Running Head: HAP3b and flowering in Arabidopsis

Correspondence should be addressed to:
Dr. Yajun Wu
Department of Plants, Soils and Climate
Utah State University, UT 84322;
email: yajun.wu@usu.edu;
tel: 435-797-8125
fax: 435-797-3376
Title:

A putative CCAAT-binding transcription factor is a regulator of flowering timing in *Arabidopsis*

Xiaoning Cai¹*, Jenny Ballif¹*, Saori Endo¹, Elizabeth Davis¹, Mingxiang Liang¹, Dong Chen², Daryll DeWald³, Joel Kreps⁴,⁵, Tong Zhu⁴, Yajun Wu¹

¹Department of Plants, Soils and Climate, ²Center for Integrated BioSystems, ³Department of Biology, Utah State University, UT 84322; ⁴Syngenta Biotechnology, Inc., 3054 Cornwallis Road, Research Triangle Park, NC 27709; ⁵Diversa Corporation, 4955 Directors Place, San Diego, CA 92121

*: These authors contribute equally to this work.

Abbreviations: HAP, Heme Activator Protein; NF-Y, NUCLEAR FACTOR-Y; FT, FLOWERING LOCUS T; SOC, SUPPRESSOR OF OVEREXPRESSSION OF CONSTANS 1; CO, CONSTANS; FLC, FLOWERING LOCUS C; VRN2, VERNALIZATION 2; GA, gibberellic acid; TOC1, TIMING OF CAB1; SPB, SQUAMOSA PROMOTER BINDING
Footnotes: This work was supported by the Utah Agricultural Experiment Station (project number: UTA00366), a research grant from Syngenta and a Community/University Research Initiative grant from Utah State University to Yajun Wu. This is contribution No. 7900 from the Utah Agricultural Experiment Station journal series.
Corresponding author: Yajun.wu@usu.edu; Fax: 435-797-3376
Abstract

Flowering at the appropriate time of year is essential for successful reproduction in plants. We found that HAP3b in Arabidopsis (Arabidopsis thaliana), a putative CCAAT-binding transcription factor gene, is involved in controlling flowering time. Overexpression of HAP3b promotes early flowering while hap3b, a null mutant of HAP3b, is delayed in flowering under a long-day photoperiod. Under short-day conditions, however, hap3b did not show a delayed flowering compared to wild-type based on the leaf number, suggesting that HAP3b may normally be involved in the photoperiod-regulated flowering pathway. Mutant hap3b plants showed earlier flowering upon gibberellic acid or vernalization treatment, which means that HAP3b is not involved in flowering promoted by GA or vernalization. Further transcript profiling and gene expression analysis suggests that HAP3b can promote flowering by enhancing expression of key flowering time genes such as FT and SOC1. Our results provide strong evidence supporting a role of HAP3b in regulating flowering in plants grown under long day conditions.

Keywords: CCAAT binding protein, HAP3b, flowering time, photoperiod
Introduction

Flowering time in plants is controlled by environmental stimuli such as day length (photoperiod pathway), light quality, exposure to low temperatures (vernalization pathway), and internal factors such as plant age or stage of development (autonomous and gibberellic acid (GA) pathways). These different pathways converge to regulate a small set of genes, such as FT (FLOWERING LOCUS T, a small protein with similarity to RAF-kinase inhibitor) and SOC1 (SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1, a MADS transcription factor). For example, the photoperiod pathway promotes flowering through CO (CONSTANS, a zinc finger transcription factor) to upregulate FT and SOC1. However, a similar upregulation of FT and SOC1 through the vernalization and the autonomous pathways occurs through a mechanism that suppresses a floral suppressor, FLC (FLOWERING LOCUS C, a MADS transcription factor) (reviewed by Mouradov et al., 2002; Putterill et al., 2004; Amasino, 2005).

Recent studies indicated that several members in a large transcription factor family called HAP are involved in regulating flowering timing. HAP in plants encodes a putative CCAAT-binding transcription factor (CBF) similar to Heme Activator Protein (HAP) or nuclear factor-Y (NF-Y) in yeast and vertebrate (Lotan et al., 1998; Mantovani, 1999). In yeast and mammalian systems, it is known that HAPs form a complex and regulate gene expression. The complex forms through an initial interaction between HAP3 and HAP5, which then allows the formation of a heterotrimer with HAP2. The heterotrimer then binds to a CCAAT element with very high specificity and affinity (Romier et al., 2003). There is seemingly only one gene for each HAP factor in yeast and animals (Mantovani, 1999). In plants, however, these factors are all encoded in a gene family (Edwards et al., 1998; Yang et al., 2005). There are at least 10 annotated members in each family in Arabidopsis and also multiple members in each HAP family in rice (Kwong et al., 2003; Yang et al., 2005). To distinguish different members in the same family in Arabidopsis, each member is labeled alphabetically. For instance, in the HAP3 family, At2g38880 is named as HAP3a, and At5g47640 as HAP3b (Wenkel et al., 2006).

Several HAP members have been studied in plants. LEC1 encodes a HAP3 in Arabidopsis. Mutant lec1 is defective in embryo development during the seed
development stage, causing a leafy cotyledon phenotype. Ectopically over-expressing LEC1 can induce embryo development in vegetative cells (Lotan et al., 1998). Recently, another HAP3 (L1L) which is closely related to LEC1, was also found to be involved in embryo development (Kwong et al., 2003). In rice, an OsHAP3 is involved in chloroplast biogenesis. Suppression of gene expression of OsHAP3 using RNAi reduced expression of the gene and affected chlorophyll and chloroplast development (Miyoshi et al., 2003).

In regulating flowering timing, Ben-Naim et al. reported that overexpression of a tomato HAP5a in Arabidopsis caused early flowering (Ben-Naim et al., 2006). However, overexpression of Arabidopsis HAP3a and HAP5a delayed flowering (Wenkel et al., 2006). These conflicting results from overexpression hinder a clear conclusion for the roles of these HAPs in controlling flowering timing due to lack of supporting evidence from loss-of-function mutants. In this study, we provide evidence from both loss-of-function mutant and overexpression plants to support the role of HAP3b in controlling flowering. Up-regulation of HAP3b promotes early flowering, whereas a hap3b knockout results in delayed flowering in a long day photoperiod.

Results

Altered flowering timing in mutant hap3b and HAP3b-overexpression plants

A genetic approach was taken to examine the role of a group of HAP in plant growth/development and response to stress. Among the insertional mutants identified from the SALK T-DNA insertion collection (http://signal.salk.edu), an insertion mutant for HAP3b showed delayed flowering phenotype compared to its wild-type (wt) plants grown at a long day (16h/8h light/dark) photoperiod (Figs. 1A and 1D). The mutant plants developed on average about four more leaves than wild-type plants before flowering (i.e., about a 33% delay which equals approximately 7 days). The hap3b mutant (SALK_025666) has a T-DNA insertion at 9 bp after the first ATG (Fig. 1B) and no full-length transcript was detected using RT-PCR, suggesting a loss of function mutation (Fig. 1C). A null mutation was further confirmed by the microarray data (see below), which showed no evidence for the accumulation of a truncated HAP3b transcript.
To confirm that the mutant phenotype was not an artifact of a second site mutation, we set up a complementation test by expressing a wild-type copy of the *HAP3b* cDNA under the control of CaMV 35S promoter. When the *hap3b* mutant was transformed with the *P_{35S}:HAP3b-GFP* vector, the delayed flowering phenotype was reversed, indicating that HAP3b-GFP fusion protein was functional and capable of rescuing the loss-of-function *hap3b* mutant (Supplemental Fig. 1).

Not only did the *HAP3b-GFP* overexpression lines show a reversal of the *hap3b* mutant phenotype, they also provided evidence that the up-regulation of the *HAP3b* gene could promote premature flowering (Supplemental Fig. 1). An overexpression of *HAP3b* in wild-type plants promotes early flowering even more. As shown in Figure 1D, a representative *HAP3b*-overexpression line (*P_{actin}:HAP3b*) from the five lines characterized reached flowering with four leaves less (Fig. 1D) than the control plants that were overexpressing a GUS gene (C1).

The predicted *HAP3b* protein (191 amino acid) consists of three domains (Lee et al., 2003). The central domain, comprised of more than 90 amino acids, showed significant sequence identity with HAP3 or subunit B of NF-Y in yeast and rat that is required for DNA binding and interactions with other HAP proteins (Lee et al., 2003). A HAP3b-GFP fusion protein was predominately localized in nuclei of leaf (Fig. 2a) and root (Fig. 2b) cells, consistent with *HAP3b*’s predicted role as a transcription factor.

Using a *uidA* reporter gene (encoding the reporter enzyme glucuronidase or GUS) fused to the predicted promoter region from *HAP3b*, we observed that the *HAP3b* promoter is active in leaves, vascular tissues, flower stem, cauline leaves and flowers, which support the information in public databases (the Genevestigator database). In addition, we also revealed some more detailed expression patterns, such as in leaf trichome, filaments, and transmitting tissues in the style (Supplemental Fig. 2A-E). Interestingly, *HAP3b* expression is highly upregulated by salt and osmotic (mannitol) stress in both leaves and roots of *Arabidopsis* 3h after treatment (Kreps et al., 2002). The upregulation of *HAP3b* by stress is supported by the information in public databases where *HAP3b* transcript levels are also upregulated by drought, heat and abscissic acid (ABA) treatment in addition to salt and an osmotic stress (Supplemental Table I, the TAIR gene expression database, http://www.arabidopsis.org). Nutrient deficiency and
UV treatments also moderately upregulated the transcript level of \textit{HAP3b} (data not shown, the Genevestigator database, https://www.genevestigator.ethz.ch/at/index.php). Other hormones, including indole-acetic acid (IAA), gibberellic acid (GA), cytokinin, and brassinolide had no effect on \textit{HAP3b} gene expression (data not shown, the Genevestigator database).

\textit{Effect of photoperiod, GA and vernalization on flowering timing of hap3b}

Many genes are known to regulate flowering timing through their activity in four major pathways, i.e. photoperiod, vernalization, GA, and autonomous pathways. In order to understand whether HAP3b is related to these known pathways, wild-type, \textit{hap3b}, and \textit{HAP3b}-overexpression plants were grown under different photoperiods, treated with gibberellic acid, and subjected to vernalization.

Mutant \textit{hap3b}, wild-type, \textit{HAP3b}-overexpression and overexpression control plants (C1) were sprayed with 20 μM GA. Both mutant \textit{hap3b} and wild-type plants flowered earlier (with fewer rosette leaves) compared to their non-GA-treatment controls (Fig. 3A). \textit{HAP3b}-overexpression plants did not show earlier flowering in response to GA. It is probable that the \textit{HAP3b}-overexpression plants flowered so early that it masked any potential flower promoting effect from GA. Since the \textit{hap3b} mutation did not affect a GA response, HAP3b is not involved in GA-induced flowering pathway.

A function for HAP3b in the vernalization pathway was also excluded, since the \textit{hap3b} mutant and \textit{HAP3b}-overexpression plants showed earlier flowering after vernalization treatment (Fig. 3B). Wild-type plants did not show significant response to vernalization treatment, while C1 showed significant reduction in leaf number by vernalization. That vernalization treatment has no effect on flowering timing in Columbia wild-type was also reported before (Lim et al., 2004).

In contrast to the flowering phenotype demonstrated under long-day photoperiod conditions (Fig. 2D), \textit{hap3b} and overexpression plants flowered with the same leaf number as their respective controls under a short day photoperiod (16h dark/8h light) (Fig. 3C). However, \textit{HAP3b}-overexpression plants flowered significantly earlier when compared with the regular wild-type control. These phenotypes resemble those of \textit{gi} and \textit{co} mutants in the photoperiod pathway.
Transcript profiling of hap3b and HAP3b-overexpression plants using microarray

To identify potential candidate genes that are affected by HAP3b, a microarray experiment using the Arabidopsis whole genome array (Affymetrix ATH1 chip) was carried out with hap3b knockout and HAP3b-overexpression plants. The arrays were used here as a discovery tool, with significant changes independently confirmed by quantitative RT-PCR. To identify potentially important changes, we grouped genes that show an opposite response (at least 25% change in gene expression level based on mean values of signal intensity) in hap3b and HAP3b-overexpression plants in comparison with wild-type plants. We identified 15 candidate genes that were downregulated in hap3b but upregulated in overexpression plants (Table I). The transcript level of HAP3b showed the greatest increase (~38 fold) in the overexpression plants and was not detected in hap3b, as expected.

Among the other 15 genes that were upregulated in overexpression plants but downregulated in hap3b, were two genes known to regulate flowering. SOC1 transcripts were downregulated 1.5 fold in hap3b plants, but upregulated 1.8 fold in the overexpression plants. Two SQUAMOSA PROMOTER BINDING (SPB) protein-like genes, SPL3 and SPL4 are noteworthy since overexpression of SPL3 resulted in early flowering (Cardon et al., 1997). Expression of SPL4 mirrored the expression pattern of SPL3, peaking at inflorescence and flower development stages (data from the Genevestigator database). Other known flowering-related genes are listed in supplemental Table II, and are either expressed at very low levels (signal absent or marginal) or showed no consistent opposite pattern (supplemental Table II) in hap3b and the overexpression plants.

Also in the list (Table I) are a putative cell wall protein gene (At2g20870), a putative cytochrome P450 gene (At3g10570) and a GDSL-motif lipase/hydrolase family protein gene (At5g33370) which all showed expression predominantly in floral organs. A vegetative storage protein 1 gene (At5g24780), a jacalin lectin family protein gene (At2g39330) and a UDP-glucose 4-epimerase gene (At1g12780) were expressed at the highest level in floral organs as well as in stem apex or cauline leaves (the Genevestigator database).
database). These results suggest that the majority of the genes affected by HAP3b in the list are involved in reproductive growth.

Several major flowering genes were selected for quantitative PCR analysis. $SOC1$ was upregulated in overexpression plants and downregulated in $hap3b$, confirming the expression pattern in the array analysis. FT which was not detected on the array in wild-type and mutant plants was detected by qPCR and showed the same pattern as $SOC1$ (Fig. 4). This supports a model in which $HAP3b$ normally promotes flowering through a pathway involving the up-regulation of $SOC1$ and FT. Expression levels of other major flowering-related genes, $TOC1$ ($TIMING$ OF $CAB1$), CO and FLC, were not significantly affected (supplemental Fig. 3).

Discussion

In this study we provide genetic evidence for the function of $HAP3b$, which encodes a CCAAT-binding transcription factor, in controlling flower timing.

HAP3b regulates flower timing through a photoperiod pathway

Evidence presented here from $hap3b$ mutants and $HAP3b$-overexpression clearly shows that HAP3b contributes to the regulation of flower timing under long day photoperiod conditions. We found no evidence to link HAP3b to flower timing under short day conditions. Similar long day specific phenotypes have also been observed for co and gi mutants, which are the key players in the photoperiod pathway. Since $hap3b$ plants show a normal response to GA and vernalization treatments, the results exclude a role of HAP3b in the GA and the vernalization flowering pathways. An involvement of HAP3b in the autonomous pathway is also unlikely, since the FLC transcript level, which is upregulated in the mutants of the autonomous pathway (Mockler et al., 2004), is not affected in the $hap3b$ plants. Our other analyses on the $hap3b$ plants did not reveal other visible phenotypes related to morphology and development (data not shown). The combined results suggest the stress-modifying function of HAP3b is probably restricted to regulating flowering in the long-day photoperiod pathway. A recent study demonstrated that HAP3b can directly interact with CO and COL15 in the yeast two-
hybrid analysis (Wenkel et al., 2006). Thus, HAP3b may promote early flowering in the long-day photoperiod by affecting activity of CO or COL proteins.

Many HAPs in *Arabidopsis* are found to interact with CO or COL and overexpression of HAP3a and HAP5a has been shown to delay flowering (Wenkel et al., 2006), implicating complexity of regulation in the photoperiod pathway. However, loss-of-function of HAP3a did not affect flowering timing. The role of HAPs in controlling flowering timing is further complicated when a tomato HAP5 promotes flowering when overexpressed in *Arabidopsis* (Ben-Naim et al., 2006). Thus the significance of these HAPs in controlling flowering timing requires further study. Our results are the first to provide clear genetic evidence to show HAP is indeed involved in control of flowering time and HAP3b plays a critical role in regulating flowering timing in the long-day photoperiod pathway.

Model for HAP3b Mode of Action

In yeast and animal systems, HAPs form a heterotrimer for transcription activation. Wenkel et al. (2006) showed that HAP3a and HAP5a in *Arabidopsis* were able to interact in vivo. Thus, it is very possible that HAPs in plants work in a similar way in animal and yeast, i.e. by forming a HAP complex during transcription activation. However, a binding of plant HAP complex to the CCAAT element has not been demonstrated. Plant promoters don’t have a consistent location for CCAAT elements (Lotan et al., 1998; Wenkel et al., 2006). In animals, HAPs regulated genes usually have a CCAAT-box located at the -60 to -100 location in the promoter (Mantovani, 1998). Our analysis of the top ~20 HAP3b-affected genes from the array experiment also showed a random pattern of CCAAT distribution in the promoters, even though a majority of these genes have one or two CCAAT boxes within -1 to -500 bp (data not shown). Thus, HAPs in plants may bind to an element or sequence that differs from CCAAT.

Overexpression of HAP3a and HAP3b, two members in the same family, resulted in opposite results in flowering timing control, raising an interesting question of how these different HAP3s achieve an opposite effect. One of the possibilities is that HAP3a and HAP3b form different complexes with their own HAP5 and HAP2 so that the
complexes function differently. Alternatively, HAP3a and HAP3b form of a complex involving the same HAP5 and HAP2, since they both can interact with CO and COL in the yeast-two hybrid system. In this case, a competition of HAP3a with HAP3b for binding CO will decrease the number of CO-HAP3b-containing complexes and delay flowering. Thus, a fine balance of HAP3a and HAP3b will determine the flowering timing in plants, which may represent a novel mechanism in regulating flowering timing in the photoperiod pathway.

In conclusion, our results provide strong genetic evidence supporting a model in which HAP3b play a role in regulating flowering in plants grown under long day conditions (Fig. 5). The promotion of flowering is achieved probably through an interaction with CO or COL proteins. However, an interaction of CO/COL with HAP3b in vivo needs to be demonstrated. Interestingly, HAP3b shows a very similar expression pattern, with one of the highest levels in leaf vascular tissues (Supplemental Fig. 2, also see the Genevestigator database), to CO (An et al., 2004). Since CO is known to activate FT expression mainly in the leaf phloem companion cells (Takada and Goto, 2003; An et al., 2004), the co-localization of CO and HAP3b may be required for the interaction of these two proteins which will further activate expression of FT or other genes identified in Table 1 from the array analysis. It needs to be mentioned that some genes such as At2g20870 and At3g10570 which are downregulated in hap3b in Table 1 are also downregulated in ft mutants, while others such as At2g39330 and At1g12780 which are downregulated in hap3b mutants are not affected in ft mutants (the Genevestigator database). Thus, some of the genes affected by the hap3b mutation in Table 1 are potentially regulated through FT while some may be regulated by HAP3b in a different mechanism. Future work also is needed to address whether or which HAP2/HAP5 are involved in forming a HAP complex with HAP3b to regulate flowering in vivo. Since several environmental stresses up-regulate HAP3b, these results raise a possibility that HAP3b provides a pathway by which abiotic stress response pathways may help promote early flowering.
Methods

Plant Materials and Growth Conditions:

Seeds of Arabidopsis thaliana (Columbia 0 ecotype background, either wild-type, mutant or overexpression transgenic plants) were sown in well-watered potting mix (Enriched Potting Mix, Miracle-Gro Lawn Products, Inc., Marysville, OH), and kept in a cold room (4°C) for two days. Seeds were germinated and seedlings were grown on a light shelf or in a growth chamber under a 16h/8h light/dark cycle, except for the short day photoperiod experiments. Light was supplied by cool-white florescent bulbs, reaching an intensity of approximately 120 µmol m⁻² s⁻¹ on the surface of the shelf. For some experiments, seedlings were cultured in a square Petri dish (10 x 10 x 1.5 cm³) containing 35 mL of sterile solid medium consisting of 0.5X MS salt, 0.5% sucrose, 10 mM MES and 0.6% Phytagel (Sigma, St. Louis, MO) at pH 5.8. Seeds were first surface sterilized and arranged on the surface of the solid medium and were given a cold treatment at 4°C for 48-72 h. Plants were grown in a growth chamber under the conditions described above.

The T-DNA insertion mutant lines (Alonso et al., 2003) of At5g47640, SALK_025666, SALK_105662 and SALK_105664, in the Columbia 0 ecotype background were obtained from the ABRC stock center at Ohio State University. Insertion mutant information was obtained from the SIGnAL website at http://signal.salk.edu and verified by PCR and RT-PCR methods. Only SALK_025666 was confirmed as a true insertional mutant.

Plasmid Constructs and Plant Transformation

The promoter (1.5 kb before 5’UTR) or the transcribed portion including 5’UTR and 3’UTR of HAP3b were PCR-amplified from Arabidopsis genomic DNA separately and cloned into the Zero Blunt PCR Cloning vector (Invitrogen, Carlsbad, CA). All PCR amplifications were carried out with high-fidelity DNA polymerase (PfuUltra DNA polymerase, Stratagene, La Jolla, CA). The sequence of the cloned promoter or transcribed portion was verified by DNA sequencing and subcloned into modified pBI121 binary vectors. For promoter analysis, the promoter was subcloned into pBI121 to drive expression of a uidA or GUS gene (PHAP3b:GUS). For the overexpression
experiments (P_{actin}:HAP3b), the promoter of ACT2 (At3g18780) was used to drive expression of HAP3b cDNA. The ACT2 promoter was also used to drive GUS expression (C1, P_{actin}:GUS) as a control for overexpression plants. For making HAP3b-GFP fusion protein (P_{35S}:HAP3b-GFP), HAP3b was cloned with the stop codon removed and fused to GFP in frame at the N-terminus of the GFP protein. The CaMV 35S promoter is used to drive the expression of the fusion protein. Plants were transformed with *Agrobacterium tumefaciens* using the floral dipping method (Clough and Bent, 1998). The transformants were selected on agar plates containing 30 µg/mL basta or kanamycin and verified using PCR with construct-specific primers. All the overexpression plants (P_{actin}:HAP3b, P_{actin}:GUS, P_{35S}:HAP3b-GFP) were selected for two more generations and homozygous transgenic plants (T3) were used for further characterization.

GUS Staining and GFP Localization:

T1 and T2 transgenic plants carrying the P_{HAP3b}:GUS construct were assayed for GUS color reaction following a method described by Stangeland and Salehian (2002). For HAP3b-GFP localization, roots and leaves of young seedlings were used for examination using a laser scanning confocal microscope (Bio-Rad MRC 1024, BioRad, CA).

Genomic DNA Extraction and T-DNA Insertional Mutant Screening:

Homozygous T-DNA insertional mutants were identified by following the protocol described at the SALK Insertion Sequence Database (http://signal.salk.edu/tabout.html) using a PCR method. Leaf tissues of soil-grown seedlings were first collected from individual plants. Genomic DNA was extracted using a quick CTAB method (Rogers and Bendich, 1988) and used for PCR reactions with the primers recommended in the SALK protocol.

Flowering Time:

Seeds of wild-type, hap3b mutant, HAP3b-overexpression transgenic plants (P_{actin}:HAP3b) and overexpression control plants (C1: P_{actin}:GUS) were germinated in the
same flat containing well-watered potting mix. After 2-day cold treatment, plants were grown under different conditions until flowering. The rosette leaf numbers were counted after all the plants flowered (Koornneef et al., 1991). For the long-day experiment, plants were grown under a 16h/8h light/dark photoperiod. For the short-day experiment, plants were grown under a 16h/8 dark/light photoperiod. The entire plant of 15-d old seedlings grown in Petri-dishes or leaf tissue of 18-d old soil-grown plants was harvested for gene expression analysis. For gibberellic acid (GA) treatment, the plants were separated into control and GA treatment groups when approximately 4-5 leaves were emerged. Leaf number was counted and the GA treatment plants were sprayed with 20 µM GA twice a week. Five applications of GA were performed (Lim et al., 2004). For vernalization treatment, seeds were germinated on Phytagel plates and kept in a cold room (4°C) in the dark for various amounts of time (30 and 2 days). Seedlings were then taken out, transplanted to soil, and grown under a 16h/8h light/dark photoperiod until flowering (Mockler et al., 2004).

Microarray and Gene Expression:

Seeds of wild-type, hap3b mutant and HAP3b-overexpression transgenic plants were germinated in the same flat containing well-watered potting mix. Leaves of 18-d old plants grown in soil under a 16h/8h light/dark photoperiod were harvested 6 h after lights were on. RNA was extracted using Tri-reagent (Ambion, Austin, TX). The array labeling, hybridization, scanning and initial data processing were conducted as a service by the Center of Integrated BioSystems at Utah State University. A total of five arrays (Affymetrix ATH1 chip, Cat#:900385) were processed: two chips for wild-type plants, two for mutant plants (hap3b) and one for overexpression plants (P_{actin}:HAP3b). RNA used for the chip experiment was from five independent biological samples from two independent experiments. Each sample represented a collection of leaves from 12 plants.

To confirm expression of selected genes from the microarray experiments using a quantitative PCR, seeds of wild-type, hap3b mutant, HAP3b-overexpression transgenic plants and overexpression control plants (C1= P_{actin}:GUS) were germinated in a single MS-Phytagel plate. Fifteen-day-old seedlings were harvested for RNA extraction. A quantitative PCR method was performed by following a method described by Wang et al.
(2003) with the following modifications. Quantitation of the transcript level was first normalized with values from an actin gene (ACT2). The normalized transcript levels in hap3b or HAP3b-overexpression plants were then divided by that of their corresponding wild-type or C1 plants to obtain fold change.

Primers

The primers used for cloning HAP3b and the promoter, and for mutant screening and gene expression are listed in supplemental Table III. Most of the gene-specific primers for expression study were located in exons flanking an intron. The resulting PCR products were larger if genomic DNA was present in cDNA samples.

Statistical Analysis

All the experiments were performed at least three times. A standard t-test was used to determine significance with a 95% confidence interval. P-values reported are two tailed analyses.
Supplemental Materials

Supplemental Table I. Increase in HAP3b transcript level under stress

The upper half of the table shows the fold increase in transcript level of HAP3b from our previous study (Kreps et al., 2002). The lower half of the table lists the fold increase of HAP3b levels (representing approximately the greatest change in a time course experiment performed by Kudla, Puchta, Bartels, Harter and Nover) under various stresses reported by other groups in the Arabidopsis microarray database (http://www.arabidopsis.org/). Only the treatments that showed at least a two-fold increase in HAP3b transcript level for at least two time-points in the time-course experiment are listed in the table.

Affy ID /Gene	300 mM Mannitol 3h, Leaf	300 mM Mannitol 3h, Root	150 mM NaCl 3h, Leaf	150 mM NaCl 3h, Root
At5g47640	6	6	8	2
20437_at	11.92	3.48	7.04	2.64

From Kreps et al., 2002.

Drought	Osmotic	Salt	Heat	ABA
At5g47640	6	6	8	2
				11

From microarray expression database (www.Arabidopsis.org)
Supplemental Table II. Change in transcript level of genes known to be associated with flowering time control in hap3b and HAP3b-overexpression (ox = P_actin:HAP3b) plants grown under normal growth conditions.

The genes that were labeled as absent or marginal signal on arrays are shown in blue.

Gene	Affy ID	Mean signal in wt	Mean signal in hap3b	Fold change (hap3b / wt)	Signal in ox	Fold change (ox / wt)	Gene ID
FLK	258581_at	8.05	8.30	-	7.53	-	At3g04160
TOC1	247525_at	680.09	614.58	0.90	673.97	0.99	At5g61380
HOS1	245120_at	84.29	85.96	1.02	81.51	0.97	At2g39810
HOS9	266354_at	6.84	7.16	-	6.49	-	At2g01500
CO	246525_at	9.07	9.07	-	9.44	-	At5g15840
VRN1	256944_at	165.36	161.32	0.98	147.22	0.89	At3g18990
VRN2	245280_at	19.12	12.30	-	24.00	1.25	At4g16845
FT	264638_at	6.73	6.82	-	14.56	-	At1g65480
FLC	250476_at	49.85	58.14	-	43.88	-	At5g10140
Agebet	249210_at	71.37	67.30	0.94	70.23	0.98	At5g42670
AG	254595_at	5.94	6.97	-	5.70	-	At4g18960
AP1	259372_at	5.56	5.34	-	13.13	-	At1g69120
AP2	246217_at	37.00	41.34	-	35.97	-	At4g36920
AP3	251898_at	4.48	4.50	-	5.45	-	At3g54340
CLV1	262728_at	799.78	819.52	1.02	857.66	1.07	At1g75820
CLV2	264183_at	48.64	50.33	1.03	67.37	1.39	At1g65380
CLV3	265624_at	4.22	4.23	-	4.17	-	At2g27250
FCA	245489_at	28.41	28.41	-	28.41	-	At4g16280
FLD	258944_at	20.37	20.05	-	20.37	-	At3g10390
FLM	264949_at	17.28	16.29	-	16.62	-	At1g77080
FRI	255634_at	13.18	10.18	-	10.21	-	At4g00650
FVE/ACG	265946_s_at	600.03	690.30	1.15	756.17	1.26	At2g19520
FWA	245239_at	5.39	5.27	-	5.19	-	At4g25530
FY	245848_at	51.81	49.44	0.95	46.45	0.90	At5g13480
HEN4	247276_at	33.19	30.46	0.92	32.34	0.97	At5g64390
HAU1	257695_at	119.19	104.52	0.88	98.00	0.82	At3g12680
HAU2	249877_at	44.99	46.34	1.03	44.99	1.00	At5g23150
LD	255444_at	26.86	24.47	0.91	24.47	0.91	At4g02560
LEY	247490_at	4.37	4.36	-	4.37	-	At5g61850
PI	246072_at	7.16	6.32	-	17.47	-	At5g20240
SU	257915_at	6.93	6.97	-	6.93	-	At3g23130
TFL1	250869_at	4.50	4.55	-	5.63	-	At5g03840
TFL2	250060_at	55.40	55.25	1.00	55.25	1.00	At5g17690
AGL24	254130_at	56.09	53.40	0.95	56.53	1.01	At4g24540
APRR3	247668_at	51.44	51.44	1.00	51.28	1.00	At5g60100
APRR5	249741_at	438.84	460.16	1.05	455.20	1.04	At5g24470
APRR7	250971_at	123.41	90.27	0.73	108.29	0.88	At5g02810
APRR9	266720_s_at	8.13	8.13	-	8.13	-	At2g46790
Gene	Accession	Time 1	Time 2	Ratio 1	Ratio 2	Accession	
-------	-----------	--------	--------	---------	---------	------------	
CCA1	266719_at	11.50	11.20	-	11.54	-	At2g46830
GI	264211_at	687.24	720.71	1.05	685.67	1.00	At1g22770
LHY	261569_at	8.83	9.28	-	8.97	-	At1g01060
RVE2	249606_at	45.36	76.12	1.68	89.47	1.97	At5g37260
PFT1	255725_at	51.49	49.42	0.96	49.61	0.96	At1g25540
Supplemental Table III. Primers for cloning and gene expression

Primer Sequences (5’-3’)	Applications
GGCGCGCCAAGGTGTGGAATCGCATGG	5’-upstream, to clone HAP3b promoter
TTAATTAATATTCTGAAAATTACAAAGGAATAAAAAA	3’-downstream, to clone HAP3b promoter
GGCGCGCCATGGGGGATTCCGACA	5’-upstream, to clone HAP3b for HAP3b-GFP
GGCGCGCCCCCATGGGGGATTCCGACA	3’-downstream, to clone HAP3b for HAP3b-GFP
TTTAATTTAAATGCGGGATTCCGACA	5’-upstream, to clone HAP3b for overexpression
TGGCGGCGCTTAAATGTCCGTCTACC	3’-downstream, to clone HAP3b for overexpression
GCCACTTCTTCTTCTTGCTGTTACT	TOC1-5 for RT-qPCR
TATTGCTCGTGCTCCCTCTCTTC	TOC1-3, for RT-qPCR
CTGGGCGATCTAAGGATCGACG	SOC1-5, for RT-qPCR
GAACAAGGTAAACCCCAATGAA	SOC1-3, for RT-qPCR
AGACGTTCCTTGATCCGTATTA	FT-5, for RT-qPCR
GTGATATCTCAGCAAAACTTCGC	FT-3, for RT-qPCR
TTCCCCACTTAACTCAACCCCAAA	HAP3b-5, for RT-qPCR of wt and mutant
CTTCCCCTCTCTCCCTCAACCT	HAP3b-3, for RT-qPCR of wt and mutant
CTTGGATCGATTGGAACACG	FLC-5, for RT-qPCR
CTAGTCACGGAGAGGGCAGTC	FLC-3, for RT-qPCR
AGGAGGTTGCTTGCTGCTTGTC	CO-5, for RT-qPCR
CTTTGGGCGTTTCTTGGTGTA	CO-3, for RT-qPCR
GTGTCACCACCTGAAAGGAAG	ACT2-5, (At3g18780) for RT-qPCR
CAATGGGACTAAAAACGCAAAA	ACT2-3, (At3g18780) for RT-qPCR
Acknowledgements

1 We are grateful to a special grant from the Office of the Vice President for Research at Utah State University for sponsoring the microarray analysis. We thank Joe Shope for excellent assistance on the confocal microscope. Also acknowledged is the Arabidopsis Biological Resource Center for providing the insertional mutant seeds.
References

Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen HM, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Gerald M, Hazari N, Hom E, Karnes M, Mulholland C, Nubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301: 653-657

Amasino RM (2005) Vernalization and flowering time. Current Opinion in Biotechnology 16: 154-158

An HL, Roussot C, Suarez-Lopez P, Corbesler L, Vincent C, Pineiro M, Hepworth S, Mouradov A, Justin S, Turnbull C, Coupland G (2004) CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131: 3615-3626

Ben-Naim O, Eshed R, Parnis A, Teper-Bamnolker P, Shalit A, Coupland G, Samach A, Lifschitz E (2006) The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA. Plant Journal 46: 462-476

Cardon GH, Hohmann S, Nettesheim K, Saedler H, Huijser P (1997) Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition. Plant Journal 12: 367-377

Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal 16: 735-743

Edwards D, Murray JAH, Smith AG (1998) Multiple genes encoding the conserved CCAAT-box transcription factor complex are expressed in Arabidopsis. Plant Physiology 117: 1015-1022

Koornneef M, Hanhart CJ, Vandermeer JH (1991) A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Molecular & General Genetics 229: 57-66

Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiology 130: 2129-2141

Kwong RW, Bui AQ, Lee H, Kwong LW, Fischer RL, Goldberg RB, Harada JJ (2003) LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant Cell 15: 5-18

Lee HS, Fischer RL, Goldberg RB, Harada JJ (2003) Arabidopsis LEAFY COTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor. Proceedings of the National Academy of Sciences of the United States of America 100: 2152-2156

Lim MH, Kim J, Kim YS, Chung KS, Seo YH, Lee I, Kim J, Hong CB, Kim HJ, Park CM (2004) A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. Plant Cell 16: 731-740
Lotan T, Ohto M, Yee KM, West MAL, Lo R, Kwong RW, Yamagishi K, Fischer RL, Goldberg RB, Harada JJ (1998) Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93: 1195-1205

Mantovani R (1998) A survey of 178 NF-Y binding CCAAT boxes. Nucleic Acids Research 26: 1135-1143

Mantovani R (1999) The molecular biology of the CCAAT-binding factor NF-Y. Gene 239: 15-27

Miyoshi K, Ito Y, Serizawa A, Kurata N (2003) OsHAP3 genes regulate chloroplast biogenesis in rice. The Plant Journal 36: 532-540

Mockler TC, Yu XH, Shalitin D, Parikh D, Michael TP, Liou J, Huang J, Smith Z, Alonso JM, Ecker JR, Chory J, Lin CT (2004) Regulation of flowering time in Arabidopsis by K homology domain proteins. Proceedings of the National Academy of Sciences of the United States of America 101: 12759-12764

Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: Interacting pathways as a basis for diversity. Plant Cell S111-A130

Putterill J, Laurie R, Macknight R (2004) It's time to flower: the genetic control of flowering time. Bioessays 26: 363-373

Rogers SO, Bendich AJ (1988) Extraction of DNA from plant tissues. Plant Molecular Biology Manual A6: 1 - 10

Romier C, Cocchiarella F, Mantovani R, Moras D (2003) The NF-YB/NF-YC structure gives insight into DNA binding and transcription regulation by CCAAT factor NF-Y. Journal of Biological Chemistry 278: 1336-1345

Stangeland B, Salehian Z (2002) An improved clearing method for GUS assay in Arabidopsis endosperm and seeds. Plant Molecular Biology Reporter 20: 107-114

Takada S, Goto K (2003) TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1, counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time. Plant Cell 15: 2856-2865

Wang H, Miyazaki S, Kawai K, Deyholos M, Galbraith DW, Bohnert HJ (2003) Temporal progression of gene expression responses to salt shock in maize roots. Plant Molecular Biology 52: 873-891

Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G (2006) CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of Arabidopsis. Plant Cell 18: 2971-2984

Yang J, Xie Z, Glover BJ (2005) Asymmetric evolution of duplicate genes encoding the CCAAT-binding factor NF-Y in plant genomes. New Phytologist 165: 623-632
Figure Legends

Figure 1. Delayed flowering in hap3b mutants and early flowering in HAP3b-overexpression plants grown under a 16h/8h light/dark photoperiod. A. delayed flowering in hap3b; B. hap3b has an a T-DNA insertion at 9 bp after the first ATG; C. no transcript was detected in hap3b using RT-PCR using two independent plants; there is no intron in HAP3b, and the PCR products are the same when using genomic DNA as a template (gDNA); D. hap3b developed more leaves before flowering compared with wild-type plants (wt); overexpression plants (Pactin:HAP3b in wild-type background) flowered earlier with less leaves compared with control plants (C1: Pactin:GUS in wild-type background). The data are means ± SE (n ≈ 30) from three independent experiments. ** indicates p < 0.001 compared with wt.

Figure 2. Localization of HAP3b in nuclei using GFP as a reporter gene: leaf epidermal cells (A) and root tip cells (B).

Figure 3. Flower timing assays showing that HAP3b function is restricted to modifying a long day photoperiod flowering timing pathway. Panels A and B show that the hap3b mutants delay in flowering (under long–day conditions) is not reversed by GA (panel A) or vernalization (panel B), whereas mutant hap3b and wild-type plants grown under a short day photoperiod show no differences. * indicates p < 0.01 and ** indicates p < 0.001 compared with minus GA control (panel A) or minus vernalization control (panel B) or wt (panel C).

Figure 4. SOC1 (A) and FT (B) genes were down-regulated in hap3b but up-regulated in HAP3b-overexpression plants. The transcript level of each gene was determined using a qPCR method and was then normalized with the transcript level of ACT2. The fold change was calculated by dividing the normalized transcript level of hap3b by that of wild-type plants (wt) or the normalized transcript level of overexpression plants (Pactin:HAP3b) by that of C1 (Pactin:GUS) plants. The data are means ± SE of three independent experiments. The pattern was reproducible in each experiment.
Figure 5. A proposed model for how HAP3b expression can promote early flowering

Supplemental Figure 1. Altered flowering time in hap3b and promotion of flowering in hap3b plants that were transformed with P35S:HAP3b-GFP construct. Hap3b developed more leaves before flowering compared with wild-type plants (wt); overexpression of a HAP3b-GFP fusion protein (P35S:HAP3b-GFP) in hap3b reversed the mutant phenotype and resulted in earlier flowering than wt plants under long day photoperiod conditions. The data are means ± SE (n ≈ 30) from three independent experiments. * indicates p < 0.01 and ** indicates p < 0.001 compared with wt.

Supplemental Figure 2. Tissue localization of HAP3b expression. Expression pattern of HAP3b in Arabidopsis using a GUS reporter gene: leaves at different stages (A), leaf veins (B), trichomes (C), flowers, cauline leaf and silique (D), and sepals and filaments (E).

Supplemental Figure 3. Change in transcript level of TOC1 (A), CO (B), and FLC (C) genes in hap3b and overexpression plants. The transcript level of each gene was determined using a qPCR method and was then normalized with the transcript level of ACT2. The fold change was calculated by dividing the normalized transcript level of hap3b by that of wild-type plants (wt) or the normalized transcript level of overexpression plants (Pactin:HAP3b) by that of C1 (Pactin:GUS) plants. The data are means ± SE of four independent experiments.
Table I. Genes that were affected in \textit{hap3b} and \textit{HAP3b}-overexpression plants

The mean signals of two arrays for wild-type plants (wt), two for mutant plants (\textit{hap3b}), or one for overexpression plants (\textit{ox} = \textit{P}_{\text{actin}:HAP3b}) were listed in the table and used for calculation of fold change. The genes listed in the table were all labeled as “present” on the arrays, except for \textit{HAP3b} gene whose transcript was not detected in both \textit{hap3b} samples (or arrays), and showed at least 25\% change in transcript level in both \textit{hap3b} and overexpression plants. “^A” indicates the signal on arrays is labeled as “Absent”.

Table I: Genes upregulated in *HAP3b*-overexpression plants but downregulated in *hap3b* and quantification of their RNA levels.

Affy ID	Mean signal in wt	Mean signal in hap3b	Fold change (hap3b / wt)	Signal in ox	Fold change (ox / wt)	Gene ID	Annotation
248764_at	355.04	32.91^A	0.00	13652.40	38.45	At5g47640	HAP3b or CCAAT-binding protein
265441_at	185.77	37.47	0.20	1071.70	5.77	At2g20870	cell wall protein precursor
256597_at	224.29	85.86	0.38	720.43	3.21	At3g28500	60S acidic ribosomal protein P2 (RPP2C)
249645_at	167.81	100.60	0.60	758.15	4.52	At5g36910	thionin (THI2.2)
261375_at	104.63	65.80	0.63	144.91	1.38	At1g53160	squamosa promoter-binding protein-like 4 (SPL4)
266989_at	47.55	30.94	0.65	62.98	1.32	At2g39330	jacalin lectin family protein
258962_at	84.52	55.09	0.65	126.06	1.49	At3g10570	cytochrome P450 putative
245928_s_at	2558.78	1674.04	0.65	5327.26	2.08	At5g24780	vegetative storage protein 1 (VSP1)
							vegetative storage protein 2 (VSP2)
246396_at	66.10	43.98	0.67	96.49	1.46	At1g58180	carbonic anhydrase family protein
							carbonate dehydratase family protein
267509_at	56.24	37.80	0.67	98.72	1.76	At2g45660	MADS-box protein (AGL20) = SOC1
254573_at	79.43	55.78	0.70	113.39	1.43	At4g19420	pectinacetyltransferase family protein
261211_at	339.79	238.71	0.70	434.96	1.28	At1g12780	UDP-glucose 4-epimerase / UDP-
							galactose 4-epimerase / Galactowaldenase
246687_at	111.23	78.28	0.70	205.75	1.85	At5g33370	GDSL-motif lipase/hydrolase family protein
264146_at	1023.99	769.14	0.75	1383.38	1.35	At1g02205	CER1 protein;
261601_at	90.02	67.81	0.75	124.87	1.39	At1g49670	ARP protein, oxidoreductase, dehydrogenase
267460_at	78.53	59.20	0.75	117.37	1.49	At2g33810	squamosa promoter-binding protein-like 3 (SPL3)
A Wild-type and hap3b plants.

B Schematic of the T-DNA insertion site.

C Gel electrophoresis showing the expression of the HAP3b gene and AtACT2 control.

D Bar graph showing leaf number at flowering:
- wt
- hap3b
- C1
- P actin:HAP3b

Leaf Number at Flowering:
- wt: 12 ± 1
- hap3b: 16 ± 2
- C1: 14 ± 2
- P actin:HAP3b: 8 ± 1

Note: At least two biological replicates were performed. **p < 0.01**.
Figure 2
Leaf Number at Flowering

Figure legend

(A) C1 P actin:HAP3b

(B) 2d 4 °C

(C) 8h/16h light/dark

* and ** indicate statistical significance compared to the control.
Figure 4

A. *SOC1*

B. *FT*
Figure 5

Long day pathway

CO

HAP2?

HAP3b

HAP5?

FT

SOC1

Vegetative

Reproductive