Toward minimal renormalizable SUSY $SU(5)$ Grand Unified Model with tribimaximal mixing from A_4 Flavor symmetry

Paolo Ciafaloni, Marco Picariello, and Alfredo Urbano

Dip. di Fisica, Università del Salento and INFN - Lecce, Italy

Emilio Torrente-Luján

Dep. de Física, Univ. de Murcia - Murcia, Spain

We address the problem of rationalizing the pattern of fermion masses and mixings by adding a nonabelian flavor symmetry in a grand unified framework. With this purpose, we include an A_4 flavor symmetry into a unified renormalizable SUSY GUT $SU(5)$ model. With the help of the “Type II Seesaw” mechanism we are able to obtain the pattern of observed neutrino mixings in a natural way, through the so called tribimaximal matrix.

PACS numbers: 11.30.Hv, 12.10.-g, 14.60.Pq, 12.15.Ff
Keywords: Flavor symmetries, Unified field theories and models, Quark and lepton masses and mixing

I. INTRODUCTION

The experimental discovery of flavor oscillations of neutrinos, with the consequence that their masses are different from zero, is certainly a clear indication that there is New Physics beyond the content of the Standard Model [1]. One of the most attractive and beautiful scenario in which we can set this information is represented by the Grand Unification Theories (GUT), that describe the merging of gauge couplings into a single one at a very high energy ($\sim 10^{16}$ GeV), as suggested by the gauge coupling constants running. Inside a unification theory, moreover, it is possible also to try to find an answer to some important and unsolved questions in flavor physics: the low energy data described in the quark sector by the Cabibbo-Kobayashi-Maskawa mixing matrix as well as the hierarchy between the quark masses. In the leptonic sector the low energy information is far from being as exhaustive as in the quark sector; one possibility is to assume a particular form for the mixing matrix: the so called tri-bimaximal matrix [2], which is consistent with our informations coming from neutrino oscillations on neutrino mass splittings and mixing angles. The most acclaimed possibility in order to explain the hierarchy between the masses comes from the introduction of a continuous flavor symmetry, as elegantly explained in [3]-[5], while the mixing can be explained by introducing discrete symmetries. For example, in [6]-[18] several attempts have been done to face the flavor puzzle by introducing discrete flavor symmetries such as S_3, S_4, A_4, T', and so on. Some attempts, as in [19], have been done to embed the A_4 flavor symmetry into a large flavor symmetry in order to explain also the hierarchy among the 3rd and other two generation; in particular the authors have shown that the discrete symmetry A_4 can help us in solving both aspects of the flavor problem: lepton-quark mixing hierarchy and family mass hierarchy. The flavor symmetry A_4, as shown for example in [20, 21], is very promising also in its extension to flavor group compatible with SO(10)-like grand unification. For example, by embedding A_4 into a group like $SU(3) \times U(1)$, as in [22], it is possible to explain both large neutrino mixing and fermion mass hierarchy in $SO(10)$ Grand Unified Theory of Flavor (GUTF). Considering as underlying unification theory $SU(5)$ instead of $SO(10)$, the situation becomes very different: the Standard Model ordinary matter for each family is embedded in two distinct $SU(5)$ representations; this peculiarity makes the way in which the matter content of the theory transforms under the action of the A_4 symmetry not obvious, allowing for different combinations (see for instance [23] and [24]).

In this paper we introduce the flavor symmetry A_4 in the context of a unified $SU(5)$ theory featuring a Type II Seesaw mechanism for neutrino masses generation. Our starting point is the Model described in [25], which is a renormalizable model in which no matter fields besides the Standard Model ones are introduced. To this model we add two ingredients: the flavor symmetry, introduced in order to produce tribimaximal mixing in the neutrino sector, and supersymmetry, which, as we shall see, makes the needed vacuum alignment somehow more natural.
II. FIELD CONTENT AND SU(5) ⊗ A4 INVARIANCE

In order to clarify our notation we open now a small window on the A4 properties, referring as an example to [26] for a more detailed discussion. In particular in this work we use the basis where the A4 elements S and T acts on a 3 multiplet as

\[
S = \begin{pmatrix}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1 \\
\end{pmatrix}, \quad T = \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0 \\
\end{pmatrix}, \quad (1)
\]

Given two triplets \((a_1, a_2, a_3) \) and \((b_1, b_2, b_3) \), three non equivalent singlets can be formed from the \(3 \otimes 3 \) composition:

\[
1 = a_1 b_1 + a_2 b_2 + a_3 b_3, \quad 1' = a_1 b_1 + \omega^2 a_2 b_2 + \omega a_3 b_3, \quad 1'' = a_1 b_1 + \omega a_2 b_2 + \omega^2 a_3 b_3 \quad (2)
\]

while the two inequivalent triplets one can form are \(\{a_2 b_3, a_3 b_1, a_1 b_2\} \) and \(\{a_3 b_2, a_1 b_3, a_2 b_1\} \). Here as usual \(\omega = \exp(2\pi i/3) \). From the decomposition of the direct product \(3 \otimes 3 \) we have two different singlets, as follows:

\[
\begin{pmatrix}
(a_2 b_3 c_1 + a_3 b_1 c_2 + a_1 b_2 c_3) \\
(a_3 b_2 c_1 + a_1 b_3 c_2 + a_2 b_1 c_3)
\end{pmatrix}. \quad (3)
\]

We also introduce the 4 representation, which is really simply a singlet added to a triplet; this is useful in order to keep our notation compact. For instance the Higgs multiplet belonging to a 5 representation with respect to SU(5) properties, behaves as the direct sum \(4 = 3 \oplus 1 \) under A4:

\[
5_H \sim 3 \oplus 1 \to \{5^k_{2,3}, 5_H\}, \quad (4)
\]

and one can describe the A4 transformations in the direct sum \(4(4', 4'') = 3 \oplus 1(1', 1'') \) with a 4x4 matrix:

\[
S_{4,4',4''} = \begin{pmatrix}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}, \quad T_{4,4',4''} = \begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & \omega, \omega^2 \\
\end{pmatrix}. \quad (5)
\]

We now give the SU(5) and A4 field properties we choose in this work, for Higgs (H) and matter (T) representations, as follows:

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c}
SU(5) & 10_T & 5_T & 5_H & 5_H & 45_H & 45_H & 45_H & 15_H & 15_H & 24_H \\
A_4 & 3 & 3 & 4 & 4 & 4 & 4' & 4'' & 4'' & 1 \\
\end{array}
\]

In the Higgs sector we will introduce \(24_H, 5_H, 5_H \) in order to break spontaneously the gauge symmetry SU(5) into the Standard Model one and subsequently into the residual SU(3)c ⊗ U(1)em; moreover \(45_H \) and \(45_H \) are necessary in order to avoid the wrong prediction \(M_D^2 = M_E \) while \(15_H \) and \(15_H \) will generate the right path of neutrino masses through the Higgs mechanism implemented by the SU(2)L heavy scalar triplet contained into the Standard Model decomposition of \(15_H \).

The necessity to take into account the A4 assignments as explained in the previous table is dictated by the observed phenomenology of the masses. For instance, it is easy to show that with the simpler choice of choosing \(5_H, 5_H \sim 3 \) and \(45_H, 45_H \sim 3 \), it is impossible to fit the measured values for the fermion masses. Although the Higgs sector of this model could seems rather cumbersome because of the introduction of four dimensional reducible representations, we stress the fact that it rests the minimal way in which we can preserve the predictivity of the A4 flavor symmetry in the contest of a renormalizable SU(5) model.

III. CHARGED FERMION MASS MATRICES

The relevant operators in the Yukawa sector that generate the charged fermion mass matrices are

\[
W_0 = y_1 10_T 5_T 5_H + y_2 10_T 5_T 45_H + y_3 10_T 10_T 5_H + y_4 10_T 10_T 45_H. \quad (6)
\]
As will be shown in section V, in the flavor space \(5\underline{H}, 5\underline{H}, 4\underline{5}\underline{H}, 4\underline{5}\underline{H} \) acquire their VEV in the direction \((1,1,1)\). Under this condition, after spontaneous symmetry braking the mass matrices obtained from \(W_0\) through (9) are:

\[
M_f = \begin{pmatrix} h_0^f & \gamma_1^f & \gamma_2^f \\ \gamma_1^f & h_0^f & \gamma_2^f \\ \gamma_2^f & \gamma_1^f & h_0^f \end{pmatrix} = \tilde{U}_\omega M_f^{\text{diag}} \tilde{U}_\omega^\dagger \quad \text{where} \quad \tilde{U}_\omega = \frac{1}{\sqrt{3}} \begin{pmatrix} \omega & \omega^2 & 1 \\ \omega^2 & \omega & 1 \\ 1 & 1 & 1 \end{pmatrix},
\]

where we define:

\[
\begin{align*}
h_0^f &= 8\tilde{y}_3\tilde{v}_3 \\
h_0^f &= \tilde{y}_3\tilde{v}_3 + 2\tilde{y}_2\tilde{v}_2 \\
h_0^f &= \tilde{y}_1\tilde{v}_1 - 6\tilde{y}_2\tilde{v}_3
\end{align*}
\]

where the vevs of the singlets from \(4 = 3 \oplus 1\) are signed with a tilde, \(\tilde{y}_i^{1,2}\) refers to the two independent parameters from the singlets of \(3 \otimes 3 \otimes 3\), as in (3), written for the \(y_i\) Yukawa coupling in (9) while \(\tilde{y}_i\) refers to the singlet from \(3 \otimes 3 \otimes 1\).

Here we notice that \(h_0^f\)'s, \(\gamma_1^f\)'s, and \(\gamma_2^f\)'s are independent parameters. The masses are given by

\[
\begin{align*}
m_f^1 &= \left| h_0^f + \gamma_1^f \omega + \gamma_2^f \omega^2 \right| \\
m_f^2 &= \left| h_0^f + \gamma_1^f \omega^2 + \gamma_2^f \omega \right| \\
m_f^3 &= \left| h_0^f + \gamma_1^f + \gamma_2^f \right|
\end{align*}
\]

allowing a fit of experimental values as shown in [22].

As for mixing angles, since left up and down quarks have the same mass matrix (7), the \(V_{\text{CKM}}\) is unity in first approximation. In order to produce the Cabibbo angle, we now perturb the VEV directions by adding a small component in the direction \((0,0,1)\). We obtain that the mass matrices are perturbed by

\[
\delta M_f = \begin{pmatrix} 0 & \epsilon_f^f & 0 \\ \epsilon_f^f & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow M_f^{\text{off diag}} = \tilde{U}_\omega^\dagger \delta M_f \tilde{U}_\omega = \begin{pmatrix} \omega \epsilon_f^f + \omega^2 \epsilon_f^f & \epsilon_f^1 + \epsilon_f^2 & \omega^2 \epsilon_f^1 + \omega \epsilon_f^2 \\ \epsilon_f^1 + \epsilon_f^2 & 2 \omega \epsilon_f^1 + \omega^2 \epsilon_f^2 & \omega \epsilon_f^1 + \omega^2 \epsilon_f^1 \\ \omega \epsilon_f^1 + \omega^2 \epsilon_f^2 & \omega \epsilon_f^1 + \omega^2 \epsilon_f^1 & \epsilon_f^1 + \epsilon_f^2 \end{pmatrix}
\]

The Cabibbo angle can then be generated at least in two ways:

1. As explained in [22], such small perturbations, if they are of order \(\lambda^3 m_t^f\) (where \(\lambda\) is the Cabibbo angle), generate the Cabibbo angle in the quark sector and are irrelevant in the lepton sector. The crucial point is that such assumption has the consequences that our operators give negligible effects in the down and charged lepton sectors, since for the down and charged leptons \(M_{\text{diss}}^{\text{diag}} + M_{\text{off}}^{\text{diag}}\) remain diagonal. On the contrary for the up quarks we have that the off-diagonal entry \((1,2)\) cannot be neglected: the matrix \(M_{\text{diss}}^{\text{diag}} + M_{\text{off}}^{\text{diss}}\) is diagonalized by a rotation in the 12 plane with \(\sin \theta_{12} \approx \lambda\). This rotation produces the Cabibbo angle in the CKM.

2. another possibility is given by assuming that the Cabibbo angle comes from a rotation in the down sector. This can be the case if the perturbation of the \(5\underline{H}\) and \(4\underline{5}\underline{H}\), i.e. of order \(\lambda^3 m_{t\text{top}} \approx \lambda^3 m_{\text{bottom}}\), are bigger than the ones of the \(5\underline{H}\) and \(4\underline{5}\underline{H}\), i.e. of order \(\lambda^3 m_{t\text{top}}\). Such correction generates also a small perturbation to the tri-bimaximal lepton mixing matrix of order of the Cabibbo angle. In particular if the dominant contribution comes from the \(5\underline{H}\) then the tri-bimaximal lepton mixing matrix is multiplied on the left by \(U_{\text{CKM}}^\dagger\) and the net result is the presence of a non trivial quark-lepton complementarity fully compatible with the experimental data and a prediction for the \(\theta_{13}\) lepton angle [27]. On the other side, if the dominant contribution comes from the \(4\underline{5}\underline{H}\) there is a Clebsch-Gordan coefficient between the quark and lepton mixing corrections.

IV. NEUTRINO MASS MATRIX AND LEPTON MIXING ANGLES

The relevant operators that generate the neutrino mass matrix are:

\[
W_1 = \gamma \overline{T}_T \overline{T}_T 15\underline{H} + m_0 15\underline{H} 15\underline{H}.
\]
We assume that the triplet from 15_H acquires a small VEV in the direction $\langle 0,0,1 \rangle$, while we use again the tilde for the VEV of the singlet. Under this condition the neutrino mass matrix obtained from W_1 is given by

$$M_\nu = \begin{pmatrix} \beta \tilde{\nu}_{15} & \gamma \tilde{\nu}_{15} & 0 \\ \gamma \tilde{\nu}_{15} & \omega \beta \tilde{\nu}_{15} & 0 \\ 0 & 0 & \omega^2 \beta \tilde{\nu}_{15} \end{pmatrix} = V^* M_\nu^\dagger V$$

where $V = \begin{pmatrix} \omega & 0 & -i \omega \\ 0 & \omega & i \omega \\ i & 0 & -i \omega \end{pmatrix}$

and the lepton tri-bimaximal mixing arises:

$$V_{\text{leptons}} = \tilde{U}_U \cdot V = \begin{pmatrix} 2 & 1 & 0 \\ \sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & -\frac{1}{\sqrt{2}} \\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \frac{1}{\sqrt{2}} \end{pmatrix}.$$

In 12 γ is the common parameter for the two singlets from $3 \otimes 3 \otimes 3$, after considering that the demand for the neutrino mass matrix to be symmetric forces in 3 the relation $\gamma_1 = \gamma_2$; β is the parameter from the singlet of $3 \otimes 3 \otimes 1'$ in 11. The neutrino masses are given by $\{\rho^2 \beta \tilde{\nu}_{15} + \gamma \tilde{\nu}_{15}, |\rho^2 \beta \tilde{\nu}_{15}, | - \rho^2 \beta \tilde{\nu}_{15} + \gamma \tilde{\nu}_{15}\}$. Since phenomenologically we have $\delta m^2_{atm} > 0$, we obtain $|\beta \gamma \tilde{\nu}_{15} \tilde{\nu}_{15}| < 0$ which implies $\delta m^2_{13} > 0$, i.e. a normal hierarchy; so as a consequence the inverted hierarchy is completely ruled out in this model because of the same underlying structure imposed by the A_4 symmetry.

Finally we predict the absolute neutrino mass value and the parameter m_{ee} relevant for the future experiments in neutrinoless double beta decay, i.e.

$$m_2 \geq \frac{1}{2\sqrt{2}} \sqrt{\frac{\delta m^2_{atm} + \delta m^2_{sol}}{\delta m^2_{atm} - \delta m^2_{sol}}} \approx \frac{1}{2\sqrt{2}} \sqrt{\delta m^2_{atm}} \simeq 0.02 \text{ eV},$$

and

$$|m_{ee}| \geq 2m_1 + m_2 \geq \frac{3}{2\sqrt{2}} \sqrt{\delta m^2_{atm}} \simeq 0.05 \text{ eV}.$$

V. MINIMIZATION OF THE POTENTIAL

The potential V is written in terms of the superpotenzial $W(\phi_i)$, which is an analytical function of the scalar fields ϕ_i, in the following way:

$$V = \sum_i \left| \frac{\partial W}{\partial \phi_i} \right|^2 + V_{D-terms} + V_{soft}$$

Here we are interested in the SU(5) and A_4 breaking that takes place at scales of the order of the GUT scale; we can therefore neglect supersymmetry breaking terms of the order of the TeV scale, described by V_{soft}: the latter play a crucial role in electroweak symmetry breaking, that we don’t discuss. In the following we minimize the first term in 10, neglecting also D-terms: minimization then amounts to imposing $\frac{\partial W}{\partial \phi_i} = 0 \ \forall i$. After imposing this, we show that there is a finite region in parameter space where $V_{D-terms} = 0$, justifying a posteriori our assumption.

In order to obtain a correct $SU(5) \rightarrow SU(3) \otimes SU(2) \otimes U(1)$ symmetry breaking we impose the following structure with respect to the $SU(5)$ symmetry:

$$(45_H)^{\dagger}_{i} = v_{45}, i = 1, 2, 3; \quad (45_H)^{\dagger}_{i} = -3v_{45};$$

$$(45_H)^{\dagger}_{i} = v_{45}, i = 1, 2, 3; \quad (45_H)^{\dagger}_{45} = -3v_{45};$$

$$(24_H)^{\dagger}_{\alpha} = \text{diag} v_{24}^2 (2v_{24}^2, 2v_{24}^2, 2v_{24}^2, -3v_{24}^2 + v_{24}^2, -3v_{24}^2 - v_{24}^2);$$

$$(5_H)^{\alpha} = v_5 (0, 0, 0, 0, 1)^T;$$

$$(5_H)^{\alpha} = v_5 (0, 0, 0, 0, 1)^T.$$
Moreover we assume that in flavor space the triplet from 15_H acquires a small vev in the direction $(0, 0, 1)$.

Let us now come to potential minimization. The renormalizable Higgs super-operators allowed under supersymmetric $SU(5)\otimes A_4$ invariance are:

\[
W_2 = m_\Sigma \, 24_H \, 24_H + \lambda_\Sigma \, 24_H \, 24_H \, 24_H + m_5 \, \tilde{h}_H \, \tilde{c}_H + m_4 \, \tilde{h}_H \, 15_H + m_{45} \, \tilde{g}_{55} \, 45_H,
\]

\[
W_3 = \lambda_\Sigma \, 5_H \, 24_H \, 5_H + c_H \, \tilde{h}_H \, 24_H \, 45_H + b_H \, \tilde{g}_{55} \, 24_H \, 5_H + a_H \, \tilde{g}_{55} \, 45_H \, 24_H
\]
\[
+ \lambda_\Sigma \, \tilde{h}_H \, 24_H \, 5_H + c_H \, \tilde{h}_H \, 24_H \, 45_H + b_H \, \tilde{g}_{55} \, 24_H \, 5_H + \tilde{a}_H \, \tilde{g}_{55} \, 45_H \, 24_H,
\]

\[
W_4 = h_1 \tilde{15}_H \, 24_H \, 15_H \, 5_H + h_2^{mn} \tilde{15}_H \, 15_H \, 15_H \, 5_H + h_4^{mn} \tilde{15}_H \, 15_H \, 45_H \, 45_H
\]
\[
+ h_5^{mn} \tilde{15}_H \, 45_H \, 45_H \, 5_H \]
\[
+ h_1 \tilde{15}_H \, 24_H \, 15_H + h_2 \tilde{15}_H \, (15_H \, 5_H + \omega^2 24_H \, 5_H + \omega 5_H \, 5_H)
\]
\[
+ h_3 \tilde{15}_H \, (\tilde{15}_H \, 5_H + \omega^2 \tilde{15}_H \, 5_H + \omega \tilde{15}_H \, \tilde{5}_H) + h_4 \tilde{15}_H \, (\tilde{15}_H \, 45_H + \omega \tilde{45}_H \, 45_H + \omega^2 \tilde{45}_H \, \tilde{45}_H)
\]
\[
+ h_5 \tilde{15}_H \, 45_H \, 45_H \, 5_H,
\]

where $\gamma, \beta, a_H, b_H,$ and c_H and the $y's$, $\lambda's$, $m's$, and $h's$ are the coupling constants of the model. The invariant combination from $3 \otimes 3 \otimes 3$, e.g. as abbreviated in $h_2^{mn} \tilde{15}_H \, 15_H \, 15_H$, have to be understood following (3).

We now impose $\partial W/\partial \tilde{v}_5 = 0$, the superpotenial W being given by the sum of the terms (21a, 21b). The first equations we discuss are the ones obtained by imposing $\partial W/\partial 45^0_H = \partial W/\partial \tilde{15}_H = 0$:

\[
v^{k}_{45} A = -c_H v^s_{24} v^{k}_{\tilde{5}},
\]

\[
v^{k}_{45} B = \frac{c_H}{2} (-3 v^s_{24} + v^t_{24}) v^{k}_{\tilde{5}},
\]

\[
v^{k}_{45} A = -b_H v^s_{24} v^{k}_{\tilde{5}},
\]

\[
v^{k}_{45} B = \frac{b_H}{2} (-3 v^s_{24} + v^t_{24}) v^{k}_{\tilde{5}};
\]

where

\[
A \equiv m_{45} + v^s_{24} \left(2 a^1_H + \frac{a^2_H}{2}\right) + v^t_{24} \frac{a^3_H}{2},
\]

\[
B \equiv -m_{45} + 3 v^s_{24} (a^1_H - \frac{a^2_H}{2}) - v^t_{24} a^3_H
\]

Eqs. (22) imply that $v_5(v_{\tilde{5}})$ is aligned with $v_{45}(v_{\tilde{45}})$ in flavor space.

Then, from $\partial W/\partial 15_H = \partial W/\partial \tilde{15}_H = 0$ we obtain:

\[
12 h_4 \left[(v^s_{45})^2 + \omega (v^2_{45})^2 + \omega^2 (v^3_{45})^2\right] + h_3 \left[(v^t_{45})^2 + \omega (v^2_{45})^2 + \omega^2 (v^3_{45})^2\right] = 0
\]

\[
12 h_5 \left[(v^s_{45})^2 + \omega (v^2_{45})^2 + \omega^2 (v^3_{45})^2\right] + h_2 \left[(v^t_{45})^2 + \omega (v^2_{45})^2 + \omega^2 (v^3_{45})^2\right] = 0
\]

For generic values of the superpotenital parameters h_i, these equations are identically satisfied (recall that $\omega = \exp(2\pi i/3)$) if $v^s_5 = v^2_5 = v^3_5$ and the same holds for $v^t_{45}, v^2_{45}, v^3_{45}$; this realizes the desired vacuum alignment since all triplets VEVs must be proportional to the direction $(1, 1, 1)$ in flavor space.

Let us now consider the remaining equations, with the purpose of showing that a nontrivial solution indeed exists, provided certain conditions are fulfilled by the parameters of the superpotentaital.

*) from $\partial W/\partial 5_H = 0$ and $\partial W/\partial \tilde{5}_H = 0$ we obtain:

\[
v^k_5 \alpha = 3 c_H v^k_{15}(-5 v^s_{24} + v^t_{24}),
\]

\[
v^k_5 \alpha = 3 b_H v^k_{15}(-5 v^s_{24} + v^t_{24});
\]

*) from $\partial W/\partial 45_H = 0$ and $\partial W/\partial \tilde{45}_H = 0$:
$$
\hat{\tau}_2 \hat{A} = -\hat{c}_H v_{24} \tau_5, \quad (26a)
$$

$$
3\hat{\tau}_2 \hat{B} = -\frac{\hat{c}_H}{2} (-3v_{24}^s + v_{24}^t) \tau_5, \quad (26b)
$$

$$
\hat{v}_{45} \hat{A} = -\hat{b}_H v_{24}^e v_5, \quad (26c)
$$

$$
3\hat{v}_{45} \hat{B} = -\frac{\hat{b}_H}{2} (-3v_{24}^s + v_{24}^t) \tau_5; \quad (26d)
$$

*) from $\partial W/\partial \tilde{5}_H = 0$ and $\partial W/\partial \tilde{\tilde{5}}_H = 0$:

$$
\hat{v}_5 \hat{\alpha} = 3\hat{c}_H \tilde{\tau}_5 (-5v_{24}^s + v_{24}^t), \quad (27a)
$$

$$
\hat{v}_{55} \hat{\alpha} = 3\hat{b}_H \tilde{\tau}_5 (-5v_{24}^s + v_{24}^t); \quad (27b)
$$

*) from $\partial W/\partial \tilde{15}^k_H = 0$ and $\partial W/\partial \tilde{15}^k_H = 0$ for every $l \neq m \neq k$ we obtain:

$$
12(h_4^1 + h_4^2) v_{35}^d v_{45}^{k_m} + 12h_5^1 \hat{v}_{35} \hat{v}_{45}^{l_m} + (h_3^1 + h_3^2)v_{55}^d v_{55}^{k_5} + \hat{h}_5^1 \hat{v}_{55}^{l_5} = 0, \quad (28a)
$$

$$
12(h_3^1 + h_3^2) v_{45}^d v_{45}^{k_m} + 12h_5^1 \hat{v}_{45} \hat{v}_{45}^{l_m} + (h_2^1 + h_2^2)v_{55}^d v_{55}^{k_5} + \hat{h}_5^1 \hat{v}_{55}^{l_5} = 0, \quad (28b)
$$

*) from $\partial W/\partial \tilde{24}_H = 0$:

$$
2v_{24}^s \beta_1 + \sum_{k=1}^3 [(2a_H^1 - a_H^2)v_{45}^d v_{45}^{k_m} + b_H v_{45}^d v_{45}^{k_5} + c_H v_{45}^d v_{45}^{k_5}] + (2\hat{\alpha}_H - \hat{\alpha}_H^2) \hat{v}_{45} \hat{v}_{45} + \hat{b}_H \hat{v}_{45} \hat{v}_{45} + \hat{c}_H \hat{v}_{45} \hat{v}_{45} = 0 \quad (29)
$$

$$
(-3v_{24}^s + v_{24}^t) \beta_2 + 3 \left\{ \sum_{k=1}^3 [3(2a_H^1 - a_H^2)v_{45}^d v_{45}^{k_m} - b_H v_{45}^d v_{45}^{k_5} - c_H v_{45}^d v_{45}^{k_5}] + 3(2\hat{\alpha}_H - \hat{\alpha}_H^2) \hat{v}_{45} \hat{v}_{45} - \hat{b}_H \hat{v}_{45} \hat{v}_{45} - \hat{c}_H \hat{v}_{45} \hat{v}_{45} \right\} = 0 \quad (30)
$$

$$
(-3v_{24}^s - v_{24}^t) \beta_3 + \sum_{k=1}^3 [\lambda_H v_{45}^d v_{45}^{k_m} - 12a_H^2 v_{45}^d v_{45}^{k_5}] + \hat{\lambda}_H \hat{v}_{45} \hat{v}_{45} - 12\hat{a}_H \hat{v}_{45} \hat{v}_{45} = 0 \quad (31)
$$

where we have defined the following combinations:

$$
\alpha \equiv m_5 - \lambda_H (3v_{24}^s + v_{24}^t), \quad (32a)
$$

$$
\beta_1 \equiv (2m_\Sigma + 6\lambda_\Sigma v_{24}^t), \quad (32b)
$$

$$
\beta_2 \equiv [2m_\Sigma + 3\lambda_\Sigma (-3v_{24}^s + v_{24}^t)], \quad (32c)
$$

$$
\beta_3 \equiv [2m_\Sigma + 3\lambda_\Sigma (-3v_{24}^s - v_{24}^t)], \quad (32d)
$$

with similar relations for \hat{A}, \hat{B} (see eqs. 26) and $\hat{\alpha}$, obtained considering the substitutions of the “non-tilded” parameters with the “tilded” ones.

Comparing the first equation in (22) with the second one, as well as the third with the fourth, and performing the same analysis with (26), we obtain the relations:

$$
\begin{cases}
6B v_{24}^s = A(-3v_{24}^s + v_{24}^t) \\
6B v_{24}^t = A(-3v_{24}^s + v_{24}^t)
\end{cases} \quad \Rightarrow \quad \frac{B}{A} = \frac{\hat{B}}{\hat{A}}; \quad (33)
$$

from (22) and (26) we have, instead:

$$
\begin{cases}
3b_H c_H v_{24}^s(-5v_{24}^s + v_{24}^t) = -\alpha A \\
3b_H c_H v_{24}^t(-5v_{24}^s + v_{24}^t) = -\alpha A
\end{cases} \quad \Rightarrow \quad \frac{\alpha A}{b_H c_H} = \frac{\hat{\alpha} \hat{A}}{b_H \hat{c}_H}; \quad (34)
$$
it’s possible, at this point, to use the system of (28) in order to obtain \(v_{24}^s \) as functions of the parameters in the superpotential. The allowed solutions are:

\[
v_{24}^t = \frac{3\eta \pm \sqrt{2\varphi}}{4\sigma}, \quad v_{24}^s = \frac{\eta \mp \sqrt{2\varphi}}{12\sigma},
\]

where:

\[
\eta \equiv (2a_H^1 - a_H^2)m_s b_H c_H + (2a_H^1 - a_H^2)^2 m_5 \lambda_H, \\
\sigma \equiv (b_H c_H + \lambda_H (2a_H^1 - a_H^2))^2, \\
\varphi \equiv m_5 \sigma \left[3m_{55} b_H c_H + (2a_H^1 - a_H^2) \left(3m_{45} \lambda_H + m_5 (a_H^1 + a_H^2) \right) \right].
\]

From (28) we obtain:

\[
\bar{v}_5 = -\frac{\tilde{A}}{2} \left[\frac{12(h_1^1 + h_2^2)(b_H v_{24}^s)^2 + A^2 (h_1^1 + h_2^2)^2}{12 h_5^2 b_H b_H (v_{24}^s)^2 + h_5^2 A A} \right] v_5 \equiv -\frac{\tilde{A}}{2} \Theta_1 v_5,
\]

\[
\bar{v}_5 = -\frac{\tilde{A}}{2} \left[\frac{12(h_1^1 + h_2^2)(c_H v_{24}^t)^2 + A^2 (h_1^1 + h_2^2)^2}{12 h_5^2 c_H c_H (v_{24}^t)^2 + h_5^2 A A} \right] v_5 \equiv -\frac{\tilde{A}}{2} \Theta_2 v_5.
\]

and:

\[
\tilde{v}_{45} = \frac{\tilde{b}_H v_{24}^s}{A} \Theta_1 v_5, \\
\tilde{v}_{45} = \frac{\tilde{c}_H v_{24}^t}{A} \Theta_2 v_5,
\]

These relations allow us to express \(v_{45}, \tilde{v}_{45} \) and \(\bar{v}_5 \) as functions of \(v_5 \), as well as \(\bar{v}_{24}, \tilde{v}_{24} \) and \(\bar{v}_5 \) as functions of \(v_5 \). Considering the relations obtained in (28), we can rewrite the three equations from (29) as three compatible relations that allow to write the product \(v_5 \bar{v}_5 \) as a function of the parameters of the superpotential.

We now show that it is possible to choose the (super)potential parameters in such a way that the D-terms contribution appearing in (39) are zero. For a supersymmetric gauge theory the D-terms can be written as:

\[
\frac{1}{2} \sum G \sum_\alpha \sum_{i,j} \sum_{T_G} \left(\phi_i^T T_G^\alpha \phi_j \right) \left(\phi_j^T T_G^\alpha \phi_i \right),
\]

where we take into account that, for the MSSM, \(G = SU(3)_C, SU(2)_L, U(1)_Y \), with different couplings \(g_G \) and generators \(T_G \).

Let us first consider contributions for \(5_H, \bar{5}_H \) representations. The following decomposition holds:

\[
5_H = (3, 1, -1/3) \oplus (1, 2, 1/2), \quad \bar{5}_H = (3, 1, 1/3) \oplus (1, \bar{3}, -1/2);
\]

since we only consider contributions to D-terms coming from the vevs \((5_H), (\bar{5}_H) \), only the \(SU(2) \oplus U(1) \) doublet in (40) contributes. Moreover the off diagonal SU(2) generators \(T_1, T_2 \) also give zero contribution, so we need only to consider the effect of \(T_3 \) and the hypercharge \(Y \). Taking also into account that in flavor space the vevs have the structure \((5_H, \bar{5}_H) = v_{5,\bar{5}}(1,1,1) \), a straightforward calculation gives:

\[
\left(\left| 5_H^T v_{24}^s 5_H \right|_{SU(2)_L} + \left| \bar{5}_H^T v_{24}^t \bar{5}_H \right|_{SU(2)_L} \right) = \frac{3}{2} (-|v_5|^2 + |v_{\bar{5}}|^2) + \frac{1}{2} (-|\bar{v}_5|^2 + |\bar{v}_{\bar{5}}|^2)
\]

while the \(U(1) \) contribution reads:

\[
\left(\left| 5_H^T v_{24}^s 5_H \right|_{U(1)_Y} + \left| \bar{5}_H^T v_{24}^t \bar{5}_H \right|_{U(1)_Y} \right) = \frac{3}{2} (|v_5|^2 - |v_{\bar{5}}|^2) + \frac{1}{2} (|\bar{v}_5|^2 - |\bar{v}_{\bar{5}}|^2).
\]

Similar considerations hold for the \(45_H, \bar{45}_H \) representations, decomposed as:

\[
45_H = (8, 2, 1/2) \oplus (6, 1, -1/3) \oplus (3, 3, -1/3) \oplus (3, 3, -1/3) \oplus (3, -7/6) \oplus (3, 1, -1/3) \\
\oplus (3, 1, 4/3) \oplus (1, 2, 1/2)
\]
and for which only the doublet component contributes. The 24_H instead:

$$24_H = (8, 1, 0) \oplus (1, 3, 0) \oplus (3, 2, -5/6) \oplus (\mathbf{3}, \mathbf{3}, 5/6) \oplus (1, 1, 0) \quad (44)$$

acquires a nonzero vev along the $(1, 1, 0)$ component, which is an isospin singlet with zero hypercharge and therefore does not contribute to D-terms. Overall, D-terms can be written as:

$$\frac{g^2 + g'^2}{2} \left\{ \frac{3}{2} (-|v_5|^2 + |v_5'|^2) + \frac{1}{2} (-|\tilde{v}_5|^2 + |\tilde{v}_5'|^2) + \frac{3}{2} (-|v_{45}|^2 + |v_{45}'|^2) + \frac{1}{2} (-|\tilde{v}_{45}|^2 + |\tilde{v}_{45}'|^2) \right\}^2 \quad (45)$$

Since all vevs appearing in eq. (15) are expressed as functions of v_5 and v_5' through equations eqs. (22, 37, 38), imposing vanishing D-terms implies:

$$|v_5|^2 \left(\frac{3}{2} + \frac{1}{2} \frac{\tilde{A}}{A} \Theta_2^2 + \frac{3}{2} \frac{c_H}{A} v_5^2 + \frac{1}{2} \frac{c_H}{A} \Theta_1^2 \right) = \frac{1}{v_5'^2} \left(\frac{3}{2} + \frac{1}{2} \frac{\tilde{A}}{A} \Theta_1^2 + \frac{3}{2} \frac{b_H}{A} v_5^2 + \frac{1}{2} \frac{b_H}{A} \Theta_1^2 \right) \quad (46)$$

So, while the minimization conditions discussed above fix the value of the product $v_5 v_5'$, requiring vanishing D-terms adds eq. eq. (16) and fixes the value of v_5 and v_5' (and therefore of all the remaining vevs) as functions of the potential parameters.

As a conclusion we have that vacuum alignment in flavor space $v_i \propto (1, 1, 1)$, that allows us to obtain the correct phenomenology in the context of the considered model, arises in a natural way from the analysis of the superpotential, under the condition that the VEVs of 15_H and $\mathbf{15}_H$ are neglected in comparison with the other scales of the model.

VI. CONCLUSIONS

In this paper we have achieved the possibility to reproduce the nice features of the A_4 group, with regard to the mixing of leptons, inside a renormalizable $SU(5)$ theory. Even if the GUT scale is very close to the Planck scale, in fact, we think that renormalizability has to be a fundamental characteristic of the considered unification theory, in order to avoid the presence of higher dimensional operators as fundamental blocks in the construction of the mass matrices and to improve the predictivity of the model.

In our model the neutrino mass matrix comes from the presence of an heavy $SU(2)_L$ scalar triplet embedded into the 15_H representation of $SU(5)$, while in order to obtain the correct phenomenology at GUT scale we need to introduce an extended Higgs sector, as described in Sec. III where the presence of the four dimensional reducible representations of A_4 is claimed. As expected eqs. (14, 28) we are not able to reproduce with the only aid of A_4 symmetry the hierarchy between the masses; on the contrary the mixing angle in the CKM-matrix and in the PMNS-matrix, the latter being described by the tri-bimaximal mixing, are reproduced in a very clear way. With repect to our previous work [24], where a combination of Type I and Type III Seesaw mechanism was considered for generating neutrino masses, the model considered here with a Type II mechanism constitutes an improvement, since no fit is needed in order to generate the desired tribimaximal mixing. Moreover, as we have shown, minimizing the potential produces the needed vacuum alignment in a natural way in a finite region of the potential parameters.

Acknowledgments

Two of us (M.P. and A.U.) would like to thank the organizers and the participants to the “XLIVth Rencontres de Moriond 2009 - Electroweak Interactions and Unified Theories” where part of this work have been performed.

[1] For a report on neutrinos masses and mixings, see for instance G. Altarelli, Status of Neutrino Masses and Mixing in 2009, arXiv:0905.3265 [hep-ph] and references therein.
[2] P. F. Harrison, D. H. Perkins and W. G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530, 167 (2002) arXiv:hep-ph/0202074.
[3] S. F. King and G. G. Ross, Fermion masses and mixing angles from SU(3) family symmetry, Phys. Lett. B 520, 243 (2001) arXiv:hep-ph/0108112.
[4] S. F. King and G. G. Ross, Fermion masses and mixing angles from SU(3) family symmetry and unification, Phys. Lett. B 574, 239 (2003) arXiv:hep-ph/0307190.
I. de Medeiros Varzielas, S. F. King and G. G. Ross, Tri-bimaximal neutrino mixing from discrete subgroups of SU(3) and SO(3) family symmetry, Phys. Lett. B 644, 153 (2007) [arXiv:hep-ph/0512313].

R. N. Mohapatra, S. Nasri and H. B. Yu, S(3) symmetry and tri-bimaximal mixing, Phys. Lett. B 639 (2006) 318 [arXiv:hep-ph/0605020].

F. Bazzocchi and S. Morisi, S(4) as a natural flavor symmetry for lepton mixing, [arXiv:0811.0345] [hep-ph].

G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing from discrete symmetry in extra dimensions, Nucl. Phys. B 720 (2005) 64 [arXiv:hep-ph/0504165].

C. Hagedorn, M. A. Schmidt and A. Y. Smirnov, Lepton Mixing and Cancellation of the Dirac Mass Hierarchy in SO(10) GUTs with Flavor Symmetries T7 and Sigma(81), Phys. Rev. D 79 (2009) 036002 [arXiv:0811.2955 [hep-ph]].

G. Altarelli and D. Meloni, A Simplest A4 Model for Tri-Bimaximal Neutrino Mixing, J. Phys. G 36 (2009) 085005 [arXiv:0905.0620 [hep-ph]].

G. Altarelli, F. Feruglio and L. Merlo, Revisiting Bimaximal Neutrino Mixing in a Model with S4 Discrete Symmetry, JHEP 0905 (2009) 020 [arXiv:0903.1940 [hep-ph]].

F. Feruglio, C. Hagedorn, Y. Lin and L. Merlo, Lepton Flavour Violation in Models with A4 Flavour Symmetry, Nucl. Phys. B 809 (2009) 218 [arXiv:0807.3160 [hep-ph]].

G. J. Ding, Fermion Mass Hierarchies and Flavor Mixing from T' Symmetry, Phys. Rev. D 78 (2008) 036011 [arXiv:0803.2278 [hep-ph]].

F. Bazzocchi, S. Morisi and M. Picariello, Embedding A4 into left-right flavor symmetry: Tribimaximal neutrino mixing and fermion hierarchy, Phys. Lett. B 659 (2008) 628 [arXiv:0710.2928 [hep-ph]].

Y. Cai and H. B. Yu, An SO(10) GUT Model with S4 Flavor Symmetry, Phys. Rev. D 74, 115005 (2006) [arXiv:hep-ph/0608022].

S. Morisi, M. Picariello and E. Torrente-Lujan, A model for fermion masses and lepton mixing in SO(10) x A4, Phys. Rev. D 75 (2007) 075015 [arXiv:0702034].

F. Bazzocchi, S. Morisi, M. Picariello and E. Torrente-Lujan, Embedding A4 into SU(3)xSU(2)xU(1) flavor symmetry: Large neutrino mixing and fermion mass hierarchy in SO(10) GUT, J. Phys. G 36, 015002 (2009) [arXiv:0802.1693 [hep-ph]].

G. Altarelli, F. Feruglio and C. Hagedorn, A SUSY SU(5) Grand Unified Model of Tri-Bimaximal Mixing from A4, JHEP 0803, 052 (2008) [arXiv:0802.0990 [hep-ph]].

P. Ciafaloni, M. Picariello, E. Torrente-Lujan and A. Urbano, Neutrino masses and tribimaximal mixing in Minimal renormalizable SUSY SU(5) Grand Unified Model with A4 Flavor symmetry, arXiv:0901.2236 [hep-ph].

I. Dorsner and I. Mocioiu, Predictions from type II see-saw mechanism in SU(5), Nucl. Phys. B 796, 123 (2008) [arXiv:0708.3352 [hep-ph]].

G. Altarelli and F. Feruglio, Tri-Bimaximal Neutrino Mixing, A4 and the Modular Symmetry, Nucl. Phys. B 741 (2006) 215 [arXiv:hep-ph/0512103].

M. Picariello, B. C. Chauhan, J. Pulido and E. Torrente-Lujan, Predictions from non trivial Quark-Lepton complementarity, J. Phys. G 32, 5860 (2008) [arXiv:0706.2332 [hep-ph]].

M. Picariello, Predictions for \(\mu \to e\gamma \) in SUSY from non trivial Quark-Lepton complementarity, Adv. High Energy Phys. 2007, 39676 (2007) [arXiv:hep-ph/0703301].