Crosstalk between Photoreceptor and Sugar Signaling Modulates Floral Signal Transduction

Ianis G. Matsoukas *

School of Life Sciences, University of Warwick, Coventry, United Kingdom

Over the past decade, integrated genetic, cellular, proteomic and genomic approaches have begun to unravel the surprisingly crosstalk between photoreceptors and sugar signaling in regulation of floral signal transduction. Although a number of physiological factors in the pathway have been identified, the molecular genetic interactions of some components are less well understood. The further elucidation of the crosstalk mechanisms between photoreceptors and sugar signaling will certainly contribute to our better understanding of the developmental circuitry that controls floral signal transduction. This article summarizes our current knowledge of this crosstalk, which has not received much attention, and suggests possible directions for future research.

Keywords: cryptochromes, developmental phase transitions, floral signal transduction, florigen, juvenile-to-adult phase transition, photoreceptors, phytochromes, sugar signaling

INTRODUCTION: LIGHT, SUGARS AND FLORAL SIGNAL TRANSDUCTION

Post-embryonic development progresses through distinct developmental phase transitions. It has been proposed (Matsoukas, 2014a) that the prolonged juvenile-to-adult and vegetative-to-reproductive phase transitions might be due to several antiflorigenic signals, which affect the transcription levels of florigen FLOWERING LOCUS T (FT; Corbesier et al., 2007), and SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL; Shikata et al., 2009) genes. Juvenility can be defined as the early period of development during which the abundance of antiflorigenic signals such as miR156/miR157 (Lauter et al., 2005; Martin et al., 2009; Lee et al., 2010; Varkonyi-Gasic et al., 2010) is sufficiently high to suppress the expression of FT and SPLs (Shikata et al., 2009, 2012; Wang et al., 2009; Jung et al., 2011). On the other hand, expression of miR172 in leaves activates FT (Aukerman and Sakai, 2003; Jung et al., 2007), through repression of AP2-like transcripts SCHLAFMÜTZE (SMZ), SCHNARCHZAPFEN (SNZ) and TARGET OF EAT 1–3 (TOE1-3; Jung et al., 2007; Mathieu et al., 2009), whereas the increase in SPLs at the shoot apical meristem (SAM), leads to the activation of floral meristem identity genes (Wang et al., 2009; Yamaguchi et al., 2009), which result in vegetative-to-reproductive phase transition.

Light is a key regulator of the juvenile-to-adult and vegetative-to-reproductive phase transitions (Turck et al., 2008; Matsoukas et al., 2012; Lifschitz et al., 2014; Matsoukas, 2015). It constitutes a critical environmental growth indicator, which is estimated by the duration, quality, direction and intensity, as well as the essential energy source for the synthesis of carbohydrates by the photosynthetic apparatus. Light perception is mediated through the action of photoreceptors, namely PHYTOCHROMES (PHYs; derives from Greek phyto- “relating to plants” and khróma “color”; Chen and Chory, 2011), CRYPTOCHROMES (CRYs; derives from Greek kruptós “hidden”...
and khróma “color”; Chaves et al., 2011), the ultraviolet B photoreceptor ULTRA VIOLET RESISTANCE LOCUS 8 (Jenkins, 2014), phototropins (Christie, 2007) and the ZEITLUPE (ZTL) family members ZTL, FLAVIN-BINDING, KELCH-REPEAT F-BOX (FKF1), and LOV KELCH PROTEIN 2 (LKP2; Kim et al., 2007; Suetsugu and Wada, 2013). Members of each of these photoreceptor families have direct interactions with circadian clock genes and proteins.

Several molecular mechanisms that mediate sugar responses have been identified in plants (reviewed in Rolland et al., 2006; Smeekens et al., 2010; Dobrenel et al., 2013; Lastdrager et al., 2014; Smeekens and Hellmann, 2014; Van den Ende, 2014; Li and Sheen, 2016). Sugar signals can be generated either by carbohydrate concentration and relative ratios to other metabolites, such as hormones and carbon-nitrogen ratio, or by flux through sugar-specific transporters and/or sensors (Matsoukas, 2014b). Glucose, sucrose and trehalose-6-phosphate (T6P) have been recognized as pivotal integrating regulator molecules that control the expression of genes involved in floral signal transduction (reviewed in Ponnu et al., 2011; Bolouri Moghaddam and Van den Ende, 2013; Matsoukas, 2014b).

Glucose-mediated signal transduction is largely dependent on HEXOKINASE1 (Hxk1)-dependent pathway, HXK1-independent pathway, and glycolysis-dependent pathway, which utilizes the SUCROSE NONFERMENTING RELATED KINASE1 (SnRK1)/TARGET OF RAPAMYCIN (TOR) pathway (Moore et al., 2003; Baena-Gonzalez et al., 2007; Ren et al., 2012). SnRK1 has a role when sugars are in extremely limited supply, whereas HXK and Tre6P play a role in the presence of excess sugar. Sucrose plays an essential role in the regulation of important metabolic processes (reviewed in Tognetti et al., 2013). Its concentration tends to be directly related to light intensity (LI), and inversely related to temperature. It has been shown that sucrose, together with T6P act as proxies for the carbohydrate status in plant tissues (Lunn et al., 2006; Wahl et al., 2013; Xing et al., 2015). It is notable that T6P inhibits the activity of the SnRK1 in sugar metabolic control of floral signal transduction (Zhang et al., 2009). In particular, mutations in SNRK1 confer early flowering, whereas SnRK1 overexpression delays flowering (Baena-Gonzalez et al., 2007; Tsai and Gazzarrini, 2012). Several lines of evidence suggest that Tre6P inhibits SnRK1 when sucrose is above a threshold level (Polge and Thomas, 2007; Zhang et al., 2009). When the sucrose concentration decreases, with Tre6P decreasing as well, SnRK1 is released from repression, promoting the expression of genes involved in photosynthesis-related events, so that more carbon is made available (Delatte et al., 2011). Mutations in T6P signaling pathway confer late flowering. This late flowering phenotype was found to be due to reduced expression levels of FT, the elevated levels of miR156, and reduced levels of at least three miR156-regulated transcripts: SPL3, 4, 5 (Wahl et al., 2013). However, T6P not only signals sucrose availability (Lunn et al., 2006), but it also negatively regulates sucrose levels by restricting sucrose synthesis and/or promoting sucrose catabolism (Yadav et al., 2014). Interestingly, the regulatory effects of T6P on growth and development would be an effective means for manipulating carbon partitioning and plant yield (Smeekens, 2015).

The identification of downstream components of photoreceptor signaling that involved in floral signal transduction has revealed a crosstalk between pathways of different light qualities as well as with other seemingly unrelated signaling pathways. One such crosstalk that has not received much attention and involves carbohydrates, forms the focus of this article.

**LIGHT PERCEPTION AND CIRCADIAN CLOCK**

The circadian [derived from the Latin roots “circa” (around) and “diem” (day)] system is a complex regulatory network. It consists of a set of proteins that forms an interconnected feedback network with multiple loops. This system provides temporal information to organisms to coordinate developmental and metabolic responses in coincidence with the environmental conditions. One of the main functions of light in regulation of floral signal transduction is in the initiation of cues that interact with the circadian oscillator and entrain the circadian rhythm. Several reviews have been published on the circadian clock system recently (Romanowski and Yanovsky, 2015; Endo, 2016; Sanchez and Kay, 2016), so the circadian clock will not be described in great detail here. The circadian clock system has three primary components. First is the central oscillator/pacemaker that generates the 24 h oscillators. A model for the *Arabidopsis* circadian oscillator described a series of multiple interlocked transcriptional–translational feedback loops referred to as the morning, core, and evening loops (Huang et al., 2012; Pokhilko et al., 2012). The “morning complex” comprises the genes encoding the proteins CIRCADIAN CLOCK ASSOCIATED 1 (CCA1; Wang and Tobin, 1998) and LATE ELONGATED HYPOCOTYL (LHY). Both genes increase their expression prior to dawn (Schaffer et al., 1998). The “morning complex” genes encoding PSEUDO-RESPONSE REGULATOR (PRR) 5, 7, and 9 increase their expression after dawn (Matsushika et al., 2000; Farre et al., 2005). The “evening loop” comprises genes encoding GI (Fowler et al., 1999; Park et al., 1999) and TIME OF CAB EXPRESSION 1 (TOC1; Strayer et al., 2000) as well as the evening complex genes encoding EARLY FLOWERING (ELF) 3, 4 (Herrero et al., 2012), and LUX ARRHYTHMO (LUX; Hazen et al., 2005; Nusinow et al., 2011). The “evening complex” genes increase their expression prior to, and after dusk. The “morning” and “evening” complex proteins regulate each other through a series of promoter cis-acting elements (Harmer et al., 2000; Alabadi et al., 2001; Covington et al., 2008), and protein–protein interactions (Kim et al., 2007; Nusinow et al., 2011; Chow and Kay, 2013). These type of interactions create a robust and tunable oscillator that modulate gene expression in a coordinated 24 h rhythm.

The second component is the input pathway that synchronizes or entrains the oscillator with environmental cues. The best-characterized signal is light (reviewed in Kami et al., 2010). In *Arabidopsis*, red/far-red light perception is mediated by PHYs. Blue light perception is mediated by CRYs and the blue-light sensing proteins ZTL, FKF1, and LKP2. The third component is
the output pathway that links the oscillator to processes under circadian rhythm such as photoperiodic induction and floral signal transduction.

The plant circadian oscillator is also entrained by daily temperature rhythms (Wenden et al., 2011) and sugars (Blasing et al., 2005; Dodd et al., 2005; Knight et al., 2008; Dalchau et al., 2011; Haydon et al., 2013). However, the perception and transduction of such signals are not fully understood. Considering that photosynthates can contribute to the fine-tuning of the circadian clock (reviewed in Sanchez and Kay, 2016) and that floral signal transduction in LDs is also controlled by the circadian clock (Matsoukas et al., 2012; Song et al., 2013), it has been hypothesized that photosynthates might have a role in modulating the photoperiodic timing mechanism, which includes the PHYs and CRYs (Dodd et al., 2015).

PRRs have been identified as components of the circadian clock (Nakamichi et al., 2007; Ito et al., 2008). Generally, it has been proposed that PRRs contribute to photoperiod measurement through regulation of the time-keeping mechanism associated with CO transcription (Strayer et al., 2000; Yanovsky and Kay, 2002; Nakamichi et al., 2007, 2010). Recently, it was shown that PRRs form a light-signaling mechanism dedicated to photoperiodic flowering through their accumulation during the day, transferring information on light exposure to CO protein (Hayama et al., 2017), which acts upstream of FT and TSF. Interestingly, PRR7 expression is coordinately modulated not only by light but also by photosynthesis, permitting PRR7 to act as a transcriptional repressor in circadian sugar signaling (Haydon et al., 2013). Therefore, specific circadian-clock components not only transfer temporal information to a photoperiodic time-keeping mechanism but also convey qualitative and quantitative information on light exposure to the time-keeping mechanism, establishing measurement of day length.

**INTERPLAY BETWEEN SUGAR AND PHYTOCHROME SIGNALING MODULATES FLORAL SIGNAL TRANSDUCTION**

In Arabidopsis, the PHY family consists of PHYA, PHYB, PHYD, and PHYE (Table 1; Clack et al., 1994). PHYA is predominately involved in physiological responses to continuous far-red light, whereas PHYB is involved in responses to red light. The phyA mutant flowers significantly later than wild type (WT) in long days (LDs), which indicates that PHYA acts to promote flowering (Johnson et al., 1994). In antithesis, the early flowering phenotype of phyB mutant under short day (SD) and LD conditions demonstrates the repressive role of PHYB in floral signal transduction (Guo et al., 1998). Interestingly, the identification of downstream components of photoreceptor-signaling that involved in floral induction has revealed a crosstalk between pathways of different light qualities as well as with other seemingly unrelated pathways such as phytohormones (Matsoukas, 2014b) and carbohydrate metabolism-related events (Dijkwel et al., 1997; Short, 1999; Kozuka et al., 2005; Ghassemian et al., 2006).

Carbohydrates modulate development through PHY-mediated responses (Tsukaya et al., 1991; Barnes et al., 1996; Dijkwel et al., 1997; Short, 1999). PHYA is involved in activation of several photosynthetic genes, such as RIBULOSE 1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE (RB5CS), CHLOROPHYLL a/B-BINDING PROTEIN (CAB), and PLASTOCYANIN (PC). CAB, RB5CS, and PC are repressed by sucrose or glucose (Dijkwel et al., 1997; Takano et al., 2009; Cottage and Gray, 2011). Exogenous sucrose application or high light intensity (LI) reverses the late-flowering phenotype of the Arabidopsis phyA mutant. It has been proposed that the late-flowering phenotype of phyA might be due to a reduced photosynthetic input to FT (King et al., 2008). This is supported by the fact that high LI reverses its late flowering phenotype, the mutant has half the WT leaf area and, in addition, a reduced photosynthetic pigment content (Walters et al., 1999; Bagnall and King, 2001; King et al., 2008).

Overexpression of PHYs in Nicotiana tabacum (Sharkey et al., 1991) and Solanum tuberosum (Sharkey et al., 1991; Yanovsky et al., 1998) increase the transcription of SUCROSE-PHOSPHATE SYNTHASE (SPS). Interestingly, ectopic expression of SPS has been shown to promote flowering in several plant species (Micallef et al., 1995; Baxter et al., 2003). On the other hand, loss of PHYs in Oryza sativa phyA phyB phyC triple mutant affect sugar metabolism, carbon partitioning and sugar transport (Junnee et al., 2009). In Arabidopsis, the circadian regulated sugar-induced β-AMYLASE3 (BAM3) gene is induced by PHYA transcription (reviewed in Kaplan et al., 2006). BAM3 is essential for maltose production (Niittyla et al., 2004), whereas it regulates the juvenile-to-adult and vegetative-to-reproductive phase transitions via starch catabolism-related events (Matsoukas et al., 2013).

The SUCROSE UNCOUPLED6 (SUN6) gene of Arabidopsis is involved in hexose kinase-mediated sugar sensing (Huijser et al., 2000). Gene expression analysis in the sugar insensitive sun6 mutant has shown that PHYA signaling is not repressed by sugars (Dijkwel et al., 1997). SUN6 was shown to be allelic to ABA INSENSITIVE 4 (ABI4). Functional analysis of the abi4 mutant has shown that it is defective in ABA metabolism or response (Dijkwel et al., 1997; Huijser et al., 2000). Therefore, the early flowering phenotype of sun6, at least in LDs, demonstrates a tight interplay between light quality, sugar and phytohormone pathways in regulation of floral inductions in Arabidopsis.

Further evidence on interaction between carbohydrate-metabolism repression and light signaling is provided by the inhibitory activity of PHYB in the control of hypocotyl elongation by PHYA, in presence of exogenous sucrose or glucose (Short, 1999). Down-regulation or over-expression of SUT4 in Solanum tuberosum delays or promotes floral induction, respectively (Chincinska et al., 2008). Besides floral induction, in the same work evidence was provided on SUT4 involvement in the shade avoidance response. This suggest that PHY-dependent and photoperiod-dependent developmental responses, such as floral signal transduction and shade avoidance share a common downstream mechanism in which sucrose accumulation levels are actively involved.
| Gene name | Abbreviation | Allelic | Gene identifier | Description | References |
|-----------|--------------|---------|----------------|-------------|------------|
| ABA INSENSITIVE4 | ABI4 | ATABI4; GIN6; IS3; SALOBRENO 5; SAN5; SIS5; SUN8; TTM7.16 | AT2G40220 | ABA4 involved in ABA signal transduction, ABA-mediated glucose response, and HXK-dependent sugar responses. | Finkelstein et al., 1998; Arenas-Huertero et al., 2000 |
| CHLOROPHYLL A/B-BINDING PROTEIN | CAB | AB165; F1N18.4; F1N18.4; LHCB1.1 | AT1G29920 | Encodes lhc1b1.1, a component of the LHCIIb light harvesting complex associated with photosystem II. | Friso et al., 2004; Cottage and Gray, 2011 |
| CHLOROPLASTIC β-AMYLASE3 | BAM3 | AbBAM3; BAM3; BETA-AMYLASE 3; BMY8; DL4575C; FCAAL1.5 | AT4G17090 | BAM3 encodes a β-amylase targeted to the chloroplast. | Lao et al., 1999; McCallum et al., 2000; Kaplan and Guy, 2005 |
| CRYPTOCHROME-INTERACTING BASIC-HELIX-LOOP-HELIX 1 | CIB1 | T4L20.110; T4L20.110 | AT4G34530 | CIB1 acts together with additional CIB1-related proteins to promote CRY2-dependent floral signal transduction. CIB1 promotes florigen expression. | Liu et al., 2008 |
| CONSTANS | CO | B-BOX DOMAIN PROTEIN 1; BBX1; F14F8.220; F14F8_220; FG | AT5G15840 | CO promotes floral signal transduction in response to LDs, is modulated by the circadian clock and day length. | Wenkel et al., 2006 |
| CRYPTOCHROME1 | CRY1 | ATCRY1; BLU1; H14; OOP2; OUT OF PHASE 2; T3H13.14; T3H13_14 | AT4G08920 | CRY1 functions in perception of blue / green ratio of light. | Valverde et al., 2004 |
| CRYPTOCHROME2 | CRY2 | AT-PHY1; ATCRY2; F19P19.14; F19P19.14; FFA; PHH1 | AT1G04400 | Blue light receptor. It is a positive regulator of floral signal transduction via CO. | Ahmad et al., 1995 |
| FLAVIN-BINDING, KELCH REPEAT, F BOX 1 | FKF1 | ADO3; F BOX 1; T23K23.10 | AT1G68050 | FKF1 forms a complex with GI on the CO promoter to regulate the expression of CO. | Nelson et al., 2000 |
| FLOWERING LOCUS T | FT | F5I14.3; F5I14.3; REDUCED STEM BRANCHING 8; RSB8 | AT1G68480 | FT protein is the long-sought florigen, or at least, part of it. | Kardailsky et al., 1999; Kobayashi et al., 1999; Corbesier et al., 2007 |
| GIGANTEA | GI | FB; T22J18.6; T22J18_6 | AT1G22770 | GI promotes floral signal transduction under LDs, in a circadian clock-controlled floral induction pathway. Starch excess mutant. | Eimert et al., 1995; Tseng et al., 2004; Penfield and Hall, 2009 |
| ELONGATED HYPOCOTYL 5 | HYS | F211.150; F211_150; TED 5 | AT5G11260 | HY5 is a central mediator of CRY and PHY responses. | Lee et al., 2007 |
| LOW KELCH PROTEIN 2 | LKP2 | ADAGIO 2; ADO2 | AT2G18915 | Overexpression of LKP2 results in arrhythmic phenotypes, and a loss of photoperiodic control of floral signal transduction. | Schultz et al., 2001 |
| microRNA156a | miR156a | Ath-MIR156a; gene family: MIPF0000008; Accession: M10000178 | AT2g25090; next upstream gene: At2g25090; next downstream gene: At2g25100 | Arabidopsis miR156 is an ambient temperature-responsive miRNA. It plays an important role in regulating floral signal transduction. | Telfer et al., 1997; Telfer and Poethig, 1998; Aukerman and Sakai, 2003; Wu and Poethig, 2006 |
| microRNA157b | miR157b | Ath-MIR157b; gene family: MIPF0000008; Accession: M10000185 | AT1g66790; next downstream gene: At1g66800 | Overexpression of Arabidopsis miR157b induces bushy architecture and delayed juvenile-to-adult phase transition | Shikata et al., 2012; May et al., 2013 |
| microRNA172a | miR172a | Ath-MIR172a; gene family: MIPF0000008; Accession: M10000215 | At2g28050; next downstream gene: At2g28060 | miR172 mediates light signals from GI and promotes floral signal transduction in Arabidopsis by inducing FT. | Jung et al., 2007; Wu et al., 2009 |
| PHYTOCHROME A | PHYA | ELONGATED HYPOCOTYL 8; F14J9.23; F14J9_23; HY2; FRE1; HY8 | AT1G09570 | Light-labile cytoplasmic red/far-red light photoreceptor involved in floral signal transduction. | Whitelam et al., 1993; Reed et al., 1994 |
| PHYTOCHROME B | PHYB | HY3; MIF3.17; MIF3.17; OOP1; OUT OF PHASE 1 | AT2G18790 | PhYB regulates the expression of genes in response to red light. It repress floral signal transduction. | Koornneef et al., 1980; Reed et al., 1994 |
| Gene name                          | Abbreviation | Allelic | Gene identifier | Description                                                                                                                                                                                                 | References            |
|-----------------------------------|--------------|---------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| **PHYTOCHROME D**                 | PHYD         | DL4165C; FCAALL.323 | AT4G18250       | Encodes a phytochrome photoreceptor with a function similar to that of PHYB.                                                                                                                                  | Reed et al., 1994     |
| **PHYTOCHROME E**                 | PHYE         | F15J5.100; F15J5_100 | AT4G18130       | PHYE is member of Histidine Kinase. Mutation in PHYE confers early flowering.                                                                                                                                | Reed et al., 1994; Devlin et al., 1998 |
| **PLASTOCYANIN**                  | PETE 1       | T23E18.3; T23E18_3  | AT1G76100       | One of two Arabidopsis plastocyanin genes. PETE1 is essential for electron transport.                                                                                                                       | Abdel-Ghany, 2009; Pesaresi et al., 2009 |
| **PLASTOCYANIN**                  | PETE 2       | DRT112; F14O10.6; F14O10_6 | AT1G20340       | One of two Arabidopsis plastocyanin genes. It is expressed 10x higher than PETE1.                                                                                                                           | Abdel-Ghany, 2009; Pesaresi et al., 2009 |
| **RIBULOSE 1,5-BISPHOSPHATE        | RBCS         | OSRBCS; RBCS-C; OsJ_016909 | LOC4351966     | Encodes a member of the Rubisco small subunit multigene family in Oryza sativa.                                                                                                                            | Takano et al., 2009   |
| **SCHLAFMÜTZE**                   | SMZ          | T15C9.6            | AT3G54990       | Encodes an AP2 domain transcription factor that can repress floral signal transduction.                                                                                                                     | Mathieu et al., 2009  |
| **SCHNARCHZAPFEN**                | SNZ          | T16B24.11; T16B24_11 | AT2G39250       | Encodes an AP2 domain transcription factor that can repress floral signal transduction.                                                                                                                     | Mathieu et al., 2009  |
| **SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3** | SPL3          | T1B8.11; T1B8_11   | AT2G33810       | SPL3 is involved in regulation of floral signal transduction. Its temporal expression is regulated by miR156.                                                                                              | Jung et al., 2011; Wahl et al., 2013 |
| **SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 4** | SPL4          | F8L10.12; F8L10_12; F7M6; | AT1G53160       | SPL4 is involved in regulation of floral signal transduction. Its temporal expression is regulated by miR156.                                                                                              | Jung et al., 2011; Wahl et al., 2013 |
| **SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 5** | SPL5          | n/a                | AT3G15270       | SPL5 is involved in regulation of floral signal transduction. Its temporal expression is regulated by miR156.                                                                                              | Jung et al., 2011; Wahl et al., 2013 |
| **SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 13A** | SPL13A       | MBA10.13; MBA10_13; SPL13   | AT5G50670       | SPL genes function in distinct pathways to promote different adult vegetative phase traits and floral induction. SPL13A and SPL13B encode the same protein.                                           | Cardon et al., 1999; Xing et al., 2010 |
| **SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 13B** | SPL13B       | MFB16.6; SPL13     | AT5G50670       | SPL13B and SPL13A encode the same protein.                                                                                                                                                                | Cardon et al., 1999; Xing et al., 2010 |
| **SQUAMOSAPROMOTER BINDING PROTEIN-LIKE 15** | SPL15         | n/a                | AT3G57920       | Encodes a transcriptional regulator that is involved in the vegetative-to-reproductive phase transition. Its expression is regulated by miR156b.                                                              | Cardon et al., 1999; Schwarz et al., 2008 |
| **SQUAMOSAPROMOTER BINDING PROTEIN-LIKE 9** | SPL 9         | AtSPL9; T24P15.11; T24P15_11 | AT2G42200       | Encodes a putative transcriptional regulator that is involved in the vegetative to reproductive phase transition. Expression is regulated by miR156b.                                                        | Cardon et al., 1999; Schwarz et al., 2008; Wang et al., 2008; Xing et al., 2010 |
| **SUCROSE-PHOSPHATE SYNTHASE**    | SPS          | ATSPS1F; SPS1F; SPSA1, SPSA, SUCROSE-PHOSPHATE SYNTHASE A1 | AT5G20280       | Encodes a protein with putative sucrose-phosphate synthase activity.                                                                                                                                       | Park et al., 2008      |
| **SUCROSE TRANSPORTER 4**         | SUT4         | ATSUC4; ATSUT4; F21M12.35; F21M12_35; SUC4 | AT1G00960       | AtSUT4 is expressed in companion cells contributing, along with AtSUC2, to phloem loading.                                                                                                                  | Schulze et al., 2003  |
| **SUCROSE UNCOUPLED 6**           | SUN6         | ATAB4; GIN6; IS3; SANS; SIS5; SIS7; T7M7.16 | AT2G40220       | Involved in ABA signal transduction, ABA-mediated glucose response, and HXK-dependent sugar responses.                                                                                                     | Arenas-Huertero et al., 2000 |

(Continued)
The role of CRY1 and CRY2 can also act as sensors (Guo et al., 1998) could provide a further link (Koornneef et al., 1995). It has been shown that CRY2 regulates floral signal transduction (Catala et al., 2011; Xu et al., 2014). Therefore, any disruption in the regulation of CRY2 transcription levels would also affect the other photoreceptors and CO, which act directly upstream of FT and TWIN SISTER OF FT (TSF) with catalytic effects on the juvenile-to-adult and vegetative-to-reproductive phase transitions.

Mutants lacking CRYs or having defects in their signaling pathway show changes in chloroplast composition and disturbance of normal acclimation (Smith et al., 1993; Walters et al., 1999). The fact that CRY1 and CRY2 can also act as sensors of irradiance (Guo et al., 1998) could provide a further link between light quality and carbohydrate metabolism in regulation of floral signal transduction.

The Arabidopsis ELONGATED HYOCOTYL 5 protein (HY5) is a central mediator of CRY and PHY responses (Lee et al., 2007). It integrates multiple environmental and phytohormonal signaling inputs (Catala et al., 2011; Xu et al., 2014) by mediating homeostatic coordination of sugars (Chen et al., 2012).

### Table 1 | Continued

| Gene name          | Abbreviation | Allelic | Gene identifier | Description                                                                 | References |
|--------------------|--------------|---------|----------------|------------------------------------------------------------------------------|------------|
| SWEET11            | SWEET11      |         | AT3G48740       | Encodes a member of the SWEET sucrose efflux transporter family proteins.    | Chen et al., 2012 |
| SWEET12            | SWEET12      |         | AT5G23660       | Encodes a member of the SWEET sucrose efflux transporter family proteins.    | Chen et al., 2012 |
| TARGET OF EARLY ACTIVATION TAGGED EAT 1 | TOE1 | RAP2; T; T/D12.1; T/D12.11 | AT2G28550 | TOE1 is member of the AP2 family. AP2 regulates floral signal transduction through regulating SOC1 and FT expression. | Aukerman and Sakai, 2003; Jung et al., 2007; Mathieu et al., 2009; Yant et al., 2010; Zhang et al., 2015 |
| TARGET OF EARLY ACTIVATION TAGGED EAT 2 | TOE2 | MG03.10; MG03_10 | AT5G60120 | TOE2 is member of the AP2 family. Overexpression of TOEs confer late flowering. | Aukerman and Sakai, 2003; Jung et al., 2007; Mathieu et al., 2009; Yant et al., 2010; Zhang et al., 2015 |
| TARGET OF EARLY ACTIVATION TAGGED EAT 3 | TOE3 | K21H1.22; K21H1_22 | AT5G67180 | TOE3 is member of the AP2 family. | Aukerman and Sakai, 2003; Jung et al., 2007; Mathieu et al., 2009; Yant et al., 2010; Zhang et al., 2015 |
| Trehalose-6-phosphate synthase | TPS1 | ATTPS1; T30F21.9; T30F21_9 | AT1G78580 | TPS1 synthesizes T6P. Knockdown of TPS1 reduces T6P cellular concentrations and represses floral signal transduction. | Van Dijken et al., 2004; Wahl et al., 2013 |
| Twin Sister of FT | TSF | F9F13_20; F9F13_20 | AT4G20370 | TSF Encodes a floral inducer that is a homolog of FT. Mutant lines overexpressing TSF flower earlier than WT. | Yamaguchi et al., 2006 |
| Ultra Violet Resistance locus 8 | UVR8 | MG19.7; MG19_7 | AT5G63860 | UV-B-specific signaling component that orchestrates expression of a range of genes with vital UV-protective functions. | Rizzini et al., 2011 |
| Zeitlupe | ZTL | ADO1; FK1-JIKE PROTEIN 2; FK2; LKP1; MSF19.2; MSF19_2 | AT5G67380 | The protein contains a PAS domain ZTL that contributes to the plant fitness carbon fixation, biomass by regulating the circadian clock. | Somers et al., 2000 |

**INTERPLAY BETWEEN SUGAR AND CRYPTOCHROME SIGNALING MODULATES FLORAL INDUCTION**

CRYPTOCHROMES (CRYs) comprise flavoproteins that are able to detect blue light (Guo et al., 1998). The role of CRY1 in promoting floral induction in Arabidopsis has been demonstrated by the late flowering phenotype of cry1 mutants compared to WT in various light conditions (Mozley and Thomas, 1995). Similarly, the cry2/fha1 (fha-I) is a mutant allele of CRY2 in Landsberg erecta background) mutant flowers later than the WT in LDs but not in SDs, whereas transgenic plants overexpressing CRY2 flowered slightly early in SDs but not in LDs (Koornneef et al., 1991). It has been shown that CRY2 interacts with bHLH proteins CRYPTOCHROME-INTERACTING BASIC-Helix-Loop-Helix (CIB) proteins to regulate the FT expression and floral signal transduction (Liu et al., 2008; Liu H. et al., 2013; Liu Y. et al., 2013).

Further evidence for the interaction between photosynthetic assimilates and CRYs is provided by a microarray analysis revealing regulation of CRY1 and CRY2 transcription levels by glucose (Li et al., 2006). It has been reported that PHYA interacts with CRY1, and PHYB binds CRY2 (Ahmad et al., 1998; Mas et al., 2000), so red and blue light may crosstalk at multiple layers to co-ordinately regulate developmental transitions. PHYB, CONSTANS (CO) and, indirectly, PHYA are under the regulation of CRYs (Valverde et al., 2004; Thomas, 2006). Therefore, any modification on CRYs transcription levels would also affect the other photoreceptors and CO, which act directly upstream of FT and TWIN SISTER OF FT (TSF) with catalytic effects on the juvenile-to-adult and vegetative-to-reproductive phase transitions.
et al., 2016), and maintaining chlorophyll levels and CO$_2$ uptake. It appears that HY5 might operate in conjunction with the circadian oscillator to adjust levels of rhythmic photosynthetic gene expression (Toledo-Ortiz et al., 2014). Interestingly, HY5 regulates both sucrose metabolism and subsequent movement of sucrose into phloem cells for shoot-root translocation by promoting the expression levels of SWEET11 and SWEET12 (Chen et al., 2016), genes encoding sucrose efflux transporters (Chen et al., 2012), and TPS1 (Chen et al., 2016), a gene encoding T6P. The T6P pathway controls the expression of SPLs, partially via miR156, and partly independently of the miR156-dependent pathway via the florigen FT (Wahl et al., 2013). Evidence have been provided that miR156, and possibly miR172, are directly regulated by HY5 (Zhang et al., 2011). Taken together, these data could provide a potential mechanistic link, at the molecular level, on how the photoreceptor-sugar crosstalk might be involved in regulation of floral signal transduction via the HY5 and TPS1-miR156-SPL module.

**LIGHT INTENSITY AND FLORAL SIGNAL TRANSDUCTION**

LI seems to be particularly important during the juvenile-to-adult and vegetative-to-reproductive phase transition (Figure 1). It has been proposed that the inability to flower during the juvenile period is because of a foliar inability to produce floral signals, the presence of antiflorogens, and/or of the incompetence of the SAM to respond (Zeevaart, 1985; Matsoukas et al., 2012, 2013; Matsoukas, 2015). The length of the juvenile vegetative phase in daylength-sensitive plants can be revealed by reciprocal transfers between inductive and non-inductive photoperiods (Adams et al., 2003; Matsoukas et al., 2013; Matsoukas, 2014a).

Exposure to low or high LI levels can delay or hasten time to flowering, respectively. For instance, *Achillea millefolium* grown under a 16 h d$^{-1}$ photoperiod in controlled environment conditions flowered after 57, 45, and 37 d when grown under 100, 200, or 300 µmol m$^{-2}$ s$^{-1}$, respectively (Zhang et al., 1996). Similarly, Adams et al. (1999) demonstrated that Petunia flowering was hastened by LDs, but that decreased LI prolonged time to flowering. *Arabidopsis* plants flower rapidly under non-inductive SDs after exposure to 8–12 d at a high LI. It has been shown that this “photosynthetic” response is FT-independent. In contrast, the IDD8 locus of *Arabidopsis* was reported to have a role in FT-dependent induction of flowering by modulating sugar transport and metabolism by regulating SUCROSE SYNTHASE4 activity (Seo et al., 2011).

However, the effect of LI on time to flowering can be unpredictable in several species. Hence, the term “facultative irradiance response” (FI) has been coined to describe a developmental hastening of flowering by addition of supplemental light (Erwin and Warner, 2000). Species such as Antirrhinum [LD plant (LDP)], Nicotiana [LDP or SD plant (SDP)], and Petunia (LDP) that exhibit a FI response, show a decrease in leaf numbers and days to flower as irradiance increases. In contrast, the term “irradiance indifferent” (II) refers to species such as Salvia (SDP or facultative LDP) and Zinnia (day neutral plant or facultative SDP) that do not show any response to increased irradiance (Thomas and Vince-Prue, 1997; Erwin and Warner, 2000; Mattson and Erwin, 2005; Thomas, 2006).

Despite the high sensitivity of FI species to elevated levels of LI, the majority does not show a hastened flowering phenotype with increasing irradiance. It has been shown for *Pelargonium* x *hortorum* that a linear relationship between LI and days to flower, for an increased irradiance developmental response, exists until a...
threshold level between 6.89 and 9.01 μmol m$^{-2}$ d$^{-1}$ (Erickson et al., 1980). However, some species require greater threshold levels. For instance, absolute flowering of Digitalis was reached with LI > 11 μmol m d$^{-1}$ (Fausey et al., 2001). Furthermore, giving supplemental irradiance (at 30, 60, and 90 μmol m$^{-2}$ s$^{-1}$) to Gerbera hastened flowering by up to 23 d in the winter, but only up to 11 d during the Spring (Gagnon and Dansereau, 1989). This suggests that the impact of supplemental irradiance on floral signal transduction can be dependent on season’s ambient light conditions and species’ threshold requirement.

What is not clear is the precise molecular genetic mechanisms by which LI, if acting through photosynthates can regulate the floral signal transduction. It may well be that assimilates themselves act as part of the florigen (Périlleux and Bernier, 2002; Bernier and Perilleux, 2005). Interestingly, long-distance floral signal transport is now accepted as more complex than the movement of a single type of signal molecule (Matsoukas et al., 2012; Matsoukas, 2015). It is possible that total carbohydrate, or a particular carbohydrate level may be required to reach a specific threshold in order to sustain a steady supply of sufficient bulk flow through the phloem from the leaves to the SAM to enable delivery of florigen. This would be necessary to render the SAM competent to flower.

CONCLUDING REMARKS

Floral signal transduction has been the focus of a great deal of attention during the last few decades. The molecular mechanisms underlying light perception and the downstream signaling pathways that regulate the floral signal transduction have been intensively challenged. The fact that some photoreceptors can also act as sensors of irradiance provides a promising link between light qualities and assimilate partitioning and resource utilization in regulation of floral signal transduction.

Numerous reports highlight the role of several molecules that integrate light, clock, temperature, and hormone signaling pathways in orchestration of floral signal transduction. However, further investigation is vital for the elucidation of the molecular mechanism underlying photoreceptor-mediated signal integration at the subcellular, tissue-specific and temporal level in response to sugar signaling. This research field is prosperous and technical advances in “OMICS” tools might shed light on the underlying molecular genetic mechanisms.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and approved it for publication.

FUNDING

Research in the laboratory of IM is supported by a Jenkinson TIRI Award and the University of Bolton, UK.

ACKNOWLEDGMENTS

The author would like to thank Professor Brian Thomas (University of Warwick, UK) and Dr. Andrea Massiah (University of Warwick, UK) for valuable discussions, and the three independent reviewers for their insightful comments on the article.

REFERENCES

Abdel-Ghany, S. E. (2009). Contribution of plastocyanin isoforms to photosynthesis and copper homeostasis in *Arabidopsis thaliana* grown at different copper regimes. *Planta* 229, 767–779. doi: 10.1007/s00425-008-0869-z

Adams, S. R., Munir, M., Valdés, V. M., Langton, F. A., and Jackson, S. D. (2003). Using flowering times and leaf numbers to model the phases of photoperiod sensitivity in *Antirrhinum majus* L. *Ann. Bot.* 92, 689–696. doi: 10.1093/aob/mcg194

Adams, S. R., Pearson, S., Hadley, P., and Patefield, W. (1999). The effects of temperature and light integral on the phases of photoperiod sensitivity in *Petunia* × *hybrida*. *Ann. Bot.* 83, 263–269. doi: 10.1006/anbo.1998.0817

Ahmad, M., Jarillo, J. A., Smirnova, O., and Cashmore, A. R. (1995). The CRY1 blue light photoreceptor of *Arabidopsis* interacts with phytochrome A in *vitro*. *Mol. Cell* 1, 939–948. doi: 10.1016/S1097-2765(00)80094-5

Ahmad, M., Lin, C., and Cashmore, A. (1995). Mutations throughout an *Arabidopsis* blue-light photoreceptor impair blue-light-responsive anthocyanin accumulation and inhibition of hypocotyl elongation. *Plant J.* 8, 653–658. doi: 10.1046/j.1365-313X.1995.0080656.x

Alabadi, D., Oyama, T., Yanovsky, M. J., Harmon, F. G., Mas, P., and Kay, S. A. (2001). Reciprocal regulation between TOC1 and LHY/CCA1 within the *Arabidopsis* circadian clock. *Science* 293, 880–883. doi: 10.1126/science.1061320

Arens-Huerto, F., Arroyo, A., Zhou, L., Sheen, J., and Leon, P. (2000). Analysis of *Arabidopsis* glucose insensitive mutants, gis5 and gis6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. *Genes Dev.* 14, 2085–2096. doi: 10.1101/gad.14.16.2085

Auken, M. J., and Sakai, H. (2003). Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. *Plant Cell* 15, 2730–2741. doi: 10.1105/tpc.016238

Baena-Gonzalez, E., Rolland, F., Thevelein, J. M., and Sheen, J. (2007). A central integrator of transcription networks in plant stress and energy signalling. *Nature* 448, 938–942. doi: 10.1038/nature06069

Bagnall, D. J., and King, R. W. (2001). Phytochrome, photosynthesis and flowering of *Arabidopsis thaliana*: photophysiological studies using mutants and transgenic lines. *Plant Physiol. Biochem.* 39, 201–208. doi: 10.1016/S0981-9428(01)00212-3

Barnes, S. A., Nishizawa, N. K., Quaggio, R. B., Whiteham, G. C., and Chua, N. H. (1996). Far-red light blocks greening of *Arabidopsis* seedlings via a phytochrome A-mediated change in plastid development. *Plant Cell* 8, 601–615. doi: 10.1105/tpc.8.4.601

Baxter, C. J., Foyer, C. H., Turner, J., Rolfe, S. A., and Quick, W. P. (2003). Elevated sucrose-phosphate synthase activity in transgenic tobacco sustains photosynthesis in older leaves and alters development. *J. Exp. Bot.* 54, 1813–1820. doi: 10.1093/jxb/erg196

Bernier, G., and Perilleux, C. (2005). A physiological overview of the genetics of flowering time control. *Plant Biotechnol. J.* 3, 3–16. doi: 10.1111/j.1467-7652.2004.00114.x

Blasing, O. E., Gibon, Y., Gunther, M., Hohne, M., Morcuende, R., Osuna, D., et al. (2005). Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in *Arabidopsis*. *Plant Cell* 17, 3257–3281. doi: 10.1105/tpc.105.05261

Bolouri Moghaddam, M. R., and Van den Ende, W. (2013). Sugars, the clock and transition to flowering. *Front. Plant Sci.* 4:22. doi: 10.3389/fpls.2013.00022
Cardon, G., Hohmann, S., Klein, J., Nettekoven, K., Sauder, H., and Huisingh, P. (1999). Molecular characterisation of the Arabidopsis SBP-box genes. *Gene* 237, 91–104. doi: 10.1016/S0378-1119(99)00038-X

Catala, R., Medina, J., and Salinas, J. (2011). Integration of low temperature and light signaling during cold acclimation response in *Arabidopsis*. *Proc. Natl. Acad. Sci. U.S.A.* 108, 21457–21462. doi: 10.1073/pnas.1107161108

Chaves, I., Pokorny, R., Byrdin, M., Hoang, N., Ritz, T., Bretel, K., et al. (2011). The cryptochromes: blue light photoreceptors in plants and animals. *Annu. Rev. Plant Biol.* 62, 335–364. doi: 10.1146/annurev-plant-042110-103759

Chen, L. Q., Qu, X. Q., Hou, B. H., Sosso, D., Osorio, S., Fennie, A. R., et al. (2012). Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. *Science* 335, 207–211. doi: 10.1126/science.1213351

Chen, M., and Chory, J. (2011). Phytochrome signaling mechanisms and the control of plant development. *Trends Cell Biol.* 21, 664–671. doi: 10.1016/j.tcb.2011.07.002

Chen, X., Yao, Q., Gao, X., Jiang, C., Harberd, N. P., and Fu, X. (2016). Shoot-to-root mobile transcription factor H5Y coordinates plant carbon and nitrogen acquisition. *Curr. Biol.* 26, 640–646. doi: 10.1016/j.cub.2015.12.066

Chininska, I., Liesche, J., Krugel, U., Michalska, J., Geigenberger, P., Grimm, B., et al. (2008). Sucrose transporter SISUT4 from potato affects flowering, tuberization, and shade avoidance response. *Plant Physiol.* 146, 515–528. doi: 10.1104/pp.107.112334

Chow, B. Y., and Kay, S. A. (2013). Global approaches for telling time: omics and the *Arabidopsis* circadian clock. *Semin. Cell Dev. Biol.* 24, 383–392. doi: 10.1016/j.semcdb.2013.02.005

Christie, J. M. (2007). Phototropin blue-light receptors. *Annu. Rev. Plant Biol.* 58, 21–45. doi: 10.1146/annurev.arplant.58.032806.103951

Clack, T., Mathews, S., and Sharrock, R. A. (1994). The phytochrome apoprotein family in *Arabidopsis* is encoded by 5 genes: the sequences and expression of PHYD and PHYE. *Plant Mol. Biol.* 25, 413–427. doi: 10.1007/BF00438707

Corbesier, L., Vincent, C., Jang, S. H., Fornara, F., Fan, Q. Z., Searle, I., et al. (2007). Overlapping and distinct roles of PRR7 and PRR9 in the *Arabidopsis* circadian clock. *Curr. Biol.* 15, 47–54. doi: 10.1016/j.cub.2004.12.067

Fauxsey, B., Cameron, A., and Heins, R. (2001). Daily light integral, photoperiod, and vernalization affect flowering of Digitalis purpurea L.’Foxy’. *HortScience* 36:565.

Finkelstein, R. R., Wang, M. L., Lynch, T. J., Rao, S., and Goodman, H. M. (1998). The *Arabidopsis* abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. *Plant Cell* 10, 1043–1054. doi: 10.1105/tpc.10.6.1043

Fowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Morris, B., et al. (1999). GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in *Arabidopsis* and encodes a protein with several possible membrane-spanning domains. *EMBO J.* 18, 4679–4688. doi: 10.1093/emboj/18.17.4679

Frigo, G., Giacomelli, L., Ytterberg, A. J., Pellini, J. B., Rudella, A., Sun, Q., et al. (2004). In-depth analysis of the thylakoid membrane proteome of *Arabidopsis thaliana* chloroplasts: new proteins, new functions, and a plastid proteome database. *Plant Cell* 16, 478–499. doi: 10.1105/tpc.103.017814

Gagnon, S., and Dansecreau, B. (1989). Influence of light and photoperiod on growth and development of gerbera. *Acta Hort.* 272, 145–152.

Ghassemian, M., Lutes, J., Tepperman, J. M., Chang, H. S., Zhu, T., Wang, X., et al. (2006). Integrative analysis of transcript and metabolite profiling data sets to evaluate the regulation of biochemical pathways during photomorphogenesis. *Arch. Biochem. Biophys.* 448, 45–59. doi: 10.1016/j.abb.2005.11.020

Guo, H., Yang, H., Mockler, T. C., and Lin, C. (1998). Regulation of flowering time by *Arabidopsis* photoreceptors. *Science* 279, 1360–1363. doi: 10.1126/science.279.5355.1360

Harmer, S. L., Hogesen, J. B., Straume, M., Chang, H. S., Han, B., Zhu, T., et al. (2000). Orchestrated transcription of key pathways in *Arabidopsis* by the circadian clock. *Science* 290, 2110–2113. doi: 10.1126/science.290.5499.2110

Hayama, R., Sarid-Krebs, L., Richter, R., Fernandez, V., Jang, S., and Coupland, G. (2017). PSEUDO RESPONSE REGULATOR5 stabilizes CONSTANS protein to promote flowering in response to day length. *EMBO J.* 36, 904–918. doi: 10.15252/embj.201693907

Haydon, M. J., Mielczarek, O., Robertson, F. C., Hubbard, K. E., and Webb, A. A. (2013). Photosynthetic entrainment of the *Arabidopsis thaliana* circadian clock. *Nature* 502, 689–692. doi: 10.1038/nature12603

Hazen, S. P., Schultz, T. F., Pruneda-Paz, J. L., Borevitz, J. O., Ecker, J. R., and Kay, S. (2005). LUX ARRHYTHMO encodes a Myb domain protein essential for circadian rhythms. *Proc. Natl. Acad. Sci. U.S.A.* 102, 10387–10392. doi: 10.1073/pnas.0503029102

Herrero, E., Kolmos, E., Bujdoso, N., Yuan, Y., Wang, M., Berns, M. C., et al. (2012). EARLY FLOWERING4 recruitment of EARLY FLOWERING3 in the nucleus sustains the *Arabidopsis* circadian clock. *Plant Cell* 24, 428–443. doi: 10.1105/tpc.111.1093807

Huang, W., Perez-Garcia, P., Pokhliko, A., Millar, A. J., Antoschekchin, I., Riechmann, J. L., et al. (2012). Mapping the core of the *Arabidopsis* circadian clock defines the network structure of the oscillator. *Science* 336, 75–79. doi: 10.1126/science.1219075

Huisingh, C., Kortstee, A., Pego, J., Weisbeek, P., Wisman, E., and Smeekens, S. (2000). The *Arabidopsis* SUCROSE UNCOPLED-6 gene is identical to ABSICIC ACID INSENSITIVE5: involvement of abscisic acid in sugar responses. *Plant J.* 23, 577–585. doi: 10.1046/j.1365-313x.2000.00822.x

Ito, S., Niwa, Y., Nakamichi, N., Kawamura, H., Yamashino, T., and Mizuno, T. (2008). Insight into missing genetic links between two evening-expressed pseudo-response regulator genes TOC1 and PRR5 in the circadian clock-controlled circuitry in *Arabidopsis thaliana*. *Plant Cell Physiol.* 49, 201–213. doi: 10.1093/pcp/pcm178

Jenkins, G. I. (2014). The UV-B photoreceptor UVR8: from structure to physiology. *Plant Cell* 26, 21–37. doi: 10.1105/tpc.113.119446

Johnson, E., Bradley, M., Harberd, N. P., and Whitelam, G. C. (1994). Photoreponses of light-grown phyA mutants of *Arabidopsis* (phytochrome A).
A is required for the perception of daylength extensions). Plant Physiol. 105, 141–149. doi: 10.1104/pp.105.1.141

Jumtee, K., Okazawa, A., Harada, K., Fukusaki, E., Takano, M., and Kobayashi, A. (2009). Comprehensive metabolite profiling of phyA phyB phyC triple mutants to reveal their associated metabolic phenotype in rice leaves. J. Biosci. Bioeng. 108, 151–159. doi: 10.1263/jjbs.2009.0.010

Jung, J. H., Sea, Y. H., See, P. J., Reyes, J. L., Yun, J., Chua, N. H., et al. (2007). The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 19, 2736–2748. doi: 10.1105/tpc.107.054528

Kami, C., Lorrain, S., Hornitschek, P., and Fankhauser, C. (2010). Light-regulated plant growth and development. Curr. Top. Dev. Biol. 91, 29–66. doi: 10.1016/S0070-2153(10)91002-8

Kaplan, F., and Guy, C. L. (2005). RNA interference of Arabidopsis beta-amylase8 prevents malsee accumulation under cold shock and increases sensitivity of PSI photochemical efficiency to freezing stress. Plant J. 44, 730–743. doi: 10.1111/j.1365-311X.2005.02565.x

Kaplan, F., Sung, D. Y., and Guy, C. L. (2006). Roles of β-amylase and starch breakdown during temperatures stress. Physiol. Plant. 126, 120–128. doi: 10.1111/j.1399-3054.2006.00604.x

Kardakis, I., Shulka, V. K., Ahn, J. H., Dagenais, N., Christensen, S. K., Nguyen, J. T., et al. (1999). Activation tagging of the floral inducer FT. Science 286, 1962–1965. doi: 10.1126/science.286.5446.1962

Kim, W. Y., Fujisawa, S., Suh, S. S., Kim, J., Kim, Y., Han, L., et al. (2007). ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature 449, 356–360. doi: 10.1038/nature06132

King, R., Hisamatsu, T., Goldschmidt, E. E., and Blundell, C. (2008). The nature of floral signals in Arabidopsis. I. Photosynthesis and a far-red photoreponse independently regulate flowering by increasing expression of FLOWERING LOCUS T (FT). J. Exp. Bot. 59, 3811–3820. doi: 10.1093/jxb/ern231

Knight, H., Thomson, A. J., and Mcwatters, H. G. (2008). Sensitive to freezing6 integrates cellular and environmental inputs to the plant circadian clock. Plant Physiol. 148, 293–303. doi: 10.1104/pp.108.123901

Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M., and Araki, T. (1999). A pair of related genes with antagonistic roles in mediating flowering signals. Science 286, 1960–1962. doi: 10.1126/science.286.5446.1960

Koornneef, M., Hanhart, C. J., and Vanderven, J. H. (1991). A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229, 57–66. doi: 10.1007/BF00264213

Koornneef, M., Rolff, E., and Spruit, C. (1980). Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L.) Get the document, find related information or use other SFX services. Z. Pflanzenphysiol. 100, 147–160. doi: 10.1007/s00443-288(80)0208-X

Kozuka, T., Horiguchi, G., Kim, G. T., Oghishi, M., Sakai, T., and Tsukaya, H. (2004). The different growth responses of the Arabidopsis thaliana leaf blade and the petiole during shade avoidance are regulated by Phytochromes and sugar. Plant Cell Physiol. 46, 213–223. doi: 10.1093/pch/pti106

Lao, N. T., Schonved, O., Mould, R. M., Hibberd, J. M., Gray, J. C., and Kavanagh, T. A. (1999). An Arabidopsis gene encoding a chloroplast-targeted beta-amylase. Plant J. 20, 519–527. doi: 10.1046/j.1365-313X.1999.00625.x

Lastdrager, J., Hansson, J., and Smeekens, S. (2014). Sugar signals and the control of plant growth and development. J. Exp. Bot. 65, 799–807. doi: 10.1093/jxb/eru474

Lauter, N., Kampani, A., Carlson, S., Goebel, M., and Moose, S. P. (2005). microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proc. Natl. Acad. Sci. U.S.A. 102, 9412–9417. doi: 10.1073/pnas.0503927102

Lee, H., Yoo, S. J., Lee, J. H., Kim, W., Yoo, S. K., Fitzgerald, H., et al. (2010). Genetic framework for flowering-time regulation by ambient temperature-sensitive miRNAs in Arabidopsis. Nucleic Acids Res. 38, 3081–3093. doi: 10.1093/nar/gkp1240

Lee, J., He, K., Stolc, V., Lee, H., Figueroa, P., Gao, Y., et al. (2007). Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. Plant Cell 19, 731–749. doi: 10.1105/tpc.106.047688
Mozley, D., and Thomas, B. (1995). Developmental and photobiological factors affecting photoperiodic induction in Arabidopsis thaliana Heynh Landsberg erecta. J. Exp. Bot. 46, 173–179. doi:10.1038/jxb.46.2.173

Nakamichi, N., Kiba, T., Henriques, R., Mizuno, T., Chua, N. H., and Sakakibara, H. (2010). PSEUDO-RESPONSE REGULATORS 9, 7, and 5 are transcriptional repressors in the Arabidopsis circadian clock. Plant Cell 22, 594–605. doi:10.1105/tpc.109.072892

Nakamichi, N., Kita, M., Niinuma, K., Ito, S., Yamashino, T., Mizoguchi, T., et al. (2007). Arabidopsis clock-associated pseudo-response regulators PRR9, PRR7 and PRR5 coordinately and positively regulate flowering time through the canonical CONSTANS-dependent photoperiodic pathway. Plant Cell Physiol. 48, 822–832. doi:10.1093/pcp/pcm056

Nelson, D., Lasswell, J., Rogg, L., Cohen, M., and Bartel, B. (2000). FK51, a clock-controlled gene that regulates the transition to flowering in Arabidopsis. Cell 101, 331–340. doi:10.1016/S0092-8674(00)80842-9

Niittyla, T., Messerli, G., Trevisan, M., Chen, J., Smith, A. M., and Zeeman, S. C. (2004). A previously unknown maltose transporter essential for starch post-transcriptional regulation in higher plants. Front. Plant Sci. 6:437. doi:10.1186/1471-2091-6-437

Park, J. Y., Canam, T., Kang, K. Y., Ellis, D. D., and Mansfield, S. D. (2008). Trehalose-6-phosphate : a previously unknown maltose transporter essential for starch post-transcriptional regulation in higher plants. Front. Plant Sci. 6:437. doi:10.1186/1471-2091-6-437

Penfield, S., and Hall, A. (2009). A role for multiple circadian clock genes in the response to signals that break seed dormancy in Arabidopsis. Plant Cell 21, 1722–1732. doi:10.1105/tpc.108.064022

Pérelleux, C., and Bernier, G. (2002). “The control of flowering: do genetical and physiological approaches converge?,” in Plant Reproduction, Annual Plant Reviews, eds S. D. O’Neill and J. A. Roberts (Sheffield: Sheffield Academic Press), 1–32.

Pesaresi, P., Scarfarenberg, M., Weigel, M., Granlund, I., Schroder, W. P., Finazzi, G., et al. (2009). Mutators, overexpressors, and interactors of Arabidopsis plastocyanin isoforms: revised roles of plastocyanin in photosynthetic electron flow and thylakoid redox state. Mol. Plant 2, 236–248. doi:10.1093/mp/ssn041

Pochillo, A., Fernandez, A. P., Edwards, K. D., Southern, M. M., Halliday, K. J., and Millar, A. J. (2012). The clock gene circuit in Arabidopsis includes a repressor with additional feedback loops. Mol. Syst. Biol. 8:574. doi:10.1038/msb.2012.6

Polge, C., and Thomas, M. (2007). SNF1/AMPK/SnRK1 kinases: global gene expression analysis reveals a family of Arabidopsis kinases involved in plant development. Trends Plant Sci. 12, 20–28. doi:10.1016/j.tplants.2006.11.005

Ponnu, J., Wahl, V., and Schmid, M. (2011). Trehalose-6-phosphate : a previously unknown maltose transporter essential for starch post-transcriptional regulation in higher plants. Front. Plant Sci. 6:437. doi:10.1186/1471-2091-6-437

Potter, I., Cao, Z., Doblin, A., and Chory, J. (1994). Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiol. 105, 1139–1149. doi:10.1104/pp.105.4.1139

Ren, M., Venglat, P., Qiu, S., Feng, L., Cao, Y., Wang, E., et al. (2012). Target of Périlleux, C., and Bernier, G. (2002). “The control of flowering: do genetical and physiological approaches converge?,” in Plant Reproduction, Annual Plant Reviews, eds S. D. O’Neill and J. A. Roberts (Sheffield: Sheffield Academic Press), 1–32.

Rizzi, L., Favory, J. I., Cloix, C., Faggionato, D., O’harra, A., Kaiserli, E., et al. (2011). Perception of UV-B by the Arabidopsis UVRS protein. Science 332, 103–106. doi:10.1126/science.1200660

Rolland, F., Baena-Gonzalez, E., and Sheen, J. (2006). Sugar sensing and signaling in plants: observed and gone merging mechanisms. Annu. Rev. Plant Biol. 57, 675–709. doi:10.1146/annurev.arplant.57.032905.105441

Romanowski, A., and Yanovsky, M. J. (2015). Circadian rhythms and post-transcriptional regulation in higher plants. Front. Plant Sci. 6:437. doi:10.3389/fpls.2015.00437

Sanchez, S. E., and Kay, S. A. (2016). The plant circadian clock: from a simple timekeeper to a complex developmental manager. Cold Spring Harb. Perspect. Biol. 8:a027748. doi:10.1101/cshperspect.a027748

Schaffer, R., Ramsay, N., Samach, A., Corden, S., Putterill, J., Carr, I. A., et al. (1998). The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93, 1219–1229. doi:10.1016/S0092-8674(00)81465-8

Schultz, T., Kiyosue, T., Yanovsky, M., Wada, M., and Kay, S. (2001). A role for LKP2 in the circadian clock of Arabidopsis. Plant Cell 13, 2659–2670. doi:10.1105/tpc.13.12.2659

Schulze, W. X., Reinders, A., Ward, J. M., Lalonde, S., and Frommer, W. B. (2003). Interactions between co-expressed Arabidopsis sucrose transporters in the split-ubiquitin system. BMC Biochem. 4:3. doi:10.1186/1471-2091-4-3

Schwarz, W., Grande, A. V., Bujdoso, N., Saedler, H., and Huijser, P. (2008). The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol. Biol. 67, 183–195. doi:10.1007/s11103-008-9310-x

Seo, P. J., Ryu, J., Kang, S. K., and Park, C. M. (2011). Modulation of sugar metabolism by an INDETERMINATE DOMAIN transcription factor contributes to photoperiodic flowering in Arabidopsis. J. Exp. Bot. 65, 418–429. doi:10.1093/jxb/err104

Sharkey, T. D., Vassey, T. L., Vanderveer, P. J., and Vierstra, R. D. (1991). Carbon metabolism enzymes and photosynthesis in transgenic tobacco (Nicotiana tabacum L.) having excess phytochrome. Plant Physiol. 101, 287–296. doi:10.1109/fsp.1991.141497

Shimshoni, I., and Volcani, B. (2000). Arabidopsis: a genetic model system. Cold Spring Harb. Perspect. Biol. 8:a027748. doi:10.1101/cshperspect.a027748

Smeekens, S. (2015). From leaf to kernel: trehalose-6-Phosphate signaling moves carbon in the field. Plant Physiol. 169, 912–913. doi:10.1104/pp.15.01177

Smeekens, S., and Hellmann, H. A. (2014). Sugar sensing and signaling in plants. Front. Plant Sci. 5:113. doi:10.3389/fpls.2014.00113

Suetugu, N., and Wada, M. (2013). Evolution of three LOV blue light receptor families in green plants and photosynthetic stramenopiles: phototropin, ZTL/FKF1/LKP2 and aureochrome. Plant Cell Physiol. 54, 8–23. doi:10.1093/pcp/pcs165

Telfer, A., Bollman, K. M., and Poethig, R. S. (1997). Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development 124, 645–654.

Telfer, A., and Poethig, R. S. (1998). HASTY: a gene that regulates the timing of shoot maturation in Arabidopsis thaliana. Development 125, 1889–1898.

Thomas, B. (2006). Light signals and flowering. J. Exp. Bot. 57, 3387–3393. doi:10.1093/jxb/erl071

Thomas, B., and Vince-Prue, D. (1997). Photoperiodism in Plants. San Diego, CA: Academic Press.
Arabidopsis thaliana pathways involved in light responses, flowering, and rhythms in cotyledon movements. Plant Cell, 16, 1550–1563. doi: 10.1105/tpc.109.073308

Tsukaya, H., Ohshima, T., Naito, S., Chino, M., and Komeda, Y. (1991). Sugar-dependent expression of the Chs-A gene for chalcone synthase from petunia in transgenic Arabidopsis. Plant Physiol. 97, 1414–1421. doi: 10.1104/pp.97.4.1414

Turck, F., furnara, F., and Coupland, G. (2008). Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu. Rev. Plant Biol. 59, 573–594. doi: 10.1146/annurev.arplant.59.032607.092755

Valverde, F., mouradov, A., poppe, W., Ravenscroft, D., samach, A., and Coupland, G. (2004). Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303, 1003–1006. doi: 10.1126/science.1091761

Van den Ende, W. (2014). Sugars take a central position in plant growth, development and stress responses. A focus on apical dominance. Front. Plant Sci. 5:313. doi: 10.3389/fpls.2014.00313

Van dijken, A. J., Schleupmann, H., and Smeekens, S. C. (2004). Arabidopsis trehalose-6-phosphate synthase 1 is essential for normal vegetative growth and transition to flowering. Plant Physiol. 135, 969–977. doi: 10.1104/pp.104.039743

Varkonyi-Gasic, E., Gould, N., Sandanayaka, M., sutherland, P., and Macdiarmid, N. E. (2014). Convergence of light and ABA signaling on the ABI5 promoter. Plant Cell Physiol. 56:10404197. doi: 10.1111/j.1365-313X.2011.04832.x

Wang, J.-W., Czech, B., and Weigel, D. (2009). miR156-regulated SPL SBP-Box transcription factor SPL3 is a direct target of the bHLH transcription factor SQUAMOSA促进者밍원리프(SPL1). Plant Cell, 21, 2156–2170. doi: 10.1105/tpc.109.075606

Zeevaart, J. A. D. (1985). “Bryophyllum, “ in Lights to Leaves (Boca Raton, FL: CRC Press Inc), 89–100.

Zhang, D., armitage, A., Affolter, J., and Dirr, M. (1996). Environmental control of flowering time. Genes Dev. 20, 1231–1243. doi: 10.1105/tpc.110.079343

Yamaguchi, A., Kobayashi, Y., goto, K., Abe, M., and Araki, T. (2005). TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT. Plant Cell Physiol. 46, 1173–1189. doi: 10.1093/pcp/pci151

Yanovsky, M. J., Alconada-Maglione, T. M., Mazza, A., Gatz, C., Thomas, B., and Casal, J. J. (1998). Phytocrome A affects stem growth, anthocyanin synthesis, sucrose-phosphate-synthase activity and neighbour detection in sunlight-grown potato. Planta 205, 235–241. doi: 10.1007/s00425005-0316

Yanovsky, M. J., and Kay, S. A. (2002). Molecular basis of seasonal time measurement in Arabidopsis. Nature 419, 308–312. doi: 10.1038/nature00996

Yant, L., Mathieu, J., Dinh, T. T., Ott, F., Lanz, C., Wollmann, H., et al. (2010). Archaebacterial circadian clock mediates circadian rhythms and suppresses its own expression. Proc. Natl. Acad. Sci. USA 107, 93, 1207–1217. doi: 10.1073/pnas.1005933

Zhang, H., He, H., Wang, X., Yang, X., Li, L., et al. (2011). Genome-wide mapping of the HIG-mediated gene networks in Arabidopsis that involve both transcriptional and post-transcriptional regulation. Plant J. 65, 346–358. doi: 10.1111/j.1365-313X.2010.04426.x

Zhang, Y., Primavesi, L. F., Ibbre, D., Andralojc, P. J., Mitchell, R. A., Powers, S. J., et al. (2009). Inhibition of SNF1-related protein kinase activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiol. 149, 1860–1871. doi: 10.1104/pp.108.133934

Conflict of Interest Statement: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Matsoukas. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
NOMENCLATURE

The following nomenclature will be used in this article:

- Names of genes are written in italicized upper-case letters, e.g., CRY2.
- Names of proteins are written in non-italicized upper-case letters, e.g., CRY2.
- Names of mutants are written in italicized lower-case letters, e.g., cry2.