A note on shortest circuit cover of 3-edge colorable cubic signed graphs

Ronggui Xua, Jiaao Lib Xinmin Houa,c
aSchool of Mathematical Sciences
University of Science and Technology of China, Hefei, Anhui 230026, China.
bSchool of Mathematical Sciences
Nankai University, Tianjin 300071, China
cCAS Key Laboratory of Wu Wen-Tsun Mathematics
University of Science and Technology of China, Hefei, Anhui 230026, China.

Abstract

A sign-circuit cover \mathcal{F} of a signed graph (G, σ) is a family of sign-circuits which covers all edges of (G, σ). The shortest sign-circuit cover problem was initiated by Mácajová, Raspaud, Rollová, and Škoviera (JGT 2016) and received many attentions in recent years. In this paper, we show that every flow-admissible 3-edge colorable cubic signed graph (G, σ) has a sign-circuit cover with length at most $\frac{20}{9}|E(G)|$.

1 Introduction

In this paper, graphs may have parallel edges and loops. A circuit is a connected 2-regular graph. A graph is even if every vertex has even degree, and an Eulerian graph is a connected even graph. A circuit cover \mathcal{C} of a graph is a family of circuits which covers all edges of G. We call \mathcal{C} a circuit k-cover of G if \mathcal{C} covers every edge of G exactly k times. The length of a circuit cover \mathcal{C} is defined as $\ell(\mathcal{C}) = \sum_{C \in \mathcal{C}} |E(C)|$. Determining the shortest length of a circuit cover of a graph G (denoted by $scc(G) = \min \{ \ell(\mathcal{C}) : \mathcal{C}$ is a circuit cover$\}$) is a classic optimization problem initiated by Itai, Lipton, Papadimitriou, and Rodeh [8]. Thomassen [9] showed that it is NP-complete to determine whether a bridgeless graph has a circuit cover with length at most k for a given integer k. A well-known conjecture, the Shortest Circuit Cover Conjecture, was proposed by Alon and Tarsi [1] as follows.

Conjecture 1.1 (Shortest Circuit Cover Conjecture). For any 2-edge-connected graph G, $scc(G) \leq \frac{7}{5}|E(G)|$.

*The work was supported by NNSF of China (No. 12071453) and Anhui Initiative in Quantum Information Technologies (AHY150200) and the National Key R and D Program of China(2020YFA0713100).
The upper bound is achieved by the Petersen graph. Jamshyi and Tarsi [10] proved that Conjecture 1.1 implies the well-known Cycle Double Cover Conjecture proposed by Seymour [11] and Szekeres [12]. The best known general result about Conjecture 1.1 is obtained by Bermond, Jackson, Jaeger [13] and Alon, Tarsi [1], independently.

Theorem 1.2 (Bermond, Jackson and Jaeger [13], Alon and Tarsi [1]). Let G be a 2-edge-connected graph. Then $scc(G) \leq \frac{5}{3}|E(G)|$.

Several improvements of this upper bound for cubic graphs G have been made in literature. Specifically, Jackson [19] showed that $scc(G) \leq \frac{64}{39}|E(G)|$ and Fan [16] later showed that $scc(G) \leq \frac{44}{27}|E(G)|$ and Hou and Zhang [4] proved that $scc(G) \leq \frac{34}{21}|E(G)|$ if G has girth at least 7 and $scc(G) \leq \frac{8}{5}|E(G)|$ if all 5-circuits of G are disjoint. Recently, Lukotka [14] showed that $scc(G) \leq \frac{212}{135}|E(G)|$ for all 2-edge-connected cubic graphs G.

A signed graph (G, σ) is a graph G associated with a mapping $\sigma : E(G) \to \{+1, -1\}$. An edge $e \in E(G)$ is positive if $\sigma(e) = 1$ and negative if $\sigma(e) = -1$. A signed graph G is called positive if G contains even number of negative edges and otherwise called negative. In a signed graph, a circuit with an even number of negative edges is called a balanced circuit, and otherwise we call it an unbalanced circuit. A barbell is a signed graph consisting of two unbalanced circuits joined by a (possibly trivial) path, intersecting with the circuits only at ends. If the path in a barbell is trivial, the barbell is called a short barbell; otherwise, it is a long barbell. A balanced circuit or a barbell is called a sign-circuit of a signed graph. A sign-circuit cover \mathcal{F} of a signed graph is a family of sign-circuits which covers all edges of (G, σ). In fact, it is well-known that a signed graph has a sign-circuit cover if and only if each edge lies in a sign-circuit, which is equivalent to the fact that the signed graph admits a nowhere-zero integer flow, so-called, flow-admissible. (Readers may refer to [2] for details). The shortest length of a sign-circuit cover of a signed graph (G, σ) is also denoted by $scc(G)$. The shortest sign-circuit cover problem was initiated by Mácajová, Raspaud, Rollová, and Škoviera [5] and received many attentions in recent years. It is a major open problem for the optimal upper bound of shortest sign-circuit cover in signed graphs.

Problem 1.3. What is the optimal constant c such that $scc(G) \leq c \cdot |E(G)|$ for every flow-admissible signed graph (G, σ)?

As remarked in [5], the signed Petersen graph (P, σ) whose negative edges induce a circuit of length five has $scc(P) = \frac{5}{3}|E(P)|$, which indicates $c \geq \frac{5}{3}$. We list some of known results related to Problem 1.3.

1. $c \leq 11$ by Mácajová, Raspaud, Rollová, and Škoviera [5].
2. $c \leq \frac{14}{3}$ by Lu, Cheng, Luo, and Zhang [15].
3. $c \leq \frac{25}{6}$ by Chen and Fan [17].
For any flow-admissible 2-edge-connected cubic signed graph \((G, \sigma)\), Wu and Ye \cite{wu2011} obtained a better upper bound that \(scc(G) \leq \frac{26}{9} |E(G)|\). In this article, we focus on the shortest sign-circuit cover of 3-edge colorable cubic signed graphs and prove the following theorem.

Theorem 1.4. Every flow-admissible 3-edge colorable cubic signed graph \((G, \sigma)\) has a sign-circuit cover with length at most \(\frac{20}{9} |E(G)|\).

An equivalent version of the Four-Color Theorem states that every 2-edge-connected cubic planar graph is 3-edge colorable. So we have the following corollary.

Corollary 1.5. Every flow-admissible 2-edge-connected cubic planar signed graph \((G, \sigma)\) has a sign-circuit cover with length at most \(\frac{20}{9} |E(G)|\).

Now we introduce more notation and terminologies used in the following sections. Let \(G\) be a graph and \(T \subseteq V(G)\) with \(|T| \equiv 0 \pmod{2}\). A \(T\)-join \(J\) of \(G\) with respect to \(T\) is a subset of edges of \(G\) such that \(d_J(v) \equiv 1 \pmod{2}\) if and only if \(v \in T\), where \(d_J(v)\) denotes the degree of \(v\) in the edge-induced subgraph \(G[J]\). A \(T\)-join is minimum if it has minimum number of edges among all \(T\)-joins. Let \(G'\) be the graph obtained from a graph \(G\) by deleting all the bridges of \(G\). Then the components of \(G'\) are called the bridgeless-blocks of \(G\). By the definition, a bridgeless-block is either a single vertex or a maximal 2-edge-connected subgraph of \(G\). For a vertex subset \(U \subseteq V(G)\), \(\delta_G(U)\) denotes the set of edges with one end in \(U\) and the other in \(V(G) \setminus U\). Let \(u, v\) be two vertices in \(V(G)\). A \((u, v)\)-path is a path connecting \(u\) and \(v\). Let \(C = v_1 \ldots v_r v_1\) be a circuit where \(v_1, v_2, \ldots, v_r\) appear in clockwise on \(C\). A segment of \(C\) is the path \(v_i v_{i+1} \ldots v_{j-1} v_j\) (where the sum of the index is under modulo \(r\)) contained in \(C\) and is denoted by \(v_i C v_j\). A connected graph \(H\) is called a cycle-tree \cite{wu2011} if it has no vertices of degree 1 and all circuits of \(H\) are edge-disjoint. In a signed graph, switching a vertex \(u\) means reversing the signs of all edges incident with \(u\). Two signed graphs are equivalent if one can be obtained from the other by a sequence of switching operations, and a signed graph is balanced if and only if it is equivalent to an ordinary graph. The set of negative edges of \((G, \sigma)\) is denoted by \(E_N(G, \sigma)\).

The rest of the article is organized as follows. Some basic lemmas about signed graph and \(T\)-join and a crucial lemma which deals with a special case in our proof are given in Section 2. Then we are able to complete the proof of Theorem 1.4 in Section 3 and we will finish with some discussions and remark.

2 Some Lemmas

The following lemma due to Bouchet \cite{bouchet1985} characterized connected flow-admissible signed graphs.
Lemma 2.1 (Bouchet [2]). A connected signed graph \((G, \sigma)\) is flow-admissible if and only if it is not equivalent to a signed graph with exactly one negative edge and it has no bridge \(e\) such that \((G - e, \sigma|_{G - e})\) has a balanced component.

Lemma 2.2 (Li, Li, Luo, Zhang and Zhang [7]). Let \(T\) be a spanning tree of a signed graph \(G\). For every \(e \in E(T)\), let \(C_e\) be the unique circuit contained in \(T + e\). If the circuit \(C_e\) is balanced for every \(e \in E(T)\), then \(G\) is balanced.

Wu and Ye [21] gave a lemma to control the size of a \(T\)-join.

Lemma 2.3 (Wu and Ye [21]). Let \(G\) be a 2-edge-connected graph and \(T\) be subset of vertices with \(|T|\) even. Then \(G\) has a \(T\)-join of size at most \(\frac{1}{2} |E(G)|\).

The following two results gave upper bounds of \(scc(G)\) with \(G\) under some constrains.

Lemma 2.4 (Chen, Fan [3] and Kaiser, Lukať, Mácajová, Rollová [18]). Let \((G, \sigma)\) be a signed graph and suppose that each bridgeless-block of \(G\) is Eulerian.

(a) (Corollary 1.5 in [3]) If \((G, \sigma)\) is flow-admissible, then \(scc(G) \leq \frac{3}{2} |E(G)|\).

(b) (Corollary 2.6 in [18]) If the union of all the bridgeless-block of \(G\), denoted by \(H\), is positive, then there exists a family of sign-circuits \(F\) covers \(H\) with length at most \(\frac{4}{3} |E(G)|\).

A combination of the above two lemmas leads to the following.

Lemma 2.5. Let \(F\) be a 2-factor of a 2-edge-connected cubic sign graph \((G, \sigma)\). If \(F\) contains even number of negative edges, then there exists a family of sign-circuits \(F\) covers \(F\) with length at most \(\frac{10}{9} |E(G)|\).

Proof. We may assume that the 2-factor \(F\) consists of circuits \(C_1, C_2, \ldots, C_t\). Denote by \(G^*\) the graph obtained from \(G\) by contracting each circuit \(C_i\) of \(F\) to a single vertex \(c_i\).

Since \(F\) contains even number of negative edges, the number of unbalanced circuits in \(F\) is even. Without loss of generality, we may assume that \(C = \{C_1, C_2, \ldots, C_{2t}\}\) is the set of unbalanced circuits of \(F\). Let \(T = \{c_1, c_2, \ldots, c_{2t}\}\) and \(J\) be a minimum \(T\)-join of \(G^*\) with respect to \(T\). Since \(G\) is 2-edge-connected and \(G^*\) is obtained from \(G\) by contracting edges, \(G^*\) is 2-edge-connected as well. By Lemma 2.3 we have \(|J| \leq \frac{1}{2} |E(G^*)| = \frac{1}{2} |E(G)|\). Consider the edge set \(F \cup J\) in \(G\), and we view it as an edge-induced subgraph of \(G\). By the definition of \(T\)-join, we can apply Lemma 2.4(b) to \(F \cup J\), i.e., there exists a family of sign-circuits \(F\) covers \(F\) with length

\[
\ell(F) \leq \frac{4}{3} |E(F \cup J)|
\]

\[
= \frac{4}{3} (|E(F)| + |E(J)|)
\]

\[
\leq \frac{4}{3} \left(\frac{2}{3} |E(G)| + \frac{1}{6} |E(G)| \right)
\]

\[
= \frac{10}{9} |E(G)|.
\]

This proves the lemma. \(\square\)
The proof of the following lemma is inspired by the proof of Lemma 3.7 in [7] on flows of 3-edge colorable cubic signed graphs.

Lemma 2.6. Let C be an unbalanced circuit of a cubic signed graph (G, σ). If (G, σ) is flow-admissible and $G - E(C)$ is balanced, then (G, σ) has a family \mathcal{F} of sign-circuits such that

1. $E(C)$ is covered by \mathcal{F}, and
2. the length of \mathcal{F} satisfies $\ell(\mathcal{F}) \leq \frac{8}{9}|E(G)| + |E(C)|$.

Proof. Let $G' = G - E(C)$. Since G' is balanced, with some switching operations, we may assume that all edges in $E(G')$ are positive and thus $E_N(G, \sigma) \subseteq E(C)$.

Let M be a component of G'. The circuit C was divided by the vertices of M into pairwise edge-disjoint paths (called segments) whose end-vertices lie in M and all inner vertices lie in C. An end-vertex of a segment is called an attachment of M. A segment is called positive (negative, resp.) if it contains an even (odd, resp.) number of negative edges. Note that $M \cup S$ is unbalanced (balanced, resp.) if and only if the segment S is negative (positive, resp.). Since $M \cup C$ is unbalanced, the number of negative segments determined by M is odd.

Case 1. There exists a component M of G' that determines more than one negative segments.

Then in this case M determines at least three negative segments and so $|E(C)| \geq 3$. Let $u_1Cu_3, u_2Cu_5, u_3Cu_7$ be three consecutive negative segments (in clockwise order) where u_i and v_i are attachments for $i = 1, 2, 3$. Then $v_1Cu_2, v_2Cu_3, v_3Cu_4$, where each of them contains even number of negative edges. This implies that C can be partitioned into three pieces: u_1Cu_2, u_2Cu_3, and u_3Cu_4 all contain odd number of negative edges. Note that u_i and v_i are not adjacent in C for distinct $i, j \in \{1, 2, 3\}$ since G is cubic. Let P_1 be a (u_1, u_2)-path in M. Since M is connected, there is a path P_2 from u_3 to P_1 such that $|V(P_2) \cap V(P_1)| = 1$. Let v be the only common vertex in P_1 and P_2. Then C, P_1, P_2 form a signed graph H_1 as illustrated in Figure 1.

Note that $|E(H_1)| \leq \frac{8}{9}|E(G)| + 2$ since G is cubic and there are exactly four vertices of degree 3 in H_1. Divide P_1 into two pieces in M: $u_1P_{11}v$ and $vP_{12}u_2$, denote by $B_1 = u_1P_{11}v \cup vP_{12}u_2 \cup u_3Cu_4, B_2 = u_3P_2v \cup vP_{11}u_1 \cup u_1Cu_3, B_3 = u_2P_{12}v \cup vP_{23}u_3 \cup u_3Cu_2$. Note that each of $u_2Cu_1, u_1Cu_3, u_3Cu_2$ contains even number of negative edges. So B_1, B_2, B_3 are all balanced circuits and $\mathcal{F}_1 = \{B_1, B_2\}, \mathcal{F}_2 = \{B_2, B_3\}, \mathcal{F}_3 = \{B_3, B_1\}$ are all sign-circuit covers of H_1, which are also sign-circuit covers of C since $E(C) \subseteq E(H_1)$. Note that
Figure 1: $H_1 = C \cup P_{11} \cup P_{12} \cup P_2$, negative segments are dashed.

$F = \{F_1, F_2, F_3\}$ covers edge edge of H_1 exactly 4 times. So we have

$$\min \{\ell(F_1), \ell(F_2), \ell(F_3)\} \leq \frac{1}{3} (\ell(F_1) + \ell(F_2) + \ell(F_3))$$

$$= \frac{4}{3} |E(H_1)|$$

$$\leq \frac{4}{3} \left(\frac{2}{3} |E(G)| + 2 \right)$$

$$< \frac{8}{9} |E(G)| + |E(C)|.$$

Case 2. Each component of G' determines exactly one negative segment.

Let \mathcal{M} denote the set of all components of G'. For each component M, denote by $S_M = uCv$ the negative segment determined by M where u and v are two attachments of M on C. Denote by $S'_M = vCu$ the cosegment of S_M, which is the complement of S_M on C. Then $E(S_M) \neq \emptyset$ and $S'_M = E(C) - E(S_M)$. We have the following two conclusions:

Claim 1 (see Claim 3.7.2 in [7]):

$$\cap_{M \in \mathcal{M}} E(S_M) = \emptyset,$$

or equivalently, $\cup_{M \in \mathcal{M}} E(S'_M) = C$ and $|\mathcal{M}| \geq 2$.

Let $S = \{S'_1, S'_2, ..., S'_t\}$ be a minimal cosegment cover of C. We have

Claim 2 (see Claim 3.7.3 in [7]). For any edge $e \in E(C)$, e is contained in at most two cosegments.

Proof Sketches of Claims 1 and 2: For the sake of completeness, we present the proof sketches of this two claims here. Suppose to the contrary $\cap_{M \in \mathcal{M}} E(S_M) \neq \emptyset$.

\(\emptyset \) and \(e^* \in \cap_{M \in \mathcal{M}} E(S_M) \). Then there is a spanning tree \(T \) of \(G - e^* \) containing the path \(P^* = C - e^* \). Let \(e = uv \in E(G) - e^* - E(T) \). Denote the unique circuit contained in \(T + e \) by \(C_e \).

If \(E(C_e) \cap E(P^*) = \emptyset \), then \(C_e \) contains no negative edges and thus is balanced. Otherwise since \(T \) contains all the edges in \(C - e^* \), \(E(C_e) \cap E(C) \) is a path \(P \) on \(C \). Let \(u' \) and \(v' \) be the two end-vertices of \(P \) in clockwise order on \(C \). Then \(C_e - V(P) + u', v' \) is also a path and thus it is contained in some component \(M \in \mathcal{M} \). This implies that \(u' \) and \(v' \) are two attachments of \(M \) on \(C \). Since \(e^* \) belongs to the only negative segment of \(C \) determined by \(M \), \(u'Cv' \) is the union of some positive segments of \(C \) determined by \(M \). Therefore \(C_e \) has an even number of negative edges and thus is balanced. By Lemma 2.2, \(G - e^* \) is balanced, contradicting Lemma 2.1. This proves \(\cap_{M \in \mathcal{M}} E(S_M) = \emptyset \). Since \(E(S_M) = E(C) - E(S_M) \) and \(\cap_{M \in \mathcal{M}} E(S_M) = \emptyset \), we have \(\cup_{M \in \mathcal{M}} E(S'_M) = C \). Since \(E(S_M) \neq \emptyset \) and \(\cap_{M \in \mathcal{M}} E(S_M) = \emptyset \), we have \(|\mathcal{M}| \geq 2 \). This completes the proof of the claim 1.

Suppose to the contrary that there exists an edge \(e = uv \) that belongs to three cosegments \(L_1, L_2, L_3 \) of \(S \). Denote \(L_i = u_iCv_i \) for each \(i = 1, 2, 3 \). Without loss of generality, we may assume that \(u_2 \) belongs to \(u_1Cu \). Then \(v_2 \) doesn’t belong to \(u_1Cu_3 \) (see Figure 2). Note that \(v_3 \) belongs to \(u_1Cu_3 \). If \(u_3 \) belongs to \(u_1Cu_3 \), then both \(v_3 \) and \(u_3 \) belongs to \(u_1Cv_1 \) and thus \(L_1 \cup L_3 = C \) (see Figure 2-(a)), contradicting the minimality of \(S \). If \(u_3 \) doesn’t belong to \(u_1Cu_1 \), then \(u_3 \) belongs to \(vCv_2 \). Since \(L_3 \) contains \(uv \), \(v_3 \) belongs to \(vCv_2 \). Thus both \(v_3 \) and \(u_3 \) belongs to \(u_2Cv_2 \). Therefore \(L_2 \cup L_3 = C \) (see Figure 2-(b)), also contradicting the minimality of \(S \). This completes the proof of the claim 2.

For each \(i = 1, \ldots, t \), denote by \(S'_i = x_iCy_i \) and let \(P_i \) be a path in \(M_i \) connecting \(x_i \) and \(y_i \). Then \(C_i = S'_i \cup P_i \) is a balanced Eulerian subgraph. By Claims 1 and 2 we may assume that the vertices \(x_1, y_t, x_2, y_1, \ldots, x_t, y_{t-1}, x_1 \) appear on \(C \) in clockwise order. Then \(C_i \cap C_j \neq \emptyset \) if and only if \(|j - i| \equiv 1 \)
Figure 3: Minimal cosegment cover of C with $t = 5$.

Let $H_2 = C \cup P_1 \cup P_2 \cup \ldots \cup P_t$ and $B_i = x_iCy_i \cup y_iP_ix_i$ for $i = 1, 2, \ldots, t$. Note that B_i is a balanced circuit and so $F = \{B_1, B_2, \ldots, B_t\}$ is a sign-circuit cover of C. Obviously, $|E(H_2)| \leq \frac{2}{3}|E(G)| + t$ since G is cubic and there are exactly $2t$ vertices of degree 3 in H_2. By Claim 2, F covers the edges in C at most twice and edges in $P_1 \cup \ldots \cup P_t$ exactly once. Let W be the set of edges covered by F twice. Then $W \subset E(C)$. Since G is cubic, $x_i \neq y_j$ for all $i, j \in \{1, 2, \ldots, t\}$. So we have $|W| \leq |E(C)| - t$. Therefore,

$$t(F) = |E(B_1)| + |E(B_2)| + \ldots + |E(B_t)| \leq |E(H_2)| + |E(C)| - t \leq \frac{2}{3}|E(G)| + t + |E(C)| - t \leq \frac{8}{9}|E(G)| + |E(C)|.$$

This completes the proof. \qed

3 Proof of Theorem 1.4

Proof of Theorem 1.4. Let f be a 3-edge coloring of connected cubic graph G. Let R, B, Y be the three color classes of f. Recall that $E_N(G, \sigma)$ is the set of negative edges in (G, σ). Without loss of generality, we may assume $|R \cap E_N(G, \sigma)| \equiv |B \cap E_N(G, \sigma)| \pmod{2}$. Denote by M_1, M_2 the 2-factor induced by $M_1 \cup M_2$ for each pair $M_1, M_2 \in \{R, B, Y\}$. Since $|R \cap E_N(G, \sigma)| \equiv |B \cap E_N(G, \sigma)| \pmod{2}$, RB has an even number of unbalanced components. By Lemma 2.5, there exists a family of sign-circuits F_1 covers RB with length at most $\frac{10}{9}|E(G)|$.

8
Case 1. RB contains an unbalanced circuit.

First, assume that $|Y \cap E_N(G, \sigma)|$ has the same parity with $|R \cap E_N(G, \sigma)|$. Then RY has an even number of unbalanced circuits. By Lemma 2.5 we can find a family of sign-circuits \mathcal{F}_2 covers RY with length at most $\frac{10}{9}|E(G)|$. Therefore, $\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2$ is a sign-circuit cover of G with length

$$\ell(\mathcal{F}) = \ell(\mathcal{F}_1) + \ell(\mathcal{F}_2) \leq \frac{10}{9}|E(G)| + \frac{10}{9}|E(G)| = \frac{20}{9}|E(G)|.$$

Then, assume instead that $|Y \cap E_N(G, \sigma)|$ has different parity with $|R \cap E_N(G, \sigma)|$. Let C be an unbalanced circuit in RB. Now we swap the colors R and B on C, i.e. reset $R' = R \Delta E(C)$ and $B' = B \Delta E(C)$ respectively. Note that the operation will change the parity of $|R \cap E_N(G, \sigma)|$ and $|B \cap E_N(G, \sigma)|$. This implies that $|Y \cap E_N(G, \sigma)| \equiv |R' \cap E_N(G, \sigma)| \equiv |B' \cap E_N(G, \sigma)| \pmod{2}$ now. So, similar as the previous paragraph, we apply Lemma 2.5 to find a family of sign-circuits \mathcal{F}_2' covers $R'Y$ with length at most $\frac{10}{9}|E(G)|$. Notice that \mathcal{F}_1 covers $RB = R'B'$ with length at most $\frac{10}{9}|E(G)|$. Hence $\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2'$ is a sign-circuit cover of G with length at most $\frac{20}{9}|E(G)|$.

Case 2. RB contains no unbalanced circuit.

In this case, each circuit C_i of RB is a balanced circuit. Let $\mathcal{F}_1 = \{C_i | C_i$ is a balanced circuit of RB$\}$. Then \mathcal{F}_1 is a family of sign-circuits covering RB with length $\ell(\mathcal{F}_1) = E(RB) = \frac{4}{3}|E(G)|$.

Subcase 2.1: The number of unbalanced circuits in RY or BY is even.

By Lemma 2.5 we have a family of sign-circuits \mathcal{F}_2 which covers RY or BY with length at most $\frac{10}{9}|E(G)|$. Therefore $\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2$ is a sign-circuit cover of G with length $\ell(\mathcal{F}) \leq \frac{16}{9}|E(G)|$.

Subcase 2.2: The number of unbalanced circuits in RY or BY is equal to one.

Without loss of generality, assume that RY has exactly one unbalanced component, say, C_1. Let $C = \{C_1, ..., C_m\}$ be the set of components of RY, where each C_i ($i \geq 2$) is balanced. Let $\mathcal{F}_2 = \{C_i : i \geq 2\}$. Then \mathcal{F}_2 is a family of sign-circuits covering $RY - E(C_1)$ with length $\frac{4}{3}|E(G)| - |E(C_1)|$. We consider the following two cases in order to cover C_1.

Assume first that G contains an unbalanced circuit C' with $E(C') \cap E(C_1) = \emptyset$. Since G is cubic and connected, there is a long barbell Q in G with P as the path connecting C_1 and C' with $|E(Q)| \leq \frac{2}{3}|E(G)| + 1$. Therefore, $\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2 \cup Q$ is a sign-circuit cover of G with length

$$\ell(\mathcal{F}) = \ell(\mathcal{F}_1) + \ell(\mathcal{F}_2) + \ell(Q)$$

$$\leq \frac{2}{3}|E(G)| + \frac{2}{3}|E(Q)| - |E(C_1)| + \frac{2}{3}|E(G)| + 1$$

$$< 2|E(G)|.$$

Then assume instead that G contains no unbalanced circuit C' with $E(C') \cap E(C_1) = \emptyset$. In this case, $G - E(C_1)$ is balanced. By Lemma 2.6 there exists a
family \mathcal{F}_3 of sign-circuits covering $E(C_1)$ with length at most $\frac{8}{9}|E(G)| + |E(C_1)|$. Therefore, $\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_2 \cup \mathcal{F}_3$ is a sign-circuit cover of G with length
\[
\ell(\mathcal{F}) = \ell(\mathcal{F}_1) + \ell(\mathcal{F}_2) + \ell(\mathcal{F}_3)
\leq \frac{2}{3}|E(G)| + \frac{2}{3}|E(G)| - |E(C_1)| + \frac{8}{9}|E(G)| + |E(C_1)|
\leq \frac{20}{9}|E(G)|.
\]

Subcase 2.3: The number of unbalanced circuits in each of RY, BY is odd and is at least 3.

Let $\mathcal{C} = \{C_1, \ldots, C_m\}$ be the set of components of RY. Denote by G^* the graph obtained from G by contracting each circuit C_i of RY to a single vertex u_i, where $i = 1, 2, \ldots, m$. Note that G^* is connected, and so let T^* be a spanning tree of G^*. Then $T^* \cup RY$ is a cycle-tree in G, denoted by H, containing at least 3 unbalanced circuits. Let B' be the set of bridges of H such that $b_i \in B'$ if and only if $(H - b_i, \sigma|_{H - b_i})$ has a balanced component H_i. $B = \emptyset$ if no such bridge exists in H. Let $H' = H - (B' \cup \cup_{i=1, \ldots, m}|B'|E(H_i))$. Note that H' contains all the unbalanced circuit of \mathcal{C}. By Lemmas 2.1 and 2.4(a), H' is flow-admissible and has a sign-circuit cover \mathcal{F}_2 with length at most $\frac{3}{2}|E(H')|$. Since the circuits in H_i are all balanced circuits, we can cover them with length at most $\frac{3}{2}|E(H_i)| - |E(H')|$. Thus we have a sign-circuit cover \mathcal{F}_3 of RY with length
\[
\ell(\mathcal{F}_3) = \ell(\mathcal{F}_2) + (|E(H)| - |E(H')|)
\leq \frac{3}{2}|E(H')| + |E(H)| - |E(H')|
\leq \frac{3}{2}|E(H)| < \frac{3}{2}|E(G)|.
\]

Therefore, $\mathcal{F} = \mathcal{F}_1 \cup \mathcal{F}_3$ is a sign-circuit cover of G with length
\[
\ell(\mathcal{F}) = \ell(\mathcal{F}_1) + \ell(\mathcal{F}_3)
\leq \frac{2}{3}|E(G)| + \frac{3}{2}|E(G)|
\leq \frac{13}{6}|E(G)| < \frac{20}{9}|E(G)|.
\]

This completes the proof. \qed

Remark. The upper bound of $scc(G)$ in Theorem 1.4 seems not to be tight. We realized that the 3-edge colorable cubic signed graph (G, σ) as illustrated in Figure 4 has a sign-circuit cover with length $\frac{13}{6}|E(G)|$. The problem to determine the optimal upper bound for the shortest sign-circuit cover of 3-edge colorable cubic signed graph remains open.

Data Availability: Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
Figure 4: (G, σ) with a shortest circuit cover with length $\frac{13}{9} |E(G)|$.

References

[1] Alon, N and Tarsi, M. Covering multigraphs by simple circuits. SIAM Journal on Algebraic Discrete Methods, 6(3):345–350, 1985.

[2] Bouchet, André. Nowhere-zero integral flows on a bidirected graph. Journal of Combinatorial Theory, Series B, 34(3):279–292, 1983.

[3] Chen, Jing and Fan, Genghua. Circuit k-covers of signed graphs. Discrete Applied Mathematics, 294:41–54, 2021.

[4] Hou, Xinmin and Zhang, Cun-Quan. A note on shortest cycle covers of cubic graphs. Journal of Graph Theory, 71(2):123–127, 2012.

[5] Mácajová, Edita and Raspaud, André and Rollová, Edita and Škoviera, Martin. Circuit covers of signed graphs. Journal of Graph Theory, 81(2):120–133, 2016.

[6] Mácajová, Edita and Raspaud, André and Tarsi, Michael and Zhu, Xuding. Short cycle covers of graphs and nowhere-zero flows. Journal of Graph Theory, 68(4):340–348, 2011.

[7] Li, Liangchen and Li, Chong and Luo, Rong and Zhang, Cun-Quan and Zhang, Hailiang. Flows of 3-edge colorable cubic signed graphs. preprint.

[8] Itai, Alon and Lipton, Richard J and Papadimitriou, Christos H and Rodeh, Michael. Covering graphs by simple circuits. SIAM Journal on Computing, 10(4):746–750, 1981.

[9] Thomassen, Carsten. On the complexity of finding a minimum cycle cover of a graph. SIAM Journal on Computing, 26(3):675–677, 1997.
[10] Jamshy, Ury and Tarsi, Michael. Short cycle covers and the cycle double cover conjecture. Journal of Combinatorial Theory, Series B, 56(2):197–204, 1992.

[11] Seymour, Paul D. Sums of circuits. Graph theory and related topics, 1:341–355, 1979.

[12] Szekeres, George. Polyhedral decompositions of cubic graphs. Bulletin of the Australian Mathematical Society, 8(3):367–387, 1973.

[13] Bermond, Jean Claude and Jackson, Bill and Jaeger, François. Shortest coverings of graphs with cycles. Journal of Combinatorial Theory, Series B, 35(3):297–308, 1983.

[14] Lukotka, Robert. Short cycle covers of cubic graphs and intersecting 5-circuits. SIAM Journal on Discrete Mathematics, 34(1):188–211, 2020.

[15] Lu, You and Cheng, Jian and Luo, Rong and Zhang, Cun-Quan. Shortest circuit covers of signed graphs. Journal of Combinatorial Theory, Series B, 134:164–178, 2019.

[16] Fan, Genghua. Short cycle covers of cubic graphs. Journal of Graph Theory, 18(2):131–141, 1994.

[17] Chen, Jing and Fan, Genghua. Short signed circuit covers of signed graphs. Discrete Applied Mathematics, 235:51–58, 2018.

[18] Kaiser, Tomáš and Lukot’ka, Robert and Máčajová, Edita and Rollová, Edita. Shorter signed circuit covers of graphs. Journal of Graph Theory, 92(1):39–56, 2019.

[19] Jackson, Bill. Shortest circuit covers of cubic graphs. Journal of Combinatorial Theory, Series B, 60(2):299–307, 1994.

[20] Kaiser, Tomáš and Král’, Daniel and Lidický, Bernard and Nejedlý, Pavel and Šámal, Robert. Short cycle covers of graphs with minimum degree three. SIAM Journal on Discrete Mathematics, 24(1):330–355 2010.

[21] Wú, Yezhou and Ye, Dong. Minimum T-joins and signed-circuit covering. SIAM Journal on Discrete Mathematics, 34(2):1192–1204, 2020.

[22] Wú, Yezhou and Ye, Dong. Circuit covers of cubic signed graphs. Journal of Graph Theory, 89(1):40–54, 2018.