Quantitative and Qualitative Monitoring of Airborne Bacteria and Fungi and Their Relationship with Environmental Parameters in Two Selected Primary Schools

*Seyed Hamed Mirhoseini 1, Fatemeh Ariyan 2, Samaneh Mohammadi 2

1. Department of Environmental Health, School of Health, Arak University of Medical Sciences, Arak, Iran.
2. Student Research Committee, School of Health, Arak University of Medical Sciences, Arak, Iran.

ABSTRACT

Background and Aim: The assessment of indoor air quality and detection of its microbial pollutants in classrooms is very important because of the presence of children sensitive to these pollutants. The aim of this study was to determine the concentration and characterization of dominant species of biological aerosols and their relationship with environmental factors in two selected primary schools in Arak, Iran.

Methods & Material: This cross-sectional study was conducted at two primary schools in Arak, Iran in Fall 2018. Indoor air sampling was performed using single-stage Andersen microbial sampler (at flow rate of 28.3 liters/min) containing bacterial and fungal culture media. The effects of suspended Particulate Matter (PM) and environmental parameters (temperature and humidity) on the density of bioaerosols were evaluated.

Ethical Considerations: This study with an ethics code of IR.ARAKMU.REC.1397.76 was approved by the Research Ethics Committee at Arak University of Medical Sciences.

Results: The overall mean density of indoor bacteria and fungi was 448 cfu/m3 and 394 cfu/m3, while the mean density of outdoor bacteria and fungi was 210 cfu/m3 and 127 cfu/m3, respectively. There was a positive correlation between indoor density of airborne bacteria and suspected PM concentrations (PM 10 and PM 2.5), and between PM2.5 concentration and indoor fungal density ($P<0.05$). Penicillium (40%), Cladosporium (19%) and Aspergillus (16%) were dominant species of fungi, while Staphylococcus (42%), Micrococcus (28%), Bacillus (21%) were the dominant species of bacteria.

Conclusion: The age and type of building and the density of students in a classroom are the main factors in increasing the concentration of bioaerosols.

Key words: Bioaerosol, Primary school, Particulate Matter, Bacteria, Fungi

Extended Abstract

Introduction

In recent years, exposure to bioaerosols has been of great importance due to its associated health problems. The World Health Organization has warned of the health implications of poor indoor air quality and incidence of infectious, respiratory and allergic diseases. The classroom is an environment where students spend most of their day. Inside the classroom, students are exposed to airborne physical, chemical, and microbial agents. The assessment of indoor air quality and detection of microbial pollutants in classrooms is very important because of the presence of children sensitive to these pollutants. The aim of this study was to determine the...
concentration and characterization of dominant species of biological aerosols and their relationship with environmental factors in two selected primary schools in Arak, Iran.

Methods and Materials

This cross-sectional study was conducted at two primary schools in Arak, Iran in Fall 2018. Indoor air sampling was performed using single-stage Andersen microbial sampler (at flow rate of 28.3 liters.min) containing bacterial and fungal culture media. Indoor air sampling was carried out during regular class activity hours at a height of 1.5 m above ground level. At the same time, the effects of suspended Particulate Matter (PM) and environmental parameters (temperature and humidity) on the density of bioaerosols were evaluated. In order to determine the ratio of indoor to outdoor concentrations, sampling of school yard air was performed simultaneously as an outdoor sample. Bacterial media were incubated at 37 °C for 24-48 h, and plates of fungal samples were kept at ambient air for 5-7 days. The number of colonies was then counted and reported per CFU.m³. Bacterial colonies were identified by biochemical tests and fungal colonies were identified through macroscopic morphological features and microscopic observations. Kruskal-Wallis test was used to compare the concentration of bioaerosols in different environments, and Spearman’s rank correlation test was used to investigate the relationship between different parameters.

Results

The overall mean density of indoor bacteria and fungi was 448 cfu.m³ and 394 cfu.m³, while the mean density of outdoor bacteria and fungi was 210 cfu.m³ and 127 cfu.m³, respectively. The highest and the lowest mean bacterial density belonged to the second floor classroom of School No. 2 (559±141 cfu.m³) and the first floor classroom of School No. 1 (293±170 cfu.m³), respectively. Moreover, the first floor classroom of School No. 1 (63±25 cfu.m³) and the first floor classroom of School No. 2 (132±98 cfu.m³) had the lowest and highest mean fungal density, respectively, in the air of different areas (Figure 1).

Statistical analysis showed that there was a significant difference between the indoor concentrations of airborne bacteria and fungi (P<0.05), but not between their outdoor concentrations (P>0.05). Mann-Whitney U test results showed that the mean concentrations of PM10 and PM2.5 in outdoor air were significantly higher than in indoor air (Table 1). There was a positive correlation between indoor density of airborne bacteria and suspected PM concentrations (PM10 and PM2.5), and between PM2.5 concentration and indoor fungal density (P<0.05). Humidity and density of indoor airborne bacteria and fungi were directly correlated with each other, but no relationship between temperature and density of biological aerosols was reported (Table 2). Penicillium (40%), Cladosporium (19%) and Aspergillus (16%) were dominant species of fungi, while Staphylococcus (42%), Micrococcus (28%), Bacillus (21%) were the dominant species of bacteria.

Discussion

A review of past studies shows that a wide range of bioaerosol concentrations have been reported in the classrooms. Some of the studies are consistent with our study [12, 13]. A number of studies have reported higher levels of bioaerosol density. For example, in studies conducted in two girls’ high schools of Esalamshar county in Tehran [2], in 73 classrooms of 20 elementary schools located in Porto, Portugal in winter [10], and in primary schools in Gondar, Ethiopia [14], higher bioaerosol density were reported. Various factors such as: sampling season, environmental and climatic conditions, internal sources of bioaerosol production and differences in study design (sample size, sequence and duration of sampling) are the main reasons for the differences in
The authors would like to thank the Vice-Chancellor for Research and Student Research Committee of Arak University of Medical Sciences for their valuable spiritual and financial support.

Authors' contributions

All authors met the writing standards based on the recommendations of the International Committee of Medical Journal Editors (ICMJE), and they had equal attribution in preparing the paper.

Conflicts of interest

The authors declare no conflict of interest.

Ethical Considerations

Compliance with ethical guidelines

This study with an ethics code of IR.ARAKMU.REC.1397.76 was approved by the Research Ethics Committee at Arak University of Medical Sciences.

Funding

This study was extracted from a research proposal approved by Arak University of Medical Sciences (code: 3079). The authors would like to thank the Vice-Chancellor for Research and Student Research Committee of Arak University of Medical Sciences for their valuable spiritual and financial support.

| Table 1. Mean concentrations of PM10 and PM2.5 (µg/m3) and mean temperature and humidity of sampling sites |
|---|-------------|-----------------|---------|-----|
School	Sampling site	Temperature (°C)	Humidity (%)	PM10	PM2.5
School No. 1	first floor classroom	20/0±1/8	2/34±0/2	47±21	28±14
School No. 1	second floor classroom	21/0±6/7	35/1±6/2	36±11	19±8
School No. 1	outdoor	18/4±0/6	4/36±1/8	84±22	47±10
School No. 2	first floor classroom	22/2±0/9	39/3±4/2	68± 26	38±18
School No. 2	second floor classroom	21/6±0/5	40/2±9/9	75±31	44±29
School No. 2	outdoor	19/20±0/4	32/0±8/8	77±35	50±31

| Table 2. Spearman rank correlation matrix for different study parameters |
|---|-------------|---------|-----|
| Density of bacteria | Density of Fungi | PM10 | PM2.5 | Temperature | Humidity |
| Density of bacteria | 1 | -0/008 | 1 |
| Density of fungi | *0/282 | *0/462 | 1 |
| PM10 | *0/324 | *0/301 | *0/92 | 1 |
| PM2.5 | Temperature | 0/123 | 0/213 | 0/003 | -0/048 | 1 |
| Humidity | 0/298 | 0/363 | 0/002 | -0/063 | -0/016 | 1 |

*Significant at P<0.05.

the results between our study and other studies. In this study, the I.O ratios varied from 1.4 to 5.6 for bacterial aerosols and from 0.4 to 1.2 for fungal aerosols. The highest ratio for bacteria was found in School n. 2(2,4), indicating that the origin of airborne bacteria in the classroom was internal. The dominant bacterial and fungal species identified in this study are consistent with results obtained from indoor air isolates of school in other studies [4, 22, 23]. Staphylococcus as a natural flora of the skin and nose can cause a wide range of diseases and infections, especially in children. Corynebacterium is also known to be a contributing factor to nosocomial infections, especially in children [24]. The dominant fungal species reported in this study are the most important allergens that have detrimental effects on human health, especially children and students in the classroom [19].
پایشی گامی و کیفی یاکلکریه و قارچ‌های متلاقت زیست محیطی توسعه هوا و ارتباط آن‌ها با عوامل محیطی در هوای داخلی مدارس ابتدایی مراکز شهر اراک

مید: حامد میرحسینی
قلم: آریان سامان محمدی

1. گروه مهندسی برق دانشگاه علوم پزشکی اراک به همراه مهندسی برق دانشگاه علوم پزشکی اراک از این کارکرد افتخار می‌گردد.

2. کمیته تحصیلات فلسفی دانشگاه علوم پزشکی اراک به همراه درون‌کاری از این کارکرد افتخار می‌گردد.

مواد و روش‌ها

این مطالعه مقطعی در دو مدرسه شهر اراک انجام شد. نمونه برداری از هوا با استفاده از نمونه بردار PM10 و PM2.5 حاوی محیط کشت باکتری و قارچ انجام شد. اثر غلظت ذرات معلق (PM2.5) با استفاده از آزمایشگاه کمکسنجشی وسیع (PM2.5) و PM10 بر اساس شرایط محیطی (دما و رطوبت) بر تراکم بیوآئروسل‌ها مورد ارزیابی قرار گرفت.

نتایج

بین تراکم داخلی باکتری‌ها و Q = 0.50 و Q = 0.448 cfu/m3 تراکم باکتری‌ها و Q = 0.50 و Q = 0.448 cfu/m3 میانگین کلی تراکم باکتری‌ها و Q = 0.50 و Q = 0.448 cfu/m3 است. همچنین میانگین Q = 0.50 و Q = 0.448 cfu/m3 تراکم باکتری‌ها و Q = 0.50 و Q = 0.448 cfu/m3 و Q = 0.50 و Q = 0.448 cfu/m3 ارتباط مستقیم وجود داشت.

یافته‌ها نشان داد که قدمت و نوع ساختمان و تراکم دانش آموزان در کلاس درس از عوامل اصلی افزایش غلظت بیوآئروسل‌ها هستند.

مقدمه

کلاس‌های دبیرستان مدارس مراکز شهر اراک به دلیل مصرف دانش‌آموزان بعد از منزل بیشتر زمان (حدود شش ساعت) را طی روز در آن مصرف می‌کنند [1] از طرف دیگر باکتری‌های توزیع (PM10) و PM2.5) می‌تواند به موجب کاهش کیفیت هوا و افزایش خطر آلودگی در مانند تراکم باکتری‌ها و Q = 0.50 و Q = 0.448 cfu/m3 ارتباط مستقیم و منفی با بیماری‌های مربوط به پا (PM10) و PM2.5) ارتباط مستقیم وجود داشت. بنابراین در این مطالعه ارتباط بین PM10 و PM2.5) و PM10 با تراکم باکتری‌‌ها و Q = 0.50 و Q = 0.448 cfu/m3 به ترتیب، میانگین 94 و 448 cfu/m3 میانگین کلی تراکم باکتری‌ها و Q = 0.50 و Q = 0.448 cfu/m3 است. همچنین میانگین Q = 0.50 و Q = 0.448 cfu/m3 تراکم باکتری‌ها و Q = 0.50 و Q = 0.448 cfu/m3 است. همچنین میانگین Q = 0.50 و Q = 0.448 cfu/m3 تراکم باکتری‌ها و Q = 0.50 و Q = 0.448 cfu/m3 و Q = 0.50 و Q = 0.448 cfu/m3 ارتباط مستقیم وجود داشت.

کلیدواژه‌ها: بیوآئروسل، مدرسه، باکتری، قارچ, PM10, PM2.5
بهمن و اسفند 1398، شماره 6

مقاله دانشگاه علوم پزشکی اراک

مواد و روش‌ها

مکان نمونه‌برداری

این پژوهش توصیفی مقطعی در دو مدرسه ابتدایی نوساز منطقه 24-7-3 و مهد جنوبی شهر اراک اجرا گردیده است. محل نمونه‌برداری، مدارس اول و دوم ابتدایی مورد مطالعه بودند. در این مطالعه، سنجش کیفیت محیط در داخل ساختمان مورد بررسی قرار گرفت.

روش نمونه‌برداری و تشخیص ویروس ها و بیولوژیکی

نمونه‌برداری با روش نمونه‌برداری بیولوژیکی انجام شد. این روش با استفاده از الکل 70 درصدی و گاز غلیظ، با استفاده از تک مرحله‌ای اندرسون، بر روی بخش‌های مختلف از هوا کلاس‌ها و کلاس‌های دانش آموزان در دوران اجرای حوزه برداشت شد.

اندازه‌گیری شاخصه‌ها

در طول مدت نمونه‌برداری از هوا، به ترتیب تعداد کلیه 720 میکروژنرها در هر مترمکعب و تعداد باکتری‌ها و قارچ‌ها در هر مترمکعب و تعداد آدلپوسها در هر مترمکعب اندازه‌گیری شد. این تعداد‌ها به وسیله تایپ‌ریز بر روی بهترین جداول مورد بررسی قرار گرفت.

نتایج و گشایش

نتایج نشان داد که در مدارس آنارکیتشگان و مهد جنوبی شهر اراک، تعداد باکتری‌ها و قارچ‌ها در هوا به ترتیب 720 و 720 میکروژنرها در هر مترمکعب بود. به طور کلی نتایج نشان داد که کیفیت محیط در داخل مدارس به طور کلی بهبود یافته است.

خاتمه نوشته

در نهایت، نتایج این پژوهش نشان داد که با بهبود کیفیت محیط در داخل مدارس، بهبود در کیفیت آموزش در دانش آموزان و بهبود کیفیت زندگی در افراد مربوط به آن می‌باشد. به علت اینکه باکتری‌ها و قارچ‌ها از عوامل مهمی در آلودگی محیط هستند که می‌توانند به شکل مختلف میکروبی می‌باشند، لذا باید به آنها توجه کنیم و بهبود این موارد را در مدارس تلاش کنیم.

پژوهشگران

سید حامد میرحسینی و همکاران. پایش کمّی و کیفی باکتری ها و قارچ های منتقله توسط هوا و ارتباط آن ها با میکروژنرهای محیطی در دو مدارس شهر اراک

2. Tryptic Soy Agar
3. Malt Extract Agar
پارامترهای محیطی هوا، رطوبت و غلظت فرآورش مطلق (PM 2/5 و PM 10) میانگین کل غلظت فرآورش مطلق (PM 10 و PM 2.5) و پارامترهای هوا و رطوبت در داخل کلاس در دو مدرسه انتخاب شده است.

نتایج آزمون آماری نشان داد که اختلاف معنی‌داری بین غلظت باکتری‌ها و قارچ‌ها در متوسط تعداد آن‌ها در هر دو مدرسه وجود نداشت. با توجه به این‌که PM 2.5 و PM 10 کل غلظت فرآورش و PM 2.5 کل غلظت فرآورش داخل کلاس است، ارتباط مستقیم وجود داشت.

یافته‌ها

غلظت آئورسل‌ها (PM 2.5 و PM 10) در محدوده‌های مختلف بین 16 تا 316 سیکلوسای باکتری‌ها و بین 3 تا 8 پیکروپوس باکتری‌ها بود. PM 2.5 غلظت فرآورش بیولوژیکی در داخل و خارج از داخل کلاس در محدوده‌های مختلف بین 132 تا 5000 سیکلوسای باکتری‌ها بود. PM 10 غلظت فرآورش بیولوژیکی در داخل و خارج از داخل کلاس در محدوده‌های مختلف بین 552 تا 2610 سیکلوسای باکتری‌ها بود.

جدول نمودار نشان می‌دهد که اهمیت بیولوژیکی PM 2.5 و PM 10 در تکثیر باکتری‌ها و سایر گونه‌ها و قارچ‌ها بود. در هر دو مدرسه، با استفاده از گرید دستگاه سنجش دمای و رطوبت در داخل کلاس و با استفاده از دستگاه سنجش PM 2.5 و PM 10، میزان ارتباط بین PM 2.5 و PM 10 با نرخ جوشاندن و رطوبت در داخل کلاس محاسبه شد.

جدول ۱: ویژگی‌های محیطی هوا، غلظت باکتری‌ها و قارچ‌ها در داخل و خارج از داخل کلاس

مقدار سنجش	تعداد سنجش	مقدار میانگین					
PM 10	0.39	0.39	0.39	0.39	0.39	0.39	0.39
PM 2.5	0.39	0.39	0.39	0.39	0.39	0.39	0.39
دمای هوا	26.5 ± 2.8	26.5 ± 2.8	26.5 ± 2.8	26.5 ± 2.8	26.5 ± 2.8	26.5 ± 2.8	26.5 ± 2.8
رطوبت	55.5 ± 3.9	55.5 ± 3.9	55.5 ± 3.9	55.5 ± 3.9	55.5 ± 3.9	55.5 ± 3.9	55.5 ± 3.9
تعدادی از گزارشات مقادیر بالاتری از تراکم باکتری و قارچها (PM2.5 و PM10) در هوا می‌شود که میانگین کلی تراکم CFU/m3 در کلاس میانگین 346 و همچنین میانگین 298 CFU/m3 برای کلاس آزاد بود. مرور مطالعات گذشته نشان می‌دهد که در هوا میزان‌های تراکم باکتری و قارچها بالای 346 CFU/m3 باعث کاهش رقابت باکتری‌ها و میکروب‌ها می‌شود. گروه بالاتر از تراکم باکتری و قارچها در هوا می‌شود که میانگین کلی تراکم CFU/m3 در کلاس میانگین 346 و همچنین میانگین 298 CFU/m3 برای کلاس آزاد بود. مرور مطالعات گذشته نشان می‌دهد که در هوا میزان‌های تراکم باکتری و قارچها بالای 346 CFU/m3 باعث کاهش رقابت باکتری‌ها و میکروب‌ها می‌شود. گروه بالاتر از تراکم باکتری و قارچها در هوا می‌شود که میانگین کلی تراکم CFU/m3 در کلاس میانگین 346 و همچنین میانگین 298 CFU/m3 برای کلاس آزاد بود. مرور مطالعات گذشته نشان می‌دهد که در هوا میزان‌های تراکم باکتری و قارچها بالای 346 CFU/m3 باعث کاهش رقابت باکتری‌ها و میکروب‌ها می‌شود. گروه بالاتر از تراکم باکتری و قارچها در هوا می‌شود که میانگین کلی تراکم CFU/m3 در کلاس میانگین 346 و همچنین میانگین 298 CFU/m3 برای کلاس آزاد بود. مرور مطالعات گذشته نشان می‌دهد که در هوا میزان‌های تراکم باکتری و قارچها بالای 346 CFU/m3 باعث کاهش رقابت باکتری‌ها و میکروب‌ها می‌شود. گروه بالاتر از تراکم باکتری و قارچها در هوا می‌شود که میانگین کلی تراکم CFU/m3 در کلاس میانگین 346 و همچنین میانگین 298 CFU/m3 برای کلاس آزاد بود. مرور مطالعات گذشته نشان می‌دهد که در هوا میزان‌های تراکم باکتری و قارچها بالای 346 CFU/m3 باعث کاهش رقابت باکتری‌ها و میکروب‌ها می‌شود. گروه بالاتر از تراکم باکتری و قارچها در هوا می‌شود که میانگین کلی تراکم CFU/m3 در کلاس میانگین 346 و همچنین میانگین 298 CFU/m3 برای کلاس آزاد بود. مرور مطالعات گذشته نشان می‌دهد که در هوا میزان‌های تراکم باکتری و قارچها بالای 346 CFU/m3 باعث کاهش رقابت باکتری‌ها و میکروب‌ها می‌شود. گروه بالاتر از تراکم باکتری و قارچها در هوا می‌شود که میانگین کلی تراکم CFU/m3 در کلاس میانگین 346 و همچنین میانگین 298 CFU/m3 برای کلاس آزاد بود. مرور مطالعات گذشته نشان می‌دهد که در هوا میزان‌های تراکم باکتری و قارچها بالای 346 CFU/m3 باعث کاهش رقابت باکتری‌ها و میکروب‌ها می‌شود. گروه بالاتر از تراکم باکتری و قارچها در هوا می‌شود که میانگین کلی تراکم CFU/m3 در کلاس میانگین 346 و همچنین میانگین 298 CFU/m3 برای کلاس آزاد بود. مرور مطالعات گذشته نشان می‌دهد که در هوا میزان‌های تراکم باکتری و قارچها بالای 346 CFU/m3 باعث کاهش رقابت باکتری‌ها و میکروب‌ها می‌شود. گروه بالاتر از تراکم باکتری و قارچها در هوا می‌شود که میانگین کلی تراکم CFU/m3 در کلاس میانگین 346 و همچنین میانگین 298 CFU/m3 برای کلاس آزاد بود. مرور مطالعات گذشته نشان می‌دهد که در هوا میزان‌های تراکم باکتری و قارچها بالای 346 CFU/m3 باعث کاهش رقابت باکتری‌ها و میکروب‌ها می‌شود. گروه بالاتر از تراکم باکتری و قارچها در هوا می‌شود که میانگین کلی تراکم CFU/m3 در کلاس میانگین 346 و همچنین میانگین 298 CFU/m3 برای کلاس آزاد بود. مرور مطالعات گذشته نشان می‌دهد که در هوا میزان‌های تراکم باکتری و قارچها بالای 346 CFU/m3 باعث کاهش رقابت باکتری‌ها و میکروب‌ها می‌شود. گروه بالاتر از تراکم باکتری و قارچها در هوا می‌شود که میانگین کلی تراکم CFU/m3 در کلاس میانگین 346 و همچنین میانگین 298 CFU/m3 برای کلاس آزاد بود. مرور مطالعات گذشته نشان می‌دهد که در هوا میزان‌های تراکم باکتری و قارچها بالای 346 CFU/m3 باعث کاهش رقابت باکتری‌ها و میکروب‌ها می‌شود. گروه بالاتر از تراکم باکتری و قارچها در هوا می‌شود که میانگین کلی تراکم CFU/m3 در کلاس میانگین 346 و همچنین میانگین 298 CFU/m3 برای کلاس آزاد بود. مرور مطالعات گذشته نشان می‌دهد که در هوا میزان‌های تراکم باکتری و قارچها بالای 346 CFU/m3 باعث کاهش رقابت باکتری‌ها و میکروب‌ها می‌شود. گروگاه کلیه حاوی تراکم باکتری و قارچه در هوا در دو مدرسه ابتدایی استان اراک به دلیل حضور کودکان پایش آئروسل های باکتری و قارچی در این مدارس، به دلیل حضور کودکان پایش آئروسل های باکتری و قارچی در این مدارس، به دلیل حضور کودکان پایش آئروسل های باکتری و قارچی در این مدارس، به دلیل حضور کودکان پایش آئروسل های باکتری و قارچی در این مدارس، به دلیل حضور کودکان پایش آئروسل های باکتری و قارچی در این مدارس، به دلیل حضور کودکان پایش آئروسل های باکتری و قارچی در این مدارس، به دلیل حضور کودکان پایش آئروسل های باکتری و قارچی در این مدارس، به دلیل حضور کودکان پایش آئروسل های باکتری و قارچی در این مدارس.
بهمن و اسفند 1398، شماره 2

فاکتورهای مختلف مانند فضای داخلی مدرسه، مصرف سیگار، و هواپیما ها می توانند باعث افزایش مقدار آلودگی هوا در مدارس شوند. بررسی‌های قبلی نشان داده که هواپیما و خروجی‌های دیگر نیروی هوایی می‌توانند باعث افزایش آلودگی هوا در مدارس شوند. در این مطالعه، به بررسی تاثیر این عوامل بر آلودگی هوا در دو مدرسه ابتدایی شهر اراک پرداخته شد.

1. **یکی از عوامل مهم آلودگی هوا در مدارس می‌تواند سیگار است. بررسی‌های قبلی نشان داده که هواپیما و خروجی‌های دیگر نیروی هوایی می‌توانند باعث افزایش آلودگی هوا در مدارس شوند. در این مطالعه، به بررسی تاثیر این عوامل بر آلودگی هوا در دو مدرسه ابتدایی شهر اراک پرداخته شد.

2. **دیگر عواملی که می‌توانند به آلودگی هوا در مدارس داشته باشند، عواملی مانند سیستم باد و دمای هوا می‌توانند باعث افزایش آلودگی هوا شوند. در این مطالعه، به بررسی تاثیر این عوامل بر آلودگی هوا در دو مدرسه ابتدایی شهر اراک پرداخته شد.

3. **در این مطالعه، هدف بیان تاثیرات مختلف عوامل بر آلودگی هوا در مدارس ابتدایی شهر اراک بود. برای این منظور، مدارس ابتدایی در اراک به صورت تصادفی انتخاب شدند.

4. **عملکرد مدارس‌های ابتدایی شهر اراک نسبت به آلودگی هوا در مدارس کلای ایتالیا متفاوت بود. در مدارس کلای ایتالیا نسبت به آلودگی هوا در مدارس ابتدایی شهر اراک بالاتر بود.

5. **در این مطالعه، نتایج نشان داد که مقدار آلودگی هوا در مدارس ابتدایی شهر اراک بالاتر بود. این نتایج نشان داد که عوامل مختلفی می‌توانند به آلودگی هوا در مدارس ابتدایی شهر اراک داشته باشند.

6. **در این مطالعه، بررسی انرژی برق و تانگوله هوا در مدارس ابتدایی شهر اراک انجام شد. نتایج نشان داد که مقدار انرژی برق در مدارس ابتدایی شهر اراک بالاتر بود.

7. **در این مطالعه، بررسی حضور سیگار در مدارس ابتدایی شهر اراک انجام شد. نتایج نشان داد که حضور سیگار در مدارس ابتدایی شهر اراک بالاتر بود.

8. **در این مطالعه، بررسی حضور عوامل سایر باعثات آلودگی هوا در مدارس ابتدایی شهر اراک انجام شد. نتایج نشان داد که حضور عوامل سایر باعثات آلودگی هوا در مدارس ابتدایی شهر اراک بالاتر بود.

9. **در این مطالعه، بررسی حضور عوامل سایر باعثات آلودگی هوا در مدارس ابتداییشهر اراک انجام شد. نتایج نشان داد که حضور عوامل سایر باعثات آلودگی هوا در مدارس ابتدایی شهر اراک بالاتر بود.

10. **در این مطالعه، بررسی حضور عوامل سایر باعثات آلودگی هوا در مدارس ابتدایی شهر اراک انجام شد. نتایج نشان داد که حضور عوامل سایر باعثات آلودگی هوا در مدارس ابتدایی شهر اراک بالاتر بود.
نتیجه گیری

در مجموع نتایج حاصل از این پژوهش نشان داد که قدمت و نوع ساختار و تراکم دانش آموزان در کلاس درس از عوامل اصلی افزایش غلظت بیوآئروسل‌ها در هوا داخل کلاس‌های درس هستند. از نظر کیفی آئروسل‌های بیولوژیکی شناسایی شده در فضای بسته کلاس‌های درس مدارس مورد بررسی، پتانسیل ایجاد خطرات مرتبط با سلامت را برای دانش آموزان در این محیط‌ها دارد. منابع داخلی به عنوان منبع اصلی آئروسل‌های باکتریایی در کلاس درس شناخته شده که هرچند بر اساس اثبات علمی، منابع خارجی هوا در این حوزه ها از نظر آزاد و بروز خاصی به‌شمار می‌آید که در پژوهش‌های دیگر اثر آن در محیط‌های مfigcaptionuates احتمالاً بیشتری را برمی‌گردد.

پیشنهاد می‌شود که در پژوهشی دیگر اثر سایر آلاینده‌های مانند آلاینده‌های آلی مورد بررسی قرار گیرد.

ملاحظات اخلاقی

پیروی از اصول اخلاق پژوهش

این مطالعه با کد اخلاق 76.76 IR.ARAKMU.REC.1397.76 به همراه کمیته اخلاق پژوهشی دانشگاه علوم پزشکی اراک رسیده است.

حامی مالی

این مقاله حاصل بخشی از طرح پژوهشی مصوب در معاونت پژوهشی و کمیته تحقیقات دانشجویی دانشگاه علوم پزشکی اراک بوته است و با حمایت مالی این معاونت انجام شده است.

مشارکت‌کنندگان

تمامی نویسندگان در این مقاله به یک آنالیز مشترک مشارکت داشتند.

тур مشترک بررسی

لوازم درمانی تکریم می‌کند که هرگونه تغییر منافعی برای پژوهش‌های حاضر وجود ندارد.

تشکر و قدردانی

این مقاله حاصل محاسبه اکثریت طرح پژوهشی مصوب با شماره 1390 در دانشگاه علوم پزشکی اراک است. لوازم درمانی تکریم می‌کند که هرگونه تغییر منافعی بر خود لازم است. لوازم درمانی تکریم می‌کند که هرگونه تغییر منافعی بر خود لازم است

پژوهشی و کمیته تحقیقات دانشجویی دانشگاه علوم پزشکی اراک قدردانی می‌کند.
References

[1] Morawska L, Ayoko GA, Bae GN, Buonanno G, Chao CYH, Clifford S, et al. Airborne particles in indoor environments: The main routes of exposure. Environ Int. 2017; 108:75-83. [DOI:10.1016/j.envint.2017.07.025] [PMID]

[2] Kashi G. Investigation of the bio-aerosols concentration from high schools’ indoor air in Islamabad county in 1392-3 (Persian)]. J Saf Promot Inj Prev. 2015; 3(1):57-66.

[3] Majd E, McCormack M, Davis M, Curriero F, Berman J, Connolly F, et al. Indoor air quality in inner-city schools and its associations with building characteristics and environmental factors. Environ Res. 2019; 170:83-91. [DOI:10.1016/j.envres.2018.12.012] [PMID]

[4] Bragoszewska E, Mainka A, Pastuszka JS, Lizończyk K, Desta YG. Assessment of bacterial aerosol in a preschool, primary school and high school in Poland. Atmosphere. 2018; 9:87. [DOI:10.3390/atoms9030087]

[5] Mentese S, Rad AV, Arsoy M, Güllü G. Seasonal and spatial variations of bioaerosols in indoor urban environments, Ankara, Turkey. Indoor Built Environ. 2012; 21:797-810. [DOI:10.1177/1420326X11425965]

[6] Mirhoseini SH, Nikaeen M, Satoh K, Makimura K. Assessment of airborne particles in indoor environments: Applicability of particle counting for prediction of bioaerosol concentrations. Aerosol Air Qual Res. 2016; 16:1903-10. [DOI:10.4209/aqar.2015.08.0528]

[7] Mirhoseini SH, Nikaeen M, Hatamzadeh M, Hassanzadeh A. Assessment of bioaerosol concentration in the indoor environments. Health Syst Res Summer. 2014; 10(2):376-85.

[8] Mirhoseini SH, Nikaeen M, Shamsizadeh Z, Khanaohad H. Hospital air: A potential route for transmission of infections caused by β-lactam-resistant bacteria. Am J Infect Control. 2016; 44:898-904. [DOI:10.1016/j.ajic.2016.01.041] [PMID]

[9] Ehrampoosh MH, ZareSakhihi MJ, Mehrparvar AH, Soltanianzadeh Z, Gamshidi S, Taherzade S. Evaluating suspended particles concentration of the inside and outside air of the classroom and its influencing factors in middle schools and high schools of Yazd. Tolooebehdasht. 2015; 14:11-22.

[10] Madureira J, Paciência I, Pereira C, Teixeira JP, Fernandes E de O. Indoor air quality in Portuguese schools: Levels and sources of pollutants. Indoor Air. 2016; 26:526-37. [DOI:10.1111/ina.12237] [PMID]

[11] Faridi S, Hassanvand MS, Naddafi K, Yunesian M, Nabizadeh R, Sowlat E, et al. Indoor/outdoor relationships of bioaerosol concentrations in a retirement home and a school dormitory. Environ Sci Pollut Res. 2015; 22:8190-8200. [DOI:10.1007/s11356-014-3944-y] [PMID]

[12] Alves C, Duarte M, Ferreira M, Alves A, Almeida A, Cunha Â. Air quality in a school with dampness and mould problems. Air Qual Atmosphere Health. 2016; 9:107-115. [DOI:10.1007/s11869-015-0319-6]

[13] Mentese S, Tasdibi D. Airborne bacteria levels in indoor urban environments: The influence and prevalence of Sick Building Syndrome (SBS). Indoor Built Environ. 2016; 25:563-580. [DOI:10.1177/1420326X14562454]

[14] Andualem Z, Gizaw Z, Bogale L, Dagne H. Indoor bacterial load and its correlation to physical indoor air quality parameters in public primary schools. Multidiscip Respir Med. 2019; 14:2. [DOI:10.1186/s40248-018-0167-y] [PMID] [PMCID]

[15] Madureira J, Paciência I, Rufo JC, Pereira C, Teixeira JP, de Oliveira Fernandes E. Assessment and determinants of airborne bacterial and fungal concentrations in different indoor environments: Homes, child day-care centres, primary schools and elderly care centres. Atmos Environ. 2015; 109:139-46. [DOI:10.1016/j.atmosenv.2015.03.026]

[16] Mentese S, Arsoy M, Rad AV, Güllü G. Bacteria and fungi levels in various indoor and outdoor environments in Ankara, Turkey. Clean-Soil Air Water. 2009; 37:487-93. [DOI:10.1002/clen.20080220]

[17] Canha N, Almeida SM, do Carmo Freitas M, Wolterbeek HT. Assessment of bioaerosols in urban and rural primary schools using passive and active sampling methodologies. Arch Environ Prot. 2015; 41:11-22. [DOI:10.1515/aep-2015-0034]

[18] Cavaleiro Rufo J, Madureira J, Paciência I, Agüiar L, Pereira C, Silva D, et al. Indoor fungal diversity in primary schools may differently influence allergic sensitization and asthma in children. Pediatr Allergy Immunol. 2017; 28:332-9. [DOI:10.1111/pai.12704] [PMID]

[19] Salonen H, Duchaine C, Mazaheri M, Clifford S, Morawaska L. Airborne culturable fungi in naturally ventilated primary school environments in a subtropical climate. Atmos Environ. 2015; 106:412-8. [DOI:10.1016/j.atmosenv.2014.07.052]

[20] Mohammadyan M, Alizadeh-Larimi A, Etemadinejad S, Latif MT, Heibati B, Yettimeszov K, et al. Particulate air pollution at schools: Indoor-outdoor relationship and determinants of indoor concentrations. Aerosol Air Qual Res. 2017; 17:857-64. [DOI:10.4209/aaqr.2016.03.0128]

[21] Hospodsky D, Yamamoto N, Nazaroff WW, Miller D, Gorthala S, Peccia J. Characterizing airborne fungal and bacterial concentrations and emission rates in six occupied children’s classrooms. Indoor Air. 2015; 25:641-52. [DOI:10.1111/ina.12172] [PMID]

[22] Deng W, Chai Y, Lin H, So WW, Ho KWK, Tsui AKY, et al. Distribution of bacteria in inhalable particles and its implications for health risks in kindergarten children in Hong Kong. Atmos Environ. 2016; 128:268-75. [DOI:10.1016/j.atmosenv.2016.01.017]

[23] Aydoğdu H, Asan A, Otkun MT, Ture M. Monitoring of fungi and bacteria in the indoor air of primary schools in Edirne city, Turkey. Indoor Built Environ. 2005; 2015; 109:139-46. [DOI:10.1177/1420326X20150375]

[24] Mirhoseini SH, Nikaeen M, Shamsizadeh Z, Aali R. Prevalence and molecular identification of antibiotic resistant airborne bacteria at intensive care units (Persian). Koomesh. 2018; 20:772-8.