Di-Zinc-Aryl Complexes: CO2 Insertions and Applications in Polymerisation Catalysis

Citation for published version:
Romain, C, Garden, JA, Trott, G, Buchard, A, White, AJP & Williams, CK 2017, 'Di-Zinc-Aryl Complexes: CO2 Insertions and Applications in Polymerisation Catalysis', Chemistry - A European Journal. https://doi.org/10.1002/chem.201701013

Digital Object Identifier (DOI):
10.1002/chem.201701013

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Chemistry - A European Journal

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Di-Zinc Aryl Complexes: CO2 Insertions and Applications in Polymerisation Catalysis

Charles Romain,[b] Jennifer A. Garden,[c][†] Gemma Trott,[a] Antoine Buchard,[d] Andrew J. P. White[b][†] and Charlotte K. Williams[a][∗]

Abstract: Two new di-zinc aryl complexes, [LZn2Ph2] and [LZn2(C6F5)2], coordinated by a diphenol tetraamine macrocyclic ligand and [LZn2(C6F5)2], coordinated by a diphenol tetraamine macrocyclic ligand are prepared and fully characterized, including by single crystal X-ray diffraction experiments. The complexes’ reactivities with monomers including carbon dioxide, cyclohexene oxide, enones.[5] Zinc is an attractive choice of metal for catalysis, [6] in particular, [LZn2Ph2] readily inserts carbon dioxide to form a carboxylate, at 1 bar pressure, whereas [LZn2(C6F5)2] does not react. Under these conditions [LZn2Ph2] shows moderate activity in the ring-opening copolymerisation of cyclohexene oxide / carbon dioxide (TOF = 20 h⁻¹); cyclohexene oxide / phthalic anhydride (TOF = 33 h⁻¹) and the ring opening polymerisations of rac-lactide (TOF = 99 h⁻¹) and ε-caprolactone (TOF = 5280 h⁻¹).

Introduction

Since their original discovery by Frankland in 1848,[1] organometallic zinc compounds have become a well-established component of the synthetic chemists’ toolbox. They have been successfully applied as stoichiometric reagents in Negishi cross-coupling reactions,[2] metal halogen exchange,[3] the alkylation of trifluoromethyl ketones[4] and the epoxidation of enones.[5] Zinc is an attractive choice of metal for catalysis,[6] due to its low toxicity, cost and lack of colour and redox chemistry. Homogeneous zinc catalysts show promise in reactions including the ring opening polymerisation (ROP) of cyclic esters,[7] the formation of cyclic carbonates,[8] aldol reactions[9] and hydroamination reactions.[10] They have been particularly effective as catalysts for CO2/epoxide ring-opening copolymerisation (ROCOP), which provides a useful method of adding value to captured CO2.[11] Some of the most active and selective are zinc complexes coordinated by β-diamine or phenoxy-amine ligand scaffolds.[12] With some of these different catalyst systems, short chain telechelic polycarbonates have been observed,[13] which are potentially useful for chain extension reactions to form block copolymers,[14] polyurethanes,[15] or nanomaterials.[16] The presence of such α,ω-dihydroxy end capped polymers is generally attributed to the presence of diols, formed through the reaction of epoxides with trace water, which act as chain transfer agents during polymerisation. Darenbourg recently gleaned further insight into the nature of this reaction, and established that this hydrolysis is catalysed by the polymerisation catalyst, [(salen)Co(O2CCF3)]+ in both CO2/cyclohexene oxide (CHO) and CO2/propylene oxide (PO) ROCOP systems. Careful spectroscopic studies demonstrated that these [(salen)Co(O2CCF3)]+ catalysed hydrolysis reactions occur prior to any initiation of CO2/epoxide ROCOP, as the catalyst is initially occupied in the conversion of epoxides to diols.[17] Fundamental reactivities of polymerisation catalysts towards oxygenated small-molecules in ROCOP systems, including alcohols, carbon dioxide and other monomers, are of particular relevance to further understand the reactions occurring with chain transfer agents, and for the preparation of new catalysts for CO2/epoxide ROCOP, and so we studied the reactivity of zinc catalyst systems with a range of small molecules. Controlling the nature of the bond between the metal and the initiating group or growing polymer chain end is of key interest in polycarbonate synthesis,[17] and has led to the development of “switchable” zinc catalysts, which can catalyse both the ROP of lactones and the ROCOP of epoxides with CO2 or anhydrides, thus enabling the controlled synthesis of block copolymers from a mixture of monomers.[18]

Considering the general reactivity of zinc alkyl complexes, there are a number of reports of reactions with alcohols or carboxylic acids.[19] The insertion of CO2 into Zn-alkoxide bonds has also been studied in depth.[11b, 16a] Some examples relevant to catalysis include the reversible insertion of CO2 into di-zinc alkoxide complexes based on a macrocyclic bis(anilido)tetraimine ligand, to form di-zinc carbonate and mixed carbonate/alkoxide products.[20] Considering BDI-Zn complexes, which are well-studied catalysts for CO2/epoxide ROCOP, zinc-alkoxides rapidly insert CO2 whilst the epoxide coordination and ring-opening is an equilibrium process.[11b, 16a] Despite these insightful studies, the reaction of Zn-alkyl complexes with carbon dioxide remains much less explored,[21] and the initial reactivity of such complexes in the presence of CO2, epoxide and diols is still not well understood. Kinetic studies have shown that CO2 insertion occurs rapidly for a series of zinc hydride complexes, to form the corresponding zinc formate complexes, where the reaction kinetics were limited by the rate of CO2 dissolution in toluene solvent (kobs = 0.033 M min⁻¹).[22]
Recently, some of us reported a diphenol tetraamine based macrocyclic ligand which was used to prepare a series of dinuclear catalysts, including di-zinc carboxylate compounds. These complexes showed activities for both the ROCOP of CO$_2$/epoxide and of epoxide/anhydride, and were notable in being able to selectively polymerize at just 1 bar pressure of CO$_2$. Here, we apply the same ligand and investigate the potential to prepare di-zinc bis(aryl) precatalysts. To gain insight into the reactions that may occur between such precatalysts and the key monomers or chain transfer agents present during polymerisation (Scheme 1), the reactivity of the complexes towards stoichiometric epoxide (CHO), phthalic anhydride (PA), CO$_2$, and alcohols was explored. The effect of electron-withdrawing substituents on the aryl co-ligand was also notable in being able to selectively polymerize at just 1 bar pressure of CO$_2$. Here, we apply the same ligand and complexes with monomers CO$_2$, CHO and PA, in the presence of chain transfer agent 1,2-cyclohexanediol.

Results and Discussion

Complex Synthesis (LZn$_2$Ph$_2$ and LZn$_2$(C$_6$F$_5$)$_2$)

The macrocyclic pro-ligand LH$_2$ (Scheme 2) was prepared according to literature methods and cleanly deprotonated using two equivalents of either ZnPh$_2$ or Zn(C$_6$F$_5$)$_2$ in THF at -40 °C. The di-zinc complexes [LZn$_2$Ph$_2$] (1, 81 % yield) and [LZn$_2$(C$_6$F$_5$)$_2$] (2, 52 % yield) were afforded, respectively (Scheme 2). For both 1 and 2, colourless block crystals suitable for X-ray diffraction studies were obtained by gradual cooling of a hot benzene solution to 25 °C.

Structural elucidation via X-ray diffraction revealed that the two complexes are very similar, and sit across a centre of symmetry at the middle of the Zn$_2$O$_2$ rings (Fig. 1). In contrast to other related di-Zn complexes based on LH$_2$, where the ligand adopts a boat shape, here the ligand adopts an “S” shape. The pentacoordinate Zn atoms, which are bound within the ligand, each share two phenol-O oxygen atoms. For both 1 and 2, there is a significant difference between the two different ArO-Zn bond lengths, of 0.13 Å in 1, and 0.09 Å in 2. Completing the pentacoordinate geometry, each Zn also bonds to two amine nitrogen atoms and one aryl-C atom. The aryl-C-Zn bond lengths lie within the expected range, although the bond is 0.03 Å shorter in 1 than in 2. One curious feature is the presence of H-F interactions in 2, observed between the amine NH and the fluoryl substituents [F(21)-H(8); 2.56(1) Å]. Nevertheless, the nature of the co-ligand does not appear to affect the phenol C-O bond length, which is almost identical within 1 [O(1)-C(1); 1.341(2) Å] and 2 [1.338(2) Å].

Results and Discussion

Complex Synthesis (LZn$_2$Ph$_2$ and LZn$_2$(C$_6$F$_5$)$_2$)

The macrocyclic pro-ligand LH$_2$ (Scheme 2) was prepared according to literature methods and cleanly deprotonated using two equivalents of either ZnPh$_2$ or Zn(C$_6$F$_5$)$_2$ in THF at -40 °C. The di-zinc complexes [LZn$_2$Ph$_2$] (1, 81 % yield) and [LZn$_2$(C$_6$F$_5$)$_2$] (2, 52 % yield) were afforded, respectively (Scheme 2). For both 1 and 2, colourless block crystals suitable for X-ray diffraction studies were obtained by gradual cooling of a hot benzene solution to 25 °C.

Structural elucidation via X-ray diffraction revealed that the two complexes are very similar, and sit across a centre of symmetry at the middle of the Zn$_2$O$_2$ rings (Fig. 1). In contrast to other related di-Zn complexes based on LH$_2$, where the ligand adopts a boat shape, here the ligand adopts an “S” shape. The pentacoordinate Zn atoms, which are bound within the ligand, each share two phenol-O oxygen atoms. For both 1 and 2, there is a significant difference between the two different ArO-Zn bond lengths, of 0.13 Å in 1, and 0.09 Å in 2. Completing the pentacoordinate geometry, each Zn also bonds to two amine nitrogen atoms and one aryl-C atom. The aryl-C-Zn bond lengths lie within the expected range, although the bond is 0.03 Å shorter in 1 than in 2. One curious feature is the presence of H-F interactions in 2, observed between the amine NH and the fluoryl substituents [F(21)-H(8); 2.56(1) Å]. Nevertheless, the nature of the co-ligand does not appear to affect the phenol C-O bond length, which is almost identical within 1 [O(1)-C(1); 1.341(2) Å] and 2 [1.338(2) Å].

Results and Discussion

Complex Synthesis (LZn$_2$Ph$_2$ and LZn$_2$(C$_6$F$_5$)$_2$)

The macrocyclic pro-ligand LH$_2$ (Scheme 2) was prepared according to literature methods and cleanly deprotonated using two equivalents of either ZnPh$_2$ or Zn(C$_6$F$_5$)$_2$ in THF at -40 °C. The di-zinc complexes [LZn$_2$Ph$_2$] (1, 81 % yield) and [LZn$_2$(C$_6$F$_5$)$_2$] (2, 52 % yield) were afforded, respectively (Scheme 2). For both 1 and 2, colourless block crystals suitable for X-ray diffraction studies were obtained by gradual cooling of a hot benzene solution to 25 °C.

Structural elucidation via X-ray diffraction revealed that the two complexes are very similar, and sit across a centre of symmetry at the middle of the Zn$_2$O$_2$ rings (Fig. 1). In contrast to other related di-Zn complexes based on LH$_2$, where the ligand adopts a boat shape, here the ligand adopts an “S” shape. The pentacoordinate Zn atoms, which are bound within the ligand, each share two phenol-O oxygen atoms. For both 1 and 2, there is a significant difference between the two different ArO-Zn bond lengths, of 0.13 Å in 1, and 0.09 Å in 2. Completing the pentacoordinate geometry, each Zn also bonds to two amine nitrogen atoms and one aryl-C atom. The aryl-C-Zn bond lengths lie within the expected range, although the bond is 0.03 Å shorter in 1 than in 2. One curious feature is the presence of H-F interactions in 2, observed between the amine NH and the fluoryl substituents [F(21)-H(8); 2.56(1) Å]. Nevertheless, the nature of the co-ligand does not appear to affect the phenol C-O bond length, which is almost identical within 1 [O(1)-C(1); 1.341(2) Å] and 2 [1.338(2) Å].

Results and Discussion

Complex Synthesis (LZn$_2$Ph$_2$ and LZn$_2$(C$_6$F$_5$)$_2$)

The macrocyclic pro-ligand LH$_2$ (Scheme 2) was prepared according to literature methods and cleanly deprotonated using two equivalents of either ZnPh$_2$ or Zn(C$_6$F$_5$)$_2$ in THF at -40 °C. The di-zinc complexes [LZn$_2$Ph$_2$] (1, 81 % yield) and [LZn$_2$(C$_6$F$_5$)$_2$] (2, 52 % yield) were afforded, respectively (Scheme 2). For both 1 and 2, colourless block crystals suitable for X-ray diffraction studies were obtained by gradual cooling of a hot benzene solution to 25 °C.

Structural elucidation via X-ray diffraction revealed that the two complexes are very similar, and sit across a centre of symmetry at the middle of the Zn$_2$O$_2$ rings (Fig. 1). In contrast to other related di-Zn complexes based on LH$_2$, where the ligand adopts a boat shape, here the ligand adopts an “S” shape. The pentacoordinate Zn atoms, which are bound within the ligand, each share two phenol-O oxygen atoms. For both 1 and 2, there is a significant difference between the two different ArO-Zn bond lengths, of 0.13 Å in 1, and 0.09 Å in 2. Completing the pentacoordinate geometry, each Zn also bonds to two amine nitrogen atoms and one aryl-C atom. The aryl-C-Zn bond lengths lie within the expected range, although the bond is 0.03 Å shorter in 1 than in 2. One curious feature is the presence of H-F interactions in 2, observed between the amine NH and the fluoryl substituents [F(21)-H(8); 2.56(1) Å]. Nevertheless, the nature of the co-ligand does not appear to affect the phenol C-O bond length, which is almost identical within 1 [O(1)-C(1); 1.341(2) Å] and 2 [1.338(2) Å].

Results and Discussion

Complex Synthesis (LZn$_2$Ph$_2$ and LZn$_2$(C$_6$F$_5$)$_2$)

The macrocyclic pro-ligand LH$_2$ (Scheme 2) was prepared according to literature methods and cleanly deprotonated using two equivalents of either ZnPh$_2$ or Zn(C$_6$F$_5$)$_2$ in THF at -40 °C. The di-zinc complexes [LZn$_2$Ph$_2$] (1, 81 % yield) and [LZn$_2$(C$_6$F$_5$)$_2$] (2, 52 % yield) were afforded, respectively (Scheme 2). For both 1 and 2, colourless block crystals suitable for X-ray diffraction studies were obtained by gradual cooling of a hot benzene solution to 25 °C.

Structural elucidation via X-ray diffraction revealed that the two complexes are very similar, and sit across a centre of symmetry at the middle of the Zn$_2$O$_2$ rings (Fig. 1). In contrast to other related di-Zn complexes based on LH$_2$, where the ligand adopts a boat shape, here the ligand adopts an “S” shape. The pentacoordinate Zn atoms, which are bound within the ligand, each share two phenol-O oxygen atoms. For both 1 and 2, there is a significant difference between the two different ArO-Zn bond lengths, of 0.13 Å in 1, and 0.09 Å in 2. Completing the pentacoordinate geometry, each Zn also bonds to two amine nitrogen atoms and one aryl-C atom. The aryl-C-Zn bond lengths lie within the expected range, although the bond is 0.03 Å shorter in 1 than in 2. One curious feature is the presence of H-F interactions in 2, observed between the amine NH and the fluoryl substituents [F(21)-H(8); 2.56(1) Å]. Nevertheless, the nature of the co-ligand does not appear to affect the phenol C-O bond length, which is almost identical within 1 [O(1)-C(1); 1.341(2) Å] and 2 [1.338(2) Å].
sharp resonances for the ortho-, meta- and para- resonances, which suggests that the solid state H-F interactions are not maintained at 25 °C in solution.

Reactivity Studies

It was of interest to investigate the reactivity of 1 and 2 towards CO₂, to probe their potential use as polymerisation catalysts. It was observed that 1 reacted with CO₂ at 1 bar of CO₂ pressure, in C₆D₆ at 25 °C, to afford the corresponding dibenzoate complex [LZn₂(OOC-Ph)₂, 3] with complete conversion occurring after two hours, as observed by ¹H NMR analysis (Scheme 2, Fig. S6). The rate of CO₂ insertion was significantly enhanced by heating the solution to 80 °C, affording complete conversion of 1 to 3, within 5 minutes.

To unambiguously confirm the formation of the dibenzoate complex from CO₂ insertion into 1, 3 was independently synthesized via direct metatllation of LH₂ by zinc carboxylate Zn(OOC-Ph)₂, at 25 °C in THF (Scheme 2). The ¹H NMR spectrum was identical to that obtained from CO₂ insertion into 1. Colourless block crystals suitable for X-ray diffraction were obtained at 25 °C from a benzene/THF solvent system, enabling structural elucidation of 3 (Fig. 2). The ligand adopts a distorted “S” shape holding two pentacoordinate Zn centres, each with a pendant κ¹-O benzoate ligand, two bridging phenol-O atoms and two secondary amine N atoms. The benzoate C-O bonds differ significantly in length, as the bonds to O(52) and O(42) are 0.05 Å shorter, suggesting that these contain the most double bond character and that O(40) and O(50) are the anionic donors. At 3.1009(5) Å, the Zn···Zn separation is 0.16 Å shorter than in 1. This is likely to result from the shortened aryl-O-Zn bonds, which are 0.03 and 0.13 Å shorter than in 1. Additional, hydrogen bonding interactions between the benzoate-O and the amine-NH [O(42)-H(18); 2.15(2) Å] provide further stabilization for 3.

Complex 3 reproducibly gave rather complex NMR spectra, at high and low temperatures, in a range of different solvents including CDCl₃, C₆D₆ and d₄-THF. However, in d₄-methanol, a much better resolved ¹H NMR spectrum was obtained (Fig. S7-S8). The spectrum confirmed the formation of the di-zinc complex, there are diastereotopic benzylic (4.23 and 3.34 ppm) and methylene (2.91 - 2.83 ppm) resonances, and the NH resonance is observed at 3.15 ppm. It possesses C₂ symmetry in methanol solution. The benzoate ligands are clearly present as evidenced by the deshielded ortho-phenyl resonance at 7.87 ppm. In the ¹³C NMR spectrum, quaternary carbon resonances were too weak to be observed (including by HMBC experiments) and so a ¹³C carbonyl labelled sample of 3 was prepared, by the reaction of 1 with two equivalents of ¹³C labelled benzoic acid. The carbonyl resonance of 3 is clearly observed at 174.6 ppm, shifted from free benzoic acid (170.1 ppm).

Figure 2. Molecular structure of 3. Hydrogen atoms and a benzene solvent molecule are omitted for clarity.

In contrast, the fluoryl analogue, complex 2, did not react with CO₂ under identical reaction conditions. It is proposed that the decrease in nucleophilicity of the aryl group, due to the electron withdrawing fluoryl substituents, disfavours CO₂ insertion. This is supported by the observation of a longer, weaker Zn-C bond in 2 [2.049(1) Å] compared to 1 [2.016(1) Å] in the solid state crystal structure. A theoretical study was carried out in order to gain a better understanding of the CO₂ insertion into the Zn-aryl bonds. DFT was used to calculate the potential energy surface for the stepwise CO₂ insertion into the Zn-aryl bond for complexes 1 and 2 (Fig. 3), to provide insight into the activation energy barriers and the relative stability of the intermediates and products. The calculations were carried out using DFT protocol wb97x/d-6-31G(d)/sroc(cpcm = dichloromethane) at 353 K, which has previously shown a good agreement with experiments for related reaction studies of similar dinuclear zinc complexes (refer to ESI for further details). This study focussed on the previously unreported barrier of CO₂ insertion into the Zn-aryl bond and the calculations reveal the energy barrier to be 9.0 kcal mol⁻¹ higher for 1’ (overall barrier ΔG = +28.7 kcal mol⁻¹) than for 1 (overall barrier ΔG = +19.7 kcal mol⁻¹). The carbonate products derived from complex I are more stable than the corresponding fluoryl analogues obtained from I’ (ΔΔG up to 20.4 kcal/mol between VO₂⁺ and VO₂⁺), giving further support to the experimental observation that CO₂ inserts more readily into the Zn-Ph bond than the Zn-C₆F₅ analogue.
The calculated mechanism shows CO₂ insertion occurring at only one metal centre, without participation of the second metal or second aryl co-ligand (Fig. 3). NBO analysis was carried out for III-TSCO₂ which shows a significant interaction between the Zn-C bond and incoming C(CO₂) atom (see ESI, Fig. S9). This contrasts with what was previously observed in the case of a bridging acetate co-ligand, where CO₂ insertion into a Zn-alkoxide bond occurs via a bimetallic mechanism, along with ‘shuttling’ of the electron density of the acetate co-ligand to balance the charge. [24b] To allow a comparison between these two systems, the potential energy surface for the second CO₂ insertion was investigated (Fig. 3). Considering the most stable conformation VICO₂, the second CO₂ insertion into I was found to occur via a bimetallic mechanism, with nucleophilic attack of the aryl to the CO₂, and forming a complex with the carboxylate coordinated to one metal centre; concomitantly, the bridging co-ligand balances the charges. The energy barrier for this second insertion was found to be 18.6 kcal.mol⁻¹ (between VIICO₂ and VIIICO₂), which lies close to that determined for the first CO₂ insertion (19.7 kcal.mol⁻¹). Overall, the formation of the bis-carboxylate complex IXCO₂ is highly thermodynamically favoured, with ΔG = -49.5 kcal.mol⁻¹. Unfortunately, it was not possible to gain experimental evidence for the formation of any intermediates VICO₂ – VIIICO₂ to confirm this step-wise model of CO₂ insertion (i.e. monitoring of the reaction by NMR spectroscopy detected only product 3). However, it seems reasonable to conclude that the insertion of CO₂ into the Zn-Ph bond is accessible under the reaction conditions, while the CO₂ insertion with the fluoryl analogue has a significantly higher energy barrier and is thermodynamically less favoured overall.

A catalyst system, prepared from the in situ reaction of 1 with 1,2-cyclohexenediol, has previously been applied towards the controlled synthesis of block co-polymers, through selective catalysis combining the ROP of ε-CL with the ROCOP of epoxides and anhydrides.[19e] However, this catalyst system was prepared and used in situ without detailed characterization. Thus, it was of interest to investigate the reactivity of 1 and 2 with alcohols (Scheme 1). In these studies, iso-propanol was used as a model for the chain transfer agent 1,2-cyclohexenediol. It was selected as a secondary alcohol of similar steric bulk but which simplified spectroscopic characterization and computational studies compared to 1,2-cyclohexenediol (vide infra). Although a THF solution of 1 proved stable in the presence of iso-propanol (2 equivalents) at 25 °C, heating the reaction mixture to 60 °C for 18 hours led to...
complete consumption of 1 (Scheme 2). \(^1\)H NMR analysis, in \(d_8\)-THF, revealed the formation of a new species, [LZn\(_2\)(OPh)\(_2\)] \((4)\), along with the formation of benzene (singlet at 7.30 ppm) (Fig. S10-S12). As the copolymerisations are typically performed at temperatures above 60 °C, this finding suggests that zinc-alkoxide species can form readily under reaction conditions.\(^{[12a]}\) In contrast to the broad, convoluted \(^1\)H spectrum of 1 in \(d_8\)-THF at 298K, 4 has a sharp, well-resolved \(^1\)H spectrum. Complex 4 was most clearly characterized by the iso-propoxide methyne (4.11 ppm) and methyl signals (0.96 ppm) which were shifted compared to free alcohol. Integration of the relevant resonances confirms the 2:1 methyl signals (0.96 ppm) which were shifted compared to free alcohol.

The intermediate can then react with a second equivalent of iso-propanol, with an energy barrier of +25.4 kcal.mol\(^{-1}\), to yield complex 4 \((\text{VII}^{\text{proH}})\) which is calculated to have a relative energy of -37.3 kcal.mol\(^{-1}\), compared to complex 1 (I). This product can also be formed if the protonolysis intermediate \((\text{Va}^{\text{HOR}})\) were to undergo a ligand conformational rearrangement, to give a more stable intermediate \((\text{Vb}^{\text{HOR}})\) (by 2.2 kcal.mol\(^{-1}\)). Subsequently, the reaction pathway with iso-propanol approaching from the concave face \((\text{Vb}^{\text{proH}})\) has a lower energy barrier of +20.5 kcal.mol\(^{-1}\). The calculations show that the energy barriers for the protonolysis pathways are easily accessible, under polymerisation conditions, and that the products formed are highly stable relative to complex 1. A key finding is that protonolysis, by reaction with chain transfer agents present during polymerisation, is likely to be a highly favourable reaction and that zinc alkoxide complexes might be considered as the potential active sites for such catalytic systems.

Figure 4: Molecular structure of 5. Hydrogen atoms and one DCM molecule are omitted for clarity.

Polymerisation Studies

Following the successful reaction of 1 with CO\(_2\), its catalytic activity within CHO/CO\(_2\) copolymerisation was tested. The polymerisations were run at 0.1 mol % catalyst loading (vs the epoxide, CHO), using 1 bar of CO\(_2\) pressure (Table 1, entry 1), as analogous di-Zn catalysts have previously shown acceptable activity under these conditions.\(^{[11j]}\) The phenyl catalyst 1 is active (TOF = 20 h\(^{-1}\)) and exhibits good CO\(_2\) uptake, giving > 99 % carbonate linkages. The polymerisation is well-controlled, with a monomodal distribution and a narrow dispersity (1.06). 5 displays similar activity to the previously reported acetate analogue, [LZn\(_2\)(OAc)\(_2\)] \((\text{TOF} = 18 \text{ h}^{-1}, \text{entry 4})\).\(^{[12b]}\) and significantly outperforms the bromide complex [LZn\(_2\)Br\(_2\)], which is completely inactive under identical reaction conditions.\(^{[25a]}\) Notably, the MALDI-ToF analysis shows that the purified product is a telechelic polymer terminated by hydroxyl groups (Fig. S15), a feature which has been observed with some different catalysts for this copolymerisation.\(^{[13]}\) The formation of dihydroxyl end-capped polymers is consistent with reactions of [LZn\(_2\)Ph\(_2\)] with alcohol (1,2-cyclohexanediol) to form the active site.\(^{[14a]}\) The reactivity studies have also demonstrated the capability of 1 to react with CO\(_2\), within 5 minutes at 80 °C, suggesting that the product di-zinc bis(benzoate) complex could initiate copolymerisation. However, benzoate end groups were
not observed in the NMR spectroscopy or MALDI-ToF analysis. Thus it seems likely that the reaction of the zinc aryl complex with diols, occurs even more rapidly than with CO₂ and is responsible for the true initiation under these conditions. In line with this observation, catalyst 2 is also active for CHO/CO₂ ROCOP, in spite of its complete lack of reactivity towards either CHO or CO₂ in model reactions. Rather 2 is proposed to react with alcohols to generate active alkoxide initiators (Scheme 1).

Using catalyst 2, once again a telechelic polymer is formed, as confirmed by SEC and MALDI-ToF analysis (Fig. S16). For both 1 and 2, the theoretical M_n values are approximately 12 times greater than the experimental values, which provides further support for the presence of a chain transfer agent. The zinc benzoate analogue, 3, was also active for CO₂/epoxide copolymerisation (entry 3) and the MALDI-ToF analysis of the resultant polymer confirmed the presence of both α-benzoate, ω-hydroxy and α, ω-hydroxy end-capped polymers (Fig. S17).

The presence of α-benzoate end-groups was confirmed by 1H NMR spectroscopy (Fig. S18).

It has previously been shown that analogues of 1 and 2 with acetate and halide co-ligands were effective catalysts for the ROCOP or epoxide (CHO)/anhydride (phthalic anhydride PA)[25] and that when a mixture of monomers is present, anhydride insertion occurs more rapidly than CO₂ insertion.[18a] In order to gain further understanding of the polymerisations, complex 1 was tested as a catalyst for the ROCOP of PA/CHO, using a 1 mol % catalyst loading at 100 °C, and neat epoxide as the solvent. After 3 hours, 100 % conversion was achieved (Table 1, entry 5), with 98 % of alternating enchainment (% ester linkages). The polymerisation is well-controlled, giving a monomodal MW distribution and a narrow dispersity ($D = 1.10$). Here, 1 displays a slightly superior activity (TOF = 33 h⁻¹) compared to its acetate (TOF = 24 h⁻¹)[25b] and halide (TOF = 17 h⁻¹)[25b] analogues, under analogous conditions. Theoretical
activity for CHO/PA ROP (TOF = 24 h\(^{-1}\), entry 6), it is less catalyst than previous study, it was of interest to study the activation of which are relatively slower to initiate polymerisations. Given this diol contains two sterically hindered secondary alkoxide groups, formed: indeed, there was evidence for chains both end-capped by diol and chain extended from the diol. This is because the formed polymers experimentally. Although reaction with PA. It is supported by the absence of phenyl-co- ligand has a detrimental effect, although the exact nature of this influence is not completely clear.

Previously a catalyst system formed in situ by reaction with alcohols is thermodynamically more favourable than the reaction of water and epoxide, to generate Zn-alkoxide active sites that can readily initiate polymerisations. In contrast, the di- and tri- diols, either deliberately added or present as a result of the reaction of water and epoxide, to generate Zn-alkoxide active sites that can readily initiate polymerisations. In contrast, the di-diol and tri-diol containing two sterically hindered secondary alkoxide groups, which are relatively slower to initiate polymerisations. Given this previous study, it was of interest to study the activation of catalyst 1 with a monofunctional alcohol, so as to ensure that there is only a single type of chain structure. In the presence of iso-propanol, 1 was therefore applied to the ROP of rac-lactide and \(\varepsilon\)-caprolactone (Table 1, entries 9-13). Under all conditions tested, 1 demonstrated good catalytic activity under immortal polymerisation conditions (TOF = 5280 h\(^{-1}\), entry 9). The dispersities are broad, especially for polycaprolactone (PCL). This is attributed to the Zn-Ph reaction with alcohol occurring relatively more slowly at ambient temperature. A series of resonances assigned to \(\varepsilon\)-iso-propanoate, \(\omega\)-hydroxy end-capped polycaprolactone is observed in the MALDI-ToF spectrum (Fig. S20, Table 1, entry 9).

The results show that di- and tri-aryl 1 can readily react with alcohols, either deliberately added or present as a result of the reaction of water and epoxide, to generate Zn-alkoxide active sites that can readily initiate polymerisations. In contrast, the di- and tri-diol containing two sterically hindered secondary alkoxide groups, which are relatively slower to initiate polymerisations. Given this previous study, it was of interest to study the activation of catalyst 1 with a monofunctional alcohol, so as to ensure that there is only a single type of chain structure. In the presence of iso-propanol, 1 was therefore applied to the ROP of rac-lactide and \(\varepsilon\)-caprolactone (Table 1, entries 9-13). Under all conditions tested, 1 demonstrated good catalytic activity under immortal polymerisation conditions (TOF = 5280 h\(^{-1}\), entry 9). The dispersities are broad, especially for polycaprolactone (PCL). This is attributed to the Zn-Ph reaction with alcohol occurring relatively more slowly at ambient temperature. A series of resonances assigned to \(\varepsilon\)-iso-propanoate, \(\omega\)-hydroxy end-capped polycaprolactone is observed in the MALDI-ToF spectrum (Fig. S20, Table 1, entry 9).

The results show that di- and tri-aryl 1 can readily react with alcohols, either deliberately added or present as a result of the reaction of water and epoxide, to generate Zn-alkoxide active sites that can readily initiate polymerisations. In contrast, the di- and tri-diol containing two sterically hindered secondary alkoxide groups, which are relatively slower to initiate polymerisations. Given this previous study, it was of interest to study the activation of catalyst 1 with a monofunctional alcohol, so as to ensure that there is only a single type of chain structure. In the presence of iso-propanol, 1 was therefore applied to the ROP of rac-lactide and \(\varepsilon\)-caprolactone (Table 1, entries 9-13). Under all conditions tested, 1 demonstrated good catalytic activity under immortal polymerisation conditions (TOF = 5280 h\(^{-1}\), entry 9). The dispersities are broad, especially for polycaprolactone (PCL). This is attributed to the Zn-Ph reaction with alcohol occurring relatively more slowly at ambient temperature. A series of resonances assigned to \(\varepsilon\)-iso-propanoate, \(\omega\)-hydroxy end-capped polycaprolactone is observed in the MALDI-ToF spectrum (Fig. S20, Table 1, entry 9).

The results show that di- and tri-aryl 1 can readily react with alcohols, either deliberately added or present as a result of the reaction of water and epoxide, to generate Zn-alkoxide active sites that can readily initiate polymerisations. In contrast, the di- and tri-diol containing two sterically hindered secondary alkoxide groups, which are relatively slower to initiate polymerisations. Given this previous study, it was of interest to study the activation of catalyst 1 with a monofunctional alcohol, so as to ensure that there is only a single type of chain structure. In the presence of iso-propanol, 1 was therefore applied to the ROP of rac-lactide and \(\varepsilon\)-caprolactone (Table 1, entries 9-13). Under all conditions tested, 1 demonstrated good catalytic activity under immortal polymerisation conditions (TOF = 5280 h\(^{-1}\), entry 9). The dispersities are broad, especially for polycaprolactone (PCL). This is attributed to the Zn-Ph reaction with alcohol occurring relatively more slowly at ambient temperature. A series of resonances assigned to \(\varepsilon\)-iso-propanoate, \(\omega\)-hydroxy end-capped polycaprolactone is observed in the MALDI-ToF spectrum (Fig. S20, Table 1, entry 9).
Conclusions

In summary, two di-arylzinc complexes have been synthesized from the same macrocyclic ligand and characterized using X-ray crystallographic and NMR spectroscopic studies. 1 cleanly inserts CO₂ under mild conditions, whilst 2 is inactive, highlighting differences caused by the electron withdrawing fluoroyl substituents. The complexes also react readily with alcohols, to generate the di-zinc bis(alkoxide) complexes, which were fully characterized. Both 1 and 2 efficiently initiate the alternating copolymerisations of cyclohexene oxide/carbon dioxide and cyclohexene oxide/phthalic anhydride, demonstrating similar activities to the well-established acetate analogue. The reactivity and theoretical studies suggest that the competing reactions of 1 with CO₂ or diols are both viable initiation mechanisms for CO₂/epoxide ROCOP. However, the polymerisation studies suggest that the protonolysis of 1 and 2, with added or generated alcohols, occurs much more rapidly than CO₂ insertion, and is the predominant initiation mechanism. The in situ generated alkoxide complex is also an effective catalyst for the ROP of cyclic esters, including both rac-lactide and ε-caprolactone, whereas the acetate analogue is completely inactive.

Overall, these studies have led to an improved understanding of the reactivity of di-zinc bis(aryl) catalysts, and show how these versatile catalysts can be applied to a range of ROP and ROCOP processes. We expect that the role alcohols can play in the initial stages of initiator formation, will facilitate the development of improved future catalyst systems, which will be the focus of our future studies.

Experimental Section

All metal complexes were synthesized under anhydrous conditions, using MBraun gloveboxes and standard Schlenk techniques. Solvents and reagents were obtained from Sigma Aldrich or Strem and were used as received unless stated otherwise. THF was dried by refluxing over CaH₂ and fractionally distilled under nitrogen. 13C NMR (CDCl₃, 100 MHz, 298 K) δ 174.64 (C=O), 131.9 (p-Ph), 6.98 (s, 4H, Aryl), 4.23 (dd, 4H, J₂Hb₂Hb' = 12.0 Hz, CHb₂), 2.47 (br. m, 4H, NH), 1.24 (s, 6H, CH₃). Anal. Calc. for LZn₂(C₆F₅)₂: C, 54.40; H, 5.72; N, 5.50. Found: C, 54.25; H, 5.45; N, 5.39.

To a pre-cooled THF solution (-40 °C, 5 mL) of H₂L (200 mg, 0.36 mmol) was added a pre-cooled (-40 °C) THF solution (2 mL) of Zn(C₆F₅)₂ (289 mg, 0.72 mmol). After addition, a white suspension started to form. The reaction mixture was allowed to react to 25 °C, then filtered. The solid product was subsequently washed with cold THF and dried under vacuum to isolate the pure di-zinc complex 2 as a white powder (180 mg, 0.19 mmol, 52 % yield). 1H NMR (CDCl₃, 400 MHz, 298 K) δ 6.75 (4H, Aryl), 4.31 (4H, J₂Ha₂Ha' = 13.3 Hz, CHa₂), 3.33 (4H, J₂Ha₂Ha' = 13.3 Hz, CHa₂), 1.21 (8H, CH₃), 0.14 (18H, CH₃). Anal. Calc. for LZn₂(C₆F₅)₂: C, 54.40; H, 5.72; N, 5.50. Found: C, 54.25; H, 5.45; N, 5.39.

FULL PAPER

Crystal Structure Determination: Single crystal data were measured at low temperature using an Agilent Xcalibur PX 3E diffractometer, and the structures were refined using the SHELXTL and SHELX-2013 program systems. Selected parameters are given in the Supporting Information and full details are given in the deposited cif files. CCDC reference numbers 1498754 – 1498757 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Complex synthesis

LZn₂(Ph)₂ – (1): A THF solution (5 mL) of H₂L (318 mg, 0.57 mmol) was cooled to -40 °C. To this, a pre-cooled (-40 °C) THF solution (2 mL) of diphenyl zinc (253 mg, 1.04 mmol) was added. The resultant cloudy solution was stirred overnight at 25 °C, filtered then washed with cold THF. The bis-zinc phenyl complex 1 was isolated as a white powder (381 mg, 0.46 mmol, 61 % yield). X-ray quality crystals were obtained by gradual cooling of a hot benzene solution to 1 to 25 °C. 1H NMR (CDCl₃, 400 MHz, 298 K) δ 7.40 (6H, 5H, Ph), 7.00 (4H, Aryl), 4.81 (br. m, 4H, CH₃), 3.37 (br. d, 4H, J₂Ha₂Ha' = 13.3 Hz, CHa₂), 2.96 (br. d, 4H, J₂Ha₂Ha' = 10.1 Hz, CHa₂), 2.89 (br. m, 4H, CHa₂), 2.47 (br. m, 4H, NH), 1.36 (s, 18H, Bu), 1.31 (s, 6H, CH₃), 1.07 (s, 6H, CH₃). 13C NMR (CDCl₃, 100 MHz, 298 K, 40.03 K) δ 138.5 (Cquat, Aryl), 128.1 (Ph), 128.0 (Cquat, Aryl), 2.12 (Cquat, Aryl). 13C (Cquat, Aryl) 63.5 (CH₃), 56.7 (CH₃), 33.4 and 33.3 (Cquat, Bu and Cquat, CMes), 31.3 (Bu), 27.9 (CH₃), 21.5 (CH₃). Anal. Calc. for LZn₂(Ph)₂: C, 66.10; H, 7.72; N, 6.70. Found: C, 65.98; H, 7.77; N, 6.68.

LZn₂(C₃F₇)₂ – (2): To a pre-cooled THF solution (-40 °C, 5 mL) of H₂L (289 mg, 0.72 mmol) was added a pre-cooled (-40 °C) THF solution (2 mL) of Zn(C₃F₇)₂ (289 mg, 0.72 mmol). After addition, a white suspension started to form. The reaction mixture was allowed to react overnight at 25 °C, and then filtered. The solid product was subsequently washed with cold THF and dried under vacuum to isolate the pure di-zinc complex 2 as a white powder (289 mg, 0.72 mmol). The product was subsequently dried under vacuum to afford 3 as a white solid (234 mg, 72 % yield overall). 1H NMR (d1-methanol, 400 MHz, 298 K) δ 7.88 (br. m, 4H, O-Ph), 7.36 (tt, 2H, J₁Ha₁J₁Ha₂ = 7.6 Hz, J₂Ha₂J₁Ha₂ = 1.5 Hz, J₂Ha₁J₁Haₙ = 7.6 Hz, m-Ph), 6.98 (s, 4H, Aryl), 4.23 (dd, 4H, J₂Ha₂J₁Ha₂ = 12.0 Hz, CHa₂), 3.34 (4H, CH₃), 3.15 (dd, 4H, J₂Ha₂J₁Ha₂ = 12.0 Hz, NH), 2.91-2.83 (m, 6H, CH₃ and Cquat), 1.45 (3H, 3H), 1.21 (s, 6H, CH₃), 1.19 (s, 18H, Bu), 1.04 (s, 3H, CH₃). 13C NMR (d1-methanol, 100 MHz, 298 K) δCquat 174.64 (Cquat, p-Ph), 131.9 (p-Ph), 130.6 (O-Ph), 129.3 (Cquat, Ph).
128.8 (m-Ph), 124.7 (Cquat), 64.5 (CH3), 57.1 (CH3), 35.0 (Cquat), 34.5 (Cquat), 32.1 (CH3, Bu), 32.1 (CH3), 28.9 (CH3), 21.4 (CH3). Not all signals for Cquat were detected. Anal. Calc. for LZn2(OCCO-Ph): C, 62.41; H, 6.98; N, 6.06; Found: C, 62.59; H, 7.02; N, 5.98.

LZn2(OPr)3 - (4): NMR scale experiment: In a Young's tap NMR tube, Pr(OH)3 (3.7 μL, 48 mmol) was added to a suspension of LZn2(OPr)2 (20 mg, 24 μmol) in pre-cooled -d8-THF (-40 °C, 0.6 mL). The mixture was allowed to react at room temperature for 15 minutes then was heated at 60 °C for 18 hours to afford a homogeneous solution featuring L2Zn(OPr)2 as the major product (along with formation of benzene), as determined by NMR spectroscopy. 1H NMR (d8-THF, 400 MHz, 298 K) δ 7.30 (s, 12H, benzene), 6.81 (s, 4H, ArH), 5.23 (dd, 4H, 1JHH = 12.5 Hz, 2JHH = 11.0 Hz, CHArH), 4.10 (sept, 2H, 1JHH = 6.0 Hz, CH OPr), 3.17 (d, 4H, 1JHH = 12.5 Hz, CHArH), 2.89 (dd, 4H, 1JHH = 13.3 Hz, 2JHH = 13.3 Hz, Cquat), 2.60 - 2.57 (m, 8H, CH2 and NH), 1.28 - 1.22 (m, 4H, Bu and CH3), 0.96 (d, 12H, 1JHH = 6 Hz, CH3 OPr). 13C(H) NMR (d8-THF, 100 MHz, 298 K) δ 161.7 (Cquat, Aryl), 136.1 (Cquat, Aryl), 129.2 (benzene), 126.9 (CH, Ar), 125.5 (Cquat, Aryl), 66.5 (CH, OPr), 63.7 (CH2), 58.1 (CH3), 34.5 (Cquat, Bu), 34.2 (Cquat, Bu), 32.3 (CH3, Bu), 31.0 (CH2, OPr), 28.8 (CH2), 21.0 (CH3).

LZn2(PhO)2 - (5): Complex 1 was prepared on a 0.24 mmol scale, following the procedure described above. Phenol (45 mg, 0.48 mmol) was added in situ and the reaction mixture was allowed to stir for 18 hours. The resultant white solid was isolated via filtration and was dried under vacuum, to give 5 as a white powder (66 mg, 32 % yield). 1H NMR (d8-THF, 500 MHz, 328 K) δ 7.68 (s, 4H, ArH), 6.70 (dd, 4H, 1JHH = 8.5 Hz, 2JHH = 7.8 Hz, m-Ph), 6.55 (dd, 4H, 1JHH = 8.5 Hz, 2JHH = 1.0 Hz, o-Ph), 6.09 (t, 2H, 1JHH = 7.3 Hz, 2JHH = 1.0 Hz, p-Ph), 4.99 (dd, 4H, 1JHH = 12.9 Hz, 2JHH = 11.1 Hz, CHArH), 3.24 (dd, 4H, 1JHH = 12.9 Hz, CHArH), 3.07 (dd, 4H, 1JHH = 13.6 Hz, 2JHH = 11.1 Hz, CHArH = 3.6 Hz, NH), 2.98 (dd, 4H, 1JHH = 10.6 Hz, 2JHH = 13.3 Hz, CHArH), 2.71 (dd, 4H, 1JHH = 10.6 Hz, 2JHH = 3.6 Hz, CHArH), 1.27 (br. m, 12H, Bu and CH3), 1.23 (s, 3H, CH3), 1.18 (s, 9H, Bu), 1.16 (s, 3H, CH3), 0.98 (s, 3H, CH3) Residual DCM at 5.46 ppm. 13C(H) NMR (d8-THF, 126 MHz, 328 K) δ 129.2 (m-Ph), 127.0 (CH2 Ar), 119.7 (o-Ph), 112.7 (o-Ph), 63.9 (CH2), 57.8 (CH3), 32.1 (CH2), 32.0 (CH2), 32.0 (CH3, Bu), 28.0 (CH2), 21.1 (CH3). Signals for Cquat were not detected. Anal. Calc. for LZn2(OH2)2: C, 63.67; H, 7.43; N, 6.46; Found: C, 63.54; H, 7.53; N, 6.55.

Supporting Information

Complete computational details, NMR data for complexes 1-5 and selected polymers, crystal data and refinement for compounds 1-3 and 5. Complementary data available free of charge from the Imperial College High Performance Computing Service Data Repository at doi.org/10.14469/hpc/2144.

Acknowledgements

The EPSRC (EP/L017393/1; EP/K014668/1; EP/K035274/1; EP/K014070/1) and EIT Climate KIC (project EnCo2res) are acknowledged for research funding, Junior Research Fellowship (C.R), Christina Miller Research Fellowship (J.A.G), Roger and Sue Whorrod fellowship (A.B.). Imperial College London HPC, University of Bath HPC and EPSRC NSCCS (CHEM826) for computing resources.

Keywords: Ring-opening copolymerisation • ring opening polymerisation • CO2 insertion • reactivity studies • organocatalysts
Versatile catalysis: Reactivity studies of zinc-aryl complexes towards carbon dioxide, alcohols, epoxides and anhydrides are investigated using a combination of experimental methods and density functional theory calculations. The catalyst systems are active for both ring opening copolymerisation of epoxide with CO₂ or anhydrides, and the ring-opening polymerisation of lactones.