Human filariasis—contributions of the *Litomosoides sigmodontis* and *Acanthocheilonema viteae* animal model

Frederic Risch 1 · Manuel Ritter 1 · Achim Hoerauf 1,2 · Marc P. Hübner 1,2

Received: 30 October 2020 / Accepted: 20 December 2020 / Published online: 6 February 2021 © The Author(s) 2021

Abstract

Filariae are vector-borne parasitic nematodes that are endemic worldwide, in tropical and subtropical regions. Important human filariae spp. include *Onchocerca volvulus*, *Wuchereria bancrofti* and *Brugia* spp., and *Loa loa* and *Mansonella* spp. causing onchocerciasis (river blindness), lymphatic filariasis (lymphedema and hydrocele), loiasis (eye worm), and mansonelliasis, respectively. It is estimated that over 1 billion individuals live in endemic regions where filarial diseases are a public health concern contributing to significant disability adjusted life years (DALYs). Thus, efforts to control and eliminate filarial diseases were already launched by the WHO in the 1970s, especially against lymphatic filariasis and onchocerciasis, and are mainly based on mass drug administration (MDA) of microfilaricidal drugs (ivermectin, diethylcarbamazine, albendazole) to filarial endemic areas accompanied with vector control strategies with the goal to reduce the transmission. With the United Nations Sustainable Development Goals (SDGs), it was decided to eliminate transmission of onchocerciasis and stop lymphatic filariasis as a public health problem by 2030. It was also requested that novel drugs and treatment strategies be developed. Mouse models provide an important platform for anti-filarial drug research in a preclinical setting. This review presents an overview about the *Litomosoides sigmodontis* and *Acanthocheilonema viteae* filarial mouse models and their role in immunological research as well as preclinical studies about novel anti-filarial drugs and treatment strategies.

Keywords Lymphatic filariasis · Onchocerciasis · Rodent models · *Acanthocheilonema viteae* · *Litomosoides sigmodontis* · Drug development

Human filarial species

Important human filariae spp. are *Onchocerca volvulus*, *Wuchereria bancrofti*, *Brugia* spp., *Loa loa* and *Mansonella* spp. Although the majority of infected individuals remain asymptomatic due to filarial-driven suppression of host immunity (Hoerauf and Brattig 2002; Adjohimey and Hoerauf 2010; Maizels et al. 2018; Ritter et al. 2018b, 2019; Alvar et al. 2020), filariae can influence disease outcome of concomitant infections and vaccination efficacy (Chatterjee et al. 2015; Santiago and Nutman 2016; Kroidl et al. 2016; Kabagenyi et al. 2020; Muhangi et al. 2007; Hillier et al. 2008; Elliott et al. 2010; Stensgaard et al. 2016; Mhimbira et al. 2017). Moreover, *O. volvulus*, *W. bancrofti*, and *Brugia* infections can lead to severe clinical symptoms and diseases in a subset of patients that develop strong inflammatory responses against the filariae. For example, the disease onchocerciasis caused by *Onchocerca volvulus* can lead to vision loss, blindness, and dermatitis including its severest form sowda (Adewole and Ayeni 2009; Edungbola et al. 1987; Katowa et al. 2015; Njim et al. 2015). Thus, onchocerciasis is a major public health problem (WHO Oncho 2020) and approximately 90 million people live at risk of contracting the disease worldwide, especially in Sub-Saharan Africa including 17 million infected and 270,000 permanently blind individuals (WHO 2018). Similarly, lymphatic filariasis (LF) caused by *Wuchereria bancrofti*, *Brugia timori* and *B. malayi* can lead to severe clinical symptoms including hydrocele, lymphedema, lymphangitis, and elephantiasis (WHO LF 2020; Rebollo and
Bockarie 2017). It is estimated that 68 million LF patients with 19 million hydrocele and 17 million lymphedema cases exist worldwide (Ramaiah and Ottesen 2014). In addition, loiasis caused by *Loa loa*, also known as African eye worm, is characterized by distinct clinical manifestations like Calabar swelling, pruritis, arthralgia, and sporadic sub-conjunctival migration of the adult worms (Lukiana et al. 2006; Akue et al. 2011). Recent studies have highlighted both increased mortality and significant increases in DALYs associated with loiasis (Chesnais et al. 2017; Veletzky et al. 2020). In contrast to onchocerciasis and LF, loiasis is geographically restricted to forested areas in 11 Western and Central African countries (Zouré et al. 2011; Kelly-Hope et al. 2012) with approximately 13 million infected individuals (Fernandez-Soto et al. 2014). In contrast, despite mild clinical manifestations (subcutaneous swellings, skin rashes, and pleuritis), a distinct clinical symptom as shown by other filarial infections is missing in *Mansonella perstans*, *M. streptocerca*, or *O. ozzardi*–infected individuals (Simonsen et al. 2011; Hoerauf 2009; Asio et al. 2009a; Downes and Jacobsen 2010). Mansonellosis is endemic in tropical parts of Latin America and large proportions of Sub-Saharan Africa. It is estimated that over 600 million people are at risk of infection in over 33 countries and 114 million people are infected with *M. perstans* (Simonsen et al. 2011; Kamtechum Tatuene et al. 2014). The absence of a specific clinical condition has resulted in a shortfall on mansanellosis research. However, it was shown that *M. perstans* strongly modulates host immune responses (Ritter et al. 2018b) which might explain the increased susceptibility and worsened disease course of HIV, tuberculosis (TB), and malaria as well as lowered efficacy of bacillus Calmette-Guerin vaccination against TB in endemic regions (Muhangi et al. 2007; Hillier et al. 2008; Elliott et al. 2010; Stensgaard et al. 2016; Mhimbira et al. 2017).

Vector control and mass drug administration (MDA) programs like OCP (Onchocerciasis Control Programme), APOC (African programme for Onchocerciasis control), and OPEA (Onchocerciasis Elimination Program of the Americas) were implemented decades ago (WHO 2018; Tsalikis 1993), achieving the interruption of *O. volvulus* transmission in Cuba, Ecuador, Mexico, and Guatemala (Mauricio et al. 2017) and elimination in Mali and Senegal (Diawara et al. 2009; Traore et al. 2012). GPELF (Global Programme to Eliminate LF) prevented an estimated number of 96 million new LF cases over the last 13 years, and it is now estimated that infections dropped to 68 million LF patients and 19 million hydrocele and 17 million lymphedema cases (Ramaiah and Ottesen 2014; WHO 2015).

However, it is becoming obvious that onchocerciasis and LF cannot be eliminated from Africa in the near future solely depending on the microfilaricidal and temporally embryostatic drugs currently used for MDA (ivermectin with or without albendazole) (Dadzie et al. 2003; Basañez et al. 2008; Chucher et al. 2009; Chandy et al. 2011; Rebollo and Bockarie 2017; Koudou et al. 2018; Babu and Kar 2004). Moreover, some *Loa loa*–infected individuals with high microfilariae numbers in the peripheral blood suffered from severe adverse events (SAEs) following intake of ivermectin or DEC during MDA programs (Chippaux et al. 1996; Gardon et al. 1997; Boussinesq et al. 1998; Padgett and Jacobsen 2008). This issue has compromised the elimination of onchocerciasis and LF in co-endemic areas (Boussinesq 2006; Padgett and Jacobsen 2008). Finally, regarding treatment for mansanellosis, ivermectin has been shown to have little effect on *M. perstans* infection in Africa (Asio et al. 2009a, 2009b, 2009c; Wanji et al. 2016). Thus, further research on alternative treatment strategies and novel, macrofilaricidal drugs are urgently needed to achieve the goal of eliminating transmission of onchocerciasis and stop lymphatic filariasis as a public health problem by 2030. Interestingly, at the end of the 20th century, rickettsiae-like intracellular bacteria, called *Wolbachia*, which are present in human filarial nematodes except *Loa loa*, opened up novel possibilities for anti-filarial treatment strategies (reviewed in detail by Kozek and Rao 2007).

Indeed, studies and clinical trials revealed that antibiotics such as doxycycline deplete *Wolbachia* from the adult filariae leading to permanent sterility and finally death of the adult filariae (macrofilaricidal activity) which is an advantage compared to microfilaricidal drugs such as ivermectin and diethylcarbamazine (Bandi et al. 1999; Hoerauf et al. 2000; Hoenuf et al. 2001, 2002, 2003a, 2003b).

Research about human filariae is limited due to the restricted access to human parasitic life stages. In *vitro* and *in vivo* models of human pathogenic filariae are urgently needed for the investigation of the parasite’s biology and immunomodulatory capacity as well as detection of novel treatment strategies and anti-filarial drugs. Thus, model organisms and rodent models of filariasis mimicking human filarial infections are mandatory for research and this review will focus on the *Litomosoides sigmodontis* and *Acanthocheilonema viteae* rodent models and their role in immunological research as well as preclinical studies on novel anti-filarial drugs and treatment strategies.

Important aspects for the development of drugs for human filarial infections

Safety and efficacy are universal aspects for novel drugs that have to be evaluated before large scale human trials can be conducted. In the case of drugs intended for human filarial infections, there are three additional important properties that need to be addressed during preclinical development:

First, filariae have a complex life cycle during which the nematodes may pass through different organs and go through various stages of development. It is therefore challenging for a single drug to target all life cycle stages of any given filaria.
As a result, drugs against filariae are commonly separated into microfilaricidal (ivermectin, diethylcarbamazine) and macrofilaricidal (flubendazole, oxfendazole, anti-Wolbachia compounds) drugs. Microfilaricidal drugs target the progeny of filarial worms (microfilariae), which are taken up by the vector to transmit the parasite, whereas macrofilaricidal drugs target the adult stage. A significant amount of research capacities is currently focused on the development and validation of novel macrofilaricidal treatment strategies (Bakowski and McNamara 2019; Jacobs et al. 2019; Taylor et al. 2019; Hübner et al. 2019a; Ehrens et al. 2020; Geary et al. 2019; Hübner et al. 2020; Hawryluk 2020). Since human pathogenic filariae can survive in the host for years (Geary and Mackenzie 2011), microfilaricidal strategies generally only block the transmission of infections temporarily and are unable to completely eliminate the parasite. MDA strategies based on macrofilaricidal drugs may be able to achieve elimination much quicker (Hawryluk 2020).

The second important property in the case of filaricidal drugs concerns the speed at which the filariae are cleared from the host. Rapid killing of the parasite may lead to a significant release of both worm antigen and Wolbachia which may trigger significant host immune responses and cause adverse reactions (reviewed in more detail in Geary and Mackenzie 2011; Budge et al. 2018). Two examples of this are as follows: (1) adverse reactions after MDA treatment against lymphatic filariasis are more common in microfilaremic than amicrofilaremic patients (Budge et al. 2018); (2) the aforementioned adverse reactions in Loa loa–infected patients with high microfilariae numbers after treatment with ivermectin (Chippaux et al. 1996; Gardon et al. 1997; Boussinesq et al. 1998; Padgett and Jacobsen 2008). As a result, it may be desirable for novel macrofilaricidal drugs to slowly eliminate worms over time (Geary and Mackenzie 2011). It has been shown that doxycycline, the prototype anti-wolbachial drug, shows this effect (Supali et al. 2008).

The third property concerns the question whether elimination of the parasite itself is necessary. Some filariae that infect humans cause only limited pathology (e.g., Loa loa, Mansonella spp.). In the case of onchocerciasis, the aetiological agents involved in blindness are the microfilariae and their Wolbachia endosymbionts (Saint André et al. 2002; Geary and Mackenzie 2011). Permanent sterilization is therefore a potentially acceptable alternative to macrofilaricidal activity. In addition, sterilization of worms that is achieved via elimination of Wolbachia may be used in conjunction with directly acting filaricidal drugs to lessen potential adverse reactions. Such a strategy, a combination of doxycycline (targeting Wolbachia) with melarsomite (macrofilaricide), is commonly used for the treatment against adult Dirofilaria immitis in dogs (American Heartworm Society 2014).

Rodent models—a historical perspective

Rodents are among the most widely used model organisms in both basic and translational medical and biological research which includes filarial diseases. Model organisms like the nematodes Acanthocheilonema viteae (Krepkogorskaia 1933) and Litomosoides sigmodontis (Chandler 1931) have been studied for over 70 years and have contributed to major discoveries to the filarial research community.

In the following part of this review, we will focus on the history of biological and medical research using the filariae Acanthocheilonema viteae and Litomosoides sigmodontis in small rodents (mice, rats, hamsters). In addition, we will discuss how these two organisms have been instrumental in discovering and understanding the role of excretory-secretory products of helminths (Harnett et al. 1989; Haslam et al. 1999; Goodridge et al. 2005), improve and develop novel chemotherapies (Hewitt et al. 1947; Rao et al. 1990; Reddy et al. 1983; Hoerauf et al. 1999) as well as vaccines (Hartmann et al. 1997a; Lucius et al. 1991), and unravel the importance of the intracellular bacteria Wolbachia that is present in most human pathogenic filariae with the exception of Loa loa (McLaren et al. 1975; Vincent et al. 1975; Sironi et al. 1995; Hoerauf et al. 1999).

Acanthocheilonema viteae (Krepkogorskaia 1933)

A. viteae (formerly Litosoma witei, L. vitei, Dipetalonema vite, D. blanci, D. viteae, D. viteae) was initially described in 1933 by Krepkogorskaia (Bain 1978). The natural hosts are the Libyan jird Meriones libycus and the great gerbil Rhombomys opimus. The parasite is transmitted via the tick Ornithodoros tartakovskyi. Under laboratory conditions, the parasite can also infect other rodents, such as the Mongolian jird Meriones unguiculatus (Johnson et al. 1974), the golden hamster Mesocricetus auratus (Pacheco 1970; Neilson and Forrester 1975), rats, the multimammate rat Mastomys nataliensis (Holdstock 1974; Sänger and Lämmler 1979), and to a limited extend mouse strains (Haque et al. 1980; Storey et al. 1989) as well as Shaw’s jird Meriones shawi (Lumb et al. 2020). A. viteae adult worms reside in the subcutaneous tissue and start releasing microfilariae (MF) 6–9 weeks postinfection. MF may be detectable for up to 15 months postinfection, while the adult worms themselves have a maximum lifespan of up to 2 years (Johnson et al. 1974; Worms et al. 1961).

The first experimental infections were described in 1953 by Baltazard et al. (the parasite was known as Dipetalonema blanti at the time) and in the following decade research focussed on describing the general biology, life cycle, and laboratory maintenance (Baltazard et al. 1953; Chabaud 1957; Worms et al. 1961; Terry et al. 1961). Following this fundamental work, investigations into host-parasite interactions,
immune responses, and chemotherapeutic agents were carried out by numerous groups. Frank Hawking, the father of the famous Physicist Stephen Hawking, demonstrated the importance of the spleen in controlling the number of MF of *A. viteae* (and *L. sigmodontis*, *Dirofilaria immitis*, and *Dirofilaria repens*) (Hawking 1962) and postulated the proximate reason for the periodicity of MF in the peripheral blood based on MF movement and changes in oxygen tension and body temperature (Hawking and Clark 1967).

A. viteae was one of the first rodent filarial models used for preclinical drug testing, demonstrating (in parallel with *Brugia pahangi*) macrofilaricidal efficacy of flubendazole in jirds in the 1970s/1980s (Denham et al. 1979; Denham 1980; Court et al. 1988) and the recrudescence of MF in amicrofilaremic golden hamsters after treatment with immunosuppressive drugs (e.g., methyl prednisolone acetate and cyclophosphamide) (Neilson 1978). Subsequent studies in the *A. viteae* *Mastomys* model showed a predominant microfilaricidal efficacy of the macrocyclic lactones ivermectin and moxidectin (Zahner et al. 1987; Rao et al. 1987; Schares et al. 1994) and addressed the adverse reactions caused by diethylcarbamazine (DEC) (Singh et al. 1985).

While *A. viteae* is nowadays not regularly used for preclinical studies, the model became most famous by the discovery of two excretory-secretory (ES) immunomodulatory molecules (Fig. 1). With the discovery of Av17, a homologue to the human cystatin C (Hartmann et al. 1997a, 1997b), and ES-62 (Harnett et al. 1989), respectively, the area of filarial immunomodulation was introduced and this has led to the discovery of numerous other ES products (reviewed in detail in Maizels et al. 2018). The anti-inflammatory and immunomodulatory properties of excretory-secretory products such as ES-62 and cystatin and their potential application in treatments for autoimmune diseases such as arthritis and allergies as well as their use as therapeutics to influence the gut microbiome have been studied in great detail since their discovery and we refer the reader to the following publications for a more in-depth review on the topic (Harnett et al. 1999, Harnett and Harnett 2001a, 2001b, Harnett et al. 2004, Harnett and Harnett 2009; Al-Riyami and Harnett 2012; Pineda et al. 2014a, 2014b, 2015; Ebner et al. 2014; Rausch et al. 2018; Midha et al. 2018; Doonan et al. 2019; Langdon et al. 2019; Crowe et al. 2020).

In addition to the groundbreaking discovery of immunomodulatory excretory-secretory products, *A. viteae* has also been instrumental during the initial development of anti-*Wolbachia*-based treatment strategies for filarial diseases. *A. viteae*, unlike a number of human pathogenic filariae, such as the causative agents of lymphatic filariasis (*Wuchereria bancrofti*, *Brugia malayi* and *Brugia timori*) and onchocerciasis (*Onchocerca volvulus*) as well as the second rodent model to be covered in this review (*Litomosoides sigmodontis*), does not contain Wolbachia. As such, *A. viteae* has been used to show that the anti-filarial properties of certain antibiotics (tetracyclines like doxycycline and others) are indeed dependent on the presence of Wolbachia, since they do not affect *A. viteae* infection (Hoerauf et al. 1999).

Litomosoides sigmodontis (Chandler 1931)

Litomosoides sigmodontis (prior to 1989 conflated with *Litomosoides carinii* [Travassos 1919]) was described in 1931 as a filariae of the cotton rat *Sigmodon hispidus* and designated as the type species of the novel genus *Litomosoides* (Chandler 1931; Bain et al. 1989). Three years later, *L. sigmodontis* was erroneously synonymized with *L. carinii* (Travassos 1919) due to similarities in their morphology (Vaz 1934). Later studies by the group of Odile Bain established that *L. sigmodontis* and *L. carinii* are indeed two separate species and the names were corrected (Bain et al. 1989; Martin 2014).

Apart from the natural host *S. hispidus*, other experimental hosts include *Meriones unguiculatus* (Schneider et al. 1968), albino rats *Rattus norvegicus* (Ramakrishnan et al. 1961), *Mastomys nataliensis* (Pringle and King 1968), and mice *Mus musculus* (Hawking et al. 1947; Patra and Basu 1970; Petit et al. 1992). Mice in particular exhibit a variety of different responses to the infection with *L. sigmodontis* and display a more resistant or susceptible phenotype depending on the strain (Petit et al. 1992). BALB/c mice and to a lesser degree

Fig. 1 Publications on *Acanthocheilonema viteae* sorted by year and topic. List of publications was generated via PubMed search (see supplement table 1 for search parameters and complete list) and assigned one main topic each
BALB/c and BALB/b mice were shown to be susceptible for infection with *L. sigmodontis* with a subset of animals developing microfilaria (around 50%, 28%, and 6%, respectively), whereas CBA/HN, CBA/Ca, C3H/HeN, DBA/2N, B10, B10Br, and B10D2 do not develop microfilaria, although all strains (in B10, B10Br, and B10D2 only in 28, 12, and 7% of mice) allowed the development into adult filariae (Petit et al. 1992). Therefore, the *L. sigmodontis* BALB/c mouse model mirrors the situation in humans infected with lymphatic filariasis where only a proportion of patients develops microfilaremia. This is one of the reasons why this mouse model has become widely used for filarial research.

L. sigmodontis is transmitted by the hematophagous mite *Ornithonyssus bacoti* which takes up MF from infected animals and transmits L3 larvae to (naive) animals during blood meals. The larvae then migrate through the skin and lymphatic system, enter the pulmonary blood circulation, and reach the pleural cavity within the first week postinfection (Karadjian et al. 2017; Kilarski et al. 2019). In susceptible mice (for example BALB/c mice), adult worms can be found in the pleural cavity after 28–30 days and MF are detectable in the peripheral blood after ~8 weeks (Hübner et al. 2009), whereas in semi-susceptible mice like C57BL/6 adult worms are cleared after 45 days and thus no MF are released (Petit et al. 1992). Therefore, the usage of different mouse strains allows the investigation of distinct research questions about parasite biology (e.g., latent vs patent infections), filarial-driven immune responses, associated morbidity, and treatment strategies.

The migration of L3 larvae through the pulmonary vessels and the presence of later worm stages in the pleural cavity makes the *L. sigmodontis* model ideal to study the pathogenesis of lung disease that can be associated with human pathogenic nematode infections (Vijayan 2007; Simonsen et al. 2011). Recent studies showed that the entry of L3s into the pleural cavity is associated with hemorrhages, granuloma formation, inflammation, and infiltration of neutrophils expressing calprotectin (Karadjian et al. 2017). The role of calprotectin, one of the most abundant proteins in neutrophils, during filarial infections is still unclear, but a follow-up study with calprotectin-deficient mice suggested an anti-inflammatory role of calprotectin that facilitates the migration of *L. sigmodontis* L3 larvae (Frohberger et al. 2020). Similarly, the *L. sigmodontis* rodent model has been used to investigate lung morbidity during chronic infections and different studies highlighted the role of the Th2 cytokines IL-4 and IL-5 in regulating inflammation at the site of infection (Ritter et al. 2017; Fercoq et al. 2019). The presence of MF in particular has a significant impact on inflammation in the lung and pleural cavity. Recent studies by Fercoq et al. (2020) demonstrated the formation of polyps on the pleura that consisted of up to 60% immune cells. The formation of these polyps which consisted mainly of CD3+ lymphocytes, CD68+ macrophages, and eosinophils correlated with the MF load (Fercoq et al. 2020).

Experimental studies on *Litomosoides sigmodontis* began in the 1940s with the discovery of the vector (Williams and Brown 1945) and the subsequent development of the required rearing techniques for the vector (Bertram et al. 1946; Scott et al. 1947; Hawking and Burroughs 1946). Similar to the work with *A. viteae*, the first studies in the following years focused on the basic biology of the parasite with investigations on the transmission by the vector (Freer 1953), life cycle (Williams 1948; Kershaw and Plackett 1948; Kershaw 1953), and identification of lymphatic vessels as the migratory pathway of infective larvae in the rodent host (Wenk 1967).

By the mid to late 1950s, initial immunological studies in cotton rats were able to show a degree of immunity with slower worm growth, reduced molting, and fewer adult worms in animals with prior *L. sigmodontis* infections (Scott and Macdonald 1958) and that this protection persists for >1 year even after the death of the worms from the primary infection (Macdonald and Scott 1958). Studies on the biology of the parasite, immune response to the infection, and development of new therapies have continued unabated in the following decades. Key results that helped to facilitate experimental studies include improvements to the laboratory maintenance and in particular generation of large numbers of L3 larvae via the “pelting method” (McCall 1976), dissection of mites (Nakamura et al. 1984), isolation of L3 larvae from the pleural cavity of Mongolian jirds 5 days after the infection (Hübner et al. 2009), and the validation of mice as an experimental host (Hawking and Burroughs 1946; Patra and Basu 1970; Petit et al. 1992). Mice have become the main experimental host for immunological research since the seminal paper by Petit et al. (1992) showed the susceptibility and maturation of *L. sigmodontis* in mice with a BALB/c background (Hoffmann et al. 2000; Finlay and Allen 2020). An overview about publications on *L. sigmodontis* is shown in Fig. 2.

Key results in immunological research include the discovery of a strong cross-reactivity between *Onchocerca volvulus* and *L. sigmodontis* antigen (Marcoullis and Gräsbeck 1976), the development of various vaccine protocols (primarily focused on attenuated L3 larvae with different adjuvants and treatment regiments) with varying degrees of success (reviewed in depth in Morris et al. 2013), IgE dependent killing of MF by neutrophils and macrophages (Mehta et al. 1980; 1982), and the significance of IL-4, IL-4R, IL-5, and IL-17 for the containment of the infection (Le Goff et al. 2000; Martin et al. 2000a, 2000b; Volkmann et al. 2001, 2003a; Taylor et al. 2006; Jenkins et al. 2011; Ritter et al. 2017, 2018a; Frohberger et al. 2019). Various studies have further shown that the protective immune responses against *L. sigmodontis* consist of both type 1 (Saefte1 et al. 2003; Muhsin et al. 2018; Babayan et al. 2003) and type 2 immune responses. With regard to granulocytes, eosinophils were shown to mediate...
protection via the major basic protein, eosinophil peroxidase, eotaxin-1 (Specht et al. 2006; Gentile et al. 2014), and eosinophil extracellular DNA traps (EETosis; Ehrens et al. 2021), which contributes to MF and adult worm clearance (Martin et al. 2000a). Neutrophils on the other hand are required for protective responses to invading infective L3 larvae and adult worms (Al-Qaoud et al. 2000; Ajendra et al. 2016; Frohberger et al. 2020; Pionnier et al. 2016). Studies on basophils during L. sigmodontis infection showed that basophil responses are suppressed during chronic infection, and basophils have no effect on the adult worm burden during primary infection (Larson et al. 2012; Torrero et al. 2010; Hartmann et al. 2018). However, basophils amplify type 2 immune responses during primary L. sigmodontis infection and support vaccine responses using irritated L3 larvae (Torrero et al. 2010, 2013).

Adaptive immune responses were also shown to be involved in protective immune responses against L. sigmodontis. Depletion of CD4+ T cells enhanced microfilaremia and L. sigmodontis adult worm recovery, while B cells and antibodies were shown to impact microfilaremia (Al-Qaoud et al. 1997; Martin et al. 2001). Studies with different B cell–deficient mouse strains have suggested a nuanced role of B cell subtypes in controlling microfilaremia as “μMT” (no mature B cells) and “B- less” mice (no immature or mature B cells) presented with equal or reduced MF numbers compared to BALB/c controls while B1 cell–deficient BALB Xid mice had an increased microfilariae load and increased adult worm burden (Al-Qaoud et al. 1998; Martin et al. 2001; Volkmann et al. 2001). The importance of T and B cells was further demonstrated in RAG2IL-2Rγ−/− deficient mice which are on the semi-resistant C57BL/6 background, but lack B, T, and NK cells. These mice are highly susceptible to L. sigmodontis infection with 100% of mice developing microfilaremia (Layland et al. 2015).

BALB/c mice which develop a patent infection show a hypo-responsive phenotype compared to C57BL/6 mice (Finlay and Allen 2020). This difference in responsiveness appears to be strongly dependent on an expansion of regulatory T cells which suppresses the immune response to L. sigmodontis (Taylor et al. 2005, 2007, 2012). Furthermore, a distinct subset of dysfunctional Th2 cells occurs during the course of infection (Knipper et al. 2019, Taylor et. al. 2005; Finlay and Allen 2020). In addition to hyporesponsive CD4+ T cells (Knipper et al. 2019; Haben et al. 2013; van der Werf et al. 2013), cytotoxic T cell responses were also shown to be inhibited during L. sigmodontis infection (Kolbaum et al. 2012; Buerfent et al. 2015). CD4+ T cell hyporesponsiveness was shown to also be mediated by the expansion of alternatively activated macrophages via the release of the immunomodulatory mediator TGFβ (Taylor et al. 2006). These alternatively activated macrophages expand locally at the site of L. sigmodontis infection (Jenkins et al. 2011) and their discovery led to a series of groundbreaking studies concerning their role in tissue repair and immunoregulation (Taylor et al. 2006; Finlay and Allen 2020). Blocking the recruitment of monocye-derived macrophages to the pleural cavity leads to an increase in T cell IL-4 production and reduced worm numbers in BALB/c mice suggesting a protective role of alternatively activated macrophages during L. sigmodontis infection (Campbell et al. 2018).

Similar to A. viteae, L. sigmodontis was shown to actively modulate the immune system of its host via cystatin (Pfaff et al. 2002). Furthermore, L. sigmodontis releases immunomodulatory small RNAs and exosomes (Buck et al. 2014; Quintana et al. 2019). This filarial immunomodulation was shown to impair vaccine responses (Haben et al. 2014; Hartmann et al. 2019), alter the course of co-infections (Hübner et al. 2012a; Gondorf et al. 2015; Dietze et al. 2016; Karadjian et al. 2014; Specht et al. 2010) and allergic sensitization (Ditrich et al. 2008), prevent the development of type 1 diabetes (Hübner et al. 2009, 2012b), and reduce diet-induced insulin resistance (Berbudi et al. 2016).

Moreover, the L. sigmodontis mouse model has been instrumental in understanding the role of Wolbachia beyond the mutualistic relationship with the parasite itself. For example, several studies showed that Toll-like and nucleotide-binding oligomerization domain (NOD)–like receptors and downstream signalling pathways are important for sensing Wolbachia, worm development, MF embryogenesis, and immunity against filariae (Pfarr et al. 2003; Brattig et al. 2004; Ajendra et al. 2016; Rodrigo et al. 2016; Wiszniewsky et al.
For a more in-depth review of immune responses to *L. sigmodontis* in mice, we refer the reader to the recent review by Finlay and Allen (2020).

Key results in the field of drug development with the *Litomosoides* model include showing the microfilaricidal efficacy of diethylcarbamazine (DEC) in cotton rats (Hewitt et al. 1947), the lack of macrofilaricidal efficacy of DEC (Hawking et al. 1950), the loss of the microfilarial sheath following DEC treatment and co-localization of neutrophils and phagocytes with remaining MFs (Hawking et al. 1950; Schardein et al. 1968), the activity of ivermectin against developing stages (Campbell 1982), the suppression of microfilaraemia by emodepside (Zahner et al. 2001), the macrofilaricidal activity of the benzimidazoles flubendazole (Zahner and Schares 1993; Hübner et al. 2019a) and oxfendazole (Hübner et al. 2020), and the development of treatment strategies against *Wolbachia* (Hoerauf et al. 1999; Specht et al. 2018).

These and other studies have been pivotal in the preclinical development of the above-mentioned drugs. DEC was tested against infections with *W. bancrofti* in humans in the same year and a significant reduction in MF was observed (Santiago-Stevenson et al. 1947). First clinical trials for onchocerciasis in humans were started in 1981 and confirmed the microfilaricidal efficacy of ivermectin for up to 1 year after treatment (Aziz et al. 1982). Flubendazole, an inhibitor of tubulin polymerization, was also tested against *O. volvulus* but presented with two major issues (Domínguez-Vazquez et al. 1983; Geary et al. 2019). Firstly, flubendazole had very limited oral bioavailability and only achieved 100% macrofilaricidal activity in parenteral formulations. Secondly, flubendazole caused abscesses at the injection site during the original trial against *O. volvulus* in humans. Even though a formulation with high bioavailability after oral treatment was eventually found, the novel formulation has the risk to cause aneuploidia and was therefore not considered for further testing in humans (Lachau-Durand et al. 2019). Oxfendazole is one of the more recent macrofilaricidal candidates. Unlike flubendazole, oxfendazole has a high macrofilaricidal efficacy after oral administration against *L. sigmodontis* in BALB/c mice (Hübner et al. 2020). In addition, results from a phase I ascending dose study in humans showed that oxfendazole was well tolerated and caused no major side effects in relevant dosages (Bach et al. 2020).

As discussed earlier, rodent models have been instrumental in discovering the significance of *Wolbachia* in filariae and discovering antibiotics as novel therapeutic approaches and safe macrofilaricidal drugs for human pathogenic filariae. The current recommendations for doxycycline therapy for onchocerciasis and lymphatic filariasis are daily oral treatments for 4 to 6 weeks to achieve macrofilaricidal efficacy (Debrah et al. 2015; Klarmann et al. 2012; WHO 2019). Daily treatments with antibiotics for 4 to 6 weeks are not feasible for MDA and miss the target product profile (TPP) for novel (macrofilaricidal) drugs for onchocerciasis as defined by the Drugs for Neglected Diseases initiative (DNDi) and Bill & Melinda Gates Foundation. Therefore, *in vitro* screenings in *Wolbachia* insect cell lines and testing in animal models have been used to identify improved drugs (Clare et al. 2019; Bakowski and McNamara 2019). Studies with the *L. sigmodontis* rodent model identified and validated rifampicin (Volkmann et al. 2003b), ABBV-4083 (Taylor et al. 2019; Hübner et al. 2019b), corallopyronin A (Schiefer et al. 2012; Schiefer et al. 2020), and AWZ1066S (Hong et al. 2019) as promising novel anti-*Wolbachia* compounds (an overview of the current drugs and candidates and their mode of action is given in Table 1). Rifampicin belongs to the class of rifamycins and targets the bacterial DNA-dependent RNA-polymerase (McClure and Cech 1978). ABBV-4083 is an analogue of TylosinA which was designed to improve the bioavailability of TylosinA after oral treatment (von Geldern et al. 2019). Corallopyronin A was isolated from the myxobacterium *Coralloccocus coralloides* and inhibits the bacterial DNA-dependent RNA-polymerase (Schaberle et al. 2015). AWZ1066S is an azaquainozine that is highly specific and effective against *Wolbachia* (Hong et al. 2019).

Corallopyronin A and AWZ1066S are in preclinical development (with phase I studies in preparation) while ABBV-4083 has already completed phase I trials (Alami et al. 2019; von Geldern et al. 2019). In contrast, Rifampicin was already evaluated in a clinical study in Ghana in the early 2000s (Specht et al. 2008). The treatment failed to show a sufficient reduction in *Wolbachia* numbers, but this has been attributed to a suboptimal dose in humans (Aljayyoussi et al. 2017). Later studies with other rodent models, i.e., experimental infection of *M. unguiculatus* with *B. malayi* and implantation of *O. ochengi* in CB.17 SCID mice, showed that a shorter, high dose regimen has a higher speed of action than doxycycline, achieves >90% *Wolbachia* reduction, and is not expected to lead to increased toxicity compared to low dose rifampicin (Aljayyoussi et al. 2017; Velásquez et al. 2018). As such, treatment with high dose rifampicin for <2 weeks may be sufficient to achieve macrofilaricidal efficacy against the causative agents of lymphatic filariasis in humans (Aljayyoussi et al. 2017).

Current trends and developments

There have been a number of exciting developments in our field in the last decade. The search for novel treatment strategies has yielded a variety of drug candidates that may achieve safe, macrofilaricidal activity against human pathogenic filariae. ABBV-4083 (von Geldern et al. 2019; Taylor et al. 2019), emodepside (Kulke et al. 2017), and oxfendazole (Hübner et al. 2020; Bach et al. 2020) have already completed phase I clinical trials and phase II studies are in preparation (DNDi 2020). Corallopyronin A (Schiefer et al. 2020) and AWZ1066S (Hong et al. 2019) are in preclinical development and have so far shown promising results. Phase I studies for these candidates...
Name	Mode of action	Status	Effect	Class	Clinical trials [ID]	Source
Doxycycline	Binds 30S ribosomal subunit, inhibition of protein synthesis	Used in individual therapy for onchocerciasis and lymphatic filariasis	Wolbachia depletion/-macrofilaricide	Tetrazycline	ISRCTN65756724 [LF] ISRCTN14042737 [LF] ISRCTN06010453 [Oncho] ISRCTN68861628 [Oncho] ISRCTN71141922 [Oncho]	Klarman-Schulz et al. 2017 Taylor et al. 2010 Debrah et al. 2007 Debrah et al. 2015
Rifampicin	Binds DNA-dependent RNA-polymerase, inhibition of translation	Phase II clinical studies with the standard low dose have been performed. High dose clinical studies are scheduled.	Wolbachia depletion/potential macrofilaricide	Rifamycin	ISRCTN68861628 [Oncho] ISRCTN5216778 [LF]	Aljayoussi et al. 2017
ABBV-4083	Binds 50S ribosomal subunit, inhibition of protein synthesis	Phase I clinical studies completed. Phase II clinical studies under preparation.	Wolbachia depletion/potential macrofilaricide	Macrolide	Taylor et al. 2019	Hong et al. 2019
AWZ-1066S	Inhibits protein synthesis	Under preparation for phase 1 clinical studies	Wolbachia depletion/potential macrofilaricide	Azaquinazoline	Jacobs et al. 2019	
AN11251	Binds 50S ribosomal subunit, inhibition of protein synthesis	Backup clinical candidate	Wolbachia depletion/potential macrofilaricide	Pleuromutilin		Schiefer et al. 2019
Coralpyronin A	Inhibits DNA-dependent RNA-polymerase	under preparation for phase 1 clinical studies	Wolbachia depletion/potential macrofilaricide	α-Pyrole	Schiefer et al. 2020	Macfarlane et al. 2019
Ivermectin (IVM)	Interferes with ligand-gated chloride channels	Used against onchocerciasis and lymphatic filariasis as mass drug administrations.	Microfilaricide	Avermectin	ISRCTN50035143 [Oncho]	Richard-Lenoble et al. 2003 Laing et al. 2017
Moxidectin	Exact mode of action is unknown	Potential alternative to ivermectin for mass drug administrations	Microfilaricide	Milbemycine	ISRCTN50035143 [Oncho]	Milton et al. 2020 Opoku et al. 2018
Diethylcarbamazine (DEC)	Alters metabolism of arachidonic acid	Used against lymphatic filariasis as part of mass drug administrations. Contraindicated in onchocerciasis patients	Microfilaricide	Piperazines	ISRCTN76875372 [Oncho]	Maizels and Denham 1992
Albendazole	Inhibits tubulin polymerization	Used against lymphatic filariasis as part of mass drug administrations; used in conjunction with diethylcarbamazine and/or ivermectin	May improve microfilaricidal efficacy of IVM/DEC	Benzimidazole	ISRCTN50035143 [Oncho] ISRCTN06010453 [Oncho] ISRCTN25831558 [Loiasis] ISRCTN56578422 [LF]	Geary et al. 2019
Flubendazole			Potential macrofilaricide	Benzimidazole		
are in preparation. Although *in vitro* culture models for human filariae have been developed (Tippawangkosol et al. 2002; Falcone et al. 1995; Njouendou et al. 2017, 2018, 2019; Zofou et al. 2018; Fombad et al. 2019; Voronin et al. 2019), until now it is not possible to mimic the parasite biology in the human host and obtain all life stages, especially reproductive adult worms, *in vitro*. Therefore, *in vivo* models of filariasis are urgently needed for the investigation of the parasite’s biology, immunomodulatory capacity, and development of novel treatment strategies and anti-filarial drugs. Indeed, artificial human filarial infections in animal models, e.g., *B. malayi* in BALB/c SCID mice and *O. volvulus* in NSG mice (Duke 1957; Trees 1992; Lawrence et al. 1994; Patton et al. 2018; Halliday et al. 2014), have been established and recent studies showed that distinct mouse models, especially the RAG2IL-2Rγ-deficient mice, might be suitable to answer unresolved questions about human filarial infections and open up new avenues to develop, test, and validate novel treatment strategies against filariae (Fombad et al. 2019; Pionnier et al. 2019; Chunda et al. 2020). However, those results are limited since no complete life cycle of human filariae could be established *in vivo* until now and drug efficacy may be impaired in immunocompromised animals. Thus, further research on animal models is required that improves our testing of novel treatment strategies in preclinical studies and would allow the access of all parasite life stages, which is until now a critical issue also in regards to ethical concerns.

To summarize, rodent models for human filarial diseases have been studied for over 70 years and have been instrumental in uncovering basic biological properties of filariae, understanding immune responses to and immunomodulation by nematodes as well as developing novel therapies. While rodent models have been influential and successful, it is nonetheless important for researches to remember the limitations of model infections. Thus, additional validations with different model parasites or hosts are important factors in effective preclinical development.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00436-020-07026-2.

Authors’ contribution Frederic Risch, Manuel Ritter, and Marc P. Hübner conceptualized the article; Frederic Risch, Manuel Ritter and Marc P. Hübner performed the literature search; Frederic Risch performed the data analysis; Frederic Risch and Manuel Ritter drafted the article; Marc P. Hübner and Achim Hörauf critically revised the article; all authors approved the final version of the article before submission.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data availability All data generated or analyzed during this study are included in this published article and its supplementary information files.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.
Ethics approval Not applicable for this article.

Consent for participate Not applicable for this article.

Consent for publication Not applicable for this article.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00436-020-07026-2.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Adewole SO, Ayeni SK (2009) Clinical manifestation of onchocerciasis in Ise-Orun local Government, Ekiti State, Nigeria. Pak J Nutr 82: 122–124

Adjimoeiye T, Hoerauf A (2010) Induction of immunoglobulin G4 in human filariasis: an indicator of immunoregulation. Ann Trop Med Parasitol 104(6): 455–464. https://doi.org/10.1179/136485910X12786389891407

Ajendra J, Specht S, Ziewer S, Carrillo E, Ferlger I, Hübner MP, Moreno J, Pinazo MJ, Ribiero I, Sosa-Estani S, Specht S, Tarral A, Wourgaft NS, Bilbe G (2020) Implications of asymptomatic infection for the natural history of selected parasitic tropical diseases. Semin Immunopathol 42(3): 231–246. https://doi.org/10.1007/s00281-020-00796-y

American Heartworm Society (2014) Summary of the current canine guidelines for the prevention, diagnosis, and management of heartworm (Dirofilaria immitis) infection in dogs. https://www.heartwormsociety.org/images/pdf/Canine-Guidelines-Summary.pdf

Asio SM, Simonsen PE, Onapa AW (2009a) Mansonella perstans filariasis in Uganda: patterns of microfilaraemia and clinical manifestations in two endemic communities. Trans R Soc Trop Med Hyg 103(3): 266–273. https://doi.org/10.1016/j.trstmh.2008.08.007

Asio SM, Simonsen PE, Onapa AW (2009b) Mansonella perstans: safety and efficacy of ivermectin alone, albendazole alone and the two drugs in combination. Ann Trop Med Parasitol 103(1):31–37. https://doi.org/10.1179/136483909X384929

Asio SM, Simonsen PE, Onapa AW (2009c) A randomised, double-blind field trial of ivermectin alone and in combination with albendazole for the treatment of Mansonella perstans infections in Uganda. Trans R Soc Trop Med Hyg 103(3): 274–279. https://doi.org/10.1016/j.trstmh.2008.10.038

Aziz MA, Dialeo S, Diop IM, Lariviere M, Porta M (1982) Efficacy and tolerance of ivermectin in human onchocerciasis. Lancet. 2(8291): 171–173. https://doi.org/10.1016/s0140-6736(82)91026-1

Babuayan S, Ungeheuer MN, Martin C, Attout T, Belhoue E, Snououg G, Rénia L, Korenaga M, Boin O (2003) Resistance and susceptibility to filarial infection with Litomosoides sigmodontis are associated with early differences in parasite development and in localized immune reactions. Infect Immun 71(12): 6820–6829. https://doi.org/10.1128/iai.71.12.6820-6829.2003

Babu BV, Kar SK (2004) Coverage, compliance and some operational issues of mass drug administration during the programme to eliminate lymphatic filariasis in Orissa, India. Trop Med Int Health 9(6): 702–709. https://doi.org/10.1111/j.1365-3156.2004.01247.x

Bach T, Galbiati S, Kennedy JK, Deye G, Nomicos EYH, Cord EE, Garcia IH, Horton J, Gilman RH, Gonzalez AE, Windokur P, An G (2020) Pharmacokinetics, safety, and tolerability of oxendazole in healthy adults in an open-label phase 1 multiple ascending dose and food effect study. Antimicrob Agents Chemother 64(11): e01018-e01020. https://doi.org/10.1128/AAC.01018-20

Bain O (1978) Litosoma wite Krepkogorskaya 1933 (nematoda); pro- posed correction to Litosoma viteae. Bull Zool Nomencl 35(part.1):391 French

Bain O (1989) Etude de quelques Litomosoides parasites de rongeurs; consequences taxonomiques [Litomosoides, parasites of rodents; taxonomic consequences]. Ann Parasitol Hum Comp 64(4): 906–908

Babuayan S, Ungeheuer MN, Martin C, Attout T, Belhoue E, Snououg G, Rénia L, Korenaga M, Boin O (2003) Resistance and susceptibility to filarial infection with Litomosoides sigmodontis are associated with early differences in parasite development and in localized immune reactions. Infect Immun 71(12): 6820–6829. https://doi.org/10.1128/iai.71.12.6820-6829.2003

Babu BV, Kar SK (2004) Coverage, compliance and some operational issues of mass drug administration during the programme to eliminate lymphatic filariasis in Orissa, India. Trop Med Int Health 9(6): 702–709. https://doi.org/10.1111/j.1365-3156.2004.01247.x

Bach T, Galbiati S, Kennedy JK, Deye G, Nomicos EYH, Cord EE, Garcia IH, Horton J, Gilman RH, Gonzalez AE, Windokur P, An G (2020) Pharmacokinetics, safety, and tolerability of oxendazole in healthy adults in an open-label phase 1 multiple ascending dose and food effect study. Antimicrob Agents Chemother 64(11): e01018-e01020. https://doi.org/10.1128/AAC.01018-20

Bain O (1978) Litosoma wite Krepkogorskaya 1933 (nematoda); proposed correction to Litosoma viteae. Bull Zool Nomencl 35(part.1): 391 French

Bain O, Petit G, Diagne M (1989) Etude de quelques Litomosoides parasites de rongeurs; consequences t taxonomiques [Litomosoides, parasites of rodents; taxonomic consequences]. Ann Parasitol Hum Comp 64(4): 906–908

Bakowska MA, McNamara CW (2019) Advances in antiwolfibacid drug discovery for treatment of parasitic filarial worm infections. Trop Med Infect Dis 4(3):108. https://doi.org/10.3390/tropicalmed4030108

Baltazar M, Chabaud AG, Mofidi C, Minou A (1953) Une nouvelle parasitose canine [A new laboratory filaria]. Ann Parasitol Hum Comp 28(5-6): 387–391. French

Bandi C, McCall JW, Genchi C, Corona S, Venco L, Sacchi L (1999) Effects of tetracycline on the filarial worms Brugia pahangi and Dirofilaria immitis and their bacterial endosymbionts Wolbachia.
Int J Parasitol 29(2):357–364. https://doi.org/10.1016/S0020-7519(98)00200-8

Basáñez MG, Pion SD, Boakes E, Filipe JA, Churche TS, Boussinesq M (2008) Effect of single-dose ivermectin on Onchocerca volvulus: a systematic review and meta-analysis. Lancet Infect Dis 8(5):310–322. https://doi.org/10.1016/S1473-3099(08)70099-9

Berbudi A, Suarda J, Ajendra J, Gondorf F, Schmidt D, Neumann AL, Wardani AP, Laydali LE, Hofmann LS, Pfeifer A, Hoerauf A, Hübner MP (2016) Filarial infection or antigen administration improves glucose tolerance in diet-induced obese mice. J Innate Immun 8(6):601–616. https://doi.org/10.1159/000448401

Bertram DS, Unsworth K, Gordon RM (1946) The biology and maintenance of Liponyssus baciotti Hirst, 1913, and an investigation into its role as a vector of Litomosoides carinii to cotton rats and white rats, together with some observations on the infection in the white rats. Ann Trop Med Parasitol 40:228–254. https://doi.org/10.1080/0020445.1945.1168523

Boussinesq M (2006) Loiasis. Ann Trop Med Parasitol 100(8):715–731

Boussinesq M, Garden J, Garden-Wendel N, Kamgno J, Ngoumou P, Brattig NW, Bazzocchi C, Kirschning CJ, Reiling N, Büttner DW, Basáñez MG, Pion SD, Boakes E, Filipe JA, Churcher TS, Pion SD, Osei-Atweneboana MY, Prichard RK, Awadzi K, Boussinesq M, Collins RC, Whitworth JA, Basáñez MG (2009) Identifying sub-optimal responses to ivermectin in the treatment of River Blindness. Proc Natl Acad Sci U S A 106(39):16716–16721. https://doi.org/10.1073/pnas.0909617106

Clare RH, Bardele C, Harper P, Hong WD, Börjesson U, Johnston KL, Collier M, Myhill L, Cassidy A, Plant D, Plant H, Clark R, Cook DAN, Steven A, Archer J, McGillian P, Charoensuthivarakul S, Bibby J, Sharma R, Nixon GL, Slatko BE, Cantin L, Wu B, Turner J, Ford L, Rich K, Wigglesworth M, Berry NG, O'Neill PM, Taylor MJ, Ward SA (2019) Industrial scale high-throughput screening delivers multiple fast acting macrofilaricides. Nat Commun 10(1):11. https://doi.org/10.1038/s41467-018-07826-2

Court JP, Stables JN, Lees GM, Martin-Short MR, Rankin R (1988) Dipetalonema viteae and Brugia pahangi transplant infections in gerbils for use in antifilarial screening. J Helminthol 145:150–160. https://doi.org/10.1080/0022149X.1988.1168528

Crowe J, Lumb FE, Doonan J, Broussard M, Tarafdar A, Pineda MA, Landabaso C, Mulvey L, Hoskinson PA, Babayan SA, Selman C, Harnett W, Harnett MM (2020) The parasitic worm product ES-62 promotes health- and life-span in a high calorie diet-accelerated mouse model of ageing. PLoS Pathog 16(3):e1008391. https://doi.org/10.1371/journal.ppat.1008391

Dadzie Y, Neira M, Hopkins D (2003) Final report of the conference on the eradicability of onchocerciasis. Filaria J 2(1):2. https://doi.org/10.7554/eLife.30947

Debrah AY, Mand S, Marfo-Debrekyei Y, Batsa L, Pfarr K, Buttnner M, Adjie O, Buttnner D, Hoerauf A (2007) Macrofilaricidal effect of 4 weeks of treatment with doxycycline on Wuchereria bancrofti. Tropical Med Int Health 12:1433–1441

Debrah AY, Specht S, Klarmann-Schulz U, Batsa L, Mand S, Marfo-Debrekyei Y, Fimmers R, Dubben B, Kwarteng A, Osei-Atweneboana M, Boakye D, Ricchiuto A, Büttner M, Adjie O, Mackenzie CD, Hoerauf A (2015) Doxycycline leads to sterility and enhanced killing of female Onchocerca volvulus worms in an area with persistent microfilaridermia after repeated ivermectin treatment: a randomized, placebo-controlled, double-blind trial. Clin Infect Dis 61(4):517–526. https://doi.org/10.1093/cid/civ363

Denham DA (1980) Anthelminthic properties of flubendazole against Dipetalonema viteae in vitro. Trans R Soc Trop Med Hyg 74(6):829. https://doi.org/10.1016/S0035-9203(80)90222-9

Denham DA, Samad R, Cho SY, Suswillo RR, Skippins SC (1979) The anthelminthic effects of flubendazole on Brugia pahangi. Trans R Soc Trop Med Hyg 73(6):675–676. https://doi.org/10.1016/S0035-9203(79)90018-x

Dietze KK, Dittmer U, Koudaïmi DK, Schimmer S, Reitz M, Breloer M, Hartmann W (2016) Filariae-reovirus co-infection in mice is associated with suppressed virus-specific IgG immune response and higher viral loads. PLoS Negl Trop Dis 10(12):e0005170. https://doi.org/10.1371/journal.pntd.0005170
Dittrich AM, Erbacher A, Specht S, Dieser F, Krokowski M, Avagyan A, Stock P, Ahrens B, Hofmann WH, Hoerauf A, Hamelmann E (2008) Helminth infection with Litomosoides sigmodontis induces regulatory T cells and inhibits allergic sensitization, airway inflammation, and hyperreactivity in a murine asthma model. J Immunol 180:1792–1799

Domínguez-Vázquez A, Taylor HR, Greene BM, Ruvalcaba-Macias AM, Rivas-Alcala AR, Murphy RP, Beltran-Hernandez F (1983) Comparison of flubendazole and diethylcarbamazine in treatment of onchocerciasis. Lancet. 1(8317):139–143. https://doi.org/10.1016/s0140-6736(83)92753-8

Doonan J, Tarafdar A, Pineda MA, Lumb FE, Crowe J, Khan AM, Hoskisson PA, Harnett MM, Harnett W (2019) The parasitic worm product ES-62 normalises the gut microbiota bone marrow axis in inflammatory arthritis. Nat Commun 10(1):1554. https://doi.org/10.1038/s41467-019-09361-0

Downes BL, Jacobsen KH (2010) A systematic review of the epidemiology of mansonelliasis. Afr J Infect Dis 4(1):7–10. https://doi.org/10.1586/eri.11.76

Elliott AM, Mawa PA, Webb EL, Nampijja M, Lyadda N, Bukusuba J, Henklein P, Lucius R, Hamelmann E, Hartmann S (2014) Therapeutic potential of larval excretory/secretory proteins of the pig whipworm Trichuris suis in allergic disease. Allergy. 69(11):1489–1497. https://doi.org/10.1111/all.12496 Epub 2014 Sep 6

Edungbola LD, Watts SJ, Kayode OO (1987) Endemicity and striking manifestations of onchocerciasis in Shao, Kwara State. Afr J Med Med Sci 16(3):147–156

Ehrens A, Lenz B, Neumann AL, Giarrizzo S, Reichwald JJ, Frohberger SJ, Fendler M, Turner JD, Ward SA, Taylor MJ, Freund YR, Alonso J, Raveendran L, Fercoq F, Remion E, Vallarino-Lhermitte N, Hoerauf A, Hübner MP (2014) Eotaxin-1 is involved in parasite infection of macrofilaricidal drugs. Expert Rev Anti-Infect Ther 9(8):681–695. https://doi.org/10.1586/eri.14.67

Garodn J, Garden-Wandel N, Demanga N, Kamogo J, Chippaux JP, Boussinesq M (1997) Serious reactions after mass treatment of onchocerciasis with ivermectin in an area endemic for Loa loa infection. Lancet 350:18–22

Geary TG, Mackenzie CD (2011) Progress and challenges in the discovery of macrofilaricidal drugs. Expert Rev Anti-Infect Ther 9(8):681–695. https://doi.org/10.1586/eri.11.76

Geary TG, Mackenzie CD, Silber SA (2019) Flubendazole as a macrofilaricide: history and background. PLoS Negl Trop Dis 13(1):e0006436. https://doi.org/10.1371/journal.pntd.0006436

Gentil K, Lentz CS, Rai R, Muhsin M, Kamath AD, Mutluer O, Specht S, Hübner MP, Hoerauf A (2014) Eotaxin-1 is involved in parasite clearance during chronic filarial infection. Parasite Immunol 36(2):60–77. https://doi.org/10.1111/pim.12079

Gondorf F, Buerbui BC, Ajendra J, Bloemker D, Specht S, Hoerauf A, Hübner MP, Schlaak M, Haas H (2005) Immunomodulation with vaccination efficacy targets follicular T helper cell induction with Wolbachia of the rodent filarial nematode Litomosoides sigmodontis. PLoS Negl Trop Dis 14(2):e0008119. https://doi.org/10.1371/journal.pntd.0008119

Goodridge HS, Marshall FA, Else KJ, Houston KM, Egan C, Al-Riyami L, Liew FY, Harnett W, Harnett MM (2005) Immunomodulation via novel use of TL4 by the filarial nematode phosphorylcholine-containing secreted product, ES-62. J Immunol 174(8):284–293. https://doi.org/10.4049/jimmunol.174.1.284

Haben I, Ferradori D, Specht S, Hübner MP, Roers A, Müller W, Breloer M (2013) T-cell-derived, but not B-cell-derived, IL-10 suppresses antigen-specific T-cell responses in Litomosoides sigmodontis-infected mice. Eur J Immunol 43(7):1799–1809. https://doi.org/10.1002/eji.201242929

Haben I, Hartmann W, Breloer M (2014) Nematode-induced interference with vaccination efficacy targets follicular T helper cell induction and is preserved after termination of infection. PLoS Negl Trop Dis 8(9):e3170. https://doi.org/10.1371/journal.pntd.0003170

Habib UD, Halliday A, Guimaraes AF, Tyer HE, Metuge HM, Patrick CN, Arnaud KO, Kewti TD, Forsbrook G, Steven A, Cook D, Enyong P, Wanjri S, Taylor J, Turner JD (2014) A murine macrofilaricidal pre-
clinical screening model for onchocerciasis and lymphatic filariasis. Parasit Vectors 7:472. https://doi.org/10.1186/s13071-014-0472-z

Haque A, Worms MJ, Ogilvie BM, Capron A (1980) Dipetalonema viteae: microfilariae production in various mouse strains and in nude mice. Exp Parasitol 49(3):398–404. https://doi.org/10.1016/0014-4894(80)90074-0

Harnett MM, Harnett W (2001a) Antigen receptor signaling is subverted by an immunomodulatory product secreted by a filarial nematode. Arch Immunol Ther Exp 49(4):263–269. https://doi.org/10.1017/s000349830100101-x

Harnett W, Harnett MM (2001b) Modulation of the host immune system with homologies to tropomyosin induces host-protective immune responses. Parasite Immunol 23(3):168–174. https://doi.org/10.1046/j.1365-3024.2001.00267.x

Harnett W, Worms MJ, Kapil A, Grainger M, Parkhouse RM (1989) Origin, immunomodulatory activity and therapeutic potential of the filarial nematode secreted product, ES-62. Adv Exp Med Biol 366:88–94. https://doi.org/10.1007/978-1-4419-1601-3_7

Harnett W, Worms MJ, Kapil A, Gräninger M, Parkhouse RM (1989) Origin, kinetics of circulation and fate in vivo of the major excretory-secretory product of Acanthocheilonema viteae. Parasitology. 99(Pt 2):229–239. https://doi.org/10.1017/s0031182000058686

Harnett W, Dechan MR, Houston KM, Harnett MM (1999) Immunomodulatory properties of a phosphorylcholine-containing secreted filarial glycoprotein. Parasite Immunol 21(12):601–608. https://doi.org/10.1046/j.1365-3024.1999.00267.x

Harnett W, McNisss IB, Harnett MM (2004) ES-62, a filarial nematode-derived immunomodulator with anti-inflammatory potential. Immunol Lett 94(1-2):27–33. https://doi.org/10.1016/j.imlet.2004.04.008

Hartmann S, Adam R, Marti T, Kirsten C, Seidinger S, Lucius R (1997a) A 41-kDa antigen of the rodent filaria Acanthocheilonema viteae: microfilariae production in various mouse strains and in nude mice. J Lab Clin Med 32:229–239. https://doi.org/10.1016/s0022-3188(67)90041-7

Hartmann W, Linnemann LC, Reitz M, Specht S, Voehringer D, Breloer MA (2019) Helminth infections suppress the efficacy of vaccination against seasonal influenza. Cell Immunol 366(210953). https://doi.org/10.1016/j.celrep.2019.10.04581-5

Hawking F (1962) The role of the spleen in controlling the number of microfilariae in the blood. Ann Trop Med Parasitol 56:226–230. https://doi.org/10.1016/0013-1504.1962.1168610

Hawking F, Clark JB (1967) The periodicity of microfilariae. 13. Movements of Dipetalonema viteae microfilariae in the lungs. Trans R Soc Trop Med Hyg 61(6):817–826. https://doi.org/10.1016/0035-9203(67)90041-7

Hawking F, Sewell P, Davey PD (1947) The maintenance of a filarial infection (Litomosoides carinii) in the laboratory. Trans R Soc Trop Med Hyg 41(1):7

Hawking F, Sewell P, Thurston JP (1950) The mode of action of hetrazan on filarial worms. Br J Pharmacol Chemother 5(2):217–238. https://doi.org/10.1111/j.1476-5381.1950.tb01010.x

Hawryluck NA (2020) Macrofilaricides: an unmet medical need for filarial diseases. ACS Infect Dis 6(4):662–671. https://doi.org/10.1021/acsinfecdis.9b00469 https://www.heartwormsociety.org/veterinary-resources/american-heartworm-society-guidelines accessed 24th September 2020

Hewlett RI, White E, Wallace WS, Stewart HW, Kushner S, Subbaroy Y (1947) Experimental chemotherapy of filariasis; effect of piperazine derivatives against naturally acquired filarial infections in cotton rats and dogs. J Lab Clin Med 32(11):1304–1313

Hiller SD, Booth M, Muhangi L, Nkurunziza P, Khihembo M, Kakande M, Sewankambo M, Kizindo R, Kizza M, Mwanga M, Elliott AM (2008) Plasmodium falciparum and helmint coinfection in a semi urban population of pregnant women in Uganda. J Infect Dis 198(6):920–927. https://doi.org/10.1086/591183

Hoerauf A (2009) Mansonella perstans—the importance of an endosymbiont. N Engl J Med 361(15):1502–1504. https://doi.org/10.1056/NEJMe0905193

Hoerauf A, Brattig N (2002) Resistance and susceptibility in human onchocerciasis—beyond Th1 vs. Th2. Trends Parasitol 18(1):25–31. https://doi.org/10.1016/s1471-4922(01)02173-0

Hoerauf A, Nissen-Pähk K, Schmetz C, Henkle-Dührsen K, Blaxter ML, Bütter DW, Gallin MY, Al-Qaoud KM, Lucius R, Fleischer B (1999) Tetracycline therapy targets intracellular bacteria in the filarial nematode Litomosoides sigmodontis and results in filarial infertility. J Clin Invest 103(1):11–18. https://doi.org/10.1172/JCI4768

Hoerauf A, Vollmann L, Hamelmann C, Adjei O, Autenrieth IB, Fleischer B, Bütter DW (2000) Endosymbiotic bacteria in worms as targets for a novel chemotherapy in filariasis. Lancet. 355(9211):1242–1243. https://doi.org/10.1016/s0140-6736(00)02095-x

Hoerauf A, Mand S, Adjei O, Fleischer B, Bütter DW (2001) Depletion of wolbachia endobacteria in Onchocerca volvulus by doxycycline and microfilaridermia after ivermectin treatment. Lancet. 357(9266):1415–1416. https://doi.org/10.1016/s0140-6736(00)04581-5

Hoerauf A, Adjei O, Bütter DW (2002) Antibiotics for the treatment of onchocerciasis and other filarial infections. Curr Opin Investig Drugs 3(4):533–537

Hoerauf A, Mand S, Fischer K, Kruppa T, Marfo-Debrekereyi Y, Debrah AY, Pfarr KM, Adjei O, Bütter DW (2003a) Doxycycline as a novel strategy against bancroftian filariasis-depletion of Wolbachia endosymbiosists from Wuchereria bancrofti and stop of microfilaria production. Med Microbiol Immunol 192(4):211–216. https://doi.org/10.1007/s00430-002-0174-6

Hoerauf A, Mand S, Volkmann L, Bütter M, Marfo-Debrekereyi Y, Taylor M, Adjei O, Bütter DW (2003b) Doxycycline in the treatment of human onchocerciasis: kinetics of Wolbachia endobacteria reduction and of inhibition of embryogenesis in female Onchocerca worms. Microbes Infect 5(4):261–273. https://doi.org/10.1016/s1286-4579(03)00026-1

Hoffmann W, Petit G, Schulz-Key H, Taylor D, Bain O, Le Goff L (2000) Litomosoides sigmodontis in mice: reappraisal of an old model for filarial research. Parasitol Today 16(9):387–389. https://doi.org/10.1016/s0169-4758(00)01738-5

Holdstock RP (1974) Proceedings: Mastomys natalensis as a host for Dipetalonema viteae. Trans R Soc Trop Med Hyg 68(1):9. https://doi.org/10.1016/s0035-9203(74)90022-4

Hong WD, Benayoud F, Nixon GL, Ford L, Johnston KL, Clare RH, Cassidy A, DAS C, Shlaifer M, Webborn PJH, Kavanagh S, Dixi A, Shiotani M, Webborn PJH, Kavanag
drug candidate for a short-course treatment of filariasis. Proc Natl Acad Sci U S A 116(4):1414–1419. https://doi.org/10.1073/pnas.1816585116

https://ndni.org/diseases/filaria-river-blindness/projects-achievements/, (2020) accessed 10th October 2020

Hübner MP, Martin C, Specht S, Koschel M, Dubben B, Frohberger SJ, Ehrens A, Fendler M, Struever D, Mitre E, Vallarrino-Lhermitte N, Gokool S, Lustigman S, Schneider M, Townsend S, Hoerauf A, Scandale I (2020) Oxfendazole mediates macrofilaricidal efficacy against the filarial nematode Litomosoides sigmodontis in vivo and inhibits Onchocerca spec. motility in vitro. PLoS Negl Trop Dis 14(7):e0008427

Hübner MP, Torrero MN, McCall JW, Mitre E (2009) Litomosoides sigmodontis: a simple method to infect mice with L3 larvae obtained from the pleural space of recently infected jirds (Meriones unguiculatus). Exp Parasitol 123(1):95–98. https://doi.org/10.1016/j.exppara.2009.05.009

Hübner MP, Killoran KE, Rajnik M, Wilson S, Yim KC, Torrero MN, Jacobs RT, Lunde CS, Freund YR, Hernandez V, Li X, Xia Y, Carter DS, Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD, van Rooijen N, Johnson MH, Orihel TC, Beaver PC (1974) Dipetalonema viteae in the unguiculatus). Exp Parasitol 123(1):95

Hamid MA, Zahirkhan A, Debray AH, Mnergy G, Dungu HC, Bopa J, Kamngo J (2014) Epidemiology of Looa and Mansongella perstans filariasis in the Akonolinga health district, centre region, Cameroon. Health Sci Dis 15(1):3

Kadijajian G, Berrebi DI, Dogna N, Vallarrino-Lhermitte N, Bain O, Landau I, Martin C (2014) Co-infection restraints Litomosoides sigmodontis filarial load and plasmoidal P. yoelii but not P. chabaudi parasitaemia in mice. Parasite 21:16

Kadijajian G, Fercq F, Pionnier N, Vallarrino-Lhermitte N, Lefoulen E, Nieguitisa A, Specht S, Carlin LM, Martin C (2017) Migratory phase of Litomosoides sigmodontis filarial infective larvae is associated with pathology and transient increase of S100A9 expressing neutrophils in the lung. PLoS Negl Trop Dis 11(5):e0005596. https://doi.org/10.1371/journal.pntd.0005596

Katagawa L, Layland LE, Debray AH, von Horn C, Batsa L, Kwarteng A, Arriens SW, Taylor D, Specht S, Hoerauf A, Adjobimey T (2015) Hyperreactive onchocerciasis is characterized by a combination of Th17-Th2 immune responses and reduced regulatory T cells. PLoS Negl Trop Dis 9(1):e3414. https://doi.org/10.1371/journal.pntd.0003414

Kelly-Hope LA, Bockarie MJ, Molyneux DH (2012) Loa loa ecology in central Africa: role of the Congo River system. PLoS Negl Trop Dis 6(6):e1605. https://doi.org/10.1371/journal.pntd.0001605

Kershaw WE (1953) The early migration-rate of the infective larva of Litomosoides carinii in the cotton rat. Ann Trop Med Parasitol 47(1):68–73. https://doi.org/10.1080/00034983.1953.11685547

Kershaw WE, Placket RL (1948) Observations on Litomosoides carinii (Travassos, 1919) Chandler, 1931; the development of the first-stage larva. Ann Trop Dis Parasitol 42(3–4):377–399. https://doi.org/10.1080/00034983.1948.11685385

Kilarski WW, Martin C, Pisano M, Bain O, Babayan SA, Swartz MA (2019) Inherent biomechanical traits enable infective filariae to disseminate through collecting lymphatic vessels. Nat Commun 10(1):2895. https://doi.org/10.1038/s41467-019-10675-2

Klarmann U, Debray AH, Mand S, Batsa L et al (2012) Shortening the timeframe and dosage of antiwolbachia therapy: doxycycline alone versus doxycycline plus rifampicin in their efficacy against lymphatic filariasis; a randomized, doubleblind, placebo-controlled trial. Am J Trop Med Hyg 87:157

Klarmann-Schulz U, Specht S, Debray AH, Batsa L et al (2017) Comparison of doxycycline, minocycline, doxycycline plus albendazole and albendazole alone in their efficacy against onchocerciasis in a randomized, open-label, pilot trial. PLoS Negl Trop Dis 11:e0005156

Knipper JA, Ivens A, Taylor MD (2019) Helminth-induced Th2 cell dysfunction is distinct from exhaustion and is maintained in the absence of antigen. PLoS Negl Trop Dis 13(12):e0007908. https://doi.org/10.1371/journal.pntd.0007908

Kolbaum J, Tartz S, Hartmann W, Helm S, Nagel A, Heusler V, Sebo P, Fleischer B, Jacobs T, Breloer M (2012) Nematode-induced immune shift and requires TGF-β. J Immunol 188(2):559–568. https://doi.org/10.4049/jimmunol.1100335

Kolbaum J, Tartz S, Hartmann W, Helm S, Nagel A, Heusler V, Sebo P, Fleischer B, Jacobs T, Breloer M (2012) Nematode-induced immune shift and requires TGF-β. J Immunol 188(2):559–568. https://doi.org/10.4049/jimmunol.1100335

Kolbaum J, Tartz S, Hartmann W, Helm S, Nagel A, Heusler V, Sebo P, Fleischer B, Jacobs T, Breloer M (2012) Nematode-induced immune shift and requires TGF-β. J Immunol 188(2):559–568. https://doi.org/10.4049/jimmunol.1100335

Kolbaum J, Tartz S, Hartmann W, Helm S, Nagel A, Heusler V, Sebo P, Fleischer B, Jacobs T, Breloer M (2012) Nematode-induced immune shift and requires TGF-β. J Immunol 188(2):559–568. https://doi.org/10.4049/jimmunol.1100335

Kolbaum J, Tartz S, Hartmann W, Helm S, Nagel A, Heusler V, Sebo P, Fleischer B, Jacobs T, Breloer M (2012) Nematode-induced immune shift and requires TGF-β. J Immunol 188(2):559–568. https://doi.org/10.4049/jimmunol.1100335

Kolbaum J, Tartz S, Hartmann W, Helm S, Nagel A, Heusler V, Sebo P, Fleischer B, Jacobs T, Breloer M (2012) Nematode-induced immune shift and requires TGF-β. J Immunol 188(2):559–568. https://doi.org/10.4049/jimmunol.1100335
Parasitol Res 48(12):925–935. https://doi.org/10.1016/j.parasr.2018.05.011

Nakamura M, Nogami S, Hayashi Y, Shibuya T, Tanaka H (1984) A mass dissection method for collecting infective larvae of Litomosoides carinii from mites. Jpn J Exp Med 54(5):221–224

Neilson JT (1978) Alteration of amicrofilaremia in Dipetalonema viteae infected hamsters with immunosuppressive drugs. Acta Trop 35(1):57–61

Neilson JT, Forrester DJ (1975) Dipetalonema viteae: primary, secondary and tertiary infections in hamsters. Exp Parasitol 37(3):367–372. https://doi.org/10.1016/0014-4894(75)90005-3

Njim T, Ngum JM, Aminde LN (2015) Cutaneous onchocerciasis in Dumbu, a pastoral area in the North-West region of Cameroon: diagnostic challenge and socio-economic implications. Pan Afr Med J 22:298. https://doi.org/10.11604/pamj.2015.22.298.7707

Njouenoudj AJ, Ritter M, Ndongmo WPC, Kien CA, Narcisse GTV, Petit G, Diagne M, Maréchal P, Owen D, Taylor D, Bain O (2019) Mouse models of Loa loa. Nat Commun 10(1):1429. https://doi.org/10.1038/s41467-019-09442-0

Pringle G, King DF (1968) Some techniques in studies for the control of filarial parasite Litomosoides carinii. I. A preliminary comparison of the host efficiency of the multimammate rat, Praomys (Mastomys) natalensis, with that of the cotton rat, Sigmodon hispidus. Ann Trop Med Parasitol 62(4):462–468. https://doi.org/10.1080/00034983.1968.11668548

Quintana JF, Kumar S, Ivens A, Chow FWN, Hoy AM, Fulton A, Dickinson P, Martin C, Taylor M, Babayan SA, Buck AH (2019) Comparative analysis of small RNAs released by the filarial nematode Litomosoides sigmodontis in vitro and in vivo. PLoS Negl Trop Dis 13(11):e0007811. https://doi.org/10.1371/journal.pntd.0007811

Ramaiah KD, Ottesen EA (2014) Progress and impact of 13 years of the global programme to eliminate lymphatic filariasis on reducing the burden of filarial disease. PLoS Negl Trop Dis 8(11):e3319. https://doi.org/10.1371/journal.pntd.0003319

Ramakrishnan SP, Singh D, Bhatnagar VN, Raghavan NG (1961) Infection of the albino rat with the filarial parasite. Litomosoides carinii. Indian J Med Res 49:168–172

Rao UR, Chandrashekar R, Subrahmanyam D (1987) Effect of ivermectin on serum dependent cellular interactions to Dipetalonema viteae microfilariae. Trop Med Parasitol 38(2):123–127

Patel NN, Patel H, Patel PM (2018) Comparative efficacy of some benzimidazoles and amoscanate (Go.9333) against experimental filarial infections. Trop Parasitol 34(4):259–262

Reddy AB, Rao UR, Chandrashekar R, Shrivastava R, Subrahmanyam D (1983) Comparative efficacy of some benzimidazoles and amoscanate (Go.9333) against experimental filarial infections. Trop Parasitol 34(4):259–262

Richard-Lenoble D, Chandenier J, Gaxotte P (2003) Ivermectin and filariasis. Fundam Clin Pharmacol 17(2):199–203

Ritter M, Tamadahoe RS, Feid J, Vogel W, Wiszniewsky K, Perner S, Hoerauf A, Layland LE (2017) IL-4/5 signalling plays an important role during Litomosoides sigmodontis infection, influencing both immune system regulation and tissue pathology in the thoracic cavity. Int J Parasitol 47(14):951–960. https://doi.org/10.1016/j.ijpara.2017.06.009

Ritter M, Krupp V, Wiszniewsky K, Wiszniewsky A, Katawa G, Tamadahoe RSE, Hoerauf A, Layland LE (2018a) Absence of IL-
17A in Litomosoides sigmodontis-infected mice influences worm development and drives elevated filarial-specific IFN-γ. Parasitol Res 117(8):2665–2675. https://doi.org/10.1007/s00436-018-5959-7

Ritter M, Ndongmo WPC, Njouendou AJ, Njouendou NN, Nchang LC, Tayong DB, Arndts K, Nausch N, Jacobsen M, Wanji S, Layland LE, Hoerauf A (2018b) Mansonella perstans microfilaremia infected individuals harbor distinct IL-10-producing regulatory B cell subsets and dampened systemic innate and adaptive immune responses. PLoS Negl Trop Dis 12(1):e0006184. https://doi.org/10.1371/journal.pntd.0006184

Ritter M, Osei-Mensah J, Debrah LB, Kwarteng A, Mubarik Y, Debrah AY, Pfarr K, Hoerauf A, Layland LE (2019) Wuchereria bancrofti-infected individuals harbor distinct IL-10-producing regulatory B and T cell subsets which are affected by anti-filarial treatment. PLoS Negl Trop Dis 13(5):e0007436. https://doi.org/10.1371/journal.pntd.0007436

Rodrigo MB, Schulz S, Krupp V, Ritter M, Wiszniewsky K, Arndts K, Tamadah RD, Endl E, Hoerauf A, Layland LE (2016) Patenty of Litomosoides sigmodontis infection depends on Toll-like receptor 4 whereas Toll-like receptor 2 signalling influences filarial-specific CD4(+) T-cell responses. Immunology 147(4):429–442. https://doi.org/10.1111/imm.12573

Saefel M, Arndt M, Specht S, Volkmann L, Hoerauf A (2003) Synergism of gamma interferon and interleukin-5 in the control of murine filariasis. Infect Immun 71(2):6978–6985. https://doi.org/10.1128/iai.71.2.6978-6985.2003

Saint André AV, Blackwell NM, Hall LR, Hoerauf A, Brattig NW, Volkmann L, Taylor MJ, Ford L, Hise AG, Lass JH, Dacouno E, Pearlman E (2002) The role of endosymbiotic Wolbachia bacteria in the pathogenesis of river blindness. Science 295(5561):1892–1895. https://doi.org/10.1126/science.1068732

Sänger I, Lämmler G (1979) On Dipetalonema viteae infection of the cotton rat filaria, Litosomoides carinii. J Parasitol 33(2):138

Santiago-Stevenson D, Oliver-Gonzalez J, HEWITT R (1947) Treatment of filariasis bancrofti with 1-diethylcarbamyl-4-methylpiperazine cyclic lactones: comparative studies with ivermectin, doramectin, and ivermectin-122. Biochim Biophys Acta 240(1):1–22

Singh DP, Rathore S, Misra S, Chatterjee RK, Ghatak S, Sen AB (1985) Studies on the causation of adverse reactions in microfilaraemic host following diethylcarbamazine therapy (Dipetalonema viteae in Marmoset natalensis). Trop Med Parasitol 36(1):21–24

Sironi M, Bandi C, Sacchi L, Di Sacco B, Damiani G, Gench C (1995) Molecular evidence for a close relative of the arthropod endosymbiont Wolbachia in a filarial worm. Mol Biochem Parasitol 74(2):223–227. https://doi.org/10.1016/0166-6851(95)02494-8

Specht S, Saefel M, Arndt M, Endl E, Dubben B, Lee NA, Lee JJ, Hoerauf A (2006) Lack of cosinophil peroxidase or major basic protein impairs defense against murine filarial infection. Infect Immun 74(9):5236–5243. https://doi.org/10.1128/IAI.00329-06

Specht S, Mond S, Marfo-Debrekyei Y, Debrah AY, Konadu P, Adjei O, Buttner DW, Hoerauf A (2008) Efficacy of 2- and 4-week rifampicin treatment on the Wolbachia of Onchocerca volvulus. Parasitol Res 103:1303–1309

Specht S, Ruiz DF, Dubben B, Deintering S, Hoerauf A (2010) Filaria-induced IL-10 suppresses murine cerebral malaria. Microbes Infect 12:635–642

Specht S, Pfarr KM, Arriens S, Hübner MP et al (2018) Combinations of registered drugs reduce treatment times required to deplete Wolbachia in the Litomosoides sigmodontis mouse model. PLoS Negl Trop Dis 12:e0006116

Stensgaard AS, Vounatsou P, Onapa AW, Utzinger J, Pedersen EM, Kristensen TK, Simonsen PE (2016) Ecological drivers of Mansonella perstans infection in Uganda and patterns of co-endemicity with lymphatic filariasis and malaria. PLoS Negl Trop Dis 10(1):e0004319. https://doi.org/10.1371/journal.pntd.0004319

Storey N, Behnke JM, Wakelin D (1989) Acanthocheilonema vitaeae (Dipetalonema vitaeae) in mice: attempts to correct the low responder phenotype of the BALB/c host. Int J Parasitol 19(7):708–712. https://doi.org/10.1016/0020-7519(89)90057-x

Supali T, Djuardi Y, Pfarr KM, Wibowo H, Taylor MJ, Hoerauf A, Houwing-Duistermaat JJ, Yazdanabakhsh M, Sartono E (2008) Doxycycline treatment of Brugia malayi-infected persons reduces microfilariaemia and adverse reactions after diethylcarbamazine and albendazole treatment. Clin Infect Dis 46(9):1385–1393. https://doi.org/10.1086/586753

Taylor MD, LeGoff L, Harris A, Malone E, Allen JE, Maizels RM (2005) Removal of regulatory T cell activity reverses hyporesponsiveness and leads to filarial parasite clearance in vivo. J Immunol 174(8):4924–4933. https://doi.org/10.4049/jimmunol.174.8.4924

Taylor MD, Harris A, Nair MG, Maizels RM, Allen JE (2006) F4/80+ alternatively activated macrophages control CD4+ T cell hyporesponsiveness at sites peripheral to filarial infection. J Immunol 176:6918–6927

Taylor MD, Harris A, Babayan SA, Bain O, Culshaw A, Allen JE, Maizels RM (2007) CTLA-4 and CD4+ CD25+ regulatory T cells inhibit protective immunity to filarial parasites in vivo. J Immunol 179(7):4626–4634. https://doi.org/10.4049/jimmunol.179.7.4626

Taylor MJ, Hoerauf A, Bockarie M (2010) Lymphatic filariasis and onchocerciasis. Lancet 376:1175–1185

Taylor MD, van der Werf N, Maizels RM (2012) T cells in helminth infection: the regulators and the regulated. Trends Immunol 33(4):181–189. https://doi.org/10.1016/j.it.2012.01.001

Taylor MJ, von Geldern TW, Ford L, Hüber A, Marsh K, Johnston KL, Sjoberg HT, Specht S, Pionnier N, Tyer HE, Clare RH, Cook DAN,
Murphy E, Steven A, Archer J, Bloemker D, Lenz F, Koschel M, Ehrens A, Metuge HM, Chunda VC, Ndngomno Chounwa PW, Njouendou AJ, Fombad FF, Carr R, Morton HE, Aljayyousi G, Hoerauf A, Wanji S, Kempf DJ, Turner JD, Ward SA (2019) Preclinical development of an oral anti-Wolbachia macrolide drug for the treatment of lymphatic filariasis and onchocerciasis. Sci Transl Med 11(483):eaau2086. https://doi.org/10.1126/scitranslmed.aau2086

Terry A, Tery RJ, Worms MJ (1961) Dipetalonema witei, filarial parasite of the jird, Meriones libycus. II. The reproductive system, gametogenesis and development of the microfilaria. J Parasitol 47:703–711

Tippawangkosol P, Choochote W, Riong D, Jitpakdi A, Pitasawat B (2002) A simple technique for the in vitro cultivation of nocturnally subperiodic Brugia malayi infective larvae. Southeast Asian J Trop Med Public Health 33(Suppl 3):16–22

Torrello MN, Hübner MP, Larson D, Karasuyama H, Mitre E (2010) Basilsophy amplify type 2 immune responses, but do not serve a protective role, during chronic infection of mice with the filarial nematode Litomosoides sigmodontis. J Immunol 185:7426–7434

Torrello MN, Morris CP, Mitre BK, Hübner MP, Fox EM, Karasuyama H, Mitre E (2013) Basilsophy help establish protective immunity induced by irradiated larval vaccination for filariasis. Vaccine 31:3675–3682

Trasho MO, Sarr MD, Badji A, Bissam Y, Diawara L, Doumbia K, Goita SF, Konate L, Mounkoro K, Seck AF, Toure S, Remme JH (2016) Experimental chemotherapy of filariasis: comparison of the metacyclical larvae of Litomosoides carinii, Chandler 1931 (Filariaidae). Z Parasitenkd 28(3):240–263. German. https://doi.org/10.1007/BF00260265

WHO (2015) Global programme to eliminate lymphatic filariasis: progress report, 2014. Wkly Epidemiol Rec 90:489–504

WHO (2018) Progress report on the elimination of human onchocerciasis, 2017-2018. Wkly Epidemiol Rec 47:633–648

WHO (2019) Progress in eliminating onchocerciasis in the WHO Region of the Americas: doxycycline treatment as an end-game strategy. Wkly Epidemiol Rec 94:433.

WHO, Lympathic filariasis. (2020) Available from: https://www.who.int/health-topics/lymphatic-filariasis#tab=tab_1. Accessed on 05. August 2020.

WHO. Onchocerciasis. (2020) Available from: https://www.who.int/health-topics/onchocerciasis-(river-blindness)#tab=tab_1. Accessed on 05. August 2020.

Williams RW (1948) Studies on the life cycle of Litomosoides carinii, filarial parasite of the cotton rat, Sigmodon hispidus litoralis. J Parasitol 34(1):24–43

Williams RW, Brown HW (1945) The development of Litomosoides carinii filarial parasite of the cotton rat in the tropical rat mite. Science. 102(2654):482–483. https://doi.org/10.1126/science.102.2654.482-a

Wiszniewsky A, Ritter M, Krupp V, Schulz S, Arndts K, Weighardt H, Wanji S, Hoerauf A, Layland LE (2019) The central adaptor molecule TRIF influences L. sigmodontis worm development. Parasitol Res 118(2):539–549. https://doi.org/10.1007/s00436-018-6159-1

Worms M, Terry R, Terry A (1961) Dipetalonema witei, filarial parasite of the jird, Meriones libycus. I. Maintenance in the Laboratory. J Parasitol 47(6):963–970. https://doi.org/10.2307/3275034

Zahner H, Schares G (1993) Experimental chemotherapy of filariasis: comparative evaluation of the efficacy of filaricidal compounds in Mamstomyos coucha infected with Litomosoides carinii, Acanthochelomera vitae, Brugia malayi and B. pahangi. Acta Trop 52(4):221–266. https://doi.org/10.1016/0001-706x(93)90010-9
Zahner H, Sänger I, Lämmler G, Müller HA (1987) Effect of ivermectin in Dipetalonema viteae and Litomosoides carinii infections of Mastomys natalensis. Trop Med Parasitol 38(2):117–122
Zahner H, Taubert A, Harder A, von Samson-Himmelstjerna G (2001) Effects of Bay 44-4400, a new cyclodepsipeptide, on developing stages of filariae (Acanthocheilonema viteae, Brugia malayi, Litomosoides sigmodontis) in the rodent Mastomys coucha. Acta Trop 80:19–28. https://doi.org/10.1016/s0001-706x(01)00144-9
Zofou D, Fombad FF, Gandjui NVT, Njouendou AJ, Kengne-Ouafio AJ, Chounna Ndongmo PW, Datchoua-Poutcheu FR, Enyong PA, Bita DT, Taylor MJ, Turner JD, Wanji S (2018) Evaluation of in vitro culture systems for the maintenance of microfilariae and infective larvae of Loa loa. Parasit Vectors 11(1):275. https://doi.org/10.1186/s13071-018-2852-2
Zouré HG, Wanji S, Noma M, Amazigo UV, Diggle PJ, Tekle AH, Remme JH (2011) The geographic distribution of Loa loa in Africa: results of large-scale implementation of the Rapid Assessment Procedure for Loiasis (RAPLOA). PLoS Negl Trop Dis 5(6):e1210. https://doi.org/10.1371/journal.pntd.0001210

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.