Metabolic adaptability in metastatic breast cancer by

AKR1B10-dependent balancing of glycolysis and fatty acid oxidation

1,3Antoinette van Weverwijk, 2Nikolaos Koundouros, 1Marjan Iravani, 1Matthew Ashenden, 1Qiong Gao, 2George Poulogiannis, 1Ute Jungwirth and 1,*Clare M. Isacke

1The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK

2Department of Cancer Biology, The Institute of Cancer Research, London, UK. Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK

3Current address: Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands

Running title: Regulation of fatty acid oxidation during breast cancer metastasis

Keywords: breast cancer metastasis, metabolic regulation, AKR1B10, fatty acid oxidation, lung metastasis

*Corresponding Author: Clare M. Isacke, The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, UK. Tel: +44 20 7153 5510; Fax: +44 20 7153 5340; Email: clare.isacke@icr.ac.uk

Conflicts of Interest: The authors declare no potential conflicts of interest

Figures: 6 figures plus 4 Extended Data Tables and 4 Extended Data Figures
Abstract

The different stages of the metastatic cascade present distinct metabolic challenges to tumour cells and an altered tumour metabolism associated with successful metastatic colonisation provides a therapeutic vulnerability in disseminated disease. We identify the aldo-keto reductase AKR1B10 as a metastasis enhancer that has little impact on primary tumour growth or dissemination but promotes effective tumour growth in secondary sites and, in human disease, is associated with an increased risk of distant metastatic relapse. AKR1B10High tumour cells have reduced glycolytic capacity and dependency on glucose as fuel source but increased utilisation of fatty acid oxidation. Conversely, in both 3D tumour spheroid assays and in vivo metastasis assays, inhibition of fatty acid oxidation blocks AKR1B10High-enhanced metastatic colonisation with no impact on AKR1B10Low cells. Finally, mechanistic analysis supports a model in which AKR1B10 serves to limit the toxic side effects of oxidative stress thereby sustaining fatty acid oxidation in metabolically challenging metastatic environments.

A defining characteristic of primary tumour cells is an ability to alter their metabolism, which provides the energy and metabolites required to sustain survival in nutrient and oxygen limiting conditions. In disseminating tumour cells this need for an altered metabolism becomes more acute, as cells have to avoid anoikis-mediated cell death in the circulation and face the challenge of surviving at the metastatic site before establishment of a productive metastatic colony. Moreover, different metastatic sites pose distinct metabolic challenges to the tumour cell1,2. In breast cancers, these altered metabolic dependencies are now being defined but the molecular mechanisms regulating this metabolic adaptability have yet to be identified.

Here we report the analysis of a syngeneic in vivo RNAi screen to identify putative metastasis enhancers. Among the top hits from the screen was the aldo-keto
reductase, Akr1b8. Akr1b8, and its human orthologue AKR1B10\(^3\) are NADPH-dependent enzymes that can reduce a variety of carbonyl substrates\(^4\). These include the conversion of retinal to retinol\(^5,6\) resulting in decreased retinoic acid signalling, conversion of the isoprenyl aldehydes farnesal and geranylgeranal to farnesol and geranylgeranol\(^7\) generating precursors for protein prenylation and the reduction of cytotoxic aldehydes\(^8\). Although AKR1B10 expression is upregulated in a variety of cancers including hepatocellular\(^9,10\); lung\(^11\), pancreatic\(^12\) and breast\(^13,14\), the mechanism by which elevated levels of AKR1B10 enhances metastasis is not known. We demonstrate that AKR1B10\(^{16,18}\) cells are characterised by a reduced glycolytic capacity and an increased utilisation of fatty acid oxidation (FAO), and that this metabolic switch is required for successful colonisation of secondary sites but not primary tumour growth or metastatic dissemination.

Results

Akr1b8/AKR1B10 promotes breast cancer metastasis

To identify novel enhancers of breast cancer metastasis we analysed a syngeneic in vivo shRNA screen, focusing on shRNAs that were significantly under-represented in the 4T1-Luc tumour-bearing lungs of BALB/c mice compared to preinoculation 4T1-Luc mouse mammary carcinoma cells (Fig. 1a; see Methods). 81 shRNAs were found to be significantly depleted (Z score <-2) in the metastatic lung samples (Fig. 1b) and were then filtered by removing shRNAs that (a) did not align to the predicted target gene, (b) were significantly depleted in less than 3 of the 4 biological replicates, (c) targeted genes with expression in the lowest 50\(^{th}\) percentile based on gene expression profiling of 4T1 cells directly isolated from tumours\(^15\), and (d) when comparing the preinoculation cells to the initial plasmid library (Fig. 1a) showed a significant difference in abundance (Z score >2 or <-2) indicating an effect on cell viability. Filtering resulted in a shortlist of 23 significantly depleted shRNAs targeting genes encoding putative metastasis enhancers (Fig. 1c and Extended Data Table 1).
Within this shortlist are known regulators of breast cancer progression and metastasis such as matrix metallopeptidase 9 (Mmp9)16, cathepsin D (Ctsd)17, insulin-like growth factor 1 (Igf1)18 and MET (Met)19, as well as inhibitors of apoptosis such as BCL2-like 2 (Bcl2l), BCL2 associated athanogene 1 (Bag1), nucleolar protein 3 (Nol3) and protein kinase C eta (Prkch), providing confidence in the ability of the screen to uncover novel metastatic regulators.

Of particular interest was the presence of the metabolic enzyme aldo-keto reductase 1b8 (Akr1b8) in this shortlist. The human orthologue of Akr1b8, AKR1B10, has been reported to be upregulated in a number of cancer types including breast cancer13,14, but the clinical and metabolic consequences of this altered expression have not been investigated. First, 4T1-Luc cells were transduced with lentiviral constructs containing empty vector (shCTRL), a non-targeting shRNA (shNTC) or two independent shRNAs targeting Akr1b8 (shAkr1b8-4 and shAkr1b8-7) (Extended Data Fig. 1a). Consistent with the screening data, where we compared shRNA representation in the starting plasmid pools with the preinoculation cells, Akr1b8 knockdown had no significant effect on cell viability when cultured in full medium \textit{in vitro} (Extended Data Fig. 1b). By contrast, following intravenous inoculation, the two Akr1b8 knockdown cell lines showed a significant decrease in lung colonisation as monitored by \textit{in vivo} IVIS imaging and \textit{ex vivo} lung weight (Fig. 1d).

Although these data validate the \textit{in vivo} shRNA screen, intravenous inoculation does not assess the full metastatic ability of tumour cells. Consequently, we next performed a spontaneous metastasis assay in which cells were inoculated orthotopically into 4th mammary fat pad of BALB/c mice (Fig. 1e). No differences were observed in tumour take, primary tumour growth or tumour weight at the end of the experiment, however, there was a significant reduction in lung metastasis in the Akr1b8 knockdown group. Finally, we addressed whether this metastatic impairment resulted from impairment of tumour cell survival in the circulation. 4T1-Luc shNTC and shAkr1b8 cells were labelled with cell tracker dyes, mixed at a 1:1 ratio and
injected via the tail vein into BALB/c mice (Fig. 1f). Imaging of the lungs 1 hour post-injection confirmed that equal number of cells had been inoculated. Examination of lungs 16 hours post-injection revealed no significant difference between the number of control and Akr1b8-knockdown tumour cells retained in the lungs indicating that Akr1b8 expression does not impact on survival in the circulation or lodging in the vasculature but is required for efficient colonisation of tumour cells within the metastatic site.

Expression of AKR1B10 correlates with increased risk of metastatic relapse in breast cancer patients

To address the clinical relevance of the data obtained with the 4T1 mouse models, expression of AKR1B10, the human orthologue of murine Akr1b8, was analysed in human primary breast cancers present in the TCGA database. Within the intrinsic subtypes, AKR1B10 expression is significantly higher in the HER2-enriched and basal-like breast cancers compared to luminal A and luminal B cancers (Fig. 2a) and analysis by receptor expression revealed significantly higher AKR1B10 expression in ER- compared to ER+ breast cancers, and in HER2+ compared to HER2- breast cancers (Fig. 2a). The latter finding is consistent with a previous report that overexpression of AKR1B10 correlates with HER2 positivity in ductal carcinoma in situ (DCIS). An equivalent pattern of expression was seen in a panel of breast cancer cell lines (Extended Data Fig. 2a). Similarly, AKR1B10 protein levels are variable with low levels in the ER+ ZR75.1 and MCF7 lines and high levels in the basal-like BT20, MDA-MB-468 and HCC1395 lines (Fig. 2b, upper panel). For further studies, AKR1B10 was ectopically expressed in the AKR1B10Low MDA-MB-231 and MDA-MB-453 lines and expression was knocked down by shRNA in the AKR1B10High HCC1395 line (Fig. 2b, lower panel). Levels of ectopically expressed protein were equivalent to that found in AKR1B10High lines, while shRNA knockdown reduced protein levels to that observed in AKR1B10Low lines.
As with the 4T1-Luc cells (Extended Data Fig. 1b), the human breast cancer cell lines with altered AKR1B10 levels showed no difference in in vitro viability as monitored in a colony formation assay (Fig. 2c), yet when inoculated intravenously into BALB/c Nude mice, AKR1B10^{High} MDA-MB-231 cells gave rise to a significantly increased tumour burden in the lungs compared to AKR1B10^{Low} MDA-MB-231 cells (Fig. 2d). Again, there was no effect on the ability of the cells to survive in the circulation and lodge in the lung tissue (Fig. 2e), supporting the hypothesis that AKR1B10 functions to maintain efficient growth of tumour cells within the metastatic tissue.

Consistent with these findings, in a dataset of 1,746 unselected breast cancers\(^2\), high expression of AKR1B10 significantly correlated with reduced distant metastasis-free survival when considering all patients or only ER- patients. A similar trend was seen in HER2+ patients, however, the number of samples was too low to reach statistical significance (Fig. 2f). No association with outcome was seen in ER+ only patients. As AKR1B10 has been associated with chemoresistance via its ability to metabolise anti-cancer drugs\(^2\), we also examined the subset of untreated patients (Extended Data Fig. 2). Again high expression of AKR1B10 (upper quartile) was significantly associated with reduced distant metastasis-free survival in ER-, but not ER+, breast cancer patients.

AKR1B10^{High} breast cancer cells have reduced glycolytic function and increased dependency on fatty acid oxidation

Via their oxidoreductase activity, members of the AKR family including AKR1B10 have been implicated as regulators of cellular metabolism. Aerobic glycolysis, also known as the Warburg effect, is a common feature of many cancers and characterised by increased metabolism of glucose to lactate, which is transported out of the cell resulting in local acidification. The Seahorse XF Glycolysis Stress test was used to assess glycolytic function of cells by measuring the extracellular acidification
rate (ECAR) in the media (Fig. 3a). Following addition of glucose, the glycolytic rate was significantly reduced in AKR1B10High, compared to AKR1B10Low, breast cancer cells, as was their glycolytic capacity and glycolytic reserve. Moreover, glucose uptake was significantly reduced in all three AKR1B10High cell lines (Fig. 3b), indicating that AKR1B10High cells have a reduced requirement for glucose. Consistent with this hypothesis, in 2D culture AKR1B10High and AKR1B10Low cells showed only a modest difference in cell growth when cultured in full DMEM (4.5 g/L D-glucose) but in low glucose (LG) DMEM (1 g/L D-glucose) AKR1B10Low cells showed a significantly impaired growth rate (Fig. 3c). These data were recapitulated first in a 3D \textit{in vitro} assay where AKR1B10High tumour spheroids showed increased growth in LG DMEM compared to the AKR1B10Low spheroids (Fig. 3d) and in colony forming assays where AKR1B10High cells were significantly more tolerant to low glucose conditions (Fig. 3e).

In addition to aerobic glycolysis, tumour cells can utilise glutamine and/or fatty acids to generate sufficient ATP and metabolites to support cellular activities. As AKR1B10High cells have a reduced glycolytic function, take up less glucose and are better able to survive in low glucose conditions, we used the Seahorse XF Mito Fuel Flex Test to monitor the mitochondrial fuel usage of glutamine or fatty acids as an alternative source of energy. In all three cell lines, there was no significant difference in mitochondrial respiration following inhibition of glutamine oxidation (Extended Data Fig. 3), whereas two out of three AKRB10High breast cancer cell lines showed an increased dependency on fatty acid oxidation (FAO) compared to their matched AKR1B10Low counterparts (Fig. 4a) and a significantly increased oxygen consumption rate (OCR) following addition of palmitate (Fig. 4b).

To address clinical relevance of these findings, we used a FAO 88-gene set (FAO88; see Methods) and demonstrated that \textit{AKR1B10} expression positively correlated with a high FAO88 score in triple negative (TN) and ER- breast cancer (Fig. 4c) but not in ER+ breast cancers (Extended Data Fig. 4) both in the TCGA
dataset and in the dataset of Hatzis et al. containing 508 breast cancer patients treated with neoadjuvant chemotherapy24. In the Hatzis dataset there were insufficient numbers of HER2+ breast cancers for analysis, however, in the intrinsic subtype of HER2-enriched tumours high AKR1B10 expression again positively correlated with a high FAO88 score (Fig. 4c).

The processes of FAO and fatty acid synthesis are usually mutually exclusive due to their regulation by negative feedback25. It was notable that AKR1B10 expression in human breast cancers positively correlated with the key FAO transcriptional regulator, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A, also known as PGC-1\textalpha) ($P=0.009$) and negatively correlated with the activators for fatty acid synthesis, acetyl-CoA carboxylase β (ACACB; $P=0.047$) and acyl-CoA synthetase long chain family member 1 (ACSL1; $P<0.001$). Consistent with these clinical data, in the cell line models, fatty acid synthesis as monitored by incorporation of 14C-acetate in lipids was significantly reduced in AKR1B10High cells (Fig. 5a). Given this negative correlation between AKR1B10 expression and lipid synthesis, AKR1B10High tumour cells must rely either on increased uptake of exogenous fatty acids or increased release from intracellular fatty acid stores. All three AKR1B10High cell lines showed increased fatty acid uptake (Fig. 5b) whereas staining of intracellular neutral lipids with the lipophilic fluorescent dye BODIPY 493/503 revealed no significant difference in lipid droplet content between AKR1B10High and AKR1B10Low cells (Fig. 5c), indicating that AKR1B10High cells predominantly fuel FAO via the uptake of free fatty acids.

AKR1B10 functions to limit oxidative stress-associated toxicities and sustain FAO-dependent metastatic colonisation

The finding that increased AKR1B10 expression promotes metastatic colonisation of the lungs (Fig. 1 and Fig. 2d-f) and is associated with an increased dependency on FAO (Fig. 4) and enhanced tolerance of low glucose culture...
conditions (Fig 3c-e) raises two important questions. First, what is the mechanism by which AKR1B10 modulates these activities? AKR1B10 is distinguished from the other well-characterised AKR1B subfamily member AKR1B1 by its increased catalytic activity for retinals, isoprenyl aldehydes and, importantly, for cytotoxic aldehydes such 4-hydroxy-2-nonenal (4-HNE)23. The latter is a toxic lipid peroxide by-product of the elevated reactive oxygen species (ROS) levels associated with oxidative stress. The interaction between FAO and ROS is complex. It is well documented that FAO, via its ability to generate NADPH, reduces ROS levels26 but, conversely, it has been demonstrated that ROS can inhibit FAO27,28. Consistent with the observation that AKR1B10Low cells have reduced viability when cultured in LG DMEM (Fig. 3c-e), glucose deprivation resulted in elevated levels of lipid peroxidation as detected by BODIPY 581/591 C\textsubscript{11} fluorescence (Fig. 5d,e). However, lipid peroxidation levels did not increase when AKR1B10High cells were cultured in LG DMEM, suggesting that the AKR1B10 functions to limit oxidative stress-associated toxicities and consequent FAO inhibition.

Second, do these cellular mechanisms operate in physiologically relevant settings? To address this, 3D tumour spheroids were treated with the FAO inhibitor etomoxir. Etomoxir had no effect on growth of AKR1B10Low tumour spheroids but inhibited the increased growth observed in the AKR1B10High tumour spheroids (Fig. 6a). More importantly, mice were inoculated intravenously with MDA-MB-231-Luc AKR1B10High or AKR1B10Low cells and, after 7 days when the tumour cells will have extravasated into the lung tissue, treated with or without etomoxir. As previously shown (Fig. 2d), MDA-MB-231High cells gave rise to a significantly increased lung tumour burden as monitored by in vivo IVIS imaging and ex vivo measurement of lung weight (Fig. 6b) and this increased AKR1B10High metastatic colonisation was effectively impaired by etomoxir treatment, with no effect of etomoxir on the growth of AKR1B10Low cells.
Together these data support a model in which AKR1B10 functions to maintain FAO in tumour cells, particularly during metastatic colonisation of the pro-oxidative lung microenvironment.

Discussion

The data presented here demonstrates that AKR1B10 expression is elevated in ER- and HER2+ breast cancers and that within these breast cancer subtypes, high AKR1B10 expression is associated with an increased incidence of metastatic relapse at secondary sites. In contrast to previous reports, we find that AKR1B10\(^{\text{High}}\) breast cancer cells do not display altered survival or proliferation properties when cultured \textit{in vitro} in full medium (Fig. 2c, Fig. 3c,d) or when inoculated orthotopically into the fat pad of recipient mice (Extended Data Fig. 2). However, AKR1B10\(^{\text{High}}\) cells are more successful than AKR1B10\(^{\text{Low}}\) cells when cultured in nutrient poor conditions such as in low glucose (Fig. 3c,d) or when colonising the lungs (Fig. 1d, Fig. 2d and Extended Data Fig. 2) and this is associated with reduced glycolysis and increased utilisation of FAO.

The ability to alter metabolic characteristics is a feature of metastasising tumour cells as they adapt to the unique environments that they encounter\(^1,2\). FAO, until recently relatively understudied in cancer, is a key source of ATP, NADH, NADPH and FADH\(_2\) providing a survival advantage to tumour cells, particularly under challenging conditions such as hypoxia, nutrient stress or under therapeutic challenge\(^31,32\). Moreover, by analysing multiple breast cancer clinical data sets, Camarda and colleagues have demonstrated dysregulation of fatty acid metabolism genes in triple negative (TN) compared to receptor positive breast cancers and, in particular, increased expression key activators of FAO, such as PGC-1α (PPARGC1A) and decreased expression of genes encoding regulators of fatty acid synthesis\(^33\), a pattern demonstrated here to be recapitulated in AKR1B10\(^{\text{High}}\) tumours. Although the role of PGC-1α expression in metastasis is controversial\(^34\), increased
expression has been demonstrated to promote breast cancer metastasis in a variety of models systems35,36,37 and to be associated with increased FAO and an enhanced ability of cells to survive in 3D acini assays31. Conversely, impairment of FAO decreases cell survival in acini assays27 and reduces tumour burden in the lungs and livers following intravenous inoculation38. Here we demonstrate that AKR1B10High cells fuel FAO by an increased uptake of exogenous fatty acids. To date, the best characterised fatty acid transporters are CD36, fatty acid translocase and low density lipoprotein receptor, and it is of particular interest is the recent identification of CD36bright cells marking a population of metastasis-initiating cells39, and that these cells display an upregulated FAO signature.

AKR1B10 belongs to the aldo-keto reductase (AKR) superfamily of NADP(H)-dependent enzymes4, and together with AKR1B1 and AKR1B15 form the AKR1B subfamily of enzymes characterised by their ability to reduce a variety of endogenous and xenobiotic aldehydes, dicarbonyl components and some drug ketones23. The AKR1B10 gene promoter contains both an activator protein-1 (AP-1) element and an antioxidant response element (ARE)40 and AKR1B10 expression can be regulated by AP1 downstream of IRAK1 or EGFR signalling41,42 and by NRF2 (nuclear factor erythroid 2-related factor 2) binding to the ARE element40,43. Consistent with the latter, induction of oxidative stress results in NRF2-mediated upregulation of AKR1B10 expression44. The lungs, due to the high levels of oxygen and exposure toxic compounds, are characterised by a high level of oxidative stress creating a challenging microenvironment for metastasising tumour cells2. In these pro-oxidative conditions, elevated ROS production both inhibits FAO27,28,31 and drives peroxidation of lipids that can then be degraded to reactive electrophilic lipid peroxidation products, which in turn can form covalent adducts in DNA, proteins and membrane lipids. Unchecked, these lipid peroxide breakdown products are highly damaging and cytotoxic to cells. Via its ability to detoxify lipid peroxidation products by reduction of the carbonyl-groups to the corresponding alcohol metabolite8,45,46,47, AKR1B10 could
serve to protect tumour cells from oxidative stress-induced damage and maintain increased levels of FAO.

In conclusion, the experimental and clinical data presented support a role for AK1B10 in promoting metastasis of breast cancers functioning to support an altered metabolic program during secondary site colonisation. The findings raise the opportunity to use AKR1B10 expression to identify breast cancers patients with an increased risk of distant metastatic relapse, and further develop AKR1B1023 and FAO32 inhibitors in the advanced breast cancer setting. This is particularly pertinent given that ER- breast cancer patients in general have a poorer prognosis and limited therapeutic options, making appropriate stratification for targeted therapies to control disease burden of paramount importance.
Methods

All animal work was carried out under UK Home Office Project licenses 70/7413 and P6AB1448A (Establishment License, X702B0E74 70/2902) and was approved by the Animal Welfare and Ethical Review Body at The Institute of Cancer Research. All animals were monitored on a daily basis by staff from the ICR Biological Service Unit for signs of ill health.

Cells

4T1 cells were obtained from ATCC in 2013 and transduced with firefly luciferase lentiviral expression particles, 4T1-Luc (Amsbio, LVP326). HEK293 cells and human breast cancer cell lines (MDA-MB-231, MDA-MB-231-Luc, MDA-MB-453, MDA-MB-468, BT20, HCC38, HCC1395) were obtained from ATCC between 2005 and 2012 and short tandem repeat tested every 4 months (StemElite ID System; Promega). Subtype assessment using the absolute assignment of breast cancer intrinsic molecular subtype (AIMS) assigned MDA-MB-231 and HCC1395 cells as 100% probability of basal-like and MDA-MB-453 cells as a 100% probability of HER2-enriched. All cell lines were used within 10 passages after resuscitation and were routinely subject to mycoplasma testing. HCC1395 cells were cultured in Roswell Park Memorial Institute (RPMI) medium. All other cell lines were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM). Culture media were supplemented with 10% foetal bovine serum (FBS; Invitrogen), 50 U/mL penicillin and 50 U/mL streptomycin. Where indicated cells were cultured in full DMEM (4.5 g/L D-glucose) or low glucose (LG) DMEM (1 g/L D-glucose).

4T1-Luc cells were transduced with Mission shRNA lentiviral particles (Extended Data Table 2) at multiplicity of infection of 5. Stably transduced cells were selected in 2.5 µg/mL puromycin. HCC1395 cells were transduced with GIPZ shRNA lentiviruses (Dharmacon; Extended Data Table 3), selected in 2.5 µg/mL puromycin and FACSorted for GFP positive cells. For ectopic expression of AKR1B10, MDA-
MB-231 and MDA-MB-453 cells, cells were transduced with empty vector or AKR1B10 pReceiver-Lv156 lentivirus (Genecopoeia; Extended Data Table 3) and selected in 2.5 µg/mL puromycin. The cells were cultured for an additional 3 passages in selective medium to enrich the infected cell population.

In vivo shRNA screen

As previously detailed the screen was performed with 4T1-Luc cells transduced in 24 subpools (each subpool containing 96 shRNAs) with the miR-30–based shRNA library targeting the Cancer 1000 mouse gene set and inoculated intravenously into female BALB/c mice. On day 21, lungs were removed at necropsy and gDNA extracted from preinoculation cell pellets and tumour bearing lungs. shRNA representation in the original library plasmid DNA, preinoculation 4T1-Luc cells and 4 independent metastatic lung samples (samples A - D) per subpool assessed by next generation sequencing (Fig. 1a).

shRNA representation in the preinoculation 4T1-Luc cells was compared to the representation in the 4 lung samples. Hits were defined as shRNAs that had decreased representation (Z score >-2) in ≥3 lung samples compared to the preinoculation cells and had no significant effect on viability when comparing shRNA representation in the plasmid pool to the preinoculation cells.

In vivo studies

6-8 week old female BALB/c or BALB/c Nude (CAnN-Cg-Foxn1(Crl) mice were purchased from Charles River. For experimental lung metastasis assays, 1x10⁵-1x10⁸ cells in 100 µL PBS were injected via the lateral tail vein. Where indicated, mice were randomised into 2 groups on day 7 and treated with etomoxir (Tocris) at 40 mg/kg or vehicle (water) intraperitoneally every other day. At termination, lungs were IVIS imaged ex vivo, weighed, fixed and paraffin embedded. 3-4 µm thick sections were cut and stained with haematoxylin and eosin (H&E). Total number of
individual nodules was counted manually in 3 lung sections, approximately 150 µm apart, per animal. Where indicated, lung metastatic area was quantified as the mean percentage of the area of the metastatic nodules normalised to the total lung area. For spontaneous metastasis assays, 1x10⁴ 4T1-Luc cells in 50 µL PBS were injected into the 4th mammary fat pad of female BALB/c mice. Tumour growth was measured twice a week using callipers up to a maximum diameter of 17 mm. Tumour volume was calculated using the following formula: Volume = 0.5236 x diameter³. At the end of the experiment, orthotopic tumours and lungs were harvested at necropsy.

For lung retention assays, 4T1-Luc shNNTC and shAkr1b8-4 cells were labelled with CellTracker Red CMTPX or Green CMFDA dyes (Molecular Probes), trypsinised, mixed at a 1:1 ratio and a total of 0.7x10⁶ cells injected intravenously into BALB/c mice. Mice were sacrificed at 1 and 16 hours post injection and 6 images/lung taken on a Zeiss LSM 710 microscope (x20 lens). Tumour cell colonisation within the lung was quantified in Fiji, by converting red and green images into separate binary images and measuring total tumour cell coverage per field of view. Alternatively, 1x10⁶ MDA-MB-231-Luc cells were injected intravenously into BALB/c Nude mice. Mice were sacrificed at 1 and 8 hours post injection and lung sections stained for human lamin A/C. Number of lamin A/C positive cells were quantified using Fiji in whole lung sections.

Seahorse assays

For all assays, 1.5x10⁴ (MDA-MB-453) or 2.0x10⁴ (HCC1395, MDA-MB-231) cells were seeded in XF96 cell culture plates incubated in a 5% CO₂ incubator at 37°C overnight and results were normalised to cell number using CyQuant DNA staining (ThermoFisher).

Seahorse XF Glycolysis Stress Test. Culture medium was replaced with 175 µL pH 7.4 ±0.1 bicarbonate-free DMEM supplemented with 2 mM L-glutamine, and the plate incubated at 37°C for 1 hour in a non-CO₂ incubator. ECAR was measured.
using the Seahorse XF Glycolysis Stress Test Kit (Agilent) on an XFe96 Analyzer. Final concentrations of 10 mM glucose, 2 µM oligomycin and 100 mM 2-deoxyglucose (2-DG) were used for all conditions. Glycolysis, glycolytic capacity and glycolytic reserve were calculated as follows: Glycolysis = (maximum rate measurement before oligomycin injection) - (final rate measurement before 2-DG injection); glycolytic capacity = (maximum rate measurement after oligomycin injection) - (final rate measurement before glucose injection); glycolytic reserve = (glycolytic capacity) - (glycolysis).

Seahorse XF Mito Fuel Flex Test. Culture medium was replaced with 180 µL pH 7.4 ±0.1 bicarbonate-free DMEM supplemented with 10 mM glucose, 1 mM sodium pyruvate and 2 mM L-glutamine, and the plate incubated at 37°C for 1 hour in a non-CO₂ incubator. OCR was measured using the Seahorse XF Mito Fuel Flex Test Kit (Agilent) on an XFe96 Analyzer. Final concentrations of 4 µM etomoxir, 2 µM UK5099 and 3 µM BPTES were used for all conditions.

FAO. Culture media was replaced with 175 µL of pH 7.4 ±0.1 Krebs-Henseleit Buffer (111 mM NaCl, 4.7 mM KCl, 1.25 mM CaCl₂, 2 mM MgSO₄, 1.2 mM NaH₂PO₄) supplemented with 2.5 mM glucose, 0.5 mM carnitine and 5 mM HEPES, and the plate was incubated at 37°C for 1 hour in a non-CO₂ incubator. 30 µL of 1 mM palmitate-BSA substrate (Agilent) was loaded directly into port A of a Seahorse loading sensor cartridge and OCR measured on an XFe96 Analyzer.

Cell based assays

Colony formation assay. 0.2-5x10⁴ cells were seeded per well in a 6-well plate. 7-10 days post seeding, plates were stained with crystal violet, dried and scanned at 1200 dpi using the GelCount colony counter system. Images were analysed using Fiji.

Cell viability assay. 1x10⁵ cells in 100 µL medium were seeded per well in a 96-well plate and incubated at 37°C. Immediately after seeding, and every 24 hours
afterwards, cells viability was analysed by CellTiter-Glo (Promega). Fold change was calculated relative to the plate read at seeding (time 0). For 3D viability assays, 5x10^3 cells were seeded into ultra-low adherence U-bottomed 96-well plates (Corning). On day 6 tumour spheroids were lysed in CellTiter-Glo for 30 minutes and viability analysed using a Victor X5 plate reader. Where indicated, etomoxir (200 µM) or vehicle (DMSO) was added 24 hours after seeding.

2D cell growth. 1x10^3 cells were seeded per well in a 96-well plate and subject to live cell imaging (IncuCyte).

Glucose uptake assay. 1-5x10^4 cells were seeded in 100 µL culture medium containing 10% FBS into a 96-well plate and incubated for 24 hours at 37°C. Cells were washed twice with PBS before the Glucose Uptake-Glo assay (Promega) was performed according to the manufacturer’s protocol.

Fatty acid uptake assay. 1-3x10^4 cells were seeded in 100 µL culture medium containing 10% FBS into a 96-well plate and incubated for 24 hours at 37°C. Cells were washed and serum deprived for 1 hour before 100 µL Free Fatty Acid solution (Abcam). After incubating the cells for 1 hour at 37°C the fluorescence signal was measured using a fluorescence microplate reader at Ex/Em = 485/515 nm.

Lipid synthesis assay. Cells were incubated for 4 hours in medium containing 10 µCi/mL [1-14C] acetic acid, lysed in 0.5% Triton X-100 and lipids extracted by successive addition of 2 mL methanol, 2 mL chloroform, and 1 mL H2O. Phases were separated by centrifugation at 1000g for 15 minutes. The organic (lower) phase was recovered and dried overnight. Lipids were dissolved in Ultima Gold LSC Cocktail and counted on a scintillation counter.

Lipid droplet analysis. 7.5x10^3 cells were seeded on coverslips in medium DMEM plus 10% FBS. 24 hour post seeding cells were serum-starved for 1 hour, stained for 10 min with BODIPY 493/503 dye (D3922, Molecular Probes) and DAPI (Molecular Probes), and imaged on a Leica SP2 confocal microscope. Images were
analysed using basic algorithms in the Columbus analysis software package (PerkinElmer) with lipid droplets quantified using the spot finder application.

For lipid peroxidation analysis cells cultured for 48 hours in DMEM or LG DMEM plus 10% FBS, stained for 30 min with 1 µg/ml BODIPY 581/591 C11 (D3861, Molecular Probes) and DAPI and imaged on a Leica SP2 confocal microscope. Images were analysed using basic algorithms in the CellProfiler software package (cellprofiler.org) to quantify oxidised (green) and non-oxidised (red) BODIPY probe. Alternatively, 1x10^5 cells were cultured for 48 hours in DMEM or LG DMEM plus 10% FBS before staining with the BODIPY 581/591 C11 Image-iT kit (C10445; Molecular Probes) at 37°C for 30 min. Cells were washed, DAPI stained and FACS analysed.

Antibodies are detailed in Extended Data Table 4.

Analysis of human datasets

Series matrix files for TCGA 522 primary breast cancer samples and a neoadjuvant chemotherapy–treated invasive breast cancer clinical cohort (Hatzis, accession code GSE25066)^24 were downloaded from https://tcga-data.nci.nih.gov/docs/publications/brca_2012/ and the Gene Expression Omnibus (GEO) site. Intrinsic molecular subtypes and clinical receptor status of ER, PGR, and HER2 were retrieved from the supplemental tables of the corresponding publications.

In the Tukey boxplots, box indicates the 2nd and 3rd quartiles, bar indicates median, whiskers indicated 1.5 IQR (interquartile range), and dots indicate outliers. Clinical relevance of variable AKR1B10 expression was assessed using publically available data from Gyorffy et al. ^22. Unless otherwise stated, for Kaplan-Meier analysis the highest quartile of gene expression was used to dichotomise the breast cancers. For association of AKRB10 expression and FAO pathway activity, mouse a FAO gene set was obtained from http://www.informatics.jax.org/go/term/GO:0019395. Human orthologues of the 88 (FAO88) genes were identified using http://www.informatics.jax.org/homology.shtml. In Hatzis dataset, Affymetrix Human
Genome U133A Array annotation file (GEO accession code GPL96) was used to map the symbol to the corresponding Affymetrix Probe_Set_ID. When multiple Probe_Set_IDs mapped to the same symbol, the Probe_Set_ID with the highest variance across samples was selected to represent the gene. Genes were discarded from further analysis if they were not mapped to either the annotation file or the expression data. FAO88 score was calculated as a mean of the normalised log2-expression of the matched individual genes within the FAO88. Pearson correlation was used to assess associations between AKR1B10 expression and this FAO88 score of the samples in each subset.

Statistical analysis

Statistics were performed using GraphPad Prism 7. Unless stated otherwise, all numerical data is expressed as the mean ± standard deviation (SD) for *in vitro* assays and ± SEM for *in vivo* tests. Comparisons between 2 groups were made using the two-tailed, unpaired Student’s *t*-test. Comparisons between multiple groups were made using one-way analysis of variance (ANOVA), and two-way ANOVA for comparisons between multiple groups with independent variables. Bonferroni post-testing with a confidence interval of 95% was used for individual comparisons. Statistical significance was defined as: *, *P*<0.05; **, *P*<0.01; ***, *P*<0.001; ns, not significant.

Acknowledgements

This work was funded by Breast Cancer Now (CTR-Q4-Y3), working in partnership with Walk the Walk to CMI. NK is supported by an Institute of Cancer Research studentship. The GP laboratory is supported by the Institute of Cancer Research and a Cancer Research UK Grand Challenge award (C59824/A25044). We acknowledge NHS funding to the NIHR Biomedical Research Centre at The Royal Marsden and the ICR. The results published here are in whole or part based upon data generated
by the TCGA Research Network (http://cancergenome.nih.gov/). We thank Syed Haider and his team in the Breast Cancer Now Toby Robins Research Centre Bioinformatics Core Facility, the Breast Cancer Now Toby Robins Research Centre Nina Barough Pathology Core Facility and ICR FACS and Light Microscopy Facility for support in this project. We thank Andrea Morandi (University of Florence) and Frances Turrell for reading drafts of the manuscript, David Vicente and Rebecca Ohra for technical assistance and David Robertson, Adam Tyson and Alexis Barr for help with the image analysis.
References

1. Lehuede C, Dupuy F, Rabinovitch R, Jones RG, Siegel PM. Metabolic Plasticity as a Determinant of Tumor Growth and Metastasis. *Cancer research* **76**, 5201-5208 (2016).

2. Schild T, Low V, Blenis J, Gomes AP. Unique Metabolic Adaptations Dictate Distal Organ-Specific Metastatic Colonization. *Cancer cell* **33**, 347-354 (2018).

3. Joshi A, Rajput S, Wang C, Ma J, Cao D. Murine aldo-keto reductase family 1 subfamily B: identification of AKR1B8 as an ortholog of human AKR1B10. *Biol Chem* **391**, 1371-1378 (2010).

4. Penning TM. The aldo-keto reductases (AKRs): Overview. *Chemico-biological interactions* **234**, 236-246 (2015).

5. Gallego O, *et al.* Structural basis for the high all-trans-retinaldehyde reductase activity of the tumor marker AKR1B10. *Proceedings of the National Academy of Sciences of the United States of America* **104**, 20764-20769 (2007).

6. Porte S, *et al.* Aldo-keto reductases in retinoid metabolism: search for substrate specificity and inhibitor selectivity. *Chemico-biological interactions* **202**, 186-194 (2013).

7. Endo S, *et al.* Selective inhibition of the tumor marker AKR1B10 by antiinflammatory N-phenylanthranilic acids and glycyrrhetic acid. *Biol Pharm Bull* **33**, 886-890 (2010).
8. Martin HJ, Maser E. Role of human aldo-keto-reductase AKR1B10 in the protection against toxic aldehydes. *Chemico-biological interactions* **178**, 145-150 (2009).

9. Jin J, Liao W, Yao W, Zhu R, Li Y, He S. Aldo-keto Reductase Family 1 Member B 10 Mediates Liver Cancer Cell Proliferation through Sphingosine-1-Phosphate. *Sci Rep* **6**, 22746 (2016).

10. Matkowskyj KA, *et al.* Aldoketoreductase family 1B10 (AKR1B10) as a biomarker to distinguish hepatocellular carcinoma from benign liver lesions. *Hum Pathol* **45**, 834-843 (2014).

11. Fukumoto S, *et al.* Overexpression of the aldo-keto reductase family protein AKR1B10 is highly correlated with smokers' non-small cell lung carcinomas. *Clinical cancer research : an official journal of the American Association for Cancer Research* **11**, 1776-1785 (2005).

12. Chung YT, *et al.* Overexpression and oncogenic function of aldo-keto reductase family 1B10 (AKR1B10) in pancreatic carcinoma. *Mod Pathol* **25**, 758-766 (2012).

13. Ma J, *et al.* AKR1B10 overexpression in breast cancer: association with tumor size, lymph node metastasis and patient survival and its potential as a novel serum marker. *Int J Cancer* **131**, E862-871 (2012).

14. Reddy KA, *et al.* Overexpression and enhanced specific activity of aldoketo reductases (AKR1B1 & AKR1B10) in human breast cancers. *Breast* **31**, 137-143 (2017).
15. Avgustinova A, et al. Tumour cell-derived Wnt7a recruits and activates fibroblasts to promote tumour aggressiveness. *Nature communications* **7**, 10305 (2016).

16. Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. *Cancer metastasis reviews* **25**, 9-34 (2006).

17. Rochefort H, Capony F, Garcia M. Cathepsin D: a protease involved in breast cancer metastasis. *Cancer metastasis reviews* **9**, 321-331 (1990).

18. Christopoulos PF, Msaouel P, Koutsilieris M. The role of the insulin-like growth factor-1 system in breast cancer. *Molecular cancer* **14**, 43 (2015).

19. Ho-Yen CM, Jones JL, Kermorgant S. The clinical and functional significance of c-Met in breast cancer: a review. *Breast Cancer Res* **17**, 52 (2015).

20. Li Z, et al. Overexpression of Aldo-keto reductase family 1 B10 protein in ductal carcinoma in situ of the breast correlates with HER2 positivity. *Cancer Biomark* **13**, 181-192 (2013).

21. Neve RM, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. *Cancer cell* **10**, 515-527 (2006).

22. Gyorffy B, et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. *Breast cancer research and treatment* **123**, 725-731 (2010).
23. Matsunaga T, Wada Y, Endo S, Soda M, El-Kabbani O, Hara A. Aldo-Keto Reductase 1B10 and Its Role in Proliferation Capacity of Drug-Resistant Cancers. *Frontiers in pharmacology* **3**, 5 (2012).

24. Hatzis C, *et al.* A genomic predictor of response and survival following taxane-anthracycline chemotherapy for invasive breast cancer. *JAMA* **305**, 1873-1881 (2011).

25. Rohrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer. *Nature reviews Cancer* **16**, 732-749 (2016).

26. Panieri E, Santoro MM. ROS homeostasis and metabolism: a dangerous liason in cancer cells. *Cell death & disease* **7**, e2253 (2016).

27. Schafer ZT, *et al.* Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment. *Nature* **461**, 109-113 (2009).

28. Setoyama D, Fujimura Y, Miura D. Metabolomics reveals that carnitine palmitoyltransferase-1 is a novel target for oxidative inactivation in human cells. *Genes Cells* **18**, 1107-1119 (2013).

29. Huang C, *et al.* AKR1B10 promotes breast cancer metastasis through integrin alpha5/delta-catenin mediated FAK/Src/Rac1 signaling pathway. *Oncotarget* **7**, 43779-43791 (2016).

30. Li J, *et al.* AKR1B10 promotes breast cancer cell migration and invasion via activation of ERK signaling. *Oncotarget* **8**, 33694-33703 (2017).
31. Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: fatty acid oxidation in the limelight. *Nature reviews Cancer* **13**, 227-232 (2013).

32. Qu Q, Zeng F, Liu X, Wang QJ, Deng F. Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. *Cell death & disease* **7**, e2226 (2016).

33. Camarda R, *et al*. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. *Nature medicine* **22**, 427-432 (2016).

34. Gravel SP. Deciphering the Dichotomous Effects of PGC-1alpha on Tumorigenesis and Metastasis. *Front Oncol* **8**, 75 (2018).

35. Andrzejewski S, *et al*. PGC-1alpha Promotes Breast Cancer Metastasis and Confers Bioenergetic Flexibility against Metabolic Drugs. *Cell metabolism* **26**, 778-787 e775 (2017).

36. Carracedo A, *et al*. A metabolic prosurvival role for PML in breast cancer. *The Journal of clinical investigation* **122**, 3088-3100 (2012).

37. LeBleu VS, *et al*. PGC-1alpha mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis. *Nature cell biology* **16**, 992-1003, 1001-1015 (2014).

38. Park JH, *et al*. Fatty Acid Oxidation-Driven Src Links Mitochondrial Energy Reprogramming and Oncogenic Properties in Triple-Negative Breast Cancer. *Cell Rep* **14**, 2154-2165 (2016).
39. Pascual G, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. *Nature* **541**, 41-45 (2017).

40. Nishinaka T, Miura T, Okumura M, Nakao F, Nakamura H, Terada T. Regulation of aldo-keto reductase AKR1B10 gene expression: involvement of transcription factor Nrf2. *Chemico-biological interactions* **191**, 185-191 (2011).

41. Cheng BY, et al. IRAK1 Augments Cancer Stemness and Drug Resistance via the AP-1/AKR1B10 Signaling Cascade in Hepatocellular Carcinoma. *Cancer research* **78**, 2332-2342 (2018).

42. Liu Z, et al. Epidermal growth factor induces tumour marker AKR1B10 expression through activator protein-1 signalling in hepatocellular carcinoma cells. *Biochem J* **442**, 273-282 (2012).

43. Ooi A, et al. An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. *Cancer cell* **20**, 511-523 (2011).

44. Ebert B, Kisiela M, Wsol V, Maser E. Proteasome inhibitors MG-132 and bortezomib induce AKR1C1, AKR1C3, AKR1B1, and AKR1B10 in human colon cancer cell lines SW-480 and HT-29. *Chemico-biological interactions* **191**, 239-249 (2011).

45. Matsunaga T, et al. Aldo-keto reductase 1B10 promotes development of cisplatin resistance in gastrointestinal cancer cells through down-regulating
peroxisome proliferator-activated receptor-gamma-dependent mechanism.

Chemico-biological interactions 256, 142-153 (2016).

46. Shen Y, Zhong L, Johnson S, Cao D. Human aldo-keto reductases 1B1 and 1B10: a comparative study on their enzyme activity toward electrophilic carbonyl compounds. **Chemico-biological interactions** 191, 192-198 (2011).

47. Zhong L, et al. Aldo-keto reductase family 1 B10 protein detoxifies dietary and lipid-derived alpha, beta-unsaturated carbonyls at physiological levels. **Biochem Biophys Res Commun** 387, 245-250 (2009).

48. Ashenden M, et al. An In Vivo Functional Screen Identifies JNK Signaling As a Modulator of Chemotherapeutic Response in Breast Cancer. **Molecular cancer therapeutics** 16, 1967-1978 (2017).

49. Dickins RA, et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. **Nature genetics** 37, 1289-1295 (2005).

50. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. **Nature** 490, 61-70 (2012).
Figure Legends

Fig. 1 | Validation of Akr1b8 as a metastasis enhancer in *in vivo* models.

a, shRNA abundance was assessed in the original plasmid library, shRNA transduced preinoculation cells and 4 tumour-bearing lungs samples (Samples A - D).

b, Graph showing median Z scores for shRNA representation in the tumour bearing lung samples compared to 4T1-Luc preinoculation cells, identifying 109 significantly enriched (Z score >2) and 81 significantly depleted (Z score <2) shRNAs.

c, Shortlist of 23 putative metastasis enhancers identified in the screen.

d, 1x10^5 4T1-Luc transduced with two independent shRNA lentiviruses targeting *Akr1b8* (shAkr1b8-4, shAkr1b8-7), a non-targeting shRNA (shNTC) or a control shRNA (shCTRL) were injected intravenously into BALB/c mice (n=6 per group). Lung tumour burden was assessed at the end of the experiment (day 12) by *in vivo* IVIS imaging (average radiance ±SEM) and *ex vivo* lung weight ±SEM. Representative lung sections, arrowheads indicate tumour nodules. Scale bar, 1 mm.

e, 1x10^4 4T1-Luc cells were injected orthotopically into BALB/c mice on two separate occasions (n=19 mice per group in total) and tumour volume measured twice weekly (left panel), ns at all time points. Animals were sacrificed on day 31. Tumour weight ±SEM was measured at necropsy. Lung metastasis quantified as the total number of independent nodules ±SEM (right panel). Representative lung sections, scale bar, 1 mm.

f, Left panels, shNTC- and shAkr1b8-4 4T1-Luc cells were labelled with CellTracker red or green dyes, respectively, inoculated intravenously into BALB/c mice. 1 and 16 hours after inoculation, lungs were extracted and imaged. Data shown are mean tumour cell coverage per field of view n=4 mice per group per time point ±SEM. Representative images, scale bar, 100 µm. Right panels, equivalent results were obtained in a dye swap experiment.
Fig. 2 | AKR1B10 is associated with an increased risk of distant metastatic relapse.

a, Tukey boxplots of AKR1B10 expression in the TCGA breast cancer dataset based on intrinsic subtype (one-way ANOVA with Tukey’s multiple comparison test) or receptor status (t-test). Numbers of samples in each category are indicated. b, AKR1B10 western blot in human breast cancer cell lines (upper panel). Lower panel, AKR1B10 expression in shNTC (AKR1B10^{high}) or shAKR1B10 (AKR1B10^{low}) HCC1395 cells and in MDA-MB-231 cells and MDA-MB-453 cells transduced with vector-alone (AKR1B10^{low}) or ectopically expressing AKR1B10 (AKR1B10^{high}). Molecular size markers are in kDa. c, Colony formation assay comparing AKR1B10^{high} and AKR1B10^{low} cells, n = 3 per sample ±SD. d, 1x10^6 MDA-MB-231 cells were injected intravenously in BALB/c Nude mice (n=6 per group). Lung tumour burden was assessed at the end of the experiment (day 55) by ex vivo lung weight ±SEM. Representative lung sections, scale bar, 1 mm. e, 1x10^6 MDA-MB-231 cells were injected intravenously in BALB/c Nude mice. Mice were sacrificed at 1 or 8 hours (n=3 per group per time point) and lung sections stained for human lamin A/C. Data shown is cell number/cm^2 ±SEM. Representative images, scale bar, 0.5 mm. f, Kaplan-Meier analysis of distant metastasis-free survival (DMFS) of all (n=1746), ER+ (n=664), ER- (218) or HER2+ (n=126) patients in the Gyorffy et al.,^{22} dataset. Hazard ratios (HR) and log-rank Mantel-Cox P-values are shown.

Fig. 3 | AKR1B10^{high} cells have decreased glycolysis and increased tolerance of low glucose conditions. In all experiments AKR1B10^{low} and AKR1B10^{high} cells are shown in pale and dark blue, respectively. a, Glycolytic function assessed using the Seahorse XF Glycolysis Stress test. Glycolysis was determined following glucose (10 mM) injection and glycolytic capacity was determined after oligomycin (2 µM) injection. Glycolytic reserve was measured as the difference between the glycolytic capacity and glycolysis. Left panel, representative extracellular acidification rate
(ECAR) profile for HCC1395 AKR1B10^{Low} and AKR1B10^{High} cells. Right panel, quantification of glycolytic function (shNTC, n=6; shAKR1B10 n=5) ±SD. b, Glucose Uptake-Glo assay (see Methods). n=4 per sample ±SD. c, 1x10³ MDA-MB-231 or 5x10³ MDA-MB-453 cells seeded into 96-well plate in DMEM or low glucose (LG) (1 g/L) DMEM and subject imaged over 4 days (IncuCyte) for 4 days. n=10 per condition normalised to day ±SD. d, 5x10³ cells seeded into U-bottomed plates in LG DMEM (n=10), Tumour spheroid viability analysed using CellTiter-Glo on day 6 ±SD. Equivalent results were obtained in two independent experiments. e, 2x10³ MDA-MB-231 cells were seeded into a 6-well plate (n=3 wells per condition) and cultured in the presence of 4.5 g/L, 2.5 g/L or 1 g/L D-glucose. Data represents mean cell area from 3 independent experiments ±SD relative to cells in 4.5 g/L D-glucose.

Fig. 4 | Fatty acid oxidation in AKR1B10^{High} cells and breast tumours. a, Oxygen consumption rate (OCR) monitored at three timepoints using the Mito Fuel Flex test; at baseline, after inhibition of FAO with etomoxir, and after additional inhibition of glutamine and glucose oxidation with BPTES and UK5099, respectively. Left panel; OCR change from baseline and after etomoxir addition. Right panel, OCR change from baseline following etomoxir addition as a % of OCR change from baseline after addition of all three inhibitors. HCC1395 and MDA-MB-231, n=8 ±SD; MDA-MB-453, n=3-4 ±SD. b, OCR change following palmitate-BSA addition calculated as (final basal OCR - OCR at the time of palmitate-BSA injection), n=3 ±SD. c, Pearson correlation of AKR1B10 expression and FA088 score in triple negative (TN), ER- and HER2-enriched breast cancers in the TCGA and Hatzis <i>et al.</i> datasets. See Extended Data Fig. 4 for analysis of other breast cancer subsets.

Fig. 5 | AKR1B10 limits lipid peroxidation. a, ¹⁴C-acetate incorporated into lipids. Data from 3 independent experiments relative to AKR1B10^{Low} cells. b, Fatty acid uptake. n=5 ±SD. c, MDA-MB-231 cells labelled with BODIPY 493/503. Data shows
lipid droplet content per cell analysed in 3-5 fields of view ±SD. Scale bar, 25 µm. d, MDA-MB-231 cells cultured in DMEM or LG DMEM and labelled with BODIPY 581/591 C11 Image-iT and FACS analysed. Data show % cells with oxidised (green) lipid probe. n=3 samples per condition ±SD. e, MDA-MB-231 cells cultured in DMEM or LG DMEM and stained with BODIPY 581/591 C11. Quantification of oxidised (green) BODIPY probe as a ratio of total probe (green plus red) per cell in 4 fields of view per sample ±SD. Representative images; scale bar, 50 µm.

Fig. 6 | Etomoxir treatment blocks AKR1B10-mediated metastasis. a, 5x10^3 cells seeded into ultra-low adherence U-bottomed plates. 24 h post seeding 200 µM etomoxir or vehicle was added and tumour spheroid viability assessed day 6. n=8 ±SD. Equivalent results were obtained in two independent experiments. b, Balb/c Nude mice injected intravenously with 2x10^6 cells and treated with vehicle or etomoxir (n=5-7 per group). Lung tumour burden was assessed at the end of the experiment (day 55) by *ex vivo* IVIS imaging and lung weight ±SEM. Representative *ex vivo* IVIS images and lung sections (scale bar, 1 mm) are shown.
Figure 3

(a) ECAR (mP H/min/molar absorption) over time (min) with glucose, oligomycin, and 2-DG. Graphs show data for shAKR1B10 and shNTC.

(b) Glucose uptake and luminescence for HCC1395, MDA-MB-231, and MDA-MB-453 cell lines. Shown are statistical comparisons between shAKR1B10, shNTC, Vec, and AKR1B10.

(c) Confluency fold-change over time (h) for MDA-MB-231 and MDA-MB-453 cell lines in DMEM and LG DMEM conditions. Graphs show data for Vec and AKR1B10.

(d) Luminescence (cpm x 10^6) for MDA-MB-231 cell line. Graphs show data for Vec, AKR1B10, and LG DMEM conditions.

(e) Relative area of D-glucose (g/L) for 4.5, 2.5, and 1.0. Graphs show data for Vec and AKR1B10 conditions.
Figure 5

(a) HCC1395 and MDA-MB-231

(b) HCC1395, MDA-MB-231, MDA-MB-453

(c) Lipid droplets (AU x 10^3)

(d) Lipid peroxidation (% positive cells)

(e) Oxidised lipid / total lipid

Legend:
- Vec
- AKR1B10
- DMEM
- LG
- ***
- *
- **
- ns

References:
- doi: https://doi.org/10.1101/365528; this version posted July 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
Figure 6

(a) MDA-MB-231

(b) MDA-MB-453

Vehicle

Etoxir

ns

The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

bioRxiv preprint doi: https://doi.org/10.1101/365528; this version posted July 11, 2018.