Lifetime and fragment correlations for the two-neutron decay of 26O ground state

L.V. Grigorenko,1,2,3 I.G. Mukha,2 and M.V. Zhukov4

1Flerov Laboratory of Nuclear Reactions, JINR, Dubna, RU-141980 Russia
2GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt, Germany
3National Research Center “Kurchatov Institute”, Kurchatov sq. 1, RU-123182 Moscow, Russia
4Fundamental Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden

The structure and decay of 26O are investigated in a three-body 24O+n+n model suitable for studies of the long-lived (including radioactivity timescale) states. We have found extremely strong effect of the subbarrier configuration mixing on the decay width of true $2n$ emitters due to core recoil and neutron-neutron final state interaction. This effect is far exceeding analogous effect in the true $2p$ emitters. Our calculations provide reasonably narrow boundaries for the lifetime vs. decay energy dependence for the true $2n$ emission. An upper limit of ~ 1 keV for the decay energy of the unbound 26O is inferred based on the recent experimental lifetime value.

PACS numbers: 21.60.Gx, 21.10.Tg, 21.45.+v, 23.90.+w

\section{I. INTRODUCTION}

True few-body decay is an exclusive quantum mechanical phenomenon comprising simultaneous emission of several particles. Such a phenomenon leads to unusual lifetime systematics and complex correlation patterns for decay fragments. The term “true” related to a few-body decay should emphasize that the sequential emission of particles is prohibited by specific energy conditions. These conditions appear to be widespread beyond the nuclear driplines. Two-proton ($2p$) radioactivity \cite{1} and “democratic decay” \cite{2} are the best-known specific examples of a broader true few-body decay phenomenon which were under scrutinous investigation in the last decade \cite{3}. Nowadays, the studies of the neutron-rich systems beyond the neutron dripline are very active. Recently there is an outburst of experimental results concerning the light true two-neutron ($2n$) emitters: 10He \cite{4,5}, 13Li \cite{6,7}, 16Be \cite{8}, and 26O \cite{9,10,11,12}.

The possibility of the very long-lived (radioactive) neutron emitters was considered in our work \cite{13}. These studies were performed using semianalytical model based on the simplified Hamiltonians which allow the separation of degrees of freedom. The true four-neutron emission was found to be the most prospective phenomenon for an experimental search. However, broad boundaries were also established in the “lifetime vs. decay energy” plane for existence of radioactive true $2n$ emitters. In particular it was done for the 26O system, information on which was absent at that moment, as one of the candidates to be true $2n$ emitter. Since that time, the upper limits were found experimentally for the decay energy of 26O: $E_T = 150^{+50}_{-150}$ keV \cite{11} and $E_T < 120$ keV \cite{12}. For known 25O ground state decay energy of 770^{+10}_{-20} keV \cite{15}, the 26O is now clearly ascribed to be a true $2n$ emitter, see Fig. 1(a). The comprehensive overview of experimental and theoretical studies dedicated to 26O can be found in Ref. \cite{16}.

Recently the halflife time of 26O was reported to be within the radioactivity timescale: $T^1_{1/2} = 4.5^{+1.1}_{-0.5}(\text{stat})\pm 3(\text{sys})$ ps \cite{13}. Taking into account experimental complexities and novelty of the method the authors express cautious optimism about possibility of two-neutron radioactivity observation in their work. Prospects of the discovery of this new type of the radioactive decay call for further focused experimental search and deeper theoretical insight, providing the guideline for such a search. This inspired us to perform more detailed studies of the long-lived true $2n$ emitters by example of the 26O system. Our work unveils complicated configuration mixing under the angular momentum barriers which should be accounted in calculations of true $2n$ emitter’s widths. The important peculiarity of such a decay mechanism for 26O with a $[d^2]_{L=0}$ initial configuration, the subbarrier configuration mixing boosts the penetration drastically (right scheme).

\section{II. THEORETICAL MODEL}

In studies of long-lived true $2n$ emitters we use the three-body hyperspherical harmonics (HH) cluster model developed for studies of $2p$ radioactivity \cite{17}. The model demonstrated applicability and high precision for broad
range of decay energies, masses, and structures of $2p$ pre-cursors [3, 18]. In this approach the following sequence of problems is solved:

$$\hat{H}_3 - E_T \Psi_{\text{box}} = 0, \quad (1)$$
$$\hat{H}_3 - E_T \Psi^{(+)} = -i(\Gamma_{\text{arb}}/2)\Psi_{\text{box}}, \quad (2)$$
$$\Gamma = j/N, \quad (3)$$

where \hat{H}_3 is three-body Hamiltonian for 24O cluster and two neutrons. The eigenenergy E_T and corresponding eigenfunction Ψ_{box} are found as a solution of the homogeneous Schrödinger equation (1) with some “box” boundary conditions; next, the wave function (WF) $\Psi^{(+)}$ with a pure outgoing three-body asymptotic is found by solving the inhomogeneous Schrödinger equation (2) with an arbitrary value of the width Γ_{arb}; finally, the actual width Γ is defined in (3) via the outgoing flux j and internal normalization N connected with WF $\Psi^{(+)}$. The width values obtained in model calculations are shown in Figure 2.

III. THREE-BODY CORRELATIONS

The three-body calculations in the HH method utilize the collective coordinates: the hyperradius ρ (describing collective radial motion) and the hyperangle θ_ρ (responsible for geometry of the system at given ρ):

$$x = \sqrt{\frac{A_1 A_2}{A_1 + A_2}}(r_1 - r_2),$$
$$y = \sqrt{(\frac{A_1 + A_2}{A_1 + A_2 + A_3})\left(\frac{4A_1 r_1 + 4A_2 r_2}{A_1 + A_2} - r_3\right)},$$
$$\rho = \sqrt{x^2 + y^2}, \quad \theta_\rho = \arctan(x/y).$$

The boundary conditions of the HH method for the three-body decays without Coulomb interactions are well known. However, several effects, including the large scattering length in the $n-n$ channel, lead to slow radial and basis convergence of the calculations. The hyperradii up to 2000 fm are used depending on the decay energy. Some examples of the basis convergence are given in Figure 3.

In the momentum space the three-body energy-angular correlations (which actually can be measured, see [3]) are defined by the energy distribution parameter ε and the angle θ_k between Jacobi momenta k_x and k_y (conjugated to Jacobi radii x and y):

$$E_x = \frac{A_1 + A_2}{2A_1 A_2 M} k_x^2, \quad E_y = \frac{A_1 + A_2 + A_3}{2A_1 A_2 A_3 M} k_y^2,$$
$$\varepsilon = \frac{E_x}{E_x + E_y}, \quad \cos(\theta_k) = \frac{(k_x, k_y)}{k_x k_y},$$

where M is an average nucleon mass. For systems consisting of two nucleons and “core” these correlations could be defined in two Jacobi systems: “T” (particle 3 is the core) and “Y” (particle 3 is one of the nucleons). Coordinate and momentum space correlations for several cases of 26O calculations are given in Figure 4.

IV. POTENTIALS

Taking into account the limited information on 24O-n subsystem and exploratory character of our current studies, we use simplified potential sets. The $n-n$ potential, acting only in s-wave, is taken in the Gaussian form $V(r) = V_0 \exp[-(r/r_0)^2]$, $V_0 = -31$ MeV, $r_0 = 1.8$ fm [19]. For the 24O-n channel we use a Woods-Saxon potential depending on the angular momentum. The only available data on 25O spectrum [15] allows to identify the ground state energy of 770^{+10}_{-20} keV and the width of 172 ± 30 keV which reliably indicates a d-wave state. Therefore, for the d-wave in the 24O-n channel we use the potential with depth $V_d = -35.5$ MeV, radius $r_0 = 3.5$ fm, and diffuseness $a = 0.75$ fm, which well reproduces the experimental properties of the resonance. The potential parameters for s- and p-waves used in different model calculations are given in Table I. The ls forces are not used in our calculations. Their effect on the decay width is expected at the level of ten(s) of percent (which is much smaller than other effects found in this paper). Moreover, in the absence of the detailed experimental information on the 25O level scheme, the use of ls forces may just add an uncontrollable uncertainty to the calculations. The three-body potential depending on ρ with the typical Woods-Saxon parameterization [3] is used to control the decay energy E_T in the systematic lifetime calculations.

V. CALCULATIONS WITHOUT n-n FINAL STATE INTERACTION (FSI)

The structure of 26O is expected to be dominated by the [d^2] configuration. If the decay proceeds also via the [d^2] configuration then the three-body model should provide the decay widths which have to be very close to the [d^2] estimate results from [14]. To reproduce formal conditions of this estimate in the three-body model, two actions are required: (i) the $n-n$ potential should be put to zero and (ii) the core mass should be infinite (actually the mass number ~ 100 is a sufficient approximation). One can see in Fig. 2 that such three-body calculations (the solid curve) are very close to the generic [d^2] estimate, well following the energy trend $\Gamma \sim E^0_T$ expected for the [d^2]$_0$ decay.

The correlation patterns for this case are given in Fig. 4(a). One can see that the “triple-ridge” correlation connected with [d^2]$_0$ coupling in the internal region survives to the asymptotics producing very symmetric “triple-peak” correlation in the energy distribution between neutrons in the Jacobi “T” system.

VI. THE RECOIL EFFECT

The surprise comes when the core recoil is treated correctly with the right mass of the 24O fragment used in
FIG. 2. (Color online) Width (half-life time) of 26O as a function of its decay energy in different model calculations. Gray curves show the estimates of Ref. [14] for decay via pure orbital $[l^2]$ configurations coupled to the total angular momentum $L = 0$. Solid curve shows the “no FSI, no recoil” case, dashed curve corresponds to “no FSI” situation. Dotted curve shows the results with $n-n$ FSI scaled by factor 0.25. Dash-dotted and dash-double-dotted curves correspond to “strong repulsion” and “moderate repulsion” in s- and p-waves in 25O, while short-dash curve shows the case with “no repulsion in p-wave”. Hatched areas give the experimental limits from Refs. [11, 13] and the realistic theoretical limits from this work.

FIG. 3. Convergence of a width Γ as a function of generalized (hyperspherical) angular momentum K. Shown for the “moderate repulsion” case. Solid and dashed curves show calculations with $E_T = 150$ and $E_T = 1.5$ keV. For calculations above $K = 20$ the hyperspherical channels are taken into account adiabatically.

The “no FSI” calculations. The accounting for the recoil results in several orders of magnitude larger widths (the dashed curve in Fig. 2). The slope of the curve also evolves with the decay energy E_T. At the highest energy it is parallel to the $[d^2]_0$ curve from [14]. With energy decrease it changes first to $[p^2]$ then to s-wave slope at very small E_T. This indicates that the core recoil leads to configuration mixing allowing the WF to “migrate” into partial wave configurations with lower centrifugal barriers thus boosting the penetration, see Fig. 1(b).

Partial wave analysis and also the analysis of correlations confirm this idea. One can see in Fig. 3(b) that the triple-ridge $[d^2]_0$ internal configuration is smearing out with radius increase and at about $\rho = 150$ fm it is replaced with a double-ridge configuration typical for a p-wave dominance. On asymptotics, this is reflected by a double-peak energy correlation between neutrons.

VII. EFFECT OF THE n-n FSI

This effect is found to be much stronger in the case of true $2n$ decay of 26O than it was typically observed in the case of the $2p$ radioactivity (true $2p$ decay). For illustration how this mechanism is engaged we performed the “$1/4 n-n$ FSI” calculation with the $n-n$ potential multiplied by the 0.25 factor. Though giving only 4 times

Case	V_s	V_p	r_0	a
“$1/4 n-n$ FSI”, “Moderate repulsion”	70	70	3.5	0.75
“no FSI”, “Strong repulsion”	120	120	5	1.2
“No repulsion in p-wave”	70	0	3.5	0.75

TABLE I. Parameters of the Woods-Saxon potential in 24O-n channel for different model cases. Radial parameters are in fm and V_l are in MeV.
FIG. 4. (Color online) Correlations in ^{26}O in different models: (a) “no FSI, no recoil”, (b) “no FSI”, (c) “1/4 n-n FSI” (d) “moderate repulsion”. Each row at two left panels shows the coordinate space correlation density for ^{26}O WF $\Psi^{(+)}$ on two different scales. Two right panels show the energy and angular (momentum space) correlations in “T” and “Y” Jacobi systems. All cases are calculated with $E_T = 75$ keV.

larger width than the “no FSI” calculation at $E_T = 150$ keV, this model at smaller decay energies rapidly sticks to the $[s^2]_0$ systematics providing dramatically larger widths. The triple-ridge correlation in the coordinate space pattern is now dissolved at much smaller radii [$\rho \sim 50$ fm, see Fig. 4(c)], compared to the “no FSI” case. The energy correlation here shows one strongly asymmetric peak indicating the $[s^2]/[p^2]$ configuration mixing, which is consistent with the trend of the $[s^2]$ systematics.

The full n-n FSI provides further drastic increase of the width (the dash-double-dotted curve in Fig. 2). The energy dependence is now completely following the $[s^2]$ trend. The coordinate correlation patterns indicate very fast (just above $\rho \sim 30$ fm) transition from the $[d^2]$ to the $[s^2]$ configuration, see Fig. 4(d). The energy correlation between neutrons is now only slightly asymmetric indicating a dominance of the $[s^2]$ configuration at the asymptotics already at $E_T = 75$ keV.

VIII. EFFECT OF THE OCCUPIED ORBITALS

In our model we use the repulsion in s- and p-waves as a simple method to account for the effect of the occupied orbitals in ^{24}O in the absence of the experimental information about these interactions. To understand the importance of this aspect of the ^{25}O-n interaction for the ^{26}O lifetime, we have performed calculations with very strong repulsive interactions in the s- and p-waves (the “strong repulsion” case) and without any nuclear interaction in the p-wave (the “no repulsion in p-wave” case). The widths in these calculations are differen by a factor of 50 (see Fig. 2), while the lifetime energy systematics and correlations patterns are not varying on a significant level. We may consider the band between the latter two cases as the realistic prediction range defined by the uncertainty of this aspect of our model. It should also be noted that the attractive s-wave interaction may further increase the provided widths. However, at the moment
there is no evidence for such a possibility in the available experimental data.

IX. DISCUSSION

Absence of Coulomb interaction in the case of long-lived 2n emitters, compared to the 2p case, does not simplify, but makes the problem more complex in the sense of the sensitivity to several not well studied aspects of few-body dynamics. Nevertheless, we establish much narrower boundaries for the 26O lifetime value thus providing the conservative upper limit of ~ 1 keV for the decay energy (assuming the lifetime from [13]).

If the experimental 26O lifetime reported in Ref. [13] is confirmed, the theoretically derived decay energy is very small in the nuclear scale: the energy of 26O practically coincides with the $2n$ threshold. Small separation energy of nucleon(s) is prerequisite for formation of halo structures. Formally, the radius of the decaying system (negative separation energy) is infinite. Practically, for systems with radioactive lifetimes, the radial characteristics are reliably saturated for integration in the subbarrier region and we can investigate long-lived 26O in terms of halo structure. In our calculations we have found values around 5.7 fm for the “valence” neutron rms radius in 26O. Such values are typical for 11Li which possesses the most extreme 2n halo known so far. The huge halo of 11Li is connected mainly with the important [s2] component of the WF. In 26O the analogous radial properties are predicted due to rise of the [d2] component on the asymptotics, despite the [d2] component strongly dominates in the nuclear interior. The possible halo structure of the heavy oxygen isotopes was discussed in Ref. [20], where 26O was predicted to be bound. Interesting to note that the maximum radial extent of the valence neutron configuration (around 4.4 fm) predicted in this work is much smaller compared to our results, which are based on a very careful treatment of the asymptotic part of the WF.

The decay energy of less than 1 keV expected from experimental lifetime underlines the importance of special experimental techniques aimed at such phenomena. The direct measurement of the 26O decay energy can provide an important cross check for possible discovery of the 2n radioactivity in 12O. However, such small decay energies are not accessible for existing experimental setups: what we know so far is just the fact that 26O decays via 2n emission with intractably small decay energy. A method, based on the precision measurements of neutron angular correlations in reactions with relativistic secondary beams, could overcome this problem. This method was proposed in Ref. [14] for future searches of 2n and 4n radioactivities and it is naturally suited for extreme low decay energies. Conceptually analogous method for decays with proton emission was found to be very robust [21].

X. CONCLUSIONS

The detailed studies of possible long-lived (radioactive) true 2n emitters are performed for the first time by example of the 26O system. The following main results should be emphasized.

(i) The fine few-body effects play extremely important role in the decay dynamics of the true 2n emitters. The sensitivity of decay width to (a) configuration mixing due to core recoil, (b) subbarrier configuration mixing caused by n-n FSI, and (c) occupied orbitals effects far exceeds the corresponding effects in true 2p decays. Unexpectedly, the lifetime systematics of 26O with [d2] internal structure sticks to the typical [s2] behavior due to configuration mixing, see Fig. 1(b). Studies of the correlation patterns provide deep insights in the 2n decay dynamics.

(ii) The performed theoretical calculations give much narrower limits for the lifetime vs. decay energy dependence of true 2n decay of s-d shell nuclei than those found in Ref. [14]. These narrower limits also provide much more stringent limits on the decay energies at which the 2n radioactivity may be found.

(iii) We discuss the recently published evidence for a 2n radioactivity of 26O (its lifetime is reported to be in a picosecond range). Being confirmed such a lifetime leads to extremely low decay energy of 26O (below ~ 1 keV) and calls for special experimental techniques for further studies of this phenomenon.

Acknowledgments. — L.V.G. is supported by the Helmholtz Association under grant agreement IK-RU-002 via FAIR-Russia Research Center and by Russian Foundation for Basic Research 11-02-00657-a and Ministry of Education and Science NS-215.2012.2 grants.

[1] V.I. Goldansky, Nucl. Phys. 19, 482 (1960).
[2] O.V. Bochkarev et al., Nucl. Phys. A505 215, (1989).
[3] M. Pfützer, L.V. Grigorenko, M. Karny, R. Riisager Rev. Mod. Phys. 84, 567 (2012).
[4] M.S. Golovkov et al., Phys. Lett. B 672, 22 (2009).
[5] H.T. Johansson et al., Nucl. Phys. A842, 15 (2010).
[6] S.I. Sidorchuk et al., Phys. Rev. Lett. 108, 202502 (2012).
[7] Z. Kohley et al., Phys. Rev. Lett. 109, 232501 (2012).
[8] Yu. Aksyutina et al., Phys. Lett. B 666, 430 (2008).
[9] Z. Kohley et al., Phys. Rev. C 87, 011304(R) (2013).
[10] A. Sproul et al., Phys. Rev. Lett. 108, 102501 (2012).
[11] E. Lunderberg et al., Phys. Rev. Lett. 108, 142503 (2012).
[12] C. Caesar et al., arXiv:1209.0156
[13] Z. Kohley et al., Phys. Rev. Lett. 110, 152501 (2013).
[14] L.V. Grigorenko, I.G. Mukha, C. Scheidenberger, M.V. Zhukov, Phys. Rev. C 84, 021303(R) (2011).
[15] C.R. Hoffman et al., Phys. Rev. Lett. 100, 152502 (2008).
[16] M. Thoennessen et al., arXiv:1211.2178.
[17] L.V. Grigorenko, R.C. Johnson, I.G. Mukha, I.J. Thompson, and M.V. Zhukov, Phys. Rev. Lett. 85, 22 (2000).
[18] I.A. Egorova et al., Phys. Rev. Lett. 109, 202502 (2012).
[19] G.E. Brown and A.D. Jackson, The Nucleon-Nucleon Interaction (North Holland, Amsterdam, 1976).
[20] Z. Ren, W. Mittig, B. Chen, and Z. Ma, Phys. Rev. Lett. 52, R20 (1995).
[21] I. Mukha et al., Phys. Rev. Lett. 99, 182501 (2007).