A nuclear transport-related gene signature combined with IDH and 1p/19q better predicts the prognosis of glioma patients

Zheng Zhu
Third Military Medical University Southwest Hospital Department of Pathology

Yang Lan
Third Military Medical University Southwest Hospital Department of Pathology

Lihong Wang
Third Military Medical University Southwest Hospital Department of Pathology

Jia Ge
Third Military Medical University Southwest Hospital Department of Pathology

Jiao Wang
Third Military Medical University Southwest Hospital Department of Pathology

Feng Liu
Third Military Medical University Southwest Hospital Department of Pathology

Zhicheng He
Third Military Medical University Southwest Hospital Department of Pathology

Hua Zhang
Third Military Medical University Southwest Hospital Department of Pathology

Min Luo
Third Military Medical University Southwest Hospital Department of Pathology

Dandan Lin
Third Military Medical University Southwest Hospital Department of Pathology

Yaoyao Tan
Third Military Medical University Southwest Hospital Department of Pathology

Yuanyuan Xu
Third Military Medical University Southwest Hospital Department of Pathology

Tao Luo (mailto:lty3169@163.com)
Third Military Medical University Southwest Hospital Department of Pathology

Research article

Keywords: nuclear transport, TCGA, CGGA, gliomas, prognosis, gene signature, classification
Abstract

Background

The nuclear transport system has been proposed to be indispensable for cell proliferation and invasion in cancers. Prognostic biomarkers and molecular targets in nuclear transport systems have been developed. However, no systematic analysis of genes related to nuclear transport in gliomas has been performed. An integrated prognostic classification involving mutation and nuclear transport gene signatures has not yet been explored.

Methods

In the present study, we analyzed gliomas from a training cohort (TCGA dataset, n = 660) and validation cohort (CGGA dataset, n = 668) to develop a prognostic nuclear transport gene signature and generate an integrated classification system. Then, we developed a nuclear transport-related risk score (NTRS) for gliomas with a training cohort.

Results

Gene set enrichment analysis (GSEA) showed that glioblastoma (GBM) was mainly enriched in nuclear transport progress compared to lower-grade glioma (LGG). NTRS was significantly correlated with clinical and genetic characteristics, including grade, age, histology, IDH status and 1p/19q codeletion, in the training and validation cohorts. Survival analysis revealed that patients with a higher NTRS exhibited shorter overall survival. NTRS showed better prognostic value compared to classical molecular markers, including IDH status and 1p/19q codeletion. Furthermore, univariate and multivariate analyses indicated that NTRS was an independent prognostic factor for gliomas. Enrichment map and Gene Ontology analysis demonstrated that signaling pathways related to the cell cycle were enriched in the NTRSHigh group. Subgroup survival analysis revealed that NTRS could differentiate the outcomes of low- and high-risk patients with wild-type IDH or mutant IDH and 1p/19q noncodeletion.

Conclusions

NTRS is associated with poor outcomes and could be an independent prognostic marker in diffuse gliomas. Prognostic classification combined with IDH mutation, 1p/19q codeletion and NTRS could better predict the survival of glioma patients.

Background

Eukaryotic cells are divided into the nucleus and cytoplasm by the nuclear membrane. The movement of macromolecules between the nucleus and the cytoplasm, mostly including proteins and RNAs, occurs via
the nuclear transport system[25]. The nuclear transport system includes three main components: the nuclear pore complex (NPC), RanGTPase and the nuclear transport receptor (NTR) [12]. It has been reported that the nuclear transport system plays an indispensable role in cancer development and metastasis[23, 24]. Targeting the nuclear transport system could be a promising therapeutic approach[1, 19]. However, a single molecule cannot represent the overall activity of the system, and a systemic analysis of nuclear transport and its prognostic value in cancer involving an expression profile is lacking.

Gliomas are the most common primary tumors of the central nervous system and are classified by histologic and genomic phenotype [2, 17]. In fact, it is not only genomic characteristics such as IDH mutation and 1p/19q codeletion but also transcriptomic and methomic characteristics that can be used as biomarkers of molecular classification[4, 7]. Many models of gene signatures based on RNA-seq data can predict prognosis and be employed as an independent prognostic factor [28, 30, 31]. However, integrated prognostic classification with classical molecular biomarkers requires further study.

In this study, using RNA-seq data from TCGA as a training cohort and data from CGGA as a validation cohort, we established a nuclear transport risk score (NTRS) and tested the correlations between NTRS and clinicopathologic characteristics. We found that NTRS was an independent biomarker of prognosis and was associated with cell cycle-related pathways. Finally, combined with IDH mutation and 1p/19q codeletion, the value of NTRS in prognostic classification was validated. Taken together, our results indicated that the nuclear transport-related gene signature was strongly associated with poor outcomes and could serve as a novel biomarker for prognostic classification in diffuse gliomas.

Methods

Data Source

The data from the TCGA training set included RNA-seq data and clinical data from patients (n=660) with LGG and GBM from cBioPortal (http://www.cbiportal.org)[4, 7]. The glioma patients included in the validation set (n=668) came from CGGA (http://www.cgga.org.cn/index.jsp)[11]. Integrated diagnosis was performed according to the World Health Organization (WHO) classification (2016). The patient characteristics are summarized in Supplementary tables 1 and 2.

Generation of NTRS

The nuclear transport gene set (n=338) was collected from the Molecular Signature Database v7.0 (http://software.broadinstitute.org/gsea/msigdb). Univariate Cox regression analysis was carried out to prefilter genes associated with nuclear transport and 251 genes correlated with survival (P ≤ 0.01). Seven genes and their regression coefficients were calculated according to least absolute shrinkage and selection operator (LASSO) regression[28]. The risk score was calculated according to the formula presented in Figure 1B.

GSEA, Enrichment Map and GO clustering analysis
Gene set enrichment analysis (GSEA) was performed with GSEA software (http://software.broadinstitute.org/gsea/downloads.jsp)[26]. GO biological process analysis including 4436 gene sets was performed (http://software.broadinstitute.org/gsea/msigdb/genesets.jsp?collection=BP). An enrichment map was used to visualize the results of GSEA according to previously reported methods[20]. Gene Ontology (GO) clustering analysis was performed using the R package "clusterProfiler", in which the "enrichGO" and "dotplot" functions were employed to enrich genes and visualize gene clusters[29].

Statistical Analysis

The optimal cut-off value for NTRS was determined via ROC curve analysis. Briefly, in the ROC curves, the x-axis was plotted as “1-specificity” (false positivity), and the y-axis was plotted as the “sensitivity” (true positivity). The optimal cut-off value was determined on the basis of the Youden index (Y), which was the point with maximum sensitivity and specificity (Y = sensitivity+ specificity – 1)[9]. Student’s t test was performed to compare the NTRS values of two different groups. Tukey’s multiple comparisons test was performed to compare the NTRS values of more than two groups. Differences in clinicopathological characteristics between groups were tested with chi-squared tests. Patient survival was analyzed via the Kaplan-Meier method. Univariate and multivariate Cox regression analyses were performed to evaluate independent prognostic factors by using SPSS software. ROC curve analysis was performed to predict overall survival (OS). P<0.05 was considered statistically significant. (*p<0.05, **p<0.01, ***p<0.001).

Results

Identification of a 7-gene nuclear transport-related signature for the prognosis of glioma.

First, we analyzed the expression of the nuclear transport gene set with the TCGA dataset. GBM showed distinct nuclear transport phenotypes from LGG (Supplementary Fig. 1). Gene set enrichment analysis (GSEA) based on the TCGA and CGGA datasets also confirmed that the GBM group was enriched for transcriptional programs related to nuclear transport (Fig. 1A). To develop a gene signature based on the nuclear transport pathway, we first screened the glioma samples and nuclear transport-related genes in the training cohort. From the matrix of 660 gliomas and 336 genes, we selected 251 genes associated with OS (P ≤ 0.01) by univariate Cox regression analysis (Fig. 1B). Seven genes were selected via LASSO regression analysis, and the nuclear transport risk score (NTRS) in the training cohort was obtained (Fig. 1C, D). To analyze the relationships between NTRS and clinical characteristics, 660 patients from the training cohort and 668 patients from the validation cohort with clinical information were selected. The distribution of clinical characteristics, genetic characteristics and the expression of 7 genes in the patients are shown (Fig. 2A). As we expected, NTRS increased according to glioma grade (Supplementary Fig. 2A) and was higher in patients who were over 50 years old without IDH mutation or 1p/19q codeletion (Supplementary Fig. 2B-D). Furthermore, in the subtype classified according to histology or molecular markers, NTRS was elevated in subgroups with shorter survival times, such as patients with the glioblastoma subtype or the subtype without IDH mutation and 1p/19q codeletion (Supplementary
These findings were validated in the CGGA dataset (Fig. 2B). In brief, NTRS was significantly associated with clinical and genetic characteristics that have been reported as prognostic markers in gliomas.

Validity of NTRS as an independent prognostic marker in glioma

To investigate the prognostic value of NTRS, we first calculated the cut-off value by maximizing the Youden index through ROC analysis. The patients were divided into NTRS$^{\text{High}}$ and NTRS$^{\text{Low}}$ groups (Fig. 3A). Subsequently, we validated the correlation between the NTRS group and clinicopathological factors in the TCGA dataset and CGGA dataset (Table 1). These data indicated that NTRS could be a potential prognostic marker for glioma. To test this hypothesis, we performed survival analysis in different cohorts and subgroups. Overall survival (OS) was decreased in patients with high NTRS values compared to those with low NTRS values (hazard ratio 12.2, 95% confidence interval 9.2–16.1; P < 0.001, Fig. 3B, left panel). We also confirmed the prognostic effect of NTRS in the validation cohort (hazard ratio 2.4, 95% confidence interval 2.0–3.0; P < 0.001, Fig. 3B, right panel). Furthermore, OS differed significantly between the NTRS$^{\text{High}}$ and NTRS$^{\text{Low}}$ groups in patients with gliomas of different grades, sexes, ages, IDH statuses and 1p/19q codeletion statuses (Fig. 3C, D). Through ROC analysis, we compared the sensitivity and specificity of NTRS with the traditional factors of age, grade, IDH status and 1p/19q codeletion status for the prediction of 2-year survival, revealing better predictive value of NTRS (Fig. 3E). These data indicated that NTRS is a promising prognostic marker for gliomas.

To further test whether NTRS is an independent biomarker of prognosis, we performed Cox regression analysis in the training set. In the univariate analysis, NTRS, age, histology, grade, IDH mutation, chromosome 1p/19q codeletion, MGMT promoter methylation, chromosome 9/10 status, ATRX mutation and chromosome 19/20 status were each significantly associated with overall survival (p < 0.001). In the multivariable analysis, NTRS (hazard ratio 2.9, 95% confidence interval 1.74–4.82), age (hazard ratio 2.39, 95% confidence interval 1.66–3.45), grade (hazard ratio 1.99, 95% confidence interval 1.51–2.62), IDH status (hazard ratio 0.48, 95% confidence interval 0.29–0.80) and chromosome 19/20 status were independently associated with overall survival (Table 2). Accordingly, NTRS was validated as an independent prognostic marker in the CGGA cohort (Table 3). Taken together, these data indicated that NTRS could be an effective independent prognostic biomarker of gliomas.

NTRS$^{\text{High}}$ gliomas exhibit elevated cell cycle and immune responses.

To analyze the association between NTRS and a poor prognosis of glioma patients, we performed gene set enrichment analysis (GSEA) coupled with enrichment map analysis to visualize the enriched GO biological processes. The NTRS$^{\text{High}}$ group was enriched in transcriptional programs related to the cell cycle, DNA replication and immune responses (Fig. 4A, B). Based on the identified differentially expressed genes (P < 0.05), GO analysis verified that the cell cycle and immune responses were significantly enriched in NTRS$^{\text{High}}$ patients (Fig. 4C). These transcriptomic data indicated that NTRS$^{\text{High}}$ gliomas exhibit increased proliferative activity, which might result in a worse outcome.
NTRS is a potential marker for prognostic classification, combined with IDH mutation and 1p/19q codeletion

To illustrate the value of NTRS in the classification of gliomas, we first analyzed the distribution of subtypes stratified by WHO grade, IDH mutation and 1p/19q codeletion status in the NTRS group. In gliomas with IDH mutation and 1p/19q codeletion, all gliomas diagnosed as WHO grade II (100%, 92/92) were associated with a low NTRS, whereas only 4% of gliomas diagnosed as WHO grade III (3/74) were associated with a low NTRS. In gliomas with IDH mutations and without 1p/19q codeletion, the rate of high NTRS values increased according to the WHO grade (7%, 9/129 for grade II; 22%, 25/112 for grade III; 66%, 4/6 for grade IV). In gliomas without IDH mutations, 56% of gliomas diagnosed as WHO grade II (10/18), 94% as WHO grade III (68/72) and 100% as WHO grade IV (143/143) exhibited a high NTRS (Fig. 5A). Subsequently, we performed survival analysis in different subgroups. The NTRSHigh group exhibited shorter survival among patients with WHO grade III gliomas classified by IDH mutation and 1p/19q codeletion (Fig. 5B). These results indicated that NTRS could be more effective as a marker when combined with other prognostic markers for gliomas. To test this hypothesis, we analyzed the prognostic value in subgroups stratified by IDH mutation and 1p/19q codeletion. In both the subgroup with IDH mutation without 1p/19q codeletion and the subgroup without IDH mutation, overall survival (OS) was decreased in patients with a high NTRS (Fig. 6A). These results were further confirmed in the validation cohort (Fig. 6B). In conclusion, by combining data on IDH mutation and 1p/19q codeletion with NTRS, we established a prognostic classification model for survival prediction in glioma patients (Fig. 6C).

Discussion

The nuclear transport system has been proven to be critical for tumorigenesis and the development of cancer[1]. Nuclear transport could serve as a therapeutic target in several cancer types[8, 13, 23]. Many genes involved in nuclear transport have been reported to be associated with the prognosis of cancer patients[3]. These results indicate that nuclear transport may serve as a marker of prognosis in cancer. In this study, we used RNA-seq data from the TCGA and CGGA databases to generate a seven-gene nuclear transport risk score (NTRS) to predict the prognosis of glioma patients. We further confirmed that NTRS was an independent prognostic marker and better predicted overall survival compared to traditional factors. Our work establishes a novel nuclear transport-based gene signature for the prediction of glioma patient survival.

One shortcoming of this work was the lack of clinical validation and functional research on NTRS. With the development of RT-PCR, Nanostring and next-generation sequencing (NGS), gene signatures have been broadly applied in the clinic for the prediction of recurrence and the response to therapy[6, 10, 22]. Gene signature panels based on NTRS should be developed, and real-world research (RWR) involving multiple centers should be performed in the future. Although all seven genes were significantly associated with survival in multiple datasets (TCGA, CGGA and Rembrandt) and several of the genes have been reported to be functional in gliomas[14–16], further experiments are needed to study the function and mechanism of these seven genes, which will be performed in the future.
Since the publication of the 2016 WHO classification of tumors of the central nervous system, integrated classification has been generally applied to glioma. With the availability of public databases, the integration of data on histology and mutation, methylation and mutation or mRNA expression and mutation can divide patients into different subgroups\cite{4, 5, 7, 27}. Furthermore, with the development of artificial intelligence and machine learning, digital images obtained via magnetic resonance imaging and histopathological analysis can be used to predict not only overall survival but also IDH mutation and 1p/19q codeletion\cite{18, 21}. In the near future, the diagnosis of gliomas will involve the combination of multidimensional data. At the molecular level, glioma panels including mutation, methylation and gene expression data will be rapidly developed. In this study, we made a preliminary attempt to combine NTRS with IDH mutation and 1p/19q codeletion data for prognosis. The patients in the five subgroups exhibited significantly different outcomes (Fig. 6C). Our research demonstrated that the nuclear transport-related gene signature could serve as a novel marker for prognostic classification in combination with IDH mutation and 1p/19q codeletion.

Conclusions

Risk score based on nuclear transport system is significantly associated with poor clinicopathologic characteristics and is an independent prognostic marker in diffuse gliomas. Combined with IDH mutation, 1p/19q codeletion and the nuclear transport risk score could better predict the overall survival of glioma patients.

Abbreviations

NTRS
nuclear transport risk score
LASSO
Least absolute shrinkage and selection operator
NPC
Nuclear pore complex
WHO
World health organization
GSEA
Gene set enrichment analysis
TCGA
The Cancer Genome Atlas
CGGA
Chinese Glioma Genome Atlas
GSEA
Gene Set Enrichment Analysis
GBMs
Glioblastomas
LGGs
Lower-grade gliomas
IDH
Isocitrate dehydrogenase
ROC
Receiver operating characteristics
AUC
Area under curve
GO
Gene Ontology
BP
Biological process
OS
Overall survival
NGS
Next-generation sequencing

Declarations

Ethics approval and consent to participate

The data from CGGA was approved by the Tiantan Hospital Institutional Review Board (IRB) and kept consistent with the principles of the Helsinki Declaration. A set of policies developed by NCI and NHGRI have approved to protect the privacy of participants donating specimens to TCGA. Included are TCGA's informed consent policy, data access policy and information about HIPAA Privacy Rule compliance.
January, 2014

Consent for publication

Not applicable.

Funding

This research was supported by grants from the National Natural Science Foundation of China (81602196 and 81702456) and the Chongqing Basic Research Project (cstc2016jcyjA2194). These funds were used for the design of the study, analysis of the data and writing of the manuscript.

Availability of data and materials

The datasets generated and/or analyzed during the current study are available in the TCGA (http://www.cbioportal.org) and CGGA (http://gliovis.bioinfo.cnio.es/) databases. The data was publically available.
Competing interests

The authors declare that they have no competing interests.

Authors' contributions

TL conceived this work and wrote the paper. YL collected and preprocessed the data from TCGA and CGGA. ZZ performed the analysis and prepared the figures and tables. LHW and JG generated enrichment maps with GSEA. JW, FL, HZ, DL, ML, YT and YX helped to interpret the results. TL revised the manuscript. TL supervised the entire study. All authors have read and approved the manuscript.

Acknowledgement

Not applicable.

References

1. Beck M, Schirmacher P, Singer S (2017) Alterations of the nuclear transport system in hepatocellular carcinoma - New basis for therapeutic strategies. Journal of hepatology 67: 1051-1061 Doi 10.1016/j.jhep.2017.06.021

2. Bi J, Chowdhry S, Wu S, Zhang W, Masui K, Mischel PS (2020) Altered cellular metabolism in gliomas - an emerging landscape of actionable co-dependency targets. Nature reviews Cancer 20: 57-70 Doi 10.1038/s41568-019-0226-5

3. Cagatay T, Chook YM (2018) Karyopherins in cancer. Current opinion in cell biology 52: 30-42 Doi 10.1016/j.ceb.2018.01.006

4. Cancer Genome Atlas Research N, Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, Cooper LA, Rheinbay E, Miller CR, Vitucci Met al (2015) Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. The New England journal of medicine 372: 2481-2498 Doi 10.1056/NEJMoa1402121

5. Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, Koelsche C, Sahm F, Chavez L, Reuss DEet al (2018) DNA methylation-based classification of central nervous system tumours. Nature 555: 469-474 Doi 10.1038/nature26000

6. Cardoso F, van't Veer LJ, Bogaerts J, Slaets L, Viale G, Delalogue S, Pierga JY, Brain E, Causeret S, DeLorenzi Met al (2016) 70-Gene Signature as an Aid to Treatment Decisions in Early-Stage Breast Cancer. The New England journal of medicine 375: 717-729 Doi 10.1056/NEJMoa1602253

7. Ceccarelli M, Barthel FP, Malta TM,Sabedot TS, Salama SR, Murray BA, Morozova O, Newton Y, Radenbaugh A, Pagnotta SMet al (2016) Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma. Cell 164: 550-563 Doi 10.1016/j.cell.2015.12.028
8 Chari A, Vogl DT, Gavriatopoulou M, Nooka AK, Yee AJ, Huff CA, Moreau P, Dingli D, Cole C, Lonial Set al (2019) Oral Selinexor-Dexamethasone for Triple-Class Refractory Multiple Myeloma. The New England journal of medicine 381: 727-738 Doi 10.1056/NEJMoa1903455

9 Chen L, Cao MF, Zhang X, Dang WQ, Xiao JF, Liu Q, Tan YH, Tan YY, Xu YY, Xu SLet al (2019) The landscape of immune microenvironment in lung adenocarcinoma and squamous cell carcinoma based on PD-L1 expression and tumor-infiltrating lymphocytes. Cancer medicine 8: 7207-7218 Doi 10.1002/cam4.2580

10 Cristescu R, Mogg R, Ayers M, Albright A, Murphy E, Yearley J, Sher X, Liu XQ, Lu H, Nebozhyn Met al (2018) Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 362: Doi 10.1126/science.aar3593

11 Hu H, Mu Q, Bao Z, Chen Y, Liu Y, Chen J, Wang K, Wang Z, Nam Y, Jiang Bet al (2018) Mutational Landscape of Secondary Glioblastoma Guides MET-Targeted Trial in Brain Tumor. Cell 175: 1665-1678 e1618 Doi 10.1016/j.cell.2018.09.038

12 Kau TR, Way JC, Silver PA (2004) Nuclear transport and cancer: from mechanism to intervention. Nature reviews Cancer 4: 106-117 Doi 10.1038/nrc1274

13 Kim J, McMillan E, Kim HS, Venkateswaran N, Makkar G, Rodriguez-Canales J, Villalobos P, Neggers JE, Mendiratta S, Wei Set al (2016) XPO1-dependent nuclear export is a druggable vulnerability in KRAS-mutant lung cancer. Nature 538: 114-117 Doi 10.1038/nature19771

14 Li J, Liu Q, Liu Z, Xia Q, Zhang Z, Zhang R, Gao T, Gu G, Wang Y, Wang Det al (2018) KPNA2 promotes metabolic reprogramming in glioblastomas by regulation of c-myc. Journal of experimental & clinical cancer research : CR 37: 194 Doi 10.1186/s13046-018-0861-9

15 Liu J, Lu H, Ohgaki H, Merlo A, Shen Z (2009) Alterations of BCCIP, a BRCA2 interacting protein, in astrocytomas. BMC cancer 9: 268 Doi 10.1186/1471-2407-9-268

16 Liu XL, Zhao D, Sun DP, Wang Y, Li Y, Qiu FQ, Ma P (2012) Adenovirus-mediated delivery of CALR and MAGE-A3 inhibits invasion and angiogenesis of glioblastoma cell line U87. Journal of experimental & clinical cancer research : CR 31: 8 Doi 10.1186/1756-9966-31-8

17 Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta neuropathologica 131: 803-820 Doi 10.1007/s00401-016-1545-1

18 Lu CF, Hsu FT, Hsieh KL, Kao YJ, Cheng SJ, Hsu JB, Tsai PH, Chen RJ, Huang CC, Yen Yet al (2018) Machine Learning-Based Radiomics for Molecular Subtyping of Gliomas. Clinical cancer research : an
19 Mahipal A, Malafa M (2016) Importins and exportins as therapeutic targets in cancer. Pharmacology & therapeutics 164: 135-143 Doi 10.1016/j.pharmthera.2016.03.020

20 Merico D, Isserlin R, Stueker O, Emili A, Bader GD (2010) Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PloS one 5: e13984 Doi 10.1371/journal.pone.0013984

21 Mobadersany P, Yousefi S, Amgad M, Gutman DA, Barnholtz-Sloan JS, Velazquez Vega JE, Brat DJ, Cooper LAD (2018) Predicting cancer outcomes from histology and genomics using convolutional networks. Proceedings of the National Academy of Sciences of the United States of America 115: E2970-E2979 Doi 10.1073/pnas.1717139115

22 Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, Baehner FL, Walker MG, Watson D, Park T et al (2004) A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. The New England journal of medicine 351: 2817-2826 Doi 10.1056/NEJMoA041588

23 Rodriguez-Bravo V, Pippa R, Song WM, Carceles-Cordon M, Dominguez-Andres A, Fujiwara N, Woo J, Koh AP, Ertel A, Lokareddy RK et al (2018) Nuclear Pores Promote Lethal Prostate Cancer by Increasing POM121-Driven E2F1, MYC, and AR Nuclear Import. Cell 174: 1200-1215 e1220 Doi 10.1016/j.cell.2018.07.015

24 Shigeyasu K, Okugawa Y, Toden S, Boland CR, Goel A (2017) Exportin-5 Functions as an Oncogene and a Potential Therapeutic Target in Colorectal Cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 23: 1312-1322 Doi 10.1158/1078-0432.CCR-16-1023

25 Stewart M (2007) Molecular mechanism of the nuclear protein import cycle. Nature reviews Molecular cell biology 8: 195-208 Doi 10.1038/nrm2114

26 Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America 102: 15545-15550 Doi 10.1073/pnas.0506580102

27 Tan MSY, Sandananraj E, Chong YK, Lim SW, Koh LWH, Ng WH, Tan NS, Tan P, Ang BT, Tang C (2019) A STAT3-based gene signature stratifies glioma patients for targeted therapy. Nature communications 10: 3601 Doi 10.1038/s41467-019-11614-x

28 Wu F, Zhao Z, Chai RC, Liu YQ, Li GZ, Jiang HY, Jiang T (2019) Prognostic power of a lipid metabolism gene panel for diffuse gliomas. Journal of cellular and molecular medicine 23: 7741-7748 Doi 10.1111/jcmm.14647
Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. Omics: a journal of integrative biology 16: 284-287 Doi 10.1089/omi.2011.0118

Zhang GH, Zhong QY, Gou XX, Fan EX, Shuai Y, Wu MN, Yue GJ (2019) Seven genes for the prognostic prediction in patients with glioma. Clinical & translational oncology: official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico 21: 1327-1335 Doi 10.1007/s12094-019-02057-3

Zuo S, Zhang X, Wang L (2019) A RNA sequencing-based six-gene signature for survival prediction in patients with glioblastoma. Scientific reports 9: 2615 Doi 10.1038/s41598-019-39273-4

Tables

1. Correlation between NTRS group and clinicopathological factors of glioma patients in the two cohorts
| Features | Training set TCGA RNA-seq cohort (n = 660) | Validation set CGGA RNA-seq cohort (n = 668) | | | | |
|---|---|---|---|---|---|---|
| | NTRS_{Low}n=391 | NTRS_{High}n=269 | p-value | NTRS_{Low}n=281 | NTRS_{High}n=387 | p-value |
| n (range) | 41/17-75 | 56/14-89 | <0.001*** | 41/12-69 | 45/11-76 | <0.001*** |
| der | | | | | | |
| age | 170 | 108 | 0.38 | 135 | 153 | <0.05* |
| sex | 219 | 161 | 146 | 234 | | |
|Grade | 224 | 19 | <0.001*** | 106 | 74 | <0.001*** |
| | 163 | 96 | 136 | 115 | | |
| | 3 | 154 | 39 | 198 | | |
| | 1 | 0 | | | | |
|status | | | | | | |
| type | 12 | 221 | <0.001*** | 44 | 233 | <0.001*** |
| ant | 373 | 43 | 228 | 115 | | |
| | 6 | 5 | 9 | 39 | | |
|1p/19q status | | | | | | |
| codeletion | 223 | 249 | <0.001*** | 162 | 299 | <0.001*** |
| deletion | 163 | 3 | 117 | 24 | | |
| | 5 | 17 | 2 | 64 | | |
|ology | | | | | | |
| ocytoma | 120 | 71 | <0.001*** | 57 | 67 | <0.001*** |
| oedendrogioma | 168 | 17 | 52 | 29 | | |
| oastrocytoma | 100 | 27 | 133 | 93 | | |
| blastoma | 3 | 154 | 39 | 198 | | |
|6T promoter status | | | | | | |
| hylated | 352 | 111 | <0.001*** | / | / | |
| methylated | 30 | 123 | / | / | | |
| | 9 | 35 | / | / | | |
|7.gain&Chr.10.loss | | | | | | |
| | 1 | 146 | <0.001*** | / | / | |
| | 380 | 106 | / | / | | |
| | 10 | 17 | / | / | | |
|19&20 gain | | | | | | |
| -gain | 381 | 222 | <0.001*** | / | / | |
| | 0 | 30 | / | / | | |
| | 10 | 17 | / | / | | |
|X status | | | | | | |
| type | 227 | 218 | <0.001*** | / | / | |
| ant | 155 | 33 | / | / | | |
| | 9 | 18 | / | / | | |

P<0.05 (*), P<0.01 (**) and P<0.001 (***)) is regarded as statistically significant. NA, not applicable.

Table 2. Univariate and multivariable cox regression analyses of factors associated with overall survival in glioma patients in the training cohort.
Table 3. Univariate and multivariable Cox regression analyses of factors associated with overall survival in glioma patients in the validation cohort

Variable	Univariate analysis	Multivariable analysis		
	HR (95% CI)	P	HR (95% CI)	P
NTRS Group	8.84(6.43-12.16)	<0.001***	2.90(1.74-4.82)	<0.001***
Age	4.94(3.63-6.72)	<0.001***	2.39(1.66-3.45)	<0.001***
Gender	0.92(0.70-1.22)	0.58	/	/
Histology	1.94(1.66-2.25)	<0.001***	/	/
Grade	4.86(3.85-6.13)	<0.001***	1.99(1.51-2.62)	<0.001***
IDH.status	0.10(0.07-0.13)	<0.001***	0.48(0.29-0.80)	<0.01**
Chr.1p/19q.codeletion	0.24(0.15-0.38)	<0.001***	/	/
MGMT.promoter.status	0.29(0.22-0.39)	<0.001***	/	/
Chr.7.gain&Chr.10.loss	8.75(6.34-12.07)	<0.001***	/	/
Chr.19&20 gain	3.37(2.06-5.51)	<0.001***	0.56(0.34-0.93)	<0.05*
ATRX.status	0.44(0.32-0.62)	<0.001***	/	/

NTRS (low and high); Gender (female and male); Histology (astrocytoma, oligodendroglioma, oligoastrocytoma and glioblastoma); Grade (0, 1 and 2); IDH status (wildtype and mutant); 1p/19q (non-codeletion and codeletion); MGMT promoter status (methylated and unmethylated); Chr.7.gain&Chr.10.loss (yes and no); Chr.19&20 gain (non-gain and gain); ATRX.status (wildtype and mutant).

P<0.05 (*), P<0.01 (**), and P<0.001 (***) is regarded as statistically significant. HR, hazard ratio; CI, confidence interval

Table 4. The clinicopathological characteristics of the glioma patients enrolled in this study.
Characteristics	Training set (TCGA)	Validation set (CGGA)
Age (year)		
Mean (range)	47-14-89	43-11-76
Gender		
Female	278	288
Male	380	380
NA	2	0
Histology		
Astrocytoma	191	124
Oligodendroglioma	185	81
Oligoastrocytoma	127	226
Glioblastoma	157	237
WHO Grade		
III	243	180
II	259	251
I	157	237
NA	1	NA
IDH status		
Wildtype	233	277
Mutant	416	343
NA	11	48
Chr.1p/19q		
Non-codeletion	472	461
Codeletion	166	141
NA	22	66
MGMT promoter status		
Methylated	463	/
Unmethylated	153	/
NA	44	/
Chr.7.gain&Chr.10.loss		
Yes	147	/
No	486	/
NA	27	/
Chr.19&20 gain		
Non-gain	603	/
Gain	30	/
NA	27	/
ATRX status		
Wildtype	445	/
Mutant	188	/
NA	27	/

Supplementary Files Legends

Supplemental Figure 1. Heatmap of nuclear transport genes in lower-grade gliomas and glioblastomas.

Supplemental Figure 2. Distribution of NTRS in patients stratified by WHO grade (A), age (B), IDH status (C), 1p/19q status (D), histology (E) and molecular subtype (F) in the training set. *P < 0.05; **P <0.01; ***P < 0.001

Supplemental table 1. Clinical characteristics and NTRS groups of the training cohort (n=660).

Supplemental table 2. Clinicopathological characteristics and NTRS groups of the validation cohort (n=668).
A

TCGA
GO_NUCLEAR_TRANSPORT
Enrichment Score
NES=1.52
p<0.01
FDR<0.01
GBM LGG

CGGA
GO_NUCLEAR_TRANSPORT
Enrichment Score
NES=1.58
p<0.01
FDR<0.01
GBM LGG

B

(TCGA-LGG&TCA-GBM RNA-seq)

730 samples
Remove Tissue Normal samples
Remove Recurrent Solid Tumor
673 samples
Remove samples without clinical data
663 samples
Remove samples without survival information
Sample filtered

60483 gene ensemble
Convert gene ensemble to gene symbol
Intersection
Nuclear transport geneset (338 genes)
Gene filtered

(660 samples, 336 genes)

Univariate Cox Regression analysis (p<0.01)
251 genes correlating with survival
LASSO Regression analysis (10-fold cross-validation)
7 genes and their regression coefficients

\[\sum_{i=1}^{N} (\text{Exp}_i \times \text{Coe}_i) \]
Nuclear Transport Risk Score (NTRS)
Figure 1

Identification of the 7-gene nuclear transport risk score (NTRS) via LASSO regression analysis in TCGA datasets. (A) Gene set enrichment analysis (GSEA) of nuclear transport between LGG and GBM in the training and validation datasets. NES: normalized enrichment score. (B) Development pipeline of NTRS. (C) Cross-validation for tuning parameter selection in the proportional hazards model with the TCGA dataset. (D) Coefficient (Coeff) values of the seven selected genes by LASSO.
Figure 2

Association of NTRS and clinicopathological characteristics. (A) Heatmap showing the distribution and association of NTRS and clinical or genetic characteristics in the training set (n=660). (B) Distribution of NTRS in patients stratified by WHO grade, age, IDH status and 1p/19q status in the validation set. *P < 0.05; **P < 0.01; ***P < 0.001
Figure 3

Prognostic significance of NTRS in glioma patients. (A) The cut-off value was determined by ROC analysis. Patients with a higher NTRS (>=0.078) were classified as the NTRSHigh group, and those with a lower NTRS (<0.078) were classified as the NTRSLow group. (B) Kaplan–Meier curves of the overall survival of glioma patients with a high NTRS (NTRSHigh) versus low NTRS (NTRSLow) in the training set and validation set. The hazard ratio was determined by the Mantel-Haenszel method, and the P value was determined by the chi-square test between the two groups. (C, D) Prognostic efficiency of NTRS in patients with different grades and the indicated subgroups. (E) ROC curves indicating the sensitivity and specificity of the prediction of 2-year survival with NTRS and other markers in the training set and validation set.
NTRSHigh gliomas exhibit increased proliferative activity and immune responses. (A) GO biological processes enriched by GSEA in the NTRSHigh group (n=269) versus the NTRSLow group (n=391) using an enrichment map. Node size represents the number of genes in the gene sets. Line width represents the number of overlapping genes. (B) Representative GSEA enrichment plots in (A). The NES (normalized enrichment score), p value and FDR (false discovery rate) were calculated with GSEA software. (C) GO analysis of differentially expressed genes between low- and high-risk patients.
Figure 5

Prediction of prognosis with NTRS in cohorts stratified by WHO grade, IDH mutation and 1p/19q codeletion status. (A) Distribution of glioma patients with low and high NTRS in the indicated subgroups classified by WHO grade, IDH mutation and 1p/19q codeletion status. (B) Survival analysis was performed in glioma patients of (A) with a high NTRS versus low NTRS.
Figure 6

NTRS is a prognostic marker for molecular classification combined with IDH mutation and 1p/19q codeletion. (A, B) Kaplan–Meier curves of the overall survival of glioma patients with the indicated mutations in the training set (TCGA for A) and validation set (CGGA for B). (C) Proposed prognostic classification for glioma combining IDH mutation, 1p/19q codeletion and NTRS. The variation in color from green to red represents the patients’ outcome from good to poor.
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- supplementarytable1.xlsx
- supplementarytable2.xlsx
- sfig1.pdf
- sfig2.pdf