Studies on the Inheritance of Brown Midrib Trait and Allelic Relationships among BMR Mutants in Sorghum [Sorghum bicolor (L.) Moench]

Subhasini Vangala¹, ², Jaya Kumar Jaganathan¹, Manohar Rao D. ² and Ashok Kumar Are*¹
¹International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
²Osmania University, Hyderabad, India
*Corresponding Author E-mail: a.ashokkumar@cgiar.org
Received: 4.05.2019 | Revised: 11.06.2019 | Accepted: 17.06.2019

ABSTRACT
Brown midrib (bmr) mutants of sorghum have reddish brown vascular tissues in their leaves and stem with reduced lignin content that increases the bioconversion efficiency and digestibility. Earlier studies showed that bmr trait in sorghum is caused by single recessive mutation and there are many independent loci responsible for brown pigmentation. In this study, three novel spontaneous bmr mutants viz., IS 23253, IS 21549 and IS 11861 were used to establish the allelic relationship with 10 bmr mutants belonging to three known bmr groups i.e., bmr 2, bmr 6 and bmr 12. Developed 78 F₁s from 13 selected parents using half-diallel mating design. Based on the allelism test, IS 23253 and IS 21549 grouped with bmr 6 group. Also, all F₂ populations involving IS 11861, IS 23253 and IS 21549 and lines belonging to three known bmr allelic groups, i.e., bmr2, bmr 6 and bmr 12 showed 3:1, 13:3, 49:15, 193:63, 195:61, 189:67, 45:19, 11:5 segregation ratios for normal: brown mid-rib phenotypes indicating that single recessive gene controlling the brown midrib trait.

Keywords: Brown midrib, CAD, COMT, 4 CL, Sorghum.

INTRODUCTION
Sorghum [Sorghum bicolor (L.) Moench] a member of Gramineae family is mainly grown for food, feed, forage, and fuel purposes, globally on 42 m ha in all six continents (Kumar, 2013). It is the fifth most important cereal crop and is the staple food for the people living in the Semi-Arid areas of Africa and Asia. While sweet sorghum is favored for sugar based (1G) ethanol production the biomass sorghums are highly suited to lignocellulosic (2G) biofuel production. Sorghum is considered a model biomass feedstock because of its quick growth, high biomass yield, drought tolerance and effective nutrient usage (Mathur et al., 2017). Brown midrib mutations in sorghum, like in maize, are characterized by the presence of brown vascular tissue in leaf blade and sheath as well as in the stem. The brown midrib phenotype was found to be associated with altered lignin content/composition that increased the bioconversion efficiency and digestibility (Poovaiah et al., 2014).

Cite this article: Vangala, S., Jaganathan, J.K., Manohar Rao, D., & Are, A.K. (2020). Studies on the Inheritance of Brown Midrib Trait and Allelic Relationships among BMR Mutants in Sorghum [Sorghum bicolor (L.) Moench], Ind. J. Pure App. Biosci. 8(3), 221-227. doi: http://dx.doi.org/10.18782/2582-2845.7563
The reddish-brown coloration of leaf midrib is a morphological marker to identify this popular genetic mutation (bmr) in C₄ grasses. These mutants are characterized by substantial reduction, in amorphous hydrophobic polymer and a component of plant cell wall whose content and composition is phenolic in nature. The gene responsible for this is named as “brown midrib”. Brown midrib (bmr) mutations have been found naturally but can be induced. In sorghum, all the bmr mutants (bmr 1 to bmr 19) were generated by using diethyl sulfate (DES) mediated chemical mutagenesis from two-grain sorghum lines 954114 and 954104 (Porter et al., 1978; Bittinger et al., 1981). Later, many other spontaneous and chemically induced bmr lines were identified (Vogler et al., 1994). These mutants were numbered serially from 1 to 28. Recently, 10 more bmr mutants were generated through chemical mutagenesis from genotype BTx623, and they were numbered from 29 to 38 (Xin et al., 2009). The brown midrib (bmr) mutation in sorghum significantly reduces the lignin content and increases the digestibility of stover. It improves the ethanol conversion efficiency reducing the cost of biofuel production (Cherney et al., 1991; Oliver et al., 2005; Srinivasa et al., 2009; Srinivasa et al., 2010).

Most of the naturally occurring or induced bmr mutants in sorghum have been designated into four allelic groups, i.e., bmr 2, bmr 6, bmr 12 and bmr 19 (Sattler et al., 2014; Saballos et al., 2008). Based on the allelic test few mutants in each group have been characterized at the molecular level. Out of the four allelic groups, the genes representing three allelic groups were identified and characterized at the molecular level, i.e., bmr 2, bmr 6 and bmr 12 loci encoding 4-coumarate CoA ligase (4CL), cinnamyl alcohol dehydrogenase-2 (CAD2) and caffeic acid O-methyltransferase (COMT) respectively (Saballos et al., 2008; Bout & Vermerris, 2003; Saballos et al., 2012). The bmr19 mutant is not publicly available (Sattler et al., 2014) (effectively reducing the available sorghum brown midrib mutants to a set of three independent loci: bmr 2, bmr 6, and bmr 12). However, bmr19 appears to be of limited value for forage and bioenergy applications, because it did not significantly reduce lignin concentration and did not markedly alter lignin subunit composition (Saballos et al., 2008). At ICRISAT we identified three new brown midrib lines IS 23253, IS 21549 and IS 11861 in International Sorghum (germplasm) lines whose genetic control and allelic reaction not known for their utilization. In this context, we studied the inheritance and allelic relationships using a set of established 10 known bmr lines and these three unclassified bmr mutants.

MATERIALS AND METHODS

Genetic material and field evaluation

The field experiments were conducted at International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India (78°12' E, 17°24' N, and 545 m). The three newly identified bmr sources (IS 11861, IS 21549 and IS 23253) and known 10 bmr lines from three known allelic groups (bmr 2, bmr 6 and bmr 12) were crossed in half-diallel fashion and 78 F₁ were produced in the 2013 rainy season (Table 1). These F₁s were evaluated during 2013 postrainy season and scored phenotypically based on the presence of brown coloration of the midrib. All the F₁ were selfed to produce F₂ seeds. In 2014 postrainy season, F₂ progenies were planted to record segregation pattern of the bmr alleles (normal midrib- brown midrib). Each F₂ was planted in four rows of 4 m length, spaced at 0.60 m between the rows and a plant-to-plant distance was maintained at 0.15 m. Each individual brown midrib and normal (white) midrib plants were identified, tagged and selfed. Classification of normal/white midrib and brown midrib plants was done at the seven-leaf stage, during the pre-flowering (boot leaf stage) in both the F₁ and F₂ populations. Chi-square test was performed to test the data for the goodness of fit for F₂ progenies (Steel et al., 1980).
RESULTS AND DISCUSSION

Allelism test establishes the relationship between mutants. When a cross between any two brown mid-rib lines shows brown midrib phenotype in their F₁, then the parents are said to be allelic to each other for brown mid-rib trait. In this study, to identify allelic nature of three new spontaneous brown mid-rib sources IS 11861, IS 21549 and IS 23253, crosses were made in half diallel fashion using 10 well-characterized brown mid-rib lines and all the 78 F₁s were scored for presence of brown mid-rib traits. Of the 78 F₁s evaluated, 25 F₁s showed brown-midrib and remaining 53 F₁s had normal mid-rib (Table 1).

The F₁s between IS 21549 and IS 23253 had brown mid-rib, indicating that both have the similar allele for the trait (Table 1). Further, the phenotypic evaluation of the F₂ population of this cross showed all plants with brown mid-rib phenotypes, additionally, confirming that same allele is present in both the genotypes. Similarly, all the F₁s and F₂s derived from cross between these two lines IS 21549 and IS 23253 with four known lines belonging to bmr 6 groups (IS 21888 bmr 3, N 592, N594, N 596) showed brown mid-rib trait indicating that both genotypes having similar alleles of that of bmr 6 group (Table 2). Similar reports on unknown mutants were made earlier using allelic tests and molecular marker based candidate gene study (Gupta et al., 1995a; Gorthy et al., 2013). The F₁s between IS 21549 and IS 23253 with bmr 2 and bmr 12 group genotypes showed normal mid-rib. Indicating that these both genotypes were non-allelic to bmr 2 and bmr 12.

The F₁s between IS 21549 and IS 23253 with IS 11861 showed normal mid-rib. Similarly, in the crosses made between IS 11861 and lines belonging to three known bmr allelic groups, i.e., bmr 2, bmr 6 and bmr 12, all the F₁s showed normal mid-rib, indicating that the allele in this mutant (IS 11861) is different from the known mutants used in this experiment. All these F₁ involving IS 11861 were further advanced to F₂ to study the segregation pattern of the brown-midrib allele. All the 19 F₂ populations developed between spontaneous unknown bmr lines (IS 1181, IS 21549 and IS 23253) and known bmr lines belonging to bmr 2, bmr 6 and bmr 12 groups showed segregation ratios of 3:1, 13:3, 49:15, 193:63, 195:61, 189:67, 45:19, 11:5 for normal midrib: brown-midrib showing good fit to 3:1 segregation ratio with few exceptions (Table 3). This data clearly suggested that brown midrib trait is controlled by a single gene and smaller population size in those F₂s, inheritance pattern sometimes show deviation from expected ratios due to or allelic interactions or possibility that some modifying genes affecting the expression of this trait. Earlier studies in sorghum (Sabalous et al., 2008; Gupta et al., 1995a) and pearl millet also reported the presence of interaction component and also non-consistency in the interaction ratio different crosses. It was also reported that non-consistency in the interaction ratio might be due to the fitness penalty of the genetic background of bmr trait (Sabalous et al., 2008). In a similar study, it was reported that these differences in inheritance pattern might be due to the presence of some modifying genes affecting the expression of this trait and this can be confirmed by an extended study using test crosses and progeny performance of F₁ populations (Gupta, 1995a).

Phloroglucinol staining helps in differentiating wild type alleles from brown midrib alleles. The bmr 6 ref mutant, a null allele of CAD2, shows intense wine-red color with Phloroglucinol staining (Sabalous et al., 2008). In our study involving bmr and white midrib control, clear differences in the intensity of the staining were observed among dissected midrib samples from the different bmr lines (Fig 1). The intensity of the color reaction depends on the abundance of hydroxyl cinnamaldehyde end groups and total lignin contents in this tissue. The staining is more intense in bmr than non-bmr genotypes (Fig 1). The midrib of IS 23253 and IS 21549 showed the highest intensity, with a dark wine red color followed by IS11861 (Fig 1). The dark red staining of midribs of lines IS 23253 and IS 21549 indirectly supports the presence of the bmr 6 allele which may be associated with reduced CAD2 activity, which needs to be validated.
Fig. 1: Dissected midribs from thenew *bmr* sources, IS 11861, IS 21549, IS 23253 along control (non- *bmr*) ICSV 93046 prior to the staining (top) and after staining in acid Phloroglucinol. *Bmr* mutants take more stain than control and staining pattern is same in mutants (IS 21549 and IS 23253) belonging to same group (*bmr* 6).

Table 1: Phenotypes of the F$_1$s generated between three unknown *bmr* lines and 10 lines belonging to known *bmr* groups, evaluated during the 2013 rainy seasons at ICRISAT-Patancheru

Allelic group	Genotype	Unknown *bmr* source	*bmr* 2 group	*bmr* 6 group	*bmr* 12 group
		IS 21549	IS 23253	IS 11861	
	IS 21549	x	bmr	N	N
Unknown *bmr* source	IS 23253	x	N	bmr	bmr
IS 11861	x	N	N	bmr	bmr
bmr 2 group		IS 21888	IS 592	IS 594	IS 596
	IS 21888	(bmr 3)	(bmr 6)		
	(bmr 6)	x	bmr	bmr	
bmr 6 group		N 592	x	bmr	bmr
	N 594	x	bmr		
	N 596	x	N	N	N
bmr 12 group		IS 21890	IS 593	IS 597	
	(bmr 7)	(bmr 12)			
	(bmr 12)	x	bmr	bmr	bmr
	N 593	x	bmr	bmr	
	N 597	x	bmr		
	Atlas *bmr* 12	x			
	IS 40602	x			

N-Normal/wild-type midrib, *'bmr'*-brown midrib
Table 2: Segregation for midrib color in F2 population of crosses between new bmr line IS 21549 and IS 23253 and the bmr lines belonging to bmr6 group

F2 population	No of Plants	
IS 21549 x IS 23253	0	190
IS 21549 x IS 21888	0	210
IS 21549 x N 592	0	186
IS 21549 x N 594	0	180
IS 21549 x N 596	0	204
IS 23253 x IS 21888	0	174
IS 23253 x N 592	0	192
IS 23253 x N 594	0	178
IS 23253 x N 596	0	193

Table 3: Midrib phenotypes of F2 population derived from crosses spontaneous unknown bmr genotype (IS 11861, IS 21549 and IS 23253) with known bmr lines belonging to bmr 2, bmr 6 and bmr 12 groups

| SN | Cross | Normal | Brown | Test | 3|1 | 13|3 | 49|15 | 193|63 | 195|63 | 189|67 | 45|19 | 11|5 |
|----|-------|--------|-------|------|
| 1 | IS 11861 x bmr 2 | 87 23 | Chi-square | P value | Sig | NS |
| 2 | IS 11861 x IS 21888 (bmr 3) (bmr 6) | 55 20 | Chi-square | P value | Sig | NS |
| 3 | IS 11861 x N 592 (bmr 6) | 70 20 | Chi-square | P value | Sig | NS |
| 4 | IS 11861 x N 594 (bmr 6) | 82 36 | Chi-square | P value | Sig | NS |
| 5 | IS 11861 x N 596 (bmr 6) | 115 38 | Chi-square | P value | Sig | NS |
| 6 | IS 11861 x IS 21890 (bmr 7) (bmr 12) | 67 38 | Chi-square | P value | Sig | NS |
| 7 | IS 11861 x N 593 | 98 36 | Chi-square | P value | Sig | NS |
| 8 | IS 11861 x Atlas bmr 12 | 118 35 | Chi-square | P value | Sig | NS |
| 9 | IS 11861 x IS 40602 | 102 40 | Chi-square | P value | Sig | NS |
| 10 | IS 21549 X Atlas bmr 12 (bmr12) | 80 27 | Chi-square | P value | Sig | NS |
| 11 | IS 21549 X IS 40602 (bmr12) | 118 40 | Chi-square | P value | Sig | NS |
| 12 | IS 21549 X IS 21890 (bmr 7) (bmr 12) | 91 29 | Chi-square | P value | Sig | NS |
| 13 | IS 21549 X N 593 (bmr12) | 90 29 | Chi-square | P value | Sig | NS |
| 14 | IS 23253 X Atlas bmr 12 (bmr12) | 140 57 | Chi-square | P value | Sig | NS |
| 15 | IS 23253 X IS 40602 (bmr12) | 116 36 | Chi-square | P value | Sig | NS |
| 16 | IS 23253 X IS 21890(bmr 7) (bmr 12) | 80 32 | Chi-square | P value | Sig | NS |
| 17 | IS 23253 X N 593 (bmr12) | 80 32 | Chi-square | P value | Sig | NS |
| 18 | IS 21549 X IS 11861 | 98 36 | Chi-square | P value | Sig | NS |
| 19 | IS 23253 X IS 11861 | 172 44 | Chi-square | P value | Sig | NS |

Notes:
- Significant at 1% level of significance, *significance at 5% level of significance; NS- Non significant

Copyright © May-June, 2020; IJPAB 225
CONCLUSION
In conclusion, based on the allelism tests, out of the three spontaneous bmr mutants, two bmr lines (IS 23253 and IS 21549) were found to be allelic to bmr 6 group. In the crosses involving the third line, IS 11861 and the bmr allelic groups (bmr 2, bmr 6 and bmr 12), all the F1 plants showed normal (white) midrib, indicating that this mutant (IS 11861) is different from all the known mutants used in this experiment. Brown midrib is controlled by a single gene but there is a strong possibility that some modifying genes may affect the expression of bmr trait.

Acknowledgments
We thank the funding support by the Department of Science and Technology (DST), Govt. of India vide Reference No: DST No: SR/WOS-A/LS-408/2012(G), New Delhi, India. Thanks are also due to CRP on Grain Legumes and Dryland Cereals for partial funding support to this research. We thank Dr. Aanad Kanatti and Sunita Gorthy for critical reading of the manuscript. We wish to dedicate this work to late Dr. Belum V. S. Reddy Principal Scientist, Sorghum Breeding, ICRISAT, for his professional guidance and valuable support.

REFERENCES
Bittinger, T. S., Cantrell, R. P., & Axtell, J. D. (1981). Allelism tests of the brown-midrib mutants of sorghum. Journal of Heredity 72, 147–148.
Bout, S., & Vermerris, W. (2003). A Candidate-gene approach to cloning the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase. Mol Gene Genomics 269, 205–214.
Cherney, J.H., Cherney, D.J.R., Akin, D.E., Axtel, J.D. (1991). Potential of brown-midrib, low-lignin mutants for improving forage quality. Advanc Agronomy 46, 157–198.
Gupta, S.C. (1995a). Allelic Relationships and Inheritance of Brown Midrib Trait in Sorghum. The Journal of Heredity 86(1), 72-74.
Gupta, SC. (1995b). Inheritance and Allelic Study of Brown Midrib Trait in Pearl Millet. The Journal of Heredity 86(4), 301-303.
Gorthy, S., Mayandi, K., Faldu, D., & Dalal, M. (2013). Molecular characterization of allelic variation in spontaneous brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench). Molecular Breeding 31, 795–803.
Kumar, A. A. (2013). Sharma, H. C., Sharma, R., Blummel, M., Reddy, P. S., & Reddy, B.V., Phenotyping in sorghum [Sorghum bicolor (L.) Moench]. In Phenotyping for plant breeding Springer 73,109 New York, NY.
Mathur, S., Umakanth, A. V., Tonapi, V. A., Sharma, R., & Sharma, M. K. (2017). Sweet sorghum as biofuel feedstock: recent advances and available resources. Biotechnology for biofuels 10(1), 146.
Oliver, A., Pedersen, J., Grant, R., & Klopfenstein, T. (2005). Comparative effect of the sorghum bmr-6 and bmr-12 genes I. Forage sorghum yield and quality. Crop Science 45, 2234–2239a.
Poovaiah, C. R., Nageswara-Rao, M., Soneji, J. R., Baxter, H. L., & Stewart, Jr, C. N. (2014). Altered lignin biosynthesis using biotechnology to improve lignocellulosic biofuel feedstocks. Plant biotechnology journal 12(9), 1163-1173.
Porter, KS., Axtell, JD., Lechtenberg, VL., Colenbrander, VF. (1978). Phenotype, fiber composition, and in vitro dry matter disappearance of chemically induced brown midrib (bmr) x mutants of sorghum. Crop Science 18, 205-208.
Sattler, S. E., Saballos, A., Xin, Z., Funnell-Harris, D. L., Vermerris, W., & Pedersen, J. F. (2014). Characterization of Novel Sorghum brown midrib Mutants from an EMS-Mutagenized Population. G3: Genes Genomes Genetics 4, 2115-2124.
Saballos, A., Vermerris, W., Rivera, L., & Ejeta, G. (2008). Allelic association, chemical characterization and saccharification properties of brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench). BioEnergy Res 1, 193–204.

Saballos, A., Sattler, S.E., Sanchez, E., Foster, T.P., Xin, Z., Kang, C.H., Pedersen, J.F. (2012). Vermerris, W., Brown midrib2 (bmr 2) encodes the major 4-coumarate: coenzyme A ligase involved in lignin biosynthesis in sorghum (Sorghum bicolor (L.) Moench). The Plant Journal 70, 818–830.

Srinivasa Rao, P., Rao, S.S., Seetarama, N., Umakanth, A.V., Sanjana Reddy, P., Reddy, B.V.S., & Gowda, C.L.L. (2009). Sweet sorghum for biofuel and strategies for its improvement. Information Bulletin No 77, International Crops Research Institute for the Semi-Arid Tropics, Patancheru 502324, Andhra Pradesh, India 80pp.

Vogler, R., Ejeta, G., Johnson, K., & Axtell, J.D. (1994). Characterization of a new brown midrib sorghum line. Agronomy abstracts Am Soc. Agron, Madison, p 124.

Xin, Z., Wang, M.L., Burow, G.B., & Burke, J.J. (2009). An induced sorghum mutant population suitable for bioenergy research. Bioenergy Res 2, 10–16.