Full Length Research Paper

Floristic diversity under anthropogenic activities in the protected forests of Duekoué and Scio in southwestern Côte d’Ivoire

François N’guessan KOUAMÉ1*, Olivier Adjé AHIMIN2, Maxime N’takpé Kama BORAUD1 and Edouard Kouakou N’GUESSAN1

1Laboratoire de Botanique, Université Félix Houphouët-Boigny, Abidjan, Cote d’Ivoire.
2Société de Développement des forêts (SODEFOR), Abidjan, Cote d’Ivoire.

Received 7 January, 2015; Accepted 18 February, 2015

This study analyses the effects of anthropogenic disturbance on trees and shrubs floristic α-diversity in two protected rain forests in southwestern Côte d’Ivoire. These forests have been under timber harvesting since their protection in 1929. The forestry service had developed plantations of indigenous timber species and teak since 1996 to increase their productivities for timbers. Additionally, they host many plantations of cash crop among which coffee, cocoa and rubber are the most important. To understand how these plantations affect the local flora, the diversity of shrubs and trees with DBH ≥ 10 cm was analyzed through the species number and diversity indices. Plots were of 20 m x 50 m size and a total of 10 per vegetation type. Highest species numbers, Shannon-Wiener’s index, Hill’s index and Pielou’s index in both plots and vegetation types were found in natural forest and undergrowth cleared forest which had similar values of these parameters. Plot richness was ranked between 1 and 7 species whilst vegetation type richness varied from 4 to 12 species for all plantations. Yet Simpson’s diversity index showed highest values in plantations. Richness in plantation was influenced by the location of plantation site and the nature of crop but no influence was found with the combination site and crop nature.

Key words: Forest protection, cash crops, agroforestry, flora and diversity, South-West Côte d’Ivoire.

INTRODUCTION

The tropical humid forests host higher vascular plant richness and diversity compared to European and North American forests (Richards, 1996; Myers et al., 2000; Blanc, 2002; Parmentier et al., 2007; Parmentier et al., 2011). Mixed mesophytic forests of China and Southeast America that are the richest among the non-tropical forests (Richards, 1996) harbor 20 to 30 species. These numbers are smaller than the richness of trees bigger than 10 cm DBH in a hectare of primary Tropical humid forest plot that is often estimated between 40 and 100

*Corresponding author. E-mail: fnkouame3@gmail.com. Tel: (+225) 07009566, 03007139, 44263046.

Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License
species (ORSTOM and UNESCO, 1983; Kouamé, 1998) and can reach 251 species (Ghazoul and Sheil, 2010). These forests also harbor high abundance and diversity of lianas which constitute other fundamental characteristics of this vegetation type (Richards, 1996; Kouamé et al., 2007).

Agriculture has played an important role in the transformation of lowland tropical forest landscapes worldwide over the past centuries and continues to do so today (Lass, 2004; Schroth and Harvey, 2007). In many regions, cash crops have been a driver of deforestation, with plantations or agroforestry systems replacing the original forest ecosystems (Ruf and Schroth, 2004). In comparison to other land uses that replace intact forest, traditional Cocoa (Theobroma cacao L., Sterculiaceae) and Coffee (Coffea canephora Froehn., Rubiaceae) agroforests, with diverse and structurally complex shade canopies, are among the agricultural land uses that are most likely to conserve a significant portion of the original forest biodiversity (Perfecto et al., 1996; Moguel and Toledo, 1999; Rice and Greenberg, 2000; Schroth et al., 2004; Faria et al., 2006; Harvey et al., 2006). Although cocoa and coffee cultivation may represent a serious threat to biodiversity in certain countries such as Côte d’Ivoire, Ghana, and the Dominican Republic, where their agroforests make up a significant proportion of all woodland (Donald, 2004), there are a number of reasons for regarding their shaded cultivation as environmentally preferable to many other forms of agriculture in Tropical forest regions (Greenberg, 1998; Power and Flecker, 1998). Since economic prospects for Rubber (Hevea brasiliensis Müll. Arg., Euphorbiaceae) on the world market are positive (Smit and Vogelvang, 1997; Burger and Smit, 1998, 2000) and the production by smallholders is still profitable (Levang et al., 1999; Suyanto et al., 2001), large tropical forest areas have been converted into Rubber plantations responsible for drastic erosion of local trees richness (Beukema et al., 2007). For rubber cultivation, forest is fully cleared and crops are established as monoculture plantations on average replanted after about 40 years, but some plantations are maintained to an age of 70-80 years (Gouyon et al., 1993). In many Tropical countries, this loss of the natural forests has been counteracted by the rapid increase in degraded forestland allocated to plantation establishment and other policies (CTFT, 1989). Like many other tropical countries, the loss of Ivorian’s natural forests has been counteracted by comprehensive reform programmes in the forestry sector among which a key reform was the Government’s initiative in plantation establishment in the country, not only to halt forest degradation but also to catalyze important native forest flora restoration after long period of anthropogenic and non-anthropogenic disturbances (Lemenih and Teketay, 2004; Baatuuwie et al., 2011). These programmes have increased plantations since 1992 of both native and exotic timber tree species amongst which Teak (Tectona grandis L.f., Verbenaceae) is predominant. Teak cultivation involves full local vegetation removal sometimes with mechanics.

In Côte d’Ivoire, there are two main categories of protected areas; the national parks exclude any human activities except management and research, and the classified (protected) forests whose purpose is management for sustainable logging (Kouamé, 1998). The definition and delimitation of these protected areas began in 1924 by their static conservation (de Koning, 1983; Ahimin, 2006). After the Ivorian independence in 1960, their legal status was created together with a national forest research institute (IDEFOR) and a national society for forest development (SODEFOR). Forty years later, anthropogenic activities in national parks, protected forests and biological reserves result in their degradation despite the promulgation of legal instruments/laws (Dao, 1999; Chatelain et al., 2004; Ahimin, 2006). Due to rarefaction of wastelands in the rainforest area, the farmers crossed the limits of protected forests within which they establish their crops. The politico-military crisis in Côte d’Ivoire since 2002 led to increase in the illegal occupation of its South-western protected areas, especially Duekoué and Scio forests. In areas undergoing rapid land use change such as the rainforest of Côte d’Ivoire, where undisturbed lowland forest has almost completely disappeared (Chatelain et al., 2004; BNETD, 2010), the question whether at least some of the native rainforest species can survive in disturbed forest types has become important. The potential significance of such agroforestry systems for biodiversity conservation is stressed by nature conservation agencies and the international research community (Siebert, 2002; Garry, 2004; Schroth et al., 2004).

To understand the effects of Teak plantations created by the Forestry Service and the cash crops production by small farmers in the protected forests of Duekoué and Scio on the diversity of trees, shrubs and lianas, eighty 20 m x 50 m plots were investigated for their woody plant richness. We sampled woody plant individuals that had 10 cm DBH and above at the species level, with the aim of analyzing woody plant species composition and diversity in relation with the anthropogenic activities. Given that both the agroforestry systems of creating forestry plantations and farming cash crops aim to promote few targeted species at the expense of the local flora, we hypothesized to find higher plant species richness and diversity in natural vegetation than in plantations.

MATERIALS AND METHODS

Research site and data collection

Research was carried out in the classified forests of Duekoué (6° 30’-6° 45’ N, 7° 00’-7° 15’ W) and Scio (6° 30’-7° 00’ N, 7° 30’-8° 05’ W) South-west of Côte d’Ivoire (Figure 1). Climate in both areas is sub-equatorial with a long wet season from February to November and a short dry season from November to January. Annual rainfall varies from 1600-1700 mm in Duekoué forest to 1700-1800 mm in Scio forest. The average monthly temperature is
25°C while monthly and annual potential evapotranspiration of Duekoüé and Scio are 123.5 and 1482 mm, respectively (Eldin, 1971). The soils of both forests belong to the remould ferrallitic group (Perraud and De La Souchère, 1970). The Duekoüé forest, with an area of 53,600 ha (SODEFOR, 1994), consists of a moist semi-deciduous forest defined as a Tropical rainforest type in which part of the higher trees shed their leaves during the 3-4 months dry season in a region of 1350-1600 mm annual rainfall (ORSTOM and UNESCO, 1983) and interrupted by savannas areas and inselbergs (Monnier, 1983). The original vegetation of Scio forest, covering 88,200 ha (SODEFOR, 1996), belongs to South-western evergreen forest type of Côte d’Ivoire that spreads in the wettest forest area. (Kouamé, 2010; Kouamé and Zoro Bi, 2010)

Field data collection was carried out in eighty 1000 m² (20 m x 50 m) plots, as suggested by Thiombiano et al. (2010), established per 10 in four different vegetation types (biotopes) for each forest (Table 1). Homogeneity, local area, repetition, presence of plant individuals with DBH≥10 cm and availability were the criteria of these biotopes’ selection. Thus, the biotopes plotted were the natural forest patches, the undergrowth cleared forests, the coffee plantations, the cocoa plantations, the rubber plantations and the teak plantations (Table 1). Each plot was sub-divided into ten 100 m² sub-plots where all plants with DBH≥10 cm were assessed for their scientific names and DBH.

Data analysis

Taxa identification followed Aubréville (1936), Lebrun and Stork (1991-1997), Aké Assi (2001, 2002) and Hawthorne and Jongkind (2006). Family and authors names have been updated with Mabberley (1997).

Floristic diversity was analyzed using the species number considered as the first diversity parameter (Gaston, 1996; Tuomisto, 2011) and the three commonest diversity indices (Shannon-Wiener, 1949; Simpson, 1949; Pielou, 1966). Simpson's diversity index (D) checks the probability for 2 random individuals in a community to belong to the same species (Simpson, 1949).

\[D' = 1 - \sum Pi^2 \]

Where, \(Pi = ni/\sum ni \) with \(ni \) as average cover of a species and \(\sum ni \) the total cover of all species. \(D' \) varies from 0 (maximum diversity) to 1 (minimum diversity). This index is sensitive to the variation of importance for most abundant species (Peet, 1974; Grall and Colic, 2006).

Shannon-Wiener’s index (H) which is the most recommended index to check richness diversity (Grall and Colic, 2006) is below formulated:

\[H' = - \sum_{i=1}^{S} Pi \ln Pi \]

with \(Pi \) as relative average cover of species \(i \) in a community (Shannon and Wiener, 1949). \(H' \) varies from 0 (monospecific settlement) to \(\ln S \) (maximum diversity). This index is sensitive to the variation of importance for most rare species (Peet, 1974; Grall and Colic, 2006).

Pielou’s index (J) measures the degree of a settlement diversity and corresponds to the average between the affective diversity
Table 1. Description and localization of plots.

Biotopes	Duekoué forest	Latitude N	Longitude W	Biotopes	Scio forest	Latitude N	Longitude W
Coffee plantations	PCAFD1	6° 42	7° 06	PCAFS1	6° 38	7° 52	
	PCAFD2	6° 40	7° 06	PCAFS2	6° 38	7° 51	
	PCAFD3	6° 41	7° 14	PCAFS3	6° 31	7° 48	
	PCAFD4	6° 43	7° 12	PCAFS4	6° 39	7° 50	
	PCAFD5	6° 41	7° 14	PCAFS5	6° 38	7° 52	
	PCAFD6	6° 40	7° 06	PCAFS6	6° 38	7° 51	
	PCAFD7	6° 42	7° 06	PCAFS7	6° 38	7° 53	
	PCAFD8	6° 43	7° 02	PCAFS8	6° 38	7° 53	
	PCAFD9	6° 40	7° 06	PCAFS9	6° 31	7° 48	
	PCAFD10	6° 43	7° 12	PCAFS10	6° 39	7° 47	
Cocoa plantations	PCOAD1	6° 42	7° 06	PCAOS1	6° 31	7° 48	
	PCOAD2	6° 42	7° 06	PCAOS2	6° 38	7° 51	
	PCOAD3	6° 42	7° 12	PCAOS3	6° 39	7° 46	
	PCOAD4	6° 41	7° 14	PCAOS4	6° 38	7° 51	
	PCOAD5	6° 42	7° 12	PCAOS5	6° 38	7° 52	
	PCOAD6	6° 43	7° 12	PCAOS6	6° 39	7° 46	
	PCOAD7	6° 42	7° 12	PCAOS7	6° 38	7° 51	
	PCOAD8	6° 42	7° 12	PCAOS8	6° 38	7° 51	
	PCOAD9	6° 43	7° 12	PCAOS9	6° 39	7° 47	
	PCOAD10	6° 42	7° 12	PCAOS10	6° 39	7° 47	
Rubber plantations	PHEVD1	6° 42	7° 06	FDEFS1	6° 39	7° 46	
	PHEVD2	6° 42	7° 06	FDEFS2	6° 38	7° 51	
	PHEVD3	6° 42	7° 06	FDEFS3	6° 38	7° 51	
	PHEVD4	6° 43	7° 06	FDEFS4	6° 39	7° 46	
	PHEVD5	6° 43	7° 06	FDEFS5	6° 39	7° 51	
	PHEVD6	6° 42	7° 14	FDEFS6	6° 39	7° 50	
	PHEVD7	6° 42	7° 14	FDEFS7	6° 39	7° 50	
	PHEVD8	6° 42	7° 12	FDEFS8	6° 38	7° 48	
	PHEVD9	6° 43	7° 06	FDEFS9	6° 38	7° 52	
	PHEVD10	6° 42	7° 06	FDEFS10	6° 38	7° 53	
Teak plantations	PTECD1	6° 42	7° 12	FNBAS1	6° 39	7° 46	
	PTECD2	6° 42	7° 12	FNBAS2	6° 38	7° 51	
	PTECD3	6° 42	7° 12	FNBAS3	6° 39	7° 48	
	PTECD4	6° 42	7° 13	FNBAS4	6° 38	7° 53	
	PTECD5	6° 42	7° 01	FNBAS5	6° 39	7° 49	
	PTECD6	6° 41	7° 14	FNBAS6	6° 31	7° 48	
	PTECD7	6° 41	7° 14	FNBAS7	6° 34	7° 51	
	PTECD8	6° 42	7° 12	FNBAS8	6° 39	7° 49	
	PTECD9	6° 42	7° 13	FNBAS9	6° 30	7° 51	
	PTECD10	6° 42	7° 12	FNBAS10	6° 39	7° 50	

\(H' \) and the maximum theoretical diversity \(H'_{\text{max}} \) (Pielou, 1966).

\[J' = \frac{H'}{H'_{\text{max}}} \]

with \(H' \) as Shannon-Wiener index. \(J' \) varies from 0 (monospecific settlement) to 1 (similar distribution of all species).

Additionally to these commonest indices, Hill’s index which is a combination of Simpson’s diversity index and Shannon-Wiener’s index (Hill, 1973; Grall and Coïc, 2006) was used to analyze the diversity in biotopes as recommended by Peet (1974) and
Hill varies from 1 (monospecific settlement) to α (similar distribution of all species).

Such as data in plots showed normal distribution (Mead et al., 1993; Bar-Hen, 1998; Young and Young, 1998; Fowler et al., 1999), their statistical analyses were performed with parametric tests as recommended by Mead et al. (1993) and Fowler et al. (1999). Plot richness and diversity indices were compared using paired samples t test of Student (Student, 1908; Greig-Smith, 1983) with SPSS 18.0 software. Richness of coffee plantations and cocoa plantations that was assessed in both research sites (Table 1) was analyzed with ANOVA (Scherrer, 1984; Mead et al., 1993; Fowler et al., 1999) using Statistica 7.1 software for checking prospective impacts of site and/or crop nature on plot richness. Bonferroni’s Post-Hoc test with Statistica 7.1 software led to segregate impacts of site and crop nature as the ANOVA showed their effects on plot richness.

RESULTS

The natural forest patches (FNBAS) in Scio site showed the highest α-diversity in plots and biotopes whereas the undergrowth cleared forests (FDEFS) in Scio showed the second highest α-diversity (Figure 2, Table 2). Both...
biotopes had similar plot richness which was very significantly higher than all plantations (Table 3) and showed also higher richness variability (Figures 2 and 3). Among plantations, the Rubber (PHEVD) cultivation led to the lowest plot richness (Figure 2, Tables 2 and 3) and variability (Figures 2 and 3). Distribution of trees in plantations was determined prior to the openness in vegetation and later by the nature of crop (Figure 4). Thus, plots were segregated into five groups amongst which the biggest (group I) gathered the natural forest patches and the undergrowth cleared forests from Scio site, and the Teak plantations (PTECD) and the Rubber plantations (Figure 4, Appendix 1) from Duekoué site. This group that was represented by 48.75% of plots appeared in low vegetation openness conditions. The second important group, in term of plots number (group II) that gathered 80% of Coffee plantations from both sites and a Rubber plantation (PHEVD2) from Duekoué, is found in medium vegetation openness conditions (Figure 4, Appendix 1). In slight higher vegetation openness, there were the smallest group (group III) made of four coffee plantations from Duekoué site and the group IV which gathered 90% of cocoa plantations from Duekoué site and 30% of cocoa plantations from Scio site (Figure 4, Appendix 1). The last group (group V) made of 70% of cocoa plantations from Scio site and a Cocoa plantation (PCAOD2) from Duekoué site appeared in highest vegetation openness conditions. Highly significant impacts of the site and of the nature of crop were found on the richness in coffee and Cocoa plantations but no impact was found with the combination site and crop nature (Table 4). Bonferroni’s Post-Hoc test showed a very highly significant difference between Coffee plantations of Duekoué and Cocoa plantations of Scio, and a significant difference between Cocoa plantations of both sites while Coffee plantations from both sites were similar (Table 4).

Table 2. Richness and diversity indices in biotopes.

Parameters	FNBAS	FDEFS	PCAFD	PCAFS	PCAOD	PCAOS	PHEVD	PTECD	
Minimum	19.00	22.00	2.00	2.00	1.00	1.00	1.00	1.00	
Maximum	40.00	33.00	7.00	5.00	5.00	3.00	4.00	7.00	
General	85.00	58.00	12.00	12.00	7.00	12.00	4.00	11.00	
Mean	30.30	27.60	4.00	4.00	3.20	4.00	1.60	2.60	
Std. dev.	7.50	3.41	1.76	1.76	1.23	1.76	1.07	1.78	
Simpson									
Diversity index	Minimum	0.03	0.04	0.32	0.39	0.71	0.96	0.60	0.58
	Maximum	0.08	0.07	0.86	1.00	1.00	1.00	1.00	1.00
	General	0.02	0.03	0.50	0.69	0.89	0.99	0.93	0.91
	Mean	0.05	0.06	0.56	0.71	0.89	0.99	0.94	0.91
	Std. dev.	0.02	0.01	0.18	0.17	0.09	0.01	0.13	0.13
Shannon-									
Weiner index	Minimum	2.73	2.87	0.27	0.00	0.00	0.00	0.00	0.00
	Maximum	3.55	3.34	1.39	1.15	0.56	0.12	0.77	0.97
	General	4.03	3.70	1.26	0.85	0.30	0.03	0.19	0.28
	Mean	3.18	3.11	0.86	0.56	0.25	0.02	0.11	0.21
	Std. dev.	0.31	0.16	0.37	0.34	0.19	0.04	0.26	0.29
Hill index									
Minimum	195.19	252.40	1.53	1.00	1.00	1.00	1.00	1.00	
Maximum	1056.34	679.56	12.47	8.18	2.47	1.18	3.59	4.50	
General	2285.43	1191.98	7.10	3.38	1.51	1.04	1.31	1.45	
Mean	557.10	432.91	5.28	3.02	1.51	1.03	1.34	1.56	
Std. dev.	301.74	152.86	3.33	2.08	0.48	0.06	0.83	1.06	
Pleiobr									
index	Minimum	0.90	0.91	0.39	0.00	0.00	0.00	0.00	0.00
	Maximum	0.97	0.96	0.92	0.83	0.51	0.11	0.56	0.50
	General	0.91	0.91	0.51	0.33	0.15	0.02	0.14	0.11
	Mean	0.94	0.94	0.64	0.51	0.20	0.03	0.11	0.17
	Std. dev.	0.02	0.02	0.16	0.22	0.15	0.05	0.23	0.16

The total area of each biotope is a hectare (10 x 1000 m²). Thus for all parameters in table 2, general values correspond to hectare data while the others are research plot area (20m x 50 m)data.
Table 3. Matrix of biotopes mean richness comparison with SPSS 18.0 software.

	FNBAS	FDEFS	PCAFD	PCAFS	PCAOD	PCAOS	PHEVD	PTECD
FNBAS	0.97	12.63	12.35	11.35	12.08	12.86	11.70	
FDEFS	ns	18.90	19.98	20.12	25.97	24.19	21.47	
PCAFD	***		3.00	1.24	4.63	4.80	1.95	
PCAFS	***	***		0.36	3.75	3.75	0.56	
PCAOD	***	***	ns	ns	4.32	2.95	0.85	
PCAOS	***	***	**	**	0.00	2.45		
PHEVD	***	***	**	**	*	ns		1.86
PTECD	***	***	ns	ns	ns	*	ns	

Student t test values are above while significances are below. ns: test non-significant (P≥0.05); *: test significant (P<0.05); **: test very significant (P<0.01); ***: test very highly significant (P<0.001). Degree of freedom of the test is 9.

Figure 3. Boxplots of plot richness using factorial analysis with Statistica 7.1 software. Mean richness are in small central squares, error types are in small framing rectangles and standard deviation types are in vertical lines.

Shannon-Wiener’s index showed highest (Figure 2) and similar (Tables 2 and 5) values in both natural forest patches and undergrowth cleared forests of Scio site. Despite the very significantly higher index value in coffee plantations of Duekoué site compared to value in coffee plantations in Scio site (Table 5), both biotopes showed
Figure 4. Projection of plots on the two first axes of the factorial analysis with Statistica 7.1 software according to their richness. Factor 1 on abscises explains 18.03% while factor 2 on ordinates is responsible for 12.06% of total variation of the analysis. The factor 1 that segregates natural forests and plantations expresses the openness in vegetation. The factor 2 distinguishes groups according the target species in plantations. Group I: Natural forest, undergrowth cleared forest, and Rubber and Teak plantations. Group II: Coffee plantations in both sites and one Rubber plantation (PHEVD2) except four Coffee plantations in Duekoué. Group III: the four remnant Coffee plantations in Duekoué site. Group IV: part of Cocoa plantations of both sites. Group V: remnant Cocoa plantations of both sites. Plots coordinates are given in Appendix 1.

Table 4. ANOVA and Bonferroni’s Post Hoc test of effects of the site and the cash crop nature on richness in Coffee and Cocoa plantations.

Parameter	SC	df	MF	F	P
Ord.of origin	336.4	1	336.4	208.8	***
Site	19.6	1	19.6	12.2	**
Crop	14.4	1	14.4	8.9	**
Site*Crop	1.6	1	1.6	1.0	ns

ANOVA

Site andCulture	Duekoué Cocoa	Duekoué Coffee	Scio Cocoa	Scio Coffee
Duekoué Coffee	ns		***	ns
Scio Cocoa	*	***	***	*
Scio Coffee	ns	ns	ns	*

Bonferroni

Error: MC Inter = 1.6111, df = 36 for Bonferroni Post Hoc test. ns, test non-significant (P>0.05); *, test significant (P<0.05); ***, test very highly significant (P<0.001).
the highest values amongst plantations (Figure 2, Tables 2 and 5). Cocoa plantations of Scio site (PCAOS) expressed very significantly lower index value in comparison to those of Duekoué site but similar to values of rubber and teak plantations in Duekoué forest (Figure 2, Tables 2 and 5).

Simpson’s diversity index showed its highest and similar values in Cocoa plantations of Scio site, Rubber and Teak plantations of Duekoué site (Figure 2, Tables 2 and 6). Cocoa plantations at Duekoué and Coffee plantations of both sites had medium index values, despite their variability, whereas natural forest patches and undergrowth cleared forests expressed the lowest and similar Simpson’s diversity index values (Figure 2, Tables 2 and 6).

Highest and similar Hill’s index values were found in both natural forest patches and undergrowth cleared forests of Scio site (Figure 2, Tables 2 and 7). Cocoa plantations at Duekoué and Coffee plantations of both sites had slight medium index values, despite their variability, when cocoa plantations of Scio site, rubber and teak plantations of Duekoué site showed lowest and similar values (Figure 2, Tables 2 and 7).

Pielou’s index expressed highest and similar values in both natural forest patches and undergrowth cleared forests of Scio site and medium values in coffee plantations of both sites (Figure 2, Tables 2 and 8). Cocoa plantations of Duekoué showed similar Pielou’s index values with both rubber and teak plantations (Table 8) while Cocoa plantations of Scio expressed similar values with the rubber plantations and lower value compared to teak plantations. Rubber and teak plantations shared the same Pielou’s index values (Figure 2, Tables 2 and 8).

DISCUSSION

The decreasing of α-diversity in both biotopes and plots documented by this study in all plantations, in comparison to the natural forest patches (Tables 2 and 3), and reveals that the farmers’ cash crop production systems and forestry service teak production system...
Table 7. Matrix of biotopes Hill’s index comparison with SPSS 18.0 software.

	FNBAS	FDEFS	PCAFD	PCAFS	PCAOD	PCAOS	PHEVD	PTECD
FNBAS	0.55	25.83	29.30	26.49	31.22	32.57	21.02	
FDEFS	ns	16.59	19.87	34.03	61.12	33.63	26.05	
PCAFD	***	***	3.99	5.14	6.95	6.36	4.41	
PCAFS	***	***	**	2.63	4.76	3.49	2.16	
PCAOD	***	***	**	3.65	1.14	0.40		
PCAOS	***	***	***	**		1.04	2.23	
PHEVD	***	***	***	**	ns	ns	0.74	
PTECD	***	***	**	ns	ns	ns		

Student t test values are above while significances are below. ns, test non-significant (P≥0.05); *, test significant (P<0.05); **, test very significant (P<0.01); ***, test very highly significant (P<0.001). Degree of freedom of the test is 9.

Table 8. Matrix of biotopes Pielou’s index comparison with SPSS 18.0 software.

	FNBAS	FDEFS	PCAFD	PCAFS	PCAOD	PCAOS	PHEVD	PTECD
FNBAS	0.01	6.28	6.43	15.83	48.09	12.03	13.66	
FDEFS	ns	5.90	6.31	15.80	52.83	11.66	14.25	
PCAFD	***	***	3.61	7.39	10.54	6.15	5.83	
PCAFS	***	***	**	4.63	6.18	4.01	3.51	
PCAOD	***	***	***	**	3.51	0.93	0.55	
PCAOS	***	***	***	**		1.03	3.43	
PHEVD	***	***	***	**	ns	ns	0.58	
PTECD	***	***	***	**	ns	**	ns	

Student t test values are above while significances are below. ns, test non-significant (P≥0.05); **, test very significant (P<0.01); ***, test very highly significant (P<0.001). Degree of freedom of the test is 9.

Affect local rainforest flora and diversity. Indeed, the establishment of all these plantations involves prior clearance of forest undergrowth and lianas (FDEFS), as well as shrubs and trees, followed by burning (Donald, 2004; Beukema et al., 2007; Biselleu et al., 2008; Baatuuvie et al., 2011). For coffee and cocoa, farms are mostly established following a similar model referred to as short-term boom-and-bust cycles: primary or secondary forests are selectively cleared, burned and the crop is planted along with understory food crops (Isaac et al., 2005). Moguel and Toledo (1999) distinguished five main systems of coffee production in Mexico according to management level, and vegetational and structural complexity (Donald, 2004; Schroth and Harvey, 2007). In our study area like the most part in Côte d’Ivoire South forest region, cocoa plantation can take place under thinned primary-forest canopy, regenerating forest after clear felling, or under the canopy of artificially planted trees as documented Greenberg (1998) and N’goran (1998). The shade trees are vital for cocoa saplings survival and growth but provide also farmers with a variety of products, including firewood, construction materials, pharmaceutical products and food (Herzog, 1994).

According to Rice and Greenberg (2000), cocoa production in West Africa follows both the rustic system and the planted shade polyculture system (Moguel and Toledo, 1999) but Steffan-Dewenter et al. (2007) advocated planting cocoa at low tree density and thinning for economic viability. In Cameroon where the impacts of cocoa cultivation on the local biodiversity still being the most assessed in Africa (Schroth and Harvey, 2007), agroforests such as traditional cocoa plantations are gradually receiving increasing interest since several years (Guyer, 1984; Ruf and Schroth, 2004; Laird et al., 2007; Sonwa et al., 2007). Biselleu et al. (2008) reported that their management practices were influenced by their relationship to the other components of the land-use system and were oriented at using a combination of multiple forest resources (Sonwa et al., 2001; Schroth et al., 2004; Perfecto et al., 2005). And their adaptive nature offers options for combining biodiversity conservation and cocoa production for human benefits (Greenberg et al., 2000; Reitsma et al., 2001; Perfecto et al., 2004; MCNeely and Schroth, 2006; Gordon et al., 2007; Steffan-Dewenter et al., 2007). Zapack et al. (2002) set the richness of vascular plants in the cocoa fields between of the natural forest areas and, of the fallows and non-Cocoa.
farms. They reported that many of the primary forest species were left standing in the course of burning, fruit trees were planted and other species (seedlings) were protected for further multiple uses (Zapfack et al., 2002). Schroth and Harvey (2007) reported that although both native and migrant farmers retain and plant useful species within their Cocoa farms, the native households retain and plant a higher density and diversity of non-Cocoa trees and use a wider range of non-tree species from their farms. In addition, the native farmers tend to have a greater number of local and wild species in their farms (Schroth and Harvey, 2007).

The lower richness in both cocoa and rubber plantations in Duekoué site documented by this study results from the near complete elimination of native trees species for their establishment than it is obtained in the cultivation of coffee plantations. Thus, medium values of diversity indices in Coffee plantations of both sites (Figure 2, Table 2-8) can be explained by the capacity of Coffee trees to grow and produce as well under the shade of many native or exotic tree species. Due to this capacity, farmers preserve many useful tree species in their Coffee plantations for edible fruits and leaves, medicines, woods etc. on both sites of our study areas (Appendix 2). The crop effect shown by the ANOVA (Table 3) was due to this difference in intensity of tree species removed during Coffee and Cocoa plantations creating. Thus, the Coffee plantations in our study area correspond to the traditional polyculture system of Moguel and Toledo (1999) where several native and/or exotic species coexist with the crop. Hence, in both sites Legume tree species like *Albizia adianthifolia* (Schum.) W.F.Wright, *A. glaberrima* (Schum. and Thonn.) Benth. *A. zygia* (DC.) JF.Macbr. and *Distemonanthus benthamianus* Baill. are especially preserved in both Coffee and Cocoa plantations (Appendix 2) in view of producing a mulch to supply organic matter for soil while exotic tree species as *Elaeis guineensis* Jacq. (Palm oil), *Mangifera indica* L. (Mango), *Musa paradisiaca* L. (Plantain Bananas) and *Persea americana* Mill. (Avocado) are introduced by farmers for their fruits (Appendix 2). Some natural and pioneer tree species like *Cordia guineensis* Schum. and Thonn. *C. platythyrsa* Bak., *Harungana madagascariensis* Lam. ex Poir., *Milicia excelsa* (Welw.) Berg and *Ricinodendron heudelotii* (Baill.) Pierre ex Heckel often survive as well in coffee and cocoa plantations for their products to the populations (Appendix 2) and their ability to promote quick shading of the Coffee and Cocoa trees, and to build refuges for Birds (Greenberg et al., 2000) which are benefic for Insects (Phlipott and Armbrecht, 2006) and Mammals (Rolim and Chiarello, 2004). Thus, they lead to increase woody plant richness in such agrosystems. Rice and Greenberg (2000) suggested that the impact of cash crop production on biodiversity would be minimized if production was focused on already cleared lands, ensuring greater long-term stability of farms, and supporting greater levels of biodiversity. It is supported that the long-term incentives for promoting the management of a diverse shade canopy can be found in the ecological and agronomic services provided by the shade itself (Beer, 1987).

The similarity of the α-diversity and all diversity indices, between Rubber and Teak plantations shown by this study stems from the common practices of forest clearance, prior to the establishment of both types of plantations. Given that these sites are protected and managed for sustainable logging (SODEFOR, 1994, 1996; Kouamé, 1998), remnant timber species in these plantations increased their richness and diversity, especially in Teak plantations created by the SODEFOR. Higher and similar values of Shannon-Wiener, Hill and Pioul’s indices and lower value of Simpson’s diversity index in biotopes and plots of natural forest patches and undergrowth cleared forests compared to those in plantations (Tables 1-8, Figure 3) confirm the negative impacts of cash crop cultivation and Teak plantations on the flora of the study areas. Similar negative impact of Rubber cultivation on local natural plant species was also shown in Indonesia where plant richness decreased drastically from natural forests to Rubber plantations (Beukema et al., 2007). Except *E. guineensis* Jacq. and *M. indica* L. introduced in a young Rubber plantation at Duekoué site (PHEVD2), additional tree species in Rubber and Teak plantations were spontaneous and belonged to their undergrowth resproutings and remnant individuals (Appendix 2). And such introduction of exotic tree species explains the membership of PHEVD2 to the

Coffee plantation group II (Figure 4). The Teak’s undergrowth self-regenerating capacity is shown by Baatuwije et al. (2011) who pointed out no significant difference between the diversity of the socio-economic native tree saplings regenerating naturally under a Ghanaian’s natural degraded forest, and a Teak monoculture plantation and a mixed Teak-native tree species plantation.

The similarity of richness and all diversity indices found between the undergrowth cleared forests (FDEFs) and the natural forest patches (FNBAS) (Tables 1-8, Figure 2) shows that few big lianas and shrubs species were removed in our study area during this first step of cocoa plantations creating. The turnover of such biotope should be faster and very short if abandoned. Extinction of local tree species at the expense of cocoa starts with their destruction by felling or burning when cocoa trees become adults and need full sun for well fruiting. As the main features of the natural vegetation at Scio site, where such vegetation remains in our study areas, we assessed the same richness in the natural forest patches (Table 2) than Nusbaumer et al. (2005) despite differences in data collecting methods, plots’ locations and ten years interval time between both studies. Scio’s α-diversity is similar to those of Korup forest in Cameroon and, higher than the average 74±9 species per hectare documented by Kouamé (1998) in Haut-Sassandra protected semi-
deciduous forest (Figure 1) and those 64 species of the Ituri forest in DR Congo (Ghazoul and Sheil, 2010). But it is as far poorer than Yasuni forest in Ecuador and Pasoh forest in Peninsular Malaysia where the richness of a hectare plot is set at 251 and 206 species respectively (Ghazoul and Sheil, 2010). A larger interval of 46-180 species of trees with DBH ≥ 10 cm in 3 ha plots was documented by Sambuichi and Haridasan (2007) in Southern region of Brazil. Parmentier et al. (2007) attributed the lower tree α-diversity of African rainforests in comparison to Amazonian forests to climate variation in both regions. Shannon-Wiener’s index values in Scio natural forest patches and undergrowth cleared forest plots (Table 2) fall within the 3.73-4.36 values of surrounding forest patches (Bakayoko, 2005) and the 3.31-4.22 values of forest in Southern region of Brazil (Sambuichi and Haridasan, 2007) whereas they are higher than the 1.6-3.0 values of forest in Yapo region, Eastern Côte d’Ivoire (Vroh Bi, 2013). The site effect documented by the ANOVA (Table 3) could be explained by the difference in original flora as both protected areas belong to two types of Ivorian rainforest (Kouamé and Zoro Bi, 2010).

Conclusion

Teak plantations created by forestry service and cash crop plantations in both Duekoué and Scio classified forests led to the decreasing of richness and diversity of woody plant individuals with DBH≥10 cm in accordance with the hypothesis of this paper. These impacts vary with the cash crop nature and the site separately but they are invariably together. When the forest undergrowth is just cleared for shrubs and lianas, the richness and diversity of individuals with DBH≥10 cm of Scio forest still being similar to those of the natural forest and its turnover should be faster if abandoned. In both Duekoué and Scio forest areas, coffee plantations where some natural trees survive and other exotic trees are introduced had higher richness and diversity of woody plant individuals with DBH≥10 cm among plantations. The rubber and teak plantations where few natural trees survive had the lowest richness and diversity of such category of plants.

Due to these results, we suggest to the Forestry Service 1) to remove all the cash crop plantations from Ivorian classified forests, 2) to circumscribe Teak and other wood plantations into some areas of these forests and 3) to promote the turnover of the less degraded areas in view to increase both richness and diversity of the Ivorian classified forests.

Conflict of Interest

The authors have declared that there is no conflict of interest.

ACKNOWLEDGEMENTS

We are grateful to the Headquarter of the Forestry Service in Côte d’Ivoire (SODEFOR) for authorization to collect data in its patrimony. We thank Cmdt Y. E. Amonkou and Yéboua, Cnl Fêtè, B. Méda and Z. Dabiré for their help in the field, and Dr. A. Lebbie and Mr E. A. Boakye for language corrections. The anonymous referees are thanked for their constructive comments that will help to improve this manuscript.

REFERENCES

Ahimin AO (2006). Determination of areas containing high value for conservation in the Guinean area of Côte d’Ivoire. DEA, Univ. Cocody-Abidjan, 71pp.
Aké ASSI L (2002). Flora of Côte d’Ivoire: Systematic catalog, Biogeography and Ecology. I. Boissiera 57, 396 pp. II. Boissiera 58, 401 pp.
Aubréville A (1936). Forest Flora of Côte d’Ivoire. CFTT Nogent-sur-Marne.
Bakayoko A (2005). Influence of forest fragmentation on the floristic composition floristique and plant structure in South-West Côte d’Ivoire. Doct. Thesis Lab. Bot. Univ. Cocody-Abidjan, 229 pp.
Bar-Hen A (1998). Some statistical methods for forest devices' analysis. CIRAD-Forêt, 110pp.
Beer J (1987). Advantages, disadvantages and desirable characteristics of shade trees for coffee, cacao and tea. Agrofor. Syst. 5:3-13.
Beukema H, Danielsen F, Vincent G, Hardwiioto S, van Andel J (2007). Plant and bird diversity in rubber agroforests in the lowlands of Sumatra, Indonesia. Agrofor. Syst. 70:217-242.
Bisseleua D, Hervé B, Vidal S (2008). Plant biodiversity and vegetation structure in traditional cocoa forest gardens in southern Cameroon under different management. Biodivers. Conserv. 17:1821-1835.
Blanc P (2002). To be plant in the shade of tropical forests. Nathan/VUEF, 432pp.
BNETD (2010). Land Use Map of the tropical rainforest zone of Côte d’Ivoire in 2010. Scale 1/500000°
Burger K, Smit HP (1998). Prospects for natural rubber after the crisis in Asia. Econ. Soc. Inst., Free University, Amsterdam, The Netherlands.
Burger K, Smit HP (2000). Natural rubber in the new millennium, policies and projections. Econ. Soc. Inst., Free University, Amsterdam, the Netherlands.
Chatelain C, Tao H, Gautier L, Spichiger R (2004). Forest cover changes in Côte d’Ivoire and Upper Guinea. In: Poorter L, Bongers F, Kouamé FN, Hawthorne WD (eds) Biodiversity of West African forests. An ecological Atlas of woody plant species. CABl, UK, pp. 15-32.
CFTT (1989). Memento of forestry. Minist. Cooperat. Devel., Paris, 1266pp.
Dao H (1999). Knowledge of the environment and geographical information systems: the case of deforestation in Côte d’Ivoire. Doct. Thesis, Univ. Geneva, 370pp.
De Koning J (1983). The Banco forest. I. The forest. II. The flora. Wageningen Agr. Univ., 1077pp.
Donald PF (2004). Biodiversity impacts of some agricultural commodity production systems. Conserv. Biol. 18(1):17-37.
Eldin M (1971). The climate. In: Avenard JM, Eldin E, Girard G, Sircoulon J, Tchouèbeuf P, Guillamaud J-L, Adjanoohon E, Perraud A (eds), The natural milieu of Côte d'Ivoire. ORSTOM, pp. 73-108.
Faria DR, Laps R, Baumgarten J, Cetra M (2006). Bat and bird assemblages from forests and shade cacao plantations in two contrasting landscapes in the Atlantic Forest of southern Bahia, Brazil. Biodivers. Conserv. 15:587-612.
Ruf F, Schroth G (2004). Chocolate forests and monocultures: a historical review of cocoa growing and its conflicting role in tropical deforestation and forest conservation. In: Schroth G, da Fonseca GAB, Harvey CA, Gascon C, Vasconcelos HL, Izac AMN (eds) Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington, D.C., pp. 107-134.

Sambuichi RHR, Haridasan M (2007). Recovery of species richness and conservation of native Atlantic forest trees in the cacao plantations of southern Bahia in Brazil. Biodivers. conserv. 16:3681-3701.

Scherrer B (1984). Comparison of averages of several independent samples. In: Morin G (eds) Biostatistics. pp. 422-463.

Schroth G, Fonseca G, Harvey CA, Gascon C, Vasconcelos H, Izac AMN (2004). Agroforestry and biodiversity conservation in tropical landscapes. Island Press, Washington DC, USA and London, UK.

Schroth G, Harvey CA (2007). Biodiversity conservation in cocoa production landscapes: an overview. Biodiv. conserv. 16:2237-2244.

Siebert SF (2002). From shade to sun-grown perennial crops in Sulawesi, Indonesia:implications for biodiversity conservation and soil fertility. Biodivers. conserv. 11:1889-1902.

Shannon CE, Wiener W (1949). The mathematical theory of communication. University of Illinois press, Urbana, Illinois, pp. 1-117.

Simpson EH (1949). Measurement of diversity. Nat. 163:688.

Smit HP, Vogelvang E (1997). Changing interactions on markets for competing commodities: the case of natural and synthetic rubber prices. Serie Research Memoranda 23. Vrije Universiteit, Amsterdam, The Netherlands.

SODEFOR (1994). Consolidation plan of the Duekoué classified forest. Report 72pp.

SODEFOR (1996). Consolidation plan of the Scio classified forest. Report 81pp.

Sonwa DJ, Weise SF, Tchatat M, Nkongmeneck BA, Adesina AA, Jansens MJJ (2007). Diversity of plants in cocoa agroforests in the humid forest zone of Southern Cameroon. Biodivers. Conserv. 16:2385-2400.

Steffan-Dewenter I, Kessler M, Barkmann J, Bos M, Buchori D, Erasmi S, Faust H, Gerold G, Glenk K, Gradstein RS, Guhardja E, Harteved M, Hertel D, Hohn P, Kappas M, Kohler S, Leuschner C, Maertens M, Marggraf R, Migge-Kleian S, Mogaia J, Pitopang R, Schafer M, Schwarz S, Sporn GS, Steingrebe A, Tjitrosoedirjo SS, Tjitrosoemito S, Twele A, Weber R, Woltmann L, Zeller M, Tscharntke T (2007). Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification. PNAS 104:4973-4978.
Appendix 1. Plots coordinates on the two first axes of the factorial analysis with Statistica 7.1 software.

Group	Plots	Factor 1	Factor 2	Group	Plots	Factor 1	Factor 2
	FDEFS1	-0.107	-0.039	PCAFS9	0.206	0.462	
	FDEFS2	-0.139	-0.181	PCAFD1	0.256	0.563	
	FDEFS3	-0.158	-0.151	PCAFD4	0.256	0.563	
	FDEFS4	-0.108	-0.093	PCAFD5	0.227	0.689	
	FDEFS5	-0.161	-0.179	PCAFD6	0.168	0.574	
	FDEFS6	-0.156	-0.148	PCAFD7	0.283	0.707	
	FDEFS7	-0.136	-0.077	PCAFD8	0.250	0.654	
	FDEFS8	-0.140	-0.175	PCAFS1	0.291	0.603	
	FDEFS9	-0.176	-0.196	PCAFS2	0.298	0.712	
	FDEFS10	-0.127	-0.075	PCAFS3	0.227	0.689	
	FNBS1	-0.123	-0.081	PCAFS4	0.301	0.621	
	FNBS2	-0.175	-0.185	PCAFS5	0.175	0.583	
	FNBS3	-0.155	-0.130	PCAFS6	0.238	0.744	
	FNBS4	-0.120	-0.153	PCAFS7	0.168	0.557	
	FNBS5	-0.118	-0.146	PCAFS8	0.283	0.707	
	FNBS6	-0.072	-0.078	PCAFS10	0.222	0.607	
	FNBS7	-0.157	-0.128	PHEVD2	0.208	0.310	
	FNBS8	-0.154	-0.151	PHEVD2	0.262	0.440	
	FNBS9	-0.159	-0.170	PHEVD3	0.714	0.458	
	FNBS10	-0.154	-0.139	PHEVD9	0.639	0.361	
	PHEVD1	-0.002	0.149	PCAFD10	0.659	0.506	
	PHEVD3	-0.002	0.149	PCAOD1	0.665	-0.173	
	PHEVD4	-0.002	0.149	PCAOD3	0.572	-0.202	
	PHEVD5	-0.002	0.149	PCAOD4	0.668	0.031	
	PHEVD6	-0.002	0.149	PCAOD5	0.760	-0.179	
	PHEVD7	0.013	0.115	PCAOD6	0.679	-0.304	
	PHEVD8	-0.002	0.149	PCAOD7	0.673	0.024	
	PHEVD9	-0.002	0.149	PCAOD8	0.627	-0.222	
	PHEVD10	-0.002	0.149	PCAOD9	0.673	0.024	
	PTECD1	-0.017	0.018	PCAOD10	0.582	-0.216	
	PTECD2	-0.048	-0.028	PCAOS3	0.647	-0.341	
	PTECD3	0.012	0.143	PCAOS6	0.647	-0.341	
	PTECD4	-0.017	0.018	PCAOS9	0.534	-0.224	
	PTECD5	0.003	0.022	PCAOD2	0.885	-0.384	
	PTECD6	-0.003	0.019	PCAOS1	0.885	-0.384	
	PTECD7	-0.017	0.018	PCAOS2	0.885	-0.384	
	PTECD8	-0.048	-0.028	PCAOS4	0.885	-0.384	
	PTECD9	0.010	0.106	PCAOS5	0.885	-0.384	
	PTECD10	-0.019	0.013	PCAOS7	0.885	-0.384	
	PTECD11			PCAOS8	0.885	-0.384	
	PTECD12			PCAOS10	0.885	-0.384	
	PTECD13			PCAOS9	0.885	-0.384	
	PTECD14			PCAOS8	0.885	-0.384	
	PTECD15			PCAOS7	0.885	-0.384	
Appendix 2. Frequencies, origins and uses of shrubs and trees with DBH≥10 cm assessed in biotopes of Duekoué and Scio forests.

Taxa	FDEFS	FNBAS	PCAFD	PCAFS	PCAOD	PCAOS	PHEVD	PTECD	Origin	Uses
Aidia genipiflora (DC.) Dandy	3	1							Natural	
Albizia adiantifolia (Schum.) W.F.Wight	4								Natural	
Albizia gluterrima (Schum. and Thonn.) Benth.	3	1	2						Natural	Wood
Albizia zygia (DC.) J.F.Macbr.	3	2	1						Natural	
Amphimas pterocarpoides Harms	3	5							Natural	Wood
Anthonotha fragrans (Bak.f.) Exell and Hillcoat	2								Natural	
Anthonotha macrophylla P. Beauv.	5								Natural	
Antiaris toxicaria Loes. var. *africana* C.C.Berg	3								Natural	Wood
Antrocyon microstel A.Chev. and Guill.	2								Natural	
Baphia nitida Lodd.	6	4							Natural	
Baphia pubescens Hook.f.	9	8							Natural	
Belonophora hypoglaucua (Welw. ex Hiern) A.Chev.	2								Natural	
Bliigma unijugata Bak.	3								Natural	
Bliigia welwitschii (Hiern) Radlk.	2								Natural	
Bombax brevicuspe Sprague	4								Natural	Wood
Bombax buonopozense P. Beauv.	4								Natural	Edible
Bussea occidentalis Hutch.	2								Natural	
Caloncoba gigiana (Sprague) Gilg	4								Natural	
Calpocalyx Aubrevillei Pellegr.	5								Natural	
Calpocalyx brevibacteatus Harms	4								Natural	
Ceiba pentandra (L.) Gaertn.	1								Natural	Wood, edible
Celtis adolfi-fridericii Engl.	8								Natural	
Celtis mildbraedii Engl.	9	9							Natural	
Celtis zenkeri Engl.	3	8							Natural	
Christiana africana DC.	1								Natural	
Chrysophyllum perpuschrum Hutch. and Dalz.	8	5							Natural	
Chrysophyllum taiense Aubrév. and Pellegr.	3	7							Natural	
Cleistopholis patens (Benth.) Engl. and Diels	4								Natural	
Coffee canephora Froehn. (= Coffee)	1	1							Exotic	Crop
Cola caricaefolia (G.Don) Schumann	2								Natural	
Cola lateritia Schumann	8	5							Natural	Edible
Cola nitida (Vent.) Schott and Endl.	5	5							Natural	
Cordia guineensis Schum. and Thonn.	2								Natural	Medicine
Appendix 2. Contd.

Common Name	Code	Natural/Exotic	Use
Cordia platythyrsa Bak.	3	Natural	craft
Corynanthe pachyceras Schumann	3	Natural	
Dacryodes klaineana (Pierre) Lam	1	Natural	
Desplatsia dewevrei (De Wild. and Th.Dur.) Burret	3	Natural	
Diospyros canaliculata De Wild.	3	Natural	
Diospyros ferrea (Willd.) Bakh.	1	Natural	
Diospyros vignei F.White	1	Natural	
Diospyros viridicans Hiern	1	Natural	
Discoglypremna caloneura (Pax) Prain	2	Natural	
Distemonanthus benthamianus Baill.	4	Natural	Wood
Drypetes chevalieri Beille	1	Natural	
Elaeis guineensis Jacq.	3	Exotic	Edible, cosmetic
Entandrophragma angolense (Welw.) C. DC.	1	Natural	Wood
Entandrophragma cylindricum (Sprague) Srague	7	Natural	Wood
Entandrophragma utile (Dawe and Sprague) Sprague	3	Natural	Wood
Eribroma oblongum (Mast.) Pierre ex Germain	6	Natural	Wood
Erythrophleum ivorense A.Chev.	2	Natural	craft
Erythroxylum mannii Oliv.	1	Natural	
Euadenia trifoliolata (Schum. and Thonn.) Oliv.	1	Natural	
Ficus exasperata Vahl	1	Natural	
Funtumia africana (Benth.) Stapf	5	Natural	craft
Funtumia elastica (Preuss) Stapf	9	Natural	craft
Glyphaea brevis (Spreng.) Monachino	6	Natural	
Greenwayodendron oliveri (Engl.) Verdc.	4	Natural	Medicine
Guarea cedrata (A.Chev.) Pellegr.	3	Natural	
Guibourtia ehie (A.Chev.) J.Léonard	1	Natural	Wood
Gymnostemon zaizou Aubréd. and Pellegr.	1	Natural	Medicine
Harungana madagascariensis Lam. ex Poir.	3	Natural	Medicine
Hevea brasiliensis Müll.Arg. (= Rubber)	1	Exotic	Crop
Holoptelea grandis (Hutch.) Mildbr.	2	Natural	
Irvingia gabonensis (O’ Rorke) Baill.	3	Natural	Edible
Keayodendron bridelioides (Hutch. and Dalz.) Léandri	3	Natural	
Appendix 2. Contd.

Species	Quantity	Habitat
Klainedoxa gabonensis Pierre	4	Natural
Lannea welwitschii (Hiern) Engl.	3	Natural
Lecaniodiscus cupanioides Planch.	6	Natural
Maesobotrya barteri (Baill.) Hutch.	6	Natural
Mangifera indica L.	6 4 3 1	Exotic Edible
Mansonia altissima (A.Chev.) A.Chev.	2	Natural Wood
Maranthes aubrevillei (Pellegr.) Prance	2	Natural
Mareya micrantha (Benth.) Müll.Arg.	6 1	Natural Medicine
Microdesmis keayana J.Léonard	4	Natural
Milicia excelsa (Welw.) Berg	4 2 4 3	1 Natural Wood
Milletia zechiana Harms	8 3 1	Natural
Monodora tenuifolia Benth.	2	Natural
Musa paradisiaca L.		Exotic Food
Musanga cecropioides R.Br.	2	Natural
Myrianthus arbores P.Beauv.	8	Natural Edible
Myrianthus libericus Rendle	3 4	Natural Edible
Napoleonaea vogelii Hook. and Planch.	3	Natural Edible, craft
Nauclea diderrichii (De Wild. and Th.Dur.) Merrill	2	Natural Wood
Nesogordonia papaverifera (A.Chev.) Cap.	6 9	Natural Wood
Newbouldia laevis (P. Beauv.) Seem. ex Bureau	3 5	Natural Edible, craft
Ochthocosmus africanus Hook.f.	3	Natural
Ongokea gore (Hua) Pierre	2	Natural Medicine
Ophiobotrys zenkeri Gilg	3	Natural
Panda oleosa Pierre	5 5	Natural
Parkia bicolor A.Chev.	3 2	Natural
Persea americana Mill.	1 2 4	Exotic Edible
Petersianthus macrocarpus (P. Beauv.) Liben	9 8	2 Natural Wood
Piptadeniastrum africanum (Hook.f.) Brenan	8 1	Natural Wood
Placodiscus attenuatus J.B.Hall	1	Natural
Pteleopsis hyloendron Mildbr.	2	Natural
Pterygota macrocarpa Schumann	3	Natural Wood
Pycnanthus angolensis (Welw.) Warb.	2 2	Natural Wood
Raphia hookeri Mann and Wendl.	4	Natural Edible
Ricinodendron heudelotii (Baill.) Pierre ex Heckel	1 1	Natural Edible
Appendix 2. Contd.

Species	Code	Natural/Exotic	Wood/craft/Crop
Rinorea convallarioides (Bak.f.) Eyles	1	Natural	
Rothmannia hispida (Schumann) Fagerl.	4	Natural	
Rothmannia urecelliformis (Hiern) Robyns	3	Natural	
Samanea dinklagei (Harms) Keay	3	Natural	
Scottellia klaineana Pierre var. mimfiensis Pellegr.	4	Natural Wood	
Sterculia rhinopetala Schumann	5	Natural	Wood
Sterculia tragacantha Lindl.	1	Natural	
Stereospermum acuminatissimum Schumann	3	Natural	
Strombosia pustulata Oliv. var. pustulata	7	Natural	
Synsepalum afzelii (Engl.) Pennington	3	Natural	
Tectona grandis L.f. (= Teak)	1	Exotic	Wood
Terminalia ivorensis A.Chev.	3	Natural	Wood
Terminalia superba Engl. and Diels	3	1 Natural	Wood
Tetrapleura tetraptera (Schum. and Thonn.) Taub.	3	Natural	craft
Theobroma cacao L. (= Cocoa)	4	1 1 1	Crop
Tricalysia macrophylla Schumann	7	Natural	
Trichilia martineaui Aubrév. and Pellegr.	2	Natural	
Trichilia megalantha Harms	3	Natural	
Trichilia monadelpha (Thonn.) J.J.De Wild.	3	Natural	
Trichilia prieureana A.Juss.	7	Natural	
Triplochiton scleroxylon Schumann	3	4	Natural Wood
Uapaca guineensis Müll.Arg.	5	Natural	
Vitex ferruginea Schum. and Thonn.	2	Natural	
Vitex micrantha Görke	3	Natural	
Xyilia evansi Hutch.	5	Natural	Wood
Xylopia quintasii Engl. and Diels	3	Natural	
Xylopia villosa Chipp	6	2	Natural
Zanthoxylum gilettii (Engl.) Waterman	3	Natural	Wood
Zanthoxylum leprieurii Guill. and Perr.	5	Natural	
Total	58	85 12 13 7 4 4 12	