Maxwell’s Equations in Arbitrary Coordinate System

D. S. Kulyabov* and A. V. Korolkova‡
Peoples’ Friendship University of Russia†

The article is devoted to application of tensorial formalism for derivation of different types of Maxwell’s equations. The Maxwell’s equations are written in the covariant coordinate-free and the covariant coordinate forms. Also the relation between vectorial and tensorial formalisms and differential operators for arbitrary holonomic coordinate system in coordinate form is given. The results obtained by tensorial and vectorial formalisms are verified in cylindrical and spherical coordinate systems.

I. INTRODUCTION

Problems of waveguide mathematical modelling sometimes need curvilinear coordinate system to be applied. The choice of specific coordinate system is defined by the cross-section of the waveguide.

Usually the description of waveguide model is based on Maxwell’s equations in Cartesian coordinate system. With the help of vector transformation property Maxwell’s equations are rearranged for certain coordinate system (spherical or cylindrical). But in some problems, e.g. simulation of a heavy-particle accelerator, the waveguide may has the form of a cone or a hyperboloid. Another example of a waveguide with a complex form is the Luneberg lens, which has the form of a part of a sphere or a cylinder attached to a planar waveguide. Therefore in the case of a waveguide with a complex form the Maxwell’s equations should be written in an arbitrary curvilinear coordinate system.

It’s well established to apply vectorial formalism to Maxwell’s equations. But in this case Maxwell’s equations in a curvilinear coordinate system are lengthy. In [1] some preliminary work on tensorial formalism resulting in a more compact form of Maxwell’s equations is made. The tensorial formalism has a mathematical apparatus which allows to use covariant coordinate-free form of Maxwell’s equations. In this case the transition to a certain coordinate system may be done on the final stage of research writing down the results. But tensorial formalism can’t be directly applied to Maxwell’s equations because the relation between vectorial and tensorial formalisms should be proven before.

Different forms of Maxwell’s equations are used in problems of finding Hamiltonian of electromagnetic field applied in variational integrator (particularly, symplectic integrator) construction. The main task is the fulfillment of the condition of symplectic structure conservation during equations discretization. The several forms of Maxwell’s equations are used in electromagnetic field Hamiltonian derivation:

- 3-vectors;
- momentum representation (complex form is used);
- momentum representation.

As a summary the main goals of the article may be formulated: to show connection between vectorial and tensorial formalisms (section II); to apply tensorial formalism for different forms of Maxwell’s equations (section IV); to verify the obtained results by representing Maxwell’s equations in spherical and cylindrical coordinate systems (section V).

II. CONNECTION BETWEEN VECTORIAL AND TENSORIAL FORMALISMS

Let’s use the abstract indices formalism introduced in [3] in application to tensor algebra. In [3] α is the abstract index, α — a tensor component index. The usage of a component index in some expression means that some arbitrary basis is introduced in this equation and the indices obey the Einstein rule of summation (the sum is taken over every numeric index which occurs in one term of the expression twice — top and bottom). Abstract indices have an organizing value.

Let’s consider an arbitrary n-dimensional vector and space V^i conjugated to V^i space V_i.

In tensorial formalism the basis is given in coordinate form:

$$\delta^i = \frac{\partial}{\partial x^i} \in V_i, \quad \delta'_i = dz_i \in V_i, \quad i = 1, n.$$

In vectorial formalism the basis is given by elements with the length dx_i upon the corresponding coordinate:

$$\delta^i = \frac{\partial}{\partial x^i}, \quad \delta'_i = dz^i, \quad i = 1, n.$$

Nonholonomic basis usually provides some comfort. If this:

- retention values coordinate conversion (i.e., moving distance in distance, angles in the angles and so on);
• indistinguishability of contravariant and covariant vectors that allows to use only one index type.

In tensor form:
\[ds^2 = g_{ij} dx^i dx^j, \quad i, j = 1, n, \]
where \(g_{ij} \) — metric tensor.
In vector form:
\[ds^2 = g_{ij} dx^i dx^j, \quad i, j = 1, n, \]
(1)
In the case of orthogonal basis, (II) has the form of:
\[ds^2 = g_{ij} h_1^i h_1^j dx^i dx^j, \quad i, j = 1, n. \]
(2)

let’s express the vector basis through the tensor one:
\[ds^x_i = h_1^i dx^i, \quad \frac{\partial}{\partial x^i} = h_1^i \frac{\partial}{\partial s^x_i}. \]

Where \(h_1^i, h_1^j, i, j = 1, n \) — matrix of Jacobi.

For orthogonal basis from (II)
\[g_{ij} dx^i dx^j = g_{ij} h_1^i h_1^j dx^i dx^j, \quad i, j = 1, n. \]

Let’s introduce the notation (for orthogonal coordinate system):
\[\left(h_1^i \right)^2 := h_1^i h_1^i, \quad h_1^i := h_1^i = \sqrt{\frac{g_{ij}}{g_{ij}}}, \quad i, j = 1, n. \]

Variables \(h_1^i \) are called Lame coefficients [6].

Let’s express vector \(f_i \in V^i \) by its components \(f^x_i \) in tensor \(\delta^x_1 \) and vector \(\delta^x_1 \) bases:
\[f_i = f^x_i \delta_1^x, \quad f^{x^j} = f^x_i \frac{\partial}{\partial x^j}, \]
\[f_i = f^x_i \delta_1^x = f^x_i \frac{\partial}{\partial x^j} = f^x_i \frac{1}{h_1^x} \frac{\partial}{\partial s^x_i}. \]

And then
\[f^x_i = f_i h_1^x, \quad i, j = 1, n. \]
(3)

In the similar way, for covectors:
\[f_i = f^x_i \delta_1^x = f^x_i dx^x, \quad f_i = f^{x^j} = f_i h_1^x dx^x, \]
and then
\[f^x_i = f_i \frac{1}{h_1^x}, \quad i, j = 1, n. \]
(4)

So the connection between tensorial and vectorial formalisms is proved.

III. TENSORIAL NOTATION OF DIFFERENTIAL OPERATORS IN COMPONENTS

Let’s present the differential operators in the components (for connections associated with metric).

The expression for gradient (the variable \(\varphi \) is a scalar):
\[(\text{grad} \, \varphi)_i = (\text{grad} \, \varphi)_j \frac{\delta^x_1}{\sqrt{|g|}}, \]
\[(\text{grad} \, \varphi) = \nabla_i \varphi = \partial_i \varphi, \quad i = 1, n. \]
(5)

The expression for an arbitrary vector divergence \(\vec{f} \in V^i \) is:
\[\text{div} \, \vec{f} = \nabla_i f^i = f^i - \Gamma_i^j f^j = f^i - f^i \left(\frac{\sqrt{|g|}}{|g|} \right)_i = \frac{1}{\sqrt{|g|}} \partial_i \left(\frac{|g| f^i}{f^i} \right), \quad i = 1, n. \]
(6)

or in components:
\[\text{div} \, \vec{f} = \frac{1}{\sqrt{|g|}} \partial_i \left(\frac{|g| f^i}{f^i} \right), \quad i = 1, n. \]
(7)

Variable \(g \) is \(\det \left(g_{ij} \right) \).

Because of the nonnegativity of radical expression and because of \(\text{M}^4 \) \(g < 0 \) in Minkowsky space let’s use the following notation \(|g| \).

The expression for rotor is valid only in \(\text{E}^3 \) space:
\[\left(\text{rot} \, \vec{f} \right)_i = \left[\nabla \times \vec{f} \right]_i = \left(\text{rot} \, \vec{f} \right)_i \frac{\delta^x_1}{\sqrt{|g|}}, \]
\[\left(\text{rot} \, \vec{f} \right)_i = \epsilon_{ijk} \nabla_j f_k, \quad i, j, k = 1, 3, \]
(8)

where \(\epsilon_{ijk} \) is the alternating tensor expressed by Levi–Civita simbol \(\delta^x_1 \):
\[\epsilon_{ijk} = \sqrt{|g|} \epsilon^{ijk}, \quad \epsilon_{ijk} = \frac{1}{\sqrt{|g|}} \delta_{ijk}, \quad i, j, k = 1, 3. \]

In general
\[\epsilon_{a_1 a_2 \ldots a_n} = \sqrt{|g^{(a)}|} \epsilon_{a_1 a_2 \ldots a_n}, \]
\[\epsilon_{a_1 a_2 \ldots a_n} = \sqrt{|g^{(a)}|} \epsilon_{a_1 a_2 \ldots a_n} = \frac{sgn g^{(a)} a_1 a_2 \ldots a_n}{\sqrt{|g^{(a)}|}}, \quad a_1, a_2, \ldots, a_n = 1, n. \]
(9)

From (III) for divergence and (III) for gradient one can get Laplacian:
\[\Delta \varphi = \nabla_i \left(\nabla^i \varphi \right) = \nabla_i \left(g^{i j} (\text{grad} \, \varphi)_j \right) = \nabla_i \left(g^{i j} \partial_j \varphi \right) = \frac{1}{\sqrt{|g|}} \partial_i \left(\sqrt{|g|} g^{i j} \partial_j \varphi \right). \]
IV. MAXWELL’S EQUATIONS

Let’s consider Maxwell’s equations in CGS-system:
\[\nabla \times \vec{E} = \frac{1}{c} \frac{\partial \vec{B}}{\partial t}; \]
\[\nabla \cdot \vec{D} = 4\pi \rho; \]
\[\nabla \times \vec{H} = \frac{1}{c} \frac{\partial \vec{D}}{\partial t} + \frac{4\pi}{c} \vec{j}; \]
\[\nabla \cdot \vec{B} = 0. \quad (10) \]

Here \(\vec{E} \) and \(\vec{H} \) — electric and magnetic intensities, \(\vec{j} \) is the current density, \(\rho \) is the charge density, \(c \) is the light velocity.

A. Maxwell’s Equations Covariant Form by 3-vectors

Let’s express the equation (IV) in the covariant form
\[e^{ijk} \nabla_j E_k = -\nabla_0 B^i; \]
\[e^{ijk} \nabla_j H_k = \nabla_0 D^i + \frac{4\pi}{c} \vec{j}^i; \]
\[\nabla_0 B^i = 0. \quad (11) \]

Let’s rewrite the expression (IV) in the tensorial formalism components with the help of (III) and (III):
\[\frac{1}{\sqrt{g^{(3)}}} \left[\partial_0 E_k - \partial_0 E_i \right] = -\frac{1}{c} \partial_i B_0, \quad i, j, k = 1, 3, \]
\[\frac{1}{\sqrt{g^{(3)}}} \partial_i \left(\sqrt{g^{(3)}} D^i \right) = 4\pi \rho, \quad i = 1, 3, \]
\[\frac{1}{\sqrt{g^{(3)}}} \left[\partial_0 H_k - \partial_0 H_i \right] = -\frac{1}{c} \partial_i D_0 + \frac{4\pi}{c} \vec{j}_i, \quad i, j, k = 1, 3, \]
\[\frac{1}{\sqrt{g^{(3)}}} \partial_i \left(\sqrt{g^{(3)}} B^i \right) = 0, \quad i = 1, 3. \]

B. Maxwell’s Equations Covariant Form by 4-vectors

Let’s rewrite (IV) with the help of electromagnetic field tensors \(F_{\alpha\beta} \) and \(G_{\alpha\beta} \)[4]:
\[\nabla_\alpha F_{\beta\gamma} + \nabla_\beta F_{\gamma\alpha} + \nabla_\gamma F_{\alpha\beta} = F_{[\alpha\beta\gamma]}, \]
\[\nabla_\alpha G^{\alpha\beta} = \frac{4\pi}{c} j^\beta, \] \hspace{1cm} (13)

where
\[F_{\alpha\beta} = \begin{pmatrix} 0 & E_1 & E_2 & E_3 \\ -E_1 & 0 & -B^3 & B^2 \\ -E_2 & B^3 & 0 & -B^1 \\ -E_3 & -B^2 & B^1 & 0 \end{pmatrix}, \]
\[F^{\alpha\beta} = \begin{pmatrix} 0 & -E^1 & -E^2 & -E^3 \\ E^1 & 0 & -B_3 & B_2 \\ E^2 & B_3 & 0 & -B_1 \\ E^3 & -B_2 & B_1 & 0 \end{pmatrix}, \]
\[G^{\alpha\beta} = \begin{pmatrix} 0 & D_1 & D_2 & D_3 \\ -D_1 & 0 & -H^3 & H^2 \\ -D_2 & H^3 & 0 & -H^1 \\ -D_3 & -H^2 & H^1 & 0 \end{pmatrix}, \]
\[G_{\alpha\beta} = \begin{pmatrix} 0 & E_1 & E_2 & E_3 \\ -E_1 & 0 & -B^3 & B^2 \\ -E_2 & B^3 & 0 & -B^1 \\ -E_3 & -B^2 & B^1 & 0 \end{pmatrix}, \]
\[E^1, H^2, i = 1, 3, \] — components of electric and magnetic fields intensity vectors; \(D_i, B_i, i = 1, 3, \) — components of vectors of electric and magnetic induction[?].

The equation (IVB) may be rewritten in a simpler form
\[\nabla_\alpha * F^{\alpha\beta} = 0. \quad (14) \]

Where the tensor \(* F^{\alpha\beta} \) dual conjugated to \(F^{\alpha\beta} \) is introduced
\[* F^{\alpha\beta} = \frac{1}{2} e^{\alpha\beta\gamma\delta} F_{\gamma\delta}, \]

where \(e^{\alpha\beta\gamma\delta} \) is the alternating tensor (see (III)):
\[e^{\alpha\beta\gamma\delta} = \sqrt{-g} e^{\alpha\beta\gamma\delta}, \quad * e^{\alpha\beta\gamma\delta} = -\frac{1}{\sqrt{-g}} e^{\alpha\beta\gamma\delta}. \]

Similarly
\[* F_{\alpha\beta} = \frac{1}{2} e^{\alpha\beta\gamma\delta} F_{\gamma\delta}, \]
\[* G_{\alpha\beta} = \frac{1}{2} e^{\alpha\beta\gamma\delta} G_{\gamma\delta}, \]
\[* G^{\alpha\beta} = \frac{1}{2} e^{\alpha\beta\gamma\delta} G^{\gamma\delta}. \]
We write in components:

\[F_{\alpha\beta} = \sqrt{-g} \begin{pmatrix} 0 & B_1 & B_2 & B_3 \\ -B_1 & 0 & E_3 & -E_2 \\ B_2 & -E_3 & 0 & E_1 \\ -B_3 & E_2 & -E_1 & 0 \end{pmatrix}, \]

\[F^{\alpha\beta} = \frac{1}{\sqrt{-g}} \begin{pmatrix} 0 & -B_1 & -B_2 & -B_3 \\ B_1 & 0 & E_3 & -E_2 \\ B_2 & -E_3 & 0 & E_1 \\ B_3 & E_2 & -E_1 & 0 \end{pmatrix}, \]

\[G_{\alpha\beta} = \frac{1}{\sqrt{-g}} \begin{pmatrix} 0 & -H_1 & -H_2 & -H_3 \\ H_1 & 0 & D_3 & -D_2 \\ H_2 & -D_3 & 0 & D_1 \\ H_3 & D_2 & -D_1 & 0 \end{pmatrix}, \]

\[G^{\alpha\beta} = \frac{1}{\sqrt{-g}} \begin{pmatrix} 0 & H_1 & H_2 & H_3 \\ -H_1 & 0 & D_3 & -D_2 \\ -H_2 & -D_3 & 0 & D_1 \\ -H_3 & D_2 & D_1 & 0 \end{pmatrix}. \]

The ordered pair \((E_i, B_i) \) may be assigned to \(F_{\alpha\beta} \) by

\[F_{0i} = E_i, \quad F_{ij} = -\varepsilon_{ijk} B^k. \]

So the following expressions may be written

\[F_{\alpha\beta} \sim (E_i, B_i), \quad F^{\alpha\beta} \sim (-E^\alpha, B^\alpha), \]

\[G_{\alpha\beta} \sim (D_i, H_i), \quad G^{\alpha\beta} \sim (-D^\alpha, H^\alpha). \]

\[*F_{\alpha\beta} \sim \sqrt{-g}(B_\alpha - E_\alpha), \quad *F^{\alpha\beta} \sim \frac{1}{\sqrt{-g}}(-B^\alpha, -E^\alpha), \]

\[*G_{\alpha\beta} \sim \sqrt{-g}(H_\alpha - D_\alpha), \quad *G^{\alpha\beta} \sim \frac{1}{\sqrt{-g}}(-H^\alpha, -D^\alpha). \]

(15)

C. Complex Form of Maxwell’s Equations

The complex form of Maxwell’s equations was considered by various authors [2], [5].

Similar to (IV B) let’s introduce correspondence between an ordered pair and a complex 3-vector

\[F^\times \sim (E_i, B_i), \quad F_i = E_i + iB_i, \]

\[G^\times \sim (D_i, H_i), \quad G_i = D_i + iH_i. \]

(16)

Let’s express intensity and induction by means of complex vectors

\[E^i = \frac{F^i + \bar{F}^i}{2}, \quad B^i = \frac{F^i - \bar{F}^i}{2i}, \]

\[D^i = \frac{G^i + \bar{G}^i}{2}, \quad H^i = \frac{G^i - \bar{G}^i}{2i}. \]

Two complementary vectors

\[K^i = \frac{G^i + F^i}{2}, \quad L^i = \frac{\bar{G}^i - \bar{F}^i}{2}. \]

(17)

The expression (IV A) assumes the form

\[\nabla_i (K^i + L^i) = 4\pi \rho; \]

\[-i\nabla_0 (K^i - L^i) + e^{ijk} \nabla_j (K_k - L_k) = \frac{4\pi}{c} j^i. \]

(18)

1. Complex Form of Maxwell’s Equations in Vacuum

From \(D^i = E^i, H^i = B^i \) and (IVC) it follows

\[K^i = E^i + iB^i = F^i, \quad L^i = 0. \]

Then the equations (IV C) will have the form

\[\nabla_i F^i = 4\pi \rho; \]

\[-i\nabla_0 F^i + e^{ijk} \nabla_j F_k = \frac{4\pi}{c} j^i. \]

(19)

2. Complex Representation of Maxwell’s Equations in Homogeneous Isotropic Space

In homogeneous isotropic space the following relations \(D^i = \varepsilon E^i, \mu H^i = B^i \) (where \(\varepsilon \) – dielectric permittivity and \(\mu \) – magnetic permeability) are correct.

The resulting expressions may be simplified as follows. In (IV C1) we need the formal substitutions \(c \rightarrow c' = \frac{c}{\sqrt{\varepsilon \mu}} \) (the speed of light in vacuum is substituted by the speed of light in medium) and \(j^i \rightarrow \frac{j^i}{\sqrt{\varepsilon \mu}} \). The result:

\[F^i = \sqrt{\varepsilon} E^i + i \frac{4\pi}{\sqrt{\varepsilon \mu}} B^i, \]

\[\nabla_i F^i = \frac{4\pi}{\sqrt{\varepsilon}} \rho; \]

\[e^{ijk} \nabla_j F_k = i \frac{4\pi}{c} \sqrt{\varepsilon \mu} j^i + i \sqrt{\varepsilon \mu \frac{\partial F^i}{\partial H^j}}. \]

This representation of Maxwell’s equations has several names. In particular, it is known as a representation of the Riemann–Siegelstein.

D. Momentum Representation of Maxwell’s Equations

Let’s expand the vectors of electric and magnetic fields intensity in a wavevector Fourier series \(k^j, \ j \) – abstract
\[E^i(t, x^j) = \frac{1}{\sqrt{(2\pi)^3}} \int d^3x^j \sqrt{g^{(3)}} E^i(t, x^j) e^{-ik_jx^j}, \]
\[\hat{H}^i(t, k_j) = \frac{1}{\sqrt{(2\pi)^3}} \int d^3x^j \sqrt{g^{(3)}} \hat{H}^i(t, x^j) e^{-ik_jx^j}, \]
\[\hat{B}^i(t, k_j) = \frac{1}{\sqrt{(2\pi)^3}} \int d^3x^j \sqrt{g^{(3)}} \hat{B}^i(t, x^j) e^{-ik_jx^j}, \]
\[\hat{D}^i(t, k_j) = \frac{1}{\sqrt{(2\pi)^3}} \int d^3x^j \sqrt{g^{(3)}} \hat{D}^i(t, x^j) e^{-ik_jx^j}, \]
\[\hat{\rho}(t, k_j) = \frac{1}{\sqrt{(2\pi)^3}} \int d^3x^j \sqrt{g^{(3)}} \hat{\rho}(t, x^j) e^{-ik_jx^j}, \]
\[\hat{j}^i(t, k_j) = \frac{1}{\sqrt{(2\pi)^3}} \int d^3x^j \sqrt{g^{(3)}} \hat{j}^i(t, x^j) e^{-ik_jx^j}. \]

And inverse transform is
\[E^j(t, x^j) = \frac{1}{\sqrt{(2\pi)^3}} \int d^3k_j \sqrt{g^{(3)}} \hat{E}^j(t, k_j) e^{ik_jx^j}, \]
\[H^j(t, x^j) = \frac{1}{\sqrt{(2\pi)^3}} \int d^3k_j \sqrt{g^{(3)}} \hat{H}^j(t, k_j) e^{ik_jx^j}, \]
\[B^j(t, x^j) = \frac{1}{\sqrt{(2\pi)^3}} \int d^3k_j \sqrt{g^{(3)}} \hat{B}^j(t, k_j) e^{ik_jx^j}, \]
\[D^j(t, x^j) = \frac{1}{\sqrt{(2\pi)^3}} \int d^3k_j \sqrt{g^{(3)}} \hat{D}^j(t, k_j) e^{ik_jx^j}, \]
\[\rho(t, x^j) = \frac{1}{\sqrt{(2\pi)^3}} \int d^3k_j \sqrt{g^{(3)}} \hat{\rho}(t, k_j) e^{ik_jx^j}, \]
\[j^i(t, x^j) = \frac{1}{\sqrt{(2\pi)^3}} \int d^3k_j \sqrt{g^{(3)}} \hat{j}^i(t, k_j) e^{ik_jx^j}. \]

Let’s note that the vector components \(E^i(t, x^j) \) and \(\hat{E}^i(t, k_j) \), (similarly: \(H^i(t, x^j) \) and \(\hat{H}^i(t, k_j) \), \(B^i(t, x^j) \) and \(\hat{B}^i(t, k_j) \), \(D^i(t, x^j) \) and \(\hat{D}^i(t, k_j) \), \(j^i(t, x^j) \) and \(\hat{j}^i(t, k_j) \)) are used in different bases:
\[
E^i(t, x^j) = E^i_j(t, x^j) \delta^j_i,
\]
\[
\hat{E}^i(t, k_j) = \hat{E}^i_j(t, k_j) \delta^j_i,
\]
\[
\hat{g}^{(3)} := \det g_{ij}, \quad ds^2 = g_{ij} dx^i dx^j.
\]

where the basis \(\delta^j_i \) is given according to the vector \(k_i \). For all \(k_i \) the independent basis is defined. We can use expressions under integral sign putting down Maxwell’s equations from (IV D). Or use the formulas for the Fourier transforms.

\[
(af(x^i) + bg(x^i)) = a\hat{f}(k_i) + b\hat{g}(k_i), \quad a, b = \text{const},
\]
\[
\frac{\partial \hat{f}(x^i)}{\partial x^j} = ik_j\hat{f}(k_i),
\]
\[
f(x^i)\hat{g}(x^i) = \frac{1}{\sqrt{(2\pi)^3}} (\hat{f} \ast \hat{g})(k_i),
\]

where

\[
(\hat{f} \ast \hat{g})(k_i) = \int_{-\infty}^{\infty} \hat{f}(k_i - \omega)\hat{g}(\omega) d^3\omega.
\]

In the simplest case \((g = \text{const})\)
\[
\frac{1}{\sqrt{g^{(3)}}} \varepsilon^{ijk} k_j E_k(t, k_j) = -\frac{1}{c} \partial_i B^i(t, k_j),
\]
\[
\frac{1}{\sqrt{g^{(3)}}} \varepsilon^{ijk} k_j H_k(t, k_j) = -\frac{1}{c} \partial_i D^i(t, k_j) + \frac{4\pi}{c} j^i(t, k_j),
\]
\[
\partial_i D^i(t, k_j) = 4\pi\rho(t, k_j),
\]
\[
\partial_i B^i(t, k_j) = 0.
\]

Because of the complex form of the resulting equations the complex form of Maxwell’s equations (IV C) is recommended to use

\[
F^j(t, x^j) = \frac{1}{\sqrt{(2\pi)^3}} \int d^3k_j \sqrt{g^{(3)}} \hat{F}^j(t, k_j) e^{ik_jx^j},
\]
\[
G^j(t, x^j) = \frac{1}{\sqrt{(2\pi)^3}} \int d^3k_j \sqrt{g^{(3)}} \hat{G}^j(t, k_j) e^{ik_jx^j},
\]
\[
\rho(t, x^j) = \frac{1}{\sqrt{(2\pi)^3}} \int d^3k_j \sqrt{g^{(3)}} \hat{\rho}(t, k_j) e^{ik_jx^j},
\]
\[
\hat{j}^i(t, x^j) = \frac{1}{\sqrt{(2\pi)^3}} \int d^3k_j \sqrt{g^{(3)}} \hat{j}^i(t, k_j) e^{ik_jx^j}.
\]

Remark. In terms of classical electrodynamics vectors \(E^j, H^j, B^j, D^j \) decompositions in wavevector \(k^j \) Fourier series correspond to these vectors decomposition in momentum Fourier series in quantum mechanics. That is why the representation (IV D) may be considered as momentum representation.

E. Spinor Form of Maxwell’s Equations

The tensor of electromagnetic field \(F_{\alpha\beta} \) and its components \(F_{\alpha\beta}, \alpha, \beta = 0, 3 \) may be considered in spinor form [3] (and similarly for \(G_{\alpha\beta} \)):

\[
F_{\alpha\beta} = F_{AA'BB'};
\]
\[
F_{\alpha\beta} = F_{AA'BB'} g_{\alpha\alpha'} g_{\beta\beta'} B' B',
\]
\[
A, A', B, B' = 0, 1, \quad \alpha, \beta = 0, 3,
\]
Let’s write Maxwell’s equations using the spinors. The tensor $\mathbf{F}_{\alpha\beta}$ is real and antisymmetric, it can be represented in the form

$$\mathbf{F}_{\alpha\beta} = \varphi_{AB} \varepsilon_{A'B'} + \varepsilon_{AB} \varphi_{A'B'},$$

$$\ast \mathbf{F}_{\alpha\beta} = -i \mathbf{F}^\ast_{\alpha\beta} + i \mathbf{F}^\ast_{\alpha\beta} = -i \mathbf{F}^\ast_{\alpha\beta} + i \mathbf{F}^\ast_{\alpha\beta}.$$

where φ_{AB} is a spinor of electromagnetic field:

$$\varphi_{AB} := \frac{1}{2} F_{ABC}^\ast C' = \frac{1}{2} F_{AA'B'B} \varepsilon_{A'B'} = \frac{1}{2} F_{\alpha\beta} \varepsilon_{A'B'}.$$

Similarly

$$G^{\alpha\beta} = \gamma^{AB} \varepsilon_{A'B'} + \varepsilon_{AB} \gamma_{A'B'},$$

$$\ast G^{\alpha\beta} = -i G^\ast_{\alpha\beta} + i G^\ast_{\alpha\beta} = -i G^\ast_{\alpha\beta} + i G^\ast_{\alpha\beta}.$$

Replacing in (IV.B) abstract indices α by AA' and β by BB', we can write:

$$\nabla_{A'A'} G_{A'BB'} = \frac{4 \pi}{c} j_{BB'}.$$

Using (IV.E) we will get

$$\nabla_{A'B'} \gamma_{A}^B + \nabla_{B'A'} \gamma_{B}^A = \frac{4 \pi}{c} j_{BB'}.$$

Similarly, from (IV.B) and (IV.E) it follows

$$\nabla_{A'B'} \phi_{B}^A - \nabla_{A'B'} \phi_{B}^A = 0.$$

In so doing the system of Maxwell’s equations can be written as

$$\nabla_{A'B'} \phi_{B}^A - \nabla_{A'B'} \phi_{B}^A = 0,$$

$$\nabla_{A'B'} \gamma_{A}^B + \nabla_{B'A'} \gamma_{B}^A = \frac{4 \pi}{c} j_{BB'}.$$

The spinor form of Maxwell’s equations system in vacuum can be written in the form of one equation

$$\nabla_{A'B'} \phi_{B}^A = \frac{2 \pi}{c} j_{BB'}.$$

The components of electromagnetic field spinor:

$$\varphi_{AB} = \frac{1}{2} F_{\alpha\beta} \varepsilon_{A'B'} - \frac{1}{2} F_{AB} \varepsilon_{A'B'},$$

$$\varepsilon_{A'B'} = \varepsilon_{A'B'} = \varepsilon_{AB} = 0, 3.$$
Due to standard ISO 31-11 coordinates (x^1, x^2, x^3) are denoted as (r, ϑ, φ).

The law of coordinate transition from Cartesian coordinates to spherical ones:

\[
\begin{align*}
 x &= r \sin \vartheta \cos \varphi, \\
 y &= r \sin \vartheta \sin \varphi, \\
 z &= r \cos \vartheta.
\end{align*}
\]

The law of coordinate transition from spherical coordinates to Cartesian ones:

\[
\begin{align*}
 r &= \sqrt{x^2 + y^2 + z^2}, \\
 \vartheta &= \arccos \left(\frac{z}{\sqrt{x^2 + y^2 + z^2}} \right) = \arctg \left(\frac{y}{x} \right), \\
 \varphi &= \arctg \left(\frac{y}{x} \right).
\end{align*}
\]

The metric tensor:

\[
\begin{pmatrix}
 1 & 0 & 0 \\
 0 & r^2 & 0 \\
 0 & 0 & r^2 \sin^2 \vartheta
\end{pmatrix}, \quad \bar{g}^{ij} =
\begin{pmatrix}
 1 & 0 & 0 \\
 0 & 1/r^2 & 0 \\
 0 & 0 & 1/r^2 \sin^2 \vartheta
\end{pmatrix}
\]

The Lame coefficients:

\[
 h_1 \equiv h_r = 1, \quad h_2 \equiv h_\vartheta = r, \quad h_3 \equiv h_\varphi = r \sin \vartheta.
\]

The relation between the holonomic (tensor) and non-holonomic (vector) bases (see (II) and (III)):

\[
\begin{align*}
 f'^r &= f^r, \quad f'^\vartheta = r f^\vartheta, \quad f'^\varphi = r \sin \vartheta \, f^\varphi, \\
 f_r &= f_r, \quad f_\vartheta &= \frac{1}{r} f_\vartheta, \quad f_\varphi = \frac{1}{r \sin \vartheta} \, f_\varphi.
\end{align*}
\]

Differential operators in the holonomic basis:

\[
\begin{align*}
 (\text{grad}\, f)_i &= \frac{\partial f}{\partial r} \delta_i^r + \frac{\partial f}{\partial \vartheta} \delta_i^\vartheta + \frac{\partial f}{\partial \varphi} \delta_i^\varphi; \\
 \text{div}\, \bar{f} &= \frac{1}{r} \partial_r \left(r f^r \right) + \frac{1}{r} \partial_\vartheta \left(f^\vartheta \right) + \partial_\varphi \left(f^\varphi \right); \\
 (\text{rot}\, \bar{f})^i &= \frac{1}{r} \left[\partial_\varphi f_{z} - \partial_z f_\varphi \right] \delta_i^z + \\
 &+ \frac{1}{r} \left[\partial_z f_r - \partial_r f_z \right] \delta_i^r + \frac{1}{r} \left[\partial_r f_\varphi - \partial_\varphi f_r \right] \delta_i^\varphi.
\end{align*}
\]

Differential operators in the nonholonomic basis:

\[
\begin{align*}
 (\text{grad}\, f)_i &= \frac{\partial f}{\partial r} \delta_i^r + \frac{\partial f}{\partial \vartheta} \delta_i^\vartheta + \frac{\partial f}{\partial \varphi} \delta_i^\varphi; \\
 \text{div}\, \bar{f} &= \frac{1}{r^2} \partial_r \left(r^2 f^r \right) + \frac{1}{r \sin \vartheta} \partial_\vartheta \left(\sin \vartheta f^\vartheta \right) + \partial_\varphi \left(f^\varphi \right); \\
 (\text{rot}\, \bar{f})^i &= \frac{1}{r \sin \vartheta} \left[\partial_\varphi \left(\sin \vartheta f_\varphi \right) - \partial_z f_\varphi \right] \delta_i^z + \\
 &+ \frac{1}{r} \left[\partial_z f_r - \partial_r f_z \right] \delta_i^r + \frac{1}{r} \left[\partial_r f_\varphi - \partial_\varphi f_r \right] \delta_i^\varphi.
\end{align*}
\]
Maxwell’s equations in spherical coordinates \((r, \vartheta, \varphi)\):

\[
\frac{1}{r^2 \sin \vartheta} \left[\partial_r E_k - \partial_k E_r \right] = -\frac{1}{c} \partial_t B_k, \quad i, j, k = 1, 3,
\]
\[
\frac{1}{r^2 \sin \vartheta} \left[\partial_r H_k - \partial_k H_r \right] = -\frac{1}{c} \partial_t D_k + \frac{4\pi}{c} j^k, \quad i, j, k = 1, 3,
\]
\[
\frac{1}{r^2 \sin \vartheta} \partial_r \left(r^2 \sin \vartheta D^r \right) = 4\pi \rho, \quad i = 1, 3,
\]
\[
\frac{1}{r^2 \sin \vartheta} \partial_r \left(r^2 \sin \vartheta B^r \right) = 0, \quad i = 1, 3.
\]

The final result after some rearrangements:

\[
\frac{1}{r^2 \sin \vartheta} \left[\partial_\vartheta E_3 - \partial_\varphi E_2 \right] = -\frac{1}{c} \partial_\vartheta B^1,
\]
\[
\frac{1}{r^2 \sin \vartheta} \left[\partial_\varphi E_1 - \partial_\varphi E_3 \right] = -\frac{1}{c} \partial_\varphi B^2,
\]
\[
\frac{1}{r^2 \sin \vartheta} \left[\partial_\varphi E_2 - \partial_\vartheta E_1 \right] = -\frac{1}{c} \partial_\vartheta B^3,
\]
\[
\frac{1}{r^2 \sin \vartheta} \left[\partial_\varphi H_3 - \partial_\varphi H_2 \right] = -\frac{1}{c} \partial_\varphi D^1 + \frac{4\pi}{c} j^1,
\]
\[
\frac{1}{r^2 \sin \vartheta} \left[\partial_\varphi H_1 - \partial_\varphi H_3 \right] = -\frac{1}{c} \partial_\varphi D^2 + \frac{4\pi}{c} j^2,
\]
\[
\frac{1}{r^2 \sin \vartheta} \left[\partial_\varphi H_2 - \partial_\vartheta H_1 \right] = -\frac{1}{c} \partial_\vartheta D^3 + \frac{4\pi}{c} j^3,
\]
\[
\frac{2}{r} D^1 + \partial_\varphi D^1 + \ctg \vartheta D^2 + \partial_\vartheta D^2 + \partial_\varphi D^3 = 4\pi \rho,
\]
\[
\frac{2}{r} B^1 + \partial_\varphi B^1 + \ctg \vartheta B^2 + \partial_\vartheta B^2 + \partial_\varphi B^3 = 0.
\]

VI. CONCLUSION

The main results of the article are:

1. The connection between tensorial and vectorial formalisms is shown.
2. The covariant coordinate representation of differential operators for holonomic coordinate systems is given.
3. It is shown how to use tensor formalism for different forms of Maxwell’s equations.
4. Maxwell’s equations are presented in covariant coordinate-free and covariant coordinate forms.
5. It is shown that the results obtained by tensorial and vectorial formalisms are the same for cylindrical and spherical coordinate systems.
6. It is shown that the usage of tensorial formalism instead of vectorial one for Maxwell’s equations may simplify mathematical expressions (particularly in non-Cartesian coordinate systems).

Using tensor formalism instead of vectorial one can simplify the form of equations and intermediate results in non-Cartesian coordinate systems due to well developed formalism of tensor analysis. The transition to vectorial formalism can be done at a final stage if necessary.

[1] D. S. Kulyabov and N. A. Nemchaninova. Maxwell’s equations in curvilinear coordinates. *Bulletin of Peoples’ Friendship University of Russia. Series Mathematics. Information Sciences. Physics*, (2):172–179, 2011.
[2] J. A. Stratton. *Electromagnetic Theory*, MGH, 1941.
[3] R. Penrose and W. Rindler. *Spinors and Space-Time: Two-Spinor Calculus and Relativistic Fields*, volume 1. Cambridge University Press, 1984.
[4] H. Minkowski. Die grundlagen für die electromagnetischen vorgänge in bewegten körpern. *Math. Ann.*, (68):472–525, 1910.
[5] L. Silberstein. Electromagnetische grundgleichungen in bivectorieller behandlung. *Annalen der Physik*, 22:579–586, 1907.
[6] F. M. Morse and H. Feshbach. *Methods of theoretical physics*, volume 1. MGH, 1953.
Уравнения Максвелла в произвольной системе координат

Д. С. Кулябов* and А. В. Королькова†
Российский университет дружбы народов‡

В работе продемонстрировано применение тензорного формализма для получения разных форм записи уравнений Максвелла. Получены уравнения Максвелла в ковариантной бескоординатной и ковариантной координатной формах. Предварительно установлена связь между векторным и тензорным формализмами, выпущено координатное представление дифференциальных операторов для произвольных голономных систем координат. Проведена верификация результатов, полученных с помощью тензорного и векторного формализмов на примере цилиндрической и сферической систем координат.

I. ВВЕДЕНИЕ

В задачах математического моделирования волноводов часто возникает потребность использования криволинейных систем координат. Выбор конкретной системы координат зависит от формы поперечного сечения волновода.

Обычно для описания исследуемой волноводной модели за основу берётся запись уравнений Максвелла в декартовой системе координат. Используя трансформационные свойства векторов, уравнения Максвелла переписываются для конкретной криволинейной системы координат, часто сферической или цилиндрической. Однако, например, в задаче моделирования ускорителя тяжёлых частиц волновод может иметь форму конуса или гиперболоида. Другой пример волновода сложной формы — волноводная линия Лунёва, представляющая собой часть сферы или цилиндра, прикреплённой к плоскому волноводу. Поэтому, в случае более сложной формы волновода требуется запись уравнений Максвелла в произвольной криволинейной системе координат.

Традиционно к уравнениям Максвелла применяют векторный формализм. В этом случае запись уравнений в криволинейной системе координат крайне громоздка. В работе [1] проведены предварительные исследования по применению тензорного формализма, приводящего к более компактной и удобной форме записи уравнений Максвелла. Кроме того, тензорный формализм имеет мощный математический аппарат, который позволяет работать с ковариантной бескоординатной формой записи уравнений. В этом случае переход к конкретной системе координат нужен только на заключительном этапе исследований при записи результата. Непосредственно применить тензорный формализм к уравнениям Максвелла нельзя. Требуется установить связь векторного и тензорного формализмов.

II. СВЯЗЬ ТЕНЗОРНОГО И ВЕКТОРНОГО ФОРМАЛИЗМОВ ЗАПИСИ ВЕКТОРОВ

Будем использовать предложенный в [2] формализм абстрактных индексов. В [2] через α обозначён абстрактный индекс, α — компонентный индекс тензора. Присутствие в некотором выражении компонентного индекса означает, что в него косвенным образом введён некоторый (произвольный) базис, а сами индексы подчиняются правилу суммирования Эйнштейна (суммирование по всему численному индексу, который встречается в одном члене выражения дважды: вверху и внизу). Абстрактные индексы имеют организующее значение.
Рассмотрим произвольное n-мерное векторное пространство V^i и сопряжённое к V^i пространство V_i.

В тензорном формализме зададим гномоный базис:

$$\delta^i = \frac{\partial}{\partial x^i} \in V^i, \quad \delta^i_i = dx^i \in V_i, \quad i = 1, n.$$

В векторном формализме неголононый базис задаётся через элементы длины ds'^i по соответствующей координате:

$$\delta_v^i = \frac{\partial}{\partial s^i}, \quad \delta_v'^i = ds'^i, \quad i = 1, n.$$

Неголононый базис обычно предоставляет некоторые удобства. В данном случае это:

- сохранение величин при преобразовании координат (т.е. расстояния переходят в расстояние, углы в углы и т.д.);

- неразличимость контравариантных и ковариантных векторов, что позволяет использовать только один тип индекса.

В тензорной записи:

$$ds^2 = g_{ij} dx^i dx^j, \quad i, j = 1, n,$$

где g_{ij} — метрический тензор.

В векторной записи:

$$ds^2 = g_{ij} ds^i ds^j, \quad i, j = 1, n.$$

В случае ортогонального базиса (II) принимает вид:

$$ds^2 = g_{ij} ds^i ds^j, \quad i, j = 1, n.$$

Выразим векторный базис через тензорный:

$$ds'^i = h^i_j dx^j, \quad h^i_j = \frac{\partial}{\partial x^i}.$$

Здесь h^i_j, $i, j = 1, n$, — коэффициенты неголононости.

Для ортогонального базиса из (II) находим:

$$g_{ij} dx^i dx^j = g_{ij} h^i_j h^j_l dx^l dx^i, \quad i, j = 1, n.$$

Введём обозначение (для ортогональной системы координат):

$$h_i := h^i_j, \quad i, j = 1, n.$$

Величины h_i называются коэффициентами Ламе [3, Т. 1, с. 34–35].

Выразим вектор $f^i \in V^i$ через его компоненты f^i_x в тензорном δ^i_x и векторном δ^i_v базисах соответственно:

$$f^i = f^i_x \delta^i_x = f^i_x \frac{\partial}{\partial x^i},$$

$$f^i = f^i_v \delta^i_v = f^i_v \frac{\partial}{\partial s^i}.$$

Отсюда получаем, что

$$f^i_v = f^i_x \frac{h^i_v}{h^i_x}, \quad i, i' = 1, n.$$

Аналогично для ковекторов имеем:

$$f_i = f_i x \delta^i_v, \quad i, i' = 1, n.$$

откуда получаем, что

$$f_i = f_i \frac{h^i_v}{h^i_x}, \quad i, i' = 1, n.$$

Таким образом, показана связь между тензорным и векторным формализмами.

III. ТЕНЗОРНАЯ ЗАПИСЬ ДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАТОРОВ В КОМПОНЕНТАХ

Запишем в компонентах дифференциальные операторы (для связностей, ассоциированных с метрикой).

Выражение для градиента имеет вид (здесь φ — скаляр):

$$(\text{grad } \varphi)_i = (\text{grad } \varphi)_x \delta^i_x,$$

$$(\text{grad } \varphi)_v = \nabla_v \varphi = \partial_v \varphi, \quad i = 1, n.$$

Выражение для дивергенции некоторого произвольного вектора $\vec{f} \in V^i$ имеет вид:

$$\text{div } \vec{f} = \nabla_i f^i - \Gamma^i_{ij} f^j = f^i - f^i \frac{\sqrt{|g|}}{|g^i|} = \frac{1}{\sqrt{|g|}} \partial_i \left(\sqrt{|g|} f^i \right),$$

или в компонентах:

$$\text{div } \vec{f} = \frac{1}{\sqrt{|g|}} \partial_i \left(\sqrt{|g|} f^i \right), \quad i = 1, n.$$

Здесь g представляет собой $\det (g_{ij})$. Так как подкоренное выражение должно быть неотрицательным, а в пространстве Минковского M^4 $g < 0$, то для определённости будем использовать запись $|g|$.
Выражение для ротора действительно только в пространстве \mathbb{R}^3:

$$
\left(\nabla \times \mathbf{f}\right)^i = \left[\nabla, f\right]^i = \left(\nabla \times f\right)^i \delta_j^i, \\
\left(\nabla \times g\right)^i = \epsilon^{ijk} \nabla_j g_k, \quad i, j, k = 1, 2, 3,
$$

где ϵ^{ijk} — альтернирующий тензор, выражающийся через символ Леви-Чивита δ^{ijk}:

$$
\epsilon_{ijk} = \sqrt{g^{(3)}} \delta_{ijk}, \quad \epsilon^{ijk} = \frac{1}{\sqrt{g^{(3)}}} \epsilon_{ijk}, \quad i, j, k = 1, 2, 3.
$$

В общем случае имеем:

$$
\epsilon_{a_1 a_2 \ldots a_n} = \sqrt{|g^{(n)}|} \delta_{a_1 a_2 \ldots a_n}, \quad \epsilon^{a_1 a_2 \ldots a_n} = \frac{\text{sign} \, g^{(n)}}{|g^{(n)}|} \epsilon_{a_1 a_2 \ldots a_n}, \quad a_1, a_2, \ldots, a_n = 1, \ldots, n.
$$

Из выражений (III) для дивергенции и (III) для градиента можно получить лапласиан:

$$
\Delta \varphi = \nabla_i \left(\nabla^i \varphi\right) = \nabla_i \left(g^{ij} (\nabla^j \varphi)\right) = \nabla_i \left(g^{ij} \partial_j \varphi\right) = \frac{1}{\sqrt{|g|}} \partial_i \left(\sqrt{|g|} g^{ij} \partial_j \varphi\right).
$$

IV. ПРЕДСТАВЛЕНИЯ УРАВНЕНИЙ МАКСВЕЛЛА

Рассмотрим уравнения Максвелла в системе СГС [4]:

$$
\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}; \\
\nabla \cdot \mathbf{D} = 4\pi \rho; \\
\nabla \times \mathbf{H} = \frac{1}{c} \frac{\partial \mathbf{D}}{\partial t} + 4\pi \mathbf{j}; \\
\nabla \cdot \mathbf{B} = 0.
$$

Здесь \mathbf{E} и \mathbf{H} — напряжённости электрического и магнитного полей, \mathbf{D} и \mathbf{B} — электрическая и магнитная индукция соответственно, \mathbf{j} — плотность тока, ρ — плотность заряда, c — скорость света.

A. Ковариантная запись уравнений Максвелла через 3-векторы

Запишем уравнения (IV) в явно ковариантной форме:

$$
e^{ijk} \nabla_j E_k = -\nabla_0 B^i; \\
\nabla_i D^i = 4\pi \rho; \\
e^{ijk} \nabla_j H_k = \nabla_0 D^i + \frac{4\pi}{c} j^i; \\
\nabla_i B^i = 0.
$$

Перепишем (IV) в компонентах тензорного формализма, используя (III) и (III):

$$
\frac{1}{\sqrt{g^{(3)}}} \left[\partial_0 E_k - \partial_k E_0\right] = -\frac{1}{c} \partial_i B^i, \quad i, j, k = 1, 2, 3, \\
\frac{1}{\sqrt{g^{(3)}}} \partial_i \left(\sqrt{g^{(3)}} D^i\right) = 4\pi \rho, \quad i = 1, 2, 3, \\
\frac{1}{\sqrt{g^{(3)}}} \left[\partial_0 H_k - \partial_k H_0\right] = -\frac{1}{c} \partial_i D^i + \frac{4\pi}{c} j^i, \quad i, j, k = 1, 2, 3, \\
\frac{1}{\sqrt{g^{(3)}}} \partial_i \left(\sqrt{g^{(3)}} B^i\right) = 0, \quad i = 1, 2, 3.
$$

B. Ковариантная запись уравнений Максвелла через 4-векторы

Запишем (IV) через тензоры электромагнитного поля $F_{\alpha\beta}$ и $G_{\alpha\beta}$ [5, 6, с. 256, 263–264]:

$$
\nabla_\alpha F_{\beta\gamma} + \nabla_\beta F_{\gamma\alpha} + \nabla_\gamma F_{\alpha\beta} = F_{[\alpha\beta\gamma]} = 0, \\
\nabla_\alpha G^{\alpha\beta} = \frac{4\pi}{c} j^\beta,
$$

где тензоры $F_{\alpha\beta}$, $F^{\alpha\beta}$, $G^{\alpha\beta}$ и $G_{\alpha\beta}$ имеют следующие компоненты

$$
F_{\alpha\beta} = \begin{pmatrix}
0 & E_1 & E_2 & E_3 \\
- E_1 & 0 & -B^3 & B^2 \\
- E_2 & B^3 & 0 & -B^1 \\
- E_3 & -B^2 & B^1 & 0
\end{pmatrix}, \\
F^{\alpha\beta} = \begin{pmatrix}
0 & -E_1 & -E^2 & -E^3 \\
E_1 & 0 & -B^3 & B^2 \\
E_2 & B^3 & 0 & -B^1 \\
E_3 & -B^2 & B^1 & 0
\end{pmatrix}, \\
G^{\alpha\beta} = \begin{pmatrix}
0 & -D^1 & -D^2 & -D^3 \\
-D^1 & 0 & -H^3 & H^2 \\
-D^2 & H^3 & 0 & -H^1 \\
-D^3 & -H^2 & H^1 & 0
\end{pmatrix}, \\
G_{\alpha\beta} = \begin{pmatrix}
0 & D_1 & D_2 & D_3 \\
-D_1 & 0 & H^3 & H^2 \\
-D_2 & H^3 & 0 & -H^1 \\
-D_3 & -H^2 & H^1 & 0
\end{pmatrix},
$$
Уравнение (IV B) можно записать в более простом виде

$$\nabla_{\alpha} \ast F^{\alpha \beta} = 0. \quad (14)$$

Здесь введён тензор $\ast F^{\alpha \beta}$, дуально сопряжённый тензору $F^{\alpha \beta}$

$$\ast F^{\alpha \beta} = \frac{1}{2} e^{\alpha \beta \gamma \delta} F_{\gamma \delta},$$

где $e^{\alpha \beta \gamma \delta}$ — альтернирующий тензор (см. (III)):

$$e^{\alpha \beta \gamma \delta} = \sqrt{-g} e^{\alpha \beta \gamma \delta}, \quad e^{\alpha \beta \gamma \delta} = -\frac{1}{\sqrt{-g}}e^{\alpha \beta \gamma \delta}.$$

Аналогично запишем

$$\ast F_{\alpha \beta} = \frac{1}{2} e^{\alpha \beta \gamma \delta} F^{\gamma \delta},$$

$$\ast G_{\alpha \beta} = \frac{1}{2} e^{\alpha \beta \gamma \delta} G^{\gamma \delta},$$

$$\ast G^{\alpha \beta} = \frac{1}{2} e^{\alpha \beta \gamma \delta} G_{\gamma \delta}.$$

Запишем в компонентах:

$$\ast F_{\alpha \beta} = \sqrt{-g} \begin{pmatrix} 0 & B_1 & B_2 & B_3 \\ -B_1 & 0 & E^3 & -E^2 \\ -B_2 & -E^3 & 0 & E^1 \\ -B_3 & E^2 & -E^1 & 0 \end{pmatrix},$$

$$\ast F^{\alpha \beta} = \frac{1}{\sqrt{-g}} \begin{pmatrix} 0 & -B^1 & -B^2 & -B^3 \\ B^1 & 0 & E^3 & -E^2 \\ B^2 & -E^3 & 0 & E^1 \\ B^3 & E^2 & -E^1 & 0 \end{pmatrix},$$

$$\ast G_{\alpha \beta} = \frac{1}{\sqrt{-g}} \begin{pmatrix} 0 & -H^1 & -H^2 & -H^3 \\ H^1 & 0 & D_3 & -D_2 \\ H^2 & D_3 & 0 & D_1 \\ H^3 & D_2 & -D_1 & 0 \end{pmatrix},$$

$$\ast G^{\alpha \beta} = \sqrt{-g} \begin{pmatrix} 0 & H_1 & H_2 & H_3 \\ -H_1 & 0 & D^3 & -D^2 \\ -H_2 & D^3 & 0 & D^1 \\ -H_3 & D^2 & -D^1 & 0 \end{pmatrix},$$

Кодифицируем запись используемых тензоров. Для этого поставим в соответствие $F_{\alpha \beta}$ упорядоченную пару (E_i, B^i) ($F_{\alpha \beta} \sim (E_i, B^i)$) следующим образом

$$F_{0i} = E_i, \quad F_{ij} = -\varepsilon_{ijk}B^k.$$

Таким образом можно выписать следующие соот-
Тогда уравнения (IV C) будут иметь вид
\begin{align}
\nabla_i F^i &= 4\pi \rho; \\
-\imath \nabla_0 F^i + e^{ijk} \nabla_j F_k &= \frac{4\pi}{c} j^i. \tag{19}
\end{align}

2. Комплексное представление уравнений Максвелла в однородной изотропной среде

В однородной изотропной среде справедливы следующие соотношения: \(D^i = \varepsilon E^i, \mu H^i = B^i \), где \(\varepsilon \) и \(\mu \) - диэлектрическая и магнитная проницаемости.

Для упрощения получаемых выражений возможен следующий трюк. В (IV C1) делаем формальную замену \(c \to c' = \frac{c}{\sqrt{\varepsilon}} \) (то есть заменяем скорость света в вакууме на скорость света в среде) и \(j^\alpha \to j^\alpha \sqrt{\varepsilon} \). Тогда получим
\begin{align}
F^i &= \sqrt{\varepsilon} E^i + \frac{1}{\sqrt{\mu}} B^i, \\
\nabla_i F^i &= \frac{4\pi}{\sqrt{\varepsilon}} \rho; \\
e^{ijk} \nabla_j F_k &= \frac{4\pi}{c} \sqrt{\varepsilon} j^i + \frac{1}{c} \sqrt{\mu} \frac{\partial F^i}{\partial x^i}.
\end{align}

Данное представление уравнений Максвелла имеет несколько наименований. В частности, оно известно как представление Римана–Зильбергитейна.

D. Импульсное представление уравнений Максвелла

Разложим векторы напряжённости электрического и магнитного полей, электрической и магнитной индукций в ряд Фурье по волновым векторам \(k^j, j \) — абстрактный индекс (фурые-образа стандартно обозначим шапочкой):
\begin{align}
\hat{E}^i(t, k_j) &= \frac{1}{(2\pi)^{3/2}} \int d^3 x^j \sqrt{g^{(3)}} E^i(t, x^j)e^{-ik_jx^j}, \\
\hat{H}^i(t, k_j) &= \frac{1}{(2\pi)^{3/2}} \int d^3 x^j \sqrt{g^{(3)}} H^i(t, x^j)e^{-ik_jx^j}, \\
\hat{B}^i(t, k_j) &= \frac{1}{(2\pi)^{3/2}} \int d^3 x^j \sqrt{g^{(3)}} B^i(t, x^j)e^{-ik_jx^j}, \\
\hat{D}^i(t, k_j) &= \frac{1}{(2\pi)^{3/2}} \int d^3 x^j \sqrt{g^{(3)}} D^i(t, x^j)e^{-ik_jx^j}, \\
\hat{\rho}(t, k_j) &= \frac{1}{(2\pi)^{3/2}} \int d^3 x^j \sqrt{g^{(3)}} \rho(t, x^j)e^{-ik_jx^j}, \\
\hat{j}^i(t, k_j) &= \frac{1}{(2\pi)^{3/2}} \int d^3 x^j \sqrt{g^{(3)}} j^i(t, x^j)e^{-ik_jx^j}. \tag{20}
\end{align}

Обратное преобразование:
\begin{align}
E^i(t, x^j) &= \frac{1}{\sqrt{(2\pi)^3}} \int d^3 k_j \sqrt{g^{(3)}} \hat{E}^i(t, k_j)e^{ik_jx^j}, \\
H^i(t, x^j) &= \frac{1}{\sqrt{(2\pi)^3}} \int d^3 k_j \sqrt{g^{(3)}} \hat{H}^i(t, k_j)e^{ik_jx^j}, \\
B^i(t, x^j) &= \frac{1}{\sqrt{(2\pi)^3}} \int d^3 k_j \sqrt{g^{(3)}} \hat{B}^i(t, k_j)e^{ik_jx^j}, \\
D^i(t, x^j) &= \frac{1}{\sqrt{(2\pi)^3}} \int d^3 k_j \sqrt{g^{(3)}} \hat{D}^i(t, k_j)e^{ik_jx^j}, \\
\rho(t, x^j) &= \frac{1}{\sqrt{(2\pi)^3}} \int d^3 k_j \sqrt{g^{(3)}} \hat{\rho}(t, k_j)e^{ik_jx^j}, \\
j^i(t, x^j) &= \frac{1}{\sqrt{(2\pi)^3}} \int d^3 k_j \sqrt{g^{(3)}} \hat{j}^i(t, k_j)e^{ik_jx^j}. \tag{21}
\end{align}

Следует заметить, что компоненты векторов \(E^i(t, x^j) \) и \(\hat{E}^i(t, k_j) \), (аналогично: \(H^i(t, x^j) \) и \(\hat{H}^i(t, k_j) \), \(D^i(t, x^j) \) и \(\hat{D}^i(t, k_j) \), \(B^i(t, x^j) \) и \(\hat{B}^i(t, k_j) \), \(j^i(t, x^j) \) и \(\hat{j}^i(t, k_j) \)) рассматриваются в разных базисах: \(E^i(t, x^j) = E^i_\delta(t, x^j) \delta^i_\delta, \)
\[\hat{E}^i(t, k_j) = \hat{E}^i_\delta(t, k_j) \delta^i_\delta, \]
\[\hat{g}^{(3)} := \det g_{ij}, \quad d\delta^2 = g_{ij}dx^i dx^j, \]
где базис \(\delta^i_\delta \) взят относительно вектора \(k_i \). Для всех \(k_i \) определён свой независимый базис. При выписыва-нии уравнений Максвелла из (IV D) можно работать не с интегралами, а напрямую с подынтегральными выражениями. Или воспользоваться формулами для преобразований Фурье:
\[(af(x^j) + bg(x^j)) = af(k_i) + bg(k_i), \quad a, b = \text{const}, \]
\[\frac{\partial f(x^j)}{\partial x^j} = ik_j \hat{f}(k_j), \]
\[f(x^j)g(x^j) = \frac{1}{\sqrt{(2\pi)^3}} (\hat{f} \ast \hat{g})(k_i), \]
где свёртка имеет вид
\[(\hat{f} \ast \hat{g})(k_i) = \int f(k_i - s_i)\hat{g}(s_i)d^3 s_i. \]
Считая \(g = \text{const} \), получим
\begin{align}
\imath \frac{1}{\sqrt{g^{(3)}}} \varepsilon^{ijk} k_j E_k(t, k_j) &= -\frac{1}{c} \partial_t B^i(t, k_j), \\
\imath \frac{1}{\sqrt{g^{(3)}}} \varepsilon^{ijk} k_j H_k(t, k_j) &= \frac{1}{c} \partial_t D^i(t, k_j) + \frac{4\pi}{c} j^i(t, k_j), \\
(ik_j D^i(t, k_j) = 4\pi \rho(t, k_j), \\
(ik_j B^i(t, k_j) = 0. \tag{22}
\end{align}
Поскольку результирующие (IVD) уравнения получаются комплексными, то представляется более оправданным использование в данном подходе комплексного представления уравнений Максвелла (IVC):

\[F^i(t, x^2) = \frac{1}{\sqrt{(2\pi)^3}} \int d^3k_j \sqrt{g^{(3)}} \tilde{F}^i(t, k_j)e^{ik_jx^2}, \]

\[G^i(t, x^2) = \frac{1}{\sqrt{(2\pi)^3}} \int d^3k_j \sqrt{g^{(3)}} \tilde{G}^i(t, k_j)e^{ik_jx^2}, \]

\[\rho(t, x^2) = \frac{1}{\sqrt{(2\pi)^3}} \int d^3k_j \sqrt{g^{(3)}} \tilde{\rho}(t, k_j)e^{ik_jx^2}, \]

\[j^i(t, x^2) = \frac{1}{\sqrt{(2\pi)^3}} \int d^3k_j \sqrt{g^{(3)}} \tilde{j}^i(t, k_j)e^{ik_jx^2}. \]

Замечание. В рамках классической электродинамики разложение векторов \(k^j \) по волновым векторам \(k^j \) соответствует в квантовой механике разложению этих векторов в ряд Фурье в базисе \(\{ \Gamma \} \): [2, с. 153] (аналогично и для \(k \) по волновым векторам)

Замечание. Поскольку тензор \(F_{\alpha\beta} \) действителен и антисимметричный, то его можно представить в виде

\[F_{\alpha\beta} = \varphi_{AB} \varepsilon_{A'B'} + \varepsilon_{AB} \varphi_{A'B'}, \]

* \(F^{\alpha\beta} = -i \varphi_{AB} \varepsilon^{A'B'} + i \varepsilon_{AB} \varphi^{A'B'}. \)

Заменив в уравнениях (IVB) абстрактные индексы \(\alpha \) на \(A' \) и \(\beta \) на \(B' \), запишем:

\[\nabla_{AA'}G_{AA'B'B'} = \frac{4\pi}{c} j_{BB'}. \]

Используя соотношение (IV E) получим

\[\nabla^{A'B'}\gamma_{AB} + \nabla^{A'B'}\gamma_{A'B'} = \frac{4\pi}{c} j_{BB'}. \]

Аналогично, из (IV B) и (IV E) получим

\[\nabla^{A'B'}\varphi_{AB} - \nabla^{A'B'}\varphi_{A'B'} = 0. \]

Таким образом полная система уравнений Максвелла в спинорном представлении имеет вид

\[\nabla^{A'B'}\varphi_{AB} - \nabla^{A'B'}\varphi_{A'B'} = 0, \]

\[\nabla^{A'B'}\gamma_{AB} + \nabla^{A'B'}\gamma_{A'B'} = \frac{4\pi}{c} j_{BB'}. \]

Система уравнений Максвелла в вакуме в спинорной форме записывается в виде одного уравнения [2, с. 385]:

\[\nabla^{AB'}\varphi_{AB} = \frac{2\pi}{c} j_{BB'}. \]

Выпишем компоненты спинора электромагнитного поля:

\[\varphi_{AB} = \frac{1}{2} F_{\alpha\beta} g^{A'B'}_{\alpha} g^{B'B'}_{\beta}, \]

\[A, A', B, B' = 0, 1, \quad \alpha, \beta = 0, 3. \]

Используя (IV E), (IV E) и обозначив \(F_i = E_i - iB_i \), можно записать [2, с. 386]:

\[\varphi_{00} = \frac{1}{2} (F_1 - iF_2), \]

\[\varphi_{01} = \varphi_{10} = -\frac{1}{2} F_3, \]

\[\varphi_{11} = -\frac{1}{2} (F_1 + iF_2). \]

V. РЕАЛИЗАЦИЯ УРАВНЕНИЙ МАКСВЕЛЛА В НЕКОТОРЫХ СИСТЕМАХ КООРДИНАТ

Продемонстрируем реализацию уравнений Максвелла в гологномом базисе на примере часто используемых систем координат: цилиндрической и сферической. Результат можно сравнить с реализацией в негологномой системе координат [9].

A. Уравнения Максвелла в цилиндрической системе координат

В рамках стандарта ISO 31-11 координаты \((x^1, x^2, x^3)\) обозначаются как \((\rho, \varphi, z)\). Чтобы не
возникало коллизий с обозначением плотности заряда ρ, будем использовать обозначения (r, φ, z).

Закон преобразования координат от декартовых к цилиндрическим:

$$\begin{cases} x = r \cos \varphi, \\ y = r \sin \varphi, \\ z = z. \end{cases}$$

Закон преобразования координат от цилиндрических к декартовым:

$$\begin{cases} r = \sqrt{x^2 + y^2}, \\ \varphi = \arctg \left(\frac{y}{x} \right), \\ z = z. \end{cases}$$

Метрический тензор:

$$g_{ij} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad g^{ij} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1/r^2 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Метрический радиус: $\sqrt{g} = r.$

Коэффициенты Ламе:

$$h_1 \equiv h_r = 1, \quad h_2 \equiv h_\varphi = r, \quad h_3 \equiv h_z = 1.$$

Соотношение между голономным (тензорным) и неголономным (векторным) базисами (см. (1) и (2)):

$$f^r = f^r, \quad f^\varphi = r f^\varphi, \quad f^z = f^z,$$

$$f_{r'} = f_r, \quad f_{\varphi'} = r f_{\varphi}, \quad f_{z'} = f_z.$$

Дифференциальные операторы в голономном базисе:

$$(\text{grad} \ f)_i = \frac{\partial f}{\partial r} \delta_i^r + \frac{\partial f}{\partial \varphi} \delta_i^\varphi + \frac{\partial f}{\partial z} \delta_i^z;$$

$$\text{div} \ f = \frac{1}{r} \partial_r \left(r f^r \right) + \partial_\varphi \left(f^\varphi \right) + \partial_z \left(f^z \right);$$

$$(\text{rot} \ f)^i_j = \frac{1}{r} \left[\partial_\varphi f_z - \partial_z f_\varphi \right] \delta_i^r +$$

$$+ \frac{1}{r} \left[\partial_z f_r - \partial_r f_z \right] \delta_i^\varphi + \frac{1}{r} \left[\partial_r f_\varphi - \partial_\varphi f_r \right] \delta_i^z.$$

Дифференциальные операторы в неголономном базисе:

$$(\text{grad} \ f)_i = \frac{\partial f}{\partial r} \delta_i^r + \frac{1}{r} \frac{\partial f}{\partial \varphi} \delta_i^\varphi + \frac{\partial f}{\partial z} \delta_i^z;$$

$$\text{div} \ f = \frac{1}{r} \partial_r \left(r f^r' \right) + \frac{1}{r} \partial_\varphi \left(f^\varphi' \right) + \partial_z \left(f^z' \right);$$

$$(\text{rot} \ f)^i_j = \frac{1}{r} \left[\partial_\varphi f_z' - r \partial_z f_\varphi' \right] \delta_i^r +$$

$$+ \left[\partial_z f_r' - \partial_r f_z' \right] \delta_i^\varphi + \frac{1}{r} \left[\partial_r (rf_\varphi') - \partial_\varphi (rf_r') \right] \delta_i^z.$$

Запишем уравнения Максвелла в цилиндрических координатах (r, φ, z).

$$\frac{1}{r} \left[\partial_\varphi E_0 - \partial_z E_3 \right] = -\frac{1}{c} \partial_t B^\varphi, \quad i, j, k = 1, 3,$$

$$\frac{1}{r} \left[\partial_\varphi H_k - \partial_z H_3 \right] = -\frac{1}{c} \partial_t D^\varphi + \frac{4\pi}{c} j^\varphi, \quad i, j, k = 1, 3,$$

$$\frac{1}{r} \partial_\varphi \left(r D^\varphi \right) = 4\pi \rho, \quad i = 1, 3,$$

$$\frac{1}{r} \partial_\varphi \left(r B^\varphi \right) = 0, \quad i = 1, 3.$$

После преобразований окончательно получаем:

$$\frac{1}{r} \left[\partial_\varphi E_3 - \partial_z E_2 \right] = -\frac{1}{c} \partial_t B^1,$$

$$\frac{1}{r} \left[\partial_\varphi E_1 - \partial_z E_3 \right] = -\frac{1}{c} \partial_t B^2,$$

$$\frac{1}{r} \left[\partial_\varphi E_2 - \partial_z E_1 \right] = -\frac{1}{c} \partial_t B^3,$$

$$\frac{1}{r} \left[\partial_\varphi H_3 - \partial_z H_2 \right] = -\frac{1}{c} \partial_t D^1 + \frac{4\pi}{c} j^1,$$

$$\frac{1}{r} \left[\partial_\varphi H_1 - \partial_z H_3 \right] = -\frac{1}{c} \partial_t D^2 + \frac{4\pi}{c} j^2,$$

$$\frac{1}{r} \left[\partial_\varphi H_2 - \partial_z H_1 \right] = -\frac{1}{c} \partial_t D^3 + \frac{4\pi}{c} j^3,$$

$$\frac{1}{r} D^1 + \frac{\partial D^1}{\partial r} + \frac{\partial D^2}{\partial \varphi} + \frac{\partial D^3}{\partial z} = 4\pi \rho,$$

$$\frac{1}{r} B^1 + \frac{\partial B^1}{\partial r} + \frac{\partial B^2}{\partial \varphi} + \frac{\partial B^3}{\partial z} = 0.$$

B. Уравнения Максвелла в сферической системе координат

В рамках стандарта ISO 31-11 координаты (x^1, x^2, x^3) обозначаются как (r, ϑ, φ).

Закон преобразования координат от декартовых к сферическим:

$$\begin{cases} x = r \sin \vartheta \cos \varphi, \\ y = r \sin \vartheta \sin \varphi, \\ z = r \cos \vartheta. \end{cases}$$

Закон преобразования координат от сферических к декартовым:

$$\begin{cases} r = \sqrt{x^2 + y^2 + z^2}, \\ \vartheta = \arccos \left(\frac{z}{\sqrt{x^2 + y^2 + z^2}} \right) = \arctg \left(\sqrt{\frac{x^2 + y^2}{z^2}} \right), \\ \varphi = \arctg \left(\frac{y}{x} \right). \end{cases}$$

Метрический тензор:

$$g_{ij} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & r^2 \sin^2 \vartheta \end{pmatrix}, \quad g^{ij} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{r^2} & 0 \\ 0 & 0 & \frac{1}{r^2 \sin^2 \vartheta} \end{pmatrix}.$$
\[
\sqrt{g} = r^2 \sin \vartheta.
\]

Коэффициенты Ламе:
\[
h_1 \equiv h_r = 1, \quad h_2 \equiv h_\vartheta = r, \quad h_3 \equiv h_\varphi = r \sin \vartheta.
\]

Соотношение между гологонным (тензорным) и негологонным (векторным) базисами (см. (П) и (П)):
\[
f'j = f', \quad f'k = rf', \quad f'c = r \vartheta f',\]
\[
f'j = f, \quad f'k = \frac{1}{r} f_\vartheta, \quad f'c = \frac{1}{r \sin \vartheta} f_\varphi.
\]

Дифференциальные операторы в гологонном базисе:
\[
(\text{grad} f)_i = \frac{\partial f}{\partial r} \delta^i_r + \frac{\partial f}{\partial \theta} \delta^i_\theta + \frac{\partial f}{\partial \varphi} \delta^i_\varphi;
\]
\[
\text{div} \vec{f} = \frac{1}{r^2} \partial_r (r^2 f'') + \frac{1}{r \sin \vartheta} \partial_\theta (\sin \vartheta f') + \partial_\varphi (f');
\]
\[
(\text{rot} \vec{f})^i = \frac{1}{r^2 \sin \vartheta} \partial_\theta (\sin \vartheta f_i') - \frac{1}{r \sin \vartheta} \partial_{\varphi} f_i' + \frac{1}{r} \partial_r (f_i') + \frac{1}{r} \frac{1}{r} \partial_r (r f_i') - \partial_\varphi (f_i');
\]

Дифференциальные операторы в негологонном базисе:
\[
(\text{grad} f)_i = \frac{\partial f}{\partial r} \delta^i_r + \frac{1}{r} \frac{\partial f}{\partial \theta} \delta^i_\theta + \frac{1}{r \sin \vartheta} \frac{\partial f}{\partial \varphi} \delta^i_\varphi;
\]
\[
\text{div} \vec{f} = \frac{1}{r^2} \partial_r (r^2 f'') + \frac{1}{r \sin \vartheta} \partial_\theta (\sin \vartheta f') + \frac{1}{r} \partial_\varphi (f');
\]
\[
(\text{rot} \vec{f})^i = \frac{1}{r \sin \vartheta} \partial_\theta (\sin \vartheta f_i') - \partial_{\varphi} f_i' + \frac{1}{r} \partial_r (f_i') + \frac{1}{r} \frac{1}{r} \partial_r (r f_i') - \partial_\varphi (f_i');
\]

Запишем уравнения Максвелла в сферических координатах \((r, \vartheta, \varphi)\).
\[
\frac{1}{r^2 \sin \vartheta} \left[\partial_r E_k - \partial_k E_r \right] = -\frac{1}{c} \partial_t B_k^i, \quad i, j, k = 1, 3,
\]
\[
\frac{1}{r^2 \sin \vartheta} \left[\partial_r H_k - \partial_k H_r \right] = -\frac{1}{c} \partial_t D_k^i + \frac{4 \pi}{c} j_k^i, \quad i, j, k = 1, 3,
\]
\[
\frac{1}{r^2 \sin \vartheta} \partial_\vartheta \left(r^2 \sin \vartheta \partial \vartheta \right) = 4 \pi \rho, \quad i = 1, 3,
\]
\[
\frac{1}{r^2 \sin \vartheta} \partial_{\varphi} \left(r^2 \sin \vartheta \partial_{\varphi} \right) = 0, \quad i = 1, 3.
\]

После преобразований окончательно получаем:
\[
\frac{1}{r^2 \sin \vartheta} \left[\partial_r E_3 - \partial_3 E_r \right] = -\frac{1}{c} \partial_t B_1^1,
\]
\[
\frac{1}{r^2 \sin \vartheta} \left[\partial_\vartheta E_1 - \partial_1 E_\vartheta \right] = -\frac{1}{c} \partial_t B_2^2,
\]
\[
\frac{1}{r^2 \sin \vartheta} \left[\partial_{\varphi} E_2 - \partial_2 E_\varphi \right] = -\frac{1}{c} \partial_t B_3^3,
\]
\[
\frac{1}{r^2 \sin \vartheta} \left[\partial_\vartheta H_3 - \partial_3 H_\vartheta \right] = -\frac{1}{c} \partial_t D_1^1 + \frac{4 \pi}{c} j_1^1,
\]
\[
\frac{1}{r^2 \sin \vartheta} \left[\partial_{\varphi} H_1 - \partial_1 H_{\varphi} \right] = -\frac{1}{c} \partial_t D_2^2 + \frac{4 \pi}{c} j_2^2,
\]
\[
\frac{1}{r^2 \sin \vartheta} \left[\partial_r H_2 - \partial_2 H_r \right] = -\frac{1}{c} \partial_t D_3^3 + \frac{4 \pi}{c} j_3^3.
\]

VI. ЗАКЛЮЧЕНИЕ

Сформулируем основные выводы и результаты, полученные в работе:

1. Показана связь между тензорным и векторным формализмами.

2. Выписано ковариантное координатное представление дифференциальных операторов для гологонных систем координат.

3. Продемонстрировано применение тензорного формализма для разных форм записи уравнений Максвелла.

4. Выписаны уравнения Максвелла в ковариантной бескоординатной и ковариантной координатной формах.

5. Показано совпадение результатов, полученных с помощью тензорного и векторного формализмов на примере цилиндрической и сферической систем координат.

6. Применение для уравнений Максвелла вместо векторного формализма тензорного позволяет упростить математические выкладки, в частности при работе с недекартовыми системами координат.

Упрощение записи уравнений и промежуточных расчетов в недекартовых системах координат возможно а счёт использования хорошо разработанного формализма тензорного анализа. Переход же в уравнениях или результатов векторный формализм при необходимости можно осуществлять на заключительном этапе.
[1] Кулябов Д. С., Немчанинова Н. А. Уравнения Максвелла в криволинейных координатах // Вестник РУДН. Серия «Математика. Информатика. Физика». — 2011. — № 2. — С. 172–179.
[2] Пенроуз Р., Риндлер В. Спиноры и пространство-время. Два-спинорное исчисление и релятивистские поля. — М. : Мир, 1987. — Т. 1. — 528 с.
[3] Морс Ф. М., Фешбах Г. Методы теоретической физики. — М. : Издательство иностранной литературы, 1960.
[4] Васильев А. Н. Классическая электродинамика. Краткий курс лекций. — С.-П. : БХВ-Петербург, 2010.
[5] Minkowski H. Die Grundlagen für die magnetischen Vorgänge in bewegten Körpern // Math. Ann. — 1910. — H. 68. — S. 472–525.
[6] Терлецкий Я. П., Рыбаков Ю. П. Электродинамика: Учебное пособие для студентов физ. спец. университетов. — 2-е, перераб. изд. — М. : Высш. шк., 1990. — 352 с.
[7] Стрэттон Дж. Теория электромагнетизма. — М.-Л.: ГИТТЛ, 1948.
[8] Silberstein L. Electromagnetische Grundgleichungen in bivectorieller Behandlung // Annalen der Physik. — 1907. — Bd. 22. — S. 579–586.
[9] В. Батыгин В., Н. Топтыгин И. Сборник задач по электродинамике. — М. : НИЦ «Регулярная и хаотическая динамика», 2002.