RESEARCH ARTICLE

Mapping human mobility during the third and second millennia BC in present-day Denmark

Karin Margarita Frei1*, Sophie Bergerbrant2, Karl-Göran Sjögren2, Marie Louise Jørkøv3, Niels Lynnerup3, Lise Harvig4, Morten E. Allentoft5, Martin Sikora5, T. Douglas Price2,6, Robert Frei7, Kristian Kristiansen2

1 National Museum of Denmark, Department of Research, Collections and Conservation, Environmental Archaeology and Material Science, I.C. Modewegsvej, Brede, Kongens Lyngby, Denmark, 2 Institute for Historical Studies, University of Gothenburg, Gothenburg, Sweden, 3 Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark, 4 Department of Archaeological Science and Conservation, Hejbjerg, Moesgaard Museum, Denmark, 5 Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark, 6 Laboratory for Archaeological Chemistry, University of Wisconsin-Madison, Madison, WI, United States of America, 7 Department of Geoscience and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark

* karin.m.frei@natmus.dk

Abstract

We present results of the largest multidisciplinary human mobility investigation to date of skeletal remains from present-day Denmark encompassing the 3rd and 2nd millennia BC. Through a multi-analytical approach based on 88 individuals from 37 different archaeological localities in which we combine strontium isotope and radiocarbon analyses together with anthropological investigations, we explore whether there were significant changes in human mobility patterns during this period. Overall, our data suggest that mobility of people seems to have been continuous throughout the 3rd and 2nd millennia BC. However, our data also indicate a clear shift in mobility patterns from around 1600 BC onwards, with a larger variation in the geographical origin of the migrants, and potentially including more distant regions. This shift occurred during a transition period at the beginning of the Nordic Bronze Age at a time when society flourished, expanded and experienced an unprecedented economic growth, suggesting that these aspects were closely related.

Introduction

In this study, we wish to trace mobility patterns during the 3rd and 2nd millennia BC in the region covered by present-day Denmark, in order to ascertain if there were significant changes linked to the introduction of the metal economy after 2000 BC. The 3rd millennium BC stands out as a period of migrations in western Eurasia, as pastoral steppe populations settled in temperate Europe after 2800 BC e.g. [1, 2]. This was also a period of cultural and genetic admixture e.g. [3]. From 1600 BC onwards, southern Scandinavia became more closely linked to the existing European metal trade networks [4], and from 1500 BC onwards, a period of unparalleled creativity resulted in the formation of a Nordic Bronze Age style, based on stylistic influences from Mycenean and central European workshops [5]. This signaled the beginning of a
period of unprecedented burial wealth between 1500–1100 BC when c. 50,000 barrows were constructed in present-day Denmark alone [6]. More than 2000 swords are known from excavated burials, and as they constitute around 10% of the total number of burials, this suggests that a much larger number of swords could have been deposited [7]. There are more Bronze Age swords in present-day Denmark than anywhere else in Europe [8]. During this period, Denmark became Europe’s richest region with respect to number and density of metal deposits [9, 10]. However, this regional development was entirely dependent on the functioning of the long-distance metal trade as revealed by studies on the potential origin of copper [11, 12]. There are no native base metal ores in present-day Denmark. Additionally, recent investigations suggest that wool, too, was traded during the Nordic Bronze Age [13], and that a number of glass beads found as grave goods came from as far away as Mesopotamia and Egypt [14].

However, in order to understand the demographics and socio-economic dynamics of this formative period, it is essential to consider questions such as: What proportion of the population moved? Was mobility common for everyone or limited to a certain subset of people? Finally, are there significant shifts in mobility patterns over time?

Our study aims to shed light on these fundamental questions, and we present results of the largest strontium isotope investigation to date of human remains from present-day Denmark, including data from 88 individuals combined with radiocarbon analyses of 78 of these individuals. Samples were obtained from 37 different localities, and comprise diverse burial types that include adult males and females of various ages as well as children. Additionally, we conducted physical anthropological examinations of these individuals in order to determine their sex, age and potential injuries, wounds or illnesses, as well as to try to detect similarities due to kinship.

Materials and methods

The burials

The burials studied herein cover a wide range of grave types: gallery graves, other megalithic tombs, burial mounds (including oak coffins), and bog finds as well as flat graves. Geographically, they cover a large part of present-day Denmark (Fig 1). However, there are two areas with a higher concentration of sampled individuals, due to the more favorable soil conditions for bone preservation here. These are the island of Zealand and the area around the Limfjorden in northern Jutland, including the key area of Thy, an area known for its high density of burial mounds and numerous metal artefact finds [15]. The burials and their contexts are described in the supplementary information, including information of name, sample number, geographical location and archaeological excavation (S1 File).

Strontium isotope analyses

Strontium isotope analyses conducted on archaeological human remains (e.g. on tooth enamel and/or cremated bone) can provide information on provenance and potential mobility at the individual level [16–18]. The strontium uptake in humans appears to be dominated by the intake of plants and water, while animal meat sources seem to play a comparatively negligible role [17, 19].

The sampling strategy at each site was based on an assessment of the archaeological context and the state of preservation of the human remains in combination. For the present study we sampled teeth of 88 individuals. We aimed at sampling first molars which mineralize early in childhood (from in utero to c. 3 years of age), but in cases where this was not possible, other available teeth were sampled. Some teeth could only be specified according to tooth category, e.g. whether they are molars or premolars (except for three samples whose preservation was
too poor). Although the aim was to avoid third molars as these mineralize latest [20], in two cases third molars were sampled due to lack of other samples (S1 Table).

Tooth enamel samples were pre-cleaned by removing the enamel’s surface with a drill bit, and subsequently, a few milligrams of enamel powder (or small pieces) were sampled from each tooth. The tooth enamel samples were dissolved in 7 ml Teflon beakers (Savillex) in a 1:1 solution of 0.5 ml 6 N HCl (Seastar) and 0.5 ml 30% H$_2$O$_2$ (Seastar). The samples typically dissolved within 5 minutes, after which the solutions were dried on a hotplate at 80˚C.

Subsequently, the enamel samples were taken up in a few drops of 3N HNO$_3$ and then loaded onto disposable 100 µl pipette tip extraction columns into which we fitted a frit which retained a 0.2 ml stem volume of intensively pre-cleaned mesh 50–100 SrSpec (Eichrom Inc.) chromatographic resin. The elution recipe essentially followed that by [21] albeit scaled to our needs in so far as strontium was eluted / stripped by pure deionized water and then the eluate dried on a hotplate.

Thermal ionization mass spectrometry was used to determine the Sr isotope ratios. Samples were dissolved in 2.5 µl of a Ta$_2$O$_5$–H$_3$PO$_4$–HF activator solution and directly loaded onto previously outgassed 99.98% single rhenium filaments. Samples were measured at 1250–1300˚C in a dynamic multi-collection mode on a VG Sector 54 IT mass spectrometer equipped with eight Faraday detectors (Institute of Geosciences and Natural Resource Management, University of Copenhagen). Five nanogram loads of the NBS 987 Sr standard that we ran during the time of the project yielded $^{87}\text{Sr}/^{86}\text{Sr} = 0.710238 +/− 0.000012$ (n = 5, 2σ), which we compare to the generally accepted value of $^{87}\text{Sr}/^{86}\text{Sr} = 0.710248$ [22].

Baseline. In order to investigate mobility and provenance by application of the strontium isotope system, it is necessary to have knowledge about the baseline or isoscape range of the isotopic composition of local bioavailable strontium [16, 17]. Several studies conducted during the last decade aimed at shedding light into the issue of how to establish baselines that can be used as reference maps for past provenance studies e.g. [23, 24–26]. However, there is as yet not a consensus to which type of proxy (e.g., surface waters, plants, soils, fauna, etc.) is the most suitable for delineating the isotopic range of bioavailable strontium signatures of an area [24]. Baselines from areas can be different depending on which type of proxy materials/archives are used to define them, and on the number of samples used for the spatial resolution. However, the efforts by many scholars aiming at constructing and better understanding baselines are visible in the recent literature. Respective studies, for example, include multi-proxy approaches applied to specific areas, such as the investigation of two Early Medieval cemeteries in Central Germany [23], the combination of multi-proxy baselines constructed through data accumulated over many years, such as recently presented for biosphere isotope domains of Great Britain [27], or baselines constructed on the basis of large numbers of samples, such as recently published from almost 1200 soil samples from all over Europe [28]. These diverse studies illustrate the complexity inherent in building suitable reference baselines for provenance studies.

The baseline for present-day Denmark has previously been characterized by strontium isotope analyses of 192 surface waters (lakes, creeks) [29, 30]. Additionally, results from supplementary baseline samples from plants, surface waters and soil extracts from different areas in present-day Denmark have since been added e.g. [31, 32, 33]. In addition, a reference map based on fauna remains has been published [34], but we are cautious with considering such fauna-based isoscapes since recent studies have mentioned the difficulties inherent with using
this type of proxy e.g. [24]. Nevertheless, all the above mentioned studies are consistent in their isotope range of bioavailable strontium isotope signatures of $^{87}\text{Sr}/^{86}\text{Sr} = 0.708$ to 0.711 (excluding the island of Bornholm). Furthermore, the Danish island of Bornholm located south of Sweden in the Baltic Sea revealed elevated bioavailable strontium isotope signatures ($^{87}\text{Sr}/^{86}\text{Sr} > 0.711$) due to the contribution of radiogenic Sr from the Precambrian basement which dominates most of the island [35]. Therefore, when we herein refer to the baseline for “present-day Denmark”, we exclude the area of Bornholm, unless otherwise mentioned.

A very recent study has questioned the suitability of baselines constructed from strontium isotopic compositions of surface waters in areas dominated by low to non-calcareous soils such as in the west Jutland glaciogenic province (Fig 1) [36]. This study suggests that due to the addition of agricultural lime to farmlands in this area, the baseline values of the surface waters are not adequate for their use in reference maps for provenance studies of past human mobility. While we appreciate and acknowledge the contribution by these authors and we respect the discussion they take up within their study, we disagree with their interpretation and conclusions. Some of the authors of the present study are currently working on a separate publication that will address and discuss this issue in detail.

In addition to the difficulties in delineating baselines, issues related to the classification of a material to be “local” to a specific area might not always be “a straightforward approach” [37]. In the study presented herein we investigated individuals that were found in areas within present-day Denmark, excluding the Danish island of Bornholm and areas of the west Jutland glaciogenic province, and we consequently use the term “local” with respect to these areal restrictions in present-day Denmark (Fig 1).

Radiocarbon analyses

All individuals whose skeletal bone material is preserved were radiocarbon dated, with the exception of eight individuals with poor collagen preservation (Table 1). A further two samples consisted only of tooth enamel remains and could not be dated. In total, 78 individuals yielded radiocarbon dates. These samples exhibited C/N values within the accepted range for good collagen preservation, i.e. 2.9–3.6 [38]. The radiocarbon analyses were primarily performed at the Oxford Radiocarbon Accelerator Unit, University of Oxford, but a few were performed at The 14Chrono Centre, Queen’s University, Belfast. Both laboratories used their own standard protocols for collagen extraction and radiocarbon analyses. All dates were calibrated with Oxcal 4.3 using the Intcal13 calibration curve [39]. We report the radiocarbon dates according to Millard [40], and rounded up to 10 by using the calibration software.

Anthropology

Anthropological analyses were performed on all 88 individuals studied herein. Age and sex were determined from morphological features on the skull, pelvis, and teeth using standard methods outlined in [41–44]. In the cases where we were able to estimate age, the main categories of subadults and adults have additional subcategories (Table 2 and S1 Table). Subadults were divided into four age categories: young child (1–5 years), older child (6–11 years), juvenile (12–17 years) and subadult (<18 years). Furthermore, the group of adult individuals was divided into five age categories: young adult (18–25 years), middle adult (25–35 years), mature adult (35–45 years) and old adult (45+ years) or simply determined adult (>18 years). In cases where aging overlapped two categories, the adult age categories were pooled. The male and female categories were also pooled when analyzing the frequency of pathology (S2 Table).
RISE#	Sitename	14C Lab. #	BP	1 s	calBC from	calBC to	C%	C:N
RISE 12	Sønderhå	OxA-28157	1949	23	1'	130'	41.1	3.3
RISE 14	Langtved Færgekro	OxA-28041	3550	27	-1980	-1770	43.9	3.1
RISE 15	Langtved Færgekro	OxA-28042	3527	27	-1940	-1760	43.9	3.2
RISE 16	Langtved Færgekro	OxA-28043	3442	29	-1880	-1660	42.9	3.1
RISE 17	Langtved Færgekro	OxA-28044	3488	28	-1900	-1700	43.4	3.1
RISE 18	Kolby Kås	OxA-28158	3309	26	-1650	-1510	44.6	3.1
RISE 19	Karlstrup	OxA-28160	3196	25	-1510	-1420	41.9	3.4
RISE 20	Karlstrup	OxA-28045	3162	27	-1510	-1390	42.7	3.1
RISE 21	Karlstrup	OxA-28047	3092	29	-1430	-1280	46.5	3.1
RISE 22	Gjesinggård	OxA-28161	3053	24	-1410	-1230	43.7	3.3
RISE 23	Debel	OxA-28049	3117	26	-1450	-12980	42.2	3.2
RISE 25	Juelsberg	OxA-28050	3705	28	-2200	-2020	41.9	3.2
RISE 26	Kolby Kås	OxA-28159	3362	25	-1740	-1560	44.2	3.1
RISE 27	Juelsberg	OxA-28051	3787	30	-2340	-2060	43.2	3.2
RISE 28	Juelsberg	OxA-28052	3626	29	-2130	-1900	42.8	3.2
RISE 29	Juelsberg	OxA-28053	3653	29	-2140	-1940	43.7	3.2
RISE 30	Juelsberg	OxA-28190	3627	26	-2120	-1900	41.1	3.4
RISE 31	Juelsberg	OxA-28191	3542	26	-1960	-1770	40.2	3.3
RISE 32	Juelsberg	OxA-28192	3638	26	-2130	-1920	41.8	3.3
RISE 33	Juelsberg	OxA-28193	3731	26	-2210	-2030	41.6	3.3
RISE 36	Marbjerg	OxA-28194	3493	25	-1890	-1740	42.1	3.3
RISE 37	Marbjerg	OxA-28195	3429	26	-1880	-1650	42.2	3.3
RISE 38	Marbjerg	OxA-28196	3515	25	-1920	-1750	41.7	3.3
RISE 39	Marbjerg	OxA-28197	3727	25	-2210	-2030	41.6	3.3
RISE 40	Marbjerg	OxA-28198	3553	26	-1980	-1770	42.3	3.4
RISE 40	Marbjerg	OxA-28199	3504	26	-1900	-1740	42.6	3.3
RISE 41	Marbjerg	OxA-28224	3405	28	-1770	-1620	39.5	3.2
RISE 42	Marbjerg	OxA-28225	3681	28	-2200	-1970	43	3.1
RISE 43	Marbjerg	OxA-28226	3550	29	-2010	-1770	42.6	3.2
RISE 44	Marbjerg	OxA-28227	3522	29	-1930	-1750	42.3	3.2
RISE 45	Gerdrup	OxA-28228	3539	29	-1960	-1770	42.4	3.1
RISE 46	Gerdrup	OxA-28229	3499	29	-1910	-1740	43.2	3.2
RISE 47	Sebberskole	OxA-28258	3153	26	-1500	-1320	43.9	3.2
RISE 48	Sebberskole	OxA-28259	3156	26	-1500	-1320	42.5	3.2
RISE 49	Sebberskole	OxA-28260	3452	27	-1880	-1680	42.2	3.2
RISE 50	Sebberskole	OxA-28261	3274	26	-1620	-1500	44.1	3.2
RISE 51	Sebberskole	OxA-28288	3360	25	-1740	-1560	40.5	3.2
RISE 52	Sebberskole	OxA-28289	3342	32	-1740	-1530	40.9	3.3
RISE 53	Hellested	OxA-28290	3705	25	-2200	-2020	41.9	3.2
RISE 54	Hellested	OxA-28291	3796	25	-2300	-2140	41.4	3.2
RISE 55	Hellested	OxA-28292	3700	25	-2200	-1980	41.2	3.2
RISE 56	Hellested	OxA-28293	3689	25	-2200	-1980	40.7	3.2
RISE 57	Hellested	OxA-28294	3697	26	-2200	-1980	39.3	3.3
RISE 58	Tummelhøj	OxA-28230	3502	26	-1900	-1740	39.1	3.3
RISE 59	Tummelhøj	OxA-28231	3618	28	-2120	-1890	39.7	3.2
RISE 60	Kyndelse	OxA-28295	3496	26	-1900	-1740	40.1	3.2

(Continued)
Skeletal and dental pathologies, signs of trauma or anomalies were noted (S1 Table and S2 Table) for all 88 individuals studied herein. The different levels of preservation limited the observations significantly.

Previous results of stature estimation were available for 7 individuals (S1 Table). These were either based on the length in the grave or calculated based on the length of a long bone (femur, tibia or humerus) using the method of [45]. More recent studies on stature among prehistoric individuals [32] have utilized the method by [46], as it is developed on European Holocene individuals. It was possible to retake femur length measurements of three individuals (S1 Table).
Table 2. Strontium isotope, 14C results and sex and age determinations from individuals from the 3rd and 2nd millennia BC from Denmark presented in chronological order.

RISE#	Sitename	Region	Burial type	Period	^14C BP	^87Sr/^106Sr	Sex	Age	Age-group	
RISE 273	Gudsnø aggravated mose	Zealand	bog find	MN	4578	0.709981	0.000006	F	20–35	Young-Middle adult
RISE 65	Kyndelose	Zealand	passage grave	MN	4189	0.709984	0.000013	F	20–30	Young-Middle adult
RISE 62	Kyndelose	Zealand	passage grave	MN	4187	0.710097	0.000009	F	25–35	Middle adult
RISE 64	Kyndelose	Zealand	passage grave	MN	4145	0.710998	0.000011	nd	25–35	Middle adult
RISE 61	Kyndelose	Zealand	passage grave	MN	4071	0.712588	0.000011	M	20–25	Young adult
RISE 1280	Gjerrild	Jutland	Bøstrup cist	MN	4007	0.710026	0.000006	nd	Inf	Subadult
RISE 66	Kyndelose	Zealand	passage grave	MN	3968	0.709094	0.000012	M?	30–40	Middle-Mature adult
RISE 1283	Gjerrild	Jutland	Bøstrup cist	MN	3950	0.712764	0.000009	F	21–30	Young-Middle adult
RISE 432	Gjerrild	Jutland	Bøstrup cist	MN	3906	0.710851	0.000006	M	35–50	Mature-Old adult
RISE 73 a	Gjerrild	Jutland	Bøstrup cist	MN	nd	0.710534	0.000011	M	25–35	Middle adult
RISE 54	Hellested	Zealand	flat grave	LN I	3796	0.711127	0.000009	M?	21–23	Young adult
RISE 1281	Gjerrild	Jutland	Bøstrup cist	LN	3790	0.710018	0.000008	nd	Inf	Subadult
RISE 27	Juelsberg	Ærfyn	gallery grave	LN I	3787	0.710141	0.000012	M?	35–45	Mature adult
RISE 275	Salpetermosen	Zealand	bog find	LN I	3751	0.710483	0.000008	M	25–35	Middle adult
RISE 33	Juelsberg	Ærfyn	gallery grave	LN I	3731	0.710142	0.000011	M?	20–30	Young-Middle adult
RISE 39	Marbjerg	Zealand	gallery grave	LN I	3727	0.710094	0.000017	F?	35–45	Mature adult
RISE 34	Marbjerg	Zealand	gallery grave	LN	cd	0.709371	0.000010	F	25–40	Middle-Mature adult
RISE 35	Marbjerg	Zealand	gallery grave	LN	cd	0.709896	0.000014	M?	20–25	Young adult
RISE 105	Dømmergård	Jutland	gallery grave	LN	cd	0.710320	0.000009	M?	30–35	Middle adult
RISE 63	Kyndelose	Zealand	passage grave	LN I	3721	0.709739	0.000011	F	20–25	Young adult
RISE 25	Juelsberg	Ærfyn	gallery grave	LN I	3705	0.709612	0.000011	nd	25–35	Middle adult
RISE 53	Hellested	Zealand	flat grave	LN I	3705	0.70959	0.000012	F?	40–45	Mature adult
RISE 71	Falshøj	Jutland	megalithic tomb	LN I	3701	0.711064	0.000013	F	25–35	Middle adult
RISE 55	Hellested	Zealand	flat grave	LN I	3700	0.711061	0.000011	M	20–25	Young adult
RISE 57	Hellested	Zealand	flat grave	LN I	3697	0.711054	0.000013	M	c.18	Young adult
RISE 56	Hellested	Zealand	flat grave	LN I	3689	0.710905	0.000011	M	c.20	Young adult
RISE 42	Marbjerg	Zealand	gallery grave	LN I	3681	0.709635	0.000011	M	40+	Mature-Old adult
RISE 29	Juelsberg	Ærfyn	gallery grave	LN I	3653	0.709804	0.000009	M	35–50	Mature-Old adult
RISE 32	Juelsberg	Ærfyn	gallery grave	LN II	3638	0.712013	0.000009	F	25–35	Middle adult
RISE 30	Juelsberg	Ærfyn	gallery grave	LN I-Id	3627	0.711252	0.000016	M	40+	Mature-Old adult
RISE 28	Juelsberg	Ærfyn	gallery grave	LN I-IId	3626	0.709705	0.000013	nd	c.14-15	Juvenile
RISE 59	Tummelhøj	Jutland	gallery grave	LN I-IId	3618	0.711670	0.000011	F	Adult35-45	Mature adult
RISE 68	Sejræslev	Jutland	gallery grave	LN I-Id	3617	0.709280	0.000013	nd	18-25	Young adult
RISE 69	Falshøj	Jutland	megalithic tomb	LN I-IId	3607	0.710522	0.000013	F	30–35	Middle adult
RISE 14	Langtryd Faergekro	Zealand	gallery grave	LN II	3550	0.709991	0.000008	nd	c.6	Older child
RISE 43	Marbjerg	Zealand	gallery grave	LN I-IId	3550	0.710038	0.000011	M	40+	Mature-Old adult
RISE 31	Juelsberg	Ærfyn	gallery grave	LN II	3542	0.710597	0.000007	F	20–30	Young-Middle adult
RISE 45	Gerdrup	Zealand	gallery grave	LN II	3539	0.711378	0.000014	nd	12–16	Juvenile
RISE 67	Sejræslev	Jutland	gallery grave	LN I	3535	0.709462	0.000015	nd	20–35	Young-Middle adult
RISE 15	Langtryd Faergekro	Zealand	gallery grave	LN II	3527	0.709243	0.000010	M	20–30	Young-Middle adult
RISE 44	Marbjerg	Zealand	gallery grave	LN II	3522	0.709883	0.000011	M	45+	Old adult
RISE 70	Falshøj	Jutland	megalithic tomb	LN II	3518	0.710785	0.000009	M	25–35	Middle adult
RISE 38	Marbjerg	Zealand	gallery grave	LN II	3515	0.709714	0.000013	M	35–45	Mature adult
RISE 40	Marbjerg	Zealand	gallery grave	LN II	3504	0.711709	0.000008	M	30–40	Middle-Mature adult
RISE 58	Tummelhøj	Jutland	gallery grave	LN II	3502	0.710885	0.000014	nd	20–30	Young-Middle adult
RISE 46	Gerdrup	Zealand	gallery grave	LN II	3499	0.710324	0.000012	nd	Adult	Adult

(Continued)
Table 2. (Continued)

RISE#	Sitename	Region	Burial type	Period	14C BP	87Sr/86Sr	2s (abs)	Sex	Age	Age-group	
RISE 60	Kyndelose	Zealand	passage grave	LN II	3496	0.710211	0.000012	F	30–40	Middle-Mature adult	
RISE 36	Marbjerg	Zealand	gallery grave	LN II	3493	0.709749	0.000013	M?	20–25	Young adult	
RISE 17	Langtved Faergekro	Zealand	gallery grave	LN II	3488	0.710079	0.000012	nd	4	Young child	
RISE 49	Sebber skole	Jutland	flat grave	LN II	3452	0.710276	0.000007	M	25–35	Middle adult	
RISE 16	Langtved Faergekro	Zealand	gallery grave	LN II-EBA I	3442	0.709672	0.000007	M	25–40	Middle-Mature adult	
RISE 37	Marbjerg	Zealand	gallery grave	LN II/ EBA I	3429	0.709714	0.000014	F	20–30+	Young-Middle adult	
RISE 72	Gjerrild	Jutland	Bøstrup cist	EBA I	3410	0.709665	0.000009	nd	Adult	Adult	
RISE 41	Marbjerg	Zealand	gallery grave	LN II	3405	0.709935	0.000012	F?	30–40	Middle-Mature adult	
RISE 26	Kolby Kås	Samse	barrow	LN II—EBA I	3362	0.710687	0.000012	M	35+	Mature-Old adult	
RISE 433	Kimesbjerggårde	Fyn	barrow	EBA I	3362	0.710080	0.000010	M	45–60	Old adult	
RISE 51	Sebber skole	Jutland	flat grave	EBA I	3360	0.710952	0.000009	nd	18–25	Young adult	
RISE 52	Sebber skole	Jutland	flat grave	EBA I	3342	0.71096	0.000013	M	20–30	Young-Middle adult	
RISE 18	Kolby Kås	Samse	barrow	EBA I	3309	0.710555	0.000010	nd	8–9	Older child	
RISE 166	Salto	Zealand	barrow	EBA I	3304	0.711487	0.000016	M?	25–35	Middle-Mature adult	
RISE 169	Store Havelse Strand	Zealand	flat grave	EBA I	3301	0.710840	0.000006	M	25–35	Middle adult	
RISE 104	Jestrup	Jutland	barrow	EBA III	3295	0.71177	0.000018	M?	20–30	Adult	
RISE 50	Sebber skole	Jutland	flat grave	EBA I	3274	0.710726	0.000010	nd	Adult	Adult	
RISE 460	Øster Herup	Jutland	barrow	EBA II	3221	0.71401	0.000001	nd	30–35	Middle adult	
RISE 167	Salto	Zealand	barrow	EBA I	3220	0.712878	0.000012	M?	40+	Mature-Old adult	
RISE 168	Salto	Zealand	barrow	EBA I	3210	0.710128	0.000012	nd	30–40	Middle-Mature adult	
RISE 76	Debel, Fur	Jutland	barrow	EBA II	3205	0.709370	0.000013	M?	Adult	Adult	
RISE 19	Karstrup	Zealand	barrow	EBA II	3196	0.71140	0.000015	nd	7–8	Young child	
RISE 20	Karstrup	Zealand	barrow	EBA II	3162	0.717881	0.000011	M	25–40	Middle-Mature adult	
RISE 48	Sebber skole	Jutland	flat grave	EBA II	3156	0.710075	0.000009	M?	40–50	Mature-Old adult	
RISE 47	Sebber skole	Jutland	flat grave	EBA II	3153	0.710206	0.000016	M	25–35	Middle adult	
RISE 282	Hverrehus	Jutland	flat grave	EBA II	3148	0.710205	0.000012	nd	5	Young child	
RISE 23	Debel	Jutland	barrow	EBA II	3117	0.708713	0.000017	M	20–25	Young adult	
RISE 281	Bustrup	Jutland	barrow	EBA II	3107	0.711165	0.000012	c.15	Juvenile		
RISE 21	Karstrup	Zealand	barrow	EBA II	3092	0.716564	0.000009	M	20–25	Young adult	
RISE 22	Gjessinggård	Jutland	flat grave	EBA II-III	3053	0.709881	0.000006	F	30–40	Middle-Mature adult	
RISE 326	Nybol	Jutland	barrow	EBA III	2995	0.717174	0.000011	M	25–35	Middle adult	
RISE 106	Nordhågård	Jutland	barrow	EBA III	2949	0.7104631	0.000011	M?	25–35	Middle adult	
RISE 13	Strandfogedgård	Zealand	barrow	EBA	3707223	0.000007	c.8	Older child			
RISE 78	Strandfogedgård	Zealand	barrow	EBA	0.710140	0.000013	Adult	Adult			
RISE 79	Strandfogedgård	Zealand	barrow	EBA	0.714440	0.000014	nd	25–35	Middle adult		
RISE 107	Sennels	Jutland	barrow	EBA	0.708972	0.000012	Inf	Subadult			
RISE 108	Vorupørvej 16	Jutland	barrow	EBA III	0.710169	0.000011	15–35	Juvenile			
RISE 170	Ballehoj	Fyn	barrow	EBA II	0.710101	0.000007	M?	20–25	Young adult		
RISE 24	Ballermosten	Zealand	flat grave	BA?	0.710649	0.000014	M	50+	Old adult		
RISE 276	Trundholm mose	Zealand	bog find	LBA V/VI	2525	0.710053	0.000010	M	40–60	Old adult	
RISE 274	Egedal mose	Zealand	bog find	EIA	2068	0.711437	0.000009	M	35–45	Mature-Old adult	
RISE 12	Sonderhå	Jutland	stone cist	EIA	1949	0.710168	0.000005	F	18–20	Young adult	

ed contextually dated

MN = Middle Neolithic; LN = Late Neolithic; EBA = Early Bronze Age; BA = Bronze Age; LBA = Late Bronze Age; EIA = Early Iron Age

https://doi.org/10.1371/journal.pone.0219850.1002
Table), but a stature estimation using [46] was not attempted as it could not be compared to the previously reported stature estimates of the Danish Bronze age individuals herein.

Results and discussion

In recent years, a number of human mobility studies based on strontium isotope analyses of human remains from among others, southern Sweden, Germany and Britain have revealed indications of a rather high rate of human mobility during the 3rd and 2nd millennia BC e.g. [47, 48–52].

Some of these studies suggested a pattern in which exogamy may have prevailed during the Corded Ware and Bell Beaker/Early Bronze Age societies, as a majority of the women investigated were of non-local origin [3, 50]. In other cases, like in the multi-isotopic investigations of skeletal remains of 264 individuals from the British Chalcolithic–Early Bronze Age, results indicated a high degree of mobility but with “little difference between male and female migration histories across Britain” [51].

Another study based on investigations of the human remains (mostly of young males) excavated from the Bronze Age battlefield of Tollense (c. 1250 BC) in northern Germany, revealed that a large majority of these individuals were of non-local origin, and that they potentially originated from various places characterized by different geologies [47]. A somewhat similar case to the Tollense study may be found in the unusual Late Bronze Age cemetery of Neckarsulm in south-western Germany where only males were buried. The strontium isotope analyses conducted on individuals from this site revealed that one third of these individuals were also of non-local origin [53].

Yet another recent study from southern Sweden, based on multi-isotopic analyses of 61 individuals dating from 2300–1200 BC, suggested that mobility was rather high in this region too, but no differences with respect to social status or sex of individuals investigated could be seen [49].

Taken together, these studies reveal a highly complex Bronze Age society.

With respect to ancient DNA characterization, only a few individuals from present-day Denmark from this period have been analyzed thus far [1]. Our strontium isotope analyses encompass five of these individuals, and their overall genomic information resembles the typical Corded Ware-like gene pool, typical for northern and central Europe at this time [1]. More specifically, they all have the genomic "steppe signature" that ultimately derives from the Yamnaya-culture-related people who expanded into central and northern Europe shortly after 3000 BC [1, 2]. The Corded Ware and related cultures somehow emerged from this admixture between Yamnaya-related and the Late Neolithic population and started expanding across large parts of Central and Northern Europe. This seems to imply that the population we investigate in this study might represent a newly genetically transformed population.

The results of our radiocarbon analyses are presented in Table 1. The calibrated age ranges in the table as well as in the text correspond to 95.4% probabilities [40]. Our results reveal that one individual dates to the 4th millennium BC and three individuals yielded radiocarbon ages younger than the 2nd millennium BC. The remaining individuals yielded radiocarbon ages ranging from the 3rd to the 2nd millennia BC.

The results of our strontium isotope analyses are presented in Table 2 and listed in chronological order according to the radiocarbon dates (in sites with multiple individuals we start with the oldest radiocarbon individual). The strontium isotope data set reveals a wide range of values from $^{87}\text{Sr}/^{86}\text{Sr} = 0.70871$ (RISE 23, from the site of Debel) to $^{87}\text{Sr}/^{86}\text{Sr} = 0.71788$ (RISE 20, from the site of Karstrup). Despite the difficulties of establishing the baseline range some of the herein investigated individuals may be classified as non-locals. A few individuals have
tooth enamel signatures that lie just above the upper baseline limit of $^{87}\text{Sr}/^{86}\text{Sr} = 0.711$ and therefore, the classification of these humans as non-locals should be considered with caution. Nevertheless, the significant proportion of individuals with relatively radiogenic values suggest that about a quarter of the individuals studied herein seem to have originated from other places than from those they were buried, and hence implying a continuous degree of mobility during the 3rd and 2nd millennia BC.

Our anthropological investigations reveal that out of the 88 individuals investigated, 75 were adults: 45 were males (including 15 possible males), 17 were females (including 3 possible females) and 13 were adults of undetermined sex (Table 2 and S1 Table). Furthermore, we could identify 13 subadults. The state of preservation limited the investigation of pathological alterations on the skeletons as well as the possibility of diagnoses (S1 Table and S2 Table).

3rd millennium BC (Middle Neolithic to Late Neolithic I, 3300 BC—2000 BC)

Middle Neolithic. The earliest dated individual from our dataset, a bog find of an adult female, aged 20–35 years (RISE 273) from Gundsømagle Mose, Zealand (Fig 1 and S1 File) yielded a radiocarbon date of 3500–3110 cal BC (Early Neolithic II-Middle Neolithic A). Our strontium isotope analysis yielded $^{87}\text{Sr}/^{86}\text{Sr} = 0.7099$, compatible with a local provenance. Her skull displays evidence of an unhealed blunt force trauma to the back of the head. The unhealed state suggests that a blunt instrument or surface struck her head near or at the time of death and that the ensuing trauma may have caused her death. Cranial trauma is a common feature in human bog finds from the Early and Middle Neolithic [54, 55].

The double passage grave of Kyndeløse (Fig 1, S1 File) located on the island of Zealand yielded 70 individuals as well as a large number of grave goods, including flint artefacts, ceramics, and tooth and amber beads. We conducted strontium isotope analyses of seven individuals from Kyndeløse encompassing a period of c. 1000 years, indicating the prolonged use of this passage grave. The oldest of the seven individuals is a female (RISE 65) from whom we measured a “local” strontium isotope signature ($^{87}\text{Sr}/^{86}\text{Sr} = 0.7099$). Similar values were measured in five other individuals, including adult males and females. Only a single individual from Kyndeløse, an adult male (RISE 61) yielded a somewhat different strontium isotope signature of $^{87}\text{Sr}/^{86}\text{Sr} = 0.7126$ which seems to indicate a non-local provenance. The skull of this male individual revealed healed porosities in the eye orbits, *cribra orbitalia*, a condition which is possibly linked to a vitamin deficiency during childhood, such as iron deficiency.

From the Single Grave Culture (SGC) which is closely related to the Corded Ware Complex in central and eastern Europe and dates from c. 2800 BC to 2200 BC, we analyzed seven of the at least ten individuals who were buried at the site of Gjerrild in eastern Jutland (Fig 1). Gjerrild is a key SGC site, as to date it has provided the most substantial skeletal material pertaining to this culture from present-day Denmark. However, it is not a typical SGC grave, but a megalithic chamber of the so-called “Bøstrup type”. The SGC pottery was decorated with cord or stamp impressions and the stone battle axes were a common feature of male equipment. Such shared traits in the Corded Ware Complex probably reflected shared occupational, social and religious characteristics. Apart from one individual who yielded a Bronze Age date, five individuals date within the period that spans from c. 2600 BC to 2200 BC, hence representing the middle and late SGC phases (Table 1 and S1 File). Of the seven individuals, three males, one female, two infants and one adult (only represented by a disarticulated mandible, and dated to the Bronze Age), all but one yielded strontium isotope signatures that fall within the local baseline range. Only the female (RISE 1283) has a more radiogenic strontium isotope signature of $^{87}\text{Sr}/^{86}\text{Sr} = 0.7127$, which is similar to that of the male from Kyndeløse and might indicate
non-local provenance. One of the individuals at Gjerrild, a mature-old adult male, who yielded a local signature (RISE 432) was accompanied by a D-type arrowhead and an amber bead which lay on his right side. He showed signs of inflammation on his lower legs, in particular on the left one. He had a healed trepanation (Fig 2). Another individual (RISE 73a, 1282), an adult male, was found with a type D arrowhead in the sternum (Fig 3).

Late Neolithic I. We sampled individuals from a total of twelve different sites that date to the Late Neolithic period (2300/2250-1700 BC). One of these sites is Hellested on Zealand (Fig 1 and S1 File), with four flat graves containing five individuals, four young males and one mature adult female. We conducted strontium isotope analyses of enamel from all five individuals, and our results point to two individuals being characterized by local strontium isotope values. One of these individuals, the female, was buried with no grave goods (RISE 53, grave B) while the other, a young male, was buried with a fragmented bone pin (RISE 56, grave F). The other three male individuals (RISE 54, 55, 57) yielded similar strontium isotopic values that lie slightly above the local baseline range. All these individuals had been buried with early flint daggers (type I and II), and one of them (RISE 57, grave A) additionally had a ring-headed pin (Ringkopfnadel) [56]. On the basis of the presence of this ring-headed pin, Lomborg [56]
suggested that these individuals had connections with the Únětice culture. Furthermore, three of them have radiocarbon dates that overlap (RISE 55, 56 and 57; Table 1).

Another Late Neolithic site is Juelsberg on the island of Funen (central Denmark, Fig 1 and S1 File) which is a gallery grave that contained at least 19 individuals. We conducted strontium isotope analyses of tooth enamel on 8 out of the 19 individuals and two of them, a male and female, yielded ratios that suggest a non-local origin (RISE 30 and 32). The grave goods comprise a (Lomborg) type I flint dagger but also some non-local type of artefacts. These consist of an early type of bone pin (type 7) mainly found in south-eastern Scandinavia, and a barbed and tanged flint arrowhead of the west-European Bell Beaker type suggesting western connections. The middle adult female (RISE 32) yielded a \(^{87}\text{Sr}/^{86}\text{Sr} = 0.7121\) and the mature to old adult male (RISE 30) yielded a \(^{87}\text{Sr}/^{86}\text{Sr} = 0.7112\). The different Sr isotope signatures of these individuals imply that they might have originated from different areas, albeit their radiocarbon dates are very similar.

The gallery grave of Marbjerg, Zealand (Fig 1), yielded 17 individuals (S1 File), and we conducted strontium isotope analyses of tooth enamel on 11 of them. The majority of the individuals were males, but females and children, too, were present. Anthropological investigations of the individuals from this site, males as well as females, indicate a relatively high life expectancy with respect to that typical for this period (S1 Table). Our radiocarbon dates revealed that this
grave was in use for several hundred years from the Early Late Neolithic (2210–2030 cal BC, RISE 39) to the Late Neolithic /Early Nordic Bronze Age Period (1770–1620 cal BC, RISE 41). Despite the long-term use of this grave, 10 of the 11 individuals studied herein yielded a very narrow and overlapping range of strontium isotope values between $^{87}\text{Sr}/^{86}\text{Sr} = 0.7096–0.7101$. Their values suggest not only that these individuals were local but that their food sources were derived from the same area over the course of several centuries. Only the tooth enamel sample of one individual, a middle to mature adult male (RISE 40), yielded a higher value of $^{87}\text{Sr}/^{86}\text{Sr} = 0.7117$, which seems to suggest a non-local origin.

2nd millennium BC (Late Neolithic (II) to Early Bronze Age (I-III) (2000–1100 BC)

Late Neolithic II. From the gallery graves at Sejerslev and Tummelhøj (Fig 1), both located on northern Jutland, we investigated four individuals dating to the Late Neolithic II. One of these individuals from the site of Tummelhøj (RISE 59) yielded a Sr isotopic composition that is different from the baseline (Table 2). This individual, a mature adult, show signs of ante-mortem tooth loss where the alveolar had begun to heal with some inflammatory response (S1 Table and S2 Table). Six other individuals from two gallery graves on the island of Zealand, Gerdrup and Langtved Færgekro, dating to the Late Neolithic II, were also investigated. Five of these six individuals yielded Sr isotope values that point to local provenance.

From the megalithic tomb of Falshøj situated in Jutland, we investigated three individuals, one of whom was a female, dating to the Late Neolithic (RISE 71). Here, two of the individuals seem to be of local provenance (RISE 69 and 70).

Early Bronze Age. While most of the elite of the Early Nordic Bronze Age were buried within burial mounds, often in some kind of stone and/or wooden coffin e.g. [7, 57], the flat graves of this period appear to represent the non-elite, i.e., the commoners [49]. While it is the commoners who represent the largest part of the society, yet they are typically much less visible in the archaeological record than the elite [49]. In present-day northern Denmark, seven flat graves containing at least ten individuals were unearthed at the site of Sebber Skole located in northern Jutland (Fig 1). Only one of the burials contained grave goods consisting of a (Lomborg) type VI flint dagger dating to Period IB (1600 BC -1500 BC) of the Early Bronze Age [58]. This date was confirmed by our radiocarbon dates which demonstrated, moreover, that this cemetery was in use from the Late Neolithic to the Early Bronze Age (Period II) (Table 1). The burial in a shell-midden without any grave goods except for a flint dagger [58] suggests that these individuals represent the non–elite. We conducted strontium isotope analyses of tooth enamel from six individuals, all of whom yielded strontium isotope values between $^{87}\text{Sr}/^{86}\text{Sr} = 0.710$ to 0.711 that fall within the local baseline.

Results from individuals from the remaining Bronze Age flat graves studied herein, i.e. Hverrehus and Gjessinggård from Jutland, and Store Havelse Strand and Ballermosen from the island of Zealand (Fig 1), are also compatible with the baseline range of present-day Denmark.

From around 1600 BC, a change appears to occur with respect to mobility as seen in Fig 4. From this point in time our dataset shows that some individuals have Sr isotope values above 0.713, i.e. values that do not seem to be represented by any of the individuals studied herein from the previous periods. Individual (RISE 460) yielded an enamel $^{87}\text{Sr}/^{86}\text{Sr} = 0.714$ which represents the earliest strontium isotope ratio above 0.713 in our dataset. This individual, an adult of c. 30 to 35 years of age, was unearthed from a stone cist inside the burial mound of Øster Herup in Jutland. The radiocarbon analyses revealed an age of 1610–1420 cal BC (Early Bronze Age, Period I-II).
The burial mound of Karlstrup near Copenhagen (Fig 1 and S1 File), also yielded individuals with Sr isotope values above 0.713 (Table 2). The mound contained four gallery graves and a number of inhumations representing at least 31 individuals [59] (S1 File). We analyzed material from the central grave containing the remains of three individuals, the skeletons of two adult males (RISE 20 and 21) and the mandible of a child (RISE 19). The two male individuals were buried with a large number of bronze objects in Nordic style as well as other material (S1 File) [59]. The grave goods indicate that they belonged to the elite, and based on the objects, it may be assumed that they were locals. The radiocarbon dates revealed that all three individuals lived during the Nordic Bronze Age period II (1500 BC- 1300 BC, Table 1). The two male individuals share some physical features, one of them being furrows that indicate the use of toothpicks. Living stature was not calculated, but the femoral lengths (50.5 cm for RISE 20 and 47.5 cm for RISE 21) indicate that these individuals would have been quite tall while alive compared to other prehistoric populations in Denmark and Europe [32, 46]. Previous studies suggest that body height and body size of humans increased during the Late Neolithic and Early Bronze Age in Denmark [60]. These changes in body features have been interpreted as being caused by human migration from central Europe [1, 61]. The two adults have the highest strontium isotope ratios in our dataset (RISE 20, $^{87}\text{Sr}/^{86}\text{Sr} = 0.7178$, and RISE 21, $^{87}\text{Sr}/^{86}\text{Sr} = 0.7165$), indicating an old geological terrain as their homelands. Within the Nordic

Fig 4. Diagram plotting results of strontium isotope ratios versus calibrated radiocarbon dates of the individuals investigated. The grey band shows the "local" baseline (for details see baseline section).

https://doi.org/10.1371/journal.pone.0219850.g004
region, such high strontium isotopic values can be found in areas of, e.g. Sweden, Norway, and on the island of Bornholm [35, 62–65]. However, a few areas characterized by such high bio-available Sr isotope signatures can also be found in central Europe and the British Isles, e.g. [26, 66–68]. Regardless of the difficulties of determining their provenance, our results suggest a highly dynamic and complex socio-economic pattern.

We also analyzed one of the well-known oak-coffin burials from the Nordic Bronze Age, the Nybøl male, unearthed in southeastern Jutland (Fig 1). The textiles with which the Nybøl male was buried have been investigated earlier by several scholars using different methodologies [13, 69]. The strontium isotope analyses of wool samples from the textiles of the Nybøl male indicated a wide range of strontium isotope values ($^{87}\text{Sr}/^{86}\text{Sr} \sim 0.715–0.725$), suggesting that the textiles were made of wool coming from a variety of areas [13]. Our strontium isotope analyses of the skeletal remains of the Nybøl male (RISE 326), who is estimated to have been between 25 to 35 years of age when he died, suggests that he might also have been of non-local origin. The artefacts in the Nybøl burial are however of Nordic type: a razor and a comb [70]. His oak coffin has been dendrochronological dated to between 1277–1246 BC previously [71].

Another elite individual who yielded a Sr isotope value which suggests non-local provenance is the adult male warrior from Jestrup (RISE 104) who was buried in a stone cist inside a burial mound in the Thy area (Fig 1) [72, 73]. This region was densely populated and central in terms of the economy during the Early Bronze Age [15]. His grave goods consist, among others, of a sword of the Rixheim type (Fig 5) which was commonly distributed in south-west Europe (south-east France/Switzerland), suggesting a potential origin south of present-day Denmark (S1 File). However, the fibula and a bronze double button are of Nordic type. This grave represents one of ten graves in the Thy area containing a pan-European assemblage of grave goods from this period (Late Bronze Age period II; 1500 BC -1300 BC). They have a common assemblage of grave goods which is less diverse compared to that of the other burials which contained local swords [74].

Comparing 3rd and 2nd millennia mobility

Our results indicate a change from around 1600 BC onwards, as individuals with Sr isotopic values above 0.713 start to appear in our dataset and suggest mobility. Furthermore, the large range of values (between $^{87}\text{Sr}/^{86}\text{Sr} = 0.713$ to 0.718) represented by these individuals imply that the areas which the non-locals individuals migrated from were geographically diverse and might have included more distant regions.

The shift in human mobility characterized by the expansion in diversity of areas of origin of the non-locals appears to occur parallel to the emergence of the long-distance metal trade that connected present-day Denmark to areas in, e.g., central and southern Europe as well as the British Isles e.g. [4, 5, 12]. Moreover, it appears that mobility is most evident within the group.
of individuals buried in barrows, compared to those in flat graves (all the nine Early Bronze Age flat graves herein investigated suggest “local” origin) (Table 2). This differs from the recent results from Scania in southern Sweden which do not seem to show differences with regards to mobility and social status [49]. This aspect attests to potential differences within the Nordic Bronze Age region.

A previous study appears to indicate that this mobility pattern, including the expansion trend with respect to the diversity of areas, continued into the Late Bronze Age (1100–500 BC) [18] as well (Fig 6). This pilot case study of strontium isotope analyses on cremated human remains was based on analyses performed on individuals excavated from Funen and Jutland. Three individuals revealed Sr isotopic values above 0.713 [18].

When comparing our study with other recent similar investigations within the 2nd millennium in Europe, a quite complex picture emerges what seems to include different mobility patterns depending on the areas. While in southern Sweden tooth enamel strontium isotope analyses revealed that both males and females of varying socio-economic status and wealth migrated to the area during the Nordic Bronze Age [49], other investigations in, e.g. the Lech Valley area in southern Germany, point to a high degree female mobility [48]. Yet another recent study from Northern Italy also reports mobility mostly of women in which appears to have been a patrilocal society [37].

![Fig 6. Strontium isotope results of the 88 investigated individuals including Late Bronze Age individuals investigated previously. The grey band shows the “local” baseline (for details see baseline section).](https://doi.org/10.1371/journal.pone.0219850.g006)
In sum, our study provides new insights into mobility during a crucial point in time at the beginning of the Nordic Bronze Age. This mobility might have caused a rapid homogenization of gene pools. While it will be desirable and very relevant to discuss the genetic results more in detail with the herein presented strontium isotope results and their potential implications for Europe-wide population dynamics and mobility from particularly the "steppe" people, we consider that with only the few samples at hand (five) it would be too premature to expand on this issue at this stage. There is a clear and strong need for further aDNA analyses on more individuals to better understand the detailed levels of the macro-socio-dynamics during the 3rd and 2nd millennia in present-day Denmark. Nevertheless, our results provide new information suggesting the emergence of new and potentially long-distance alliances that seem to have been established during the Early Nordic Bronze Age. Even if the Bronze Age displayed strong regional cultural patterns, such as the Nordic Bronze Age culture and the Tumulus Culture [9], travel and migration between different regions and cultures were evidently substantial, and some newcomers appear to have been integrated into the local society. Finally, our results emphasize the need for further multidisciplinary and multi-analytical investigations when studying socio-dynamics in prehistory.

Conclusions
We have conducted a multi-analytical investigation on the largest data-set to date, composed of 88 individuals excavated from 37 localities within present-day Denmark and dating to the 3rd and 2nd millennia BC in order to map human mobility. Our large study allowed us to observe the variations of mobility throughout this period. The strontium isotope results, combined with radiocarbon dating efforts, indicate a clear shift in migration patterns from around 1600 BC onwards, distinguished by mobility from a large variety of regions potentially with diversified and different geological backgrounds (and potentially more distant from present-day Denmark). This change in migration pattern appears to have occurred during a key period when the Nordic Bronze Age society flourished parallel to the emergence of the long-distance trade of metals and when society experienced a hitherto unseen economic growth suggesting that these aspects are closely related.

Supporting information
S1 File. Site description of the burials and their contexts.
(PDF)

S1 Table. Overview of the anthropological data.
(PDF)

S2 Table. Overview of the most common skeletal and dental pathologies.
(PDF)

Acknowledgments
We would like to thank The National Museum of Denmark, Museum Thy as well as other local museums mentioned in the S1 File for providing access to the archaeological material. We also thank Cristina Jensen and Toby Leeper for various help in the isotope labs of the Danish Center for Isotope Geology, University of Copenhagen. We thank Samantha S. Reiter for assistance with finding some additional information on certain samples. We will also like to thank the three reviewers, C. Cavazzuti, A. R. Millard and P. Stockhammer, as well as the
editors, L. Bondioli and P. F. Biehl, for their constructive comments which substantially improved our manuscript.

Author Contributions

Conceptualization: Karin Margarita Frei, Sophie Bergerbrant, Karl-Göran Sjögren, T. Douglas Price, Kristian Kristiansen.

Data curation: Karin Margarita Frei, Sophie Bergerbrant, Karl-Göran Sjögren, Niels Lynnerup, Lise Harvig, Kristian Kristiansen.

Formal analysis: Karin Margarita Frei, Sophie Bergerbrant, Karl-Göran Sjögren, Marie Louise Jørklov, Lise Harvig, Robert Frei.

Funding acquisition: Karin Margarita Frei, Kristian Kristiansen.

Investigation: Karin Margarita Frei, Robert Frei.

Methodology: Karin Margarita Frei, Morten E. Allentoft, Martin Sikora, Robert Frei.

Project administration: Karin Margarita Frei, Kristian Kristiansen.

Writing – original draft: Karin Margarita Frei.

Writing – review & editing: Karin Margarita Frei, Sophie Bergerbrant, Karl-Göran Sjögren, Marie Louise Jørklov, Morten E. Allentoft, T. Douglas Price, Robert Frei, Kristian Kristiansen.

References

1. Allentoft ME, Sikora M, Sjögren K-G, Rasmussen S, Rasmussen M, Stenderup J, et al. Population genomics of Bronze Age Eurasia. Nature. 2015; 522(7555):167–72. https://doi.org/10.1038/nature14507 http://www.nature.com/nature/journal/v522/n7555/abs/nature14507.html#supplementary-information. PMID: 26062507

2. Haak W, Lazaridis I, Patterson N, Rohland N, Mallick S, Llamas B, et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature. 2015; 522(7555):207–+. https://doi.org/10.1038/nature14317 WOS:000356016700037. PMID: 25731166

3. Kristiansen K, Allentoft ME, Frei KM, Iversen R, Johannsen NN, Kroonen G, et al. Re-theorising mobility and the formation of culture and language among the Corded Ware Culture in Europe. Antiquity. 2017; 91(356):334–47. Epub 2017/04/04. https://doi.org/10.15184/aqy.2017.17

4. Vandkilde H. Bronzization: the Bronze Age as pre-modern globalization. Praehistorische Zeitschrift 2016; 91:103–223.

5. Kristiansen K, Suchowska-Ducke P. Connected Histories: the Dynamics of Bronze Age Interaction and Trade. Proceedings of the Prehistoric Society. 2015; 81:361–92.

6. Holst MK, Rasmussen M, K. K, J-H. B. Bronze Age ‘Herostrats’: Ritual, Political, and Domestic Economies in Early Bronze Age Denmark. Proceedings of the Prehistoric Society. 2013; 79:265–96.

7. Bunnefeld J-H. Crafting Swords. The emergence and production of full-hilted swords in the Early Nordic Bronze Age. Praehistorische Zeitschrift. 2016; 91(2):379–430.

8. Harding A. Warriors and weapons in Bronze Age Europe. In: Jerem E, Meid W, editors. Archaeolingua. Budapest2007.

9. Harding AF. European Societies in the Bronze Age. Cambridge: Cambridge University Press; 2000.

10. Kristiansen K, Larsson BT. The Rise of Bronze Age Society. Cambridge: Cambridge University Press; 2005.

11. Ling J, Stos-Gale Z, Grandin L, Billström K, Hjälmhar-Holdar E, Persson P-O. Moving metals II: provenancing Scandinavian Bronze Age artefacts by lead isotope and elemental analyses. Journal of Archaeological Science. 2014; 41:106–32. http://dx.doi.org/10.1016/j.jas.2013.07.018.

12. Melheim L, Grandin L, Persson PO, Billström K, Stos-Gale Z, Ling J, et al. Moving metals III: Possible origins for copper in Bronze Age Denmark based on lead isotopes and geochemistry. Journal of Archaeological Science. 2018; 96:85–105. https://doi.org/10.1016/j.jas.2018.04.003.
13. Frei KM, Mannerwing U, Vanden Bergh I, Kristiansen K. Bronze Age wool: provenance and dye investigations of Danish textiles. Antiquity. 2017; 91(357):640–54. Epub 2017/06/05. https://doi.org/10.15184/acq.2017.64
14. Kaul F, Varberg J. Danish beads of Egyptian and Mesopotamian glass in context, and the amber connection. In: Bergerbrant S, Wessman A, editors. New Perspectives on the Bronze Age: Proceedings of the 13th Nordic Bronze Age Symposium Held in Gothenburg 9th to 13th June 2015. Oxford: Archaeopress; 2017. p. 375–86.
15. Bech J-H, Eriksen B, Kristiansen K, editors. Bronze Age Settlement and Land-Use in Thy, Northwest Denmark. Hejbjerg: Museum Thy/Jutland Archaeological Society; 2018.
16. Bentley RA. Strontium isotopes from the earth to the archaeological skeleton: A review. Journal of Archaeological Method and Theory. 2006; 13(3):135–87. ISI:000241195400001.
17. Montgomery J. Passports from the past: Investigating human dispersals using strontium isotope analysis of tooth enamel. Annals of Human Biology. 2010; 37((3) May-June):325–46. https://doi.org/10.3109/03014461003649297 PMID: 20367186
18. Harvig L, Frei KM, Price TD, Lynnerup N. Strontium Isotope Signals in Cremated Petrous Portions as Indicator for Childhood Origin. Plos One. 2014; 9(7):e101603. https://doi.org/10.1371/journal.pone.0101603 PMID: 25010496
19. Watts P, Howe P. Strontium and Strontium Compounds, in Concise International Chemical Assessment Document. Geneva, Switzerland: 2010.
20. Hillson S. Dental Anthropology. Cambridge: Cambridge University Press; 1996.
21. Horwitz EP, Chiarizia R, Dietz RW. A novel strontium-selective extraction chromatographic resin. Solvent Extraction and Ion Exchange. 1992; 10:313–36.
22. McArthur JM, Rio D, Massari F, Castradori D, Bailey TR, Thrillwall M, et al. A revised Pliocene record for marine-87Sr/86Sr used to date an interglacial event recorded in the Cockburn Island Formation, Antarctic Peninsula. Palaeogeography, Palaeoclimatology, Palaeoecology. 2006; 242(1):126–36. https://doi.org/10.1016/j.palaeo.2006.06.004.
23. Maurer AF, Galer SJG, Knipper C, Beierlein L, Nunn EV, Peters D, et al. Bioavailable Sr-87/Sr-86 in different environmental samples—Effects of anthropogenic contamination and implications for isoscapes in past migration studies. Science of the Total Environment. 2012; 433:216–29. https://doi.org/10.1016/j.scitotenv.2012.06.046 WOS:000308787500022. PMID: 22796412
24. Grimstead DN, Nugent S, Whipple J. Why a Standardization of Strontium Isotope Baseline Environmental Data Is Needed and Recommendations for Methodology. Advances in Archaeological Practice. 2017; 5(2):184–95. Epub 2017/03/27. https://doi.org/10.1017/aap.2017.6.
25. Evans JA, Chenery CA, Montgomery J. A summary of strontium and oxygen isotope variation in archaeological human tooth enamel excavated from Britain. Journal of Analytical Atomic Spectrometry. 2012; 27(5):754–64. https://doi.org/10.1039/C2JA10362A
26. Evans JA, Montgomery J, Wildman G, Bouton N. Spatial variations in biosphere 87Sr/86Sr in Britain. Journal of the Geological Society. 2010; 167:1–4.
27. http://mapapps.bgs.ac.uk/biosphereisotopedomains/index.html.
28. Hoogewerff JA, Reimann C, Ueckermann H, Frei R, Frei KM, van Aswegen T, et al. Bioavailable 87Sr/86Sr in European soils: A baseline for provenancing studies. Science of The Total Environment. 2019. https://doi.org/10.1016/j.scitotenv.2019.03.387.
29. Frei KM, Frei R. The geographic distribution of strontium isotopes in Danish surface waters—A base for provenance studies in archaeology, hydrology and agriculture. Applied Geochemistry. 2011; 26:326–40.
30. Frei KM. Exploring the potential of the strontium isotope tracing system in Denmark. Danish Journal of Archaeology. 2013; 2(1):113–22.
31. Frei KM, Mannerwing U, Kristiansen K, Allentoft ME, Wilson AS, Skals I, et al. Tracing the dynamic life story of a Bronze Age Female. Scientific Reports. 2015; 5:10431. https://doi.org/10.1038/srep10431 http://www.nature.com/articles/srep10431#supplementary-information. PMID: 25994525
32. Frei KM, Villa C, Jarkov ML, Allentoft ME, Kaul F, Ethelberg P, et al. A matter of months: High precision migration chronology of a Bronze Age female. Plos One. 2017; 12(6):e0178834. https://doi.org/10.1371/journal.pone.0178834 PMID: 28682402
33. Price TD, Frei KM, Dobat AS, Lynerup N, Bennike P. Who was in Harold Bluetooth’s army? Strontium isotope investigation of the cemetery at the Viking Age fortress at Trelleborg, Denmark. Antiquity. 2011; 85:476–89.
34. Frei KM, Price TD. Strontium isotopes and human mobility in prehistoric Denmark. Archaeological and Anthropological Sciences. 2012;(4):103–14.
35. Frei R, Frei KM. The geographic distribution of Sr isotopes from surface waters and soil extracts over the island of Bornholm (Denmark)—A base for provenance studies in archaeology and agriculture. Applied Geochemistry. 2013; 38:147–60. https://doi.org/10.1016/j.apgeochem.2013.09.007 WOS:000325752300014.

36. Thomsen E, Andreasen R. Agricultural lime disturbs natural strontium isotope variations: Implications for provenance and migration studies. 2019; 5(3):eaav8083. https://doi.org/10.1126/sciadv.aav8083%J Science Advances. PMID: 30625174.

37. Cavazzuti C, Skeates R, Millard AR, Nowell G, Peterkin J, Bernabò Brea M, et al. Flows of people in villages and large centres in Bronze Age Italy through strontium and oxygen isotopes. PLOS ONE. 2019; 14(1):e0209693. https://doi.org/10.1371/journal.pone.0209693 PMID: 30625174.

38. van Klinken GJ. Bone Collagen Quality Indicators for Palaeodietary and Radiocarbon Measurements. Journal of Archaeological Science. 1999; 26(6):687–95. https://doi.org/10.1006/jasc.1998.0385.

39. Bronk Ramsey C. Bayesian analysis of radiocarbon dates. Radiocarbon. 2009; 51(1):337–60. https://doi.org/10.1080/00338222.2009.10681210.

40. Millard AR. Conventions for Reporting Radiocarbon Determinations. Radiocarbon. 2014; 56(2):555–9. Epub 2014-01-27. https://doi.org/10.2458/56.17455

41. Al-Qahtani SJ. Atlas of tooth development and eruption. London: Queen Mary University of London. M Clin Dent.; 2009.

42. Buikstra JE, Ubelaker DH. Standards for data collection from human skeletal remains. Fayetteville: Arkansas Archeological Survey Research Series. 1994; 44.

43. Brothwell DR. Digging up bones: Cornell University Press; 1988.

44. Scheuer L, Black S, Christie A. Developmental Juvenile Osteology: Elsevier; 2000.

45. Trotter M, Gleser GC. A re-evaluation of estimation of stature based on measurements of stature taken during life and of long bones after death. American Journal of Physical Anthropology. 1958; 16:79–123.

46. Ruff CB, Holt BM, Niskanen M, Sladék V, Berner M, Gerafalo E, et al. Stature and Body Mass Estimation From Skeletal Remains in the European Holocene. American Journal of Physical Anthropology. 2012; 148:601–17. https://doi.org/10.1002/ajpa.22087 PMID: 22639191.

47. Price TD, Frei R, Brinker U, Lidke G, Terberger T, Frei KM, et al. Multi-isotope proveniencing of human remains from a Bronze Age battlefield in the Tollense Valley in northeast Germany. Archaeological and Anthropological Sciences. 2017. https://doi.org/10.1007/S1andS22 520-017-0 529-y

48. Knipper C, Mittnik A, Massy K, Kociurnaka C, Kucukkalipci I, Maus M, et al. Female exogamy and gene pool diversification at the transition from the Final Neolithic to the Early Bronze Age in central Europe. Proceedings of the National Academy of Sciences. 2017. https://doi.org/10.1073/pnas.1706355114 PMID: 28874531.

49. Bergerbrant S, Kristian K, Allentoft ME, Frei KM, Price TD, Sjögren K-G, et al. Identifying commoners in the Early Bronze Age: burials outside barrows, in In: Bergerbrant S, Wessman A, editors. New Perspectives on the Bronze Age. Oxford: Archaeopress Archaeology; 2017. p. 37–64.

50. Sjögren K-G, Price TD, Christiansen K. Diet and Mobility in the Corded Ware of Central Europe. Plos One. 2016; 11(5):e0155083. https://doi.org/10.1371/journal.pone.0155083 PMID: 27223117.

51. Pearson M, Chamberlain A, Jay M, Richards M, Sheridan A, Curtis N, et al. Beaker people in Britain: Migration, mobility and diet. Antiquity. 2016; 90:620–37. https://doi.org/10.15184/aqy.2016.72

52. Price TD, Knipper C, Grupe G, Smrcka V. Strontium Isotopes and Prehistoric Human Migration: The Bell Beaker Period in Central Europe. European Journal of Archaeology. 2004; 7(1):9–40. https://doi.org/10.1177/1461957104079922.

53. Wahl J, Price TD. Local and foreign males in a late Bronze Age cemetery at Neckarsulm, south-western Germany: strontium isotope investigations. Anthropological Anziger. 2013; 70(3):289–307. https://doi.org/10.1225/00338222.2013.0334 WOS:000328925900004.

54. Bennike P. The Early Neolithic Danish bog finds: A strange group of people. In: Coles B, Coles J, Schou Jergensen M, editors. Bog Bodies, Sacred Sites and wetland Archaeology: Exeter; 1999. p. 27–32.

55. Sjögren K-G, Ahlström T, Blank M, Price TD, Frei KM, Hollund H. Early Neolithic Human Bog Finds from Falbygden, Western Sweden: New Isotopic, Osteological and Histological Investigations. Journal of Neolithic Archaeology. 2017; 19:97–126. 0.12766/jna.2017.4.

56. Lønborg E. Die Flintdolch Dänemarks. Studien über Chronologie und Kulturbeziehungen des südskandinavischen Späteolithikums. Nordiske Fortidsminder Serie B Bind 1. Copenhagen: Det Kgl. Nordiske Oldskriftselskab; 1973.
57. Kristiansen K. Households in context: cosmology, economy and long-term change in the Bronze Age of Northern Europe. In: Madella M, Kovacs G, Kulcsarne-Berzenyi B, Godino IB, editors. The Archaeology of Households. Oxford: Oxbow Books; 2013. p. 235–68.

58. Ebbesen K. En gravplads fra ældre bronzealder ved Sebber Skole. Gravfunden med flintdolke af type VI. Aarbeger for Nordisk Oldkyndighed og Historie 2002. 2005:7–37.

59. Aner E, Kersten K. Die Funde der älteren Bronzezeit des nordischen kreises in Dänemark, Schleswig-Holstein und Niedersachsen. Neumünster: Karl Wachholz Verlag; 1973.

60. Bennike P. Paleopathology of Danish skeletons. Copenhagen, Denmark: Akademisk Forlag; 1985.

61. Mathieson I, Lazaridis I, Rohland N, Mallick S, Patterson N, Roosenburg SA, et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature. 2015; 528:499. https://doi.org/10.1038/nature16152 https://www.nature.com/articles/nature16152#supplementary-information. PMID: 26595274

62. Price TD, Frei KM. Nau. Isotopic baselines in the North Atlantic Region. Journal of the North Atlantic (Special Issue: Viking Settlers of the North Atlantic: An Isotopic Approach). 2015; 7:103–36.

63. Blank M, Sjögren K-G, Knipper C, Frei KM, Storá J. Isotope values of the bioavailable strontium in inland southwestern Sweden—A baseline for mobility studies. Plos One. 2018; 13(10):e0204649. https://doi.org/10.1371/journal.pone.0204649 PMID: 30286158

64. Sjögren K-G, Price TD, Ahström T. Megaliths and mobility in south-western Sweden. Investigating relationships between a local society and its neighbours using strontium isotopes. Journal of Anthropological Archaeology. 2009; 28:85–101.

65. Price TD, Naumann E. The Peopling of the North Atlantic: Isotopic Results from Norway: SPIE; 2014. 15 p.

66. Oelze VM, Nehlich O, Richards MP. ‘There is no place like home’—No isotopic evidence for mobility at the Early Bronze Age Cemetery of Singen, Germany. Archaeometry. 2012; 54(4):752–78. https://doi.org/10.1111/j.1475-4754.2011.00644.x

67. Voerkelius S, Gesine DL, Rummel S, Quētel CR, Heiss G, Baxter M, et al. Strontium isotopic signatures of natural mineral waters, the reference to a simple geological map and its potential for authentication of food. Food Chemistry. 2010; 118(4):933–40. https://doi.org/10.1016/j.foodchem.2009.04.125 ISI:000271145300009.

68. Frei KM, Mannerning U, Thrané H. Textiles on the move: The provenance of a Late Bronze Age nettle textile from Lusehøj, Denmark. In: Suchowska-Ducke PSR, S. & Vandkilde H., editor. Forging Identities The Mobility of Culture in Bronze Age Europe. 2: British Archaeological Reports BAR; 2015. p. 55–62.

69. Bergbernt S, Jørgensen LB, Fossay SH. Appearance in Bronze Age Scandinavia as Seen from the Nybel burial. European Journal of Archaeology. 2013; 16(2):247–67. https://doi.org/10.1179/1461957112Y.0000000026

70. Aner E, Kersten K. Die Funde der älteren Bronzezeit des nordischen kreises in Dänemark, Schleswig-Holstein und Niedersachsen. Neumünster: Karl Wachholz Verlag; 1981.

71. Christensen K. Dendrochronological Dating of Bronze Age Oak Coffins from Denmark and Schleswig. Acta Archaeologica. 2006; 77(7):163–246.

72. Aner E, Kersten K, Willroth K-H. Die Funde der älteren Bronzezeit des nordischen kreises in Dänemark, Schleswig-Holstein und Niedersachsen. Neumünster: Karl Wachholz Verlag; 2001.

73. Broholm HC. Danmarks bronzealder: Kultur og folk i den ældre bronzealder. Copenhagen: Arnold Busck; 1943.

74. Bech J-H, Rasmussen M. Thy and the outside world in the Bronze Age: regional variations in a North Sea perspective pages In: Bech J-H, Eriksen BV, Kristiansen K, editors. In Bronze Age Settlement and Land-use in Thy, Northwest Denmark. Højbjerg: Jutland Archaeological Society; 2018. p. 25–106.