On a problem of Neumann

Michael Tait*

Abstract

A conjecture widely attributed to Neumann is that all finite non-desarguesian projective planes contain a Fano subplane. In this note, we show that any finite projective plane of even order which admits an orthogonal polarity contains a Fano subplane. The number of planes of order less than \(n \) previously known to contain a Fano subplane was \(O(\log n) \), whereas the number of planes of order less than \(n \) that our theorem applies to is not bounded above by any polynomial in \(n \).

Mathematics Subject Classification: 05C99, 51A35, 51A45

1 Introduction

A fundamental question in incidence geometry is about the subplane structure of projective planes. There are relatively few results concerning when a projective plane of order \(k \) is a subplane of a projective plane of order \(n \). Neumann [9] found Fano subplanes in certain Hall planes, which led to the conjecture that every finite non-desarguesian plane contains \(\text{PG}(2,2) \) as a subplane (this conjecture is widely attributed to Neumann, though it does not appear in her work).

Johnson [7] and Fisher and Johnson [4] showed the existence of Fano subplanes in many translation planes. Petrak [10] showed that Figueroa planes contain \(\text{PG}(2,2) \) and Caliskan and Petrak [8] showed that Figueroa planes of odd order contain \(\text{PG}(2,3) \). Caliskan and Moorhouse [2] showed that all Hughes planes contain \(\text{PG}(2,2) \) and that the Hughes plane of order \(q^2 \) contains \(\text{PG}(2,3) \) if \(q \equiv 5 \pmod{6} \). We prove the following.

Theorem 1. Let \(\Pi \) be a finite projective plane of even order which admits an orthogonal polarity. Then \(\Pi \) contains a Fano subplane.

Ganley [5] showed that a finite semifield plane admits an orthogonal polarity if and only if it can be coordinatized by a commutative semifield. A result of Kantor [8] implies that the number of nonisomorphic planes of order \(n \) a power of 2 that can be coordinatized by a commutative semifield is not bounded above by any polynomial in \(n \). Thus, Theorem 1 applies to many projective planes.

*Department of Mathematics, University of California San Diego. mtait@math.ucsd.edu
2 Proof of Theorem 1

The proof of Theorem 1 is graph theoretic, and we collect some definitions and results first. Let \(\Pi = (\mathcal{P}, \mathcal{L}, \mathcal{I}) \) be a projective plane of order \(n \). We write \(p \in l \) or say \(p \) is on \(l \) if \((p, l) \in \mathcal{I} \). Let \(\pi \) be a polarity of \(\Pi \). That is, \(\pi \) maps points to lines and lines to points, \(\pi^2 \) is the identity function, and \(\pi \) respects incidence. Then one may construct the polarity graph \(G^\pi \) as follows.

\[
V(G^\pi) = \mathcal{P} \quad \text{and} \quad p \sim q \text{ if and only if } p \in \pi(q).
\]

That is, the neighborhood of a vertex \(p \) is the line \(\pi(p) \) that \(p \) gets mapped to under the polarity. If \(p \in \pi(p) \), then \(p \) is an absolute point and the vertex \(p \) will have a loop on it. A polarity is orthogonal if exactly \(n+1 \) points are absolute. We note that as neighborhoods in the graph represent lines in the geometry, each vertex in \(G^\pi \) has exactly \(n+1 \) neighbors (if \(v \) is an absolute point, it has exactly \(n \) neighbors other than itself). We provide proofs of the following preliminary observations for completeness.

Lemma 1. Let \(\Pi \) be a projective plane with polarity \(\pi \), and \(G^\pi \) be the associated polarity graph.

(a) For all \(u, v \in V(G^\pi) \), \(u \) and \(v \) have exactly 1 common neighbor.
(b) \(G^\pi \) is \(C_4 \) free.
(c) If \(u \) and \(v \) are two absolute points of \(G^\pi \), then \(u \not\sim v \).
(d) If \(v \in V(G^\pi) \), then the neighborhood of \(v \) induces a graph of maximum degree at most 1.
(e) Let \(e = uv \) be an edge of \(G^\pi \) such that neither \(u \) nor \(v \) is an absolute point. Then \(e \) lies in a unique triangle in \(G^\pi \).

Proof. To prove (a), let \(u \) and \(v \) be an arbitrary pair of vertices in \(V(G^\pi) \). Because \(\Pi \) is a projective plane, \(\pi(u) \) and \(\pi(v) \) meet in a unique point. This point is the unique vertex in the intersection of the neighborhood of \(u \) and the neighborhood of \(v \). (b) and (c) follow from (a).

To prove (d), if there is a vertex of degree at least 2 in the graph induced by the neighborhood of \(v \), then \(G^\pi \) contains a 4-cycle, a contradiction by (b).

Finally, let \(u \sim v \) and neither \(u \) nor \(v \) an absolute point. Then by (a) there is a unique vertex \(w \) adjacent to both \(u \) and \(v \). Now \(uvw \) is the purported triangle, proving (e).

Proof of Theorem 1. We will now assume \(\Pi \) is a projective plane of even order \(n \), that \(\pi \) is an orthogonal polarity, and that \(G^\pi \) is the corresponding polarity graph (including loops). Since \(n \) is even and \(\pi \) is orthogonal, a classical theorem of Baer ([1], see also Theorem 12.6 in [6]) says that the \(n+1 \) absolute points under \(\pi \) all lie on one line. Let \(a_1, \ldots, a_{n+1} \) be the set of absolute points and let \(l \) be the line containing them. Then there is some \(p \in \mathcal{P} \) such that \(\pi(l) = p \). This means that in \(G^\pi \), the neighborhood of \(p \) is exactly the set of points \(\{a_1, \ldots, a_{n+1}\} \). For \(1 \leq i \leq n+1 \), let \(N_i \) be the neighborhood of \(a_i \). Then by Lemma 1(b) \(N_i \cap N_j = \emptyset \) if \(i \neq j \). Further, counting gives that

\[
V(G^\pi) = p \cup \left(\bigcup_{i=1}^{n+1} a_i \right) \cup \left(\bigcup_{i=1}^{n+1} N_i \right).
\]
Let ER^o_2 be the graph on 7 points which is the polarity graph (with loops) of $PG(2, 2)$ under the orthogonal polarity.

Lemma 2. If ER^o_2 is a subgraph of G^o_π, then Π contains a Fano subplane.

Proof. Let v_1, \ldots, v_7 be the vertices of a subgraph ER^o_2 of G^o_π. Let $l_i = \pi(v_i)$ for $1 \leq i \leq 7$. Then the lines l_1, \ldots, l_7 in Π restricted to the points v_1, \ldots, v_7 form a point-line incidence structure, and one can check directly that it satisfies the axioms of a projective plane.

Thus, it suffices to find ER^o_2 in G^o_π. To find ER^o_2 it suffices to find distinct i, j, k such that there are $v_i \in N_i$, $v_j \in N_j$, and $v_k \in N_k$ where $v_i v_j v_k$ forms a triangle in G^o_π, for then the points $p, a_i, a_j, a_k, v_i, v_j, v_k$ yield the subgraph ER^o_2. Now note that for all i, and for $v \in N_i$, v has exactly n neighbors that are not absolute points. There are n choices for i and $n - 1$ choices for $v \in N_i$. As each edge is counted twice, this yields

$$\frac{n(n - 1)(n + 1)}{2}$$

edges with neither end an absolute point. By Lemma 1.e, there are at least

$$\frac{n^3 - n}{6}$$

triangles in G^o_π. By Lemma 1.c, there are no triangles incident with p, by Lemma 1.b, there are no triangles that have more than one vertex in N_i for any i, and by Lemma 1.d, there are at most $\left\lfloor \frac{n - 1}{2} \right\rfloor = \frac{n}{2} - 1$ triangles incident with a_i for each i. Therefore, by 1.d, there are at least

$$\frac{n^3 - n}{6} - (n + 1) \left(\frac{n}{2} - 1\right)$$

copies of ER^o_2 in G^o_π. This expression is positive for all even natural numbers n.

3
3 Concluding Remarks

First, we note that the proof of Theorem 1 actually implies that there are $\Omega(n^3)$ copies of $PG(2, 2)$ in any plane satisfying the hypotheses, and echoing Petrak [10], perhaps one could find subplanes of order 4 for n large enough. We also note that it is crucial in the proof that the absolute points form a line. When n is odd, the proof fails (as it must, since our proof does not detect if Π is desarguesian or not).

Acknowledgments

The author would like to thank Gary Ebert and Eric Moorhouse for helpful comments.

References

[1] Reinhold Baer. Projectivities with fixed points on every line of the plane. Bulletin of the American Mathematical Society, 52(4):273–286, 1946.
[2] Cafer Caliskan and G Eric Moorhouse. Subplanes of order 3 in Hughes planes. The Electronic Journal of Combinatorics, 18(P2):1, 2011.
[3] Cafer Caliskan and Bryan Petrak. Subplanes of order 3 in Figueroa planes. Finite Fields and Their Applications, 20:24–29, 2013.
[4] J Chris Fisher and Norman L Johnson. Fano configurations in subregular planes. Note di Matematica, 28(2):69–98, 2010.
[5] MJ Ganley. Polarities in translation planes. Geometriae Dedicata, 1(1):103–116, 1972.
[6] Daniel R Hughes and Frederick Charles Piper. Projective planes, volume 6. Springer, 1973.
[7] Norman L Johnson. Fano configurations in translation planes of large dimension. Note di Matematica, 27(1):21–38, 2009.
[8] William M Kantor. Commutative semifields and symplectic spreads. Journal of Algebra, 270(1):96–114, 2003.
[9] Hanna Neumann. On some finite non-desarguesian planes. Archiv der Mathematik, 6(1):36–40, 1954.
[10] Bryan Petrak. Fano subplanes in finite Figueroa planes. Journal of Geometry, 99(1-2):101–106, 2010.