Rényi and von Neumann entropies of thermal state in Generalized Uncertainty Principle-corrected harmonic oscillator

MuSeong Kim¹, Mi-Ra Hwang¹, Eylee Jung¹, and DaeKil Park¹,²*

¹Department of Electronic Engineering, Kyungnam University, Changwon 631-701, Korea
²Department of Physics, Kyungnam University, Changwon 631-701, Korea

Abstract

The Rényi and von Neumann entropies of thermal state in generalized uncertainty principle (GUP)-corrected single harmonic oscillator system are explicitly computed within the first order of GUP parameter α. While the von Neumann entropy with α = 0 exhibits a monotonically increasing behavior in external temperature, the nonzero GUP parameter makes a decreasing behavior at large temperature region. As a result, for the case of α ≠ 0, the von Neumann entropy is maximized at the finite temperature T*. The Rényi entropy Sγ with nonzero α also exhibits similar behavior at large temperature region. In this region the Rényi entropy exhibits a decreasing behavior with increasing temperature. The decreasing rate becomes larger when the order of the Rényi entropy is smaller.

* dkpark@kyungnam.ac.kr
I. INTRODUCTION

We believe that at the Planck scale usual quantum mechanics and relativity are not expected to apply, and the effects of quantum gravity are expected to dominate. Although we do not understand the quantum gravity fully, it is also believed that there exists a minimal length (ML) at this scale. The existence of the ML at the Planck scale seems to be a universal characteristic of quantum gravity [1–3]. It appears in loop quantum gravity [4–7], string theory [8–10], path-integral quantum gravity [11–15], and black hole physics [16]. Such a ML also appears in some microscope thought-experiment [17].

From an aspect of quantum mechanics the existence of ML modifies the uncertainty principle from Heisenberg uncertainty principle (HUP) \[\Delta P \Delta Q \geq \frac{\hbar}{2}\] to generalized uncertainty principle (GUP) [20, 21]. This is because of the fact that the uncertainty of the position \(\Delta Q\) should be larger than the ML. In order to examine the effect of the modified quantum mechanics the ML and GUP are recently used to explore several branches of physics such as quantum mechanics [22], quantum electrodynamics [23], quantum cosmology [24], quantum gravity [25], and black hole physics [26]. More recently, the Feynman propagators [27–29] for the GUP-corrected quantum mechanics were derived in 1d free particle system [30, 31], 1d harmonic oscillator [32], and d-dimensional harmonic oscillator [33]. Moreover, the singular potential problem in the GUP-corrected quantum mechanics was discussed in Ref. [34].

Quantum information theory (QIT) [35] has been rapidly developed recently due to their applications to various quantum information processing such as quantum teleportation [36], superdense coding [37], quantum cloning [38], quantum cryptography [39, 40], quantum metrology [41], and quantum computer [42, 43]. In QIT the von Neumann entropy [35] of quantum state \(\rho\) measures the degree of information contained in \(\rho\). It is a direct counterpart to the Shannon entropy in classical information theory. There are several other entropic quantities introduced in the information theories. In particular, Rényi entropies [44, 45] of order 2 have many interesting properties such as the strong subadditivity inequality [46] for tripartite quantum states. Rényi entropies have been applied in the study of quantum metrology [47], entanglement measure [48], channel capacities [49], work value of information [50], and entanglement spectra in many-body systems [51]. Experimental accessibility of Rényi entropies is also discussed in specific quantum protocols [52].

The well-known example of the Planck scale is an early universe \((t \leq 10^{-43}(s))\) after big
bang). However, we do not know how QIT plays any role at this early stage. Of course, study on the role of QIT at the Planck scale may need long-term research. As a first step toward this issue, we will examine in this paper how several quantum information quantities are modified due to the presence of ML by making use of the simple GUP. In order to explore this issue we derive the thermal state ρ_T of the simple harmonic oscillator by making use of Ref. [32]. Then, we will compute several QIT quantities of ρ_T such as purity function, Rényi entropy, and von Neumann entropy explicitly. Finally, we will examine how those quantities are modified due to GUP or ML.

The specific form of GUP we will choose is a form proposed in Ref. [21]:

$$\Delta P_i \Delta Q_i \geq \frac{\hbar}{2} \left[1 + \alpha \left\{ (\Delta P_i)^2 + \langle \hat{P}_i \rangle^2 \right\} + 2\alpha \left\{ (\Delta P_i)^2 + \langle \hat{P}_i \rangle^2 \right\} \right] \quad (i = 1, 2, \ldots, D)$$

(1.1)

where $(\Delta P)^2 = \sum_{j=1}^{D} (\langle \hat{P}_j \rangle - \langle \hat{P}_j \rangle^2)$, $\langle \hat{P}_i \rangle = \sum_{j=1}^{D} \langle \hat{P}_j \rangle^2$, and α is a GUP parameter, which has a dimension (momentum)$^{-2}$. Using $\Delta A \Delta B \geq \frac{1}{2} |\langle [\hat{A}, \hat{B}] \rangle|$, Eq. (1.1) induces the modification of the commutation relation as

$$[\hat{Q}_i, \hat{P}_j] = i\hbar \left(\delta_{ij} + \alpha \delta_{ij} \hat{P}^2 + 2\alpha \hat{P}_i \hat{P}_j \right)$$

(1.2)

$$[\hat{Q}_i, \hat{Q}_j] = [\hat{P}_i, \hat{P}_j] = 0.$$

The existence of the ML is easily shown at $d = 1$. In this case Eq. (1.1) is expressed as

$$\Delta P \Delta Q \geq \frac{\hbar}{2} \left\{ 1 + 3\alpha (\Delta P)^2 \right\}$$

(1.3)

if $\langle \hat{P} \rangle = 0$. Then2, the equality of Eq. (1.3) yields

$$\Delta Q^2 \geq \Delta Q_{\text{min}}^2 = 3\alpha \hbar^2.$$

(1.4)

1 In fact, if we choose $[\hat{P}_i, \hat{P}_j] = 0$, the Jacobi identity determines $[\hat{Q}_i, \hat{Q}_j]$ in a form

$$[\hat{Q}_i, \hat{Q}_j] = \frac{4\alpha^2 \hat{P}_j^2}{1 + \alpha \hat{P}_j^2} \left(\hat{P}_i \hat{Q}_j - \hat{P}_j \hat{Q}_i \right) = \mathcal{O}(\alpha^2).$$

Since our discussion in this paper will be only up to first order of α, we can simply assume $[\hat{Q}_i, \hat{Q}_j] = 0$.

2 One can consider more general one-dimensional GUP

$$\Delta P \Delta Q \geq \frac{\hbar}{2} \left\{ 1 + \alpha (\Delta Q)^2 + \beta (\Delta P)^2 + \gamma \right\},$$

which leads both ML and minimal momentum. However, it seems to be highly difficult to derive the thermal state with this general GUP. Hence, we will use the simple GUP (1.3) in this paper.
If $⟨\hat{P}⟩ \neq 0$, the corresponding ML becomes $\Delta Q_{\text{min}}^2 = 3\alpha \hbar^2 \left[1 + 3\alpha ⟨\hat{P}⟩^2\right]$, which is different from Eq. (1.4) at $O(\alpha^2)$.

If α is small, Eq. (1.2) can be solved as

$$\hat{P}_i = \hat{p}_i (1 + \alpha \hat{p}^2) + O(\alpha^2) \quad \hat{Q}_i = \hat{q}_i$$

(1.5)

where p_i and q_i obey the usual Heisenberg algebra $[q_i, p_j] = i\hbar \delta_{ij}$. We will use Eq. (1.5) in the following to compute the Rényi and von Neumann entropies within the first order of α.

The paper is organized as follows. In next section we will derive the thermal state ρ_T of the GUP-corrected harmonic oscillator system. Since the thermal state is not Gaussian when $\alpha \neq 0$, it is highly difficult to solve the eigenvalue equation of ρ_T. However, it is shown in the following sections that the eigenvalue can be derived up to the first order of α without solving the eigenvalue equation explicitly. In section III we compute the $Tr\rho^n_T$ explicitly within $O(\alpha)$. The purity function is also explicitly derived. It is shown in this section that while the thermal state with $\alpha = 0$ transforms from pure to completely mixed state with increasing the external temperature from 0 to ∞, the state with nonzero α becomes the partially mixed state even at the limit of $T \to \infty$. By making use of $Tr\rho^n_T$, the Rényi and von Neumann entropies of ρ_T are computed within $O(\alpha)$ in section IV. The temperature-dependence of the entropies is analyzed in this section. In section V a brief conclusion is given. In the appendix A, B, and C we derive some integral formulas, which are used in section II.

II. THERMAL STATE

Now, let us consider a simple harmonic oscillator in (\hat{P}, \hat{Q})-system, whose Hamiltonian is

$$\hat{H} = \frac{1}{2m} \hat{P}^2 + \frac{1}{2} m \omega^2 \hat{Q}^2 = \frac{\hat{p}^2}{2m} + \frac{\alpha}{m} \hat{p}^4 + \frac{1}{2} m \omega^2 \hat{q}^2 + O(\alpha^2).$$

(2.1)

The Feynman propagator for this system was explicitly derived up to the first order of α in Ref. [32], whose explicit expression is

$$K[q_f, q_0 : T] = \sqrt{\frac{m\omega}{2\pi i\hbar \sin \omega T}} \left[1 + \alpha f(q_f, q_0 : T) + O(\alpha^2)\right] e^{\frac{i}{\hbar} (S_0 + \alpha S_1)},$$

(2.2)
where

\[S_0 = \frac{m\omega}{2\sin\omega T} \left[(q_0^2 + q_f^2) \cos\omega T - 2q_0q_f \right] \]

\[S_1 = -\frac{m^3\omega^3}{32\sin^4\omega T} \left\{ 12\omega T + 8\sin 2\omega T + \sin 4\omega T \right\} (q_0^4 + q_f^4)
\]

\[-4 \left\{ 12\omega T \cos\omega T + 11\sin\omega T + 3\sin 3\omega T \right\} q_0q_f (q_0^2 + q_f^2) \]

\[+ 12 \left\{ 4\omega T + 2\omega T \cos 2\omega T + 5\sin 2\omega T \right\} q_0^2q_f^2 \]

\[f(q_f, q_0 : T) = \frac{3ihm\omega}{8\sin^2\omega T} \left(2\omega T + 5\sin\omega T \cos\omega T + \omega T \cos 2\omega T \right) \]

\[- \frac{3m^2\omega^2}{8\sin^3\omega T} \left\{ 2\omega T \left(3\cos\omega T(q_0^2 + q_f^2) - 2(2 + \cos 2\omega T)q_0q_f \right) \right\} \]

\[+ 10 \sin\omega T(q_0^2 + q_f^2 - 2q_0q_f \cos\omega T) - 6\sin^3\omega T(q_0^2 + q_f^2) \] .

The Brownian or Euclidean propagator is defined as \(G(q_f, q_0 : \tau) = K[q_f, q_0 : T = -i\tau] \).

Then, the thermal state of the system is given by

\[\rho_T[q_f, q_0 : \beta] = \frac{1}{Z} G[q_f, q_0 : \hbar\beta] \]

(2.4)

where \(\beta = 1/(k_B T) \). The parameters \(k_B \) and \(T \) are Boltzmann constant and external temperature, respectively. In Eq. (2.4) \(Z \) is a partition function defined as

\[Z(\beta) \equiv \text{Tr}G = \int dqG[q, q : \hbar\beta]. \]

(2.5)

Then, the explicit expression of the thermal state becomes

\[\rho_T[q_f, q_0 : \beta] = \frac{1}{Z(\beta)} \sqrt{\frac{m\omega}{2\pi\hbar\sinh x}} \left[1 - \alpha \left(f_E(q_f, q_0 : \beta) + \frac{1}{\hbar} S_{1,E}(q_f, q_0 : \beta) \right) + O(\alpha^2) \right] \]

\[\times \exp \left[-\frac{m\omega}{2\hbar\sinh x} \left\{ (q_0^2 + q_f^2) \cosh x - 2q_0q_f \right\} \right] \]

(2.6)

where \(x \) is a dimensionless parameter \(x = \hbar\omega\beta \) and

\[Z(\beta) = \frac{1}{2\sinh \frac{x}{2}} \left[1 - \frac{3\alpha}{4} (\hbar m\omega x) \coth^2 \frac{x}{2} + O(\alpha^2) \right] \]

(2.7)

\[f_E(q_f, q_0 : \beta) = A_1 - A_2(q_0^2 + q_f^2) + 2A_3q_0q_f \]

\[\frac{1}{\hbar} S_{1,E}(q_f, q_0 : \beta) = B_1(q_0^4 + q_f^4) + B_2(q_0^2q_f + q_0q_f^2) + B_3q_0^2q_f^2 \]
with

\[A_1 = \frac{3 \hbar m \omega}{8 \sinh^2 x} [2x + 5 \sinh x \cosh x + x \cosh 2x] \]
\[A_2 = \frac{3 m^2 \omega^2}{8 \sinh^3 x} [6x \cosh x + 10 \sinh x + 6 \sinh^3 x] \]
\[A_3 = \frac{3 m^2 \omega^2}{8 \sinh^3 x} [2x(2 + \cosh 2x) + 10 \sinh x \cosh x] \]
\[B_1 = \frac{m^3 \omega^3}{32 \hbar \sinh^4 x} [12x + 8 \sinh 2x + \sinh 4x] \]
\[B_2 = -\frac{m^3 \omega^3}{8 \hbar \sinh^4 x} [12x \cosh x + 11 \sinh x + 3 \sinh 3x] \]
\[B_3 = \frac{3 m^3 \omega^3}{8 \hbar \sinh^4 x} [4x + 2x \cosh 2x + 5 \sinh 2x]. \]

In order to derive the Rényi and von Neumann entropies of \(\rho_T[q_f, q_0 : \beta] \) we may need to solve the eigenvalue equation

\[\int dq_0 \rho_T[q_f, q_0 : \beta] f_n(q_0 : \beta) = \lambda_n f_n(q_f : \beta). \]

Since \(\text{Tr} \rho_T = 1 \), the eigenvalue should obey \(\sum_n \lambda_n = 1 \). However, it is highly difficult to solve Eq. (2.9), because the thermal state (2.6) is not Gaussian when \(\alpha \neq 0 \). As we will show in the following, however, it is possible to derive the eigenvalue \(\lambda_n \) exactly within the order of \(\alpha \) without solving the eigenvalue equation (2.9) explicitly.

III. CALCULATION OF \(\text{Tr} \rho^n_T \)

In this section we will compute \(\text{Tr} \rho^n_T \) up to order of \(\alpha \). One can show that \(\text{Tr} \rho^n_T \) reduces to

\[\text{Tr} \rho^n_T \equiv \int dx_1 \cdots dx_n \rho_T[x_1, x_2 : \beta] \rho_T[x_2, x_3 : \beta] \cdots \rho_T[x_{n-1}, x_n : \beta] \rho_T[x_n, x_1 : \beta] \]

\[= \frac{1}{Z^n} \left(\frac{m \omega}{2 \pi \hbar \sinh x} \right)^{n/2} \times \int dx_1 \cdots dx_n \left[1 - \alpha \left\{ f_E(x_1, x_2 : \beta) + \cdots + f_E(x_{n-1}, x_n : \beta) + f_E(x_n, x_1 : \beta) \right\} \right. \]

\[- \frac{\alpha}{\hbar} \left\{ S_{1,E}(x_1, x_2 : \beta) + \cdots + S_{1,E}(x_{n-1}, x_n : \beta) + S_{1,E}(x_n, x_1 : \beta) \right\} + \mathcal{O}(\alpha^2) \]

\[\times \exp \left[-X G_n X^\dagger \right]. \]
where \(\mathbf{X} = (x_1, \cdots, x_n) \) and \(G_n \) is a \(n \times n \) matrix in a form

\[
G_n = \begin{pmatrix}
 2a & -b & & & -b \\
 -b & 2a & & & \\
 & & \ddots & & \\
 & & & \ddots & & \\
 & & & & 2a & -b
\end{pmatrix}.
\] (3.2)

with

\[
a = \frac{m\omega \cosh x}{2\hbar \sinh x} \quad \text{and} \quad b = \frac{m\omega}{2\hbar \sinh x}.
\] (3.3)

In Eq. (3.2) matrix elements in empty space are zero. Inserting Eq. (2.7) into Eq. (3.1) \(\text{Tr} \rho^n \) becomes

\[
\text{Tr} \rho^n = \frac{1}{Z^n} \left(\frac{m\omega}{2\pi\hbar \sinh x} \right)^{n/2} \times \int dx_1 \cdots dx_n \left[1 - \alpha \left\{ nA_1 - 2A_2(x_1^2 + \cdots + x_n^2) + 2A_3(x_1x_2 + \cdots + x_{n-1}x_n + x_nx_1) \right\} \right.
\]

\[
\left. - \alpha \left[2B_1(x_1^4 + \cdots + x_n^4) + B_2 \left\{ x_1x_2(x_1^2 + x_2^2) + \cdots + x_{n-1}x_n(x_{n-1}^2 + x_n^2) + x_nx_1(x_{n-1}^2 + x_1^2) \right\} \right.
ight.
\]

\[
\left. + B_3(x_1^2x_2^2 + \cdots + x_{n-1}^2x_n^2 + x_n^2x_1^2) \right] + \mathcal{O}(\alpha^2) \right] \times \exp \left[-\mathbf{X} G_n \mathbf{X}^\dagger \right].
\]

It is easy to show \(\det G_2 = 4(a^2 - b^2) \), \(\det G_3 = 2(a - b)(2a + b)^2 \), and \(\det G_4 = 16a^2(a^2 - b^2) \).

Generalizing to \(n \) one can show

\[
\det G_n = \frac{1}{2^n} \left[\left(\sqrt{a + b} + \sqrt{a - b} \right)^n - \left(\sqrt{a + b} - \sqrt{a - b} \right)^n \right]^2.
\] (3.5)
Thus, it is possible to derive

\[\int dx_1 \cdots dx_n \exp \left[-X G_n X^\dagger \right] = \frac{\pi^{n/2}}{\sqrt{\det G_n}} \equiv g_n \]

where \(H_n = \frac{1}{2n\sqrt{a^2-b^2}} \left[a \left(\sqrt{a+b} + \sqrt{a-b} \right)^{2n} - \left(\sqrt{a+b} - \sqrt{a-b} \right)^{2n} \right] \)

\(-b^2 \left[\left(\sqrt{a+b} + \sqrt{a-b} \right)^{2n-2} - \left(\sqrt{a+b} - \sqrt{a-b} \right)^{2n-2} \right] \).

Furthermore, in appendix the following integral formula are derived:

\[\int dx_1 \cdots dx_n (x_1^2 + \cdots + x_n^2) \exp \left[-X G_n X^\dagger \right] \]

\[= \frac{1}{2} \frac{\partial g_n}{\partial a} = g_n \frac{n}{4\sqrt{a^2-b^2}} \left(\sqrt{a+b} + \sqrt{a-b} \right)^n + \left(\sqrt{a+b} - \sqrt{a-b} \right)^n \]

\[\int dx_1 \cdots dx_n (x_1 x_2 + \cdots + x_n x_1) \exp \left[-X G_n X^\dagger \right] \]

\[= \frac{1}{2} \frac{\partial g_n}{\partial b} = g_n \frac{nb}{2\sqrt{a^2-b^2}} \left(\sqrt{a+b} + \sqrt{a-b} \right)^n - \left(\sqrt{a+b} - \sqrt{a-b} \right)^n. \]

where \(H_n \) is a \(n \times n \) matrix defined in Eq. (A.3) and its determinant is given by

\[\det H_n = \frac{1}{2n\sqrt{a^2-b^2}} \left[a \left(\sqrt{a+b} + \sqrt{a-b} \right)^{2n} - \left(\sqrt{a+b} - \sqrt{a-b} \right)^{2n} \right] \]

\[-b^2 \left[\left(\sqrt{a+b} + \sqrt{a-b} \right)^{2n-2} - \left(\sqrt{a+b} - \sqrt{a-b} \right)^{2n-2} \right] \].

Inserting Eqs. (2.8), (3.3), (3.6), and (3.7) into Eq. (3.4), one can derive

\[\text{Tr} \rho_T^n = \frac{2^{n-1} \sinh^n \frac{x}{2}}{\sinh \frac{nx}{2}} \left[1 + \frac{3\alpha n}{4} (\hbar m x) \left(\coth^3 \frac{x}{2} - \coth^2 \frac{nx}{2} \right) + \mathcal{O}(\alpha^2) \right]. \]
FIG. 1: (Color online) The external temperature dependence of the purity function when \(h = m = \omega = k_B = 1 \). The black solid, red dashed, and blue dotted lines correspond to \(\alpha = 0, \alpha = 0.04, \) and \(\alpha = 0.08 \), respectively. As expected, the thermal state \(\rho_T \) becomes pure and completely mixed state at \(T = 0 \) and \(T = \infty \) when \(\alpha = 0 \). When, however, \(\alpha \neq 0 \), the state reduces to the partially mixed state even in the limit of \(T \to \infty \).

From Eq. (3.9) the purity function is given by

\[
P(T) \equiv \text{Tr} \rho_T^2 = \tanh \frac{x}{2} \left[1 + \frac{3\alpha}{2} (\hbar m \omega x) \left(\coth^2 \frac{x}{2} - \coth^2 x \right) + \mathcal{O}(\alpha^2) \right].
\]

(3.10)

The external temperature dependence of the purity function is plotted in Fig. 1 with varying the GUP parameter \(\alpha \). For convenience we fix other constants as \(h = m = \omega = k_B = 1 \). In Fig. 1 the black solid, red dashed, and blue dotted lines correspond to \(\alpha = 0, \alpha = 0.04, \) and \(\alpha = 0.08 \), respectively. As expected, the thermal state \(\rho_T \) becomes pure and completely mixed state at \(T = 0 \) and \(T = \infty \) when \(\alpha = 0 \). When, however, \(\alpha \neq 0 \), the state reduces to the partially mixed state even in the limit of \(T \to \infty \). This can be easily seen from \(\lim_{T \to \infty} P(T) = \frac{9\alpha}{4} \).

IV. RÉNYI AND VON NEUMANN ENTROPIES

In this section we will compute the Rényi and von Neumann entropies of \(\rho_T \), which are defined as

\[
S_\gamma = (1 - \gamma)^{-1} \ln \text{Tr} \rho_T^\gamma \quad \quad S_{\text{von}} = -\text{Tr}(\rho_T \ln \rho_T).
\]

(4.1)

It is worthwhile noting that \(S_{\text{von}} \) can be obtained from \(S_\gamma \) by taking a limit \(\gamma \to 1 \).
FIG. 2: (Color online) The external temperature-dependence of the von Neumann entropy when $\hbar = m = \omega = k_B = 1$. The black solid, red dashed, and blue dotted lines correspond to $\alpha = 0$, $\alpha = 0.01$, and $\alpha = 0.02$, respectively. When $\alpha = 0$, the von Neumann entropy monotonically increases with increasing temperature. The remarkable fact is that the von Neumann entropy for nonzero α exhibits a decreasing behavior at the high-temperature region.

Using Eq. (3.9) it is possible to derive the eigenvalue λ_n of the eigenvalue equation (2.9) as following. Now, we take a trial solution of λ_n in a form

$$\lambda_n(\beta) = (1 - e^{-x})e^{-nx} \left[1 + \alpha(\hbar m \omega x) h_n(\beta) + \mathcal{O}(\alpha^2) \right].$$ \hspace{1cm} (4.2)

Since

$$\sum_{n=0}^{\infty} (\lambda_n)^k = \text{Tr} \rho_T^k$$ \hspace{1cm} (4.3)

for all positive integer k, one can derive a condition of $h_n(\beta)$ as

$$\sum_{n=0}^{\infty} e^{-n k x} h_n(\beta) = \frac{3}{4 \sinh^2 \frac{x}{2} \frac{1}{1 - e^{-k x}}} + \frac{3}{(1 - e^{-k x})^2} - \frac{3}{(1 - e^{-k x})^3}.$$ \hspace{1cm} (4.4)

Eq. (4.4) can be solved as

$$h_n(\beta) = 3 \left[\frac{e^{-x}}{(1 - e^{-x})^2} - \frac{n(n+1)}{2} + \zeta_n(\beta) \right],$$ \hspace{1cm} (4.5)

where ζ_n should satisfy $\sum_{n=0}^{\infty} e^{-n k x} \zeta_n(\beta) = 0$ for all positive integer k. Inserting Eq. (4.5) into Eq. (4.2), one can show

$$\lambda_n(\beta) = (1 - e^{-x})e^{-nx} \left[1 + 3 \alpha(\hbar m \omega x) \left\{ \frac{e^{-x}}{(1 - e^{-x})^2} - \frac{n(n+1)}{2} + \zeta_n(\beta) \right\} + \mathcal{O}(\alpha^2) \right].$$ \hspace{1cm} (4.6)
It is straightforward to show $\sum_{n=0}^{\infty} \lambda_n = 1$, which is consistent with $\text{Tr}\rho_T = 1$.

Now, we will show $\zeta_n(\beta) = 0$ as following. From Eq. (3.9) the Rényi entropy S_γ with integer order can be explicitly derived. If we take $\gamma \to 1$ limit in this expression, one can derive the von Neumann entropy in a form:

$$S_{\text{von}} = -\ln(1 - e^{-x}) + \frac{xe^{-x}}{1-e^{-x}} - 3\alpha(h\omega x^2)e^{-x}(1 + e^{-x}) + O(\alpha^2).$$

(4.7)

On the other hand the von Neumann entropy should be expressed as $-\sum_{n=0}^{\infty} \lambda_n \ln \lambda_n$. Comparing both expressions of the von Neumann entropy, one can conclude $\zeta_n(\beta) = 0$.

α	0	0.01	0.02	0.03	0.04	0.05
T_*	∞	16.66	8.32	5.54	4.15	3.31

Table I: The α-dependence of T_* when $\hbar = m = \omega = k_B = 1$.

The temperature dependence of the von Neumann entropy is plotted in Fig. 2 when $\hbar = m = \omega = k_B = 1$. The black solid, red dashed, and blue dotted lines correspond to $\alpha = 0$, $\alpha = 0.01$, and $\alpha = 0.02$, respectively. Globally, the nonzero GUP parameter α reduces the von Neumann entropy in the whole range of T compared to the case of $\alpha = 0$. This is due to the fact that the last term of Eq. (4.7) has a minus sign. The remarkable fact is that while the von Neumann entropy with $\alpha = 0$ monotonically increases with increasing T, the von Neumann entropy with nonzero α has a maximum at finite temperature T_*. This temperature can be computed by solving

$$\begin{align*}
(1 - e^{-\beta_*\omega})^2 - 3\alpha(h\omega) \left[(-2 + \beta_*\omega) + 4\beta_*\omega e^{-\beta_*\omega} + (2 + \beta_*\omega)e^{-2\beta_*\omega}\right] + O(\alpha^2) &= 0,
\end{align*}$$

where $\beta_* = 1/(k_B T_*)$. Solving the above equation numerically, one can find the α-dependence of temperature T_*. The α-dependence of temperature T_* is summarized in Table I when $\hbar = m = \omega = k_B = 1$. As Fig. 2 and Table I show, T_* decreases with increasing α. Mathematically, this extraordinary behavior of the von Neumann entropy with nonzero α can be understood as a competition of the last term in Eq. (4.7) with the remaining terms. However, it is unclear, at least for us, to understand this behavior from a point of physics.
FIG. 3: (Color online) The external temperature dependence of the Rényi entropy when $\hbar = m = \omega = k_B = 1$ when (a) $\alpha = 0$ and (b) $\alpha = 0.01$. In both figures the black solid, red dashed, and blue dotted lines correspond to $\gamma = 0.8$, $\gamma = 1.8$, and $\gamma = \infty$, respectively. When $\alpha = 0$, the Rényi entropy decreases with increasing the order γ in the whole range of T. This is well-known in the usual quantum mechanics. The remarkable fact is that the Rényi entropy with nonzero α exhibits a decreasing behavior at the high-temperature region.

The Rényi entropy with arbitrary real order γ is given by

$$S_\gamma \equiv \frac{1}{1 - \gamma} \ln \sum_{n=0}^{\infty} (\lambda_n)^\gamma$$

$$= \frac{1}{1 - \gamma} \left[\gamma \ln(1 - e^{-x}) - \ln(1 - e^{-\gamma x}) + 3\alpha \gamma (\hbar m \omega x) \left\{ \frac{e^{-x}}{(1 - e^{-x})^2} - \frac{e^{-\gamma x}}{(1 - e^{-\gamma x})^2} \right\} + O(\alpha^2) \right].$$

In Fig. 3 the temperature dependence of the Rényi entropy is plotted when $\alpha = 0$ (Fig. 3(a)) and $\alpha = 0.01$ (Fig. 3(b)) with choosing $\hbar = m = \omega = k_B = 1$. When $\alpha = 0$, the Rényi entropies with various γ exhibit increasing behavior with increasing temperature. With increasing the order γ the entropy decreases gradually in the whole range of T and eventually approaches to blue dotted line, which corresponds to $\gamma = \infty$. When $\alpha = 0.01$, however, the behavior of the Rényi entropy is drastically changed at large temperature region. In this region the entropies exhibit decreasing behavior in temperature. Furthermore, with increasing the order γ it increases and approaches to the blue dotted line in this region. We do not exactly know how to interpret this extraordinary behavior physically.
V. CONCLUSION

We compute in the paper the Rényi and von Neumann entropies of the thermal state ρ_T within the first order of α. Both entropies with $\alpha = 0$ exhibit monotonically increasing behavior with increasing the external temperature. It is also found that the nonzero α decreases the entropies compared to the $\alpha = 0$ case. Furthermore, there is a striking difference between $\alpha = 0$ and $\alpha \neq 0$. For the case of von Neumann entropy it has a maximum at finite temperature T_* if $\alpha \neq 0$. In the region $T > T_*$ the von Neumann entropy exhibits a decreasing behavior with increasing the temperature. For the case of the Rényi entropy $S_\gamma(T)$ it decreases with increasing the order γ when $\alpha = 0$. If, however, $\alpha \neq 0$, the temperature dependence of the Rényi entropy is drastically changed at the large temperature region. In this region the Rényi entropy exhibits a decreasing behavior with increasing the external temperature. The decreasing rate becomes larger with decreasing the order γ. As a result, the Rényi entropy becomes smaller with decreasing the order γ at the large temperature region.

It is of interest to extend our case to the one-dimensional two-coupled harmonic oscillator system, whose Hamiltonian is

$$\hat{H}_2 = \frac{1}{2m}(\hat{P}_1^2 + \hat{P}_2^2) + \frac{1}{2} \left[k_0 (\hat{X}_1^2 + \hat{X}_2^2) + J(\hat{X}_1 - \hat{X}_2)^2 \right]$$

$$= \hat{h}_1 + \hat{h}_2 + \frac{1}{2} J(\hat{x}_1 - \hat{x}_2)^2 + O(\alpha^2), \quad (5.1)$$

where

$$\hat{h}_j = \frac{1}{2m} (\hat{p}_j^2 + 2\alpha \hat{p}_j^4) + \frac{1}{2} k_0 \hat{x}_j^2 \quad (5.2)$$

with $j = 1, 2$. It is possible to derive the vacuum and thermal states of this coupled system. It is of interest to compute the entanglement of formation\cite{53} of these states and compare them with the HUP cases\cite{54, 55}. We guess the GUP parameter protects the entanglement degradation against the external temperature. However, it should be checked by explicit calculation. We hope to address this issue in the future.

\[1\] P. K. Townsend, *Small-scale structure of spacetime as the origin of the gravitational constant*, Phys. Rev. D 15 (1977) 2795.
[2] D. Amati, M. Ciafaloni, and G. Veneziano, *Can spacetime be probed below the string size?*, Phys. Lett. **B 216** (1989) 41.

[3] L. J. Garay, *Quantum gravity and minimum length*, Int. J. Mod. Phys. **A 10** (1995) 145 gr-qc/9403008.

[4] C. Rovelli and L. Smolin, *Knot Theory and Quantum Gravity*, Phys. Rev. Lett. **61** 1988 1155.

[5] C. Rovelli and L. Smolin, *Loop space representation of quantum general relativity*, Nucl. Phys. **B 331** (1990) 80.

[6] C. Rovelli, *Loop Quantum Gravity*, Living Rev. Relativity, **1** (1998) 1 gr-qc/9710008.

[7] S. Carlip, *Quantum Gravity: a Progress Report*, Rep. Prog. Phys. **64** (2001) 885 gr-qc/0108040.

[8] K. Konishi, G. Paffuti, and P. Provero, *it Minimum physical length and the generalized uncertainty principle in string theory*, Phys. Lett. **B 234** (1990) 276.

[9] M. Kato, *Particle theories with minimum observable length and open string theory*, Phys. Lett. **B 245** (1990) 43.

[10] A. Strominger, *Quantum Gravity and String Theory, What Have We Learned?*, hep-th/9110011.

[11] T. Padmanabhan, *Physical significance of planck length*, Ann. Phys. **165** (1985) 38.

[12] T. Padmanabhan, *Planck length as the lower bound to all physical length scales*, Gen. Rel. Grav. **17** (1985) 215.

[13] T. Padmanabhan, *The role of general relativity in the uncertainty principle*, Class. Q. Grav. **3** (1986) 911.

[14] T. Padmanabhan, *Limitations on the operational definition of spacetime events and quantum gravity*, Class. Quant. Grav. **4** (1987) L107.

[15] J. Greensite, *Is there a minimum length in D=4 lattice quantum gravity?*, Phys. Lett. **B 255** (1991) 375.

[16] M. Maggiore, *A Generalized Uncertainty Principle in Quantum Gravity*, Phys. Lett. **B 304** (1993) 65 hep-th/9301067.

[17] C. A. Mead, *Possible Connection Between Gravitation and Fundamental Length*, Phys. Rev. **135** (1964) B849.

[18] W. Heisenberg, Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Z. Phys. **43** (1927) 172.
[19] H. P. Robertson, *The Uncertainty Principle*, Phys. Rev. 34 (1929) 163.

[20] A. Kempf, *Uncertainty Relation in Quantum Mechanics with Quantum Group Symmetry*, J. Math. Phys. 35 (1994) 4483 [hep-th/9311147].

[21] A. Kempf, G. Mangano, and R. B. Mann, *Hilbert Space Representation of the Minimal Length Uncertainty Relation*, Phys. Rev. D 52 (1995) 1108 [hep-th/9412167].

[22] W.S. Chung and H. Hassanabadi, *A new higher order GUP: one dimensional quantum system*, Eur. Phys. J. C 79 (2019) 213.

[23] P. Bosso, *Rigorous Hamiltonian and Lagrangian analysis of classical and quantum theories with minimal length*, Phys. Rev. D 97 (2018) 126010 [arXiv:1804.08202 (hep-th)].

[24] P. Bosso, O. Obregón, *Minimal Length Effects on Quantum Cosmology and Quantum Black Hole Models*, Class. Quant. Grav. 37 (2020) 045003 [arXiv:1904.06343 (hep-th)].

[25] C. Villalpando and S.K. Modak, *Minimal length effect on the broadening of free wave packets and its physical implications*, Phys. Rev. D 100 (2019) 024054 [arXiv:1812.06112 (qr-qc)].

[26] L. Xiang, Y. Ling, Y.-G. Shen, C.-Z. Liu, H.-S. He, and L.-F. Xu, *Generalized uncertainty principles, effective Newton constant and the regular black hole*, Ann. Phys. 396 (2018) 334 [arXiv:1611.09016 (gr-qc)].

[27] R. P. Feynman and A. R. Hibbs, *Quantum Mechanics and Path Integrals* (McGraw-Hill, 1965, New York).

[28] H. Kleinert, *Path integrals in Quantum Mechanics, Statistics, and Polymer Physics* (World Scientific, 1995, Singapore).

[29] P. Jizba and F. Scardigli, *Emergence of special and doubly special relativity*, Phys. Rev. D 86 (2012) 025029 [arXiv:1105.3930 (hep-th)].

[30] S. Das and S. Pramanik, *Path Integral for non-relativistic Generalized Uncertainty Principle corrected Hamiltonian*, Phys. Rev. D 86 (2012) 085004 [arXiv:1205.3919 (hep-th)].

[31] S. Gangopadhyay and S. Bhattacharyya, *Path-integral action of a particle with the generalized uncertainty principle and correspondence with noncommutativity*, Phys. Rev. D 99 (2019) 104010 [arXiv:1901.03411 (quant-ph)].

[32] DaeKil Park and Eylee Jung, *Comment on “Path-integral action of a particle with the generalized uncertainty principle and correspondence with noncommutativity”*, Phys. Rev. D 101 (2020) 068501 [arXiv:2002.07954 (quant-ph)].

[33] DaeKil Park, *Generalized uncertainty principle and d-dimensional quantum mechanics*, Phys.
Rev. D 101 (2020) 106013 [arXiv:/3109031(quant-ph)].

[34] DaeKil Park and Eylee Jung, Generalized uncertainty principle and point interaction, Phys. Rev. D 101 (2020) 066007 [arXiv:2001.02850 (quant-ph)].

[35] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, England, 2000).

[36] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres and W. K. Wootters, Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels, Phys.Rev. Lett. 70 (1993) 1895.

[37] C. H. Bennett and S. J. Wiesner, Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states, Phys. Rev. Lett. 69 (1992) 2881.

[38] V. Scarani, S. Iblisdir, N. Gisin and A. Acin, Quantum cloning, Rev. Mod. Phys. 77 (2005) 1225 [quant-ph/0511088] and references therein.

[39] A. K. Ekert, Quantum Cryptography Based on Bell’s Theorem, Phys. Rev. Lett. 67 (1991) 661.

[40] C. Kollmitzer and M. Pivk, Applied Quantum Cryptography (Springer, Heidelberg, Germany, 2010).

[41] K. Wang, X. Wang, X. Zhan, Z. Bian, J. Li, B. C. Sanders, and P. Xue, Entanglement-enhanced quantum metrology in a noisy environment, Phys. Rev. A97 (2018) 042112 [arXiv:1707.08790 (quant-ph)].

[42] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, Quantum Computers, Nature, 464 (2010) 45 [arXiv:1009.2267 (quant-ph)].

[43] G. Vidal, Efficient classical simulation of slightly entangled quantum computations, Phys. Rev. Lett. 91 (2003) 147902 [quant-ph/0301063].

[44] A. Rényi, “On measures of information and entropy”, Proc. of the 4th Berkeley Symposium on Mathematics, Statistics and Probability, pp. 547-561 (1960).

[45] I. Bengtsson and K. Zyczkowski, Geometry of Quantum States (Cambridge University Press, Cambridge, England, 2008).

[46] G. Adesso, D. Girolami, and A. Serafini, Measuring Gaussian Quantum Information and Correlations Using the Rényi Entropy of Order 2, Phys. Rev. Lett. 109 (2012) 190502 [arXiv:1203.5116 (quant-ph)].

[47] P. Jizba, Y. Ma, A. Hayes, and J. A. Dunningham, One-parameter class of uncertainty rela-
tions based on entropy power, Phys. Rev. E 93 (2016) 060104(R) [arXiv:1606.01094 (quant-ph)]; R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M. Rispoli, and M. Greiner, Measuring entanglement entropy in a quantum many-body system, Nature, 528 (2015) 77 [arXiv:1509.01160 (cond-mat)].

[48] F. Mintert, M. Kuš, and A. Buchleitner, Concurrence of mixed bipartite quantum states in arbitrary dimensions, Phys. Rev. Lett. 92 (2004) 167902 [quant-ph/0403063]; G. Vidal and R. Tarrach, Robustness of entanglement, Phys. Rev. A 59 (1999) 141 [quant-ph/9806094].

[49] R. Alicki and M. Fannes, Note on multiple additivity of minimal Rényi entropy output of the Werner-Holevo channels, quant-ph/0407033 (2003); M. M. Wolf and J. Eisert, Classical information capacity of a class of quantum channels, New J. Phys. 7 (2005) 93 [arXiv:/0412133 (quant-ph)]; M. Mosonyi and F. Hiai, On the Quantum Rényi Relative Entropies and Related Capacity Formulas, IEEE Trans. Inf. Th. 57, (2011) 2474 [arXiv:0912.1286 [quant-ph]].

[50] R. König, R. Renner, and C. Schaffner, The Operational Meaning of Min- and Max-Entropy, IEEE Trans. Inf. Th. 55 (2009) 4337 [arXiv:0807.1338 (quant-ph)]; O. C. O. Dahlsten, R. Renner, E. Rieper, and V. Vedral, Inadequacy of von Neumann entropy for characterizing extractable work, New J. Phys. 13 (2011) 053015.

[51] F. Franchini, A. R. Its, and V. E. Korepin, Rényi Entropy of the XY Spin Chain, J. Phys. A: Math. Theor. 41 (2008) 025302 [arXiv:0707.2534 (quant-ph)]; N. Datta and R. Renner, Smooth Entropies and the Quantum Information Spectrum, IEEE Trans. Inf. Th. 55 (2009) 2807 [arXiv:0801.0282 (quant-ph)]; S. M. Giampaolo, S. Montangero, F. Dell’Anno, S. De Siena, F. Illuminati, Scaling of the Rényi entropies in gapped quantum spin systems: Entanglement-driven order beyond symmetry breaking, cond-mat/1208.0735 (2012).

[52] D. Bacco, M. Canale, N. Laurenti, G. Vallone, and P. Villoresi, Experimental quantum key distribution with finite-key security analysis for noisy channels, Nature Commun. 4 (2013) 2363 [arXiv:1406.4342 (quant-ph)]; M. Müller-Lennert, F. Dupuis, O. Szehr, S. Fehr, and M. Tomamichel, On quantum Rényi entropies: A new generalization and some properties, J. Math. Phys. 54 (2013) 122203 [arXiv:1306.3142 (quant-ph)]; P. J. Coles, R. Colbeck, L. Yu, and M. Zwolak, Uncertainty relations from simple entropic properties, Phys. Rev. Lett. 108 (2012) 210405 [arXiv:1112.0543 (quant-ph)].

[53] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin and W. K. Wootters, Mixed-state entanglement and quantum error correction, Phys. Rev. A 54 (1996) 3824 [quant-ph/9604024].
[54] DaeKil Park, *Dynamics of entanglement and uncertainty relation in coupled harmonic oscillator system: exact results*, Quant. Inf. Proc. 17 (2018) 147 [arXiv:1801.07070 (quant-ph)].

[55] DaeKil Park, *Thermal Entanglement Phase Transition in Coupled Harmonic Oscillators with Arbitrary Time-Dependent Frequencies*, Quant. Inf. Proc. 19 (2020) 129 [arXiv:1903.03297 (quant-ph)].
Appendix A: Derivation of Eq. (3.7a)

In this appendix we derive Eq. (3.7a). First, let us consider a $n \times n$ matrix
\[
\tilde{G}_n = \begin{pmatrix}
2a' & -b & & \\
-b & 2a & & \\
& -b & 2a & \\
& & \ddots & \ddots \ddots \\
& & & -b \\
& & & -b & 2a
\end{pmatrix}.
\] (A.1)

Then one can show
\[
\det \tilde{G}_n = \det G_n + 2(a' - a) \det H_{n-1}
\] (A.2)
where $\det G_n$ is given by Eq. (3.5) and H_n is a following $n \times n$ tridiagonal matrix:
\[
H_n = \begin{pmatrix}
2a & -b & & \\
-b & 2a & & \\
& -b & 2a & \\
& & \ddots & \ddots \ddots \\
& & & -b \\
& & & -b & 2a
\end{pmatrix}.
\] (A.3)

It is easy to show that $\det H_n$ satisfies the recursion relation
\[
\det H_n = 2a \det H_{n-1} - b^2 \det H_{n-2}
\] (A.4)
with $\det H_0 = 1$ and $\det H_1 = 2a$. Using Eq. (A.4) it is possible to show
\[
\det H_n = \frac{1}{\sqrt{a'^2 - b^2}} \left[a\sqrt{\det G_{2n}} - \frac{b^2}{2} \sqrt{\det G_{2n-2}} \right]
\] (A.5)
where $\det G_n$ is given in Eq. (3.5). If Eq. (3.5) is inserted into Eq. (A.5), $\det H_n$ reduces to Eq. (3.8).

Thus, it is easy to show
\[
\int dx_1 \cdots dx_n x_1^4 \exp \left[-X \tilde{G}_n X^\dagger \right] = g_n \frac{3 (\det H_{n-1})^2}{4 (\det G_n)^2}.
\] (A.6)
Next, by making use of the redefinition of the integral variables it is possible to show that

$$\int dx_1 \cdots dx_n x_j^4 \exp \left[-\mathbf{X} \tilde{G}_n \mathbf{X}^\dagger \right]$$

is independent of j. Thus,

$$\int dx_1 \cdots dx_n (x_1^4 + \cdots + x_n^4) \exp \left[-\mathbf{X} \tilde{G}_n \mathbf{X}^\dagger \right] = n \int dx_1 \cdots dx_n x_1^4 \exp \left[-\mathbf{X} \tilde{G}_n \mathbf{X}^\dagger \right],$$

which exactly coincides with Eq. (3.7a).
Appendix B: Derivation of Eq. (3.7b)

In this appendix we derive Eq. (3.7b). Let us consider a $n \times n$ matrix

$$G'_n = \begin{pmatrix}
2a_1 & -b & -b \\
-b & 2a_2 & \cdot \\
\cdot & 2a & \cdot \\
\cdot & \cdot & -b \\
-b & -b & 2a
\end{pmatrix}. \quad (B.1)$$

Then, one can show straightforwardly

$$\det G'_n = 4(a_1-a)(a_2-a) \det H_{n-2} + 4a(a_1+a_2-2a) \det H_{n-2} - 2b^2(a_1+a_2-2a) \det H_{n-3} + \det G_n. \quad (B.2)$$

Thus, Eq. (3.7b) is verified as following:

$$\int dx_1 \cdots dx_n \left(x_1^2 x_2^2 + \cdots + x_{n-1}^2 x_n^2 + x_n^2 x_1^2 \right) \exp \left[-X G_n X^\dagger \right] \quad (B.3)$$

$$= \left. \frac{n}{4} \frac{\partial^2}{\partial a_1 \partial a_2} \frac{\pi^{n/2}}{\sqrt{\det G'_n}} \right|_{a_1=a_2=a}$$

$$= g_n \frac{n}{4 (\det G_n)^2} \left[12a^2 (\det H_{n-2})^2 - 12ab^2 (\det H_{n-2}) (\det H_{n-3}) + 3b^4 (\det H_{n-3})^2 - 2 (\det H_{n-2}) (\det G_n) \right],$$

which exactly coincides with Eq. (3.7b).
Appendix C: Derivation of Eq. (3.7c)

In this appendix we derive Eq. (3.7c). Let us consider a $n \times n$ matrix

\[
G''_n = \begin{pmatrix}
2a_1 & -b_1 & -b \\
-b_1 & 2a_1 & -b \\
& -b & 2a \\
& & -b \\
& & & -b \\
-b & -b & 2a \\
\end{pmatrix}.
\] (C.1)

Then, one can show straightforwardly

\[
\det G''_n =
\left[4(a_1 - a)(a_1 + a) - (b_1 - b)(b_1 + b)\right] \det H_{n-2} \\
-4b^2(a_1 - a) \det H_{n-3} - 2(b_1 - b)b^{n-1} + \det G_n.
\] (C.2)

Thus, Eq. (3.7c) is proved as following:

\[
\int dx_1 \cdots dx_n \left\{ x_1x_2(x_1^2 + x_2^2) + \cdots + x_{n-1}x_n(x_{n-1}^2 + x_n^2) + x_nx_1(x_n^2 + x_1^2) \right\} \\
\times \exp \left[-X G_n X^\dagger\right]
\] (C.3)

\[
= -\frac{n}{4} \frac{\partial^2}{\partial a_1 \partial b_1} \frac{\pi^{n/2}}{\sqrt{\det G''_n}} \bigg|_{a_1 = a, b_1 = b}
\]

\[
= \frac{3n}{2} \frac{[b^{n-1} + b(\det H_{n-2})][2a(\det H_{n-2}) - b^2(\det H_{n-3})]}{(\det G_n)^2}
\]

which exactly coincides with Eq. (3.7c).