Supplemental Information

Experimental Procedures:

Measurement of bacterial growth curve
Bacterial cells were initially cultured in LB broth at 37°C for 16 hours. At the next day, the overnight cultures were adjusted to O.D.\textsubscript{600}=1.2 and inoculated into 5 mL fresh LB broth with 1:500 dilution. The O.D.\textsubscript{600} values for the bacterial growth curve were automatically measured every 30 min using an OD-Monitor C&T (Taitec, Saitama, Japan) as described (1).

Construction of EHEC deletion mutants
The isogenic gene deletion mutants were constructed by the Lambda Red-mediated recombination system as described (2, 3). The Lambda Red recombinase expression plasmid pKD46 is a temperature-sensitive plasmid, and the lambda red proteins were induced with 10 mM L-arabinose. This method was performed using primers containing the sequence for 30 bp homology to the target gene and 20 bp to amplify a kanamycin or chloramphenicol resistance gene from pKD4 or pKD3. The primers used in the mutant construction are listed in Table S2. The antibiotic resistance genes were flanked by recombinase FLP recognition target (FRT) sites, and directly repeated FRT sites were used for antibiotic resistance gene removal with pCP20. For generation of the EHEC strain EDL933 deletion mutants, the purified DNA fragments were electroporated into EDL933 harboring pKD46 cells. After electroporation, cells were incubated with 2XYT at 37°C for 1 hour, and plated on an LB agar plate containing kanamycin or chloramphenicol. The plates were incubated at 37°C for antibiotic screening and to induce the loss of pKD46. In order to generate EDL933 multiple gene mutants or prevent the polar effects on upstream and downstream gene expression of target genes, it is necessary to remove the resistance cassette with pCP20. The Flp recombinase expression plasmid pCP20 is also a temperature-sensitive plasmid, and the expression of Flp recombinase is induced at 43°C (2-4). Flp recombinase recognizes the FRT sites and removes the FRT site-flanked antibiotic resistance gene, generating an in-frame deletion mutant. The selected colonies were sensitive to Ampicillin and Kanamycin or chloramphenicol for absence of pCP20 and the resistance gene.
Figure S1. Screening of the EDL933 transpososome mutant library.

C. elegans *glp-4 (bn2)* L1 stage larvae were cultured on the Enriched Nematode Growth (ENG) medium plates at the restrictive temperature (25°C) at Day 1. At the same day, the EDL933 transpososome mutant library, stored in 96-well plates and in -80°C freezers, was replicated in LB broth containing 50 µg/mL Kanamycin (Kan) and put in a 37°C incubator for 16 to 18 hours. At Day 2, the entire library was triplicated in 96-well plates containing LB broth with 50 µg/mL Kan and cultured at 37 °C for another 16 to 18 hours. At Day 3, when *C. elegans* *glp-4 (bn2)* animals reached to L4 larvae/young adult stage, the worms were washed off from ENG plates by M9 buffer and collected. These worms were mixed with each transposon mutant clones in 96-well plated, which was centrifuged and resuspended in S medium. Each well contained approximately 20 worms. Then, the 96-well plates were placed at 25°C with shaking at 70 rpm. After 8 days, the O.D.595 values of each well were measured. The O.D.595 value was close to 0.5 when worms were cultured with *E. coli* strain OP50 (as negative control). In contrast, the O.D.595 value was around 1.0 when the worms were fed with EHEC wild-type EDL933 (as positive control). The hits/candidates with a decreased pathogenic phenotype toward *C. elegans* were selected with the O.D. value that was significantly lower compared to the EHEC wild-type EDL933 positive controls (*P*<0.05).
Figure S2. Growth curves of the EHEC strains.
The growth curves of the wild-type EHEC strain EDL933 (EDL933), the isogenic *sdhA* transposon mutant [YQ413 (*sdhA::Tn5*)], and the isogenic *sdhA* deletion mutant (EDL933:*ΔsdhA*) were measured.
Anaerobic metabolism is dispensable for the full virulence of EHEC in *C. elegans*

During anaerobic metabolism, the TCA cycle is repressed and nitrate catalyzed by nitrate reductase (Nar) and fumarate catalyzed by fumarate reductase (Frd) can both act as the alternative terminal electron acceptors other than oxygen (5); or alcohol dehydrogenase, encoded by the *adhE* gene, can regenerate NAD⁺ for glycolysis and control fermentation in *E. coli* (6). Moreover, the transcriptional regulator Fnr (fumarate/nitrate reduction regulator) is required for anaerobic respiration and controls the switch from aerobic to anaerobic respiration (7), and the ribonucleotide reductase class III, encoded by *nrdD* and *nrdG*, is essential for a strictly anaerobic environment in *E. coli* (8). To test whether anaerobic metabolism, including anaerobic respiration and fermentation, also plays roles in the pathogenesis of EHEC in *C. elegans*, five isogenic mutants with *narHJI*, *frdA*, *adhE*, *fnr*, and *nrdDG* deletion (EDL933:ΔnarHJI, EDL933:ΔfrdA, EDL933:ΔadhE, EDL933:Δfnr, and EDL933:ΔnrdDG) were generated and tested. We noted that these isogenic mutants were as toxic as the parental wild-type EDL933 (Figure S3). Given the potential redundancy of these genes in controlling anaerobic metabolism, a compound mutant was also generated. Our results showed that the isogenic EDL933:ΔnarHJIΔfrdAΔadhEΔfnrΔnrdDG mutant strain was as toxic as the wild-type EDL933 (Figure S3). Together, our current data suggested that anaerobic metabolism is dispensable for the full virulence of EHEC in *C. elegans*.

![Figure S3. Deletion of genes involved in anaerobic metabolism did not alter EHEC toxicity in *C. elegans*.](image-url)
The survival of N2 worms fed with the wild-type EDL933 (EDL933) and the isogenic deletion strains of *narHJI* (EDL933:*ΔnarHJI*), *frdA* (EDL933:*ΔfrdA*), *adhE* (EDL933:*ΔadhE*), *fnr* (EDL933:*Δfnr*), and *nrdDG* (EDL933:*ΔnrdDG*) were examined. Deletion of *narHJI* (median N2 lifespan = 6.0 ± 0.1 days, *P*=0.205), *frdA* (median N2 lifespan = 6.7 ± 0.6 days, *P*=0.129), *adhE* (median N2 lifespan = 6.0 ± 0.1 days, *P*=0.413), *fnr* (median N2 lifespan = 6.0 ± 0.1 days, *P*=0.448), and *nrdDG* (median N2 lifespan = 6.5 ± 0.7 days, *P*=0.908) were as toxic as the parental wild-type EDL933 (median N2 lifespan = 6.2 ± 0.5 days). "ns" represents no statistically significant difference examined by the Log-rank test.
The effect of fumarate is specific to EHEC

The survival curves of *C. elegans* animals did not change when fed on the succinate or fumarate treated OP50 (Figure S4A). These results suggested that the effect of fumarate was on EDL933:ΔsdhA mutant directly. We also generated the isogeneic *sdhA* mutant strain of *E. coli* OP50 (OP50:ΔsdhA) to examine whether the effect of fumarate is specific to EHEC. Our results showed that the survival curves of *C. elegans* animals fed on the wild-type OP50 and the OP50:ΔsdhA mutant were similar (Figure S4B). Moreover, the survival curves of *C. elegans* animals fed on succinate or fumarate treated OP50:ΔsdhA were similar to the untreated control, which suggested that the *sdhA* gene is specifically required for the pathogenesis of EHEC in *C. elegans*.

Figure S4. Supplement of *E. coli* OP50 and OP50:ΔsdhA with succinate or fumarate did not alter *C. elegans* lifespan.

(A) The survival curves of worms fed with the wild-type OP50 strain cultured with 2.5 mM succinate (OP50+Succinate) or fumarate (OP50+Fumarate) were examined. Animals on OP50 treated with succinate (OP50+Succinate, N2 median lifespan = 18.5 ± 1.5 days, *P*=0.72) or fumarate (OP50+Fumarate, N2 median lifespan = 17.8 ± 0.49 days, *P*=0.40) shown a similar lifespan compared to that on OP50 (OP50, N2 median lifespan = 18.67 ± 0.42 days). (B) The survival curves of worms fed with the wild-type OP50 strain, and OP50 with isogenic deletion strain of *sdhA* (OP50:ΔsdhA) cultured with 2.5 mM succinate (OP50:ΔsdhA+Succinate) or fumarate (OP50:ΔsdhA+Fumarate) were examined. Worms on the OP50:ΔsdhA strain (OP50:ΔsdhA, N2 median lifespan = 20.0 ± 1.4 days, *P*=0.627) exhibited similar lifespan compared to the wild-type OP50.
strain (OP50, N2 median lifespan = 20.5 ± 0.7 days) toward C. elegans animals. Worms on succinate-treated OP50:ΔsdhA strain (OP50:ΔsdhA+Succinate, N2 median lifespan = 20.0 ± 0.1 days, P=0.842) and fumarate-treated OP50:ΔsdhA strain (OP50:ΔsdhA+Fumarate, N2 median lifespan =20.5 ± 0.7 days, P=0.878) all exhibited similar lifespan compared to the untreated control (OP50:ΔsdhA, N2 median lifespan = 20.0 ± 1.4 days). "ns" represents no statistically significant difference examined by the Log-rank test.
The three putative C4-dicarboxylates sensor-regulator systems are dispensable

The *dcuSR* operon (also known as *yjdHG*) encodes a two-component sensor-regulator system (DcuS-DcuR) which can sense fumarate and lead to activation of the fumarate-succinate antiporter DcuB expression in *E. coli* (9, 10). If fumarate restores *sdhA* mutant toxicity/virulence through the DcuSR two-component system, deletion of *dcuSR* in the *sdhA* mutant background cannot restore its toxicity after supplement of fumarate. We therefore generated the *sdhAdcuSR* isogenic mutant and examined its toxicity to *C. elegans* under fumarate supplement. As shown in Figure S5A, the toxicity of *sdhAdcuSR* mutant to *C. elegans* was significantly attenuated compared with wild-type EHEC (*P*<0.0001) but was similar to the *sdhA* single mutant (*P*=0.151). Moreover, addition of 2.5 mM fumarate not only restored the toxicity of *sdhA* mutant but also the *sdhAdcuSR* mutant which suggested that the *dcuSR* two-component system is not involved in sensing fumarate to regulate the virulence of EHEC.

Another DctS-DctR two-component system, which encoded by *dctS* and *dctR* genes, is required for high-affinity C4-dicarboxylate transport in *Rhodobacter capsulatus* (9, 11). We blasted the amino acid sequence of DctS and DctR to the EDL933 amino acid sequence and identified YhiF (Z4909, *yhiF*) as a close homolog of DctR, but could not identify any homolog of DctS. The DctB-DctD sensor-regulator controls the expression of the *dctA* gene encoding C4-dicarboxylate transporter DctA in *Rhizobia* (11). We also blasted the amino acid sequence of DctB and DctD to EDL933 protein sequence and identified HyfR (Z3751, *hyfR*) as having the closest homology to DctD. However, we could not identify any DctB homolog in EDL933. Therefore, we generated the isogenic mutant of *dctR* (*yhiF*) and *dctD* (*hyfR*) in the *sdhA* mutant background to examine whether fumarate regulates EDL933 virulence through SdhA via these two-component systems. As shown in Figure S5B, *dctRsdhA* double mutant is less toxic to *C. elegans* compared with wild-type EHEC (*P* < 0.0001) but is similar to the *sdhA* single mutant (*P*=0.96). Supplement of 2.5 mM fumarate to the *dctRsdhA* double mutant restored its toxicity to that of the *sdhA* single mutant (*P*=0.57), suggesting that the DctS-DctR two-component sensing pathway is not required for fumarate to regulate EHEC toxicity.

We also generated *dctD* isogenic mutant in the *sdhA* mutant background and examined its toxicity toward *C. elegans* when supplied with 2.5 mM fumarate. In the same manner as the *dctRsdhA* double mutant, addition of fumarate to the *dctDsdhA* double mutant rescued its toxicity to that of the *sdhA* single mutant (*P*=0.86) (Figure S5C).
Figure S5. Deletion of the putative two-component systems in C4 dicarboxylates regulation did not affect the capability of fumarate to restore the toxicity of the EHEC sdhA mutant.

(A) The survival of N2 worms fed with the wild-type strain (EDL933) and the isogenic deletion strains of sdhA (EDL933:ΔsdhA), the sdhA and dcuSR triple mutant (EDL933:ΔsdhAΔdcuSR) and mutants treated with 2.5mM fumarate, respectively (EDL933:ΔsdhA+Fumarate and EDL933:ΔsdhAΔdcuSR+Fumarate), were examined. The virulence of sdhA and dcuSR triple mutant treat with 2.5mM fumarate (EDL933:ΔsdhAΔdcuSR+Fumarate, median N2 lifespan = 9 days) was similar to sdhA mutant treated with 2.5 mM fumarate (EDL933:ΔsdhA+Fumarate, median N2 lifespan = 8 days, P=0.52). (B) The survival of N2 worms fed with the wild-type strain (EDL933)
and the isogenic deletion strains of $sdhA$ (EDL933:$\Delta sdhA$), the $sdhA$ and $dctR$ double mutant (EDL933:$\Delta sdhA\Delta dctR$) and mutants treated with 2.5mM fumarate, respectively (EDL933:$\Delta sdhA$+Fumarate and EDL933:$\Delta sdhA\Delta dctR$+Fumarate) were examined. The virulence of $sdhA$ and $dctR$ double mutant treated with 2.5 mM fumarate (EDL933:$\Delta sdhA\Delta dctR$+Fumarate, median N2 lifespan = 7.3 ± 0.6 days) was similar to $sdhA$ mutant treated with 2.5mM fumarate (EDL933:$\Delta sdhA$+Fumarate, median N2 lifespan = 7.4 ± 0.5 days, $P=0.57$). (C) The survival of N2 worms fed with the wild-type strain (EDL933) and the isogenic deletion strains of $sdhA$ (EDL933:$\Delta sdhA$), the $sdhA$ and $dctD$ double mutant (EDL933:$\Delta sdhA\Delta dctD$) and mutants treated with 2.5 mM fumarate, respectively (EDL933:$\Delta sdhA$+Fumarate and EDL933:$\Delta sdhA\Delta dctD$+Fumarate), were examined. The virulence of $sdhA$ and $dctD$ double mutant treat with 2.5 mM fumarate (EDL933:$\Delta sdhA\Delta dctD$+Fumarate, median N2 lifespan = 8 days) was similar to $sdhA$ mutant treated with 2.5 mM fumarate (EDL933:$\Delta sdhA$+Fumarate, median N2 lifespan = 8 days, $P=0.86$). “ns” represents no statistically significant difference examined by the Log-rank test.
Tables

Table S1. Nematode strains used in this study.

Strain	Relevant characteristics	Source or reference
N2	*C. elegans* wild-type strain	(12)
GK454	*unc-119(ed3), dkl1s247[Pact-5::mCherry::HA::act-5, unc119(+)]; mCherry::ACT-5 expression*	(13)
Table S2. Bacterial strains used in this study.

Strain	Description	Source or reference
OP50	uracil auxotroph and laboratory food source for *C. elegans*	(12)
EDL933	*E. coli* O157:H7 isolated from raw hamburger meat	(14)
HER1266	*E. coli* O157:H7 isolated from human stool	(15)
YQ413	*sdhA*::Tn5, Tn5 transposon mutant inserted in the *sdhA* gene of EDL933	this study
EDL933:ΔsdhA	EDL933 isogenic mutant with *sdhA* gene deleted; Kan^R^ kick out	this study
EDL933:ΔsdhC	EDL933 isogenic mutant with *sdhC* gene deleted; Kan^R^	this study
EDL933:ΔsdhD	EDL933 isogenic mutant with *sdhD* gene deleted; Kan^R^	this study
EDL933:ΔsdhB	EDL933 isogenic mutant with *sdhB* gene deleted; Kan^R^	this study
EDL933:ΔsdhCΔsdhD	EDL933 isogenic mutant with *sdhCDAB* operon deleted; Kan^R^	this study
EDL933-pQE30	EDL933 transformed with pQE30; Amp^R^	(16)
EDL933:ΔsdhA-pQE30	EDL933 isogenic mutant with *sdhA* gene deleted; Kan^R^ kick out, and transformed with pQE30; Amp^R^	this study
EDL933:ΔsdhA-pWF134	EDL933 isogenic mutant with *sdhA* gene deleted; Kan^R^ kick out, and transformed with pWF134; Amp^R^	this study
EDL933:ΔsdhA-pWF134	EDL933 isogenic mutant with *sdhA* gene deleted; Kan^R^, and complement with *sdhCDAB* by transformation with pWF134; Amp^R^	this study
EDL933:ΔsdhCDAB-pWF134	EDL933 isogenic mutant with *sdhCDAB* gene deleted; Kan^R^, and complement with *sdhCDAB* by transformation with pWF134; Amp^R^	this study
EDL933 *sdhA*::Tn5-pWF134	EDL933 transposon inserted in *sdhA* gene; Kan^R^, and complemented with *sdhCDAB* by transformation with pWF134; Amp^R^	this study
OP50:ΔsdhA	OP50 isogenic mutant with *sdhA* gene deleted; Kan^R^	this study
Strain	Description	Source or reference
--------	-------------	---------------------
EDL933:ΔicdA	EDL933 isogenic mutant with icdA gene deleted; Kan^R	this study
EDL933:ΔsucAΔsucB	EDL933 isogenic mutant with sucA gene and sucB gene deleted; Kan^R	this study
EDL933:ΔsucCΔsucD	EDL933 isogenic mutant with sucC gene and sucD gene deleted; Kan^R	this study
EDL933:ΔfrdA	EDL933 isogenic mutant with frdA gene deleted; Kan^R	this study
EDL933:ΔfumCΔfumA	EDL933 isogenic mutant with fumC gene and fumA gene deleted; Kan^R	this study
EDL933:Δmdh	EDL933 isogenic mutant with mdh gene deleted; Kan^R	this study
EDL933:ΔgltA	EDL933 isogenic mutant with gltA gene deleted; Kan^R	this study
EDL933:ΔygfH	EDL933 isogenic mutant with ygfH gene deleted; Cm^R	this study
EDL933:ΔsdhAΔygfH	EDL933 isogenic mutant with sdhA gene and ygfH gene deleted; Kan^R Cm^R kick out	this study
EDL933:ΔarcA	EDL933 isogenic mutant with arcA gene deleted; Kan^R	this study
EDL933:ΔarcB	EDL933 isogenic mutant with arcB gene deleted; Kan^R	this study
EDL933:ΔarcAΔarcB	EDL933 isogenic mutant with arcA gene and arcB gene deleted; Kan^R Cm^R	this study
EDL933:Δfmr	EDL933 isogenic mutant with fmr gene deleted; Kan^R	this study
EDL933:ΔnarHΔnarJ ΔnarI Δfmr ΔadhE	EDL933 isogenic mutant with narH gene, narJ gene, and narI gene deleted; Kan^R	this study
EDL933:ΔadhE	EDL933 isogenic mutant with adhE gene deleted; Kan^R	this study
EDL933:ΔnrdDΔnrdG	EDL933 isogenic mutant with nrdD gene and nrdG gene deleted; Kan^R	this study
EDL933:ΔnarHΔnarJ ΔnarIΔfmrΔadhE	EDL933 isogenic mutant with narHnarJnarI gene deleted; Kan^R kick out, fmr gene; Kan^R, and adhE gene; Cm^R	this study
EDL933:ΔsdhAΔtnaA	EDL933 isogenic mutant with sdhA gene; Kan^R, and tnaA gene deleted; Kan^R	this study
Table S3. Plasmids used in this study.

Plasmid	Relevant characteristics	Source or reference
pFPV25.1	Vector for constitutive GFP expression; *rpsM::gfpmut*; Amp^R	(17)
pKD46	Red recombinase expression; Amp^R	(2, 18)
pKD3	Template plasmid for Cm^R cassette	(2)
pKD4	Template plasmid for Kan^R cassette	(2)
pQE30	Amp^R, T5 expression vector	Qiagen, USA
pCP20	FLP recombinase expression; Amp^R Cm^R	(2)
pWF134	*sdhCDAB* expressing plasmid; Amp^R	this study
Table S4. Primers used in cloning, mutant construction, and qRT–PCR in this study.

Name	Oligonucleotides		
Primers used for cloning (5’ to 3’)			
pQE30-sdhCDAB F5	ACATGCATGCTTAAGGTCTCCTCCTTAGCGGCTGAGCTGCTTC		
pQE30-sdhCDAB R3	ACGCGTCGACGCGCATCCGGCACTGGTTG		
sdhA F5	GGATTCGTTGTGGTGGGAGTGAGGTAGGAGTGGGCTGGAGCTGCTTC		
sdhA R3	CATTTTCTGTTCTCCGCAATTAGTACGCATTAGATATCCTCCTTAG		
sdhA Up R3	TCATCACACCGCCACACACTGCAATCC		
Check sdhA F5	CTATCTGGAAGAAACATTCG		
Check sdhA R3	AGGGTGTAATCCTGACATAC		
sdhB F5	GTACTTACTAATGCGGAGACAGAAATGTAGGGCTGGAGCTGCTTC		
sdhB R3	TCTTATCAGGGCTACGGTATTACGCATTAGCATGATATCCTCCTTAG		
sdhB Up R3	TCATGAATAAGCGCCACACTGAGTAC		
Check sdhB F5	AGCATATACTTCCTTGGCTTC		
Check sdhB R3	ATACTACACGCAAGTATG		
sdhC F5	ATAAAGAACAGCATGTTGGCCGTATTCATGAGGTAGGGCTGGAGCTGCTTC		
sdhC R3	CTAATGCACGGAGGCGTTAGTACCAGCAGCATGATATCCTCCTTAG		
sdhC Up R3	TCATGAATAAGCGCCACACTGATGAC		
Check sdhC F5	CTAATAACTGTCCCCAGATAA		
Check sdhC R3	ATAAATACGCAAGTACAGT		
sdhD F5	CTTTCACCTTCTCCGAGGGAGTCTCGATAGGGCAGCTGGAGCTGCTTC		
sdhD R3	CTCTGACTGGCAATTTCATCCACCCACCATATGCAATATCCTCCTTAG		
sdhD Up R3	CCATACGAGGACTCTCTCGAGAGGAATGGAAAA		
Check sdhD F5	TATCACGTGCTCGTAGGTAT		
Check sdhD R3	CCGGTTTTTACACATATATAC A		
acnB F5	GAATACCGTAAGCAGTACGTCAGGTAGGGCTGGAGCTGAGCTGCTTC		
acnB R3	AGTCTGGGAAATTCAGCCAATCTTGCTTTCTC CATAT GAATA TCTC CT TAG		
acnB Up R3	GCCACGTCAGTACGTAGCTCCTACGGTAGAT		
Check acnB F5	TATCAGTAATCTCGATCAGTGAGTATCAAG		
Check acnB R3	TTCGTCGTAAGTAGTCATCC		
icdA F5	AAAGTAGTTGTTCTCGGCAACAGAAGGTTAGGGCTGGAGCTGCTTC		
icdA R3	CTTGTATGAGTACGGTACCAAAACTCTGAGACACATATGAAATATCCTCCTT AG		
icdA Up R3	CTTTCTGCTTTGTCGGGAAACACTACTTT		
Check icdA F5	TATGTTACGCTACAGTAAC		
Check icdA R3	CATTACCGTCACACTCC		
Gene	Region	Primer 1	Primer 2
------	--------	----------	----------
sucA	F5	AGCGCTTTGAAAGCCTGGTTGAGTGTGGCTGGAGCTGCTTC	
sucB	R3	CAGCAGACAGACGCTGGATCCTCCAGCAACATATGAGATATCCTCCTTAG	
sucA	Up R3	AGGAAGAGTCTCAACCAGGCTTTTCAAAGCGCT	
Check	sucA F5	AGGTATCAGCTGCTATAG	
Check	sucB R3	ACGTGAACATCGGCCTACAA	
sucC	F5	CGATTACTGAAGGATGGACAGACACATGAGTGGCTGGAGCTGCTTC	
sucC	R3	TATCAATTAAATGGACACATTATTTCCCCCTCCCATAGAATATATCCTCCTTAG	
sucC	Down F5	GAGGGGAATAATGTCACCTTTTAAAGTATA	
Check	sucC F5	TGGTAAACGATCAAGATGGT	
Check	sucC R3	GGTGATAATCAATTTTGATG	
sucD	F5	GGGTTTGCGCCAGCGAGGGGAAATAATGTTGCTGGAGCGGTGCTTCT	
sucD	R3	ATTTCTTATTACAGATATTTATTGACAACCATATGAGATATCCTCCTTAG	
sucD	Down F5	GGGTGAAATAATGTCATATAG	
Check	sucD F5	GACGACGATCCCTCCAGATGGT	
Check	sucD R3	ATCCCTCTAAGAATTTTTGC	
frdA	F5	CAAACAGACTGAGATGGCAGGAGGAGTACTTACATGAGTGGCTGGAGCTGCTTC	
frdA	R3	ATTTTCAAGTTTTTCTACACATGGCGGTCATATGAGATATCCTCCTTAG	
frdA	Up R3	GCCGGAACGTTATGCTGAGATG	
Check	frdA F5	TCTCGTCAATTTTCAGACTT	
Check	frdA R3	GGGTCTGGGCTATTTTATCC	
fumC	F5	AATTAATCGTGGAGAGTAGAAGGAGGACCTTAAATGGGTGTAGGCTGGAGCTGCTTC	
fumC	R3	GCCACCTGTATGTGAGTCAAGATGAGTGGCTGGAGCTGCTTC	
fumC	Down F5	GCCGGGCGTTAATCTGCAACATACAGGTGC	
Check	fumC F5	TTTTACATGGCAGGAAG	
Check	fumC R3	TGTTGCTGTAATACAAAG	
fumA	F5	CAAACAGACTGAGATGGCAGGAGGAGTACTTACATGAGTGGCTGGAGCTGCTTC	
fumA	R3	GCCGGAACGTTATGCTGAGATG	
fumA	Up R3	ACATTGTGTTTCTCCTAGATGCTG	
Check	fumA F5	GATGAACCTGAATGGAGAGTG	
Check	fumA R3	CTGGTGGGCTTGGTGAAGT	
mdh	F5	TTATCAATAAATAAAGAGAGTTTAGGATGAGTGAGGCTGGAGCTGCTTC	
mdh	R3	TTATTCGGCTATGACTTTATTACATGTGAATATGACGTCCATTAG	
mdh	Down F5	GGTAAATAAGTATGAGGATGCTGGAGCTGCTTC	
Check	mdh F5	TGAAGAAGGCTGAAAATG	
Check	mdh R3	A AgricultGGCATTTACAC	
gltA	F5	CCAATAAGGGCGCCGCTAAGGAGGACCTTAAATGGGTGTAGGCTGGAGCTGCTTC	
gltA	R3	ATGGTTACATCCGAGAATATGTTTAAACCATTGAGATATACCTCCTCCTTAG	
gltA	Up R3	CCACTTAAAGGCTCCTCCTAGCGCCTTATTGG	
check	gltA F5	TCATTGCGGACAGTTATTAG	
Gene	Primer 1	Primer 2	Sequence
-------	--------------	--------------	---------------------------------
gltA	R3		CTTCATGGGCTATGAAAAG
ygfH	F5		CAGTGGACAAGGATGACCGCAGTAGAAGCGGTGTAGGCTGGAGCTGCTTC
ygfH	R3		CATCGAGCCGTTGCAAATTAATTACCGGTGCATATGAATATACCTCCTCTTAG
ygfH	Up R3		CGCTTCATCGGCGGTCTCATCCTTTGCTCCACTG
arcA	F5		TTTAGTGGCATAATTAGGATGCAAAACATGCGTGAGGCTGGAGCTGCTTC
arcA	R3		TGACGGTGGAATACCGGATTAATCTTCACGACTATATGCATATATCCTCCTCTTAG
arcA	Up R3		GCATGTTTGTCACTTAATAGGCAACAACCTGC
arcB	F5		GCAGGGTTGTCCGTGAAAGGATTTCCCCTAATGAGGCTGGAGCTGCTTC
arcB	R3		ACCCAGGTCTAGCCGCCGTCATTTTTAGTCATATGAATATACCTCCTCTCTTAG
arcB	Up R3		TCATTAGGGGAAATTTGCTCACTGCAGCAACACTGC
fnr	F5		ATATCAATTACGGCTTGAGACGACCTATGAGGCTGGAGCTGCTTC
fnr	R3		GTGAGTTTATGCGGAAAAATCACGGCACGATTCTCATATGAATATCCTCCTCTCTTAG
fnr	Up R3		TCATAGGTCTCGTCAGAAGGCTATAGGATAT
narH	F5		AATGATCAGGTACAGGAGAGCGTAAAAATGAGGCTGGAGCTGCTTC
narH	R3		ATGTGAACTAAAATTCGCTTAGTGACGAGGCCATATGAATATCCTCCTCTCTTAG
narH	Up R3		TCATTTCAGCTCTCCTGACCTGATCATT
narH	F5		GGTATCCACACTCCACCTACA
narH	R3		CAAACGAAATCCCCTATTAAA
adhE	F5		AAGTTTAAACATTATCAGGAGAGCATTATTGAGGCTGGAGCTGCTTC
adhE	R3		GCCAGACAGCCGTACTGATTTAAGCCTATTTCATATGAATATCCTCCTCTCTTAG
adhE	Up R3		CCATAATCGCTGATGTTAATACCTTTAT
adhE	F5		AGCCACCAATCATACACTACA
adhE	R3		AAAACCATCTGTTTTTG
nrdD	F5		CATGTGATAACGACGAGCGCTGCAAAGTGGTGAGGCTGGAGCTGCTTC
nrdD	R3		ATGTGACACCACCTCGATTGCTGCTGCGCCGCATATGAATATCCTCCTCTCTTAG
nrdD	Up R3		CACTTTGCGAGCGCTCTGTTTCATACATG
nrdD	F5		TTGTGATCGATACTACGAA
nrdD	R3		CAATTTTAAAGTGGTACGAA
tnaA	F5		TATGTAATGGGAAAATTTAACATTCCTCCTGAGGCTGGAGCTGCTTC
tnaA	R3		TTTCAAGTTTGCGTGAAGGAGCGCAATATGATATACCTCCTCTTTAG
tnaA	F5		TATGTAATGGGAAAATTTAACATTCCTCCTGAGGCTGGAGCTGCTTC
tnaA	R3		TTTCAAGTTTGCGTGAAGGAGCGCAATATGATATACCTCCTCTTTAG
tnaA Up R3	AGGGAGATGTTTAAGTTTTTCCATTACATA		
Check tnaA F5	TCTCATAAACACAGCCAATA		
Check tnaA R3	ATACGTGGATTAGCGTGATA		

Primers used for real time RT-PCR (5’ to 3’)

qPCR tnaA F5	AGGGATTAGAACGCGGTATTG
qPCR tnaA R3	CGGAGTTACTGGTGATGGTTG
qPCR dnaJ F5	ACCAAAGAGATCCGCATTCC
qPCR dnaJ R3	ACGGCAAAGAAACCCTGG
qPCR rpoA F5	GTGACCCTTGAGCCTTTAGAG
qPCR rpoA R3	ACACCATCAATCTCAACCTCG
Table S5. Proteins with differential expression in the wild-type EHEC strain (EDL933), the isogenic sdhA deletion mutant (EDL933:ΔsdhA), and the sdhA gene complementation strain (EDL933:ΔsdhA-pWF134).

Protein Name	Mass(Da)	EDL933	ΔsdhA	t-Test	Fold Change
Agmatinase	33557	0.84 ± 0.13	0 ± 0	0.0032	-100
Alcohol dehydrogenase YqhD	42097	0.84 ± 0.14	0 ± 0	0.0033	-100
Aspartate--ammonia ligase	36691	1.11 ± 0.12	0 ± 0	0.0008	-100
Chaperone protein DnaJ	41044	1.47 ± 0.32	0 ± 0	0.0103	-100
Dimethyl sulfoxide reductase DmsA	90399	1.11 ± 0.29	0 ± 0	0.0193	-100
Flavodoxin-1	19737	1.39 ± 0.05	0 ± 0	1E-05	-100
GDP-L-fucose synthase	36141	0.63 ± 0.02	0 ± 0	0	-100
Hydrogenase-1 large chain	66253	1.18 ± 0.17	0 ± 0	0.0021	-100
Nitrate/nitrite response regulator protein NarL	23927	0.77 ± 0.15	0 ± 0	0.0075	-100
Periplasmic nitrate reductase	93130	0.7 ± 0.06	0 ± 0	0.0003	-100
Uncharacterized protein YibN	15596	0.7 ± 0.07	0 ± 0	0.0004	-100
Uncharacterized protein YniA	32474	0.84 ± 0.02	0 ± 0	0	-100
Succinate dehydrogenase iron-sulfur subunit	26770	4.06 ± 0.37	0.39 ± 0.39	0.0024	-10.31
Succinate dehydrogenase flavoprotein subunit	64422	9.5 ± 0.23	1.01 ± 1.01	0.0011	-9.45
Xaa-Pro aminopeptidase	49815	1.18 ± 0.13	0.22 ± 0.22	0.0179	-5.49
Universal stress protein E	35707	2.22 ± 0.36	0.52 ± 0.27	0.0190	-4.24
Osmotically-inducible protein Y	21074	1.39 ± 0.17	0.43 ± 0.22	0.0246	-3.22
Protein	Accession No.	Ratio 3/1	p-Value 3/1	Fold Change	
------------------------------------	---------------	-----------	-------------	-------------	
Protein HemY	45245	1.82 ± 0.09	0.81 ± 0.14	0.0034	-2.24
Chaperone protein skp	17688	2.45 ± 0.19	1.21 ± 0.36	0.0392	-2.03
Fumarate reductase iron-sulfur subunit	27123	2.24 ± 0.3	1.19 ± 0.17	0.0370	-1.88
30S ribosomal protein S12	13737	4.41 ± 0.67	2.38 ± 0.12	0.0404	-1.86
Protein YdgH	33903	2.59 ± 0.26	1.4 ± 0.3	0.0389	-1.85
Tryptophanase	52773	37.08 ± 2.43	20.99 ± 2.55	0.0102	-1.77
Cystine-binding periplasmic protein	29039	1.54 ± 0.18	0.89 ± 0.03	0.0247	-1.72
3-mercaptopyruvate sulfurtransferase	30826	1.54 ± 0.06	0.9 ± 0.15	0.0186	-1.71
50S ribosomal protein L13	16019	9.35 ± 0.4	7.87 ± 0.28	0.0374	-1.19
Molecular chaperone Hsp31 and glyoxalase 3	31220	1.05 ± 0.02	0.89 ± 0.03	0.0080	-1.17

Up regulation in ΔsdhA VS. EDL933

Protein	Accession No.	Ratio 3/1	p-Value 3/1	Fold Change	
Inosine-5′-monophosphate dehydrogenase	52022	4.68 ± 0.07	5.41 ± 0.13	0.0071	1.16
Aconitate hydratase 2	93498	21.29 ± 0.24	24.85 ± 0.28	0.0006	1.17
2-oxoglutarate dehydrogenase E1 component	105062	20.31 ± 0.41	25.38 ± 1.66	0.0409	1.25
Phosphopentomutase	44370	6.21 ± 0.1	7.92 ± 0.49	0.0271	1.27
Phosphate acetyltransferase	77172	9.57 ± 0.13	12.38 ± 0.91	0.0383	1.29
Long-chain fatty acid transport protein	48539	2.11 ± 0.46	3.95 ± 0.37	0.0361	1.87
Putative uncharacterized protein	29257	1.54 ± 0.18	3.11 ± 0.06	0.0011	2.03
Flagellin	51295	5.09 ± 0.54	10.98 ± 1.25	0.0123	2.16
Flagellin (Fragment)	56672	3.38 ± 1.48	7.77 ± 0.54	0.0497	2.3
50S ribosomal protein L20	13497	0.21 ± 0.21	2.3 ± 0.43	0.0121	11.11
Phosphomannomutase	50340	0 ± 0	1.25 ± 0.37	0.0277	100
Up regulation in ΔsdhA-pWF134 vs. ΔsdhA

Protein Name	Gene ID	Fold Change	p-value	Percentage	
Ampicillin resistance protein	31557	0 ± 0	1.23 ± 0.14	0.0008	100
Beta-galactosidase	116462	0 ± 0	2.14 ± 0.49	0.0120	100
Beta-lactamase	31515	0 ± 0	0.87 ± 0.12	0.0018	100
Beta-lactamase TEM	31515	0 ± 0	8 ± 0.38	3E-05	100
Chaperone protein DnaJ	41044	0 ± 0	1.51 ± 0.16	0.0007	100
Protein dcrB	19787	0 ± 0	1.29 ± 0.41	0.0347	100
Putative acyl-CoA thioester hydrolase ybhC	46082	0 ± 0	0.79 ± 0.04	5E-05	100
Succinate dehydrogenase	26784	0 ± 0	6.18 ± 1.21	0.0069	100
Succinate dehydrogenase flavoprotein subunit	64422	1.01 ± 1.01	71.48 ± 16.92	0.0141	70.92
Succinate dehydrogenase iron-sulfur subunit	26770	0.39 ± 0.39	26 ± 1.98	0.0002	65.79
Lactaldehyde dehydrogenase	52273	1.03 ± 0.62	2.96 ± 0.18	0.0414	2.86
Tryptophanase	52773	20.99 ± 2.55	47.72 ± 4.72	0.0075	2.27
Acriflavine resistance protein A	42197	2.22 ± 0.08	3.75 ± 0.39	0.0186	1.69
Adenylosuccinate synthetase	47345	6.33 ± 0.82	10.66 ± 0.72	0.0163	1.68
Chaperone protein DnaK	69115	27.4 ± 2.12	38.29 ± 2.53	0.0300	1.4
Chaperone protein HtpG	71449	14.15 ± 0.23	19.75 ± 1.98	0.0482	1.4
Protein GrpE	21741	2.3 ± 0.08	2.83 ± 0.09	0.0128	1.23

Down regulation in ΔsdhA-pWF134 VS. ΔsdhA

Protein Name	Gene ID	Fold Change	p-value	Percentage			
Pyruvate dehydrogenase E1 component	99668	26.62 ± 0.08	23.11 ± 0.94	0.0203	-1.15		
Aerobic respiration control protein ArcA	27292	4.31 ± 0.21	3.16 ± 0.31	0.0390	-1.36		
Protein Name	Accession Number	Fold Change	p-value	Z-score			
--	------------------	-------------	---------	---------			
DNA-directed RNA polymerase subunit beta	150632	37.4 ± 2.31	0.0349	-1.37			
Peroxiredoxin OsmC	15088	2.3 ± 0.08	0.0185	-1.38			
Transcriptional regulatory protein OmpR	27354	3.32 ± 0.39	0.0454	-1.53			
2-oxoglutarate dehydrogenase E1 component	105062	25.38 ± 1.66	0.0057	-1.56			
Uncharacterized protein YggE	26635	1.48 ± 0.16	0.0323	-1.57			
Aconitase hydratase 1	97677	14.08 ± 0.66	0.0312	-1.63			
Glutamate decarboxylase alpha	52699	98.17 ± 8.26	0.0352	-1.88			
Mannose-1-phosphate guanylyltransferase 2	54270	3.05 ± 0.22	0.0122	-2.04			
Long-chain fatty acid transport protein	48539	3.95 ± 0.37	0.0148	-2.1			
Biosynthetic arginine decarboxylase	73886	2.43 ± 0.33	0.0361	-2.28			
Flagellin	51295	10.98 ± 1.25	0.0048	-3.91			
Probable phospholipid-binding protein MlaC	23963	2.45 ± 0.39	0.0231	-4.04			
Glutaminase 1	32844	0.88 ± 0.11	0.0482	-4.15			
HTH-type transcriptional regulator IscR	17337	1.12 ± 0.16	0.0272	-5.27			
Flagellin (Fragment)	56672	7.77 ± 0.54	0.0004	-5.69			
Cyclopropane-fatty-acyl-phospholipid synthase	43777.81	1.12 ± 0.06	0 ± 0	-100			
Lysine-arginine-ornithine-binding periplasmic protein	27992	1.33 ± 0.23	0 ± 0	-100			
Protein phosphatase CheZ	23976	1.9 ± 0.5	0.0184	-100			
GO category	Total gene/hit number	Gene Name	Segment Type	Primary Hit	\(P \) value of liquid-based survival (EDL933 vs mutants)	\(P \) value of agar-based survival (EDL933 vs mutants)	Product or Function
-------------	----------------------	-----------	--------------	-------------	--	--	-------------------
Metabolism	26/32	sdhA	backbone	ED97-A-1	< 0.0001	< 0.0001	succinate dehydrogenase, flavoprotein subunit; Energy metabolism, carbon: TCA cycle
		sdhC	backbone	ED201-E-9	< 0.0001	< 0.0001	succinate dehydrogenase, cytochrome b556; Energy metabolism, carbon: TCA cycle
		gltA/sdhC	backbone	ED29-D-11, ED54-D-6	< 0.0001 (ED54-D-6)	< 0.0001 (ED29-D-11)	type II citrate synthase / succinate dehydrogenase, cytochrome b556; Energy metabolism, carbon: TCA cycle
		mdh	backbone	ED61-A-7, ED61-C-11	< 0.0001, < 0.0001	growth defect	malate dehydrogenase; Energy metabolism, carbon: TCA cycle
		manB	84 O-Island	ED56-G-9	< 0.0001	< 0.0001	phosphomannomutase; Central intermediary metabolism
		treC	backbone	ED38-B-9	< 0.0001	0.4107	mreB 6-F hydrolase; Degradation of small molecules: Carbon compounds
		bioH	backbone	ED185-D-2	0.0873	< 0.0001	biotin biosynthesis; Biosynthesis of cofactors, carriers: Biotin
		fbp	backbone	ED1-A-7	< 0.0001	0.0929	fructose-bisphosphatase; Central intermediary metabolism: Gluconeogenesis
		nuoE	backbone	ED135-E-12	< 0.0001	0.7054	NADH dehydrogenase I chain I; Energy metabolism, carbon: Aerobic respiration
		nuoB	backbone	ED208-B-9	< 0.0001	0.0232	NADH dehydrogenase I chain B; Energy metabolism, carbon: Aerobic respiration
		nuoH	backbone	ED196-G-6	< 0.0001	< 0.0001	NADH dehydrogenase I chain H; Energy metabolism, carbon: Aerobic respiration
		nuoM	backbone	ED207-F-4	< 0.0001	0.2743	NADH dehydrogenase I chain M; Energy metabolism, carbon: Aerobic respiration
		nuoG	backbone	ED203-B-3	< 0.0001	0.0294	NADH dehydrogenase I chain G; Energy metabolism, carbon: Aerobic respiration
		atpI	backbone	ED86-H-8	< 0.0001	growth defect	membrane-bound ATP synthase; ATP-proton motive force interconversion
		atpD	backbone	ED30-F-7	< 0.0001	growth defect	membrane-bound ATP synthase, F1 sector, beta-subunit; ATP-proton motive force interconversion
		araA	backbone	ED1-F-12	< 0.0001	0.003	5-enolpyruvylshikimate-3-phosphate synthetase; Amino acid biosynthesis: Chorismate
		thrB	backbone	ED139-D-5	< 0.0001	auxotroph	homoserine kinase; Amino acid biosynthesis: Threonine
		pfs	backbone	ED127-G-8	< 0.0001	0.0002	orf, hypothetical protein; Unknown function, 5'-methylthioadenosine-5'-adenosylomycocystein nucleosidase
		udhA	backbone	ED138-B-4, ED205-G-12, ED32-B-6	< 0.0001, < 0.0001, < 0.0001	0.0370 (ED138-B-4), 0.0468 (ED205-G-12)	putative oxidoreductase; Not classified
		ubiE	backbone	ED137-C-6	< 0.0001	growth defect	Biosynthesis of cofactors, carriers: Menaquinone, ubiquinone
		epd	Blackbone	ED160-C-11	< 0.0001	0.5628	D-erythrose 4-phosphate dehydrogenase; Central intermediary metabolism
		gnd	backbone	ED143-B-7, ED184-D-5	< 0.0001, < 0.0001	< 0.0001 (ED143-B-7), < 0.0001 (ED184-D-5)	glutamate-6-phosphate dehydrogenase, decarboxylating
		pnp	backbone	ED52-F-4	< 0.0001	< 0.0001	polynucleotide phosphorylase; cytidylate kinase activity; Macromolecule synthesis, modification: RNA synthesis, modification, DNA transcription
		pta	backbone	ED194-E-2	< 0.0001	0.1578	phosphotransacetylase; Degradation of small molecules: Carbon compounds
		guaA	backbone	ED86-A-10, ED74-A-9	< 0.0001, < 0.0001	auxotroph	GMP synthetase (glutamine-hydrolyzing); Nucleotide biosynthesis: Purine ribonucleotide biosynthesis
		bioC	backbone	ED134-E-11	< 0.0001	< 0.0001	biotin biosynthesis; reaction prior to pimelykol CoA
Lipopolysaccharide		rfaD	145 O-Island	ED46-C-7	< 0.0001	< 0.0001	ADP-L-glycerol-3-mannoheptose-6-epimerase; Cell exterior constituents: Surface polysaccharides and antigens
		rfaG	Hypermutable	ED55-A-5, ED132-A-10, ED189-B-9, ED172-D-12	< 0.0001, < 0.0001, < 0.0001, < 0.0001, < 0.0001	< 0.0001 (ED55-A-3)	glucosyltransferase I; lipopolysaccharide core biosynthesis
		rfaC	Junction	ED122-G-3, ED203-A-4	< 0.0001, < 0.0001	< 0.0001, < 0.0001	heptosyl transferase I; lipopolysaccharide core biosynthesis
		rfaF	backbone	ED74-D-7	< 0.0001	< 0.0001	ADP-heptose-6-p-lps heptosyltransferase II; lipopolysaccharide core biosynthesis
		Z4405	backbone	ED196-F-4	< 0.0001	< 0.0001	putative kinase; Not classified, RfaE-like
		waaI	145 O-Island	ED34-B-1, ED34-G-10, ED58-D-3, ED51-A-5	< 0.0003 (ED34-G-10), < 0.0001 (ED58-D-3)	< 0.0001 (ED34-B-1), < 0.0001 (ED34-G-10)	putative LPS biosynthesis enzyme; Cell exterior constituents: Surface polysaccharides and antigens
		waaP	Junction	ED82-D-12, ED82-G-1, ED68-H-7, ED45-C-10	< 0.0001, < 0.0001, < 0.0001, < 0.0001	< 0.0001 (ED82-D-12), 0.2475 (ED62-G-1)	putative LPS biosynthesis enzyme; Cell exterior constituents: Surface polysaccharides and antigens
& Cell exterior constituents biosynthesis	15/33	wcy & 84 O-Island & ED156-G-2, ED62-G-3, ED185-E-2	< 0.0001, < 0.0001, 0.0005	0.0255 (ED156-G-2), 0.5712 (ED62-G-3)	O antigen polymerase; Cell exterior constituents: Surface polysaccharides and antigens		
& ManC & 84 O-Island & ED190-D-5, ED137-E-4	< 0.0001, < 0.0001	0.0001 (ED137-E-4)	mannose-1-P guanylyltransferase; Cell exterior constituents: Surface polysaccharides and antigens				
per & 84 O-Island & ED186-D-7, ED206-H-5, ED208-E-11	< 0.0001, 0.0009, < 0.0001	< 0.0001 (ED186-D-7)	perosamine synthetase; Cell exterior constituents: Surface polysaccharides and antigens				
wbdP & 84 O-Island & ED68-E-1, ED130-A-11, ED105-H-5	< 0.0001, < 0.0001, < 0.0001	< 0.0001 (ED68-E-1)	glycosyl transferase; Cell exterior constituents: Surface polysaccharides and antigens				
csgB & backbone & ED232-I-9	< 0.0001	0.018	minor csgB subunit precursor, similar to CsgA; Cell exterior constituents: Surface structures				
fcI & 84 O-Island & ED134-E-4	< 0.0001	< 0.0001	fucose synthetase; Cell exterior constituents: Surface polysaccharides and antigens				
Z3198 & 84 O-Island & ED12-E-8, ED151-I-8	< 0.0001, < 0.0001	< 0.0001 (ED12-E-8), 0.0002 (ED151-I-8)	GDP-mannose dehydratase; Cell exterior constituents: Surface polysaccharides and antigens				
wbdR & 84 O-Island & ED155-D-11	< 0.0001	0.0032	acetyl transferase; Cell exterior constituents: Surface polysaccharides and antigens				

Type three secretion system	4/4	eae & 148 O-Island & ED184-F-2	< 0.0001	< 0.0001	intimin adherence protein; Extracellular functions: Secreted proteins
Z2240/Z2241 & 62 O-Island/Junction & ED52-B-8	< 0.0001	0.5175	hypothetical protein/hypothetical protein, putative type III effector protein, T3SS effector-like protein EspW-homolog		
Z3919/Z3920 & 108 O-Island & ED38-H-5	0.0014	0.002	hypothetical protein/hypothetical protein, non-LEE-encoded type III effector, T3SS secreted effector EspW-like protein		
ler & 148 O-Island & ED77-C-1	0.0005	0.6197	orf, hypothetical protein; Unknown function; DNA-binding protein H-NS, transcriptional regulator Ler-like		
ompr & 84 O-Island & backbone & ED14-C-5, ED176-A-4	< 0.0001, < 0.0001	< 0.0001	response regulator (sensor, EnvZ) affecting transcription of ompC, and ompF; outer membrane protein synthesis; Global regulatory functions		
Z3603 & backbone & ED4-B-11	< 0.0001	0.9179	orf, hypothetical protein; Unknown function; phosphohistidine phosphatase		

DNA Recombination & Repair	3/3	rvsC & backbone & ED198-E-1	< 0.0001	< 0.0001	Holliday junction nucleases; resolution of structures; Macromolecule synthesis, modification
xerD & backbone & ED144-E-6	< 0.0001	0.0002	site-specific recombinase; Macromolecule synthesis, modification: DNA-replication, repair, modification		
Z1201 & 43 O-Island & ED201-H-5	< 0.0001	0.0517	orf, Unknown function, EHEC-specific, UvrD/REP helicase-like protein		

Transport protein	3/3	tolQ & backbone & ED52-E-9	< 0.0001	< 0.0001	inner membrane protein, membrane-spanning, maintains integrity of cell envelope; tolerance to group A colicins; Colicin-related functions
tolA & Junction & ED198-C-3	< 0.0001	< 0.0001	membrane spanning protein, required for outer membrane integrity; Colicin-related functions		
betT & backbone & ED201-A-1	< 0.0001	0.0322	high-affinity choline transport; Transport of small molecules: Other		

Cell Protection Systems	3/3	cunC & backbone & ED203-G-2	< 0.0001	0.0139	copper homeostasis protein; Protection responses: Detoxification
yhaA & backbone & ED16-F-11	< 0.0001	< 0.0001	putative enzyme; Not classified, a predicted cytochrome c peroxidase		
hdcA & backbone & ED159-G-6	< 0.0001	< 0.0001	orf, hypothetical protein; Unknown function, stress response protein acid-resistance protein;		
hfg & backbone & ED185-H-8	< 0.0001	0.0279	host factor I for bacteriophage Q beta replication, a growth-related protein; unknown function		
yhgA & backbone & ED15-D-2	0.0029	< 0.0001	orf, hypothetical protein; Unknown function, transposase		
yheO & backbone & ED51-C-3	< 0.0001	0.5491	orf, hypothetical protein; Unknown function, DNA-binding transcriptional regulator		
ydeK & backbone & ED121-D-5	< 0.0001	0.0099	orf, Hypothetical protein; Unknown function, putative lipoprotein/auto transporter; Extended Signal Pediants of Type V secretion system		
yiaF & backbone & ED141-F-8	< 0.0001	0.2029	orf, Hypothetical protein; Unknown function, putative outer membrane lipoprotein		
Z1205 & 43 O-Island & ED207-F-11	< 0.0001	< 0.0001	orf, Unknown function, EHEC-specific		
Z2973 & 76 O-Island/Junction & ED200-A-11	< 0.0001	< 0.0001	unknown protein encoded by prophage CP-333T, EHEC-specific		
Z2256/Z2257 & 46 O-Island/Junction & ED163-E-10	< 0.0001	< 0.0001	Rhs element protein/Rhs element protein, Rhs family protein [Cell envelope biogenesis, outer membrane]		
ZD406/Z0407 & backbone & ED1-A-9	< 0.0001	0.0205	hypothetical protein/putative transcription factor, ANK; ankyrin repeats; ankyrin repeats mediate protein-protein interactions		
yagU & backbone & ED82-G-12	< 0.0001	auxotroph	orf, Unknown function		

| Total | 66/91 |
References:
1. Hayashi, T., Kato, T., Furukawa, K. Respiratory chain analysis of Zymomonas mobilis mutants producing high levels of ethanol. Appl Environ Microbiol. 2012;78(16):5622-9.
2. Datsenko, KA., Wanner, BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 2000;97(12):6640-5.
3. Baba, T., et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006;2:2006 0008.
4. Doublet, B., et al. Antibiotic marker modifications of lambda Red and FLP helper plasmids, pKD46 and pCP20, for inactivation of chromosomal genes using PCR products in multidrug-resistant strains. J Microbiol Methods. 2008;75(2):359-61.
5. Jones, SA., et al. Respiration of Escherichia coli in the mouse intestine. Infection and immunity. 2007;75(10):4891-9.
6. Chen, YM, Lin, EC. Regulation of the adhE gene, which encodes ethanol dehydrogenase in Escherichia coli. J Bacteriol. 1991;173(24):8009-13..
7. Unden, G., et al. Control of FNR Function of Escherichia coli by O2 and Reducing Conditions. J Mol Microbiol Biotechnol. 2002;4(3):263-8.
8. Garriga, X., et al. nrdD and nrdG genes are essential for strict anaerobic growth of Escherichia coli. Biochemical and biophysical research communications. 1996;229(1):189-92.
9. Golby, P., Davies, S., Kelly, DJ., Guest, JR., Andrews, SC. Identification and Characterization of a Two-Component Sensor-Kinase and Response-Regulator System (DcuS-DcuR) Controlling Gene Expression in Response to C4-Dicarboxylates in Escherichia coli. J Bacteriol. 1999 ;181(4):1238-48.
10. Ganesh, L., Ravikumar, S., Lee, SH., Park, SJ., Hong, SH. Engineered fumarate sensing Escherichia coli based on novel chimeric two-component system. Journal of biotechnology. 2013;168(4):560-6.
11. Janausch, IG., Zientz, E., Tran, QH., Kröger, A., Unden, G. C4-dicarboxylate carriers and sensors in bacteria. Biochimica et Biophysica Acta (BBA) - Bioenergetics. 2002:39-56.
12. Brenner, S. The genetics of Caenorhabditis elegans. Genetics. 1974;77(1):71-94.
13. Sato, K., et al. Caenorhabditis elegans SNAP-29 is required for organellar integrity of the endomembrane system and general exocytosis in intestinal epithelial cells. Mol Biol Cell. 2011;22(14):2579-87.
14. Strockbine, NA., et al. Two toxin-converting phages from Escherichia coli O157:H7 strain 933 encode antigenically distinct toxins with similar biologic activities. Infection and immunity. 1986;53(1):135-40.
15. Yu, SL., Ko, KL., Chen, CS., Chang, YC., Syu, WJ. Characterization of the distal tail fiber
locus and determination of the receptor for phage AR1, which specifically infects Escherichia coli O157:H7. J Bacteriol. 2000;182(21):5962-8.

16. Chou, TC., et al. Enterohaemorrhagic Escherichia coli O157:H7 Shiga-like toxin 1 is required for full pathogenicity and activation of the p38 mitogen-activated protein kinase pathway in Caenorhabditis elegans. Cellular microbiology. 2013;15(1):82-97.

17. Valdivia, RH., Falkow, S. Bacterial genetics by flow cytometry: rapid isolation of Salmonella typhimurium acid-inducible promoters by differential fluorescence induction. Molecular microbiology. 1996;22(2):367-78.

18. Muniesa, M., Serra-Moreno, R., Acosta, S., Hernalsteens, JP., Jofre, J. Use of the lambda Red recombinase system to produce recombinant prophages carrying antibiotic resistance genes. BMC Mol Biol. 2006;7.