Alteration of Expression of Ca$^{2+}$ Signaling Proteins and Adaptation of Ca$^{2+}$ Signaling in SERCA2$^{+/−}$ Mouse Parotid Acini

Jong-Hoon Choi,¹ Hae Jo,² Jeong Hee Hong,² Syng-Ill Lee,² and Dong Min Shin²

Departments of ¹Oral Medicine and ²Oral Biology, Oral Science Research Center, Center for Natural Defense System, BK21 Project, Yonsei University College of Dentistry, Seoul, Korea.

Purpose: The sarcoplasmic reticulum Ca$^{2+}$-ATPase (SERCA), encoded by ATP2A2, is an essential component for G-protein coupled receptor (GPCR)-dependent Ca$^{2+}$ signaling. However, whether the changes in Ca$^{2+}$ signaling and Ca$^{2+}$ signaling proteins in parotid acinar cells are affected by a partial loss of SERCA2 are not known. Materials and Methods: In SERCA2$^{+/−}$ mouse parotid gland acinar cells, Ca$^{2+}$ signaling, expression levels of Ca$^{2+}$ signaling proteins, and amylase secretion were investigated. Results: SERCA2$^{+/−}$ mice showed decreased SERCA2 expression and an upregulation of the plasma membrane Ca$^{2+}$ ATPase. A partial loss of SERCA2 changed the expression level of 1, 4, 5-trisinositolphosphate receptors (IP$_3$Rs), but the localization and activities of IP$_3$Rs were not altered. In SERCA2$^{+/−}$ mice, muscarinic stimulation resulted in greater amylase release, and the expression of synaptotagmin was increased compared to wild type mice. Conclusion: These results suggest that a partial loss of SERCA2 affects the expression and activity of Ca$^{2+}$ signaling proteins in the parotid gland acini, however, overall Ca$^{2+}$ signaling is unchanged.

Key Words: sarco/endoplasmic reticulum Ca$^{2+}$-ATPase, Ca$^{2+}$ signaling proteins, parotid gland acinar cells

INTRODUCTION

The parotid gland is a well-known model for Ca$^{2+}$ signaling because salivary fluid secretion is evoked by increases of intracellular calcium concentration ([Ca$^{2+}$]) following the activation of G protein coupled receptors (GPCRs). Increases of [Ca$^{2+}$], accelerate fluid secretion by adjusting the opening of Ca$^{2+}$-dependent Cl$^−$ channels. Together with fluid secretion, protein secretion in parotid gland acinar is usually caused by an increase in intracellular cAMP concentration with stimulation of β-adrenergic receptor and activation of cAMP-dependent protein kinase A (PKA), which induces cell membrane fusion of secretory vesicles. However, the exact mechanism for exocytosis of secretory vesicles is still not known, specifically which protein is phosphorylated by PKA. In addition to β-adrenergic stimulation, stimulation of the muscarinic, substance P, or β-adrenergic receptors also elicits significant amylase release from the parotid although the levels of amylase are significantly lower than those observed from a β-adrenergic receptor-mediated response. The stimulation of these receptors activates phosphatidylinositol metabolism and induces an increase in [Ca$^{2+}$], without affecting intracellular cAMP levels.

Ca$^{2+}$ acts as an intracellular messenger, relaying information within cells to regulate their activity. The intracellular free calcium ion, Ca$^{2+}$, is a common second messenger, and has roles in fertilization, muscle contraction, neurotransmitter release, fluid secretion, exocytosis, memorization, and learning. There is a close connection between GPCRs and Ca$^{2+}$ signaling in parotid gland acinar cell. GPCRs activate Gq to release Guq and Gβγ. Guq activates phospholipase Cβ to generate 1, 4, 5-trisinositolphosphate (IP$_3$) in the cytosol to release Ca$^{2+}$ from
the endoplasmic reticulum (ER). Ca$^{2+}$ release from the ER leads to activation of store-operated Ca$^{2+}$ channels in the plasma membrane, and the Ca$^{2+}$ release and influx increase the [Ca$^{2+}$]. Subsequently, the plasma membrane Ca$^{2+}$ pump (PMCA) and SERCA remove Ca$^{2+}$ from the cytosol to reduce [Ca$^{2+}$], toward resting levels until the [Ca$^{2+}$], stabilizes at a plateau.

It is known that SERCA carries out several different functions in cells. First, it acts as a buffer of [Ca$^{2+}$], in resting cells and controls store operated Ca$^{2+}$ channel activity when cells are stimulated. Second, it reloads Ca$^{2+}$ stores at the end of cell stimulation. Moreover, it is reported that SERCA is involved in [Ca$^{2+}$], oscillations and Ca$^{2+}$ waves that are typical physiological Ca$^{2+}$ responses for the transmission of signals when cells are stimulated by agonists. ATP2A2 encodes 2 types of Ca$^{2+}$-transporting ATPases, SERCA2a and SERCA 2b, which differ in their C-terminal sequences as a result of alternative splicing. SERCA2a is expressed at the highest levels in the heart, where it plays a central role in Ca$^{2+}$ handling required for excitation/contraction coupling in cardiomyocytes. In contrast to the limited tissue distribution and organ-specific function of SERCA2a, SERCA2b is expressed in all tissues, suggesting that it plays an essential housekeeping role, although it may serve some organ-specific functions as well. Therefore, in SERCA2 homozygote mice, lack of functional ATP2A2 gene leads to embryonic lethality. However, SERCA2 heterozygote mice (SERCA2$^{+/−}$) have a normal appearance and do not seem to have any abnormal conditions. Recently a partial loss of SERCA2 in SERCA2$^{−/−}$ mouse pancreatic acinar cells has been known to cause increased PMCA expression and activation, resulting in a change of [Ca$^{2+}$], oscillation frequency, upregulation of synaptotagmin, and an overall adaptation phenomenon. This adaptation partially explains why patients with Dariers disease (DD), which is limited collagenase digestion as previously described, were sacrificed by cervical dislocation. The cells were prepared from the parotid gland by limited collagenase digestion as previously described. In order to achieve the pure isolation of acinar cells, density gradient centrifugation was performed with Accudenz and the purity of the acinar cells were confirmed via light microscopy. After isolation, the acinar cells were resuspended in an extracellular physiologic salt solution (FSS): 140 mM NaCl; 5 mM KCl; 1 mM MgCl$_2$; 1 mM CaCl$_2$; 10 mM HEPES; and 10 mM glucose titrated

MATERIALS AND METHODS

Materials

Fura-2-acetoxymethyl ester (Fura-2/AM), Fluo-3 K$^+$ salt, and Fura-2 Na$^+$/K$^+$ (free acid form of fura-2) were purchased from Teflabs (Austin, TX, USA). Collagenase type IV, carbamyl choline chloride (carbachol), pilocarpine HCl, soybean trypsin inhibitor, N-[2-hydroxyethyl] piperazine-N’-[2-ethanesulfonic acid] (HEPES), and D-glucose were purchased from Sigma (St. Louis, MO, USA). Bovine serum albumin (BSA) and pyruvic acid were from Amnesco (Solon, OH, USA). All IP$_3$Rs pAbs were a generous gift from Dr. Akihiko Tanimura (University of Hokkaido, Ishikari-Tobetsu, Japan). Synaptotagmin mAbs and syntaxin pAbs were generous gifts from Dr. Shmuel Muallem (University of Texas Southwestern Medical Center, Dallas, TX, USA). The PMCA mAb was purchased from Transduction Laboratory (San Jose, CA, USA).

Preparation of parotid gland acinar cells from wild-type and SERCA2$^{−/−}$ mice

Wild-type (WT, 25 - 28 g) and SERCA2$^{−/−}$ (25 - 28 g) mice were sacrificed by cervical dislocation. The cells were prepared from the parotid gland by limited collagenase digestion as previously described. In order to achieve the pure isolation of acinar cells, density gradient centrifugation was performed with Accudenz and the purity of the acinar cells were confirmed via light microscopy. After isolation, the acinar cells were resuspended in an extracellular physiologic salt solution (FSS): 140 mM NaCl; 5 mM KCl; 1 mM MgCl$_2$; 1 mM CaCl$_2$; 10 mM HEPES; and 10 mM glucose titrated
to pH 7.4. The osmolality of the extracellular solution (measured with a FISKE 110 osmometer) was 310 mOsm.

[Ca^{2+}] measurement

Cells were incubated for 40 min in PSS containing 5 μM fura 2-AM with pluronic F-127 to enhance dye loading. Changes in [Ca^{2+}] were measured by means of fura 2 fluorescence, with excitation wavelengths of 340 nm and 380 nm, and an emission wavelength of 510 nm at room temperature. Background fluorescence was subtracted from the raw signals at each excitation wavelength before calculating the fluorescence ratio as: \(\text{ratio} = \frac{F_{340}}{F_{380}} \). The emitted fluorescence was monitored with a CCD camera (Photon Technology International Inc., Lawrenceville, NJ, USA) attached to an inverted microscope. Fluorescence images were obtained at 2-s intervals. Each cell was then stimulated by carbachol in a dose-dependent manner.

Amylase assay

Animals were allowed water but starved for 24 h prior to the experiment. Each acinar cell was stimulated with equal concentrations of the carbachol used in the [Ca^{2+}] measurement study. Acinar cells were incubated with carbachol for 20 min in a shaking incubator at 37°C and 60 rpm. Acinar cells were lysed by sonication. The lysates were clarified by centrifugation at 13,000 rpm for 10 min. The total amylase content or content of amylase released into the medium was determined by the method described by Bernfeld et al.\(^{15}\) Aliquots of the incubation medium and the supernatants of the homogenized glands were incubated with a 0.5% starch suspension for 10 min at 37°C. Absorbance was measured at 540 nm. Amylase activity in the medium was expressed as a percentage of the total activity.

Western blotting

Protein extracts were prepared from parotid acinar cells as follows. Pure acinar cells were washed with ice-cold PBS and then lysed by the addition of Tris-HCl, NaCl, and EDTA buffer (1% NP-40, 10 mM of Tris HCl (pH 7.8), 150 mM NaCl, 1 mM EDTA, 2 mM NaVO₄, 10 mM NaF, 10 μg/mL aprotinin, 10 μg/mL leupeptine, 10 μg/mL PMSF). The lysates were clarified by centrifugation at 13,000 rpm for 10 min. Samples were separated by 12% SDS-PAGE. Proteins in the gel were transferred onto nitrocellulose membrane (Schleicher and Schuell Bioscience, Dassel, Germany) for 1 h at 200 mA. The nitrocellulose membrane was blocked by incubation in 6% skim milk in TTBS buffer (1X TBE solution +0.1% Tween 20). The membrane was then probed overnight at 4°C with primary Abs. After the membrane was washed 3 times with TTBS buffer, it was incubated with horseradish peroxidase conjugated secondary antibody (Santa Cruz Biotechnology, Santa Cruz, CA, USA) in TTBS buffer containing 3% skim milk for 1 h at room temperature, and washed again with TTBS buffer. Detection was performed using an ECL detection system (Amersham Biosciences, Uppsala, Sweden), and immunoreactive bands were visualized using Medical X-Ray film (AGFA).

Immunocytochemistry

Cells were plated on a glass coverslip for 10 min at room temperature prior to fixation with methanol. After fixation, the immunostaining was performed as previously described.\(^{16}\) All of the antibodies were used at a dilution of 1:200 for immunolocalization of IP₃Rs. Images were collected with a confocal microscope (Carl Zeiss, Germany).

Measurement of extracellular [Ca^{2+}]

To directly measure the rate of Ca^{2+} efflux by PMCA, the appearance of Ca^{2+} in the external medium was measured as previously described\(^{17}\) with minor modifications. Intact acini were washed once and suspended in medium containing 120 mM KCl, 20 mM NaCl, 10 mM HEPES pH7.4 with KOH, 10 mM glucose, and 2 μM of the free acid fura-2. After initiation of fluorescence recording, 7.5 mM EGTA was added to reduce the extra cellular Ca^{2+} concentration to ~100 nM. After establishing a baseline leak for ~1 min, the cells were stimulated with 1 mM carbachol. At the end of experiment, the signals were calibrated by adding 1 mM CaCl₂ and 1 mM MnCl₂ to the medium.
Measurement of Ca\(^{2+}\) uptake and release from internal stores

This was achieved using the previously described SLO permeabilization systems.\(^\text{13}\) The cells were washed with a high K\(^{+}\), chelax-treated medium and added to the same medium containing an ATP regeneration system (composed of 3 mM ATP, 5 mM MgCl\(_2\), 10 mM creatine phosphate and 5 U/mL creatine kinase), a cocktail of mitochondria inhibitors, 2 \(\mu\)M Fluo3 and 3 \(\mu\)g/mL SLO (Difco, Detroit, MI, USA). After addition, the cells were instantaneously permeabilized to molecules up to 20 kDa so that Ca\(^{2+}\) uptake into the ER could be measured immediately. Uptake of Ca\(^{2+}\) into the ER was allowed to continue until medium [Ca\(^{2+}\)] was stabilized. Increasing concentrations of nonmetabolized IP\(_3\) were added to measure the extent of Ca\(^{2+}\) release and the potency of IP\(_3\) in mobilizing Ca\(^{2+}\) from the ER.

Measurement of parotid fluid secretion

WT and SERCA2\(^{+/−}\) mice were anesthetized with chloral hydrate (500 mg/kg body weight, intraperitoneal), and the main secretory ducts of the parotid glands were isolated using a dissecting microscope. The parotid glands were stimulated with Pilocarpine HCl (mg/kg, intraperitoneal), and parotid saliva was collected directly from the isolated parotid gland ducts to avoid contamination of saliva from other areas (e.g. tracheal and nasal secretions).

Data analysis and statistics

Results are expressed as mean ± S.E.M. The statistical significance of differences between groups was determined using Student’s T-tests. In statistical tests, \(p\) values of less than 0.05 were considered to be significant.

RESULTS

Alteration of Ca\(^{2+}\) signaling protein expression in parotid gland acinar cells of SERCA2\(^{+/−}\) mouse

We hypothesized that the Ca\(^{2+}\) signaling-related protein expression levels or activities in SERCA2\(^{+/−}\) mouse parotid gland acinar cells might be changed due to the reduced gene dosage and decreased expression of SERCA2. Thus, protein expression levels of 3 types of IP\(_3\)Rs, PMCA, and SERCA2b were investigated in WT and SERCA2\(^{+/−}\) mice. SERCA2b expression was decreased to 59 ± 3.52\%, PMCA increased to 74 ± 10.68 \%, IP\(_3\)R1 increased to 48 ± 4.21\%, IP\(_3\)R2 decreased to 67 ± 5.04\%, and IP\(_3\)R3 increased to 38 ± 8.94\% in SERCA2\(^{+/−}\) mice compared to WT (n = 4) (Figs. 1A and B). In addition, the localization of IP\(_3\)Rs was not affected by a partial loss of SERCA2 (n = 4), as they were present on the apical side as reported in a previous study.\(^\text{8}\)

Activity of SERCA, PMCA and IP\(_3\)Rs in parotid gland acinar cells of SERCA2\(^{+/−}\) mouse

In order to measure the activity of the IP\(_3\)Rs, the permeability of plasma membrane was increased using streptolysin O (SLO) and Fluo-3 was loaded into the cells. The cells were sequentially stimulated with non-metabolized 2, 4, 5-IP\(_3\) and the change of Ca\(^{2+}\) concentration changes were measured as the activity of the IP\(_3\)Rs. The rate of Ca\(^{2+}\) reduction was measured as SERCA activity as described in the Methods section. As shown in Fig. 2A, SERCA activity in SERCA2\(^{+/−}\) parotid acinar cells was decreased by ~2-folds. However, the [Ca\(^{2+}\)] after maximum Ca\(^{2+}\) removal was similar in both cell types with the WT at 17.75 ± 4.99 nM and SERCA2\(^{+/−}\) at 17.25 ± 3.09 nM (n = 4). When 1 \(\mu\)M IP\(_3\) was added, the Ca\(^{2+}\) concentration was increased to 30.75 ± 4.78 nM in WT and 35 ± 3.55 nM in SERCA2\(^{+/−}\). In the second trial of 1 \(\mu\)M IP\(_3\), WT had a Ca\(^{2+}\) concentration of 53.75 ± 5.79 nM and SERCA2\(^{+/−}\) was 55.00 ± 6.68 nM. In the third trial, the Ca\(^{2+}\) concentration in WT was 90.00 ± 9.83 nM, while Ca\(^{2+}\) concentration was 106.75 ± 16.81 nM (n = 5) in SERCA2\(^{+/−}\). Lastly, when 1 mM carbachol was added, the Ca\(^{2+}\) concentration in WT was 155.25 ± 16.21 nM and 177.5 ± 18.62 nM in SERCA2\(^{+/−}\) (n = 5) (Figs. 2A and B). These results demonstrated that there was no significant difference in the reactivity of their IP\(_3\)Rs between the two types of mice.

To measure PMCA activity, intact acinar cells were used, and Ca\(^{2+}\) concentration outside the cells increased to saturation level approximately
5-6 min after agonist stimulation (Fig. 2C). The Ca\(^{2+}\) concentration in WT at this point was 12.74 ± 1.49 nM and 20.98 ± 2.71 nM in SERCA2\(^{+/}\); thus, PMCA activity was increased approximately 2-fold in SERCA2\(^{+/}\) cells (\(p = 0.0147, n = 4\)) (Figs. 2C and D).

Adaptation of Ca\(^{2+}\) signaling in parotid gland acinar cells of SERCA2\(^{+/}\) mouse

Previous studies showed that Ca\(^{2+}\) signaling could be changed by decreased expression of SERCA2 gene in SERCA2\(^{+/}\) mice parotid gland acinar cells.\(^{18,13}\) In this study, therefore, [Ca\(^{2+}\)]\(i\) was measured as fura2 ratio intensity (340/380): the increasing rate of [Ca\(^{2+}\)]\(i\) was compared with the Ca\(^{2+}\) entry from outside of cells (Figs. 3A and B) and amounts of Ca\(^{2+}\) in ER (Ca\(^{2+}\)\(ER\), Fig. 3C) between WT and SERCA2\(^{+/}\) mouse parotid gland acinar cells when evoked by agonist stimulation. Carbachol, a muscarinic agonist, was used to stimulate both types of cells to increase [Ca\(^{2+}\)]. The first stimulation with 1 mM carbachol caused rapid [Ca\(^{2+}\)], increase to 0.907 ± 0.031 in WT and to 0.910 ± 0.053 in SERCA2\(^{+/}\) (Fig. 3A). Cells were subsequently washed with nominally Ca\(^{2+}\)-free media and perfused with PSS containing 1 mM thapsigargin, an inhibitor of SERCA, and perfused with PSS containing 1 mM Ca\(^{2+}\). The Ca\(^{2+}\) entry from the outside was measured and found to be 0.652 ± 0.062 in WT and 0.684 ± 0.056 in SERCA2\(^{+/}\).
After Ca2+\textsubscript{ER} was depleted by thapsigargin with carbachol in Ca2+-free media, the Ca2+ entry was 0.464±0.058 in WT and 0.448±0.063 in SERCA2+/- mice (n=6, Fig. 3B). The Ca2+ER and frequency of [Ca2+] oscillations were not different between both cells (n=5, n=4, respectively) (Figs. 3C and D). These results indicate that there are no significant differences in Ca2+ signaling between WT and SERCA2+/- cells.

Amylase secretion and Ca2+-dependent exocytosis-related proteins in parotid gland acinar cells of SERCA2+/- mouse

The effects of partial loss of SERCA2 in parotid acinar cells on salivary fluid secretion and amylase secretion were investigated. Each mouse was anesthetized and injected with pilocarpine HCl (1 mg/kg), a muscarinic agonist, to induce saliva secretion. Approximately 10 min after injection of the agonist, maximal secretion was observed in the WT and SERCA2+/- mice. In the WT, 4.45±0.44 mg of saliva was secreted, while 4.46±0.39 mg was secreted (n=4) in the SERCA2+/- (Fig. 4A). Thus, no significant difference in secretion rate was noted. When the parotid acinar cells of the WT and SERCA2+/- were stimulated with 10-7, 3×10-7, 10-6, 3×10-6, and 10-4 M carbachol, amylase secretion was dependent on the agonist concentrations in both types of mice.
Ca$^{2+}$ Signaling Proteins in SERCA2$^{+/−}$ Parotid Gland Acini

Yonsei Med J Vol. 49, No. 2, 2008

In the WT, amylase releases in response to the stimulation of carbachol were as follows: at 10^{-7} M, 1.7±0.21%; at 3×10^{-7} M, 5.3±0.59%; at 10^{-6} M, 9.5±0.61%; at 3×10^{-6} M, 11.1±1.0%; and at 10^{-4} M, 8.9±1.0%. In the SERCA2$^{+/−}$, amylase release rates in response to the stimulation of carbachol were as follows: at 10^{-7} M, 2.9±0.39%; at 3×10^{-7} M, 7.0±1.25%; at 10^{-6} M, 11.7±0.78%; at 3×10^{-6} M, 13.6±0.77%; and at 10^{-4} M, 10.6±0.75%. These results demonstrate a significant difference in amylase release rates between WT and SERCA2$^{+/−}$ mice parotid acinar cells ($p < 0.05, n = 6$) (Fig. 4B), indicating that Ca$^{2+}$-dependent amylase secretion in SERCA2$^{+/−}$ mice was more sensitive to the agonist, although Ca$^{2+}$-dependent salivary secretion was similar in both types.

To examine Ca$^{2+}$ sustaining rates in both types of mice, [Ca$^{2+}$], in response to a agonist exposure was measured for 20 min after stimulation with 1, 3, and 100 μM carbachol. Each concentration resulted in rapid [Ca$^{2+}$] increases and sustained plateau for 20 min. At 20 min after stimulation with 1 μM carbachol, the WT had a sustained plateau at 0.1384±0.0184 and the SERCA2$^{+/−}$ at 0.1678±0.0206. At 3 μM stimulation, the WT was 0.1354±0.0104 while the SERCA2$^{+/−}$ was 0.1809±0.0176. At 100 μM stimulation, the WT was 0.3184±0.0664 while the SERCA2$^{+/−}$ was 0.3878±0.0543 (n = 4) (Fig. 4C).

Next, the total amount of amylase and syntaxin-2, potentially related to amylase secretion, were measured. No significant changes in the expression levels of syntaxin-2 and β-
amylase were found (Fig. 4D), however synaptotagmin expression was increased by 88 ± 4.54% in SERCA2+/− cells (p = 0.00148, n = 4, Figs. 4D and E).

DISCUSSION

In the present work, we studied Ca^{2+} signaling and related function in parotid gland acinar cells...
from SERCA2⁺⁻ mice in which other tissues, such as cardiac muscle cells and pancreas, have earlier been examined. We found that the expression level of SERCA2b was ~40% lower in parotid gland acinar cells from SERCA2⁺⁻ mice than that of WT mice, and the rate of Ca²⁺ uptake into SLO-permeabilized parotid acinar cells was ~50% slower than into cells from WT mice, indicating that a function of SERCA in SERCA2⁺⁻ mice was significantly decreased (Figs. 1 and 2). The expression level and activity of PMCA were increased ~2-fold, suggesting that a partial loss of SERCA2 is compensated by upregulation of PMCA in these cells. Upregulation of PMCA has also been seen in SERCA2⁺⁻ mice pancreatic acinar cells. In pancreatic acinar cells from SERCA2⁺⁻ mice, [Ca²⁺], transient by agonist stimulation was shorter and there is ~50% reduction in [Ca²⁺], oscillation frequency. However, in the present study, there was no difference in Ca²⁺ signaling, including the increase of [Ca²⁺], rate, Ca²⁺ entry, and the amount of Ca²⁺ in ER between WT and SERCA2⁺⁻ mouse parotid gland acinar cells, when stimulated with the maximal concentration of agonist (Fig. 1). There was also no difference in the sinusoidal [Ca²⁺], oscillation frequency induced by 0.5 μM carbachol between the cell types (Fig. 3D). These results indicate that the reduction in SERCA2 expression did not affect overall Ca²⁺ signaling in SERCA2⁺⁻ mouse parotid acinar cell, which is different from that observed in SERCA2⁺⁻ mouse pancreatic acinar cells. Parotid acinar cells show a sinusoidal type of [Ca²⁺] oscillations which is dependent on high Ca²⁺ entry. In contrast, pancreatic acinar cells evoke repetitive baseline typed [Ca²⁺] oscillations, not dependent on Ca²⁺ entry. It is possible that the high Ca²⁺ entry in parotid gland acinar cells, compared to pancreatic cells, might explain the discrepancy in the findings between the cell types. It is also possible that other Ca²⁺-dependent physiological functions undergo different adaptations of PMCA.

We also found that the expression levels of IP₃Rs in parotid gland acinar cells were different from these in SERCA2⁺⁻ mice (Figs. 1A and B): They have not been examined before in pancreatic cells from SERCA2⁺⁻ mice. There are 3 isoforms of IP₃Rs, and each has a different affinity for IP₃- and distinct functional properties at the single channel level. Most cells express 2 or all 3 IP₃Rs isoforms. The presence of 3 isoforms of the IP₃Rs in parotid acinar cells indicates that each isoform may also have a distinct effect on Ca²⁺ signaling. In the present study, we found higher expression of IP₃R1 and IP₃R3 and lower expression of IP₃R2 in SERCA2⁺⁻ cells. Presently, however, it is not known how a partial decrease of SERCA2 affects the expression of each IP₃R. It has been reported that IP₃R3 and many other Ca²⁺ signaling-related proteins in rat pancreatic acinar cells co-localize with each other and have protein-protein interactions. Therefore, 1 possibility is that a partial loss of SERCA2 may affect the protein-protein interaction between Ca²⁺ signaling complexes, thereby functionally affecting the expression levels of IP₃Rs in parotid acinar cells. However, changes in IP₃Rs, PMCA, and SERCA expression levels did not affect their location in SERCA2⁺⁻ cells (Fig. 1C and data not shown, respectively) and the activity of IP₃Rs was not changed (Figs. 2A and B). Since IP₃ receptors are formed as heterotetrameric complexes, it seems likely that changes in IP₃Rs expression levels did not affect their activity in SERCA2⁺⁻ mice.

The important finding of this work is that Ca²⁺-dependent amylase secretion by muscarinic stimulation was more sensitive to the levels of agonist in SERCA2⁺⁻ mice (Fig. 4B), although total salivary secretion by pilocarpine (Fig. 4A) or cAMP-dependent amylase secretion by the stimulation of isoproterenol (data not shown) was not affected by partial loss of SERCA2. There are 3 possible explanations as to why this occurred. The SERCA2⁺⁻ mice may be better able to maintain Ca²⁺ levels during long agonist stimulation than WT mice. There may be a difference in the amount of amylase present in the WT and SERCA2⁺⁻ mice, or there may be a change in Ca²⁺-dependent amylase secretion-related proteins in the SERCA2⁺⁻ mice. After examining all 3 of these possibilities, we found no significant difference in Ca²⁺-sustaining capacity between the both types of cells (Fig. 4C). In addition, there was no change in the amylase contents in secretory vesicles (Fig. 4D). Because differences in the amounts of amylase secretion amounts depend on Ca²⁺, we assessed changes of protein expression related to Ca²⁺-dependent amylase secretion with
Western blot to examine all synaptotagmin isotypes, and found that the expression of synaptotagmin was increased in SERCA2+/− mice (Figs. 4C and D). In contrast, the amount of syntaxin-2, potentially related to amylase secretion in parotid acinar, was not significantly changed in SERCA2+/− parotid acinar cells (Fig. 4D). Synaptotagmin is known to be a Ca2+ sensor for Ca2+-dependent neurotransmitter release, however its role in non-neuronal cells is still unclear. Nevertheless, increased expression of synaptotagmin may explain in part the agonist-sensitive amylase secretion in SERCA2+/− mice. On the other hand, a recent study showed that mitogen-activated protein kinase (MAPK)/extracellular signal regulated kinase (ERK) expression was changed in human embryonic kidney 293 cells in which SERCA was inhibited by thapsigargin, suggesting that decreases in SERCA activity causes changes in MAPK pathway. Therefore, it is possible that this signaling cascade may play a role in synaptotagmin expression.

Salivary function as well as pancreatic function appears to be normal in DD patients, and our present work demonstrates by using SERCA2+/− parotid gland acinar cells that the overall Ca2+ signaling from agonist stimulation adapts to the reduction of SERCA2 by upregulation of PMCA, except in the case of Ca2+-dependent amylase secretion and its related protein expression. Since [Ca2+]i is involved in so many cellular functions, it is reasonable to assume that Ca2+ signaling is adapted to agonist-mediated response in SERCA2+/− parotid gland acinar cells.

REFERENCES

1. Turner RJ, Sugiya H. Understanding salivary fluid and protein secretion. Oral Dis 2002;8:3-11.
2. Takuma T, Ichida T. Evidence for the involvement of protein phosphorylation in cyclic AMP-mediated amylase exocytosis from parotid acinar cells. FEBS Lett 1994;340:29-33.
3. Sugiya H, Furuyama S. The activation of Ca2+ mobilizing receptors in salivary gland. Biomed Res 1989;10:111-21.
4. Berriedge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003;4:S17-29.
5. Kiselyov K, Shin DM, Muallem S. Signalling specificity in GPCR-dependent Ca2+ signalling. Cell Signal 2003;15:243-53.
6. East JM. Sarco(endo)plasmic reticulum calcium pumps: recent advances in our understanding of structure/ function and biology (review). Mol Membr Biol 2000;17:189-200.
7. Bolotina VM. Store-operated channels: diversity and activation mechanisms. Sci STKE 2004;243:1-4.
8. Lee MG, Xu X, Zeng W, Diaz J, Wojcikiewicz RJ, Kuo TH, et al. Polarized expression of Ca2+ channels in pancreatic and salivary gland cells. Correlation with initiation and propagation of [Ca2+]i waves. J Biol Chem 1997;272:15765-70.
9. Anwar A, Taimor G, Korkusuz H, Schreckenberg R, Berndt T, Abdallah Y, et al. PKC-dependent signal transduction pathways increase SERCA2 expression in adult rat cardiomyocytes. J Mol Cell Cardiol 2005;39:911-9.
10. Verboom K, Wuytack F, Van den Bosch L, Mertens L, Casteels R. The functional importance of the extreme C-terminal tail in the gene 2 organellar Ca2+-transport ATPase (SERCA 2a/b). Biochem J 1994;303:979-84.
11. Periasamy M, Reed TD, Liu LH, Ji Y, Loukianov E, Paul RJ, et al. Impaired cardiac performance in heterozygous mice with a null mutation in the sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 (SERCA2) gene. J Biol Chem 1999;274:2556-62.
12. Prasad V, Okunade GW, Miller ML, Shull GE. Phenotypes of SERCA and PMCA knockout mice. Biochem Biophys Res COMMUN 2004;322:1192-203.
13. Zhao XS, Shin DM, Liu LH, Shull GE, Muallem S. Plasticity and adaptation of Ca2+ signaling and Ca2+-dependent exocytosis in SERCA2+/− mice. EMBO J 2001;20:2680-9.
14. Ruiz-Perez VL, Carter SA, Healy E, Todd C, Rees JL, Steijlen PM, et al. ATP2A2 mutations in Darier's disease variant cutaneous phenotypes are associated with missense mutations, but neuropsychiatric features are independent of mutation class. Hum Mol Genet 1999;9:1621-30.
15. Bernfeld P. Enzymes of starch degradation and synthesis. Adv Enzymol Relat Subj Biochem 1951;12:379-428.
16. Shin DM, Luo X, Wilkie TM, Miller LJ, Peck AB, Humphreys-Beher MG, et al. Polarized expression of G protein-coupled receptors and an all-or-none discharge of Ca2+ pools at initiation sites of [Ca2+]i waves in polarized exocrine cells. J Biol Chem 2001;276:44146-56.
17. Zhang BX, Muallem S. Feedback inhibition of Ca2+ release by Ca2+ is the underlying mechanism of agonist-evoked intracellular Ca2+ oscillations in pancreatic acinar cells. J Biol Chem 1992;267:24387-93.
18. Ji Y, Lalli MJ, Babu GJ, Xu Y, Kirkpatrick DL, Liu LH, et al. Disruption of a single copy of the SERCA2 gene results in altered Ca2+ homeostasis and cardiomyocyte function. J Biol Chem 2000;275:38073-80.
19. Chapman ER. Synaptotagmin: A Ca2+ sensor that triggers exocytosis? Nat Rev Mol Cell Biol 2002;3:498-508.
20. Foskett JK, Roifman CM, Wong D. Activation of calcium oscillations by thapsigargin in parotid acinar cells. J
21. Thorn P, Lawrie AM, Smith PM, Gallacher DV, Petersen OH. Ca$^{2+}$ oscillations in pancreatic acinar cells: spatio-temporal relationships and functional implications. Cell Calcium 1993;10:746-57.

22. Newton CL, Mignery GA, Südhof TC. Co-expression in vertebrate tissues and cell lines of multiple inositol 1,4,5-trisphosphate (InsP$_3$) receptors with distinct affinities for InsP$_3$. J Biol Chem 1994;269:28613-9.

23. Hagar RE, Burgstahler AD, Nathanson MH, Ehrlich BE. Type III InsP$_3$ receptor channel stays open in the presence of increased calcium. Nature 1998;396:81-4.

24. Hattori M, Suzuki AZ, Higo T, Miyachi H, Michikawa T, Nakamura T, et al. Distinct roles of inositol 1,4,5-trisphosphate receptor types 1 and 3 in Ca$^{2+}$ signaling. J Biol Chem 2004;279:11967-75.

25. Shin DM, Zhao XS, Zeng W, Mozhayeva M, Muallem S. The mammalian Sec6/8 complex interacts with Ca$^{2+}$ signaling complexes and regulates their activity. J Cell Biol 2000;150:1101-12.

26. Monkawa T, Miyawaki A, Sugiyama T, Yoneshima H, Yamamoto-Hino M, Furuichi T, et al. Heterotetrameric complex formation of inositol 1,4,5-trisphosphate receptor subunits. J Biol Chem 1995;270:14700-4.

27. Simon VR, Moran MF. SERCA activity is required for timely progression through G1/S. Cell Prolif 2001;34:15-30.