NGC 5626: a massive fast rotator with a twist

S. Viaene,1,2,* M. Sarzi,2 M. Baes1 and I. Puerari3

1Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B-9000 Gent, Belgium
2Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK
3Instituto Nacional de Astrofísica, Optica y Electrónica, Calle Luis Enrique Erro 1, Santa María Tonantzintla, Puebla 72840, Mexico

Accepted 2017 November 22. Received 2017 November 5; in original form 2017 September 5

ABSTRACT

We present a kinematic analysis of the dust-lane elliptical NGC 5626 based on MUSE observations. These data allow us to robustly classify this galaxy as a fast rotator and to infer a virial mass of $10^{11.7} M_\odot$, making it one of the most massive fast rotators known. In addition, the depth and extent of the MUSE data reveal a strong kinematic twist in the stellar velocity field (by up to 45° beyond $1.5 R_e$). A comparison with the ATLAS3D sample underlines the rareness of this system, although we show that such a large-scale kinematic twist could have been missed by the ATLAS3D data due to the limited spatial sampling of this survey (typically extending to $0.6 R_e$ for massive early-type galaxies). MUSE thus has the potential to unveil more examples of this type of galaxies. We discuss the environment and possible formation history of NGC 5626 and finally argue how a merger between the Milky Way and Andromeda could produce a galaxy of the same class as NGC 5626.

Key words: galaxies: fundamental parameters – galaxies: individual: NGC 5626.

1 INTRODUCTION

The classification of early-type galaxies (ETGs) has been revolutionized in the past decades. The classic E0–E6 classification of Hubble (1936) was largely based on inclination. Kormendy & Bender (1996) proposed a photometric classification based on boxiness/disciness of optical isophotes, which better reflects the dynamical state of the galaxy. The advent of integral field spectroscopy surpassed the photometric division of elliptical and lenticular galaxies. Instead, ETGs are now considered to be either fast or slow rotators (see e.g. Emsellem et al. 2007, 2011, and Cappellari 2016 for reviews). It has become common practice to classify a galaxy’s rotational class based on the λ_k parameter, originally proposed by Emsellem et al. (2007). This metric is a proxy for stellar angular momentum per unit mass, with higher values for fast rotators and lower λ_k for slow rotators.

Fast rotators tend to have regular and symmetric velocity fields, and have no misalignment between the photometric and kinematic position angle (PA). They are intrinsically flatter and anisotropic, and often exhibit stellar discs (Krajnović et al. 2011; Weijmans et al. 2014). Fast rotators are generally less massive than slow rotators, but are more numerous and make up around 70 per cent of the total stellar mass in ETGs (Emsellem et al. 2011).

On the other hand, slow rotators include the most massive ETGs and are found to be intrinsically rounder. Their velocity field is more chaotic, and frequently include twists, decoupled cores, etc. More often than not, there is a misalignment between their kinematic and photometric PA (see e.g. Krajnović et al. 2011, for a more detailed account of the subclasses of slow rotators).

The origin of this dichotomy is much debated, and several formation mechanisms have been proposed to create both types of ETGs. The current understanding is that mergers play a crucial role, but the details are unclear. The progenitors of ETGs are likely normal star-forming galaxies. Gas-rich minor mergers maintain the galaxy’s angular momentum, while dry minor mergers trigger disc instabilities and transform the galaxy into a more spheroidal shape (Emsellem et al. 2007). A series of minor mergers can thus create a fast rotator, where the balance between dry and wet mergers determines the value of λ_k. Alternatively, as shown in hydrodynamical simulations, major mergers can also result in a fast rotator, if the orbital and spin parameters are favourable (Jesseit et al. 2009; Hoffman et al. 2010; Bois et al. 2011; Naab et al. 2014).

The story is less clear for slow rotators. Robertson et al. (2006) argue that slow-rotator progenitors must first have undergone gas-rich minor mergers to explain the tilt in the Fundamental Plane. To then remove angular momentum over time, various scenarios are possible. A series of dry minor mergers can decrease λ_k as for the fast rotators. Alternatively, major mergers with discs of opposite spin are possible (Puerari & Pfenniger 2001; Cappellari et al. 2007; Jesseit et al. 2009; Hoffman et al. 2010; Bois et al. 2011; Naab et al. 2014). For the most massive slow rotators, which are found at the centre of clusters (Krajnović et al. 2011), a sequence of dry mergers is the most likely scenario. Galaxies that merge with the slow rotator will automatically have lower gas fractions due to environmental stripping of their gas.

* E-mail: sebastien.viaene@ugent.be

© 2017 The Author(s)

Published by Oxford University Press on behalf of the Royal Astronomical Society

Downloaded from https://academic.oup.com/mnrasl/article-abstract/474/1/47/4662628 on 03 January 2018
We have acquired MUSE (Bacon et al. 2010) EXTRACTION 2D DATA AND STELLAR KINEMATICS galaxy. for fast rotators. is as massive as fast rotators get. More strikingly, its velocity field is shows a strong kinematic misalignment, which is highly unusual for fast rotators. Throughout this work, we adopt a distance of 98.4 Mpc for the galaxy.

2 DATA AND STELLAR KINEMATICS EXTRACTION

We have acquired MUSE (Bacon et al. 2010) integral field spectroscopy for NGC 5626 during the instrument’s Science Verification phase [run 60.A-9325(A)]. A total integration time of 2 h on source was split into four exposures, rotated by 90° each time. The data were reduced using the standard PIPELINE, version 1.0. We refer to Vlaene et al. (2017) for further details on the data acquisition and processing.

Before extracting the stellar and gas kinematics of NGC 5626 using the pPXF and GandALF programs of Cappellari & Emsellem (2004) and Sarzi et al. (2006), we proceeded to spatially bin the background-subtracted MUSE cube. First, we quantify the precision on the velocity and velocity dispersion as a function of the signal to noise ratio (S/N) of the spectra. For our science goals, a sufficient precision of 11 and 14 km s\(^{-1}\) (on the stellar velocity and velocity dispersion, respectively) is reached for a S/N of 30. This target was then achieved using the Voronoi-binning procedure described in Cappellari & Copin (2003).

We then followed the approach of Sarzi et al. (2010) and Emsellem, Krajnović & Sarzi (2014), extracting nine high-S/N aperture spectra across different regions in NGC 5626 (from the centre to the outermost regions probed by our MUSE observations) and obtained high-quality pPXF and GandALF fits to these spectra using the entire MILES stellar library (Sánchez-Blázquez et al. 2006; Falcón-Barroso et al. 2011). In this way, we also derive two sets of nine optimal stellar templates (one from the pPXF fit the other from the GandALF fit, differing essentially in their wavelength range). These two sets of optimal templates are then used to perform a fast and accurate fit to each Voronoi-bin. Throughout our analysis the pPXF and GandALF fits were done in the 5050–6000 and 4750–7500 Å wavelength regions, respectively. Fig. 1 shows the final pPXF maps for the stellar velocity and velocity dispersion, together with the ‘white-light’ MUSE reconstructed image of NGC 5626. For the GandALF gas kinematics, we refer the reader to fig. 3 of Vlaene et al. (2017). High-order velocity moments and emission-line fluxes are also available.

3 ANALYSIS AND RESULTS

We first place NGC 5626 in the context of the ATLAS\(^{3D}\) sample. There are no morphological disturbances around the galaxy, so we can assume that the virial mass is a good approximation of the dynamical mass. As such, we can use the prescription of Cappellari et al. (2006), where \(M_{\text{vir}} \approx 5.0R_e\sigma^2_e/G\). We find \(M_{\text{vir}} \approx 5.4 \times 10^{12} M_\odot\), which is at the high end of the ATLAS\(^{3D}\) mass distribution (Fig. 2). In fact, it lies above the threshold of \(2 \times 10^{11} M_\odot\), set by Cappellari (2016), beyond which slow rotators dominate in number.

The MUSE field-of-view is too small to accurately determine the effective radius of the galaxy. We therefore chose to use the same \(R_e\) formula as used for ATLAS\(^{3D}\) galaxies (see equation 6 in Cappellari et al. 2011a). This relies on the median \(R_e \approx 10.8 \text{ arcsec}\) listed in the 2MASS-XSC (Jarrett et al. 2000), multiplied by 1.7 to account for the 2MASS sensitivity limits. This brings the effective radius for NGC 5626 at \(R_e = 18.3 \text{ arcsec}\).

To quantify the rotational state of NGC 5626, we follow the objective approach of Emsellem et al. (2011). The ellipticity, \(\epsilon\) was computed for each radial bin in the total flux image. Based on the ellipticity, we then determined the specific angular momentum, \(\lambda_R\), in concentric elliptical regions out to 1.5\(R_e\). We plot all radial measurements in the \(\lambda_R-\epsilon\) diagram in Fig. 2.

The dust lane in NGC 5626 reduces the flux in the dust lane, and induces an apparent flattening of the isophotes, thus affecting the determination of \(\epsilon\) and \(\lambda_R\). The green curve in the bottom panel...
the galaxies. Only one fast rotator is more massive (M60), but has a low \(\lambda_R \) and is of the border of slow rotator classification.

A striking outcome of our stellar-kinematics extraction is a high-quality map of the rotational velocity, which exhibits a strong twist towards the outer regions (Fig. 1). We perform a tilted-ring model fit (for details, see e.g. Rogstad, Lockhart & Wright 1974; Battaglia et al. 2006) to the velocity map to quantify the radial variation in PA\textsubscript{kin}. Fig. 3 (left-hand panel) shows this radial profile, along with the ones for PA\textsubscript{dust} derived using the standard IRAF-ellipse routine on the observed and dust-free white-light image. PA\textsubscript{kin} increases linearly with radius within \(R_e \) and the rise accelerates beyond that. In contrast, PA\textsubscript{dust} shows a slight decline. The radial profiles are limited to \(1.5 R_e \) in order to have the full ellipse in the FOV. However, along the kinematic minor axis (green colour in Fig. 1, middle), we can visually trace the twist out to \(\sim 1.8 R_e = R_{\text{max}} \).

We estimate the PA of the kinematic minor axis to be \(\sim 90^\circ \) at this radius. Adding \(90^\circ \) to obtain the PA of the kinematic major axis, this projection is shown in Fig. 3.

The significant twist also leads to a large kinematic misalignment \(\Psi \), which is defined as the difference between PA\textsubscript{kin} and PA\textsubscript{dust}. This misalignment, which persists also in the central region, is shown in the context of ATLAS3D in Fig. 3 (middle panel). The misalignments for these galaxies were computed using kinemetry (Krajnović et al. 2011). For NGC 5626, a kinemetry fit provides good agreement with the tilted ring method up to \(1 R_e \), but does not accurately capture the sharp PA\textsubscript{kin} increase beyond that radius. Hence, we show only the tilted-ring results for NGC 5626. Among the fast rotators, only a few have a kinematic misalignment as large as the one we observe in NGC 5626, in particular beyond \(R_e \). In fact, many of the fast rotators that exhibit a misalignment between the kinematic and photometric major axis are either barred or interacting. This makes NGC 5626 even more special as a fast rotator since it is neither barred nor currently interacting.

To quantify kinematic variations such as twists, Krajnović et al. (2011) defined \(\Gamma_{\text{kin}}^{\text{VAR}} \), the standard deviation in the kinematic PAs, measured in radial bins up to \(R_e \) (see their fig. 6). We find \(\Gamma_{\text{kin}}^{\text{VAR}} = 7.1^\circ - 9.3^\circ \) between \(1 - 1.5 R_e \). On a plot of \(\Gamma_{\text{kin}}^{\text{VAR}} \) versus the maximum rotational velocity within those radii (\(\max \lambda_R \)), the galaxy immediately pops up as an outlier to the main trend (Fig. 3, right-hand panel). This is even more evident when assuming a variation of \(\sim 45^\circ \), as the kinematic minor axis suggests. The only other galaxy near this location in the plot is NGC 5866, an edge-on Sa galaxy, though only the nucleus was covered in ATLAS3D. The map does not show an obvious twist as in NGC 5626 and it is likely that the \(\Gamma_{\text{kin}}^{\text{VAR}} \) only reflects intrinsic uncertainty measurements.

There are only two ATLAS3D galaxies identified as showing regular stellar rotation and smooth kinematic twist: NGC 474 and NGC 4382. Both features are weak compared to NGC 5626, and these systems are no outliers in Fig. 3. Both galaxies contain shells and stellar streams in their outer halo, a clear morphological sign of a recent major interaction. This has not been observed in NGC 5626, though the presence of a dust lane hints at a minor merger (Kaviraj et al. 2012). We also looked for similar kinematic maps in the CALIFA sample of Falcón-Barroso et al. (2017) but did not find a twist as pronounced as the one in NGC 5626. Two galaxies with a kinematic twist were reported in the MASSIVE survey by Veale et al. (2017): NGC 1129 and NGC 4874. However, the coarse spatial resolution of their velocity maps make it hard to validate this. In any case, both galaxies are slow rotators and have \(M_K < -26 \), which is significantly more massive than NGC 5626.

Finally, we quantify the environmental density for NGC 5626 using the three metrics proposed in Cappellari et al. (2011): \(\rho_{\text{1D}} \), the
On the one hand, it is very massive and shows a clear kinematic twist. On the other hand, its velocity field is regular and specific to its rotation. In short, NGC 5626 has properties of both slow and fast rotators.

4 DISCUSSION AND CONCLUSIONS

In short, NGC 5626 has properties of both slow and fast rotators. On the one hand, it is very massive and shows a clear kinematic twist. On the other hand, its velocity field is regular and specific angular momentum is relatively high.

Is NGC 5626 truly an exceptional case? The twist is most obvious beyond one effective radius, which means it could have been caused by a close encounter or merger, but also secular evolution (see also Kormendy & Kennicutt 2004; Debattista et al. 2006; Boselli & Gavazzi 2006).

density of a sphere containing the 10 nearest neighbours; \(\Sigma_{10}\), the surface density of a cylinder with height \(\sim 300 < \Delta_{\text{vel}} < 300 \text{ km s}^{-1}\) and radius containing the 10 nearest neighbours in the cylindrical volume; \(\Sigma_{1}\), as for \(\Sigma_{10}\), but for the three nearest neighbours. We find \(p_{10} = 0.28 \text{ Mpc}^{-3}\), \(\Sigma_{10} = 2.9 \text{ Mpc}^{-3}\), and \(\Sigma_{1} = 8.9 \text{ Mpc}^{-3}\). All three metrics indicate that NGC 5626 lies in an environment of intermediate density, at the edge of Virgo Cluster densities. Cappellari et al. (2011b) argue that galaxies in this regime are likely to have undergone morphological segregation at the small group level.

This can include dynamical processes such as cold accretion, close encounters or mergers, but also secular evolution (see also Kormendy & Kennicutt 2004; Debattista et al. 2006; Boselli & Gavazzi 2006).

To answer this question, we considered the superposition of two counter-rotating stellar components in rather flat systems. Alternatively, it is likely that the smooth kinematic twist observed in NGC 5626 may result from an intrinsic triaxial shape for this galaxy (e.g. Arnold, de Zeeuw & Hunter 1994; Mathieu & Dejonghe 1999).

In a series of merger simulations, Bois et al. (2011) are able to generate velocity twists for a few specific configurations. When merging a progenitor Sb galaxy with a smaller, gas-rich Sc galaxy (mass ratio of 2:1) in retrograde orbit, they obtain a large-scale kinematic twist only when decreasing the impact parameter to 35 kpc (a simulation they label ‘m21g33rdRm’). In other words, a smooth twist occurs when the galaxy has the velocity field is regular at the start of their simulation and is mimicked by a more head-on collision. The merged galaxy also has a \(\lambda_{R} \approx -0.2\) at \(R_{e}\), only slightly below to our measurement of 0.27 for NGC 5626. Other merger configurations, of the same progenitors, yield instead kinematically decoupled cores or more disturbed structure in the outer velocity field.

This merging scenario suggests that a galaxy like NGC 5626 could have formed in a gas-rich merger, where the collision was relatively head-on, and could have transformed the galaxy’s outer structure to a triaxial shape. Morphologically, the outskirts of NGC 5626 probed by our MUSE observations look rather undisturbed, suggesting that such a major merger happened at least more than \(\sim 1\) Gyr ago, the dynamical time-scale at 15 kpc from the centre. Deeper images than those provided by 2MASS should be able to establish whether a possible merger happened further down in the past. The dust lane and ionized gas disc (see Viaene et al. 2017) in the inner part could then be the remnant of such a major event. However, it may also come from a more recent interaction (see e.g. Kaviraj et al. 2012). The MUSE spectra indicate some star formation activity in the dust lane. While a stellar population analysis in these regions could provide some constraint on the epoch of the accretion event that lead to the dust lane, tighter constraints on the assembly history of the outer parts of NGC 5626 (e.g. from deep imaging) would still be needed to distinguish between the above scenarios.

Taken together, the possible merger history shows remarkable resemblance to the Milky Way – Andromeda collision scenario described by Cox & Loeb (2008). They adopt the comparable masses and mass ratio as the ‘m21g33rdRm’ simulation from Bois et al. (2011) and the total baryonic mass in the simulation.

Figure 3. Left-hand panel: Radial profiles of PA_{kin} as derived from the tilted ring fit, and photometric PAs from the observed (PA_{obs}) and dust-free (PA_{mod}) image. Middle panel: the kinematic misalignment \(\Psi\) versus ellipticity \(\epsilon\). Right-hand panel: variation of the kinematic PA (\(\Gamma_{\text{VAR}}\)) versus the maximum velocity \(k_{1}\). The black square and triangle correspond to 1 and 1.5\(R_{e}\) in NGC 5626. The green star is an estimate for the outermost radius (\(R_{\text{max}}\)), based on the kinematic minor axis. ATLAS3D fast and slow rotators are coloured in blue and red, respectively. Labelled galaxies are discussed in the text.
(log (M/M⊙) = 11.1) lies only slightly below that of NGC 5626. Furthermore, both simulations start at the same infall speed, and are relatively head-on. Unfortunately, neither include dust particles, which makes it unable to verify the existence of a settled dust disc, or its survival time. However, one can speculate that a merger between the Milky Way and Andromeda produces a galaxy of the same class as NGC 5626.

ACKNOWLEDGEMENTS
Based on observations collected at the European Organization for Astronomical Research in the Southern hemisphere under ESO programme 60.A-9337(A). SV received support of the UGent BOF fund and the FWO mobility fund.

REFERENCES
Arnold R., de Zeeuw P. T., Hunter C., 1994, MNRAS, 271, 924
Bacon R. et al., 2010, Proc. SPIE Conf. Ser. Vol. 7735, The MUSE Second-Generation VLT instrument. SPIE, Bellingham, p. 773508
Battaglia G., Fraternali F., Oosterloo T., Sancisi R., 2006, A&A, 447, 49
Bois M. et al., 2011, MNRAS, 416, 1654
Boselli A., Gavazzi G., 2006, PASP, 118, 517
Cappellari M., 2002, MNRAS, 333, 400
Cappellari M., 2016, ARA&A, 54, 597
Cappellari M., Copin Y., 2003, MNRAS, 342, 345
Cappellari M., Emsellem E., 2004, PASP, 116, 138
Cappellari M. et al., 2006, MNRAS, 366, 1126
Cappellari M. et al., 2007, MNRAS, 379, 418
Cappellari M. et al., 2011a, MNRAS, 413, 813
Cappellari M. et al., 2011b, MNRAS, 416, 1680
Cox T. J., Loeb A., 2008, MNRAS, 386, 461
Debattista V. P., Mayer L., Carollo C. M., Moore B., Wadsley J., Quinn T., 2006, ApJ, 645, 209
Emsellem E. et al., 2007, MNRAS, 379, 401
Emsellem E. et al., 2011, MNRAS, 414, 888
Emsellem E., Krajnović D., Sarzi M., 2014, MNRAS, 445, L79
Falcón-Barroso J. et al., 2011, A&A, 532, A95
Falcón-Barroso J. et al., 2017, A&A, 597, A48
Hoffman L., Cox T. J., Dutta S., Hernquist L., 2010, ApJ, 723, 818
Hubble E. P., 1936, Realm of the Nebulae
Jarrett T. H., Chester T., Cutri R., Schneider S., Skrutskie M., Huchra J. P., 2000, AJ, 119, 2498
Jesseit R., Cappellari M., Naab T., Emsellem E., Burkert A., 2009, MNRAS, 397, 1202
Kaviraj S. et al., 2012, MNRAS, 423, 49
Kormendy J., Bender R., 1996, ApJ, 464, L119
Kormendy J., Kennicutt R. C., Jr, 2004, ARA&A, 42, 603
Krajnović D. et al., 2011, MNRAS, 414, 2923
Mathieu A., Dejonghe H., 1999, MNRAS, 303, 455
Naab T. et al., 2014, MNRAS, 444, 3357
Puerari I., Pfenniger D., 2001, Ap&SS, 276, 909
Robertson B., Cox T. J., Hernquist L., Franx M., Hopkins P. F., Martini P., Springel V., 2006, ApJ, 641, 21
Rogstad D. H., Lockhart I. A., Wright M. C. H., 1974, ApJ, 193, 309
Sánchez-Blázquez P. et al., 2006, MNRAS, 371, 703
Sarzi M. et al., 2006, MNRAS, 366, 1151
Sarzi M. et al., 2010, MNRAS, 402, 2187
Veale M. et al., 2017, MNRAS, 464, 356
Viana E., Sarzi M., Baes M., Fritz J., Puerari I., 2017, MNRAS, 472, 1286
Weijmans A.-M. et al., 2014, MNRAS, 444, 3340

This paper has been typeset from a \LaTeX/\pdf file prepared by the author.