Influence of atomic FAA on ParallelFor and a cost model for improvements

Ran Shuai
Microsoft, Silicon Valley Campus, Mountain View, CA, United States
rashuai@microsoft.com

November 29, 2021

Abstract - this paper focuses on one of the most frequently visited multithreading library interfaces - ParallelFor. In this study, it is inferred that ParallelFor’s end-to-end latency performance is noticeably affected by the frequency with which fetch-and-add (FAA) is called during program execution. This can be explained by ParallelFor’s uniform semantics and the utilization of atomic FAA. To prove this assumption, a battery of tests was designed and conducted on diverse platforms. From the collected performance statistics and overall trends, several conclusions were drawn and a cost model is proposed to enhance performance by mitigating the influence of FAA.

Introduction

For decades, increasingly high-performance workstations have been adopted in production environments to boost productivity. These machines are commonly equipped with multi-core CPU(s) that allow for parallelism in applications and services. Each CPU core hosts one or two hardware threads (e.g., hyper-threading) that undertake assigned tasks independently. With a suitable task-breakdown policy and wait-and-join semantics, an application or service could allow several of its tasks to run simultaneously, instead of sequentially, which reduces latency and promotes responsiveness.[1][2][3]

To fully utilize the hardware's computing power, multi-threading software libraries serve to bridge upstream software applications and hardware threads. Usually, such libraries create, host, and maintain a set of software threads known as a thread pool. Moreover, the libraries provide API(s), such as ParallelFor(...) or ForEach(...), that take a task/function and an integer number as the iterations to run. Upon being called, the libraries will distribute the task to all threads in the pool. When the maximum iterations are reached and all threads have completed the assigned iterations, ParallelFor(...) or ForEach(...) will return to the caller. One such scenario is OpenMP[4] - a built-in library for C++ compilers, such as GNU gcc[5] and LLVM[6]. IntelTBB and a recently published library—TaskFlow[7] serve similar purposes.

According to Amdahl’s law[8], a parallelized application could provide end-to-end performance benefits as:

$$SpeedUp(T) = 1/((1 - P) + P/T)$$

where T is the number of threads and P is the parallelizable fraction of the application. For ParallelFor, P is always 1; thus, we could expect the gain to be:

$$SpeedUp(T) = T$$

Problem statement

The measurement of performance gains should neither be limited to Amdahl's law, nor the assumption that n threads in total “should” bring down the overall cost to total_cost/number_of_threads. The parallelism provided by multi-threading libraries leads to some nontrivial costs that could challenge the estimation of...
end-to-end latency. Considering ParallelFor as an example, its most representative implementations follow a simple semantic:

```c++
void ParallelFor(
    function<void(int)>& task,
    int N) {
    atomic<int> counter{0};
    int block_size{...};
    function<void(void)> thread_task =
        [&]() {
            int begin{0};
            while ((begin =
                    counter.FetchAndAdd(block_size))<N){
                for (int iter = begin;
                     iter < min(N,begin+block_size);
                     iter++) {
                    task(iter);
                }
            }
        };
    for(Thread& thread: threadpool) {
        thread.Enqueue(thread_task);
    }
    thread_task();
    for (Thread& thread: threadpool) {
        thread.wait(...)
    }
}
```

As seen in this code snippet, the ParallelFor function first wraps up the input task with a thread task, which utilizes atomic fetch-and-add (FAA) to acquire a range of iterations for execution. The atomic component serves to synchronize between threads to avoid a data race. Then, ParallelFor assigns the thread task to all threads in the pool and waits for all the returns. Based on the listed logic, the ParallelFor's caller could be assured that the input task will be called exactly \(N \) times, with an input iterating from 0 to \(N-1 \).

Among all the listed details, “block size” is a key variable that may significantly affect the overall end-to-end latency. It decides for how many iterations the thread should run each input task in the “for” loop. Equivalently, “block size” is a variant that determines the size by which “\(N \)” could be divided.

The issue here is that the calling of atomic FAA results in nontrivial cost because cache invalidation and resynchronization are required to ensure that all threads visiting the atomic variable see the same value. [9] presented a keen estimation on overheads as follows:

\[
L(A, S) = R(S) + E(A) + O
\]

where \(A \) is the type of atomic operation, such as FAA, compare-and-swap (CAS), or swap (SWP); \(S \) is the cache state among Modified, Owned, Exclusive, Shared, Invalid [10]. \(R(S) \) is the time-cost of acquiring ownership of the cache in \(S \) state, \(E(A) \) is the cost of performing \(A \) on the cache, and \(O \) represents other miscellaneous costs. In our case, \(A \) is always FAA and \(S \) is assumed to be Shared; hence, a simplified version of our case is:

\[
L = R + E + O
\]

According to [9], \(R \) takes the most significant part of \(L \), implying that threads spent most of the time during the interval on acquiring ownership of the cache. Furthermore, the number of threads and their locality also influence the cost of \(R \), and therefore, the overall \(L \). For example, two threads in the cores sharing the same \(L3 \) cache tend to spend less time on \(R \) than when the threads are in cores across sockets.

Assuming that the total number of iterations \(N \) is to be divided into several blocks of block size \(B \), and the number of threads is \(T \). Consequently, the overall end-to-end latency of ParallelFor may be formulated as

\[
Cost(T, N, L) = N/B \times L + O(N)/T
\]

Based on this formula, we could reasonably infer that \(Cost(T, N, L) \) is lower when \(B \) is larger, i.e., a larger block size means less calling of FAA, resulting in a lower total atomic overhead.

But what is the upper bound of \(B \)? We cannot assert that \(Cost(T, N, L) \) will always decrease as the block sizes increase. For instance, considering that we have \(T \) threads fully at our disposal, by setting \(B \) to exceed \(N/T \), only fewer than \(T \) threads are allowed the chance to run the input task—the potential of parallelism is thereby jeopardized. The test that follows shows that the end-to-end latency would begin falling before \(B \) reaches \(N/T \) because the threads are scheduled to run on a physical CPU core at different times, and as the load sharing among cores is occasionally imbalanced, the threads running time may vary for a period, which implies that smaller sized blocks are more likely to match the threads' running quota perfectly. [11]

Hence, knowing that the block size is expected to be larger to avoid excessive atomic FAA overhead, it should not exceed a certain limit. The problem lies in how to determine the proper \(B \) value.

Test and statistics

To address this problem, a series of tests was conducted to resolve the problem of determining how FAA with varied block sizes would affect the end-to-end latency of ParallelFor. Additionally, different “sized” tasks were included, as a task that reads and writes 32 bytes of memory with simple computations would not have the same performance as a more complex task. Furthermore, a task that works mostly on IO should behave differently from one that is more CPU intensive. To address these variants, we implemented a configurable unit task function:
unit_task =
[unit_read, unit_write,
unit_computation, ...] (...) {

 uint8_t* read_at = ...;
 uint8_t* write_at = ...;
 uint64_t per_read_computation =
 unit_computation / unit_read;
 uint64_t write_count = 0;
 uint8_t integer = 0;

 for (uint64_t i = 0; i < unit_read; ++i) {
 integer = read_at[i];
 for (uint64_t j = 0; j <
 per_read_computation; ++j) {
 integer += 1;
 }
 if (write_count < unit_write) {
 write_at[write_count++] = integer;
 }
 }
 while (write_count < unit_write) {
 write_at[write_count++] = integer;
 }
};

Note that unit_task will be sent to ParallelFor as
an input argument. As observed from the implementa-
tion, unit_task references three external variables
unit_read, unit_write, and unit_computation. Here,
unit_read denotes the number of bytes of memory to
read; unit_write the number of bytes to write; and
unit_computation the number of computations that
should occur along with execution. By using these vari-
ables, we could run tests with tas’s of varied “sizes” to
obtain unbiased conclusions.

Furthermore, we implemented a thread pool to pro-
vide the ParallelFor function, following the semantic
listed in the previous section. The thread pool allows
a number of threads with fixed affinity settings to be
configured to restrict the threads on certain cores. This
helps to reduce the noise from thread rescheduling
between cores and to maintain load balancing.

Finally, to ensure that the test results are more gen-
eralized, we prepared a set of platforms with diverse
hardware specifications and computing capabilities.

- Dell M4 workstation with Intel Xeon® W-3225R
 @ 3.70 GHz, Windows 10 Pro 18362.1171
- AMD Ryzen Threadripper 3970X 32-Core Proces-
sor @ 3.69 GHz, Windows 10 Pro 19042.1165
- Dell M4 workstation with two Intel® Xeon® Gold
 5225R @ 2.20 GHz, Windows 10 Pro 19042.1165

The W-3225R has one CPU of eight cores, each has
its propriety L1 and L2 but share the same L3; the
AMD 3970X has one CPU of 32 cores, every 4 cores
share an L3; the Gold 5225R has 2 CPUs sitting on
separate sockets, each has 24 cores sharing the same
L3, whereas L1 and L2 are core private. By using hwloc

[12], graphs of the internal hardware topology were
created as follows:
Influence of atomic FAA on ParallelFor and a cost model for improvements

With the task, thread pool, and platforms all implemented and ready, the end-to-end ParallelFor performance was first tested with different block sizes, varying unit computation, and thread pool sizes on the W-3225R. The latency was measured using the CPU clocks:

	Unit Read 1024	Unit Write 1024	Unit Comp 1024
Block Sizes	2 Threads	4 Threads	8 Threads
1	1394900	957700	569100
2	1291900	762200	445600
4	1240400	706200	430200
8	1112800	644700	462000
16	1078100	646900	437200
32	1060400	643700	447000
64	1082100	643000	494000
128	1081400	691700	558000
256	1192000	798200	632000
512	1179800	796900	800500
1024	1585000	799100	1309500

W-3225R: Unit Comp 1024, e2e latency in clocks

For the listed cases, the best performance varies by block size. However, noting the highlighted cells, it is apparent that mounting the unit computation decreases the most preferred block size, and increasing the number of threads that participate in computation produces a similar outcome. To confirm the observation, we conducted the following tests on the G-5225R:
Influence of atomic FAA on ParallelFor and a cost model for improvements

block sizes	4 threads	8 threads	16 threads
1	948300	555200	311700
2	900800	532700	272200
4	872500	516900	267300
8	868900	522600	269100
16	865200	505900	283100
32	864000	512300	302600
64	889200	502500	366500
128	874500	512200	341600
256	1023300	665100	511700
512	1041200	809700	1003300
1024	1332100	1334300	1584000

Gold 5225R: 1024^3 unit comp

block sizes	4 threads	8 threads	16 threads
1	889300	545300	314700
2	847100	494100	269500
4	826500	495900	263700
8	822900	484400	288100
16	827500	489800	273500
32	839300	498900	296000
64	817400	513000	305600
128	898800	502500	336600
256	1025700	515600	389600
512	1009900	614000	674600
1024	1015400	1335000	1037500

Gold 5225R: 1024^4 unit comp

block sizes	4 threads	8 threads	16 threads
1	913000	545000	313100
2	860600	521200	281000
4	830100	496800	263300
8	832000	503200	264500
16	827500	498200	273400
32	814300	512300	303400
64	827200	502000	294700
128	899600	517700	337200
256	1013100	671700	412000
512	1036000	660700	673700
1024	1013900	1337500	1022000

Gold 5225R: 1024^5 unit comp

block sizes	4 threads	8 threads	16 threads
1	931700	550100	322000
2	718300	626700	388600
4	639200	487700	315700
8	601600	401500	236200
16	560300	351500	197200
32	535800	323600	174000
64	524200	322700	165800
128	546100	321100	166000
256	632600	316400	162900
512	623300	323200	320800
1024	640600	621600	625800

Gold 5225R: 1024^6 unit comp

block sizes	8 threads	16 threads	32 threads
1	931700	550100	322000
2	718300	626700	388600
4	639200	487700	315700
8	601600	401500	236200
16	560300	351500	197200
32	535800	323600	174000
64	524200	322700	165800
128	546100	321100	166000
256	632600	316400	162900
512	623300	323200	320800
1024	640600	621600	625800

AMD 3970X: 1024^4 unit comp

For the Gold 5225R, 24 threads were run on a single core group, whereas 36 or 48 threads required two core groups; for the AMD 3970X, every four cores form a core group, therefore, the tests listed above covered two, four, and eight core groups.

It is evident that the preferred block size increases by adding core groups, indicating that the task of N iterations would be split into fewer pieces, hence fewer FAA would be triggered. The explanation could be that the cache resynchronizations among the core groups are via media that is markedly less performant than by defining cores that share the same L3 as a core group, the opposite trend was observed when adding more core groups to the tests:

block sizes	24 threads	36 threads	48 threads
1	309600	325100	490600
2	269400	234400	498600
4	302000	228600	381200
8	264700	274800	376700
16	273700	235500	236100
32	296400	257900	212000
64	301900	257800	193600
128	337000	360400	420400
256	389100	406000	553600
512	701000	840800	1161600
1024	1066900	1744600	2402800

The Gold 5225R cases confirm that a larger unit computation reduces the preferred block size. That there is a constant range of how much computation a thread can handle in its average CPU quota is a possible explanation. This means that the larger the unit computation, the smaller the block size should be to keep the overall block computation in that range. Note:

\[
\text{computation of block} = \text{block size} \times \text{unit comp}
\]

In addition, FAA overheads are low because threads in the tests are running on cores sharing the same L3, thus by adding more threads, block size should be kept smaller to allow for better parallelism. Contrastingly,

in the tests are running on cores sharing the same L3, thus by adding more threads, block size should be kept smaller to allow for better parallelism. Contrastingly,
shared L3, such as the hyper-transport link, therefore, FAA overheads are considerably higher than previous cases, accordingly, block sizes should be kept larger to reduce the number of FAA calls.

It has been established that the best block size is proportional to the number of core groups and inversely proportional to the number of threads and size of the unit computation. Further investigation commences on the unit read and write test results:

unit read 64, unit write 1024, unit comp 1024th	block sizes	4 threads	16 threads	24 threads
1	1053600	3358800	497400	
2	967600	335400	347500	
4	937800	252100	280300	
8	923400	245400	247400	
16	912400	244100	240400	
32	873600	284700	153100	
64	511900	270300	197600	
128	549800	436300	202500	
256	612900	373100	276500	
512	626900	717400	550800	
1024	655100	687700	1124600	

Gold 5225R: 64 unit read

unit read 256, unit write 1024, unit comp 1024th	block sizes	4 threads	16 threads	24 threads
1	736900	352700	299200	
2	695500	196200	202100	
4	631600	209800	181300	
8	636700	182000	178400	
16	634900	200400	179100	
32	621700	187000	192100	
64	632200	238400	261800	
128	683600	227500	253500	
256	769800	426200	367200	
512	790800	480800	781600	
1024	787100	654200	1521700	

Gold 5225R: 256 unit read

unit read 4096, unit write 1024, unit comp 1024th	block sizes	4 threads	16 threads	24 threads
1	3511000	974500	797600	
2	3436000	948600	766800	
4	3433400	940300	767100	
8	3581400	942900	742000	
16	3841100	975600	794000	
32	3845200	942100	808800	
64	4071100	1069800	1065700	
128	4644200	1110300	1069800	
256	4661300	1088300	1760700	
512	4638300	2215800	3464700	
1024	4212500	3271700	7041200	

Gold 5225R: 4096 unit read

From the numbers listed above, the best block size is clearly also inversely proportional to the unit read. Notably, with more engaged threads, the block size decreases accordingly, as was observed in the tests on unit computation. Next, varied unit write statistics are considered:

block read 1024, unit write 2¹², unit comp 1024th	block sizes	8 threads	16 threads	32 threads
1	1375600	457100	324900	
2	1456100	639800	526100	
4	1302800	487800	396400	
8	1193800	422500	341700	
16	1158400	383800	309400	
32	1140500	378000	304800	
64	1127600	362900	353200	
128	1125500	362800	383700	
256	1389300	365300	373100	
512	1379700	690000	688800	
1024	1384100	1383200	1379600	

AMD 3970X: 2¹² unit write

unit read 1024, unit write 2¹⁴, unit comp 1024th	block sizes	8 threads	16 threads	32 threads
1	3818400	1259400	954400	
2	3932900	2068000	1273700	
4	3758100	2000000	1180800	
8	3721500	1755200	1127300	
16	3692200	1931600	1118500	
32	3653800	1641100	1146200	
64	3673800	1577100	1207800	
128	3919200	1530900	1316300	
256	4445700	1513100	2117700	
512	4446400	2774100	2844900	
1024	4503600	4421800	4490600	

AMD 3970X: 2¹⁴ unit write

unit read 1024, unit write 2¹⁶, unit comp 1024th	block sizes	8 threads	16 threads	32 threads
1	13781800	8311600	7729600	
2	13626800	10221600	11584900	
4	13509000	10178700	11673600	
8	13542500	10186700	11597300	
16	13703600	10284900	11546900	
32	13749300	10498000	11579000	
64	13714900	10178800	11541200	
128	14650200	10367800	10999900	
256	16670700	9950500	10291700	
512	16645700	12600000	12558400	
1024	16739400	16789600	16820400	

AMD 3970X: 2¹⁶ unit write

Predictably, the unit-write tests suggest similar trends to those of unit read; as unit write increases, the preferred block size for better performance decreases. Combining the observations from unit computation as well as read and write, we can assume that, when the task size is “larger,” the preferred block size is smaller. Note that the total number of operations in one block should be calculated as follows:

\[
\text{complexity_of_block} = \text{block_size} \times \text{task_size}
\]

\[
\text{task_size} = \text{unit_read} + \text{unit_write} + \text{unit_comp}
\]
Cost model and improvements

In summary, we have the following observations:

- The best block size is proportional to the number of core groups (cores share the same L3 in a core group);
- The best block size is inversely proportional to the number of threads, unit read, unit write, and unit computation.

This confirms that the distribution of the preferred block size varies following fixed rules. Intuitively, the proposed cost model is formulated as follows:

\[
B = \frac{\alpha \times G + \delta_0}{\beta_0 \times T + \beta_1 \times R + \beta_2 \times W + \beta_3 \times C + \delta_1}
\]

where \(B\) is the expected block size; \(G\) is the number of core groups; and \(T, R, W,\) and \(C\) respectively represent the number of threads, unit read, unit write, and unit computation. \(\alpha, \beta,\) and \(\delta\) are unknown parameters that require tuning. To determine the parameters and evaluate the model’s efficacy, we implemented a linear regression model using Pytorch [13].

```python
class CostModel(nn.Module):
    def __init__(self):
        super(CostModel, self).__init__()
        self.power = nn.Linear(1,1)
        self.cost = nn.Linear(4,1)

    def forward(self, x):
        power = self.power(x[:,:1])
        cost = self.cost(x[:,1:])
        return torch.div(power, cost)
```

where \(x\) is the batched input vectors of the core groups, threads, unit read, unit write, and unit computation. The raw training input is the list of previously collected numbers. Each training vector has six columns.

G	T	R	W	C	B
1	2	1024	1024	1024	128
1	2	1024	1024	1024	128
1	2	1024	1024	1024	128
1	2	1024	1024	1024	128
1	2	1024	1024	1024	128

Note that the last column is the preferred block size, which is excluded from \(x\). Next, owing to the overly sparsified inputs compared with the expected output, we performed data normalization in case the training converges slowly, albeit with acceptable losses [14]. Hence, we did the following:

- Multiple core group with 100

Finally, the cost function is:

\[
loss = (y - y')^2
\]

The training was then conducted on an NVIDIA Quadro M4000 with the Cuda Toolkit 11.4 [15]. After 30 h and approximately \(10^7\) epochs, the training data loss on over 200 cases was reduced to 2001.48. Hence, for each input data, on average, the loss was less than 10. Several examples are listed in the following table:

G	T	R	W	C	B	Inferred B
100	2	10	10	1	128	125
100	2	10	10	3	64	51
100	2	10	10	4	32	39
100	2	10	10	6	16	27
100	8	10	10	2	32	36
100	8	10	10	3	32	30
100	8	10	10	5	16	22
100	8	10	10	6	16	22
100	4	6	10	6	64	80
100	4	8	10	6	32	37
100	4	12	10	6	16	17
100	4	16	10	6	16	11
100	8	8	10	6	16	27
100	8	10	10	6	16	19
100	8	16	10	6	4	10
200	8	10	10	1	128	108
200	8	10	10	2	64	85
200	8	10	6	6	64	112
200	8	10	8	6	64	65
200	8	10	10	6	64	46
200	8	10	14	6	32	29
200	8	10	16	6	16	24
400	16	6	10	6	128	126
400	16	8	10	6	128	92
800	32	6	10	6	128	136
800	32	10	10	6	64	98
800	32	16	10	6	64	69

The formula with trained weights thereby becomes:

\[
B = \frac{1558.31 - 61.84 \times G}{693.13 - 10.48 \times T - 33.71 \times R - 34.50 \times W - 26.84 \times C}
\]
Related work and comparison

A recently published multi-threading library with public access on Github—Taskflow[7]—has implemented the ParallelFor semantic. According to the corresponding paper, Taskflow provides a powerful interface that assembles tasks in topological order and executes with maximum parallelism. Regarding ParallelFor (under the name of for_each, atomic faa synchronized threads compete for the assigned iterations. Each time a thread attempts to acquire a range of [begin, end], it intends to multiply a decimal constant as q (= 0.5/ < number_of_threads >) with the unfinished part of N, defined as r. Thereafter, the end is equated to “begin + q * r,” implying that the block size is “q * r.” Subsequently, when r is smaller than 4 * <number of threads>, the block size will reduce to 1 until the execution ends. This approach, though somewhat dynamic, is generally less performant than the one we have implemented herein with the cost model. The performance data for comparison are as follows:

unit_read	Taskflow	CostModel	block sizes
2^6	3205000	257100	46
2^8	420400	259500	27
2^10	462600	390400	19
2^12	1364700	1242900	15
2^14	5822300	4470400	12
2^16	1920330	16524300	10

W-3225R: 8 T, 1024 unit_read, 2^60 unit_comp, in clocks

unit_write	Taskflow	CostModel	block sizes
2^6	580100	403400	48
2^8	673500	377000	28
2^10	1176700	430700	19
2^12	1077100	847600	15
2^14	3707600	3746300	12
2^16	15411800	15498900	10

W-3225R: 8 T, 1024 unit_write, 2^60 unit_comp, in clocks

unit_comp	Taskflow	CostModel	block sizes
1024	1334200	750500	46
1024^2	790100	744800	36
1024^3	496600	456000	30
1024^4	508500	412700	25
1024^5	527300	429400	22
1024^6	479000	435300	19

W-3225R: 8 T, 1024 unit_comp, in clocks

unit_read	Taskflow	CostModel	block sizes
2^6	420900	172200	17
2^8	459800	157100	13
2^10	764700	228400	11
2^12	797400	633500	9
2^14	3514300	3542800	8
2^16	16775400	14511900	7

G-5225R: 24 T, 1024 unit_read, 2^60 unit_comp, in clocks

unit_comp	Taskflow	CostModel	block sizes
1024	604700	287000	17
1024^2	549700	272300	15
1024^3	439200	195100	14
1024^4	211390	192000	13
1024^5	367100	190100	12
1024^6	402900	186100	11

G-5225R: 24 T, 1024 unit_read/write, in clocks

unit_comp	Taskflow	CostModel	block sizes
1024	312700	269600	13
1024^2	348200	182100	11
1024^3	367600	320000	9
1024^4	819500	337500	8
1024^5	1913400	1382500	7
1024^6	7120100	4541800	6

AMD 3970X: 64 T, 1024 unit_read/write, 2^60 unit_comp

unit_comp	Taskflow	CostModel	block sizes
1024	354300	199000	13
1024^2	339200	183500	11
1024^3	374600	274100	9
1024^4	514400	320300	8
1024^5	1488600	1569900	7
1024^6	8166500	8368800	6

AMD 3970X: 64 T, 1024 unit_read, 2^60 unit_comp

unit_comp	Taskflow	CostModel	block sizes
1024	413800	34500	13
1024^2	439100	315100	12
1024^3	413300	358900	11
1024^4	444500	340500	10
1024^5	5496700	352200	10
1024^6	398700	336800	9

AMD 3970X: 64 T, 1024 unit_read/write

As the listed results indicate, with the fine-tuned cost model included in ParallelFor, a general performance boost of over 20% was observed. There are also multiple cases in which ParallelFor with the cost model required less than one-fifth of the time taken by Taskflow. Admittedly, there are also several cases in which ParallelFor underperforms compared to Taskflow, however, the lag in each case is relatively negligible. Moreover, we believe that these issues could be solved by using fine-tuned training data that are more representative; for example, the training data could be enriched with more fine-grained case information on task size.
Conclusion and future work

Based on the analysis and results presented in this paper, we demonstrated that atomic FAA has a significant effect on the end-to-end latency of ParallelFor on various platforms. Furthermore, by rigorously examining the collected performance statistics on neutralizing the FAA overheads, the best block size for splitting tasks within ParallelFor was found to be virtually dependent on a few parameters, such as core groups, the number of threads, and task size. Based on this information, a cost model is proposed. The training and inferencing of the model confirmed that it was effective when applied to the collected statistics and offers a significant advantage over existing counterparts that employ different approaches.

In future work, the CPU frequency and cache latency parameters, which may significantly promote cost model precision on general platforms, must be further investigated.

References

[1] D. Marr and F. Binns. “Hyper-Threading Technology Architecture and Microarchitecture 1 Hyper-Threading Technology Architecture and Microarchitecture”. In: 2002.

[2] Akhtar Jason Roberts. “Multi-Core Programming Increasing Performance through Software Multi-threading Shameem”. In: 2006.

[3] N. Tuck and D.M. Tullsen. “Initial observations of the simultaneous multithreading Pentium 4 processor”. In: 2003 12th International Conference on Parallel Architectures and Compilation Techniques. 2003, pp. 26–34. doi: 10.1109/PACT.2003.1237999

[4] L. Dagum and R. Menon. “OpenMP: an industry standard API for shared-memory programming”. In: vol. 5. 1. 1998, pp. 46–55. doi: 10.1109/99.660313

[5] Richard M S Brian J. Gough. In: An Introduction to GCC. 2004.

[6] Chris Lattner. In: LLVM and Clang: Next Generation Compiler Technology. 2008.

[7] T. Huang et al. “Taskflow: A Lightweight Parallel and Heterogeneous Task Graph Computing System”. In: 1. Los Alamitos, CA, USA: IEEE Computer Society, 5555, pp. 1–1. doi: 10.1109/TPDS.2021.3104295

[8] Mark D. Hill and Michael R. Marty. “Amdahl’s Law in the Multicore Era”. In: vol. 41. 7. 2008, pp. 33–38. doi: 10.1109/MC.2008.209

[9] Hermann Schweizer, Maciej Besta, and Torsten Hoefer. “Evaluating the Cost of Atomic Operations on Modern Architectures”. In: 2020. arXiv: 2010.09852 [cs.DC]

[10] MOESI Protocol. 2021. url: en.wikipedia.org/wiki/MOESI_protocol

[11] Mohan Rajagopalan, Brian T Lewis, and Todd A Anderson. “Thread Scheduling for Multi-Core Platforms.” In: HotOS. 2007.

[12] Portable Hardware Locality. 2021. url: openmpi.org/projects/hwloc

[13] PyTorch. 2021. url: pytorch.org

[14] Rob van der Goot, Barbara Plank, and Malvina Nissim. “To Normalize, or Not to Normalize: The Impact of Normalization on Part-of-Speech Tagging”. In: 2017. arXiv: 1707.05116 [cs.CL]

[15] NVidia Cuda Toolkit. 2021. url: developer.nvidia.com