N-Hydroxyarylamine O-Acetyltransferase of Salmonella typhimurium: Proposal for a Common Catalytic Mechanism of Arylamine Acetyltransferase Enzymes

Masahiko Watanabe,1 Takako Igarashi,2 Tsuguchika Kaminuma,2 Toshio Sofuni,1 and Takehiko Nohmi1

1Division of Genetics and Mutagenesis, National Institute of Hygienic Sciences, Tokyo, Japan; 2Division of Chem-Bio Informatics, National Institute of Hygienic Sciences, Tokyo, Japan

Acetyl-CoA:N-hydroxyarylamine O-acetyltransferase is an enzyme involved in the metabolic activation of N-hydroxyarylamines derived from mutagenic and carcinogenic aromatic amines and nitroarenes. The O-acetyltransferase gene of Salmonella typhimurium has been cloned, and new Ames tester substrains highly sensitive to mutagenic aromatic amines and nitroarenes have been established in our laboratory. The nucleotide sequence of the O-acetyltransferase gene was determined. There was an open reading frame of 843 nucleotides coding for a protein with a calculated molecular weight of 32,177, which was close to the molecular weight of the O-acetyltransferase protein determined by using the maxicell technique. Only the residue of Cys69 in O-acetyltransferase of S. typhimurium and its corresponding residue (Cys69) in N-acetyltransferase of higher organisms were conserved in all acetyltransferase enzymes sequenced so far. The amino acid sequence Arg-Gly-Gly-X-Cys, including the Cys69, was highly conserved. A mutant O-acetyltransferase of S. typhimurium, which contained Ala69 instead of Cys69, no longer showed the activities of O- and N-acetyltransferase. These results suggest that the Cys69 of S. typhimurium and the corresponding cysteine residues of the higher organisms are essential for the enzyme activities as an acetyl-CoA binding site. We propose a new catalytic model of acetyltransferase for S. typhimurium and the higher organisms. — Environ Health Perspect 102(Suppl 6):83–89 (1994)

Key words: O-acetyltransferase, N-acetyltransferase, arylamine, Salmonella typhimurium, cloning, mutagenicity, sequencing, catalytic model

Introduction

Aromatic amines and nitroarenes, which have been used in many fields and are widely distributed in the environment, are known as environmental hazardous compounds because of their carcinogenicity and mutagenicity (1–4). Neither aromatic amines nor nitroarenes interact with DNA per se, but they require metabolic conversion for their mutagenesis (1–4). Several activating enzymes, such as arylhydroxamic acid N,O-acetyltransferase (5), and sulfotransferase (6), have been identified as enzymes responsible for exerting the carcinogenicity of aromatic amines and nitroarenes. Acetyl-CoA:N-hydroxyarylamine O-acetyltransferase (OAT) also plays an important role in the metabolic activation of N-hydroxyarylamines that are formed by oxidation of aromatic amines or by reduction of nitroarenes (7–9). Acetyl-CoA:arylamine N-acetyltransferases (EC.2.3.1.5) (NAT) of human (9), hamster (8,10,11), and mouse (12) have OAT activity. Acetylator genotypes of human (13,14), rabbit (15), and hamster (13,16) strongly influence not only NAT activity but also OAT activity. It is suggested, therefore, that the mammalian OAT is probably the same enzyme as NAT, which plays a major role in the metabolism of drugs and endogenous substances that possess an amine or hydrazine group (17,18). Both reactions of N- and O-acetylation probably proceed through a common intermediate (i.e., an acetyl-cysteinyl-enzyme) (12,19–21). cDNA and/or genomic clones of NATs have been isolated from humans (22–27), rabbits (28–31), hamsters (32), mice (33), and chickens (34–36). Acetyltransferase activity is demonstrated not only in the higher organisms but also in bacteria (37). From Salmonella typhimurium Ames tester strain TA98, an acetyltransferase enzyme has been partially purified and characterized as OAT (38). The OAT is absent in strain TA98/1,8-DNP6 (38) and plays a key role in the mutagenicity of aromatic amines and nitroarenes (4,39,40).

In this article, we describe the cloning of the S. typhimurium OAT gene (41). We established new Ames tester substrains highly sensitive to mutagenic aromatic amines and nitroarenes using the cloned gene (42). Substrate specificity and inhibition analysis suggested that the S. typhimurium OAT is a counterpart of NAT of higher organisms. Sequence similarity of both enzymes at the amino acid level suggested that the Cys69 of the S. typhimurium OAT and the corresponding cysteine residues of the NAT of higher organisms are essential for the enzyme activities as an acetyl-CoA binding site (43). We also proposed a common catalytic mechanism of acetyltransferase for S. typhimurium and higher organisms.

Cloning of the S. typhimurium OAT Gene

First, we constructed a gene library of S. typhimurium TA1538 into vector plasmid pBR322 and then selected rearranged plas-
mids that confer resistance to the killing effect of 2-nitrofluorene on the OAT deficient strain TA1538/1,8-DNP. One of these plasmids, pYG122 (Figure IA), had a molecular size of 11.65 kb, composed of the insert DNA (7.3 kb) and the vector plasmid pBR322. The pYG122-transformed strain YG1007 (= TA1538/1,8-DNP(pYG122)) showed more than 10 times higher mutagenic sensitivity to 1,8-dinitropyrene, 2-aminofluorene, and Glu-P-1 than did the conventional strain TA1538 with vector plasmid pBR322. YG1007 had about 50 times higher N-hydroxy-Glu-P-1 OAT activity and isonitroazid NAT activity than TA1538(pBR322). Thus, we concluded that pYG122 had the OAT gene.

In order to investigate the region necessary for a functional OAT, we constructed deletion derivatives of pYG122 and found that a 1.35-kb fragment spanning from the EcoRV site (6.3 kb) to the BamHI site (7.65 kb) is necessary for OAT activity.

However, levels of the activity on the transformants depended on organization of the 1.35-kb insert and vectors (Figure IB). For example, the strain having pYG219 showed more than 10 times higher enzyme activity than did the strain having pYG218. The plasmids pYG218 and pYG219 have the same 1.35-kb DNA fragment in opposite directions. From this result, we suggested that the direction of transcription and translation of the OAT gene is from the EcoRV site to the BamHI site and the promoter for the OAT gene resides outside of the 1.35-kb fragment.

Establishment of New Strains Highly Sensitive to Mutagenic Aromatic Amines and Nitroarenes

A plasmid pYG219, the ampicillin resistance gene of which has been disrupted and can be introduced into Ames tester strains TA98 and TA100, conferred high activity of OAT (Figure IB) and high sensitivity to 2-nitrofluorene on the strain TA1538/1,8-DNP. Thus we introduced pYG219 into TA98 and TA100, and resulting transformants YG1024 (=TA98(pYG219)) and YG1029 (=TA100(pYG219)) were checked for their mutagenic sensitivity to typical N-hydroxyarylamines, aromatic amines, and nitroarenes. YG1024 or YG1029 showed 3 to 63 times higher sensitivity to all N-hydroxyarylamines, aromatic amines and nitroarenes tested, except for 4-nitroquinoline 1-oxide (Table 1), than did the conventional strains YG1020 (=TA98(pBR322-Ap')) or YG1025 (=TA100(pBR322-Ap')), respectively. This result indicates that the new strains YG1024 and YG1029 permit the efficient detection of the mutagenicity of environmental aromatic amines and nitroarenes. These strains have been widely used for the efficient detection of mutagenic chemicals (44-53) and complex mixtures (54-58).

Nucleotide Sequence of the S. typhimurium OAT Gene

We sequenced the cloned DNA from the PstI site (5.55 kb) to the BamHI site (7.65 kb), the region that is suggested to carry the OAT gene (Figure 1). The result is shown in Figure 2. This sequence contains an open reading frame of 843 bp from nucleotides 853 to 1695 that potentially encodes a protein of 281 amino acids with a calculated molecular weight of 32,177. A possible ribosome-binding site and a possible transcriptional terminator were found upstream and at the end, respectively, of the open reading frame. Possible -35 and -10 sequences were found outside of the

Table 1. Mutagenic sensitivity of YG1024 and YG1029 to typical N-hydroxyarylamines, aromatic amines, and nitro-aromatic compounds.

Chemical	S9 mix	YG1020^a	YG1024^b	YG1025^c	YG1029^d
N-Hydroxy-2-amino fluorene	+	2,080	50,700	82	5,170
N-Hydroxy-Glu-P-1	-	7,900	69,400	84	3,000
2-Amino fluorene	+	63	241	20	551
2-Amino anthracene	+	8,090	144,000	430	5,970
2-Nitrofluorene	+	351	6,060	292	7,450
1-Nitro pyrene	+	47	1430	28	855
1,8-Dinitro pyrene	+	373	3040	74	875
2-Nitro napthalene	+	231,000	4,780,000	21,900	500,000
4-Nitroquinoline N-oxide	+	2.9	12.9	11.2	36.5

^aSalmonella mutagenicity assays were carried out according to the method of Ames et al. combined with a preincubation procedure for 20 min at 37°C. The mutagenicity test was performed with four to eight doses. The number of induced His⁺ revertants per nmole was calculated at every dose; the highest value for each chemical and strain is indicated.^b-^d The values indicate S9 mix used for the metabolic activation. - indicates the test was performed in the absence of S9 mix. ^eYG1020 is TA98 containing pBR322-Ap.^fYG1024 is TA98 containing pYG219. ⁱYG1025 is TA100 containing pYG219. ^lYG1029 is TA100 containing pYG219. The plasmid pBR322-Ap^l is the same as pBR322 but its bla gene is inactivated by deletion between the first Dral site and the third Dral site of pBR322.

Figure 1. (A) Restriction map of pYG122. The EcoRI restriction site derived from pBR322 was assigned the map position of 0 kilobase (kb) in the plasmid. Numbers represent the distance (kb) from the EcoRI restriction site. An open box represents the 7.3-kb DNA fragment of S. typhimurium TA1538, which was inserted into BamHI site of pBR322. Arrows indicate the transcription direction of the genes. Abbreviations: Ap, ampicillin resistance gene; E, EcoRI; H, HindIII; V, EcoRV; P, PstI; B, BamHI; PvuII. (B) Involvement of promoters of vector sequence in the activities of S. typhimurium OAT produced from the 1.35-kb fragment. The plasmids were introduced into S. typhimurium TA1538/1,8-DNP (pYG122, pYG213, pYG218, or pYG219) or E. coli XL1-Blue (pYG221) and N-hydroxy-Glu-P-1 OAT activity of cytosol fraction of the transformants was measured. Numbers represent the activity of OAT (nmole/min/mg protein).
Table 2. Properties of the S. typhimurium OAT and NATs of higher organisms.

	Human^a	Hamster^b			
	M	P	M	P	
Molecular weight^c	32,177	33,787	33,541	33,499	
Cellular distribution	C	C	C	C	
O-Acetylation of					
N-Hydroxy-Glu-P-1	+	+	+	+	
N-Hydroxy-2-aminofluorene	+	+	+	+	
N-Acetylation of					
Isoniazid	+	–	+	+	
2-Aminofluorene	+	–	+	+	
p-Aminobenzoic acid	4^w	+	–	+^w	4^w
N,N-Diacetyltransfer to					
4-Aminobenzoic acid	–	+	–	+	
N,O-Diacetyltransfer to					
N-Hydroxy-2-aminofluorene	4^w	+	+	+^w	4^w
Inhibition by					
N-Ethylmaleimide	+	+	+	+	
Paraaxon	–	+	–	+	

Abbreviations: NAT, N-acetyltransferase; M, monomorphic NAT; P, polymorphic NAT; C, cytosol fraction. ^aData from Minchin et al. (9), Deguchi et al. (22), and Ohnuki and Deguchi (23). ^bData from Trinidad et al. (8), Ozawa et al. (10), Abu-Zeid et al. (32), and Cheon and Hanna (63). ^cMolecular weight was calculated from deduced amino acid sequences. ^wWeak. General characteristics of NAT (59); NAT is cytosolic and is widely distributed among tissues, with highest activities occurring in liver and intestinal tract. Most animal species have the NAT. N-Ethylmaleimide is a potent inhibitor of the NAT. Paraaxon does not inhibit the NAT activity.

Figure 2. Nucleotide and deduced amino acid sequences of the S. typhimurium OAT gene. Possible -35 and -10 regions and Shine-Dalgarno (S.D.) sequence are underlined. Possible transcriptional terminator is indicated by arrows and asterisks. The highly conserved amino acid sequence of R-G-G-X-C is marked with a double line. Cys⁶⁹ is marked with a circle. The 1.35-kb DNA fragment that was boxed was subcloned into pBR322 for construction of sensitive strains and pBluescript KS+ for DNA sequencing and for expression. The CCC sequence enclosed with a small box indicates the site where a -1 frameshift mutation was found in O-acetyltransferase deficient strain TA1538/1.8-DNP.

1.35-kb region. The rearranged plasmids, which deleted DNA corresponding to some C-terminal or N-terminal region of the open reading frame, did not confer any activity of acetyltransferase. This result suggests that the open reading frame is the coding region of the OAT of S. typhimurium. A protein with an approximate molecular mass of 33 kDa on SDS-polyacrylamide gel electrophoresis was identified in maxicells harboring pYG213 or pYG219, both of which have the 1.35-kb fragment. A frameshift mutation was found in the open reading frame of the OAT-deficient strain TA1538/1.8-DNP by PCR and sequencing techniques. The mutation is one G:C pair deletion from three consecutive G:C pairs of nucleotides 1442 to 1444 in Figure 2 and creates a new termination site at codon 204. From these results, we concluded that the open reading frame shown in Figure 2 is the coding region of the OAT.

The S. typhimurium OAT is a Counterpart of NAT of Higher Organisms

Because the OAT is present in cytosol, we have prepared the cytosol fraction of crude lysate of the cells harboring pYG221 and subjected it to enzyme assays and inhibition experiments. Table 2 shows the properties of the OAT of S. typhimurium and NATs of higher organisms for comparison. Besides N-hydroxy-Glu-P-1 OAT activity, the S. typhimurium OAT showed isoniazid and 2-aminofluorene NAT activities. On the other hand, many NATs of higher organisms also show NAT and OAT activities. The molecular weight of the S. typhimurium OAT was almost the same as that of the NATs. The sulphydryl-blocking agents, which inhibit NAT of higher organisms (59), strongly inhibited the isoniazid NAT activity of the S. typhimurium OAT. Paraaxon, an inhibitor of N,O-acetyltransferase and deactylase (60), did not inhibit the activity of the S. typhimurium OAT. From these observations, we suggested that the S. typhimurium OAT, the gene of which we cloned and sequenced, is a counterpart of NAT of higher organisms.

The S. typhimurium OAT and the NAT of Higher Organisms Share Similarity at the Amino Acid Level

Since the OAT of S. typhimurium is functionally similar to NAT of higher organisms, we compared the amino acid sequences. The NATs of human, rabbit, hamster, mouse, and chicken were at least 45%
homologous at the amino acid level to each other. The N-terminal region of the S. typhimurium OAT, containing about 170 amino acids, showed 25 to 33% similarity to those of the NATs of higher organisms at the amino acid level (Figure 3). The remaining C-terminal region of the OAT had few similarities with the corresponding region of the NATs, although some similarities were observed at the nucleotide level.

The Cys69 Residue of the S. typhimurium OAT and the Cys68 Residue of the NAT of Higher Organisms Are Essential for the Enzyme Activities

The S. typhimurium OAT is functionally similar to NAT of higher organisms and both enzymes share similarity at the amino acid level. These observations suggest that a common catalytic mechanism might exist among them. Both enzymes need a cysteine residue for exerting their activities. Structure-activity studies on pigeon liver NAT (19) and rabbit liver NAT (20) suggest that a cysteine residue reacts with acetyl-CoA and an activated acetyl-cysteinyl intermediate is formed. Thus, we suggest that a conserved cysteine residue among their enzymes plays an important role in the catalytic mechanism as an acetyl-CoA-binding site. The similarity at the amino acid level between the S. typhimurium OAT and the NATs of higher organisms was much less than that of the NATs among the higher organisms. Hence, it was easy to focus on the highly conserved regions. Among the NATs of higher organisms, three cysteine residues are conserved completely. However, only one cysteine residue (Cys69 for the OAT, Cys68 for the NATs) was conserved between the S. typhimurium OAT and the NATs of higher organisms (Figure 3). The amino acid sequence of R-G-G-X-C including Cys68 of the OAT or Cys69 of the NATs was highly conserved. The results of site-directed mutagenesis experiments indicated that a mutant OAT of S. typhimurium, which contained Ala69 instead of Cys69, did not show any NAT and OAT activities (data not shown).

Thus, we suggest that the Cys residue of the OAT of S. typhimurium is essential for the enzyme activities as an acetyl-CoA-binding site. It was plausible that the Cys residue of the NATs of higher organisms is also essential for the enzyme activities because it was the only conserved residue among all enzymes. Recently, Dupret and Grant (61) reported that among three cysteine residues that were highly conserved among NATs of higher organisms, Cys68 was essential for the enzyme activities of human liver polymorphic NAT. This observation supports our hypothesis that there is a common catalytic mechanism among acetyltransferase enzymes.

Proposed Mechanism of Enzymatic Reactions of Acetyltransferase Enzymes

Riddle and Jencks (62) showed that a general base is involved in the catalysis of pigeon liver NAT. Andres et al. (19) investigated the kinetics of NAT from pigeon liver and proposed that a basic residue is involved in a general base catalysis by attracting the proton of the cysteine residue of an acetyl-CoA-binding site. Recently, Cheon and Hanna (63) reported that an arginine residue is essential for the activity of hamster liver monomorphic and polymorphic NATs. One arginine residue, Arg65 in the S. typhimurium OAT and Arg64 in the NATs of higher organisms, was highly...
The proton of cysteinyl group of Cys residues is attracted by Arg residue, which is deprotonated even in neutral pH conditions, because the two adjacent guanidino groups of Arg and Arg provide mutual electrostatic destabilization (64). The activated Cys residue accepts an acetyl group from acetyl-CoA, resulting in an acetyl-cysteinyl-enzyme intermediate. Finally, this acetyl moiety is transferred to the oxygen atom of an N-hydroxyarylamine. In the transfer reaction of the acetyl group to the hydroxyamino group, the deprotonated Arg (or Arg) again serves as a general base. We propose that the principle of this reaction mechanism is applicable to any acetyltransfer reactions in both the S. typhimurium OAT and the NATs of higher organisms. The S. typhimurium OAT acts as an NAT when the acetyl moiety of the acetyl-cysteinyl intermediate is transferred to the nitrogen atom of an aromatic amine instead of the oxygen atom of an N-hydroxyarylamine. It is also proposed, with regard to mammalian NAT and OAT, that N- and O-acetyl transfer involves a common acetylated enzyme intermediate (12, 21). Cys residues of the NATs of human, rabbit, hamster, mouse, and chicken could bind with acetyl-CoA, as for Cys of the S. typhimurium OAT, whereas one of the basic amino acids, (e.g., Arg) may be an activator (Figure 4B). The acetyl moiety of the acetyl-Cys intermediate would be transferred to the nitrogen atom (N-acetylation) or the oxygen atom (O-acetylation) of an arylamine or N-hydroxyarylamine, respectively. An arylhydroxamic acid also may act as the acyl-donor instead of acetyl- CoA in the model, and the resulting activated acyl moiety would be transferred to the nitrogen atom of an arylamine (N,N-acetylation), or the oxygen atom of an N-hydroxyarylamine (inter and/or intramolecular N,O-acetylation). The S. typhimurium OAT has low but measurable N,O-acetylation transferase activity (Igarashi et al., unpublished result). One possible reason why the S. typhimurium OAT has a low N,O-acetylation transferase activity is that an arylhydroxamic acid could not easily fit in the active site where the Cys probably resides. However, we must point out that certain N,O-acetyltransferases have different properties from the OAT and NAT; some of the enzymes are located in microsomes and are sensitive to paraoxon (60). The catalytic mechanism of these enzymes is probably different from that proposed in Figure 4A.

Future Perspective

We proposed a catalytic model for the *S. typhimurium* OAT and suggested that this model is applicable for NAT of higher organisms. To examine this model, biochemical and structural analyses of the purified enzyme are important. Hence we have been purifying the *S. typhimurium* OAT from *Escherichia coli* cells harboring plasmid pYG221, the cells which overproduced the OAT (Figure 1B). Analyses of enzymatic properties of the OAT, such as demonstration of the acetyl-Cys-enzyme intermediate by using purified enzyme, are currently being undertaken in our laboratory. For X-ray diffraction analysis, we are trying to crystallize the purified OAT.

Knowledge about acetyltransferase at the molecular level is rapidly growing. The OAT and NAT are involved in the metabolism of drugs and toxic chemicals. We hope that the new knowledge will also lead to the design of new pharmaceuticals and clinical kits, with possible human health applications.

Conclusions

We have cloned the gene of *S. typhimurium* OAT and established new strains highly sensitive to mutagenic aromatic amines and nitroarenes. It is suggested that the Cys of the *S. typhimurium* OAT and the corresponding cysteine residues of NAT of higher organisms are essential for the enzyme activities as an acetyl-CoA binding site. We also propose a new catalytic mechanism of acetyltransferase for *S. typhimurium* and higher organisms.

REFERENCES

1. Weisburger JH. Past, present, and future role of carcinogenic and mutagenic N-substituted aryl compounds in human cancer causation. In: Carcinogenic and Mutagenic Responses to Aromatic Amines and Nitroarenes (King CM, Romano LJ, Schuetze D, eds). New York:Elsevier, 1988;3-19.
2. Kato R. Metabolic activation of mutagenic heterocyclic aromatic amines from protein pyrosylates. CRC Crit Rev Toxicol 16:307–348 (1986).

3. Tokiwa H, Oshima Y. Mutagenic activity and carcinogenicity of nitroarenes and their sources in the environment. CRC Crit Rev Toxicol 17:23–60 (1986).

4. Rosenkranz HS, Mermelstein R. Mutagenicity and genotoxicity of nitroarenes. All nitro-containing chemicals were not created equal. Mutat Res 114:217–263 (1983).

5. King CM, Allaben WT. Arylhydroxamic acid acetyltransferase. In: Enzymatic Basis of Detoxication, Vol II (Jakoby WB, ed). New York: Academic Press, 1980;187–197.

6. Jakoby WB, Sekura RD, Lyon ES, Marcus CJ, Wang JL. Sulforaphanes. In: Enzymatic Basis of Detoxication, Vol II (Jakoby WB, ed). New York: Academic Press, 1980;198–228.

7. Abu-zeid M, Saiaino N, Yamazoe Y, Kato R. Enhancement by cysteinyl thiols of acetylated amines, but not of sulfo- or thioesters, in rat liver: binding of a pyrosylate-derived N-hydroxylamine, 2-hydroxyamino-6-methylpyridine [1,2-a:2'-a]imidazo[4,5-d]imidazole, to DNA. Jpn J Cancer Res 81:653–659 (1990).

8. Trinidad A, Hein DW, Rustan TD, Ferguson RJ, Miller LS, Buecher KD, Kirlin WG, Ogolla F, Andrews AF. Purification of hepatic polymorphic arylamine N-acetyltransferase from homozgyous rapid acetylator inbred hamster: identity with polymeric N-hydroxyarylamino-O-acetyltransferase. Cancer Res 50:792–794 (1990).

9. McPhedran RF, Reeves PT, Teitel CH, McManus ME, Mojarabi B, Ilett KF, Kadlubar FF. N- and O-Acetylation of aromatic and heterocyclic amine carcinogens by human monomorphic and polymorphic acetyltransferases expressed in COS-1 cells. Biochem Biophys Res Commun 185:839–844 (1992).

10. Ozawa S, Abu-Zeid M, Kawakubo Y, Tomya S, Yamazoe Y, Kato R. Monomorphic and polymorphic isozymes of arylamine N-acetyltransferases in hamster liver: purification of the isozymes and genetic basis of N-acetylation polymorphism. Carcinogenesis 11:2137–2144 (1990).

11. Saito K, Shinohara A, Kamataki T, Kato R. N-Hydroxylamine O-acetyltransferase in hamster liver: identity with arylhydroxamic acid N-O-acetyltransferase and arylamine N-acetyltransferase. J Biochem 99:1689–1697 (1986).

12. Mattano SS, Land S, King CM, Weber WW. Purification and biochemical characterization of hepatic arylamine N-acetyltransferase from rapid and slow acetylator mice: identity with arylhydroxamic acid N-O-acetyltransferase and N-hydroxylamine O-acetyltransferase. Mol Pharmacol 35:599–609 (1989).

13. B€immang KL, Hein DW, Talaska G, Kadlubar FF. N-Hydroxylamine O-acetyltransferase and its relationship to aromatic amine N-acetyltransferase polymorphism in the inbred hamster and in human tissue cytosol. In: Carcinogenic and Mutagenic Responses to Aromatic Amines and Nitroarenes (King CM, Romano LJ, Schuettzle D, eds). New York: Elsevier, 1988:137–148.

14. Kirlin WG, Trinidad A, Yerukun T, Ogolla F, Ferguson RJ, Andrews AF, Brady PK, Hein DW. Polymorphic expression of acetyl coenzyme A-dependent O-acetyltransferase-mediated activation of N-hydroxyiminodes by human bladder cancer cells. Cancer Res 49:2448–2454 (1989).

15. Ilett KF, Reeves PT, Minchin RM, Kinnear BF, Watson HF, Kadlubar FF. Distribution of acetyltransferase activities in the intestines of rapid and slow acetylator rabbits. Carcinogenesis 12:1465–1469 (1991).

16. Ogolla F, Ferguson RJ, Kirlin WG, Trinidad A, Andrews AF, Mpezo M, Hein DW. Acetiltransferase genotypes-dependent expression of arylamine N-acetyltransferase and N-hydroxylamine O-acetyltransferase in Syrian inbred hamster intestine and colon. Identity with the hepatic acetylation polymorphism. Drug Metab Diapos 18:680–685 (1990).

17. Weber WW, Hein DW. N-Acetylation pharmacogenetics. Pharmacol Rev 37:25–79 (1985).

18. Hein DW. Acetiltransferase genotype and arylamine-induced carcinogenesis. Biochem Biophys Acta 948:37–66 (1988).

19. Andres HH, Kolb HJ, Schreiber RJ, Weiss L. Characterization of the active site, substrate specificity and kinetic properties of acetyl-CoA:arylamine N-acetyltransferase from pigeon liver. Biochem Biophys Acta 746:193–201 (1983).

20. Andres HH, Klem AJ, Schreiber LM, Hatcher JK, Weber WW. On the active site of liver acetyl-CoA. Arylamine N-acetyltransferase from rapid acetylator rabbits (III/J) J Biol Chem 263:7521–7527 (1988).

21. Kato R, Yamazoe Y. N-Hydroxylamine O-acetyltransferase in mammalian liver and Salmonella. In: Carcinogenic and Mutagenic Responses to Aromatic Amines and Nitroarenes (King CM, Romano, LJ, Schuettzle D, eds). New York: Elsevier, 1988:125–136.

22. Deguchi T, Mashimo M, Suzuki T. Correlation between acetyl transferases and genotypes of polymorphic arylamine N-acetyltransferase in human liver. J Biol Chem 265:12757–12760 (1990).

23. Ohnoko S, Deguchi T. Cloning and expression of cDNAs for polymorphic and monomorphic arylamine N-acetyltransferases from human liver. J Biol Chem 265:4630–4634 (1990).

24. Blum M, Demierre A, Grant DM, Heim M, Meyer UA. Molecular mechanism of slow acetylation of drugs and carcinogens in humans. Proc Natl Acad Sci USA 88:5237–5241 (1991).

25. Blum M, Grant DM, McBride W, Heim M, Meyer UA. Human arylamine N-acetyltransferase genes: isolation, chromosomal localization, functional expression. DNA Cell Biol 9:193–203 (1990).

26. Grant DM, Blum M, Demierre A, Meyer UA. Nucleotide sequence of an intronless gene for a human arylamine N-acetyltransferase related to polymorphic drug acetylation. Nucl Acids Res 17:3978 (1989).

27. Vatsis KP, Martell KJ, Weber WW. Diverse point mutations in the human gene for polymorphic N-acetyltransferase. Proc Natl Acad Sci USA 88:6333–6337 (1991).

28. Sasaki Y, Ohnoko S, Deguchi T. Molecular and genetic analyses of arylamine N-acetyltransferase polymorphism of rabbit liver. J Biol Chem 266:13243–13250 (1990).

29. Blum M, Heim M, Meyer UA. Nucleotide sequence of rabbit NAT2 encoding polymorphic liver arylamine N-acetyltransferase (NAT). Nucl Acids Res 18:5295–5300 (1990).

30. Blum M, Heim M, Meyer UA. Nucleotide sequence of rabbit NAT1 encoding monomorphic arylamine N-acetyltransferase. Nucl Acids Res 18:5287–5289 (1990).

31. Blum M, Grant DM, Demierre A, Meyer UA. Nucleotide sequence of a full-length cDNA for arylamine N-acetyltransferase from rabbit liver. Nucl Acids Res 17:3589–3595 (1990).

32. Abu-Zeid M, Nagata K, Miyata M, Ozawa S, Fukuhara M, Yamazoe Y, Kato R. An arylamine acetyltransferase (AT-I) from Syrian golden hamster liver: cloning, complete nucleotide sequence, and expression in mammalian cells. Mol Carcinog 4:81–88 (1991).

33. Martell KJ, Vatsis KP, Weber WW. Molecular genetic basis of rapid and slow acetylation in mice. Mol Pharmacol 40:218–227 (1991).

34. Ohnoko S, Ohtomi M, Sakamoto Y, Uemura K, Deguchi T. Arylamine N-acetyltransferase from chicken liver. II. Cloning of cDNA and expression in Chinese hamster ovary cells. J Biol Chem 263:7534–7538 (1988).

35. Deguchi T, Sakamoto Y, Sasaki Y, Uemura K. Arylamine N-acetyltransferase from chicken liver. I. Monoclonal antibodies, immunoaffinity purification, and amino acid sequences. J Biol Chem 263:7528–7533 (1988).

36. Ohtomi M, Sakamoto M, Deguchi T. Two arylamine N-acetyltransferases from chicken pineal gland as identified by cDNA cloning. Eur J Biochem 185:253–261 (1989).

37. Saito K, Yamazoe Y, Kamataki T, Kato R. Mechanism of activation of proximate mutants in Ames' tester strains: the acetyl-CoA dependent enzyme in Salmonella typhimurium TA98 deficient in TA98/1,8-DNP, catalyses DNA-binding as the cause of mutagenicity. Biochem Biophys Res Commun 116:141–147 (1983).

38. Saito K, Shinohara A, Kamataki T, Kato R. Metabolic activa-
tion of mutagenic N-hydroxyarylamines by O-acetyltransferase in *Salmonella typhimurium* TA98. Arch Biochem Biophys 239:286–295 (1985).

39. Vance WA, Wang YY, Okamoto HS. Disubstituted amino-, nitroso-, and nitrofluorenes: a physicochemical basis for structure–activity relationships in *Salmonella typhimurium*. Environ Mutagen 9:123–41 (1987).

40. Einisto P, Watanabe M, Ishidate M Jr, Nohmi T. Mutagenicity of 30 chemicals in *Salmonella typhimurium* strains possessing different nitroreductase or O-acetyltransferase activities. Mutat Res 259:95–102 (1991).

41. Watanabe M, Nohmi T, Ishidate M Jr. New tester strains of *Salmonella typhimurium* highly sensitive to mutagenic nitroarenes. Biochem Biophys Res Commun 147:974–979 (1987).

42. Watanabe M, Ishidate M Jr, Nohmi T. Sensitive method for the detection of mutagenic nitroarenes and aromatic amines: new derivatives of *Salmonella typhimurium* tester strains possessing elevated O-acetyltransferase levels. Mutat Res 234:337–348 (1990).

43. Watanabe M, Sofuni T, Nohmi T. Involvement of Cys residue in the catalytic mechanism of N-hydroxyarylamine O-acetyltransferase of *Salmonella typhimurium*. Sequence similarity at the amino acid level suggests a common catalytic mechanism of acetyltransferase for *S. typhimurium* and higher organisms. J Biol Chem 267:8429–8436 (1992).

44. Josephy PD. New developments in the Ames assay: high-sensitivity detection of mutagenic amines. BioEssays 11:108–112 (1989).

45. Petry TW, Josephy PD, Pagano DA, Zeiger E, Knecht KT, Eling TE. Prostaglandin hydroperoxide-dependent activation of heterocyclic aromatic amines. Carcinogenesis 10:2201–2207 (1989).

46. Josephy PD, Chiu ALH, Eling TE. Prostaglandin H synthase-dependent mutagenic activation of benzidine in a *Salmonella typhimurium* Ames tester strain possessing elevated N-acetyltransferase levels. Cancer Res 49:853–856 (1989).

47. Cunningham ML, Matthews HB. Evidence for an acetoxyarylamine as the ultimate mutagenic reactive intermediate of the carcinogenic aromatic amine 2,4-dinitroanisole. Mutat Res 242:101–110 (1990).

48. Wild D, Watkins BE, Vanderlaan M. Azido- and nitro-PhIP, relatives of the heterocyclic arylamine and food mutagen PhIP—mechanism of their mutagenicity in *Salmonella*. Carcinogenesis 12:1091–1096 (1991).

49. Sera N, Kai M, Horikawa K, Fukushima K, Miyata N, Tokiwa H. Detection of 3,6-dinitrobenz[a]pyrene in airborne particulates. Mutat Res 263:27–32 (1991).

50. Espinosa-Aguirre JJ, Reyes RE, Cortinas de Nava C. Mutagenic activity of 2-chloro-4-nitroaniline and 5-chlorosalicylic acid in *Salmonella typhimurium*: two possible metabolites of niclosamide. Mutat Res 264:139–145 (1991).

51. Thompson DC, Josephy PD, Chu JW, Eling TE. Enhanced mutagenicity of anisidine isomers in bacterial strains containing elevated N-acetyltransferase activity. Mutat Res 279:83–89 (1992).

52. Pan YH, Reddy GR, Reed GA. Prostaglandin H synthase-dependent genotoxicity of 2,4-diaminotoluene. Environ Mol Mutagen 19:201–208 (1992).

53. Smith BJ, Debruin L, Josephy PD, Eling TE. Mutagenic activation of benzidine requires prior bacterial acetylation and subsequent conversion by prostaglandin-H synthase to 4-nitro-4'-acetylaminobiphenyl. Chem Res Toxicol 5:431–439 (1992).

54. Sayato Y, Nakamuro K, Ueno H, Goto R. Mutagenicity of adsorbates to a copper-phthalocyanine derivative recovered from municipal river water. Mutat Res 242:313–317 (1990).

55. Einisto P, Nohmi T, Watanabe M, Ishidate M Jr. Sensitivity of *Salmonella typhimurium* YG1024 to urine mutagenicity caused by cigarette smoking. Mutat Res 245:87–92 (1990).

56. Einisto P. Role of bacterial nitroreductase and O-acetyltransferase in urine mutagenicity assay of rats exposed to 2,4,6-trinitrotoluene (TNT). Mutat Res 262:167–169 (1991).

57. Scheepers PTJ, Theuws JLG, Bos RP. Mutagenicity of urine from rats after 1-nitropyrene and 2-nitrofluorene administration using new sensitive *Salmonella typhimurium* strains YG1012 and YG1024. Mutat Res 260:393–399 (1991).

58. Suzuki J, Kuwayama K, Suzuki S. Mutagenicity assay for nitroarenes of air pollutants held in leaves of woody plants. Mutat Res 271:89–96 (1992).

59. Weber WW, King CM. N-Acetyltransferase and arylhydroxamic acid acyltransferase. Methods Enzymol 77:272–280 (1981).

60. King CM, Glowinski JB. Acetylation, deacetylation and acetyltransfer. Environ Health Perspect 49:43–50 (1983).

61. Dupret JM, Grant DM. Site-directed mutagenesis of recombinant human arylamine N-acetyltransferase expressed in *Escherichia coli*. Evidence for direct involvement of Cys in the catalytic mechanism of polymorphic human NAT2. J Biol Chem 267:7381–7385 (1992).

62. Riddle B, Jencks WP. Acetyl-coenzyme A: arylamine N-acetyltransferase. Role of the acetyl-enzyme intermediate and the effects of substituents on the rate. J Biol Chem 246:3250–3258 (1971).

63. Cheon HG, Hanna PE. Effect of group-selective modification reagents on arylamine N-acetyltransferase activities. Biochem Pharmacol 43:2255–2268 (1992).

64. Walsh C. Enzymatic Reaction Mechanisms. New York: WH Freeman, 1979.