Hidden dynamic signatures drive substrate selectivity in the disordered phosphoproteome

Min-Hyung Cho*, James O. Wrabla, James Taylor*, and Vincent J. Hilser*

*Department of Biology, Johns Hopkins University, Baltimore, MD 21218; †Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218; and ‡Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218

Editorial by Susan Marqusee, University of California, Berkeley, CA, and approved August 3, 2020 (received for review December 6, 2019)

Phosphorylation sites are hyperabundant in the eukaryotic disordered proteome, suggesting that conformational fluctuations play a major role in determining to what extent a kinase interacts with a particular substrate. In biophysical terms, substrate selectivity may be determined not just by the structural–chemical complementarity between the kinase and its protein substrates but also by the free energy difference between the conformational ensembles that are, or are not, recognized by the kinase. To test this hypothesis, we developed a statistical-thermodynamics-based informatics framework, which allows us to probe for the contribution of equilibrium fluctuations to phosphorylation, as evaluated by the ability to predict Ser/Thr/Tyr phosphorylation sites in the disordered proteome. Essential to this framework is a decomposition of substrate sequence information into two types: vertical information encoding conserved kinase specificity motifs and horizontal information encoding substrate conformational equilibrium that is embedded, but often not apparent, within position-specific conservation patterns. We find not only that conformational fluctuations play a major role but also that they are the dominant contribution to substrate selectivity. In fact, the main substrate classifier distinguishing selectivity is the magnitude of change in local compaction of the disordered chain upon phosphorylation of these mostly singly phosphorylated sites. In addition to providing fundamental insights into the consequences of phosphorylation across the proteome, our approach provides a statistical-thermodynamic strategy for partitioning any sequence-based search into contributions from structural–chemical complementarity and those from changes in conformational equilibrium.

Significance

The discovery that more than 40% of the eukaryotic proteome is intrinsically disordered, and that these disordered segments are enriched in phosphorylation sites, suggests that conformational heterogeneity may be important to kinase selectivity. Indeed, phosphorylation prediction programs reliant on classic notions of conserved sequence information (i.e., “vertical information”) are only partially effective. We find that the conformational equilibrium of the phosphorylatable site, whose information is embedded in sequence-averaged energetic and structural properties of the protein (i.e., “horizontal information”), plays a major role in distinguishing phosphorylatable versus nonphosphorylatable sites. In fact, employing both horizontal and vertical information produces a state-of-the-art phosphorylation predictor, wherein the conformational equilibrium of the disordered chain is the dominant contributor.

Author contributions: M.-H.C., J.T., and V.J.H. designed research; M.-H.C. and J.O.W. performed research; M.-H.C. contributed new reagents/analytic tools; M.-H.C., J.O.W., J.T., and V.J.H. analyzed data; and M.-H.C., J.O.W., J.T., and V.J.H. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

*Deceased April 2, 2020.

1To whom correspondence may be addressed. Email: hilser@jhu.edu.

2This article contains supporting information online at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1921473117/DCSupplemental.

First published September 8, 2020.
“horizontal information”). Accounting explicitly for both types of information, “vertical” and “horizontal,” results in a predictor that exceeds performance relative to existing phosphorylation prediction methods. Indeed, our results show that the ensemble-averaged properties—equilibrium fluctuations that are encoded in horizontal information—dominate the contribution.

Furthermore, our results indicate that when averaged over the database the sequence neighborhoods of many Ser and Thr phosphorylation sites, specifically those containing Pro immediately C-terminal to the phosphorylated site (i.e., the +1 Pro sequence motif), are “energetically poised” near a conformational transition point, potentiating a phosphorylation-induced change in the dimensions of the disordered ensemble. This suggests a direct link between the conformational dimensions of the disordered substrate and its ability to be recognized and phosphorylated.

Results

Phosphorylation Equilibria Can Be Reflected by Two Types of Sequence Information. Enrichment of disorder around phosphorylation sites has been noted previously (11), suggesting the possibility for widespread coupled folding–binding of the disordered substrate in order to become phosphorylated (Fig. 1, Top). If this is the case, it would be desirable to develop a strategy that accounts for the free energy change associated with narrowing or expanding the conformational ensemble (Fig. 1, blue box). This would involve selecting, from among the entire conformational ensemble, the subensemble wherein the residues that are recognized by the kinase are in the proper orientation for kinase recognition. For that subensemble, recognition and binding would then be based on classic notions of shape and chemical complementarity (Fig. 1, red box). Thus, the recognition of conformationally heterogeneous substrates by kinases can be viewed as being due to two distinct physical processes: a contribution arising from the energy difference between the substrate subensemble that can be phosphorylated and the subensemble that cannot and a contribution from the intrinsic ability of the kinase to recognize the substrate, a scenario that is captured by the equilibrium

$$S_{BI} \leftrightarrow S_{BC} + E_{ES} \leftrightarrow ES_{BC}. \quad [1]$$

In Expression 1, E is the kinase, S is the unphosphorylated substrate, and the subscripts BI and BC denote binding-incompetent and binding-competent conformations of the substrate. These equilibria are schematically depicted in Fig. 1. Importantly, the binding-competent and binding-incompetent thermodynamic states are agnostic as to the degree of structure present, only that a free energy barrier exists between the subensemble that can bind and be phosphorylated and the subensemble that cannot.

Expression 1 implies two free-energy contributions to protein phosphorylation: one from the organization of the intrinsically disordered substrate ensemble (i.e., ΔG_{conf}) and one from binding of the organized substrate to the kinase active site (i.e., ΔG_{kin}). We hypothesize that these two contributions can be usefully separated and accessed in terms of quantifiable bioinformatics information (Fig. 1, red and blue circles).

In this scenario, both the substrate conformational ensemble and conserved recognition motif would encode the kinase specificity information, but the presence of two coupled equilibria might suggest two separate sources for this information. We define the ensemble-based information as “horizontal,” meaning regionally distributed across a sequence fragment (Fig. 1, blue circle), while the conserved motif is “vertical,” meaning that the residue positions are largely independent (Fig. 1, red circle). Importantly, the nature of these two types of information would suggest that horizontal information can be conserved even in the absence of significant vertical conservation.

Horizontal Sequence Information Encodes Conserved Conformational Equilibrium. Our approach to accessing the residue-specific contributions to ΔG_{conf} encoded in the horizontal information is predicated on previous results from our group showing that proteins can be represented as sequences of thermodynamic environments (21–23) that capture the experimental conformational fluctuations (24) in both ordered (25) and disordered (26) ensembles. We also showed that the propensities of amino acids in these thermodynamic environments provide sufficient information to match unknown sequences to their environmental profiles (23) and that these profiles are conserved (25, 27, 28) (SI Appendix, Fig. S10). The importance of these earlier findings is that they directly demonstrate that hidden information about the stability of a chain (reported at each position) is nonetheless embedded within the sequence and can be accessed by comparing this horizontal information for diverse sequences, as schematically depicted in Fig. 1, Left.

Indeed, conservation of horizontal information may be even stronger than sequence conservation for some biological contexts, further motivating the combination of horizontal and vertical information. For example (Fig. 24), conservation of the position-specific stability (29) among the members of the intrinsically disordered N-terminal domain of the glucocorticoid receptor family is high, while the amino acid conservation within the same domain is low (30). That such behavior seems to be a general feature of protein families (Fig. 2B) suggests that horizontal information is conserved to some degree even in the absence of amino acid conservation.

Vertical Sequence Information from Eukaryotic Phosphorylation Sites Is Distinguished Primarily by the Presence of +1 Pro. The classic approach to identifying phosphorylatable substrates has been to use independent position-conserved information (i.e., vertical information). To characterize the vertical information component, we investigated amino acid sequence fragments of 29 residues centered on known Ser, Thr, and Tyr eukaryotic phosphorylation sites (Fig. 3A). Importantly, these sites are largely single phosphorylation sites within the window of the fragment. Immediately apparent from statistics of the human phosphoproteome is the abundance of Pro residues directly C-terminal to the annotated Ser or Thr phosphorylation site (Fig. 3A and B). Using the presence or absence of +1 Pro to separate phosphorylated and nonphosphorylated sequences into four subclasses reveals substantial differences in amino acid conservation patterns.

Focusing on Ser sites as examples, all subclasses are generally depleted in hydrophobic and aliphatic residues (Fig. 3B). All subclasses except for Ser/Thr phosphorylation sites without +1 Pro (S/T-nP) are enriched with Ser and Pro, implying enrichment of intrinsic disorder (SI Appendix, Fig. S1). In contrast, phosphorylated S/T-nP sites exhibit enrichment of positively charged amino acids Arg and Lys at positions N-terminal to the phosphorylation site and enrichment of negatively charged amino acids Asp and Glu at positions C-terminal to the site (Fig. 3B, Top Left), distinguishing the sequence neighborhoods of phosphorylated and nonphosphorylated sites. Sites with +1 Pro (S/T-P) are more difficult to distinguish based on sequence conservation alone, although the phosphorylated sites appear to tolerate a certain amount of Glu (Fig. 3B, Top Right) while the nonphosphorylated sites are depleted in all negatively charged side chains (Fig. 3B, Bottom Right).

Surprisingly, when the presence of the +1 Pro is ignored, the sequence neighborhoods of Ser phosphorylation sites with +1 Pro (S-P) (Fig. 3B, Top Right) are similar to those of nonphosphorylated S/T-nP sites (Fig. 3B, Bottom Left), with both subclasses enriched in Pro, Ser, and Glu. This indicates that there is little conserved sequence information to locally distinguish a phosphorylated site from a nonphosphorylated one. Indeed, inspection of the logos suggests that Ser phosphorylation sites, for example, are especially depleted in aromatic amino acids (Fig. 3B, Top) relative to nonphosphorylated sites (Fig. 3B, Bottom).
Simple positional conservation would report the absence of aromatics at all sites, but experimental results demonstrate that even single aromatic substitutions in an otherwise identical background could have large effects on denatured state properties (31).

Many classic examples of vertical information used in phosphorylation site prediction have been previously reported (10, 13, 14, 16), but we focus here on the special case of Ser and Thr sites with +1 Pro (noting Tyr shows no +1 sites) and demonstrate that this sequence motif, although not diagnostic by itself, is particularly useful in site prediction. Testing several residue types and locations in the neighborhood of known, mostly single, phosphorylation sites, the presence of +1 Pro is the single most informative position in differentiating subgroups from the complete dataset (SI Appendix, Fig. S2B). Thus, we can partition sites into five subclasses based on the presence or absence of the +1 Pro at Ser and Thr phosphorylatable sites: Ser phosphorylation sites with +1 Pro (S-P), Thr phosphorylation sites with +1 Pro (T-P), Ser phosphorylation sites without +1 Pro (S-nP), Thr phosphorylation sites without +1 Pro (T-nP), and Tyr phosphorylation sites (Y) (SI Appendix, Fig. S2C and D). This grouping is supported by the observation that position-specific weight matrices constructed from these subclasses are more similar between S-P and T-P than between either S-nP and S-P or T-nP and T-P (SI Appendix, Fig. S2C). For consistency with previously published work from other researchers, we also considered the simpler three subclass grouping based only on the identity of the phosphorylatable residue (SI Appendix, Fig. S2D).

Embedded Differences in Conformational Tunability Define Phosphorylation Subclasses. Accepted sequence heuristics exist that map expected conformational states of folded and disordered protein sequences to their PII propensity (20, 32), conformational stability (23, 26, 29, 33–36), or polarity and charge properties (37, 38). However, it is also possible that in addition to evolving with

Fig. 1. Horizontal and vertical protein sequence information reflected in the conformational and binding equilibria of kinase–substrate interaction. Cartoon of coupled equilibria (upper half) demonstrates a decrease of diversity in the substrate's conformational ensemble mediated by horizontal information (blue box) necessary to position functional residues, mediated by vertical information (red box). Horizontal and vertical information are simultaneously encoded (lower half) in an amino acid sequence alignment. Black letters represent aligned sequences, with blue rows representing neighboring groups of amino acids exhibiting emergent biophysical properties and red columns representing conserved amino acids typically used for alignment and binding site identification. The central hypothesis of this work is that biological phosphorylation, and effective phosphorylation site prediction, critically depends on both types of information.
Distributions of the sequence properties for each of the five subclasses suggest not only that the computed dimensions of respective conformational ensembles are poised in statistically different regions, but that the pre- and postphosphorylation ensembles occupy different regions of conformational space identified by Das and Pappu (37), with the S/T-P ensembles being more similar to each other than are the S/T-nP ensembles (Fig. 4B and D). In both cases, however, the pre- and postphosphorylation ensembles lie on opposite sides of critical boundaries. In other words, although individual cases vary from protein to protein, taken over the entire database the sequences evolved such that the local conformational ensembles are particularly sensitive to phosphorylation (Fig. 4C). Notably, the S/T-nP ensembles cross out of a critical boundary region identified by Das and Pappu (37) (Fig. 4D), while the S/T-P ensembles cross into this boundary region. However, the higher Pro content of these latter subclasses, which results in longer end-to-end distances, also results in an increased phosphorylation-induced sensitivity in end-to-end distance of the S/T-P relative at the S/T-nP (Fig. 4E), as both Fig. 4A and previous results would suggest (20, 39).

Phosphorylation Site Predictor That Uses Conformational Equilibrium of the Phosphorylatable Chain. To explore the practical manifestations of our findings, the horizontal and vertical information were incorporated into a prediction method called PHOSforUS (Materials and Methods). Evaluation of the individual predictors with cross-validation demonstrates that all five subclass-specific predictors have significant predictive power for identifying annotated phosphorylation sites (Table 1). The horizontal and vertical information-specific predictors have similar performance, with the horizontal combination, including the position-specific COREX information (23, 26, 29, 33–35) contained in eScape, showing the best performance (Fig. 5B, blue curve). Although combining both horizontal and vertical information results in improved prediction accuracy relative to either alone (Fig. 5B, black curve), horizontal information consistently is more effective (as measured by area under the receiver-operating characteristics [ROC] curve [AUROC]) across subclasses than vertical information alone (Fig. 5C and SI Appendix, Figs. S7–S9 and Table S9). This result indicates that conformational equilibrium is the most important determinant as to whether a particular residue will be phosphorylated.

Although several dozen prediction methods exist, six available tools were compared with PHOSforUS to assess the algorithm’s real-world performance (10, 11, 13–16). These methods were chosen because they were freely accessible and could handle the large datasets used for testing (Materials and Methods). Based on ROC curves the seven methods were broadly segregated into two groups, with the most effective group containing methods that either explicitly, or implicitly, incorporated disorder prediction information (Table 2). For all five site classes, PHOSforUS exhibited the highest AUROC values (Fig. 5D and Table 2).

The implications of this result are threefold. First, the prediction effectiveness of PHOSforUS is evidence that the conformational free energy of the ensemble around the phosphorylatable site is important for kinase recognition. Second, because PHOSforUS is trained on mostly single-site sequence fragments, information about the conformational equilibrium (i.e., fluctuations) of the single phosphorylation site is contained in the sequence neighborhood of that site. Third, because the +1 Pro can meaningfully segregate human phosphorylation sites, it is possible that phosphorylation site sequence logos (SI Appendix, Fig. S1) can in some cases also reflect evolutionary conservation of horizontal information, even in the absence of discernible sequence conservation at specific positions.

Discussion

Here we tested whether embedded horizontal information that captures the thermodynamics of a disordered chain plays a role in a particular average physical or functional property, phosphorylatable sequences also evolved a sensitivity of that property to regulatory perturbations (in this case, phosphorylation). To explore this issue, we chose to adopt the change in end-to-end distance and sequence compaction upon phosphorylation as proxies for the conformational sensitivity. Using distance calculations (32), and the method of Das and Pappu (37), we determined end-to-end distances (Fig. 4A) and mapped annotated phosphorylation sites to the charge-charge plots of the denatured state (Fig. 4C and Materials and Methods), respectively.
in determining the ability of a substrate to be phosphorylated. Yet, phosphorylation can be considered as a specific case of a more general problem: how to identify the structural determinants of any biochemical reaction targeted to an intrinsically disordered site. Our proposed solution is to reformulate the problem of site prediction, whether structured or disordered, by couching it within a thermodynamic framework. In the case of a target site within a structured protein, such a framework is simplified by the existence of a fast unique native structure. In the case of intrinsic disorder, we employ a “thermodynamic proxy” due to the absence of accurate conformational ensemble modeling technology (although such technology is rapidly developing (40–43)).

In this work, we schematically represented the phosphorylation reaction and phosphorylation prediction in terms of two distinct processes with their corresponding free energies (Fig. 1). The “vertical” information is reflective of the classic static structural view of proteins and substrates, whereby the conserved sequence elements provide the scaffold for tight binding. In effect, the degree of conservation serves as a proxy for the energy of the interaction, a result that is consistent with the reported similarity in statistical vs. experimental energy changes observed within folded proteins (44).

Unique to the approach described here, however, is the explicit incorporation of “horizontal” information that specifically encodes the conformational free energy differences embedded along a sequence. Importantly, both types of information could be encoded by amino acid sequence and should be conserved in a substrate multiple sequence alignment (Fig. 1, circles), with a key difference being that the horizontal information is more diffuse and thus would be expected to be less conserved at individual positions using traditional alignment tools (45). This could be an indication of an evolutionary strategy that permits rapid testing of functional amino acid substitutions within a conserved disordered region. Support for the relevance of horizontal information comes from the direct comparison of subpredictor statistics, such as AUROC and accuracy, which reveals that horizontal features perform better than vertical features in every phosphorylation subclass (SI Appendix, Tables S4–S8).

The presence or absence of the +1 Pro motif is a key feature for subclass identification and for the effectiveness of PHOSforUS predictions. What is the biological function of a phosphorylated side chain followed by a Pro, and why is the +1 Pro motif common in eukaryotes and not prokaryotes? Although speculative, our results suggest the answer lies, at least in the case of single-site phosphorylation (which constitutes the majority of cases studied here), in the work that is done in the form of conformational extension upon phosphorylation. To appreciate this point, it must be remembered that there are at least two documented mechanisms for extension in a disordered ensemble: changes in charge mixing (Fig. 4C) (37, 38, 40) and changes in intrinsic PII propensity (Fig. 4A) (20, 32, 38, 39). Sequence logos (SI Appendix, Fig. S1) demonstrate that the second mechanism is likely to be associated with the S/T-P subclass.

We note that although charge and PII propensity are mechanisms for conformational change in ensembles of intrinsically disordered proteins, independent consideration of the effects of phosphorylation on each mechanism is unlikely to provide a complete understanding, as these two effects can be opposing.
Phosphorylation sites containing +1 Pro (S/T-P) are energetically poised to respond to phosphorylation by local extension, mediated by charge and PII propensity. (A) Conceptual plot illustrating expected local end-to-end distance increase (32) due to phosphorylation of an ensemble distribution of 29-mer sequence fragments. Gray cloud represents nonphosphorylated sequences (NP) and blue cloud represents singly phosphorylated sequences (P). (B) Violin plots of ensemble distributions of sequence PII propensities (20) before (gray) and after (blue) phosphorylation. S/T-P classes in particular (the two rightmost pairs of distributions) exist in an extension range nearest the exponential increase in A. Significance bars demonstrate that the postphosphorylation ensembles of S/T-P occupy a very different conformational manifold than do the postphosphorylation ensembles of S/T-nP. (C) Conceptual plot illustrating expected charge change due to single phosphorylation (P) of a distribution of 29-mers. The numbered regions R1 through R5 represent conformational regimes as described in Das and Pappu (37). Note that the dashed diagonal line corresponds to the y axis in D. (D) Violin plots of ensemble distributions of sequence charge properties before (gray) and after (red) phosphorylation. Dotted horizontal lines represent conformational regimes as described in Das and Pappu (37). S/T-P sites (the two rightmost pairs of distributions) specifically exhibit a less unstructured conformational manifold prior to a phosphorylation event, and thus Pro effectively buffers a conformational transition with an increased PII propensity. Significance bars demonstrate that the postphosphorylation ensembles of S/T-P occupy a very different conformational manifold than do the postphosphorylation ensembles of S/T-nP. Notably, the S/T-nP ensembles cross the boundary region, while the S/T-P ensembles do not. (E) S/T-P sites undergo the largest expected extension upon phosphorylation due to contributions from both extension (PII structure) and charge repulsion (see SI Appendix, Figs. S3–S6, in particular SI Appendix, Fig. S4). (F) Schematic summarizing local changes in the conformational ensemble upon phosphorylation. The top half represents an idealized conformational spectrum ranging from mostly folded (left side) with lower end-to-end distance to mostly disordered (right side) with higher end-to-end distance. Conformational change after the phosphorylation event is measured by end-to-end distance (bottom), mediated by PII propensity and charge interactions. Along this spectrum, tyrosine phosphorylation (black curve) exhibits the smallest population end-to-end distances, S/T-nP phosphorylation (red curve) exhibits intermediate distances, and S/T-P site phosphorylation exhibits the largest distances (blue curve). Dashed line: distribution before phosphorylation. Solid line: distribution after phosphorylation. *P < 0.05, **P < 0.01, ****P < 0.0001.
This issue is highlighted, for example, in Fig. 4D: In the absence of phosphorylation, S/T-P sequences would be expected to be more compact as most of these fall in the molten globule space, whereas the S/T-nP are expected to be less compact as they fall into boundary space. However, the computational results show the opposite, that the S/T-P are the more extended states to start with and then show the largest relative increase in end-to-end distance upon phosphorylation as well (Fig. 4E and F and SI Appendix, Fig. S4).

To demonstrate this issue and assess the average local extension for these phosphorylated sequence fragments, we used the method of Tomasso et al. (32), which takes both charge and PII propensity into account. S/T-P single-phosphorylation-site subclasses show a significant local extension with expected post-phosphorylation of more than 0.6 Å for a 29-mer (Fig. 4E). Notably, this extension is mediated by both charge and PII propensity (SI Appendix, Figs. S3–S6). Thus, singly phosphorylated S/T-P sites encode not only average structural properties but also the sensitivity of the conformational ensemble to the effects of phosphorylation. How nature employs this potential for switch-like behavior is likely to vary depending on the functional requirements of individual proteins, perhaps even mediating the sensitivity of liquid droplet formation in, for example, stress granules regulation in eukaryotes (46).

Importantly, the analysis presented here relates the phosphorylation of a residue to the conformational equilibrium around that specific site. In effect, our approach is reporting on local effects, presumably reflecting the work done in redistributing the conformational free energy of the intrinsically disordered subdomain (or modulating overall global properties). It is in important because detailed inspection of the individual phosphorylatable sites reveals that while there are clearly significant differences between the dimensions of the different ensembles (cf. Fig. 4), the distributions are broad and indicate that many counterexamples to ensemble expansion upon phosphorylation exist within the dataset. The fact that the approach reported here can nonetheless discriminate phosphorylatable from nonphosphorylatable sites indicates that the dimensions of the ensemble are secondary in importance, at least with regard to determining which sites will be phosphorylated.

Conclusion

We have shown that horizontally conserved information regarding the structure and energy of the conformational ensemble of a protein sequence plays a major role in determining which phosphorylated versions will be phosphorylated and how, on average, these ensembles will be affected by phosphorylation. Importantly, we note the approach presented here is not an atomistic statistical thermodynamic model that explicitly accounts for specific interactions and contributions of individual amino acids. Instead, we asked whether the hidden conformational free energy information, previously demonstrated to be embedded within all protein sequences, is sufficient to provide predictive information when sequence conservation

Table 1. Subclass training performance of the PHOSforUS predictor

Subclass	Accuracy	Sensitivity	Specificity	Precision	F1	Matthews Correlation Coefficient	AUROC
Class S-P	0.795 ± 0.007	0.800 ± 0.007	0.789 ± 0.011	0.791 ± 0.010	0.796 ± 0.006	0.589 ± 0.014	0.883 ± 0.006
Class S-nP	0.838 ± 0.004	0.842 ± 0.010	0.822 ± 0.007	0.834 ± 0.005	0.838 ± 0.004	0.675 ± 0.007	0.919 ± 0.002
Class T-P	0.741 ± 0.015	0.768 ± 0.024	0.715 ± 0.017	0.729 ± 0.014	0.740 ± 0.016	0.484 ± 0.031	0.820 ± 0.015
Class T-nP	0.730 ± 0.007	0.735 ± 0.026	0.725 ± 0.018	0.728 ± 0.008	0.731 ± 0.011	0.460 ± 0.014	0.810 ± 0.007
Class Y	0.718 ± 0.018	0.717 ± 0.025	0.720 ± 0.024	0.719 ± 0.020	0.718 ± 0.019	0.437 ± 0.036	0.791 ± 0.015
Weighted average	0.803 ± 0.006	0.809 ± 0.013	0.796 ± 0.011	0.799 ± 0.008	0.804 ± 0.007	0.605 ± 0.013	0.885 ± 0.005
Fig. 5. Architecture, training performance, and comparative effectiveness of the PHOSforUS predictor. (A) Simplified workflow of the PHOSforUS predictor algorithm. Biophysical properties of an arbitrary protein sequence are split into 29-mer fragments centered on Ser/Thr/Tyr residues. Five (or three) subclass-specific predictors are invoked, independently based on vertical (red) or horizontal (blue) information. Intermediate output is combined with gradient boost, and combination scores over a preset threshold are predicted as phosphorylated. (B) ROC of PHOSforUS constituent predictors. AUROC is indicated as a separate bar graph. (C) Performance of all subclasses of phosphorylation site are combined into a single curve. The combined predictor (Total, black) outperforms separate predictors based on vertical (Vert., red) or horizontal (Hor., blue) information. Notably, horizontal information significantly outperforms vertical information (C), demonstrating the importance of horizontal information. *P < 0.05, **P < 0.1. (D) Comparative effectiveness of protein phosphorylation site prediction by PHOSforUS. For five subclasses of phosphorylation site, PHOSforUS AUROC values meet or exceed those obtained on the identical data with six existing prediction tools.
is too low to render meaningful comparisons. Our ability to input a single amino acid sequence and predict the likelihood of single-site phosphorylation at Ser, Thr, and Tyr residues (Fig. 5) demonstrates the validity of our approach and supports our assertion that local conformational equilibria (or fluctuations) can affect (and in the case of phosphorylation, even dominate) the specificity of a biological process. Thus, in one key respect, our development of a state-of-the-art prediction algorithm can be viewed as a consequence (albeit highly desirable) of the more important biological finding, which demonstrates the critical role played by conformational equilibria in sensitizing intrinsically disordered sequences to functional regulatory changes.

Materials and Methods

Reference Dataset and Data Processing. Canonical human protein sequences were obtained from SWISS-PROT (2018 December Release) (8), a manually curated subset of the UniProt database. Phosphorylation annotations were obtained from SWISS-PROT and PhosphoSitePlus (2018 December Release) (9). True positive sets were assembled from SWISS-PROT annotations and low-throughput (LTP) subset of PhosphoSitePlus. Sequence fragments of 29 amino acids (14 residues N-terminal and C-terminal relative to a central phosphorylation site) were extracted from these sets and subsequently divided into five subsets (S-P, S-nP, T-P, T-nP, and Y) based on the identity of the center residue and the presence of Pro as its C-terminal neighbor. For example, S-P denotes Ser as the phosphorylatable central residue with presence of the +1 Pro, while S-nP denotes any of the remaining 19 residues at the +1 position. To reduce information redundancy, a 50% maximum pairwise sequence similarity filter was applied to these subsets. True negative subsets were assembled in a similar way and sequences that shared more than 50% similarity to any phosphorylated sequence were removed to filter out false positives. Resulting statistics of these sets are shown in SI Appendix, Table S1.

For the comparative analysis, we constructed another positive set which contains none of the sequences already contained in the training set, and presumably minimal number of sequences in the training sets of existing phosphorylation predictors. From the PhosphoSitePlus high-throughput (HTP) subset, we removed sequences that show 50% similarity to any sequences within SWISS-PROT, Phospho.ELM (7), and PhosphoSitePlus LTP datasets. From resulting positive set (statistics shown in SI Appendix, Table S1) and true negative set, we randomly sampled five testing sets with 100 positive sites and 100 negative sites to test predictor performances.

Visualizing Conservation of Vertical and Horizontal Information. Orthologs of human proteins with DNA-encoding transcription factor activity (Gene Ontology: 0003700) were obtained from the Orthologous Matrix (OMA) database (30). We selected ortholog groups with the number of members between 10 < n < 250 and downloaded multiple sequence alignments as archived in the database. A full list of the 835 ortholog groups we utilized can be found at https://github.com/bxlab/PHOSforUS.

Normalized local sequence conservation scores were calculated using the following procedure. The multiple sequence alignment (alignment size = n) was divided into small overlapping windows (window size = 5, step = 1). For each window, pairwise local alignment scores using BLOSUM62 matrix (55) was divided into small overlapping windows (window size = 5, step = 1). For each window, pairwise local alignment scores using BLOSUM62 matrix (55) were calculated between a reference sequence (Seq.) and each of all other sequences within same ortholog group (Seq.). This process was iterated using each of the sequences in the alignment as a reference sequence. Within each iteration, each pairwise score was divided by a maximum score attainable, which was defined as the case when a sequence which is identical to the reference was applied for pairwise comparison. Calculated pairwise scores were averaged to obtain a normalized local sequence conservation score (Eq. 2):

\[
\text{Score}_{\text{seq}} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} \text{BLOSUM62(\text{seq}_{i}, \text{seq}_{j})}}{n(n-1)}
\]

Native-state free energy for each protein sequence was calculated using the eScape algorithm (ref. 29, https://best.bio.jhu.edu/eScape). For the same window we used for calculation of local sequence conservation score, we calculated local average and SD of free energy values. Horizontal conservation score was computed using the following Eq. 3:

\[
\text{Score}_{\text{hor}} = 1 - \frac{\text{SD}_{\text{local}}}{\text{Ex}}
\]

In this case, scaling coefficient (\(\text{Ex} = 3.3 \text{[kcal/mol]}\)) was calculated from 10 different ortholog groups exhibiting high sequence conservation and structural stability (e.g., actin [ACTB] and rhodopsin [RHO] families). Resulting conservation scores are plotted in SI Appendix, Fig. S10A (glucocorticoid receptor/GCR), SI Appendix, Fig. S10B (actin), and SI Appendix, Fig. S10C (rhodopsin), respectively.

To observe its correlation with free energy, sequence conservation scores and horizontal conservation scores were normalized again with \(\mu = 0\) and \(SD = 1\) (i.e., a Z-score). Linear correlations between average free energy and both conservation scores were calculated subsequently as SI Appendix, Fig. S10D. Binned distributions for slopes and correlation coefficients (for B35 correlations, one for each ortholog group) can be found in SI Appendix, Fig. S10E and F, respectively.

Estimating End-To-End Distance of Phosphorylated and Nonphosphorylated Sequence Fragments. Values for end-to-end distances \(R\) (Fig. 4E) were computed from Eq. 4, based on refs. 32, 56, and 57:

\[
R \cong R_0 \cdot N^{\nu/6}.
\]

In Eq. 4, \(N\) is the length of the sequence fragment (29 residues), \(R_0\) is the hydrodynamic radius of a single amino acid (2.16 Å), and exponent \(\nu\) was defined as follows, incorporating the influence of PII propensity and net charge:

\[
\nu = f_{\text{PII}}(\text{Q}) = \nu_0 + \alpha \cdot \text{Q} + |\beta \cdot (1 - \text{Q})| \cdot \ln(1 - f_{\text{PII}}).
\]

In Eq. 5, \(f_{\text{PII}}\) is the PII propensity, \(s(\text{Q})\) is a sigmoid function parameterized by net charge and hydrodynamic radius (58), and \(\alpha\) and \(\beta\) are scaling coefficients for the effects of net charge and polypeptide propensity, respectively. Full details are given in SI Appendix.

Combining Horizontal and Vertical Information to Build a Phosphorylation Site Predictor. Selected horizontal information was computed over a 29-residue window (SI Appendix) using properties contained within the AAdindex database (59). Properties that were not classified as horizontal were considered vertical information. A naive Bayes predictor (60, 61) trained on each individual property was used to assess predictive accuracy for each phosphorylation subclass (SI Appendix, Tables S4–S8), and the individual properties with highest information content were incorporated into the PHOSforUS prediction algorithm (SI Appendix, Tables S2 and S3). Horizontal properties included amino acid partition energies (62, 63), alpha helix frequencies (64), extended conformation (65, 66), and PII helix propensities (20), hinting at cooperative and noncooperative structure tendencies. Vertical properties included amino acid isoelectric point (67), molecular weight (68), volume (69), and side-chain average exposed surface area (70), all being characteristics independent of neighboring amino acids. Orthogonal information was incorporated from predicted thermodynamic properties (23, 26, 29, 33–35) using the eScape software (29), and this information was used to train a separate naive Bayes predictor (SI Appendix).
The PHOSforUS algorithm consisted of three stages: sequence preprocessing, score calculation, and decision output (Fig. 5A). The first stage identifies the Ser, Thr, and Tyr residues as possible phosphorylation sites and computes and horizontal and vertical properties mentioned above for each site's sequence neighborhood. The second stage routes each site to the appropriate subclass predictor and parameter set. Prediction scores from each individual horizontal, vertical, and thermodynamic property are combined using a Gradient Boost (61, 71) predictor (see details of predictor architecture in SI Appendix), resulting in a single value for the potential site. The third stage compares this score calculation, and decision output (Fig. 5A) predictor and parameter set. Prediction scores from each individual horizontal, vertical, and thermodynamic property are combined using a Gradient Boost (61, 71) predictor (see details of predictor architecture in SI Appendix), resulting in a single value for the potential site.
56. M. Nygaard, B. B. Kragelund, E. Papaleo, K. Lindorff-Larsen, An efficient method for estimating the hydrodynamic radius of disordered protein conformations. Biophys. J. 113, 550–557 (2017).
57. I. Teraoka, Polymer Solutions: An Introduction to Physical Properties, (John Wiley, New York, 2012).
58. A. H. Mao, S. L. Crick, A. Vitalis, C. L. Chicoine, R. V. Pappu, Net charge per residue modulates conformational ensembles of intrinsically disordered proteins. Proc. Natl. Acad. Sci. U.S.A. 107, 8183–8188 (2010).
59. S. Kawashima et al., AAnindex: Amino acid index database, progress report 2008. Nucleic Acids Res. 36, D202-D205 (2008).
60. H. Zhang, “The optimality of naive Bayes” in Proceedings of the 17th International Florida Artificial Intelligence Research Society Conference, V. Barr, Z. Markov, Eds. (AAAI Press, 2004), pp. 562-567.
61. F. Pedregosa et al., Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
62. H. R. Guy, Amino acid side-chain partition energies and distribution of residues in soluble proteins. Biophys. J. 47, 61-70 (1985).
63. S. Miyazawa, R. L. Jernigan, Self-consistent estimation of inter-residue protein contact energies based on an equilibrium mixture approximation of residues. Proteins 34, 49-68 (1999).
64. M. Prabhakaran, The distribution of physical, chemical and conformational properties in signal and nascent peptides. Biochem. J. 269, 691–696 (1990).
65. J. Palau, P. Argos, P. Puigdomenech, Protein secondary structure. Studies on the limits of prediction accuracy. Int. J. Pept. Protein Res. 19, 394–401 (1982).
66. B. Robson, E. Suzuki, Conformational properties of amino acid residues in globular proteins. J. Mol. Biol. 107, 327–356 (1976).
67. J. M. Zimmerman, N. Eliezer, R. Simha, The characterization of amino acid sequences in proteins by statistical methods. J. Theor. Biol. 21, 170–201 (1968).
68. G. D. Fasman, Ed., Proteins (CRC Press, Cleveland, ed. 3, 1976).
69. R. Grantham, Amino acid difference formula to help explain protein evolution. Science 185, 862–864 (1974).
70. A. Radzicka, R. Wolfenden, Comparing the polarities of the amino-acids - side-chain distribution coefficients between the vapor-phase, cyclohexane, 1-octanol, and neutral aqueous-solution. Biochemistry-Ua 27, 1664–1670 (1988).
71. T. Hastie, R. Tibshirani, J. Friedman, Elements of Statistical Learning, (Springer, New York, ed. 2, 2009).