A genome-wide analysis of desferrioxamine mediated iron uptake in *Erwinia* spp. reveals genes exclusive of the Rosaceae infecting strains

Ivan Polsinelli, Luigimaria Borruso, Rosanna Caliandro, Luca Triboli, Alfonso Esposito & Stefano Benini

Erwinia amylovora is the etiological agent of fire blight, a devastating disease which is a global threat to commercial apple and pear production. The *Erwinia* genus includes a wide range of different species belonging to plant pathogens, epiphytes and even opportunistic human pathogens. The aim of the present study is to understand, within the *Erwinia* genus, the genetic differences between phytopathogenic strains and those strains not reported to be phytopathogenic. The genes related to the hydroxamate siderophores iron uptake have been considered due to their potential druggability. In *E. amylovora* siderophore-mediated iron acquisition plays a relevant role in the progression of Fire blight. Here we analyzed the taxonomic relations within *Erwinia* genus and the relevance of the genes related to the siderophore-mediated iron uptake pathway. The results of this study highlight the presence of a well-defined sub-group of Rosaceae infecting species taxonomically and genetically related with a high number of conserved core genes. The analysis of the complete ferrioxamine transport system has led to the identification of two genes exclusively present in the Rosaceae infecting strains.

Fire blight is one of the major threat to Rosaceae with a potentially disastrous economic impact on apple and pear production. With favorable environmental conditions, an outbreak can cause the loss of entire annual harvests. The etiological agent of the disease is *Erwinia amylovora*, one of the top ten known plant pathogens. The *Erwinia* genus comprises species that are plant pathogens, non-pathogen, epiphytes, and even opportunistic human pathogens. *E. amylovora* can infect a wide range of hosts, comprehensive of apple, pear, hawthorn, cotoneaster, rubus, etc. Earlier comparative genomic studies, focused on virulence genes, suggest that *E. amylovora* host specificity and pathogenicity is driven by the absence or presence of certain genes.

In living organisms, iron is a fundamental element, present as a cofactor in proteins and enzymes (e.g., iron-sulfur clusters, heme groups, etc.). A broad spectrum of biological relevant reactions are catalyzed by the reversible Fe(II)/Fe(III) redox pair. The restriction on the availability of iron led to the development of highly selective systems for its acquisition, either directly (e.g. through transferrin, heme or hemoproteins) or indirectly, through hemophores or siderophores. In particular, siderophores are small molecules (usually < 1 kDa) that complex ferric iron and are among the strongest Fe(III) chelators. Iron uptake is one of the main molecular pathways involved in the fire blight disease progression. Not all *Erwinia* species are able to synthetize their own siderophores, suggesting that iron uptake is a potential niche adaptation factor. *E. amylovora* mutants, with defective siderophore biosynthesis and uptake, showed an important reduction in their growth on apple flowers compared to the wild-type strain. In *E. amylovora*, siderophore mediated iron uptake is dependent on desferrioxamines (DFOs), molecules consisting of alternating diamine and dicarboxylic acid building blocks.
linked by amide bonds. The major product of DFOs biosynthesis in *E. amylovora* is nocardamine (desferrioxamine E, DFO-E). Three proteins, namely DfoJ, DfoA and DfoC, are responsible for the biosynthesis of DFO-E starting from lysine. These proteins are encoded by a single gene cluster, the *dfoA* operon. Together with the DFOs biosynthetic pathway proteins, the bacterium expresses a biospecific membrane receptor, called FoxR, necessary for the transport of ferrioxamine complexes across the outer membrane. Transport across the bacterium inner membrane, possibly depends on the periplasmic binding protein-dependent ABC transporter complex FhuABCD, as reported for other hydroxamate siderophores of enteric bacteria e.g. in *Escherichia coli* and *Salmonella enterica*. Ferrisiderophore complexes are very stable, and the mechanism of iron release can occur with three different mechanisms: hydrolysis of the siderophore, proton-assisted dissociation of the complex, and reduction of the metal center. The lack of specific hydrolases in *E. amylovora* and the incompatibility of the cytoplasmic pH with the proton-assisted dissociation suggests that the iron is released after its reduction (ferrioxamine has a lower affinity for Fe(II) than for Fe(III)), as in *E. coli*.

The aim of the present study is to understand the genetic differences within *Erwinia* spp. between the species reported to be phytopathogenic and the one never reported to be correlated to plant diseases (here considered as non-phytopathogenic). A special focus is dedicated at the genes related to the hydroxamate siderophores iron uptake. We used a comparative genomic approach and selected a specific dataset of *Erwinia* spp. covering 11 genomes from phytopathogenic species, and 8 genomes from non-pathogenic. The genome selection has been limited to the available ones completed and correctly annotated. Average Nucleotide Identity (ANI), phylogenetic inference based on conserved marker genes, pangenomic analysis and molecular diversity analysis have been performed to get insights about the relevance of siderophore mediated iron acquisition in the evolution of pathogens’ hosts selectivity and virulence.

Results

In order to work on a balanced dataset of the *Erwinia* genus, 11 plant pathogens and 8 non-pathogens genomes were selected among the sequenced genomes in *Erwinia* (Table 1). The genome selection has been limited to the ones suitable for the analysis (see Methods section). Seven of the 19 genomes examined have been reported to be Rosaceae infecting pathogens, belonging to 4 different species: *E. amylovora*, *E. pyrifoliae*, *Erwinia sp Ejp617* and *E. pirifloringrana*.

Average Nucleotides Identity and Phylogenetic analysis. The ANI values and the phylogenetic analysis consistently highlighted a clear division between the Rosaceae infecting pathogens (RIP) and the other species (Non Rosaceae infecting pathogens, NRIP). The genomes of the RIP group show higher similarity, with pairwise ANI values always higher than the ones from the other species and a large portion of genome aligned (above 6Mbp). Other species instead, had lower pairwise ANI values, also when the alignment lengths was comparable to the ones in the pathogenic species (Fig. 1a). Furthermore, the PhyloPhAn tree (Fig. 1b) reports a shorter phylogenetic distance between RIP species compared to the NRIP species. The tree topology is slightly different from the one in Fig. 1a, however the large basal split between RIP and NRIP is conserved. *Erwinia tasmaniensis* is an exception: in fact, although it has never been reported to be a pathogen, it shows a high genome similarity with the RIP group.

Core and accessory genome in *Erwinia*. Clusters of orthologous proteins were created using Anvi’o, a binary matrix including the presence of genes in the different genomes was exported to perform a pangenomic study. The core genome shared between RIP and NRIP is plotted in the Fig. 2a. A total of 1551 genes (58.9% of the core genes) are shared between the two groups (RIP and NRIP, hard-core genes), the number of soft-core genes is an exception: in fact, although it has never been reported to be a pathogen, it shows a high genome similarity with the RIP group.

Presence/absence of genes related to hydroxamate siderophores iron uptake and polymorphism. Table 2 summarizes the presence/absence of coding sequences (CDS) for genes related to hydroxamate siderophores iron uptake in the 19 *Erwinia* genomes taken into account. As shown in Table 2, 9 genes have been considered as marker. All the marker CDS have been found in the RIP and in *E. tasmaniensis*; in NRIP species the number of the CDS (found with a complete coding sequence) of interest ranged from 2 to 4 (Table 2). The most prevalent gene is *fhuB* (coding part of the hydroxamate import system), found in 15 out of 19 strains, followed by *dfoC*, *dfoA* and *foxR* (synthesis and transport of ferrioxamine). The least present are *fhuD* (periplasmic binding protein) and *sidE* (siderophores utilization protein), both found only in RIP and *E. tasmaniensis*. The combination of the PhyloPhAn analysis and the CDS presence is represented in Fig. 3. A monophyletic clade constituted by all the RIP and *E. tasmaniensis* contains all the CDS screened. Moreover, the CDS for *fhuD* (in orange) and *sidE* (in red) can be found only in this clade. The CDS for *fhuB* (in pink) is almost ubiquitous but it is absent in *E. gerundensis*, in one of the *E. intacta* (*E. intacta* B149) and in both *E. billingiae*.

dfoA. A complete CDS for the gene *dfoA* was found in all RIP, in *E. tasmaniensis*, both strain of *E. intacta*, *E. toletana* and one of the two *E. billingiae* strains (EB661). The other *E. billingiae* strain (OSU 191) missed an in-frame start codon. From none of the remaining species was possible to retrieve the homologous gene neither through blast, nor through the annotated genbank file. In RIP, the gene is conserved, with a Pi value below 0.1, whereas in NRIP there is a highly variable region around 400 bp. Despite the lower conserved of *dfoA* gene in NRIP, there are two noticeable conserved regions around 200 bp and 1100 bp (Fig. 4a).
Table 1. List of the genomes used for this study. *These strains are Rosaceae infecting pathogen. †E. amylovora CFBP1430 is the reference genome where all the DNA gene sequences were extracted. ‡Found on olive knots caused by Pseudomonas savastanoi pv. savastanoi. ‡‡The presence of E. toletana is correlated with the virulence of the disease suggesting a possible interactions with P. savastanoi pv. savastanoi.

Strain	Accession number	Habitat/host	Plant pathogenicity
E. amylovora CFBP1430*	GCA_00091565.1	Crataegus (hawthorn)	Pathogen of Rosaceae*
E. amylovora ATCC49946*	GCA_00032075.1	Malus sp. (apple tree)	Pathogen of Rosaceae*
E. amylovora E-2*	GCA_002630865.1	Malus sp. (apple tree)	Pathogen of Rosaceae*
E. pyrifoliae Ep1/96*	GCA_00027265.1	Pyrus pyrifolia (pear tree/nashi)	Pathogen of Pyrus pyrifolia*
E. pyrifoliae DSM-12163*	GCA_000266985.1	Pyrus pyrifolia (pear tree/nashi)	Pathogen of Pyrus pyrifolia*
Erwinia sp. Ep617*	GCA_000165815.1	Pyrus pyrifolia (pear tree/nashi)	Pathogen of Pyrus pyrifolia*
E. pyriflorigrans CFBP-5888*	GCA_001050515.1	Pyrus communis (pear tree)	Pathogen of Pyrus communis†
E. tasmaniensis ET1/99	GCA_00026185.1	Malus sp. (apple tree)	Non-pathogen †† †††
E. billingiae OSU19-1	GCF_001269445.1	Pyrus communis (pear tree)	Non-pathogen ††
E. billingiae Eb661	GCA_00196615.1	Malus sp. (apple tree)	Non-pathogen ††
E. toletana DAPP-PG-7351	GCA_000336255.1	Olea sp. (olive tree)	Associated to the pathogen of Olea sp.† ††
E. Oleae DAPP-PG-3531	GCA_000770305.1	Olea europaea (olive tree)	Non-pathogen †††
E. tracheiphila ButfGH	GCA_000975275.1	Cucurbita pepo ssp. Texana (squash plant)	Pathogen of Cucurbitaceae‡‡
E. tracheiphila PSU-1	GCA_000404125.1	Cucurbita pepo ssp. Texana (squash plant)	Pathogen of Cucurbitaceae‡‡
E. mellitivora RT-MARDI	GCA_000590885.1	Carica sp. (papaya tree)	Pathogen of Carica sp.†
E. persicina NBRC-102418	GCA_001571305.1	Piezoderus guildinii (guts of redbanded stink bug) and Leguminosae (legume plants)	Pathogen of Leguminosae†††
E. inicta B149	GCA_001267545.1	Diaphus noxia (wheat aphid)	Non-pathogen †
E. inicta B120	GCA_001267555.1	Diaphus noxia (wheat aphid)	Non-pathogen †
E. gerundensis EM595	GCA_001517405.1	Pyrus communis (pear tree)	Non-pathogen †

dfoC. A complete CDS for dfoC was found in all the RIP, in E. tasmaniensis, in both E. billingiae and E. inicta, in E. oleae and E. mellitivora. It was not possible to retrieve the CDS from the annotated file. A remarkable feature of this alignment was a large (12 nt), in-frame insertion found in the two E. inicta strains and E. toletana. In RIP, the gene is very conserved and in particular the region around 400 bp and the last 500 nucleotides. In the NRIP, the gene is generally less conserved than in RIP, with conserved 3 areas (regions around 400 bp, 1300 bp and 2000 bp, Fig. 4b). The variability pattern in this gene show a peak of variation at 1200 bp in NRIP that was not present in RIP.

dfoJ. A complete CDS was found using blast for all E. amylovora, the two E. pyriflorigrans, Erwinia sp. Ep617, E. pyriflorigrans and E. tasmaniensis. It should be noted that from the genbank file, a feature annotated as dfoI was present only in one out of three E. amylovora genomes (CFBP1430) and one E. pyriflorigrans. A sequence with high identity with the dfoJ gene was also found in E. oleae, however, this gene was lacking an in-frame stop codon, even after manual inspection of the 5’ downstream region. The dfoJ gene was found only in RIP, and it display a relatively low value of Pi all along the sequence compared to the other genes (Fig. 4c).

fluA. This gene was annotated only in two out of three E. amylovora strains (ATCC49946 and CFBP1430), and in the two E. pyriflorigrans. However, a complete coding sequence was found in all E. amylovora and E. pyriflorigrans, and in Erwinia sp., E. tasmaniensis, E. persicina, E. pyriflorigrans, both E. billingiae and E. gerundensis. The latter featured a TGA (opal) stop codon, whereas all other species have a TAA (ochre). As for the previous genes, the polymorphism is higher in NRIP than in RIP (Fig. 4d). This gene had a peak of variation in RIP in correspondence of a conserved region of NRIP, at 400 bp.

fluB. Similar to fluA, this gene was annotated in the same genomes, but found through blast in 16 out of 19 genomes (leaving out only the two E. billingiae and E. gerundensis). For E. inicta B149, however, it was not possible to retrieve the whole species due to the fragmentation of the assembly (the 5’ end was cut by a stretch of “N”). Therefore, for the subsequent analysis, fluB sequences for this genome was removed. The differences in the degree of polymorphism between the two populations (RIP vs NRIP) is evident (Fig. 4e), with maximum in the regions around 900 bp and 1500 bp.

fluC. This was detected in all roasceae infecting strains, in E. tasmaniensis and E. gerundensis (that once more had a TGA stop codon, and the most diverging sequence), although it was annotated only in the same four strains as fluA and fluB. The gene is conserved in RIP, with slightly higher polymorphism in the last 150 nucleotides (Fig. 4f).

fluD. This was detected in all Rosaceae-infesting strains and in E. tasmaniensis, although it was annotated only in the same four strains as fluA and fluB. The gene is conserved in RIP (Fig. 4g).
This gene was detected in all RIP plus the two *E. billingiae*, the two *E. tracheiphila*, *E. oleae*, *E. tasmaniensis*. It was annotated in the genbank files of the two *E. pyrifoliae* and *E. amylovora* CFBP1430. The gene polymorphism is higher in NRIP than in RIP (Fig. 4h). In RIP, the most conserved regions are around 400 bp, 750 bp and 1300 bp, while in NRIP the most conserved regions are at 300 bp and 1600 bp. Once again, a peak of nucleotide variation in NRIP was detected in correspondence of a conserved region in RIP, at 1300 bp.

sidE. This gene was detected in all Rosaceae-infecting strains, plus *E. tasmaniensis*. In RIP, the gene is overall conserved, with a small peak at 700 bp (Fig. 4i).

Discussion

The *Erwinia* genus includes phytopathogens affecting Rosaceae relevant in fruit production (e.g., *Malus* sp. and *Pyrus* sp.). In *E. amylovora*, the ferrioxamine biosynthesis and transport has been reported to be involved in the progress of the Fire blight disease10–12,15,16 which makes it a worth studying target pathway. In this work, a specific dataset of *Erwinia* spp. has been analyzed comparing at first the whole genome, then a group of conserved proteins, and at last focusing on specific siderophore genes. The ANI (Fig. 1a), the phylogenetic analysis (Fig. 1b), the pangenome and multivariate analysis based on the presence/absence of all genes (Fig. 2b) are coherent. The whole analysis highlights that a defined group of species is present in the heterogeneous *Erwinia* genus. All the species in this group, with the exception of *E. tasmaniensis*25, have been reported to be Rosaceae infecting pathogens25–29. Our results support that the lack of only few specific genes (involved in the biosynthesis and regulation of harpins, effectors and amylovoran) hints for a possible non-pathogenicity of *E. tasmaniensis* ET1/99 as suggested by Borruso et al.7 and others previously30–32. *Erwinia* spp. Ejp617 in all analysis clusters very close to the group of *E. pyrifoliae* although not as ingroup. According to our results *Erwinia* spp. Ejp617 isolated in Japan28 could be assigned within the species *E. pyrifoliae* as has been done in other reports28,33. All phylogenetic analysis (Figs 1 and 2b) suggest a different evolutionary rate within the RIP. These difference can be appreciated by looking at the branch length in Fig. 1b: the distance between *E. amylovora*, *E. pyrifoliae*, *Erwinia sp Ejp617*, *E. piriflorinigrans* and *E. tasmaniensis* is shorter than any distances among other species. The number of soft-core genes in the two groups is very different (Fig. 2b), suggesting a high level of host-adaptation required in the RIP for infecting the plant. The genomic similarity of RIP is revealed by the selected marker genes. The high level
of host-adaptation is reflected in the iron uptake system, where the Pi value/polymorphism for all the genes from NRIP species is higher than in RIP (Fig. 4). Moreover, there are some contrasting nucleotide positions (e.g. 1200 bp in dfoC and 400 bp in fhuA) where there is a maximum of Pi value for one population and minimum for the other one. These regions could play a key role in the enzyme function and/or be part of the active site. Complete CDS for ferroxamine siderophore biosynthesis (dfoJAC), outer membrane receptors (fhuA and foxR), periplasmic binding protein (fhuD), ABC cassette type receptor components (fhuB and fhuC) and siderophore utilization protein (sidE) are always present in all the Rosaceae infecting Erwinia (plus E. tasmaniensis). The role of ferroxamine synthesis and foxR receptor in the disease has been previously reported\(^1\)\(^2\)\(^3\)\(^4\)\(^5\)\(^6\) and accordingly to our results, the complete transport system is relevant as well. Moreover, while some genes of the biosynthesis and the receptors are shared between RIP and NRIP, the genes coding for the periplasmic binding protein (fhuD) and the siderophore utilization protein (sidE) are strictly conserved in the RIP (Fig. 3). According to the PhyloPhAn analysis, the epiphytic bacteria E. billingiae is the farthest Erwinia in respect of the RIP. However, it shares both the outer membrane receptors for hydroxamate siderophore and 2 out of 3 enzyme required for the ferroxamine biosynthesis. E. billingiae tends to invade plants necrotic tissue\(^1\)\(^2\)\(^3\)\(^4\). E. billingiae could withdraw the intermediates and the ferroxamine from the RIP, slowing down its growth, while scavenging the iron available in the plant tissues necrotized by pathogens. This behavior suggests a possible symbiosis/antagonism with the RIP\(^6\)\(^7\) even in the synthesis of siderophores. The absence of the almost ubiquitous gene fhuB from E. billingiae, E. gerundensis, and E. inicta B149 could be explained with two hypotheses: i) it is possible that the gene, present in the ancestor, has been lost by the two derived species; or ii) a fragmented assembly may result in a missing gene. The latter is the most probable for E. inicta B149, because the assembly consists of 121 contigs, whereas E. gerundensis consists of 3 contigs. However, in both E. billingiae and in E. gerundensis, the gene was most likely lost.

Figure 2. Pangeneome analysis. (a) Venn diagram of the core genes shared within the two groups in Erwinia (RIP vs NRIP) (b) Non-metric MultiDimensional Scaling (NMDS): the plot is computed from the presence/absence matrix of all protein clusters in the genomes.
Methods
In order to have a balanced dataset of the Erwinia genus (11 plant pathogens vs 8 non-pathogens) genomes to be screened were selected among the sequenced genomes in Erwinia according to the list in Borruso et al.7, both fasta and genbank format were downloaded from genbank on the 14th of February 2018. To avoid biases due to the much larger number of sequenced E. amylovora genomes we selected the three genomes with the highest completion score, namely E. amylovora strain CFBP1430, strain 49946 and strain E-2. Eventually, 19 genomes, spanning 13 species, were selected. Seven genomes (in four species), belonged to species known to infect plants.

Table 2. Distribution of the marker genes in the genomes analyzed. The presence of a CDS for the marker is represented as a black dot. *These strains are Rosaceae infecting pathogen.

Organisms	fhuB	dfcC	dfdA	foxR	fhuA	dfjI	fhuC	fhuD	sidE	Total markers
E. amylovora CFBP1430*	•	•	•	•	•	•	•	•	•	9
E. amylovora ATCC49946*	•	•	•	•	•	•	•	•	•	9
E. amylovora E-2*	•	•	•	•	•	•	•	•	9	
E. pyrifloringranis CFBP-5888*	•	•	•	•	•	•	•		•	9
E. pyrifolia DSM-12163*	•	•	•	•	•	•	•	9		
E. pyrifoliae Ep1/96*	•	•	•	•	•	•	•	•	9	
Erwinia.sp Ep617*	•	•	•	•	•	•	•	9		
E. tasmansiensis Et1/99	•	•	•	•	•	•	•	•		9
E. billingiae Eb661	•	•	•	4	1					
E. billingiae OSU19-1	•	•	•							
E. oleae DAPP-PG531	•	•	•	4	1					
E. infecta B120	•	•	3							
E. infecta B149	•	•	2							
E. gerundensis EM595	•	•	2							
E. mallotivora BT-MARD1	•	•	2							
E. persicina NRBC-102418	•	•	2							
E. toletana DAPP-PG-7351	•	•	2							
E. tracheiphila BuRGH	•	•	2							
E. tracheiphila PSU-1	•	•	2							
Total genomes	15	14	13	12	9	9	8	8		

Figure 3. Representation of the genes presence according to the tree generated from PhyloPhlAn analysis (branch length are not shown in this figure to better visualize the topology of the tree). The dots represent the presence of a complete CDS for each gene.

Methods
In order to have a balanced dataset of the Erwinia genus (11 plant pathogens vs 8 non-pathogens) genomes to be screened were selected among the sequenced genomes in Erwinia according to the list in Borruso et al.7, both fasta and genbank format were downloaded from genbank on the 14th of February 2018. To avoid biases due to the much larger number of sequenced E. amylovora genomes we selected the three genomes with the highest completion score, namely E. amylovora strain CFBP1430, strain 49946 and strain E-2. Eventually, 19 genomes, spanning 13 species, were selected. Seven genomes (in four species), belonged to species known...
to infect Rosaceae, the remaining 12, spanned 9 species in which this phenotype is not reported (Table 1).
Siderophore mediated iron uptake genes of Erwinia spp. were selected for their relevance: dfoA (ordered locus name EAMY_3239), dfoC (EAMY_3240), dfoJ (EAMY_3238), fhuA (annotated as 3 fragments: EAMY_2775, EAMY_2776 and EAMY_2777), fhuB (EAMY_2772), fhuC (EAMY_2774), fhuD (EAMY_2773), foxR (EAMY_3241), sidE (EAMY_3562). The gene sequences from E. amylovora CFBP1430 have been used as reference. A first genome-wide comparison was done using the Average Nucleotide Identity (ANI), using the software PYANI38, and the output was elaborated using the software DiMHepy (https://github.com/lucaTriboli/DiMHepy). A phylogenetic tree was built on the concatenation of 400 conserved proteins using PhyloPhlAn 39, and the tree was drawn and annotated (e.g. presence absence of genes was reported on each leaf of the tree) using IToL40. To infer the number of shared protein clusters, genomes were imported in Anvi’o41, the pipeline followed the standard pangenomic workflow with all default parameters. A binary matrix containing all protein clusters of the different genomes was exported and analyzed via Non Multivariate Analysis (NMDS) based on Euclidean distance. Venn diagram was generated to display the number of core genes. Briefly, we considered as core genome the pool of genes present in all genomes of RIP and NRIP separately. Coding sequences (CDS) for each of the 9 genes were searched through BLASTn42 using as query the CDS of E. amylovora CFBP1430. When partial or no CDS were detected, alignments were manually curated by retrieval of the homologous flanking sequences from the fasta files. DNA polymorphism for each selected gene has been analyzed using the sliding window method with the software DnaSP v643 and expressed as Nucleotide diversity (Pi)44,45. The parameters for the analysis have been established in function of the gene length. The window length and the step size values have been settled as 10% and 2.5% respectively (rounded to integer). The Pi value has been calculated for RIP and also for NRIP where the gene was present in a comparable number of species. These outputs have been plotted using Excel. All other graphics, where not explicitly stated, were generated with R46.

Conclusion
The results of this study highlight the presence of a defined sub-group of Rosaceae infecting species taxonomically and genetically related, with a high number of conserved core genes. The importance of the siderophores uptake genes has been extended to the complete transport system of ferrioxamine, with the identification of two genes present exclusively in the strains infecting the Rosaceae. These genes, namely fhuD and sidE, code for two proteins that require further studies and are possible new targets for development of novel control measures against RIP. Our results raise the interest towards E. tasmaniensis for a better understanding of the transition between non-pathogenicity and pathogenicity. Moreover, our data confirm the classification of Erwinia spp. Ejp617 as E. pyrifoliae.
References

1. Vanneste, J. L. In Fire blight: the disease and its causative agent, Erwinia amylovora (ed. Vanneste, J. L.) (CABI Publishing, New York, NY 10016, 2000).
2. Mansfield, J. et al. Top 10 plant-pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 13, 614–629 (2012).
3. O’Hara, C. M., Steigerwalt, A. G., Hill, B. C., Miller, J. M. & Brenner, D. J. First Report of a Human Isolate of Erwinia persicinum. Journal of Clinical Microbiology 36, 248–250 (1998).
4. Prov’homme, M. et al. Cutaneous infection and bacteremia caused by Erwinia billingiae: a case report. New Microbes New Infect. 19, 134–136 (2017).
5. Shin, S. Y., Song, J. H. & Ko, K. S. First Report of Human Infection Due to Erwinia tasmaniensis-Like Organism. International Journal of Infectious Diseases 12, e329–e330 (2008).
6. Mann, R. A. et al. Comparative analysis of the Hrp pathogenicity island of Rubus- and Spiraeoideae-infecting Erwinia amylovora strains identifies the IT region as a remnant of an integrative conjugative element. Gene 504, 6–12 (2012).
7. Borruso, L., Salomone-Stagni, M., Polsinelli, L., Schmitt, A. O. & Benini, S. Conservation of Erwinia amylovora pathogenicity-related genes among Erwinia genomes. Arch. Microbiol. 199, 1335–1344 (2017).
8. Miethke, M. & Marahiel, M. A. Siderophore-based iron acquisition and pathogen control. Microb. Mol. Biol. Rev. 71, 413–451 (2007).
9. Li, K., Chen, W. & Bruner, S. D. Microbial siderophore-based iron assimilation and therapeutic applications. Biometals 29, 377–388 (2016).
10. Vanneste, J. L. In Fire blight: the disease and its causative agent, Erwinia amylovora (ed. Vanneste, J. L.) (CABI Publishing, New York, NY 10016, 2000).
11. Piqué, N., Miyana-Galbis, D., Merino, S. & Tomás, J. Virulence Factors of Erwinia amylovora: A Review. International Journal of Molecular Sciences 16, 12836–12854 (2015).
12. Smith, T. H. & Duffy, B. Genomics of iron acquisition in the plant pathogen Erwinia amylovora: insights in the biosynthetic pathway of the siderophore desferrioxamine E. Arch. Microbiol. 193, 693–699 (2011).
13. Salomone-Stagni, M. et al. Complete structural characterization of the desferrioxamine E biosynthetic pathway from the fire blight pathogen Erwinia amylovora. Journal of Structural Biology 202, 236–249 (2018).
14. Schalk, I. J. & Guillon, L. Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways. Amino Acids 44, 1267–1277 (2013).
15. Matzanke, B. F., Anemuller, S., Schunemann, V., Trautwein, A. X. & Hantke, K. FhuF, part of a siderophorereductase system. Mol. Gen. Genet. 265, 1386–1392 (2004).
16. López, M. M. et al. Erwinia piriflorinigrans sp. nov., a novel pathogen that causes necrosis of pear blossoms. Int. J. Syst. Evol. Microbiol. 61, 561–567 (2011).
17. Mann, R. A. et al. Comparative Genomics of 12 Strains of Erwinia amylovora Identifies a Pan-Genome with a Large Conserved Core. PLoS One 8, e65644 (2013).
18. Lagonenko, A. L., Komardina, V. S., Nikolaichik, Y. A. & Estushevn, A. N. First Report of Erwinia amylovora Fire Blight in Belarus. J. Phytopathol. 156, 638–640 (2008).
19. Clarke, T. E., Braun, W., Winkelmann, G., Tari, L. W. & Vögel, H. J. X-ray crystallographic structures of the Escherichia coli periplasmic protein FhuD bound to hydroxamate-type siderophores and the antibiotic albomycin. J. Biol. Chem. 277, 13966–13972 (2002).
20. Kingsley, R. A. et al. Ferrioxamine-mediated iron(III) utilization by Salmonella enterica. Appl. Environ. Microbiol. 65, 1610–1618 (1999).
21. Schall, I. J. & Guillon, L. Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways. Amino Acids 44, 1267–1277 (2013).
22. Matsuzake, B. F., Anemuller, S., Schunemann, V., Trautwein, A. X. & Hantke, K. FhuF, part of a siderophorereductase system. Mol. Gen. Genet. 265, 1386–1392 (2004).
23. López, M. M. et al. Erwinia piriflorinigrans sp. nov., a novel pathogen that causes necrosis of pear blossoms. Int. J. Syst. Evol. Microbiol. 61, 561–567 (2011).
24. Mann, R. A. et al. Comparative Genomics of 12 Strains of Erwinia amylovora Identifies a Pan-Genome with a Large Conserved Core. PLoS One 8, e56544 (2013).
25. Lagonenko, A. L., Komardina, V. S., Nikolaichik, Y. A. & Estushevn, A. N. First Report of Erwinia amylovora Fire Blight in Belarus. J. Phytopathol. 156, 638–640 (2008).
26. Geider, K., Auling, G., Jakovlevic, V. & Völkel, B. A polyphasic approach assigns the pathogenic Erwinia strains from diseased pear trees in Japan to Erwinia pyrifoliae. Lett. Appl. Microbiol. 48, 324–330 (2009).
27. Park, D. H. et al. Complete genome sequence of Japanese Erwinia strain ejp61, a bacterial shoot blight pathogen of pear. J. Bacteriol. 193, 586–587 (2011).
28. Kube, M. et al. Genome comparison of the epiphytic bacteria Erwinia billingiae and E. tasmaniensis with the pear pathogen E. pyrifoliae. BMC Genomics 11 (2010).
29. Malnoy, M. et al. Fire blight: applied genomic insights of the pathogen and host. Annu. Rev. Phytopathol. 50, 475–494 (2012).
30. Zhao, Y. & Qi, M. Comparative Genomics of Erwinia amylovora and Related Erwinia Species—What do We Learn? Genes (Basel) 2, 627–639 (2011).
31. Llo, P. Genetic islands in pome fruit pathogenic and non-pathogenic Erwinia species and related plasmids. Front. Microbiol. 6, 874 (2015).
32. Eve, B. & Baker, L. A. Characteristics of Erwinia-like Organisms found in Plant Material. J. Appl. Bacteriol. 26, 58–65 (1963).
33. Mergaert, J., Hauben, L., Croockeart, M. C. & Swings, J. Reclassification of non-pigmented Erwinia herbicola strains from trees as Erwinia herbicola sp. nov. Int. J. Syst. Bacteriol. 49(Pt 2), 377–383 (1999).
34. Palacio-Bielsa, A., Roselló, M., Llo, P. & López, M. M. Erwinia spp. from pome fruit trees: similarities and differences among pathogenic and non-pathogenic species. Trees 26, 13–29 (2012).
35. Jakovlevic, V., Jock, S., Du, Z. & Geider, K. Hypersensitive response and acyl-homoserine lactone production of the fire blight antagonists Erwinia tasmaniensis and Erwinia billingiae. Microb. Biotechnol. 1, 416–424 (2008).
36. Pritchard, L., Glover, R. H., Humphris, S., Elphinstone, J. G. & Toth, I. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal. Methods 8, 12–24 (2016).
37. Segata, N., Bornnigen, D., Morgan, D. C. & Hühntenower, C. PhyloPhAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat. Commun. 4, 2304 (2013).
38. Letunic, I. & Bork, P. Interactive tree of life (ITOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–5 (2016).
39. Eren, A. M. et al. Anvi'o: an advanced analysis and visualization platform for 'omics data. PeerJ 3, e1319 (2015).
40. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
41. Rozas, J. et al. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 34, 3299–3302 (2017).
44. Nei, M. In Molecular Evolutionary Genetics (1987).
45. Nei, M. & Miller, J. C. A simple method for estimating average number of nucleotide substitutions within and between populations from restriction data. *Genetics* 125, 873–879 (1990).
46. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria., http://www.R-project.org/ (2013).
47. Kube, M. et al. The genome of Erwinia tasmaniensis strain Et1/99, a non-pathogenic bacterium in the genus Erwinia. *Environ. Microbiol* 10, 2211–2222 (2008).
48. Klein, J. M. et al. Draft Genome Sequence of Erwinia billingiae OSU19-1, Isolated from a Pear Tree Canker. *Genome Announc* 3, https://doi.org/10.1128/genomeA.01119-15 (2015).
49. Passos da Silva, D. et al. Draft Genome Sequence of Erwinia toletana, a Bacterium Associated with Olive Knots Caused by Pseudomonas savastanoi pv. savastanoi. *Genome Announc* 1, https://doi.org/10.1128/genomeA.00205-13 (2013).
50. Moretti, C. et al. Draft Genome Sequence of Erwinia oleae, a Bacterium Associated with Olive Knots Caused by Pseudomonas savastanoi pv. savastanoi. *Genome Announc* 2, https://doi.org/10.1128/genomeA.01308-14 (2014).
51. Moretti, C. et al. Erwinia oleae sp. nov., isolated from olive knots caused by Pseudomonas savastanoi pv. savastanoi. *Int. J. Syst. Evol. Microbiol.* 61, 2745–2752 (2011).
52. Redzuan, R. et al. Horizontal Gene Acquisitions, Mobile Element Proliferation, and Genome Decay in the Host-Restricted Plant Pathogen Erwinia Tracheiphila. *Genome Biol. Evol.* 8, 649–664 (2016).
53. Campillo, T. et al. Erwinia iniecta sp. nov., isolated from Russian wheat aphid (Diuraphis noxia). *Int. J. Syst. Evol. Microbiol.* 65, 3625–3633 (2015).
54. Rezzonico, F. et al. Erwinia gerundensis sp. nov., a cosmopolitan epiphyte originally isolated from pome fruit trees. *Int. J. Syst. Evol. Microbiol.* 66, 1583–1592 (2016).

Acknowledgements
This research was funded by the Faculty of Science and Technology, Free University of Bolzano, project: Genomic Selection in *Erwinia amylovora*, GenSelEa, grant number 1576 and by the Free University of Bolzano, project: Bioinformatics analysis of *Erwinia amylovora* strains genome sequences, BioinfEa, grant number 1627. This work was supported by the Open Access Publishing Fund of the Free University of Bozen-Bolzano. IP was supported by a predoctoral fellowship from the Free University of Bolzano.

Author Contributions
Conceptualization, I.P. and A.E.; Methodology, L.B., L.T. and A.E.; Formal analysis, I.P., L.B., R.C., L.T. and A.E., Project Administration and Funding acquisition, S.B.; Writing-Original Draft Preparation, all the authors.

Additional Information
Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. © The Author(s) 2019