Factors Associated with a Large Decline in Renal Function or Progression to Renal Insufficiency in Hospitalized Atrial Fibrillation Patients with Early-Stage CKD

Lili Hu,1,2, MD, Qinmei Xiong,1, MD, Zhiquing Chen,1, MD, Linghua Fu,1 MD, Jinzhu Hu,1 MD, Qi Chen,1 MD, Weiping Tu,2 MD, Chengyun Xu,2 MD, Gaosi Xu,2 MD, Juxiang Li,1 MD and Kui Hong,1,3 MD

Summary
Clinicians must consider renal function when administering anticoagulants for atrial fibrillation (AF). Determination of risk factors for renal function decline may enable identification of patients who require closer monitoring. We investigated the characteristics associated with renal function decline in patients with AF. The study cohort consisted of 631 AF patients who had at least one readmission during the follow-up period and stages 1-3 chronic kidney disease (CKD). The primary outcome measure was large renal function decline (≥ 30% decrease from baseline estimated glomerular filtration rate [eGFR]). The secondary outcome measure was a final eGFR < 60 mL/minute/1.73 m² for those with a baseline eGFR above this level. The mean eGFR was 74.4 ± 18.5 mL/minute/1.73 m², and the mean follow-up time was 30.2 ± 13.2 months. The primary outcome occurred in 155 patients (24.6%) and was associated with congestive heart failure (CHF), proteinuria, type of AF, and left atrial diameter (LAD) ≥ 45 mm. Among 478 patients with a baseline eGFR ≥ 60 mL/minute/1.73 m², 137 (28.7%) progressed to renal failure (eGFR < 60 mL/minute/1.73 m²). A decreasing eGFR was associated with age ≥ 75 years, CHF, lower baseline eGFR, and LAD ≥ 45 mm. CHF, proteinuria, type of AF, and LAD ≥ 45 mm were associated with eGFR decline ≥ 30% in AF patients with CKD stages 1-3. Advanced age, CHF, lower baseline eGFR, and LAD ≥ 45 mm were associated with progression to renal insufficiency. These results should be considered when identifying patients who require more frequent monitoring of eGFR.

Key words: Left atrial diameter, eGFR decline

Atrial fibrillation (AF), the most common type of cardiac arrhythmia, affects 8%-10% of individuals older than 75 years and increases the risk of stroke and all-cause mortality.1 Renal insufficiency is a common co-morbidity in patients with AF that has a major adverse impact on clinical outcomes.2,3 Reduced renal function may also be associated with AF complications. In particular, a study that followed 617 patients with AF for more than 2 years reported that a decline in the estimated glomerular filtration rate (eGFR) of 25% or more over 6 months was associated with a more than two-fold increase in the rate of stroke and death.4 Diagnosis and evaluation of renal function is a key component of AF management, especially for patients taking novel oral anticoagulants (NOACs).

Previous studies of patients with AF reported the following risk factors were associated with renal outcome, based on different definitions of worsening renal function: anticoagulation therapy,5 chronic kidney disease (CKD),6 coronary artery disease (CAD),6 old age,7 ratio of early mitral inflow velocity to global diastolic strain rate,8 ankle-brachial pressure index,9 and CHA2DS2-VASc score.10 Other studies reported that echocardiographic measures of impaired left ventricular function11 and increased left atrial diameter (LAD)12 predict progression to dialysis or faster renal function decline in patients with and without AF who have CKD stages 3-5.

However, few studies have evaluated the association between echocardiographic parameters and renal outcome in AF patients with early-stage CKD. We performed a retrospective, case-control study to investigate changes in the eGFR over time and the relationship between the echocardiographic parameters and renal function decline in hospitalized AF patients with CKD stages 1-3.
Methods

Study patients: This retrospective cohort study recruited inpatients with AF from the cardiovascular department of the Second Affiliated Hospital of Nanchang University (Jiangxi, China) who had more than two measurements of serum creatinine (Scr) from June 2011 to August 2017. All patients had non-valvular AF, were at least 18 years old and had available Scr for more than 1 year interval. The exclusion criteria were the presence of rheumatic valvular disease or a prosthetic heart valve, an eGFR < 30 mL/minute/1.73 m², and having received chemotherapy for cancer. The data extracted at baseline were the laboratory data and comorbidities (hypertension, diabetes mellitus, congestive heart failure [CHF], stroke/transient ischemic attack [TIA], CAD, peripheral artery disease [PAD], and chronic obstructive pulmonary disease [COPD]). The presence of proteinuria was defined by a urine dipstick test result of 1+ or higher. Information on the use of medications during the study period, including antiplatelet drugs, NOACs, warfarin, angiotensin-converting enzyme inhibitors (ACEIs), angiotensin II receptor blockers (ARBs), β-blockers, cardiac channel blockers, diuretics, and HMGCoA reductase inhibitors (statins), was obtained from the medical records.

Echocardiography was used to measure LAD, left ventricular end-diastolic dimension (LVEDd), left ventricular end-systolic dimension (LVEDs), left ventricular posterior wall thickness (LVPWd), interventricular septal thickness (IVST), and left ventricular ejection fraction (LVEF). Left ventricular mass (LVM) was calculated using the standard formula:\[^{16}\] LVM (g) = 0.8 × 1.04 [(LVEDd + IVST + LVPWd)² − LVEDd²] + 0.6. The baseline stroke risk was assessed using the CHADS² score (in which 1 point was given for CHF, hypertension, age 75 years or older, and diabetes mellitus and 2 points for a history of stroke/TIA/thromboembolism) and the CHA²DS²-VASc score (in which 1 point was given for CHF, heart failure, diabetes mellitus, age 65-74 years, vascular disease, and female sex and 2 points for age of 75 years or older and previous stroke/TIA/thromboembolism).\[^{16}\]

The reasons for readmission include stroke/TIA; CHF; myocardial infarction; new angina; AF or other supraventricular arrhythmia; ventricular arrhythmia; implantation of a pacemaker; syncope; surgery (catheter ablation for AF, percutaneous transluminal coronary angioplasty, lower extremity arterial thrombectomy, or other); other non-cardiovascular cause (gastrointestinal, diabetic, injury/fall, fracture, psychiatric, hematologic, genitourinary, or other); and non-severe infection. Major bleeding was defined as a reduction in the hemoglobin level of at least 2 g/L, transfusion of at least two units of blood, or intracranial bleeding.

Renal outcomes: At baseline and the last follow-up, Scr was measured by the same laboratory, and measurements were also recorded at hospital admission. The mean follow-up was 30.2 ± 13.2 months, with a mean of 2.5 ± 1.9 measurements per patient. The eGFR was calculated using the CKD Epidemiology (CKD-EPI) collaboration equation.\[^{16}\] All patients were classified into four eGFR categories according to the Kidney Disease: Improving Global Outcomes guidelines: normal renal function (eGFR ≥ 90 mL/minute/1.73 m², CKD stage 1), mild reduction of eGFR (60-89 mL/minute/1.73 m², CKD stage 2), moderate reduction in eGFR (30-59 mL/minute/1.73 m², CKD stage 3), and severe reduction in eGFR (< 30 mL/minute/1.73 m², CKD stages 4-5). Longitudinal changes in eGFR were determined during the follow-up period, based on two measures of renal function. The sequential change in eGFR at the last follow-up was calculated as the relative difference. The relative difference was defined as (eGFR at the last measure − eGFR at baseline)/eGFR at baseline. The annual rate of renal function decline (ΔeGFR/year) was defined as (eGFR at the last measure − eGFR at baseline)/eGFR at baseline/follow-up period. The primary endpoint was a ≥ 30% decrease in eGFR, based on the previous finding that this decrease predicts subsequent end-stage renal disease.\[^{17}\] A secondary analysis, which excluded 153 patients, examined the development of an incident eGFR < 60 mL/minute/1.73 m², and only included patients whose eGFR was 60 mL/minute/1.73 m² or more at baseline.

Statistical analysis: Each continuous variable is expressed as mean ± SD or as median and interquartile range, and each categorical variable is expressed as a percentage. Differences between groups were evaluated using the χ² test for categorical variables and an independent t-test for continuous variables.

The change in the percentage of patients in each of the four eGFR categories from baseline to follow-up were determined for patients with an LAD < 45 mm and for patients with an LAD ≥ 45 mm, as described previously.\[^{19}\] The variables associated with large renal function decline during the follow-up period (≥ 30% decline in eGFR) and with the development of an eGFR < 60 mL/minute/1.73 m² were identified. The independent effects of different variables on renal function were identified using multivariate logistic regression analysis. All variables with P-values < 0.10 in the univariate logistic regression analysis were included as independent variables in the multivariable logistic regression analysis. A two-sided P-value < 0.05 was considered to be statistically significant. All statistical analyses were performed using SPSS ver. 23 (IBM Corp).

Results

The detailed rehospitalization reasons were shown in Table I. The most common reasons for rehospitalization were cardiovascular event (49.1%), non-cardiovascular disease (30.3%), and non-severe infection (11.7%). We examined the records of 631 patients who were hospitalized with AF. The mean age was 72.3 ± 8.9 years, 289 patients (45.8%) were female, the mean CHADS² score was 2.4 ± 1.4, and the mean CHA²DS²-VASc score was 3.9 ± 1.7. A total of 72.6% of patients had a CHADS² score ≥ 2, and 91.6% had a CHA²DS²-VASc score ≥ 2. The overall mean baseline eGFR was 74.4 ± 18.5 mL/minute/1.73 m². In addition, 54.2% of patients (n = 342) had mild renal impairment (eGFR 60-89 mL/minute/1.73 m²) and 24.2% of patients (n = 153) had moderate renal impairment (eGFR 30-59 mL/minute/1.73 m²).

Factors associated with large decline in renal function:
Table I. Reasons for Hospitalization

Characteristic	Overall (n = 631)	eGFR decline < 30% (n = 476)	eGFR decline ≥ 30% (n = 155)
Patients with a cardiovascular hospitalization			
Congestive heart failure	102 (16.2%)	70 (14.7%)	32 (20.6%)
Ischemic stroke or TIA	97 (15.4%)	73 (15.3%)	24 (15.5%)
AF and other supraventricular rhythm disorders	71 (11.3%)	56 (11.8%)	15 (9.7%)
Ventricular arrhythmia	6 (1.0%)	5 (1.1%)	1 (0.6%)
New angina	9 (1.4%)	5 (1.1%)	4 (2.6%)
Myocardial infarction	10 (1.6%)	5 (1.1%)	5 (3.2%)
Implantation of a pacemaker	10 (1.6%)	5 (1.1%)	5 (3.2%)
Syncope	5 (0.8%)	3 (0.6%)	2 (1.3%)
Patients with hospitalization due to any bleeding	16 (2.5%)	11 (2.3%)	5 (3.2%)
Patients hospitalized for non-cardiovascular reason	191 (30.3%)	164 (34.5%)	27 (17.4%)
Non-severe infection	74 (11.7%)	50 (10.5%)	24 (15.5%)
Surgery	40 (6.3%)	29 (6.1%)	11 (7.1%)

Table II compares the baseline characteristics of all patients (n = 631), those with a small eGFR decline (< 30%, n = 476), and those with a large eGFR decline (≥ 30%, n = 155). The mean decline in eGFR was 2.4% ± 7.0% per year in patients with a small eGFR decline and 20.5% ± 9.9% per year in patients with a large eGFR decline (P = 0.000). Relative to patients with a small eGFR decline, those with a large decline were older, more likely to have persistence or permanent AF, CHF, proteinuria, and a high level of brain natriuretic peptide and to use an ACEI and/or ARB, a diuretic, and a β-blocker. In addition, patients with a large eGFR decline had significantly increased LAD, LVEDd, LVESd, and LVM, and lower LVEF. The use of anticoagulants was not different between the two groups. Interestingly, although eGFR at baseline was lower in the group with the large eGFR decline, the two groups had no significant difference in SCr at baseline.

Table III shows the results of univariate and multivariate analyses of the factors associated with a large eGFR decline. The univariate analysis showed that a large eGFR decline had significant positive correlations with baseline eGFR and LVEF and significant negative correlations with persistence or permanent AF, CHF, proteinuria, LAD, LVEDd, LVESd, LVM, and use of β-blocker, a diuretic, and an ACEI and/or ARB. The multivariate analysis indicated that a large eGFR decline was independently associated with type of AF, CHF, proteinuria, and LAD ≥ 45 mm after adjustment for potential confounders.

Effect of LAD on changes in renal function: We compared the decline of renal function in patients who had a large LAD (≥ 45 mm, n = 190) with those who had a small LAD (< 45 mm, n = 434) (Figure 1). Most patients experienced a decreased eGFR, and there was a parallel increase in the prevalence of moderate and severe renal dysfunction in both groups. A total of 13.7% of the patients with a large LAD progressed to severe renal impairment, but only 6.2% of those with a small LAD progressed to severe renal impairment (P = 0.002).

We also analyzed the effect of LAD in a subgroup of patients (n = 492) who had an LVEF < 50% (Figure 2). Patients with a large LAD had a 19.4% decline in eGFR, but those with a small LAD had an 11.5% decline in eGFR (P = 0.003). Thus, patients who had left atrial dilation experienced greater reductions in eGFR.

Risk of progression to low eGFR (< 60 mL/minute/1.73 m²): At baseline, 478 (75.8%) patients had an eGFR ≥ 60 mL/minute/1.73 m². During follow-up (mean duration: 30.5 ± 13.1 months), 137 (28.7%) patients with an eGFR ≥ 60 mL/minute/1.73 m² developed an eGFR < 60 mL/minute/1.73 m² (Table IV); these patients were older, more likely to have CHF and CAD, had higher levels of brain natriuretic peptide and SCr, had higher CHADS2 and CHA2DS2-VASc scores, and were more likely to use a β-blocker and a diuretic. Echocardiography indicated that patients with an eGFR < 60 mL/minute/1.73 m² had a lower mean LVEF and a greater mean LAD, LV dimension, and LVM than those with an eGFR ≥ 60 mL/minute/1.73 m². There was no significant difference in the use of anticoagulants between two groups.

Table V displays the results of univariate and multivariate analyses of factors associated with progression to an eGFR < 60 mL/minute/1.73 m². CHADS2 and CHA2DS2-VASc scores were excluded from the multivariate analysis because the other factors in the model already considered age, sex, CAD, and CHF. The multivariate analysis indicated that an eGFR < 60 mL/minute/1.73 m² at follow-up correlated independently with age of 75 years or more, CHF, an initial eGFR < 90 mL/minute/1.73 m², and an LAD ≥ 45 mm.

Discussion

The present retrospective longitudinal cohort “real-world” study of patients hospitalized with AF indicated that 24.6% of patients with early-stage CKD experienced a decrease of eGFR ≥ 30% from baseline. This is similar to the value of 24.4% reported by Yao and colleagues. Moreover, 28.7% of patients with normal or mild loss of renal function (eGFR ≥ 60 mL/minute/1.73 m²) at baseline experienced a decline in renal function to moderate/severe renal insufficiency (eGFR < 60 mL/minute/1.73 m²). CHF, proteinuria, and type of AF were associated with a large decline in renal function; older age, CHF, and lower baseline eGFR were associated with progression to renal insufficiency. In addition, an LAD ≥ 45 mm was independ-
entially associated with a large decline in renal function and a low eGFR (< 60 mL/minute/1.73 m²). These results suggest that renal function should be more closely monitored in this group of patients.

Previous epidemiological studies have used the decline of eGFR as a clinical endpoint. However, the cri-

Characteristic	Overall (n = 631)	eGFR decline < 30% (n = 476)	eGFR decline ≥ 30% (n = 155)	P value
ΔeGFR/year	6.8% ± 11.0%	2.4% ± 7.0%	20.5% ± 9.9%	0.000
Age (years)	72.3 ± 8.9	71.9 ± 9.0	73.5 ± 8.6	0.062
Age ≥ 75 years	290 (46.0%)	213 (44.7%)	77 (49.7%)	0.285
Atrial fibrillation				0.005
Paroxysmal	415 (65.8%)	329 (69.1%)	86 (55.5%)	
Persistence	173 (27.4%)	120 (25.2%)	53 (34.2%)	
Permanently	43 (6.8%)	27 (5.7%)	16 (10.3%)	
Duration of AF (years)	2.3 ± 5.2	2.3 ± 5.2	2.4 ± 5.1	0.865
Female sex	289 (45.8%)	210 (44.1%)	79 (51.0%)	0.137
Hypertension	437 (69.3%)	325 (68.3%)	112 (72.3%)	0.351
Diabetes mellitus	136 (21.6%)	100 (21.0%)	36 (23.2%)	0.560
CHF	288 (45.6%)	196 (42.1%)	92 (59.4%)	< 0.001
Previous stroke	181 (28.7%)	142 (29.8%)	39 (25.2%)	0.264
CAD	103 (16.3%)	73 (15.3%)	30 (19.4%)	0.240
PAD	15 (2.4%)	13 (2.7%)	2 (1.3%)	0.472
COPD	68 (10.8%)	51 (10.7%)	17 (11.0%)	0.930
CHADS2 score, mean	2.4 ± 1.4	2.4 ± 1.4	2.6 ± 1.4	0.112
Score ≥ 2	458 (72.6%)	337 (70.8%)	121 (78.1%)	0.078
CHA2DS2-VASc score, mean	3.9 ± 1.7	3.8 ± 1.7	4.1 ± 1.7	0.041
Total cholesterol (mg/dL)	150.2 ± 32.2	151.4 ± 31.5	146.5 ± 34.1	0.111
LDL cholesterol (mg/dL)	89.7 ± 29.8	91.1 ± 30.3	85.6 ± 28.1	0.051
HDL cholesterol (mg/dL)	39.6 ± 11.0	39.9 ± 10.8	38.8 ± 11.6	0.301
Creatinine (μmol/L)	82.4 ± 25.8	81.3 ± 24.5	85.9 ± 29.3	0.083
eGFR (mL/minute/1.73 m²), mean	74.4 ± 18.5	75.5 ± 18.2	70.8 ± 19.0	0.006
≥ 90% (%)	136 (21.6%)	111 (23.3%)	25 (16.1%)	0.051
60–89 (%)	342 (54.2%)	259 (54.4%)	83 (53.5%)	—
30–59% (%)	153 (24.2%)	106 (22.3%)	47 (30.3%)	—
Medication use				
Antiplatelet	252 (40.6%)	193 (41.1%)	59 (39.1%)	0.665
NOAC	49 (7.9%)	36 (7.7%)	13 (8.6%)	0.706
Warfarin	254 (40.9%)	192 (40.9%)	62 (41.1%)	0.964
β-blocker	427 (68.8%)	308 (65.5%)	112 (74.2%)	0.048
Calcium channel blocker	201 (32.4%)	149 (31.7%)	52 (34.4%)	0.532
Diuretic	207 (33.3%)	141 (30.0%)	66 (43.7%)	0.002
ACEI and/or ARB	337 (54.4%)	236 (50.3%)	91 (60.3%)	0.033
Statin	342 (55.1%)	267 (56.8%)	75 (49.7%)	0.125
Echocardiographic data				
LVEF (%)	57.5 ± 11.9	58.2 ± 11.8	55.4 ± 11.9	0.013
LVEF < 50%	132 (21.2%)	90 (19.1%)	42 (23.3%)	0.052
LAD (mm)	41.6 ± 7.3	40.9 ± 7.0	43.5 ± 7.7	< 0.001
LAD ≥ 45 mm (%)	190 (30.4%)	126 (26.8%)	64 (41.6%)	0.001
LVESDd (mm)	49.7 ± 7.5	49.1 ± 7.1	51.6 ± 8.2	< 0.001
LVESDd (mm)	34.6 ± 8.4	34.0 ± 8.2	36.5 ± 8.8	0.001
LVWT (mm)	9.6 ± 1.2	9.6 ± 1.2	9.7 ± 1.2	0.307
IVST (mm)	10.2 ± 1.3	10.2 ± 1.2	10.3 ± 1.4	0.688
LVM (g)	181.5 ± 55.6	177.3 ± 53.1	194.0 ± 61.1	0.001
Follow-up period (months)	30.2 ± 13.2	29.7 ± 12.8	31.9 ± 14.3	0.090

eGFR indicates estimated glomerular filtration rate; CHF, congestive heart failure; CAD, coronary artery disease; PAD, peripheral artery disease; COPD, chronic obstructive pulmonary disease; LDL, low-density lipoprotein; HDL, high-density lipoprotein; NOACs, non-vitamin K antagonist oral anticoagulants; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; LVEF, left ventricular ejection fraction; LAD, left atrial diameter; LVESDd, left ventricular end-diastolic dimension; LVESd, left ventricular end-systolic dimension; LVWT, left ventricular posterior wall thickness; IVST, interventricular septal thickness; and LVM, left ventricular mass.
Table III. Logistic Regression Analysis of Factors Associated with a Large eGFR Decline (≥ 30%) at Follow-Up

Characteristic	Univariate OR (95% CI)	P value	Multivariate aOR (95% CI)	P value
Age ≥ 75 years	1.22 (0.85 to 1.75)	0.285	—	—
Atrial fibrillation				
Paroxysmal	1.00 (reference)	—	1.00 (reference)	—
Persistence	1.69 (1.13 to 2.52)	0.010	1.58 (1.04 to 2.41)	0.032
Permanent	2.27 (1.17 to 4.40)	0.015	2.07 (1.01 to 4.26)	0.047
Duration of AF (years)	1.00 (0.97 to 1.04)	0.865	—	—
Female sex	1.32 (0.92 to 1.89)	0.138	—	—
Hypertension	1.21 (0.81 to 1.81)	0.351	—	—
Diabetes mellitus	1.14 (0.74 to 1.75)	0.560	—	—
CHF	2.09 (1.44 to 3.02)	< 0.001	2.04 (1.37 to 3.02)	0.000
Previous stroke	0.79 (0.52 to 1.20)	0.265	—	—
CAD	1.33 (0.83 to 2.12)	0.241	—	—
PAD	0.47 (0.10 to 2.09)	0.318	—	—
COPD	1.03 (0.57 to 1.84)	0.930	—	—
CHADS2 score, mean	1.11 (0.98 to 1.27)	0.113	—	—
Score ≥ 2	1.47 (0.96 to 2.25)	0.079	—	—
CHA2DS2-VASc score, mean	1.12 (1.00 to 1.24)	0.041	—	—
Score ≥ 2	1.92 (0.88 to 4.16)	0.099	—	—
Laboratory parameters				
Total cholesterol (mg/dL)	1.00 (0.99 to 1.00)	0.111	—	—
LDL cholesterol (mg/dL)	0.99 (0.99 to 1.00)	0.051	—	—
HDL cholesterol (mg/dL)	0.99 (0.97 to 1.01)	0.301	—	—
Proteinuria	2.60 (1.44 to 4.67)	0.001	2.43 (1.29 to 4.55)	0.006
Brain natriuretic peptide (pg/mL)	1.00 (1.00 to 1.01)	0.152	—	—
Serum creatinine (µmol/L)	1.01 (1.00 to 1.01)	0.058	—	—
eGFR (mL/minute/1.73 m²)				
≥ 90	1.00 (reference)	—	—	—
60–89	1.42 (0.86 to 2.34)	0.166	—	—
30–59	1.97 (1.13 to 3.42)	0.016	—	—
Medication use				
Antiplatelet	0.92 (0.63 to 1.34)	0.665	—	—
NOAC	1.14 (0.59 to 2.20)	0.707	—	—
Warfarin	1.01 (0.70 to 1.46)	0.964	—	—
β-blocker	1.51 (1.00 to 2.28)	0.049	—	—
Calcium channel blocker	1.13 (0.77 to 1.67)	0.532	—	—
Diuretic	1.81 (1.24 to 2.64)	0.002	—	—
ACEI and/or ARB	1.50 (1.03 to 2.17)	0.034	—	—
Statin	0.75 (0.52 to 1.08)	0.126	—	—
Echocardiographic data				
LVEF (%)	0.98 (0.97 to 1.00)	0.014	—	—
LAD ≥ 45 mm (%)	1.94 (1.33 to 2.84)	0.001	1.55 (1.03 to 2.32)	0.035
LVEDd (mm)	1.04 (1.02 to 1.07)	< 0.001	—	—
LVESd (mm)	1.04 (1.01 to 1.06)	0.001	—	—
LVpWT (mm)	1.08 (0.93 to 1.26)	0.306	—	—
IVST (mm)	1.03 (0.89 to 1.19)	0.688	—	—
LVM (g)	1.01 (1.00 to 1.01)	0.002	—	—
Follow-up period (months)	1.01 (1.00 to 1.03)	0.073	—	—

eGFR indicates estimated glomerular filtration rate; OR, odds ratio; CI, confidence interval; aOR, adjusted odds ratio; CHF, congestive heart failure; CAD, coronary artery disease; PAD, peripheral artery disease; COPD, chronic obstructive pulmonary disease; LDL, low-density lipoprotein; HDL, high-density lipoprotein; NOACs, non-vitamin K antagonist oral anticoagulants; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; LVEF, left ventricular ejection fraction; LAD, left atrial diameter; LVEDd, left ventricular end-diastolic dimension; LVESd, left ventricular end-systolic dimension; LVpWT, left ventricular posterior wall thickness; IVST, interventricular septal thickness; and LVM, left ventricular mass.
We also determined whether echocardiographic parameters can predict large loss of renal function in AF patients with CKD stages 1-3. Our results showed that an increased LAD at baseline was associated with an eGFR decline ≥ 30% and with an incident eGFR < 60 mL/minute/1.73 m². Relative to patients with an LAD < 45 mm, those with an LAD ≥ 45 mm were more likely to progress to severe renal impairment. In addition, our analysis of the subgroup of patients with an LVEF ≥ 50% indicated those with an LAD ≥ 45 mm experienced greater reductions in eGFR. AF is frequently associated with LA enlargement in patients with organic heart disease and in those with AF but no underlying disease. However, it is difficult to establish a causal relationship between AF and LA remodeling, because AF frequently accompanies hypertension, CHF, and diabetes mellitus, all of which can lead to changes in the left atrial structure and function. Our cohort had high baseline prevalence of other comorbid illnesses (hypertension: 69.3%, CHF: 45.6%, diabetes mellitus: 21.6%), similar to previous reports. In addition, 30.4% of our patients had an LAD ≥ 45 mm, similar to the 31% reported in the AFFIRM trial.

Recent studies have reported that an enlarged left atrium is an independent predictor of adverse cardiovascular outcomes (stroke, AF, CHD, and cardiovascular death) in patients with various pathologic conditions. The Fushimi AF Registry, a large community-based prospective cohort study, found that an LAD > 45 mm was an independent predictor of stroke/systemic embolism. Interestingly, a multivariate analysis by Chen, et al. demonstrated that an enlarged LAD was independently associated with progression to end-stage renal disease, implying that LA enlargement is a better predictor of CKD. Furukawa, et al. determined that the LA volume index was an independent risk factor for progression to hemodialysis in 140 patients with CKD stages 4-5. Another cohort study of 121 patients undergoing peritoneal dialysis reported that an LA volume index > 32 mL/m² was significantly associated with more rapid decline in residual renal function.

We found that an older age, CHF, albuminuria, type of AF, and a lower baseline eGFR were associated with a large decline in eGFR. Previous studies also reported correlations of CHF and baseline eGFR with decline in renal function.
Table IV. Baseline Characteristics of Patients Who Did and Did Not Develop a Low eGFR (< 60 mL/minute/1.73 m²) at Follow-Up

Characteristic	No (n = 341)	Yes (n = 137)	P value
Age (years)	70.3 ± 9.3	73.9 ± 8.1	<0.001
≥ 75 years	120 (35.2%)	74 (54.0%)	<0.001
Atrial fibrillation			0.118
Paroxysmal	233 (68.3%)	80 (58.4%)	
Persistent	89 (26.1%)	47 (34.3%)	
Permanent	19 (5.6%)	10 (7.3%)	
Duration of AF (years)	2.4 ± 5.1	2.8 ± 6.3	0.441
Female sex	151 (44.3%)	72 (52.6%)	0.101
Hypertension	222 (65.1%)	98 (71.5%)	0.177
Diabetes mellitus	68 (19.9%)	34 (24.8%)	0.239
CHF	122 (35.8%)	77 (56.2%)	<0.001
Previous stroke	96 (28.2%)	37 (27.0%)	0.801
CAD	44 (12.9%)	29 (21.2%)	0.023
PAD	8 (2.3%)	2 (1.5%)	0.796
COPD	35 (10.3%)	10 (7.3%)	0.316
CHADS2 score, mean	2.1 ± 1.3	2.6 ± 1.4	0.001
Score ≥ 2	214 (62.8%)	106 (77.4%)	0.002
CHA2DS2-VASc score, mean	3.5 ± 1.8	4.2 ± 1.7	<0.001
Score ≥ 2	296 (86.8%)	131 (95.6%)	0.005
Laboratory parameters			
Total cholesterol (mg/dL)	152.4 ± 32.7	145.7 ± 31.4	0.043
LDL cholesterol (mg/dL)	91.1 ± 30.5	88.1 ± 28.3	0.325
HDL cholesterol (mg/dL)	40.0 ± 10.6	38.9 ± 11.4	0.365
Proteinuria	15 (4.5%)	11 (8.3%)	0.106
Brain natriuretic peptide (pg/mL)	228.3 (120.2, 451.2)	354.0 (189.3, 665.2)	0.007
Serum creatinine (µmol/L)	70.1 ± 15.1	76.5 ± 16.4	<0.001
eGFR (mL/minute/1.73 m²)	85.2 ± 11.7	76.2 ± 11.4	<0.001
Medication use			
Antiplatelet	133 (39.6%)	61 (45.5%)	0.238
NOACs	25 (7.4%)	11 (8.2%)	0.777
Warfarin	137 (40.8%)	54 (40.3%)	0.925
β-blocker	210 (62.5%)	99 (73.9%)	0.019
Calcium channel blocker	108 (32.1%)	41 (30.6%)	0.745
Diuretic	90 (26.8%)	57 (42.5%)	0.001
ACEI and/or ARB	163 (48.7%)	78 (58.2%)	0.062
Statin	184 (54.8%)	77 (57.5%)	0.595
Echocardiographic data			
LVEF (%)	58.6 ± 11.8	56.0 ± 11.9	0.033
LVEF < 50%	64 (18.9%)	31 (22.6%)	0.362
LAD (mm)	40.5 ± 6.8	42.6 ± 7.5	0.002
LAD ≥ 45 mm (%)	80 (23.7%)	56 (40.9%)	<0.001
LVEDd (mm)	48.9 ± 6.9	50.6 ± 7.6	0.019
LVESd (mm)	33.7 ± 8.0	35.7 ± 8.4	0.013
LVWT (mm)	9.5 ± 1.1	9.6 ± 1.2	0.108
LVST (mm)	10.1 ± 1.2	10.2 ± 1.3	0.587
LVM (g)	173.6 ± 51.3	186.8 ± 57.7	0.014
Follow-up period (months)	30.1 ± 12.7	31.5 ± 14.1	0.311

eGFR indicates estimated glomerular filtration rate; CHF, congestive heart failure; CAD, coronary artery disease; PAD, peripheral artery disease; COPD, chronic obstructive pulmonary disease; LDL, low-density lipoprotein; HDL, high-density lipoprotein; NOACs, non-vitamin K antagonist oral anticoagulants; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; LVEF, left ventricular ejection fraction; LAD, left atrial diameter; LVEDd, left ventricular end-diastolic dimension; LVESd, left ventricular end-systolic dimension; LVWT, left ventricular posterior wall thickness; IVST, interventricular septal thickness; and LVM, left ventricular mass.

The aging process adversely affects the kidneys and leads to an irreversible decline of renal function. Thus, our finding that a lower baseline eGFR correlated with and predicted renal function decline was an expected result. In fact, some studies have reported that the presence of proteinuria was associated with a more rapid decline of renal function. Notably, factors such as age and CHF are components of the widely used CHADS2 and CHA2DS2-VASc scores.
CHADS₂ and CHA₂DS₂-VASc scores. Previous studies have also assessed the relationship between single baseline eGFR values and the risk of future stroke in patients with AF. Recent studies proposed that renal dysfunction had an additive effect with the CHADS₂ or CHA₂DS₂-VASc scores, thus improving their predictive ability.^{34,35} In contrast, two recent “real-world” cohort studies found no additive effect of renal impairment in the ability of these scores to predict thromboembolism.^{36,37} In contrast to previous studies, some studies reported progressive renal

Table V. Logistic Regression Analysis of Factors Associated with a Low eGFR (< 60 mL/minute/1.73 m²) at Follow-Up
Univariate
Age ≥ 75 years
Atrial fibrillation
Paroxysmal
Persistence
Permanent
Duration of AF (years)
Female sex
Hypertension
Diabetes mellitus
CHF
Previous stroke
CAD
PAD
COPD
CHADS₂ score, mean
Score ≥ 2
CHA₂DS₂-VASc score, mean
Score ≥ 2
Laboratory parameters
Total cholesterol (mg/dL)
LDL cholesterol (mg/dL)
HDL cholesterol (mg/dL)
Proteinuria
Brain natriuretic peptide (pg/mL)
Serum creatinine (µmol/L)
eGFR ≥ 90 mL/minute/1.73 m²
eGFR 60–89 mL/minute/1.73 m²
Medication use
Antiplatelet
NOAC
Warfarin
β-blocker
Calcium channel blocker
Diuretic
ACEI and/or ARB
Statin use
Echocardiographic data
LVEF (%)
LAD ≥ 45 mm (%)
LVEdD (mm)
LVESD (mm)
LVPWT (mm)
IVST (mm)
LVM (g)
Follow-up period (months)

eGFR indicates estimated glomerular filtration rate; OR, odds ratio; CI, confidence interval; aOR, adjusted odds ratio; CHF, congestive heart failure; CAD, coronary artery disease; PAD, peripheral artery disease; COPD, chronic obstructive pulmonary disease; LDL, low-density lipoprotein; HDL, high-density lipoprotein; NOACs, non-vitamin K antagonist oral anticoagulants; ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; LVEF, left ventricular ejection fraction; LAD, left atrial diameter; LVEdD, left ventricular end-diastolic dimension; LVESD, left ventricular end-systolic dimension; LVPWT, left ventricular posterior wall thickness; IVST, interventricular septal thickness; and LVM, left ventricular mass.
function decline and subsequent risk of stroke or death in patients with AF.42,43)

Potential mechanisms for the association between AF and CKD progression include systemic inflammation, repeated microemboli, and hemodynamic factors.4 AF promotes systemic inflammation, which has been strongly related with progression of CKD. In addition, AF can induce fibrosis of the myocardium as well as kidney fibrosis, perhaps through a systemic pro-fibrotic tendency.40) Moreover, AF contributes to deterioration of left ventricular systolic and diastolic function over time, which may promote CKD progression through altered hemodynamics, venous congestion, and activation of the renin-angiotensin-aldosterone system.40) Indeed, eGFR improved in patients whose AF was ablated successfully, compared with patients whose arrhythmia persisted after ablation intervention.40)

There were some limitations to this study. First, the LA volume may provide a more accurate estimate of the LA chamber than LAD. However, we used LAD because it is easier to measure and is more frequently used in routine echocardiographic evaluations.40,42,43) Second, this was an observational retrospective study; thus, we cannot infer causality from the observed associations. Third, we only included hospitalized patients in the registry; thus, selection bias cannot be ruled out. However, our study mainly focused on patients with a high risk of stroke. Fourth, only 7.9% of the included patients were taking NOACs, but 40.6% were taking antiplatelet drugs and 40.9% were taking warfarin. Thus, our patient population reflects a “real life” cohort of Chinese patients with AF who have a high risk of stroke and do not adhere to treatment guidelines.40)

Conclusions

In conclusion, our study showed that older age, low baseline eGFR, CHF, and albuminuria were significant risk factors for a large decline of renal function in hospitalized AF patients with CKD stages 1-3. Moreover, LAD ≥ 45 mm was independently associated with a greater deterioration of renal function.

Disclosure

Ethics approval and consent to participate: This study was approved by the ethics committee of Department of Cardiovascular Medicine, the Second Affiliated Hospital of Nanchang University. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Availability of data and material: The datasets used and/or analyzed during the current study are available from the corresponding author upon request.

Conflicts of interest: The authors declare that they have no conflicts of interest.

References

1. Fuster V, Rydén LE, Cannom DS, et al. ACC/AHA/ESC. ACC/AHA/ESC 2006 Guidelines for the Management of Patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients with atrial fibrillation): developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Circulation 2006; 114: e257-354.

2. Alonso A, Lopez FL, Matsuhasha K, et al. Chronic kidney disease is associated with the incidence of atrial fibrillation: the Atherosclerosis Risk in Communities (ARIC) study. Circulation 2011; 123: 2946-53.

3. Soliman EZ, Prineas RJ, Go AS, et al. Chronic kidney disease and prevalent atrial fibrillation: the Chronic Renal Insufficiency Cohort (CRIC). Am Heart J 2010; 159: 1102-7.

4. Guo Y, Wang H, Zhao X, et al. Sequential changes in renal function and the risk of stroke and death in patients with atrial fibrillation. Int J Cardiol 2013; 168: 4678-84.

5. Yao X, Tangri N, Gersh BJ, et al. Renal outcomes in anticoagulated patients with atrial fibrillation. J Am Coll Cardiol 2017; 70: 2621-32.

6. Fanola CL, Mooney D, Cowan AJ, et al. Incidence of severe renal dysfunction among individuals taking warfarin and implications for non-vitamin K oral anticoagulants. Am Heart J 2017; 184: 150-5.

7. Hijazi Z, Hohnloser SH, Andersson U, et al. Efficacy and safety of Apixaban compared with warfarin in patients with atrial fibrillation in relation to renal function over time: insights from the Aristotle randomized clinical trial. JAMA Cardiol 2016; 1: 451-60.

8. Shen SC, Lee WH, Hsu PC, et al. Association of the ratio of early mitral inflow velocity to the global diastolic strain rate with a rapid renal function decline in atrial fibrillation. PLOS ONE 2016; 11: e0147446.

9. Violi F, Pastori D, Peticone F, et al. Relationship between low Ankle-Brachial Index and rapid renal function decline in patients with atrial fibrillation: a prospective multicentre cohort study. BMJ Open 2015; 5: e008026.

10. Beyer-Westendorf J, Kreutz R, Posch F, Ay C. The CHA2DS2-VASc score strongly correlates with glomerular filtration rate and predicts renal function decline over time in elderly patients with atrial fibrillation and chronic kidney disease. Int J Cardiol 2018; 253: 71-7.

11. Chen SC, Chang JM, Tsai YC, et al. Ratio of transmirtal E-wave velocity to early diastole mitral annulus velocity with cardiovascular and renal outcomes in chronic kidney disease. Nephron Clin Pract 2013; 123: 52-60.

12. Chen SC, Su HM, Hung CC, et al. Echocardiographic parameters are independently associated with rate of renal function decline and progression to dialysis in patients with chronic kidney disease. Clin J Am Soc Nephrol 2011; 6: 2750-8.

13. Lang RM, Bierig M, Devereux RB, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. Journal of the American Society of Echocardiography: official publication of the American Society of Echocardiography 2005; 18: 1440-63.

14. Lip GY, Nieuwlaat R, pisters R, Lane DA, Crijns HJ. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. Chest 2010; 137: 263-72.

15. Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009; 150:
16. National Kidney F. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. American journal of kidney diseases: the official journal of the National Kidney Foundation 2002; 39: S1-266.

17. Levey AS, Inker LA, Matsushita K, et al. GFR decline as an end point for clinical trials in CKD: a scientific workshop sponsored by the National Kidney Foundation and the US Food and Drug Administration. Am J Kidney Dis 2014; 64: S21-35.

18. Olhansky B, Heller EN, Mitchell LB, et al. Are transthoracic echocardiographic parameters associated with atrial fibrillation recurrence or stroke? Results from the Atrial Fibrillation Follow-Up Investigation of Rhythm Management (AFFIRM) study. J Am Coll Cardiol 2005; 45: 2026-33.

19. Chang WX, Asakawa S, Toyoki D, et al. Predictors and the subsequent risk of end-stage renal disease - usefulness of 30% decline in estimated GFR over 2 years. PLOS ONE 2015; 10: e0139297.

20. Chang WX, Arai S, Tamura Y, et al. Time-dependent risk factors associated with the decline of estimated GFR in CKD patients. Clin Exp Nephrol 2016; 20: 58-70.

21. Goette A, Kalman JM, Aguigana L, et al. EHRA/ERS/APHRS/SOLAECE expert consensus on Atrial cardiomyopathies: definition, characterisation, and clinical implication. J Arrhythm 2016; 32: 247-78.

22. Fuster V, Rydén LE, Aigner RW, et al. ACC/AHA/ESC. ACC/AHA/ESC Guidelines for the management of patients with atrial fibrillation: executive summary A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines and policy conferences (Committee to Develop guidelines for the management of patients with atrial fibrillation) developed in collaboration with the North American Society of Pacing and Electrophysiology. Circulation 2001; 104: 2118-50.

23. Roldán V, Martín F, Fernández H, et al. Renal impairment in a ‘real-life’ cohort of anticoagulated patients with atrial fibrillation (implications for thromboembolism and bleeding). Am J Cardiol 2013; 111: 1159-64.

24. Kizer JR, Beila JN, Palmieri V, et al. Left atrial diameter as an independent predictor of first clinical cardiovascular events in middle-aged and elderly adults: the Strong Heart Study (SHS). Am Heart J 2006; 151: 412-8.

25. Abhayaratna WP, Seward JB, Appleton CP, et al. Left atrial size: physiologic determinants and clinical applications. J Am Coll Cardiol 2006; 47: 2357-63.

26. Hamatani Y, Ogawa H, Takabayashi K, et al. Left atrial enlargement is an independent predictor of stroke and systemic embolism in patients with non-valvular atrial fibrillation. Sci Rep 2016; 6: 31042.

27. Furukawa M, Io H, Tanimoto M, Hagiwara S, Horikoshi S, Tomino Y. Predictive factors associated with the period of time before initiation of hemodialysis in CKD stages 4 and 5. Nephron Clin Pract 2011; 117: c341-7.

28. Kim SJ, Han SH, Park JT, et al. Left atrial volume is an independent predictor of mortality in CAPD patients. Nephrol Dial Transplant 2011; 26: 3752-9.

29. Bolignano D, Mattace-Raso F, Sijbrands EJ, Zoccali C. The ageing kidney revisited: a systematic review. Ageing Res Rev 2014; 14: 65-80.

30. Perkins RM, Kirchner HL, Hartle JE, Bucaloiu ID. Estimated glomerular filtration rate variability and risk of end-stage renal disease among patients with Stage 3 chronic kidney disease. Clin Nephrol 2013; 80: 256-62.

31. Halbesma N, Kuiken DS, Brantsma AH, et al. Macroalbuminuria is a better risk marker than low estimated GFR to identify individuals at risk for accelerated GFR loss in population screening. J Am Soc Nephrol 2006; 17: 2582-90.

32. Turin TC, James M, Ravani P, et al. Proteinuria and rate of change in kidney function in a community-based population. J Am Soc Nephrol 2013; 24: 1661-7.

33. Olesen JB, Lip GY, Kamper AL, et al. Stroke and bleeding in atrial fibrillation with chronic kidney disease. N Engl J Med 2012; 367: 625-35.

34. Piccini JP, Stevens SR, Chang Y, et al. Renal dysfunction as a predictor of stroke and systemic embolism in patients with non-valvular atrial fibrillation: validation of the R (2) CHADS2 (s) index in the ROCKET AF (Rivaroxaban once-daily, oral, direct factor Xa inhibition compared with vitamin K antagonism for prevention of stroke and embolism trial in atrial fibrillation) and ATRIA (Anticoagulation and Risk factors In Atrial fibrillation) study cohorts. Circulation 2013; 127: 224-32.

35. Chao TF, Tsao HM, Ambrose K, et al. Renal dysfunction and the risk of thromboembolic events in patients with atrial fibrillation after catheter ablation—the potential role beyond the CHA2DS2-VASc score. Heart Rhythm 2012; 9: 1755-60.

36. Roldán V, Marín F, Manzano-Fernández S, et al. Does chronic kidney disease improve the predictive value of the CHADS2 and CHA2DS2-VASc stroke stratification risk scores for atrial fibrillation? Thromb Haemost 2013; 109: 956-60.

37. Banerjee A, Fauchier L, Vourc'h P, et al. Renal impairment and ischemic stroke risk assessment in patients with atrial fibrillation: the Loire Valley Atrial Fibrillation Project. J Am Coll Cardiol 2013; 61: 2079-87.

38. Bansal N, Fan D, Hsu CY, Ordzone JD, Go AS. Incident atrial fibrillation and risk of death in adults with chronic kidney disease. J Am Heart Assoc 2014; 3: e001303.

39. Franczyk-Skóra B, Głuba A, Obzowski R, Banach M, Rysz J. Heart function disturbances in chronic kidney disease - echocardiographic indices. Arch Med Sci 2014; 10: 1109-16.

40. Navaravong L, Barakat M, Burgon N, et al. Improvement in estimated glomerular filtration rate in patients with chronic kidney disease undergoing catheter ablation for atrial fibrillation. J Cardiovasc Electrophysiol 2015; 26: 217-7.

41. Gerdrts E, Wachtell K, Omvik P, et al. Left atrial size and risk of major cardiovascular events during antihypertensive treatment: losartan intervention for endpoint reduction in hypertension trial. Hypertension 2007; 49: 311-6.

42. Henrard S, Vandenabeele C, Marien S, Boland B, Dalleur O. Underuse of anticoagulation in older patients with atrial fibrillation and CHADS2 score ≥ 2: are we doing better since the marketing of direct oral anticoagulants? Drugs Aging 2017; 34: 841-50.