He-Accreting WDs: AM CVn stars with WD Donors

L. Piersanti1,4* and L.R. Yungelson2 and A. Tornamb\textae3

1INAF-Osservatorio Astronomico di Collurania Teramo via Mentore Maggini, snc, 64100, Teramo, IT
2Institute of Astronomy, Pyatnitskaya 48, 119017 Moscow, Russia
3INAF-Osservatorio Astronomico di Roma via di Frascati, 33, 00040, Monte Porzio Catone, IT
4INFN-Sezione di Napoli, 80126 Napoli, Italy

ABSTRACT
We study the physical and evolutionary properties of the “WD family” of AM CVn stars by computing realistic models of Interacting Double-Degenerate systems. We evaluate self-consistently both the mass transfer rate from the donor, as determined by gravitational wave emission and interaction with the binary companion, and the thermal response of the accretor to mass deposition. We find that, after the onset of mass transfer, all the considered systems undergo a strong non-dynamical He-flash. However, due to the compactness of these systems, the expanding accretors fill their Roche lobe very soon, thus preventing the efficient heating of the external layers of the accreted CO WDs. Moreover, due to the loss of matter from the systems, the orbital separations enlarge and mass transfer comes to a halt. The further evolution depends on the value of \dot{M} after the donors fill again their lobe. On one hand, if the accretion rate, as determined by the actual value of $(M_{\text{don}} \cdot M_{\text{acc}})$, is high enough, the accretors experience several He-flashes of decreasing strength and then quiescent He-burning sets in. Later on, since the mass transfer rate in IDD is a permanently decreasing function of time, accretors experience several recurrent strong flashes. On the other hand, for intermediate and low values of \dot{M} the accretors enter directly the strong flashes accretion regime. As expected, in all the considered systems the last He-flash is the strongest one, even if the physical conditions suitable for a dynamical event are never attained. When the mass accretion rate decreases below $(2 - 3) \times 10^{-8} \, \text{M}_\odot \, \text{yr}^{-1}$, the compressional heating of the He-shell becomes less efficient than the neutrino cooling, so that all the accretors in the considered systems evolve into massive degenerate objects. Our results suggest that SN Ia or type Ia Supernovae due to Edge-Lit Detonation in the WD family of AM CVn stars should be much more rare than previously expected.

Key words: Binaries: general, Supernovae:general, White Dwarfs, Accretion

1 INTRODUCTION
AM CVn stars are ultracompact cataclysmic binaries with spectra dominated by helium. At the time of writing 43 confirmed and candidate objects were known, see Table 1 in Levitan et al. (2015), and Wagner et al. (2014); Kato, Hambsch & Monard (2015). Measured orbital periods range from 5.5 to 65 min. There exist also several cataclysmic variables (some with hydrogen-deficient spectra) below the conventional minimum P_{orb} of CV (70-80) min., which may be AM CVn stars in making Carter et al. 2013B; Littlefield et al. 2013; Ramsay et al. 2014; Garnavich et al. 2014. The significance of AM CVn stars stems from their importance for the studies of very late stages of evolution of binary stars and of accretion disks physics; as well they are considered primary targets and verification sources for high-frequency gravitational waves detectors. The current models of AM CVn stars envision a semidetached binary harbouring a carbon-oxygen white dwarf (CO WD) accreting He-rich matter. The donor may be either a helium WD or a low-mass helium star or a core of a main-sequence star strongly evolved prior to Roche-lobe overflow (RLOF). The evolution of AM CVn binaries is driven by angular momentum loss via gravitational waves radiation (GWR). An overview and a discussion of observational features, formation and evolution of these stars, as well as models for their disks may be found, e. g., in Warner (2003); Nelemans (2005, 2009); Solheim (2010); Ruijer et al. (2010); Kotko et al. (2012); Amaro-Seoane et al. (2013); Postnov & Yungelson (2014); Cannizzo & Nelemans (2015). The topic of the present study are AM CVn systems with WD donors, sometimes also called “interacting double-degenerates” (IDD) or “white-dwarf family of AM CVn stars”.

An essential issue defining the formation of AM CVn stars is stability of mass-transfer by degenerate donors...
with initial mass ratio is close to $q \approx M_2/M_1 > 2/3$ are dynamically unstable. The components separation of nascent AM CVn's is so small that mass-exchange almost definitely begins in the direct-impact mode, without formation of the disk. Strict condition of stability for the case of no feedback of the angular momentum of the accreted material to the orbit becomes

$$q < 1 + (\xi_2 - \xi_1)/2 - \sqrt{(1+q)r_c},$$

where ξ_2 and ξ_1 are logarithmic derivatives of the radii of the donor and its Roche-lobe with respect to its mass, $r_c \equiv R_c/a$ is the relative circularisation radius. In between these two limits, dynamical stability of mass-transfer depends on the efficiency of spin-orbit coupling.

An additional complication is brought in by the fact that the surface luminosity of the WD, as determined by the mass deposition in the gravitational field of the accretor, can not exceed the Eddington limit. In the specific case of the gravitational potential of interacting double-degenerates, if M_0 is super-Eddington, the excess of mass remains in the potential well of the accretor, the released energy heats it and may cause it to expand and form a common envelope in which the two components will merge (Han & Webbink 1999). Numerical experiments by Marsh, Nelemans & Steeghs (2004) showed that in the case of weak tidal coupling stable mass transfer is possible if initial mass ratio is $\lesssim 0.25$ for $M_{CO} \approx 0.6 M_\odot$ and $\lesssim 0.21$ for $M_{CO} \approx 1.0 M_\odot$. In the limit of very strong tidal coupling, the critical values of mass ratios become ≈ 0.45 and ≈ 0.3, respectively.

The Eddington luminosity limit for M_1 is more stringent than the dynamical stability one; therefore initial mass-transfer rates in AM CVn systems should be between 10^{-6} and $10^{-5} M_\odot$ yr$^{-1}$. However, it is possible that, even if $M_0 < M_{\text{Edd}}$, it could exceed the maximum rate of He-burning at the base of the He-envelope (Nomoto 1982). In the latter case a red-giant like extended envelope forms and components, most probably, merge. Thus, the existing interacting double-degenerates should start their evolution with $M_1 \approx 10^{-6} M_\odot$ yr$^{-1}$ and may evolve in a Hubble time to $M_1 \approx 10^{-12} M_\odot$ yr$^{-1}$ as it is theoretically inferred (Tutukov & Yungelson 1979; Nelemans et al. 2001; Deloye et al. 2007) and supported by the analysis of the spectra of several AM CVn stars (Krause et al. 2010; Gehren et al. 2014).

Along their path in M_{acc}-M plane, accretors of IDD may experience stable He-burning, burning via mild and strong flashes and, in principle, enter the regime of dynamical flashes (for a systematic study of the burning regimes of the accreted He see Piersanti, Tornambè & Yungelson 2014, henceforth – Paper I). We define a flash “strong”, if in its course the WD overflows its Roche lobe. Otherwise, the flash is defined as “mild”. Interpolation between the models computed with constant M_1 suggests that in the course of the evolution AM CVn stars experience ~ 10 strong non-dynamical flashes.

Bildsten et al. (2007) paid attention to the circumstance that, with decreasing M, the mass to be accreted to get He-ignition, ΔM_{ign}, increases. Thus, there should exist the strongest “last flash”. Further, the mass of the donor becomes smaller than ΔM_{ign}. The last flash may become dynamical and result in a detonation, if the thermonuclear timescale, $\tau_{\text{nuc}} = c_P T_\text{e}/\epsilon_{\text{nuc}}$ becomes shorter than the local dynamical time, $\tau_{\text{dyn}} = H_P/c_s$, where H_P is the pressure scale-height and c_s is the sound speed. Due to the physical conditions existing in the accreting WD, the detonation produces short-living radioactive isotopes of Cr, Fe, and Ni. As well, ejected mass is small. The brightness of the event is comparable to subluminous SNe Ia, but its rise-time is only 2-10 day. Extrapolating the measured local birthrate of AM CVn stars and assuming that all of them produce a visible event, Bildsten et al. (2007) estimated that the latter may occur once in 5000 – 15000 yr in a $10^{11} M_\odot$ ES0-type galaxy., i. e., at a rate of $\sim 1/10$ of the inferred SNe Ia rate in them. Having in mind the low luminosity of these faint supernovae and the quoted occurrence rate, Bildsten et al. dubbed them “SN Ia” (1/10th of brightness at 1/10th of total rate). According to later calculations (Shen & Bildsten 2009), such faint thermonuclear SNe are likely to occur if masses of accretors are in the range (0.8-1.2) M_\odot. We note that, according to existing population synthesis results (Nelemans et al. 2001), AM CVn stars with such masses of the accretors should be extremely rare. Therefore, SNe Ia may be substantially more rare events than estimated by Bildsten et al. At the moment, none of several suggested SN Ia candidates is definitely confirmed (Drout et al. 2013). In the model of evolution of IDD above, it was assumed that mass-transfer is continuous.

Recently, the authors of the present study suggested to account in the computation for the effect of mass and momentum loss from the binaries due to the Roche lobe overflow by the accretor during outbursts (Paper I). It was assumed that the matter leaving the system has specific angular momentum of accretor.

In Paper I a grid of accretor masses and constant accretion rates was explored. In the present paper we consider the response to the accretion for time-dependent M_0, appropriate to AM CVn stars with WD-donors. As we show below, the RLOF episode and the associated mass and angular momentum loss from the system lead to the interruption of mass-transfer, thus resulting, after the flash, in epochs of cooling of accretor which change the character of thermal flashes and the course of evolution of the binaries under consideration. In Sect. 2, we present our model and justify the selection of computed evolutionary sequences; results are described in Sect. 3. Discussion and conclusions follow in Sect. 4.

2 SELECTION OF INITIAL BINARIES AND COMPUTATIONAL ASSUMPTIONS

Considerations of the mass transfer stability, of the limits imposed onto the initial M_0 by the Eddington luminosity and of the possible formation of red-giant like envelope, suggest that the precursors of WD-family of AM CVn stars are detached double-
degenerate (WD+WD) systems with rather extreme mass ratios and massive accretors. Such binaries are observed as detached binary extremely low-mass" white dwarfs (ELM), which harbour a He WD with mass below \(\sim 0.2 \, M_\odot \) and a much more massive (presumably) CO companion, some of them have merger time less than the Hubble time (see, e.g., Brown et al. 2013; Kilic et al. 2014).

Currently, several systems are observed, which may be considered as proper candidate precursors of AM CVn stars (note, here we call “primary” the more massive invisible component with \(M_1 \)). The first candidate is eclipsing binary SDSS J071411.18-014120.9 with \(P_{\text{orb}} = 1.9 \, \text{hr} \), \((M_2 + M_1)/M_\odot = (0.19 \pm 0.02) + (0.97 \pm 0.01)\) and expected merger time \(\approx 160 \, \text{Myr} \) (Kilic et al. 2014). Another “best” candidate is the eclipsing detached binary NLTT 11748 with \(P_{\text{orb}} = 5.6 \, \text{hr} \) and estimated mass of the secondary ranging from \(M_2 = (0.136 \pm 0.007) \) to \((0.162 \pm 0.007) \, M_\odot \) and, correspondingly, mass of the primary from \(M_1 = (0.707 \pm 0.008) \) to \((0.740 \pm 0.008) \, M_\odot \) (Kaplan et al. 2014). Several candidate systems are single-lined and for them only lower limits of \(P \approx 4.55 \, \text{hr} \) and \(0 \, \text{hr} \) are available. Among them are SDSS J1741+6526 – \(P_{\text{orb}} = 1.47 \, \text{hr} \), \(M_2 = 0.17 \, M_\odot \), \(M_1 \approx 1.1 \, M_\odot \) (Kilic et al. 2014); SDSS J1414+3850 – \(P_{\text{orb}} \approx 6.23 \, \text{hr} \), \(M_2 = 0.17 \, M_\odot \), \(M_1 \geq 0.76 \, M_\odot \); SDSS J1238+1946 – \(P_{\text{orb}} \approx 5.46 \, \text{hr} \), \(M_2 = 0.17 \, M_\odot \), \(M_1 \geq 0.64 \, M_\odot \); SDSS J2132+0754 – \(P_{\text{orb}} \approx 6.01 \, \text{hr} \), \(M_2 = 0.17 \, M_\odot \), \(M_1 \approx 0.95 \, M_\odot \) (Brown et al. 2013). Yet another candidate with less certainly estimated parameters is SDSS 1257+5428 – \(P_{\text{orb}} \approx 4.55 \, \text{hr} \), \(M_2 \approx 0.2 \, M_\odot \), \(M_1 \approx 1 \, M_\odot \) (Kulkarni & van Kerkwijk 2010; Marsh et al. 2011). At the end, other candidate AM CVn systems may be hidden among observed sdB stars, deemed to evolve into CO WDs with mass \(\gtrsim 0.5 \, M_\odot \), with low-mass WD companions, like PG 1043+760 – \(P_{\text{orb}} = 2.88 \, \text{hr} \), \(M_2 \geq 0.101 \, M_\odot \); SDSS J083006+4710 – \(P_{\text{orb}} = 3.552 \, \text{hr} \), \(M_2 \geq 0.137 \, M_\odot \) (Kupfer et al. 2015).

Having in mind the parameters of candidate AM CVn systems and for the sake of comparison with computations in Paper I, in the current work we selected the following donor and accretor combinations: \((M_{\text{don}}, M_{\text{acc}}) = (0.17, 0.60), (0.15, 0.92), (0.20, 0.12) \) \, M_\odot \). In the following, we address the sequences of models for these systems as S060+017, S092+015, and S102+020, respectively. The three considered systems is quite similar, as illustrated in Fig. 3, but we discuss them in §4. We do not consider the effects related to the possible presence of a thin hydrogen layer at the surface of the white dwarfs when they come into contact (D’Antona et al. 2006; Delove et al. 2007; Kaplan, Bildsten & Steinfall 2013; Shen, Guillochon & Poles 2013; Shen 2013) and consider accretion of He only.

3 RESULTS

At the beginning of the computation, the two components of each system are put in contact (i.e. \(R_{\text{Roche}} = R_{\text{don}} \)). At each time step, the angular momentum loss via GWR is computed, so that the donor overfills its own Roche lobe. As a consequence, mass is removed in order to restore the condition \(R_{\text{don}} = R_{\text{Roche}} \) and it is transferred conservatively to the accretor. If and when the accretor overfills its own Roche lobe, due to evolutionary reasons (e.g. the onset of a He-flash), mass is removed from the accretor, assuming that it is ejected from the system. The specific angular momentum of the lost matter is assumed to be equal to the orbital one of the accretor. The thermal response of the accretor to mass deposition is computed in detail by using an updated version of the FRANEC code, the original one being described in Chieffi & Straniero (1989). The setup of the code as well as the input physics are the same as in Paper I. The chemical composition of the matter transferred from the donor to the accretor is fixed as in Paper I, by assuming that all CNO elements have been converted into \(^{14}\text{N}\), namely: \(Y_{\text{C}} + Y_{\text{N}} + Y_{\text{O}} + Y_{\text{He}} + Y_{\text{H}} = 1 \), where \(Y_i \) is the abundance by number of the \(i \)-isotope and the superscripts \(i \) and \(f \) refer to the initial MS star and the final He donor WD, respectively. In Fig. 3 we show the profiles in the \(\rho - T \) plane for the accretors in our models at the beginning of the mass transfer process while in Fig. 4 we plot as a function of the WD mass fraction the mass fraction abundances of \(^{14}\text{N}\), \(^{12}\text{C}\) and \(^{16}\text{O}\) in the most external layers of the accretors for the same structures.

When the mass transfer starts, the evolution of the accretors in the three considered systems is quite similar, as illustrated in Fig. 5 where we show the evolutionary tracks in the HR diagram for the CO WDs in the investigated systems. Along the tracks, we mark with different symbols several important epochs. For each point we list in Table 1 some relevant physical properties of the accretors and of the binaries.

When the matter falls onto the accretor, it delivers gravitational energy that is locally stored as thermal energy and triggers the evolution backward along the cooling sequence. The heating determined by mass deposition drives to He-ignition. The maximum luminosity attained during this phase depends mainly on the relative efficiency of the heating by accretion and the inward

LABEL	S060+017	S092+015	S102+020
\(t_{\text{cool}} \) (in 10^8 yr)	1.647	2.767	2.889
\(\log(T_c) \)	7.2820	7.1478	7.2329
\(\log(\rho_c) \)	6.5626	7.3378	7.6109
\(\log(\langle L/L_\odot \rangle) \)	-2.0077	-2.1163	-2.0322
\(\log(\langle T/E \rangle) \)	4.2102	4.2640	4.3148
\(\log(\langle B/R_c \rangle) \)	-1.9012	-2.0633	-2.1228

\(t_{\text{cool}} \) is defined as the time elapsed from the bluest point along the loop in the HR diagram and the epoch of the initial model considered in the current work.
Figure 1. Profiles in the $\rho - T$ plane for the accreting CO WDs at the beginning of the mass transfer process. Each panel refers to a different initial binary system, as labelled. Filled circles mark the He/CO interface while open ones the point where $X(\text{He})=0.05$, roughly corresponding to the He-burning shell.

Figure 2. Mass fraction abundances of ^4He (solid lines), ^{12}C (dashed lines), and ^{16}O (dotted lines) in the most external layers of the accretors in the three considered binary systems. Abscissa represents the mass fraction.

Figure 3. Evolution in the HR diagram of the accretors in the three binary systems listed in Table 1. Along the tracks some points corresponding to certain epochs in evolution are marked by different symbols and letters, see Table 2. "FDC" means flash-driven convection.

thermal diffusion; the former is determined by the accretion rate, while the latter depends on the thermal structure of the He-buffer. As the He-burning shell has partially degenerate physical conditions, a thermonuclear runaway occurs, driving to a very powerful non-dynamical He-flash. As discussed in Paper I, this first flash represents a sort of "heating" mechanism which alters the thermal content of the whole He-buffer above the CO core and sets in the physical conditions suitable for quiescent He-burning. The latter could occur only after the flashing structures have attained their locations in the HR-diagram corresponding to a post AGB-star with the same CO core and He-buffer masses. So this first He-flash represents the analog in real binary systems of the "heating procedure" adopted in Paper I.

The energy delivered by the He-flash can not be removed via radiative transfer and, hence, a convective shell forms very soon (point A in the HR diagram) and rapidly attains the stellar surface (point D). Hence, the huge amount of nuclear energy delivered by the He-flash is injected into the whole He-rich buffer above the He-burning shell, whose thermal content becomes too large for a compact configuration as that of the flashing objects. In order to dissipate the too large thermal energy stored in the He-rich mantle the accretors start to expand. If the flashing structure would be isolated in the space, it could evolve freely, increasing its luminosity and, then, should expand to very large dimensions, thus dissipating a part of its thermal energy via mechanical work and finally reaching at the He-shell the physical conditions suitable for quiescent He-burning. But the objects considered in the present work are embedded in compact binary systems, so that they overfill their own Roche lobe very soon (point E). The following evolution of
Table 2. Physical properties of the accretors in the binary systems listed in Table 1 at selected epochs during the first He-flash episode. The various times are: A - onset of the flash-driven convective shell; B - ignition of He-burning; C - maximum luminosity of the He-burning shell; D - flash-driven convective zone disappears; H - end of the RLOF episode; I - resumption of the mass transfer from the donor. For each epoch of each binary system we list surface luminosity L_{acc}, the mass coordinate of the He-burning shell M_{He}, the temperature T_{He}, the separation of the system a in $10^{-2} R_\odot$, the total mass of the accretor M_{acc}, and of the donor M_{don}, the time elapsed between two successive epochs Δt in yr. For each considered binary system we report also the amount of mass transferred from the donor to the accretor ΔM_{tran}, the mass lost during the RLOF ΔM_{lost}, and the corresponding value of the retention efficiency η_{acc}. Note, negative Δt for events D and F in S102+020 sequence mean that they happen before event E. The last block of data refers to the “Cold” S060+017 model described in Sect. 3.4.

	A (yr)	B (yr)	C (yr)	D (yr)	E (yr)	F (yr)	G (yr)	H (yr)	I (yr)
Δt	28.824	25.427	η_{acc} = 0.118						
ΔM_{tran}	10.230	12.787	η_{acc} = 0.250						
ΔM_{lost}	2.034	1.829	η_{acc} = 0.101						
Δt	29.694	28.444	η_{acc} = 0.042						
the accretors occurs inside “the Roche lobe finite space”, so that all the matter passing through the critical Roche surface is lost by the stars and, hence, by the binary systems. At the onset of the RLOF episode, due to the loss of matter and angular momentum from the systems, the orbital separation increases, therefore, the donors detach from their Roche lobes and, hence, the mass transfer halts. During the RLOF episode the accretors evolve at almost constant radii, increasing their surface luminosity and effective temperature up to when they recede definitively from their Roche lobe (point H). Since the components of the binary are now detached, so that mass transfer from donors to accretors can resume only after angular momentum loss by GWR shrinks the orbits, thus forcing the donors to overfill once again their Roche lobe. During the time between the end of the RLOF and the re-onset of mass accretion, accretors evolve first up to the bluest point along the loop in the HR diagram and, then, down along the cooling sequence.

For each considered system, in Table 2 we report the total mass transferred from the donor to the accretor during the first mass transfer episode \(\Delta M_{\text{ran}} \), the mass lost during the RLOF phase (\(\Delta M_{\text{rel}} \)) and the corresponding accumulation efficiency \(\eta_{\text{acc}} \) defined as in Eq. (5) in Paper I:

\[
\eta_{\text{acc}} = 1 - \frac{\Delta M_{\text{lost}}}{\Delta M_{\text{rel}} + \Delta M_{\text{ran}}},
\]

where \(\Delta M_{\text{rel}} \) is the amount of mass transferred up to the onset of the RLOF episode and \(\Delta M_{\text{ran}} \) the one accreted after the end of the RLOF up to the bluest point along the loop in the HR diagram.

3.1 S060+017 System

In Fig. 4 we plot for the S060+017 and S092+015 systems (the latter to be discussed in the next subsection) the dependence of the mass transfer rate from the donor (upper panel) and the dependence of the slope of the curves \(n = \partial \log M / \partial \log P_{\text{orb}} \) (lower panel) on the orbital period \(P_{\text{orb}} \). For the sake of comparison, in the lower panel we show also the \(n \) curve for a system with initial parameters equal to the ones of S060+017, but evolving completely conservatively. The Figure clearly shows that thermonuclear outbursts, interrupting the mass transfer (see previous Section), virtually do not influence the common behaviour of the \(M_{\text{P}_{\text{orb}}} \) relation for ultracompact binaries evolving under the influence of angular momentum loss by GWR. Recently, Cannizzo & Nelemans (2015), using the limit cycle accretion disk instability model, attempted to constrain semi-analytically the mass transfer rate in AM CVn-stars by fitting \(M \) to the \(P_{\text{orb}} \) limits of the accretion disk-instability range of these systems, namely 20 and 44 min. The metalliclicity of AM CVn-stars is unknown. For the range of \(Z \) from 0.0 to 0.04, Cannizzo & Nelemans found values of \(n \) from \(-3.38 \pm 0.3 \) to \(-5.06 \pm 0.3 \). Though the period range of interest for the present work is below 20 min., the comparison to the results of Cannizzo & Nelemans (2015), as well as to earlier evaluations of, e.g., Tutukov & Yungelson (1996), Nelemans et al. (2001) validates our computations. As it concerns the estimates of accretion rates in AM CVn-stars, they are obtained by indirect methods and hardly can constrain the \(M_{\text{P}_{\text{orb}}} \) relation. They may be considered as “indicators” of the proper order of magnitude of the computed \(M_{\text{P}_{\text{orb}}} \).

In Fig. 5 we plot the mass transfer rate (upper panel) for the S060+017 system as well as the evolution of the temperature (middle panel) and density (lower panel) of the He-shell in the accretor as a function of time. As it can be seen, after the He-flash and the related RLOF episode, mass transfer is not active and the He-burning shell cools down. When mass transfer resumes, the corresponding accretion rate is about \(3.23 \times 10^{-7} \, M_\odot \, yr^{-1} \). Due to the deposition of matter, the He-shell starts to heat up once again, but when \(M \) becomes lower than \(8 \times 10^{-8} \, M_\odot \, yr^{-1} \), the mass deposition becomes unable to balance the cooling and the accretor further evolves along its cooling sequence. Thus, despite quite substantial amount of matter may still be transferred to the CO WD in this system (about \(0.14 \, M_\odot \)), the nuclear evolution of the binary is terminated. Though, it will retain its status of AM CVn star.

At variance with the results discussed above, the “heated” M060 model in Paper I, corresponding to the accretor in the S060+017 system, after the first He-flash, burns helium quasienucemly for \(M \gtrsim 1.5 \times 10^{-7} \, M_\odot \, yr^{-1} \). However, it has been noted that the present computation differs from those in Paper I in many regards. First of all, in Paper I the accretion rate was kept strictly constant in each simulation and mass deposition was restarted soon after the end of the RLOF, thus preventing substantial cooling of the He-buffer. In addition, the adopted value for the Roche lobe radius (10 \(R_\odot \)) was definitively larger than the one proper to the self-consistent computation of the S060+017 system.
In order to illustrate the origin of such a difference, we computed two models, arbitrarily varying the value of the separation during the evolution of the S060+017 system. In the first one we reduced the value of the separation after the end of the RLOF episode in such a way that mass transfer resumed immediately. The time evolution of the mass transfer rate and of the temperature and density of the He-burning shell for this model is displayed by dotted lines in Fig. 5. The prompt onset of mass accretion prevented the decrease of the temperature of the He-burning shell below \(\sim 8.3 \times 10^7 \) K, but, in any case, as \(\dot{M} \) continuously decreases, the accretor never attains the physical conditions suitable for the reignition of helium. This numerical experiment clearly suggests that the origin of the difference between the present computation and the corresponding one in Paper I depends on the different thermal content of the post-RLOF structure.

To make this more clear, we performed the second run (Test model) increasing arbitrarily by a factor of 100 the binary separation at the epoch of the onset of the RLOF overflow in the S060+017 system. Note that, as a consequence of such a variation, the Roche lobe of the accretor became \(\sim 4R_\odot \), while the Roche lobe radius of the donor increased to 2.2 \(R_\odot \) and, hence, the mass transfer came to a halt. In this way we constructed a model having exactly the same mass of the He-rich buffer of the accretor as in the S060+017 system, but which “freely” expanded in the space before the onset of the RLOF, as in the computations of Paper I.

In the upper panel of Fig. 6 we show the time evolution of the flash-driven convective shell (gray area), of the total mass (dotted line) and of mass coordinate of the He-burning shell (solid line) for the accretor in the S060+017 system. In the lower panel we show the behaviour of the same quantities, but for the Test model, which has larger Roche lobe. The epoch \(t=0 \) corresponds to the onset of the RLOF episode in the S060+017 system, while the dashed vertical line marks its end. As it is seen, the mass loss triggered by the RLOF episode determines the rapid disappearance of the convective shell. As discussed in Paper I, convection affects the evolution of the He-flash in two opposite ways: on one hand it removes energy from the inner zones of the He-rich buffer and redistributes it over the whole envelope, thus reducing the local increase of temperature and damping the thermonuclear runaway. On the other hand, convective mixing dredges down fresh helium, feeding the burning-shell and, hence, powering the flash. As a result, the strong and rapid reduction of the convective shell in the S060+017 system limits the amount of nuclear energy produced via He-burning and, hence, the resulting flash is weaker with respect to the Test model. To make this conclusion more quantitative, we define for the model S060+017 two time intervals: \(\Delta t_1 = 55.468 \) yr, lasting from the onset of the flash-driven convective shell to the onset of the RLOF, and \(\Delta t_2 = 69.774 \) yr, lasting from the onset to the end of the RLOF. In the S060+017 model during \(\Delta t_1 \) He-burning delivers an amount of energy equal to \(\varepsilon_1 \simeq 2.678 \times 10^{48} \) erg, while during \(\Delta t_2 \) it delivers \(\varepsilon_2 \simeq 1.639 \times 10^{48} \) erg. In the Test model, the energy delivered during \(\Delta t_2 \) is by a factor 2 larger (\(\varepsilon_2^{TM} \simeq 3.210 \times 10^{48} \) erg).

Figure 6 also demonstrates that the extension and lifetime of the flash-driven convective shell affects the heating of the layers below the He-burning shell. This is clearly indicated by the inward

\[\Delta t_2, \text{ surface radius of the accretor in the S060+017 system remains practically unaltered, as it is fixed by the Roche lobe radius, while in the Test model it increases by a factor 25.} \]
Amount of thermal energy produced via He-burning determines a shift of the He-burning shell (see solid lines in Fig. 6): a larger variance important epochs, as in Fig. 2. In the evolutionary phase where the two accretors evolve identically, dashed lines are hidden behind the solid ones. Different points and letters mark various important epochs, as in Fig. 4.

To illustrate further the difference between these two cases, i.e., between the evolution of very compact systems and that of wider ones, we present in Fig. 6 the dependence of the total luminosity of the accretor L (upper panel) and the ratio of the He-burning shell luminosity and the total luminosity L_{He}/L (lower panel) on the WD radius. The evolutionary paths of two accretors coincide up to RLOF epoch in the S060+017 system. In the latter, soon after the onset of the RLOF, convection is aborted and the He-rich layer above the He-burning shell, previously heated by the flash, are lost in a short time scale (Fig. 6). This almost extinguishes He-burning very rapidly and the only energy source to maintain thermal equilibrium becomes contraction. This can be seen in the lower panel of Fig. 6 showing that after the RLOF episode in the system S060+017 the ratio L_{He}/L becomes \approx1/20. As He-burning dies completely, contraction will remain the only energy source balancing the radiative losses from the surface since He is never reignited because of the cooling of the He buffer due to the interruption of mass-transfer and, later on, to the insufficient heating via accretion (Fig. 5). In the Test model, convection continues to support the He-burning shell and, consequently, the delivered energy drives the expansion of the WD He-rich envelope to the large Roche radius. The dwarf recedes from its Roche lobe when the energy produced via He-burning equates the energy losses from the surface.

However, this occurs slower than in the case of the tight system – for the same luminosity level after the RLOF, the accretor in the S062+017 model is more compact then in the Test model (upper panel of Fig. 7). Later on, the two models converge to the same evolutionary path.

The difference illustrated above has a sizable effect on the retention efficiency of the two models. In particular, in the Test model a larger amount of nuclear energy is delivered before the onset of the RLOF episode, so that the whole He-buffer above the CO core is heated more than in the S060+017 system. As a consequence, the He-burning shell can move inward; moreover, even if a part of the energy injected in the He-rich buffer is dissipated via mechanical work (expansion to larger radius), the thermal content of the He-rich mantle remains very large. As a matter of fact, a larger amount of matter is lost during the RLOF episode in the Test model ($\Delta M_{\text{lost}} = 2.7 \times 10^{-3} M_\odot$), so that the corresponding retention efficiency reduces to $\eta_{\text{ret}}=0.065$ (about 45% lower than the one obtained for the S060+017 system). In Paper I we found that the “heating” flash in the M060 Cool model erodes also part of the pre-existing He-rich buffer, while in the Test model we find a small, but in any case positive, retention efficiency. Such a difference reflects the different values of M adopted for the above mentioned models: in Paper I we use $\dot{M}=10^{-7} M_\odot$ yr$^{-1}$, while in the Test model the accretion rate is definitively larger: initially it is as high as $8.8 \times 10^{-7} M_\odot$ yr$^{-1}$ and, in any case, it remains larger than $3.3 \times 10^{-7} M_\odot$ yr$^{-1}$). In Paper I we explored the dependence of η_{ret} on the assumed Roche lobe radius, by varying the latter in the range $1 - 45 R_\odot$ and we found that the difference in the estimate
Table 3. Selected physical properties for each of the five strong pulses experienced by the accretor in the S092+015 system. M_{He} (the mass coordinate of the He-burning shell, M_\odot), ΔM_{He} (the mass above the He-burning shell, $10^{-3} M_\odot$), P_{orb} (the orbital period, in min), T_{He}, and ρ_{He} (density in 10^4 g cm^{-3} and temperature in 10^8 K at the He-burning shell) refer to the epoch of He-ignition. $L_{\text{He}}^{\text{max}}$ is the maximum luminosity of the He-burning attained during the He-flash. $\langle \dot{M} \rangle$ is the mean value of the mass accretion rate (in $10^{-7} M_\odot \text{ yr}^{-1}$) during the time lasting from the onset of mass transfer and the onset of the RLOF episode. ΔM_{tran} and ΔM_{lost} (in $10^{-3} M_\odot$) are the amounts of mass transferred from the donor and lost by the accretor during the RLOF, respectively.

	1st	2nd	3rd	4th	5th
M_{He}	0.9225	0.9180	0.9178	0.9189	0.9203
ΔM_{He}	7.362	5.887	6.851	8.935	14.170
P_{orb}	11.66	9.22	10.78	14.00	22.13
T_{He}	1.354	1.385	1.367	1.289	1.205
ρ_{He}	11.66	9.22	10.78	14.00	22.13
ΔM_{tran}	10.230	6.865	6.838	9.799	15.802
ΔM_{lost}	12.787	6.107	6.584	9.191	15.085
η_{acc}	-0.250	0.110	0.037	0.062	0.045
Δt	6028.9	3434.5	4805.2	8401.0	23316.8

of retention efficiency is smaller than 7-8%. Such a conclusion is appropriate for binaries with relatively massive He-star donors, but, as demonstrated above, not for low-mass compact stars.

To summarize, in the S060+017 system, due to the small separation, the first He-flash does not result in an efficient heating of the layers above the CO core, so that the following evolution proceeds substantially different from what derived in Paper I.

3.2 S092+015 System

The first flash in the S092+015 system is much stronger than in the other systems, as clearly displayed in Fig. 8, where we plot as a function of the evolutionary time three quantities characterizing the He-flash for all the systems listed in Table 2: the He-burning luminosity L_{He} (upper panel), the total energy released during the flash E_{He} (middle panel), and the “specific energy” of the flash e_{He} (lower panel), defined as the ratio of E_{He} and mass of the He-rich zone.

The maximum luminosity in the burning shell $L_{\text{He}}^{\text{max}}$ attained during the flash is 10 times larger than for the S060+017 system and about 50 times larger than for the S102+020 one (see also Table 2). Such an occurrence is not related to the physical properties of the He-shell and to the thermal content of the underlying CO core at the onset of the mass transfer, but is determined by the adopted combination ($M_{\text{don}}, M_{\text{acc}}$) which sets the value of \dot{M} after contact. At the beginning of the mass transfer, \dot{M} for the S092+015 system is $\approx 5.0 \times 10^{-7}$ while for the S060+017 and S102+020 systems it is 8.8×10^{-7} and 2.2×10^{-6}, respectively. As a consequence, the compressional heating of the He-buffer occurs at a lower rate so that at the onset of the He-flash the He-shell has more degenerate physical conditions (see the values of ρ_{He} and T_{He} listed in column B of Table 2).

After the first He-flash, at the re-onset of mass transfer $\dot{M} \approx 3.5 \times 10^{-7} M_\odot \text{ yr}^{-1}$; according to Paper I, the same initial mass
flashes for WD, model M092, after the “heating flash” experiences strong He-flashes for $M \leq 5 \times 10^{-7} M_{\odot} \text{yr}^{-1}$. The S092+015 system undergoes other 4 strong non-dynamical He-flashes before a massive degenerate object is formed, (see Table 3 and Figs. 9,10). In Table 2, we list selected physical quantities of the accretor during the 5 He-flashes experienced by this system.

By adopting for M the mean value before the 2nd flash reported in Table 3 and interpolating the data reported in Table 4 of Paper I we obtain $\eta_{\text{acc}} \approx 0.61$, definitively larger than the value we derive in the present work. As discussed in the case of the S060+017 system, such a discrepancy has to be ascribed to the non-efficient heating of the He-layer during the first He-flash due to the sudden and sharp decrease of the mass extension of the flash-driven convective shell. When mass transfer resumes after the 5th flash, $M = 7.25 \times 10^{-8} M_{\odot} \text{yr}^{-1}$ and the He-shell starts to heat up once again. At $M = 4 \times 10^{-8} M_{\odot} \text{yr}^{-1}$ the accretor enters the regime which for the actual M_{WD} and constant \dot{M} would correspond to dynamical flashes (Paper I). In the case under analysis, as M continuously decreases, neutrino cooling starts to dominate over the compressional heating and no additional He-flashes (dynamical or not) are ignited. Hence, accretor turns into a nuclear inert degenerate object which gradually increases its mass.

3.3 S102+020 System

The evolution of the S102+020 system after the first flash is quite different. Figure 3 and Table 2 reveal that for this system the evolution during the first He-flash episode is more similar to that of a “freely” expanding model. In fact the flash driven convective shell attains the stellar surface before the epoch of the maximum He-shell burning luminosity and, in addition and more important, the RLOF episode starts after the flash-driven convective zone has receded from the stellar surface (see the sequence of the various phases in Fig. 3 and the negative value of Δt for epochs D and F in Table 2). This means that the He-flash succeeds in heating the whole He-buffer to a higher level with respect to what occurs in the S060+017 and S092+015 systems. Such an occurrence is a direct consequence of the fact that, when the components in this binary system come to contact for the first time, the mass transfer rate is very high ($M \approx 2.2 \times 10^{-6} M_{\odot} \text{yr}^{-1}$), so that gravitational energy released by accretion efficiently heats up the entire He-buffer. This determines less degenerate physical conditions at the onset of the He-flash, as compared to the other two considered systems (see ρ_{He} and T_{He} for the epochs A and B in Table 2), so that the resulting He-flash is less strong (see the value of L_{He} at the epoch C in Table 2 and Fig. 8).

When mass transfer from the donor resumes, \dot{M} is still as high as $\sim 2.1 \times 10^{-6} M_{\odot} \text{yr}^{-1}$ (see upper panel in Fig. 11). In Paper I we found that the “heated” M102 model accreting at such a rate experiences quiescent burning of He. On the contrary, in the present work the accretor in the S102+020 system experiences other 3 flashes. The flashes become progressively less strong (see middle panel of Fig. 11) and the corresponding retention efficiency increases (see lower panel of the Fig. 11). In particular, we find $\eta_{\text{acc}}=0.562$ for the second flash and $\eta_{\text{acc}}=1.0$ for the third one. We classify the latter as a “mild flash” (MF), i.e., a flash which releases so little nuclear energy that the accretor remains confined well inside its Roche lobe and no mass-loss occurs. Such a behaviour is determined by the fact that, pulse by pulse, the He-rich buffer and the most external layers of the underlying CO core heat up, thus attaining the physical conditions suitable for quiescent He-burning. The resulting evolution is completely different from that of the accretor in the S092+015 system and it is a direct consequence of the mass transfer rate after the first flash episode which depends on the parameters of the initial binaries. In particular, as already mentioned before, in M in the S092+015 system after the first flash should determine recurrent strong flashes also in a fully heated model with the same total mass and mass of the He-buffer (e.g., the “heated” M092 model in Paper I). At variance, in the S102+020 system the mass transfer rate is so high that the released gravitational energy prevents the cooling down of the He-burning shell during each inter-flash period. As displayed in Fig. 11 after four flashes the accretor reaches Steady burning regime (Steady State), which lasts as long as, due to continuous decrease of the mass transfer rate from the donor, the extension of the He-buffer above the He-burning shell reduces below a critical value and the accretor enters again the mild flashes regime. The transition from one regime to another occurs smoothly so that we arbitrarily define the value of M at which such a transition occurs as the epoch when the maximum luminosity of the He-burning shell during the He-flash becomes twice the value of the surface luminosity along the high luminosity branch. Under this assumption we find $M(M\text{-MF}) \approx 1.09 \times 10^{-6} M_{\odot} \text{yr}^{-1}$. Due to the evolution of binary parameters, the mass transfer rate continuously decreases and when it becomes lower than $\sim 8.3 \times 10^{-7} M_{\odot} \text{yr}^{-1}$, after 29 MFs, Strong Flashes start again. In the upper panel of Fig. 11 the transitions from one regime to another are marked by dashed vertical lines.

The following evolution is described in Fig. 12 where we
show, as a function of the accretor total mass at the bluest point along the loop, the value of the retention efficiency, and the physical conditions (temperature and density) at the epoch of the He-flashes ignition. As well, the maximum luminosity in the He-burning shell L_{He} is shown. As expected for a monotonically decreasing mass transfer rate, \eta_{acc}, on average, decreases continuously (upper panel), as the physical conditions at the He-shell become more degenerate and, hence, the strength of successive flashes increases.

The general trend is defined by two main factors. On one hand, as the accretion rate decreases and \eta_{acc} reduces, the time span after the end of the RLOF episode and the mass transfer resumption increases, so that the the He-buffer cools more. This determines the increase of the amount of mass to be transferred to ignite the successive He-flash which, as a result, is also stronger. On the other hand, pulse by pulse, the Roche lobe radius of the accretor increases, so that during the successive He-flash the heating of the whole He-buffer is more efficient, as the RLOF occurs when a larger amount of nuclear energy has been delivered (see above the discussion of S060+017 system and related Fig. 6). Though, the evolutionary curves also exhibit irregularities whose origin depends on the complex interplay of various additional factors.

We find that after the 58^{th} strong flash, the mass of the donor has reduced to \sim0.0875M_{\odot} and that of the accretor increased to \sim1.0822M_{\odot}. When accretion resumes, after 181916 yr, the mass transfer rate is 4.2×10^{-8} M_{\odot} yr$^{-1}$ and it rapidly decreases so that the compressional heating produced by accretion is not able to balance the radiative and neutrino cooling of the whole He-rich buffer.

3.4 “Cold” S060+017 Model

In order to investigate the dependence of our results on the cooling age of the accretor, we let the “heated model” M060 from Paper I to cool for 2 Gyr which, according to population synthesis computations, can be considered as the typical time of formation of an AM CVn system from a pair of detached WDs (Tutukov & Yungelson 1996). After that, we start the accretion following the same procedure as above. The results are summarised in Table 2. As it can be noticed, at the beginning of the mass transfer, the physical conditions at the base of the He-burning shell are more degenerate (temperature is a factor 5 lower, while density is practically the same). Notwithstanding, the amount of mass to be transferred to ignite the He-flash is only 3% larger and the ignition conditions are very similar (compare columns A and B in Tabs. 2 for the standard and “Cold” S060+017 Models) and the resulting He-flash has almost the same strength. During the RLOF episode the cold S060+017 system loses about 11% more mass so that the final retention efficiency is lower. As a consequence, the post-RLOF episode separation is a bit larger and, hence, the time span up to the re-onset of mass transfer increases by more than a factor 3.5. In any case, the evolution after the He-flash episode occurs exactly as in the S060+020 system: the mass transfer rate decreases very rapidly, so that the radiative and neutrino losses from the He-buffer become dominant and the system evolves to the formation of a massive CO WD with an extended He-rich mantle.

The results for the “Cold” model suggest that the models we considered are representative also for systems with longer cooling age. The reason is that at the luminosity level 0.01 L_{\odot} the physical conditions at the center of WD and at the base of the He-rich buffer have attained an asymptotic value. Increasing the cooling age of accreting WDs from 800 Myr to (2 – 3) Gyr practically does not affect their reaction to accretion. Such a statement is also confirmed by the computation of the evolution of the “Cold” analog of S092+015 system up to the onset of the first RLOF episode. The released nuclear energy was quite similar to the one in the “hot” model, while the accreted mass was only 1.05% larger. This similarity suggested us to terminate this additional extremely time-consuming computation, since we infer that the initial temperature of WD will not play any role, like in the case S060+017.

4 DISCUSSION AND CONCLUSIONS

In the present work we studied accretion from He WD donors onto CO WDs in ultracompact AM CVn binaries (IDD). At variance with our earlier study of the He-burning regimes in WDs accreting mass at constant M (Paper I), in our current analysis we adopted

\[^{6}\text{Longer formation times are not considered in the present analysis as they are not typical for AM CVn stars.}\]
time-dependent accretion rates, as determined by the loss of angular momentum via GWR. As in Paper I, we assumed that, if He-flashes on the accretors result in RLOF, matter is lost from the system until accretor recedes from the critical lobe. The matter leaving the system has the specific orbital angular momentum of the accretor. The systems considered in our analysis have the following properties: (i) mass transfer rate permanently declines and (ii) accretion may be interrupted due to mass and angular momentum losses. In Paper I we assumed that the accretion process is almost continuous, as it resumes soon after the end of the RLOF episode. At the end, in our earlier study we preset arbitrarily the accretor Roche lobe radius, while in the present work the latter is defined by the actual parameters of the given binary system, i.e., masses of the components. The initial values of them were taken corresponding to supposed precursors of AM CVn stars — extremely low white dwarfs systems (ELM WDs). The donors were approximated as pure He-objects with zero-temperature, proper to the formation white dwarfs systems (ELM WDs). The donors were approximated as pure He-objects with zero-temperature, proper to the formation white dwarfs systems (ELM WDs). The donors were approximated as pure He-objects with zero-temperature, proper to the formation white dwarfs systems (ELM WDs).

The actual He-burning regime onto the accretors in IDD is defined by the interplay of several factors. The first, as in other accreting systems, is the balance between the compressional heating driven by the mass deposition and the cooling of the He-rich buffer via inward thermal diffusion and neutrino emission. The second is the permanently decreasing accretion rate. The third is the degeneracy level of the physical base of He-rich buffer. Last but not least, the Roche lobe radius of accretors may be very small, down to several $0.01 R_\odot$.

As expected (see the discussion in Paper I), we found that after the onset of mass transfer onto the accretors, the He-burning shell above the CO core heats up and, when the nuclear timescale for 3α-reactions becomes shorter than the local thermal adjustment timescale, a nuclear flash occurs. Due to the degenerate physical conditions, this first flash is strong and it drives to a significant expansion of the star. It is worth noticing that this first flash is the equivalent in the real world of the “artificial” initial heating flash used in the studies of He-burning onto WDs, in order to mimic post-AGB objects. However, in a typical AM CVn system the accretor should be cold, since the timescale of AM CVn stars formation is \sim Gyr. As a matter of fact, such a flash results in a RLOF by the accretor and drives to the loss of mass and angular momentum from the system.

As shown in Sect. 3.1, at variance to “wide” interacting systems, the post-flash evolution of IDD is affected by the prompt mass loss which limits the lifetime and extension of the flash-driven convective shell, thus limiting the feeding of the He-burning shell by convection and reducing the total amount of nuclear energy released during the flash. Such an occurrence prevents the efficient heating of the pre-existing He-rich layers below the He-burning shell and causes the rapid extinction of nuclear burning. Hence, in the post-RLOF phase the accretors in IDD contract very rapidly in order to maintain the thermal equilibrium.

According to the accepted paradigm for the evolution of outbursting binaries, the matter overflowing the accretor Roche lobe leaves the system, taking away the specific angular momentum of the accretor. As a result, the system becomes detached, mass transfer comes to a halt and the WD cools. Hence, the possibility of resumption of nuclear activity depends on the duration of this “hibernation” phase and the masses of the two components which, in turn, determines the value of M at the the resumption of mass transfer. As it has been found for the sequence S062+017 (Sect. 3.1), for an ever decreasing M, it is possible that the release of gravitational energy occurs in a so long timescale that it can not counterbalance the cooling by inward thermal diffusion and neutrino emission and another flash can not be ignited. For the other systems considered in the present work, this limits the total number of flashes experienced by a given system.

The rough comparison of the present study and Paper I suggests that the expected number of nuclear flashes in IDD is a factor ~ 2 lower than the one expected by interpolating the results based on models with constant M. This reduces further the estimation obtained in Paper I of only several thousand “nuclearly active” IDD currently present in the Galaxy.

The results obtained in the current work exhibit a very mild dependence on the initial thermal content of the accretor, for cooling ages in the range 0.8 – 2 Gyr (see Sect. 3.4), so that they can be considered as representative of the entire population of IDD.

For each fixed initial CO WD mass, as the mass transfer rate is permanently decreasing, the last flash experienced by accreting WDs is the strongest one (see Figs. 9, 10, 12). As mentioned before, Bildsten et al. (2007) suggested that in a series of flashes the last one may be of dynamical nature (SN Ia). None of the systems considered in the present work develops the physical conditions suitable for such a dynamical flash. In particular, we found that the mass of the He-buffer at the onset of the last He-flash is always lower than the critical value necessary to obtain a SN Ia, derived by Bildsten and his coauthors for the same WD mass (see Fig. 2 in Bildsten et al. 2007 and Fig. 1 in Shen & Bildsten 2009). Such a difference has to be ascribed to the different thermal content of the layer below the He-burning shell at the onset of the last He-flash. In our model, the previous accretion history determines the partial heating of the most external zone of the CO WD and of the He-burning shell, so that at the beginning of the last mass transfer episode driving to a He-flash we have $T_{H_e} \sim 10^8$ K, for both S092+015 and S102+020 systems. As a consequence the “last flash” in our computations will never attain physical conditions suitable to synthesize iron peak elements. Thus all three considered systems have the same fate: transformation of the accretor into a massive degenerate object with a CO-core, which has almost the same mass as the initial accretor, and a massive He-buffer, representing a large part of the initial donor.

Recently, Brooks et al. (2015) performed an analysis similar to our one, but focused on AM CVn systems with a non-degenerate He-burning star as a donor. Their results can not be compared directly with our findings, because the response to mass extraction of a He-star is different from that of a degenerate object and, hence, the resulting evolution of the host binary system has to be different. Brooks et al. (2015) found that the last He-flash experienced by the accretor of the “He-star family” of AM CVn systems is never strong enough to produce a SN Ia event. So, by combining their results with our one, we can conclude that AM CVn family at large will never produce an explosive event at the end of their life. We remark also, that we follow in detail the thermal evolution of the accretors during each flash episode, determining the effective accumulation efficiency, while Brooks et al. (2015) remove the entire He-envelope above the He-burning shell at the onset of the thermonuclear runaway.

Brooks et al. (2015) claim that the first He-flash experienced by AM CVn systems with non-degenerate donors more massive than $0.4 M_\odot$ and accretors more massive than $0.8 M_\odot$ is “vigorous enough to trigger a detonation in the helium layer”, which could produce either a SN Ia or a real type Ia Supernova, if also the CO core detonates. Interestingly enough, this first explosive event could destroy the host binary, thus reducing the expected number of AM CVn systems from this evolutionary channel. This could
and the fully degenerate inner region starts to be removed, M decreases (Dejove et al. 2007; see also Fig. 13 in Paper I). The duration of the first phase of mass transfer depends mainly on the mass of the non-degenerate layers and, in turn, on the cooling age of the donor. On a general ground, such an occurrence implies that the compressional heating of the accretor should occur, at least at the beginning, in a longer timescale, so that the resulting He-buffer at the onset of the He-flash should be larger. In order to evaluate quantitatively the effect of this rising phase of the mass transfer rate, we adopted as mass accretion rate:

$$
\dot{M} = \min \left(\dot{M}_{FD}, \dot{M}_{FD} \cdot \log \left(1 - \frac{t}{\tau} \right)^{-1} \right),
$$

where \dot{M}_{FD} is the rate derived with the $M - R$ approximation described in Sect. 2. In the second term, the mass of the partially degenerate/not degenerate layers ΔM_{ND} is parameterized by means of the timescale τ: large values of τ correspond to large ΔM_{ND}. $\dot{M}_{FD} \approx 4.978 \times 10^{-7}$ M$_{\odot}$ yr$^{-1}$ is the value of \dot{M}_{FD} at the onset of the mass transfer. In Fig. 13 we report as a function of the mass transferred from the donor the evolution of the mass transfer rate described by Eq. 3, for different values of τ. This figure discloses that for realistic values of $\Delta M_{ND} \leq 0.03$ M$_{\odot}$, corresponding to $\tau \leq 2$ Myr, ΔM_{RD} increases up to a factor of ~ 3, so that the resulting He-flash is stronger than the one in the S092+015. In any case, we do not expect that this could significantly alter the following evolution, because, as discussed in Sect. 3.1, the prompt occurrence of the RLOF limits the heating of the He-buffer and, hence, the effects on the thermal properties of the accretor. Values of $\Delta M_{ND} \geq 0.05$ M$_{\odot}$, corresponding to $\tau > 5$ Myr, are rather unlikely. According to the results of these numerical experiments, we can conclude that a dynamical event could hardly arise in IDD.

Helium WDs with masses in the range explored in the present study have non-degenerate outer hydrogen layers with mass ≤ 0.01 M$_{\odot}$ at an age of ~ 1 Gyr (Panei et al. 2007), which is usually considered as the typical formation time of AM CVn stars. Transfer of this matter onto the companion upon RLOF may cause explosive phenomena similar to Classical Novae, like in ordinary cataclysmic variables. Recently Shen (2015) suggested that the ejected matter forms a common envelope in which the components may merge.

Strong flashes occurring in the AM CVn systems considered in the present study almost definitely can not be identified with unique Helium Nova V445 Pup (Ashok & Banerjee 2003; Ashok 2005), since pre-outburst luminosity of the latter $\log(L/L_{\odot}) = 4.34 \pm 0.36$ (Woudt et al. 2009) is too high for pre-flash CO WD in IDD. Rather, its progenitor may be a massive (~ 1 M$_{\odot}$) WD accreting at a rate $\sim 10^{-6}$ M$_{\odot}$ yr$^{-1}$ from a massive (also ~ 1 M$_{\odot}$) He-star companion (Woudt et al. 2009; Piersanti, Tornambé & Yungelson 2014). A possible progenitor may be similar to the unique sdO+WD system HD 49798 (Mereghetti et al. 2009) with both unusually massive components.

ACKNOWLEDGEMENTS

The authors acknowledge useful discussions with G. Nelemans and M. Dan. We acknowledge an anonymous referee for suggestions.
which helped us to improve the presentation of our results. LP acknowledges support from the PRIN-INAF 2011 project “Multiple populations in Globular Clusters: their role in the Galaxy assembly”. AT acknowledges support from the PRIN-MIUR 2010-2011 project “The Obscure Universe and the Cosmic Evolution of Barions”. LRY acknowledges support by RFBR grants 14-02-00604, 15-02-04053 and Presidium of RAS program P-41.

This research has made use of NASA’s Astrophysics Data System.

REFERENCES

Amaro-Seoane P. et al., 2013, GW Notes, Vol. 6, p. 4-110, 6, 4
Ashok N. M., 2005, Bulletin of the Astronomical Society of India, 33, 75
Ashok N. M., Banerjee D. P. K., 2003, A&A, 409, 1007
Bildsten L., Shen K. J., Weinberg N. N., Nelemans G., 2007, ApJ, 662, L95
Breeth E., Gänzicke B. T., Marsh T. R., Steeghs D., Drake A. J., Copperwheat C. M., 2012, MNRAS, 425, 2548
Brooks J., Bildsten L., Marchant P., Paxton B., 2015, ArXiv e-prints
Brown W. R., Kilic M., Allende Prieto C., Gianninas A., Kenyon S. J., 2013, ApJ, 769, 66
Cannizzo J. K., Nelemans G., 2015, ApJ, 803, 19
Carter P. J. et al., 2013a, MNRAS, 429, 2143
Carter P. J. et al., 2013b, MNRAS, 431, 372
Chiefi A., Straniero O., 1989, ApJS, 71, 47
D’Antona F., Ventura P., Burderi L., Teodorescu A., 2006, ApJ, 653, 1429
Deloye C. J., Bildsten L., 2003, ApJ, 598, 1217
Deloye C. J., Taam R. E., Winisdoerffer C., Chabrier G., 2007, MNRAS, 381, 525
Drout M. R. et al., 2013, ApJ, 774, 58
Garnavich P., Littlefield C., Terndrup D., Adams S., 2014, The Astronomer’s Telegram, 6287, 1
Gehron K., Nagel T., Rauch T., Werner K., 2014, A&A, 562, A132
Han Z., Webbink R. F., 1999, A&A, 349, L17
Kaplan D. L., Bildsten L., Steinfadt J. D. R., 2012, ApJ, 758, 64
Kaplan D. L. et al., 2014, ApJ, 780, 167
Kato T., Hambsch F.-J., Monard B., 2015, PASJ, 67, L2
Kilic M. et al., 2014, MNRAS, 438, L26
Kotko I., Lasota J.-P., Dubus G., Hameury J.-M., 2012, A&A, 544, A13
Krausz D., Nagel T., Rauch T., Werner K., 2010, in American Institute of Physics Conference Series, Vol. 1273, American Institute of Physics Conference Series, Werner K., Rauch T., eds., pp. 305–308
Kremer K., Sepinsky J., Kalogera V., 2015, ArXiv e-prints
Kulkarni S. R., van Kerkwijk M. H., 2010, ApJ, 719, 1123
Kupfer T. et al., 2015, A&A, 576, A44
Levitan D., Groot P. J., Prince T. A., Kulkarni S. R., Laher R., Ofek E. O., Sesar B., Surace J., 2015, MNRAS, 446, 391
Littlefield C. et al., 2013, AJ, 145, 145
Marsh T. R., Gänzicke B. T., Steeghs D., Southworth J., Koester D., Harris V., Merry L., 2011, ApJ, 736, 95
Marsh T. R., Nelemans G., Steeghs D., 2004, MNRAS, 350, 113
Mereghetti S., Tiengo A., Esposito P., La Palombara N., Israel G. L., Stella L., 2009, Science, 325, 1222
Nelemans G., 2005, in ASP Conf. Ser. 330: The Astrophysics of Cataclysmic Variables and Related Objects, Hameury J.-M., Lasota J.-P., eds., p. 27
Nelemans G., 2009, Classical and Quantum Gravity, 26, 094030
Nelemans G., Portegies Zwart S. F., Verbunt F., Yungelson L. R., 2001, A&A, 368, 939
Nomoto K., 1982, ApJ, 253, 798
Panei J. A., Althaus L. G., Chen X., Han Z., 2007, MNRAS, 382, 779
Piersanti L., Tornambé A., Yungelson L. R., 2014, MNRAS, 445, 3239
Postnov K. A., Yungelson L. R., 2014, Living Reviews in Relativity, 17, 3
Ramsay G. et al., 2014, MNRAS, 438, 789
Rutten J. A., Belczynski K., Benacquista M., Larson S. L., Williams G., 2010, ApJ, 717, 1006
Sepinsky J. F., Kalogera V., 2014, ApJ, 785, 157
Shen K. J., 2015, ArXiv e-prints
Shen K. J., Bildsten L., 2009, ApJ, 699, 1365
Shen K. J., Guillochon J., Foley R. J., 2013, ApJ, 770, L35
Solheim J., 2010, PASP, 122, 1133
Tutukov A. V., Yungelson L. R., 1979, Acta Astron., 29, 665
Tutukov A. V., Yungelson L. R., 1996, MNRAS, 280, 1035
Verbunt F., Rappaport S., 1988, ApJ, 332, 193
Wagner R. M. et al., 2014, The Astronomer’s Telegram, 6669, 1
Warner B., 2003, Cataclysmic Variable Stars
Woudt P. A. et al., 2009, ApJ, 706, 738
Yoon S.-C., Langer N., 2004, A&A, 419, 645
Yungelson L. R., 2008, Astronomy Letters, 34, 620