II．動脈硬化
（ステートメント）

1. 透析患者の心血管死亡リスク評価のためには、古典的危険因子に加え、腎不全特有の危険因子（貧血、炎症、低栄養、ミネラル代謝異常など）も含めるべきである（1C）。
2. 心血管リスク評価に、動脈壁肥厚度、動脈壁硬化度、血管石灰化なども利用する（委員会意見）。

解説

1. 疫学

透析患者では、糖尿病、高血圧、脂質異常、心不全などの心血管疾患（CVD）による死亡リスクが著しく高く、一般住民と比較し、対照リスクは10〜30倍と示されている1)。CVDリスクの上昇は透析導入前から認められ、慢性腎臓病（CKD）のステージが高いほど段階的に上昇する2)〜5)。

透析患者では、透析導入発症リスクが高く、また発症後の生存率が低い（致死率が高い）ことが特徴である。透析患者における急性心筋梗塞発症リスクは、一般住民に比較して2〜5倍高く、急性心筋梗塞後の生存曲線も透析患者で不良である6)。脳血管障害についても同様であり7)、高発症率と高い致死率が相乗的にCVD死亡リスクを高めているものと考えられる8)。

2. 原因

透析患者でCVDリスクが高い原因のひとつとして、透析導入前に動脈硬化が進展している症例が多いことが考えられている。動脈硬化促進因子と腎臓病促進因子とは共通したものが多く8)。慢性腎臓病（CKD）のステージが進展した患者ほど動脈硬化も高度になる9)。透析導入時には約半数の患者に有意な動脈硬化が認められ10)。透析導入時の冠動脈疾患の有無は、透析導入後の心血管イベントの強力な予測因子である11)。

血管石灰化が高頻度で認められることも、透析患者の大きな特徴である。血管石灰化は、粥状動脈硬化巣の内膜石灰化とメソケルク型中膜石灰化とに大別され、後者の頻度が透析患者で特に高い。この背景には、尿毒症という環境に加えて、高カルシウム（Ca）、高リン（P）、血漿が石灰化促進因子として作用することが考えられている。そのため、CKDに伴う血管石灰化を含めたミネラル・骨代謝異常はCKD-MBDという新しい概念で統一され12)。透析患者を診療する上で重要視されている。

透析患者でのCVDリスクは、高血圧、脂質異常、糖尿病などの古典的危険因子で補正しても有意であり、CKD特有の要因がCVDリスクに関与していると考えられる9)。CKDにおける「非古典的危険因子」を「古典的危険因子」とともに列記する（表1）9)。

古典的危険因子である糖尿病や高齢は、動脈硬化の重要な危険因子であり、心血管死亡率を上昇させる因子である。わが国の透析導入患者の原因疾患として、糖尿病性腎症が43.2%（2008年）と最多であり、今後も増加する見込みである。また、透析導入時年齢も67.2歳（2008年）と高齢化が進んでいる。これらから、わが国の透析患者の心血管合併症は、重要な予後規定因子であり続けることが予測される。

非古典的危険因子のひとつとされる低栄養（消耗状態）は、日常診療では血清アルブミン低値やBMI低値などで評価される。JSDTの報告によると、低BMI状態は総死亡・CVD死亡の予測因子であるが、心筋梗塞発症の予測因子とはならない15)。一方、米国の報告16)によると、急性冠症候群を発症した透析患者のその後の生存曲線は、高BMI群に比較して低BMI群で不良である。これらを総合すると、低BMI状態でCVD死亡リスクが高い原因に、致死率が高いことが関与すると推測される。

表1に挙げられた危険因子について、必ずしも無作為比較試験（RCT）による介入効果の証明はされていない。例えば、血管疾患を有する患者を対象にビタミンB6、B12、葉酸投与の効果をみたRCT17)では、血清ホモステイン値は減少したが、CVDリスクは有意には低下しなかった。また、透析患者におけるスタチンによる脂質低下療法は、CVDリスクを有意に低下できなかった18)、19)。
表 1 CKDにおける心血管リスクに対する古典的・非古典的危険因子

古典的危険因子	非古典的危険因子
高齢	アルブミン尿
男性	ホモステイシン
高血圧	Lp(a)、apo(a)アイソフォーム
LDLコレステロール高値	リポ波白レムナント
HDLコレステロール低値	貧血
糖尿病	Ca/P代謝異常
喫煙	細胞外液過剰
運動不足	電解質バランス異常
閉経	酸化ストレス
心血管疾患家族歴	炎症（CRP）
左心肥大	栄養障害
	血栓促進因子
	睡眠障害
	一酸化窒素（NO）/エンドセリンバランス異常

Sarnak らの文献 3) を和訳して引用

表 2 動脈硬化・血管石灰化の臨床的評価方法

評価内容	評価項目	測定方法
動脈壁肥厚	頸動脈内膜中膜厚（IMT），プラック有無	超音波 B モード
動脈硬化	脈波速度（cfPWV, hfPWV, baPWV）	脈波解析
	CAVI, Augmentation index（AI）	脈波解析
	コンプライアンス, Stiffness parameterなど	超音波変位法
動脈石灰化	石灰化有無, 石灰化半定量化	非 X 線撮影
	大動脈石灰化指数（ACI）	非 X 線
	冠動脈石灰化スコア	EBCT, MDCT
血管内腔狭帯	狭帯の有無, 病変枝数, Gensini score	虚血 CT, 冠動脈造影
心筋虚血	ST-T変化	心電図
	虚血部位, 冠血流予備能	心筋シースト（SPECT）

動脈壁肥厚、動脈壁硬化、動脈石灰化は、動脈硬化による動脈壁自身の変化を表すものに対し、血管内腔狭帯や心筋虚血は動脈硬化の結果生じる変化であることに注意。

3. 診断

動脈硬化は、病理学的には粥状動脈硬化、メンケル型中膜石灰化、細動脈硬化に分類されるが、臨床的には動脈壁肥厚、動脈壁硬化、血管石灰化として定量的、定性的にとらえることができる(表 2)。これらの計測値は、危険因子と CVD イベントとの間に位置する「代替指標」となる可能性がある。

超音波 B モード法による頭動脈内膜中膜複合体肥厚度（IMT）の計測は、動脈壁肥厚度を定量評価するもので、透析患者の CVD 死亡・総死亡リスクの予測因子となる21)。

大動脈の脈波速度（cfPWV, hfPWV）は、動脈壁硬化度の代表的指標であり、透析患者の CVD 死亡・総死亡リスクの予測因子となる21)。上腕-足関節間で測定した baPWV 高値は透析患者の予後予測因子となる22)が、下肢に閉塞性動脈硬化症があると baPWV 値が低下するので、足関節上肢血圧比（ABI）と併せ、評価には注意を要する。その他、cardio-vascular index (CAVI) や augmentation index（AI）も、動脈壁硬化度の新しい指標として用いられている。

血管石灰化の評価法として、electron beam computed tomography（EBCT）は、時間分解能に優れ、心臓や大血管に特化した検査法である。一般的に冠動脈石灰化の評価には Agatston 法を用いて算出した冠動脈石灰化スコア（coronary artery calciumification score：CACS）が用いられる。この CACS が心血管事項と関連することが報告されている。最近では、汎用性に優れた multi-detector CT（MDCT）による検出感度が向上し、空間分解能が改善して心臓の拍動や呼吸によるブレを軽減できるようになり、冠動脈 CT の中心となっている。腹部単純 CT では、腸骨骨動脈分
岐部から上方に1 cm間隔の10スライスを用い、大動脈石灰沈着の面積を、大動脈石灰化指数（aortic calcification index: ACI）で表して評価することが可能である。透析患者において、ACIと冠動脈石灰化は強く相関する23）。胸部・腹部単純X線撮影による血管石灰化の有無24,25）も、総死亡・CVD死亡の独立した予測因子となることが透析患者でも示されており、日常診療に応用できる方法と考えられる。

これらの非侵襲的な代替指標の評価は、CVD危険因子の管理の参考になる可能性があるものの、判定基準や適切な測定頻度については確立されていない。大動脈石灰化は透析歴と正相関する26）、一方、冠動脈石灰化27）、頭動脈IMT28）、大動脈PWVは透析歴と有意な相関がないとの報告もあり、透析患者における経年変化は明らかではない。個々の症例や各施設の実情も考慮しつつ、評価項目を決めて、可能なら年1回程度の測定を提案する。

4. 治療

各危険因子を是正するための治療法およびそれらが動脈硬化抑制に及ぼす効果に関してはそれぞれの章で詳述されるのでここでは省略することとする。それ以外では、喫煙習慣の中止、個々の患者での適切な強度の運動の励行などの生活習慣の改善が大切であり、何よりもCVDの早期発見、および可能であれば早期の治療が透析患者においては重要と考えられる。

文献
1) Foley RN, Parfrey PS, Sarnak MJ: Epidemiology of cardiovascular disease in chronic renal disease. J Am Soc Nephrol 9: S16-S23, 1998
2) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 39: S1-S266, 2002
3) Sarnak MJ, Levey AS, Schoolwerth AC, Coresh J, Cullenon B, Hamm LL, McCullough PA, Kasiske BL, Kekeliouir E, Klag MJ, Parfrey P, Pfeiffer M, Raij L, Spinosa DJ, Wilson PW: Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 108: 2154-2169, 2003
4) Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY: Chronic kidney disease and the risks of death,
cardiovascular events, and hospitalization. N Engl J Med 351: 1296-1305, 2004
5) K/DOQI clinical practice guidelines for cardiovascular disease in dialysis patients. Am J Kidney Dis 45: S1-S153, 2005
6) Iseki K, Fukuyma K: Long–term prognosis and incidence of acute myocardial infarction in patients on chronic hemodialysis. The Okinawa Dialysis Study Group. Am J Kidney Dis 36: 820-825, 2000
7) Iseki K, Fukuyma K: Clinical demographics and long–term prognosis after stroke in patients on chronic haemodialysis. The Okinawa Dialysis Study (OKIDS) Group. Nephrol Dial Transplant 15: 1808-1813, 2000
8) Nishizawa Y, Shoji T, Ishimura E, Inaba M, Morii H: Paradox of risk factors for cardiovascular mortality in uremia: is a higher cholesterol level better for atherosclerosis in uremia? Am J Kidney Dis 38: S4-S7, 2001
9) Schäffrin EL, Lipman ML, Mann JF: Chronic kidney disease: effects on the cardiovascular system. Circulation 116: 85-97, 2007
10) Kimoto E, Shoji T, Shinohara K, Hatsuuda S, Morii K, Fukumoto S, Koyama H, Emoto M, Okuno Y, Nishizawa Y: Regional arterial stiffness in patients with type 2 diabetes and chronic kidney disease. J Am Soc Nephrol 17: 2245–2252, 2006
11) Joki N, Hase H, Nakamura R, Yamaguchi T: Onset of coronary artery disease prior to initiation of haemodialysis in patients with end–stage renal disease. Nephrol Dial Transplant 12: 718–723, 1997
12) Ohtake T, Kobayashi S, Moriya H, Negishi K, Okamoto K, Maesato K, Saito S: High prevalence of occult coronary artery stenosis in patients with chronic kidney disease at the initiation of renal replacement therapy: an angiographic examination. J Am Soc Nephrol 16: 1141–1148, 2005
13) Hase H, Tsunoda T, Tanaka Y, Takahashi Y, Imamura Y, Ishikawa H, Inishi Y, Joki N: Risk factors for de novo acute cardiac events in patients initiating hemodialysis with no previous cardiac symptom. Kidney Int 70: 1142–1148, 2006
14) Moe S, Drueke T, Cunningham J, Goodman W, Martin K, Olgaard K, Ott S, Sprague S, Lameire N, Eknoyan G: Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 59: 1945–1953, 2006
15) 日本透析医学会：国語 透析の慢性透析療法の現況（2001年12月31日現在）．日本透析医学会．東京．2002
16) Beddhu S, Pappas LM, Ramkumar N, Samore MH: Malnutrition and atherosclerosis in dialysis patients. J Am Soc Nephrol 15: 733–742, 2004
17) Lonn E, Yusuf S, Arnold MJ, Sheridan P, Pogue J, Micks M, McQueen MJ, Frobstfield J, Fodor G, Held C, Genest J, Jr.: Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med 354: 1567–1577, 2006
18) Wanner C, Krane V, Marz W, Olschewski M, Mann JF, Ruf G, Ritz E: Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med 353: 238–248, 2005
19) Bellstrom BC, Jardine AG, Schmieder RE, Holdaas H, Bannister K, Beutler J, Chae DW, Chevaile A, Cobbe SM, Gronhagen–Riska C, De Lima JJ, Lins R, Mayer G, McMahon AW, Parving HH, Remuzzi G, Samuelsson O, Sonkodi S, Sci D, Suleymanlar G, Tsakiris D, Tesar V, Todorov V, Wiecek A, Wuthrich RP, Gottlow M, Johnsson E, Zannad F: Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N Engl J Med 363: 1395–1407, 2009
20) Nishizawa Y, Shoji T, Maekawa K, Nagasue K, Okuno S, Kim E, Emoto M, Ishimura E, Nakatani T, Miki T, Inaba M: Intima–media thickness of carotid artery predicts cardiovascular mortality in hemodialysis patients. Am J Kidney Dis 41: S76–S79, 2003
21) Shoji T, Emoto M, Shinohara K, Kakiya R, Tsujimoto Y, Kishimoto H, Ishimura E, Tabata T, Nishizawa Y: Diabetes mellitus, aortic stiffness, and cardiovascular mortality in end–stage renal disease. J Am Soc Nephrol 12: 2117–2124, 2001
22) Kitahara T, Ono K, Tsuchida A, Kawai H, Shinohara M, Ishii Y, Koyanagi H, Noguchi T, Matsumoto T, Sekihara T, Watanabe Y, Kanai H, Ishida H, Nojima Y: Impact of brachial–ankle pulse wave velocity and ankle–brachial blood pressure index on mortality in hemodialysis patients. Am J Kidney Dis 46: 688–696, 2005
23) Nitta K, Akiba T, Suzuki K, Uchida K, Ogawa T, Majima K, Watanabe R, Aoki T, Nihei H: Assessment of coronary artery calcification in hemodialysis patients using multi–detector spiral CT scan. Hypertens Res 27: 527–533, 2004
24) Blacher J, Guerin AP, Pannier B, Marchais SJ, London GM: Arterial calcifications, arterial stiffness, and cardiovascular risk in end–stage renal disease. Hypertension 38: 938–942, 2001
25) Okuno S, Ishimura E, Kitatani K, Fujino Y, Kohno K, Maeno Y, Maekawa K, Yamakawa T, Imanishi Y, Inaba M, Nishizawa Y: Presence of abdominal aortic calcification is significantly associated with all–cause and cardiovascular mortality in maintenance hemodialysis patients. Am J Kidney Dis 49: 417–425, 2007
26) Honkani E, Kaupilla L, Wikstrom B, Rensma PL, Krzesinski JM, Aasarod K, Verbeke F, Jensen PB, Mattelaer P, Volck B: Abdominal aortic calcification
in dialysis patients: results of the CORD study. Nephrol Dial Transplant 23: 4009–4015, 2008
27) Shoji T, Emoto M, Tabata T, Kimoto E, Shinohara K, Maekawa K, Kawagishi T, Tahara H, Ishimura E.

Nishizawa Y: Advanced atherosclerosis in predialysis patients with chronic renal failure. Kidney Int 61: 2187–2192, 2002