Selective Intestinal Decontamination as a Method for Preventing Infectious Complications (Review)

DOI: 10.17691/stm2020.12.6.10
Received February 11, 2020

A.L. Barsuk, MD, PhD, Associate Professor, Department of General and Clinical Pharmacology1;
E.S. Nekaeva, Head of Admission and Consultation Department, Clinical Pharmacologist, University Clinic1;
L.V. Lovtsova, MD, DSc, Associate Professor, Head of the Department of General and Clinical Pharmacology1;
A.L. Urakov, MD, DSc, Professor, Head of the Department of General and Clinical Pharmacology2;
Leading Researcher, Department of Modeling and Synthesis of Technological Processes3

1Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia;
2Izhevsk State Medical Academy, 281 Kommunarov St., Izhevsk, 426034, Udmurt Republic, Russia;
3Udmurt Federal Research Center, Ural Branch of the Russian Academy of Sciences, 34 Tatyany Baramzinoy St.,
Izhevsk, 426067, Udmurt Republic, Russia

Infectious complications are the most common cause of death in patients with severe burns. To date, there is no generally accepted method for preventing such complications in burn injury. One of the possible prevention options is selective intestinal decontamination (SID). This method is based on the enteral administration of non-absorbable antimicrobial agents. The preventive effect of SID involves inhibition of intestinal microflora translocation through the mucous membranes, inasmuch as studies demonstrate that endogenous opportunistic microorganisms are a common cause of infectious complications in various critical conditions.

The SID method was originally developed in the Netherlands for patients suffering from mechanical injury. Antimicrobial drugs were selected based on their high activity in relation to the main endogenous opportunistic pathogens and minimal activity against normal intestinal microflora components. The combination of polymyxin (B or E), tobramycin, and amphotericin B with intravenous cefotaxime was chosen as the first SID regimen. Other regimens were proposed afterwards, and the application field of the method was expanded. In particular, it became the method of choice for prevention of infectious complications in patients with severe burn injury.

Clinical studies demonstrate efficacy of some SID regimens for preventing infectious complications in patients with thermal injury. Concomitant administration of SID and systemic preventive antibiotics and addition of oropharyngeal decontamination increases the method efficacy. SID is generally well-tolerated, but some studies show an increased risk of diarrhea with this preventive option. In addition, SID increases the risk of developing antibiotic resistance like any other antibiotic regimens.

Key words: selective intestinal decontamination; infectious complications of burn injuries; burn injury.

How to cite: Barsuk A.L., Nekaeva E.S., Lovtsova L.V., Urakov A.L. Selective intestinal decontamination as a method for preventing infectious complications (review). Sovremennye tehnologiy v medicine 2020; 12(6): 86, https://doi.org/10.17691/stm2020.12.6.10

Introduction

Despite the constant decrease in both the incidence and mortality from thermal injury, treatment of burns remains an urgent medical and social problem. Relatively high mortality rates, long hospitalization, and high levels of disability in the injured are characteristic of thermal injury [1–5]. On average, about 180,000 people in the world die each year from thermal injury and its consequences [6]. The main factors of mortality are the large size of the lesion and elderly age of the injured. In the first 48 h after injury, deaths are most often caused by burn shock and inhalation injury. In the later periods, the main causes of death are infectious complications: sepsis, pneumonia, etc. In general, sepsis is the most common cause of death in burn injury [1, 7–9].

Antimicrobial drugs are normally applied to prevent infectious complications. However, studies of effective antibiotic prophylaxis in burns show conflicting results. Therefore, international as well as national recommendations for treatment of thermal injury do not include this method [10–12]. Despite this, there is continuous research investigating various regimens for the prevention of infectious complications with antimicrobial drugs and the most promising options for such prevention are selective intestinal decontamination (SID) and oropharyngeal decontamination. The rationale for their administration is proven translocation of endogenous microflora organisms of these locations under various critical conditions, including burn injury. Studies demonstrate that endogenous microflora particularly often becomes the etiological factor of...
microbial complications. The pathogenesis of bacterial translocation involves decreased gastrointestinal motility, increased permeability of the mucous membranes, increased rates of bacterial growth in the intestine, decreased immune responsiveness, and toxemia. Thermal inhalation injury, prolonged intubation, and mechanical ventilation are also important factors for the development of endogenous infection [13–18].

Development of selective intestinal decontamination method

Initially, this method was developed mainly for patients not with thermal, but mechanical injury. In the early 1980s, Chris Stoutenbeek, a resuscitator at the University Hospital of Groningen (the Netherlands), took an interest in the problem of infectious complications in patients with severe mechanical trauma. He organized a group of resuscitators, microbiologists, and other specialists who began to investigate the cultures of microorganisms isolated from such patients. The endogenous flora of the intestine and pharynx appeared to play a leading role among the pathogens. By that time, oncologists of the Groningen University Hospital had already developed several regimens for antibiotic prophylaxis of infectious complications in patients with leukemia. It involves application of non-absorbable antibiotics, primarily neomycin, amphotericin B, polymyxin in combination with trimethoprim + sulfamethoxazole [19, 20].

A group of researchers led by Stoutenbeek conducted a pilot non-controlled study in which patients with severe mechanical injuries (32 persons), patients after cardiac surgery (5 persons), patients with sepsis (18 persons), staying in the intensive care unit (ICU) for more than 5 days, received a combination of polymyxin E, trimethoprim + sulfamethoxazole and amphotericin B. In addition, the patients' oral cavities were treated with chlorhexidine solution. However, the microbiological examination of the oropharyngeal and intestinal flora prior to prophylaxis revealed wide prevalence of strains, namely representatives of the Pseudomonas and Acinetobacter genera sensitive to polymyxins, but resistant to the combination of trimethoprim + sulfamethoxazole. As a result, this regimen failed to demonstrate high prophylactic efficacy: almost a quarter of patients (22%) developed pneumonia. Besides, patients poorly tolerated the regimen: several people developed thrombocytopenia or allergic reactions. It is known that the combination of trimethoprim + sulfamethoxazole may cause dangerous systemic reactions, and the risk of these reactions is increased in severely ill patients due to decreased renal function and unpredictable intestinal absorption of medication components. Trimethoprim in a therapeutic dose leads to a decrease in potassium excretion, which may provoke hyperkalemia [21–23].

Stoutenbeek et al. developed a different decontamination regime. They administered polymyxin as a non-absorbable antibiotic highly active against most intestinal bacteria and Pseudomonas aeruginosa. It should be noted that polymyxins do not affect the anaerobic flora — the main component of normal intestinal microflora. Polymyxin E was recommended at a dose of 400 mg/day, polymyxin B — 300 mg/day. Moreover, the authors decided to combine polymyxin with aminoglycoside due to insufficient activity of polymyxin in relation to representatives of the Proteus, Morganella, and Serratia genera. Drugs highly active against Pseudomonas aeruginosa were selected from the group of aminoglycosides, because polymyxins, the second component of the regimen, are inactivated by fecal enzymes and lose their antipseudomonal activity in feces, which leads to insufficient effect on Pseudomonas aeruginosa in feces. The combination of polymyxin + aminoglycoside was selected not only due to the synergistic effect on Pseudomonas aeruginosa but also because of practically absence cross-resistance in relation to these groups of antibiotics. The choice was made from three antipseudomonal aminoglycosides, namely gentamicin, tobramycin, and amikacin, taking into account that the antipseudomonal activity of these drugs is quite similar, though tobramycin, which was finally opted for, is the most stable in feces and at a dose not exceeding 500 mg/day has almost no effect on normal intestinal microflora. Results of other clinical and experimental studies [22, 24–28] demonstrate the ability of polymyxin/tobramycin combination to reduce the levels of bacterial endotoxins in feces. The authors of the study administered tobramycin at a dose of 320 mg/day.

The use of antibacterial agents leads to increased growth of fungi of the Candida genus, which necessitated administration of an antifungal medication. There were proposed polyene antimycotics in high doses: amphotericin B at a dose of 2 g/day (4 doses) or nystatin at a dose of 848 IU/day (8 doses). These high doses of polyenes are determined by their significant inactivation by fecal enzymes and are justified by low absorption in the gastrointestinal tract [22, 29–31].

To prevent staphylococcal infection, the authors of the technique proposed parenteral cefotaxime as a drug with high antistaphylococcal activity and a well-proven minimal effect on the normal microflora of the gastrointestinal tract. Besides, cefotaxime creates high concentrations in saliva and bile. It was decided not to administer oral or parenteral vancomycin as Methicillin-resistant Staphylococcus aureus (MRSA) was quite rare in the late 70s — early 80s of the XX century [22, 26, 32–34].

As a result, the regimen used in the study was as follows: polymyxin E (100 mg) + amphotericin B (500 mg) + tobramycin (80 mg) in the form of a 10 ml suspension through a nasogastric tube 4 times a day. Cefotaxime was administered in standard doses (50–
The results of the first study of this SID regimen efficacy (in this article — standard SID regimen) were published in 1983 [35]. In this study, SID was performed in 63 patients (the main group), while the control group consisted of 59 people without medicamentous prophylaxis. All patients were in the ICU for at least 5 days. In the control group, 48 patients (81%) developed an infection, and there were 94 episodes. The most common infections were those of the lower respiratory tract (35 cases). The mortality rate in this group was 5 people (8%). In the main group, infection was detected only in 6 patients (8%). All cases were associated with the development of pneumonia, and their analysis revealed exogenous microorganisms as the main pathogens. All patients of the main group survived.

Later, this group of authors conducted a multicenter randomized study of this method, involving 401 patients with severe mechanical injuries (at least 16 scores on Hospital Trauma Index-Injury Severity Score) [36]. According to the described method, 201 patients received SID, while the control group consisted of 200 patients. Although the study revealed no significant effect of SID on the overall mortality (20.9% in the SID group and 22% in the control group), this method demonstrated the ability to significantly reduce the level of respiratory tract infections in this category of patients. The upper respiratory tract infections were observed in 30.9% of cases in the SID group and in 50% of patients in the control group, pneumonia — in 9.5 and 23% of cases, respectively, tracheobronchitis — in 25.9 and 40%, respectively. The overall level of infectious complications decreased significantly — 48.8 and 61.1%, respectively. However, in this study, SID failed to reduce the incidence of urinary tract infections, blood system infections, and wound infections.

To date, there have been published the results of many randomized clinical trials (RCTs) of SID efficacy. They show the ability of this method to significantly reduce the incidence of infectious complications in ICU patients [37–43], in surgical interventions on the gastrointestinal tract [44–49] and the cardiovascular system [15, 50], in liver transplantation [51–53] and allogeneic hematopoietic stem cell transplantation [54], during cytostatic therapy [55, 56]. In 2003, SID method developers published an article [57] where they argued, referring to the studies available at that time, that SID efficacy in prevention of infectious complications exceeded in many clinical situations the efficacy of systemic antibiotic prophylaxis and strategies based only on hygiene measures (barrier and isolation technologies). The authors underlined that a greater success of such prevention should be achieved by using drugs not only orally or through a nasogastric tube, but also applying them to treat the oropharyngeal zone and rectum. Besides, the authors referred to studies demonstrating SID cost-effectiveness.

The use of selective intestinal decontamination in burn patients

A meta-analysis of 21 RCTs of SID efficacy in treatment of various pathologies in critically ill patients (4902 patients in total) [58] showed that SID significantly reduced overall mortality while having a minor effect on the mortality associated with infectious complications. According to the meta-analysis, 18 patients should have received SID to prevent one death. Notably, this meta-analysis was the first to include data from one RCT of SID efficacy in patients with severe burns [59]. SID was performed according to the standard method proposed by Stoutenbeek et al. In addition to SID, patients received oropharyngeal decontamination with a paste containing polymyxin E + amphotericin B + tobramycin. This double-blind study involved 107 patients (53 in the SID group and 54 in the placebo group) over 14 years old with a burn surface area of more than 20%. In the ICU, mortality was significantly lower in the SID group than in the placebo group and amounted to 9.5% and 27.8%, respectively; the risk of developing ventilator-associated pneumonia was also significantly lower. To prevent one death, 5 patients had to receive SID.

Later, the authors of this study demonstrated the ability of SID to reduce the degree of respiratory and hematological dysfunction in this category of patients, which also seems to play a significant role in increasing the survival rates in burn patients [60].

Standard SID regimen was used in a retrospective study of this prevention method efficacy in patients with severe (more than 30% of body area) burns, conducted in the Burn Center of Beverwijk (Netherlands) [61]. The SID group included 31 patients. Treatment results of 33 patients hospitalized before applying SID method were used as the control. SID significantly reduced the incidence of burn wound colonization by Pseudomonas spp. (29% in the SID group vs 61% in the control group) and Enterobacteriaceae spp. (10% in the SID group vs 73%, respectively). A similar decrease in colonization by gram-negative organisms was found in urine and gastric aspires. There were fewer respiratory infections in the SID group (6.5 vs 27.3% in the control group), and only 1 patient developed septicemia, while in the control group there were 8 such patients (3.2 vs 24.2%). Mortality in the SID group was also lower — 1 patient compared to 7 in the group without prophylaxis. After 2 years, the authors published the results of another study comparing the efficacy of standard SID regimen (34 patients) and SID with the addition of intranasal mupirocin (33 patients). The new regimen demonstrated higher efficacy in relation to colonization of wound fluid, sputum, and gastric aspirate by Staphylococcus aureus [62].

When performing SID, it is necessary to take into account the regional characteristics of significant pathogen prevalence. For example, MRSA strains have been rarely encountered in the Netherlands so
Selective Intestinal Decontamination in Burn Injury

was noted in the wound, which, on the contrary, were
Selective Intestinal Decontamination in Burn Injury
in the placebo group. Moreover, earlier colonization
days in the antibiotic prophylaxis group and 6.7 days
the mean time before burn wound colonization was 6.1
patients with burns over 20% of the body. In this RCT,
trial [75] did not confirm the efficacy of neomycin +
prophylaxis. However, a placebo-controlled randomized
was 2 times lower among those who received antibiotic
was 10
administration of antimicrobial drugs) on the microflora
(prophylaxis, and with antibiotic prophylaxis — after 19
mixed SID regimens [72, 73].
less effective in preventing infectious complications than
other studies and systematic reviews demonstrate that
isolation of Vancomycin-resistant enterococcus (VRE)
strains and decreased sensitivity of MRSA strains to
glycopeptides.
A number of studies focused on the efficacy of SID
regimens different from those proposed by Stoutenbeek
et al. (polymyxin + tobramycin + amphotericin B +
cefotaxime). For example, in work [71] there was no
intravenous administration of antimicrobial drugs.
However, their results as well as the results of some
other studies and systematic reviews demonstrate that
administration of non-absorbable antibiotics alone is
less effective in preventing infectious complications than
mixed SID regimens [72, 73].
An early study [74] focused on the effect of
prophylaxis with non-absorbable oral antibiotics
(neomycin + erythromycin + nystatin without parenteral
administration of antimicrobial drugs) on the microflora
of burn wounds. It was found that microbial colonization
occurred after an average of 4 days without antibiotic
prophylaxis, and with antibiotic prophylaxis — after 19
days. Besides, the study revealed a tendency towards
lower occurrence of bacterial colonization of tissues in
the burn wound area (the level of bacterial contamination
was 10⁵ microbial bodies). The number of such patients
was 2 times lower among those who received antibiotic
prophylaxis. However, a placebo-controlled randomized
trial [75] did not confirm the efficacy of neomycin +
erythromycin + nystatin prophylaxis regimen in 30
patients with burns over 20% of the body. In this RCT,
the mean time before burn wound colonization was 6.1
days in the antibiotic prophylaxis group and 6.7 days
in the placebo group. Moreover, earlier colonization
of Pseudomonas aeruginosa was noted in the wound
fluids of patients receiving antibiotics. In blood cultures
of patients treated with antibiotics, representatives of the
Enterobacteriaceae family were relatively less common,
except for Proteus spp., which, on the contrary, were
detected more often during antibiotic prophylaxis.
Besides, enterococci were more often detected in the
blood of such patients.
In another clinical and microbiological study [76], 91
patients with severe burns (over 25% of the body surface
area) received oral polymyxin B as antibiotic prophylaxis.
In 63 patients, co-trimoxazole and amphotericin B were
administered in addition to polymyxin. The addition of
co-trimoxazole significantly reduced colonization of the
burn wound by enterobacteria — from 71 to 11%, by
Proteus — from 36 to 0%, amphotericin B reduced the
frequency of yeast colonization from 39 to 10%.
In a controlled study [77], 256 patients with extensive
burns (lesion areas of more than 15% in children
and more than 25% in adults) were randomized
into three groups. Patients of group 1 received no
antibiotic prophylaxis (control), patients of group 2
received SID (polymyxin + co-trimoxazole + nystatin),
in group 3, allopurinol (a xanthine oxidase inhibitor)
was administered in addition to SID, which was in line
with the data of an experimental study, demonstrating
the ability of allopurinol to prevent translocation of
microorganisms from the gastrointestinal tract in
shock. SID significantly reduced the risk of wound
contamination with intestinal bacteria. SID remained
effective over a period of 4 weeks. Besides, prophylaxis
significantly reduced mortality and length of hospital
stay in surviving patients. Allopurinol had no influence
on these effects of SID.
Another double-blind RCT [78] studied the efficacy
of the polymyxin E + tobramycin + amphotericin B
regimen without the use of systemic antimicrobial drugs
for prevention of infectious complications in children
under 15 years of age with severe burns (the average
lesion area was 67% in the main group and 58% in the
placebo group). In this study, the use of non-absorbable
antibiotics did not lead to a significant effect on microbial
colonization of burn wounds, sputum, nasogastric
aspirates, and feces. This prevention strategy did
not significantly affect the incidence of pneumonia,
sepsis, and other infectious complications as well as
the concentration of inflammatory markers such as
interleukins (IL-1β, IL-6, IL-10, and TNF-α). Notably,
the frequency of diarrhea in the prophylaxis group was
significantly higher than in the placebo group, which
allowed the authors to conclude that prophylaxis with
non-absorbable medications was ineffective and poorly
tolerated in children with severe burns. However, this
study is remarkable for a small number of participants:
11 patients in the main group and 12 in the placebo
group.
In RCT [79], 30 patients with severe burns (burn
lesion area was 30–50%) were divided into two equal
groups. Patients of the main group received antibiotic
prophylaxis with non-absorbable antimicrobial drugs (amikacin + miconazole + polymyxin M-sulfate) and intravenous ciprofloxacin during the 1st week of treatment, while the control group received no antibiotic prophylaxis. Prevention significantly reduced the level of bacteremia (4 cases in group 1, and 12 cases in the control), the overall frequency of infectious complications (2 cases in group 1, 8 in the control), and also reduced bacterial colonization of wounds (9 and 14, respectively). In the main group, mortality was 26.7%, while being 2 times higher in the control. The length of hospital stay in surviving patients was significantly shorter in the antibiotic prophylaxis group. The effect of prophylaxis on IL-6 levels was insignificant.

The safety of using selective intestinal decontamination

The safety of SID has not been fully studied yet [31]. As a rule, prescribed drugs are well tolerated. Polymyxins, polyenes, aminoglycosides administered orally have low bioavailability and do not lead to undesirable systemic effects. However, concentration of some drugs administered orally as part of SID can be quite high in critically ill patients. Monitoring of tobramycin concentration in blood serum of such patients showed that it could reach toxic values (>2.0 mg/L) in some cases, which is likely to be associated with increased permeability of the intestinal barrier and decreased liver and kidney function [80–82]. There are few reports of antibiotic-associated diarrhea due to SID. There is evidence of an increased risk of complications associated with *Clostridium difficile*, including pseudomembranous colitis, when using SID regimens without vancomycin or metronidazole [78, 83].

One of the important issues related to SID is its effect on the levels of antibiotic resistance of microorganisms. Studies of this aspect of using SID technology show conflicting results [37, 40]. For example, a 16-year study revealed no increase in the frequency of detecting multidrug-resistant forms of microorganisms due to long-term use of SID in ICU of some Spanish hospitals [84]. Some studies show paradoxical results: SID is associated with lower rates of colonization by resistant gram-negative bacteria and no effect on MRSA and VRE [37, 85]. Meta-analysis [86] revealed an increase in the number of resistant strains of gram-negative bacilli to polymyxin and third-generation cephalosporins due to SID application. On the other hand, SID did not affect the increase in the levels of gram-negative bacilli resistance to aminoglycosides and fluoroquinolones, as well as the frequency of detecting MRSA and enterococci strains resistant to vancomycin. Another meta-analysis of applying the SID method during 20 years revealed increased resistance of microorganisms to cephalosporins — by 7.9%, to polymyxins — by 3.5%, and to ciprofloxacin — by 8% [87].

Investigation of the effect of SID on the intestinal microbiota demonstrated an increase in the level of resistance genes to aminoglycosides of commensal microorganisms. The authors of the study [88] note that in this case, these genes might be transferred to opportunistic and pathogenic bacteria. A high level of resistance genes to aminoglycosides of commensal microorganisms persists for some time after cessation of SID [89]. A large study carried out in the Netherlands (11,997 participants) [90] demonstrated that the use of SID (6116 persons) or oropharyngeal decontamination (5881) in ICU patients led to a significant increase in aminoglycoside-resistant strains of gram-negative microorganisms in feces: by the average of 7% during 1 month in patients receiving SID, and by 4% in those who received oropharyngeal decontamination. Adding enteral vancomycin to SID increases the risk of VRE appearing in the intestinal microflora [91]. However, there are data confirming the absence of bacterial resistance growth during SID in burn patients [70, 71]. Nevertheless, practice of using any antimicrobial agents leaves no hope — the widespread use of SID and oropharyngeal decontamination will definitely increase antibiotic resistance and change the structure of pathogenic microorganisms [92, 93].

The future of selective intestinal decontamination in Russia

In our country, studies investigating preventive efficacy of SID are rare and the use of this method seems to be very limited in Russia. For example, there were studies on SID efficacy in prevention of infectious complications in acute destructive pancreatitis [94–96], in correction of intestinal dysbiosis in patients with lung cancer combined with chronic obstructive pulmonary disease [97], and in prevention of sepsis in patients with hepatic insufficiency [98], in patients with progressive odontogenic phlegmon [99]. There is evidence of applying SID regimens with fusidic acid before various surgical interventions [100]. In the domestic literature, there has been found no evidence of applying SID and/or oropharyngeal decontamination in burn injury. It should be noted that the use of SID method is limited in Russia for certain reasons including external ones: several basic drugs traditionally used for this type of antibiotic prophylaxis are unavailable in Russia in the enteral form. For example, according to the State Register of Medicines, only polymyxin B is registered among injectable polymyxins, tobramycin and other aminoglycosides are not registered as forms for enteral administration, amphotericin B is available only in forms for parenteral administration and as a dermatological ointment. Those scarce domestic studies investigating SID efficacy involved enteral administration of amikacin, fluconazole, and ciprofloxacin [94, 95], clindamycin, metronidazole, and kanamycin together with the Normospectrum probiotics [97], fluconazole, and gentamicin [98]. In these works, special attention is paid to the enteral use of injectable aminoglycosides (the
so-called off-label administration). Apart from injectable polymyxin B, vancomycin is available for enteral administration in our country [101].

Conclusion

Clinical studies have shown that SID method is effective in preventing infectious complications in various critical conditions, including burns. This option of antibiotic prophylaxis can increase survival rates of patients and reduce the length of hospital stay. However, the evidence for SID efficacy in burn injury is far from exhaustive. The obvious disadvantage of the method is the lack of clear practice guidelines for using SID in burns. Studies demonstrate that SID does not lead to rapid development of microorganism resistance in burn patients, though the widespread use of this method will predictably contribute to antimicrobial drug resistance. When using this method, it is necessary to take into account the specificity of pathogens of infectious complications in a particular pathology for a particular geographic area. For example, to prevent infectious complications in burn injury in regions with high MRSA prevalence (such as Russia), it is recommended to include enteral vancomycin in SID regimen. Oropharyngeal decontamination increases SID efficacy. The use of non-absorbable antimicrobial drugs alone appears to be less effective than their concomitant administration with parenteral antibiotics.

In Russia, SID is extremely rarely used to prevent infectious complications in various pathologies, including burns. One of the important reasons for this is the lack of enteral aminoglycosides, polymyxins, and amphotericin B on the domestic pharmaceutical market. However, polymyxin B and aminoglycoside drugs for parenteral use are available in our country. In our opinion, off-label administration of these drugs for SID is possible in thermal injury, because there are evidence-based data from clinical studies, systematic reviews, and meta-analyses, confirming preventive efficacy of this method in reducing the risk of development and severity of infectious complications in this pathology. Moreover, enteral administration of these drugs is relatively safe as they are practically not absorbed in the gastrointestinal tract. The results of studies carried out in our country and demonstrating SID efficacy may serve as the basis for introduction of this administration route in the guidelines for parenteral aminoglycosides and polymyxin B or the basis for registration of special enteral forms of these drugs.

Authors’ contributions: A.L. Barsuk, selection of literary sources, preparing the manuscript; E.S. Nekaeva, selection and analysis of literary sources; L.V. Lovtsova, concept development and editing the manuscript; A.L. Urakov, editing the manuscript.

Study funding. The authors declare that the study was not supported by any financial sources.

Conflict of interest. The authors have no conflict of interest to disclose.

References

1. Jeschke M.G., Pinto R., Kraft R., Nathens A.B., Finnerty C.C., Gamelli R.L., Gibran N.S., Klein M.B., Arnoldo B.D., Tompkins R.G., Herndon D.N.; Inflammation and the Host Response to Injury Collaborative Research Program. Morbidity and survival probability in burn patients in modern burn care. Crit Care Med 2015; 43(4): 808–815, https://doi.org/10.1097/ccm.0000000000000790.

2. Litt J.S. Evaluation and management of the burn patient: a case study and review. Mo Med 2018; 115(5): 443–446.

3. Zhylinski E.V., Chasnoits A.C., Alekseev S.A., Doroshenko G.V. Analyses of lethality, main prognostic factors and complications in burn patients. Medicinskie novosti 2014; 11: 87–91.

4. Evdokimov V.I., Kourov A.S. Genesis of research on burn injury (analysis of domestic articles in 2005–2017). Mediko-biologicheskie i social'no-psikhologicheskie problemy bezopasnosti v chrezvychajnyh situaciah 2018: 4; 108–120, https://doi.org/10.25016/2541-7487-2018-4-0-108-120.

5. Fomicheva T.D., Turkutuykov V.B., Sotnichenko S.A., Terekhoy S.M., Skurikhina Yu.E., Okrokov M.V. Microbiological monitoring in the epidemiological surveillance system for purulent-septic infections in case of burn injury. Tihookeanskiy medicinskij zurnal 2018; 3: 72–74.

6. Obeid D.A., Alhujayri A.K., Aldekhayel S. Burn-induced neuroepithelial changes as a delayed cause of mortality in major burns: a case report and literature review. Int J Burns Trauma 2018; 8(6): 145–148.

7. Lal S., Yadav G.K., Gupta R., Shrivastava G.P., Singh S., Bain J. Mortality pattern of burn patients admitted in S.G.M. Hospital Rewa: a teaching institute of central India. J Sci Soc 2012; 39(3): 130–135, https://doi.org/10.4103/0974-5009.105917.

8. Manning J. Sepsis in the burn patient. Crit Care Nurs Clin North Am 2018; 30(3): 423–430, https://doi.org/10.1016/j.cnc.2018.05.010.

9. Bruselaers N., Monstrey S., Vogelaers D., Hoste E., Blot S. Severe burn injury in Europe: a systematic review of the incidence, etiology, morbidity, and mortality. Crit Care 2010; 14(5): R188, https://doi.org/10.1186/cc9300.

10. Barsuk A.L., Lovtsova L.V., Nekaeva E.S., Sorokina Yu.A. Current state and prospects of antibiotic prophylaxis in patients after burn injury. Saratovskij nauchno-medicinskij zhurnal 2019; 15(1): 108–113.

11. Ramos G., Cornistein W., Cerino G.T., Naef G. Systemic antimicrobial prophylaxis in burn patients: systematic review. J Hosp Infect 2017; 97(2): 105–114, https://doi.org/10.1016/j.jhin.2017.06.015.

12. Csenkey A., Jozsa G., Gede N., Pakai E., Tinusz B., Rumbus Z., Lukacs A., Gyongyi Z., Hamar P., Sepp R., Romanovsky A.A., Hegyi P., Vajda P., Garami A. Systemic antibiotic prophylaxis does not affect infectious complications in pediatric burn injury: a meta-analysis. PLoS One 2019; 14(9): e0223063, https://doi.org/10.1371/journal.pone.0223063.

13. Guarnier F., Malagaleda J.R. Gut flora in health and disease. Lancet 2003; 361(9356): 512–519, https://doi.org/10.1016/s0140-6736(03)12489-0.

14. Krueger W.A., Unertl K.E. Selective decontamination of
the digestive tract. Curr Opin Crit Care 2002; 8(2): 139–144, https://doi.org/10.1097/00075198-200204000-00009.

15. Silvestri L., de la Cal M.A., van Saene H.K. Selective decontamination of the digestive tract: the mechanism of action is control of gut overgrowth. Intensive Care Med 2012; 38(11): 1738–1750, https://doi.org/10.1007/s00134-012-2690-1.

16. Vaishnavi C. Translocation of gut flora and its role in sepsis. Indian J Med Microbiol 2013; 31(4): 334–342, https://doi.org/10.4103/0255-0857.118870.

17. Earley Z.M., Akhtar S., Green S.J., Naqib A., Khan O., Cannon A.R., Hammer A.M., Morris N.L., Li X., Eberhardt J.M., Gamelli R.L., Kennedy R.H., Choudhry M.A. Burn injury alters the intestinal microbiome and increases gut permeability and bacterial translocation. PLoS One 2015; 10(7): e0129996, https://doi.org/10.1371/journal.pone.0129996.

18. Cuthbertson B.H. Selective decontamination of the digestive tract in critical care: a teenage angst or coming of age issue? Crit Care 2018; 22(1): 296, https://doi.org/10.1186/s13054-018-2227-2.

19. Kurrle E., Dekker A.W., Gaus W., Haralambie E., Krieger D., Rozenberg-Arska M., de Vries-Hospers H.G., van der Waaij D., Wendt F. Prevention of infection in acute leukemia: a prospective randomized study on the efficacy of two different drug regimes for antimicrobial prophylaxis. Infection 1986; 14(5): 226–232, https://doi.org/10.1007/bf01644268.

20. Zandstra D.F., van Saene H.K. Chris Stoutenbeek and selective digestive decontamination. Intensive Care Med 2007; 33(2): 207–208, https://doi.org/10.1007/s00134-006-0456-3.

21. Stoutenbeek C.P., Miranda D.R., van Saene H.K.F. A new technique for infection prevention in the intensive care unit. Proceedings of the 6th European Congress of Anaesthesiology. Anaesthesia 1982; 56: 98.

22. van Saene H.K.F., Rommes H.J., Zandstra D.F. The history of selective decontamination of the digestive tract. In: Selective digestive tract decontamination in intensive care medicine. van der Voort P.H.J., van Saene H.K.F. (editors). Springer; 2008: p. 1–5.

23. Fralick M., Macdonald E.M., Gomes T., Antoniou T., Hollands S., Mamdani M.M., Juurlink D.N.; Canadian Drug Safety and Effectiveness Research Network. Co-trimoxazole and sudden death in patients receiving inhibitors of renin-angiotensin system: population based study. BMJ 2014; 349: g6196, https://doi.org/10.1136/bmj.g6196.

24. Neu H.C. Tobramycin: an overview. J Infect Dis 1976; 134(Suppl. S3): 19, https://doi.org/10.1093/infdis/134.supplement_1.s3.

25. Hazenberg M.P., Pennock-Schröder A.M., van den Boom M., van der Merwe J.P. Binding to and antibacterial effect of ampicillin, neomycin and polymyxin B on human faeces. J Hyg (Lond) 1984; 93(1): 27–34, https://doi.org/10.1017/s0017026300002629.

26. Selective digestive tract decontamination in intensive care medicine: a practical guide to controlling infection. van der Voort P.H.J., van Saene H.K.F. (editors). Springer Milan; 2008, https://doi.org/10.1007/978-88-470-0653-9.

27. Li J., Zhu L., Xu M., Han J., Bai X., Yang X., Zhu H., Xu J., Zhang X., Gong Y., Hu D., Gao F. Selective decontamination of the digestive tract ameliorates severe burn-induced insulin resistance in rats. Burns 2015; 41(5): 1076–1085, https://doi.org/10.1016/j.burns.2014.12.018.

28. Chan M.X.F., Buitinck S., Stooker W., Haak E.A.F., Wester J.P., Bosman R.J., van der Voort P.H.J. Clinical effects of perioperative selective decontamination of the digestive tract (SDD) in cardiac surgery: a propensity score matched cohort analysis. J Cardiothorac Vasc Anesth 2019; 33(11): 3001–3009, https://doi.org/10.1053/j.jvca.2019.04.013.

29. Hofstra W., de Vries-Hospers H.G., van der Waaaij D. Concentrations of amphotericin B in faeces and blood of healthy volunteers after the oral administration of various doses. Infection 1982; 10(4): 223–227, https://doi.org/10.1007/bf0166915.

30. Guiot H.F., van Furth R. Selective decontamination in bone marrow transplant recipients. Epidemiol Infect 1992; 109(3): 349–360, https://doi.org/10.1017/s0950268800050342.

31. Hurley J.C. Is selective decontamination of the digestive tract safe? Clin Infect Dis 2015; 60(11): 1729–1730, https://doi.org/10.1103/cid/civ125.

32. Harkins C.P., Pichon B., Doumith M., Parkhill J., Westh H., Tomasz A., de Lancastre H., Bentley S.D., Keams A.M., Holden M.T.G. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Biol 2017; 18(1): 130, https://doi.org/10.1186/s13059-017-1252-9.

33. Burdet C., Grall N., Linard M., Bidier-Nahmias A., Benhayoun M., Bouraba K., Magnan M., Clermont O., d’Humières C., Tenailleau O., Denamur E., Massias L., Tubiana S., Alavoine L., Andremont A., Mentré F., Duval X.; CEREMI Group. Ceftriaxone and cefotaxime have similar effects on the intestinal microbiota in human volunteers treated by standard-dose regimens. Antimicrob Agents Chemother 2019; 63(6): e02244-18, https://doi.org/10.1128/aac.02244-18.

34. Ravensbergen S.J., Louka C., Ott A., Rossen J.W., Cornish D., Pourmaras S., Bathoorn E., Stienstra Y. Proportion of asylum seekers carrying multi-drug resistant microorganisms is persistently increased after arrival in the Netherlands. Antimicrob Resist Infect Control 2019; 8: 6, https://doi.org/10.1186/s13756-018-0455-5.

35. Stoutenbeek C.P., van Saene H.K., Miranda D.R., Zandstra D.F. A new technique of infection prevention in the intensive care unit by selective decontamination of the digestive tract. Acta Anaesthesiol Belg 1983; 34(3): 209–221.

36. Stoutenbeek C.P., van Saene H.K., Little R.A., Whitehead A.: Working Group on Selective Decontamination of the Digestive Tract. The effect of selective decontamination of the digestive tract on mortality in multiple trauma patients: a multicenter randomized controlled trial. Intensive Care Med 2007; 33(2): 261–270, https://doi.org/10.1007/s00134-006-0455-4.

37. de Jonge E. Effects of selective decontamination of digestive tract on mortality and antibiotic resistance in the intensive-care unit. Curr Opin Crit Care 2005; 11(2): 144–149, https://doi.org/10.1097/01.ccx.0000153532.01489.11.

38. de Jonge E., Schultz M.J., Spanjaard L., Bossuyt P.M., Vroom M.B., Dankert J., Keeseciglu J. Effects of selective decontamination of digestive tract on mortality and acquisition of resistant bacteria in intensive care: a randomised controlled trial. Lancet 2003; 362(9389): 1011–1016, https://doi.org/10.1016/s0140-6736(03)14409-1.

39. de Jonge E., de Wilde R.B.P., Juffermans N.P., Oostdijk E.A.N., Bernards A.T., van Essen E.H.R., Kuiper E.J., Visser C.E., Keeseciglu J., Bonten M.J.M. Carriage of antibiotic-resistant Gram-negative bacteria after discontinuation of selective decontamination of the digestive tract (SDD) or selective oropharyngeal decontamination (SOD). Crit Care 2018; 22(1): 243, https://doi.org/10.1186/s13054-018-2170-2.
40. Price R., MacLennan G., Glen J.; SuDDICU 2019; 106(4): 355
41. Roquilly A., Marret E., Abraham E., Asehnoune K. Pneumonia prevention to decrease mortality in intensive care unit: a systematic review and meta-analysis. Clin Infect Dis 2015; 60(1): 64–75, https://doi.org/10.1093/cid/ciu740.
42. Kesecioglu J., Eggimann P. What is new in selective decontamination of the digestive tract? Intensive Care Med 2016; 42(8): 1270–1275, https://doi.org/10.1007/s00134-015-4009-5.
43. Wittekamp B.H.J., Oostdijk E.A.N., Cuthbertson B.H., Brun-Buisson C., Bonten M.J.M. Selective decontamination of the digestive tract (SDD) in critically ill patients: a narrative review. Intensive Care Med 2020; 46(2): 343–349, https://doi.org/10.1007/s00134-019-05883-9.
44. Abis G.S., Stockmann H.B.A.C., Bonjer H.J., van Veenendaal N., van Doorn-Schepens M.L.M., Budding A.E., Wilschut J.A., van Egmond M., Oosterling S.J. Selective decontamination of the digestive tract in gastrointestinal surgery: useful in infection prevention? A systematic review. J Gastrointest Surg 2013; 17(12): 2172–2178, https://doi.org/10.1007/s11605-013-2379-y.
45. Abis O.S.A., Stockmann H.B.A.C., Bonjer H.J., van Veenendaal N., van Doorn-Schepens M.L.M., Budding A.E., Wilschut J.A., van Egmond M., Oosterling S.J.; SELECT trial study group. Randomized clinical trial of selective decontamination of the digestive tract in elective colorectal cancer surgery (SELECT trial). Br J Surg 2019; 106(4): 355–363, https://doi.org/10.1002/bjs.11117.
46. Roos D., Dijkstra M.L., Tijssen G.J., Gouma D.J., Gerhards M.F., Oudemans-van Straaten H.M. Systematic review of perioperative selective decontamination of the digestive tract in elective gastrointestinal surgery. Br J Surg 2013; 100(12): 1579–1588, https://doi.org/10.1002/bjs.9254.
47. Wirth U., Rogers S., Haubensak K., Schopf S., von Ahnen T., Schardey H.M. Local antibiotic decontamination to prevent anastomotic leakage short-term outcome in rectal cancer surgery. Int J Colorectal Dis 2018; 33(1): 53–60, https://doi.org/10.1007/s00384-017-2933-2.
48. Reibetanz J., Germer C.T. Selektive Darmdekontamination im Rahmen der onkologischen Kolorektalchirurgie. Chirurg 2019; 90(4): 326, https://doi.org/10.1007/s00104-019-0393-8.
49. Flemming S., Germer C.T. Orale Antibiotikakprophylaxe zur Darmdekontamination vor elektiver kolorektaler Chirurgie. Chirurg 2020; 91(2): 128–133, https://doi.org/10.1007/s00104-019-01079-5.
50. Waked K., Schepens M. State-of-the-art review on the renal and visceral protection during open thoracoabdominal aortic aneurysm repair. J Vis Surg 2018; 4: 31, https://doi.org/10.21037/jovs.2018.01.12.
51. Safdar N., Said A., Lucey M.R. The role of selective digestive decontamination for reducing infection in patients undergoing liver transplantation: a systematic review and meta-analysis. Liver Transpl 2004; 10(7): 817–827, https://doi.org/10.1002/ilt.20108.
52. Kawecki D., Pacholczyk M., Lagiewska B., Sawicka-Grzelak A., Durlik M., Mlynarczyk G., Chmura A. Bacterial and fungal infections in the early post-transplantation period after liver transplantation: etiologic agents and their susceptibility.
digestive decontamination (SDD) on the gut resistome. *J Antimicrob Chemother* 2014; 69(8): 2215–2223, https://doi.org/10.1093/jac/dku092.

98. Buelow E., Bello González T.D.J., Fuentes S., de Steenhuijsen Piters W.A.A., Lahti L., Bayjanov J.R., Majoor E.A.M., Braat J.C., van Mourik M.S.M., Oostdijk E.A.N., Willems R.J.L., Bonten M.J.M., van Passel M.W.J., Smidt H., van Schaik W. Comparative gut microbiota and resistome profiling of intensive care patients receiving selective digestive tract decontamination and healthy subjects. *Microbiome* 2017; 5(1): 88, https://doi.org/10.1186/s40168-017-0309-z.

91. Oostdijk E.A.N., Kesecioglu J., Schultz M.J., Visser C.E., de Jonge E., van Essen E.H.R., Bernardes A.T., Purmer I., Brimicombe R., Bergmans D., van Tiel F., Bosch F.H., Mascini E., van Griethuysen A., Bindels A., Jansz A., van Steveninck F.A.L., van der Zwet W.C., Fijen J.W., Thijse S., de Jong R., Oudbier J., Raben A., van der Vorm E., Koeman M., Rothbarth P., Rijkeboer A., Gruteke P., Hart-Sweet H., Peerbooms P., Winsser L.J., van Elsacker-Niele A.W., Demmendaal K., Brandenburg A., de Smet A.M.G.A., Bonten M.J.M. Effects of decontamination of the oropharynx and intestinal tract on antibiotic resistance in ICUs: a randomized clinical trial. *JAMA* 2014; 312(14): 1429–1437, https://doi.org/10.1001/jama.2014.7247.

93. Gopalsamy S.N., Woodworth M.H., Wang T., Carpentieri C.T., Mehta N., Friedman-Moraco R.J., Mehta A.K., Larsen C.P., Kraft C.S. The use of microbiome restoration therapeutics to eliminate intestinal colonization with multidrug-resistant organisms. *Am J Med Sci* 2018; 356(5): 433–440, https://doi.org/10.1016/j.amjms.2018.08.015.

94. Mylnikov A.G., Shapoval’yants S.G., Pan’kov A.G., Korolev S.V. The enteral tube feeding and selective intestinal decontamination for the treatment of the acute pancreatitis. *Khirurgiya. Zhurnal im. N.I. Pirogova* 2012; 2: 37–41.

95. Mylnikov A.G., Korolev S.V. Pathophysiological and clinical justification of early enteral nutrition and selective gut decontamination in acute destructive pancreatitis (literature review). *Vestnik RGMU* 2012; 2: 14–17.

96. Klimovich I.N., Maskin S.S., Levchenko S.A., Zemlyakov D.S., Aleksandrov V.V. Diagnosis and treatment the syndrome of intestinal insufficiency of patients with acute pancreatitis (review). *Sovremennye problemy nauki i obrazovaniya* 2014; 5: 508.

97. Shevtsov V.V. Sostoyanie mikrobioty dykhatel’nykh putey i kishechnika u bol’nykh rakom legkogo, assotsiirovannogo s KhOBL, i metody ee korrekcii. Avtoref. dis. ... kand. med. nauk [The state of the microbiota of the respiratory tract and intestines in patients with lung cancer associated with COPD, and methods for its correction. PhD Thesis]. Moscow; 2017.

98. Klibuchkov V.V., Kudryavtsev A.N. Prevention and treatment of sepsis in patients with liver failure. *Vysokotekhnologicheskaya meditsina* 2015; 1(2): 22–27.

99. Gromov A.L., Zykin A.G. The comparative analysis of biomarkers of the inflammation at patients with progressing odontogenny phlegmons at treatment by selective dekontaminations method of intestines. *Khirurgicheskaya stomatologiya i implantologiya* 2014; 10(1): 43–45.

100. Beloborodova N.V. Current potential for antibiotic prophylaxis in surgery. *Farmateka* 2009; 16: 38–42.

101. Gosudarstvennyy reestr lekarstvennykh sredstv [State register of medicines]. URL: http://grls.rosminzdrav.ru.