A note on the Manin-Mumford conjecture

Damian Roessler †

Abstract. In [PR1], R. Pink and the author gave a short proof of the Manin-Mumford conjecture, which was inspired by an earlier model-theoretic proof by Hrushovski. The proof given in [PR1] uses a difficult unpublished ramification-theoretic result of Serre. It is the purpose of this note to show how the proof given in [PR1] can be modified so as to circumvent the reference to Serre’s result. J. Oesterlé and R. Pink contributed several simplifications and shortcuts to this note.

0. Introduction.

Let A be an abelian variety defined over an algebraically closed field L of characteristic 0 and let X be a closed subvariety. If G is an abelian group, write $\text{Tor}(G)$ for the group of elements of G which are of finite order. A closed subvariety of A whose irreducible components are translates of abelian subvarieties of A by torsion points will be called a torsion subvariety. The Manin-Mumford conjecture is the following statement:

The Zariski closure of $\text{Tor}(A(L)) \cap X$ is a torsion subvariety.

This was first proved by Raynaud in [R]. In [PR1], R. Pink and the author gave a new proof of this statement, which was inspired by an earlier model-theoretic proof given by Hrushovski in [H]. The interest of this proof is the fact that it relies almost entirely on classical algebraic geometry and is quite short. Its only non elementary input is a ramification-theoretic result of Serre. The proof of this result is not published and relies (see [Se] (pp. 33–34, 56–59)) on deep theorems of Faltings, Nori and Raynaud. In this note, we show how the reference to Serre’s result in [PR1] can be replaced by a reference to a classical result in the theory of formal groups (see Th. 4 (a)).

The structure of the paper is as follows. For the convenience of the reader, the text has been written so as to be logically independent of [PR1]. In particular, no knowledge of

† CNRS, Institut de mathématiques de Jussieu, Université Paris 7, Case Postale 7012, 2, place Jussieu, 75251 PARIS CEDEX 05, FRANCE, E-mail: dcr@math.jussieu.fr
[PR1] is necessary to read it. Section 1 recalls various classical results on abelian varieties and also contains two less well-known, but elementary propositions (Prop. 1 and Prop. 3) whose proofs can be found elsewhere but for which we have included short proofs to make the text more self-contained. The reader is encouraged to proceed directly to section 2, which contains a complete proof of the Manin-Mumford conjecture and to refer to the results listed in section 1 as needed.

Notations. w.r.o.g. is a shortening of *without restriction of generality*; if X is closed subvariety of an abelian variety A defined over an algebraically closed field L of characteristic 0, then we write $\text{Stab}(X)$ for the stabiliser of X; this is a closed subgroup of A such that $\text{Stab}(X)(L) := \{ a \in A(L) | a + X = X \}$; it has the same field of definition as X and A; if p is a prime number and G is an abelian group, we write $\text{Tor}^p(G)$ for the set of elements of $\text{Tor}(G)$ whose order is prime to p and $\text{Tor}_p(G)$ for the set of elements of $\text{Tor}(G)$ whose order is a power of p.

Acknowledgments. We want to thank J. Oesterl´ e for his interest and for suggesting some simplifications in the proofs of [PR1] (see [Oes]) which have inspired some of the proofs given here. Also, the proof of Prop. 3 in its present form is due to him (see the explanations before the proof). I am also very grateful to R. Pink, who carefully read several versions of the text and suggested many improvements and simplifications. In particular, Prop. 6 was suggested by him. Many thanks as well to J. Boxall, who read the final version of the paper carefully and suggested generalizations. I am also grateful to T. Ito for his remarks and corrections. See his recent preprint *On the Manin-Mumford conjecture for abelian varieties with a prime of supersingular reduction* (ArXiv math.NT/0411291), which is partially inspired by this paper. Finally my thanks go to the referee, for a careful reading of the article.
1. Preliminaries.

Lemma 0. Let $L \subseteq L'$ be algebraically closed fields of characteristic 0. Let A be an abelian variety defined over L and let X be a closed L-subvariety of A. Then:

(a) X is a torsion subvariety of A iff $X_{L'}$ is a torsion subvariety of $A_{L'}$;

(b) the Manin-Mumford conjecture holds for X in A iff it holds for $X_{L'}$ in $A_{L'}$.

Proof: we first prove (a). To prove the equivalence of the two conditions, we only need to prove the sufficiency of the second one. The latter is a consequence of the fact that the morphism $\pi : A_{L'} \to A$ is faithfully flat and that any torsion point and any abelian subvariety of $A_{L'}$ has a model in A (see [Mi] (Cor. 20.4, p. 146)). To prove (b), let $Z := \text{Zar}(\text{Tor}(A(L)) \cap X)$ (resp. $Z' := \text{Zar}(\text{Tor}(A(L')) \cap X_{L'})$). Using again the fact that any torsion point in $A_{L'}$ has a model in A and that π is faithfully flat, we see that $\pi^{-1}(\text{Tor}(A(L)) \cap X) = \text{Tor}(A(L')) \cap X_{L'}$. From this and the fact that the morphism π is open ([EGA] (IV, 2.4.10)), we get a set-theoretic equality $\pi^{-1}(Z) = Z'$. Since π is radicial, the underlying set of $\pi^*(Z) := Z_{L'}$ is $\pi^{-1}(Z)$ ([EGA] (I, 3.5.10)). Since $Z_{L'}$ is reduced ([EGA] (IV, 4.6.1)), we thus have an equality of closed subschemes $Z_{L'} = Z'$. Now, by (a), the closed subscheme $Z_{L'}$ is a torsion subvariety of $A_{L'}$ iff Z is a torsion subvariety of A. •

Proposition 1 (Pink-Roessler). Let A be an abelian variety over C and let $F : A \to A$ be an isogeny. Suppose that the absolute value of all the eigenvalues of the pull-back map F^* on the first singular cohomology group $H^1(A(C), C)$ is larger than 1. Then any closed subvariety Z of A such that $F(Z) = Z$ is a torsion subvariety.

The following proof can be found in [PRI] (Remark after Lemma 2.6).

Proof: w.r.o.g., we may replace F by one of its powers and thus suppose that each irreducible component of Z is stable under F. We may thus suppose that Z is irreducible. Notice that $F(\text{Stab}(Z)) \subseteq \text{Stab}(Z)$. Let us first suppose that $\text{Stab}(Z) = 0$.

Write $\text{cl}(Z)$ for the cycle class of Z in $H^*(A(C), C)$. We list the following facts:

(1) the degree of F is the determinant of the restriction of F^* to $H^1(A(C), C)$;
(2) each eigenvalue of F^* on $H^i(A(\mathbb{C}), \mathbb{C})$ is the product of i distinct zeroes (with multiplicities) of the characteristic polynomial of F^* on $H^1(A(\mathbb{C}), \mathbb{C})$; Facts (1) and (2) follow from the fact that for all $i \geq 0$ there is a natural isomorphism $\Lambda^i(H^1(A(\mathbb{C}), \mathbb{C})) \simeq H^i(A(\mathbb{C}), \mathbb{C})$ (see [Mu] (p.3, Eq. (4))).

Now notice that since $\text{Stab}(Z) = 0$, the varieties $Z + a$, where $a \in \text{Ker}(F)(\mathbb{C})$, are pairwise distinct. These varieties are thus the irreducible components of $F^{-1}(Z)$. Now we compute

$$\text{cl}(F^*(Z)) = \sum_{a \in \text{Ker}(F)} \text{cl}(Z + a) = \#\text{Ker}(F)(\mathbb{C}) \cdot \text{cl}(Z) = \deg(F) \cdot \text{cl}(Z)$$

and thus $\text{cl}(Z)$ belongs to the eigenspace of the eigenvalue $\deg(F)$ in $H^*(A(\mathbb{C}), \mathbb{C})$. Facts (1), (2) and the hypothesis on the eigenvalues imply that $\text{cl}(Z) \in H^{2 \dim(A)}(A(\mathbb{C}), \mathbb{C})$, which in turn implies that Z is a point. This point is a torsion point since it lies in the kernel of $F - \text{Id}$, which is an isogeny by construction.

If $\text{Stab}(Z) \neq 0$, then replace A by $A/\text{Stab}(Z)$ and Z by $Z/\text{Stab}(Z)$. The isogeny F then induces an isogeny on $A/\text{Stab}(Z)$, which stabilises $Z/\text{Stab}(Z)$. We deduce that $Z/\text{Stab}(Z)$ is a torsion point. This implies that Z is a translate of $\text{Stab}(Z)$ by a torsion point and concludes the proof.

Corollary 2. Let A be an abelian variety over an algebraically closed field K of characteristic 0. Let $n \geq 1$ and let M be an $n \times n$-matrix with integer coefficients. Suppose that the absolute value of all the eigenvalues of M is larger than 1. Then any closed subvariety Z of A^n such that $M(Z) = Z$ is a torsion subvariety.

Proof: Because of Lemma 0 (a), we may assume w.r.o.g. that K is the algebraic closure of a field which is finitely generated as a field over \mathbb{Q}. We may thus also assume that $K \subseteq \mathbb{C}$. Prop. 1 then implies the result for $Z_{\mathbb{C}}$ in $A^n_{\mathbb{C}}$ and using Lemma 0 (a) again we can conclude.

Proposition 3 (Boxall). Let A be an abelian variety over a field K of characteristic 0. Let $p > 2$ be a prime number and let $L := K(A[p])$ be the extension of K generated by
the \(p \)-torsion points of \(A \). Let \(P \in \text{Tor}_p(A(\overline{K})) \) and suppose that \(P \not\in A(L) \). Then there exists \(\sigma \in \text{Gal}(L|L) \) such that \(\sigma(P) - P \in A[p]\setminus\{0\} \).

A proof of a variant of Prop. 3 can be found in [B]. For the convenience of the reader, we reproduce a proof, which is a simplification by Oesterlé (private communication) of a proof due to Coleman and Voloch (see [Vo]).

Proof: let \(n \geq 1 \) be the smallest natural number so that \(p^n P \in A(L) \). For all \(i \in \{1, \ldots, n\} \), let \(P_i = p^{n-i}P \). Let also \(\sigma_1 \) be an element of \(\text{Gal}(L|L) \) such that \(\sigma_1(p^{n-1}P) \neq p^{n-1}P \).

Furthermore, let \(\sigma_i := \sigma_1^{p^{n-i}} \) and \(Q_i := \sigma_i(P_i) - P_i \).

First, notice that we have \(pQ_1 = \sigma_1(p^n P) - p^n P = 0 \) and \(Q_1 = \sigma_1(p^{n-1}P) - p^{n-1}P \neq 0 \), hence \(Q_1 \in A[p]\setminus\{0\} \). We shall prove by induction on \(i \geq 1 \) that \(Q_i = Q_1 \) if \(i \leq n \). This will prove the proposition, since \(Q_n = \sigma_n(P) - P \).

So assume that \(Q_i = Q_1 \) for some \(i < n \). We have \(p^2(\sigma_i - 1)(P_{i+1}) = p(\sigma_i - 1)(P_i) = pQ_i = 0 \). Since any \(p \)-torsion point of \(A \) is fixed by \(\sigma \), and hence by \(\sigma_i \), we also have \(p(\sigma_i - 1)^2(P_{i+1}) = 0 \) and \((\sigma_i - 1)^3(P_{i+1}) = 0 \). The binomial formula shows that, in the ring of polynomials \(\mathbb{Z}[T] \), \(T^p \) is congruent to \(1 + p(T - 1) \) modulo the ideal generated by \(p(T - 1)^2 \) and \((T - 1)^3 \) (notice that \(p \neq 2 \)). We thus have \((\sigma_i - 1)^p(P_{i+1}) = p(\sigma_i - 1)(P_{i+1}) = (\sigma_i - 1)(P_{i+1}) \), id est \(Q_{i+1} = Q_i \). This completes the induction on \(i \). \(\bullet \)

Suppose now that \(K \) is a finite extension of \(\mathbb{Q}_p \), for some prime number \(p \) and let \(K^{unr} \) be its maximal unramified extension. Let \(k \) be the residue field of \(K \). Suppose that \(A \) is an abelian variety over \(K \) which has good reduction at the unique non-archimedean place of \(K \). Denote by \(A_0 \) the corresponding special fiber, which is an abelian variety over \(k \).

Theorem 4.

(a) The kernel of the homomorphism

\[
\text{Tor}(A(K^{unr})) \to A_0(\overline{K})
\]

induced by the reduction map is a finite \(p \)-group.
(b) The equality $\text{Tor}^p(A(K^{\text{unr}})) = \text{Tor}^p(A(\overline{K}))$ holds.

Proof: for statement (b), see [Mi] (Cor. 20.8, p. 147). Statement (a), which is more difficult to prove, follows from general properties of formal groups over K. See [Oes2] (Prop. 2.3 (a)) for the proof.

Let now $\phi \in \text{Gal}(\overline{k}/k)$ be the arithmetic Frobenius map.

Theorem 5 (Weil). There is a monic polynomial $Q(T) \in \mathbb{Z}[T]$ with the following properties:

(a) $Q(\phi)(P) = 0$ for all $P \in A_0(\overline{k})$;

(b) the complex roots of Q have absolute value $\sqrt{\#k}$.

Proof: see [We].

2. Proof of the Manin-Mumford conjecture.

Proposition 6. Let A be an abelian variety over a field K_0 that is finitely generated as a field over \mathbb{Q}. Then for almost all prime numbers p, there exists an embedding of K_0 into a finite extension K_0 of \mathbb{Q}_p, such that A_K has good reduction at the unique non-archimedean place of K.

Proof: since by assumption K_0 has finite transcendence degree over \mathbb{Q}, there is a finite map

$$\text{Spec } K_0 \to \text{Spec } \mathbb{Q}(X_1, \ldots, X_d),$$

for some $d \geq 0$ (notice that $d = 0$ is allowed). Let $V \to A^d_\mathbb{Z}$ be the normalisation of the affine space $A^d_\mathbb{Z}$ in K_0. The scheme V is integral, normal and has K_0 as a field of rational functions. Furthermore, V is finite and surjective onto $A^d_\mathbb{Z}$. There is an open subset $B \subseteq V$ and an abelian scheme $A \to B$, whose generic fiber is A. Choose B sufficiently small so that its image $f(B)$ is open and so that $f^{-1}(f(B)) = B$ (this can be achieved by replacing B by $f^{-1}(A^d_\mathbb{Z} \setminus f(V \setminus B))$). Let $U := f(B)$. This accounts for the square on the left of the diagram (*) below.
Now notice that $U(Q) \neq \emptyset$, since $A^d(Q)$ is dense in A^d_Q and $U \cap A^d_Q$ is open and not empty. Thus, for almost all prime numbers p, we have $U(F_p) \neq \emptyset$. Let p be a prime number with this property. Let $P \in U(F_p)$ and let $a_1, \ldots, a_d \in F_p$ be its coordinates. Choose as well elements $x_1, \ldots, x_d \in Q_p$ which are algebraically independent over Q. The elements x_1, \ldots, x_d remain algebraically independent if we replace some x_i by $\frac{1}{x_i}$, so we may suppose that $\{x_1, \ldots, x_d\} \subseteq Z_p$. Notice also that any element of the residue field F_p of Z_p is the reduction mod p of an element of $Z \subseteq Z_p$. Furthermore, the elements x_1, \ldots, x_d remain algebraically independent if some x_i is replaced by $x_i + m$, where m is an integer. Hence, we may also suppose that $x_i \mod p = a_i$ for all $i \in \{1, \ldots, d\}$. The choice of the x_i induces a morphism $e : \text{Spec } Z_p \rightarrow A^d_Z$, which by construction sends the generic point of $\text{Spec } Z_p$ on the generic point of A^d_Z and hence of U and sends the special point of $\text{Spec } Z_p$ on $P \in U(F_p)$. Hence $e^{-1}(U) = \text{Spec } Z_p$. This accounts for the lowest square in (*).

The middle square in (*) is obtained by taking the fibre product of $B \rightarrow U$ and $\text{Spec } Z_p \rightarrow U$. The morphism $B_1 \rightarrow \text{Spec } Z_p$ is then also finite and surjective.

To define the arrows in the triangle next to it, consider a reduced irreducible component B'_1 of B_1 which dominates $\text{Spec } Z_p$. This exists, because the morphism $B_1 \rightarrow \text{Spec } Z_p$ is dominant. The morphism $B'_1 \rightarrow \text{Spec } Z_p$ will then also be finite and will thus correspond to a finite (and hence integral) extension of integral rings. Let K be the function field of B'_1, which is a finite extension of Q_p; the ring associated to B'_1 is by construction included in the integral closure O_K of Z_p in K and the arrow $\text{Spec } O_K \rightarrow B_1$ is defined by composing the morphism induced by this inclusion with the closed immersion $B'_1 \rightarrow B_1$.

The morphism $\text{Spec } K \rightarrow \text{Spec } Q_p$ has been implicitly defined in the last paragraph and the morphisms $\text{Spec } Q_p \rightarrow \text{Spec } Z_p$ and $\text{Spec } K \rightarrow \text{Spec } O_K$ are the obvious ones.

We have a commutative diagram (*):
The single-barreled continuous arrows (→) represent dominant maps; the double-barreled continuous ones (⇒) represent finite and dominant maps; all the schemes in the diagram apart from B_1 are integral; the cartesian squares carry the label "Cart."

Now notice that the map $\text{Spec } K \rightarrow B$ obtained by composing the connecting morphisms sends $\text{Spec } K$ on the generic point of B; to see this notice that the maps $\text{Spec } K \rightarrow \text{Spec } O_K$, $\text{Spec } O_K \Rightarrow \text{Spec } Z_p$ and $\text{Spec } Z_p \rightarrow U$ are all dominant; hence $\text{Spec } K$ is sent on the generic point of U; since $B \rightarrow U$ is a finite map, this implies that $\text{Spec } K$ is sent on the generic point of B.

Thus the map $\text{Spec } K \rightarrow B$ induces a field extension $K|K_0$. Furthermore, as we have seen, K is a finite extension of Q_p and by construction, the abelian variety A_K is the generic fiber of the abelian scheme $A \times_B \text{Spec } O_K$. In other words A_K is an abelian variety defined over K which has good reduction at the unique non-archimedean place of K.

Next, we shall consider the following situation. Let $p > 2$ be a prime number and let K be a finite extension of Q_p. Let k be its residue field. Let A be an abelian variety over K. Suppose that A has good reduction at the unique non-archimedean place of K. Let A_0 be the corresponding special fiber, which is an abelian variety over k.

Recall that K^{unr} refers to the maximal unramified extension of K. Let $\phi \in \text{Gal}(\overline{k}|k)$ be the arithmetic Frobenius map and let $\tau \in \text{Gal}(K^{unr}|K)$ be its canonical lift.

Proposition 7. Let X be a closed K-subvariety of A. Then the Zariski closure of $X_K \cap \text{Tor}(A(K^{unr}))$ is a torsion subvariety.

Proof: w.r.o.g. we may suppose that $\text{Tor}(A(K^{unr}))$ is dense in X_K (otherwise, replace X
by the natural model of \(\text{Zar}(X_K \cap \text{Tor}(A(K^{unr}))) \) over \(K \). By Th. 4 (a), the kernel of the reduction homomorphism \(\text{Tor}(A(K^{unr})) \rightarrow A_0(\overline{K}) \) is a finite \(p \)-group. Let \(p' \) be its cardinality and let \(Y := p' \cdot X \). Let \(Q(T) := T^n - (a_n T^{n-1} + \ldots + a_0) \in \mathbb{Z}[T] \) be the polynomial provided by Th. 5 (i.e. the characteristic polynomial of \(\phi \) on \(A_0(\overline{K}) \)). Let \(F \) be the matrix

\[
\begin{pmatrix}
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 1 \\
a_0 & a_1 & \ldots & a_{n-2} & a_{n-1}
\end{pmatrix}
\]

For any \(a \in A(K^{unr}) \), write \(u(x) := (x, \tau(x), \tau^2(x), \ldots, \tau^{n-1}(x)) \in A^n(K^{unr}) \). Let \(\tilde{Y} := \text{Zar}(\{u(a) | a \in (p' \cdot \text{Tor}(A(K^{unr}))) \cap Y_K\}) \). Th. 5 (a) and Th. 4 (a) imply that \(F(u(a)) = u(\tau(a)) \) for all \(a \in p' \cdot \text{Tor}(A(K^{unr})) \). Furthermore, by construction,

\[
\tau(p' \cdot \text{Tor}(A(K^{unr}))) \subseteq p' \cdot \text{Tor}(A(K^{unr})).
\]

Hence \(F(\tilde{Y}) = \tilde{Y} \). Now Th. 5 (b) implies that the absolute value of the eigenvalues of the matrix \(F \) are larger than 1 and Cor. 2 then implies that \(\tilde{Y} \) is a torsion subvariety of \(A_K \). The variety \(Y_K \) is the projection of \(\tilde{Y} \) on the first factor and is thus also a torsion subvariety. Finally, this implies that \(X_K \) is a torsion subvariety.

Proposition 8. Let \(X \) be a closed \(K \)-subvariety of \(A \). Then the Zariski closure of \(X_K \cap \text{Tor}(A(\overline{K})) \) is a torsion subvariety.

Proof: we may suppose w.r.o.g. that \(K = K(A[p]) \), that \(X \) is geometrically irreducible and that \(X_K \cap \text{Tor}(A(\overline{K})) \) is dense in \(X_K \). We shall first suppose that \(\text{Stab}(X) = 0 \). Let \(x \in X_K \cap \text{Tor}(A(\overline{K})) \) and suppose that \(x \notin A(K^{unr}) \). Write \(x = x^p + x_p \), where \(x^p \in \text{Tor}^p(A(\overline{K})) \) and \(x_p \in \text{Tor}_p(A(\overline{K})) \). By Th. 4 (b) \(x^p \in A(K^{unr}) \) and thus \(x_p \notin A(K^{unr}) \).

By Prop. 3, there exists \(\sigma \in \text{Gal}(\overline{K}/K^{unr}) \) such that

\[
\sigma(x_p) - x_p = \sigma(x) - x \in A[p] \setminus \{0\}.
\]
Now notice that for all $y \in X(\overline{K})$ and all $\tau \in \text{Gal} (\overline{K}/K\text{nr})$, we have $\tau(y) \in X(\overline{K})$. Hence if the set $\{x \in X(\overline{K}) \cap \text{Tor}(A(\overline{K})) | x \not\in A(\text{nr}) \}$ is dense in $X(\overline{K})$, then $\text{Stab}(X)(\overline{K})$ contains an element of $A[p] \setminus \{0\}$. Since $\text{Stab}(X) = 0$, we deduce that the set $\{x \in X(\overline{K}) \cap \text{Tor}(A(\overline{K})) | x \not\in A(\text{nr}) \}$ is not dense in $X(\overline{K})$ and thus the set $X(\overline{K}) \cap \text{Tor}(A(\text{nr}))$ is dense in $X(\overline{K})$. Prop. 7 then implies that $X(\overline{K})$ is a torsion point. If $\text{Stab}(X) \neq 0$, then we may apply the same reasoning to $X/\text{Stab}(X)$ and $A/\text{Stab}(A)$ to conclude that $X(\overline{K})$ is a translate of $\text{Stab}(X)(\overline{K})$ by a torsion point.

We shall now prove the Manin-Mumford conjecture. Let the terminology of the introduction hold. By Lemma 0 (b), we may assume w.r.o.g. that L is the algebraic closure of a field K_0 that is finitely generated as a field over \mathbb{Q} and that A (resp. X) has a model A (resp. X) over K_0. By Prop. 6, there is an embedding of K_0 into a field K, with the following properties: K is a finite extension of \mathbb{Q}_p, where p is a prime number larger than 2 and A_K has good reduction at the unique non-archimedean place of K. Prop. 8 now implies that the Manin-Mumford conjecture holds for $X(\overline{K})$ in $A(\overline{K})$ and using Lemma 0 (b) we deduce that it holds for X in A.

Remark. Let the notation of the introduction hold. Prop. 3. *alone* implies the statement of the Manin-Mumford conjecture, with $\text{Tor}(A(L))$ replaced by $\text{Tor}_p(A(L))$, for any prime number $p > 2$. To see this, we may w.r.o.g. assume that X is irreducible and that $\text{Tor}_p(A(L)) \cap X$ is dense in X. By an easy variant of Lemma 0 (b), we may w.r.o.g. assume that L is the algebraic closure of a field K that is finitely generated as a field over \mathbb{Q} and that A (resp. X) has a model A (resp. X) over K. Finally, we may assume w.r.o.g. that $K = K(A[p])$. Suppose first that $\text{Stab}(X) = 0$. By the same argument as above, the set $\{a \in \text{Tor}_p(A(L)) | a \not\in A(K), \ a \in X \}$ is not dense in X. Hence the set $\{a \in \text{Tor}_p(A(L)) | a \in A(K), \ a \in X \}$ must be dense in X; the theorem of Mordell-Weil (for instance) implies that this set is finite and thus X consists of a single torsion point. If $\text{Stab}(X) \neq 0$, then we deduce by the same reasoning that $X/\text{Stab}(X)$ is a torsion point in $A/\text{Stab}(X)$ and hence X is a translate of $\text{Stab}(X)$ by a torsion point. This proof of a special case of the Manin-Mumford conjecture is outlined in [B] (Remarque 3, p. 75).
References.

[B] Boxall, J. Sous-variétés algébriques de variétés semi-abéliennes sur un corps fini in *Number Theory, Paris 1992-3*, S. David, ed., London Math. Soc. lecture note series 215, 69–89, Cambridge Univ. Press, 1995.

[EGA] Grothendieck, A. Éléments de géométrie algébrique. *Inst. Hautes Études Sci. Publ. Math.* 4, 8, 11, 17, 20, 24, 28, 32 (1960-1967).

[H] Hrushovski, E. The Manin-Mumford conjecture and the model theory of difference fields. *Ann. Pure Appl. Logic* 112 (2001), no. 1, 43–115.

[Mi] Milne, J. S. Abelian varieties. *Arithmetic geometry (Storrs, Conn., 1984)*, 103–150, Springer, New York, 1986.

[Mu] Mumford, D. Abelian varieties. *Tata Institute of Fundamental Research Studies in Mathematics, No. 5*, Oxford University Press, London, 1970.

[Oes] Oesterlé, J. Lettre à l’auteur (20/12/2002).

[Oes2] Oesterlé, J. Courbes sur une variété abélienne (d’après M. Raynaud). Séminaire Bourbaki, Vol. 1983/84. *Astérisque* No. 121-122 (1985), 213–224.

[PR1] Pink, R., Roessler, D. On Hrushovski’s proof of the Manin-Mumford conjecture. *Proceedings of the International Congress of Mathematicians*, Vol. I (Beijing, 2002), 539–546, Higher Ed. Press, Beijing, 2002.

[R] Raynaud, M. Sous-variétés d’une variété abélienne et points de torsion. *Arithmetic and geometry*, Vol. I, 327–352, Progr. Math. 35, Birkhäuser Boston, Boston, MA, 1983.

[Se] Serre, J.-P. Oeuvres, vol. IV (1985-1998). Springer 2000.

[Vo] Voloch, J.-F. Integrality of torsion points on abelian varieties over p-adic fields. *Math. Res. Lett.* 3 (1996), no. 6, 787–791.

[We] Weil, A. Variétés abéliennes et courbes algébriques. Hermann 1948.