TOPICAL REVIEW

PLGA-based drug delivery system for combined therapy of cancer: research progress

Zhang Ruirui1, Jian He1, Ximei Xu1, Shengxian Li1, Hongmei Peng2, Zhiming Deng2,∗ and Yong Huang1,2,∗

1 National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
2 The First People’s Hospital of Changde City, Changde, People’s Republic of China
∗ Authors to whom any correspondence should be addressed.
E-mail: huangyong503@126.com and RAHY324@163.com

Keywords: PLGA, drug delivery, tumor, combination therapy, micro/nanoparticles

Abstract

In recent years, PLGA micro/nano particle drug delivery systems has been widely used in cancer treatment. According to the unique properties of PLGA, carriers of various structures are designed to keep the function of drugs or bioactive substances, ensure the effective load of molecules and improve the bioavailability of drugs in diseased parts. PLGA is one of the earliest and most commonly used biodegradable materials. It is often used for functional modification with other polymers (such as polyethylene glycol and chitosan) or other molecules (such as aptamers and ligands) to deliver various small molecule drugs (such as DOX and DTX) and bioactive macromolecules (such as proteins and nucleic acids) to improve targeting, controlled release and therapeutic properties. In this paper, the preparation methods, physical and chemical properties and medical applications of PLGA micro/nano particles are discussed. We focused on the recent research progress of the PLGA-based drug carrier system in tumor combination therapy.

Abbreviations

PLGA Poly(lactic-co-glycolic acid)
FDA Food and Drug Administration
PRINT Non-wetting templates
LA:GA Lactide: Glycolide
O/W/O Oil in water in oil
W/O/W Water in oil in water
MCF-7 Michigan Cancer Foundation – 7
MCF-7/ADR Michigan Cancer Foundation -7/ adriamycin
TAM Tumor-associated macrophages
DC Dendritic cells
4T1 Breast cancer cells
IFN-γ Interferon-gamma
Th-1 Helper T cells
TC-1 Cytotoxic T cell
IL-10 Interleukin-10
IL-12 Interleukin-12
NK Natural killer

© 2021 The Author(s). Published by IOP Publishing Ltd
1. Introduction

Cancer is still one of the main causes of threats to human health and death. At present, many therapies have been developed to improve the anti-tumor effect. Including immunotherapy, chemotherapy, combination therapy, etc. Common immunotherapies include immune checkpoint therapy and immune cell therapy. The former uses antibodies or other molecules to block receptors on the surface of tumor cells to promote the phagocytosis of immune cells or other cells [1, 2], and the latter uses direct stimulation immune cell activation further kill tumor cells [3–5]. Chemotherapy can kill tumors by directly using cytotoxicity [6]. Photodynamic therapy increases the production of reactive oxygen species in tumor cells under light, which leads to protein degeneration and DNA damage, and achieves the purpose of inhibiting the growth of tumor cell, such as small molecule photosensitizers such as R837 and CE6 [7]. Although a variety of highly active and specific drug molecules have been used for anti-tumor therapy and achieved good results. However, single therapy usually faced the problems of high dose and low bioavailability [8, 9]. In addition, frequent drug administration is more likely to lead to systemic cytotoxicity and increase the pain of patient [10]. Therefore, researchers usually combine one or more treatment methods to enhance anti-tumor effects.

Developing an efficient drug delivery system for cancer has become a research hotspot in the biomedical field [11]. Researchers have prepared various micro/nanoparticle as delivery vehicle [12], breaking through the restriction of free drug applications [13]. Usually, in the design of drug delivery systems, in order to obtain higher drug loading rate, suitable release rate and maintain drug activity, the selection of materials is a key factor [14]. Among all kinds of materials, synthetic or natural polymer materials have received widespread attention, among which synthetic materials are divided into non-degradable and degradable polymers [15]. PLGA is a degradable aliphatic polyester, which has been approved for clinical use by the Food and Drug Administration (FDA) [16]. PLGA micro/nanoparticle have excellent biocompatibility, degradability, non-immunogenicity, micro-cytotoxicity, adjustable structure, and controllable slow-release according with degradation kinetics, which has become a widely used material in drug delivery systems [17–20]. In addition, because its molecular weight and composition ratio will affect the release and degradation rate of drugs, PLGA micro/nanoparticle are a good barrier to protect the premature release and degradation of drugs [21]. In addition, polymerization with other polymers or modification of specific molecules on the particle surface can guide targeted drug delivery and reduce systemic side effects [22–24]. For lipophilic molecules, simple single emulsification technique is used for encapsulation while for biological macromolecules such as protein double emulsification technique is mainly used [25, 26]. More flexible routes of administration include oral administration, inhalation, intravenous injection, subcutaneous injection, intramuscular injection or in situ humoral injection, so as to deliver drug-loaded particles to target lesions, thus improving the treatment and prognosis [27–31]. PLGA microspheres increase the drug load and avoid phagocytosis by macrophages, thus achieving a longer-lasting drug release effect [32]. PLGA nanoparticles have smaller size and targeting characteristics, and they are easier to accumulate in tumor cells through the EPR effect [33]. However, it cannot be ignored that PLGA micro/nanoparticle inevitably have problems such as residual organic solvents, poor tumor tissue penetration and cancer uptake, incomplete drug release, and instability of encapsulated active molecules [34–37].

As a biosafety material, PLGA is a drug delivery vehicle with great potential and has been successfully applied to improve tumor treatment, and it still has greater application prospects in the future. Therefore, this article reviews how PLGA micro/nanoparticle as an anti-tumor agent can activate anti-tumor immunity and enhance anti-tumor efficiency through combination therapy in different tumor models in vivo and in vitro in recent years, hoping to provide future development and design based on PLGA micro/nanoparticle combined treatment to improve anti-tumor research has brought inspiration (figure 1). It is mainly divided into four parts, including the preparation methods of various new and traditional PLGA micro/nanoparticle, and the physical and chemical properties and characteristics of PLGA micro/nanoparticle. How to successfully encapsulate various drug molecules into PLGA micro/nanoparticle to improve the pharmacokinetics, and how PLGA
micro/nanoparticle improve the stimulation of various cells in the tumor microenvironment to trigger effective combined anti-tumor therapy.

2. Preparation methods of PLGA micro/nanoparticle

PLGA micro/nanoparticle can be prepared by various methods, including traditional emulsification technology, spray drying, nano-precipitation method and so on. At present, the widely used preparation methods include modified emulsification, microfluidic and membrane emulsification. According to the characteristics of polymer, PLGA micro/nanoparticle were prepared by emulsion solvent evaporation method. The preparation process is simple, and it has been widely studied, including single emulsion method and double emulsion method [38]. The particle size, morphology, encapsulation rate and drug release behavior are affected by many factors, such as the types and components of polymers and surfactants. However, the drug encapsulation efficiency is low, and the residual organic solvents is still an urgent problem to be solved [39].

Phase separation technology and nano-precipitation method are also methods to obtain PLGA micro/nanoparticle with controllable release ability by simple preparation process [40, 41]. In addition, the nano-precipitation method can complete the preparation of particles in one step, and it is simpler and more effective than emulsification method to encapsulate drugs [42]. The salting-out method is an improved emulsification technique, which is suitable for high-concentration polymer solutions and is beneficial to the encapsulation of heat-sensitive drugs [43]. Another spray drying method is also suitable for packaging heat-sensitive substances, and it is the preferred method for removing organic solvents [44–46]. Membrane emulsification technology is a new technology that uses a combination of emulsification methods and porous membranes. The particle size is more uniform, the drug encapsulation rate is high, and the activity is well maintained, which overcomes the shortcomings of the emulsification solvent evaporation technology [47]. Gas shearing technology is a reliable method.
method to accurately control the preparation of symmetric or anisotropic particles with different numbers and different characteristic compartments, and it can also be used for cell culture [48–50]. In addition, in-situ formation technology has also been developed to prepare microparticles directly at the site of the disease [51]. Although there is an initial outbreak of drug release, this method overcomes the high manufacturing cost and potential toxicity [52]. As a method which can be used to accurately control the shape and size of particles to obtain monodisperse micro/nanoparticle, it mainly includes particle replication in non-wetting templates (PRINT) and microfluidic technology [53, 54]. The former is a soft lithography-based molding technology that is more suitable for mass production of particles [55]. Microfluidic technology, especially at the micro level, has been widely used in bioengineering research, drug carriers and other fields [34, 35, 56, 57]. By selecting different methods to prepare particles with specific characteristics, the release kinetics, entrapment efficiency, stability and degradation rate of drug molecules can achieve more effective therapeutic effects. The advantages and disadvantages of several commonly used PLGA micro/nanoparticle preparation methods were discussed (figure 2).

3. Types of PLGA micro/nanoparticle

PLGA micro/nanoparticle have a variety of morphological structures, including solid, porous, core-shell structure and multi-compartment particles. Porous particles and core-shell particles are the most widely used types at present, and they can realize the co-delivery of multiple drugs [11, 58]. Single-layer polymer carriers prepared based on PLGA are widely used to deliver hydrophilic or hydrophobic drugs [59]. However, the single-layer particles are dense and nonporous, which may cause difficulty in drug release, slow degradation, and difficulty in achieving satisfactory drug molecular release kinetics [60–62]. This defect can be improved by reducing the polymer concentration, selecting the PLGA with the appropriate composition ratio (Lactide (LA): Glycolide(GA)), changing the proportion of additives, and adjusting the conditions of different preparation methods (such as the stirring speed of the emulsion method, the voltage of the electrospray microfluidics, and the pressure of the supercritical method) to make smaller particles [63–65]. PLGA is one of the most widely used materials in macroporous microspheres, which has good aerodynamic and slow release characteristics [66]. In recent years, PLGA-based porous microspheres have been widely used as long-term reservoirs in the delivery of drugs and bioactive molecules [67]. Compared with the traditional PLGA micro/nanoparticle monolayer structure, two or more layers have superior multi-drug delivery capacity [68, 69]. Loading multiple drugs (such as chemotherapy drugs, antibodies or nucleic acids) in the core layer and shell layers at the same time allows different molecules to be stably and continuously released from the polymer particles, which makes it easier to maximize the therapeutic effect and is unlikely to generate drug resistance [70, 71]. In addition to the controlled and sustained release of drugs, it can also meet the need of the timed release of drugs [72]. However, it is still a challenge to solve the problem of drug loading rate of hydrophilic drugs and adverse reactions caused by sudden release. Multi-compartment particles allow multiple materials to be used in different separation phases, thus
creating two or more compartments, allowing individual particle to have different characteristics, such as independent release when encapsulating drugs, and also encapsulate magnetic beads, photosensitizers and nucleic acids [73–76]. At present, due to the limitation of the preparation process, the preparation of double compartments is relatively easy to realize, but it is not so easy to obtain more stable multi-compartment micro/nanoparticle. Therefore, the flexibility to choose the appropriate type of PLGA micro/nanoparticle is very important to improve the effect of disease treatment.

4. Physical and chemical properties of PLGA micro/nanoparticle

PLGA is a kind of amorphous polymer composed of lactic acid and glycolic acid. This feature enables the loaded drug to be more evenly dispersed in the polymer (figure 3). PLGA degrades slowly in the physiological environment or tumor sites, and decomposes into the original monomer components (LA:GA) [77, 78], both of which are physiological metabolites of the citric acid cycle [79]. Therefore, the decomposition products of PLGA can be completely eliminated from the human body in the form of carbon dioxide and water [80], but the increase in acidic products may also lead to toxicity and inflammation [81]. The properties of PLGA polymer depend on the composition ratio and molecular weight of the polymer, hydrophilicity and hydrophobicity, concentration, terminal group (ester or carboxyl) functionality, supported drugs, and the type or concentration of surfactant [82]. LA and GA have different hydrophilic groups, and the different ratios determine the amphipathic property [83], degradation rate [84], mechanical strength [85], glass transition temperature [86], solubility and structure of PLGA. In addition, the lower the molecular weight, the higher the carboxyl content at the end of PLGA, and the faster the degradation speed, mainly because the hydrophobicity of low molecular weight is smaller, and carboxyl can increase hydrophilicity [87]. The results showed that PLGA with the ratio of (LA:GA) 50:50 was more hydrophilic and had the fastest degradation rate, and it had advantages over other ratios in drug encapsulation and release [44]. The multi-phase degradation mechanism of PLGA provides a theoretical basis for better design of the release of loaded drugs. The release of the drug is through the disintegration of the polymer network structure and the erosion of the water environment, so it is widely used in slow control agents. Some researchers have studied the biodegradation of PLGA and found that both extracellular enzymes and intra-encapsulated enzymes can affect degradation, including trypsin or bromelain [88, 89]. However, this statement is still controversial, and the related mechanism is not particularly clear. In addition, the desired surface pore size and particle size of the carrier can be prepared by selecting a suitable pore-forming agent, surfactant, polymer concentration and production process [12, 90–92].
5. Method of encapsulating/loading drugs into PLGA micro/nanoparticle

PLGA micro/nanoparticle prepared by the above-mentioned various traditional and latest technologies are widely used for drug delivery. Most small-molecule fat-soluble drugs can be prepared by directly mixing with polymer solutions [93], but water-soluble drugs need to be converted into a hydrophobic form first, or after mixing with surfactants, through oil in water in oil (O/W/O) or water in oil in water (W/O/W) double emulsion method [37, 94]. Drug molecules are delivered to the diseased parts in the form of encapsulation inside the particles, and are polymerized and bound or adsorbed on the surface [95–98]. According to the nature of the drug contained, different methods are chosen to achieve the purpose of treating diseases. For example, small molecule drugs and proteins can be wrapped inside the particles, and most nucleic acids are adsorbed on the surface of the particles through electrostatic action or crosslinking agents [12]. Especially for biologically active molecular therapy, it is still the focus of research to efficiently encapsulate and maintain long-term biological activity [99]. In addition, it is often combined with other polymers, such as polyethylene glycol, polyethyleneimine, alginate and chitosan, to construct PLGA hybrid particles, including modified copolymer particles, core-shell composite particles and polymer micelles, which are commonly used methods to load drugs and bioactive molecules [20, 100, 101].

6. Combined treatment of tumor based on PLGA micro/nanoparticle drug delivery system

The limitations of monotherapy can easily lead to poor curative effects of tumor. Combined therapy can deliver a variety of anti-cancer drugs at the same time, which has been widely used in the treatment of tumors and has shown good prospects in clinical applications [102–104]. Therefore, the rational design of PLGA micro/nanoparticle drug delivery system and delivery of various molecules to the tumor site can not only reduce the drug resistance of tumor cells and improve the therapeutic effect, but also provide a new approach for the treatment of various tumors. As shown in table 1.

6.1. Delivery to cancer cells

Loading drugs into PLGA micro/nanoparticle directly into tumor cells is a conventional method to increase the bioavailability of drugs to tumor cells and reduce damage to normal tissues [109, 126, 127]. For killing tumor cells, PLGA micro/nanoparticle usually deliver chemotherapeutics, photothermal preparations or radioactive preparations, and the drug-loaded particles are delivered to the tumor site by in-situ injection or transvascular transport [128]. The use of drugs released in the body to directly kill tumor cells at the same time or add light and heat, magnetic field conditions or combined with immune molecules to activate the immune response to achieve tumor suppression [108, 112]. In addition, many studies have further improved the penetration and absorption of drug tumor cells by modifying tumor cell targeting molecules on the surface of PLGA micro/nanoparticle [113]. It is a promising strategy to prepare a multifunctional PLGA carrier drug delivery system combined with chemotherapy, photothermal therapy or radiotherapy and other therapeutic modes to produce synergistic or combined therapeutic effects for tumors [110, 129]. In recent years, PLGA micro/nanoparticle delivery systems have been widely used as drug delivery systems in combination with tumor treatment due to their increased specific surface area, drug loading capacity, and adjustable structure. It has shown potential clinical application potential in various tumor models such as liver cancer and lung cancer [105–107]. In order to overcome the limitations of monotherapy, GUO et al. designed a drug delivery system that integrates chemotherapy and photothermal. By using the biomimetic coating of the tumor cell membrane to target and PH-sensitive drug release, compared with free DOX, the successful delivery of the drug to the tumor cell nucleus has a more powerful cytotoxic effect. The study found that the tumor cell MCF-7/ADR efflux rate of free drugs was 100%, while the nanosystem group significantly decreased, and the efflux rate is an indicator of overcoming cell resistance. In vitro studies on cytotoxicity found that the survival rates of MCF-7 and MCF-7/ADR cells in the chemotherapy-photothermal treatment group were reduced to more than 95% and 75%, respectively. The co-treatment group also showed excellent anti-tumor effects in the breast cancer model of drug-resistant mice [111]. Another study also found that inhalable PLGA porous microspheres loaded with dual drugs significantly inhibited tumor growth and metastasis in tumor-bearing mice with lung cancer in situ [130].

6.2. Delivery to immune cells

In addition to tumor cells and tumor stem cells, the tumor microenvironment also includes various immune cells, such as tumor infiltrating lymphocytes, tumor-associated macrophages (TAM) and dendritic cells (DC) [131]. Compared with directly targeting tumor cells, recent studies have also found that the PLGA micro/nanoparticle delivery system is a good carrier for improving immunotherapy. In preclinical studies, it was also
Drug@ Formulation	Fabrication techniques	Application	Functions	Results	References
REGO@/PLGA MPs + Miriplatin	Emulsion-solvent evaporation/extraction	Hepatocellular carcinoma	Limit the proangiogenic response after TACE; Local and sustained drug release; The average tumor weight of the Miriplatin plus REGO microsphere group was 0.48g, which was significantly lower than the other groups.; Tumor angiogenesis is reduced, which antagonizes drug resistance;	In liver cancer tumor models, tumor growth inhibition and treatment response are the most significant; Tumor angiogenesis is reduced, which antagonizes drug resistance;	[105]
Re/DOX@PVSA/PLGA MPs	Double emulsification	Hepatocellular carcinoma	Chemotherapy and radiotherapy; Local embolization;	In liver cancer tumor models, tumor growth inhibition and treatment response are the most significant;	[106]
ultrasound + DOX@PLGA MPs	Double emulsion solvent evaporation technology	Melanoma	US physical damage; DOX chemical damage	The average survival time of mice in the US plus DOX/PLGA microsphere group was more than doubled than that of the control group.;	[107]
ANG/DTX@GS/PLGA NPs	Emulsion solvent evaporation method	Glioma	Chemotherapy; hyperthermia; X-ray imaging; active targeting	ANG/GS/PLGA/DTX/808nm laser nanoparticles show significant tumor suppression efficiency; Increased expression of MHC i molecules; slowed tumor progression and improved median survival	[108]
ICG/NextA@PLGA NPs	Nano emulsion synthesis scheme	Melanoma	PTT; epigenetic therapy;	Increased expression of MHC i molecules; slowed tumor progression and improved median survival	[109]
NIR700@PLGA/PEG NPs	Emulsion and solvent evaporation-extraction method	Colon cancer	Photodynamic therapy; immunotherapy; enhanced EPR effect	Induce anti-tumor immune response; induce vascular rupture and ensure the accumulation of NP in the tumor area; reduce tumor volume;	[110]
PIO/Dox/Mcl-1siRNA@PLGA-CSNPs	Emulsion solvent evaporation method	Breast cancer	MCF-7 cancer cell membrane coating; chemical-photothermal therapy; magnetic targeting;	Inhibits almost 80% of tumor growth in MCF-7/ADR tumor model	[111]
A12@PLGA MPs + PTX@HA-SS-TOS	Solvent evaporation method	Colon cancer	Precision chemotherapy; Immunotherapy; Redox sensitivity; Activate host immune response;	Significantly improve the efficacy of a variety of tumor models; reduce immunosuppression caused by chemotherapy; Distal tumor suppression effect is remarkable	[112]
Rutin/Benzamide@PLGA MPs	Emulsion method	Breast cancer	Active targeting; inhibition of multidrug resistance; sustained release of drugs;	Potential cancer treatment effect; low genotoxicity in zebrafish model;	[113]
ART/ALA@HA-PLGA NPs	Self-assembly	Hepatocellular carcinoma	Dual administration; new core-shell structure; PH sensitivity; sonodynamically active;	The minimum tumor volume (V/V0) in the HA-PLGA@ART/ALA group was 0.77 ± 0.19; the tumor cell apoptosis rate was the highest when combined with US;	[103]
T cell					
Dox/CpG@ PLGA MPs	Emulsion method	B lymphoma; B16 melanoma	Chemotherapy; immunotherapy; In situ immunization; Break tumor tolerance; activate T cells	Dox/CpG MPS group suppresses tumors in situ and distant; mice are tumor-free; combined anti-CTLA-4 and anti-OX40 therapy significantly reduces B16 tumor growth;	[114]
Drug @ Formulation	Fabrication techniques	Application	Functions	Results	References
--------------------	------------------------	-------------	-----------	---------	------------
CCMP/R837@PLGA NPs	Oil-in-water (o/w) emulsion method	Breast cancer	Bionic cell membrane; enhance long-term anti-tumor immunity; Stimulates DC maturation and IL-2 secretion	Inhibition of tumor growth and prolonged survival (75% of mice survived more than 30 days after tumor formation). In the treatment group, CD8+ T cells and memory T cells increased, and regulatory T cells decreased;	[115]
TA/Met@PLGA MPs	Emulsion method	Breast cancer; melanoma	Photothermal effect; immunotherapy; regulating immune memory CD8+ T cells; changing cell metabolic behavior;	In 4T1 tumor model and B16F10 tumor model, the number of CD8+ TCM increased, and tumor metastasis and inhibition were significantly reduced; after combined anti-PD-1 peptide therapy, the number of CD8+ TCM increased significantly;	[116]
OVA/Rib@PLGA MPs	Double emulsification solvent evaporation method	Melanoma	Increase of specific CD8+ T cells; DC activation; immune checkpoint block; Tumor ablation	Mice in the MP-OVA/rib PLGA treatment group showed more significant peptide-specific killing; combined with anti-CTLA-4/anti-PD-1, it significantly increased the tumor suppression effect and the reconstruction of anti-tumor immunity;	[4]
TAM BODIPY/TM R@PLGANPs	Nano-precipitation	Breast cancer; lung cancer;	Chemothrapy; Radiotherapy; TAM quantitative Macrin imaging; EPR;	In vivo Macrin imaging found that Macrin was selectively taken up by macrophages >90%; in addition, in tumor models, TAMs increased by 180%–650% after treatment, and the aggregation of TAM-rich tumor nanoparticles increased by more than 700%;	[117]
Ec-R848@PLGA + DOX@PLGA NP	Emulsion solvent-evaporation method;	Breast cancer;	Induces ICD; stimulates severe polarization of TAM; antagonizes immunosuppression;	In the 4T1 tumor model, the M1/M2 ratio was increased to 3.79 times that of PBS, and the number of CD4+ and CD8+ T cells increased; after 18 days, the tumor volume was significantly suppressed;	[118]
PLGA-ION-R837 @ M	Solvent evaporation	Breast cancer;	Bionic carrier; magnetic targeting; polarized TAM enhanced immunotherapy;	In the in vivo model, after treatment, the M1/M2 ratio increased to 2.88, CD4+ T lymphocyte infiltration increased, and the tumor suppression rate reached 72.5%;	[119]
DC ATP/E7@PLGA NPs.	Two-stage emulsification method.	Papilloma virus-associated tumor	ATP new vaccine adjuvant;	After adding ATP adjuvant treatment, DC maturation and nanoparticle uptake increased, tumor volume was completely eliminated and durable immunity was established;	[120]
Drug@Formulation Cancer cell	Fabrication techniques	Application	Functions	Results	References
-----------------------------	------------------------	-------------	-----------	---------	------------
522@PLGA NPs	Double-emulsion solvent evaporation technique	Melanoma	The load of 522 is increased by 33 times; Gas (CO2)-producing nanoparticles;	In the melanoma model, the drug is released in response to acid, CD8 T cells and natural killer (NK) cells increase, antigen presentation increases, and tumor volume is suppressed;	[121]
Man-RBC/PLGA NPhgp	Nanoprecipitation method	Melanoma	Active targeting; redox sensitive release; antigen reservoir;	The secretion of costimulatory factors increased by about 2 times to induce DC maturation, tumor growth and metastasis inhibition;	[122]
NK cell	Emulsion method	Prostate cancer	Nano-reservoir; controlled release; co-localized nano-immunotherapy;	In the in vitro model, the natural killer cell-mediated J-Lat cell killing activity is enhanced;	[95]
Circulating tumor cell	Emulsion solvent evaporation method	Breast cancer	Cancer membrane coating; induce calcium ion accumulation and EMT;	Effectively inhibit the generation and circulation of tumor CTC clusters, thereby inhibiting tumor metastasis, and synergistically promoting tumor apoptosis;	[123]
Cancer stem cell	Modified double emulsion method	Triple negative breast cancer,	Dual response nanoparticles; reduce drug resistance; active targeting; EPR;	In breast cancer models, it effectively destroys cancer stem cells, which is 500 times more effective than other groups;	[124]
Cur/Sal@PEG-PLGA NPs	Double emulsion method	Malignant tumor	Complementary drug function; targeted co-delivery; limit EMT;	In vitro experiments proved that basic fibroblast growth factor, cell migration and EMT inhibition, and the cumulative toxicity of drugs to cells;	[93]
SAL/DTX@PLGA/TPGS NPs	Nanoprecipitation method	Breast cancer	Optimal drug synergy ratio; longer drug circulation time; active targeting;	Compared with other control groups, the SAL/DTX-PLGA/TPGS NPs experimental group showed the best anti-tumor and anti-CSCs activity;	[125]
found that delivered antigens, adjuvants, and immune drugs can cause effective immune stimulating responses, which has attracted the interest of more researchers [132].

6.2.1. T cells

T cells play a key role in activating the body’s immune response in immunotherapy and combination therapy [115]. At the tumor site, T cells are subject to signal regulation from tumor cells or aggregation of immunosuppressive cells, leading to failure or exhaustion of T cells to recognize abnormal cells [133]. Generally speaking, molecules delivered by PLGA micro/nanoparticle [such as antibodies, antigens, immune adjuvants] can directly recruit T cells to the tumor site or block related protein molecules on the surface of tumor cells or increase the exposure of tumor-related antigens to activate T cells. Initiates a stable and systemic T cell immune response [116]. It has also been found in various preclinical mouse tumors models that PLGA drug-loaded particles alone or in combination with antibody therapy can continue to inhibit tumor growth. Attributable to the drug release in vitro and the pharmacokinetics in the body, it shows longer drug release and the continuous stimulation of immune cells ensures the quantity and quality of T cells [4, 134]. In addition, PLGA micro/nanoparticle are faster in stimulating and enhancing immune responses than other delivery systems [135]. In particular, PLGA microspheres mediate the delivery of antigens and other molecules to T cells, resulting in a rapid increase in the infiltration of CD8+ T cells, reducing regulatory suppression of T cells and the establishment of immune memory [102, 116, 136]. Various types of immune adjuvants have been shown to cause an enhanced immune response [114, 137]. Therefore, PLGA micro/nanoparticle as a cancer vaccine are expected to solve the problems of limited immune response and systemic inflammatory response. Encapsulation and delivery of biologically active substances such as antigens and proteins in PLGA micro/nanoparticle can not only avoid rapid degradation, but also activate the immune response. Combined with other antibodies, chemotherapeutics or photosensitizers to further kill the tumor [115]. Recently, a combination therapy that delivers drug molecules and adjuvants has achieved rapid establishment of anti-tumor immunity in tumors [138]. For example, it induces the infiltration of circulating cancer-specific T cells, stimulates the maturation of cytotoxic T cells, down-regulates regulatory T cells and promotes the secretion of inflammatory factors [139, 140]. Therapies based on immune checkpoints have also made progress in relieving T cell suppression and changing the tumor microenvironment [112, 141]. The functionalized PLGA nanoparticle encapsulating the therapeutic agent achieve the up-regulation of early and late CD8+ T cell function in the mouse 4T1 tumor model. The drug has not been completely metabolized within 48 h of injection into mice, and the half-life is about 13 h [142]. Studies have shown that photothermal treatment can further increase the sensitivity of tumors to immunotherapy. This may be due to the destruction of tumor cells, exposure to more antigens, and inflammation to stimulate the production of cytokines, which in turn stimulates the infiltration and activation of T cells at the tumor site [134, 143, 144]. There are also studies to enhance the immune response by directly stimulating the activation of T cells. The author proved that the agonist of Invariant natural killer cells successfully induced IFN-γ release, T cell toxicity and Th-1 antibody response. In vivo drug distribution kinetics study found that after 30 min of intravenous injection, antigens can appear in the lymph nodes. In addition, the combination of anti-PD-1 antibody and anti-4-1BB agonistic antibody further inhibited tumor growth in the TC-1 mouse tumor model [145].

6.2.2. Tumor associated macrophages

Tumor-associated macrophages (TAM) are immunosuppressive cells that infiltrate the tumor microenvironment [146]. A large number of TAMs play a vital role in tumor metastasis and malignant proliferation. M1-types macrophages are the main cells that inhibit tumor metastasis and malignant proliferation. The use of cytokines or bacteria can stimulate the transformation of TAM into M1-types, and can also down-regulate related pathways to inhibit the polarization of TAM to M2-types [147, 148]. In addition to the immune checkpoint pathway between T cells and tumor cells, the tumor microenvironment also exists between tumor-associated macrophages and tumor cells [149]. There have been many reports on the use of PLGA micro/nanoparticle to directly present drugs to TAM at the tumor site, hoping to activate and reverse the phenotype of TAM [150]. Or delivery of immunosuppressive molecules to block the immunosuppression of TAM by tumor cells and increase the infiltration of M1-type macrophages to improve the tumor microenvironment [94, 151]. The use of PLGA micro/nanoparticle to wrap cytokines, antigens, adjuvants, photosensitizers or antibodies can improve the accumulation of drugs in the tumor site [117]. It has also been proven to successfully reverse the TAM phenotype, and further promote the increase in the secretion of inflammatory factors such as tumor necrosis factor-α and interleukin-6, and the activation of the anti-tumor immunity of T cells after exposure to tumor-associated antigens [118, 119, 152]. Some researchers wrap antigen peptides, chemotherapeutics and immune adjuvants together in PLGA nanoparticles, and coat the surface of the particles with galactose-embedded erythrocyte membranes to achieve TAM targeting. The detection of increased levels of IL-12 and decreased levels of IL-10 proved that TAM was successfully polarized into M1-type.
The author also found that the significant activation of T cells and CTL response at the tumor site enhanced the anti-tumor effect [153]. Recently, this research group has constructed another targeted PLGA nanoparticle. In the melanoma mouse model, it was found that the particles first reached the tumor site after entering the mouse body, and were still mainly distributed in the tumor site after 72 h. The large secretion of inflammatory factors once again proves the successful polarization of TAM. In addition, it was found that TAM further presents antigens to T cells. After T cells secrete a large amount of cytokines, they stimulate the cascade of NK cells to kill tumors, and the tumor inhibition rate reaches more than 80% [154].

6.2.3. Dendritic cells

Dendritic cells (DC) are the most critical cells in the tumor microenvironment to regulate the immune response [155]. The absorption of antigens can be through receptor-mediated endocytosis, macropinocytosis, and macrophage-dependent phagocytosis [29]. In addition, DC, as the most powerful antigen-presenting cell, also has a good absorption capacity for micro-/nanoparticles. Presenting antigens by direct or crossover methods promotes the activation of T lymphocytes and produces a cellular immune response dominated by CD8+ T cell infiltration, which is the basis of DC as an immunotherapy method [126, 140]. However, the immunosuppression in the tumor microenvironment leads to a decrease in the number of DCs and their function is inhibited [156]. Combining the controlled release of PLGA micro/nanoparticle and effective drug molecular load to deliver antigens, adjuvants or low-dose chemotherapeutics to DC. By directly stimulating and recruiting DCs to migrate to tumor sites or regulating tumor cells to expose tumor-associated antigens, the maturity and number of DCs can be increased [120, 121, 157]. In addition, PLGA itself also has the effect of an immune adjuvant, inducing the activation of the inflammasome of DC, thereby enhancing the immune response [114, 158]. Studies have shown that the activation of the immune response is highly dependent on the antigen presentation of DCs, which is a prerequisite for initiating the anti-tumor T cell response [29, 122]. Therefore, in order to improve the effect of tumor combination therapy, some researchers have developed a double particle combination method. On the one hand, alginate-encapsulated lymphocyte chemokine (XCL-1) is injected into the tumor site to attract DC migration. On the other hand, PLGA-DOX NPs was injected intravenously into model mice, a large number of tumor-associated antigens were exposed and then stimulated the maturation of DCs, and then presented antigens to T cells. After T cells were activated, various cytokines were secreted to maintain anti-tumor immunity [159].

6.2.4. NK cells

Due to the rapid lysis of tumor cells by NK cells, they have gradually become a hot spot in tumor therapy in recent years [160]. Encapsulate antibodies, antigens or NK cell agonists and other molecules (antibodies, drugs, etc) into PLGA micro/nanoparticle to improve the tumor microenvironment or present it to NK cells [160]. By enhancing NK cell-mediated cytolysis or down-regulating tumor cell surface signals or stimulating the secretion of cytokines, stimulating activation and inducing immune response to kill tumors [95, 161]. In order to relieve the tumor microenvironment’s immunosuppression of NK cells and enhance the anti-tumor effect. Recently, a study has constructed a kind of PLGA nanoparticles encapsulating manganese dioxide nanoparticles. The results of permeation in the tumor sphere show that by generating a large amount of oxygen, the hypoxic state of the tumor microenvironment is effectively alleviated, and the immunosuppression of hypoxia on NK cells is relieved and the toxic effect of NK cells is enhanced [162].

6.3. Delivery to other cells

Circulating tumor cells (CTC) have great potential to induce tumor metastasis [163, 164]. Compared with tumor cells with limited proliferation, cancer stem cells (CSC) which are prone to multidrug resistance (MDR) and can promote the development of tumor have the potential to cure tumor as targets [93, 165]. Therefore, the development of a targetable multifunctional PLGA micro/nanoparticle to deliver a variety of drug molecules and synergistically inhibit the proliferation of circulating tumor cells or cancer stem cells is essential in inhibiting tumor metastasis and malignant proliferation [125]. Recently, studies have constructed cancer cell membrane-coated PLGA nanoparticles. Cancer cell membranes have the ability to mediate homologous targeting of tumor cells and CTCs, and can also produce immune escape to avoid premature clearance of nanoparticles. In vitro experiments, the released digoxin promotes the decomposition of CTC and inhibits the occurrence of EMT (epithelial-mesenchymal transition) by causing an increase in the concentration of CA ions. At the same time, in orthotopic tumors and lymphatic and CTC clusters metastasis tumor models, it cooperates with DOX to inhibit tumor metastasis [123]. Hyaluronic acid is a good ligand for the CD44 receptor on the surface of cancer stem cells. It is often used to modify the surface of PLGA micro/nanoparticle to target cancer stem cells to deliver drugs [124, 166, 167]. GANT61, as a small molecule antagonist that induces cancer stem cell death, was co-encapsulated with curcumin in PLGA nanoparticles for the first time. The results showed that it successfully
down-regulated GLI1, EGFR protein and PI3K protein, and inhibited the growth of CSCs and bulk tumor cells. The results of dual drug delivery encapsulated by PLGA nanoparticles showed a significant prolongation of plasma half-life time, indicating that it is expected to effectively improve the killing effect on cancer stem cells. In the mouse MCF-7 tumor model, it showed a tumor growth inhibition rate of about 80% [168].

7. The prospect of PLGA micro/nanoparticle drug delivery system combined therapy for tumor

As a biodegradable polymer material, PLGA has special physical and chemical properties, especially the ability to adjust the structure and controllable drug release, which has surprising clinical application prospects as a drug delivery system for combined treatment of tumors [68][169–172]. For example, targeted therapy can effectively avoid systemic cytotoxicity and increase drug accumulation in tumor site [173]. In order to further increase the therapeutic effect, besides targeting cancer cells, we should also consider xenogenic cells, such as tumor stem cells or circulating tumor cells [174]. These cells play an important role in metastasis and recurrence of tumor. At present, in the process of cancer treatment, tumor recurrence is still the main reason leading to poor prognosis. In addition to eliminating existing tumors, combined therapy can also eradicate tumors, such as activating DC and stimulating T cells, so as to mediate an enhanced systemic immune response or inhibit the survival of tumor stem cells [141, 167]. It is worth noting that it is necessary for researchers to further explore ways to avoid the antagonism between the combination of drugs and the adverse reactions, such as the abnormal cellular immune response in combination of antigen and adjuvant or the compensatory reaction in targeting a certain route [175]. In addition, it is still a challenge to prepare PLGA micro/nanoparticle of more suitable size to deliver antigens, adjuvants or cytokines and other drug molecules to stimulate immune cells, and the acidic products of degradation may further lead to molecular degradation and dysfunction [26, 132, 176]. Therefore, by adjusting the proportion of encapsulated drug molecules, we can achieve a more optimized synergistic anti-tumor effect, regulate the drug release in vivo, fully integrate the characteristics of the tumor microenvironment and mobilize more immune cells [115, 121]. It is still a problem worthy of deep consideration and exploration to develop multi-functional preparations for personalized therapy to improve the efficiency of tumor treatment.

8. Summary

In this paper, the preparation methods, physical and chemical properties of PLGA micro/nanoparticle and their application in combined anti-tumor therapy are reviewed. At present, the PLGA micro/nanoparticle have high drug loading, adjustable morphology and controllable release behavior, so as to improve the bioavailability. And can be easily combined with other polymer materials or molecules, so that a single drug and two drugs with different properties (hydrophilic and lipophilic) or the same properties can be simultaneously loaded, or hybrid particles targeting specific cells can be modified on the surface of the hybrid particles. Especially in recent years, it has shown great application prospects in the field of comprehensive anti-tumor treatment. Whether it is the encapsulation and anti-tumor effect of small molecule drugs, or bioactive molecules, it shows unique advantages. However, many current studies are only based on some tumor models, and there are still many difficulties in achieving clinical applications, such as how to overcome the cytotoxicity of materials, prepare smaller particles to increase the uptake of cells, overcome the heterogeneity and multiplicity of tumors and reduce off-target effects during targeted therapy. Therefore, we should pay more attention to the development of preparation technology, universality of clinical applications and commercial mass production in the future.

Data availability statement

No new data were created or analysed in this study.

ORCID iDs

Zhang Ruirui © https://orcid.org/0000-0002-5372-389X

References

[1] Song Y, He L, Wang Y, Wu Q and Huang W 2020 Molecularly targeted therapy and immunotherapy for hormone receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer (review) Oncology reports. 44 3–13
[2] Zhang H et al 2020 Immunotherapeutic silk inverse opal particles for post-surgical tumor treatment Sci. Bull. 65 380–8
[3] Rader C 2020 Bispecific antibodies in cancer immunotherapy Curr. Opin. Biotechnol. 65 9–16
[4] Koerner J et al 2021 PLGA-particle vaccine carrying TLR3/RIG-I ligand Riboxin synergizes with immune checkpoint blockade for effective anti-cancer immunotherapy Nat. Commun. 12 2935
[5] Ferreira L M, Muller Y D, Bluestone J A and Tang Q 2019 Next-generation regulatory T cell therapy Nat. Rev. Drug Discovery 18 749–69
[6] Yang X et al 2020 Photo-triggered self-destructive ROS-responsive nanoparticles of high paclitaxel/chlorin e6 co-loading capacity for synergetic chemo-photodynamic therapy J. Control. Release 323 333–49
[7] Huang L et al 2021 Photodynamic therapy for hypoxic tumors: Advances and perspectives Coord. Chem. Rev. 438 213888
[8] Shen X et al 2020 PLGA-based drug delivery systems for remotely triggered cancer therapeutic and diagnostic applications Front. Biosci. Biotechnol. 8 381
[9] Zare E N et al 2020 Metal-based nanostructures/PLGA nano-composites: antimicrobial activity, cytotoxicity, and their biomedical applications ACS Appl. Mater. Interfaces 12 3279–300
[10] Ojeda-Lopez M A et al 2014 Transformation of taxol-stabilized microtubules into inverted tubulin tubules triggered by a tubulin conformation switch Nat. Mater. 13 195–203
[11] Operti M C, Bernhardt A, Grimm S, Engel A, Fidigor C G and Tagt O 2021 PLGA-based nanomedicines manufacturing: technologies overview and challenges in industrial scale-up Int. J. Pharm. 605 120807
[12] Lagreca E, Onceta V, Di Natale C, La Manna S, Netti P A and Vecchione R 2020 Recent advances in the formulation of PLGA microparticles for controlled drug delivery Prog. Biomater. 9 153–74
[13] Bae Y H and Park K 2020 Advanced drug delivery 2020 and beyond: Perspectives on the future Adv Drug Deliv Rev. 158 4–16
[14] Bhattacharya S 2021 Fabrication of poly(sarcosine), poly (ethylene glycol), and poly (lactic-co-glycolic acid) polymeric nanoparticles for cancer drug delivery J. Drug Delivery Sci. Technol. 61 102194
[15] Hadar J et al 2019 Characterization of branched poly(lactide-co-glycolide) polymers used in injectable, long-acting formulations J. Control. Release 304 75–89
[16] Zhang X P et al 2018 Effect of nanoencapsulation using poly (lactide-co-glycolide) (PLGA) on anti-angiogenic activity of bevacizumab for ocular angiogenesis J. Biomed. Pharmacother. 107 10566–63
[17] Venugopal V et al 2018 Anti-EGFR anchored paclitaxel loaded PLGA nanoparticles for the treatment of triple negative breast cancer. In-vitro and in-vivo anticancer activities PLoS One 13 6020109
[18] Wen Y et al 2021 Metformin loaded porous particles with bio-microenvironment responsiveness for promoting tumor immunotherapy Biomater. Sci. 9 2089–20
[19] Zhao X et al 2018 Hierarchically porous composite microparticles from microfluidics for controllable drug delivery Nanoscale. 10 12595–604
[20] Ghitman J, Biru E I, Stan R and Iovu H 2020 Review of hybrid PLGA nanoparticles: Future of smart drug delivery and theranostics medicine Mater. Des. 193 108803
[21] Saravanakumar K et al 2019 Enhanced cancer therapy with pH-dependent and aptamer functionalized doxorubicin loaded polymeric (poly D, L-lactic-co-glycolic acid) nanoparticles Arch. Biochem. Biophys. 671 143–51
[22] Yu H et al 2019 Tumor acidity activated triphenylphosphonium-based mitochondrial targeting nanocarriers for overcoming drug resistance of cancer therapy Theranostics. 9 7033–50
[23] Shiote A A et al 2020 LHRH-conjugated, PEGylated, poly-lactic-co-glycolic acid nanoparticles as targeted delivery of combinational chemotherapeutic drug docetaxel and quercetin for prostate cancer Mater. Sci. Eng. C Mater. Biol. Appl. 114 111035
[24] Cui Y, Zhang M, Zeng F, Jin H, Xu Q and Huang Y 2016 Dual-targeting magnetic plga nanoparticles for codeelivery of paclitaxel and curcumin for brain tumor therapy ACS Appl. Mater. Interfaces 8 32159–69
[25] Davaa E, Lee J, Jenjob R and Yang S G 2017 MT1-MMP responsive doxorubicin conjugated poly(lactic-co-glycolic acid)/poly(styrene-alt-maleic anhydride) core/shell microparticles for intrahepatic arterial chemotherapy of hepatic cancer ACS Appl. Mater. Interfaces 9 71–9
[26] Stromberg Z R et al 2021 Formulation of stabilizer-free, nontoxic PLGA and elastin-PLGA nanoparticle delivery systems Int. J. Pharm. 597 120340
[27] You L, Liu X, Fang Z, Xu Q and Zhang Q 2019 Synthesis of multifunctional Fe3O4@PLGA-PEG nano-niosomes as a targeting carrier for treatment of cervical cancer Mater. Sci. Eng. C Mater. Biol. Appl. 94 291–302
[28] Zhou L, Li M, Liu X, Du L and Jin Y 2017 Inhaleable oridonin-loaded poly(lactic-co-glycolic)acid large porous microparticles for in situ treatment of primary non-small cell lung cancer Acta Pharm Sin B. 7 80–90
[29] Zhou S et al 2020 Engineering ApoE3-incorporated biomimetic nanoparticle for efficient vaccine delivery to dendritic cells via macropinocytosis to enhance cancer immunotherapy Biomaterials 235 119795
[30] Liang J et al 2020 Doxorubicin-loaded pH-responsive nanoparticles coated with chlorin e6 for drug delivery and synergistic chemotherapeutic therapy Nanotechnology 31 195103
[31] Kefayat A and Vaezifar S 2019 Biodegradable PLGA implants containing doxorubicin-loaded chitosan nanoparticles for treatment of breast tumor-bearing mice Int. J. Biol. Macromol. 136 66–56
[32] Koerner J, Horvath D and Groettrup M 2019 Harnessing dendritic cells for poly (D,L-lactide-co-glycolide) microspheres (PLGA MS)-mediated anti-tumor therapy Front Immunol. 10 707
[33] Ahir M et al 2020 Delivery of dual miRNA through CD44-targeted mesoporous silica nanoparticles for enhanced and effective triple-negative breast cancer therapy Biomater. Sci. 8 2939–54
[34] Swider E, Koshkina O, Tel J, Cruz L J, de Vries I J M and Srivinas M 2018 Customizing poly(lactic-co-glycolic acid) particles for biomedical applications Acta Biomater. 73 38–51
[35] Zouglam R et al 2021 Evaluation of the Benefits of Microfluidic-Assisted Preparation of Polymeric Nanoparticles for DNA Delivery Mater. Sci. Eng. C Mater. Biol. Appl. 127 112243
[36] Chrompoulou L et al 2019 PLGA-based particles as ‘drug reservoir’ for antitumor drug delivery: characterization and cytotoxicity studies Colloids Surf B Biointerfaces. 180 495–502
[37] Yu Z, Huang L, Wen R, Li Y and Zhang Q 2019 Preparation and in vivo pharmacokinetics of rhGH-loaded PLGA microspheres Pharm. Dev. Technol. 24 395–401
[38] Andhariya I V et al 2019 In vitro-in vivo correlation of parenteral PLGA microparticles: Effect of variable burst release J. Control. Release 314 25–37
[39] Lee W L et al 2015 Delivery of doxorubicin and paclitaxel from double-layered microparticles: The effects of layer thickness and dual-drug vs. single-drug loading Acta Biomater. 27 53–65
[40] Na X, Guo J, Li T, Zhou W and Ma G 2020 Double Emulsion-Templated Single-Core PLGA Microcapsules with Narrow Size Distribution and Controllable Structure by Using Premix Membrane Emulsification ChemNanoMat. 6 1059–62
[41] Eism O, Bakirhan N K, Sarper M, Savaser A, Ozkan S A and Ozkan Y 2020 Influence of emulsifiers on the formation and in vitro anticancer activity of eriprubinicin loaded PLGA nanoparticles J. Drug Delivery Sci. Technol. 60 102027

[42] Dalpiaz A et al 2016 Application of the ‘in-oil nanoprecipitation’ method in the encapsulation of hydrophilic drugs in PLGA nanoparticles J. Drug Delivery Sci. Technol. 32 283–90

[43] Xu J, Chen Y, Jiang X, Gui Z and Zhang L 2019 Development of hydrophilic drug encapsulation and controlled release using a modified nanoprecipitation method Processes. 7 6

[44] Makadala H K and Stiegel S J 2011 Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier Polymers (Basel). 3 1377–97

[45] Ding D and Zhu Q 2018 Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics Mater. Sci. Eng. C Mater. Biol. Appl. 92 1041–60

[46] Tao I, Chow S F and Zheng Y 2019 Application of flash nanoprecipitation to fabricate poorly water-soluble drug nanoparticles Acta Pharm Sin B. 9 94–18

[47] Vladislavliev G T 2019 Preparation of microemulsions and nanoemulsions by membrane emulsification Colloids Surf., A 579

[48] Wang F et al 2013 Dual surface-functionalized Janus nanocomposites of polystyrene/Fe3O4/SiO2 for simultaneous tumor cell targeting and stimulus-induced drug release Adv. Mater. 25 3485–9

[49] Lee D et al 2018 Hierarchical shape-by-shape assembly of microparticles for micrometer-scale viral delivery of two different genes Biomicrofluidics. 12 031102

[50] Tang G et al 2019 Gas-shearing fabrication of multicompartamental microspheres: a one-step and oil-free approach Adv Sci (Weinh). 6 1802342

[51] Amini–Fadl M S 2021 Biodegradation study of PLGA as an injectable in situ depot-forming implant for controlled release of paclitaxel Polym. Bull. 2021 1–14

[52] Cao Z et al 2021 Novel injectable progesterone-loaded nanoparticles embedded in SAIB-PLGA in situ depot system for sustained drug release Int. J. Pharm. 607 121021

[53] Gratton S E, Pohlhaus P D, Lee J, Guo J, Cho M J and Desimone J M 2007 Nanofabricated particles for engineered drug therapies: a preliminary biodistribution study of PRINT nanoparticles J. Control. Release 121 10–8

[54] Sattari A and Hanafeh M 2021 Controllable preparation of double emulsion droplets in a dual-coaxial microfluidic device Journal of Flow Chemistry. 11 807–21

[55] DeSimone J M 2016 Co-opting Moore’s law: Therapeutics, vaccines and interfacially active particles manufactured via PRINT(R) J. Control. Release 240 541–3

[56] Montazeri L, Bonakdar S, Taghipour M, Renaud P and Baharvand H 2016 Modification of PDMS to fabricate PLGA microparticles by a double emulsion method in a single microfluidic device Lab Chip 16 2596–600

[57] Ge M, Sheng Y, Qi S, Cao L, Zhang Y and Yang J 2020 PLGA/chitosan–heparin composite microparticles prepared with microfluidics for the construction of hMSC-aggregates J. Mater. Chem. B 8 9921–32

[58] Ospina-Villa D J, Gomez-Hoyos C, Zuluaga-Gallego R and Triana-Chavez O 2019 Encapsulation of proteins from Leishmania panamensis into PLGA particles by a single emulsion–solvent evaporation method J. Microbiol. Methods 162 1–7

[59] Wang X, Cheng R and Zhong Z 2021 Facile fabrication of robust, hyaluronic acid-surfaced and sulfide-crosslinked PLGA nanoparticles for tumor-targeted and reduction-triggered release of docetaxel Acta Biomater. 125 280–9

[60] Fay F et al 2011 Conatsumumab (AMG 635) coated nanoparticles for targeted pro-apoptotic drug delivery Biomaterials 32

[61] Li K et al 2021 GE11 Modified PLGA/TPGS Nanoparticles Targeting Delivery of Salinomycin to Breast Cancer Cells Technol. Cancer Res. Treat. 20 1530338211004954

[62] Wu Y, Du D, Chen J and Liu C 2021 Preparation of PLGA microspheres loaded with 10-hydroxycamptothecin and arsenic trioxide and their treatment for rabbit hepatocellular carcinoma Biomed Pap. Med Fac Univ Palacky Olomouc Czech Repub. 165 57–63

[63] Bao H, Zhang Q and Yan Z 2019 The impact of camptothecin-encapsulated poly(lactic-co-glycolic acid) nanoparticles on the activity of cytochrome P450 in vitro Int J Nanomedicine. 13 384–93

[64] Zhang Y, Chen H F and Leong K W 2013 Advanced materials and processing for drug delivery: the past and the future Adv Drug Deliv Rev. 65 104–20

[65] Hajavi J, Ebrahimian M, Sankian M, Khakzad M R and Hashemi M 2018 Optimization of PLGA formulation containing protein or peptide-based antigen: recent advances J. Biomed. Mater. Res. A 106 2540–51

[66] Patel M, R A and Patel R 2021 Potential application of PLGA microsphere for tissue engineering J. Polym. Res. 28 6

[67] Yuan Y, Shi X, Gan Z and Wang F 2018 Modification of porous PLGA microspheres by poly-l-lysine for use as tissue engineering scaffolds Colloids Surf B Biointerfaces. 161 162–8

[68] Yang Y et al 2019 PLGA porous microspheres dry powders for codeelivery of atafinib-loaded solid lipid nanoparticles and paclitaxel: novel therapy for EGFR tyrosine kinase inhibitors resistant nonsmall cell lung cancer Adv Healthc Mater. 8 e1900965

[69] Lee W L et al 2014 Inhibition of 3-D tumor spheroids by timed-released hydrophilic and hydrophobic drugs from multilayered polymeric microparticles Small. 10 3986–96

[70] Shi M et al 2003 Double walled POE/PLGA microspheres: encapsulation of water-soluble and water-insoluble proteins and their release properties J. Controlled Release 89 167–77

[71] Vladislavliev G 2003 Influence of process parameters on droplet size distribution in SPG membrane emulsification J. Membr. Sci. 2003 125 201–11

[72] Xu Q, Chiu S, Wang C H and Pack D W 2013 Mechanism of drug release from double-walled PDLLA(PLGA) microspheres Biomaterials 34 3902–11

[73] Rahmani S and Lahmann J 2014 Recent progress with multicompartamental nanoparticles MRS Bull. 39 251–7

[74] Misra A C and Lahmann J 2018 Progress of Multicompartamental Particles for Medical Applications Adv Healthc Mater. 7 e1703139

[75] Wu Z, Zhang Y, Lin L, Mao S, Li Z and Liu J 2020 Controllable Synthesis of Multicompartamental Particles Using 3D Microfluidics Angew. Chem. Int. Ed. Engl. 59 2225–9

[76] Kim H U, Choi D G, Roh Y H, Shim M S and Bong K W 2016 Microfluidic Synthesis of pH-Sensitive Multicompartamental Microparticles for Multimodulated Drug Release Small. 12 3463–70

[77] Mir M, Ahmed N and Rehman A U 2017 Recent applications of PLGA based nanostructures in drug delivery Colloids Surf B Biointerfaces. 159 217–31

[78] Acharya S and Sahoo S K 2011 PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect Adv Drug Deliv Rev. 63 170–83

[79] Amann I C, Gandal M J, Lin R, Liang Y and Siegel S J 2010 In vitro–in vivo correlations of scalable PLGA–risperidone implants for the treatment of schizophrenia Pharm. Res. 27 1730–7
Mater. Res. Express 8 (2021) 122002
Z Ruirui et al.

[80] Choi Y-S, Ioo J-R, Hong A and Park I-S 2011 Development of drug-loaded PLGA microparticles with different release patterns for prolonged drug delivery Bull. Korean Chem. Soc. 32 867–72

[81] Lee Y, Kwon J, Kang G and Lee D 2012 Reduction of inflammatory responses and enhancement of extracellular matrix formation by vanillin-incorporated poly(lactic-co-glycolic acid) scaffolds Tissue Eng. Part A 18 1967–78

[82] Felix Lanoa R P, Jonker A M, Wolke J G, Jansen J A, van Hest J C and Leeuwenburgh S C 2013 Physicochemical properties and applications of poly(lactic-co-glycolic acid) for use in bone regeneration Tissue Eng. Part B Rev. 19 380–90

[83] Wiggins J S, Hassan M K, Mauritz K A and Storey R F 2006 Hydrolytic degradation of poly(D,L-lactide) as a function of end group: Carboxylic acid vs. hydroxyl Polymer 47 1660–9

[84] Wu W, He Z, Zhang Z, Yu X, Song Z and Li X 2016 Intravitreal injection of rapamycin-loaded polymeric micelles for inhibition of ocular inflammation in rat model Int. J. Pharm. 513 238–46

[85] Choi S H and Park T G 2002 Synthesis and characterization of elastic PLGA/PCL/PLGA tri-block copolymers Sci Polym ed J Biomater 13 (United States of America: Amer Scientific Publishers) 1163–73

[86] Ansary R H, Awang M B and Rahman M M 2014 Biodegradable poly(D,L-lactic-co-glycolic acid)-based micro/nanoparticles for sustained release of protein drugs - a review Tropical Journal of Pharmaceutical Research. 13 7

[87] Fredenberg S, Wahlgren M, Reslow M and Ahselsson A 2011 The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems - a review Int. J. Pharm. 415 34–52

[88] Mohammad A K and Reineke J 2013 Quantitative detection of PLGA nanoparticle degradation in tissues following intravenous administration Mol Pharm. 10 2183–9

[89] Li Y et al 2017 The effect of mechanical loads on the degradation of aliphatic biodegradable polystyres Regen. Biomater. 4 179–90

[90] Kim Y and Sah H 2021 Protein loading into spongelike PLGA microspheres Pharmaceutics. 13 2

[91] Kumari A, Yadav S K and Yadav S C 2010 Biodegradable polymeric nanoparticles based drug delivery systems Colloids Surf B Biointerfaces. 75 1–18

[92] Wolinsky J B, Cohon Y I and Grinstaff M W 2012 Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers J. Control. Release 159 14–26

[93] Zhao Y, Wang K, Zheng Y, Zeng X, Lim Y C and Liu T 2020 Co-delivery of salinomycin and curcumin for cancer stem cell treatment by inhibition of cell proliferation, cell cycle arrest, and epithelial–mesenchymal transition Front Chem. 8 601649

[94] Cavalcante R S et al 2021 STAT3/NF-kappab signalling disruption in M2 tumour-associated macrophages is a major target of PLGA nanocarries/PD-L1 antibody immunomodulatory therapy in breast cancer Br. J. Pharmacol. 178 2284–304

[95] Sweeney E E et al 2020 PLGA nanodepots co-encapsulating prostratin and anti-CD25 enhance primary natural killer cell antiviral and antitumor function Nano. Res. 13 736–44

[96] Zhang Z, Wang X, Li B, Hou Y, Yang J and Yi L 2018 Development of a novel morphological paclitaxel-loaded PLGA microspheres for effective cancer therapy: in vitro and in vivo evaluations Drug Deliv. 25 166–77

[97] Escareno N, Hassan N, Kogan M J, Juarez J, Topete A and Daneri-Navarro A 2021 Microfluidics-assisted conjugation of chitosan-coated polymeric nanoparticles with antibodies: Significance in drug release, uptake, and cytotoxicity in breast cancer cells J. Colloid Interface Sci. 591 440–50

[98] Pho-Iam T, Punnakitikashem P, Sumboonysodech C, Sripinitchai S, Masaratana P, Sivaratanausorn V et al 2021 PLGA nanoparticles containing alpha-fetoprotein siRNA induce apoptosis and enhance the cytotoxic effects of doxorubicin in human liver cancer cell line Biochim. Biophys. Res. Commun. 553 191–7

[99] Mazara J M, Ochyl L J, Hong J K Y, Moon J J, Prausnitz M R and Schwendeman S P 2019 Self-healing encapsulation and controlled release of vaccine antigens from PLGA microparticles delivered by microneedle patches Bioco. Transl. Med. 4 116–28

[100] Klппstein B et al 2015 Passively Targeted Curcumin-Loaded PE-gylated PLGA Nanocapsules for Colon Cancer Therapy In Vivo Small. 11 4704–22

[101] McKiernan P J, Lynch P, Ramsey J M, Cryan S A and Greene C M 2018 Knockdown of Gene Expression in Macrophages by microRNA Mimic–Containing Poly (Lactic-co-Glycolic acid) Microcapsules Medicines (Basel). 5 4

[102] Chen Q et al 2019 Photothermal Therapy Promotes Tumor Infiltration and Antitumor Activity of CAR T Cells Adv. Mater. 31 e1900192

[103] Wang L et al 2018 Tumor-targeting core–shell structured nanoparticles for drug procedural controlled release and cancer sonodynamic combined therapy J. Control. Release 286 74–84

[104] Zhang M, Tang Y, Zhu Z, Zhao H, Yao J and Sun D 2018 Paclitaxel and etoposide-loaded Poly (lactic-co-glycolic acid) microspheres fabricated by coaxial electrospaying for dual drug delivery J. Biomater Sci Polym 29 1949–63

[105] Li X et al 2020 Regorafenib-loaded poly (lactide-co-glycolide) microspheres designed to improve transarterial chemoembolization therapy for hepatocellular carcinoma Asian J. Pharm. Sci. 15 739–51

[106] Chiang P F et al 2018 Biodegradable and Multifunctional Microspheres for Treatment of Hepatoma through Transarterial Embolization ACS Biomater Sci Eng. 4 3425–33

[107] Do A V et al 2018 Combining ultrasound and intratumoral administration of doxorubicin-loaded microspheres to enhance tumor cell killing Int. J. Pharm. 539 139–46

[108] Hao Y et al 2015 The tumor-targeting core–shell structured DTX-loaded PLGA@Au nanoparticles for chemo–photothermal therapy and x-ray imaging J. Control. Release 220 545–55

[109] Ledezniz D K et al 2020 Indocyanine green–nexturastat A-PLGA nanoparticles combine photothermal and epigenetic therapy for melanoma Nanomaterials (Basel) 10 1

[110] Huis In’t Veld R V, Ritsea L, Kleinovink J W, Que I, Ossendorp F and Cruz L J 2020 Photodynamic cancer therapy enhances accumulation of nanoparticles in tumor-associated myeloid cells J. Control. Release 320 19–31

[111] Guo K, Liu Y, Tang L and Shubhra Q T H 2022 Homotypic biomimetic coating synergizes chemo–photothermal combination therapy to treat breast cancer overcoming drug resistance Chem. Eng. J. 428

[112] Jiang M et al 2021 Perdurable PD-1 blockage awoke anti-tumor immunity suppressed by precise chemotherapy J. Control. Release 329 1023–36

[113] Deepika M S et al 2019 Dual drug loaded PLGA nanoparticles for synergistic efficacy in breast cancer therapy Mater. Sci. Eng. C. Mater. Biol. Appl. 103 109716

[114] Makkouk A et al 2015 Biodegradable microparticles loaded with doxorubicin and CpG ODN for in situ immunization against cancer AAPS J. 17 184–93

[115] Xiao L et al 2021 Biomimetic cytosome membrane nanovaccines prevent breast cancer development in the long term Nanoscale. 13 3594–601
Mater. Res. Express 8 (2021) 122002

Z Ruirui et al.

[116] Luo L et al 2021 Enhanced immune memory through a constant photothermal-metabolism regulation for cancer prevention and treatment Biomater. 270 120678

[117] Kim H Y et al 2018 Quantitative Imaging of Tumor-Associated Macrophages and Their Response to Therapy Using (64)Cu-Labeled Macrin ACS Nano. 12 12015–29

[118] Wei B et al 2021 Polarization of Tumor-Associated Macrophages by Nanoparticle-Loaded Escherichia coli Combined with Immunogenic Cell Death for Cancer Immunotherapy Nano Lett. 21 4231–40

[119] Liu L, Wang Y, Guo X, Zhao J and Zhou S 2020 A Biomimetic Polymer Magnetic Nanocarrier Polarizing Tumor-Associated Macrophages for Potentiating Immunotherapy Small. 16 e2003547

[120] Zhang Q et al 2020 Employing ATP as a New Adjuvant Promotes the Induction of Robust Antitumor Cellular Immunity by a PLGA Nanoparticle Vaccine J. Appl. Mater. Interfaces 12 54399–414

[121] Kim H, Sehgal D, Kucaba T A, Ferguson D M, Grif et al 2019 Physical absorption of folic acid and chitosan on dihydroartemisinin-loaded poly-lactic-co-glycolic acid nanoparticles via electrostatic interaction for their enhanced uptake and anticancer effect J. Nanomater. 2019 1–14

[122] Guo Y et al 2020 Cocktail strategy for cancer photoimmunotherapy Oncoimmunology. 9 120988

[123] Huang T X and Fu L 2019 The immune landscape of esophageal cancer Immunogenic Cell Death for Cancer Immunotherapy Immunology. 16 4940–4948

[124] Kwak S Y, Lee S, Han H D, Chang S, Kim K P and Ahn H J 2019 PLGA nanoparticles codelivering siRNAs against programmed cell death protein-1 and Its ligand gene for suppression of colon tumor growth Biomater. 120 7647–62

[125] Da Silva C G et al 2020 Effective chemoimmunotherapy by co-delivery of doxorubicin and immune adjuvants in biodegradable nanoparticles Theranostics. 10 12100–12119

[126] El-D et al 2020 Oncoimmunology for the treatment of breast and ovarian cancer Cancer Immunol. Therap. 651–658

[127] El-Y et al 2020 Targeting tumour-associated macrophages for cancer therapy Biomater. 120 7647–62

[128] Rhodes R C, Meyer R A, Wang J, Tseng S Y and Green J J 2020 Biomimetic tolerogenic artificial antigen presenting cells for regulatory T cell induction Acta Biomater. 112 136–48

[129] Dolen Y et al 2020 Nano vaccine administration route is critical to obtain pertinent iNKT cell help for robust anti-tumor T and B cell responses Oncoimmunology. 9 1738813

[130] Englbohm C, Pfirsich C and Pittet M J 2016 The role of myeloid cells in cancer therapies Nat. Rev. Cancer 16 447–62

[131] Huang T X and Fu L 2019 The immune landscape of esophageal cancer Cancer Commun. (Lond.) 39 79

[132] Tsukamoto H, Komohara Y and Oshiumi H 2020 The role of macrophages in anti-tumor immune responses: pathological T cell induction Acta Biomater. 112 136–48

[133] Luo L et al 2018 Laser Immunotherapy in Combination with Permeable PD-1 Blocking for the Treatment of Metastatic Tumors ACS Nano. 12 7647–62

[134] Chen Z et al 2020 Light-triggered OVA release based on Cu8(ploy(lactide-co-glycolide acid) nanoparticles for synergistic photothermal-immunotherapy of tumors Pharmocol. Res. 158 104902

[135] Li X et al 2020 Oncoprotective effect of a single-centre, open-label, dose-escalating phase I trial The Lancet Oncology. 17 631–632

[136] Chamasdeine A N, Aisi T, Mir O and Chouaib S 2020 Multifunctional biomimetic nanoparticles loading baicalin for polarizing tumor-associated macrophages Nanoscale. 11 20256–29
[154] Han S et al 2021 Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes *Theranostics*. **11** 2892–916

[155] Han H D et al 2016 Toll-like receptor 3-induced immune response by poly(D,L-lactide-co-glycolide) nanoparticles for dendritic cell-based cancer immunotherapy *Int J Nanomedicine*. **11** 5729–42

[156] Newman K D, Elamanchili P, Kwon G S and Samuel J 2002 Uptake of poly(D,L-lactic-co-glycolic acid) microspheres by antigen-presenting cells in vivo *J. Biomed. Mater. Res.* **60** 480–6

[157] Irampour S, Nejati V, Delirzeh N, Biparva F and Shirian S 2016 Enhanced stimulation of anti-breast cancer T cells responses by dendritic cells loaded with poly lactic-co-glycolic acid (PLGA) nanoparticle encapsulated tumor antigens *J. Exp. Clin. Cancer Res.* **35** 168

[158] Mueller M, Reichardt W, Koerner J and Grootetrap M 2012 Coencapsulation of tumor lysate and CpG-ODN in PLGA-microspheres enables successful immunotherapy of prostate carcinoma in TRAMP mice *J. Control. Release* **162** 159–66

[159] Xiong X, Zhao J, Su R, Liu C, Guo X and Zhou S 2021 Double enhancement of immunogenic cell death and antigen presentation for cancer immunotherapy *Nano Today*. **39** 101225

[160] Miyazato K and Hayakawa Y 2020 Pharmacological targeting of natural killer cells for cancer immunotherapy *Cancer Sci.* **111** 1869–75

[161] Allahyari M and Mohit E 2016 Peptide/protein vaccine delivery system based on PLGA particles *Hum Vaccin Immunother.* **12** 806–28

[162] Murphy D A, Cheng H, Yang T, Yan X and Adjei I M 2021 Reversing hypoxia with PLGA-encapsulated manganese dioxide nanoparticles improves natural killer cell response to tumor spheroids *Mol Pharm.* **18** 2935–46

[163] He Q, Guo S, Qian Z and Chen X 2015 Development of individualized anti-metastasis strategies by engineering nanomedicines *Chem. Soc. Rev.* **44** 6258–86

[164] Zhang W, Wang F, Hu C, Zhou Y, Gao H and Hu J 2020 The progress and perspective of nanoparticle-enabled tumor metastasis treatment *Acta Pharm Sin B.* **10** 2037–53

[165] Surendran S P, Moon M J, Park R and Jeong Y Y 2018 Bioactive nanoparticles for cancer immunotherapy *Int. J. Mol. Sci.* **19** 12

[166] Hu K et al 2015 Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclosporine to eradicate breast cancer cells and cancer stem cells *Nanoscale*. **7** 8607–18

[167] Yang Z, Sun N, Cheng R, Zhao C, Liu J and Tian Z 2017 Hybrid nanoparticles coated with hyaluronic acid lipid for targeted co-delivery of paclitaxel and curcumin to synergistically eliminate breast cancer stem cells *J. Mater. Chem. B* **5** 6762–75

[168] Borah A et al 2020 GAN T61 and curcumin-loaded PLGA nanoparticles for GL1 and P.IJK/Akt-mediated inhibition in breast adenocarcinoma *Nanotechnology* **31** 185102

[169] Chen H, Li F, Yao Y, Wang Z, Zhang Z and Tan N 2019 Redox Dual-Responsive and O2Evolving Theranostic Nanosystem for Highly Selective Chemotherapy against Hypoxic Tumors *Theranostics*. **9** 90–103

[170] Park J H et al 2014 Development of poly(lactic-co-glycolic) acid nanoparticles-embedded hyaluronic acid-ceramide-based nanostructure for tumor-targeted drug delivery *Int. J. Pharm.* **473** 426–33

[171] Gao M et al 2017 Erythrocyte-membrane-enveloped perfluorocarbon as nanoscale artificial red blood cells to relieve tumor hypoxia and enhance cancer radiotherapy *Adv. Mater.* **29** 35

[172] Lee S Y and Cho H J 2017 Dopamine-conjugated poly(lactic-co-glycolic acid) nanoparticles for protein delivery to macrophages *J. Colloid Interface Sci.* **490** 391–400

[173] Yao W et al 2021 Paclitaxel-loaded and folic acid-modified PLGA nanomedicine with glutathione response for the treatment of lung cancer *Acta Biochim. Biophys. Sin.* **53** 1027–36

[174] Keshavarz Shahrzad S, Foroughi F, Soltaninezhad E, Jamialahmadi T, Penson P E and Sehebkar A 2020 Application of PLGA nano/microparticle delivery systems for immunomodulation and prevention of allotransplant rejection *Expert Opin Drug Deliv.* **17** 767–80

[175] Hu L et al 2019 The potentiated checkpoint blockade immunotherapy by ROS-responsive nanocarrier-mediated cascade chemo-photodynamic therapy *Biomaterials* **223** 119469

[176] Peng J et al 2018 Photosensitizer micelles together with IDO inhibitor enhance cancer photothermal therapy and immunotherapy *Adv. Sci.* (Weinh.). **5** 1700891