DSTT-MRAM: Differential Spin Hall MRAM for On-chip Memories

Yusung Kim, Sri Harsha Choday, and Kaushik Roy

School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, 47907, USA

A new device structure for spin transfer torque based magnetic random access memory is proposed for on-chip memory applications. Our device structure exploits spin Hall effect to create a differential memory cell that exhibits fast and energy-efficient write operation. Moreover, due to inherently differential device structure, fast and reliable read operation can be performed. Our simulation study shows 10X improvement in write energy over the standard 1T1R STT-MRAM memory cell, and 1.6X faster read operation compared to single-ended sensing (as in standard 1T1R STT-MRAMs). The bit-cell characteristics are promising for high performance on-chip memory applications.

1) Introduction

Spin transfer torque magnetoresistive random access memory (STT-MRAM) is a promising candidate for on-chip memories due to its high-density, non-volatility, and compatibility with CMOS technology1-3. However, high performance memory design is quite challenging with standard 1T1R STT-MRAM. Large write current (voltage) is required for high-speed write which imposes severe stress conditions on the tunneling oxide in the magnetic tunnel junction (MTJ), leading to reliability concern such as time-dependent dielectric breakdown.
2) Proposed DSTT-MRAM structure

DSTT-MRAM consists of two MTJs and a spin Hall metal (SHM) which is a non-magnetic conductor with spin orbit interaction (see Fig. 1(a)). The free layers of the MTJs are in contact with the SHM and the magnetizations of the free layers (\mathbf{m}_1 and \mathbf{m}_2) represent the stored information. The pinned layer magnetization of the two MTJs is fixed in one direction.
Our proposed structure utilizes spin Hall effect to switch the magnetizations of \(\mathbf{m}_1 \) and \(\mathbf{m}_2 \) for an energy-efficient write. In the example shown in Fig. 1(b), \(\mathbf{m}_1 \) and \(\mathbf{m}_2 \) are initially oriented along the +X and –X direction, respectively, and a charge current is flowing in the SHM in +Y direction. The coupling between electron spin and orbital motion (spin-orbit coupling) in SHM deflects the –X and +X directed spins to +Z (top) and –Z (bottom) surfaces of the SHM. As a result, the accumulated spins on the top and bottom surfaces exert spin transfer torque (STT) on \(\mathbf{m}_1 \) and \(\mathbf{m}_2 \). Because spin Hall effect separates opposite spins to opposite surfaces, \(\mathbf{m}_1 \) and \(\mathbf{m}_2 \) will be subjected to equal magnitude but opposite sign of spin currents, writing both true and complementary bits at the same time. Note that the write energy used for writing both true and complementary bits is same as the energy required to write the true bit. Furthermore, in the proposed device, the write current can be increased for high-speed (<1ns write) without reliability constraint imposed by TDDB, as no tunneling current is required. The use of spin Hall effect for write provides write energy improvement over the standard 1T1R STT-MRAMs which can be explained as follows. In standard STT-MRAM, spin-polarized electrons are injected to the free-layer through tunneling and each electron exerts only one quanta of angular momentum to the free-layer. On the other hand, in spin Hall effect based write, one electron can exert STT many times by repeatedly scattering at the interface between the SHM and the free-layer\(^8\). As a result, the spin current injected to the free layer can be larger than the charge current, leading to an energy-efficient write.

The differential read operation in the proposed memory structure is illustrated in Fig. 1(b), where the SHM acts as the common terminal for the read current paths. In this figure, MTJ\(_1\) and MTJ\(_2\) are in the parallel (P) and anti-parallel (AP) states, respectively. The resistance of the MTJs is dependent on the orientation of the free layer with respect to the fixed layer; hence the
difference between the two read current (voltage) is sensed to evaluate the stored bit. Unlike standard STT-MRAM, our proposed device is self-referencing and does not require a global reference cell.

The read and write operations in DSTT-MRAM are performed by applying appropriate voltages to the write word line (WWL), read word line (RWL), two bit-lines (BL/BLB), and source-line (SL). In the bit-cell shown in Fig.2, WWL and RWL control the access transistors and are asserted high during write and read operation, respectively. To write ‘0’, BL/BLB are driven to the required write voltage \(V_{\text{WRITE}} \) and SL is driven to ground so that charge current flows from BL/BLB to SL through the SHM. To write ‘1’, the voltage polarity of BL/BLB and SL are reversed so that the write current flows in the opposite direction. To read out the state of MTJ\(_1\) and MTJ\(_2\), the RWL is asserted high and read current is applied to BL/BLB while SL is at ground. The corresponding voltages on the BL and BLB are compared to determine the data stored in the MTJs.

3) Modeling and Simulation

The DSTT-MRAM has a different current path for read and write, hence the equivalent circuits during read and write operations are different. As shown in Fig. 3(b), the equivalent circuit during the read operation consists of MTJ\(_1\) and MTJ\(_2\) in series with their access transistors. The resistance of the MTJs in parallel \(R_P \) and anti-parallel \(R_{\text{AP}} \) states is obtained from the non-equilibrium Green’s function (NEGF) based simulation framework\(^{15}\). The NEGF formalism uses a spin dependent effective mass Hamiltonian for electron transport simulations, which were calibrated with experimental data to reproduce the resistance characteristics of the MTJ reported.
in (ref. 16). Subsequently, the voltage-dependent resistances (R_p and R_{AP}) of the MTJs were used in SPICE based circuit simulations along with a commercial 45nm transistor model to evaluate the read performance of the proposed bit-cell. A voltage-sensing scheme was used to read the data, where a read current is applied to the bit-cell and the corresponding voltages on BL and BLB are measured (see Fig. 3(b)). Note that the voltages on the bit-lines can either be V_p or V_{AP} corresponding to the resistance of the MTJ.

During write, the equivalent bit-cell is a resistor (resistance of SHM) in series with an access transistor as shown in Fig. 4(b). The charge current (I_e) flowing through the SHM is extracted from SPICE based circuit simulation and the corresponding spin current is calculated from the expression shown below:

$$I_s = \frac{A_{MTJ}}{A_{SHM}} \theta_{SHM} \left(1 - \text{sech} \left(\frac{t_{SHM}}{\lambda_{sf}} \right) \right) I_e$$ \hspace{1cm} (1)

where, A_{MTJ} is the cross sectional area of the MTJ, A_{SHM} is the cross sectional area of SHM, θ_{SHM} is the spin Hall angle, and λ_{sf} is the spin flip length ($\lambda_{sf} = 1.5\text{nm}$). The term in the parenthesis accounts for the reduction in spin Hall current density as t_{SHM} is reduced14. The spin current obtained from eq. (1) is used with the generalized Landau-Lifshitz-Gilbert (LLG) equation17,18 to analyze the switching dynamics of \mathbf{m}_1 and \mathbf{m}_2. Note that the two free layers are separated by thin SHM. As a result, the dipolar coupling between \mathbf{m}_1 and \mathbf{m}_2 has to be taken into account. Under the macrospin approximation, the magnetization dynamics of \mathbf{m}_i ($i=1, 2$) can be written as:
\[
\frac{d\mathbf{m}_i}{dt} = -\gamma (\mathbf{m}_i \times \mathbf{H}_{\text{eff},i}) + \alpha \frac{d\mathbf{m}_i}{dt} + \frac{1}{q(M_s \Omega / \mu_0)} (\mathbf{m}_i \times \mathbf{m}_i \times I_s M_i)
\] (2)

where, the effective field \((\mathbf{H}_{\text{eff},i})\) includes self-demagnetization field due to shape anisotropy, the uniaxial field due to magneto-crystalline anisotropy, and the interlayer dipolar field. The dipolar coupling field is given by \(\mathbf{H}_{\text{dip},i} = -N_{dp} M_j \mathbf{m}_j\) where \(N_{dp}\) is effective dipolar coupling factors extracted from micromagnetic simulations\(^{19}\). Since the dipolar field inside a magnet is non-uniform, the dipolar fields from \(\mathbf{m}_j\) on \(\mathbf{m}_i\) were averaged over the \(\mathbf{m}_i\) volume to obtain the effective dipolar coupling factors\(^{20}\). The simulations parameters are listed in Table I.

4) Results and Discussion

DSTT-MRAM exhibits three distinct advantages over the standard 1T1R bit-cell. First, the write current flows through SHM instead of the tunneling oxide. As a result, high write current can be supplied to achieve fast switching without any reliability concerns associated with the tunnel barrier. Second, the SHM has a much lower resistance than an MTJ; hence a smaller transistor width is needed for the write current. Finally, the write operation using SHE is more energy efficient because the spin injection efficiency can be greater than 100%. To quantitatively show the improvement of write energy compared to 1T1R STT-MRAM, we designed both DSTT-MRAM and standard 1T1R STT-MRAM with an identical target write-time of 1ns.

In the design of DSTT-MRAM, the spin Hall angle is expected to be the dominant factor in determining the spin injection efficiency. As shown in Fig. 4, for each type of SHM we find the thickness \(t_{\text{SHM}}\) at which spin injection efficiency is maximized. Note that the \(t_{\text{SHM}}\) at which
maximum spin current flows is different for writing ‘1’ and ‘0’. When writing ‘0’, the access transistors are driving a charge current from SL to BL/BLB, in which case the transistors have a gate-to-source voltage (V_{GS}) of V_{DD}. On the other hand, when writing ‘1’ the direction of charge current is reversed and hence node X (see Fig. 4) acts as the source terminal of the transistor. Due to a finite voltage at node X, the V_{GS} of the access transistor is less than V_{DD}, thus reducing its drive strength. Therefore, the observed asymmetry in the spin current is due to source degeneration of the access transistor caused by the resistance of SHM (R_{SHM}). To reduce the asymmetry, t_{SHM} is chosen for the worst write case i.e. writing a ‘1’. Since spin injection efficiency approaches ~3X in DSTT-MRAM, a minimum sized access transistor (120nm) is used to achieve a 1ns write time.

In case of 1T1R cell design, the source degeneration of access transistor is due to the MTJ which has a much higher resistance than SHM. The stronger source degeneration in 1T1R cells causes much stronger write asymmetry and results in wasted write energy. It is also noted that in 1T1R bit-cell design, boosted voltage (i.e. $V_{DD} = 1.2V$) and large transistor width (1.5µm) are needed to meet the write-time requirement of 1ns. As a result, in 1T1R cells, high write-speed design leads to severe stress condition on the tunnel barrier, degrading the reliability. The simulation results show that DSTT-MRAM achieves write energy of 0.077 pJ which is ~10 X smaller than that of 1T1R cell (0.823 pJ).

For reading the data stored in DSTT-MRAM, a read current is injected into BL, BLB and the corresponding voltages are sensed. For this differential cell, the sense margin (SM) can be written as $(V_{AP} - V_P)$. Whereas in a single-ended sensing scheme (as in 1T1R bit-cell), only the true bit is stored, hence the bit-cell provides either V_P or V_{AP} which is compared with a reference.
voltage \((V_{\text{REF}}) \) to determine the stored data. The value of \(V_{\text{REF}} \) is typically chosen as the average of \(V_p \) and \(V_{AP} \). Therefore the \(SM \) in single-ended read is \((V_{AP} - V_p) / 2 \). This two-fold increase in the sense margin due to the differential nature of DSTT-MRAM allows fast read operation.

The read time is typically defined as the time taken to develop a sense margin of 50mV. Fig.3 shows the read time of single-ended and differential sensing for different thickness of MgO \((t_{MgO}) \). It is shown that the optimum \(t_{MgO} \) occurs at 1.2nm and differential read achieves 1.6X faster read than that of single-ended sensing. Note that in 1T1R bit-cell, \(t_{MgO} \) affects both read and write performance, and hence, thinner \(t_{MgO} \) may have to be chosen to improve write performance.

5) Conclusion

We propose a differential STT-MRAM bit-cell that utilizes spin-Hall effect, resulting in a write operation that consumes 10X less energy than standard 1T1R STT-MRAMs. Moreover, storing both true and complimentary bits comes without any write energy overhead due to the nature of spin Hall effect. The proposed DSTT-MRAM bit-cell can perform 1.6X faster read due to an inherently differential device structure. As a result, DSTT-MRAM is suitable for high performance on-chip memories.

6) Acknowledgements

This work was supported in part by STARnet, Semiconductor Research Corporation, and by Intel Corporation.
References:

1. Yoda, H.; Fujita, S.; Shimomura, N.; Kitagawa, E.; Abe, K.; Nomura, K.; Noguchi, H.; Ito, J., Tech. Dig. – Int. Electron Devices Meet. 2012, pp. 11.3.1-11.3.4
2. Kitagawa, E.; Fujita, S.; Nomura, K.; Noguchi, H.; Abe, K.; Ikegami, K.; Daibou, T.; Kato, Y.; Kamata, C.; Kashiwada, S.; Shimomura, N.; Ito, J.; Yoda, H, Tech. Dig. – Int. Electron Devices Meet. 2012, pp. 29.4.1-29.4.4
3. T. Kawahara, K. Ito, R. Takemura, H. Ohno, Microelectronics Reliability, 52, 613 (2012)
4. Yoshida, Chikako; Kurasawa, M.; Young Min Lee; Tsunoda, K.; Aoki, Masaki; Sugiyama, Y., Reliability Physics Symposium, 2009 IEEE International, pp. 139, April 2009
5. W.S. Zhao, T. Devolder, Y. Lakys, J.O. Klein, C. Chappert, P. Mazoyer, Microelectronics Reliability, 51, 1454 (2011)
6. W.S. Zhao, Y. Zhang, T. Devolder, J.O. Klein, D. Ravelosona, C. Chappert, P. Mazoyer, Microelectronics Reliability, 52, 1848 (2012)
7. Tai Min; Qiang Chen; Beach, R.; Jan, G.; Cheng Horng; Kula, W.; Torng, T.; Tong, R.; Zhong, T.; Tang, D.; Pokang Wang; Mao-min Chen; Sun, J.Z.; Debrosse, J.K.; Worledge, D.C.; Maffitt, T.M.; Gallagher, W.J., Magnetics, IEEE Transactions on, vol. 46, pp. 2322, (2010)
8. Axel Hoffmann, Physics 6, 39 (2013)
9. Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A., eprint arXiv: 1301.5374 (2013)
10. Luqiao Liu, Chi-Feng Pai, Y. Li, H. W. Tseng, D. C. Ralph, and R.A. Buhrman, Science 336, 555 (2012)
11. J.E. Hirsch, Phys. Rev. Lett. 83, 1834-1837 (1999)
12. Chi-Feng Pai, Luqiao Liu, Y. Li, H. W. Tseng, D. C. Ralph, and R.A. Buhrman, Appl. Phys. Lett. 101, 122404 (2012)
13. K Ando, S Takahashi, K Harii, K Sasage, J Ieda, S Maekawa, and E Saitoh, Phys. Rev. Lett. 101, 036601 (2008)
14. Liqiao Liu, Takahiro Moriyama, D. C. Ralph, and R.A. Buhrman, Phys. Rev. Lett. 106, 036601 (2011)
15. Xuanyao Fong; Gupta, S.K.; Mojumder, N.N.; Choday, S.H.; Augustine, C.; Roy, K., Simulation of Semiconductor Processes and Devices (SISPAD), 2011 International Conference on, vol., no., pp. 51,54, 8-10 Sept. 2011
16. C. J. Lin, S.H Kang, Y.J. Wang, K, Lee, X. Zhu, W.C. Chen, X. Li, W.N. Hsu, Y.C. Kao, M.T. Liu, W.C., Chen, Lin YiChing, M, Nowak, N. Yu, Luan Tran , Tech. Dig. – Int. Electron Devices Meet. 2009, pp. 279-282.
17. X. Jiang and A. Zangwill, Phys. Rev. B 72, 014446 (2005)
18. Behtash Behin-Aein, Angik Sarkar, Srikant Srinivasan, and Supriyo Datta, Appl. Phys. Lett. 98, 123510 (2011).
19. M. J. Donahue and D.G. Porter, OOMMF User’s Guide, http://math.nist.gov/oommf
20. J K Han, JH NamKoong, and S H Lim, J.Phys.D:Appl.Phys. 41, 232005 (2008)
21. Y. Kim, S.K. Gupta, S.P. Park, G. Panagopoulos, and K. Roy, in Proc. Int. Symposium on Low Power Electronics and Design (ISLPED), 2012, pp. 3-8.
FIG. 1: (a) Proposed memory device structure and current paths for (b) write and (c) read operations.

FIG. 2: A possible bit-cell structure and the biasing conditions for read and write operations.

Simulation Parameters	Value
Gilbert Damping, α	0.0122
Saturation Magnetization, M_S	850 kA/m
Free layer volume, Ω	$40 \times (2.89 \times 40) \times 2$ nm3
Spin Hall metal dimension	$80 \times (2.89 \times 40) \times 2.8$ nm3
Spin Hall angle (W,Ta,Pt)	(0.3, 0.12, 0.08)
Spin Hall metal resistivity (W,Ta,Pt)	(200, 190, 20) μΩ.cm2
Self-Demagnetization factors	(0.022, 0.066, 0.911)
Mutual dipolar coupling factors	(0.0098, 0.030, -0.039)
Magneto-crystalline anisotropy, H_{Ku2}	5 mT/μm
MgO thickness, t_{MgO}	1.2nm
CMOS Technology / V$_{DD}$/V$_{WRITE}$	45nm SOI CMOS / 1V / 0.4V
Access transistor width	120nm

Table I: Simulation parameters$^{9-14}$
FIG 3: (a) Read time (time to develop 50mV of read signal margin) for differential and single-ended read (b) equivalent bit-cell during read

FIG 4: (a) Spin current during write operation for different spin Hall metal thickness and materials (b) equivalent bit-cell during write