Integrable Spatiotemporally Varying NLS, PT-Symmetric NLS, and DNLS Equations: Generalized Lax Pairs and Lie Algebras

Matthew Russo and S. Roy Choudhury
Department of Mathematics, University of Central Florida, Orlando, FL 32816-1364 USA
Corresponding author email: choudhur@cs.ucf.edu

October 3, 2014

Abstract

This paper develops two approaches to Lax-integrable systems with spatiotemporally varying coefficients. A technique based on extended Lax Pairs is first considered to derive variable-coefficient generalizations of various Lax-integrable NLPDE hierarchies recently introduced in the literature. As illustrative examples, we consider generalizations of the NLS and DNLS equations, as well as a PT-symmetric version of the NLS equation. It is demonstrated that the techniques yield Lax- or S-integrable NLPDEs with both time- AND space-dependent coefficients which are thus more general than almost all cases considered earlier via other methods such as the Painlevé Test, Bell Polynomials, and various similarity methods.

However, this technique, although operationally effective, has the significant disadvantage that, for any integrable system with spatiotemporally varying coefficients, one must 'guess' a generalization of the structure of the known Lax Pair for the corresponding system with constant coefficients. Motivated by the somewhat arbitrary nature of the above procedure, we therefore next attempt to systematize the derivation of Lax-integrable systems with variable coefficients. An ideal approach would be a method which does not require knowledge of the Lax pair to an associated constant coefficient system, and also involves little to no guesswork. Hence we attempt to apply the Estabrook-Wahlquist (EW) prolongation technique, a relatively self-consistent procedure requiring little prior information. However, this immediately requires that the technique be significantly generalized or broadened in several different ways, including solving matrix partial differential equations instead of algebraic ones as the structure of the Lax Pair is deduced systematically following the standard Lie-algebraic procedure of proceeding downwards from the coefficient of the highest derivative. The same is true while finding the explicit forms for the various 'coefficient' matrices which occur in the procedure, and which must satisfy the various constraint equations which result at various stages of the calculation.

The new and extended EW technique which results is illustrated by algorithmically deriving generalized Lax-integrable versions of NLS, PT-symmetric NLS, and DNLS equations.

Key Words: Generalizing Lax or S-integrable equations, spatially and temporally-dependent coefficients, generalized Lax Pairs, extended Estabrook-Wahlquist method.
1 Introduction

Variable Coefficient Korteweg de Vries (vcKdV) and Modified Korteweg de Vries (vcMKdV) equations have a long history dating from their derivation in various applications\cite{1}-\cite{10}. However, almost all studies, including those which derived exact solutions by a variety of techniques, as well as those which considered integrable sub-cases and various integrability properties by methods such as Painlevé analysis, Hirota’s method, and Bell Polynomials treat vcKdV equations with coefficients which are functions of the time only. For instance, for generalized variable coefficient NLS (vcNLS) equations, a particular coefficient is usually taken to be a function of \(x\)\cite{11}, as has also been sometimes done for vcMKdV equations\cite{12}. The papers \cite{13}-\cite{14} are somewhat of an exception in that they treat vcNLS equations having coefficients with general \(x\) and \(t\) dependences. Variational principles, solutions, and other integrability properties have also been considered for some of the above variable coefficient NLPDEs in cases with time-dependent coefficients.

In applications, the coefficients of vcKdV or vcNLS equations may include spatial dependence, in addition to the temporal variations that have been extensively considered using a variety of techniques. Both for this reason, as well as for their general mathematical interest, extending integrable hierarchies of nonlinear PDEs (NLPDEs) to include both spatial and temporal dependence of the coefficients is worthwhile.

Given the above, we compare two methods for deriving the integrability conditions of both a general form of variable-coefficient MKdV (vcMKdV) equation, as well as a general, variable-coefficient KdV (vcKdV) equation. In all of these cases, the coefficients are allowed to vary in space AND time.

The first method employed here is based on directly establishing Lax integrability (or S-integrability to use the technical term) as detailed in the following sections. As such, it is fairly general, although subject to the ensuing equations being solvable. We should stress that the computer algebra involved is quite challenging, and an order of magnitude beyond that encountered for integrable, constant coefficient NLPDEs.

However, this first technique, although operationally effective, has the significant disadvantage that, for any integrable system with spatiotemporally varying coefficients, one must ‘guess’ a generalization of the structure of the known Lax Pair for the corresponding system with constant coefficients. This involves replacing constants in the Lax Pair for the constant coefficient integrable system, including powers of the spectral parameter, by functions. Provided that one has guessed correctly and generalized the constant coefficient system’s Lax Pair sufficiently, and this is of course hard to be sure of ‘a priori’, one may then proceed to systematically deduce the Lax Pair for the corresponding variable-coefficient integrable system.

Motivated by the somewhat arbitrary nature of the above procedure, we next attempt to systematize the derivation of Lax-integrable sytems with variable coefficients. Of the many techniques which have been employed for constant coefficient integrable systems, the Estabrook-Wahlquist (EW) prolongation technique \cite{15}-\cite{18} is among the most self-contained. The method directly proceeds to attempt construction of the Lax Pair or linear spectral problem, whose compatibility condition is the integrable system under discussion. While not at all guaranteed to work, any successful implementation of the technique means that Lax-integrability has already been verified during the procedure, and in addition the Lax Pair is algorithmically obtained. If the technique fails, that does not necessarily imply non-integrability of the equation contained in the compatibility condition of the assumed Lax Pair. It may merely mean that some of the starting assumptions
may not be appropriate or general enough.

Hence we attempt to apply the Estabrook-Wahlquist (EW) method as a second, more algorithmic, technique to generate a variety of such integrable systems with such spatiotemporally varying coefficients. However, this immediately requires that the technique be significantly generalized or broadened in several different ways which we then develop and outline, before illustrating this new and extended method with examples.

The outline of this paper is as follows. In Section 2, we briefly review the Lax Pair method and its modifications for variable-coefficient NLPDEs, and then apply it to the vcNLS and vc PT-symmetric NLS systems. In section 3 we consider an analogous treatment of a generalized vcDNLS equation. In section 4, we lay out the extensions required to apply the EW procedure to Lax-integrable systems with spatiotemporally varying coefficients. Sections 5 and 6 then illustrate this new, extended EW method in detail for Lax-integrable versions of the NLS/PTNLS and generalized DNLS systems respectively, each with spatiotemporally varying coefficients. We also illustrate that this generalized EW procedure algorithmically generates the same results as those obtained in a more ad hoc manner in Sections 2 and 3. Section 7 briefly reviews the results and conclusions, and directions for possible future work.

More involved algebraic details, which are integral to both the procedures employed here, are relegated to the appendices.

2 Extended Lax Pair method and application to the vc-NLS and vcPT-Symmetric NLS Systems

In the Lax pair method [20 - 21] for solving and determining the integrability conditions for nonlinear partial differential equations (NLPDEs) a pair of $n \times n$ matrices, U and V needs to be derived or constructed. The key component of this construction is that the integrable nonlinear PDE under consideration must be contained in, or result from, the compatibility of the following two linear Lax equations (the Lax Pair)

$$
\Phi_x = U\Phi \tag{1}
$$

$$
\Phi_t = V\Phi \tag{2}
$$

where Φ is an eigenfunction, and U and V are the time-evolution and spatial-evolution (eigenvalue problem) matrices.

From the cross-derivative condition (i.e. $\Phi_{xt} = \Phi_{tx}$) we get

$$
U_t - V_x + [U, V] = 0 \tag{3}
$$

known as the zero-curvature condition where $\dot{0}$ is contingent on $q(x, t)$ and $r(x, t)$ being solutions to the system of nonlinear PDEs. A Darboux transformation can then be applied to the linear system to obtain solutions from known solutions and other integrability properties of the integrable NLPDE.

We first consider the variable coefficient cubic nonlinear Schrodinger and PT-symmetric nonlinear Schrodinger equations given by

$$
iq_t(x, t) + f(x, t)q_{xx}(x, t) + g(x, t)|q(x, t)|^2q(x, t) + v(x, t)q(x, t) + i\gamma(x, t)q(x, t) = 0 \tag{4}
$$
and

\[iq_t(x,t) = a_1(x,t)q_{xx}(x,t) + a_2(x,t)q(x,t)^2 \overline{q(-x,t)} \] \hfill (5)

respectively. We can decouple these equations into the systems

\[iq_t(x,t) + f(x,t)q_{xx}(x,t) + g(x,t)q^2(x,t)r(x,t) + v(x,t)q(x,t) + i\gamma(x,t)q(x,t) = 0 \] \hfill (6)

\[-ir_t(x,t) + f(x,t)r_{xx}(x,t) + g(x,t)r^2(x,t)q(x,t) + v(x,t)r(x,t) - i\gamma(x,t)r(x,t) = 0 \] \hfill (7)

and

\[iq_t(x,t) = a_1(x,t)q_{xx}(x,t) + a_2(x,t)q^2(x,t)r(x,t) \] \hfill (8)

\[-ir_t(x,t) = a_1(x,t)r_{xx}(x,t) + a_2(x,t)r^2(x,t)q(x,t) \] \hfill (9)

respectively, where in (6) \(r(x,t) = -q(x,t) \) and in (8) \(r(x,t) = -q(-x,t) \). It is clear that without prescribing the relation between \(r(x,t) \) and \(q(x,t) \), which neither Lax pair technique presented depends on, if we let \(f(x,t) = -a_1(x,t) \), \(g(x,t) = -a_2(x,t) \), and \(v(x,t) = \gamma(x,t) = 0 \) in (6) we obtain the system given by (3). That is, we can expect that the integrability conditions for the variable coefficients in the PTNLS will be a special case of the integrability conditions for variable coefficients in the NLS.

These equations, which we shall always call the physical (or field) NLPDEs to distinguish them from the many other NLPDEs we encounter, will be Lax-integrable or S-integrable if we can find a Lax pair whose compatibility condition (3) contains the appropriate equation (6) or (8).

One expands the Lax pair \(\mathbf{U} \) and \(\mathbf{V} \) in powers of \(q \) and \(r \) and their derivatives with unknown functions as coefficients. This results in a large system of coupled NLPDEs for the variable coefficient functions in (6)-(8). Upon solving these (and a solution is not guaranteed, and may prove to be impossible to obtain in general for some physical NLPDEs), we simultaneously obtain the Lax pair and integrability conditions on the variable coefficients for which (6)-(8) are Lax-integrable.

The results for the cubic-NLS, for which the details previously derived by Khawaja are given in Appendix A, are given by

\[f(x,t) = \frac{c_1(t)}{g(x,t)^2} \] \hfill (10)

\[\gamma(x,t) = \frac{g_1(x,t)}{g(x,t)} - \frac{1}{2} \frac{c_2(t)}{c_2(t)} \] \hfill (11)

\[fg^3(f_t(g_t - 2g\gamma) - f_{tt}g) + f_t^2g^4 + 2f^3g^3(gv_{xx} - g_xv_x) + f^2g^2(g(4g\gamma + g_t) - 2g^2) - 2g^2(\gamma_t + 2\gamma^2) + f^4(36g_{xx}^2 - 48gg_{xxx}g_x + 10g^2g_{xxx}g_x + g^2(6g_{xx}^2 - gg_{xxxx})) = 0 \] \hfill (12)

The results for the PT-symmetric NLS, for which the details are also given in Appendix A, are given by

\[a_1(x,t) = \frac{h(t)}{a_2(x,t)^2} \] \hfill (13)
3 The Variable Coefficient DNLS System

Here, we will apply the technique of the last section in exactly the same fashion to generalized DNLS equation, but will omit the details for the sake of brevity. Please note that the coefficients a_i in this section are totally distinct or different from those given the same symbols in the previous section. All equations in this section are thus to be read independently of those in the previous one.

Consider the variable coefficient DNLS given by

$$iq_t(x,t) = a_1(x,t)q_{xx}(x,t) + ia_2(x,t)(q(x,t)^2q(x,t))_x$$ \hspace{1cm} (14)$$

As with the previous section it will be advantageous to decouple this system into the following system

$$iq_t(x,t) + a_1(x,t)q_{xx}(x,t) + ia_2(x,t)(q^2(x,t)r(x,t))_x = 0$$ \hspace{1cm} (15)$$

$$-ir_t(x,t) + a_1(x,t)r_{xx}(x,t) - ia_2(x,t)(r^2(x,t)q(x,t))_x = 0$$ \hspace{1cm} (16)$$

where $r(x,t) = \overline{q(x,t)}$. As before, we consider the variable-coefficient DNLS equation to be integrable if we can find a Lax pair which satisfies (3). In the method given in (cite Khwaja) one expands the Lax pair U and V in powers of q and r and their derivatives with unknown function coefficients and require (3) to be equivalent to the nonlinear system. This results in a system of coupled PDEs for the unknown coefficients for which upon solving we simultaneously obtain the Lax pair and integrability conditions on the a_i. The results, for which the details are given in Appendix B, are as follows

$$a_1(x,t) = F_4(t)F_2(x)(c_1 + c_2x) - c_1F_4(t)F_2(x)\int \frac{x \, dx}{F_2(x)} + c_1xF_4(t)F_2(x)\int \frac{dx}{F_2(x)}$$ \hspace{1cm} (17)$$

$$a_2(x,t) = F_2(x)F_3(t)$$ \hspace{1cm} (18)$$

where F_{1-4} are arbitrary functions in their respective variables and $c_{1,2}$ are arbitrary constants.

Having considered these two examples of various NLS-type equations, we shall now proceed to consider whether these results may be recovered in a more algorithmic manner. As discussed in Section 1, it would be advantageous if they could be obtained without: a. requiring to know the form of the Lax Pair for the corresponding constant-coefficient Lax-integrable equation, and b. requiring to generalize this constant-coefficient Lax Pair by guesswork. Towards that end, we now proceed to consider how this may be accomplished by generalizing and extending the Estabrook-Wahlquist technique to Lax-integrable systems with variable coefficients.

4 The Extended Estabrook-Wahlquist Technique

In the standard Estabrook-Wahlquist method one begins with a constant coefficient NLPDE and assumes an implicit dependence on $u(x,t)$ and its partial derivatives of the spatial and time evolution matrices (F, G) involved in the linear scattering problem

$$\psi_x = F\psi, \hspace{0.5cm} \psi_t = G\psi$$
The evolution matrices F and G are connected via a zero-curvature condition (independence of path in spatial and time evolution) derived by mandating $\psi_{xt} = \psi_{tx}$. That is, it requires

$$F_t - G_x + [F, G] = 0$$

provided $u(x, t)$ satisfies the NLPDE.

Considering the forms

$$F = F(q, r, q_x, r_x, q_t, r_t, \ldots, q_{m_1 x, n_1 t}, r_{m_2 x, n_2 t})$$

and

$$G = G(q, r, q_x, r_x, q_t, r_t, \ldots, q_{k_1 x, j_1 t}, r_{k_2 x, j_2 t})$$

for the space and time evolution matrices where $u_{px,qt} = \frac{\partial^2 u}{\partial x \partial t}$ we see that this condition is equivalent to

$$\sum_{m_1, n_1} F_{q_{m_1 x, n_1 t}} q_{m_1 x, (n_1+1)t} + \sum_{m_2, n_2} F_{r_{m_2 x, n_2 t}} r_{m_2 x, (n_2+1)t} - \sum_{j_1, k_1} G_{q_{j_1 x, k_1 t}} q_{(j_1+1)x, k_1 t}$$

$$- \sum_{j_2, k_2} G_{r_{j_2 x, k_2 t}} r_{(j_2+1)x, k_2 t} + [F, G] = 0$$

From here there is often a systematic approach[15]-[18] to determining the form for F and G which is outlined in [17] and will be utilized in the examples to follow.

Typically a valid choice for dependence on $q(x, t), r(x, t)$ and their partial derivatives is to take F to depend on all terms in the NLPDE for which there is a partial time derivative present. Similarly we may take G to depend on all terms for which there is a partial space derivative present. For example, given the standard NLS,

$$iq_t = q_{xx} + 2q^2r$$
$$ir_t = -r_{xx} - 2qr^2$$

one would consider $F = F(q, r)$ and $G = G(q, r, q_x, r_x)$. Imposing compatibility allows one to determine the explicit form of F and G in a very algorithmic way. Additionally the compatibility condition induces a set of constraints on the coefficient matrices in F and G. These coefficient matrices subject to the constraints generate a finite dimensional matrix Lie algebra.

In the extended Estabrook-Wahlquist method we allow for F and G to be functions of t, x, q, r and the partial derivatives of q and r. Although the details change, the general procedure will remain essentially the same. We will begin by equating the coefficient of the highest partial derivative of the unknown function(s) to zero and work our way down until we have eliminated all partial derivatives of the unknown function(s).

This typically results in a large partial differential equation (in the standard Estabrook-Wahlquist method, this is an algebraic equation) which can be solved by equating the coefficients of the different powers of the unknown function(s) to zero. This final step induces a set of constraints on the coefficient matrices in F and G. Another big difference which we will see in the examples comes in
the final and, arguably, the hardest step. In the standard Estabrook-Wahlquist method the final step involves finding explicit forms for the set of coefficient matrices such that they satisfy the constraints derived in the procedure. Note these constraints are nothing more than a system of algebraic matrix equations. In the extended Estabrook-Wahlquist method these constraints will be in the form of matrix partial differential equations which can be used to derive an integrability condition on the coefficients in the NLPDE.

As we are now letting \(F \) and \(G \) have explicit dependence on \(x \) and \(t \) and for notational clarity, it will be more convenient to consider the following version of the zero-curvature condition

\[
D_t F - D_x G + [F, G] = 0 \tag{19}
\]

where \(D_t \) and \(D_x \) are the total derivative operators on time and space, respectively. Recall the definition of the total derivative

\[
D_y f(y, z, u_1(y, z), u_2(y, z), \ldots, u_n(y, z)) = \frac{\partial f}{\partial y} + \frac{\partial f}{\partial u_1} \frac{\partial u_1}{\partial y} + \frac{\partial f}{\partial u_2} \frac{\partial u_2}{\partial y} + \cdots + \frac{\partial f}{\partial u_n} \frac{\partial u_n}{\partial y}
\]

Thus we can write the compatibility condition as

\[
F_t + \sum_{m_1, n_1} F_{q m_1 x, n_1 t} q m_1 x, (n_1 + 1) t + \sum_{m_2, n_2} F_{r m_2 x, n_2 t} r m_2 x, (n_2 + 1) t - \sum_{j_1, k_1} G_{q j_1 x, k_1 t} q (j_1 + 1) x, k_1 t - \sum_{j_2, k_2} G_{r j_2 x, k_2 t} r (j_2 + 1) x, k_2 t - G_x + [F, G] = 0
\]

It is important to note that the subscripted \(x \) and \(t \) denotes the partial derivative with respect to only the \(x \) and \(t \) elements, respectively. That is, although \(q, r \) and their derivatives depend on \(x \) and \(t \) this will not invoke use of the chain rule as they are treated as independent variables. This will become more clear in the examples of the next section.

Note that compatibility of the time and space evolution matrices will yield a set of constraints which contain the constant coefficient constraints as a subset. In fact, taking the variable coefficients to be the appropriate constants will yield exactly the Estabrook-Wahlquist results for the constant coefficient version of the NLPDE. That is, the constraints given by the Estabrook-Wahlquist method for a constant coefficient NLPDE are always a proper subset of the constraints given by a variable-coefficient version of the NLPDE. This can easily be shown. Letting \(F \) and \(G \) not depend explicitly on \(x \) and \(t \) and taking the coefficients in the NLPDE to be constant the zero-curvature condition as it is written above becomes

\[
\sum_{m_1, n_1} F_{q m_1 x, n_1 t} q m_1 x, (n_1 + 1) t + \sum_{m_2, n_2} F_{r m_2 x, n_2 t} r m_2 x, (n_2 + 1) t - \sum_{j_1, k_1} G_{q j_1 x, k_1 t} q (j_1 + 1) x, k_1 t - \sum_{j_2, k_2} G_{r j_2 x, k_2 t} r (j_2 + 1) x, k_2 t + [F, G] = 0
\]

which is exactly the standard Estabrook-Wahlquist method.

The conditions derived via mandating (19) be satisfied upon solutions of the vc-NLPDE may be used to determine conditions on the coefficient matrices and variable-coefficients (present in the
NLPDE). Successful closure of these conditions is equivalent to the system being S-integrable. A major advantage to using the Estabrook-Wahlquist method that carries forward with the extension is the fact that it requires little guesswork and yields quite general results.

In Khawaja’s method[14]-[22] an educated guess is made for the structure of the variable-coefficient NLS Lax pair based on the associated constant coefficient Lax pair. That is, Khawaja considered the matrices
\[F = U = \begin{bmatrix} f_1 + f_2q & f_3 + f_4q \\ f_5 + f_6r & f_7 + f_8r \end{bmatrix} \]
and
\[G = V = \begin{bmatrix} g_1 + g_2q + g_3q_x + g_4r \quad g_5 + g_6q + g_7q_x + g_8rq \\ g_9 + g_{10}r + g_{11}r_x + g_{12}r^2q \quad g_{13} + g_{14}r + g_{15}r_x + g_{16}r^2q \end{bmatrix} \]
where \(f_i \) and \(g_i \) unknown functions of \(x \) and \(t \) which satisfy conditions derived by mandating the zero-curvature condition be satisfied on solutions of the variable-coefficient NLS. In fact, in a previous paper Khawaja derives the associated Lax pair via a similar means where he begins with an even weaker assumption on the structure of the Lax pair. This Lax pair is omitted from the paper as it becomes clear the zero-curvature condition mandates many of the coefficients be zero.

An ideal approach would be a method which does not require knowledge of the Lax pair to an associated constant coefficient system and involves little to no guesswork. The extended Estabrook-Wahlquist does exactly this. It will be shown that the results obtained from Khawaja’s method are in fact a special case of the extended Estabrook-Wahlquist method.

We now proceed with the variable coefficient NLS and PTNLS equations as our first examples of this extended Estabrook Wahlquist method.

5 The vc-NLS Equation Reconsidered

Following with the procedure outlined above we choose
\[F = F(x,t,q,r), \quad G = G(x,t,r,q,r_x,q_x) \]

Compatibility requires these matrices satisfy the zero-curvature conditions given by (19). Plugging \(F \) and \(G \) into (19) we have
\[F_t + F_r r_t + F_q q_t - G_x - G_r r_x - G_q q_x - G_{r_x} r_{xx} - G_{q_x} q_{xx} + [F,G] = 0 \] (20)

Now requiring this be satisfied upon solutions of (6) we follow the standard technique of eliminating \(r_t \) and \(u_t \) via (6)
\[F_t - i F_r (f r_{xx} + g r^2 q + (v - i \gamma) r) + i F_q (f q_{xx} + g q^2 r + (v + i \gamma) q) - G_x - G_r r_x - G_q q_x - G_{r_x} r_{xx} - G_{q_x} q_{xx} + [F,G] = 0 \] (21)

Since \(F \) and \(G \) do not depend on \(q_{xx} \) or \(r_{xx} \) we collect the coefficients of \(q_{xx} \) and \(r_{xx} \) and equate them to zero. This requires
\[-i f F_r - G_{r_x} = 0, \quad i F_q - G_{q_x} = 0 \] (22)
Solving this linear system yields

\[
G = i f(F_q q_x - F_r r_x) + \mathbb{K}^0(x, t, q, r)
\]

(23)

Plugging this into (21) gives us

\[
F_t - i F_r (gr^2 q + (v - i \gamma) r) + i F_q (gq^2 r + (v + i \gamma) q) - i f_x(F_q q_x - F_r r_x) - \mathbb{K}^0 q_x - \mathbb{K}^0 r_x \\
- i f(F_{q x} q_x - F_{r x} r_x) - i f(F_{q q} q_x^2 - F_{r r} r_x^2) - \mathbb{K}^0 + i f q [F, F_q] - i f r [F, F_r] + [F, \mathbb{K}^0] = 0
\]

(24)

Now since \(F \) and \(\mathbb{K}^0 \) do not depend on \(q_x \) and \(r_x \) we collect the coefficients of the \(q_x^2 \) and \(r_x^2 \) and equate them to zero. This now requires

\[
if F_{rr} = 0 = -i f F_{qq}
\]

From this, it follows via simple integration

\[
F = X_1(x, t) + X_2(x, t)q + X_3(x, t)r + X_4(x, t)rq
\]

where the \(X_i \) are arbitrary matrices whose elements are functions of \(x \) and \(t \). Plugging this into (24) we obtain

\[
X_{1,t} + X_{2,t}q + X_{3,t}r + X_{4,t}rq - i(X_3 + X_4)(gr^2 q + (v - i \gamma) r) + i(X_2 + X_4)(gq^2 r + (v + i \gamma) q) \\
- i f_x((X_2 + X_4)q_x - (X_3 + X_4)r_x) - \mathbb{K}^0 q_x - \mathbb{K}^0 r_x - i f((X_{2,x} + X_{4,x})q_x - (X_{3,x} + X_{4,x})r_x) \\
- \mathbb{K}_x + i f[X_1, X_2]q_x + if[X_3, X_2]r_q x + if[X_4, X_2]r_{q q} x + if[X_1, X_4]r_{q x} + if[X_2, X_4]r_{q r} x \\
+ if[X_3, X_4]r_{q q} x - if[X_1, X_3]r_{q x} - if[X_2, X_3]q r_x - if[X_4, X_3]q r r_x - if[X_1, X_4]q r_x \\
- if[X_2, X_4]q^2 r_x - if[X_3, X_4]q r r_x + [X_1, \mathbb{K}^0] + [X_2, \mathbb{K}^0]q + [X_3, \mathbb{K}^0]r + [X_4, \mathbb{K}^0]q r = 0
\]

(25)

Noting the antisymmetry of the commutator we can further simplify this to

\[
X_{1,t} + X_{2,t}q + X_{3,t}r + X_{4,t}rq - i(X_3 + X_4)(gr^2 q + (v - i \gamma) r) + i(X_2 + X_4)(gq^2 r + (v + i \gamma) q) \\
- i f_x((X_2 + X_4)q_x - (X_3 + X_4)r_x) - \mathbb{K}^0 q_x - \mathbb{K}^0 r_x - i f((X_{2,x} + X_{4,x})q_x - (X_{3,x} + X_{4,x})r_x) \\
- \mathbb{K}_x + i f[X_1, X_2]q_x + if[X_3, X_2]r_q x + if[X_1, X_4]r_{q x} + if[X_3, X_4]r^2 q_x - if[X_1, X_3]r_{q r} x \\
- if[X_2, X_4]q^2 r_x - if[X_1, X_4]q r_x - if[X_2, X_4]q^2 r_x = 0
\]

(26)

As before, since the \(X_i \) and \(\mathbb{K}^0 \) do not depend on \(r_x \) or \(q_x \) we equate the coefficients of the \(q_x \) and \(r_x \) terms to zero. Thus we require

\[
- if_x(X_2 + X_4) - \mathbb{K}^0 q + if(X_{2,x} + X_{4,x})q + if[X_1, X_2] + if r [X_1, X_4] \\
- if r [X_2, X_3] + if r^2 [X_3, X_4] = 0
\]

(27)

\[
if_x(X_3 + X_4 q) - \mathbb{K}^0 + if(X_{3,x} + X_{4,x} q) + if[X_1, X_3] - if q [X_1, X_4] \\
- if q [X_2, X_3] - if q^2 [X_2, X_4] = 0
\]

(28)
Upon trying to integrate this system one finds that the system is in fact inconsistent. Recall that given a system of PDEs
\[\Psi_q = \xi(q, r), \quad \Psi_r = \eta(q, r) \]
if we are to recover \(\Psi \) we must satisfy a consistency condition. That is, we must have \(\xi_r = \Psi_{qr} = \Psi_{rq} = \eta_q \). In (27) and (28) we have

\[
\begin{align*}
\xi(q, r) &= -if_x(X_2 + X_4r) - if(X_{2, x} + X_{4, x}r) + if[X_1, X_2] + ifr[X_1, X_4] \\
&\quad -ifr[X_2, X_3] + ifr^2[X_3, X_4] = 0 \quad (29) \\
\eta(q, r) &= if_x(X_3 + X_4q) + if(X_{3, x} + X_{4, x}q) - if[X_1, X_3] - ifq[X_1, X_4] \\
&\quad -ifq[X_2, X_3] - ifq^2[X_2, X_4] = 0 \quad (30)
\end{align*}
\]

Thus the consistency condition \((\xi_r = \eta_q) \) requires

\[
- if_x X_1 - if X_{4, x} + if[X_1, X_4] - if[X_2, X_3] + 2if[X_3, X_4]r = if_x X_4 + ifX_{4, x} - if[X_1, X_4] \\
- if[X_2, X_3] - 2if[X_2, X_4]q
\]

But this means we must have

\[2if_x X_4 + 2ifX_{4, x} - 2if[X_1, X_4] - 2if[X_3, X_4](r + q) = 0 \quad (31)\]

One easy choice to make the system consistent, and for the purpose of demonstrating how this method can reproduce results previously obtained in the literature, is to set \(X_4 = 0 \). Thus the system becomes

\[
\begin{align*}
K^0_q &= -if_x X_2 - ifX_{2, x} + if[X_1, X_2] - ifr[X_2, X_3] \quad (32) \\
K^0_r &= if_x X_3 + ifX_{3, x} - if[X_1, X_3] - ifq[X_2, X_3] \quad (33)
\end{align*}
\]

Integrating the first equation with respect to \(q \) we obtain

\[K^0 = -if_x X_2 q - ifX_{2, x}q + if[X_1, X_2]q - if[X_2, X_3]rq + K^r(x, t, r) \]

Now differentiating this and mandating that it equal our previous expression for \(K^0 \) we find that \(K^r \) must satisfy

\[K^r = if_x X_3 + ifX_{3, x} - if[X_1, X_3] \]

Integrating this expression with respect to \(r \) we easily find

\[K^r = if_x X_3 r + ifX_{3, x}r - if[X_1, X_3]r + X_0(x, t) \]

Now plugging this into our previous expression for \(K^0 \) we have

\[K^0 = if_x(X_3r - X_2q) + if(X_{3, x}r - X_{2, x}q) + if[X_1, X_2]q - if[X_1, X_3]r - if[X_2, X_3]rq + X_0 \quad (34) \]
Now plugging this into (26) we have

\[
X_{1,t} + X_{2,t}q + X_{3,t}r - iX_3(gq^2r + (v - i\gamma)r + iX_2(qg^2r + (v + i\gamma)q) - if_{xx}(X_3r - X_2q)
\]

\[-2if_x(X_{3,x}r - X_{2,x}q) - if(X_{3,xx}r - X_{2,xx}q) - i(f[X_1,X_2])_xq + i(f[X_1,X_2])_xr
\]

\[-X_{0,x} + if_x(X_1,X_3)r - [X_1,X_2]q + if([X_1,X_3,x]r - [X_1,X_2,x]q) + if([X_1,X_2])q
\]

\[-if(X_1,[X_1,X_3])r + if([X_1,X_2,X_3])qr + [X_1,X_0] + if_x[X_2,X_3]qr + i(f[X_2,X_3])_xqr
\]

\[+if([X_2,[X_1,X_2]])^2 - if([X_2,[X_1,X_3]])qr - if([X_2,[X_2,X_3]])q^2 r + [X_2,X_0]q - if_x[X_3,X_2]rq
\]

\[+if([X_3,[X_3,x]])^2 - [X_3,X_{2,x}]qr + if([X_3,[X_1,X_2]])rq - if([X_3,[X_1,X_3]])r^2 - if([X_3,[X_2,X_3]])qr^2
\]

\[+if([X_2,[X_3,x]])qr - [X_2,[X_2,x]]q^2 r + [X_3,X_0]r = 0 \quad (35)
\]

Since the \(X_i\) are independent of \(r\) and \(q\) we equate the coefficients of the different powers of \(r\) and \(q\) to zero and thus obtain the following constraints:

\[O(1) \quad : \quad X_{1,t} - X_{0,x} + [X_1,X_0] = 0 \quad (36)
\]

\[O(q) \quad : \quad X_{2,t} + iX_2(v + i\gamma) + i(fX_2)_{xx} - i(f[X_1,X_2])_x + i(fX_1,X_2) - i(fX_1,X_2)_x
\]

\[+if([X_1,[X_1,X_2]]) + [X_2,X_0] = 0 \quad (37)
\]

\[O(r) \quad : \quad X_{3,t} - iX_3(v - i\gamma) - i(fX_3)_{xx} + i(f[X_1,X_3])_x - if([X_1,X_3]) + if([X_1,X_3])_x
\]

\[+if([X_1,[X_1,X_3]]) + [X_3,X_0] = 0 \quad (38)
\]

\[O(qr) \quad : \quad 2if([X_2,X_3])_x - if([X_1,[X_2,X_3]]) + if([X_2,X_3])_x - if([X_2,[X_1,X_3]])
\]

\[+if([X_3,[X_1,X_2]]) = 0 \quad (39)
\]

\[O(q^2) \quad : \quad if([X_2,X_{2,x}] - if([X_2,[X_1,X_2]]) = 0 \quad (40)
\]

\[O(r^2) \quad : \quad if([X_3,X_{3,x}] - if([X_3,[X_1,X_3]]) = 0 \quad (41)
\]

\[O(q^2r) \quad : \quad igX_2 - if([X_2,[X_2,X_3]]) = 0 \quad (42)
\]

\[O(r^2q) \quad : \quad igX_3 + if([X_3,[X_2,X_3]]) = 0 \quad (43)
\]

These equations collectively determine the conditions for integrability of the system. Note that in general, as with the standard Estabrook-Wahlquist method, the solution to the above system is not unique. Provided we can find representations for the \(X_i\) and thus reduce the system down to an integrability condition on the coefficients we will obtain our Lax pair \(F\) and \(G\). We will now show how to reproduce the results given in Khawaja’s paper. Let us consider Khawaja’s choices, thus

\[
X_0 = \begin{bmatrix} g_1 & 0 \\ 0 & g_{13} \end{bmatrix}, \quad X_1 = \begin{bmatrix} f_1 & 0 \\ 0 & f_7 \end{bmatrix}, \quad X_2 = \begin{bmatrix} 0 & ip_1 \\ 0 & 0 \end{bmatrix}, \quad X_3 = \begin{bmatrix} 0 & 0 \\ -ip_2 & 0 \end{bmatrix} \quad (44)
\]

Plugging this into our integrability conditions yields
\begin{align*}
O(1) & : \quad f_{1t} - g_{1x} = 0 \quad (45) \\
O(1) & : \quad f_{7t} - g_{13x} = 0 \quad (46) \\
O(q) & : \quad ip_{1t} - ip_1(g_1 - g_{13} - iv + \gamma) - (fp_1)_{xx} + 2(f_1 - f_7)(p_1f)_x \\
& \quad - fp_1(f_1 - f_7)^2 + fp_1(f_1 - f_7)_x = 0 \quad (47) \\
O(r) & : \quad ip_{2t} + ip_2(g_1 - g_{13} - iv - \gamma) + (fp_2)_{xx} + 2(f_1 - f_7)(fp_2)_x \\
& \quad + (f_1 - f_7)^2 fp_2 + fp_2(f_1 - f_7)_x = 0 \quad (48) \\
O(qr) & : \quad f_xp_1p_2 + 2(fp_3p_2)_x = 0 \quad (49) \\
O(q^2r) \text{ and } O(r^2q) & : \quad g + 2fp_1p_2 = 0 \quad (50)
\end{align*}

Note that (40) and (41) were identically satisfied. In Khawaja’s paper we see (45), (46), (49) and (50) given exactly. To see that the other conditions are equivalent we note that in his paper he had the additional determining equations

\begin{align*}
(f_1p_1)_x - fp_1(f_1 - f_7) - g_6 = 0 \quad (51) \\
(f_2p_2)_x + fp_2(f_1 - f_7) - g_{10} = 0 \quad (52) \\
g_6(f_1 - f_7) - ip_1(g_1 - g_{13} - iv + \gamma) - g_{6x} + ip_{1t} = 0 \quad (53) \\
g_{10}(f_1 - f_7) + ip_2(g_1 - g_{13} - iv - \gamma) + g_{10x} + ip_{2t} = 0 \quad (54)
\end{align*}

We begin by solving (51) and (52) for \(g_6 \) and \(g_{10} \), respectively. Now plugging \(g_6 \) into (53) and \(g_{10} \) into (54) we obtain

\begin{align*}
2(fp_1)_x(f_1 - f_7) - fp_1(f_1 - f_7)^2 - ip_1(g_1 - g_{13} - iv + \gamma) - (fp_1)_{xx} \\
+ fp_1(f_1 - f_7)_x + ip_{1t} = 0 \quad (55) \\
(f_2p_2)_x(f_1 - f_7) + fp_2(f_1 - f_7)^2 + ip_2(g_1 - g_{13} - iv - \gamma) + (fp_2)_{xx} \\
+ fp_2(f_1 - f_7)_x + ip_{2t} = 0 \quad (56)
\end{align*}

which is exactly (47) and (48). The Lax pair for this system is given by

\begin{align*}
F & = \quad X_1 + X_2q + X_3r \\
G & = \quad if(X_2q - X_3r) + if_x(X_3r - X_2q) + if(X_3,r_x - X_2, r_x) + if([X_1, X_2]q - if([X_1, X_3]r \\
& - if[X_2, X_3]qr + X_0) \quad (58)
\end{align*}

5.1 The Variable Coefficient PT-symmetric Nonlinear Schrodinger Equation

As the procedure for deriving the Lax pair and conditions necessary for Lax integrability are merely a special case of the standard cubic-NLS considered in the previous section we will not go through the entire procedure but rather list the main results here. The final constraints obtained in the extended Estabrook-Wahlquist technique are the following
The Lax pair for this system can thus be found to be

\[O(1) : X_{1,t} - X_{0,x} + [X_1, X_0] = 0 \]
\[O(q) : X_{2,t} - i(a_1 X_2)_{xx} + i(a_1 [X_1, X_2])_x + ia_1 x [X_1, X_2] + ia_1 [X_1, X_{2,x}] + i f [X_1, [X_1, X_2]] + [X_2, X_0] = 0 \]
\[O(r) : X_{3,t} + i(a_1 X_3)_{xx} - i(a_1 [X_1, X_3])_x - ia_1 x [X_1, X_3] - ia_1 [X_1, X_{3,x}] \]
\[ia_1 [X_1, [X_1, X_3]] + [X_3, X_0] = 0 \]
\[O(qr) : -2i(a_1 [X_2, X_3])_x + ia_1 [X_1, [X_2, X_3]] - ia_1 x [X_2, X_3] + ia_1 [X_2, [X_1, X_3]] - ia_1 [X_3, [X_1, X_2]] = 0 \]
\[O(q^2) : -ia_1 [X_2, X_{2,x}] + ia_1 [X_2, [X_1, X_2]] = 0 \]
\[O(r^2) : -ia_1 [X_3, X_{3,x}] + ia_1 [X_3, [X_1, X_3]] = 0 \]
\[O(q^2 r) : -ia_2 X_2 + ia_1 [X_2, [X_2, X_3]] = 0 \]
\[O(r^2 q) : -ia_2 X_3 - ia_1 [X_3, [X_2, X_3]] = 0 \]

Utilizing the same set of generators

\[
X_0 = \begin{bmatrix} g_1 & 0 \\ 0 & g_{13} \end{bmatrix}, \quad X_1 = \begin{bmatrix} f_1 & 0 \\ 0 & f_7 \end{bmatrix}, \quad X_2 = \begin{bmatrix} 0 & ip_1 \\ 0 & 0 \end{bmatrix}, \quad X_3 = \begin{bmatrix} 0 & 0 \\ -ip_2 & 0 \end{bmatrix}
\]

we have the following set of conditions

\[O(1) : f_{1t} - g_{1x} = 0 \]
\[O(1) : f_{7t} - g_{13x} = 0 \]
\[O(q) : ip_{1t} - ip_1 (g_1 - g_{13}) + (a_1 p_1)_{xx} - 2(f_1 - f_7)(p_1 a_1)_x + a_1 p_1 (f_1 - f_7)^2 - a_1 p_1 (f_1 - f_7)_x = 0 \]
\[O(r) : ip_{2t} + ip_2 (g_1 - g_{13}) - (a_1 p_2)_{xx} - 2(f_1 - f_7)(a_1 p_2)_x - (f_1 - f_7)^2 a_1 p_2 - a_1 p_2 (f_1 - f_7)_x = 0 \]
\[O(qr) : -a_1 x p_1 p_2 - 2(a_1 p_1 p_2)_x = 0 \]
\[O(q^2 r) \text{ and } O(r^2 q) : a_2 + 2a_1 p_1 p_2 = 0 \]

The Lax pair for this system can thus be found to be

\[F = X_1 + X_2 q + X_3 r \]
\[G = -ia_1 (X_2 q_x - X_3 r_x) - ia_1 x (X_3 r - X_2 q) - ia_1 (X_3, x r - X_2, x q) - ia_1 [X_1, X_2] q + ia_1 [X_1, X_3] r + ia_1 [X_2, X_3] q r + X_0 \]

Next, we illustrate our generalized Estabrook-Wahlquist technique by applying it to the generalized DNLS equation.
6 The vc-DNLS Equation Reconsidered

In this section we consider treatment of the derivative NLS given by the system

\[iq_t + a_1 q_{xx} + 2iqr q_x + ia_2 q^2 r_x = 0, \]
\[-ir_t + a_1 r_{xx} - 2ia_2 rq_x r - ia_2 r^2 q_x = 0, \]

(76a) \hspace{1cm} (76b)

where \(a_1 \) and \(a_2 \) are arbitrary functions of \(x \) and \(t \) with the extended Estabrook-Wahlquist method. The details of this example will be similar to that of the standard NLS and PT-symmetric NLS.

Following the procedure we let

\[F = F(x, t, r, q), \quad G = G(x, t, r, q, r_x, q_x) \]

Plugging this into (19) we obtain

\[F_t + F q_t + F_r r_t - G_x - G_q q_x - G_{qq} q_{xx} - G_r r_x - G_r r_{xx} + [F, G] = 0 \]

(77)

Now using substituting for \(q_t \) and \(r_t \) using (76a) and (76b) we have

\[F_t + (ia_1 F_q - G_{q_x}) q_{xx} - (ia_1 F_r + G_{r_x}) r_{xx} - F_q (2a_2 q q_x + a_2 q^2 r_x) + \]
\[- F_r (2a_2 q r r_x + a_2 r^2 q_x) - G_x - G_q q_x - G_r r_x + [F, G] = 0 \]

(78)

Since \(F \) and \(G \) do not depend on \(q_{xx} \) or \(r_{xx} \) we can set the coefficients of the \(q_{xx} \) and \(r_{xx} \) terms to zero. This requires

\[ia_1 F_q - G_{q_x} = 0, \quad \text{and } ia_1 F_r + G_{r_x} = 0 \]

(79)

Solving this in the same manner as in the NLS example we obtain

\[G = ia_1 (F q_x - F r_x) + \mathbb{K}^0(x, t, r, q) \]

(80)

Plugging this into (78) we obtain

\[F_t - F_q (2a_2 q q_x + a_2 q^2 r_x) - F_r (2a_2 q r r_x + a_2 r^2 q_x) - i(a_1 F_q) q_x + i(a_1 F_r) r_x - \mathbb{K}^0_x \]
\[+ ia_1 F_{rr} r_{xx}^2 - \mathbb{K}^0_r r_x - ia_1 F_{qq} q_x^2 - \mathbb{K}^0_q q_x + ia_1 [F, F_q] q_x - ia_1 [F, F_r] r_x + [F, \mathbb{K}^0] = 0 \]

(81)

Now since \(F \) and \(\mathbb{K}^0 \) do not depend on \(q_x \) or \(r_x \) we can set the coefficients of the different powers of \(r_x \) and \(q_x \) to zero. Thus, setting the coefficients of the \(q_x^2 \) and \(r_x^2 \) terms to zero we have

\[- ia_1 F_{qq} = ia_1 F_{rr} = 0 \]

(82)

from which it follows \(F = X_1(x, t) + X_2(x, t) r + X_3(x, t) q + X_4(x, t) q r \). Now setting the coefficients of the \(q_x \) and \(r_x \) terms to zero we have
\[-a_2 X_3 q^2 - a_2 X_4 q^2 r + i(a_1 X_2)_x + i(a_1 X_4)_x q - \mathbb{K}_r^0 - ia_1[X_1, X_2] - ia_1[X_1, X_4] q \]
\[-ia_1[X_3, X_2] q - ia_1[X_3, X_4] q^2 - 2a_2 X_2 r q - 2a_2 X_4 q^2 r = 0 \quad (83)\]
\[-a_2 X_2 r^2 - a_2 X_4 r^2 q - i(a_1 X_3)_x - i(a_1 X_4)_x r - \mathbb{K}_q^0 + ia_1[X_1, X_3] + ia_1[X_1, X_4] r \]
\[+ ia_1[X_2, X_3] r + ia_1[X_2, X_4] r^2 - 2a_2 X_3 r q - 2a_2 X_4 r^2 q = 0 \quad (84)\]

In much the same way as for the NLS we denote the left-hand side of (83) as \(\xi(r, q)\) and the left-hand side of (84) as \(\eta(r, q)\). For recovery of \(\mathbb{K}^0\) we require that \(\xi = \eta\). Thus, computing \(\xi_q\) and \(\eta_r\) we find

\[
\xi_q = -2a_2 X_3 q - 2a_2 X_4 q r + i(a_1 X_4)_x - ia_1[X_1, X_4] - ia_1[X_3, X_2] - 2ia_1[X_3, X_4] q \]
\[-2a_2 X_2 r - 4a_2 X_4 q r \quad (85)\]

\[
\eta_r = -2a_2 X_2 r - 2a_2 X_4 r q - i(a_1 X_4)_x + ia_1[X_1, X_4] + ia_1[X_2, X_3] + 2ia_1[X_2, X_4] r \]
\[-2a_2 X_3 q - 4a_2 X_4 r q \quad (86)\]

from which it follows that we must have

\[2i(a_1 X_4)_x - 2ia_1[X_1, X_4] - 2ia_1[X_3, X_4] q - 2ia_1[X_2, X_4] r = 0 \quad (87)\]

Since the \(X_i\) do not depend on \(q\) or \(r\) this previous condition requires

\[2i(a_1 X_4)_x - 2ia_1[X_1, X_4] = 0 \quad (88)\]
\[-2ia_1[X_3, X_4] = 0 \quad (89)\]
\[-2ia_1[X_2, X_4] = 0 \quad (90)\]

As with the standard NLS we will take \(X_4 = 0\) in order to simplify computations. Therefore

\[
\mathbb{K}_q^0 = -a_2 X_2 r^2 - i(a_1 X_3)_x + ia_1[X_1, X_3] + ia_1[X_2, X_3] r - 2a_2 X_3 r q \quad (91)\]
\[
\mathbb{K}_r^0 = -a_2 X_3 q^2 + i(a_1 X_2)_x - ia_1[X_1, X_2] - ia_1[X_3, X_2] q - 2a_2 X_2 r q \quad (92)\]

Integrating the first equation with respect to \(q\) yields

\[\mathbb{K}^0 = -a_2 X_2 r^2 q - i(a_1 X_3)_x q + ia_1[X_1, X_3] q + ia_1[X_2, X_3] r q - a_2 X_3 q^2 r + \mathbb{K}^*(x, t, r)\]

Now differentiating this equation with respect to \(r\) and mandating that it equal our previous expression for \(\mathbb{K}_r^0\) we find that \(\mathbb{K}^*\) must satisfy

\[\mathbb{K}^*_r = i(a_1 X_2)_x - ia_1[X_1, X_2] \]

from which it follows

\[\mathbb{K}^* = i(a_1 X_2)_x r - ia_1[X_1, X_2] r + X_0(x, t)\]
and thus

\[K^0 = i(a_1 X_2)_x r - i(a_1 X_3)_x q - ia_1[X_1, X_2] r + ia_1[X_1, X_3] q + ia_1[X_2, X_3] r q - a_2 X_2 r^2 q - a_2 X_3 q^2 r + X_0(x, t) \]

(93)

Now plugging this and our expression for \(F \) into (81) we get

\[X_{1,t} + X_{2,t} r + X_{3,t} q - i(a_1 X_2)_{xx} r + i(a_1 X_3)_{xx} q + i(a_1 [X_1, X_2])_x r - i(a_1 [X_1, X_3])_x q
- i(a_1 [X_2, X_3])_x r q + (a_2 X_2)_x r^2 q + (a_2 X_3)_x q^2 r - X_{0,x} + i[X_1, (a_1 X_2)_x] r - [X_1, (a_1 X_3)_x] q
- ia_1[X_1, (X_1, X_2)] r + ia_1[X_1, (X_1, X_3)] q + ia_1[X_1, [X_2, X_3]] q r - a_2 [X_1, X_2] r^2 q - a_2 [X_1, X_3] q^2 r
+ [X_1, X_0] + i[X_2, (X_1 X_2)] r^2 q - i[X_2, (X_1 X_3)] q r - ia_1[X_2, [X_1, X_2]] r^2 q + ia_1[X_2, [X_1, X_3]] q r
+ ia_1[X_3, [X_1, X_3]] q^2 r + ia_1[X_3, [X_2, X_3]] q^2 r + [X_3, X_0] q = 0 \]

(94)

Since the \(X_i \) are independent of \(r \) and \(q \) we equate the coefficients of the different powers of \(r \) and \(q \) to zero and thus obtain the following constraints:

\[O(1) : \quad X_{1,t} - X_{0,x} + [X_1, X_0] = 0 \]

(95)

\[O(q) : \quad X_{3,t} + i(a_1 [X_1, X_3])_x x - i(a_1 [X_1, X_3])_x x - i[X_1, (a_1 X_3)_x] + ia_1[X_1, [X_1, X_3]] + [X_3, X_0] = 0 \]

(96)

\[O(r) : \quad X_{2,t} - i(a_1 X_2)_{xx} + i(a_1 [X_1, X_2])_x + i[X_1, (a_1 X_2)_x] - ia_1[X_1, [X_1, X_2]] + [X_2, X_0] = 0 \]

(97)

\[O(rq) : \quad - (a_1 [X_2, X_3])_x + a_1[X_1, [X_2, X_3]] - X_2, (a_1 X_3)_x + a_1[X_2, [X_1, X_3]] + [X_3, (a_1 X_2)_x] - a_1[X_3, [X_1, X_2]] = 0 \]

(98)

\[O(q^2) : \quad -[X_3, (a_1 X_3)_x] + a_1[X_3, [X_1, X_3]] = 0 \]

(99)

\[O(r^2) : \quad [X_2, (a_1 X_2)_x] - a_1[X_2, [X_1, X_2]] = 0 \]

(100)

\[O(r^2 q) : \quad (a_2 X_2)_x - a_2 [X_1, X_2] + ia_1[X_2, [X_2, X_3]] = 0 \]

(101)

\[O(q^2 r) : \quad (a_2 X_3)_x - a_2 [X_1, X_3] + ia_1[X_3, [X_2, X_3]] = 0 \]

(102)

Allowing the following forms for the generators

\[X_0 = \begin{bmatrix} g_1 & g_2 \\ g_3 & g_4 \end{bmatrix}, \quad X_1 = \begin{bmatrix} f_1 & 0 \\ 0 & f_2 \end{bmatrix}, \quad X_2 = \begin{bmatrix} 0 & f_3 \\ 0 & 0 \end{bmatrix}, \quad X_3 = \begin{bmatrix} 0 & 0 \\ f_4 & 0 \end{bmatrix} \]

(103)

Note that with this choice the (99) and (100) equations are immediately satisfied. From (96) and (97) we obtain the conditions

\[g_3 f_4 = g_2 f_3 = 0 \]

(104)

\[f_4 + i(a_1 f_4)(f_1 - f_2) + (f_2 - f_1)(a_1 f_4)_x + ia_1 f_4 (f_1 - f_2)^2 + f_3 (g_4 - g_1) = 0 \]

(105)

\[f_3 + i(a_1 f_3)(f_1 - f_2) + (f_2 - f_1)(a_1 f_3)_x + ia_1 f_3 (f_1 - f_2)^2 - f_3 (g_4 - g_1) = 0 \]

(106)
To keep \(X_2 \) and \(X_3 \) nonzero we force \(g_2 = g_3 = 0 \). The condition given by (95) becomes the single equation

\[
(a_1 f_3 f_4)_x + f_3 (a_1 f_4)_x + f_4 (a_1 f_3)_x = 0 \tag{107}
\]

The final two conditions now yield the system

\[
\begin{align*}
(a_2 f_3)_x &- a_2 f_3 (f_2 - f_1) - 2ia_1 f_3^2 f_4 = 0, \\
(a_2 f_4)_x + a_2 f_4 (f_2 - f_1) + 2ia_1 f_4^2 f_3 = 0
\end{align*}
\tag{108}
\tag{109}
\]

At this point solution of the system given by (95) and (105) - (109) such that the \(a_i \) are real-valued requires either \(f_3 = 0 \) or \(f_4 = 0 \). Without loss of generality we choose \(f_3 = 0 \) from which we obtain the new system of equations

\[
\begin{align*}
f_{1t} - g_{1x} &= 0, \\
f_{2t} - g_{2x} &= 0, \\
f_{4t} + i(a_1 f_4)_{xx} - i(a_1 f_4 (f_1 - f_2))_x + (f_2 - f_1) (a_1 f_4)_x + ia_1 f_4 (f_1 - f_2)^2 + f_4 (g_4 - g_1) &= 0, \\
(a_2 f_4)_x + a_2 f_4 (f_2 - f_1) &= 0
\end{align*}
\tag{110}
\tag{111}
\tag{112}
\tag{113}
\]

Solving (110), (112) and (113) for \(f_1, g_4 \) and \(f_2 \), respectively we obtain

\[
\begin{align*}
f_1 &= \int g_{1x} dt + F_1(x) \\
f_2 &= -\frac{(a_2 f_4)_x}{a_2 f_4} + \int g_{1x} dt + F_1(x) \\
g_4 &= -ia_2^2 f_4 a_{1xx} + ia_1 a_2 f_4 a_{2xx} - 2ia_1 a_2^2 f_4 + 2ia_2 a_2 a_{1x} f_4 - f_4 a_2^2 + g_1
\end{align*}
\tag{114}
\tag{115}
\tag{116}
\]

Plugging this into (111) yields the integrability condition

\[
\begin{align*}
a_3^3 a_{1xx} - ia_2 a_{2x} a_2 + ia_2 a_{2x} a_2^2 - 3a_2^2 a_{2xx} a_{1x} - 4a_2^3 a_1 + 5a_1 a_2 a_{2x} a_{2xx} + 4a_2^2 a_2 a_{1x} \\
-2a_3^2 a_1 a_{2xx} - 2a_2 a_2^2 a_{1xx} &= 0
\end{align*}
\tag{117}
\]

Since we require that the \(a_i \) be real we decouple this final equation into the conditions

\[
\begin{align*}
a_2 a_{2x} - a_{2xt} a_2 &= 0 \\
a_3^3 a_{1xx} - 3a_2^2 a_{2xx} a_{1x} - 4a_2^2 a_1 + 5a_1 a_2 a_{2x} a_{2xx} + 4a_2^2 a_2 a_{1x} \\
-2a_3^2 a_1 a_{2xx} - 2a_2 a_2^2 a_{1xx} &= 0
\end{align*}
\tag{118}
\tag{119}
\]

With the aid of MAPLE we find that the previous system is solvable with solution given by
\[
a_1(x,t) = F_4(t)F_2(x)(c_1 + c_2x) - c_1F_4(t)F_2(x)\int \frac{x \, dx}{F_2(x)} + c_1xF_4(t)F_2(x)\int \frac{dx}{F_2(x)}
\]

\[
a_2(x,t) = F_2(x)F_3(t)
\]

The Lax pair for this system is thus found to be

\[
F = \mathcal{X}_1 + \mathcal{X}_3q
\]

\[
G = ia_1\mathcal{X}_3q_x - i(a_1\mathcal{X}_3)_q + ia_1[\mathcal{X}_1, \mathcal{X}_3]q - a_2\mathcal{X}_3q^2r + \mathcal{X}_0
\]

This completes the extended EW analysis of the vc-DNLS equation.

7 Conclusions and Future Work

We have used two direct methods to obtain very significantly extended Lax- or S-integrable families of generalized NLS, PT-symmetric NLS, and DNLS equations with coefficients which may in general vary in both space and time. Of these, the second technique which was developed here is a new, significantly extended version of the well-known Estabrook-Wahlquist technique for Lax-integrable systems with constant coefficients.

Future work will address the derivation of additional solutions by various methods, as well as detailed investigations of other integrability properties of these novel integrable inhomogeneous NLPDEs such as Backlund Transformations, conservation laws, and, if at all feasible, bi-Hamiltonian structures and Liouville integrability.
A Appendix: Lax integrability for vc-NLS and vc-PTNLS equations

We would like to note before beginning this section that the following is taken from Khawaja’s paper and is included for the sake of completeness. The Lax pair is expanded in powers of q and r and their derivatives as follows:

\[U = \begin{bmatrix} f_1 + f_2q & f_3 + f_4q \\ f_5 + f_6r & f_7 + f_8r \end{bmatrix} \]

\[V = \begin{bmatrix} g_1 + g_2q + g_3q_x + g_4qr & g_5 + g_6q + g_7q_x + g_8qr \\ g_9 + g_{10}r + g_{11}r_x + g_{12}qr & g_{13} + g_{14}r + g_{15}r_x + g_{16}qr \end{bmatrix} \]

(A.2)

where f_{1-8} and g_{1-16} are unknown functions of x and t. The compatibility condition gives

\[U_t - V_x + [U, V] = 0 = \begin{bmatrix} 0 \\ p_2(x,t)F_2[q,r] \end{bmatrix} \]

(A.3)

where $F_i[q,r]$ represents the i^{th} equation in (A.3) and $p_{1,2}$ are arbitrary real-value functions. It should be clear that this off-diagonal compatibility condition requires that the coefficients of the q and the r on the off-diagonal of U be zero. Indeed upon plugging U and V into the compatibility condition we immediately find that compatibility requires

\[
\begin{align*}
 f_2 &= f_3 = f_5 = f_8 = g_2 = g_3 = g_5 = g_8 = g_9 = g_{12} = g_{14} = g_{15} = 0, f_4 = ip_1, f_6 = -ip_2, \\
 g_7 &= -fp_1, g_{11} = -fp_2, g_4 = -g_{16} = -ip_1p_2
\end{align*}
\]

The remaining constraints are given by

\[
\begin{align*}
 f_{1t} - g_{1x} &= 0 \\
 f_{7t} - g_{13x} &= 0 \\
 2fp_1p_2 + g &= 0 \\
 f_xp_1 - fp_1(f_1 - f_7) + fp_{1x} - g_6 &= 0 \\
 f_xp_2 + fp_2(f_1 - f_7) + fp_{2x} - g_{10} &= 0 \\
 g_6(f_1 - f_7) - ip_1(g_1 - g_{13} - iv + \gamma) - g_{6x} + ip_{1t} &= 0 \\
 g_{10}(f_1 - f_7) + ip_2(g_1 - g_{13} - iv - \gamma) + g_{10x} + ip_{2t} &= 0 \\
 (fp_1p_2)_x + g_{10}p_1 + g_6p_2 &= 0
\end{align*}
\]

(A.4) \hspace{1cm} (A.5) \hspace{1cm} (A.6) \hspace{1cm} (A.7) \hspace{1cm} (A.8) \hspace{1cm} (A.9) \hspace{1cm} (A.10) \hspace{1cm} (A.11)

For the reduction of these constraints to the conditions given in section 2 we refer the reader to \([14]\). As the system given by (8) is a special case of the system (6) with $f = -a_1$, $g = -a_2$ and $v = \gamma = 0$ we can exploit the Lax pair constraints derived above for cubic-NLS to obtain the constraints for the PT-symmetric NLS. We therefore findm utilizing the same U and V that compatibility under (8) requires
\[
f_2 = f_3 = f_5 = f_8 = g_2 = g_3 = g_5 = g_8 = g_9 = g_{12} = g_{14} = g_{15} = 0, f_4 = ip_1, f_6 = -ip_2, \\
g_7 = a_1p_1, g_{11} = a_1p_2, g_4 = -g_{16} = ia_1p_1p_2
\]

and the remaining constraints are given by

\[
\begin{align*}
f_{1t} - g_{1x} &= 0 \quad \text{(A.12)} \\
f_{7t} - g_{13x} &= 0 \quad \text{(A.13)} \\
2a_1p_1p_2 + a_2 &= 0 \quad \text{(A.14)} \\
-a_{1x}p_1 + a_1p_1(f_1 - f_7) - a_1p_1x - g_6 &= 0 \quad \text{(A.15)} \\
-a_{1x}p_2 - a_1p_2(f_1 - f_7) - a_1p_2x - g_{10} &= 0 \quad \text{(A.16)} \\
g_6(f_1 - f_7) - ip_1(g_1 - g_{13}) - g_{6x} + ip_{1t} &= 0 \quad \text{(A.17)} \\
g_{10}(f_1 - f_7) + ip_2(g_1 - g_{13}) + g_{10x} + ip_{2t} &= 0 \quad \text{(A.18)} \\
-(a_1p_1p_2)_x + g_{10}p_1 + g_{6}p_2 &= 0 \quad \text{(A.19)}
\end{align*}
\]

For derivation of the integrability conditions on the variable coefficients present in the NLS and PT-NLS we again refer the reader to [14].
Appendix: Lax integrability conditions for vc-DNLS Equation

As mentioned in the text, the notation and calculations here refer to the treatment of the generalized vcDNLS equation of Section 3 ONLY.

The Lax pair U and V are expanded in powers of q and r and their derivatives as follows

\[
U = \begin{bmatrix} f_1 + f_2 q & f_3 + f_4 q \\ f_5 + f_6 r & f_7 + f_8 r \end{bmatrix} \tag{B.1}
\]

\[
V = \begin{bmatrix} g_1 + g_2 q + g_3 q_x + g_4 q r \\ g_5 + g_6 q + g_7 q r + g_8 q_x + g_9 q r^2 \\ g_{10} + g_{11} r + g_{12} q r + g_{13} r_x + g_{14} r^2 q \\ g_{15} + g_{16} r + g_{17} r_x + g_{18} q r \end{bmatrix} \tag{B.2}
\]

where $f_1 - 8$ and $g_1 - 20$ are unknown functions of x and t. Note that the compatibility condition

\[
U_t - V_x + [U, V] = 0 = \begin{bmatrix} 0 & p_1(x, t) F[q, r] \\ p_2(x, t) F_2[q, r] & 0 \end{bmatrix} \tag{B.3}
\]

we enforce, where $F[q, r]$ represents the first equation of (15) and $p_1(x, t)$ is unknown, is chosen out of necessity. Upon considering a more standard compatibility condition as that considered by Khawaja,

\[
U_t - V_x + [U, V] = 0 = \begin{bmatrix} 0 & p_1(x, t) F_1[q, r] \\ p_2(x, t) F_2[q, r] & 0 \end{bmatrix} \tag{B.4}
\]

we find that the only solution mandates p_1 or p_2 be zero. We chose to let $p_2 = 0$ but it is important to note that the conditions would not change if we had set p_1 equal to zero instead. Given this modification to the zero-curvature condition we immediately require

\[
f_2 = f_3 = f_6 = f_8 = g_2 = g_3 = g_4 = g_7 = g_{11} = g_{12} = g_{14} = g_{16} = g_{17} = g_{18} = 0,
\]

\[
g_8 = -p_1 a_1, f_4 = i p_1, g_9 = i p_1 a_2
\]

The remaining constraints are then given by

\[
f_{1t} - g_{1x} = 0 \tag{B.5}
\]

\[
f_{7t} - g_{15x} = 0 \tag{B.6}
\]

\[
(p_1 a_2)_x + p_1 a_2(f_7 - f_1) = 0 \tag{B.7}
\]

\[
(p_1 a_1)_x + p_1 a_1(f_7 - f_1) - g_6 = 0 \tag{B.8}
\]

\[
-g_{5x} - g_5(f_7 - f_1) = 0 \tag{B.9}
\]

\[
-i p_1 t - g_{6x} + i p_1(g_{15} - g_1) - g_6(f_7 - f_1) = 0 \tag{B.10}
\]

B.0.1 Deriving a relation between a_1 and a_2

Solving (B.5) and (B.7) - (B.10) for f_1, f_7, g_6, g_5 and g_{15}, respectively, we obtain

21
\[f_1 = \int g_{1x} dt + F(x) \]
(B.11)

\[f_7 = -\frac{(p_1a_2)_x}{p_1a_2} + f_1 \]
(B.12)

\[g_5 = H(t)e^{\int (f_1 - f_7)dx} \]
(B.13)

\[g_6 = \frac{(p_1a_1)_x a_2 - (p_1a_2)_x a_1}{a_2} \]
(B.14)

\[g_{15} = -\frac{i}{p_1} (g_{6x} - ip_{1t} - g_6(f_1 - f_7)) + g_1 \]
(B.15)

Plugging these results into (B.6) we obtain the constraint

\[2p_1a_2^2a_1x p_{1xx} - 2p_1^2a_2^2a_1x - 2p_1a_2a_1x p_{1x} a_{2x} + p_1^2a_2^2a_{1xxx} + 2p_1a_2^2p_1a_{1xx} - p_1^2a_2a_1a_{2xx} + 2p_1^2a_2a_1a_{2xx} - 2p_1a_1a_{2x}p_{1xx}a_2 \]

\[-p_1^2a_2a_1a_{2xxx} + ip_1^2(a_2a_{2xt} - a_2a_{2x}) = 0 \]
(B.16)

In order to have meaningful results we must require that the \(a_i\) are real-valued functions. Thus we can decouple the last constraint into the following equations

\[2p_1a_2^2a_1x p_{1xx} - 2p_1^2a_2^2a_1x - 2p_1a_2a_1x p_{1x} a_{2x} + p_1^2a_2^2a_{1xxx} + 2p_1a_2^2p_1a_{1xx} - p_1^2a_2a_1a_{2xx} + 2p_1^2a_2a_1a_{2xx} - 2p_1a_1a_{2x}p_{1xx}a_2 \]

\[-p_1^2a_2a_1a_{2xxx} = 0 \]
(B.17)

\[a_2a_{2xt} - a_2a_{2x} = 0 \]
(B.18)

Taking \(p_1 = a_2\) we obtain the final constraints

\[a_2a_{2x} - a_2a_{2x} = 0 \]
(B.19)

\[a_2^3a_{1xxx} - 3a_2^2a_{2xx}a_{1x} - 4a_2^3a_1 + 5a_1a_2a_{2x}a_{2xx} + 4a_2^2a_2a_{1x} \]

\[-a_2^2a_1a_{2xxx} - 2a_2a_2^2a_{1xx} = 0 \]
(B.20)

With the aid of MAPLE we find that the previous system is solvable with solution given by

\[a_1(x, t) = F_4(t)F_2(x)(c_1 + c_2x) = c_1F_4(t)F_2(x) \int \frac{x dx}{F_2(x)} + c_1xF_4(t)F_2(x) \int \frac{dx}{F_2(x)} \]
(B.21)

\[a_2(x, t) = F_2(x)F_3(t) \]
(B.22)

References

[1] R. Grimshaw and S. Pudjaprasetya, Stud. Appl. Math., 112 (2004) 271.
[2] G. Ei, R. Grimshaw, and A. Kamchatov, J. Fluid Mech., 585 (2007) 213.
[3] G. Das Sharma and M. Sarma, Phys. Plasmas 7 (2000) 3964.
[4] E. G. Fan, Phys. Lett A294 (2002), 26.
[5] R. Grimshaw, Proc. Roy. Soc., A368 (1979) 359.
[6] N. Joshi, Phys. Lett., A125 (1987), 456.
[7] Y. C. Zhang, J. Phys. A, 39 (2006) 14353.
[8] E. G. Fan, Phys. Lett A375 (2011), 493.
[9] X. Hu and Y. Chen, J. Nonlin. Math. Phys., 19 (2012) 1250002
[10] S. F. Tian and H. Q. Zhang, Stud. Appl. Math., doi 10.1111/sapm.12026, 13 pages (2013).
[11] S. K. Suslov, arXiv: 1012.3661v3 [math-ph].
[12] Z. Y Sun, Y. T. Gao, Y. Liu and X. Yu, Phys.Rev E84 (2011) 026606.
[13] J. He and Y. Li, Stud. Appl. Math., 126 (2010), 1.
[14] U. Al Khawaja, A comparative analysis of Painlevé, Lax Pair, and Similarity Transformation methods in obtaining the integrability conditions of nonlinear Schrödinger equations, Journal of Mathematical Physics, 51(2010), 053506.
[15] F. B. Estabrook and H. D. Wahlquist, J. Math. Phys., 16 (1975) 1; ibid: 17 (1976) 1293.
[16] R. K. Dodd and A. P. Fordy, Proc. Roy. Soc. London A385 (1983) 389.
[17] R. K. Dodd and A. P. Fordy, J. Phys. A17 (1984) 3249.
[18] D. J. Kaup, Physica D1 (1980) 391.
[19] M. J. Ablowitz and Z. Musslimani, Integrable Nonlocal Nonlinear Schrodinger Equation, Physical Review Letters 110, (2013), 064105 (4 pages).
[20] M. J. Ablowitz and H. Segur, Solitons and the IST (SIAM, Philadelphia, 1981).
[21] P. G. Drazin and R. S. Johnson, Solitons: an introduction (Cambridge U. Press, Cambridge, 1989).
[22] M. Russo and S. Roy Choudhury, J. of Phys. Conf. Series 2014: 482(1): 012038. doi 10.1088/1742-6596/482/1/012038.
[23] X. Yu, Y.-T. Gao, Z.-Y. Sun, and Y. Liu, N-soliton solutions, Baklund transformation and Lax pair for a generalized variable-coefficient fifth-order Korteweg Vries equation, Phys. Scr. 81 (2010), 045402
[24] X. Yong, H. Wang, and Y. Zhang, Symmetry, Integrability and Exact Solutions of a Variable-Coefficient Korteweg-de-Vries (vcKDV) Equation, International Journal of Nonlinear Science 14 (2012)