Yeast model identifies ENTPD6 as a potential non-obstructive azoospermia pathogenic gene

Qian Wang1,4,*, Chao Liu1,4,*, Chaoming Tang1,4, Huiping Guo1, Yujiao Liu1,5, Lina Wang1,4, Haichao Zhao1,4, Yongliang Shang1,4, Yang Wen2, Yuan Lin2, Tao Zhou2, Zuomin Zhou2,3, Wen Dong5, Zhibin Hu2, Xuejiang Guo2,3, Jiahao Sha2,3 & Wei Li1,4

Approximately ten percent of male infertility is caused by non-obstructive azoospermia (NOA), but the etiologies of many NOA remain elusive. Recently, a genome-wide association study (GWAS) of NOA in Han Chinese men was conducted, and only a few genetic variants associated with NOA were found, which might have resulted from genetic heterogeneity. However, those variants that lack genome-wide significance might still be essential for fertility. Functional analysis of genes surrounding these variants in Drosophila identified some spermatogenesis-essential genes. As a complementary method of Drosophila screening, SK1 background Saccharomyces cerevisiae was used as a model to screen meiosis-related genes from the NOA GWAS data in this study. After functional screening, GDA1 (orthologous to human ENTPD6) was found to be a novel meiosis-related gene. The deletion of GDA1 resulted in the failure of yeast sporulation. Further investigations showed that Gda1p was important for pre-meiotic S phase entry. Interestingly, the meiotic role of Gda1p was dependent on its guanosine diphosphatase activity, but not its cytoplasmic, transmembrane or stem domains. These yeast data suggest that ENTPD6 may be a novel meiosis-associated NOA-related gene, and the yeast model provides a good approach to analyze GWAS results of NOA.

Infertility, which is a severe threat for the continuation of humans, affects one-sixth of couples worldwide1,2. Approximately half of the infertility cases are attributed to the male2,3. In male infertility, 10–15% of cases are classified as azoospermia, and 60% of these cases are non-obstructive azoospermia (NOA), which generally affects 1% of the male population4–6. Recently, some genetic factors, such as single nucleotide polymorphisms (SNPs) and other common structural variants, have been reported to be associated with NOA7–9. However, the etiology of most of the NOA remains largely unknown.

The genome-wide association study (GWAS) represents a powerful tool for investigating the genetic architecture of complex human diseases and provides a good approach to study the associations between SNPs and traits such as human diseases10,11. Although GWASs have successfully identified loci that influence a wide variety of human diseases, many of these results are either inconsistent or have failed to be independently validated12,13, possibly due to high genetic heterogeneity. These loci may still indicate genes important for the disease. Systematically functional analyses are expected to help identify genes that are involved in human diseases. Limited by material and financial resources, it is difficult to perform large-scale functional genomic analysis of the pathogenic genes identified by GWASs in mammals.

1State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. 2State Key Laboratory of Reproductive Medicine, Collaborative Innovation Center of Genetics and Development, Nanjing Medical University, Nanjing 210029, China. 3Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China. 4University of Chinese Academy of Sciences, Beijing 100049, China. 5College of Marine Life, Ocean University of China, Qingdao 266003, China. *These authors contributed equally to this work. Correspondence and requests for materials should be addressed to X.G. (email: guoxuejiang@njmu.edu.cn) or J.S. (email: shajh@njmu.edu.cn or W.L. (email: leways@ioz.ac.cn).
Therefore, an efficient and convenient method is needed to functionally verify the associations of GWAS results with specific diseases in the post-GWAS era.

As a single simple-cell eukaryote, Saccharomyces cerevisiae is widely used as a model organism in biological research and has offered valuable knowledge of the genetics and basic cellular processes that are evolutionarily conserved with higher eukaryotes, such as the cell cycle, DNA replication, recombination, metabolism, aging and meiosis. Many of these results have been directly extended to mammalian systems, thus providing an important tool in understanding complex human diseases. Because of its powerful capacity for genetic manipulation and relative low cost in culturing, yeast has been developed as a very important system for annotating gene function, functional genomics and drug discovery, and it is suitable for uncovering the basic functions of the genes implicated in some human diseases.

To detect the SNPs associated with NOA, we performed a large-scale genome-wide association study in Han Chinese men, and 103 SNPs were found to be associated with NOA, with \(p < 10^{-5} \). The results with specific diseases in the post-GWAS era.

Results

Identification of potential non-obstructive azoospermia pathogenic genes by functional screening in yeast. A recent study showed that approximately 32% of GWAS SNPs are located in deoxyribonuclease I hypersensitive sites (DHSs), which are markers of regulatory DNA that can regulate genes within 100 kb. Thus, we considered genes flanking the ISNPs (Tag Single Nucleotide Polymorphisms) within 100 kb in this study. Our recent work in *Drosophila* has demonstrated that this approach is effective in identifying genes that are essential for male fertility based on SNPs without genome-wide significant associations with human NOA. However, *Drosophila* spermatogenesis does not involve chromosome recombination, which is an important event for human spermatocyte meiosis. Because yeast is the most powerful model to study meiosis, we used yeast in the present study to screen meiosis-related genes from the NOA GWAS data and used the strategy described in Fig. 1a. In summary, 9 candidate orthologous yeast genes were obtained, corresponding to 11 human genes and 7 susceptible tSNPs (Table S1). Among these, MPP10, RFC3, RPC19 and SLD5 were found to be essential to yeast survival, thus prohibiting our further screening by their deletion. MSH5 was found to be involved in meiosis in yeast. Finally, 4 genes, CKB2, GDA1, GPH1, and PMC1, were selected and underwent functional analysis in the SK1 background yeast strain, which sporulates faster and more synchronously than other strains and is commonly used for the study of sporulation or meiosis. After deleting these genes by homologous recombination, wild type (WT) and candidate gene deletion strains were deprived of nitrogen and incubated in sporulation medium for 24 hrs, and the sporulation efficiency was detected by staining with 4,6-diamidino-2-phenylindole (DAPI). We found that the sporulation efficiency of the *gda1-Δ* strain showed a significant decrease compared with that of the WT strain (Fig. 1b–d), which is similar to some NOAs of humans. ENTPD6 is the orthologous human gene of *GDA1*, and it is a member of the ENTPD family and localizes in the Golgi apparatus. Thus, the functional genomic screening of NOA GWAS data in yeast resulted in the identification of ENTPD6 as a potential pathogenic gene of NOA.

GDA1 is required for pre-meiotic S phase entry. Because the deletion of *GDA1* inhibited sporulation, we next determined which phases of sporulation were affected in the *GDA1* deleted strain. Meiosis in yeast is initiated by the expression of Ime1p, which serves as the master regulatory switch for meiosis. First, we detected the expression of Ime1p in the *GDA1* deletion strain by generating a 3×Myc tag on the C-terminus of *IME1*. During the sporulation processes, we found that the expression of Ime1p in the *GDA1* deletion strain was only delayed by approximately 1 hr compared with the WT strain (Fig. 2a). Real-time PCR analysis of *IME1* mRNA in WT and the *GDA1* deletion strain showed similar results to the protein level (Fig. 2b). These results suggest that *GDA1* is not the major regulator of meiosis initiation, even though it is involved in this process to some extent. We next detected the pre-meiotic DNA synthesis by flow cytometry analysis to test whether the *GDA1*-null mutant influenced...
pre-meiotic DNA replication. We found that the pre-meiotic DNA replication was repressed in the GDA1 deletion strain (Fig. 2c).

The early phase of sporulation begins when cells make the decision to differentiate into spores, they then exit the mitotic cycle in G1 and enter the pre-meiotic S phase\(^\text{37}\). To determine whether the...
Figure 2. **GDA1 is required for pre-meiotic S phase entry.** The expression of Ime1p was only slightly delayed in the *gda1Δ* strain during sporulation. WT or *gda1Δ* strains expressing the *IME1*-3×myc allele were incubated in sporulation medium and samples were collected at different times. The expression of Ime1p-3×myc over time was analyzed by immunoblotting with anti-Myc antibody. Pgk1p served as a loading control. Full-length blots/gels are presented in Supplementary Figure 5. (b) Real-time PCR analysis of the *IME1* expression level in WT and *GDA1* deletion strains. (c) The pre-meiotic DNA replication was inhibited in the *gda1Δ* strain during sporulation. WT or *gda1Δ* strains were incubated in sporulation medium and samples were collected at different times after induction. DNA content was analyzed by flow cytometry to detect pre-meiotic DNA replication (2C to 4C transition). (d) The stabilization of Sic1p in the *gda1Δ* strain during sporulation. WT or *gda1Δ* strains were incubated in sporulation medium and samples were collected at different times after induction. The expression of Sic1p over time was analyzed by immunoblotting with specific anti-Sic1 antibody. Pgk1p served as a loading control. Full-length blots/gels are presented in Supplementary Figure 5.
GDA1-null mutant influenced the transition from G1 to the pre-meiotic S phase, we detected the expression of Sic1p, which acts as a central G1 to pre-meiotic S phase transition regulator by inhibiting the Clb5,-6/Cdk1 activity\(^\text{36,37}\), presents early in meiosis and subsequently disappears when cells enter the pre-meiotic S phase\(^\text{38,39}\). Consistent with other reports\(^\text{38,39}\), Sic1p was detected at 1–2 hrs after the induction of sporulation and then disappeared in the following stages in the WT yeast strain (Fig. 2d, lanes 2–10). However, in the GDA1 deletion strain, Sic1p was detected throughout the process of the induction of sporulation (Fig. 2d, lanes 12–20), which indicated that the GDA1-null mutant influenced the G1 to pre-meiotic S phase transition. Therefore, we concluded that the GDA1-null mutant mainly arrests before the pre-meiotic S phase and GDA1 is required for pre-meiotic S phase entry.

The pre-meiotic S phase entry defect could be rescued by the expression of GDA1 in the GDA1 deletion strain. To further confirm the effect of GDA1 in entering the pre-meiotic S phase, a GDA1 expression vector under the control of its own promoter was generated and transformed into a GDA1 deletion strain. After being incubated in sporulation medium for 24 hrs, we detected the sporulation efficiency of WT vector (containing the empty vector), gda1Δ vector (containing the empty vector) and gda1Δ GDA1 (containing the GDA1 expression vector under the control of its own promoter) strains, and we found that GDA1 expression in the gda1Δ strain could partially rescue its sporulation defect up to more than 60% compared with the gda1Δ vector strain, whose sporulation efficiency remained less than 10% (Fig. 3a). By contrast, the gda1Δ GDA1 strain could produce spores (Fig. 3b) and complete pre-meiotic DNA replication (Fig. 3c); however, the gda1Δ vector strain failed to do so. We then detected the Sic1p expression pattern during sporulation processes in these three strains and found that the Sic1p expression in the gda1Δ GDA1 strain was similar to that of the WT vector strain (Fig. 3d). These results suggested that the defect of sporulation could be rescued by the expression of GDA1 in its deletion strain, and GDA1 indeed played very important roles in entering the pre-meiotic S phase.

We then detected the expression of Gda1p during the process of sporulation by generating a TAP tag on its C-terminus, and we found that Gda1p accumulated in the early phase of sporulation and subsequently decreased in the middle phases at approximately 4–6 hrs (Fig. 3d), which is consistent with its function in the meiotic early phase. Gda1p could also be detected in the late phase of sporulation (Fig. 3e), which may be related to its role in spore wall biogenesis\(^\text{40}\).

The cytoplasmic, transmembrane and stem domains of Gda1p are not necessary for its role in meiosis. Gda1p is a guanosine diphosphatase that is located in the Golgi, and it is involved in the transport of GDP-mannose into the Golgi lumen by converting guanosine diphosphate (GDP) to guanosine monophosphate (GMP) after mannose is transferred to its substrate. The GDA1 deletion strain has severe defects in the N- and O-mannosylation of proteins and glycosphingolipids\(^\text{41,42}\). Gda1p has a short cytoplasmic domain in its N-terminus. The next domain is a single transmembrane domain, followed by a stem region and a large catalytic luminal domain (Fig. 4a). To further study the functional role of Gda1p in sporulation, we generated three truncations: ΔN1–9 (Gda1 Δ1–9aa, in which the cytoplasmic domain is deleted), ΔN10–24 (Gda1 Δ10–24aa, in which the transmembrane domain is deleted) and ΔN25–58 (Gda1 Δ25–58aa, in which the stem region is deleted) (Fig. 4a). These were transformed into the gda1Δ strain. We found that none of the mutants affected the sporulation efficiency compared with the WT GDA1 (Fig. 4b,c). These results suggested that the function of Gda1p in meiosis is not dependent on these three domains. Additionally, in agreement with our results, it has been reported that the cytoplasmic and transmembrane domains are not necessary for the Golgi localization of Gda1p\(^\text{43}\).

Glycosylation of Gda1p is not necessary for sporulation. The nucleoside triphosphate diphosphohydrolases (NTPDases) often contain glycosylation sites, and the glycosylation of NTPDase is important for correct protein folding, membrane targeting and activity\(^\text{44}\). As an NTPDase, Gda1p contains three glycosylation sites, which are N41, N280 and N335\(^\text{45}\). To detect whether the glycosylation of Gda1p is involved in its function in sporulation, we abolished its glycosylation by mutating these glycosylation sites to aspartic acids (N41D, N280D and N335D), either separately or together (N41D/N280D/N335D) (Fig. 5a), and transformed these four mutants into the gda1Δ strain. By detecting the sporulation efficiency, we found that these mutants did not affect yeast sporulation compared with the control groups (Fig. 5b,c), which indicated that the glycosylation modification of Gda1p is not necessary for its role in meiosis.

The function of Gda1p in entering the pre-meiotic S phase is dependent on its guanosine diphosphatase activity. The NTPDase enzyme activity depends on several strictly conserved motifs, called apyrase conserved regions (ACRs), and some key residues were found to be essential to the activity of these NTPDases\(^\text{44,46}\). There are five ACRs in Gda1p, called ACR1–5, and these ACRs are distributed in the luminal domain of Gda1p\(^\text{44}\). To identify whether the guanosine diphosphatase activity of Gda1p is necessary for its function in sporulation, we selected and mutated R176, E216 and D245/G247 to abolish its enzyme activity, which were named as R176A, E216D and D245A/G247A (Fig. 6a). The expression of these mutants was superior to that of the WT proteins (Fig. S1a), which might have been due to the complementary demand of the activity of this enzyme. After transforming these mutants into the gda1Δ strain, we detected the sporulation efficiency and pre-meiotic DNA synthesis. We found that
Figure 3. **The pre-meiotic S phase entry defect could be rescued by GDA1 in the gda1Δ strain.** (a) The expression of GDA1 could rescue the sporulation process in the gda1Δ strain. The WT strain harbored the empty vector, and the gda1Δ strains harbored either the empty vector or GDA1 under the control of its own promoter. The strains were incubated in sporulation medium for 24 hrs. Sporulation efficiency was assessed by staining with DAPI. (b) Microscopic observation of the WT strain harboring the empty vector and the gda1Δ strains harboring either the empty vector or GDA1 under the control of its own promoter after sporulation induction for 24 hrs. (c) The expression of GDA1 could rescue the pre-meiotic DNA replication defect of the gda1Δ strain. The WT strain harbored the empty vector, and the gda1Δ strains harbored either the empty vector or GDA1 under the control of its own promoter. The strains were incubated in sporulation medium, and samples were collected at different times after induction. DNA content was analyzed by flow cytometry to detect pre-meiotic DNA replication (2C to 4C transition). (d) The expression of GDA1 could rescue the stabilization of Sic1p in the gda1Δ strain during sporulation. The WT strain harbored empty vector, and the gda1Δ strains harbored either empty vector or GDA1 under the control of its own promoter. The strains were incubated in sporulation medium, and samples were collected at different times after induction. The expression of Sic1p over time was analyzed by immunoblotting with specific anti-Sic1 antibody. Pgk1p served as a loading control. Full-length blots/gels are presented in Supplementary Figure 5. (e) The expression of Gda1p during sporulation. The WT strain expressing the GDA1-TAP allele was incubated in sporulation medium, and samples were collected at different times after sporulation induction. The expression of Gda1-TAP over time was analyzed by immunoblotting with anti-TAP antibody. Pgk1p served as a loading control. Full-length blots/gels are presented in Supplementary Figure 5.
these three mutant strains failed to exhibit pre-meiotic DNA replication and sporulation, similar to the \(gda1\Delta \) strain (Fig. 6b,c, Fig. S1b). We then detected Sic1p expression in these strains, and similar to the \(gda1\Delta \) strain, we found that the Sic1p was stabilized throughout the sporulation process in the enzyme activity-abolished strains (\(gda1\Delta R176A, gda1\Delta E216D \) and \(gda1\Delta D245A/G247A \)) (Fig. 6d). Therefore, we concluded that the function of Gda1p in entering the pre-meiotic S phase is dependent on its guanosine diphosphatase activity.

Discussion

To date, hundreds of tag single nucleotide polymorphisms (tSNPs) have been found to be associated with human diseases by genome-wide association studies\(^{10} \), and GWAS provides a good approach to study the associations between tSNPs and traits such as major diseases\(^{10,11} \). However, the results of many GWASs are either inconsistent or have failed to be independently replicated due to the high genetic heterogeneity of the population. Nevertheless, the identified tSNPs may still indicate important genes for the diseases, but most of them still lack systematically functional studies\(^{12,13} \). The yeast model has been widely used
in large-scale functional genomic screenings to reveal the functions of some genes implicated in many human diseases15,18,20–22. Therefore, for NOA, functional genomic screening in yeast may be an efficient and convenient approach to identify genes that are essential for gametogenesis using NOA GWAS results, especially for meiosis, defects in which are important causes of NOA.

Using a strategy to identify meiosis-essential genes in yeast based on SNPs associated with human NOA without genome-wide significance (Fig. 1a), we identified 9 homologs of human genes that were indicated by NOA SNPs in yeast. After eliminating the lethal genes, we found that 1 (25%) of the 4 were required for sporulation, which indicated the usefulness of NOA GWAS data to find meiosis-essential genes. It has been found that ~340 genes (~6% of the yeast genome) are required for sporulation47, so our hit rate was higher than that obtained in simple large-scale functional genomic analysis.

In this study, we found that the deletion of \textit{GDA1} resulted in the abolishment of the sporulation process in the SK1 background yeast strain. The \textit{gda1}Δ null mutant failed to produce gametes, which is similar to the phenotype of human NOA. Gda1p is a guanosine diphosphatase that is involved in the transport of GDP-mannose into the Golgi lumen by converting GDP to GMP after mannose is
Figure 6. The function of Gda1p in entering the pre-meiotic S phase is dependent on its guanosine diphosphatase activity. (a) Schematic representation of the key guanosine diphosphatase activity mutants, which include GDA1 (Gda1p 1–518aa), R176A (Gda1p R176A), E216D (Gda1p E216D), and D245A/G247A (Gda1p D245A/G247A). (b) The disruption of Gda1p guanosine diphosphatase activity induced a decrease in sporulation efficiency compared with the WT strain. The WT strain harboring the empty vector and the gda1Δ strains harboring either the empty vector or GDA1, R176A, E216D, D245A/G247A under the control of its own promoter were incubated in sporulation medium for 24 hrs. Sporulation efficiency was determined by staining with DAPI. (c) Microscopic observation of the WT strain harboring empty vector and the gda1Δ strains harboring either the empty vector, WT GDA1 or key guanosine diphosphatase activity mutants under the control of their own promoter after sporulation induction for 24hrs. (d) The disruption of GDA1 guanosine diphosphatase activity stabilized Sic1p during sporulation. The WT strain harboring empty vector and the gda1Δ strains harboring either empty vector or GDA1, R176A, E216D, D245A/G247A mutants under the control of their own promoter were incubated in sporulation medium and samples were collected at different times after induction. The expression of Sic1p over time was analyzed by immunoblotting with specific anti-Sic1 antibodies. Pgk1p served as a loading control. Full-length blots/gels are presented in Supplementary Figure 5.
UDPase activity and localizes in the Golgi apparatus 33, and is highly expressed in the testis 54. It has
pre-meiotic S phase entry. As far as we know, there is no report on the glycosylation of Sic1p. Thus, we
further considered the second indirect possibility; it was reported that the G1-cyclin/Cdk1 complexes
catalyzed the phosphorylation of Sic1p during the mitotic G1/S transition, therefore the phosphoryl-
atated Sic1p could be recognized and further ubiquitinated by the ubiquitin ligase SCF 54, 55 to promote
its degradation 55, 56. Any molecule related to the above-mentioned process might be targeted by Gda1p
to influence the stability of Sicp1. Consistent with this hypothesis, it was reported that Skp1p could be
 glycosylated to modulate the E3 activity of SCF 55, 56 in Dictyostelium 53. Therefore, Gda1p may influence
the glycosylation of either Skp1p or any other unknown proteins to promote Sic1p destruction during
pre-meiotic S phase entry.

ENTPD6 is the human ortholog of GDA1; ENTPD6 is a member of the ENTPD family, which shows
UDPase activity and localizes in the Golgi apparatus 33, and is highly expressed in the testis 54. It has
been reported that protein glycosylation plays a very important role during mammalian reproduction 55.
Therefore, ENTPD6 may be a NOA pathogenic gene and might be involved in meiosis. The mechanistic
study and functional analysis of GDA1 in yeast have provided important clues for further exploring the
role of ENTPD6 in human spermatogenesis.

In contrast to our results, it was reported that GDA1 deletion results in the increase of the sporulation
efficiency in the S288C background yeast strain 56. To test their results, we created a GDA1 deletion strain
in the BY4743 background and tested its sporulation efficiency (Fig. S4). We found that the GDA1-null
mutant showed an increase in sporulation efficiency compared with the WT strain, which was entirely
different from the SK1 background strain used in this study. This result suggests that there might have
been a redundancy of the function of Gda1p in the S288C background. This result is very similar to the
pathology of some human diseases and hints that ENTPD6 mutations may result in NOA in some people
but not in other populations. The detailed mechanism underlying this phenomenon needs to be further
investigated in future work.

Materials and Methods
Screening of candidate functional yeast gene orthologs based on SNPs associated with
human NOA. The tSNPs associated with human NOA (P values less than 10−5) were extracted from
previous GWAS of NOA performed in Han Chinese men 24. To obtain candidate fertility-related
genes, we considered human genes located within 100 kb upstream or downstream of the SNPs. We
then selected the corresponding unique homologous yeast genes (orthologous type: one-to-many or
one-to-one) of the candidate human genes for potential targets to be verified. We only considered yeast
genes with at least 20% sequence identity with their human orthologs. The genome backgrounds for
humans and yeast were GRCh37 and R64-1-1, respectively. SNPs localizations were batch-obtained from
the UCSC genome browser (http://genome.ucsc.edu/). Gene descriptions, genome localizations, and ort-
hologous relationships of the human and yeast genes were annotated via BioMart (http://www.biomart.
org/).

Antibodies. The Myc and FLAG antibodies were purchased from Abmart (Shanghai, China), the Sic1
antibody was purchased from Santa Cruz Biotechnology (Santa Cruz, United States), and the TAP anti-
body was purchased from Thermo Scientific (Waltham, MA USA). The Pgk1 polyclonal antibody was
generated in rabbits using the corresponding recombinant proteins as antigens.

Strains and Plasmids. All plasmids and yeast strains used in this study are described in Tables S2
and S3.

Growth and sporulation. Cells were grown in YPD medium (1% yeast extract, 2% peptone, 2%
glucose), or YPA medium (1% yeast extract, 2% peptone, 2% potassium acetate). The sporulation was
performed as previously described 57. Cells were grown overnight in liquid YPD medium and diluted
in liquid YPA medium to an OD600 of 0.3 and cultured for 10 hr at 30°C. Cells were harvested and
resuspended in sporulation medium (2% potassium acetate) to OD600 of 1.9 and sporulated at 30°C for different lengths of time. In the Gda1p product addition experiments, various concentrations of guanosine 5'-monophosphate disodium salt hydrate (CAS:5550-12-9) or Uridine 5'-monophosphate disodium salt (CAS:3387-36-8) were added into the YPA medium and sporulation medium to test their effects on sporulation.

DAPI staining. Sporulation was assayed by the microscopic examination of cultures that had been incubated in SPM (sporulation medium) for 24 hrs. Approximately two hundred cells per culture were counted and the percentage of cells that had formed Asci was scored. The nuclear DNA was stained by 4',6-diamidino-2-phenylindole (DAPI) as previously described. The nuclei were visualized and counted using a Nikon Eclipse Ti microscope.

Yeast whole-cell extract preparation and immunoblotting analysis. The yeast whole-cell extract preparation was performed as previously described. The samples were collected and resuspended in 30 μl distilled water, and an equal volume of 0.2 M NaOH was added. Next, cells were collected after 10 min of incubation at room temperature, and the supernatant was carefully removed. Approximately 30 μl of SDS-sample buffer (100 mM Tris-HCl, pH 6.8, 200 mM DTT, 4% SDS, 0.2% BPB, and 20% glycerol) was added to the pellet, and the cells were resuspended and boiled for 10 min and centrifuged briefly. The extract was loaded onto an SDS-PAGE gel and detected by immunoblotting with primary antibodies. The immunoblotting was performed using a fluorescent dye-labeled secondary antibody (Invitrogen), and the blots were scanned using an Odyssey infrared imager.

Isolation of RNA from yeast. The RNA isolation was performed as previously described. The samples were collected and resuspended in 400 μl AE buffer (50 mM Na acetate pH 5.3, 10 mM EDTA), and 40 μl 10% SDS was added. The suspension was vortexed for 5 min, and 400 μl fresh phenol was added. The mixture was again vortexed for 5 min and incubated at 65°C for 4 min; the mixture was rapidly chilled on ice for 5 min and then centrifuged for 2 min at 12000 rpm. The upper aqueous phase was transferred to a fresh tube. Then, phenol and chloroform (1:1) was added and extracted for 5 min at room temperature. After being centrifuged for 5 min at 12000 rpm, the upper aqueous phase was again transferred to a fresh tube, and 40 μl 3 M Na acetate and 2.5 volumes ethanol were added to precipitate RNA. After washing with 80% ethanol, the pellet was dried for 5 min, resuspended in 20 μl DEPC-treated water and stored at −80°C.

Real-time PCR for IME1 mRNA. Real-time PCR was carried out with the Roche Light Cycler® 480II System. cDNA was synthesized by the PrimeScript™ RT Reagent Kit (TaKaRa, RR037A), A 10 μl volume of the system with 5 μl of 2 × EvaGreen mix (Applied Biological Materials Inc., MasterMix-S), 0.8 μl of each primer (10 nmol/L), 2 μl of sample cDNA, and 2.2 μl of ddH2O was prepared for amplification. Primer sets for IME1 (5’-GACACAACCACCGATCAAGAAG-3’ and 5’-GATGAGTGGAACGTAGATGCG-3’) and ACT1 (5’-CCTACGTTGTTGATGAAGCT-3’ and 5’-GTCAAGTCAAATCTCTACCGG-3’) were used. The real-time PCR was initiated at 95°C for 10 min, followed by 40 cycles of denaturation for 5 sec at 95°C, annealing for 30 sec at 60°C, and elongation for 60 sec at 72°C. Fluorescence signals were collected at 72°C during the elongation step. Each DNA template was performed in triplicate. The results were analyzed using the LightCycle480SW 1.5.1.

FACS analysis of DNA replication. One-milliliter samples from meiotic cultures were pelleted and resuspended in 70% ethanol. Samples were stored at −20°C until FACS analysis. Before FACS analysis, cells were washed with 50 mM sodium citrate and resuspended in 0.5 ml of 50 mM sodium citrate containing 0.1 mg/ml RNase A at 30°C for 2 hrs. Alternatively, 0.5 ml of 50 mM sodium citrate containing 2 μM Sytox Green (for final concentration 1 μM) was added. Samples were briefly sonicated and analyzed on a Becton-Dickinson FACScan analyzer.

References

1. Maduro, M. R. & Lamb, D. J. Understanding new genetics of male infertility. *J Urol* **168**, 2197–205 (2002).
2. Hirsh, A. Male subfertility. *BMJ* **327**, 669–72 (2003).
3. Jarow, J. P. et al. Best practice policies for male infertility. *J Urol* **167**, 2138–44 (2002).
4. Jarow, J. P., Espeland, M. A. & Lipschultz, L. I. Evaluation of the azoospermic patient. *J Urol* **142**, 62–5 (1989).
5. Jarvi, K. et al. CUA Guideline: The workup of azoospermic males. *Can Urol Assoc J* **4**, 163–7 (2010).
6. Womitzer, M., Goldstein, M. & Hardy, M. P. Review of Azospermia. *Spermato genesis* **4**, e28218 (2014).
7. Okada, H. et al. Genome-wide expression of azoospermia testes demonstrates a specific profile and implicates ART3 in genetic susceptibility. *PloS Genet* **4**, e6 (2008).
8. Aston, K. I. & Carrell, D. T. Genome-wide study of single-nucleotide polymorphisms associated with azoospermia and severe oligozoospermia. *J Androl* **30**, 711–25 (2009).
9. Navarro-Costa, P., Goncalves, J. & Plancha, C. E. The AZFc region of the Y chromosome: at the crossroads between genetic diversity and male infertility. *Hum Reprod Update* **16**, 523–42 (2010).
10. Johnson, A. D. & O’Donnell, C. J. An open access database of genome-wide association results. *BMC Med Genet* **10**, 6 (2009).
11. Hardy, J. & Singleton, A. Genomewide association studies and human disease. *N Engl J Med* **360**, 1759–68 (2009).
12. van der Sijde, M. R., Ng, A. & Fu, J. Systems genetics: From GWAS to disease pathways. *Biochim Biophys Acta* **1842**, 1903–1909 (2014).
13. Chen, D. & Gylensten, U. Lessons and implications from association studies and post-GWAS analyses of cervical cancer. Trends Genet 31, 41–54 (2014).
14. Keberlein, M. Lessons on longevity from budding yeast. Nature 464, 513–9 (2010).
15. Botstein, D., Chervitz, S. A. & Cherry, J. M. Yeast as a model organism. Science 277, 1259–60 (1997).
16. Guide to yeast genetics and molecular biology: Methods Enzymol 194, 1–863 (1991).
17. Neiman, A. M. Sporulation in the budding yeast Saccharomyces cerevisiae. Genetics 189, 737–65 (2011).
18. Hartwell, L. H. Nobel Lecture. Yeast and cancer. Bosei Rep 22, 373–94 (2002).
19. Mirzaei, H., Suarez, J. A. & Longo, V. D. Protein and amino acid restriction, aging and disease: from yeast to humans. Trends Endocrinol Metab 25, 558–56 (2014).
20. Smith, M. G. & Snyder, M. Yeast as a model for human disease. Curr Protoc Hum Genet Chapter 15, Unit 15 6 (2006).
21. Styles, E., Yoon, J. Y., Mattiazzl Usaj, M. & Andrews, B. Functional genomics in the study of yeast cell polarity: moving in the right direction. Philos Trans R Soc Lond B Biol Sci 366, 20130118 (2013).
22. Tardif, D. F. et al. Yeast reveal a “druggable” ksp5/Net44 network that ameliorates alpha-synuclein toxicity in neurons. Science 342, 979–83 (2013).
23. Mattiazzl, M., Petrovic, U. & Krizaj, I. Yeast as a model eukaryote in toxicology: a functional genomics approach to studying the molecular basis of action of pharmacologically active molecules. Toxicon 60, 558–71 (2012).
24. Hu, Z. et al. A genome-wide association study in Chinese men identifies three risk loci for non-obstructive azoospermia. Nat Genet 44, 183–6 (2012).
25. Hu, Z. et al. Association analysis identifies new risk loci for non-obstructive azoospermia in Chinese men. Nat Commun 5, 3857 (2014).
26. Yu, J. et al. Identification of seven genes essential for male fertility through a genome-wide association study of non-obstructive azoospermia and RNA interference-mediated large-scale functional screening in Drosophila. Hum Mol Genet 24,1493–503 (2014).
27. McKee, B. D., Yan, R. & Tiao, J. H. Meiosis in male Drosophila. Spermatogenesis 2, 167–184 (2012).
28. Hollingsworth, N. M., Ponte, L. & Haley, C. MSH5, a novel MutS homolog, facilitates meiotic reciprocal recombination between homologs in Saccharomyces cerevisiae but not mismatch repair. Genes Dev 9, 1728–39 (1995).
29. Pochart, P., Woltering, D. & Hollingsworth, N. M. Conserved properties between functionally distinct MutS homologs in yeast. Cell 272, 30345–9 (1997).
30. Maurano, M. T. et al. Systematic localization of common disease-associated variation in regulatory DNA. Science 337, 1190–5 (2012).
31. Kane, S. M. & Roth, R. Carbohydrate metabolism during ascospore development in yeast. J Bacteriol 118, 8–14 (1974).
32. Sherman, F. Getting started with yeast. Methods Enzymol 194, 3–21 (1991).
33. Wang, T. F. & Guidotti, G. Golgi localization and functional expression of human uridine diphosphatase. J Biol Chem 273, 11392–9 (1998).
34. Kasir, Y., Granot, D. & Simchen, G. IME1, a positive regulator gene of meiosis in S. cerevisiae. Cell 52, 853–62 (1988).
35. Vershon, A. K. & Pierce, M. Transcriptional regulation of meiosis in yeast. Curr Opin Cell Biol 12, 334–9 (2000).
36. Barberis, M. Sic1 as a timer of G1 cyclin waves in the yeast cell cycle—design principle of not just an inhibitor. FEBS J 279, 3386–410 (2012).
37. Schwob, E., Bohm, T., Mendenhall, M. D. & Nasmuth, K. The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79, 233–44 (1994).
38. Benjamim, K. R., Zhang, C., Shokat, K. M. & Herskowitz, I. Control of landmark events in meiosis by the CDK Cdc28 and the meiosis-specific kinase Ime2. Genes Dev 17, 1524–39 (2003).
39. Dirick, L., Goetsch, L., Ammerer, G. & Byers, R. Regulation of mitotic S phase by Ime2 and a Cdb5,6-associated kinase in Saccharomyces cerevisiae. Science 281, 1854–7 (1998).
40. Gonzalez, M. et al. A screen for deficiencies in GPI-anchorage of wall glycoproteins in yeast. Yeast 27, 583–96 (2010).
41. Berninsone, P., Miret, J. J. & Hirschberg, C. B. The Golgi guanosine diphosphatase is required for transport of GDP-mannose into the lumen of Saccharomyces cerevisiae Golgi vesicles. J Biol Chem 269, 207–11 (1994).
42. Lopez-Avalos, M. D., Ucellletti, D., Abejcon, J. & Hirschberg, C. B. The UDPase activity of the Klyveromerolactis lactic Golgi GDPase has a role in uridine nucleotide sugar transport into Golgi vesicles. Glyobiology 11, 413–22 (2001).
43. Vowels, J. L. & Payne, G. S. A role for the luminal domain in Golgi localization of the Saccharomyces cerevisiae guanosine diphosphatase. Mol Biol Cell 9, 1351–65 (1998).
44. Knowles, A. F. The GDA1_CD39 superfamily: NTPDases with diverse functions. Purinergic Signal 7, 21–45 (2011).
45. Abejcon, J. et al. Guanosine diphosphatase is required for protein and sphingolipid glycosylation in the Golgi lumen of Saccharomyces cerevisiae. J Cell Biol 122, 307–23 (1993).
46. Kirley, T. L., Crawford, P. A. & Smith, T. M. The structure of the nucleoside triphosphate diphosphohydrolases (NTPDases) as revealed by mutagenic and computational modeling analyses. Purinergic Signal 2, 379–49 (2006).
47. Enyenihi, A. H. & Saunders, W. S. Large-scale functional genomic analysis of sporulation and meiosis in Saccharomyces cerevisiae. Genetics 163, 47–54 (2003).
48. Hauser, A. & Robbins, P. W. Glycosylation in Saccharomyces cerevisiae: cloning and characterization of an alpha-1,2-mannosyltransferase structural gene. Glycobiology 2, 77–84 (1992).
49. Abejcon, C., Orlean, P., Robbins, P. W. & Hirschberg, C. B. Topography of glycOSylation in yeast: characterization of GDPmannose transport and luminal guanosine diphosphatase activities in Golgi-like vesicles. Proc Natl Acad Sci U S A 86, 6935–9 (1989).
50. Lussier, M., Sdicu, A. M. & Bussey, H. The KTR and MNN1 mannosyltransferase family of Saccharomyces cerevisiae. Biochim Biophys Acta 1426, 323–34 (1999).
51. Verma, R. et al. Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase. Science 278, 455–60 (1997).
52. Feldman, R. M., Correll, C. C., Kaplan, K. B. & Deshaies, R. J. A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91, 221–30 (1997).
53. West, C. M. et al. Purification and characterization of an alpha1,2-L-fucosyltransferase, which modifies the cytotoxic protein 16p1 from the cytosol of Dictyostelium. J Biol Chem 271, 12024–35 (1996).
54. Tada, Y. et al. Ectonucleoside triphosphate diphosphohydrolase 6 expression in testis and testicular cancer and its implication in cisplatin resistance. Oncol Rep 26, 161–7 (2011).
55. Yonezawa, N. Posttranslational modifications of zona pellucida proteins. Adv Exp Med Biol 759, 111–40 (2014).
56. Deutschbauer, A. M., Williams, R. M., Chu, A. M. & Davis, R. W. Parallel phenotypic analysis of sporulation and postgermination growth in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 99, 15530–5 (2002).
57. Carlile, T. M. & Amon, A. Meiosis I is established through division-specific translational control of a cyclin. Cell 133, 280–91 (2008).
58. Stuart, D. & Wittenberg, C. CLB5 and CLB6 are required for premeiotic DNA replication and activation of the meiotic S/M checkpoint. Genetics 12, 2698–710 (1998).
59. Matsuo, Y., Asakawa, K., Toda, T. & Katayama, S. A rapid method for protein extraction from fission yeast. *Biosci Biotechnol Biochem* **70**, 1992–4 (2006).

60. Schmitt, M. E., Brown, T. A. & Trumpower, B. L. A rapid and simple method for preparation of RNA from *Saccharomyces cerevisiae*. *Nucleic Acids Res* **18**, 3091–2 (1990).

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 31401159, 3117374, 81222006), the National Basic Research Program of China (Grant No. 2011CB944303, 2012CB944404, 2013CB911400), the One Hundred Talents Program of the Chinese Academy of Sciences.

Author Contributions

Q.W. and C.L. performed most of the experiments and helped to write the manuscript. C.T., H.G., Y.J. and L.W. performed the yeast knocked out experiments. H.Z. and Y.S. performed the flow cytometry analysis. Y.W., Y.L., T.Z., W.D. and Z.Z. designed and performed some experiments. W.L., J.S., X.G. and Z.H. designed the experiments and wrote the manuscript. All authors reviewed and approved the final version of the manuscript.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Wang, Q. *et al.* Yeast model identifies *ENTPD6* as a potential non-obstructive azoospermia pathogenic gene. *Sci. Rep.* **5**, 11762; doi: 10.1038/srep11762 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/