Microbial approaches for targeting antibiotic-resistant bacteria

Wing Fei Wong1 and Marina Santiago2,*

1OpenBiome, 2Finch Therapeutics, 200 Inner Belt Rd, Somerville, MA 02143, USA.

Summary
Antibiotic resistant bacterial infections are a global public health challenge that has been increasing in severity and scope for the last few decades. Without creative solutions to this problem, treatment of injuries and infections will become progressively more challenging. A better understanding of the human microbiome has led to a new appreciation for the role commensal microbes play in protecting us from pathogens, especially in the gut. Antibiotics lead to disruption of the gut microbial ecosystem, enabling colonization by antibiotic resistant bacterial pathogens. Many different lines of research have identified specific bacterial taxa and mechanisms that play a role in colonization resistance, and these lines of research may one day lead to microbial therapeutics targeting antibiotic resistant bacteria. Here, we discuss a few of these strategies and the challenges they will need to overcome in order to become an effective therapeutic.

Antibiotic-resistant bacteria pose a threat to public health
A major threat to Sustainable Development Goal 3 (ensuring healthy lives and promoting well-being for all at all ages) is the rise of antibiotic-resistant bacteria (ARB). Without new therapeutic strategies, the World Health Organization has stated that we could be headed for a ‘post-antibiotic era’, in which previously treatable infections are once again deadly (WHO Media Cent, 2014). In the USA alone, the CDC estimates that more than 2 million people contract antibiotic-resistant infections every year, resulting in more than 23,000 deaths (US Department of Health and Human Services, Centers for Disease Control and Prevention, 2013). This results in more than $20 billion in healthcare costs per year, with an additional $35 billion in lost economic output (Roberts et al., 2009; US Department of Health and Human Services, Centers for Disease Control and Prevention, 2013). On an individual patient level, this translates to increased costs, longer hospital stays and a higher likelihood of adverse events and death (Roberts et al., 2009; US Department of Health and Human Services, Centers for Disease Control and Prevention, 2013; Gandra et al., 2014).

Microbial strategies for decreasing antibiotic resistance are promising and sustainable
The human microbiome, which consists of all the bacterial, fungal and viral microorganisms that colonize epithelial surfaces of the human body, may hold the key to fighting ARB. Members of the human microbiome play roles in many aspects of human development (Vaishnava et al., 2008; Dinan and Cryan, 2012; Sommer and Backhed, 2013; Peterson and Artis, 2014; De Santis et al., 2015; Chung et al., 2016). Generally, these organisms are commensal, but under certain conditions, some of these bacteria have been associated with chronic and acute disorders (Becattini et al., 2016; Nagao-Kitamoto et al., 2016; Fung et al., 2017; Sommer et al., 2017; Wen and Duffy, 2017).

Antibiotic-resistant bacterial infections are often a direct result of a disruption of the gut microbiome (Carlet, 2012; Sassone-Corsi and Raffatellu, 2015; Pamer, 2016). A healthy intestinal microbiome consists of a highly diverse population. When this diversity is decreased by antibiotic treatment, niches become available for pathogen colonization. Domination of the gut microbiome by a pathogen places patients at high risk for developing infection by that pathogen as the gut barrier integrity weakens, enabling pathogen translocation across the epithelial barrier (Taur et al., 2012). Furthermore, ARB-colonized patients can serve as vectors of ARB transmission.

There are two major microbial strategies that are being pursued for combating ARB. These include the following: (i) bacteriophage-based strategies can target...
specific strains that colonize patients and cause chronic infections, and (ii) microbial remediation of the gastrointestinal tract relies on commensal bacteria for inhibition of ARB growth and transmission. In this review, we will discuss some exciting examples for each of these promising lines of research (Fig. 1).

Bacteriophage precisely target ARB pathogens

Bacteriophage-based therapies focus on using phage or its component proteins to target highly specific strains of bacteria. The approach of using bacteriophage (phage) isolates to treat bacterial infections has traditionally been pursued in the former Soviet Union and Eastern Europe (Sulakvelidze et al., 2001). These reports speak to the safety profile of this therapy (Weber-Dabrowska et al., 2000; Bruttin and Brüssow, 2005). In addition, phage are readily modifiable to combat emergence of newly arising bacterial threats (Samson et al., 2013). However, current research into whole phage therapies lacks rigorous proof of efficacy, namely properly conducted randomized placebo-controlled studies. There are concerns over immunogenicity of phage therapy, as well as development of bacterial resistance to bacteriophages (Lu and Koeris, 2011; Pires et al., 2016). Furthermore, requirement of regulatory approval in the United States, among other obstacles, prevents widespread use of phage therapy.

Issues of using whole phage therapy may be mitigated by using bacteriophage lysins: phage-encoded peptidoglycan hydrolases that induce rapid lytic death (Young, 1992; Young and Blasi, 1995; Wang et al., 2000; Borysowski et al., 2006). Exogenous recombinant lysins effectively target Gram-positive bacteria, as there is no outer membrane to prevent access to the cell wall (Loeffler et al., 2001; Fenton et al., 2010). Lysins are also reported to have narrow host range, which theoretically spares the surrounding commensal microflora (Fenton et al., 2010). However, lysins face similar therapeutic challenges as phage therapy: like all other foreign agents, the host will develop neutralizing antibodies, which will reduce the levels of enzyme during treatment. Furthermore, this therapeutic is largely ineffective in Gram-negative bacteria. While this may be circumvented using outer membrane permeabilizers, there may be cytotoxic effects associated with this approach that limit its safety (Amaral et al., 2007; Walmagh et al., 2013).

Advances in genetic engineering technology have allowed researchers to manipulate phage to enhance antibacterial activity, targeting and delivery. Engineered phages can deliver genes conferring increased sensitivity to antibiotics (Lu and Collins, 2009; Edgar et al., 2012), disrupt biofilm matrices through delivery of biofilm-degrading enzymes (Lu and Collins, 2007) and deliver lethal-agent phagemid particles (Westwater et al., 2003). Using the CRISPR-Cas system, RNA-guided nucleases are delivered via phagemids into bacterial cells, where they target specific genetic sequences and induce a double-strand break, leading to plasmid loss or cell death (Citorik et al., 2014). While engineered phage therapy is promising, more research is required for optimizing vector delivery and minimizing immunogenicity.

Microbiome restoration inhibits ARB growth and transmission

Commensal bacteria can provide resistance to ARB by interacting with the host. For example, some Gram-negative obligate anaerobes are known to induce the production of host antimicrobial peptides (Sonnenburg et al., 2006; Brandl et al., 2008; Kinnebrew et al., 2010; Ubeda et al., 2013). In addition, short-chain fatty acid (SCFA) production is intimately involved in pathogen defence. SCFAs are the main source of energy for colonocytes, induce IgA production, reduce inflammation and may be involved in increasing the thickness of the mucus layer (Zimmerman et al., 2012; Earle et al., 2015; Desai et al., 2016; Jones, 2016; Wu et al., 2016; Goverse et al., 2017; Olsan et al., 2017; Rowland et al., 2017). These
strains are vital for preventing bacterial translocation by reinforcing the gut barrier.

Other commensal bacteria can directly attack or inhibit pathogen growth. In fact, co-culture of some commensal and pathogenic strains results in the direct killing of the pathogen through the production of secreted molecules like bacteriocins (Gilmore et al., 2015; Gaca and Gilmore, 2016; Sassone-Corsi et al., 2016). Strains producing these molecules could be used therapeutically to eliminate populations of ARB from the gut.

Predatory bacteria have the potential to play a role in the management of antibiotic-resistant infections. *Bdellovibrio* spp. and *Micavibrio* spp. are proteobacteria whose life cycle contains an attack phase where they attach to, or invade and kill other bacteria. These predators can kill many Gram-negative pathogens, including those resistant to antibiotics of last resort (Markelova, 2010; Kadouri et al., 2013). In vivo experiments with predatory bacteria have established their safety and efficacy at decreasing pathogen burden in mammalian models (Westergaard and Kramer, 1977; Shatzkes et al., 2015, 2016; Boileau et al., 2016; Zurawski et al., 2017). However, one concern is that the observed efficacy is not a result of direct pathogen inhibition, but rather indirect activation of the immune system in surrounding tissues. Future studies assessing safety to the human host and microbiome will shed light on the utility of this approach.

Commensal organisms may be able to combat antibiotic resistance through inhibition of horizontal gene transfer (HGT). Antibiotic resistance genes are often found on mobile genetic elements like plasmids and transposons, which travel to other bacteria through HGT. Commensal microbes may be able to prevent this process; a consortium of four anaerobic bacterial strains can suppress mobilization of KPC, a common beta-lactamase gene, from *E. cloacae* to *K. pneumoniae* in a germ-free mouse model (Nudel et al., 2017).

These mechanisms, among others, may contribute to the success seen using faecal microbiota transplants (FMTs) for decolonization of ARB. FMT has been used extensively for treatment of recurrent *Clostridium difficile* infections with a remarkably high efficacy rate (85%; Drekonja et al., 2015). FMT is thought to act by delivering commensals that (i) directly compete for niches with *C. difficile*, (ii) convert primary bile acids, which are required for *C. difficile* spore germination, into secondary bile acids, and (iii) activate the immune system and help

Table 1. FMT decolonizes antibiotic-resistant bacteria from the human gut.

Report	# Patients	VRE	CRE	ESBL-E	Others	Results
Freedman, 2014	1	X				1/1 decolonized for at least 8 months
Singh, 2014	1				X	1/1 decolonized at 2 weeks
Stripling, 2015	1		X			1/1 reduced relative abundance and no further VRE infections for 1 year
Crum-Cianflone, 2015	1	X			X	1/1 reduced MDRO colonization and no episodes of sepsis for 2 years
Jang, 2014	1				X	0/1 decolonized at 3 months
Lombardo, 2015 (SER-109)	8		X			8/8 titers decreased > 2 fold at 4 weeks
Bilinski, 2016	1		X			1/1 decolonized at 10 days
Lagier, 2015	1	X				1/1 decolonized at 7 days
Wei, 2015	5				X	5/5 decolonized of MRSA for 3 months
Eysenbach, 2016	9	X				9/9 decolonized at first time point measured post-FMT
Dubberke, 2016	11		X			8/11 decolonized at last available follow-up
Jouhten, 2016	8			X	X	8/8 reduction in number and diversity of antibiotic resistance genes
Millan, 2016	20	X		X	X	20/20 reduction in number and diversity of antibiotic resistance genes
Garcia-Fernandez, 2016	1	X			X	1/1 decolonized at 6 weeks
Sohn, 2016	3				X	0/3 decolonized for 3 months
Davido, 2017	8	X				2/6 CRE decolonized at 1 month, 1/2 VRE decolonized at 3 months
Ponte, 2017	1				X	1/1 CRE decolonized at 15, 45, and 100 days
Bilinski, 2017	20	X		X	X	15/20 decolonized at 1 month
Total:	101	38/46 (83%)	45/57 (79%)	50/54 (93%)	39/39 (100%)	83/101 (82%) decolonized or decreased in antibiotic resistance genes at primary endpoint

VRE, Vancomycin Resistant Enterococcus; CRE, Carbapenem Resistant Enterobacteriaceae; ESBL-E, Extended Spectrum Beta Lactamase Producing Enterobacteriaceae; FMT, fecal microbiota transplant.

Unless otherwise noted, patients were treated with fecal microbiota transplant. Some patients were co-colonized with multiple pathogens.

© 2017 The Authors. *Microbial Biotechnology* published by John Wiley & Sons Ltd and Society for Applied Microbiology, *Microbial Biotechnology*, 10, 1047–1053
maintain the gut barrier, reducing bacterial translocation across the epithelial layer and preventing pseudomembranous colitis (Khoruts and Sadowsky, 2016).

Faecal microbiota transplant success in the context of C. difficile has led to the reporting of many small case studies assessing the efficacy of FMT for decolonization of other ARB. To date, 18 studies with a total of 101 patients have been published that use FMT to decolonize some of the most concerning ARB (Freedman, 2014; Jang et al., 2014; Singh et al., 2014; Lagier et al., 2015; Lombardo, 2015; Nancy et al., 2015; Striping et al., 2015; Wei et al., 2015; Bilinski et al., 2016; Dubberke et al., 2016; Garcia-Fernández et al., 2016; Jouhten et al., 2016; Millan et al., 2016; Smith, 2016; Sohn et al., 2016; Bilinski et al., 2017; Davido et al., 2017; Ponte et al., 2017). A pooled analysis of these data shows that 82% of patients were found to be decolonized or have a significantly reduced ARB load after FMT (Table 1). Unfortunately, while patients with C. difficile infection are willing to accept FMT treatment, patients who are simply colonized with ARB are asymptomatic and therefore may be less willing to be treated with FMT. Furthermore, scaling up of FMT manufacture to treat the millions of people around the world colonized with ARB would be incredibly challenging. In the future, we expect that microbial therapeutics for ARB will more closely resemble over-the-counter probiotics, but to bring these to the clinic, we will need more detailed mechanistic information on how FMT exerts its effect against ARB. Fortunately, recent work has shed some light on how FMT can treat infections and/or eradicate ARB pathogens from the gut are likely to be valuable additions to our anti-infective arsenal. While there are still many questions that need to be answered before microbial products targeting antibiotic resistance reach the clinic, we are excited for the future of this very promising field of technology.

Conflict of Interest

None declared.

References

Amaral, K.F., Rogero, M.M., Fock, R.A., Borelli, P., and Gavini, G. (2007) Cytotoxicity analysis of EDTA and citric acid applied on murine resident macrophages culture. Int Endod J 40: 338–343.

Becattini, S., Taur, Y., and Pamer, E.G. (2016) Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol Med 22: 458–478.

Bilinski, J., Grzesiowski, P., Sorensen, N., Madry, K., Muszynski, J., Robak, K., et al. (2017) Fecal microbiota transplantation in patients with blood disorders inhibits gut colonization with antibiotic-resistant bacteria: results of a prospective, single-center study. Clin Infect Dis [Epub ahead of print]. doi: 10.1093/cid/cix252.

Bilinski, J., Grzesiowski, P., Muszyński, J., Wrblewska, M., Madry, K., Robak, K., et al. (2016) Fecal microbiota transplantation inhibits multidrug-resistant gut pathogens: preliminary report performed in an immunocompromised host. Arch Immunol Ther Exp (Warsz) 64: 255–258.

Boileau, M.J., Mani, R., Breshears, M.A., Gilmour, M., Taylor, J.D., and Clinkenbeard, K.D. (2016) Efficacy of Bdellovibrio bacteriovorus 109J for the treatment of dairy calves with experimentally induced infectious bovine keratoconjunctivitis. Am J Vet Res 77: 1017–1028.

Borysowski, J., Weber-Dabrowska, B., and Górski, A. (2006) Bacteriophage endolysins as a novel class of antibacterial agents. Exp Biol Med (Maywood) 231: 366–377.

Brandl, K., Pitkas, G., Mihu, C., Ubeda, C., Jia, T., Fleisher, M., et al. (2008) Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455: 804–807.
Bruttin, A., and Brüssow, H. (2005) Human volunteers receiving *Escherichia coli* phage T4 orally: a safety test of phage therapy. *Antimicrob Agents Chemother* 49: 2874–2878.

Cabbellero, S., Kim, S., Carter, R.A., Leiner, I.M., Sušac, B., Miller, L., et al. (2017) Cooperating commensals restore colonization resistance to vancomycin-resistant *Enterococcus faecium*. *Cell Host Microbe* 21: 592–602. e4.

Carlet, J. (2012) The gut is the epicentre of antibiotic resistance. *Antimicrob Resist Infect Control* 1: 39.

Chung, W.S.F., Walker, A.W., Louis, P., Parkhill, J., Vermeiren, J., Bosscher, D., et al. (2016) Modulation of the human gut microbiota by dietary fibres occurs at the species level. *BMC Biol* 14: 3.

Citorik, R.J., Mimee, M., and Lu, T.K. (2014) Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. *Nat Biotechnol* 32: 1141–1145.

Crum-Cianflone, N., Sullivan, E., and Gonzalo, B.-L. (2015) Fecal microbiota transplantation and successful resolution of multidrug-resistant-organism colonization. *J Clin Microbiol* 53: 1986–1989.

Davido, B., Batista, R., Michelon, H., Lepaire, J., Bouchardeau, P., Lepeule, R., et al. (2017) Is faecal microbiota transplantation an option to eradicate highly drug-resistant enteric bacteria carriage? *J Hosp Infect* 95: 433–437.

De Santis, S., Cavalcanti, E., Mastronardi, M., Jirillo, E., and Chieppa, M. (2015) Nutritional keys for intestinal barrier modulation. *Front Immunol* 6: 612.

Desai, M.S., Seekatz, A.M., Koropatkin, N.M., Kamada, N., Hickey, C.A., Wolter, M., et al. (2016) A Dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. *Cell* 167: 1339–1353. e21.

Dinan, T.G., and Cryan, J.F. (2012) Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. *Psychoneuroendocrinology* 37: 1369–1378.

Drekonja, D., Reich, J., Gezahegn, S., Greer, N., Shaukat, A., MacDonald, R., et al. (2015) Fecal microbiota transplantation for *Clostridioides difficile* infection: a systematic review. *Ann Intern Med* 162: 630–638.

Dubberke, E.R., Mullane, K.M., Gerding, D.N., Lee, C.H., Hickey, C.A., Wolter, M., et al. (2015) A Dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. *Cell* 167: 1339–1353. e21.

Earle, K.A., Billings, G., Sigal, M., Lichtman, J.S., Hansson, G.C., Elias, J.E., et al. (2015) Quantitative imaging of gut microbiota spatial organization. *Cell Host Microbe* 18: 478–488.

Edgar, R., Friedman, N., Molshanski-Mor, S., and Qimron, U. (2012) Reversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes. *Appl Environ Microbiol* 78: 744–751.

Eysenbach, L., Allegretti, J. R., Aroniasis, O., Brandt, L., Donovan, D., Muscher, M., et al. (2016) Clearance of vancomycin-resistant *Enterococcus* colonization with fecal microbiota transplantation among patients with recurrent *Clostridioides difficile* infection. IDSA; URL https://idsa.confex.com/idsa/2016/webprogram/Paper59960.html.

Fenton, M., Ross, P., McAuliffe, O., O’Mahony, J., and Coffey, A. (2010) Recombinant bacteriophage lysins as antibacterials. *Bioeng Bugs* 1: 9–16.

Freedman, A. (2014) Use of stool transplant to clear fecal colonization with carbapenem-resistant enterobacteriaceae (CRE): proof of concept. IDSA; URL https://idsa.confex.com/idsa/2014/webprogram/Paper47124.html.

Fung, T.C., Olson, C.A., and Hsiiao, E.Y. (2017) Interactions between the microbiota, immune and nervous systems in health and disease. *Nat Neurosci* 20: 145–155.

Gaca, A., and Gilmore, M. (2016) Killing of VRE *Enterococcus faecalis* by commensal strains: evidence for evolution and accumulation of mobile elements in the absence of competition. *Gut Microbes* 7: 90–96.

Gandra, S., Barter, D.M., and Laxminarayan, R. (2014) Economic burden of antibiotic resistance: how much do we really know? *Clin Microbiol Infect* 20: 973–980.

García-Fernández, S., Morosini, M.-I., Cobo, M., Foruny, J.R., López-Sanromán, A., Cobo, J., et al. (2016) Gut eradication of VIM-1 producing ST9 *Klebsiella oxytoca* after fecal microbiota transplantation for diarrhea caused by a *Clostridium difficile* hypervirulent R027 strain. *Diagn Microbiol Infect Dis* 86: 470–471.

Gilmore, M., Rauch, M., Ramsey, M., Himes, P., Varahan, S., Manson, J., et al. (2015) Pheromone killing of multidrug-resistant *Enterococcus faecalis* V583 by native commensal strains. *Proc Natl Acad Sci USA* 112: 7273–7278.

Goverse, G., Molenaar, R., Macia, L., Tan, J., Erkelens, M.N., Konijn, T., et al. (2017) Diet-derived short chain fatty acids stimulate intestinal epithelial cells to induce mucosal tolerogenic dendritic cells. *J Immunol* 198: 2172–2181.

Jang, M.-O., An, J., Jung, S.-I., and Park, K.-H. (2014) Refractory *Clostridioides difficile* infection cured with fecal microbiota transplantation in vancomycin-resistant *Enterococcus* colonized patient. *Intest Res* 13: 80–84.

Jones, R.M. (2016) The influence of the gut microbiota on host physiology: in pursuit of mechanisms. *Yale J Biol Med* 89: 285–297.

Jouhten, H., Mattila, E., Arkkila, P., and Satokari, R. (2016) Reduction of antibiotic resistance genes in intestinal microbiota of patients with recurrent *Clostridioides difficile* infection after fecal microbiota transplantation. *Clin Infect Dis* 63: 710–711.

Kadouri, D.E., To, K., Shanks, R.M.Q., and Doi, Y. (2013) Predatory bacteria: a potential ally against multidrug-resistant gram-negative pathogens. *PLoS ONE* 8: e63997.

Khoruts, A., and Sadowsky, M. (2016) Understanding the mechanisms of faecal microbiota transplantation. *Nat Rev Gastroenterol Hepatol* 13: 508–516.

Kinebrew, M., Ubeda, C., Ženewicz, L., Smith, N., Flavell, R., and Pamer, E. (2010) Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant *Enterococcus* infection. *J Infect Dis* 201: 534–543.

Lagier, J., Million, M., Fournier, P., Brouqui, P., and Raoult, D. (2015) Fecal microbiota transplantation for stool decolonization of OXA-48 carbapenemase-producing *Klebsiella pneumoniae*. *J Hosp Infect* 90: 173–174.

Loeffler, J.M., Nelson, D., and Fischetti, V.A. (2001) Rapid killing of *Streptococcus pneumoniae* with a bacteriophage cell wall hydrolase. *Science* 294: 2170–2172.
Lombardo, M.-J. (2015) Vancomycin-resistant enterococcal (VRE) titers diminish among patients with recurrent Clostridium difficile infection after administration of SER-109, a novel microbiome agent. IDSA; URL: https://idsa.confex.com/idsa/2015/webprogram/Paper53205.html.

Lu, T.K., and Collins, J.J. (2007) Dispersing biofilms with engineered enzymatic bacteriaphage. Proc Natl Acad Sci USA 104: 11197–11202.

Lu, T.K., and Collins, J.J. (2009) Engineered bacteriaphage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci USA 106: 4629–4634.

Lu, T.K., and Koeris, M.S. (2011) The next generation of bacteriaphage therapy. Curr Opin Microbiol 14: 524–531.

Markelova, N.Y. (2010) Predacious bacteria, Bdellovibrio and related species. Int J Hyg Environ Health 213: 428–431.

Millan, B., Park, H., Hotte, N., Mathieu, O., Burguiere, P., Tompkins, T., et al. (2016) Fecal microbial transplants reduce antibiotic-resistant genes in patients with recurrent Clostridium difficile infection. Clin Infect Dis 62: 1479–1486.

Nagao-Kitamoto, H., Kitamoto, S., Kuffa, P., and Kamada, N. (2016) Pathogenic role of the gut microbiota in gastrointestinal diseases. Intest Res 14: 127–138.

Nudel, K., Zhao, X., Pecora, N. and Bry, L. (2017) Deletion of human commensal flora suppresses horizontal transfer of carbapenem resistance genes between Enterobacteriaceae in the mouse gut. ASM Microbe AAID Abstr.

Olsan, E.E., Byndloss, M.X., Faber, F., Rivera-Chavez, F., Tsolis, R.M., and Baumler, A.J. (2017) Colonization resistance: the deconvolution of a complex trait. J Biol Chem 292: 8577–8581.

Pamer, E.G. (2016) Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science 352: 535–538.

Peterson, L.W., and Artis, D. (2014) Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14: 141–153.

Pires, D.P., Cleto, S., Sillankorva, S., Azeredo, J., and Lu, T.K. (2016) Genetically engineered phages: a review of advances over the last decade. Microbiol Mol Biol Rev 80: 523–543.

Ponte, A., Pinho, R., and Mota, M. (2017) Fecal microbiota transplantation: is there a role in the eradication of carbapenem-resistant Klebsiella pneumoniae intestinal carriage? Rev Esp Enferm Dig 109: 392.

Roberts, R.R., Hota, B., Ahmad, I., Scott, R.D., Foster, S.D., Abbasi, F., et al. (2009) Hospital and societal costs of antimicrobial-resistant infections in a Chicago teaching hospital: implications for antibiotic stewardship. Clin Infect Dis 49: 1175–1184.

Rowland, I., Gibson, G., Heiken, A., Scott, K., Swann, J., Thiele, I., and Tuohy, K. (2017) Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr [Epub ahead of print]. doi: 10.1007/s00394-017-1445-8.

Samson, J.E., Magadán, A.H., Sabri, M., and Moineau, S. (2013) Revenge of the phage: defeating bacterial defences. Nat Rev Microbiol 11: 675–687.

Sassone-Corsi, M., and Raffatellu, M. (2015) No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. J Immunol 194: 4081–4087.

Sassone-Corsi, M., Nuccio, S.-P., Liu, H., Hernandez, D., Vu, C.T., Takahashi, A.A., et al. (2016) Microcrins mediate competition among Enterobacteriaceae in the inflamed gut. Nature 540: 280–283.

Shatzkes, K., Chae, R., Tang, C., Ramirez, G.C., Mukherjee, S., Tsenova, L., et al. (2015) Examining the safety of respiratory and intravenous inoculation of Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus in a mouse model. Sci Rep 5: 12899.

Shatzkes, K., Singleton, E., Tang, C., Zuena, M., Shukla, S., Gupta, S., et al. (2016) Predatory bacteria attenuate Klebsiella pneumoniae burden in rat lungs. mBio 7: e01847-16.

Singh, R., Nood, E., Nieuwendorp, M., Dam, B., Berge, I., Geerlings, S., and Bemelman, F. (2014) Donor feces infusion for eradication of extended spectrum beta-lactamase producing Escherichia coli in a patient with end stage renal disease. Clin Microbiol Infect 20: 0977–0978.

Sohn, K.M., Cheon, S., and Kim, Y.-S. (2016) Can fecal microbiota transplantation (FMT) eradicate fecal colonization with vancomycin-resistant enterococci (VRE)? Infect Control Hosp Epidemiol 37: 1519–1521.

Sommer, F., and Backhed, F. (2013) The gut microbiota — masters of host development and physiology. Nat Rev Microbiol 11: 227–238.

Sommer, F., Anderson, J.M., Bharti, R., Raes, J., and Rosenstiel, P. (2017) The resilience of the intestinal microbiota influences health and disease. Nat Rev Microbiol [Epub ahead of print]. doi:10.1038/nrmicro.2017.58.

Sonnenburg, J.L., Chen, C.T.L., and Gordon, J.I. (2006) Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLoS Biol 4: e413.

Stripling, J., Kumar, R., Baddley, J.W., Nellore, A., Dixon, P., Howard, D., et al. (2015) Loss of vancomycin-resistant Enterococcus fecal dominance in an organ transplant patient with Clostridium difficile colitis after fecal microbiota transplant. Open Forum Infect Dis 2: ofv078.

Sulakvelidze, A., Alavidze, Z., and Morris, J.G. (2001) Bacteriophage therapy. Antimicrob Agents Chemother 45: 649–659.

Taur, Y., Xavier, J., Lipuma, L., Ubeda, C., Goldberg, J., Goboume, A., et al. (2012) Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis 55: 905–914.

Ubeda, C., Bucci, V., Caballero, S., Djukovic, A., Toussaint, N., Equinda, M., et al. (2013) Intestinal microbiota containing barnesiella species cures vancomycin-resistant Enterococcus faecium colonization. Infect Immun 81: 965–973.

US Department of Health and Human Services, Centers for Disease Control and Prevention (2013) Antibiotic resistance threats in the United States, 2013 [Internet]. URL: https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf.

Vaishnava, S., Behrendt, C.L., Ismail, A.S., Eckmann, L., and Hooper, L.V. (2008) Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci USA 105: 20858–20863.

© 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology, Microbial Biotechnology, 10, 1047–1053
Walmagh, M., Boczkowska, B., Grymonprez, B., Briers, Y., Drulis-Kawa, Z., and Lavigne, R. (2013) Characterization of five novel endolysins from Gram-negative infecting bacteriophages. *Appl Microbiol Biotechnol* 97: 4369–4375.

Wang, I.N., Smith, D.L., and Young, R. (2000) Holins: the protein clocks of bacteriophage infections. *Annu Rev Microbiol* 54: 799–825.

Weber-Dabrowska, B., Mulczyk, M., and Górczynski, A. (2000) Bacteriophage therapy of bacterial infections: an update of our institute’s experience. *Arch Immunol Ther Exp (Warsz)* 48: 547–551.

Wei, Y., Gong, J., Zhu, W., Guo, D., Gu, L., Li, N., and Li, J. (2015) Fecal microbiota transplantation restores dysbiosis in patients with methicillin resistant *Staphylococcus aureus* enterocolitis. *BMC Infect Dis* 15: 605.

Westergaard, J.M., and Kramer, T.T. (1977) Bdellovibrio and the intestinal flora of vertebrates. *Appl Environ Microbiol* 34: 506–511.

Westwater, C., Kasman, L.M., Schofield, D.A., Werner, P.A., Dolan, J.W., Schmidt, M.G., and Norris, J.S. (2003) Use of genetically engineered phage to deliver antimicrobial agents to bacteria: an alternative therapy for treatment of bacterial infections. *Antimicrob Agents Chemother* 47: 1301–1307.

WHO Media Cent (2014) *WHO’s first global report on antibiotic resistance reveals serious, worldwide threat to public health* [Internet]. URL http://www.who.int/mediacentre/news/releases/2014/amr-report/en/.

Wu, W., Sun, M., Chen, F., Cao, A.T., Liu, H., Zhao, Y., et al. (2016) Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. *Mucosal Immunol* 10: 946–956.

Young, R. (1992) Bacteriophage lysis: mechanism and regulation. *Microbiol Rev* 56: 430–481.

Young, R., and Blasi, U. (1995) Holins: form and function in bacteriophage lysis. *FEMS Microbiol Rev* 17: 191–205.

Zimmerman, M.A., Singh, N., Martin, P.M., Thangaraju, M., Ganapathy, V., Waller, J.L., et al. (2012) Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells. *Am J Physiol Gastrointest Liver Physiol* 302: G1405–G1415.

Zurawski, D.V., Jones, C.L., Ganclz, H.Y., Honnold, C., Gupta, S., Dharani, S., et al. (2017) Predatory bacteria as an alternative therapeutic for bacterial wound infections. *ASM Microbe AAID Abstr*.

© 2017 The Authors. *Microbial Biotechnology* published by John Wiley & Sons Ltd and Society for Applied Microbiology, *Microbial Biotechnology*, 10, 1047–1053.