NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence

Nielsen, Morten; Lundegaard, Claus; Holberg Blicher, Thomas; Lamberth, K.; Harndahl, M.; Justesen, S.; Roder, G.; Peters, B.; Sette, A.; Lund, Ole; Buus, S.

Published in:
PLoS ONE

Link to article, DOI:
10.1371/journal.pone.0000796

Publication date:
2007

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Nielsen, M., Lundegaard, C., Blicher, T., Lamberth, K., Harndahl, M., Justesen, S., ... Buus, S. (2007). NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS ONE, (8), e796. DOI: 10.1371/journal.pone.0000796
NetMHCpan, a Method for Quantitative Predictions of Peptide Binding to Any HLA-A and -B Locus Protein of Known Sequence

Morten Nielsen*, Claus Lundegaard1, Thomas Blicher1, Kasper Lamberth1, Mikkel Harndahl2, Sune Justesen2, Gustav Røder2, Bjoern Peters3, Alessandro Sette4, Ole Lund1, Søren Buus4

1 Center for Biological Sequence Analysis, BioCentrum-DTU, Technical University of Denmark, Lyngby, Denmark, 2 Department of Experimental Immunology, Institute of Medical Microbiology and Immunology, University of Copenhagen, Copenhagen, Denmark, 3 La Jolla Institute for Allergy and Immunology, San Diego, California, United States of America

Background. Binding of peptides to Major Histocompatibility Complex (MHC) molecules is the single most selective step in the recognition of pathogens by the cellular immune system. The human MHC class I system (HLA-I) is extremely polymorphic. The number of registered HLA-I molecules has now surpassed 1500. Characterizing the specificity of each separately would be a major undertaking. **Principal Findings.** Here, we have drawn on a large database of known peptide-HLA-I interactions to develop a bioinformatics method, which takes both peptide and HLA sequence information into account, and generates quantitative predictions of the affinity of any peptide-HLA-I interaction. Prospective experimental validation of peptides predicted to bind to previously untested HLA-I molecules, cross-validation, and retrospective prediction of known HIV immune epitopes and endogenous presented peptides, all successfully validate this method. We further demonstrate that the method can be applied to perform a clustering analysis of MHC specificities and suggest using this clustering to select particularly informative novel MHC molecules for future biochemical and functional analysis. **Conclusions.** Encompassing all HLA molecules, this high-throughput computational method lends itself to epitope searches that are not only genome- and pathogen-wide, but also HLA-wide. Thus, it offers a truly global analysis of immune responses supporting rational development of vaccines and immunotherapy. It also promises to provide new basic insights into HLA structure-function relationships. The method is available at http://www.cbs.dtu.dk/services/NetMHCpan.

Citation: Nielsen M, Lundegaard C, Blicher T, Lamberth K, Harndahl M, et al (2007) NetMHCpan, a Method for Quantitative Predictions of Peptide Binding to Any HLA-A and -B Locus Protein of Known Sequence. PLoS ONE 2(8): e796. doi:10.1371/journal.pone.0000796

INTRODUCTION

Proteins are essential immune target structures. Being extremely diverse, they constitute unique imprints of their source organisms and provide-even at the peptide level-sufficient target identification and discrimination (reviewed in [1]). The cytotoxic T lymphocyte (CTL) arm of the T cell immune system represents a prime example of peptides being used as immune targets. CTL’s are aimed at intracellular pathogens and obtain information on the intracellular environment of our cells through a series of cellular events involving HLA-I-mediated antigen processing and presentation of peptide epitopes derived from the intracellular protein metabolism, including that of intracellularly located pathogens (reviewed in [2]). A detailed description of how the immune system handles proteins and generates peptides could enable scientists and clinicians to analyze any protein of interest for the presence of potentially immunogenic CTL epitopes. Scanning entire proteomes computationally should further enable a rational approach to vaccine development, immunotherapy and diagnostics. Thus, candidate epitopes might be predicted from the various microbial genome projects, tumor vaccine candidates from mRNA expression profiling of tumors (“transcriptomes”) and auto-antigens from the human genome (reviewed in [1,3]).

The single most selective event in antigen processing and presentation is that of peptide binding to HLA-I. It has been estimated that only 1 in 200 peptides will bind to a given MHC class I molecule with sufficient strength to elicit an immune response [2]. This makes it particularly important to establish accurate descriptions and predictions of peptide binding to HLA-I molecules [2]. It is not a simple task since the genes encoding HLA proteins are extremely polymorphic giving rise to many different peptide binding specificities expressed in the human population. Sette and Sidney clustered HLA-I molecules into supertypes [4,5] according to peptide binding specificities. Although the HLA-I supertype concept does reduce the complexity of the HLA-I system, there is still an unmet need to increase the coverage of HLA-I specificities as most existing HLA-I molecules have no or poorly characterized supertype relationships. Furthermore, at the present rate of discovery of HLA specificities, it would be a very demanding task to keep up with the increasing number of registered HLA molecules. Clearly, there is a need for a more efficient approach to analyze HLA-I specificities.

The analysis of HLA-I specificities have classically entailed the identification of peptide binding motifs (characterized primarily by the requirement for a few properly spaced and essential primary anchor residues) through pool sequencing of MHC eluted peptides [6] and/or the generation of a representative set of peptide...
binding data [7,8]. Once such information has been obtained, the
next step has been to generate peptide-binding predictions using
either simple motif searches strategies [9] or complete statistical
matrices representing the frequency of each amino acid in each
position [9–13]. More recently, the growing amount of peptide-
binding data has supported the generation of more sophisticated
data-driven bioinformatics approaches including artificial neural
networks, hidden Markov models, and support vector machines
[14–20]. Artificial Neural Networks (ANN) are ideally suited to
recognize non-linear patterns, which are believed to contribute to
peptide-HLA-I interactions [15,16,21,22]. In an ANN, informa-
tion is trained and distributed into a computer network with an
input layer, hidden layers and an output layer all connected in
a given structure through weighted connections [23]. They are
trained to recognize inputs (e.g. peptide sequences) associated with
a given output (e.g. binding affinity). Once trained, the network
should recognize the complicated input patterns compatible with
binding. In a recent study, the ANN approach was found to be
a highly efficient prediction mechanism for peptide-HLA-I
interactions [24].

In general, HLA-I binding predictions depend on sufficient
experimental data being available for the exact HLA-I molecule in
question. Unfortunately, less than 10% of the 1500 [25] registered
HLA-I proteins have been examined experimentally, and less than
5% have been characterized with more than 30 examples of
peptide binders [26,27]. Furthermore, focus has been towards the
most prevalent HLA-I molecules, which are not necessarily those prevalent among other populations, which are in
more urgent need of new vaccine initiatives. By way of example,
only two of the six HLA-A alleles, which are found with phenotype
frequencies above 10% in Sub-Saharan African populations, are
found above the 2–4% level in Caucasians; only three out of seven
HLA-A alleles, which are found with phenotype frequencies above
10% in South-East Asian populations, are found above the 1% level in Caucasians; only three out of five HLA-A alleles, which
are found with phenotype frequencies above 10% in South-East Asian populations, are found above the 1% level in Caucasians etc. [28].

To overcome this problem, several (frequently computer intensive)
prediction algorithms have been proposed using the three
dimensional structure of the MHC molecule, and empirical or
semi-empirical force fields, to estimate the peptide-HLA-I binding
affinity [29–32]. Obviously, to extend this approach beyond the 17
HLA-I molecules currently solved at the structural level requires
some kind of structural modeling [33]. Searching for alternative
solutions, we here propose a novel method, NetMHCpan, exploiting
both peptide and primary HLA sequence as input information for
ANN-driven predictions pooling all available data and at the same
time incorporate all HLA specificities. The method is successfully
demonstrated to predict the affinity of interaction of any peptide
with any human HLA-A or HLA-B molecule i.e. the method is
pan-specific. Where other groups earlier have suggested similar prediction strategies to span limited regions of the HLA diversity
[34–36], to the best of our knowledge, this is the largest database
of HLA binding events ever used for this purpose, and the first
report describing predictors applicable to a complete analysis of all
HLA-A and -B specificities.

RESULTS
A large set of quantitative peptide-HLA binding data was used as
input to train the NetMHCpan method. Both peptide and HLA
primary sequences would subsequently be used as input for the
method, and as output one should retrieve the predicted peptide-
HLA-I binding affinity (for details see Materials and Methods).

Experimental validation
A prospective validation was performed using NetMHCpan to
identify peptides, which would bind to HLA molecules that
specificity-wise were unknown to us. For each HLA molecule, the
binding affinity was predicted for a set of 500,000 random
nonameric peptides of pathogenic, or human, origin. Only
peptides predicted to bind with an affinity stronger than 50 nM
were selected, and from this set of predicted binders, a subset of
10–15 peptides with low mutual sequence similarity (i.e. avoiding
redundancy) was selected. These peptides were then tested for
binding to the relevant HLA molecule in an in vitro binding assay
[37]. More than 86% of the predictions were experimentally
confirmed as binders with K_D values below 500 nM (many
peptides bound with affinities better than 5 nM, see Figure 1).
Thus, the pan-specific prediction approach was capable of
extracting HLA sequence information and correctly relating this
to peptide binding even in the absence of any data for the specific
query HLA molecule.

Leave-one-out validation
The ultimate validation of the predictive performance of the pan-
specific approach is obtained by using the NetMHCpan method
to identify peptide binders for MHC molecules that are
specificity-wise unknown. This we have shown above for two
alleles HLA. As another evaluation of the predictive performance
of the pan-specific approach we performed a simulated “blind”
leave-one-out validation. Here, we trained networks using all
data for the relevant loci, HLA-A or -B, except the data for the
molecule in question (i.e. a “leave-one-out” validation, here after
referred to as Pan). This was done for all HLA molecules
represented in the data set. Thus, in this evaluation, no peptide-
HLA binding data from the validation set was included in the
training of the pan-specific predictor. For comparison, predictions
were also trained solely on peptide binding data (i.e. without
considering HLA sequence information) and using conventional
cross-validation (see Materials and Methods). For
each allele under consideration, we trained three such conventional
single allele cross-validated networks based on different sets of
peptide binding data: (1) data from the exact HLA molecule in
question (Self), (2) data from the most closely related HLA
molecule as identified by similarity between the HLA sequences
(Neighbor), and (3) data from a previously selected representative
of the HLA supertype [5] (Supertype, clearly this comparison
cannot include the representative itself). This leave-one-out
experiment thus constitutes a highly rigorous validation of the
pan-specific method. By performing the leave-one-out experimen-
tation of all 42 alleles included in the benchmark data set, we can
validate the performance of the NetMHCpan method on 42
alleles with uncharacterized binding specificity.

Some highlights of the “leave-one-out” analysis are shown in
Table 1 (the complete data is given in Table S1). Perhaps not
surprising, Self often performed better than Pan. However, it is
noteworthy that all alleles, where Pan performed best, were
characterized by very little data (57 to 141 peptide data points)
bearing available. More pertinent for this work, however, Pan had
a significantly higher predictive performance than both the
Neighbor and Supertype methods (p<0.005 in both cases). Plotting
the Pan performance against the distance between the query HLA
and its nearest neighbor (as determined from the similarity
between the two HLA sequences), it became apparent that the Pan
predictor performed better when the query HLA molecule was
represented by closely related HLA molecules (see Figure 2 and
Table S2).
Examples of how HLA molecules, which are sparsely populated in terms of available peptide binding data, can be represented by related and well-populated HLA molecules is provided in Table 1A. Here, the performances of Pan as much better than those of the corresponding Self. In agreement, there are very few peptide binding data points (between 51 and 141 data point) for these HLA-A molecules, however, in total there are more than 11,000 data points for closely related HLA-A*02xx molecules. How sparsely populated HLA molecules cannot serve as HLA representatives is demonstrated in Table 1B. For HLA-A*2601 the Pan method has a much lower performance than the Self-method, whereas the converse is true for the closely related HLA-A*2602. This is in agreement with the fact that HLA-A*2601 is well populated with peptide binding data, whereas HLA-A*2602 is not. There is thus sufficient HLA-A*2601 data to represent HLA-A*2602, but not vice versa. A similar phenomenon can be observed for HLA-B*5801 vs. HLA-B*5701 and HLA-B*4001 versus HLA-B*4402. As shown in Table 1C, the HLA-A*2705 Self-performance is excellent, whereas the Pan, as well as Neighbor, performances are appalling. This is in agreement with the amount of data available; there are 1251 self-data points, but no clear representative of HLA-B*2705 (the difference in HLA sequence to the nearest neighbor is very high, see Figure 2 and Table S2). Similar, although less dramatic, observations are made for HLA-A*0101, and HLA-B*0702. Finally, HLA-A*6001 provides an example of how the Pan-networks avoids completely misleading Neighbor predictions (see Table S1). For HLA-A*6001, the nearest neighbor is HLA-A*6802, however, using the HLA-A*6002 predictor as HLA-A*6001 representative had a very poor predictive performance of 0.04. In contrast, the predictive performance of the Pan-networks for HLA-A*6801 is 0.62.

A summary of the leave-one-out experiment is given in Table 1D. For the HLA-A locus molecules, the Pan approach performed slightly better than Self and much better than Neighbor or Supertype (P<0.001), thus providing strong unbiased overall support for the pan-specific approach. For the HLA-B locus molecules, the Pan approach performed slightly poorer than Self, but still significantly better than both the Neighbor, and Supertype approaches (P<0.005). The performance difference between HLA-A and -B locus molecules is most likely the result of the more limited amount of available HLA-B data trying to cover an even greater span of sequence and binding motif diversities (i.e. see Figure 2, and the fact that 7 HLA-B supertypes are defined as compared to 5 for the HLA-A locus).

The final NetMHCpan predictors

Often small data sets contain a strong bias for both the negative and positive data since the data was selected to fit some predicted binding motif. One way to lower a potential bias in the negative data set is to add random data with assumed weak binding affinity values [18]. For HLA it is a reasonable assumption that randomly chosen peptides will be non-binders, and the ANN methodology is reasonably robust against the occasional error introduced. Thus, for the remaining work, we added 100 random peptides to all data sets. This did indeed improve all the predictions that depended upon sparsely populated HLA representatives (e.g. Pan predictions for HLA-A*2601 and HLA-B*5301). The predictive performance for the leave-one-out pan-specific predictors trained including added random negative data is shown in Table 2.

The final HLA-A and HLA-B pan-specific ANNs were trained on the complete datasets in a fivefold cross-validated manner on the complete data set abandoning the leave-one-out approach (see Materials and Methods). The Pearson correlation [30] for each HLA molecule was compared to that of the corresponding Self-networks. As illustrated in Table 3, the two approaches had comparable predictive performance. As the pan-specific neural network method demonstrates ability to encompass all HLA-A and HLA-B molecules, we denote the final pan-specific methods, NetMHCpanA and NetMHCpanB, respectively.

We can estimate the sensitivity and specificity of the NetMHCpan method from the predictions of the 37,384 peptide data included in the benchmark. For a classification threshold of 500 nM, we find that the method has a specificity of 0.95, and a sensitivity of 0.74. Further, we find that 83% of the predicted binders are indeed experimentally verified binders. A complete table describing the relation between sensitivity and specificity is given in Table S3.

Identification of HLA supertypes

The pan-specific approach relies on the ability of the neural networks to capture general features of the relationship between
peptides and HLA sequences, and interpret these in terms of binding affinity. Having demonstrated the predictive strength of the approach to identify the binding motif of uncharacterized HLA molecules, we now used the pan-specific ANNs to cluster HLA molecules according to predicted peptide binding specificity. Pruned HLA distance trees were calculated as described in Materials and Methods. Figure 3A depicts a tree including 36 representatives of the currently known HLA-A molecules, and Figure 3B a tree including 51 representatives of the known HLA-B molecules. The overall structure of the two new trees is in accordance with the supertype clustering proposed earlier by Sette and Sidney [4] and later extended by Lund et al., [5] according to which the HLA-A locus consists of five major supertypes A1, A2, A3, A24, and A26, and the HLA-B locus of seven major supertypes, B7, B8, B27, B39, B44, B58, and B62. However, the present analysis includes all known polymorphic HLA-A and -B molecules and suggests the existence of novel HLA supertypes, such as B51/B55, B35 (both split from B7), and A33, with specificities different from those described by previously defined HLA supertypes. Note also the assignment of the A*3001 molecule in the HLA-A tree. The A*3001 molecule has been variously clustered; by some to A3 [39], by others to A24 [4], and recently to A1 [5]. By the present analysis, it should belong to the A3 supertype. Reassuringly, this has subsequently been confirmed experimentally (Lamberth et al, manuscript in preparation).

Identifying endogenously presented peptides
The NetMHCpan method was further validated using a large set of HLA ligand data. Nonamer HLA ligand data restricted to HLA-A and HLA-B alleles not included in the training data of the NetMHCpan method were downloaded from the SYFPEITHI database [11]. This set consists of 326 MHC ligands restricted to 43 different HLA-A and HLA-B alleles. For every peptide, the source protein was found in the SwissProt database [40]. If more than one source protein was possible, the longest protein was chosen. All nonameric peptides contained in the source protein sequences, except the annotated HLA ligand were taken as negative peptides. For each protein-HLA ligand pair the predictive performance was estimated as the percent rank of the HLA ligand among all nonamer peptides in the protein sequence. Performing this ranks calculation for all the 326 HLA ligands, we find a median rank of 1.4%. For half of the protein sequences, the HLA ligand is thus found within the top 1.4% highest scoring peptides. In a protein of size 300 amino acids, the HLA ligand will thus on average be ranked 4. The mean rank is 4.4%. These results demonstrate the predictive power of the pan-specific method to perform accurate predictions also for HLA alleles not included in the training.

Predicting known HIV immunogens
As a final independent validation of the NetMHC approach, we analyzed all CTL nonamer epitopes reported with full HLA annotation in the Los Alamos HIV database (www.hiv.lanl.gov)[41]. This dataset contains 182 epitopes covering 49 HLA molecules (8 of these are of unknown HLA supertype assignment). The peptide-HLA binding affinity was predicted with NetMHC-panA or -panB using the annotated HLA molecule, and, when possible, with NetMHC (a previously reported HLA prediction tool available as www.cbs.dtu.dk/services/NetMHC) using the supertype representative. At a binding threshold of 500 nM, NetMHC identified 41% of the known epitopes, whereas the NetMHCpanA and -panB identified 52% (both approaches rejecting >98% of a random collection of nonamer peptides). Thus, the
pan-specific approach recognized about 25% more known epitopes than an HLA supertype based approach.

DISCUSSION

Predictions of T cell epitopes have the potential to provide important information for rational research and development of vaccines and immunotherapies (reviewed in [1,42]). Being computational, these tools enable a rapid and complete genomics analysis of all available pathogen isolates. Unfortunately, at this time they only cover a few of the many HLA specificities found in human populations. The method proposed here offers a complete incorporation of all human HLA specificities thereby covering a significant aspect of human immune diversity. Several groups have tried to develop methods for predicting which peptides will bind to a given HLA molecule [10,14–20,43,44]. All such efforts have faced the problems of the limited amounts (or lack) of data available for most of the different HLA molecules present in the human population. Here, we report a pan-specific approach overcoming the problems of lacking specific binding data during the methods development. The major advantage of the pan-specific approach is that it predicts the binding of any peptide to any present and future HLA molecule, even in absence of data specific for the query HLA molecule, whereas conventional data-driven prediction approaches are restricted to predict the binding of peptides solely to the particular HLA molecules included in the training. In the past, others have proposed to similar strategies to span limited regions of the HLA diversity [34–36]. However, this is to our knowledge the first time data sets of this size have been available to do a complete analysis of all HLA-A and -B specificities.

The large-scale leave-one-out experiment, covering 42 distinct HLA-A and HLA-B alleles, provided unbiased support of the validity of the pan-specific ANN approach. It suggests that a pan-specific approach—given that there is sufficient and representative data available—is preferable to conventional approaches using single-allele specific prediction methods as defined by nearest Neighbor or Supertype representation. The pan-specific method is even preferable to conventional Self single-allele approach in cases where only limited data is available (e.g. 5 out of 6 HLA-A2 molecules with only few peptide data). It stresses the importance of the availability of large and representative HLA binding data, and it suggests that the development of the next generations of improved pan-specific predictors can be optimized through targeted selection of peptides and HLA molecules for future data inclusion.

The HLA supertype concept proposed by Sette and co-workers [4] suggested an approach to reduce the complexity of the polymorphism of the HLA. Several groups have developed methods for prediction of “promiscuous” HLA binders within known HLA supertypes [35,36,45]. However, all these methods require prior knowledge about the HLA supertype relationship, which for most HLA molecules remain undefined. Further, even if the supertype relationship is known, peptides identified to bind to a representative HLA molecule within a supertype might not bind to one or several of the other members of the same supertype. At the population level, the pan-specific approach promises an alternative strategy to handle HLA polymorphism and improve coverage in vaccine design. Rather than including one or more peptides restricted to each of the HLA supertypes, one could use the pan-specific HLA predictors in conjunction with the HLA frequency distribution within an ethnic population in question to select epitopes that will provide the broadest possible population coverage. A computer simulation of such a strategy for HIV specific CTL epitope identification suggest that coverage could be improved from some 90% for a supertype representation strategy to almost 100% for a pan-specific strategy (data not shown). At the individual level, it is obvious that the ability to handle any HLA molecule that a given patient might have irrespective of the availability of specific data for a particular HLA haplotype in question is an enabling technology for individualized immunotherapy and diagnostics.

It is implicitly clear that the pan-specific approach relies on the ability of the neural networks to capture general features of the

Table 1. Comparison of various validated predictors of peptide-HLA binding.

	ANN (locus average) HLA-A	HLA-B
	Pan	HLA-B
	Self	
	Neighbor	
	Supertype	
Pan	0.60	0.75
Self	0.26	0.67
Neighbor	0.49	0.74
Supertype	0.49	0.74
# Data points	141	113
Pan	0.80	0.76
Self	0.25	0.75
Neighbor	0.21	0.77
Supertype	NA	NA
# Data points	1032	76
Pan	0.82	0.88
Self	0.21	0.88
Neighbor	NA	NA
Supertype	NA	NA
# Data points	1257	1213
Pan	0.75	0.69
Self	0.73	0.78
Neighbor	0.57	0.61
Supertype	0.57	0.45
# Data points	26503	10881

Experimental peptide-HLA binding data was used to develop artificial neural networks. The numbers given in the table are the Pearson correlation coefficients between the logarithmically transformed predicted binding affinities (K_D values) and logarithm transformed observed binding affinities (K_O values). In bold are highlighted the maximum values in each column. (A) illustrates how poorly populated HLA molecules are more accurately predicted by the pan-specific leave-one-molecule-out (Pan) predictor than by any of the conventional single allele predictors, even those generated using the data for the molecule in question. (B) illustrates that the pan-specific Pan predictor is only accurate when it has been trained on well-populated and relevant data. (C) illustrates that the pan-specific Pan predictor is inaccurate when no relevant data was included in the training sets. (D) illustrates the average performance for the HLA-A and -B locus molecules including random negative data. Note, only non-supertype representative alleles are included in the average. The predictors are Pan: the pan-specific ANN trained on data emanate from all members of the locus in question (i.e. HLA-A or -B) except for the member in question; Self: the most closely related member by BLOSUM comparison of the HLA-A (-or-B) allele; Neighbor: the most closely related member by BLOSUM comparison of the HLA-A (-or-B) allele; Supertype: use cross-validated ANN generated using data from the member representing the supertype.

doi:10.1371/journal.pone.0000796.t001
Table 2. Performance for the different alleles in terms of the Pearson's correlation for the “leave-one-out” experiment with added random negatives.

(A) Predictors of HLA-A locus molecules (with random negatives)	Pan	Self	Neighbor	Supertype	Count	
A0101	0.46	0.88	0.26	A101	A1	1213
A0201	0.87	0.89	0.26	A0201	A2	3876
A0202	0.81	0.81	0.74	A0203	A2	1447
A0203	0.87	0.89	0.83	A0202	A2	2046
A0206	0.79	0.82	0.76	A0201	A2	2055
A0211	0.63	0.39	0.47	A0201	A2	141
A0212	0.85	0.59	0.73	A0201	A2	113
A0216	0.76	0.31	0.52	A0201	A2	57
A0219	0.75	0.57	0.59	A0212	A2	137
A0301	0.79	0.84	0.76	A1101	A3	2488
A1101	0.84	0.87	0.80	A0301	A3	2247
A2301	0.77	0.71	0.76	A2402	A2	167
A2402	0.81	0.85	0.71	A2301	A2	418
A2403	0.83	0.84	0.82	A2402	A2	321
A2601	0.69	0.79	0.73	A2602	A2	1032
A2602	0.71	0.69	0.70	A2601	A2	76
A2902	0.69	0.86	0.07	A3101	A3	160
A3001	0.68	0.82	0.11	A3002	A3	931
A3002	0.65	0.64	0.37	A3001	A3	92
A3101	0.77	0.84	0.62	A3301	A3	2123
A3301	0.66	0.76	0.56	A3101	A3	1140
A6801	0.62	0.80	0.05	A6802	A3	1141
A6802	0.74	0.78	0.60	A6901	A2	1434
A6901	0.76	0.81	0.72	A6802	A2	1648
Ave	0.74	0.75				
Ave ex supertypes	0.75	0.73	0.57	0.57	Sum	26503

(B) Predictors of HLA-B locus molecules (with random negatives)	Pan	Self	Neighbor	Supertype	Count	
B0702	0.55	0.88	0.53	B0801	B7	1572
B0801	0.62	0.75	0.53	B0802	B8	812
B0802	0.59	0.86	0.76	B0801	B8	724
B1501	0.41	0.83	0.37	B3501	B62	1284
B1801	0.76	0.85	0.30	B3501	B62	290
B2705	0.05	0.82	0.15	B4002	B27	1257
B3501	0.68	0.79	0.63	B3501	B7	982
B3901	0.48	0.71	0.24	B0801	B39	81
B4001	0.59	0.82	0.55	B4002	B44	1257
B4002	0.82	0.75	0.68	B4001	B44	118
B4402	0.80	0.70	0.77	B4403	B44	119
B4403	0.79	0.74	0.70	B4402	B44	119
B4501	0.54	0.73	0.50	B4402	B44	114
B5101	0.58	0.79	0.57	B5301	B7	244
B5301	0.75	0.79	0.69	B5301	B7	254
B5401	0.57	0.80	0.36	B0702	B7	255
B5701	0.68	0.72	0.69	B5801	B58	59
B5801	0.45	0.85	0.66	B5701	B58	1340
Ave	0.59	0.79	0.54			

Table 2. cont.

(A) Predictors of HLA-A locus molecules (with random negatives)	Pan	Self	Neighbor	Supertype	Count	
Ave ex supertypes	0.69	0.78	0.61	0.45	Sum	10881

Performance values for the “leave-one-out” experiment with added random negatives. (A) shows the performance for the 24 HLA-A alleles, and (B) the performance for the 18 HLA-B alleles. The first column gives the allele name, the following columns the performance of the Pan, Self, Neighbor, and Supertype methods, respectively, as explained in the text. After the Neighbor and Supertype performance values is shown the neighbor allele name and supertype association, respectively. Note, that the supertype performance is only stated for the non-supertype representing alleles. The final column gives the number of peptide data for each allele.

Intriguingly, our pan-specific predictors were able to predict peptide binders of closely related primate MHC class I molecules. For six of the most common Chimpanzee alleles represented in the Immune Epitope Database [27], more than 55% of the experimentally verified nonamer peptide binders could be predicted while maintaining a specificity of >95% (data not shown). This suggests that the specificity of closely related primate MHC molecules overlaps extensively with that of HLA molecules as earlier proposed by Sidney and co-workers [46]. We are currently investigating whether the pan-specific predictors can be used to identify peptide binders for, and perhaps even identify supertype relationships of, non-human primate MHC molecules (Nielsen et al., manuscript in preparation).

The current versions the NetMHCpanA and -panB are publicly available at www.cbs.dtu.dk/services/NetMHCpan. We will continuously update this service as more data become available. In the future, we expect to expand it to cover HLA-C, HLA class II, as well as non-human MHC molecules.

MATERIALS AND METHODS

Source data

Nonameric peptide-HLA binding data was obtained from two sources: peptide-HLA binding data recently published by Sette and coworkers [24], and data recently deposited at the IEDB by Buss and coworkers. In total, the data set consisted of 37,384 peptide data for each allele.

The average performance per locus of the pan-specific NetMHCpanA and -panB predictors vs. single allele specific ANN trained using only data from available self-HLA molecules. Training and validation is done in a conventional cross-validated manner as described in Materials and methods with added random natural negative peptides.

![Image](https://example.com/image.png)

Data source: [source](https://example.com)

Doi:10.1371/journal.pone.0000796.t002
unique peptide-HLA interactions covering 24 HLA-A alleles and 18 HLA-B alleles (26503 and 10881 for the A and B alleles, respectively). Some 2600 peptide-HLA interactions were present multiple times and the average IC50 value was assigned as the peptide affinity. The majority of the peptides present in both dataset have very similar binding affinities, and 97.5% of those peptides share annotated binding affinities within a 1.5 fold range. Only less than 1% of the peptides differ with more than 10 folds in annotated binding affinity, and the two data sets are thus highly consistent. The number of peptide data for each of the 42 alleles is listed in Table S4.

HLA pseudo sequence
The HLA sequence was encoded in terms of a pseudo-sequence consisting of amino acid residues in contact with the peptide. The contact residues are defined as being within 4.0 Å of the peptide in any of a representative set of HLA-A and -B structures with nonamer peptides. Only polymorphic residues from A, B, and C alleles were included giving rise to a pseudo-sequence consisting of 34 amino acid residues. Notice that due to multiple possible conformations, the central peptide residues could choose to interact with different subsets of residues in the binding groove. All such residues were included in the pseudo-sequence. The interaction map between the peptide and HLA sequence is given in Figure 4.

Neural network training
Artificial neural networks were trained to quantitatively predict peptide-HLA binding. As input data, we used both peptide sequences and HLA primary sequence information, and as output data we used experimentally determined affinity data. The peptide data was obtained as described above. The primary HLA sequence information was obtained from the Anthony Nolan database (http://www.anthonynolan.org.uk/HIG/) and reduced to the 34 amino acid pseudo-sequence as described previously. The data was randomly split into five subsets, and five individual networks were trained each using 4/5 of the data to update the network weights and 1/5 to decide when to terminate the training (i.e. a five-fold cross-validation). Architectures with hidden neurons in the range 22 to 86 were tested, and the network with the highest prediction performance (lowest square error) on the test set was selected. The neural network architecture used was a conventional feed-forward network with one hidden layer and a single neuron output layer. A back-propagation procedure was used to update the weights in the network. For each data point, the input to the neural network is a sequence consisting of 43 peptide-HLA residues (9 from the peptide and 34 from the HLA), and as output the corresponding binding affinity was used. The binding affinity was log-transformed into the range between 0 and 1 as described by[15]. The input sequences were presented to the neural network in three distinct manners: a) conventional sparse encoding (i.e. is encoded by 19 zeros and a one), b) Blosum encoding, where each amino acid was encoded by the BLOSUM50 matrix score vector [47], and c) a mixture of the two, where the peptide was sparse encoded and the HLA pseudo sequence was Bloom encoded.

To estimate the predictive performance of the method, the leave-one-out experiment was conducted as briefly described here. Representing each HLA locus molecule, we trained a neural network ensemble using all available data for the relevant locus,
excluding all data specific for the HLA allele in question. The network training was performed in a fivefold cross-validated manner as described above resulting in an ensemble of 15 neural networks. The predicted affinity was then determined as the average of the 15 predictions in the neural network ensemble. In this benchmark calculation, the data for the allelic molecule in question was not involved in the training and testing of the method, and the performance was thus truly an unbiased test benchmark evaluation.

For the final NetMHCpan method, a conventional five-fold cross-validated training was performed. The pool of unique peptides was randomly split into five groups with all HLA binding data for a given peptide placed in the same group (in this way, no peptide can belong to more than one group). The networks were trained as described above adapting the three different sequences encoding schemes, using 4/5 of the data to update the network weights and 1/5 to determine when to terminate the training.

HLA distance trees

HLA distance trees were derived from correlations between predicted binding affinities. For each antigen, the binding affinity was predicted for a set of 10,000 random natural peptides using the NetMHCpan method. Next, the distance between any two alleles was defined, as \(D = 1 - P_{corr} \), where \(P_{corr} \) is the Pearson correlation between two sets of predicted binding affinities. In this measure, two molecules that share a similar binding specificity will have a distance close to 0 whereas two molecules with unrelated binding specificities would have a distance close to 1. The HLA allele distance matrices were calculated for 390 HLA-A alleles, and for 711 HLA-B alleles, and used the neighbor algorithm from the PHYLIP package, which implements the neighbor-joining algorithm of Saitou and Nei [48] to generate a HLA allele distance tree. To estimate the significance of the HLA distance tree, 100 such distance trees were generated using the bootstrap method [38]. The set of input trees were summarized in the form of a “greedy” consensus tree using proprietary software [49]. A greedy consensus tree uses a majority rule consensus tree to which all compatible bipartitions with frequencies below 50% have been added in order of descending frequency [50].

In order to visualize the HLA distance tree, only a subset of the leaves in the tree was displayed. The subset was selected in a Hobohm I like manner, where the alleles were clustered at a 0.95 distance level, and only a single allele from each cluster selected for display [51].

SUPPORTING INFORMATION

Table S1 Performance for the different alleles in terms of the Pearson’s correlation for the “leave-one-out” experiment. Predictors of HLA-A and HLA-B locus molecules (without random negatives). (A) shows the performance for the 24 HLA-A alleles, and (B) the performance for the 18 HLA-B alleles. The first column gives the allele name, the following columns the performance of the Pan, Self, Neighbor, and Supertype methods, respectively, as explained in the

Figure 4. Definition of the HLA pseudo sequence. The upper part of the figure shows the residues of the HLA sequence estimated to be in contact with the peptide in the binding cleft. The columns give the HLA residue numbering according the IMGT nomenclature. The rows demonstrate the interactions with the nine peptides positions. Squares in grey outline the peptide positions estimated to have contact the corresponding HLA residue. The lower part of the figure shows the amino acid polymorphism at each position in the pseudo sequence, both those that are common for HLA-A and –B, and those that are unique for the HLA-A and HLA-B loci, respectively (as of February 2007). doi:10.1371/journal.pone.0000796.g004
text. After the Neighbor and Supertype performance values is shown the neighbor allele name and supertype association, respectively. Note, that the supertype performance is only stated for the non-supertype representing alleles. Finally, the last column gives the number of data point available for the neighbor allele.

Table S2 Nearest neighbor identification for the 24 HLA-A and 18 HLA-B alleles. HLA-A and HLA-B allele nearest neighbor identification. (A) gives the nearest neighbor identification for the HLA-A alleles, (B) gives the nearest neighbor identification for the HLA-B alleles. The first column gives the allele name, the second column gives the Pan (leave-one-out pan-specific neural network) performance in terms of the Pearson correlation coefficient. The third and fourth columns give the allele name of the nearest neighbor and distance as determined from alignment of the pseudo sequences, the fifth column gives the predictive performance of the Neighbor method in terms of the Pearson correlation coefficient. The last column gives the number of data point available for the neighbor allele.

Allele Name	Supertype/Alias	Nearest Neighbor Identification	Nearest Neighbor Distance	Pan-Specific HLA Binding	Predictive Performance	Pearson Correlation Coefficient
HLA-A*0201	A	B	0.47	0.60	0.47	0.56
HLA-B*0702	A	B	0.49	0.56	0.49	0.58

Table S3 Sensitivity and specificity relations for the NetMHC-pan method. The table displays the sensitivity and specificity values at a classification threshold of 500 nM for the NetMHCpan method as estimated from the cross validated predictive performance for the 37,304 peptide data included in the benchmark data set. The number of binding peptides is 9665.

Peptide Binding Data	Sensitivity	Specificity
HLA-A	0.80	0.90
HLA-B	0.85	0.95

Table S4 The source data. The number of peptide binding data for each of the 24 HLA-A and 18 HLA-B molecules.

Peptide Binding Data	Source Data
HLA-A	24,000
HLA-B	18,000

Acknowledgments

Author Contributions

Conceived and designed the experiments: SB MN. Performed the experiments: MN CI KL MH SJ GR. Analyzed the data: MN KL MH SJ GR. Contributed reagents/materials/analysis tools: AS SB MN BP CI TB. Wrote the paper: SB OL MN BP CI TB.

References

1. Lauemoller SL, Kesmir C, Corbet SL, Fomsgaard A, Holm A, et al. (2000) Identifying cytotoxic T cell epitopes from genomic and proteomic information: “The human MHC project.” Rev Immunogenet 2: 477–491.

2. Yewdell JW, Bemrick JM (1999) Immunoiodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annual Review of Immunology 17: 51–80.

3. Sette A, Fikes J (2003) Epitope-based vaccines: an update on epitope identification, vaccine design and delivery. Curr Opin Immunol 15: 461–470.

4. Sette A, Sidney J (1999) Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism. Immunogenetics 50: 201–212.

5. Lund O, Nielsen M, Kesmir C, Petersen LG, Lundegaard C, et al. (2004) Definition of supertypes for HLA molecules using clustering of specificity matrices. Immunogenetics 55: 797–810.

6. Falk K, Rotzsche O, Rammensee HG (1990) Cellular peptide composition governed by major histocompatibility complex class I molecules. Nature 346: 248–251.

7. Buus S, Sette A, Colon SM, Miles C, Grey HM (1998) The relation between major histocompatibility complexity (MHC) restriction and the capacity of Ia to bind immunogenic peptides. Science 235: 1353–1358.

8. Sette A, Buus S, Colon S, Smith JA, Miles C, et al. (1987) Structural characteristics of an antigen required for its interaction with Ia and recognition by T cells. Nature 328: 395–399.

9. Sette A, Buus S, Appella E, Smith JA, Chesnut R, et al. (1989) Prediction of peptides that bind HLA class I molecules. Immunol Cell Biol 67: 1250–1267.

10. Balpel P, Brunak S (2001) Bioinformatics: The Machine Learning Approach, 2nd edition. Cambridge: MIT Press.

11. Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50: 213–219.

12. Sette A, Fleri W, Peters B, Satiahmurryah M, Bui HH, et al. (2005) A roadmap for the immunomics of category A-C pathogens. Immunity 22: 155–161.

13. Tenzer S, Peters B, Bulik S, Schoor O, Lemmel C, et al. (2005) Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cell Mol Life Sci 62: 1023–1037.

14. Brusic V, Rudy G, Harrison LC (1994) Prediction of MHC binding peptides. Bioinformatics 10: 87–98.

15. Segal MR, Cummings MP, Hubbard AE (2001) Relating amino acid sequence to phenotype: analysis of peptide-binding data. Biometrics 57: 632–642.

16. Lefranc MP (2005) IMGT, the international ImMunoGeneTics information system(R): a standardized approach for immunogenetics and immunoinformatics. Immunome Res 1: 3.

17. Antes I, Siu SW, Lengauer T (2006) DynaPred: A structure and sequence based method for the prediction of MHC class I binding peptide sequences and conformations. Bioinformatics 22: e16–24.

18. Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, et al. (2002) The Proteom Data Bank. Acta Crystallogr D Biol Crystallogr 58: 899–907.

19. Segal MR, Cummings MP, Hubbard AE (2001) Relating amino acid sequence to phenotype: analysis of peptide-binding data. Biometrics 57: 632–642.

20. Brusic V, Petrosky N, Zhang G, Bajic VB (2002) Prediction of promiscuous peptides that bind HLA class I molecules. Immunol Cell Biol 80: 280–285.

21. Tenzer S, Peters B, Bulik S, Schoor O, Lemmel C, et al. (2005) Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cell Mol Life Sci 62: 1023–1037.

22. Stevanovic S (1999) Generation IMmunological reagents/materials/analysis tools: AS SB MN BP CI TB. Wrote the paper: SB OL MN BP CI TB.

23. Sette A, Fleri W, Peters B, Satiahmurryah M, Bui HH, et al. (2005) A roadmap for the immunomics of category A-C pathogens. Immunity 22: 155–161.

24. Segal MR, Cummings MP, Hubbard AE (2001) Relating amino acid sequence to phenotype: analysis of peptide-binding data. Biometrics 57: 632–642.

25. Tenzer S, Peters B, Bulik S, Schoor O, Lemmel C, et al. (2005) Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cell Mol Life Sci 62: 1023–1037.

26. Brusic V, Rudy G, Harrison LC (1994) Prediction of MHC binding peptides. Bioinformatics 10: 87–98.
38. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1992) Numerical Recipes in C: The Art of Scientific Computing. Cambridge: Cambridge University Press.

39. Doytchinova IA, Guan P, Flower DR (2004) Identifying human MHC supertypes using bioinformatic methods. J Immunol 172: 4314–4323.

40. Boekmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, et al. (2003) The SWISS-PROT protein knowledgebase and its supplement TrEMBL, in 2003. Nucleic Acids Res 31: 365–370.

41. Korber BTM, Brander C, Haynes BF, Koup R, Kuiken C, et al. (2001) HIV Molecular Immunology 2001. Los Alamos New Mexico: Los Alamos National Laboratory; Theoretical Biology and Biophysics.

42. Sette A, Peters B (2007) Immune epitope mapping in the post-genomic era: lessons for vaccine development. Curr Opin Immunol 19: 106–110.

43. Rammensee HG, Bachmann J, Stevanovic S (1997) MHC ligands and Peptide Motifs. New York: Chapman&Hall.

44. Doytchinova IA, Flower DR (2003) Toward the Quantitative Prediction of T-Cell Epitopes: CoMFA and CoMSIA Studies of Peptides with Affinity for the Class I MHC Molecule HLA-A*0201. J Med Chem 44: 3572–3581.

45. Srinivasan KN, Zhang GL, Khan AM, August JT, Brusic V (2004) Prediction of class I T-cell epitopes: evidence of presence of immunological hot spots inside antigens. Bioinformatics 20 Suppl 1: i1297–i1302.

46. Sidney J, Asahe S, Peters B, Parson KA, Chung J, et al. (2006) Detailed characterization of the peptide binding specificity of five common Patr class I MHC molecules. Immunogenetics 58: 559–570.

47. Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA 89: 10915–10919.

48. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425.

49. Janowitz M, Lapointe FJ, McMorris FR, Mirkin B, Roberts FS (2003) A Classification of Consensus Methods for Phylogenetics. BioConsensus 61: 163–183.

50. Margush T, McMorris FR (1981) Consensus n-trees. B Math Biol 43: 239–244.

51. Hobohm U, Scharf M, Schneider R, Sander C (1992) Selection of representative protein data sets. Protein Sci 1: 409–417.

52. Kullback S, Leibler RA (1951) On Information and Sufficiency. Annals of Math Stat 22: 76–86.

53. Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 18: 6976–6980.