HOMOTOPY TYPES OF GAUGE GROUPS
OF PU(p)-BUNDLES OVER SPHERES

SIMON REA

ABSTRACT. We examine the relation between the gauge groups of SU(n)- and PU(n)-bundles over S^2i, with 2 \leq i \leq n, particularly when n is a prime. As special cases, for PU(5)-bundles over S^4, we show that there is a rational or p-local equivalence \mathcal{G}_k \simeq (p) \mathcal{G}_l for any prime p if, and only if, (120, k) = (120, l), while for PU(3)-bundles over S^6 there is an integral equivalence \mathcal{G}_k \simeq (l) \mathcal{G}_l if, and only if, (120, k) = (120, l).

KEYWORDS: Gauge groups; Homotopy types; Samelson products.
2020 Mathematics Subject Classification: Primary 55P15; Secondary 55Q05.

1. Introduction

Let G be a topological group and X a space. The gauge group \mathcal{G}(P) of a principal G-bundle P over X is defined as the group of G-equivariant bundle automorphisms of P which cover the identity on X. A detailed introduction to gauge groups can be found in [8, 16]. Provided P is understood, we will use the notation \mathcal{G}(G) if we need to emphasize the structure group G.

The following problem is of interest: having fixed a topological group G and a space X, classify the possible homotopy types of the gauge groups \mathcal{G}(P) of principal G-bundles over X.

Crabb and Sutherland showed in [3] that if G is a compact, connected, Lie group and X is a connected, finite complex, then the number of distinct homotopy types of \mathcal{G}(P), as P ranges over all principal G-bundles over X, is finite. This is often in contrast with the fact that the number of isomorphism classes of principal G-bundles over X may be infinite. However, their methods did not lead to an enumeration of the classes of gauge groups. Classification results require a different kind of analysis.

The first result of this kind was obtained by Kono [12] in 1991. Using the fact that principal SU(2)-bundles over S^4 are classified by k \in \mathbb{Z} \cong \pi_3(SU(2)) and denoting by \mathcal{G}_k the gauge group of the principal bundle P_k \to S^4 corresponding to the integer k, Kono showed that there is a homotopy equivalence \mathcal{G}_k \simeq \mathcal{G}_l if, and only if, (12, k) = (12, l), where (m, n) denotes the greatest common divisor of m and n. It thus follows that there are precisely six homotopy types of SU(2)-gauge groups over S^4.
In this letter, we generalise certain results relating the classification of $\text{PU}(n)$-gauge groups to that of $\text{SU}(n)$-gauge groups from \cite{10} for the case $n = 2$, and from \cite{7} for the case $n = 3$.

Samelson products play a crucial role in the homotopy classification of gauge groups. In Section \cite{3} we show that the Samelson products on $\text{SU}(p)$ and $\text{PU}(p)$, with $p \geq 3$ a prime, are related as follows.

Theorem 1.1. The orders of the Samelson products $\langle \epsilon_i, 1 \rangle : S^{2i-1} \wedge \text{PU}(p) \to \text{PU}(p)$ and $\langle \delta_i, 1 \rangle : S^{2i-1} \wedge \text{SU}(p) \to \text{SU}(p)$ coincide.

In Section \cite{3} we prove the following result, which gives a sufficient condition for certain homotopy invariants of $\text{SU}(n)$- and $\text{PU}(n)$-gauge groups to coincide.

Theorem 1.2. Let X be a connected space such that $[\Sigma X, \text{SU}(n)] \cong 0$. Then there is an isomorphism of groups $[\Sigma X, G_k(\text{PU}(n))] \cong [\Sigma X, G_k(\text{SU}(n))]$.

As special cases of our results, we obtain the following complete classifications.

Theorem 1.3. For $\text{PU}(5)$-bundles over S^4, it is the case that
(a) if $G_k(\text{PU}(5)) = G_l(\text{PU}(5))$, then $(120, k) = (120, l)$;
(b) if $(120, k) = (120, l)$, then $G_k(\text{PU}(5)) \cong G_l(\text{PU}(5))$ when localised rationally or at any prime.

Theorem 1.4. For $\text{PU}(3)$-bundles over S^6, we have $G_k(\text{PU}(3)) \cong G_l(\text{PU}(3))$ if, and only if, $(120, k) = (120, l)$.

2. Homotopy types of $\text{PU}(n)$-gauge groups

Definition 2.1. The projective unitary and special unitary groups are defined by quotienting out the centres. That is, one defines

$$\text{PU}(n) := \text{U}(n)/\text{U}(1) \quad \text{and} \quad \text{PSU}(n) := \text{SU}(n)/(\mathbb{Z}/n\mathbb{Z}).$$

It is well known that there is a homotopy equivalence $\text{PU}(n) \cong \text{PSU}(n)$ for each n, and henceforth we shall not distinguish between the two.

For each $2 \leq i \leq n$, the set of isomorphism classes of principal $\text{PU}(n)$-bundles over S^{2i} is in bijection with the set

$$[S^{2i}, B\text{PU}(n)] \cong \pi_{2i}(B\text{PU}(n)) \cong \pi_{2i-1}(\text{PU}(n)) \cong \mathbb{Z}.$$

Let $\epsilon_i : S^{2i-1} \to \text{PU}(n)$ denote a generator of $\pi_{2i-1}(\text{PU}(n))$. Then, each isomorphism class is represented by the bundle $P_k \to S^{2i}$ induced by pulling back the universal $\text{PU}(n)$-bundle along the classifying map $k\overline{\epsilon}_i : S^{2i} \to B\text{PU}(n)$, where $\overline{\epsilon}_i$ denotes the adjoint of ϵ_i and generates $\pi_{2i}(B\text{PU}(n))$.

Let G_k denote the gauge group of $P_k \to S^{2i}$. By \cite{14}, there is a homotopy equivalence $B(G_k) \cong \text{Map}(S^{2i}, B\text{PU}(n))$, the latter space being the connected component of $\text{Map}(S^{2i}, B\text{PU}(n))$ containing the classifying map $k\overline{\epsilon}_i$.
The evaluation fibration
\[\text{Map}^*_k(S^{2i}, BPU(n)) \to \text{Map}^*_k(S^{2i}, BPU(n)) \xrightarrow{ev} BPU(n) \]
extends to a homotopy fibration sequence
\[\cdots \to \mathcal{G}_k \to PU(n) \to \text{Map}^*_k(S^{2i}, BPU(n)) \to B\mathcal{G}_k \to BPU(n). \]

By [17], there is a homotopy equivalence
\[\text{Map}^*_k(S^{2i}, BPU(n)) \simeq \text{Map}^*_k(S^{2i}, BPU(n)) = \Omega_0^{2i} BPU(n) = \Omega_0^{2i-1} PU(n), \]
leading to the following homotopy fibration sequence
\[\mathcal{G}_k \to PU(n) \xrightarrow{\partial_k} \Omega_0^{2i-1} PU(n) \to B\mathcal{G}_k \to BPU(n), \]
which exhibits the gauge group \(\mathcal{G}_k \) as the homotopy fibre of the map \(\partial_k \).

By the pointed exponential law, there is a bijection
\[[PU(n), \Omega_0^{2i-1} PU(n)] \cong [S^{2i-1} \wedge PU(n), PU(n)] \]
Let \(\overline{\partial}_k : S^{2i-1} \wedge PU(n) \to PU(n) \) denote the adjoint of \(\partial_k : PU(n) \to \Omega_0^{2i-1} PU(n) \). By [9 Theorem 2.6], there is a homotopy \(\overline{\partial}_k \simeq \langle k \epsilon_1, 1 \rangle \), where 1 denotes the identity map on PU(n). By the bilinearity of the Samelson product, we find
\[\overline{\partial}_k \simeq \langle k \epsilon_1, 1 \rangle \simeq k \langle \epsilon_1, 1 \rangle \simeq k \overline{\epsilon}_1, \]
and hence, taking adjoints once more, \(\partial_k \simeq k \partial_1 \). Thus, every one of the gauge groups is the homotopy fibre of the single map \(\partial_1 \) post-composed with the appropriate power map on \(\Omega_0^{2i-1} PU(n) \). Hence, if \(\partial_1 \) can be determined to have finite order in \([PU(n), \Omega_0^{2i-1} PU(n)]\), then the following lemma applies.

Lemma 2.2 (Hamenaka, Kono [5]). Let \(X \) be a connected CW-complex and let \(Y \) be an H-space with a homotopy inverse. Suppose that \(f \in [X, Y] \) has finite order \(n \). Then, for any \(k, l \in \mathbb{Z} \) such that \((n, k) = (n, l) \), the homotopy fibres of \(kf \) and \(lf \) are homotopy equivalent when localised rationally or at any prime. \(\Box \)

Additionally, in the special case of principal PU(n)-bundles over \(S^{2n} \), as the homotopy groups of \(\Omega_0^{2n-1} PU(n) \) are all finite, the following stronger lemma applies.

Lemma 2.3 (Hamenaka, Kono [5]). Let \(X \) be a connected CW-complex and let \(Y \) be an H-space such that \(\pi_j(Y) \) is finite for all \(j \). Let \(f \in [X, Y] \) be such that \(nf \simeq * \) for some finite \(n \) and let \(k, l \in \mathbb{Z} \) satisfy \((n, k) = (n, l) \). Then, there exists a homotopy equivalence \(h : Y \to Y \) satisfying \(hkf \simeq lf \). \(\Box \)

Note that the order of \(\partial_1 \) coincides with the order of \(\langle \epsilon_1, 1 \rangle \).
3. Samelson products on PU(p)

Let $\delta_1: S^{2i-1} \to SU(n)$ denote the generator of $\pi_{2i-1}(SU(n)) \cong \mathbb{Z}$ corresponding to the generator ϵ_i of $\pi_{2i-1}(PU(n))$. That is, such that $q_*(\delta_1) = \epsilon_i$, where q denotes the quotient map $q: SU(n) \to PU(n)$.

In this section we wish to compare the orders of the Samelson products $\langle \delta_1, 1 \rangle$ and $\langle \epsilon_1, 1 \rangle$ on $SU(n)$ and $PU(n)$, respectively. First, observe that there is a commutative diagram

\[
\begin{array}{ccc}
S^{2i-1} \wedge SU(n) & \xrightarrow{\langle \delta_1, 1 \rangle} & SU(n) \\
\downarrow{1 \wedge q} & & \downarrow{q} \\
S^{2i-1} \wedge PU(n) & \xrightarrow{\langle \epsilon_1, 1 \rangle} & PU(n)
\end{array}
\]

and recall the following well known property of the map q.

Lemma 3.1. The quotient map $q: SU(n) \to PU(n)$ induces a p-local homotopy equivalence $SU(n) \simeq_{(p)} PU(n)$ for any prime p which does not divide n. \hfill \Box

Lemma 3.2. If p does not divide n, then the p-primary components of the orders of the Samelson products $\langle \delta_1, 1 \rangle$ and $\langle \epsilon_1, 1 \rangle$ coincide.

Proof. Let p be a prime which does not divide n. Then q is a p-local homotopy equivalence by Lemma 3.1 and hence the commutativity of (*) yields

\[
\langle \delta_1, 1 \rangle_{(p)} = q_{(p)}^{-1} \circ \langle \epsilon_1, 1 \rangle_{(p)} \circ (1 \wedge q_{(p)}),
\]

so the p-primary components of the orders of $\langle \delta_1, 1 \rangle$ and $\langle \epsilon_1, 1 \rangle$ coincide. \hfill \Box

Hence, when n is prime, the orders of $\langle \delta_1, 1 \rangle$ and $\langle \epsilon_1, 1 \rangle$ coincide up to at most their n-primary component.

Lemma 3.3. The quotient map $q: SU(n) \to PU(n)$ induces an isomorphism

\[
q_*: [S^{2i-1} \wedge SU(n), SU(n)] \to [S^{2i-1} \wedge SU(n), PU(n)].
\]

Proof. Recall that $q: SU(n) \to PU(n)$ fits into a homotopy fibration sequence

\[
\cdots \to \mathbb{Z}/n\mathbb{Z} \to SU(n) \xrightarrow{q} PU(n) \to B(\mathbb{Z}/n\mathbb{Z}).
\]

Since $\mathbb{Z}/n\mathbb{Z}$ is discrete, applying the functor $[S^{2i-1} \wedge SU(n), -]$ yields

\[
\cdots \to 0 \to [S^{2i-1} \wedge SU(n), SU(n)] \xrightarrow{q_*} [S^{2i-1} \wedge SU(n), PU(n)] \to 0. \hfill \Box
\]

Corollary 3.4. Let p be a prime. If p^k divides the order of $\langle \delta_1, 1 \rangle$ for some $k \geq 1$, then the order of $\langle \epsilon_1, 1 \rangle$ is at least p^k.

Proof. If p^k divides the order of $\langle \delta_1, 1 \rangle$, then p^k also divides the order of the composite $q \circ \langle \delta_1, 1 \rangle_{(p)}$ by Lemma 3.3. It then follows, by the commutativity of (*), that the order of $\langle \epsilon_1, 1 \rangle_{(p)}$ is at least p^k. \hfill \Box
Hence, the order of $\langle \delta, 1 \rangle$ certainly divides that of $\langle \epsilon_i, 1 \rangle$. For the remainder of this section, we shall restrict to considering $\text{PU}(n)$ when n is an odd prime p.

Since the universal cover of $\text{PU}(p)$ is $\text{SU}(p)$ and $H_2(\text{SU}(p); \mathbb{Z})$ is torsion-free, by [11] we have the following decomposition of $\text{PU}(p)$.

Lemma 3.5. There is a p-local homotopy equivalence

$$\text{PU}(p) \simeq_{(p)} L \times \prod_{j=2}^{p-1} S^{2j-1}$$

where L is the lens space $S^{2p-1}/(\mathbb{Z}/p\mathbb{Z})$. \[\square\]

Let $\alpha : L_{(p)} \to \text{PU}(p)_{(p)}$ be the inclusion. Then we can write the equivalence of Lemma [3.5] as

$$L_{(p)} \times \prod_{j=2}^{p-1} S^{2j-1}_{(p)} \xrightarrow{\alpha \times \prod_j s_{(p)}} (\text{PU}(p)_{(p)})^{p-1} \xrightarrow{\mu} \text{PU}(p)_{(p)},$$

where μ is the group multiplication in $\text{PU}(p)_{(p)}$. We note that this composite is equal to the product

$$(\alpha \circ \text{pr}_j) \cdot \prod_{j=2}^{p-1} (\epsilon_j_{(p)} \circ \text{pr}_j)$$

in the group $[L_{(p)} \times \prod_{j=2}^{p-1} S^{2j-1}_{(p)}, \text{PU}(p)_{(p)}]$, where pr_j denotes the projection onto the jth factor.

Lemma 3.6. With the above notation, the localised Samelson product

$$\langle \epsilon_i, 1 \rangle_{(p)} : S^{2i-1}_{(p)} \wedge \text{PU}(p)_{(p)} \to \text{PU}(p)_{(p)}$$

is trivial if, and only if, each of $\langle \epsilon_{i(j)}(p), \alpha \rangle$ and $\langle \epsilon_i, \epsilon_j \rangle_{(p)}$, for $2 \leq j \leq p-1$, are trivial.

Proof. By Lemmas 3.3 and 3.4 in [7], $\langle \epsilon_i, 1 \rangle_{(p)}$ is trivial if, and only if, both $\langle \epsilon_{i(p)}, \alpha \rangle$ and $\langle \epsilon_i, \prod_j \epsilon_j \rangle_{(p)}$ are trivial. Applying the same lemmas to the second factor a further $p - 3$ times gives the statement. \[\square\]

We therefore calculate the groups $[S^{2i-1} \wedge L, \text{PU}(p)]_{(p)}$ and, for $2 \leq j \leq p-1$, the homotopy groups $\pi_{2i+2j-2}(\text{PU}(p))_{(p)}$ in order to get an upper bound on the order of $\langle \epsilon_i, 1 \rangle_{(p)}$.

Lemma 3.7. For $2 \leq i \leq p$ and $2 \leq j \leq p-1$, the elements of $\pi_{2i+2j-2}(\text{PU}(p))_{(p)}$ have order at most p.

Proof. Decomposing $\text{PU}(p)$ as in Lemma [3.5] and noting that $\pi_n(L) \cong \pi_n(S^{2p-1})$ for $n \geq 2$, we have

$$\pi_{2i+2j-2}(\text{PU}(p))_{(p)} \cong \pi_{2i+2j-2} \left(\prod_{k=2}^{p-1} S^{2k-1}_{(p)} \right) \cong \bigoplus_{k=2}^{p-1} \pi_{2i+2j-2}(S^{2k-1})_{(p)},$$
By Toda [21] Theorem 7.1, if \(k \geq 2 \) and \(r < 2p(p-1) - 2 \), the \(p \)-primary component of \(\pi_{(2k-1) + r}(S^{2k-1}) \) is either 0 or \(\mathbb{Z}/p\mathbb{Z} \). Since \(2i + 2j - 2 \leq 4p - 4 \) and

\[
4p - 4 < 2p(p-1) - 2 + (2k-1)
\]

for all \(k \geq 2 \), the statement follows. \(\square \)

Furthermore, we find:

Lemma 3.8. The elements of \([S^{2i-1} \wedge L, PU(p)]_p\) have order at most \(p \).

Proof. By [13], there is a \(p \)-local equivalence

\[
\Sigma L \simeq_p S^{2p} \vee \bigvee_{k=1}^{p-1} p^{2k+1}(p).
\]

where \(p^{2k+1}(p) \) is the mod-\(p \) Moore space given by the cofibre

\[
S^{2k} \overset{p}{\rightarrow} S^{2k} \rightarrow p^{2k+1}(p)
\]

of the degree \(p \) map on the sphere \(S^{2k} \). Note that, by extending the cofibre sequence to the right, we see that \(S^{2i-2} \wedge p^{2k+1}(p) \simeq p^{2k+2i-1}(p) \). Hence, we have

\[
[S^{2i-1} \wedge L, PU(p)]_p \cong \pi_{2i+2p-2}(PU(p))_{(p)} \oplus \bigoplus_{k=1}^{p-1} [p^{2k+2i-1}(p), PU(p)]_{(p)}.
\]

Since \(2i + 2p - 2 \leq 4p - 2 < 2p(p-1) + 1 \) for \(p \geq 3 \), the group \(\pi_{2i+2p-2}(PU(p))_{(p)} \) consists of elements of order at most \(p \) by the same argument as in Lemma 3.7.

On the other hand, by [15] Theorem 7.1, the groups \([p^{2k+2i-1}(p), PU(p)]\) are annihilated by multiplication by \(p \) (since, for any \(m \geq 3 \), the identity on \(P^m(p) \) has order \(p \)), whence the statement. \(\square \)

Lemmas 3.6 to 3.8 combine to give:

Corollary 3.9. The order of the Samelson product

\[
\langle \epsilon_i, 1 \rangle_{(p)} : S^{2i-1}(p) \wedge PU(p)_{(p)} \rightarrow PU(p)_{(p)}
\]

is at most \(p \). \(\square \)

We now have all the ingredients necessary to prove Theorem 1.1.

Proof of Theorem 1.1. Consider the following commutative diagram

\[
\begin{array}{ccc}
S^{2i-1} \wedge S^{2(p-i)+1} & \xrightarrow{\langle \eta_i, \eta_{p-i-1} \rangle} & U(p) \\
\downarrow{1 \wedge \delta_{p-i-1}} & & \uparrow{} \\
S^{2i-1} \wedge SU(p) & \xrightarrow{\langle \delta_i, 1 \rangle} & SU(p)
\end{array}
\]

where \(\iota : SU(p) \rightarrow U(p) \) is the inclusion and \(\eta_i := L_i(\delta_i) \). By Bott [2], the map \(\langle \eta_i, \eta_{p-i-1} \rangle \) is non-trivial and \(p \) divides its order. Hence, the order of \(\langle \delta_i, 1 \rangle_{(p)} \) is at least \(p \). The result now follows from Lemma 3.2 and Corollaries 3.4 and 3.9. \(\square \)
4. Homotopy invariants of PU(n)-gauge groups

The content of Theorem 1.2 is a straightforward observation about how certain homotopy invariants of SU(n)-gauge groups relate to the corresponding invariants of PU(n)-gauge groups.

Proof of Theorem 1.2 Since $[\Sigma X, SU(n)] \equiv 0$, applying the functor $[\Sigma X, -]$ to the homotopy fibration sequence

$$
\cdots \longrightarrow \mathbb{Z}/n\mathbb{Z} \longrightarrow SU(n) \overset{q}{\longrightarrow} PU(n) \longrightarrow B(\mathbb{Z}/n\mathbb{Z})
$$

shows that $[\Sigma X, PU(n)] \equiv 0$ also.

Applying now the functor $[\Sigma^2 X, -]$ to the homotopy fibration sequence

$$
PU(n) \overset{\partial_k}{\longrightarrow} \Omega_0^{2i-1}PU(n) \longrightarrow B\mathcal{G}_k(PU(n)) \longrightarrow BPU(n)
$$

described in Section 2 as well as to its SU(n) analogue, yields the following commutative diagram

$$
\begin{align*}
[\Sigma^2 X, SU(n)] &\overset{(\partial_k)_*}{\longrightarrow} [\Sigma^2 +1X, SU(n)] &\longrightarrow [\Sigma X, \mathcal{G}_k(SU(n))] &\longrightarrow 0 \\
\downarrow q_* & &\downarrow q_* & \\
[\Sigma^2 X, PU(n)] &\overset{(\partial_k)_*}{\longrightarrow} [\Sigma^2 +1X, PU(n)] &\longrightarrow [\Sigma X, \mathcal{G}_k(PU(n))] &\longrightarrow 0
\end{align*}
$$

where the two leftmost vertical maps are isomorphisms. The statement now follows from the five lemma.

Hamanaka and Kono showed in [5, Theorem 1.2] that, for principal SU(n)-bundles over S^4, the homotopy equivalence $\mathcal{G}_k(SU(n)) \simeq \mathcal{G}_l(SU(n))$ implies that $(n(n^2 - 1), k) = (n(n^2 - 1), l)$. As an application of Theorem 1.2, let us show that the analogue of this result holds for PU(n)-gauge groups.

Corollary 4.1. Let $n > 3$. For principal PU(n)-bundles over S^4, the homotopy equivalence $\mathcal{G}_k(PU(n)) \simeq \mathcal{G}_l(PU(n))$ implies that $(n(n^2 - 1), k) = (n(n^2 - 1), l)$.

Proof. First, suppose that n is even. Note that we have

$$
\pi_{2n-4}(SU(n)) \equiv \pi_{2n-2}(SU(n)) \equiv 0.
$$

Hence, applying Theorem 1.2 with $X = S^{2n-5}$ and $X = S^{2n-3}$, we find

$$
\pi_{2n-4}(\mathcal{G}_k(PU(n))) \equiv \pi_{2n-4}(\mathcal{G}_k(SU(n)))
$$

and

$$
\pi_{2n-2}(\mathcal{G}_k(PU(n))) \equiv \pi_{2n-2}(\mathcal{G}_k(SU(n))).
$$

So the result follows for n even by [3].

When n is odd, we have from [5] that $[\Sigma^{2n-6}CP^2, SU(n)] \equiv 0$. Hence, applying Theorem 1.2 with $X = \Sigma^{2n-7}CP^2$, we find

$$
[\Sigma^{2n-6}CP^2, \mathcal{G}_k(PU(n))] \equiv [\Sigma^{2n-6}CP^2, \mathcal{G}_k(SU(n))].
$$
So the result follows for n odd by [5 Corollary 2.6].\hfill\square

Following the work of [6], Mohammadi and Asadi-Golmankhaneh [14] recently showed that, for $SU(n)$-bundles over S^6, the equivalence $G_k(SU(n)) \simeq G_l(SU(n))$ implies that

\[(n - 1)n(n + 1)(n + 2), k) = ((n - 1)n(n + 1)(n + 2), l).\]

Hence, we also have:

Corollary 4.2. Let $n \geq 3$. For principal $PU(n)$-bundles over S^6, the homotopy equivalence $G_k(NU(n)) \simeq G_l(NU(n))$ implies that

\[(n - 1)n(n + 1)(n + 2), k) = ((n - 1)n(n + 1)(n + 2), l).\]

Proof. For $n > 3$, apply Theorem [1.2] with $X = \Sigma^{2n-3}CP^2$ and the result of [14].

For $n = 3$, apply the functor $[-, PU(3)]$ to the cofibration $S^2 \to CP^2 \to S^4$ to show that $[CP^2, PU(3)] \simeq 0$. Proceeding in the same way as in the proof of Theorem [1.2] one finds that $[CP^2, G_k(NU(3))] \simeq [CP^2, G_k(SU(3))]$. The result now follows from Hamanaka and Kono’s calculation in Section 3 of [6] or from the more general result of [14].\hfill\square

5. Special cases

5.1. $PU(p)$-bundles over S^4. Theriault showed in [20] that, after localisation at an odd prime p and provided $n < (p - 1)^2 + 1$, the order of the Samelson product $\langle \delta_2, 1 \rangle : S^3 \wedge SU(n) \to SU(n)$ is the p-primary component of the integer $n(n^2 - 1)$. It then follows immediately from Theorem [1.1] that:

Corollary 5.1. After localisation at an odd prime, the order of the Samelson product $\langle \epsilon_2, 1 \rangle : S^3 \wedge PU(p) \to PU(p)$ is $p(p^2 - 1)$.

5.2. $PU(5)$-bundles over S^4. In [19], Theriault showed that the order of the Samelson product $\langle \delta_2, 1 \rangle : S^3 \wedge SU(5) \to SU(5)$ is 120. Hence, by Theorem [1.1] the order of $\langle \epsilon_2, 1 \rangle : S^3 \wedge PU(5) \to PU(5)$ is also 120.

Proof of Theorem 1.3. Part (i) follows from Corollary 4.1 while part (ii) follows from Lemma [2.2].\hfill\square

5.3. $PU(3)$-bundles over S^6. Hamanaka and Kono showed in [6] that the order of the Samelson product $\langle \delta_3, 1 \rangle : S^5 \wedge SU(3) \to SU(3)$ is 120. It follows immediately from Theorem [1.1] that the order of $\langle \epsilon_3, 1 \rangle : S^5 \wedge PU(3) \to PU(3)$ is also 120.

Proof of Theorem 1.3. As the homotopy groups $\pi_n(\Omega^2_3 PU(3)) \simeq \pi_{n+5}(PU(3))$ are all finite, the “if” direction follows from Lemma [2.3], while the “only if” direction follows from Corollary 4.2.\hfill\square
6. Concluding remarks

We have shown, particularly with Theorems 1.1 and 1.2, how the close relationship between the groups $SU(p)$ and $PU(p)$ is reflected in the homotopy properties of the corresponding gauge groups. Indeed, it is worth noting that, should further classifications of gauge groups of $SU(p)$-bundles over even-dimensional spheres be obtained, the aforementioned theorems would provide the corresponding results for $PU(p)$-gauge groups as immediate corollaries, provided the original results were arrived at via the standard methods.

We also note that in [7], the $PU(3)$-gauge group G_k is shown to be homotopy equivalent to $\tilde{G}_k \times S^1$, where \tilde{G}_k is a space whose homotopy groups are all finite. This allows the authors to apply Lemma 2.3 and obtain a classification result for G_k that holds integrally. We expect the same result to apply more generally to gauge groups of $PU(n)$-bundles over S^{2n-2}. However, there are currently no other cases, beside that of [7], in which such a result would be applicable.

References

[1] M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), no. 1505, 523–615.
[2] R. Bott, A note on the Samelson product in the classical groups, Comment. Math. Helv. 34 (1960), no. 1, 249–256.
[3] M. C. Crabb and W. A. Sutherland, Counting homotopy types of gauge groups, Proc. London Math. Soc. 81 (2000), no. 3, 747–768.
[4] D. H. Gottlieb, Applications of bundle map theory, Trans. Amer. Math. Soc. 171 (1972), 23–50.
[5] H. Hamanaka and A. Kono, Unstable K^1-group and homotopy type of certain gauge groups, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), no. 1, 149–155.
[6] Homotopy type of gauge groups of $SU(3)$-bundles over S^6, Topology Appl. 154 (2007), no. 7, 1377–1380.
[7] S. Hasui, D. Kishimoto, A. Kono, and T. Sato, The homotopy types of $PU(3)$- and $PSp(2)$-gauge groups, Algebr. Geom. Topol. 16 (2016), no. 3, 1813–1825.
[8] D. Husemoller, Fibre bundles, 3rd ed., Graduate texts in mathematics, vol. 20, Springer-Verlag New York, 1994.
[9] G. E. Lang Jr., The evaluation map and EHP sequences, Pacific J. Math. 44 (1973), no. 1, 201–210.
[10] Y. Kamiyama, D. Kishimoto, A. Kono, and S. Tsukuda, Samelson products of $SO(3)$ and applications, Glasgow Math. J. 49 (2007), no. 2, 405–409.
[11] D. Kishimoto and A. Kono, Mod p decompositions of non-simply connected Lie groups, J. Math. Kyoto Univ. 48 (2008), no. 1, 1–5.
[12] A. Kono, A note on the homotopy type of certain gauge groups, Proc. Roy. Soc. Edinburgh Sect. A 117 (1991), no. 3–4, 295–297.
[13] M. Mimura, G. Nishida, and H. Toda, Localization of CW-complexes and its applications, J. Math. Soc. Japan 23 (1971), no. 4, 593–624.
[14] S. Mohammadi and M. A. Asadi-Golmankhaneh, The homotopy types of $SU(n)$-gauge groups over S^6, Topology Appl. 270 (2019), 106952.
[15] J. A. Neisendorfer, Primary homotopy theory, Memoirs of the American Mathematical Society, vol. 232, American Mathematical Society, 1980.
[16] R. A. Piccinini and M. Spreafico, *Conjugacy classes in gauge groups*, Queen’s papers in pure and applied mathematics, vol. 111, Queen’s University, Kingston, 1998.

[17] W. A. Sutherland, *Function spaces related to gauge groups*, Proc. Roy. Soc. Edinburgh Sect. A 121 (1992), no. 1–2, 185–190.

[18] S. D. Theriault, *The homotopy types of $\text{Sp}(2)$-gauge groups*, Kyoto J. Math. 50 (2010), no. 3, 591–605.

[19] *The homotopy types of $\text{SU}(5)$-gauge groups*, Osaka J. Math. 52 (2015), no. 1, 15–31.

[20] *Odd primary homotopy types of $\text{SU}(n)$-gauge groups*, Algebr. Geom. Topol. 17 (2017), no. 2, 1131–1150.

[21] H. Toda, *On iterated suspensions II*, J. Math. Kyoto Univ. 5 (1966), no. 3, 209–250.