Nutrient Composition, Mineral and Anti-Nutrient Components of Processed Wild Cocoyam (*Caladium Bicolor, (Ait) Vent*)

M. D. UDO*, G. D. EYOHI, C. P. JIMMY1 and U. E. EKPO2

1Animal Science Department, AkwaIbom State University, Nigeria.
2Department of Animal Nutrition and Forage Science, MOUAU, Nigeria.

Abstract
In the subtopic and perhaps worldwide a novel plant *Caladium bicolor* (wild cocoyam, Ikpong Ekpo) has not actually been utilized as food for man, livestock or poultry, though in abundance. Also, the effective utilization of wild cocoyam (*Caladium bicolor*) tubers in livestock and poultry feed is limited by the presence of anti-nutrient components which requires some form of processing. The effect of boiling and soaking on gross energy, mineral composition, anti-nutritional factors (ANFs) and proximate composition of wild cocoyam (*Caladium bicolor*) were determined with the aim of investigating its suitability as a feed ingredient. The soaked, raw and boiled tubers were dried, milled and analyzed for chemical compositions. Crude protein contents of raw and processed *Caladium bicolor* tubers ranged were 7.58% - 8.28% and the crude fibre values ranged between 1.92 - 2.12%. The gross energy value of boiled *Caladium bicolor* tubers was higher (2.85kcal/g) and also statistically similar (p>0.05) to both raw and soaked *Caladium bicolor* tubers. The micro and macro mineral composition of boiled *Caladium bicolor* tubers was significantly (p<0.05) lower compared to soaking method. Values obtained for boiled *Caladium bicolor* tubers were significantly (p<0.05) lower in all the toxic substances determined, except for the HCN content being above the tolerable limit for ruminant animals. The results indicate that processing techniques adopted enhanced the proximate composition, caloric components, mineral contents and significantly (p>0.05) lowered in the level of anti-nutrients present in wild cocoyam (*Caladium bicolor*) tubers with boiling being the best and hence the recommended processing method for use in detoxifying *C. bicolor*.
Introduction

Imbalanced feed for animals is a major factor affecting livestock and poultry production in the developing countries. Feed accounts for above 70% of livestock and poultry cost of production. This has been attributed to over reliance on the conventional feedstuff such as soya bean, groundnut and maize. The major problem in livestock production is the accelerated cost of conventional feedstuffs (soya bean, maize, groundnut etc); therefore leading to high cost of animal production. To solve this problem the use of non-conventional or alternative feed sources such as \textit{Caladium bicolor} tubers becomes imperative. Due to an increased need to utilise alternative feedstuff for feed availability at low cost, research into the use of unconventional feedstuffs plays important role in livestock production at this point where population pressure and development reduced the available grazing land for livestock.

\textit{Caladium bicolor} of family \textit{Araceae} was reported as fancy-leaved plant, elephant's ear and heart of Jesus, has colourful foliage or outdoor plant that can be cultivated by tubers, tissue culture or seed. \textit{C. bicolor} is indigenous to South and Central America. It is a tropical perennial plant grown for their large or showing leaves. This plant is also known as heart of Jesus, Angel's wing, elephant ear. \textit{C. bicolor} has injurious properties due to the presence of water-soluble calcium oxalate raphides, some anti-nutritional factor and unverified proteinous toxin constituent causing painful burning sensation on lips and mouth. Excessive dosing may cause nausea, diarrhea, swelling of the mouth, tongue, eye as well as redness of eye and inflammatory reaction with blister, dysphagia, and hoarseness. Production of seed takes long time and result in variations in seedlings and limits breeding program. \textit{Caladiums} can be cultivated in large scale by tubers mainly planted in April and harvested from November. Tubers storage is better at 65-70°F with relative humidity of about 75%. Raw \textit{Caladium bicolor} contains 81.59% nitrogen free extract, 1.48% crude fibre, 7.31% crude protein, 4.60% ether extract, 5.21kcal/g gross energy and 5.13% ash. \textit{C. bicolor} also contains significant anti-oxidant activity against variety of free radicals. Anti-oxidants like phenolics and flavanoids protect human body of free radicals and retard progress of cancer.

However, not much work has been done on the nutritional quality of this alternative feedstuff (\textit{Caladium bicolor}). Thus, the need arose to evaluate this feed resource for its optimum utilization in feeding animals. The study reported here was conducted to determine the chemical components, mineral composition and anti-nutritional factors of \textit{Caladium bicolor} tubers.

Experimental Location

Fresh Caladium tubers (\textit{Caladium bicolor}) were harvested from fallow land in Obio Akpa, Oruk Anam L.G.A of Akwa Ibom State. Obio Akpa is located between latitudes 5°17N and 5°27N and between longitudes 7°27' N and 7°58'E with an annual rainfall ranging between3500-5000mm and average monthly temperature of 25°C, and relative humidity between 60-90%. Obio Akpa is in the rainforest zone of Nigeria.

Processing Methods

Boiling of \textit{Caladium bicolor}

One kilogram of raw \textit{Caladium bicolor} tubers was introduced into cooking pot with boiling water of 100°C temperature. The boiling continued for another 30 minutes before the tubers were drained out. The boiled tubers were peeled, cut into pieces, sundried and milled to obtain boiled \textit{Caladium bicolor} meal. Three samples of boiled \textit{C. bicolor} were taken for analysis.

Soaking

One kilogram of raw \textit{Caladium bicolor} tubers was soaked in 20 liters of water and kept for 24 hours at a room temperature of 22-23°C. The soaked water was decanted and samples were withdrawn, peeled, cut into pieces, sundried and milled to obtain soaked \textit{Caladium bicolor} meal. Three samples of soaked \textit{Caladium bicolor} meal were taken for analysis.

Raw

One kilogram of raw \textit{Caladium bicolor} was peeled, cut into pieces, sundried and milled to obtain soaked \textit{Caladium bicolor} meal. Three samples of raw \textit{C. bicolor} were taken and analyzed for proximate composition, mineral constituents and anti-nutritional composition in it.
Analytical Procedure
The proximate compositions of soaked, boiled and raw Caladium bicolor were investigated. The samples were also analysed for gross energy composition. Iron (Fe), Calcium (Ca), Zinc (Zn), Magnesium (Mg), Manganese (Mn), Copper (Cu) of soaked, boiled and raw Caladium bicolor meals were analysed using Atomic Absorption Spectrophotometer (Model AA280FS; Agilent Technologies). Potassium (K) and Sodium (Na) content of soaked, boiled and raw Caladium bicolor meals were determined using Jenway flame photometer (Model PFP7; Cole-Parmer, Vernon Hill) in line with the AOAC methods. Total Phosphorus range of 0.111-0.128 was determined using Ascorbic acid method by measuring the absorbance at 880 nm with KH$_2$SO$_4$ as standard. Quantitative analysis of tannin, hydrogen cyanide (HCN), trypsin inhibitor, phenol, saponin, phytate, oxalate, and flavonoids of raw, boiled, and soaked Caladium bicolor meal were also assayed, respectively.

Statistical Analysis
Data obtained in this study were analysed by analytical procedure developed by Steel and Torrie (1980). Durian’s Multiple Range Test was used to separate the significant means among the treatment groups.

Table 1: Proximate composition of raw, boiled and soaked Caladium bicolor meals

Parameters	A(Raw)	B(Boiled)	C(Soaked)	SEM
Dry Matter (DM)%	89.25c	89.82a	89.50b	0.025
Crude Protein (Cp)%	8.28a	7.58c	8.08b	0.030
Ether extract (EE)%	0.67a	0.55c	0.61b	0.012
Crude Fibre (CF)%	2.12a	1.92c	2.05c	0.013
Ash%	1.67a	1.40b	1.61a	0.032
Nitrogen Free extract (NFE)%	76.52c	78.37a	77.16b	0.027
Gross Energy (GE) (Kcal/g)	2.83	2.85	2.84	0.000

mean on the same row with different superscripts a,b,c differ significantly (p<0.05)

Results and discussion
Proximate Composition of Wild Cocoyam (Caladium Bicolor)
The proximate composition of soaked, raw and boiled Caladium bicolor meal is shown in Table 1. The values recorded for parameters in this study had significant (p<0.05) differences between soaked, raw and boiled Caladium bicolor tubers except for gross energy values. The values of processed C. bicolor on crude protein decreased significantly (p<0.05) as compared to raw Caladium bicolor meal. The trend might be as a result of solubilisation or leaching of nutrient compositions due to water treatment. The crude protein range of 7.58%-8.28% fell within the range reported range of 7.15-7.21% for the same plant. The low EE values reported in this study shows a poor energy source. However, the values obtained in the present investigation
was comparable to the values earlier reported for *Colocasia esculenta* meal (0.48%-0.73%) jack fruit seeds (0.75%) and was still within the range of 0.13%-0.77% reported for jack fruit seed.1,25,26 The low EE value suggests that medicinally, *Caladium bicolor* meal will be less susceptible to lipid-related type of spoilage.25,27 The crude fibre of raw and processed *Caladium bicolor* meal was 1.92%-2.12%, and was higher than 1.48%-1.49% earlier reported.9 The values of CF in this study was lower than CF of conventional feedstuffs like soybean meal and groundnut cake with 6.5 and 5% crude fibre, respectively, but comparable with conventional feedstuffs such as maize and guinea corn with 2.0% crude fibre, respectively.9,28,29 Fibre has some nutritional and health benefits in human/ livestock nutrition especially in gastro-intestinal tract by reducing gastric emptying time in the small intestine, enhancing bile salt and cholesterol excretion, increasing faecal bulk and faecal transit time through the bowl.30,31 The values of fibre obtained for raw and processed tubers tend to be advantageous to monogastric animals especially poultry, knowing fully that they have low ability to handle fibrous materials.34,30 Ash components are the inorganic materials left after the extraction of organic matter through processing.32,25 The reported ash content in this study ranged from 1.40%-1.67%. These values did not agree with values (5.12-5.133%) previously reported.9 Geographical location, stage of maturity and soil type might be the cause of the ash content variations.33 The nitrogen free extract (NFE) of boiled *C. bicolor* (78.37) was significantly different (p>0.05) from soaked (77.16) which was also significantly lower than raw (76.52). The ranged values were higher than NFE values recorded for energy feedstuff as maize (57.90%).28 Tuber plant seems to deposit carbohydrate food reserve in their tubers which likely is the cause of *Caladium bicolor* having high NFE.34,30

Tables 2: Mineral content of soaked, raw and boiled *Caladium bicolor* meals

Parameters	Raw	Boiled	Soaked	SEM
Sodium%	0.052	0.025	0.033	0.014
Potassium%	0.177a	0.148c	0.155b	0.001
Calcium%	0.103a	0.081c	0.089b	0.001
Phosphorus%	0.128a	0.111c	0.117b	0.001
Magnesium%	0.123a	0.091c	0.104b	0.001
Iron (mg/kg)	13.27a	9.60c	11.47b	0.112
Copper (mg/kg)	0.474a	0.245c	0.310b	0.011
Manganese (mg/kg)	11.400a	7.650c	8.450b	0.111
Zinc (mg/kg)	29.15a	21.55c	23.25b	0.103

a,b,c mean on the same row with different superscript indicated significant differences (P<0.05) among the groups. SEM = Standard error of mean.

Mineral Composition of Soaked, Raw and Boiled Wild Cocoyam (*Caladium Bicolor*)

The result of mineral content (both macro and micro) of processed and raw *Caladium bicolor* meal is presented in Table 2. All the minerals except sodium had significant differences (P<0.05) between the treatment groups in both raw and processed *C. bicolor* meal. However, processing reduced the mineral content of the samples with boiling having the highest reducing effect followed by soaking. Heat treatment and solubilisation does not destroy mineral, therefore low values of minerals for soaked and boiled *C. bicolor* meal might be due to leaching of minerals into the water.35,36,37 For macro minerals (K, Ca, P and Mg), soaked *Caladium bicolor* meal has a value which differed significantly (P<0.05) from boiled C bicolor meal: implying that when used in feeding trials would enhance good neural conduction and muscular contraction, blood coagulation, bone and teeth formation, better membrane function and carbohydrate metabolism.38,13,29 Micro minerals result followed trend of macro minerals in that the tuberous roots processed by soaking had the superior value.
for Mn, Cu, Zn and Fe. This implies that using soaked tuberous root as ingredient in animal diet would enhance blood formation (because of high value of iron), normal utilization of carbohydrate by livestock/ poultry animals (because manganese serves as a co-factor to enzymes responsible for carbohydrate metabolism such as kinase, decarboxylase, peptidase); enhanced zinc promotion for healing of wounds and also favour good taste, appetite and growth, provide copper as a component of cytochrome oxidase, which is important in oxidative phosphorylation.

Anti-nutrient Constituents in Wild Cocoyam (Caladium Bicolor)

The anti-nutrient components present in boiled, raw, and soaked *Caladium bicolor* meals are shown in Table 3. The factors (anti-nutrients) retard the productivity of animal and are deleterious to animal when plant materials rich in them are consumed in large quantities. Generally, processing drastically reduced the anti-nutrient factors in *C. bicolor*. This agrees with similar trend for rubber seeds meals (*Havea brasiliensis*) subjected to different processing methods.

Tables 3: Anti-nutrients in boiled, raw and soaked caladium bicolor meals

Parameters	Raw *C. bicolor*	Boiled *C. bicolor*	Soaked *C. bicolor*	SEM
Tannin %	0.00^a	0.001^c	0.002^b	0.001
Phylate %	0.010	0.010	0.010	0.000
Oxalate %	0.010	0.10^c	0.113^c	0.001
Phenol %	0.012^a	0.10^c	0.121^b	0.001
Saponia %	0.128^a	0.113^c	0.121^b	0.001
Flavonoids %	0.004^a	0.002^c	0.003^c	0.001
Hydrogen Cyanide (HCN) mg/kg	6.225^a	4.870^c	6.060^b	0.015
Trypsin Inhibitor (mg/g)	1.370^a	1.247^c	1.310^b	0.010

a,b,c mean in a row with different superscript are significantly different (P<0.05).

Tannin content of *C. bicolor* ranges from 0.003 in raw to 0.002 in soaked and 0.01 in boiled cocoyam meal. Tannins are known to have resistance to heat treatment and decrease the digestibility of protein in human and animal; either by partially making the protein unavailable or by inhibiting the digestive enzymes and thereby increasing faecal nitrogen content. It is obvious that boiled tubers had significantly (P<0.005) lower tannin and the materials were better detoxified by boiling method compared to soaking method. Tannin value range of 0.001-0.003 for *Caladium bicolor* meal recorded here is lower than the values of (0.18-0.35%) observed in *Colocasia esculenta*.

Phenols are active molecules that have a lot of beneficial properties to man and animal; yet a high quantity of it may create problem in animal. High doses of phenol lead to the reduction in bone mineralization and a case of Cholesterol or estrogen imbalance. Phenol values in *Caladium bicolor* showed variation in total phenol (0.010-0.012%) and flavonoid (0.002-0.004%) contents (Table 3). Among the processed, the highest value of phenols (Phenol and flavonoid) was found in soaked *Caladium bicolor* tubers whereas lowest value was found in boiled tubers. Values obtained for phenols in this study were below deleterious level. Phenols and flavonoids have a wide range of hormonal and non-hormonal health benefits that includes anti-inflammatory, anti-oxidative, anti-microbial, gastro-intestinal and ant-diabetic properties.

Phenols and flavonoids have a wide range of hormonal and non-hormonal health benefits that includes anti-inflammatory, anti-oxidative, anti-microbial, gastro-intestinal and ant-diabetic properties.

Saponin is characterised by its hemolytic and foaming properties, ability to produce pores in membranes, astringency and bitter taste. In the present study, the saponin values in soaked, raw and boiled *Caladium bicolor* were significantly (P<0.05) different with a value range from 0.113%...
(boiled), 0.121% (soaked) to 0.128% (raw). The lower saponin level in the boiled and soaked as compared to the value in the raw *C. bicolor* meal qualifies them (boiling and soaking) as good detoxifying methods. Current report (Shi et al., 2004) proved that low doses of saponin helps to reduce blood cholesterol thus improving defense mechanisms and fight diseases (cancer). They stressed that ration with 1.0-1.2% saponin inclusion level lower plasma and liver cholesterol in rabbits. 49

Hydrogen cyanide values range from 6.225mg/kg in raw to 6.060 (mg/kg) in soaked and 4.870 mg/kg in boiled. The boiled *Caladium bicolor* tubers recorded a lower value for HCN in this study than soaked processing method. Values obtained in this study for HCN were less than the 50mg/kg required as the maximum level tolerated by poultry. 50, 51 However, the HCN values in *C. bicolor* were above the tolerable level(2.0-4.0 mg/kg/ body weight) for ruminant animals. 42, 52 Cyanide ion above tolerable level inhibits the cytochrome oxidase; that stops ATP formation and no supply of oxygen to the tissues therefore causing sudden death in animal. 42, 52 The range of HCN from 4.870-6.225mg./kg for *Caladium bicolor* meal obtained in this study was above the range 3.24-4.18% reported for *Colocasia esculenta*. 1

This study recorded (1.370 mg/g) value of trypsin inhibitor in raw *C. bicolor* tubers and 1.247 mg/g and 1.310mg/g for processed (boiled and soaked) tubers of *Caladium bicolor*. Soaking and boiling reduced trypsin inhibitor significantly (P<0.05) with the highest reduction being in the boiling method; implying that boiling method enhances the digestibility of protein in *Caladium bicolor* meal. Also, problem of pancreatic hypertrophy due to trypsin inhibitors may not exist. 41, 53

Conclusion
The results indicate that processing techniques adopted have enhanced the proximate, caloric components, mineral contents, and significantly reduced the anti-nutritional factors in *Caladium bicolor* tubers meal with boiling being the best. Wild cocoyam has a moderate crude protein value of 8.28%, 7.58% and 8.08% for raw, boiled and soaked meals respectively. Nitrogen free extract is high with 76.52%, 78.37% and 77.16% for raw, boiled and soaked with a complementary energy range of 2.83-2.85 MJ/kg. However, anti-nutritional factors in *C. bicolor* appeared to be heat labile, it could therefore means that boiling it for 30 minutes could make it considered as an ingredient in poultry feed because the HCN value in wild cocoa yam was found to be within the permissible value tolerated by poultry, except ruminant animal that cannot tolerate the level of hydrogen cyanide (HCN) obtained in this work. Therefore, further study is recommended on the elimination or reduction of HCN to a tolerable level by ruminant animals. However further clinical studies on poultry with wild cocoa yam feed is required to validate its use as an alternative poultry feed.

Acknowledgement
We thank the referees and the editor for their helpful comments and constructive suggestions that greatly improved the presentation of this paper.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

Conflict of Interest
The authors do not have any conflict of interest.

References

1. Adejoro F. A., Ijadunola T. I., O. M. Odetola O. M., B. A. Omoniyi B. A. Effect of Sun-dried, Soaked and Cooked wild Cocoyam (*Colocasia esculenta*) Meal on the Growth Performance and Carcass Characteristics of Broilers. FedeUni, OyeEkiti, Ekiti State. 2013;
2. Tuleum C. D., Ubee D. T., Anongo T. T. Performance of Broiler Chickens Fed Toasted Mucuna Seeds Mmeal Supplemented with DL-Methonine. Proce of 17th AniSciAsso of Nig Abuja.2012; 9-13.
3. Ogunbode A. A, Ogungbenro S. D. Raji M. O. Akinsomo A. A. Proximate and Phytochemical Compositions of Raw and Roasted Pride by Bardados Seeds.Proc of 39th conf of NigSoc for Ani Prod.Bedcock University, Ilesa-
Remo, Ogun State. March, 16-19, 2014.

4. Ibrar H., Noor O. (2018). Caladium CV. Florida Sweetheart Production at Different Planting Depths and Sowing Dates. Oniam Hortic (Campinas). 2018; 24(4): 311-316.

5. Emmanuel E. E., Jacob I. E. Thomas P. S. Phytochemical Composition, Antimicrobial and Antioxidant Activities of Leaves and Tubers of three caladium species. Int J Med Plants and Nat Prod. 2015; 1(2):24-30.

6. Christman S. Caladium. p. http://www.floridata.com/ref/c/cala_bic.cfm. 2003. September 17.

7. Nelson L. S., Shih R. D., Balick M. J., Handbook of Poisonous and Injurious Plants. New York, USA: American Medical Association, (Springer Science+ Business Media, LLC, 233 Spring Street, New York, NY 10013, USA. 2007.

8. Ali T., Razieh A. Effect of Planting Depth, Bub Size and their Interaction Growth and Flowering of Tubercose (Polianthes tuberosa L.) Amer J of Agri and Env Sci. 2012; 12(11):1452-1456.

9. Onu P. N., Madubuike F. N. Effect of Raw and Cooked Wild Cocoyam (Caladium bicolor) on the Performance of Boiler Chicks. Agri Tropica et Subtropica, 2006;39(4):268-273.

10. Kalita S., Kumar G., Kartbik L., Rao K. In Vitro Anti-oxidant and DNA Damage Inhibition Activity of Acquesus Extract of Lantana Camara L. (Verbenaceae) Leaves. Asian Pac. J Trop Bromed. 2012; 1675-1679.

11. El-hashash M. M., Abdel-gawad M. M., Elnsayed M. M., Sabry W. A., Abdelhameed E. S. M., Abdel-lateef E. E. S. Antioxidant Properties of Methanol Extracts of the Leaves of Seven Egyptian Cassia Species. Acta Pharm. 2010;60(3):361–367.

12. AOAC. Association of Analytical Chemistry Official Methods of Analysis 17th edition AOAC K. Arlington, Virginia, USA.2000.

13. McDonald R., Edwards R. A., Greenlough J. F. D., Morgan C. A. Animal Nutrition. Pearson Education Limited, Edinburgh Gate, Harlow, United Kingdom. 19995.

14. James I. J., Osinowo O. A., Adegbasa O. I. Evaluation of Under Traits of West African Dwarf (WAD) Goats in South Western Nigeria. In Proc of 33rd Ann Conf of the NigSoc for Ani Prod. Olabisi Onabowo, Ayetora Ogun State. 2008; 122-125.

15. Onwuka G. Food Analysis and Instrumentation Third ed., Naphola Prints. A Division of HG Support Nig Ltd. 2005;133-161.

16. Arntfield S. D., Ismond M. A. H., Murray E. D. The Fate of Anti-nutritional Factors During Preparation of Faba Bean Protein Isolate Using Micellization Technique inst. Food Sci Technol J. 1985; 18:137-143.

17. Abideen Z., Qasim M., Rasheed A., Adnan M. Y., Gul B., M. A Khan M. A. Antioxidant Activity and Polyphenolic Content of PhragmitesKarka under Saline Conditions. Pak. J. Bot. 2015; 47(3):813-818.

18. Makkar H. P., Siddhuraju P., Becker K. Plant Secondary Metabolites. Human Press.

19. van Traub I. A., Lapteva N. A. Colorimetric Determination of Phytate in Unpurified Extracts of Seeds and the Products of their Processing. Analy Biochem. 1988; 175: 227-230.

20. Chang C. M., Yang H. W., Chern J. Estimation of Total Flavonoids Content in Propolis by two Complementary Colorimetric Methods. J Fd Drug Anal.2002;10:178-182.

21. Steel R. G. D., Torrie J H. Principles and Procedures of Statistics. A Biochem Approach, Second ed. McGraw Hall-Book Comp, N Y. 1980.

22. Duncan D. B. New Multiple Range and Multiple F-test. Biometrics. 1955; 11: 1-42.

23. Akinmulimi A. H. Nutritive Value of Raw and Processed Jack Fruit Seeds (Artocarpus heterophyllus): Chem Anal Agri J. 2006;4(4):266-271.

24. Ikyume T. T., Okwori A. I., Isewoa A. Nutrient Utilization by West African Dwarf (WAD) Goats Fed Selected Tree Forages and Legumes. J Trans Res. 2018; 2(1):19-23.

25. Mohamad S. F., Mohd Said F., Abdul Munaim N. S., Mohamad S., Wan-Sulaiman W. M. A. Proximate Composition, Mineral Contents, Functional Prosperities of Mastura Variety Jack Fruit (Artocarpus heterophyllus) Seeds and Lethal Effects of its Crude Extract on Zebra Fish (Danio rerio) Embryos. Fd Res. 2019;3(5): 546-555.
I. The Effect of Processing Methods on the Functional and Compositional Properties of Jack Fruit Seed Flour. Int J Nutri and Fd Sci. 2014;3(3): 166-173.

27. Okpala L. C., Gibson-Uweh G. I. Physicochemical Properties of Mango Seed Flour. NigFd J. 2013;31(1):23-27.

28. Olomu J. M. Monogastric Animal Nutrition Principles and Practice. Jachem Publ. Benin, Nigeria. 1995.

29. Udo M. D., Ekpo U., Ahamefule, F. O. Effect of Processing on the Nutrient Composition of Rubber Seed Meal. J Saudi Soc Agri Sci. 2018;17: 297-301.

30. Ocloo F. C. K., Bansa D., Boatin R., Adom T., Agbemavor W. S. Physiochemical, Functional and Pasting Characteristics of Flour Produced from Jack Fruits (Artocarpus heterophyllus) Seeds. Agri and Bio J of North Ame. 2010;1(5): 903-908.

31. Lewu M. N., Adebola R. O., Afolayan A. J. Effect of Cooking on the Proximate Composition of Esculentia (l) Schilt. In NSAP Proc 32nd Ann. Conf. of NSAP Cal. 2007; 316-318.

32. Jubril J. A., Abbator F. I., L. G. Ashike L. G., Makinta A. A., Lawan A. V. Gava I. A. Chemical Composition and Anti-nutritional Factors of sennaObtusifolia Leaves and Forghum Stover in Semi-Arid Zone of Borno State, Nigeria. Nig J Ani Sci Tech. 2018;1(2):101-111.

33. Lewu M. N., Adebola R. O., Afolayan A. J. Effect of Cooking on the Proximate Composition of Esculentia (l) Schilt. In Kwazulu. Ntla Province of South African. Afr J Biotech.2009,8(8):1619-1622.

34. Saulawa L. A., Yaradua A. I., Shuaibu L. Effect of Different Processing Methods on Proximate, Mineral and Anti-nutritional Factors Content of Boxbob (Adansoniadigita) Seeds. Pakistan J Nutr. 2014;13(6):314-318.

35. Olanipekun O. T., Omenna E. C., Olaiyade O. A., Suleiman P., Omodara O. G. Effect of Boiling and Roasting on the Nutrient Composition of Kidney Beans Seed Flour. J of Fd Sci. 2015;4(2):024-029.
49. Shi J.K., Arunasalam D., Yeung Y., Kakuda G., Mittal M., Jiang Y. Saponins from Edible Legumes: Chemistry, Processing and Health Benefits. J MedFd. 2004;7(1):67-68.

50. Udedibie A. B. I., Anyaegbu B. C., Onyeckwu G. C., Egbeukporo O. C. Effect of Feeding Different Levels of Fermented and Unfermented Cassava Tuber Meals on the Performance of Broilers. NigJ Ani Prod. 2004;31:211-219.

51. Okoli I. C., Okparaocha C. O., Chinweze C. E., Udedibie A. B. L. Physiochemical and Hydrogen Cyanide Content of Three Processed Cassava Products Used for Feeding Poultry in Nigeria. Asian J of Ani and Vet Adv. 2012;7:334-340.

52. Sarah R. Prussic Acid Poisoning in Livestock www.dpi.nsw.gov.au/primefacts.2007.

53. Chunmei G., Hongbin P., Zewei S., Guixin Q. Effect of Soyabeaon Variety on Anti-nutritional Factors Content, and Growth Performance and Nutrients in Rate. Int J Mmol. Sci. 2010; ii: 1048-1956.