Does pathogen plasticity facilitate host shifts?
de Fine Licht, Henrik Hjarvard

Published in:
PLOS Pathogens

DOI:
10.1371/journal.ppat.1006961

Publication date:
2018

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
de Fine Licht, H. H. (2018). Does pathogen plasticity facilitate host shifts? PLOS Pathogens, 14(5), [e1006961].
https://doi.org/10.1371/journal.ppat.1006961
Does pathogen plasticity facilitate host shifts?

Henrik H. De Fine Licht*

Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark

* hhdefinlicht@plen.ku.dk

Pathogens that expand host range by shifting to a novel host taxon are a key factor for diversification and evolution of host–pathogen associations [1]. Such shifts are often also the initial spark for new emerging infectious diseases [2]. As a result, pathogen host shifts are of considerable concern for humans, wildlife, and agriculture, with obvious economic and public health impacts that threaten food biosecurity and human health [2,3]. Shifting to a new host may have a large impact on the evolution and genetic organization of the pathogen [4]. Indeed, many recent studies have investigated past and ongoing pathogen host shifts using genomic and population genetic methods [5–11], with much emphasis placed on characterizing the mutations, hybridizations, chromosomal reorganizations, or horizontal gene transfer events involved in host-shift genetics [12–14]. The rationale behind these studies is that such genomic changes often represent pathogen adaptation in response to the new environment of a new host. Because of the usually slow accumulation of mutational nucleotide changes (Fig 1), these genomic changes do not necessarily represent the factors responsible for facilitating the host shift in the first place. Instead, the extent to which a pathogen is able to adjust and produce a phenotype that can survive in the novel host, either via phenotypic plasticity [15,16] or cryptic genetic variation in the pathogen population [17–19], is increasingly recognized as an important driver for evolutionary innovation that can lead to niche expansion and pathogen host shifts [20–22].

The process of host shifting involves several stages that each represent different ecological and evolutionary barriers for a new host–pathogen association to become established (Box 1). When ecological and spatial hindrances are overcome, pathogens are generally considered to shift hosts in either of two ways [21,23]. First, pathogens may colonize new hosts that represent a very similar resource to the ancestral host, i.e., ecological fitting via resource tracking (Fig 2A). This can occur if the original and new hosts are closely related or if the pathogen is exploiting traits that are evolutionarily conserved between the two host species. Hosts may be genetically diverse [24] or variably express the traits targeted by pathogens [25] so that only part of the new host population is susceptible at any given point in time. Second, pathogens may colonize new hosts that represent previously unencountered resources, i.e., ecological fitting via adaptive plasticity to host traits outside the range of conditions in which the pathogen evolved (Fig 2B). The completely novel and potentially stressful environment that a new host represents is, under this scenario, considered to “release” cryptic genetic variation in plasticity [26]. This variation in plastic responses leads to greater variation in pathogen phenotypes that provide the raw material for natural selection to shape the evolution of pathogenically relevant traits [20,27,28]. In cases where such plasticity produces an adaptive phenotype with improved fitness on the new host, it seems unproblematic to envisage how these novel and apparently “preadapted” pathogen phenotypes can eventually lead to a host shift (Fig 2B).

Here, I propose a third route for pathogenic host shifts that occur when the induced pathogen phenotypes on the new host are the result of nonadaptive plasticity (Fig 2C). Nonadaptive
plasticity leads to an induced pathogen phenotype in the new host that, on average, has reduced fitness [26]. Nonadaptive plasticity may reflect a breakdown in an organism’s ability to maintain homeostasis and proper function, and this is usually considered to prevent pathogen host shifts from occurring [21,23,29]. However, similar to adaptive plastic responses, non-adaptive plasticity also exposes standing genetic variation to new regimes of natural selection. Evidence gathered to date, mainly from studies on interactions between nonpathogenic organisms, suggests that nonadaptive plasticity can have a major evolutionary impact and potentiate rapid adaptive evolution [28,30]. For example, in an experiment under natural conditions,

Box 1. The biology of pathogen host shifts.

The process of host shifts incorporates several steps. First, the pathogen must have the opportunity to shift hosts by exposure of the new host species to the pathogen. Many ecological barriers to transmission are breached by global trade, modern agricultural practices, and climate change, which facilitate more pathogen encounters and opportunities for infecting new potential hosts [68]. Second, the pathogen must be able to infect the new host. For example, viral pathogens use phylogenetically conserved receptors to infect host cells, and only hosts with appropriate cell receptors are compatible hosts [69]. The third and final step is for the pathogen to be sufficiently able to spread between individuals in the new host population. Between-host transmission is necessary for establishing the long-term associations characterizing a successful host shift in contrast to occasional spillover pathogen infections in the new host [70,71].
wild guppy populations (*Poecilia reticulata*) were experimentally transplanted between streams with or without natural cichlid predators. After only 3 to 4 generations in the new environments, patterns of brain gene expression were shifted further away from the local optimum—i.e., nonadaptive plasticity—and potentiated adaptive evolution by increasing the strength of directional selection [30]. Nonadaptive plastic responses of pathogens undergoing a host shift...
therefore have the ability to further enhance the strong directional selection from the new host. Such pathogens will, however, initially have reduced fitness on the new hosts, which requires that the new host niche is initially not very competitive or that the new host compensates a lower rate of host exploitation by enhancing transmission. Furthermore, it is assumed that pathogen populations can persist for extended periods on suboptimal hosts, which is supported as a likely scenario in recent theoretical studies [29]. Finally, the new host population is assumed to vary in susceptibility to pathogen infection [24,31], which is characteristic of many host–pathogen systems and also supported by theoretical models [25].

Pathogens often display considerable phenotypic plasticity in response to changing environmental conditions in the host [32]. The expression of virulence traits may, for example, be contingent upon whether the host is infected with a single or multiple pathogens [33], and growth and size of pathogenic nematodes and trematodes can vary more than 10-fold, depending on infection intensity and host environment [34–37]. Pathogen plasticity may also be present as discrete phenotypes (polyphenisms), such as the lancet liver fluke Dicrocoelium dendriticum, in which a single cercaria usually positions itself against the subesophageal ganglion in the brain of the intermediate Formica spp. ant host, whereas the remaining cercariae develop into metacercariae in the gaster [38,39]. Plastic gene expression underlies phenotypic plasticity [40], which provides a way to measure subtle changes in phenotypic plasticity [41]. Recent methodological advances in dual-RNA sequencing (dual-RNAseq) analysis [42–44] allow changes in gene expression during host shifts to be monitored in many pathogen–host systems. Although transcriptome-wide datasets of gene expression are notoriously difficult to interpret, measuring changes in pathogen gene expression following host shifts provides a method to experimentally explore the role of nonadaptive plasticity for pathogen host shifts. This could, for example, be achieved by designing experiments that serially passage pathogens on novel hosts for multiple generations. Identifying genes that initially are differentially expressed on the new host but that, after passing, change expression in the opposite direction would indicate nonadaptive expression. There is ample evidence that pathogens, such as the fungal human pathogens Aspergillus fumigatus and Candida albicans [45–49], adapt and change their gene repertoire in response to novel hosts or treatments. Similarly, the opportunistic human bacterial pathogen Pseudomonas aeruginosa employs plastic gene expression in response to variable infection conditions [50,51]. Even slight alterations of pathogen genes or transcription factors connected in gene regulatory networks (GRNs) may have a large evolutionary impact [15,52–54]. Such alteration of existing GRNs could be mediated by heritable epigenetic changes [55], and only need to involve partial or modular co-option of GRNs into new GRNs [56,57]. This would create an evolutionarily novel GRN combination that is exposed to strong directional selection in the new host and may eventually lead to a host shift (Fig 3).

Genome evolution differs fundamentally between eukaryotes on one hand and bacteria and viruses on the other, in which small gene-dense genomes, short generation times, and frequent horizontal gene exchange provide ample opportunity for new mutations to arise [10]. Populations of RNA viruses often contain extensive genetic diversity because of high mutation rates during RNA viral replication coupled with limited proofreading capacity [19]. The presence and generation of cryptic genetic diversity has been shown to be important in many RNA viral host shifts [13,58–60], for example, in avian influenza viruses by providing adaptive mutations in specific polymerase subunits that increase RNA polymerase activity in mammalian cells [61], or mutations that alter receptor binding to sialic acids or glycan linkages in mammalian cells [14]. Nonadaptive plasticity is considered to be of limited importance for RNA virus host shifts that are constrained and principally governed by genetic mutations [9,62] but is likely more important for host shifts influenced by variation in the conformation of RNA virus
secondary structures that modulate interaction with the host immune system and increase persistence [63,64]. Eukaryotes contain larger and more plastic genomes, longer generation times, and sexual reproduction with recombination, which implies that rapid evolutionary adaptation is often governed by changes in gene expression and epigenetic markers instead of mutations that tend to emerge later [65] (Fig 1). Therefore, the importance of nonadaptive plasticity for mediating host shifts is likely higher in eukaryote pathogens such as pathogenic fungi, infectious worms, and trypanosome and malaria parasites than for bacterial and viral pathogens. Nonadaptive pathogen plasticity could help explain instances of extreme interkingdom host shifting [66] and the wide host range of some eukaryotic pathogens [67], which are not always easily explained by current host-shift models. However, more empirical work on how transcriptional, protein, and developmental networks in pathogens change in response to different host environments is required to understand the relative importance of adaptive versus nonadaptive plasticity for facilitating pathogen host shifts.

References
1. Schmid-Hempel P. Evolutionary parasitology: The integrated study of infections, immunology, ecology and genetics. Oxford, UK: Oxford University Press; 2011.
2. Woolhouse MEJ, Haydon DT, Antia R. Emerging pathogens: The epidemiology and evolution of species jumps. Trends Ecol Evol. 2005; 20(5): 238–244. https://doi.org/10.1016/j.tree.2005.02.009 PMID: 16701375
3. Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, et al. Emerging fungal threats to animal, plant and ecosystem health. Nature. 2012; 484(7393): 186–194. https://doi.org/10.1038/nature10947 PMID: 22498624
4. Lambrechts L. Dissecting the genetic architecture of host-pathogen specificity. PLoS Pathog. 2010; 6 (8): 9–10. https://doi.org/10.1371/journal.ppat.1001019 PMID: 20700450
5. Stukenbrock EH. Evolution, selection and isolation: a genomic view of speciation in fungal plant pathogens. New Phytol. 2013; 199(4): 895–907. https://doi.org/10.1111/nph.12374 PMID: 23792262
6. Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H, Faris JD, et al. Emergence of fungal threats to animal, plant and ecosystem health. Nature. 2012; 484(7393): 186–194. https://doi.org/10.1038/nature10947 PMID: 22498624
7. Richards TA, Soanes DM, Jones MDM, Vasieva O, Leonard G, Paszkiewicz K, et al. Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. Proc Natl Acad Sci U S A. 2011; 108(37): 15255–15263. https://doi.org/10.1073/pnas.1105100108 PMID: 21878562
8. Menardo F, Praz CR, Wyder S, Ben-David R, Bourras S, Matsumae H, et al. Hybridization of powdery mildew strains gives rise to pathogens on novel agricultural crop species. Nat Genet. 2006; 38(8): 953–956. https://doi.org/10.1038/ng1839 PMID: 16892356
9. Plissonneau C, Benevenuto J, Mohd-assaad N, Fouché S, Hartmann FE, Croll D. Using population and comparative genomics to understand the genetic basis of effector-driven fungal pathogen evolution. Front Plant Sci. 2017; 8: 119. https://doi.org/10.3389/fpls.2017.00119 PMID: 28217138
10. Stukenbrock EH, Bataillon T. A population genomics perspective on the emergence and adaptation of new plant pathogens in agro-ecosystems. PLoS Pathog. 2012; 8(9): e1002893. https://doi.org/10.1371/journal.ppat.1002893 PMID: 23028308
13. Pepin KM, Lass S, Pulliam JRC, Read AF, Lloyd-Smith JO. Identifying genetic markers of adaptation for surveillance of viral host jumps. Nat Rev Microbiol. 2010; 8(11): 802–813. https://doi.org/10.1038/nrmicro2440 PMID: 20938453

14. Parrish CR, Holmes EC, Morens DM, Park E-C, Burke DS, Calisher CH, et al. Cross-species virus transmission and the emergence of new epidemic diseases. Microbiol Mol Biol Rev. 2008; 72(3): 457–70. https://doi.org/10.1128/MMBR.00004-08 PMID: 18772285

15. West-Eberhard MJ. Developmental plasticity and evolution. Oxford, UK: Oxford University Press; 2003. https://doi.org/10.1020/aap.20219

16. Hu J, Barrett RDH. Epigenetics in natural animal populations. J Evol Biol. 2017; 30(9): 1612–1632. https://doi.org/10.1111/jeb.13130 PMID: 28597938

17. West-Eberhard MJ. Developmental plasticity and evolution. Oxford, UK: Oxford University Press; 2003. https://doi.org/10.1020/aap.20219

18. Grant BR, Grant PR. Watching speciation in action. Science. 2017; 355(6328): 910–912. https://doi.org/10.1126/science.aam6411 PMID: 28254901

19. Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature. 2006; 439(7074): 344–348. https://doi.org/10.1038/nature04388 PMID: 16327776

20. Ghalambor CK, Hoke KL, Ruell EW, Fischer EK, Reznick DN, Hughes KA. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature. 2015; 525: 372–375. https://doi.org/10.1038/nature15256 PMID: 26331546

21. Schlichting CD, Wund MA. Phenotypic plasticity and epigenetic marking: An assessment of evidence for genetic accommodation. Evolution. 2014; 68(3): 666–672. https://doi.org/10.1111/evo.12348 PMID: 24410266

22. Poulin R. The evolution of life history strategies in parasitic animals. Adv Parasitol. 1996; 37: 107–134. https://doi.org/10.1016/S0065-308X(08)60220-1 PMID: 8881599

23. Alizon S, de Roode JC, Michalakis Y. Multiple infections and the evolution of virulence. Ecol Lett. 2013; 16(4): 556–567. https://doi.org/10.1111/ele.12076 PMID: 23347009

24. Saldanha I, Leung TLF, Poulin R. Causes of intraspecific variation in body size among trematode metacercariae. J Helminthol. 2009; 83(3): 289–293. https://doi.org/10.1017/S0022149X09224175 PMID: 19216824
35. Stear MJ, Bairden K, Duncan JL, Holmes PH, McKellar QA, Park M, et al. How hosts control worms. Nature. 1997; 389(6646): 27–27. https://doi.org/10.1038/37895 PMID: 9288962
36. Davies SJ, McKewrow JH. Developmental plasticity in schistosomes and other helminths. Int J Parasitol. 2003; 33(11): 1277–1284. https://doi.org/10.1016/S0020-7519(03)00161-9 PMID: 13678642
37. Vignoles P, Méndar A, Rondelaud D, Agoulon A, Dreyfuss G. Fasciola hepatica: The growth and larval productivity of redial generations in Galba truncatula subjected to miracidia differing in their mammalian origin. J Parasitol. 2004; 90(2): 430–433. https://doi.org/10.1645/GE-2682RN PMID: 15165078
38. Botnevik CF, Malagocka J, Jensen AB, Fredensborg BL. Relative Effects of Temperature, Light, and Humidity on Clinging Behavior of Metacercariae-Infected Ants. J Parasitol. 2016; 102(5): 495–500. https://doi.org/10.1645/16-53 PMID: 27391362
39. Krull W, Mapes C. Studies on the biology of Dicrocoelium dendriticum (Rudolphi, 1819) Looss, 1899 (Trematoda: Dicrocoeliidae), including its relation to the intermediate host, Cionella lubrica (Müller). V. Notes on infections of Dicrocoelium dendriticum. Comell Vet. 1952; 42(3): 339–351. PMID: 14936434
40. Schröder L, Hampe IA, Friedman J, Edgerton M, Morschhäuser J. An acquired mechanism of antifungal drug resistance simultaneously enables Candida albicans to escape from intrinsic host defenses. PLOS Pathog. 2017; 13(9): e1006633. https://doi.org/10.1371/journal.ppat.1006633 PMID: 28959377
41. Fischer EK, Ghalambor CK, Hoke KL. Can a network approach resolve how adaptive vs nonadaptive plasticity impacts evolutionary trajectories? Integr Comp Biol. 2016; 56(5): 877–888. https://doi.org/10.1093/icb/icw087 PMID: 27400976
42. Westermann AJ, Förster AU, Amman F, Barquist L, Chao Y, Schulte LN, et al. Dual RNA-seq unveils noncoding RNA functions in host–pathogen interactions. Nature. 2016; 529(7587): 496–501. https://doi.org/10.1038/nature16547 PMID: 26789254
43. Westermann AJ, Barquist L, Vogel J. Resolving host–pathogen interactions by dual RNA-seq. PLoS Pathog. 2017; 13(2): e1006033. https://doi.org/10.1371/journal.ppat.1006033 PMID: 28207848
44. Schulze S, Henkel SG, Driesch D, Guthke R, Linde J. Computational prediction of molecular pathogen-host interactions based on dual transcriptome data. Front Microbiol. 2015; 6: 1–11.
45. Van de Veedonk FL, Gresnigt MS, Romani L, Netea MG, Latgé JP, Aspergillus fumigatus morphology and dynamic host interactions. Nat Rev Microbiol. 2017; 15(11): 661–674. https://doi.org/10.1038/nrmicro.2017.90 PMID: 28919635
46. Hampe IA, Friedman J, Edgerton M, Morschhäuser J. An acquired mechanism of antifungal drug resistance simultaneously enables Candida albicans to escape from intrinsic host defenses. PLOS Pathog. 2017; 13(9): e1006655. https://doi.org/10.1371/journal.ppat.1006655 PMID: 28959377
47. Brown AJP, Odds FC, Gow NAR. Infection-related gene expression in Candida albicans. Curr Opin Microbiol. 2007; 10(4): 307–313. https://doi.org/10.1016/j.mib.2007.04.001 PMID: 17707687
48. Raffaele S, Farrer RA, Cano LM, Studholme DJ, MacLean D, Thines M, et al. Genome evolution following host jumps in the Irish potato famine pathogen lineage. Science. 2010; 330(6010): 1540–1543. https://doi.org/10.1126/science.1193070 PMID: 21148391
49. Kumamoto CA. Niche-specific gene expression during C. albicans infection. Curr Opin Microbiol. 2008; 11(4): 325–330. https://doi.org/10.1016/j.mib.2008.05.008 PMID: 18579433
50. Bielecki P, Puchalka J, Wos-Oxley ML, Loessner H, Glik J, Kawecki M, et al. In-vivo expression profiling of pseudomonas aeruginosa infections reveals niche-specific and strain-independent transcriptional programs. PLoS ONE. 2011; 6(9): e24235. https://doi.org/10.1371/journal.pone.0024235 PMID: 21931663
51. Kümmerli R, Jiricny N, Clarke LS, West SA, Griffin AS. Phenotypic plasticity of a cooperative behaviour in bacteria. J Evol Biol. 2009; 22(3): 589–598. https://doi.org/10.1111/j.1420-9101.2008.01666.x PMID: 19170825
52. West-Eberhard MJ. Developmental plasticity and the origin of species differences. Proc Natl Acad Sci U S A. 2005; 102 Suppl 1: 6543–6549. https://doi.org/10.1073/pnas.0501844102 PMID: 15851679
53. Espinosa-Soto C, Martin OC, Wagner A. Phenotypic plasticity can facilitate adaptive evolution in gene regulatory circuits. BMC Evol Biol. 2011; 11: 5. https://doi.org/10.1186/1471-2148-11-5 PMID: 21211007
54. Schneider RF, Li Y, Meyer A, Gunter HM. Regulatory gene networks that shape the development of adaptive phenotypic plasticity in a cichlid fish. Mol Ecol. 2014; 23(18): 4511–4526. https://doi.org/10.1111/mec.12851 PMID: 25041245
55. Kasuga T, Gijzen M. Epigenetics and the evolution of virulence. Trends Microbiol. 2013; 21(11): 575–582. https://doi.org/10.1016/j.tim.2013.09.003 PMID: 24095304
56. Pfennig DW, Ehrenreich IM. Towards a gene regulatory network perspective on phenotypic plasticity, genetic accommodation and genetic assimilation. Mol Ecol. 2014; 23(18): 4438–4440. https://doi.org/10.1111/mec.12887 PMID: 25208504
57. Schneider RF, Meyer A. How plasticity, genetic assimilation and cryptic genetic variation may contribute to adaptive radiations. Mol Ecol. 2017; 26(1): 330–350. https://doi.org/10.1111/mec.13880 PMID: 27747962

58. Mollentze N, Biek R, Streicker DG. The role of viral evolution in rabies host shifts and emergence. Curr Opin Virol. Elsevier B.V.; 2014; 8: 68–72. https://doi.org/10.1016/j.coviro.2014.07.004 PMID: 25064563

59. Streicker DG, Altizer SM, Velasco-Villa A, Rupprecht CE. Variable evolutionary routes to host establishment across repeated rabies virus host shifts among bats. Proc Natl Acad Sci USA. 2012; 109(48): 19715–20. https://doi.org/10.1073/pnas.1203456109 PMID: 23150575

60. Webby R, Hoffmann E, Webster R. Molecular constraints to interspecies transmission of viral pathogens. Nat Med. Nature Publishing Group; 2004; 10(Suppl 12): S77–S81. https://doi.org/10.1038/nm1151 PMID: 15577935

61. Mänz B, Schwemmle M, Brunotte L. Adaptation of avian influenza A virus polymerase in mammals to overcome the host species barrier. J Virol. American Society for Microbiology; 2013; 87(13): 7200–9. https://doi.org/10.1128/JVI.00980-13 PMID: 23616660

62. Longdon B, Hadfield JD, Day JP, Smith SCL, McGonigle JE, Cogni R, et al. The causes and consequences of changes in virulence following pathogen host shifts. PLoS Pathog. 2015; 11(3): e1004728. https://doi.org/10.1371/journal.ppat.1004728 PMID: 25774803

63. Wagner A. Mutational robustness accelerates the origin of novel RNA phenotypes through phenotypic plasticity. Biophys J. 2014; 106(4): 955–965. https://doi.org/10.1016/j.bpj.2014.01.003 PMID: 24559998

64. Witteveldt J, Blundell R, Maarleveld JJ, Mcfadden N, Evans DJ, Simmonds P. The influence of viral RNA secondary structure on interactions with innate host cell defences. Nucleic Acids Res. 2014; 42(5): 3314–3329. https://doi.org/10.1093/nar/gkt1291 PMID: 24335283

65. Klironomos FD, Berg J, Collins S. How epigenetic mutations can affect genetic evolution: Model and mechanism. BioEssays. 2013; 35(6): 571–578. https://doi.org/10.1002/bies.201200169 PMID: 23580343

66. Nikoh N, Fukatsu T. Interkingdom host jumping underground: phylogenetic analysis of entomoparasitic fungi of the genus Cordyceps. Mol Biol Evol. 2000; 17(4): 629–638. https://doi.org/10.1093/oxfordjournals.molbev.a026341 PMID: 10742053

67. Hellgren O, Pérez-Tris J, Bensch S. A jack-of-all-trades and still a master of some: Prevalence and host range in avian malaria and related blood parasites. Ecology. 2009; 90(10): 2840–2849. https://doi.org/10.1890/08-1059.1 PMID: 19886492

68. Hoberg EP, Brooks DR, Brooks DR. Evolution in action: climate change, biodiversity dynamics and emerging infectious disease. Philos Trans R Soc B Biol Sci. 2015; 370(1665): 20130553.

69. Woolhouse MEJ. Population biology of emerging and re-emerging pathogens. Trends Microbiol. 2002; 10(Suppl 10): 3–7. https://doi.org/10.1016/S0966-842X(02)02428-9

70. Woolhouse M, Antia R. Emergence of new infectious diseases. In: Stearns SC, Koella JC, editors. Evolution in Health and Disease. Oxford, UK: Oxford University Press; 2007. pp. 215–228.

71. Antia R, Regoes RR, Koella JC, Bergstrom CT. The role of evolution in the emergence of infectious diseases. Nature. 2003; 426(6967): 658–661. https://doi.org/10.1038/nature02104 PMID: 14668863