Production of biofuel by low temperature Fischer-Tropsch using Co-K/γ-Al_2O_3

I.G.B.N Makertiahtha, Fadhli, Zaki Al Fathoni, Subagjo

Department of Chemical Engineering, Institut Teknologi Bandung, Bandung 40132 Indonesia

E-mail: makertia@che.itb.ac.id, fadhli@che.itb.ac.id

Abstract. Fischer Tropsch is a heterogeneous catalytic chemical reaction which converts a mixture of hydrogen and carbon monoxide (syngas) into a hydrocarbon product with varying chain length by polymerization reaction on the surface of the catalyst. The hydrocarbon produced from Fischer Tropsch reaction using bio-syngas is biofuel (diesel, kerosene, gasoline) that can replace petroleum-based fuels. Cobalt catalyst with potassium promoter and γ-Al_2O_3 support has been successfully synthesized in Catalysis and Reaction Engineering (CaRE) laboratory, Institut Teknologi Bandung (ITB). Co-K/γ-Al_2O_3 catalyst was prepared by dry impregnation method on the γ-Al_2O_3 support under alkaline conditions. Catalysts were characterized using X-Ray Diffraction (XRD), temperature program reduction (TPR), and N_2 physisorption measurements such as Barrett-Joyner-Halenda (BJH) and Brunauer-Emmett-Teller (BET) methods. Co-K/γ-Al_2O_3 catalyst activity was evaluated using fixed bed reactor with various flow rates and temperatures which is still classified as Low-Temperature Fischer Tropsch (LTFT) process. The best results were obtained at minimum syngas flow rate and highest reaction temperature with a total pressure of 20 bar. The results show CO and H_2 conversion were 96.6% and 82.31% respectively. Selectivity value of the hydrocarbon product was calculated using the Anderson Shultz Flurry (ASF) equation. The greatest selectivity value was obtained for C_5+ product with selectivity value was 86.07 % wt.

1. Introduction
Dependence on fuel derived from fossil becomes a serious problem in the next few decades. It is estimated that the total world energy consumption is 13,864.9 Mtoe (Million tons of oil equivalent) in 2018, the percentage of fossil fuel use reaches 84.7% [1]. This led the researchers to be able to find synthetic liquid fuels that could be used generally and commercially. Several fuel synthesis technologies based on conversion technology XTL (X to Liquid) began to be developed, one of which is the Fischer Tropsch process.

The Fischer Tropsch process is a syngas conversion process (CO + H_2) derived from natural gas, coal, or biomass into long chain hydrocarbons that can be upgraded to diesel or kerosene fractions [2]. Processing of Fischer Tropsch synthesis products can be done by hydrocracking reactions to form fuel products according to what is needed, such as jetfuel, diesel or gasoline [3]. Fischer Tropsch process has become an important key in XTL technology producing fuel, chemical compounds, and other hydrocarbon products [4].
Fischer Tropsch reaction is a catalytic reaction by metals such as Fe, Co, Ru, Rh and Ni. The choice of catalyst in this process will determine the condition of the process and the type of hydrocarbon of the resulting product. Currently, only Fe and Co catalysts are already used in industrial-scale [5]. The resulting product is a wide variety of organic compounds, especially n-paraffins and 1-olefins depending on the type of catalyst and operating conditions. Other products that may be formed are branched hydrocarbons, 2-olefins, and various oxygenate compounds (alcohols, aldehydes, ketones, etc.). The resulting product may comprise one carbon atom up to hundreds of carbon atoms in long-chain hydrocarbons [6,7]. Fischer Tropsch synthesis is a polymerization reaction on the surface of the catalyst with a CHx monomer. The CHx monomer is formed from the hydrogenation process of CO adsorbed on the surface of the catalyst to produce hydrocarbons with a wide chain range and wide function [8]. In this polymerization, the main carbon chain will increase with the addition of monomers one by one carbon atom. Every single addition step, the termination process can occur and will determine the product produced and is desorbed from the surface of the catalyst [9,10]. Reactions that may occur during the Fischer Tropsch process are presented in Table 1 [11].

Table 1. Fischer Tropsch Reaction
Main Reaction
Paraffin Formation
Olefin Formation
WGSR
Side Reaction
Alcohol Formation
Boudard Reaction

Cobalt catalyst in the Fischer Tropsch reaction is known to provide good performance, high activity, high degree of polymerization, and the formation of byproducts such as small oxygenate compounds (<5%) when compared with iron catalysts. The cobalt-based catalyst is also not selective to WGSR reactions as well as iron catalysts. The suitable Cobalt catalyst used for the production of the target product is diesel. Diesel is obtained from hydrocracking/isomerization of a long chain of paraffin compounds [12].

Fischer Tropsch process is very sensitive to operating conditions. Temperature has an effect on desorption effect and speed of hydrogenation process. This may affect the chain polymerization process and the degree of hydrogenation of the product [13]. In the industry are known 3 operating conditions of Fischer Tropsch reaction based on reaction temperature. High-Temperature Fischer Tropsch (HTFT) is operated at temperatures above 320°C, usually using an iron-based (Fe) catalyst producing a straight chain of olefin with a low molecular mass. Medium Temperature Fischer Tropsch (MTFT) at temperature 270°C and Low Temperature Fischer Tropsch (LTFT) at temperature less than 250°C [14]. In LTFT process used Cobalt (Co) catalyst producing a hydrocarbon with big molecular mass (wax). The resulting wax will be cracking with hydrogenation process to produce fuel [15]. Therefore the aim of this study was to synthesize the Co-Kγ-Al₂O₃ catalyst for the Fischer Tropsch reaction and study the influence of condition operation on the conversion and selectivity of the Fischer Tropsch reaction.
2. Experimental Section

2.1. Synthesis of Co-K/γ-Al₂O₃ catalyst
Catalyst Co-K/γ-Al₂O₃ synthesized by alkaline impregnation method using an ammonia solution. The support used is γ-Al₂O₃, Co(NO₃)₂.6H₂O was used as a precursor of Co and KNO₃ was used as a metal precursor of K. The impregnant solution was prepared by dissolving the precursor compound into the ammonia solution. The impregnant solution was impregnated on a γ-Al₂O₃ support with stirring for ±15 minutes. Impregnation process was carried out in stages for a total of 15% metal loading. Impregnated support was dried at 120°C for 3 hours and continued with calcination at 400°C for 6 hours. Co-K/γ-Al₂O₃ catalysts were characterized using XRD, BET and TPR methods.

2.2. Activity test of Co-K/γ-Al₂O₃ catalyst
The catalyst activity test was performed on the fixed bed reactor by using syngas as feed. Testing of catalyst activity was carried out under various operating conditions which are still included in LTFT category. An analysis of gas composition in inlet and outlet of the reactor was carried out by using gas chromatography with Thermal Conductivity Detector (TCD) detector. The product formed was analyzed with GC equipment with FID detector. Gas carrier was used He and H₂. The activity testing tool scheme is described in Figure 1.

![Fixed bed reactor scheme](source)

The catalyst activity testing process begins with an activation process of catalyst using H₂ gas with a flow rate of 90 mL/ min at a 5 bar reactor pressure. Activation of the catalyst was carried out at 450°C for 8 hours. The catalyst activity test was carried out at 20 bar syngas pressure and varying syngas flow rate. Temperature reactions used were 230°C, 240°C, and 250°C to determine the effect of temperature on the Fischer Tropsch process. Catalyst activity test carried out until it reaches a steady-state condition. Gas sampling was taken every hour and analyzed by GC-TCD. The liquid product was taken at the end of the testing process and analyzed by GC FID. CO and H₂ conversions were calculated based on the area ration of CO and H₂ peaks in gas chromatograph.
3. Results and Discussion

3.1 Catalyst characterization

The XRD diffractogram pattern of the Co-K/γ-Al₂O₃ catalyst is shown in Figure 2. Referring to the crystallographic open data, the specific peak of Co appears on the 2θ = 36.559 with the highest intensity. This peak represents the crystal phase [311] of Co₃O₄ crystals [16]. Conaro et al, 2012, explained that K₂O crystals have a specific peak at 2θ = 39.59 with the highest intensity [17]. At the Co-K/γ-Al₂O₃ catalyst diffractogram the K₂O peak was not seen due to the small concentration of K promoter and low sample crystallinity. The catalyst particle size Co was calculated using the debye scherer equation at the highest peak that appears on the diffractogram. Co particle size obtained is 8.45 nm. According to Shimura et al. (2014), Co particle size that has good performance for the Fischer Tropsch reaction is 8-12 nm [18].

The physisorption test of nitrogen on the catalyst was carried out to determine the surface area, volume and pore diameter of the catalyst. The volume and pore diameter of the catalyst were calculated using Brunauer-Emmet Teller (BET) and Barret-Joyner-Halenda (BJH) isotherm methods. Measurement results are presented in table 2. The measurement results show a decrease in values on surface area, pore volume and pore diameter. This is due to the impregnation process which causes the filling of the support pore by metal Co.

![Figure 2. X-Ray diffraction patterns of the catalyst](image)

Conc.	BET surface area (m²/g)	Pore Volume (cm³/g)	Pore Diameter (nm)
γ-Al₂O₃	227.3	0.46	8.40
Co-K/γ-Al₂O₃	176.5	0.36	8.20

TPR analysis was used to determine the characteristics of the reduction of Co₃O₄ to Co⁰ which is the active phase in the Fischer Tropsch reaction. Cordoba, et al 2017, explained that the reduction of Co₃O₄ compounds through 2 stages in different temperatures. Co₃O₄ was reduced to CoO at temperatures of 250-300⁰C and CoO reduced to Co⁰ at temperatures of 400-500⁰C [19]. TPR Analysis of catalyst Co-K/γ-Al₂O₃ showed a double peak at temperatures of 250-480⁰C and 500-800⁰C. The first peak is interpreted as a reduction process from Co₃O₄ to Co⁰ in 2 stages. In contrast to the study of Cordoba et al 2017, the peak that appears is only one but wide enough. Wide peak models were
interpreted that the reduction peak of \(\text{Co}_3\text{O}_4 \) to CoO shifted and merged with the second peak which described the reduction of CoO to Co. TPR peaks at temperatures of 500-800°C represent the reduction of Cobalt aluminate compounds formed during the calcination process. Aluminate compounds have a stronger bond with metals and require a much higher reduction temperature.

![Graph](Co-K/\gamma\text{-Al}_2\text{O}_3)

Figure 3. \(\text{H}_2\)-TPR profile of the catalyst

3.2 *Activity test of Co-K/\gamma\text{-Al}_2\text{O}_3*

Testing of the catalytic activity of the Co-K/\gamma-Al\text{2}O\text{3} catalyst was carried out in a variety of operating conditions to determine its effect on catalyst performance. All experiments were carried out at a pressure of 20 bar and a CO: \(\text{H}_2 \) ratio of 1:2. Conversion of CO and \(\text{H}_2 \) is based on the ratio of the area of CO and \(\text{H}_2 \) to the area of the \(\text{N}_2 \) inert gas. The selectivity value of the hydrocarbon product formed is calculated using the Anderson Shultz Fluhr equation to obtain the probability value of the extension of the hydrocarbon chain (\(\alpha \)). Test results of catalytic activity and calculation of alpha values are shown in Table 3.

Table 3. A slightly more complex table with a narrow caption.

T (°C)	Q (mL/min)	XCO (%)	X\(\text{H}_2 \) (%)	\(\alpha^a \)	SC\textsubscript{1} (%wt)	SC\textsubscript{2} (%wt)	SC\textsubscript{3} (%wt)	SC\textsubscript{4} (%wt)	SC\textsubscript{5+} (%wt)
230	25	75.33	69.99	0.85	2.12	3.63	4.65	5.30	84.30
	30	60.19	58.87	0.84	2.53	4.25	5.36	6.01	81.84
	35	45.70	43.12	0.81	3.57	5.80	7.05	7.62	75.96
	40	32.61	31.88	0.77	4.92	7.66	8.94	9.27	69.21
240	25	87.71	77.52	0.83	2.76	4.60	5.76	6.40	80.48
	30	67.01	65.15	0.80	3.78	6.08	7.35	7.90	74.89
	35	57.93	57.3	0.76	5.49	8.40	9.65	9.85	66.60
	40	44.41	42.64	0.74	6.60	9.80	10.93	10.83	61.85
250	25	95.19	81.83	0.82	2.95	4.88	6.07	6.70	79.40
	26.7	91.36	78.72	0.80	3.77	6.07	7.34	7.89	74.93
	35	81.48	74.76	0.80	3.78	6.08	7.35	7.90	74.89
	40	100	100						

\(a \) probability value of the extension of the hydrocarbon chain.
3.2.1 Effect of temperature reaction. The effect of reaction temperature on conversion and selectivity is presented in Table 3. The increase in reaction temperature causes the conversion values of CO and H2 to increase. This is because the increase in reaction temperature will increase the kinetics aspect of the Fischer Tropsch reaction so that it will increase the reaction rate and conversion value of the two reactants.

In the Fischer Tropsch process, the increase of temperature reaction will be followed by a change in selectivity towards a lighter product [20]. The product selectivity of the Fischer Tropsch reaction is determined by the propagation and termination process that occurs on the catalyst surface during the Fischer Tropsch reaction. The effect of the reaction temperature on the selectivity will be significant if the rate of termination of the product is greater than the propagation rate, so that the increase in temperature will cause the termination process in shorter hydrocarbon products.

3.2.2 Effect of syngas flowrate. The effect of syngas flow rate on CO and H2 conversion can be seen from Table 2. The best catalytic activity of Co-K/γ-Al2O3 catalyst was obtained at the lowest linear flow rate and the minimum at the highest flow rate at all temperatures. The linear flow rate is inversely proportional to the residence time which is the time for the reactants to react on the catalyst surface. In general, a high flow rate will cause a small residence time for the reactants to react with the catalyst, thereby reducing the final conversion value. Product selectivity with short hydrocarbon chains or light hydrocarbon compounds (C1 - C4) increases with increasing linear flow rate, while for long-chain hydrocarbon products (C5+) decreases. The effect of flow rate on product selectivity is related to the removal process of hydrocarbon products on the catalyst surface [21].

From all experimental data, data anomalies were shown in conditions with flow rates 35 and 40mL/min at reaction temperatures 250 °C. In this condition, the conversion value is very high, reaching 100% for CO and H2. This is caused by the influence of the flow rate and temperature which can cause the reaction shift towards the formation of short-chain hydrocarbon compounds. In this condition, the influence of the two factors appears very dominantly, so that the Fischer Tropsch reaction which should undergo a polymerization reaction to form long-chain hydrocarbon compounds no longer occurs. The product selectivity value in this condition cannot be estimated because no long-chain hydrocarbon products are formed and can be analyzed at the end of the reaction.

4. Conclusion
The catalytic activity of the Co-K/γ-Al2O3 catalyst in the Fischer Tropsch reaction is strongly influenced by operating conditions. Conversion of CO and H2 is influenced by temperature and flow rate of syngas feed. Temperature affects the reaction kinetics aspect of the Fischer Tropsch reaction which accelerates and enlarges reactant conversion. The selectivity of the product depends on the rate of termination of the Fischer Tropsch reaction. Temperatures that are too high speeding up the termination process and cause the shorter the chain elongation process. Likewise, with a linear flow rate, a linear flow rate that is too high will make it easier for hydrocarbon products on the catalyst surface to be removed before propagation process occurs on the catalyst surface.

5. References
[1] British Petroleum 2018 BP Statistical review of World Energy
[2] Branislav S T 2015 Kinetic Modelling and Optimization of Fixed Bed Reactor for Fischer Tropsch Synthesis Doctoral Dissertation (Belgrade: University of Belgrade)
[3] Tomasek S, Ferenc L, Jozsef V, Hollo A and Hanscoek J 2016 JET fuel production from high molecular weight fischer tropsch paraffin mixture Chemical Engineering Transactions 52 1279–84
[4] Dry M E 2002 The fischer tropsch process: 1950-2000 Catalysis Today 71 227-41
[5] Iglesia E 1997 Design, synthesis, and use of cobalt-based Fischer Tropsch syntesis catalysts Applied Catalysis 161 59-78
[6] Hasan K H 2010 Regeneration and activity test of spent Zinc Oxide Hydrogen Sulfide removal catalyst European Journal Science Research, 39 289
[7] Pirola C, Antonieta Di F, Frederico G, Claudia L B and Alberto C 2014 Biosyngas conversion by Fischer Tropsch synthesis experimental results and multi-scale simulation of a PBR with high Fe loaded supported catalyst Chemical Engineering Transactions 37 595–600
[8] Steynberg A 2004 Fischer Tropsch Technology (Elsevier Press)
[9] Schweicer J 2010 Kinetic and Mechanistic Studies of CO Hydrogenation over Cobalt-based Catalysts Dissertation PhD degree (France: Chemical Engineering Sciences, Universite Libre de Bruxelles)
[10] Yates I C and Satterfield C N 1990 Intrinsic kinetics of fischer tropsch synthesis on a Cobalt catalyst. Energy & Fuels 5 168-73
[11] Tavakoli A, Sohrabi M and Kargari A 2008 Application of Anderson Schultz Flurry Equation the product distribution of slurry phase FT Synthesis with nanosized iron catalyst Chemical Engineering Journal 136 358-63
[12] Rytter E and Holman A 2016 On the support in catalyst Fischer Tropsch synthesis : Emphasis on Alumina and Aluminates Catalysis Today 11–19
[13] Laan V D and Pieter G 1999 Kinetic, Selectivity, and Scale Up of Fischer Tropsch synthesis (Groningen, Netherlands: University of Groningen)
[14] Maitlis P M 2013 Greener Fischer-Tropsch Processes for Fuels and Feedstocks (Verlag, Germany: WILEY-VCH)
[15] Storsæter S, Chen D and Holmen A 2006 Microkinetic modelling of the formation of C1 and C2 products in the Fischer–Tropsch synthesis over cobalt catalysts J Surf Sci 600 2051–63
[16] Bielen Z L, Urszula N and Walerian A 2013 Cobalt based catalysts for ammonia decomposition Materials Journals 6 2400-09
[17] Cornaro U, Rossini S and Montanari T 2012 K-doping of Co/Al2O3, low Temperature Fischer temperature catalyst Catalysis Today 197 101-8
[18] Shimura K, Miyazawa T, Hanaoka T and Hirata S 2014 Fischer Tropsch synthesis over Alumina supported Cobalt catalyst: Effect of crystal phase and pore structutre of alumina support Journal of Molecular Catalysis A: Chemical 394 22–32
[19] James O O and Supid M 2016 Temperature programme reduction (TPR) Studies of cobalt phases in γ-Alumina supported cobalt catalysts Journal of Petroleum and Alternatives Fuels 7 1-12
[20] Atashi H, Simai H, Mirzaei A A and Sarkari M 2010 Kinetic study of Fischer Tropsch on Titania supported Cobalt-Manganese catalyst Journal of Industrial and Engineering Chemistry 16 952-61
[21] Rafiq M H, Jakobsen H A, Schimid R and Hustad 2011 Experimental studies and modeling of a fixed bed reactor for Fischer Tropsch synthesis using biosyngas Fuel Processing Technology 92 893-907