Supporting Information

Redox-Neutral Ortho-C–H Amination of Pinacol Arylborates via Palladium(II)/Norbornene Catalysis for Anilines Synthesis

Shuqing Chen,† Peng Wang,† Hong-Gang Cheng, Chihui Yang, and Qianghui Zhou*[^a,b]

[^a]: Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, 430072, Wuhan, China
[^b]: Institute for Advanced Studies, Wuhan University, 430072, Wuhan, China

*E-mail: qhzhou@whu.edu.cn

Table of Contents

1. General information ... 2
2. Optimization of reaction conditions .. 3
3. Preparation of arylboronic esters ... 4
 3.1. Preparation of arylboronic ester 1v ... 4
 3.2. Preparation of arylboronic ester 1w .. 5
 3.3. Preparation of arylboronic ester 1ad ... 6
4. General procedure for the synthesis of compounds 3 .. 7
5. Characterization data for compounds 3 .. 7
6. Procedure for the synthesis of compound 4 ... 32
7. Procedure for the synthesis of compound 8 ... 33
8. Experimental procedure for gram-scale synthesis of compound 3a 34
9. Mechanistic study .. 34
 9.1. Preparation of 1-naphthylboronic ester-d7 (1a-d) .. 34
 9.2. Deuterium labelling study with DMSO-d6 .. 35
 9.3. Deuterium labelling study with Dioxane-d8 ... 36
 9.4. Deuterium labelling study with 1-naphthylboronic ester-d7 36
 9.5. Deuterium labelling study with D2O ... 37
10. Reference ... 38
11. NMR spectra of the new compounds .. 38
1. General information.

All reactions dealing with moisture-sensitive compounds were performed by standard Schlenk techniques in oven-dried reaction vessels under air atmosphere. Unless otherwise noted, all solvents were dried by JC Meyer Solvent Drying System. Most reagents were purchased from commercial sources and used without further purification, unless otherwise stated. Reactions were monitored by thin layer chromatography (TLC) carried out on 0.2 mm commercial silica gel plates, using UV light as the visualizing agent or basic solution of KMnO₄ as a developing agent. ¹H NMR spectra were recorded on Bruker 400 MHz instrument and ¹³C NMR spectra were recorded on Bruker 100 MHz instrument and were calibrated using residual undeuterated solvent as an internal reference (CDCl₃ @ 7.26 ppm ¹H NMR, 77.16 ppm ¹³C NMR). The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, ddd = doublet of doublet of doublets, m = multiplet, br = broad. IR spectra were obtained on a Thermo Scientific Spectrum Nicolet iS10 spectrometer using thin films deposited on KBr plates (Thermo Fisher Scientific) and were reported in frequency of absorption (cm⁻¹). Gas chromatography (GC) were recorded on Agilent 7890 instrument and the biphenyl as internal standard. High resolution mass spectra (HRMS) were recorded on DIONEX UltiMate 3000 & Bruker Compact TOF mass spectrometer.
2. Optimization of reaction conditions.

Table S1. Solvent screening.a

Entry	Solvent	Yield
1	DMA	14%
2	DMF	15%
3	CH\textsubscript{3}CN	9%
4	Dioxane	1%
5	Toluene	1%
6	DCE	n.d.
7	DMSO	35%

[a] GC yield, using biphenyl as internal standard.

Table S2. Base screening.a

Entry	Base	Yield
1	K\textsubscript{2}CO\textsubscript{3}	53%
2	Na\textsubscript{2}CO\textsubscript{3}	33%
3	Cs\textsubscript{2}CO\textsubscript{3}	17%
4	KOAc	5%
5	KHCO\textsubscript{3}	58%
6	KOH	67%
7b	KOH	70%

[a] GC yield, using biphenyl as internal standard; [b] KOH (2.5 equiv).

Table S3. Co-solvent screening.a
3. Preparation of aryloboronic esters.

3.1. Preparation of aryloboronic ester 1v.

To a 25 mL of oven-dried Schlenk tube equipped with a magnetic stir bar was charged with 2-bromophenol (778.0 mg, 4.5 mmol, 1.5 equiv), 2-(2-(bromomethyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (888.0 mg, 3.0 mmol, 1.0 equiv), cesium carbonate (1.9 g, 6.0 mmol, 2.0 equiv) and DMF (10.0 mL) at r.t. The reaction was heated at 40 °C and stirred for 5 h. Then the mixture was diluted with ethyl acetate and sequentially washed with water, brine. The combined organic layers were dried over Na₂SO₄, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel (PE:EtOAc = 50:1) to yield the desired product 1v (673 mg, 59% yield).

Physical state: colorless oil;

$R_f = 0.5$ (silica gel, PE:EtOAc = 50:1);

1H NMR (400 MHz, CDCl₃): δ 7.87 (d, $J = 7.4$ Hz, 1H), 7.66 (d, $J = 7.7$ Hz, 1H), 7.55 (dd, $J = 7.9$, 1.6 Hz, 1H), 7.48 (t, $J = 7.6$ Hz, 1H), 7.32 (t, $J = 7.4$ Hz, 1H), 7.26 – 7.20 (m, 1H), 6.97 (d, $J = 8.2$ Hz, 1H), 6.83 (t, $J = 7.6$ Hz, 1H), 5.45 (s, 2H), 1.32 (s, 12H);
13C NMR (100 MHz, CDCl$_3$): δ 155.5, 143.2, 136.2, 133.4, 131.1, 128.5, 127.06, 127.05, 121.2, 113.7, 112.4, 83.9, 70.3, 25.0;

HRMS (ESI-TOF): calc’d for C$_{19}$H$_{22}$BBrNaO$_3^+$ [M+Na$^+$] 410.0773, found 410.0772.

3.2. Preparation of arylboronic ester 1w.

![Chemical Reaction]

To a 25 mL of oven-dried Schlenk tube equipped with a magnetic stir bar was charged with 2-iodophenol (330.0 mg, 1.5 mmol, 1.5 equiv), 2-(2-(bromomethyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (296.0 mg, 1.0 mmol, 1.0 equiv), cesium carbonate (651.5 mg, 2.0 mmol, 2.0 equiv) and DMF (4.0 mL) at r.t. The reaction was heated at 35°C and stirred for 3 h. Then the mixture was diluted with ethyl acetate and sequentially washed with water, brine. The combined organic layers were dried over Na$_2$SO$_4$, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel (PE:EtoAc = 50:1) to yield the desired product 1w (300 mg, 69% yield).

Physical state: colorless oil;

R_f = 0.5 (silica gel, PE:EtoAc = 50:1);

1H NMR (400 MHz, CDCl$_3$): δ 7.90 – 7.87 (m, 1H), 7.80 (dd, J = 7.8, 1.6 Hz, 1H), 7.72 (d, J = 7.7 Hz, 1H), 7.52 – 7.48 (m, 1H), 7.32 – 7.27 (m, 2H), 6.90 (dd, J = 8.3, 1.2 Hz, 1H), 6.73 – 6.69 (m, 1H), 5.46 (s, 2H), 1.33 (s, 12H);

13C NMR (100 MHz, CDCl$_3$): δ 157.6, 143.2, 139.5, 136.1, 131.5, 129.5, 127.1, 127.0, 122.4, 112.6, 86.8, 83.9, 70.4, 25.1;

HRMS (ESI-TOF): calc’d for C$_{19}$H$_{22}$BBrNaO$_3^+$ [M+Na$^+$] 459.0599, found 459.0603.

Both the proton and carbon NMR match the literature reported data.1
3.3. Preparation of arylboronic ester 1ad.

To a solution of methyl 3-(4-bromophenyl)-2-((tert-butoxycarbonyl)amino)propanoate (1.07 g, 3.0 mmol, 1.0 equiv) in CH$_3$CN (10 mL) were added DMAP (403 mg, 3.3 mmol, 1.1 equiv) and Boc$_2$O (1.4 mL, 6.0 mmol, 2.0 equiv) at r.t., and the mixture was stirred overnight. Then the reaction mixture was transferred to a separatory funnel containing saturated aqueous solution of NH$_4$Cl. The aqueous portion was extracted with ethyl acetate (3 x 20 mL) and the combined organic layers were washed with brine (30 mL), dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo to yield the crude product S1 (1.41 g) used in the next step straightly.

To a 50 mL of oven-dried Schlenk tube equipped with a magnetic stir bar was charged with S1 (457 mg, 1.0 mmol, 1.0 equiv), Bis(pinacolato)diboron (280 mg, 1.1 mmol, 1.1 equiv), PdCl$_2$(dppf) (36 mg, 0.05 mmol, 0.05 equiv), KOAc (290 mg, 3.0 mmol, 3.0 equiv) and DMSO (6 mL) under Ar atmosphere, then heated at 80 °C and stirred for 4 h. Then the reaction mixture was extracted with ethyl acetate (3 x 20 mL) and the combined organic layers were washed with brine (30 mL), dried over Na$_2$SO$_4$, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (PE:EtOAc = 10:1) to yield the desired product 1ad (460 mg, 93% yield for two steps).

Physical state: colorless oil;

R_f = 0.4 (silica gel, PE:EtOAc = 10:1);

1H NMR (400 MHz, CDCl$_3$): δ 7.71 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 8.0 Hz, 2H), 5.15 (dd, J = 10.1, 5.2 Hz, 1H), 3.73 (s, 3H), 3.44 (dd, J = 13.9, 5.2 Hz, 1H), 3.22 (dd, J = 13.9, 10.1 Hz, 1H), 1.38 (s, 18H), 1.32 (s, 12H);

13C NMR (100 MHz, CDCl$_3$): δ 171.0, 151.8, 141.1, 135.0, 129.1, 83.8, 83.1, 59.4, 52.4, 36.5, 28.0, 25.2, 24.9;

IR (KBr pellet): ν 2979, 2934, 1748, 1701, 1366, 1267, 1142, 1089, 859, 658 cm$^{-1}$;

HRMS (ESI-TOF): calc’d for C$_{26}$H$_{40}$BNNaO$_8$ $^+$ [M+Na$^+$$]^{+}$ 528.2744, found 528.2754.
4. General procedure for the synthesis of compounds 3.

To a 25 mL oven-dried Schlenk tube equipped with a magnetic stir bar was charged with the corresponding pinacol arylborate 1 (0.3 mmol, 1.5 equiv), O-benzoyl hydroxylamines 2 (0.2 mmol, 1.0 equiv), Pd(OAc)$_2$ (4.5 mg, 0.02 mmol, 0.1 equiv), K$_2$CO$_3$ (69.0 mg, 0.5 mmol, 2.5 equiv), NBE (37.6 mg, 0.4 mmol, 2.0 equiv) and DMSO / Dioxane (2.8 mL, v:v = 2:5). The reaction was stirred at 70 °C under air (ballon) and monitored by TLC. After completion of the reaction, the mixture was cooled to r.t., then filtered through a thin pad of celite, eluting with ethyl acetate (15 mL). The filtrate was sequentially washed with water, brine, dried over Na$_2$SO$_4$, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel or by PTLC to yield the title product 3.

5. Characterization data for compounds 3.

4-(Naphthalen-2-yl)morpholine (3a, CAS: 7508-21-6)

\[
\text{Physical state: yellow solid;}
\]

\[
\text{Yield: 84%;}
\]

\[
R_f = 0.4 \text{ (silica gel, PE:EtOAc = 20:1)};
\]

\[
^1H \text{ NMR (400 MHz, CDCl}_3\text{): } \delta 7.76 - 7.70 \text{ (m, 3H), 7.42 (t, } J = 7.5 \text{ Hz, 1H), 7.31 (t, } J = 7.5 \text{ Hz, 1H), 7.28 – 7.25 \text{ (m, 1H), 7.13 (s, 1H), 3.94 – 3.91 (m, 4H), 3.28 – 3.26 (m, 4H);}
\]

\[
^13C \text{ NMR (100 MHz, CDCl}_3\text{): } \delta 149.2, 134.6, 129.0, 128.8, 127.6, 126.9, 126.5, 123.7, 119.1, 110.2, 67.1, 49.9;
\]

\[
\text{HRMS (ESI-TOF): calc'd for } C_{14}H_{16}NO^+ [M+H^+] 214.1226, \text{ found 214.1228.}
\]

Both the proton and carbon NMR match the literature reported data.2
4-(Naphthalen-2-yl)morpholine (3b, CAS: 1174508-56-5)

Physical state: colorless oil;
Yield: 68%;
$R_f = 0.4$ (silica gel, PE:EtOAc = 20:1);

1H NMR (400 MHz, CDCl$_3$): δ 7.90 (d, $J = 8.3$ Hz, 1H), 7.74 (d, $J = 8.1$ Hz, 1H), 7.45 (t, $J = 7.5$ Hz, 1H), 7.38 (t, $J = 7.5$ Hz, 1H), 7.14 (s, 1H), 7.02 (s, 1H), 3.94 – 3.92 (m, 4H), 3.28 – 3.26 (m, 4H), 2.69 (s, 3H);

13C NMR (100 MHz, CDCl$_3$): δ 148.8, 135.4, 134.9, 128.2, 127.5, 126.2, 124.0, 123.5, 119.8, 108.7, 67.1, 49.9, 19.8;

HRMS (ESI-TOF): calc’d for C$_{15}$H$_{18}$NO$^+$ [M+H$^+$] 228.1383, found 228.1382.
Both the proton and carbon NMR match the literature reported data.3

4-(4-Methoxynaphthalen-2-yl)morpholine (3c)

Physical state: brown oil;
Yield: 62%;
$R_f = 0.4$ (silica gel, PE:EtOAc = 20:1);

1H NMR (400 MHz, CDCl$_3$): δ 8.13 (d, $J = 8.3$ Hz, 1H), 7.67 (d, $J = 8.2$ Hz, 1H), 7.44 (t, $J = 7.5$ Hz, 1H), 7.31 (t, $J = 7.5$ Hz, 1H), 6.75 (s, 1H), 6.60 (s, 1H), 4.00 (s, 3H), 3.94 – 3.92 (m, 4H), 3.27 – 3.25 (m, 4H);

13C NMR (100 MHz, CDCl$_3$): δ 156.3, 149.8, 135.3, 127.1, 126.6, 123.1, 121.9, 121.7, 103.2, 98.0, 67.1, 55.5, 50.4;

IR (KBr pellet): ν 3446, 2957, 2359, 1627, 1446, 1409, 1269, 1109, 985, 746 cm$^{-1}$;

HRMS (ESI-TOF): calc’d for C$_{15}$H$_{18}$NO$^+$ [M+H$^+$] 244.1332, found 244.1334.
4-(4-Bromonaphthalen-2-yl)morpholine (3d)

Physical state: light yellow oil;
Yield: 68%;
$R_f = 0.3$ (silica gel, PE:EtOAc = 30:1);
1H NMR (400 MHz, CDCl$_3$): δ 8.08 (d, $J = 8.2$ Hz, 1H), 7.67 (d, $J = 7.5$ Hz, 1H), 7.58 (d, $J = 2.4$ Hz, 1H), 7.47 – 7.38 (m, 2H), 7.07 (d, $J = 2.3$ Hz, 1H), 3.91 – 3.89 (m, 4H), 3.26 – 3.23 (m, 4H);
13C NMR (100 MHz, CDCl$_3$): δ 149.2, 135.4, 127.30, 127.28, 127.27, 126.9, 124.9, 123.7, 122.9, 110.2, 66.9, 49.6;
IR (KBr pellet): ν 2960, 2852, 1621, 1595, 1448, 1225, 1121, 983, 942, 763 cm$^{-1}$;
HRMS (ESI-TOF): calc’d for C$_{14}$H$_{15}$BrNO$^+$ [M+H$^+$] 292.0332, found 292.0332.

4-(Pyren-2-yl)morpholine (3e)

Physical state: yellow solid;
Melting point: 156 – 158 ºC;
Yield: 70%;
$R_f = 0.4$ (silica gel, PE:EtOAc = 10:1);
1H NMR (400 MHz, CDCl$_3$): δ 8.12 (d, $J = 7.6$ Hz, 2H), 8.03 – 8.01 (m, 2H), 7.96 – 7.88 (m, 3H), 7.72 (s, 2H), 4.01 – 3.99 (m, 4H), 3.47 – 3.45 (m, 4H);
13C NMR (100 MHz, CDCl$_3$): δ 149.7, 132.4, 130.3, 128.0, 127.1, 125.2, 124.9, 124.8, 119.9, 112.7, 67.2, 50.1;
IR (KBr pellet): ν 2960, 2843, 1601, 1448, 1256, 1120, 984, 859, 848, 706 cm$^{-1}$;
HRMS (ESI-TOF): calc’d for C$_{20}$H$_{18}$NO$^+$ [M+H$^+$] 288.1383, found 288.1385.
4-(m-Tolyl)morpholine (3f, CAS: 7025-91-4)

Physical state: colorless oil

Yield: 70%;

\[R_f = 0.5 \] (silica gel, PE:EtOAc = 20:1);

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 7.20 - 7.16 \) (m, 1H), \(6.75 - 6.71 \) (m, 3H), \(3.88 - 3.85 \) (m, 4H), \(3.17 - 3.14 \) (m, 4H), \(2.34 \) (s, 3H);

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta 151.5, 139.0, 129.2, 121.1, 116.7, 113.0, 67.1, 49.6, 21.9 \);

HRMS (ESI-TOF): calc’d for \(\text{C}_{11}\text{H}_{16}\text{NO}^+ [\text{M+H}^+] 178.1226 \), found 178.1229.

Both the proton and carbon NMR match the literature reported data.\(^2\)

4-(3-Ethylphenyl)morpholine (3g)

Physical state: colorless oil;

Yield: 61%;

\[R_f = 0.4 \] (silica gel, PE:EtOAc = 20:1);

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta 7.21 \) (t, \(J = 7.8 \) Hz, 1H), \(6.78 - 6.75 \) (m, 3H), \(3.89 - 3.86 \) (m, 4H), \(3.18 - 3.16 \) (m, 4H), \(2.63 \) (q, \(J = 7.6 \) Hz, 2H), \(1.25 \) (t, \(J = 7.8 \) Hz, 3H);

\(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta 151.5, 145.4, 129.2, 119.9, 115.6, 113.2, 67.1, 49.6, 29.3, 15.8 \);

HRMS (ESI-TOF): calc’d for \(\text{C}_{12}\text{H}_{18}\text{NO}^+ [\text{M+H}^+] 192.1383 \), found 192.1385.

Both the proton and carbon NMR match the literature reported data.\(^4\)

4-(3-Isopropylphenyl)morpholine (3h)
Physical state: colorless oil;

Yield: 44%;

$R_f = 0.5$ (silica gel, PE:EtOAc = 20:1);

1H NMR (400 MHz, CDCl$_3$): δ 7.22 (t, $J = 7.8$ Hz, 1H), 6.81 – 6.74 (m, 3H), 3.89 – 3.86 (m, 4H), 3.18 – 3.16 (m, 4H), 2.87 (hept, $J = 6.9$ Hz, 1H), 1.26 (s, 3H), 1.25 (s, 3H);

13C NMR (100 MHz, CDCl$_3$): δ 151.5, 150.1, 129.2, 118.5, 114.4, 113.3, 67.1, 49.7, 34.6, 24.2;

HRMS (ESI-TOF): calc’d for C$_{13}$H$_{20}$NO$^+$ [M+H$^+$] 206.1539, found 206.1543.

Both the proton and carbon NMR match the literature reported data.4

4-(3-(Trifluoromethyl)phenyl)morpholine (3i)

Physical state: colorless oil;

Yield: 39%;

$R_f = 0.4$ (silica gel, PE:EtOAc = 10:1);

1H NMR (400 MHz, CDCl$_3$): δ 7.37 (t, $J = 8.2$ Hz, 1H), 7.12 – 7.05 (m, 3H), 3.88 – 3.86 (m, 4H), 3.21 – 3.19 (m, 4H);

13C NMR (100 MHz, CDCl$_3$): δ 151.52, 131.63 (q, $J = 31.8$ Hz), 129.76, 124.40 (q, $J = 272.4$ Hz), 118.58, 118.57, 116.37 (q, $J = 3.9$ Hz), 112.00 (q, $J = 3.9$ Hz), 66.86, 48.97;

19F NMR (376 MHz, CDCl$_3$) δ –62.7;

HRMS (ESI-TOF): calc’d for C$_{11}$H$_{13}$F$_3$NO$^+$ [M+H$^+$] 232.0944, found 232.0946.

Both the proton and carbon NMR match the literature reported data.2
4-(3-Methoxyphenyl)morpholine (3j, CAS: 32040-09-8)

Physical state: colorless oil;
Yield: 67%;

$R_f = 0.4$ (silica gel, PE:EtOAc = 20:1);

H NMR (400 MHz, CDCl$_3$): δ 7.22 – 7.17 (m, 1H), 6.55 – 6.52 (m, 1H), 6.46 – 6.44(m, 2H), 3.87 – 3.84 (m, 4H), 3.80 (s, 3H), 3.17 – 3.14 (m, 4H);

C NMR (100 MHz, CDCl$_3$): δ 160.7, 152.8, 123.0, 108.6, 104.8, 102.3, 67.0, 55.3, 49.4;

HRMS (ESI-TOF): calcd for C$_{11}$H$_{16}$NO$_2$ $[\text{M+H}^+]$ 194.1176, found 194.1177.

Both the proton and carbon NMR match the literature reported data.2

4-(3-(Trifluoromethoxy)phenyl)morpholine (3k)

Physical state: colorless oil;
Yield: 38%;

$R_f = 0.4$ (silica gel, PE:EtOAc = 20:1);

H NMR (400 MHz, CDCl$_3$): δ 7.28 – 7.24 (m, 1H), 6.83 – 6.80 (m, 1H), 6.73 – 6.71 (m, 2H), 3.87 – 3.85 (m, 4H), 3.18 – 3.16 (m, 4H);

C NMR (100 MHz, CDCl$_3$): δ 152.7, 150.4, 130.2, 120.6 (q, $J = 255.2$ Hz), 113.6, 111.8, 108.2, 66.8, 48.9;

F NMR (376 MHz, CDCl$_3$) δ –57.47;

HRMS (ESI-TOF): calcd for C$_{11}$H$_{13}$F$_3$NO$_2$ $[\text{M+H}^+]$ 248.0893, found 248.0895.

Both the proton and carbon NMR match the literature reported data.5
Methyl 3-morpholinobenzoate (3l)

Physical state: light yellow oil;
Yield: 75%;

$R_f = 0.4$ (silica gel, PE:EtOAc = 10:1);

1H NMR (400 MHz, CDCl$_3$): δ 7.57 (s, 1H), 7.53 (d, $J = 7.7$ Hz, 1H), 7.32 (t, $J = 7.9$ Hz, 1H), 7.10 – 7.07 (m, 1H), 3.89 (s, 3H), 3.87 – 3.85 (m, 4H), 3.20 – 3.18 (m, 4H);

13C NMR (100 MHz, CDCl$_3$): δ 167.4, 151.3, 131.1, 129.3, 121.1, 120.1, 116.4, 66.9, 52.2, 49.2;

HRMS (ESI-TOF): calc’d for C$_{12}$H$_{16}$NO$_3^+$ [M+H$^+$] 222.1125, found 222.1125.
Both the proton and carbon NMR match the literature reported data.2

4-(3-Nitrophenyl)morpholine (3m, CAS: 116922-22-6)

Physical state: yellow solid;
Yield: 77%;

$R_f = 0.3$ (silica gel, PE:EtOAc = 10:1);

1H NMR (400 MHz, CDCl$_3$): δ 7.73 – 7.66 (m, 2H), 7.40 (t, $J = 8.1$ Hz, 1H), 7.18 (dd, $J = 8.3$, 2.5 Hz, 1H), 3.89 – 3.87 (m, 4H), 3.26 – 3.24 (m, 4H);

13C NMR (100 MHz, CDCl$_3$): δ 152.0, 149.4, 129.9, 121.0, 114.3, 121.0, 116.4, 66.7, 48.6;

HRMS (ESI-TOF): calc’d for C$_{10}$H$_{12}$N$_2$NaO$_3^+$ [M+Na$^+$] 231.0740, found 231.0737.
Both the proton and carbon NMR match the literature reported data.2

4-(4-Fluoro-3-methylphenyl)morpholine (3n)
Physical state: light yellow oil;
Yield: 54%;
\(R_f = 0.35 \) (silica gel, PE:EtOAc = 20:1);

\(^{1}\text{H NMR} \) (400 MHz, CDCl\(_3\)): \(\delta \) 6.91 (t, \(J = 9.0 \text{ Hz} \), 1H), 6.74 – 6.67 (m, 2H), 3.86 – 3.84 (m, 4H), 3.08 – 3.05 (m, 4H), 2.25 (s, 3H);

\(^{13}\text{C NMR} \) (100 MHz, CDCl\(_3\)): \(\delta \) 156.1 (d, \(J = 236.6 \text{ Hz} \)), 147.7 (d, \(J = 2.6 \text{ Hz} \)), 125.2 (d, \(J = 17.8 \text{ Hz} \)), 119.3 (d, \(J = 4.6 \text{ Hz} \)), 115.3 (d, \(J = 22.9 \text{ Hz} \)), 114.9 (d, \(J = 7.5 \text{ Hz} \)), 67.1, 50.5, 15.1 (d, \(J = 3.3 \text{ Hz} \));

\(^{19}\text{F NMR} \) (376 MHz, CDCl\(_3\)) \(\delta \) –128.3;

\(\text{IR} \) (KBr pellet): \(\nu \) 2960, 2854, 1505, 1261, 1223, 1121, 880, 803, 759, 701 cm\(^{-1} \);

\(\text{HRMS (ESI-TOF):} \) calc’d for C\(_{11}\)H\(_{15}\)FNO\(^+\) \([\text{M+H}^+]\) 196.1132, found 196.1133.

4-(3-Fluoro-5-methylphenyl)morpholine (3o)

Physical state: light yellow oil;
Yield: 56%;
\(R_f = 0.5 \) (silica gel, PE:EtOAc = 20:1);

\(^{1}\text{H NMR} \) (400 MHz, CDCl\(_3\)): \(\delta \) 6.49 (s, 1H), 6.41 (s, 1H), 6.39 (s, 1H), 3.85 – 3.83 (m, 4H), 3.15 – 3.13 (m, 4H), 2.30 (s, 3H);

\(^{13}\text{C NMR} \) (100 MHz, CDCl\(_3\)): \(\delta \) 163.9 (d, \(J = 242.6 \text{ Hz} \)), 152.8 (d, \(J = 10.5 \text{ Hz} \)), 140.7 (d, \(J = 9.7 \text{ Hz} \)), 111.7 (d, \(J = 2.2 \text{ Hz} \)), 107.3 (d, \(J = 21.3 \text{ Hz} \)), 99.8 (d, \(J = 25.3 \text{ Hz} \)), 66.9, 49.1, 21.9 (d, \(J = 2.3 \text{ Hz} \));

\(^{19}\text{F NMR} \) (376 MHz, CDCl\(_3\)) \(\delta \) –113.4;

\(\text{IR} \) (KBr pellet): \(\nu \) 2961, 2855, 1614, 1589, 1450, 1268, 1194, 1134, 1123, 1019 cm\(^{-1} \);

\(\text{HRMS (ESI-TOF):} \) calc’d for C\(_{11}\)H\(_{15}\)FNO\(^+\) \([\text{M+H}^+]\) 196.1132, found 196.1135.

4-(3-Chloro-5-methylphenyl)morpholine (3p)
Physical state: light yellow oil;
Yield: 62%;
$R_f = 0.4$ (silica gel, PE:EtOAc = 30:1);
1H NMR (400 MHz, CDCl$_3$): δ 6.69 – 6.68 (m, 2H), 6.59 (s, 1H), 3.85 – 3.83 (m, 4H), 3.15 – 3.12 (m, 4H), 2.29 (s, 3H);
13C NMR (100 MHz, CDCl$_3$): δ 152.3, 140.4, 134.8, 120.7, 114.6, 112.9, 66.9, 49.1, 21.7;
IR (KBr pellet): ν 2961, 2854, 1600, 1572, 1449, 1250, 1122, 992, 890, 828 cm$^{-1}$;
HRMS (ESI-TOF): calc’d for C$_{11}$H$_{15}$ClNO$^+$ [M+H$^+$] 212.0837, found 212.0839.

4-(3,5-Dimethylphenyl)morpholine (3q, CAS: 16800-77-4)

Physical state: light yellow oil;
Yield: 60%;
$R_f = 0.5$ (silica gel, PE:EtOAc = 20:1);
1H NMR (400 MHz, CDCl$_3$): δ 6.57 (s, 3H), 3.87 – 3.85 (m, 4H), 3.16 – 3.14 (m, 4H), 2.30 (s, 6H);
13C NMR (100 MHz, CDCl$_3$): δ 151.5, 138.8, 122.1, 113.8, 67.1, 49.7, 21.8;
HRMS (ESI-TOF): calc’d for C$_{12}$H$_{18}$NO$^+$ [M+H$^+$] 192.1383, found 192.1387.
Both the proton and carbon NMR match the literature reported data.\(^6\)

Methyl 3-methyl-5-morpholinobenzoate (3r)
Physical state: colorless oil;

Yield: 74%;

$R_f = 0.3$ (silica gel, PE:EtOAc = 10:1);

1H NMR (400 MHz, CDCl$_3$): δ 7.68 – 7.66 (m, 2H), 7.23 (d, $J = 7.6$ Hz, 1H), 3.89 (s, 3H), 3.86 – 3.84 (m, 4H), 2.94 – 2.92 (m, 4H), 2.36 (s, 3H);

^{13}C NMR (100 MHz, CDCl$_3$): δ 167.3, 151.4, 138.5, 131.3, 128.8, 124.7, 120.2, 67.4, 52.3, 52.1, 18.3;

IR (KBr pellet): ν 2952, 2852, 1720, 1435, 1270, 1251, 1117, 1000, 941, 762 cm$^{-1}$;

HRMS (ESI-TOF): calc’d for C$_{13}$H$_{18}$NO$_3^+$ [M+H$^+$] 236.1281, found 236.1283.

4-(3,5-Difluorophenyl)morpholine (3s, CAS: 736991-31-4)

Physical state: light yellow oil;

Yield: 69%;

$R_f = 0.6$ (silica gel, PE:EtOAc = 10:1);

1H NMR (400 MHz, CDCl$_3$): δ 6.39 – 6.32 (m, 2H), 6.28 (tt, $J = 8.8, 2.2$ Hz, 1H), 3.84 – 3.82 (m, 4H), 3.15 – 3.13 (m, 4H);

^{13}C NMR (100 MHz, CDCl$_3$): δ 164.1 (dd, $J = 244.3, 15.8$ Hz), 153.4 (t, $J = 12.2$ Hz), 98.0 – 97.7 (m), 94.6 (t, $J = 26.1$ Hz), 66.6, 48.4;

^{19}F NMR (376 MHz, CDCl$_3$): δ -119.0 (s);

HRMS (ESI-TOF): calc’d for C$_{10}$H$_{12}$F$_2$NO$^+$ [M+H$^+$] 200.0881, found 200.0877.

Both the proton and carbon NMR match the literature reported data.

4-(3,5-Dimethoxyphenyl)morpholine (3t, CAS: 102739-73-1)

Physical state: colorless oil;
Yield: 52%;
R_f = 0.3 (silica gel, PE:EtOAc = 10:1);

¹H NMR (400 MHz, CDCl₃): δ 6.084 – 6.079 (m, 2H), 6.05 – 6.04 (m, 1H), 3.86 – 3.83 (m, 4H), 3.78 (s, 6H), 3.15 – 3.12 (m, 4H);

¹³C NMR (100 MHz, CDCl₃): δ 161.6, 153.4, 94.8, 91.9, 67.0, 55.4, 49.5;

HRMS (ESI-TOF): calc’d for C₁₂H₁₈NO₃⁺ [M+H⁺] 224.1281, found 224.1276.
Both the proton and carbon NMR match the literature reported data.⁴

Methyl 3-fluoro-5-morpholinobenzoate (3u)

![Methyl 3-fluoro-5-morpholinobenzoate](image)

Physical state: colorless oil;
Yield: 50%;
R_f = 0.4 (silica gel, PE:EtOAc = 10:1);

¹H NMR (400 MHz, CDCl₃): δ 7.36 (s, 1H), 7.20 – 7.17 (m, 1H), 6.74 (dt, J = 11.6, 2.3 Hz, 1H), 3.90 (s, 3H), 3.87 – 3.84 (m, 4H), 3.21 – 3.19 (m, 4H);

¹³C NMR (100 MHz, CDCl₃): δ 166.5 (d, J = 3.7 Hz), 163.6 (d, J = 244.1 Hz), 152.8 (d, J = 9.9 Hz), 132.5 (d, J = 9.8 Hz), 112.0 (d, J = 2.3 Hz), 107.2 (d, J = 23.8 Hz), 106.5 (d, J = 25.5 Hz), 66.7, 52.5, 48.6;

¹⁹F NMR (376 MHz, CDCl₃): δ –111.4;
IR (KBr pellet): ν 2957, 2855, 1723, 1613, 1588, 1448, 1277, 1122, 1008, 766 cm^{−1};
HRMS (ESI-TOF): calc’d for C₁₂H₁₅FNO₃⁺ [M+H⁺] 240.1030, found 240.1024.

4-(3-((2-Bromophenoxy)methyl)phenyl)morpholine (3v)

![4-(3-((2-Bromophenoxy)methyl)phenyl)morpholine](image)

Physical state: colorless oil;
Yield: 55%;
$R_f = 0.3$ (silica gel, PE:EtOAc = 6:1);

1H NMR (400 MHz, CDCl$_3$): δ 7.56 (dd, $J = 7.9$, 1.6 Hz, 1H), 7.31 – 7.21 (m, 2H), 7.09 (s, 1H), 6.97 – 6.93 (m, 2H), 6.88 – 6.83 (m, 2H), 5.13 (s, 2H), 3.88 – 3.86 (m, 4H), 3.20 – 3.18 (m, 4H);

13C NMR (100 MHz, CDCl$_3$): δ 155.1, 151.7, 137.7, 133.5, 129.5, 128.6, 122.3, 118.5, 115.2, 114.1, 114.0, 112.6, 71.0, 67.0, 49.3;

IR (KBr pellet): ν 2919, 2850, 1603, 1585, 1477, 1441, 1243, 1121, 1029c, 747 cm$^{-1}$;

HRMS (ESI-TOF): calc’d for C$_{17}$H$_{19}$BrNO$_2$+ [M+H$^+$] 348.0594, found 348.0589.

4-(3-((2-Iodophenoxy)methyl)phenyl)morpholine (3w)

Physical state: colorless oil;

Yield: 51%;

$R_f = 0.4$ (silica gel, PE:EtOAc = 5:1);

1H NMR (400 MHz, CDCl$_3$): δ 7.79 (dd, $J = 7.8$, 1.6 Hz, 1H), 7.30 – 7.25 (m, 2H), 7.14 (t, $J = 1.9$ Hz, 1H), 7.00 – 6.95 (m, 1H), 6.88 – 6.84 (m, 2H), 6.72 (td, $J = 7.6$, 1.3 Hz, 1H), 5.12 (s, 2H), 3.88 – 3.86 (m, 4H), 3.21 – 3.18 (m, 4H);

13C NMR (100 MHz, CDCl$_3$): δ 157.3, 151.7, 139.6, 137.7, 129.6, 129.4, 123.0, 118.4, 115.2, 114.2, 112.9, 87.0, 71.0, 67.0, 49.4;

IR (KBr pellet): ν 2958, 2852, 2360, 1603, 1583, 1470, 1244, 1121, 1017, 748 cm$^{-1}$;

HRMS (ESI-TOF): calc’d for C$_{17}$H$_{19}$INO$_2$+ [M+H$^+$] 396.0455, found 396.0454.

4-(2-Fluoro-6-methylpyridin-4-yl)morpholine (3x)

Physical state: colorless oil;
Yield: 43%;

\[R_f = 0.4 \text{ (silica gel, PE:EtOAc = 5:1)}; \]

1H NMR (400 MHz, CDCl$_3$): δ 7.56 (s, 1H), 7.04 (dd, $J = 10.1$, 1.9 Hz, 1H), 3.87 – 3.85 (m, 4H), 3.10 – 3.07 (m, 4H), 2.28 (s, 3H);

^{13}C NMR (100 MHz, CDCl$_3$): δ 154.5 (d, $J = 236.8$ Hz), 138.2 (d, $J = 14.3$ Hz), 134.5 (d, $J = 23.8$ Hz), 131.6 (d, $J = 4.6$ Hz), 128.2 (d, $J = 4.8$ Hz), 66.9, 50.4 (d, $J = 3.7$ Hz), 17.8;

^{19}F NMR (376 MHz, CDCl$_3$): δ –78.1;

IR (KBr pellet): ν 2965, 2857, 1740, 1451, 1249, 1102, 1048, 1008, 858, 709 cm$^{-1}$;

HRMS (ESI-TOF): calc’d for C$_{10}$H$_{14}$FN$_2$O$^+$ [M+Na$^+$] 197.1085, found 197.1086.

4-(2-Methoxy-6-methylpyridin-4-yl)morpholine (3y)

Physical state: colorless oil;

Yield: 44%;

\[R_f = 0.2 \text{ (silica gel, PE:EtOAc = 20:1)}; \]

1H NMR (400 MHz, CDCl$_3$): δ 6.25 (d, $J = 1.9$ Hz, 1H), 5.88 (d, $J = 2.0$ Hz, 1H), 3.88 (s, 3H), 3.81 – 3.79 (m, 4H), 3.23 – 3.21 (m, 4H), 2.36 (s, 3H);

^{13}C NMR (100 MHz, CDCl$_3$): δ 165.6, 158.6, 156.6, 102.9, 90.3, 66.6, 53.4, 46.9, 24.7;

IR (KBr pellet): ν 2961, 2854, 1606, 1556, 1453, 1205, 1123, 1080, 1051, 818 cm$^{-1}$;

HRMS (ESI-TOF): calc’d for C$_{11}$H$_{17}$N$_2$O$_2$ $^+ [M+H]^+$ 209.1285, found 209.1289.

4-(Quinolin-6-yl)morpholine (3z, CAS: 1275591-19-9)

Physical state: yellow solid;
Melting point: 93 – 95 °C;
Yield: 74%;
$R_f = 0.2$ (silica gel, PE:EtOAc = 3:1);

1H NMR (400 MHz, CDCl$_3$): δ 8.72 (dd, $J = 4.3$, 1.6 Hz, 1H), 8.01 – 7.98 (m, 2H), 7.47 (dd, $J = 9.3$, 2.8 Hz, 1H), 7.31 (dd, $J = 8.3$, 4.2 Hz, 1H), 7.02 (d, $J = 2.7$ Hz, 1H), 3.92 – 3.90 (m, 4H), 3.29 – 3.27 (m, 4H);

13C NMR (100 MHz, CDCl$_3$): δ 149.4, 147.9, 144.1, 134.9, 130.2, 129.5, 122.2, 121.57, 109.1, 66.9, 49.5;

HRMS (ESI-TOF): calc’d for C$_{13}$H$_{13}$N$_2$O$^+$ [M+H$^+$] 215.1179, found 215.1183.

Both the proton and carbon NMR match the literature reported data.4

4,4’-(5-Fluoro-1,3-phenylene)dimorpholine (3aa)

Physical state: white solid;
Boiling point: 98 – 100 °C;
Yield: 42%;
$R_f = 0.3$ (silica gel, PE:EtOAc = 5:1);

1H NMR (400 MHz, CDCl$_3$): δ 6.18 – 6.16 (m, 2H), 6.13 (d, $J = 2.1$ Hz, 1H), 3.85 – 3.82 (m, 8H), 3.14 – 3.12 (m, 8H);

13C NMR (100 MHz, CDCl$_3$): δ 164.8 (d, $J = 240.1$ Hz), 153.5 (d, $J = 12.1$ Hz), 98.4 (d, $J = 2.0$ Hz), 94.9 (d, $J = 25.7$ Hz), 66.9, 49.3;

19F NMR (376 MHz, CDCl$_3$): δ -109.7;

IR (KBr pellet): ν 2959, 2853, 1614, 1581, 1449, 1267, 1203, 1121, 1005, 814 cm$^{-1}$;

HRMS (ESI-TOF): calc’d for C$_{14}$H$_{20}$FN$_2$O$_2^+$ [M+H$^+$] 267.1503, found 267.1502.

4,4’-(5-Chloro-1,3-phenylene)dimorpholine (3ab, CAS: 55086-81-2)
Physical state: colorless oil

Yield: 47%;

$R_f = 0.3$ (silica gel, PE:EtOAc = 5:1);

1H NMR (400 MHz, CDCl$_3$): δ 6.43 (s, 1H), 6.42 (s, 1H), 6.28 (t, $J = 2.1$ Hz, 1H), 3.84 – 3.82 (m, 8H), 3.14 – 3.12 (m, 8H);

13C NMR (100 MHz, CDCl$_3$): δ 153.1, 135.8, 108.0, 101.5, 66.9, 49.3;

IR (KBr pellet): v 2959, 2853, 1591, 1565, 1447, 1204, 1121, 1002, 940, 817 cm$^{-1}$;

HRMS (ESI-TOF): calc’d for C$_{14}$H$_{20}$ClN$_2$O$_2$ $^{[M+H]^+}$ 283.1208, found 283.1207.

4,4'-(5-Bromo-1,3-phenylene)dimorpholine (3ac)

Physical state: colorless oil;

Yield: 36%;

$R_f = 0.4$ (silica gel, PE:EtOAc = 5:1);

1H NMR (400 MHz, CDCl$_3$): δ 6.57 (s, 1H), 6.57 (s, 1H), 6.32 (t, $J = 2.1$ Hz, 1H), 3.84 – 3.81 (m, 8H), 3.14 – 3.11 (m, 8H);

13C NMR (100 MHz, CDCl$_3$): δ 153.3, 124.1, 111.0, 102.1, 66.9, 49.4;

IR (KBr pellet): v 2958, 2852, 1594, 1557, 1446, 1203, 1120, 1001, 929, 763 cm$^{-1}$;

HRMS (ESI-TOF): calc’d for C$_{14}$H$_{20}$BrN$_2$O$_2$ $^{[M+H]^+}$ 327.0703, found 327.0704.

Methyl 2-(bis(tert-butoxycarbonyl)amino)-3-(3,5-dimorpholinophenyl)propanoate (3ad)
Physical state: colorless oil;
Yield: 26%;
$R_f = 0.3$ (silica gel, PE:EtOAc = 2:1);

1H NMR (400 MHz, CDCl$_3$): δ 6.30 – 6.28 (m, 3H), 5.13 (dd, $J = 10.5$, 4.8 Hz, 1H), 3.84 – 3.81 (m, 8H), 3.74 (s, 3H), 3.32 (dd, $J = 14.0$, 4.8 Hz, 1H), 3.17 – 3.12 (m, 1H), 3.12 – 3.09 (m, 8H), 1.39 (s, 18H);

13C NMR (100 MHz, CDCl$_3$): δ 171.1, 152.5, 151.9, 139.2, 109.9, 102.7, 83.0, 67.1, 59.4, 52.4, 49.9, 36.8, 28.0;

IR (KBr pellet): ν 2920, 2851, 1744, 1594, 1367, 1253, 1141, 1121, 1004, 872 cm$^{-1}$;

HRMS (ESI-TOF): calc’d for C$_{28}$H$_{43}$N$_3$NaO$_8$ $^+ [M+Na^+]$ 572.2941, found 572.2941.

1-(Naphthalen-2-yl)piperidine (3B, CAS: 5465-85-0)

Physical state: white solid;
Yield: 57%;
$R_f = 0.4$ (silica gel, PE:EtOAc = 20:1);

1H NMR (400 MHz, CDCl$_3$): δ 7.72 – 7.64 (m, 3H), 7.39 – 7.35 (m, 1H), 7.30 – 7.23 (m, 2H), 7.12 (d, $J = 2.5$ Hz, 1H), 3.28 – 3.21 (m, 4H), 1.79 – 1.73 (m, 4H), 1.65 – 1.58 (m, 2H);

13C NMR (100 MHz, CDCl$_3$): δ 150.2, 134.8, 128.6, 128.4, 127.5, 126.8, 126.2, 123.2, 120.3, 110.5, 51.2, 26.0, 24.5;

HRMS (ESI-TOF): calc’d for C$_{15}$H$_{18}$N$^+ [M+H^+]$ 212.1434, found 212.1432.

Both the proton and carbon NMR match the literature reported data.8
4-Methyl-1-(naphthalen-2-yl)piperidine (3C)

Physical state: yellow solid;
Melting point: 44 – 46 °C;
Yield: 70%;
Rf = 0.5 (silica gel, PE:EtOAc = 15:1);

1H NMR (400 MHz, CDCl3): δ 7.64 – 7.59 (m, 3H), 7.33 – 7.29 (m, 1H), 7.22 – 7.18 (m, 2H), 7.06 (s, 1H), 3.72 – 3.68 (m, 2H), 2.73 – 2.66 (m, 2H), 1.73 – 1.69 (m, 2H), 1.55 – 1.42 (m, 2H), 1.39 – 1.29 (m, 2H), 0.93 (d, J = 6.4 Hz, 3H);

13C NMR (100 MHz, CDCl3): δ 149.9, 134.8, 128.6, 128.4, 127.5, 126.8, 126.2, 123.2, 120.3, 110.5, 50.5, 34.3, 30.9, 22.1;

IR (KBr pellet): ν 2948, 2922, 1627, 1597, 1508, 1338, 1214, 1135, 844, 744 cm⁻¹;

HRMS (ESI-TOF): calc’d for C16H20N+ [M+H⁺] 226.1590, found 226.1592.

1-(Naphthalen-2-yl)-4-phenylpiperidine (3D, CAS: 1185746-63-7)

Physical state: yellow solid;
Melting point: 116 – 118 °C;
Yield: 72%;
Rf = 0.5 (silica gel, PE:EtOAc = 15:1);

1H NMR (400 MHz, CDCl3): δ 7.74 – 7.69 (m, 3H), 7.42 – 7.37 (m, 1H), 7.35 – 7.18 (m, 8H), 3.95 – 3.92 (m, 2H), 2.93 – 2.86 (m, 2H), 2.74 – 2.66 (m, 1H), 2.02 – 1.91 (m, 4H);

13C NMR (100 MHz, CDCl3): δ 149.8, 146.2, 134.8, 128.8, 128.7, 128.5, 127.5, 127.01, 126.8, 126.5, 126.3, 123.4, 120.3, 110.7, 51.0, 42.7, 33.5;

HRMS (ESI-TOF): calc’d for C21H22N+ [M+H⁺] 288.1747, found 288.1747.
Both the proton and carbon NMR match the literature reported data.\(^9\)

1-(Naphthalen-2-yl)piperidin-4-ol (3E)

\[
\text{Physical state: white solid;}
\]
\[
\text{Melting point: 94 – 96 °C;}
\]
\[
\text{Yield: 73%;}
\]
\[
R_f = 0.3 \text{ (silica gel, PE:EtOAc = 2:1);}
\]
\[
\text{H NMR (400 MHz, CDCl}_3\text{): } \delta 7.72 - 7.66 \text{ (m, 3H), 7.41 - 7.37 \text{ (m, 1H), 7.30 - 7.24 (m, 2H), 7.13 (d, } J = 2.4 \text{ Hz, 1H), 3.89 - 3.83 \text{ (m, 1H), 3.68 - 3.63 (m, 2H), 3.02 - 2.95 (m, 2H), 2.07 - 2.01 \text{ (m, 2H), 1.78 - 1.69 (m, 3H);}}
\]
\[
\text{C NMR (100 MHz, CDCl}_3\text{): } \delta 149.2, 134.7, 128.8, 128.5, 127.5, 126.8, 126.3, 123.4, 120.1, 110.7, 68.0, 47.8, 34.3;}
\]
\[
\text{IR (KBr pellet): } v 2939, 2922, 1628, 1508, 1382, 1209, 1062, 833, 738, 475 \text{ cm}^{-1};
\]
\[
\text{HRMS (ESI-TOF): calc’d for C}_{15}\text{H}_{18}\text{NO}^+ [M+H^+] 228.1383, \text{ found 228.1378.}
\]

4-((tert-Butyldimethylsilyl)oxy)-1-(naphthalen-2-yl)piperidine (3F)

\[
\text{Physical state: white solid;}
\]
\[
\text{Melting point: 74 – 76 °C;}
\]
\[
\text{Yield: 45%;}
\]
\[
R_f = 0.7 \text{ (silica gel, PE:EtOAc = 20:1);}
\]
\[
\text{H NMR (400 MHz, CDCl}_3\text{): } \delta 7.71 - 7.66 \text{ (m, 3H), 7.40 - 7.36 \text{ (m, 1H), 7.30 - 7.24 (m, 2H), 7.14 (d, } J = 1.9 \text{ Hz, 1H), 3.94 - 3.88 \text{ (m, 1H), 3.57 - 3.51 (m, 2H), 3.14 - 3.08 (m, 2H), 1.96 - 1.90 \text{ (m, 2H), 1.77 - 1.69 \text{ (m, 2H), 0.91 (s, 9H), 0.09 (s, 6H);}}
\]
\[^{13}\text{C NMR}\] (100 MHz, CDCl\(_3\)): \(\delta 149.5, 134.8, 128.7, 128.4, 127.5, 126.8, 126.3, 123.3, 120.0, 110.5, 67.6, 47.1, 34.5, 26.0, 18.5, -4.5;\)

\[^{1}\text{H NMR}\] (400 MHz, CDCl\(_3\)): \(\delta 7.70 – 7.66 \text{ (m, 3H)}, 7.40 – 7.36 \text{ (m, 1H)}, 7.30 – 7.25 \text{ (m, 2H)}, 7.14 \text{ (s, 1H)}, 3.79 – 3.75 \text{ (m, 1H)}, 3.66 – 3.53 \text{ (m, 3H)}, 2.83 – 2.77 \text{ (m, 1H)}, 2.66 – 2.60 \text{ (m, 1H)}, 2.01 – 1.90 \text{ (m, 1H)}, 1.87 – 1.67 \text{ (m, 4H)}, 1.26 – 1.11 \text{ (m, 1H)};\)

\[^{13}\text{C NMR}\] (100 MHz, CDCl\(_3\)): \(\delta 149.9, 134.7, 128.7, 128.5, 127.5, 126.8, 126.3, 123.4, 120.4, 110.8, 66.2, 53.8, 51.0, 38.7, 27.2, 24.8;\)

IR (KBr pellet): \(\nu 2928, 2853, 1627, 1597, 1508, 1390, 1216, 1117, 1030, 746 \text{ cm}^{-1};\)

HRMS (ESI-TOF): calc’d for C\(_{16}\)H\(_{20}\)NO\(^+\) [M+H\(^+\)] 242.1539, found 242.1547.

(1-(Naphthalen-2-yl)piperidin-4-yl)methanol (3G)

Physical state: purple solid;

Yield: 83%;

\(R_f = 0.4\) (silica gel, PE:EtOAc = 2:1);

(1-(Naphthalen-2-yl)piperidin-4-yl)diphenylmethanol (3H)

Physical state: yellow solid;

Melting point: 110 – 112 °C;

Yield: 53%;

\(R_f = 0.6\) (silica gel, PE:EtOAc = 5:1);

\[^{1}\text{H NMR}\] (400 MHz, CDCl\(_3\)): \(\delta 7.70 – 7.65 \text{ (m, 3H)}, 7.53 – 7.51 \text{ (m, 4H)}, 7.40 – 7.19 \text{ (m, 9H)}, 7.10 \text{ (s, 1H)}, 3.86 – 3.81 \text{ (m, 2H)}, 2.84 – 2.77 \text{ (m, 2H)}, 2.66 – 2.58 \text{ (m, 1H)}, \)
2.13 (s, 1H), 1.69 – 1.60 (m, 4H);

13C NMR (100 MHz, CDCl$_3$): δ 149.5, 145.9, 134.7, 128.7, 128.5, 128.4, 127.5, 126.8, 126.3, 125.9, 123.4, 120.2, 110.6, 79.7, 50.7, 44.3, 26.6;

IR (KBr pellet): ν 2956, 1626, 1596, 1508, 1446, 1387, 1180, 1064, 746, 703 cm$^{-1}$;

HRMS (ESI-TOF): calc’d for C$_{28}$H$_{28}$NO$^+$ [M+H$^+$] 394.2165, found 394.2169.

8-(Naphthalen-2-yl)-1,4-dioxa-8-azaspiro[4.5]decane (3I)

![Chemical structure](image)

Physical state: yellow solid;

Melting point: 90 – 92 °C;

Yield: 57%;

R_f = 0.6 (silica gel, PE:EtOAc = 5:1);

1H NMR (400 MHz, CDCl$_3$): δ 7.74 – 7.68 (m, 3H), 7.43 – 7.39 (m, 1H), 7.32 – 7.27 (m, 2H), 7.16 (d, J = 2.4 Hz, 1H), 4.02 (s, 4H), 3.47 – 3.42 (m, 4H), 1.95 – 1.89 (m, 4H);

13C NMR (100 MHz, CDCl$_3$): δ 148.9, 134.7, 128.8, 128.5, 127.5, 126.8, 126.3, 123.4, 120.1, 110.8, 107.3, 64.5, 48.2, 34.7;

IR (KBr pellet): ν 2957, 1627, 1597, 1508, 1210, 1142, 1099, 1035, 842, 747 cm$^{-1}$;

HRMS (ESI-TOF): calc’d for C$_{17}$H$_{20}$NO$_2^+$ [M+H$^+$] 270.1489, found 270.1489.

Ethyl 1-(naphthalen-2-yl)piperidine-3-carboxylate (3J)

![Chemical structure](image)

Physical state: yellow oil;

Yield: 71%;

R_f = 0.5 (silica gel, PE:EtOAc = 8:1);

1H NMR (400 MHz, CDCl$_3$): δ 7.74 – 7.69 (m, 3H), 7.43 – 7.39 (m, 1H), 7.32 – 7.29
(m, 2H), 7.17 (s, 1H), 4.21 (q, $J = 7.1$ Hz, 2H), 3.85 – 3.81 (m, 1H), 3.63 – 3.59 (m, 1H), 3.17 – 3.11 (m, 1H), 2.95 – 2.88 (m, 1H), 2.79 – 2.72 (m, 1H), 2.09 – 2.06 (m, 1H), 1.92 – 1.67 (m, 3H), 1.31 (t, $J = 7.1$ Hz, 3H);

13C NMR (100 MHz, CDCl$_3$): δ 174.0, 149.4, 134.7, 128.8, 128.6, 127.5, 126.8, 126.3, 123.5, 120.4, 110.9, 60.7, 52.6, 50.3, 41.6, 27.1, 24.4, 14.4;

IR (KBr pellet): ν 2936, 1728, 1627, 1598, 1508, 1389, 1178, 1034, 838, 746 cm$^{-1}$;

HRMS (ESI-TOF): calc’d for C$_{18}$H$_{22}$NO$_2$ $^{+}$ [M+H$^+$] 284.1645, found 284.1639.

Ethyl 1-(naphthalen-2-yl)piperidine-4-carboxylate (3K)

![Chemical Structure Image]

Physical state: yellow oil;

Yield: 59%;

R_f = 0.4 (silica gel, PE:EtOAc = 20:1);

1H NMR (400 MHz, CDCl$_3$): δ 7.72 – 7.66 (m, 3H), 7.41-7.37 (m, 1H), 7.30 – 7.25 (m, 2H), 7.12 (d, $J = 2.3$ Hz, 1H), 4.17 (q, $J = 7.1$ Hz, 2H), 3.75 (dt, $J = 12.4$, 3.2 Hz, 2H), 2.86 (td, $J = 12.3$, 2.8 Hz, 2H), 2.51 – 2.43 (m, 1H), 2.15 – 1.86 (m, 4H), 1.28 (t, $J = 7.2$ Hz, 3H);

13C NMR (100 MHz, CDCl$_3$): δ 175.0, 149.5, 134.7, 128.8, 128.6, 127.5, 126.8, 126.3, 123.5, 120.2, 110.8, 60.6, 49.7, 41.2, 28.2, 14.4;

IR (KBr pellet): ν 2952, 1729, 1627, 1597, 1508, 1389, 1173, 1044, 959, 746 cm$^{-1}$;

HRMS (ESI-TOF): calc’d for C$_{18}$H$_{22}$NO$_2$ $^{+}$ [M+H$^+$] 284.1645, found 284.1646.

(4-(Naphthalen-2-yl)piperazin-1-yl)(phenyl)methanone (3L)

![Chemical Structure Image]

Physical state: yellow oil;

Yield: 43%;
$R_f = 0.4$ (silica gel, PE:EtOAc = 2:1);

1H NMR (400 MHz, CDCl$_3$): δ 7.76 – 7.68 (m, 3H), 7.49 – 7.39 (m, 6H), 7.35 – 7.29 (m, 1H), 7.26 – 7.24 (m, 1H), 7.12 (s, 1H), 3.99 (brs, 2H), 3.64 (brs, 2H), 3.35 (brs, 2H), 3.21 (brs, 2H);

13C NMR (100 MHz, CDCl$_3$): δ 170.5, 148.8, 135.7, 134.5, 130.0, 129.1, 129.0, 128.7, 127.6, 127.2, 126.9, 126.6, 124.0, 119.8, 111.2, 50.3, 50.1, 47.7, 42.2;

IR (KBr pellet): ν 2859, 1699, 1627, 1597, 1429, 1242, 1120, 963, 747 cm$^{-1}$;

HRMS (ESI-TOF): calc’d for C$_{21}$H$_{21}$N$_2$O$^+$ [M+H$^+$] 317.1648, found 317.1649.

Benzyl 4-(naphthalen-2-yl)piperazine-1-carboxylate (3M)

Physical state: yellow solid;

Melting point: 66 – 68 °C;

Yield: 50%;

$R_f = 0.5$ (silica gel, PE:EtOAc = 4:1);

1H NMR (400 MHz, CDCl$_3$): δ 7.76 – 7.66 (m, 3H), 7.44 – 7.28 (m, 7H), 7.27 – 7.22 (m, 1H), 7.11 (s, 1H), 5.18 (s, 2H), 3.71 (t, $J = 5.1$ Hz, 4H), 3.24 (s, 4H);

13C NMR (100 MHz, CDCl$_3$): δ 155.4, 149.0, 136.7, 134.5, 129.0, 128.9, 128.7, 128.2, 128.1, 127.6, 126.9, 126.5, 123.9, 119.9, 111.1, 67.4, 49.9, 43.9;

IR (KBr pellet): ν 2820, 1702, 1627, 1597, 1429, 1242, 1120, 963, 747 cm$^{-1}$;

HRMS (ESI-TOF): calc’d for C$_{22}$H$_{23}$N$_2$O$_2^+$ [M+H$^+$] 347.1754, found 347.1751.

tert-Butyl 4-(naphthalen-2-yl)piperazine-1-carboxylate (3N, CAS: 684249-11-4)

Physical state: white solid;

Melting point: 79 – 81 °C;
Yield: 60%;

\(R_f = 0.4\) (silica gel, PE:EtOAc = 20:1);

\(^1\text{H NMR}\) (400 MHz, CDCl\(_3\)): \(\delta\) 7.76 – 7.67 (m, 3H), 7.41 (t, \(J = 7.1\) Hz, 1H), 7.34 – 7.24 (m, 2H), 7.12 (d, \(J = 2.3\) Hz, 1H), 3.63 (t, \(J = 5.1\) Hz, 4H), 3.23 (t, \(J = 5.2\) Hz, 4H), 1.50 (s, 9H);

\(^{13}\text{C NMR}\) (100 MHz, CDCl\(_3\)): \(\delta\) 154.9, 149.2, 134.6, 129.0, 128.9, 127.6, 126.9, 126.5, 123.8, 119.9, 111.0, 80.1, 49.9, 28.6;

IR (KBr pellet): \(\nu\) 2975, 1695, 1628, 1420, 1365, 1247, 1169, 1122, 961, 746 cm\(^{-1}\);

HRMS (ESI-TOF): calc’d for C\(_{19}\)H\(_{24}\)N\(_2\)O\(_2\)Na\(^+\) [M+Na\(^+\)] 335.1730, found 335.1731.

4-(Naphthalen-2-yl)thiomorpholine (3O)

Physical state: white solid;

Yield: 56%;

\(R_f = 0.6\) (silica gel, PE:EtOAc = 20:1);

\(^1\text{H NMR}\) (400 MHz, CDCl\(_3\)): \(\delta\) 7.75 – 7.68 (m, 3H), 7.44 – 7.40 (m, 1H), 7.33 – 7.29 (m, 1H), 7.22 (dd, \(J = 9.0, 2.5\) Hz, 1H), 7.13 (m, 1H), 3.65 – 3.63 (m, 4H), 2.83 – 2.81 (m, 4H);

\(^{13}\text{C NMR}\) (100 MHz, CDCl\(_3\)): \(\delta\) 149.2, 134.7, 129.0, 128.6, 127.6, 126.8, 126.5, 123.7, 120.3, 111.5, 52.5, 27.1;

HRMS (ESI-TOF): calc’d for C\(_{14}\)H\(_{16}\)NS\(^+\) [M+H\(^+\)] 230.0998, found 230.0993.

Both the proton and carbon NMR match the literature reported data.\(^\text{10}\)

1-(Naphthalen-2-yl)pyrrolidine (3P, CAS: 13672-14-5)

Physical state: white solid;

Yield: 42%;
$R_f = 0.8$ (silica gel, PE:EtOAc = 50:1);

1H NMR (400 MHz, CDCl$_3$): δ 7.70 – 7.62 (m, 3H), 7.36 – 7.32 (m, 1H), 7.17 – 7.14 (m, 1H), 7.00 (dd, $J = 9.0$, 2.5 Hz, 1H), 6.76 (d, $J = 2.4$ Hz, 1H), 3.43 – 3.40 (m, 4H), 2.08 – 2.04 (m, 4H);

13C NMR (100 MHz, CDCl$_3$): δ 146.0, 135.4, 128.9, 127.7, 126.4, 126.3, 125.9, 121.3, 115.8, 104.8, 48.0, 25.7;

HRMS (ESI-TOF): calc’d for C$_{14}$H$_{16}$N$^+$ [M+H$^+$] 198.1277, found 198.1276.

Both the proton and carbon NMR match the literature reported data.8

1-(Naphthalen-2-yl)azepane (3Q, CAS:55045-05-1)

Physical state: yellow oil;

Yield: 33%;

$R_f = 0.6$ (silica gel, PE:EtOAc = 50:1);

1H NMR (400 MHz, CDCl$_3$): δ 7.69 – 7.65 (m, 2H), 7.61 (d, $J = 8.3$ Hz, 1H), 7.36 – 7.32 (m, 1H), 7.17 – 7.10 (m, 2H), 6.88 (d, $J = 2.5$ Hz, 1H), 3.60 – 3.57 (m, 4H), 1.88 – 1.84 (m, 4H), 1.60 – 1.56 (m, 4H);

13C NMR (100 MHz, CDCl$_3$): δ 146.9, 135.5, 129.0, 127.5, 126.2, 126.0, 121.4, 115.3, 104.6, 49.6, 28.0, 27.2;

HRMS (ESI-TOF): calc’d for C$_{16}$H$_{20}$N$^+$ [M+H$^+$] 226.1590, found 226.1591.

Both the proton and carbon NMR match the literature reported data.8

N-Benzyl-N-methylnaphthalen-2-amine (3R, CAS: 447407-87-6)

Physical state: yellow oil;

Yield: 35%;

$R_f = 0.7$ (silica gel, PE:EtOAc = 5:1);
H NMR (400 MHz, CDCl$_3$): δ 7.68 – 7.61 (m, 3H), 7.37 – 7.29 (m, 3H), 7.26 – 7.24 (m, 3H), 7.21 – 7.14 (m, 2H), 6.95 (d, $J = 2.6$ Hz, 1H), 4.64 (s, 2H), 3.09 (s, 3H);

13C NMR (100 MHz, CDCl$_3$): δ 147.8, 139.0, 135.2, 129.0, 128.7, 127.6, 127.1, 127.0, 126.9, 126.4, 126.3, 122.1, 116.3, 106.3, 56.9, 38.8;

HRMS (ESI-TOF): calcd for C$_{18}$H$_{18}$N$^+$ [M+H$^+$] 248.1434, found 248.1427.

Both the proton and carbon NMR match the literature reported data.

4-(6H-Benzocchromen-1-yl)morpholine (5)

Physical state: colorless oil;
Yield: 12%;
R_f = 0.3 (silica gel, PE:EtOAc = 20:1);

1H NMR (400 MHz, CDCl$_3$): δ 8.91 (d, $J = 7.9$ Hz, 1H), 7.34 (t, $J = 7.6$ Hz, 1H), 7.27 – 7.23 (m, 1H), 7.19 – 7.14 (m, 2H), 6.73 – 6.67 (m, 2H), 4.91 (s, 2H), 3.85 – 3.79 (m, 6H), 3.18 (s, 1H), 2.88 (s, 1H);

13C NMR (100 MHz, CDCl$_3$): δ 157.4, 151.0, 131.6, 130.7, 129.7, 128.1, 127.3, 124.9, 124.3, 115.5, 111.9, 111.1, 68.8, 67.0, 52.1;

IR (KBr pellet): ν 2851, 1593, 1446, 1248, 1118, 1029, 977, 798, 741, 722 cm$^{-1}$;

HRMS (ESI-TOF): calcd for C$_{17}$H$_{18}$NO$_2$$^+$ [M+H$^+$] 268.1332, found 268.1326.

6H-Benzocchromene (6, CAS: 229-95-8)

Physical state: colorless oil;
Yield: 84%;
R_f = 0.8 (silica gel, PE:EtOAc = 20:1);

1H NMR (600 MHz, CDCl$_3$): δ 7.74 (d, $J = 7.3$ Hz, 1H), 7.71 (d, $J = 7.6$ Hz, 1H), 7.38
(t, J = 7.1 Hz, 1H), 7.29 – 7.25 (m, 2H), 7.16 (d, J = 7.0 Hz, 1H), 7.06 (t, J = 7.2 Hz, 1H), 7.00 (d, J = 7.8 Hz, 1H), 5.13 (s, 2H).

Both the proton and carbon NMR match the literature reported data.

6. Procedure for the synthesis of compound 4.

\[
\begin{array}{c}
\text{Ph} - \text{Bpin} \\
\text{NBE, Cs}_2\text{CO}_3 \\
\text{Toluene, 80 °C, Ar}
\end{array}
\]

To a 25 mL of Schlenk tube equipped with a magnetic stir bar was charged with aryl iodide 3w (0.16 mmol; 63.0 mg, 1.0 equiv), 2a (0.24 mmol, 49.7 mg, 1.5 equiv), phenylboronic acid pinacol ester (0.24 mmol, 49.0 mg, 1.5 equiv), Pd(OAc)\text{2} (0.008 mmol, 1.8 mg, 0.05 equiv), (2-furyl)\text{3}P (0.032 mmol, 7.4 mg, 0.2 equiv), Cs\text{2}CO\text{3} (0.48 mmol, 156.4 mg, 3.0 equiv), norbornene (0.08 mmol, 7.5 mg, 0.5 equiv), and dry toluene (1.6 mL). The resulting reaction mixture was stirred at r.t. for 10 min under Ar and then heated at 80 °C for 18 h. The reaction was monitored by TLC, after completion of the reaction, the mixture was cooled to r.t., then the mixture was filtered through a thin pad of celite eluting with ethyl acetate (15 mL), and the filtrate was sequentially washed with water, brine, dried over Na\text{2}SO\text{4}, filtered and concentrated in vacuo. The residue was purified by column chromatography on silica gel (PE:EtOAc = 4:1) to yield the desired product 4 (49.0 mg, 71% yield).

Physical state: colorless oil;

\[R_f = 0.4 \text{ (silica gel, PE:EtOAc = 4:1);} \]

\(^1\text{H NMR}\) (400 MHz, CDCl\text{3}): \(\delta \) 7.50 – 7.48 (m, 2H), 7.38 (t, J = 7.6 Hz, 2H), 7.29 – 7.23 (m, 2H), 7.17 (t, J = 8.1 Hz, 1H), 6.80 – 6.67 (m, 5H), 4.97 (s, 2H), 3.86 – 3.79 (m, 4H), 3.50 – 3.44 (m, 4H), 3.04 – 2.96 (m, 4H), 2.81 – 2.73 (m, 4H);

\(^1\text{H NMR}\) (100 MHz, CDCl\text{3}): \(\delta \) 156.6, 151.9, 151.4, 138.6, 136.3, 131.3, 129.1, 128.9, 127.8, 126.5, 125.1, 117.7, 114.4, 113.5, 111.7, 107.9, 70.2, 67.1, 67.0, 51.7, 49.2;

\text{IR}\) (KBr pellet): \(\nu \) 2958, 2852, 1740, 1601, 1583, 1448, 1260, 1117, 792, 700 cm\(^{-1}\);

\text{HRMS}\) (ESI-TOF): calc’d for C\text{27}H\text{31}N\text{2}O\text{3}\text{+} [M+H\text{+}] \text{ 431.2329, found 431.2330.}
7. Procedure for the synthesis of compound 8.

Compound 8 was prepared according to the literature reported procedure.12,13

Method A: In an argon-filled glove box, an 4.0 mL vial equipped with a magnetic stir bar was charged with CuI (0.005 mmol, 1.0 mg, 0.05 equiv), BPMPO (0.01 mmol, 4.0 mg, 0.1 equiv), K\textsubscript{3}PO\textsubscript{4} (0.11 mmol, 23.3 mg, 1.1 equiv), 3\textsubscript{ab} (0.1 mmol, 28.0 mg, 1.0 equiv), then the vial was tightly sealed and transferred out of glovebox. Ammonia aqueous solution (w/w 25%, 0.3 mmol, 46 μL, 3.0 equiv) and DMSO (0.2 mL) were then added into the reaction vessel via syringe. The reaction mixture was stirred at 120 °C for 48 hours. After the reaction vessel was cooled to r.t., then the mixture was directly concentrated \textit{in vacuo}. The residue was purified by column chromatography on silica gel (PE:EtOAc = 2:1) to yield the desired product 8 (16.0 mg, 61% yield, 90% brsm) as a white solid and recovered substrate 3\textsubscript{ab} (10 mg, 32% yield) as a colorless oil.

Method B: In an argon-filled glove box, an 4.0 mL vial equipped with a magnetic stir bar was charged with Cu\textsubscript{2}O (0.008 mmol, 1.2 mg, 0.05 equiv), MNFO (0.008 mmol, 2.32 mg, 0.05 equiv), KOH (0.21 mmol, 11.8 mg, 1.3 equiv), 3\textsubscript{ac} (0.16 mmol, 53.0 mg, 1.0 equiv), then the vial was tightly sealed and transferred out of glovebox. Ammonia aqueous solution (w/w 25%, 0.8 mmol, 64 μL, 5.0 equiv) and EtOH (0.2 mL) were then added into the reaction vessel via syringe. The reaction mixture was stirred at 80 °C for 24 hours. After the reaction vessel was cooled to r.t., then the mixture was concentrated directly \textit{in vacuo}. The residue was purified by column chromatography on silica gel (PE:EtOAc = 2:1) to yield the desired product 8 (27.0 mg, 64% yield) as a white solid.

1H NMR (400 MHz, CDCl\textsubscript{3}): δ 5.92 (t, J = 2.1 Hz, 1H), 5.84 (d, J = 1.9 Hz, 2H), 3.83 – 3.81 (m, 8H), 3.12 – 3.09 (m, 8H);
\[^{13}\text{C} \text{NMR} \text{ (100 MHz, CDCl}_3\): } \delta 153.5, 148.1, 95.8, 95.3, 67.1, 49.7.

\text{HRMS (ESI-TOF): calc’d for C}_{14}\text{H}_{22}\text{N}_3\text{O}_2^+ [M+H]^+ 264.1706, found 264.1701.}

The proton NMR match the literature reported data.14

8. Experimental procedure for gram-scale synthesis of compound 3a.

\begin{center}
\begin{tikzpicture}
 \node[draw] (1a) at (0,0) {1a};
 \node[draw] (2a) at (2,0) {2a};
 \node (3a) at (4,0) {3a};
 \draw[->] (1a) -- (2a) node[midway,above] {Pd(OAc)\textsubscript{2} (10 mol\%) \text{NBE (2.0 equiv)} \text{K}_2\text{CO}_3 (2.5 equiv) \text{DMSO} / \text{Dioxane, 70 °C, air}};
\end{tikzpicture}
\end{center}

To a 250 mL oven-dried Schlenk tube equipped with a magnetic stir bar was charged with 4,4,5,5-tetramethyl-2-(naphthalen-1-yl)-1,3,2-dioxaborolane 1a (2.29 g, 9.0 mmol, 1.5 equiv), Pd(OAc)\textsubscript{2} (135.0 mg, 0.6 mmol, 0.1 equiv), K\textsubscript{2}CO\textsubscript{3} (2.07 g, 15.0 mmol, 2.5 equiv), morpholino benzoate 2a (1.24 g, 6.0 mmol, 1.0 equiv), norbornene (1.13 g, 12.0 mmol, 2.0 equiv), DMSO (20.0 mL) and Dioxane (50 mL) under air. The reaction was stirred at 70 °C for 16 h. The reaction mixture was allowed to cool down to r.t. and extracted with ethyl acetate (3 × 40 mL), and the combined organic extracts were washed with water and brine, dried over Na\textsubscript{2}SO\textsubscript{4}. After filtered and concentrated \textit{in vacuo}, the residue was directly purified by column chromatography on silica gel (PE:EtOAc = 20:1) to yield the desired product 3a (0.92 g, 72\% yield) as a yellow solid.

9. Mechanistic study.

9.1. Preparation of 1-naphthylboronic ester-\textit{d}_7 (1a-\textit{d}).

\begin{center}
\begin{tikzpicture}
 \node[draw] (1a) at (0,0) {1a};
 \node[draw] (2a) at (2,0) {2a};
 \node (3a) at (4,0) {3a};
 \draw[->] (1a) -- (2a) node[midway,above] {NBS \text{AuCl}_3 (0.1 mol\%) \text{DCE, 80 °C} \text{1 BuLi, THF, -78 °C} \text{2) \text{PrO-Bpin}}};
\end{tikzpicture}
\end{center}

1-Bromonaphthalene-\textit{d}_7 was prepared according to the literature reported procedure.15

To a 25 mL oven-dried Schlenk tube equipped with a magnetic stir bar was charged with NBS (356.0 mg, 2.0 mmol, 1.0 equiv), naphthalene-\textit{d}_8 (272.4 mg, 2.0 mmol, equiv) and DCE (4 mL). AuCl\textsubscript{3} (0.003 mmol, 1 mg) was dissolved in another 1 mL DCE. 0.07 mL of this AuCl\textsubscript{3} solution was added to the reaction mixture via syringe. The reaction was stirred at 80 °C for 16 h. Upon completion of bromination, the solvent was removed
under reduced pressure. Then 4.0 mL dry THF was added to the reaction mixture under Ar atmosphere and cooled down to -78 °C. t-BuLi (0.8 mL, 2.0 mmol, 2.5 M in hexane) was added dropwise to the reaction mixture. The temperature was maintained at -78 °C for 1 h and afterwards PrOBpin (446.0 mg, 2.4 mmol) was added. The resulting reaction mixture was allowed to warm to r.t. and stirred for 40 min. The reaction was quenched by saturated NH₄Cl solution and extracted with ethyl acetate (3 × 20 mL), washed with water and brine, dried over Na₂SO₄. After filtered and concentrated in vacuo, the residue was directly purified by column chromatography on silica gel (PE:EtOAc = 20:1) to yield the desired product 1a-d (207 mg, 40%) as a white solid.

1H NMR (400 MHz, CDCl₃): δ 1.43 (s, 12H).

9.2. Deuterium labelling study with DMSO-d₆.

To a 25 mL oven-dried Schlenk tube equipped with a magnetic stir bar was charged with 1a (38.1 mg, 0.15 mmol, 1.5 equiv), 2a (20.7 mg, 0.2 mmol, 1.0 equiv), Pd(OAc)₂ (2.25 mg, 0.01 mmol, 0.1 equiv), K₂CO₃ (34.5 mg, 0.25 mmol, 2.5 equiv), NBE (18.8 mg, 0.2 mmol, 2.0 equiv) and DMSO-d₆ / Dioxane (1.4 mL, v:v=2:5) under air. The reaction was stirred at 70 °C. The reaction was monitored by TLC, after completion of the reaction, the mixture was cooled to r.t., then the mixture was filtered through a thin pad of celite eluting with ethyl acetate (15 mL), and the filtrate was sequentially washed with water, brine, dried over Na₂SO₄. After concentrated in vacuo, the residue was purified by column chromatography on silica gel to yield the desired product 3a-d.

Physical state: yellow solid;

Yield: 82%;

R_f = 0.4 (silica gel, PE:EtOAc = 20:1);

1H NMR (400 MHz, CDCl₃): δ 7.76 – 7.70 (m, 3H), 7.42 (t, J = 7.5 Hz, 1H), 7.31 (t, J = 7.5 Hz, 1H), 7.28 – 7.25 (m, 1H), 7.13 (s, 1H), 3.94 – 3.91 (m, 4H), 3.28 – 3.26 (m,
9.3. Deuterium labelling study with Dioxane-\textit{d}_8.

To a 10 mL oven-dried Schlenk tube equipped with a magnetic stir bar was charged with 1a (38.1 mg, 0.15 mmol, 1.5 equiv), 2a (20.7 mg, 0.2 mmol, 1.0 equiv), Pd(OAc)$_2$ (2.25 mg, 0.01 mmol, 0.1 equiv), K$_2$CO$_3$ (34.5 mg, 0.25 mmol, 2.5 equiv), NBE (18.8 mg, 0.2 mmol, 2.0 equiv) and DMSO / Dioxane-\textit{d}_8 (0.7 mL, v:v=2:5) under air. The reaction was stirred at 70 °C. The reaction was monitored by TLC, after completion of the reaction, the mixture was cooled to r.t., then the mixture was filtered through a thin pad of celite eluting with ethyl acetate (15 mL), and the filtrate was sequentially washed with water, brine, dried over Na$_2$SO$_4$. After concentrated \textit{in vacuo}, the residue was purified by column chromatography on silica gel to yield the desired product 3a-d.

Physical state: yellow solid;

Yield: 61%;

$R_f = 0.4$ (silica gel, PE:EtOAc = 20:1);

1H NMR (400 MHz, CDCl$_3$): δ 7.76 – 7.70 (m, 3H), 7.42 (t, $J = 7.5$ Hz, 1H), 7.31 (t, $J = 7.5$ Hz, 1H), 7.28 – 7.25 (m, 1H), 7.13 (s, 1H), 3.94 – 3.91 (m, 4H), 3.28 – 3.26 (m, 4H).

9.4. Deuterium labelling study with 1-naphthylboronic ester-\textit{d}_7.

To a 25 mL oven-dried Schlenk tube equipped with a magnetic stir bar was charged with 1a-\textit{d} (39.2 mg, 0.15 mmol, 1.5 equiv), 2a (20.7 mg, 0.2 mmol, 1.0 equiv),
Pd(OAc)$_2$ (2.25 mg, 0.01 mmol, 0.1 equiv), K$_2$CO$_3$ (34.5 mg, 0.25 mmol, 2.5 equiv), NBE (18.8 mg, 0.2 mmol, 2.0 equiv) and DMSO / Dioxane (1.4 mL, v:v=2:5) under air. The reaction was stirred at 70 °C. The reaction was monitored by TLC, after completion of the reaction, the mixture was cooled to r.t., then the mixture was filtered through a thin pad of celite eluting with ethyl acetate (15 mL), and the filtrate was sequentially washed with water, brine, dried over Na$_2$SO$_4$. After concentrated in vacuo, the residue was purified by column chromatography on silica gel to yield the desired product 3a-d.

Physical state: yellow solid;
Yield: 61%;
R_f = 0.4 (silica gel, PE:EtOAc = 20:1);
1H NMR (400 MHz, CDCl$_3$): δ 7.13 (s, 0.8H), 3.94 – 3.91 (m, 4H), 3.28 – 3.26 (m, 4H).

9.5. Deuterium labelling study with D$_2$O.

To a 25 mL oven-dried Schlenk tube equipped with a magnetic stir bar was charged with 1a-d (39.2 mg, 0.15 mmol, 1.5 equiv), 2a (20.7 mg, 0.2 mmol, 1.0 equiv), Pd(OAc)$_2$ (2.25 mg, 0.01 mmol, 0.1 equiv), K$_2$CO$_3$ (34.5 mg, 0.25 mmol, 2.5 equiv), NBE (18.8 mg, 0.2 mmol, 2.0 equiv), DMSO / Dioxane (1.4 mL, v:v=2:5) and D$_2$O (8 mg, 0.4 mmol, 4.0 equiv) under air. The reaction was stirred at 70 °C. The reaction was monitored by TLC, after completion of the reaction, the mixture was cooled to r.t., then the mixture was filtered through a thin pad of celite eluting with ethyl acetate (15 mL), and the filtrate was sequentially washed with water, brine, dried over Na$_2$SO$_4$. After concentrated in vacuo, the residue was purified by column chromatography on silica gel to yield the desired product 3a-d.

Physical state: yellow solid;
Yield: 56%;
$R_f=0.4$ (silica gel, PE:EtOAc = 20:1);

^1H NMR (400 MHz, CDCl$_3$): δ 7.13 (s, 0.35H), 3.94 – 3.91 (m, 4H), 3.28 – 3.26 (m, 4H).

10. Reference.

1. S. Chen, Z.-S. Liu, T. Yang, Y. Hua, Z. Zhou, H.-G. Cheng, Q. Zhou, *Angew. Chem. Int. Ed.* 2018, 57, 7161–7165.

2. Z. Dong, G. Dong, *J. Am. Chem. Soc.* 2013, 135, 18350–18353.

3. F.-R. Gou, P.-F. Huo, H.-P. Bi, Z.-H. Guan, Y.-M. Liang, *Org. Lett.* 2009, 11, 3418–3421.

4. Z. Dong, G. Lu, J. Wang, P. Liu, G. Dong, *J. Am. Chem. Soc.* 2018, 140, 8551–8562.

5. H. Shi, D. J. Babinski, T. Ritter, *J. Am. Chem. Soc.* 2015, 137, 3775–3778.

6. Y. Zhou, Y. Xie, L. Yang, P. Xie, H. Huang, *Tetrahedron Lett.* 2013, 54, 2713–2716.

7. C. Borch Jacobsen, M. Meldal, F. Diness, *Chem. – Eur. J.* 2017, 23, 846–851.

8. A. Kaga, H. Hayashi, H. Hakamata, M. Oi, M. Uchiyama, R. Takita, S. Chiba, *Angew. Chem. Int. Ed.* 2017, 56, 11807–11811.

9. M. Tobisu, T. Shimasaki, N. Chatani, *Chem. Lett.* 2009, 38, 710–711.

10. T. Jin, F. Yang, Y. Yamamoto, *Org. Lett.* 2010, 12, 388–390.

11. C. Ye, H. Zhu, Z. Chen, *J. Org. Chem.* 2014, 79, 8900–8905.

12. M. Fan, W. Zhou, Y. Jiang, D. Ma, *Org. Lett.* 2015, 17, 5934–5937.

13. J. Gao, S. Bhunia, K. Wang, L. Gan, S. Xia, D. Ma, *Org. Lett.* 2017, 19, 2809–2812.

14. K. Ebert, J. Wiemer, J. Caballero, M. Köckerling, J. Steinbach, J. Pietzsch, C. Mamat, *Bioorg. Med. Chem.* 2015, 23, 6025–6035.

15. F. Mo, J. Yan, D. Qiu, F. Li, Y. Zhang, J. Wang, *Angew. Chem. Int. Ed.* 2010, 49, 2028–2032.

11. NMR spectra of the new compounds.
$\text{f}1 \text{ (ppm)}$

$3k$

152.70

150.43

130.21

124.45

121.90

119.35

113.58

111.75

110.17

108.17

77.48

77.16

76.84

108.17

106.84

48.88
The image contains a structural formula of a compound labeled as 3u. The formula includes atoms such as carbon (C), nitrogen (N), and oxygen (O). The spectrum shows chemical shifts in parts per million (ppm) for various functional groups, indicating the presence of functionalities like an ester group (COO-) and a nitrogen-containing ring. The specific ppm values listed correspond to different functional groups and atoms within the molecule.
3ab
The image contains a chemical structure labeled as 3ad, along with a 1H NMR spectrum. The spectrum shows various peaks at different ppm values, indicating the chemical shifts of different protons in the compound. The peaks are labeled with their corresponding ppm values, which are: -171.13, 152.54, 151.88, -139.28, -109.92, -102.69, -67.13, -59.41, -52.43, -49.91, -36.78, and -28.04.
The image contains a NMR spectrum of a molecule, with the chemical structure of the molecule shown above the spectrum. The spectrum shows peaks at various ppm values, indicating the chemical shifts of different protons in the molecule. The peaks are labeled with their corresponding ppm values, and the molecule is labeled as "3H."
3R
1v

H₂C
CH₃

O

B

O

C

H₃

C

H₃

C

H₃

Br

f1 (ppm)
The image contains a chemical structure with labeled peaks at various ppm values. The peaks are indicated at the following positions:

- 95.78 ppm
- 95.31 ppm
- 77.48 ppm
- 77.16 ppm
- 76.84 ppm
- 67.06 ppm
- 49.73 ppm
- 67.06 ppm
- 49.73 ppm
- 153.50 ppm
- 148.06 ppm

The structure includes a nitrogen (N) and a hydroxyl (OH) group, indicated by the symbols and positions within the molecule.
f_1 (ppm)

1a-d

H$_3$C

O

C

H

C

H

3

H

3

1a-d

-1.43

-7.26

12.00
