Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Short Communication

Clinical and epidemiological features discriminating confirmed COVID-19 patients from SARS-CoV-2 negative patients at screening centres in Madagascar

Mihaja Raberahonaa,b,*, Rado Rakotomalalaa, Etienne Rakotomijoroa, Tokinandrianina Rahaingoaliderac, Christophe Elody Andrya, Natacha Mamilazaa, Lova Dany Ella Razafindrabekotod, Efrasie Rafanomezantsoaa, Volatiana Andriananjaa, Radonirina Lazasoa Andrianasoloa,b, Solonina Hélio Razafimahafad,e, Rivonirina Andry Rakotovirveloc,e,f,1, Mamy Jean de Dieu Randriaa,b,1

a University Hospital Joseph Raseta Befelatanana, Antananarivo, Madagascar
b Faculty of Medicine, University of Antananarivo, Antananarivo, Madagascar
c University Hospital Tambohobe, Fianarantsoa, Madagascar
d University Hospital Andranjato, Fianarantsoa, Madagascar
f Faculty of Medicine, University of Fianarantsoa, Fianarantsoa, Madagascar

A R T I C L E I N F O
Article history:
Received 16 September 2020
Received in revised form 10 November 2020
Accepted 12 November 2020

Keywords:
COVID-19
SARS-CoV-2
Clinical findings
Screening
Score
Prediction

A B S T R A C T
Early and fast detection of COVID-19 patients help limit the transmission and wide spread of the virus in the community and will have impact on mortality by reducing the incidence of infection among vulnerable people. Therefore, community-based screening is critical. We aimed to identify clinical signs and symptoms and epidemiological features that could help discriminate confirmed cases of COVID-19 from SARS-CoV-2 negative patients. We found that age (aOR:1.02, 95%CI:1.02–1.03, p < 0.001), symptoms onset between 3 and 14 days (aOR:1.35, 95%CI:1.09–1.68, p = 0.006), fever or history of fever (aOR:1.75, 95%CI:1.42–2.14, p < 0.001), cough (aOR:1.68, 95%CI:1.31–2.04), sore throat (aOR:0.65, 95%CI:0.49–0.85, p = 0.002), ageusia (aOR:2.24, 95%CI:1.42–3.54, p = 0.001), anosmia (aOR:6.04, 95%CI:4.19–8.69, p < 0.001), chest pain (aOR:0.63, 95%CI:0.47–0.85, p = 0.003), myalgia and/or arthralgia (aOR:1.64, 95%CI:1.31–2.04, p < 0.001), household cluster (aOR:1.49, 95%CI:1.17–1.91, p = 0.001) and evidence of confirmed cases in the neighbourhood (aOR:1.92, 95%CI:1.56–2.37, p < 0.001) could help discriminate COVID-19 patients from SARS-CoV-2 negative. A screening score derived from multivariate logistic regression was developed to assess the probability of COVID-19 in patients. We suggest that a patient with a score ≥14 should undergo SARS-CoV-2 PCR testing. A patient with a score ≥30 should be considered at high risk of COVID-19 and should undergo testing but also needs prompt isolation and contact tracing.

© 2020 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Prompt detection, contact tracing and quarantine of cases are estimated to be highly effective in controlling the transmission and reducing mortality from COVID-19 (Kretzschmar et al., 2020; Nussbaumer-Streit et al., 2020). Therefore, screening based on clinical features is critical at the community level especially in a context of local transmission of the virus. We aimed to assess whether some symptoms and a combination of several of them could help discriminate COVID-19 infections among patients visiting 2 screening centres.

We included in this analysis routinely collected data on patients visiting the screening centre at the Centre Hospitalier Universitaire Joseph Raseta Befelatanana (CHUJRB), Antananarivo, from May, 6 to July, 1 and on those visiting the screening centre at the Centre Hospitalier Universitaire Tambohobe (CHUT), Fianarantsoa, from July, 4 to August, 14. We excluded patients with unknown or inconclusive PCR results. We have also investigated whether the patient lives in a neighbourhood or an area where COVID-19 patients were previously confirmed (neighbourhood) and whether

* Corresponding author at: University Hospital Joseph Raseta Befelatanana, Antananarivo, Madagascar.
E-mail address: raberahona@gmail.com (M. Raberahona).
1 Equal contribution.
other people living in the same dwelling are symptomatic (household cluster).

We compared clinical and epidemiological features of confirmed cases with those with negative test for SARS-CoV-2 by univariate and multivariate analysis by logistic regression model. We used \(\beta \)-coefficient multiplied by 10 and rounded to the nearest multiple of 2 derived from the logistic regression model to generate a screening score to ascertain the probability of COVID-19 in patients aged \(\geq 15 \) years considering a combination of clinical signs and epidemiological features. The performance of the model was assessed by ROC curve. The sensitivity (Se), specificity (Sp), positive likelihood ratio (LR+) and negative likelihood ratio (LR−) were estimated for each cut-off. Statistical analysis was performed with Stata 14.0 (StataCorp, LP). We collected data on 3154 patients. Overall characteristics and comparison between patients with negative and positive PCR results among those symptomatic are detailed in Table 1. The screening score derived from the

\[
\text{Table 1} \\
\text{Comparision of clinical findings and epidemiological features between COVID-19 confirmed cases and SARS-CoV-2 negative patients.}
\]

Variables	Total n (%)	Negative n (%)	Positive n (%)	\(p \)-value*
Overall	n = 3154	n = 1866	n = 1288	
CHUJRB	2795	1680	1115	
CHUT	359	186	173	
Age in years (median, IQR)	34 (24–48)	32 (23–45)	38 (26–52)	<0.001
<15	262 (8.3)	197 (10.6)	65 (5.1)	<0.001
15–29	987 (31.3)	630 (33.8)	357 (27.7)	
30–44	928 (29.4)	564 (30.2)	364 (28.3)	
45–59	672 (21.3)	342 (18.3)	330 (25.6)	
\(\geq 60 \)	305 (9.7)	133 (7.1)	172 (13.4)	
Male	1579 (50.1)	953 (51.1)	626 (48.6)	0.173
Asymptomatic	876 (27.8)	728 (39)	148 (11.5)	<0.001
Symptomatic	2278 (72.2)	1138 (61)	1140 (88.5)	
Self-reported contact with identified confirmed cases	778 (76)	521 (73.8)	257 (80.8)	0.015
Symptomatic (n = 2278)				
Male	1107 (48.6)	560 (49.2)	547 (48)	0.558
Age in years (median, IQR)	36 (25–50)	31 (23–45)	39 (27–53)	<0.001
Symptoms onset (days) (median, IQR) (n = 2118)	4 (2–7)	4 (2–7)	5 (3–7)	0.018
Symptoms onset between 3 and 14 days	1396 (65.9)	596 (58.4)	800 (72.9)	<0.001
Fever or history of fever	1238 (54.6)	543 (47.7)	695 (61)	<0.001
Cough	1545 (67.8)	719 (63.2)	826 (72.5)	<0.001
Haemoptysis	42 (1.8)	26 (2.3)	16 (1.4)	0.123
Sore throat	377 (16.5)	215 (18.9)	162 (14.2)	0.003
Rhinorrhea	777 (34.1)	377 (33.1)	400 (35.1)	0.324
Otitis	22 (1)	15 (1.3)	7 (0.6)	0.091
Ageusia	223 (9.8)	38 (3.3)	185 (16.2)	<0.001
Anosmia	374 (16.4)	63 (5.5)	311 (27.3)	<0.001
Nasal obstruction	76 (3.3)	42 (3.7)	34 (3)	0.347
Abdominal pain	58 (2.5)	26 (2.3)	32 (2.8)	0.429
Wheezing	39 (1.7)	29 (2.5)	10 (0.9)	0.002
Chest pain	296 (13)	178 (15.6)	118 (10.4)	<0.001
Myalgia/Arthralgia	638 (20.2)	240 (12.9)	398 (30.9)	<0.001
Malaise/Fatigue	706 (31)	303 (26.6)	403 (35.4)	<0.001
Dyspnnea	456 (20)	257 (22.6)	199 (17.5)	0.002
Headache	634 (27.8)	276 (24.3)	358 (31.4)	<0.001
Nausea/vomiting	107 (4.7)	54 (4.8)	53 (4.7)	0.914
Diarrhoea	110 (4.8)	49 (4.3)	61 (5.4)	0.245
Signs of pneumonia	316 (13.9)	150 (13.2)	166 (14.6)	0.341
Acute respiratory distress	68 (3)	38 (3.3)	30 (2.6)	0.321
Self-reported contact with confirmed cases	379 (76.7)	212 (76.3)	167 (77.3)	0.783
Household cluster	529 (23.2)	226 (19.9)	303 (26.6)	<0.001
Neighbourhood	1429 (62.7)	615 (54)	814 (71.4)	<0.001
Concurrent conditions	512 (22.5)	256 (22.5)	256 (22.5)	0.982

* \(\chi^2 \) test or Fischer’s exact test for categorical variables, Wilcoxon-Mann-Whitney test for continuous variables.
in addition to clinical findings are efficient to assess the probability of COVID-19 (Sun et al., 2020). However, availability, access and affordability of blood tests limit their use in resource-limited settings. A trade-off between sensitivity and specificity is challenging when considering screening tool for suspected cases. Nevertheless, a more sensitive tool is often needed and preferred in an ongoing outbreak. A recent systematic review of signs and symptoms in COVID-19 showed low sensitivity of these signs when taken separately (Struyf et al., 2020). A recent study in Somalia showed that the current WHO case definition for COVID-19 had only 32.7% (95%CI: 20–48) sensitivity that could be slightly improved when integrating anosmia in the case definition (Ahmed et al., 2020). Anosmia and ageusia are highly specific of COVID-19 and have the highest scores in the model even if they were present in only 27.3% and 16.2% of patients (La Torre et al., 2020; Liou et al., 2020). Surprisingly, dyspnoea was not associated with positive SARS-CoV-2 test and was associated with negative test in univariate analysis. Similarly, self-reported contact with a confirmed case did not help discriminate SARS-CoV-2 positive patients. Patients may have exaggerated when reporting symptoms like dyspnoea and other subjective signs or contact with confirmed cases because of panic and fear. The same situation was observed during a previous outbreak in Madagascar (Salam et al., 2020). In addition, an epidemiological link is difficult to identify when community transmission occurs. More objective signs like respiratory rate or measure of Sp02 by simple pulse oximetry that may be helpful in detecting silent hypoxia in COVID-19 were more reliable (Dhont et al., 2020; Jouffroy et al., 2020).

It is also anticipated that considering neighbourhood as a criterion for screening will be less relevant as the epidemic progresses in the community.

This study had several limitations. We could not assess other types of cluster that may be relevant like occupational clusters. Using level of transmission for each neighbourhood or area by considering attack rate would have been more accurate. Finally, a prospective external validation of the score is needed.

A screening score based on combination of clinical and epidemiological features could help front-line healthcare workers classify patients according to their probability of COVID-19.

Ethical approval

The ethics approval was waived as the study was based on routinely collected data and notification forms (letter N°144/MSANP/CERBM).

Acknowledgments

The authors would like to thank the Ministry of Public Health and the medical staff that has been involved in the screening of COVID-19 patients at the Centre Hospitalier Universitaire Joseph Rasaet Befelatanana, Antananarivo, the Centre Hospitalier Universitaire Tambohobe, Fianarantsoa, and the Centre Hospitalier Universitaire Andrainjarto. We also thank the laboratories that have performed PCR for SARS-CoV-2 (Centre d’Infectiologie Charles Mérieux Antananarivo, Laboratoire d’Analyse Médicale Malagasy, Institut Pasteur de Madagascar, Centre Hospitalier Universitaire Joseph Ravoahangy Andrianavalona).

References

Ahmed MAM, Colebunders R, Siewe Fodjo JN. Evidence for significant COVID-19 community transmission in Somalia using a clinical case definition. Int J Infect Dis 2020;98:206–7, doi:http://dx.doi.org/10.1016/j.ijid.2020.06.068, Dhont S, Derom E, Van Braeckel E, Depuydt P, Lambrecht BN. The pathophysiology of “happy” hypoxemia in COVID-19. Respir Res 2020;21:198, doi:http://dx.doi.org/10.1186/s12931-020-01462-5. Jouffroy R, Jost D, Prunet B. Prehospital pulse oximetry: a red flag for early detection of silent hypoxemia in COVID-19 patients. Crit Care 2020;24:313, doi:http://dx.doi.org/10.1186/s13054-020-03036-9.

Kretzschmar ME, Rozhchova G, Bootma MCJ, van Boven M, van de Wijgert JHM, Bonten MMJ. Impact of delays on effectiveness of contact tracing strategies for COVID-19: a modelling study. Lancet Public Health 2020;5:e452–9, doi:http://dx.doi.org/10.1016/S2468-2667(20)30157-2.

La Torre G, Massetti AP, Antonelli G, Fimiani C, Fantini M, Marte M, et al. Anosmia and ageusia as predictive signs of COVID-19 in healthcare workers in Italy: a prospective case-control study. J Clin Med 2020;9, doi:http://dx.doi.org/10.3390/jcm9092870.

Liou JM, Chen MJ, Hong T-C, Wu M-S. Alteration of taste or smell as a predictor of COVID-19. Gut 2020; doi:http://dx.doi.org/10.1136/gutjnl-2020-322125.

Nussbaum-Striet B, May V, Dobruscu AI, Chapman A, Persad E, Klerings I, et al. Quarantine alone or in combination with other public health measures to control COVID-19: a rapid review. Cochrane Database Syst Rev 2020;4, doi:http://dx.doi.org/10.1002/14651858.CD013574.DC013574.

Salam AP, Raberahona M, Andriantsalama P, Read L, Andrianantsoa E, Razafinambinatoa T, et al. Factors influencing atypical clinical presentations during the 2017 Madagascar pneumonic plague outbreak: a prospective cohort study. Am J Trop Med Hyg 2020;102:1392–15, doi:http://dx.doi.org/10.4269/ajtmh.19-0576.

Struyf T, Deeks JJ, Dinnes J, Takedwong Y, Davenport C, Leeflang MM, et al. Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19 disease. Cochrane Database Syst Rev 2020;7, doi:http://dx.doi.org/10.1002/14651858.CD013665.CD013665.

Sun Y, Koh V, Marimuthu K, Ng OT, Young B, Vasoo S, et al. Epidemiological and clinical predictors of COVID-19. Clin Infect Dis 2020;71:786–92, doi:http://dx.doi.org/10.1093/cid/ciaa322.