Extending edge-colorings of complete hypergraphs into regular colorings

Amin Bahmanian

Department of Mathematics, Illinois State University, Normal, Illinois

Correspondence
Amin Bahmanian, Department of Mathematics, Illinois State University, Normal, Campus Box 4520, IL 61790-4520.
Email: mbahman@ilstu.edu

Funding information
National Security Agency, Grant/Award Number: H98230-16-1-0304; Summer Faculty Fellowship

Abstract
Let $\binom{X}{h}$ be the collection of all h-subsets of an n-set $X \supseteq Y$. Given a coloring (partition) of a set $s \subseteq \binom{X}{h}$, we are interested in finding conditions under which this coloring is extendible to a coloring of $\binom{X}{h}$ so that the number of times each element of X appears in each color class (all sets of the same color) is the same number r. The case $S = \emptyset$, $r = 1$ was studied by Sylvester in the 18th century and remained open until the 1970s. The case $h = 2$, $r = 1$ is extensively studied in the literature and is closely related to completing partial symmetric Latin squares. For $s = \binom{X}{h}$, we settle the cases $h = 4$, $|X| \geq 4.847323|Y|$, and $h = 5$, $|X| \geq 6.285214|Y|$ completely. Moreover, we make partial progress toward solving the case where $s = \binom{X}{h} \binom{Y}{h}$. These results can be seen as extensions of the famous Baranyai’s theorem, and make progress toward settling a 40-year-old problem posed by Cameron.

KEYWORDS
Baranyai’s theorem, decomposition, edge-coloring, embedding, factorization

1 | INTRODUCTION

Suppose that we have been entrusted to color (or partition) the collection $\binom{[n]}{h}$ of all h-subsets of the n-set $[n] := \{1, \ldots, n\}$ so that the number of times each element of $[n]$ appears in each color class (all sets of the same color) is exactly r. Such a coloring is called an r-factorization of $\binom{[n]}{h}$. A solution for the case $n = 6$, $h = 3$, $r = 1$ with 10 colors is given below.
Note that the number of times each element of $[n]$ appears in $\binom{n}{h}$ is $\binom{a-1}{h-1}$. Thus, for $\binom{n}{h}$ to be r-factorable, it is clear that (i) r must divide $\binom{a-1}{h-1}$. In addition, a simple double counting argument shows that (ii) h must divide rn. One may wonder if conditions (i) and (ii) are also sufficient for $\binom{n}{h}$ to be r-factorable. In the 18th century, Sylvester considered the case $r = 1$ of this problem, which remained open until the 1970s when Baranyai solved this 120-year-old problem completely [5]. In fact, Baranyai proved a far more general result which, in particular, implies that $\binom{n}{h}$ is r-factorable if and only if $h | rn$ and $r | \binom{a-1}{h-1}$.

We are interested in a Sudoku-type version of Baranyai’s theorem. A partial r-factorization of a set $s \subseteq \binom{n}{h}$ is a coloring of S with at most $\binom{a-1}{h-1}$ colors so that the number of times each element of $[n]$ appears in each color class is at most r. Note that a color class may be empty.

Problem 1 Under what conditions can a partial r-factorization of $s \subseteq \binom{n}{h}$ be extended to an r-factorization of $\binom{n}{h}$?

We are given a coloring of a subset $s \subseteq \binom{n}{h}$, and our task is to complete the coloring. In other words, we need to color $T = \binom{n}{h}s$ so that the coloring of $S \cup T$ provides an r-factorization of $\binom{n}{h}$. Baranyai’s theorem settles the case when $S = \emptyset$. A partial 4-factorization of $\binom{n}{4}$ is given below (here, we abbreviate a set $\{a, b, c\}$ to abc).

\[
\begin{align*}
156, 248, 379, 126, 348, 579, 127, 349, 568, 124, 389, 567 \\
148, 267, 359, 168, 279, 345, 159, 278, 346, 134, 259 \\
128, 347, 569, 178, 249, 356, 169, 247, 358, 123 \\
146, 239, 578, 137, 289, 456, 136, 257 \\
129, 367, 458, 125, 368, 479, 147, 258, 369, 157 \\
189, 246, 357, 158, 237, 469, 138, 245, 679, 139, 268 \\
145, 236, 789, 167, 238, 459, 149, 256, 378, 135, 269, 478
\end{align*}
\]

It is not too difficult to extend this to the following 4-factorization.

\[
\begin{align*}
156, 248, 379, 126, 348, 579, 127, 349, 568, 124, 389, 567 \\
148, 267, 359, 168, 279, 345, 159, 278, 346, 134, 259, 678 \\
128, 347, 569, 178, 249, 356, 169, 247, 358, 123, 467, 589 \\
146, 239, 578, 137, 289, 456, 136, 257, 489, 179, 235, 468 \\
129, 367, 458, 125, 368, 479, 147, 258, 369, 157, 234, 689 \\
189, 246, 357, 158, 237, 469, 138, 245, 679, 139, 268, 457 \\
145, 236, 789, 167, 238, 459, 149, 256, 378, 135, 269, 478
\end{align*}
\]

The case $h = 2$, $r = 1$ of Problem 1 is closely related to completing partial Latin squares, (see Lindner’s excellent survey [16]). A special case of Problem 1 when $r = 1$ and the partial factorization is a 1-factorization of $\binom{m}{h}$ for some $m < n$ was studied by Cruse (for $h = 2$) [8], Cameron [7], and Baranyai and Brouwer [6]. Baranyai and Brouwer conjectured that a 1-factorization of $\binom{m}{h}$ can be extended to a 1-factorization of $\binom{n}{h}$ if and only if $n \geq 2m$ and h divides m, n. Häggkvist and Hellgren [10] gave a beautiful proof of this conjecture. For further generalizations of Häggkvist-Hellgren’s result, we refer the reader to two recent papers by the
author and Newman [2, 3] in which extending \(r \)-factorizations of \(\binom{m}{h} \) to \(s \)-factorizations of \(\binom{n}{h} \) is studied (for \(s \geq r \)).

At this point, it should be clear to the reader that the 1-factorization of \(\binom{m}{h} \) in the first example, cannot be extended to a 1-factorization of \(\binom{n}{h} \), but it can be extended to a 1-factorization of \(\binom{12}{3} \).

Like most results in the literature, our primary focus is the case where \(S = \binom{[m]}{h} \) (for some \(m < n \)). However, unlike those, here we do not require the given partial factorization to be a factorization itself. In this case, Problem 1 was settled by Rodger and Wantland over 20 years ago for \(h = 2 \) [18], and recently by the author and Rodger for \(h = 3, n \geq 3.414214m \) [4]. In this paper, we settle the cases \(h = 4, n \geq 4.847323m \) and \(h = 5, n \geq 6.285214m \). The major obstacle from \(h = 2 \) to \(h = 3 \) stems from the natural difficulty of generalizing a graph theoretic result to hypergraphs.

Note that, to extend a partial \(r \)-factorization of \(\binom{m}{h} \) to an \(r \)-factorization of \(\binom{n}{h} \) (for \(n \geq m \)), it is clearly necessary that \(m \mid \binom{n}{h} \), \(h \mid r n \). Let \(\chi(m, h, r) \) be the smallest \(n \) such that any partial \(r \)-factorization of \(\binom{m}{h} \) satisfying \(m \mid \binom{n}{h} \), \(h \mid r n \) can be extended to an \(r \)-factorization of \(\binom{n}{h} \).

Combining the results of this paper with those of [2, 4], it can be easily shown that \(2m \leq \chi(m, 3, r) \leq 3.414214m, 2m \leq \chi(m, 4, r) \leq 4.847323m, \) and \(2m \leq \chi(m, 5, r) \leq 6.285214m \).

Last but not least, we shall consider Problem 1 in the case when \(S = \binom{[m]}{h} \). In this direction, we solve a variation of the problem when we allow sets of size less than \(h \), and in our extension of the coloring, we also extend the sets of size less than \(h \) to sets of size \(h \).

The paper is self-contained and all the preliminaries are given in Section 2. In Section 3, we shall consider Problem 1 in the case when \(S = \binom{[n]}{h} \). The cases \(h = 4, 5 \) are discussed in detail in Sections 4 and 5, respectively. We conclude the paper with some open problems.

2 | NOTATION AND TOOLS

A hypergraph \(\mathcal{G} \) is a pair \((V(\mathcal{G}), E(\mathcal{G}))\), where \(V(\mathcal{G}) \) is a finite set called the vertex set, \(E(\mathcal{G}) \) is the edge multiset, where every edge is itself a multisubset of \(V(\mathcal{G}) \). This means that not only can an edge occur multiple times in \(E(\mathcal{G}) \), but also each vertex can have multiple occurrences within an edge. By an edge of the form \(\{u_1^m, u_2^m, \ldots, u_s^m\} \), we mean an edge in which vertex \(u_i \) occurs \(m_i \) times for \(1 \leq i \leq r \). The total number of occurrences of a vertex \(v \) among all edges of \(E(\mathcal{G}) \) is called the degree, \(\text{deg}_E(v) \) of \(v \) in \(\mathcal{G} \). The multiplicity of an edge \(e \in \mathcal{G} \), written \(\text{mult}_E(e) \), is the number of repetitions of \(e \) in \(E(\mathcal{G}) \) (note that \(E(\mathcal{G}) \) is a multiset, so an edge may appear multiple times). If \(\{u_1^m, u_2^m, \ldots, u_s^m\} \) is an edge in \(\mathcal{G} \), then we abbreviate \(\text{mult}_E(\{u_1^m, u_2^m, \ldots, u_s^m\}) \) to \(\text{mult}_E(u_1^m, u_2^m, \ldots, u_s^m) \). If \(U_1, \ldots, U_s \) are multisubsets of \(V(\mathcal{G}) \), then \(\text{mult}_E(U_1, \ldots, U_s) \) means \(\text{mult}_E(\bigcup_{i=1}^{s} U_i) \), where the union of \(U_i \)s is the union of multisets. Whenever it is not ambiguous, we drop the subscripts; for example, we write \(\deg(v) \) and \(\text{mult}(e) \) instead of \(\text{deg}_E(v) \) and \(\text{mult}_E(e) \), respectively.

For \(h \in \mathbb{N}, \mathcal{G} \) is said to be \(h \)-uniform if \(|e| = h \) for each \(e \in E \), and an \(h \)-factor in a hypergraph \(\mathcal{G} \) is a spanning \(h \)-regular subhypergraph. An \(h \)-factorization is a partition of the edge set of \(\mathcal{G} \) into \(h \)-factors. The hypergraph \(\kappa_h^* := \left(V, \binom{V}{h} \right) \) with \(|V| = n \) is called a complete \(h \)-uniform hypergraph. A \(k \)-edge-coloring of \(\mathcal{G} \) is a mapping \(f: V(\mathcal{G}) \to [k] \) and color class \(i \) of \(\mathcal{G} \), written \(\mathcal{G}(i) \), is the subhypergraph of \(\mathcal{G} \) induced by the edges of color \(i \).

Let \(\mathcal{G} \) be a hypergraph, let \(U \) be some finite set, and let \(\Psi: V(\mathcal{G}) \to U \) be a surjective mapping. The map \(\Psi \) extends naturally to \(E(\mathcal{G}) \). For \(A \in E(\mathcal{G}) \), we define \(\Psi(A) = \{\Psi(x): x \in A\} \). Note that \(\Psi \) need not be injective, and \(A \) may be a multiset. Then, we define the hypergraph \(\mathcal{F} \) by taking \(V(\mathcal{F}) = U \) and \(E(\mathcal{F}) = \{\Psi(A): A \in E(\mathcal{G})\} \). We say that \(\mathcal{F} \) is an amalgamation of \(\mathcal{G} \), and that \(\mathcal{G} \) is a detachment of \(\mathcal{F} \). Associated with \(\Psi \) is a (number) function \(g \) defined by \(g(u) = |\Psi^{-1}(u)| \); to be
more specific, we will say that G is a g-detachment of F. Then, G has $\sum_{u \in V(F)} g(u)$ vertices. Note that Ψ induces a bijection between the edges of F and the edges of G, and that this bijection preserves the size of an edge. We adopt the convention that it preserves the color also, so that if we amalgamate or detach an edge-colored hypergraph the amalgamation or detachment preserves the same coloring on the edges. We make explicit a straightforward observation: Given G, $V(F)$, and Ψ, the amalgamation is uniquely determined, but given F, $V(G)$, and Ψ, the detachment is, in general, far from uniquely determined.

There are quite a lot of other papers on amalgamations and some highlights include [9,11,15,17,18].

Given an edge-colored hypergraph F, we are interested in finding a detachment G obtained by splitting each vertex of F into a prescribed number of vertices in G so that (i) the degree of each vertex in each color class of F is shared evenly among the subvertices in the same color class in G, and (ii) the multiplicity of each edge in F is shared evenly among the subvertices in G. The following theorem, which is a special case of a general result in [1], guarantees the existence of such detachment (here $x \approx y$ means $|y| \leq x \leq |y|$).

Theorem 2.1 (Bahmanian [1, Theorem 4.1]). Let F be a k-edge-colored hypergraph and let $g : V(F) \rightarrow \mathbb{N}$. Then, there exists a g-detachment G (possibly with multiple edges) of F whose edges are all sets, with amalgamation function $\Psi : V(G) \rightarrow V(F)$, g being the number function associated with Ψ, such that

(F1) for each $u \in V(F)$, each $v \in \Psi^{-1}(u)$ and $i \in [k]$,

$$\deg_{G(i)}(v) \approx \frac{\deg_{F(i)}(u)}{g(u)};$$

(F2) for distinct $u_1, \ldots, u_s \in V(F)$ and $U_i \subseteq \Psi^{-1}(u_i)$ with $|U_i| = m_i \leq g(u_i)$ for $i \in [s]$,

$$\text{mult}_G(U_1, \ldots, U_s) \approx \frac{\text{mult}_F(u_1^{m_1}, \ldots, u_s^{m_s})}{\Pi_{i=1}^{s} \left(\frac{g(u_i)}{m_i} \right)}.$$

Let \widetilde{K}_m^h be the hypergraph obtained by adding a new vertex u and new edges to K_m^h so that

$$\text{mult}(u^i, W) = \binom{n - m}{i}$$

for each $i \in [h]$, and $W \subseteq V(K_m^h)$ with $|W| = h - i$.

In other words, \widetilde{K}_m^h is an amalgamation of K_n^h, obtained by identifying an arbitrary set of $n - m$ vertices in K_n^h.

An immediate consequence of Theorem 2.1 is the following.

Corollary 2.2 Let $k = \binom{n-1}{r-1}/r \in \mathbb{N}$. A partial r-factorization of K_m^h can be extended to an r-factorization of K_n^h if and only if the new edges of $F := K_m^h$ can be colored so that
∀ i ∈ [k] \quad \deg_{F(i)}(v) = \begin{cases} r & \text{if } v \neq u, \\ r(n - m) & \text{if } v = u. \end{cases} \quad (1)

Proof First, suppose that a partial r-factorization of K_{m}^{h} can be extended to an r-factorization of K_{n}^{h}. By amalgamating the new $n - m$ vertices of K_{n}^{h} into a single vertex u, we clearly obtain F. The k-edge-coloring of K_{n}^{h} (in which each color class is an r-factor) induces a k-edge-coloring in F that satisfies (1).

Conversely, suppose that the edges of F are colored so that (1) is satisfied. Let $g : V(F) \to \mathbb{N}$ with $g(u) = n - m$, and $g(v) = 1$ for $v \neq u$. By Theorem 2.1, there exists a g-detachment G of F such that

(a) for each $v \in \Psi^{-1}(u)$, and $i \in [k]$

$$\deg_{G(i)}(v) \approx \deg_{F(i)}(u)/g(u) = r(n - m)/(n - m) = r.$$ (b) for $U \subseteq \Psi^{-1}(u)$, $W \subseteq V(K_{m}^{h})$ with $|U| = i$, $|W| = h - i$, for $i \in [h]$. $$\mult_{G}(U, W) \approx \frac{\mult_{F}(u^{i}, W)}{\binom{g(u)}{i}} = \frac{\binom{n - m}{i}}{\binom{n - m}{i}} = 1$$ By (a), each color class is an r-factor, and by (b), $G \cong K_{n}^{h}$. The following observation will be quite useful throughout the paper.

Proposition 2.3 For every $n, m, h \in \mathbb{N}$ with $n \geq m \geq h$,

$$\binom{n}{h} = \sum_{i=0}^{h} \binom{m}{i} \binom{n - m}{h - i}. \quad (2)$$

$$m \left[\binom{n - 1}{h - 1} - \binom{m - 1}{h - 1} \right] = \sum_{i=1}^{h-1} i \binom{m}{i} \binom{n - m}{h - i}. \quad (3)$$

Proof The proof of (2) is straightforward. Let F be a hypergraph with vertex set $\{u, v\}$ such that $\mult(u^{i}, v^{h-i}) = \binom{m}{i} \binom{n - m}{h - i}$ for $0 \leq i \leq h - 1$. Note that F is an amalgamation of the hypergraph G with edge set $\binom{X}{i} \binom{U}{i}$ where $|X| = n$, $|U| = m$. Double counting the degree of u proves (3):

$$\sum_{i=1}^{h-1} i \binom{m}{i} \binom{n - m}{h - i} = \deg_{F}(u) = \sum_{u \in U} d_{G}(u) = m \left[\binom{n - 1}{h - 1} - \binom{m - 1}{h - 1} \right]. \quad \square$$

To avoid trivial cases, throughout the rest of this paper we assume that $m > h$. \square
3 | ARBITRARY h

If we replace every edge \(e \) of a hypergraph \(\mathcal{G} \) by \(\lambda \) copies of \(e \), then we denote the new hypergraph by \(\lambda \mathcal{G} \). For hypergraphs \(\mathcal{G}_1, \ldots, \mathcal{G}_i \) with the same vertex set \(V \), we define their union, written \(\bigcup_{i=1}^{i} \mathcal{G}_i \), to be the hypergraph with vertex set \(V \) and edge set \(\bigcup_{i=1}^{i} E(\mathcal{G}_i) \). For a hypergraph \(\mathcal{G} \) and \(V \subseteq V(\mathcal{G}) \), let \(\mathcal{G} - V \) be the hypergraph whose vertex set is \(V(\mathcal{G}) \setminus V \) and whose edge set is \(\{ e \setminus V \mid e \in E(\mathcal{G}) \} \).

Let \(V \) be an arbitrary subset of vertices in \(K_n^h \) with \(|V| = m \leq n \). Then, \(K_n^h - V \cong \bigcup_{i=0}^{n-1} \binom{m}{i} K_{n-m}^h \). A partial \(r \)-factorization of \(\mathcal{H} := K_n^h - V \) is a coloring of the edges of \(K_n^h - V \) with at most \(\binom{n-1}{h-1}/r \) colors so that for each color \(i \), \(\deg_{\mathcal{H}(i)}(v) \leq r \) for each vertex of \(\mathcal{H} \). (Note that \(\mathcal{H} \) has singleton edges.) In the next result, we completely settle the problem of extending a partial \(r \)-factorization of \(K_n^h - V \) to an \(r \)-factorization of \(K_n^h \). Note that here we are not only extending the coloring, but also the edges of size less than \(h \) to edges of size \(h \). The case \(h = 3 \) was solved in [4].

Theorem 3.1 For \(V \subseteq V(K_n^h) \) with \(|V| = m \), any partial \(r \)-factorization of \(\mathcal{H} := K_n^h - V \) can be extended to an \(r \)-factorization of \(K_n^h \) if and only if \(h|rn \), \(r\binom{n-1}{h-1} \), and for all \(i = 1, 2, \ldots, \binom{n-1}{h-1}/r \),

\[
d_{\mathcal{H}(i)}(v) = r \quad \forall \ v \in V(\mathcal{H}), \tag{4}
\]

\[
|E(\mathcal{H}(i))| \leq \frac{rn}{h}. \tag{5}
\]

Proof To prove the necessity, suppose that a given partial \(r \)-factorization of \(\mathcal{H} \) is extended to an \(r \)-factorization of \(K_n^h \). For \(K_n^h \) to be \(r \)-factorable, the two divisibility conditions are clearly necessary. By extending an edge \(e \) of size \(i \) \((i < h)\) in \(\mathcal{H} \) to an edge of size \(h \) in \(K_n^h \), the color of \(e \) does not change, and so (4) is necessary. Since the number of edges in each color class of \(K_n^h \) is exactly \(rm/h \), the necessity of (5) is implied.

To prove the sufficiency, suppose that a partial \(r \)-factorization of \(\mathcal{H} \) is given, \(h|rn \), \(r\binom{n-1}{h-1} \), and that (4) and (5) are satisfied. Let \(k = \binom{n-1}{h-1} \), and let \(\mathcal{F} = \bigcup_{i=0}^{k} \). For \(0 \leq i \leq h \), an edge of type \(u^i \) in \(\mathcal{F} \) is an edge in \(\mathcal{F} \) containing \(u^i \) but not containing \(u^{i+1} \). Note that there are \(\binom{m}{i}\binom{n-m}{h-1} \) edges of type \(u^i \) in \(\mathcal{F} \).

There is a clear one-to-one correspondence between the edges of size \(i \) in \(\mathcal{H} \) and the edges of type \(u^{h-i} \) in \(\mathcal{F} \) for each \(i \in [h] \). We color the edges of type \(u^i \) in \(\mathcal{F} \) with the same color as the corresponding edge in \(\mathcal{H} \) for \(0 \leq i < h - 1 \). By Corollary 2.2, if we can color the remaining edges of \(\mathcal{F} \) (edges of type \(u^h \)) so that the following condition is satisfied, then we are done.

\[
\forall \ i \in [k] \quad \deg_{\mathcal{F}(i)}(v) = \begin{cases} r & \text{if } v \neq u, \\ rm & \text{if } v = u. \end{cases} \tag{6}
\]

Let \(\text{mult}_i(u^j, .) \) be the number of edges of type \(u^j \) in \(\mathcal{F}(i) \), for \(i \in [k], j \in [h] \). Note that \(\text{mult}_i(u^h, .) = \text{mult}_{\mathcal{F}(i)}(u^h) \) for \(i \in [k] \). We color the edges of type \(u^h \) so that for \(i \in [k] \),
\[
\text{mult}_i(u^h, .) = \frac{rm}{h} - r(n - m) + \sum_{j=1}^{h-1} j \text{mult}_i(u^{h-j-1}, .).
\]

Since \(h|rn \), \(\text{mult}_i(u^h, .) \) is an integer for \(i \in [k] \). The following shows that \(\text{mult}_i(u^h, .) \geq 0 \) for \(i \in [k] \).

\[
\frac{rn}{h} \geq |E(H(i))| = \sum_{j=0}^{h-1} \text{mult}_i(u^j, .) = \sum_{j=1}^{h} j \text{mult}_i(u^{h-j}, .) - \sum_{j=1}^{h-1} j \text{mult}_i(u^{h-j-1}, .)
\]

\[(4) \Rightarrow r(n - m) - \sum_{j=1}^{h-1} j \text{mult}_i(u^{h-j-1}, .).
\]

Now we show that all edges of the type \(u^h \) will be colored, or equivalently that, \(\sum_{i=1}^{k} \text{mult}_i(u^h, .) = \binom{m}{h} \).

\[
\sum_{i=1}^{k} \text{mult}_i(u^h, .) = \sum_{i=1}^{k} \left(\frac{rm}{h} - r(n - m) + \sum_{j=1}^{h-1} j \text{mult}_i(u^{h-j-1}, .) \right)
\]

\[
= \frac{rkn}{h} - rk(n - m) + \sum_{j=1}^{h-1} \sum_{i=1}^{k} j \text{mult}_i(u^{h-j-1}, .)
\]

\[
= \binom{n}{h} - (n - m)\binom{n - 1}{h - 1} + \sum_{j=2}^{h} (j - 1) \binom{m}{h - j} \binom{n - m}{j}
\]

\[(2),(3) \Rightarrow \sum_{j=0}^{h} \binom{m}{j} \binom{n - m}{h - j} - \sum_{j=1}^{h-1} j \binom{m}{h - j} \binom{n - m}{j}
\]

\[
- (n - m)\binom{n - m - 1}{h - 1} + \sum_{j=2}^{h} (j - 1) \binom{m}{h - j} \binom{n - m}{j}
\]

\[
= \binom{m}{h} - (n - m)\binom{n - m - 1}{h - 1} + h\binom{n - m}{h} = \binom{m}{h}.
\]

To complete the proof, we show that \(\deg_{F(i)}(u) = rm \) for \(i \in [k] \). We have

\[
\deg_{F(i)}(u) = \sum_{j=1}^{h} j \text{mult}_i(u^j, .) = h \text{mult}_i(u^h, .) + \sum_{j=1}^{h} (h - j) \text{mult}_i(u^{h-j}, .)
\]

\[
= h \text{mult}_i(u^h, .) + h \sum_{j=1}^{h} \text{mult}_i(u^{h-j}, .) - \sum_{j=1}^{h} j \text{mult}_i(u^{h-j}, .)
\]

\[
= h \sum_{j=0}^{h} \text{mult}_i(u^{h-j}, .) - \sum_{j=1}^{h} j \text{mult}_i(u^{h-j}, .)
\]

\[
= rm - r(n - m) = rm.
\]

\(\square\)
For a hypergraph \mathcal{G} and $V \subseteq V(\mathcal{G})$, let $\mathcal{G} \setminus V$ be the hypergraph whose vertex set is $V(\mathcal{G})$ and whose edge set is $\{e \in E(\mathcal{G})|e \not\subseteq V\}$.

Let $V \subseteq V(K_n^h)$ with $|V| = m \leq n$, and let $\mathcal{H} := K_n^h \setminus V$. An edge $e \in E(\mathcal{H})$ is of type i, if $|e \cap V| = i$ (for $0 \leq i \leq h - 1$). Let P be a partial r-factorization of \mathcal{H}. Then, a partial r-factorization Q of \mathcal{H} is said to be P-friendly if

(a) the color of each edge of type 0 is the same in P and Q, and
(b) the number of edges of type i and color j is the same in P and Q for each $i \in [h - 1]$ and each color j.

We are interested in finding the conditions under which a partial r-factorization of \mathcal{H} can be extended to an r-factorization of K_n^h.

Lemma 3.2 For $V \subseteq V(K_n^h)$ with $|V| = m$, if a partial r-factorization of $\mathcal{H} := K_n^h \setminus V$ can be extended to an r-factorization of K_n^h, then

(N1) $h|mn$,
(N2) $r\left(\begin{array}{c} n - 1 \\ h - 1 \end{array}\right)$,
(N3) $d_{\mathcal{H}(i)}(v) = r$ for each $v \in V(\mathcal{H}) \setminus V$, and $i \in [k]$,
(N4) $|E(\mathcal{H}(i))| \leq rn/h$ for $i \in [k]$.

where $k := \left(\begin{array}{c} n - 1 \\ h - 1 \end{array}\right)/r$.

It remains an open question whether these conditions are sufficient. Here, we prove a weaker result.

Corollary 3.3 Let $V \subseteq V(K_n^h)$ with $|V| = m$, and let P be a partial r-factorization of $\mathcal{H} := K_n^h \setminus V$, and assume that (N1) to (N4) are satisfied. Then, there exists a P-friendly partial r-factorization of \mathcal{H} that can be extended to an r-factorization of K_n^h.

Proof By eliminating all the vertices in V, and shrinking the edges containing vertices in V, we obtain $K_n^h - V$. The rest of the proof follows from Theorem 3.1.

Theorem 4.1 For $n \geq 4.847323m$, any partial r-factorization of K_m^4 can be extended to an r-factorization of K_n^4 if and only if $4|rn$ and $r\left(\begin{array}{c} n - 1 \\ 3 \end{array}\right)$.

Proof For the necessary conditions, see Section 3. To prove the sufficiency, we need to show that the edges of $\mathcal{F} := \widehat{K_m^4}$ can be colored with $k := \left(\begin{array}{c} n - 1 \\ 3 \end{array}\right)/r$ colors so that (6) is satisfied.

First, we color the edges in \mathcal{F} of the form $W \cup \{u\}$, where $W \subseteq V := V(K_m^4)$ and $|W| = 3$. We color these edges greedily so that $\deg_i(x) \leq r$ for each $x \in V$ and $i \in [k]$. We claim that
this coloring can be done in such a way that all edges of this type are colored. Suppose, by contrary, that there is an edge in \mathcal{F} of the form $\{x, y, z, u\}$ with $x, y, z \in V$ that cannot be colored. This implies that for each $i \in [k]$ either $\deg_i(x) = r$ or $\deg_i(y) = r$ or $\deg_i(z) = r$. Thus for each $i \in [k], \deg_i(x) + \deg_i(y) + \deg_i(z) \geq r$. On the one hand, $\sum_{i=1}^{k} (\deg_i(x) + \deg_i(y) + \deg_i(z)) \geq rk = \binom{n-1}{3}$, and on the other hand, $\sum_{i=1}^{k} (\deg_i(x) + \deg_i(y) + \deg_i(z)) \leq 3\left(\binom{m-1}{3} + (n-m)\binom{m-1}{2} - 1\right)$. Thus, we have

$$3\left(\binom{m-1}{3} + (n-m)\binom{m-1}{2} - 1\right) \geq \binom{n-1}{3},$$

which is equivalent to $f(n, m) = n^3 - 6n^2 - 9m^2n + 27mn - 7m + 6m^2 - 9m^2 - 15m + 30 \leq 0$. Now, we show that since $n > 4m$ and $m \geq 5$, we have $f(n, m) > 0$, which is a contradiction, and therefore, all edges in \mathcal{F} of the form $W \cup \{u\}$ where $W \subseteq V$ and $|W| = 3$ can be colored using the greedy approach described above.

First, note that for $m \geq 5$, both $7m^2 + 3m - 7$ and $2m^2 - 3m - 5$ are positive. Therefore,

$$f(n, m) = n(n(n - 6) - 9m^2 + 27m - 7) + 3m(2m^2 - 3m - 5) + 30 \geq n(4m(4m - 6) - 9m^2 + 27m - 7) + 3m(2m^2 - 3m - 5) + 30 \geq n(7m^2 + 3m - 7) + 3m(2m^2 - 3m - 5) + 30 > 0.$$

Now we greedily color all the edges of the form $W \cup \{u^2\}$ where $W \subseteq V$ and $|W| = 2$, so that $\deg_i(x) \leq r$ for each $x \in V$ and $i \in [k]$. We show that this is possible. If, by contrary, some edge $\{x, y, u^2\}$ with $x, y \in V$ remains uncolored, then for each $i \in [k]$ either $\deg_i(x) = r$ or $\deg_i(y) = r$, and so $\deg_i(x) + \deg_i(y) \geq r$. We have

$$\binom{n-1}{3} = rk \leq \sum_{i=1}^{k} (\deg_i(x) + \deg_i(y)) \leq 2\left(\binom{m-1}{3} + (n-m)\binom{m-1}{2} + (m-1)\binom{n-m}{2} - 1\right),$$

which is equivalent to $n^3 - 6mn^2 + 6m^2n + 12mn - 7n + 2m^3 - 6m^2 - 4m + 18 \leq 0$. Using Mathematica (Wolfram Alpha), it can be shown that this inequality does not have any real solution under the constraints $m \geq 5, n \geq 4.847323m$. Therefore, all edges of the form $W \cup \{u^2\}$ where $W \subseteq V$ and $|W| = 2$, can be colored.

Since for each $x \in V$,

$$\sum_{i=1}^{k} (r - \deg_i(x)) = rk - \left[\binom{m-1}{3} + (n-m)\binom{m-1}{2} + (m-1)\binom{n-m}{2}\right] = \binom{n-1}{3} - \binom{m-1}{3} - (n-m)\binom{m-1}{2} - (m-1)\binom{n-m}{2} \overset{(2)}{=} \binom{n-m}{3},$$
we can color all the edges of the form \{w, u^i\}, where \(w \in V \) so that for each \(x \in V \), there are \(r - \deg_i(x) \) edges of this type colored \(i \) incident with \(x \) for each \(i \in [k] \). Note that after this coloring,

\[
\deg_i(x) = r \quad \text{for each } x \in V. \tag{7}
\]

For \(i \in [k] \), let \(a_i, b_i, c_i, \) and \(d_i \) be the number of edges colored \(i \) of the form \(W, W \cup \{u\}, W \cup \{u^2\}, \) and \(W \cup \{u^3\} \) where \(W \subseteq V \), respectively. We color the edges of the form \(\{u^4\} \) so that there are exactly

\[
e_i := rn/4 - rm + 3a_i + 2b_i + c_i
\]

edges of this type colored \(i \) for \(i \in [k] \). Since \(4|rn \), and \(n > 4m \), \(e_i \) is a positive integer for \(i \in [k] \). We claim that all edges of the form \(\{u^4\} \) will be colored, or equivalently, \(\sum_{i=1}^{k} e_i = \binom{n-m}{4} \).

\[
\sum_{i=1}^{k} e_i = \sum_{i=1}^{k} \left(\frac{rn}{4} - rm + 3a_i + 2b_i + c_i \right) = \frac{rn}{4} - rkm + 3 \sum_{i=1}^{k} a_i + 2 \sum_{i=1}^{k} b_i + \sum_{i=1}^{k} c_i
\]

\[
= \frac{n}{4} \binom{n-1}{3} - m \binom{n-1}{3} + 3 \binom{m}{3} + 2(n-m) \binom{m}{2} + \binom{n-m}{2}
\]

\[
= \binom{n-m}{4}.
\]

To complete the proof, we show that \(\deg_i(u) = r(n-m) \) for \(i \in [k] \). First, note that for \(i \in [k] \), \(rm = \sum_{x \in V} \deg_i(x) = 4a_i + 3b_i + 2c_i + d_i \). Therefore,

\[
\deg_i(u) = b_i + 2c_i + 3d_i + 4e_i = 4(a_i + b_i + c_i + d_i + e_i) - (4a_i + 3b_i + 2c_i + d_i)
\]

\[
= rn - rm = r(n-m).
\]

Combining this with (7) implies that (6) is satisfied. \(\square \)

Theorem 5.1 For \(n \geq 6.285214m \), any partial \(r \)-factorization of \(K_m^5 \) can be extended to an \(r \)-factorization of \(K_m^5 \) if and only if \(5|rn \) and \(n\binom{n-1}{4} \).

Proof The necessity is obvious. To prove the sufficiency, we need to show that the edges of \(F := \widetilde{K_m^5} \) can be colored with \(k := \binom{n-1}{4}/r \) colors so that (6) is satisfied.

First, we color the edges of the form \(W \cup \{u\} \), where \(W \subseteq V \) and \(|W| = 4 \). We color these edges greedily so that \(\deg_i(x) \leq r \) for each \(x \in V \) and \(i \in [k] \). We claim that this coloring can be done in such a way that all edges of this type are colored. Suppose, by contrary, that there is an edge of the form \([x, y, z, w, u] \) with \(x, y, z, w \in V \) that cannot be colored. This implies that for each \(i \in [k] \) either \(\deg_i(x) = r \) or \(\deg_i(y) = r \) or \(\deg_i(z) = r \) or \(\deg_i(w) = r \). Thus, for each \(i \in [k] \), \(\deg_i(x) + \deg_i(y) + \deg_i(z) + \deg_i(w) \geq r \). On the one hand, \(\sum_{i=1}^{k} (\deg_i(x) + \deg_i(y) + \deg_i(z) + \deg_i(w)) \geq rk = \binom{n-1}{4} \), and on the other hand,
\[\sum_{i=1}^{k} (\deg_i(x) + \deg_i(y) + \deg_i(z) + \deg_i(w)) \leq 4\left[\binom{m-1}{4} + (n-m)\binom{m-1}{3} - 1\right].\] Thus, we have

\[
4\left[\binom{m-1}{4} + (n-m)\binom{m-1}{3} - 1\right] \geq \binom{n-1}{4},
\]

which is equivalent to \(g_1(n, m) := n^4 - 10n^3 + 35n^2 - 16m^3n + 96m^2n - 176mn + 46n + 12m^4 - 56m^3 + 36m^2 + 104m + 24 \leq 0.\)

Since \(n > 6m\) and \(m \geq 6\), we have

\[
g_1(n, m) = n(n^2(n - 10) - 16m^3 + 96m^2 + (35n - 176m) + 46)
+ 4m(m^2(3m - 14) + 9m + 26) + 24 > 9m^2(3m - 10) - 16m^3 + 96m^2
= 11m^3 + 6m^2 > 0,
\]

which is a contradiction, and therefore, all edges in \(F\) of the form \(W \cup \{u\}\), where \(W \subseteq V\) and \(|W| = 4\) can be colored.

Now, we greedily color all the edges of the form \(W \cup \{u^2\}\), where \(W \subseteq V\) and \(|W| = 3\), so that \(\deg_i(x) \leq r\) for each \(x \in V\) and \(i \in [k]\). We show that this is possible. If, by contrary, some edge \(\{x, y, z, u^2\}\) with \(x, y, z \in V\) remains uncolored, then for each \(i \in [k]\) either \(\deg_i(x) = r\) or \(\deg_i(y) = r\) or \(\deg_i(z) = r\), and so \(\deg_i(x) + \deg_i(y) + \deg_i(z) \geq r\). We have

\[
\binom{n-1}{4} = rk \leq \sum_{i=1}^{k} (\deg_i(x) + \deg_i(y) + \deg_i(z))
\leq 3\left[\binom{m-1}{4} + (n-m)\binom{m-1}{3} + \binom{m-1}{2}\binom{n-m}{2} - 1\right].
\]

which is equivalent to \(g_2(n, m) := n^4 - 10n^3 - 18m^2n^2 + 54mn^2 - n^2 + 24n^2 - 18m^2n - 114mn + 58n - 9m^4 - 6m^2 + 45m^2 + 42m + 24 \leq 0.\) We show that since \(n > 6m\) and \(m \geq 6\), we have \(g_2(n, m) > 0\), which is a contradiction, and therefore, all edges in \(F\) of the form \(W \cup \{u^2\}\) where \(W \subseteq V\) and \(|W| = 3\) can be colored.

First, note that for \(m \geq 6\), we have \(12m^3 - 9m^2 - 57m = 29 > 0.\) Therefore,

\[
g_2(n, m) = n^2(n(n - 10) - 18m^2 + 54m - 1)
+ 2n(12m^3 - 9m^2 - 57m + 29)
- (9m^4 + 6m^3 - 45m^2 - 42m - 24)
> 36m^2(6m(6m - 10) - 18m^2 + 54m - 1)
- (9m^4 + 6m^3 - 45m^2 - 42m - 24)
= 639m^4 - 150m^3 + 18m^2 + 42m + 24 > 0.
\]

Now, we greedily color all the edges of the form \(W \cup \{u^3\}\), where \(W \subseteq V\) and \(|W| = 2\), so that \(\deg_i(x) \leq r\) for each \(x \in V\) and \(i \in [k]\). We show that this is possible. If, by contrary, some edge \(\{x, y, u^2\}\) with \(x, y \in V\) remains uncolored, then for each \(i \in [k]\) either \(\deg_i(x) = r\) or \(\deg_i(y) = r\), and so \(\deg_i(x) + \deg_i(y) \geq r\). We have
\begin{align*}
\left(\frac{n-1}{4} \right) &\leq \sum_{i=1}^{k} (\deg_i(x) + \deg_i(y)) \leq 2 \left[\binom{m-1}{4} + (n-m) \binom{m-1}{3}
+ \binom{m-1}{2} \binom{n-m}{2} + (m-1) \binom{n-m}{3} - 1 \right].
\end{align*}

Using Mathematica, it can be shown that this inequality does not have any real solution under the constraints \(m \geq 6, n \geq 6.285214m \). Therefore, all edges of the form \(W \cup \{u^3\} \), where \(W \subseteq V \) and \(|W| = 2 \), can be colored.

Since for each \(x \in V \),
\[
\sum_{i=1}^{k} (r - \deg_i(x)) = \left(\frac{n-1}{4} \right) - \left(\frac{m-1}{4} \right) - (n-m) \left(\frac{m-1}{3} \right)
\quad - \left(\frac{m-1}{2} \right) \left(\frac{n-m}{2} \right)
\quad - (m-1) \left(\frac{n-m}{3} \right)
\quad = \left(\frac{n-m}{4} \right),
\]
we can color all the edges of the form \(\{w, u^t\} \), where \(w \in V \), so that for each \(x \in V \), there are \(r - \deg_i(x) \) edges of this type colored \(i \) incident with \(x \) for each \(i \in [k] \).

For \(i \in [k] \), let \(a_i, b_i, c_i, d_i \), and \(e_i \) be the number of edges colored \(i \) of the form \(W, W \cup \{u\}, W \cup \{u^2\}, W \cup \{u^3\} \), and \(W \cup \{u^4\} \), where \(W \subseteq V \), respectively. We color the edges of the form \(\{u^3\} \) so that there exactly
\[
\sum_{i=1}^{k} f_i = \left(\frac{n-m}{5} \right).
\]
edges of this type colored \(i \) for \(i \in [k] \). Since \(5|rn \), and \(n \geq 6.4n > 5m \), \(e_i \) is a positive integer for \(i \in [k] \). We claim that all edges of the form \(\{u^3\} \) will be colored, or equivalently, \(\sum_{i=1}^{k} f_i = \left(\frac{n-m}{5} \right) \).

To complete the proof, we show that \(\deg_i(u) = r(n-m) \) for \(i \in [k] \). First, note that for \(i \in [k] \),
\[
rm = \sum_{x \in V} \deg_i(x) = 5a_i + 4b_i + 3c_i + 2d_i + e_i.
\]
Therefore,
deg_i(u) = b_i + 2c_i + 3d_i + 4e_i + 5f_i
= 5(a_i + b_i + c_i + d_i + e_i + f_i) - (5a_i + 4b_i + 3c_i + 2d_i + e_i)
= rn - rm = r(n - m). □

6 | CONCLUDING REMARKS AND OPEN PROBLEMS

(1) At this point, it is not clear how to extend the results of Sections 4 and 5 without dealing with heavy computation. We believe that for \(n \geq 2hm \), any partial \(r \)-factorization of \(K_m^h \) can be extended to an \(r \)-factorization of \(K_n^h \) if and only if the obvious necessary divisibility conditions are satisfied.

(2) To embed a partial \(r \)-factorization of \(K_n \backslash K_m^h \) into an \(r \)-factorization of \(K_n^h \), we believe that the conditions (N1)–(N4) of Lemma 3.2 are sufficient, but we do not know how to go beyond Corollary 3.3.

(3) A partial \(r \)-factorization \(S \subseteq K_n^h \) is critical if it can be extended to exactly one \(r \)-factorization of \(K_n^h \), but the removal of any element of \(S \) destroys the uniqueness of the extension, and \(|S| \) is the size of the critical partial \(r \)-factorization. It is desirable to find good bounds for the smallest and largest sizes of critical partial \(r \)-factorizations.

(4) Another interesting problem is finding conditions under which a partial \(r \)-factorization of \(\subseteq S(n) \) can be extended to a cyclic \(r \)-factorization of \(\binom{[n]}{h} \).

ACKNOWLEDGMENT

The author’s research is supported by Summer Faculty Fellowship at ISU and NSA (Grant H98230-16-1-0304). The United States Government is authorized to reproduce and distribute reprints notwithstanding any copyright notation herein. The author would like to thank Lana Kuhle, Dan Roberts, and the anonymous referees for their constructive comments.

ORCID

Amin Bahmanian http://orcid.org/0000-0002-7324-4028

REFERENCES

[1] A. Bahmanian, Detachments of hypergraphs I: The Berge-Johnson problem, Combin. Probab. Comput. 21, no 4 (2012), 483–495.
[2] A. Bahmanian and M. Newman, Extending factorizations of complete uniform hypergraphs. Combinatorica. https://doi.org/10.1007/s00493-017-3396-3
[3] A. Bahmanian, and M. Newman, Embedding factorizations for 3-uniform hypergraphs II: \(r \)-factorizations into \(s \)-factorizations, Electron. J. Combin. 23, no 2 (2016), 14.
[4] A. Bahmanian, and C. A. Rodger, Embedding factorizations for 3-uniform hypergraphs, J. Graph. Theory 73, no 2 (2013), 216–224.
[5] Z. Baranyai, On the factorization of the complete uniform hypergraph, Infinite and Finite Sets (Colloq., Keszthely, 1973; Dedicated to P. Erdős on His 60th Birthday), North-Holland Publishing Co, Amsterdam, The Netherlands (1975), 91–108. (Colloq. Math. Soc. János Bolyai, Vol. 10).
[6] Z. Baranyai and A. E. Brouwer, Extension of colorings of the edges of a complete (uniform hyper) graph. Math. Centre Report ZW91 (Mathematisch Centrum Amsterdam), Zbl. 362.05059 (1977).

[7] P. J. Cameron, Parallelisms of complete designs, Cambridge University Press, Cambridge, UK (1976). Volume 23 of London Mathematical Society Lecture Note Series.

[8] A. B. Cruse, On embedding incomplete symmetric Latin squares, J. Comb Theory Ser. A 16 (1974), 18–22.

[9] M. N. Ferencak, and A. J. W. Hilton, Outline and amalgamated triple systems of even index, Proc. London Math. Soc. 84, no 1 (2002), 1–34.

[10] R. Häggkvist, and T. Hellgren, Extensions of edge-colourings in hypergraphs, Combinatorics, Paul Erdös is Eighty, János Bolyai Mathematical Society, Budapest, Hungary (1993), 215–238. (Bolyai Society Mathematical Studies).

[11] A. J. W. Hilton, The reconstruction of Latin squares with applications to school timetabling and to experimental design, Combinatorial Optimization, II, 13, Springer, Berlin, Germany (1980), 68–77 (Proc. Conf., Univ. East Anglia, Norwich, 1979).

[12] A. J. W. Hilton, Hamiltonian decompositions of complete graphs, J. Combin. Theory Ser. B 36, no 2 (1984), 125–134.

[13] A. J. W. Hilton, Outlines of Latin squares, Combinatorial Design Theory, North-Holland Publishing Co., Amsterdam, The Netherlands (1987), 225–241. (Volume 149 of North-Holland Mathematics Studies).

[14] A. J. W. Hilton, and C. A. Rodger, Hamiltonian decompositions of complete regular s-partite graphs, Discrete Math. 58, no 1 (1986), 63–78.

[15] M. Johnson, Amalgamations of factorizations of complete graphs, J. Combin. Theory Ser. B 97, no 4 (2007), 597–611.

[16] C. C. Lindner, Embedding theorems for partial latin squares, In J. Dénes, A. D. Keedwell (eds.), Latin Squares. New Developments in the Theory and Applications, Vol. 46, North-Holland Publishing Co., Amsterdam, The Netherlands (1991), pp. 217–265. (Annals of Discrete Mathematics).

[17] C. S. J. A. Nash-Williams, Amalgamations of almost regular edge-colourings of simple graphs, J. Combin. Theory Ser. B 43, no 3 (1987), 322–342.

[18] C. A. Rodger, and E. B. Wantland, Embedding edge-colorings into 2-edge-connected k-factorizations of K_{kn+1}, J. Graph. Theory 19, no 2 (1995), 169–185.

How to cite this article: Bahmanian A. Extending edge-colorings of complete hypergraphs into regular colorings. *J Graph Theory*. 2019;90:547–560.

https://doi.org/10.1002/jgt.22412