Non-tuberculous mycobacteria (NTM) are ubiquitously present in the environment, but NTM diseases occur infrequently. NTM are generally considered to be less virulent than *Mycobacterium tuberculosis*, however, these organisms can cause diseases in both immunocompromised and immunocompetent hosts. As compared to tuberculosis, person-to-person transmission does not occur except with *M. abscessus* NTM species among cystic fibrosis patients. Lung is the most commonly involved organ, and the NTM-pulmonary disease (NTM-PD) occurs frequently in patients with pre-existing lung disease. NTM may also present as localized disease involving extrapulmonary sites such as lymph nodes, skin and soft tissues and rarely bones. Disseminated NTM disease is rare and occurs in individuals with congenital or acquired immune defects such as HIV/AIDS. Rapid molecular tests are now available for confirmation of NTM diagnosis at species and subspecies level. Drug susceptibility testing (DST) is not routinely done except in non-responsive disease due to slowly growing mycobacteria (*M. avium* complex, *M. kansasii*) or infection due to rapidly growing mycobacteria, especially *M. abscessus*. While the decision to treat the patients with NTM-PD is made carefully, the treatment is given for 12 months after sputum culture conversion. Additional measures include pulmonary rehabilitation and correction of malnutrition. Treatment response in NTM-PD is variable and depends on isolated NTM species and severity of the underlying PD. Surgery is reserved for patients with localized disease with good pulmonary functions. Future research should focus on the development and validation of non-culture-based rapid diagnostic tests for early diagnosis and discovery of newer drugs with greater efficacy and lesser toxicity than the available ones.

Key words Diagnosis - non-tuberculous mycobacteria pulmonary disease - NTM - NTM extrapulmonary disease - treatment
surrounded by a thick outer lipid-rich coating that enables NTM attachment to rough surfaces and by offering resistance to antibiotics and disinfectants, helping NTM survival in low oxygen and carbon concentrations and in other adverse conditions4. Based on their growth characteristics from the subculture, NTM are divided into rapidly growing mycobacteria (RGM; <7 days) and slowly growing mycobacteria (SGM; ≥7 days)5 (Table I). At present, there is no evidence for the latency of NTM6. Taxonomy of the genus \textit{Mycobacterium} includes about 200 species and 13 subspecies7-9.

In high tuberculosis (TB)-burden countries, diagnosis of NTM is rarely made because of lack of awareness among healthcare providers about the NTM diseases and poor access to adequate laboratory resources including mycobacterial culture and molecular methods for identification or speciation10. In these resource-limited settings, there is a heavy reliance on smear microscopy for the diagnosis of TB, and the diagnosis of NTM is frequently missed and these patients are empirically treated as drug-sensitive and -resistant TB11.

Epidemiology

NTM disease burden

Table II describes the distribution of various NTM species in the environment2,3. Table III details the major differences between NTM and \textit{Mtb}1-6,9,12-20. Although recent reports regarding the transmission of \textit{M. abscessus} and \textit{M. massiliense} have not proven person-to-person transmission, but these are highly suggestive of indirect transmission among cystic fibrosis (CF) patients21. Systematic reporting of NTM diagnosis is not done because the disease is not notifiable to public health authorities in several countries10. NTM lung infection rates, defined as individuals with NTM-positive cultures and those with defined NTM pulmonary disease (NTM-PD), increase with age22 and differ considerably among various countries23-25. Many studies have suggested an increase in the prevalence rates of NTM over the last four decades22,25-36. The data from the USA suggest that the current prevalence of NTM-positive culture ranges between 1.4 and 6.6/100,000 individuals26, whereas UK data suggest that NTM-positive culture incidence has increased from 4/100,000 to 6.1/100,000 individuals between 2007 and 201235. A study from Canada has reported a significant increase in the prevalence of NTM-PD from 29.3 cases/100,000 in 1998-2002 to 41.3/100,000 individuals tested in 2006-201036. Several factors that have contributed to this increase in the incidence and prevalence are listed in Box I37,38. Published reports on rate of NTM isolation from several countries are summarized in Table IV22,29,30,39-63. Details of 13 Indian studies published between 1985 and 2019 are summarized in Table V59-71. Most of these studies have reported NTM isolation rates from laboratories without describing clinical features and treatment details. Two studies were done exclusively on extrapulmonary specimens and 11 on both pulmonary and extrapulmonary specimens. NTM isolation prevalence varied between 0.38 and 23.7 per cent. Six of these 13 studies reported NTM prevalence ≤1 per cent among TB suspects. Almost all except one study have not provided treatment outcomes. Most of the studies (11/13) were hospital based and had selection bias. A large community-based study from south India conducted at four sites in the pre-HIV era has reported NTM isolation prevalence between 4.5 and 8.6 per cent in the sputum specimens. This variable NTM prevalence can be attributed to the following factors: (i) differences

Table I. Common non-tuberculous mycobacteria (NTM) species causing human diseases

Slowly growing NTM (showing growth in ≥7 days on subculture)
1. Photochromogens (produce pigment on exposure to light)
\textit{Mycobacterium kansasi}
\textit{M. marinum}
2. Scotochromogens (produce pigment when grown in dark)
\textit{M. scrofulaceum}
3. Non-chromogens (growth not pigmented)
\textit{M. avium} complex (MAC)
\textit{M. avium}
\textit{M. intracellulare}
\textit{M. chimaera}
\textit{M. ulcerans}
\textit{M. xenopi}
\textit{M. simiae}
\textit{M. malmöense}
\textit{M. szulgai}
\textit{M. haemophilum}

Rapidly growing NTM (showing growth in <7 days on subculture)
\textit{M. abscessus}
\textit{M. abscessus} subspecies \textit{abscessus}
\textit{M. abscessus} subspecies \textit{bolletii}
\textit{M. abscessus} subspecies \textit{massiliense}
\textit{M. fortuitum}
\textit{M. chelonae}

Source: Ref. 5
Table II. Environmental niches of non-tuberculous mycobacteria (NTM)

Types of sources	Sources	Commonly isolated NTM
Natural water sources	Streams, rivers, lakes, ponds and seawater	MAC, Mycobacterium fortuitum, M. chelonae, M. kansasii, M. gordonae, M. xenopi, M. marinum
Man-made water sources	Drinking water supply pipelines	MAC, M. kansasii, M. gordonae, M. xenopi, M. abscessus, M. fortuitum, M. chelonae, M. scrofulaceum, M. szulgai
Cold and hot water tanks	Hot tubs, indoor and outdoor pools	
Household plumbing, showerheads and faucets	Ice machines and commercial ice	
Hospital plumbing and water supply	Bottled drinking water	
Aerosols	Showers, hot-tubs, humidifiers, indoor swimming pools, heater-cooler units in hospitals	MAC, M. kansasii, M. gordonae, M. abscessus
Other sources*	Natural soil dust, potting soil, peat moss and domestic dust	MAC, M. fortuitum, M. chelonae, M. kansasii

*Contaminated tattoo inks: M. haemophilum skin disease; contaminated metal working fluids: M. immunogenum skin disease; MAC, Mycobacterium avium complex. Source: Refs 2, 3

Table III. Differences between non-tuberculous mycobacteria (NTM) and Mycobacterium tuberculosis (Mtb)

Characteristics	NTM	Mtb
Nomenclature	NTM have several names: MOTT, atypical mycobacteria, anonymous mycobacteria and environmental mycobacteria. The preferred name is NTM.	Mtb is an important member of MTBC responsible for human TB. Other members include M. africanum, M. bovis, M. canetti, M. caprae and M. pinnipedia.
NTM species distribution	Nearly 200 species are described using DNA sequencing (a new species is defined as >1% difference in nucleotides); NTM species have regional variation due to climatic and geographical factors.	Mtb strains [Beijing (most pathogenic), Cameroon, CAS, EAI, Haarlem, LAM, Manu (Indian), and S] have geographical variation.
Biochemical tests	No single biochemical test is available for the diagnosis of NTM species. Some of the NTM species show positive results with niacin accumulation test (M. simiae, M. chelonae), nitrate reduction test (M. ulcerans, M. szulgai, M. fortuitum, M. smegmatis, M. kansasii), catalase test (M. fortuitum, M. chelonae, M. abscessus, M. ulcerans, M. szulgai, M. kansasii), citrate utilization test (M. chelonae, M. smegmatis), urea hydrolysis test (M. kansasii, M. marinum, M. simiae, M. szulgai, M. scrofulaceum), McConkey agar (without crystal violet) (M. fortuitum, M. abscessus) test and tellurite reduction (M. avium, M. intracellulare, M. simiae, M. fortuitum, M. abscessus).	Mtb is niacin positive, reduces nitrate and is negative for heat-stable catalase test.
Microscopic morphology	Absence of characteristics serpentine cords in acid-fast smears.	Characteristic serpentine cording seen as rope-like aggregates in which long axis of the bacilli is parallel to the long axis of the cord in acid-fast smears.
Growth characteristics in cultures	Rapidly growing (<7 days) and slowly growing (≥7 days) mycobacteria, growth rates are slower than other bacteria (Pseudomonas aeruginosa and Escherichia coli).	Mtb are slowly growing mycobacteria and take ~2 wk to grow. Ordinary bacteria may take ~20 min to 12-24 h in the laboratory. Mtb colonies are rough, cauliflower-like and light buff in colour.

Contd...
Characteristics	NTM	Mtb
Differential identification	Difficult to differentiate NTM from Mtb only on the basis of positive acid-fast smear. Culture is important in differentiating from *P. aeruginosa, Staphylococcus aureus, Nocardia, Aspergillus and Sporothrix*, etc.	Both smear and culture should be done.
Transmission	Person-to-person transmission does not occur except for *M. abscessus* among cystic fibrosis patients.	*Mtb* is highly transmissible through airborne route especially in PTB with cavitary disease and high bacillary loads.
Route of entry	Infection occurs mainly by inhalation, ingestion or direct inoculation. Airborne NTM are a major source of entry for NTM-PD. In advanced HIV/AIDS, gut colonization with subsequent haematogenous dissemination occurs.	Smaller cough droplet nuclei (<1-10 µM) carrying *Mtb* reach terminal bronchioles and alveoli and establish infection.
Pathogenicity potential	Opportunistic organisms	Highly pathogenic and obligate parasites
Virulence	Generally, NTM have low virulence. *M. kansasii* is more virulent among NTM.	Highly virulent
Latent infection	No evidence of latent NTM infection	Systematic data are available regarding LTBI especially in low TB-burden countries. Efforts should be made to differentiate between LTBI and active disease in high TB burden settings.
Case notification	It is not essential to notify laboratory confirmed, newly diagnosed NTM cases. NTM disease notification is practiced only in a few countries.	Systematic TB notification is encouraged and the global TB report is published annually on a regular basis by the World Health Organization.
Pulmonary: extrapulmonary disease	Pulmonary: Extrapulmonary 80-90%; 10-20% in HIV-negative. Disseminated NTM disease occurs in severely immunocompromised individuals such as advanced HIV/AIDS.	Pulmonary 80-85%; extrapulmonary 15-20% in HIV-negative and pulmonary 40-50%; extrapulmonary 50-60% in HIV/AIDS.
disease proportions		
Risk factors	NTM-PD usually occurs in individuals with pre-existing lung disease or in those with quantitatively impaired mucociliary function or in individuals who are heterozygous for CFTR mutations. Lady Windermere syndrome occurs in post-menopausal non-smoking females with nodular-bronchiectasis, several skeletal abnormalities, increased adiponectin and decreased leptin and oestrogen levels, abnormalities in fibrillin gene, high prevalence of gastroesophageal reflux disease and increased susceptibility to NTM infections.	TB can involve both healthy and destroyed lungs. Risk factors include: malnutrition, tobacco smoking, chronic alcohol intake, diabetes mellitus, overcrowding, HIV/AIDS, head or neck cancer, leukaemia, or Hodgkin’s disease, drugs including corticosteroids, TNF-α inhibitors or receptor blocker.
NTM species predilection for various organs	Pulmonary: MAC, *M. kansasii, M. xenopi, M. malmoense, M. abscessus, M. fortuitum M. simiae*	
Skin: *M. ulcerans, M. marinum, M. abscessus, M. chelonae, M. fortuitum*
Soft tissues: *M. chelonae* and *M. fortuitum*
Lymphadenitis: MAC but can occur with other NTM species also.
Disseminated NTM disease: Most commonly due to MAC but other species can also produce disseminated disease. | No such predilection for body organs is known in TB. |

Contd...
Characteristics

Characteristics	NTM	Mtb
Radiographic patterns in MAC-PD	Three types of radiographic patterns occur in MAC-MTB:	PTB
	Cavitary: In elderly smokers with COPD patients.	Primary complex (usually in children)
	NB: Predominantly in post-menopausal non-smoking females;	Progressive pulmonary disease
	bilateral bronchiectasis, multiple nodules and	Post-primary PTB: Cavitary, atelectasis, consolidation
	tree-in-bud appearance on HRCT, some may also have	Miliary PTB
	small cavitory lesions.	Sequelae such as fibrotic and calcified lesions
Clinical relevance of NTM isolates in	Clinical relevance of isolated NTM species versus activity of the	Mtb produces both latent TB infection and
respiratory specimens	underlying pulmonary disease should be assessed.	active disease. Active TB disease must be ruled out appropriately
	Colonization in the host and contamination in the laboratory must	before starting the treatment.
	be ruled out. Causality association of the particular isolated	
	NTM species with the pulmonary disease should be carefully	
	established before starting the treatment.	
Drug susceptibility testing (DST)	DST for NTM is controversial because of poor correlation between	Universal DST should be performed and
	in vitro DST pattern and in vivo treatment response and outcomes.	treatment should be carried out as per sensitivity profile of Mtb.
	According to CLSI (2018) guidelines, initial and recurrent MAC	DS-TB, H monoresistance, MDR-TB and XDR-TB should be treated with
	and M. kansasii be tested for DST.	as per National Guidelines, and tolerance of drugs.
	Both phenotypic and genotypic DST are performed. For MAC, perform	
	DST against macrolides (clarithromycin as a class agent) and	
	amikacin; for M. kansasii, against rifampicin and clarithromycin.	
	RGM species (and subspecies) show different drug resistance	
	patterns and DST should be selectively tested for various	
	antibiotics (macrolides, amikacin, tobramycin, imipenem,	
	trimethoprim-sulphamethoxazole, doxycycline, minocycline,	
	tigecycline, cefoxitin linezolid) DST, erm (41) gene status should	
	be done in M. abscessus. Information about erm (41) gene and	
	phenotypic DST for clarithromycin should be done on days 3-5 and	
	14 in case of M. abscessus.	
Treatment	ATS (2007)\(^1\) and BTS (2017)\(^2\) ATs/ERS/ESCMID/IDSA\(^3\)	National guidelines should be followed for treatment of drug
	guidelines on NTM diseases should be followed.	sensitive and drug-resistant TB.
Treatment outcomes	Treatment outcomes differ among NTM species and subspecies.	Globally, treatment outcomes in case of drug-sensitive TB are good.
Prevention	Exposure to NTM from the environmental sources especially	Treatment of drug-resistant TB is still a challenge and global
	household water systems, hospital settings and soil should be	rate of successful treatment is 56% only. With newer drug regimen(s),
	avoided. In HIV/AIDS patients (CD4 T-cells counts <50/ μl),	treatment success rates are likely to improve in future.
	antimicrobial prophylaxis includes administration of azithromycin	Exposure to smear positive PTB should
	(1200 mg/weekly) or clarithromycin (500 mg twice daily) or	be avoided to halt TB transmission.
	rifabutin (300 mg/day) along with antiretroviral drugs till CD4 cell	Chemoprophylaxis for latent TB infection (active TB disease must be
	count is >100 cells/μl for three months.	ruled out in high TB-burden countries, various treatment options
		include: isoniazid daily for 6 or 9 months, or combination of
		rifampicin and isoniazid once weekly for 12 wk or combination of
		rifampicin and isoniazid daily for 3-4 months or rifampicin alone
		daily for four months.

Contd...
No vaccine is available at present. BCG vaccine is recommended in high TB burden countries to prevent severe form of TB (miliary and central nervous system TB); newer TB vaccines such as M72/AS01, M. vaccae, MVA85A etc., are in clinical trials. M72/AS01 was significantly protective against TB disease in a Phase IIb trial in Kenya.20

Disseminated disease: Involvement of two or more non-contiguous body sites through haematogenous route. Note: Underlying oesophageal disease must be ruled out in NTM-PD due to RGM especially M. fortuitum.

Source: Refs 1-6, 9, 12-20

Table IV. Global prevalence of pulmonary non-tuberculous mycobacteria (NTM) isolation and NTM disease

Zone	Countries	NTM isolation prevalence per 100,000 individuals	NTM disease prevalence per 100,000 individuals	Commonly isolated NTM species
North America	Canada16	22.2	9.08	MAC, Mycobacterium xenopi, M. abscessus, M. fortuitum, M. chelonae, M. gordonae
	USA			
	Oregon19	12.7	8.6	M. chelonae, M. gordonae
	California19	191	NR	MAC, M. kansasii, M. abscessus, M. xenopi, M. fortuitum
	Hawaii22	396	NR	
South America	Brazil40	1.31	0.25	MAC, M. kansasii, M. abscessus, M. xenopi, M. fortuitum
Europe	Ireland41	1.9	0.2	MAC, M. kansasii, M. xenopi, M. malmoense, M. marinum, M. szulgai, M. gordonae
	Scotland42	NR	3.1	M. abscessus, M. chelonae
	The United Kingdom43	2.9	1.7	
	Denmark34	2.5	1.1	
	Netherlands44	6.3	1.4	
	France45	NR	0.7	
	Greece46	0.7		
	Croatia47	5.3	0.75	
Oceania	Australia48	5.9	0.56	MAC, M. kansasii, M. abscessus, M. fortuitum, M. simiae
	New Zealand49	3.7	0.56	
Africa	Kenya50	1.7%	NR	MAC, M. abscessus, M. malmoense, M. marinum, M. xenop, M. scrofulaceum
	Niger151	4.3%	NR	M. simiae, M. gordonae
	Uganda52	4.3%	NR	
	Burkina Faso53*	20.6%	NR	
Asia	Japan59	33-65	NR	MAC, M. abscessus, M. fortuitum, M. simiae, M. szulgai, M. chelonae, M. gordonae
	South Korea54	39.6	NR	
	China55	6.3%	NR	
	Taiwan50	7.94	NR	
	Singapore56	511		
	Iran57,58*	0.7 to 8%	NR	
	India59-63*	0.2 to 5.9%	0.8%	

*Data presented in % is the isolation of NTM among TB suspected individuals in high TB burden countries

Note: NTM isolation data for India provided from Refs 59-63 and disease prevalence from Ref. 61

NR, not reported; MAC, Mycobacterium avium complex
Box I. Factors contributing to increased non-tuberculous mycobacteria burden

1. Genetic evolution in NTM due to mutations leading to increased virulence
2. Environmental and climatic changes due to increased human-manufactured infrastructure
3. Changes in host immunity due to increased life expectancy and immunocompromised population
4. Increased incidence of chronic lung disease
5. Decreasing herd immunity due to declining TB burden especially in high-income countries
6. Widespread availability of CT scanning and laboratory infrastructure for NTM diagnosis
7. Increasing awareness among medical personnel about NTM disease
8. Sharp rise in NTM publications by laboratories and practicing physicians

CT, computed tomography; NTM, non-tuberculous mycobacteria. Source: Ref. 38

Table V. Summary of Indian studies on non-tuberculous mycobacteria (NTM)

Study details	Methods of NTM detection and identification and results	Identified NTM species	Limitations
North zone			
Myneedu et al\(^a\), New Delhi	ZN staining	21 NTM species were identified, % (n)	
Hospital-based prospective study (2009-2011)	Liquid culture (MGIT 960)	Mycobacterium simiae 11.3 (7)	Clinical relevance of isolated NTM is not established.
Total TB suspects=15,581	Biochemical tests	M. avium 9.7 (6)	HIV status of patients not provided.
PTB=12,466	Prevalence: 0.38% (60/15581) in TB suspects	M. gordonae 8.1 (5)	Molecular methods such as PCR and gene sequencing not performed for NTM species identification.
EPTB=3,115	Other results: Pulmonary NTM: 45% (27/60)	M. kansasii 8.1 (5)	Treatment details including outcomes not provided.
HIV status: Not available	Extrapulmonary NTM: 55% (33/60)	M. fortuitum 8.1 (5)	
		Others: M. chelonae 8.1 (5), M. phlei 8.1 (5), M. terrae 6.4 (4), M. szulgai 3.2 (2), M. vaccae 3.2 (2), M. flavescens 3.2 (2), M. trivale 3.2 (2), M. malmoense, M. scrofulaceum, M. intracellulare, M. xenopi, M. ulcerans, M. tusciae, M. triplex, M. septicum, M. mucogenicum each 1.6 (1)	
Jain et al\(^a\), New Delhi	ZN staining	M. kansasii 30 (4)	Retrospective study on culture isolates.
Hospital-based retrospective study (2011-2012)	Liquid culture (MGIT 960)	M. chelonae 23.1 (3)	Clinical relevance of isolated NTM not determined.
Total TB suspects=436	PNB-LJ culture	M. xenopi 15.4 (2)	Gene sequencing not used for speciation.
PTB=237	ICA (SD MPT64TB Ag Kit)	M. scrofulaceum 7.7 (1)	Treatment details including outcomes not provided.
EPTB=199	Multiplex-PCR	M. avium 7.7 (1)	
HIV status: All negative	Prevalence: 2.98% (13/436)	M. asiaticum 7.7 (1)	
	Other results: Pulmonary NTM: 69.2% (9/13)	M. fortuitum 7.7 (1)	
	Extrapulmonary NTM: 30.8% (4/13)		
Maurya et al\(^a\), Lucknow, Uttar Pradesh	ZN staining	M. fortuitum 27.5 (17)	Biased selection of population (EPTB suspects).
Hospital-based prospective study (2015)	Liquid culture (BacT/ALERT 3D)	M. intracellulare 20.9 (13)	Molecular techniques such as gene amplification and gene sequencing not used for NTM speciation.
EPTB suspects only=756	ICA (SD MPT64 TB Ag Kit)	M. abscessus 14.6 (9)	Treatment details including outcomes not provided.
HIV status: Not available	Biochemical tests	M. chelonae 12.9 (8)	
	LPA (CM/AS Kit)	Others: MAC 8.1 (5), M. kansasii 4.8 (3), M. gordonae 3.2 (2), M. interjectum 3.2 (2) and other species 4.8 (3)	

Contd...
Study details	Methods of NTM detection and identification and results	Identified NTM species	Limitations
Umrao et al*, Lucknow, Uttar Pradesh Hospital-based prospective study (2013-2015) TB suspects=4,620 HIV status: Available	ZN staining Liquid culture (BacT/ALERT 3D) ICA (SD MPT64TB Ag Kit) Biochemical tests LPA (CM/AS Kit)	**M. abscessus** 31.3 (82) **M. fortuitum** 22 (59) **M. intracellularre** 13.6 (36) **M. chelonea** 9.1 (24) **M. avium** 7.2 (19) **M. interjectum** 3.4 (9) **M. simiae** 3.4 (9) Others: **M. gordonae** 2.6 (7), **M. scrofulaceum** 1.9 (5), **M. kansasii** 1.9 (5), **M. szulga** 1.7 (4), **M. malmoense** 0.7 (2), **M. intermedium** 0.7 (2)	Gene sequencing not performed for NTM speciation. HIV status of the patients not provided. Clinical data of the patients not available. Treatment details including outcomes not provided.
Sairam et al*, New Delhi Hospital-based retrospective study (2015-2017) Total TB suspects=877 HIV status: Not available	ZN staining GeneXpert MTB/RIF Culture	**M. intracellularre** 23.5 (8) **M. kansasii** 20.5 (7) **M. abscessus** 14.7 (5) **M. fortuitum** 2.9 (1) **M. chelonea** 2.9 (1) **M. interjectum** 2.9 (1) Other include 11 isolates	Details of methods of species identification not mentioned. HIV status of patients not provided. Data related to patients having actual disease not clear. Methods of NTM identification and speciation not clearly provided. Treatment details including outcomes not provided.
Sharma et al*, New Delhi Hospital-based prospective study (2014-2017) Total TB suspects=5,409 PTB=3,840 EPTB=1,569 HIV status: Available	ZN and fluorochrome staining GeneXpert MTB/RIF Liquid culture (MGIT 960) ICA (SD MPT64TB Ag Kit) PNB-LJ culture LPA (CM/AS Kit) Mycolic acid analysis by HPLC 16S-23S rRNA ITS gene sequencing	**Pulmonary NTM** **M. intracellularre** 32.3 (11) **M. abscessus** 26.5 (9) **M. simiae** 14.7 (5) **M. kansasii** 11.8 (4) **M. gordonae** 8.8 (3) **M. chimaera** 2.9 (1) **M. senegalense** 2.9 (1)	Multi-locus gene sequencing not performed to identify NTM to the subspecies level.

Contd...
Study details	Methods of NTM detection and identification and results	Identified NTM species	Limitations
South zone			
Paramasivan et al⁶², Thiruvallur, Tambaram, Madras city, Bangalore Community-based prospective study (1980-81) PTB suspects Thiruvallur: n=16,907 Tambaram: n=3,576 Madras city: n=24,121 Bangalore: n=12,909 HIV status: Pre-HIV era in India	Solid culture (LJ medium) Biochemical tests Prevalence: 8.6% (1457/16,907): Thiruvallur 7.6% (270/3576): Tambaram 4.5% (1095/24,121): Madras city 4.5% (587/12,909): Bangalore	Speciation for 1000 isolates from Thiruvallur was done M. avium/intracellulare 22.6 (226) M. terrae complex 12.5 (125) M. scrofulaceum 10.5 (105) M. fortuitum 7.6 (76) Others: M. flavescens 6.7 (67), M. gordonae 6.6 (66), M. cheloneae 5.5 (55), M. vaccae 5.4 (54), M. phlei 3.4 (34), M. triviale 3.3 (33), M. smegmatis 2.6 (2) M. ulcercans 0.5 (5), M. aurum 0.5 (5), M. thermoresistable 0.2 (2), M. aichiense 0.2 (2), M. simiae 0.1 (1), M. thermophilum 0.1 (1), M. neoaureum 0.1 (1)	Study done in pre-HIV era in India, therefore, it may not provide the true prevalence of NTM disease in the region.
Jesudason and Gladstone⁶⁷, Vellore, Tamil Nadu Hospital-based prospective study (1999-2004) Total TB suspects=32,084 HIV status: Available	ZN staining, Solid culture (LJ medium) Biochemical tests DST for rapidly growing NTM on Mueller-Hinton agar and for slow growing NTM on LJ medium was done Prevalence: 0.5% (173/32,084) among TB suspects Other results: Pulmonary NTM: 9.8% (17/173) Extrapulmonary NTM: 90.2% (156/173) 6 NTM patients were HIV positive	Speciation was done only in 115 isolates M. cheloneae 46 (53) M. fortuitum 41 (47) M. szulgai 2.6 (3) M. terrae 2.6 (3) Others: M. smegmatis 1.73 (2), M. scrofulaceum 0.9 (1), M. simiae 0.9 (1), M. flavescens 0.9 (1) and M. gordonae 0.9 (1)	For NTM identification, newer molecular techniques such as gene probes, PCR and DNA sequencing not used. Clinical significance of isolated NTM not established. Data for pulmonary and extra-pulmonary NTM disease provided only for 115 patients. Treatment details including outcomes not provided.
Sivasankari et al⁶⁸, Puducherry Hospital-based prospective study (2003-2004) Total TB suspects=635 PTB=337 EPTB=298 HIV status: Available	ZN and fluorochrome staining Culture LJ medium Biochemical tests Prevalence: 0.8% (5/635) Other results: All patients had extrapulmonary NTM disease	M. kansasii 60 (3) M. flavescens 20 (1) M. gordonae 20 (1)	Molecular techniques such as HPLC, gene amplification and gene sequencing not used. Treatment details including outcomes not provided.

Contd...
Study details	Methods of NTM detection and identification and results	Identified NTM species	Limitations
Radha Bai Prabhu et al\(^a\), Kancheepuram, Tamil Nadu Hospital-based prospective study (2008-2016)	ZN and fluorochrome staining, Liquid culture (MGIT 960), Histopathological examination, PCR, Mycolic acid analysis by HPLC, Prevalence: 23.7% (63/173) among tubal disease suspects	*M. chelonae* 25.4 (16), *M. fortuitum* 6.3 (4), *M. simiae* 3.2 (2), *M. kansasii* 1.6 (1), *M. intracellulare* 1.6 (1), *M. marinum* 1.6 (1)	Biased selection of population. Molecular methods for species identification not used. Clinical relevance of isolated NTM species was not established. Treatment details including outcomes not provided.
Narang et al\(^a\), Mumbai, Maharashtra Hospital-based prospective study (2001-2002)	Liquid culture (BACTEC 460TB), Biochemical tests, Mycolic acid analysis by HPLC, Prevalence: 8.4% (6/71) in HIV-TB suspected patients	*MAC 50* (3), *M. simiae 50* (3)	Biased selection of the study population (HIV patients only). Molecular techniques not used for species identification. Clinical relevance of isolated NTM not discussed. Treatment details including outcomes not provided.
Shenai et al\(^a\), Mumbai, Maharashtra Hospital-based prospective study (2005-2008)	Liquid culture (MGIT 960), PNB-LJ culture NAP test (BACTEC 460TB), RLBH assay of *rpoB* gene PCR-RE assay and gene sequencing, Prevalence: 0.8% (127/14627)	*M. intracellulare* 40 (32), *M. simiae* 35 (28), *M. abscessus* 59 (27), *M. fortuitum* 29 (19), *M. kansasii* 6 (5), *M. gordonae* 4 (3), *M. szulgai* 2 (2), *M. avium* 1 (1)	Sequencing of *rpoB* gene may lead to misidentification of NTM species. Multilocus gene sequencing would have given strength to the study. Treatment details including outcomes not provided.
Goswami et al\(^a\), Wardha, Maharashtra Community-based prospective survey (2007-2009)	Culture, Biochemical tests, DST by micro-broth dilution method, Prevalence: 1% (65/6445)	*M. fortuitum* 32.3 (21), *M. gordonae* 21.5 (14), *M. avium* 13.8 (9), *M. flavescens* 10.7 (7) Others: *M. scrofulaceum* 6.1 (4), *M. chelonae* 4.61 (3), *M. abscessus* 4.61 (3), *M. kansasii* 1.5 (1), *M. simiae* 1.5 (1), *M. gastri* 1.5 (1) and *M. triviale* 1.5 (1)	Study was performed in PTB suspects only. How TB and NTM were distinguished not clear. HIV status of the patients not available. Gene sequencing for speciation not performed. Patients’ data not available. Treatment details including outcomes not provided.

PTB, pulmonary TB; EPTB, extra PTB; LJ medium, Löwenstein-Jensen medium; ZN staining, Ziehl-Neelsen staining; DST, drug susceptibility testing; MGIT, mycobacteria growth indicator tube; PNB, *p*-nitrobenzoic acid; NAP, *p*-nitro-alpha-acetylaminobeta-hydroxypropionophenone; RLBH, reverse line blot hybridization; PCR-RE assay, polymerase chain reaction-restriction endonuclease assay; ICA, immunochromatographic assay; MPT64, mycobacterial protein 64 KD; LPA, line probe assay; 16S-23S rRNA ITS sequence, 16S-23S ribosomal RNA internal transcribed spacer sequence; MAC, *Mycobacterium avium* complex; POD, pouch of douglas; HPLC, high-performance liquid chromatography
in study designs, (ii) standard American Thoracic Society (ATS) (2007)17 and British Thoracic Society (BTS) (2017)17 guidelines criteria were not followed in most of these studies, (iii) only laboratory-related NTM culture data have been reported, and (iv) most of the studies have not provided clinical details and treatment outcomes. Of the 13 studies, only two61,71 followed ATS guidelines (2007)17 and one of these reported treatment outcomes61. Future studies should report about extrapulmonary NTM diseases in addition to clinical details including treatment outcomes of various NTM diseases.

Risk factors for NTM disease

Risk factors for NTM diseases vary according to the clinical type of NTM disease72-74. Various risk factors for NTM-PD are described in Box IIA72-74. Pre-existent lung disease is mostly present in these patients. In the absence of obvious structural lung disease, patients may have quantitatively impaired ciliary function or may be heterozygous for cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations75,76. Extrapulmonary NTM disease can occur due to breaches in skin or soft tissues or due to several nosocomial factors, which are detailed in Box IIB72-74. Disseminated NTM disease generally occurs in patients having primary or acquired immunodeficiency conditions. Certain environmental and organism-related factors such as water sources and reservoirs, and NTM growth characteristics in different climatic conditions, have also been reported as risk factors (Box IIB)72-74. In addition, habits, hobbies and profession of an individual may also increase the risk of having NTM disease74.

Immunopathogenesis of NTM disease

In addition to lung, the most common organ involved affected by NTM, localized and disseminated NTM infections can occur73. Patients with disseminated NTM infections (defined as involvement of two or more non-contiguous body organs) usually have underlying generalized immune defect such as HIV/AIDS, and 2-8 per cent of these patients may have concurrent pulmonary involvement77. Identification of the underlying immune defect is crucial for early diagnosis, treatment and prevention. Patients with NTM disease and underlying primary immunodeficiencies typically present in their childhood or adulthood, whereas those with acquired immunodeficiencies can present at any age (Table VI)73.

Antimycobacterial cell-mediated immunity requires a close interaction between myeloid and lymphoid cells (Fig. 1)73. Mononuclear phagocytes after engulfing mycobacteria secrete interleukin-12 (IL-12) which, in turn, stimulates T cells and NK (natural killer) cells through the IL-12 receptor (heterodimer of IL12RB1 and IL12RB2). A complex cascade is triggered by IL-12 receptors via TYK2 (tyrosine kinase) and JAK2 (Janus kinase) signals, leading to STAT-4 (signal transducer and activator of transcription) phosphorylation, homodimerization and nuclear translocation to induce interferon-gamma (IFN-γ) secretion (Fig. 1). IFN-γ binds to its receptor IFNG receptor (IFNGR) (heterodimer of IFNGR1 and IFNGR2) and leads to phosphorylation of JAK2, JAK1 and STAT1 and phosphorylated STAT1 (pSTAT1) homodimerisation. The pSTAT1 homodimer [IFN-γ activators (GAF)] binds to IFN-γ activation sequence which upregulates IFN-γ responsive gene transcription. This cascade leads to activation and differentiation of macrophages. As a result, upregulation of IL-12 and tumour necrosis factor-α (TNF-α) secretions facilitates granuloma formation. After these events, macrophages can kill intracellular mycobacteria being assisted by maturation of mycobacterial phagosome, nutrition deprivation and induction of autophagy, exposure to antimicrobial peptides and reactive oxygen species. The nuclear factor (NF)κB essential modulator-mediated pathway and oxidative burst from macrophages are also important to fight against NTM infection73. Genetic defects in any of these immune factors may disturb the cascade of protection against mycobacterial infection and may lead to disseminated NTM disease73. These immune defects have been summarized in Table VI73.

Clinical manifestations

The clinical manifestations of NTM disease are similar to those of TB and may pose a diagnostic challenge even to an experienced clinician. NTM disease is classified into four clinical types: (i) chronic PD, (ii) lymphadenopathy, (iii) skin and soft tissues, rarely, bones and joints, and (iv) disseminated disease73.

Chronic pulmonary disease (PD)

The ATS and Infectious Disease Society of America (IDSA), 200717, and BTS, 201717, ATS/ERS/ESCMID/IDSA18 have published guidelines to standardize the diagnosis and treatment of NTM diseases. While evaluating NTM suspects, the following criteria
Box II. (A and B): Risk factors for nontuberculous mycobacterial disease

(A) Risk factors based on disease sites

Pulmonary NTM disease	Extrapulmonary NTM disease
Destroyed lungs due to TB or other diseases like pneumoconioses	Trauma (direct infection from environs)
Bronchiectasis (esp. middle lobe and lingula) due to any cause	Cosmetic surgeries
Chronic obstructive pulmonary disease	Prosthetic devices and implants
Cystic fibrosis-CFTR gene polymorphism*	Organ transplantation
Primary ciliary dyskinesia	Dental procedures and surgeries
Alpha 1 antitrypsin deficiency	Intramuscular or intradermal injection
Lung cancer	Joint injections
Thoracic skeletal abnormalities (kyphoscoliosis)	Invasive devices (e.g., pacemakers)
Lady Windermere syndrome†	Medical tourism (individuals infected with NTM visiting to some other country)
Gastroesophageal reflux disease‡	
Pulmonary alveolar proteinosis	
Rheumatoid arthritis with lung involvement	

*NTM are isolated in sputum cultures of 3-19.5% of CF patients (majority are MAC). †High prevalence (26-44%) of NTM disease especially nodular-bronchiectatic type in nonsmoking postmenopausal white women who are taller and lean with scoliosis, pectus excavatum and mitral valve prolapse syndrome than their peers, ‡In gastroesophageal reflux disorders, RGM are commonly involved in the disease such as *M. fortuitum*. BMI: body mass index; CFTR: cystic fibrosis transmembrane receptor; MAC, *Mycobacterium avium* complex; CF, cystic fibrosis

(B) Miscellaneous risk factors

(i) Immunodeficiency states

(a) Primary*	(b) Acquired
Anti-interferon γ-antibodies (blocking of interferon γ-interleukin-12 pathway)	HIV/AIDS status (CD4 counts <50 cells/µl)
Anti GM-CSF antibodies (impaired local immunity)	Use of biologics (anti-TNF agents and TNF receptor blockers)
NEMO mutations (impaired signal transduction from Toll-like receptors, interleukin-1, and TNFα)	Use of immunosuppressive agents and steroids
STAT1 deficiency (low systemic immunity)	
IL12 mutations (reduced T-cells and natural killer cells stimulation)	
CYBB mutations (decreased bactericidal activity)	
GATA2 gene mutations (impaired hematopoietic, lymphatic, and vascular development)	

(ii) Environmental factors

(a) Household and lifestyle factors	(b) Climatic and bacterial population factors
Soil exposure	Larger water surface area
Showers and hot tubs	Higher mean daily potential evapotranspiration
Municipal water supply	Higher copper soil levels (helps mycobacteria to form biofilms)
Kitchen sink biofilms, ice machines, refrigerator taps	Higher sodium soil levels (more nutrition for mycobacteria)
Indoor swimming pool use in past 4 months	Lower manganese soil levels (manganese inhibits mycobacterial growth)
Outdoor swimming pool use for at least once a month	Lower top soil depth (high nutrition for mycobacteria due to low vegetation)
Infection from spa, Jacuzzi, whirlpool footbath, saunas, pedicure procedures	

*These mutations are rare and associated with disseminated NTM disease. GM-CSF, granulocyte macrophage colony stimulating factor; NEMO, nuclear factor kB essential modulator; STAT1, Signal transducer and activator of transcription 1 (for disseminated infection); IL-12, interleukin-12; TNF, tumor necrosis factor; CYBB, cytochrome b-245 beta. **Source:** Refs 72-74
Immunodeficiency	Inheritance	Disease onset	BCG infection	Systemic Salmonella infection	Other possible infection	Granuloma formation	Response to antimicrobial	Indication for immunotherapy	Prognosis
IFNGR1/R2	AR	Infancy/early childhood	Yes	Yes	Listeriosis, herpes virus, respiratory syncytial virus, parainfluenza virus infections, TB	No	Very poor	No	Poor
Partial	AR	Late childhood	Yes	Yes	TB	No report	Favourable	Variable	Good
Partial	AR	Late childhood/ adolescence	Yes	Yes	Histoplasmosis, TB	Yes	Favourable	Yes	Good
IL12B	AR	Infancy/early childhood	Yes (97%)	Yes (25%)	CMC, disseminated TB, nocardia, Klebsiella spp. infection	Yes	Favourable	Yes	Fair
IL12RB1	AR	Early childhood	Yes (76%)	Yes (43%)	TB, CMC (24%), Klebsiella spp. infection	Yes	Favourable	Yes	Fair
STAT1 LOF	Complete	Infancy (die early without HSCT)	Yes	No	TB, fulminant viral infection (mainly herpes)	Yes	Poor	No	Poor
Partial	AR	Infancy/early childhood/ adolescence	Yes	Yes (50%)	Severe, curable viral infection (mainly herpes)	No report	Favourable	Yes	Fair
Partial	AD	Infancy/early/ childhood/ adolescence	Yes	No	TB	Yes	Favourable	Yes	Good
IRF8	AR	Infancy	Yes	No	CMC	Poorly formed	Poor	No	Poor
IRF8	AD	Late infancy	Yes	No	No report	Yes	Favourable	No	Good
ISG15	AR	Infancy	Yes	Yes	No report	No report	Favourable	Yes	Good
NEMO	XR	Early to late childhood	Yes	No	Invasive Hib infection TB	Yes	Variable	Yes	Fair
CYBB	XR	Infancy/early childhood	Yes	No	TB	Yes	Fair	No	Fair

Contd...
should be followed: (i) pulmonary symptoms, nodular or cavitary opacities on chest radiograph, or high-resolution computed tomography (CT) scan that shows multifocal bronchiectasis with multiple, small nodules; (ii) positive culture results from at least two separate expectorated sputum samples [if the results from the initial sputum samples are non-diagnostic, consider repeat sputum acid-fast bacilli (AFB) smear and culture]; single-positive NTM culture from CT-directed bronchoalveolar lavage or bronchial washing specimen from the affected lung segment of NTM suspect who cannot expectorate sputum or whose sputum is consistently culture-negative; and (iii) other disorders such as TB and fungal infections must be excluded.

Patterns of NTM-PD: Chronic PD is the most common form of NTM disease. Three patterns of pulmonary involvement have been described: (i) fibro-cavitary type, which usually occurs in the upper lobe with a history of smoking in an older male patient with pre-existent lung disease such as chronic obstructive pulmonary disease (COPD), bronchiectasis and CF (Fig. 2); (ii) nodular/bronchiectatic type of pattern occurring in post-menopausal, non-smoking females, predominantly having right middle lobe and left lingular bronchiectasis with a few lung nodules. This syndrome was described after the main character in Oscar Wilde’s eponymous play as ‘Lady Windermere syndrome’ and was believed to occur from voluntary cough suppression, however, subsequently, this hypothesis was discarded. Other features include mitral valve prolapse, scoliosis and pectus excavatum; high prevalence of gastro-oesophageal reflux disease (GERD) (26-44%); increased adiponectin, decreased leptin and estrogen levels and abnormalities in fibrillin gene. Presence of all these features increases the susceptibility of these females to MAC infections; and (iii) hypersensitivity pneumonitis-like NTM PD or ‘hot tub lung’ occurring due to exposure to aerosols from indoor hot tub. Various risk factors for NTM-PD are listed in Box IIA.

NTM species and NTM-PD: Because of variable virulence, it is important to identify NTM species and M. abscessus subspecies for the management of NTM-PD. It has been reported that only 25-60 per cent of patients with positive respiratory specimen fulfil clinical, radiographic and microbiological criteria of NTM-PD. Patients in whom M. kansasii and M. malmoense are isolated from respiratory specimens frequently meet clinical disease criteria, as these
While a single strain of MAC species is repeatedly isolated in the cavitary type, several strains of MAC species may occur simultaneously or the strain may change sequentially in nodular-bronchiectatic type. Relapse versus new re-infection of MAC infection after treatment completion can be differentiated by MAC genotyping.

According to one study from the USA, while tap water was the source of M. avium infection, soil was the source of M. intracellulare infection. It has been suggested that patients with M. intracellulare lung disease present at a later stage with adverse prognosis than patients with M. avium lung disease, and M. chimaera is less virulent than M. avium and M. intracellulare. Significant geographic variation exists in the distribution of NTM species in the USA; where M. avium complex was the most common species isolated in the South, M. abscessus/M. chelonae was proportionately higher in the West in one study. MAC species also vary from region to region: while M. avium is dominantly found in South America and Europe, M. intracellulare is found in South Africa and Australia. Recurrence rates in MAC-associated lung disease also differ among MAC species.

The second common NTM species also has a geographical variation. While M. abscessus is the second most common cause of NTM-PD in the USA, M. kansasii in some European countries including the UK, M. xenopi in some parts of Europe and Canada.
and *M. malmoense* in northern Europe are the second most common causes of NTM-PD\(^9\). *M. kansasii*, one of the slowly growing NTM, is most virulent\(^9\). About 80 per cent of NTM-PD due to RGM results from *M. abscessus*\(^10\). There are three subspecies of *M. abscessus*: (i) *M. abscessus* subsp. *abscessus*, which is the most common pathogen (45-65%), followed by (ii) *M. abscessus* subsp. *massiliense* (20-55%), and (iii) *M. abscessus* subsp. *bolletii* (1-18%)\(^10\). Patients with gastro-oesophageal disease may have NTM-PD due to RGM such as *M. fortuitum*\(^17\).

Clinical features: Respiratory symptoms and signs in NTM-PD vary depending on the clinical type. In the cavitary type, these may be severe due to the pre-existent underlying lung disease and include shortness of breath, cough with expectoration and haemoptysis, whereas patients with nodular-bronchiectasis have milder respiratory symptoms without pre-existing parenchymal lung disease and nagging cough may be prominent. Constitutional symptoms such as fever, anorexia, progressive fatigue, malaise and weight loss may be present especially in cavitary type of NTM-PD\(^11,17\). The clinical and radiographic presentation in *M. kansasii* PD is similar to *Mtb* and includes fever, cough with or without haemoptysis and chest pain, and chest X-ray often shows infiltrates and cavitary lesions\(^17,102\) (Fig. 3). Patients with hypersensitivity pneumonitis-like NTM-PD have subacute onset of respiratory symptoms involving young individuals without pre-existing lung disease and the prognosis is good\(^17,103,104\).

Lymphadenitis

In low TB-burden countries, single-site lymphadenitis is the most common manifestation of NTM infection in younger children\(^74,105\). Solitary lymph node is usually localized to the submandibular or cervical region and rarely, can also involve other groups either singly or multiple such as axillary, inguinal region in the disseminated NTM disease in severely immunocompromised individuals\(^106\). The lymph node enlargement usually starts as a painless swelling and later in the advanced stage, the swelling becomes fluctuant with pus inside, which may later burst out with a sinus formation. Constitutional symptoms such as fever, weight loss and fatigue may be absent. Smear microscopy and culture may be negative because of paucicellular nature of the disease\(^17\). Molecular tests may be used to establish the diagnosis. MAC is the most frequently isolated NTM species. There is an inverse relationship of TB incidence and NTM disease and in high TB-burden countries, *Mtb* is the most frequent cause of lymphadenitis in all ages\(^106\).

Skin, soft tissues and bone NTM infections

Three types of clinical presentations have been described: (i) Buruli ulcer (predominantly occurring in Uganda) or Bairnsdale ulcer disease (predominantly occurring in Australia), certain regional pockets in Latin America and China: it is a severe cutaneous disease due to *M. ulcerans* which progresses from nodular cutaneous lesions into large painless ulcers\(^107\). These organisms produce a toxin, mycolactone, which produces damage to the skin\(^108\). Early diagnosis and treatment is essential to minimize morbidity and costs and prevent long-term disability\(^109\), (ii) infection due to *M. marinum* is also known as fish-tank granuloma (previously known as swimming pool granuloma) and the infection can be acquired from swimming pools, cleaning of fish tanks or any other fish- or water-related activity\(^110\). Organisms usually gain access through skin cuts or abrasions\(^111\). It starts as a single papulonodular, verrucous or ulcerated granulomatous lesion over the hand and forearm that progresses to form multiple skin lesions in a sporotrichoid pattern - appearance which is similar to skin lesions due to *Sporothrix schenckii* and rarely, the underlying bone involvement occurs\(^112\); and (iii) localized skin and soft-tissue infections occurring due to RGM (*M. abscessus, M. fortuitum* and *M. chelonae*) at wound or injection sites\(^113-115\) (Figs 4 and 5) and slowly growing mycobacteria in both immunocompromised and immunocompetent individuals\(^115,116\). These organisms gain access through skin breaks following trauma and surgical procedures, following the use of surgical instruments without autoclaving, during cosmetic surgery, pedicure and manicure procedures in beauty salons, surgical

Fig. 3. Chest radiograph in a 29 yr old female patient with *Mycobacterium kansasii*-pulmonary disease. (A) Chest X-ray reveals a cavitary lesion in the left lung. (B) Axial section in the high-resolution computed tomography scan demonstrates a cavity in the left lung (white arrow) and tree-in-bud appearance in the right lung (white circle).
procedures involving placement of various implants, in mesh used for hernial site repair (Fig. 6), tattooing procedures following inoculation of contaminated ink containing *M. haemophilum*, intravenous punctures and lines, abscesses due to intramuscular injections through contaminated needles and use of tap water for skin cleaning.\(^{112,113}\).

Disseminated NTM disease

Disseminated NTM disease due to MAC is frequent in HIV/AIDS especially in patients with CD4+ lymphocyte count <50 cells/µl. Isolated pulmonary involvement is rare in HIV/AIDS\(^{117}\). Pulmonary involvement occurs in 2.5-8 per cent of patients with disseminated MAC\(^ {77}\). The portal of entry in these patients is believed to be through bowel\(^ {118-120}\) and occasionally through lungs with subsequent haematogenous dissemination. MAC (predominantly *M. avium*) is the most common NTM species isolated in these patients.\(^ {17}\) These patients typically present with insidious onset of constitutional symptoms comprising fever with night sweats, weight loss, abdominal pain, diarrhoea and malaise.\(^ {17}\) They may have anaemia, hepatosplenomegaly and lymphadenopathy.\(^ {17}\) Somehow, disseminated NTM infections due to rapidly growing NTM (*M. abscessus* and *M. fortuitum*) are rare in HIV/AIDS patients.\(^ {121}\). Besides *M. avium*, less common NTM species such as *M. genavense* and *M. simiae* can also cause disseminated NTM disease in HIV/AIDS patients.\(^ {17}\).

M. kansasii can cause pulmonary involvement in HIV/AIDS patients at higher CD4+ counts, and its isolation should always be considered a potential pathogen.\(^ {117,122}\). Pulmonary involvement can also occur in other immunocompromised populations such as organ transplantation (6.5%)\(^ {123}\), bone marrow (2.9%)\(^ {124}\) and rarely liver and kidney transplantation. CF patients undergoing lung transplantation may develop life-threatening infection with *M. abscessus*.\(^ {124}\) Disseminated NTM infections can also occur in a few other rare settings (Fig. 7A-G) which will require appropriate investigations. These have been listed in Box IIB\(^ {73}\). NTM, especially *M. abscessus* (Fig. 7) and *M. fortuitum*, may infect deep indwelling lines.\(^ {17,122}\) Anti-tumour necrosis factor-α agents (infliximab, etanercept and adalimumab) used to treat several diseases such as rheumatoid arthritis, psoriatic arthritis and inflammatory bowel disease can predispose to both TB and NTM diseases\(^ {125}\). A good response to rituximab in disseminated MAC patients with interferon-gamma autoantibodies has also been reported\(^ {126,127}\).

Fig. 4. (A) A 35 yr old female presented with discharge from the right nipple, *Mycobacterium abscessus* was isolated from the pus on several occasions prior to treatment. (B) Computed tomography (CT)-chest showing enhancement of the margin of the abscess (black arrow) with intravenous contrast. *Source: Reproduced with permission from Ref. 61.*

Fig. 5. (A) Clinical photograph of a 30 yr old male, showing right-sided post-injection gluteal abscess (black arrow) in a patient with NTM infection. (B) Transaxial fused \(^{18}\)F-fluorodeoxyglucose positron emission tomography-computed tomography (\(^{18}\)F-FDG-PET-CT) image of the same patient, at the level of acetabulum showing FDG accumulation in the subcutaneous thickening and stranding (arrow) involving the underlying right gluteus muscle superficially in right gluteal region. *Source: Reproduced with permission from Ref. 61.*
Diagnosis

Criteria for the diagnosis of NTM disease

Healthcare providers should carefully assess causality association of the isolated NTM species with patient’s symptoms and signs. Approximately, one-third of NTM species are potentially pathogenic for humans. Some of the common pathogenic NTM species are listed in Table VII. It is possible that an individual with a particular NTM isolate may not have an active disease or the isolate may not be clinically relevant. While evaluating NTM suspects, the following criteria should be followed: (i) pulmonary symptoms, nodular or cavitary opacities on chest radiograph or high-resolution CT scan that shows multifocal bronchiectasis with multiple small nodules; (ii) positive culture results from at least two separate expectorated sputum samples (if the results from the initial sputum samples are non-diagnostic, consider repeat sputum AFB smear and culture; single-positive NTM culture from CT-directed bronchoalveolar lavage or bronchial washing specimen from the affected lung segment of NTM suspect who cannot expectorate sputum or whose sputum is consistently culture negative); and (iii) other disorders such as TB and fungal infections must be excluded.

Differential diagnosis

Because of similar clinical features and radiographic appearances, diseases such as TB, recurrent pulmonary aspirations, pneumonitis, bronchiectasis, histoplasmosis, aspergillosis and lung cancer should be considered in the differential diagnosis and should be appropriately ruled out. In the laboratory, the presence of Pseudomonas aeruginosa, Staphylococcus aureus,
Nocardia and Aspergillus in the specimens must be carefully tested17. It is important to consider the differential diagnosis of Sporothrix schenckii infection in patients suspected to have skin and soft-tissue NTM disease due to M. marinum113.

Specimen collection, transportation and processing

A proper sample collection is crucial to establish a correct laboratory diagnosis of NTM disease. In case of NTM-PD patients, during collection of sputum, environmental and personal contamination should be avoided. To differentiate NTM-PD from occasional presence of NTM in tracheobronchial tract, at least 3 sputum specimens should be tested on separate occasions18. Sampling from extrapulmonary specimens should be obtained directly from the lesion or organ concerned130. Further, instruments used for sampling should be devoid of any contamination, especially in hospital settings. Storage and transportation of specimens should be done carefully130. Once the specimen reaches the laboratory, the process of decontamination should be done in fully sterilized set-up. As NTM are resistant to most of the common disinfectants, careful selection of disinfectants is necessary130. Various precautions for sample collection, transportation and laboratory processing are listed in Box III130.

Laboratory diagnosis of NTM disease

Figure 8 illustrates various steps for NTM isolation and identification in the laboratory. Initially, the specimens are simultaneously subjected to AFB (Ziehl-Neelsen or fluorochrome) staining and GeneXpert for Mtb detection. Samples that are positive on AFB staining and negative on GeneXpert are considered NTM suspects, and the culture for such specimens should be done. Most of the NTM are cultivable in Lowenstein-Jensen, Middle-brook and Dubos Broth and Agar. A novel agar-based medium, RGM medium, has been specifically developed for the isolation of rapidly growing NTM. It provides an alternative method for the recovery of NTM from respiratory specimens, particularly from CF patients, by offering a simple and rapid method for specimen processing131. For some NTM species, additional supplements (haemin for M. haemophilum and mycobactin J for M. paratuberculosis and M. genavense)130 are added in the culture medium for optimal growth. Incubation temperatures of 36±2°C for SGM and 28±2°C for RGM have been recommended18. Appropriate adjustments in the incubation temperature (M. xenopi: 42-45°C, M. ulcerans and M. marinum: 30°C) may be done for a few NTM species18,130. Some NTM species such as M. tilburgii which are not cultivable need to be tested directly from the specimen using molecular methods132. In patients with a high suspicion of NTM-PD but negative cultures, reassessment of decontamination procedures, use of supplemented media and molecular methods may be helpful18. Culture isolates of NTM-suspected specimens should be tested with Mtb-specific tests such as MPT64 antigen immunochromatographic test or GeneXpert, and if found negative, then it is likely to be NTM and thereafter its species identification should be done.

Earlier, several biochemical tests were done for NTM identification130 (Table VIII). These tests were cumbersome and time consuming and are obsolete now. High-performance liquid chromatography (HPLC)-based analysis of mycolic acid was used for NTM identification in the past. This method identifies slowly growing NTM species such as MAC and M. kansasii, but it is less specific in identifying RGM accurately130,133. It also has low discriminatory power to identify closely related SGM and RGM species130,133. These tests have now been replaced by molecular tests for NTM species and subspecies identification. These tests include polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis, gene probes and line probe assays (LPA)130 (Table VIII).
These molecular tests though identify a limited number of NTM species, but fail to differentiate genetically closely related NTM species133. At present, DNA sequencing is the most accepted method for the identification and characterization of NTM species and subspecies134,135. These techniques include targeted gene sequencing and multi-locus sequence typing (MLST) that involve analysis of conserved genes such as \textit{rpoB}, \textit{hsp65}, \textit{16S rRNA} and \textit{16S-23S rRNA} internal transcribed spacer (ITS) region134. Targeted sequencing of single gene may identify a reasonable number of NTM species but sometimes may not distinguish species having close genetic association. MLST is preferred as multiple conserved genes are sequenced with this technique and on the basis of consensus analysis of different gene sequences, NTM species are identified more accurately134.

Whole genome sequencing (WGS) is considered the gold standard for NTM species identification and is helpful in understanding the geographical and environmental distribution of NTM species. It is also useful to study healthcare-associated disease outbreaks and transmission134. WGS of NTM species can provide information on other characteristics such as virulence and resistance to various antimicrobial agents135,136. However, DNA sequencing is an expensive method and requires expertise130. This technique is not available in the routine laboratory set-up for NTM diagnosis in resource-limited countries130.

Matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS)-based
Pulmonary NTM disease: (i) Nodular or cavitary opacities on chest radiograph, or an HRCT scan that shows multifocal bronchiectasis with multiple small nodules; (ii) Positive culture results from at least two separate expectorated sputum samples or positive culture results from at least one bronchoalveolar lavage (BAL) or wash; (iii) Exclusion of other disorders such as TB.

Fig. 8. Diagnostic algorithm for detection of NTM disease. *According to Ref. 16, consecutive three sputum samples are obtained, positive results from at least two separate expectorated sputum samples confirms the diagnosis. †While sputum collection, the patient should not rinse mouth with municipal or untreated water. Spontaneous sputum should be collected or sputum should be induced if no sputum is produced by patient. ‡Whole genome sequencing (NGS) and multi-locus targeted gene sequencing of gene such as 16S rRNA, hsp65, rpoB, 16S-23S rRNA internal transcribed region (ITS), gyrB, danA, recA and secA. HRCT, high-resolution computed tomography; CSF, cerebrospinal fluid; ICA, immunochromatographic assay; CBNAAT, cartridge based nucleic acid amplification test; L-J, Lowenstein-Jensen media, HPLC: high-performance liquid chromatography, SGM, slowly growing mycobacteria; RGM, rapidly growing mycobacteria; DST, drug susceptibility testing; LPA, line probe assay; PNB: para-nitro benzoic acid; PCR/PRA, polymerase chain reaction/restriction endonuclease assay; MAC, Mycobacterium avium complex; MALDI-TOF MS, matrix-assisted laser desorption ionization-time of flight mass spectrometry.

Source: Refs 1, 17, 130.

Drug susceptibility testing (DST)

DST for NTM is controversial because of discrepancy between in vitro susceptibility and the treatment response. DST should follow the Clinical and Laboratory Standards Institute (CLSI) guidelines. CLSI recommends that phenotypic DST should be performed using broth microdilution method. Both phenotypic and genotypic DST for MAC and M. kansasii are performed for initial and recurrent isolates. Acquired resistance for macrolide in MAC occurs due to point mutations in the 23S rRNA (rrl) gene and for amikacin due to mutations in 16S rRNA (rrs) gene (amikacin resistance is observed in MAC isolates cultured from sputum specimens of patients who were extensively exposed to the drug or related aminoglycosides). For MAC, DST against macrolides (clarithromycin is used as a class agent; minimum inhibitory concentration (MIC) cut-off: >32 μg/ml) and amikacin (MIC cut-off: >64 μg/ml for parenteral and >128 μg/ml for liposomal amikacin) and, for M. kansasii, DST against rifampicin (MIC >2 μg/ml) and clarithromycin are used (MIC ≥32 μg/ml). When M. kansasii is resistant against rifampicin, DST for amikacin, ciprofloxacin, doxycycline, linezolid, minocycline, moxifloxacin, rifabutin, and...
Table VIII. Laboratory methods for non-tuberculous mycobacteria (NTM) identification

Method	Principle	Advantage(s)	Limitation(s)
Biochemical tests	Based on reaction products after niacin test, nitrate reduction, catalase activity, urease test, pyrazinamidase test, growth in the presence of p-nitrobenzoic acid, and hydrazide of thiophene 2-carboxylic acid	Low-cost tests and expert manpower not required	Time consuming and cumbersome tests; not useful for definitive species identification
HPLC	HPLC analysis of number of carbon atoms in mycolic acid found in the cell walls of NTM species	Cost of individual sample testing relatively inexpensive	Problematic for identification of rapidly-growing mycobacteria; limited ability to resolve some NTM groups/complexes
PCR-RFLP	Analysis of the band patterns of restricted hsp65 gene fragments which are specific for different NTM species	Specialized equipment not required	Time-consuming; analysis restricted to a small fraction of the genome; requires trained staff; different sequences may share identical RFLP patterns thus it is not useful for definitive species identification especially with newer species/subspecies
Nucleic acid probes	Binding of ester-labelled gene DNA probes complementary to 16S rRNA gene	Provide quick results, as analysis may be performed directly on clinical samples	Identifies *M. avium*, *M. intracellulare*, *M. gordonae*, *M. kansasii* only; shows a cross-reactivity between MAC species and other NTM species
LPA	Reverse hybridization of genetic probes	Nucleic acid amplification increases sensitivity; low implementation costs	Useful for species identification but there can be cross reactivity with similar species
Gene sequencing	TGS Sequencing of single conserved gene MSLT: multiple conserved gene sequencing and consensus analysis for NTM species identification WGS	Useful for definitive species identification for most clinically relevant species; detects previously unknown mutations. Provides more accurate results than single TGS. Sequencing of entire genome allows detection of different genetic variants within the same population; helpful in understanding geographical and environmental distribution of NTM; useful in studying disease outbreaks and transmission of NTM; also provides information about other features such as virulence and resistance to various antimicrobial agents.	Specificity depends upon selection of gene target; closely related NTM species may not be identified; requires costly specialized equipment. Requires skilled manpower; sequence analysis dependent upon updated and accurate database. Expensive; data analysis is cumbersome and difficult; drug-resistant variants may be undetected if the drug susceptible variants are in majority; currently available sequencing platforms have problems with analysis of microsatellites.
MALDI-TOF MS	Analysis of conserved protein sequences	Identifies almost 160 NTM species; most rapid NTM identification test; may identify other organisms such as *Nocardia*, fungi, thus useful for differential diagnosis	High initial cost; cannot differentiate between subspecies of *M. abscessus* and species within the MAC, *M. fortuitum* and *M. mucogenicum* groups; limited database at present

HPLC, high-performance liquid chromatography; PCR-RFLP, polymerase chain reaction-restriction fragment length polymorphism analysis; LPA, line probe assay; MALDI-TOF MS, matrix-assisted laser desorption time-of-flight mass spectrometry; rRNA, ribosomal RNA; TGS, targeted gene sequencing; MSLT, multi-locus sequence typing; WGS, whole genome sequencing; ITS, internal transcribed spacer; MAC, *Mycobacterium avium* complex. *Source*: Ref. 130
trimethoprim-sulfamethoxazole is recommended18, RGM species (and subspecies) show different drug resistance patterns1, and DST should be selectively done for the following antibiotics: macrolides, amikacin, tobramycin, imipenem, trimethoprim-sulfamethoxazole, doxycycline, minocycline, tigecycline, cefoxitin and linezolid1,65. Information on an active \textit{erm} (41) gene is important in RGM (esp. in \textit{M. abscessus} subspecies) as it can lead to inducible resistance to macrolides1,17. In \textit{M. abscessus} subsp. \textit{massiliense}, the \textit{erm} (41) gene is non-functional owing to a large deletion, thus rendering the strains macrolide susceptible. The \textit{erm} (41) gene is non-functional in some \textit{M. abscessus} subsp. \textit{abscessus} due to presence of C instead of T at the nucleotide 28 (arginine 10 instead of tryptophan 10)18. Constitutive resistance to macrolides can occur due to mutation in 23S rRNA gene1. Table IX describes various conditions of macrolide resistance among \textit{M. abscessus} subspecies. \textit{M. chelonae} is resistant to cefoxitin and sensitive to tobramycin1.

Treatment of NTM disease

Principles of treatment

Several guidelines have been published for the management of NTM diseases1,17,19,139. While ATS/IDSA deals with both pulmonary and extrapulmonary NTM diseases, the US Cystic Fibrosis Foundation and European Cystic Fibrosis Society (ECFS) guidelines, 2016138, include consensus recommendations for the screening, investigation, diagnosis and management of NTM-PD in individuals with CF, and the BTS guidelines (2017)1 and ATS/ERS/ESCMID/IDSA guideline (2020)18 deal with NTM-PDs. The treating physician should be well versed with the prevalence of various NTM species in the geographical area of his/her practice1,17. Despite repeated isolation of NTM, laboratory contamination and colonization in the host must be ruled out. As MAC is the most common cause of NTM-PD worldwide, causality association of repeated NTM isolation in the respiratory specimens should be carefully established after reviewing clinical and radiographic features1,17. Subsequently, the underlying predisposing structural lung disease should be identified and its severity should be evaluated. NTM-PD should be stratified into mild to moderate (non-severe) and severe NTM-PD (Box IV) on the basis of patient’s systemic signs and symptoms, chest radiographic appearances and microbiologic features (acid-fast smear status, bacillary load, mycobacterial culture, NTM species and subspecies characterization)1. The conventional microbiological outcomes are smear status, culture conversion and relapse1,140,141 (Box V).

The decision to start treatment should be made carefully as patients due to MAC remain stable without antibiotic treatment1,17. Early identification of certain clinical, radiographic and microbiological features that are associated with NTM-related progressive PD, is required. These include presence of severe symptoms, low body mass index (BMI) and poor nutritional status (esp. low albumin), lung caviation, extensive disease, presence of comorbidity, elevated inflammatory markers, and positive AFB smears and isolation of more virulent NTM species18,94,142,143. Recent ATS/ERS/ESCMID/IDSA guideline (2020)18 suggests initiation of treatment rather than watchful waiting, especially in the context of positive AFB sputum smears and/or cavitory lung disease. Whereas, a watchful waiting is preferred in patients with mild signs and symptoms of disease, higher chances of drug intolerance and adverse drug reactions and NTM species less responsive to treatment (e.g., \textit{M. abscessus}). In such cases, treatment should be initiated after counselling the patient about potential adverse effects of antimicrobial therapy, the uncertainties surrounding the benefits of antimicrobial therapy, and the possibility for recurrence including reinfection (specifically in nodular-bronchiectatic disease setting). It is also recommended that treatment

| **Table IX. Interpretation of extended clarithromycin susceptibility results for Mycobacterium abscessus** |
|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-------------|
| **Clarithromycin susceptibility** (days 3-5) | **Clarithromycin susceptibility** (day 14) | Genetic implication | **M. abscessus subspecies** | **Macrolide susceptibility phenotype** |
| Susceptible | Susceptible | Dysfunctional \textit{erm} (41) gene | \textit{M. abscessus. massiliense} | Macrolide susceptible |
| Susceptible | Resistant | Functional \textit{erm} (41) gene | \textit{M. abscessus. abscessus} | Inducible macrolide resistance |
| Resistant | Resistant | 23S ribosomal RNA point mutation | \textit{M. abscessus. bolletii} | Any |
| | | | | High-level constitutive macrolide resistance |

Source: Reproduced with permission from Ref. 1
regimens should be designed by experts in the management of complicated NTM infections.\(^{18}\)

NTM-PD is generally treated with a drug regimen, consisting of 3-4 antibiotics, administered either daily or thrice weekly depending on the severity of disease, patient’s tolerance of drugs and occurrence of side effects, and the therapy is continued for at least 12 months following sputum conversion\(^{17,18}\).

Table X summarizes the treatment durations of pulmonary and extrapulmonary NTM diseases due to different species. A significant proportion of patients with NTM-PD discontinues the prescribed treatment because of lengthy duration and occurrence of side effects.\(^{145}\) The treatment regimens vary depending on the isolation of NTM species, clinical phenotypes and drug susceptibility profiles, leading to varying therapeutic responses. The variable treatment responses are related to several factors such as NTM species (\textit{M. avium} vs. \textit{M. abscessus}) and subspecies (\textit{M. abscessus} subsp. \textit{massiliense} vs. \textit{M. abscessus} subsp. \textit{abscessus}), disease phenotype [fibrocavitary vs. nodular bronchiectatic (NB)] and the treatment regimen (drug treatment regimen with macrolide vs. without macrolide)\(^{146-148}\).

NTM-PD due to MAC is treated with a drug regimen comprising rifampicin (or rifabutin in HIV-positive individuals to avoid drug-drug interactions\(^{19}\)), ethambutol and macrolide (azithromycin or clarithromycin; some patients tolerate azithromycin better)\(^{1,17}\). There is an \textit{in vitro} synergy of antimycobacterial action between rifampicin and ethambutol as the latter destabilizes mycobacterial cell wall and facilitates rifampicin entry into the Mycobacteria to its target site, the RNA polymerase.\(^{149,150}\) These two drugs also prevent development of macrolide resistance.\(^{151}\) Neither isoniazid nor moxifloxacin is much active against MAC; clofazimine and amikacin are good alternatives. The BTS guidelines (2017)\(^1\) and ATS/ERS/ESCMID/IDSA guideline (2020)\(^{18}\) recommend intermittent three-times-weekly treatment for non-cavitary (non-severe) MAC-PD due to potential benefits, better treatment adherence and comparable efficacy.\(^{1,152}\) As per guidelines, intravenous or nebulized amikacin can be added as the fourth drug for the initial three months in patients with severe or macrolide-resistant MAC-PD\(^1\) (Table XI). The pooled treatment success rates in MAC-PD in the five systematic reviews ranged from 32 to 65 per cent, and 12 to 16 per cent of the enrolled patients had not completed treatment.\(^{153-157}\)

Miwa \textit{et al}\(^{158}\) in a preliminary open-label study compared three-drug regimen (clarithromycin, ethambutol and rifampicin) with two-drug regimen (clarithromycin and ethambutol) and demonstrated the rate of sputum culture conversion at 40.6 per cent with three-drug regimen versus 55 per cent with two-drug regimen, suggesting that two-drug regimen was not inferior to three-drug regimen. Further, the incidence of adverse events

Box IV. Definitions of mild-moderate and severe non-tuberculous mycobacteria (NTM) disease

Disease Level	Description
Mild-moderate (non-severe disease)	Mild-moderate symptoms, No signs of systemic illness, Absence of lung cavitation and extensive lung disease, AFB smear-negative in the pulmonary specimens
Severe disease	Presence of severe symptoms and signs of systemic illness, Presence of lung cavitation and extensive lung involvement, Pulmonary specimens positive for AFB smear

AFB, acid-fast bacilli; NTM-PD, non-tuberculous mycobacterial pulmonary disease. \textit{Source:} Ref. 1

Box V. Definitions for microbiological outcomes in non-tuberculous mycobacterial (NTM) disease

Outcome	Description
Culture conversion	Three consecutive negative mycobacterial sputum cultures collected over a minimum of three months, with the time of conversion being the date of the first of the three negative mycobacterial cultures. In patients unable to expectorate sputum, a single negative mycobacterial culture of a CT-directed bronchial wash is indicative of culture conversion
Recurrence	Two positive mycobacterial cultures following culture conversion. If available, genotyping may help distinguish relapse from reinfection

*Refractory disease: failure to culture-convert after six months of NTM treatment |

\textit{Jhun et al}\(^{140}\) defined refractory NTM-PD as persistent positive sputum cultures after at least 6 months of multidrug treatment instead of 12 month GBT. In addition, administration of ARIKAYCE plus GBT in patients with MAC pulmonary disease resulted sputum culture conversion by month 6 in 29% cases in comparison to 9% who were on GBT alone. GBT, guideline based treatment. \textit{Source:} Ref. 1
leading to treatment discontinuation was higher with the three-drug regimen (37.2 vs. 26.6%)158.

Koh et al159 evaluated 481 treatment-naïve patients with MAC lung disease who underwent antibiotic treatment for ≥12 months between January 2002 and December 2013. Nearly 58 per cent had non-cavitary NB disease, 17 per cent had cavitary NB disease and 25 per cent had fibrocavitary disease. The treatment outcomes and redevelopment of NTM lung disease after treatment completion differed by the clinical phenotype of MAC lung disease. Cavitary disease was independently associated with unfavourable outcomes. The NB form was an independent risk factor for the redevelopment of NTM lung disease. Of the 29 per cent of favourable outcomes, redevelopment of NTM lung disease occurred with the same MAC species in 55 per cent patients. In patients with recurrent MAC lung disease due to the same species, genotyping revealed that 74 per cent of cases were attributable to reinfection and 26 per cent to relapse159.

Addition of once-daily administration of amikacin liposome inhalation suspension (ALIS) (supplied in single-use vials delivering 590 mg amikacin to the nebulizer), also known as ‘Arikayce’ to standard guideline-based therapy (GBT) in adults with refractory MAC lung disease (with amikacin-susceptible MAC lung disease and MAC-positive sputum cultures despite at least six months of stable therapy considered

Table X. Durations of treatment for different non-tuberculous mycobacteria (NTM) diseases

Site of NTM infection	Treatment duration/adjunct therapies
Pulmonary	Twelve months after sputum culture becomes negative.
Disseminated disease*	Twelve months after blood culture becomes negative. Secondary prophylaxis is required after this till CD4 count is >100 cells/μl for three months.
Lymphadenitis1	Surgery alone may be curative in children with NTM cervical lymphadenitis (i.e., MAC). Combination drug therapy is recommended when surgical debridement is not complete or in the setting of disseminated disease in an immunocompromised host. Duration of treatment is variable. In patients with single peripheral lymph node, surgical excision is the treatment of choice. In patients with disseminated disease, treatment duration is longer.
Skin and soft tissue	Four to six months of combination therapy and adjunctive surgery may be done.
Vertebral disease	Twelve months of drug treatment preferred and adjunctive surgery may be done.
Other bone disease	Six to nine months of drug therapy and adjunctive surgery may be done.
Catheter-associated bloodstream infection	Remove iv catheter, if possible. Treatment should be given 1-3 months depending on the immune status of the individual and NTM species.

*Disseminated disease: Involvement of two or more organs through hematogenous spread. Lung involvement may or may not be present and pulmonary involvement occurs in 2.5-8% of patients with disseminated MAC disease in advanced HIV/AIDS. 1In high TB burden countries, \textit{Mtb} is the commonest cause of lymphadenitis. iv, intravenous. \textit{Source}: Reproduced with permission from Ref. 144

Table XI. Suggested antibiotic regimens for adults with \textit{Mycobacterium avium} complex (MAC)-pulmonary disease

MAC-pulmonary disease	Antibiotic regimen
Non-severe MAC-pulmonary disease (i.e., AFB smear-negative respiratory tract samples, no radiological evidence of lung cavityation or severe infection, mild-moderate symptoms, no signs of systemic illness)	Rifampicin 600 mg 3× per week and ethambutol 25 mg/kg 3× per week and Azithromycin 500 mg 3× per week or clarithromycin 1 g in two divided doses 3× per week antibiotic treatment should continue for a minimum of 12 months after culture conversion.
Severe MAC-pulmonary disease (i.e., AFB smear-positive respiratory tract samples, radiological evidence of lung cavityation/severe infection, or severe symptoms/signs of systemic illness)	Rifampicin 600 mg daily and ethambutol 15 mg/kg daily and azithromycin 250 mg daily or clarithromycin 500 mg twice daily and consider intravenous amikacin for up to three months or nebulized amikacin antibiotic treatment should continue for a minimum of 12 months after culture conversion.
Clarithromycin-resistant MAC-pulmonary disease	Rifampicin 600 mg daily and ethambutol 15 mg/kg daily and isoniazid 300 mg (+pyridoxine 10 mg) daily or moxifloxacin 400 mg daily and consider intravenous amikacin for up to three months or nebulized amikacin antibiotic treatment should continue for a minimum of 12 months after culture conversion.

AFB, acid-fast bacilli. \textit{Source}: Reproduced with permission from Ref. 1
to be macrolide-based multidrug treatment), has been reported. Addition of ALIS to GBT for the treatment of refractory MAC lung disease achieved significantly greater culture conversion by six month than GBT alone. Respiratory adverse events (primarily dysphonia, cough and dyspnoea) were reported more (87.4%) in patients receiving ALIS+GBT than those receiving GBT alone (50%). Patients with limited and refractory MAC-PD should be considered for lung resection.

Patients with clarithromycin-resistant MAC-PD should be treated with rifampicin, ethambutol and isoniazid or a quinolone and intravenous amikacin or nebulized amikacin (if intravenous amikacin is not tolerated or impractical to administer or is contraindicated) for initial three months (Table XI). The treatment of macrolide-resistant (MR) MAC-PD is challenging because of poor sputum culture conversion rates (15-36%) and high mortality rates at two year (9-15%) and five-year (47%). A recent systematic review and meta-analysis of nine studies reported poor treatment outcomes in MR-MAC-PD with overall 21 per cent sputum culture conversion rate and 10 per cent one-year all-cause mortality with no difference between NB and FC types of MR-MAC-PD. Despite the combination of multiple antibiotics including ALIS and surgical resection, the treatment outcomes of MR-MAC-PD remained poor.

Patients with NTM-PD due to rifampicin-sensitive \textit{M. kansasii} are treated with a treatment regimen similar to pulmonary TB comprising rifampicin, ethambutol and isoniazid along with pyridoxine for a fixed duration of 12 months instead of 12 months beyond culture conversion. Even one-time isolation of \textit{M. kansasii} from patient’s sputum sample is considered pathogenic and should be treated immediately (Table XII). Because MICs (minimum inhibitory concentrations) of isoniazid are higher as compared to \textit{Mtb}, therefore, macrolide (clarithromycin or azithromycin) is preferred over isoniazid for the treatment of \textit{M. kansasii}. Pyrazinamide is not recommended for \textit{M. kansasii} pulmonary disease as the organism is naturally resistant to pyrazinamide (a prodrug) due to reduced pyrazinamidase activity preventing conversion of the drug into pyrazinoic acid which is an active bactericidal compound. Cure rates for rifampicin-sensitive \textit{M. kansasii} have been >98 per cent. Table XII describes treatment regimens for rifampicin-sensitive and rifampicin-resistant \textit{M. kansasii}.

Table XIII details the treatment of PD due to \textit{M. xenopi}. While four-drug regimen (rifampicin, ethambutol, macrolide and moxifloxacin) is used to treat non-severe disease, intravenous amikacin or nebulized amikacin is added to the regimen as a fifth drug for severe disease. In a retrospective matched cohort study comparing \textit{M. xenopi} PD to MAC-PD, 24-month mortality was higher in \textit{M. xenopi}-PD with comorbidities, especially COPD. Rifampicin was less frequently used in \textit{M. xenopi}.

Treatment response of macrolide-containing regimen in patients with \textit{M. malmoense} NTM-PD is better than that of MAC or \textit{M. xenopi}. Table XIV provides the details of drug regimen. Treatment for other slowly growing NTM can be extrapolated from common NTM species. Isolation of \textit{M. simiae} is rarely associated with true infection. Limited success is seen in \textit{M. simiae} infection with rifampicin- and ethambutol-based drug regimen, and a combination of amikacin and clofazimine may be used to construct a drug regimen to treat the infection.

The treatment details of PD due to \textit{M. abscessus} are provided in Table XV, and antibiotic combination is administered according to the DST profile. In patients with \textit{M. abscessus}, pulmonary disease is caused
Table XIII. Suggested antibiotic regimens for adults with *Mycobacterium xenopi*-pulmonary disease

M. xenopi-pulmonary disease	Antibiotic regimen
Non-severe M. xenopi-pulmonary disease (i.e., AFB smear-negative respiratory tract samples, no radiological evidence of lung cavitation or severe infection, mild-moderate symptoms, no signs of systemic illness)	Rifampicin 600 mg daily and ethambutol 15 mg/kg daily and azithromycin 250 mg/daily or clarithromycin 500 mg twice daily and moxifloxacin 400 mg daily or isoniazid 300 mg (+pyridoxine 10 mg) daily. Antibiotic treatment should continue for a minimum of 12 months after culture conversion.
Severe M. xenopi-pulmonary disease (i.e., AFB smear-positive respiratory tract samples, radiological evidence or lung cavitation/severe infection, or severe symptoms/signs of systemic illness)	Rifampicin 600 mg daily and ethambutol 15 mg/kg daily and azithromycin 250 mg/day or clarithromycin 500 mg twice daily. Moxifloxacin 400 mg daily or isoniazid 300 mg (+pyridoxine 10 mg) daily and consider intravenous amikacin for up to 3 months or nebulized amikacin. Antibiotic treatment should continue for a minimum of 12 months after culture conversion.

Source: Reproduced with permission from Ref. 1

Table XIV. Suggested antibiotic regimens for adults with *Mycobacterium malmoense*-pulmonary disease

M. malmoense-pulmonary disease	Antibiotic regimens
Non-severe M. malmoense-pulmonary disease (i.e., AFB smear-negative respiratory tract samples, no radiological evidence of lung cavitation or severe infection, mild-moderate symptoms, no signs of systemic illness)	Rifampicin 600 mg daily and ethambutol 15 mg/kg daily and azithromycin 250 mg/daily or clarithromycin 500 mg twice daily. Antibiotic treatment should continue for a minimum of 12 months after culture conversion.
Severe M. malmoense-pulmonary disease (i.e., AFB smear-positive respiratory tract sample, radiological evidence of lung cavitation/severe infection or severe symptoms/signs of systemic illness)	Rifampicin 600 mg daily and ethambutol 15 mg/kg daily and azithromycin 250 mg/daily or clarithromycin 500 mg twice daily and consider intravenous amikacin for up to 3 months or nebulised amikacin. Antibiotic treatment should continue for a minimum of 12 months after culture conversion.

Source: Reproduced with permission from Ref. 1

Table XV. Suggested antibiotic regimens for adults with *Mycobacterium abscessus*-pulmonary disease

M. abscessus	Antibiotic regimen
Clarithromycin sensitive isolates	Initial phase: ≥1 month¹ Intravenous amikacin 15 mg/kg daily or 3× per week² and intravenous tigecycline 50 mg twice daily and where tolerated intravenous imipenem 1 g twice daily and where tolerated oral clarithromycin 500 mg twice daily or oral azithromycin 250-500 mg daily. Continuation phase: Nebulized amikacin³ and oral clarithromycin 500 mg twice daily or azithromycin 250-500 mg daily and 1-3 of the following antibiotics guided by drug susceptibility results and patient tolerance: Oral clofazimine 50-100 mg daily⁴ Oral linezolid 600 mg daily or twice daily Oral moxifloxacin 400 mg daily
Inducible macrolide-resistant isolates or constitutive macrolide-resistant isolates	Initial phase: ≥1 month¹ Intravenous amikacin 15 mg/kg daily or 3× per week² and intravenous tigecycline 50 mg twice daily and where tolerated intravenous imipenem 1 g twice daily. Continuation phase: Nebulized amikacin³ and 2-3 of the following antibiotics guided by drug susceptibility results and patient’s tolerance: Oral clofazimine 50-100 mg daily⁴ Oral linezolid 600 mg daily or twice daily Oral moxifloxacin 400 mg daily

¹Due to the poor response rates in patients with inducible or constitutive macrolide-resistant isolates and the greater efficacy of antibiotics administered through the intravenous route, extending the duration of intravenous antibiotic therapy to 3-6 months in those who can tolerate it may be the most appropriate treatment strategy in this subgroup of patients.
²Substitute intravenous/nebulized amikacin with an alternative antibiotic if the *M. abscessus* is resistant to amikacin (i.e., MIC >64 mg/l or known to have a 16S rRNA gene mutation conferring constitutive amikacin resistance).
³Start clofazimine during the initial phase of treatment if tolerated as steady-state serum concentrations may not be reached until ≥30 days of treatment. Lower dose of intravenous tigecycline (25-50 mg once daily) may be given if not tolerated.
⁴Source: Adapted with permission from Ref. 1
by strains with inducible and mutational macrolide resistance, a macrolide-based regimen is recommended if the drug is used as an immunomodulator (macrolide is not considered as active drug in multidrug regimen)\(^\text{19}\). A precise identification of subspecies along with information on \(\text{erm}\) (41) gene is important in \(M.\ abscessus\) infection\(^\text{1}\) because of a variable treatment response. The treatment outcomes among the three subspecies of \(M.\ abscessus\) differ due to \(\text{erm}\) (41) gene and inducible and constitutive resistance to macrolides\(^\text{1}\) (Table IX). About 15 per cent of \(M.\ abscessus\) strains have a T to C mutation at position 28 in \(\text{erm}\) (41) gene, making them macrolide susceptible\(^\text{168}\).

A systematic review and meta-analysis of the studies on the effect of chemotherapy on pulmonary \(M.\ abscessus\) with macrolide-containing regimens reported adverse microbiological outcomes with frequent recurrences according to the subspecies\(^\text{169}\). A good outcome was defined as sustained sputum culture conversion (SSCC) without relapse. Macrolide-containing regimens achieved SSCC in only 34 per cent (77/233) patients with new \(M.\ abscessus\) subsp. \(abscessus\) vs. 54 per cent (117/141) in those with \(M.\ abscessus\) subsp. \(massiliense\). In refractory disease, SSCC was achieved in 20 per cent of patients, which was not significantly different across subspecies. The proportion of patients with good outcomes (SSCC rate without relapse) was 23 per cent (52/223) with \(M.\ abscessus\) subsp. \(abscessus\) versus 84 per cent (118/141) with \(M.\ abscessus\) subsp. \(massiliense\) disease. The pooled sputum culture conversion rate was 20 per cent (95% confidence interval, 7-36%), which on follow up after stopping therapy for 12 months was not significantly different across the mycobacterial species. Overall, disease recurrence in \(M.\ abscessus\) subsp. \(abscessus\)-infected patients was 40 per cent versus seven per cent in \(M.\ abscessus\) subsp. \(massiliense\)-infected patients. The odds ratio of recurrence in \(M.\ abscessus\) subsp. \(abscessus\)-infected versus \(M.\ abscessus\) subsp. \(massiliense\)-infected patients was 6.2\(^\text{169}\).

In patients with lung infection due to \(M.\ fortuitum\), the underlying GERD should be carefully evaluated and treated\(^\text{7,170}\). Surgical excision is the treatment of choice for younger children with cervicofacial lymphadenitis due to NTM\(^\text{105,171}\). Treatment of the skin disease due to \(M.\ marinum\) depends on the extent of lesions, hence drug regimen comprising rifampicin and ethambutol or ethambutol and clarithromycin is administered for a single small lesion, whereas triple-drug regimen of rifampicin, ethambutol and a macrolide is used for severe disease\(^\text{72-174}\). Adjunctive surgical debridement is recommended for the underlying bone and joint involvement. Eight-week drug regimens of rifampicin with either clarithromycin or quinolone are administered for the treatment of \(M.\ ulcersans\) skin disease\(^\text{175,176}\). Disseminated skin and subcutaneous abscesses caused by RGM can be treated with two-drug regimen based on DST results for four months\(^\text{17}\) in addition to surgical debridement\(^\text{177,178}\). For \(M.\ fortuitum\) infection, drug regimen may include a combination of cotrimoxazole, tobramycin, imipenem, doxycycline and fluoroquinolones\(^\text{17}\). \(M.\ chelonae\) infection is treated with two-drug combinations of tobramycin, linezolid, macrolides and imipenem\(^\text{17,177,178}\). \(M.\ abscessus\) infections may be treated with a combination of the following antibiotics: amikacin, linezolid, cefoxitin, macrolides and imipenem based on DST results\(^\text{17,18}\). The utility of macrolides depends on \(\text{erm}\) (41) gene functional status (Table IX).

Recent recommendations for treating disseminated MAC disease in HIV/AIDS patients are provided in Box VI\(^\text{19}\). Non-steroidal anti-inflammatory drugs (NSAIDS) may be used in HIV patients experiencing moderate-to-severe symptoms of immune reconstitution inflammatory syndrome (IRIS), and short-term course of corticosteroids for 4-8 wk can be used if symptoms persist.

Inhaled antibiotics for NTM-PD

Similar to TB treatment, drug treatment regimens comprising 3-4 drugs are used for treating NTM-PD for longer periods with high discontinuation rates (9-39%) due to significant side effects\(^\text{145,154,179,180}\). Use of inhaled drugs has demonstrated successful treatment outcomes in bronchial asthma, COPD and *Pseudomonas aeruginosa* infections in CF patients while achieving higher drug concentrations at the disease site without developing significant systemic side effects at the same time\(^\text{15}\). Similar approach can be considered in NTM-PD to deliver higher drug concentrations to the infected lungs with minimal extrapulmonary exposure to avoid adverse events. Inhaled amikacin along with other oral drugs is already used in patients with severe NTM-PD\(^\text{180,182}\). Development of inhaled clofazimine suspension for administration via nebulizer device in NTM-PD treatment is in progress\(^\text{180}\). In addition, studies using inhaled recombinant granulocyte-macrophage...
colony-stimulating factor and exogenous nitric oxide gas are in progress to evaluate their antibacterial effect on *M. abscessus*.183

Non-pharmacologic treatment of pulmonary NTM disease

In addition to pharmacological therapy, other non-pharmacological measures can be tried for treating the underlying lung disease184. These include techniques for mucus clearance such as nebulization using hypertonic saline, aerobic exercises, chest physiotherapy, postural drainage, use of oscillating positive expiratory pressure devices and high-frequency chest wall oscillation. Intake of balanced diet containing adequate calories and proteins to maintain ideal body weight is essential in the management of NTM diseases185. Following recovery, patients should avoid exposure to minimize re-infection from environmental sources such as hot tubs, use of tap water in humidifiers and continuous positive airway pressure units, use of specialized filtration systems in household plumbing and exposure to soil and dust.

Surgical intervention

Surgery may be considered in carefully selected individuals with NTM-PD. These patients should have localized structural lung disease and good pulmonary functions without having impaired gas exchange1,17,162. The role of a pulmonary and/or infectious disease specialist, a respiratory therapist and a nutrition expert is crucial for a successful surgical outcome186. A review of retrospective anatomic lung resection for NTM-PD in 236 consecutive patients revealed minimal mortality and morbidity and reported that 80 per cent of patients had MAC-PD and had received DST-guided antibiotic treatment prior to surgery187. Data from the annual survey between 2008 and 2012 by the Japanese Association for Thoracic Surgery (JATS) have demonstrated a steady increase in the number of NTM surgeries188. In patients with extrapulmonary NTM disease, surgical intervention may be required through aggressive debridement or removal of implanted material189. Surgical excision is the treatment of choice in patients with solitary peripheral lymph node involvement due to NTM, especially in children105,106,189.

Monitoring of drug toxicities

Drugs used for the treatment of NTM diseases are associated with several adverse events especially in elderly individuals and HIV/AIDS patients with multisystem involvement. During follow up, patients should be carefully monitored for side effects1,144,190. Table XVI provides the details of adverse events and laboratory monitoring.

Prevention

Box VI provides details of various preventive measures to reduce NTM disease in different settings, especially those due to contamination of disinfectants, ice, wounds, injection sites, catheters, endoscopes, etc., can be prevented by proper sterilization2,3. Avoiding the use of tap water is considered a key step to prevent NTM infections in the hospital settings. Further, patients undergoing cardiac surgery and transplants should receive extra attention10. Besides different drug regimens, certain non-pharmacological options are

Box VI. Measures for preventing non-tuberculous mycobacteria (NTM)
Measures to reduce health care-and hygiene-associated NTM disease
Avoid the following:
Exposure of injection sites, intravenous catheters and surgical wounds to tap water and tap water-derived fluids
Cleaning of endoscopes with tap water
Contamination of clinical specimens with tap water and ice
Use of benzalkonium chloride as a skin disinfectant prior to local injections
Household and personal measures
Avoid using saunas, hot tubs or any water with an aerator. Hot water usage should be done in proper ventilation
Replacement of shower heads at regular intervals; temperature of water heater should be ≥54.4°C
Sterilized water should be used in humidifiers; avoid ultrasonic humidifiers
Take steps to reduce GERD; avoid foods that may trigger it and avoid vulnerable body positions that may cause aspiration
NTM-associated hypersensitivity lung disease
Ensure regular cleaning of indoor pools, hot tubs and hot water pipes
GERD, gastroesophageal reflux disease. Source: Ref. 10

Source: Ref. 10
Table XVI. Drugs used in non-tuberculous mycobacteria (NTM) disease, monitoring and adverse drug reactions

Drug	Dosing	Monitoring	Serious adverse effects
Clarithromycin (oral)	500 mg twice daily or 500 mg PO twice daily TIW	Monitor QTc prolongation if administered with drugs having potential to prolong QTc, audiograms at baseline, one month, and then every three months; inhibits hepatic metabolism of several agents including rifabutin and some protease inhibitors. Drug levels need not be monitored. Avoid concomitant use of ivabradine, ticagrelor, decrease dose of rifabutin if co-administered with clarithromycin. Increases plasma concentrations of antiepileptics, phenytoin, carbamazepine (monitor plasma levels), ciclosporin, linezolid (monitor drug level), sirolimus and tacrolimus; coumarins: warfarin; theophylline	GI disturbances including taste perversion, headache, QTc prolongation especially when co-administered with drugs that have the potential to prolong the QT interval, ototoxicity, dermatological: (toxic epidermal necrolysis and Stevens-Johnson syndrome) hepatic dysfunction, Clostridium difficile-induced diarrhoea.
Azithromycin (oral)	250-500 mg daily	Monitor QTc prolongation if administered with other drugs having potential to prolong QTc; audiogram at baseline, one month, and then every three months	GI disturbances, QTc prolongation when administered with drugs having potential to increase QTc, ototoxicity, hepatitis
Ethambutol (oral)	15 mg/kg per day or 25-30 mg/kg thrice weekly	Crcl ≥30 ml/min: no dose adjustment; Crcl <30 ml/min: 15-25 mg thrice weekly; baseline eye examination and monthly visual acuity tests/ colour discrimination tests (Ishihara). Baseline and every three months. Funduscopic monitoring.	Dose dependent optic (retrolbulbar) neuropathy (>30 mg/kg/day or 15-25 mg/kg in CKD); generally, reverses on prompt discontinuation; red-green colour blindness; risk increases with concurrent use of isoniazid; hyperuricemia. Rare: interstitial nephritis, cholestatic jaundice, neutropenia and thrombocytopenia, reversible cutaneous hypersensitivity disappearing on desensitisation
Rifampicin (oral)	<50 kg: 450 mg once daily or >50 kg: 600 mg once daily (should be taken 30-60 min before food or 2 h after food)	Monitor LFTs, including ALT, AST, alkaline phosphatase, and bilirubin levels	Red/orange discoloration of secretions, GI disturbances, hepatitis, hypersensitivity (fever, rash)
Rifabutin (oral)	Routinely 300 mg daily, rarely 450 mg; may administer thrice weekly	Monitor LFTs, including ALT, AST, alkaline phosphatase, and bilirubin levels	Red/orange discoloration of secretions; GI disturbances, loss of taste, hypersensitivity, polyarthralgia, polymyalgia, anterior uveitis and leukopenia (in combination with clarithromycin)
Drug	Dosing	Monitoring	Serious adverse effects
--------------	--	---	--
Isoniazid (oral)	5 mg/kg per day (maximum of 300 mg)	Monitor LFTs including ALT and AST levels in patients at risk	Hypersensitivity reaction, hepatitis, peripheral neuropathy, haematological abnormalities (agranulocytosis, megaloblastic anaemia, thrombocytopenia), psychosis (rare) drug induced lupus (rare), arthralgia, rhabdomyolysis
Amikacin (intravenous)	15 mg/kg once daily for 5 days (Monday-Friday) or 15-25 mg thrice weekly. Consider starting with 8-10 mg/kg per day for the elderly and patient with mild renal impairment and titrate upward to goal C\text{max}.	Target C\text{max} 25-35 μg/ml for daily dose and >35-45 μg/ml with thrice weekly administration. Audiometry should be done at baseline and subsequently monthly. A final audiometry should be done 2 months after the final dose. Monitor renal functions weekly in first month, twice weekly in second month and fortnightly thereafter. Preferably avoid or dose adjustment required in CKD.	Nephrotoxicity: Higher chances in old age and with prolonged use. Ototoxicity: auditory-vestibular; ototoxicity includes hearing loss, loss of balance and tinnitus. Hearing loss occurs first and is detected by audiometric testing. Ototoxicity in audiogram is defined as 20 dB loss from baseline at any one test frequency or a 10 dB loss at any two adjacent test frequencies. Hearing loss is usually permanent. Vertigo, loss of balance and tinnitus.
Amikacin (inhalation) Arikayce (liposome inhalation)	250 mg/ml solution diluted with 3 ml of 0.9% sodium chloride daily, can be increased to 500 mg once daily depending on patient’s tolerance. In patient with reactive airways disease, inhaled bronchodilators can be administered prior to administration to reduce the risk of wheezing and coughing. Oral inhalation, used in a limited and specific population of patients. Use Arikayce vials only with Lamira Nebulizer system. The recommended dosage in adults is once daily oral inhalation of the contents of one 590 mg/8.4 ml of Arikayce vial. Pre-treatment with inhaled bronchodilator should be considered in patients with a history of hyperactive airway disease.	Observe amikacin trough and creatinine levels after 1-2 wk of therapy, then repeat in one month; audiogram at baseline and then in one month; if all normal, then creatinine and amikacin trough levels, and audiograms every three months. Arikayce use should be reserved for those adults who have limited or no alternative treatment options, for the treatment of MAC lung disease as part of a combination antibacterial drug regimen. This indication is approved under accelerated approval based on achieving sputum culture conversion (defined as 3 consecutive negative monthly sputum cultures) by month 6. Arikayce has only been studied in refractory MAC lung disease (patient who did not achieve negative sputum cultures after minimum of 6 consecutive mo of multidrug background regimen therapy)	Dysphonia, respiratory concerns (bronchiectasis exacerbation, dyspnoea); watch for systemic adverse effects as well. Arikayce related increased risk of respiratory adverse events include, common: dysphonia (50%) and coughing (30%), and uncommon: hypersensitivity pneumonitis, haemoptysis, bronchospasm, exacerbation of underlying pulmonary disease. Other adverse reactions include ototoxicity, nephrotoxicity, neuromuscular blockade and embryo-foetal toxicity when administered to a pregnant woman.

Contd...
Drug	Dosing	Monitoring	Serious adverse effects
Linezolid (oral or intravenous)	600 mg daily; may decrease dose to 300 mg after 3-6 months	Careful monitoring for haematological toxicity, lactic acidosis, peripheral and optic neuropathy (often reversible); pyridoxine 100 mg can be administered to prevent haematological toxicity; to prevent serotonin syndrome, avoid tyramine rich food items and medications known to raise serotonin production; monitor CBC count with differential count weekly for 2 wk, then twice weekly.	Haematological toxicity, lactic acidosis, myelosuppression, peripheral and optic neuropathy and serotonin syndrome. Haematological toxicity (early) and lactic acidosis may occur in a few weeks to months whereas neurological toxicity occurs after 3-4 months (late)
Levofloxacin (oral)	500-1000 mg daily	Consider ECG monitoring if additional risk factors present; Dose adjustment required in CKD. CrCl ml/min=750-1000 mg daily, CrCl <30 ml/min=750-1000 mg thrice weekly	GI upset, dizziness, hypersensitivity, photosensitivity, headache, insomnia, tendinitis, tendon rupture, peripheral neuropathy, CNS effects, headache, agitation, depression, paranoia, seizures, QTc prolongation on ECG
Moxifloxacin (oral)	400 mg daily	Consider ECG monitoring if additional risk factors present; no dose adjustment is required in CKD; hepatobiliary excretion; avoid concomitant use of antacids with aluminium sucrafate, phosphate binders, calcium, iron, or aluminium containing medications to avoid malabsorption	Tendinitis, tendon rupture, peripheral neuropathy, CNS effects, QTc prolongation on ECG
Doxycycline (oral)	100 mg twice daily	Monitor clinical symptoms of the patient	GI disturbances, photosensitivity
Minocycline (oral)	100 mg twice daily	Monitor clinical symptoms of the patient	GI disturbances, photosensitivity, hyperpigmentation of the skin and CNS effects
Trimethoprim/ sulphamethoxazole (oral)	One double-strength twice or thrice daily	Monitor potassium at baseline, 2 wk, 12 wk then monthly	GI disturbances, cytopenia, renal failure, hyperkalemia
Bedaquiline (oral)	400 mg daily 2 wk and subsequently 200 mg thrice weekly for next 22 wk	Administration with food increases bioavailability; baseline ECG, then 2, 12, 24 wk after initiation to monitor QTc prolongation esp. in combination with clarithromycin, clofazimine and fluoroquinolones; stop drug if QTc>500 ms; monitor serum calcium, magnesium and potassium	QTc prolongation, nausea, arthralgia, headache, subjective fever, anorexia

Contd...
available which can help in improving the quality of life in patients with NTM-PD. Chest physiotherapy can be helpful in improving lung functions and mucociliary clearance, especially in cavitary disease, CF and bronchiectasis. Breathing exercises including aerobic activity such as yoga are generally believed to be helpful in pulmonary rehabilitation. Besides drug therapy, exposure to NTM, especially from household plumbing and water sources, should be avoided. NTM transmission can be prevented by increasing water temperature to ≥54°C (130°F) and changing shower heads regularly. Patients with GERD should be advised to avoid foods that may trigger it and avoid vulnerable body positions that may cause repeated aspirations.

Patients should be advised to pay special attention to maintain adequate calorie intake and body mass index especially if surgical intervention is contemplated. Monitoring of pre-albumin level can serve as a useful marker of nutrition. In some individuals along with antibiotic regimen, probiotic therapy can be helpful.
Box VII. Recommendations for treating and preventing disseminated *Mycobacterium avium* complex (MAC) disease

Treating Disseminated MAC Disease
Preferred therapy
At least 2 drugs as initial therapy to prevent or delay emergence of resistance
Clarithromycin 500 mg PO twice daily (A1) plus ethambutol 15 mg/kg PO daily or
Azithromycin 500-600 mg (AII) plus ethambutol 15 mg/kg PO daily when drug interactions or intolerance precludes the use of clarithromycin
Note: Testing of susceptibility to clarithromycin or azithromycin is recommended.

Alternative therapy
Some experts would recommend addition of a third or a fourth drug for people with HIV with high mycobacterial loads (*i.e.*, >2 log cfu/ml of blood), or in the absence of effective ART
The third or fourth drug options may include:
Rifabutin 300 mg PO daily (dose adjustment may be necessary based on drug-drug interactions)
or
A fluoroquinolone (*e.g.*, levofloxacin 500 mg PO daily or moxifloxacin 400 mg PO daily), or
An injectable aminoglycoside (*e.g.*, amikacin 10-15 mg/kg iv daily or streptomycin 1 gm iv or im daily)
Chronic maintenance therapy (secondary prophylaxis): Same as treatment regimens
Criteria for discontinuing chronic maintenance therapy
Completed at least 12 month therapy
No signs and symptoms of MAC disease
Have sustained (>6 months) CD4 count >100 cells/μl in response to ART
Indication for restarting secondary prophylaxis
CD4 <100 cells/μl
Other considerations
NSAIDs may be used for people with HIV who experience moderate to severe symptoms attributed to IRIS
If IRIS symptoms persist, a short-term course (four weeks-eight weeks) of systemic corticosteroid (equivalent to prednisone 20-40 mg) can be used

Preventing first episode of disseminated MAC disease (primary prophylaxis)
Primary prophylaxis is not recommended for adults and adolescents who immediately initiate ART. Indications for initiating primary prophylaxis
Not on fully suppressive ART, and
CD4 count
Preferred therapy
Azithromycin 1200 mg PO once weekly or Clarithromycin 500 mg PO BID or azithromycin 600 mg PO twice weekly

Alternative therapy
Rifabutin 300 mg PO daily (BI) (dose adjustment may be necessary based on drug-drug interactions)
Note: Active TB should be ruled out before starting rifabutin. Indication for discontinuing primary prophylaxis
Initiation of effective ART indication for restarting primary prophylaxis
CD4 count <50 cells/μl (only if not fully suppressive ART) ARTIII

ART: antiretroviral therapy, **ARV,** antiretroviral; **BI,** twice daily; **CD4:** CD4 T lymphocyte; cfu, colony-forming units; im, intramuscular; IRIS, immune reconstitution inflammatory syndrome; iv, intravenous; NSAIDs, non-steroidal anti-inflammatory drugs; PO, orally.

Source: Ref. 19

Box VII details recommendations for preventing disseminated MAC disease and includes indications for initiating, discontinuing and restarting primary prophylaxis. Disseminated MAC disease must be carefully ruled out before starting drugs for primary prophylaxis. While azithromycin (1200 mg PO once weekly) or clarithromycin (500 mg PO twice daily) are preferred drugs, rifabutin (300 mg PO daily) is an alternative drug for primary prophylaxis provided that the active TB has been ruled out.
Future prospects

Future studies should be directed to understand the role of risk factors for developing NTM-PD so that the benefit of screening can be offered to high risk individuals for early diagnosis and treatment. As growing evidence has established human-to-human transmission of *M. abscessus* among CF patients, further research should be done to study mechanisms contributing to patient-to-patient transmission of other NTM species to prevent further spread. Newer non-culture-based methods should be developed for early identification and speciation of NTM from respiratory specimens as the present methods rely heavily on mycobacterial culture for identification and further characterization of NTM species, causing significant delay in treatment. Future research should focus on understanding the role of DST in predicting treatment outcomes in NTM as currently the role of DST is controversial and limited only to a few situations in the management of NTM. Studies should also focus on understanding the pathogenic potential of various NTM species and subspecies to facilitate decision-making in treatment as there are significant knowledge gaps at present. Efforts should be made to follow progression of inflammatory lung disease systematically and to study treatment outcomes after timely intervention to develop and validate newer drugs and besides conventional routes of drug administration, potential use of drugs through inhalation route should be explored. Less toxic and more effective drug treatment regimens administered for short periods should be developed for the treatment of NTM-PD especially due to *M. abscessus* as these NTM species respond poorly to treatment with frequent relapses occurring after stopping the treatment.

Financial support & sponsorship: The first author (SKS) is sponsored by JC Bose Fellowship of the Science & Engineering Research Board (SERB No. SB/S2/ JCB-04/2013) of the Ministry of Science & Technology, Government of India. The second author (VU) is a Junior Research Fellow in the Department of Molecular Medicine at Jamia Hamdard University, Delhi, supported by Dr SK Sharma through SERB JC Bose Fellowship.

Conflicts of Interest: None.

References

1. Haworth CS, Banks J, Capstick T, Fisher AJ, Gorsuch T, Laurensen IF, *et al*. British Thoracic Society Guideline for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). *BMJ Open Respir Res* 2017; 4 : e000242.
2. Falkingham JO 3rd. Environmental sources of nontuberculous mycobacteria. *Clin Chest Med* 2015; 36 : 35-41.
3. Honda JR, Virdi R, Chan ED. Global environmental nontuberculous mycobacteria and their contemporaneous man-made and natural niches. *Front Microbiol* 2018; 9 : 2029.
4. Falkingham JO 3rd. Challenges of NTM drug development. *Front Microbiol* 2018; 9 : 1613.
5. Runyon EH. Anonymous mycobacteria in pulmonary disease. *Med Clin North Am* 1959; 43 : 273-90.
6. Cha SB, Jeon BY, Kim WS, Kim JS, Kim HM, Kwon KW, *et al*. Experimental reactivation of pulmonary *Mycobacterium avium* complex infection in a modified Cornell-like murine model. *PLoS One* 2015; 10 : e0139251.
7. Tortoli E, Fedrizzi T, Meehan CJ, Trovato A, Grottola A, Giacobazzi E, *et al*. The new phylogeny of the genus *Mycobacterium*: The old and the news. *Infect Genet Evol* 2017; 56 : 19-25.
8. Fedrizzi T, Meehan CJ, Grottola A, Giacobazzi E, Fregni Serpini G, Tagliazucchi S, *et al*. Genomic characterization of nontuberculous mycobacteria. *Sci Rep* 2017; 7 : 45258.
9. Parte AC. LPSN - List of Prokaryotic names with standing in Nomenclature (bacterio.net), 20 years on. *Int J Syst Evol Microbiol* 2018; 68 : 1825-9.
10. Baldwin SL, Larsen SE, Ordway D, Cassell G, Coler RN. The complexities and challenges of preventing and treating nontuberculous mycobacterial diseases. *PLoS Negl Trop Dis* 2019; 13 : e0007083.
11. Sarro YD, Kone B, Diarra B, Kumar A, Kodio O, Fofana DB, *et al*. Simultaneous diagnosis of tuberculous and non-tuberculous mycobacterial diseases: Time for a better patient management. *Clin Microbiol Infect Dis* 2018; 3 : doi: 10.15761/CMD.1000144.
12. Filliol I, Driscoll JR, Van Soolingen D, Kreiswirth BN, Kremer K, Valétudie G, *et al*. Global distribution of *Mycobacterium tuberculosis* spoligotypes. *Emerg Infect Dis* 2002; 8 : 1347-9.
13. Bhalla GS, Sarao MS, Kalra D, Bandyopadhyay K, John AR. Methods of phenotypic identification of non-tuberculous mycobacteria. *Pract Lab Med* 2018; 12 : e00107.
14. Monteiro PHT, Martins MC, Ueki SYM, Giampaglia CMS, Telles MADS. Cord formation and colony morphology for the presumptive identification of *Mycobacterium tuberculosis* complex. *Braz J Microbiol* 2003; 34 : 171-4.
15. Miller JM, Binnicker MJ, Campbell S, Carroll KC, Chapin KC, Gilligan PH, *et al*. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2018 update by the Infectious Diseases Society of America and the American Society for Microbiology. *Clin Infect Dis* 2018; 67 : 813-6.
16. Clinical and Laboratory Standards Institute. *Susceptibility testing of mycobacteria, Nocardiae, and other aerobic actinomycetes*. 3rd ed. Wayne, PA: CLSI; 2018.
An official ATS/IDSA statement: Increasing recovery of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 2007; 175: 367-416.

Daley CL, Iaccarino JM, Lange C, Cambau E, Wallace RJ, Andrejak C, et al. Treatment of nontuberculous mycobacterial pulmonary disease: An official ATS/ERS/ESCMID/IDSA clinical practice guideline. Clin Infect Dis 2020; 71: 905-13.

Panel on Opportunistic Infections in Adults and Adolescents with HIV. Guidelines for the prevention and treatment of opportunistic infections in adults and adolescents with HIV: Recommendations from the Centers for Disease Control and Prevention, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. Available from: http://aidsinfo.nih.gov/contentfiles/ lcguidelines/adult_oia.pdf; accessed on May 18, 2020.

World Health Organization. WHO preferred product characteristics for new tuberculosis vaccines. Geneva: WHO; 2018.

Bryant JM, Grogono DM, Rodriguez-Rincon D, Everall I, Brown KP, Moreno P, et al. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science 2016; 354: 751-7.

Adjemian J, Olivier KN, Seitz AE, Holland SM, Prevots DR. Prevalence of nontuberculous mycobacterial lung disease in U.S. Medicare beneficiaries. Am J Respir Crit Care Med 2012; 185: 881-6.

Hoeftsloot W, van Ingen J, Andrejak C, Angeby K, Bauriaud R, Bemer P, et al. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. Eur Respir J 2013; 42: 1604-13.

Shao Y, Chen C, Song H, Li G, Liu Q, Li Y, et al. The epidemiology and geographic distribution of nontuberculous mycobacteria clinical isolates from sputum samples in the eastern region of China. PLoS Negl Trop Dis 2015; 9: e0003623.

Thomson RM, NTM working group at Queensland TB Control Centre and Queensland Mycobacterial Reference Laboratory. Changing epidemiology of pulmonary nontuberculous mycobacteria infections. Emerg Infect Dis 2010; 16: 1576-83.

Prevots DR, Shaw PA, Strickland D, Jackson LA, Rachel MA, Bloksy MA, et al. Nontuberculous mycobacterial lung disease prevalence at four integrated health care delivery systems. Am J Respir Crit Care Med 2010; 182: 970-6.

Prevots DR, Marras TK. Epidemiology of human pulmonary infection with nontuberculous mycobacteria: A review. Clin Chest Med 2015; 36: 13-34.

Simons S, van Ingen J, Hsueh PR, Van Hung N, Dekhuijzen PN, Boeree MJ, et al. Nontuberculous mycobacteria in respiratory tract infections, eastern Asia. Emerg Infect Dis 2011; 17: 343-9.

Morimoto K, Iwai K, Uchimura K, Okumura M, Yoshiyama T, Yoshimori K, et al. A steady increase in nontuberculous mycobacteriosis mortality and estimated prevalence in Japan. Ann Am Thorac Soc 2014; 11: 1-8.

Lai CC, Tan CK, Chou CH, Hsu HL, Liao CH, Huang YT, et al. Increasing incidence of nontuberculous mycobacteria, Taiwan, 2000-2008. Emerg Infect Dis 2010; 16: 294-6.

Jing H, Wang H, Wang Y, Deng Y, Li X, Liu Z, et al. Prevalence of nontuberculous mycobacteria infection, China, 2004-2009. Emerg Infect Dis 2012; 18: 527-8.

Chou MP, Clements AC, Thomson RM. A spatial epidemiological analysis of nontuberculous mycobacterial infections in Queensland, Australia. BMC Infect Dis 2014; 14: 279.

Koh WJ, Chang B, Jeong BH, Jeon K, Kim SY, Lee NY, et al. Increasing recovery of nontuberculous mycobacteria from respiratory specimens over a 10-year period in a tertiary Referral Hospital in South Korea. Tuberc Respir Dis (Seoul) 2013; 75: 199-204.

Andrêjak C, Thomsen VØ, Johansen IS, Riis A, Benfield TL, Duhat P, et al. Nontuberculous pulmonary mycobacteriosis in Denmark: Incidence and prognostic factors. Am J Respir Crit Care Med 2010; 181: 514-21.

Shah NM, Davidson JA, Anderson LF, Lalor MK, Kim J, Thomas HL, et al. Pulmonary Mycobacterium avium-intracellulare is the main driver of the rise in non-tuberculous mycobacteria incidence in England, Wales and Northern Ireland, 2007-2012. BMC Infect Dis 2016; 16: 195.

Marras TK, Mendelson D, Marchand-Austin A, May K, Jamieson FB. Pulmonary nontuberculous mycobacterial disease, Ontario, Canada, 1998-2010. Emerg Infect Dis 2013; 19: 1889-91.

Adelman MH, Addirizzo-Harris DJ. Management of nontuberculous mycobacterial pulmonary disease. Curr Opin Pulm Med 2018; 24: 212-9.

Rivero-Lezcano OM, Gonzalez-Cortés C, Mirsaedi M. The unexplained increase of nontuberculous mycobacteriosis. Int J Mycobacteriol 2019; 8: 1-6.

Cassidy PM, Hedberg K, Saulson A, McNelly E, Winthrop KL. Nontuberculous mycobacteria disease prevalence and risk factors: A changing epidemiology. Clin Infect Dis 2009; 49: e124-9.

Zamarioli LA, Coelho AG, Pereira CM, Nascimento AC, Ueki SY, Chimara E. Descriptive study of the frequency of nontuberculous mycobacteria in the Baixada Santista region of the state of São Paulo, Brazil. J Bras Pneumol 2008; 34: 590-4.

Kennedy MP, O’Connor TM, Ryan C, Sheehan S, Cryan B, Bredin C. Nontuberculous mycobacteria: Incidence in Southwest Ireland from 1987 to 2000. Respir Med 2003; 97: 257-63.

McCallum AD, Watkin SW, Facenda JF. Non-tuberculous mycobacterial infections in the Scottish Borders: Identification, management and treatment outcomes - a retrospective review. J R Coll Physicians Edin 2011; 41: 294-303
complex lung disease in untreated. Pulmonary disease due to infection by
isolation in the Netherlands.

74. Jeon D. Infection source and epidemiology of nontuberculous
mycobacterial diseases in the United States. \textit{Am J Respir Crit Care Med} 2012; 186 : 553-8.

75. Wu UI, Holland SM. Host susceptibility to non-tuberculous
mycobacterial lung disease. \textit{Tuberc Respir Dis (Seoul)} 2019; 82 : 94-101.

76. Fowler CJ, Olivier KN, Leung JM, Huth AG, Root H, et al. Abnormal nasal nitric oxide production, ciliary beat frequency, and Toll-like receptor response in pulmonary nontuberculous mycobacterial disease epithelium. \textit{Am J Respir Crit Care Med} 2013; 187 : 1374-81.

77. Jang MA, Kim SY, Jeong BH, Park HY, Jeon K, Kim JW, et al. Association of CFTR gene variants with nontuberculous mycobacterial lung disease in a Korean population with a low prevalence of cystic fibrosis. \textit{J Hum Genet} 2013; 58 : 298-303.

78. Kalayjian RC, Toossi Z, Tomasheski JJ, Tomford JW, et al. Pulmonary disease due to infection by \textit{Mycobacterium avium} complex in patients with AIDS. \textit{Clin Infect Dis} 1995; 20 : 1186-94.

79. Reich JM. In Defense of Lady Windermere Syndrome. \textit{Lancet} 2018; 196 : 377-9.

80. Reich JM. Cough suppression disorders spectrum. \textit{Respir Med} 2014; 108 : 413-5.

81. Koh WJ, Lee JH, Kwon YS, Lee KS, Suh GY, et al. Prevalence of gastroesophageal reflux disease in patients with nontuberculous mycobacterial lung disease. \textit{Chest} 2007; 131 : 1825-30.

82. Thomson RM, Armstrong JG, Looke DF. Gastroesophageal reflux disease, acid suppression, and \textit{Mycobacterium avium} complex pulmonary disease. \textit{Chest} 2007; 13 : 1166-72.

83. Chan ED, Iseman MD. Slender, older women appear to be more susceptible to nontuberculous mycobacterial lung disease. \textit{Gend Med} 2010; 7 : 5-18.

84. Stout JE, Koh WJ, Yew WW. Update on pulmonary disease due to nontuberculous mycobacteria. \textit{Int J Infect Dis} 2016; 45 : 123-34.

85. Marras TK, Chedore P, Ying AM, Jamieson F. Isolation prevalence of pulmonary non-tuberculous mycobacteria in Ontario, 1997-2003. \textit{Thorax} 2007; 62 : 661-6.

86. O’Brien RJ, Geiter LJ, Snider DE Jr. The epidemiology of nontuberculous mycobacterial diseases in the United States. Results from a national survey. \textit{Am Rev Respir Dis} 1987; 135 : 1007-14.

87. van Ingen J, Boeree MJ, de Lange WC, Hoefsloot W, Bendien SA, Magis-Escurra C, et al. \textit{Mycobacterium xenopi} clinical relevance and determinants, the Netherlands. \textit{Emerg Infect Dis} 2008; 14 : 385-9.

88. van Ingen J, de Zwaan R, Dekhuijzen RP, Boeree MJ, van Soolingen D. Clinical relevance of \textit{Mycobacterium chelonae}-abscessus group isolation in 95 patients. \textit{J Infect} 2009; 59 : 324-31.

89. van Ingen J, Hoefsloot W, Dekhuijzen PN, Boeree MJ, van Soolingen D. The changing pattern of clinical \textit{Mycobacterium avium} isolation in the Netherlands. \textit{Int J Tuberc Lung Dis} 2010; 14 : 1176-80.

90. Hoefsloot W, Boeree MJ, van Ingen J, Bendien S, Magis C, de Lange W, et al. The rising incidence and clinical relevance of \textit{Mycobacterium malmoense}. A review of the literature. \textit{Int J Tuberc Lung Dis} 2008; 12 : 987-93.

91. Wallace JR Jr, Zhang Y, Brown BA, Dawson D, Murphy DT, Wilson R, et al. Polyclonal \textit{Mycobacterium avium} complex infections in patients with nodular bronchiectasis. \textit{Am J Respir Crit Care Med} 1998; 158 : 1235-44.

92. Lim H-J, Park CM, Park YM, Lee J, Lee S-M, Yang S-C, et al. Isolation of multiple nontuberculous mycobacteria species in the same patients. \textit{Int J Infect Dis} 2011; 15 : e795-8.

93. Wallace JR Jr, Zhang Y, Brown-Elliott BA, Yakrus MA, Wilson RW, Mann L, et al. Repeat positive cultures in \textit{Mycobacterium intracellulare} lung disease after macrolide therapy represent new infections in patients with nodular bronchiectasis. \textit{J Infect Dis} 2002; 186 : 266-73.

94. Nishiuchi Y, Iwamoto T, Maruyama F. Infection Sources of a common non-tuberculous mycobacterial pathogen, \textit{Mycobacterium avium} Complex. \textit{Front Med (Lausanne)} 2017; 4 : 27.

95. Boyle DP, Zembower TR, Reddy S, Qi C. Comparison of clinical features, virulence, and relapse among \textit{Mycobacterium avium} complex species. \textit{Am J Respir Crit Care Med} 2015; 191 : 1310-7.

96. Hwang JA, Kim S, Jo KW, Shim TS. Natural history of \textit{Mycobacterium avium} complex lung disease in untreated patients with stable course. \textit{Eur Respir J} 2017; 49 : 1600537.

97. Horne D, Skerrett S. Recent advances in nontuberculous mycobacterial lung infections. \textit{F1000Res} 2019; 8 : F1000 Faculty Rev-1710.

98. Wassilew N, Hoffmann H, Andrejak C, Lange C. Pulmonary disease caused by non-tuberculous mycobacteria. \textit{Respiration} 2016; 91 : 386-402.

99. Griffith DE, Girard WM, Wallace RJ Jr. Clinical features of pulmonary disease caused by rapidly growing mycobacteria. An analysis of 134 patients. \textit{Am Rev Respir Dis} 1993; 147 : 1271-8.

100. Koh WJ, Stout JE, Yew WW. Advances in the management of pulmonary disease due to \textit{Mycobacterium abscessus} complex. \textit{Int J Tuberc Lung Dis} 2014; 18 : 1141-8.
101. Ryu YJ, Koh WJ, Daley CL. Diagnosis and treatment of nontuberculous mycobacterial lung disease: Clinicians’ perspectives. *Tuberc Respir Dis (Seoul)* 2016; 79 : 74-84.

102. Fjällbrant H, Akerstrom M, Svensson E, Andersson E. Hot tub lung: an occupational hazard. *Eur Respir Rev* 2013; 22 : 88-90.

103. Larsson LO, Polverino E, Hoefsloot W, Coderca LR, DieI R, Jenkins SG, et al. Pulmonary disease by non-tuberculous mycobacteria - clinical management, unmet needs and future perspectives. *Expert Rev Med Pharmacol* 2017; 11 : 977-89.

104. Johnson MM, Odell JA. Nontuberculous mycobacterial pulmonary infections. *J Thorac Dis* 2014; 6 : 210-20.

105. Bhattacharya J, Mohandas S, Goldman DL. Nontuberculous mycobacterial infections in children. *Pediatr Rev* 2019; 40 : 179-90.

106. Deveci HS, Kule M, Kule ZA, Habesoglu TE. Diagnostic challenges in cervical tuberculous lymphadenitis: A review. *North Clin Istamb* 2016; 3 : 150-5.

107. PastorF, Silva MT, Meyers WM. Buruli Ulcer. *Clin Dermatol* 2009; 27 : 291-305.

108. Deshayes C, Angala SK, Marion E, Brandli I, Babonneau J, Preisser L, et al. Regulation of mycolactone, the *Mycobacterium ulcerans* toxin, depends on nutrient source. *PLoS Negl Trop Dis* 2013; 7 : e2502.

109. Sakyi SA, Aboagyey SY, Darko Otchere I, Yeboah-Manu D. Clinical and laboratory diagnosis of Buruli ulcer disease: A systematic review. *Can J Infect Dis Med Microbiol* 2016; 2016 : 5310718.

110. Petrini B. *Mycobacterium marinum*: Ubiquitous agent of waterborne granulomatous skin infections. *Eur J Clin Microbiol Infect Dis* 2006; 25 : 609-13.

111. Hashish E, Merwad A, Elgaml S, Amer A, Kamal H, Elsadek A, et al. *Mycobacterium marinum* infection in fish and man: Epidemiology, pathophysiology and management; a review. *Vet Q* 2018; 38 : 35-46.

112. Tirado-Sánchez A, Bonifaz A. Nodular lymphangitis (sporotrichoid lymphocutaneous infections). Clues to differential diagnosis. *J Fungi (Basel)* 2018; 4 : 56.

113. Uslan DZ, Kowalski TJ, Wengenack NL, Virk A, Wilson JW. Skin and soft tissue infections due to rapidly growing mycobacteria: Comparison of clinical features, treatment, and susceptibility. *Arch Dermatol* 2006; 142 : 1287-92.

114. Misch EA, Saddler C, Davis JM. Skin and soft tissue infections due to nontuberculous mycobacteria. *Curr Infect Dis Rep* 2018; 20 : 6.

115. Xu X, Lao X, Zhang C, Cao C, Ding H, Pang Y, et al. *Mycobacterium avium* skin and soft tissue infection complicated with scalp osteomyelitis possibly secondary to anti-interferon-γ autoantibody formation. *BMC Infect Dis* 2019; 19 : 203.

116. Piersimoni C, Scarpato C. Extrapulmonary infections associated with nontuberculous mycobacteria in immunocompetent persons. *Emerg Infect Dis* 2009; 15 : 1351-8; quiz 1544.

117. Bauer J, Andersen AB, Askgaard D, Giese SB, Larsen B. Typing of clinical *Mycobacterium avium* complex strains cultured during a 2-year period in Denmark by using IS1245. *J Clin Microbiol* 1999; 37 : 600-5.

118. MacDonell KB, Glassroth J. *Mycobacterium avium* complex and other nontuberculous mycobacteria in patients with HIV infection. *Semin Respir Infect* 1989; 4 : 123-32.

119. Damsker B, Bottone EJ. *Mycobacterium avium-Mycobacterium intracellulare* from the intestinal tracts of patients with the acquired immunodeficiency syndrome: concepts regarding acquisition and pathogenesis. *J Infect Dis* 1985; 151 : 179-81.

120. Hill AR. Nontuberculous mycobacterial infections in AIDS. *Can J Infect Dis* 1991; 2 : 19-29.

121. Gupta-Wright A, Kerkhoff AD, Meintjes G, Corbett EL. Urinary lipoarabinomannan detection and disseminated nontuberculous mycobacterial disease. *Clin Infect Dis* 2018; 66 : 158.

122. Henkel E, Winthrop KL. Nontuberculous mycobacteria infections in immunosuppressed hosts. *Clin Chest Med* 2015; 36 : 91-9.

123. Chalermksulrat W, Sood N, Neuringer IP, Hecker TM, Chang L, Rivera MP, et al. Non-tuberculous mycobacteria in end stage cystic fibrosis: implications for lung transplantation. *Thorax* 2006; 61 : 507-13.

124. Blanc P, Dutrone H, Peuchant O, Dauchy FA, Cazanave C, Neau D, et al. Nontuberculous mycobacterial infections in a French Hospital: A 12-year retrospective study. *PLoS One* 2016; 11 : e0168290.

125. Winthrop KL, Baxter R, Liu L, Varley CD, Curtis JR, Baddley JW, et al. Mycobacterial diseases and antitumour necrosis factor therapy in USA. *Ann Rheum Dis* 2013; 72 : 37-42.

126. Browne SK, Zaman R, Sampaio EP, Jutivorakool K, Rosen LB, Ding L, et al. Anti-CD20 (rituximab) therapy for anti-IFN-γ autoantibody-associated nontuberculous mycobacterial infection. *Blood* 2012; 119 : 3933-9.

127. Yeh YK, Ding YJ, Ku CL, Chen WC. Disseminated *Mycobacterium avium* complex infection mimicking malignancy in a patient with anti-IFN-γ autoantibodies: A case report. *BMC Infect Dis* 2019; 19 : 909.

128. Orduña P, Castillo-Rodal AI, Mercado ME, Ponce de León S, López-Vidal Y. Specific proteins in pro-inflammatory response of *Mycobacterium avium intracellulare* infection. *Semin Respir Infect* 2013; 28 : 37-42.

129. Forbes BA, Hall GS, Miller MB, Novak SM, Rowlinson MC, Salfinger M, et al. Practice guidelines for clinical microbiology laboratories: Mycobacteria. *Clin Microbiol Rev* 2018; 31 : e00038-17.

130. Stephenson D, Perry A, Appleby MR, Lee D, Davison J, Johnston A, et al. An evaluation of methods for the isolation of nontuberculous mycobacteria from patients with cystic
fibrosis, bronchiectasis and patients assessed for lung transplantation. BMC Pulm Med 2019; 19 : 19.

132. Palmore TN, Shea YR, Convilhe PS, Witebsky FG, Anderson VL, Rupp Hodge IP, et al. “Mycobacterium tilburgii,” a newly described, uncultivated opportunistic pathogen. J Clin Microbiol 2009; 47 : 1585-7.

133. Tortoli E. Microbiological features and clinical relevance of new species of the genus Mycobacterium. Clin Microbiol Rev 2014; 27 : 727-52.

134. Kwon YS, Daley CL, Koh WJ. Managing antibiotic resistance in nontuberculous mycobacterial pulmonary disease: Challenges and new approaches. Expert Rev Respir Med 2019; 13 : 851-61.

135. Matsumoto Y, Kinjo T, Motooka D, Nabeya D, Jung N, Uechi K, et al. Comprehensive subspecies identification of 175 nontuberculous mycobacteria species based on 7547 genomic profiles. Emerg Microbes Infect 2019; 8 : 1043-53.

136. Quan TP, Bawa Z, Foster D, Walker T, Del Ojo Elias C Rathod P, et al. Evaluation of whole-genome sequencing for mycobacterial species identification and drug susceptibility testing in a clinical setting: a large-scale prospective assessment of performance against line probe assays and phenotyping. J Clin Microbiol 2018; 56 : e01480-17.

137. Mediavilla-Gradolph MC, De Toro-Peinado I, Bermúdez-Ruiz MP, Garcia-MartinezMde L, Ortega-Torres M, Quezel-Guerraz NM, et al. Use of MALDI-TOF MS for identification of nontuberculous mycobacterium species isolated from clinical specimens. Biomed Res Int 2015; 2015 : 854078.

138. Kehrmann J, Schoering AK, Murali R, Wessel S, Koehling HL, Mosel F, et al. Performance of Vitek MS in identifying nontuberculous mycobacteria from MGIT liquid medium and Lowenstein-Jensen solid medium. Diagn Microbiol Infect Dis 2016; 84 : 43-7.

139. Floto RA, Olivier KN, Saiman L, Nemeth J, Hermann JL, Nick JA, et al. US Cystic Fibrosis Foundation and European Cystic Fibrosis Society. US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis. Thorax 2016; 71 (Suppl 1) : i1-22.

140. Jhun BW, Yang B, Moon SM, Lee H, Park HY, Jeon K, et al. Amikacin inhalation as salvage therapy for refractory nontuberculous mycobacterial lung disease. Antimicrob Agents Chemother 2018; 62 : pii: e00011-18.

141. Griffith DE, Eagle G, Thomson R, Aksamit TR, Hasegawa N, Morimoto K, et al. Amikacin liposome inhalation suspension for treatment-refractory lung disease caused by Mycobacterium avium complex (CONVERT). A prospective, open-label, randomized study. Am J Respir Crit Care Med 2018; 198 : 1559-69.

142. Pan SW, Shu CC, Feng JY, Wang JY, Chan YJ, Yu CJ, et al. Microbiological persistence in patients with Mycobacterium avium complex lung disease: The predictors and the impact on radiographic progression. Clin Infect Dis 2017; 65 : 927-34.

143. Kim SJ, Park J, Lee H, Lee YJ, Park JS, Cho YJ, et al. Risk factors for deterioration of nodular bronchiectatic Mycobacterium avium complex lung disease. Int J Tuberc Lung Dis 2014; 18 : 730-6.

144. Shulha JA, Escalante P, Wilson JW. Pharmacotherapy Approaches in Nontuberculous Mycobacteria Infections. Mayo Clin Proc 2019; 94 : 1567-81.

145. Balavoine C, Blanc FX, Lanotte P, Meurice JC, Andrejak C, Marchand-Adam S. Adverse events during treatment of nontuberculous mycobacterial lung disease: Do they really matter? Eur Respir J 2018; 52 : PA2664.

146. Griffith D. Treatment of Mycobacterium avium complex (MAC). Semin Respir Crit Care Med 2018; 39 : 351-61.

147. Strnad L, Winthrop KL. Treatment of Mycobacterium abscessus complex. Semin Respir Crit Care Med 2018; 39 : 362-76.

148. Basille D, Jouveieaux V. Treatment of other nontuberculous mycobacteria. Semin Respir Crit Care Med 2018; 39 : 377-82.

149. van Ingen J, Boeree M, van Soolingen D, and Mouton J. Resistance mechanisms and drug susceptibility testing of nontuberculous mycobacteria. Drug Resist Updat 2012; 15 : 149-61.

150. Kim HJ, Lee JS, Kwak N, Cho J, Lee CH, Han SK, et al. Role of ethambutol and rifampicin in the treatment of Mycobacterium avium complex pulmonary disease. BMC Pulm Med 2019; 19 : 212.

151. Griffith DE, Brown-Elliott BA, Langsjoen B, Zhang Y, Pan X, Girard W, et al. Clinical and molecular analysis of macrolide resistance in Mycobacterium avium complex lung disease. Am J Respir Crit Care Med 2006; 174 : 928-34.

152. Jeong BH, Jeon K, Park HY, Kim SY, Lee KS, Huh HJ, et al. Intermittent antibiotic therapy for nodular bronchiectatic Mycobacterium avium complex lung disease. Am J Respir Crit Care Med 2015; 191 : 96-103.

153. Field SK, Fisher D, Cowie RL. Mycobacterium avium complex pulmonary disease in patients without HIV infection. Chest 2004; 126 : 566-81.

154. Xu HB, Jiang RH, Li L. Treatment outcomes for Mycobacterium avium complex: a systematic review and meta-analysis. Eur J Clin Microbiol Infect Dis 2014; 33 : 347-58.

155. Kwak N, Park J, Kim E, Lee CH, Han SK, Yim JJ. Treatment outcomes of Mycobacterium avium complex lung disease: a systematic review and meta-analysis. Clin Infect Dis 2017; 65 : 1077-84.

156. Pasipanodya JG, Ogbonna D, Deshpande D, Srivastava S, Gumbo T. Meta-analyses and the evidence base for microbial outcomes in the treatment of pulmonary Mycobacterium avium-intracellulare complex disease. J Antimicrob Chemother 2017; 72 (Supp 2) : i3-19.

157. Diet R, Nienhaus A, Ringshausen FC, Richter E, Welte T, Rabe KF, et al. Microbiologic outcome of interventions against Mycobacterium avium complex pulmonary disease: A systematic review. Chest 2018; 153 : 888-921.
158. Miwa S, Shirai M, Toyoshima M, Shirai T, Yasuda K, Yokomura K, et al. Efficacy of clarithromycin and ethambutol for *Mycobacterium avium* complex pulmonary disease. A preliminary study. *Ann Am Thorac Soc* 2014; 11: 23-9.

159. Koh WJ, Moon SM, Kim SY, Woo MA, Kim S, Jhun BW, et al. Outcomes of *Mycobacterium avium* complex lung disease based on clinical phenotype. *Eur Respir J* 2017; 50. pii: 1602503.

160. Moon SM, Park HY, Kim SY, Jhun BW, Lee H, Jeon K, et al. Clinical characteristics, treatment outcomes, and resistance mutations associated with macrolide-resistant *Mycobacterium avium* complex lung disease. *Antimicrob Agents Chemother* 2016; 60: 6758-65.

161. Morimoto K, Namkoong H, Hasegawa N, Nakagawa T, Morino E, Shiraiishi Y, et al. Macrolide-resistant *Mycobacterium avium* complex lung disease: Analysis of 102 consecutive cases. *Ann Am Thorac Soc* 2016; 13: 1904-11.

162. Park Y, Lee EH, Jung I, Park G, Kang YA. Clinical characteristics and treatment outcomes of patients with macrolide-resistant *Mycobacterium avium* complex pulmonary disease: A systematic review and meta-analysis. *Respir Res* 2019; 20: 286.

163. DeStefano MS, Shoen CM, Cynamon MH. Therapy for *Mycobacterium kansasii* infection: Beyond 2018. *Front Microbiol* 2018; 9: 2271.

164. Sun Z, Zhang Y. Reduced pyrazinamidase activity and the natural resistance of *Mycobacterium kansasii* to the antituberculosis drug pyrazinamide. *Antimicrob Agents Chemother* 1999; 43: 537-42.

165. Zaheen A, Hiramata T, Mehrabi M, Brode SK, Marras TK. Clinical outcomes in *Mycobacterium xenopi* versus *Mycobacterium avium* complex pulmonary disease: A retrospective matched cohort study. *Respir Med* 2020; 167: 105967.

166. van Ingen J, Totten SE, Heifets LB, Boeree MJ, Daley CL. Drug susceptibility testing and pharmacokinetics question current treatment regimens in *Mycobacterium simiae* complex disease. *Int J Antimicrob Agents* 2012; 39: 173-6.

167. van Ingen J, Totten SE, Helstrom NK, Heifets LB, Boeree MJ, Daley CL. In vitro synergy between clofazimine and amikacin in nontuberculous mycobacterial disease. *Antimicrob Agents Chemother* 2012; 56: 6324-7.

168. Koh WJ, Jeong BH, Kim SY, Jeon K, Park KU, Jhun BW, et al. Mycobacterial characteristics and treatment outcomes in *Mycobacterium abscessus* lung disease. *Clin Infect Dis* 2017; 64: 309-16.

169. Paspispanodya JG, Ogbonna D, Ferro BE, Magombbedze G, Srivastava S, Deshpande D, et al. Systematic review and meta-analyses of the effect of chemotherapy on pulmonary *Mycobacterium abscessus* outcomes and disease recurrence. *Antimicrob Agents Chemother* 2017; 61. pii: e01206-17.

170. Okamori S, Asakura T, Nishimura T, Tamizu E, Ishii M, Yoshida M, et al. Natural history of *Mycobacterium fortuitum* pulmonary infection presenting with migratory infiltrates: A case report with microbiological analysis. *BMC Infect Dis* 2018; 18: 1.

171. Lindeboom JA, Kuijper EJ, Bruinesteijn van Coppenraet ES, Lindeboom R, Prins JM. Surgical excision versus antibiotic treatment for nontuberculous mycobacterial cervicofacial lymphadenitis in children: a multicenter, randomized, controlled trial. *Clin Infect Dis* 2007; 44: 1057-64.

172. Aubry A, Chosidow O, Caumes E, Robert J Cambau E. Sixty-three cases of *Mycobacterium marinum* infection: Clinical features, treatment, and antibiotic susceptibility of causative isolates. *Arch Intern Med* 2002; 162: 1746-52.

173. Rallis E, Koumantaki-Mathioudaki E. Treatment of *Mycobacterium marinum* cutaneous infections. *Expert Opin Pharmacother* 2007; 8: 2965-78.

174. Lewis FM, Marsh BJ, von Reyn CF. Fish tank exposure and cutaneous infections due to *Mycobacterium marinum*: tuberculin skin testing, treatment, and prevention. *Clin Infect Dis* 2003; 37: 390-7.

175. Chautry A, Ardant MF, Marsollier L, Pluschke G, Landier J, Adeye A, et al. Oral treatment for *Mycobacterium ulcerans* infection: Results from a pilot study in Benin. *Clin Infect Dis* 2011; 52: 94-6.

176. O’Brien DP, McDonald A, Callan P, Robson M, Friedman ND, Hughes A, et al. Successful outcomes with oral fluoroquinolones combined with rifampicin in the treatment of *Mycobacterium ulcerans*: An observational cohort study. *PLoS Negl Trop Dis* 2012; 6: e1473.

177. Wallace RJ Jr, Tanner D, Brennan PI, Brown BA. Clinical trial of clarithromycin for cutaneous (disseminated) infection due to *Mycobacterium chelonae*. *Ann Intern Med* 1993; 119: 482-6.

178. Wallace RJ, Swenson JM, Silcox VA, Bulen MG. Treatment of nonpulmonary infections due to *Mycobacterium fortuitum* and *Mycobacterium chelonae* on the basis of in vitro susceptibilities. *J Infect Dis* 1985; 152: 500-14.

179. Wallace RJ Jr, Brown-Elliott BA, McNulty S, Philley JV, Killingley J, Wilson RW, et al. Macrolide/Azalide therapy for nodular/bronchiectatic *Mycobacterium avium* complex lung disease. *Chest* 2014; 146: 276-82.

180. Banaschewski B, Verna D, Penningis LJ, Zimmerman M, Ye Q, Gadawa J, et al. Clofazimine inhalation suspension for the aerosol treatment of pulmonary nontuberculous mycobacterial infections. *J Cyst Fibros* 2019; 18: 714-20.

181. Yagi K, Ishii M, Namkoong H, Asami T, Iketani O, Asakura T, et al. The efficacy, safety, and feasibility of inhaled amikacin for the treatment of difficult-to-treat non-tuberculous mycobacterial lung diseases. *BMC Infect Dis* 2017; 17: 558.

182. Olivier KN, Shaw PA, Glaser TS, Bhattacharyya D, Fleshner M, Brewer CC, et al. Inhaled amikacin for treatment of refractory pulmonary nontuberculous mycobacterial disease. *Ann Am Thorac Soc* 2014; 11: 30-5.

183. Yaacoby-Bianu K, Gur M, Toukan Y, Nir V, Hakim F, Geffen Y, et al. Compassionate nitric oxide adjuvant
treatment of persistent *Mycobacterium* infection in cystic fibrosis patients. *Pediatr Infect Dis J* 2018; 37: 336-8.

184. Basavaraj A, Segal L, Samuels J, Feintuch J, Feintuch J, Alter K, et al. Effects of chest physical therapy in patients with non-tuberculous mycobacteria. *Int J Respir Pulm Med* 2017; 4. pii: 065.

185. Wakamatsu K, Nagata N, Maki S, Omori H, Kumazoe H, Ueno K, et al. Patients with MAC lung disease have a low visceral fat area and low nutrient intake. *Pulm Med* 2015; 2015: 218253.

186. Lu M, Fitzgerald D, Karpelowsky J, Selvadurai H, Pandit C, Robinson P, et al. Surgery in nontuberculous mycobacteria pulmonary disease. *Breathe (Sheff)* 2018; 14: 288-301.

187. Mitchell JD, Bishop A, Cafaro A, Weyant MJ, Marvin P. Anatomic lung resection for nontuberculous mycobacterial disease. *Ann Thorac Surg* 2008; 85: 1887-93.

188. Shiraishi, Y. Current status of nontuberculous mycobacterial surgery in Japan: Analysis of data from the annual survey by the Japanese Association for Thoracic Surgery. *Gen Thorac Cardiovasc Surg* 2016; 64: 14-7.

189. Wi YM. Treatment of extrapulmonary nontuberculous mycobacterial diseases. *Infect Chemother* 2019; 51: 245-55.

190. Schlossberg D, editor. Nontuberculous mycobacteria - Overview. In: *Tuberculosis and nontuberculous mycobacterial infections*. 7th ed. Washington, DC: ASM Press; 2017. p. 655-61.

For correspondence: Dr Surendra K. Sharma, Department of Molecular Medicine, Jamia Hamdard Institute of Molecular Medicine, Jamia Hamdard (Deemed-to-be-University), Hamdard Nagar, New Delhi 110 062, India

e-mail: sksharma.aiims2@gmail.com