Attribution of illnesses transmitted by food and water to comprehensive transmission pathways using structured expert judgment, United States

Beshearse, Elizabeth; Bruce, Beau B.; Nane, Gabriela F.; Cooke, Roger M.; Aspinall, Willy; Hald, Tine; Crim, Stacy M.; Griffin, Patricia M.; Fullerton, Kathleen E.; Collier, Sarah A.

Total number of authors: 14

Published in:
Emerging Infectious Diseases

Link to article, DOI:
10.3201/eid2701.200316

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Beshearse, E., Bruce, B. B., Nane, G. F., Cooke, R. M., Aspinall, W., Hald, T., Crim, S. M., Griffin, P. M., Fullerton, K. E., Collier, S. A., Benedict, K. M., Beach, M. J., Hall, A. J., & Havelaar, A. H. (2021). Attribution of illnesses transmitted by food and water to comprehensive transmission pathways using structured expert judgment, United States. Emerging Infectious Diseases, 27(1), 182-195. https://doi.org/10.3201/eid2701.200316

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Illnesses transmitted by food and water cause a major disease burden in the United States despite advancements in food safety, water treatment, and sanitation. We report estimates from a structured expert judgment study using 48 experts who applied Cooke’s classical model of the proportion of disease attributable to 5 major transmission pathways (foodborne, waterborne, person-to-person, animal contact, and environmental) and 6 sub-pathways (food handler–related, under foodborne; recreational, drinking, and nonrecreational/nondrinking, under waterborne; and presumed person-to-person-associated and presumed animal contact-associated, under environmental). Estimates for 33 pathogens were elicited, including bacteria such as *Salmonella enterica*, *Campylobacter* spp., *Legionella* spp., and *Pseudomonas* spp.; protozoa such as *Acanthamoeba* spp., *Cyclospora cayetanensis*, and *Naegleria fowleri*; and viruses such as norovirus, rotavirus, and hepatitis A virus. The results highlight the importance of multiple pathways in the transmission of the included pathogens and can be used to guide prioritization of public health interventions.

States, ≈9.4 million illnesses, 56,000 hospitalizations, and 1,351 deaths are caused by 31 known pathogens transmitted through food (2). Previous estimates of the burden of waterborne disease in the United States have largely focused on the burden of gastrointestinal illness associated with drinking water; an estimated 4–32 million cases of illness occur each year (3,4).

Source attribution is a process of estimating the proportion of illnesses resulting from various exposures for specific pathogens. Attributing illnesses to sources can guide decisions about where to target prevention and control efforts by apportioning illnesses to specific sources, thus aiding in the development of specific interventions (5). Attributing to the comprehensive set of transmission pathways considered in this study (foodborne, waterborne, person-to-person, animal contact, and environmental) is challenging for many reasons, including limited data and difficulty combining existing data from multiple sources. For example, outbreak surveillance data, such as those collected through the National Outbreak Reporting System (NORS), can provide information on sources of illness but are subject to reporting biases and may not be representative of endemic disease (6). Other studies have also raised concerns of publication bias toward novel, unique, or large foodborne outbreaks, limiting the utility of systematic reviews of published outbreaks in assessing source attribution (7,8). One method to address these barriers is structured expert judgment (SEJ), a method to use and combine estimates produced by experts and quantify uncertainty for the purpose of risk analysis when the ability to gather data is hindered by high expense, data scarcity, or lack of reliable data. This method, when executed well, is formal, reproducible, and mathematically and scientifically rigorous (9–11).
The Centers for Disease Control and Prevention (CDC) works to control and prevent illness caused by foodborne and waterborne pathogens in the United States. To accomplish this, CDC supports states and territories in tracking disease, detects and responds to outbreaks, and uses surveillance and sentinel site data to estimate the burden of these diseases in the United States. To inform this work, we implemented an SEJ study using Cooke’s classical model to estimate the proportion of domestically acquired illnesses for 33 pathogens transmitted through food and water that can be attributed to each of 5 major transmission pathways and 6 subpathways (12).

Methods

The process was divided into 3 stages: preparation, elicitation, and postelicitation (11). These stages are detailed in the following sections.

Preparation

Selection of Pathogens

We included all pathogens transmitted commonly through food or water that were examined by Scallan et al. (2) and Collier et al. (13) except those for which the only syndrome of interest was considered to have >95% foodborne transmission (e.g., *Listeria monocytogenes, Clostridium botulinum*); we added 3 free-living amoebae (2,13). For some pathogens, subdivisions into categories by serotype, patient age, or clinical manifestations of interest were included because transmission pathways were assumed to be different. For example, for *Salmonella*, the 5 most common serotypes were included along with 2 groups of rarer serotypes based on a ranking of their coefficients of variation (CVs) calculated from the patients’ ages, sexes, states of residence, and the year and month specimens were obtained (group 1, lowest CVs; group 2, highest CVs) as described by Boore et al. (14). This compilation resulted in a total of 33 pathogens and 47 target questions, or categories, for estimation. The 47 target questions were grouped into 15 panels on the basis of similarities between pathogen microbiology and ecology (Table 1).

Transmission Pathway Definitions

We used definitions for 5 major pathways that were mutually exclusive and comprehensive (i.e., covering...}

Table 1. Pathogen panels, target questions, and number of experts providing estimates, structured expert judgment, United States, 2017

Panel	Pathogen and clinical manifestation target questions	No. experts who provided estimates in initial elicitation	No. experts who provided estimates in revised elicitation	No. experts who provided re-elicitation estimates
Panel 1	*Acanthamoeba* spp., *Balamuthia mandrillaris*, *Naegleria fowleri*	14	4	Not required
Panel 2	*Astrovirus, norovirus, rotavirus, sapovirus*	17	3	Not required
Panel 3	*Brucella* spp., *Mycobacterium* bovis	16	5	Not required
Panel 4	*Campylobacter* spp., *Yersinia enterocolitica*	19	5	Not required
Panel 5	*Cryptosporidium* spp., *Giardia* spp.	21	5	Not required
Panel 6	*Cyclospora* cayetanensis	21	4	Not required
Panel 7	*Enterotoxigenic Escherichia coli, other diarrheagenic E. coli, Shigella* spp.	21	3	Not required
Panel 8	*Hepatitis A virus*	19	2	Not required
Panel 9	*Legionella* spp., *nontuberculous Mycobacterium* spp.	9	1	Not required
Panel 10	*Pseudomonas* spp., otitis externa, pneumonia, septicemia	16	7	7
Panel 11	*Salmonella enterica*, nontyphoidal: all serotypes and ages, <5 y of age; *Enteritis, Typhimurium, Newport, I 4,[5],12:i:-, Javiana*; other serotypes, group 1,* other serotypes group 2†	14	3	Not required
Panel 12	*Shiga toxin–producing E. coli O157 and non-O157*	18	4	Not required
Panel 13	*Staphylococcus aureus*, group A *Streptococcus*	19	4	Not required
Panel 14	*Toxoplasma gondii*	16	3	Not required
Panel 15	*Vibrio cholerae*, AGI, non-AGI; *V. parahaemolyticus*, AGI, non-AGI; *V. vulnificus*,‡ non-AGI; *Vibrio* spp., other, AGI, non-AGI; *Vibrio* spp., other, AGI, non-AGI	15	6	9

*Group 1: serotypes such as Agona, Anatum, Braenderup, Hadar, Heidelberg, Infantis, Oranienburg, Saintpaul, Senftenberg, Thompson. AGI, acute gastrointestinal illness.
†Group 2: serotypes such as Bareilly, Gaminara, Give, Mississippi, Norwich, Pomona, Rubislaw, Tennessee, Urbana, Weltevreden.
‡Clinical manifestations of interest for initial elicitation were bacteremia and wound infections.
100% of transmission modes) and that reflect those used by CDC for outbreak surveillance (15,16; Tables 2, 3). We defined 3 mutually exclusive waterborne subpathways (recreational water, drinking water, and nonrecreational nondrinking water) that were comprehensive (i.e., all waterborne pathway transmission fell into 1 of the 3 subpathways). We also defined and elicited 1 foodborne (food handler-related) and 2 environmental (presumed animal associated, presumed person-to-person) subpathways that accounted for only a portion of transmission within their main pathway. We calculated the unelicited proportion remaining of their respective main pathways during analysis and assigned it to the subpathways other foodborne and other environmental. For all transmission pathways, we defined the point of attribution as the point of exposure (i.e., the event during which a person ingested, or was otherwise exposed to, the pathogen).

Table 2. Major transmission pathway definitions, structured expert judgment, United States, 2017

Major transmission pathways	Description
Foodborne	Transmission occurs through eating food. Contamination can originate anywhere in the food production chain from primary production, to retail, and then to the home or restaurant. This pathway applies to all nonwater beverages and items ingested by humans as food (e.g., including raw milk and excluding items consumed for medicinal purposes).
Waterborne	Transmission occurs through the consumption of or direct contact with water or inhalation of aerosols originating from water. This includes drinking water, bottled water, recreational water (treated and untreated), and other water sources, such as water within buildings, used in medical devices, or for industry/manufacturing.
Person-to-person	Transmission occurs by direct contact with infected persons or their bodily fluids, or by contact with the local environment where an exposed person is simultaneously present with an infected person or visible excreta.
Animal contact	Transmission occurs through direct contact with an animal, its bodily fluids (excluding raw milk or other fluids consumed as food), fur, hair, feathers, scales, or skin, or by contact with the local environment where an infected animal, its visible excreta, fur, hair, feathers, scales, or skin was simultaneously present with the exposed person (e.g., barns, petting zoos, and pet stores). This pathway includes domestic animals, farm animals, wildlife, and pets.
Environmental	Transmission occurs through exposure to naturally occurring agents (e.g., free-living ameba or radon) or contact with contaminated air, mud, soil, or other outdoor or indoor surfaces or objects not attributable to foodborne, waterborne, person-to-person, or animal contact transmission, as defined for this project.

Table 3. Transmission subpathway definitions, structured expert judgment, United States, 2017

Subpathway	Description
Foodborne subpathway	
Food handler–related	
Waterborne subpathways	
Recreational water, treated or untreated	When food processed or prepared for others is contaminated by an infected person.
Drinking water	Water that is used for recreational activities, such as in an aquatic facility or natural body of water. Can be treated or untreated. Treated water has undergone a systematic disinfection process (e.g., chlorination and filtration) with the goal of maintaining good microbiologic quality for recreation; untreated water has not undergone a disinfection or treatment process to maintain good microbiological quality for recreation (e.g., lakes, rivers, oceans, and reservoirs).
Nonrecreational, nondrinking water	Water that is used primarily for drinking but including other domestic uses, such as washing or showering; can come from a public water system, a private well, or commercial bottled sources.
Environmental subpathways	
Presumed animal contact associated	When a person becomes ill from exposure to soil, mud, or surfaces contaminated by an animal without direct contact or simultaneous presence with the animal, or when an infection is suspected to be animal associated because of previous knowledge about the pathogen.
Presumed person-to-person associated	When a person becomes ill from an exposure indirectly associated with an ill person.
and industry) on the basis of publication records, experience, expertise, or previous participation in source attribution studies. We contacted the experts directly and invited them to apply for participation (Figure 1). Fifty-eight returned a curriculum vitae and publication record and completed a questionnaire about their professional interest, knowledge, and experience for each of the 33 pathogens using a 4-level Likert scale (high, medium, low, or none) by the requested deadline. We asked experts to suggest additional experts to be considered; the 3 who were suggested were also invited.

Assignment to Panels
We evaluated expert applications based on area of expertise, education, work history, professional interest, experience, and knowledge of the individual pathogens in this study. Publication record was not used to determine eligibility because it could have led to elimination of qualified experts who do not publish frequently. We used maximum bipartite matching in R version 3.3.1 with the igraph package version 1.0.1 to assign experts to panels based on their curricula vitae, publication records, and questionnaire responses (17,18). Final assignment ensured that experts were not on pathogen panels for which they reported none or low experience. Individual experts were on panels for ≤15 pathogens (Appendix 1, https://wwwnc.cdc.gov/EID/article/27/1/20-0316-App1.pdf).

Calibration Questions
The study administrators used unpublished data to develop calibration questions (Appendix 2, https://wwwnc.cdc.gov/EID/article/27/1/20-0316-App2.pdf). We developed 14 questions to evaluate the experts’ statistical accuracy and informativeness by probing the experts’ ability to provide reliable estimates under uncertainty. The subject domain of the questions aimed to represent expertise in public health surveillance of foodborne and waterborne diseases, food consumption patterns in the United States, and human exposure and occurrence data about pathogens in food, water, and the environment.

Target Questions
Target questions asked the proportion of illnesses transmitted through the 5 major pathways and 6 sub-pathways for all study pathogens. Study administrators blocked transmission pathways and sub-pathways for some pathogens based on their microbiology and ecology (Table 4). We created individualized Microsoft Excel version 14.7.7 (http://www.microsoft.com) files with separate sheets for calibration questions, target questions for each assigned pathogen, and additional instructions for each expert. We included verification aids in the worksheets to assist the experts (Appendix 3, https://wwwnc.cdc.gov/EID/article/27/1/20-0316-App3.xlsm).

![Figure 1. Expert selection process for study of attribution of illnesses transmitted by food and water to comprehensive transmission pathways using structured expert judgment, United States, 2017.](https://wwwnc.cdc.gov/EID/article/27/1/20-0316-App1.pdf)
Dry Run Exercise
We conducted a dry run exercise using video web conferencing to assess calibration questions, target question answer sheets, and expert training materials for completeness, clarity, and ease of use. Six persons from academia, state health departments, and CDC participated in this trial exercise, but not in the formal elicitation itself. We modified the elicitation materials based on feedback from this exercise.

Table 4. Source attribution results for major transmission pathways, structured expert judgment. United States, 2017*

Pathogen name	Foodborne	Waterborne	Person-to-person	Animal contact	Environmental
Bacteria					
Brucella spp.	45 (13–77)	10 (0–42)	Blocked	36 (10–73)	9 (0–32)
Campylobacter spp.	57 (30–80)	13 (1–31)	7 (0–23)	16 (3–35)	7 (0–30)
Enterotoxic Escherichia coli	69 (37–91)	9 (0–38)	7 (0–38)	Blocked	15 (2–33)
STEC O157	60 (40–77)	5 (1–13)	16 (4–33)	12 (3–25)	7 (1–17)
STEC non-O157	50 (26–75)	6 (0–17)	15 (2–34)	21 (4–26)	8 (0–24)
E. coli, other diarrheagenic	55 (27–80)	9 (0–30)	16 (2–39)	9 (0–33)	12 (0–33)
Legionella spp.	Blocked	97 (67–100)	0 (0–1)	Blocked	2 (0–28)
Mycobacterium bovis	75 (36–98)	1 (0–9)	9 (0–39)	13 (0–50)	2 (0–12)
Nontuberculous Mycobacterium spp.	Blocked	72 (39–94)	4 (0–21)	2 (0–35)	22 (0–49)
Pseudomonas spp., otitis externa	Blocked	81 (67–95)	3 (0–13)	1 (0–4)	15 (1–25)
Pseudomonas spp., septicaemia	Blocked	22 (3–53)	2 (0–19)	2 (0–11)	74 (41–94)
Pseudomonas spp., pneumonia	Blocked	51 (14–80)	4 (1–32)	0 (0–2)	45 (15–80)
Salmonella enterica, nontyphoidal	66 (48–81)	6 (0–22)	7 (0–16)	11 (3–24)	9 (2–21)
S. enterica, nontyphoidal, age <5y	46 (20–86)	7 (0–26)	18 (6–35)	13 (2–30)	16 (2–36)
S. enterica serotype Enteritidis	80 (63–92)	4 (0–11)	7 (1–16)	5 (0–19)	4 (1–14)
S. enterica serotype I 4,[5],12:i-	66 (40–82)	6 (1–15)	8 (1–17)	12 (2–27)	7 (0–20)
S. enterica serotype Javiana	56 (29–76)	7 (1–20)	9 (2–22)	14 (3–33)	14 (2–29)
S. enterica serotype Newport	74 (50–86)	2 (0–9)	7 (1–16)	8 (1–19)	8 (2–18)
S. enterica serotype Typhimurium	59 (27–78)	7 (1–18)	8 (2–19)	14 (3–29)	13 (2–30)
S. enterica, all other serotypes group 1	60 (29–79)	6 (1–18)	9 (2–21)	12 (2–29)	12 (3–29)
S. enterica, all other serotypes group 2	40 (10–65)	7 (1–24)	10 (2–26)	17 (1–40)	26 (6–51)
Shigella spp.	8 (1–36)	4 (1–21)	81 (48–93)	Blocked	6 (0–26)
Staphylococcus aureus	Blocked	75 (23–98)	18 (1–71)	1 (0–5)	5 (0–37)
Streptococcus spp., group A	4 (0–33)	1 (0–6)	92 (55–99)	1 (0–12)	2 (0–19)
Vibrio alginolyticus	60 (24–84)	37 (13–71)	0 (0–1)	1 (0–4)	2 (0–11)
V. alginolyticus, non-AGI	2 (0–17)	97 (79–100)	0 (0–1)	0 (0–2)	0 (0–2)
V. cholerae nontoxicogen	92 (61–100)	6 (0–30)	1 (0–3)	0 (0–4)	0 (0–3)
V. cholerae nontoxicogen, non-AGI	33 (8–59)	65 (39–90)	0 (0–1)	0 (0–1)	2 (0–13)
V. parahaemolyticus	74 (59–91)	24 (7–36)	0 (0–2)	0 (0–2)	1 (0–5)
V. parahaemolyticus, non-AGI	8 (2–39)	90 (57–97)	0 (0–1)	0 (0–1)	2 (0–8)
V. vulnificus	20 (7–54)	77 (40–91)	0 (0–3)	1 (0–9)	2 (0–12)
V. vulnificus, non-AGI	20 (9–34)	78 (58–89)	0 (0–1)	1 (0–16)	2 (0–9)
Vibrio spp., other AGI	96 (69–100)	2 (0–23)	0 (0–1)	0 (0–2)	1 (0–8)
Vibrio spp., other non-AGI	95 (58–100)	3 (0–27)	0 (0–1)	0 (0–2)	2 (0–15)
Yersinia enterocolitica	77 (44–100)	9 (0–37)	3 (0–17)	4 (0–16)	8 (0–33)

Protozoa
Acanthamoeba spp. | Blocked | 82 (46–100)| Blocked | 0 (0–0) | 18 (0–54) |
Balamuthia mandrillaris | Blocked | 54 (5–95) | Blocked | 0 (0–0) | 46 (5–95) |
Cryptosporidium spp. | 7 (0–25) | 43 (17–73) | 20 (2–49) | 21 (4–48) | 8 (3–48) |
Cyclospora cayetanensis | 83 (59–99) | 6 (0–25) | 3 (0–14) | 1 (0–9) | 7 (0–28) |
Giardia spp. | 10 (0–35) | 44 (16–78) | 27 (3–59) | 10 (0–38) | 8 (3–37) |
Naegleria fowleri | Blocked | 88 (61–100) | Blocked | 12 (0–38) |
Toxoplasma gondii | 28 (4–60) | 5 (0–27) | Blocked | 58 (24–86) | 9 (0–29) |

Vesicles
Astrovirus | 15 (1–38) | 6 (0–25) | 73 (44–94) | Blocked | 6 (0–18) |
Hepatitis A virus | 42 (9–78) | 8 (0–33) | 41 (8–77) | Blocked | 8 (0–34) |
Norovirus | 19 (6–37) | 6 (0–25) | 70 (46–88) | Blocked | 5 (0–18) |
Rotavirus | 5 (0–20) | 7 (0–28) | 81 (57–98) | Blocked | 5 (0–21) |
Sapovirus | 13 (0–34) | 8 (0–30) | 75 (49–94) | Blocked | 4 (0–16) |

*Blocked indicates pathways blocked by study administrators. AGI, acute gastrointestinal disease; STEC, Shiga toxin–producing Escherichia coli.
†Clinical manifestations of interest for initial elicitation were bacteremia and wound infections.
Elicitation
For the formal elicitation, 48 experts representing a wide range of professional and scientific backgrounds participated at a 2-day, in-person workshop in May 2017. During the workshop, experts participated in a 2-hour information session on probabilistic methods and providing estimates under uncertainty.

Calibration Questions
Experts were not expected to know true values precisely and provided low (5th percentile), median (50th percentile), and high (95th percentile) estimates to represent their uncertainty on the answers provided to the calibration questions. Experts were not allowed access to any additional resources while answering the calibration questions and, after they had finished, they could not return to this section to change their responses.

Target Questions
After completion of the calibration questions, experts provided 5th, 50th, and 95th percentile estimates for the proportion of domestically acquired illnesses that are transmitted through each major pathway and subpathway annually for each pathogen and target question in each panel to which they were assigned. The experts were also asked to indicate if they did not agree with the pathways blocked by study administrators. One pathway, person-to-person transmission for *Legionella* spp., was unblocked based on this feedback, and experts provided this estimate with the others at the in-person elicitation. Experts could access resources and discuss them with colleagues, if desired. However, we emphasized that the final estimates should represent the expert’s individual responses, not a group consensus.

Postelicitation
Re-Elicitation
After the in-person elicitation was completed, we determined that re-elicitation for some pathogens was necessary. More granular detail was needed beyond the single estimate for *Pseudomonas*, so estimates were re-elicited for otitis externa, septicemia, and pneumonia. Based on feedback we received during the elicitation, we re-elicited estimates for non-acute gastrointestinal infections (non-AGI) for nontoxigenic *Vibrio cholerae*, *V. parahaemolyticus*, *V. vulnificus*, and *V. alginolyticus*. Experts were provided with feedback with updated surveillance data and given the opportunity to adjust their original estimates if new data led them to reconsider their previous estimates (Figure 1). The re-elicitations were completed through follow-up emails and web conferences.

Data Analysis
We analyzed data using EXCALIBUR (19). We combined all individual expert assessments by linear pooling into a single uncertainty assessment for each target question (11). For equal-based weighting, all experts’ assessments contributed to the combined uncertainty assessment evenly. We computed performance-based weighting by combining the statistical accuracy and information scores of experts in each panel. The weighted combination of experts is referred to as the decision maker. We used the item weight decision maker because this calculates and applies weights per individual target question rather than for all questions an expert answered. We performed optimization to determine the threshold by which an expert’s responses would be included in the final estimate or not. This was done separately per expert for each panel, based on each expert’s statistical accuracy score (12).

We performed a subgroup analysis to determine whether separate schools of thought existed as a result of experts’ self-identified background (categorized as mainly foodborne, mainly waterborne, or both). This analysis was completed by 2 independent reviewers who analyzed EXCALIBUR panel outputs for each target question to determine whether wide divergence existed among individual responses.

We normalized random samples from the weighted distributions for major transmission pathways and waterborne subpathways such that on each sample the values across pathways summed to 1. This process was done by resampling the cumulative distribution functions generated by EXCALIBUR 5,000 times in R version 3.4.3 for each pathogen, while dividing all sampled values by the sum of their values per iteration. Point estimates and 95% uncertainty intervals (UIs) for each target question and pathway were produced. We performed robustness analysis and out-of-sample validation to assess the performance of the method and to evaluate the effect of individual experts and individual calibration questions on the final distribution (Appendix 5, https://wwwnc.cdc.gov/EID/article/27/1/20-0316-App5.pdf) (12).
Results

Knowledge Review

The 20 questions were designed to be challenging, to emphasize application of the study definitions, and to represent scenarios at the boundaries among different transmission pathways. For 17 (85%) questions, >75% of participants answered with the correct major pathway, and of these questions, 13 (76%) were answered with the correct subpathway as well (Appendix 4).

![Figure 2](source_attribution_results_for_major_transmission_pathways_of_bacteria_in_study_of_attribution_of_illnesses_transmitted_by_food_and_water_to_comprehensive_transmission_pathways_using_structured_expert_judgment_united_states_2017.png)

Figure 2. Source attribution results for major transmission pathways of bacteria in study of attribution of illnesses transmitted by food and water to comprehensive transmission pathways using structured expert judgment, United States, 2017.
Illnesses Transmitted by Food and Water

Figure 3. Source attribution results for major transmission pathways of protozoa and viruses for study of attribution of illnesses transmitted by food and water to comprehensive transmission pathways using structured expert judgment, United States, 2017.

Major and Subpathway Results
Table 4 and Figures 2 and 3 show the proportion and UI of domestically acquired illnesses attributed to the 5 major transmission pathways; Tables 5 and 6 show the subpathway results. For all panels, a satisfactory number of accurate and informative experts were included. Differing schools of thought based on experts’ backgrounds were not identified (Appendix 5).

Bacteria
Most of the pathogens in this study were bacteria; they encompassed 35 of the 47 target questions. More than half of transmission (>50%) was attributed to the foodborne pathway for Campylobacter spp.; enterotoxigenic Escherichia coli; Shiga toxin-producing Escherichia coli (STEC) O157; other diarrheagenic E. coli; Mycobacterium bovis; nontuberculous Mycobacterium spp.; Pseudomonas spp., otitis externa; invasive Staphylococcus aureus; V. alginolyticus, non-AGI; V. cholerae nontoxicogenic, non-AGI; V. parahaemolyticus, non-AGI; and V. vulnificus were all estimated to have majority transmission from the waterborne pathway. Most transmission for Shigella spp. and group A Streptococcus were estimated to be through person-to-person transmission. No bacterial pathogen had majority transmission through animal contact. Pseudomonas spp. septicemia was attributed primarily to the environmental pathway.

Protozoa
Cyclospora cayetanensis was the only protozoan estimated to have majority transmission through the foodborne pathway. Acanthamoeba spp. and Naegleria fowleri both had >80% transmission attributed to the waterborne pathway, and 54% (UI 5%–95%) of Balanathia mandrillaris infections were estimated to occur through waterborne transmission. No protozoa had majority person-to-person or environmental transmission. Waterborne transmission was estimated at 43% (UI 17%–73%) for Cryptosporidium spp. and 44% (UI 16%–78%) for Giardia spp. Among all pathogens, Toxoplasma gondii had the highest attribution to animal contact transmission, 58% (UI 24%–86%).

Viruses
Most transmission for astrovirus, norovirus, rotavirus, and sapovirus was attributed to the person-to-person pathway. Hepatitis A virus was estimated to have the highest proportion of illness transmitted by the foodborne pathway at 42% (UI 9%–78%). Of this, 48% (UI 2%–93%) was considered food handler related. Of foodborne transmission, 50%–71% was estimated to be food handler related for astrovirus, norovirus, and sapovirus. For all viruses, 67%–88% of environmental transmission was attributed to the subpathway of presumed person-to-person transmission.

Discussion
This study presents a novel method for estimating the proportion of illnesses from pathogens transmitted commonly by food and water in the United States.
through comprehensive and mutually exclusive pathways. It includes estimates for food handler–related, recreational water, drinking water, nonrecreational nondrinking water, and various environmental subpathways. This method enabled estimates to be informed by multiple data sources, including outbreak surveillance data, studies of sporadic illnesses, case reports, and experts’ professional knowledge. The use of calibration to weight expert responses is a distinguishing characteristic of the classical model and introduces mathematical rigor not found with other elicitation methods.

Similar SEJ studies have been conducted in numerous countries, including Australia, Canada, and

Pathogen name	Food handler–related	Other foodborne	Presumed person-to-person	Presumed animal contact	Other environmental
Brucella spp.	Blocked	100 (100–100)	Blocked	41 (2–96)	59 (4–98)
Campylobacter spp.	12 (0–58)	88 (42–100)	12 (0–46)	62 (3–100)	26 (0–89)
Enterotoxigenic Escherichia coli	23 (1–71)	77 (29–99)	8 (0–43)	Blocked	92 (54–100)
STEC O157	8 (0–55)	92 (45–100)	10 (0–46)	76 (16–100)	13 (0–73)
STEC non-O157	5 (0–29)	95 (71–100)	21 (2–49)	65 (19–91)	14 (0–55)
E. coli, other diarrheagenic	7 (0–54)	93 (46–100)	59 (3–100)	9 (0–39)	31 (0–91)
Legionella spp.	Blocked	Blocked	0 (0–6)	Blocked	99 (91–100)
Mycobacterium bovis	1 (0–13)	99 (87–100)	3 (0–34)	45 (0–100)	53 (0–100)
Nontuberculous *Mycobacterium* spp.	Blocked	Blocked	3 (0–35)	6 (0–87)	91 (0–100)
Pseudomonas spp., otitis externa	Blocked	Blocked	8 (0–51)	2 (0–11)	90 (16–100)
Pseudomonas spp., septicemia	Blocked	Blocked	9 (0–59)	1 (0–4)	91 (39–100)
Pseudomonas spp., pneumonia	Blocked	Blocked	10 (0–61)	1 (0–6)	88 (22–100)
Salmonella enterica, nontyphoidal	10 (0–38)	90 (62–100)	20 (2–52)	45 (5–89)	35 (0–83)
S. enterica, nontyphoidal, under 5 y	10 (0–39)	90 (61–100)	35 (5–78)	45 (6–84)	20 (0–75)
S. enterica serotype Enteritidis	11 (0–51)	89 (49–100)	22 (2–56)	44 (3–88)	34 (0–84)
S. enterica serotype I 4,[5],12:i-	10 (0–38)	90 (62–100)	21 (3–52)	45 (3–89)	34 (0–84)
S. enterica serotype Javiana	11 (0–48)	89 (52–100)	36 (4–80)	44 (5–84)	20 (0–75)
S. enterica serotype Newport	10 (0–39)	90 (61–100)	21 (3–53)	48 (5–89)	30 (0–82)
S. enterica serotype Typhimurium	10 (0–39)	90 (61–100)	21 (2–50)	49 (6–88)	31 (0–81)
S. enterica, all other serotypes group 1	10 (0–38)	90 (62–100)	21 (2–52)	48 (6–89)	31 (0–81)
S. enterica, all other serotypes group 2	10 (0–39)	90 (61–100)	35 (5–79)	44 (5–83)	20 (0–74)
Shigella spp.	71 (17–96)	29 (4–83)	90 (31–100)	Blocked	10 (0–69)
Staphylococcus aureus	Blocked	Blocked	76 (30–97)	3 (0–43)	21 (0–66)
Streptococcus spp., group A	51 (0–100)	49 (0–100)	94 (29–100)	2 (0–33)	4 (0–70)
Vibrio alginolyticus, AGI	5 (0–89)	95 (11–100)	2 (0–19)	2 (0–36)	96 (9–100)
V. choliniticus, non-AGI	0 (0–2)	100 (98–100)	1 (0–3)	96 (45–100)	3 (0–54)
V. cholerae nontoxigenic AGI	1 (0–5)	99 (95–100)	6 (0–83)	9 (0–97)	85 (0–100)
V. cholerae nontoxigenic, non-AGI	0 (0–1)	100 (99–100)	1 (0–4)	96 (26–100)	30 (0–73)
V. parahaemolyticus AGI	5 (0–52)	95 (48–100)	2 (0–7)	2 (0–24)	96 (18–100)
V. parahaemolyticus, non-AGI	0 (0–2)	100 (98–100)	1 (0–3)	96 (30–100)	3 (0–69)
V. vulnificus, non-AGI	5 (0–72)	95 (28–100)	3 (0–48)	3 (0–50)	94 (0–100)
V. vulnificus, non-AGI	0 (0–2)	100 (98–100)	1 (0–3)	96 (29–100)	3 (0–70)
Vibrio spp., other AGI	3 (0–70)	97 (30–100)	1 (0–5)	2 (0–27)	96 (21–100)
Vibrio spp., other non-AGI	3 (0–43)	97 (57–100)	1 (0–2)	2 (0–31)	97 (38–100)
Yersinia enterocolitica	9 (0–55)	91 (45–100)	23 (0–67)	56 (8–99)	20 (0–82)

Table 5. Source attribution results for foodborne and environmental transmission subpathways, structured expert judgment, United States, 2017

*aBlocked indicates pathways blocked by study administrators. AGI, acute gastrointestinal disease; STEC, Shiga toxin–producing *Escherichia coli*.

†Clinical manifestations of interest for initial elicitation were bacteremia and wound infections.

Viruses

Pathogen name	Food handler–related	Other foodborne	Presumed person-to-person	Presumed animal contact	Other environmental
Astrovirus	50 (0–100)	50 (0–100)	73 (1–100)	Blocked	27 (0–99)
Hepatitis A virus	48 (2–93)	52 (7–98)	86 (27–100)	Blocked	12 (0–72)
Norovirus	71 (29–99)	29 (1–71)	73 (2–100)	Blocked	27 (0–98)
Rotavirus	27 (0–98)	73 (2–100)	88 (35–100)	Blocked	11 (0–65)
Sapovirus	51 (0–99)	49 (1–100)	67 (0–100)	Blocked	33 (0–100)
Table 6. Source attribution results for waterborne transmission subpathways (means and 95% uncertainty interval), structured expert judgment, United States, 2017*

Pathogen name	Recreational water	Drinking water	Nonrecreational, nondrinking water
Bacteria			
Brucella spp.	45 (0–100)	8 (0–97)	47 (0–100)
Campylobacter spp.	32 (0–97)	44 (0–99)	24 (0–99)
Enterotoxigenic *Escherichia coli*	31 (3–85)	57 (8–94)	12 (0–58)
STEC O157	69 (33–94)	26 (3–60)	5 (0–28)
STEC non-O157	51 (18–77)	12 (0–43)	38 (12–69)
E. coli, other diarrheagenic	20 (2–53)	70 (34–92)	10 (0–38)
Legionella spp.	9 (2–35)	52 (19–78)	39 (13–69)
Mycobacterium bovis	21 (0–100)	14 (0–100)	65 (0–100)
Nontuberculous *Mycobacterium* spp.	13 (0–43)	67 (33–93)	20 (0–51)
Pseudomonas spp., *otitis externa*	95 (75–100)	3 (0–21)	2 (0–11)
Pseudomonas spp., *septicemia*	7 (2–37)	16 (1–50)	77 (37–94)
Pseudomonas spp., *pneumonia*	48 (17–74)	6 (1–33)	46 (18–76)
Salmonella enterica, nontyphoidal	18 (2–53)	75 (37–93)	7 (0–26)
S. enterica, nontyphoidal, <5 y	19 (3–49)	69 (38–91)	12 (1–30)
S. enterica serotype Enteritidis	20 (3–49)	71 (38–92)	9 (1–27)
S. enterica serotype I 4,[5],12:i:-	18 (2–49)	74 (38–93)	9 (0–35)
S. enterica serotype Javiana	21 (3–53)	67 (29–90)	12 (0–42)
S. enterica serotype Newport	17 (2–48)	74 (40–94)	9 (0–39)
S. enterica serotype Typhimurium	19 (3–51)	73 (39–93)	8 (1–29)
S. enterica, all other serotypes group 1	19 (3–51)	72 (36–93)	9 (0–39)
S. enterica, all other serotypes group 2	19 (2–50)	69 (36–91)	12 (1–40)
Shigella spp.	77 (41–95)	3 (0–25)	20 (3–50)
Staphylococcus aureus	91 (50–100)	5 (0–29)	4 (0–43)
Streptococcus spp., group A	73 (0–100)	10 (0–95)	18 (0–100)
Vibrio alginolyticus AGI	97 (66–100)	1 (0–6)	2 (0–21)
V. alginolyticus, non-AGI	96 (49–100)	2 (0–36)	3 (0–47)
V. *cholerae* nontoxigenic AGI	96 (56–100)	2 (0–11)	2 (0–22)
V. *cholerae* nontoxigenic, non-AGI	96 (50–100)	2 (0–14)	3 (0–43)
V. parahaemolyticus	98 (62–100)	1 (0–10)	1 (0–13)
V. parahaemolyticus, non-AGI	97 (50–100)	2 (0–35)	2 (0–37)
V. *vulnificus*†	98 (66–100)	1 (0–9)	2 (0–24)
V. *vulnificus*, non-AGI	96 (49–100)	2 (0–37)	2 (0–43)
Vibrio spp., other AGI	69 (0–100)	4 (0–69)	27 (0–100)
Vibrio spp., other non-AGI	70 (0–100)	4 (0–69)	26 (0–100)
Yersinia enterocolitica	51 (6–100)	28 (0–83)	21 (0–79)
Protozoa			
Acanthamoeba spp.	52 (8–88)	15 (0–51)	33 (3–76)
Balamuthia mandrillaris	48 (6–88)	4 (0–26)	48 (7–89)
Cryptosporidium spp.	66 (21–96)	24 (0–68)	11 (0–41)
Cyclospora cayetanensis	39 (0–99)	32 (0–97)	29 (0–100)
Giardia spp.	49 (9–93)	33 (2–82)	18 (0–67)
Naegleria fowleri	85 (51–98)	3 (0–27)	12 (1–45)
Toxoplasma gondii	37 (0–100)	27 (0–100)	36 (0–100)
Viruses			
Astrovirus	39 (0–99)	47 (0–100)	13 (0–92)
Hepatitis A virus	35 (0–100)	44 (0–100)	21 (0–97)
Norovirus	47 (8–90)	45 (6–86)	8 (0–42)
Rotavirus	41 (7–84)	50 (8–86)	9 (0–41)
Saposivirus	55 (11–97)	37 (8–4)	8 (0–41)

*AGI, acute gastrointestinal disease; STEC, Shiga toxin–producing *Escherichia coli*.†Clinical manifestations of interest for initial elicitation were bacteremia and wound infections.

*The Netherlands, as well as for global subregions, by the World Health Organization. Each of these used different transmission pathway definitions, study designs, and elicitation methods (20–23). This and other variations in methods limit comparison of estimates across studies, but provide support for some of the differences between our study results and previous US pathway attribution estimates. Previous estimates of foodborne transmission for 33 pathogens and animal contact transmission for 6 pathogens included in our study are available (24). We compared published foodborne and waterborne attribution studies with this study (Tables 7, 8).

Differences from previously published work on foodborne transmission attribution proportions were noted, including for *Campylobacter* spp., STEC.
non-O157, other diarrheagenic *E. coli*, nontyphoidal
S. enterica, *M. bovis*, *Shigella* spp., *Y. enterocolitica*, *C.
cayetanensis*, *T. gondii*, astrovirus, rotavirus, sapovi-
rus, and hepatitis A virus. These differences could be the
result of changes in data availability or analytic
methods. For example, previous US foodborne illness
estimates used data from surveillance, risk factor
studies, and literature review (2). Based on available
data for *S. enterica* (a case-control study of sporadic
illness and unpublished outbreak data [2,25]), a
study used an estimate of 94% foodborne transmis-
sion, notably higher than this study’s estimate of 66%
(U1 48%–81%). Estimates more similar to the current
study were reported in SEJ studies in the Netherlands
(55%), Canada (63%), and Australia (71%) (21,22);
these studies examined attribution to similar major
pathways to those included in this study versus food-
borne transmission only. Our estimates of foodborne
transmission of astrovirus (15%), rotavirus (5%), and
sapovirus (13%) are much higher than the estimate of
<1% for each in an earlier study (2); reports of food-
borne outbreaks caused by these viruses in CDC’s
outbreak surveillance systems informed our esti-
mates. Reporting of enteric disease outbreaks trans-
mitted by nonfoodborne routes has improved, and
experts probably used these new data to inform their
estimates (26).

This study provides noteworthy estimates for
the food handler–related subpathway. For hepa-
titis A, both the World Health Organization and this
study estimate 42% foodborne transmission, of which
this study estimated 48% (UI 2%–93%) to be food

Table 7. Comparison of proportion of illnesses attributed to foodborne transmission from this and earlier studies*

Details	Study					
Country	Scallan et al. (2)	Hald et al. (20)	Havelaar et al. (21)	Butler et al. (22)	Vally et al. (23)	This study
Type	Outbreak surveillance data or published studies	SEJ	SEJ	SEJ	SEJ	SEJ
Bacteria						
Brucella spp.	50	75	NE	34.6	NE	45
Campylobacter spp.	80	73	42	62.3	76	57
STEC O157	68	59	40	61.4	Combined as all STEC, 55	60
STEC non-O157	82	NE	42	59.7	Combined as all STEC, 55	50
Enterotoxigenic *Escherichia coli*	100 (only foodborne)	36	NE	44.4	Combined as other pathogenic *E. coli*, 24	69
E. coli, other diarrheagenic	30	NE	NE	41	Combined as other pathogenic *E. coli*, 24	55
Mycobacterium bovis	95	NE	NE	NE	NE	75
Salmonella spp.	94	73	55	62.9	71	66
Shigella spp.	31	12	NE	25.9	11	8
Vibrio vulnificus	47	NE	NE	70.6	NE	Non-AGI, 20
Vibrio parahaemolyticus	86	NE	NE	82.8	NE	Non-AGI, 74
Vibrio spp. other	57	NE	NE	88.9	NE	Non-AGI, 96
Yersinia enterocolitica	90	NE	NE	82.8	NE	77
Protozoa						
Cryptosporidium spp.	8	16	12	11.3	NE	7
Cyclospora cayetanensis	99	NE	NE	83.1	NE	83
Giardia spp.	7	11	13	7.2	NE	10
Toxoplasma gondii	50	60	56	51.4	NE	28
Viruses						
Astrovirus	<1	NE	NE	9.9	NE	15
Hepatitis A virus	7	42	11	29.5	12	42
Norovirus	26	23	17	18.4	17	19
Rotavirus	<1	NE	NE	7.3	NE	5
Sapovirus	<1	NE	NE	16.9	NE	13

*NE, not estimated; SEJ, structured expert judgment; STEC, Shiga toxin–producing *Escherichia coli*.

192 Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 27, No. 1, January 2021
Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 27, No. 1, January 2021 193

Of note, neither bacterium of illness and death, including nontuberculous pathogens, the estimates suggest that the proportion of viral pathogens transmitted by water was estimated to be relatively low (6%–8%), although for norovirus this represents a substantial proportion of estimated annual waterborne disease illnesses (32). This study also provides estimates for 3 waterborne disease subpathways. Of note is the proportion of otitis externa infections caused by *Pseudomonas* spp. that were attributed to recreational water exposure, and the combined contribution of drinking and non-recreational, nondrinking water exposures to nongastroenteritis outcomes of *Pseudomonas* spp. (excluding otitis externa), nontuberculous *Mycobacterium* spp., *Pseudomonas* spp., and *Legionella* spp. CDC has used results from this SEJ to help estimate that 7.2 million waterborne illnesses occur from 17 pathogens annually, including 600,000 emergency department visits, 120,000 hospitalizations, and 7,000 deaths, incurring $3.2 billion (2014 US dollars) in direct healthcare costs (33).

Table 8. Comparison of proportion of illnesses attributed to waterborne transmission from this and earlier published studies*

Country	Details	Hald et al. (20)	Butler et al. (22)	Vally et al. (23)	This study
Type		AMR A (Canada, Cuba, USA)	Canada	Australia	United States
Bacteria		SEJ	SEJ	SEJ	SEJ
Brucella spp.		1	4	NE	10
Campylobacter spp.		11	9.3	6	13
STEC O157		7	13.3	Combined as all STEC, 8	5
STEC non-O157		NE	11.4	Combined as all STEC, 8	6
Enterotoxigenic *Escherichia coli*		42	15.3	Combined as other *E. coli*, 9	9
E. coli, other diarrheagenic		NE	15.6	Combined as other *E. coli*, 14	9
Salmonella spp.		2	8	5	6
Shigella spp.		10	12.2	4	4
Vibrio vulnificus		NE	23.2	NE	Non-AGI, 78
V. parahaemolyticus		NE	11	NE	AGI, 24; non-AGI, 90
Vibrio spp. other		NE	7.6	NE	AGI, 2; non-AGI, 3
Protozoa					
Cryptosporidium spp.		37	36.8	NE	43
Cyclospora cayetanensis		NE	7.7	NE	6
Giardia spp.		42	NE	NE	44
Toxoplasma gondii		19	8.8	NE	5
Viruses					
Astrovirus		NE	6.8	NE	6
Hepatitis A virus		1	6.2	4	8
Norovirus		22	7.4	3	6
Rotavirus		NE	5.9	NE	7
Sapovirus		NE	1.4	NE	8

*NE, not estimated; SEJ, structured expert judgment; STEC, Shiga toxin–producing *Escherichia coli*. handler-related (20). However, this study was conducted before widespread awareness of a massive increase in person-to-person transmission in the United States (27). Previous estimates of foodborne transmission were 11% in the Netherlands and 7% in the United States (22,21). The use of different pathway definitions, points of attribution, and inclusion of travel-related illness in these other studies might have contributed to these differences (21,28). For norovirus, 71% (UI 29%–99%) of foodborne transmission in our study was attributed to the food handler subpathway, which is supported by studies of outbreaks in the United States (29,30). For the waterborne transmission pathway, attribution in the context of the other pathways has not been done before in the United States. Furthermore, these estimates include subpathway estimates and non-gastroenteritis clinical outcomes. For bacterial pathogens, the estimates suggest that the proportion of illnesses linked to water is higher than previously appreciated. The estimates for waterborne bacterial pathogens were associated with high rates of illness and death, including nontuberculous *Mycobacterium* spp., *Pseudomonas* spp., and *Legionella* spp. Of note, neither *Giardia* spp. nor *Cryptosporidium* spp., parasitites traditionally understood to be waterborne, were assessed as predominantly waterborne; instead, person-to-person and animal contact, particularly for *Cryptosporidium*, were key pathways. For the free-living amebae *Acanthamoeba* spp., *B. mandrillaris*, and *N. fowleri*, limited data are available on exact exposures associated with these rare illnesses (31,32). The proportion of viral pathogens transmitted by water was estimated to be relatively low (6%–8%), although for norovirus this represents a substantial proportion of estimated annual waterborne disease illnesses (32).
Whereas the primary focus of this SEJ study was illnesses transmitted commonly by food and water, including person-to-person, animal contact, and environmental transmission was integral to the study and led to notable findings. For example, this study estimated animal contact transmission of STEC O157 at 12% (UI 3%-25%) and of STEC non-O157 at 21% (UI 2%-46%). Previous US animal contact estimates, which were based on a FoodNet case-control study and outbreak surveillance data, estimated STEC O157 at 6% and STEC non-O157 at 8% (24). This discrepancy may be the result of differences in pathway definitions and the inclusion of additional data.

As with other SEJ studies, this study is subject to limitations that can affect the interpretation of results. Estimates for many pathogens had wide UIs, highlighting areas in which data gaps remain and further investment into public health surveillance and research may be warranted. More detailed attribution, such as by food category, was beyond the scope of this study. This study considered attribution at a national level and does not represent the geographic variability that exists for some pathogens. Experts provided estimates considering data available during the elicitation session, but infectious disease epidemiology can change rapidly, so these results may not reflect current transmission patterns. New information should be considered when applying these estimates (e.g., for disease burden calculations). Expert fatigue may have been a factor for participants who were asked to provide estimates for a large number of pathogens. For intervention and policy-making purposes, these results should be considered in context with results from other data-driven approaches, such as those done by the Interagency Food Safety Analytics Collaboration and for the Model Aquatic Health Code (34,35).

In conclusion, our findings provide a balanced understanding of multiple routes of transmission for 33 pathogens. This information can be used to support appropriate targeting of resources to prevent infections transmitted by all pathways and to invest in research and surveillance.

Acknowledgments
We thank all those who contributed their expertise and time to this study, especially our expert participants, dry run participants, subject matter experts at CDC, and other CDC and University of Florida staff who assisted.

About the Author
Dr. Beshearse is an Epidemic Intelligence Service officer in the National Center for Emerging and Zoonotic Infectious Diseases at the Centers for Disease Control and Prevention, Atlanta, Georgia, USA. Her primary research interests include public health and foodborne and waterborne diseases.

References
1. Havelaar AH, Kirk MD, Torgerson PR, Gibb HJ, Hald T, Lake RJ, et al.; World Health Organization Foodborne Disease Burden Epidemiology Reference Group. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med. 2015;12:e1001923. https://doi.org/10.1371/journal.pmed.1001923
2. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, et al. Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis. 2011;17:7–15. https://doi.org/10.3201/eid1701.P11101
3. Colford JM Jr, Roy S, Beach MJ, Hightower A, Shaw SE, Venkataraman S. A review of household drinking water intervention trials and an approach to the estimation of endemic waterborne gastroenteritis in the United States. J Water Health. 2006;4(Suppl 2):71–88. https://doi.org/10.2166/wh.2006.018
4. Messner M, Shaw S, Regli S, Roter K, Blank V, Soller J. An approach for developing a national estimate of waterborne disease due to drinking water and a national estimate model application. J Water Health. 2006;4(Suppl 2):201–40. https://doi.org/10.2166/wh.2006.024
5. Painter JA, Hoekstra RM, Ayers T, Tauxe RV, Braden CR, Angulo FJ, et al. Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998–2008. Emerg Infect Dis. 2013;19:407–15. https://doi.org/10.3201/eid1903.111866
6. Hall AJ, Wikswo ME, Manikonda K, Roberts VA, Yoder JS, Gould LH. Acute gastroenteritis surveillance through the National Outbreak Reporting System, United States. Emerg Infect Dis. 2013;19:1305–9. https://doi.org/10.3201/eid1908.130482
7. O’Brien SJ, Gillespie IA, Sivanesan MA, Elson R, Hughes C, Adak GK. Publication bias in foodborne outbreaks of infectious intestinal disease and its implications for evidence-based food policy. England and Wales 1992–2003. Epidemiol Infect. 2006;134:667–74. https://doi.org/10.1017/S0950268805005765
8. Verhoeef L, Hewitt J, Barclay L, Ahmed SM, Lake R, Hall AJ, et al. Norovirus genotype profiles associated with foodborne transmission, 1999–2012. Emerg Infect Dis. 2015;21:592–9. https://doi.org/10.3201/eid2104.141073
9. Hoffmann S, Fischbeck P, Krupeck A, McWilliams M. Informing risk-mitigation priorities using uncertainty measures derived from heterogeneous expert panels: a demonstration using foodborne pathogens. Reliab Eng Syst Saf. 2008;93:687–98. https://doi.org/10.1016/j.ress.2007.03.010
10. Colson AR, Cooke RM. Expert elicitation: using the classical model to validate experts’ judgments. Rev Environ Econ Policy. 2018;12:113–32. https://doi.org/10.1093/reep/rex022
11. Cooke RM, Goossens LHJ. Procedures guide for structured expert judgment. Delft (the Netherlands): Delft University of Technology; 1999.
12. Cooke RM. Experts in uncertainty: opinion and subjective probability in science. New York: Oxford University Press; 1991.
13. Collier SA, Stockman LJ, Hicks LA, Garrison LE, Zhou FJ, Beach MJ. Direct healthcare costs of selected diseases
primarily or partially transmitted by water. Epidemiol Infect. 2012;140:2003–13. https://doi.org/10.1017/S0950268811002858

14. Boore AL, Hoekstra RM, Iwamoto M, Fields PI, Bishop RD, Swerdlow DL. Salmonella enterica infections in the United States and assessment of coefficients of variation: a novel approach to identify epidemiologic characteristics of individual serotypes, 1996–2011. PLoS One. 2015;10:e0145416. https://doi.org/10.1371/journal.pone.0145416

15. Centers for Disease Control and Prevention. National Outbreak Reporting System (NORS) user guidance—waterborne disease outbreaks. 2017 [cited 2019 Jan 18]. https://www.cdc.gov/nors/pdf/CDC_5212_guidance.pdf

16. Centers for Disease Control and Prevention. National Outbreak Reporting System (NORS) guidance. 2017 [cited 2019 Jan 18]. https://www.cdc.gov/nors/downloads/guidance.pdf

17. Sedgewick R, Wayne K. Algorithms, 4th ed. Upper Saddle River (NJ): Addison-Wesley; 2011.

18. R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2017.

19. EXCALIBUR [computer software]. Version 1.0. Delft (the Netherlands): TU Delft; 1989.

20. Hald T, Aspinall W, Devleesschauwer B, Cooke R, Corrigan T, Havelaar AH, et al. World Health Organization estimates of the relative contributions of food to the burden of disease due to selected foodborne hazards: a structured expert elicitation. PLoS One. 2016;11:e0145839. https://doi.org/10.1371/journal.pone.0145839

21. Havelaar AH, Galindo AV, Kurowicka D, Cooke RM. Attribution of foodborne pathogens using structured expert elicitation. Foodborne Pathog Dis. 2008;5:649–59. https://dx.doi.org/10.1089/fpd.2008.0115

22. Butler AJ, Thomas MK, Pintar KD. Expert elicitation as a means to attribute 28 enteric pathogens to foodborne, waterborne, animal contact, and person-to-person transmission routes in Canada. Foodborne Pathog Dis. 2015;12:335–44. https://doi.org/10.1089/fpd.2014.1856

23. Vally H, Glass K, Ford L, Hall G, Kirk MD, Shadbolt C, et al. Proportion of illness acquired by foodborne transmission for nine enteric pathogens in Australia: an expert elicitation. Foodborne Pathog Dis. 2014;11:727–33. https://doi.org/10.1089/fpd.2014.1746

24. Hale CR, Scallan E, Cronquist AB, Dunn J, Smith K, Robinson T, et al. Estimates of enteric illness attributable to contact with animals and their environments in the United States. Clin Infect Dis. 2012;54(Suppl 5):S472–9. https://doi.org/10.1093/cid/cis051

25. Mermin J, Hutwagner L, Vugia D, Shallow S, Daily P, Bender J, et al.; Emerging Infections Program FoodNet Working Group. Reptiles, amphibians, and human Salmonella infection: a population-based, case-control study. Clin Infect Dis. 2004;38(Suppl 3):S253–61. https://doi.org/10.1086/381594

26. Centers for Disease Control and Prevention. National Outbreak Reporting System (NORS) [cited 2019 Jan 18]. https://www.cdc.gov/nors/about.html

27. Foster MA, Hofmeister MG, Kupronis BA, Lin Y, Xia GL, Yin S, et al. Increase in hepatitis A virus infections—United States, 2013–2018. MMWR Morb Mortal Wkly Rep. 2019;68:413–5. https://doi.org/10.15585/mmwr.mm6818a2

28. Centers for Disease Control and Prevention. Surveillance for viral hepatitis—United States, 2015 [cited 2019 Oct 15]. https://www.cdc.gov/hepatitis/statistics/2015surveillance/index.htm

29. Hall AJ, Wikswo ME, Pringle K, Gould LH, Parashar UD; Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, CDC. Vital signs: foodborne norovirus outbreaks—United States, 2009–2012. MMWR Morb Mortal Wkly Rep. 2014;63:491–5.

30. Hall AJ, Eisenbart VG, Etingue AL, Gould LH, Lopman BA, Parashar UD. Epidemiology of foodborne norovirus outbreaks, United States, 2001–2008. Emerg Infect Dis. 2012;18:1566–73. https://doi.org/10.3201/eid1810.120833

31. Centers for Disease Control and Prevention. Balamuthia amebic encephalitis—California, 1999–2007. MMWR Morb Mortal Wkly Rep. 2008;57:768–71.

32. Cope JR, Murphy J, Kahler A, Corbett DG, Ali I, Taylor B, et al. Primary amebic meningoencephalitis associated with rafting on an artificial whitewater river: case report and environmental investigation. Clin Infect Dis. 2018;66:548–53. https://doi.org/10.1093/cid/cix810

33. Collier SA, Deng L, Adam EA, Benedict KM, Beshear EM, Blackstock A, et al. Estimate of burden and direct healthcare cost of infectious waterborne disease in the United States. Emerg Infect Dis. 2020 Dec XX [Epub ahead of print]. https://doi.org/10.3201/eid2701.190676

34. Blake R, Peters J. Model Aquatic Health Code (MAHC) and International Swimming Pool and Spa Code (ISPS). J Environ Health. 2012;74:126–9.

35. Centers for Disease Control and Prevention. Model Aquatic Health Code; 2018 [cited 2019 Feb 13]. https://www.cdc.gov/mahc/index.html

Address for correspondence: Elizabeth Beshear, Centers for Disease Control and Prevention, 1600 Clifton Rd, Mailstop H16-3, Atlanta, GA 30329-4027, USA; email: pgz1@cdc.gov