Large \((k; r, s; n, q)\)-sets in Projective Spaces

Ferdinand Ihringer, Jacques Verstraëte

11 Nov 2022

Abstract

A \((k; r, s; n, q)\)-set (short: \((r, s)\)-set) of \(\text{PG}(n, q)\) is a set of points \(X\) with \(|X| = k\) such that no \(s\)-space contains more than \(r\) points of \(X\). We investigate the asymptotic size of \((r, s)\)-sets for \(n\) fixed and \(q \to \infty\). In particular, we show the existence of \((3, 2)\)-sets of size \((1 + o(1))q^{3/2}\) for \(n = 6\), \((4, 2)\)-sets of size \((1 + o(1))q^{2/3}\), and \((9, 2)\)-sets of size \((1 + o(1))q^2\) for \(n = 4\). We also generalize a bound by Rao from 1947 and show that an \((r, s)\)-set has size at most \(O(q^{2 - 1})\) if there exist integers \(d, e \geq 2\) such that \(s = d(e - 1)\) and \(r = de - 1\).

1 Introduction

Let \(\text{PG}(n, q)\) denote the finite projective space whose points and lines are the 1- and 2-dimensional subspaces of \(\mathbb{F}_q^n\), respectively. A cap is a set \(X\) of points in \(\text{PG}(n, q)\) such that no line intersects \(X\) in more than 2 points. More generally, a set \(X\) in \(\text{PG}(n, q)\) is commonly called \((k; r, s; n, q)\)-set if each \(s\)-space contains at most \(r\) points of \(X\) and \(|X| = k\). The present work is concerned with \((k; r, s; n, q)\)-sets for fixed \(n\) and asymptotic behavior for \(q \to \infty\). In the following we abbreviate \((k; r, s; n, q)\) as \((r, s)\)-set (as for us \(n\) is fixed, \(k\) not exact, and we consider asymptotics in \(q\)). A \((2, 1)\)-set is known as a cap, a \((r, r - 1)\)-set is known as a generalized cap, a \((n, n - 1)\)-set is known as an arc and corresponds to an MDS code. Hirschfeld surveys upper and lower bounds of \((r, s)\)-sets of maximal size in \([14]\). In other literature \((r, s)\)-sets are known as \((s, r)\)-subspace evasive sets, see also \([13, 15]\).

An \((s, 1)\)-set in \(\text{PG}(n, q)\) has size at most \(O(q^{n-1})\). This bound is known to be tight for \(n = 2, 3\). Segre showed in 1959 \([17]\) (c.f. \([7]\)) that the largest cap has at least size \(\Omega(q^{2n-1})\). The first open case for caps is \(\text{PG}(4, q)\) for which the largest known constructions have size \((3 + o(1))q^2\), see \([8]\). Dvir and Lovett showed in \([5]\) (Theorem 2.4 together with Claim 3.5) that for \(q\) sufficiently large, there exists an \((n, s)\)-set of size \(\frac{1}{2}q^{n-s}\). Also see \([18]\) for a construction using random polynomials (based on the method developed by Bukh in \([3]\)). In Section \([2]\), we give an explicit \((n, 1)\)-set of size \((q - 1)^{n-1}\) in \(\text{PG}(n, q)\).

In Section \([3]\) we establish simple upper and lower bounds on the size of the largest \((r, s)\)-sets for \(r \leq 2s - 1\). Sudakov and Tomon show in \([15]\) Theorem 1.2 that an \((r, s)\)-set with \(r \leq \frac{d}{2} s - 1\) has at most size \(4s \cdot q^{\frac{m(r)}{m(r)}}\) where \(D(r, s) = \lfloor \frac{s}{2(r-s+1)} \rfloor\). The following lower bound was observed for \(s = r - 1\) by Rao \([16]\) p. 136 and Bose \([2]\) Eq. 5.64. Their result has been rediscovered by Tait and Won in 2021.
Lemma 2.2. The curve

Proof.

Put

for $(1, x, y, z)$.

Theorem 2.1. Let X be an (r, s)-set in $\text{PG}(n, q)$ such that there exist integers $d, e \geq 2$ with $s = d(e - 1)$ and $r = de - 1$. Then $|X| \leq C_d e q^{r+1} + e$ where $C_d e = \sqrt{e! (d - 1)^{1 + 2d - 1} + 1 - 2q^{-1}}$, for $q > 2e$. Particularly, $|X| \leq C_2 e q^{n + 1} + e = C_2 e q^{2n+1} + e$ for $s = r - 1$ even, and $|X| \leq C_2 e q^{2(n-1)} + e$ for $r = 2s - 1$.

In Section 4 we investigate the special case of planes. In particular, we provide a construction for a $(3, 2)$-set of size $\Theta(q^{3/2})$ in $\text{PG}(6, q)$ which combines algebraic and probabilistic methods. This improves on the trivial lower bound of $\Omega(q^{4/3})$. We also show for $n = 4$ that $(9, 2)$-sets of size $(1 + o(1))q^2$ exist for q sufficiently large, improving the result by Dvir and Lovett for that case. We conclude in Section 5 with product type constructions for (r, s)-sets using field reduction.

2 Lines

Throughout the whole text, we identify a vector of the form $(1, x_1, \ldots, x_n)$ with the (affine) point $((1, x_1, \ldots, x_n))$ of $\text{PG}(n, q)$. We assume that $n \geq 2$. Our main result on lines is as follows:

Theorem 2.1. There exists a $(n, 1)$-set of size $(q - 1)^{n-1}$ in $\text{PG}(n, q)$.

We shall prove this in two lemmas. Let $x \in \mathbb{F}_q^{n-1}$. Define

$$F_0(x) = \prod_{i=1}^{n-1} x_i, \quad F_i(x) = x_i F_0(x) \text{ for } i \in \{1, \ldots, n-1\}.$$

Put $F(x) = (1, F_0(x), \ldots, F_{n-1}(x))$. We denote $\mathbb{F}_q \setminus \{0\}$ by \mathbb{F}_q^* and write \mathbb{F}_q^{n-1} for $(\mathbb{F}_q^*)^{n-1}$. Put $X = \{F(x) : x \in \mathbb{F}_q^{n-1}\}$.

Lemma 2.2. The curve X has $(q-1)^{n-1}$ points.

Proof. Let $u \in X$. Then there exists an $x \in \mathbb{F}_q^{n-1}$ such that $u = F(x)$. As $x_1 \cdots x_{n-1} \neq 0$, we have $x = (u_2/u_1, \ldots, u_n/u_1)$.

Lemma 2.3. No line intersects X in more than n points.

Proof. Suppose that three distinct points $u, v, w \in X$ with $u = F(x), v = F(y)$, and $w = F(z)$ for $x, y, z \in \mathbb{F}_q^{n-1}$ are collinear. Then the following matrix has rank 2 (if the rank is 1, then $x = y = z$; if the rank is 3, then $\langle u, v, w \rangle$ is a plane):
By subtracting z_i-times the second row from the $(i+1)$-th row for $i \in \{1, \ldots, n-1\}$ and subtracting $F_0(z)$-times the first row from the second, we obtain

$$M := \begin{pmatrix} 1 & 1 & 1 \\ F_0(x) - F_0(z) & F_0(y) - F_0(z) & 0 \\ (x_1 - z_1)F_0(x) & (y_1 - z_1)F_0(y) & 0 \\ (x_2 - z_2)F_0(x) & (y_2 - z_2)F_0(y) & 0 \\ \vdots & \vdots & \vdots \\ (x_{n-1} - z_{n-1})F_0(x) & (y_{n-1} - z_{n-1})F_0(y) & 0 \end{pmatrix}. $$

Consider

$$M' := \begin{pmatrix} F_0(x) - F_0(z) & F_0(y) - F_0(z) \\ (x_1 - z_1)F_0(x) & (y_1 - z_1)F_0(y) \\ (x_2 - z_2)F_0(x) & (y_2 - z_2)F_0(y) \\ \vdots & \vdots \\ (x_{n-1} - z_{n-1})F_0(x) & (y_{n-1} - z_{n-1})F_0(y) \end{pmatrix}. $$

The matrix M has rank 2 if and only if M' has rank 1. This is precisely the case when all (2×2)-submatrices \tilde{M} of M' have rank at most 1, that is $\det(\tilde{M}) = 0$. Hence, we obtain that

$$(F_0(x) - F_0(z))F_0(y)(y_i - z_i) = (F_0(y) - F_0(z))F_0(x)(x_i - z_i) \quad (1)$$

for $i \in \{1, \ldots, n-1\}$, and

$$(x_1 - z_1)(y_i - z_i) = (y_1 - z_1)(x_i - z_i) \quad (2)$$

for $i \in \{2, \ldots, n-1\}$. Here we use that $F_0(x), F_0(y) \neq 0$.

We want to show that no line contains more than n points.

If $F_0(x) = F_0(y) = F_0(z)$, then the equations in (2) plus $F_0(x) = F_0(y) = F_0(z)$ determine the entries of z as the solution to polynomials of degree $n-1$. Hence, there are at most $n-3$ nontrivial solutions for z.

Otherwise, Equation (1) for $i = 1$ together with the equations in (2) determines the entries of z as the solution to polynomials of degree n. Hence, we have at most $n-2$ nontrivial solutions.

Note that the points of X lie on the affine curve

$$X_1^n - X_2 \cdots X_n = 0,$$

and (if we switch the first two coordinates) the projective curve

$$X_0^n - X_1 X_2 \cdots X_n = 0.$$

It seems to be highly natural do study these curves over finite fields. Note that the canonical affine part of the last curve, that is

$$\{(1, \frac{1}{x_1 \cdots x_{n-1}}, x_1, x_2, \ldots, x_{n-1}) : x \in F_q^{*n-1}\},$$

satisfies Lemma 2.2 and Lemma 2.3 as well.
Hence, if we take \(p \in X \) entry in the table, indexed by \(r \) and \(r - s \).

\[\begin{array}{|c|ccccc|}
\hline
r - s & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
s = 1 & n-1 & & & & & \\
s = 2 & \frac{n-1}{2} & n-2 & & & & \\
s = 3 & \frac{n-2}{3} & \frac{n-1}{2} & n-3 & & & \\
s = 4 & \frac{n-2}{3} & \frac{n-3}{2} & \frac{n-2}{2} & n-4 & & \\
s = 5 & \frac{n-3}{4} & \frac{n-3}{2} & \frac{n-3}{2} & \frac{n-2}{2} & \frac{n-1}{2} & n-5 \\
s = 6 & & & & & & n-6 \\
\hline
\end{array} \]

Table 1: The upper bounds \(O(q^m) \) on the size of a \((r,s)\)-set from Theorem 1.1.

Lemma 3.3 and Lemma 3.2 for small \(s \) and sufficiently large \(n \). Here \(m \) is the entry in the table, indexed by \(r \) and \(r - s \).

3 Simple Bounds on \((r,s)\)-Sets

We write \(\binom{n+1}{k+1} \) for the number of \(k \)-spaces in \(\text{PG}(n,q) \). For our estimates, we will use that \(\binom{n+1}{k+1} = (1 + o(1))q^{k+1}(n-k) \) (as \(q \to \infty \)). The following result was observed for \(s = r - 1 \) by Gilbert [11, I.4] and Varshamov [20] and is well-known in coding theory as the Gilbert-Varshamov bound.

Lemma 3.1. Let \(s + 1 \geq r \geq 3 \). There exists a \((r,s)\)-set in \(\text{PG}(n,q) \) of size \((\frac{r+1}{r!} + o(1))q^{n-s-s(n-s)/r} \) (as \(q \to \infty \)).

Proof. Delete points from \(\text{PG}(n,q) \) with probability \(p \). Let \(X \) denote the resulting set of points. For a random \(s \)-space \(S \), we have

\[\mathbb{P}(|X \cap S| \geq r + 1) \leq \binom{r+1}{r+1} p^{r+1}. \]

Hence, if we take \(p = (1 + o(1))q^{-s(n-s)/r - s} \) and let \(S \) denote the set of \(s \)-spaces which meet \(X \) in at least \(r + 1 \) points, then

\[\mathbb{E}(|S|) \leq \binom{n+1}{s+1} \binom{r+1}{r+1} p^{r+1} = \frac{1}{(r+1)!} (1 + o(1))q^{n-s-s(n-s)/r}. \]

Furthermore, we have

\[\mathbb{E}(|X|) = p \binom{n+1}{1} = (1 + o(1))q^{n-s-s(n-s)/r}. \]

Hence, we can delete the at most \((r + 1) \cdot \frac{1}{(r+1)!} (1 + o(1))q^{n-s-s(n-s)/r}\) points of \(X \) in any \(s \)-space that intersects \(X \) in at least \(r + 1 \) points and we obtain an \((r,s)\)-set of size

\[\frac{r!-1}{r!} (1 + o(1))q^{n-s-s(n-s)/r}. \]

The following statement was already observed by Gulati [12] for \(s = r - 1 \).

Lemma 3.2. Let \(m \geq 1 \). Let \(B \) be the maximal size of an \((r,s)\)-set in \(\text{PG}(n,q) \). Then \(|X| - m \leq B\) for an \((r + m, s + m)\)-set \(X \) in \(\text{PG}(n + m, q) \).

Proof. Let \(S \) be the subspace spanned by \(m \) points of \(X \). The projection of \(X \setminus S \) onto a complement of \(S \) is an \((r,s)\)-set in \(\text{PG}(n,q) \).
Recall for the following that an \((r,s)\)-set with \(r \leq s\) contains at most \(r\) points. If an \((r,s)\)-set \(X\) meets an \(m\)-space \(S\) in \(d\) points of \(X\) for some \(d \leq r\), then in the quotient of \(S\) we find an \((r-d,s-m-1)\)-set \(X'\) of size \(|X|-d\). If \(s-m-1 \geq r-d\), then \(|X'| \leq r-d\), so \(|X| \leq r\). We call an \((r,s)\)-set \(X\) proper if no \(m\)-space contains \(m+1+r-s\) (or more) points. Any \((r,s)\)-set \(X\) with \(|X| > r\) is proper.

Proof of Theorem 1.1. Any \(e = s/d+1\) points of \(X\) span a subspace of dimension at most \(e-1\). Let \(Y_1, \ldots, Y_d \subseteq X\) sets of size \(e\). Let \(\hat{Y}_i\) denote the set of points of \(\PG(n,q)\) in \(\langle Y_i \rangle \setminus X\), but not in the span of any \((e-1)\)-subset of \(Y_i\).

Put \(y = |\bigcup_{i=1}^d \hat{Y}_i|\). We claim that \(\bigcap_{i=1}^d \hat{Y}_i\) spans a subspace of dimension at most \((y - d + 1) - 1 = y - d\) that contains at least \(y\) points of \(X\). But \(y - d + 1 + r - s = y\), so \(X\) is not proper, thus \(|X| \leq r\) and we are done.

Hence, a point \(P\) not in \(X\) lies in at most \(d-1\) sets \(\hat{Y}_i\). Double count \(e\)-tuples \(Y \subseteq X\) and points \(P\) not in \(X\) with \(P \in \langle Y \rangle\). We obtain that

\[
\left(\binom{|X|}{e}\right) \left(\binom{e}{1} - \binom{e}{e-1} \right) \leq (d-1) \left(\binom{n+1}{1} - |X|\right).
\]

Using \(1 \leq \binom{m}{1}/q^{m-1} \leq 1 + 2q^{-1} \leq 2\), we obtain

\[
\frac{(|X|-e)^e}{e!} q^{e-1} (1 - 2eq^{-1}) \leq (1 + 2q^{-1})(d-1)q^n.
\]

Rearranging for \(|X|\) yields the assertion. The special cases are for \(d = 2\) and \(e = 2\).

Lemma 3.3. Let \(X\) be a \((r,s)\)-set in \(\PG(n,q)\) with \(s \geq 1\). Then \(|X| \leq r \left(\binom{n-s+1}{1}+1\right)\).

Proof. Fix a \((r-1)\)-space \(S\) which intersects \(X\) in at least \(s\) points. Then each \(s\)-space \(T\) in \(\PG(n,q)\) through \(S\) contains at most \(r\) elements of \(X\). There are \(\binom{n-s+1}{1}\) such \(T\).

4 Planes

4.1 Plane Sets in \(\PG(6,q)\)

We construct a \((3,2)\)-set of size \((1+o(1))q^{3/2}\) in \(\PG(6,q)\). The (trivial) lower bound from Lemma 3.3 is \(\Omega(q^{4/3})\), while the (trivial) upper bound from Theorem 1.1 is \(O(q^{5/2})\). Put

\[X = \{(1, x, x^2, x^3, y, y^2, y^3) : x, y \in F_q\}.\]

Clearly, \(|X| = q^2\).

Lemma 4.1. Let \(s_1, s_2, s_3, s_4 \in X\) be four pairwise distinct points in a plane of \(\PG(6,q)\) with \(s_1 = (1, x_1, x_1^2, x_1^3, y_1, y_1^2, y_1^3)\). Then it holds that \(|\{x_1, x_2, x_3, x_4\}| = |\{y_1, y_2, y_3, y_4\}| = 2\).
Theorem 1.1 gives

\[
\begin{pmatrix}
1 & 1 & 1 & 1 \\
x_1 & x_2 & x_3 & x_4 \\
x_1' & x_2' & x_3' & x_4' \\
y_1 & y_2 & y_3 & y_4 \\
y_1' & y_2' & y_3' & y_4'
\end{pmatrix}
\]

has at most rank 3. The top-left 4×4 submatrix of M is a Vandermonde matrix of rank at most 3. Hence, if the x_1, x_2, x_3 are pairwise distinct, then $x_4 \in \{x_1, x_2, x_3\}$. If $x_4 = x_i$ for some $i \in \{1, 2, 3\}$, then also $y_4 = y_i$. But then $s_4 = s_i$ which is a contradiction. Hence, $|\{x_1, x_2, x_3, x_4\}| \leq 2$, and similarly, $|\{y_1, y_2, y_3, y_4\}| \leq 2$. If any of the inequalities above is not obtained, then again two s_i are identical, so this does not happen.

Let G be a bipartite C_4-free graph with $(1 + o(1))q^{3/2}$ edges and q vertices in each half of the bipartition. Such graphs exists, for instance see [11] §3.1. Identify the points and lines of G with two distinct copies of \mathbb{F}_q. Put

\[X' = \{(1, x, x^2, x^3, y, y^2, y^3) : x, y \in \mathbb{F}_q, xy \text{ is an edge of } G\}.\]

Theorem 4.2. We have $|X'| = (1 + o(1))q^{3/2}$ and X' is a $(3, 2)$-set.

Proof. The graph G has $(1 + o(1))q^{3/2}$ edges, so $|X'| = (1 + o(1))q^{3/2}$. Lemma 4.1 says that four point s_1, s_2, s_3, s_4 in X which lie in a plane are precisely those with WLOG $x_1 = x_2, x_3 = x_4, y_4 = y_1$, and $y_2 = y_3$ (in the notation of Lemma 4.1). This does not happen in X' as $(x_1, y_1), (x_1, y_2), (x_3, y_2), (x_3, y_1)$ would correspond to a quadrangle in G.

Now assume that $q = q_0^2$ for some prime power q_0. In this case there exists a natural choice for G. Let G' be the incidence graph of $\text{PG}(2, q_0)$. It is well-known that the graph G is C_4-free. Remove all points on a fixed line L from G, and remove all lines on a fixed point on L from G. Then G' has q lines and q points. (If one wishes for a completely explicit construction, then identifying \mathbb{F}_q with $\mathbb{F}_{q_0}^2$ is a natural choice.) Let X'' be the point set X' with G' for G.

Corollary 4.3. For q a square, we have $|X''| = q^{3/2}$ and X'' is a $(3, 2)$-set.

4.2 Random $(4, 2)$-sets from Quadrics

Theorem 1.1 gives $(\sqrt{2} + o(1))q^{n-1}$ as an upper bound for $(3, 2)$-sets in $\text{PG}(n, q)$, that is a set of points with at most 3 in each plane. Here we show that one can obtain examples of that size if we allow up to 4 points on a plane, so $(4, 2)$-sets. Note that for $(4, 2)$-sets we only have Lemma 4.1, which states an upper bound of $O(q^{n-2})$.

Theorem 4.4. Let $m \geq 2$ and put $n = 2m - 1$. There exists a $(4, 2)$-set in $\text{PG}(n, q)$ of size $(1 + o(1))q^{n-1}$.

6
Proof. Let Q_1, \ldots, Q_m be random irreducible quadrics. Put $X = \bigcap_{i=1}^m Q_i$. As Q_i has $(1 + o(1))q^{n-1}$ points, we find $\mathbb{E}(|X|) = (1 + o(1))q^{n-m} = (1 + o(1))q^{m-1}$. Recall that a conic is determined by 5 points, two conics intersect in at most 4 points, and that there are $(1 + o(1))q^5$ conics in $\text{PG}(2, q)$.

Let C_1 and C_2 be random conics. Then

$$\mathbb{P}(|C_1 \cap C_2| > 4) = \mathbb{P}(|C_1 \cap C_2| = q + 1) = (1 + o(1))q^{-5}. $$

Let \mathcal{C} be the set of planes which intersect X in a conic plane. There are $(1 + o(1))q^{3(n-2)}$ conic planes in Q_1. Hence,

$$\mathbb{E}(|\mathcal{C}|) = (1 + o(1))q^{3(n-2)} \cdot (1 + o(1))q^{-5(m-1)} = (1 + o(1))q^{-m+4}. $$

Hence, the expected number of points of X in a conic plane is at most $(1 + o(1))q^{-m+3}$ as each of them has at most $q + 1$ points in X.

Let L_1 and L_2 be random singular lines in two of the quadrics. Then $\mathbb{P}(L_1 = L_2) = (1 + o(1))q^{-3}$. Let \mathcal{L} be the set of lines which are completely contained in X. There are $\binom{n+1}{2} = (1 + o(1))q^{2(n-1)}$ lines in $\text{PG}(n-1, q)$, so

$$\mathbb{E}(|\mathcal{L}|) = (1 + o(1))q^{2(n-1)} \cdot (1 + o(1))q^{-3m} = q^{-m-4}. $$

Hence, we can delete all points of X in conic planes and complete lines to obtain some X' with $\mathbb{E}(|X'|) = (1 + o(1))\mathbb{E}(|X|) = (1 + o(1))q^{-m+1}$.

4.3 Random $(9, 2)$-sets from Cubic Curves

Lemma 4.5 gives $O(q^2)$ as an upper bound for a $(9, 2)$-set in $\text{PG}(4, q)$. Dvir and Lovett show that there exists a $(16, 2)$-set. Here we show that cubic polynomials give rise to a $(9, 2)$-set of size $(1 + o(1))q^2$.

Lemma 4.5. In $\text{PG}(2, q)$ the number of irreducible cubic curves is $(1 + o(1))q^9$, the number of reducible cubic curves containing a conic is $O(q^7)$, and the number of reducible cubic curves containing no conic is $O(q^6)$.

Proof. Nine points determine a cubic curve. As 9 points in general position determine a cubic, the number is at least

$$(1 + o(1))\frac{q^{2 \cdot 9}}{q^9} = (1 + o(1))q^9. $$

Next we estimate the number of reducible cubic curves. These consist of three lines, or a line and a conic. Recall that there are $O(q^2)$ lines and $O(q^5)$ quadratic curves in $\text{PG}(2, q)$.

Lemma 4.6. Let C_1, C_2 two random irreducible cubic curves in $\text{PG}(2, q)$. Then

$$\mathbb{P}(|C_1 \cap C_2| > 9) \leq (1 + o(1))q^{-9}. $$

Proof. By Bézout’s Theorem, $|C_1 \cap C_2| \leq 9$ or $C_1 = C_2$. Lemma 4.5 shows the assertion.

Theorem 4.7. There exists a $(9, 2)$-set in $\text{PG}(4, q)$ of size $(1 + o(1))q^2$.

7
Proof. Let C_1, C_2 be random cubic surfaces. Put $X = C_1 \cap C_2$. As $|C_1| = (1 + o(1))q^9 = |C_2|$. Let $Y_{i,j}$ be the set of planes which intersects $C_1 \cap C_2$ in more than 9 points and have an i-space (respectively, j-space) as the largest subspace contained in C_1 (respectively, C_2). By Lemma 4.5
\[\mathbb{E}(|Y_{i,j}|) = \left[\frac{n}{q} \right] q^{-9} < (1 + o(1))q^{-1} \text{ for } j \in \{0, 1, 2\}. \]
By Lemma 4.5 \[\mathbb{E}(|Y_{i,j}|) = \left[\frac{n}{q} \right] q^{-2} < 1 + o(1) \text{ for } j \in \{0, 1\}. \]
Hence, by Lemma 4.6, we can delete the at most $(1 + o(1))q$ points of X in $\bigcup Y_{i,j}$ and obtain a $(9, 2)$-set of size $(1 + o(1))q^2$. \qed

5 Product Constructions via Field Reduction

We present a generic product construction for (r, s)-sets.

Lemma 5.1. Let X be a proper $(r, r-1)$-set in $\text{PG}(N-1, q)$ and let Y be an (r, s)-set in $\text{PG}(M-1, q^N)$. Then there exists an (r, s)-set in $\text{PG}(NM-1, q)$ of size $|X| \cdot |Y|$.

Proof. By field reduction, the elements of Y correspond to $(N-1)$-spaces in $\text{PG}(NM-1, q)$. Arbitrarily pick a copy of X in each such $(N-1)$-space. We obtain a set Z of size $|X| \cdot |Y|$.

It remains to show that Z is an (r, s)-set. For this, consider a s-space S. Let T_1, \ldots, T_m be the set of $(N-1)$-spaces in Y which S meets. As Y is an (r, s)-set, $\sum_{i=1}^{m} \dim(S \cap T_i) + 1 \leq r$. As X is a proper $(r, r-1)$-set, $|S \cap T_i \cap Z| \leq \dim(S \cap T_i) + 1$. As $S \cap Z = \bigcup_{i=1}^{m} S \cap T_i \cap Z$, Z is a (r, s)-set. \qed

This way we obtain

(i) caps of size $(1 + o(1))q^{\frac{n}{2}}$ in $\text{PG}(n, q)$ for $n = 4^m - 1$ by multiplying m ovoids of $\text{PG}(3, q)$ (This is best known, see [7]);

(ii) $(3, 2)$-sets of size $(1 + o(1))q^{\frac{n}{2}}$ in $\text{PG}(n, q)$ for $n = 4^m - 1$ by multiplying m rational normal curves of $\text{PG}(4, q)$ (Lemma 5.1 $Cq^{\frac{n}{2}}$);

(iii) $(3, 2)$-sets of size $(1 + o(1))q^{\frac{n}{2}}$ in $\text{PG}(n, q)$ for $n = 7 \cdot 4^m - 1$ by multiplying the Construction in Theorem 4.2 with $m-1$ rational normal curves of $\text{PG}(4, q)$;

(iv) $(r, r-1)$-sets of size $(1 + o(1))q^{\frac{n}{r-1}}$ in $\text{PG}(n, q)$ for $n = (c+1)^m - 1$ by multiplying m rational normal curves of $\text{PG}(c, q)$ (Lemma 5.1 $Cq^{\frac{n}{r-1}}$).

6 Concluding Remarks

Let us conclude with some open problems and conjectures. For q fixed and $n \to \infty$, Ellenberg and Gijswijt famously showed that a cap has at most size $O(2.756^n)$ [9], while a cap due to Edel has size $\Omega(2.2174^n)$ [6]. Note that the results by Ellenberg and Gijswijt have been generalized to $(r, r-1)$-sets in [1].

For our setting of $q \to \infty$ and n fixed, we believe the following to be true.

Conjecture 6.1. There exists a constant $\varepsilon > 0$ such that the size of a cap in $\text{PG}(n, q)$ is bounded by $O(q^{n-1-\varepsilon})$.
Problem 6.2. Find a set of $\Omega(q^3)$ points in $\text{PG}(4,q)$ with at most $O(q^5)$ triples of collinear points.

Using [4, Theorem 3], such an $(r,1)$-set implies the existence of a cap of size $C'q^2\sqrt{\log q}$ in $\text{PG}(4,q)$. This approach was suggested by Dhruv Mubayi.

The rational normal curve gives an example of size $q+1$ for a set of points with no 4 coplanar (a $(3,2)$-set), while in $\text{PG}(4,q)$ the best known upper bound is $(\sqrt{2} + o(1))q^{2\frac{3}{2}}$. In light of this, the following is the first important open problem in the investigation of (r,s)-sets.

Problem 6.3. Find a $(3,2)$-set in $\text{PG}(4,q)$ of size $\Omega(q^{1+\varepsilon})$.

Acknowledgment We thank David Conlon, Dhruv Mubayi, Leo Storme, Benny Sudakov, and István Tomon for comments on an earlier version of this document. The first author is supported by a postdoctoral fellowship of the Research Foundation – Flanders (FWO).

References

[1] M. Bennett, **Bounds on sizes of generalized caps in $\text{AG}(n,q)$ via the Croot-Lev-Pach polynomial method**, J. Combin. Theory Ser. A 168 (2019) 255–271.

[2] R. C. Bose, **Mathematical Theory of the Symmetrical Factorial Design**, Sankhya 8(2) (1947) 107–166.

[3] B. Bukh, **Random algebraic construction of extremal graphs**, Bull. London Math. Soc. 47 (2015) 939–945.

[4] R. A. Duke, H. Lefmann, V. Rödl, **On Uncrowded Hypergraphs**, Random Structures and Algorithms 6(2–3) (1995) 209–212.

[5] Z. Dvir, S. Lovett, **Subspace Evasive Sets**, STOC ’12: Proceedings of the forty-fourth annual ACM symposium on Theory of computing (2012) 351–358.

[6] Y. Edel, **Extensions of generalized product caps**, Des. Codes Cryptogr. 31(1) (2004) 5–14.

[7] Y. Edel, J. Bierbrauer, **Recursive constructions for large caps**, Bull. Belg. Math. Soc. 6 (1999) 249–258.

[8] Y. Edel, J. Bierbrauer, **Caps of order $3q^2$ in affine 4-space in characteristic 2**, Finite Fields Appl. 10 (2004) 168–182.

[9] J. S. Ellenberg, D. Gijswijt, **On large subsets of \mathbb{F}_q^n with no three-term progression**, Ann. of Math. 185 (2017) 339–343.

[10] Z. Füredi, M. Simonovits, **The History of Degenerate (Bipartite) Extremal Graph Problems**, pp. 169–264 in: Erdős Centennial, Springer Berlin Heidelberg, 2013.
[11] E. N. Gilbert, *A comparison of signalling alphabets*, Bell System Tech. J. 31 (1952) 504–522.

[12] B. R. Gulati, *On maximal (k, t)-sets*, Ann. Inst. Statist. Math. 23 (1971) 279–292, 527–529.

[13] V. Guruswami, *Linear-algebraic list decoding of folded Reed-Solomon codes*, in: Proceedings of the 26th IEEE Conference on Computational Complexity, 2011.

[14] J. W. P. Hirschfeld, *Maximum sets in finite projective spaces*, Surveys in Combinatorics Invited Papers for the Ninth British Combinatorial Conference 1983, 55–76, 1983.

[15] P. Pudlák, V. Rödl, *Pseudorandom sets and explicit construction of Ramsey graphs*, Quaderni di Matematica 13 (2004) 327–346.

[16] C. R. Rao, *Factorial experiments derivable from combinatorial arrangements of arrays*, J. Roy. Statist. Soc. 9 (1947) 128–139.

[17] B. Segre, *Le geometrie di Galois*, Ann. Mat. Pura Appl. 48(4) (1959) 1–96.

[18] B. Sudakov, I. Tolom, *Evasive sets, covering by subspaces, and point-hyperplane incidences*, arXiv:2207.13077 [math.CO] (2022).

[19] M. Tait and R. Won, *Improved Bounds on Sizes of Generalized Caps in AG(n, q)*, SIAM J. Discrete Math. 35(1) (2021) 521–531.

[20] R. R. Varshamov, *Estimate of the number of signals in error correcting codes*, Dokl. Akad. Nauk SSSR 117 (1957) 739–741.