Cannabinoid co-administration may enable reduced opioid doses for analgesia. This updated systematic review on the opioid-sparing effects of cannabinoids considered preclinical and clinical studies where the outcome was analgesia or opioid dose requirements. We searched Scopus, Cochrane Central Registry of Controlled Trials, Medline, and Embase (2016 onwards). Ninety-two studies met the search criteria including 15 ongoing trials. Meta-analysis of seven preclinical studies found the median effective dose (ED50) of morphine administered with delta-9-tetrahydrocannabinol was 3.5 times lower (95% CI 2.04, 6.03) than the ED50 of morphine alone. Six preclinical studies found no evidence of increased opioid abuse liability with cannabinoid administration. Of five healthy-volunteer experimental pain studies, two found increased pain, two found decreased pain and one found reduced pain bothersomeness with cannabinoid administration; three demonstrated that cannabinoid co-administration may increase opioid abuse liability. Three randomized controlled trials (RCTs) found no evidence of opioid-sparing effects of cannabinoids in acute pain. Meta-analysis of four RCTs in patients with cancer pain found no effect of cannabinoid administration on opioid dose (mean difference −3.8 mg, 95% CI −10.97, 3.37) or percentage change in pain scores (mean difference 1.84, 95% CI 1.03, 1.24); five studies found more adverse events with cannabinoids compared with placebo (risk ratio 1.13, 95% CI 1.01, 1.24). Of five controlled chronic non-cancer pain trials; one low-quality study with no control arm, and one single-dose study reported reduced pain scores with cannabinoids. Three RCTs found no treatment effect of dronabinol. Meta-analyses of observational studies found 39% reported opioid cessation (95% CI 0.15, 0.64, I² 95.5%, eight studies), and 85% reported reduction (95% CI 0.64, 0.99, I² 92.8%, seven studies). In summary, preclinical and observational studies demonstrate the potential opioid-sparing effects of cannabinoids in the context of analgesia, in contrast to higher-quality RCTs that did not provide evidence of opioid-sparing effects.

Neuropsychopharmacology (2022) 47:1315–1330; https://doi.org/10.1038/s41386-022-01322-4

INTRODUCTION

Opioids are widely prescribed for chronic pain, but due to concerns related to harms, recommendations have been made to reduce reliance on higher doses [1]. One strategy to reduce opioid dose requirements has been through use of opioid-sparing medicines. Opioid-sparing medicines can (1) delay or prevent the initiation of treatment with opioid analgesics (2) decrease the duration of opioid treatment (3) reduce the total dosages of opioid used or (4) reduce opioid-related adverse outcomes, without causing an unacceptable increase in pain [2].

There is substantial interest in the opioid-sparing potential of cannabinoids in the context of pain management. Preclinical data have consistently demonstrated opioid-sparing effects [3]. Interest from policy makers has been further driven by ecological and epidemiological research [4]; however, highly publicized findings have recently been questioned [5]. The overlapping neuroanatomical distribution of opioid and cannabinoid receptors in the central and peripheral nervous system in areas involved with anti-nociception support potential opioid-sparing effects. Opioids and cannabinoids have comparable

1 Monash Addiction Research Centre, Eastern Health Clinical School, Monash University, Frankston, VIC, Australia. 2 National Drug and Alcohol Research Centre, UNSW, Sydney, NSW, Australia. 3 Discipline of Addiction Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia. 4 Pain Management Research Institute, University of Sydney and Royal North Shore Hospital, Sydney, NSW, Australia. 5 Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada. 6 The Australian Centre for Cannabinoid Clinical and Research Excellence (ACRE), Newcastle, NSW, Australia. 7 Centre for Drug Repurposing and Medicines Research, School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia. 8 School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, QLD, Australia. 9 Drug and Alcohol Services, South Eastern Sydney Local Health District, Struy Hills, NSW, Australia. 10 School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia. 11 Medicine and Health, UNSW, Kensington, NSW, Australia. 12 Department of Pain Management, Prince of Wales Hospital, Randwick, NSW, Australia. 13 The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, QLD, Australia. 14 Departments of Pharmacology and Toxicology, Psychiatry, Family and Community Medicine, University of Toronto, Toronto, ON, Canada. 15 Email: suzanne.nielsen@monash.edu

Received: 14 December 2021 Revised: 10 February 2022 Accepted: 31 March 2022
Published online: 22 April 2022
neurobiological properties with significant degree of functional interaction [6]. Opioid and cannabinoid receptors are G₁₂₀-protein-coupled receptors with similar intracellular signaling mechanisms, including: inhibition of the adenylate cyclase activity, reduced activity of voltage-dependent calcium channels, activation of inwardly-rectifying potassium channels, and stimulation of the MAP kinase cascade. Cannabinoid type-1 (CB1) and mu receptors can interact directly as functional heterodimers when co-expressed in the same neuron [7] and cannabinoid administration may stimulate the synthesis and release of endogenous opioid peptides centrally and peripherally [8]. Each of these properties would predict a synergistic interaction between opioids and cannabinoids, yet further complexity is afforded by the pharmacological profile of the drug. For example, in the case of protein agonists the level of activation of cannabinoid receptors (both constitutive and stimulated) impacts upon the observed pharmacological effect [9, 10], whilst partial agonists such as the endocannabinoid anandamide could act as an antagonist in the presence of a more efficacious agonist [11].

Our previous systematic review and meta-analysis found robust preclinical evidence supporting the opioid-sparing potential of delta-9-tetrahydrocannabinol (THC), but limited clinical research testing the opioid-sparing effects of cannabinoids [3]. With the proliferation of research in the past five years, this review aims to provide an updated synthesis of preclinical and clinical studies on the opioid-sparing effects of cannabinoids.

MATERIALS AND METHODS

Search
We conducted an updated systematic literature search in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations [12]. The initial searches conducted on October 29, 2015, had no date limits and the findings have been reported earlier, along with the methods (in lieu of a published/registered protocol) [3]. The updated searches were conducted on December 20, 2020 via Scopus, Cochrane Central Registry of Controlled Trials, Medline, and Embase databases and results were combined with the earlier search. A combination of search terms relating to opioids (e.g., analgesics, opioid*, opiate), cannabinoids (e.g., cannabis, sativex, nabiximol, cannabidiol, tetrahydrocannabinol) and outcomes of interest (e.g., pain, opioid sparing, opioid dose, antinociceptive) were used, consistent with the initial search (Appendix 1). Additional targeted searches of reference lists from identified studies and review articles were conducted to find additional studies not identified by the main searches.

Study eligibility
Eligible studies included: (i) human or animal studies; (ii) for human studies, controlled clinical and preclinical studies where cannabinoids were administered within a medical or clinical therapeutic framework and the study outlined details of cannabinoid administration; (iii) documented concurrent administration of opioids and cannabinoids; (iv) an outcome of either pain/analgesia (including acute, chronic, cancer and non-cancer and experimental pain studies) or opioid requirements/opioid-sparing. Studies were excluded based on the following criteria: (i) wrong intervention (e.g., cannabinoid use not defined, no cannabinoid administered, non-concurrent opioid and cannabinoid use, non-therapeutic opioid use); (ii) wrong study design (e.g., case reports, epidemiological studies, reviews, letters without empirical data, commentary or news article); (iii) no outcome measure of interest (i.e., pain/analgesia or opioid dose); (iv) full text unavailable; (v) duplicate manuscript; (vi) abstract where full paper published; (vii) unable to confirm eligibility details, or access required data from authors (Appendix 2).

Titles and abstracts, and full texts were screened independently by two authors (SN, LMP, JM, BM, GC, MG, LP and K-EK) using Covidence software [13]. Where inconsistencies were identified, the authors were able to reach consensus on each occasion.

Data extraction and outcomes
The same data extraction forms used in the initial review were used. All data were extracted by one of the authors (SN, LMP and BW, BM) and checked by a second author (SN, LP, BM, JM, MG or K-EK). These same authors reviewed and resolved any inconsistencies. For abstracts without a full text, and missing data, attempts were made to contact authors for additional information.

Outcome measures
For preclinical studies, the primary outcome was the dose of opioid required to give an equivalent antinociceptive effect in the presence and absence of cannabinoids.

Analysis

Preclinical studies. Data were extracted and, where studies that were sufficiently similar in design and outcome measures, meta-analysis was undertaken. For the residual studies, a narrative review was conducted. To prepare the data for the meta-analysis, the ED₅₀ and either confidence limits or standard error were extracted from the relevant literature. ED₅₀ is calculated on the log₁₀ scale. Therefore, to meet the assumption of normality, the log₁₀ ED₅₀ must be used in the meta-analysis. The log₁₀ of the confidence limits must also be determined to calculate the standard deviation (SD) of the log₁₀ ED₅₀:

\[SD \left(\log_{10} ED_{50} \right) = \log_{10} UL - \log_{10} ED_{50} / 1.96 \]

where UL is the upper confidence limit.

When only standard error was reported, the confidence limits were calculated using the method of Litchfield and Wilcoxon [14] and the above procedure was repeated to calculate the standard deviation. This method also allowed for the inclusion of studies that did not report exact sample sizes for all treatment groups, as sample size was not required for the calculation of standard deviation.

For data for the meta-analysis were analyzed using Review Manager 5.4 (Cochrane Collaboration, Oxford, UK). When calculating the continuous outcome of an equally effective opioid dose (e.g., the log₁₀ED₅₀ for morphine when administered alone versus when administered with a cannabinoid), the inverse variance statistical method and random effects model were used to compensate for study heterogeneity.

No statistical difference was found in outcomes between the studies that used different rodent species or nociceptive assays. Therefore, the mean difference of log₁₀ED₅₀ and the corresponding 95% confidence intervals were calculated. Due to the nature of log calculations, the mean difference—when back-transformed to the original units—represents the response ratio. For easier interpretation, we present the reciprocal of the response rate.

Clinical studies. The outcomes of interest in clinical studies were: (1) reduction in total opioid doses, (2) reductions in pain through the addition of a cannabinoid, (3) adverse events, and (4) evidence of abuse liability. A broad range of study designs were considered. Where studies used sufficiently similar methods and outcome measures, meta-analyses were conducted.

Clinical trials. Meta-analysis for clinical trials was conducted with Revman 5.4, where medians and interquartile ranges were required to be converted into means and standard deviations to allow inclusion in meta-analyses, we used methods established by Luo et al. [15] and Wan et al. [16].

Observational studies
For observational studies, meta-analyses on proportions reporting changes in opioid dose outcomes were conducted using a random effect model in Stata (metaprop, code available on request). A pooled prevalence was calculated with 95% confidence intervals for each of the identified outcomes that were comparable; (i) reduced opioid use, (ii) ceased opioid use. For remaining outcomes, a narrative synthesis was conducted. Clinical studies were scored for quality using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) criteria [17]. Quality ratings were not applied to preclinical studies. As all meta-analyses had less than ten studies funnel plots were not used to assess bias [18].

RESULTS
Ninety eligible publications representing data from 92 studies were identified; 29 in the initial searches and 63 in the updated
searches. Forty preclinical (21 since 2016) and 37 clinical studies (controlled trials n = 20 [12 since 2016] and observational n = 17 [13 since 2016]) were identified for inclusion (see Appendix 3). Fifteen registered clinical trials, where data were not yet available were also identified.

Summary of preclinical studies

Forty preclinical studies were identified in which the analgesic effect of opioid and cannabinoid co-administration was examined [19–58]. Sixteen of these studies examined delta-9-THC, while smaller numbers of studies examined 20 other cannabinoids, including agonists mixed CB1/CB2 agonists (CP55,940, WIN55,212-2, HU-210), CB1 agonists (ACEA, ACPA), CB2 agonists (beta-caryophyllene, JWH-015, JWH-133, LY2828360), antagonists/ inverse agonists at the CB1 (AM-251) and CB2 receptor (JTE-907) and other cannabinoids (AM1241, cannabiol, cannabidiol [CBD], CP 56,667, delta-8-THC, 11-hydroxy-delta-9-THC, dextronantradol, levonantradol and GP1a) (Table 1 and Appendix 4). Opioids examined included morphine, codeine, and other agonists at the mu, delta or kappa opioid receptor including buprenorphine, etorphine, fentanyl, heroin, oxycodone, hydromorphone, methadone, LAAM, meperidine, pentazocine, spiradoline, tramadol, and SNC80. Most studies used rodents; however, three used rhesus monkeys and one used guinea pigs. The most common antinociceptive assays were of thermal nociception although assays of mechanical and chemical nociception were also utilized.

Evidence of opioid-sparing effects or synergism were found for all mixed CB1/CB2 agonists (CP55,940, delta-9-THC, HU-210, WIN55,212-2). Morphee-induced analgesia increased with the CB1 selective agonist ACEA, though the effect was additive as opposed to synergistic [40]. In contrast, the CB1 selective agonist ACPA, and DAMGO (selective mu agonist) appeared to act antagonistically when administered together in a model of mechanical hyperalgesia [41]. The CB1 antagonist/inverse agonist AM-251 reduced the analgesic effect of morphine [40]. Conflicting outcomes were seen for CB2 selective agonists (some evidence of opioid-sparing effects for GP1a, JWH-015, LY2828360, but not for beta-caryophyllene or JWH-133). JTE-907 (a CB2 antagonist) and cannabinoids with more complex pharmacology (CBD and beta-caryophyllene or JWH-133). JTE-907 (a CB2 antagonist) and opioids examined included morphine, codeine, and other agonists at the mu, delta or kappa opioid receptor including buprenorphine, etorphine, fentanyl, heroin, oxycodone, hydromorphone, methadone, LAAM, meperidine, pentazocine, spiradoline, tramadol, and SNC80. Most studies used rodents; however, three used rhesus monkeys and one used guinea pigs. The most common antinociceptive assays were of thermal nociception although assays of mechanical and chemical nociception were also utilized.

Measures of abuse liability. Six studies reported on measures of abuse liability including intracranial self-stimulation (ICSS) [38], conditioned place preference [43, 44], oxycodone self-administration [50], and drug discrimination [32, 33]. None provided evidence that cannabinoids increased abuse liability. CP55,940 had no effect on ICSS with morphine or tramadol [38], JWH105 when co-administered with morphine reduced conditioned place preference, and LY2828360 when administered with morphine blocked condition place preference [43, 44]. THC reduced oxycodone self-administration [50], and attenuated the discriminative stimulus effect of morphine and heroin in nondependent monkeys, but not in dependent monkeys [33]. CP55,940 and WIN55,212 reduced the discriminative stimulus effect of morphine and decreased heroin self-administration, both effects were reversed by the CB1 receptor inverse agonist rimonabant [32].

Meta-analysis of preclinical studies. Seven studies used sufficiently similar approaches to enable a meta-analysis [19–24, 47] (Fig. 1). All studies included in the meta-analysis used rodents and reported comparable antinociceptive doses of morphine alone and morphine co-administered with delta-9-THC.

Results from clinical studies

Thirty-five eligible publications representing 37 clinical studies with 5180 participants provided data relevant to the research question (Table 2).

Clinical trials—experimental pain. Five laboratory-based studies in healthy volunteers (n = 82) examined pain responses with co-administered opioids and cannabinoids using double-blind within-patient study designs (Table 2a). Four studies examined oral dronabinol (2.5–20 mg) [59–62] and one examined smoked cannabis [63]. Inconsistent outcomes were observed; two studies found evidence of increased pain, two found some measures of decreased pain, and one study found effects of cannabinoids on pain “unpleasantness” but not pain ratings. One study found low dose dronabinol (2.5 mg) decreased the analgesic effects of oxycodone as measured with a pressure algometer with no effect of 5 or 10 mg dronabinol on analgesic outcomes [61]. Another study noted potentially hyperalgesic effects of cannabinoids [59]. This was in contrast to the analgesic effect observed on pain threshold and tolerance with a cold pressor test when smoked cannabis was administered with 5 mg oxycodone compared oxycodone or cannabis alone, although effects were not found on measure of outcomes of pain intensity or bothersomeness [63]. Dunn et al. [62] demonstrated analgesic effects from dronabinol 2.5 mg when co-administered with hydromorphone on thermal pain measures, but not with higher doses of dronabinol, or on other measures of pain. Roberts et al. [60] found that the co-administration of dronabinol and morphine resulted in reduced pain “unpleasantness” compared to either drug alone. Three experimental studies included measures of abuse liability, and found that smoked cannabis and dronabinol may increase the abuse liability ratings of oxycodone and hydromorphone using measures such as ratings of feeling high and drug liking [61–63].

Clinical trials—acute pain. Three double-blind randomized controlled trials (n = 545) examined the opioid-sparing effects of CBD in acute pain [64–66]. Nabilone and dronabinol were examined in acute post-operative pain and CBD in acute low back pain (<30 days duration). No benefit on opioid dose requirements or analgesic outcomes was identified (Table 2b).

Clinical trials—cancer pain. Seven controlled trials (1795 participants) investigated the opioid-sparing effect of cannabinoids in patients with different forms of cancer pain. One small, non-randomized study found a non-significant effect of cannabis on pain control [67], and a second pilot found no effect of medical cannabis on pain, but an increase in opioid dose in a group that received delayed cannabis [68] (Table 2c). The remaining studies were all larger single or double-blind randomized trials. Five randomized controlled trials (reported in four publications) examined THC and nabilimols compared to placebo in patients with cancer pain who were taking opioids [69–72]. Two studies found improved analgesia with nabilimols compared to the placebo. Johnson et al. [69] found no effect of nabilimols on breakthrough opioid dose requirements. Portenoy et al. [70] conducted a dose-ranging study, and a significant analgesic effect was only found in the lowest dose group, with poorer tolerability observed for higher doses. The remaining three studies found no

Neuropsychopharmacology (2022) 47:1315 – 1330

S. Nielsen et al.

**Meta-analysis identified an opioid-sparing effect with morphine and delta-9-THC co-administration with one study [47] added to the previous meta-analysis, Z = 4.46, p < 0.001 (mean difference in log_{10}ED_{50} = -0.54 [-0.78, -0.31]). As there was significant heterogeneity in the data (I^2 = 99%), a random effects model was used. When back-transformed to the original units, the response ratio was 3.5 (95% CI 2.04, 6.03) indicating that the median effective dose (ED_{50}) of morphine was 3.5 times lower when administered with delta-9-THC compared to when administered alone.
Table 1. Summary of opioid-sparing outcomes in preclinical studies by cannabinoid type.

Cannabinoid type	Potential synergism/opioid-sparing effects	Opioid-sparing effect not clearly observeda or tested
Mixed CB1/CB2 agonists		
CP55,940 (mixed CB1/CB2 agonist)	Evidence of opioid-sparing effect: Alsalem et al. 2019 (morphine “potential synergy” mechanical nociception) Maguire and France 2018 (morphine, thermal nociception); Maguire 2013 (Rhesus monkey, morphine, thermal nociception)	Evidence of synergy/opioid-sparing not found: Alsalem et al. 2019 (tramadol, mechanical nociception) Welch 1992 (morphine, thermal nociception); Maguire and France 2016 (spiradoline, thermal nociception) Maguire and France 2018 (etorphine, thermal nociception); Minervini 2017 (spiradoline, thermal nociception)
Delta-9-THC (partial agonist CB1/CB2)	Evidence of opioid-sparing effect: Cox 2007 (morphine, mechanical nociception) Cichewicz 2005 (guinea pigs, fentanyl and buprenorphine, mechanical nociception) Maguire and France 2018 (morphine, thermal nociception) Nguyen 2019 (oxycodeone “possibly synergistic, thermal nociception) Nilges 2020 (Rhesus monkeys, heroin, thermal nociception)) Cichewicz 1999 (range of opioid agonists, thermal nociception) Cichewicz 2003 (morphine and codeine, thermal nociception) Li 2008 (Rhesus monkey, morphine, thermal nociception)) Pugh 1996 (morphine, thermal nociception) Smith 1998 (morphine, thermal nociception) Smith 2007(morphine, thermal nociception) Welch 1992(morphine, thermal nociception) Williams 2006 (codeine and morphine, thermal nociception) Williams 2008 (morphine, thermal nociception)	Evidence of synergy/opioid-sparing not found: Maguire and France 2018 (etorphine, thermal nociception) Opioid-sparing/synergism not directly tested: Wakley 2011—synergism not tested, (mechanical nociception) Reche 1996—only one dose of morphine examined (thermal nociception)
HU-210 (mixed CB1/CB2 agonist)	Evidence of potential opioid-sparing effect: Sierra 2019 (SNC80 [delta opioid agonist] mechanical nociception with neuropathic pain model)	Evidence of synergy/opioid-sparing not found: Alsalem et al. 2020 morphine and tramadol, mechanical nociception) Wilson 2008 (morphine, thermal nociception)
WIN55,212–2 (mixed CB1/CB2 agonist)	Evidence of opioid-sparing effect: Alsalem et al. 2020 (tramadol mechanical nociception); Chen et al. 2019 (morphine, thermal nociception and formalin) Yesilurt 2003 (morphine, thermal nociception)	Evidence of synergy/opioid-sparing not found: Alsalem et al. 2020 (not morphine, mechanical nociception)
CB1 selective agonist		
ACEA	Evidence of synergy/opioid-sparing not found: Altun 2015 (morphine, thermal nociception)	
ACPA	Evidence of synergy/opioid-sparing not found: Auh et al. 2016 (DAMGO, mechanical nociception)	
CB1 antagonist/inverse agonist		
AM-251 (also has agonist activity at GPR55)	Evidence of synergy/opioid-sparing not found: Altun 2015 (morphine, thermal nociception)	
CB2 selective agonist		
JWH-015	Evidence of opioid-sparing effect: Grenald et al. 2017 (morphine, mechanical and thermal nociception, formalin pain assay)	Evidence of synergy/opioid-sparing not found:

a indicates evidence of potential opioid-sparing effect, but not clearly observed or tested.
benefit of adding cannabinoids on their primary outcome of analgesia. Although Lichtman et al. [72] did not find a significant effect of cannabinoids on pain in an intention to treat analysis, the per-protocol analysis did find a significant effect (Table 2c). Four of seven studies required maintenance opioid doses to be kept stable [70–72]; five studies measured breakthrough opioid doses requirements as an outcome with no evidence of a difference found [69–72]. No cancer pain studies included measures of abuse liability.

Meta-analyses were possible on the outcomes of change in mean total oral morphine equivalent daily dose (OMEDD) from baseline (n = 4 studies), percent change in pain score from baseline (n = 4 studies) and adverse events (n = 5 studies). Meta-analysis of four studies (n = 1119 participants) found no effect of
Table 2. Clinical studies.

Study reference	Study design	Population	Observation period	Opioid used	Cannabinoid Used	Comparator	Effect of cannabinoid on opioid dose	Outcome on analgesia observed	GRADE rating and other notes
Babaloni 2019	Within-subject crossover, randomized, double-blind placebo-controlled design. Analgesia was assessed with cold pressor, pressure algometer, hot thermode, cold hyperalgesia	Healthy volunteers (n=10), aged 18-50 years, without acute or chronic pain conditions and no recent opioid or cannabinoid use. Six females, mean age of 26.3 years	Nine outpatient experimental sessions (8.5 mg) with a minimum of 48h separating each session; dronabinol administered 1h before oxycodone, pain measures up to 6h after dronabinol administration	Oxycodone 0, 5, 10 mg (oral)	Dronabinol 0, 2.5, 5 mg (oral)	Placebo dronabinol capsules and placebo oxycodone tablets	Cold pressor test: 2.5mg dronabinol + 5mg oxycodone decreased tolerance (17.9 ± 2.4; 5.8 points) compared with the 5 mg oxycodone dose alone (34.3 ± 17.7)	Pressure algometer: Dronabinol + 2.5mg dose decreased the analgesic effects of 10 mg oxycodone (no effect from 5 mg dronabinol). No effect on other pain measures (pressure algometer, cold pressor test and hot thermode).	GRADE rating ‘moderate’, placebo-controlled blinded study, indirect evidence as use of experimental pain. Dronabinol increased abuse liability ratings of oxycodone
Cooper 2018	Within-subject randomized, placebo-controlled, double-blind study. Analgesia was assessed with cold pressor test	Healthy volunteers (n = 21, 21-45 years, with who current cannabis use. Six (33%) female, mean age 29.9 years	6 outpatient experimental sessions. Placebo or oxycodone was administered 45min before cannabis. Observations for 5h after cannabis administration; repeated pain assessments until 3h, 72h washout between sessions	Oxycodone 0, 2.5 or 50 mg (oral)	Cannabis cigarettes (0.0 or 5.6% THC content); Participants smoked 70% of an 800mg cannabis cigarette (CBD content not stated)	Placebo cannabis capsules (30% THC); Placebo oxycodone capsules	Cannabis and low dose of oxycodone (2.5mg) did not elicit analgesia on their own; when administered together, pain (with cold pressor test) was significantly reduced, pointing to the opioid-sparing effects	Cannabis and 2.5mg and 5mg oxycodone increased pain threshold on cold pressor test compared to the cannabis alone (p<0.05). Mean reductions from pain (McGill Pain Questionnaire) Placebo 2.2 ± 0.5; THC alone 1.5 ± 0.5; 2.5 mg OXY 2.0 ± 0.5; 2.5 mg THC – OXY 0.7 ± 0.6; 5 mg OXY 1.7 ± 0.4; 5 mg OXY – THC 1.2 ± 0.4. Pain Intensity and bothersomeness Scales did not differ between cannabis, oxycodone, the combination or placebo	GRADE rating ‘moderate’, placebo-controlled blinded study, indirect evidence as use of experimental pain. Smoked cannabis increased subjective abuse liability measures for oxycodone
Dunn 2021	Double-blind, within-subject randomized, placebo-controlled, human laboratory study using quantitative sensory testing measures of acute thermal, pressure pain; thermal, punctate probe temporal summation; cold pressor; conditioned pain modulation and chronic pain (capsaicin 10% topical cream with thermal rekindling)	Healthy adults (n = 29) with no history of drug use disorders, 52% females, mean age 30.4 years	Five outpatient laboratory sessions (min. 7 days apart). Sessions lasted 8h. Study drugs co-administered, with hourly pain assessments for 4h	Hydromorphone 4 mg (oral)	Dronabinol 2.5, 5.0, 10 mg (oral)	Placebo hydromorphone (no placebo dronabinol condition)	Opioid dose held constant across all sessions	Limited evidence of dronabinol enhancement of hydromorphone on pain measured. Dronabinol 2.5mg had a significant effect of thermal threshold and tolerance. Most pain measures did not show a significant difference between dronabinol + hydromorphone and hydromorphone alone. No dose effect with dronabinol	GRADE rating ‘moderate’, indirect evidence as use of experimental pain. Higher doses of dronabinol 3 mg and 10 mg also showed greater evidence of potential for abuse and adverse effects
Neef 2003	Experimental naive volunteers (n = 12), 6 female, mean age 25 years	Healthy cannabis naive volunteers (n = 12); median age 25 years	Four study sessions with at least seven days washout between sessions. Study medications co-administered, with pain measurements hourly for up to 6h	Morphine 30 mg (oral)	Dronabinol 20 mg (oral)	Matched placebo capsule compared with THC, alone, morphine alone or THC-morphine combination	No significant analgesic effect of dronabinol or morphine-dronabinol combination on heat pressure and cold tests. Additive effect of morphine on transcutaneous electrical stimulation test	Potentiation of analgesia not observed in this experimental pain study. Potential hyperalgesic effect of cannabinoids noted which may reduce analgesic effects of morphine	GRADE rating ‘moderate’, indirect evidence as use of experimental pain
Roberts 2006	Experimental thermal pain. Double-blind, four treatment with within-subject design	Healthy volunteers (n = 13) with no recent opioid or cannabinoid use. Six females aged 18-49 years	Four lab sessions; Dronabinol administered, 90 min later morphine administered; thermal pain measured 15 min after morphine administration	Morphine 0.02 mg/kg intravenous (1.4 mg dose for 70 kg adult) (i.e., sub-analgesic)	Dronabinol 5 mg (oral)	Placebo dronabinol capsule and placebo morphine injection (normal saline)	Not applicable (opioid dose held constant)	Combination of dronabinol and morphine did not have effect on pain intensity. The combination was reported to have a synergistic effect on affective response to pain (unpleasantness) compared with either drug alone (p = 0.012)	GRADE rating ‘moderate’, placebo-controlled blinded study, indirect evidence as use of experimental pain. Noted difficulties with extrapolation to clinical practice
Bebee 2021	Randomized, double-blind, placebo-controlled clinical trial (ACTRN12618000487213)	Adults with acute (<30 days duration) non-traumatic lower back pain (n=100). Median age 47 years, 44% female	48 h Oxycodone (5 mg every 6h, with additional rescue dosing as required)	CBD 400mg (oral)	Color matched placebo prepared (medium chain triglyceride oil)	31/50 patients in the CBD group and 27/50 in the placebo group required oxycodone. Total oxycodone dose in the CBD group was 230mg compared with 215mg in the placebo group	Mean pain scores at 2h were similar for the CBD (6.2 points; 95% CI, 5.5–6.9 points) and placebo groups (5.8 points; 95% CI, 5.1–6.6 points; absolute difference, 0.3 points; 95% CI, –1.3–6.0 points)	GRADE rating ‘high’	
Table 2. continued

Study reference	Study design	Population	Observation period	Opioid used	Cannabinoid Used	Comparator	Effect of cannabinoid on opioid dose	Outcome on analgesia observed	GRADE evidence rating and other notes
Levin 2017	Single-center randomized double-blind controlled trial (NCT02115529)	Patients scheduled for elective surgery under general anesthesia who had a preoperative risk of post-operative nausea or vomiting (n = 340), Mean age 69 years, 100% female	30 min or until discharge from post-anesthesia care unit	Specific opioid not reported, converted into OMEDD	Nabilone 0.5 mg (oral)	Matched placebo capsule	Morphine equivalents (mg) given in operating room: Nabilone 21.3 (SD 15.2) vs placebo 20.0 (SD 13.4), p = 0.40; Morphine equivalents (mg) post-surgery: Nabilone 5.8 (SD 2.9) vs placebo 5.4 (SD 6.9), p = 0.62	No differences in pain score (out of a possible 10) between groups; Maximum pain score (at rest) Nabilone 3.17 (SD 3.13) vs placebo 3.66 (SD 3.25), p = 0.43	Maximum pain score (with movement) Nabilone 3.34 (SD 3.30) vs placebo 4.0 (SD 3.33), p = 0.92
Seeling 2006	Randomized double-blind controlled trial (two groups)	Prostate cancer patients <70 years, (all male) undergoing surgery (n = 105) in 3 groups in 2 centers	From the day prior to surgery to 2 days post-operation	Placebo oral mucosal spray	No effect of nabiximols on total OMEDD = 9.95, 95% CI: 18.81-6.012 (p = 0.053); maintenance OMEDD = 3.63, 95% CI: −10.80, 3.55 (p = 0.321); breakthrough OMEDD = −4.17, 95% CI: −8.76, 0.42 (p = 0.073) (note patients instructed to continue pain medication)	No differences in median percent improvement from baseline average pain NRS score: nabiximols 7.2% vs placebo 9.5% (median difference: −1.84; confidence interval: −6.19%, 1.50%; p = 0.374) Median treatment effect 0.02; 95% CI: −0.42, 0.38, p = 0.917	NATO rating "high"		
Fallon 2017a	Study 1: multisite (patients at 101 centers in 12 different countries) randomized, double-blind, placebo-controlled trial (NCT01361607)	Adults (n = 399) with advanced incurable cancer, unselected by an optimized opioid therapy, Mean age 61.5 years, 49% female	49 days (2 weeks after medication ceased)	Placebo oral mucosal spray	No effect of nabiximols on total OMEDD = 7.1, 95% CI: 13.9, 9.7 (p = 0.405); maintenance OMEDD = 8.9, 95% CI: 9.2, 6.7 (p = 0.104); breakthrough OMEDD = 1.8, 95% CI: 10.3, 14.0 (p = 0.769) (note patients instructed to continue pain medication)	Mean average pain scores increased from 3.2 to 3.7 in the nabiximols group and 3.1 to 3.6 in the placebo group, i.e., a worsening of equal severity in both the nabiximols and placebo groups (estimated treatment effect −0.02; 95% CI: −0.42, 0.38, p = 0.917)	NATO rating "high"		
Fallon 2017b	Study 2: 2-part enriched enrollment with randomized withdrawal design ("responders" randomized, Single-blind titration for 10 days followed by double-blind randomization to Sativex or placebo (NCT01424566)	Adults (n = 406) randomized with advanced incurable cancer, unselected by an optimized opioid therapy, Mean age 61.5 years, 43% female	49 days (2 weeks after medication ceased)	Placebo oral mucosal spray	No effect of nabiximols on total OMEDD = 7.1, 95% CI: 13.9, 9.7 (p = 0.405); maintenance OMEDD = 8.9, 95% CI: 9.2, 6.7 (p = 0.104); breakthrough OMEDD = 1.8, 95% CI: 10.3, 14.0 (p = 0.769) (note patients instructed to continue pain medication)	Mean average pain scores increased from 3.2 to 3.7 in the nabiximols group and 3.1 to 3.6 in the placebo group, i.e., a worsening of equal severity in both the nabiximols and placebo groups (estimated treatment effect −0.02; 95% CI: −0.42, 0.38, p = 0.917)	NATO rating "moderate"		
Johnson 2010	Multicenter, randomized, double-blind, placebo-controlled parallel-group trial (NCT00674609)	Adults with cancer and refractory opioid dosing (n = 327), with inadequate analgesia measured using the Brief Pain Inventory, Mean age 60 years, 56% female	2 weeks	Placebo oral mucosal spray (Baseline OMEDD for placebo group 120 mg)	Patients allowed to use breakthrough medication as needed, no change in median amount of breakthrough opioid medication in any group. Mean change in opioid dose from baseline Placebo −41.4 (SD 201.27), THC 36.8 (SD 152.00), THC:CBD = 3.5 (SD 108.44); Median changes in all groups 0 mg Change in pain score (out of 10) in favor of THC:CBD compared with placebo (−1.37; p = 0.014); THC:CBD compared with THC alone (−1.36; p = 0.009); THC:CBD compared with THC alone (−1.36; p = 0.009); THC:CBD compared with THC alone (−1.36; p = 0.009)	Change in pain score (out of 10) in favor of THC:CBD compared with placebo (−1.37; p = 0.014); THC:CBD compared with THC alone (−1.36; p = 0.009); THC:CBD compared with THC alone (−1.36; p = 0.009)	NATO rating "high"		
Lichtman 2018	Randomized, multisite double-blind, placebo-controlled study (12 countries) (NCT01262651)	Adults (n = 397) with advanced cancer-related chronic pain not controlled by optimal opioid therapy, Mean age 60 years, 46% female	50 days if not entering extension study	Placebo oral mucosal spray	Nabilones did not impact maintenance OMEDD (Estimated treatment difference [ETD] 1.46, 95% CI: −4.67, 7.60; p = 0.64); breakthrough OMEDD (THC = 1.84, 95% CI: −6.33, 2.66; p = 0.40) or total OMEDD (ETD = −0.34, 95% CI: −8.26, 7.62; p = 0.93). Protocol stated that medications including opioids, should have been continued at stable doses if possible	Average pain score from baseline to end of treatment (primary endpoint) no significant 10.7% median improvement with nabiximols compared to placebos (p = 0.08); Nabiximols did not improve average pain NRS (p = 0.25) or worst pain NRS score (p = 0.68). Prospective per-protocol analysis favored nabiximols over placebo (p = 0.04)	NATO rating "moderate", unclear blinding and randomization. Nabiximol was also associated with greater improvements than placebo in scores on the Subject Global Impression of Change, Patient Global Impact of Change, and Patient Satisfaction Questionnaire		
Lissoni 2014	Two groups (not randomized)	Adults (n = 26) with untreatable cancer, median dose of THC was given as Melatonin 20–100 mg	Not stated	Placebo oral mucosal spray	S1/2 (42%) achieved control of pain without pain medication	The number that achieved pain control	NATO rating "low", no-randomization		
Study reference	Study design	Population	Observation period	Opioid used	Cannabinoid Used	Comparator	Effect of cannabinoid on opioid dose	Outcome on analgesia observed	GRADE evidence rating and other notes
-------------------------	---	--	--------------------	--	--	--	---	---	--
S. Nielsen et al. 2022	Pilot randomized controlled trial comparing early cannabis use to delayed start cannabis (DC)	Adults (n = 30) with stage IV cancer requiring opioids. Patients in the EC group were similar to DC group with respect to mean age (57 SD = 9 years vs 55 (SD = 13) years) and percentage female (47% vs 53%), respectively	3 months	Opioid type not specified. OMEED measured using daily diary missed daily intake was permitted during the washout period.	Maintenance dose of 30–40 mg of THC and 30–40 mg of CBD per day, titrating up over 2–4 weeks	Early versus late start cannabis	EC group had stable opioid use; 3/9 in EC group and 4/9 in DC group increased OMEED by ≥20%. Three patients in the EC group increased their daily OMEED by 20%	GRADE rating: “low” small sample with high attrition. Also examined dosing patterns: THC per patient each month was nearly twice that of CBD (average 343 mg THC vs 166 mg CBD)	
Abrams 2020	Randomized double-blind, crossover design (NCT01771731)	Adults with sickle cell disease with chronic pain (n = 23), 21 of whom were taking opioids. Mean age, 37.6 years; 50% female	5 patient days with 30-day washout followed by another 5 patient days	Hydromorphone, oxycodone, hydrocodone, morphine, fentanyl, methadone, and oxymorphone	VapORIZED cannabis dose of 0.9 g of 4.4% THC and 4.9% CBD which were vaporized and inhaled 3 times per day	VapORIZED placebo cannabis	The mean (SD) difference in log OMEED dose between the cannabis and placebo periods in this study was not significant (2.05 (0.21) vs 2.09 (0.22), p = 0.20)	Pain score: reduction from 34.8 (95% CI: 29.4, 40.1) on baseline to 24.1 (95% CI: 18.8, 29.4) on day 5 with morphine and from 43.8 (95% CI: 38.6, 49.1) on baseline to 33.6 (95% CI: 28.5, 38.6) on day 5 with oxycodone. Significant reduction overall	GRADE rating: “low”, No control arm, placebo effects cannot be excluded. No pharmacokinetic interaction observed. Cannabis inhalation produced a subjective “high”.
De Vries 2016	Randomized, single-dose, double-blind, placebo-controlled, two-way crossover study (NCT01918369)	Adults aged 18 and above with chronic abdominal pain from chronic pancreatitis (n = 24, 12 of whom were taking opioids). Mean age of sample 52 years, 9 of 24 patients were female	6h	Pethidine: tramadol and codeine (patients’ usual medicinal)	Dronabinol 8 mg	Diazepam 10 mg	The pharmacokinetic parameters of THC were similar between opioid and non-opioid users. Opioid dose requirements were not an outcome of the single-dose study	Primary analysis showed no treatment effect of THC. When only patients on opioids were considered, the mean VAS pain score at 2h was similar for patients in THC arm (2.917, SD 2.205) and the placebo (active plus placebo) arm (2.53, SD 1.702)	GRADE rating: “low”, Small sample size and unclear blinding procedures and crossover design
De Vries 2017	Randomized, single-dose, double-blind, placebo-controlled, two-way crossover study (NCT01562483 and NCT01511511)	Two clinical trials where the samples were combined: (1) Adults with painful chronic pancreatitis (CP) (n = 23) and (2) adults with chronic postsurgical abdominal pain (PPAP), n = 27, mean age 52.9 years, 50% female	61 days	Codeine, tramadol, oxycodone, fentanyl and morphine (patients’ usual medicines)	Dronabinol tablet increased to 8 mg three times a day over 10 days, with the option to reduce to 5 mg three times a day, if tolerated. Those not tolerating 5 mg three times a day were withdrawn	Matched dronabinol placebo tablet	Not reported: Patients were asked to continue taking their medications (including analgesics) according to prescription	Primary analysis (all patients) VAS scores did not differ between THC and placebo. For patients on opioids, THC (29.4, SD 2.10) compared with placebo (20.5, SD 2.65). For patients on non-opioids, THC (31.7, SD 3.27) compared with placebo (21.5, SD 3.46).	GRADE rating: “moderate”, Small sample size and high attrition in the active arm for the CP group. Additional data provided by authors
Nasang 2008	Phase 1 randomized, single-dose, double-blind, OMEED mean 60.0 mg (SD: 32.2), Dronabinol 10 and 20 mg	Adults taking opioids for chronic pain (n = 21)	10 days	Codeine, tramadol, oxycodone, fentanyl and morphine (patients’ usual medicines)	Dronabinol tablet increased to 8 mg three times a day over 10 days, with the option to reduce to 5 mg three times a day, if tolerated. Those not tolerating 5 mg three times a day were withdrawn	Matched dronabinol placebo tablet	Not reported: Patients were asked to continue taking their medications (including analgesics) according to prescription	Primary analysis (all patients) VAS scores did not differ between THC and placebo. For patients on opioids, THC (29.4, SD 2.10) compared with placebo (20.5, SD 2.65). For patients on non-opioids, THC (31.7, SD 3.27) compared with placebo (21.5, SD 3.46).	GRADE rating: “moderate”, Small sample size and high attrition in the active arm for the CP group. Additional data provided by authors

Table 2. continued
Table 2. continued

Study reference	Study design	Population	Observation period	Opioid used	Cannabinoid used	Comparator	Effect of cannabinoid on opioid dose	Outcome on analgesia observed	GRADE evidence rating and other notes
Placebo-controlled, crossover trial. Primary outcome measure Total Pain Relief score (Phase 2 extension study in Table 2b) (NCT00153192)	4 (n = 30). Pain diagnosis: non-malignant (N = 7), nociceptive (N = 7), mixed neuropathic and nociceptive (N = 11), and unclassified (N = 5). Mean age 43.5 years, 53% female	12 months following treatment initiation	Not specified, median of weak (n = 118) and strong (n = 56) opioids at baseline	range 7.5–228	Randomized and placebo-controlled, double-blind, parallel-group design	42% reduction (27 mg MOEDD (95% CI: 9.89, 15.65) reduction (p < 0.001). Opioid cessation at 12-month follow-up: 24% using weak and 20% using strong opioids.	Total pain relief: 31.1 in placebo: 39.7 with dronabinol 10 mg and dronabinol 20 mg.	No significant difference in analgesia (OMEDD or total OMG dose/status of stay). Significantly lower than total OME consumption during stay: Dronabinol group (252.5 mg ± 131.5 mg) vs control group (313.3 mg ± 185.4 mg).	GRADE rating “low” Evidence of effectiveness. No control group.
Aviram 2020 Prospective observational cohort study	Adults with any form of cancer-related pain (n = 29)	Not specified, calculated at OMEDD	10 mg capsules of 1:1 THC and CBD taken orally every 8–12 h.	15.7 mg CBD, 0.5 mg THC, 0.3 mg cannabidiol (CBD), 0.9 mg cannabidiolic acid (CBD), 0.8 mg cannabinol (CBC), and >1% botanical terpene blend	OMEDD not captured. Fifty of the 94 (53.2%) participants using the CBD hemp extract were able to reduce opioid medications at week 8. Of the fifty who reduced, two ceased completely	Baseline pain (PEG) scale at (6.4 ± 0.4) to 5.31 (the 12% reduction in pain, considered clinically significant).	Not reported by opioid status	GRADE rating “low” observational data.	
Bellinier 2018 Observational pre-post study	Adults (n = 113) with moderate-severe chronic pain for at least 3 years and stable opioids for at least 1 year (mean = 113.7 years, 68% female)	Not stated, requirement to be taking at least 50 mg OMEDD for 12 months prior to enrollment	15.7 mg CBD, 0.5 mg THC, 0.3 mg cannabidiol (CBD), 0.9 mg cannabidiolic acid (CBD), 0.8 mg cannabinol (CBC), and >1% botanical terpene blend	4 and 8 weeks	OMEDD not captured. Fifty of the 94 (53.2%) participants using the CBD hemp extract were able to reduce opioid medications at week 8. Of the fifty who reduced, two ceased completely	Pain outcomes not available for the subsample on opioids	Not reported by opioid status	GRADE rating “low” observational data with no control.	
Habib 2018 Retrospective cohort study	Adults aged 18 and above with fibromyalgia (n = 26), female patients (73%), mean 37.8 ± 7.6 years	Median cannabis duration 3 months	Codeine, tramadol, oxycodone, fentanyl or buprenorphine.	NA	NA	NA	Not reported by opioid status	GRADE rating “very low”, small, retrospective cohort with no control group, short follow-up.	
Hamonotsson 2016 Prospective, observational cohort study	Adults (n = 73/274) 18 years + above 18 with chronic pain, 73% prescribed opioids. Mean age 51.2 years, 62% female	6 months	Morphine, oxycodone fentanyl, hydromorphone, buprenorphine, methadone and tramadol.	Smoked (THC 6–14%, CBD 0.2–3%) and oral (THC 11–19%, CBD 0.5–5%). The mean (SD) monthly prescribed amount of morphine was 432 (179.9) mg (79 formulations)	NA	32/73 (44%) ceased opioids. (p < 0.001). Median OMEDD among participants receiving opioids at follow-up (n = 41) decreased from 60 mg (95% CI: 45–90 to 45 mg (95% CI: 30–90, p = 0.19, Mann-Whitney)	Pain outcomes not available for the subsample on opioids.	Not reported by opioid status	GRADE rating “low”, non-randomized single-arm open-label study.
Hickernell 2018 Retrospective cohort study	Adults (n = 243) who had total knee or hip arthroplasty. Mean age 62.3 years, 64% female	Mean length of stay 2–3 days	Oral oxycodone 10 mg up to three doses mg plus immediate release oxycodone 5–10 mg mg as required	Dronabinol 5 mg twice a day during hospital stay (n = 81)	Patients who did not receive dronabinol (n = 162) over the same time period	No significant difference in OMEDD or total OME dose/status of stay. Significantly lower than total OME consumption during stay: Dronabinol group (252.5 mg ± 131.5 mg) vs control group (313.3 mg ± 185.4 mg).	No significant difference in pain scores between the groups on any day post-surgery	GRADE rating “low” non-randomized retrospective study. Mean length of stay lower for the dronabinol group compared with control (2.3 ± 0.9 vs 3.0 ± 1.2 days, p = 0.02)	
Hoggart 2015 Open-label extension study from 2 clinical trials	Adults (n = 380) with peripheral neuropathic pain	38 weeks	Strong and weak opioids	THC/CBD oral mucosal spray G7	NA	NA	No change in the proportion of the whole	Not reported by opioid status	GRADE rating “moderate”, non-randomized extension trial.
Study reference	Study design	Population	Observation period	Opioid used	Cannabinoid Used	Comparator	Effect of cannabinoid on opioid dose	Outcome on analgesia observed	GRADE evidence rating and other notes
----------------	--------------	------------	--------------------	-------------	------------------	------------	--------------------------------------	-----------------------------	----------------------------------
across 66 study sites (38 centers in six countries)	neuropathic pain, mean age 57.8 years, 47% female			mg of THC and 2.5 mg of CBD per spray			sample taking strong opioids (56380 at baseline and 57380 at follow-up) or other opioids (1126380 at baseline to 123380 at follow-up) following cannabinoid use	Data on other outcomes not provided by opioid use status	randomized sample. Rigorous data collection
Lynch 2002	Observational case series	Adults with pain codes (n = 3) (peripheral neuropathy, multiple sclerosis, lower back pain), Aged 35–47 years, 33% female	1–9 month observation period	Morphine (varied doses)	Smoked cannabis plant, unknown content	NA	Mean baseline morphine dose 195 mg (SD 147 mg) compared with mean 33 mg (SD 31 mg) after commencing smoked cannabis. Opioid dose reduction or cessation in each case	Improved pain control described with patients either reducing or ceasing morphine dose	GRADE rating “very low”, unblinded observational study
Maida 2008	Prospective observational study	Adults with advanced cancer (n = 112), 47 of whom were treated with nabilone (mean age 67 years, 38% female)	30 days	Nabilone group baseline OMEDD 603 mg (SD 646); comparison group OMEDDD 67.5 mg (SD 101.0)	Nabilone, mean of 1.79 mg/daily	People with advanced cancer who were not treated with nabilone	Log OMEDD in nabilone group 3.8 mg compared with 4.3 mg in the untreated group (p = 0.016), remained significant after adjusting for baseline symptom level and propensity score	Pain score in nabilone group 3.7 compared with 5.0 in the untreated group (p = 0.003), remained significant after adjusting for baseline symptom level and propensity score with pain score of 3.0 in the nabilone group and 5.5 in the comparison group (p < 0.001)	GRADE rating “low”. Nabilone prescribing based on symptom-related distress on the initial consultation, leading to selection bias, but managed with propensity scoring
Maida 2017	Observational case series	Adults with pyoderma gangrenosum (n = 2) on opioids. Female (50 years) and male (76 years)	6–25 days	Opioid analgesic type not specified	Topical cannabinoid of THC/CBD 3.6 mg/mL or THC/CBD 7.9 mg/mL	NA	Mean Baseline OMEDD 26.7 mg (SD 9.9). Mean follow-up 6.4 mg (SD 8.7)	Mean pain at baseline 67.6 mg (SD 64.6); pain was 60.3 mg (SD 64.6) after initiating topical cannabinoid (i.e., clinically meaningful reduction)	GRADE rating “very low”, very small case series
Maida 2020	Observational case series	Two adults (aged 86 and 69, both female), with painful and non-healing leg ulcers, of greater than 6 months duration	57–68 days	Case 1: Codeine (with acetaminophen), Case 2: 188 mg oral morphine equivalents (opioid type not stated)	Topical cannabinoid product THC < 1 mg/mL; CBD 3.75 mg/mL	NA	Both patients ceased opioids	Not reported, opioid requirements used as proxy for pain	GRADE rating “very low”, very small case series
Nasang 2008	Open-label extension following randomized, single-dose, double-blind, crossover trial (Table 2d)	Patients on opioids for chronic pain (98%); 4 (n = 28). (see Table 2d for participant characteristics)	Four weeks	OMEDD mean 68 mg (SD 57.2, range 7.5–228) (ml of oxycodone, morphine, methadone, hydrocodone, hydromorphone)	Flexible dose schedule of dronabinol 5 mg daily – 20 mg three times a day	NA	Opioid dose not reported compared with mean NRS of 6.9 for chronic pain (98%) on opioids of 90–240 mg (age and gender not reported)	Mean baseline NRS of 6.9 reduced by 5.2 after 4 weeks of dronabinol (24% reduction in pain). Statistically significant reduction, but does not meet the 30% reduction in pain to be clinically significant	GRADE rating “low”, improvements (p < 0.005) in sleep, energy, pain relief, and social functioning. Lack of placebo control means effects may be non-specific/ placebo
Rod 2019	Open-label prospective opioid taper study	Patients with chronic pain (n = 600), on opioid doses of 90–240 mg (age and gender not reported)	Six months	Mean OMEDD 120 mg (Range 90–240 mg)	CBD and THC (4–6%). Doses related directly to the opioid taper: 0.5 g/day for each 10% reduction in opioid dose, as needed by sputumical, oral or inhalation by vaporization	NA	156 patients (29% of patients) decreased their opioid (n = 39) patients (18%) taking more than 60 mg oral morphine equivalents per day; a further 329 patients (55%) reduced opioid use by an average of 30%. Cannabis use among these patients ranged from 1–3 mg/day	Pain not quantified. One patient increased opioid intake; all other patients expressed satisfaction with their pain control, sleep and quality of life	GRADE rating “low”, evidence-based online psychological support provided (e.g., cognitive behavioral therapy and mindfulness)
Safakish 2020	Prospective observational cohort study	82/751 chronic pain patients, who were using opioids. Mean age of 45.6 years, 57% female	12 months	Mixed opioids, oral conversion morphine equivalent doses	7% to 29% THC and/or CBD.	NA	Baseline (n = 82) OMEDD 26.2 (SD 48.1), month 3 (n = 26) 3.3 (SD 8.6), month 6 (n = 9) 3.0 (SD 6.3) month 12 (n = 4) 1.4 (SD 0.1), p < 0.001	Not reported by opioid status	GRADE rating “very low”, open-label single-arm study with high attrition
Schneider-Smith 2020	Retrospective matched cohort study	Adults with traumatic injury: 33 cases (mean age 39.9 years, 76% male) and 33 matched controls (mean age 30.0 years, 50% female)	48–96h after admission	Not stated, opioid use reported in OMEDD	Dronabinol (usually 5–10 mg twice a day)	NA	OMEDD reduction in group dronabinol, (59 mg (SD20), p < 0.001), OMEED for controls unchanged from baseline (1.8 (mg), p = 0.63)	Adjunctive dronabinol reduce pain scores. Average change in pain scores (NRS) were similar between cases and controls (–0.6 vs. 0.6, p = 0.78)	GRADE rating “low”, non-randomized retrospective study
Takakuwa 2020	Retrospective cohort study	Adults with low back pain (n = 61) who Data extracted from 1997–2019 from a		Variable products reported in grams	NA	31/61 ceased, 9 reduced and 1 increased their	Not reported	GRADE rating “very low”, small	
Table 2. continued

Study reference	Study design	Population	Observation period	Outcome on analgesia	Comparator	Cannabis used	Opioid used	Study design	Opioid and cannabinoid used	Opoid dose	GRADE evidence rating	
Nielsen et al. 2019	Prospective observational multi-centre cohort study	Adults (n=58) with acute pain, mostly pain from fibromyalgia already on standard medical cannabinoids	6 months	Reduction in OME	Nabilone group [89]; Comparison with patients that had not received it, using propensity scoring to adjust for the greater severity of the nabilone prescribed	Nabilone	Oxycodone 5 mg	Prosp.observational multi-centre cohort study	Opioid and cannabinoid use	Opioid and cannabinoid use	None	Not reported

Clinical trials—chronic non-cancer pain. Five clinical trials (139 participants, Table 2d) examined the effects of dronabinol [73–75] and smoked cannabis [76, 77] in patients with chronic non-cancer pain. Most studies had short observation periods (5 h to 5 days) [74–77], and used crossover designs [73–76]. Opioid dose was an outcome in one study, with no difference between smoked cannabis and placebo [76]. All five studies reported on analgesic outcomes with conflicting findings. A single-arm open-label study (with no comparison group) recruited people with mixed types of chronic non-cancer pain (n = 24) who were prescribed opioids, and found significant overall reductions from baseline pain ratings following co-administration of cannabinoids [77]. In contrast, a double-blind crossover study in sickle cell patients found no significant differences analgesia effects between placebo and vaporized cannabis [76]. Two studies recruited patients with chronic pancreatitis and found no effect of dronabinol on pain measures compared with placebo [73, 74]. A sub-analysis in patients with chronic postsurgical abdominal pain found lower pain among those who received dronabinol compared with placebo [73]. A single-dose study in patients with mixed-chronic pain conditions, found dronabinol 10 and 20 mg was associated increased analgesia compared with placebo [75]. These studies did not include measures of abuse liability.

Clinical studies—observational. Seventeen observational studies (n = 2674) examined the opioid-sparing effects of cannabinoids; three small retrospective case series of two to three patients each [78–80], two retrospective cohort studies [81, 82], two retrospective matched cohort studies [83, 84], and ten prospective observational cohort studies [85–93], including two open-label extension studies [75, 93] (see Table 2e). Two retrospective matched cohort studies examined acute analgesia with traumatic injury [83] and joint arthroplasty [84]. Both found no difference in pain scores, but reduced opioid consumption on at least one measure. For pain management following joint arthroplasty, there was no change in daily opioid dose with dronabinol administration, but a reduced total opioid consumption due to significantly shorter hospital stays in the dronabinol group [84]. One study compared those prescribed nabilone with those that had not received it, using propensity scoring to adjust for the greater severity of the nabilone prescribed group [89]. The remaining observational studies did not have control conditions and examined opioid use in patients with a range of different types of chronic non-cancer pain. Seven studies reported on the outcome of OME after commencing medical cannabinoids, with reductions from 9 to 140 mg OME reported (Table 2b). Four studies quantified the reduction in pain scores, which ranged from 12% to 70%, with two studies exceeding the minimum threshold of a 30% reduction in pain to be clinically meaningful. Meta-analysis was possible for studies that reported the proportion of patients who reported opioid reduction or cessation; eight studies reported the proportion of patients who ceased opioids (range 2–100%), with a pooled prevalence of 0.39 (95% CI 0.15, 0.64, I² = 95.47%) (Appendix 5a). Seven studies reported on the proportion of patients reducing opioid use (range 44–100%) with a pooled prevalence of 0.85 (95% CI 0.64, 0.99, I² = 92.82%) (Appendix 5b). Statistically significant heterogeneity was identified in both meta-analyses.
Fig. 1 Forrest plot for meta-analysis examining the opioid-sparing effect of delta-9-THC when co-administered with morphine. Note mean difference and standard deviation values are of log_{10}ED_{50}.

(a) Nabilomix vs Placebo

Study or Subgroup	Nabilmix Mean	Placebo Mean	Mean Difference IV, Random, 95% CI
Fallon 2017a	12.46	21.96	-2.48 [-7.19, 2.23]
Fallon 2017b	34.5	25.26	-9.74 [-7.53, 6.05]
Johnson 2010	12.7	22.4	5.36 [0.50, 10.22]
Lichtman 2018	13.7	22.4	4.36 [0.05, 8.67]
Total (95% CI)	553	556	1.84 [-2.05, 5.72]
Heterogeneity: Tau^2 = 8.96; Chi^2 = 7.10, df = 3 (P = 0.07); I^2 = 58%			
Test for overall effect: Z = 0.93 (P = 0.35)			

(b) Nabilomix vs Placebo

Study or Subgroup	Nabilmix Mean	Placebo Mean	Mean Difference IV, Random, 95% CI
Fallon 2017a	-6.5	53.9	-8.80 [-18.35, 0.75]
Fallon 2017b	9	46.6	-50 [-23.60, 10.60]
Johnson 2010	-3.5	108.44	37.90 (20.33, 96.13)
Lichtman 2018	0.3	34.7	-0.30 [-8.10, 7.50]
Total (95% CI)	560	559	-3.86 [-10.97, 3.37]
Heterogeneity: Tau^2 = 12.58; Chi^2 = 3.87, df = 3 (P = 0.28); I^2 = 23%			
Test for overall effect: Z = 1.04 (P = 0.30)			

(c) Cannabinoids vs Placebo

Study or Subgroup	Cannabinoids Events	Placebo Events	Risk Ratio M-H, Random, 95% CI
Fallon 2017a	59	199	7.6% (0.53, 1.18)
Fallon 2017b	33	103	2.06 (1.21, 3.51)
Johnson 2010	26	118	1.86 (0.86, 4.03)
Lichtman 2018	47	199	1.09 (0.76, 1.56)
Portenoy 2012	201	28	1.20 (0.80, 1.78)
Total (95% CI)	887	649	1.23 (0.89, 1.70)
Total events	222	133	
Heterogeneity: Tau^2 = 0.08; Chi^2 = 9.63, df = 4 (P = 0.05); I^2 = 58%			
Test for overall effect: Z = 1.20 (P = 0.20)			

(d) Cannabinoids vs Placebo

Study or Subgroup	Cannabinoids Events	Placebo Events	Risk Ratio M-H, Random, 95% CI
Fallon 2017a	59	199	7.6% (0.93, 1.82)
Fallon 2017b	21	103	2.24 (0.69, 2.20)
Coyle 2010	-3.5	108.44	1.09 (0.92, 1.30)
Lichtman 2018	69	199	1.30 (0.96, 1.75)
Portenoy 2012	223	28	1.10 (0.97, 1.25)
Total (95% CI)	887	649	1.13 (1.03, 1.24)
Total events	468	228	
Heterogeneity: Tau^2 = 0.09; Chi^2 = 7.10, df = 3 (P = 0.005); I^2 = 12%			
Test for overall effect: Z = 1.0 (P = 0.3)			

Footnotes
1. Cannabinoid groups combined in Johnson 2010
2. Combined the three cannabinoid conditions for Portenoy 2012

Fig. 2 Opioid-sparing outcomes from clinical trials in people with cancer pain. Meta-analysis comparing cannabinoids with placebo on outcomes of a percent improvement in pain score, b change in mean total Oral Morphine Equivalent Daily Dose (OMEDD), c serious adverse events from baseline, and d adverse events excluding serious adverse events, in clinical trials of people with cancer pain.
Quality ratings of clinical studies

The clinical studies were rated using the GRADE criteria. Of the clinical trials, five laboratory studies provided moderate evidence, three clinical trials in acute pain provided high quality evidence, six clinical studies provided low-high quality evidence in cancer pain, and five studies in chronic non-cancer pain were assessed as low-moderate quality. The seventeen observational studies were assessed to be low to very-low-quality evidence (Table 2).

Ongoing clinical trials. We identified 15 registered clinical trials which, based on published protocols and clinical trial registry entries, may provide important data for future updated reviews (Appendix 6).

DISCUSSION

The current update represents the largest synthesis of studies examining the opioid-sparing effects of cannabinoids, with double the number of preclinical studies, four times as many clinical studies and more than six times the number of participants (>5000) compared to our earlier review [3], reflecting the rapid growth of clinical research in this area.

Most preclinical studies found synergistic effects with opioids and cannabinoids co-administration, predominantly with mixed CB1/CB2 agonists such as delta-9-THC, though effects varied with different cannabinoids, opioids and pain assays. Meta-analyses (with one addition preclinical study since 2015) demonstrated that morphine dose required to produce an equivalent analgesic effect was 3.5 times lower when co-administered with delta-9-THC, consistent with the previous review [3]. This effect would be clinically meaningful if replicated in well-controlled clinical studies. However, preclinical studies often have larger effect sizes, attributed to the reduced heterogeneity compared to clinical populations [94]. This body of preclinical research may help to identify specific cannabinoids and mechanisms that underlie an opioid-sparing effect, with the most consistent effects observed with mixed CB1/CB2 agonists, and evidence of potential antagonistic effects between CB1 agonist and mu receptor agonists in models of mechanical hyperalgesia.

A rapidly growing number of clinical studies have measured opioid-sparing endpoints, though findings were inconsistent. The highest quality studies were conducted in patients with cancer pain, where meta-analysis of four studies did not find significant effects on opioid dose or analgesia. Conflicting findings were found in studies of experimental pain, and in patients with chronic non-cancer pain. Further studies are needed to clarify the results found here given the small number of studies.

A limited number of controlled studies demonstrated benefits of combining cannabinoids with opioids for analgesia. Experimental pain studies found cannabinoids improved [62, 63] and worsened [61] analgesia. These effects were not dose dependent, with significant effects seen with lower but not higher doses of delta-9-THC. Opioid-sparing effects were not seen in well-conducted RCTs with acute pain, or in meta-analyses of RCTs in cancer pain, and studies that did find positive effects have important limitations such as no control group [77], small sample sizes [67, 75], and the mixed quality of the study design. Furthermore, some RCTs instructed patients to continue their pain medication in the same doses, which may preclude identifying a change in opioid dose [70–73, 77], although changes in breakthrough opioid requirements were a secondary outcome in six studies [69–72, 75]. Some clinical studies demonstrated beneficial effects of opioid and cannabinoid co-administration on other outcomes such as sleep, and functioning in chronic pain patients [75, 77]. Conflicting results were found between preclinical studies and clinical trials on measure of abuse liability. Evidence of reduced abuse liability was found in some animal models, which contrasted directly with evidence of increased drug liking and subjective effects in human studies.

Finally, observational studies had methodological concerns including small sample sizes (several observational studies included in meta-analysis had two to three patients), no control groups or blinding, selection bias, and were likely to have been impacted by expectancy effects.

Although our review is much broader, we have drawn similar conclusions to earlier reviews. For example, a review of cross-sectional surveys and cohort studies, representing lower quality evidence, found large reductions in opioid doses, though study designs prevented the drawing of causal conclusions [95]. A later review with five randomized trials with patients with chronic pain and 12 observational studies further concluded that there was uncertainty in the evidence [96], although this review considered a substantially smaller number of clinical trials than we consider. Future studies may benefit from focusing on populations with higher opioid tolerance, or higher motivation to reduce opioid doses, where clinical benefits may be greatest [97]. Standardization of outcomes for opioid-sparing research may assist with harmonization of outcome measures and support meta-analysis with future clinical trials [2].

Despite the inclusion of a larger number of studies, and the increased size and quality of clinical trials in recent years, our conclusions have not changed substantially from our earlier review. Nevertheless, we did identify 15 registered clinical trials indicating that this continues to be an active area of research in which the science is likely to continue to evolve.

In conclusion, preclinical studies support the opioid-sparing effect of delta-9-THC and other mixed CB1/CB2 agonists. Observational studies support the opioid-sparing potential of cannabinoids. However, findings from clinical trials provide conflicting results that may highlight important areas for future research. These include identifying optimal doses and populations who may experience benefits with cannabinoids. With numerous clinical trials currently underway, we will update our review, as higher-quality data may enable stronger conclusions to be made.

REFERENCES

1. Dowell D, Haegerich TM, Chou R. CDC guideline for prescribing opioids for chronic pain—United States, 2016. JAMA. 2016;315:1624–45.
2. Gewandter JS, Smith SM, Dworkin RH, Turk DC, Gan TJ, Gilron I, et al. Research approaches for evaluating opioid sparing in clinical trials of acute and chronic pain treatments: Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials recommendations. Pain. 2021;162:2669–81.
3. Nielsen S, Sabioni P, Trigo JM, Ware MA, Betz-Stablein BD, Mumion B, et al. Opioid-sparing effect of cannabinoids: a systematic review and meta-analysis. Neuropsychopharmacology. 2017;42:1752–65.
4. Campbell G, Hall W, Nielsen S. What does the ecological and epidemiological evidence indicate about the potential for cannabinoids to reduce opioid use and harms? A comprehensive review. Int Rev Psychiatry. 2018;30:91–106.
5. Shover CL, Davis CS, Gordon SC, Humphreys K. Association between medical cannabis laws and opioid overdose mortality has reversed over time. Proc Natl Acad Sci USA. 2019;116:12624.
6. Desroches J, Beaulieu P. Opioids and cannabinoids interactions: involvement in pain management. Curr Drug Targets. 2010;11:462–73.
7. Hojo M, Sudo Y, Ando Y, Minami K, Takada M, Matsubara T, et al. mu-Opioid receptor forms a functional heterodimer with cannabinoid CB1 receptor: electrophysiological and FRET assay analysis. J Pharm Sci. 2008;97:3088–19.
8. Babaloson S, Walsh SL. Therapeutic potential of opioid/cannabinoid combinations in humans: review of the evidence. Eur Neuropsychopharmacol. 2020;30:206–16.
9. An D, Peigneur S, Hendrickx LA, Tytgat J. Targeting cannabinoid receptors: current status and prospects of natural products. Int J Mol Sci. 2020;21:5064.
10. Yao BB, Mukherjee S, Fan Y, Garrison TR, Daza AV, Grayson GK, et al. In vitro pharmacological characterization of AM1241: a protean agonist at the cannabinoid CB2 receptor? Br J Pharmacol. 2006;149:145–54.
11. Lu H-C, Mackie K. An introduction to the endogenous cannabinoid system. Biol Psychiatry. 2016;79:156–25.
12. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6: e1000097.
13. Covidence systematic review software. covidence.org. Veritas Health Innovation: Melbourne, Australia; 2019.

14. Litchfield JA, Wilcoxson F. A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther. 1949;96:99–113.

15. Luo D, Wan X, Liu J, Tong T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. Stat Methods Med Res. 2016;25:1785–805.

16. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range, and/or interquartile range. BMC Med Res Methodol. 2014;14:135.

17. Guayatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336:924–6.

18. Steme JAC, Sutton AJ, Ioannidis JPA, Terrin N, Jones DR, Lau J, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011;343:d4002.

19. Covidence systematic review software. covidence.org. Veritas Health Innovation: Melbourne, Australia; 2019.
60. Roberts JD, Gennings C, Shih M. Synergistic affective analgesic interaction between delta-9- tetrahydrocannabinol and morphine. Eur J Pharmacol. 2006;530:54–58.

61. Babalonis S, Lofwall MR, Sloan PA, Nuzzo PA, Fanucchi LC, Walsh SL. Cannabinoid modulation of opioid analgesia and subjective drug effects in healthy humans. Psychopharmacology. 2018;236:3341–52.

62. Bauerly J, Berger GL, Speed TJ, Mun CJ, Vandrely R, et al. Within-subject, double-blinded, randomized, and placebo-controlled evaluation of the combined effects of the cannabinoid dronabinol and the opioid hydromorphone in a human laboratory pain model. Neuropsychopharmacology. 2021;46:1451–59.

63. Cooper ZD, Bedi G, Ramesh D, Cooper AJ, Cooper HJ, Geller JA, Shah RP. Should cannabinoids be added to multimodal pain regimens after total hip and knee arthroplasty? J Arthroplast. 2018;33:3637–41.

64. De Vries M, Van Rijckevorsel DCM, Vissers KCP, Wilder-Smith OHG, Van Goor H. DELTA9-tetrahydrocannabinol and the opioid receptor agonist piritramide do not act synergistically in postoperative pain. [German] Keine synergistische wirkung der kombination von DELTA9-tetrahydrocannabinol und piritramide bei post-operativen schmerzen. Anaesthesia. 2006;55:391–400.

65. Levin DN, Dulberg Z, Chan AW, Hare GM, Mazer CD, Hong A. A randomized-controlled trial of nabiximol for the prevention of acute postoperative nausea and vomiting in elective surgery. Can J Anaesth. 2007;54:638–95.

66. Bebee B, Taylor DM, Bourke E, Pollack K, Foster L, Ching M, et al. The CANBACK trial: a randomised, controlled clinical trial of oral cannabidiol for people presenting to the emergency department with acute low back pain. Med J Aust. 2021;214:370–75.

67. Lissone F, Porro G, Messina G, Porta E, Rovelli F, Roselli MG, et al. Morphine, melatonin, Marijuana, Magnolia and MYRRH as the “five m” schedule in the treatment of cancer pain and the possible dose-dependence of the antidepressant and analgesic effects of the pineal hormone melatonin. Anticancer Res. 2014;34:6033–34.

68. Zylla DM, Eklund J, Gilmore G, Gavenda A, Guggisberg J, VazquezBenitez G, et al. A randomized trial of medical cannabis in patients with stage IV cancers to assess feasibility, dose requirements, impact on pain and opioid use, safety, and overall patient satisfaction. Supportive Care Cancer. 2021;29:7471–81.

69. Johnson JR, Burnell-Nugent M, Lossignol D, Ganae-Motan ED, Potts R, Fallon MT. Multicenter, double-blind, randomized, placebo-controlled, parallel-group study of the efficacy, safety, and tolerability of THC/CBD extract and THC extract in patients with intractable cancer-related pain. J Pain Symptom Manag. 2010;39:167–79.

70. Portenoy RK, Ganae-Motan ED, Allende S, Yanagihara R, Shaiova L, Weinstein S, et al. Nabilomix for opioid-treated cancer patients with poorly-controlled chronic pain: a randomized, placebo-controlled, graded-dose trial. J Pain. 2012;13:438–49.

71. Fallon MT, Albert Lux E, McQuade R, Rossetti S, Sanchez R, Sun W, et al. Sativex oromucosal spray as adjunctive therapy in advanced cancer patients with chronic pain unalleviated by optimized opioid therapy: two double-blind, randomized, placebo-controlled phase 3 studies. Br J Pain. 2017;11:119–33.

72. Lichtman AH, Lux EA, McQuade R, Rossetti S, Sanchez R, Sun W, et al. Results of a double-blind, randomized, placebo-controlled study of nabiximol oromucosal spray as an adjunctive therapy in advanced cancer patients with chronic uncontrolled cancer pain. J Pain Symptom Manag. 2018;55:179–88.e1.

73. de Vries M, van Rijckevorsel DCM, Vissers KCP, Wilder-Smith OHG, van Goor H. Tetrahydrocannabinol does not reduce pain in patients with chronic abdominal pain in a phase 2 placebo-controlled study. Clin Gastroenterol Hepatol. 2017;15:1079–86.e4.

74. De Vries M, Van Rijckevorsel DCM, Vissers KCP, Wilder-Smith OHG, Van Goor H. Single dose delta-9-tetrahydrocannabinol in chronic pancreatitis patients: analgesic efficacy, pharmacokinetics and tolerability. Br J Clin Pharmacol. 2016;81:525–37.

75. Naranan S, Gibson D, Wasan AD, Ross EL, Michna E, Nedeljovic SS, et al. Efficacy of dronabinol as an adjuvant treatment for chronic pain patients on opioid therapy. J Pain. 2008;9:234–64.

76. Abrams Di, Covey P, Dixit N, Sagi V, Hagar W, Vichinsky E, et al. Effect of inhaled cannabis in adults with sickle cell disease: a randomized clinical trial. JAMA Network Open. 2020;3:e200874.

77. Abrams Di, Covey P, Shade SB, Kelly ME, Benowitz NL. Cannabinoid-opioid interaction in chronic pain. Clin Pharmacol Therapeutics. 2011;90:844–51.

78. Lynch ME, Clark AJ. Cannabis reduces opioid dose in the treatment of chronic non-cancer pain. J Pain Symptom Manag. 2003;25:496–8.

79. Maida V, Corban J. Topical medical cannabis: a new treatment for wound pain—three cases of pyoderma gangrenosum. J Pain Symptom Manag. 2017;54:732–36.

80. Maida V, Shi RB, Fazzari FG, Zompelli A. Topical cannabis-based medicines—a novel paradigm and treatment for non-uremic calciphylaxis leg ulcers: an open label trial. Int Wound J. 2020;17:1508–16.

81. Habib G, Artul S. Medical cannabis for the treatment of fibromyalgia. J Clin Rheumatol. 2018;24:255–58.
grant from Seqirus. MG is funded through the New South Wales Health Clinical Cannabis Medicines Program. All other authors have nothing to declare.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41386-022-01322-4.

Correspondence and requests for materials should be addressed to Suzanne Nielsen.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022