Application of Mechanical Ventilation Weaning Predictors After Elective Cardiac Surgery

Mayara Gabrielle Barbosa e Silva¹, PT; Daniel Lago Borges¹, PT, MSc; Marina de Albuquerque Gonçalves Costa¹, PT; Thiago Eduardo Pereira Baldez¹, PT; Luan Nascimento da Silva¹, PT; Rafaela Lima Oliveira¹, PT; Teresa de Fátima Ramos Ferreira¹, PT; Renato Adams Matos Albuquerque¹, PT

Abstract
Objective: To test several weaning predictors as determinants of successful extubation after elective cardiac surgery.

Methods: The study was conducted at a tertiary hospital with 100 adult patients undergoing elective cardiac surgery from September to December 2014. We recorded demographic, clinical and surgical data, plus the following predictive indexes: static compliance (Cstat), tidal volume (Vt), respiratory rate (f), f/Vt ratio, arterial partial oxygen pressure to fraction of inspired oxygen ratio (PaO2/FiO2), and the integrative weaning index (IWI). Extubation was considered successful when there was no need for reintubation within 48 hours. Sensitivity (SE), specificity (SP), positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (LR+), and negative likelihood ratio (LR-) were used to evaluate each index.

Results: The majority of the patients were male (60%), with mean age of 55.4±14.9 years and low risk of death (62%), according to InsCor. All of the patients were successfully extubated. Tobin Index presented the highest SE (0.99) and LR+ (0.99), followed by IWI (SE=0.98; LR+ =0.98). Other scores, such as SP, NPV and LR- were nullified due to lack of extubation failure.

Conclusion: All of the weaning predictors tested in this sample of patients submitted to elective cardiac surgery showed high sensitivity, highlighting f/Vt and IWI.

Keywords: Cardiac Surgical Procedures. Ventilator Weaning. Respiration, Artificial.

Abbreviations, acronyms & symbols

Abbreviation	Description
AHCPR	Agency for Healthcare Policy and Research
CROP	Compliance, respiratory rate, oxygenation and pressure index
Cstat	Static compliance
f	Respiratory rate
f/Vt	Respiratory frequency to tidal volume ratio
FiO2	Fraction of inspired oxygen
ICU	Intensive care unit
IWI	Integrative weaning index
LR-	Negative likelihood ratio
LR+	Positive likelihood ratio
MIP	Maximal inspiratory pressure
MV	Mechanical ventilation
NIF	Negative inspiratory force
NPV	Negative predictive value
P0.1/MIP	Occlusion of airway pressure to MIP ratio
PaO2	Arterial oxygen partial pressure
PEEP	Positive end-expiratory pressure
PPV	Positive predictive value
PSV	Pressure support
SaO2	Arterial oxygen saturation
SBT	Spontaneous breathing trial
Ve	Minute volume
Vt	Tidal volume

INTRODUCTION
Cardiac surgery is a complex procedure that alters several mechanisms required for homeostasis, leading the patient to a critical condition. To ensure adequate recovery, intensive care are needed during post-operative period, including vital signs monitoring and mechanical ventilation (MV)[1,2].

Ventilatory support is often removed right after admission to the intensive care unit (ICU), since the patient is lucid and has hemodynamic stability, receiving low doses of vasoactive drugs[3-5]. However, sometimes patients need prolonged MV, which increases both the cost and the risk of complications[6,7].

Ventilator weaning decision must be based not only on clinical judgment[8,9], but also on several predictors that may be applied to support the decision-making process[10]. The McMaster Report from the Agency for Healthcare Policy and Research (AHCPR) reviewed and analyzed 66 predictors, but only eight showed consistently significant likelihood ratios: minute volume (Ve); negative inspiratory force (NIF); maximal inspiratory pressure (MIP); airway occlusion pressure at 0.1 second to MIP ratio (P0.1/MIP); static compliance (Cstat); respiratory rate, oxygenation and pressure index (CROP); respiratory rate (f); tidal volume (Vt); and, in particular, the ratio of respiratory frequency to tidal volume (f/Vt), known as the Tobin Index[11,12].

In 2009, Nemer et al.[13] presented the Integrative Weaning Index (IWI). It evaluates, in a single equation, respiratory...
mechanics, oxygenation and respiratory pattern through static compliance, arterial oxygen saturation (SaO₂) and fVt \((C_{stat} \times \text{SaO}_2)/f(V_{t}) \), respectively. Values \(\geq 25 \text{ ml/cmH}_2\text{O/cycles/min/L} \) may predict weaning success.

Research on MV weaning predictors applied after cardiac surgery are scarce. Therefore, the objective of this study is to test several weaning predictors as determinants of successful extubation after elective cardiac surgery.

METHODS

This prospective and quantitative study was conducted at a university hospital in São Luís, Maranhão, Brazil. We used a non-probabilistic sample of adult patients submitted to elective cardiac surgery and admitted to the Cardio ICU between September and December 2014. The study was approved by the Institutional Ethics Committee (nº 785.917) and all patients signed an Informed Consent Form.

We excluded patients with neurological, pulmonary or congenital heart diseases and those submitted to emergency surgery. Patients who needed surgical re-intervention, died, required MV over 48 hours after surgery, or had incomplete medical records were also excluded.

Upon ICU admission, all patients received mechanical ventilation performed using Evita 2 dura ventilator (Dräger Medical, Lübeck, Germany) in volume-controlled ventilation mode, with the following parameters: \(V_t: 6-8 \text{ ml/kg of predicted weight}; f: 12 \text{ to } 16 \text{ rpm}; \text{PEEP}: 8 \text{ cmH}_2\text{O}; \text{inspiratory flow: } 8 \text{ to } 10 \text{ times the minute volume } (V_t \times f); \text{inspiratory time: } 1.0 \text{ second}; \text{and FIO}_2: 40\% \).

Weaning predictors evaluated and their indicative values of successful extubation are shown in Table 1. Static compliance was obtained directly from MV monitor, thirty minutes after ICU admission.

Table 1. Predictive weaning indexes and reference values\(^{[11,12]}\)

Indexes	Values
\(f/V_t \)	\(< 105 \text{ cycles/min/L} \)
IWI	\(\geq 25 \text{ ml/cmH}_2\text{O/cycles/min/L} \)
Respiratory rate	\(< 30 \text{ rpm} \)
\(\text{PaO}_2/\text{FiO}_2 \)	\(> 255 \text{ mmHg} \)
Static compliance	\(> 30 \text{ cmH}_2\text{O/L/min} \)
Tidal volume	\(> 315 \text{ ml} \)

Weaning predictors evaluated and their indicative values of successful extubation are shown in Table 1. Static compliance was obtained directly from MV monitor, thirty minutes after ICU admission.

Once the patient began to have spontaneous breaths and presented satisfactory clinical conditions, such as hemodynamic stability, absence or minimal bleeding and adequate level of consciousness (Glasgow Scale \(> 10 \)), we switched ventilation mode to pressure support (PSV). After 30 minutes with minimal parameters (pressure support: \(7 \text{ cmH}_2\text{O/Positive end expiratory pressure: } 8 \text{ cmH}_2\text{O / FiO}_2: 30\% \)), an arterial blood sample was collected to analyze \(\text{SaO}_2 \) and \(\text{PaO}_2/\text{FiO}_2 \) ratio.

Subsequently, ventilometry was performed to determine minute volume, using an analogical Wright spirometer model Mark 8 (Ferraris Development and Engineering Company Limited, Hertford, England). The patient was instructed to breathe normally for one minute, meanwhile the total amount of exhaled volume and respiratory rate were recorded in order to determine tidal volume \((V_{e/f}) \) and \(f/V_t \) (in liters). Integrative Weaning Index was obtained by the following equation, proposed by Nemer et al.\(^{[13]}\): \((C_{stat} \times \text{SaO}_2)/f(V_{t}) \).

During the spontaneous breathing test (SBT), the patient was monitored for evidence of weaning failure, such as \(f > 35 \text{ rpm}; \text{SaO}_2 < 90\%; \text{heart rate} > 140 \text{ bpm}; \text{systolic blood pressure} > 180 \text{ mmHg or } < 90 \text{ mmHg}; \text{agitation}; \text{swelling}; \text{and altered level of consciousness}^{[14]} \). If none of these signs were observed and after registering of weaning predictors, patients were extubated. Extubation was considered successful if the patient did not require reintubation within 48 hours\(^{[11]} \).

Statistical analysis was performed using Stata/SE 12 (Statacorp, CollegeStation, Texas, USA). Continuous variables are presented as mean and standard deviation, categorical variables as frequencies and percentages. To test normality, we applied Shapiro-Wilk test.

Sensitivity (SE = true positive/true positive + false negative), specificity (SP = true negative/true negative + false positive), positive predictive value (PPV = true positive/true positive + false positive), negative predictive value (NPV = true negative/true negative + false negative), positive likelihood ratio (LR+ = SE/(100-SP)), and negative likelihood ratio (LR- = [100 – SE]/SP) were used to evaluate each index.

RESULTS

Of the 120 patients initially included, 20 were excluded: 10 due to MV over 48 hours, 5 due to associated congenital heart disease, 3 due to incomplete medical records, and 2 due to death after surgery. Therefore, the final sample was comprised of 100 patients.

Clinical and surgical data are described in Table 2. The sample was predominantly male (60\%), with mean age of 55.4±14.9 years. 62\% of patients presented low risk of mortality (62\%), according to InsCor\(^{[15,16]} \). Most common intervention was heart valve surgery (52\%). Respiratory variables, as static compliance, airway resistance, minute volume, tidal volume, respiratory rate, oxygen saturation, fVt, IWI, and MV duration are shown in Table 3.

All patients were successfully extubated. Sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, and negative likelihood ratio are shown in Table 4. All predictors analyzed had high SE and LR+. Other scores, such as SP, NPV and LR- were nullified due to lack of extubation failure.

DISCUSSION

In our study, which tested MV weaning predictors after cardiac surgery, all patients were successfully extubated. This was expected since most of the patients had low risk of mortality. It is known that the objective of intra- and post-operative MV is to guarantee adequate pulmonary ventilation until the patient is clinically able to breathe spontaneously. Thus, weaning must be considered as soon as possible\(^{[5]} \).

It is important to mention that little research concerning weaning predictors after cardiac surgery has been found in the literature, emphasizing the importance of our study.

All predictors analyzed showed high sensibility. This result is
Table 2. Clinical and surgical data of patients undergoing elective cardiac surgery.

Variables	n (%)	Mean ± SD
Gender		
Male	60 (60)	
Female	40 (40)	
Age (years)	55.4±14.9	
BMI (kg/m²)	26.3±5.7	
InsCor		
Low risk	62 (62)	
Moderate risk	33 (33)	
High risk	5 (5)	
Surgery		
CABG	45 (45)	
Valve repair or replacement	52 (52)	
Aortic surgery	3 (3)	
Drainage tubes	1.8±0.8	
Surgery duration (minutes)	252.7±86.7	
Pump duration (minutes)	106.9±42.1	
Aortic clamp duration (minutes)	79.6±41.4	

BMI=Body Mass Index. CABG=coronary artery bypass grafting.

Table 3. Respiratory data of patients undergoing elective cardiac surgery.

Variables	Mean ± SD
Static compliance (ml/cmH₂O)	43.3±12.5
Airway resistance (cmH₂O/L/s)	11.7±10.2
Minute volume (L)	7.5±1.8
Tidal volume (ml)	405.6±97.5
Respiratory rate (rpm)	19.2±4.8
Oxygen saturation (%)	98.3±1.1
MV duration (hours)	18.1±13.6
f/Vt (cycles/min/L)	52±21.9
IWI (ml/cmH₂O/cycles/min/L)	100.3±70.7

MV=mechanical ventilation; f/Vt=Tobin Index; IWI=integrative weaning index.

corroborated by other studies that showed better performance of weaning predictors in patients under mechanical ventilation for short periods, as our sample[10,17-19].

Tobin Index (f/Vt) is considered the most sensitive parameter for predicting weaning success[10,12,14,20,21], supporting our findings. However, research has demonstrated that this index is not as accurate[22-26]. This is explained by differences in the studied populations, which lead to variation in pretest probability and, consequently, test referral bias[27].

Different from our findings, a recent study with 72 patients demonstrated that evolution of breathing pattern, assessed by percent change in f/Vt during SBT, was better than a single mensuration. A 5% increase in f/Vt after 30 minutes of SBT revealed an area under the ROC curve of 0.83, 83% of sensitivity and 78% of specificity[28].

The IWI is a promising new weaning predictor. Nemer et al.[13] found an area under the ROC curve greater than f/Vt (0.96 vs. 0.85; P=0.003) as well as better SE (0.97), SP (0.94), PPV (0.99), NPV (0.14), LR+ (16.05) and LR- (0.03), with highly accurate values, same as Madani et al.[29]. In our study, we found similar SE values for the IWI (SE 0.98), although lower than f/Vt (SE 0.99).

On the other hand, Boniatti et al.[30] evaluated a modified IWI, which utilized peripheral oxygen saturation instead of SaO₂, and concluded that this index, similar to other predictors, does not accurately predict extubation failure.

Some studies showed that PaO₂/FiO₂ ratio was not accurate for predicting successful weaning[13,31]. A large variation of its values may predict extubation success (<150 to 300 mmHg)[10,32] and this could explain differing results. Another point that must be considered is the possibility of extubation even with lower-than-recommended values[33].

Concerning respiratory rate, a recent study reported that the best cut-off value generated by the ROC curve is f ≤ 24 rpm. This result suggests that the cut-off values found in literature are excessively high. In this same study, f was considered an efficient predictor of weaning failure (SE 100%; SP 85%; PPV 100%; NPV 60%, LR+ 6.68; LR- 0; and accuracy 88%, P<0.0001)[34].

The small sample is a major limitation of our study. In addition, the lack of extubation failure compromised statistical analysis, although this may be justified by the sample characteristics.

CONCLUSION

All of the weaning predictors tested in this sample of patients submitted to elective cardiac surgery showed high sensitivity, highlighting f/Vt and IWI.

Table 4. Predictive weaning indexes, absolute and percentage values, sensitivity and specificity.

Indexes	Sensitivity (%) [IC95%]	Specificity (%)	PPV (%) [IC95%]	NPV (%) [IC95%]	LR+	LR-
f/Vt	0.99 [0.94-0.99]	0	1 [0.95-1]	0 [0-0.94]	0.99	0
IWI	0.98 [0.92-0.99]	1 [0.95-1]	0 [0-0.80]	0.98	0	
Respiratory rate	0.97 [0.90-0.99]	1 [0.95-1]	0 [0-0.69]	0.97	0	
PaO₂/FiO₂	0.97 [0.90-0.99]	1 [0.95-1]	0 [0-0.69]	0.97	0	
Static compliance	0.86 [0.77-0.91]	1 [0.94-1]	0 [0-0.27]	0.86	0	
Tidal volume	0.85 [0.76-0.91]	1 [0.94-1]	0 [0-0.25]	0.85	0	

f/Vt=Tobin Index; IWI=integrative weaning index; PaO₂=arterial oxygen partial pressure; FiO₂=fraction of inspired oxygen.
Authors' roles & responsibilities

MGBS Study design; implementation of projects/experiments; analysis/interpretation of data; manuscript writing or critical review of its content; final approval of the manuscript

DLB Study design; implementation of projects/experiments; analysis/interpretation of data; statistical analysis; manuscript writing or critical review of its content; final approval of the manuscript

MAGC Implementation of projects/experiments; final approval of the manuscript

TEPB Implementation of projects/experiments; final approval of the manuscript

LNS Implementation of projects/experiments; final approval of the manuscript

RLO Implementation of projects/experiments; final approval of the manuscript

TFRF Implementation of projects/experiments; final approval of the manuscript

RAMA Implementation of projects/experiments; final approval of the manuscript

REFERENCES

1. Alcarde RV, Guaranica JC, Bodanese LC, Castro I, Sussenbach E, Noer R, et al. High dose of amiodarone in a short-term period reduces the incidence of postoperative atrial fibrillation and atrial flutter. Arq Bras Cardiol. 2006;87(3):236-40.

2. Bianco ACM, Timerman A, Paes AT, Gun C, Ramos RF, Freire RBP, et al. Prospective risk analysis in patients submitted to myocardial revascularization surgery. Arq Bras Cardiol. 2005;85(4):254-61.

3. Nozawa E, Kobayashi E, Matsumoto ME, Feltrim MIZ, Carmona RAMA; American Association for Respiratory Care; American College of Chest Physicians, the American Association for Respiratory Care; and the American College of Critical Care Medicine. Chest. 2001;120(6 suppl.):375S-95S.

4. Tobin MJ, Lubran A. Meta-analysis under the spotlight: focused on meta-analysis of ventilator weaning. Crit Care Med. 2008;36(1):1-7.

5. Nemer SN, Barbosa CS, Castilho JRC, Dallan LAO, Pomerantz R, Rades MPP, Ferreira SM, et al. Performance of InspCor and the future SP-SCORE. Braz J Cardiovasc Surg. 2014;29(1):1-8.

6. Goldwasser R, Farias A, Freitas EE, Saddy F, Amado V, Okamoto V. Performance of the modified integrative weaning index as a predictor of extubation failure. Respir Care. 2014;59(7):1042-7.

7. Tiveron MG, Bomfim HA, Simplicio MS, Bergonzo MH, Matos MPB, Ferreira SM, et al. Variable performance of weaning-predictor scores in cardiac surgery at Santa Casa de Marilia. Braz J Cardiovasc Surg. 2015;30(1):1-8.

8. Purro A, Appendini L, De Gaetano A, Gujondottir M, Donner CF, Rossi A. Physiologic determinants of ventilator dependence in long-term mechanically ventilated patients. Am J Respir Crit Care Med. 2000;161(4 pt 1):1115-23.

9. Rudy EB, Daly BJ, Douglas S, Montenegro HD, Song R, Dyer MA. Patient outcome for the chronically critically ill: special care unit versus intensive care unit. Nurs Res. 1995;44(6):324-31.

10. Seneff MG, Wagner D, Thompson D, Honeycutt C, Silver MR. The impact of long-term acute-care facilities on the outcome and cost of care for patients undergoing prolonged mechanical ventilation. Crit Care Med. 2000;28(2):342-50.

11. Epstein SK. Weaning from ventilatory support. Curr Opin Crit Care. 2009;15(1):36-43.

12. Eskandar A, Apostolakis MJ. Weaning from mechanical ventilation. Crit Care Clin. 2007;23(2):262-74.

13. Conti G, Montini L, Pennisi MA, Cavailleri F, Arcangeli A, Bocci MG, et al. A prospective, blinded evaluation of indexes proposed to predict weaning from mechanical ventilation. Intensive Care Med. 2004;30(5):830-6.

14. Shikora SA, Benotti PN, Johannigman JA. The oxygen cost of breathing may predict weaning from mechanical ventilation better than the respiratory rate to tidal volume ratio. Arch Surg. 1994;129(3):269-74.

15. Tobin MJ, Lubran A. Variable performance of weaning-predictor tests: role of Bayes’ theorem and spectrum and testes-referral bias. Intensive Care Med 2006;32(12):2002-12.

16. Segal LN, Oei E, Oppenheimer BW, Goldring RM, Bustami RT, Savi A, Teixeira C, Silva JM, Borges LG, Pereira PA, Pinto KB, et al. The modified integrative weaning index of discontinuation from mechanical ventilation in Iranian ICUs. Thrita. 2013;2(2):62-8.

17. Reis HFC, Almeida MLO, Silva MF, Moreira JO, Rocha MS. Association between the rapid shallow breathing index and extubation success versus intensive care unit. Rev Bras Ter Intensiva. 2013;25(3):212-7.

18. Segal LN, Oei E, Oppenheimer BW, Goldring RM, Bustami RT, Ruggiero S, et al. Evolution of pattern of breathing during a spontaneous breathing trial predicts successful extubation. Chest. 1994;105(2):540-3.

19. Savi A, Teixeira C, Silva JM, Borges LG, Pereira PA, Pinto KB, et al. Weaning predictors do not predict extubation failure in simple-to-wean patients. J Crit Care. 2012;27(2):221.e.1-8.

20. Tobin MJ, Lubran A. Variable performance of weaning-predictor tests: role of Bayes’ theorem and spectrum and testes-referral bias. Intensive Care Med 2006;32(12):2002-12.

21. Segal LN, Oei E, Oppenheimer BW, Goldring RM, Bustami RT, Ruggiero S, et al. Evolution of pattern of breathing during a spontaneous breathing trial predicts successful extubation. Intensive Care Med 2010;36(3):487-95.

22. Madani SJ, Saghafinia M, Nezhad HS, Ebadz A, Ghochani A, Tavasoli AF, et al. Validity of integrative weaning index of discontinuation from mechanical ventilation in Iranian ICUs. Thrita. 2013;2(2):62-8.

23. Boniatti VM, Boniatti MM, Andrade CF, Zigiotto CC, Kaminski P, Gomes SP, et al. The modified integrative weaning index as a predictor of extubation failure. Respir Care. 2014;59(7):1042-7.

24. Fruutos-Vivar F, Ferguson ND, Esteban A, Epstein SK, Arabi Y, et al. Application of Mechanical Ventilation Weaning predictor of extubation failure. Respir Care. 2014;59(7):1042-7.
Apezteguía C, et al. Risk factors for extubation failure in patients following a successful spontaneous breathing trial. Chest. 2006;130(6):1664-71.

32. Brochard L, Thille AW. What is the proper approach to liberating the weak from mechanical ventilation? Crit Care Med. 2009;37(10 Suppl):S410-5.

33. Khamiees M, Raju P, DeGirolamo A, Amoateng-Adjepong Y, Manthous CA. Predictors of extubation outcome in patients who have successfully completed a spontaneous breathing trial. Chest. 2001;120(4):1262-70.

34. Lima EJ. Respiratory rate as a predictor of weaning failure from mechanical ventilation. Rev Bras Anestesiol. 2013;63(1):1-6.