Antibiotic Resistance Pattern and Plasmid Profile of Bacteria Isolates from Household Water Distribution Tanks in Ado-Ekiti

T.F. Babalola¹, T.O. Olowomofe²*, T.R. Omodara² and T.Y. Ogunyemi³

¹Department of Environmental Health Sciences, College of Health Science and Technology, Ijero-Ekiti, Nigeria.
²Department of Microbiology, Faculty of Science, Ekiti State University, Ado-Ekiti, Nigeria.
³Health Information Management, Optum 360, United Health group, Minnesota, United States.

Abstract

Water is essential to life. The existence of all forms of life is dependent on an adequate water supply. The exigent need for water supply in homes prompted the construction of water sources and water storage devices in the homes. This however does not guarantee that the water is safe to drink. If the water is safe at the source, it may be contaminated during transportation storage and drawing at home. This study was carried out to determine the microbial counts, antibiotics susceptibility and plasmid profile of bacteria isolates from household water distribution tanks in the Ado-Ekiti metropolis. The total bacteria and coliform counts were determined using the pour plating technique. The antibiotic susceptibility pattern of the isolates was determined using the disc diffusion technique while the plasmid profile of the isolates was determined using the alkaline lysis method and agar gel electrophoresis. The mean total bacteria count of the water sample was 6.96 log10 CFU/ml, while the mean total of coliform count is 5.50 log10 CFU/ml. The isolates with multiple antibiotics resistance belonged to five bacteria genera namely: Escherichia, Pseudomonas, Klebsiella, Enterobacter and Proteus. The plasmid analysis showed that four of the resistant strains had multiple plasmids, Enterobacter aerogens had 3 plasmids (1kb, 1.5kb and 2kb), Pseudomonas aeruginosa and Klebsiella aerogens had two plasmids (1kb, 1.5kb) respectively while Proteus vulgaris and Escherichia coli had no plasmid.

Keywords: Water sanitation, coliforms, plasmids, Antibiotic susceptibility, water storage tanks

*Correspondence: motunde21@yahoo.com

(Received: April 15, 2021; accepted: August 03, 2021)

Citation: Babalola TF, Olowomofe TO, Omodara TR, Ogunyemi TY. Antibiotic Resistance Pattern and Plasmid Profile of Bacteria Isolates from Household Water Distribution Tanks in Ado-Ekiti. J Pure Appl Microbiol. 2021;15(3):1697-1704. doi: 10.22207/JPAM.15.3.66

© The Author(s) 2021. Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License which permits unrestricted use, sharing, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
INTRODUCTION

Water is the most essential commodity for human consumption. Adequate supply of potable water is essential for the well-being of all people around the world\(^1\)–\(^2\). Human activities such as agriculture, trading, industries cannot function properly without adequate water supply.

The two most common sources of drinking water are surface water and ground water\(^3\)–\(^4\). Rural communities in Nigeria usually source their water for drinking and domestic purposes from streams and well while those in urban areas source water from well, boreholes and water distribution centers. Due to the inevitable importance of water and scarcity especially during dry season, they store water in buckets, drums, basins and tanks for easy accessibility. Meanwhile, water from these sources have been reported to contain certain pathogens and other contaminants which compromise the aesthetic and microbial quality of the water\(^5\)–\(^7\).

Most homes of middle income earners in Ado-Ekiti pump their water from the source (well, borehole) and store in storage tanks. The tank is piped to all sections of the house for convenience and easy accessibility to water when needed. It is assumed that over time, organic particulates and microorganisms in the water will settle via sedimentation. The pipes also can be coated with organic matter which may serve as nutrient for the growth of microorganisms.

Regular washing and disinfection of tanks, inspection of pipes for leakages, semi-annual testing of water for total coliforms and faecal coliforms which are means of accessing the quality of water are not practiced in the homes. Most of them are usually carried away by the comfort of easy and regular accessibility to water and forget to wash the tanks and take other precaution measures.

Inadequate storage conditions and vulnerable water storage containers have been documented as factors contributing to increased microbial contamination of household water\(^6\)–\(^9\). Increased risks of waterborne diseases from inadequately stored water compared to water stored in an improved vessel have also been reported\(^10\). Loss of disinfectant residual, bacteria re-growth, poor turn over and excessive detention time are the common problems in storage tanks and reservoirs\(^11\).

The deterioration of water quality as a result of anthropogenic activities, indiscriminate discharge of wastes has been reported\(^12\)–\(^14\). Polluted water has been identified as the major cause of water borne disease and epidemics looming the developed and developing countries\(^15\). Waterborne diseases represent major health problem in many parts of the world and reported to cause about 842,000 diarrhoea deaths per year 16. Many diseases such as Cholera, typhoid fever, bacillary dysentery, and others can be transmitted through this route\(^16\). Bacteria genera commonly isolated from water includes; Enterobacter, coliforms and Escherichia coli\(^17\). Their ability to resist the inhibitory effect of antibiotics is of great public health concern.

Microbial contamination of drinking water remains a significant threat to living organisms and therefore constant vigilance is essential because many pathogens can be transmitted through the supply of water\(^18\). Hence, this study aimed at determining the microbial quality of water from household water distribution tanks in Ado-Ekiti metropolis. This will provide baseline information on the quality of the water and create awareness for prevention of waterborne diseases.

MATERIAL AND METHODS

Collection of Samples

Water samples were collected in sterile sample bottles from household distribution tanks from ten different locations in Ado-Ekiti metropolis (7°37'16“ N5°12'17” E). The samples were transported in ice packs to the laboratory for immediate microbiological analyses.

Isolation and Identification of Isolates

Total heterotrophic bacteria and coliforms were isolated from the samples using ten-fold serial dilution and pour plate method as described by Oluvege\(^6\). Pure culture was stored on nutrient agar slants and stored at 4°C. The isolates were subjected to morphological and biochemical tests such as Gram staining, motility test, catalase test, coagulase test, oxidase test, indole test, citrate test, urease test, methyl red test and their identities were determined according to Bergey’s Manual of Determinative Bacteriology\(^19\).

Antibiotic Susceptibility test of the Isolates

The antibiotics susceptibility of the isolates was determined by the disk diffusion method on Mueller-Hilton agar according to Cheesbrough\(^20\). The isolates were tested against ten ABTEK antibiotic discs which comprised of ceftazidine (CAZ) 30µg, tarivid (10µg), gentamycin (GEN) 10µg, Septrim (30µg), ofloxacin (OFL) 5µg, augmentin (AUG) 30µg, ofloxacin (OFL) 5µg, ciprofloxacin (CPR) 5µg, Perfloxacin (5µg) and Sparfloxacin (10µg). The inoculums were standardized by adjusting their densities to the turbidity of a Barium sulphate (BaSO\(_4\)) (0.5 McFarland turbidity standard). One milliliter of each of the standardized broth cultures of the test isolates were swab on the Mueller Hinton agar plates, the antibiotic discs were placed firmly on solidified plates and incubated for 24 hours at 37°C. Un-inoculated agar plates with antibiotics served as the
The diameter of the zone of growth inhibition was measured to the nearest whole millimeter and interpreted on the basis of CLSI guideline.21

Plasmid Profiling of Antibiotic-resistant Isolates

Plasmid analysis was performed on representative isolates selected on the basis of their antibiotic resistance phenotypes.

Extraction of Plasmid

Plasmid extraction was carried out using Fast and Easy Plasmid Mini-prep Kit as described by Olowomofe.22,23. The extracted plasmid DNA was separated using agarose gel electrophoresis. The plasmid DNA was loaded into pre-cast wells in the gel and electric current (100V) was applied for 1 hour. The agarose gel was stained with 0.5ug/ml ethidium bromide for 20 minutes and visualized by UV-trans illumination according to Robins-Browne.24

Statistical analysis

Standard deviation of the mean of data obtained from this study were determined using 2010 Microsoft Excel.

REsUlTs

Water storage and sanitation practices

A total of fifteen households were examined in the study. Sixty percent sourced their water from well while remaining forty percent sourced water from borehole. Forty-seven percent of the households do not engage in regular cleaning of their water tanks while fifty-three percent clean their tanks once in a year. Water guard and chlorination were the methods of disinfection used in these households. Sixty percent of the households had their septic tanks in less than 50 feet to their water source while the septic tanks and water source of the remaining forty percent were 50 to 100ft apart (Table 1).

Mean total bacteria and total coliforms counts

The enumeration of heterotrophic and coliforms in water samples from household water distribution tank in Ado-Ekiti is shown in Table 2. Substantial count of bacteria was recovered from water samples from all the household examined. The mean total bacteria count and total coliforms were 6.96 CFU/ml and 5.50 CFU/ml respectively.

Based on the cultural and biochemical characteristics, the most frequent bacteria isolated from household water distribution tanks were Escherichia coli (20%), Pseudomonas aeruginosa (14%), Proteus vulgaris (16%), Klebsiella aerogenes (19%), Enterobacter aerogenes (9%), Serratia marcescens (8%), Bacillus sp. (8%) and Enterococcus sp. (6%) as indicated in Table 3.

Antibiotics susceptibility pattern of the isolates

The antibiotics susceptibility test of the bacteria isolates reflects variation in their response to the different antibiotics examined as shown in Table 4. Their average percentage resistances to antibiotics are as follows: Amoxyllin (92%), Gentamycin (81%), Augmentin (80%), Sparfloxacn (78%), Chloraphenicol (75%), Perfoxacin (29%), Ofloxacin (24%), Streptomycin (53%), Cotrimoxazole (42%), and Ciprofloxacin (46%).

The multiple antibiotics resistant pattern of the bacteria isolates is shown in Table 5. The isolates displayed different resistance pattern to the antibiotics,

Households	Total Bacteria Count (Log_{10} CFU/ml)	Total Coliform Count (Log_{10} CFU/ml)
A	8.17±0.05	6.35±0.07
B	7.45±1.25	5.52±0.02
C	7.31±0.08	7.60±1.21
D	5.10±0.05	4.73±0.08
E	6.71±0.06	4.84±0.02
F	7.35±1.05	5.18±1.12
G	6.84±0.02	4.02±1.05
I	8.25±0.05	5.45±0.07
J	6.16±1.08	4.23±0.04
K	7.08±0.08	6.22±0.07
L	5.32±0.03	4.14±1.21
M	8.01±1.23	6.68±1.05
N	7.79±1.06	7.23±1.11
O	7.15±1.03	6.30±1.31
P	5.89±0.04	4.10±0.04
Mean	6.96	5.50

Values are the mean and standard deviation of three replicates control. The diameter of the zone of growth inhibition was measured to the nearest whole millimeter and interpreted on the basis of CLSI guideline.25

Plasmid Profiling of Antibiotic-resistant Isolates

Plasmid analysis was performed on representative isolates selected on the basis of their antibiotic resistance phenotypes.

Extraction of Plasmid

Plasmid extraction was carried out using Fast and Easy Plasmid Mini-prep Kit as described by Olowomofe.22,23. The extracted plasmid DNA was separated using agarose gel electrophoresis. The plasmid DNA was loaded into pre-cast wells in the gel and electric current (100V) was applied for 1 hour. The agarose gel was stained with 0.5ug/ml ethidium bromide for 20 minutes and visualized by UV-trans illumination according to Robins-Browne.24

Statistical analysis

Standard deviation of the mean of data obtained from this study were determined using 2010 Microsoft Excel.
Pseudomonas aeruginosa, Escherichia coli and Klebsiella aerogenes were resistant to 70% of the antibiotics examined, while Enterobacter aerogenes, Serratia marcescens and Proteus vulgaris showed resistance to 60% of the antibiotics and Bacillus sp. was resistant to 40%.

Plasmid profiling of the isolates

The plasmid profile of the isolates with multiple antibiotic resistance is shown in Figure 1. The result showed that four out of the resistant strains harbored multiple plasmids, Escherichia coli had three plasmids (1kb, 1.5kb and 2kb), Pseudomonas aeruginosa, Klebsiella aerogenes and Enterobacter aerogenes had two plasmids with 1kb, 1.5kb each while Proteus vulgaris and Serratia marcescens had no plasmid.

DISCUSSION

The numerous reports about the occurrence of pathogenic microorganisms in drinking water, their ability to resist antibiotics and associated diseases prompted this study, to access the microbial quality of water in storage tanks which serve as drinking and other domestic purpose for majority of homes in Ado-Ekiti.

Total bacteria and total coliform count of all the water samples analyzed in this study revealed high microbial contamination of the water (Table 2). The limit of <500 CFU/ml of heterotrophic bacteria and zero coliform or E. coli per 100ml of water as stipulated by WHO, USEPA, ISI 25,18 was exceeded in all the samples. Non-conformity of these water samples to the WHO standard decreased the water quality and renders them unfit for human consumption. Previous researches on microbial assessment of drinking water sources have also reported high heterotrophic bacteria and coliform counts in different water sources and many isolates.

Isolates	Percentage of occurrence (%)
Escherichia coli	20
Pseudomonas aeruginosa	14
Proteus vulgaris	16
Klebsiella aerogenes	19
Enterobacter aerogenes	9
Serratia marcescens	8
Bacillus sp	8
Enterococcus sp	6
Total	100

Table 3. Percentage Occurrence of Bacteria isolated from Household Water Distribution Tanks in Ado-Ekiti

Table 4. Antibiotics Resistance Pattern of Bacteria isolated from Household Water Distribution Tanks in Ado-Ekiti

No.	Isolates	AM	AU	CN	PEF	OFX	S	COT	CHL	SP	CPX
1	Pseudomonas aeruginosa (n= 12)	100	100	92	28	32	98	20	100	100	78
2	Proteus vulgaris (n= 10)	100	100	75	20	20	50	35	30	98	50
3	Escherichia coli (n= 15)	100	92	80	25	30	70	45	50	100	45
4	Klebsiella aerogenes (n=10)	98	72	98	38	28	65	58	100	100	35
5	Enterobacter aerogenes (n=10)	92	62	75	35	22	45	50	98	50	30
6	Serratia marcescens (n=8)	90	75	80	23	15	35	50	58	65	35
7	Bacillus sp (n= 5)	75	68	72	25	25	45	50	100	65	50
8	Enterococcus sp (n=7)	80	70	75	35	25	30	32	62	45	45
Average resistance	92	80	81	29	24	53	42	75	78	46	

Key: AMX – Amoxycilin, CPX- Ciprofloxacin, OFL- Ofloxacin, CHL- Chloraphenicol, SP- Sparfloxacin, PEF- Perflaxcin, COT- Cotrimoxazole, S- Streptomycin, CN- Gentamycin, AU- Augmentin.
The presence of Escherichia coli in the water is an indication that the household water has been faecally polluted. It also correlates with past studies which reported Escherichia coli as an organism that is commonly encountered in different water sources such as rivers, streams, rain water, well water, underground water and even pipe borne water. Sixty percent of the households examined in this study sourced their water from well while the remaining 40% source their water from borehole. However, some bacteria have developed mechanisms for resisting the inhibitory effect of this group of antimicrobial agents. Some bacteria build living wall of microorganisms that shield them from and contribute to Amoxyllin (92%), Gentamycin (81%), Augmentin (80%), Sparfloxacinc (78%), and Chloraphenicol (75%). These antibiotics are the commonly prescribed drugs for people diagnosed with water related or other infections. Resistance of these bacteria to the antibiotics used. Also, accumulation of organic matter in the tanks and pipes over time could enhance the growth of these bacteria since the households do not practice regular washing and disinfection of the water and the tanks which could have removed these contaminants. Once the water in the tank is exhausted, they immediately pump another water and over time, the tank become heavily contaminated with organic and microbial contaminants.

The presence of these microbes in the water can present serious wellbeing dangers to consumers in general especially the immunocompromised individuals when the water is distributed.

Table 5. Multiple antibiotic resistance patterns of bacteria isolates from Household Water Distribution Tanks in Ado-Ekiti

No.	Isolates	Resistotype
1.	Pseudomonas aeruginosa	AM-AU-CN-S-CH-SP-CPX
2.	Proteus vulgaris	AM-AU-CN-S-SP-CPX
3.	Escherichia coli	AM-AU-CN-S-CH-SP-CPX
4.	Klebsiella aerogens	AM-AU-CN-S-CH-SP-CPX
5.	Enterobacter aerogenes	AM-AU-CN-S-CH-SP-CPX
6.	Serratia marcescens	AM-AU-CN-S-CH-SP-CPX
7.	Bacillus sp	AM-AU-CN-S-CH-SP-CPX

Table 6. Plasmid profiling of the multiple resistant Bacteria isolated from Household water Distribution Tanks in Ado-Ekiti

Isolates	Number Of Plasmid	Molecular Weight
Proteus vulgaris	Nil	Nil
Pseudomonas aeruginosa	2	1kb, 1.5kb
Escherichia coli	3	1kb, 1.5kb, 2kb
Enterobacter aerogenes	2	1kb, 1.5kb
Serratia marcescens	Nil	Nil
Klebsiella aerogenes	2	1kb, 1.5kb

of these water sources exceeded the permissible limits for quality water. Eight bacteria genera recovered from the water samples: Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Klebsiella aerogens, Enterobacter aerogenes, Serratia marcescens, Bacillus sp. and Enterococcus sp. have been isolated from different water sources. The presence of Escherichia coli in the water is an indication that the household water has been faecally polluted. It also correlates with past studies which reported Escherichia coli as an organism that is commonly encountered in different water sources such as rivers, streams, rain water, well water, underground water and even pipe borne water. Sixty percent of the households examined in this study sourced their water from well while the remaining 40% source their water from borehole. However, some bacteria have developed mechanisms for resisting the inhibitory effect of this group of antimicrobial agents. Some bacteria build living wall of microorganisms that shield them from and contribute to Amoxyllin (92%), Gentamycin (81%), Augmentin (80%), Sparfloxacinc (78%), and Chloraphenicol (75%). These antibiotics are the commonly prescribed drugs for people diagnosed with water related or other infections. Resistance of these bacteria to the antibiotics used. Also, accumulation of organic matter in the tanks and pipes over time could enhance the growth of these bacteria since the households do not practice regular washing and disinfection of the water and the tanks which could have removed these contaminants. Once the water in the tank is exhausted, they immediately pump another water and over time, the tank become heavily contaminated with organic and microbial contaminants.

The presence of these microbes in the water can present serious wellbeing dangers to consumers in general especially the immunocompromised individuals when the water is distributed.

Water borne diseases are usually combated with antibiotics. Due to their potency, they have gained global recognition as agents for treating infections. However, some bacteria have developed mechanisms of resisting the inhibitory effect of this group of antimicrobial agents. Some bacteria build living wall in response to exposure to antibiotics creating a physical barrier that shield them from and contribute further to the growing problems of drug resistant infection. Bacteria isolated in this study exhibited similar characteristics of resisting multiple antibiotics examined. Previous studies accounted for the prevalence of antibiotic-resistant bacteria in surface and ground waters.
isolates also displayed resistance to multiple antibiotics (4 to 7). Bacteria from these genera have been reported to possess multidrug resistance34, 35.

Six (6) multi-drug resistant bacteria isolated from household water samples were analyzed for plasmid out of which 4 harbored more than one plasmid. This conforms with the findings of Atuanya40 who isolated 45 antibiotics resistant bacteria from water samples and detected 31 plasmids in 14 of 45 antibiotics resistant strains with 10 carrying multiple plasmids. All the four (4) isolates containing the plasmids were resistant to Amoxyllin. The result of this study was in accordance with Ash41 who studied antibiotics resistance of gram negative bacteria from ground water in the United States and showed that their resistance to Augmentin, Amoxyllin and Erythromycin were plasmid mediated. The plasmids isolated were between the ranges of 1kb-2kb which was similar to the observation of Smith44.

Plasmids are double stranded extra-chromosomal genetic elements which reproduce autonomously. They have been recognized in numerous microbes however, they are some of the time found in euakaryotic cells45. It is notable that plasmids are quite possibly one of the most important facilitating agents in the fast spreading of antibiotics resistance among bacteria46. The microbial resistance genes frequently carried on plasmids have the ability to replicate and possibly the potential for self-transmission.

The incidence of plasmids among bacteria with multiple resistance to antibiotics in this study is alarming because plasmids have been identified as one of such movable elements through which resistance and foreign genes are being transmitted in niches47, 48. Genes that influence bacterial virulence are also frequently found on plasmids. Consequently, non-pathogenic and antibiotic susceptible bacteria can become pathogenic and resistant to antibiotics over time as a result of transmission of plasmids. This pose a health threat to the consumers because pathogenic bacteria from water sources have been identified as etiological agents of water borne diseases.

CONCLUSION
This study revealed water from household distribution tanks analyzed exceeded the permissible limits for coliforms and heterotrophic bacteria counts. Bacteria from the water samples were resistant to multiple antibiotics and the resistant strains had plasmids which could spread the resistance ability to non-resistant strains. The findings showed the water were contaminated and unfit for consumption. There is therefore need for regular washing of water storage tanks and routine disinfection of stored water to avert outbreak of waterborne diseases.

ACKNOWLEDGEMENT
None.

CONFLICT OF INTEREST
The authors declare that there is no conflict of interest.

AUTHOR’S CONTRIBUTION
All authors listed have made substantial, direct and intellectual contributions to the work and approved it for publication.

FUNDING
None.

DATA AVAILABILITY
All datasets generated or analyzed during this study are included in the manuscript.

ETHNIC STATEMENT
Not applicable.

REFERENCES
1. Pund DA, Aanorkar RP. Study of some physicochemical parameters of drinking water sources in Temburkhe da and Jarud Regio n Dist. Amravati, MS, India. *Int. Res. J. Environment Sci.* 2013; 2(10):93-95.
2. Alhassan H, Kwakwa PA. When water is scarce: the perception of water quality and effects on the vulnerable. *Journal of Water, Sanitation and Hygiene for Development*, 2014; 4: 43-50. doi: 10.2166/washdev.2013.140
3. Getso BU, Mustapha A, Abubakar MM, Tijjani A. Assessment of Borehole Water Quality for Domestic Use in Three Selected Wards in Wudil Local Government Area, Kano State. *Journal of Environmental Science Studies*, 2018;1(1):1-5. doi: 10.20849/jess.v1i1.394
4. The World Water, International World Water Day, United Nations Conference on Environment and Development (UNCED). Washington DC, USA: Island Press. 2009.
5. Benjamin L, Atwill ER, Jay-Russell M, et al. Occurrence of generic Escherichia coli, E. coli O157 and Salmonella spp. in water and sediment from leafy green produce farms and streams on the Central California coast. *International Journal of Food Microbiology*, 2013 ;165.1: 65-76. doi: 10.1016/j.ijfoodmicro.2013.04.003
6. Oluyege JO, Dada O, Oluyege AO, Olowomofe TO. Multiple antibiotic resistance index of Escherichia coli isolated from drinking water sources in Ado-Ekiti, Ekiti State. *The Experiment*, 2014;28(1):1896-1905. doi: 10.3242/exprj.v19j3.7689.
7. Onuoha C. Antibiotics Susceptibility Pattern of *Escherichia coli* Isolated from Well Water in Afikpo, South Eastern Nigeria. *AASCIT Journal of Biology*, 2015 ;3:38-42.
8. Leholoea LJ, Muyima NYO. Evaluation of impact of household treatment procedures on the quality of
groundwater supplies in the rural community of the Victoria District, Eastern Cape. Water SA, 2000;26(2):285–290.

9. Akoto O, Adiyiah J. Chemical analysis of drinking water from some communities in the Brong Ahafo region. Int. J. Environmental Science Technology, 2007;4(2):211-214.

10. Cabral JPS. Water microbiology. Bacterial pathogens and water. International Journal of Environmental and Public Health, 2010;7(10):3657-3703. doi: 10.3390/ijerph7103657

11. Duer. The science of mixing and improving water quality in water storage tanks; 2006. http://waterworld.com/content/ww/en/whitepapers/. Accessed Mar, 2015.

12. Obi CL, Potgieter N, Mtsaung G. Assessment of the microbial quality of river water sources in rural Venda communities in South Africa, Water SA, 2002; 28(3):287–292. doi: 10.4314/hsa.v28i3.4896

13. Sharma A, Dubey N, Sharan B. Characterization of Aeromonads isolated from the river Narmada, India, International Journal of Hygiene and Environmental Health, 2005;208(5): 425–433. doi: 10.1016/j.ijih.2005.03.007

14. US Environmental Protection Agency (EPA). Quick guide to drinking water sample collection, Region 8 Laboratory 16194 W. 45th Dr. Golden, CO 80403, 2016

15. Onyenekenwa CE. Effects of Water and Sanitation Crisis Countries (Part ii). Cambridge University Press, 50-150. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7126834

16. WHO. Water-related diseases. Environmental Management, 2007;11(1):4595-4609. doi: 10.4314/jasem.v22i1.24

17. Calva JJ, Sifuentes-Osorio J, Ceron C. Antimicrobial resistance in faecal flora: Longitudinal community-based surveillance of children from urban Mexico. Antimicrobial Agents Chemotherapy, 1996;40(7): 1699–1702. doi: 10.1128/AAC.40.7.1699

18. World Health Organization. Heterotrophic plate counts and drinking water safety. The significance of HPCs for water quality and human health. 2003. Edited by Bartram J, Cotruvo J, Exner M. Holt GI, Krieg NR, Sneath PHA, Stanley JT, Williams ST. Bergey’s manual of determinative bacteriology. 9th Ed; Baltimore md; Williams and wkins. Pub.co, Maryland, 1994;786.

19. Chesbrough M. District Laboratory Practice in Tropical Countries (Part ii). Cambridge University Press, 50-150. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7126834

20. CLSI. Performance standards for antimicrobial susceptibility testing; fifteenth informational supplement, Clinical and Laboratory Standard Institute Wayne, Pa. M100- S15, 2012;25: 1

21. Olowomofe TO, Babalola TF, Oluyide OO, Adedayo O. Microbial Assessment of In-door Air and Equipment Used in Banks within Ekiti State University, Ado-Ekiti, Ekiti State, Nigeria. Annual Research & Review in Biology, 2019; 33(5):1-13 doi: 10.9734/arrb/2019/ v33i500134

22. Baserisalehi M and Bahador N. A study on relationship of plasmid with Antibiotic Resistance in Thermophilic Campylobacter spp. Isolates from Environmental Samples Biotechnology, 2008;7(4): 813-817. doi: 10.3923/biotech.2008.813.817

23. Robins-Browne RM, Bordun AM, Tauschek M, et al. Escherichia coli and community-acquired gastroenteritis: Melbourne, Australia. Emerg Infect Dis. 2004;10(10):1797-1805. doi: 10.3201/eid1010.031086

24. Ekhosuehi A, Akharame MO, Obayuwana P. Bacteriological quality and antibiogram of isolates from potable water sources in Ekosodin community, Benin City, Nigeria. Journal of Applied Science and Environmental Management,2018;22(1) 129-133. doi: 10.4314/jasem.v22i1.24

25. Olorunjuwun B, Adeleke O, Temitope O. Microbial Quality and Antibiotic Susceptibility Profile of Bacterial Isolates from borehole Water Used by Some Schools in Ijebu-Ode, Southwestern Nigeria. Scholars Acad. J. Biosci., 2013;1(1):4-13

26. Environment Protection Agency, EPA. US Environment protection agency: Safe drinking water act amendment, 2002. P. EPA 816 – F – 03 – 016.

27. Edema MO, Atayese AO. Pure water syndrome: Longitudinal community- based surveillance of children from urban Mexico. Antimicrobial Agents Chemotherapy. 1996;40(7): 1699–1702. doi: 10.1128/AAC.40.7.1699

28. Environment Protection Agency, EPA. US Environment protection agency: Safe drinking water act amendment, 2002. P. EPA 816 – F – 03 – 016.

29. Edema MO, Atayese AO. Pure water syndrome: Longitudinal community- based surveillance of children from urban Mexico. Antimicrobial Agents Chemotherapy. 1996;40(7): 1699–1702. doi: 10.1128/AAC.40.7.1699

30. Environment Protection Agency, EPA. US Environment protection agency: Safe drinking water act amendment, 2002. P. EPA 816 – F – 03 – 016.

31. Edema MO, Atayese AO. Pure water syndrome: Longitudinal community- based surveillance of children from urban Mexico. Antimicrobial Agents Chemotherapy. 1996;40(7): 1699–1702. doi: 10.1128/AAC.40.7.1699

32. Environment Protection Agency, EPA. US Environment protection agency: Safe drinking water act amendment, 2002. P. EPA 816 – F – 03 – 016.

33. Edema MO, Atayese AO. Pure water syndrome: Longitudinal community- based surveillance of children from urban Mexico. Antimicrobial Agents Chemotherapy. 1996;40(7): 1699–1702. doi: 10.1128/AAC.40.7.1699

34. Environment Protection Agency, EPA. US Environment protection agency: Safe drinking water act amendment, 2002. P. EPA 816 – F – 03 – 016.

35. Environment Protection Agency, EPA. US Environment protection agency: Safe drinking water act amendment, 2002. P. EPA 816 – F – 03 – 016.
Evaluation of Levels of antibiotic Resistance in Groundwater Derived E. coli Isolates in the Mid-West of Ireland and Elucidation of Potential Predictors of Resistance. *Hydrogeol. J.*, 2017;25:939-951. doi: 10.1007/s10040-017-1546-8

36. Efuntayo O, Apanpa O. Status of Contamination and Antibiotic Resistance of Bacteria from well water in Ago-Iwoye, Nigeria. *J. Appl. Biosci.*, 2010;35:2244-2250.

37. Mulamattathil GS, Bezuidehout C, Mbewe M, Ateba CN. Isolation of Environmental Bacteria from Surface and Drinking Water in Mafikeng, South Africa and Characterization Using Their Antibiotic Resistance Profiles. *J. Pathog.*, 2014 ;371208.doi: 10.1155/2014/371208

38. Losch LS, Alonso JM, Merino LA. Occurrence of Antimicrobial Resistant Enterobacteraeae in water from Different Sources in a Sub- Tropical Region of Argentina. *Ambi Aquat.* Taubate, 2008;3:28-36. doi: 10.4136/AMBI-AGUA.50

39. Lynch JP, Clark NM, Zhanel GG. Evolution of antimicrobial resistance among Enterobacteriaceae (focus on extended spectrum b-lactamases and carbapenemases). *Expert Opin. Pharmacother.*, 2013 ; 14: 199-210. doi: 10.1517/14656566.2013.763030

40. Atuanya EI, Nwogu NA, Orah CU. Antibiotic resistance and plasmid profile of bacterial pathogens isolated from hair-dressing saloon effluents in Benin City, Nigeria. *Nig. Jour. Life Sci.*, 2018;22(11):1749-1755. doi: 10.4314/jasem.v22i11.7

41. Ash RJ, Mauk B, Morgan M. Antibiotics resistance of Gram negative bacteria in wells in United States. *Emerg Infect Dis.*, 2002;8(7):713-716. doi: 10.3201/eid0807.010264

42. Smith S, Aboaba OO, Odeigia P, Shodipo K, Adeeye NN. Plasmid profile of Escherichia coli from water samples. *African Journal of Biotechnology*, 2003;2 (9): 322-324. Available online at http://www.academicjournals.org/AJB

43. Dale JW, Park S. Molecular genetics of bacteria 4th Ed. John Wiley and sons Inc., Chichester, UK, 2004. https://www.academia.edu/31746711/Dale_Molecular_Genetics_of_Bacteria_4th_ed

44. Zhang R, Wang Y, Gu JD. Identification of environmental plasmid-bearing Vibrio species isolated from polluted and pristine marine reserves of Hong Kong, and resistance to antibiotics and mercury, *Antonie van Leeuwenhoek*, 2006; 89(3-4):307-15 doi: 10.1007/s10482-005-9032-z

45. Bennett PM. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria, *Br J Pharmacol*, 2008; 153(Suppl. 1): S347-S357. doi: 10.1038/sj.bjp.0707607

46. Atuanya EI, Nwogu NA, Orah CU. Antibiotic Resistance and Plasmid Profiles of Bacteria Isolated from Abattoir Effluents around Ikpoba River in Benin City, Nigeria I. *Appl. Sci. Environ. Manage.* 2018;22 (11) 1749–1755. doi: 10.4314/jasem.v22i11.7