Plastic pollution is one of the major threats of the world these days. Plastic pollution refers to the accumulation of plastic and its products causing severe adverse environmental issues not only to humans but also to the animals and plants. These are one of the major compositions of land and water pollutions. Though; known for these adverse effects plastic has become an integral part of human life. It was noted earlier that the industrial effluents hamper the normal physiological responses mimicking steroids, retinoid, thyroid hormones and lipophilic hormones. Bisphenol A (BPA) is used in the preparation of polycarbonate plastics seen widely in the consumer products, which was firstly synthesized in 1891 and is “BPA is usually known as Estrogenic agent”, both in vivo and in vitro and binds to the same receptor as the female hormone does. Vandenberg et al., in 2009 stated that humans come in contact with BPA primly when they consume food and water from the materials used for containers and packages. This endocrine disruptor thus, enters the body by ‘Leaching’ results when the polymer breaks to release the BPA monomers.

BPA binds and activates estrogen receptors ER α and ER β, but with a much lesser affinity when compared to estradiols. Physiologically BPA can alter the ovarian cycle and interferes with the embryonic development and exerts its role in many physiological and biological changes in women, besides causing a variety of cancers including breast cancer.

Chemically BPA (CH₃)₂C(C₆H₄OH)₂, Figure 2, is a colorless compound belongs to diphenyl methane derivatives and bisphenol with two hydroxyl phenyl groups. It is soluble in organic solvents.

The objective of the present article is to assess and understand the ADMET / toxicological properties of Bisphenol A and its metabolite, 4-methyl-2,4- bis (4-hydroxyphenyl) pent-1-ene [MBP] after they enter the human body.

Materials and methods

Software used

Discovery studio Accerly 2.5, ADMET predictors.

Selection of the molecules

The molecules for the present study were imported from Pubchem with the IDs 6623 and 83494 for Bisphenol A and MBP respectively.
Result and discussion

Upon studying the ADMET descriptors which gives an idea of the absorption, distribution, metabolism, and excretion-toxicity in pharmacokinetics of a given compound. following are studied and understood for the compound, taking the standard parameters as constant; ADMET Absorption: which Predicts Human Intestinal Absorption (HIA) after it is orally administered, ADMET Aqueous Solubility: which predicts the solubility of each of the compounds in water at 25°C, ADMET Blood Brain Barrier: that helps in predicting the ratio of concentrations of compound on both sides of the blood brain membrane after oral administration, ADMET Plasma Protein Binding: this predicts whether or not a compound is likely to be highly bound to carrier proteins in the blood, ADMET CYP2D6 Binding: Predicts cytochrome P450 2D6 enzyme inhibition, ADMET Hepatotoxicity: Predicts dose-dependent human hepatotoxicity of compounds. Table 1 shows the ADMET results of MBP and BPA and Figure 3 represents the ADMET plot and Figure 4 demonstrates the graphical, comparative results of ADMET.

Name	ADMET_BBB Absorption	ADMET_Solubility Level	ADMET_Hepatotoxic
MBP	0.654	0	1
Bisphenol A	0.355	0	1

The obtained results states that the penetration levels of the compounds fall in the category of high penetration value with the level of 1.

ADMET absorption

The level obtained for both the compounds is 0 stating that they can be absorbed easily by the human intestinal system.

ADMET solubility/level

The compounds show a moderate to good level of solubility.

ADMET hepatotoxicity

The hepatotoxicity model predicts potential organ toxicity for a wide range of structurally diverse compounds.

The generated values states that the compounds are likely to cause toxicity to the liver with the score of 0.7.

ADMET CYP2D6

The generated values show that the compounds, non inhibitor and unlikely to inhibit CYP2D6 enzyme with the score of 0.346 and 0.247 respectively.

Conclusion

The present article elucidates on the toxic effects of plastic and its byproduct. In order to reduce its hazardous effects on humans, it is utmost essential to reduce its encounter. BPA and MBP have already proved to alter and induce certain notable changes in breast cancer and in the mammary glands. Their binding affinities with ER α and ER β were also studied and analyzed by Barker and Chandsawangbhuwana. In conclusion, I strongly feel that there should be more awareness among the people on this aspect. Further, it should be made known to the people to minimize eating canned food and polycarbonate plastic food containers and to choose fresh foods.

Acknowledgements

None.

Table 1 ADMET results

Name	ADMET_BBB Level	ADMET_Solubility Level	ADMET_Hepatotoxic
MBP	83,494	0	1
Bisphenol A	0.355	0	1

Blood brain barrier

The results states that the MBP has high penetration level when compared to that of Bisphenol A.

ADMET BBB penetration level

The obtained results states that the penetration levels of the

Figure 3 ADMET plot

Graphical Representation of ADMET Results

Figure 4 Graphical, comparative ADMET results.
Conflict of interest

The author declares no conflict of interest.

References

1. Derraik JGB. The pollution of the marine environment by plastic debris: a review. Marine Pollution Bulletin. 2002;44(9):842–852.
2. http://www.nrdc.org/oceans/plastic-ocean/faq.asp.
3. Colborn T, vom Saal FS, Soto AM. Developmental effects of endocrine disrupting chemicals in wildlife and humans. Environ Health Perspect. 1993;101(5):378–384.
4. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009;30(4):293–342.
5. Baker ME. Insights from the structure of estrogen receptor into the evolution of estrogens: Implications for endocrine disruption. Biochem Pharmacol. 2011;82(1):1–8.
6. Markov GV, Tavares R, Dauphin-Villemant C, et al. Independent elaboration of steroid hormone signaling pathways in metazoans. Proc Natl Acad Sci U S A. 2009;106(29):11913–11918.
7. Sladek FM. What are nuclear receptor ligands? Mol Cell Endocrinol. 2011;334(1–2):3–13.
8. Baker ME. Xenobiotics and the evolution of multicellular animals: emergence and diversification of ligand–activated transcription factors. Integr Comp Biol. 2005;45(1):172–178.
9. Le Maire A, Bourguet W, Balagué P. A structural view of nuclear hormone receptor: endocrine disruptor interactions. Cell Mol Life Sci. 2010;67(8):1219–1237.
10. Welshons WV, Nagel SC, vom Saal FS. Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology. 2006;147(6 Suppl):S56–S69.
11. Dianin AP. Products of ketone condensation with phenols (translated from Russian). 1891:488–506.
12. Dodds EC, Lawson W. Synthetic estrogenic agents without the phenanthrene nucleus. Nature. 1936;137(3476):996.
13. Vandenberg LN, Maffini MV, Sonnenschein C, et al. Bisphenol–A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev. 2009;30(1):75–95.
14. Schonfelder G, Wittfoht W, Hopp H, et al. Parent bisphenol A accumulation in the human maternal-fetal-placental unit. Environ Health Perspect. 2002;110(11):A703–A707.
15. Calafat AM, Ye X, Wong LY, et al. Exposure of the U.S. population to bisphenol A and 4–tertiary–octylphenol:2003–2004. Environ Health Perspect. 2008;116(1):39–44.
16. Gould JC, Leonard LS, Maness SC, et al. Bisphenol A interacts with the estrogen receptor α in a distinct manner from estradiol. Mol Cell Endocrinol. 1998;142(1–2):203–214.
17. http://healthandenvironmentonline.com/2009/07/14/indirect-bpa-mechanism/.
18. Mlynarciková A, Kolena J, Ficková M, et al. Alterations in steroid hormone production by porcine ovarian granulosa cells caused by bisphenol A and bisphenol A dimethacrylate. Mol Cell Endocrinol. 2005;244(1–2):57–62.
19. Rasier G, Toppari J, Parent AS, et al. Female sexual maturation and reproduction after prepubertal exposure to estrogens and endocrine disrupting chemicals: a review of rodent and human data. Mol Cell Endocrinol. 2006;254–255:187–201.
20. Takai Y, Tsutsuni O, Ikezuki Y, et al. Estrogen receptor–mediated effect of a xenoestrogen, bisphenol A, on preimplantation mouse embryos. Biochem Biophys Res Commun. 2000;270(3):918–921.
21. Ho SM, Tang WY, Belmonte de Frausto J, et al. Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res. 2006;66(11):5624–5632.
22. Maffini MV, Rubin BS, Sonnenschein C, et al. Endocrine disruptors and reproductive health: the case of bisphenol–A. Mol Cell Endocrinol. 2006;254–255:179–186.
23. http://accelrys.com/products/datasheets/ds_admet_descriptors.pdf.