β-Adrenergic induction of lipolysis in hepatocytes is inhibited by ethanol exposure

Received for publication, January 19, 2017, and in revised form, May 5, 2017 Published, Papers in Press, May 17, 2017, DOI 10.1074/jbc.M117.777748

Micah B. Schott†, Karuna Rasineni§, Shaun G. Weller†, Ryan J. Schulze†, Arthur C. Sletten*, Carol A. Casey††, and Mark A. McNiven††

From the †Department of Biochemistry and Molecular Biology and the ‡Division of Gastroenterology & Hepatology, Center for Basic Research in Digestive Diseases, Mayo Clinic, Rochester, Minnesota 55905, the §Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, and the ††Nebraska Western Iowa Health Care System Research Service, Omaha, Nebraska 68105

Edited by Jeffrey E. Pessin

In liver steatosis (i.e. fatty liver), hepatocytes accumulate many large neutral lipid storage organelles known as lipid droplets (LDs). LDs are important in the maintenance of energy homeostasis, but the signaling mechanisms that stimulate LD metabolism in hepatocytes are poorly defined. In adipocytes, catecholamines target the β-adrenergic (β-AR)/cAMP pathway to activate cytosolic lipases and induce their recruitment to the LD surface. Therefore, the goal of this study was to determine whether hepatocytes, like adipocytes, also undergo cAMP-mediated lipolysis in response to β-AR stimulation. Using primary rat hepatocytes and human hepatoma cells, we found that treatment with the β-AR agent isoproterenol caused substantial LD loss via activation of cytosolic lipases adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL). β-Adrenergic stimulation rapidly activated PKA, which led to the phosphorylation of ATGL and HSL and their recruitment to the LD surface. To test whether this β-AR-dependent lipolysis pathway was altered in a model of alcoholic fatty liver, primary hepatocytes from rats fed a 6-week EtOH-containing Lieber-DeCarli diet were treated with cAMP agonists. Compared with controls, EtOH-exposed hepatocytes showed a drastic inhibition in β-AR/cAMP-induced LD breakdown and the phosphorylation of PKA substrates, including HSL. This observation was supported in VA-13 cells, an EtOH-metabolizing human hepatoma cell line, which displayed marked defects in both PKA activation and isoproterenol-induced ATGL translocation to the LD periphery. In summary, these findings suggest that β-AR stimulation mobilizes cytosolic lipases for LD breakdown in hepatocytes, and perturbation of this pathway could be a major consequence of chronic EtOH insult leading to fatty liver.

The liver is an important mediator of fat storage and lipid homeostasis in the body. Hepatocytes, the most abundant cell type of the liver, constitutively regulate their lipid content via import, synthesis, storage, metabolism, and secretion of fatty acids in response to a variety of physiological conditions such as nutrient flux or energy expenditure (1). Disruption of this balance can lead to fatty liver disease, an ailment that is often observed in the obese and exacerbated by the overconsumption of alcohol (2–4). Thus, there is a critical clinical need to understand the mechanisms that govern hepatocellular lipid regulation.

Within hepatocytes, fatty acids are packaged as triglycerides (TGs) or sterol esters and stored within specialized organelles known as lipid droplets (LDs). Although once thought to be inert sites of TG storage, LDs are now understood to have widespread metabolic importance and are regulated by a distinct proteome of constitutively and dynamically associated proteins (5–9). In the liver, catabolism of LDs is mediated in part by lipophagy or the autophagic targeting of LDs for lysosomal degradation (10, 11). Indeed, several studies from our lab and others have helped define the role of vesicular trafficking mediators such as Rab GTPases in guiding the interaction of LDs with autophagic membranes as a requirement for LD catabolism under nutrient starvation (12–14). In addition, the large mechanoenzyme dynamin 2 has also been shown to mediate lipophagy by supporting lysosomal integrity (15, 16) and is implicated in the scission of Atg9-positive autophagic vesicles (17). In addition to lipophagy, however, many cell types catabolize LDs through the action of cytosolic lipases that interact and function directly on the LD monolayer (18–20). This lipolytic machinery is integral to adipocyte function and is regulated largely by β-adrenergic activation of the cAMP/PKA pathway, leading to phosphorylation of hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL), as well as members of the perilipin family of coat proteins that regulate the access of lipases and other regulatory cofactors to the LD

This work was supported by National Institutes of Health Grants 5R01DK044650 (to M. A. M.), 5R01AA020735 (to M. A. M. and C. A. C.), and 5T32DK007352 (to R. J. S. and M. B. S.) by funds from the Department of Veterans Affairs (to C.-A. C.) and by the Optical Morphology Core of the Mayo Clinic Center for Cell Signaling in Gastroenterology, National Institutes of Health Grant P30DK084567. The authors declare that they have no conflicts of interest with the contents of this article. The views expressed in this article are those of the authors and do not necessarily reflect the position or policy of the Department of Veterans Affairs, the United States government, or the National Institutes of Health.

This article contains supplemental Figs. S1–S3 and Movie S1.

† To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Biology and the Center for Basic Research in Digestive Diseases, Mayo Clinic, 200 1st St. SW, Rochester, MN, 55905. Tel.: 507-284-0683; Fax: 507-284-2053; E-mail: mmcniven.mark@mayo.edu.

‡ The abbreviations used are: TG, triglyceride; LD, lipid droplet; β-AR, β-adrenergic receptor; ATGL, adipose triglyceride lipase; HSL, hormone-sensitive lipase; GPCR, G protein-coupled receptor; iso, isoproterenol; IBMX, isobutylmethylxanthine; NES, nuclear export sequence; CFP, cyan fluorescent protein; PNS, post-nuclear supernatant; sfGFP, superfolder GFP; FRAP, fluorescence recovery after photobleaching; Fsk, forskolin; ADH, alcohol dehydrogenase; MDH, monodansylpentane; ORO, Oil Red O.
Ethanol blocks hepatocyte lipolysis

Figure 1. LD content is reduced in hepatocytes by β-adrenergic/cAMP agonists. A, confocal micrographs of oleate-loaded Hep3B cells stained for LDs with ORO following no treatment (control, CT) or treatment with 50 μM isoproterenol (Iso) for 4 h. B, corresponding graph shows quantification of the total LD area per cell revealing a 33% agonist-induced reduction (n = 7 experiments, p = 0.003. Students t test). C, confocal micrographs of ORO-stained LDs in primary rat hepatocytes untreated (control) or treated with 50 μM isoproterenol or 10 μM forskolin + 0.5 mM IBMX for 24 h. D, corresponding graph shows quantification of the fold difference in total LD area per cell leading to a 22 and 48% reduction, respectively, following stimulation (isoproterenol: n = 7 experiments, p = 0.034 versus CT; Fsk + IBMX: n = 5 experiments, p = 0.008, paired t test versus CT). Dashed circles denote nucleus positions in confocal images.

(21–24). Although many of these lipolytic proteins are expressed in hepatocytes and are known to be important for hepatic fat content (25–29), the mechanisms that regulate lipolysis in hepatocytes remain poorly defined.

In this study, we tested the hypothesis that hepatocytes, like adipocytes, also utilize a lipolytic machinery that is activated by β-adrenergic stimuli to break down and subsequently catabolize LDs. We report that β-adrenergic stimulation of hepatocytes using the agonist isoproterenol causes LD loss via the cAMP/PKA pathway. This process requires the cytosolic lipases ATGL and HSL, which are phosphorylated and trafficked to LDs within 60 min of stimulation. Importantly, we find that the activation of this pathway is significantly perturbed in hepatocytes subjected to either chronic or acute EtOH exposure, leading to steatotic cells.

Results

β-adrenergic/cAMP stimulation causes LD loss in hepatocytes

We first sought to determine whether LD catabolism is inducible in hepatocytes upon activation of the β-adrenergic (β-AR)/cAMP pathway by testing the effect of cAMP-elevating agents isoproterenol and forskolin on Hep3B hepatoma cells and freshly isolated primary rat hepatocytes. Isoproterenol is a selective agonist for β-AR receptors, a class of G protein-coupled receptors (GPCRs) that stimulates cAMP elevation through Gαs-mediated activation of adenylyl cyclase. Forskolin is a direct and potent activator of adenylyl cyclase and served as a GPCR-independent positive control for cAMP elevation. To test the effect of β-AR stimulation on LD catabolism, Hep3B cells were first loaded with oleic acid (150 μM, 16 h) to induce the formation of LDs, then washed, and chased in oleic acid-free, full-serum medium (10% FBS) in the presence or absence of the isoproterenol (50 μM). As seen in confocal images from Fig. 1 (A and A’), isoproterenol-treated cells had a marked reduction in LDs after just 4 h. Quantification revealed a 33% reduction in total LD area per cell during this time (n = 7 experiments; *, p < 0.05). Interestingly, the effect of isoproterenol on Hep3B LDs was selective to larger-sized LDs (>2 μm²) relative to the overall LD population, in which a significant 44% reduction was observed, whereas there was no significant reduction in smaller sized LDs (0–2 μm²; supplemental Fig. S1A). Similar results were observed in primary rat hepatocytes. Following hepatocyte isolation, the cells were equilibrated in regular growth medium (no oleic acid) on collagen-coated glass cover-slips for 24 h before treatment with cAMP agonists. As seen in confocal images and quantification in Fig. 1 (C and D), isoproterenol caused a 22% reduction in total LD area per cell, and direct cAMP elevation by forskolin + IBMX caused an even more dramatic 48% loss over the course of 24 h. As observed in the Hep3B cells, the agonist-induced LD loss in primary rat hepatocytes was preferential to relatively larger-sized LDs (>5 μm²), where we observed a 36 and 68% loss by isoproterenol and forskolin + IBMX, respectively (supplemental Fig. S1B). These data demonstrate that LD breakdown in hepatocytes is inducible by β-AR stimulation and that cAMP elevation is a potent stimulus for LD catabolism.

β-Adrenergic stimulation in hepatocytes activates the cAMP/PKA pathway

Isoproterenol is a widely used agonist for β-AR stimulation and triggers the canonical activation of PKA downstream of cAMP elevation in many cells and tissues. To confirm in our hepatocyte cell models that the cAMP/PKA pathway was indeed being activated by isoproterenol, we used quantitative FRET microscopy and Western blot analysis to establish the potency and time course of PKA activation following treatment. First, we transfected Hep3B cells with the FRET-based PKA biosensor AKAR4, which was targeted to the cytosol by a C-terminal nuclear export sequence (NES). This biosensor has been thoroughly characterized as a highly specific indicator of subcellular PKA activation in live cells and in real time (30). Upon cAMP elevation, activated PKA phosphorylates the
PKA Activity

Isoproterenol

Forskolin

PKA Substrate
(RRXpS/T)

CT Iso Fsk+ IBMX

50 37

150

50

100

75

50

25

Actin

Figure 2. PKA is activated in hepatocytes by β-adrenergic/cAMP stimulation. A and C, pseudocolored ratiometric images of Hep3B cells expressing the FRET PKA biosensor AKAR4-NES before and 5 min after treatment with 50 μM isoproterenol (Iso; A and A’) and 10 μM forskolin (C and C’). B and D, graphs show quantification of FRET/CFP fluorescence intensity in representative cells upon treatment with isoproterenol (B) or forskolin (D), which revealed a 1.14- and 1.45-fold increase in PKA activity in response to these agonists, respectively. This activation reached its peak within just 2 min of treatment. E, Western blot analysis of cell lysates from primary rat hepatocytes shows a substantial increase in the number and intensity of PKA-phosphorylated substrates following 24 h of stimulation with 50 μM isoproterenol or 10 μM forskolin + 0.5 mM IBMX. CT, control.

AKAR4 biosensor, resulting in a real-time increase in AKAR4 FRET intensity, whereas the CFP donor fluorescence decreases simultaneously and thus can be measured as a ratio of FRET/CFP (supplemental Fig. S2). As seen in Fig. 2, representative ratiometric images depicting FRET/CFP show PKA activity levels before treatment and at 5 min post-treatment with cAMP agonists. At 5 min, both 50 μM isoproterenol (Fig. 2, A and A’) and 10 μM forskolin (Fig. 2, C and C’) caused a substantial elevation in PKA activity as detected by an increase in the ratio of FRET/CFP. Quantification of this increase showed a 14% increase in PKA activity by isoproterenol (Fig. 2B) and an even more substantial 45% increase by forskolin (Fig. 2D). Consistent with this, we also treated primary rat hepatocytes with cAMP-elevating agents to detect the presence of PKA-phosphorylated substrates by Western blot analysis using an antibody raised against a PKA-specific phosphorylated amino acid motif (RRX(pS/T)). As seen in Fig. 2E, Western blot analysis of cell lysates treated for 1 h with either 50 μM isoproterenol or 10 μM forskolin + 0.5 mM IBMX showed an increase in the number and intensity of PKA-phosphorylated substrates. As expected, forskolin was more potent than isoproterenol in its ability to activate PKA, which is consistent with FRET biosensor findings and the relative potency of these agonists to induce LD breakdown in primary rat hepatocytes, as was observed in Fig. 1.

β-Adrenergic LD breakdown occurs by PKA-dependent activation of cytosolic lipases

Given that isoproterenol activated the cAMP/PKA pathway in our hepatocyte models, we reasoned that this pathway was also responsible for mediating the loss in LD content following stimulation. To test this, we treated primary rat hepatocytes with isoproterenol in the presence and absence of H89, a potent pharmacological agent that inhibits PKA. As seen in Fig. 3 (A, A’, and A’’), 50 μM isoproterenol treatment for 24 h caused a nearly 40% reduction in LD area per cell in the absence of the inhibitor. (n = 3, p < 0.05). However, in the presence of H89, isoproterenol caused no reduction in LD area per cell, suggesting that β-AR stimulation of hepatocytes results in LD loss via the cAMP/PKA pathway.

Based on adipocyte studies, it is well established that the cAMP/PKA pathway mediates LD breakdown through the process of lipolysis, in which PKA activates and recruits cytosolic lipases ATGL and HSL from the cytosol to the LD surface, thus allowing for the hydrolysis of free fatty acids from glycerol and sterol ester backbones (7, 20, 21, 31, 32). To test the contribution of the lipolysis pathway in isoproterenol-induced LD breakdown, pretreatment for 2 h with the ATGL inhibitor atglistatin (10 μM; Fig. 3, C, C’, and C”) or the HSL inhibitor CAY10499 (10 μM; Fig. 3, D, D’, and D”) each prevented LD breakdown following isoproterenol treatment (50 μM, 24 h), suggesting that in addition to PKA activation, cytosolic lipase activity is involved in LD breakdown following β-AR stimulation in hepatocytes. Importantly, both ATGL and HSL are known to be phosphorylated in response to PKA activity, and this stimulates both lipase activation and recruitment to the LD (7, 18, 20, 21, 31, 32). To test whether ATGL and HSL are phosphorylated downstream of isoproterenol treatment in hepatocytes, we probed their phosphorylation states by Western blot analysis using phospho-specific antibodies. As seen in Fig. 3E, we detected an increase in HSL phosphorylation (Ser-660) in primary rat hepatocytes within 1 h of isoproterenol treatment. However, pretreatment with H89 (10 μM, 2 h) completely blocked isoproterenol-induced HSL phosphorylation, suggesting that β-AR stimulation caused HSL phosphorylation in a PKA-dependent manner. As a positive control, direct cAMP elevation by 10 μM forskolin + 0.5 mM IBMX resulted in a substantial increase in phosphorylated HSL (Fig. 3E). In agreement with this, we observed a similar pattern of ATGL phosphorylation in Hep3B cells that were pretreated overnight with 10 μM H89 to reduce basal phospho-ATGL levels, then washed, and treated for 4 h with cAMP-elevating agents. As seen in Fig.
3F, 50 μM isoproterenol treatment increased ATGL phosphorylation (Ser-404), but this effect was not observed in cells stimulated with isoproterenol in the presence of H89 during the 4-h treatment. In addition, cAMP elevation by forskolin/IBMX also increased ATGL phosphorylation. These data suggest that hepatocyte β-ARs stimulate lipolysis through the PKA-dependent phosphorylation of cytosolic lipases HSL and ATGL.

Cytoplasmic lipases are trafficked to the LD upon β-adrenergic/cAMP stimulation

The process of lipolysis is in large part regulated by the spatial recruitment of lipases from the cytoplasm to the LD surface. To test whether β-AR stimulation in hepatocytes alters the spatial distribution of cytosolic lipases, we examined the effect of forskolin and isoproterenol treatment on ATGL and HSL localization. First, we tested the recruitment of endogenous ATGL to LDs by Western blotting of isolated LDs in Huh-7 human hepatoma cells, a hepatocyte model that is commonly used for isolating hepatocellular LDs because of high levels of baseline LD content (6, 13–15, 33). As seen in Fig. 4 (A and B), ATGL was detected in both the post-nuclear supernatant (PNS) and in isolated LDs under DMSO control conditions. Upon treatment with forskolin (10 μM, 1 h), we observed a significant 31% increase in LD-enriched ATGL levels relative to Plin2 (n = 3, p < 0.05). To further test the trafficking of ATGL to the LD in real-time, we used live-cell microscopy of Hep3B cells expressing an EGFP-tagged ATGL(S47A) mutant construct. The S47A mutation blocks the fatty-acid hydrolysis activity of ATGL (19), which allowed us to visualize the spatial dynamics of the lipase while avoiding the implicit reduction of LD levels caused by overexpression of active ATGL. Importantly, the cAMP-induced spatial dynamics we observed in the S47A mutant were confirmed using WT ATGL-EGFP (supplemental Movie S1). As seen in Fig. 4 (C and C’), treatment with isoproterenol increased ATGL(S47A)-EGFP intensity around LDs that were labeled with MDH, a LD-specific dye. The redistribution of ATGL from the cytoplasm to the LD was more graphically seen in pseudocolored heat map images depicting the fluorescence intensity of the EGFP channel (Fig. 4, E and E’), whereby we observed a substantial decrease in cytosolic ATGL intensity (yellow arrows) while ATGL intensity around the LDs simultaneously increased. To quantify these changes across multiple
cells, we measured the EGFP fluorescence intensity within regions of interest surrounding several LDs in each cell before isoproterenol treatment and 60 min after treatment, normalized to cytosolic EGFP fluorescence intensity at each corresponding time point. The ratios of LD/cytosolic EGFP fluorescence intensity before and after treatment were quantified as a fold change in LD-localized EGFP intensity. This analysis revealed a nearly 2-fold increase in lipase localization around the LD following isoproterenol treatment within 60 min (n = 10 cells from three independent experiments; *, p < 0.05). To test whether direct cAMP elevation had a similar effect, cells treated with 10 μM forskolin also showed a significant increase in ATGL(S47A)-EGFP intensity around the LD, which is blocked by pretreatment with 10 μM H89 (n = 13–14 cells from three independent experiments; *, p < 0.05). We also tested the effects of these agonists on a superfolder GFP (sfGFP)-tagged HSL construct (HSL-sfGFP) expressed in Hep3B cells. As seen in Fig. 5, isoproterenol caused a ~50% increase in HSL localization around the LD, a more modest redistribution compared with that of ATGL, within just 30 min of treatment (n = 13 cells from three independent experiments; *, p < 0.05). In addition, forskolin treatment caused a similar increase in HSL localization around the LD, but this was blocked by a 2-h pretreatment with 10 μM H89 (n = 13–19 cells from three independent experiments; *, p < 0.05). These data suggest that β-AR/cAMP activation in hepatocytes triggers cytosolic lipase translocation to the LD and suggests that the mechanism of β-AR-mediated LD breakdown in hepatocytes occurs in part through the spatial regulation of cytosolic lipases.

To further test our conclusions that cAMP/PKA signaling regulates the spatial distribution of cytosolic lipases in hepatocytes, we measured the effect of the PKA inhibitor H89 on fluorescence recovery after photobleaching (FRAP) in Hep3B cells expressing ATGL(S47A)-EGFP or HSL-sfGFP within regions of interest surrounding several LDs. Western blot analysis of isolated LDs and PNS from HuH-7 cells treated with 0.1% DMSO or 10 μM forskolin for 1 h. B, corresponding graph shows quantification of ATGL/Plin2 from isolated LDs (n = 3, mean ± S.D., p < 0.05). C, fluorescent images show Hep3B cells expressing ATGL(S47A)-EGFP and colabeled with the LD marker MDH (red). Note the increase in EGFP intensity around the LDs following isoproterenol treatment (Iso, 50 μM, 60 min), quantified in D (n = 10 cells from three independent experiments). *, p < 0.05. E, heat map of ATGL intensity shows a substantial reduction in cytosolic fluorescence (yellow arrows) and corresponding increase in fluorescence around the LD periphery. F–H, images and corresponding graph show 60-min treatment with forskolin also causes ATGL recruitment to the LD, which is blocked by pretreatment with 10 μM H89 (n = 13–14 cells from three independent experiments). *, p < 0.05. Statistical analysis of fold change was done using a two-tailed paired t test. *, p < 0.05; **, p < 0.01. CT, control; NS, not significant.
of interest around the periphery of the LD. As seen in Fig. 6a, ATGL FRAP was consistently observed in the absence of inhibitor over 20 min at a recovery rate that closely matches a previous FRAP study of this lipase (34). However, 2-h pretreatment with 10 μM H89 significantly inhibited the magnitude of recovery after photobleaching. To quantify the difference in fluorescence recovery, we calculated the mean plateau, or maximum fold recovery, using software-based nonlinear regression curve fitting (GraphPad Prism 7.0). Based on these calculations, pretreatment for 2 h with 10 μM H89 caused a ~70% reduction in the fold recovery of ATGL after photobleaching (Fig. 6C). Similarly, FRAP of HSL-sfGFP was also significantly inhibited by H89 pretreatment (Fig. 6, D and E), although to a lesser extent than that of ATGL. Interestingly, the presence of H89 did not significantly reduce the rate of recovery for each lipase (Fig. 6F), but the recovery dynamics of ATGL versus HSL were found to differ considerably under basal conditions. Calculations of half-time recovery (i.e. the time at which each lipase recovered to 50% of plateau) revealed that ATGL recovered ~5 times more slowly than HSL, which suggests that these lipases utilize different mechanisms for LD recruitment and localization (Fig. 6G). Taken together, these data support the notion that cAMP-dependent signaling regulates lipase localization at the LD, suggesting that these dynamics may be integral to the mechanisms of β-AR/cAMP-induced LD breakdown in hepatocytes.

EtOH exposure inhibits β-adrenergic/cAMP-mediated LD loss in hepatocytes

Given our mechanistic understanding of the β-AR lipolysis pathway in hepatocytes, we sought to determine whether this was perturbed under conditions that promote hepatic fat accumulation. To test this, we applied various *in vitro* and *in vivo* models of alcohol consumption, a well-known risk factor for hepatic steatosis, and measured the ability of hepatocytes to degrade LDs in response to cAMP elevation. Using primary rat hepatocytes, we first observed that pretreatment with 50 mM EtOH for 24 h prior to agonist stimulation caused a significant block in LD breakdown by isoproterenol (50 μM, 24 h), but not by 10 μM forskolin + 0.5 mM IBMX (supplemental Fig. S3). To test whether a similar result was observed in a model of chronic alcohol consumption, we isolated primary hepatocytes from rats that were pair-fed either an EtOH-containing Leiber-De-Carli liquid diet or an isocaloric control diet for 6 weeks. As seen in Fig. 7 (A and B), primary hepatocytes from EtOH-fed rats had roughly 2-fold greater LD area per cell compared with controls. In hepatocytes from control rats, 24-h treatment with isoproterenol or Fsk + IBMX resulted in a significant decrease in LD area/cell; however, these cAMP-elevating agents caused no reduction in LD content in primary hepatocytes from EtOH-fed rats. Biochemical measurements of triglyceride efflux after 4 h of treatment with Fsk + IBMX also revealed a significant inhibition of lipolysis in hepatocytes from chronic EtOH-fed rat, a response that was also sensitive to the ATGL inhibitor apistatin (Fig. 7C, ASTAT). To test whether the chronic EtOH diet altered the activation of cytosolic lipases in response to cAMP/PKA activation, Western blot analysis revealed that in control hepatocytes, treatment with isoproterenol (50 μM, 1 h) caused a robust phosphorylation of HSL that was sensitive to the PKA inhibitor H89. The phosho-HSL response was even more substantial in cells treated with Fsk + IBMX (Fig. 7, D and E). However, in hepatocytes from EtOH-fed rats, phosphorylation of HSL was dramatically reduced following either isoproterenol treatment or Fsk + IBMX (Fig. 7, D and E). Western blot
analysis revealed that the cAMP synthesis enzyme adenylate cyclase 3, as well as the catalytic subunit of PKA (PKA-C), were not significantly reduced in hepatocytes from chronic EtOH-fed rats versus controls (Fig. 7F), suggesting that the inhibitory effects of EtOH were not due to a reduction in PKA or cAMP synthesis. To further test whether EtOH inhibition occurred downstream of cAMP synthesis, we treated primary hepatocytes with the cell-permeable cAMP analogue 8-Br-cAMP (10 μM, 100 μM; 1 h) or forskolin + IBMX and analyzed PKA activity by measuring the increase in PKA phospho-substrates, including HSL. As seen in Fig. 7G, Western blot analysis revealed that both 8-Br-cAMP and Fsk + IBMX treatment resulted in an increase in the detection of PKA phospho-substrates and phospho-HSL in hepatocytes from control rats; however, this increase was greatly reduced in hepatocytes from chronic EtOH-fed rats. Densitometry analysis revealed a remarkable 60–80% reduction in the detection of PKA phospho-substrates (Fig. 7H) and an even more substantial 90% reduction in phosphorylated HSL (Fig. 7I). These data show for the first time that the PKA pathway is a major inhibitory target of chronic EtOH consumption that inhibits the phosphorylation of many PKA substrates, including HSL, and reduces the catabolism of LDs in response to β-adrenergic/cAMP activation.

EtOH inhibits isoproterenol-induced ATGL recruitment to the LD in VA-13 cells

To test whether EtOH affected cAMP-induced trafficking of cytosolic lipases to the LD, we utilized an EtOH-metabolizing human hepatocyte model, VA-13 cells, for the transient expression of the ATGL(S47A)-EGFP construct. VA-13 cells are a widely utilized cell model for EtOH studies and are derived from HepG2 human hepatoma cells that stably express alcohol dehydrogenase (ADH; see Ref. 35; Fig. 8C). Prior to microscopy, cells were pretreated with or without EtOH (50 mM, 48 h) and loaded with oleic acid (150 μM, 16 h). LDs were labeled by 15-min preincubation with MDH. As seen in Fig. 8 (A and B), treatment with 50 μM isoproterenol + 0.5 mM IBMX resulted in...
Ethanol blocks hepatocyte lipolysis

the recruitment of ATGL to the LD surface within 30 min in control cells, but ATGL recruitment was blocked in cells pretreated with EtOH. To confirm that EtOH caused a similar PKA defect as observed in primary hepatocytes from chronic EtOH-fed rats, Western blot analysis using a phospho-PKA substrate antibody revealed a stepwise reduction in PKA phospho-targets that was ~30% reduced by day 2 and more than 50% reduced by day 5. These data suggest that, following β-AR stimulation,
PKA activation and cytosolic lipase recruitment to the LD are severely impaired by EtOH.

Discussion

The central findings of this study support the premise that, like the adipocyte, the hepatocyte is responsive to β-AR stimulation that triggers a cAMP-dependent cascade involving cytoplasmic lipases that are recruited to the LD surface to drive lipid catabolism. Unlike the adipocyte, the hepatocyte has the capacity to detoxify EtOH, which appears to substantially attenuate this process. We found that the cAMP agonists isoproterenol and forskolin with IBMX, which rapidly activate cAMP-dependent protein kinase, or PKA, led to a significant catabolic utilization of LDs by both cultured primary hepatocytes and human hepatoma cells (Figs. 1 and 2). This cAMP-induced reduction in total LD content was prevented by the pharmacological PKA

Figure 7. EtOH exposure inhibits hepatocellular lipolysis. A, confocal micrographs of ORO-stained LDs in primary hepatocytes isolated from rats that were fed a chronic EtOH diet or an isocaloric control diet for 6 weeks. The cells were treated with 50 mM isoproterenol or 10 mM forskolin + 0.5 mM IBMX for 24 h. B, quantification of fold change in ATGL intensity around the LD relative to cytosolic fluorescence intensity following isoproterenol treatment (50 μM; 30 min; n = 9–13 cells from three separate experiments). C, Western blot analysis confirms the overexpression of ADH in VA-13 cells and not their derivative cell line, HepG2. D, representative Western blot showing diminished phosphorylation of PKA substrates in VA-13 cells following multiday incubation in 50 mM EtOH. E, quantification of PKA substrates by densitometry revealed a significant ~30% decrease in PKA activity by day 2 and a ~50% reduction by day 5 (n = 3 experiments). Error bars denote standard deviation. Statistical analysis of fold change was done using a two-tailed paired t test. PKA activation and cytosolic lipase recruitment to the LD are severely impaired by EtOH.

Figure 8. Ethanol inhibits ATGL recruitment and PKA activation in VA-13 hepatocytes. A, VA-13 cells were cultured for 48 h in the presence or absence of 50 mM EtOH and transfected with the lipase inactive ATGL(S47A)-EGFP to measure lipase trafficking to the LD. Representative images show 10 μM isoproterenol + 0.5 mM IBMX induced the recruitment of ATGL to the LD following 30 min under control conditions, but this recruitment was not observed in cells exposed to EtOH. B, quantification of the fold increase in ATGL intensity around the LD relative to cytosolic fluorescence intensity following isoproterenol treatment (50 μM; 30 min; n = 9–13 cells from three separate experiments). C, Western blot analysis confirms the overexpression of ADH in VA-13 cells and not their derivative cell line, HepG2. D, representative Western blot showing diminished phosphorylation of PKA substrates in VA-13 cells following multiday incubation in 50 mM EtOH. E, quantification of PKA substrates by densitometry revealed a significant ~30% decrease in PKA activity by day 2 and a ~50% reduction by day 5 (n = 3 experiments). Error bars denote standard deviation. Statistical analysis of fold change was done using a two-tailed paired t test.
inhibitor H89, the ATGL inhibitor atglistatin, and the HSL inhibitor CAY10499. β-Adrenergic stimulation resulted in the phosphorylation of HSL and ATGL, both of which were mimicked by Fsk + IBMX treatment and blocked by inhibition with H89 (Fig. 3). CAMP elevation also triggered the recruitment of these lipases from the cytoplasm to the LD surface in Hep3B cells (Figs. 4 and 5). To our knowledge, this study is the first to compare these two activated lipases in terms of their dynamics and recruitment to the LD surface, and this approach provided some new insights. First, even under basal or “resting” conditions, protein exchange of LD-localized ATGL was slower than that of HSL, which displayed a half-time recovery of 1.3 min as opposed to 6.5 min for ATGL as determined by FRAP studies. Further, the recruitment of each lipase was significantly reduced by the inhibitor H89, which supports our notion that PKA is an important determinant of lipase localization in hepatocytes (Fig. 6). Finally, chronic EtOH exposure in primary rat hepatocytes blocked CAMP-induced LD breakdown and caused a dramatic decrease in the phosphorylation of PKA substrates, including HSL (Fig. 7). Live-cell microscopy of VA-13 cells, an ethanol-metabolizing hepatocyte cell model, further revealed that ethanol exposure perturbs the recruitment of ATGL to the LD following β-AR/CAMP stimulation. Western blot analysis revealed a substantial reduction in PKA phospho-substrates in the presence of EtOH (Fig. 8). These findings indicate that activation of hepatocellular β-ARs can stimulate LD breakdown through cytosolic lipases, and that the β-AR/CAMP/lipolysis pathway appears to be exceptionally sensitive to EtOH exposure.

The cAMP pathway: A central regulator of energy homeostasis

cAMP signaling in hepatocytes has been predominantly attributed to glucose production in response to the hormone glucagon, a GPCR ligand that targets hepatocytes under conditions of low blood glucose (1). Glucagon targets hepatocellular glucagon receptors to elevate cAMP and stimulate gluconeogenesis and glycogenolysis (1, 36, 37). In addition to glucose production, several past studies have demonstrated that the glucagon/cAMP pathway also induces hepatic lipid metabolism through an autophagic/lysosomal pathway (reviewed in Ref. 11), a process more recently termed “lipophagy” (10). Although lipophagy has been demonstrated as an important mechanism for hepatic lipid clearance, our study suggests that an adipocyte-like lipolysis mechanism also governs hepatic lipid content via β-AR stimulation of hepatocytes.

From the current study, the effects of β-AR stimulation on LD breakdown through cytosolic lipases ATGL and HSL provide mechanistic insight that complements previous work from other laboratories. Mashek and co-workers were first to show that ATGL is a major regulator of triglyceride content in hepatocytes by activating the Sirt1/PGC-1α/PPARα transcriptional axis (25, 38). Recently, ATGL activation of Sirt1 was shown to play an important role in the transcriptional activation of autophagy leading to fatty acid turnover in mouse hepatocytes, further substantiating the role of cytosolic lipases in regulating hepatic lipid turnover. HSL, on the other hand, was previously regarded as absent from the liver based on antibody staining (39), but later studies demonstrated that knock-out or inhibi-
that aging also diminishes hepatic mitochondrial functions including fatty acid oxidation (53), and aging has been associated with a decrease in ATGL levels in muscle (54). Although the current study predicts a possible therapeutic role of β-adrenergic signaling in hepatic lipid droplet clearance, further studies will be required to fully understand how downstream lipolytic mediators are regulated in both young and aged individuals.

Inhibition of hepatocyte LD breakdown by EtOH exposure: Implications in hepatic steatosis

The impact of EtOH on fat accumulation in the liver has long been appreciated because it leads to the accumulation of hepatocellular NADH, an excess of which inhibits pyruvate formation and fatty acid oxidation, thus increasing fatty acid synthesis (3). In addition to this, our current study demonstrates that LD breakdown by hepatic lipolysis is also inhibited by EtOH insult. Both acute and chronic EtOH exposure completely blocked isoproterenol-induced LD breakdown in primary rat hepatocytes. Interestingly, acute EtOH exposure did not prevent LD breakdown by direct cAMP agonists Fsk + IBMX, which points to possible differences between acute versus chronic EtOH insult with regard to inhibiting LD breakdown. It is possible that highly potent Fsk + IBMX treatment was able to overcome the inhibitory effects of acute EtOH exposure. Ethanol is known to disrupt β-adrenergic receptor-ligand affinity in other tissues such as the brain and heart (55); however, our chronic EtOH model suggests that the inhibition of lipolysis lies downstream of receptor-ligand binding and cAMP synthesis. As shown in Fig. 7, the cell-permeable cAMP analogue 8-Br-cAMP caused an increase in PKA phospho-targets in control hepatocytes, but this was greatly reduced in hepatocytes from EtOH-fed rats. To our knowledge, this is the first report indicating that EtOH inhibits the cAMP/PKA pathway in hepatocytes, although similar phenomena have been reported to occur in other non-EtOH metabolizing tissues (56, 57). This finding could provide insights into a variety of detrimental effects that EtOH has on hepatocellular functions such as glucoseogenesis, because hypoglycemia is one of the hallmarks of excessive alcohol consumption (58). The mechanism by which EtOH inhibits cAMP/PKA signaling is currently unclear and requires further investigation, but an attractive possibility could involve the activation of protein phosphatases by ceramide, a cellular byproduct of EtOH metabolism or high-fat diet (59–64).

In conclusion, our observations from primary rat hepatocytes and human hepatoma cell lines together suggest that the β-adrenergic receptor mediates hepatocellular lipid catabolism by activating the cAMP/PKA pathway. This pathway leads to phosphorylation of the cytosolic lipases ATGL and HSL and rapidly mobilizes these lipases to the LD surface. These events are perturbed by EtOH insult, which inhibits LD breakdown and the phosphorylation of PKA substrates including hormone-sensitive lipase, as well as inhibits the recruitment of adipose triglyceride lipase to the LD periphery. Based on these results, it is possible that chronic alcohol consumption blocks LD catabolism through the inhibition of the PKA pathway, which represents a novel mechanism in the pathogenesis of fatty liver disease.

Experimental procedures

Cell culture and reagents

Primary rat hepatocytes were isolated from female Sprague-Dawley rats (Envigo) by collagenase perfusion and were cultured in William’s E medium (5% FBS) as described by Shen et al. (65). For experiments involving chronic EtOH diet, male Wistar rats (Charles River Laboratories, Portage MI) were paired according to weight (175–200 g) and fed control and EtOH-containing Lieber-DeCarli diets (66) for 5–8 weeks as previously described (67). All animals received humane care in accordance with the guidelines established by the American Association for the Accreditation of Laboratory Animal Care. All protocols were approved by the Institutional Animal Care and Use Committee at Mayo Clinic and the Veterans Affairs Nebraska Western Iowa Health Care System Research Service. The Hep3B2.1-7 (Hep3B) human hepatoma cell line was obtained from ATCC (HB-8064) and maintained in complete minimum essential medium (10% FBS, penicillin/streptomycin, minimal essential amino acids, NaHCO3, and sodium pyruvate). VA-13 cells and the ADH antibody were gifts from Dr. Terrence Donahue (University of Nebraska Medical Center and the Department of Veterans Affairs, Omaha, NE). VA-13 cells are human HepG2 hepatoma cells that stably express ADH and thus metabolize EtOH in culture (35). VA-13 cells were maintained in DMEM with 10% FBS, penicillin/streptomycin, and 1:250 Zeocin (Invitrogen catalog no. R25001, 100 mg/ml). The β-actin antibody (catalog no. A2066), Oil Red O (catalog no. O0625), isoproterenol (catalog no. 12760), forskolin (catalog no. F6886), IBMX (catalog no. I7018), and H89 (catalog no. B1427) were from Sigma. The phospho-PKA substrate antibody (catalog no. 9624), phospho-HSL (Ser-660) antibody (catalog no. 4126), and ATGL antibody (catalog no. 2138) were from Cell Signaling Technology. The Plin2 antibody (catalog no. B3121) was from LS Biosciences. The HSL antibody (AB45422) was from Abcam. The phospho-ATGL (Ser-404) antibody (31) was a gift from Dr. Matthew Watt (Monash University). The ATGL inhibitor atglistatin (catalog no. 15286) and the HSL inhibitor CAY10499 (CAS catalog no. 359714-55-9) were from Cayman Chemical. The MDH LD dye was from Abgent (SM1000a).

Triglyceride efflux measurements

Primary hepatocytes from control and EtOH-fed rats were cultured as previously described (67). Upon isolation, the cells were suspended William’s E medium and seeded onto collagen-coated 6-well plates. After 2 h at 37 °C, the cells were washed and treated an additional 4 h in Williams medium with 5% FBS containing DMSO, 10 μM forskolin + 0.5 mM IBMX, 10 μM atglistatin, or Fsk + IBMX + atglistatin. The cells were then pelleted and reconstituted in PBS. Triglyceride extraction was done according to Folch et al. (68). Aliquots of lipid extract were saponified and assessed using a triglyceride diagnostic kit (Thermo Fisher; catalog no. TR22421). Triglyceride levels were normalized to total DNA content and quantified as the percentage of loss from the initial TG value as previously described (69).
Ethanol blocks hepatocyte lipolysis

Constructs and transfection

The PKA FRET biosensor pcDNA3-AKAR4-NES was a gift from Jin Zhang (Addgene plasmid 64727) (30). The human ATGL-EGFP and catalytically inactive ATGL(S47A)-EGFP constructs were gifts from Dr. Cathy Jackson (Institut Jacques Monod, Paris, France). We generated the HSL-sfGFP construct from a mouse HSL-FLAG plasmid received as a gift from Dr. Jun Liu (Mayo Clinic, Phoenix, AZ). A PCR product containing the HSL sequence was cloned into a superfolder GFP construct at SacII and HindIII restriction sites (forward primer, 5'-AGAAAGCTTGAATGATGGG; reverse primer, 5'-AAAAACGCGGTTCAGTGGT) and confirmed by sequence analysis.

Fluorescence microscopy

The cells were washed in PBS and fixed in 3% formaldehyde as described previously. To label LDs, fixed samples were washed in 60% isopropanol for 30 s, 60% Oil Red O (ORO) solution (5 mg/ml in isopropanol) for 2.5 min, and then washed in 60% isopropanol for an additional 30 s. The images were acquired using a Zeiss LSM 780 confocal microscope with a 40× oil objective lens (NA = 1.4). LD measurements were done using ImageJ software. Images of LDs were first made binary using the auto local threshold tool (Bernsen method), and LDs using ImageJ software. Images of LDs were first made binary and were used for the local threshold tool (Bernsen method), and LDs and area and number was quantified using the analyze particles tool.

Live-cell and FRET imaging

Live-cell imaging was performed on a Zeiss LSM 780 confocal microscope with a 63× water objective lens (NA = 1.2) with heated stage incubation (37 °C, 5% CO2). To image the AKAR4 FRET biosensor, the cells were excited with a 458-nm laser, and two emission channels were simultaneously captured on a spectral detector (CFP emission, 470–500 nm; FRET emission, 520–590 nm). CFP crossover into the FRET channel was calculated using a single CFP construct and was subtracted for each acquisition (39% of the CFP emission).

Lipid droplet isolation

Isolation of LDs was adapted from Brasaemle and Wolins (70). In brief, Huh7 human hepatoma cells were grown to near-confluency in five 15-cm dishes. The cells were lysed using a Dounce homogenizer, and the PNS was placed at the bottom of gradient (Sigma D1556). Following a 30-min 17200 rpm spin, the floating fat layer was collected and washed for subsequent Western blot analysis.

Author contributions—M. B. S., K. R., S. G. W., and R. J. S. contributed to conception, design, acquisition, analysis, and interpretation of data. M. B. S. and M. A. M. wrote the manuscript, and all authors reviewed the results and approved the final version.

Acknowledgments—We are grateful to the members of the McNiven and Casey laboratories for helpful discussion.

References

1. Rui, L. (2014) Energy metabolism in the liver. Compr. Physiol. 4, 177–197
2. O’Shea, R. S., Dasarathy, S., and McCullough, A. J. (2010) Alcoholic liver disease. Am. J. Gastroenterol. 105, 14–32
3. Lieber, C. S. (2004) Alcoholic fatty liver: its pathogenesis and mechanism of progression to inflammation and fibrosis. Alcohol 34, 9–19
4. Dam-Larsen, S., Franzmann, M., Anderssen, I. B., Christoffersen, P., Jensen, L. B., Sørensen, T. I., Becker, U., and Bendtsen, F. (2004) Long term prognosis of fatty liver: risk of chronic liver disease and death. Gut 53, 750–755
5. Guo, Y., Cordes, K. R., Farese, R. V., Jr., and Walther, T. C. (2009) Lipid droplets at a glance. J. Cell Sci. 122, 749–752
6. Fujimoto, Y., Itabe, H., Sakai, J., Makita, M., Noda, J., Mori, M., Higashi, Y., Kojima, S., and Takano, T. (2004) Identification of major proteins in the lipid droplet-enriched fraction isolated from the human hepatocyte cell line HuH7. Biochim. Biophys. Acta 1644, 47–59
7. Brasaemle, D. L., Dolios, G., Shapiro, L., and Wang, R. (2004) Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J. Biol. Chem. 279, 46835–46842
8. Cermelli, S., Guo, Y., Gross, S. P., and Wele, M. A. (2006) The lipid-droplet proteome reveals that droplets are a protein-storage depot. Curr. Biol. 16, 1783–1795
9. Walther, T. C., and Farese, R. V., Jr. (2012) Lipid droplets and cellular lipid metabolism. Annu. Rev. Biochem. 81, 687–714
10. Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., Cuervo, A. M., and Czaja, M. J. (2009) Autophagy regulates lipid metabolism. Nature 458, 1131–1135
11. Dubreuil, J. J., Beynen, A. C., Mannerts, G. P., and Geelen, M. J. (1982) Lipolysis of hepatic triglyceride stores. FEBS Lett. 140, 159–164
12. Raisinini, K., McVicker, B. L., Tuma, D. J., McNiven, M. A., and Casey, C. A. (2014) Rab GTPases associate with isolated lipid droplets (LDs) and show altered content after ethanol administration: potential role in alcohol-impaired LD metabolism. Alcohol. Clin. Exp. Res. 38, 327–335
13. Schroeder, B., Schulze, R. J., Weller, S. G., Sletten, A. C., Casey, C. A., and McNiven, M. A. (2015) The small GTPase Rab7 as a central regulator of hepatocellular lipolysis. Hepatology 61, 1896–1907
14. Li, Z., Schulze, R. J., Weller, S. G., Krueger, E. W., Schott, M. B., Zhang, X., Casey, C. A., Liu, J., Stöckli, J., James, D. E., and McNiven, M. A. (2016) A novel Rab10-EHBP1-EHD2 complex essential for the autophagic engulfment of lipid droplets. Sci. Adv. 2, e1601470
15. Schulze, R. J., Weller, S. G., Schroeder, B., Krueger, E. W., Chi, S., Casey, C. A., and McNiven, M. A. (2013) Lipid droplet breakdown requires dynamin 2 for vesiculation of autolysosomal tubules in hepatocytes. J. Cell Biol. 203, 315–326
16. Schulze, R. J., and McNiven, M. A. (2014) A well-oiled machine: DNM2/dynamin 2 helps keep hepatocyte lipolysis running smoothly. Autophagy 10, 388–389
17. Takahashi, Y., Tsotakos, N., Liu, Y., Young, M. M., Serfass, J., Tang, Z., Abraham, T., and Wang, H. G. (2016) The Bif-1-dynamin 2 membrane fission machinery regulates Atg9-containing vesicle generation at the Rab11-positive reservoirs. Oncotarget 7, 20855–20868
18. Egan, J. J., Greenberg, A. S., Chang, M. K., Weik, S. A., Moos, M. C., Jr., and Londos, C. (1992) Mechanism of hormone-stimulated lipolysis in adipocytes: translocation of hormone-sensitive lipase to the lipid storage droplet. Proc. Natl. Acad. Sci. U.S.A. 89, 8537–8541
19. Smirnova, E., Goldberg, E. B., Makarova, K. S., Lin, L., Brown, W. J., and Jackson, C. L. (2006) ATGL has a key role in lipid droplet/adiposome degradation in mammalian cells. EMBO Rep. 7, 106–113
20. Bezaire, V., Mairal, A., Ribet, C., Lefort, C., Girousse, A., Jochen, J., Laurencienkie, I., Anesia, R., Rodriguez, A. M., Ryden, M., Stenson, B. M., Dani, C., Aihlau, G., Arner, P., and Langin, D. (2009) Contribution of adipose triglyceride lipase and hormone-sensitive lipase to lipolysis in hMADS adipocytes. J. Biol. Chem. 284, 18282–18291
21. Brasaemle, D. L., Levin, D. M., Adler-Wailes, D. C., and Londos, C. (2000) The lipolytic stimulation of 3T3-L1 adipocytes promotes the translocation of hormone-sensitive lipase to the surfaces of lipid storage droplets. Biochim. Biophys. Acta 1483, 251–262
22. Granneman, J. G., Moore, H. P., Krishnamoorthy, R., and Rathod, M. (2009) Perilipin controls lipolysis by regulating the interactions of AB-
Hydrolase containing 5 (Abhd5) and adipose triglyceride lipase (Atgl). J. Biol. Chem. 284, 34538–34544

23. Wang, H., Hu, L., Dalen, K., Dorward, H., Marcinkiewicz, A., Russell, D., Gong, D., Londos, C., Yamaguchi, T., Holm, C., Rizzo, M. A., Braseemle, D., and Szalayrd, C. (2009) Activation of hormone-sensitive lipase requires two steps, protein phosphorylation and binding to the PAT-1 domain of lipid droplet coat proteins. J. Biol. Chem. 284, 32116–32125

24. Granneman, J. G., Moore, H. P., Mottollo, E. P., Zhu, Z., and Zhou, L. (2011) Interactions of perilipin-5 (Plin5) with adipose triglyceride lipase. J. Biol. Chem. 286, 5126–5135

25. Ong, K. T., Mashek, M. T., Bu, S. Y., Greenberg, A. S., and Mashek, D. G. (2010) The G0/G1 switch gene 2 regulates adipose lipolysis. Cell Metab. 11, 194–205

26. Depry, C., Allen, M. D., and Zhang, J. (2011) Visualization of PKA activity in plasma membrane microdomains. Mol. Biol. Cell. 7, 52–58

27. Pagnon, J., Matzaris, M., Stark, R., Meex, R. C., Macaulay, S. L., Brown, W., Wang, Y., Zhang, Y., Qian, H., Lu, J., Zhang, Z., Min, X., Lang, M., Yang, H., Carr, R. M., Peralta, G., Yin, X., and Ahima, R. S. (2014) Absence of perlipin 2 prevents hepatic steatosis, glucose intolerance and ceramide accumulation in alcohol-fed mice. PLoS One 9, e97118

28. Wang, C., Zhao, Y., Gao, X., Li, L., Yuan, Y., Liu, F., Zhang, L., Wu, J., Hu, P., Zhang, X., Gu, Y., Xu, Y., Wang, Z., Li, Z., Zhang, H., and Ye, J. (2015) Perilipin 5 improves hepatic lipotoxicity by inhibiting lipolysis. Hepatology 61, 870–882

29. Haemmerle, G., Zimmermann, R., Hayn, M., Theussl, C., Waeg, G., Wagner, E., Sattler, W., Magin, T. M., Wagner, E. F., and Zechner, R. (2002) Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J. Biol. Chem. 277, 4806–4815

30. Sekiya, M., Osuga, I., Yahagi, N., Okazaki, H., Tamura, Y., Igarashi, M., Takase, S., Harada, K., Okazaki, S., Iizuka, Y., Ohashi, K., Yagyu, H., Okazaki, M., Gotoda, T., Nagai, R., et al. (2008) Hormone-sensitive lipase is involved in hepatic cholesterol ester hydrolysis. J. Lipid Res. 49, 1829–1838

31. Bickel, P. E., Tansey, I. T., and Welte, M. A. (2009) PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochim. Biophys. Acta 1791, 419–440

32. Straub, B. K., Stoepf, P., Heid, H., Zimbellmann, R., and Schirmacher, P. (2008) Differential pattern of lipid droplet-associated proteins and de novo perlipin expression in hepatocyte steatogenesis. Hepatology 47, 1936–1946

33. Farah, B. L., Sinha, R. A., Wu, Y., Singh, B. K., Zhou, J., Bay, B. H., and Yen, P. M. (2014) β-Adrenergic agonist and antagonist regulation of autophagy in HepG2 cells, primary mouse hepatocytes, and mouse liver. PLoS One 9, e98155

34. Sinha, R. A., Farah, B. L., Singh, B. K., Siddique, M. M., Li, Y., Wu, Y., Ilkayeva, O. R., Gooding, J., Ching, J., Zhou, J., Martinez, L., Xie, S., Bay, B. H., Summers, S. A., Newgard, C. B., et al. (2014) Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice. Hepatology 59, 1366–1380

35. Lizaro, A., Tan, K. T., and Lee, Y. H. (2013) β-Adrenergic receptor-stimulated lipolysis requires the RAB7-mediated autolysosomal lipid degradation. Autophagy 9, 1228–1243

36. Sathyaranayanan, A., Mashek, M. T., and Mashek, D. G. (2017) ATGL promotes autophagy/lipophagy via SIRT1 to control hepatic lipid droplet catabolism. Cell Reports 19, 1–9

37. Ghosh, P. M., Shu, Z. I., Zhu, B., Lu, Z., Ikeno, Y., Barnes, J. L., Yeh, C. K., Zhang, B. X., Katz, M. S., and Kamat, A. (2012) Role of β-adrenergic receptors in regulation of hepatic fat accumulation during aging. J. Endocrinol. 213, 251–261

38. Whittstein, M., and VanWagner, L. B. (2015) Physical activity as a treatment of non-alcoholic fatty liver disease: a systematic review. World J. Hepatol. 7, 2041–2052

39. Zhu, N., Blackmore, P. F., and Exton, J. H. (1983) Age-related changes in the control of hepatic AMP levels by α- and β-adrenergic receptors in male rats. J. Biol. Chem. 258, 5103–5109

40. Katz, M. S., Dax, E. M., and Gregerman, R. I. (1993) β-Adrenergic regulation of rat liver glycolysis during aging. Exp. Gerontol. 28, 329–340

41. Houtkooper, R. H., Argmann, C., Houten, S. M., Cantó, C., Jeninga, E. H., de Souza, F. C., Yoon, C., Puigserver, P., and Spiegelman, B. (2011) The metabolic footprint of aging in mice. Sci. Rep. 1, 134

42. Aquilano, K., Baldelli, S., La Barbera, L., Lettieri Barbato, D., Tatulli, G., and Ciriolo, M. R. (2016) Adipose triglyceride lipase decrease affects skeletal muscle homeostasis during aging through FAS-PPARα-PGC-1α antioxidant response. Oncotarget 7, 23019–23032

43. Hoffman, P. L., Valverius, P., Kwast, M., and Tabakoff, B. (1987) Comparison of the effects of ethanol on β-adrenergic receptors in heart and brain. Alcohol. Alcohol. Suppl. 1, 749–754

44. De A., Boyadjieva, N. I., and Sarkar, D. K. (1999) Effects of ethanol on α-adrenergic and β-adrenergic agonist-stimulated β-endorphin release and cAMP production in hypothalamic cells in primary cultures. Alcohol. Clin. Exp. Res. 23, 46–51

45. Nagy, L. E., Diamond, L., and Gordon, A. (1988) Cultured lymphocytes from alcoholic subjects have altered cAMP signal transduction. Proc. Natl. Acad. Sci. U.S.A. 85, 6973–6976

46. Krebs, H. A., Freedland, R. A., Hems, R., and Stubbs, M. (1969) Inhibition of hepatic gluconeogenesis by ethanol. Biochem. J. 112, 117–124

47. Wu, Y., Song, P., Xu, J., Zhang, M., and Zou, M. H. (2007) Activation of protein phosphate 2A by palmitate inhibits AMP-activated protein kinase. J. Biol. Chem. 282, 9777–9788

48. You, M., Matsumoto, M., Pacold, C. M., Cho, W. K., and Crabb, D. W. (2004) The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology 127, 1798–1808
Ethanol blocks hepatocyte lipolysis

61. Liangpunsakul, S., Sozio, M. S., Shin, E., Zhao, Z., Xu, Y., Ross, R. A., Zeng, Y., and Crabb, D. W. (2010) Inhibitory effect of ethanol on AMPK phosphorylation is mediated in part through elevated ceramide levels. *Am. J. Physiol. Gastrointest. Liver Physiol.* **298**, G1004–G1012

62. Pagadala, M., Kasumov, T., McCullough, A. I., Zein, N. N., and Kirwan, J. P. (2012) Role of ceramides in nonalcoholic fatty liver disease. *Trends Endocrinol. Metab.* **23**, 365–371

63. Oaks, J., and Ogretmen, B. (2014) Regulation of PP2A by sphingolipid metabolism and signaling. *Front. Oncol.* **4**, 388

64. Ganesan, M., Zhang, J., Bronich, T., Poluektova, L. I., Donohue, T. M., Jr., Tuma, D. J., Kharbanda, K. K., and Osna, N. A. (2015) Acetaldehyde accelerates HCV-induced impairment of innate immunity by suppressing methylation reactions in liver cells. *Am. J. Physiol. Gastrointest. Liver Physiol.* **309**, G566–G577

65. Shen, L., Hillebrand, A., Wang, D. Q., and Liu, M. (2012) Isolation and primary culture of rat hepatic cells. *J. Vis. Exp. pii*, 3917

66. Lieber, C. S., and DeCarli, L. M. (1989) Liquid diet technique of ethanol administration: 1989 update. *Alcohol. Alcohol.* **24**, 197–211

67. Casey, C. A., McVicker, B. L., Donohue, T. M., Jr., McFarland, M. A., Wiegert, R. L., and Nanji, A. A. (2004) Liver asialoglycoprotein receptor levels correlate with severity of alcoholic liver damage in rats. *J. Appl. Physiol.* **96**, 76–80

68. Folch, J., Lees, M., and Sloane Stanley, G. H. (1957) A simple method for the isolation and purification of total lipides from animal tissues. *J. Biol. Chem.* **226**, 497–509

69. McVicker, B. L., Rasineni, K., Tuma, D. J., McNiven, M. A., and Casey, C. A. (2012) Lipid droplet accumulation and impaired fat efflux in polarized hepatic cells: consequences of ethanol metabolism. *Int. J. Hepatol.* 2012, 978136

70. Brasaemle, D. L., and Wolins, N. E. (2016) Isolation of lipid droplets from cells by density gradient centrifugation. *Curr. Protoc. Cell Biol.* **72**, 3.15.11–13.15.13