

Hydride Ion Intercalation and Conduction in the Electride \(\text{Sr}_3\text{CrN}_3 \)

Xu Miaoting, Cuicui Wang, Benjamin J. Morgan and Lee A. Burton*

The electride \(\text{Sr}_3\text{CrN}_3 \) has a one-dimensional channel of electron density, which is a rare feature that offers great potential for fast ion conduction. Using density functional theory, we find that \(\text{Sr}_3\text{CrN}_3 \) is an excellent hydride conductor within this channel, with a diffusion barrier as low as 0.30 eV and an estimated diffusion coefficient of \(5.37 \times 10^{-6} \text{cm}^2/\text{s} \). This diffusion barrier is lower than those reported for the best hydride conductors to date. We also show the most-stable amount of hydride in the host material under standard conditions and the corresponding change in electronic structure from metal to wide-gap insulator. Our results highlight the potential offered by 1D electride materials for ion-transport applications such as energy storage or gas separation.

Introduction

The global emphasis on restricting carbon emissions continues to increase the demand for clean technologies. For example, renewable energies are predicted to phase-out coal and gas power, while electric vehicles are projected to replace those with internal combustion engines. Both of these advances require continuing advances in electrochemical energy storage technologies, such as lithium-ion batteries or fuel cells.

Solid-state ion-conducting materials have been long-studied for their potential use in energy storage systems. Recent years have seen particular advances in the development of highly-conducting lithium ion solid electrolytes with potential applications in all-solid-state lithium-ion batteries. The limited global availability of lithium, however, means that lithium-ion batteries are expected to meet only part of the projected future energy-storage needs. This motivates the continuing search for alternate materials, including solid-state electrolytes, that could be used in non-lithium energy-storage devices.

Hydride ions have small ionic radii, large electronic polarizability and a high standard redox potential for \(\text{H}_2/\text{H}^- (-2.3 \text{ V}) \). These characteristics make \(\text{H}^- \) ions promising for applications in next-generation electrochemical energy storage with high voltage and high energy density. Furthermore, hydrogen is highly abundant, globally available and low cost. To date, materials with high ion conduction for \(\text{H}^- \) have been reported but these were only achieved at relatively high temperatures. Thus, there is still ample scope for improvement in this area.

Electrides are class of rare ionic compounds that possess free electrons localized within cavities in the host structure, with these electrons acting as anions. To date, only a few inorganic electrides have been experimentally identified, but they are typically classified according to dimensionality of their free electron density. For example, if the excess electron density occupies cavities or pores the electrides are classified as OD (e.g., \(\text{Ca}_2\text{Al}_6\text{O}_{12} \)), if the density is in a one-dimensional channel they are 1D (e.g. \(\text{Y}_2\text{Si}_3 \)) or if the density is continuous in a plane they are 2D (e.g. \(\text{Ca}_2\text{N}_2 \)). The anionic electrons of electrides have been shown to effectively interact with external hydrogen, leading to excellent hydride absorption and desorption properties, even in 1D electrides.

In this work we consider \(\text{Sr}_3\text{CrN}_3 \), a recently identified 1D electride, as a hydride conductor. \(\text{Sr}_3\text{CrN}_3 \) can be described with the formal oxidation states \(\text{Sr}^{2+}\text{Cr}^{3+}\text{N}^{3-} \) and the excess electrons aggregating in one-dimensional channels (see Figure 1). Here, we explore the optimal diffusion path of hydride ions in the channel using the climbing-image nudged-elastic-band (CI-NEB) method. We also investigate the hydrogen capacity by calculating insertion energies of hydride ions in the structure. Finally, we report the electronic nature of the host material before and after hydride intercalation, showing a shift from metallic to insulating behaviour. Overall, we find that \(\text{Sr}_3\text{CrN}_3 \) has a low capacity for hydrogen under standard conditions but the diffusion barrier of 0.3 eV within the 1D channels is significantly lower than barriers reported for best-in-class hydride ion conductors previously e.g. 0.52 eV for barium hydride.

Figure 1 The crystal structure of \(\text{Sr}_3\text{CrN}_3 \) with Sr, Cr and N atoms represented by green, blue and light grey spheres respectively. The unit cell is shown with black lines. The empty channels in c-direction are where the excess electron density resides.
Methods

Density function theory (DFT) calculations were performed using the Vienna Ab Initio Simulation Package (VASP),23,24 with the Projector Augmented Wave (PAW) method for modelling core electrons.23,24 The Perdew-Burke-Ernzerhof (PBE) exchange-correlational functional of the Generalized Gradient Approximation (GGA) was used.25

For the Sr$_3$CrN$_3$H$_x$ (0<x<3) calculations, an energy cut-off of 520 eV was employed. Any H atoms were added to the system as neutral species and all computations were spin polarized. Magnetic ions were initialised in a high-spin ferromagnetic configuration and then allowed to relax during each calculation. To sample k-space we used a 6 x 6 x 9 Monkhorst-Pack set of k-points with the tetrahedron method.26 Electronic convergence criterion was set to 1 x 10$^{-6}$ eV and ionic convergence criterion was set to 1 x 10$^{-5}$ eV/Å in all cases. The H$_2$ gas was calculated in a unit cell of 10 Å with a gamma centred single point k-grid.

To investigate potential diffusion pathways for mobile H- we performed a series of Climbing Image Nudged Elastic Band (CI-NEB) calculations with fixed mid-points, as implemented in VASP combined with the VTST-Tools27 by Henkelman et al.28

Finally the screened-exchange hybrid density functional of Heyd-Scuseria-Ernzerhof (HSE06)29 was used for calculations of electronic properties. This method is known to correct the underestimation of band gap and over delocalisation of conventional DFT.30

For plotting the band structures we use Pymatgen’s “electronic_structure” module BSPlotter.31

Results and discussion

The crystal structure of Sr$_3$CrN$_3$ has the hexagonal space group P6$_3$/m, with lattice constants $a = 7.84$, $b = 7.84$, $c = 5.24$, $\alpha = 90.00$, $\beta = 90.00$, $\gamma = 120.00$. The lattice constants obtained from the DFT structure relaxation compare well to the experimentally determined values (see Table 1).32 The structure contains trigonal-planar [CrN$_3$]$^+$ anions and Sr$^{2+}$ cations arranged to form 1D channels as shown in Figure 1. This 1D channel contains the excess electron density that allows the material to be defined as an electride.31

In Sr$_3$CrN$_3$, Sr and N ions occupy Wyckoff 6h sites and Cr occupies 2c sites. The remaining high-symmetry Wyckoff sites are vacant in the stoichiometric material and are therefore available as potential sites to accommodate anionic hydrogen.

To analyse the ability of Sr$_3$CrN$_3$ to accommodate intercalated hydrogen, we consider all possible H- configurations for x(H) = 1 to 6, where x(H) = 6 corresponds to all available Wyckoff sites. These are calculated using Equations 2 and 3, below. Compared with other hydrogen storage materials, the hydrogen storage density of Sr$_3$CrN$_3$ is low—e.g. lower than pressurised H$_2$ gas—owing to the composition and structure of our material.37 The energy change is calculated as a function of hydrate position or listed in Table S1 and plotted in Figure 2, although symmetry equivalence means fewer than 25 data points are visible in the plot. These results show that under standard conditions one intercalated hydrate per formula unit has the lowest energy overall compared to the pure electrode. There are two formula units of Sr$_3$CrN$_3$ in a unit cell, each one providing an excess electron that makes the material an electride. Thus, the addition of two hydrogen atoms to the unit cell creates the material Sr$_3$CrN$_3$H$_2$, which agrees with experimental reports on the related material Ba$_2$CrN$_3$H.34 The positions of the hydrate ions corresponding to the lowest energy are on the 2b Wyckoff positions with the fractional unit cell coordinates (0,0,0) and (0,0,0.5). The continued addition of hydrates is still favourable up to the addition of the 3rd hydrate ion per formula unit, at which point the change in energy becomes positive. This indicates that increasing chemical potential of H would be needed for additional uptake of H to proceed.

\begin{equation}
\Delta E = E_{\text{Sr}_3\text{CrN}_3\text{H}_x} - (E_{\text{Sr}_3\text{CrN}_3} + E_{\text{0.5xH}_2})
\end{equation}

The energy change (\(\Delta E\)) for all 25 total combinations of hydrate position or listed in Table S1 and plotted in Figure 2, although symmetry equivalence means fewer than 25 data points are visible in the plot. These results show that under standard conditions one intercalated hydrate per formula unit has the lowest energy overall compared to the pure electrode. There are two formula units of Sr$_3$CrN$_3$ in a unit cell, each one providing an excess electron that makes the material an electride. Thus, the addition of two hydrogen atoms to the unit cell creates the material Sr$_3$CrN$_3$H$_2$, which agrees with experimental reports on the related material Ba$_2$CrN$_3$H.34 The positions of the hydrate ions corresponding to the lowest energy are on the 2b Wyckoff positions with the fractional unit cell coordinates (0,0,0) and (0,0,0.5). The continued addition of hydrates is still favourable up to the addition of the 3rd hydrate ion per formula unit, at which point the change in energy becomes positive. This indicates that increasing chemical potential of H would be needed for additional uptake of H to proceed.

\begin{equation}
V(H_2) = \frac{m(H_2)}{\rho}
\end{equation}

\begin{equation}
\omega(H_2) = \frac{N(H_2) \times \rho(M(H_2))}{M(Sr_3CrN_3(H_2))} \times 100\%
\end{equation}

Hydride migration pathways and diffusion coefficients

We continue to assess the hydrate ion migration properties of Sr$_3$CrN$_3$. Specifically, we calculate the energy barrier to ionic diffusion which directly relates to diffusivity and hence various
device properties including necessary operating temperature and power output. According to the results above, (0,0,0) and (0,0,0.5) are the optimum positions for hydride ions in the material. Therefore, these two positions are used as the initial and final positions for exploring the migration path of hydride ions using the Cl-NEB method, as shown in Figure 3. These positions are within the one-dimensional cavity channel that is surrounded by strontium cations in the material.

The Cl-NEB method generates a direct linear path connecting the start and end points with a very low energy barrier of 0.30 eV as shown in Figure 4. Even if the atoms of the host material remain fixed at the phase-pure positions, the energy is still found to be remarkably low at 0.35 eV. Our calculated energy barrier is smaller than those reported in the literature for the fastest reported hydride ion conducting materials: 0.52 eV for barium hydride,12 or 1.2 eV for oxygen substituted lanthanum hydride. Furthermore, proton migration is usually associated with an activation energy of higher than 0.5 eV in oxide materials,39 despite protons having a smaller ionic radii than hydrides. As a result, these are among the most favourable properties for ionic diffusion reported previously.

We sample increasing displacement from the linear path within the channel to confirm the route calculated here is the ground state. We also analysed alternate migration routes outside of the one-dimensional channel. When we select (0.10,0.25,0.25) as midpoint, the migration barrier is 2.40 eV; for (0.25,0.025) the barrier is 2.64 eV and for (0.15,0.10,0.23), the barrier is 3.94 eV. Finally, we also sampled the paths along the other 2 unit-cell axes with a direction (0, 0, 0 -> 0, 0, 0.5) giving a barrier of 5.04 eV and b direction (0, 0, 0 -> 0, 0.5, 0) giving a barrier of 4.92 eV. Thus, we conclude that migration within the electride channel is highly favourable relative to alternate routes through the material. The large difference between energy barriers means that this material will be highly directional in its ionic migration, suggesting that so-called superionic fast conduction may be possible.40

Electronic structures of the Sr3CrN3 and Sr3CrN3H

We consider the effect of hydride intercalation into Sr3CrN3 on the electronic structure to illucidate the nature of the interaction between the hydride and the anionic electron and to ascribe possible application in devices. We use the hybrid functional HSE06 to calculate the electronic properties of Sr3CrN3 and Sr3CrN3H, based on occupation of 2H on the 2b site, i.e., the lowest energy configuration under standard conditions. The band structure diagrams for Sr3CrN3 and Sr3CrN3H are shown in Figure 5. We find that Sr3CrN3 is metallic, which agrees with earlier analysis that places the anionic electron density of the electrode at the Fermi level.19 On the addition of the hydride ions, however, the compound becomes a wide band-gap semiconductor, presenting a band gap value of 3.0 eV. This again is consistent with analogous data reported for the related material Ba3CrN3H34, as well as for...
other electrides in the literature. The large shift in electronic properties suggests that the anionic electrons reduce the hydride and are then not available in the structure. This is further corroborated by the fact that the bands of the hydride phase are relatively flat across the entire Brillouin zone, meaning that charges are tightly bound.

Druffel et al. have suggested that electrides might find use in high-capacity electrodes that realise electron–anion reversible exchange at room temperature. In the case of SrCrN₃ we predict no significant structural reorganisation and very small changes in unit cell volume upon hydrogen intercalation. Our analysis of the electronic nature of the material precludes such an application as the intercalated SrCrN₃H is strongly insulating, whereas an electrode is typically sought to be metallic in nature. What’s more the flat bands mean a high charge effective mass and low conductivity, which is again unfavourable for application as an electrode. The hydride capacity is also relative low for such an application. However, the wide-band gap in the presence of hydride ions suggests that the material could be employed as an electrolyte in a fuel cell configuration, wherein a constant flow of hydride ions could maintain electrically insulating behaviour, which is what forces the electrons around the external circuit to produce electricity available for work. Finally, the band structure shows that the spin-up and spin-down states are degenerate, which indicates no intrinsic ferromagnetism for either the hydride or phase pure material.

Conclusions
In summary, we have investigated the electride SrCrN₃ as a hydrogen storage material and hydride ion conductor. The overall energy minimum under standard conditions is obtained on addition of one hydride per unit formula forming SrCrN₃H, although up to 2.5 should still be thermodynamically stable, forming Sr₂CrN₂H₂. While uptake and desorption of hydrogen is readily observed in experiment for electrides, this material is not likely to be a candidate of a hydrogen storage material due to the heavy constituent elements and relatively unopen structure.

On the other hand, we find Sr₂CrN₂H to be an excellent conductor of hydride ions. Within the 1D channel hydrogen ions show a migration barrier of 0.30 eV, which is significantly lower than for even some of the best performing hydride-ion conductors reported to date, e.g., 0.52 eV for barium hydride, or 1.2-1.3 eV for oxygen substituted lanthanum hydride. While it is tempting to attribute the low diffusion barrier to the anionic electrons in a one-dimensional channel in the material facilitating conduction, the electronic structure indicates that the excess electrons are used in reducing the H to H₂ becoming a wide–band gap ionic material in the process. Thus, we foresee ample scope for future study of ionic conduction in this material and other electrides in the future. Overall, we find that Sr₂CrN₂H exhibits exceptional ionic transport properties and could be particularly useful for energy storage devices, catalysis or gas separation applications.

Figure 5 (a) The band structure of Sr₂CrN₃ showing metallic behaviour and (b) the band structure of Sr₂CrN₂H showing a relatively wide band gap. The red and blue states are spin up and spin down respectively.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
The L.A.B acknowledges support by the Shanghai Municipal Science and Technology Commission Program, number 19010500500, and the Natural National Science Foundation of China (NSFC) number 51950410585.

References
1. J. P. Weyant, Costs of Reducing Global Carbon Emissions, *Journal of Economic Perspectives*, 1993, 7, 27–46.
2. F. Manzano-Agugliaro, A. Alcaide, F. G. Montoya, A. Zapata-Sierra and C. Gil, Scientific production of renewable energies worldwide: An overview, *Renewable and Sustainable Energy Reviews*, 2013, 18, 134–143.
This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, 00, 1-3 | 5

Please do not adjust margins

3 C.-J. Winter, Hydrogen energy—expected engineering breakthroughs, *International Journal of Hydrogen Energy*, 1987, **12**, 521–546.

4 J. W. Fergus, Electrolytes for solid oxide fuel cells, *Journal of Power Sources*, 2006, **162**, 30–40.

5 N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto and A. Mitsui, A lithium superionic conductor, *Nature Mater.*, 2011, **10**, 682–686.

6 T. Famprikis, P. Canepa, J. A. Dawson, M. S. Islam and C. Masquelier, Fundamentals of inorganic solid-state electrolytes for batteries, *Nat. Mater.*, 2019, **18**, 1278–1291.

7 S. Ohno, A. Banik, G. F. Dewald, M. A. Kraft, T. Krauskopf, N. Minina, P. Till, M. Weiss and W. G. Zeier, Materials design of ionic conductors for solid state batteries, *Prog. Energy, 2020*, **2**, 022001.

8 B. J. Morgan, Understanding fast-ion conduction in solid electrolytes, *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 2021, **379**, 20190451.

9 C. Helbig, Supply risks associated with lithium-ion battery materials, *Journal of Cleaner Production*, 2018, 13.

10 K. Fukui, S. Iimura, T. Tada, S. Fujitsu, M. Sasase, H. Tamatsukuri, T. Honda, K. Ikeda, T. Otomo and H. Hosono, Characteristic fast H+ ion conduction in oxygen-substituted lanthanum hydride, *Nat Commun.*, 2019, **10**, 2578.

11 W. Chen, Y. Jin, J. Zhao, N. Liu and Y. Cui, Nickel-hydrogen batteries for large-scale energy storage, *PNAS*, 2018, **115**, 11694–11699.

12 M. C. Verbraeken, C. Cheung, E. Suard and J. T. S. Irvine, High ionic conductivity in barium hydride, *Nature Mater.*, 2015, **14**, 95–100.

13 C. Liu, S. A. Nikolaev, W. Ren and L. A. Burton, Electrodes: a review, *J. Mater. Chem. C*, 2020, **8**, 10551–10567.

14 S. Matsuishi, High-Density Electron Anions in a Nanoporous Single Crystal: [Ca24Al28O64]4+(4e−), *Science*, 2003, **301**, 626–629.

15 Q. Zheng, T. Feng, J. A. Hachtel, R. Ishikawa, Y. Cheng, L. Daemen, J. Xing, J. C. Idrobo, J. Yan, N. Shibata, Y. Ikuhara, B. C. Sales, S. T. Pantelides and M. Chi, Direct visualization of anionic electrons in an electrode reveals inhomogeneities, *Science Advances*, 2021, **7**, 6819.

16 K. Lee, S. W. Kim, Y. Toda, S. Matsuishi and H. Hosono, Dicalcium nitride as a two-dimensional electrode with an anionic electron layer, *Nature*, 2013, **494**, 336–340.

17 M. Kitano, Y. Inoue, H. Ishikawa, K. Yamagata, T. Nakao, T. Tada, S. Matsuishi, T. Yokoyama, M. Haru and H. Hosono, Essential role of hydride ion in ruthenium-based ammonia synthesis catalysts, *Chem. Sci.*, 2016, **7**, 4036–4043.

18 T. Inoshita, S. Jeong, N. Hamada and H. Hosono, Exploration for Two-Dimensional Electrides via Database Screening and Ab Initio Calculation, *Phys. Rev. X*, 2014, **4**, 031023.

19 P. Chanhom, K. E. Fritz, L. A. Burton, J. Kloppenburg, Y. Filinchuk, A. Senyshyn, M. Wang, Z. Feng, N. Insin, J. Suntivich and G. Hautier, Sr3CrN3: A New Electride with a Partially Filled d-Shell Transition Metal, *J. Am. Chem. Soc.*, 2019, **141**, 10595–10598.

20 L. A. Burton, F. Ricci, W. Chen, G.-M. Rignanese and G. Hautier, High-Throughput Identification of Electrides from All Known Inorganic Materials, *Chem. Mater.*, 2018, **30**, 7521–7526.

21 G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, *Phys. Rev. B*, 1996, **54**, 11169–11186.

22 G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, *Phys Rev B Condens Matter*, 1993, **48**, 13115–13118.

23 P. E. Blöchl, Projector augmented-wave method, *Phys. Rev. B*, 1994, **50**, 17953–17979.

24 G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, *Phys. Rev. B*, 1999, **59**, 1758–1775.

25 J. P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, *Phys. Rev. Lett.*, 1996, **77**, 3865–3868.

26 H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, *Phys. Rev. B*, 1976, **13**, 5188–5192.

27 Transition State Tools for VASP — Transition State Tools for VASP, http://theory.cm.utexas.edu/vststools/, (accessed 14 February 2021).

28 G. Henkelman, B. P. Uberuaga and H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths, *The Journal of Chemical Physics*, 2000, **113**, 9901–9904.

29 J. Heyd, G. E. Scuseria and M. Ernzerhof, Hybrid functionals based on a screened Coulomb potential, *The Journal of Chemical Physics*, 2006, **124**, 8207–8215.

30 C. Freysoldt, B. Grabowski, T. Hickel, J. Neugebauer and C. Walle, First-principles calculations for point defects in solids, *Review of Modern Physics*.

31 S. P. Ong, W. D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V. L. Chevrier, K. A. Persson and G. Ceder, Python
Materials Genomics (pymatgen): A robust, open-source python library for materials analysis, *Computational Materials Science*, 2013, 68, 314–319.

32 M. G. Barker, M. J. Begley, P. P. Edwards, D. H. Gregory and S. E. Smith, Synthesis and crystal structures of the new ternary nitrides Sr3CrN3 and Ba3CrN3, *J. Chem. Soc., Dalton Trans.*, 1996, 1.

33 C. Wang, M. Xu, K. T. Butler and L. A. Burton, Ultralow Work Function of the Electride Sr$_3$CrN$_3$, arXiv:2108.12865 [cond-mat].

34 N. W. Falb, J. N. Neu, T. Besara, J. B. Whalen, D. J. Singh and T. Siegrist, Ba 3 CrN 3 H: A New Nitride-Hydride with Trigonal Planar Cr 4+, *Inorganic Chemistry*.

35 I. J. McColm, V. Kotrocvo, T. W. Button, N. J. Clark and B. Bruer, Hydrogen sorption properties of D88-type systems: I. Hydrides of Y5Si3, *Journal of the Less Common Metals*, 1986, 115, 113–125.

36 I. J. McColm and J. M. Ward, Hydrogen sorption properties of D88-type systems: IV. Y5Ge3 and Y5Si3-Y5Ge3 solid solutions, *Journal of Alloys and Compounds*, 1992, 178, 91–100.

37 P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, *Phys. Rev.*, 1964, 136, B864–B871.

38 M. Okubo, Y. Tanaka, H. Zhou, T. Kudo and I. Honma, Determination of Activation Energy for Li Ion Diffusion in Electrodes, *J. Phys. Chem. B*, 2009, 113, 2840–2847.

39 Y. Meng, J. Gao, Z. Zhao, J. Amoroso, J. Tong and K. S. Brinkman, Review: recent progress in low-temperature proton-conducting ceramics, *J Mater Sci*, 2019, 54, 9291–9312.

40 X. He, Y. Zhu and Y. Mo, Origin of fast ion diffusion in superionic conductors, *Nat Commun*, 2017, 8, 15893.

41 Y. He, Y. Li, C. Chen and H. Yu, Diffusion coefficient of hydrogen interstitial atom in α-Fe, γ-Fe and ε-Fe crystals by first-principle calculations, *International Journal of Hydrogen Energy*, 2017, 42, 27438–27445.

42 S. T. Hartman and R. Mishra, Layered electrides as fluoride intercalation anodes, *J. Mater. Chem. A*, 2020, 8, 24469–24476.

43 M. Kitano, S. Kanbara, Y. Inoue, N. Kuganathan, P. V. Sushko, T. Yokoyama, M. Hara and H. Hosono, Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis, *Nat Commun*, 2015, 6, 6731.

44 D. L. Druffel, J. T. Pawlik, J. D. Sundberg, L. M. McRae, M. G. Lanetti and S. C. Warren, First-Principles Prediction of Electrochemical Electron–Anion Exchange: Ion Insertion without Redox, *J. Phys. Chem. Lett.*, 2020, 11, 9210–9214.