Directed or Undirected? A New Index to Check for Directionality of Relations in Socio-Economic Networks

Giorgio Fagiolo

(Dated: March 2007)

Abstract

This paper proposes a simple procedure to decide whether the empirically-observed adjacency or weights matrix, which characterizes the graph underlying a socio-economic network, is sufficiently symmetric (respectively, asymmetric) to justify an undirected (respectively, directed) network analysis. We introduce a new index that satisfies two main properties. First, it can be applied to both binary or weighted graphs. Second, once suitably standardized, it distributes as a standard normal over all possible adjacency/weights matrices. To test the index in practice, we present an application that employs a set of well-known empirically-observed social and economic networks.

PACS numbers: 89.75.-k, 89.65.Gh, 87.23.Ge, 05.70.Ln, 05.40.-a

Keywords: Social Networks, Complex Networks, Directed vs. Undirected Links, Symmetric Matrices, Statistical Properties.

* Sant’Anna School of Advanced Studies, Pisa, Italy. Mail address: Sant’Anna School of Advanced Studies, Piazza Martiri della Libertà 33, I-56127 Pisa, Italy. Tel: +39-050-883343 Fax: +39-050-883344; Electronic address: giorgio.fagiolo@sssup.it
I. INTRODUCTION

In the last years, the literature on networks has been characterized by exponential growth. Empirical and theoretical contributions in very diverse fields such as physics, sociology, economics, etc. have increasingly highlighted the pervasiveness of networked structures. Examples range from WWW, the Internet, airline connections, scientific collaborations and citations, trade and labor market contacts, friendship and other social relationships, business relations and R&S partnerships, all the way through cellular, ecological and neural networks [1, 2, 3, 4].

The empirical research has thoroughly studied the (often complex) topological properties of such networks, whereas a large number of theoretical models has been proposed in order to investigate how networks evolve through time [5]. Structural properties of networks have been shown to heavily impact on the dynamics of the socio-economic systems that they embed [6]. As a result, their understanding has become crucial also as far as policy implications are concerned [7].

The simplest mathematical description of a network is in terms of a graph, that is a list of nodes \{1, 2, ..., N\} and a set of arrows (links), possibly connecting any two nodes \[8, 9\]. Alternatively, one can characterize a network through a \(N \times N\) real-valued matrix \(W = \{w_{ij}\}\), where any out-of-diagonal entry \(w_{ij}\) is non-zero if and only if an arrow from node \(i\) to \(j\) exists in the network. Entries on the main diagonal are typically assumed to be all different from zero (if self-interactions are allowed) or all equal to zero (if they are not). Networks are distinguished in binary (dichotomous) or weighted. In binary networks all links carry the same intensity. This means that in binary networks a link is either present or not, i.e. \(w_{ij} \in \{0, 1\}\). In this case, \(W\) is called an “adjacency” matrix. Weighted networks allow one instead to associate a weight (i.e. a positive real number) to each link, typically proportional to its interaction strength or the flux intensity it carries [10, 11, 12, 13]. Any non-zero entry \(w_{ij}\) thus measures the weight of the link originating from \(i\) and ending up in \(j\), and the resulting matrix \(W\) is called the “weights” matrix [18].

Both binary and weighted networks can be undirected or directed. Formally, a network is undirected if all links are bilateral, i.e. \(w_{ij} = w_{ji} > 0\) for all \(i \neq j\). This means that in undirected networks all pairs of connected nodes mutually affect each other. One can thus replace arrows with non-directed edges (or arcs) connecting any two nodes and forget about the implicit directions. This greatly simplifies the analysis, as the tools for studying undirected networks are much better developed and understood. Directed networks are instead not symmetric, as there exists at least a pair of connected nodes wherein one directed link is not reciprocated, i.e. \(\exists (i, j), i \neq j : w_{ij} > 0\), but \(w_{ji} = 0\). Studying the topological properties of directed networks, especially in the weighted case, can become more difficult, as one has to distinguish inward from outward links in computing synthetic indices such as node and average nearest-neighbor degree and strength, clustering coefficient, etc.. Therefore, it is not surprising that the properties of such indices are much less explored in the literature.

From a theoretic perspective, it is easy to distinguish undirected from directed networks: the network is undirected if and only if the matrix \(W\) is symmetric. When it comes to the empirics, however, researchers often face the following problem. If the empirical network concerns an intrinsically mutual social or economic relationship (e.g. friendship, marriage, business partnerships, etc.) then \(W\), as estimated by the data collected, is straightforwardly symmetric and only tools designed for undirected network analysis are to be employed. More generally, however, one deals with notionally non-mutual relationships, possibly entailing
directed networks. In that case, data usually allow to build a matrix \(W \) that, especially in the weighted case, is hardly found to be symmetric. Strictly speaking, one should treat all such networks as directed. This often implies a more complicated and convoluted analysis and, frequently, less clear-cut results. The alternative, typically employed by practitioners in the field, is to compute the ratio of the number of directed (bilateral) links actually present in the networks to the maximum number of possible directed links (i.e. \(N(N - 1) \)). If this ratio is “reasonably” large, then one can symmetrize the network (i.e. making it undirected, see [3, 14]) and apply the relevant undirected network toolbox.

However, as shown in Ref. [15], this procedure has several drawbacks. In particular, it is heavily dependent on the density of the network under analysis (i.e., the ratio between the total number of existing links to \(N(N - 1) \)).

Moreover, and most important here, if the network is weighted, the ratio of bilateral links does not take into account the effect of link weights. Indeed, a bilateral link exists between \(i \) and \(j \) if and only if \(w_{ij}w_{ji} > 0 \), i.e. irrespective of the actual size of the two weights. Of course, as far as symmetry of \(W \) is concerned, the sub-case where \(w_{ij} \gg w_{ji} \approx 0 \) will be very different from the sub-case where \(w_{ij} \approx w_{ji} > 0 \).

In this paper, we present a simple procedure that tries to overcome this problem. More specifically, we develop a simple index that can help in deciding when the empirically-observed \(W \) is sufficiently symmetric to justify an undirected network analysis. Our index has two main properties. First, it can be applied with minor modifications to both binary and weighted networks. Second, the standardized version of the index distributes as a standard normal (over all possible matrices \(W \)). Therefore, after having set a threshold \(x \), one might conclude that the network is to be treated as if it is undirected if the index computed on \(W \) is lower than \(x \).

Of course, the procedure that we propose in the paper is by no means a statistical test for the null hypothesis that \(W \) involves some kind of symmetry. Indeed, one has almost always to rely on a single observation for \(W \) (more on that in Section [V]). Nevertheless, we believe that the index studied here could possibly provide a simple way to ground the “directed vs. undirected” decision on more solid bases.

The paper is organized as follows. In Section [II] we define the index and we derive its basic properties. Section [III] discusses its statistical properties, while in Section [IV] we apply the procedure to the empirical networks extensively studied in [3]. Finally, Section [V] concludes.

II. DEFINITION AND BASIC PROPERTIES

Consider a directed, weighted, graph \(\tilde{G} = (N, \tilde{A}) \), where \(N \) is the number of nodes and \(\tilde{A} = \{\tilde{a}_{ij}\} \) is the \(N \times N \) (real-valued) matrix of link “weights” [10, 11, 12, 13]. Without loss of generality, we can assume \(\tilde{a}_{ij} \in [0, 1], \forall i \neq j \) and \(\tilde{a}_{ii} = \tilde{a} \in \{0, 1\}, i, j = 1, \ldots N \) [19]. In line with social network analysis, we interpret the generic out-of-diagonal entry \(\tilde{a}_{ij}, i \neq j \), as the weight associated to the directed link originating from node \(i \) and ending up in node \(j \) (i.e., the strength of the directed link \(i \rightarrow j \) in the graph). A directed edge from \(i \) to \(j \) is present if and only if \(\tilde{a}_{ij} > 0 \).

The idea underlying the construction of the index is very simple. If the graph \(\tilde{G} \) is undirected, then \(\tilde{A} = \tilde{A}^T \), where \(\tilde{A}^T \) is the transpose of \(\tilde{A} \). Denoting by \(\| \cdot \| \) any norm defined on a square-matrix, the extent to which directionality of links counts in the graph \(\tilde{G} \) can therefore be measured by some increasing function of \(\| \tilde{A} - \tilde{A}^T \| \), suitably rescaled by
some increasing function of $\|\tilde{A}\|$ (and possibly of $\|\tilde{A}^\top\|$).

To build the index we first define, again without loss of generality:

$$A = \{a_{ij}\} = \tilde{A} - (1 - \tilde{a})I_N,$$

where I_N is the $N \times N$ identity matrix. Accordingly, we define the graph $G = (N, A)$. Notice that $a_{ij} = \tilde{a}_{ij}$ for all $i \neq j$, while now $a_{ii} = 1$ for all i.

Consider then the square of the Frobenius (or Hilbert-Schmidt) norm:

$$\|A\|^2_F = \sum_i \sum_j a_{ij}^2 = N + \sum_i \sum_{j \neq i} a_{ij}^2,$$

where all sums (also in what follows) span from 1 to N. Notice that $\|A\|^2_F$ is invariant with respect to the transpose operator, i.e. $\|A\|_F = \|A^T\|_F$.

We thus propose the following index:

$$\tilde{S}(A) = \frac{\|A - A^T\|^2_F}{\|A\|^2_F + \|A^T\|^2_F} = \frac{\|A - A^T\|^2_F}{2\|A\|^2_F} = \frac{1}{2} \left(\frac{\|A - A^T\|_F}{\|A\|_F} \right)^2.$$

By exploiting the symmetry of $(a_{ij} - a_{ji})^2$, one easily gets:

$$\tilde{S}(A) = \frac{\sum_i \sum_{j \neq i} (a_{ij} - a_{ji})^2}{2 \sum_i \sum_j a_{ij}^2} = \frac{\sum_i \sum_{j > i} (a_{ij} - a_{ji})^2}{N + \sum_i \sum_{j \neq i} a_{ij}^2}.$$ \hspace{1cm} (4)

Alternatively, by expanding the squared term at the numerator, we obtain:

$$\tilde{S}(A) = 1 - \frac{\sum_i \sum_j a_{ij}a_{ji}}{\sum_i \sum_j a_{ij}^2} = 1 - \frac{N + \sum_i \sum_{j \neq i} a_{ij}a_{ji}}{N + \sum_i \sum_{j \neq i} a_{ij}^2} =$$

$$= 1 - \frac{N + 2 \sum_i \sum_{j > i} a_{ij}a_{ji}}{N + \sum_i \sum_{j \neq i} a_{ij}^2} = \frac{\sum_i \sum_{j \neq i} a_{ij}^2 - 2 \sum_i \sum_{j > i} a_{ij}a_{ji}}{N + \sum_i \sum_{j \neq i} a_{ij}^2}.$$ \hspace{1cm} (5)

The index $\tilde{S}(A)$ has a few interesting properties, which we summarize in the following:

Lemma 1 (General properties of \tilde{S}) For all real-valued $N \times N$ matrices $A = \{a_{ij}\}$ s.t. $a_{ij} \in [0, 1], i \neq j$ and $a_{ii} = 1, i = 1, ..., N$, then:

1. $\tilde{S}(A) \geq 0$.
2. $\tilde{S}(A) = 0 \iff A = A^T$, i.e. if and only if the graph is undirected.
3. $\tilde{S}(A) \leq \frac{N-1}{N+1}$

Proof. See Appendix A \hfill \blacksquare

Furthermore, when G is binary (i.e., $a_{ij} \in \{0,1\}$ for all i, j), the index in eq. 3 turns out to be closely connected to the density of the graph (i.e., the ratio between the total number of directed links to the maximum possible number of directed links) and the ratio of the number of bilateral directed links in G (i.e. links from i to j s.t. $a_{ij} = a_{ji} = 1$) to the maximum possible number of directed links. More precisely:
Lemma 2 (Properties of \tilde{S} in the case of binary graphs) When G is binary, i.e. $a_{ij} \in \{0,1\}$, all i, j, then:

$$\tilde{S}(A) = \frac{d(A) - b(A)}{(N - 1)^{-1} + d(A)},$$

(7)

where $d(A)$ is the density of G and $b(A)$ is the ratio between the number of bilateral directed links to the maximum number of directed links.

Proof. See Appendix B. \blacksquare

Notice that, in the case of undirected graphs, $b(A) = d(A)$ and $\tilde{S}(A) = 0$. On the contrary, when there are no bilateral links, $b(A) = 0$. Hence, $\tilde{S}(A) = [d(A)/(N - 1) + 1]^{-1}$, which is maximized when $d(A) = \frac{1}{2}$, i.e. $\tilde{S}(A) = \frac{N-1}{N+1}$, as shown in Lemma 1. Obviously, the larger $b(A)$, the more the graph G is undirected. As mentioned in Section I, $b(A)$ can be employed to check for the extent to which directionality counts in G. However, such index is not very useful in weighted graphs, as it does not take into account the size effect (i.e. the size of weights as measured by $a_{ij} \in [0,1]$).

In the case of binary graphs, the index in (3) almost coincides with the one proposed in $[13]$. They suggest to employ the correlation coefficient between (a_{ij}, a_{ji}) entries in the adjacency matrix (excluding self loops). It can be shown that this alternative index – unlike the one in (3) – increases with the number of reciprocated links, only if both the total number of links that are in place and the density of the network remain constant. See also $[16, 17]$ for applications.

Since $\tilde{S}(A) \in [0, \frac{N-1}{N+1}]$, in what follows we shall employ its rescaled version:

$$S(A) = \frac{N + 1}{N - 1} \tilde{S}(A),$$

(8)

which ranges in the unit interval and thus has a more straightforward interpretation.

III. STATISTICAL PROPERTIES

In this section we study the distribution of the index S as defined in eqs. (3) and (8). Indeed, despite the range of S does not depend on N, we expect its distribution to be affected by:

(i) the size of the matrix (N); (ii) whether the underlying graph G is binary $(a_{ij} \in \{0,1\})$ or weighted $(a_{ij} \in [0,1])$.

To do so, for each $N \in \{5, 10, 50, 100, 200, 500, 700, 1000\}$ we generate $M = 100,000$ random matrices A obeying the restriction that $a_{ii} = 1$, all i. In the binary case, out-of-diagonal entries $\{a_{ij}, i \neq j\}$ are drawn from i.i.d. Bernoulli random variables with $prob\{a_{ij} = 0\} = prob\{a_{ij} = 1\} = 0.5$. In the weighted case, entries a_{ij} are i.i.d. random variables uniformly-distributed over $[0,1]$. We then estimate the distributions of S in both the binary and the weighted cases, and we study their behavior as the size of the graph increases. Let us denote by $m_B(N)$ (respectively, $m_W(N)$) the sample mean of the index S in the binary (respectively, weighted) case, and by $s_B(N)$ (respectively, $s_W(N)$) the sample standard deviation of the index S in the binary (respectively, weighted) case. Simulation results are summarized in the following points.

1. In both the binary and the weighted case, the index S approximately distributes as a Beta random variable for all N. As N increases, $m_B(N)$ decreases towards 0.50
whereas $m_W(N)$ increases towards 0.25. Both standard deviations decrease towards 0. More precisely, the following approximate relations hold (see Figures 1 and 2):

$$
m_B(N) \simeq 0.50 + \exp\{-1.786369 - 1.680938\ln N\} \quad (9)
$$
$$
m_W(N) \simeq 0.25 - \exp\{-1.767551 - 0.937586\ln N\} \quad (10)
$$
$$
s_B(N) \simeq \exp\{-0.135458 - 1.001695\ln N\} \quad (11)
$$
$$
s_W(N) \simeq \exp\{-0.913297 - 0.982570\ln N\} \quad (12)
$$

FIG. 1: Binary Graphs. Sample mean and standard deviation of S vs. N, together with OLS fits. Log-scale on both axes. OLS fits: $\ln|m_B(N) - 0.50| \simeq -1.786369 - 1.680938\ln N \ (R^2 = 0.998934)$ and $\ln|s_B(N)| \simeq -0.135458 - 1.001695\ln N \ (R^2 = 0.999995)$.

FIG. 2: Weighted Graphs. Sample mean and standard deviation of S vs. N, together with OLS fits. Log-scale on both axes. OLS fits: $\ln[0.25 - m_W(N)] \simeq -1.767551 - 0.937586\ln N \ (R^2 = 0.998966)$ and $\ln|s_W(N)| \simeq -0.913297 - 0.982570\ln N \ (R^2 = 0.999932)$.

2. Given the approximate relations in eqs. 9-12, let us standardize the index S as follows:

$$
S_B(A) = \frac{S(A) - m_B(N)}{s_B(N)}, \quad (13)
$$
$$
S_W(A) = \frac{S(A) - m_W(N)}{s_W(N)}. \quad (14)
$$

Simulations indicate that the standardized versions of the index, i.e. S_B and S_W, are both well approximated by a $N(0, 1)$, even for small Ns ($N \geq 10$). Indeed, as Figures 3 and 4 show, the mean of the distributions of S_B and S_W vs. N converges towards zero, while the standard deviation approaches one (we actually plot standard deviation minus one to have a plot in the same scale). Also the third (skewness) and the fourth
moment (excess kurtosis) stay close to zero. We also plot the estimated distribution of S_B and S_W vs. N, see Figures 5 and 6. It can be seen that all estimated densities collapse towards a $N(0, 1)$. Notice that the y-axis is in log scale: this allows one to appreciate how close to a $N(0, 1)$ are the distributions for all N on the tails.

FIG. 3: Binary Graphs. Moments of S_B vs. N.

FIG. 4: Weighted Graphs. Moments of S_W vs. N.

FIG. 5: Binary Graphs. Estimated distribution of S_B vs. N. The $N(0, 1)$ fit is also shown as a solid line.

FIG. 6: Weighted Graphs. Estimated distribution of S_W vs. N. The $N(0, 1)$ fit is also shown as a solid line.

Notice finally that as N increases, the distribution maintains a constant second moment but the range increases linearly with N, see 7 and 8. The lower bound (LB) and the upper bound (UB) indeed read approximately:

$$LB_s(N) = \sim -\frac{m_s(N)}{s_s(N)}, UB_s(N) = \sim \frac{1 - m_s(N)}{s_s(N)}$$

(15)
where $\{\ast\} = \{B, W\}$ stands for binary (B) and weighted (W). Since the standardized index is well approximated by a $N(0, 1)$ for all N, this means that extreme values become more and more unlikely. This is intuitive, because as N grows the number of matrices with highest/lowest values of the index are very rare.

IV. EXAMPLES

The index developed above can be easily employed to assess the extent to which link directionality matters in real-world networks. Let us suppose to have estimated a $N \times N$ matrix $X = \{x_{ij}\}$ describing a binary (B) or a weighted (W) graph. We then compute the index:

$$S_*(X) = \frac{N+1}{N-1} \sum_{i>j} (x_{ij} - x_{ji})^2$$

where $\{\ast\} = \{B, W\}$ and $(m_*(N), s_*(N))$ are as in eqs. 9-12. Since we know that $S_*(X)$ is approximately $N(0, 1)$, we can fix a lower threshold in order to decide whether the network is sufficiently (un)directed. For instance, we could set the lower threshold equal to 0 (i.e. equal to the mean), and decide that if $S_*(X) > 0$ (above the mean) we shall treat the network as directed (and undirected otherwise). More generally, one might set a threshold equal to $x \in \mathbb{R}$ and conclude that the graph is undirected if $S_* < x$. On the contrary, one should expect the directional nature of the graph to be sufficiently strong, so that a digraph analysis is called for.
To test the index against real-world cases, we have taken the thirteen social and economic networks analyzed in \cite{3}, see Table I \cite{20}. All networks are binary and directed, apart from Freeman’s ones (which are weighted and directed) and Padgett’s ones (which are binary and undirected). Table I reports both the index S and its standardized versions $S_\{\ast\} = \{B, W\}$, for all cited examples.

TABLE I: The index S and its standardized version $S_\{\ast\} = \{B(\text{binary}), W(\text{weighted})\}$ for social networks studied in \cite{3}, cf. Chapter 2.5.

Social Network	N	S	$S_\{\ast\}$
1 Advice relations btw Krackhardt’s hi-tech managers	21	0.521327	0.491228
2 Friendship relations btw Krackhardt’s hi-tech managers	21	0.500813	0.004610
3 “Reports-to” relations btw Krackhardt’s hi-tech managers	21	0.536585	0.860033
4 Business relationships btw Padgett’s Florentine families	16	0.000000	-9.232823
5 Marital relationships btw Padgett’s Florentine families	16	0.000000	-9.232823
6 Acquaintanceship among Freeman’s EIES researchers (Time 1)	32	0.109849	-10.025880
7 Acquaintanceship among Freeman’s EIES researchers (Time 2)	32	0.094968	-11.143250
8 Messages sent among Freeman’s EIES researchers	32	0.014548	-17.181580
9 Country Trade Flows: Basic Manufactured Goods	24	0.260349	-6.643695
10 Country Trade Flows: Food and Live Animals	24	0.311966	-5.217508
11 Country Trade Flows: Crude Materials (excl. Food)	24	0.272560	-6.306300
12 Country Trade Flows: Minerals, Fuels, Petroleum	24	0.403336	-2.692973
13 Country Trade Flows: Exchange of Diplomats	24	0.080208	-11.620970

Suppose to fix the lower threshold equal to zero. Padgett’s networks, being undirected, display a very low value (in fact, the non standardized index is equal to zero as expected). The table also suggests to treat all the binary trade networks as undirected. The same advice applies for Freeman’s networks, which are instead weighted. The only networks which have an almost clear directed nature (according to our threshold) are Krackhardt’s ones. In that case our index indicates that a directed graph analysis would be more appropriate.

V. CONCLUDING REMARKS

In this paper we have proposed a new procedure that might help to decide whether an empirically-observed adjacency or weights $N \times N$ matrix W, describing the graph underlying a social or economic network, is sufficiently symmetric to justify an undirected network analysis. The index that we have developed has two main properties. First, it can be applied to both binary or weighted graphs. Second, once suitably standardized, it distributes as a standard normal over all possible adjacency/weights matrices. Therefore, given a threshold decided by the researcher, any empirically observed adjacency/weights matrix displaying a value of the index lower (respectively, higher) than the threshold is to be treated as if it characterizes an undirected (respectively, directed) network.

It must be noticed that setting the threshold always relies on a personal choice, as also happens in statistical hypothesis tests with the choice of the significance level α. Despite this unavoidable degree of freedom, the procedure proposed above still allows for a sufficient
comparability among results coming from different studies (i.e. where researchers set differ-
ent threshold) if both the value of the index S and the size of the network are documented
in the analysis. In that case, one can easily compute the probability of finding a matrix
with a lower/higher degree of symmetry, simply by using the definition of bounds (see eq.
15) and probability tables for the standard normal.

A final remark is in order. As mentioned, our procedure does not configure itself as
a statistical test. Since the researcher often relies on a single observation of the network
under study (or a sequence of serially-correlated network snapshots through time), statistical
hypothesis testing will be only very rarely feasible. Nevertheless, in the case where a sample
of M i.i.d. observations of W is available, one might consider to use the the sample average
of the index (multiplied by \sqrt{M}) and employ the central limit theorem to test the hypothesis
that the observations come from a undirected (random) graph.

Acknowledgments

This work has enormously benefited from insightful suggestions by Michel Petitjean. Thanks
also to Javier Reyes and Stefano Schiavo for their useful comments.

[1] R. Albert and Barabási, Rev. Mod. Phys. 74, 47 (2002).
[2] M. Newman, SIAM Review 45, 167 (2003).
[3] S. Wasserman and K. Faust, Social Network Analysis. Methods and Applications (Cambridge,
Cambridge University Press, 1994).
[4] P. Carrington, J. Scott, and S. Wasserman, eds., Models and Methods in Social Network
Analysis (Cambridge, Cambridge University Press, 2005).
[5] S. Dorogovtsev and J. Mendes, Evolution of Networks: From Biological Nets to the Internet
and WWW (Oxford, Oxford University Press, 2003).
[6] D. Watts, Small Worlds (Princeton, Princeton University Press, 1999).
[7] M. Granovetter, Getting a Job: A Study of Contracts and Careers (Cambridge, MA, Harvard
University Press, 1974).
[8] F. Harary, Graph Theory (Reading, MA, Addison-Wesley, 1969).
[9] B. Bollobás, Random Graphs (New York, Academic Press, 1985).
[10] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, Proceedings of the National
Academy of Sciences 101, 3747 (2004).
[11] A. Barrat, M. Barthélemy, and A. Vespignani, Tech. Rep. 0401057v2, arXiv:cond-mat (2005).
[12] M. Barthélemy, A. Barrat, R. Pastor-Satorras, and A. Vespignani, Physica A 346, 34 (2005).
[13] A. DeMontis, M. Barthélemy, A. Chessa, and A. Vespignani, Tech. Rep. 0507106v2,
arXiv:physics (2005).
[14] W. De Nooy, A. Mrvar, and V. Batagelj, Exploratory Social Network Analysis with Pajek
(Cambridge, Cambridge University Press, 2005).
[15] D. Garlaschelli and M. Loffredo, Physical Review Letters 93, 268701 (2004).
[16] D. Garlaschelli and M. Loffredo, Physical Review Letters 93, 188701 (2004).
[17] D. Garlaschelli and M. Loffredo, Physica A 355, 138 (2005).
[18] In what follows, we will stick to the case $w_{ij} \in [0,1]$, all i, j (the more general case $w_{ij} \in R^+$
can be reduced to the former simply by dividing all weights by their maximum level in W).
We assume that entries in the main diagonal are either all equal to zero ($\tilde{a} = 0, i = 1, \ldots N$, i.e. no self-interactions) or all equal to one ($\tilde{a} = 1, i = 1, \ldots N$, i.e. self-interactions are allowed).

They concern advice, friendship and “reports-to” relations among Krackhardt’s high-tech managers; business and marital relationships between Padgett’s Florentine families; acquaintance among Freeman’s EIES researchers and messages sent between them; and data about trade flows among countries (cf. [3], ch. 2.5 for a thorough description).

APPENDIX A: PROOF OF LEMMA 1

Points (1) and (2) simply follow from the definition in eq. 3. As to (3), let us suppose that there exists a matrix A satisfying the above restrictions and such that $\tilde{S}(A) > \frac{N-1}{N+1}$. Then, using eq. 6:

$$\frac{N + 2 \sum_i \sum_{j>i} a_{ij}a_{ji}}{N + \sum_i \sum_{j \neq i} a_{ij}^2} < \frac{2}{N + 1}. \tag{A1}$$

The best case for such an inequality to be satisfied is when the the left hand side is minimized. This is achieved when there are $\frac{N(N-1)}{2}$ entries equal to one and $\frac{N(N-1)}{2}$ entries equal to zero in such a way that $a_{ij} \neq a_{ji}$ for all $i \neq j$ (e.g., when the upper diagonal matrix is made of all ones and the lower diagonal matrix is made of all zeroes). In that case the left hand side is exactly equal to $\frac{2}{N+1}$, leading to the absurd conclusion that $\frac{2}{N+1} < \frac{2}{N+1}$.

APPENDIX B: PROOF OF LEMMA 2

It follows from the definition of $d(A)$ that:

$$d(A) = \frac{\sum_i \sum_{j \neq i} a_{ij}}{N(N-1)} = \frac{\sum_i \sum_{j > i} a_{ij}a_{ji}}{N(N-1)}. \tag{B1}$$

Moreover, it is easy to see that:

$$b(A) = \frac{\sum_i \sum_{j \neq i} a_{ij}a_{ji}}{N(N-1)} = \frac{2 \sum_i \sum_{j > i} a_{ij}a_{ji}}{N(N-1)}. \tag{B2}$$

To prove the Lemma, it suffices to note that:

$$\tilde{S}(A) = 1 - \frac{N + 2 \sum_i \sum_{j > i} a_{ij}a_{ji}}{N + \sum_i \sum_{j \neq i} a_{ij}^2} = \frac{d(A) - b(A)}{1 + (N-1)d(A)} \tag{B3}$$

$$= 1 - \frac{1}{1 + (N-1)d(A)} = \frac{(N-1)^{-1} + d(A)}{d(A)}. \tag{B4}$$