Comparative analyses of the complete mitochondrial genomes of Dosinia clams and their phylogenetic position within Veneridae

Changda Lv1, Qi Li1,2*, Lingfeng Kong1

1 Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China, 2 Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

* qili66@ouc.edu.cn

Abstract

Mitochondrial genomes have proved to be a powerful tool in resolving phylogenetic relationship. In order to understand the mitogenome characteristics and phylogenetic position of the genus Dosinia, we sequenced the complete mitochondrial genomes of Dosinia altior and Dosinia troscheli (Bivalvia: Veneridae), compared them with that of Dosinia japonica and established a phylogenetic tree for Veneridae. The mitogenomes of D. altior (17,536 bp) and D. troscheli (17,229 bp) are the two smallest in Veneridae, which include 13 protein-coding genes, 2 ribosomal RNA genes, 22 tRNA genes, and non-coding regions. The mitogenomes of the Dosinia species are similar in size, gene content, AT content, AT- and GC-skews, and gene arrangement. The phylogenetic relationships of family Veneridae were established based on 12 concatenated protein-coding genes using maximum likelihood and Bayesian analyses, which supported that Dosininae and Meretricinae have a closer relationship, with Tapetinae being the sister taxon. The information obtained in this study will contribute to further understanding of the molecular features of bivalve mitogenomes and the evolutionary history of the genus Dosinia.

Introduction

The genus Dosinia belonging to the family Veneridae in the superfamily Veneracea are important marine bivalves inhabiting from intertidal zone to subtidal zone along shallow coasts [1]. It was recognized as one of the significant taxons both in stratigraphy and chronology [2]. Therefore, the evolution of genus Dosinia deserves a careful investigation for understanding the bivalve evolution and diversity.

Along with morphological classification, molecular analyses are essential for evaluating the diversity of metazoans because of their high informativeness and accuracy [3, 4]. However, in contrast to the large number of morphological descriptions of Dosinia, there have been few attempts to perform molecular phylogenetic analysis in this genus so far [5–10]. Most present work involving Dosinia clams used different gene sequences (e.g., ITS2, H3, rrnL) to resolve the phylogenetic relationships at the level of Heterodont or Veneroida, nevertheless, the
accuracy of phylogenies reconstructed from single gene sequences is low due to substitutional saturation of nucleotide and horizontal gene transfer [11, 12].

In the recent studies on phylogenetic analysis of bivalves, mitochondrial (mt) genome stands out to be considered a useful tool for population genetic and phylogenetic studies [3, 4, 13–18]. Owing to abundance of mitochondria in cells, maternal inheritance (except for doubly uniparental inheritance), lack of recombination, absence of introns, and higher evolutionary rates, mtDNA sequences are established as a molecular marker in comparative and evolutionary genomics, molecular evolution, population genetics, species identification, and phylogenetic relationships at various taxonomic levels [4, 16, 19, 20]. Meanwhile, the phylogenetic analysis based on complete mitogenome has also proved to enhance resolution and statistical confidence of inferred phylogenetic trees when compared with the small portions of mt sequence [21–24]. With the technological and methodological advances, the amplification and sequencing of complete mt genomes become routine [25]. Recently, the number of available complete mitogenome sequences has increased considerably. However for the *Dosinia* genus, only one mt genome is available (*Dosinia japonica*) to date [10], and more mitogenome sequences from various *Dosinia* species are required for further analysis. The mt genome of *D. japonica* contains 37 genes including 13 for protein subunits of oxidative phosphorylation enzymes (cox1-3, cytb, atp6, atp8, nad1-6 and nad4l), 22 transfer RNA genes necessary for translating 13 proteins, and two ribosomal RNA genes (*rrnL* and *rrnS*) [10, 26].

In most metazoan phyla, mt genomes are conserved in length and content, and the gene arrangements are rarely changed [27]. However, in mollusks, especially bivalves, the gene arrangements appear to be dramatically variable in the major groups, even in the same family or genus [3, 4, 15, 18, 19, 28–30]. Currently, 13 Veneridae mitogenomes are available in the GenBank, which are sequenced from species within six genera, including *Paphia*, *Meretrix*, *Ruditapes*, *Saxidomus*, *Cyclina* and *Dosinia*. Comparing gene orders of *Ruditapes philippinarum*, *Paphia euglypta*, *Meretrix lamarckii*, and *Saxidomus purpuratus* of family Veneridae which were from different genus, the four mitogenomes show no identical gene arrangement either in whole mitogenomes or protein-coding genes. Also, the bivalves in certain genus such as *Crassostrea*, *Meretrix* show great genetic variations in length and gene organization [31–34]. Thus, considering the different characteristics of mitogenomes in different genus within Veneridae, and the variations of genomic organization which would provide a good way to study the evolutionary history of the mt genomes, it was necessary to investigate the mtDNA characteristics shared by *Dosinia* for clarifying their phylogenetic position [3, 13].

In the present study, we sequenced the complete mt genomes of *D. altior* (Deshayes, 1853) and *D. troscheli* (Lischke, 1873), and compared them with that of *D. japonica* [10]. The gene arrangements were compared among three *Dosinia* species, together with the other 12 Veneridae species. In addition, we also reconstructed the phylogenetic relationship of 15 Veneridae species based on the concatenated nucleotide sequences of 12 protein-coding genes to better understand of the phylogenetic relationships of *Dosinia* genus within Veneridae.

Materials and methods

Ethics statement

This study was conducted in accordance with general governmental regulations. Field sampling did not require specific permissions for the location, and no endangered or protected species were involved in the experiments of this study.
Sample collection and DNA extraction

A single specimen was obtained from each of the two Dosinia bivalve. D. altior was collected from Qinzhou (Guangxi province of China) and preserved frozen at -80 °C in 2017. D. troscheli was collected from Beihai (Guangxi province of China) and preserved in 95% ethanol in 2014. Specimens were taxonomically identified based on shell morphology [35] and DNA barcoding sequence (cox1 gene) from GenBank and Boldsystems. Total genomic DNA was extracted from adductor muscle following the standard phenol-chloroform procedure described by Li et al. [36] with some modifications. The DNA quality was checked on 1.0% agarose gel.

PCR amplification and DNA sequencing

Short fragments of the genes cox1, rrnL, rrnS, cytb, nad1 were amplified with the universal primers of LCO1490/HCO2198 [37], 16SF/16SR [38], G12SF2/G12SR6, GcobF2/GcobR6 and Gnad1F/Gnad1R5 [30]. Based on the sequences of above fragments and the complete mitogenome of D. japonica [10], long-PCR primers were designed and employed to amplify the entire mt genomes (Table 1).

Table 1. Primer sets for PCR amplification.

Species	Genomic region	Primer name	Sequence	Annealing
D. altior	cox1—nad1	cox1-nad1_AF	TTAGAATCTCACCCTCGTG	48 °C
D. altior	nad1—cob	nad1-cob-F	CGTTTCCGCATTAGGGGTGT	56 °C
D. altior	cob—rrnL	cob-rrnL-AR	GTATCCCTGAGGTAGTT	53 °C
D. altior	nad5	nad5-F	TCACTGAAAGATTTATGGC	52 °C
D. altior	rrnL—nad5	rrnL-nad5-F	GGAAGAGATAAGCAAAATCAGG	56 °C
D. altior	nad5—rrnS	nad5-rrnS-F	ACCAGAGGCTAGTACC	54 °C
D. altior	rrnS—cox1	rrnS-cox1_AF	TACGGCCGTGTAATATTGTCGG	56 °C
D. troscheli	cox1—nad1	cox1-nad1_TF	GCAGCAGTATATTATGGC	54 °C
D. troscheli	nad1—cob	nad1-cob-F	CGTTTTCCGCATTAGGGGTGT	56 °C
D. troscheli	cob—rrnL	cob-rrnL_TF	ATTATTCCTCAGAAAGCCAAGG	54 °C
D. troscheli	rrnL—nad4	rrnL-nad4-F	AGCGAGAATCTCAAGC	54 °C
D. troscheli	nad4—nad5	nad4-nad5-F	TACTCTCAGCTCACTC	50 °C
D. troscheli	nad5—nad6	nad5-nad6-F	ATGTGTGTGGTGTTGAAT	52 °C
D. troscheli	nad6—rrnS	nad6-rrnS-F	GATTGAGTGGTGAGG	50 °C
D. troscheli	rrnS—cox1	rrnS-cox1_TF	TAAGGTAAGTGTAATACAC	48 °C

https://doi.org/10.1371/journal.pone.0196466.t001
PCR reactions were performed in a 10 μl volume containing about 50 ng template DNA, 1× reaction Buffer (Mg²⁺ plus, Takara), 0.02 mM of each dNTP, 1 μM of each primer, 0.25 U LA-Taq polymerase (Takara). The long-PCR reactions for long fragments refer to Yuan et al. [18] protocols: an initial denaturation for 3 min at 94 °C, followed by 35 cycles comprising denaturation at 94 °C for 30 s, annealing at 48–56 °C for 30 s and extension at 68 °C for 5 min, the whole process was completed with a final extension at 72 °C for 10 min.

PCR products were purified with EZ-10 spin column DNA gel extraction kit (Sangon Biotech), and sequenced with the primer walking method directly. The sequencing was conducted on an ABI PRISM 3730 (Applied Biosystems) automatic sequencer in Beijing Genomics Institute (BGI) using standard Sanger sequencing chemistry.

Sequence analysis and gene annotation
The DNA sequences obtained by sequencing the PCR-amplified DNA fragments were analyzed and assembled using Seqman program from DNASTAR (available at: http://www.dnastar.com/). Protein coding genes were annotated by using NCBI ORF Finder (https://www.ncbi.nlm.nih.gov/orffinder/) and BLASTx with the invertebrate mitochondrial code. The positions of tRNA genes were determined by ARWEN v.1.2 [39] and MITOS Web Server [40]; and secondary structures of tRNAs were inferred using MITOS in default search mode. The rRNA genes were identified by BLAST searches (http://www.ncbi.nlm.nih.gov/BLAST/), the boundaries of each gene were determined with multiple alignments of other 13 published bivalve mitogenomes from NCBI website. Repeat sequence patterns in the major no-coding region (MNR) were checked using the web-based software server Tandem Repeat Finder 4.0 (http://tandem.bu.edu/trf/trf.html) [41]. Mitogenome maps were drawn using the CGview Server (http://stothard.afns.ualberta.ca/cgview_server/) [42]. The two mitogenomes have been deposited in the GenBank database under the accession numbers MG543473 for D. altior and MG543474 for D. troscheli.

The base composition and skewness analyses were performed and compared between D. altior and D. troscheli, as well as D. japonica. The A+T content values and nucleotide frequencies were computed using Editseq program from DNASTAR. The GC- and AT- skews were calculated according to the formulae by Perna et al. [43]: AT-skew = (A - T)/(A + T); GC-skew = (G-C)/(G+C), where A, T, G and C are the occurrences of the four nucleotides. Codon usage analysis was performed by MEGA 6 [44].

Phylogenetic analyses
Along with mitogenome sequences of D. altior and D. troscheli, all currently available mitogenomes of Veneridae including R. philippinarum (AB065375), Meretrix petechialis (EU145977), Meretrix lyrata (KC832317), Meretrix luminosa (GQ903339), Meretrix meretrix (GQ463598), M. lamarckii (GU071281), P. euglypta (GU269271), Paphia textile (JF969277), Paphia amabilis (JF969276), Paphia undulata (JF969278), S. purpuratus (KP419933), Cyclina sinensis (KU90733), and D. japonica (MF401432) were used in phylogenetic analysis. Solen grandis (HQ703012) and Solen strictus (JN786377) from the family Solenidae were used as outgroups. The phylogenetic relationships were reconstructed based on nucleotide sequences of 12 PCGs (except atp8). The nucleotide sequences were aligned with Clustal X [45] using default settings, followed by manual correction.

Phylogenetic trees were reconstructed using maximum-likelihood (ML) analysis and Bayesian inference (BI) approaches. For phylogenetic analyses based on nucleotide data, the most appropriate model GTR + G was selected by jMODELTEST using the Akaike Information
Criterion (AIC). The ML analysis was conducted with PhyML 3.0 (http://www.atgc-montpellier.fr/phyml/) and 1000 bootstraps were used to assess the support of nodes. BI was performed using MrBayes 3.1.2 [46]. In the case of the Bayesian analysis, the Markov Chain Monte Carlo were run for 100,000 generations with trees sampled every 100 generations. Stationarity was defined as mean standard deviation of split frequency less than 0.01.

Results and discussion

Genome organization

The complete mt genomes of *D. altior* and *D. troscheli* are 17,536 bp and 17,229 bp in length, respectively, and the length of *D. troscheli* mitogenome is the smallest among the available mitogenomes of Veneridae currently. Length differences are mostly due to the size variation of the non-coding region. In the *D. altior* mitogenome, there are 22 non-coding regions with a total of 2385 bp long varying from 1 bp to 1865 bp, and the *D. troscheli* mitogenome contains 21 non-coding regions with a total of 2140 bp with various lengths of 2–1521 bp. The longest non-coding region of two *Dosinia* mitogenomes are both located between *trnI* and *trnD*.

Both *D. altior* and *D. troscheli* mitogenomes contain 13 protein-coding genes (PCGs), 22 transfer genes and 2 ribosomal RNA genes (Fig 1). Main structure features of three *Dosinia* mitogenomes are summarized in Table 2. All the genes are encoded on the (+) strand. As a whole, although gene organization is known to vary extensively, even among species from the same genus [30], the three *Dosinia* mitogenomes showed a same gene order within the genus.

AT content, AT-skew and GC-skew for mitochondrial sequences of two *Dosinia* species were shown in Table 3. The overall AT content of the *D. altior* mt genome is 69.57%, which is little lower than 69.67% of *D. troscheli* and 69.97% of *D. japonica*. Similar patterns appear in NCRs (72.45% vs 74.07% vs 74.56%), tRNAs (72.04% vs 72.72% vs 72.23%), and *rrnL* (73.08% vs 73.27% vs 74.15%). In order to evaluate the base bias in the mitogenomes, we measured AT-skew and GC-skew in different gene regions of *D. altior* and *D. troscheli*, and compared with *D. japonica*. The results indicated that the values of AT-skew of three species were mostly negative except *rrnS*, as well as GC-skew values were all positive. Furthermore, the AT-and

Fig 1. The organization of the mt genomes of *Dosinia altior* and *D. troscheli*. Genes for proteins and rRNA (*rrnS* and *rrnL*) are listed under abbreviations. The largest non-coding region is designated as MNR.

https://doi.org/10.1371/journal.pone.0196466.g001
Table 2. Main structural features of the three mt genomes in Dosinia clams.

Gene	Dosinia altior	Dosinia troscheli	Dosinia japonica
Total size	17536	17229	17693
A+T%	69.57	69.67	69.97
cox1	1614(ATT/TAG)	1614(TTG/TAG)	1608(GTG/TAG)
trnL^CUN	65	65	66
nad1	930(TTG/TAG)	927(ATG/TAG)	906(ATG/TAG)
nad2	1020(GTG/TAA)	1020(GTG/TAA)	1020(GTG/TAA)
nad4l	267(TTG/TAA)	273(ATG/TAG)	276(ATG/TAG)
cox2	954(ATT/TAG)	1041(TTG/TAA)	1011(GTG/TAG)
trnP	65	65	65
cyt b	1209(ATT/TAA)	1212(ATT/TAA)	1191(ATT/TAA)
rnl	1200	1202	1203
atp8	114(GTG/TAA)	114(ATG/TAA)	114(ATG/TAA)
nad4	1359(ATG/TAA)	1359(ATG/TAA)	1359(ATG/TAG)
trnH	63	62	62
trnE	65	61	61
trnS^CUN	63	63	63
atp6	741(ATT/TAA)	729(ATG/TAA)	729(ATG/TAA)
nad3	405(GTG/TAA)	405(GTG/TAA)	405(GTG/TAA)
nad5	1704(ATG/TAA)	1527(ATG/TAA)	1503(ATG/TAA)
trnL	65	66	65
trnD	68	66	66
trnY	62	64	62
nad6	501(ATT/TAG)	507(ATG/TAA)	486(ATG/TAA)
trnK	69	69	66
trnV	64	64	62
trnF	62	62	62
trnW	63	63	63
trnR	64	61	61
trnL^UUR	66	66	65
trnG	62	62	62
trnQ	69	69	67
trnN	67	65	67
trnT	62	62	62
rnrS	900	903	902
trnM	68	68	68
trnC	62	64	64
trnS^AGN	65	67	67
cox3	870(ATG/TAG)	870(ATG/TAG)	870(ATG/TAG)
trnA	63	62	62

https://doi.org/10.1371/journal.pone.0196466.t002

GC-skewness of entire mtDNA indicates the occurrence of more T than A and more G than C in Dosinia genus (AT-skew, -0.20 and -0.19; GC-skew, 0.43 and 0.41).

Protein-coding genes

Both D. altior and D. troscheli mt genomes encode the full set of 13 proteins. The whole size of the PCGs of D. altior was 11,688 bp, higher than the length of D. troscheli which is 11,598 bp. The overall AT content of the 13 PCGs was 68.21% in the D. altior mitogenome, ranging from
65.68% (cox1) to 75.28% (nad4l), and in D. troscheli mitogenome, the overall AT content of 13 PCGs was 68.06%, which is ranging from 65.91% (nad1) to 71.79% (nad4l).

In the 13 PCGs identified in Dosinia mitogenomes, we found the atp8 which has been reported as missing in several bivalve species. Likewise, there are also many accurate searches referring to the identification of this gene, so the alleged lack of atp8 within some bivalve species is likely due to inaccurate annotation due to the extreme variability and the small size of the gene in most cases [4, 13, 15, 18]. The atp8 was found in publicly available mitogenome sequences of Veneridae species (Table 4). In genus Dosinia, this short gene encoded a 38

Table 3. AT content, AT-skew and GC-skew for mitochondrial genes of D. altior, D. troscheli and D. japonica.

Feature	(A+T) %	AT-skew	GC-skew
Genome	69.57	0.43	0.39
PCGs	68.21	0.42	0.38
NCRs	72.45	0.60	0.55
rrnL	73.04	0.37	0.34
rrnS	71.44	0.30	0.30
cox1	65.68	0.29	0.27
nad1	67.20	0.44	0.35
nad2	68.82	0.60	0.54
nad4	75.28	0.58	0.60
cox2	67.92	0.50	0.52
cyt b	65.84	0.25	0.23
atp8	70.18	0.24	0.26
nad5	69.09	0.50	0.41
atp6	69.91	0.26	0.25
nad3	68.89	0.52	0.53
nad6	70.46	0.48	0.38
cox3	67.47	0.62	0.57

65.68% (cox1) to 75.28% (nad4l), and in D. troscheli mitogenome, the overall AT content of 13 PCGs was 68.06%, which is ranging from 65.91% (nad1) to 71.79% (nad4l).

In the 13 PCGs identified in Dosinia mitogenomes, we found the atp8 which has been reported as missing in several bivalve species. Likewise, there are also many accurate searches referring to the identification of this gene, so the alleged lack of atp8 within some bivalve species is likely due to inaccurate annotation due to the extreme variability and the small size of the gene in most cases [4, 13, 15, 18]. The atp8 was found in publicly available mitogenome sequences of Veneridae species (Table 4). In genus Dosinia, this short gene encoded a 38

Table 4. Presence of the atp8 in the mitogenomes of the Veneridae family.

Species	From	To	Start	Stop	Length	aa	Reference
Ruditapes philippinarum	5968	6087	ATT	TAG	120	40	[4]
Meretrix petechialis	8532	8672	ATA	TAG	141	47	[4]
Meretrix lamarckii	8835	8954	ATG	TAA	120	40	[4]
Meretrix lyrata	8753	8872	ATG	TAG	120	40	[4]
Meretrix tusoria	8642	8761	ATG	TAG	120	40	[4]
Meretrix meretrix	8532	8672	ATA	TAG	141	47	[4]
Paphia euglypta	12994	13110	ATA	TAA	117	39	[4]
Paphia textile	13019	13132	ATG	TAA	114	38	[4]
Paphia anabilis	14035	14148	ATG	TAG	114	38	[4]
Paphia undulata	12642	12755	ATG	TAA	114	38	[4]
Saxidomus purpuratus	9557	9673	ATG	TAA	117	39	[4]
Cyclina sinensis	8568	8684	ATG	TAA	117	39	[4]
Dosinia japonica	7567	7680	ATG	TAA	114	38	[10]
Dosinia altior	7514	7627	GTG	TAA	114	38	This study
Dosinia troscheli	7523	7636	ATG	TAA	114	38	This study

https://doi.org/10.1371/journal.pone.0196466.t003

https://doi.org/10.1371/journal.pone.0196466.t004
amino acids protein starting with ATG and GTG (ATG in *D. troscheli* and *D. japonica*, GTG in *D. altior*), and end with a stop codon (TAA). The location of the *atp8* within the mitogenomes is same in the three species of *Dosinia* genus, which is between *rrnL* and *nad4*. Amino acid sequences of these ATPases were aligned among three *Dosinia* clams, and the conversed motifs were found, in particularly, the N-terminus and the C-terminus (Fig 2).

Most of the PCGs in the three *Dosinia* mitogenomes initiate with conventional start codons ATN (ATT, n = 7; ATA, n = 7; ATG, n = 11). However, an alternative initiation codon TTG (n = 4) was detected in four genes (*nad1, nad4l, cox1*, and *cox2*), GTG (n = 9) was detected in *cox1, cox2, nad2*, and *atp8* genes, and ATC (n = 1) in the *nad5* gene of *D. altior*. Genes starting with TTG, GTG and ATC were also found in mitogenomes of other Veneridae species such as *M. petechialis* and *M. meretrix* (*cox1*: TTG), *P. textile* (*nad1*: GTG) and *M. lamarckii* (*nad1*: ATC). As for termination codons, all 13 PCGs of the three mt genomes end in a full stop codon, either TAA (n = 24) or TAG (n = 15). There are four genes employing the same initiation and termination codons in *D. altior*, *D. troscheli* and *D. japonica* (*nad2*: GTG/TAA, *cytb*: ATT/TAA, *nad3*: GTG/TAA, *cox3*: ATG/TAG).

Codon usages of three *Dosinia* species were presented in Table 5. All stop codons were excluded from the calculation. The mt genome of *D. altior* encoded 3883 amino acids in total, compared with 3853 in *D. troscheli* and 3813 in *D. japonica*, respectively. All codons are used in three mitogenomes but with different frequencies. The three predominant codon families are UUU (phenylalanine), UUA (leucine) and GUU (valine) in *D. altior* mitogenome, and there are UUU (phenylalanine), UUA (leucine) and AUU (isoleucine) in *D. troscheli*, as all of these codons are A+T-rich codon families. On the contrary, the least chosen codons are from G+C-rich codon families such as CGC (arginine) and CCC (proline).

Transfer RNA and ribosomal RNA genes

D. altior and *D. troscheli* mitogenomes contain the usual set of 22 tRNA genes typical of metazoans, two copies of *trnS* and *trnL*, and one tRNA gene for each of the other 18 amino acids. All the tRNA genes are encoded on the (+) strand. The tRNA genes are interspersed in the mt genome, and ranged from 61 bp (*trnE* and *trnA*) to 69 bp (*trnK* and *trnQ*). There are seven tRNA genes (*trnS, trnP, trnF, trnW, trnG, trnT, trnM*) which have identical lengths within the three species from *Dosinia* (Table 2). The predicted secondary structures of tRNAs in two *Dosinia* clams were shown in S1 and S2 Figs. The majority of tRNAs can be folded into typical clover-leaf secondary structures except for *trnSGN* and *trnSU*NY, which lack the DHU arm. However, absence of the DHU arm in the secondary structure of *trnSGN* and *trnSU*NY is commonly observed in molluscs [33, 47, 48]. The *trnY* of *D. altior* showed no terminal TψC loop, which have previously been found in mtDNA of other bivalve species, such as genus *Donax*.
The acceptor stem and anticodon stem of tRNAs in *Dosinia* mt genomes are 5–8 bp, while the dihydrouracil stem and TψC stem are 3–5 bp in length.

The rrlL and rrsS of *D. altior* and *D. troscheli* were identified by sequence comparison with the available 13 Veneridae species from GenBank, though an accurate delimitation of gene boundaries must await transcript mapping. All rrsS in *Dosinia* mt genomes were located between trnT and trnM, which was same with that in *S. purpuratus* and *C. sinensis*. The length of rrsS in three mt genomes ranged from 900 bp (*D. altior*) to 903 bp (*D. troscheli*), with A+T content between 69.18% (*D. japonica*) and 71.44% (*D. altior*). On the other hand, the rrlL was flanked by cytB and atp8 in all *Dosinia* mt genomes, just like in *M. lyrata* [34], *M. lusoria* [33], and *M. lamarckii* [32]. Its size varied from 1,200 bp (*D. altior*) to 1,203 bp (*D. japonica*), and

Amino acid	Code	N(RSCU) *D. altior*	N(RSCU) *D. troscheli*	N(RSCU) *D. japonica*
F	UUU	351(1.8)	353(1.8)	353(1.8)
	UUC	38(0.19)	40(0.2)	40(0.2)
L	UUA	294(3.15)	293(3.27)	293(3.27)
	UUG	164(1.76)	134(1.5)	134(1.5)
	CUU	57(0.61)	67(0.75)	67(0.75)
	CUC	4(0.04)	7(0.08)	7(0.08)
	CUA	28(0.3)	26(0.29)	26(0.29)
	CUG	13(0.14)	10(0.11)	10(0.11)
I	AUU	200(1.83)	212(1.93)	212(1.93)
	AUC	19(0.17)	8(0.07)	8(0.07)
M	AUA	167(1.39)	162(1.36)	162(1.36)
	AUG	73(0.61)	76(0.64)	76(0.64)
V	GUU	219(1.93)	209(1.96)	209(1.96)
	GUC	9(0.08)	9(0.08)	9(0.08)
	GUA	122(1.98)	125(1.17)	125(1.17)
	GUG	103(0.91)	83(0.78)	83(0.78)
	UCU	111(2.21)	102(2.0)	102(2.0)
	UCC	11(0.22)	9(0.18)	9(0.18)
	UCA	30(0.6)	37(0.72)	37(0.72)
	UCG	17(0.34)	20(0.39)	20(0.39)
P	CCU	71(2.47)	56(2.0)	56(2.0)
	CCC	1(0.03)	12(0.43)	12(0.43)
	CCA	2(0.83)	23(0.82)	23(0.82)
	CCG	19(0.66)	15(0.52)	15(0.52)
T	ACU	79(2.75)	70(2.55)	70(2.55)
	ACC	6(0.21)	8(0.28)	8(0.28)
	ACA	19(0.66)	26(0.91)	26(0.91)
	ACG	11(0.38)	10(0.35)	10(0.35)
A	GCU	92(2.59)	99(2.66)	99(2.66)
	GCC	6(0.17)	5(0.13)	5(0.13)
	GCA	22(0.62)	30(0.81)	30(0.81)
	GCG	22(0.62)	15(0.4)	15(0.4)

N is representative for the total number of particular codon in all protein-coding genes.

RSCU is representative for the relative synonymous codon usage.

https://doi.org/10.1371/journal.pone.0196466.t005
A+T content ranged between 73.08% (D. altior) and 74.15% (D. japonica). In the mt genome of D. altior, the size of either rrnS or rrnL is the shortest within that of mitogenomes in the family Veneridae [10, 27, 30–34].

Non-coding regions and repeat units

Differences of genome size are mainly due to different lengths of non-coding regions (NCRs) [30]. In the comparison of NCRs within the three mt genomes of genus Dosinia (Table 6), the mt genome of D. altior contained 23 NCRs ranging in size from 1 to 1865 bp, and the total length was 2385 bp, which was longer than D. troscheli. D. troscheli mitogenome contained 21 NCRs ranging in size from 2 to 1521 bp, and the whole length of that was 2140 bp. Both lengths of NCRs in D. altior and D. troscheli are shorter than that of D. japonica. Within these non-coding sequences, a 1521 bp and a 1865 bp nucleotide segments were putatively identified as the major non-coding region (MNR) of D. altior and D. troscheli. The MNR has a high A+T content of 71.26% in D. altior and 72.45% in D. troscheli, which is higher than the average of the whole genome (69.57% in D. altior, 69.67% in D. troscheli) and PCGs (68.21% in D. altior, 68.06% in D. troscheli). The increased A+T content of MNR is thought to contain the signals for replication and transcription, and hence is referred to as the control region [49].

In addition, the MNR has been regarded as the most easily relocated segment followed by tRNA genes and PCGs [25, 50, 51]. For example, the gene arrangements of four Paphia genomes are identical, but locations of MNRs are obviously different [30]. However, in the present study, we observed that the MNRs of the three Dosinia clams were all located between trnI and trnD genes, although with different tandem repeats. Tandem repeats have been described in the non-coding regions of metazoa [52–55], and in family Veneridae, the tandem repeat units were regarded as a common feature for mitogenomes, such as in M. petechialis, M. lusoria, and R. philippinarum [56]. The tandem repeat units found in D. altior, D. troscheli and D. japonica were all occurring around about 450 bp from the 5’ end of the non-coding region (Fig 3). There were 2.2 nearly identical copies of a 30 bp unit in the MNR of D. altior, and 2 nearly identical copies of a 30 bp sequence in D. troscheli, both the total lengths were shorter than that of D. japonica. D. japonica contained 1.9 copies of 75 bp repeat motif in MNR. Each tandem repeat motif of MNR in the Dosinia clams could form a secondary structure with a stem-loop when the sequence is folded to minimize the free energy of the structure. Great divergence in the tandem repeat region of different species which were closely related, even from same genus, was common, such as the M. lusoria and M. petechialis from Meretrix genus [33]. Further study of tandem repeats in the control region is needed, as it is important to illuminate a variety of process, including the molecular mechanisms for their generation and their possible functional implications [57].

Gene arrangement and phylogenetic analyses

Gene arrangements appear to be dramatically variable in the major groups of bivalves, even with differences in the same family or genus [19, 28, 29]. In this study, we compare the gene arrangement of three Dosinia mt genomes with that of other closed related species belonging
to Veneridae family (Fig 4). There were 15 Veneridae clams from six different genera (*Paphia*, *Meretrix*, *Ruditapes*, *Saxidomus*, *Cyclina* and *Dosinia*), and exhibit nine different gene orders.

In genus *Dosinia*, three *Dosinia* clams share the same gene order with each other among 37 genes, and at the same time, the four *Paphia* mitogenomes also have completely identical gene arrangements within genus. Unlike above two genera, there were four patterns of gene arrangement in the genus *Meretrix*, and this comparison was previously reported by Wu et al. [34] and Wang et al. [33]. *M. lamarcki* and *M. lusoria* have the identical gene order, but the other three *Meretrix* species have variable arrangement due to the tandem duplication of *trnQ*, *trnI*, *trnN*, and five different locations of tRNA genes (*trnT*, *trnA*, *trnQ*, *trnN*, *trnR*).

The tRNAs are more variable than either rRNAs or PCGs because of their secondary structure, which allow them to translocate more frequently [58, 59]. After excluding tRNA genes from the comparison, the gene arrangements among Veneridae mitogenomes tend to be relatively conserved. In this regard, Genera *Dosinia*, *Meretrix*, *Cyclina* and *Saxidomus* show the same gene order except for translocations of genes *nad3* and *nad5* in *Saxidomus; Dosinia* and
Ruditapes are almost identical except for translocations of genes rrnS and cox3. It is clear that Dosinia genus is more similar to Meretrix and Cyclina than Paphia in terms of gene arrangement. Furthermore, there is only one gene block (cox1-nad1-nad2-nad4l-cox2-cytb-rrnL) shared when comparing gene arrangement of PCGs and rRNAs in the 15 Veneridae species, and this gene block may be inherited from the common ancestor of Veneridae.

For the dramatic gene arrangement of mt genome during evolution in Veneridae, Xu et al. [27] ever explained the mt genomic rearrangement event among the R. philippinarum, P. euglypta and M. petechialis with the tandem duplication and random loss (TDRL) model, and then, the TDRL model also was used in the analyses of gene arrangements in five Meretrix clams [34]. The deduced evolutionary pathways from this model suggested that block interchange between adjacent genes might be common in the evolution of the mt genomes in venerids.

Comparative analysis of mitochondrial gene order has been proved to be a useful phylogenetic tool as reported in many other previous studies [4, 18, 48, 60–62]. In this study, the results are consistent with the conclusion from the phylogenetic analysis (see below), and support that gene order is a useful hallmark helping to clarify phylogenetic relationships within the family.

ML and BI trees based on the nucleotide sequences of 12 concatenated protein-coding genes (except atp8 gene) were performed to construct phylogenetic relationships within family Veneridae (Fig 5). The topological structures showed that the results of ML and BI trees were in almost complete agreement.
The phylogenetic analysis indicated that three species belonging to genus *Dosinia*, including *D. japonica*, *D. altior* and *D. troscheli* clustered together, supporting that *Dosinia* is monophyletic, which was in accordance with previous viewpoints [6, 7]. At the same time, *D. japonica* and *D. troscheli* formed a single group at the *Dosinia* level, with *D. altior* being the sister taxon. This result is consistent with the morphological classification [35], in which *D. altior* was classified into the subgenus *Bonartemis*, *D. japonica* and *D. troscheli* were classified into another subgenus *Phacosoma*.

In this study, according to the phylogenetic tree, Dosininae and Meretricinae have a closer relationship, with Tapetinae being the sister taxon, which indicates Dosininae and Meretricinae may have a common ancestor based on the nucleotide sequences. Our results were in agreements with the previous studies discussing the phylogenetic relationships which including Veneridae family within Heterodont or Veneroida [3, 13, 14, 16, 18]. Besides, there is a disagreement about the sister relationship between Dosininae and Meretricinae, which ever...
reported by Chen et al. [6] and Lv et al. [10] based on short fragments of nuclear gene or mt DNA. This similar phenomenon had also happened to Cardioidea and Tellinoidea which was reported by Yuan et al. [18], and different evolutionary position of M. lyrata and M. lamarckii by Wu et al. [34] and Fernandez-Perez et al. [4]. The credibility of the results in this study include: i) the number of mt genome was increased to enhance the accuracy of evolutionary position, avoiding only one mitogenome of Dosinia considerable divergence from the other venerids; ii) mt genome contains more genetic information than short gene fragments, and short gene fragments existed the substitutional saturation of nucleotide and horizontal gene transfer; and iii) this conclusion was in accordance with the analyses of gene arrangement among 15 mt genomes in Veneridae family in this study.

The phylogenetic analysis here provided a real possible phylogenetic relationship among Dosinia species and their evolutionary position within family Veneridae, and in this sense, results of phylogenetic analyses support the idea that genome reorganization among congeneric species is not random, but is correlated with their phylogenetic relationships. In future, more detailed analyses with a larger taxon sampling and more rapidly evolving molecular markers including mt genome are still necessary in order to clarify the phylogenetic relationships within family Veneridae.

Conclusion

In this study, we sequenced the complete mt genomes of D. altior and D. troscheli, and compared the genus-specific genomic features of mitogenomes in Dosinia genus. Our study has provided insights into the evolitional relationships among Veneridae clams. Based on phylogenetic analyses of multiple protein-coding genes, we suggest that Dosinia genus would be evolutionarily closer to Meretricinae clams than Tapetinae, and support that the Dosinia is monophyletic. Nevertheless, additional analyses with mitochondrial genomic information of more diverse clam species will be required to further understand the phylogenetic relationships in family Veneridae including genus Dosinia.

Supporting information

S1 Fig. Putative secondary structure of the 22 tRNAs predicted based on the Dosinia altior mitogenome sequence.
(TIF)

S2 Fig. Putative secondary structure of the 22 tRNAs predicted based on the Dosinia troscheli mitogenome sequence.
(TIF)

Acknowledgments

This study was supported by research grants from Fundamental Research Funds for the Central Universities (201762014), National Natural Science Foundation of China (31772414), and Industrial Development Project of Qingdao City (17-3-3-64-nsh).

Author Contributions

Conceptualization: Qi Li, Lingfeng Kong.

Data curation: Changda Lv.

Formal analysis: Changda Lv.
Funding acquisition: Qi Li, Lingfeng Kong.
Writing – original draft: Changda Lv.
Writing – review & editing: Qi Li, Lingfeng Kong.

References
1. Liu Z, Li J, Yang X, Wang H, Li Y, Zhang S, et al. Species of common *Dosinia* from intertidal zones of northern China. Marine Sciences. 2010; 34: 30–35.
2. Masuda K. Remarks On Some Fossil *Dosinia* of Japan. Transactions and proceedings of the Paleontological Society of Japan New series. 1963; 49: 29–38. http://doi.org/10.14825/prp ej1951.1963.49_29
3. Ozawa G, Shimamura S, Takaki Y, Yokobori S, Ohara Y, Takishita K, et al. Updated mitochondrial phylogeny of Pteriomorph and Heterodont Bivalvia, including deep-sea chemosymbiotic *Bathymodiolus* mussels, vesicomyid clams and the thyasirid clam *Conchocele cf. bisecta*. Marine Genomics. 2017; 31: 43–52. http://doi.org/10.1016/j.marg en.2016.09.003 PMID: 27720682
4. Fernandez-Perez J, Nanton A, Ruiz-Ruano FJ, Camacho JPM, Mendez J. First complete female mitochondrial genome in four bivalve species genus *Donax* and their phylogenetic relationships within the Veneroida order. PLoS One. 2017; 12. http://doi.org/10.1371/journal.pone.0184464 PMID: 28886105
5. Canapa A, Schiaparelli S, Marotta I, Barucca M. Molecular data from the 16S rRNA gene for the phylogeny of *Veneridae* (Mollusca: Bivalvia). Marine Biology. 2003; 142: 1125–1130. http://doi.org/10.1007/s00227-003-1048-1 PMID: 10654263
6. Chen J, Li Q, Kong LF, Zheng XD. Molecular phylogeny of venus clams (Mollusca, Bivalvia, Veneridae) with emphasis on the systematic position of taxa along the coast of mainland China. Zoologica Scripta. 2011; 40: 260–271. http://doi.org/10.1111/j.1463-6409.2011.00471.x
7. Salvi D, Mariottini P. Molecular phylogenetics in 2D: ITS2 rRNA evolution and sequence-structure barcode from Veneridae to Bivalvia. Molecular Phylogenetics and Evolution. 2012; 65: 792–796. https://doi.org/10.1016/j.ympev.2012.07.017 PMID: 22846682
8. Garcia-Souto D, Perez-Garcia C, Moran P, Pasantes JJ. Divergent evolutionary behavior of H3 histone gene and rDNA clusters in venerid clams. Molecular Cytogenetics. 2015; 8: 40–40. https://doi.org/10.1186/s13039-015-0150-7 PMID: 26106449
9. Perez-Garcia C, Hurtado NS, Morán P, Pasantes JJ. Evolutionary Dynamics of rDNA Clusters in Chromosomes of Five Clam Species Belonging to the Family Veneridae (Mollusca, Bivalvia). BioMed Research International. 2014; 2014: 754012–754012. http://dx.doi.org/10.1155/2014/754012 PMID: 24987400
10. Lv C, Kong L, Yu H, Li Q. The complete mitochondrial genome of *Dosinia japonica* (Bivalvia: Veneridae). Conservation Genetics Resources. 2017. http://doi.org/10.1007/s12686-017-0828-8
11. Maddison WP. Reconstructing character evolution on polytomous cladograms. Cladistics. 1989; 5: 365–377. https://doi.org/10.1111/j.1096-0031.1989.tb00569.x
12. Woese CR. On the evolution of cells. Proceedings of the National Academy of Sciences of the United States of America. 2002; 99: 8742–8747. https://doi.org/10.1073/pnas.132266999 PMID: 12077305
13. Ghiselli F, Milani L, Iannello M, Procopio E, Chang P, Nuzhdin SV, et al. The complete mitochondrial genome of the grooved carpet shell, *Ruditapes decussatus* (Bivalvia, Veneridae). PeerJ. 2017; 5: e3692. https://doi.org/10.7717/peerj.3692 PMID: 28846869
14. Hwang JY, Lee C, Kim H, Nam B, An CM, Park JY, et al. Comparative genomic analysis of mitochondrial protein-coding genes in Veneroida clams: Analysis of superfamly-specific genomic and evolutionary features. Marine Genomics. 2015; 24: 329–334. http://doi.org/10.1016/j.marg en.2015.08.004 PMID: 26343338
15. Piazza F, Puccio G, Passamonti M. Comparative Large-Scale Mitogenomics Evidence Clade-Specific Evolutionary Trends in Mitochondrial DNAs of Bivalvia. Genome Biology and Evolution. 2016; 8: 2544–2564. http://doi.org/10.1093/gbe/evw187 PMID: 27503296
16. Shen X, Meng XP, Chu KH, Zhao NN, Tian M, Liang M, et al. Comparative mitogenomic analysis reveals cryptic species: A case study in Mactridae (Mollusca: Bivalvia). Comparative Biochemistry and Physiology D-Genomics & Proteomics. 2014; 12: 1–9. http://doi.org/10.1016/j.cbd.2014.08.002 PMID: 25247670
17. Wilson JJ, Hefner M, Walker CW, Page ST. Complete mitochondrial genome of the soft-shell clam *Mya arenaria*. Mitochondrial DNA. 2016; 27: 3553–3554. https://doi.org/10.3109/19401736.2015.1074214 PMID: 26260175
Complete mitochondrial genomes of *Dosinia* and phylogenetic position within Veneridae

18. Yuan Y, Li Q, Yu H, Kong L. The complete mitochondrial genomes of six Heterodont bivalves (Tellinoida and Solenoida): variable gene arrangements and phylogenetic implications. PLoS One. 2012; 7: e32353. https://doi.org/10.1371/journal.pone.0032353 PMID: 22384227

19. Gissi C, Iannelli F, Pesole G. Evolution of the mitochondrial genome of *Metazoza* as exemplified by comparison of congeneric species. Heredity. 2008; 101: 301–320. https://doi.org/10.1038/hdy.2008.62 PMID: 18612321

20. Hebert PDN, Cywinska A, Ball SL, Dewaard JR. Biological identifications through DNA barcodes. Proceedings of The Royal Society B: Biological Sciences. 2003; 270: 313–321. https://doi.org/10.1098/rspb.2002.2218 PMID: 12614582

21. Ingman M, Kaessmann H, Paabo S, Gyllensten U. Mitochondrial genome variation and the origin of modern humans. Nature, 2000; 408: 708–713. https://doi.org/10.1038/35047064 PMID: 11130070

22. Mueller RL. Evolutionary rates, divergence dates, and the performance of mitochondrial genes in Bayesian phylogenetic analysis. Systematic Biology. 2006; 55: 289–300. https://doi.org/10.1080/106351505041672 PMID: 16611600

23. Russo CAM, Takezaki N, Nei M. Efficiencies of different genes and different tree-building methods in recovering a known vertebrate phylogeny. Molecular biology and evolution. 1996; 13: 525–536. https://doi.org/10.1093/oxfordjournals.molbev.a025613 PMID: 8752002

24. Zardoya R, Meyer A. Phylogenetic performance of mitochondrial protein-coding genes in resolving relationships among vertebrates. Molecular biology and evolution. 1996; 13: 933–942. https://doi.org/10.1093/oxfordjournals.molbev.a025661 PMID: 8752002

25. Rawlings TA, Macinnis MJ, Bieler R, Boore JL, Collins TM. Sessile snails, dynamic genomes: gene rearrangements within the mitochondrial genome of a family of caenogastropod molluscs. BMC Genetics. 2010; 11: 440–440. https://doi.org/10.1186/1471-2164-11-440 PMID: 20642828

26. Shadel GS, Clayton DA. Mitochondrial DNA maintenance in Vertebrates. Annual Review of Biochemistry. 1997; 66: 409–435. https://doi.org/10.1146/annurev.biochem.66.1.409 PMID: 9242913

27. Xu X, Wu X, Yu Z. The mitogenome of *Paphia euglypta* (Bivalvia: Veneridae) and comparative mitogenic analyses of three venerids. Genome. 2010; 53: 1041–1052. https://doi.org/10.1139/G10-096 PMID: 21164537

28. Milbury CA, Gaffney PM. Complete mitochondrial DNA sequence of the eastern oyster *Crassostrea virginica*. Marine biotechnology. 2005; 7: 697–712. http://doi.org/10.1007/s10126-005-0004-0 PMID: 16132463

29. Ren J, Liu X, Jiang F, Guo X, Liu B. Unusual conservation of mitochondrial gene order in *Crassostrea* oysters: evidence for recent speciation in Asia. BMC Evolutionary Biology. 2010; 10: 394–394. https://doi.org/10.1186/1471-2148-10-394 PMID: 21189147

30. Xu XD, Wu XY, YuZN. Comparative studies of the complete mitochondrial genomes of four *Paphia* clams and reconsideration of subgenus *Neotapes* (Bivalvia: Veneridae). Gene. 2012; 494: 17–23. http://doi.org/10.1016/j.gene.2011.12.002 PMID: 22183111

31. Wu X, Li X, Li L, Xu X, Xia J, Yu Z. New features of Asian *Crassostrea* oyster mitochondrial genomes: A novel alloaccep tor tRNA gene recruitment and two novel ORFs. Gene. 2012; 507: 112–118. https://doi.org/10.1016/j.gene.2012.07.003 PMID: 22846367

32. Wang H, Zhang S, Xiao G, Liu B. Complete mtDNA of the *Meretrix lamarckii* (Bivalvia: Veneridae) and molecular identification of suspected *M. lamarckii* based on the whole mitochondrial genome. Marine Genomics. 2011; 4: 263–271. https://doi.org/10.1016/j.margen.2011.06.006 PMID: 22118638

33. Wang HX, Zhang SP, Li Y, Liu BZ. Complete mtDNA of *Meretrix lusoria* (Bivalvia: Veneridae) reveals the presence of an *atp8* gene, length variation and heteroplasmy in the control region. Comparative Biochemistry and Physiology D-Genomics & Proteomics. 2010; 5: 256–264. http://doi.org/10.1016/j.cbd.2010.07.003 PMID: 20797924

34. Wu X, Xiao S, Li X, Li L, Shi W, Yu Z. Evolution of the rRNA gene family in mitochondrial genomes of five *Meretrix* clams (Bivalvia, Veneridae). Gene. 2014; 533: 439–446. https://doi.org/10.1016/j.gene.2013.09.077 PMID: 24084366

35. Xu F, Zhang S. An illustrated Bivalve Mollusca fauna of China Seas. Science Press; 2008.

36. Li Q, Park C, Kijima A. Isolation and characterization of microsatellite loci in the Pacific abalone, *Haliotis discus hannai*. J Shellfish Res. 2002; 21: 811–816.

37. Folmer O, Black M, Hoff W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology. 1994; 3: 294–299. PMID: 7881515

38. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers.
Annals of the entomological Society of America. 1994; 87: 651–701. https://doi.org/10.1093/aesa/87.6.651

39. Laslett D, Canback B. ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics. 2008; 24: 172–175. http://doi.org/10.1093/bioinformatics/btm573 PMID: 18033792

40. Bernt M, Donath A, Juhling F, Externbrink F, Florentz C, Fritzsch G, et al. MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution. 2013; 69: 313–319. https://doi.org/10.1016/j.ympev.2012.08.023 PMID: 22982435

41. Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Research. 1999; 27: 573–580. https://doi.org/10.1093/nar/27.2.573 PMID: 9862982

42. Stothard P, Wishart DS. Circular genome visualization and exploration using CGView. Bioinformatics. 2005; 21: 537–539. http://doi.org/10.1093/bioinformatics/btj054 PMID: 15479716

43. Perna NT, Kocher TD. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. Journal of Molecular Evolution. 1995; 41: 353–358. http://doi.org/10.1007/bf01215182 PMID: 7563121

44. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution. 2013; 30: 2725–2729. https://doi.org/10.1093/molbev/msu175 PMID: 24132122

45. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research. 1997; 25: 4876–4882. http://doi.org/10.1093/nar/25.24.4876 PMID: 9396791

46. Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003; 19: 1572–1574. http://doi.org/10.1093/bioinformatics/btg180 PMID: 12912839

47. Dreyer H, Steiner G. The complete sequence and gene organization of the mitochondrial genome of the gadilid scaphopod Siphonodentalium lobatum (Mollusca). Molecular Phylogenetics and Evolution. 2004; 31: 605–617. https://doi.org/10.1016/j.ympev.2003.08.007 PMID: 15062797

48. Sun SE, Kong LF, Yu H, Li Q. The complete mitochondrial DNA of the clam Dosinia and phylogenetic position within Veneridae. Mitochondrial DNA. 2009; 20: 78–87. https://doi.org/10.1080/19401730902964425 PMID: 19479624

49. Cantatore P, Gadaleta MN, Roberti M, Saccone C, Wilson AC. Duplication and remoulding of tRNA genes during the evolutionary rearrangement of mitochondrial genomes. Nature. 1987; 329: 853–855. https://doi.org/10.1038/329853a0 PMID: 3670390
60. Akasaki T, Nikaido M, Tsuchiya K, Segawa S, Hasegawa M, Okada N. Extensive mitochondrial gene arrangements in coleoid Cephalopoda and their phylogenetic implications. Molecular Phylogenetics and Evolution. 2006; 38: 648–658. https://doi.org/10.1016/j.ympev.2005.10.018 PMID: 16442311

61. Boore JL, Brown WM. Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Current Opinion in Genetics & Development. 1998; 8: 668–674. https://doi.org/10.1016/s0959-437x(98)80035-x PMID: 9914213

62. Smith MJ, Arndt A, Gorski S, Fajber E. The phylogeny of echinoderm classes based on mitochondrial gene arrangements. Journal of Molecular Evolution. 1993; 36: 545–554. https://doi.org/10.1007/bf00556359 PMID: 8350349