Table of contents

1. Meta-analysis of Observational Studies in Epidemiology Checklist 2
2. Included and excluded studies 9
3. Incidence estimates for deep venous thrombosis 24
4. Incidence estimates for venous thromboembolism 27
Part 1: Meta-analysis Of Observational Studies in Epidemiology (MOOSE) Checklist

Overall Goal
The specific aim of the project is to estimate the incidence of pulmonary embolism (PE) during hospitalization for COVID19 by performing a meta-analysis of the proportions of PE among published case series, cohort studies and controlled trials of hospitalized COVID19 patients. A secondary aim is to estimate the incidence of DVT and of VTE (the combined incidence of PE and DVT). The reason for doing the study is that the results might guide clinical decisions regarding the threshold for performing diagnostic studies and empiric treatment for acute PE. It may also inform decisions about the risk:benefit relationships regarding higher than standard doses of pharmacological prophylaxis.

Reporting of background
Problem definition
VTE has been reported in ranges from 0% to up to 53% of hospitalized or critically ill COVID19, which is higher than rates in non-COVID hospitalized patients, many hospitals use intensified thromboprophylaxis despite the absence of clear evidence regarding the risks and benefits of such measures.

Hypothesis statement
The rates of VTE among hospitalized COVID19 patients is comparable to the rate among similarly ill patients without COVID19. Among non-COVID hospitalized medical patients, the rate of PE is estimated at 3.9% and the rate of DVT is estimated at 6.7% (ACCP VTE prophylaxis guidelines 9th ed). Among patients in the ICU because of respiratory failure, the rate of PE is estimated at 18.7% and the rate of DVT is 19.9%. (Minet CCM 2012).

Description of study outcome(s)
Presentation with or development of objectively measured PE, with a secondary outcome of DVT and VTE.

Type of exposure or intervention used
Hospitalization for COVID-19, in ICU or in non-ICU wards

Type of study designs used
Case series, cohort studies, randomized control studies

Study population
Adults with COVID19 infection
Role of Project in the Overall Goal
A rigorous systematic review of published literature will provide the best available evidence regarding the actual incidences of PE, as well as DVT and VTE, during hospitalization for COVID19.

Methods

Reporting of search strategy
Qualifications of searchers
Licensed MDs with clinical training in pulmonary medicine, critical care medicine and hematology, as well as specialized training in literature review and data extraction.

Search strategy, including time period included in the synthesis and keywords
Search terms [(SARS-CoV2 OR COVID-19 OR Covid19) AND (trial OR series OR cohort OR incidence)] from December 1, 2019 to July 13, 2020.

Effort to include all available studies, including contact with authors
Peruse reference list of review manuscripts identified through the screening process (see below).

Databases and registries searched
U.S. National Library of Medicine MEDLINE database. The rationale for using MEDLINE as the sole database for the searches stems from its comprehensive nature (containing more than 30 million references) and the high-quality process by which the journal entries are selected, based on the recommendation of the Literature Selection Technical Review Committee (LSTRC) of the NIH and on separate NLM-initiated reviews, performed in consultation with an array of NIH and outside experts and external organizations with which NLM has or had special collaborative arrangements. (Source: https://www.nlm.nih.gov/pubs/factsheets/medline.html)

Search software used, name and version
PubMed search engine

Use of hand searching (eg, reference lists of obtained articles)
Peruse reference list of review manuscripts identified through the screening process

List of citations located and those excluded, including justification
Search strategy:
Search terms [(SARS-CoV2 OR COVID-19 OR Covid19) AND (trial OR series OR cohort OR incidence)] from December 1, 2019 to July 13, 2020.

Authors screen all study titles and abstracts and exclude those that do not include clinical data on adult patients with COVID-19.

Authors review the full text of the remaining articles and exclude those that met the following exclusion criteria.

Method of addressing articles published in languages other than English
None.

Method of handling abstracts and unpublished studies
None.

Description of any contact with authors
Email of authors with questions concerning study procedures

Screening method
Authors screen all study titles and abstracts and exclude those that do not include clinical data on adult patients with COVID19. The investigators record the number of the references from the total yield that were screened out for irrelevance on the basis of the title and abstract. The authors read the bibliography lists from review articles in the same fashion and included any additional references with clinical data from COVID19 patients.

The two authors review the full text of the remaining articles and exclude those that meet the exclusion criteria. The investigators record the number of references that are excluded.

The investigators apply predetermined criteria to exclude irrelevant manuscripts, relevant but poor-quality manuscripts and manuscripts that do not meet criteria for numerical inclusion in the results for other reasons. They record the number of manuscripts excluded by each criterion.

Inclusion Criteria: manuscripts with the following characteristics

1. The manuscript describes original primary clinical data from COVID-19 patients, rather than meta-analyses or literature reviews. (Literature reviews and meta-analyses will be saved so that their reference lists may be checked for additional studies.)
2. Population only includes patients >18 years of age
3. Articles must be written in English

Exclusion Criteria: Category of Quality

1. Not peer-reviewed
2. No defined study time interval
3. Did not describe and quantify hospitalized patients with confirmed diagnosis of COVID-19

Exclusion Criteria: Category of Imprecision

1. Did not describe a method whereby clinically detected VTE was tabulated
2. Did not report the VTE incidence (PE, DVT, or both) among the specified study population

Exclusion Criteria: Category of Enrichment of the Sample Population

1. Inclusion on the sample population was related to the clinical suspicion for VTE
2. Did not describe a consecutive case series or consecutive cohort studies or controlled trials with consecutive enrollment of subjects that met specific inclusion criteria

Studies excluded because of enrichment of the sample population are separately listed, along with a description of the method for enrichment.

The following characteristics do not result in exclusion of studies but are recorded and discussed as limitations

Limitation Characteristics

1. The study populations did not specify the proportions of non-ICU hospitalized patients and ICU patients (risk of imprecision)
2. Screening methods to initiate diagnostic work-up for VTE not specified (risk of bias)
3. Diagnostic methods for VTE not specified (risk of imprecision)
4. Thromboprophylaxis regimens not specified (risk of imprecision)
5. Thromboprophylaxis regimens were heterogenous within the study (risk of bias)
6. Thromboprophylaxis regimens were not standard for hospitalized or ICU patients (risk of bias)

Extraction method

Description of relevance or appropriateness of studies assembled for assessing the hypothesis to be tested

Independent evaluation by two reviewers that the studies met no exclusion criteria and met quality criteria for inclusion. A third reviewer arbitrates differences.

Rationale for the selection and coding of data
Selection and coding of data regarding the diagnoses of PE, DVT and VTE follow sound clinical principles agreed upon by all clinical authors prior to data extraction. Controversies regarding data extraction for particular manuscripts are settled by consensus decision after group discussion.

Documentation of how data are classified and coded

Two raters for each article independently highlight and underline data within manuscript that will be extracted.

Independent extraction into Excel datasheets and comparison of extracted data between the two reviewers.

Confirmation of extracted data compared to manuscript text and adjudication of disagreements by a third investigator.

Presentation of source data and excel data extraction to entire group for confirmation.

Assessment of confounding

Group discussion of how comparable each included study and its corresponding data are to the experimental question.

Assessment of study quality

Credibility of VTE diagnosis is decided by group consensus.

Potential for missing clinically important VTE within the study population is decided by group consensus.

Assessment of heterogeneity

Three outcome measures of incidence are treated separately: PE, DVT and VTE. The incidence for each study is estimated as $\hat{p} = \frac{x}{N}$ where x is the number of cases and N is the number of patients at risk. The variance is $\hat{p}(1 - \hat{p})/N$, and 95% confidence intervals are estimated for display in forest plots. (2) In cases where a zero event is recorded, add 0.1 to both x and N to avoid division by zero. An arcsine transformation ($\arcsine[\sqrt{\hat{p}}]$) is applied in order to stabilize the variance if the values of \hat{p} are strongly skewed. The variance of the transformed variable is $1/4N$ and the weight for each study is the inverse of the variance.

If ($\arcsine[\sqrt{\hat{p}}]$) is more than 3 standard deviations from the mean of the transformed distribution, then assumed that the study was drawn from a different population of studies, and exclude from subsequent analysis.

Combine estimates with random-effects method that accounts for heterogeneity between studies. (3) Summarize with the meta-analysis macro MA. (4) Back-transform the estimate, and its 95% confidence interval, to give the overall estimate of incidence and display in the forest plot. Assess heterogeneity by the I2 index. (5)
Analyze five relevant categorical variables: region (Europe, Asia, USA, Middle East, International), design (retrospective, prospective, mixed), observational (observational, interventional), site (single center, multicenter), ward/ICU (ward, ICU, both ward and ICU, other). Tabulate median and interquartile incidence for each category. Compare categories by the Wilcoxon or Kruskal-Wallis tests as appropriate. Fit meta-regression models to examine the effect of covariates on incidence. For each model the outcome is \(\text{arcsine}(\sqrt{\hat{p}}) \). The independent variables were a polynomial function of \(\log N \) and one categorical covariate. Display results as bubble plots where the size of the bubbles reflect the precision of each study.

Results

Yield of screening and exclusion

Summary of manuscript selection

Document the total number of manuscripts resulting from search of MEDLINE and the number of additional manuscripts identified through perusal of review manuscripts.

Document the number of manuscripts excluded for irrelevance.

Of the remaining manuscripts, document the number that met the inclusion and exclusion criteria listed above. Describe the studies excluded because of enrichment of the sample population.

Flow diagram of study selection.

Study data

Graphic summarizing individual study estimates and overall estimate

Bubble plots to illustrate the relationship between study precision and estimated incidence of PE and of DVT and VTE.

Separate bubble plots to illustrate the same relationship across categorical variables.

Forest plots to illustrate ranges and precision of reported incidence.

Table giving descriptive information for each study included

Summary table of study characteristics

Tables of subgroups for sensitivity testing

Statistical analysis of subgroups (described above)

Indication of statistical uncertainty of findings

Total incidence numbers and 95% CIs.

Incidence numbers and 95% CIs from the subgroups
Discussion
Quantitative assessment of bias and interpretation of the results regarding various forms of bias

Publication bias
Imprecision (not finding VTE if it was present)
Imprecision (study population not representative of hospitalized COVID19 population).

Justification for exclusion
Brief explanation of why some categories of study were excluded.

Assessment of quality of included studies
The overall impression of the study data.

Conclusions
Consideration of alternative explanations for observed results
Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review)

Potential for change in clinical practice

Guidelines for future research

Speculation

Disclosure of funding source

Methodological References
1. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. *JAMA: the journal of the American Medical Association*. 2000;283(15):2008-2012.
2. Clopper CJ, Pearson ES. The use of confidence or fiducial limits illustrated in the case of the binomial. *Biometrika*. 1934;26:404-413.
3. DerSimonian R, Laird N. Meta-analysis in clinical trials. *Control Clin Trials*. 1986;7(3):177-188.
4. Der G, Everitt B. *Applied medical statistics using SAS*. Boca Raton, FL: CRC Press; 2013.
5. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. *Stat Med*. 2002;21(11):1539-1558.
Part 2: Included and excluded studies

Author	Study	Design	Size	Location	Population	Anticoagulation
Al-Samkari(6)	Retrospective	Observational	Multi center	USA	Wards and ICU	Standard prophylaxis with LMWH or UFH (88.5%), intermediate or therapeutic dose (8.8%), mechanical prophylaxis (2.7%).
Artifoni(7)	Retrospective	Observational	Multi center	Europe	Wards	Study inclusion criterion was weight adjusted enoxaparin (40 mg/day for BMI < 30 kg/m², 60 mg/day for BMI 30 to 40 kg/m² and 40 mg twice daily for BMI > 40 kg/m²).
Beigel(8)	Prospective	Interventional	Multi center	International	Wards and ICU	No mention of anticoagulation.
Beun(9)	Retrospective	Observational	Single center	Europe	ICU	No mention of anticoagulation, only in group that had therapeutic dose for treatment of VTE.
Campochiaro(10)	Retrospective	Observational	Single center	Europe	Wards	All received thromboprophylaxis (enoxaparin 4000 UI daily).
Cattaneo(11)	Retrospective	Observational	Single center	Europe	Wards	All received 40 mg enoxaparin daily.
Criel(12)	Retrospective	Observational	Single center	Europe	Wards and ICU	All ICU patients received anticoagulation (Enoxaparin 2x40mg daily and if > 100 kg Enoxaparin 2x60mg daily). Non-ICU patients 94% received anticoagulation (Enoxaparin 1x40mg daily and if > 100 kg Enoxaparin 1x60mg daily).
Cui(13)	Retrospective	Observational	Single center	Asia	ICU	No anticoagulation was administered.
Davoudi-Monfared(14)	Prospective	Interventional	Single center	Middle East	Wards and ICU	Prophylaxis in 95.3% of patients, no regimen or dose specified.
Demelo-Rodriguez (15)	Prospective	Observational	Single center	Europe	Wards	Standard prophylactic dose of enoxaparin 40mg daily or bemiparin 3500 UI (98.1%), no anticoagulant (SCDs) because of high bleeding risk (1.9%).
----------------------	-------------	---------------	---------------	--------	-------	---
Desborough (16)	Retrospective	Observational	Single center	Europe	ICU	All on thromboprophylaxis (dalteparin daily) adjusted for renal failure or weight (less than 50 kg or more than 100 kg), 17% upgraded to treatment dose due to atrial fibrillation or ECMO.
Devreese (17)	Prospective	Observational	Single center	Europe	ICU	Thromboprophylaxis doses of LMWH or UFH (61.5%), therapeutic doses (32%) or none (6.5%).
Faggiano (18)	Retrospective	Observational	Single center	Europe	Wards	Mixture of thromboprophylaxis regimens: no prophylaxis (64%), enoxaparin 40mg once daily (20%), therapeutic doses (16%).
Fauvel (19)	Retrospective	Observational	Multi center	Europe	Wards and ICU	Mixture of no anticoagulation (21.5%), prophylactic dose of daily low molecular weight heparin or twice daily subcutaneous unfractionated heparin (59.5%), intermediate doses of double the preventive dose (8.0%), and therapeutic doses (10.9%).
Fraisse (20)	Retrospective	Observational	Single center	Europe	ICU	Usual/prophylactic dose of anticoagulant (46.7%) or full/therapeutic dose (53.2%) according to
Name	Study Type	Design	Location	Setting	Anticoagulation	
-------------------------------	--------------	----------	---------------	---------	-----------------	
Galeano-Valle (21)	Prospective	Observational	Single center	Europe	Wards	
					Thromboprophylaxis with enoxaparin 40 mg per day or bemiparin 3500 UI per day (99.3%).	
Goyal P (22)	Retrospective	Observational	Multi center	USA	Wards and ICU	
					No mention of anticoagulation.	
Grein (23)	Prospective	Interventional trial	Multi center	International	Wards and ICU	
					No mention of anticoagulation but suspect widely variable.	
Guo (24)	Retrospective	Observational	Multi center	Asia	Wards and ICU	
					No mention of anticoagulation	
Gupta (25)	Retrospective	Observational	Multi center	USA	ICU	
					Therapeutic anticoagulation (41.5%), the remainder are unspecified.	
Hegerova (26)	Prospective	Interventional trial	Multi center	USA	ICU	
					No mention of anticoagulation.	
Hekimian (27)	Retrospective	Observational	Single center	Europe	ICU	
					All except one had received anticoagulation before PE diagnosis of varying doses and medications.	
Helms (28)	Prospective	Observational	Multi center	Europe	ICU	
					Prophylactic dosed LMHW 4000 UI/day for LMWH or if contraindicated UFH at 5-8U/kg/h (70%), therapeutic heparin (30%).	
Hippensteel (29)	Retrospective	Observational	Single center	USA	ICU	
					Therapeutic anticoagulation during hospitalization (54.3%) for various reasons, including unconfirmed suspicion of VTE or clinician concern for hypercoagulability (21.7%), acute onset atrial fibrillation (4.3%), elevated troponin (2.2%).	
Huet (30)	Retrospective	Interventional trial	Single center	Europe	Wards and ICU	
					No mention of anticoagulation.	
Ibañez (31)	Prospective	Observational	Single center	Europe	ICU	
					All on thromboprophylaxis	
According to the local protocol (enoxaparin 40-60mg daily).

Study	Study Type	Study Design	Location	Setting	Anticoagulation	
Inciardi(32)	Retrospective	Observational	Single center	Europe	Wards and ICU	Anticoagulation not routinely performed in patients in sinus rhythm.
Khamis(33)	Retrospective	Observational	Multi center	Middle East	ICU	No mention of anticoagulation.
Klok(34)	Retrospective	Observational	Multi center	Europe	ICU	All patients received at least standard doses thromboprophylaxis, although regimens differed between hospitals and doses increased over time.
Koleilat(35)	Retrospective	Observational	Single center	USA	Wards and ICU	Mixture of thromboprophylaxis anticoagulation regimens, therapeutic anticoagulation and no anticoagulation.
Larsen(36)	Prospective	Observational	Single center	Europe	Wards and ICU	Thromboprophylaxis on unspecified dose of LMWH (80%).
Li(37)	Retrospective	Observational	Single center	Asia	Wards and ICU	No mention of anticoagulation.
Llitjos(38)	Retrospective	Observational	Multi center	Europe	ICU	Anticoagulant dose, left to the discretion of the treating physician, was either prophylactic anticoagulation (31%) or therapeutic anticoagulation with LMWH or UFH (69%).
Lodigiani(39)	Retrospective	Observational	Single center	Europe	Wards and ICU	All ICU patients received thromboprophylaxis with LMWH: the dosage was weight-adjusted in 17 patients and therapeutic in two patients on ambulatory treatment with direct oral anticoagulants. A total of 246 (75%) patients admitted to general wards.
received initial in-hospital thromboprophylaxis: a prophylactic dosage was used in 133 (41%) patients, 67 (21%) were treated with intermediate dosage thromboprophylaxis, and 74 (23%) received therapeutic dose anticoagulation, including 22 who continued ambulatory treatment for atrial fibrillation or prior VTE.

Longchamp (40)	Prospective	Observational	Single center	Europe	ICU	Thromboprophylaxis at higher than standard doses (92%): either continuous intravenous heparin infusion (15 000 IU/24 h, or 20 000 IU/24 h for patients >100 kg), or once-daily subcutaneous enoxaparin injections (40 mg, or 60 mg for patients >100 kg). Two patients (8%) were on chronic therapeutic anticoagulation for atrial fibrillation.
Maatman (41)	Retrospective	Observational	Multi center	USA	ICU	Thromboprophylaxis with either 5000U subcutaneous UFH every 8 hours, 40mg Enoxaparin daily or 30mg Enoxaparin twice per day (94%). Full dose anticoagulation for other comorbidities of VTE diagnosed at presentation (6%).
Mei (42)	Retrospective	Observational	Single center	Asia	Wards and ICU	All patients received VTE prophylaxis following standard protocols with LMWH or UFH or
Study	Design	Setting	Region	Location	Details		
Mestre-Gomez(43)	Retrospective	Observational	Single center	Europe	Wards	Thromboprophylaxis in patients admitted to general ward with COVID19, but doses and patient percentages not specified.	
Middeldorp(44)	Retrospective	Observational	Single center	Europe	Wards and ICU	Ward patients received thromboprophylaxis with nadroparin 2850 IU once daily or 5700 IU for patients with a body weight of ≥100 kg. From April 3 onwards, patients in ICU received nadroparin 2850 IU twice daily for patients with a body weight <100 kg and 5700 IU twice daily for those ≥100 kg.	
Nahum(45)	Prospective	Observational	Single center	Europe	ICU	All received anticoagulant prophylaxis at hospital admission however regimens and doses not specified.	
Pagnesi(46)	Retrospective	Observational	Single center	Europe	Wards	No mention of anticoagulation	
Poissy(47)	Retrospective	Observational	Single center	Europe	ICU	All patients received thromboprophylaxis according to current recommendations for critically ill patients.	
Rieder(48)	Prospective	Observational	Single center	Europe	Wards and ICU	Not specified aside from 12 patients who were on therapeutic anticoagulation.	
Santoliquido(49)	Prospective	Observational	Single center	Europe	Wards	All received prophylactic anticoagulation as per institution’s guidelines since first day of hospitalization (enoxaparin 40mg	
Study	Design	Type	Setting	Region	Location	Anticoagulation	Findings
-------	--------	------	---------	--------	----------	----------------	----------
Shah (50)	Retrospective	Observational	Single	Europe	ICU	No mention of anticoagulation.	
Shekhar (51)	Retrospective and prospective	Observational	Single	USA	Wards and ICU	Mention of thromboprophylaxis in those with bleeding events only.	
Soumagne (52)	Retrospective	Observational	Multi	Europe	ICU	Details of anticoagulant doses were not reported but all patients received at least preventative doses.	
Spiezia (53)	Retrospective	Observational	Single	Europe	ICU	All on anticoagulant prophylaxis, but heparin doses not specified. Excluded patients already on therapeutic anticoagulation.	
Stoneham (54)	Retrospective	Observational	Single	Europe	Wards	No mention of anticoagulation except for 3 patients who received therapeutic dose after diagnosis of VTE as an example of "heparin resistance."	
Tavazzi (55)	Retrospective	Observational	Single	Europe	ICU	All on thromboprophylaxis weight based.	
Thomas (56)	Retrospective	Observational	Single	Europe	ICU	All on thromboprophylaxis (dalteparin) adjusted for weight and renal function.	
Voicu (57)	Prospective	Observational	Single	Europe	ICU	All on anticoagulation: prophylactic enoxaparin (73%), prophylactic unfractionated heparin (14%), therapeutic anticoagulation (13%) for atrial fibrillation and ECMO (13%).	

Daily or fondaparinux 2.5mg daily. Excluded from study patients with indications for full anticoagulation.
Study	Design	Type	Setting	Region	Outcome	Notes
Wang (58)	Prospective	Interventional trial	Multi center	Asia	Wards and ICU	No mention of anticoagulation.
Whyte (59)	Retrospective	Observational	Single center	Europe	Wards and ICU	Standard anticoagulation in wards, intermediate dose in ICU.
Wright (60)	Retrospective	Observational	Single center	USA	ICU	All patients received thromboprophylaxis with at least enoxaparin between 40 and 60 mg/d or UFH between 10,000 and 15,000 units/d.
Zhang (61)	Retrospective	Observational	Single center	Asia	Wards	Prophylactic anticoagulant of unspecified dose (37.1%), therapeutic LMWH after positive ultrasound studies for DVT (41.3%).
Ziehr (62)	Retrospective	Observational	Multi center	USA	ICU	No mention of anticoagulation.

Table S1: Characteristics of included studies.
Herein, we present a series of eight confirmed cases of peripheral multifocal APE in a cohort of 20 hospitalized patients, who consecutively underwent CTPA between March 25 and April 21, 2020 because of abnormal D-Dimer levels (>1000 mg/L) and at least one among the following inclusion criteria: risk factors for APE, clinical signs of APE, severe pneumonia (requiring minimum oxygen support of 10 L/min and/or need for Non-Invasive Ventilatory Support, NIV)).

They were referred for CTPA at initial presentation because of hesitation between COVID-19 pneumonia and PE, after clinical probability assessment and D-dimer dosage, applying the same cut-off as for non-COVID patients.

A total of 172 patients were excluded due to no surveillance results on DVT or pharmacologic thromboprophylaxis before ICU admission.

"In patients with suspected or confirmed SARS-CoV-2 infection, chest CT scan was performed when clinical features of severe disease were present (e.g., requirement for mechanical ventilation [IMV]) or underlying comorbidities. Patients with non-contrast chest CT scans were excluded. “The main objective of our study was to evaluate pulmonary embolus in association with COVID-19 infection using pulmonary CT angiography."

"Of these 160 patients, 106 patients were classified as COVID-19 infection (97 patients by RT-PCR and 9 patients with positive CT and negative RT-PCR test). The reason for CT angiography in these patients was suspicion of pulmonary embolus in 67/106 (63%) patients and other CT indication in 39/106 (37%) patients."

"All patients according to internal protocol underwent a computed tomography pulmonary angiography (CTPA) to assess the pulmonary parenchyma and the possible occurrence of pulmonary vessels thrombosis (PVT). Furthermore, all patients underwent a Duplex scan of the veins and arteries of the upper and lower limbs to investigate the presence of peripheral thrombosis."

"During a one-month period, 328 patients positive on COVID-19 RT-PCR testing underwent pulmonary CT angiography."

"A manual chart review was conducted by the primary author (R.T.) on identified COVID-19 patients and who all underwent ultrasound evaluation for DVT were included...45 intubated patients with COVID-19 underwent ultrasound evaluation to identify DVT and were subsequently included in our study. “

Table S2. Studies excluded because the inclusion criteria were related to the clinical suspicion for PE, DVT or both.
Author	Incidence	Patient inclusion criteria from study
Grandmaison(71)	VTE 23/58 (39.6%), Distal DVT 21/58 (36.2%), Proximal DVT 7/59 (11.8%), PE 4/58 (6.9%)	Cross-sectional study of compression ultrasound screening and CTPA for suspected PE in all COVID19 patients present in a university hospital with ARDS or pneumonia on April 7, 2020.
Ren(72)	Distal DVT 36/48 (75%), Proximal DVT 5/48 (10.4%)	Cross-sectional study of compression ultrasound screening of all COVID19 patients present in two hospitals in Wuhan, China, from February 29, 2020 to March 2, 2020,

Table S3: Studies excluded because they did not include consecutive patients admitted to ICUs or non-ICU wards.
Included and excluded study references

1. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA : the journal of the American Medical Association. 2000;283(15):2008-12.
2. Clopper CJ, Pearson ES. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika. 1934;26:404-13.
3. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177-88.
4. Der G, Everitt B. Applied medical statistics using SAS. Boca Raton, FL: CRC Press; 2013. xv, 541 p. p.
5. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539-58.
6. Al-Samkari H, Karp Leaf RS, Dzik WH, Carlson ICT, Fogerty AE, Waheed A, et al. COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood. 2020;136(4):489-500.
7. Artifoni M, Danic G, Gautier G, Gicquel P, Bouteille D, Raffi F, et al. Systematic assessment of venous thromboembolism in COVID-19 patients receiving thromboprophylaxis: incidence and role of D-dimer as predictive factors. J Thromb Thrombolysis. 2020;50(1):211-6.
8. Beigel JH, Tomashek KM, Dodd LE. Remdesivir for the Treatment of Covid-19 - Preliminary Report. Reply. N Engl J Med. 2020;383(10):994.
9. Beun R, Kusadasi N, Sikma M, Westerink J, Huisman A. Thromboembolic events and apparent heparin resistance in patients infected with SARS-CoV-2. Int J Lab Hematol. 2020;42 Suppl 1:19-20.
10. Campochiaro C, Della-Torre E, Cavalli G, De Luca G, Ripa M, Boffini N, et al. Efficacy and safety of tocilizumab in severe COVID-19 patients: a single-centre retrospective cohort study. European journal of internal medicine. 2020;76:43-9.
11. Cattaneo M, Bertinato EM, Birocchi S, Brizio C, Malavolta D, Manzoni M, et al. Pulmonary Embolism or Pulmonary Thrombosis in COVID-19? Is the Recommendation to Use High-Dose Heparin for Thromboprophylaxis Justified? Thrombosis and haemostasis. 2020;120(8):1230-2.
12. Criel M, Falter M, Jaeken J, Van Kerrebroeck M, Lefere I, Meylaerts L, et al. Venous thromboembolism in SARS-CoV-2 patients: only a problem in ventilated ICU patients, or is there more to it? The European respiratory journal : official journal of the European Society for Clinical Respiratory Physiology. 2020;56(1).
13. Cui S, Chen S, Li X, Liu S, Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020;18(6):1421-4.
14. Davoudi-Monfared E, Rahmani H, Khalili H, Hajiabdolbaghi M, Salehi M, Abbassian L, et al. A Randomized Clinical Trial of the Efficacy and Safety of Interferon β-1a in Treatment of Severe COVID-19. Antimicrob Agents Chemother. 2020;64(9).
15. Demelo-Rodríguez P, Cervilla-Muñoz E, Ordieres-Ortega L, Parra-Virto A, Toledo-Macias M, Toledo-Samaniego N, et al. Incidence of asymptomatic deep
vein thrombosis in patients with COVID-19 pneumonia and elevated D-dimer levels. Thrombosis research. 2020;192:23-6.
16. Desborough MJR, Doyle AJ, Griffiths A, Retter A, Breen KA, Hunt BJ. Image-proven thromboembolism in patients with severe COVID-19 in a tertiary critical care unit in the United Kingdom. Thrombosis research. 2020;193:1-4.
17. Devreese KMJ, Linskens EA, Benoit D, Peperstraete H. Antiphospholipid antibodies in patients with COVID-19: A relevant observation? J Thromb Haemost. 2020.
18. Faggiano P, Bonelli A, Paris S, Milesi G, Bisegna S, Bernardi N, et al. Acute pulmonary embolism in COVID-19 disease: Preliminary report on seven patients. International journal of cardiology. 2020;313:129-31.
19. Fauvel C, Weizman O, Trimaille A, Mika D, Pommier T, Pace N, et al. Pulmonary embolism in COVID-19 patients: a French multicentre cohort study. Eur Heart J. 2020;41(32):3058-68.
20. Fraissé M, Logre E, Pajot O, Mentec H, Plantefève G, Contou D. Thrombotic and hemorrhagic events in critically ill COVID-19 patients: a French monocenter retrospective study. Critical care (London, England). 2020;24(1):275.
21. Galeano-Valle F, Oblitas CM, Ferreiro-Mazón MM, Alonso-Muñoz J, Del Toro-Cervera J, di Natale M, et al. Antiphospholipid antibodies are not elevated in patients with severe COVID-19 pneumonia and venous thromboembolism. Thrombosis research. 2020;192:113-5.
22. Goyal P, Choi JJ, Pinheiro LC, Schenck EJ, Chen R, Jabri A, et al. Clinical Characteristics of Covid-19 in New York City. N Engl J Med. 2020;382(24):2372-4.
23. Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, et al. Compassionate Use of Remdesivir for Patients with Severe Covid-19. N Engl J Med. 2020;382(24):2327-36.
24. Guo T, Shen Q, Guo W, He W, Li J, Zhang Y, et al. Clinical Characteristics of Elderly Patients with COVID-19 in Hunan Province, China: A Multicenter, Retrospective Study. Gerontology. 2020;66(5):467-75.
25. Gupta S, Hayek SS, Wang W, Chan L, Mathews KS, Melamed ML, et al. Factors Associated With Death in Critically Ill Patients With Coronavirus Disease 2019 in the US. JAMA Intern Med. 2020.
26. Hegerova L, Gooley TA, Sweerus KA, Maree C, Bailey N, Bailey M, et al. Use of convalescent plasma in hospitalized patients with COVID-19: case series. Blood. 2020;136(6):759-62.
27. Hékimian G, Lebreton G, Bréchot N, Luyt CE, Schmidt M, Combes A. Severe pulmonary embolism in COVID-19 patients: a call for increased awareness. Critical care (London, England). 2020;24(1):274.
28. Helms J, Tacquard C, Severac F, Leonard-Lorant I, Ohana M, Delabranche X, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive care medicine. 2020;46(6):1089-98.
29. Hippensteel JA, Burnham EL, Jolley SE. Prevalence of venous thromboembolism in critically ill patients with COVID-19. Br J Haematol. 2020;190(3):e134-e7.
30. Huet T, Beaussier H, Voisine O, Jouvesshomme S, Dauriat G, Lazareth I, et al. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol. 2020;2(7):e393-e400.

31. Ibañez C, Perdomo J, Calvo A, Ferrando C, Reverte JC, Tassies D, et al. High D dimers and low global fibrinolysis coexist in COVID19 patients: what is going on in there? J Thromb Thrombolysis. 2020.

32. Inciardi RM, Adamo M, Lupi L, Cani DS, Di Pasquale M, Tomasoni D, et al. Characteristics and outcomes of patients hospitalized for COVID-19 and cardiac disease in Northern Italy. Eur Heart J. 2020;41(19):1821-9.

33. Khamis F, Al-Zakwani I, Al Naamani H, Al Lawati S, Pandak N, Omar MB, et al. Clinical characteristics and outcomes of the first 63 adult patients hospitalized with COVID-19: An experience from Oman. J Infect Public Health. 2020;13(7):906-13.

34. Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers DAMP, Kant KM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thrombosis research. 2020;191:145-7.

35. Koleilat I, Galen B, Choinski K, Hatch AN, Jones DB, Billett H, et al. Clinical characteristics of acute lower extremity deep venous thrombosis diagnosed by duplex in patients hospitalized for coronavirus disease 2019. J Vasc Surg Venous Lymphat Disord. 2020.

36. Larsen K, Coolen-Allou N, Masse L, Angelino A, Allyn J, Bruneau L, et al. Detection of Pulmonary Embolism in Returning Travelers with Hypoxemic Pneumonia due to COVID-19 in Reunion Island. The American journal of tropical medicine and hygiene. 2020;103(2):844-6.

37. Li Y, Li H, Zhu S, Xie Y, Wang B, He L, et al. Prognostic Value of Right Ventricular Longitudinal Strain in Patients With COVID-19. JACC Cardiovasc Imaging. 2020.

38. Llitjos JF, Leclerc M, Chochois C, Monsallier JM, Ramakers M, Auvray M, et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J Thromb Haemost. 2020;18(7):1743-6.

39. Lodigiani C, Lapichino G, Carenzo L, Cecconi M, Ferrazzi P, Sebastian T, et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thrombosis research. 2020;191:9-14.

40. Longchamp A, Longchamp J, Manzocchi-Besson S, Whiting L, Haller C, Jeanneret S, et al. Venous thromboembolism in critically ill patients with COVID-19: Results of a screening study for deep vein thrombosis. Res Pract Thromb Haemost. 2020;4(5):842-7.

41. Maatman TK, Jalali F, Feizpour C, Douglas A, McGuire SP, Kinnaman G, et al. Routine Venous Thromboembolism Prophylaxis May Be Inadequate in the Hypercoagulable State of Severe Coronavirus Disease 2019. Critical care medicine. 2020;48(9):e783-e90.

42. Mei F, Fan J, Yuan J, Liang Z, Wang K, Sun J, et al. Comparison of Venous Thromboembolism Risks Between COVID-19 Pneumonia and Community-Acquired Pneumonia Patients. Arteriosclerosis, thrombosis, and vascular biology. 2020;40(9):2332-7.

43. Mestre-Gómez B, Lorente-Ramos RM, Rogado J, Franco-Moreno A, Obispo B, Salazar-Chiriboga D, et al. Incidence of pulmonary embolism in non-critically ill
COVID-19 patients. Predicting factors for a challenging diagnosis. J Thromb Thrombolysis. 2020.

44. Middeldorp S, Coppens M, van Haaps TF, Foppen M, Vlaar AP, Müller MCA, et al. Incidence of venous thromboembolism in hospitalized patients with COVID-19. J Thromb Haemost. 2020;18(8):1995-2002.

45. Nahum J, Morichau-Beauchant T, Daviaud F, Eccegut P, Fichet J, Maillet JM, et al. Venous Thrombosis Among Critically Ill Patients With Coronavirus Disease 2019 (COVID-19). JAMA Netw Open. 2020;3(5):e2010478.

46. Pagnesi M, Baldetti L, Beneduce A, Calvo F, Gramegna M, Pazzanese V, et al. Pulmonary hypertension and right ventricular involvement in hospitalised patients with COVID-19. Heart. 2020;106(17):1324-31.

47. Poissy J, Goutay J, Caplan M, Parmentier E, Duburcq T, Lassalle F, et al. Pulmonary Embolism in Patients With COVID-19: Awareness of an Increased Prevalence. Circulation. 2020;142(2):184-6.

48. Rieder M, Goller I, Jeserich M, Baldus N, Pollmeier L, Wirth L, et al. Rate of venous thromboembolism in a prospective all-comers cohort with COVID-19. J Thromb Thrombolysis. 2020;50(3):558-66.

49. Santoliquido A, Porfidia A, Nesci A, De Matteis G, Marrone G, Porceddu E, et al. Incidence of deep vein thrombosis among non-ICU patients hospitalized for COVID-19 despite pharmacological thromboprophylaxis. J Thromb Haemost. 2020.

50. Shah A, Frost JN, Aaron L, Donovan K, Drakesmith H, Collaborators. Systemic hypoferremia and severity of hypoxemic respiratory failure in COVID-19. Critical care (London, England). 2020;24(1):320.

51. Shekhar R, Sheikh AB, Upadhyay S, Atencio J, Kapuria D. Early experience with COVID-19 patients at academic hospital in Southwestern United States. Infect Dis (Lond). 2020;52(8):596-9.

52. Soumagne T, Lascarrou JB, Hraiech S, Horlait G, Higny J, d'Hondt A, et al. Factors Associated With Pulmonary Embolism Among Coronavirus Disease 2019 Acute Respiratory Distress Syndrome: A Multicenter Study Among 375 Patients. Crit Care Explor. 2020;2(7):e0166.

53. Spiezia L, Boscolo A, Poletto F, Cerruti L, Tiberio I, Campello E, et al. COVID-19-Related Severe Hypercoagulability in Patients Admitted to Intensive Care Unit for Acute Respiratory Failure. Thrombosis and haemostasis. 2020;120(6):998-1000.

54. Stoneham SM, Milne KM, Nuttall E, Frew GH, Sturrock BR, Sivaloganathan H, et al. Thrombotic risk in COVID-19: a case series and case-control study. Clin Med (Lond). 2020;20(4):e76-e81.

55. Tavazzi G, Civardi L, Caneva L, Mongodi S, Mojoli F. Thrombotic events in SARS-CoV-2 patients: an urgent call for ultrasound screening. Intensive care medicine. 2020;46(6):1121-3.

56. Thomas W, Varley J, Johnston A, Symington E, Robinson M, Sheares K, et al. Thrombotic complications of patients admitted to intensive care with COVID-19 at a teaching hospital in the United Kingdom. Thrombosis research. 2020;191:76-7.

57. Voicu S, Bonnin P, Stéphanian A, Chousterman BG, Le Gall A, Malissin I, et al. High Prevalence of Deep Vein Thrombosis in Mechanically Ventilated COVID-19 Patients. Journal of the American College of Cardiology. 2020;76(4):480-2.
58. Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet. 2020;395(10236):1569-78.
59. Whyte MB, Kelly PA, Gonzalez E, Arya R, Roberts LN. Pulmonary embolism in hospitalised patients with COVID-19. Thrombosis research. 2020;195:95-9.
60. Wright FL, Vogler TO, Moore EE, Moore HB, Wohlauer MV, Urban S, et al. Fibrinolysis Shutdown Correlation with Thromboembolic Events in Severe COVID-19 Infection. Journal of the American College of Surgeons. 2020;231(2):193-203.e1.
61. Zhang L, Feng X, Zhang D, Jiang C, Mei H, Wang J, et al. Deep Vein Thrombosis in Hospitalized Patients With COVID-19 in Wuhan, China: Prevalence, Risk Factors, and Outcome. Circulation. 2020;142(2):114-28.
62. Ziehr DR, Alladina J, Petri CR, Maley JH, Moskowitz A, Medoff BD, et al. Respiratory Pathophysiology of Mechanically Ventilated Patients with COVID-19: A Cohort Study. Am J Respir Crit Care Med. 2020;201(12):1560-4.
63. Bavaro DF, Poliseno M, Scardapane A, Belati A, De Gennaro N, Stabile Ianora AA, et al. Occurrence of Acute Pulmonary Embolism in COVID-19-A case series. Int J Infect Dis. 2020;98:225-6.
64. Bompard F, Monnier H, Saab I, Tordjman M, Abdoul H, Fournier L, et al. Pulmonary embolism in patients with COVID-19 pneumonia. The European respiratory journal : official journal of the European Society for Clinical Respiratory Physiology. 2020;56(1).
65. Chen S, Zhang D, Zheng T, Yu Y, Jiang J. DVT incidence and risk factors in critically ill patients with COVID-19. J Thromb Thrombolysis. 2020.
66. Grillet F, Behr J, Calame P, Aubry S, Delabrousse E. Acute Pulmonary Embolism Associated with COVID-19 Pneumonia Detected with Pulmonary CT Angiography. Radiology. 2020;296(3):E186-E8.
67. Léonard-Lorant I, Delabranche X, Séverac F, Helms J, Pauzet C, Collange O, et al. Acute Pulmonary Embolism in Patients with COVID-19 at CT Angiography and Relationship to d-Dimer Levels. Radiology. 2020;296(3):E189-E91.
68. Mazzaccaro D, Giacomazzi F, Giannetta M, Varriale A, Scaramuzzo R, Modafferi A, et al. Non-Overt Coagulopathy in Non-ICU Patients with Mild to Moderate COVID-19 Pneumonia. J Clin Med. 2020;9(6).
69. Poyiadji N, Cormier P, Patel PY, Hadied MO, Bhargava P, Khanna K, et al. Acute Pulmonary Embolism and COVID-19. Radiology. 2020;210955.
70. Trigoniis RA, Holt DB, Yuan R, Siddiqui AA, Craft MK, Khan BA, et al. Incidence of Venous Thromboembolism in Critically Ill Coronavirus Disease 2019 Patients Receiving Prophylactic Anticoagulation. Critical care medicine. 2020;48(9):e805-e8.
71. Grandmaison G, Andrey A, Périard D, Engelberger RP, Carrel G, Doll S, et al. Systematic Screening for Venous Thromboembolic Events in COVID-19 Pneumonia. TH Open. 2020;4(2):e113-e5.
72. Ren B, Yan F, Deng Z, Zhang S, Xiao L, Wu M, et al. Extremely High Incidence of Lower Extremity Deep Venous Thrombosis in 48 Patients With Severe COVID-19 in Wuhan. Circulation. 2020;142(2):181-3.
Part 3: Incidence estimates for deep venous thrombosis

There were 38 incidence estimates of deep venous thrombosis (DVT). They ranged from 0.000 to 0.794, with a median of 0.082. After excluding the highest (outlier) value, the combined estimate was 0.062 (95%CI: 0.050, 0.075).

Figure S1. The incidence of DVT against the number of hospitalized COVID19 patients at risk. The size of each bubble is proportional to the study weight (1/variance), which reflects the precision of the study. Panel A. Estimated incidence of DVT incidence decreases with study sample size. Panel B. DVT incidence decreases with study sample size and varies with clinical location (white circles - non-ICU wards, black circles - ICU, grey circles - combination of ICU and non-ICU wards). Panel C. DVT incidence decreases with study sample size and varies with geographic location (white circles - Asia, black circles - Europe, grey circles - USA). Middle East and International were too few to be included in the regression model. Panel D. DVT incidence plotted against study size but does not vary with anticoagulation regimen (white circles – at least 95% of patients were on standard prophylaxis regimens, black circles – mixed prophylaxis regimens, grey circles – not specified).
	\hat{p}	Median	IQR	n	P-value for Wilcoxon or Kruskal-Wallis
Design:					
Retrospective	0.08	0.02, 0.17	12	0.808	
Prospective	0.07	0.02, 0.23	25		
Observational:					
Interventional	0.01	0.02, 0.23	3	0.071	
Observational	0.10	0.02, 0.23	34		
Site:					
Multi-site	0.02	0.01, 0.09	12	0.098	
Single-site	0.12	0.02, 0.23	25		
Geography:					
Asia	0.13	0.01, 0.41	6	0.472	
Europe	0.08	0.02, 0.14	24		
USA	0.21	0.07, 0.25	5		
Location:					
ICU	0.16	0.05, 0.25	18	0.047	
Wards	0.12	0.02, 0.15	6		
Wards and ICU	0.02	0.01, 0.07	10		

Table S3. Comparison of DVT incidence by potential categorical predictors.

Categories with two or fewer studies (e.g. ‘Middle East’ or ‘International’) were excluded.
Figure S2. Incidence of DVT among patients hospitalized for COVID19. The reported incidences of DVT among the included studies are represented by Forest plots.
Part 4: Incidence estimates for venous thromboembolism

There were 27 incidence estimates of VTE. They ranged from 0.0 to 0.415, with a median of 0.180. The combined estimate was 0.146 (95%CI: 0.117, 0.176).

Figure S3. The incidence of VTE against the number of hospitalized COVID19 patients at risk. The size of each bubble is proportional to the study weight (1/variance), which reflects the precision of the study. **Panel A.** Estimated incidence of VTE incidence decreases with study sample size. **Panel B.** VTE incidence decreases with study sample size and varies with clinical location (white circles - non-ICU wards, black circles - ICU, grey circles - combination of ICU and non-ICU wards). **Panel C.** VTE incidence decreases with study sample size and varies with geographic location (white circles - Asia, black circles - Europe, grey circles - USA). Middle East and International were too few to be included in the regression model. **Panel D.** VTE incidence plotted against study size but does not vary with anticoagulation regimen (white circles – at least 95% of patients were on standard prophylaxis regimens, black circles – mixed prophylaxis regimens, grey circles – not specified).
	ˆp Median	IQR	n	P-value for Wilcoxon or Kruskal-Wallis
Design:				
Retrospective	0.18	0.03, 0.21	7	0.422
Prospective	0.17	0.08, 0.27	20	
Observational:				
Interventional	0.11	0.01, 0.20	2	
Observational	0.18	0.08, 0.26	25	
Site:				
Multi-site	0.18	0.09, 0.23	9	0.939
Single-site	0.17	0.05, 0.26	18	
Geography:				
Asia	0.21	0.01, 0.41	4	0.789
Europe	0.15	0.08, 0.22	15	
USA	0.23	0.09, 0.26	7	
Location:				
ICU	0.23	0.18, 0.28	14	0.026
Wards	0.13	0.03, 0.42	3	
Wards and ICU	0.05	0.02, 0.12	9	

Table S3. Comparison of VTE incidence by potential categorical predictors.

Categories with two or fewer studies (e.g. ‘Middle East’ or ‘International’) were excluded.
Figure S4. Incidence of VTE among patients hospitalized for COVID19. The reported incidences of VTE among the included studies are represented by Forest plots.