Structural analysis of the hausmannite thin film (Mn$_3$O$_4$) by spin coating method

Ahmad Fauzi1*, Bevi Lidia1, Ratnawulan Ratnawulan1, Ramli Ramli1

1Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Padang, Jl. Prof Hamka, Padang 25131, Indonesia

Email: bevilidia@gmail.com

Abstract. Recent research on Hausmannite is becoming more interesting to be examined because of its advantages that can be used in a variety of applications. The purpose of this research is to investigate the influence of temperature variation of calcination on thin film structure of Hausmannite. This type of research is an experimental research. The Hausmannite used was derived from manganese ore which had been sintered for 3 hours at a temperature of 1000 $^\circ$C and milling for 8 hours. This sample is made in the form of a thin layer with Sol-Gel Spin Coating method. In this research, the variation of calcination temperature is 200 $^\circ$C, 300 $^\circ$C, 400 $^\circ$C and 500 $^\circ$C. Then to analyze the structure of thin film Hausmannite formed used X-ray diffraction. Based on characterization results using X-ray diffraction the thin layer formed based on the result of X-ray diffraction is Mn$_3$O$_4$ and Mn$_2$O$_3$. As for the variation of calcination temperature, the difference of intensity of the diffraction peaks formed then the crystal size for each calcination temperature 200 $^\circ$C, 300 $^\circ$C, 400 $^\circ$C and 500 $^\circ$C were 41.06 nm, 52.37 nm, 47.73 and 47.87 nm

1. Introduction

Manganese is one of the minerals of 12 elements that are quite abundant in the earth's crust. Manganese minerals worldwide are present with 0.1% of the Earth's crust content (Anshori, 2010). One of the manganese ore presence is found in Nagari Kawai District of Tuleh Regency of Pasaman Barat Regency. From the research (Putri, 2015) the manganese ore structure of the manganese ore from the sinter yield at a temperature of 700-1000, yielded some mineral composition one of them Hausmannite. Hausmannite has a tetragonal crystalline system with its cell dimensions = 5.76, b = 5.76, c = 9.45 Å and group space 141 / amd. Specific gravity 4.7-4.8 g cm$^{-3}$ is brownish-black. Hausmannite has a luster like metal. Hausmannite was applied as an electronic material of ceramic magnets and semiconductor materials (Feng, 1999). Currently hausmannite has been widely used in industry as a catalyst, magnetism, electrochemistry, or for air decontamination. In order to be applied as mentioned above it is necessary to improve the properties of hausmannite as it has been done (Prasetyo, 2014) which produces hausmannite nanoparticles at 8 hours milling with grain size of 90,50 nm. However the morphology of the resulting hausmannite nanoparticles has an erratic shape with an uneven size distribution. For the morphology of the nanoparticles to be irregular, the writer wants to convert these nanoparticles into thin layers which are often called thin films.

Thin film is a layer of very thin material that is between the scale of nano to millimeter. The synthesis of thin films has enormous benefits in the material world as a material to cover the weaknesses of coated materials such as anti-corrosion, the preparation of new materials before being applied as well as in the development of new materials (Dadan 2014). The method of making thin layers in general is grouped into two ie vacuum and non-vacuum method. The vacuum method consists of PVD (Phisical Vapor Deposition), Ablation Laser, Ion Planting, and CVD (Chemical Vapor Deposition). While for non vacuum method that is CSD (Chemical Solution Deposition) like sol gel.

Spin coating method can be interpreted as a method of forming a thin layer through the process of playback or spin. Spin coating method is the easiest and quickest method of thin layer growth. The thin
layer produced by this method has a high degree of homogeneity. The desired layer thickness can be controlled based on the time and spin speed of the spin coater tool. The spin coating process includes 4 stages consisting of deposition, spin up and spin off as well as an evaporation stage that determines the final thickness of the thin film (Muhlis, 2013).

2. Experimental

In the preparation of thin films of Mn₃O₄ used Manganese Acetate precursor (Mn(NO₃)₂·4H₂O). Precursor preparation was done by mixing 0.6 gram Mn₃O₄ with 15 ml 1M HNO₃. Then the precursor was mixed with C₂H₂N₂ (ethylene diamin) based on Ningsih (2013) study with a 1:2 ratio while stirring to form a homogeneous solution. Stirring is carried out at 110 °C for 3 hours using a constant-speed magnetic stirrer. A thin layer is made by a spin coating method, in which the solution is dripped on a 1 cm by 1 cm glass substrate, the substrate is rotated for 30 seconds with swivel speed of a 1000 rpm spin coating tool intended to spread the gel throughout the substrate surface and to form a flat and homogeneous layer. Then a thin layer is dried at 100 °C for 15 minutes. Further calcined with temperature variations of 200 °C, 300 °C, 400 °C and 500 °C for 1 hour to obtain manganese oxide. Furthermore, to know how the structure of the thin layer formed used X-ray difraction tool.

3. Result and discussion

The results consisted of identification of the structure of the Mn₃O₄ thin film. The process of making this thin film is done with variations of calcination temperature that is 200 °C, 300 °C, 400 °C and 500 °C. After that each thin film is characterized using X-ray diffraction.

![Figure 1. X-ray diffraction spectra of Mn₃O₄ thin film with variations of calcination temperature 200 °C, 300 °C, 400 °C and 500 °C.](image)

Figure 1 shows a diffractogram that expresses the relationship between the diffraction angle (2θ) and the intensity (I). Diffractogram shows several significant intensity peaks at a certain angle. Based on the above picture we can see from the diffraction peaks that formed the phase Mn₃O₄ and Mn₂O₃. The data obtained from the measurement results are not only the diffraction angle (2θ) and the intensity (I), but the results can also show the distance between the fields (d), the relative intensity and FWHM that we can see in Table 1. Measurements of X-rays difraction can also be used to determine the crystal structure and the size of the thin film grain.

| Table 1. Data of measurement result using X-ray diffraction with variation of calcination temperature |
No	Temperature (°C)	Pos. [°2θ.]	d-spacing [Å]	I_r (%)	FWHM
1	200				
	23,1119	3,84843	11,4	0,4093	
	33,3024	2,69046	98,61	0,3582	
	35,9584	2,4976	15,55	0,8187	
	38,5799	2,3337	10,42	0,614	
	42,1028	2,14623	18,52	0,307	
	44,5754	2,03275	21,74	0,307	
	48,767	1,86739	9,11	0,614	
	55,6217	1,65241	28,51	0,3582	
	66,1598	1,41247	8,75	0,8187	
	72,6429	1,30157	100,00	0,4605	
	88,5128	1,1047	20,56	0,3582	
2	300				
	23,3664	3,80709	11,37	0,307	
	33,2575	2,69399	100,00	0,2047	
	38,4674	2,34027	17,57	0,307	
	44,5865	2,03227	15,83	0,307	
	55,5419	1,65459	26,59	0,307	
	59,3061	1,55825	5,31	0,4093	
	66,345	1,40898	9,89	0,8187	
	72,6744	1,30108	64,03	0,307	
	88,1641	1,10816	11,75	0,614	
3	400				
	16,3951	5,40681	8,43	0,614	
	21,0115	4,22816	6,82	0,8187	
	26,8673	3,31843	17,04	0,4093	
	33,3086	2,68997	100,00	0,2047	
	36,192	2,48201	11,82	0,614	
	38,4859	2,33919	14,80	0,307	
	44,6071	2,03138	18,66	0,2558	
	49,0811	1,85617	15,18	0,4093	
	55,5769	1,65363	25,60	0,3582	
	69,0285	1,36061	5,85	0,5117	
	72,6814	1,30097	81,41	0,307	
	88,4271	1,10555	15,23	0,3582	
4	500				
	23,3288	3,81314	10,28	0,307	
	26,8322	3,3227	11,59	0,307	
	33,1549	2,70209	95,68	0,307	
	36,0521	2,49132	8,89	0,8187	
	38,3885	2,3449	16,48	0,3582	
	42,0412	2,14923	16,82	0,3582	
	44,5806	2,03253	13,10	0,307	
	49,3095	1,84811	10,64	0,614	
	55,3649	1,65946	23,95	0,2558	
	66,3064	1,4097	7,39	0,7164	
	72,5745	1,30262	100,00	0,307	
	88,3237	1,10657	20,08	0,4093	
Based on Table 1 we can see by the change of temperature of calcination which is used intensity of the diffraction peaks almost the same. This shows the difference in the phase shape of the tupis layer is almost the same. Measurements of X-ray diffraction can also be used to determine the crystal structure and the size of the thin film grain seen in Table 2.

Table 2. Relation Data of Variation of Calcination Temperature on Crystal Size

No	temperature calcinsasi	crystal size (nm)
1	200	41.06
2	300	52.37
3	400	47.73
4	500	47.87

Based on the data in Table 2 showing the crystallite size of the thin film formed has a minimum value at 200 °C and a maximum value at 300 °C. Then at a temperature of 400 °C there is a decrease in the size of the crystal formed and this value again rises at a temperature of 500 °C. This indicates that a change in calcination temperature causes a change in crystal size of the formed Mn$_3$O$_4$ thin film.

4. Conclusions

Synthesis of Mn$_3$O$_4$ thin layer can be dilakukan with sol-gel process then continued with spin coating method. The preparation process of sol-gel is used ethylene diamin solution. The thin layer formed based on the result of X-ray diffraction is Mn$_3$O$_4$ and Mn$_2$O$_3$. As for the variation of calcination temperature, the difference of intensity of the diffraction peaks formed then the crystal size for each calcination temperature 200 °C, 300 °C, 400 °C and 500 °C were 41.06 nm, 52.37 nm, 47.73 and 47.87 nm.

Acknowledgements

This research is funded by the Directorate for Student Affairs of 2018 Universitas Negeri Padang. Where the head of research is Dr. Ahmad Fauzi. In writing this article was guided by Dr. Ratnawulan, M.Si and Dr. Ramli, M.Si.

References

[1] Putri P J 2015 Pillar of Physics, vol 5 pp 105-120
[2] Anshori C 2010 Buletin Sumber Daya Geologi vol 5 No 2
[3] Q. Feng, H. Kanoh, and K. Ooi, J. Mater. Chem. 1999 Manganese Oxide Porous Crystals (Jepang:Universitas Kochi) pp 319-333
[4] Prasetyo F 2017 Pengaruh Waktu Milling Terhadap Sifat Fisis NanoPartikel Haussmannite (Mn$_3$O$_4$) dalam Mineral Mangan dari Nagari Kiawai Kabupaten Pasaman Barat. (UNP : Padang)
[5] Dadan S 2014 Film Tipis Pembuatan dan Pengukuran. http://dadanberbagiilmu.blogspot.co.id 14 February 2018.
[6] Muhlis, Imam Fathoniil, S.J. Iswarin, Rahmat Triandi, Masruroh. 2013 Studi Penumbuhan Lapisan Tipis PZT dengan Metode Spin Coating vol 1 No 1
[7] Ningsih, Shery Kasuma Warda 2013 Pengaruh Aditif Pada Sintesis Nanopartikel Mn$_2$O$_3$ Melalui Proses Sol-Gel Vol 07 No 01