REVIEW

Pure drug nano-assemblies: A facile carrier-free nanoplatform for efficient cancer therapy

Shuwen Fua,y, Guanting Lib,y, Wenli Zangc, Xinyu Zhoud, Kexin Shie, Yinglei Zhaia,*

aSchool of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
bDepartment of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
cDepartment of Periodontology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang 110016, China
dBio-system Pharmacology, Graduate School of Medicine, Faculty of Medicine, Osaka University, Osaka 565-0871, Japan
eDepartment of Biomedical Engineering, School of Medical Device, Shenyang Pharmaceutical University, Shenyang 110016, China

Received 29 April 2021; received in revised form 24 June 2021; accepted 7 July 2021

KEY WORDS
Nanotechnology;

Abstract Nanoparticulate drug delivery systems (Nano-DDSs) have emerged as possible solution to the obstacles of anticancer drug delivery. However, the clinical outcomes and translation are restricted by several drawbacks, such as low drug loading, premature drug leakage and carrier-related toxicity.

Abbreviations: ABC, accelerated blood clearance; ACT, adoptive cell transfer; ATP, adenosine triphosphate; ATO, atovaquone; α-PD-L1, anti-PD-L1 monoclonal antibody; BV, Biliverdin; Ber, berberine; Ce6, chlorine e6; CTLs, cytotoxic T lymphocytes; CPT, camptothecin; CI, combination index; DOX, doxorubicin; dsRNA, double-stranded RNA; DPDNAs, dual pure drug nano-assemblies; DBNP, DOX-Ber nano-assemblies; DBNP@CM, DBNP were cloaked with 4T1 cell membranes; DCs, dendritic cells; EPR, enhanced permeability and retention; EGFR, epithelial growth factor receptor; EPI, epirubicin; FRET, Förster Resonance Energy Transfer; GEF, gefitinib; HCPT, hydroxycamptothecin; HMGB1, high-mobility group box 1; ICG, indocyanine green; IC\textsubscript{50}, half maximal inhibitory concentration; ICD, immunogenic cell death; ICB, immunologic checkpoint blockade; ITM, immunosuppressive tumor microenvironment; MPDNAs, multiple pure drug nano-assemblies; MDS, molecular dynamics simulations; MRI, magnetic resonance imaging; Nano-DDSs, nanoparticulate drug delivery systems; NIR, near-infrared; NSCLC, non-small cell lung cancer; NPs, nanoparticles; PDNAs, pure drug nano-assemblies; PPT, paclitaxel; PPa, pheophorbide A; PAI, photoacoustic imaging; PTT, photothermal therapy; PD, photodynamic therapy; PD-1, PD receptor 1; PD-L1, PD receptor 1 ligand; Poly I:C, polyriboinosinic:polyribocytidylic acid; QSNAP, quantitative structure-nanoparticle assembly prediction; RNA, ribonucleic acid; RBC, red blood cell; ROS, reactive oxygen species; SPDNAs, single pure drug nano-assemblies; TME, tumor microenvironment; TEM, transmission electron microscopy; TTZ, trastuzumab; Top I & II, topoisomerase I & II; TLR4, Toll-like receptor 4; TNBC, triple negative breast; TA, tannic acid; UA, ursolic acid; YSV, tripeptide tyroservatide; ZHO, Z-Histidine-Obzl.

*Corresponding author.
E-mail address: yingleizhai@syphu.edu.cn (Yinglei Zhai).
yThese authors made equal contributions to this work.

Peer review under responsibility of Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences.

https://doi.org/10.1016/j.apsb.2021.08.012
2211-3835 © 2022 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Cancer is always a global health threat to human beings. Through the fight with cancer in the past decades, various approaches have been built for cancer treatment, including surgery, drug therapy and biotherapy. Conventionally, surgery removal remains the preferred approach for localized tumors. However, for those metastatic tumors, the limitation of surgery is obvious because of the widespread metastatic lesions. Therefore, drug therapies, which could work systemically in both solid tumors and distant metastases, have played an irreplaceable role in cancer treatment. The anticancer drugs now comprise of chemotherapeutic drugs, photosensitizers and immunomodulatory molecules. Unfortunately, the clinical outcomes of the anticancer drugs are far from satisfactory, possibly owing to the quick clearance, narrow therapeutic window, inefficient tumor accumulation and serious off-target toxicity. In response, drug delivery technologies are highlighted for efficient cancer drug therapy.

Encouragingly, nanoparticulate drug delivery systems (Nano-DDSs) have emerged as potent solution to the obstacles of anticancer drug delivery. The nanosized particles exhibit distinct advantages including: (i) improving the solubility and chemical stability of the packaged drugs; (ii) prolonging the blood circulation time of the drugs; (iii) increasing the cellular uptake efficacy; (iv) targeting drug delivery to tumor sites by the well-known enhanced permeability and retention (EPR) effect or grafting targeting ligands. However, most Nano-DDSs usually encapsulate the drugs in carrier materials through intermolecular interactions, such as hydrophobic interactions. The drugs may lack of affinity with the carrier materials, leading to premature drug leakage. In addition, the oversized carrier materials limit the drug loading efficiency (usually less than 10%) and might bring the carrier-related toxicity. Furthermore, despite the advances of some novel Nano-DDSs, their preparation techniques could be too laborious for clinical translation.

Recently, pure drug nano-assemblies (PDNAs), fabricated by the self-assembly or co-assembly of pure drug molecules, have attracted considerable attention. Their facile and reproducible preparation technique helps to remove the bottleneck of nanomedicines including quality control, scale-up production and clinical translation. Acting as both carriers and cargos, the carrier-free PDNAs have an ultra-high or even 100% drug loading. In addition, combination therapies based on PDNAs could possibly address the most intractable problems in cancer treatment, such as tumor metastasis and drug resistance. In the present review, the latest development of PDNAs for cancer treatment is overviewed. First, PDNAs are classified according to the composition of drug molecules, and the assembly mechanisms are discussed. Furthermore, the co-delivery of PDNAs for combination therapies is summarized, with special focus on the improvement of therapeutic outcomes. Finally, future prospects and challenges of PDNAs for efficient cancer therapy are spotlighted.

Figure 1 Pure drug nano-assemblies for efficient cancer therapy.
2. Nano-assembly of pure drug molecules

PDNAs are intended to consist entirely of active drug molecules, without inactive molecules or chemicals. Depending on the composition of drug modules, PDNAs could be divided into three types: (i) single pure drug nano- assemblies (SPDNAs), which are self-assembled by single kind of drug modules; (ii) dual pure drug nano-assemblies (DPDNAs), which are co-assembled from dual kinds of drugs, and (iii) multiple pure drug nano-assemblies (MPDNAs), which are formed by the co-assembly of more than two kinds of drugs. The assembly of the drug modules is mainly driven by the noncovalent bond interactions, including hydrophobic interactions, intermolecular π–π stacking, hydrogen bonding, and electrostatic forces, etc. For some amphiphilic molecules, the hydrophilic groups could be exposed on the surface of the NPs, during the assembly process, to achieve 100% drug loading (e.g., irinotecan-SN38 nano-assemblies)26. As for hydrophobic molecules, due to the high surface free energy, a small amount of surfactants may be added to improve the colloidal stability22,25. The developed PDNAs for cancer therapy are summarized in Table 122,23,25,28. In this section, the three types of PDNAs will be introduced and we will take an insight into the assembly mechanisms of PDNAs.

2.1. Self-assembly of pure single drug

In aqueous solution, drug molecules would dissolve or precipitate into large aggregates. Interestingly, some drug molecules would spontaneously self-assemble into SPDNAs. For instance, DiR molecules could form uniform nano-assemblies using the simple one-step nanoprecipitation method (Fig. 2A)22. The addition of surfactant (DSPE-PEG2k, 20%, w/w) significantly improved the colloid stability of DiR nano-assemblies. Compared with DiR solution and DiR nano-assemblies, PEGylated DiR nano-assemblies had distinct therapeutic advantages in terms of cellular uptake efficacy and pharmacokinetic profiles, leading to the improved tumor accumulation. Therefore, PEGylated DiR nano-assemblies demonstrated strong photothermal antitumor activity. However, most antineoplastic drug molecules do not have a good self-assembly capability and special preparation methods were required such as precisely controlled temperature, suitable concentration, and ultrasound treatment, etc.29,30. Even so, oversized spherical or rod-shaped particles may be possibly obtained due to the excessive crystallization30,31.

In addition to finding the “proper” self-assembling molecules, another approach to construct SPDNAs is to utilize “proper” preparation methods. Different from the traditional methods, a novel ice-template assisted strategy was invented26. The detailed technical scheme was shown in Fig. 2B. A unique property of ice is that its grain boundaries contain relatively mobile water molecules behaving like liquid26–28. Therefore, the ice template was equivalent to a special aqueous solution. The ice-template-assisted strategy could apply to a series of drug molecules, including: curcumin, camptothecin, paclitaxel, 6-mercaptopurine, squaraine, methotrexate, teniposide and some of their derivatives. By simply adjusting the processing parameters, nano-assemblies with different sizes (~20–200 nm) could be controllably obtained. This novel approach had major advantages over the traditional nanoprecipitation method in mass production, size tunability, production costs and application range.

2.2. Co-assembly of dual drugs

The co-assembly of two different drug molecules could be described as an equilibrium of the intermolecular interactions between the two molecules. Compared with SPDNAs, DPDNAs showed distinct advantages in terms of the assembly capability. For example, single paclitaxel (PTX) self-assembled into unstable nanorods NPs with a with a length of 254.7 ± 119 nm and a width of 76.5 ± 21 nm30. In contrast, the co-assemblies of PTX and indocyanine green (ICG) were stable nanospheres (diameter: 112 ± 1.06 nm, PDI: 0.1)33. The similar example was the SPDNAs of hydroxycamptothecin (HCPT) and the DPDNAs of HCPT and doxorubicin (DOX)34–36. The ratio of the two molecules could also affects the morphology and stability of the nano-assemblies. It is known that HCPT alone would form large needle-shaped NPs in water37. When using ICG to co-assemble with HCPT, as the ratio of ICG increased, the ICG-HCPT nano-assemblies gradually shaped nice nanospheres (Fig. 3A)37. Finally, the molar ratio of 2:1 (HCPT to ICG) was found to form nano-assemblies with smallest particle size and PDI. Besides, red blood cell (RBC) membranes could be cloaked onto the surface of ICG-HCPT nano-assemblies to increase the biocompatibility and blood circulation time (Fig. 3A).

As we know, the tumor microenvironment (TME) is quite different from normal tissues, as a result of the uncontrollable tumor growth and metastasis65–67. One ubiquitous characteristic is the dysregulated pH value (pH 5.5–7.0) than normal tissues (pH 7.4)68,69. In some cases of DPDNAs, tumor-specific pH-responsiveness could be achieved dependent upon the structure of the drug molecules. For example, irinotecan-curcumin nano-assemblies showed tunable surface charges from –10 mV in normal physiological condition to +40 mV under the TME (Fig. 3B)38. This negative to positive charge conversion improved the tumor cellular uptake of the NPs. It was also reported that less than 20% of HCPT was released from the HCPT-ICG co-assemblies at pH 7.4 in 10 h, whereas the percentage increased to 80% at pH 5.537. Even after RBC membranes coating, more HCPT could still be released at low pH condition.

Apart from the common nanospheres and nanorods, PDNAs could also take the form of nanofibers. In a recent study, porphyrin and adenosine triphosphate (ATP) were co-assembled into supramolecular helical nanofibers39. As it is known, ATP is negatively charged30. The cationic molecules interacted with the planar π-systems of porphyrin through electrostatic interactions, leading to the formation of the unique nanofibers. Notably, ATP could be hydrolyzed by the over-expressed phosphatase enzymes in tumor sites to facilitate the controllable release. Furthermore, the ATP concentration in tumor sites is hundreds of times higher than that in normal tissues71,72. The overexpressed ATP could stabilize the porphyrin-ATP from premature de-assemble. In addition, as we know the NPs are generally internalized by tumor cells via the ATP-dependent endocytosis71,72, therefore the endogenous ATP coupled with the delivered extracellular ATP could further facilitate the cellular uptake of the nanofibers.

2.3. Co-assembly of multiple drugs

The co-assembly of multiple drugs could be more intricate than dual drugs because more drug molecules should reach an equilibrium of intermolecular interactions. There have been reports of
Drug 1	Drug 2	Drug 3	Ratio	Drug loading	Ref.
Curcumin	-	-	-	78%	25
Ursolic acid	-	-	-	-60%	29
DiR	-	-	-	80%	22
Camptothecin	-	-	-	74.8%	31
Hydroxycamptothecin	-	-	-	100%	32
Paclitaxel	-	-	-	88.5%	30
Doxorubicin	-	-	-	100%	32
Chlorin e6	-	-	-	90.47%	46
BMS-202	-	-	-	100%	47
Vitamin B12	-	-	-	-	48
Teniposide	-	-	-	100%	32
Squaraine	-	-	-	100%	32
Methotrexate	-	-	-	100%	32
H2TpyP	-	-	-	100%	32
6-mercaptopurine	-	-	-	100%	32
Teniposide	Paclitaxel	-	-	100%	32
H2TpyP	-	-	-	100%	32
Ursolic acid	Isothiocyanate	-	-	-	29
Hydroxycamptothecin	Doxorubicin	-	-	-100%	28,34,35
Irinotecan	SN38	-	-	~100%	38
Curcumin	-	-	-	~95%	38
Topotecan	Curcumin	-	-	-	49
Clopidogrel	Pheophorbide A	-	-	66.1%	50
Indocyanine green	Epirubicin	-	-	-92%	37
Hydroxycamptothecin	-	-	-	-92%	33
Paclitaxel	-	-	-	~100%	33
NLG919	-	-	-	-	33
Gefitinib	-	-	-	-	33
Sorafenib	-	-	-	-	33
Vandetanib	-	-	-	-	33
Probuloc	-	-	-	-	33
Bicalutamide	-	-	-	-	33
Celecoxib	-	-	-	-	33,51
Azelnidipine	-	-	-	-	45
Chlorin e6	Sorafenib	-	-	~100%	52
Doxorubicin	-	-	-	~100%	53
Hydroxycamptothecin	-	-	-	-	53
Fmoc-L-Lys	-	-	-	-100%	54
Diphenylalane	-	-	-	~100%	55
Erastin	-	-	-	~100%	47
Atovaquone	-	-	-	~100%	23
BMS-202	-	-	-	~100%	23
DiR	Chlorin e6	-	-	100%	23
Hypericin	-	-	-	100%	23
3-Bodipy-propanoic acid	-	-	-	100%	23
Zinc phthalocyanine	-	-	-	100%	56
Pheophorbide A	-	-	-	100%	57
Paclitaxel	Indomethacin	-	-	-	58
Poly I/C	-	-	-	67%	39
Gefitinib	Tyroservatide	-	-	~100%	59
Porphyrin	Adenosine triphosphate	-	-	~100%	60
Doxorubicin	Cestrol	-	-	~100%	61
Berberine	Trastuzumab	-	-	~100%	41
Bliverdin	Z-Histidine-Obz1	-	-	~100%	42
Camptothecin	Doxorubicin	-	-	-100%	43
Hydroxycamptothecin	Paclitaxel	-	-	~100%	44
Curcumin	Perylene	-	-	~100%	45
Indocyanine green	Paclitaxel	-	-	~100%	46
Tannic acid	-	-	-	~100%	47

*Not applicable.

The molar ratio is abbreviated as (m), and the mass ratio was abbreviated as (w).
MPDNAs such as camptothecin (CPT)-trastuzumab (TTZ)-DOX, PTX-HCPT-methotrexate (MTX), PTX-ICG-ursolic acid (UA), perylene-curcumin-H2TPyP, etc.40 It is noticeable that MPDNAs usually contains a self-assembling molecule, or a co-assembling molecule pair (e.g., CPT-DOX, ICG-PTX)33,35. Therefore, considering the different affinity between drug molecules, Xiong et al.44 reported a step-by-step assembling method. Firstly, DOX and tannic acid (TA) were mixed and co-assembled to form DT NPs via $\pi-\pi$ stacking and electrostatic interactions (Fig. 4A). Thereafter, ICG was added in the system to further co-assembled with DT NPs. Apart from $\pi-\pi$ stacking and electrostatic interactions, the hydroxyl group of DOX provided lone pair electrons to interact with N^+ of ICG, which induced the $n^*-\pi^*$ transition and led to the formation of the final DITG NPs (Fig. 4B). What is worth mentioning is that all three components of DITG NPs are water-soluble, and the whole preparation process avoided the use of organic solvents. Taking advantage of the reversible proton concentration changes of TA, DITG NPs showed special hydrophilic-hydrophobic conversion and size conversion capabilities (Fig. 5B). What is worth mentioning is that all three components of DITG NPs are water-soluble, and the whole preparation process avoided the use of organic solvents. Taking advantage of the reversible proton concentration changes of TA, DITG NPs showed special hydrophilic-hydrophobic conversion and size conversion capabilities (Fig. 5B). What is worth mentioning is that all three components of DITG NPs are water-soluble, and the whole preparation process avoided the use of organic solvents. Taking advantage of the reversible proton concentration changes of TA, DITG NPs showed special hydrophilic-hydrophobic conversion and size conversion capabilities (Fig. 5B). What is worth mentioning is that all three components of DITG NPs are water-soluble, and the whole preparation process avoided the use of organic solvents. Taking advantage of the reversible proton concentration changes of TA, DITG NPs showed special hydrophilic-hydrophobic conversion and size conversion capabilities (Fig. 5B). What is worth mentioning is that all three components of DITG NPs are water-soluble, and the whole preparation process avoided the use of organic solvents. Taking advantage of the reversible proton concentration changes of TA, DITG NPs showed special hydrophilic-hydrophobic conversion and size conversion capabilities (Fig. 5B). What is worth mentioning is that all three components of DITG NPs are water-soluble, and the whole preparation process avoided the use of organic solvents. Taking advantage of the reversible proton concentration changes of TA, DITG NPs showed special hydrophilic-hydrophobic conversion and size conversion capabilities (Fig. 5B). What is worth mentioning is that all three components of DITG NPs are water-soluble, and the whole preparation process avoided the use of organic solvents. Taking advantage of the reversible proton concentration changes of TA, DITG NPs showed special hydrophilic-hydrophobic conversion and size conversion capabilities (Fig. 5B). What is worth mentioning is that all three components of DITG NPs are water-soluble, and the whole preparation process avoided the use of organic solvents. Taking advantage of the reversible proton concentration changes of TA, DITG NPs showed special hydrophilic-hydrophobic conversion and size conversion capabilities (Fig. 5B). What is worth mentioning is that all three components of DITG NPs are water-soluble, and the whole preparation process avoided the use of organic solvents. Taking advantage of the reversible proton concentration changes of TA, DITG NPs showed special hydrophilic-hydrophobic conversion and size conversion capabilities (Fig. 5B). What is worth mentioning is that all three components of DITG NPs are water-soluble, and the whole preparation process avoided the use of organic solvents. Taking advantage of the reversible proton concentration changes of TA, DITG NPs showed special hydrophilic-hydrophobic conversion and size conversion capabilities (Fig. 5B). What is worth mentioning is that all three components of DITG NPs are water-soluble, and the whole preparation process avoided the use of organic solvents. Taking advantage of the reversible proton concentration changes of TA, DITG NPs showed special hydrophilic-hydrophobic conversion and size conversion capabilities (Fig. 5B). What is worth mentioning is that all three components of DITG NPs are water-soluble, and the whole preparation process avoided the use of organic solvents. Taking advantage of the reversible proton concentration changes of TA, DITG NPs showed special hydrophilic-hydrophobic conversion and size conversion capabilities (Fig. 5B). What is worth mentioning is that all three components of DITG NPs are water-soluble, and the whole preparation process avoided the use of organic solvents. Taking advantage of the reversible proton concentration changes of TA, DITG NPs showed special hydrophilic-hydrophobic conversion and size conversion capabilities (Fig. 5B).

2.4. Insight into the assembly mechanisms of pure drug nano-assemblies

The functional groups in the chemical structure of anticancer drug molecules induce the intermolecular interactions between drug molecules or drug and water molecules. For example, aromatic groups could induce $\pi-\pi$ stackings; aliphatic groups lead to hydrophobic interactions; ionic groups have electrostatic forces; hydroxyl or carboxyl group interacts via hydrogen bonding, and so on75-79. Usually, in aqueous solution, the anticancer drugs either aggregate into precipitation (aggregation, the forces between drugs dominate) or dissolve into solution (non-aggregation, the forces between drug and water dominate, Fig. 5A)80,81. PDNAS exist in the form of colloid in aqueous solution, that is, the two trends just reach a proper equilibrium (Fig. 5B). Such as DiR molecules, the aromatic heads could provide strong $\pi-\pi$ stacking forces for aggregation, while the long aliphatic tails could introduce steric hindrance in case of the over-aggregation into precipitation22. However, the self-assembly of single drug is relatively difficult. For example, although UA could be self-assembled, further ultrasonic processing was required29. In the case of co-assembly, the assembly could be easier with the help of other molecules to balance the intermolecular interactions (Fig. 5C). Hydrophobic drugs (e.g., DOX and ICG) need to increase the trend of aggregation, while hydrophobic drugs (e.g., PTX and HCPT) need to reduce the trend of aggregation33,34,44. It is not difficult to perceive that photosensitizers, such as ICG, chlorine e6 (Ce6), and pheophorbide A (PPa), could provide good co-assembly capability23,33,45. In a work, ICG was used as a template to co-assemble with a series of anticancer drugs including PTX, NLG919, gefitinib, sorafenib, vandetanib, probucol, bicalutamide, celecoxib and azelnidipine33. This is possibly owing to the conjugate structures of photosensitizers, which could produce strong $\pi-\pi$ stacking interactions between molecules82,83. Because of the strong $\pi-\pi$ stacking, the different drug molecules could have a good affinity and dock with each other by edge-to-face, offset or face-to-surface stacking to form aggregates simultaneously84,85. A major dilemma for PDNAS is that the assembly process is hardly to predict, execute and control. The searching for PDNAS is still through empirical or experimental screening. Fortunately,
with the development of computer science, molecular dynamics simulations (MDS) have been applied as a novel approach to investigate the intermolecular interactions. A quantitative structure-nanoparticle assembly prediction (QSNAP) model was proposed. Using indocyanine dyes to co-assemble with a series of hydrophobic drugs, the nano-assembly formulation and the particle size could be accurately predicted by QSNAP. Although the scope of such technology has yet to be widened, we still look forward to the emergence of a wild-applicable technic that could rationally predict and optimize PDNAs in the future.

3. Efficient combination cancer therapy based on pure drug nano-assemblies

Cancer is a complex adaptive system. Long-term use of one single drug could easily produce the phenomenon of drug resistance and lose therapeutic efficacy. Therefore, in both preclinical studies and clinical applications, combination therapy has indicated enhanced efficacy than mono therapy because it targets different key pathways synergistically or additively. The combined approach could potentially reduce adverse effect, reverse multi drug resistance, prevent...
tumor metastasis and relapse. Benefited by the special co-assembly capability, PDNAs could sufficiently co-deliver drug molecules for various combinations of tumor diagnosis, chemotherapy, phototherapy and immunotherapy. The possible combinations based on PDNAs have highlighted the anti-tumor advantages. In this section, we will focus on the combination therapies based on PDNAs, with focus on the enhancement of therapeutic effects.

3.1 Cancer theranostics

Theranostics Nano-DDSs could not only deliver therapeutic agents to targeting lesions, but also detect the in vivo destiny of the NPs. In cancer treatment, a rationally designed Nano-DDSs could help to reduce the off-target toxicity and improve the drug-delivery efficiency for precision medicine. Xing and coworkers developed a multimodal theranostics nanoplatform integrating both photoacoustic imaging (PAI), magnetic resonance imaging (MRI) and photothermal therapy (PTT) into one system (Fig. 6A). Biliverdin (BV) was chosen as photosensitizer for PTT and PAI agent for tumor diagnosis with high spatial resolution and penetration depth. Of note, BV was derived from heme catabolism and could be rapidly metabolized to bilirubin for bile and urine excretion, thereby exhibiting good biocompatibility. In addition, Z-Histidine-Obzl (ZHO), a metal-binding short peptide,
was utilized to bind Mn\(^+\) for MRI. BV and ZHO could co-assemble into ZB NPs, and further coordinated Mn\(^+\) to form ZBMn NPs. From the PAI and MRI imagines (Fig. 6B and C), the maximum accumulation of both ZB and ZBMn NPs was found to be 6 h post administration. Therefore, a wave of near-infrared (NIR) laser was treated 6 h post administration for PTT. Finally, ZBMn NPs successfully ablated human breast tumors with no recurrence during the 24 days of observation.

3.2. Combination chemotherapy

Chemotherapy is still the mainstay of cancer therapy\(^ {105,106}\). However, the efficacy of chemotherapy is restricted by the severe side effects and multidrug resistance\(^ {107} – 109\). Combination chemotherapy using two or multiple chemotherapeutics, which kills cancerous cells via different working sites or mechanisms, holds the promise to solve the obstacles\(^ {110,111}\). For example, HCPT inhibits the activity of a topoisomerase I (top I) enzyme to induce DNA damage, and DOX intercalates between DNA base pairs and inhibits topoisomerase II (top II) enzyme to interference with DNA synthesis\(^ {112,113}\). As reported, the top I inhibitor could reverse the drug resistant of top II resistant cells. Therefore, DOX-HCPT nano-assemblies showed potent proliferation inhibition of MCF-7R multidrug resistant cells\(^ {34}\). Besides, gefitinib (GEF) was co-assembled with tripeptide tyroservatide (YSV) to construct GEF-YSV nano-assemblies\(^ {58}\). GEF could inhibit epithelial growth factor receptor (EGFR) to induce the apoptosis of cancer cells, and YSV could interrupt the cell cycles and suppress the activity of histone deacetylase\(^ {114,115}\). Both GEF and YSV were highly selective to tumor cells, and showed low toxicity against normal cells. Finally, GEF-YSV nano-assemblies effectively prohibited the growth of non-small cell lung cancer (NSCLC) without additional toxicity burden.

A paradox of chemotherapy is that not only does it control tumors, it may also promote tumor progression\(^ {116,117}\). For example, DOX-exacerated breast cancer metastasis was reported to correlate with the activation of toll-like receptor 4 (TLR4), which is triggered by high-mobility group box 1 (HMGB1)\(^ {108,109}\). Berberine (Ber), an anticancer alkaloid, has been demonstrated as an HMGB1-TLR4 axis regulator\(^ {118,119}\). In response, DOX-Ber nano-assemblies (DBNP) were developed for defeating chemotherapy-exacerbated breast cancer metastasis (Fig. 7A)\(^ {60}\). In addition, DBNP were cloaked with 4T1 cell membranes (DBNP@CM).

Compared with DBNP, DBNP@CM displayed much higher tumor accumulation efficiency (Fig. 7B), benefitting from the homing effect. As a result, DBNP@CM showed favorable inhibition of tumor growth and even metastasis (Fig. 7C).

In addition to the combination of dual chemotherapeutics, Barua and Mitragotri\(^ {40}\) designed CPT-TTZ-DOX nano-assemblies for triple chemotherapy. When the CPT-TTZ-DOX NPs were internalized into tumor cells, monoclonal antibody TTZ was recycled to the plasma membranes, leaving CPT in the perinuclear region and delivering DOX into the nucleus. The three drugs respectively worked on their targeting sites, and had a great synergistic effect with a combination index (CI) of 0.17 ± 0.03 on BT-474 cells. The half maximal inhibitory concentration (IC\(_{50}\)) of CPT-TTZ-DOX NPs was 10–10000-fold lower than that of individual drugs. Besides, TTZ, CPT and DOX would arrest cells in the G0/G1, S, or G2/M phases, respectively\(^ {121–124}\). The co-delivery of CPT-TTZ-DOX NPs significantly reversed the cell cycle arrest, compared with single TTZ and TTZ-CPT NPs.

3.3. Combination phototherapy

Phototherapy, including photodynamic therapy (PDT) and PTT, is a promising non-invasive approach for cancer treatment\(^ {125}\). PTT raises the local temperature to promote cell necrosis, and PDT produces reactive oxygen species (ROS) to induce cell apoptosis\(^ {126,127}\). One hindrance of the clinical translation of phototherapy is the severe phototoxicity\(^ {128}\). The patients treated with phototherapy have to avoid the exposure to light before the complete excretion of photosensitizers\(^ {129}\). For better therapeutic effect and lower side effect, a Forster Resonance Energy Transfer (FRET) photosensitizer pairs was co-assembled for cascade-activatable PTT/PDT (Fig. 8A)\(^ {23}\). Ce6 was chosen as FRET donor and DiR served as FRET acceptor. In the nano-assemblies of Ce6@DiR, Ce6 could be quenched by DiR by the FRET interaction, the photosensitivity of which was thus “turned off”. Only when DiR was first photobleached by 808 nm laser, the PDT of Ce6 would be “turned on”. Moreover, erythrocyte camouflaged coating (Ce6@DiR-M NPs) was utilized to improve the pharmacokinetic behaviors. Compared with Ce6@DiR NPs and Ce6@DiR-PEG NPs (PEGylated), Ce6@DiR-M NPs not only had the longest blood circulation time, but also avoided the accelerated
blood clearance (ABC) effect of the PEGylation formulation. The advantage could be attributed to the immune escape of erythrocyte camouflage, which expressed the "don’t eat me" marker CD47\cite{130}. Overall, the proliferation of triple negative breast cancer (TNBC) was significantly inhibited by Ce6@DiR-M NPs.

3.4. Combination of chemotherapy with phototherapy

Phototherapy has shown a promising synergy with chemotherapy in terms of therapeutic outcomes for cancer treatment\cite{131,133}. In response, a series of PDNAs were developed for chemotherapy in combination with PTT or PDT\cite{12,52,54}. For instance, Li and co-workers\cite{50} developed epirubicin (EPI)-ICG nano-assemblies for chemo-photothermal synergistic therapy. On one hand, ICG-induced PTT could ablate tumors by cell necrosis. The temperature in tumor sites of ICG-EPI NPs treated group could reach as high as 53.9 °C, much higher than that of 37.5 °C of free ICG group. As a result, the tumor permeability was increased, thereby facilitating the deep penetration of the NPs. On the other hand, the released EPI exerted cytotoxicity to kill tumor cells. Eventually, the EPI-ICG NPs magically eradicated TNBC without recurrence during the 21 days of treatment cycle, whereas chemotherapy or PTT alone could not completely cure tumors.

As for PDT, photosensitizers could efficiently generate reactive oxygen species (ROS), such as singlet oxygen (1O2), which could damage DNA and induce apoptosis\cite{134,135}. Therefore, the combination of PDT and DNA damage drugs always led to good synergies (e.g., Ce6-DOX nano-assemblies and Ce6-HCPT nano-assemblies)\cite{45,52}. However, it is well known that photodynamic therapy (PDT) requires the consumption of O2 to produce ROS, and it does not work well in hypoxic tumors\cite{136,137}. To solve the dilemma, Ce6 was co-assembled with an oxidative phosphorylation inhibitor...
(atovaquone, ATO) for O2-economized PDT against hypoxic tumors (Fig. 8B)\(^55\). As a mitochondrial complex III inhibitor, ATO interrupted the electron transport chain pathway and suppressed the activity of oxidative phosphorylation to decrease O2 consumption. The relieved hypoxia TME could in turn improved efficiency of PDT. After the treatment of ATO-Ce6 NPs, the majority of 4T1 tumors vanished, highlighting the superiority of the O2-economized PDT.

3.5. Combination of immunotherapy with other therapy

In the past decades, tumor immunotherapy has emerged and revolutionized cancer treatment\(^{138,139}\). The use of cytokine or checkpoint inhibitors, cancer vaccines or adoptive cell transfer (ACT) therapy strengthens or normalizes (suppresses or activates) the immune system of patients to inhibit tumors\(^{140,141}\). Immunotherapy is not only proved effective for primary tumors, but also prevents tumor metastasis and relapse of tumors\(^{142,143}\). The commonly used immunomodulatory molecules include small molecule drugs and antibody drugs\(^{141,144,145}\). Among them, some small molecule drugs could be rationally formulated into PDNAs.

Immunologic checkpoint blockade (ICB) immunotherapy is one of the most profound and successful immunotherapies in clinic, among which the most well-known pathway is the anti-programmed cell death (anti-PD) pathway, including PD receptor

Figure 9 (A\(_1\)) Molecular presentation and self-assembly of Ce6 and BMS-202. (A\(_2\)) Ce6/BMS-202 NPs potentiate PD-L1 blockade to induce systemic antitumor immunity for combination of ICB immunotherapy and PDT. Reprinted with the permission from Ref. 47. Copyright © 2019 John Wiley and Sons Group. (B\(_1\)) Self-assembly of PTX-ICG nano-assemblies. (B\(_2\)) Schematic illustration of PTX-ICG NPs for immuno-photochemo triple therapy. Reprinted with the permission from Ref. 33. Copyright © 2020 John Wiley and Sons Group. (C) Schematic illustration of the PNRplex for cytosolic targeting chemo-immunotherapy. Reprinted with the permission from Ref. 57. Copyright © 2021 Elsevier Inc.
1 (PD-1) and PD receptor 1 ligand (PD-L1)3,146,147. BMS-202 is a small molecule PD-1 inhibitor, which withstands the dimerization of PD-L1 protein, thereby preventing the formation of PD-1/PD-L1 complex148. BMS-202 could already self-assemble into uniform NPs (Fig. 9A\textsubscript{1})33. Besides, it could further co-assemble with Ceb to form Ceb/BMS-202 NPs. It was found that BMS-202 NPs alone could increase the maturation of dendritic cells (DCs) and infiltration of antigen-specific T cells into 4T1 tumors as well as anti-PD-L1 monoclonal antibody (α-PD-L1) (Fig. 9A\textsubscript{2}). Combined with ICB and PDT, Ceb/BMS-202 NPs significantly suppressed the growth of primary and distant tumors, owing to the augmentative immune cells such as CD8+ T cells, matured DCs, and memory T cells. The results revealed that small molecule PD-I inhibitors have the same clinical value as α-PD-L1.

Despite the advances of ICB therapy, the therapeutic performance could be limited by the immunosuppressive tumor microenvironment (ITM)149–151. Apart from novel immunomodulatory molecules, traditional chemotherapeutics were also startlingly able to reverse the ITM to benefit ICB therapy152–155. For instance, a low dose of PTX could reduce the intratumorally infiltrating regulatory T cells (T\textsubscript{reg}) and suppress the T\textsubscript{reg}-related immune inhibitory155,156. In addition, PDT could induce immunogenic cell death (ICD)157,158. The combination of ICB therapy with chemotherapy or PDT could further facilitate the intratumoral infiltration of cytotoxic T lymphocytes (CTLs) and overcome the ITM159–161. In response, PTX-ICG nano-assemblies were devised for immunophoto-chemo triple therapy (Fig. 9B\textsubscript{1} and B\textsubscript{2})33. The PTX-ICG NPs had good colloidal stability and could be lyophilized for long-time storage. Accompanied with α-PD-L1 treatment, PTX-ICG NPs efficiently suppressed TNBC and tumor relapse by promoting the intratumoral infiltration of CTLs through PDT-induced ICD and inhibiting the recruitment of T\textsubscript{reg} to relieve ITM.

Gene-based immunotherapy have been widely concerned due to the potent efficacy and little toxicity162,163. Ribonucleic acid (RNA), as one of the most important genetic molecules, showed great potential in the construction of anti-cancer drugs and cancer vaccines164,165. To illustrate, Du and coworkers37 designed a drug-delivering-drug system for the co-delivery of PTX and polyribonosinic-polyribocytidylic acid (Poly I:C) that is a safe synthetic analog of double-stranded RNA (dsRNA)166. Using a simple antisolvent-precipitation method, Poly I:C were coated on the self-assembled PTX nanorods. To further target mannose-receptor, α-mannuronic acids were used for final surface modification to form the PNR/Poly I:C complex (PNRplex) (Fig. 9C). The rod-shaped PNRplex were internalized into tumor cells via the caveolin-mediated endocytosis, thereby avoiding the enzyme breakdown in the endo-lysosomes and targeting cytoplasm167,168. Inside the cytoplasm, PTX induced the apoptosis of tumor cells and Poly I:C upregulated interferons, chemokines and inflammatory cytokines. Overall, the PNRplex markedly amplified the immune response including the maturation of DCs and the infiltration of CD4+ T cells and CD8+ T cells for the potent chemo-immunotherapy.

4. Conclusions

In this review, we overviewed the latest development of PDNAs. First, according to the composition of the drugs, PDNAs were classified and the assembly mechanisms were discussed. Afterwards, the combination therapies based on PDNAs were summarized with focus on the enhanced therapeutic outcomes. Herein, challenges and future prospects of PDNAs for efficient cancer therapy are outlined.

4.1. Challenges

PDNAs have shown the potentiality for efficient anticancer drug delivery. However, for their successful clinical application, there are still a multitude of problems to be solved. First, the determination of whether a molecule could be self-assembled or co-assembled still depends on empirical deduction or experimental screening. The self-assembly and co-assembly of PDNAs are generally governed by the equilibrium of the intermolecular forces. This process is difficult to observe and analyze. Fortunately, with the development of computer sciences, MDS have been built as a forecasting tool for elucidating the assembly of PDNAs. At present, MDS are still mostly used for validation, not prediction. The emergence of QSNAP is a chance, but there is still a long path to go before it becomes a utility tool. Furthermore, the optimization of PDNAs has usually pursued the finest formulation of NPs (considering particle size, PDI and colloidal stability). Under this circumstance, for DPNAs and MPDNAs, the finest formulation could hardly be the best synergistic ratio between the drugs. How to exert the best synergistic effect of PDNAs remains challenging. Last but not least, there are still many concerns about the translational studies and the gap between animal studies and human beings. In the scale-up production, will the particle size and PDI of PDNAs remain uniform? As PDNAs are mainly administered by intravenous injection, could PDNAs be sterilized without failure? What are the real pharmacokinetic behaviors and in vivo destiny of PDNAs in the human body? These problems as well as the self-assembly and synergistic effect of PDNAs are the future research highlights of PDNAs.

4.2. Future prospects

In response to the unsatisfactory performance of simple anticancer drugs and traditional Nano-DDS, the carrier-free PDNAs have emerged as a facile nanoplatform for efficient cancer therapy. PDNAs are a widely applicable nanoplatform, featured with both functional modification and translational potential. PDNAs have been widely used for mono therapy, and the combinations of tumor diagnosis, chemotherapy, phototherapy and immunotherapy. Their advantages including facile and reproducible preparation technique, ultra-high drug loading and efficient co-delivery behavior, demonstrate a promising nanomedicine for clinical oncology. The era of cancer immunotechnology has arrived. The progress of PDNAs in immunotherapy is also pretty eye-catching. With more research on PDNAs and parse on the delivery behavior, demonstrate a promising nanomedicine for clinical oncology. The era of cancer immunotechnology has arrived. The progress of PDNAs in immunotherapy is also pretty eye-catching. With more research on PDNAs and parse on the assembly mechanisms, we believe that there will be clinical trials and even medical products of PDNAs in the near future.

Acknowledgments

This work was supported by Liaoning Science & Technology project (2019-ZD-0465, China).

Author contributions

Shuwen Fu and Guanting Li mainly wrote the manuscript and contributed equally to the manuscript. Wenli Zang provided suggestions for the improvement of manuscript. Xinyu Zhou and Kexin Shi contributed to the correction of the manuscript. Yinglei Zhai contributed to the conception of the study and helped perform the analysis with constructive discussions.
The authors declare no conflicts of interest.

References

1. Sang H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jamal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71:209–49.

2. Neoptolemos JP, Kleeff J, Michl P, Costello E, Greenhalw F, Palmer DH. Therapeutic developments in pancreatic cancer: current and future perspectives. Nat Rev Gastroenterol Hepatol 2018;15:333–48.

3. Sawyers C. Targeted cancer therapy. Nature 2004;432:294–7.

4. Yun SH, Kwok SJ. Light in diagnosis, therapy and surgery. Nanoscale 2016;8:7538–61.

5. Si Y, Yuan P, Hu N, Wang X, Ju J, Wang J, et al. Primary tumor surgery for patients with de novo stage IV breast cancer can decrease local symptoms and improve quality of life. Ann Surg Oncol 2020;27:1025–33.

6. Alieva M, van Rheenen J, Broekman ML. Potential impact of invasive surgical procedures on primary tumor growth and metastasis. Clin Exp Metastasis 2018;35:319–31.

7. Yang F, Zhao Z, Sun B, Chen Q, Sun J, He Z, et al. Nanotherapeutics for antimetastatic treatment. Trends Canc 2020;6:645–59.

8. Sun B, Luo C, Cui W, Sun J, He Z. Chemotherapy agent-unsaturated fatty acid prodrugs and prodrug-nanoplatforms for cancer chemotherapy. J Control Release 2017;264:145–59.

9. Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L. Current challenges in cancer treatment. Clin Ther 2016;38:1551–66.

10. Haid WN. Anticancer drug development: the grand challenges. Nat Rev Drug Discov 2010;9:253–4.

11. Zhou X, Liu X, Huang L. Macrophage-mediated tumor cell phagocytosis: opportunity for nanomedicine intervention. Adv Funct Mater 2021;31:2006220.

12. Luo C, Sun J, Sun B, He Z. Polydrug-based nanoparticulate drug delivery strategies for cancer therapy. Trends Pharmaco 2024;35:556–66.

13. Sato Y, Nakamura T, Yamada Y, Harashima H. The nanomedicine rash: new strategies for unmet medical needs based on innovative nano DDS. J Control Release 2020;330:305–16.

14. Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2004;56:1649–59.

15. Peer D, Karp JM, Hong S, Farokhzad OC, Margulit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007;2:751–60.

16. Guo F, Fan Z, Yang J, Li Y, Wang Y, Zhao H, et al. A comparative evaluation of hydroxycamptothecin drug nanorods with and without methotrexate prodrug functionalization for drug delivery. Nano Res Lett 2016;11:1–7.

17. Zhang J, Nie W, Chen R, Chelora J, Wan Y, Cui X, et al. Green mass production of pure nanodrugs via an ice-template-assisted strategy. Nano Lett 2018;19:658–65.

18. Feng B, Niu Z, Hou B, Zhou L, Li Y, Hu E. Enhancing triple negative breast cancer immunotherapy by ICG-templated self-assembly of paclitaxel nanoparticles. Adv Funct Mater 2020;30:1906605.

19. Zhao Y, Chen F, Pan Y, Li Z, Xue X, Okeke CI, et al. Nanodrug formed by coassembly of dual anticancer drugs to inhibit cancer cell drug resistance. ACS Appl Mater Interfaces 2015;7:19295–305.

20. Chen F, Zhao Y, Pan Y, Xue X, Zhang X, Kumar A, et al. Synergistically enhanced therapeutic effect of a carrier-free HCPT/DOX nanodrug on breast cancer cells through improved cellular drug accumulation. Mol Pharm 2015;12:2237–44.

21. Li W, Yang Y, Wang C, Liu Z, Zhang X, An F, et al. Carrier-free, functionalized drug nanoparticles for targeted drug delivery. Chem Commun 2012;48:8120–2.

22. Ye S, Wang F, Fan Z, Zhu Q, Tian H, Zhang Y, et al. Light/pH-triggered biomimetic red blood cell membranes camouflaged small molecular drug assemblies for imaging-guided combinational chemo-photothermal therapy. ACS Appl Mater Interfaces 2019;11:15262–75.

23. Xiao H, Guo Y, Liu H, Liu Y, Wang Y, Li C, et al. Structure-based design of charge-conversional drug self-delivery systems for better targeted cancer therapy. Biomaterials 2020;232:119701.

24. Barua S, Mitragotri S. Synergistic targeting of cell membrane, cytoplasm, and nucleus of cancer cells using rod-shaped nanoparticles. ACS Nano 2021;15:4979–88.

25. Min Y, Caster JM, Eblan MJ, Wang AZ. Clinical translation of nanomedicine. Chem Rev 2015;115:11147–90.

26. Zhang X, Sun B, Zuo S, Chen Q, Gao Y, Zhao H, et al. Self-assembly of a pure photosensitizer as a versatile theragnoic nanoplatform for imaging-guided antitumor photothermal therapy. ACS Appl Mater Interfaces 2018;10:30155–62.

27. Zhang X, Xiong J, Wang K, Yu H, Sun B, Ye H, et al. Erithrocyte membrane-camouflaged carrier-free nanosystem of FRET photosensiter pairs with high therapeutic efficiency and high security for programmed cancer synergistic phototherapy. Bioact Mater 2021;6:2991–302.

28. Müller RH, Gohla S, Keck CM. State of the art of nanocrystals—special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm 2011;78:1–9.

29. Yang F, Zhao Z, Sun B, Chen Q, Sun J, He Z, et al. Chemotherapy agent-unsaturated fatty acid prodrugs and prodrug-nanoplatforms for cancer chemotherapy. J Control Release 2017;264:145–59.

30. Park I, Sun B, Yeo Y. Albumin-coated nanocrystals for carrier-free delivery of paclitaxel. J Control Release 2017;263:90–101.

31. Su C, Liu Y, Wu W, Fawcett JP, Gu J. Absorption, distribution, metabolism and excretion of the biomaterials used in nanocarrier drug delivery systems. Adv Drug Deliv Rev 2019;143:97–114.
41. Zhou M, Zhang X, Yang Y, Liu Z, Tian B, Jie J, et al. Carrier-free functionalized multidrug nanorods for synergetic cancer therapy. *Biomaterials* 2013;34:8960–7.

42. Guo Y, Jiang K, Shen Z, Zheng G, Fan L, Zhao R, et al. A small molecule nanodrug by self-assembly of dual anticancer drugs and photosensitizer for synergetic near-infrared cancer theranostics. *ACS Appl Mater Interfaces* 2017;9:43508–19.

43. Zhang J, Liang Y-C, Lin X, Zhu X, Yan L, Li S, et al. Self-monitoring and self-delivery of photosensitizer-doped nanoparticles for highly effective combination cancer therapy in *in vivo* and *in vitro*. *ACS Nano* 2015;9:9741–56.

44. Xiong H, Wang Z, Wang C, Yao J. Transforming complexity to simplicity: protein-like nanotransformer for improving tumor drug delivery programmatically. *Nano Lett* 2020;20:1781–90.

45. Zhang R, Xing R, Jiao T, Ma K, Chen C, Ma G, et al. Carrier-free, chemophotodynamic dual nanodrugs via self-assembly for synergetic antitumor therapy. *ACS Appl Mater Interfaces* 2016;8:13262–9.

46. Yu C, Zhou M, Zhang X, Wei W, Chen X, Zhang X. Smart doxorubicin nanoparticles with high drug payload for enhanced chemotherapy against drug resistance and cancer diagnosis. *Nanoscale* 2015;7:5683–90.

47. Zhang R, Zhu Z, Lv H, Li F, Sun S, Li J, et al. Immune checkpoint blockade mediated by a small-molecule nanoinhibitor targeting the PD-1/PD-L1 pathway synergizes with photodynamic therapy to elicit antitumor immunity and antimetastatic effects on breast cancer. *Small* 2019;15:1903881.

48. Fei J, Dai L, Guo F, Zhao J, Li J. Assembled vitamin B2 nanocrystals with optical waveguiding and photosensitizing properties for potential biomedical application. *Angew Chem Int Ed* 2019;58:7254–81.

49. Wang Q, Sun M, Li D, Li C, Luo C, Wang Z, et al. Cytochrome P450 enzyme-mediated auto-enhanced photodynamic cancer therapy of co-nanoparticle between clopidogrel and photosensitizer. *Theranostics* 2020;10:5550.

50. Li Y, Liu G, Ma J, Lin J, Lin H, Su G, et al. Chemotherapeutic drug-photothermal agent co-self-assembling nanoparticles for near-infrared fluorescence and photacoustics dual-modal imaging-guided chemo-photothermal synergetic therapy. *J Control Release* 2017;258:95–107.

51. Wei Z, Liang P, Xie J, Song C, Tang C, Wang Y, et al. Carrier-free nano-integrated strategy for synergetic cancer anti-angiogenic therapy and phototherapy. *Chem Soc Rev* 2019;40:2778–94.

52. Wen Y, Zhang W, Gong N, Wang YF, Guo H-B, Guo W, et al. Carrier-free, self-assembled pure drug nanorods composed of 10-hydroxyamphotericin and chlorin e6 for combinatorial chemo-photodynamic antitumor therapy *in vivo*. *Nanoscale* 2017;9:14347–56.

53. Liu K, Xing R, Zou Q, Ma G, Mohwald H, Yan X. Simple peptide-tuned self-assembly of photosensitizers towards anticancer photodynamic therapy. *Angew Chem* 2016;128:3088–91.

54. Zhu T, Shi L, Yu C, Dong Y, Qiu F, Shen L, et al. Ferroptosis promotes photodynamic therapy: supramolecular photosensitizer-inducer nanodrug for enhanced cancer treatment. *Theranostics* 2019;9:3293.

55. Zhao LP, Zheng RR, Chen HQ, Liu LS, Zhao XY, Liu HH, et al. Self-delivery nanomedicine for O2-emanated photodynamic tumor therapy. *Nano Lett* 2020;20:2062–71.

56. Zhang C, Long L, Xiong Y, Wang C, Peng C, Yuan Y, et al. Facile engineering of indomethacin-induced paclitaxel nanocrystal aggregates as carrier-free nanomedicine with improved synergetic antitumor activity. *ACS Appl Mater Interfaces* 2019;11:9872–83.

57. Du X, Hou Y, Huang J, Pang Y, Ruan C, Wu W, et al. Cytosolic delivery of the immunological adjuvant Poly I:C and cytotoxic drug crystals via a carrier-free strategy significantly amplifies immune response. *Acta Pharm Sin B* 2021;11:3272–85.

58. Zhang Z, Shi L, Wu C, Su Y, Qian J, Deng H, et al. Construction of a supramolecular drug—drug delivery system for non-small-cell lung cancer therapy. *ACS Appl Mater Interfaces* 2017;9:29505–14.

59. Xiao Y, Liu J, Guo M, Zhou H, Jin J, Liu J, et al. Synergistic combination chemotherapy using carrier-free celastrol and doxorubicin nanocrystals for overcoming drug resistance. *Nanoscale* 2018;10:12639–49.

60. Zheng X, Zhao Y, Jia Y, Shao D, Zhang F, Sun M, et al. Biomimetic co-assembled nanodrug of doxorubicin and berberine suppresses chemotherapy-exacerbated breast cancer metastasis. *Biomaterials* 2021;120716.

61. Xing R, Zou Q, Yuan C, Zhao L, Chang R, Yan X. Self-assembling endogenous biliverdin as a versatile near-infrared photothermal nanogent for cancer theranostics. *Adv Mater* 2019;31:1900822.

62. Schulson EM. The structure and mechanical behavior of ice. *JOM* 1999;51:1–7.

63. Di Prinzio C, Nasello O. Study of grain boundary motion in ice bicrystals. *J Phys Chem B* 1997;101:7687–90.

64. Canale L, Comtet J, Nigues A, Cohen C, Clanet C, Siria A, et al. Nanofiltration of interfacial water during ice gliding. *Phys Rev X* 2019;9:041025.

65. Mbeunkui F, Johann DJ. Cancer and the tumor microenvironment: a review of an essential relationship. *Cancer Chemother Pharmacol* 2009;63:571–82.

66. Thakkar S, Sharma D, Kalia K, Tekade RK. Tumor microenvironment targeted nanotherapeutics for cancer therapy and diagnosis: a review. *Acta Biomater* 2020;101:43–68.

67. Yao W, He Z. ROS-responsive drug delivery systems for biomedical applications. *Asian J Pharm Sci* 2018;13:101–12.

68. Lee ES, Gao Z, Bae YH. Recent progress in tumor pH targeting nanotechnology. *J Control Release* 2008;132:164–70.

69. Gao W, Chan JM, Farokhzad OC. pH-Responsive nanoparticles for drug delivery. *Mol Pharm* 2010;7:1913–20.

70. Dhiman S, Jain A, Kumar M, George SJ. Adenosine-phosphate-fueled, temporally programmed supramolecular polymers with multiple transient states. *J Am Chem Soc* 2017;139:16568–75.

71. Okuro K, Sasaki M, Aida T. Boronic acid-appended molecular glue for ATP-responsive activity modulation of enzymes. *J Am Chem Soc* 2016;138:5527–30.

72. Di Virgilio F, Adinolfi E. Extracellular purines, purinergic receptors and tumor growth. *Oncogene* 2017;36:293–303.

73. Sahay G, Alakova DY, Kabanov AV. Endocytosis of nanomedicines. *J Control Release* 2010;145:182–85.

74. Iversen T-G, Skotland T, Sandvig K. Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. *Nanos Today* 2011;6:176–85.

75. Caessens CG, Stoddart JF. π–π interactions in self-assembly. *J Phys Org Chem* 1997;10:254–72.

76. Niu D, Jiang Y, Ji L, Ouyang G, Liu M. Self-assembly through coordination and π-stacking: controlled switching of circularly polarized luminescence. *Angew Chem Int Ed* 2019;58:5946–50.

77. Chandler D. Interfaces and the driving force of hydrophobic assembly. *Nature* 2005;437:640–7.

78. Sastry M, Rao M, Ganesh KN. Electrostatic assembly of nanoparticles and biomacromolecules. *Acc Chem Res* 2002;35:847–55.

79. Sherrington DC, Taskinen KA. Self-assembly in synthetic macro-molecular systems via multiple hydrogen bonding interactions. *Chem Soc Rev* 2001;30:83–93.

80. Endres TK, Beck-Broichsitter M, Samsonova O, Renette T, Kissel TH. Self-assembled biodegradable amphiphilic PEG–PCL–IPEI triblock copolymers at the borderline between micelles and nanoparticles designed for drug and gene delivery. *Biomaterials* 2011;32:7721–31.

81. Siepmann J, Siepmann F. Mathematical modeling of drug dissolution. *Int J Pharm* 2013;453:12–24.

82. Shi Y, Elkhazab A, Yousef Yengej FA, van den Dikkenberg J, Hennink WE, van Nostrum CF. π–π stacking induced enhanced
molecular solubilization, singlet oxygen production, and retention of a photosensitizer loaded in thermosensitive polymeric micelles. Adv Healthc Mater 2014;3:2023–31.

83. Wang M, Zhou Y, Ye H, Lv Q, Sun B, Luo C, et al. High co-loading capacity and stimuli-responsive release based on cascade reaction of self-destructive polymer for improved chemo-photodynamic therapy. ACS Nano 2019;13:7010–23.

84. Zhuang WR, Wang Y, Cui PF, Xing L, Lee J, Kim D, et al. Applications of π–π stacking interactions in the design of drug-delivery systems. J Control Release 2019;294:311–26.

85. Butterfield SM, Patel PR, Waters ML. Contribution of aromatic interactions to α-helix stability. J Am Chem Soc 2002;124:9751–5.

86. Koishi T, Yasuoka K, Ebisuzaki T, Yoo S, Zeng XC. Large-scale molecular-dynamics simulation of nanoscale hydrophobic interaction and nanobubble formation. J Chem Phys 2005;123:204707.

87. Sun B, Luo C, Zhang X, Guo M, Sun M, Yu H, et al. Probing the impact of sulfur/selenium/carbon linkages on produg nano-assemblies for cancer therapy. Nat Commun 2019;10:1–10.

88. Yan LT, Xie XM. Computational modeling and simulation of nanoparticle self-assembly in polymeric systems: structures, properties and external field effects. Prog Polym Sci 2013;38:369–405.

89. Shamay Y, Shah J, Işık M, Mizrahi A, Leibold J, Tschaharganeh DF, et al. Quantitative self-assembly prediction yields targeted nanomedicines. Nat Mater 2018;17:361–8.

90. Cho YW, Kim SY, Kwon IC, Kim IS. Complex adaptive therapeutic strategy (CATS) for cancer. J Control Release 2014;175:43–7.

91. Chen Q, Liu G, Liu S, Su H, Wang Y, Li J, et al. Remodeling the tumor microenvironment with emerging nanotherapeutics. Trends Pharmacol Sci 2018;39:59–74.

92. Komarova NL, Wodarz D. Drug resistance in cancer: principles of emergence and prevention. Proc Natl Acad Sci U S A 2005;102:9714–9.

93. Mokhtari RB, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, et al. Combination therapy in cancer combating. Oncatarget 2017;8:38022.

94. Lane D. Designer combination therapy for cancer. Nat Biotechnol 2006;24:163–4.

95. Wang K, Ye H, Zhang X, Wang X, Yang B, Luo C, et al. An exosome-like programmable-bioactivating paclitaxel produg nano-platform for enhanced breast cancer metastasis inhibition. BioMaterials 2020;257:120224.

96. Wang Z, Song L, Liu Q, Tian R, Shang Y, Liu F, et al. A tubular DNA nanoassembly as a siRNA/chemo-drug co-delivery vehicle for combined cancer therapy. Angew Chem Int Ed 2021;60:2594–8.

97. Xu X, Ho W, Zhang X, Bertrand N, Farokhzad O. Cancer nano-medicine: from targeted delivery to combination therapy. Trends Mol Med 2015;21:223–32.

98. Hu CMJ, Zhang L. Nanoparticle-based combination therapy toward overcoming drug resistance in cancer. Biochim Pharmacol 2012;83:1104–11.

99. Tang W, Fan W, Lau J, Deng L, Shen Z, Chen X. Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem Soc Rev 2019;48:2967–3014.

100. Li X, Kim J, Yoon J, Chen X. Cancer-associated, stimuli-driven, turn on theranostics for multimodality imaging and therapy. Adv Mater 2017;29:1606857.

101. Gong F, Yang N, Wang X, Zhao Q, Chen Q, Liu Z, et al. Tumor microenvironment-responsive intelligent nanoplatforms for cancer theranostics. Nano Today 2020;32:100851.

102. Cole AJ, Yang VC, David AE. Cancer theranostics: the rise of targeted magnetic nanoparticles. Trends Biotechnol 2011;29:323–32.

103. Yamashita K, McDaid J, Öllinger R, Tsui TY, Berberat PO, Usheva A, et al. Biliverdin, a natural product of heme catabolism, induces tolerance to cardiac allografts. FASEB J 2004;18:765–7.

104. Wegiel B, Gallo D, Ciszmadia E, Roger T, Kaczmarek E, Harris C, et al. Biliverdin inhibits Toll-like receptor-4 (TLR4) expression through nitric oxide-dependent nuclear translocation of biliverdin reductase. Proc Natl Acad Sci U S A 2011;108:18849–54.

105. Twelves C, Jove M, Gombos A, Awada A. Cytotoxic chemotherapy: still the mainstay of clinical practice for all subtypes of metastatic breast cancer. Crit Rev Oncol Hematol 2016;100:74–87.

106. Bocci G, Kerbel RS. Pharmacokinetics of metronomic chemotherapy: a neglected but crucial aspect. Nat Rev Clin Oncol 2016;13:659.

107. Heym B, Honoré N, Schurr C, Cole S, Trufiot-Pernot C, Grosset J, et al. Implications of multidrug resistance for the future of short-course chemotherapy of tuberculosis: a molecular study. Lancet 1994;344:293–8.

108. Persidis A. Cancer multidrug resistance. Nat Biotechnol 1999;17:94–5.

109. Schirrmacher V. From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment. Int J Oncol 2019;54:607–19.

110. Wu H, Jin H, Wang C, Zhang Z, Ruan H, Sun L, et al. Synergistic cisplatin/doxorubicin combination chemotherapy for multidrug-resistant cancer via polymeric nanogels targeting delivery. ACS Appl Mater Interfaces 2017;9:4926–36.

111. Garcia G, Odaimi M. Systemic combination chemotherapy in elderly pancreatic cancer: a review. J Gastrointest Cancer 2017;48:121–8.

112. Liu Z, Zheng Q, Chen W, Wu M, Pan G, Yang K, et al. Chemosensitizing effect of Paris Saponin I on camptothecin and 10-hydroxycamptothecin in lung cancer cells via p38 MAPK, ERK, and Akt signaling pathways. Eur J Med Chem 2017;125:760–9.

113. Bodley A, Liu LF, Israel M, Seshadri R, Koseki Y, Giuliani FC, et al. DNA topoisomerase II-mediated interaction of doxorubicin and daunorubicin congeners with DNA. Cancer Res 1989;49:5969–78.

114. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria J, et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 2004;101:13306–11.

115. Zhu Z, Jia J, Lu R, Lu Y, Fu Z, Zhao L, et al. Expression of PTEN, p27, p21 and AKT mRNA and protein in human BEL-7402 hepatocarcinoma cells in transplanted tumors of nude mice treated with the tripeptide tyrosolvast (YSV). Int J Cancer 2006;118:1539–44.

116. Karagiannis GS, Condeelis JS, Otkay MH. Chemotherapy-induced metastasis: mechanisms and translational opportunities. Clin Exp Metastasis 2018;35:269–84.

117. D’Alterio C, Scala S, Sozzi G, Roz L, Bertolini G. In Paradoxical effects of chemotherapy on tumor relapse and metastasis promotion. Semin Cancer Biol 2020;60:351–61.

118. Lv W, Chen N, Lin Y, Ma H, Ruan Y, Li Z, et al. Macrophage migration inhibitory factor promotes breast cancer metastasis via activation of HMGB1/TLR4/NF kappa B axis. Cancer Lett 2016;375:245–55.

119. Ran S. The role of TLR4 in chemotherapy-driven metastasis. Cancer Res 2015;75:2405–10.

120. Zhang T, Yang S, Du J. Protective effects of berberine on isoproterenol-induced acute myocardial ischemia in rats through regulating HMGB1–TLR4 axis. Evid Based Complement Alternat Med 2014;2014:849783.

121. Dean-Colomb W, Esteva FJ. Her2-positive breast cancer: herceptin and beyond. Eur J Cancer 2008;44:2306–12.

122. Pommier Y, Redon C, Rao VA, Seiler JA, Sordet O, Takemura H, et al. Repair of and checkpoint response to topoisomerase I-mediated DNA damage. Mutat Res 2003;532:173–203.

123. Hsiang Y-H, Lihou MG, Liu LF. Arrest of replication forks by 53BP1: implications for replication fork restart. Proc Natl Acad Sci U S A 2014;111:24530–8.

124. Ding YH, El-Naggar AK, Priebe W, Perez-Soler R. Cell cycle-dependent cytotoxicity, G2/M phase arrest, and disruption of p34cdc2/cyclin B1 activity induced by doxorubicin in synchronized P388 cells. Mol Pharmacol 1996;49:832–41.
125. Xie Z, Fan T, An J, Choi W, Duo Y, Ge Y, et al. Emerging combination strategies with phototherapy in cancer nanomedicine. Chem Soc Rev 2020;49:8065–87.

126. Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, et al. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev 2010;110:2795–838.

127. Pérez-Hernández M, Del Pino P, Mitchell SG, Moros M, Stepien G, Pelaz B, et al. Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoparticles. ACS Nano 2015;9:52–61.

128. Verissimo TV, Santos NT, Silva JR, Azevedo RB, Gomes AJ, Pe´ rez-Herna´ ndez M, Del Pino P, Mitchell SG, Moros M, Stepien G, et al. Emerging combination strategies with phototherapy in cancer nanomedicine. Chem Soc Rev 2020;49:8065–87.

129. Ho¨ nigsmann H. Phototherapy for psoriasis. Clin Exp Dermatol 2001;26:343–50.

130. Rao L, Bu LL, Xu JH, Cai B, Yu GT, Yu X, et al. Red blood cell membrane as a biomimetic nanocoating for prolonged circulation time and reduced accelerated blood clearance. Small 2015;11:6225–36.

131. Sun B, Chen Y, Yu H, Wang C, Zhang X, Zhao H, et al. Photodynamic PEG-coated ROS-sensitive prodrug nanocapsules for core–shell synergistic chemo-photodynamic therapy. Acta Biomater 2019;92:219–28.

132. Luo C, Sun B, Wang C, Zhang X, Chen Y, Chen Q, et al. Self-facilitated ROS-responsive nanoscale of heterotypic dimer for synergistic chemo-photodynamic therapy. J Control Release 2019;302:79–89.

133. Liu YD, Tao W, Li S, Li L, Sun Y, Li G, et al. Light-triggered dual-modality drug release of self-assembled prodrug-nanoparticles for synergistic photodynamic and hypoxia-activated therapy. Nanoscale Horiz 2020;5:864–94.

134. Wang T, Hu J, Luo H, Li H, Zhou J, Zhou L, et al. Photosensitizer and autophagy promoter coloaded ROS-responsive dendrimer-assembled carrier for synergistic enhancement of tumor growth suppression. Small 2018;14:1802337.

135. Robertson CA, Evans DH, Abraham H. Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol, B 2009;96:1–8.

136. Li X, Kwon N, Guo T, Liu Z, Yoon J. Innovative strategies for hypoxic-tumor photodynamic therapy. Angew Chem Int Ed 2018;57:11522–31.

137. Liu Y, Jiang Y, Zhang M, Tang Z, He M, Bu W. Modulating hypoxia via nanomaterials chemistry for efficient treatment of solid tumors. Acc Chem Res 2018;51:2502–11.

138. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature 2011;480:480–90.

139. Liu X, Wang D, Zhang P, Li Y. Recent advances in nanosized delivery systems for overcoming the barriers for anti-PD immunotherapy of cancer. Nano Today 2019;29:100801.

140. Song W, Musetti SN, Huang L. Nanomaterials for cancer immunotherapy. Biomaterials 2017;148:16–30.

141. Galluzzi L, Vaccelli E, Bravo-San Pedro JM, Buqué A, Senovilla L, Baracco EE, et al. Classification of current anticancer immunotherapies. OncoTarget 2014;5:12472.

142. Wang T, Wang D, Yu H, Feng B, Zhou F, Zhang H, et al. A cancer vaccine-mediated postoperative immunotherapy for recurrent and metastatic tumors. Nat Commun 2018;9:1–12.

143. Jeanbart L, Swartz MA. Engineering opportunities in cancer immunotherapy. Proc Natl Acad Sci U S A 2015;112:14467–72.

144. Fallon PG, Alcamí A. Pathogen-derived immunomodulatory molecules: future immunotherapeutics? Trends Immunol 2006;27:470–6.

145. Cheng B, Yuan WE, Su J, Liu Y, Chen J. Recent advances in small molecule based cancer immunotherapy. Eur J Med Chem 2018;157:582–98.

146. Massarelli E, William W, Johnson F, Kies M, Ferrarotto R, Guo M, et al. Combining immune checkpoint blockade and tumor-specific vaccine for patients with incurable human papillomavirus 16-related cancer: a phase 2 clinical trial. JAMA Oncol 2019;5:67–73.

147. Yang I, Hu L. Immunomodulators targeting the PD-1/PD-L1 protein–protein interaction: from antibodies to small molecules. Med Res Rev 2019;39:265–301.

148. Zak KM, Grudnuk P, Magiera K, Dömling A, Dubin G, Holak TA. Structural biology of the immune checkpoint receptor PD-1 and its ligands PD-L1/PD-L2. Structure 2017;25:1163–74.

149. Valsecchi ME. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015;373:1270–70.

150. Phueangkham H, Ren L, Shin IW, Lim YT. Nanoengineered immune niche for reprogramming the immunosuppressive tumor microenvironment and enhancing cancer immunotherapy. Adv Mater 2019;31:1803322.

151. Zhao X, Subramanian S. Intrinsic resistance of solid tumors to immune checkpoint blockade therapy. Cancer Res 2017;77:817–22.

152. Galluzzi L, Hameau J, Buqué A, Zitvogel L, Kroemer G. Immuno-stimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat Rev Clin Oncol 2020;17:725–41.

153. Heinhaus K, Ros W, Kok M, Steeghs N, Beijnen J, Schellens J. Enhancing antitumor response by combining immune checkpoint inhibitors with chemotherapy in solid tumors. Ann Oncol 2019;30:219–35.

154. Kuiu R, Yuan W, Son S, Nam J, Xu Y, Fan Y, et al. Elimination of established tumors with nanodisc-based combination chemo-immunotherapy. Sci Adv 2018;4:eaaoo1736.

155. Javeed A, Ashraf M, Riaz A, Ghafoor A, Alzal S, Mukhtar MM. Paxitaxel and immune system. Eur J Pharm Sci 2009;38:283–90.

156. Zang L, Dermawan K, Jin M, Liu R, Zheng H, Xu L, et al. Differential impairment of regulatory T cells rather than effector T cells by paclitaxel-based chemotherapy. Clin Immunol 2008;129:219–29.

157. Turunavoua VD, Balalaeva IV, Mishchenko TA, Catanzaro E, Alzeibek R, Peskova NN, et al. Immunogenic cell death induced by a new photodynamic therapy based on photosens and photodihazidine. J Immunol Cancer 2019;7:1–13.

158. Garg AD, Agostinis P. ER stress, autophagy and immunogenic cell death in photodynamic therapy-induced anti-cancer immune responses. Photochem Photobiol Sci 2014;13:474–87.

159. Min Y, Roche KC, Tian S, Eblan MJ, McKinnon KP, Caster JM, et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy. Nat Nanotechnol 2017;12:877.

160. Yu S, Wang C, Yu J, Wang J, Lu Y, Zhang Y, et al. Injectable bioresponsive gel depot for enhanced immune checkpoint blockade. Adv Mater 2018;30:1801827.

161. Hu L, Cao Z, Ma L, Liu Z, Liao G, Wang J, et al. The potential checkpoint blockade immunotherapy by ROS-responsive nanocarrier-mediated cascade chemo-photodynamic therapy. Biomaterials 2019;223:119469.

162. Liu M, Acres B, Balloul J-M, Bizouarne N, Paul S, Slos P, et al. Gene-based vaccines and immunotherapeutics. Proc Natl Acad Sci U S A 2004;101:14567–71.

163. Pastor F, Berraondo P, Exteberria I, Frederick J, Sahin U, Gilboa E, et al. An RNA toolbox for cancer immunotherapy. Nat Rev Drug Discov 2018;17:751–67.

164. Lin Y-X, Wang Y, Blake S, Yu M, Mei L, Wang H, et al. RNA nanotechnology-mediated cancer immunotherapy. Theranostics 2020;10:281.

165. Sayour EJ, Grippin A, De Leon G, Stover B, Rahman M, Karachi A, et al. Personalized tumor RNA loaded lipid-nanoparticles prime the systemic and intratumoral milieu for response to cancer immunotherapy. Nano Lett 2018;18:6195–206.

166. Glas M, Coch C, Trageser D, DAILER J, Simon M, Koch P, et al. Targeting the cytosolic innate immune receptors RIG-I and MDAS effectively counteracts cancer cell heterogeneity in glioblastoma. Stem Cells 2013;31:1064–74.

167. Li Y, Yue T, Yang K, Zhang X. Molecular modeling of the relationship between nanoparticle shape anisotropy and endocytosis kinetics. Biomaterials 2012;33:4965–73.