Characterization of microsatellite markers for *Moricandia moricandioides* (Brassicaceae) and related species

Yves Cuenot¹, José M. Gómez², Adela González-Megías¹, John R. Pannell¹, and Rubén Torices¹,²,⁴

PREMISE OF THE STUDY: Polymorphic microsatellite markers were developed to study population structure and mating patterns of the monocarpic herb *Moricandia moricandioides* (Brassicaceae).

METHODS AND RESULTS: Illumina MiSeq sequencing was used to develop a panel of 15 polymorphic microsatellite markers that were tested across 77 individuals from three populations on the Iberian Peninsula. All markers were polymorphic in at least two studied populations, and the number of alleles ranged from one to 11 per locus. The levels of observed and expected heterozygosity ranged from 0.000 to 1.000 and from 0.153 to 0.865, respectively. Nine and 11 loci were successfully amplified in the congeneric species *M. arvensis* and *M. foetida*, respectively.

CONCLUSIONS: The 15 microsatellite markers will be useful for population genetic studies of the genus *Moricandia*. These markers will serve as a useful tool for exploring population structure and mating patterns of *M. moricandioides*.

KEY WORDS: Brassicaceae; microsatellites; *Moricandia arvensis*; *Moricandia foetida*; *Moricandia moricandioides*.

*Moricandia moricandioides* (Boiss.) Heywood (Brassicaceae) is a monocarpic herb inhabiting semi-arid areas in the Iberian Peninsula (Sobrino Vesperinas, 1993). *Moricandia moricandioides* displays a particular floral morphology with parallel, dark pink petals (Gómez et al., 2016). Their nearly zygomorphic flowers are commonly visited by a highly specialized assembly of insects, mostly composed of long-tongued bees (Gómez et al., 2016). The species has been used as a model species in several ecological studies related to the analysis of food webs and the interaction between aboveground and belowground insect species (e.g., González-Megías and Müller, 2010; González-Megías and Menéndez, 2012), as well as the study of plant reproductive ecology (e.g., Gómez, 1996).

*Moricandia moricandioides* belongs to the small but economically relevant genus *Moricandia* DC., with nine recognized species distributed in North Africa, the Middle East, Central Asia, and Southern Europe (Perfectti et al., 2017). Other members of the genus are narrow endemics (e.g., *M. foetida* Bourg.) restricted to limited areas in southeastern Spain, as well as widespread weeds (e.g., *M. arvensis* (L.) DC.) that likely colonized the Iberian Peninsula and southern Europe (Perfectti et al., 2017). In addition, it has recently been observed that *M. moricandioides* individuals may discriminate kin, allowing them to adjust their floral display depending on the genetic configuration of their neighborhood (Torices et al., 2018), thus enabling potential cooperation with kin. We here present and characterize microsatellite markers for *M. moricandioides* and two related species. The development of these markers will allow the exploration of the fine-spatial genetic structure within *M. moricandioides* populations, which is essential for testing hypotheses concerning kin selection and altruism in plants.

METHODS AND RESULTS

Plant collection and DNA purification

We collected leaves from individuals of *M. moricandioides* cultivated in a greenhouse from seeds sampled in three different natural populations (Appendix 1). To test cross-species amplification, two related species were also collected (Appendix 1): *M. arvensis* (seeds sampled in June 2016) and *M. foetida* (leaves collected from a natural population in January 2017). All leaves were conserved in silica gel before DNA purification. We extracted genomic DNA using a BioSprint 96 DNA Plant Kit (QUIAGEN, Hilden, Germany) following the manufacturer’s instructions and eluted in 100 μL of nuclease-free water.

---

*Moricandia moricandioides* belongs to the small but economically relevant genus *Moricandia* DC., with nine recognized species distributed in North Africa, the Middle East, Central Asia, and Southern Europe (Perfectti et al., 2017). Other members of the genus are narrow endemics (e.g., *M. foetida* Bourg.) restricted to limited areas in southeastern Spain, as well as widespread weeds (e.g., *M. arvensis* (L.) DC.) that likely colonized the Iberian Peninsula and southern Europe (Perfectti et al., 2017). In addition, it has recently been observed that *M. moricandioides* individuals may discriminate kin, allowing them to adjust their floral display depending on the genetic configuration of their neighborhood (Torices et al., 2018), thus enabling potential cooperation with kin. We here present and characterize microsatellite markers for *M. moricandioides* and two related species. The development of these markers will allow the exploration of the fine-spatial genetic structure within *M. moricandioides* populations, which is essential for testing hypotheses concerning kin selection and altruism in plants.
Development of microsatellite primers

Microsatellite markers were developed using an enrichment protocol at AllGenetics & Biology (A Coruña, Spain). The library, prepared using the Nextera XT DNA kit (Illumina, San Diego, California, USA), was enriched in the following motifs: AT, AAG, ACG, ATCT, and ACAT. The enriched library was then sequenced on an Illumina MiSeq platform (PE300). Assembly of the reads was performed in Geneious 8.1.8 (Biomatters Ltd., Auckland, New Zealand) after quality checking and removal of duplicate sequences. Primers were then designed with default parameters in Primer3 (Koressaar and Remm, 2007; Untergasser et al., 2012) using sequences with at least 80 nucleotides, and 500 primer pairs were developed that hybridized in the microsatellite flanking regions. We first tested and checked for polymorphism in 72 primer pairs using 11 *M. moricandioides* samples from the three populations. Of these 72 primer pairs, 15 polymorphic microsatellite markers were selected (with three or more alleles per locus) and tested using 77 samples from the three populations. The markers were organized into five multiplexes according to the primer properties and size ranges (Table 1).

PCRs were performed in a final reaction volume of 12.5 μL, including 1 μL of DNA (10 ng/μL), 6.25 μL of the Type-it Microsatellite PCR kit (QIAGEN), 4 μL of PCR-grade water, and 1.25 μL of primer mix (concentration given in Appendix S1). The optimal PCR protocol consisted of an initial denaturation step at 95°C for 5 min; followed by 30 cycles of 95°C for 30 s, 57°C for 90 s, and 72°C for 30 s; eight cycles of 95°C for 30 s, 53°C for 90 s, and 72°C for 30 s; and a final extension step at 68°C for 30 min. Oligonucleotide tails were attached to the 5′ ends of the primers to allow for fluorescent labeling. The oligonucleotide tails used were the universal sequences M13 (5′-GGAAACAGCTATGACCAT-3′), CAG (5′-CAGTCGGGCGTCATC-3′), and T3 (5′-AATTAACCTCACTAAAGGG-3′). The three oligonucleotides were labeled with HEX, FAM, and TAMRA dyes, respectively (Macrogen, Seoul, South Korea; Table 1, Appendix S1). PCR products were analyzed on an ABI 3730xl Genetic Analyzer (Applied Biosystems, Waltham, Massachusetts, USA) with the GeneScan 400 LIZ internal size standard (Applied Biosystems). Fragment length and scoring were performed using Geneious 10.2.3 (Biomatters Ltd.).

**Data analysis**

Genetic diversity parameters, pairwise linkage disequilibrium (LD), and Hardy–Weinberg equilibrium (HWE) were calculated using GENEPOP 4.7.0 (Rousset, 2008) for each of the three populations of *M. moricandioides*. We adjusted both tests for multiple comparisons using Benjamini and Hochberg’s (1995) correction for HWE and Benjamini and Yekutieli’s (2001) adjustment for the LD test, given non-independence between tests. Occurrence of null alleles was tested with MICRO-CHECKER 2.2.3 (van Oosterhout et al., 2004).

**TABLE 1.** Characteristics of 15 microsatellite loci developed in *Moricandia moricandioides*.

| Locus | Primer sequences (5′–3′) | Repeat motif | Allele size range (bp) | A | Multiplex | Fluorescent dye | ENA accession no. |
|-------|--------------------------|--------------|------------------------|---|-----------|-----------------|-----------------|
| Mmo031 | F: GAAGACTCCAAAGCTACCGG R: ACCTGCAAGTCAAGACCTT | (AAG)₅ | 218–260 | 11 | 5 | FAM | LS483218 |
| Mmo096 | F: AGTGGCACAGTGGTGGCTTA R: ACCAGTGGTGAAAGTGGCTC | (AG)₇ | 225–241 | 9 | 2 | HEX | LS483220 |
| Mmo170 | F: ATGTGCGTACACAAAGACG R: ATGTGCGTACATCATACC | (GTT)₆ | 125–167 | 7 | 1 | TAMRA | LS483219 |
| Mmo176 | F: GTGCTGAGAGAGACACCTT T: TTTGCCTTCTGCTGCTCA | (CT)₄ | 195–207 | 6 | 1 | FAM | LS483221 |
| Mmo185 | F: GATGGTAGAAGAGCGTGTG R: GGCATATAACAGACGGACCA | (AG)₈ | 102–132 | 6 | 5 | FAM | LS483222 |
| Mmo212 | F: AGATGCCTTCCAAAGTCCC | (AT)₇ | 119–131 | 4 | 3 | HEX | LS483223 |
| Mmo235 | F: AGCAGGACCATACAACTT T: CGAGCAAAACATGGAGCGGAG | (CT)₅ | 158–170 | 5 | 4 | HEX | LS483224 |
| Mmo262 | F: AGTACAGCGTTGTTGCTTC G: TGGTTTAGGTTGAGCGGGG | (CT)₄ | 286–314 | 12 | 2 | FAM | LS483225 |
| Mmo319 | F: TGGAGTTCTGATGCCGACCCA R: AGCCTTACCTTGGTTGACCA | (GT)₅ | 202–228 | 6 | 4 | FAM | LS483226 |
| Mmo335 | F: AATGGGAACGGGAGGACGA R: AGCCAGCAATTGACGTGTTT | (AG)₈ | 108–144 | 2 | 2 | TAMRA | LS483227 |
| Mmo393 | F: GTTGGACCACTGTGCTGAGT R: ATATGGTGCTGGGCCGTTGA | (GCT)₃ | 208–235 | 9 | 5 | HEX | LS483228 |
| Mmo402 | F: AAGCGCGCAAACACTCAT C: CGAGAAGGGCTCTGTCTCC | (CC)₄ | 158–194 | 4 | 4 | TAMRA | LS483229 |
| Mmo406 | F: ATACAAGTCGGCAACCAGCA R: ACCTGGTCGGTCTGCTCAC | (AG)₈ | 196–238 | 16 | 1 | HEX | LS483230 |
| Mmo439 | F: GTCCTCGCTGTTAAAGACCC R: GACACTTTAGCCGCGTCCA | (AG)₈ | 204–214 | 6 | 3 | TAMRA | LS483231 |
| Mmo465 | F: GCGACCTGCTTCTGCCAGA T: AGCTGCTACATTGGTTTG | (CT)₅ | 300–326 | 10 | 3 | FAM | LS483232 |

Note: A = number of alleles sampled; ENA = European Nucleotide Archive.

*Optimal annealing temperature was 55°C for all loci.
The number of alleles per locus ranged from one to 11 (Table 2). The observed heterozygosity ranged from 0.000 to 1.000, and the expected heterozygosity ranged from 0.153 to 0.865 (Table 2). Loci 185 and 335 showed significant deviation from Hardy–Weinberg equilibrium after correction following Benjamini and Hochberg (1995); n = number of samples tested; N = number of samples with successful amplifications.

Cross-amplification in related species

Tests of amplification of the 15 loci were performed on two related species, M. arvensis and M. foetida (Table 3). Loci 031, 170, 185, 212, 235, 319, 335, 406, and 439 amplified in both species; loci 176, 402, and 465 amplified only in M. foetida; and loci 096, 262, and 335 did not amplify in either species. M. moricandioides, primarily those related to fine-scale population genetic structure and patterns of mating. In addition, the successful cross-amplification in M. arvensis and M. foetida suggests that these loci may be suitable to study gene flow, population structure, and potential introgression of the widespread M. arvensis into the other more narrowly distributed species of the genus Moricandia.

Acknowledgments

We thank Ángel Luis Caravantes Martínez and Neus Mari-Mena for technical assistance. This work received funding from the European Union’s Horizon 2020 (Marie Skłodowska-Curie No. 655653), Fundación BBVA (PR17-ECO-0021), and the Spanish Ministerio de Economía y Competitividad (CGL2017-86626-C2-1-P).

Table 2: Results of genetic diversity testing of the 15 microsatellites in the three populations of Moricandia moricandioides.*

| Locus  | Population A (n = 26) | Population B (n = 25) | Population C (n = 26) |
|--------|------------------------|------------------------|------------------------|
|        | N  | A  | H_o | H_e | HWE | N  | A  | H_o | H_e | HWE | N  | A  | H_o | H_e | HWE |
| Mmo031 | 17 | 5 | 0.824 | 0.740 | 0.315 | 24 | 2 | 0.375 | 0.311 | 0.688 | 8 | 5 | 1.000 | 0.750 | 0.302 |
| Mmo096 | 16 | 4 | 0.813 | 0.651 | 0.384 | 20 | 5 | 0.150 | 0.192 | 0.385 | 19 | 6 | 0.632 | 0.624 | 0.302 |
| Mmo170 | 26 | 6 | 0.192 | 0.753 | 0.000† | 25 | 1 | 0.000 | 0.000 | — | 25 | 6 | 0.280 | 0.730 | 0.000† |
| Mmo176 | 25 | 5 | 0.520 | 0.727 | 0.040† | 25 | 2 | 0.360 | 0.458 | 0.514 | 25 | 5 | 0.520 | 0.544 | 1.000 |
| Mmo185 | 25 | 4 | 1.000 | 0.664 | 0.000 | 25 | 3 | 1.000 | 0.579 | 0.000 | 26 | 6 | 1.000 | 0.670 | 0.000 |
| Mmo212 | 21 | 4 | 0.571 | 0.654 | 0.335 | 23 | 3 | 0.522 | 0.677 | 0.385 | 21 | 3 | 0.524 | 0.512 | 1.000 |
| Mmo235 | 25 | 4 | 0.280 | 0.460 | 0.363† | 25 | 3 | 0.480 | 0.652 | 0.432 | 26 | 3 | 0.615 | 0.516 | 0.867 |
| Mmo262 | 24 | 7 | 0.750 | 0.706 | 0.699 | 23 | 5 | 0.348 | 0.464 | 0.419 | 25 | 7 | 0.640 | 0.751 | 0.788 |
| Mmo319 | 22 | 3 | 0.318 | 0.403 | 0.335 | 20 | 3 | 0.350 | 0.522 | 0.385 | 22 | 5 | 0.545 | 0.590 | 0.302 |
| Mmo335 | 25 | 2 | 1.000 | 0.510 | 0.000 | 25 | 1 | 1.000 | 0.511 | 0.000 | 25 | 2 | 1.000 | 0.510 | 0.000 |
| Mmo393 | 24 | 8 | 0.833 | 0.826 | 0.401 | 24 | 1 | 0.000 | 0.000 | — | 26 | 6 | 0.692 | 0.774 | 0.006 |
| Mmo402 | 25 | 3 | 0.520 | 0.458 | 0.384 | 25 | 2 | 0.280 | 0.393 | 0.432 | 25 | 3 | 0.160 | 0.153 | 1.000 |
| Mmo406 | 24 | 11 | 0.250 | 0.299 | 0.157 | 24 | 3 | 0.600 | 0.507 | 0.422 | 22 | 4 | 0.182 | 0.594 | 0.000† |
| Mmo465 | 24 | 8 | 0.458 | 0.681 | 0.363† | 24 | 3 | 0.417 | 0.393 | 1.000 | 24 | 6 | 0.792 | 0.781 | 0.113 |

Note: A = number of alleles; H_o = observed heterozygosity; H_e = expected heterozygosity; HWE = P value testing significant deviation from Hardy–Weinberg equilibrium after correction following Benjamini and Hochberg (1995); n = number of samples tested; N = number of samples with successful amplifications.

Table 3: Amplification tests of microsatellites developed for Moricandia moricandioides in M. arvensis and M. foetida.

| Locus  | M. arvensis (N = 9) | M. foetida (N = 9) |
|--------|---------------------|---------------------|
|        | Amplification successa | Allele size range (bp) | Amplification successa | Allele size range (bp) |
| Mmo031 | + (3) | 233–254 | + (2) | 233–236 |
| Mmo096 | — | — | — | — |
| Mmo170 | + (4) | 146–155 | + (3) | 167–173 |
| Mmo176 | — | — | + (3) | 201–211 |
| Mmo185 | + (2) | 106–112 | + (1) | 116 |
| Mmo212 | + (2) | 129–135 | + (3) | 131–133 |
| Mmo235 | + (2) | 179–194 | + (5) | 158–179 |
| Mmo262 | — | — | — | — |
| Mmo319 | + (2) | 212–214 | + (2) | 200–208 |
| Mmo335 | — | — | — | — |
| Mmo393 | + (3) | 214–220 | + (1) | 220 |
| Mmo402 | — | — | + (1) | 164 |
| Mmo406 | + (1) | 212 | + (2) | 208–210 |
| Mmo439 | + (1) | 208 | + (2) | 208–210 |
| Mmo465 | — | — | + (3) | 314–318 |

Note: + = successful amplification; — = unsuccessful amplification; N = number of samples tested.

Values in parentheses represent the number of alleles.

Acknowledgments

We thank Ángel Luis Caravantes Martínez and Neus Mari-Mena for technical assistance. This work received funding from the European Union’s Horizon 2020 (Marie Skłodowska-Curie No. 655653), Fundación BBVA (PR17-ECO-0021), and the Spanish Ministerio de Economía y Competitividad (CGL2017-86626-C2-1-P).
DATA ACCESSIBILITY

All primer sequences and primers were submitted to the European Nucleotide Archive (accession numbers LS483218–LS483232; Table 1; http://www.ebi.ac.uk/ena/data/view/LS483218-LS483232).

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.

APPENDIX S1. Primer mix setup for multiplex reactions and final PCR concentration.

LITERATURE CITED

Benjamini, Y., and M. Hochberg. 1995. Controlling the false discovery rate—A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B. Methodological 57: 289–300.

Benjamini, Y., and D. Yekutieli. 2001. The control of the false discovery rate in multiple testing under dependency. Annals of Statistics 29(4): 1165–1188.

Gómez, J. M. 1996. Predispersal reproductive ecology of an arid land crucifer, Moricandia moricandioides: Effect of mammal herbivory on seed production. Journal of Arid Environments 33: 425–437.

Gómez, J. M., R. Torices, J. Lorite, C. P. Klingenber, and F. Perfectti. 2016. The role of pollinators in the evolution of corolla shape variation, disparity and integration in a highly diversified plant family with a conserved floral bauplan. Annals of Botany 117: 889–904.

González-Megías, A., and R. Menéndez. 2012. Climate change effects on above- and below-ground interactions in a dryland ecosystem. Philosophical Transactions of the Royal Society B: Biological Sciences 367: 3115–3124.

González-Megías, A., and C. Müller. 2010. Root herbivores and detritivores shape above-ground multitrophic assemblage through plant-mediated effects. Journal of Animal Ecology 79: 923–931.

Koressaar, T., and M. Remm. 2007. Enhancements and modifications of primer design program Primer3. Bioinformatics 23(10): 1289–1291.

Perfectti, F., J. M. Gómez, A. González-Megías, M. Abdelaziz, and J. Lorite. 2017. Molecular phylogeny and evolutionary history of Moricandia DC. (Brassicaceae). PeerJ 5: e3964.

Rousset, F. 2008. GENEPOP’007: A complex re-implementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources 8: 103–106.

Sobrino Vesperinas, E. 1993. Moricandia DC. In S. Castroviejo [ed.], Flora Iberica, 337–344. CSIC, Madrid, Spain.

Torices, R., J. M. Gómez, and J. R. Pannell. 2018. Kin discrimination allows plants to modify investment towards pollinator attraction. Nature Communications 9: 2018.

Untergasser, A., I. Cutcutache, T. Koressaar, J. Ye, B. C. Faircloth, M. Remm, and S. G. Rozen. 2012. Primer3—New capabilities and interfaces. Nucleic Acids Research 40: e115.

van Oosterhout, C., W. F. Hutchinson, D. P. M. Wills, and P. Shipley. 2004. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535–538.

APPENDIX 1. Voucher and locality information for Moricandia species used in this study.

| Species                        | Population ID | Voucher specimen accession no. | Collection locality | Geographic coordinates | N  |
|--------------------------------|---------------|--------------------------------|---------------------|------------------------|----|
| Moricandia moricandioides (Boiss.) Heywood | A             | GDA62640                        | La Malahá, Granada  | 37°07'11.8"N, 3°43'47.2"W | 26 |
| M. moricandioides              | B             | —                              | Lanjarón, Granada   | 36°55'28.7"N, 3°31'52.1"W | 25 |
| M. arvensis (L.) DC.           | C             | GDA62596                        | Barranco del Espartal, Baza, Granada | 37°31.2'N, 2°42.2"W | 26 |
| M. foetida Bourg.              | —             | GDA62592                        | Barranco del Espartal, Baza, Granada | 37°31.2'N, 2°42.2"W | 9  |
|                               | —             | GDA49837-1                      | Tabernas, Almería    | 36°58'42.2"N, 2°27'38.0"W | 9  |

Note: N = number of sampled individuals.

Vouchers are deposited at the Herbarium of the Universidad de Granada (GDA), Granada, Spain.

Locality and Spanish province.