2,3,7,8-Tetrachlorodibenzo-p-dioxin and TGFβ3-Mediated Mouse Embryonic Palatal Mesenchymal Cells

Liyun Gao¹, Jie Xu¹, Xiao Li¹, Tao Wang¹, Weidong Wu¹, and Jia Cao¹

Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a well-known environmental teratogenic effector for cleft palate. Transforming growth factor β3 (TGF-β3) is an essential growth factor for palatogenesis. The objective of this study is to clarify the effects of TCDD and TGF-β3 on MEPM cells. The effects of 10 nM TCDD, 10 ng/mL TGF-β3, or a combination of 10 nM TCDD and 10 ng/mL TGF-β3 on MEPM cells were revealed by cell and biological methods. With the increase in TCDD (0.5-10 nM), the expression of TGF-β3 increased, but at TCDD concentrations greater than 10 nM, the expression of TGF-β3 reduced. The viabilities of MEPM cells decreased in the 10 nM TCDD-treated group. But the viabilities increased in the 10 ng/mL TGF-β3-treated group, and the viabilities were intermediate in the group treated with a combination of 10 nM TCDD and 10 ng/mL TGF-β3. This phenomenon was the same as that of the motilities. In addition, we found that the expression of p-Smad2, p-Smad3, and Smad7 were increased by TCDD, TGF-β3, combination of TCDD and TGF-β3, but the expression of Smad4 were decreased by TCDD, TGF-β3, combination of TCDD and TGF-β3. These data revealed that TCDD and TGF-β3 interacted and affected MEPM cells.

Keywords
TCDD, MEPM cells, TGF-β3, TGF-β/Smad signaling

Introduction
Palatogenesis is a tightly regulated process, in which multipotential mesenchymal cells can differentiate into chondrocytes to form cartilage.¹,² The secondary palates of the 2 palatal shelves grow and fuse by mesenchymal cell proliferation in mammals. Interestingly, transforming growth factor β3 (TGF-β3) is expressed in the palatal mesenchyme during palatal growth and elevation.³ Transforming growth factor β3 plays a very important role in a variety of cellular processes including cell proliferation, differentiation, apoptosis, migration, invasion, matrix synthesis, and immune response.⁴,⁶ Transforming growth factor β3 was believed to play a very important role in the development of palatogenesis.⁷ TGF-β3 was an important to palatal fusion in mice transforming growth factor β3 was an important palatal fusion in mice and it had been shown that TGF-β3-knockout mice exhibited cleft palate,⁸ but exogenous TGF-β3 treated TGF-β3-knockout mice and was sufficient to rescue palatal fusion. Moreover, TGF-β3 was also the most effective in inducing human palatal mesenchymal cell proliferation.⁹ Transforming growth factor β3 can initiate diverse cellular responses by binding and activating specific cell surface receptors, which also can activate TGF-β receptors to stimulate the phosphorylation of receptor-regulated Smad proteins, such as phosphorylation of transcription factors Smad2 and Smad3. Phospho-Smad2/3 (p-Smad2/3) in turn formed complexes with Smad4, which accumulated in the nucleus and regulate the transcription of target genes. The actions of TGF-β were antagonized by Smad7, which can prevent phosphorylation of Smad2/3, thereby blocking TGF-β/Smad signaling.

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a well-known teratogenic effector of cleft palate. Morphological studies performed in vivo revealed that TCDD caused cleft palate by not only disturbing palatal shelf growth but also inhibiting...
the fusion of palatal shelves by a variety of effects.10 Many genes played important roles in palatogenesis, such as TGF-\(\beta\)3 and KLF4.7,11 But there were few reports about the relationships between TCDD and TGF-\(\beta\)3 in mouse embryonic palatal mesenchymal (MEPM) cells. In the present study, we found the possible relationships between TCDD and TGF-\(\beta\)3 in MEPM cells.

Materials and Methods

Cell Culture and Treatment

MEPM cells were derived from palatal tissue on 13-day-old C57BL/6 mice embryos (Henan Laboratory Animal Center of Zhengzhou University, China). All experiments were performed in accordance with the Experimental Animal Center Guide for the Care and Use of Laboratory Animals and the Institutional Ethical Guidelines for Experiments with Animals. The method of MEPM cell culture was according to the method by Feng et al.12 The MEPM cells were cultured in flasks with DMEM/F12 medium (Hyclon, Logan, Utah) supplemented with 10% fetal bovine serum (FBS, Sijiqing, Hangzhou, China). The MEPM cells were placed in a humidified incubator at 37\(^\circ\)C in 5% CO\(_2\) atmosphere, with media replaced every other day. The third passage cells were seeded. Some cells were treated with 0.5 nM, 1 nM, 5 nM, 10 nM, 20 nM, and 50 nM TCDD, and TCDD concentration was selected according to some reports.13,14 Others were treated with 10 nM TCDD (DD-2378-S, Sigma, Saint Louis, Missouri), 10 ng/mL TGF-\(\beta\)3 (cyt-143; PROSPEC, Zion, Israel), or a combination of 10 nM TCDD and 10 ng/mL TGF-\(\beta\)3 for further analysis. Control cells were treated with DMSO (D2650; Sigma).

Quantitative Real-Time Polymerase Chain Reaction

Total RNAs were isolated from MEPM cells using Trizol Reagent (Invitrogen, Carlsbad, California) according to the manufacturer’s instructions. To detect the expression of TGF-\(\beta\)3, first strand cDNA was synthesized using a PrimeScript II 1st strand cDNA Synthesis Kit (6210A; TakaRa Biotec, Kyoto, Japan), and then amplified by quantitative real-time polymerase chain reaction (qRT-PCR) with the SYBR Premix Ex Taq Kit (DRR420A; TakaRa) through ABI 7900 PRISM system (7900HT; Applied Biosystems, Carlsbad, California). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used as an internal control. The qRT-PCR conditions were as follows: polymerase activation at 95\(^\circ\)C 15 minutes and 40 cycles at 95\(^\circ\)C for 15 seconds, 56\(^\circ\)C for 20 seconds, and 72\(^\circ\)C for 30 seconds. Polymerase chain reaction products were identified by melting curve analysis. All primers were synthesized by Invitrogen. The primer sets were as follows: TGF-\(\beta\)3-forward: 5'-CCTGGCCTCCTGAAA CCTT-3', and reverse, 5'-TTGATGTGCGCCAAAGTCCAAC-3'; GAPDH-forward: 5'-TGACGGCTGCCCTGG AGAAAC-3', and reverse, 5'-CCGCATCGAAGGTGAAG-3'.

Cell Viability Assays

To evaluate the effect of TCDD, the viabilities of MEPM cells were determined by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide, Thiazolyl Blue Tetrazolium Bromide (MTT), (JT343; Genview, CA,) assay. The third passage of MEPM cells (5 \times 10\(^3\) cells per well) was seeded in 96-well plates (Nunc, Roskilde, Denmark). The cells were treated with 10 nM TCDD, 10 ng/mL TGF-\(\beta\)3, a combination of 10 nM TCDD and 10 ng/mL TGF-\(\beta\)3, or DMSO (\(\leq\)0.05%). After 72 hours of incubation, the cell viabilities were detected by MTT assay according to the manufacturer’s protocols.

Scratch Wound-Healing Motility Assay

Mouse embryonic palatal mesenchymal cells were seeded on 6-well plates and allowed to grow to confluence. Confluent monolayers were scratched with a pipette tip and washed with PBS 3 times to remove cell debris. The cells were treated with 10 nM TCDD, 10 ng/mL TGF-\(\beta\)3, or a combination of 10 nM TCDD and 10 ng/mL TGF-\(\beta\)3. After being maintained under standard conditions for 24 hours, plates were washed once with fresh medium to remove nonadherent cells and then photographed. The percentages of open spaces covered by migrated cells were determined using Image J software (http://rsb.info.nih.gov/ij/).

Western Blot Analysis

Total cellular protein extraction from different treated MEPM cells using 5 x sodium dodecyl sulfate-lysis buffer supplemented with protease inhibitors (M250; Amresco, Ohio). Protein concentration was determined using a standard BSA protein assay (DingGuo, Beijing, China). Then 40 \(\mu\)g of proteins were fractionated on 12% sodium dodecyl sulfate–polyacrylamide gel electrophoresis and transferred to nitrocellulose membranes. After blocking with 5% nonfat milk, the membranes were immunoblotted with the primary antibodies: Smad2 (ab71109; Abcam, Massachusetts), p-Smad2 (sc101801; Santa Cruz, California), Smad3 (BM3559; Boster Biotech, Wuhan, China), p-Smad3 (GD-CZ5616 R, Santa Cruz, California), Smad4 (PB0446; Boster Biotech, Wuhan, China), and Smad7 (sc-365846; Santa Cruz, California). \(\beta\)-Actin was probed as a loading control. Then membranes were washed and incubated with horseradish peroxidase–conjugated secondary antibody (sc-2004 or sc-2005; Santa Cruz, California). Western blot analysis was performed using the Odyssey Infrared Imaging System (Li-Cor, Lincoln, Nebraska).

Statistical Analysis

All data were compared using either double-sided Student \(t\) test or 1-way analysis of variance. The choice of tests was performed automatically using SPSS software, Version 13.0 (SPSS, Chicago, Illinois). All data were presented as mean (standard deviation) of 3 independent experiments. Differences were considered to be statistically significant at \(P < .05\).
Results

The Effect of TGF-β3 by TCDD in MEPM Cells

Transforming growth factor β3 was the essential growth factor for palatogenesis. We explored the expression of TGF-β3 in MEPM cells using 0.5 nM, 1 nM, 5 nM, 10 nM, 20 nM, and 50 nM TCDD, or DMSO (≤0.05%) treated MEPM cells as the experiment group and control group, respectively. After treatment for 72 hours, the expression of TGF-β3 was measured by qRT-PCR. Data were mean values (standard deviation) of 3 replicate experiments. *P < 0.05 or **P < 0.01 versus the corresponding control values. TCDD indicates 2,3,7,8-tetrachlorodibenzo-p-dioxin; TGF-β3, transforming growth factor β3; MEPM, mouse embryonic palatal mesenchymal; qRT-PCR, quantitative real-time polymerase chain reaction.

The Effects of Cell Proliferation in MEPM Cells

In the experiments, we evaluated the effect of cell proliferation at 10 nM TCDD, 10 ng/mL TGF-β3, or a combination of 10 nM TCDD and 10 ng/mL TGF-β3 in MEPM cells. After treatment for 72 hours, the cell proliferation was measured by MTT assay. As shown in Figure 2, TCDD group was decreased by 13.23% compared with the corresponding control cells, but proliferation rate of TGF-β3 group was increased by 56.34%, while the combination of TCDD and TGF-β3 group of cells was increased by 11.56%.

The Effects of TGF-β3/Smad in MEPM Cells

Smads were intracellular effectors of TGF-β/Smad signaling. Smad2 and Smad3 can be activated and form heteromeric complexes with Smad4. Smad7 plays a key role in the regulation of TGF-β/Smad signaling, but it was involved in negative feedback. Therefore, we assessed the protein expression of these TGF-β/Smad pathway genes in MEPM cells. As shown in Figure 4, we found that the expression of p-Smad2 increased 1.21 (0.02) fold, 1.38 (0.11) fold, and 1.31 (0.01) fold in 10 nM TCDD, 10 ng/mL TGF-β3, and combination of 10 nM TCDD and 10 ng/mL TGF-β3 groups compared with the corresponding control cells, respectively. The expression of p-Smad3
increased 2.45 (0.07) fold, 2.22 (0.03) fold, and 2.45 (0.06) fold, respectively. But the expression of Smad4 decreased 0.25 (0.07) fold, 0.20 (0.001) fold, and 0.20 (0.006) fold, respectively. The expression of Smad7 increased 1.19 (0.02) fold, 1.33 (0.04) fold, and 1.13 (0.03) fold, respectively.

Discussion

The MEPM cells are very important in palatogenesis. Mouse embryonic palatal mesenchymal cells can undergo programmed cell death, migration, epithelial–mesenchymal transition, differentiation, which are coincident with the process of palatal fusion and disappearance of MEPM cells. Transforming growth factor-β3 has been indicated to play an essential role in the development of palatal shelves. For example, the expression of TGF-β3 had been identified to upregulate in fetal mouse palatal shelves, and TGF-β3 was also upregulated in the palatal tissues of people with cleft palate. Moreover TGF-β3 exposure completely prevented the dioxin-induced block of palatal fusion in this system. Transforming growth factor β3/Smad signaling pathway may mediate cleft palate. Until now, no reports have been
published about the relationships between TCDD and TGF-β3 in MEPM cells. We found that when MEPM cells were exposed to different concentrations of TCDD (0.5 nM, 1 nM, 5 nM, 10 nM, 20 nM, and 50 nM), the expression of TGF-β3 gene was always higher than the control, and the expression of TGF-β3 was highest in MEPM cells by 10 nM TCDD induced. The results were also identical to the fact that TGF-β3 expression upregulates cleft palates induced by TCDD in mice, which implicated that the TGF-β3 signaling pathway might have an important role in MEPM cells by TCDD and TGF-β3 induced.

The relationship between TCDD and TGF-β3 remained obscure. Very low-dose TCDD can affect palatogenesis and lead to malformations in the early stages of cartilage development. Numerous studies have demonstrated that TCDD inhibited programmed cell death of MEPM cells in palatal shelves, and TCDD can alter MEPM cell differentiation. However, few reports revealed that TCDD and TGF-β3 explored to MEPM cells. In the current study, we focused on the interactive effects between TCDD and TGF-β3. We found that TCDD inhibited the MEPM cell proliferation, which was same that TCDD inhibited urogenital sinus mesenchymal cell proliferation. However, 10 ng/mL TGF-β3 promoted the MEPM cell proliferation, which is consistent with the fact that TGF-β3 can stimulate the proliferation of mesenchymal cells in vaginal thread. The combination of 10 nM TCDD and 10 ng/mL TGF-β3 also promoted MEPM cell proliferation, but the rate of cell viability was between that of TCDD or TGF-β3 treated alone, which might be consistent with TGF-β3 as an effective antidote to dioxin-induced MEPM cells. This phenomenon was same as the effect of motilities in MEPM cells by 10 nM TCDD, 10 ng/mL TGF-β3, or a combination of 10 nM TCDD and 10 ng/mL TGF-β3. TCDD inhibited the MEPM cell motility, which concurred with TCDD-mediated the inhibition of MCF-7 cell motility. Tetrachlorodibenzo-p-dioxin inhibited the MEPM cell motility, which concurred with TCDD-mediated the inhibition of MCF-7 cell motility. TGF-β3 promoted MEPM cell motility which are aligned to TGF-β3 activating the palatal midline epithelial seam cell motility. Transforming growth factor β3 promoted MEPM cell motility which are aligned to TGF-β3 activating the palatal midline epithelial seam cell. The combination of TCDD and TGF-β3 also promoted MEPM cell motility and the combination of TCDD and TGF-β3 also promoted MEPM cell motility, which might be the TGF-β3 playing mainly important role in MEPM cells to antagonize TCDD.

Taken together, we demonstrated that cellular levels of p-Smad2/3 were activated by 10 nM TCDD, and Smad4 was inhibited by 10 nM TCDD. Which suggests TCDD and TGF-β3 mediate TGF-β3/Smad signaling pathways. But some researchers detected the mRNA expression levels of Smad2, Smad3, Smad4, and Smad7 in the palates of fetuses by TCDD induced at E13.5, E14.5, and E15.5. The mRNA levels of Smad2, Smad3, Smad4, and Smad7 were lower in MEPM cells by TCDD induced compared with the corresponding control. They believed that TCDD did not make function by TGF-β3/Smad signaling. However, there are 2 kinds of cells in the mouse palatal shelves, such as medial edge epithelial cells and MEPM cells. But the authors did not tell about which kinds of cells making mainly function in tissues of mouse palatal shelves. In addition, the expression of gene in transcription level was different from that of the posttranscriptional level. However, TCDD receptor (Aryl hydrocarbon receptor, AhR) can inhibit the downregulation of the TGF-β3/Smad pathway in human glioblastoma cells. Expression of genes in the TGF-β signaling pathway is significantly deregulated in smooth muscle cells from aorta of AhR knockout mice by TCDD induced. Moreover, inhibition of TGF-β signaling pathway also inhibited TCDD-induced Treg activity.

In conclusion, we found that TCDD and TGF-β3 might have a negative relationship in MEPM cells by TGF-β3/Smad signaling, but the precise mechanisms of TCDD and TGF-β3 mediated-cleft palate in MEPM cells require further investigation.

Authors’ Note
Liyun Gao conceived the original idea and designed and performed the experiments.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was funded by the grants of the National Natural Science Foundation of China (81502843), and Henan Province Xinxiang Key Laboratory of medical tissue regeneration program.

References
1. Moghadam FH, Tayebi T, Dehghan M, et al. Differentiation of bone marrow mesenchymal stem cells into chondrocytes after short term culture in alkaline medium. Int J Hematol Oncol Stem Cell Res. 2014;8(4):12-19.
2. Rider DA, Nalathamby T, Nurcombe V, Cool SM. Selection using the alpha-1 integrin (CD49a) enhances the multipotentiality of the mesenchymal stem cell population from heterogeneous bone marrow stromal cells. J Mol Histol. 2007;38(5):449-458.
3. Hill CR, Jacobs BH, Brown CB, Barnett JV, Goudy SL. Type III transforming growth factor β receptor regulates vascular and osteoblast development during palategenesis. Dev Dyn. 2015;244(2):122-133.
4. Cichon MA, Radisky DC. Extracellular matrix as a contextual determinant of transforming growth factor-β signaling in epithelial–mesenchymal transition and in cancer. *Cell Adh Migr.* 2014; 8(6):588-594.

5. Halper J, Kjaer M. Basic components of connective tissues and extracellular matrix: elastin, fibrillin, fibulins, fibrinogen, fibronectin, laminin, tenascins and thrombospondins. *Adv Exp Med Biol.* 2014;802:31-47.

6. Guo P, Zhao KW, Dong XY, Sun X, Dong JT. Acetylation of KLF5 alters the assembly of p15 transcription factors in transforming growth factor-β-mediated induction in epithelial cells. *J Biol Chem.* 2009;284(27):18184-18193.

7. Liu H, Leslie EJ, Jia Z, et al. Irf6 directly regulates Klf17 in zebrafish periderm and Klf4 in murine oral epithelium, and dominant-negative KLF4 variants are present in patients with cleft lip and palate. *Human Mol Genet.* 2016;25(4):766-776.

8. Ozturk F, Li Y, Zhu X, Guda C, Nawshad A. Systematic analysis of palatal transcriptome to identify cleft palate genes within TGFβ3-knockout mice alleles: RNA-Seq analysis of TGFβ3 Mice. *BMC Genomics.* 2013;14:113.

9. Zhu X, Ozturk F, Liu C, Oakley GG, Nawshad A. Transforming growth factor-β activates c-Myc to promote palatal growth. *J Cell Biochem.* 2012;113(10):3069-3085.

10. Burns FR, Peterson RE, Heideman W. Dioxin disrupts cranial cartilage and dermal bone development in zebrafish larvae. *Aquat Toxicol.* 2015;164:50-56.

11. Zhang Y, Mori T, Iseki K, et al. Differential expression of decorin and biglycan genes during palatogenesis in normal and retinoic acid-treated mice. *Dev Dyn.* 2003;226(4):618.

12. Feng C, Xu Z, Li Z, Zhang D, Liu Q, Lu L. Down-regulation of Wnt10a by RNA interference inhibits proliferation and promotes apoptosis in mouse embryonic palatal mesenchymal cells through Wnt/β-catenin signaling pathway. *J Physiol Biochem.* 2013;69(4):855-863.

13. Pu YL, Liu LL, Gan LQ, He XM, Fu YX. Mechanism of cleft palate in mice induced by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin [in Chinese]. *Zhonghua Zheng Xing Wai Ke Za Zhi.* 2011;27(6):448-453.

14. Cho SJ, Jung JS, Jin I, et al. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the expression of synaptic proteins in dissociated rat cortical cells. *Mol Cells.* 2002;14(2):238-244.

15. Nawshad A, LaGamba D, Hay E. Transforming growth factor β (TGFβ) signalling in palatal growth, apoptosis and epithelial mesenchymal transformation (EMT). *Arch Oral Biol.* 2004; 49(9):675-689.

16. Nogai H, Rosowski M, Grun J, et al. Follistatin antagonizes transforming growth factor-β3-induced epithelial–mesenchymal transition in vitro: implications for murine palatal development supported by microarray analysis. *Differentiation.* 2008;76(4): 404-416.

17. Gan LQ, Fu YX, Liu X, et al. Transforming growth factor-β3 expression up-regulates on cleft palates induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice. *Toxicol Ind Health.* 2009; 25(7):473-478.

18. Thomae TL, Stevens EA, Bradfield CA. Transforming growth factor-β3 restores fusion in palatal shelves exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. *J Biol Chem.* 2005;280(13):12742-12746.

19. Potchinsky M, Nugent P, Lafferty C, Greene RM. Effects of dexamethasone on the expression of transforming growth factor-β in mouse embryonic palatal mesenchymal cells. *J Cell Physiol.* 1996;166(2):380-386.

20. Liu X, Zhang H, Gao L, et al. Negative interplay of retinoic acid and TGF-β signaling mediated by TG-interacting factor to modulate mouse embryonic palate mesenchymal-cell proliferation. *Birth Defects Res B Dev Reprod Toxicol.* 2014;101(6):403-409.

21. Yao Z, Chen D, Wang A, et al. Folic acid rescue of ATRA-induced cleft palate by restoring the TGF-β signal and inhibiting apoptosis. *J Oral Pathol Med.* 2011;40(5):433-439.

22. Guo H, Zhang L, Wei K, et al. Exposure to a continuous low dose of tetrachlorodibenzo-p-dioxin impairs the development of the tooth root in lactational rats and alters the function of apical papilla-derived stem cells. *Arch Oral Biol.* 2015;60(1):199-207.

23. Abbott BD, Birnbaum LS. TCDD exposure of human embryonic palatal shelves in organ culture alters the differentiation of medial epithelial cells. *Teratology.* 1991;43(2):119-132.

24. Takagi TN, Matsui KA, Yamashita K, Ohmori H, Yasuda M. Pathogenesis of cleft palate in mouse embryos exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). *Teratog Carcinog Mutagen.* 2000;20(2):73-86.

25. Fujiwara K, Yamada T, Mishima K, Imura H, Sugahara T. Morphological and immunohistochemical studies on cleft palates induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in mice. *Congenit Anom(Kyoto).* 2008;48(2):68-73.

26. Ko K, Theobald HM, Moore RW, Peterson RE. Evidence that inhibited prostatic epithelial bud formation in 2,3,7,8-tetrachlorodibenzo-p-dioxin-exposed C57BL/6J fetal mice is not due to interruption of androgen signaling in the urogenital sinus. *Toxicol Sci.* 2007;99(2):360-369.

27. Dohr O, Vogel C, Abel J. Modulation of growth factor expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin. *Exp Clin Immunogenet.* 1994;11(2-3):142-148.

28. Zhao SF, Chai MZ, Wu M, He YH, Meng T, Shi B. Effect of vitamin B12 on cleft palate induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin and dexamethasone in mice. *J Zhejiang Univ Sci B.* 2014;15(3):289-294.

29. Seifert A, Taubert H, Hombach-Klönisch S, Fischer B, Navarrete Santos A. TCDD mediates inhibition of p53 and activation of ERLapha signaling in MCF-7 cells at moderate hypoxic conditions. *Int J Oncol.* 2009;35(2):417-424.

30. Ahmed S, Liu CC, Nawshad A. Mechanisms of palatal epithelial seam disintegration by transforming growth factor (TGF) β3. *Dev Biol.* 2007;309(2):193-207.

31. Liu L, Liu X, Ren X, et al. Smad2 and Smad3 have differential sensitivity in relaying TGFβ signaling and inversely regulate early lineage specification. *Sci Rep.* 2016;6:21602.

32. Gudey SK, Landstrom M. The role of ubiquitination to determine non-smad signaling responses. *Methods Mol Biol.* 2016;1344:355-363.
33. He XM, Liu CP, Gan LQ, et al. The antagonistic effect of folic acid and resveratrol on cleft palate in mice induced by TCDD. *Zhonghua Zheng Xing Wai Ke Za Zhi*. 2013;29(3):197-201.
34. Gramatzki D, Pantazis G, Schittenhelm J, et al. Aryl hydrocarbon receptor inhibition downregulates the TGF-β/Smad pathway in human glioblastoma cells. *Oncogene*. 2009;28(28):2593-2605.
35. Guo J, Sartor M, Karyala S, et al. Expression of genes in the TGF-β signaling pathway is significantly deregulated in smooth muscle cells from aorta of aryl hydrocarbon receptor knockout mice. *Toxicol Appl Pharmacol*. 2004;194(1):79-89.
36. Stevens EA, Mezrich JD, Bradfield CA. The aryl hydrocarbon receptor: a perspective on potential roles in the immune system. *Immunology*. 2009;127(3):299-311.