. Springer, 1981.
[44] G. D. Plotkin. Bialgebraic semantics and recursion (extended abstract). In Proceedings of CMCS’01, volume 44(1) of Electron. Notes Theor. Comput. Sci., pages 1–4, 2001.
[45] J. J. M. M. Rutten. Relators and metric bisimulations. In Proceedings of CMCS’98, volume 11 of Electron. Notes Theor. Comput. Sci., 1998.
[46] J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoret. Comput. Sci., 249(1):3–80, 2000.
[47] D. Sangiorgi. A theory of bisimulation for the pi-calculus. Acta Inform., 33(1):69–97, 1996.
[48] S. Staton. Name-passing process calculi: operational models and structural operational semantics. PhD thesis, Technical Report UCAM-CL-TR-688, University of Cambridge, Computer Laboratory, 2007.
[49] S. Staton. General structural operational semantics through categorical logic. In Proceedings of LICS’08, pages 166–177, 2008.
[50] S. Staton. Relating coalgebraic notions of bisimulation. In Proceedings of CALCO’09, volume 5728 of Lecture Notes in Comput. Sci., pages 191–205, 2009.
[51] V. Trnková. General theory of relational automata. Fundam. Inform., 3(2), 1980.
[52] I. D. Viglizzo. Final sequences and final coalgebras for measurable spaces. In CALCO’05, volume 3629 of Lecture Notes in Comput. Sci., pages 395–407. Springer, 2005.
[53] E. P. de Vink and J. J. M. M. Rutten. Bisimulation for probabilistic transition systems: a coalgebraic approach. Theoret. Comput. Sci., 221:271–293, 1999.
[54] J. Worrell. Coinduction for recursive data types: partial orders, metric spaces and omega-categories. In Proceedings of CMCS’00, volume 33 of Electron. Notes Theor. Comput. Sci., 2000.
[55] J. Worrell. On the final sequence of a finitary set functor. Theoret. Comput. Sci., 338:184–199, 2005.