Association analysis of *IL10*, *TNF*-α, and *IL23R*-IL12RB2 SNPs with Behçet’s disease risk in Western Algeria

Ouahiba Khaib Dit Naib 1, Mourad Aribi 1,2,*, Aicha Idder 3, Amel Chiali 4, Hakim Saïri 4, Isabelle Touitou 5,6,7, Gérard Lefranc 8 and Mouna Barat-Houari 5

1 Laboratory of Applied Molecular Biology and Immunology, Department of Biology, Abou-Bekr Belkaïd University, Tlemcen, Algeria
2 Departments of Pharmacy and Oral Medicine, Abou-Bekr Belkaïd University, Tlemcen, Algeria
3 Establishment Hospitalier Spécialisé en Ophtalmologie, Clinique Hamou Bouteilla, Oran, Algeria
4 Service de Dermatologie, Centre Hospitalo-Universitaire d’Oran, Oran, Algeria
5 Unité Médicale des Maladies Auto-inflammatoires, Département de Génétique, CHRU, Montpellier, France
6 Université Montpellier 1, Montpellier, France
7 Génétique des Maladies Auto-inflammatoires et des Ostéo-arthropathies chroniques, INSERM U844, Montpellier, France
8 Laboratoire d’Immunogénétique Moléculaire, Institut de Génétique Humaine, CNRS UPR 1142, et Université Montpellier 2, Montpellier, France

Objective: We have conducted the first study of the association of interleukin (IL)-10, tumor necrosis factor alpha (TNF-α), and IL23R-IL12RB2 region single nucleotide polymorphisms (SNPs) with Behçet’s disease (BD) in Western Algeria.

Methods: A total of 51 BD patients and 96 unrelated controls from West region of Algeria were genotyped by direct sequencing for 11 SNPs including 2 SNPs from the IL10 promoter [c.-819T > C (rs1800871), c.-592A > C (rs1800872)], 6 SNPs from the TNF-α promoter [c.-1211T > C (rs1799964), c.-1043C > A (rs1800630), c.-1037C > T (rs1799724), c.-556G > A (rs1800750), c.-488G > A (rs1800629), and c.-418G > A (rs361525)], and 3 SNPs from the IL23R-IL12RB2 region [g.67747415A > C (rs12119179), g.67740092G > A (rs11209032), and g.67760140T > C (rs924080)].

Results: The minor alleles c.-819T and c.-592A were significantly associated with BD (odds ratio (OR) = 2.18; 95% confidence interval (CI) 1.28–3.73, p = 0.003); whereas, there was weaker association between TNF-α promoter SNPs or IL23R-IL12RB2 region and disease risk.

Conclusion: Unlike the TNF-α and the IL23R-IL12RB2 region SNPs, the two IL10 SNPs were strongly associated with BD. The -819T, and -592A alleles and the -819TT, -819CT, and -592AA and -592CA genotypes seem to be highly involved in the risk of developing BD in the population of Western Algeria.

Keywords: Behçet’s disease, genetic association, IL10, TNF-α, IL23R-IL12RB2, single nucleotide polymorphism, Western Algeria
suggested that the increase of IL-10 may down-regulate the expression of NO, prompting the protective role of elevation of IL-10 (33). Additionally, treatment with anti-TNF-α monoclonal antibodies has resulted in improvement of various manifestations of BD (34, 35).

IL-10 and TNF-α production may be regulated at the transcriptional level. Thus, several single nucleotide polymorphisms (SNPs) at the promoter of IL10 and TNF-α gene have been shown to be associated with changes in the expression levels of IL-10 and TNF-α production (36, 37). On the other hand, numerous recent studies have demonstrated an association between BD and several IL10 (13, 14, 38, 39) and TNF-α (39–43) SNPs in different ethnic groups. However, to date, there are no analogous or identical investigations in Algeria.

Two others cytokines, IL-23 and IL-12, may play an important role in BD pathogenesis; their levels are elevated in BD patients (44–46). IL-23 drives and promotes the development of a unique T-helper cell population that produces IL-17, Th17 cells. These IL-23-driven Th17 cells are highly pathogenic and elicit IL-17-dependent inflammation in autoimmune diseases (47). IL-12, a heterodimeric cytokine, is of crucial relevance to cell-mediated immunity and Th1 differentiation (48). This cytokine exerts its biological effects via binding to a heterodimeric receptor consisting of IL12RB2 and IL-12RB1 subunits.

The effect of IL-23 and IL-12 is mediated through the IL-23 and the IL-12 receptor (IL-23R, IL-12RB1). The genes that encode these receptors are adjacent on chromosome 1p31; a GWAS studies revealed that IL23R-IL12RB2 region is associated with BD (13, 14). Nevertheless, its association in the pathogenesis of BD remains to be confirmed in different ethnic groups. In this context, we examined genetic association for 11 SNPs in IL10, TNF-α, and IL23R-IL12RB2 candidate genes with BD in Western Algeria.

MATERIALS AND METHODS

PATIENTS AND SUBJECTS

Fifty-one (51) unrelated BD patients and age- and sex-matched 96 healthy controls originate from the Western Algeria were recruited for a case-control study at the Oran Ophthalmic Hamou Boutlelis Hospital, the Department of Dermatology of Oran Medical Centre University, and the Oran Blood Transfusion Centre (Algeria). Among the 51 patients, 11 DNA belonging to Algerian origin, were selected from the biobank DNA for Genetics Laboratory of Autoinflammatory Diseases, Arnaud de Villeneuve Hospital, Montpellier (France).

Consent was signed by each participant or participant’s parent or legal guardian if entrant is a minor, under the Rules of Ethics and Professional Conduct. Patient characteristics were recorded using a questionnaire. The diagnosis of patients was based especially on the criteria proposed in 1990 (49). The control group was composed of healthy subjects without a family history of autoinflammatory diseases, and selected from the same population. This work was approved by the Institutional Ethics Board of Tlemcen Abou-Bekr Belkaid University.

GENOTYPING

Each DNA was genotyped for 11 SNPs, including two IL10 promoter SNPs [c.-819T > C (rs1800871), c.-592A > C (rs1800872)], six SNPs from the TNF-α promoter [c.-1211T > C (rs1799964), c.-1034C > A (rs1800630), c.-1037C > T (rs1799724), c.-556G > A (rs1800750), c.-488G > A (rs1800629), and c.-418G > A (rs361525)], and three SNPs from the IL23R-IL12RB2 region [g.6777415A > C (rs12119179), g.67740092G > A (rs11209032), and g.67760140T > C (rs924080)].

Genotyping was performed at the Laboratory of Genetics of Autoinflammatory Diseases, Arnaud de Villeneuve Hospital, Montpellier (France). Genomic DNA was isolated from peripheral blood, drawn on EDTA anti-coagulant, using QIAamp DNA Blood Kits (Qiagen, Valencia, CA, USA). The DNA samples were then dosed by spectrophotometry ND-1000 (Nano Drop Technologies, Wilmington, DE, USA) at 260 and 280 nm. The DNA concentration and ratio OD260/OD280 were estimated for each sample (50).

The DNA samples were subsequently amplified in a Applied Biosystems Thermocycler (Applied Biosystems, Foster City, CA, USA) in a 15 µL reaction volume containing 50 ng DNA, 2X Promega PCR Master Mix, and 25 µM of each primer (Table 1). The PCR programs were as follows: after a denaturation phase of 15 min at 95°C, the samples were subjected to 35 amplification cycles followed by a final elongation step of 7 min at 72°C. Each cycle comprises 30 s denaturation at 95°C, 30 s of primer annealing at 60°C, and 1 min extension at 72°C.

Loci	SNPs	Forward primer	Reverse primer	Product length (bp)
IL10	rs1800871 rs1800872	TTAGACTCCAGGCCACAGAAGC	GGGGGACCCAATTATTTTCTC	597
TNFα	rs1799964 rs1800630 rs1799972	GTGTGTTGGGAGGGTGGAGCTTTC	CTTCTTTTATGCTGAGCCGG	570
	rs1800750 rs1800629 rs611525	CTCAGGACTCAACCACAGCTTTC	GAAGAAATCTGACACCCGG	438
IL23R-IL12RB2 region	rs11209032	GAGGTTAAAACCTTTGCTATCGT	GATGCCACATGGGCTAGTTAAGG	164
	rs12119179	TACCCAGGGGACATTAGCTAC	GCTGAGCTGCTTGAGATCAAG	701
	rs924080	GCACTATGCTTTTTGGCAT	ATTTGAGATGTCCTTGAGCAT	364

bp, base pair; IL, interleukin; rs, reference SNP; SNP, single nucleotide polymorphism; TNF, tumor necrosis factor.
After checking the quality and size of the PCR products by agarose gel (1.5%) electrophoresis, SNPs genotyping was performed by direct sequencing using the BigDye Terminator version 3.1 (BDT v3.1) Cycle Sequencing Kit, followed by capillary electrophoresis on an ABI 3100XL Genetic Analyzer, according to the manufacturer’s recommendations (Applied Biosystems, Foster City, CA, USA) (Figure 1).

STATISTICAL ANALYSIS

Comparisons of allele and genotype frequencies between groups (patients versus control subjects, and between the patient’s groups according to different clinical features) were performed using the Chi-square or Fisher’s exact tests. The association analysis was carried out by Odds ratio (OR) and corresponding 95% confidence interval (95% CI). Statistical analyses were performed using...

FIGURE 1 | Electropherogram of rs1800871 and rs1800872. rs, reference SNP; SNP, single nucleotide polymorphism.
RESULTS

Table 2 shows the description of the clinical characteristics of the patients with BD of the current study. The mean age (±SD) of the patients at disease onset was 26 ± 11 years. Predominant lesions were oral ulcers (100%), cutaneous lesions (86.27%), genital ulcers (82.35%), eye lesions (62.74%), and arthritis (58.82%).

The distribution of alleles and genotypes frequencies of IL10 promoter SNPs c.-819C>T (rs1800871) and c.-592C>A (rs1800872) showed that the two SNPs were in total linkage disequilibrium in our sample. For this reason, the results of one SNP c.-819C>T will be considered (Table 3).

The allele frequencies were significantly different in patients compared to controls. As indicated in Table 3, the frequencies of c.-819T allele, and of the -819TT, -819CT (rs1800871) genotypes were significantly increased in patients than in controls (p = 0.003 and p = 0.005, respectively). Additionally, these SNPs was significantly associated with the disease (c.-819T; OR = 2.18, 95% CI 1.28–3.73, p < 0.01; -819TT and -819CT, OR = 2.17, 95% CI 1.01–4.69, p < 0.05) (Figure 2).

A subset analysis was performed to examine the difference in allele frequencies in clinical subsets of BD (Table 4). We observed a significant association between c.-819T and all classes; nevertheless, the association was slightly lower for the ocular lesion (OR = 1.55, 95% CI 0.81–2.96, p > 0.05). Additionally, the association was more significant for the Genital ulcers (OR = 2.21; 95% CI 1.29–4.04, p = 0.002).

We reported in Tables 5 and 6 that all IL23R-IL12RB2 SNPs alleles and genotypes, respectively, were not significantly associated with the disease (OR > 1, p > 0.05). The minor allele frequencies were different in the two groups, but this difference did not reach statistical significance (p > 0.05).

As indicated in Tables 5 and 7, alleles and genotypes of the TNF-α polymorphisms display similar distributions in patients and controls (p > 0.05). Except for c.-1037T and c.-488A all others TNF-α alleles were not associated with BD (OR < 1).

Table 2 | Clinical and demographic features of the Behçet patients of the current study.

Characteristics	Frequency (n = 51)
Mean age at disease onset ± SD (year)	26 ± 11
Sex ratio M/F (%)	56.9/43.1 (29/22)
Oral ulcers (%)	100 (51)
Genital ulcers (%)	82.4 (42)
Cutaneous lesions (%)	86.3 (44)
Eye lesions (%)	62.7 (32)
Neurological symptoms (%)	35.3 (18)
Venous thrombosis (%)	25.5 (13)
Arthritis (%)	58.8 (30)
Multiplex family (%)	35.3 (18)
Pediatric case (%)	19.6 (10)
Consangunuity (%)	43.1 (22)

SD, standard deviation.

Table 3 | Allelic and genotypic frequencies of rs1800871 variant in BD patients and controls.

Alleles and genotypes	Controls (n = 96)	Cases (n = 51)	p
	(%)	(%)	
C	141 (73.4)	57 (55.9)	0.003**
T	51 (26.6)	45 (44.1)	
CC	50 (52.1)	17 (33.3)	0.005**
CT	41 (42.7)	23 (45.1)	
TT	5 (5.2)	11 (21.6)	

BD, Behçet’s disease; SNP, single nucleotide polymorphism; rs, reference SNP. **p < 0.01

Table 4 | Association analysis of clinical subclasses with IL10 c.-819T SNP in patients with Behçet’s disease.

Clinical subset	OR	95% CI	p	
Eye disease	1.55	0.81	2.96	0.152
Genital ulcers	2.21	1.29	4.04	0.002**
Skin lesions	2.07	1.17	3.68	0.007**
Arthritis-arthralgia	2.06	1.11	3.81	0.013*
Neurologic signs	2.5	1.18	5.32	0.009**

CI, confidence interval; LL, lower limit; UL, upper limit; OR, odds ratio; SNP, single nucleotide polymorphism. *p < 0.05, **p < 0.01.
Loci	SNPs	Alleles frequency (proportion, %)	OR (95% CI)	p	
IL23R-IL12RB2	rs12119179 (g.6774715A > C)	A	C	1.24 (0.72–2.13)	0.415
Patients	67 (65.7)	35 (34.3)			
Controls	135 (70.3)	57 (29.7)			
rs11209032 (g.6774009G > A)	G	A	1.18 (0.68–2.03)	0.530	
Patients	67 (65.7)	35 (34.3)			
Controls	133 (69.3)	59 (30.7)			
rs924080 (g.67760140T > C)	T	C	1.45 (0.87–2.41)	0.133	
Patients	54 (52.9)	48 (47.1)			
Controls	84 (43.8)	108 (56.3)			
TNF-α	rs1799964 (c.-1211T > C)	T	C	0.92 (0.52–1.61)	0.751
Patients	73 (71.6)	29 (28.4)			
Controls	134 (69.8)	58 (30.2)			
rs1800630 (c.-1043C > A)	C	A	0.83 (0.41–1.67)	0.584	
Patients	86 (84.3)	16 (15.7)			
Controls	157 (81.8)	35 (18.2)			
rs17999724 (c.-1037C > T)	C	T	1.01 (0.35–2.84)	0.976	
Patients	95 (93.1)	7 (6.9)			
Controls	179 (93.3)	13 (6.7)			
rs1800750 (c.-556G > A)	G	A	0.61 (0.14–2.09)	0.402	
Patients	98 (96.1)	4 (3.9)			
Controls	180 (93.7)	12 (6.3)			
rs1800629 (c.-488G > A)	G	A	1.12 (0.56–2.26)	0.726	
Patients	85 (83.3)	17 (16.7)			
Controls	163 (84.9)	29 (15.1)			
rs361525 (c.-418G > A)	G	A	0.93 (0.39–2.21)	0.869	
Patients	92 (90.2)	10 (9.8)			
Controls	172 (89.6)	20 (10.4)			

CI, confidence interval; IL23R-IL12RB2, region of the interleukin-23 receptor and interleukin-12 receptor beta 2 chain-encoding gene; OR, odds ratio; rs, reference SNP; SNP, single nucleotide polymorphism; TNF, tumor necrosis factor.

| Table 6 | The distribution of IL23R-IL12RB2 genotypes in patients with Behçet disease. |
SNPs	Genotype distribution (frequency, %)	p-Value	OR (95% CI) p-value	MAF (%)	ORMAF (95% CI)	p-value	
rs12119179 (g.6774715A > C)	AA	24 (47.1)	0.522	1.13 (0.54–2.35)	0.734	0.582	0.580
Patients	AC	19 (37.2)	8 (15.7)	C	1.24 (0.58–2.67)	0.580	
	CC	9 (18.4)	9 (18.4)		34.31	29.69	
rs11209032 (g.6774009G > A)	GG	23 (45.1)	0.721	1.12 (0.57–2.21)	0.744	0.721	0.560
Patients	GA	21 (41.2)	7 (13.7)	A	1.18 (0.71–1.97)	0.560	
	AA	9 (18.4)	9 (18.4)		34.31	30.73	
rs924080 (g.67760140T > C)	CC	13 (25.5)	0.327	1.46 (0.64–3.35)	0.326	0.327	0.264
Patients	CT	22 (43.1)	16 (31.4)	C	1.58 (0.71–3.54)	0.264	
	TT	44 (87.8)	20 (20.8)		47.1	56.25	

ORs were calculated for the minor versus major alleles. CI, confidence interval; IL23R-IL12RB2, interleukin-23 receptor and interleukin-12 receptor beta 2 chain-encoding gene; MAF, minor allele frequency; ORMAF, OR of the MAF; OR, odds ratio; rs, reference SNP; SNP, single nucleotide polymorphism.
Table 7 | The distribution of TNF-α gene genotypes in patients with Behçet disease.

SNPs	Genotype distribution (frequency, %)	p-Value	OR (95% CI)	p-value	MAF (%)	OR MAF (95% CI)	p-value
rs1799964 (c.-1211T > C)	TT (29.4)	0.114	0.67 (0.32–1.4)	0.249	C 0.8 (0.37–1.75)	0.580	
Patients	TC (7.1)	28.43					
Controls	CC (13.7)	30.21					
rs1800630 (c.-1043C > A)	CC (12.5)	0.826	0.79 (0.35–1.78)	0.544	A 0.78 (0.31–1.97)	0.600	
Patients	CA (4)	15.69					
Controls	AA (4.2)	18.23					
rs17999724 (c.-1037C > A)	CC (13.5)	1.23 (0.4–3.74)	0.690	T 1.26 (0.34–4.69)	0.733		
Patients	CT (0)	6.86					
Controls	TT (0)	6.77					
rs1800750 (c.-556G > A)	GG (4.2)	0.6 (0.13–2.12)	0.388	A 0.6 (0.12–3.07)	0.536		
Patients	GA (0)	3.92					
Controls	AA (0)	6.25					
rs1800629 (c.-488G > A)	GG (2.1)	0.909	1.17 (0.52–2.61)	0.680	A 1.18 (0.47–2.97)	0.721	
Patients	GA (1.2)	16.67					
Controls	AA (2.1)	15.1					
rs361525 (c.-418G > A)	GG (2.9)	0.299	0.75 (0.28–2.02)	0.541	A 0.9 (0.29–2.79)	0.849	
Patients	GA (3.9)	9.8					
Controls	AA (11)	10.42					

DISCUSSION

To date, the etiopathogenesis of BD is not fully elucidated. Researches in recent decades have shown the complex role of genetic factors in the development of the disease. We analyze the association between BD and 11 SNPs in IL10, TNF-α, and IL23R-IL12RB2 candidate genes in the Western Algeria population.

This is the first report demonstrating that the c.-819T and c.-592A alleles were associated with BD in Algeria. Previous genetic studies have shown a strong association of many IL10 variants with BD in different ethnic groups. Recent genome-wide association study conducted by Mizuki et al. (14) in a Japanese cohort, including 612 individuals with BD and 740 genome-wide association study conducted by Mizuki et al. (14) in a Japanese cohort, including 612 individuals with BD and 740 genome-wide association study conducted by Mizuki et al. (14) in a Japanese cohort, including 612 individuals with BD and 740 genome-wide association study conducted by Mizuki et al. (14) in a Japanese cohort, including 612 individuals with BD and 740 genome-wide association study conducted by Mizuki et al. (14) in a Japanese cohort, including 612 individuals with BD and 740 genome-wide association study conducted by Mizuki et al. (14) in a Japanese cohort, including 612 individuals with BD and 740 genome-wide association study conducted by Mizuki et al. (14) in a Japanese cohort, including 612 individuals with BD and 740...
expression within all BD lesions, including oral and genital ulcers, pseudofolliculitis lesions, and lesions at the site of pathergy testing.

Recent GWAS study from Turkey and Japan revealed *IL12R-IL23RB2* SNPs in association with BD. Three SNPs were strongly associated with the disease, including rs924080 (OR = 1.28, \(p = 6.69 \times 10^{-9} \)) (13), rs12119179 (\(p = 2.7 \times 10^{-8} \)), and rs1495965 (OR = 1.35, \(p = 1.9 \times 10^{-11} \)) (14), but no significant association was found in a Korean cohort.

Our results showed no significant association between BD and rs12119179, g.67740092G > A (rs11209032), and g.67760140T > C (rs924080) SNPs in the *IL23R-IL12RB2* region. In Iranian study (39), six SNPs in *IL23R-IL12RB2* were found to be associated with BD; the most significant of which were rs17375018 (OR = 1.51, \(p = 1.93 \times 10^{-9} \)), rs7517847 (OR = 1.48, \(p = 1.23 \times 10^{-8} \)), and rs924080 (OR = 1.29, \(p = 1.78 \times 10^{-5} \)). Others studies have also identified a strong relationship between polymorphisms of *IL23R* and BD (60–62). These associations may suggest an important role of Th17 cells that express the IL-23R on their surface. Kim et al. (62) studied the interaction of specific *IL17A*, *IL23R*, and *STAT4* (signal transducers and activators of transcription 4) SNPs in intestinal BD Korean patients; they suggest that the IL-23/IL-17 axis plays a significant role in disease pathogenesis.

IL-12 has been implicated in the pathogenesis of a multitude of diverse autoimmune diseases (63, 64). *IL12RB2* constitute a risk factor for primary biliary cirrhosis, with the reported top associated SNPs mainly located in intronic sequences (65–67).

The genetic architecture and modularity of human autoimmune diseases is very complex. The functional implications of most of these associations are not yet clarified. Identify candidate causal SNPs and pathways (ICSN Pathway) analysis may act as a powerful guide to further research into the functional and immunological ramifications of these associations.

No significant associations were found between BD and studied *TNF*-α polymorphisms. These SNPs have been studied in various ethnic groups for possible association with BD. However, the allelic and genotypic associations of these studies have been contradictory. In Korean patients, *TNF*-α c.-1043A (rs1800630) allele was associated with an increased risk of BD (OR = 1.4, \(p = 0.030 \)) (68). However, no significant association was found in meta-analysis studies for this SNP (42). Additionally, it has been reported a significant associations between c.-1037T allele (rs1799724) (OR = 0.76, 95% CI 0.58–0.98), c.-488G allele (rs1800629) (OR = 1.8, \(p = 0.010 \)) (68), and c.-418A allele (rs361525) (OR = 1.51, 95% CI 1.12–2.04) (42), and BD. Moreover, no significant associations were identified with other *TNF*-α promoter polymorphisms, such as c.-1037T (rs1799724), c.-488A (rs1800629), and c.-556G > A (rs1800750) alleles with BD in Moroccan patients (43). The *TNF*-α c.-1211C allele (rs1799964) presents a significant association with BD in several populations, including Turkish (\(p = 0.023 \)) (69), Korean (\(p = 0.030, \) OR = 1.4) (68), and UK white Caucasian population (RR = 2.3, \(p = 0.00004 \)) (40). The frequency of the *TNF*-α c.-1211C allele was significantly higher in Behcet’s patients than in healthy controls in Moroccan and Tunisian populations (OR = 1.65, \(p = 0.015 \); OR = 1.68, \(p = 0.02 \), respectively) (41, 43) and in meta-analysis (OR = 1.35, 95% CI 1.09–1.68) (42). This polymorphism has been associated with several extra-intestinal manifestations of Crohn’s disease, including uveitis, erythema nodosum, and large joint arthropathy (70), all of which are known to be associated with BD. Further investigation is necessary to determine the functional significance of *TNF*-α c.-1691042C and how it participates in the inflammatory dysregulation associated with BD.

Thus, polymorphisms at positions c.-1211T > C, c.-1043G > A, c.-1037C > T, and c.-488G > A have been associated with increased transcriptional activity and production of *TNF*-α in some studies (37, 71), in contrast to others (72–75). The over production of *TNF*-α during the course of BD may result in other *TNF*-α polymorphisms or post-transcriptional mechanisms. Furthermore, *TNF*-α production is not only under the control of the promoter region of *TNF*-α, and it may also result from complex cis and trans interactions among other cytokines.

TNF-α is encoded in the HLA complex on chromosome 6, a region that has long been known to be associated with BD. This gene-dense region, presents a strong linkage disequilibrium (76). The association between BD and *TNF*-α could therefore be a result of linkage disequilibrium with alleles within this group. So it will be interesting to investigate other genes polymorphism among this region in our population.

In conclusion, we replicate the associations between BD and the SNPs from the *IL23R-IL12RB2* region and c.-1037C > T and c.-488G > A *TNF*-α promoter SNPs. *IL10* promoter SNPs (rs1800871 and rs1800872) is strongly associated with BD in the population of the Western Algeria. It would be interesting to study other SNPs to identify additional associations with BD in the studied population.

AUTHORS CONTRIBUTION

Mourad Aribi, Gérard Lefranc are Principal Investigators of the study, participated in its design and execution and helped draft the manuscript and critically reviewed it for intellectual content; Mouna Barat-Houari participated in the design of the study, carried out genetic analyses, and helped draft the manuscript; Ouahiba Khaib Dit Naib wrote the manuscript and carried out genetic analyses; Aicha Idder, Amel Chiali, and Hakim Sairi are responsible for the recruitment of eligible patients and their families; Isabelle Touitou conceived of the study, participated in its design, and coordination. All the authors read and approved the final manuscript.

ACKNOWLEDGMENTS

The authors are grateful to the patients, their families and the healthy controls for their participation. They would also like to address special thanks to Nathalie Ruiz-Pallares, Department of Genetics, CHRU, Montpellier, and all the staff of the Oran Blood Transfusion Centre for their help during this study.
REFERENCES

1. McGonagle D, McDermott MF. A proposed classification of the immunological diseases. PLoS Med (2006) 3:e297. doi:10.1371/journal.pmed.0030297

2. Krause I, Weinberger A. Behçet’s disease. Curr Opin Rheumatol (2008) 20:82–7. doi:10.1097/BOR.0b013e3282f154d1

3. Suzuki Kurokawa M, Suzuki N. Behçet’s disease. Clin Exp Rheumatol (2008) 26:Suppl 51:S138–40.

4. Pietta P. Behçet’s disease: familial clustering and immunogenetics. Clin Exp Rheumatol (2003) 23(Suppl 38):S96–105.

5. de Menthon M, Lavalle MP, Maldini C, Guillain L, Mahr A. HLA-B51/53 and the risk of Behçet’s disease: a systematic review and meta-analysis of case-control genetic association studies. Arthritis Rheum (2009) 61:1287–96. doi:10.1002/art.20246

6. Ohno S, Aoki K, Sugira S, Nakayama E, Itakura K, Aizawa M, HLA-B51 and Behçet’s disease. Lancet (1973) 302:1383–4. doi:10.1016/S0140-6736(73)93343-6

7. Ohno S, Ohguchi M, Hirose S, Matsuda H, Wakisaka A, Aizawa M. Close association of HLA-Bw51 with Behçet’s disease. Arch Ophthalmol (1982) 100:1455–8. doi:10.1001/archopht.1982.0130040433013

8. Mizuki N, Inoko H, Mizuki N, Tanaka H, Kera J, Tsuji K, et al. Human leukocyte antigen serologic and DNA typing of Behçet’s disease and its primary association with B51. Invest Ophthalmol Vis Sci (1992) 33:3352–40.

9. Yazici H, Fresso I, Yurdakul S. Behçet’s syndrome: disease manifestations, management, and advances in treatment. Nat Clin Pract Rheumatol (2007) 3:148–55. doi:10.1038/ncprheum0456

10. Karasneh J, Gül A, Ollier WE, Silman AJ, Worthington J. Whole-genome screening for susceptibility genes in multicase families with Behçet’s disease. Arthritis Rheum (2005) 52:1836–42. doi:10.1002/art.20836

11. Fei Y, Webb R, Cobb BL, Direksen H, Saruhan-Direskeneli G, Sawalha AH. Identification of novel genetic susceptibility loci for Behçet’s disease using a genome-wide association study. Arthritis Res Ther (2009) 11:R66. doi:10.1186/ar2695

12. Remmers EF, Cosan F, Kirino Y, Ollier WE, Mulcahy-Mang C, et al. Genome-wide association studies identifies variants in the MHC class I, IL1, and IL23R-IL12RB2 regions associated with Behçet’s disease. Nat Genet (2010) 42:698–702. doi:10.1038/ng.625

13. Mizuki N, Meaguro A, Ota M, Ohno S, Shinot A, Kawaogoe T, et al. Genome-wide association study identifies variants in the MHC class I, IL1, and IL23R-IL12RB2 regions associated with Behçet’s disease. Nat Genet (2010) 42:703–6. doi:10.1038/ng.626

14. Eskin G, Gul A, Hodara V, Ieddi-Tehrani M, Dilsen N, Konci M, et al. Peripheral blood T cell expansions in patients with Behçet’s disease. Clin Exp Immunol (1997) 107:520–7.

15. Fietta P. The pathophysiology of tumor necrosis factors. Ann Rev Immunol (2001) 19:683–765. doi:10.1146/annurev.immunol.19.1.683

16. Hofmann SR, Rösen-Wolff A, Maldini C, Guillevin L, Mahr A. HLA-B5 and Behçet’s disease. Ann Rheum Dis (2009) 68:996–1002. doi:10.1136/ard.60.11.996

17. Kera J, Tsuiji K, et al. Tumor necrosis factor-alpha levels are increased in Behçet’s disease. Altered Th1/Th2 cytokine profile in Behçet’s disease. Arthritis Rheum (2001) 44:427–8. doi:10.1002/art.10334

18. Kera J, Tsuiji K, et al. Tumor necrosis factor-alpha levels are increased in Behçet’s disease. Arthritis Rheum (2001) 44:427–8. doi:10.1002/art.10334

19. Tahara H, Kera J, Tsuiji K, et al. Tumor necrosis factor-alpha levels are increased in Behçet’s disease. Arthritis Rheum (2001) 44:427–8. doi:10.1002/art.10334

20. Lee EB, Kim JY, Lee YJ, Park HC, Kim MH, Song YW. TNF and TNF receptor polymorphisms in Korean Behçet’s disease patients. Hum Immunol (2003) 64:614–20. doi:10.1016/S0198-8859(03)00057-3

21. Akdener N, Esfoufgoli M, Koels MS, Karakuzu A, Atasoy M. Serum interleukin-2, interleukin-6, tumour necrosis factor-alpha and nitric oxide levels in patients with Behçet’s disease. Ann Acad Med Singapore (2004) 33:596–9.

22. Ortas MO, Onder M, Gurer MA, Bukun N, Sancak B. Serum interleukin 18 and tumour necrosis factor-alpha levels are increased in Behçet’s disease. Clin Exp Dermatol (2005) 30:61–3. doi:10.1111/j.1365-2230.2004.01684.x

23. Vassalli P. The pathophysiology of tumor necrosis factors. Annu Rev Immunol (1992) 10:411–52. doi:10.1146/annurev.immunol.10.040192.022211

24. Hofmann SR, Rosen-Wolf A, Tsokon GC, Hedrich CM. Biological properties and regulation of IL-10 related cytokines and their contribution to autoimmune disease and tissue injury. Clin Immunol (2012) 143:116–27. doi:10.1016/j.clim.2012.02.005

25. Arayssi T, Hamra R, Homeidan F, Uthman I, Awowd ST, Mroue K, et al. The efficacy of a single dose of infliximab in the treatment of Behçet’s disease uveitis. Clin Exp Rheumatol (2005) 23:427.

26. Sifakis PP, Markomichalakis N, Alpsoy E, Assaad-Khalil S, Bodaghi B, Gul A, et al. Anti-TNF therapy in the management of Behçet’s disease: review and basis for recommendations. Rheumatology (Oxford) (2007) 46:736–41. doi:10.1093/rheumatology/ker334

27. Turner DM, Williams DM, Sankaran D, Lazarus M, Sinnott PJ, Hutchinson IV. An investigation of polymorphism of the interleukin-10 gene promoter. Eur J Immunogenet (1997) 24:1–8. doi:10.1111/j.1365-2370.1997.tb00011.x

28. Wilson AG, Symmons JA, McDowell TL, McDevitt HO, Duff GW. Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci U S A (1997) 94:3195–9. doi:10.1073/pnas.94.7.3195

29. Wallace GR, Kondeatis E, Vaughan RW, Verity DH, Chen Y, Fortune F, et al. IL-10 genotype analysis in patients with Behçet’s disease. Hum Immunol (2007) 68:122–7. doi:10.1016/j.jhimimm.2006.11.010

30. Ates O, Dalyan L, Hafiz T, Hamuruyduan V, Topal-Sarkarya A, Giali E. Analyses of functional IL-10 and TNF-α genotypes in Behçet’s syndrome. Mol Biol Rep (2010) 37:3637–41. doi:10.1007/s11033-010-0015-4

31. Ahmad T, Wallace GR, James T, Newell M, Bunce M, Malcady-Hawes K, et al. Mapping the HLA association in Behçet’s disease: a role for tumor necrosis factor polymorphisms? Arthritis Rheum
Khaib Dit Naib et al.

SNPs and BD susceptibility in Algeria

(2003) 48:807–13. doi:10.1002/art.10815

41. Kamoun M, Chebeli H, Houman MH, Lacheb I, Hamzaoui K. Tumor necrosis factor gene polymorphisms in Tunisian patients with Behcet’s disease. *Hum Immunol* (2007) 68(3):201–5. doi:10.1016/j.humimm.2006.12.006

42. Touma Z, Farra C, Hamdan A, Shamseddewen W, Uthman I, Hourani H, et al. TNF polymorphisms in patients with Behcet’s disease: a meta-analysis. *Arch Med Res* (2010) 41:142–6. doi:10.1016/j.arcmed.2010.02.002

43. Radouane A, Oudghiri M, Chakib A, Bennani S, Toutou I, Barat-WM, Mattson J, Basham B, Sedgwick JD, et al. Allele-specific quantification of tumor necrosis factor-alpha gene polymorphism (C – >A at position -863) in the pro- enhancer region of the human TNF-alpha gene. *Hum Mol Genet* (2005) 14:2609–16. doi:10.1093/hmg/ddi260

44. Houari M. SNPs in the TNF-a promoter polymorphisms in patients with Behçet’s disease in Moroccan patients. *Rheumatology (Oxford)* (2005) 41:1595–9. doi:10.1093/rheumatology/kex141

45. Li D, He Q, Li R, Xu X, Chen B, Xie A. Interleukin-10 gene polymorphism in Chinese patients with Parkinson’s disease. *Neurosci Lett* (2012) 513:183–6. doi:10.1016/j.neulet.2012.02.033

46. Zhao Q, Ding C, Wang M, Sun Y, Xu Y. Interleukin-10 gene polymorphisms and chronic aggressive periodontitis susceptibility: a meta-analysis based on 14 case-control studies. *Cytokine* (2012) 60:47–54. doi:10.1016/j.cyto.2012.05.014

47. Liang X, Zhang J, Zhu Y, Li X, Zhou X, Wang Z, et al. Genetic polymorphisms of IL10-592A/A and IL10-819 TT genotypes lead to the key role for inducing docetaxel-induced liver injury in breast cancer patients. *Clin Transl Oncol* (2013) 15:311–4. doi:10.1007/s12096-012-0396-6

48. Temple SE, Lim E, Cheong KY, Almeida CA, Price P, Ardlie KG, et al. Alleles carried at positions -819 and -592 of the IL10 promoter affect transcription following stimulation of peripheral blood cells with Streptococcus pneumoniae. *Immunogenetics* (2003) 55:629–32. doi:10.1007/s00251-003-0621-6

49. Lin WP, Lin JH, Chen XW, Wu CY, Zhang LQ, Huang ZD, et al. Interleukin-10 polymorphisms associated with susceptibility to lumbar disc degeneration in a Chinese cohort. *Genet Mol Biol* (2011) 34:1719–27. doi:10.1590/S1415-4757201100040400052

50. Guenane H, Hartani D, Chachoua L, Ahmedi ML, Lahmar-Belguendouz K, et al. Effect of corticotherapy on interleukin-17 in Behçet’s arthritis patients and healthy individuals. *Genet Mol Biol* (2011) 34:1037–80.
76. Jeffreys AJ, Kauppi L, Neumann R. Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nat Genet (2001) 29:217–22. doi:10.1038/ng1001-217

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 27 July 2013; accepted: 06 October 2013; published online: 21 October 2013.

Citation: Khaib Dit Naib O, Aribi M, Idder A, Chiali A, Sairi H, Touitou I, Lefranc G and Barat-Houari M (2013) Association analysis of IL10, TNF-α, and IL23R-IL12RB2 SNPs with Behçet’s disease risk in Western Algeria. Front. Immunol. 4:342. doi: 10.3389/fimmu.2013.00342

This article was submitted to Inflammation, a section of the journal Frontiers in Immunology.

Copyright © 2013 Khaib Dit Naib, Aribi, Idder, Chiali, Sairi, Touitou, Lefranc and Barat-Houari. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.