SUPPLEMENTAL MATERIAL:

Appendix 1 – Study Protocol Pages 1 - 6
Appendix 2 - Data sources and search strategy Page 7
Appendix 3 – QUADAS-2 questionnaire Pages 8 - 10
Appendix 4 – Excluded full-text studies Pages 11 - 12
Appendix 5 – Secondary analysis of E/e’ correlation with LVFP Pages 13 - 26
Appendix 6 – Secondary analysis of sensitivity/specificity of E/e’ cutoffs to predict elevated LVFP Pages 27 - 41
Appendix 7 – Optimal cutoffs and AUC for elevated LVFP Pages 42 - 44
Appendix 8 – Secondary analysis of sensitivity/specificity of E/e’ cutoffs to predict normal LVFP Pages 45 - 58
APPENDIX 1

Evidence-based assessment of diagnostic accuracy of tissue Doppler echocardiographic index, E/e’ for estimation of LV filling pressure and diastolic dysfunction/ heart failure with preserved ejection fraction.

Protocol for Systematic review and Meta-analysis study.

We will follow PRISMA guidelines \(^1\) and Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy \(^2\) in conducting this study.

Summary

Left ventricular Diastolic dysfunction (LVDD) causing heart failure with preserved ejection fraction (HFpEF) is a major clinical problem. Although echocardiography is recommended for noninvasive evaluation of LVDD/HFpEF and is currently routinely used in clinical practice and research, the diagnostic accuracy of echocardiographic variables is not well defined. We hypothesize that commonly utilized echocardiographic tissue Doppler index E/e’ for estimating left ventricular filling pressure and diagnosis of LVDD/HFpEF is not very well validated.

Background

Target conditions being diagnosed

Diastolic dysfunction is an important cause of Heart failure (HF) with preserved ejection fraction (pEF) and a major medical and public health issue. \(^3\)–\(^6\) The diagnosis of HFpEF is more challenging than the diagnosis of HF with reduced EF because it is largely one of excluding other potential non-cardiac causes of symptoms suggestive of HF. Epidemiological studies indicate that varying severity of diastolic dysfunction is frequently present in asymptomatic population. \(^3\) Diastolic dysfunction is predicative of developing overt heart failure and all-cause mortality. \(^3,4\) Furthermore, there is increasing prevalence of HFpEF but no significant improvement in survival with time when compared to HF with reduced EF. \(^5,6\)

Index tests

Echocardiography is the cornerstone for the noninvasive evaluation and quantitation of diastolic dysfunction. \(^7,8\) Myocardial stiffness and relaxation abnormalities in diastolic dysfunction result in elevated LVFP that is indirectly evaluated by echocardiography. \(^7,8\)

Pulsed-wave Doppler technique is performed in the apical 4-chamber view to obtain peak early (E) and late (A) mitral inflow velocities, which primarily reflect pressure gradient between the left atrium and left ventricle during early and late diastolic filling, respectively. \(^7\) Tissue Doppler imaging (TDI) is implemented to acquire mitral annular velocities. \(^7,8\) In conjunction with mitral peak early filling velocity E, the ratio of E/e’ can be applied for the estimation of LVFP. \(^7\) The American Society of Echocardiography (ASE) guidelines suggest that LVFP is elevated when E/e’ > 12-15 (based on location) or normal when E/e’ < 8. \(^7,8\)

Reference tests

“Gold” or superior (standard) reference tests to evaluate LV diastolic function are based on invasive LV catheterization. These include LVFP measurements, LV relaxation time constant (tau) and parameters of LV myocardial and/or chamber stiffness. There are accepted cutoffs for each of invasive measurements, so that values above cutoff typically indicate elevated LVFP and/ LV diastolic dysfunction. For the LVFP, such cutoffs are LVEDP >16 mmHg or PCWP >12 mmHg; for LV myocardial wall diastolic relaxation time, it is Tau > 48 ms; for myocardial/chamber stiffness, corresponding cutoffs are based on specific parameter calculated. \(^7,8\)
Rationale

Despite the clinical importance of mitral flow and tissue Doppler parameters in evaluating diastolic dysfunction, there is lack of rigorous evaluation of their diagnostic accuracy when compared to invasive standards. Apart from routine clinical use, these echocardiographic indices are extensively used in clinical trials and applied research to assess the changes in LV diastolic function or LVFP. We therefore decided to evaluate diagnostic accuracy and clinical utility of E/e' in prediction LVFP and/or HFpEF.

Objectives

1. To perform a search of publications in medical scientific journals evaluating clinical evidence of the relationship between echocardiographic E/e’ and LV filling pressure, LV relaxation time constant or LV myocardium/chamber stiffness in preserved ejection fraction. We consider the invasive measurements of LV diastolic function as a reference test.
2. To summarize the clinical evidences/diagnostic accuracy of echocardiographic E/e’ for estimating LV filling pressure and the diagnosis of LVDD/HFpEF.

Methods

Study search methodology:

Original clinical studies that evaluate invasive parameters of diastolic function including LVFP and echocardiographic tissue Doppler E/e’ index at rest in patient cohorts with preserved ejection fraction will be screened and analyzed from PubMed, Scopus, Embase, and Cochrane databases (Figure 1). We will also review bibliography of important papers based on our clinical experience and book monographs. Only human medical studies published in English will be analyzed.

Search strategy:

We will develop the optimal search strategy for each library with assistance of UAB Reference Service of the UAB Lister Hill medical library.

Inclusion criteria for the studies:

The studies will be included if the study methodology stated that participants have preserved/normal LVEF (LVEF ≥40 %). For studies with mixed groups or studies with no a priori criteria for normal LVEF, the studies will be included if the dataset for LVEF corresponding to Mean-2SD ≥40 % is available or can be extracted. For a normal distribution, the latter condition assumes that about 98 % of participants have LVEF ≥ 40%. This approach allows for inclusion of all clinically relevant studies since LVEF threshold between 40-50% is typically used to distinguish normal/preserved LVEF from reduced LVEF group. However the inclusion of studies for primary and secondary analysis will be based on the outline described in the statistical section.

Exclusion criteria for studies:

Studies will be excluded if the study group has >10% of patients with moderate to severe valvular heart disease, cardiomyopathy (hypertrophic, restrictive), age < 18 years, congenital heart disease, acute coronary syndrome, septic shock, cardiac transplant, significant arrhythmias that precluded from interpretation of index and / or reference test and less than 10 participants with preserved EF. Studies will be excluded if study reference tests are only based on non-invasive criteria of LVDD/HFpEF.

Index tests:

Ratio of echocardiographic mitral flow and tissue Doppler derived parameter- E/e’ lateral, E/e’ septal or E/e’ mean.
Reference tests:

Invasive LVFP measurements of LV end diastolic pressure (LVEDP), LV mean diastolic pressure (LVMDP), LV Pre-A diastolic pressure (LV pre-A DP) or pulmonary capillary wedge pressure (PCWP); LV relaxation time constant (Tau); LV stiffness parameters.

Clinical diagnosis of LVDD/HFpEF confirmed based on clinical sign and symptoms with evidence of elevated LVFP or impaired LV relaxation/ chamber stiffness with or without additional biochemical markers and/or other ancillary tests.

Data collection and analysis:

Selection of studies:

Studies will be screened from the list of citation pooled from PubMed, Scopus, Embase, and Cochrane databases based on search criteria. Other sources would also be evaluated for additional studies. Initial screening includes the analysis of the title and abstract of the cited study to identify studies that could contain data of our interest. A full text of these studies will be evaluated. If the study does not fit our conditions after in-depth text evaluation, the reason for study exclusion will be documented. Disagreements between reviewers will be solved by discussion.

![Flowchart for Systematic review](image-url)
Inclusion and classification of studies:

Studies for primary analysis: The study contains either data of Pearson’s correlation(s) between E/e’ and reference standard(s) or the study contains data sufficient to create 2x2 diagnostic tables (true positive, false positive, false negative, true negative) for E/e’ cutoff(s) recommended by ASE to identify elevated/normal LVFP and LVDD/HFpEF. Such data is available for the participants with LVEF ≥ 50%.

Studies for supplemental analysis: 1) the study contains data required for the primary analysis but such data is available for the participants with LVEF ≥ 40%; 2) the study does not contain data sufficient to create 2x2 table for recommended by ASE E/e’ cutoffs but contains other valuable diagnostic data (ROC AUC value and/or optimal E/e’ cutoff value).

Data extraction:

Data will be extracted from selected studies according to a data collection form. Disagreements will be solved by consensus. Extracted information about evaluated studies and digital data will be input in the MS Word and Excel tables.

The following study information/digital data (what is available) will be collected:

1. PMID number (if available).
2. Year of publication.
3. Number of patients with preserved LVEF.
4. Mean age, mean LVEF or LVEF cutoff.
5. Number of males/females.
6. Number of patients with HFpEF, coronary artery disease, systemic hypertension, diabetes mellitus in study cohort.
7. Clinical indications for catheterization.
8. Index test(s).
9. Reference test(s).
10. Correlation size between echocardiographic index test values and invasive reference test values.
11. True positive, false positive, true negative, and false negative data for specific index and reference test cutoff.
12. ROC AUC values for specific reference test cutoff.

If data of interest not fully provided, additional calculations will be made to extract data of interest from graphical presentations and/or tables where available.

Assessment of methodological quality of evaluated studies:

Assessment of methodological quality of evaluated studies will be performed by a modified QUADAS-2 (see Appendix S3). Risk of bias will be tested for four domains which are patient selection, index test, reference test, and flow and timing; Applicability was tested for patient selection, index and reference test domains. This questionnaire is expanded to incorporate the findings from the study of Naaktgeboren et al, 2013 to include the risks of differential verification on index test accuracy in clinical study.

Statistical analysis and data synthesis:

Statistical methodology would be based on approaches described in Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy. Forest plots of sensitivity, specificity with 95% confidence intervals will be computed in OneMetaAnalyst. Heterogeneity amongst the studies will be estimated by I² statistic. The correlation will be classified as negligible when r is between 0 – 0.3, low when r is 0.3 – 0.5, moderate when r is 0.5 – 0.7 and high when r is 0.7 – 0.9. To obtain summary points taking into account within-study variability and between-study variability (heterogeneity), we will perform hierarchical summary receiver operating characteristic (HSROC) analysis. The Rutter and Gatsonis HSROC model will be constructed in OneMetaAnalyst for each category of diagnostic analysis. The summary sensitivity and specificity values will be also utilized to calculate the relationship of positive predictive value (diagnostic precision) with prevalence for elevated or normal LVFP ranging from 5% to 95%. The latter relationships will be compiled and graphed using Matlab R2013b. Additional statistical methodologies may be required based on discussion with experts in this field. We will also explore heterogeneity by using the different sources of heterogeneity as covariate(s) in HSROC analysis. Emphasis will be placed on evaluating the robustness of evidence and its clinical applicability taking into account expected heterogeneity in the studies.
Sensitivity analysis:

We will perform secondary analyses including forest plots, HSROC analysis and summary estimates of sensitivity and specificity for the subgroups of studies if a sufficient number of studies are present for identified subgroups.

References:

1. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *BMJ*. 2009;339:b2535.

2. Macaskill P, Gatsonis C, Deeks J, Harbord R, Takwoingi Y. Chapter 10: Analysing and Presenting Results. In: Deeks J, Bossuyt P, Gatsonis C, editors. Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy Version 1. The Cochrane Collaboration; 2010.

3. Redfield MM, Jacobsen SJ, Burnett JC, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. *JAMA*. 2003;289:194–202.

4. Kane GC, Karon BL, Mahoney DW, Redfield MM, Roger VL, Burnett JC, Jacobsen SJ, Rodeheffer RJ. Progression of left ventricular diastolic dysfunction and risk of heart failure. *JAMA*. 2011;306:856–63.

5. Bursi F, Weston SA, Redfield MM, Jacobsen SJ, Pakhomov S, Nkomo VT, Mevere RA, Roger VL. Systolic and diastolic heart failure in the community. *JAMA*. 2006;296:2209–16.

6. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. *N Engl J Med*. 2006;355:251–9.

7. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelista A. Recommendations for the evaluation of left ventricular diastolic function by echocardiography. *J Am Soc Echocardiogr*. 2009;22:107–33.

8. McMurray JJ V, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, Falk V, Filippatos G, Fonseca C, Gomez-Sanchez MA, Jaarsma T, Kobel L, Lip GYH, Maggioni A Pietro, Parkhomenko A, Pieske BM, Popescu BA, Rønnemik PK, Rutten FH, Schwitter J, Seferovic P, Stepinska J, Trindade PT, Voors AA, Zannad F, Zeiher A. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart. *Eur Heart J*. 2012;33:1787–847.

9. European Study Group on Diastolic Heart. How to diagnose diastolic heart failure. *Eur Heart J*. 1998;19:990–1003.

10. Edelmann F, Wachter R, Schmidt AG, Kraigher-Krainer E, Colantonio C, Kamke W, Duvinage A, Stahrenberg R, Durstewitz K, Löffler M, Dungen H-D, Tschöpe C, Herrmann-Lingen C, Halle M, Hasenfuss G, Gelbrich G, Pieske B. Effect of spironolactone on diastolic function and exercise capacity in patients with heart failure with preserved ejection fraction: the Aldo-DHF randomized controlled trial. *JAMA*. 2013;309:781–91.

11. Kim Y-H, Kim SH, Lim SY, Cho G-Y, Baik I-K, Lim H-E, Na JO, Han SW, Ko Y-H, Shin C. Relationship between depression and subclinical left ventricular changes in the general population. *Heart*. 2012;98:1378–83.

12. Ohtani T, Mohammed SF, Yamamoto K, Dunlay SM, Weston SA, Sakata Y, Rodeheffer RJ, Roger VL, Redfield MM. Diastolic stiffness as assessed by diastolic wall strain is associated with adverse remodelling and poor outcomes in heart failure with preserved ejection fraction. *Eur Heart J*. 2012;33:1742–9.
13. Naaktgeboren CA, de Groot JAH, van Smeden M, Moons KGM, Reitsma JB. Evaluating diagnostic accuracy in the face of multiple reference standards. *Ann Intern Med.* 2013;159:195–202.

14. Wallace B, Dahabreh I, Trikalinos T, Lau J, Trow P, CH S. Closing the Gap between Methodologists and End-Users: R as a Computational Back-End. *J Stat Softw.* 2012;49:1–15.

15. Hinkle DE, Wiersma W, Urs SG. Applied Statistics for the Behavioral Sciences. 5th Ed. Boston, MA: Houghton Mifflin; 2003.

16. Rutter CM, Gatsonis CA. A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations. *Stat Med.* 2001;20:2865–84.
| Search 1 | diastol* AND (echo* OR Doppl* OR ultrasound* OR acous*). Limits: English, Journal Article, Humans. Time range: 1/1/1980 - 11/14/2013 (identified 12733 document citations). |
|---------|--|
| Search 2 | diastol* AND catheter* AND Doppler* AND pressure. Limits: English, Journal Article, Humans. Time range: 1/1/1970 - 04/28/2014 (identified 738 document citations [551 new and 187 duplicates]) |
| Search 3 | echocardiography AND tissue doppler AND catheterization. Limits: English. Time range: not specified - 02/06/2015 (identified 503 document citations [291 new and 212 duplicates]) |
| Search 4 | (ventric* pressure*) OR "ventricular pressure"[MeSH Terms] OR "ventricular dysfunction"[MeSH Terms] AND (Doppler* OR E/e* OR "echocardiography, doppler"[MeSH Terms]). Limits: English. Time range: not specified - 02/16/2015 (identified 9776 document citations [5216 new and 4560 duplicates]). All studies of our interest, which were selected from the results of Searches 1, 2, and 3 in PubMed, were also identified in the document citations of the Search 4. |

Search 1	(TITLE-ABS-KEY (echocardiography) OR TITLE-ABS-KEY (tissue Doppler) AND TITLE-ABS-KEY (catheterization) AND DOCTYPE ("ar") AND SUBJAREA (mult OR agri OR bioc OR immu OR phar OR mult OR medi OR nurs OR vete OR dent OR heal) AND (LIMIT-TO (LANGUAGE, "English"))). Time range: not specified - 02/06/2015 (identified 512 document citations [167 new and 345 PubMed duplicates])
Search 2	(TITLE-ABS-KEY (ventric* pressure*) OR TITLE-ABS-KEY (ventricular dysfunction) AND TITLE-ABS-KEY (doppler*) OR TITLE-ABS-KEY (e/e*) OR TITLE-ABS-KEY (echocardiography,doppler)) AND SUBJAREA (mult OR medi OR nurs OR vete OR dent OR heal) AND NOT INDEX (medline), AND (LIMIT-TO (LANGUAGE, "English")) AND (LIMIT-TO (SUBJAREA, "MEDI")) AND (LIMIT-TO (DOCTYPE, "ar") OR LIMIT-TO (DOCTYPE, "cp")). Time range: not specified - 02/16/2015 (identified 1413 document citations, as not indexed in Medline)

| Search 1 | (ventric* near/2 pressure or ventric* near/3 'diastolic pressure' or ventric* near/3 'filling pressure' or 'ventricular pressure'/exp or 'ventricular pressure' or 'ventricular dysfunction'/exp or 'diastolic heart failure'/exp or 'diastolic heart failure' or 'heart failure with normal' or 'heart failure with preserved' and ('doppler' or 'e/e' or 'echocardiography doppler'/exp or 'echocardiography doppler') and ([article]/lim or [article in press]/lim or [conference paper]/lim or [letter]/lim) and [english]/lim and [embase]/lim) and [embase]/lim and not [medline]/lim. Time range: not specified - 03/05/2015 (identified 594 document citations, as not indexed in Medline) |

Cochrane Library (March 2015) (total of 48 original citations (conference abstracts))

Search 1	"filling pressure" AND "Doppler" (gives 78 citations [5 new and 73 duplicates])
Search 2	"filling pressure" AND "E/e" (gives 42 citations [6 new and 36 duplicates])
Search 3	"diastolic dysfunction" AND "e/e" (gives 46 citations [10 new and 36 duplicates])
Search 4	"diastolic dysfunction" AND "tissue Doppler" (gives 70 citations [26 new and 44 duplicates])
Search 5	"diagnostic accuracy" AND "diastolic dysfunction" (gives 3 citations [0 new and 3 duplicates])
Search 6	"diagnostic accuracy" AND "diastolic heart failure" (gives 0 citations [0 new and 0 duplicates])
Search 7	"diagnostic accuracy" AND "tissue doppler" (gives 6 citations [1 new and 5 duplicates])
Search 8	"diagnostic accuracy" AND "E/e" (gives 2 citations [0 new and 2 duplicates])
APPENDIX 3

TOOL FOR ASSESSMENT OF RISK OF BIAS AND APPLICABILITY

(Modified from QUADAS-2 publications listed in the end)

PMID:
Title:
Reviewer:
Date:
Group
Primary/Supplemental

Note: Intent is to evaluate the paper to assess application for our study question (and not to critique the paper)

DOMAIN 1: PATIENT SELECTION

A. Risk of Bias

Description:

Study Design	Case-Control	Cross-Sectional	Cohort	Randomized Control Trial
Data Collection	Prospective	Retrospective	Unknown	
Setting of patient selection	Clinic/ Cath lab/Echo/ ER/ ICU/ In-hospital/ Out-patient/ Community/ Others			
Clinical characterization	complete data sheet (appendix A)			

Signaling Questions:

Was a consecutive sample of patients enrolled? Yes/No/Unclear
Was a case-control design avoided? Yes/No/Unclear
Did the study avoid inappropriate exclusions? (confirmed cases of diastolic dysfunction) Yes/No/Unclear
Did the study avoid inappropriate inclusions (valvular heart disease, HCM, RCM, Afib)? Yes/No/Unclear
Could the selection of patients have introduced bias? RISK: LOW /HIGH/UNCLEAR

Comments: specify why bias

B. Concerns regarding applicability

Consider prior testing, presentation, intended use of index test and setting, severity of the target condition, demographic features, co-morbidities, preserved LVEF patients mixed with depressed LVEF patients

Is there concern that the included patients do not match our study question? CONCERN: LOW /HIGH/UNCLEAR

Comments: specify why bias

DOMAIN 2: INDEX TEST: E/e’ lateral/septal/mean

A. Risk of Bias

Were the index test results interpreted without knowledge of the results of the reference standard? Yes/No/Unclear
(Yes only if specific mention of blinding/averaging of several measurements)
If a threshold was used, was it pre-specified? Yes/No/Unclear/ Not applicable
Could the conduct or interpretation of the index test have introduced bias? RISK: LOW/ HIGH/UNCLEAR

Comments: specify why bias
A. Risk of Bias

Is the reference standard likely to correctly classify the target condition?
Yes/No/Unclear

Were the reference standard results interpreted without knowledge of the results of the index test?
Yes/No/Unclear

If 2, was there a partial verification bias?
Yes/No/Unclear/ Not applicable

Was the use of reference standard only dependent on the results of the index test?
Yes/No/Unclear

Was reference standard not applied to a large percentage of the participants?
Yes/No/Unclear

If 3, was composite reference standard/panel diagnosis used?
Yes/No/ Not applicable

If 4, was there Differential Verification bias?
Yes/No/ Unclear/ Not applicable

Was the choice of reference standard completely dependent on the results of the index test?
Yes/No/Unclear

If the answer to the first question is no, how accurate is the inferior reference standard?
Yes/No/Unclear

Was large percentage of the participants diagnosed by use of the inferior reference standard?
Yes/No/Unclear

If follow-up is used as the inferior reference standard, does it identify almost all hidden cases present at the time of the index test but very few new cases that develop afterward? Does follow-up detect the same type of cases as the preferred reference standard?
Yes/No/Unclear

Could the reference standard, its conduct, or its interpretation have introduced bias regarding our study question? RISK: LOW /HIGH/UNCLEAR

Comments: specify why bias

B. Concerns regarding applicability:

Was consistent Definition of Target Condition used?
Yes/No/Unclear

Were there concerns regarding Test technology?
Yes/No/Unclear

Were there concerns regarding Test execution?
Yes/No/Unclear

Is there concern that the test condition as defined by the reference standard does not match the study question? CONCERN: LOW /HIGH/UNCLEAR

Comments: specify why bias
DOMAIN 4: FLOW AND TIMING

A. Risk of Bias

Was there an appropriate interval between index test(s) and reference standard? Yes/No/Unclear
Did all patients receive a reference standard? Yes/No/Unclear
Did patients receive the same reference standard? Yes/No/Unclear
Were all patients included in the analysis? Yes/No/Unclear
Could the patient flow have introduced bias related to our study question? RISK: LOW /HIGH/UNCLEAR

Comments: specify why bias

Appendix A: Data sheet

Sample Size: Overall
Sample Size for Preserved EF
What was LVEF criterion for preserved EF:
Clinical characteristics of Preserved LVEF:

Variable	Yes	No	Not Quantified	Comments
Number	(%)			
Dyspnea				
NYHA class				
6 MWD				
Chest Pain				
Exercise stress test				
Left Ventricular Hypertrophy				
Heart Failure				
BNP				
Ethnicity/ Race				
Gender				
Age				
Body Habitus (weight, BSA, BMI)				
Habits (smoking, Etoh, Drugs)				
Co morbidities				
Hypertension				
Diabetes				
CAD				
CKD				
Sleep Apnea				
COPD				
Obesity				
Medications				
Socio Economic Status				
(education, salary etc)				

References
1. Whiting PF et at Quadas 2 Annals of Internal Medicine 2011, 155: 529
2. Whiting PF et al J of clinical Epidemiology 2013, 66: 1093
3. Naaktgeboren et al Annals of Internal Medicine 2013: 159: 195
4. Groot et al. BMJ 2011;343:d4770
APPENDIX 4

Full-text studies excluded with the reasons

Studies are identified with PMID (if available)

TEE approach:

1	8078825	
2	9052288	
3	12356384	
4	23190400	

LVEF not specified

5	1905874	
6	1985353	
7	1987211	
8	2214134	
9	2278168	
10	2360494	
11	2498005	
12	2683699	
13	2782257	
14	2871286	
15	2958532	
16	3177175	
17	3209254	
18	7730680	
19	7771173	
20	7817903	
21	8319326	
22	8496538	
23	8606285	
24	8933237	
25	9046493	
26	9237029	
27	9247521	
28	10149211	
29	10969625	
30	11368862	

Data available only for mixed LVEF group (extraction of data for LPvEF patients not possible)

31	11593199	
32	11884251	
33	12487633	
34	16195393	
35	18325734	
36	24319341	
37	1827808	
38	7780619	
39	8736006	
40	1607511	
41	3392336	
42	8245357	
43	8557907	
44	9015003	
45	10913476	
46	10913478	
47	11279327	
48	11391284	
49	11560356	
50	11770447	
51	11968390	
52	12487633	
53	14563593	
54	14652601	
55	15653227	
56	15891754	
57	16500488	
58	16516591	
59	16682317	
60	20197576	

Data available only for low LVEF group

61	23103948	
62	18986412	
63	19168324	
64	19560662	
65	18612440	
66	18635276	
67	18771556	
68	17069599	
69	17196474	
70	17451867	
71	17484986	
72	17541761	
73	17652894	
74	17658724	
75	17884382	
76	18514937	
77	18538465	
78	16682317	
79	16682317	
80	17560894	
81	21245360	
82	22567531	

No results of our interest:

83	Moladoust H. et al, Echocardiography: A Jnl. of CV Ultrasound & Allied Tech. (2009) 26 (4), 403-411	
84	Said K. et al, The Egyptian Heart Journal (2012) 64, 69-74	
85	11944011	
86	19602775	

Moladoust H. et al, Echocardiography: A Jnl. of CV Ultrasound & Allied Tech. (2009) 26 (4), 403-411

Said K. et al, The Egyptian Heart Journal (2012) 64, 69-74
120.	9043850	162.	15781734	204.	16803936	244.	23316319	255.	3280641														
121.	9104907	163.	15948097	205.	16970713	245.	11796546																
122.	9137220	164.	16016464	206.	24839086	246.	11263606																
123.	9203493	165.	16229380	207.	10440167	247.	11263607																
124.	9424066	166.	16284230	208.	11175032	248.	11270316																
125.	9950969	167.	16344121	209.	11595603	249.	11585994																
126.	10230946	168.	16434758	210.	12714167	250.	23582091																
127.	10441218	169.	16575023	211.	15307890	251.	10636281																
128.	10980082	170.	16949491	212.	16171419	252.	10849514																
129.	11158951	171.	17207727	213.	24621836	253.	10910486																
130.	11407738	172.	17313636	214.	24839086	254.	11079674																
131.	11408426	173.	17390199	215.	24943993	216.	24954460																
132.	11433812	174.	17394966	217.	24958524	218.	25249511																
133.	11433813	175.	17488411	219.	25441329	220.	25510308																
134.	11433824	176.	18198205	221.	21602549	222.	23883877																
135.	11482709	177.	18471459	223.	24869961	224.	24902871																
136.	11490324	178.	18597919	225.	Cong T. et al, Experimental & Clinical Cardiology (2014) 20 (1), 2479-2490																		
137.	11550110	179.	19203992	226.	2296893																		
138.	11585994	180.	20058507	227.	2672760																		
139.	11593203	181.	20553318	228.	15325936																		
140.	11696830	182.	20625213	229.	9247519																		
141.	11796872	183.	20682947	230.	3177234																		
142.	11809440	184.	20970305	231.	2360518																		
143.	11917193	185.	21262980	232.	2913110																		
144.	12094170	186.	21316304	233.	7710749																		
145.	12707119	187.	21426391	234.	9385913																		
146.	12714167	188.	21683506	235.	2360518																		
147.	12766750	189.	22577437	236.	2913110																		
148.	12804750	190.	22705767	237.	7710749																		
149.	12848693	191.	22739787	238.	9385913																		
150.	12940700	192.	23146480	239.	11153819																		
151.	14640103	193.	23194487	240.	15389248																		
152.	14641374	194.	23689521	241.	18091642																		
153.	14652600	195.	23879336	242.	20609653																		
154.	14670073	196.	24319341	243.	21723693																		
155.	14672750	197.	22066607	244.	11179524																		
156.	14717717	198.	2705380	245.	15084546																		
157.	14752488	199.	9183590	246.	17291934																		
158.	15172419	200.	11502702	247.	22645191																		
159.	15309696	201.	12167386	248.																			
160.	15476639	202.	15979445	249.																			
161.	15480886	203.	16174119	250.																			

Patients with comorbidities
(excluded from our analysis)

255. 3280641
256. 1869739
257. 11121596
258. 21718357
259. 18636341
260. 22473456
261. 23555178
262. 24334557
263. 11093099
264. 22632828
265. 23628301
266. 25611697
267. 23074579
268. 23940422
269. 24626519
270. 24995376
271. 25414078
272. Wang W. et al, Acta Cardiol Sin (2012), 28, 206-215
273. Ahn J. et al, e-Herz (2013), DOI 10.1007/s00059-013-4010-0
274. 21718351

Repetitive data

275. 20813283
5.1. Subgroup analysis for E/e’ lateral and LVFP

E/e’ lateral: Dataset for subgroup analysis (see also Tables 1 and 2)

LVFP	r	se	Data	Timing	% HFpEF	% CAD	% HTN	% DM	Indication for cath
LVEDP Kidawa et al, 2005 (24)	0.58	0.118	Primary	Simultaneously	unclear	unclear	unclear	unclear	angiography
LVEDP Manouras et al, 2013 (48) EF>55%	0.33	0.157	Primary	Simultaneously	unclear	no CAD	unclear	unclear	angiography
LVEDP Kasner et al, 2010 (37)	0.57	0.148	Primary	Simultaneously	~60% HF	no CAD	~60% HTN	~10% DM	dyspnea/angio
LVEDP Previtali et al, 2012 (46)	0.1	0.134	NOT Simultan.	no HF	unclear	unclear	unclear	unclear	angiography
LVEDP Hadano et al, 2005 (23)	0.41	0.115	Primary	NOT Simultan.	unclear	some CAD	unclear	unclear	angiography
LVEDP Kasner et al, 2007 (26)	0.71	0.097	Primary	NOT Simultan.	~80% HF	no CAD	~60% HTN	~10% DM	dyspnea/angio
LVEDP Özer et al, 2011 (43)	0.3	0.145	Primary	NOT Simultan.	unclear	all CAD	~60% HTN	~40% DM	angiography
LVEDP Hajahmadi Poorrafsanjani et al, 2014 (50)	0.4	0.107	Primary	NOT Simultan.	unclear	unclear	unclear	unclear	angiography
LVMDP Ommen et al, 2000 (15)	0.4	0.127	Primary	Simultaneously	unclear	unclear	unclear	unclear	angiography

LVFP=left ventricular filling pressure; LVEDP=left ventricular end diastolic pressure; LVMDP=left ventricular mean diastolic pressure; Pre-A DP=left ventricular pre–A wave diastolic pressure; PCWP=pulmonary capillary wedge pressure; CI=confidence interval; HFpEF=heart failure with preserved Ejection Fraction; CAD=coronary artery disease; HTN=hypertension; DM=diabetes mellitus; ICU=intensive care unit. Studies are identified by the first author, year of publication, and reference number (in brackets) as cited in the main text.
Heterogeneity amongst the studies was estimated by I² statistic. Studies are identified by the first author, year of publication, and reference number (in brackets) as cited in the main text. OpenMetaAnalyst software (12) for Windows (64-bit version) was used for statistical analysis including graphical presentations of forest plots.
D. PCWP (simultaneous and NOT simultaneous)

Studies	Estimate (95% C.I.)
Rivas–Gott et al, 2003 (18)	0.700 (0.508, 0.922)
Nagaseh et al, 1998 (14)	0.720 (0.522, 0.918)
Subgroup Simultaneously (I²=0 %, P=0.887)	0.710 (0.572, 0.848)
Maeder et al, 2011 (42)	-0.040 (-0.376, 0.296)
Gonzalez–Vitchez et al, 2002 (16)	0.540 (0.239, 0.841)
Hadano et al, 2005 (23)	0.540 (0.332, 0.748)
Subgroup NOT Simultaneously (I²=78.01 %, P=0.011)	0.363 (0.020, 0.706)
Overall (I²=76.06 %, P=0.002)	0.520 (0.304, 0.737)

E. Pre-A (primary and supplemental data)

Studies	Estimate (95% C.I.)
Previtali et al, 2012 (46)	0.110 (-0.153, 0.373)
Manouras et al, 2013 (48) EF>55%	0.400 (0.100, 0.700)
Mansencal et al, 2004 (20)	0.180 (-0.274, 0.634)
Hsiao et al, 2011 (40)	0.230 (0.037, 0.423)
Subgroup Primary (I²=0 %, P=0.566)	0.228 (0.096, 0.360)
Poerner et al, 2003 (17) E/A>0.9	0.490 (0.302, 0.678)
Subgroup Supplemental (I²=NA, P=NA)	0.490 (0.302, 0.678)
Overall (I²=43.5 %, P=0.132)	0.302 (0.150, 0.454)

F. Pre-A (simultaneous and NOT simultaneous)

Studies	Estimate (95% C.I.)
Manouras et al, 2013 (48) EF>55%	0.400 (0.100, 0.700)
Subgroup Simultaneously (I²=NA, P=NA)	0.400 (0.100, 0.700)
Previtali et al, 2012 (46)	0.110 (-0.153, 0.373)
Mansencal et al, 2004 (20)	0.180 (-0.274, 0.634)
Hsiao et al, 2011 (40)	0.230 (0.037, 0.423)
Poerner et al, 2003 (17) E/A>0.9	0.490 (0.302, 0.678)
Subgroup NOT Simultaneously (I²=55.4 %, P=0.081)	0.278 (0.092, 0.464)
Overall (I²=43.5 %, P=0.132)	0.302 (0.150, 0.454)
For combined LVFP analysis, if the study measured two LVFP parameters we chose one that had the highest correlation coefficient.

G. $E/e'_\text{\textit{lateral}}$: combined LVFP – (primary and supplemental data)

Studies	Estimate (95% C.I.)
LVMDP Ommen et al, 2000 (15)	0.400 (0.180, 0.620)
LVEDP Kidawa et al, 2005 (24)	0.580 (0.349, 0.811)
LVEDP Krasner et al, 2010 (37)	0.570 (0.280, 0.860)
PCWP Rivas-Goetz et al, 2003 (18)	0.700 (0.508, 0.892)
Pre-A Manouras et al, 2013 (48) EF>55%	0.400 (0.192, 0.608)
LVEDP Ozer et al, 2011 (43)	0.300 (0.016, 0.584)
Pre-A Mansencal et al, 2004 (20)	0.190 (-0.275, 0.635)
LVEDP Hajjmosadi Poumatsanani et al, 2014 (50)	0.400 (0.220, 0.582)
PCWP Maeder et al, 2011 (42)	-0.040 (-0.375, 0.295)
PCWP Gonzalez–Vidoch et al, 2002 (16)	0.540 (0.238, 0.842)
Pre-A Previtali et al, 2012 (46)	0.110 (-0.153, 0.373)
LVEDP Krasner et al, 2007 (26)	0.710 (0.520, 0.900)
PCWP Hadano et al, 2005 (23)	0.540 (0.332, 0.748)
Subgroup Primary ($I^2=64.6\%, P=0.001$)	0.440 (0.325, 0.555)
PCWP Naghavi et al, 1998 (14) EF>45% Sinus Tachycardia >100bpm	0.720 (0.522, 0.918)
Pre-A Poerner et al, 2003 (17) E/A=0.9	0.490 (0.302, 0.678)
LVEDP Yesildag et al, 2011 (44) EF>40%	0.740 (0.487, 0.993)
Subgroup Supplemental ($I^2=65.17\%, P=0.161$)	0.639 (0.475, 0.803)
Overall ($I^2=64.84\%, P=0.000$)	0.483 (0.382, 0.583)

H. $E/e'_\text{\textit{lateral}}$: combined LVFP – (simultaneous and NOT simultaneous)

Studies	Estimate (95% C.I.)
LVMDP Ommen et al, 2000 (15)	0.400 (0.180, 0.620)
LVEDP Kidawa et al, 2005 (24)	0.580 (0.349, 0.811)
LVEDP Krasner et al, 2010 (37)	0.570 (0.280, 0.860)
PCWP Rivas-Goetz et al, 2003 (18)	0.700 (0.508, 0.892)
Pre-A Manouras et al, 2013 (48) EF>55%	0.400 (0.192, 0.608)
Subgroup Simultaneously ($I^2=43.49\%, P=0.115$)	0.556 (0.447, 0.685)
LVEDP Ozer et al, 2011 (43)	0.300 (0.016, 0.584)
Pre-A Mansencal et al, 2004 (20)	0.180 (-0.275, 0.635)
LVEDP Hajjmosadi Poumatsanani et al, 2014 (50)	0.400 (0.190, 0.610)
PCWP Maeder et al, 2011 (42)	-0.040 (-0.375, 0.295)
Pre-A Poerner et al, 2003 (17) E/A=0.9	0.400 (0.202, 0.598)
PCWP Gonzalez–Vidoch et al, 2002 (16)	0.540 (0.238, 0.842)
Pre-A Previtali et al, 2012 (46)	0.110 (-0.153, 0.373)
LVEDP Yesildag et al, 2011 (44) EF>40%	0.740 (0.497, 0.993)
LVEDP Krasner et al, 2007 (26)	0.710 (0.520, 0.900)
PCWP Hadano et al, 2005 (23)	0.540 (0.322, 0.748)
Subgroup NOT Simultaneously ($I^2=70.63\%, P=0.000$)	0.422 (0.274, 0.569)
Overall ($I^2=64.84\%, P=0.000$)	0.493 (0.382, 0.583)
I. \(E/e'_{\text{lateral}}\): combined LVFP – (HFpEF prevalence)

Studies	Estimate (95% C.I.)
Pre-A Previtali et al. 2012 (46)	0.110 (-0.153, 0.373)
Pre-A Mansencal et al. 2004 (20)	0.180 (-0.275, 0.635)
PCWP Maeder et al. 2011 (42)	-0.040 (-0.375, 0.295)
LVEDP Kasner et al. 2010 (37)	0.570 (0.280, 0.860)

J. \(E/e'_{\text{lateral}}\): combined LVFP – (CAD prevalence)

Studies	Estimate (95% C.I.)
Pre-A Mansencal et al. 2004 (20)	0.180 (-0.275, 0.635)
LVEDP Ozer et al. 2011 (43)	0.300 (0.016, 0.584)
Subgroup All CAD (I^2=0 %, P=0.661)	0.266 (0.025, 0.507)
PCWP Hadano et al. 2005 (23)	0.540 (0.332, 0.748)
LVEDP Kasner et al. 2010 (37)	0.570 (0.280, 0.860)
Subgroup Some CAD (I^2=20 %, P=0.098)	0.400 (0.192, 0.608)
Overall (I^2=48.41 %, P=0.084)	0.489 (0.346, 0.633)

K. \(E/e'_{\text{lateral}}\): Primary data variables measured simultaneously (shown as table 4B in the main text)

Studies	Estimate (95% C.I.)
LVMDP Ommen et al. 2000 (15)	0.460 (0.189, 0.620)
LVMDP Kidawa et al. 2005 (24)	0.560 (0.349, 0.811)
LVEDP Kasner et al. 2010 (37)	0.570 (0.280, 0.860)
LVEDP Manouras et al. 2013 (48) EF55 %	0.330 (0.022, 0.638)
Subgroup LVEDP (I^2=40 %, P=0.401)	0.513 (0.357, 0.669)
PCWP Rivas-Gotz et al. 2003 (18)	0.760 (0.508, 0.922)
Subgroup PCWP (I^2=20 %, P=0.178)	0.508 (0.390, 0.626)
5.2. Subgroup analysis for E/e’_{septal} and LVFP

E/e’_{septal}: Dataset for subgroup analysis (see also Tables 1 and 2)

LVFP	r	se	Data	Timing	% HfEF	% CAD	% HTN	% DM	Indication for cath
LVEDP									
LVEDP Manouras et al, 2013 (48) EF>55%	0.03	0.167	Primary	Simultaneously	unclear	no CAD	unclear	unclear	angiography
LVEDP Kidawa et al, 2005 (24)	0.29	0.138	Primary	Simultaneously	unclear	unclear	unclear	unclear	angiography
LVEDP Previtali et al, 2012 (46)	0.22	0.132	Primary	NOT Simultan.	no HF	unclear	unclear	unclear	
LVEDP Özer et al, 2011 (43)	0.54	0.128	Primary	NOT Simultan.	unclear	all CAD	~60% HTN	~40% DM	angiography

PCWP									
PCWP Rivas-Gotz et al, 2003 (18)	0.55	0.115	Primary	Simultaneously	unclear	unclear	unclear	unclear	ICU/Cath lab
PCWP Maeder et al, 2011 (42)	0.23	0.167	Primary	NOT Simultan.	~40% HF	unclear	unclear	unclear	HF/PAH/volunteers
PCWP Tatsumi et al, 2014 (51)	0.64	0.172	Primary	NOT Simultan.	unclear	unclear	unclear	unclear	

Pre-A									
Pre-A Manouras et al, 2013 (48) EF>55%	0.02	0.161	Primary	Simultaneously	unclear	no CAD	unclear	unclear	angiography
Pre-A Previtali et al, 2012 (46)	0.28	0.129	Primary	NOT Simultan.	no HF	unclear	unclear	unclear	
Pre-A Hsiao et al, 2011 (40)	0.31	0.096	Primary	NOT Simultan.	unclear	all CAD	~70% HTN	~50% DM	angiography

LVMDP									
LVMDP Ommen et al, 2000 (15)	0.47	0.112	Primary	Simultaneously	unclear	unclear	unclear	unclear	
LVMDP Rudko et al, 2008 (32)	0.47	0.145	Primary	Simultaneously	~20% HF	~80% CAD	~50% HTN	unclear	

LVFP=left ventricular filling pressure; LVEDP=left ventricular end diastolic pressure; LVMDP=left ventricular mean diastolic pressure; Pre-A DP=left ventricular pre-A wave diastolic pressure; PCWP=pulmonary capillary wedge pressure; CI=confidence interval; HfEF=heart failure with preserved Ejection Fraction; CAD=coronary artery disease; HTN=hypertension; DM=diabetes mellitus; ICU=intensive care unit. Studies are identified by the first author, year of publication, and reference number (in brackets) as cited in the main text.
Heterogeneity amongst the studies was estimated by I² statistic. Studies are identified by the first author, year of publication, and reference number (in brackets) as cited in the main text. OpenMetaAnalyst software (12) for Windows (64-bit version) was used for statistical analysis including graphical presentations of forest plots.
E. Pre-A (primary and supplemental data)

Studies	Estimate (95% C.I.)
Hsiao et al, 2011 (40)	0.310 (0.122, 0.498)
Previtali et al, 2012 (46)	0.280 (0.026, 0.534)
Manours et al, 2013 (48) EF>55%	0.020 (-0.296, 0.336)
Subgroup Primary (I²=19.47 % , P=0.289)	0.239 (0.084, 0.395)
Poerner et al, 2003 (17)	0.400 (0.203, 0.597)
Subgroup Supplemental (I²=NA , P=NA)	0.400 (0.203, 0.597)
Overall (I²=25.82 % , P=0.257)	0.288 (0.155, 0.421)

F. Pre-A (simultaneous and NOT simultaneous)

Studies	Estimate (95% C.I.)
Manours et al, 2013 (48) EF>55%	0.020 (-0.296, 0.336)
Subgroup Simultaneously (I²=NA , P=NA)	0.020 (-0.296, 0.336)
Hsiao et al, 2011 (40)	0.310 (0.122, 0.498)
Previtali et al, 2012 (46)	0.280 (0.026, 0.534)
Poerner et al, 2003 (17)	0.400 (0.203, 0.597)
Subgroup NOT Simultaneously (I²=0 % , P=0.717)	0.337 (0.217, 0.457)
Overall (I²=25.82 % , P=0.257)	0.288 (0.155, 0.421)

SUBGROUP ANALYSIS for COMBINED LVFP and E/e’ septal

For combined LVFP analysis, if the study measured two LVFP parameters we chose that had the highest correlation coefficient.

G. E/e’ septal: combined LVFP (primary and supplemental data)

Studies	Estimate (95% C.I.)
LVEDP Özer et al, 2011 (43)	0.540 (0.289, 0.791)
LVEDP Manours et al, 2013 (48) EF>55%	0.030 (-0.297, 0.357)
Pre–A Previtali et al, 2012 (46)	0.280 (0.027, 0.533)
LVEDP Kitawa et al, 2005 (24)	0.290 (0.020, 0.560)
LVMDP Ommen et al, 2000 (15)	0.470 (0.250, 0.690)
PCWP Maeder et al, 2011 (42)	0.230 (-0.097, 0.557)
PCWP Tatsumi et al, 2014 (51)	0.640 (0.303, 0.977)
PCWP Rivas–Gotz et al, 2003 (18)	0.550 (0.325, 0.775)
Pre–A Hsiao et al, 2011 (40)	0.310 (0.122, 0.498)
LVMDP Rudko et al, 2008 (32)	0.470 (0.186, 0.754)
Subgroup Primary (I²=34.63 % , P=0.132)	0.389 (0.287, 0.490)
LVEDP Yesildag et al, 2011 (44) EF>40%	0.730 (0.471, 0.989)
Pre–A Poerner et al, 2003 (17) E/A>0.9	0.400 (0.202, 0.598)
LVEDP Min et al, 2007 (27) B<E/e’<15	0.030 (-0.239, 0.299)
Subgroup Supplemental (I²=86.23 % , P=0.001)	0.388 (0.027, 0.750)
Overall (I²=56.03 % , P=0.007)	0.388 (0.281, 0.495)
H. E/e' septal: combined LVFP (simultaneous and NOT simultaneous)

Studies Estimate (95% C.I.)
LVEDP Manouras et al, 2013 (48) EF>55% 0.030 (-0.297, 0.357)
LVEDP Kidawa et al, 2005 (24) 0.290 (0.020, 0.560)
LV/MDP Ommen et al, 2000 (15) 0.470 (0.050, 0.890)
LV/MDP Rivas–Goltz et al, 2003 (18) 0.550 (0.325, 0.775)
LV/MDP Rudko et al, 2008 (32) 0.470 (0.186, 0.754)
LV/EDP Min et al, 2007 (27) 0.020 (-0.229, 0.269)
Subgroup Simultaneously (I^2=64.71 %, P=0.015) 0.321 (0.146, 0.501)
LV/EDP Ozer et al, 2011 (43) 0.540 (0.289, 0.791)
Pre–A Previati et al, 2012 (46) 0.280 (0.027, 0.533)
PCWP Maeder et al, 2011 (42) 0.230 (-0.097, 0.557)
PCWP Tatsumi et al, 2014 (51) 0.640 (0.303, 0.977)
Pre–A Hsiao et al, 2011 (40) 0.310 (-0.122, 0.498)
LV/EDP Yoshihagi et al, 2011 (44) EF≥40% 0.720 (0.471, 0.969)
Pre–A Poerner et al, 2003 (17) E/A=0.9 0.400 (0.202, 0.598)
Subgroup NOT Simultaneously (I^2=49.28 %, P=0.066) 0.439 (0.306, 0.571)
Overall (I^2=56.03 %, P=0.007) 0.388 (0.281, 0.495)

I. E/e' septal: combined LVFP (CAD prevalence)

Studies Estimate (95% C.I.)
LV/EDP Manouras et al, 2013 (48) EF>55% 0.030 (-0.297, 0.357)
Subgroup no CAD (I^2=2% NA, P=NA) 0.030 (-0.297, 0.357)
LV/MDP Rudko et al, 2008 (32) 0.470 (0.186, 0.754)
LV/EDP Min et al, 2007 (27) 0.020 (-0.229, 0.269)
Subgroup some CAD (I^2=79.45 %, P=0.027) 0.247 (-0.184, 0.679)
Pre–A Hsiao et al, 2011 (40) 0.310 (0.122, 0.498)
LV/EDP Ozer et al, 2011 (43) 0.540 (0.289, 0.791)
Subgroup all CAD (I^2=51.81 %, P=0.151) 0.409 (0.186, 0.633)
Overall (I^2=64.91 %, P=0.022) 0.286 (0.091, 0.481)

J. E/e' septal: Primary data variable measured simultaneously (shown as table 4B in the main text)

Studies Estimate (95% C.I.)
LV/EDP Manouras et al, 2013 (48) EF>55% 0.030 (-0.297, 0.357)
LV/EDP Kidawa et al, 2005 (24) 0.290 (0.020, 0.560)
Subgroup LV/EDP (I^2=30.57 %, P=0.230) 0.177 (-0.076, 0.430)
LV/MDP Ommen et al, 2000 (15) 0.470 (0.250, 0.690)
LV/MDP Rudko et al, 2008 (32) 0.470 (0.186, 0.754)
Subgroup LV/MDP (I^2=49 %, P=1.000) 0.470 (0.296, 0.644)
PCWP Rivas–Goltz et al, 2003 (18) 0.550 (0.325, 0.775)
Subgroup PCWP (I^2=2% NA, P=NA) 0.550 (0.325, 0.775)
Pre–A Manouras et al, 2013 (48) EF≥55% 0.020 (-0.296, 0.336)
Subgroup Pre–A (I^2=2% NA, P=NA) 0.020 (-0.296, 0.336)
Overall (I^2=61.21 %, P=0.024) 0.327 (0.151, 0.503)
5.3. Subgroup analysis for E/e'_mean and LVFP

E/e'_mean: Dataset for subgroup analysis (see also Tables 1 and 2)

LVFP	r	se	Data	Timing	% HFpEF	% CAD	% HTN	% DM	Indication for cath
LVEDP									
LVEDP	0.18	0.164	Primary	Simultaneously	unclear	no CAD	unclear	unclear	angiography
LVEDP	0.68	0.07	Primary	NOT Simult.	unclear	some CAD	~90% HTN	~40% DM	angiography
LVEDP	0.35	0.143	Primary	NOT Simult.	unclear	all CAD	~60% HTN	~40% DM	angiography
LVEDP	0.23	0.131	Primary	NOT Simult.	0% HF	unclear	unclear	unclear	

Pre-A									
--------	------	------	--------------	----------------	---------	-------	-------	------	
Pre-A	0.21	0.163	Primary	Simultaneously	unclear	no CAD	unclear	unclear	angiography
Pre-A	0.25	0.098	Primary	NOT Simult.	unclear	all CAD	~70% HTN	~50% DM	angiography
Pre-A	0.02	0.135	Primary	NOT Simult.	0% HF	unclear	unclear	unclear	
Pre-A	0.39	0.168	Primary	NOT Simult.	unclear	unclear	unclear	unclear	dyspnea
Pre-A	0.63	0.071	Primary	NOT Simult.	unclear	some CAD	~90% HTN	~60% DM	angiography
Pre-A	0.57	0.09	Supplement	NOT Simult.	unclear	unclear	unclear	unclear	

LVMDP									
--------	------	------	--------------	----------------	---------	-------	-------	------	
LVMDP	0.45	0.121	Primary	Simultaneously	unclear	unclear	unclear	unclear	

LVFP=left ventricular filling pressure; LVEDP=left ventricular end diastolic pressure; LVMDP=left ventricular mean diastolic pressure; Pre-A DP=left ventricular pre-A wave diastolic pressure; PCWP=pulmonary capillary wedge pressure; CI=confidence interval; HFpEF=heart failure with preserved Ejection Fraction; CAD=coronary artery disease; HTN=hypertension; DM=diabetes mellitus; ICU=intensive care unit. Studies are identified by the first author, year of publication, and reference number (in brackets) as cited in the main text.
A. LVEDP (primary and supplemental data)

Studies	Estimate (95% C.I.)
Manouras et al., 2013 (48) EF>55%	0.180 (-0.141, 0.501)
Dokanish et al., 2010 (35)	0.680 (0.543, 0.817)
Özer et al., 2011 (43)	0.350 (0.070, 0.630)
Provitali et al., 2012 (46)	0.330 (0.037, 0.647)
Subgroup Primary (I^2=80.95 %, P=0.001)	0.380 (0.107, 0.653)
Bruch et al., 2005 (22) EF>45%	0.680 (0.398, 0.962)
Poerner et al., 2003 (17) E/A=0.6	0.450 (0.258, 0.642)
Subgroup Supplemental (I^2=42.76 %, P=0.186)	0.541 (0.321, 0.765)
Overall (I^2=71.47 %, P=0.004)	0.447 (0.270, 0.623)

B. LVEDP (simultaneous and NOT simultaneous)

Studies	Estimate (95% C.I.)
Manouras et al., 2013 (48) EF>55%	0.180 (-0.141, 0.501)
Subgroup Simultaneously (I^2=NA, P=NA)	0.180 (-0.141, 0.591)
Previtali et al., 2012 (46)	0.230 (-0.027, 0.487)
Poerner et al., 2003 (17) E/A=0.6	0.450 (0.258, 0.642)
Özer et al., 2011 (43)	0.350 (0.070, 0.630)
Bruch et al., 2005 (22) EF>45%	0.680 (0.398, 0.962)
Dokanish et al., 2010 (35)	0.680 (0.543, 0.817)
Subgroup NOT Simultaneously (I^2=96.6 %, P=0.011)	0.450 (0.312, 0.567)
Overall (I^2=71.5 %, P=0.004)	0.447 (0.270, 0.623)

C. PCWP (primary and supplemental data)

Studies	Estimate (95% C.I.)
Rivas–Gotz et al., 2003 (18)	0.570 (0.349, 0.791)
Wang et al., 2007 (29)	0.650 (0.299, 1.001)
Maeder et al., 2011 (42)	0.130 (-0.203, 0.463)
Bhella et al., 2011 (39)	0.650 (0.154, 1.146)
Subgroup Primary (I^2=61.4 %, P=0.103)	0.491 (0.252, 0.730)
Bruch et al., 2005 (22) EF>45%	0.560 (0.242, 0.878)
Subgroup Supplemental (I^2=NA, P=NA)	0.560 (0.242, 0.878)
Overall (I^2=36.41 %, P=0.178)	0.505 (0.323, 0.688)

Heterogeneity amongst the studies was estimated by I2 statistic. Studies are identified by the first author, year of publication, and reference number (in brackets) as cited in the main text. OpenMetaAnalyst software (12) for Windows (64-bit version) was used for statistical analysis including graphical presentations of forest plots.
D. PCWP (simultaneous and NOT simultaneous)

Studies	Estimate (95% C.I.)
Rivas-Gotz et al, 2003 (18)	0.570 (0.349, 0.791)
vWeng et al, 2007 (29)	0.650 (0.290, 1.001)
Biella et al, 2011 (39)	0.650 (0.124, 1.144)
Subgroup Simultaneously (I^2=90%, P=0.010)	0.600 (0.425, 0.775)
Maeder et al, 2011 (42)	0.130 (-0.203, 0.463)
Bruch et al, 2005 (22) EF>55%	0.560 (0.242, 0.878)
Subgroup NOT Simultaneously (I^2=70.09%, P=0.067)	0.340 (-0.073, 0.759)
Overall (I^2=36.41%, P=0.178)	0.505 (0.323, 0.688)

E. Pre-A (primary and supplemental data)

Studies	Estimate (95% C.I.)
Dokanash et al, 2008 (30)	0.390 (0.060, 0.720)
Manouras et al, 2013 (48) EF>55%	0.210 (-0.109, 0.529)
Dokanash et al, 2010 (34)	0.630 (0.491, 0.769)
Hosso et al, 2011 (40)	0.250 (0.059, 0.442)
Previtali et al, 2012 (49)	0.020 (-0.244, 0.284)
Subgroup Primary (I^2=61.97%, P=0.000)	0.311 (0.069, 0.554)
Poerner et al, 2003 (17) E/A>0.9	0.570 (0.394, 0.746)
Subgroup Supplemental (I^2=NA, P=NA)	0.570 (0.394, 0.746)
Overall (I^2=79.86%, P=0.000)	0.362 (0.164, 0.560)

F. Pre-A (simultaneous and NOT simultaneous)

Studies	Estimate (95% C.I.)
Manouras et al, 2013 (48) EF>55%	0.210 (-0.109, 0.529)
Subgroup Simultaneously (I^2=NA, P=NA)	0.210 (-0.109, 0.529)
Hsiao et al, 2011 (40)	0.250 (0.058, 0.442)
Dokanash et al, 2010 (34)	0.630 (0.491, 0.769)
Dokanash et al, 2008 (30)	0.390 (0.060, 0.720)
Previtali et al, 2012 (49)	0.020 (-0.244, 0.284)
Poerner et al, 2003 (17) E/A>0.9	0.570 (0.394, 0.746)
Subgroup NOT Simultaneously (I^2=92.36%, P=0.000)	0.386 (0.169, 0.604)
Overall (I^2=79.86%, P=0.000)	0.362 (0.164, 0.560)
For combined LVFP analysis, if the study measured two LVFP parameters we chose that had the highest correlation coefficient.

G. E/e’ mean: combined LVFP (primary and supplemental data)

Studies	Estimate (95% C.I.)
Pre-A Manouras et al., 2013 (48) EF>55%	0.210 (-0.109, 0.529)
LVMSP Ommen et al., 2000 (15)	0.450 (0.213, 0.687)
PCWP Wang et al., 2007 (29)	0.650 (0.299, 1.001)
PCWP Rivas-Gotz et al., 2003 (18)	0.370 (0.340, 0.791)
PCWP Bhella et al., 2011 (39)	0.650 (0.154, 1.146)
LV/EDP Dokiian et al., 2010 (35)	0.680 (0.543, 0.817)
PCWP Maeder et al., 2011 (42)	0.430 (-0.203, 0.463)
Pre-A Dokiian et al., 2005 (30)	0.570 (0.058, 0.442)
Pre-A Hsiao et al., 2011 (40)	0.250 (-0.027, 0.487)
LV/EDP Previtali et al., 2012 (46)	0.200 (-0.070, 0.630)
LV/EDP Ozar et al., 2011 (43)	0.350 (0.070, 0.630)
Subgroup Primary (H2p=63.07 %, P=0.003)	0.416 (0.266, 0.545)
LV/EDP Bruch et al., 2005 (22) EF>45%	0.680 (0.398, 0.962)
Pre-A Porner et al., 2003 (17) EF>0.9	0.570 (0.394, 0.746)
Subgroup Supplemental (H2p=0.0 %, P=0.517)	0.601 (0.451, 0.750)
Overall (H2p=60.49 %, P=0.002)	0.452 (0.340, 0.563)

H. E/e’ mean: combined LVFP (simultaneous and NOT simultaneous)

Studies	Estimate (95% C.I.)
Pre-A Manouras et al., 2013 (48) EF>55%	0.210 (-0.109, 0.529)
LVMSP Ommen et al., 2000 (15)	0.450 (0.213, 0.687)
PCWP Wang et al., 2007 (29)	0.650 (0.299, 1.001)
PCWP Rivas-Gotz et al., 2003 (18)	0.370 (0.340, 0.791)
PCWP Bhella et al., 2011 (39)	0.650 (0.154, 1.146)
Subgroup Simultaneously (H2p=15.66 %, P=0.313)	0.491 (0.347, 0.635)
LV/EDP Dokiian et al., 2010 (35)	0.680 (0.543, 0.817)
PCWP Maeder et al., 2011 (42)	0.130 (-0.203, 0.463)
Pre-A Dokiian et al., 2008 (30)	0.390 (0.061, 0.719)
Pre-A Hsiao et al., 2011 (40)	0.250 (-0.056, 0.442)
LV/EDP Previtali et al., 2012 (46)	0.230 (-0.027, 0.487)
LV/EDP Bruch et al., 2005 (22) EF>45%	0.680 (0.398, 0.962)
Pre-A Porner et al., 2003 (17) EF>0.9	0.570 (0.394, 0.746)
LV/EDP Ozar et al., 2011 (43)	0.350 (0.070, 0.630)
Subgroup NOT Simultaneously (H2p=72.66 %, P=0.001)	0.426 (0.273, 0.582)
Overall (H2p=60.49 %, P=0.002)	0.452 (0.340, 0.563)

I. E/e’ mean: combined LVFP (HFpEF prevalence)

Studies	Estimate (95% C.I.)
PCWP Bhella et al., 2011 (39)	0.650 (0.154, 1.146)
LV/EDP Bruch et al., 2005 (22) EF>45%	0.680 (0.398, 0.962)
Subgroup all HF (H2p=0.0 %, P=0.918)	0.673 (0.428, 0.918)
LV/EDP Previtali et al., 2012 (46)	0.230 (-0.027, 0.487)
Subgroup no HF (H2p=2NA, P=2NA)	0.230 (-0.027, 0.487)
PCWP Maeder et al., 2011 (42)	0.130 (-0.203, 0.463)
Subgroup <40% HF (H2p=2NA, P=2NA)	0.130 (-0.203, 0.463)
Overall (H2p=66.5 %, P=0.030)	0.405 (0.122, 0.687)
J. **E/e′**_mean_: combined LVFP (CAD prevalence)

Studies	Estimate (95% C.I.)
Pre–A Hsiao et al, 2011 (40)	0.250 (0.058, 0.442)
LVEDP Özzer et al, 2011 (43)	0.350 (0.070, 0.630)
Subgroup All CAD (*I^2*=0 %, *P*=0.564)	0.282 (0.124, 0.440)
Pre–A Manouras et al, 2013 (48) EF>55%	0.210 (-0.109, 0.529)
PCWP Bhella et al, 2011 (39)	0.650 (0.154, 1.146)
Subgroup no CAD (*I^2*=53.21 %, *P*=0.144)	0.387 (-0.036, 0.811)
LVEDP Dokanish et al, 2010 (35)	0.680 (0.543, 0.817)
LVEDP Bruch et al, 2005 (22) EF>45%	0.680 (0.398, 0.962)
Subgroup some CAD (*I^2*=0 %, *P*=1.000)	0.680 (0.557, 0.803)
Overall (*I^2*=74.07 %, *P*=0.002)	0.465 (0.264, 0.667)

K. **E/e′**_mean_: combined LVFP (HTN prevalence)

Studies	Estimate (95% C.I.)
PCWP Bhella et al, 2011 (39)	0.650 (0.154, 1.146)
Subgroup ~100% HTN (*I^2*=NA, *P*=NA)	0.650 (0.154, 1.146)
LVEDP Dokanish et al, 2010 (35)	0.680 (0.543, 0.817)
Subgroup ~90% HTN (*I^2*=NA, *P*=NA)	0.680 (0.543, 0.817)
LVEDP Bruch et al, 2005 (22) EF>45%	0.680 (0.398, 0.962)
Subgroup ~80% HTN (*I^2*=NA, *P*=NA)	0.680 (0.398, 0.962)
Pre–A Hsiao et al, 2011 (40)	0.250 (0.058, 0.442)
Subgroup ~70% HTN (*I^2*=NA, *P*=NA)	0.250 (0.058, 0.442)
LVEDP Özzer et al, 2011 (43)	0.350 (0.070, 0.630)
Subgroup ~60% HTN (*I^2*=NA, *P*=NA)	0.350 (0.070, 0.630)
Pre–A Manouras et al, 2013 (48) EF>40%	0.480 (0.262, 0.698)
Subgroup ~40% HTN (*I^2*=NA, *P*=NA)	0.480 (0.262, 0.698)
Overall (*I^2*=68.45 %, *P*=0.007)	0.504 (0.333, 0.676)

L. **E/e′**_mean_: Primary data variables measured simultaneously (shown as table 4B in the main text)

Studies	Estimate (95% C.I.)
LVEDP Manouras et al, 2013 (48) EF>55%	0.180 (-0.141, 0.501)
Subgroup LVEDP (*I^2*=NA, *P*=NA)	0.180 (-0.141, 0.501)
PCWP Rivas–Gotz et al, 2003 (18)	0.570 (0.349, 0.791)
PCWP Wang et al, 2007 (29)	0.650 (0.299, 1.001)
PCWP Bhella et al, 2011 (30)	0.650 (0.154, 1.146)
Subgroup PCWP (*I^2*=0 %, *P*=0.910)	0.660 (0.425, 0.775)
Pre–A Manouras et al, 2013 (48) EF>55%	0.210 (-0.109, 0.529)
Subgroup Pre–A (*I^2*=NA, *P*=NA)	0.210 (-0.109, 0.529)
LVMDP Ommen et al, 2000 (15)	0.450 (0.213, 0.687)
Subgroup LVMDP (*I^2*=NA, *P*=NA)	0.450 (0.213, 0.687)
Overall (*I^2*=36.54 %, *P*=0.163)	0.443 (0.287, 0.599)
APPENDIX 6

Secondary analysis of sensitivity/specifcity of E/e’ cutoffs to predict elevated LVFP

6.1. Subgroup analysis for $E/e'_{lateral} > 12$ to identify elevated LVFP

$E/e'_{lateral}$: Dataset for subgroup analysis (see also Tables 1 and 2)

Study	TP	FN	FP	TN	SENS. lower	upper	SPEC. lower	upper	Data	Timing	% HFpEF	% CAD	% HTN	% DM	Indication for cath	LR+	
LV EP Kidawa et al, 2005 (24)	6	13	1	25	0.316	0.149	0.548	0.962	0.772	0.959 Primary	Simultaneously	unclear	unclear	unclear	angiography	8.3	
PCWP Rivas-Gotz et al, 2003 (18)	15	20	1	15	0.429	0.277	0.594	0.937	0.665	0.991 Primary	Simultaneously	Un unclear	Un unclear	unclear	ICU/Cath lab	6.8	
LV EP Previtali et al, 2012 (46)	10	28	8	16	0.263	0.148	0.424	0.667	0.461	0.824 Primary	NOT simultaneous	0% HF	unclear	unclear	unclear	0.8	
LV EP Hadano et al, 2005 (23)	5	7	4	47	0.417	0.185	0.692	0.922	0.809	0.970 Primary	NOT simultaneous	unclear	some CAD	unclear	unclear	5.3	
LV EP Özer et al, 2011 (43)	6	17	1	21	0.261	0.122	0.472	0.955	0.739	0.994 Primary	NOT simultaneous	unclear	all CAD	~60% HTN	~40% DM	angiography	5.8
Pre-A Mansencal et al, 2004 (20)	0	5	0	15	0.083	0.005	0.622	0.969	0.650	0.998 Primary	NOT simultaneous	~5% HF	all CAD	~10% HTN	unclear	angiography	2.7
LVEDP Poerner et al, 2007 (28) EF>~40%	31	17	29	64	0.646	0.502	0.767	0.688	0.587	0.774 Supplement	NOT simultaneous	Un unclear	some CAD	~60% HTN	~30% DM	angiography	2.1
PCWP Nagueh et al, 1998 (14) EF>45% Sinus Tachycardia >100bpm	11	15	0	17	0.426	0.257	0.614	0.972	0.678	0.998 Supplement	Simultaneously	Un unclear	Un unclear	Un unclear	ICU/Cath lab	15.2	
LVEDP Penicka et al, 2010 (38) Uncertainty with 10% patients	8	12	2	8	0.400	0.214	0.620	0.800	0.359	0.950 Supplement	Simultaneously	~70% HF	no CAD	~70% HTN	~30% DM	dyspnea	2.0

LVFP=left ventricular filling pressure; LVEDP=left ventricular end diastolic pressure; LVMDP=left ventricular mean diastolic pressure; Pre-A DP=left ventricular pre-A wave diastolic pressure; PCWP=pulmonary capillary wedge pressure; CI=confidence interval; HFpEF=heart failure with preserved Ejection Fraction; CAD=coronary artery disease; HTN=hypertension; DM=diabetes mellitus; ICU=intensive care unit; TP=true positive; FP=false positive; FN=false negative; TN=true negative; Sens.=sensitivity; Spec.=specificity; LR+=positive likelihood ratio. Studies are identified by the first author, year of publication, and reference number (in brackets) as cited in the main text.
A. Combined LVFP (primary and supplemental data)

Primary studies combined (n=6, as in Figure 3)
- Sensitivity (summary) 0.30 (0.09 - 0.48)
- Specificity (summary) 0.92 (0.83 - 1.0)

Supplemental studies combined (n=3)
- Sensitivity (summary) 0.50 (0.10 - 0.84)
- Specificity (summary) 0.85 (0.50 - 1.0)

All studies combined (n=9)
- Sensitivity (summary) 0.36 (0.18 - 0.51)
- Specificity (summary) 0.91 (0.81 - 0.99)

TP=true positive; FP= false positive; FN= false negative; TN=true negative; Sens = sensitivity; Spec.=specificity; LR+=positive likelihood ratio; HSROC=hierarchical summary receiver operating characteristic. Heterogeneity amongst the studies was estimated by I2 statistic. Studies are identified by the first author, year of publication, and reference number (in brackets) as cited in the main text. OpenMetaAnalyst software (12) for Windows (64-bit version) was used for statistical analysis including graphical presentations of forest plots.
B. Combined LVFP (Simultaneous and not simultaneous measurements)

Simultaneous studies combined (n=4)
Sensitivity (summary) 0.39 (0.18 - 0.58)
Specificity (summary) 0.94 (0.40 - 1.0)

Not Simultaneous studies combined (n=5)
Sensitivity (summary) 0.30 (0.06 - 0.59)
Specificity (summary) 0.90 (0.76 – 1.0)

All studies combined (n=9)
Sensitivity (summary) 0.36 (0.18 - 0.51)
Specificity (summary) 0.91 (0.81 - 0.99)
C. Separate analysis for LVFP measurements

Studies	Sensitivity Estimate (95% C.I.)	TP / (TP + FN)
LVEDP Hamroc et al, 2005 (23)	0.417 (0.115, 0.622)	0/12
LVEDP Kostka et al, 2005 (24)	0.316 (0.149, 0.488)	6/19
LVEDP Berners et al, 2010 (38)	0.400 (0.214, 0.620)	8/26
LVEDP Periss et al, 2014 (43)	0.263 (0.122, 0.412)	6/32
LVEDP Preiss et al, 2012 (44)	0.243 (0.145, 0.424)	10/14
LVEDP Periss et al, 2017 (28)	0.446 (0.210, 0.707)	31/48

Subgroup LVEDP (P=0.001, 95% CI)	Estimate (95% C.I.)	TN / (TP + FN)
	0.362 (0.209, 0.570)	67/11
	0.962 (0.773, 0.994)	24/34
	0.810 (0.659, 0.950)	8/13
	0.999 (0.733, 0.994)	21/22
	0.667 (0.462, 0.864)	14/24
	0.680 (0.587, 0.774)	64/95
	0.841 (0.649, 0.938)	181/206

There are insufficient number of studies that measured PCWP (n=2) to perform a meaningful analysis.

LR+ = 2.7
LR+ = 4.0
D. PRIMARY DATA SUMMARY - Primary studies only (Simultaneous and Not Simultaneous)

Primary Not Simultaneous studies (n=4)
- Sensitivity (summary) 0.22 (0.01 - 0.53)
- Specificity (summary) 0.92 (0.70 - 1.0)

All primary studies combined (n=6)
- Sensitivity (summary) 0.36 (0.18 - 0.51)
- Specificity (summary) 0.92 (0.83 - 1.0)

HSROC analysis

LR+ = 2.8

LR+ = 3.8

There are insufficient number of studies that performed simultaneous measurements (n=2) to perform a meaningful analysis.
6.2. Subgroup analysis for E/e'_mean >13 to identify elevated LVFP

E/e'_mean: Dataset for subgroup analysis (see also Tables 1 and 2)

Study	TP	FN	FP	TN	SENS.	SPEC.	Data	Timing	% HFpEF	% CAD	% HTN	% DM	Indication for cath	LR+
LVEDP Manouras et al, 2013 (48) EF>55%	2	22	1	10	0.083	0.909	Primary	Simultaneously	unclear	no CAD	unclear	unclear	angiography	0.9
PCWP Bhella et al, 2011 (39)	3	2	0	5	0.583	0.917	Primary	Simultaneously	100% HF	no CAD	100% HTN	~60% DM	research	7.0
PCWP Dokainish et al, 2004 (19)	6	5	2	6	0.545	0.750	Primary	Simultaneously	unclear	uncertain	~60% HTN	~20% DM	ICU/CCU	2.2
LVEDP Dokainish et al, 2010 (35)	57	42	3	20	0.576	0.870	Primary	NOT simultaneously	unclear	some CAD	~90% HTN	~40% DM	angiography	4.4
LVEDP Özer et al, 2011 (43)	6	17	1	21	0.261	0.955	Primary	NOT simultaneously	unclear	all CAD	~60% HTN	~40% DM	angiography	5.8
Pre-A Dini et al, 2010 (33)	9	17	2	27	0.346	0.931	Primary	NOT simultaneously	100% HF	unclear	unclear	unclear	dyspnea	5.0
LVEDP Penicka et al, 2010 (38) Uncertainty with 10% patients	6	14	1	9	0.300	0.900	Supplemente	Simultaneously	~70% HF	no CAD	~70% HTN	~30% DM	dyspnea	3.0
LVEDP Bruch et al, 2005 (22) EF>45%	9	2	5	10	0.818	0.667	Supplemente	NOT simultaneously	100% HF	some CAD	~80% HTN	unclear	dyspnea	2.5

LVFP=left ventricular filling pressure; LVEDP=left ventricular end diastolic pressure; LVMDP=left ventricular mean diastolic pressure; Pre-A DP=left ventricular pre–A wave diastolic pressure; PCWP=pulmonary capillary wedge pressure; CI=confidence interval; HFpEF=heart failure with preserved Ejection Fraction; CAD=coronary artery disease; HTN=hypertension; DM=diabetes mellitus; ICU=intensive care unit; TP=true positive; FP=false positive; FN=false negative; TN=true negative; Sens.=sensitivity; Spec.=specificity; LR+=positive likelihood ratio. Studies are identified by the first author, year of publication, and reference number (in brackets) as cited in the main text.
A. Combined LVFP (primary and supplemental data)

Primary studies combined (n=6, as in Figure 3)
Sensitivity (summary) 0.37 (0.13 - 0.61)
Specificity (summary) 0.91 (0.81 - 0.99)

All studies combined (n=8)
Sensitivity (summary) 0.42 (0.19 - 0.65)
Specificity (summary) 0.89 (0.77 - 0.98)

There are insufficient number of studies that provided supplemental data (n=2) to perform a meaningful analysis.

TP=true positive; FP= false positive; FN= false negative; TN=true negative; Sens. = sensitivity; Spec.=specificity; LR+=positive likelihood ratio; HSROC=hierarchical summary receiver operating characteristic. Heterogeneity amongst the studies was estimated by I2 statistic. Studies are identified by the first author, year of publication, and reference number (in brackets) as cited in the main text. OpenMetaAnalyst software (12) for Windows (64-bit version) was used for statistical analysis including graphical presentations of forest plots.
B. Combined LVFP (Simultaneous and not simultaneous measurements)

HSROC analysis

- **Simultaneous studies combined (n=4)**
 - Sensitivity (summary) 0.31 (0.04 - 0.67)
 - Specificity (summary) 0.89 (0.67 – 1.0)

- **NOT Simultaneous studies combined (n=4)**
 - Sensitivity (summary) 0.50 (0.11 – 0.84)
 - Specificity (summary) 0.88 (0.65 – 1.0)

- **All studies combined (n=8)**
 - Sensitivity (summary) 0.42 (0.19 - 0.65)
 - Specificity (summary) 0.89 (0.77 - 0.98)

LR+ = 2.8

LR+ = 4.2

LR+ = 3.8
C. Separate analysis for LVFP measurements

Studies	Estimate [95% C.I.]	TP / (TP + FN)	TN / (FP + TN)	
LVFP Mounier et al. 2013 (48) EF<55%	0.182 (0.021, 0.342)	6/11	0.949 (0.820, 0.982)	12/11
LVFP Franssen et al. 2010 EF≤60%	0.182 (0.021, 0.342)	6/11	0.949 (0.820, 0.982)	12/11
LVFP Danesh et al. 2010 (29)	0.176 (0.013, 0.418)	5/6	0.962 (0.843, 0.996)	10/11
LVFP Donker et al. 2011 (36)	0.184 (0.025, 0.342)	6/11	0.949 (0.820, 0.982)	12/11
LVFP Brun et al. 2005 (22) EF<40%	0.182 (0.021, 0.342)	6/11	0.949 (0.820, 0.982)	12/11
Subgroup LVFP EF<40%	0.182 (0.021, 0.342)	6/11	0.949 (0.820, 0.982)	12/11
PCWP Muraru et al. 2011 (30)	0.182 (0.021, 0.342)	6/11	0.949 (0.820, 0.982)	12/11
PCWP Dorsman et al. 2000 (28)	0.182 (0.021, 0.342)	6/11	0.949 (0.820, 0.982)	12/11
Subgroup PCWP EF<40%	0.182 (0.021, 0.342)	6/11	0.949 (0.820, 0.982)	12/11
Pre-A Div et al. 2010 (29)	0.182 (0.021, 0.342)	6/11	0.949 (0.820, 0.982)	12/11
Subgroup Pre-A EF<40%	0.182 (0.021, 0.342)	6/11	0.949 (0.820, 0.982)	12/11
Overall (EF<40%)	0.182 (0.021, 0.342)	6/11	0.949 (0.820, 0.982)	12/11

Sensitivity (summary) 0.39 (0.07 - 0.73)

Specificity (summary) 0.88 (0.69 – 0.99)

HSROC analysis

LVEDP studies (n=4)

Sensitivity	Specificity
0.182 (0.021, 0.342)	0.949 (0.820, 0.982)
0.176 (0.013, 0.418)	0.962 (0.843, 0.996)
0.184 (0.025, 0.342)	0.949 (0.820, 0.982)
0.182 (0.021, 0.342)	0.949 (0.820, 0.982)

LR+ = 3.2

All studies combined (n=8)

Sensitivity	Specificity
0.182 (0.021, 0.342)	0.949 (0.820, 0.982)
0.176 (0.013, 0.418)	0.962 (0.843, 0.996)
0.184 (0.025, 0.342)	0.949 (0.820, 0.982)
0.182 (0.021, 0.342)	0.949 (0.820, 0.982)

LR+ = 3.8

There are insufficient number of studies that measured PCWP (n=2) to perform a meaningful analysis.
D. PRIMARY DATA SUMMARY - Primary studies only (Simultaneous and Not Simultaneous)

Studies	Sensitivity Estimate [95% C.I.]	TP / (TP + FN)
PCWP Bhuja et al, 2011 (52)	0.589 [0.314, 0.774]	3/5
LVEEP Maneerat et al, 2013 (48)	0.983 [0.821, 0.978]	2/24
LVEEP Dakshin et al, 2004 (16)	0.545 [0.360, 0.707]	6/31
Subgroup Simultaneously (P²=77.65 %, P=0.012)	0.369 [0.088, 0.763]	11/49
LVEEP Dakshin et al, 2010 (35)	0.374 [0.477, 0.669]	5/73
LVEEP Ober et al, 2011 (15)	0.262 [0.120, 0.472]	6/23
Pw-X Dr et al, 2010 (33)	0.356 [0.145, 0.563]	9/24
Subgroup NOT Simultaneously (P²=78.76 %, P=0.069)	0.456 [0.332, 0.611]	72/148
Overall (P²=76.11 %, P=0.861)	0.382 [0.225, 0.568]	83/188

Primary Simultaneous studies (n=3)
- Sensitivity (summary) 0.33 (0.03 – 0.77)
- Specificity (summary) 0.88 (0.53 – 1.0)

Primary NOT Simultaneous studies (n=3)
- Sensitivity (summary) 0.39 (0.07 – 0.73)
- Specificity (summary) 0.92 (0.71 – 1.0)

All Primary studies (n=6)
- Sensitivity (summary) 0.37 (0.13 - 0.61)
- Specificity (summary) 0.91 (0.81 – 0.99)

HSROC analysis

LR+ = 2.8

LR+ = 4.9

LR+ = 4.1
6.3. Subgroup analysis for $E'/septal > 15$ to identify elevated LVFP

$E'/septal$: Dataset for subgroup analysis (see also Tables 1 and 2)

Study	TP	FN	FP	TN	SENS. lower	upper	SPEC. lower	upper	Data	Timing	% HFpEF	% CAD	% HTN	% DM	Indication for cath	LR+
PCWP Rivas-Gott et al, 2003 (18)	12	24	1	15	0.333	0.200	0.500	0.937	0.665	0.99 Primary	Simultaneously	Unclear	Unclear	Unclear	ICU/Cath lab	5.3
LVMDP Ommen et al, 2000 (15)	4	14	0	43	0.237	0.097	0.472	0.989	0.843	1.00 Primary	Simultaneously	Unclear	Unclear	Unclear	Unclear	21.5
LVMDP Rudko et al, 2008 (32)	2	16	0	25	0.132	0.039	0.364	0.981	0.756	1.00 Primary	Simultaneously	~20% HF	~80% CAD	~50% HTN	Unclear	6.9
LVEDP Özer et al, 2011 (43)	7	16	1	21	0.304	0.153	0.515	0.955	0.739	0.99 Primary	NOT simultaneously	Unclear	all CAD	~60% HTN	~40% DM angiography	6.8
LVEDP Penicka et al, 2010 (38)	4	16	0	10	0.214	0.088	0.436	0.955	0.552	1.00 Supplemental	Simultaneously	~70% HF	no CAD	~70% HTN	~30% DM dyspnea	4.8

LVFP=left ventricular filling pressure; LVEDP=left ventricular end diastolic pressure; LVMDP=left ventricular mean diastolic pressure; Pre-A DP=left ventricular pre-A wave diastolic pressure; PCWP=pulmonary capillary wedge pressure; CI=confidence interval; HFpEF=heart failure with preserved Ejection Fraction; CAD=coronary artery disease; HTN=hypertension; DM=diabetes mellitus; ICU=intensive care unit; TP=true positive; FP=false positive; FN=false negative; TN=true negative; Sens.=sensitivity; Spec.=specificity; LR+=positive likelihood ratio. Studies are identified by the first author, year of publication, and reference number (in brackets) as cited in the main text.
A. Combined LVFP (primary and supplemental data)

Primary studies (n=4)
- Sensitivity (summary) 0.24 (0.06 – 0.46)
- Specificity (summary) 0.98 (0.92 – 1.0)

All studies (n=5)
- Sensitivity (summary) 0.23 (0.10 - 0.39)
- Specificity (summary) 0.98 (0.94 – 1.0)

Heterogeneity amongst the studies was estimated by I² statistic. Studies are identified by the first author, year of publication, and reference number (in brackets) as cited in the main text. OpenMetaAnalyst software (12) for Windows (64-bit version) was used for statistical analysis including graphical presentations of forest plots.
B. Combined LVFP (Simultaneous and not simultaneous measurements)

Simultaneous studies (n=4)
- Sensitivity (summary) 0.22 (0.08 – 0.44)
- Specificity (summary) 0.98 (0.93 – 1.0)

All studies (n=5)
- Sensitivity (summary) 0.23 (0.10 - 0.39)
- Specificity (summary) 0.98 (0.94 – 1.0)

HSROC analysis
C. Separate analysis for LVFP measurements

There are insufficient number of studies that measured LVEDP (n=2) or LVDP (n=2) to perform a meaningful analysis.
D. PRIMARY DATA SUMMARY - Primary studies only (Simultaneous and Not Simultaneous)

Simultaneous studies

All studies

Primary Simultaneous studies (n=3)
Sensitivity (summary) 0.22 (0.04 – 0.54)
Specificity (summary) 0.98 (0.87 – 1.0)

HSROC analysis
All Primary studies (n=4)
Sensitivity (summary) 0.24 (0.06 – 0.46)
Specificity (summary) 0.98 (0.92 – 1.0)
APPENDIX 7

Optimal cutoffs and AUC for elevated LVFP

7.1. Identification of elevated LVFP based on ‘optimal’ E/e’mean cutoffs from ROC analysis

Study	N	LVFP cutoff	E/e’ cutoff	Prev. (%)	TP	FP	FN	TN	Sens. (95% CI)	Spec. (95% CI)	Sens. (95% CI)	Spec. (95% CI)	AUC (95% CI)
Kidawa, 2005 (24)	50	LVEDP≥15	>8	54	-	-	-	0.76	0.76				
Hadano, 2005* (23)	63/65	LVEDP>16	>9	19	10	5	37	0.67 [0.41, 0.86]	0.77 [0.63, 0.87]			0.81	
Previtali, 2012* (46)	62/57	LVEDP>16	>9	61	24	13	11	0.63 [0.46, 0.78]	0.46 [0.26, 0.67]			0.47	
Arques, 2013 (47)	63	LVEDP>16	>6.6	58	15	3	6	0.71 [0.49, 0.87]	0.80 [0.53, 0.93]			0.79	
Rivas-Gotz, 2003 (18)	55	PCWP >15	>10	-	-	-	-	0.79	0.80				
Hadano, 2005* (23)	63/65	PCWP >12	>9	19	9	12	3	0.75 [0.43, 0.96]	0.76 [0.63, 0.87]			0.84	
Nagueh, 1997* (E/A<1)	23/26	PCWP >12	>8	22	4	10	1	0.80 [0.29, 0.99]	0.44 [0.22, 0.69]			0.64	
Maeder, 2011 (42)	36	PCWP >12	-	25	-	-	-	-	-				
Mansencal, 2004* (20)	20/20	Pre-A >15	>6	25	5	6	9	1.00 [0.48, 1.00]	0.60 [0.32, 0.84]			0.79	
Hsiao, 2011 (40)	100	Pre-A >15	>9.7	-	-	-	-	64	63				

Study	N	LVFP cutoff	E/e’ cutoff	Prev. (%)	TP	FP	FN	TN	Sens. (95% CI)	Spec. (95% CI)	Sens. (95% CI)	Spec. (95% CI)	AUC (95% CI)	
Poerner, 2007 (28)	176	LVEDP>16	>10	41	48	37	24	0.67 [0.55, 0.77]	0.64 [0.54, 0.74]			0.69		
Jaubert, 2010 (36)	59	LVEDP>16	>6.7	66	22	4	17	0.56 [0.40, 0.72]	0.80 [0.56, 0.94]			0.89 [0.56, 0.80]		
Manouras, 2015 (48)	65	LVEDP>16	>8	72	-	-	-	0.73	0.65				0.70 [0.63, 0.77]	
Nagueh, 1998* (14)	43/49	PCWP >12	>9	60	20	3	6	0.77 [0.56, 0.91]	0.82 [0.57, 0.96]			0.84		
Manours, 2013 (48)	65	Pre-A >12	>8	68	33	7	11	0.74 [0.60, 0.86]	0.67 [0.45, 0.83]			0.71 [0.62, 0.79]		

LVFP=left ventricular filling pressure; LVEDP=left ventricular end diastolic pressure; LVMDP=left ventricular mean diastolic pressure; Pre-A DP=left ventricular pre–A wave diastolic pressure; PCWP=pulmonary capillary wedge pressure; Prev.=Prevalence of patients with elevated LVFP; TP=true positive; FP=false positive; FN=false negative; TN=true negative; Sens.=Sensitivity; Spec.=Specificity; AUC=area under receiver operating characteristic (ROC) curve; CI=confidence interval. Empty cells are due to no data available.

*TP, FP, FN, TN values were extracted from the graphical data representation of LVFP vs. E/e’ in study results; for such study, column presenting patient number (N) include 2 numbers: first number is actual counted patients in the plot, and second number is total patients in the study group.

In studies that did not provide the optimal cutoff, we created ROC curve and identified the optimal cutoff as the point on the ROC curve closest to (0, 1 on x-y coordinate).

Studies are identified by the first author, year of publication, and reference number (in brackets) as cited in the main text.
7.2. Identification of elevated LVFP based on ‘optimal’ E/e’ mean cutoffs from ROC analysis

LVEF≥50%

Study	N	LVFP cutoff	E/e’ cutoff	Prev. (%)	TP	FP	FN	TN	Sens. (95% CI)	Spec. (95% CI)	Sens. (95% CI)	Spec. (95% CI)	AUC (95% CI)	
Dokainish, 2010 (35)	122	LVEDP≥20	>12	56	-	-	-	-	0.75	0.78	-	-	0.79	
Prevital, 2012 (46)	57	LVEDP≥15	>12:08	72	-	-	-	-	0.44	0.71	-	-	0.52	
Rivas-Gotz, 2003 (49)	55	PCWP >15	>10	-	-	-	-	-	0.82	0.72	-	-	-	
Dokainish, 2004 (59)	19	PCWP >15	>11	47	7	2	3	8	0.78[0.40, 0.97]	0.80[0.44, 0.97]	-	-	-	
Maeder, 2011 (42)	36	PCWP >12	-	25	-	-	-	-	-	0.80[0.40, 0.97]	-	-	-	
Bhella et al, 2011 (39)	1010	PCWP >12	>10	50	4	1	1	4	0.80[0.28, 0.99]	0.80[0.28, 0.99]	-	0.62[0.39, 0.85]	-	-
Dokainish, 2008 (30)	32	Pre-A >15	>15	-	-	-	-	-	0.77	0.77	-	-	-	
Dokainish, 2010 (54)	122	Pre-A ≥15	>13	56	-	-	-	-	0.70	0.93	-	-	-	
Hsiao, 2011 (40)	100	Pre-A >15	>11	-	-	-	-	-	0.60	0.60	-	0.82		
Hsiao, 2012 (12)	376	Pre-A >15	>11	-	-	-	-	-	0.66	0.64	-	0.62		
Manouras, 2013* (49)	3538	Pre-A >12	>8	69	12	4	12	7	0.50[0.31, 0.69]	0.64[0.34, 0.86]	-	-	0.78	

LVEF≥40%

Study	N	LVFP cutoff	E/e’ cutoff	Prev. (%)	TP	FP	FN	TN	Sens. (95% CI)	Spec. (95% CI)	Sens. (95% CI)	Spec. (95% CI)	AUC (95% CI)
Bruch, 2005 (22)	28	LVEDP≥15	>11	n/a	-	-	-	-	0.94	0.90	-	-	0.98[0.96, 1.00]
Ng, 2008 (31)	20	LVEDP≥12	-	60	-	-	-	-	-	0.69	-	-	0.70
Manouras, 2013 (48)	65	LVEDP >16	>9	72	-	-	-	-	-	0.66[0.58, 0.74]	-	-	0.69
Manouras, 2013* (48)	626	Pre-A >12	>8	71	28	8	1	6	0.64[0.48, 0.78]	0.56[0.31, 0.78]	-	-	0.70[0.61, 0.79]

LVFP=left ventricular filling pressure; LVEDP=left ventricular end diastolic pressure; LVMDP=left ventricular mean diastolic pressure; Pre-A DP=left ventricular pre-A wave diastolic pressure; PCWP=pulmonary capillary wedge pressure; Prev.=Prevalence of patients with elevated LVFP; TP=true positive; FP=false positive; FN=false negative; TN=true negative; Sens.=Sensitivity; Spec.=Specificity; AUC=area under receiver operating characteristic (ROC) curve; CI=confidence interval. Empty cells are due to no data available.

*=TP, FP, FN, TN values were extracted from the graphical data representation of LVFP vs. E/e’ in study results; for such study, column presenting patient number (N) include 2 numbers: first number is actual counted patients in the plot, and second number is total patients in the study group.

In studies that did not provide the optimal cutoff, we created ROC curve and identified the optimal cutoff as the point on the ROC curve closest to (0, 1 on x-y coordinate).

Studies are identified by the first author, year of publication, and reference number (in brackets) as cited in the main text.
7.3. Identification of elevated LVFP based on ‘optimal’ E/e’ _septal_ cutoffs from ROC analysis

LVEF≥50%

Study	N	LVFP cutoff	E/e’ cutoff	Prev. (%)	TP	FP	FN	TN	Sens. (95% CI)	Spec. (95% CI)	Sens. (95% CI)	Spec. (95% CI)	AUC (95% CI)
Min, 2007* (8<E/e'<15) (27)	55	LVEDP >16	>10	73	27	10	13	5	0.68 [0.51, 0.81]	0.33 [0.12, 0.62]	-	-	0.47
Ommen, 2000* (15)	45	LVEDP >16	>9.62	51	12	11	2	5	0.52 [0.31, 0.73]	0.91 [0.71, 0.99]	-	-	0.69 [0.62, 0.76]
Rivas-Gotz, 2003 (18)	55	PCWP >15	>12	-	-	-	-	-	0.70	0.60	-	-	-
Maeder, 2011 (42)	36	PCWP >12	-	25	-	-	-	-	-	-	-	-	0.66 [0.44, 0.88]
Hsiao, 2011 (40)	100	Pre-A >15	>13.1	-	-	-	-	-	64	61	-	-	-
Ommen, 2000* (15)	61	LVMDP >12	>11	30	15	15	3	28	0.83 [0.59, 0.96]	0.65 [0.49, 0.79]	-	-	0.79
Rudko, 2008* (32)	43	LVMDP >12	>9	42	14	6	4	19	0.78 [0.52, 0.94]	0.76 [0.55, 0.91]	-	-	0.75

LVFP=left ventricular filling pressure; LVEDP=left ventricular end diastolic pressure; LVMDP=left ventricular mean diastolic pressure; Pre-A DP=left ventricular pre-A wave diastolic pressure; PCWP=pulmonary capillary wedge pressure; Prev.=Prevalence of patients with elevated LVFP; TP=true positive; FP=false positive; FN=false negative; TN=true negative; Sens.=Sensitivity; Spec.=Specificity; AUC=area under receiver operating characteristic (ROC) curve; CI=confidence interval. Empty cells are due to no data available.

*TP, FP, FN, TN values were extracted from the graphical data representation of LVFP vs. E/e’ in study results; for such study, column presenting patient number (N) include 2 numbers: first number is actual counted patients in the plot, and second number is total patients in the study group.

In studies that did not provide the optimal cutoff, we created ROC curve and identified the optimal cutoff as the point on the ROC curve closest to (0, 1 on x-y coordinate).

Studies are identified by the first author, year of publication, and reference number (in brackets) as cited in the main text.
APPENDIX 8

Secondary analysis of sensitivity/specificity of E/e’ cutoffs to predict normal LVFP

8.1. Subgroup analysis for E/e’<8 lateral to identify normal LVFP

E/e’ lateral: Dataset for subgroup analysis (see also Tables 1 and 2)

study	TP	FN	FP	TN	SENS. lower	SENS. upper	SPEC. lower	SPEC. upper	Data	Timing	% HFpEF	% CAD	% HTN	% DM	Indication for cath	LR+	
LVEDP Kidawa et al, 2005 (24)	19	7	4	15	0.731	0.866	0.789	0.554	0.919	Simultaneously	unclear	unclear	unclear	unclear	angiography	3.5	
PCWP Rivas-Gotz et al, 2003 (18)	12	4	6	29	0.750	0.903	0.829	0.667	0.921	Simultaneously	unclear	unclear	unclear	unclear	ICU/Cath	4.4	
LVEDP Hadano et al, 2005 (23)	35	16	3	9	0.686	0.798	0.750	0.448	0.917	NOT simultaneous	unclear	some CAD	unclear	unclear	2.7		
LVEDP Previtali et al, 2012 (46)	6	18	13	25	0.250	0.456	0.658	0.496	0.790	Primary	NOT simultaneous	0% HF	unclear	unclear	unclear	angio/ICU	0.7
Pre-A Mansencal et al, 2004 (20)	12	3	3	2	0.800	0.934	0.400	0.100	0.800	Primary	NOT simultaneous	~5% HF	all CAD	~10% HTN	unclear	angiography	0.7
LVEDP Penicka et al, 2010 (38)	6	4	8	12	0.600	0.842	0.600	0.380	0.786	Supplementary	Simultaneously	~70% HF	no CAD	~70% HTN	~30% DM	dyspnea	1.5
PCWP Nagueh et al, 1998 (14) EF>45% Sinus Tachycardia >100bpm	12	5	6	20	0.706	0.872	0.769	0.572	0.892	Supplementary	Simultaneously	unclear	unclear	unclear	unclear	ICU/Cath	3.1
LVEDP Poerner et al, 2007 (28) EF>40%	21	72	6	42	0.226	0.322	0.875	0.748	0.943	Supplementary	NOT simultaneous	some CAD	~60% HTN	~30% DM	angiography	1.8	

LVFP=left ventricular filling pressure; LVEDP=left ventricular end diastolic pressure; LVMDP=left ventricular mean diastolic pressure; Pre-A DP=left ventricular pre–A wave diastolic pressure; PCWP=pulmonary capillary wedge pressure; CI=confidence interval; HFpEF=heart failure with preserved Ejection Fraction; CAD=coronary artery disease; HTN=hypertension; DM=diabetes mellitus; ICU=intensive care unit; TP=true positive; FP=false positive; FN=false negative; TN=true negative; Sens.=sensitivity; Spec.=specificity; LR+=positive likelihood ratio. Studies are identified by the first author, year of publication, and reference number (in brackets) as cited in the main text.
A. Combined LVFP (primary and supplemental data)

Primary studies combined (n=5, as in Figure 4)
Sensitivity (summary) 0.64 (0.37 - 0.87)
Specificity (summary) 0.73 (0.54 – 0.89)

Supplemental studies combined (n=3)
Sensitivity (summary) 0.49 (0.10 - 0.93)
Specificity (summary) 0.76 (0.41 – 1.0)

All studies combined (n=8)
Sensitivity (summary) 0.58 (0.38 - 0.78)
Specificity (summary) 0.74 (0.61 - 0.87)

TP=true positive; FP=false positive; FN=false negative; TN=true negative; Sens.= sensitivity; Spec.=specificity; LR+=positive likelihood ratio; HSROC=hierarchical summary receiver operating characteristic. Heterogeneity amongst the studies was estimated by I2 statistic. Studies are identified by the first author, year of publication, and reference number (in brackets) as cited in the main text. OpenMetaAnalyst software (12) for Windows (64-bit version) was used for statistical analysis including graphical presentations of forest plots.
B. Combined LVFP (Simultaneous and not simultaneous measurements)

HSROC analysis

Simultaneous studies combined (n=4)
Sensitivity (summary) 0.70 (0.49 - 0.86)
Specificity (summary) 0.75 (0.58 – 0.88)
LR+ = 2.8

Not Simultaneous studies combined (n=4)
Sensitivity (summary) 0.48 (0.08 - 0.88)
Specificity (summary) 0.71 (0.39 – 0.97)
LR+ = 1.6

All studies combined (n=8)
Sensitivity (summary) 0.58 (0.38 - 0.78)
Specificity (summary) 0.74 (0.61 - 0.87)
LR+ = 2.2
C. Separate analysis for LVFP measurements

HSROC analysis

LVEDP studies combined (n=5)
Sensitivity (summary) 0.49 (0.19 - 0.80)
Specificity (summary) 0.74 (0.52 - 0.92)

All studies combined (n=8)
Sensitivity (summary) 0.58 (0.38 - 0.78)
Specificity (summary) 0.74 (0.61 - 0.87)

There are insufficient number of studies (n=2) that measured PCWP measurements to perform a meaningful analysis.
D. PRIMARY DATA SUMMARY - Primary studies only (Simultaneous and Not Simultaneous)

Primary Not Simultaneous studies (n=3)
Sensitivity (summary) 0.58 (0.18 - 0.99)
Specificity (summary) 0.63 (0.24 – 0.96)

All primary studies combined (n=5)
Sensitivity (summary) 0.64 (0.37 - 0.87)
Specificity (summary) 0.73 (0.54 – 0.89)

There are insufficient number of studies (n=2) with simultaneous measurements to perform a meaningful analysis.
8.2. Subgroup analysis for E'/mean, <8 to identify normal LVFP

E'/\text{mean}: Dataset for subgroup analysis (see also Tables 1 and 2)

Study	TP	FN	FP	TN	SENS. lower	SENS. upper	SPEC. lower	SPEC. upper	Data	Timing	% HFpEF	% CAD	% HTN	% DM	Indication for cath	LR+		
LVEDP Manouras et al, 2013 (48) EF>55%	7	4	12	12	0.636	0.339	0.857	0.500	0.310	0.690	Primary	Simultaneously	unclear	no CAD	unclear	unclear	angiography	1.3
PCWP Dokainish et al, 2004 (19)	2	6	2	9	0.250	0.063	0.623	0.818	0.493	0.954	Primary	Simultaneously	unclear	unclear	~60% HTN	~20% DM	ICU/CCU	1.4
PCWP Bhella et al, 2011 (39)	2	3	1	4	0.400	0.100	0.800	0.800	0.309	0.973	Primary	Simultaneously	100% HF	no CAD	100% HTN	~60% DM	research	2.0
LVEDP Dokainish et al, 2010 (35)	4	19	3	96	0.174	0.067	0.382	0.970	0.910	0.990	Primary	NOT simultaneously	unclear	some CAD	~90% HTN	~40% DM	angiography	5.8
LVEDP Bruch et al, 2005 (22) EF>45%	2	13	0	11	0.156	0.046	0.417	0.958	0.575	0.997	Suppleme	NOT simultaneously	100% HF	some CAD	~80% HTN	unclear	dyspnea	3.7
LVEDP Penicka et al, 2010 (38) Uncertainty with 10% patients	6	4	8	12	0.600	0.297	0.842	0.600	0.380	0.786	Supplementary	Simultaneously	~70% HF	no CAD	~70% HTN	~30% DM	dyspnea	1.5

LVFP=left ventricular filling pressure; LVEDP=left ventricular end diastolic pressure; LVMDP=left ventricular mean diastolic pressure; Pre-A DP=left ventricular pre–A wave diastolic pressure; PCWP=pulmonary capillary wedge pressure; CI=confidence interval; HFpEF=heart failure with preserved Ejection Fraction; CAD=coronary artery disease; HTN=hypertension; DM=diabetes mellitus; ICU=intensive care unit; TP=true positive; FP=false positive; FN=false negative; TN=true negative; Sens.=sensitivity; Spec.=specificity; LR+=positive likelihood ratio. Studies are identified by the first author, year of publication, and reference number (in brackets) as cited in the main text.
A. Combined LVFP (primary and supplemental data)

Primary studies combined (n=4, as in Figure 4)
Sensitivity (summary) 0.36 (0.03 - 0.74)
Specificity (summary) 0.83 (0.49 – 1.0)

All studies combined (n=6)
Sensitivity (summary) 0.36 (0.10 - 0.65)
Specificity (summary) 0.84 (0.61- 1.0)

There are insufficient number of studies (n=2) with supplements data to perform a meaningful analysis.

TP= true positive; FP= false positive; FN= false negative; TN= true negative; Sens. = sensitivity; Spec. = specificity; LR+= positive likelihood ratio; HSROC = hierarchical summary receiver operating characteristic. Heterogeneity amongst the studies was estimated by I² statistic. Studies are identified by the first author, year of publication, and reference number (in brackets) as cited in the main text. OpenMetaAnalyst software (12) for Windows (64-bit version) was used for statistical analysis including graphical presentations of forest plots.
B. Combined LVFP (Simultaneous and not simultaneous measurements)

Simultaneous studies combined (n=4)
Sensitivity (summary) 0.48 (0.13 - 0.80)
Specificity (summary) 0.66 (0.38 – 0.91)

All studies combined (n=6)
Sensitivity (summary) 0.36 (0.10 - 0.65)
Specificity (summary) 0.84 (0.61- 1.0)

There are insufficient number of studies (n=2) with NOT simultaneous measurements to perform a meaningful analysis.
C. Separate analysis for LVFP measurements

HSROC analysis

Studies	Sensitivity (summary)	Specificity (summary)
LVEDP measurements	0.36 (0.05 – 1.0)	0.86 (0.47 – 1.0)
All studies combined	0.36 (0.10 - 0.65)	0.84 (0.61 - 1.0)

There are insufficient number of studies (n=2) that measured PCWP measurements to perform a meaningful analysis.
D. PRIMARY DATA SUMMARY - Primary studies only (Simultaneous and Not Simultaneous)

Primary Simultaneous studies

All Primary studies

Primary Simultaneous studies (n=3)
Sensitivity (summary) 0.43 (0.01 – 0.81)
Specificity (summary) 0.69 (0.35 – 1.0)

All Primary studies (n=4)
Sensitivity (summary) 0.36 (0.03 - 0.74)
Specificity (summary) 0.83 (0.49- 1.0)

LR+ = 1.4

LR+ = 2.1
8.3. Subgroup analysis for E/e' _septal_ <8 to identify normal LVFP

E/e' _septal_: Dataset for subgroup analysis (see also Tables 1 and 2)

study	TP	FN	FP	TN	SENS.	lower	upper	SPEC.	lower	upper	Data	Timing	% HFpEF	% CAD	% HTN	% DM	Indication for cath	LR+	
LVMDP Ommen et al, 2000 (15)	21	22	2	16	0.488	0.344	0.634	0.889	0.648	0.972	Primary	Simultaneously	Unclear	Unclear	Unclear	Unclear	Unclear	Unclear	4.4
PCWP Rivas-Gotz et al, 2003 (18)	8	8	1	35	0.500	0.273	0.727	0.972	0.827	0.996	Primary	Simultaneously	Unclear	Unclear	Unclear	Unclear	Unclear	ICU/Cath lab	17.9
LVMDP Rudko et al, 2008 (32)	14	11	4	14	0.560	0.366	0.737	0.778	0.535	0.914	Primary	Simultaneously	~20% HF	~80% CAD	~50% HTN	Unclear	Unclear	Unclear	2.5
LVEDP Penicka et al, 2010 (38) Uncertainty with 10% patients	6	4	8	12	0.600	0.297	0.842	0.600	0.380	0.786	Supplement	Simultaneously	~70% HF	no CAD	~70% HTN	~30% DM	dyspnea	1.5	

LVFP=left ventricular filling pressure; LVEDP=left ventricular end diastolic pressure; LVMDP=left ventricular mean diastolic pressure; Pre-A DP=left ventricular pre–A wave diastolic pressure; PCWP=pulmonary capillary wedge pressure; CI=confidence interval; HFpEF=heart failure with preserved Ejection Fraction; CAD=coronary artery disease; HTN=hypertension; DM=diabetes mellitus; ICU=intensive care unit; TP=true positive; FP= false positive; FN= false negative; TN=true negative; Sens.= sensitivity; Spec.=specificity; LR+=positive likelihood ratio. Studies are identified by the first author, year of publication, and reference number (in brackets) as cited in the main text.
A. Combined LVFP (primary and supplemental data)

Primary studies

- Sensitivity (summary) 0.50 (0.14 – 0.81)
- Specificity (summary) 0.89 (0.66 – 1.0)

All studies

- Sensitivity (summary) 0.54 (0.25 - 0.82)
- Specificity (summary) 0.84 (0.61 – 1.0)

LR+ = 4.5

LR+ = 3.4

TP=true positive; FP= false positive; FN= false negative; TN=true negative; Sens. = sensitivity; Spec. =specificity; LR+=positive likelihood ratio; HSROC=hierarchichal summary receiver operating characteristic. Heterogeneity amongst the studies was estimated by I² statistic. Studies are identified by the first author, year of publication, and reference number (in brackets) as cited in the main text. OpenMetaAnalyst software (12) for Windows (64-bit version) was used for statistical analysis including graphical presentations of forest plots.
B. Combined LVFP (Simultaneous and not simultaneous measurements)

All studies are simultaneous

HSROC analysis

All studies are simultaneous (n=4)
Sensitivity (summary) 0.54 (0.25 - 0.82)
Specificity (summary) 0.84 (0.61 – 1.0)

LR+ = 3.4
C. PRIMARY DATA SUMMARY - Primary studies only (Simultaneous and Not Simultaneous)

All Primary studies are simultaneous

HSROC analysis

Primary studies (n=3)
Sensitivity (summary) 0.50 (0.14 – 0.81)
Specificity (summary) 0.89 (0.66 – 1.0)

LR+ = 4.5