Chemical Composition, A Ntimicrobial, Antioxidant and Cytotoxic Activities and of Essential Oil from Actinidia Arguta

Hongling Wang (✉ 376097301@qq.com)
Shenyang Institute of Technology https://orcid.org/0000-0002-4077-2545

Hongxin Quan
Shenyang Institute of Technology

Tianli Sun
Shenyang Institute of Technology

Zhuo Wang
Shenyang Institute of Technology

Yuhong Yang
Shenyang Agricultural University https://orcid.org/0000-0002-6742-0777

Research Article

Keywords: Actinidia arguta, essential oil, chemical composition, antimicrobial activities, antioxidant activities, cytotoxic activities

Posted Date: November 16th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-1078944/v1

License: ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Chemical composition, antimicrobial, antioxidant, and cytotoxic properties of essential oil from Actinidiatg arguta (AEO) were evaluated. Gas chromatography-mass spectrometry analysis identified 56 chemical compounds, with the most abundant being Squalene (23.08%), γ-sitrostorol (8.10%), and β-Tocopherol (7.01%). Whereas the AEO had significant antimicrobial activity against Staphylococcus aureus and Saccharomyces cerevisiae, it showed mild efficacy against Bacillus subtilis and Microsporum canis. On the contrary, the Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, were not susceptible to the AEO pressure. On the other hand, the AEO exhibited strong antioxidant activity against DPPH, β-carotene, and hydroxyl radicals, having an IC₅₀ values of 117.60, 73.60 and 35.15 μg/mL, respectively. Additionally, compared to the PC-3 or HT-29 cell lines, the A549 cells were more susceptible to the AEO (IC₅₀ ; 6.067 mg/mL). Besides, the confocal laser scanning microscopy imaging showed that 16 mg/mL of the AEO induced apoptosis in the A549 cell lines. Our data indicate that the AEO might be useful in the food and pharmaceutical industry.

Introduction

There is a growing interest in the exploration of naturally-occurring bioactive compounds for industrial use. This development has been necessitated by the fact that there is increased resistance to a wide spectrum of commercial antibiotics (Fair and Tor 2014) as well as the toxicity associated with the synthetic antioxidants (Augustyniak et al. 2010; Ksouda et al. 2019). Essential oils are aromatic, subtle and volatile, found in various parts of the plant such as flowers, fruits, buds, leaves, bark, seeds, roots and wood(Sharma and Kumar 2015; Bączek et al. 2018; Saeed et al. 2018)(Cortes-Camargo et al. 2019; de Souza et al. 2019). They are secondary metabolites and play important biological roles in the plants, such as protection against microorganisms, insects or viruses (Singh et al. 2013; Houicher et al. 2018; Ksouda et al. 2019). Previous studies have demonstrated that essential oils have promising antimicrobial, antioxidant, antitumor or insecticidal activities (Soeur et al. 2011; Cabral et al. 2012; Bayala et al. 2014; Lesgards et al. 2014; Zoubiri et al. 2014; Thomas et al. 2017; Ali et al. 2020). Besides, the oils have been widely used in cosmetics, food, medicine, pharmaceutical and agricultural industries (Snoussi et al. 2018; Wang et al. 2018).

Actinidia arguta (Sieb. Et Zucc.) Planch. ex Miq. var. are small grape-sized fruits with edible green or red-colored skin, belonging to the Actinidia genus. It originated and widely cultivated in northern China. The A. arguta has a delicious taste and immense health benefits. It bears fruits rich in vitamins, polysaccharides, phenolics, flavones, alkaloids, as well as other essential minerals (Zhu et al. 2019). A. arguta is one of the richest sources of lutein (up to 0.93 mg/100 g FW) and vitamin C (up to 430 mg/100g fresh weight FW), myo-inositol (up to 982 mg/100g FW), and is considered as the most nutritious fruits (Latocha 2017). The rich nutritional value has prompted researchers to interrogate its anti-microbiology, antioxidant, antitumor or anti-inflammatory potentials (Latocha et al. 2013; An et al. 2016; Leontowicz et al. 2016).
Whereas some studies have reported the chemical composition and antimicrobial activity associated with the AEO (Matich et al. 2003), data on the antioxidant or antitumor activities of the AEO remain scant. Our study embarked on determining the chemical composition of the AEO as well as evaluation of its antimicrobial, antioxidant and cytotoxic properties. Our findings have set the basis for the use of the AEO in food, pharmaceutical or cosmetic industries.

Materials And Methods

Plant material

The *A. arguta* fruits were collected from the experimental farm of the Shenyang Agricultural University in September 2019.

Microbial strains

The AEO were tested against six microorganisms, including two Gram-positive bacteria (*Bacillus subtilis* and *Staphylococcus aureus*), two Gram-negative bacteria (*Escherichia coli* and *Pseudomonas aeruginosa*) as well as two fungal strains (*Saccharomyces cerevisiae* and *Microsporum canis*). The susceptibility of the bacteria and the fungi to the essential oils were carried out using the disk diffusion method. All the strains were obtained from the Agricultural Culture Collection of China.

Human cell lines

Human colon cancer cell line (HT-29), human prostatic cancer cell line (PC-3), and human lung adenocarcinoma epithelial cell line (A549) were obtained from the College of Basic Medicine of China Medical University (Shenyang, China). The cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), and 1% penicillin/streptomycin. The cells were grown at 37 °C in 95% humidified air and 5% CO₂.

Extraction of essential oil

The fruits were grinded into a homogenate and subjected to solvent extraction by N-hexane (Ghahramanloo et al. 2017). The obtained AEO was stored at 4°C in sealed glass vials. Percentage AEO yield was quantified as follows:

\[
\text{AEO yield (\%)} = \left(\frac{\text{mass of AEO obtained (g)}}{\text{mass of fresh fruit (g)}}\right) \times 100
\]

Gas Chromatography-Mass Spectrometry (GC-MS) analysis

The chemical composition of the essential oil was analyzed by GC/MS using Agilent 5973 EI mass selective detector coupled with Agilent GC6890, equipped with a HP-5MS fused capillary column (5% phenyl Methyl Silox) (30m×0.25mm, 0.25μm film thickness). Helium (99.999%) was used a carrier gas with a flow rate of 1.0 mL/min. The initial temperature was programed at 40°C, then increased 3°C/min
up to 80°C, then by 5°C/min up to 280°C. The temperature was maintained at 280°C for 20 min, just as the injector and detector temperatures. The quadruple mass spectrometer was scanned over a range of 35-500 amu at 1 scan per second, with a temperature of 150°C, ionizing voltage of 70 eV, and an ionic source temperature of 230°C. 2.0 μL of the AEO was injected with a split ratio of 10:1. Individual components of the AEO were identified on the basis of their retention indices (RI), and the compared with reference data using the Wiley7n.l library.

Antimicrobial activity assay

Agar diffusion method

The effect of the AEO on the bacteria was determined according to Marjana (Radunz et al. 2019), with few modifications. The bacterial cells were cultured in liquid Luria-Bertani media overnight at 37°C, while the fungal strains were cultured in Sabouraud dextrose broth at 28°C for 48h. The microbial suspensions were diluted to 10⁸ CFU/mL, while the fungal cells were diluted to 10⁶ CFU/mL. The microbial suspension (150 μL) were evenly spread on solid media. Thereafter, sterile 6mm diameter filter disks were placed on the media seeded with the microorganisms (3 disks per plate) and then AEO was dropped onto each paper disk (40 μL per disk). The treated plates were first kept at 4°C for 1h, then incubated at 37°C for 24h (bacteria), or at 28°C for 48h (fungi) (Lu et al. 2007). The antimicrobial activity was evaluated by measuring the diameter of growth inhibition zone surrounding the disks. All tests were performed in triplicates.

MIC and MBC/MFC

The AEO was dissolved in 1% (v/v) DMSO and then diluted to different concentrations (0.78-12.5 mg/mL). Minimum inhibitory concentration (MIC) value was measured following a protocol described by (Zhao et al. 2018), with slight modifications. Briefly, 10 μL from each of the incubated suspensions were transferred into the corresponding media and incubated at 37°C for 24h (bacteria) or at 28°C for 48h (fungi). The minimum concentration that inhibited the growth of the microorganisms was recorded as MBC (minimum bactericidal concentration) or MFC (minimum fungicidal concentration) (Ksouda et al. 2019). The experiments were done in duplicates.

Antioxidant activity

The antioxidant activity of the AEO was tested using the following spectrophotometric methods: 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical scavenging assays as described by (Lu et al. 2018), as well as the β-carotene bleaching test by Wang et al., 2008, with minor modifications. The AEO samples were tested at concentrations of 12.5 to 800 μg/mL and in triplicates. Butylated hydroxytoluene (BHT) was used as the positive control. IC₅₀ values were defined by linear regression analysis and depicted as means ± SD of the triplicates.

Cytotoxicity assay
Determination of IC₅₀

MTT (3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide) assay (Hamdi et al. 2018) was used to evaluate the cytotoxicity of the AEO. Briefly, 1×10⁶ cells were seeded in 96 well plates for 24 h. The cells were treated with different concentrations of the AEO samples (1-32 mg/mL) for 48 h. Untreated cells were used as the negative control. Up to 0.5 mg/mL of MTT was added into the cells and incubated for 4 h. Thereafter, the medium was replaced by 100 μL of DMSO to dissolve formazan crystals. Absorbance was detected on a StateFax-3200 microplate reader (AEARNESS, CA, USA) using a wavelength of 570 nm and a reference wavelength of 630 nm. The IC₅₀ was calculated by a liner regression analysis with 95% confidence limits. The inhibition of cell proliferation was approximated using the following formula:

\[
\text{Cell growth inhibition ratio (\%) = \left(1 - \frac{A_t}{A_c}\right) \times 100%}
\]

where \(A_t\) is absorbance of the test sample, \(A_c\) is the absorbance of negative control.

Confocal laser scanning microscopy (CLSM) assay

A total of 1×10³ A549 cells were seeded in a 6 well plate for 24 h (37°C, 5% CO₂). 16 mg/mL of the AEO samples was added and incubated for 48 h. Untreated cells were used as the negative control. The medium was removed, washed twice in cold PBS, and then the cells were digested with 0.25% typsin. The cells were recovered by centrifugation at 3000×g, washed twice in cold PBS, followed by final centrifugation at 3000×g for 5min. The density of the cells was adjusted to 1×10³/mL with cold PBS. 1mL of acridine orange (1 mg/mL) was added into the cells and then incubated at room temperature and in darkness for 5 min. A laser confocal microscope was used to image the DNA morphology of the cells.

Statistical analysis

Each of the experiments was performed in triplicate. The mean value was calculated, and the experimental results were expressed as the mean ± standard deviations (SD). Besides, one-way ANOVA in SPSS Statistics 22.0 software (IBM, USA) was used to analyze the significant differences between the data sets. Significance was set at p<0.05.

Results

Chemical composition of the essential oil

The extraction yielded 1.04% (m/m) of the AEO with a yellowish to orange color. The AEO composition, along with the retention time are listed in Table 1. GC-MS experiment identified 92.09% (52 constituents) of the total composition (Fig. 1). The major compounds detected in the AEO were: Squalene (23.08%), γ-sitosterol (8.10%), β-tocopherol (7.01%), Stigmast-7-en-3-ol (5.67%), and 2-Hexenal (2.59%). Overall, the AEO comprises of sterols (26.73%), triterpenes (26.35%), alkanes (23.42%), phenols (7%), alcohols (4.23%), aldehydes (4.11%) and esters (3.89%).
Antimicrobial activity analysis

The in vitro antimicrobial activity of the AEO against Gram-positive, Gram-negative bacteria as well as fungal organisms was assessed. As shown in Table 2, the AEO exerted significant activity against *S. aureus* and *S. cerevisiae* (Inhibition zone; 19.5 mm±0.54 and 20.5 mm±0.48, respectively) but mild activity against *B. subtilis* (17.2 mm±0.35) and *M. canis* (16.8 mm ± 0.57). However, the *E. coli* and *P. aeruginosa* did not show any susceptibility to the AEO pressure (Inhibition zone; 8.5 mm ± 0.12 and 10 mm ± 0.21, respectively). Also, our study has shown that the AEO exhibited bactericidal effect against *B. subtilis* and *E. coli* (MBC/MIC<4) as well as two fungicidal effect against *S. cerevisiae* and *M. canis* (MFC/MIC<4). On the other hand, it exhibited a bacteriostatic effect against *S. aureus* and *P. aeruginosa* (MBC/MIC>4).

Antioxidant activity analysis

DPPH radical scavenging assay

DPPH radical scavenging test is most common method used to evaluate antioxidant activity of compounds (Ksouda et al. 2019; Zhou et al. 2020). Our data showed that the AEO exhibited strong and concentration-dependent scavenging activity on DPPH (IC$_{50}$=117.60 μg/mL) as shown in Fig. 2a. A concentration between 12.5-800 μg/mL of the AEO reduced DPPH by between 15.11%±1.08% to 82.72 %±2.52%. The AEO activity was comparable to the activity shown by the synthetic antioxidant agent BHT (IC$_{50}$=5.27 μg/mL).

β-carotene bleaching test

The β-carotene bleaching test was used to evaluate the potential of the AEO to inhibit formation of conjugated diene hydroperoxides from linoleic acid oxidation in the emulsion (Miraliakbari and Shahidi 2008). Compared to BHT (99.26%±3.88%; IC$_{50}$=6.81 μg/mL), 800 μg/mL of the AEO bleached β-carotene by 88.48% ± 2.80%, with an IC$_{50}$ of 73.60 μg/mL, as shown in Fig. 2b. The remarkable β-carotene bleaching activity might be associated with the fact that nonpolar antioxidants exhibit high antioxidant activity in emulsions. The nonpolar antioxidants concentrate at the lipid/air surface of the emulsions (Ksouda et al. 2019).

Hydroxyl radical scavenging assay

As the strongest free radical in reactive oxygen species, hydroxyl (·OH) can react rapidly with almost all biological macromolecules in cells (Radunz et al. 2019). Our data showed that the scavenging activity of the AEO on the hydroxyl was concentration dependent as shown in Fig. 2c. 800 μg/mL of the oil resulted in the highest scavenging activity (98.76%±2.42%) and the IC$_{50}$ value was determined as 35.15 μg/mL. However, compared to the AEO, BHA exhibited higher hydroxyl radical scavenging ability, with the highest scavenging activity of 99.45±2.31% μg/mL and an IC$_{50}$ value of 6.06 μg/mL.
Cytotoxicity activity analysis

Determination of IC$_{50}$

MTT assay was used to determine the cytotoxicity of 1-32 mg/mL of the AEO on HT-29, PC-3 or A549 cell lines, exposed for 48h. The AEO inhibited 78.63%, 60.42% or 57.31% proliferation of A549, HT-29 or PC-3 cells respectively as shown in Fig.4. The IC$_{50}$ values were 6.067 mg/mL, 11.905 mg/mL or 13.646 mg/mL for the A549, HT-29 or PC-3 cell lines respectively (Table 3), compared to the control group ($P<0.05$). This finding indicate that whereas the effect was cell-specific, the AEO had a significant inhibitory effect on tumor growth.

Confocal laser scanning microscopy (CLSM) assay

DNA damage of the A549 cells was studied by CLSM. Fluorescence staining by acridine orange showed that whereas the control cells had normal morphology (Fig. 3a), the A549 cells that were subjected to the AEO for 48 h (Fig. 3b) or 72 h (Fig. 3c) exhibited typical apoptotic characteristics. There was presence of dense yellow-green staining in the nucleus or cytoplasm, formation of cell membrane vesicles, lysed nuclei as well as apoptotic bodies. The CLSM results confirmed the ability of the AEO to induce apoptosis in A549 tumor cells, thus anti-tumor activity.

Discussion

The extraction yield and composition of essential oil are various according to extraction methods and reagents. In this study, we have reported for the first time the presence of γ-sitrostorol, Stigmast-7-en-3-ol and β-Tocopherol in the AEO. On the contrary, whereas we identified 0.96% of ethyl butyrate in the essential oil, Yang et al., 2006 showed a high (86.89%) relative content of ethyl butyrate in volatile components of A. arguta. Besides, Xin et al. (G. Xin 2009) studied the aroma from A. arguta fruits and found that the olefin content accounted for 51.71% of the volatile oil, but the acid was not detected. These chemical differences may be due to variability in varieties, regional differences, maturity stages or extraction and detection methods.

Research on the development of natural antibacterial, antifungal agents has attracted much attention (Fair and Tor 2014). As different solvent extracts possess different concentration and extent of bioactive principles, their antibacterial activity is also variates(Rajput et al. 2021). In this study, AEO had significant antimicrobial activity against Staphylococcus aureus and Saccharomyces cerevisiae, mild efficacy against Bacillus subtilis and Microsporum canis. However, the Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, were not susceptible to the AEO pressure. This phenomenon suggests that the volatile oil might be acting on the peptidoglycan layer in the cell wall of Gram-positive bacteria. Also, the antimicrobial activity was mainly attributed to squalene, which was not only in higher amounts in the extracted oil but also has been proved to have strong antibacterial activity (Popa et al. 2015). Our data demonstrates that the AEO possesses antimicrobial activity, thus, might be useful in the phasrmaceutical and food industry. Antioxidant assay showed AEO exhibited high antioxidant activities probably due to
the diverse constituents that might be working in synergy. The compounds such as squalene, \(\gamma \)-sitosterol and \(\beta \)-tocopherol have been reported to have antioxidant activities (Hidayathulla et al. 2018; Shimizu et al. 2019; Weber et al. 2020). Antioxidant activity assays in this research indicating AEO might be used in various pharmaceutical and food industries.

Apoptosis plays an important role in tumorigenesis, and might inform damaged cells by apoptosis, mediating the "suicide" death of tumor cells (Al-Sheddi et al. 2019; Huang et al. 2020). In addition, previous literature reports that some plant essential oils can activate additional pro-apoptotic pathways specific for cancer cells (Abu-Darwish et al. 2016; Zhao et al. 2017; Vasilijevic et al. 2018; Laghezza Masci et al. 2020; Li et al. 2020). The composition of plant essential oil varies from plant to plant, thus, their diverse anti-tumor mechanisms. We, for the first time, show that AEO could significantly inhibit the proliferation and induce apoptosis in A549 cells, indicating that AEO can be used in the development of natural anti-tumor drugs. However, more studies are needed to reveal the molecular mechanisms defining the effect of the AEO on cancer cells.

Conclusions

The essential oil extracted from *A. arguta* mainly comprised of squalene, \(\gamma \)-sitosterol and \(\beta \)-Tocopherol. The AEO exhibited potential antimicrobial, antioxidant and cytotoxic activities, which might be a function of synergy among the compounds. Besides, the activity might be regulated by other secondary components which play a significant role in defining the aroma, density, texture, color, cellular penetration, lipophobia, and hydrophilicity of the AEO (Emami et al. 2016). Therefore, the AEO harbors huge potential that can be used in the phyto-pharmaceutical and food industry.

Abbreviations

AEO, *A. arguta* essential oil; GC-MS, Gas chromatography-mass spectrometry; CLSM, Confocal laser scanning microscopy; DMEM, Dulbecco's Modified Eagle's Medium; FBS, Fetal bovine serum; RI, retention indices; MIC, Minimum inhibitory concentration; MBC, Minimum bactericidal concentration; MFC, Minimum fungicidal concentration; DPPH, 1,1-diphenyl-2-picrylhydrazyl; BHT, Butylated hydroxytoluene; MTT, 3- (4,5-dimethylthiazol- 2-yl) -2,5-diphenyltetrazolium bromide.

Declarations

Acknowledgement: We thank LetPub (https://www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Funding: This work was supported by Natural Science Foundation Project of Liaoning province (Grant No. 2021-NLTS-14-02).

Competing interests: The authors declare that they have no competing interests.
Author contributions: H.W. and Y.Y. conceived and designed the experiments; H.Q. and S.T. performed the experiments; Z.W. and Y.Y. analyzed the experiment data; H.W. wrote the paper. All authors have read and agreed to the published version of the manuscript.

References

1. Abu-Darwish MS et al. (2016) Chemical composition and biological activities of Artemisia judaica essential oil from southern desert of Jordan. J Ethnopharmacol 191:161-168 doi: 10.1016/j.jep.2016.06.023

2. Al-Sheddi ES, Al-Zaid NA, Al-Oqail MM, Al-Massarani SM, El-Gamal AA, Farshori NN (2019) Evaluation of cytotoxicity, cell cycle arrest and apoptosis induced by Anethum graveolens L. essential oil in human hepatocellular carcinoma cell line. Saudi Pharm J 27:1053-1060 doi: 10.1016/j.jsps.2019.09.001

3. Ali H, Al-Khalifa AR, Aouf A, Boukhebti H, Farouk A (2020) Effect of nanoencapsulation on volatile constituents, and antioxidant and anticancer activities of Algerian Origanum glandulosum Desf. essential oil. Sci Rep 10:2812 doi: 10.1038/s41598-020-59686-w

4. An X, Lee SG, Kang H, Heo HJ, Cho YS, Kim DO (2016) Antioxidant and Anti-Inflammatory Effects of Various Cultivars of Kiwi Berry (Actinidia arguta) on Lipopolysaccharide-Stimulated RAW 264.7 Cells. J Microbiol Biotechnol 26:1367-1374 doi: 10.4014/jmb.1603.03009

5. Augustyniak A et al. (2010) Natural and synthetic antioxidants: an updated overview. Free Radic Res 44:1216-1262 doi: 10.3109/10715762.2010.508495

6. Bączek K, Pióro-Jabrucka E, Kosakowska O, Węglarz Z (2018) Intraspecific variability of wild thyme (Thymus serpyllum L.) occurring in Poland. Journal of Applied Research on Medicinal & Aromatic Plants

7. Bayala B et al. (2014) Chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of essential oils of plants from Burkina Faso. PLoS One 9:e92122 doi: 10.1371/journal.pone.0092122

8. Cabral C et al. (2012) Essential oil of Juniperus communis subsp. alpina (Suter) Celak needles: chemical composition, antifungal activity and cytotoxicity. Phytother Res 26:1352-1357 doi: 10.1002/ptr.3730

9. Cortes-Camargo S, Acuna-Avila PE, Rodriguez-Huezo ME, Roman-Guerrero A, Varela-Guerrero V, Perez-Alonso C (2019) Effect of chia mucilage addition on oxidation and release kinetics of lemon essential oil microencapsulated using mesquite gum - Chia mucilage mixtures. Food Res Int 116:1010-1019 doi: 10.1016/j.foodres.2018.09.040

10. de Souza WFM et al. (2019) Evaluation of the volatile composition, toxicological and antioxidant potentials of the essential oils and teas of commercial Chilean boldo samples. Food Res Int 124:27-33 doi: 10.1016/j.foodres.2018.12.059
11. Emami SA, Asili J, Hossein Nia S, Yazdian-Robati R, Sahranavard M, Tayarani-Najaran Z (2016) Growth Inhibition and Apoptosis Induction of Essential Oils and Extracts of Nepeta cataria L. on Human Prostatic and Breast Cancer Cell Lines. Asian Pac J Cancer Prev 17:125-130 doi: 10.7314/apjcp.2016.17.s3.125
12. Fair RJ, Tor Y (2014) Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem 6:25-64 doi: 10.4137/pmc.s14459
13. G. Xin BZ, F. Fang (2009) Analysis of aromatic constituents of Actinidia arguta Sieb. Et Zucc fruit. Food Science 30:230-232
14. Ghahramanloo KH, Kamalidehghan B, Akbari Javar H, Teguh Widodo R, Majidzadeh K, Noordin MI (2017) Comparative analysis of essential oil composition of Iranian and Indian Nigella sativa L. extracted using supercritical fluid extraction and solvent extraction. Drug Des Devel Ther 11:2221-2226 doi: 10.2147/dddt.s87251
15. Hamdi A et al. (2018) In vitro antileishmanial and cytotoxicity activities of essential oils from Haplophyllum tuberculatum A. Juss leaves, stems and aerial parts. BMC Complement Altern Med 18:60 doi: 10.1186/s12906-018-2128-6
16. Hidayathulla S, Shahat AA, Ahamad SR, Al Moqbil AAN, Alsaid MS, Divakar DD (2018) GC/MS analysis and characterization of 2-Hexadecen-1-ol and beta sitosterol from Schimpera arabica extract for its bioactive potential as antioxidant and antimicrobial. J Appl Microbiol 124:1082-1091 doi: 10.1111/jam.13704
17. Houicher A, Hamdi M, Hechachna H, Özogul F (2018) Chemical composition and antifungal activity of Anacyclus valentinus essential oil from Algeria. Food Bioscience 25:28-31 doi: https://doi.org/10.1016/j.fbio.2018.07.005
18. Huang LM, Hu Q, Huang X, Qian Y, Lai XH (2020) Preconditioning rats with three lipid emulsions prior to acute lung injury affects cytokine production and cell apoptosis in the lung and liver. Lipids Health Dis 19:19 doi: 10.1186/s12944-019-1137-x
19. Ksouda G et al. (2019) Composition, antibacterial and antioxidant activities of Pimpinella saxifraga essential oil and application to cheese preservation as coating additive. Food Chem 288:47-56 doi: 10.1016/j.foodchem.2019.02.103
20. Laghezza Masci V et al. (2020) Apoptotic Effects on HL60 Human Leukaemia Cells Induced by Lavandin Essential Oil Treatment. Molecules 25 doi: 10.3390/molecules25030538
21. Latocha P (2017) The Nutritional and Health Benefits of Kiwiberry (Actinidia arguta) - a Review. Plant Foods Hum Nutr 72:325-334 doi: 10.1007/s11130-017-0637-y
22. Latocha P, Wolosiak R, Worobiej E, Krupa T (2013) Clonal differences in antioxidant activity and bioactive constituents of hardy kiwifruit (Actinidia arguta) and its year-to-year variability. J Sci Food Agric 93:1412-1419 doi: 10.1002/jsfa.5909
23. Leontowicz H et al. (2016) Bioactivity and nutritional properties of hardy kiwi fruit Actinidia arguta in comparison with Actinidia delicosa 'Hayward' and Actinidia eriantha 'Bidan'. Food Chem 196:281-291 doi: 10.1016/j.foodchem.2015.08.127
24. Lesgards JF, Baldovini N, Vidal N, Pietri S (2014) Anticancer activities of essential oils constituents and synergy with conventional therapies: a review. Phytother Res 28:1423-1446 doi: 10.1002/ptr.5165

25. Li R, Yang JJ, Song XZ, Wang YF, Corlett RT (2020) Chemical Composition and the Cytotoxic, Antimicrobial, and Anti-Inflammatory Activities of the Fruit Peel Essential Oil from Spondias pinnata (Anacardiaceae) in Xishuangbanna, Southwest China. 25 doi: 10.3390/molecules25020343

26. Lu C, Li H, Li C, Chen B, Shen Y (2018) Chemical composition and radical scavenging activity of Amygdalus pedunculata Pall leaves’ essential oil. Food Chem Toxicol doi: 10.1016/j.fct.2018.02.012

27. Lu Y, Zhao YP, Wang ZC, Chen SY, Fu CX (2007) Composition and antimicrobial activity of the essential oil of Actinidia macrosperma from China. Nat Prod Res 21:227-233 doi: 10.1080/14786410601132311

28. Matich AJ et al. (2003) Actinidia arguta: volatile compounds in fruit and flowers. Phytochemistry 63:285-301 doi: 10.1016/s0031-9422(03)00142-0

29. Miraliakbari H, Shahidi F (2008) Antioxidant activity of minor components of tree nut oils. Food Chem 111:421-427 doi: 10.1016/j.foodchem.2008.04.008

30. Popa O, Babeau NE, Popa I, Nita S, Dinu-Parvu CE (2015) Methods for obtaining and determination of squalene from natural sources. Biomed Res Int 2015:367202 doi: 10.1155/2015/367202

31. Radunz M et al. (2019) Antimicrobial and antioxidant activity of unencapsulated and encapsulated clove (Syzygium aromaticum, L.) essential oil. Food Chem 276:180-186 doi: 10.1016/j.foodchem.2018.09.173

32. Rajput M, Bithel N, Vijayakumar S (2021) Antimicrobial, antibiofilm, antioxidant, anticancer, and phytochemical composition of the seed extract of Pongamia pinnata. Archives of Microbiology

33. Saeed Y, Faezeh D, Ali MB, Saeid H, Tumach Y, Khosro M (2018) Morphological, essential oil and biochemical variation of Dracocephalum moldavica L. populations. Journal of Applied Research on Medicinal & Aromatic Plants 10:S2214786118301256-

34. Sharma S, Kumar R (2015) Effect of temperature and storage duration of flowers on essential oil content and composition of damask rose (Rosa × damascena Mill.) under western Himalayas. Journal of Applied Research on Medicinal & Aromatic Plants:S2214786115300188

35. Shimizu N, Ito J, Kato S, Eitsuka T, Miyazawa T, Nakagawa K (2019) Significance of Squalene in Rice Bran Oil and Perspectives on Squalene Oxidation. J Nutr Sci Vitaminol (Tokyo) 65:S62-s66 doi: 10.3177/jnsv.65.S62

36. Singh P, Singh S, Kapoor IPS, Singh G, Isidorov V, Szczepaniak L (2013) Chemical composition and antioxidant activities of essential oil and oleoresins from Curcuma zedoaria rhizomes, part-74. Food Bioscience 3:42-48 doi: https://doi.org/10.1016/j.fbio.2013.06.002

37. Snoussi M et al. (2018) Antioxidant properties and anti-quorum sensing potential of Carum copticum essential oil and phenolics against Chromobacterium violaceum. J Food Sci Technol 55:2824-2832 doi: 10.1007/s13197-018-3219-6

Page 11/18
38. Soeur J et al. (2011) Selective cytotoxicity of Aniba rosaeodora essential oil towards epidermoid cancer cells through induction of apoptosis. Mutat Res 718:24-32 doi: 10.1016/j.mrgentox.2010.10.009

39. Thomas PS, Essien EE, Ntuk SJ, Choudhary MI (2017) Eryngium foetidum L. Essential Oils: Chemical Composition and Antioxidant Capacity. Medicines (Basel) 4 doi: 10.3390/medicines4020024

40. Vasiljevic B et al. (2018) Chemical characterization, antioxidant, genotoxic and in vitro cytotoxic activity assessment of Juniperus communis var. saxatilis. Food Chem Toxicol 112:118-125 doi: 10.1016/j.fct.2017.12.044

41. Wang B et al. (2018) Report: Regional variation in the chemical composition and antioxidant activity of Rosmarinus officinalis L. from China and the Mediterranean region. Pak J Pharm Sci 31:221-229

42. Weber D, Kochlik B, Demuth I, Steinhagen-Thiessen E, Grune T, Norman K (2020) Plasma carotenoids, tocopherols and retinol - Association with age in the Berlin Aging Study II. Redox Biol 32:101461 doi: 10.1016/j.redox.2020.101461

43. Zhao J et al. (2018) Chemical Composition, Antimicrobial and Antioxidant Activities of the Flower Volatile Oils of Fagopyrum esculentum, Fagopyrum tataricum and Fagopyrum Cymosum. Molecules 23 doi: 10.3390/molecules23010182

44. Zhao Y, Chen R, Wang Y, Qing C, Wang W, Yang Y (2017) In Vitro and In Vivo Efficacy Studies of Lavender angustifolia Essential Oil and Its Active Constituents on the Proliferation of Human Prostate Cancer. Integr Cancer Ther 16:215-226 doi: 10.1177/1534735416645408

45. Zhou Y, Li C, Feng B, Chen B, Jin L, Shen Y (2020) UPLC-ESI-MS/MS based identification and antioxidant, antibacterial, cytotoxic activities of aqueous extracts from storey onion (Allium cepa L. var. proliferum Regel). Food Res Int 130:108969 doi: 10.1016/j.foodres.2019.108969

46. Zhu R et al. (2019) Characterization of polysaccharide fractions from fruit of Actinidia arguta and assessment of their antioxidant and antiglycated activities. Carbohydr Polym 210:73-84 doi: 10.1016/j.carbpol.2019.01.037

47. Zoubiri S, Baaaliouamer A, Seba N, Chamouni N (2014) Chemical composition and larvicidal activity of Algerian Foeniculum vulgare seed essential oil. Arabian Journal of Chemistry 7:480-485 doi: 10.1016/j.arabjc.2010.11.006

Tables

Table 1 Compositions of the essential oil from fresh fruits of Actinidia arguta
No.	Compound	Retention Time	Relative content (%)
1	Ethyl butyrate	4.614	0.96
2	Hexanal	4.820	1.52
3	2-Hexenal	6.321	2.59
4	Hexanol	6.872	1.56
5	Nonane	7.865	0.12
6	Benzeneethanol	16.813	0.08
7	Benzoic acid ethyl ester	25.270	0.68
8	Hexedecane	30.698	0.13
9	Heptadecane	32.968	0.21
10	Octadecane	35.116	0.23
11	α-Terpineol	35.582	0.21
12	Neophytadiene	35.949	0.20
13	Cyclotetradecane	36.825	0.12
14	Nonadecane	37.162	0.21
15	Eicosane	39.122	0.24
16	Isopropyl palmitato	39.608	0.18
17	1-Octadecene	40.757	0.24
18	Heneicosane	40.987	0.59
19	Cyclohexane decyl	42.621	0.62
20	Docosane	42.782	0.93
21	Hexadecanamide	42.621	0.66
22	1-Naphthalenamine=N-phonyl	43.535	0.56
23	Tricosane	44.502	1.42
24	9-Octadecanamide	45.586	1.47
25	Octadecanamide	45.992	0.61
26	Tetracosane	46.153	1.81
27	Linoleic acid butyl ester	47.312	1.17
28	Pentacosane	47.745	2.36
	Compound	Weight	%
---	---------------------------------	---------	--------
29	Hexacosane	49.273	2.28
30	Tetracosane	50.191	0.37
31	Heptacosane	50.346	0.16
32	Heptacosane	50.747	2.06
33	Eicosane	51.639	0.49
34	Hexacosane	51.794	0.45
35	Octacosane	52.189	2.08
36	Schizandrin	52.494	0.27
37	Squalene	52.670	23.08
38	Octadecane	53.183	0.44
39	Nonacosane	53.557	2.27
40	Triacontane	55.058	1.27
41	β-Tocopherol	56.116	7.01
42	Hentriacontane	56.837	1.19
43	Hexacosanol	56.944	1.59
44	Cholest-5-en-3-ol	57.371	1.37
45	Docosane	58.953	0.78
46	Campesterol	59.759	0.72
47	Stigmasta-5,22-dien-3-ol	60.545	1.16
48	tritriacontane	61.544	0.59
49	1-Eicosanol	61.800	0.79
50	γ-sitosterol	62.153	8.10
51	β-Amyrin	63.131	1.55
52	Stigmast-7-en-3-ol	63.809	5.67
53	α-Amyrin	64.391	1.72
54	9,19-cyclolanostan-3-ol,24-methylene	66.357	1.61
55	9,19-cyclolanostan-3-ol,acetate	67.954	1.08
56	A-Friedooleanan-3-one	69.007	0.26

Total % 92.09
% of identified compounds 7.91
Number of identified compounds 56

Table 2 Evaluation of antibacterial activity of *Actinidia arguta* essential oil.

Microorganisms	Diameter of the inhibition zone (mm±SD)	Essential oil	Antibiotics	Essential oil	MIC (mg/mL)	MBC/MFC (mg/mL)	
			Gentamycin				
Gram-positive			*B. subtilis*	23.5±0.23	17.2±0.35	1.56	3.125
			S. aureus	25.3±0.41	19.5±0.54	0.78	3.125
Gram-negative			*E. coli*	16.8±0.37	8.5±0.12	6.25	12.5
			P. aeruginosa	18.5±0.39	10±0.21	1.56	6.25
Fungi			Amphotericin				
			S. cerevisiae	24.3±0.52	20.5±0.48	1.56	3.125
			M. canis	21.6±0.58	16.8±0.57	3.125	6.25

Table 3 Cytotoxic effect of AEO

Cell lines	IC$_{50}$ (mg/mL)
HT-29 cells	11.905
PC-3 cells	13.646
A549 cells	6.067

Figures
Figure 1
GC-MS chromatogram of Actinidia arguta essential oil

Figure 2
Antioxidant activity of AEO: DPPH radical scavenging activity (a), inhibition of β-carotene bleaching assay (b) and hydroxyl radical scavenging activity (c).
Figure 3

Cytotoxic effect of AEO against A549, PC-3, HT-29 cells at different concentrations.

Figure 4
Assessment of ultra-structural morphology of A549 cells by CLSM. Magnification: 200× a: Untreated cells; b: A549 cells treated with AEO for 48h; c: A549 cells treated with AEO for 72 h.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- GraphicalAbstract.docx