HALL ALGEBRAS OF CYCLIC QUIVERS AND q-DEFORMED FOCK SPACES

BANGMING DENG AND JIE XIAO

Abstract. Based on the work of Ringel and Green, one can define the (Drinfeld) double Ringel–Hall algebra $D(Q)$ of a quiver Q as well as its highest weight modules. The main purpose of the present paper is to show that the basic representation $L(\Lambda_0)$ of $D(\Delta_n)$ of the cyclic quiver Δ_n provides a realization of the q-deformed Fock space \bigwedge^∞ defined by Hayashi. This is worked out by extending a construction of Varagnolo and Vasserot. By analysing the structure of nilpotent representations of Δ_n, we obtain a decomposition of the basic representation $L(\Lambda_0)$ which induces the Kashiwara–Miwa–Stern decomposition of \bigwedge^∞ and a construction of the canonical basis of \bigwedge^∞ defined by Leclerc and Thibon in terms of certain monomial basis elements in $D(\Delta_n)$.

1. Introduction

In [39], Ringel introduced the Hall algebra $H(\Delta_n)$ of the cyclic quiver Δ_n with n vertices and showed that its subalgebra generated by simple representations, called the composition algebra, is isomorphic to the positive part $U^+_v(\hat{sl}_n)$ of the quantized enveloping algebra $U_v(\hat{sl}_n)$. Schiffmann [40] further showed that $H(\Delta_n)$ is the tensor product of $U^+_v(\hat{sl}_n)$ with a central subalgebra which is the polynomial ring in infinitely many indeterminates. Following the approach in [44], the double Ringel–Hall algebra $D(\Delta_n)$ was defined in [6]. Based on [12, 21] and an explicit description of central elements of $H(\Delta_n)$ in [19], it was shown in [6, Th. 2.3.3] that $D(\Delta_n)$ is isomorphic to the quantum affine algebra $U_v(\hat{gl}_n)$ defined by Drinfeld’s new presentation [10].

The q-deformed Fock space representation \bigwedge^∞ of the quantized enveloping algebra $U_v(\hat{sl}_n)$ has been constructed by Hayashi [17], and its crystal basis was described by Misra and Miwa [36]. Further, by work of Kashiwara, Miwa, and Stern [27], the action of $U_v(\hat{sl}_n)$ on \bigwedge^∞ is centralized by a Heisenberg algebra which arises from affine Hecke algebras. This yields a bimodule isomorphism from \bigwedge^∞ to the tensor product of the basic representation of $U_v(\hat{sl}_n)$ and the Fock space representation of the Heisenberg algebra.

By defining a natural semilinear involution on \bigwedge^∞, Leclerc and Thibon [29] obtained in an elementary way a canonical basis of \bigwedge^∞. It was conjectured in [28, 29] that for $q = 1$, the coefficients of the transition matrix of the canonical basis on the natural basis of \bigwedge^∞ are equal to the decomposition numbers for Hecke algebras and quantum Schur algebras at roots of unity. These conjecture have been proved, respectively, by Ariki [1] and Varagnolo and Vasserot [45]. For the categorification of the Fock space, see, for example, [42, 18, 43].

In [45], Varagnolo and Vasserot extended the $U_v(\hat{sl}_n)$-action on the Fock space \bigwedge^∞ to that of the extended Ringel–Hall algebra $D(\Delta_n)^{\leq 0}$ of the cyclic quiver Δ_n. They also showed that the canonical basis of the Ringel–Hall algebra $H(\Delta_n)$ in the sense of Lusztig induces a basis of \bigwedge^∞ which conjecturally coincides with the canonical basis constructed by Leclerc–Thibon [29]. This conjecture was proved by Schiffmann [40] by identifying the central subalgebra of $H(\Delta_n)$ with the ring of symmetric functions.

2000 Mathematics Subject Classification. 17B37, 16G20.
Supported partially by the Natural Science Foundation of China.
The main purpose of the present paper is to extend Varagnolo–Vasserot’s construction to obtain a $\mathcal{D}(\Delta_n)$-module structure on the Fock space Λ^∞ which is shown to be isomorphic to the basic representation $L(\Lambda_0)$ of $\mathcal{D}(\Delta_n)$. Moreover, the central elements in the positive and negative parts of $\mathcal{D}(\Delta_n)$ constructed by Hubery [19] give rise naturally to the operators introduced in [27] which generate the Heisenberg algebra. Furthermore, the structure of $\mathcal{D}(\Delta_n)$ yields a decomposition of $L(\Lambda_0)$ which induces the Kashiwara–Miwa–Stern decomposition of Λ^∞. This also provides a way to construct the canonical basis of Λ^∞ in [29] in terms of certain monomial basis elements of $\mathcal{D}(\Delta_n)$.

The paper is organized as follows. In Section 2 we review the classification of (nilpotent) representations of both infinite linear quiver Δ_∞ and the cyclic quiver Δ_n with n vertices and discuss their generic extensions. Section 3 recalls the definition of Ringel–Hall algebras $\mathcal{H}(\Delta_\infty)$ and $\mathcal{H}(\Delta_n)$ of Δ_∞ and Δ_n as well as the maps from the homogeneous spaces of $\mathcal{H}(\Delta_n)$ to those of $\mathcal{H}(\Delta_\infty)$ introduced in [45]. The images of basis elements of $\mathcal{H}(\Delta_n)$ under these maps are described. In Section 4 we first follow the approach in [44] to present the construction of double Ringel–Hall algebras $(\mathcal{D}(\Delta_n))^\ast$ and then study the irreducible highest weight $\mathcal{D}(\Delta_n)$-modules based on the results in [23]. Section 5 recalls from [17, 36, 45] the Fock space representation Λ^∞ over $\mathbf{U}_v(\hat{\mathfrak{sl}}_\infty)$ ($\cong \mathcal{D}(\Delta_\infty)$) as well as over $\mathbf{U}_v^+(\hat{\mathfrak{sl}}_n)$. In Section 6 we define the $\mathcal{D}(\Delta_n)$-module structure on Λ^∞ based on [27, 45]. It is shown in Section 7 that Λ^∞ is isomorphic to the basic representation of $\mathcal{D}(\Delta_n)$. In the final section, we present a way to construct the canonical basis of Λ^∞ and interpret the “ladder method” construction of certain basis elements in Λ^∞ in terms of generic extensions of nilpotent representations of Δ_n.

2. Nilpotent representations and generic extensions

In this section we consider nilpotent representations of both a cyclic quiver $\Delta = \Delta_n$ with n vertices ($n \geq 2$) and the infinite quiver $\Delta = \Delta_\infty$ of type A_∞^∞ and study their generic extensions. We show that the degeneration order of nilpotent representations of Δ_n induces the dominant order of partitions.

Let Δ_∞ denote the infinite quiver of type A_∞^∞

\[\cdots \cdots \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad \cdots \]

with vertex set $I = I_\infty = \mathbb{Z}$, and for $n \geq 2$, let Δ_n denote the cyclic quiver

\[\begin{array}{c}
1 \\
\vdots \\
3 \\
\cdots \\
n-2 \\
n-1
\end{array} \]

with vertex set $I = I_n = \mathbb{Z}/n\mathbb{Z} = \{0, 1, \ldots, n-1\}$. For each $i \in I_\infty = \mathbb{Z}$, let \bar{i} denote its residue class in $I_n = \mathbb{Z}/n\mathbb{Z}$. We also simply write $\bar{i} \pm 1$ to denote the residue class of $i \pm 1$ in $\mathbb{Z}/n\mathbb{Z}$.

Given a field k, we denote by Rep_D^0 the category of finite dimensional nilpotent representations of $\Delta (= \Delta_\infty$ or $\Delta_n)$ over k. (Note that each finite dimensional representation of Δ_∞ is automatically nilpotent.) Given a representation $V = (V_i, V_{ij}) \in \text{Rep}_D^0$, the vector $\text{dim} V = (\text{dim}_k V_i)_{i \in I}$ is called the dimension vector of V. The Grothendieck group of Rep_D^0 is identified with the free abelian group $\mathbb{Z}I$ with basis I. Let $\{\varepsilon_i \mid i \in I\}$ denote the standard basis of $\mathbb{Z}I$. Thus, elements in $\mathbb{Z}I$ will be written as $d = (d_i)_{i \in I}$ or $d = \sum_{i \in I} d_i \varepsilon_i$. In case $I = \mathbb{Z}/n\mathbb{Z}$, we sometimes write \mathbb{Z}^n for $\mathbb{Z}I$.

The Euler form $\langle -, - \rangle : \mathbb{Z}I \times \mathbb{Z}I \to \mathbb{Z}$ is defined by

\[\langle \text{dim} M, \text{dim} N \rangle = \text{dim}_k \text{Hom}_{D}(M, N) - \text{dim}_k \text{Ext}_{D}^1(M, N). \]
Its symmetrization
\[
(\dim M, \dim N) = (\dim M, \dim N) + (\dim N, \dim M)
\]
is called the symmetric Euler form.

It is well known that the isoclasses of representations in \(\text{Rep}^0\Delta\) are parametrized by the set \(\mathcal{M}\) consisting of all multisegments
\[
m = \sum_{i \in I, l \geq 1} m_{i,l}[i, l],
\]
where all \(m_{i,l} \in \mathbb{N}\), but finitely many, are zero. More precisely, the representation \(M(m) = M_k(m)\) associated with \(m\) is defined by
\[
M(m) = \bigoplus_{i \in I, l \geq 1} m_{i,l}S_i[l],
\]
where \(S_i[l]\) denotes the representation of \(\Delta\) with the simple top \(S_i\) and length \(l\). For each \(d \in \mathbb{N}I\), put
\[
\mathcal{M}^d = \{ m \in \mathcal{M} \mid \dim M(m) = d \}.
\]
Furthermore, we will write \(\mathcal{M} = \mathcal{M}_\infty\) (resp., \(\mathcal{M} = \mathcal{M}_n\)) if \(I = \mathbb{Z}\) (resp., \(I = \mathbb{Z}/n\mathbb{Z}\)).

It is also known that there exist Auslander–Reiten sequences in \(\text{Rep}^0\Delta\), that is, for each \(M \in \text{Rep}^0\Delta\), there is an Auslander–Reiten sequence
\[
0 \rightarrow \tau M \rightarrow E \rightarrow M \rightarrow 0,
\]
where \(\tau M\) denotes the Auslander–Reiten translation of \(M\). It is clear that \(\tau\) induces an isomorphism \(\tau : ZI \rightarrow ZI\) such that \(\tau(\dim M) = \dim \tau M\). In particular, \(\tau(\varepsilon_i) = \varepsilon_{i+1}, \forall i \in I\). If \(\Delta = \Delta_n\), then \(\tau^s = \text{id}\) for all \(s \in \mathbb{Z}\). For \(m \in \mathcal{M}\), let \(\tau m\) be defined by \(M(\tau m) \cong \tau M(m)\).

Given \(d \in \mathbb{N}I\), let \(V = \bigoplus_{i \in I} V_i\) be an \(I\)-graded vector space with dimension vector \(d\). Consider
\[
E_V = \{(x_i) \in \bigoplus_{i \in I} \text{Hom}_k(V_i, V_{i+1}) \mid x_{n-1} \cdots x_0\text{ is nilpotent if }\Delta = \Delta_n.\}.
\]
Then each element \(x \in E_V\) defines a representation \((V, x)\) of dimension vector \(d\) in \(\text{Rep}^0\Delta\). Moreover, the group
\[
G_V = \prod_{i \in I} \text{GL}(V_i)
\]
acts on \(E_V\) by conjugation, and there is a bijection between the \(G_V\)-orbits and the isoclasses of representations in \(\text{Rep}^0\Delta\) of dimension vector \(d\). For each \(x \in E_V\), by \(O_x\) we denote the \(G_V\)-orbit of \(x\). In case \(k\) is algebraically closed, we have the equalities
\[
(2.0.1) \quad \dim O_x = \dim G_V - \dim \text{End}_{k\Delta}(V,x) = \sum_{i \in I} d_i^2 - \dim \text{End}_{k\Delta}(V,x).
\]

By abuse of notation, for each \(M \in \text{Rep}^0\Delta\), we denote by \(O_M\) the orbit of \(M\).

Following [3, 37, 5], given two representations \(M, N \in \text{Rep}^0\Delta\), there exists a unique (up to isomorphism) extension \(G\) of \(M\) by \(N\) such that \(\dim \text{End}_{k\Delta}(G)\) is minimal. The extension \(G\) is called the \textit{generic extension} of \(M\) by \(N\), denoted by \(M \ast N\). Moreover, generic extensions satisfy the associativity, i.e., for \(L, M, N \in \text{Rep}^0\Delta\),
\[
L \ast (M \ast N) \cong (L \ast M) \ast N.
\]

Let \(\mathcal{M}(\Delta)\) denote the set of isoclasses of representations in \(\text{Rep}^0\Delta\). Define a multiplication on \(\mathcal{M}(\Delta)\) by setting
\[
[M] \ast [N] = [M \ast N].
\]
Then \(\mathcal{M}(\Delta)\) is a monoid with identity \([0]\), the isoclass of zero representation of \(\Delta\).
By [37, 5], the generic extension $M \ast N$ can be also characterized as the unique maximal element among all the extensions of M by N with respect to the degeneration order \leq_{deg} which is defined by setting $M \leq_{\text{deg}} N$ if $\dim M = \dim N$ and

\[(2.0.2) \quad \dim_k \text{Hom}_k(M, X) \geq \dim_k \text{Hom}_k(N, X), \quad \text{for all } X \in \text{Rep}^0 \Delta.\]

If k is algebraically closed, then $M \leq_{\text{deg}} N$ if and only if $\overline{\mathcal{C}}_M \subseteq \mathcal{C}_N$, where $\overline{\mathcal{C}}_M$ is the closure of \mathcal{C}_M. This defines a partial order relation on the set $\mathcal{M}(\Delta)$ of isoclasses of representations in $\text{Rep}^0 \Delta$; see [46, Th. 2] or [5, Lem. 3.2]. By [37, 2.4], for $M, N, M', N' \in \text{Rep}^0 \Delta$,

$$M' \leq_{\text{deg}} M, N' \leq_{\text{deg}} N \implies M' \ast N' \leq_{\text{deg}} M \ast N.$$

For $m, m' \in \mathcal{M}_n$ (resp., \mathcal{M}_∞), we write $m \leq_{\text{deg}} m'$ (resp., $m \leq^\infty m'$) if $M(m) \leq_{\text{deg}} M(m')$ in $\text{Rep}^0 \Delta_n$ (resp., $\text{Rep} \Delta_\infty$).

By [4, 13], there is a covering functor

$$\mathcal{F} : \text{Rep} \Delta_\infty \longrightarrow \text{Rep}^0 \Delta_n$$

sending $S_i[l]$ to $S_i[l]$ for $i \in \mathbb{Z}$ and $l \geq 1$. Moreover, \mathcal{F} is dense and exact, and the Galois group of \mathcal{F} is the infinite cyclic group G generated by τ^n, i.e., $\tau^n(S_i[l] = S_{i+n}[l])$. For $m \in \mathcal{M}_\infty$, let $\mathcal{F}(m) \in \mathcal{M}_n$ be such that $M(\mathcal{F}(m)) \cong \mathcal{F}(M(m)) \in \text{Rep}^0 \Delta_n$. From (2.0.2) we easily deduce that for $M, N \in \text{Rep} \Delta_\infty$,

\[(2.0.3) \quad M \leq_{\text{deg}} N \implies \mathcal{F}(M) \leq_{\text{deg}} \mathcal{F}(N).\]

The following two classes of representations will play an important role later on. For each $d = (d_i) \in \mathbb{N}I$, we set

$$S_d = \bigoplus_{i \in I} d_i S_i[1] \in \text{Rep}^0 \Delta.$$

In other words, S_d is the unique semisimple representation of dimension vector d.

Let Π be the set of all partitions $\lambda = (\lambda_1, \ldots, \lambda_t)$ (i.e., $\lambda_1 \geq \cdots \geq \lambda_t \geq 1$). For each $\lambda \in \Pi$, define

$$m_\lambda = \sum_{s=1}^t [1-s, \lambda_s) \in \mathcal{M}.$$

Then

$$M(m_\lambda) = S_0[\lambda_1] \oplus S_{-1}[\lambda_2] \oplus \cdots \oplus S_{-t}[\lambda_t] \in \text{Rep}^0 \Delta.$$

If $\Delta = \Delta_\infty$, then we sometimes write $m_\lambda = m_\lambda^\infty \in \mathcal{M}_\infty$ to make a distinction. It follows from the definition that $\mathcal{F}(m_\lambda^\infty) = m_\lambda$ for all $\lambda \in \Pi$.

Proposition 2.1. Let $\lambda, \mu \in \Pi$.

1. If $\Delta = \Delta_\infty$, then

$$\dim M(m^\infty_\lambda) = \dim M(m^\infty_\mu) \iff \mu = \lambda.$$

In particular, for each $m \in \mathcal{M}_\infty$, there exists at most one $\nu \in \Pi$ such that $m = m^\infty_\nu$.

2. If $\Delta = \Delta_n$, then

$$M(m_\mu) \leq_{\text{deg}} M(m_\lambda) \Rightarrow \mu \leq \lambda,$$

where \leq is the dominance order on Π, i.e., $\mu \leq \lambda \iff \sum_{j=1}^i \mu_j \leq \sum_{j=1}^i \lambda_j, \quad \forall i \geq 1$.

Proof. (1) By definition, both the socles of $M(m^\infty_\lambda)$ and $M(m^\infty_\mu)$ are multiplicity-free. Thus, comparing the socles of $S_0[\lambda_1]$ and $S_0[\mu_1]$ gives $\lambda_1 = \mu_1$. The lemma then follows from an inductive argument.

(2) By definition, both the socles of $M(m_\mu)$ and $M(m_\lambda)$ are multiplicity-free. Thus, comparing the socles of $S_0[\mu_1]$ and $S_0[\lambda_1]$ gives $\mu_1 = \lambda_1$. The lemma then follows from an inductive argument.
(2) Suppose $M(m_\lambda) \leq_{\text{deg}} M(m_\mu)$. By viewing m_λ and m_μ as multipartitions in \mathcal{M}_n, we obtain by [7, Prop. 2.7] that for each $l \geq 1$,
\[\sum_{s=1}^{l} \tilde{\mu}_s \geq \sum_{s=1}^{l} \tilde{\lambda}_s, \]
where $\tilde{\lambda} = (\tilde{\lambda}_1, \tilde{\lambda}_2, \ldots)$ and $\tilde{\mu} = (\tilde{\mu}_1, \tilde{\mu}_2, \ldots)$ are the dual partition of λ and μ, respectively, that is, $\tilde{\mu} \triangleright \tilde{\lambda}$. By [35, 1.1], $\mu \triangleright \lambda$. \hfill \square

3. Ringel–Hall algebra of the quiver Δ

In this section we introduce the Ringel–Hall algebra $\mathcal{H}(\Delta)$ of $\Delta (= \Delta_n$ or $\Delta_\infty)$ and the maps from homogeneous subspaces of $\mathcal{H}(\Delta_n)$ to those of $\mathcal{H}(\Delta_\infty)$ defined in [45, 6.1]. We also describe the images of basis elements of $\mathcal{H}(\Delta_n)$ under these maps.

The cyclic quiver Δ_n gives the $n \times n$ Cartan matrix $C_n = (a_{ij})_{i,j \in I}$ of type A_{n-1}, while Δ_∞ defines the infinite Cartan matrix $C_\infty = (a_{ij})_{i,j \in \mathbb{Z}}$. Thus, we have the associated quantum enveloping algebras $U_q(\widehat{\mathfrak{s}l_n})$ and $U_q(\mathfrak{sl}_\infty)$ which are $\mathbb{Q}(v)$-algebras with generators $K_i^{\pm 1}, E_i, F_i, D (i \in I = \mathbb{Z}/\mathbb{Z}_n)$ and $K_i^{\pm 1}, E_i, F_i (i \in \mathbb{Z})$, respectively, and the quantum Serre relations. In particular, the relations involving the generator D in $U_q(\widehat{\mathfrak{s}l_n})$ are

\[DD^{-1} = 1 = D^{-1} D, \ K_i D = DK_i, \ DE_i = v^{\delta_{0,i}} E_i D, \ DF_i = v^{-\delta_{0,i}} F_i D, \ \forall i \in I; \]
see [2, Def. 3.16]. The subalgebra of $U_q(\widehat{\mathfrak{s}l_n})$ generated by $K_i^{\pm 1}, E_i, F_i (i \in I = \mathbb{Z}/\mathbb{Z}_n)$ is denoted by $U_q(\widehat{\mathfrak{s}l_n})$.

By [38, 39, 16], for $\mathfrak{g}, m_1, \ldots, m_t \in \mathcal{M}$, there is a polynomial $\varphi^p_{m_1, \ldots, m_t}(q) \in \mathbb{Z}[q]$ (called Hall polynomial) such that for each finite field k,

\[\varphi^p_{m_1, \ldots, m_t}(|k|) = F_{M_k(m_1), \ldots, M_k(m_t)}, \]

which is by definition the number of the filtrations $M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_{t-1} \supseteq M_t = 0$ such that $M_{s-1}/M_s \cong M_k(m_s)$ for all $1 \leq s \leq t$. It is also known that for each $m \in \mathcal{M}$, there is a polynomial $a_m(q) \in \mathbb{Z}[q]$ such that for each finite field k,

\[a_m(|k|) = |\text{Aut}_k(M_k(m))|. \]

Let $\mathcal{Z} = \mathbb{Z}[v, v^{-1}]$ be the Laurent polynomial ring over \mathbb{Z} in indeterminate v. By definition, the (twisted generic) Ringel–Hall algebra $\mathcal{H}(\Delta)$ of Δ is the free \mathcal{Z}-module with basis $\{ u_m | m \in \mathcal{M} \}$ and multiplication given by

\[u_m u_{m'} = v^{(\dim M(m), \dim M(m'))} \sum_{p \in \mathbb{N}} \varphi^p_{m, m}(v^2) u_p. \]

In practice, we also write $u_m = u_{[M(m)]}$ in order to make certain calculations in terms of modules. Furthermore, for each $d \in \mathbb{N} I$, we simply write $u_d = u_{[S_d]}$. Moreover, both $\mathcal{H}(\Delta)$ and $C(\Delta)$ are $\mathbb{N} I$-graded:

\[\mathcal{H}(\Delta) = \bigoplus_{d \in \mathbb{N} I} \mathcal{H}(\Delta)_d \text{ and } C(\Delta) = \bigoplus_{d \in \mathbb{N} I} C(\Delta)_d, \]

where $\mathcal{H}(\Delta)_d$ is spanned by all u_m with $m \in \mathcal{M}_d$ and $C(\Delta)_d = C(\Delta) \cap \mathcal{H}(\Delta)_d$. Since the Auslander–Reiten translate $\tau : \text{Rep}^0 \Delta \rightarrow \text{Rep}^0 \Delta$ is an auto-equivalence, it induces an automorphism $\tau : \mathcal{H}(\Delta) \rightarrow \mathcal{H}(\Delta), u_m \mapsto u_{\tau m}$. We also consider the $\mathbb{Q}(v)$-algebra

\[\mathcal{H}(\Delta) = \mathcal{H}(\Delta) \otimes_\mathbb{Z} \mathbb{Q}(v). \]
Remark 3.1. We remark that the Hall algebra of Δ defined in [45] is the opposite algebra of $\mathcal{H}(\Delta)$ given here with v being replaced by v^{-1}. Thus, v and v^{-1} should be swaped when comparing with the formulas in [45].

For each $i \in I$, set $u_i = u_{[S_i]}$. We then denote by $C(\Delta)$ the subalgebra of $\mathcal{H}(\Delta)$ generated by the divided power $u_i^{(t)} = u_i^t/[t]!$, $i \in I$ and $t \geq 1$, called the composition algebra of Δ, where $[t] = [t][t-1] \cdots [1]$ with $[m] = (v^m - v^{-m})/(v - v^{-1})$. It is known that $C(\Delta) = \mathcal{H}(\Delta)$ and there is an isomorphism $U^+_v(\mathfrak{sl}_\infty) \cong \mathcal{H}(\Delta)$ taking $E_i \mapsto u_i$, $i \in I_\infty = \mathbb{Z}$. But, for $n \geq 2$, $C(\Delta_n)$ is a proper subalgebra of $\mathcal{H}(\Delta_n)$. By [39],

$$U^+_v(\mathfrak{sl}_n) \cong C(\Delta_n) := C(\Delta_n) \otimes \mathbb{Z}[v], \quad E_i \mapsto u_i, \quad \forall i \in I_n.$$

By [40, Th. 2.2], $\mathcal{H}(\Delta_n)$ is decomposed into the tensor product of $C(\Delta_n)$ and a polynomial ring in infinitely many indeterminates which are central elements in $\mathcal{H}(\Delta_n)$. Such central elements have been explicitly constructed in [19]. More precisely, for each $t \geq 1$, let

$$c_t = (-1)^t v^{-2nt} \sum \frac{(-1)^{\dim End(M(m))} a_m(v^2) u_m}{\dim C(\Delta_n)}$$

where the sum is taken over all $m \in \mathfrak{M}_n$ such that $\dim M(m) = t\delta$ with $\delta = (1, \ldots, 1) \in \mathbb{N}I_n$, and $\soc M(m)$ is square-free, i.e., $\dim \soc M(m) \leq \delta$. The following result is proved in [19].

Theorem 3.2. The elements c_m are central in $\mathcal{H}(\Delta_n)$. Moreover, there is a decomposition

$$\mathcal{H}(\Delta_n) = C(\Delta_n) \otimes \mathbb{Z}[v][c_1, c_2, \ldots],$$

where $\mathbb{Z}[v][c_1, c_2, \ldots]$ is the polynomial algebra in c_t for $t \geq 1$. In particular, $\mathcal{H}(\Delta_n)$ is generated by u_i and c_t for $i \in I_n$ and $t \geq 1$.

For each $m \in \mathfrak{M}$, set $d(m) = \dim M(m)$, $d(m) = \dim M(m)$ and define

$$\bar{u}_m = v^{\dim End_k(\Delta(M(m)) - d(m))} u_m.$$

Then $\{\bar{u}_m \mid m \in \mathfrak{M}\}$ is also a \mathbb{Z}-basis of $\mathcal{H}(\Delta)$ which plays a role in the construction of the canonical basis. In particular,

$$\bar{u}_i = u_i \quad \text{for each } i \in I \quad \text{and} \quad \bar{u}_d = v \sum (d^2 - d_i) u_d \quad \text{for each } d \in NI.$$

Consider the map $\pi : \mathbb{Z}I_\infty \rightarrow \mathbb{Z}I_n, d \mapsto \bar{d}$, where $\pi(d) = \bar{d} = (d_i)$ is defined by

$$d_i = \sum_{j \in \bar{i}} d_j, \quad \forall \bar{i} \in I_n = \mathbb{Z}/n\mathbb{Z}.$$

Then for each representation $M \in \text{Rep} \Delta_\infty$,

$$\dim \mathcal{F}(M) = \pi(\dim M).$$

Take $d \in NI_\infty$ with $\bar{d} = \pi(d)$. By [45, 6.1], there is a \mathbb{Z}-linear map

$$\gamma_d : \mathcal{H}(\Delta_n) \bar{d} \rightarrow \mathcal{H}(\Delta_\infty)(\bar{d}).$$

The first two statements in the following lemma are taken from [45, Sect. 6.1], and the third one follows from the isomorphism $\tau : \mathcal{H}(\Delta_\infty) \rightarrow \mathcal{H}(\Delta_\infty)$.

Lemma 3.3. (1) For each $d \in NI_\infty$, $\gamma_d(\bar{u}_d) = v^{-h(d)} \bar{u}_d$, where $h(d) = \sum_{i<j, i=j} d_i(d_{j+1} - d_j)$.

(2) Fix $\alpha, \beta \in \mathbb{N}_n$ with $\bar{d} = \alpha + \beta$. Then for $x \in \mathcal{H}(\Delta_n)_{\alpha}$ and $y \in \mathcal{H}(\Delta_n)_{\beta}$,

$$\sum_{\alpha, \beta} v^{\alpha(a, b)} \gamma_a(x) \gamma_b(y) = \gamma_d(xy),$$

where $\gamma_d(xy)$ is defined by the divided power.
where the sum is taken over all pairs $a, b \in N_\infty$ satisfying $a + b = d$, $\bar{a} = \alpha$, and $\bar{b} = \beta$, and $\kappa(a, b) = \sum_{i>j, i-j} a_i (2b_j - b_{j-1} - b_{j+1})$.

(3) For each $d \in N_\infty$ and $m \in M_d$, $\gamma_{\tau^n(d)}(\bar{u}_m) = \tau^n(\gamma_d(\bar{u}_m))$.

We now describe the images of the basis elements of $H(\Delta_n)_d$ under γ_d.

Proposition 3.4. Let $d \in N_\infty$ and $m \in M_n$ be such that $\alpha := \text{dim } M(m) = \bar{d}$. Then

$$
\gamma_d(\bar{u}_m) \in \sum_{j \in M_\infty, \mathcal{F}(j) \leq \text{deg } m} \mathcal{Z} \bar{u}_j.
$$

Proof. Consider the radical filtration of $M = M(m)$

$$M = \text{rad}^0 M \supseteq \text{rad}^1 M \supseteq \cdots \supseteq \text{rad}^{\ell-1} M \supseteq \text{rad}^{\ell} M = 0$$

with $\text{rad}^{s-1} M / \text{rad}^s M \cong S_{\alpha_s}$, where ℓ is the Loewy length of M and $\alpha_s \in N_n$ for $1 \leq s \leq \ell$. Then $M = S_{\alpha_1} \ast \cdots \ast S_{\alpha_\ell}$. Moreover, by [8, Sect. 9],

$$\bar{u}_{\alpha_1} \cdots \bar{u}_{\alpha_\ell} = \bar{u}_m + \sum_{p < \deg m} f_{m,p} \bar{u}_p, \text{ where } f_{m,p} \in \mathcal{Z}.$$

On the one hand, by induction with respect to the order $\leq \deg$, we may assume that for each $p \in M_n$ with $p < \deg m$, $\gamma_d(\bar{u}_p)$ is a \mathcal{Z}-linear combination of \bar{u}_j with $\mathcal{F}(j) < \deg m$. Therefore,

$$\gamma_d(\bar{u}_m) = \gamma_d(\bar{u}_{\alpha_1} \cdots \bar{u}_{\alpha_\ell}) + x,$$

where $x = -\sum_{p < \deg m} f_{m,p} \gamma_d(\bar{u}_p)$ is a \mathcal{Z}-linear combination of \bar{u}_j with $\mathcal{F}(j) < \deg m$.

On the other hand, by applying (3.3.1) inductively, we obtain

$$\gamma_d(\bar{u}_{\alpha_1} \cdots \bar{u}_{\alpha_\ell}) = \sum_{a_1, \ldots, a_\ell} \sum_{s < \ell} \kappa(a_1, a_s) \bar{u}_{a_1} \cdots \bar{u}_{a_s},$$

where the sum is taken over all sequences $a_1, \ldots, a_\ell \in N_\infty$ satisfying

$$a_1 + \cdots + a_\ell = d \text{ and } \bar{a}_s = \alpha_s, \forall 1 \leq s \leq \ell.$$

By the definition, each term $\bar{u}_{a_1} \cdots \bar{u}_{a_\ell}$ is a \mathcal{Z}-linear combination of \bar{u}_n such that $M(\eta)$ admits a filtration

$$M(\eta) = X_0 \supset X_1 \supset \cdots \supset X_{\ell-1} \supset X_\ell = 0$$

such that $X_{s-1}/X_s \cong S_{\alpha_s}$ for all $1 \leq s \leq \ell$. Applying the exact functor \mathcal{F} gives a filtration of $\mathcal{F}(M(\eta))$

$$\mathcal{F}(M(\eta)) = \mathcal{F}(X_0 \supset \mathcal{F}(X_1)) \supset \cdots \supset \mathcal{F}(X_{\ell-1}) \supset \mathcal{F}(X_\ell) = 0$$

such that

$$\mathcal{F}(X_{s-1}) / \mathcal{F}(X_s) \cong \mathcal{F}(X_{s-1}/X_s) \cong S_{\alpha_s}, \forall 1 \leq s \leq \ell.$$

Therefore,

$$\mathcal{F}(M(\eta)) = M(\mathcal{F}(\pi)) \leq \deg S_{\alpha_1} \ast \cdots \ast S_{\alpha_\ell} = M(m),$$

that is, $\mathcal{F}(\eta) \leq \deg m$.

In conclusion, we obtain that

$$\gamma_d(\bar{u}_m) \in \sum_{j \in M_\infty, \mathcal{F}(j) \leq \text{deg } m} \mathcal{Z} \bar{u}_j.$$

\square
Fix $\lambda \in \Pi$ and write

$$d(\lambda) = \text{dim} M(m_\lambda^\infty) \in \mathbb{N}I_\infty \text{ and } \alpha(\lambda) = \text{dim} M(m_\lambda) \in \mathbb{N}I_n.$$

By the definition of $M(m_\lambda^\infty)$ and $M(m_\lambda)$, the radical filtration of $\tilde{M} = M(m_\lambda^\infty)$

$$\tilde{M} = \text{rad}^0 \tilde{M} \supseteq \text{rad} \tilde{M} \supseteq \cdots \supseteq \text{rad}^{\ell-1} \tilde{M} \supseteq \text{rad}^\ell \tilde{M} = 0$$

gives rise to the radical filtration of $M(m_\lambda) = \mathcal{F}(\tilde{M})$

$$M(m_\lambda) = \mathcal{F}(\text{rad}^0 \tilde{M}) \supseteq \mathcal{F}(\text{rad} \tilde{M}) \supseteq \cdots \supseteq \mathcal{F}(\text{rad}^{\ell-1} \tilde{M}) \supseteq \mathcal{F}(\text{rad}^\ell \tilde{M}) = 0,$$

that is, $\mathcal{F}(\text{rad}^s \tilde{M}) = \text{rad}^s(M(m_\lambda))$ for $1 \leq s \leq \ell$. Let $d(\lambda)_s \in \mathbb{N}I_\infty$ and $\alpha(\lambda)_s \in \mathbb{N}I_n$, $1 \leq s \leq \ell$, be such that

$$\text{rad}^{s-1} \tilde{M} = \text{rad}^s \tilde{M} \cong S_{d(\lambda)_s} \text{ and } \text{rad}^{s-1} M(m_\lambda)/\text{rad}^s M(m_\lambda) \cong S_{\alpha(\lambda)_s}.$$

Then $\overline{d(\lambda)}_s = \alpha(\lambda)_s$ for $1 \leq s \leq \ell$. Applying the above proposition to m_λ gives the following result.

Corollary 3.5. (1) Let $\lambda \in \Pi$ and keep the notation above. Then

$$\gamma_{d(\lambda)}(\tilde{u}_{m_\lambda}) \in v^{\theta(\lambda)}\tilde{u}_{m_\lambda}^\infty + \sum_{j \in \mathbb{M}_\infty, \mathcal{F}(j) < \text{deg} m_\lambda} z\tilde{u}_j,$$

where $\theta(\lambda) = \sum_{s \leq l} \kappa(d(\lambda)_s, d(\lambda)_l) \cdot \sum_{s = 1}^\ell h(d(\lambda)_s)$.

(2) Let $d \in \mathbb{N}I_\infty$ with $d = \alpha(\lambda)$. If $d = \tau^m(d(\lambda))$ for some $r \in \mathbb{Z}$, then

$$\gamma_{d}(\tilde{u}_{m_\lambda}) \in v^{\theta(\lambda)}\tilde{u}_{\tau^m(m_\lambda)} + \sum_{j \in \mathbb{M}_\infty, \mathcal{F}(j) < \text{deg} m_\lambda} z\tilde{u}_j.$$

Otherwise,

$$\gamma_{d}(\tilde{u}_{m_\lambda}) \in \sum_{j \in \mathbb{M}_\infty, \mathcal{F}(j) < \text{deg} m_\lambda} z\tilde{u}_j.$$

In the following we briefly recall the canonical basis of $\mathcal{H}(\Delta)$ for $\Delta = \Delta_n$ or Δ_∞. By [31] and [45, Prop. 7.5], there is a semilinear ring involution $\iota : \mathcal{H}(\Delta) \to \mathcal{H}(\Delta)$ taking $v \mapsto v^{-1}$ and $\tilde{u}_d \mapsto \tilde{u}_d$ for all $d \in \mathbb{Z}I_n$. It is often called the bar-involution, usually written as $\bar{x} = \iota(x)$. The canonical basis (or the global crystal basis in the sense of Kashiwara) $B := \{b_m \mid m \in \mathcal{M}\}$ for $\mathcal{H}(\Delta)$ (at $v = \infty$) can be characterized as follows:

$$b_m = b_m, \quad b_m \in \tilde{u}_m + \sum_{p < \text{deg} m} v^{-1}Z[v^{-1}]\tilde{u}_p;$$

(3.5.1)

see [31]. The canonical basis elements b_m also admit a geometric characterization given in [32, 45]. Let $H_{\mathcal{O}_p}(I\mathcal{C}_m)$ be the stalk at a point of \mathcal{O}_m of the i-th intersection cohomology sheaf of the closure $\overline{\mathcal{O}_p}$ of \mathcal{O}_p. Then

$$b_m = \sum_{p < \dim \mathcal{C}_m + \dim \mathcal{O}_p} v^{i-\dim \mathcal{C}_m + \dim \mathcal{O}_p}H_{\mathcal{O}_p}(I\mathcal{C}_m)\tilde{u}_p.$$

For the cyclic quiver case, by [33], the subset of B

$$B_{\text{ap}} := \{b_m \mid m \in \mathcal{M}_{\text{ap}}^n\}$$

is the canonical basis of $\mathcal{C}(\Delta_n)$, where $\mathcal{M}_{\text{ap}}^n$ denotes the set of aperiodic multisegments, that is, those multisegments $m = \sum_{i \in I_n, l \geq 1} m_{i,l}(i,l)$ satisfying that for each $l \geq 1$, there is some $i \in I_n$ such that $m_{i,l} = 0$. In other words, B_{ap} is the canonical basis of $U_{\gamma}^+(\delta_{I_n})$. Note that for each $\lambda = (\lambda_1, \ldots, \lambda_m) \in \Pi$, the corresponding multisegment m_λ is aperiodic if and only if λ is n-regular which, by definition, satisfies $\lambda_s > \lambda_s + n - 1$ for $1 \leq s \leq s + n - 1 \leq m$.

4. Double Ringel–Hall algebras and highest weight modules

In this section we follow [44, 6] to define the double Ringel–Hall algebra \(\mathcal{D}(\Delta) \) of the quiver \(\Delta = \Delta_n \) or \(\Delta_\infty \) and study the irreducible highest weight modules of \(\mathcal{D}(\Delta_n) \) associated with integral dominant weights in terms of a quantized generalized Kac–Moody algebra.

The Ringel–Hall algebra \(\mathcal{H}(\Delta) \) of \(\Delta \) can be extended to a Hopf algebra \(\mathcal{D}(\Delta)^{\geq 0} \) which is a \(\mathbb{Q}(v) \)-vector space with a basis \(\{ u_+^m K_\alpha \mid \alpha \in \mathbb{Z}I, m \in \mathcal{M} \} \); see [38, 15, 44] or [6, Prop. 1.5.3]. Its algebra structure is given by

\[
K_\alpha K_\beta = K_{\alpha + \beta}, \quad K_\alpha u_+^m = v^{(d(m),\alpha)} u_+^m K_\alpha,
\]

\[
u_+^m u_+^{m'} = \sum_{p \in \mathbb{N}} v^{(d(m),d(m'))} \varphi_{m,m'}^p (v^2) u_+^m \otimes u_+^{m'} K_{d(m')},
\]

where \(m, m' \in \mathcal{M} \) and \(\alpha, \beta \in \mathbb{Z}I \), and its coalgebra structure is given by

\[
\Delta(u_+^m) = \sum_{m',m'' \in \mathcal{M}} v^{(d(m'),d(m''))} \frac{a_{m'}(v^2)}{a_m(v^2)} \varphi_{m',m''}^m(v^2) u_+^{m'} \otimes u_+^{m''} K_{d(m'')},
\]

\[
\Delta(K_\alpha) = K_\alpha \otimes K_\alpha, \quad \varepsilon(u_+^m) = 0 \quad (m \neq 0), \quad \varepsilon(K_\alpha) = 1,
\]

where \(m \in \mathcal{M} \) and \(\alpha \in \mathbb{Z}I \). We refer to [44] or [6] for the definition of the antipode.

Dually, there is a Hopf algebra \(\mathcal{D}(\Delta)^{\leq 0} \) with basis \(\{ K_\alpha u_-^m \mid \alpha \in \mathbb{Z}I, m \in \mathcal{M} \} \). In particular, the multiplication is given by

\[
K_\alpha K_\beta = K_{\alpha + \beta}, \quad K_\alpha u_-^m = v^{-(d(m),\alpha)} u_-^m K_\alpha,
\]

\[
u_-^m u_-^{m'} = \sum_{p \in \mathbb{N}} v^{(d(m'),d(m))} \varphi_{m',m}^p (v^2) u_-^{m'} \otimes u_-^m K_{-d(m')},
\]

where \(m, m' \in \mathcal{M} \) and \(\alpha, \beta \in \mathbb{Z}I \). The comultiplication and the counit are given by

\[
\Delta(u_-^m) = \sum_{m',m'' \in \mathcal{M}} v^{(d(m'),d(m''))} \frac{a_{m'} a_{m''}}{a_m(v^2)} \varphi_{m',m''}^m(v^2) u_-^{m'} \otimes u_-^{m''} K_{-d(m')},
\]

\[
\Delta(K_\alpha) = K_\alpha \otimes K_\alpha, \quad \varepsilon(u_-^m) = 0 \quad (m \neq 0), \quad \varepsilon(K_\alpha) = 1,
\]

where \(\alpha \in \mathbb{Z}I \) and \(m \in \mathcal{M} \).

It is routine to check that the bilinear form \(\psi : \mathcal{D}(\Delta)^{\geq 0} \times \mathcal{D}(\Delta)^{\leq 0} \to \mathbb{Q}(v) \) defined by

\[
\psi(K_\alpha u_+^m, K_\beta u_-^{m'}) = v^{(\alpha,\beta)-(d(m),d(m))+2d(m)} \frac{\delta_{m,m'}}{a_m(v^2)}
\]

is a skew-Hopf pairing in the sense of [24]; see, for example, [6, Prop. 2.1.3].

Following [44] or [6, §2.1], with the triple \((\mathcal{D}(\Delta)^{\geq 0}, \mathcal{D}(\Delta)^{\leq 0}, \psi) \) we obtain the associated reduced double Ringel–Hall algebra \(\mathcal{D}(\Delta) \) which inherits a Hopf algebra structure from those of \(\mathcal{D}(\Delta)^{\geq 0} \) and \(\mathcal{D}(\Delta)^{\leq 0} \). In particular, for all elements \(x \in \mathcal{D}(\Delta)^{\geq 0} \) and \(y \in \mathcal{D}(\Delta)^{\leq 0} \), we have in \(\mathcal{D}(\Delta)^{\leq 0} \) the following relations

\[
\sum \psi(x_1, y_1) y_2 x_2 = \sum \psi(x_2, y_2) x_1 y_1,
\]

where \(\Delta(x) = \sum x_1 \otimes x_2 \) and \(\Delta(y) = \sum y_1 \otimes y_2 \). Moreover, \(\mathcal{D}(\Delta) \) admits a triangular decomposition

\[
\mathcal{D}(\Delta) = \mathcal{D}(\Delta)^{+} \otimes \mathcal{D}(\Delta)^{0} \otimes \mathcal{D}(\Delta)^{-},
\]
where $\mathcal{D}(\Delta)^\pm$ are subalgebras generated by u_i^{\pm} ($m \in \mathcal{M}$), and $\mathcal{D}(\Delta)^0$ is generated by K_α ($\alpha \in \mathbb{Z}I$).

Thus, $\mathcal{D}(\Delta)^0$ is identified with the Laurent polynomial ring $\mathbb{Q}(v)[K^{\pm 1}_i : i \in I]$

$$\mathcal{H}(\Delta) = \mathcal{H}(\Delta) \otimes_{\mathbb{Z}} \mathbb{Q}(v) \sim \mathcal{D}(\Delta)^+, \quad u_m \mapsto u_m^+,$$

$$\mathcal{H}(\Delta)^{op} = \mathcal{H}(\Delta)^{op} \otimes_{\mathbb{Z}} \mathbb{Q}(v) \sim \mathcal{D}(\Delta)^-, \quad u_m \mapsto u_m^-.$$

The canonical basis of $\mathcal{H}(\Delta)$ given in (3.5.1) gives the canonical bases $B^\pm := \{b_m^\pm | m \in \mathcal{M}\}$ of $\mathcal{D}(\Delta)^\pm$ satisfying

$$(4.0.9)\quad b_m^\pm \in \bar{u}_m^\pm + \sum_{p < \deg m} v^{-1}Z[v^{-1}]\bar{u}_p^\pm.$$

For $i \in I$, $\alpha \in \mathbb{N}I$ and $m \in \mathcal{M}$, we write

$$u_i^\pm = u_i^\pm_{[S_i]}, \quad u_\alpha^\pm = u_\alpha^\pm_{[S_\alpha]}, \quad \text{and} \quad \bar{u}_m^\pm = v^{\dim \text{End}_\Delta(M(m)) - \dim M(m)}u_m^\pm.$$

It is known that $\mathcal{D}(\Delta_\infty)$ is generated by $u_i^\pm, K_i^{\pm 1}$ ($i \in \mathbb{Z}$) and is isomorphic to $U_v(\mathfrak{s}\mathfrak{l}_\infty)$. By [39], the $\mathbb{Q}(v)$-subalgebra of $\mathcal{D}(\Delta_n)$ generated by $u_i^\pm, K_i^{\pm 1}$ ($i \in I_n = \mathbb{Z}/n\mathbb{Z}$) is isomorphic to $U_v(\hat{\mathfrak{s}\mathfrak{l}}_n)$, while $\mathcal{D}(\Delta_n)$ is isomorphic to $U_v(\hat{\mathfrak{g}\mathfrak{l}}_n)$; see [41, 21, 6]. From now on, we write for notational simplicity, $\mathcal{D}(\infty) = \mathcal{D}(\Delta_\infty)$ and $\mathcal{D}(n) = \mathcal{D}(\Delta_n)$.

Remarks 4.1. (1) The construction of $\mathcal{D}(n)$ is slightly different from that in [6, §2.1]. In particular, the K_i here play a role as $\hat{K}_i = K_iK_{i+1}^{-1}$ there. In particular, they do not satisfy the equality $K_0K_1 \cdots K_{n-1} = 1$.

(2) We can extend $\mathcal{D}(n)$ to the $\mathbb{Q}(v)$-algebra $\bar{\mathcal{D}}(n)$ by adding new generators $D^{\pm 1}$ with relations

$$DD^{-1} = 1 = D^{-1}D, \quad K_iD = DK_i, \quad DE_i = v^{\delta_{0i}}E_iD, \quad Du_m^\pm = v^{-a_0}u_m^\pm D$$

for all $i \in I_n$ and $m \in \mathcal{M}$, where $\mathfrak{d}(m) = (a_i)_{i \in I_n}$. Then $U_v(\hat{\mathfrak{g}\mathfrak{l}}_n)$ clearly becomes a subalgebra of $\bar{\mathcal{D}}(n)$.

As in (3.1.1), define for each $t \geq 1$,

$$c_i^\pm = (-1)^t v^{-2tn} \sum_m (-1)^{\dim \text{End}(M(m))}a_m(v^2)u_m^\pm \in \mathcal{D}(n)^\pm,$$

By Theorem 3.2, the elements c_i^+ and c_i^- are central in $\mathcal{D}(n)^+$ and $\mathcal{D}(n)^-$, respectively. Following [21, Sect. 4], define recursively for $t \geq 1$,

$$x_t^\pm = tc_t^\pm - \sum_{s=1}^{t-1} x_s^\pm c_{t-s}^\pm \in \mathcal{D}(n)^\pm.$$

Clearly, x_t^+ and x_t^- are again central elements in $\mathcal{D}(n)^+$ and $\mathcal{D}(n)^-$, respectively. By applying [19, Cor. 10 & 12], the x_t^\pm are primitive, i.e.,

$$\Delta(x_t^+) = x_t^+ \otimes K_t + 1 \otimes x_t^+ \quad \text{and} \quad \Delta(x_t^-) = x_t^- \otimes 1 + K_{-t}\delta \otimes x_t^-,$$

and they satisfy

$$\psi(x_t^+, x_s^-) = v^{2tn}\{x_t, x_s\} = \delta_{t,s}v^{2tn}v^{-2tn}(1 - v^{-2tn}) = \delta_{t,s}(1 - v^{-2tn})$$

Finally, as in [6, §2.2], we scale the elements x_t^\pm by setting

$$z_t^\pm = \frac{v^tn}{v^t - v^{-t}}x_t^\pm \in \mathcal{D}(n)^\pm \quad \text{for} \ t \geq 1.$$

Then

$$(4.1.1)\quad \Delta(z_t^+) = z_t^+ \otimes K_t + 1 \otimes z_t^+, \quad \Delta(z_t^-) = z_t^- \otimes 1 + K_{-t}\delta \otimes z_t^-.$$
and
\[\psi(z^+_t, z^-_s) = \delta_{t,s} \frac{t(v^{2tn} - 1)}{(v^t - v^{-t})^2}. \]

Lemma 4.2. (1) For each \(i \in I_n \),
\[[u^+_i, u^-_i] = \frac{K_i - K_i^{-1}}{v - v^{-1}}. \]

(2) For \(\alpha \in \mathbb{N} I_n \) and \(t, s \geq 1 \), \(K_\alpha z^+_t = z^+_t K_\alpha \) and
\[[z^+_t, z^-_s] = \delta_{t,s} \frac{t(v^{2tn} - 1)}{(v^t - v^{-t})^2} (K_t \delta - K_{-\delta}). \]

Moreover, for each \(i \in I_n \) and \(t \geq 1 \),
\[[u^+_i, z^-_i] = 0 = [u^-_i, z^+_i]. \]

Proof. We only prove the formula (4.2.1). The remaining ones are obvious. Since \(\Delta(z^+_t) = z^+_t \otimes K_t \delta + 1 \otimes z^+_t \) and \(\Delta(z^-_s) = z^-_s \otimes 1 + K_{-\delta} \otimes z^-_s \), we have by (4.0.7) that
\[K_t \delta \psi(z^+_t, z^-_s) + z^+_t \psi(1, z^-_s) + z^-_s K_t \delta \psi(z^+_t, K_{-\delta}) + z^-_s z^-_i \psi(1, K_{-\delta}) = z^+_t z^-_s \psi(K_t \delta, 1) + z^-_s \psi(z^+_t, 1) + 1 + z^+_t K_{-\delta} \psi(K_t \delta, z^-_s) + K_{-\delta} \psi(z^+_t, z^-_s). \]

This implies that
\[[z^+_t, z^-_s] = \psi(z^+_t, z^-_s)(K_t \delta - K_{-\delta}) = \delta_{t,s} \frac{t(v^{2tn} - 1)}{(v^t - v^{-t})^2} (K_t \delta - K_{-\delta}) \]

since \(\psi(1, z^-_s) = \psi(z^+_t, K_{-\delta}) = \psi(z^+_t, 1) = \psi(K_t \delta, z^-_s) = 0 \) and \(\psi(1, K_{-\delta}) = \psi(K_{-\delta}, 1) = 1. \)

Using arguments similar to those in the proof of [6, Th. 2.3.1], we obtain a presentation of \(\mathcal{D}(n) \). More precisely, \(\mathcal{D}(n) \) is the \(\mathbb{Q}(v) \)-algebra generated by \(K_i^{\pm 1}, u_i^+ = E_i, u_i^- = F_i, \) and \(z^\pm_i \) for \(i \in I_n \) and \(t \geq 1 \) with defining relations:

(DH1) \(K_i K_j = K_j K_i, K_i K_i^{-1} = 1 = K_i^{-1} K_i; \)

(DH2) \(K_i E_j = v^{\alpha_{ij}} E_j K_i, K_i F_j = v^{-\alpha_{ij}} F_j K_i, K_i z^\pm_i = z^\pm_i K_i; \)

(DH3) \([E_i, F_j] = \delta_{i,j} \frac{K_i - K_i^{-1}}{v - v^{-1}}, [E_i, z^+_i] = 0, [z^+_i, F_i] = 0,\]
\[[z^+_i, z^-_s] = \delta_{t,s} \frac{t(v^{2tn} - 1)}{(v^t - v^{-t})^2} (K_t \delta - K_{-\delta}); \]

(DH4) \[\sum_{a+b=1-c_{i,j}} (-1)^a \left[\frac{1 - c_{i,j}}{a} \right] E_i^a E_j^b F_i^b = 0 \text{ for } i \neq j, \]
\[z^+_i z^-_s = z^-_s z^+_i, E_i z^+_i = z^+_i E_i; \]

(DH5) \[\sum_{a+b=1-c_{i,j}} (-1)^a \left[\frac{1 - c_{i,j}}{a} \right] F_i^a F_j^b F_i^b = 0 \text{ for } i \neq j, \]
\[z^-_i z^-_s = z^-_s z^-_i, F_i z^-_i = z^-_i F_i, \]
where \(i, j \in I_n \) and \(t, s \geq 1 \).

In the following we simply identify \(I_n = \mathbb{Z}/n\mathbb{Z} \) with the subset \(\{0, 1, \ldots, n-1\} \) of \(\mathbb{Z} \). Let \(P^\vee = (\oplus_{i \in I_n} \mathbb{Z} h_i) \oplus \mathbb{Z} d \) be the free abelian group with basis \(\{h_i \mid i \in I_n\} \cup \{d\} \). Set \(\mathfrak{h} = P^\vee \otimes_{\mathbb{Z}} \mathbb{Q} \) and define
\[P = \{ \Lambda \in \mathfrak{h}^* = \text{Hom}_\mathbb{Q}(\mathfrak{h}, \mathbb{Q}) \mid \Lambda(P^\vee) \subset \mathbb{Z} \}. \]

Then \(P = (\oplus_{i \in I_n} \mathbb{Z} \Lambda_i) \oplus \mathbb{Z} \omega \), where \(\{\Lambda_i \mid i \in I_n\} \cup \{\omega\} \) is the dual basis of \(\{h_i \mid i \in I_n\} \cup \{d\} \). This gives rise to the Cartan datum \((P^\vee, P, P^\vee, \Pi)\) associated with the Cartan matrix \(C_n = (a_{ij}) \), where
\[\Pi' = \{ h_i \mid i \in I_n \} \] is set of simple coroots and \(\Pi = \{ \alpha_i \mid i \in I_n \} \) is the set of simple roots defined by
\[\alpha_i(h_j) = a_{ji}, \quad \alpha_i(d) = \delta_{0,i} \] for all \(i, j \in I_n \).

Finally, let
\[P^+ = \{ \Lambda \in P \mid \Lambda(h_i) \geq 0, \forall i \in I_n \} = \bigoplus_{i \in I_n} \mathbb{N} \Lambda_i \oplus \mathbb{Z} \omega \]
denote the set of dominant weights.

For each \(\Lambda \in X \), consider the left ideal \(J_\Lambda \) of \(\mathcal{D}(n) \) defined by
\[
\begin{align*}
J_\Lambda &= \sum_{m \in \mathbb{N} \setminus \{0\}} \mathcal{D}(n)u_m^+ + \sum_{\alpha \in \mathbb{Z}I_n} \mathcal{D}(n)(K_\alpha - v^{\Lambda(\alpha)}) \\
&= \sum_{m \in \mathbb{N} \setminus \{0\}} \mathcal{D}(n)u_m^+ + \sum_{i \in I_n} \mathcal{D}(n)(K_i - v^{\Lambda(h_i)}),
\end{align*}
\]
where \(\Lambda(\alpha) = \sum_{i \in I_n} a_i \Lambda(h_i) \) if \(\alpha = \sum_{i \in I_n} a_i \epsilon_i \in \mathbb{Z}I_n \). The quotient module
\[M(\Lambda) := \mathcal{D}(n)/J_\Lambda \]
is called the Verma module which is a highest weight module with highest vector \(\eta_\Lambda := 1 + J_\Lambda \).

Applying the triangular decomposition (4.0.8) shows that
\[\mathcal{D}(n)^- \to M(\Lambda), \quad x^- \mapsto x^- + J_\Lambda \]
is an isomorphism of \(\mathbb{Q}(v) \)-vector spaces. Via this isomorphism, \(\mathcal{D}(n)^- \) becomes a \(\mathcal{D}(n) \)-module. It is clear that \(M(\Lambda) \) contains a unique maximal submodule \(M' \). This gives an irreducible \(\mathcal{D}(n) \)-module \(L(\Lambda) = M(\Lambda)/M' \).

Remark 4.3. By the construction, if \(\Lambda, \Lambda' \in P^+ \) satisfy \(\Lambda - \Lambda' \in \mathbb{Z} \omega \), then \(L(\Lambda) = L(\Lambda') \). Therefore, it might be more appropriate to work with the algebra \(\hat{\mathcal{D}}(n) \) defined in Remark 4.1(2).

Proposition 4.4. Let \(\Lambda = \sum_{i \in I_n} a_i \Lambda_i + b\omega \in P^+ \) be a dominant weight with \(\sum_{i \in I_n} a_i > 0 \). Then
\[L(\Lambda) \cong \mathcal{D}(n)^-/(\sum_{i \in I_n} \mathcal{D}(n)^-(u_i^-)^{a_i+1}). \]

Proof. As in [8, Sect. 3], we extend the Cartan matrix \(C = (a_{ij})_{i,j \in I_n} \) to a Borcherds–Cartan matrix \(\widetilde{C} = (\tilde{a}_{ij})_{i,j \in \mathbb{N}} \) by setting \(\tilde{a}_{ij} = a_{ij} \) for \(0 \leq i, j < n \) and \(\tilde{a}_{ij} = 0 \) otherwise. Consider the free abelian group \(\tilde{P}^\vee = (\oplus_{i \in \mathbb{N}} \mathbb{Z} h_i) \oplus (\oplus_{i \in \mathbb{N}} \mathbb{Z} d_i) \) and define
\[\tilde{P} = \{ \theta \in (\tilde{P}^\vee \otimes \mathbb{Q})^* \mid \theta(\tilde{P}^\vee) \subset \mathbb{Z} \}. \]

We then obtain a Cartan datum of type \(\tilde{C} \)
\[(\tilde{P}^\vee, \tilde{P}, \tilde{\Pi}^\vee = \{ h_i \mid i \in \mathbb{N} \}, \tilde{\Pi} = \{ \tilde{a}_i \mid i \in \mathbb{N} \}) \]
where the \(\tilde{a}_i \) are defined by
\[\tilde{a}_i(h_j) = \tilde{a}_{ji} \quad \text{and} \quad \tilde{a}_i(d_j) = \delta_{ij}, \quad \forall i, j \in \mathbb{N}. \]

Following [25, Def. 2.1] or [23, Def. 1.3], with the above Cartan datum we have the associated quantum generalized Kac–Moody algebra \(U_v(\widetilde{C}) \) which is by definition a \(\mathbb{Q}(v) \)-algebra generated by \(K_i^{\pm 1}, D_i^{\pm 1}, E_i, F_i \) for \(i \in \mathbb{N} \) with relations; see [23, (1.4)] for the details. Clearly, the subalgebra of \(U_v(\widetilde{C}) \) generated by \(K_i^{\pm 1}, D_i^{\pm 1}, E_i, F_i \) for \(0 \leq i < n \) is isomorphic to \(U_v(\tilde{a}_n) \).

In order to make a comparison with \(\mathcal{D}(n) \), we consider the subalgebra \(\tilde{U} \) of \(U_v(\widetilde{C}) \) generated by \(K_i^{\pm 1}, E_i, F_i \) for \(i \in \mathbb{N} \). Then \(\tilde{U} \) admits a triangular decomposition
\[\tilde{U} = \tilde{U}^- \otimes \tilde{U}^0 \otimes \tilde{U}^+, \]
where \(\tilde{U}^- \), \(\tilde{U}^+ \), and \(\tilde{U}^0 \) are subalgebras generated by \(F_i, E_i \), and \(K_i^{\pm 1} \) for \(i \in \mathbb{N} \), respectively. In particular, \(\tilde{U}^0 = \mathbb{Q}(v)[K_i^{\pm 1} : i \in \mathbb{N}] \). It follows from the definition that there is a surjective algebra homomorphism \(\Psi : U \rightarrow D(n) \) given by

\[
\Psi(E_i) = \begin{cases}
 u_i^+, & \text{if } 0 \leq i < n; \\
 y_{i-n+1}^{\pm 1} & \text{if } i \geq n,
\end{cases} \quad \Psi(F_i) = \begin{cases}
 u_i^-, & \text{if } 0 \leq i < n; \\
 z_i^{i-n+1} & \text{if } i \geq n,
\end{cases}
\]

and

\[
\Psi(K_i^{\pm 1}) = \begin{cases}
 K_i^{\pm 1}, & \text{if } 0 \leq i < n; \\
 K_i^{(i-n+1)\delta}, & \text{if } i \geq n,
\end{cases}
\]

where \(y_t = t(v^{2n} - 1)(v - v^{-1})/(v^t - v^{-t})^2 \) for \(t \geq 1 \); see (4.2.1). Hence, each \(D(n) \)-module can be viewed as a \(\tilde{U} \)-module via the homomorphism \(\Psi \). In what follows, we will identify \(\tilde{U}^\pm \) with \(D(n)^\pm \) via \(\Psi \).

As defined in [23, Sect. 2.1], for each \(\theta \in \tilde{P} \), there is an associated irreducible \(\tilde{U} \)-module \(L(\theta) \). By [23, Prop. 3.3], \(L(\theta) \) is integrable if and only if \(\theta \) is dominant, that is,

\[
\theta \in \tilde{P}^+ = \{ \rho \in (\tilde{P}^\vee \otimes \mathbb{Q})^* \mid \rho(\tilde{P}^\vee) \subset \mathbb{N} \}.
\]

Moreover, by [25, Cor. 4.7],

\[
L(\theta) \cong \tilde{U}^-/\left(\sum_{i \in I_n^+} \tilde{U}^- F_i^{\theta(\Lambda)} + \sum_{i \geq n, \theta(\Lambda) = 0} \tilde{U}^- F_i \right).
\]

Viewing the irreducible \(D(n) \)-module \(L(\Lambda) \) as a \(\tilde{U} \)-module, it is then isomorphic to \(L(\Lambda) \), where \(\Lambda \in \tilde{P} \) is defined by

\[
\tilde{\Lambda}(\Lambda_i) = \begin{cases}
 \Lambda(\Lambda_i) = a_i, & \text{if } 0 \leq i < n; \\
 (i-n+1)\sum_{0 \leq j < n} a_j, & \text{if } i \geq n
\end{cases}
\]

From the assumption \(\sum_{i \in I} a_i > 0 \) it follows that \(\tilde{\Lambda}(\Lambda_i) > 0 \) for all \(i \geq n \). Consequently,

\[
L(\Lambda) \cong L(\Lambda) \cong \tilde{U}^-/\left(\sum_{i \in I_n^+} \tilde{U}^- F_i^{\tilde{\Lambda}(\Lambda_i)} \right) = D(n)^-/\left(\sum_{i \in I_n^+} D(n)^-(u_i^-)^{\tilde{\Lambda}(\Lambda_i)} \right).
\]

For each \(\Lambda \in \tilde{P} \), let \(L_0(\Lambda) \) denote the irreducible \(U_0'(\widehat{\mathfrak{sl}_n}) \)-module of highest weight \(\Lambda \). Applying Theorem 3.2 gives the following result.

Corollary 4.5. Let \(\Lambda = \sum_{i \in I_n} a_i \Lambda_i + b \omega \in \tilde{P}^+ \) with \(\sum_{i \in I_n} a_i > 0 \). Then \(L_0(\Lambda) \) is the \(U_0'(\widehat{\mathfrak{sl}_n}) \)-submodule of \(L(\Lambda) \) generated by the highest weight vector \(\eta_\Lambda \) and there is a vector space decomposition

\[
L(\Lambda) = L_0(\Lambda) \otimes \mathbb{Q}(v)[z_1^-, z_2^-, \ldots].
\]

In particular, if \(L(\Lambda)|_{U_0'(\widehat{\mathfrak{sl}_n})} \) denotes the \(U_0'(\widehat{\mathfrak{sl}_n}) \)-module via restriction, then

\[
L(\Lambda)|_{U_0'(\widehat{\mathfrak{sl}_n})} \cong \bigoplus_{m>0} L_0(\Lambda - m\delta^*) \otimes \mathbb{Q}(v)^{p(m)},
\]

where \(\delta^* = \sum_{i \in I_n^+} \alpha_i \) and \(p(m) \) is the number of partitions of \(m \).

Proof. By Theorem 3.2,

\[
D(n)^- = U_0'(\widehat{\mathfrak{sl}_n}) \otimes \mathbb{Q}(v)[z_1^-, z_2^-, \ldots].
\]

This implies that

\[
L(\Lambda) \cong D(n)^-/(\sum_{i \in I_n^+} D(n)^-(u_i^-)^{\tilde{\Lambda}(\Lambda_i)}) \cong (U_0'(\widehat{\mathfrak{sl}_n})/(\sum_{i \in I_n^+} U_0'(\widehat{\mathfrak{sl}_n}) F_i^{\tilde{\Lambda}(\Lambda_i)}) \otimes \mathbb{Q}(v)[z_1^-, z_2^-, \ldots].
\]
By [34, Cor. 6.2.3], $L_0(\Lambda) \cong U_\ast(\mathfrak{gl}_n)/\langle \sum_{i \in I_n} U_\ast(\mathfrak{sl}_n)F_i^{n+1} \rangle$. Hence, $L_0(\Lambda)$ is the $U_\ast(\mathfrak{sl}_n)$-submodule of $L(\Lambda)$ generated by η_Λ and the desired decomposition is obtained.

For each family of nonnegative integers $\{m_t \mid t \geq 1\}$ satisfying all but finitely many m_t are zero, $L_0(\Lambda) \otimes \prod_{t \geq 1} (\mathbb{Z}^t)^m_t$ is a $U_\ast(\mathfrak{sl}_n)$-submodule of $L(\Lambda)$ since $[u_i^+, z_j^-] = 0$ for all $i \in I_n$ and $t \geq 1$. It is easy to see that

$$L_0(\Lambda) \otimes \prod_{t \geq 1} (\mathbb{Z}^t)^m_t \cong L_0(\Lambda - \sum_{t \geq 1} m_t \delta^+).$$

We conclude that

$$L(\Lambda)|_{U_\ast(\mathfrak{sl}_n)} \cong \bigoplus_{m \geq 0} L_0(\Lambda - m\delta^+)^{\otimes p(m)}.$$

By [34, Th. 14.4.11], for each $\Lambda \in P^+$, the canonical basis $\{b_m^- \mid m \in \mathfrak{m}_{ap}^\Lambda\}$ of $U_\ast(\mathfrak{sl}_n)$ gives rise to the canonical basis $\{b_m^- \eta_\Lambda \neq 0 \mid m \in \mathfrak{m}_{ap}^\Lambda\}$ of $L_0(\Lambda)$. On the other hand, the crystal basis theory for the quantum generalized Kac-Moody algebra $U(\hat{C})$ has been developed in [23]. Since all the F_i for $i \geq n$ correspond to imaginary simple roots and are central in $\hat{U}^\ast = D(n)^\ast$, applying the construction in [23, Sect. 6] shows that the set

$$\mathcal{B'} := \{(\prod_{i \geq n} F_i^{m_i})b_m^- \mid m \in \mathfrak{m}_{ap}^\Lambda \text{ and all } m_i \in \mathbb{N} \text{ but finitely many are zero}\}$$

forms the global crystal basis of $\hat{U}^\ast = D(n)^\ast$. We remark that $\mathcal{B'}$ does not coincide with the canonical basis \mathcal{B}^\ast of $D(n)^\ast$.

5. The q-deformed Fock space I: $D(\infty)$-module

In this section we introduce the q-deformed Fock space Λ^∞ from [17] and review its module structure over $D(\infty) = U_v(\mathfrak{sl}_\infty)$ defined in [36, 45], as well as its $U_\ast(\mathfrak{sl}_n)$-module structure. We also provide a proof of [45, Prop. 5.1] by using the properties of representations of Δ_∞. Throughout this section, we identify $D(\infty)$ with $U_v(\mathfrak{sl}_\infty)$ via taking $u_i^+ \mapsto E_i$, $u_i^- \mapsto F_i$ for all $i \in I_\infty = \mathbb{Z}$.

For each partition $\lambda \in \Pi$, let $T(\lambda)$ denote the tableau of shape λ whose box in the intersection of the i-th row and the j-th column is equipped with $j - i$ (The box is then said to be with color $j - i$). For example, if $\lambda = (4, 2, 2, 1)$, then $T(\lambda)$ has the form

```
-3
-2 -1
-1 
0 1 2 3
```

For given $i \in \mathbb{Z}$, a removable i-box of $T(\lambda)$ is by definition a box with the color i which can be removed in such a way that the new tableau has the form $T(\mu)$ for some $\mu \in \Pi$. On the contrary, an indent i-box of $T(\lambda)$ is a box with the color i which can be added to $T(\lambda)$. For $i \in \mathbb{Z}$ and $\lambda \in \Pi$, define

$$n_i(\lambda) = |\{i\text{-boxes of } T(\lambda)\}| - |\{\text{removable } i\text{-boxes of } T(\lambda)\}|.$$

Let Λ^∞ be the $\mathbb{Q}(v)$-vector space with basis $\{|\lambda\rangle \mid \lambda \in \Pi\}$. Following [45, 4.2], there is a left $U_\ast(\mathfrak{sl}_\infty)$-module structure on Λ^∞ defined by

$$K_i \cdot |\lambda\rangle = v^{n_i(\lambda)}|\lambda\rangle, \quad E_i \cdot |\lambda\rangle = |\nu\rangle, \quad F_i \cdot |\lambda\rangle = |\mu\rangle, \quad \forall i \in \mathbb{Z}, \lambda \in \Pi,$$

where $|\nu\rangle$ is the unique vector in $U_\ast(\mathfrak{sl}_n)$-module structure on Λ^∞ defined by

$$K_i \cdot |\lambda\rangle = v^{n_i(\lambda)}|\lambda\rangle, \quad E_i \cdot |\lambda\rangle = |\nu\rangle, \quad F_i \cdot |\lambda\rangle = |\mu\rangle, \quad \forall i \in \mathbb{Z}, \lambda \in \Pi,$$
where $\mu, \nu \in \Pi$ are such that $T(\mu) - T(\lambda)$ and $T(\lambda) - T(\nu)$ are a box with color i. As remarked in [36, Sect. 2], \wedge^{∞} is isomorphic to the basic representation of $U_{\nu}(\mathfrak{sl}_{\infty})$ with the canonical basis $\{ |\lambda \rangle \mid \lambda \in \Pi \}$.

Lemma 5.1. (1) For $i \in \mathbb{Z}$ and $\lambda, \mu \in \Pi$, if $u_i^- \cdot |\mu\rangle = |\lambda\rangle$, then there is an exact sequence

$$0 \rightarrow S_i \rightarrow M(m_\lambda) \rightarrow M(m_\mu) \rightarrow 0.$$

(2) Let $m = [i, l]$ for some $i \in \mathbb{Z}$ and $l \geq 1$. Then $\tilde{u}_m^- \cdot |0\rangle \in \mathbb{Z}|\lambda\rangle$ if $i \leq 0$ and $i + l - 1 \geq 0$ and 0 otherwise, where $\lambda = (i + l, 1^{(-i)})$. In particular, if $i = 0$, then $\tilde{u}_m^- \cdot |0\rangle = |\lambda\rangle$.

Proof. (1) This follows directly from the definition.

(2) We proceed induction on l. The statement is trivial if $l = 1$. Suppose now $l > 1$. By the definition, $M(m) = S_i[l]$ with $\dim M(m) = \sum_{j=l}^{i+l-1} \varepsilon_j$. Then

$$u_{i+l-1}^- \cdots u_{i+1}^- u_i^- = v^{1-l} u_m^- + \sum_{j < \deg m} v^{1-l} u_j^-.$$

For each \mathfrak{z} with $\mathfrak{z} < \deg m$, $M(\mathfrak{z})$ is decomposable. Thus, we may write

$$M(\mathfrak{z}) = M(\eta) \oplus M(\mathfrak{z}_1),$$

where $\eta \in \mathfrak{M}_\infty$ and $\mathfrak{z}_1 = [j, i + l - j]$ for some $i < j \leq i + l - 1$. This implies that

$$u_\eta^- u_{\mathfrak{z}_1}^- = u_\mathfrak{z}_1^-.$$

By the induction hypothesis,

$$u_{k_1}^- \cdot |0\rangle \in \mathbb{Z}|\mu\rangle$$

and 0 otherwise, where $\mu = (i + l, 1^{(-j)})$. Let now $j \geq 0$ and $i + l - 1 \geq 0$ and let k_1, \ldots, k_{j-i} be a permutation of $i, i+1, \ldots, j-1$. Then

$$(u_{k_1}^- u_{k_2}^- \cdots u_{k_{j-i}}^-) \cdot |\mu\rangle = 0$$

unless $k_1 = i, k_2 = i+1, \ldots, k_{j-i} = j-1$, and moreover

$$(u_i^- u_{i+1}^- \cdots u_{j-1}^-) \cdot |\mu\rangle = |\lambda\rangle.$$

Since $u_{\mathfrak{z}_1}^-$ is a \mathbb{Z}-linear combination of the monomials $u_{k_1}^- u_{k_2}^- \cdots u_{k_{j-i}}^-$, we have $\tilde{u}_m^\mathfrak{z}^- \cdot |0\rangle \in \mathbb{Z}|\lambda\rangle$.

Now let $i = 0$. Then $u_{\mathfrak{z}_1}^- \cdot |0\rangle = 0$ for each $\mathfrak{z}_1 = [j, i + l - j]$ with $0 < j \leq i + l - 1$. Hence,

$$\tilde{u}_m^- \cdot |\lambda\rangle = v^{1-l} u_m^- \cdot |0\rangle = (u_{i-1}^- \cdots u_i^- u_0^-) \cdot |0\rangle + \sum_{j < \deg m} u_j^- \cdot |0\rangle = |\lambda\rangle.$$

□

Lemma 5.2. Let $m = \sum_{l \geq 1} m_{i,l} [i, l] \in \mathfrak{M}_\infty$ and $\lambda \in \Pi$.

(1) If there is $j \in \mathbb{Z}$ such that $\sum_{l \geq 1} m_{j,l} \geq 2$, then $\tilde{u}_m^- \cdot |\lambda\rangle = 0$. In particular, for each $i \in \mathbb{Z}$ and $t \geq 2$, $(u_i^-)^{(t)} \cdot |\lambda\rangle = 0$.

(2) The element $\tilde{u}_m^- \cdot |\lambda\rangle$ is a \mathbb{Z}-linear combination of $|\mu\rangle$ with $\mu \in \Pi$.

Proof. (1) For each $i \in \mathbb{Z}$, we put

$$m_i = \sum_{l \geq 1} m_{i,l} \quad \text{and} \quad M_i = \bigoplus_{l \geq 1} m_{i,l} S_i[l].$$

Then $M = M(m) = \bigoplus_{i \in \mathbb{Z}} M_i$, where all but finitely many M_i are zero and

$$u_m^- = v^{-\sum_{i>\lambda}} (\dim M_i, \dim M_i) \cdots u_{M_i}^- u_{M_i}^- \cdots.$$
Suppose there is \(j \in \mathbb{Z} \) with \(m = m_j \geq 2 \). Then \(M_j \) admits a decomposition
\[
M_j = S_j[a_1] \oplus \cdots \oplus S_j[a_m] \quad \text{with} \quad a_1 \geq \cdots \geq a_m \geq 1.
\]
This implies that
\[
u_{[S_j[a_m]]} \cdots u_{[S_j[a_1]]} = v^{b_j} u_{[M_j]},
\]
where \(b_j = \sum_{1 \leq p < q \leq m} \langle \dim S_j[m_p], \dim S_j[m_q] \rangle \). Hence, it suffices to show that for each \(\mu \in \Pi \),
\[
u_{[M_j]} \cdot |\mu\rangle = v^{-b_j} \langle \nu_{[S_j[a_m]]} \cdots u_{[S_j[a_1]]} \rangle \cdot |\mu\rangle = 0.
\]
By the definition, \(u_{[S_j[a_1]]} \cdot |\mu\rangle \) is a \(\mathbb{Q}(v) \)-linear combination of \(\nu \) which are obtained from \(\mu \) by adding a \((j + r)\)-box for each \(0 \leq r < a_1 \). Thus, each such \(\nu \) does not admit an indent \(j \)-box. Thus, \(u_{[S_j[a_1]]} \cdot |\nu\rangle = 0 \) and, hence, \((u_{[S_j[a_m]]} \cdots u_{[S_j[a_1]]}) \cdot |\mu\rangle = 0 \). We conclude that \(\widetilde{u}_{m} \cdot |\lambda\rangle = 0 \).

(2) It is known that \(\widetilde{u}_{m} \) is a \(\mathbb{Z} \)-linear combination of monomials of divided powers \((u_{i})^{(t)} \) for \(i \in \mathbb{Z} \) and \(t \geq 1 \). Since by (1), \((u_{i})^{(t)} \cdot |\mu\rangle = 0 \) for all \(i \in \mathbb{Z}, \mu \in \Pi \) and \(t \geq 2 \), it follows that \(\widetilde{u}_{m} \cdot |\lambda\rangle \) is then a \(\mathbb{Z} \)-linear combination of \((u_{i_1} \cdots u_{i_m}) \cdot |\lambda\rangle \), where \(m = \dim M(m) \) and \(i_1, \ldots, i_m \in \mathbb{Z} \). By the definition, \((u_{i_1} \cdots u_{i_m}) \cdot |\lambda\rangle \) either is zero or lies in \(\Pi \). Therefore, \(\widetilde{u}_{m} \cdot |\lambda\rangle \) is a \(\mathbb{Z} \)-linear combination of \(|\mu\rangle \) with \(\mu \in \Pi \). \(\square \)

Proposition 5.3. (1) For each \(m \in \mathcal{M}_\infty \),
\[
\widetilde{u}_{m} \cdot |\emptyset\rangle \in \mathcal{Z}|\lambda\rangle \quad \text{for some} \quad \lambda \in \Pi \quad \text{with} \quad m_\lambda \leq_{\deg m} \infty m.
\]

(2) For each \(\lambda \in \Pi \),
\[
\widetilde{u}_{m_\lambda} \cdot |\emptyset\rangle = |\lambda\rangle.
\]
In particular, \(b_{m_\lambda} \cdot |\emptyset\rangle = |\lambda\rangle \).

Proof. (1) If \(\widetilde{u}_{m} \cdot |\emptyset\rangle = 0 \), there is nothing to prove. Now suppose \(\widetilde{u}_{m} \cdot |\emptyset\rangle \neq 0 \). By Lemma 5.2(2), we write
\[
\widetilde{u}_{m} \cdot |\emptyset\rangle = \sum_{\lambda \in \Pi} f_\lambda(v)|\lambda\rangle,
\]
where all \(f_\lambda(v) \in \mathcal{Z} \) but finitely many are zero. If \(f_\lambda(v) \neq 0 \), then \(\dim M(m_\lambda) = \dim M(m) \).
By Lemma 2.1(1), such a \(\lambda \in \Pi \) is unique. Hence, we may suppose \(\widetilde{u}_{m} \cdot |\emptyset\rangle = f(v)|\lambda\rangle \) for some \(0 \neq f(v) \in \mathcal{Z} \) and \(\lambda \in \Pi \). It remains to show that \(m_\lambda \leq_{\deg m} \infty m \).

Applying Lemma 5.2(1) implies that
\[
M = M(m) = S_{i_1} [a_1] \oplus \cdots \oplus S_{i_t} [a_t],
\]
where \(i_1 < \cdots < i_t \) and \(a_1, \ldots, a_t \geq 1 \). Then
\[
u_{[S_{i_1}[a_1]]} \cdots u_{[S_{i_t}[a_t]]} = v^a u_{m},
\]
where \(a = \sum_{1 \leq p < q \leq t} \langle \dim S_{i_q}[a_q], \dim S_{i_p}[a_p] \rangle \).

We proceed induction on \(t \) to show that \(M(m_\lambda) \leq_{\deg m} M = M(m) \). If \(t = 1 \), this follows from Lemma 5.1(2). Let now \(t > 1 \) and let \(\mu \in \Pi \) be such that
\[
u_{[S_{i_2}[a_2]]} \cdots u_{[S_{i_t}[a_t]]} \cdot |\emptyset\rangle = g(v)|\mu\rangle \quad \text{for some} \quad 0 \neq g(v) \in \mathcal{Z}.
\]
Then \(u_{[S_{i_1}[a_1]]} \cdot |\mu\rangle = v^a f(v) g(v)^{-1} |\lambda\rangle \). By the induction hypothesis,
\[
M(m_\mu) \leq_{\deg m} S_{i_2}[a_2] \oplus \cdots \oplus S_{i_t}[a_t].
\]
By writing \(u_{[S_{i_1}[a_1]]} \) as a \(\mathbb{Z} \)-linear combination of \(u_{i} \)'s and applying Lemma 5.1(1), there exists \(X \in \text{Rep} \Delta_{\infty} \) satisfying \(\dim X = \dim S_{i_1}[a_1] \) with an exact sequence
\[
0 \rightarrow X \rightarrow M(m_\lambda) \rightarrow M(m_\mu) \rightarrow 0.
\]
Let \mathfrak{p} be a basis of \bigwedge^∞. By using an argument similar to that in the proof of Lemma 5.1(2), we obtain that
\[
\text{dim} \bigoplus_{s < t} \mathfrak{p}_s \mathfrak{p}_t = M(\mathfrak{p}),
\]
that is, $\mathfrak{p} \leq_{\text{deg}} \mathfrak{m}$.

(2) Write $\lambda = (\lambda_1, \ldots, \lambda_t)$ with $\lambda_1 \geq \cdots \geq \lambda_t \geq 1$. Since
\[
M(\mathfrak{m}) = S_0[\lambda_1] \oplus S_{-1}[\lambda_2] \oplus \cdots \oplus S_{1-t}[\lambda_t],
\]
we have that
\[
\sum_{1 \leq r < s \leq t} \langle \dim S_{1-r}[\lambda_r], \dim S_{1-s}[\lambda_s] \rangle = \sum_{1 \leq r < s \leq t} \text{dim} \text{Hom}_{\Delta}(S_{1-r}[\lambda_r], S_{1-s}[\lambda_s]).
\]
By using an argument similar to that in the proof of Lemma 5.1(2), we obtain that
\[
v^{-}u_{\mathfrak{m}_\lambda} \cdot |\emptyset\rangle = \langle u_{[1-t][\lambda_t]} \cdots u_{[1-2][\lambda_2]} u_{[0][\lambda_1]} \rangle \cdot |\emptyset\rangle = v^{\lambda_1-1} \langle u_{[1-t][\lambda_t]} \cdots u_{[1-2][\lambda_2]} \rangle \cdot |\lambda_1\rangle = c^{\lambda_1+\cdots+\lambda_t} \langle u_{[1-t][\lambda_t]} \cdots u_{[1-2][\lambda_2]} \rangle \cdot |\lambda_1, \lambda_2\rangle = v^{\lambda_1+\cdots+\lambda_t} \cdot |\lambda_1, \ldots, \lambda_t\rangle = v^{\lambda_1+\cdots+\lambda_t} \cdot |\lambda\rangle.
\]
Since
\[
\text{dim} \text{End}_{\Delta}(M(\mathfrak{m})) = \sum_{1 \leq r < s \leq t} \text{dim} \text{Hom}_{\Delta}(S_{1-r}[\lambda_r], S_{1-s}[\lambda_s]) = c + t
\]
and $\text{dim} M(\mathfrak{m}) = \lambda_1 + \cdots + \lambda_t$, it follows that
\[
\sum_{1 \leq r < s \leq t} \langle \dim S_{1-r}[\lambda_r], \dim S_{1-s}[\lambda_s] \rangle = \sum_{1 \leq r < s \leq t} \text{dim} \text{Hom}_{\Delta}(S_{1-r}[\lambda_r], S_{1-s}[\lambda_s]) = c + t.
\]
By (4.0.9),
\[
b_{\mathfrak{m}_\lambda}^{-} \in \mathfrak{m}_\lambda^{-} + \sum_{\mathfrak{p} <_{\text{deg}} \mathfrak{m}_\lambda} v^{-1}Z[v^{-1}] \mathfrak{p}^{-}.
\]
Let $\mathfrak{p} <_{\text{deg}} \mathfrak{m}_\lambda$ and suppose $\mathfrak{p}_\lambda^{-} \cdot |\emptyset\rangle \neq 0$. By (1), there exists $\mu \in \Pi$ with $\mathfrak{m}_\mu \leq_{\text{deg}} \mathfrak{p}$ such that $\mathfrak{p}_\lambda^{-} \cdot |\emptyset\rangle = f(v) |\mu\rangle$ for some $f(v) \in Z$. Thus, $\mathfrak{m}_\mu <_{\text{deg}} \mathfrak{m}_\lambda$. By Lemma 2.1(1), $\mu = \lambda$ since $\text{dim} M(\mathfrak{m}_\mu) = \text{dim} M(\mathfrak{m}_\lambda)$. This is a contradiction. Hence, $\mathfrak{p}_\lambda^{-} \cdot |\emptyset\rangle = 0$. We conclude that
\[
b_{\mathfrak{m}_\lambda}^{-} \cdot |\emptyset\rangle = \mathfrak{p}_\lambda^{-} \cdot |\emptyset\rangle = |\lambda\rangle.
\]

As a consequence of the proposition above, we obtain [45, Prop. 5.1] as follows.

Corollary 5.4. The subspace \mathcal{I} of $\mathcal{U}_\mathfrak{p}^{-}(\mathfrak{sl}_\infty)$ spanned by $b_{\mathfrak{m}}^{-}$ with $\mathfrak{m} \in \mathfrak{M} - \{\mathfrak{m}_\lambda | \lambda \in \Pi\}$ is a left ideal of $\mathcal{U}_\mathfrak{p}^{-}(\mathfrak{sl}_\infty)$. Moreover, the map
\[
\mathcal{U}_\mathfrak{p}^{-}(\mathfrak{sl}_\infty)/\mathcal{I} \longrightarrow \bigwedge^\infty, \quad b_{\mathfrak{m}_\lambda}^{-} + \mathcal{I} \longmapsto |\lambda\rangle, \quad \lambda \in \Pi
\]
is an isomorphism of $\mathcal{U}_\mathfrak{p}^{-}(\mathfrak{sl}_\infty)$-modules.

Proof. This follows from Proposition 5.3(2) and the fact that the set
\[
\{b_{\mathfrak{m}}^{-} \cdot |\emptyset\rangle \neq 0 | \mathfrak{m} \in \mathfrak{M}_\infty\}
\]
is a basis of \bigwedge^∞; see [34, Th. 14.4.11].
Finally, for $i \in \mathbb{Z}$ and $\lambda \in \Pi$, put
\[n_i^- (\lambda) = \sum_{j<i, j \in I} n_j (\lambda), \quad n_i^+ (\lambda) = \sum_{j>i, j \in I} n_j (\lambda), \quad \text{and} \quad n_i (\lambda) = \sum_{j \in I} n_j (\lambda). \]

By [17, 36], there is a $U_v(\widehat{sl}_n)$-module structure on \wedge_∞ defined by
\[(6.0.3) \]
\[K_\gamma \cdot |\lambda\rangle = v^{n_i (\lambda)} |\lambda\rangle, \quad E_\gamma \cdot |\lambda\rangle = \sum_{j \in I} v^{n_j (\lambda)} E_j \cdot |\lambda\rangle, \quad F_\gamma \cdot |\lambda\rangle = \sum_{j \in I} v^{-n_j (\lambda)} F_j \cdot |\lambda\rangle, \]
where $\gamma \in I_n = \mathbb{Z} / n\mathbb{Z}$.

6. The q-deformed Fock space II: $\mathcal{D}(n)$-module

In this section we first recall the left $\mathcal{D}(n)^{\leq 0}$-module structure on the Fock space \wedge_∞ defined by Varagnolo and Vasserot in [45] and then extend their construction to obtain a $\mathcal{D}(n)$-module structure on \wedge_∞.

For each $x = \sum_m x_m u_m \in \mathcal{H}(\Delta)$ with $\Delta = \Delta_n$ or Δ_∞, we write
\[x^\pm = \sum_m x_m u_m^\pm \in \mathcal{D}(\Delta)^\pm. \]

Then for each $d \in \mathbb{N}I_\infty$, the map $\gamma_d : \mathcal{H}(\Delta_n)_d \to \mathcal{H}(\Delta_\infty)_d$ defined in Section 3 induces $\mathbb{Q}(v)$-linear maps
\[\gamma_d^\pm : \mathcal{D}(n)^\pm_d \to \mathcal{D}(\infty)^\pm_d \]
such that $\gamma_d^\pm (x^\pm) = (\gamma_d (x))^\pm$ for each $x \in \mathcal{H}(\Delta_\infty)$.

Following [45, 6.2], for each $\bar{\imath} \in I_n = \mathbb{Z} / n\mathbb{Z}$, $\lambda \in \mathcal{M}_n$ and $x \in \mathcal{D}(n)_d$, define
\[(6.0.2) \]
\[K_\gamma \cdot |\lambda\rangle = v^{n_i (\lambda)} |\lambda\rangle \quad \text{and} \quad x \cdot |\lambda\rangle = \sum_d (\gamma_d (x) K_{d'}) \cdot |\lambda\rangle, \]
where the sum is taken over all $d \in \mathbb{N}I_\infty$ such that $\bar{d} = \alpha$ and $d' = \sum_{i>j, i=j} d_j \varepsilon_i$. By [45, Cor. 6.2], this defines a left $\mathcal{D}(n)^{\leq 0}$-module structure on \wedge_∞ which extends the Hayashi action of $U_v^{\geq 0}(\widehat{sl}_n)$ on \wedge_∞ defined in (5.4.1).

Dually, for each $\lambda \in \Pi$ and $x \in \mathcal{D}(n)_d$, define
\[(6.0.3) \]
\[x \cdot |\lambda\rangle = \sum_d (\gamma_d^\pm (x) K_{d'}) \cdot |\lambda\rangle, \]
where the sum is taken over all $d \in \mathbb{N}I_\infty$ such that $\bar{d} = \alpha$ and $d'' = \sum_{i<j, i=j} d_j \varepsilon_i$.

Proposition 6.1. The formula (6.0.3) defines a left $\mathcal{D}(n)^{\geq 0}$-module structure on \wedge_∞ which extends the Hayashi action of $U_v^{\geq 0}(\widehat{sl}_n)$ on \wedge_∞.

Proof. Let $x \in \mathcal{D}(n)_\alpha^{\pm}$ and $y \in \mathcal{D}(n)_\beta^{\pm}$, where $\alpha, \beta \in \mathbb{N}I_n$. By the definition, we have, on the one hand, that
\[(xy) \cdot |\lambda\rangle = \sum_d (\gamma_d^\pm (xy) K_{d'}) \cdot |\lambda\rangle \]
and, on the other hand, that
\[x \cdot (y \cdot |\lambda\rangle) = \sum_{a,b} (\gamma_a^+(x) K_{a''} \gamma_b^+(y) K_{b''}) \cdot |\lambda\rangle, \]
where the sum is taken over all $a, b \in \mathbb{N}I_\infty$ such that $\bar{a} = \alpha$ and $\bar{b} = \beta$.
Since \(K_{\alpha'} \gamma^+_\beta(y) = v^{(\alpha', b)} \gamma^+_\beta(y) K_{\alpha'} \), we obtain that
\[
x \cdot (y \cdot |\lambda\rangle) = \sum_d \sum_{a+b=d} v^{(\alpha', b)} (\gamma^+_a (x) \gamma^+_b (y) K_{\alpha'}) \cdot |\lambda\rangle.
\]
By the definition,
\[
(a'', b) = (\sum_{i<j, i=j} a_j \varepsilon_i, \sum_i b_i \varepsilon_i) = \sum_{i<j, i=j} b_i (2a_j - a_{j-1} - a_{j+1}) = \kappa(a, b).
\]
Applying Lemma 3.3(2) gives that
\[
(xy) \cdot |\lambda\rangle = x \cdot (y \cdot |\lambda\rangle).
\]
Hence, \(\bigwedge^\infty \) becomes a left \(\mathcal{D}(n)^{>0} \)-module.
For each \(i \in I_n = \mathbb{Z}/n\mathbb{Z} \) and \(\lambda \in \Pi \), we have
\[
u^+_i \cdot |\lambda\rangle = \sum_{j \in i} (u^+_j K_{-\varepsilon^*_j}) \cdot |\lambda\rangle.
\]
Since \(\varepsilon''_j = \sum_{l<j, l=j} \varepsilon_l \) for each \(j \in \tilde{i} \), it follows that
\[
K_{\varepsilon''_j} \cdot |\lambda\rangle = \prod_{l<j, l=j} K_{\varepsilon_l} \cdot |\lambda\rangle = v^{\sum_{l<j, l=j} n_l(\lambda)} |\lambda\rangle = v^{\varepsilon''_j(\lambda)} |\lambda\rangle.
\]
This implies that
\[
u^+_i \cdot |\lambda\rangle = \sum_{j \in i} v^{\varepsilon''_j(\lambda)} u^+_j \cdot |\lambda\rangle,
\]
which coincides with the formula for \(E_i \cdot |\lambda\rangle \) in (5.4.1), as required.

The main purpose of this section is to prove that formulas (6.0.2) and (6.0.3) indeed define a \(\mathcal{D}(n) \)-module structure on \(\bigwedge^\infty \). The strategy is to pass to the semi-infinite \(\nu \)-wedge spaces defined in [27].

Let \(\Omega \) denote the \(\mathbb{Q}(v) \)-vector space with basis \(\{ \omega_i \mid i \in \mathbb{Z} \} \). By [6, Prop. 3.5], \(\Omega \) admits a \(\mathcal{D}(n) \)-module structure defined by
\[
\begin{align*}
\nu^+_i \cdot \omega_s &= \delta_{i+1,s} \omega_{s-1}, & \nu^-_i \cdot \omega_s &= \delta_{i,s} \omega_{s+1} \\
K^\pm_i \cdot \omega_s &= v^{\pm \delta_{i,s} \mp \delta_{i+1,s}} \omega_s, & z^\pm_m \cdot \omega_s &= \omega_{s \mp mn}
\end{align*}
\]
for all \(i \in I_n \) and \(s, m \in \mathbb{Z} \) with \(m \geq 1 \). In particular, \(K^\pm_i \cdot \omega_s = \omega_s \) for each \(s \in \mathbb{Z} \). This is an extension of the \(U^\prime_q(\mathfrak{sl}_n) \)-action on \(\Omega \) defined in [27, 1.1] as well as an extension of the \(\mathcal{D}(n)^{>0} \)-action on \(\Omega \) defined in [45, 8.1]; see [6, 3.5].

For a fixed positive integer \(r \), consider the \(r \)-fold tensor product \(\Omega^{\otimes r} \) which has a basis
\[
\{ \omega_i = \omega_{i_1} \otimes \cdots \otimes \omega_{i_r} \mid i = (i_1, \ldots, i_r) \in \mathbb{Z}^r \}.
\]
The Hopf algebra structure of \(\mathcal{D}(n) \) induces a \(\mathcal{D}(n) \)-module structure on the \(r \)-fold tensor product \(\Omega^{\otimes r} \). By (4.1.1), we have for each \(t \geq 1 \),
\[
\begin{align*}
\Delta^{(r-1)}(z^+_t) &= \sum_{s=0}^{r-1} 1 \otimes \cdots \otimes 1 \otimes z^+_t \otimes K_{t\delta} \otimes \cdots \otimes K_{t\delta} \\
\Delta^{(r-1)}(z^-_t) &= \sum_{s=0}^{r-1} K_{-t\delta} \otimes \cdots \otimes K_{-t\delta} \otimes z^-_t \otimes 1 \otimes \cdots \otimes 1.
\end{align*}
\]
This implies particularly that for each \(t \geq 1 \) and \(\omega_1 = \omega_{i_1} \otimes \cdots \otimes \omega_{i_r} \in \Omega^\otimes r \),
\[
(6.1.3) \quad z_t^\pm \cdot \omega_1 = \sum_{s=1}^r \omega_{i_1} \otimes \cdots \otimes \omega_{i_{s-1}} \otimes \omega_{s+1} \otimes \cdots \otimes \omega_{i_r}.
\]

By (4.0.3) and (4.0.5), for each \(\alpha \in N I_\alpha \), we have
\[
(6.1.4) \quad \Delta^{(r-1)}(\tilde{u}_{\alpha}^+) = \sum_{\alpha = \alpha^{(1)} + \cdots + \alpha^{(r)}} v^{\sum_{s=1}^r (\alpha^{(s)}, \alpha^{(t)})} \times \\
\Delta^{(r-1)}(\tilde{u}_{\alpha}^-) = \sum_{\alpha = \alpha^{(1)} + \cdots + \alpha^{(r)}} v^{\sum_{s=1}^r (\alpha^{(s)}, \alpha^{(t)})} \times \\
\tilde{u}_{\alpha^{(1)}}(K_{\alpha^{(1)}} \otimes \cdots \otimes \tilde{u}_{\alpha^{(r)}}(K_{\alpha^{(1)} + \cdots + \alpha^{(r-1)}}) \otimes \cdots \otimes \tilde{u}_{\alpha^{(r)}}(K_{\alpha^{(1)} + \cdots + \alpha^{(r-1)}}) \otimes \tilde{u}_{\alpha^{(r)}}(K_{\alpha^{(1)} + \cdots + \alpha^{(r-1)}}).
\]

This gives the following lemma; see [45, Lem. 8.3] and [6, Cor. 3.5.8].

Lemma 6.2. Let \(\alpha \in NI_\alpha \) and \(\mathbf{i} = (i_1, \ldots, i_r) \in \mathbb{Z}^r \). Then
\[
(6.2.1) \quad \tilde{u}_{\alpha}^+ \cdot \omega_1 = \sum_{n} v^{c^+(i, i - n)} \omega_1 - n,
\]
where the sum is taken over the sequences \(\mathbf{n} = (n_1, \ldots, n_r) \in \{0, 1\}^r \) satisfying \(\alpha = \sum_{s=1}^r n_s \varepsilon_{i_s - 1} \) and
\[
c^+(i, i - n) = \sum_{1 \leq s < t \leq r} n_s (n_t - 1) \langle \varepsilon_{i_s}, \varepsilon_{i_t} \rangle;
\]
\[
(6.2.2) \quad \tilde{u}_{\alpha}^- \cdot \omega_1 = \sum_{n} v^{c^-(i, i + n)} \omega_1 + n,
\]
where the sum is taken over the sequences \(\mathbf{n} = (n_1, \ldots, n_r) \in \{0, 1\}^r \) satisfying \(\alpha = \sum_{s=1}^r n_s \varepsilon_{i_s} \) and
\[
c^-(i, i + n) = \sum_{1 \leq s < t \leq r} n_t (n_t - 1) \langle \varepsilon_{i_s}, \varepsilon_{i_t} \rangle.
\]

On the other hand, let \(\hat{H}(r) \) be the Hecke algebra of affine symmetric group of type A which is by definition a \(\mathbb{Q}(v) \)-algebra with generators \(T_i \) and \(X_j \) for \(i = 1, \ldots, r - 1, j = 1, \ldots, r \) and relations:
\[
(T_i + 1)(T_i - v^2) = 0, \\
T_i T_{i+1} T_i = T_{i+1} T_i T_i, \quad T_i T_j = T_j T_i \ (|i - j| > 1), \\
X_i X_i^{-1} = 1 = X_i X_j, \quad X_i X_j = X_j X_i, \\
T_i X_i T_i = v^2 X_i+1, \quad X_j T_i = T_i X_j \ (j \neq i, i+1).
\]

This is the so-called **Bernstein presentation** of \(\hat{H}(r) \).

By [45, Sect. 8.2], there is a right \(\hat{H}(r) \)-module structure on \(\Omega^\otimes r \) defined by
\[
(6.2.3) \quad \omega_1 \cdot T_{i_k} = \left\{ \begin{array}{ll}
v^2 \omega_1, & \text{if } i_k = i_{k+1}; \\
v \omega_{i_{k+1}}, & \text{if } -n < i_k < i_{k+1} < 0; \\
\nu \omega_{i_{k+1}} + (v^2 - 1) \omega_1, & \text{if } -n < i_{k+1} < i_k < 0,
\end{array} \right.
\]
where \(\mathbf{i} = (i_1, \ldots, i_r) \in \mathbb{Z}^r \), \(\omega_1 = \omega_{i_1} \otimes \cdots \otimes \omega_{i_r} \) and
\[
\omega_{i_{k+1}} = \omega_{i_1} \otimes \cdots \otimes \omega_{i_{k+1}} \otimes \omega_{i_{k+1}} \otimes \cdots \otimes \omega_{i_r}.
\]
Following [45, Lem. 8.2] and [6, Prop. 3.5.5], the tensor space \(\Omega^{\otimes r} \) is indeed a \(\mathcal{D}(n) \)-\(\hat{\mathcal{H}}(r) \)-bimodule. Set

\[
\Xi^r = \sum_{i=1}^{r-1} \text{Im} \left(1 + T_i \right) \subseteq \Omega^{\otimes r},
\]

which is clearly a \(\mathcal{D}(n) \)-submodule of \(\Omega^{\otimes r} \). Thus, the quotient space \(\Omega^{\otimes r}/\Xi^r \) becomes a \(\mathcal{D}(n) \)-module. For each \(i = (i_1, \ldots, i_r) \in \mathbb{Z}^r \), write

\[
\land \omega_i = \omega_{i_1} \land \ldots \land \omega_{i_r} = \omega_1^{\otimes r} \in \Omega^{\otimes r}/\Xi^r.
\]

By [27, Prop. 1.3], the set

\[
\{ \land \omega_i \mid i_1 > \cdots > i_r \}
\]

forms a basis of \(\Omega^{\otimes r}/\Xi^r \).

For each \(m \in \mathbb{Z} \), let \(\mathcal{B}_m \) denote the set of sequences \(i = (i_1, i_2, \ldots) \in \mathbb{Z}^\infty \) satisfying that \(i_s = m - s + 1 \) for \(s \gg 0 \), and set \(\mathcal{B}_\infty = \cup_{m \in \mathbb{Z}} \mathcal{B}_m \). As in [45, Sect. 10.1], let \(\Omega^\infty \) denote the space spanned by semi-infinite monomials

\[
\omega_i = \omega_{i_1} \otimes \omega_{i_2} \otimes \cdots, \quad \text{where} \quad i = (i_1, i_2, \ldots) \in \mathcal{B}_\infty.
\]

Then the affine Hecke algebra \(\hat{\mathcal{H}}(\infty) \) acts on \(\Omega^\infty \) via the formulas in (6.2.3). Set

\[
\Xi^\infty = \sum_{i=1}^{\infty} \text{Im} \left(1 + T_i \right) \subseteq \Omega^\infty.
\]

For each \(i = (i_1, i_2, \ldots) \in \mathcal{B}_\infty \) as above, write

\[
\land \omega_i = \omega_{i_1} \land \omega_{i_2} \land \cdots = \omega_1^{\otimes \infty} \in \Omega^\infty/\Xi^\infty.
\]

By [27, Prop. 1.4], the \(\mathcal{U}'_n(\mathfrak{sl}_n) \)-module structure on \(\Omega^{\otimes r}/\Xi^r \) induces a \(\mathcal{U}'_n(\mathfrak{sl}_n) \)-module structure on \(\Omega^\infty/\Xi^\infty \). Moreover, the map

\[
\kappa : \land^\infty \longrightarrow \Omega^\infty/\Xi^\infty, \quad |\lambda| \longmapsto \land \omega_\lambda
\]

is an injective homomorphism of \(\mathcal{U}'_n(\mathfrak{sl}_n) \)-modules.

Following [27, 1.4], for each \(m \in \mathbb{Z} \), write

\[
|m| = \omega_m \land \omega_{m-1} \land \omega_{m-2} \land \cdots.
\]

Clearly, for each \(i = (i_1, i_2, \ldots) \in \mathcal{B}_m \), there exists a sufficiently large \(N \) such that

\[
\omega_i = (\omega_{i_1} \land \cdots \land \omega_{i_N}) \land \omega_t.
\]

By [27, Lem. 2.2] and (6.1.4), for given \(\alpha \in \mathbb{N}I \) and \(i \in \mathcal{B}_m \), there is \(t \gg 0 \) such that

\[
u^-_\alpha \cdot (\land \omega_i) = (\nu^-_\alpha \cdot (\omega_{i_1} \land \cdots \land \omega_{i_t})) \land |m - t|.
\]

Hence, the \(\mathcal{D}(n)^{\leq 0} \)-module structure on \(\Omega^{\otimes r}/\Xi^r \) induces a \(\mathcal{D}(n)^{\leq 0} \)-module structure on \(\Omega^\infty/\Xi^\infty \); see [45, Sect. 10.1]. Moreover, by [45, Lem. 10.1], the map \(\kappa : \land^\infty \longrightarrow \Omega^\infty/\Xi^\infty \) is a \(\mathcal{D}(n)^{\leq 0} \)-module homomorphism.

Dually, for each given \(i \in \mathcal{B}_m \), there is \(t \gg 0 \) such that

\[
u^+_\alpha \cdot (\land \omega_i) = (\nu^+_\alpha \cdot (\omega_{i_1} \land \cdots \land \omega_{i_t})) \land (K_\alpha \cdot |m - t|).
\]

Thus, \(\Omega^\infty/\Xi^\infty \) becomes a left \(\mathcal{D}(n)^{\geq 0} \)-module as well. We have the following result.

Proposition 6.3. The map \(\kappa \) is a \(\mathcal{D}(n)^{\geq 0} \)-module homomorphism.
Proof. We need to show that for each \(\lambda \in \Pi \) and \(\alpha \in N \Pi\),
\[
\kappa(\tilde{u}_\alpha^+ \cdot |\lambda\rangle) = \tilde{u}_\alpha^+(\wedge \omega_\lambda).
\]
For simplicity, write \(i = i_\lambda \). By (6.0.3),
\[
\tilde{u}_\alpha^+ \cdot |\lambda\rangle = \sum_{d} (\gamma_d^+ (\tilde{u}_\alpha^+) K_{d^\nu}) \cdot |\lambda\rangle = \sum_{d} v^{-h(d)} (\tilde{u}_d^+ K_{d^\nu}) \cdot |\lambda\rangle,
\]
where the sum is taken over all \(d \in N \Pi\) such that \(\tilde{d} = \alpha \) and \(h(d) = \sum_{i<j,i=\tilde{j}} d_i(d_{j+1} - d_j) \).

For each fixed \(d = (d_i) \in N \Pi\) with \(d = \alpha \), we have
\[
\tilde{u}_d^+ = \cdots \tilde{u}_{d_1 \epsilon_1}^+ \tilde{u}_{d_0 \epsilon_0}^+ \tilde{u}_{d_{-1} \epsilon_{-1}}^+ \cdots = \prod_{i \in \mathbb{Z}} \tilde{u}_{d_i \epsilon_i}^+.
\]
By the definition, \(\tilde{u}_d^+ \cdot |\lambda\rangle \neq 0 \) implies that
\[
d = \sum_{s \geq 1} n_s \epsilon_{i_s - 1},
\]
where \(n_s \in \{0, 1\} \) for all \(s \geq 1 \). Moreover, if this is the case, then
\[
\tilde{u}_d^+ \cdot |\lambda\rangle = |\mu_n\rangle,
\]
where \(n = (n_1, n_2, \ldots) \) and \(\mu_n = \mu \in \Pi \) is determined by \(i_\mu = i - n \). Therefore, for \(d \in N \Pi\) with \(d = \sum_{s \geq 1} n_s \epsilon_{i_s - 1} \), we have that
\[
K_{d^\nu} \cdot |\lambda\rangle = \prod_{\tilde{i}_s = i_t, i_s > i_t} K_{\tilde{i}_s}^{n_s} \cdot |\lambda\rangle = \left(\prod_{\tilde{i}_s = i_t, i_s > i_t} v^{n_s \sum_{i \in \mathbb{Z}} (\delta_{i_t - i_s - 1})} \right) \cdot |\lambda\rangle
\]
and
\[
h(d) = \sum_{i_s > i_t} -n_s n_t (\delta_{i_s, i_t} - \delta_{i_s, i_t + 1}) = -\sum_{i_s > i_t} n_s n_t (\epsilon_{i_t}, \epsilon_{i_s}).
\]
Since \(i_s > i_t \) if and only if \(s < t \), we conclude that
\[
\tilde{u}_d^+ \cdot |\lambda\rangle = \sum_{n} v^{x(n)} |\mu_n\rangle,
\]
where the sum is taken over the sequences \(n = (n_1, n_2, \ldots) \in \{0, 1\}^\infty \) satisfying \(\alpha = \sum_{s=1}^{r} n_s \epsilon_{i_s - 1} \)
and
\[
x(n) = \sum_{1 \leq s < t} n_s (n_t - 1) (\epsilon_{i_t}, \epsilon_{i_s}).
\]
This together with (6.2.1) implies that
\[
\kappa(\tilde{u}_\alpha^+ \cdot |\lambda\rangle) = \sum_{n} v^{x(n)} \kappa(|\mu_n\rangle) = \sum_{n} v^{x(n)} \wedge \omega_{\alpha n} = \tilde{u}_\alpha^+ (\wedge \omega_{\lambda}) = \tilde{u}_\alpha^+ (\kappa(|\lambda\rangle)).
\]
This finishes the proof.

As a consequence of the results above, to prove that the formulas (6.0.2) and (6.0.3) define a \(D(n)\)-module structure on \(\wedge^\infty \), it suffices to show that the \(D(n)^{<0}\)-module and \(D(n)^{>0}\)-module structures on \(\Omega^\infty / \Xi^\infty \) define a \(D(n)\)-module structure. In other words, we need to show that the actions of \(K_t^{\pm 1}, u_t^{\pm 1}, u_t^- (i \in I_0) \) and \(z_t^+, z_s^- (s \geq 1) \) on \(\Omega^\infty / \Xi^\infty \) satisfy the relations (DH1)–(DH5) in Section 4. In the following we only check the relations
\[
[z_t^+, z_s^-] = \delta_{t,s} \frac{t(2n - 1)}{(t - v)^2} (K_{t\delta} - K_{-\delta}).
\]
The other relations either follow from [27] or can be checked directly.

By [27, §2], for each $t \geq 1$, there are Heisenberg operators $B_t^\pm : \Omega^\infty / \Xi^\infty \to \Omega^\infty / \Xi^\infty$ taking

$$B_t(\wedge \omega_i) \mapsto \sum_{s=1}^{\infty} \wedge \omega_i \wedge e_s,$$

where $i \in \mathscr{R}_{\infty}$ and $e_s = (\delta_i)_s, i \geq 1 \in \mathbb{Z}^\infty$. Note that for each $i \in \mathcal{B}_{\infty}$, $\wedge \omega_i \wedge e_s = 0$ for $s \gg 0$.

Proposition 6.4. For each $t \geq 1$ and $i \in \mathcal{B}_{\infty}$,

$$B_t^+(\wedge \omega_i) = v^t z^+_i \cdot (\wedge \omega_i) \quad \text{and} \quad B_t^- (\wedge \omega_i) = z^-_i \cdot (\wedge \omega_i).$$

Proof. As in [27, (49)], for each $m \in \mathbb{Z}$, write

$$|m| = \omega_m \wedge \omega_{m-1} \wedge \omega_{m-2} \wedge \cdots \in \Omega^\infty / \Xi^\infty.$$

Then $z_t^+ \cdot |m| = 0$ and $K_\delta \cdot |m| = q|m|$. Write

$$\wedge \omega_i = \omega_i \wedge \cdots \wedge \omega_i\wedge |N - m|.$$

Applying (6.1.2) gives that

$$z_t^+ \cdot (\wedge \omega_i)$$

$$= \sum_{s=0}^{N} \omega_{i_1} \wedge \cdots \wedge \omega_{i_s} \wedge z_t^+ \cdot \omega_{i_{s+1}} \wedge K_\delta \cdot \omega_{i_{s+2}} \wedge \cdots \wedge K_\delta \cdot \omega_{i_{N}} \wedge K_\delta \cdot |N - m|$$

$$= \sum_{s=0}^{N} v^t \omega_{i_1} \wedge \cdots \wedge \omega_{i_s} \wedge \omega_{i_{s+1}} \wedge \omega_{i_{s+2}} \wedge \cdots \wedge \omega_{i_{N}} \wedge |N - m|$$

$$= v^t B_t^+ (\wedge \omega_i) \quad \text{(since $B_t^+(|N - m|) = 0$),}$$

that is, $B_t^+(\wedge \omega_i) = v^t z_t^+ \cdot (\wedge \omega_i)$. The second equality can be proved similarly. \square

Corollary 6.5. Let $t, s \geq 1$. Then for each $i \in \mathcal{B}_{\infty}$,

$$[z_t^+, z_s^-] \cdot (\wedge \omega_i) = \delta_{t,s} t \frac{(v^{2nt} - 1)}{(v^t - v^{-t})^2} (K_\delta - K_{-\delta}) \cdot (\wedge \omega_i).$$

Proof. By [27, Prop. 2.2 & 2.6] (with $q = v$),

$$[B_t^+, B_s^-] = \delta_{t,s} \frac{t(1 - v^{2nt})}{1 - v^{2nt}}.$$

This together with Proposition 6.4 implies that for each $i \in \mathcal{B}_{\infty}$,

$$[z_t^+, z_s^-] \cdot (\wedge \omega_i) = v^t [B_t^+, B_s^-] \delta_{t,s} \cdot (\wedge \omega_i) = \delta_{t,s} \frac{tv^t(1 - v^{2nt})}{1 - v^{2nt}} (\wedge \omega_i).$$

On the other hand,

$$\delta_{t,s} \frac{t(v^{2nt} - 1)}{(v^t - v^{-t})^2} (K_\delta - K_{-\delta}) \cdot (\wedge \omega_i) = \delta_{t,s} \frac{t(v^{2nt} - 1)}{(v^t - v^{-t})^2} (v^t - v^{-t})(\wedge \omega_i)$$

$$= \delta_{t,s} \frac{tv^t(1 - v^{2nt})}{1 - v^{2nt}} (\wedge \omega_i).$$

This gives the desired equality. \square

In conclusion, $\wedge \omega_i$ becomes a $\mathcal{D}(n)$-module which is obtained by the restriction of the $\mathcal{D}(n)$-module structure on $\Omega^\infty / \Xi^\infty$ via the map κ.

7. An isomorphism from \(L(\Lambda_0) \) to \(\bigwedge^\infty \)

In this section we show that the Fock space \(\bigwedge^\infty \) as a \(\mathcal{D}(n) \)-module is isomorphic to the basic representation \(L(\Lambda_0) \) defined in Section 5. As an application, the decomposition of \(L(\Lambda_0) \) in Corollary 4.5 induces the Kashiwara–Miwa–Stern decomposition of \(\bigwedge^\infty \) in [27].

Proposition 7.1. For each \(m \in \mathcal{M}_n \), \(\overline{u}_m \cdot |\emptyset\rangle \) is a \(\mathbb{Z} \)-linear combination of those \(|\mu\rangle \) satisfying \(m_\mu \leq_{\text{deg}} m \).

Proof. By (6.0.2),
\[
\overline{u}_m \cdot |\emptyset\rangle = \sum_{d} (\gamma_d(\overline{u}_m)K_{-d'}) \cdot |\emptyset\rangle,
\]
where \(d' = \sum_{i<j} d_i \varepsilon_i \). Since \(K_i \cdot |\emptyset\rangle = v^{\delta_{i,0}}|\emptyset\rangle \) for \(i \in \mathbb{Z} \), it follows that \(K_{-d'} \cdot |\emptyset\rangle = v^{-\sum_{j<0} d_j} |\emptyset\rangle \). By Proposition 3.4,
\[
\gamma_d(\overline{u}_m) \in \sum_j \mathbb{Z} \overline{u}_j,
\]
where the sum is taken over \(j \in \mathcal{M}_\infty \) with \(\mathcal{F}(\overline{u}_j) \leq_{\text{deg}} m \). Further, by Proposition 5.3(1),
\[
\overline{u}_j \cdot |\emptyset\rangle \in \mathbb{Z} |\mu\rangle
\]
for some \(\mu \in \Pi \) with \(m_\mu \leq_{\text{deg}} \mathcal{F}(\overline{u}_j) \leq_{\text{deg}} m \). This implies that
\[
m_\mu = \mathcal{F}(m_\mu) \leq_{\text{deg}} \mathcal{F}(\overline{u}_j) \leq_{\text{deg}} m.
\]
This finishes the proof. \(\square \)

For each \(\mathbf{d} = (d_i) \in NI_\infty \), set
\[
\sigma(\mathbf{d}) = - \sum_{i<0, i=0} d_i.
\]
For \(\lambda \in \Pi \), we write \(\sigma(\lambda) = \sigma(\text{dim} M(m_\lambda)) \). The following result was proved in [45, 9.2 & 10.1]. We provide here a direct proof for completeness.

Corollary 7.2. For each \(\lambda \in \Pi \),
\[
\overline{u}_{m_{\lambda}} \cdot |\emptyset\rangle \in |\lambda\rangle + \sum_{\mu<\lambda} \mathbb{Z} |\mu\rangle.
\]
In particular, the \(\mathcal{D}(n) \)-module \(\bigwedge^\infty \) is generated by \(|\emptyset\rangle \) and the set
\[
\{ \overline{u}_{m_{\lambda}} |\emptyset\rangle | \lambda \in \Pi \}
\]
is a basis of \(\bigwedge^\infty \).

Proof. Applying Corollary 3.5 gives that
\[
\overline{u}_{m_{\lambda}} \cdot |\emptyset\rangle = \sum_{\mathbf{d}} (\gamma_d(\overline{u}_{m_{\lambda}})K_{-d'}) \cdot |\emptyset\rangle = \sum_{\mathbf{d}} v^{\sigma(\mathbf{d})} \gamma_d(\overline{u}_{m_{\lambda}}) \cdot |\emptyset\rangle
\]
\[
= \sum_{r \in \mathbb{Z}} v^{\delta(\lambda)+\sigma(\lambda)} \overline{u}_{r m_{\lambda} (m_\lambda)} \cdot |\emptyset\rangle + \sum_{j \in \mathcal{M}_\infty, \mathcal{F}(\overline{u}_j) \leq_{\text{deg}} m_{\lambda}} f_{\lambda,j} \overline{u}_j \cdot |\emptyset\rangle,
\]
where \(f_{\lambda,j} \in \mathbb{Z} \). By Proposition 5.3 and its proof,
\[
\overline{u}_{m_{\lambda}} \cdot |\emptyset\rangle = |\lambda\rangle \text{ and } \overline{u}_{r m_{\lambda} (m_\lambda)} \cdot |\emptyset\rangle = 0 \text{ for } r > 0.
\]
Furthermore, for each \(r < 0 \), \(\overline{u}_{r m_{\lambda} (m_\lambda)} \cdot |\emptyset\rangle \in \mathbb{Z} |\mu\rangle \) such that \(m_\mu \leq_{\text{deg}} r m_{\lambda} (m_\lambda) \). Then \(m_\mu = \mathcal{F}(m_\mu) \leq_{\text{deg}} \mathcal{F}(r m_{\lambda} (m_\lambda)) = m_{\lambda} \), which implies that \(\mu \leq \lambda \). Since \(M(r m_{\lambda} (m_\lambda)) \) does not have a
composition factor isomorphic to $S_{\lambda - 1}$, μ does not contain a box with color $\lambda_1 - 1$. Thus, $\mu \neq \lambda$ and $\mu < \lambda$.

Finally, by Proposition 7.1, for each $j \in \mathcal{M}_\infty$ with $\mathcal{F}(j) <_{\deg} m_\lambda$, $u_j^{-1} |\emptyset\rangle$ is a \mathbb{Z}-linear combination of $|\mu\rangle$ satisfying $m_\mu <_{\deg} \mathcal{F}(j)$. Thus, $m_\mu <_{\deg} \mathcal{F}(j) <_{\deg} m_\lambda$, which by Lemma 2.1 implies that $\mu < \lambda$. Hence, each $u_j^{-1} |\emptyset\rangle$ is a \mathbb{Z}-linear combination of $|\mu\rangle$ with $\mu < \lambda$. Consequently, $\theta(\lambda) + \sigma(\lambda) = 0$.

Write $\lambda = (\lambda_1, \ldots, \lambda_m)$ with $\lambda_1 \geq \cdots \geq \lambda_m \geq 1$ and set $|\lambda\rangle = \sum_{s=1}^m \lambda_s$. We proceed induction on $|\lambda\rangle$ to show that $\theta(\lambda) + \sigma(\lambda) = 0$. By the definition,

$$\theta(\lambda) = \sum_{s<\ell} \kappa(d_s, d_{\ell}) - \sum_{s=1}^\ell h(d_s),$$

where $\ell = \lambda_1$ is the Loewy length of $M = M(m_\infty^\lambda)$ and $S_{d_s} \cong \text{rad}^{s-1} M/\text{rad}^s M$ for $1 \leq s \leq \ell$. Let $1 \leq t \leq m$ be such that $\lambda_1 = \cdots = \lambda_t > \lambda_{t+1}$ and define $\lambda' = (\lambda_1, \ldots, \lambda_{t-1}, \lambda_{t+1}, \lambda_{t+2})$.

Then $|\lambda'| = |\lambda| - 1$. By the induction hypothesis, we have $\theta(\lambda') + \sigma(\lambda') = 0$.

For each $1 \leq s \leq \ell$, let $d_s' \in NI_\infty$ be defined by setting $S_{d_s'} \cong \text{rad}^{s-1} M'/\text{rad}^s M'$, where $M' = M(m_\infty^\lambda)$. Then $d_{s'} = d_s$ for $1 \leq s < \ell$.

This implies that

$$\sum_{s=1}^\ell h(d_s) - \sum_{s=1}^\ell h(d_{s'}) = h(d_{\ell}) - h(d_{\ell}') = -\delta_{\ell,1}$$

and

$$\sum_{s<\ell} \kappa(d_s, d_{\ell}) - \sum_{s<\ell} \kappa(d_{s'}, d_{\ell}') = \sum_{1 \leq s < \ell} \kappa(d_s, \varepsilon_{\ell-t}).$$

Hence,

$$\theta(\lambda) - \theta(\lambda') = \sum_{1 \leq s < \ell} \kappa(d_s, \varepsilon_{\ell-t}) + \delta_{\ell,1}.$$
By the definition, for each \(i \in I_n = \mathbb{Z}/n\mathbb{Z} \),
\[
K_i |\emptyset\rangle = v^{\delta_i,0} |\emptyset\rangle.
\]
This together with the corollary above implies that \(\bigwedge^\infty \) is a highest weight \(\mathcal{D}(n) \)-module of highest weight \(\Lambda_0 \). Consequently, there is a unique surjective \(\mathcal{D}(n) \)-module homomorphism
\[
\varphi : \mathcal{D}(n)^- \rightarrow \bigwedge^\infty, \quad \eta_{\Lambda_0} \mapsto |\emptyset\rangle.
\]
Theorem 7.3. The homomorphism \(\varphi \) induces an isomorphism of \(\mathcal{D}(n) \)-modules
\[
\bar\varphi : L(\Lambda_0) \rightarrow \bigwedge^\infty.
\]
Proof. By definition, we have
\[
F_i \cdot |\emptyset\rangle = 0 \quad \text{for} \quad i \in I_n \setminus \{0\} \quad \text{and} \quad F_0^2 \cdot |\emptyset\rangle = 0.
\]
Therefore, \(\varphi \) induces a surjective homomorphism
\[
\bar\varphi : L(\Lambda_0) = \mathcal{D}(n)^-/ (\sum_{i \in I_n} \mathcal{D}(n)^- F_i^{\Lambda_0(h_i)+1}) \rightarrow \bigwedge^\infty.
\]
Since \(L(\Lambda_0) \) is simple, we conclude that \(\bar\varphi \) is an isomorphism. \(\square \)

Combining the theorem with Corollary 4.5 gives the decomposition of \(\bigwedge^\infty \) obtained by Kashiwara, Miwa and Stern in [27, Prop. 2.3].

Corollary 7.4. As a \(U'_{\hat{sl}_n} \)-module, \(\bigwedge^\infty \) has a decomposition
\[
\bigwedge^\infty |U'_{\hat{sl}_n} \rangle \cong \bigoplus_{m \geq 0} L_0(\Lambda_0 - m\delta^*) \oplus Z[t].
\]

8. The Canonical Basis for \(\bigwedge^\infty \)

In this section we show that the canonical basis of \(\bigwedge^\infty \) defined in [29] can be constructed by using the monomial basis of the Ringel–Hall algebra of \(\Delta_n \) given in [8]. We also interpret the “ladder method” in [28] in terms of generic extensions defined in Section 2.

Recall that there is a bar-involution \(a \mapsto a = \xi^{-1} \) on \(\mathcal{D}(n)^- \) which takes \(\xi = v^{-1} \) and fixes all \(\bar{u}_\alpha \) for \(\alpha \in NI_n \). Then it induces a semilinear involution on the basic representation \(L(\Lambda_0) \) by setting
\[
\bar{a} \eta_{\Lambda_0} = \bar{a} \eta_{\Lambda_0} \quad \text{for all} \quad a \in \mathcal{D}(n)^-.
\]
On the other hand, by [29], there is a semilinear involution \(x \mapsto \xi x \) on \(\bigwedge^\infty \) which, by [45], satisfies
\begin{itemize}
 \item[(i)] \(|\emptyset\rangle = |\emptyset\rangle \),
 \item[(ii)] \(ax = \bar{a} \xi x \) for all \(a \in \mathcal{D}(n)^- \) and \(x \in \bigwedge^\infty \).
\end{itemize}
Therefore, the isomorphism \(L(\Lambda_0) \rightarrow \bigwedge^\infty \) given in Theorem 7.3 is compatible with the bar-involutions.

It is proved in [29, Th. 3.3] that for each \(\lambda \in \Pi \),
\[
|\lambda\rangle = |\lambda\rangle + \sum_{\mu < \lambda} a_{\mu,\lambda} |\mu\rangle, \quad \text{where} \quad a_{\mu,\lambda} \in \mathbb{Z}.
\]
Then applying the standard linear algebra method to the basis \(\{ |\lambda\rangle \mid \lambda \in \Pi \} \) in [31] (or see [11] for more details) gives rise to an “IC basis” \(\{ b_\lambda \mid \lambda \in \Pi \} \) which is characterized by
\[
b_\lambda = b_\lambda \quad \text{and} \quad b_\lambda \in |\lambda\rangle + \sum_{\mu < \lambda} \xi^{-1} Z[v^{-1}]|\mu\rangle,
\]
The basis \(\{ b_\lambda \mid \lambda \in \Pi \} \) is called the canonical basis of \(\bigwedge^\infty \). In other words, the basis elements \(b_\lambda \) are uniquely determined by the polynomials \(a_{\mu,\lambda} \).
Remark 8.1. Varagnolo and Vasserot [45] have conjectured that
\[b_m^{-} \cdot |\emptyset\rangle = b_{\lambda} \] for each \(\lambda \in \Pi \).
This conjecture was proved by Schiffmann [40].

In the following we provide a way to deduce (8.0.1) by using the monomial basis of the Ringel–Hall algebra of \(\Delta_n \) given in [8]. As in [8, Sect. 3], set
\[I^e = I_n \cup \{ \text{all sincere vectors in } \mathbb{N}I_n \} \]
and consider the set \(\Sigma \) of all words on the alphabet \(I \). Since \(\mathcal{D}(n)^- \) is isomorphic to the opposite Ringel–Hall algebra of \(\Delta_n \), we define
\[M \ast' N = N \ast M. \]
This gives the map
\[\varphi^\text{op} : \Sigma \rightarrow \mathcal{M}, \ w = a_1a_2\cdots a_t \mapsto S_{a_1} \ast' S_{a_2} \ast' \cdots \ast' S_{a_t}. \]
By [8, Sect. 9], for each \(m \in \mathcal{M} \), there is a distinguished word \(w_m \in (\varphi^\text{op})^{-1}(m) \) which defines a monomial \(m^{(w_m)} \) on \(\bar{u}_\alpha \) with \(\alpha \in \bar{I} \) such that
\[m^{(w_m)} = \bar{u}_m + \sum_{p < \deg m} \theta_{p,m} \bar{u}_p \text{ for some } \theta_{m,p} \in \mathbb{Z}; \]
see [8, (9.1.1)]. If \(m = m_\lambda \) for some \(\lambda \in \Pi \), we simply write \(w_{m_\lambda} = w_\lambda \). Thus,
\[m^{(w_\lambda)} = \bar{u}_{m_\lambda} + \sum_{p < \deg m_\lambda} \theta_{p,m_\lambda} \bar{u}_p. \]
This together with Proposition 7.1 and Corollary 7.2 implies that
\[m^{(w_\lambda)}|\emptyset\rangle = |\lambda\rangle + \sum_{\mu < \lambda} \tau_{\mu,\lambda}|\mu\rangle, \]
where \(\tau_{\mu,\lambda} \in \mathbb{Z} \). Since the monomials \(m^{(w_\lambda)} \) are bar-invariant, we deduce that for each \(\lambda \in \Pi \),
\[|\lambda\rangle = |\lambda\rangle + \sum_{\mu < \lambda} a'_{\mu,\lambda}|\mu\rangle \text{ for some } a'_{\mu,\lambda} \in \mathbb{Z}. \]
Comparing with (8.0.1) gives that
\[a_{\mu,\lambda} = a'_{\mu,\lambda} \text{ for all } \mu < \lambda. \]
In case \(\lambda \) is \(n \)-regular, then \(m_\lambda \) is aperiodic and the word \(w_\lambda \) can be chosen in \(\Omega \), the subset of all words on the alphabet \(I_n = \mathbb{Z}/n\mathbb{Z} \); see [8, Sect. 4]. In other words, \(m^{(w_\lambda)} \) is a monomial of the divided powers \(\bar{u}_i^{-}(t) = F_i(t) \) for \(i \in I_n \) and \(t \geq 1 \). We now interpret the “ladder method” in [28, Sect. 6] in terms of the generic extension map. Let \(\lambda = (\lambda_1, \ldots, \lambda_t) \in \Pi \) be \(n \)-regular. Recall the corresponding nilpotent representation
\[M(m_\lambda) = \bigoplus_{a=1}^t S_{1-a}[\lambda_a], \]
where \(1 - a \) is viewed as an element in \(I_n \). Take \(1 \leq s \leq t \) with \(\lambda_1 = \cdots = \lambda_s > \lambda_{s+1} \) (\(\lambda_{t+1} = 0 \) by convention) and let \(k \geq 0 \) be maximal such that
\[\lambda_{s+l(n-1)+1} = \cdots = \lambda_{s+(l+1)(n-1)+1} \text{ and } \lambda_{s+l(n-1)+1} = \lambda_{s+l(n-1)+1} + 1 \text{ for } 0 \leq l \leq k - 1. \]
Let \(i_1 \in I \) be such that \(\text{soc } (S_{1-a}[\lambda_s]) = S_{i_1} \). Then for each \(a = s + l(n - 1) \) with \(0 \leq l \leq k \),
\[\text{soc } (S_{1-a}[\lambda_a]) = S_{i_1}. \]
Define $\mu = (\mu_1, \ldots, \mu_t) \in \Pi$ by setting
\[
\mu_a = \begin{cases}
\lambda_a - 1, & \text{if } a = s + l(n-1) \text{ for some } 0 \leq l \leq k; \\
\lambda_a, & \text{otherwise}.
\end{cases}
\]
It is easy to see from the construction that μ is again n-regular. Moreover, by applying an argument similar to that in the proof of [5, Prop. 3.7],
\[(k+1)S_1 \ast \cdots \ast M(m_\mu) = M(m_\mu) \ast (k+1)S_1 = M(m_\lambda).
\]
Repeating the above process, we finally obtain a sequence i_1, \ldots, i_d in I_n and positive integers $k_1 = k+1, \ldots, k_d$ such that
\[(k_1S_1) \ast \cdots \ast (k_dS_d) = M(m_\lambda).
\]
In other word, the word $w_\lambda := i_1^{k_1} \cdots i_d^{k_d}$ lies in $(G^\text{op})^{-1}(m_\lambda)$. It can be also checked that the word w_λ is distinguished. Thus, the corresponding monomial
\[m_{(w_\lambda)} = (u_{i_1}^{-1})^{(k_1)} \cdots (u_{i_d}^{-1})^{(k_d)} = F_{i_1}^{(k_1)} \cdots F_{i_d}^{(k_d)}
\]
gives rise to the equality (8.1.2) for the element $m_{(w_\lambda)}|\emptyset\rangle$. We remark that $m_{(w_\lambda)}|\emptyset\rangle$ coincides with the element $A(\lambda)$ constructed in [28, (8)] by using the “ladder method” of James and Kerber [22].

REFERENCES

[1] S. Ariki, On the decomposition numbers of the Hecke algebra of $G(m,1,n)$, J. Math. Kyoto Univ. 36 (1996), 789–808.
[2] S. Ariki, Representations of quantum algebras and combinatorics of Young tableaux, University Lecture Series, 26. American Mathematical Society, Providence, RI, 2002.
[3] K. Bongartz, On degenerations and extensions of finite dimensional modules, Adv. Math. 121 (1996), 245–287.
[4] K. Bongartz and P. Gabriel, Covering spaces in representation-theory, In: Representations of algebras, Lecture Notes in Math. 903, 68–105, Berlin-Heidelberg-New York, 1981.
[5] B. Deng and J. Du, Monomial bases for quantum affine \tilde{sl}_n, Adv. Math. 191 (2005), 276–304.
[6] B. Deng, J. Du and Q. Fu, A double Hall algebra approach to affine quantum Schur–Weyl theory, London Math. Soc. Lect. Note Series Volume 401, Cambridge University Press, 2012.
[7] B. Deng, J. Du and A. Mah, Generic extensions and composition monoids of cyclic quivers, Contem. Math. vol. 602, 2013, 99–114.
[8] B. Deng, J. Du and J. Xiao, Generic extensions and canonical bases for cyclic quivers, Can. J. Math. 59 (2007), 1260–1283.
[9] B. Deng and J. Xiao, On double Ringel–Hall algebras, J. Algebra 251 (2002), 110–149.
[10] V. G. Drinfeld, A new realization of Yangians and quantized affine algebras, Soviet Math. Dokl. 32 (1988), 212–216.
[11] J. Du, IC bases and quantum linear groups, Proc. Sympos. Pure Math. 56 (1994), 135–148.
[12] E. Frenkel and A. Mukhin, The Hopf algebra Rep $U_q(\hat{\mathfrak{gl}}_\infty)$, Sel. math., New Ser. 8 (2002), 537–635.
[13] P. Gabriel, The universal cover of a representation-finite algebra, In: Representations of algebras, Lecture Notes in Math. 903, 68–105, Berlin-Heidelberg-New York, 1981.
[14] F. Goodman and H. Wenzl, Crystal bases of quantum affine algebras and affine Kazhdan–Lusztig polynomials, Internat. Math. Res. Notices 5 (1999), 251–275.
[15] J. A. Green, Hall algebras, hereditary algebras and quantum groups, Invent. math. 120 (1995), 361–377.
[16] J. Y. Guo, The Hall polynomials of a cyclic serial algebra, Comm. Algebra 23 (1995), 743–751.
[17] T. Hayashi, q-analogues of Clifford and Weyl algebras-spinor and oscillator representations of quantum enveloping algebras, Comm. Math. Phys. 127 (1990), 129–144.
[18] J. Hong and O. Yacobi, Polynomial representations and categorifications of Fock space, Algebr. Represent. Theory 16 (2013), 1273–1311.
[19] A. Hubery, Symmetric functions and the center of the Ringel–Hall algebra of a cyclic quiver, Math. Z. 251 (2005), 705–719.
[20] A. Hubery, Ringel-Hall algebras of cyclic quivers, São Paulo J. Math. Sci. 4 (2010), no. 3, 351–398.
[21] A. Hubery, Three presentations of the Hopf algebra $U_q(\hat{\mathfrak{gl}}_n)$, preprint.
[22] G. James and A. Kerber, The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications 16. Addison-Wesley Publishing Co., Reading, Mass., 1981.
[23] K. Jeong, S. J. Kang, and M. Kashiwara, Crystal bases for quantum generalized Kac–Moody algebras, Proc. London Math. Soc. 90 (2005), no. 3, 395–438.
[24] A. Joseph, Quantum groups and their primitive ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 29, Springer-Verlag, Berlin, 1995.
[25] S. J. Kang, Quantum deformations of generalized Kac–Moody algebras and their modules, J. Algebra 175 (1995), no. 3, 1041–1066.
[26] M. Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465–516.
[27] M. Kashiwara, T. Miwa, and E. Stern, Decomposition of q-deformed Fock spaces, Selecta Math. (N.S.) 1 (1995), 787–805.
[28] A. Lascoux, B. Leclerc and J .-Y. Thibon, Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Comm. Math. Phys. 181 (1996), 205–263.
[29] B. Leclerc and J.-Y. Thibon, Canonical bases of q-deformed Fock spaces, Internat. Math. Res. Notices 1996, 447-C456.
[30] B. Leclerc, J.-Y. Thibon and E. Vasserot, Zelevinsky’s involution at roots of unity, J. reine angew. Math. 513 (1999), 33–51.
[31] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447–498.
[32] G. Lusztig, Quivers, perverse sheaves, and the quantized enveloping algebras, J. Amer. Math. Soc. 4 (1991), 366–421.
[33] G. Lusztig, Affine quivers and canonical bases, Inst. Hautes Études Sci. Publ. Math. 76 (1992), 111-163.
[34] G. Lusztig, Introduction to Quantum Groups, Birkhäuser, Boston, 1993.
[35] I. G. MacDonald, Symmetric Functions and Hall Polynomials, 2nd ed., Clarendon Press, Oxford, 1995.
[36] K. C. Misra and T. Miwa, Crystal base for the basic representation of \(U_q(\mathfrak{sl}_n) \), Commun. Math. Phys. 134 (1990), 79–88.
[37] M. Reineke, Generic extensions and multiplicative bases of quantum groups at \(q = 0 \), Represent. Theory 5 (2001), 147–163.
[38] C. M. Ringel, Hall algebras and quantum groups, Invent. math. 101 (1990), 583–592.
[39] C. M. Ringel, The composition algebra of a cyclic quiver, Proc. London Math. Soc. 66 (1993), 507–537.
[40] O. Schiffmann, The Hall algebra of a cyclic quiver and canonical bases of Fock spaces, Internat. Math. Res. Notices (2000), 413–440.
[41] O. Schiffmann, Quivers of type A, flag varieties and representation theory, Fields Inst. Commun. 40, 453–479, Amer. Math. Soc., Providence, RI, 2004.
[42] P. Shan, Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), 147–182.
[43] C. Stroppel and B. Webster, Quiver Schur algebras and q-Fock space, arXiv:1110.1115v2.
[44] J. Xiao, Drinfeld double and Ringel-Green theory of Hall algebras, J. Algebra 190 (1997), 100–144.
[45] M. Varagnolo and E. Vasserot, On the decomposition matrices of the quantized Schur algebra, Duke Math. J. 100 (1999), 267–297.
[46] G. Zwara, Degenerations for modules over representation-finite biserial algebras, J. Algebra 198 (1997), 563–581.

YAU MATHEMATICAL SCIENCES CENTER, TSINGHUA UNIVERSITY, BEIJING 100084, CHINA
E-mail address: bmdeng@math.tsinghua.edu.cn

DEPARTMENT OF MATHEMATICAL SCIENCES, TSINGHUA UNIVERSITY, BEIJING 100084, CHINA
E-mail address: jxiao@math.tsinghua.edu.cn