Abstract. Let f be an operator monotonic function on I and $A, B \in \mathcal{S}A_I(H)$, the class of all selfadjoint operators with spectra in I. Assume that $p : [0, 1] \to \mathbb{R}$ is non-decreasing on $[0, 1]$. In this paper we obtained, among others, that for $A \leq B$ and f an operator monotonic function on I,

$$0 \leq \int_0^1 p(t) f((1-t)A + tB)dt - \int_0^1 p(t) dt \int_0^1 f((1-t)A + tB)dt \leq \frac{1}{4} [p(1) - p(0)] [f(B) - f(A)]$$

in the operator order.

Several other similar inequalities for either p or f is differentiable, are also provided. Applications for power function and logarithm are given as well.

1. Introduction

Consider a complex Hilbert space $(H, \langle \cdot , \cdot \rangle)$. An operator T is said to be positive (denoted by $T \geq 0$) if $\langle Tx, x \rangle \geq 0$ for all $x \in H$ and also an operator T is said to be strictly positive (denoted by $T > 0$) if T is positive and invertible. A real valued continuous function $f(t)$ on $(0, \infty)$ is said to be operator monotone if $f(A) \geq f(B)$ holds for any $A \geq B > 0$.

In 1934, K. Löwner [7] had given a definitive characterization of operator monotone functions as follows:

Theorem 1. A function $f : (0, \infty) \to \mathbb{R}$ is operator monotone in $(0, \infty)$ if and only if it has the representation

$$f(t) = a + bt + \int_0^\infty \frac{t}{t+s} dm(s)$$

where $a \in \mathbb{R}$ and $b \geq 0$ and a positive measure m on $(0, \infty)$ such that

$$\int_0^\infty \frac{dm(s)}{t+s} < \infty.$$

We recall the important fact proved by Löwner and Heinz that states that the power function $f : (0, \infty) \to \mathbb{R}$,

$$f(t) = t^\alpha$$

is an operator monotone function for any $\alpha \in [0, 1]$.
In [3], T. Furuta observed that for \(\alpha_j \in [0,1], j = 1, ..., n \) the functions
\[
g(t) := \left(\sum_{j=1}^{n} t^{-\alpha_j} \right)^{-1} \quad \text{and} \quad h(t) = \sum_{j=1}^{n} (1 + t^{-1})^{-\alpha_j}
\]
are operator monotone in \((0, \infty)\).

Let \(f(t) \) be a continuous function \((0, \infty) \to (0, \infty)\). It is known that \(f(t) \) is operator monotone if and only if \(g(t) = t/f(t) =: f^*(t) \) is also operator monotone, see for instance [3] or [8].

Consider the family of functions defined on \((0, \infty)\) and \(p \in [-1, 2] \setminus \{0, 1\} \) by
\[
f_p(t) := \frac{p-1}{p} \left(\frac{t^p - 1}{t^{p-1} - 1} \right)
\]
and
\[
f_0(t) := \frac{t}{1-t} \ln t,
\]
\[
f_1(t) := \frac{t - 1}{\ln t} \quad \text{(logarithmic mean)}.
\]

We also have the functions of interest
\[
f_{-1}(t) = \frac{2t}{1+t} \quad \text{(harmonic mean)}, \quad f_{1/2}(t) = \sqrt{t} \quad \text{(geometric mean)}.
\]

In [2] the authors showed that \(f_p \) is operator monotone for \(1 \leq p \leq 2 \).

In the same category, we observe that the function
\[
g_p(t) := \frac{t - 1}{tp - 1}
\]
is an operator monotone function for \(p \in (0, 1], [3] \).

It is well known that the logarithmic function \(\ln \) is operator monotone and in [3] the author obtained that the functions
\[
f(t) = t(1+t) \ln \left(1 + \frac{1}{t} \right), \quad g(t) = \frac{1}{(1+t) \ln (1 + \frac{1}{t})}
\]
are also operator monotone functions on \((0, \infty)\).

Let \(f \) be an operator monotone function on \(I \) and \(A, B \in \mathcal{SA}_I(H) \), the class of all selfadjoint operators with spectra in \(I \). Assume that \(p : [0,1] \to \mathbb{R} \) is non-decreasing on \([0,1]\). In this paper we obtain, among others, that for \(A \leq B \) and \(f \) an operator monotonic function on \(I \),
\[
0 \leq \int_{0}^{1} p(t) f ((1-t) A + tB) dt - \int_{0}^{1} p(t) dt \int_{0}^{1} f (((1-t) A + tB) dt \\
\leq \frac{1}{4} [p(1) - p(0)] [f(B) - f(A)]
\]
in the operator order.

Several other similar inequalities for either \(p \) or \(f \) is differentiable, are also provided. Applications for power function and logarithm are given as well.
2. Main Results

For two Lebesgue integrable functions \(h, g : [a, b] \to \mathbb{R} \), consider the Čebyšev functional:

\[
C(h, g) := \frac{1}{b-a} \int_a^b h(t)g(t)dt - \frac{1}{b-a} \int_a^b h(t)dt \frac{1}{b-a} \int_a^b g(t)dt.
\]

(2.1)

It is well known that, if \(h \) and \(g \) have the same monotonicity on \([a, b] \), then

\[
\frac{1}{b-a} \int_a^b h(t)g(t)dt \geq \frac{1}{b-a} \int_a^b h(t)dt \frac{1}{b-a} \int_a^b g(t)dt,
\]

(2.2)

which is known in the literature as Čebyšev’s inequality.

In 1935, Grüss \([4]\) showed that

\[
|C(h, g)| \leq \frac{1}{4} (M - m) (N - n),
\]

(2.3)

provided that there exists the real numbers \(m, M, n, N \) such that

\[
m \leq h(t) \leq M \quad \text{and} \quad n \leq g(t) \leq N \quad \text{for a.e. } t \in [a, b].
\]

(2.4)

The constant \(\frac{1}{4} \) is best possible in (2.1) in the sense that it cannot be replaced by a smaller quantity.

Let \(f \) be a continuous function on \(I \). If \((A, B) \in \mathcal{SA}_I(H), \) the class of all selfadjoint operators with spectra in \(I \) and \(t \in [0, 1], \) then the convex combination \((1 - t)A + tB\) is a selfadjoint operator with the spectrum in \(I \) showing that \(\mathcal{SA}_I(H) \) is a convex set in the Banach algebra \(\mathcal{B}(H) \) of all bounded linear operators on \(H. \)

By the continuous functional calculus of selfadjoint operator we also conclude that \(f((1 - t)A + tB) \) is a selfadjoint operator in \(\mathcal{B}(H). \)

For \(A, B \in \mathcal{SA}_I(H), \) we consider the auxiliary function \(\varphi_{(A, B)} : [0, 1] \to \mathcal{B}(H) \) defined by

\[
\varphi_{(A, B)}(t) := f((1 - t)A + tB).
\]

(2.5)

For \(x \in H \) we can also consider the auxiliary function \(\varphi_{(A, B), x} : [0, 1] \to \mathbb{R} \) defined by

\[
\varphi_{(A, B), x}(t) := \left\langle \varphi_{(A, B)}(t)x, x \right\rangle = \langle f((1 - t)A + tB)x, x \rangle.
\]

(2.6)

Theorem 2. Let \(A, B \in \mathcal{SA}_I(H) \) with \(A \leq B \) and \(f \) an operator monotonic function on \(I. \) If \(p : [0, 1] \to \mathbb{R} \) is monotonic nondecreasing on \([0, 1], \) then

\[
0 \leq \int_0^1 p(t)f((1 - t)A + tB)dt - \int_0^1 p(t)dt\int_0^1 f((1 - t)A + tB)dt
\]

\[
\leq \frac{1}{4}[p(1) - p(0)] [f(B) - f(A)].
\]

If \(p : [0, 1] \to \mathbb{R} \) is monotonic nonincreasing on \([0, 1], \) then

\[
0 \leq \int_0^1 p(t)dt\int_0^1 f((1 - t)A + tB)dt - \int_0^1 p(t)f((1 - t)A + tB)dt
\]

\[
\leq \frac{1}{4}[p(0) - p(1)] [f(B) - f(A)].
\]

(2.7)
Proof. Let $0 \leq t_1 < t_2 \leq 1$ and $A \leq B$. Then
\[(1 - t_2) A + t_2 B - (1 - t_1) A - t_1 B = (t_2 - t_1) (B - A) \geq 0\]
and by operator monotonicity of f we get
\[f ((1 - t_2) A + t_2 B) \geq f ((1 - t_1) A + t_1 B),\]
which is equivalent to
\[\varphi_{(A,B):x} (t_2) = \langle f ((1 - t_2) A + t_2 B) x, x \rangle \geq \langle f ((1 - t_1) A + t_1 B) x, x \rangle = \varphi_{(A,B):x} (t_1)\]
that shows that the scalar function $\varphi_{(A,B):x} : [0, 1] \to \mathbb{R}$ is monotonic nondecreasing for $A \leq B$ and for any $x \in H$.

If we write the inequality (2.2) for the functions p and $\varphi_{(A,B):x}$ we get
\[
\int_0^1 p(t) \langle f ((1 - t) A + t B) x, x \rangle \, dt \geq \int_0^1 p(t) \, dt \int_0^1 \langle f ((1 - t) A + t B) x, x \rangle \, dt,
\]
which can be written as
\[
\left\langle \left(\int_0^1 p(t) f ((1 - t) A + t B) \, dt \right) x, x \right\rangle \geq \left\langle \left(\int_0^1 p(t) \, dt \int_0^1 f ((1 - t) A + t B) \, dt x, x \right) \right\rangle
\]
for $x \in H$, and the first inequality in (2.7) is obtained.

We also have that
\[
\langle f (A) x, x \rangle = \varphi_{(A,B):x} (0) \leq \varphi_{(A,B):x} (t) = \langle f ((1 - t) A + t B) x, x \rangle \leq \varphi_{(A,B):x} (1) = \langle f (B) x, x \rangle
\]
and
\[p (0) \leq p (t) \leq p (1)
\]
for all $t \in [0, 1]$.

By writing Grüss’ inequality for the functions $\varphi_{(A,B):x}$ and p, we get
\[
0 \leq \int_0^1 p(t) \langle f ((1 - t) A + t B) x, x \rangle \, dt
- \int_0^1 p(t) \, dt \int_0^1 \langle f ((1 - t) A + t B) x, x \rangle \, dt
\leq \frac{1}{4} [p (1) - p (0)] \| f (B) x \| - \langle f (A) x, x \rangle
\]
for $x \in H$ and the second inequality in (2.7) is obtained.

A continuous function $g : \mathcal{SA}_f (H) \to \mathcal{B} (H)$ is said to be Gâteaux differentiable in $A \in \mathcal{SA}_f (H)$ along the direction $B \in \mathcal{B} (H)$ if the following limit exists in the strong topology of $\mathcal{B} (H)$
\[
(2.9) \quad \nabla g_A (B) := \lim_{s \to 0} \frac{g (A + s B) - g (A)}{s} \in \mathcal{B} (H).
\]
If the limit (2.9) exists for all $B \in \mathcal{B} (H)$, then we say that g is Gâteaux differentiable in A and we can write $g \in \mathcal{G} (A)$. If this is true for any A in an open set \mathcal{S} from $\mathcal{SA}_f (H)$ we write that $g \in \mathcal{G} (\mathcal{S})$.

If \(g \) is a continuous function on \(I \), by utilising the continuous functional calculus the corresponding function of operators will be denoted in the same way.

For two distinct operators \(A, B \in \mathcal{S} \mathcal{A}_I (H) \) we consider the segment of selfadjoint operators

\[
[A, B] := \{(1 - t) A + t B \mid t \in [0, 1]\}.
\]

We observe that \(A, B \in [A, B] \) and \([A, B] \subset \mathcal{S} \mathcal{A}_I (H) \).

Lemma 1. Let \(f \) be a continuous function on \(I \) and \(A, B \in \mathcal{S} \mathcal{A}_I (H) \), with \(A \neq B \).

If \(f \in \mathcal{G} ([A, B]) \), then the auxiliary function \(\varphi_{(A,B)} \) is differentiable on \((0,1)\) and

\[
\varphi'_{(A,B)}(t) = \nabla f_{(1-t)A+tB} (B - A).
\]

In particular,

\[
\varphi'_{(A,B)} (0+) = \nabla f_A (B - A)
\]

and

\[
\varphi'_{(A,B)} (1-) = \nabla f_B (B - A).
\]

Proof. Let \(t \in (0,1) \) and \(h \neq 0 \) small enough such that \(t + h \in (0,1) \). Then

\[
\varphi_{(A,B)}(t+h) - \varphi_{(A,B)}(t) = \frac{h}{f ((1-t-h) A + (t+h) B) - f ((1-t) A + t B)}
\]

\[
= \frac{f ((1-t) A + t B + h (B - A)) - f ((1-t) A + t B)}{h}.
\]

Since \(f \in \mathcal{G} ([A, B]) \), hence by taking the limit over \(h \to 0 \) in (2.13) we get

\[
\varphi'_{(A,B)} (t) = \lim_{h \to 0} \frac{\varphi_{(A,B)}(t+h) - \varphi_{(A,B)}(t)}{h}
\]

\[
= \lim_{h \to 0} \frac{f ((1-t) A + t B + h (B - A)) - f ((1-t) A + t B)}{h}
\]

\[
= \nabla f_{(1-t)A+tB} (B - A),
\]

which proves (2.10).

Also, we have

\[
\varphi'_{(A,B)} (0+) = \lim_{h \to 0+} \frac{\varphi_{(A,B)}(h) - \varphi_{(A,B)}(0)}{h}
\]

\[
= \lim_{h \to 0+} \frac{f ((1-h) A + h B) - f (A)}{h}
\]

\[
= \lim_{h \to 0+} \frac{f (A + h (B - A)) - f (A)}{h}
\]

\[
= \nabla f_A (B - A)
\]

since \(f \) is assumed to be Gâteaux differentiable in \(A \). This proves (2.11).

The equality (2.12) follows in a similar way.

Lemma 2. Let \(f \) be an operator monotonic function on \(I \) and \(A, B \in \mathcal{S} \mathcal{A}_I (H) \), with \(A \leq B \), \(A \neq B \). If \(f \in \mathcal{G} ([A, B]) \), then

\[
\nabla f_{(1-t)A+tB} (B - A) \geq 0 \text{ for all } t \in (0,1).
\]
Also
\begin{equation}
\nabla f_A (B - A), \nabla f_B (B - A) \geq 0.
\end{equation}

Proof. Let $x \in H$. The auxiliary function $\varphi_{(A,B);x}$ is monotonic nondecreasing in the usual sense on $[0, 1]$ and differentiable on $(0, 1)$, and for $t \in (0, 1)$
\begin{align*}
0 \leq \varphi'_{(A,B);x} (t) &= \lim_{h \to 0} \frac{\varphi_{(A,B),x} (t + h) - \varphi_{(A,B),x} (t)}{h} \\
&= \lim_{h \to 0} \left\langle \frac{\varphi_{(A,B)} (t + h) - \varphi_{(A,B)} (t)}{h}, x \right\rangle x \\
&= \left\langle \lim_{h \to 0} \frac{\varphi_{(A,B)} (t + h) - \varphi_{(A,B)} (t)}{h}, x \right\rangle x \\
&= \langle \nabla f_{(1-t)A+tB} (B - A), x \rangle.
\end{align*}
This shows that
\begin{equation}
\nabla f_{(1-t)A+tB} (B - A) \geq 0
\end{equation}
for all $t \in (0, 1)$.

The inequalities (2.15) follow by (2.11) and (2.12). \qed

The following inequality obtained by Ostrowski in 1970, [9] also holds
\begin{equation}
|C (h, g)| \leq \frac{1}{8} (b - a) (M - m) \|g'\|_\infty,
\end{equation}
provided that h is Lebesgue integrable and satisfies (2.4) while g is absolutely continuous and $g' \in L_\infty [a, b]$. The constant $\frac{1}{8}$ is best possible in (2.16).

Theorem 3. Let $A, B \in \mathcal{S}A_I (H)$ with $A \leq B$, f be an operator monotonic function on I and $p : [0, 1] \to \mathbb{R}$ monotonic nondecreasing on $[0, 1]$.

(i) If p is differentiable on $(0, 1)$, then
\begin{equation}
0 \leq \int_0^1 p(t) f ((1 - t) A + tB) dt - \int_0^1 p(t) dt \int_0^1 f ((1 - t) A + tB) dt \\
\quad \leq \frac{1}{8} \sup_{t \in (0, 1)} p'(t) \left| f (B) - f (A) \right|.
\end{equation}

(ii) If $f \in \mathcal{G} ([A, B])$, then
\begin{equation}
0 \leq \int_0^1 p(t) f ((1 - t) A + tB) dt - \int_0^1 p(t) dt \int_0^1 f ((1 - t) A + tB) dt \\
\quad \leq \frac{1}{8} \left[p (1) - p (0) \right] \sup_{t \in (0, 1)} \| \nabla f_{(1-t)A+tB} (B - A) \|_H.
\end{equation}

Proof. Let $x \in H$. If we use the inequality (2.16) for $g = p$ and $h = \varphi_{(A,B);x}$, then
\begin{align*}
0 &\leq \int_0^1 p(t) \langle f ((1 - t) A + tB), x, x \rangle dt \\
&\quad - \int_0^1 p(t) dt \int_0^1 \langle f ((1 - t) A + tB), x, x \rangle dt \\
&\quad \leq \frac{1}{8} \sup_{t \in (0, 1)} p'(t) \left| \langle f (B), x, x \rangle - \langle f (A), x, x \rangle \right|,
\end{align*}
for any $x \in H$, which is equivalent to (2.17).
If we use the inequality (2.16) for $h = p$ and $g = \varphi_{(A,B)}$ then by Lemmas 1 and 2

\[0 \leq \int_0^1 p(t) \langle f((1-t)A + tB)x, x \rangle dt - \int_0^1 p(t) dt \int_0^1 \langle f((1-t)A + tB)x, x \rangle dt \leq \frac{1}{8} \left[p(1) - p(0) \right] \sup_{t \in (0,1)} \langle \nabla f_{(1-t)A + tB}(B - A)x, x \rangle, \]

for any $x \in H$, which is an inequality of interest in itself.

Observe that for all $t \in (0,1)$,

\[\langle \nabla f_{(1-t)A + tB}(B - A)x, x \rangle \leq \| \nabla f_{(1-t)A + tB}(B - A) \| \| x \|^2 \]

for any $x \in H$, which implies that

\[\sup_{t \in (0,1)} \langle \nabla f_{(1-t)A + tB}(B - A)x, x \rangle \leq \sup_{t \in (0,1)} \| \nabla f_{(1-t)A + tB}(B - A) \| \langle 1_H x, x \rangle \]

for any $x \in H$.

By making use of (2.19) and (2.20) we derive

\[0 \leq \int_0^1 p(t) \langle f((1-t)A + tB)x, x \rangle dt - \int_0^1 p(t) dt \int_0^1 \langle f((1-t)A + tB)x, x \rangle dt \leq \frac{1}{8} \left[p(1) - p(0) \right] \sup_{t \in (0,1)} \| \nabla f_{(1-t)A + tB}(B - A) \| \langle 1_H x, x \rangle \]

for any $x \in H$, which is equivalent to (2.18).

Another, however less known result, even though it was obtained by Čebyšev in 1882, [1], states that

\[|C(h, g)| \leq \frac{1}{12} \| h' \|_\infty \| g' \|_\infty (b - a)^2, \]

provided that h', g' exist and are continuous on $[a, b]$ and $\| h' \|_\infty = \sup_{t \in [a, b]} | h'(t) |$. The constant $\frac{1}{12}$ cannot be improved in the general case.

The case of euclidean norms of the derivative was considered by A. Lupaş in [5] in which he proved that

\[|C(h, g)| \leq \frac{1}{\pi^2} \| h' \|_2 \| g' \|_2 (b - a), \]

provided that h, g are absolutely continuous and h', $g' \in L^2 [a, b]$. The constant $\frac{1}{\pi^2}$ is the best possible.

Using the above inequalities (2.21) and (2.22) and a similar procedure to the one employed in the proof of Theorem 3, we can also state the following result:

Theorem 4. Let $A, B \in SA_I(H)$ with $A \leq B$, f be an operator monotonic function on I and $p : [0, 1] \to \mathbb{R}$ monotonic nondecreasing on $[0, 1]$. If p is differentiable
and \(f \in \mathcal{G} ([A, B]) \), then

\begin{align*}
(2.23) \quad 0 & \leq \int_0^1 p(t) f ((1 - t) A + tB) \, dt - \int_0^1 p(t) \, dt \int_0^1 f ((1 - t) A + tB) \, dt \\
& \leq \frac{1}{12} \sup_{t \in (0, 1)} p'(t) \sup_{t \in (0, 1)} \| \nabla f_{(1-t)A+tB} (B - A) \| 1_H
\end{align*}

and

\begin{align*}
(2.24) \quad 0 & \leq \int_0^1 p(t) f ((1 - t) A + tB) \, dt - \int_0^1 p(t) \, dt \int_0^1 f ((1 - t) A + tB) \, dt \\
& \leq \frac{1}{12} \left(\int_0^1 [p'(t)]^2 \, dt \right)^{1/2} \left(\int_0^1 \| \nabla f_{(1-t)A+tB} (B - A) \|^2 \, dt \right)^{1/2} 1_H,
\end{align*}

provided the integrals in the second term are finite.

3. Some Examples

We consider the function \(f : (0, \infty) \to \mathbb{R} \), \(f(t) = -t^{-1} \) which is operator monotone on \((0, \infty)\).

If \(0 < A \leq B \) and \(p : [0, 1] \to \mathbb{R} \) is monotonic nondecreasing on \([0, 1]\), then by (2.7)

\begin{align*}
(3.1) \quad 0 & \leq \int_0^1 p(t) \, dt \int_0^1 ((1 - t) A + tB)^{-1} \, dt - \int_0^1 p(t) ((1 - t) A + tB)^{-1} \, dt \\
& \leq \frac{1}{4} [p(1) - p(0)] (A^{-1} - B^{-1}).
\end{align*}

Moreover, if \(p \) is differentiable on \((0, 1)\), then by (2.17) we obtain

\begin{align*}
(3.2) \quad 0 & \leq \int_0^1 p(t) \, dt \int_0^1 ((1 - t) A + tB)^{-1} \, dt - \int_0^1 p(t) ((1 - t) A + tB)^{-1} \, dt \\
& \leq \frac{1}{8} \sup_{t \in (0, 1)} p'(t) (A^{-1} - B^{-1}).
\end{align*}

The function \(f(t) = -t^{-1} \) is operator monotone on \((0, \infty)\), operator Gâteaux differentiable and

\(\nabla f_T(S) = T^{-1} ST^{-1} \)

for \(T, S > 0 \).

If \(p : [0, 1] \to \mathbb{R} \) is monotonic nondecreasing on \([0, 1]\), then by (2.18) we get

\begin{align*}
(3.3) \quad 0 & \leq \int_0^1 p(t) \, dt \int_0^1 ((1 - t) A + tB)^{-1} \, dt - \int_0^1 p(t) ((1 - t) A + tB)^{-1} \, dt \\
& \leq \frac{1}{8} [p(1) - p(0)] \\
\times \sup_{t \in (0, 1)} \left\| ((1 - t) A + tB)^{-1} (B - A) ((1 - t) A + tB)^{-1} \right\| 1_H
\end{align*}

for \(0 < A \leq B \).
If p is monotonic nondecreasing and differentiable on $(0, 1)$, then by (2.23) and (2.24) we get

\[(3.4) \quad 0 \leq \int_0^1 p(t) \, dt \int_0^1 ((1 - t) \, A + tB)^{-1} \, dt - \int_0^1 p(t) \, ((1 - t) \, A + tB)^{-1} \, dt \]

\[\leq \frac{1}{12} \sup_{t \in (0,1)} p'(t) \times \sup_{t \in (0,1)} \left\| ((1 - t) \, A + tB)^{-1} (B - A) ((1 - t) \, A + tB)^{-1} \right\|_{1_H} \]

and

\[(3.5) \quad 0 \leq \int_0^1 p(t) \, dt \int_0^1 ((1 - t) \, A + tB)^{-1} \, dt - \int_0^1 p(t) \, ((1 - t) \, A + tB)^{-1} \, dt \]

\[\leq \frac{1}{\pi^2} \left(\int_0^1 \left| p'(t) \right|^2 \, dt \right)^{1/2} \times \left(\int_0^1 \left\| ((1 - t) \, A + tB)^{-1} (B - A) ((1 - t) \, A + tB)^{-1} \right\|_2^2 \, dt \right)^{1/2} 1_H, \]

for $0 < A \leq B$.

We note that the function $f(t) = \ln t$ is operator monotonic on $(0, \infty)$.

If $0 < A \leq B$ and $p : [0, 1] \to \mathbb{R}$ is monotonic nondecreasing on $[0, 1]$, then by (2.7) we have

\[(3.6) \quad 0 \leq \int_0^1 p(t) \ln ((1 - t) \, A + tB) \, dt - \int_0^1 p(t) \, dt \int_0^1 \ln ((1 - t) \, A + tB) \, dt \]

\[\leq \frac{1}{4} \left[p(1) - p(0) \right] (\ln B - \ln A). \]

Moreover, if p is differentiable on $(0, 1)$, then by (2.17) we obtain

\[(3.7) \quad 0 \leq \int_0^1 p(t) \ln ((1 - t) \, A + tB) \, dt - \int_0^1 p(t) \, dt \int_0^1 \ln ((1 - t) \, A + tB) \, dt \]

\[\leq \frac{1}{8} \sup_{t \in (0,1)} p'(t) (\ln B - \ln A). \]

The ln function is operator Gâteaux differentiable with the following explicit formula for the derivative (cf. Pedersen [10, p. 155]):

\[(3.8) \quad \nabla \ln_T (S) = \int_0^\infty (s1_H + T)^{-1} S (s1_H + T)^{-1} \, ds \]

for $T, S > 0$.

If $p : [0, 1] \to \mathbb{R}$ is monotonic nondecreasing on $[0, 1]$, then by (2.18) we get

\[(3.9) \quad 0 \leq \int_0^1 p(t) \ln ((1 - t) \, A + tB) \, dt - \int_0^1 p(t) \, dt \int_0^1 \ln ((1 - t) \, A + tB) \, dt \]

\[\leq \frac{1}{8} \left[p(1) - p(0) \right] \times \sup_{t \in (0,1)} \left\| \int_0^\infty (s1_H + (1 - t) \, A + tB)^{-1} (B - A) (s1_H + (1 - t) \, A + tB)^{-1} \, ds \right\|_{1_H} \]
and if p is differentiable on $(0, 1)$, then

\begin{equation}
0 \leq \int_0^1 p(t) \ln \left((1 - t) A + tB \right) dt - \int_0^1 p(t) dt \int_0^1 \ln \left((1 - t) A + tB \right) dt \\
\leq \frac{1}{12} \sup_{t \in (0, 1)} p'(t) \\
\times \sup_{t \in (0, 1)} \left\| \int_0^\infty (s1_H + (1 - t) A + tB)^{-1} (B - A)(s1_H + (1 - t) A + tB)^{-1} ds \right\|_H
\end{equation}

for $0 < A \leq B$.

References

[1] P. L. Chebyshev, Sur les expressions approximatives des intégrals définis par les autres prises entre les même limites, Proc. Math. Soc. Charkov, 2 (1882), 93-98.
[2] J. I. Fujii, Y. Seo, On parametrized operator means dominated by power ones, Sci. Math. 1 (1998) 301–306.
[3] T. Furuta, Concrete examples of operator monotone functions obtained by an elementary method without appealing to Löwner integral representation, Linear Algebra and its Applications 429 (2008) 972–980.
[4] G. Grüss, Über das Maximum des absoluten Betrages von $\frac{1}{b-a} \int_a^b f(x)g(x)dx - \frac{1}{b-a} \int_a^b f(x)dx \int_a^b g(x)dx$, Math. Z., 39(1935), 215-226.
[5] A. Lupas, The best constant in an integral inequality, Mathematica (Cluj, Romania), 15 (38) (2) (1973), 219-222
[6] E. Heinz, Beiträge zur Störungstheorie der Spektralzerlegung, Math. Ann. 123 (1951) 415–438.
[7] K. Löwner, Über monotone MatrixFunktionen, Math. Z. 38 (1934) 177–216.
[8] F. Kubo, T. Ando, Means of positive linear operators, Math. Ann. 246 (1980) 205–224.
[9] A. M. Ostrowski, On an integral inequality, Aequat. Math., 4 (1970), 358-373.
[10] G. K. Pedersen, Operator differentiable functions. Publ. Res. Inst. Math. Sci. 36 (1) (2000), 139-157.

1Mathematics, College of Engineering & Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia. E-mail address: sever.dragomir@vu.edu.au URL: http://rgmia.org/dragomir

2DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science, & Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa.