Supplementary Material for
Trading Positional Complexity vs Deepness
in Coordinate Networks

Jianqiao Zheng *, Sameera Ramasinghe*, Xueqian Li, and Simon Lucey

Australian Institute for Machine Learning
University of Adelaide
jianqiao.zheng@adelaide.edu.au

A Theoretical results

Proposition 1 Consider a set of coordinates \(x = [x_1, x_2, \cdots, x_N]^T \), corresponding outputs \(y = [y_1, y_2, \cdots, y_N]^T \), and a \(d \) dimensional embedding \(\Psi : \mathbb{R} \to \mathbb{R}^d \). Assuming perfect convergence, the necessary and sufficient condition for a linear model to perfect memorize of the mapping between \(x \) and \(y \) is for \(X = [\Psi(x_1), \Psi(x_2), \ldots, \Psi(x_N)] \) to have full rank.

Proof: Let us refer to the row vectors of \(X \) as \([p_1, \ldots, p_d]^T \). In order to perfectly reconstruct \(y \) using a linear learner with weights \(w = [w_1, w_2, \ldots, w_d] \) as

\[
y = \sum_{i=1}^{d} w_i p_i + b,
\]

one needs \(X \) to be of rank \(N \) (since \(y \) needs to completely span \(\{p_i\}_{i=1}^d \)). If \(d > N \) then there is no unique solution to \(\{w, b\} \) without some regularization. In the unlikely scenario that the row vectors of \(X \) have zero mean, then \(X \) needs to be of rank \(N - 1 \) since the bias term \(b \) can account for that missing linear basis. \(\square \)

Proposition 2 Let the Gaussian embedder be denoted as \(\psi(t, x) = \exp\left(-\frac{\|t-x\|^2}{2\sigma^2}\right) \). With a sufficient embedding dimension, the stable rank of the embedding matrix obtained using the Gaussian embedder is \(\min\left(N, \frac{1}{2\sqrt{\pi}\sigma}\right) \) where \(N \) is the number of embedded coordinates. Under the same conditions, the embedded distance between two coordinates \(x_1 \) and \(x_2 \) is \(D(x_1, x_2) = \exp\left(-\frac{\|x_1-x_2\|^2}{4\sigma^2}\right) \).

Proof: Let us define the Gaussian embedder as \(\psi(t, x) = \exp\left(-\frac{\|t-x\|^2}{2\sigma^2}\right) \), where \(\sigma \) is the standard deviation. Given \(d \) samples points \([t_1, \ldots, t_d]\) and \(N \) input coordinates \([x_1, \ldots, x_N]\), the elements of the embedding matrix are

\[
\Psi_{i,j} = \psi(t_i, x_j).
\]

* Project page at https://osiriszjq.github.io/complex_encoding
To make sure the stable rank is saturated, we assume that d and N is large enough. Then, Ψ is approximately a circulant matrix. We know that the singular value decomposition of a circulant matrix C, whose first row is c, can be written as

$$C = \frac{1}{n} F_n^{-1} \text{diag} (F_n c) F_n,$$

(3)

where F_n is the Fourier transform matrix. This means the singular values of a circulant matrix is the Fourier transform of first row. When N is large enough, we can approximate the first row of Ψ as a continuous signal, which is $\psi(x, t=0) = \exp\left(-\frac{\|x\|^2}{2\sigma^2}\right)$, so

the singular values are

$$s(\xi) = \mathcal{F}(\psi(x; t=0)) = \sqrt{2\pi}\sigma \exp\left(-2\sigma^2\pi|\xi|^2\right).$$

Therefore, we can calculate stable rank directly from the definition,

$$\text{Stable Rank}(\Psi) = \sum_{i=1}^{N} \int_{-\infty}^{+\infty} \frac{s_i^2(\xi)}{s^2(0)} d\xi = \int_{-\infty}^{+\infty} \exp\left(-4\sigma^2\pi|\xi|^2\right) d\xi = \frac{1}{2\sqrt{\pi}\sigma}.$$

(5)

Considering the general case, where N might not be large enough, the stable rank will be $\min\left(N, \frac{1}{2\sqrt{\pi}\sigma}\right)$.

The distance (or similarity) between two embedded coordinates can be obtained via the inner product:

$$D(x_1, x_2) = \int_{-\infty}^{+\infty} \psi(t, x_1) \psi(t, x_2) dt$$

\begin{align*}
= \int_{-\infty}^{+\infty} e^{-\frac{(t-x_1)^2}{2\sigma^2}} e^{-\frac{(t-x_2)^2}{2\sigma^2}} dt \\
= \int_{-\infty}^{+\infty} e^{-\frac{t^2 - 2tx_1 + x_1^2 + t^2 - 2tx_2 + x_2^2}{2\sigma^2}} dt \\
= \int_{-\infty}^{+\infty} e^{-\frac{(t-x_1+x_2)^2 + (x_1-x_2)^2}{2\sigma^2}} dt \\
= \int_{-\infty}^{+\infty} e^{-\frac{x_1^2 - 2x_1 + x_2^2 + x_1^2 - 2x_1 + x_2^2}{2\sigma^2}} dt \\
= \int_{-\infty}^{+\infty} e^{-\frac{(x_1-x_2)^2}{4\sigma^2}} \int_{-\infty}^{+\infty} e^{-\frac{(t-x_1+x_2)^2}{2\sigma^2}} dt \\
= \sqrt{\frac{\pi}{2\sigma}} e^{-\frac{(x_1-x_2)^2}{4\sigma^2}}.
\end{align*}

(6)

which is also a Gaussian with a standard deviation $\sqrt{2}\sigma$. We can empirically define that the distance between two embedded coordinates x_1 and x_2 is preserved if $D(x_1, x_2) \geq 10^{-k}$, for an interval $x_1 - x_2 \leq l$, where k is a threshold. In the Gaussian embedder, we can analytically obtain a σ for an arbitrary l using the relationship $\sigma = \frac{l}{2\sqrt{\ln 10}}$. \qed
Proposition 3 Let the RFF embedding be denoted as \(\gamma(x) = [\cos 2\pi b_1 x, \sin 2\pi b_2 x] \), where \(b \) are sampled from a Gaussian distribution. When the embedding dimension is large enough, the stable rank of RFF will be \(\min (N, \sqrt{2\pi \sigma}) \), where \(N \) is the number of embedded coordinates. Under the same conditions, the embedded distance between two coordinates \(x_1 \) and \(x_2 \) is \(D(x_1, x_2) = \sum_j \cos 2\pi b_j (x_1 - x_2) \).

Proof: Given \(\frac{d}{2} \) samples for \(b \) as \([b_1, \ldots, b_d] \) from a Gaussian distribution with a standard deviation \(\sigma \) and \(N \) input coordinates \([x_1, \ldots, x_N] \), RFF embedding is defined as \(\gamma(x) = [\cos 2\pi b_1 x_1, \sin 2\pi b_1 x_1, \ldots, \cos 2\pi b_d x_N, \sin 2\pi b_d x_N] \).

To make sure the stable rank is saturated, we assume that the \(d \) and \(N \) are large enough. Although RFF embedding matrix is not circulant, it is naturally frequency based so we already know its spectrum, which is its singular value distribution

\[
s(\xi) = \frac{1}{\sqrt{2\pi \sigma}} \exp \left(-\frac{\xi^2}{2\sigma^2} \right).
\]

Similarly,

\[
\text{Stable Rank}(\gamma) = \sum_{i=1}^{N} \frac{s_i^2}{s_i^2} = \int_{-\infty}^{+\infty} s^2(\xi) d\xi = \int_{-\infty}^{+\infty} \exp \left(-\frac{\xi^2}{2\sigma^2} \right) d\xi = \sqrt{2\pi \sigma} ,
\]

Considering the general case, the stable rank is \(\min (N, \sqrt{2\pi \sigma}) \).

From the basic trigonometry, it can be easily deduced the distance function that \(D(x_1, x_2) = \sum_j \cos 2\pi b_j (x_1 - x_2) \). When \(d \) is extremely large it can be considered as \(f(\xi) = \cos 2\pi \xi (x_1 - x_2) \) where \(\xi \) is a Gaussian random variable with standard deviation \(\sigma \). Then the above sum can be replaced with the integral,

\[
D(x_1, x_2) = \int_{-\infty}^{+\infty} e^{-\frac{x^2}{2\sigma^2}} \cos 2\pi \xi (x_1 - x_2) d\xi \\
= 2 \int_{0}^{+\infty} e^{-\frac{x^2}{2\sigma^2}} \cos 2\pi \xi (x_1 - x_2) d\xi \\
= 2 \int_{0}^{+\infty} e^{-\frac{x^2}{2\sigma^2}} \frac{1}{2} (e^{2\pi (x_1 - x_2) \xi} + e^{-i2\pi (x_1 - x_2) \xi}) d\xi \\
= \int_{0}^{+\infty} e^{-\frac{x^2}{2\sigma^2} + i2\pi (x_1 - x_2) \xi} + e^{-\frac{x^2}{2\sigma^2} - i2\pi (x_1 - x_2) \xi} d\xi
\]

Further,

\[
\int_{0}^{\infty} e^{-ax^2 + bx} dx = e^{-\frac{b^2}{4a}} \int_{0}^{\infty} e^{-a(x - \frac{b}{2a})^2} dx = \frac{1}{2} \left(1 + \text{erf} \left(\frac{b}{2\sqrt{a}} \right) \right) \sqrt{\frac{\pi}{a}} e^{-\frac{b^2}{4a}}.
\]

Let \(a = \frac{1}{2\sigma^2} \) and \(b = \pm 2\pi (x_1 - x_2) \). Then, we have

\[
D(x_1, x_2) = \sqrt{2\pi \sigma} e^{-2\pi^2 \sigma^2 (x_1 - x_2)^2}.
\]
Proposition 4 Let the Rectangular embedder be denoted as \(\psi(t, x) = \text{rect} \left(\frac{x - t}{\sigma} \right) = (1 - \frac{|x - t|}{0.5\sigma}) > 0 \). With a sufficient embedding dimension, the stable rank of the embedding matrix obtained using the Rectangular embedder is \(\min \left(N, \frac{1}{\sigma} \right) \) where \(N \) is the number of embedded coordinates. Under the same conditions, the embedded distance between two coordinates \(x_1 \) and \(x_2 \) is \(D(x_1, x_2) = \sigma \text{tri} \left(\frac{|x_1 - x_2|}{\sigma} \right) = \sigma \max(1 - \frac{|x_1 - x_2|}{\sigma}, 0) \).

Proof: Let us define the Rectangular embedder as \(\psi(t, x) = \text{rect} \left(\frac{x - t}{\sigma} \right) = (1 - \frac{|x - t|}{0.5\sigma}) > 0 \), where \(\sigma \) is the width of the rectangle impulse. Given \(d \) samples points \([t_1, \ldots, t_d]\) and \(N \) input coordinates \([x_1, \ldots, x_N]\), the elements of the embedding matrix are

\[
\Psi_{i,j} = \psi(t_i, x_j).
\] (12)

To make sure the stable rank is saturated, we assume that \(d \) and \(N \) are large enough. Then, \(\Psi \) is approximately a circulant matrix. We know that the singular value decomposition of a circulant matrix \(C \), whose first row is \(c \), can be written as

\[
C = \frac{1}{n} F_n^{-1} \text{diag} \left(F_n c \right) F_n,
\] (13)

where \(F_n \) is the Fourier transform matrix. This means the singular values of a circulant matrix are the Fourier transform of the first row. When \(N \) is large enough, we can approximate the first row of \(\Psi \) as a continuous signal, which is \(\psi(x, t=0) = \text{rect}(\frac{x}{\sigma}) \), so the singular values are

\[
s(\xi) = F(\psi(x; t=0)) = \sigma \text{sinc}(\sigma \xi),
\] (14)

where \(\text{sinc}(\xi) = \frac{\sin(\pi \xi)}{\pi \xi} \). Therefore, we can compute the stable rank directly from the definition,

\[
\text{Stable Rank}(\Psi) = \sum_{i=1}^{N} \frac{s_i^2}{s_i^2} = \int_{-\infty}^{+\infty} s(\xi)^2 d\xi = \int_{-\infty}^{+\infty} \text{sinc}^2(\sigma \xi) d\xi = \frac{1}{\sigma}.
\] (15)

Considering the general case, where \(N \) might not be large enough, the stable rank will be \(\min \left(N, \frac{1}{\sigma} \right) \).

The distance (or similarity) between two embedded coordinates can be obtained via the inner product:

\[
D(x_1, x_2) = \int_{-\infty}^{+\infty} \psi(t, x_1)\psi(t, x_2) dt
= \int_{-\infty}^{+\infty} \text{rect} \left(\frac{x_1 - t}{\sigma} \right) \text{rect} \left(\frac{x_2 - t}{\sigma} \right) dt
= \sigma \text{tri} \left(\frac{x_1 - x_2}{\sigma} \right).
\] (16)
Proposition 5 Let the Triangular embedder be $\psi(t, x) = \text{tri} \left(\frac{x - t}{0.5\sigma} \right) = \max(1 - \frac{|x - t|}{0.5\sigma}, 0)$.
With a sufficient embedding dimension, the stable rank of the embedding matrix obtained using the Triangular embedder is $\min(N, \frac{1}{\sigma})$ where N is the number of embedded coordinates. Under the same conditions, the embedded distance between two coordinates x_1 and x_2 is $D(x_1, x_2) = \frac{1}{4} \sigma^2 \text{tri}^2 \left(\frac{|x_1 - x_2|}{\sigma} \right) = \frac{1}{4} \sigma^2 \max(1 - \frac{|x_1 - x_2|}{\sigma}, 0)^2$.

Proof: Let us define the Triangle embedder as $\psi(t, x) = \text{tri} \left(\frac{x - t}{0.5\sigma} \right) = \max \left(1 - \frac{|x - t|}{0.5\sigma}, 0\right)$, where σ is the width of the Triangular impulse. Given d samples points $[t_1, \ldots, t_d]$ and N input coordinates $[x_1, \ldots, x_N]$, the elements of the embedding matrix are

$$\Psi_{i,j} = \psi(t_i, x_j). \quad (17)$$

To make sure the stable rank is saturated, we assume that d and N are large enough. Then, Ψ is approximately a circulant matrix. We know that the singular value decomposition of a circulant matrix C, whose first row is c, can be written as

$$C = \frac{1}{n} F_n^{-1} \text{diag}(F_n c) F_n, \quad (18)$$

where F_n is the Fourier transform matrix. This means the singular values of a circulant matrix are the Fourier transform of the first row. When N is large enough, we can approximate the first row of Ψ as a continuous signal, which is $\psi(x, t=0) = \text{tri} \left(\frac{x}{\sigma} \right)$, so the singular values are

$$s(\xi) = \mathcal{F} \left(\psi(x; t=0) \right) = \frac{\sigma}{2} \text{sinc}^2 \left(\frac{\sigma}{2} \xi \right), \quad (19)$$

where $\text{sinc}(\xi) = \frac{\sin(\pi x)}{\pi x}$. Therefore, we can compute stable rank directly from the definition as,

$$\text{Stable Rank}(\Psi) = \sum_{i=1}^{N} s_i^2 \sum_{j=1}^{N} s_j^2 = \int_{-\infty}^{+\infty} s(\xi) \frac{s(\xi)}{s(0)} d\xi = \int_{-\infty}^{+\infty} \text{sinc}^4 \left(\frac{\sigma}{2} \xi \right) d\xi = \frac{4}{3\sigma}. \quad (20)$$

Considering the general case, where N might not be large enough, the stable rank will be $\min \left(N, \frac{1}{\sigma} \right)$.

The distance (or similarity) between two embedded coordinates can be obtained via the inner product:

$$D(x_1, x_2) = \int_{-\infty}^{+\infty} \psi(t, x_1) \psi(t, x_2) dt$$

$$= \int_{-\infty}^{+\infty} \text{tri} \left(\frac{x - t}{0.5\sigma} \right) \text{tri} \left(\frac{x - t}{0.5\sigma} \right) dt$$

$$= \frac{1}{4} \sigma^2 \max \left(1 - \frac{|x_1 - x_2|}{\sigma}, 0\right)^2. \quad (21)$$

□
B 2D complex encoding

B.1 Closed form solution for separable coordinates

If pixels are sampled on a regular grid formed by samples
\[x = [x_1, x_2, \cdots, x_N]^T \]
and samples
\[y = [y_1, y_2, \cdots, y_M]^T \],
then the coordinates of these pixels are separable. Let
\[\mathbf{S} \in \mathbb{R}^{M \times N} \]
be the signal defined as
\[\mathbf{S}_{i,j} = I(x_i, y_j), \]
where \(i = 1, 2, \cdots, N, j = 1, 2, \cdots, M, \)
and \(\Psi: \mathbb{R} \rightarrow \mathbb{R}^K \) be the 1D encoder. We want to find the weights \(\mathbf{W} \in \mathbb{R}^{K \times K} \) of the linear layer by optimizing the following equation,

\[
\begin{align*}
\arg \min_{\mathbf{W}} \| \text{vec} (\mathbf{S}) - (\Psi (y) \otimes \Psi (x)) \text{vec} (\mathbf{W}) \|^2_2,
\end{align*}
\]

where \(\Psi (x) \in \mathbb{R}^{N \times K} \) is the encoding for \(x \), \(\Psi (y) \in \mathbb{R}^{M \times K} \) is the encoding for \(y \). This is a linear least squares problem. Based on the properties of the Kronecker product, we find the optimal solution \(\mathbf{W}^* \) as,

\[
\begin{align*}
\text{vec} (\mathbf{W}^*) &= \arg \min_{\mathbf{W}} \| \text{vec} (\mathbf{S}) - (\Psi (y) \otimes \Psi (x)) \text{vec} (\mathbf{W}) \|^2_2 \\
&= \left((\Psi (y) \otimes \Psi (x))^T (\Psi (y) \otimes \Psi (x)) \right)^{-1} (\Psi (y) \otimes \Psi (x))^T \text{vec} (\mathbf{S}) \\
&= \left(\left((\Psi (y)^T \Psi (y))^{-1} \Psi (y) \right) \otimes \left((\Psi (x)^T \Psi (x))^{-1} \Psi (x) \right) \right) \text{vec} (\mathbf{S}) \\
&= \text{vec} \left((\Psi (x)^T \Psi (x))^{-1} \Psi (x) \right) \mathbf{S} \left((\Psi (y)^T \Psi (y))^{-1} \Psi (y) \right)^T \\
&= \text{vec} \left((\Psi (x)^T \Psi (x))^{-1} \Psi (x) \mathbf{S} (\Psi (y)^T \Psi (y))^{-1} \right),
\end{align*}
\]

which means,

\[
\begin{align*}
\mathbf{W}^* &= (\Psi (x)^T \Psi (x))^{-1} \Psi (x) \mathbf{S} (\Psi (y)^T \Psi (y))^{-1}.
\end{align*}
\]

B.2 Blending matrix for non-separable coordinates

First, we focus on 1D encoders. Given a 1D encoder \(\Psi: \mathbb{R} \rightarrow \mathbb{R}^K \) and two points \(x_0, x_1 \), we want to express \(\Psi (x) \approx \alpha_0 \Psi (x_0) + \alpha_1 \Psi (x_1) \) for \(x_0 \leq x \leq x_1 \). This problem can be solved by

\[
\begin{align*}
\arg \min_\alpha \| \Psi (x) - \left[\Psi (x_0) \ \Psi (x_1) \right] \alpha \|^2_2,
\end{align*}
\]

where \(\alpha = [\alpha_0 \ \alpha_1]^T \). Note here that \(\Psi (x), \Psi (x_0), \) and \(\Psi (x_1) \) are \(K \times 1 \) vectors. This is equivalent to a least squared problem, thus, the optimal solution \(\alpha^* \) can be solved by

\[
\begin{align*}
\alpha^* &= \arg \min_\alpha \| \Psi (x) - \left[\Psi (x_0) \ \Psi (x_1) \right] \alpha \|^2_2 \\
&= \left(\left[\Psi (x_0) \ \Psi (x_1) \right]^T \left[\Psi (x_0) \ \Psi (x_1) \right] \right)^{-1} \left[\Psi (x_0) \ \Psi (x_1) \right]^T \Psi (x) \\
&= \left(\left[\Psi (x_0)^T \Psi (x_0) \ \Psi (x_1)^T \Psi (x_1) \right]^{-1} \left[\Psi (x_0)^T \Psi (x) \ \Psi (x_1)^T \Psi (x) \right] \right) \Psi (x)
\end{align*}
\]
With the definition $D(x_1, x_2)$ in Appendix A, this can be written as,

$$\alpha^* = \begin{bmatrix} D(x_0, x_0) & D(x_0, x_1) \\ D(x_1, x_0) & D(x_1, x_1) \end{bmatrix}^{-1} \begin{bmatrix} D(x_0, x) \\ D(x_1, x) \end{bmatrix}. \quad (27)$$

Typically, this distance function only depends on the difference of the inputs, as examples shown in Appendix A. Therefore, we can have a close form solution for $D: \mathbb{R} \to \mathbb{R}$. Let $d = x_1 - x_0$, and $x = x_0 + \beta d$, where $0 \leq \beta \leq 1$. Then, the solution becomes,

$$\alpha^* = \begin{bmatrix} D(0, 0) & D(0, 1) \\ D(1, 0) & D(1, 1) \end{bmatrix}^{-1} \begin{bmatrix} D(\beta d) \\ D((1 - \beta) d) \end{bmatrix}$$

$$= \frac{1}{D^2(0) - D^2(d)} \begin{bmatrix} D(0) & -D(d) \\ -D(d) & D(0) \end{bmatrix} \begin{bmatrix} D(\beta d) \\ D((1 - \beta) d) \end{bmatrix}. \quad (28)$$

Based on the 1D analysis, encoding 2D non-separable points can also be expressed as non-linear interpolation of 2D separable coordinates. Suppose that the settings are the same as in Appendix B.1. The virtual pixels are sampled on a regular grid formed by samples $x = [x_1, x_2, \cdots, x_N]^T$ and samples $y = [y_1, y_2, \cdots, y_M]^T$. The query points are randomly sampled in the space as $Q = [q_1, q_2, \cdots, q_P]^T$, where P is the number of points and each $q_i \in \mathbb{R}^{2 \times 1}$ is a random 2D coordinate. Let $s \in \mathbb{R}^{P \times 1}$ be the signal, and $\Psi: \mathbb{R} \to \mathbb{R}^K$ be the 1D encoder. We want to find the weights $W \in \mathbb{R}^{K \times K}$ of the linear layer by optimizing the following equation,

$$\arg \min_W \|s - B(Q)(\Psi(y) \otimes \Psi(x)) \text{ vec}(W)\|^2,$$

(29)

where $B: \mathbb{R}^2 \to \mathbb{R}^{MN}$ is the non-linear interpolation coefficients function, i.e., $B(Q) \in \mathbb{R}^{P \times MN}$ is the blending matrix. Note that although B is large, it is extremely sparse and only have 4 non-zero values on each row of MN elements. Consider a certain point q_i, is in the grid whose corner points are (x_i, y_j), (x_{i+1}, y_j), (x_i, y_{j+1}), and (x_{i+1}, y_{j+1}), which means $x_i \leq q_{i0} \leq x_{i+1}$ and $y_j \leq q_{p1} \leq y_{j+1}$. Then we can obtain the encoding for q_{i0} and q_{p1} as follows,

$$\Psi(q_{i0}) \approx \alpha_0 \Psi(x_i) + \alpha_1 \Psi(x_{i+1}),$$

$$\Psi(q_{p1}) \approx \beta_0 \Psi(y_j) + \beta_1 \Psi(y_{j+1}). \quad (30)$$

Then, the 2D encoding for q_i is,

$$\Psi(q_i) = \Psi(q_{p0}, q_{p1})$$

$$= \Psi(q_{p1}) \otimes \Psi(q_{p0})$$

$$= (\beta_0 \Psi(y_j) + \beta_1 \Psi(y_{j+1})) \otimes (\alpha_0 \Psi(x_i) + \alpha_1 \Psi(x_{i+1}))$$

$$= \alpha_0 \beta_0 \Psi(x_i, y_j) + \alpha_0 \beta_1 \Psi(x_i, y_{j+1}) + \alpha_1 \beta_0 \Psi(x_{i+1}, y_j) + \alpha_1 \beta_1 \Psi(x_{i+1}, y_{j+1}) \quad (31)$$
which means $B(q_{\phi}) \in \mathbb{R}^{1 \times MN}$ are all zeros except $\alpha_0 \beta_0$ at index $jN+i$, $\alpha_0 \beta_1$ at index $(j+1)N+i$, $\alpha_0 \beta_0$ at index $jN+i+1$ and $\alpha_0 \beta_0$ at index $(j+1)N+i+1$.

C HD complexity

Let $X \in \mathbb{R}^{ND \times D}$ be N^D points in D dimensional space, $\Psi : \mathbb{R} \rightarrow \mathbb{R}^K$ be the 1D encoder, and we want to know the memory and computational complexity when the encoding multiply a linear layer W.

Simple encoding. The embedding $\Psi(X) \in \mathbb{R}^{ND \times DK}$ and the weights $W \in \mathbb{R}^{DK \times 1}$, so the memory complexity is $O(DKN^D)$ and the computational complexity is $O(DKN^D)$.

Complex encoding (naive implementation). The embedding $\Psi(X) \in \mathbb{R}^{ND \times DK}$ and the weights $W \in \mathbb{R}^{KD \times 1}$, so the memory complexity is $O(K^DN^D)$ and the computational complexity is $O(K^DN^D)$.

Complex encoding (separable coordinates). The embedding $\Psi(X) \in \mathbb{R}^{NK \times D}$ and the weights $W \in \mathbb{R}^{K^D \times 1}$, so the memory complexity is $O(K^DN^D)$ and the computational complexity is $O(K^DN^D)$.

Complex encoding (non-separable coordinates). The embedding $\Psi(X) \in \mathbb{R}^{NK \times D}$, the weights $W \in \mathbb{R}^{K^D \times 1}$ and the Blending matrix $B(X) \in \mathbb{R}^{ND \times DP}$ (sparse matrix with only $N^D \times 2^D$ non-zeros values), so the memory complexity is $O(K^DN^D + 2^DN^D)$, the computational complexity is $2^DN^D + \sum_{i=1}^{D} N^i K^{D+1-i} = O(D^N + K^{-2}N^D)$. A special case of $N=K$ will be discussed later.

Special case $N=K$. Both simple encoding and separable complex encoding have $O(DN^{D+1})$ computational encoding. Memory complexity is $O(DN^{D+1})$ for simple encoding while it is $O(N^D + 2N)$ for separable encoding. However, the rank of the latter one is power of D to the first one.

D Experiments

D.1 Method Notations

For 1D encoding experiments, we used Fourier-feature-based encodings with linearly, log-linearly, or randomly sampled frequencies, and shifted encodings whose bases are Gaussian or triangle. We give a brief introduction to these methods below.

LinF (Fourier feature-based encoding using linearly sampled frequency).

$$
\phi(x) = \left[\cdots, \cos \left(2\pi \cdot \left(\frac{K-1}{K} 2^0 + \frac{i}{K} 2^\sigma \right) x \right),
\sin \left(2\pi \cdot \left(\frac{K-1}{K} 2^0 + \frac{i}{K} 2^\sigma \right) x \right), \cdots \right]^T,
$$

where $i=0, \ldots, K-1$ and σ is the hyperparameter for the frequency range that sampled linearly from base frequency (2^0) to max frequency (2^σ).

LogF (Fourier feature-based encoding using log-linearly sampled frequency).

$$
\phi(x) = \left[\cdots, \cos \left(2\pi \cdot 2^{\sigma i/K} x \right),
\sin \left(2\pi \cdot 2^{\sigma i/K} x \right), \cdots \right]^T,
$$

where $i=0, \ldots, K-1$ and σ is the hyperparameter for frequency range. The frequency are sampled log-linearly from base frequency (2^0) to max frequency (2^σ).
RFF (Fourier feature-based encoding using randomly sampled frequency) [2].

\[\phi(x) = \begin{bmatrix} \cos(2\pi b x)^T, \sin(2\pi b x)^T \end{bmatrix}^T, \]

(34)

where \(b \in \mathbb{R}^{K \times 1} \) is random frequencies sampled from \(\mathcal{N}(0, \sigma^2) \), where \(\sigma \) is the hyper-parameter for frequency range.

Tri (shifted triangle encoding).

\[\phi(x) = \begin{bmatrix} \cdots, \max \left(1 - \left| \frac{x-i/K}{d} \right|, 0 \right), \cdots \end{bmatrix}^T, \]

(35)

where \(i=0, \ldots, K-1 \) and \(d \) is the hyperparameter for the width of triangle wave.

Gau (shifted Gaussian encoding).

\[\phi(x) = \begin{bmatrix} \cdots, e^{-\frac{x-i/K}{2\sigma^2}}, \cdots \end{bmatrix}^T, \]

(36)

where \(i=0, \ldots, K-1 \) and \(d \) is the hyperparameter for the width of Gaussian wave.

D.2 Non-separable 3D video reconstruction

We used the same Youtube video dataset [1] as described in the main paper. The only difference is that the training points were randomly sampled (12.5\% from the total number of points) of a 64×64×64 grid, and the rest of the points were used for testing. The results are shown in Table 1. Similar to our observations in the main paper, complex encodings combined with a single linear layer have comparable performance to simple encodings combined with deep (4 layer MLPs) networks while being 10x faster. Complex frequency-based encodings (LinF, LogF, RFF) have inferior results than complex shifted-based encodings (Tri, Gau) due to deficient rank.

Table 1: Performance of video reconstruction with randomly sampled inputs (non-separable coordinates). \(\bullet \) are simple positional encodings. \(\bullet \) are complex positional encodings with stochastic gradient descent using smart indexing. Complex encodings with a single linear network are 10x faster than simple encodings with deep networks.

	PSNR	No. of params (memory)	Time (s)
LinF	21.38 ± 3.32	1,445,891 (5.78M)	76.87
LogF	21.54 ± 3.32	1,445,891 (5.78M)	76.76
RFF [2]	21.35 ± 3.32	1,445,891 (5.78M)	76.22
Tri	20.90 ± 3.09	1,445,891 (5.78M)	77.82
Gau	21.16 ± 3.11	1,445,891 (5.78M)	77.98
LinF	10.08 ± 3.63	786,432 (3.15M)	55.34
LogF	18.79 ± 2.55	786,432 (3.15M)	53.48
RFF [2]	20.26 ± 2.82	786,432 (3.15M)	1.82
Tri	21.54 ± 3.01	786,432 (3.15M)	1.83
Gau	21.29 ± 3.04	786,432 (3.15M)	1.86

D.3 Visual results for 2D images

Here we show 2D image visual results for separable coordinates in Figs. 2 and 3, and non-separable coordinates in Figs. 4 and 5. For simple encoding, five aforementioned encoders were tested with 256 width MLP of 0 and 4 hidden ReLU layers (0 means only a linear layer). For complex encoding, the same five encoders were tested with 0 and 1 hidden ReLU MLPs.

As shown in column 1 of these figures, when we used simple encodings and the network only had a single linear layer (0 hidden layers), the reconstructed images are of low quality, showing low-resolution color grids (LinF, LogF), cross strip colors (Tri, Gau), or random color blobs (RFF). The results clearly support our claim that a linear network can only reconstruct a 2D image signal with at most rank 2. When we introduced non-linear layers and increased the hidden layer depth (depth 4, column 2), the reconstruction quality improves, leading to a better PSNR.

On the contrary, even with a single linear layer (depth 0, column 3), our complex encoding methods can achieve comparable results with methods that used a simple encoding combined with deeper non-linear networks. Note that Fourier feature-based (frequency-based) complex encodings (LinF, LogF, RFF) performed worse than shifted-based complex encodings (Tri, Gau) when there was only one single linear layer due to the deficiency of the embedding rank (shown in Fig. 1). Adding an extra non-linear layer (depth 1, column 4) did not substantially improve the performance of shifted-based complex encodings while adding more details for frequency-based complex encodings.

References

1. Real, E., Shlens, J., Mazzocchi, S., Pan, X., Vanhoucke, V.: Youtube-boundingboxes: A large high-precision human-annotated data set for object detection in video. In: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 5296–5305 (2017)
2. Tancik, M., Srinivasan, P.P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron, J.T., Ng, R.: Fourier features let networks learn high frequency functions in low dimensional domains. arXiv preprint arXiv:2006.10739 (2020)
Fig. 2: Reconstruction results of an archway using separable coordinates (regular-grid sampled training points) with different combinations of simple or complex encodings and network depths.
Fig. 3: Reconstruction results of a heap of walnuts using separable coordinates (regular-grid sampled training points) with different combinations of simple or complex encodings and network depths.
Fig. 4: Reconstruction results of a lion using non-separable coordinates (randomly sampled training points) with different combinations of simple or complex encodings and network depths.
Fig. 5: Reconstruction results of a seaside residential area using non-separable coordinates (randomly sampled training points) with different combinations of simple or complex encodings and network depths.