Article

Existence of Positive Solutions of Nonlocal \( p(x) \)-Kirchhoff Evolutionary Systems via Sub-Super Solutions Concept

Salah Boulaaras,1,2,* and Ali Allahem3

1 Department of Mathematics, College of Sciences and Arts, Al-Rass, Qassim University, Buraydah 51452, Saudi Arabia
2 Laboratory of Fundamental and Applied Mathematics of Oran (LMFAO), University of Oran 1 Ahmed Ben Bella, 31000 Oran, Algeria
3 Department of Mathematics, College of Sciences, Qassim University, Buraydah 51452, Saudi Arabia; aallahem@qu.edu.sa
* Correspondence: saleh_boulaares@yahoo.fr or S.Boularas@qu.edu.sa

Received: 17 January 2019; Accepted: 13 February 2019; Published: 18 February 2019

Abstract: Motivated by the idea which has been introduced by Boulaaras and Guefaifia (Math. Meth. Appl. Sci. 41 (2018), 5203–5210 and, by Afrouzi and Shakeri (Afr. Mat. (2015) 26:159–168) combined with some properties of Kirchhoff type operators, we prove the existence of positive solutions for a class of nonlocal \( p(x) \)-Kirchhoff evolutionary systems by using the sub and super solutions concept.

Keywords: positive solutions; sub-super solutions method; \( p(x) \)-Kirchhoff systems

1. Introduction

The study of differential equations and variational problems with nonstandard \( p(x) \)-growth conditions is a new and interesting topic. It arises from nonlinear elasticity theory, electrorheological fluids, etc. (see [1,2]). Many existence results have been obtained on this kind of problems—see, for example, [3–6]. In Refs. [7–12], Fan et al. studied the regularity of solutions for differential equations with nonstandard \( p(x) \)-growth conditions.

In this article, we are interested in the \( p(x) \)-Kirchhoff parabolic systems of the form

\[
\begin{aligned}
\frac{\partial u}{\partial t} - M \left(I_0 (u) \right) \triangle_{p(x)} u &= \lambda_1 a \left(x \right) f(v) + \mu_1 c \left(x \right) h \left(u \right) \quad \text{in } Q_T = \Omega \times [0, T], \\
\frac{\partial v}{\partial t} - M \left(I_0 (v) \right) \triangle_{p(x)} v &= \lambda_2 b \left(x \right) g(u) + \mu_2 d \left(x \right) \tau \left(v \right) \quad \text{in } Q_T = \Omega \times [0, T], \\
\quad u = v = 0 \text{ on } \partial Q_T, \\
\quad u(x, 0) = \phi(x),
\end{aligned}
\]

where \( \Omega \subset \mathbb{R}^N \) is a bounded smooth domain with \( C^2 \) boundary \( \partial \Omega \), \( 1 < p(x) \in C^1 \left( \overline{\Omega} \right) \) is a functions with \( 1 < p^- := \inf_\Omega p(x) \leq p^+ := \sup_\Omega p(x) < \infty \), \( \triangle_{p(x)} u = \frac{1}{\int_\Omega \frac{1}{p(x)} | \nabla u |^{p(x)-2} \nabla u } \int_\Omega \frac{1}{p(x)} | \nabla u |^{p(x)} \ dx \) is called \( p(x) \)-Laplacian, \( \lambda, \lambda_1, \lambda_2, \mu_1 \), and \( \mu_2 \) are positive parameters, \( I_0 (u) = \int_\Omega \frac{1}{p(x)} | \nabla u |^{p(x)} \ dx \) and \( M(t) \) is a continuous function.
Problem (1) is a generalization of a model introduced by Kirchhoff [13]. More precisely, Kirchhoff proposed a model given by the equation
\[
\frac{\partial^2 u}{\partial t^2} - \left( \frac{P_0}{h} + \frac{E}{2L} \int_0^L \left| \frac{\partial u}{\partial x} \right|^2 \, dx \right) \frac{\partial^2 u}{\partial x^2} = 0,
\]
where \( \rho, P_0, h, E, L \) are constants, which extends the classical D’Alembert’s wave equation, by considering the effects of the changes in the length of the strings during the vibrations. In recent years, problems involving Kirchhoff type operators have been studied in many papers, we refer to [14–21], in which the authors have used a variational method and topological method to get the existence of solutions.

In this paper, motivated by the ideas introduced in [22] and the properties of Kirchhoff type operators in [22], we study the existence of positive solutions for system (2) by using the sub- and super solutions techniques. To our best knowledge, this is a new research topic for nonlocal problems. The remainder of this paper is organized as follows. In Section 2, we present some preliminary results on the variable exponent Sobolev space \( W^{1,p(x)}_0(\Omega) \) and the method of sub- and super solutions. Section 3 is devoted to stating and proving the main result.

2. Preliminary Results

In order to discuss problem (1), we need some theories on \( W^{1,p(x)}_0(\Omega) \) which we call variable exponent Sobolev space. Firstly, we state some basic properties of spaces \( W^{1,p(x)}_0(\Omega) \) which will be used later (for details, see [3]).

Let us define
\[
L^{p(x)}(\Omega) = \left\{ u : u \text{ is a measurable real-valued function such that } \int_\Omega |u(x)|^{p(x)} \, dx < \infty \right\}.
\]

We introduce the norm on \( L^{p(x)}(\Omega) \) by
\[
|u(x)|_{p(x)} = \inf \left\{ \lambda > 0 : \int_\Omega \frac{|u(x)|^{p(x)}}{\lambda} \, dx \leq 1 \right\},
\]
and
\[
W^{1,p(x)}(\Omega) = \left\{ u \in L^{p(x)}(\Omega) : \| \nabla u \|_{p(x)} \leq 1 \right\},
\]
with the norm
\[
\| u \| = |u|_{p(x)} + \| \nabla u \|_{p(x)}, \forall u \in W^{1,p(x)}(\Omega).
\]

We denote by \( W^{1,p(x)}_0(\Omega) \) the closure of \( C^\infty_0(\Omega) \) in \( W^{1,p(x)}(\Omega) \).

Now, using Euler time scheme of problem (1), we obtain the following problems:
\[
\begin{cases}
  u_k - \tau' M I_0 \Delta p \left( u_k \right) + \lambda^{p\prime}(\tau) \tau' \left[ \lambda_1 a (x) f (v) + \mu_1 c (x) h (u_k) \right] + u_{k-1} & \text{in } \Omega, \\
  u_k - \tau' M I_0 \Delta p \left( u_k \right) v + \lambda^{p\prime}(\tau) \tau' \left[ \lambda_2 b (x) g (u_k) + \mu_2 d (x) \tau (v) \right] + u_{k-1} & \text{in } \Omega, \\
  u_k = v = 0 & \text{on } \partial \Omega, \\
  u_0 = \varphi_0 & \text{in } \Omega,
\end{cases}
\]
where \( N\tau' = T, 0 < \tau' < 1, \) and for \( 1 \leq k \leq N. \)
Proposition 1 (see [12]). The spaces $L^{p(x)}(\Omega)$, $W^{1,p(x)}(\Omega)$ and $W^{1,p(x)}_0(\Omega)$ are separable and reflexive Banach spaces.

Throughout the paper, we will assume that:

**Hypothesis 1 (H1).** $M : [0, +\infty) \rightarrow [m_0, m_\infty]$ is a continuous and increasing function with $m_0 > 0$;

**Hypothesis 2 (H2).** $p \in C^1(\Pi)$ and $1 < p^- \leq p^+$;

**Hypothesis 3 (H3).** $f, g, h, \tau : [0, +\infty) \rightarrow \mathbb{R}$ are $C^1$, monotone functions such that

$$\lim_{u_k \to +\infty} f(u_k) = +\infty, \lim_{u_k \to +\infty} g(u_k) = +\infty, \lim_{u_k \to +\infty} h(u_k) = +\infty, \lim_{u_k \to +\infty} \tau(u_k) = +\infty,$$

**Hypothesis 4 (H4).** $\lim_{u_k \to +\infty} \frac{f(L(g(u_k))\frac{1}{p^+ - 1})}{u_k^{p^+ - 1}} = 0$ for all $L > 0$,

**Hypothesis 5 (H5).** $\lim_{u_k \to +\infty} \frac{b(u)}{u_k^{p^+ - 1}} = 0$, and $\lim_{u_k \to +\infty} \frac{\tau(u_k)}{u_k^{p^+ - 1}} = 0$.

**Hypothesis 6 (H6).** $a, b, c, d : \Pi \rightarrow (0, +\infty)$ are continuous functions, such that

$$a_1 = \min_{x \in \Pi} a(x), b_1 = \min_{x \in \Pi} b(x), c_1 = \min_{x \in \Pi} c(x), d_1 = \min_{x \in \Pi} d(x),$$

$$a_2 = \max_{x \in \Pi} a(x), b_2 = \max_{x \in \Pi} b(x), c_2 = \max_{x \in \Pi} c(x), d_2 = \max_{x \in \Pi} d(x).$$

**Definition 1.** If $u_k, v \in W^{1,p(x)}_0(\Omega)$, we say that

$$-M(I_0(u_k))\Delta_{p(x)}u_k \leq -M(I_0(v))\Delta_{p(x)}v$$

if, for all $\varphi \in W^{1,p(x)}_0(\Omega)$ with $\varphi \geq 0$,

$$M(I_0(u)) \int_\Omega |\nabla u_k|^{p(x)-2} \nabla u_k . \nabla \varphi dx \leq M(I_0(v)) \int_\Omega |\nabla v|^{p(x)-2} \nabla v . \nabla \varphi dx,$$

where

$$I_0(u_k) = \int_\Omega \frac{1}{p(x)} |\nabla u_k|^{p(x)} dx.$$

**Definition 2.** (1) If $u_k, v \in W^{1,p(x)}_0(\Omega)$, $(u_k, v)$ is called a weak solution of the problem defined in (3) if it satisfies

$$M(I_0(u_k)) \int_\Omega |\nabla u_k|^{p(x)-2} \nabla u_k . \nabla \varphi dx = \int_\Omega \left[ \lambda^{p(x)}[\lambda_1 a(x) f(v) + \mu_1 c(x) h(u_k)] - \frac{u_k - u_{k-1}}{\tau^+} \right] \varphi dx,$$

$$M(I_0(v)) \int_\Omega |\nabla v|^{p(x)-2} \nabla v . \nabla \varphi dx = \int_\Omega \left[ \lambda^{p(x)}[\lambda_2 b(x) g(u_k) + \mu_2 d(x) \tau(v)] - \frac{u_k - u_{k-1}}{\tau^+} \right] \varphi dx,$$

for all $\varphi \in W^{1,p(x)}_0(\Omega)$ with $\varphi \geq 0$. 
(2) We say that \((u, v)\) is called a sub solution (respectively a super solution) of the problem defined in (3) if

\[
\begin{cases}
M(I_0(u_k)) \int_\Omega |\nabla u_k|^{p(x)-2} \nabla u_k \cdot \nabla \phi dx \leq (\text{respectively} \geq) \\
\int_\Omega \left[ \lambda^{p(x)} \left[ \lambda_1 a(x) f(v) + \mu_1 c(x) h(u_k) \right] - \frac{u_k - u_{k-1}}{\tau'} \right] \phi dx,
\end{cases}
\]

\[
\begin{cases}
M(I_0(u)) \int_\Omega |\nabla v|^{p(x)-2} \nabla v \cdot \nabla \phi dx \leq (\text{respectively} \geq) \\
\int_\Omega \left[ \lambda^{p(x)} \left[ \lambda_2 b(x) g(u_k) + \mu_2 d(x) \tau(v) \right] - \frac{u_k - u_{k-1}}{\tau'} \right] \phi dx,
\end{cases}
\]

\textbf{Lemma 1} (see [22] comparison principle). Let \(u_k, v \in W^{1,p(x)}(\Omega)\) and (H1) hold. If

\[-M(I_0(u_k)) \Delta_{p(x)} u \leq -M(I_0(v)) \Delta_{p(x)} v\]

and \((u_k - v)^+ \in W^{1,p(x)}(\Omega)\), then \(u_k \leq v\) in \(\Omega\).

\textbf{Lemma 2} (see [22]). Let (H1) hold. \(\eta > 0\) and let \(u\) be the unique solution of the problem

\[-\int_\Omega M(I_0(u_k)) \left( |\nabla u_k|^{p(x)-2} \nabla u_k \right) = \mu \text{ in } \Omega.\]

Set \(h = \frac{m_0 p}{2|\Omega|^{\frac{1}{p-1}} C_0}\). Then, when

\[\mu \geq h, |u_k|_\infty \leq C^* \mu^{\frac{1}{p-1}},\]

and when

\[\mu \leq h, |u_k|_\infty \leq C_* \mu^{\frac{1}{p-1}},\]

where \(C^*\) and \(C_*\) are positive constants depending \(p^+, p^-\), \(N, |\Omega|, C_0\) and \(m_0\).

Here and hereafter, we will use the notation \(d(x, \partial \Omega)\) to denote the distance of \(x \in \Omega\) to denote the distance of \(\Omega\). Denote \(d(x) = d(x, \partial \Omega)\) and

\[\partial \Omega_\epsilon = \{ x \in \Omega : d(x, \partial \Omega) < \epsilon \}.\]

Since \(\partial \Omega\) is \(C^2\) regularly, there exists a constant \(\delta \in (0, 1)\) such that \(d(x) \in C^2(\overline{\partial \Omega_\delta})\) and \(|\nabla d(x)| = 1\).

Denote

\[v_1(x) = \begin{cases} 
\gamma d(x), d(x) < \delta, \\
\gamma \delta + \int_0^{d(x)} \gamma \left( \frac{d(x) - t}{\delta} \right) \frac{2}{p-1} (\lambda_1 a_1 + \mu_1 c_1) t^{p-1} dt, \delta \leq d(x) < 2\delta, \\
\gamma \delta + \int_0^{2\delta} \gamma \left( \frac{d(x) - t}{\delta} \right) \frac{2}{p-1} (\lambda_1 b_1 + \mu_1 d_1) t^{p-1} dt, 2\delta \leq d(x). 
\end{cases}\]
we have the following Lemma:

\[ v_2 (x) = \begin{cases} 
\gamma d (x), & d (x) < \delta, \\
\gamma \frac{d(x)}{\delta} + \int_{\delta}^{2\delta} \gamma \left( \frac{2\delta - t}{\delta} \right)^{\frac{2}{q-1}} (\lambda_2 b_2 + \mu_2 d_2) \frac{1}{t^{\frac{2}{q-1}}} dt, & \delta \leq d (x) < 2\delta, \\
\gamma \frac{d(x)}{\delta} + \int_{\delta}^{2\delta} \gamma \left( \frac{2\delta - t}{\delta} \right)^{\frac{2}{q-1}} (\lambda_2 b_2 + \mu_2 d_2) \frac{1}{t^{\frac{2}{q-1}}} dt, & 2\delta \leq d (x). 
\end{cases} \]

Obviously, \( v_1 (x), v_2 (x) \in C^1(\bar{\Omega}) \). Considering

\[
\begin{align*}
- M \left( \int_{\Omega} \frac{1}{p(x)} |\nabla u_k|^p(x) \right) \Delta_{p(x)} \omega (x) &= \eta \text{ in } \Omega, \\
\omega &= 0 \text{ on } \partial \Omega.
\end{align*}
\]

we have the following Lemma:

**Lemma 3** (see [23]). If positive parameter \( \eta \) is large enough and \( \omega \) is the unique solution of (5), then we have

(i) For any \( \theta \in (0, 1) \), there exists a positive constant \( C_1 \) such that

\[ C_1 \eta^{\frac{1}{p-1} \theta} \leq \max_{x \in \Omega} \omega (x). \]

(ii) There exists a positive constant \( C_2 \) such that

\[ \max_{x \in \Omega} \omega (x) \leq C_2 \eta^{\frac{1}{p-1}}. \]

3. Main Result

In the following, when there is no misunderstanding, we always use \( C_i \) to denote positive constants.

**Theorem 1.** Assume that the conditions (H1)–(H6) are satisfied. Then, problem (3) has a positive solution when \( \lambda \) is large enough.

**Proof.** We shall establish Theorem 1 by constructing a positive subsolution \((\phi_k, \phi_1)\) and supersolution \((z_k, z_1)\) of the problem defined in (1) such that \( \phi_k \leq z_k \) and \( \phi_1 \leq z_1 \). That is, \((\phi_k, \phi_1)\) and \((z_k, z_1)\) satisfies

\[
\begin{align*}
M (l_0 (\phi_k)) \int_{\Omega} |\nabla \phi_k|^p(x) \Delta_{p(x)} \omega dx &\leq \int_{\Omega} \lambda^{\rho(x)} [\lambda_1 a (x) f (\phi_k) + \mu_1 c (x) h (\phi_k)] - \frac{\phi_k - \phi_{k-1}}{\tau^t} qdx, \\
M (l_0 (\phi_1)) \int_{\Omega} |\nabla \phi_1|^p(x) \Delta_{p(x)} \omega dx &\leq \int_{\Omega} \lambda^{\rho(x)} [\lambda_2 b (x) g (\phi_k) + \mu_2 d (x) \tau (\phi_1)] - \frac{\phi_k - \phi_{k-1}}{\tau^t} qdx, \\
M (l_0 (z_k)) \int_{\Omega} |\nabla z_k|^p(x) \Delta_{p(x)} \omega dx &\geq \int_{\Omega} \lambda^{\rho(x)} [\lambda_1 a (x) f (z_k) + \mu_1 c (x) h (z_k)] - \frac{z_k - z_{k-1}}{\tau^t} qdx, \\
M (l_0 (z_1)) \int_{\Omega} |\nabla z_1|^p(x) \Delta_{p(x)} \omega dx &\geq \int_{\Omega} \lambda^{\rho(x)} [\lambda_2 b (x) g (z_k) + \mu_2 d (x) \tau (z_1)] - \frac{z_k - z_{k-1}}{\tau^t} qdx,
\end{align*}
\]
for all \( q \in W_0^{1,p(x)}(\Omega) \) with \( q \geq 0 \). According to the sub-super solution method for \( p(x) \)-Kirchhoff type equations \( \text{(see [22])} \), then the problem defined in (1) has a positive solution.

**Step 1.** We will construct a subsolution of (1). Let \( \sigma \in (0, \delta) \) be small enough.

Denote

\[
\phi_k(x) = \begin{cases} 
  e^{k' d(x)} - 1, & d(x) < \sigma, \\
  e^{k' d(x)} - 1 + \int_{\sigma}^{d(x)} k' e^{k' \sigma} \left( \frac{2\sigma - d}{2\sigma - \sigma} \right)^{2 - \sigma} \left( \lambda_1 a_1 + \mu_1 c_1 \right) \frac{2 - \sigma}{\sigma} dt, & \sigma \leq d(x) < 2\delta, \\
  e^{k' d(x)} - 1 + \int_{\sigma}^{2\delta} k' e^{k' \sigma} \left( \frac{2\sigma - d}{2\sigma - \sigma} \right)^{2 - \sigma} \left( \lambda_1 a_1 + \mu_1 c_1 \right) \frac{2 - \sigma}{\sigma} dt, & 2\delta \leq d(x) .
\end{cases}
\]

\[
\phi_1(x) = \begin{cases} 
  e^{k' d(x)} - 1, & d(x) < \sigma, \\
  e^{k' d(x)} - 1 + \int_{\sigma}^{d(x)} k' e^{k' \sigma} \left( \frac{2\sigma - d}{2\sigma - \sigma} \right)^{2 - \sigma} \left( \lambda_2 b_1 + \mu_2 d_1 \right) \frac{2 - \sigma}{\sigma} dt, & \sigma \leq d(x) < 2\delta, \\
  e^{k' d(x)} - 1 + \int_{\sigma}^{2\delta} k' e^{k' \sigma} \left( \frac{2\sigma - d}{2\sigma - \sigma} \right)^{2 - \sigma} \left( \lambda_2 b_1 + \mu_2 d_1 \right) \frac{2 - \sigma}{\sigma} dt, & 2\delta \leq d(x) .
\end{cases}
\]

It is easy to see that \( \phi_k, \phi_1 \in C^1(\overline{\Omega}) \). Denote

\[
\alpha = \min \left\{ \inf p(x) - 1, \frac{1}{4} (\sup |\nabla p(x)| + 1), 1 \right\}, \\
\zeta = \min \{ \lambda_1 f(0) + \mu_1 h(0), \lambda_2 g(0) + \mu_2 \tau(0), -1 \}.
\]

By some simple computations, we can obtain

\[
-\Delta_{p(x)} \phi_k = \begin{cases} 
  -k' \left( e^{k' d(x)} \right)^{p(x)-1} \left[ (p(x) - 1) + \left( d(x) + \frac{\ln k'}{k'} \right) \nabla p \nabla d + \frac{\Delta d}{k'} \right], & d(x) < \sigma, \\
  0, & 0, 2\delta \leq d(x) .
\end{cases}
\]

\[
-\Delta_{p(x)} \phi_1 = \begin{cases} 
  -k \left( e^{k' d(x)} \right)^{p(x)-1} \left[ (p(x) - 1) + \left( d(x) + \frac{\ln k'}{k'} \right) \nabla p \nabla d + \frac{\Delta d}{k'} \right], & d(x) < \sigma, \\
  0, & 0, 2\delta \leq d(x) .
\end{cases}
\]

From (H4), there exists a positive constant \( L > 1 \) such that

\[
f(L - 1) \geq 1, g(L - 1) \geq 1, h(L - 1) \geq 1, \tau(L - 1) \geq 1.
\]

Let \( \sigma = \frac{1}{r} \ln L \). Then,

\[
\sigma k' = \ln L.
\]

(6)
If $k'$ is sufficiently large, from the problem defined in (6), we have

$$- \Delta p(x) \Phi_k \leq - k' p(x) \alpha, \quad d(x) < \sigma. \quad (7)$$

Let $\frac{\lambda_k}{m_\infty} = k' \alpha$. Then,

$$- k' p(x) \alpha \geq - \lambda p(x) \frac{z}{m_\infty}.$$

From the problem defined in (7), we have

$$- M \left( I_0 (\Phi_k) \right) \Delta p(x) \Phi_k \leq M \left( I_0 (\Phi_k) \right) \lambda p(x) \frac{z}{m_\infty},$$

$$\leq \lambda p(x) z, \quad \leq \lambda p(x) (\lambda_1 a_1 f (0) + \mu_1 c_1 h (0)), \quad \leq \lambda p(x) (\lambda_1 a (x) f (\phi_k) + \mu_1 c (x) h (\phi_k)) - \frac{\phi_k - \phi_{k-1}}{\tau'}, \quad d(x) < \sigma.$$

Since $d(x) \in C^2 \left( \frac{\partial l_{12}}{\partial z} \right)$, there exists a positive constant $C_3$ such that

$$- M \left( I_0 (\Phi_k) \right) \Delta p(x) \Phi_k \leq m_\infty \left( K e^{k' \nu} \right)^{p(x)-1} \left( \frac{2 \delta - d}{2 \delta - \sigma} \right)^{\frac{2 \delta - d - 1}{p-1}} \left( \ln k' e^{k' \nu} \right)^{\frac{2 \delta - d}{2 \delta - \sigma}} \nabla p \nabla d + \nabla d \right) \mid \leq C_3 m_\infty \left( K e^{k' \nu} \right)^{p(x)-1} (\lambda_1 a_1 + \mu_1 c_1) \ln k', \quad \sigma \leq d(x) < 2 \delta.$$

If $k'$ is sufficiently large, let $\frac{\lambda_k}{m_\infty} = k' \alpha$. Then, we have

$$C_3 m_\infty \left( K e^{k' \nu} \right)^{p(x)-1} (\lambda_1 a_1 + \mu_1 c_1) \ln k' \right) \leq C_3 m_\infty (KL)^{p(x)-1} (\lambda_1 a_1 + \mu_1 c_1) \ln k' \right) \leq \lambda p(x) (\lambda_1 a_1 + \mu_1 c_1) - \frac{\phi_k - \phi_{k-1}}{\tau'}.$$

Then,

$$- M \left( I_0 (\Phi_k) \right) \Delta p(x) \Phi_k \leq \lambda p(x) (\lambda_1 a_1 + \mu_1 c_1) - \frac{\phi_k - \phi_{k-1}}{\tau'}, \quad \sigma \leq d(x) < 2 \delta. \quad (8)$$

Since $\phi_1 (x), \phi_2 (x)$ and $f, h$ are monotone, when $\lambda$ is large enough, we have

$$\left( \int_\Omega \left\lfloor \nabla \phi_k \right\rfloor^{p(x)} \frac{dx}{p (x)} \right) \triangle p(x) \Phi_k \leq \lambda p(x) (\lambda_1 a (x) f (\phi_k) + \mu_1 c (x) h (\phi_k)) \right) - \frac{\phi_k - \phi_{k-1}}{\tau'}, \quad \sigma \leq d(x) < 2 \delta,$$

$$- M \left( I_0 (\Phi_k) \right) \Delta p(x) \Phi_k = 0 \leq \lambda p(x) (\lambda_1 a_1 + \mu_1 c_1) \leq \lambda p(x) (\lambda_1 a (x) f (\phi_k) + \mu_1 c (x) h (\phi_k)) \right) - \frac{\phi_k - \phi_{k-1}}{\tau'}, \quad 2 \delta \leq d(x). \quad (9)$$
Combining two problems which defined in (8) and (9), we can conclude that

\[-M(I_0(\phi_k)) \triangle_p(x)\phi_k \leq \lambda^{p(x)}(\lambda_1a(x)f(\phi_1) + \mu_1c(x)h(\phi_k)) \]

\[-\frac{\phi_k - \phi_{k-1}}{\tau'}, \text{ a.e.on } \Omega. \tag{10} \]

Similarly,

\[-M(I_0(\phi_1)) \triangle_p(x)\phi_1 \leq \lambda^{p(x)}(\lambda_2b(x)g(\phi_k) + \mu_2d(x)\tau(\phi_1)) \]

\[-\frac{\phi_k - \phi_{k-1}}{\tau'}, \text{ a.e.on } \Omega. \tag{11} \]

From the problems defined in (10) and (11), we can see that \((\phi_k, \phi_1)\) is a subsolution of problem (3).

**Step 2.** We will construct a supersolution of problem (3).

We consider

\[
\begin{cases}
-M(I_0(z_k)) \triangle_p(x)z_k = \frac{\lambda^{p(x)}}{m_0}(\lambda_1a_2 + \mu_1c_2)\mu - \frac{z_k - z_{k-1}}{\tau'} \text{ in } \Omega, \\
-M(I_0(z_1)) \triangle_p(x)z_1 = \frac{\lambda^{p(x)}}{m_0}(\lambda_2b_2 + \mu_2d_2)g(\beta(\lambda^{p(x)}(\lambda_1a_2 + \mu_1c_2)\mu)) \\
-\frac{z_k - z_{k-1}}{\tau'} \text{ in } \Omega, \\
\end{cases} \]

\[z_k = z_1 = 0 \text{ on } \partial\Omega, \]

where \(\beta = \beta(\lambda^{p(x)}(\lambda_1a_2 + \mu_1c_2)\mu) = \max_{x \in \Omega^1} z_k(x)\). We shall prove that \((z_k, z_1)\) is a supersolution of problem (3).

For \(q \in W^{1,p(x)}_0(\Omega)\) with \(q \geq 0\), it is easy to see that

\[
M(I_0(z_1)) \int_\Omega |\nabla z_1|^{p(x)-2} \nabla z_1 \cdot \nabla q dx
\]

\[= \frac{1}{m_0}M(I_0(z_1)) \int_\Omega \lambda^{p(x)}(\lambda_2b_2 + \mu_2d_2)g(\beta(\lambda^{p(x)}(\lambda_1a_2 + \mu_1c_2)\mu)) q dx \tag{12} \]

\[\geq \int_\Omega \lambda^{p(x)}\lambda_2b(x)g(z_k) q dx + \int_\Omega \lambda^{p(x)}\mu_2d(x)g(\beta(\lambda^{p(x)}(\lambda_1 + \mu_1)\mu)) q dx. \]

By (H6), for large enough \(\mu\), using Lemma 2, we have

\[g(\beta(\lambda^{p(x)}(\lambda_1a_2 + \mu_1c_2)\mu)) \geq \tau \left(C_2 \left[\lambda^{p(x)}(\lambda_2b_2 + \mu_2d_2)g(\beta(\lambda^{p(x)}(\lambda_1a_2 + \mu_1c_2)\mu)) \right]^{\frac{1}{p(x)}} \right) \geq \tau(z_1). \tag{13} \]

Hence,

\[
M(I_0(z_1)) \int_\Omega |\nabla z_1|^{p(x)-2} \nabla z_1 \cdot \nabla q dx \geq \int_\Omega \lambda^{p(x)}\lambda_2b(x)g(z_k) q dx
\]

\[+ \int_\Omega \lambda^{p(x)}\mu_2d(x)\tau(z_1) q dx - \int_\Omega \frac{z_k - z_{k-1}}{\tau'} q dx. \tag{14} \]
In addition,
\[ M \left( l_0 (z_k) \right) \int_{\Omega} |\nabla z_k|^{p(x)-2} \nabla z_k \nabla q dx = \frac{1}{m_0} M \left( l_0 (z_k) \right) \int_{\Omega} \lambda^{p^+} (\lambda_1 a_2 + \mu_1 c_2) \mu q dx \geq \int_{\Omega} \lambda^{p^+} (\lambda_1 a_2 + \mu_1 c_2) \mu q dx. \]

By (H4), (H5) and Lemma 2, when \( \mu \) is sufficiently large, we have
\[ (\lambda_1 a_2 + \mu_1 c_2) \mu \geq \frac{1}{\lambda^{p^+} \left[ \frac{1}{C_2} \beta (\lambda^{p^+} (\lambda_1 a_2 + \mu_1 c_2) \mu) \right]^{p^+ - 1}} \]
\[ \geq \mu_1 h \left( \beta (\lambda^{p^+} (\lambda_1 a_2 + \mu_1 c_2) \mu) \right) \]
\[ + \lambda_1 f \left( C_2 [\lambda^{p^+} (\lambda_2 b_2 + \mu_2 d_2) g (\beta (\lambda^{p^+} (\lambda_1 a_2 + \mu_1 c_2) \mu))]^{p^+ - 1} \right). \]

Then,
\[ M \left( l_0 (z_k) \right) \int_{\Omega} |\nabla z_k|^{p(x)-2} \nabla z_k \nabla q dx \geq \int_{\Omega} \lambda^{p^+} \lambda_1 a_1 (x) f (z_1) q dx \]
\[ + \int_{\Omega} \lambda^{p^+} \mu_1 c_2 (x) h (z_k) q dx - \int_{\Omega} \frac{z_k - z_k^{-1}}{\tau} q dx. \]

According to the problems (14) and (15), we can conclude that \( (z_k, z_1) \) is a supersolution of problem (3). It only remains to prove that \( \phi_k \leq z_k \) and \( \phi_1 \leq z_1 \).

In the definition of \( v_1 (x) \), let
\[ \gamma = \frac{2}{\delta} \left( \max_{\Omega} \phi_k (x) + \max_{\Omega} |\nabla \phi_k | (x) \right). \]

We claim that
\[ \phi_k (x) \leq v_1 (x), \forall x \in \Omega. \tag{16} \]

From the definition of \( v_1 \), it is easy to see that
\[ \phi_k (x) \leq 2 \max_{\Omega} \phi_k (x) \leq v_1 (x), \text{ when } d (x) = \delta \]
and
\[ \phi_k (x) \leq 2 \max_{\Omega} \phi_k (x) \leq v_1 (x), \text{ when } d (x) \geq \delta. \]
\[ \phi_k (x) \leq v_1 (x), \text{ when } d (x) < \delta. \]

Since \( v_1 - \phi_k \in C^1 (\overline{\Omega}_\delta) \), there exists a point \( x_0 \in \overline{\Omega}_\delta \) such that
\[ v_1 (x_0) - \phi_k (x_0) = \min_{x_0 \in \overline{\Omega}_\delta} (v_1 (x_0) - \phi_k (x_0)). \]

If \( v_1 (x_0) - \phi_k (x_0) < 0 \), it is easy to see that \( 0 < d (x) < \delta \) and then
\[ \nabla v_1 (x_0) - \nabla \phi_k (x_0) = 0. \]
From the definition of $v_1$, we have

$$|\nabla v_1(x_0)| = \gamma = \frac{2}{\delta} \left( \max_{\Omega} \phi_k(x_0) + \max_{\Omega} |\nabla \phi_k(x_0)| \right) > |\nabla \phi_k(x_0)|.$$  

It is a contradiction to

$$\nabla v_1(x_0) - \nabla \phi_k(x_0) = 0.$$  

Thus, problem (16) is valid.

Obviously, there exists a positive constant $C_3$ such that

$$\gamma \leq C_3 \lambda.$$  

Since $d(x) \in C^2(\partial \Omega_{3\delta})$, according to the proof of Lemma 2, there exists a positive constant $C_4$ such that

$$M(I_0(v_1)) - \triangle_{p(x)} v_1(x) \leq C_4 \gamma^{p(x)-1+\theta} \leq C_4 \lambda^{p(x)-1+\theta}, \text{ a.e. in } \Omega, \text{ where } \theta \in (0, 1).$$

When $\eta \geq \lambda^{p^+}$ is large enough, we have

$$-\triangle_{p(x)} v_1(x) \leq \eta.$$  

According to the comparison principle, we have

$$v_1(x) \leq \omega(x), \forall x \in \Omega. \quad (17)$$

From problems (16) and (17), when $\eta \geq \lambda^{p^+}$ and $\lambda \geq 1$ is sufficiently large, we have

$$\phi_k(x) \leq v_1(x) \leq \omega(x), \forall x \in \Omega. \quad (18)$$

According to the comparison principle, when $\mu$ is large enough, we have

$$v_1(x) \leq \omega(x) \leq z_k(x), \forall x \in \Omega.$$  

Combining the definition of $v_1(x)$ and the problem defined in (18), it is easy to see that

$$\phi_k(x) \leq v_1(x) \leq \omega(x) \leq z_k(x), \forall x \in \Omega.$$  

When $\mu \geq 1$ and $\lambda$ is large enough, from Lemma 2.6 (see [22]), we can see that $\beta(\lambda^{p^+} (\lambda_1 a_2 + \mu_1 c_2) \mu)$ is large enough, and then

$$\frac{\lambda^{p^+}}{m_0} (\lambda_2 b_2 + \mu_2 d_2) \gamma (\lambda^{p^+} (\lambda_1 a_2 + \mu_1 c_2) \mu)$$

is large enough. Similarly, we have $\phi_1 \leq z_1$. This completes the proof. $\square$

**Author Contributions:** All authors contributed equally.

**Funding:** The authors gratefully acknowledge Qassim University, represented by the Deanship of Scientific Research, for the material support of this research under Number 3733-alrasscac-2018-1-14-S during the academic year 1439AH /2018.

**Acknowledgments:** The authors would like to thank the anonymous referees and the handling editor for their careful reading and for relevant remarks/suggestions which helped them to improve the paper. The authors gratefully acknowledge Qassim University, represented by the Deanship of Scientific Research, for the material support of this research under Number 3733-alrasscac-2018-1-14-S during the academic year 1439AH /2018

**Conflicts of Interest:** The authors declare no conflict of interest.
References

1. Ruzicka, M. Electrorheological Fluids: Modeling and Mathematical Theory; Springer: Berlin, Germany, 2002.
2. Zhikov, V.V. Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR-Izv. 1987, 29, 33–36. [CrossRef]
3. Fan, X.L. Global $C^{1,\alpha}$ regularity for variable exponent elliptic equations in divergence form. J. Differ. Equ. 2007, 235, 397–417. [CrossRef]
4. Fan, X.L.; Zhao, D. Regularity of minimizers of variational integrals with continuous $p(x)$-growth conditions. Chin. Ann. Math. 1996, 17, 557–564.
5. Zhang, Q.H. Existence of positive solutions for a class of $p(x)$-Laplacian systems. J. Math. Anal. Appl. 2007, 333, 591–603. [CrossRef]
6. Zhang, Q.H. Existence of positive solutions for elliptic systems with nonstandard $p(x)$-growth conditions via sub-supersolution method. Nonlinear Anal. 2007, 67, 1055–1067. [CrossRef]
7. Chen, M. On positive weak solutions for a class of quasilinear elliptic systems. Nonlinear Anal. 2005, 62, 751–756. [CrossRef]
8. Chung, N.T. Multiple solutions for a $p(x)$-Kirchhoff-type equation with sign-changing nonlinearities. Complex Var. Elliptic Equ. 2013, 58, 1637–1646. [CrossRef]
9. Fan, X.L.; Zhao, D. The quasi-minimizer of integral functionals with $m(x)$ growth conditions. Nonlinear Anal. 2000, 39, 807–816. [CrossRef]
10. Fan, X.L. On the sub-supersolution method for $p(x)$-Kirchhoff type equations. J. Math. Anal. Appl. 2007, 330, 665–682. [CrossRef]
11. Kirchhoff, G. Mechanik; Teubner: Leipzig, Germany, 1883.
12. Afrouzi, G.A.; Chung, N.T.; Shakeri, S. Existence of positive solutions for Kirchhoff type equations. Electron. J. Qual. Theory Differ. Equ. 2012, 2012, 1–8. [CrossRef]
13. Boulaaras, S.; Ghafiﬁa, R.; Kabli, S. Existence of positive solutions for a class of elliptic systems involving of $(p(x),q(x))$-Laplacian systems. Rend. Circ. Mat. Palermo II Ser. 2017, doi:10.1007/s20699-017-0184-4. [CrossRef]
14. Chipot, M.; Lovat, B. Some remarks on nonlocal elliptic and parabolic problems. Nonlinear Anal. 1997, 30, 4619–4627. [CrossRef]
15. Chung, N.T. Multiplicity results for a class of $p(x)$-Kirchhoff type equations with combined nonlinearities. Electron. J. Qual. Theory Differ. Equ. 2012, 2012, 1–13. [CrossRef]
16. Ghaﬁﬁa, R.; Boulaaras, S. Existence of positive solution for a class of $(p(x),q(x))$-Laplacian systems. Rend. Circ. Mat. Palermo II Ser. 2017, [CrossRef]
17. Mesloub, F.; Boulaaras, S. General decay for a viscoelastic problem with not necessarily decreasing kernel. J. Appl. Math. Comput. 2017, [CrossRef]
18. Boumaza, N.; Boulaaras, S. General decay for Kirchhoff type in viscoelasticity with not necessarily decreasing kernel. Math. Meth. Appl. Sci. 2018, 1–20. [CrossRef]
19. Sun, J.J.; Tang, C.L. Existence and multiplicity of solutions for Kirchhoff type equations. Nonlinear Anal. 2011, 74, 1212–1222. [CrossRef]
20. Han, X.; Dai, G. On the sub-supersolution method for $p(x)$-Kirchhoff type equations. J. Inequal. Appl. 2012, 2012, 283. [CrossRef]
21. Dai, G. Three solutions for a nonlocal Dirichlet boundary value problem involving the $p(x)$-Laplacian. Appl. Anal. 2013, 92, 191–210. [CrossRef]