Residual lymph node tumour burden following removal of a single axillary sentinel lymph with macrometastatic disease in women with screen-detected invasive breast cancer

R. V. Dave 1, S. Cheung2, M. Sibbering3, O. Kearins2, J. Jenkins2 and A. Gandhi1,4,*

1The Nightingale Centre, Wythenshawe Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
2National Health Service Breast Screening Programme, Public Health England, Birmingham, UK
3University Hospitals of Derby and Burton NHS Foundation Trust, Derby, UK
4Manchester Academic Health Sciences Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
*Correspondence to: The Nightingale Centre, Wythenshawe Hospital, Southmoor Road, Manchester M23 9LT, UK (e-mail: ashu.gandhi@mft.nhs.uk)

Abstract

Background: Women with screen-detected invasive breast cancer who have macrometastatic disease on axillary sentinel lymph node biopsy (SLNB) are usually offered either surgical axillary node clearance (ANC) or axillary radiotherapy. These treatments can lead to significant complications for patients. The aim of this study was to identify a group of patients who may not require completion ANC.

Methods: Data from the NHS Breast Screening Programme between 1 April 2012 and 31 March 2017 were interrogated to identify women with invasive breast carcinoma and a single sentinel lymph node (SLN) with macrometastatic disease who subsequently proceeded to completion ANC. Univariable and multivariable analyses were performed to identify patients with a single positive SLN who had no further lymph node metastasis on completion ANC.

Results: Of the 2401 women included in the cohort, the presence of non-sentinel node disease was significantly affected by: the number of nodes obtained at SLNB (odds ratio (OR) 0.49 for retrieval of more than 1 node), invasive size of tumour (OR 1.63 for size greater than 20 mm), surgical treatment (OR 1.34 for mastectomy), human epidermal growth factor receptor (HER) 2 status (OR 0.71 for HER2 positivity), and patient age (OR 1.10 for age less than 50 years; OR 1.46 for age greater than 70 years). Patients aged less than 70 years, with tumour size smaller than 2 cm, more than one node retrieved on SLNB, and who had breast-conserving surgery had a lower chance of positive non-sentinel nodes on completion ANC compared with other patients.

Conclusion: This study, of a purely screen-detected breast cancer cohort, identified a subset of patients who may be spared completion ANC in the event of a single axillary SLN with macrometastasis.

Introduction

Women in the UK NHS Breast Screening Programme (NHSBSP) diagnosed with invasive breast cancer and undergoing therapeutic surgery to the breast undergo preoperative assessment of their ipsilateral axillary lymph nodes by ultrasound imaging and, if appropriate, needle biopsy. If there is no proven axillary nodal disease before surgery, they will have a sentinel lymph node biopsy (SLNB) on the ipsilateral axilla, undertaken at the time of breast surgery. SLNB may reveal metastatic breast cancer in the form of isolated tumour cells (metastatic deposits of less than 2 μm in size), micrometastases (2 μm to 2 mm) or macrometastases (metastatic deposit greater than 2 mm in size). Further management of patients with isolated tumour cells or micrometastases is well established, and such patients do not require further local axillary treatment.

Ten-year outcomes of the International Breast Cancer Study Group 23-01 trial1 provide evidence to support the omission of axillary node clearance (ANC) in patients with tumours sized 5 cm or less who undergo breast-conserving surgery (BCS) plus adjuvant systemic therapy, and who have one or more SLNs with micrometastatic disease (2 mm or less). Patients found to have macrometastases on SLNB, in accordance with guidance from the UK National Institute of Health and Clinical Excellence (NICE)2 and the Association of Breast Surgery, are offered further treatment to the axilla in the form of ANC or axillary radiotherapy. Both of these treatments can result in significant complications for patients, with a 10–20 per cent risk of lymphoedema of the arm, and one-third of patients experiencing sensory change and pain in the upper arm3,4.

In recent years, developments in systemic therapy have raised the possibility that completion ANC following low-burden sentinel node macrometastatic disease may represent overtreatment for many patients. The ACOSOG Z0011 trial was designed to
investigate this and found that, amongst patients with limited SLN metastatic breast cancer (up to 2 nodes) treated with BCS, breast radiotherapy and systemic therapy, the use of SLNB alone compared with ANC was non-inferior in terms of overall survival, disease-free survival and locoregional relapse. Thus, completion ANC following low-burden sentinel node macrometastatic disease may represent overtreatment both in women who have no residual disease and in those who may have residual disease that can be treated effectively by systemic therapy alone. To identify the latter group, larger trials with long-term follow-up are underway that also include women undergoing mastectomy. Recruitment to these trials is ongoing, and results will hopefully provide conclusive answers as to the best management pathway for these patients. However, the results will not be available until the mid-2020s.

Each year in the NHSBSP, around 13,000 women will be diagnosed with invasive breast cancer and undergo SLNB. Approximately 1800 of these women will be found to have metastases within the SLNB and will proceed to completion ANC; half will have no further positive nodes on ANC. Multiple nomograms have been published that attempt to predict further non-sentinel node involvement using a combination of clinical and tumour pathological features. However, these are based universally on a mixed cohort of predominantly symptomatic patients of varying ages. The applicability of these nomograms to women with screen-detected cancers is unclear, as it is recognized that the clinical behaviour of screen-detected cancers differs from that of symptomatic cancers.

The aims of the present study were to define the number of women with screen-detected cancer with low-volume axillary disease (a single sentinel node with a macrometastatic deposit) who are found to have no further lymph node metastases on completion ANC, and to identify factors that may predict residual metastatic nodal burden upon subsequent completion axillary surgery. This could then be used to offer more informed treatment choices, such as the option to avoid completion axillary surgery after the initial finding of a single positive sentinel node in screen-detected invasive breast cancer.

Methods

The UK NHSBSP invites women aged 50–70 years for two-view screening mammography at 3-year intervals. In addition, the programme within England randomizes some women aged 47–49 years and 71–73 years to be screened as part of the Age X (age extension) trial. Between 1 April 2012 and 31 March 2017, 12,018,962 women were screened within the NHSBSP. From this cohort, anonymized details of women who fulfilled all of the following criteria were extracted: diagnosis of invasive breast carcinoma; underwent SLNB with a single node containing macrometastatic deposits; and subsequently proceeded to completion ANC.

Patients with the following criteria were excluded from this analysis: two or more sentinel lymph nodes (SLNs) containing macrometastatic deposits; micrometastatic SLNB only; receipt of neoadjuvant systemic therapy; or diagnosis of previous breast cancer.

The NHSBSP and Association of Breast Surgery data set of screening breast cancer was interrogated to obtain the following factors: clinical data (patient age when offered screening appointment, previous breast cancer history, type of breast surgery, number of nodes obtained at SLNB, number of metastatic nodes at SLNB, residual metastatic lymph node burden at ANC); and tumour characteristics of the most aggressive breast cancer (size, grade, hormone receptor status, laterality, human epidermal growth factor receptor (HER) 2 status).

Statistical analysis

Univariable analyses were performed using linear logistic regression to determine which clinical or pathological factors affected the outcome of a subsequent ANC (the ‘outcome’). The significance level was set at 95 per cent for the univariable analysis. Multivariable analysis was performed with the significant factors from the univariable analyses to understand the relationship between these factors and the outcome. A smaller number of factors was used for multivariable analysis in order to produce reliable results. Odds ratios (ORs) are presented, together with their 95 or 99 per cent confidence intervals. Missing data were minimal (less than 1 per cent) in this data set. Patients with missing data were excluded from analyses. Statistical analyses were performed in R software version 3.5.0 (The R Foundation for Statistical Computing, Vienna, Austria) in accordance with a prespecified statistical analysis plan. To account for multiple statistical testing within the cohort, the significance level in the multivariable analysis was set at 0.010. Interrogation of anonymized data from the NHSBSP was performed by one author, with permission granted by the Public Health England Office for Data Release and the Breast Screening Programme Research Advisory Committee.

Results

A total of 2401 women fulfilled the inclusion criteria; 187 women (7.8 per cent) were below 50 years of age and 183 (7.6 per cent) were older than 70 years. Demographic and clinicopathological data are detailed in Table 1.

In 974 women (40.6 per cent) a solitary SLN was obtained at SLNB (containing the macrometastases). In 718 women (29.9 per cent) two SLNs were removed (with one containing the metastases); in 596 women (24.8 per cent) three or four SLNs were removed (one of these containing metastases), in 112 women (4.7 per cent) five to nine SLNs were removed, and in one woman more than 10 nodes were removed at SLNB. Further analysis showed that the difference in residual node burden onANC lay between one node retrieved on SLNB and multiple nodes groups, with no difference in the outcome between two, three and four or more nodes retrieved groups. Therefore, these have been combined into a single group with more than one node obtained at SLNB.

Univariable analysis

Univariable analyses were performed to understand the relationship between the findings at subsequent ANC and each clinical or pathological factor. The outcome was defined as the presence of further positive nodes at ANC. The outcome of the subsequent ANC was significantly affected by the number of nodes obtained at SLNB (OR 0.49 for retrieval of more than 1 node), invasive size of the cancer (OR 1.63 for size greater than 20 to 50 mm), surgical treatment (OR 1.34 for mastectomy), HER2 status (OR 0.71 for HER2 positivity), and patient age (OR 1.46 for aged above 70 years) (Table 2). Specifically, women who had more than one node obtained at SLNB or were HER2-positive were less likely to have positive nodes at subsequent ANC. Women who were treated by mastectomy, had a larger tumour, or were aged above 70 years at the screening appointment were more likely to have positive nodes at subsequent ANC.
Table 1 Number and proportion of women with positive nodes found at completion axillary clearance following initial sentinel node biopsy with macrometastatic deposits in a single node

Clinical and pathological factors	No. of assessment visits	No, with positive nodes at completion ANC
Age at screening appointment (years)	2020 (55)	2020 (55)
Invasive grade	1	11
Invasive size (mm)	12	12
Surgical treatment	15	15
ER status	36	36
HER2 status	2	2
No. of nodes obtained at SLNB	1270	1270
Surgical treatment	1	1
Laterality	2	2
No. of assessment visits	1	1

Values in parentheses are 95 per cent confidence intervals. ANC, axillary node clearance; ER, oestrogen receptor; HER, human epidermal growth factor receptor; SLNB, sentinel lymph node biopsy; BCS, breast-conserving surgery.

Table 2 Univariable logistic regression examining factors affecting lymph node positivity at completion axillary clearance following initial removal of a single positive sentinel node

Clinical and pathological factors	Odds ratio	P
Age at screening appointment (years)	1.10 (0.79, 1.52)	0.561
Invasive grade (mm)	1.00 (reference)	
ER status	1.00 (reference)	
HER2 status	1.00 (reference)	
No. of assessment visits	1.00 (reference)	
Laterality	1.00 (reference)	

Values in parentheses are percentage confidence intervals. SLNB, sentinel lymph node biopsy; BCS, breast-conserving surgery; HER, human epidermal growth factor receptor; ER, oestrogen receptor.

Discussion

In the NHSBSP audit 2017–2018, almost 13 000 women were diagnosed with invasive breast cancer and underwent SLNB. Of these, 1880 were found to have metastases within the SLNB and 773 proceeded to completion ANC. Of these, 62.9 per cent had no further metastatic axillary lymph node burden, representing possible overtreatment. In keeping with the move to de-escalate axillary surgery, many studies have been published aiming to predict those women with macrometastatic SLN disease in whom the likelihood of further axillary lymph node metastasis is so low that they can reasonably be offered omission of completion ANC surgery. These studies have been largely retrospective in nature and examined cohorts comprising of mixed symptomatic and screen-detected patients; consequently they have produced inconsistent results. Several nomograms have been developed and tested, also with varying and inconsistent results, mainly in mixed screening and symptomatic cohorts.

The distinction between symptomatic and screen-detected breast cancer populations is important. There is evidence that the clinical and pathological characteristics of screen-detected breast cancers are generally more favourable than those seen in comparison with the 1832 women who did not have these criteria. HER2 status was excluded due to the low number of patients with HER2 positivity. Patients who did not fulfil the above criteria had a significantly higher rate of further nodal metastasis on completion ANC (OR 1.98, 95 per cent c.i. 1.58 to 2.51; P < 0.001).
there has been a clear move to de-escalate surgical intervention in the axilla. This has reduced morbidity, and trials have shown that a more conservative approach to the axilla leads to comparable survival outcomes, with reduced morbidity (in particular lymphoedema). In the USA, there has been gradual adaptation in some centres of the Z0011 trial criteria to omit completion ANC in the event of low-burden disease. The UK data from the NHSBSP national audit, which allows detailed examination of changes in clinical practice following publication of randomized trials, indicates that there has been a reluctance to follow suit, despite guidance from the Association of Breast Surgery27, and NICE that recommends that further axillary treatment is no longer mandatory in patients who are receiving breast conservation with whole-breast radiotherapy, who are postmenopausal, and have T1, grade 1 or 2, oestrogen receptor-positive and HER2-negative tumours2.

Research trials are currently underway that will provide important randomized data on optimal management of the axilla. The POSNOC trial23 has the potential to give ground-breaking insight into the axillary management of women with low-burden axillary SLN metastases and who are receiving systemic therapy. This trial is actively recruiting women with either screen-detected or symptomatic invasive breast cancer, and examines whether adjuvant therapy alone is non-inferior to adjuvant therapy plus axillary treatment (surgery or axillary radiotherapy) in the presence of one or two SLNs containing macrometastatic disease. It differs from the Z0011 trial in that it also includes patients treated by mastectomy, as well as those treated by BCS and breast radiotherapy. Patients undergoing mastectomy will not necessarily receive chest wall radiotherapy. The SENOMAC28 and SERC29 trials will examine a similar question. Results from these trials are not expected for many years.

Funding information

No funding.

Disclosure. The authors declare no conflict of interest.

References

1. Galimberti V, Cole BF, Viale G, Veronesi P, Vicini E, Intra M et al. Axillary dissection versus no axillary dissection in patients with breast cancer and sentinel-node micrometastases (IBCSG 23-01): 10-year follow-up of a randomised, controlled phase 3 trial. Lancet Oncol 2018; 19: 1385–1393
2. National Institute for Health and Care Excellence. Early and Locally Advanced Breast Cancer: Diagnosis and Management. https://www.nice.org.uk/guidance/ng101/(accessed 26 October 2019)
3. Arriagada R, Mourièsse H, Rezvani A, Sarrazin D, Clark RM, DeBoer G et al. Radiotherapy alone in breast cancer. Analysis of tumor and lymph node radiation doses and treatment-related complications. The experience of the Gustave-Roussy Institute and the Princess Margaret Hospital. Radiother Oncol 1993; 27:1–6
4. Mansel RE, Fallowfield L, Kissin M, Goyal A, Newcombe RG, Dixon JM et al. Randomized multicenter trial of sentinel node biopsy versus standard axillary treatment in operable breast cancer: the ALMANAC Trial. J Natl Cancer Inst 2006; 98: 599–609
5. Giuliano AE, Hunt KK, Ballman KV, Beitsch PD, Whitworth FW, Blumencranz PW et al. Axillary dissection vs no axillary dissection in women with invasive breast cancer and sentinel node metastasis: a randomized clinical trial. JAMA 2011; 305: 569–575

Table 3 Multivariable logistic regression examining factors affecting lymph node positivity at completion axillary clearance following initial removal of a single positive sentinel node

Factors	Odds ratio (95% CI)	P value
Age at first offered screening appointment	0.74 (0.63, 0.88)	0.002
<50	1.00 (reference)	
50–70	1.00 (reference)	
>70	1.00 (reference)	
No. of nodes obtained at SLNB	0.50 (0.39, 0.64)	<0.001
1	1.00 (reference)	
≥2	1.00 (reference)	
Surgical treatment	1.24 (0.94, 1.61)	0.122
BCS	1.00 (reference)	
Mastectomy	1.00 (reference)	
Invasive size (mm)	1.00 (reference)	
<20	1.00 (reference)	
≥20 to ≤50	1.55 (1.20, 1.99)	<0.001
>50	1.48 (0.76, 2.81)	0.122
HER2 status	1.00 (reference)	
Negative	0.69 (0.44, 1.06)	0.030
Positive	1.00 (reference)	
No. of assessment visits	1.00 (reference)	
1	1.00 (reference)	
≥2	1.41 (0.92, 2.15)	0.035

Values in parentheses are 99 per cent confidence intervals. SNLB, sentinel lymph node biopsy; BCS, breast-conserving surgery; HER, human epidermal growth factor receptor.

...symptomatic cases. The latter cancers are noted to present at a later stage, less likely to be hormone receptor-positive, to be of higher nuclear grade, and to be more likely to overexpress HER213,19,20. Therefore, the currently published nomograms, based largely on symptomatic women, may not be applicable to a purely screen-detected breast cancer population.

In the present study, a group of patients who could potentially avoid completion ANC in the event of a single macrometastatic SLN was identified: women aged 70 years or less, with tumours below 20 mm in size, having BCS, and with more than one SLN removed at initial surgery. This is the largest such examination of a purely screening cohort. Prospective data capture within the NHSBSP allows for high levels of confidence in the accuracy of the data. An interesting finding of this study was that, in patients with a single macrometastatic node, retrieval of further negative SLNs was highly predictive of a negative ANC. This has been demonstrated previously23 in a cohort of patients from the Dutch National Cancer Registry, where the presence of additional negative SLNs resulted in more negative ANCs. Another study21 demonstrated that increasing the number of retrieved SLNs decreased the false-negative rate of SLNB.

The finding of a lower burden of macrometastatic non-sentinel nodes in patients with HER2-positive disease in this study is difficult to interpret, with inconsistencies in the literature. In an American series22, patients with triple negative disease had fewer nodal metastases than those with triple positive disease; in an Argentinian series of patients who fulfilled Z0011 trial criteria23, HER2 positivity was associated with a higher rate of non-sentinel node metastasis; and in an Indonesian series24, patients with luminal A disease had the highest rate of non-sentinel node metastases. There are thus inconsistencies in the influence of hormone receptor status in the development of non-sentinel node metastases.

The management of breast cancer over the decades has changed considerably from the era of the Halstedian radical mastectomy25. Following the publication of large randomized studies examining axillary management in patients with breast cancer...
16. Gruber I, Henzel M, Schönfisch B, Stabler A, Taran FA, Hahn M et al. Prediction of non-sentinel lymph node metastases after positive sentinel lymph nodes using nomograms. Anticancer Res 2018;38:4047–4056

17. Hessman CJ, Naik AM, Kearney NM, Jensen AJ, Diggs BS, Troxell ML et al. Comparative validation of online nomograms for predicting nonsentinel lymph node status in sentinel lymph node-positive breast cancer. Arch Surg 2011;146:1035–1040

18. Meretoja TJ, Leidenius MH, Heikkila PS, Boross G, Sejben I, Regnér Pet al. International multicenter tool to predict the risk of nonsentinel node metastases in breast cancer. J Natl Cancer Inst 2012;104:1888–1896

19. Falck AK, Rame A, Ferno M, Olsson H, Chebil G, Bendahl PO et al. St Gallen molecular subtypes in screening-detected and symptomatic breast cancer in a prospective cohort with long-term follow-up. Br J Surg 2016;103:513–523

20. Kim J, Lee S, Bae S, Choi MY, Lee J, Jung SP et al. Comparison between screen-detected and symptomatic breast cancers according to molecular subtypes. Breast Cancer Res Treat 2012;131:527–540

21. Ban EJ, Lee JS, Koo JS, Park S, Kim SL, Park BW. How many sentinel lymph nodes are enough for accurate axillary staging in T1–2 breast cancer? J Breast Cancer 2011;14:296–300

22. Ugras S, Stempel M, Fatli S, Morrow M. Estrogen receptor, progesterone receptor, and HER2 status predict lymphovascular invasion and lymph node involvement. Ann Surg Oncol 2014;21:3780–3786

23. Loza CM, Mando P, Ponce C, Colo F, Fabiano V, Loza J et al. Predictive factors for non-sentinel lymph node metastasis in patients with ACOSOG Z0011 criteria. Breast Care (Basel) 2018;13:434–438

24. Setyawati Y, Rahmawati Y, Widodo I, Ghozali A, Purnomosari D. The association between molecular subtypes of breast cancer and their impact on survival among women with invasive breast cancer and sentinel node metastasis: the ACOSOG Z0011 (Alliance) randomized clinical trial. JAMA 2017;318:918–926

25. Falck AK, Rame A, Ferno M, Olsson H, Chebil G, Bendahl PO et al. St Gallen molecular subtypes in screening-detected and symptomatic breast cancer in a prospective cohort with long-term follow-up. Br J Surg 2016;103:513–523