Classification of mobile- and immobile-molecule timescales for the Stokes–Einstein and Stokes–Einstein–Debye relations in supercooled water

Takeshi Kawasaki\(^1\) and Kang Kim\(^2,3\)

\(^1\) Department of Physics, Nagoya University, Nagoya 464-8602, Japan
\(^2\) Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
\(^3\) Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
E-mail: kawasaki@r.phys.nagoya-u.ac.jp and kk@cheng.es.osaka-u.ac.jp

Received 10 January 2019
Accepted for publication 4 June 2019
Published 7 August 2019

Abstract. Molecular dynamics simulations have been performed on TIP4P/2005 supercooled water to investigate the molecular diffusion and shear viscosity at various timescales and assess the Stokes–Einstein (SE) and Stokes–Einstein–Debye (SED) relations. For this purpose, we calculated various time correlation functions, such as the mean-squared displacement, stress relaxation function, density correlation function, hydrogen-bond correlation function, rotational correlation function of molecular orientation, non-Gaussian parameter, and four-point correlation function. Our study of the SE and SED relations indicates that the transport coefficients and timescales obtained using these time correlation functions may be classified into two distinct classes: those governed by either mobile or immobile molecules, due to dynamical heterogeneity. In particular, we show that the stress relaxation time, hydrogen-bond lifetime, and large-angle rotational relaxation time are coupled with translational diffusion, and are characterized by mobile molecules. In contrast, the structural \(\alpha\)-relaxation time, small-angle rotational relaxation time, and characteristic timescales of four-point correlation functions are decoupled with translational diffusion, and are governed by immobile molecules. This decoupling results in a violation of the SE relation. These results indicate that the identification of timescales that appropriately characterize transport...
Classification of mobile- and immobile-molecule timescales for the Stokes–Einstein and Stokes–Einstein–Debye coefficients, such as translational diffusion constant and shear viscosity, provides a deep insight into the violation of the SE and SED relations in glass-forming liquids.

Keywords: glasses (structural), slow relaxation, glassy dynamics, aging

Contents

1. Introduction 2
2. MD simulations 4
3. Results and discussion 4
 3.1. Mean-squared displacement and translational diffusion constant 4
 3.2. Stress correlation function and shear viscosity 4
 3.3. Incoherent intermediate scattering function and α-relaxation time 5
 3.4. Hydrogen-bond breakage and its lifetime 6
 3.5. Rotational relaxation times 7
 3.6. Characterizations of dynamic heterogeneities—four-point correlation functions 7
 3.7. Characterizations of dynamic heterogeneities—non Gaussian parameters 9
4. Conclusion 10
Acknowledgments 11
References 11

1. Introduction

The need for a unified description of the structural relaxation mechanism in various glass-forming liquids is one of the fundamental problems of condensed matter physics [1, 2]. Scattering and spectroscopic experiments provide data for various timescales, such as the structural ω-relaxation time τ_ω of the density correlation function and relaxation times for molecular reorientation τ_ℓ, obtained using the ℓth order of the Legendre polynomial. Moreover, transport coefficients such as shear viscosity and diffusion constant play a crucial role in characterizing the slow dynamics of glass-forming liquids in the vicinity of the glass transition temperature [3, 4].

The Stokes–Einstein (SE) relation, $D_t^{-1} \propto \eta / T$, and the Stokes–Einstein–Debye (SED) relation, $\tau_\ell \propto \eta / T$ (or $D_t^{-1} \propto \tau_\ell$), are thought to comprise the key characteristics necessary to provide the required unified description of structural relaxation. Here, T, η, and D_t denote the temperature, the shear viscosity, and the translational diffusion constant, respectively. In fact, these SE and SED relations typically break down in the case of supercooled states, which is regarded as a hallmark of the spatially heterogeneous dynamics that are characterized by the non-Gaussian and the non-exponential nature of various time correlation functions [2, 5, 6]. In particular, the violations of SE and SED relations indicate decouplings between the molecular diffusion and the shear
viscosity [7–10]. Thus, it is necessary to reveal the link between transport coefficients and the characteristic timescales, and many theoretical studies have been devoted to this issue [11, 12].

Molecular dynamics (MD) simulations of model glass-forming liquids have been previously conducted in order to investigate the violation of the SE relation [13–32]. It is widely accepted that the SE relation breaks down at the onset temperature of the glassy dynamics, where the density correlation function exhibits the two-step relaxation. Whether the temperature dependence of shear viscosity \(\eta \) may be replaced by the \(\alpha \)-relaxation time \(\tau_\alpha \) is a controversial issue [22]. However, numerical calculations of \(\eta \) have demonstrated \(\tau_\alpha \propto \eta/T \) in both fragile and strong glass-formers, indicating that \(D_\ell \tau_\alpha \) is a good indicator for \(D_\ell \eta/T \), even in supercooled states [15, 25]. The violation of the SED relation in supercooled molecular liquids has also been examined using MD simulations [33–35]. However, there has been no direct assessment of the quantity \(\tau_\ell \eta/T \) through the variation of \(\ell \). Instead, the temperature dependence of \(D_\ell \tau_\ell \) with \(\ell = 2 \) has been mainly quantified, which is comparable to the results of experimental analysis [5, 6]. Furthermore, the connection between \(\tau_\alpha \) and \(\tau_\ell \) for varying the degree \(\ell \) remains elusive, particularly in supercooled states, and thus particular care should be taken when discussing the coupling of translational and rotational molecular motions.

The system of supercooled water has attracted much attention owing to its capacity for elucidating the mechanism underlying SE and SED relations through both experiments and simulations [36–56]. Comprehensive numerical calculations of the shear viscosity enabled the precise evaluation of SE and SED relations [52, 56]. In particular, it was demonstrated that the shear viscosity \(\eta \) can be represented by the approximation \(\eta \approx G_p \tau_\eta \Gamma(1/\beta_\eta)/\beta_\eta \), with the Gamma function \(\Gamma(x) \), according to the approximation, \(G_\eta(t) \approx G_p \exp\{-t/\tau_\eta \}^{\beta_\eta} \), for the long time behavior of \(G_\eta(t) \) [52]. Here, \(G_p \), \(\tau_\eta \), and \(\beta_\eta \) denote the plateau modulus, the stress relaxation time, and the degree of non-exponentiality of the stress correlation function \(G_\eta(t) \), respectively. In contrast, the translational diffusion constant \(D_t \) is governed by hydrogen-bond (H-bond) breakage processes, leading to the proportional relationship of \(D_t^{-1} \propto \tau_\text{HB} \) with the H-bond lifetime, \(\tau_\text{HB} \) [52]. An analogous relationship has been demonstrated in both fragile supercooled liquids [24] and silica-like strong supercooled liquids [25], where the bond-breakage method was used to characterize changes in local connectivity of molecules [14, 57–60]. Furthermore, we previously conducted a comprehensive investigation into the SED relations, \(\tau_\ell T/\eta \) and \(D_\ell \tau_\ell \), for various \(\tau_\ell \) [56]. It was demonstrated that these SED relations show a strong dependence on the degree \(\ell \): the higher-order \(\tau_\ell \) values exhibit a temperature dependence similar to that of \(\eta/T \), whereas the lowest-order \(\tau_\ell \) values are coupled with \(D_t \).

In this study, we examine the roles of characteristic timescales, including the \(\alpha \)-relaxation time \(\tau_\alpha \), H-bond lifetime \(\tau_\text{HB} \), rotational relaxation times \(\tau_\ell \) (\(\ell = 1 \) and 6), stress relaxation time \(\tau_\eta \), and the timescales of non-Gaussian parameters and four-point dynamic correlations, in the SE and SED relations. In particular, the aim is to classify these timescales into two classes: those are coupled or decoupled with \(D_t \) (or \(\eta/T \)). We also discuss this classification in terms of the mobile/immobile contributions of the dynamic heterogeneities in supercooled water. The rest structure of the paper is organized as follows: in section 2, we describe the MD simulations of supercooled water using the TIP4P/2005 model. In section 3, we describe the numerical calculations of...
various timescales and discuss their temperature dependence, compared with those of D_t and η/T. In section 4, we summarize our conclusions.

2. MD simulations

We performed MD simulations of liquid water using the large-scale atomic/molecular massively parallel simulator (LAMMPS) [61], and used the TIP4P/2005 water model [62]. There are various studies in the literature of MD simulations used to investigate various properties in supercooled states of this model [54, 55, 63–70]. In the present study, in order to obtain equilibrated initial configurations, we performed simulations with the NVT ensembles for $N = 1000$ water molecules at various temperatures ($T = 300, 280, 260, 250, 240, 230, 220, 210, 200$, and 190 K) at a fixed mass density of $\rho = 1$ g cm$^{-3}$. The corresponding linear dimension was $L = 31.04$ Å. The NVE ensemble simulations were conducted after the equilibration, remaining at each temperature for a sufficiently long-time periods, from which the various time correlation functions were calculated. Periodic boundary conditions were utilized in all the simulations, with a simulation time step of 1 fs.

3. Results and discussion

3.1. Mean-squared displacement and translational diffusion constant

As an important component of the SE relation, we quantified the translational diffusion constant D_t. To this end, we calculated the mean squared displacement,

$$\langle \Delta r(t)^2 \rangle = \left\langle \frac{1}{N} \sum_{j=1}^{N} |\mathbf{r}_j(t) - \mathbf{r}_j(0)|^2 \right\rangle,$$

where $\mathbf{r}_j(t)$ represents the position of jth O atom at time t. The bracket $\langle \cdots \rangle$ indicates an average over the initial time 0. In figure 1(a), $\langle \Delta r(t)^2 \rangle$ is plotted for various temperatures. For each temperature, the ballistic behavior, $\langle \Delta r(t)^2 \rangle \propto t^2$, is observed in the short time region. The diffusive behavior, $\langle \Delta r(t)^2 \rangle \propto t$, eventually develops in the long time region. The plateau that is observed in the intermediate region is pronounced upon supercooling, indicating cage effects related to the presence of neighboring molecules. The translational diffusion constant D_t is determined from the long time behavior of $\langle \Delta r(t)^2 \rangle$ using the Einstein relation, $D_t = \lim_{t \to \infty} \langle \Delta r(t)^2 \rangle / 6t$. The solid lines in figure 1(a) are the results of the fitting with $\langle \Delta r(t)^2 \rangle = 6D_t t$.

3.2. Stress correlation function and shear viscosity

In order to obtain the shear viscosity η as another essential component of the SE relation, the autocorrelation function of the off-diagonal stress tensor was calculated, which is given by
\[G_{\alpha\beta}(t) = \frac{V}{k_B T} \langle \sigma_{\alpha\beta}(t)\sigma_{\alpha\beta}(0) \rangle, \]

where \(V \) is the volume of the system and \(\sigma_{\alpha\beta} \) represents the \(\alpha\beta (= x, y, z) \) components of the off-diagonal stress tensor. The average stress correlation function is then defined as \(G_\eta(t) = (G_{xy}(t) + G_{xz}(t) + G_{yz}(t))/3 \). \(G_\eta(t) \) is plotted in figure 1(b), for various temperatures. The instantaneous time correlation \(G_\eta(0) \) corresponds to the instantaneous or affine shear modulus \(G_\infty \). In the short time region, \(G_\eta(t) \) shows large fluctuations, which are attributed to vibrational motions observed in network forming liquids such as silica glass [25]. The \(G_\eta(t) \) plateaus in the intermediate time region, particularly at lower temperatures, which is the so-called the plateau modulus. \(G_\eta(t) \) finally decays to zero at longer timescales. The shear viscosity \(\eta \) is determined from the integral of \(G_\eta(t) \) as

\[\eta = \int_0^\infty G_\eta(t) dt, \]

using the Green–Kubo formula. Furthermore, we examine the stress relaxation time \(\tau_\eta \) of \(G_\eta(t) \). The long time behavior of \(G_\eta(t) \) is fitted using the Kohlrausch–Williams–Watts (KWW) stretched-exponential function, \(G_p \exp\{-(t/\tau_\eta)^{\beta_\eta}\} \). Here, \(G_p \) and \(\tau_\eta \) denote the plateau modulus and the stress relaxation time, respectively. The exponent \(\beta_\eta \) relates to the degree of non-exponentiality of \(G_\eta(t) \). The gray solid lines in figure 1(b) indicate those fitting results.

The SE ratio \(D_t \eta/T \) as a function of the inverse of the temperature is displayed in figure 5(a). This plot demonstrates the violation of the SE relation for temperatures below 240 K.

3.3. Incoherent intermediate scattering function and \(\alpha \)-relaxation time

As an alternative to \(\eta \), the structural \(\alpha \)-relaxation time \(\tau_\alpha \) has been frequently used in discussions of the violation of the SE relation, which is obtained from the incoherent intermediate scattering function given by

\[F_s(k, t) = \left\langle \frac{1}{N} \sum_{j=1}^N \exp[i \mathbf{k} \cdot (\mathbf{r}_j(t) - \mathbf{r}_j(0))] \right\rangle. \]

Here, \(\mathbf{r}_j(t) \) is the position vector of the O atom of the water molecule \(j \) at time \(t \). The wave number \(k = |\mathbf{k}| \) was set to \(k = 3.0 \) Å\(^{-1}\), which corresponds to the first peak position of the static structure factors \(S(k) \) of the O atom. \(F_s(k, t) \) is plotted for various temperatures in figure 1(c). A two-step relaxation in \(F_s(k, t) \) is observed upon supercooling. The \(\alpha \)-relaxation time \(\tau_\alpha \) is determined by the fitting \(F_s(k, t) \) with the KWW function, i.e. \((1 - f_c) \exp[-(t/\tau_\alpha)^2] + f_c \exp[-(t/\tau_\alpha)^{\beta_\alpha}] \), where \(f_c \), \(\tau_\alpha \), \(\tau_\alpha \), and \(\beta_\alpha \) are the fitting parameters [23]. The exponent \(\beta_\alpha \) is the degree of non-exponentiality of \(F_s(k, t) \).

The quantity \(D_t \tau_\alpha \) is plotted in figure 5(a) for various temperatures. These results show that the violation of the SE relation is explained in terms of \(D_t \tau_\alpha \), suggesting the proportional relationship, \(\tau_\alpha \propto \eta/T \).
3.4. Hydrogen-bond breakage and its lifetime

Next, we focus on the H-bond lifetime τ_{HB}, which is thought to be a type of structural relaxation of molecules in the case of liquid water. However, it will be demonstrated that τ_{HB} behaves differently from η/T and τ_α. The dynamics of H-bond network rearrangement was investigated using the correlation function,

$$C_{\text{HB}}(t) = \frac{\left\langle \sum_{i,j} h_{ij}(0) h_{ij}(t) \right\rangle}{\left\langle \sum_{i,j} h_{ij}(0) h_{ij}(0) \right\rangle},$$

(5)

where $h_{ij}(t)$ denotes the H-bond indicator between ith and jth molecules at a time t [71–75]. In this study, the H-bond is defined by the r-definition, where only the intermolecular O-H distance r_{OH} is investigated [76]. $h_{ij}(t) = 1$ if the r_{OH} between the ith
and \(j \)-th molecules is less than 2.4 Å, corresponding to the first minimum of the radial distribution function \(g_{\text{OH}}(r) \), and \(h_j(t) = 0 \) otherwise. The time dependence of \(C_{\text{HB}}(t) \) is given in figure 1(d), where the decay time of \(C_{\text{HB}}(t) \) increases with decreasing the temperature. However, they do not show the two-step relaxation for all temperatures, contrary to the observations of \(F_s(k,t) \). The H-bond lifetime \(\tau_{\text{HB}} \) is determined by the fitting \(C_{\text{HB}}(t) \) with the KWW functions, \(\exp\{-(t/\tau_{\text{HB}})^{\beta_{\text{HB}}}\} \), where the exponent \(\beta_{\text{HB}} \) is the degree of non-exponentiality of \(C_{\text{HB}}(t) \). The gray solid lines in figure 1(d) indicate the results of the KWW fittings. Note that the H-bond correlation function \(C_{\text{HB}} \) has a form that is essentially identical to the bond-breakage method, which has been applied to various supercooled liquids \([14, 24, 25, 57-60]\). These previous studies have demonstrated that the bond-breakage method is a remarkable method for characterizing ‘genuine’ configurational rearrangements in supercooled states.

Figure 5(b) provides the temperature dependence of \(D_1 \tau_{\text{HB}} \) for various temperatures. Remarkably, these plots reveal that \(\tau_{\text{HB}} \) is coupled with \(D_1 \), which differs from \(\tau_\alpha \). This result can be thought of as the preservation of the SE relation \([52]\). Furthermore, this preservation of the SE relation is interpreted in terms of the observation that \(D_1 \) and \(\tau_{\text{HB}} \) are governed by molecules with jump/fast motions \([24, 25, 52]\). In contrast, we will show that \(\eta \) and \(\tau_\alpha \) are governed by immobile molecules with dynamic heterogeneities.

3.5. Rotational relaxation times

Molecular reorientations are often characterized by the rotational correlation function,

\[
C_\ell(t) = \frac{1}{N} \sum_{j=1}^{N} \langle P_\ell[e_j(t) \cdot e_j(0)] \rangle ,
\]

where \(e_j(t) \) is the normalized polarization vector of molecule \(j \) and \(P_\ell[x] \) is the \(\ell \)-th order Legendre polynomial as a function of \(x \). In the present study, we examine the \(\ell \)-th (\(\ell = 1 \) and 6) order rotational relaxation function \(C_\ell(t) \). Plots of \(C_\ell(t) \) are provided in figures 2(a) and (b), with \(\ell = 1 \) and 6, respectively. The gray solid lines represent the fitting results of the KWW function, \(A_\ell \exp\{-(t/\tau_\ell)^{\beta_\ell}\} \). The rotational relaxation time \(\tau_1 \) and \(\tau_6 \) were quantified as a result of this fitting procedure.

The SED ratio \(D_1 \tau_6 \) is given in figure 5(a) as a function of the inverse of the temperature. This result shows the violation of the SE relation. However, another ratio \(D_1 \tau_1 \) indicates the preservation of the SED relation, as shown in figure 5(b). This conflicting result can be understood as follows: \(\tau_1 \) is characterized by the molecular reorientation related to large rotational movements, which are mostly large translational jump motions. Therefore, \(\tau_1 \) is coupled with \(D_1 \). On the contrary, the small angular rotational movements characterizing \(\tau_6 \) are governed by ‘immobile’ molecules, which is decoupled with \(D_1 \), particularly at lower temperatures. Note that the degree of the violation with \(D_1 \tau_6 \) is weaker than other quantities. It is speculated that \(\tau_1 \) with much larger degree of \(\ell \) moves to the immobile branch even though the data of \(\tau_6 \) are almost converged.

3.6. Characterizations of dynamic heterogeneities—four-point correlation functions

In order to elucidate the degree of dynamic heterogeneities and the related characteristic timescales in supercooled water, we examine the four-points correlation functions
Classification of mobile- and immobile-molecule timescales for the Stokes–Einstein and Stokes–Einstein–Debye for translational and rotational motions \[\text{[77]} \]. The four-point correlation function \(\chi^4(t) \) for translational motion is defined by the variance of the intermediate scattering function \(F_s(k, t) \) as,

\[
\chi^4(t) = N \left[\langle \hat{F}_s(k, t)^2 \rangle - \langle \hat{F}_s(k, t) \rangle^2 \right],
\]

where \(\hat{F}_s(t) = (1/N) \sum_{j=1}^{N} \cos[k \cdot \Delta \mathbf{r}_j(t)] \). The wave number \(k = |k| \) was set to \(k = 3.0 \) \(\text{Å}^{-1} \). The rotational four-point correlation function \(\chi^4(t) \) can be analogously defined as

\[
\chi^4(t) = N \left[\langle \hat{C}_\ell(t)^2 \rangle - \langle \hat{C}_\ell(t) \rangle^2 \right],
\]

where \(\hat{C}_\ell(t) = (1/N) \sum_{j=1}^{N} F_{\ell}[\mathbf{e}_j(t) \cdot \mathbf{e}_j(0)] \). The order of the Legendre polynomial was set to \(\ell = 6 \). Figure 3 shows the temperature dependence of the four-point correlation functions, \(\chi^4(t) \) and \(\chi^4(t) \). The peak times of \(\chi^4(t) \) and \(\chi^4(t) \) are quantified and denoted by \(\tau_t \) and \(\tau_r \), respectively. We find that upon supercooling the peak heights increase, together with an increase in their peak times \(\tau_t \) and \(\tau_r \) are also increased.

https://doi.org/10.1088/1742-5468/ab3114

Figure 2. Rotational correlation functions \(C_\ell(t) \) with \(\ell = 1 \) (a) and \(\ell = 6 \) (b). The rotational relaxation time \(\tau_\ell \) is determined by fitting \(C_\ell(t) \) with the KWW function \(A_\ell \exp \{ -(t/\tau_\ell)^{\beta_\ell} \} \).

Figure 3. Four-point correlation functions of translational (a) and rotational (b) motion. The peak times of \(\chi^4(t) \) and \(\chi^4(t) \) are denoted by \(\tau_t \) and \(\chi^4(t) \), respectively.
Figure 5(a) shows a plot of $D_t \tau_\eta$ and $D_t \tau_\tau$ as a function of the inverse of the temperature. Both quantities exhibit a temperature dependence similar to that observed in the case of the violation of the SE relation, although $D_t \tau_\eta$ values are similar to those of $D_t \tau_6$ showing small deviations from $D_t \eta/T$. This indicates that the characteristic timescales of translational and rotational dynamic heterogeneities are coupled with η/T and τ_α.

3.7. Characterizations of dynamic heterogeneities—non Gaussian parameters

Finally, we elucidate the role of ‘mobile’ and ‘immobile’ molecules with dynamical heterogeneities on the SE and SED relations. First, we investigate the non-Gaussian
parameter (NGP) that mainly characterizes the displacements of ‘mobile’ molecules [78, 79]. The equation is given by
\[\alpha_2(t) = \frac{3}{5} \frac{\langle \Delta r(t)^4 \rangle}{\langle \Delta r(t)^2 \rangle^2} - 1. \] (9)

Second, to emphasize the effect of ‘immobile’ molecules, another type of non-Gaussian parameter is defined by
\[\gamma(t) = \frac{1}{3} \langle \Delta r(t)^2 \rangle \left(\frac{1}{\langle \Delta r(t)^2 \rangle} \right) - 1, \] (10)

which is referred to as the new non-Gaussian parameter (NNGP) [80]. Figure 4 shows the time evolutions of NGP \(\alpha_2(t) \) and NNGP \(\gamma(t) \) at various temperatures. The peak heights of \(\alpha_2(t) \) and \(\gamma(t) \) increase with decreasing the temperature. This means that the dynamics are more heterogeneous upon supercooling. Their peak times are denoted by \(\tau_{\text{ngp}} \) and \(\tau_{\text{nngp}} \), respectively. The corresponding temperature dependences \(D_t \tau_{\text{ngp}} \) and \(D_t \tau_{\text{nngp}} \) are given in figure 5(a) and (b), respectively. As shown in figure 5(a), the timescale of the ‘immobile’ molecules, \(\tau_{\text{nngp}} \), follows the temperature dependence observed for the violation of the SE relation, \(D_\ell \tau_{\text{ngp}} \) and \(D_t \tau_{\alpha} \). It is eventually concluded that the timescales, \(\tau_{\alpha} \), \(\tau_{6} \), \(\tau_{\ell} \), and \(\tau_{\tau} \) are dominated by ‘immobile’ molecules of dynamic heterogeneities. By contrast, figure 5(b) demonstrates that \(\tau_{\text{ngp}} \) follows the preservation of the SE relation. In this case, the timescales that are coupled with \(D_t \), \(\tau_{\eta} \), \(\tau_{\text{HB}} \), and \(\tau_{1} \), are dominated by ‘mobile’ molecules with dynamic heterogeneities.

4. Conclusion

In this study, we performed MD simulations on supercooled liquid water using the TIP4P/2005 model. We determined the temperature dependence of transport coefficients such as the translational diffusion constant \(D_t \) and shear viscosity \(\eta \), together with the timescales characterizing the dramatic slowing down of glassy dynamics. The SE relation, \(D_t \eta/T \), was also thoroughly assessed. The temperature dependence of two transport coefficients are completely decoupled with decreasing the temperature, suggesting the violation of the SE relation in supercooled water. Furthermore, the SED relations \(\tau_{\ell} T/\eta \) and \(D_t \tau_{\ell} \) were investigated. We determined that these SED relations exhibit a strong dependence on the order \(\ell \) of the Legendre polynomial, i.e. the examined angle of molecular reorientations.

These assessments of the SE and SED relations enabled the classification of various characteristic timescales into just two classes; dominated by ‘mobile’ and ‘immobile’ molecules of dynamical heterogeneities, depending on the degree of coupling with the translational diffusion constant \(D_t \). Moreover, \(D_t \) is coupled with the H-bond lifetime \(\tau_{\text{HB}} \) that is governed by mobile molecules that exhibit large molecular displacement amplitudes. These coupling dynamics indicate the preservation of the SE relation, which was rationalized by the peak time of NGP, \(\tau_{\text{ngp}} \), which characterize the mobile molecules of dynamic heterogeneities. In addition, the stress relaxation time \(\tau_{\eta} \) and the rotational relaxation time \(\tau_{1} \) that is accompanied by a large angle amplitude, show...
the temperature dependence similar to that of D_t, which is also governed by mobile molecules.

In contrast, η/T is proportional to the structural α-relaxation time τ_α that is quantified by the density correlation function. This implies the violation of the SE relation (the decoupling between η/T and D_t) that are related to immobile molecules of dynamic heterogeneities. In fact, the peak time of NNGP, τ_{nngp}, that characterize the contribution of immobile molecules shows the temperature dependence similar to that of the violation of the SE relation. As discussed, the shear viscosity η is represented by $\eta \approx G_p \tau_\eta \Gamma(1/\beta_\eta)/\beta_\eta$ using the Green–Kubo formula [52]. The violation of the SE relation is thus expressed by $D_t \eta/T \propto G_p \Gamma(1/\beta_\eta)/(T \beta_\eta)$, using the observed relationships, $D_t^{-1} \propto \tau_{\text{HB}}$ and $D_t^{-1} \propto \tau_\eta$. Furthermore, we show that the rotational relaxation time for a small-angle amplitude, τ_6, and the peak times of both translational and the peak times of rotational four-point correlation functions, τ_t and τ_r, are also governed by immobile molecules. These are decoupled with D_t, but instead exhibit the temperature dependence similar to η/T.

The identification of timescales that appropriately characterize the transport coefficients, D_t and η, paves the way to a deeper understanding of the violation of SE relation that is generally observed in various glass-forming liquids. In particular, the violation of the SE relation is directly relevance to the decoupling between the α-relaxation time τ_α and both the stress relaxation time τ_η and the H-bond lifetime τ_{HB} in supercooled water. Further investigations should be undertaken in order to clarify this issue and obtain a unified description of structural relaxation in glass-forming liquids.

Acknowledgments

We thank K Miyazaki, N Matubayasi, T Nakamura, and H Shiba for valuable discussions. This work was partly supported by JSPS KAKENHI Grant Nos. JP15H06263, JP16H06018, JP18H01188, and JP19K03767. The numerical calculations were performed at the Research Center of Computational Science, Okazaki, Japan.

References

[1] Ediger M D, Angell C A and Nagel S R 1996 Supercooled liquids and glasses J. Phys. Chem. 100 13200–12
[2] Ediger M D 2000 Spatially heterogeneous dynamics in supercooled liquids Annu. Rev. Phys. Chem. 51 99–128
[3] Angell C 1988 Perspective on the glass transition J. Phys. Chemi. Solids 49 863–71
[4] Debenedetti P G and Stillinger F H 2001 Supercooled liquids and the glass transition Nature 410 259–67
[5] Fujara F, Geil B, Sillescu H and Fleischer G 1992 Translational and rotational diffusion in supercooled ortho-

terphenyl close to the glass transition Z. Phys. B 88 195
[6] Cicerone M T and Ediger M D 1996 Enhanced translation of probe molecules in supercooled o-terphenyl:
signature of spatially heterogeneous dynamics? J. Chem. Phys. 104 7210
[7] Hodgdon J and Stillinger F 1993 Stokes–Einstein violation in glass-forming liquids Phys. Rev. E 48 207–13
[8] Stillinger F and Hodgdon J 1994 Translation-rotation paradox for diffusion in fragile glass-forming liquids

Phys. Rev. E 50 2064–8
[9] Tarjus G and Kivelson D 1995 Breakdown of the Stokes–Einstein relation in supercooled liquids J. Chem.

Phys. 103 3071–3
[10] Ngai K L 2009 Breakdown of Debye–Stokes–Einstein and Stokes–Einstein relations in glass-forming liquids:
an explanation from the coupling model Philos. Mag. B 79 1783–97
[11] Hansen J P and McDonald I R 2006 Theory of Simple Liquids 3rd edn (London: Academic)
Classification of mobile- and immobile-molecule timescales for the Stokes–Einstein and Stokes–Einstein–Debye

[12] Balucani U and Zoppi M 1995 Dynamics of the Liquid State (Oxford Series on Neutron Scattering in Condensed Matter vol 10) (Oxford: Oxford University Press)

[13] Thirumalai D and Mountain R D 1993 Activated dynamics, loss of ergodicity, and transport in supercooled liquids Phys. Rev. E 47 479–89

[14] Yamamoto R and Onuki A 1998 Dynamics of highly supercooled liquids: heterogeneity, rheology, and diffusion Phys. Rev. E 58 3515–29

[15] Yamamoto R and Onuki A 1998 Heterogeneous diffusion in highly supercooled liquids Phys. Rev. Lett. 81 4915–8

[16] Horbach J and Kob W 1999 Static and dynamic properties of a viscous silica melt Phys. Rev. B 60 3169–81

[17] Bordat P, Affouard F, Descamps M and Müller-Plathe F 2003 The breakdown of the Stokes Einstein relation in supercooled binary liquids J. Phys.: Condens. Matter 15 5397–407

[18] Berthier L 2004 Time and length scales in supercooled liquids Phys. Rev. E 69 020201

[19] Kumar S K, Szamel G and Douglas J F 2006 Nature of the breakdown in the Stokes–Einstein relationship in a hard sphere fluid J. Chem. Phys. 124 214501

[20] Kim K and Saito S 2010 Role of the lifetime of dynamical heterogeneity in the frequency-dependent Stokes–Einstein relation of supercooled liquids J. Phys. Soc. Japan 79 093601

[21] Ikeda A and Miyazaki K 2011 Glass transition of the monodisperse Gaussian core model Phys. Rev. Lett. 106 015701

[22] Shi Z, Debenedetti P G and Stillinger F H 2013 Relaxation processes in liquids: variations on a theme by Stokes and Einstein J. Chem. Phys. 138 12A526

[23] Sengupta S, Karmakar S, Dasgupta C and Sastry S 2013 Breakdown of the Stokes–Einstein relation in two, three, and four dimensions J. Chem. Phys. 138 12A548

[24] Kawasaki T and Onuki A 2013 Slow relaxations and stringlike jump motions in fragile glass-forming liquids: breakdown of the Stokes–Einstein relation Phys. Rev. E 87 012312

[25] Kawasaki T, Kim K and Onuki A 2014 Dynamics in a tetrahedral network glassformer: vibrations, network rearrangements, and diffusion J. Chem. Phys. 140 184502

[26] Henritzi P, Bormuth A, Klameth F and Vogel M 2015 A molecular dynamics simulations study on the relations between dynamical heterogeneity, structural relaxation, and self-diffusion in viscous liquids J. Chem. Phys. 143 164502

[27] Saw S and Harrowell P 2015 The geometric mean squared displacement and the Stokes–Einstein scaling in a supercooled liquid J. Chem. Phys. 143 244502

[28] Ozawa M, Kim K and Miyazaki K 2016 Tuning pairwise potential can control the fragility of glass-forming liquids: from a tetrahedral network to isotropic soft sphere models J. Stat. Mech. 2016 074002

[29] Schober H R and Peng H L 2016 Heterogeneous diffusion, viscosity, and the Stokes–Einstein relation in binary liquids Phys. Rev. E 93 052607

[30] Parmar A D S, Sengupta S and Sastry S 2017 Length-scale dependence of the Stokes–Einstein and Adam–Gibbs relations in model glass formers Phys. Rev. Lett. 119 056001

[31] Banerjee A, Nandi M K, Sastry S and Maitra Bhattacharyya S 2017 Determination of onset temperature from the entropy for fragile to strong liquids J. Chem. Phys. 147 024504

[32] Puosi F, Pasturel A, Jakse N and Lepono R 2018 Communication: Fast dynamics perspective on the breakdown of the Stokes–Einstein law in fragile glassformers J. Chem. Phys. 148 131102

[33] Kämmerer S, Kob W and Schilling R 1997 Dynamics of the rotational degrees of freedom in a supercooled liquid of diatomic molecules Phys. Rev. E 56 5450–61

[34] Lombardo T G, Debenedetti P G and Stillinger F H 2006 Computational probes of molecular motion in the Lewis–Wahnström model for ortho-terphenyl J. Chem. Phys. 125 174507

[35] Chong S H and Kob W 2009 Coupling and decoupling between translational and rotational dynamics in a supercooled molecular liquid Phys. Rev. Lett. 102 392

[36] Chen S H, Mallamace F, Mon C Y, Broccio M, Corsaro C, Faraone A and Liu L 2006 The violation of the Stokes–Einstein relation in supercooled water Proc. Natl Acad. Sci. USA 103 12974–8

[37] Becker S R, Poole P H and Starr F W 2006 Fractional Stokes–Einstein and Debye–Stokes–Einstein relations in a network-forming liquid Phys. Rev. Lett. 97 055901

[38] Kumar P 2006 Breakdown of the Stokes–Einstein relation in supercooled water Proc. Natl Acad. Sci. USA 103 12955–6

[39] Kumar P, Buldyrev S V, Becker S R, Poole P H, Starr F W and Stanley H E 2007 Relation between the Widom line and the breakdown of the Stokes–Einstein relation in supercooled water Proc. Natl Acad. Sci. USA 104 9575–9

[40] Mazza M G, Giovambattista N, Stanley H E and Starr F W 2007 Connection of translational and rotational dynamical heterogeneities with the breakdown of the Stokes–Einstein and Stokes–Einstein–Debye relations in water Phys. Rev. E 76 031203

https://doi.org/10.1088/1742-5468/ab3114
Classification of mobile- and immobile-molecule timescales for the Stokes–Einstein and Stokes–Einstein–Debye

[41] Xu L, Mallamace F, Yan Z, Starr F W, Buldyrev S V and Eugene Stanley H 2009 Appearance of a fractional Stokes–Einstein relation in water and a structural interpretation of its onset Nat. Phys. 5 565–9

[42] Banerjee D, Bhat S N, Bhat S V and Leporini D 2009 ESR evidence for 2 coexisting liquid phases in deeply supercooled bulk water Proc. Natl. Acad. Sci. USA 106 11448–53

[43] Mallamace F, Branca C, Corsaro C, Leone N, Spooren J, Stanley H E and Chen S H 2010 Dynamical crossover and breakdown of the Stokes–Einstein relation in confined water and in methanol-diluted bulk water J. Phys. Chem. B 114 1870–8

[44] Jana B, Singh R S and Bagchi B 2011 String-like propagation of the 5-coordinated defect state in supercooled water: molecular origin of dynamic and thermodynamic anomalies Phys. Chem. Chem. Phys. 13 16220–6

[45] Qvist J, Mattea C, Sunde E P and Halle B 2012 Rotational dynamics in supercooled water from nuclear spin relaxation and molecular simulations J. Chem. Phys. 136 204505

[46] Rozmanov D and Kusalik P G 2012 Transport coefficients of the TIP4P-2005 water model J. Chem. Phys. 136 040507

[47] Bove L E, Klotz S, Strässle T, Koza M, Teixeira J and Saitta A M 2013 Translational and rotational diffusion in water in the gigapascal range Phys. Rev. Lett. 111 185901

[48] Dehaoui A, Isenmann B and Caupin F 2015 Viscosity of deeply supercooled water and its coupling to molecular diffusion Proc. Natl. Acad. Sci. USA 112 12020–5

[49] Guillaud E, Merabia S, de Ligny D and Joly L 2017 Decoupling of viscosity and relaxation processes in supercooled water: a molecular dynamics study with the TIP4P/2005 model Phys. Chem. Chem. Phys. 19 2124–30

[50] Guillaud E, Joly L, de Ligny D and Merabia S 2017 Assessment of elastic models in supercooled water: a molecular dynamics study with the TIP4P/2005f force field J. Chem. Phys. 147 014504

[51] Galamba N 2017 On the hydrogen-bond network and the non-arrhenius transport properties of water J. Phys.: Condens. Matter 29 015101

[52] Kawasaki T and Kim K 2017 Identifying time scales for violation/preservation of Stokes–Einstein relation in supercooled water Sci. Adv. 3 e1700399

[53] Shi R, Russo J and Tanaka H 2018 Origin of the emergent fragile-to-strong transition in supercooled water Proc. Natl. Acad. Sci. USA 115 9444–9

[54] Montero de Híjeyes P, Sanz E, Joly L, Valeriani C and Caupin F 2018 Viscosity and self-diffusion of supercooled and stretched water from molecular dynamics simulations J. Chem. Phys. 149 094503

[55] Saito S, Bagchi B and Ohmine I 2018 Crucial role of fragmented and isolated defects in persistent relaxation of deeply supercooled water J. Chem. Phys. 149 124504

[56] Kawasaki T and Kim K 2019 Spurious violation of the Stokes–Einstein–Debye relation in supercooled water Sci. Rep. 9 8118

[57] Yamamoto R and Onuki A 1997 Kinetic heterogeneities in a highly supercooled liquid J. Phys. Soc. Japan 66 2545–8

[58] Shiba H, Kawasaki T and Onuki A 2012 Relationship between bond-breakage correlations and four-point correlations in heterogeneous glassy dynamics: configuration changes and vibration modes Phys. Rev. E 86 041504

[59] Shiba H, Yamada Y, Kawasaki T and Kim K 2016 Unveiling dimensionality dependence of glassy dynamics: 2D infinite fluctuation eclipses inherent structural relaxation Phys. Rev. Lett. 117 245701

[60] Shiba H, Keim P and Kawasaki T 2018 Isolating long-wavelength fluctuation from structural relaxation in two-dimensional glass: cage-relative displacement J. Phys.: Condens. Matter 30 094004

[61] Plimpton S 1995 Fast parallel algorithms for short-range molecular dynamics J. Comput. Phys. 117 1–19

[62] Abascal J L F and Vega C 2005 A general purpose model for the condensed phases of water: TIP4P/2005 J. Chem. Phys. 123 234505

[63] Abascal J L F and Vega C 2010 Widom line and the liquid–liquid critical point for the TIP4P/2005 water model J. Chem. Phys. 133 234502

[64] Sumi T and Sekino H 2013 Effects of hydrophobic hydration on polymer chains immersed in supercooled water RSC Adv. 3 12743–50

[65] Overduin S D and Patey G N 2013 An analysis of fluctuations in supercooled TIP4P/2005 water J. Chem. Phys. 138 184502

[66] De Marzio M, Camisasca G, Rovere M and Gallo P 2016 Mode coupling theory and fragile to strong transition in supercooled TIP4P/2005 water J. Chem. Phys. 144 047403

[67] Hamm P 2016 Markov state model of the two-state behaviour of water J. Chem. Phys. 145 134501

[68] Singh R S, Biddle J W, De Benedetti P G and Anisimov M A 2016 Two-state thermodynamics and the possibility of a liquid–liquid phase transition in supercooled TIP4P/2005 water J. Chem. Phys. 144 144504
Classification of mobile- and immobile-molecule timescales for the Stokes–Einstein and Stokes–Einstein–Debye

[69] Gonzalez M A, Valeriani C, Caupin F and Abascal J L F 2016 A comprehensive scenario of the thermodynamic anomalies of water using the TIP4P/2005 model J. Chem. Phys. 145 054505

[70] Handle P H and Sciortino F 2018 Potential energy landscape of TIP4P/2005 water J. Chem. Phys. 148 134505

[71] Rapaport D C 1983 Hydrogen bonds in water: network organization and lifetimes Mol. Phys. 50 1151–62

[72] Saito S and Ohmine I 1995 Translational and orientational dynamics of a water cluster (H2O)108 and liquid water: analysis of neutron scattering and depolarized light scattering J. Chem. Phys. 102 3566

[73] Luzar A and Chandler D 1996 Hydrogen-bond kinetics in liquid water Nature 379 55–7

[74] Luzar A and Chandler D 1996 Effect of environment on hydrogen bond dynamics in liquid water Phys. Rev. Lett. 76 928–31

[75] Luzar A 2000 Resolving the hydrogen bond dynamics conundrum J. Chem. Phys. 113 10663

[76] Kumar R, Schmidt J R and Skinner J L 2007 Hydrogen bonding definitions and dynamics in liquid water J. Chem. Phys. 126 204107

[77] Toninelli C, Wyart M, Berthier L, Biroli G and Bouchaud J P 2005 Dynamical susceptibility of glass formers: contrasting the predictions of theoretical scenarios Phys. Rev. E 71 041505

[78] Rahman A 1964 Correlations in the motion of atoms in liquid argon Phys. Rev. 136 A405–11

[79] Kob W, Donati C, Plimpton S J, Poole P H and Glotzer S C 1997 Dynamical heterogeneities in a supercooled Lennard-Jones liquid Phys. Rev. Lett. 79 2827–30

[80] Flenner E and Szamel G 2005 Relaxation in a glassy binary mixture: mode-coupling-like power laws, dynamic heterogeneity, and a new non-Gaussian parameter Phys. Rev. E 72 011205

https://doi.org/10.1088/1742-5468/ab3114