Human Erythrocyte Surface Fucose Expression Increases with Age and Hyperglycemia

Huan Cao (h.cao@abdn.ac.uk)
University of Aberdeen Institute of Medical Sciences
https://orcid.org/0000-0002-0122-5856

Ananyo Bagchi
University of Aberdeen

Dimitris Tampakis
Loughborough University

Irina Laidvee
University of Aberdeen

Maria Williams
University of Aberdeen

Beverley Minter
University of Aberdeen

Sonja Wright
Aberdeen Royal Infirmary

Aristotelis Antonopoulos
Imperial College London

Stuart M. Haslam
Imperial College London

Robert N. Barker
University of Aberdeen

Mark A. Vickers
University of Aberdeen

Research

Keywords: fucose, aging, hyperglycaemia, erythrocyte, lectins, aging

DOI: https://doi.org/10.21203/rs.3.rs-89812/v1

License: © Open Access. This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

Reactive oxygen species and other free radicals, together with glucose and its metabolites are believed to play important roles in the aging process. The carbohydrate components of glycosylated proteins are important in mediating cell-cell interactions and a role has been suggested for them in the aging process. Erythrocytes are critical cells in the human body, heavily glycosylated and relatively easily available and so are good candidates to yield insights into how patterns of glycosylation change with age and disease. It has been claimed, based on a periodic acid Schiff assay, that human aging is associated with a decline of erythrocyte surface sialic acids. Plant lectins allow for more specific assays for glycans, including determining the linkage of sialic acids and analysis of single cells by flow cytometry.

Results

Sialic acid specific plant lectins, *Maackia amurensis* lectin II (MAL), binding to α-2,3 linked sialic acids and *Sambucus nigra* (SNA), α-2,6 sialic acids, were used to show that erythrocyte surface sialic acids have no significant associations with donor age. A combination of storage and cellular aging produces a specific loss of α-2,6 sialic acids. By contrast, erythrocyte surface terminal fucoses increase significantly with age of donor. In order to determine which aspects of aging are important in determining this change, we investigated whether this novel human aging biomarker is associated with higher plasma glucose values, assessed by glycated hemoglobin (HbA1c) and reactive oxygen species (ROS) generation. Fucose levels were associated with HbA1c levels, but not ROS generation.

Conclusion

Our study identifies novel glycan-based biomarkers for human aging and disease. The simplicity of lectins are presented here as an attractive tool to study cellular medication in aging and disease.

Background

The main function of erythrocytes is to carry oxygen from the lungs to the rest of the body and remove carbon dioxide as a waste product. Erythrocytes are highly glycosylated, with glycophorin as the main carrier (1), especially sialic acids. Sialic acids are negatively charged sugars and confer a bulk surface charge causing repulsion between cells, so preventing agglutination (2). They are also important signalling molecules as they are found at the periphery of cell surfaces (3). Siglecs, sialic acid-binding immunoglobulin-type lectins, are surface receptors on immune cells that recognize sialic acids. For instance, erythrocyte sialoproteins inhibit neutrophil activation through interaction with Siglec-9(4) and inhibit B cell activation through interaction with the lectin CD22 (unpublished data).
The phrase aging can be interpreted in two ways: “cell-aging”, referring to increasing lifetime or replication of cells, or “organismal-aging”, referring to the age of the body from which cells are derived. There are many biologically significant cell-aging specific changes described for erythrocytes, including loss of potassium ions, organic phosphates and water (5), decrease in cell surface area and volume(6) and decrease in the activity of Na+/K+ ATPase and Na+/H+ exchanger (7). Old RBCs can also undergo a form of programmed cell death in a process known as eryptosis, which is triggered by calcium action on Ca²⁺/K⁺ channels, scramblase, calpain and other proteases, and leads to cell clearance (8). Long term blood storage causes oxidative damage to RBCs and leads to dysfunction in glucose metabolism that contributes to decreased metabolism of glutathione (GSH) (9).

Erythrocytes are excellent “reporter cells”(10) for organismal-aging as they are readily available. However, only limited organismal-aging changes have been described for erythrocytes. In mice, their antioxidant capacity decreases from 6 to 26 months of life (11). In humans, a strong negative association between donor age and erythrocyte surface sialic acids has been reported (12). Furthermore, increased sialic acids in the plasma of corresponding donors suggested a cleavage process, which was attributed to increased oxidative damage to erythrocytes in older donors. In cell-aging of fibroblasts, Itakura and colleagues reported a similar decline in sialic acids: α-2,3 sialylation, α-2,6 sialylation for both N- and O-glycans (13). Fucose is a sugar that can be attached close to the core or outer antennae of N-glycan chains. Enzymes that remove or add fucose have been studied with respect to aging in different cell types (14, 15). However, fucose on erythrocytes has not been studied with reference to either “cell-aging” or “organismal-aging”.

Changes in carbohydrates have been described in association with several diseases such as cancer, Alzheimer’s disease and diabetes mellitus (16–18). Our understanding of glycosylation in cancer has improved as diagnostic biomarkers involving carbohydrate changes have been established (19). For example, the core-fucosylated form of α-fetoprotein (AFP) in serum is associated with hepatocellular carcinoma (HCC) and can be used as a marker for diagnosis (20). Functionally, abnormal glycosylation in cancer can dysregulate cell signalling and communication, cell-matrix interactions, tumour cell dissociation and invasion (19). For example, the over expression of one component of the N-glycosylation machinery, the β1,6-N-acetylglucosaminyl transferase (GnT-V) enzyme, in glioma cells leads to focal adhesions and increased tumour cell invasion (21). Protein glycosylation has been reported to be defective in Alzheimer’s disease (22). Numerous connections between glycosylation and diabetes are starting to be recognized: for example, high levels of mannose binding lectin (MBL) in sera are associated with vascular complications (17) and nephropathy (18). In diabetes mellitus, in addition to N- and O-glycosylation, glycation, the non-enzymatic addition of sugars to proteins is particularly important (23, 24) and measurement of the glycated N-terminal amino acid of hemoglobin, HbA1c, is an important clinical diagnostic and prognostic marker of diabetes (25).

Cellular aging in other cell types such as mesenchymal stem cells have been shown to be associated with the loss of sialic acids (26). Several studies have investigated the relationship between age of erythrocytes and cell surface sialic acids. Methods using periodic acid have been the commonest way of
measuring total sialic acid content from erythrocyte membrane preparations, known as ghosts. It has been presumed, but not proven, that periodic acid Schiff (PAS) assay is specific for sialic acids. A more recently developed glycobiological technique known as DNA sequencer-assisted fluorophore-assisted carbohydrate electrophoresis (DSA-FACE) has been employed to study N-glycan profile changes during human aging and found age-dependent alterations in the ratio of two key structures of N-glycans beyond the age of 40 in humans (27). N- and O- glycome profiles of cell surfaces can be fully analyzed by mass spectrometry(28) as well as state of art technology such as solid phase chemoenzymatic method (29). Human and plant lectins are being becoming increasingly popular for studies of cell surface changes, as they offer direct binding to specific terminal glycans (30, 31). The use of lectins with flow cytometry to determine cell surface glycosylation expression has the advantage of accessing all cell surface glycans available for binding, thus mimicking cell-cell interactions, contrasting with conventional techniques such as PAS staining. In this study, we use plant lectins to evaluate carbohydrate expression on red blood cells during human organismal-aging.

Results

Neuraminidase sensitivity observed by lectin flow cytometry but not periodic acid Schiff assay

Neuraminidase is an enzyme that specifically removes terminal sialic acids from glycoproteins (32). Using this activity, we compared the classical PAS assay with the more modern approach of lectin flow cytometry for sialic acids on the cell surfaces of erythrocytes. *Maackia amurensis* lectin II (MAL) is a lectin specific for α-2,3 linked sialic acids and *Sambucus nigra* agglutinin lectin (SNA) is specific for α-2,6 linked sialic acids. Both lectins demonstrate high levels of binding by flow cytometry to untreated (sialylated) erythrocyte cell surfaces, but binding is lost once the erythrocytes have been treated with neuraminidase (Figure 1a). However, while the PAS assay detected increasing amounts of sialic acids in the form of synthetic sialic acids (N-acetylneuraminic acid, NANA) and the glycoprotein fetuin, which contains high levels of sialic acid, the assay was not sensitive to neuraminidase treatment of whole erythrocytes (Figure 1b). These data indicate that the PAS assay measures compounds in addition to surface accessible sialic acid residues, for which plant lectins MAL and SNA are more specific.

Specific cell surface α-2,6 sialic acid loss in storage plus cell-aging but no change to sialic acids in organismal-aging

Using lectins MAL and SNA, we probed gravity Percoll fractionated stored erythrocytes from healthy donors to assess changes during cell-aging. It is well known that during cell-aging erythrocytes increase their density, become more rigid and fragile, and more deposition of C3 is observed. Our gravity based Percoll fractionation technique separates erythrocytes based on density into 5-7 fractions (Supplemental Figure 1a, 1b), with approximately 1% cells represented in the densest fractions (5, 6, and 7). We
confirmed higher fragilities (Supplemental Figure 1c) and more C3 deposition (Supplemental Figure 1d) in the densest fractions. Although we failed to observe any differences in MAL binding to RBCs from any fraction (Figure 2a–d), we observed highly specific SNA binding loss in the densest fractions (Figure 2a–d). The data from Figure 2 are generated from erythrocytes stored for 7 or more days prior to fractionation: we do not observe MAL or SNA binding loss in fractionation of erythrocytes with no or reduced storage periods (data not shown). Western blotting identifies the SNA binding loss as arising from bands around 70kDa and 100kDa, corresponding to dimeric glycophorin A (GPA) and Band 3 respectively (Supplemental Figure 2). We also tried to reproduce these findings in murine erythrocytes, but found they lacked SNA binding (Supplemental Figure 3a), suggesting poor lectin visibility of surface α-2,6 sialic acids. There were no changes in MAL or SNA binding when murine RBCs were fractionated by density (Supplemental Figure 3b-c).

With respect to organismal-aging, we observed that the binding of MAL and SNA to unfractionated erythrocytes showed no significant association with age of donors (n = 24) (Figure 3a, b), in contrast to the claims of Mehdi et al. (12). Overall, these data demonstrate, while there is a specific loss of α-2,6 sialic acid under the combination of storage and cellular aging, there are no overall cellular or organismal-aging related sialic acid changes to erythrocytes in humans.

Fucose specific lectin binding increases with donor age

In contrast to sialic acid binding lectins, binding of those specific for fucose on red blood cells increased significantly with age of donor (Figure 4a, b). *Aleuria aurantia* lectin (AAL) binds preferentially to fucose linked (α-1,6) to N-acetylglucosamine or fucose linked (α-1,3) to N-acetyllactosamine related structures (33). *Ulex europaeus* agglutinin I (*U. Euros*) binds to many glycoproteins and glycolipids containing α-linked fucose residues (Boyd, 1963). While *U. Euros* has a preference for blood group O erythrocytes, AAL has no specificity for blood groups (33). For both lectins, the associations between binding and age of donor were similar, which indicates that the underlying basis for the increase in binding with age is an increase in terminal fucoses.

Mass spectrometry based glycomic analysis identifies sialic acid and fucose containing structures on erythrocytes

Erythrocyte membrane ghosts were subjected to N-linked (Figure 4c) and O-linked (Figure 4d) glycomic analysis by MALDI-TOF mass spectrometry. Fucose bearing structures were identified only on N-glycans, while sialylated structures were found as multiple complex N-glycans and three dominant O-glycans. While the N-linked glycomic analysis here does not distinguish between different linkages for fucose attachment, an abundance of complex and hybrid structures were shown to contain fucose. Further experiments combining lectin binding and glycomic analyses could help to identify the age specific glycan structure.
Binding of fucose-specific lectin AAL is associated with hemoglobin HbA1c levels but not cellular ROS generation

We investigated the underlying basis for the association between erythrocyte fucose expression and age by assessing whether it might be secondary to two aspects that have been linked with aging, glycation and oxidative stress (34-37). Glycated hemoglobin (HbA1c) is a well-established clinical marker of long-term glycemic control (38), so we collected samples from patients who had had HbA1c levels determined, irrespective of age. Because of the age effect on fucose expression (Figure 3), we restricted our analysis to >45 years of age. We observed a positive association between HbA1C and AAL lectin binding levels (Figure 5a), which is the first erythrocyte surface marker associated with HbA1c changes.

Oxidative stress is associated with diabetes (39,40) but no study has investigated the association between HbA1c levels and erythrocyte oxidation status. Here we show that the rate of internal reactive oxygen species production (ROS) is significantly elevated in red blood cells from patients with high HbA1c compared to a control HbA1c group (Figure 5b, c). Furthermore, there is a trend of positive association between HbA1c and ROS across both groups for patients of age 45 or above (Figure 5c). Yet, the correlation between ROS production and the binding of the fucose specific lectin AAL (Figure 5d) does not appear significant. These results indicate that the relationship between HbA1c and AAL binding levels is likely to be independent of erythrocyte ROS generation capacity.

Discussion

Periodic acid Schiff assay versus lectin staining

Traditionally, PAS assays have been used to stain for polysaccharides such as glycolipids and glycoproteins. They have also been used to measure sialic acids on red blood cells in a number of publications, despite no demonstration of specificity for the sialic acid sugar itself. We show here for the first time that the PAS assay does not specifically recognise sialic acids on the surface of erythrocytes by comparing staining of neuraminidase treated and untreated red blood cells, for which lectins such as MAL and SNA do demonstrate specific binding.

Lack of age dependent sialic acid changes

In contrast to previous reports(12, 41) of strong negative associations of sialic acids on the surface of erythrocytes with age of donor, we saw no significant associations between age and either α-2,3 or α-2,6 linked sialic acids. Lutz and Fehr(42) also reported, using PAS staining, a loss of sialic acids attached to glycophorins on aging erythrocytes. Such conclusions based on determining sialic acid changes through PAS staining may warrant re-examination. Nevertheless, upon storage and further fractionation based on density, we do observe a specific loss of α-2,6 linked sialic acids, which appears to be associated with dimeric GPA and Band 3. This specific glycan loss is only observed under both storage and fractionation,
while α-2,3 linked sialic acids are consistently unchanged. Overall, our report indicates the stability of surface sialic acids during different types of aging of erythrocytes.

Fucose related changes

Unexpectedly, we showed a positive association of fucose expression on erythrocytes with age of donor. This has not been described before, although there are reports of decreases in plasma levels of N-glycans containing core fucose with aging (43). Perhaps both increased RBC surface fucose and reduced plasma fucose are explained by lower rates of enzymatic removal of RBC surface fucoses with age. However, since the lectins used in this study bind only to terminal fucose, we are not able to define the exact structure that is changing with age. N-glycomics mass spectrometry analysis provides an overview of possible fucose terminating structures, but further work would be needed to determine the structural changes with human organismal-aging.

Glycans as potential markers of aging

Changes in glycosylation are caused by diabetes, which is more prevalent amongst older populations. Glycation affects proteins in two ways. Early glycation simply adds carbohydrates, non-enzymatically, to amino groups carried on lysine or arginine residues, as well as N terminal amino acids, such as HbA1c modification. Advanced glycation, which is associated with oxidation, causes much more significant structural damage by creating cross-links between and within proteins through formation of Advanced Glycation End Products (AGEs) (44, 45). Our data show fucose expression on RBCs associated with the diabetes indicator, HbA1c, which is itself a product of glycation. Yet, fucose expression did not appear significantly related to oxidation capacity within RBC. These observations indicate that fucose levels are sensitive to the early phases of glycation.

Conclusions

Our study shows that by using more specific reagents for sialic acids, cell- and organismal-aging do not produce significant changes to the expression of α-2,3 and α-2,6 sialic acids on erythrocytes. A combination of storage and cell-aging can cause specific α-2,6 sialic acid loss, as shown by density fractionation. Surprisingly, human organismal-aging of erythrocytes appears to be associated with increased terminal fucose expression, which is also related to the early onset of diabetes, yet independent of erythrocyte oxidation capacity. These results illustrate the potential of using simple lectins to study the complex processes of ageing and disease.

Materials And Methods

Blood donors

Blood samples were retrieved from residual clinical samples obtained after clinical testing from the NHS Grampian Biorepository (15/WM/0430). For lectin-age studies (Figures 2 and 3), blood samples were collected irrespective of age, gender or HbA1c levels. For lectin-hyperglycaemia and oxidation studies
(Figure 4), blood samples were also collected irrespective of age or gender, selected by HbA1c levels in the normal (< 40 mmol/mol) and raised (>70 mmol/mol) ranges were collected at a 1:1 ratio.

Blood cell separation

Erythrocytes were separated from white blood cells in donor blood using Lymphoprep. Briefly, whole blood was diluted 1:1, layered over Lymphoprep and centrifuged at 400g for 35 minutes. The buffy coat was removed, while erythrocytes were isolated for analysis.

Lectin staining of erythrocytes and flow cytometry analysis

Biotinylated lectins (Vector Laboratories), *Maackia amurensis* Lectin II (MAL-II), *Sambucas nigra* Agglutinin (SNA), *Aleuria aurantia* (AAL) and *Ulex europaeus* (*U.Euros*) were used in conjunction with streptavidin PE-Cy7 or phycoerythrin (PE) for flow cytometric analysis. The lectins were titrated to minimise agglutination, as indicated by abnormally high forward versus side scatter (FCS) and high PE-Cy7 or PE intensity. Optimal flow cytometry concentrations for the lectins were MAL-II: 67 ng/ml; SNA: 57ng/ml; AAL: 200ng/ml; and *U.Euros*: 100ng/ml. Biotinylated lectins were applied, followed by streptavidin to purified erythrocytes, post-blocking with Carbo-Free-Block (Vector, SP5040) at room temperature for 30 minutes each before subjecting to flow cytometry (Dodge, Mitchell & Hanahan, 1963).

Neuraminidase treatment of erythrocytes

Purified erythrocytes were washed and treated with neuraminidase (*Vibrio cholerae*, Sigma) according to manufacturer’s instructions for 30 minutes at 37°C in DMEM. Cells were washed with cold (4°C) PBS thoroughly to remove contaminating enzyme or free sialic acids.

Periodic acid Schiff assay

Neuraminidase treated erythrocytes and control erythrocytes, N-acetylneuraminic acid (NANA) and fetuin, were subjected to a PAS assay adapted from Mehdi and colleagues (12). Samples were oxidized using 0.04 M periodic acid (4°C, 30 minutes, 1:5 ratio of acid to sample). Two volumes of resorcinol working solution (5 ml of 6.0% resorcinol solution, 0.125 ml of 0.1 M copper sulphate solution and 19.875 ml of distilled water, brought to a final volume of 50 ml with 10 M HCl) was added, heated at 98°C for 5 minutes and cooled in an ice bath for 2 minutes. 1.8 volumes of n-butanol was added, mixed vigorously and the mixture incubated for 3 minutes at 37°C. Absorbance at 625nm was measured against a reagent blank.

Gravity Percoll fractionation of erythrocytes
Erythrocytes were washed in PBS then SAH buffer (2.63 g/L BSA (Biosera), 132mM NaCl, 4.6mM KCl, 10mM HEPES, pH 7.1). Different percentages of Percoll/SAH mixtures were created by making a master mix of 97.5% density Percoll with the same salt and HEPES concentration as SAH, then diluting with SAH. The following fraction numbers indicate percentages of Percoll: Fraction 1, <18%; Fraction 2, 18-30%; Fraction 3, 30-50%; Fraction 4, 50-65%; Fraction 5, 65-80%; Fraction 6, 80-90%; Fraction 7, 90-97.5%. For layering the fractions by gravity, the highest desired density of Percoll/SAH is added to an empty 15ml Falcon™ tube and 1 ml of erythrocyte/SAH mixture gently layered on top. Consecutive layers of lower density Percoll is applied directly on top of the erythrocyte/SAH mixture. No centrifugation is required. Fractions of erythrocytes rise to the interphases of various Percoll layers applied. Fractionated erythrocytes are extracted from each layer into fresh tubes and washed in PBS well before analysis.

Erythrocyte fragility assay

Washed erythrocyte samples were tested for fragility based on protocol provided in by Blasi and colleagues (46).

Erythrocyte C3 deposition assay

A sensitive, quantitative indirect enzyme-linked antiglobulin test (IELAT) was employed to test for C3 (Abcam) deposition on erythrocytes (47).

RBC ghost preparation

Washed RBC were subjected to ice cold hypotonic lysis in 20 mM Tris, pH 7.6 and protease inhibitor (05056489001, Roche) (31). Lysates were washed three times in hypotonic lysis buffer (37000 g, 4°C, 30 minutes) before resuspension in minimal hypotonic lysis buffer. Protein concentrations were determined by protein BCA assay (23227, Pierce).

Lectin Western blot

Ghost preparations were mixed in equal volumes with SDS sample buffer containing 8M urea (31) and heated at 100°C for 10 minutes. Ghost protein samples were fractionated by gel electrophoresis using NuPage 4-12% Bis-Tris gel (Invitrogen, NP0312BOX) and transferred by Western blotting (30V, 1 hour) to polyvinylidene fluoride membrane (P 0.45 µm; 10600023 Amersham Hybond, GE Healthcare). Blots were probed with biotinylated MAL (0.2µg/ml) or SNA (2µg/ml) lectin (Vector Laboratories) and Streptavidin HRP (1:2500 dilution, 3999S, Cell Signalling) in calcium binding buffer (10mM HEPES, 150mM NaCl, 2.5M CaCl₂, pH 7.4) containing 1x Carbo-Free Blocking Solution (Vector Laboratories, SP-5040) and protease inhibitor cocktail (11836145001, Roche) before development in Amersham ECL Select substrate.
(RPN2235, GE Healthcare). 0.1% Tween-20 was added in probing and washing steps. Loading of wells was normalized by protein concentration (~6 µg per sample).

Reactive Oxygen Species (ROS) Production

Rate of ROS production was determined by loading purified oxidized or untreated RBC with oxidation sensitive dye CM-H2DCFDA (10 µM; C6827, Molecular Probes) in PBS and incubating for 60 minutes in the dark at 37°C. RBC were then washed three times, resuspended in DMEM (Thermo Fisher) and fluorescence determined immediately by spectrofluorimeter (Fluostar Optima; BMG Labtech), with excitation of 485 nm and emission 530 nm. The rate of ROS formation was calculated for the linear portion of the fluorescence/time curve generated over six hours, which typically lasted for three hours.

Glycomic analysis

Structural analysis was performed as described previously (48). Briefly, ghost membranes were subjected to sonication in the presence of CHAPS detergent, reduced in 4 M guanidine-HCl (Pierce), carboxymethylated, and digested with trypsin. The digested glycoproteins were then purified by Oasis Plus HLB Sep-Pak (186000132, Waters Corp.). N-glycans were released by peptide N-glycosidase F (E. C. 3.5.1.52; Roche Applied Science) digestion, while O-glycans were released with reductive elimination (55 mg of KBH₄/mL in 0.1 M KOH). Released N- and O-glycans were permethylated using the sodium hydroxide procedure and purified by C₁₈-Sep-Pak.

Matrix-assisted laser desorption ionization-time of flight MS (MALDI-TOF MS) and MALDI-TOF/TOF MS/MS were performed for the analysis of permethylated glycans. MS data were acquired using either a 4800 MALDI-TOF/TOF (Applied Biosystems) mass spectrometer. MS/MS data were acquired using a 4800 MALDI-TOF/TOF mass spectrometer. Permethylated samples were dissolved in 10 µl of methanol, and 1 µl of dissolved sample was premixed with 1 µl of matrix (10 mg/ml 3,4-diaminobenzophenone in 75% (v/v) aqueous MeCN), spotted onto a target plate, and dried under vacuum. For the MS/MS studies, the collision energy was set to 1 kV, and argon was used as collision gas. The 4700 Calibration standard kit, Calmix (Applied Biosystems), was used as the external calibrant for the MS mode, and [Glu1] fibrinopeptide B human (Sigma) was used as an external calibrant for the MS/MS mode.

The MS and MS/MS data were processed using Data Explorer 4.9 Software (Applied Biosystems). The processed spectra were subjected to manual assignment and annotation with the aid of a glycobioinformatics tool, GlycoWorkBench (49). The proposed assignments for the selected peaks were based on ¹²C isotopic composition together with knowledge of the biosynthetic pathways. The proposed structures were then confirmed by data obtained from MS/MS experiments.

Abbreviations
AAL Aleuria aurantia lectin

APF α-fetoprotein

DSA-FACE DNA sequencer-assisted fluorophore-assisted carbohydrate electrophoresis

GPA Glycophorin A

HbA1c glycated hemoglobin

HCC hepatocellular carcinoma

MAL Maackia amurensis lectin II

MALDI-TOF MS Matrix-assisted laser desorption ionization-time of flight MS

MBL Mannose binding lectin

NANA N-acetylneuraminic acid

PAS Periodic acid Schiff

ROS reactive oxygen species

SNA Sambucus nigra

U.euros Ulex europaeus agglutinin I

Declarations

- Ethics approval and consent to participate

Ethical approval was obtained for the study (North of Scotland REC Number 11/NS/0026). Blood samples were retrieved from residual clinical samples obtained after clinical testing from the NHS Grampian Biorepository (15/WM/0430).

- Consent for publication

Not applicable

- Availability of data and materials

Source data for the PRISM graphs for the main Figures of this publication is included in supplemental materials. Other datasets used in the current study are available from the corresponding author on reasonable request.
• Competing interests

There are no competing interests

• Funding

Principal funding for this project was provided by Wellcome Trust grant 094847 (R.N.B, L.P.E, M.A.V).

• Authors' contributions

HC coordinated the laboratory work and wrote the manuscript. MV, DT, IL helped to edit the manuscript. AB performed RBC aging related lectin work. MW formed HbA1C related RBC lectin work. BM performed RBC ROS assays. SH and AA performed the mass spectrometry sections and wrote those sections. SW helped to design and collect samples for the HbA1C section. RNB and MV both helped to design the work.

• Acknowledgements

We are grateful for the assistance provided by the Iain Fraser Cytometry Centre, at the University of Aberdeen.

References

1. Aoki T. A Comprehensive Review of Our Current Understanding of Red Blood Cell (RBC) Glycoproteins. Membranes (Basel) 2017 September 29;7(4):10.3390/membranes7040056.

2. Fernandes HP, Cesar CL, Barjas-Castro Mde L. Electrical properties of the red blood cell membrane and immunohematological investigation. Rev Bras Hematol Hemoter. 2011;33(4):297–301.

3. Ponnio M, Soukka J, Sillanaukee P, Franck J, Seveus L. Method for localization of sialic acid on cell surface and cell interior in peripheral blood: a pilot study. Microsc Res Tech 2004 December 01;65(6):292–294.

4. Lizcano A, Secundino I, Dohrmann S, Corriden R, Rohena C, Diaz S, et al. Erythrocyte sialoglycoproteins engage Siglec-9 on neutrophils to suppress activation. Blood 2017 June 08;129(23):3100–3110.

5. Schmidt W, Boning D, Braumann KM. Red cell age effects on metabolism and oxygen affinity in humans. Respir Physiol 1987 May 01;68(2):215–225.

6. Waugh RE, Narla M, Jackson CW, Mueller TJ, Suzuki T, Dale GL. Rheologic properties of senescent erythrocytes: loss of surface area and volume with red blood cell age. Blood 1992 March 01;79(5):1351–1358.

7. Singh S, Pandey KB, Rizvi SI. Erythrocyte senescence and membrane transporters in young and old rats. Arch Physiol Biochem 2016 October 01;122(4):228–234.
8. Wang Y, Liu XS. Mechanisms of aging and programmed death of erythrocytes. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2014 August 01;22(4):1124–1128.

9. Xiong Y, Xiong Y, Wang Y, Wang Z, Zhang A, Zhao N, et al. Inhibition of Glutathione Synthesis via Decreased Glucose Metabolism in Stored RBCs. Cell Physiol Biochem. 2018;51(5):2172–84.

10. Kaminsky YG, Reddy VP, Ashraf GM, Ahmad A, Benberin VV, Kosenko EA, et al. Age-related defects in erythrocyte 2,3-diphosphoglycerate metabolism in dementia. Aging Dis 2013 October 01;4(5):244–255.

11. Morrison EJ, Champagne DP, Dziectkowska M, Nemkov T, Zimring JC, Hansen KC, et al. Parabiosis Incompletely Reverses Aging-Induced Metabolic Changes and Oxidant Stress in Mouse Red Blood Cells. Nutrients 2019 June 14;11(6):1337. doi: 10.3390/nu11061337.

12. Mehdi MM, Singh P, Rizvi SI. Erythrocyte sialic acid content during aging in humans: correlation with markers of oxidative stress. Dis Markers. 2012;32(3):179–86.

13. Itakura Y, Sasaki N, Kami D, Gojo S, Umezawa A, Toyoda M. N- and O-glycan cell surface protein modifications associated with cellular senescence and human aging. Cell Biosci 2016 February 18;6:14–016.

14. Hildebrand DG, Lehle S, Borst A, Haferkamp S, Essmann F, Schulze-Osthoff K. alpha-Fucosidase as a novel convenient biomarker for cellular senescence. Cell Cycle 2013 June 15;12(12):1922–1927.

15. Flor AC, Wolfgeher D, Wu D, Kron SJ. A signature of enhanced lipid metabolism, lipid peroxidation and aldehyde stress in therapy-induced senescence. Cell Death Discov 2017 October 30;3:17075.

16. Lima AL, Illing T, Schliemann S, Elsner P. Cutaneous Manifestations of Diabetes Mellitus: A Review. Am J Clin Dermatol 2017 August 01;18(4):541–553.

17. Zhao Y, Lin W, Li Z, Lin J, Wang S, Zeng C, et al. High Expression of Mannose-Binding Lectin and the Risk of Vascular Complications of Diabetes: Evidence from a Meta-Analysis. Diabetes Technol Ther 2015 July 01;17(7):490–497.

18. Flyvbjerg A. The role of the complement system in diabetic nephropathy. Nat Rev Nephrol 2017 May 01;13(5):311–318.

19. Pinho SS, Reis CA. Glycosylation in cancer: mechanisms and clinical implications. Nat Rev Cancer 2015 September 01;15(9):540–555.

20. Moriya S, Morimoto M, Numata K, Nozaki A, Shimoyama Y, Kondo M, et al. Fucosylated fraction of alpha-fetoprotein as a serological marker of early hepatocellular carcinoma. Anticancer Res 2013 March 01;33(3):997–1001.

21. Veillon L, Fakih C, Abou-El-Hassan H, Kobeissy F, Mechref Y. Glycosylation Changes in Brain Cancer. ACS Chem Neurosci 2018 January 17;9(1):51–72.

22. Wang J, Cheng X, Zeng J, Yuan J, Wang Z, Zhou W, et al. LW-AFC Effects on N-glycan Profile in Senescence-Accelerated Mouse Prone 8 Strain, a Mouse Model of Alzheimer’s Disease. Aging Dis 2017 February 01;8(1):101–114.
23. Anguizola J, Matsuda R, Barnaby OS, Hoy KS, Wa C, DeBolt E, et al. Review: Glycation of human serum albumin. Clin Chim Acta 2013 October 21;425:64–76.

24. Kuhn V, Diederich L, Keller TCS, Kramer CM, Luckstadt W, Panknin C, et al. Red Blood Cell Function and Dysfunction: Redox Regulation, Nitric Oxide Metabolism, Anemia. Antioxid Redox Signal 2017 May 01;26(13):718–742.

25. Freitas PAC, Ehlert LR, Camargo JL. Glycated albumin: a potential biomarker in diabetes. Arch Endocrinol Metab 2017 June 01;61(3):296–304.

26. Itakura Y, Sasaki N, Kami D, Gojo S, Umezawa A, Toyoda M. N- and O-glycan cell surface protein modifications associated with cellular senescence and human aging. Cell Biosci 2016 February 18;6:14–016.

27. Vanhooren V, Dewaele S, Libert C, Engelborghs S, De Deyn PP, Toussaint O, et al. Serum N-glycan profile shift during human ageing. Exp Gerontol 2010 October 01;45(10):738–743.

28. Satomaa T, Heiskanen A, Mikkola M, Olsson C, Blomqvist M, Tiittanen M, et al. The N-glycome of human embryonic stem cells. BMC Cell Biol 2009 June 02;10:42–2121.

29. Yang S, Höti N, Yang W, Liu Y, Chen L, Li S, et al. Simultaneous analyses of N-linked and O-linked glycans of ovarian cancer cells using solid-phase chemoenzymatic method. Clin Proteomics 2017 January 13;14:3–017.

30. Hendrickson OD, Nikitushkin VD, Zherdev AV, Dzantiev BB. Lectin-based detection of Escherichia coli and Staphylococcus aureus by flow cytometry. Arch Microbiol 2019 April 01;201(3):313–324.

31. Sun Y, Cheng L, Gu Y, Xin A, Wu B, Zhou S, et al. A Human Lectin Microarray for Sperm Surface Glycosylation Analysis. Mol Cell Proteomics 2016 September 01;15(9):2839–2851.

32. Glanz VY, Myasoedova VA, Grechko AV, Orekhov AN. Sialidase activity in human pathologies. Eur J Pharmacol 2019 January 05;842:345–350.

33. Yamashita K, Kochibe N, Ohkura T, Ueda I, Kobata A. Fractionation of L-fucose-containing oligosaccharides on immobilized Aleuria aurantia lectin. J Biol Chem 1985 April 25;260(8):4688–4693.

34. Maurya PK, Kumar P, Siddiqui N, Tripathi P, Rizvi SI. Age-associated changes in erythrocyte glutathione peroxidase activity: correlation with total antioxidant potential. Indian J Biochem Biophys 2010 October 01;47(5):319–321.

35. Rizvi SI, Jha R, Maurya PK. Erythrocyte plasma membrane redox system in human aging. Rejuvenation Res 2006 January 01;9(4):470–474.

36. Dubowitz N, Xue W, Long Q, Ownby JG, Olson DE, Barb D, et al. Aging is associated with increased HbA1c levels, independently of glucose levels and insulin resistance, and also with decreased HbA1c diagnostic specificity. Diabet Med 2014 August 01;31(8):927–935.

37. Masuch A, Friedrich N, Roth J, Nauck M, Müller UA, Petersmann A. Preventing misdiagnosis of diabetes in the elderly: age-dependent HbA1c reference intervals derived from two population-based study cohorts. BMC Endocr Disord 2019 February 12;19(1):20 – 019.
38. Harreiter J, Roden M. Diabetes mellitus-Definition, classification, diagnosis, screening and prevention (Update 2019). Wien Klin Wochenschr 2019 May 01;131(Suppl 1):6–15.

39. Dominguez C, Ruiz E, Gussinye M, Carrascosa A. Oxidative stress at onset and in early stages of type 1 diabetes in children and adolescents. Diabetes Care 1998 October 01;21(10):1736–1742.

40. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010 October 29;107(9):1058–1070.

41. Lutz HU, Bogdanova A. Mechanisms tagging senescent red blood cells for clearance in healthy humans. Front Physiol 2013 December 25;4:387.

42. Lutz HU, Fehr J. Total sialic acid content of glycophorins during senescence of human red blood cells. J Biol Chem 1979 November 25;254(22):11177–11180.

43. Knezevic A, Gornik O, Polasek O, Pucic M, Redzic I, Novokmet M, et al. Effects of aging, body mass index, plasma lipid profiles, and smoking on human plasma N-glycans. Glycobiology 2010 August 01;20(8):959–969.

44. Chaudhuri J, Bains Y, Guha S, Kahn A, Hall D, Bose N, et al. The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality. Cell Metab 2018 September 04;28(3):337–352.

45. Singh VP, Bali A, Singh N, Jaggi AS. Advanced Glycation End Products and Diabetic Complications. Korean J Physiol Pharmacol 2014 February 01;18(1):1–14.

46. Blasi B, D'Alessandro A, Ramundo N, Zolla L. Red blood cell storage and cell morphology. Transfus Med 2012 April 01;22(2):90–96.

47. Hall AM, Cairns LS, Altmann DM, Barker RN, Urbaniak SJ. Immune responses and tolerance to the RhD blood group protein in HLA-transgenic mice. Blood 2005 March 01;105(5):2175–2179.

48. Jang-Lee J, North SJ, Sutton-Smith M, Goldberg D, Panico M, Morris H, et al. Glycomic profiling of cells and tissues by mass spectrometry: fingerprinting and sequencing methodologies. Methods Enzymol. 2006;415:59–86.

49. Ceroni A, Maass K, Geyer H, Geyer R, Dell A, Haslam SM. GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J Proteome Res 2008 April 01;7(4):1650–1659.