Siegel’s problem for E-functions

Tanguy Rivoal, CNRS et Université Grenoble Alpes

Joint work with Stéphane Fischler, Université Paris-Sud

Périodes, motifs et équations différentielles : entre arithmétique et géométrie

Institut Henri Poincaré, Paris, april 2022
Definition 1

A power series \(F(z) = \sum_{n=0}^{\infty} a_n z^n / n! \in \overline{\mathbb{Q}}[[z]] \) is an \(E \)-function if

(i) \(F(z) \) is solution of a non-zero linear differential equation with coefficients in \(\overline{\mathbb{Q}}(z) \).

(ii) There exists \(C > 0 \) such that for any \(\sigma \in \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \) and any \(n \geq 0 \), \(|\sigma(a_n)| \leq C^{n+1} \).

(iii) There exists a sequence of positive integers \(d_n \), with \(d_n \leq C^{n+1} \), such that \(d_n a_m \) are algebraic integers for all \(m \leq n \).

Siegel's definition was more general: the two bounds (\(\cdots \)) \(\leq C^{n+1} \) are replaced by: for all \(\varepsilon > 0 \), (\(\cdots \)) \(\leq n!^\varepsilon \) for all \(n \geq N(\varepsilon) \).

\(E \)-functions are entire functions. They form a ring stable under \(\frac{d}{dz} \) and \(\int_0^z \). If \(F(z) \) is an \(E \)-function and \(\alpha \in \overline{\mathbb{Q}} \), then \(F(\alpha z) \) is an \(E \)-function.

A power series \(\sum_{n=0}^{\infty} a_n z^n \in \overline{\mathbb{Q}}[[z]] \) is a \(G \)-function if \(\sum_{n=0}^{\infty} \frac{a_n}{n!} z^n \) is an \(E \)-function (in the sense of Definition 1).
Examples

E-functions: polynomials in $\overline{\mathbb{Q}}[z]$,

$$
\begin{align*}
\exp(z) &= \sum_{n=0}^{\infty} \frac{z^n}{n!}, \\
L(z) &:= \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \binom{n}{k} \binom{n+k}{n} \right) \frac{z^n}{n!}, \\
H(z) &:= \sum_{n=0}^{\infty} \left(\sum_{k=1}^{n} \frac{1}{k} \right) \frac{z^n}{n!}, \\
J_0(z) &:= \sum_{n=0}^{\infty} \frac{(iz/2)^{2n}}{n!^2}.
\end{align*}
$$

G-functions: algebraic functions over $\overline{\mathbb{Q}}(z)$ regular at 0, \log(1 - z) = - \sum_{n=1}^{\infty} z^n / n and (multiple) polylogarithms

$$
\begin{align*}
\text{Li}_s(z) &:= \sum_{n=1}^{\infty} \frac{z^n}{n^s} \quad (s \in \mathbb{Z}), \\
\sum_{n_1 > n_2 > \cdots > n_k \geq 1} \frac{z^{n_1}}{n_1^{s_1} n_2^{s_2} \cdots n_k^{s_k}} \quad (s_1, s_2, \ldots, s_k \in \mathbb{Z}), \\
\frac{1}{\pi} \int_{0}^{1} \frac{\sqrt{x(1-x)}}{1-zx} \, dx.
\end{align*}
$$

The intersection of both classes of series is reduced to $\overline{\mathbb{Q}}[z]$.
Why are E- and G-functions interesting?

Theorem 1 (Lindemann-Weierstrass)

If $\alpha_1, \ldots, \alpha_n \in \overline{\mathbb{Q}}$ are \mathbb{Q}-linearly independent, then $(e^{\alpha_1 z}, \ldots, e^{\alpha_n z}$ are $\overline{\mathbb{Q}(z)}$-algebraically independent and) $e^{\alpha_1}, e^{\alpha_2}, \ldots, e^{\alpha_n}$ are $\overline{\mathbb{Q}}$-algebraically independent.

Consequences:

- For any $\alpha \in \overline{\mathbb{Q}} \setminus \{0\}$, $\exp(\alpha) \notin \overline{\mathbb{Q}}$.

- For any $\alpha \in \overline{\mathbb{Q}} \setminus \{0, 1\}$, $\log(\alpha) \notin \overline{\mathbb{Q}}$ for any given determination of the logarithm.

Recall that $\exp(z)$ is an E-function while $\log(1 - z)$ is a G-function: Siegel’s aim was to generalize the above statements.
The Siegel-Shidlovskii Theorem

Theorem 2 (Siegel-Shidlovskii, 1929-1956)

Let \(Y = ^t(F_1, \ldots, F_n) \) be a vector of \(E \)-functions (in Siegel’s sense) and \(A \in M_{n \times n}(\mathbb{Q}(z)) \) such that \(Y' = AY \).

Let \(T \in \overline{\mathbb{Q}}[z] \setminus \{0\} \) a common denominator of the entries of \(A \), of minimal degree.

Then, for all \(\alpha \in \overline{\mathbb{Q}} \) such that \(\alpha T(\alpha) \neq 0 \),

\[
\deg \text{tr}_{\mathbb{Q}(z)\mathbb{Q}(z)}(F_1(z), \ldots, F_n(z)) = \deg \text{tr}_{\mathbb{Q}(z)\mathbb{Q}(z)}(F_1(\alpha), \ldots, F_n(\alpha)).
\]

We obtain (a version of) the Lindemann-Weierstrass Theorem with \(F_j(z) = e^{\alpha_j z} \), \(A = \text{Diag}(\alpha_j) \) and \(\alpha = 1 \).

Siegel, 1929: The \(E \)-functions \(J_0(z) \) et \(J'_0(z) \) are \(\overline{\mathbb{Q}}(z) \)-algebraically independent and

\[
\begin{pmatrix} J'_0(z) \\ J''_0(z) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & -\frac{1}{z} \end{pmatrix} \begin{pmatrix} J_0(z) \\ J'_0(z) \end{pmatrix}, \ T(z) = z.
\]

For all \(\alpha \in \overline{\mathbb{Q}} \setminus \{0\} \), the numbers \(J_0(\alpha) \) et \(J'_0(\alpha) \) are \(\overline{\mathbb{Q}} \)-algebraically independent.
After the Siegel-Shidlovskii Theorem

André obtained in 2000 a new proof of the Siegel-Shidlovskii Theorem (in the restricted sense). He used the special properties of the differential equations satisfied by such E-functions.

These properties are inherited from those of the diff equations satisfied by G-functions, found in the 80’s by André, Bombieri, Chudnovsky, Galochkin, Katz: The non-zero minimal differential equation satisfied by a given G-function is fuchsian with rational exponents.

Beukers, 2006: If $Y = t(F_1, \ldots, F_n)$ is a vector of E-functions (in the restricted sense) such that $Y' = AY$ and the F_j’s are linearly independent over $\overline{\mathbb{Q}}(z)$, then for any $\alpha \in \overline{\mathbb{Q}}^*$ not a singularity of A, the numbers $F_1(\alpha), \ldots, F_n(\alpha)$ are linearly independent over $\overline{\mathbb{Q}}$.

Consequence: for any non-polynomial E-function $F(z)$, there are only finitely many $\alpha \in \overline{\mathbb{Q}}$ such that $F(\alpha) \in \overline{\mathbb{Q}}$. This is not a consequence of the Siegel-Shidlovskii Theorem. An exotic evaluation: $J_0^{(4)}(\pm \sqrt{3}) = 0$.

In 2014, André extended Beukers’ lifting theorem to the case of E-functions in Siegel’s sense.
Chudnovsky’s Theorem

Chudnovsky “completed” Siegel’s program for G-functions.

Theorem 3 (Chudnovsky 1984)

Let $Y(z) = ^t(F_1(z), \ldots, F_S(z))$ be a vector of G-functions solution of

$$Y'(z) = A(z)Y(z), \quad A(z) \in M_S(\overline{\mathbb{Q}}(z)).$$

Assume $F_1(z), \ldots, F_S(z)$ to be $\overline{\mathbb{Q}}(z)$-algebraically independent.

For any d, there exists $C_{Y,d} > 0$ such that, for any $\alpha \in \overline{\mathbb{Q}}$ of degree $\leq d$ with

$$0 < |\alpha| < \exp \left(- C_{Y,d} \log (H(\alpha))^{\frac{4S}{4S+1}} \right),$$

there does not exist a polynomial relation of degree $\leq d$ between the values $1, F_1(\alpha), \ldots, F_S(\alpha)$ over $\mathbb{Q}(\alpha)$.

A condition like (1) is unavoidable: there exist transcendental G-functions that take algebraic values on a dense set of algebraic points in the disk of convergence (Wolfart).
Hypergeometric E-functions

Set $(x)_m := x(x + 1) \cdots (x + m - 1)$.

Siegel: the “hypergeometric” series

\[pF_q \left[\begin{array}{c} a_1, \ldots, a_p \\ b_1, \ldots, b_q \end{array} ; z^{q-p+1} \right] := \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_p)_n}{n!(b_1)_n \cdots (b_q)_n} z^{n(q-p+1)}, \]

is an E-function when $q \geq p \geq 1$, $a_j \in \mathbb{Q}$ and $b_j \in \mathbb{Q} \setminus \mathbb{Z}_{\leq 0}$ for all j.

$L(z)$ and $H(z)$ are not of $pF_q(z^{q-p+1})$ type but

\[\sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \binom{n}{k} \frac{(n+k)}{n} \right) z^n \frac{1}{n!} = e^{(3-2\sqrt{2})z} \cdot {}_1F_1 \left[\begin{array}{c} 1/2 \\ 1 \end{array} ; 4\sqrt{2}z \right], \]

\[\sum_{n=0}^{\infty} \left(\sum_{k=1}^{n} \frac{1}{k} \right) z^n \frac{1}{n!} = ze^z \cdot {}_2F_2 \left[\begin{array}{c} 1, 1 \\ 2, 2 \end{array} ; -z \right]. \]
Siegel’s question

Question 1 (Siegel, 1949)

Is it possible to write every E-function (in Siegel’s sense) as a polynomial with coefficients in \mathbb{Q} of series $\,_{p}F_{q}[a_1, \ldots, a_p; b_1, \ldots, b_q; \lambda z^{q-p+1}]$, with $q \geq p \geq 1$, $a_j, b_j \in \mathbb{Q}$ and $\lambda \in \overline{\mathbb{Q}}$?

Such a representation may not be unique. For instance

$$J_0(z) := \,_{1}F_{2}\left[\frac{1}{1, 1}; \left(iz/2\right)^2\right] = e^{-iz} \cdot \,_{1}F_{1}\left[\frac{1/2}{1}; 2iz\right].$$

Gorelov, 2004: the answer is yes if the E-function (in Siegel’s sense) is solution of a differential equation of order ≤ 2 with coefficients in $\overline{\mathbb{Q}}(z)$.

In 2019, Fischler and myself gave a strong reason to believe that the answer was negative in general for E-functions of differential order ≥ 4.

The answer was then shown to be negative by Fresán and Jossen in 2020, who produced an explicit counter-example.

In the rest of the talk, I will explain our 2019 result. From now on, E-functions are always understood in the restricted sense.
Rings of special values

\(\mathbb{G} \) the ring of values taken at algebraic points by analytic continuations of \(\mathbb{G} \)-functions. Algebraic numbers, \(\Gamma(a/b)^b \) (\(a, b \in \mathbb{N} \)) and \(\pi \) are units of \(\mathbb{G} \).

\(\mathbb{H} \) the ring generated by \(\overline{\mathbb{Q}} \), \(1/\pi \) and \(\Gamma^{(n)}(r) \), \(r \in \mathbb{Q} \setminus \mathbb{Z}_{\leq 0} \), \(n \in \mathbb{N} \). Algebraic numbers and \(\Gamma(r) \) (\(r \in \mathbb{Q} \setminus \mathbb{Z}_{\leq 0} \)) are units of \(\mathbb{H} \).

\(\mathbb{S} \) the \(\mathbb{G} \)-module generated by \(\Gamma^{(n)}(r) \), \(r \in \mathbb{Q} \setminus \mathbb{Z}_{\leq 0} \), \(n \in \mathbb{N} \). It is a ring. \(\mathbb{G} \) and \(\mathbb{H} \) are subrings of \(\mathbb{S} \).

Proposition 1

(i) \(\mathbb{H} \) is generated by \(\overline{\mathbb{Q}} \), \(1/\pi \) and

\[
\begin{align*}
&\left\{ \begin{array}{ll}
\text{Li}_s(e^{2i\pi r}) & s \in \mathbb{N}^*, \ r \in \mathbb{Q}, \ (s, e^{2i\pi r}) \neq (1, 1) \\
\log(q) & q \in \mathbb{N}^*
\end{array} \right. \\
&\Gamma(r) \\
&\gamma := -\Gamma'(1) \quad (Euler's \ constant)
\end{align*}
\]

(ii) \(\mathbb{S} \) is the \(\mathbb{G}[\gamma] \)-module generated by \(\Gamma(r) \), \(r \in \mathbb{Q} \setminus \mathbb{Z}_{\leq 0} \).
Theorem 4 (Fischler-R., 2019)

At least one of the following statements is true:

(i) \(G \subset H \);

(ii) Siegel’s question has a negative answer.

(i) is very unlikely. It contradicts a conjecture on exponential periods that generalizes Grothendieck’s periods conjecture.

If there exist \(s \in \mathbb{N}^* \) and \(\alpha \in \overline{\mathbb{Q}} \) such that \(\text{Li}_s(\alpha) \in G \) is not in \(H \), then the \(E \)-function

\[
\sum_{n=2}^{\infty} \left(\sum_{k=1}^{n-1} \frac{\alpha^k}{k^s} \right) \frac{z^n}{n!}
\]

is a counter-example, of differential order (at most) \(s + 3 \).

I will outline the proof of Theorem 4 when in Siegel’s question we further assume that \(p = q \).

The proof of the general case is based on the case \(p = q \) together with more complicated arguments.
Asymptotic expansions in large sectors

Definition 2

Let $\theta \in \mathbb{R}$. We write

$$f(z) \sim \sum_{\rho \in \mathbb{C}} e^{\rho z} \sum_{\alpha \in \mathbb{C}} z^{\alpha} \sum_{i \in \mathbb{N}} \log(z)^i \sum_{n=0}^{\infty} c_{\rho,\alpha,i,n}(\theta)/z^n$$

where the sums on ρ, α, i are finite, and say (in this talk) that the RHS is the asymptotic expansion of f at ∞ in a large sector bisected by the direction θ, when there exist $\varepsilon, R, B, C > 0$ and certain functions $f_{\rho}(z)$ holomorphic in the sector

$$U := \{ z \in \mathbb{C}, |z| \geq R, \theta - \pi/2 - \varepsilon \leq \arg(z) \leq \theta + \pi/2 + \varepsilon \},$$

such that $f(z) = \sum_{\rho} e^{\rho z} f_{\rho}(z)$ and

$$\left| f_{\rho}(z) - \sum_{\alpha \in \mathbb{C}} z^{\alpha} \sum_{i \in \mathbb{N}} \log(z)^i \sum_{n=0}^{N-1} c_{\rho,\alpha,i,n}(\theta)/z^n \right| \leq C^N N! |z|^{B-N}, \quad z \in U, \ N \geq 1.$$

If such an expansion of $f(z)$ exists in a large sector, it is unique in this sector.
Theorem 5

(i) (André, 2000) Let $f(z)$ be an E-function. There exists a finite set A such that, for any $\theta \in (-\pi, \pi) \setminus A$,

$$f(z) \sim \sum_{\rho \in \overline{Q}} e^{\rho z} \sum_{\alpha \in \mathbb{Q}} z^{\alpha} \sum_{i \in \mathbb{N}} \log(z)^i \sum_{n=0}^{\infty} \frac{c_{\rho,\alpha,i,n}(\theta)}{z^n},$$

in a large sector bisected by the direction θ, where (Fischler-R., 2016) the coefficients

$$c_{\rho,\alpha,i,n}(\theta) \in S.$$

(ii) (Fischler-R., 2019) Let $\xi \in G$. There exists an E-function $F(z)$ and a finite set S such that for any $\theta \in (-\pi, \pi) \setminus S$, ξ is one of the $c_{\rho,\alpha,i,n}(\theta)$ of the expansion of $F(z)$ in a large sector bisected by θ.

Asymptotic expansions of E-functions
Theorem 6

Let $\theta \in (-\pi, \pi) \setminus \{0\}$, and $f(z)$ be a hypergeometric series $pF_p(z)$ with rational parameters. Then,

$$f(z) \sim \sum_{\rho \in \{0,1\}} e^{\rho z} \sum_{\alpha \in \mathbb{Q}} z^\alpha \sum_{i \in \mathbb{N}} \log(z)^i \sum_{n=0}^{\infty} \frac{c_{\rho,\alpha,i,n}(\theta)}{z^n}$$

in a large sector bisected by the direction θ where (Fischler-R., 2019) the coefficients

$$c_{\rho,\alpha,i,n}(\theta) \in \mathbb{H}.$$

It is a consequence of Barnes and Wright’s classical results, with refinements coming from the theory of Meijer’s G-function.
Proof of Theorem 4 in the case $p = q$

Let $\xi \in \mathbf{G}$.

By Theorem 5(ii), there exist an E-function $F(z)$ and a finite set S such that for any $\theta \in (-\pi, \pi) \setminus S$, ξ is a coefficient of the expansion of $F(z)$ in a large sector bisected by θ.

Assume that Siegel’s question has a positive answer (in the case $p = q$).

There exist pF_p-hypergeometric series f_1, \ldots, f_n with rational parameters, algebraic numbers $\lambda_1, \ldots, \lambda_n$, and a polynomial $P \in \mathbb{Q}[X_1, \ldots, X_n]$, such that

$$F(z) = P(f_1(\lambda_1z), \ldots, f_n(\lambda_nz)).$$

Choose $\theta \in (-\pi, \pi) \setminus S$ such that $\theta + \arg(\lambda_i) \not\in \pi\mathbb{Z}$ for every i. By Theorem 6, the expansion of each $f_i(\lambda_iz)$ in a large sector bisected by θ has coefficients in \mathbf{H}. The same holds for $F(z)$ because \mathbf{H} is a $\overline{\mathbb{Q}}$-algebra.

Such an expansion being unique, the coefficient ξ belongs to \mathbf{H}.
A Siegel like problem for G-functions

The generalized hypergeometric series

\[p+1 F_p \left[\begin{array}{c} a_1, \ldots, a_{p+1} \\ b_1, \ldots, b_p \end{array} ; z \right] := \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_{p+1})_n z^n}{n!(b_1)_n \cdots (b_p)_n}, \]

is a G-function when $p \geq 0$, $a_j \in \mathbb{Q}$ and $b_j \in \mathbb{Q} \setminus \mathbb{Z}_{\leq 0}$ for all j.

Question 2

Is it possible to write any G-function as a polynomial with coefficients in \mathbb{Q} of series of the form $p+1 F_p[a_1, \ldots, a_{p+1}; b_1, \ldots, b_p; \lambda(z)]$, with $a_j, b_j \in \mathbb{Q}$ and $\lambda(z)$ algebraic over $\mathbb{Q}(z)$, regular at 0 and such that $\lambda(0) = 0$?

Theorem 7 (Fischler-R., 2019)

At least one of the following statements is true:

(i) $G \subset H$

(ii) Question 2 has a negative answer under the further assumption that the algebraic functions λ have a common singularity in $\overline{\mathbb{Q}}^* \cup \{\infty\}$ at which they all tend to ∞.

If there exist $s \in \mathbb{N}^*$ and $\alpha \in \overline{\mathbb{Q}}$ such that $\text{Li}_s(\alpha) \in G$ is not in H, then $\text{Li}_s\left(\frac{\alpha z}{z-\alpha}\right)$ is a counter-example of differential order $s + 1$.
Why is the inclusion $G \subset H$ unlikely, according to Yves André

“The inclusion $G \subset H$ does not contradict Grothendieck’s period conjecture but it contradicts its extension to exponential motives. In the description of H given in Proposition 1, we find

1/π, a period of the Tate motive,

$\text{Li}_s(e^{2i\pi r})$, periods of a mixed Tate motive over $\mathbb{Z}[1/r]$,

$log(q)$, a period of a 1-motive over \mathbb{Q},

$\Gamma(r)$, whose suitable powers are periods of Abelian varieties with complex multiplication by $\mathbb{Q}(e^{2i\pi r})$,

γ, a period of an exponential motive, which is a non-classical extension of the Tate motives.

Let M be the Tannakian category of mixed motives over $\overline{\mathbb{Q}}$ generated by all these motives. Consider a non CM elliptic curve over $\overline{\mathbb{Q}}$ and E its motive. The periods of E are in G.

If $G \subset H$, the periods of E are in H. By the exponential period conjecture, E would be in M. This is impossible because the motivic Galois group of M is pro-solvable, while that of E is GL_2. ”