Electronic Supplementary Information

State- and Water Repellency-Controllable Molecular Glass of Pillar[5]arene with Fluoroalkyl Groups by Guest Vapors

Katsuto Onishi, Shunsuke Ohtani, Kenichi Kato, Shixin Fa, Yoko Sakata, Shigehisa Akine, Moe Ogasawara, Hitoshi Asakawa, Shusaku Nagano, Yoshinori Takashima, Motohiro Mizuno and Tomoki Ogoshi
Table of Contents

1. General .. S1
2. Synthesis .. S3
3. Phase changes of F5 and reference compounds S14
4. State and contact angle changes by \(n \)-hexane vapor .. S20
5. Solid-state \(^{13}\text{C} \) NMR spectra S29
6. Molecular electrostatic potential maps S30
7. State and contact angle changes by guest vapors S31
8. Time-dependent changes by exposing \(a \)-F5 to \(n \)-pentane vapor .. S47
9. Comparison between PXRD patterns of \(F5\subset P \) and \(c\langle F5\subset P \rangle \) ... S53
10. Supplementary photographs S54
11. DSC curves of reference compounds S58
12. Single-crystal structures S62
13. References ... S68
1. General

1.1 Solution Nuclear Magnetic Resonance (NMR)
Solution 1H and 19F NMR spectra were recorded at 400, and 376 MHz with a JNM-ECS400 spectrometer (JEOL RESONANCE Inc., Tokyo, Japan) and solution 13C NMR spectra were recorded at 151 MHz a JNM-ECZ600R spectrometer with cold probe (ECZ600) (JEOL RESONANCE Inc., Tokyo, Japan). 1H and 13C chemical shifts were expressed as values relative to tetramethylsilane (TMS). 19F chemical shifts were expressed by using the $−78.8$ ppm line of sodium trifluoromethanesulfonate as an external reference.

1.2 Powder X-Ray Diffraction (PXRD)
PXRD measurement was performed by a MiniFlexII (Rigaku Co., Tokyo, Japan).

1.3 Differential Scanning Calorimetry (DSC)
Results of DSC was obtained by a DSC7020 (Hitachi High-Tech Science Co., Tokyo, Japan) under a flow of dry nitrogen.

1.4 Transmittance Measurements
Transmittances of the compounds at 500 nm were recorded with a JASCO V-750 spectrophotometer. The compounds were coated on a Quartz plate.

1.5 Density Functional Theory (DFT) Calculations
The Gaussian 16 program package51 was used for computation. We optimized the structures of F5 and C1 in the ground state. The DFT was applied for the optimization of the structures in the ground states at B3LYP/6-31G(d,p) level.

1.6 Thermogravimetry-differential Thermal Analysis (TG-DTA) and Thermogravimetric Analysis (TGA)
Results of TG-DTA and TGA were obtained by a STA7200 (Hitachi High-Tech Science Co., Tokyo, Japan) under a flow of dry nitrogen.

1.7 Contact Angle Measurements
Contact angle values of the compounds were obtained by a Phoenix-Alpha P200A (Meiwafosis Co., Ltd., Tokyo, Japan). The compounds were coated on a glass substrate.

1.8 Atomic Force Microscopy (AFM) Analyses
A laboratory-built AFM with a commercially-available controller (ARC2, Asylum Research, Oxford Instruments) was used for the AFM analyses. Before all AFM experiments, a tip side of AFM cantilevers (160AC-NG, MikroMasch) was coated with Si (thickness: 30 nm) by a magnetron sputter coater (QT150, Quorum Technologies).52 After fixing a sample glass substrate with glue on a holder, the surface structures were analyzed in the air with the AFM system operated in amplitude modulation (AM) mode, known as tapping mode. The cantilever vibration was excited at its resonance frequency (nominal value was 300 kHz in air). The typical value of free vibration amplitude was 30 nm. The setpoint amplitude for tip-sample distance control was set around 70% of the free vibration amplitude.
1.9 Solid Nuclear Magnetic Resonance (NMR)
Solid-state 13C NMR spectra were measured using a JEOL ECA-300 spectrometer operating at 74.175 MHz. High-resolution solid-state NMR spectrum was obtained using magic-angle spinning (MAS) and high-power 1 H dipole decoupling (DD). Cross-polarization (CP) was used for signal enhancement. The sample was packed into a 4 mm diameter zirconia rotor. The total suppression of sidebands (TOSS) sequence was used to suppress spinning sidebands. The MAS rate was set to 5 kHz. 13C chemical shifts were expressed as values relative to tetramethylsilane (TMS) using the 29.50 ppm line of adamantane as an external reference.

1.10 Single-crystal X-ray Structural Analyses
Intensity data were collected on a Bruker D8 Venture diffractometer (with Cu Kα radiation, $\lambda = 1.54178$ Å). The data were corrected for Lorentz and polarization factors and for absorption by semiempirical methods based on symmetry-equivalent and repeated reflections. The structure was solved by direct methods (SHELXT, SHELXS97, or SIR97) and refined by full-matrix least squares on F^2 using SHELXL 2014.33 Crystallographic data has been deposited with the Cambridge Crystallographic Data Centre under reference numbers CCDC 2121263–2121267 and 2144343. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK).
2. Synthesis

F5. To a flask containing pillar[5]arene with 10 hydroxyl groups (0.650 g, 1.07 mmol) was added dry DMF (15 mL), dry THF (15 mL) and NaH (0.830 g, 33.4 mmol). The resulting mixture was stirred at 60 °C for 72 h under a nitrogen atmosphere where after 4,4,5,5,5-pentafluoropentyl 4-methylbenzenesulfonateS4 (7.15 g, 21.5 mmol) was added. The reaction mixture was quenched with methanol, washed with brine, and dried over anhydrous Na₂SO₄. After filtration, the solvent was evaporated under reduced pressure. Column chromatography (silica gel; n-hexane:DCM = 4:1) afforded a white solid (308 mg, 0.139 mmol, yield 13%).

Scheme S1 Synthesis of F5.

![Scheme S1](image)

\[^1\text{H}\text{ NMR (Fig. S1, 400 MHz, CDCl}_3, 25 \, ^\circ\text{C}) \delta 6.76 (s, 10\text{H}), 3.75–4.03 (m, 20\text{H}), 3.73 (s, 10\text{H}), 2.25–2.34 (m, 20\text{H}), 2.08–2.11 (m, 20\text{H}); \[^{13}\text{C}\text{ NMR (Fig. S2, 151 MHz, CDCl}_3, 25 \, ^\circ\text{C}) \delta 149.8, 128.6, 115.4, 114.0–122.2, 67.3, 29.4, 27.9, 21.2; \[^{19}\text{F}\text{ NMR (Fig. S3, 376 MHz, CDCl}_3, 25 \, ^\circ\text{C}) \delta −86.0, −118.7; MS (APCI) calcd. for C\text{85}H\text{81}O\text{10}F\text{50} [M + H]^+: 2211.4962, found 2211.5026.]

![Fig. S1](image)

Fig. S1 \[^1\text{H}\text{ NMR spectrum of F5 (CDCl}_3, 25 \, ^\circ\text{C}).**
Fig. S2 13C NMR spectrum of F5 (CDCl$_3$, 25 °C).

Peaks from carbons covalently bonded with fluorine atoms were split multiply in the range of 114.0–122.2 ppm due to the strong 13C-19F coupling. Undulations in the baseline were due to use of cold probe (ECZ600) and difficult to adjust.

Fig. S3 19F NMR spectrum of F5 (CDCl$_3$, 25 °C).
F3. To a flask containing pillar[5]arene with 10 hydroxyl groups (0.650 g, 1.07 mmol) was added dry DMF (15 mL), dry THF (15 mL) and NaH (0.830 g, 33.4 mmol). The resulting mixture was stirred at 60 °C for 72 h under a nitrogen atmosphere where after 4,4,4-trifluorobutyl 4-methylbenzenesulfonate [6] (6.05 g, 21.5 mmol) was added. The reaction mixture was quenched with methanol, washed with brine, and dried over anhydrous Na2SO4. After filtration, the solvent was evaporated under reduced pressure. Column chromatography (silica gel; n-hexane:DCM = 2:1) afforded a white solid (276 mg, 0.161 mmol, yield 15%).

Scheme S2 Synthesis of F3.

\[\text{HO} \quad \text{CH}_2 \quad \text{CF}_3 \]
\[\text{dry DMF, dry THF, NaH} \quad 60 °C \quad 72 \text{ h} \]
\[\text{CF}_3 \]

\[^1\text{H NMR (Fig. S4, 400 MHz, CDCl}_3\text{, 25 °C) } \delta 6.75 \text{ (s, 10H), 3.89 (t, } J = 10.8 \text{ Hz, 20H), 3.74 (s, 10H), 2.29–2.41 (m, 20H), 2.01–2.08 (m, 20H); } \]
\[^{13}\text{C NMR (Fig. S5, 151 MHz, CDCl}_3\text{, 25 °C) } \delta 149.7, 128.4, 127.1 \text{ (q, } J_{C-F} = 276.1 \text{ Hz), 115.2, 66.8, 30.9 \text{ (q, } J_{C-F} = 29.4 \text{ Hz), 29.5, 22.6; } \]
\[^{19}\text{F NMR (Fig. S6, 376 MHz, CDCl}_3\text{, 25 °C) } \delta -67.0; \text{ MS (APCI) calced. for C}_{75}\text{H}_{81}\text{O}_{10}\text{F}_{30}[M + H]^+: 1177.5286, \text{ found 1177.5345.}\]

Fig. S4 \[^1\text{H NMR spectrum of F3 (CDCl}_3\text{, 25 °C).}\]
Fig. S5 13C NMR spectrum of F3 (CDCl$_3$, 25 °C).

Undulations in the baseline were due to use of cold probe (ECZ600) and difficult to adjust.

Fig. S6 19F NMR spectrum of F3 (CDCl$_3$, 25 °C).
F13. To a flask containing pillar[5]arene with 10 hydroxyl groups (0.650 g, 1.07 mmol) was added dry DMF (15 mL), dry THF (15 mL) and NaH (0.830 g, 33.4 mmol). The resulting mixture was stirred at 60 °C for 72 h under a nitrogen atmosphere where after compound A⁵⁵ (11.3 g, 21.5 mmol) was added. The reaction mixture was quenched with methanol, washed with brine, and dried over anhydrous Na₂SO₄. After filtration, the solvent was evaporated under reduced pressure. Gel permeation chromatography afforded a brown solid (288 mg, 0.0567 mmol, yield 5.3%).

Scheme S3 Synthesis of F13.

![Scheme S3](image)

¹H NMR (**Fig. S7**, 400 MHz, CDCl₃, 25 °C) δ 6.83 (bs, 10H), 2.85–4.69 (m, 90H), 2.36 (bs, 19H), 1.71–2.15 (m, 30H), 1.45 (bs, 29H); ¹³C NMR (**Fig. S8**, 151 MHz, CDCl₃, 25 °C) δ 149.8, 128.2, 105.3–120.1, 71.2, 68.0, 62.5, 33.9, 32.7, 31.5, 29.6, 26.1, 22.7; ¹⁹F NMR (**Fig. S9**, 376 MHz, CDCl₃, 25 °C) δ –81.3, –114.2, –122.6, –123.6, –124.3, –126.8. MS could not be measured as F13 with long C₆F₁₃ groups was high molecular weight compound and difficult to ionize.

Fig. S7 ¹H NMR spectrum of F13 (CDCl₃, 25 °C).
Fig. S8 13C NMR spectrum of F13 (CDCl$_3$, 25 °C).

Peaks from carbons covalently bonded with fluorine atoms were split multiply in the range of 105.3–120.1 ppm due to the strong 13C-19F coupling. Undulations in the baseline were due to use of cold probe (ECZ600) and difficult to adjust.
Fig. S9 19F NMR spectrum of F13 (CDCl$_3$, 25 °C).
Monomer Unit. To a flask containing hydroquinone (1.10 g, 10.0 mmol) was added acetonitrile (33.3 mL) and K$_2$CO$_3$ (4.14 g, 30.0 mmol). The resulting mixture was stirred at 95 °C for 24 h where after 4,4,5,5,5-pentafluoropentyl 4-methylbenzenesulfonate33 (6.65 g, 20.0 mmol) was added. The reaction mixture was washed with water, and dried over anhydrous Na$_2$SO$_4$. After filtration, the solvent was evaporated under reduced pressure. Column chromatography (silica gel; n-hexane:DCM = 2:1) afforded a white solid (3.51 g, 8.15 mmol, yield 82%).

Scheme S4 Synthesis of Monomer Unit.

1H NMR (Fig. S10, 400 MHz, CDCl$_3$, 25 °C) δ 6.83 (s, 4H), 3.98 (t, $J = 6.0$ Hz, 4H), 2.20-2.33 (m, 4H), 2.03-2.09 (m, 4H); 13C NMR (Fig. S11, 151 MHz, CDCl$_3$, 25 °C) δ 153.0, 119.2 (qt, 1J$_{C-F} = 286.9$ Hz, 2J$_{C-F} = 37.8$ Hz), 115.9 (tq, 1J$_{C-F} = 252.9$ Hz, 2J$_{C-F} = 37.8$ Hz), 115.5, 113.8–122.3, 66.9, 27.7, 20.8; 19F NMR (Fig. S12, 376 MHz, CDCl$_3$, 25 °C) δ −85.9, −118.8; HR-MS (EI) calcd. for C$_{16}$H$_{16}$O$_2$F$_{10}$ [M]$^+$: 430.0986, found 430.0989.

Fig. S10 1H NMR spectrum of Monomer Unit (CDCl$_3$, 25 °C).
Fig. S11 13C NMR spectrum of Monomer Unit (CDCl$_3$, 25 °C).

Undulations in the baseline were due to use of cold probe (ECZ600) and difficult to adjust.

Fig. S12 19F NMR spectrum of Monomer Unit (CDCl$_3$, 25 °C).

C5P[5]A. This compound was synthesized according to the previous paper.S_6
[6]F5. To a flask containing pillar[6]arene with 12 hydroxyl groups (0.650 g, 0.885 mmol) was added dry DMF (15 mL), dry THF (15 mL) and NaH (0.830 g, 33.4 mmol). The resulting mixture was stirred at 60 °C for 72 h under a nitrogen atmosphere where after 4,4,5,5,5-pentafluoropentyl 4-methylbenzenesulfonate33 (7.15 g, 21.5 mmol) was added. The reaction mixture was quenched with methanol, washed with brine, and dried over anhydrous Na2SO4. After filtration, the solvent was evaporated under reduced pressure. Column chromatography (silica gel; n-hexane:DCM = 4:1) afforded a white solid (569 mg, 0.214 mmol, yield 24%).

Scheme S5 Synthesis of [6]F5.

1H NMR (Fig. S13, 400 MHz, CDCl3, 25 °C) δ 6.66 (s, 12H), 3.78–3.82 (m, 36H), 2.14–2.27 (m, 24H), 1.93–2.00 (m, 24H); 13C NMR (Fig. S14, 151 MHz, CDCl3, 25 °C) δ 150.3, 128.1, 115.0, 112.5–120.5, 67.1, 29.7, 27.7, 20.9; 19F NMR (Fig. S15, 376 MHz, CDCl3, 25 °C) δ −86.1, −118.9; MS (APCI) calcd. for C102H50O12F60 [M + H]+: 2653.5984, found 2654.5982.

Fig. S13 1H NMR spectrum of [6]F5 (CDCl3, 25 °C).
Fig. S14 13C NMR spectrum of [6]F$_5$ (CDCl$_3$, 25 °C).

Peaks from carbons covalently bonded with fluorine atoms were split multiply in the range of 112.5–120.5 ppm due to the strong 13C-19F coupling. Undulations in the baseline were due to use of cold probe (ECZ600) and difficult to adjust.

Fig. S15 19F NMR spectrum of [6]F$_5$ (CDCl$_3$, 25 °C).
3. Phase changes of F5 and reference compounds

Fig. S16 1H NMR spectrum of c-F5 (CDCl$_3$, 25 °C).
Fig. S17 DSC second heating and cooling curve of c-F5 (scanning rate: 10 °C/min).
Fig. S18 Photographs and PXRD patterns of F3 (top), C5 (middle) and Monomer Unit (bottom) before (left) and after (right) heating over melting points and then cooling at 25 °C.

From PXRD measurements, all of the resulting samples after cooling showed sharp diffraction peaks, indicating crystalline to liquid phase change by heating, and liquid to crystalline phase change by cooling. These transitions are normal in low molecular weight organic compounds including typical pillar[n]arenes.7-9
PXRD pattern suggested that F13 existed in an amorphous state at 25 °C. From DSC measurement, there was no endothermic peak until 160 °C, indicating no melting until 160 °C. From TG-DTA measurement, a broad exothermic peak from about 300 to 600 °C and weight loss at about 400 °C were observed, suggesting decomposition of F13 over 300 °C. These results indicate that F13 did not show an amorphous–crystalline transition as F5 did.
Fig. S20 Photographs and PXRD patterns of [6]F5 before and after heating over melting points and then cooling at 25 °C.

From PXRD measurements, the resulting sample after cooling did not show sharp diffraction peaks, while the sample before heating showed sharp diffraction peaks, indicating the crystalline to amorphous phase change as F5 did. From this result, C2F5 groups are good substituents for the formation of the molecular glasses.
4. State and contact angle changes by \textit{n}-hexane vapor

\textbf{Fig. S21} 1H NMR spectrum of c-(F5H) (CDCl\textsubscript{3}, 25 °C). The uptake ratio of \textit{n}-hexane to F5 (G/H) calculated from the integration ratio was 1.0.
PXRD measurements of F3 and C5 showed sharp diffraction peaks in the samples before and after the vapor exposure, indicating that the samples before and vapor exposure were crystalline states. On the other hand, PXRD measurements of F13 films both before and after exposure to the vapor showed no sharp peaks, suggesting that F13 was an amorphous state even by the vapor treatment. In addition, PXRD patterns of Monomer Unit suggested that Monomer Unit remained in a crystalline state both before and after exposure to n-hexane vapor as it has no macrocyclic structure and did not take up n-hexane vapor. From these results, installation of the C_{2}F_{5} groups into pillar[5]arene enabled the transition from amorphous to crystalline states by uptake of n-hexane vapor while no noticeable state transitions were observed in the other reference compounds by exposure to n-hexane vapor.

Fig. S22 Photographs and PXRD patterns of (a) F3, (b) C5, (c) F13 and (d) Monomer Unit before (lower side) and after (upper side) exposure to n-hexane vapor.
Fig. S23 1H NMR spectra of F3 (CDCl$_3$, 25 °C) before (lower side) and after (upper side) exposure to n-hexane vapor. The uptake ratio of n-hexane to F3 (G/H) calculated from the integration ratio was 1.0.
Fig. S24 1H NMR spectra of C5 (CDCl$_3$, 25 °C) before (lower side) and after (upper side) exposure to n-hexane vapor. The uptake ratio of n-hexane to C5 (G/H) calculated from the integration ratio was 0.97.
Fig. S25 1H NMR spectrum of F13 (CDCl$_3$, 25 °C) before exposure to n-hexane vapor. The ratio of n-hexane to F13 (G/H) calculated from the integration ratio was 1.0.

Proton peaks from n-hexane were observed even after heating of F13 as prepared at 200 °C in vacuo overnight, indicating that n-hexane used for the purification could not be removed from F13 by the heating.
Fig. S26 1H NMR spectra of **Monomer Unit** (CDCl$_3$, 25 °C) before (lower side) and after (upper side) exposure to n-hexane vapor.

No proton signals from n-hexane after exposure to n-hexane vapor indicate that **Monomer Unit** with no macrocyclic structure did not take up n-hexane vapor.
Table S1 Transmittance changes at 500 nm of F5 by exposing a-F5 to n-hexane vapor (odd times) and heating c-(F5=H) at 160 °C (even times).

Times	Transmittance at 500 nm (%)
1	98
2	10
3	95
4	8
5	94
6	3
7	90
8	14
Fig. S27 DSC first heating and cooling curve (upper side) and TG trace (lower side) of c-(F₅⊃H) (scanning rates of DSC and TDA: 10 °C/min).

DSC curve showed two endothermic peaks at 108 and 140 °C. From TG trace, obvious weight loss was observed at around 140 °C, resulting from n-hexane release from c-(F₅⊃H). These results indicate that the peaks at lower and higher temperatures were attributed to the melting behavior of c-(F₅⊃H) and the release of n-hexane, respectively.
Fig. S28 PXRD patterns of simulation from single crystal of F5⊃H (upper side) and c-(F5⊃H) (lower side).
Obvious peak shifts of the signals from fluoroalkyl groups of F5 (blue square) were observed before and after exposure to n-hexane vapor, indicating that the structure of the fluoroalkyl groups mainly changed along with the transition from \(a\)-F5 to \(c\)-(F5\&H). In addition, the peaks shifted to higher magnetic fields, suggesting that the hydrogen atoms bound to the carbon atoms illustrated blue squares were shielded by accepting electrons from electronegative fluorine atoms of the fluoroalkyl groups. Single-crystal X-ray structural analysis of F5\&H (Fig. 2d) suggested the formation of fluoroalkyl layers and the intermolecular C–H⋯F hydrogen bonds in the \(c\)-(F5\&H) structure. These results supported that the uptake of n-hexane guest vapor in the cavity of \(a\)-F5 changed the structure of the fluoroalkyl groups and caused the intermolecular C–H⋯F hydrogen bonds, resulting in the formation of fluoroalkyl layers in \(c\)-(F5\&H).
6. Molecular electrostatic potential maps

Fig. S30 Molecular electrostatic potential maps of F5 (upper side) and permethylated pillar[5]arene (C1) (lower side). F, O, C and H atoms are represented by yellow, red, black and light blue capped sticks, respectively.
7. State and contact angle changes by guest vapors

Fig. S31 ¹H NMR spectrum of c-(F5⊃P) (CDCl₃, 25 °C). The uptake ratio of n-pentane to F5 (G/H) calculated from the integration ratio was 1.0.
Fig. S32 1H NMR spectrum of c-(F5\supsetMethanol) (CDCl$_3$, 25 °C). The uptake ratio of methanol to F5 (G/H) calculated from the integration ratio was 1.4.
Fig. S33 \(^1\)H NMR spectrum of c-(F\(_5\)\(\supset\)Ethanol) (CDCl\(_3\), 25 °C). The uptake ratio of ethanol to F\(_5\) (G/H) calculated from the integration ratio was 1.0.
Fig. S34 1H NMR spectrum of c-(F5 \supset Toluene) (CDCl$_3$, 25 °C). The uptake ratio of toluene to F5 (G/H) calculated from the integration ratio was 2.1.
Fig. S35 1H NMR spectrum of c-(F5□1,4-Dicyanobutane) (CDCl$_3$, 25 °C). The uptake ratio of 1,4-dicyanobutane to F5 (G/H) calculated from the integration ratio was 1.0.
Fig. S36 PXRD patterns of a-F5 (red), c-(F5⊂H) (green), c-(F5⊂P) (blue), c-(F5⊂Methanol) (orange), c-(F5⊂Ethanol) (violet), c-(F5⊂Toluene) (brown) and c-(F5⊂1,4-Dicyanobutane) (pink).
Table S2 Water contact angles of the complexes of F5 with its guest vapors. One standard error is calculated from five independent measurements.

Guest Vapor	Water Contact Angle (°)
No Guest	98±3
n-Hexane	112±1
n-Pentane	119±2
Methanol	101±5
Ethanol	98±4
Toluene	101±2
1,4-Dicyanobutane	101±0

The noticeable increases in the water contact angles of F5 were observed only in c-(F5⊃H) and c-(F5⊃P).
Fig. S37 Single-crystal structures of F₅⁺P; all labeled distances of intermolecular C–H···F hydrogen bonds are given in angstrom orders. F, O, C and H atoms are represented by yellow, red, black and light blue capped sticks, respectively.

F₅ formed 1:1 host–guest complex with n-pentane, corresponding to aforementioned ¹H NMR study of c-(F₅⁺P) (Fig. S31). The complex formed a high-symmetrical and pillar-shaped structure, resulting in the formation of channel structures. Fluoroalkyl layer formation was induced by intermolecular C–H···F hydrogen bonds.
Fig. S38 PXRD patterns of F5 by exposing a-F5 to n-pentane vapor and heating c-(F5\supsetP) at 160 °C.
Table S3 Contact angles of 1-bromonaphthalene on the surfaces of a-$F5$, c-($F5\supset H$) and c-($F5\supset P$). One standard error is calculated from five independent measurements.

Compound	Contact Angle of 1-Bromonaphthalene (°)
a-$F5$	40±1
c-($F5\supset H$)	40±2
c-($F5\supset P$)	29±3

c-($F5\supset P$) showed smaller contact angle of 1-bromonaphthalene than a-$F5$ and c-($F5\supset H$), suggesting that the rougher surface of c-($F5\supset P$) affected the decrease in oil repellency.
Table S4 Water contact angles of reference compounds before or after exposure to n-hexane or n-pentane vapors. One standard error is calculated from five independent measurements.

Compound	Guest Vapor	Water Contact Angle (°)
F3	No Guest	98±1
F3	n-Hexane	80±3
F3	n-Pentane	85±4
C5	No Guest	98±1
C5	n-Hexane	106±1
C5	n-Pentane	102±1
F13[a]	n-Hexane	84±4
Monomer Unit[b]	No Guest	74±1

[a] n-Hexane could not be removed from F13.

[b] Monomer Unit with no macrocyclic structure did not take up the guest vapors.
Fig. S39 Photographs (upper side) and transmittance changes at 500 nm (lower side) of F5 by exposing \textit{a-F5} to \textit{n}-pentane vapor (odd times) and heating \textit{c-(F5P)} at 160 °C (even times).
Fig. S40 Water contact angle changes of F_{5} by exposing a-F_{5} to n-pentane vapor (odd times) and heating c-($F_{5}P$) at 160 °C (even times). The error bars represent one standard error from five independent measurements.
Fig. S41 Water contact angle changes of F5 by exposing a-F5 to n-hexane vapor (odd times) and heating c-(F5⊃H) at 160 °C (even times). The error bars represent one standard error from five independent measurements.
Fig. S42 Photographs and PXRD patterns of [6]F5 before (left) and after (right) exposure to cyclohexane vapor.

From PXRD measurements, the resulting sample after exposure to cyclohexane vapor showed sharp diffraction peaks in contrast to no sharp diffraction peaks of the amorphous sample before exposure to cyclohexane vapor, indicating the amorphous to crystalline phase change as F5 did. From this result, C$_2$F$_3$ groups are good substituents to produce the guest vapor-responsive molecular glasses.
Fig. S43 1H NMR spectra of [6]F5 (CDCl$_3$, 25 °C) before (lower side) and after (upper side) exposure to cyclohexane vapor. The uptake ratio of cyclohexane to [6]F5 (G/H) calculated from the integration ratio was 0.67.
8. Time-dependent changes by exposing a-F5 to n-pentane vapor

Table S5 Time-dependent changes in uptake ratios of n-pentane to a-F5.

Time (min)	Uptake Ratio
0	0.011
3	0.34
5	0.51
10	0.52
15	0.63
25	0.75
30	0.78
45	0.95
60	1.0
120	1.1
Fig. S44 1H NMR spectra of time-dependent changes in uptake ratios of n-pentane to a-F5 (CDCl₃, 25 °C). The ratios are denoted as G/H.
Table S6 Time-dependent changes in water contact angles of F5 by exposing a-F5 to n-pentane vapor. One standard error is calculated from five independent measurements.

Time (min)	Water Contact Angle (°)
0	99±1
3	104±2
5	105±1
10	108±1
15	111±1
25	113±1
30	112±1
45	117±1
60	121±2
120	121±1
Fig. S45 Time-dependent changes in transmittances at 500 nm of F5 by exposing a-F5 to n-pentane vapor.

Table S7 Time-dependent changes in transmittances at 500 nm of F5 by exposing a-F5 to n-pentane vapor.

Time (min)	Transmittance at 500 nm (%)
0	99
3	55
5	54
10	50
15	49
25	39
30	37
45	36
60	31
120	13
180	9
240	8
Fig. S46 Time-dependent PXRD pattern changes of F5 by exposing a-F5 to n-pentane vapor.
Fig. S47 Time-dependent AFM image changes of F5 by exposing a-F5 to n-pentane vapor.

Before exposure to n-pentane (0 min), flat surface structures were observed. After 3 min exposure, curved edge structures were formed and crystalline structures with linear edges began to appear in 15 min. The formation of the crystalline structures proceeded gradually and had been completed at 1 h.
9. Comparison between PXRD patterns of F5⊃P and c-(F5⊃P)

Fig. S48 PXRD patterns of simulation from single crystal of F5⊃P (upper side) and c-(F5⊃P) (lower side).

The PXRD pattern simulated from a single crystal of F5⊃P was similar to that of c-(F5⊃P), suggesting that uptake of n-pentane guest vapor in the F5 cavity caused crystallization of amorphous state a-F5, whose structure was similar to that of the single crystal of F5⊃P. Therefore, the increase in water repellency of F5 by uptake of n-pentane vapor was ascribed to the formation of fluoroalkyl layers.
10. Supplementary photographs

Fig. S49 Photographs of F5 by exposing \textit{a-F5} to \textit{n}-hexane vapor and heating \textit{c-(F5\textsubscript{5}P)} at 160 °C repeatedly.
Fig. S50 Photographs of F5 by exposing a-F5 to n-pentane vapor and heating c-(F5⊃P) at 160 °C repeatedly.
Fig. S51 Photographs of time-dependent changes of F5 by exposing α-F5 to n-pentane vapor.
Fig. S52 Photographs of time-dependent changes in water contact angles of F5 by exposing a-F5 to n-pentane vapor.
11. DSC curves of reference compounds

$T_m = 148 \, ^\circ C / T_f = 139 \, ^\circ C$

Fig. S53 DSC second heating and cooling curve of F3 (scanning rate: 10 °C/min).
Fig. S54 DSC second heating and cooling curve of C5 (scanning rate: 10 °C/min).
Fig. S55 DSC second heating and cooling curve of Monomer Unit (scanning rate: 10 °C/min).
Fig. S56 DSC second heating and cooling curve of [6]F5 (scanning rate: 10 °C/min).
12. Single-crystal structures

(a)

(b)
Fig. S57 Single-crystal structures of (a) F_5H, (b) F_3H, (c) C_5H and (d) Monomer Unit (prepared from chloroform under n-hexane vapor); all labeled distances between intermolecular fluorine atoms are given in angstrom orders. F, O, C and H atoms are represented by yellow, red, black and light blue capped sticks, respectively. Guest molecules are omitted for clarity.

Compared to F_3H with short CF$_3$ groups (Fig. S49b), similar/closer distances between intermolecular fluorine atoms in same/adjacent layers are shown in F_5H (Fig. S49a), indicating that the number of fluorine atoms is important to show higher water repellency of c-F_5H. The distances in both same and adjacent layers in F_5H (Fig. S49a) are smaller than those of Monomer Unit with no macrocyclic structure (Fig. S49d). This suggests that fluorine atoms of F_5H with C$_2$F$_5$ groups aggregate more densely, resulting in higher water repellency. C_5H with no fluorine atoms also forms the alkyl layer structure (Fig. S49c), indicating that aggregation of fluorine atoms affects the increase in water repellency of F_5H.
Fig. S58 Single-crystal structure of [6]F5⊂cyclohexane; F, O and C atoms are represented by yellow, red and black capped sticks, respectively. Hydrogen atoms are omitted for clarity.

[6]F5 formed 1:1 host–guest complex with cyclohexane.
Table S8 Crystallographic data for F5⊂H, F3⊂H, C5⊂H, F5⊂P, [6]F5⊂CyH, and Monomer Unit.

	F5⊂H	F3⊂H	C5⊂H
Formula	C₉₁H₉₄F₅₀O₁₀	C₆₁H₉₄F₃₀O₁₀	C₉₁H₁₄₄O₁₀
Formula weight	2297.66	1797.56	1398.05
Temperature (K)	90	90	90
Crystal size (mm³)	0.50 × 0.20 × 0.07	0.30 × 0.13 × 0.10	0.50 × 0.30 × 0.30
Crystal system	triclinic	monoclinic	triclinic
Space group	P₁	P₂₁/α	P₁
a (Å)	20.9282(12)	23.6441(11)	11.9787(5)
b (Å)	22.7403(13)	22.5243(11)	17.3956(7)
c (Å)	24.2682(14)	31.1470(16)	22.0177(9)
α (deg)	98.976(2)	9	110.0599(10)
β (deg)	98.951(2)	95.0726(19)	90.8994(13)
γ (deg)	114.0170(17)	90	101.3765(11)
V (Å³)	10108.6(10)	16522.9(14)	4207.6(3)
Z	4	8	2
Dcalcd (g cm⁻³)	1.510	1.445	1.103
Collected reflections	151621	298974	77809
Unique reflections	35639	29141	14818
Rint	0.0681	0.0898	0.0370
2θmax (deg)	134.16	133.38	134.05
F₀₀₀	4680	7440	1540
μ(Cu Kα) (mm⁻¹)	1.432	1.226	0.538
Limiting indices	–24 ≤ h ≤ 24	–28 ≤ h ≤ 28	–13 ≤ h ≤ 14
	–27 ≤ k ≤ 27	–23 ≤ k ≤ 26	–20 ≤ k ≤ 20
	–25 ≤ l ≤ 28	–37 ≤ l ≤ 37	–26 ≤ l ≤ 26
Restraints/parameters	3622/3378	12578/3828	85/969
Goodness of fit (F²)	1.025	1.129	1.021
R1 (I>2σ(I))[^a]	0.0784	0.1042	0.0457
wR2 (I>2σ(I))[^b]	0.2190	0.2322	0.1243
R1 (all data)^[a]	0.0950	0.1406	0.0470
wR2 (all data)^[b]	0.2370	0.2552	0.1257

[^a] R1 = Σ||F_o| - |F_c||/|F_o|;
[^b] wR2 = (Σw(F_o^2 - F_c^2)^2)/Σw(F_o^2)^2)^{1/2}.

S66
Table S8 continued.

	F5⊃P (CCDC-2121266)	[6]F5⊃cyclohexane (CCDC-2144343)	Monomer Unit (CCDC-2121267)
Formula	$C_{90.65}H_{93.56}F_{50}O_{10}$	$C_{108}H_{108}F_{60}O_{12}$	$C_{16}H_{16}F_{10}O_{2}$
Formula weight	2293.01	2737.94	430.29
Temperature (K)	105	120	138
Crystal size (mm³)	$0.64 \times 0.45 \times 0.10$	$0.56 \times 0.52 \times 0.12$	$0.40 \times 0.26 \times 0.07$
Crystal system	monoclinic	monoclinic	monoclinic
Space group	$P2_1/n$	$C2/c$	$P2_1/a$
a (Å)	22.979(16)	69.979(2)	11.164(3)
b (Å)	21.8597(16)	13.9205(5)	5.0419(8)
c (Å)	40.474(3)	24.2019(8)	15.9267(17)
α (deg)	90	90	90
β (deg)	102.220(3)	96.4154(12)	91.317(7)
γ (deg)	90	90	90
V (Å³)	19870(2)	23428.4(14)	896.2(3)
Z	8	8	2
D_{calcd} (g cm⁻³)	1.533	1.552	1.594
Collected reflections	222927	128875	10800
Unique reflections	34889	20728	1614
R_{int}	0.0737	0.0564	0.0759
$2θ_{\text{max}}$ (deg)	133.74	133.40	136.06
F_{000}	9340	11136	436
μ(Cu Kα) (mm⁻¹)	1.455	1.479	1.570
Limiting indices	$-27 \leq h \leq 23$	$-83 \leq h \leq 83$	$-13 \leq h \leq 13$
	$-25 \leq k \leq 26$	$-16 \leq k \leq 16$	$-5 \leq k \leq 6$
	$-48 \leq l \leq 48$	$-26 \leq l \leq 28$	$-19 \leq l \leq 19$
Restraints/parameters	7881/3939	1847/2132	0/127
Goodness of fit (F^2)	1.026	1.015	1.083
$R1 (I>2σ(I))^{[a]}$	0.0996	0.0578	0.0785
$wR2 (I>2σ(I))^{[b]}$	0.2777	0.1649	0.2340
$R1$ (all data)^[a]	0.1222	0.0657	0.0882
$wR2$ (all data)^[b]	0.3055	0.1747	0.2479

[a] $R1 = \Sigma||F_o||-|F_c||/|F_o|; wR2 = \{\Sigma(w(F_o^2-F_c^2)^2)/\Sigma[w(F_o^2)]\}^{1/2}$.

S67
13. References

S1 Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnentag, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.

S2 S. M. Akrami, H. Nakayachi, T. Watanabe-Nakayama, H. Asakawa, T. Fukuma, Nanotechnology 2014, 25, 455701.

S3 G. M. Sheldrick, Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3–8.

S4 N. Erdeljac, G. Kehr, M. Ahlqvist, L. Knerr, R. Gilmour, Chem. Commun. 2018, 54, 12002–12005.

S5 Y. Liu, D. Tang, K. Zhang, P. Huang, Z. Wang, K. Zhu, Z. Li, L. Yuan, J. Fan, Y. Zhou, B. Song, ACS Omega. 2017, 2, 2489–2498.

S6 T. Ogoshi, K. Kitajima, T. Aoki, S. Fujinami, T. Yamagishi, Y. Nakamoto, J. Org. Chem. 2010, 75, 3268–3273.

S7 Y. Mi, J. Ma, W. Liang, C. Xiao, W. Wu, D. Zhou, J. Yao, W. Sun, J. Sun, G. Gao, X. Chen, J. J. Chruma, C. Yang, J. Am. Chem. Soc. 2021, 143, 1553–1561.

S8 K. Jie, M. Liu, Y. Zhou, M. A. Little, A. Pulido, S. Y. Chong, A. Stephenson, A. R. Hughes, F. Sakakibara, T. Ogoshi, F. Blane, G. M. Day, F. Huang, A. I Cooper, J. Am. Chem. Soc. 2018, 140, 6921–6930.

S9 B. Li, K. Xu, Y. Wang, H. Su, L. Cui, C. Li, RSC Adv. 2020, 10, 45112–45115.