Supplement of

Unusual silicate mineralization in fumarolic sublimates of the Tolbachik volcano, Kamchatka, Russia – Part 1: Neso-, cyclo-, ino- and phyllosilicates

Nadezhda V. Shchipalkina et al.

Correspondence to: Nadezhda V. Shchipalkina (estel58@yandex.ru)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
Fig. S1. Chemical features for Ca-Mg-Fe pyroxenes (a, with magnified fragment) and feldspars (b) from basalts of Great Fissure Tolbachik Eruption 1975–1976: ● – our data; ☆ – data for magnesium basalts from (Fedotov and Markhinin, 1983); □ – data for subalkaline alumina-rich basalts from (Fedotov and Markhinin, 1983).
Table S1. Chemical composition of minerals and glass composing non-altered by fumarolic gas basalt scoria which hosts the Arsentnaya fumarole

Component	Ol	Cpx	Cpx	Cpx	Cpx	Cpx	Pl	Pl	Pl	Pl	Glass
SiO₂	41.86	50.39	45.87	50.45	47.45	48.63	50.98	50.15	50.30	50.85	53.09
TiO₂	1.05	1.82	0.71	1.40	1.34	1.45	1.45	1.45	1.45	1.45	
Al₂O₃	3.66	8.03	3.12	5.63	4.27	31.61	32.00	31.96	31.19	15.17	
Cr₂O₃	0.13	0.43									
FeO*	0.77	9.33	8.87	9.28	9.94	0.99	1.05	0.99	1.08	12.99	
MnO	0.35	0.32	0.20	0.21	0.23	0.26					
NiO	0.24										
CuO	0.38										
MgO	56.23	16.18	12.87	17.63	13.95	15.14	0.24	0.23	0.26	0.23	4.26
CaO	0.16	17.42	20.47	17.17	19.17	17.80	13.19	13.71	13.53	12.80	5.15
Na₂O	0.36	0.30	0.19	0.33	0.38	3.73	3.39	3.58	3.87	5.02	
K₂O	0.07				0.17	0.13	0.13	1.23			
P₂O₅										0.38	
Total	99.99	98.91	98.43	98.15	97.41	97.76	100.91	100.66	100.62	100.15	98.74

Empirical formulae
Si
Ti
Al
Cr
Fe²⁺
Mn
Ni
Cu
Mg
Ca
Na
K
Σ extr
O (BoFC)

Ol – olivine (forsterite), Cpx – clinopyroxene (Al- and Fe-bearing diopside), Pl – plagioclase (labrador); empty cell means content below detection limit; Σ extr = sum of metal cations + Si; O (BoFC) is a basis of formula calculation, number of O atoms per formula unit; *¹all iron is calculated as Fe²⁺.
Table S2. Typical chemical composition of indialite (Ind), enstatite (En), diopside (Di), fluorophlogopite (FPhlg) from Mountain 1004.

Component	Ind	En	En	Di	FPhlg	FPhlg	FPhlg	FPhlg	
SiO₂	48.40	56.82	57.02	50.72	43.42	44.33	44.68	44.25	43.53
TiO₂	-	0.08	0.14	0.48	2.12	1.18	1.19	0.69	1.75
Al₂O₃	37.51	1.90	2.85	3.31	11.83	10.88	9.77	9.48	10.13
Fe₂O₃	0.55	2.74	2.61	5.76	1.65	1.38	5.94	3.46	5.75
MnO	-	0.79	0.58	0.48	-	-	-	0.03	-
CuO	-	0.28	0.34	-	-	0.20	2.16	5.86	0.44
ZnO	-	-	-	-	-	0.73	1.08	-	-
MgO	13.77	36.45	35.97	16.48	26.66	26.98	21.46	21.12	22.62
CaO	0.06	1.43	1.12	21.31	-	0.10	0.08	0.06	0.12
Na₂O	-	-	0.16	0.76	0.86	0.84	0.42	0.45	0.49
K₂O	-	-	0.16	-	10.24	10.01	10.06	9.77	9.78
F	-	-	-	7.83	8.06	8.27	8.25	8.15	
Cl	-	-	-	0.05	0.10	0.09	0.08	0.11	
O=(F,Cl₂)	3.31	3.42	3.50	3.49	3.49	3.46			

| Total | 100.29 | 100.49 | 100.95 | 99.30 | 101.35 | 100.64 | 101.35 | 101.09 | 99.41 |

Empirical formulae

Si	4.73	1.93	1.92	1.86	3.02	3.10	3.17	3.18	3.11
Ti	-	0.00	0.00	0.01	0.11	0.06	0.06	0.04	0.09
Al	4.32	0.08	0.11	0.14	0.97	0.90	0.82	0.80	0.85
Fe³⁺	0.04	0.07	0.07	0.16	0.09	0.07	0.32	0.19	0.31
Mn	-	0.02	0.02	0.01	-	-	-	0.04	-
Cu	-	0.01	0.01	-	-	0.01	0.12	0.32	0.02
Zn	-	-	-	-	-	-	0.04	0.06	-
Mg	2.00	1.84	1.81	0.90	2.77	2.81	2.27	2.27	2.41
Ca	0.01	0.05	0.04	0.84	-	0.01	0.01	0.00	0.01
Na	-	-	0.01	0.06	0.12	0.12	0.06	0.07	0.07
K	-	-	0.01	-	0.91	0.89	0.91	0.90	0.89
F	-	-	-	1.73	1.78	1.85	1.88	1.84	
Cl	-	-	-	0.01	0.01	0.01	0.01	0.01	
Σcat	11.09	4.00	4.00	3.99	7.99	7.97	7.76	7.83	7.77
BoFC	18 O	6 O	6 O	6 O	1 O	1 O	1 O	1 O	1 O

Note. Dash means the content below the detection limit. Σcat = sum of metal cations + Si. BoFC is a basis of formula calculation: number of O atoms per formula unit (apfu), except of micas (*) for which BoFC is O+F = 12 apfu.
