Gradual drift detection in process models using conformance metrics

Víctor Gallego-Fontenla*, Juan Vidal, Manuel Lama

Centro Singular de Investigación en Tecnoloxías Intelixentes (CiTIUS)
Universidade de Santiago de Compostela (USC), Galicia, Spain

{victorjose.gallego, juan.vidal, manuel.lama}@usc.es

Changes, planned or unexpected, are common during the execution of real-life processes. Detecting these changes is a must for optimizing the performance of organizations running such processes. Most of the algorithms present in the state-of-the-art focus on the detection of sudden changes, leaving aside other types of changes. This paper focuses on the automatic detection of gradual drifts, a special type of change, in which the cases of two models overlap during a period of time. The proposed algorithm relies on conformance checking metrics to carry out the automatic detection of the changes, performing also a fully automatic classification of these changes into sudden or gradual. The approach has been validated with a synthetic dataset consisting of 120 logs with different distributions of changes, getting better results in terms of detection and classification accuracy, delay and change region overlapping than the main state-of-the-art algorithms.

Keywords: Business Processes, Concept drift, Gradual drift, Process mining, Conformance checking

Acknowledgements: The work from Víctor J. Gallego was supported by the Spanish Ministerio de Educación, Cultura y Deporte (grant FPU17/05138, co-funded by the European Regional Development Fund – ERDF program); the Galician Consellería de Educación, Universidade e Formación Profesional (accreditation 2019-2022, ED431G-2019/04) and the European Regional Development Fund (ERDF). This paper was also supported by the Spanish Ministerio de Ciencia e Innovación under projects PDC2021-121072-C21 and PID2020-112623GB-I00.

1 Introduction

While the day-to-day operations of organizations normally remain unchanged over time, certain processes are susceptible to change due to internal or external factors. Regulatory shifts, changes in availability of different resources or new consumption patterns, for example, can influence the structure of the processes that shape these operations. At best, these changes will be carried out intentionally, so the organization will be aware of their presence. But usually, these changes arise without prior warning and may be overlooked. It is in these cases when it becomes important to have methods that allow organizations to detect these
changes in order to explicitly adapt their processes. Otherwise the organization might take decisions on the basis of outdated knowledge and, consequently, get unexpected results.

These changes, also called *drifts*, are categorized into four types, depending on their temporal distribution (Gama et al. 2014): sudden drifts (Figure 1a), when they occur at an exact moment in time; gradual drifts (Figure 1b), when the change is prolonged over time, with the original and the modified behavior overlapping for a period of time; recurrent drifts (Figure 1c), when the changes repeat from time to time; and incremental drifts (Figure 1d), when successive changes with an intermediate behavior repeat until the model stabilizes. Despite being a widely explored field in descriptive analysis, it should be noted that dealing with concept drift in process mining faces an additional challenge: the data—execution traces from a process—may contain partial information about the process structure that can only be correctly understood when looking at the whole set of traces. For example, the presence of a choice structure can only be extracted by observing several traces, since the information present in a single trace will only represent a specific path. This can happen also with other control structures, such as loops or concurrent blocks.

This paper focuses on the detection of gradual drifts, in which two versions of the process coexist for a certain period of time until one of them completely replaces the other. This type of change is challenging in process mining, since whenever a change is made to the process, traces already in execution can continue with the previous version of the model, while new traces will be generated by the already modified model, so both versions will coexist for a certain period of time. Thus, proposals that deal with gradual drift in process mining must ideally have a series of desirable features:

F1. Automatically distinguish between gradual and sudden drifts, so it is not known *a priori* which kind of changes might be found in the log. Note that there is no possible confusion between gradual drifts and the other two types of drifts, since in recurrent drifts we deal with sudden or gradual drifts that are periodically repeated, while incremental drifts are a sequence of sudden or gradual drifts that constitute a single change.
F2. Deal with different distributions of traces during the occurrence of gradual changes such as linear, exponential, random or constant.

F3. Detect gradual changes with a low delay, so a change can be precisely localized in time.

F4. Have a high accuracy, detecting all the changes minimizing the false positives and false negatives.

Several authors have proposed a variety of approaches to the detection of sudden concept drift in process mining (Carmona and Gavaldà 2012; Junior et al. 2018; Maggi et al. 2013; Bose et al. 2014; Zheng et al. 2017; Gallego-Fontenla et al. 2021). In contrast, as a recent state-of-the-art survey on concept drift adoption (Sato et al. 2021) shows that only a few proposals allow automatic detection and classification of gradual changes, and their results still provide room for improvement. These proposals follow three main approaches for performing the drift detection: (i) extracting the trace features to abstract its behavior and then detect changes in these features (Bose et al. 2014; Martjushev et al. 2015; Luengo and Sepúlveda 2011; Li et al. 2017); (ii) generating process models and compute its features to detect changes (Tavares et al. 2019; Stertz and Rinderle-Ma 2018; Yeshchenko et al. 2019); or (iii) a combination of both approaches (Maaradji et al. 2015, 2017). However, these approaches present some drawbacks. Some of them address either sudden or gradual drifts, but not both at the same time (Bose et al. 2014; Martjushev et al. 2015), while other ones do not even distinguish between sudden and gradual drifts (Luengo and Sepúlveda 2011; Li et al. 2017; Tavares et al. 2019). In other cases, only a subset of the possible change patterns are detected (Stertz and Rinderle-Ma 2018), or the detection must be manually confirmed by the user (Yeshchenko et al. 2019). Furthermore, some approaches support only one distribution of traces during the changes, usually the linear distribution (Bose et al. 2014; Maaradji et al. 2015, 2017). Finally, most of these approaches have been only tested with 5 or less logs (Stertz and Rinderle-Ma 2018; Bose et al. 2014; Martjushev et al. 2015; Luengo and Sepúlveda 2011; Li et al. 2017; Yeshchenko et al. 2019)—only Tavares et al. (2019) has used 18 logs in its validation—so it is difficult to assess the quality of each approach.

In this paper, we present CRIER (Conformance-based gRadual drIft detEction algoRithm), an algorithm that can detect gradual and sudden changes in event logs based on the change of conformance checking metrics—fitness and precision—over a sliding window. CRIER computes these metrics for the successive sliding windows from the starts until the end of the log. The evolution of these conformance metrics is evaluated using linear regressions and hypothesis testing, so that a potential change is detected when the metric values change significantly. In order to identify gradual drifts, detected change points are analyzed. If the behaviour contained between two consecutive points is a combination of the behaviour present before the first point—detected as a change in fitness—and the behaviour after the second one—detected as a change in precision—, then the change is classified as gradual. CRIER has been tested using a dataset with 120 synthetic event logs with different traces distributions. The results show that our approach improves significantly the scores obtained by the main approaches of the state-of-the-art, making possible the treatment of sudden and gradual drifts in logs without any user intervention.

The remainder of the paper is structured as follows. In Section 2 we present the main approaches to gradual concept drift detection in process mining from the state-of-the-art. In Section 3 we define a set
of concepts that define the framework of the approach. In Section 4 we present the formal proof of the hypothesis behind the proposed algorithm. In Section 5 we detail how CRIER is able to detect both sudden and gradual changes automatically. In Section 6 we present the validation of our approach and how it outperforms the main algorithms from the literature. Finally, in Section 7 we present our conclusions and outline our future work.

2 Related Work

Concept drift is a traditional problem in descriptive analysis that studies the change over time of a target variable in order to minimise the error of a prediction. Although, in general, it is a widely researched and discussed topic in machine learning, it has received little attention in the field of process mining. However, concept drift is recognised as a significant part of process mining (van der Aalst et al. 2011), and essential to deal with the changing nature of business processes. A recent survey on concept drift in process mining (Sato et al. 2021) identifies a total of 36 scientific publications and 22 different approaches of which only 5 can handle gradual changes.

A common approach to gradual change detection in process mining is the transformation of logs into time series by extracting different features from the traces. These features make it possible to obtain useful information contained in the traces, simplifying the data to be processed. Based on this idea, Bose et al. (2014) present an approach that computes features from follow/precede relations and use a statistical hypothesis test to check if there are changes in the features over time, specifically over two consecutive fixed size windows. Examples of these features are: for each activity of the log, the number of activities that always, sometimes and never follow/precede a given activity; for each pair of activities α_1 and α_2 of the log and for each trace, the number of sequences of size n that start with α_1 and contain α_2; for each pair of activities α_1 and α_2 of the log and for each trace, the significance of α_1 following/preceding α_2 with a maximum distance of n; etc. The main drawback of this approach is that it does not distinguish between sudden and gradual changes and it deals only with linear distributions for gradual changes. Additionally, it requires the user to have an advanced knowledge of the process, including which features to select, the activities that can change or the statistical test to be used in order to process the log. Furthermore, the approach is not extensively tested, being validated only with two synthetic logs and a real one, without providing any quantitative assessment of the results, although they seem to be promising. An extension to this approach is presented by Martjushev et al. (2015), where the authors propose the use of non-consecutive windows, leaving a gap between them, in order to increase the difference between features in gradual environments in order to reduce the false negatives. In this extension, the restriction of gradual drifts distribution is removed, so the algorithm can detect also changes that are not linear. Yet, the approach fails to provide a solution able to identify if a change is sudden or gradual, requires even more knowledge from the user to set other parameters —as the size of the gap between the windows—, and still does not provide quantitative metrics in the validation, which is performed only over 2 logs.

In Li et al. (2017) the log is transformed into a time series using a feature called r-measure that compares the relation matrices between two consecutive windows. Then, the algorithm looks for outliers in these time series, and determines that a change exists when one is detected. As the previous proposals,
the main drawback of this approach is that it does not distinguish sudden and gradual drifts and it is prone to mix up changes with outliers —abnormal executions—. Moreover, it is also not extensively tested, being evaluated against 4 synthetic logs, where they obtain very promising results in terms of F_{score}, with values between 0.6 and 0.95 depending on the used parameters.

Luengo and Sepúlveda (2011) propose the use of an agglomerative hierarchical clustering over the traces to detect changes. For the clustering, traces are transformed to feature vectors that abstract the trace behaviour. Specifically, the maximal repeat (Bose and van der Aalst 2009) and the starting timestamp of the trace are used as features. Once the clusters are generated, they define a change as the point in time where one cluster ends and a new one starts. However, this method is very dependent on the number of clusters, which should be fixed by the user and equal to the number of changes present in the log. Regarding the experimentation, the approach is only validated using 3 logs, with an accuracy —calculated as the sum of true positives and true negatives, and divided by the total number of traces— between 57% and 100%.

Stertz and Rinderle-Ma (2018) propose an algorithm that deals with a stream of events, allowing the detection of changes in incomplete traces. Using a window of a given size, different versions of the process model are discovered —the process history— and the fitness is computed against the last mined model. In this approach, a change is present when the fitness of a trace is below a threshold. Thus, when a trace does not fit the last discovered model, a new one is mined using only the unfitting traces. To prevent false positives, each model also receives an score, and a model is considered to change only when that score is over a threshold. Finally, changes are classified in sudden, gradual, recurring and incremental using both two new thresholds and the process history. The main drawback of this approach is that it requires the user to have a deep knowledge of the problem in order to tune the hyperparameters used in the detection —the window size and 4 different thresholds—. Furthermore, the algorithm can not detect all structural change patterns, e.g., the transformation of an optional parallel structure to an exclusive choice where the order of some activities is enforced. Also, the approach has not been extensively tested and no quantitative measures are provided about the goodness of the results.

Yeshchenko et al. (2019) propose a method that is also based on the idea of using the process model for detecting changes. This approach splits the log in n windows of size m. Then, a set of declarative rules is extracted from the complete log and their confidence is computed with respect to each window, obtaining a multivalued time series. Finally, a traditional concept drift detection algorithm —namely, the PELT algorithm— in combination with a hierarchical clustering technique is used to detect changes in the resulting time series. The main drawback with this approach is that the classification of changes in sudden or gradual is not automatic, but it must be performed visually by the user. Regarding the validation, the algorithm shows promising results for the detection, but it is only tested with 4 synthetic and 2 real logs.

Another very interesting proposal, halfway between the extraction of features and the use of a process model, is the one presented by Maaradji et al. (2015, 2017). In this approach, the behavior of the traces is abstracted using partial-ordered-runs —i.e., a graph representation of the traces—. Once the behavior is abstracted, two consecutive sliding windows are used and, by means of a statistical test, it is checked if the content of these windows is significantly different. Once the changes are detected, a classification is performed to guess if they represent a sudden or a gradual drift. In this classification, a statistical test
checks if the combination of traces between two consecutive changes represents a linear combination of the traces before and after the first and second changes, respectively. This is one of the most thoroughly validated proposals, tested with multiple logs and evaluated using well-known metrics, as F_{score} and delay. The main drawback of this approach is that it can be very sensitive to changes in the frequencies of the relations, which may lead to the detection of false positives. Also, the algorithm can only detect gradual changes that are due to a linear distribution of the traces between two models, which may not be the case in real logs.

Finally, Tavares et al. (2019) propose an online approach where they use a clustering approach over graph distances. The approach takes as input an event stream, and updates the corresponding trace graph every time a new event is received. When they have enough traces, a process model is discovered by generating two weighted graphs: in one of them, the weight of the arcs represents the frequency of the transitions between activities; and in the other one, the average time between activities is the arc weight. Then, a distance between the trace graph and these two weighted graphs is computed, and these distances are grouped using an online density-based clustering algorithm —namely, DenStream—. Regarding the validation, the approach is tested using 18 synthetic logs, but the only metric provided is the number of changes detected. The main drawback of this method is that it mixes control flow and behavioral changes. Also, it requires a lot of hyperparameters to be tuned by the user in order to obtain good results. Finally, as many of the presented proposals, it supports the detection over logs with gradual changes, but does not distinguish sudden from gradual changes.

As a summary, there is no approach that provides a fully automated solution for detecting sudden and gradual changes, supporting all types of trace distributions and with an exhaustive validation that demonstrates its high accuracy and low delay.

3 Preliminaries

In this section, we introduce some terms necessary to understand the concept drift detection problem and our approach. The proposed method takes an event log as input and tries to detect changes in the observed behaviour.

Definition 1 (Event). Given the set of activities \mathcal{A} that conform a process, an event e can be defined as the execution of an activity $\alpha \in \mathcal{A}$ at a given instant t in the context of a process instance c. The activity name $e.a$, the timestamp $e.t$ and the process instance identifier —often referred to as case— $e.c$ are the only mandatory attributes of an event, which can also have other generic attributes, such as the resources that perform the activities, or domain-specific attributes, understood as variables whose values are modified in the activity execution.

Definition 2 (Trace). Given the full set of events \mathcal{E} recorded from the execution of a process, a trace τ can be defined as the ordered sequence of all the events belonging to the same process instance $\tau.c$, where the order is defined by the timestamp of the events.

$$\tau = (e_0, \ldots, e_n) : \forall i \in [0, n), \forall j \in (i, n], e_i, e_j \in \mathcal{E} \rightarrow (e_i.c = e_j.c) \land (e_i.t < e_j.t).$$
Figure 2: Example of a log with 15 events belonging to 3 different traces. It records the execution of 5 different activities by 6 resources.

We denote as B_τ the behaviour observed in a trace τ, represented as an ordered sequence of activities:

$$B_\tau = \langle \alpha_0, \ldots, \alpha_n \rangle : \forall e_i \in \tau \rightarrow \alpha_i = e_i.a$$

Definition 3 (Log). A log can be defined as an sequence of traces $L = \langle \tau_0, \ldots, \tau_n \rangle$ where each trace represents a different process instance $\exists \tau_i, \tau_j \in L : \tau_i.c = \tau_j.c$ and the order is given by the timestamp of the last event in each trace. We denote as $B_L = \{B_{\tau_0}, \ldots, B_{\tau_n}\}$ the behaviour observed in the log L. This behaviour is composed by the set of distinct behaviours captured in the traces of the log. Two different traces τ_i and τ_j such that $\tau_i.c \neq \tau_j.c$ can have the same behaviour $B_{\tau_i} = B_{\tau_j}$ if the ordered sequence of activities for τ_i is the same as for τ_j. The size of B_L will always be smaller than or, at most, equal to the size of the log $|B_L| \leq |L|$.

Figure 2 shows an example of an event log with 3 different traces, 15 events, 5 activities, and 6 resources. In this example, the behaviour observed in the log B_L is:

$$B_L = \left\{ \langle \text{Lock feature, Check restrictions, Build part, Integration test, Quality test} \rangle \right\}$$

being the first of the sequences the behaviour observed in cases #aaa and #aab and the second one the behaviour for the case #aac.

The relations and the dependencies between the different activities that conform a process can be represented using a process model, which can be represented with a directed graph that ideally describes the behaviour observed in the execution log. In this paper, we use Petri nets to represent the process models because they provide, simultaneously, a powerful mathematical formalism and a simple graphical representation of these models. However, the approach is not tied to this formalism, so any other language capable of capturing the semantics of the model could be employed.
Definition 4 (Labeled Petri net, Workflow net). A labeled Petri net is a bipartite graph that can be defined by a tuple $N = (P, T, F, \lambda)$, where:

- P is a finite set of places;
- T is a finite set of transitions;
- $P \cap T = \emptyset$;
- $F \subseteq (P \times T) \cup (T \times P)$ is a set of directed arcs; and
- $\lambda : T \to \mathcal{A}$ is a function that assigns to each transition $t \in T$ an activity $a \in \mathcal{A} \cup \emptyset$.

Let $x \in T \cup P$ be a node from the Petri net. We denote $x^* = \{y \mid (y, x) \in F\}$ as the set of inputs of x, and $x^\bullet = \{y \mid (x, y) \in F\}$ as the set of outputs of x. A labeled Petri net is a workflow net (van der Aalst 1998) if and only if:

- $\exists! x^* \in P : *x^* = \emptyset$, i.e., there exists a single place in the net with no inputs;
- $\exists! x^\bullet \in P : x^\bullet = \emptyset$, i.e., there exists a single place in the net with no outputs;
- Adding to the net a transition t^* such that $t^* = x^\bullet$ and $t^* = x^*$ results in a strongly connected graph, i.e., all $t \in T$ are in a path from x^\bullet to x^*;

The state of a Petri net, namely a marking, is a function $m : P \to \mathbb{N}$ that indicates the number of tokens contained in the place $p \in P$. In a workflow net, the initial marking, denoted as m_0, is the one in which only x^\bullet contains a token. Let $t \in T$ be a transition from the Petri net. We say t is enabled when $\forall p \in t^* \rightarrow m(p) > 0$, i.e., when all its input places have at least one token. When an enabled transition is fired, it consumes a token from each input place and produces a new token in each output place.

We call B_N to the set of all possible paths — i.e., all the unique possible sequences of transition labels—from x^\bullet to x^* in the workflow net N. For the rest of this paper, when referring to Petri nets, we assume we are talking about workflow nets. Figure 3 shows an example Petri net, where circles represent places, rectangles represent transitions and a black dot represents a token. In this example, the behavior of the model is:

$$B_N = \{ \langle \text{Lock feature, Check restrictions, Build part, Quality test, Integration test} \rangle, \langle \text{Lock feature, Check restrictions, Build part, Integration test, Quality test} \rangle, \langle \text{Lock feature, Interview customer, Build part, Quality test, Integration test} \rangle, \langle \text{Lock feature, Interview customer, Build part, Integration test, Quality test} \rangle \}$$
The quality of a process models can be evaluated with respect to a log using conformance checking metrics. In this article, we will use two of these metrics as the basis of the algorithm for detecting gradual drifts: fitness and precision.

Definition 5 (Fitness metric). Fitness measures the fraction of behaviour observed in the log that is captured by the model (Carmona et al. 2018).

\[\gamma(L, N) = \frac{|B_L \cap B_N|}{|B_L|} \]

In the state-of-the-art have been proposed a multitude of techniques for fitness computation (Munoz-Gama 2016), that vary in determining the degree of compliance of the model with respect to the log traces (van der Aalst et al. 2012; Adriansyah 2014; de Leoni and van der Aalst 2013). For example, a model with a behavior that only differs in a single activity with respect to a trace with 8 activities can have a fitness of 0 if the metric only considers perfect matches or it can have a fitness of 7/8 if the metric accounts for the activities that do not deviate from the behaviour supported by the model. In this paper, we have opted for a metric that computes the percentage of log traces that are fully supported by the model.

For example, considering the log and the model from Figure 2 and Figure 3, respectively:

\[\gamma(L, N) = \frac{|L|}{|L|} = 1 \]

because all traces from the log are supported by the model. This metric is quite restrictive when calculating the fitness, but for concept drift detection we just need an estimator of how good the model captures the behaviour observed in the log. As a counterpart, by using this metric we obtain a high performance, which is important since it will be calculated repeatedly as the log is processed.

Definition 6 (Precision metric). Precision measures the fraction of allowed behaviour that is observed in the log (Carmona et al. 2018).

\[\rho(L, N) = \frac{|B_L \cap B_N|}{|B_N|} \]

In the case of precision, many implementations have been also proposed in the state-of-the-art (van der Aalst et al. 2012; de Leoni and van der Aalst 2013; vanden Broucke et al. 2014; Rozinat and van der Aalst 2008). Although we could have used any of those implementations, in CRIER we consider a custom metric as an estimator of the precision evolution since our algorithm only needs to know whether the precision has changed or not —i.e., it does not need to know the exact value of the precision—. Specifically, this metric checks the percentage of direct relations between activities from the model observed in the traces.

\[\rho(L, N) = \frac{|L \rightarrow \cap N \rightarrow|}{|N \rightarrow|} \]

where \(L \rightarrow \) are the pairs of consecutive activities found in the traces, and \(N \rightarrow \) are the directly connected pairs of activities in the model. For example, using the log and the model from Figure 2 and Figure 3,
respectively:

\[L \xrightarrow{\text{respectively}} \left\{\begin{array}{l}
(\text{Lock feature} \rightarrow \text{Check restrictions}), (\text{Lock feature} \rightarrow \text{Interview customer}), \\
(\text{Check restrictions} \rightarrow \text{Build part}), (\text{Interview customer} \rightarrow \text{Build part}), \\
(\text{Build part} \rightarrow \text{Integration test}), (\text{Build part} \rightarrow \text{Quality test}), \\
(\text{Integration test} \rightarrow \text{Quality test}), (\text{Quality test} \rightarrow \text{Integration test})
\end{array}\right\}
\]

\[N \xrightarrow{\text{respectively}} \left\{\begin{array}{l}
(\text{Lock feature} \rightarrow \text{Check restrictions}), (\text{Lock feature} \rightarrow \text{Interview customer}), \\
(\text{Check restrictions} \rightarrow \text{Build part}), (\text{Interview customer} \rightarrow \text{Build part}), \\
(\text{Build part} \rightarrow \text{Integration test}), (\text{Build part} \rightarrow \text{Quality test})
\end{array}\right\}
\]

and, therefore, \(\rho(L, N) = 6/6 = 1\). But if the relation \((\text{Lock feature} \rightarrow \text{Check restrictions})\) is not observed in the log, \(\rho(L, N) = 5/6 = 0.83\), showing that the estimator decreases when the precision also decreases.

To capture the evolution of the process over time we use a sliding window, which is a sublog containing only the most recent traces at a given instant, being one of the main methods used as a basis for concept drift detection algorithms (Bifet and Gavaldà 2007).

Definition 7 (Sliding window). The sliding window of size \(n\) over a log \(L\) is defined as \(\omega_i(L, n) = \langle \tau_{i-n}, \ldots, \tau_i \rangle\), where its content is conformed by the most recent \(n\) traces present in the log at instant \(i\). When a new trace is read from the log, the window slides one position, so the oldest trace is forgotten and the new trace is incorporated. This way, the algorithm only takes into account the most recent information for detecting the changes.

The main objective of this paper is the identification of changes in the process structure over time and its classification in sudden and gradual drifts. One of the greatest challenges is differentiating between a real change and an anomalous execution. To accomplish this objective and address this challenge, we use the concept of drift candidate.

Definition 8 (Drift candidate). A drift candidate can be defined as a potential change in the structure of the process that has to be confirmed later. Given two consecutive windows \(\omega_i\) and \(\omega_{i+1}\), and two process models \(N_i = (P_{N_i}, T_{N_i}, F_{N_i}, A_{N_i})\) and \(N_{i+1} = (P_{N_{i+1}}, T_{N_{i+1}}, F_{N_{i+1}}, A_{N_{i+1}})\) discovered from each of these windows using the same discovery algorithm, we say that window \(\omega_i\) is a drift candidate when \(T_{N_i} \neq T_{N_{i+1}} \lor F_{N_i} \neq F_{N_{i+1}}\). A drift is confirmed only after several successive windows are marked as drift candidates and, in that moment, the change is pinpointed to the specific trace that triggered the change —the first trace of the first candidate in the case of fitness, or the last trace of the first window in the case of precision—.

Although there are several types of concept drifts, in this paper we focus on the detection of gradual drifts and on the distinction with sudden drifts.

Definition 9 (Gradual drift, Sudden drift). A gradual drift is defined as a change where the behaviour before the change does not disappear suddenly, but coexists with the one after the change for a period of time, while vanishing until it is no longer observed. Given two time instants \(t_1\) and \(t_2\) that bound the change, two models can be discovered, \(N_{< t_1}\) and \(N_{> t_2}\), that capture the behaviour before and after those instants. For a change to be considered as gradual, four conditions must be satisfied:
1. Behaviour captured by the models discovered before t_1 and after t_2 are different: $B_{N<t_1} \neq B_{N>t_2}$.

2. Some of the behaviour observed between t_1 and t_2 is captured by the model discovered before t_1: $B_{L_{[t_1,t_2]}} \cap B_{N<t_1} \neq \emptyset$.

3. Some of the behaviour observed between t_1 and t_2 is captured by the model discovered after t_2: $B_{L_{[t_1,t_2]}} \cap B_{N>t_2} \neq \emptyset$.

4. All of the behaviour observed between t_1 and t_2 is captured either by the model discovered before t_1, by the model discovered after t_2 or by both: $B_{L_{[t_1,t_2]}} \subseteq (B_{N<t_1} \cup B_{N>t_2})$.

In any of these conditions are not met, the change is considered a sudden change, where the old behaviour is replaced instantly by a new one.

4 Gradual drift detection using conformance checking

A gradual change is defined between two instants t_1 and t_2, where the process has a behaviour B_1 before t_1, a different behaviour B_2 after t_2, while B_1 and B_2 coexist in $[t_1, t_2]$ (see Def. 9).

Theorem 1. All gradual drifts are characterized by a fitness change in t_1 and by a precision change in t_2.

Proof. Consider a log L, with a gradual change between instants t_1 and t_2, in which the new behaviour is first observed at t_1 and some old behaviour is less and less frequently observed, until it disappears completely at t_2. Let us consider three disjoint sets of behaviour:

- B_c, which contains the behaviour that appears throughout the whole duration of the log L and which can be empty;
- B_p, which contains the previous behaviour of L that disappears between t_1 and t_2 and which cannot be empty; and
- B_n, which contains the new behaviour that starts to appear after t_1 and replaces B_p after t_2 and which also cannot be empty.

Using these two instants t_1 and t_2, we can split the log L in three sublogs. Let $L_{<t_1}$ be the log containing all the traces before t_1, $L_{[t_1,t_2]}$ be the log containing the traces between t_1 and t_2, and $L_{>t_2}$ be the log with the remaining traces after t_2. Similarly, we can define the corresponding behaviors for these logs as $B_{L_{<t_1}} = B_c \cup B_p$, $B_{L_{[t_1,t_2]}} = B_c \cup B_p \cup B_n$, and $B_{L_{>t_2}} = B_c \cup B_n$, respectively, and the reference models $N_{<t_1}$, $N_{[t_1,t_2]}$ and $N_{>t_2}$ that can be discovered from the traces of these logs, respectively. The values for fitness and precision before the change, i.e., $L_{<t_1}$, can be computed as follows:

$$\gamma(L_{<t_1}, N_{<t_1}) = \frac{|B_{L_{<t_1}} \cap B_{N_{<t_1}}|}{|B_{L_{<t_1}}|} = \frac{|(B_c \cup B_p) \cap B_{N_{<t_1}}|}{|B_c \cup B_p|} = \frac{|(B_c \cap B_{N_{<t_1}}) \cup (B_p \cap B_{N_{<t_1}})|}{|B_c \cup B_p|}$$

$$\rho(L_{<t_1}, N_{<t_1}) = \frac{|B_{L_{<t_1}} \cap B_{N_{<t_1}}|}{|B_{N_{<t_1}}|} = \frac{|(B_c \cup B_p) \cap B_{N_{<t_1}}|}{|B_{N_{<t_1}}|} = \frac{|(B_c \cap B_{N_{<t_1}}) \cup (B_p \cap B_{N_{<t_1}})|}{|B_{N_{<t_1}}|}$$
Which can be simplified since B_c and B_p are disjoint sets:

$$
\gamma(L_{<t_1}, N_{<t_1}) = \frac{|B_c \cap B_{N_{<t_1}}| + |B_p \cap B_{N_{<t_1}}|}{|B_c| + |B_p|} = \frac{|B_c \cap B_{N_{<t_1}}|}{|B_c| + |B_p|} + \frac{|B_p \cap B_{N_{<t_1}}|}{|B_c| + |B_p|}
$$

$$
\rho(L_{<t_1}, N_{<t_1}) = \frac{|B_c \cap B_{N_{<t_1}}| + |B_p \cap B_{N_{<t_1}}|}{|B_{N_{<t_1}}|} = \frac{|B_c \cap B_{N_{<t_1}}|}{|B_{N_{<t_1}}|} + \frac{|B_p \cap B_{N_{<t_1}}|}{|B_{N_{<t_1}}|}
$$

Similarly, fitness and precision values in the change interval $[t_1,t_2]$ with respect to this same model $N_{<t_1}$ can be computed as follows:

$$
\gamma(L_{[t_1,t_2]}, N_{<t_1}) = \frac{|B_{L_{[t_1,t_2]} \cap B_{N_{<t_1}}}|}{|B_{L_{[t_1,t_2]}}|} = \frac{|B_c \cup B_p \cup B_n \cap B_{N_{<t_1}}|}{|B_c \cup B_p \cup B_n|} = \frac{|B_c \cap B_{N_{<t_1}}|}{|B_c| + |B_p| + |B_n|} + \frac{|B_p \cap B_{N_{<t_1}}|}{|B_c| + |B_p| + |B_n|} + \frac{|B_n \cap B_{N_{<t_1}}|}{|B_c| + |B_p| + |B_n|}
$$

$$
\rho(L_{[t_1,t_2]}, N_{<t_1}) = \frac{|B_{L_{[t_1,t_2]} \cap B_{N_{<t_1}}}|}{|B_{N_{<t_1}}|} = \frac{|B_c \cap B_{N_{<t_1}}| + |B_p \cap B_{N_{<t_1}}| + |B_n \cap B_{N_{<t_1}}|}{|B_{N_{<t_1}}|} = \frac{|B_c \cap B_{N_{<t_1}}|}{|B_{N_{<t_1}}|} + \frac{|B_p \cap B_{N_{<t_1}}|}{|B_{N_{<t_1}}|} + \frac{|B_n \cap B_{N_{<t_1}}|}{|B_{N_{<t_1}}|}
$$

This equation can be simplified since B_n only starts to appear after t_1, i.e., $B_{N_{<t_1}} \cap B_n = \emptyset$:

$$
\gamma(L_{[t_1,t_2]}, N_{<t_1}) = \frac{|B_c \cap B_{N_{<t_1}}|}{|B_c| + |B_p| + |B_n|} + \frac{|B_p \cap B_{N_{<t_1}}|}{|B_c| + |B_p| + |B_n|}
$$

$$
\rho(L_{[t_1,t_2]}, N_{<t_1}) = \frac{|B_c \cap B_{N_{<t_1}}|}{|B_{N_{<t_1}}|} + \frac{|B_p \cap B_{N_{<t_1}}|}{|B_{N_{<t_1}}|}
$$

Moreover, since $B_p \neq \emptyset$ and $B_n \neq \emptyset$, $|B_c| + |B_p| + |B_n| > |B_c| + |B_p|$. Thus, $\gamma(L_{<t_i}, N_{<t_i}) > \gamma(L_{[t_1,t_2]}, N_{<t_1})$ but $\rho(L_{[t_1,t_2]}, N_{<t_1}) = \rho(L_{[t_1,t_2]}, N_{<t_1})$, confirming our hypothesis that fitness decreases at the beginning of a gradual drift, but precision remaining unaltered.

Once the beginning of the drift has been detected, a new model $N_{[t_1,t_2]}$ is discovered using the log $L_{[t_1,t_2]}$. Then, the conformance metrics can be computed using Def. 5 and Def. 6 as follows:

$$
\gamma(L_{[t_1,t_2]}, N_{[t_1,t_2]}) = \frac{|B_{L_{[t_1,t_2]} \cap B_{N_{[t_1,t_2]}}}|}{|B_{L_{[t_1,t_2]}}|} = \frac{|B_c \cap B_{N_{[t_1,t_2]}}|}{|B_{L_{[t_1,t_2]}}|} + \frac{|B_p \cap B_{N_{[t_1,t_2]}}|}{|B_{L_{[t_1,t_2]}}|} + \frac{|B_n \cap B_{N_{[t_1,t_2]}}|}{|B_{L_{[t_1,t_2]}}|}
$$

$$
\rho(L_{[t_1,t_2]}, N_{[t_1,t_2]}) = \frac{|B_{L_{[t_1,t_2]} \cap B_{N_{[t_1,t_2]}}}|}{|B_{N_{[t_1,t_2]}}|} = \frac{|B_c \cap B_{N_{[t_1,t_2]}}|}{|B_{N_{[t_1,t_2]}}|} + \frac{|B_p \cap B_{N_{[t_1,t_2]}}|}{|B_{N_{[t_1,t_2]}}|} + \frac{|B_n \cap B_{N_{[t_1,t_2]}}|}{|B_{N_{[t_1,t_2]}}|}
$$

We can then proceed to define the values after t_2, where B_p has totally disappeared:

$$
\gamma(L_{>t_2}, N_{[t_1,t_2]}) = \frac{|B_{L_{>t_2} \cap B_{N_{[t_1,t_2]}}}|}{|B_{L_{>t_2}}|} = \frac{|B_c \cap B_{N_{[t_1,t_2]}}|}{|B_{L_{>t_2}}|} + \frac{|B_n \cap B_{N_{[t_1,t_2]}}|}{|B_{L_{>t_2}}|}
$$

$$
\rho(L_{>t_2}, N_{[t_1,t_2]}) = \frac{|B_{L_{>t_2} \cap B_{N_{[t_1,t_2]}}}|}{|B_{N_{[t_1,t_2]}}|} = \frac{|B_c \cap B_{N_{[t_1,t_2]}}|}{|B_{N_{[t_1,t_2]}}|} + \frac{|B_n \cap B_{N_{[t_1,t_2]}}|}{|B_{N_{[t_1,t_2]}}|}
$$

Nothing can be affirmed with respect to fitness, but we can conclude that $\rho(L_{[t_1,t_2]}, N_{[t_1,t_2]}) > \rho(L_{>t_2}, N_{[t_1,t_2]})$, i.e., precision will decrease at the end of the gradual drift.

A situation in which a gradual change starts with a change in precision at t_1 is impossible, since the change in precision necessarily implies a sudden change in the model structure. Since this proof is straightforward, we did not include it in this paper — $B_n = \emptyset$, since no new behavior is added after t_1, otherwise a change in fitness should be present, and $B_{L_{<t_1}} = B_{L_{[t_1,t_2]}}$, which contradicts the Def. 8. —
4. First, traces are read until the window is full. Then, traces from the first full window replace the next windows. In this example, a precision decrease is detected for the windows as a drift candidate. The fitness decrease lasts for three windows, which means that traces from a discovery algorithm to obtain the model that describes its behavior. Then, the window is shifted trace by trace.

Figure 4: Example of a gradual change where some previously unobserved behavior starts to replace the previous one at τ₀, which is no longer observed after trace τ₁₆.

5 Algorithm for gradual drift detection

The premise underlying the operation of CRIER is that, using fitness and precision metrics, gradual drifts can be detected with high accuracy. However, to better understand how the algorithm works, we illustrate the gradual drift detection with the example of Figure 4. The example is based on a sliding window of size 4. First, traces are read until the window is full. Then, traces from the first full window ω₄ are mined with a discovery algorithm to obtain the model that describes its behavior. Then, the window is shifted trace by trace and for each shift the fitness and precision —which are initially 1— are checked to detect whether they change. In the window ω₉ the fitness decreases while the precision does not change, so τ₀ is labeled as a drift candidate. The fitness decrease lasts for three windows, which means that traces from τ₁₀ to τ₁₂ are also drift candidates, so trace τ₀ is finally labeled as a drift. As a consequence, a new model is discovered at ω₁₂, starting a new cycle of the algorithm, until a change in fitness or precision is detected in the next windows. In this example, a precision decrease is detected for the windows ω₂₀, ω₂₁, ω₂₂ and ω₂₃, confirming a drift in trace τ₁₇ and, therefore, a gradual drift between traces τ₀ and τ₁₇.
Algorithm 1 shows the pseudocode of the CRIER algorithm. The only mandatory inputs are the event log and a minimum window size. As part of the initialization phase, the algorithm creates two empty lists for the confirmed drifts, one for sudden and one for gradual drifts (line 2) and sets the initial window index $i = 1$ (line 4). As the algorithm is based on a sliding window ω_i (Def. 7), in this initialization
Algorithm 2 Auxiliary functions

1: function AdjustWindow(n, L)
2: \(N_1, N_2, N_3 \leftarrow \emptyset \)
3: \(n' \leftarrow n \)
4: while \(3n < |L| \) do
5: \(N_1 \leftarrow \text{discover}(\{\tau_0, \ldots, \tau_n\}) \)
6: \(N_2 \leftarrow \text{discover}(\{\tau_n, \ldots, \tau_{2n}\}) \)
7: \(N_3 \leftarrow \text{discover}(\{\tau_{2n}, \ldots, \tau_{3n}\}) \)
8: if \(B_{N_1} = B_{N_2} = B_{N_3} \) then
9: \(n' \leftarrow \text{increment}(n') \)
10: else
11: return \(n' \)
12: end if
13: end while
14: return \(n' \)
15: end function

16: function IdentifyDriftCandidate(n, data, D)
17: \(\Upsilon \leftarrow \text{regress}(\{\text{data}|_{\text{data}|_{-n}}, \ldots, \text{data}|_{\text{data}}\}) \)
18: \(m^< \leftarrow \Upsilon.\text{slope} < 0 \land \Upsilon.\text{confidence} < 0.05 \)
19: \(m^> \leftarrow \Upsilon.\text{slope} > 0 \land \Upsilon.\text{confidence} < 0.05 \)
20: \(m^= \leftarrow (\neg m^<) \land (\neg m^>) \)
21: return \((\text{data}| > n) \land (m^< \lor m^> \lor (m^= \land (D|D| = \text{true}))) \)
22: end function

23: function ConfirmDrift(n, D)
24: \(d' \leftarrow \forall d \in \{D|D|_{-n}, \ldots, D|D|\} : d = \text{true} \)
25: return \((|D| \geq n) \land d' \)
26: end function

phase its optimal size \(n \) is computed (line 3) using the function AdjustWindow (Algorithm 2, lines 1 to 15). The adjustment of the window size is based on the comparison of the behaviour observed in three consecutive windows. In this step, we start with a size \(n' \) initialized as the minimum window size \(n \) and discover three models from three consecutive windows of size \(n' \) (Algorithm 2, lines 5 to 7). If the three models capture the same behaviour (Algorithm 2, line 8), the size of each window \(n' \) is incremented by \(n' \) (Algorithm 2, line 9) and the process starts again. The procedure finishes when one of the three models has a different behavior or when the condition \(3 \ast n' < |L| \) fails, meaning that it is not possible to discover three consecutive models, returning the last \(n' \) as the adjusted optimal window size (Algorithm 2, line 14).

Once the size is adjusted, the window is populated with the first \(n \) remaining traces from the initial index. Then, the first process model is discovered (line 6) using the content from this \(\omega_i \) window. This model is stored in a list \(N \) which contains the set of models that will be discovered for each detected drift.

After this initialization, the drift detection step is executed (lines 8 to 42). This step is composed of a loop that repeats until no traces remain unprocessed in the log. Thus, as part of the initialization performed after each change detection, two empty lists are created (line 9), \(\Gamma \) and \(P \), for storing the fitness and precision, respectively. Also, two more lists, \(D^\Gamma \) and \(D^P \), are initialized (line 10). These lists will later be populated with booleans indicating if the successive windows are marked as drift candidates. Finally, a flag used for indicating if a change has been detected is initialized (line 11).

Once this initialization is completed, the main detection loop begins (lines 12 to 41), where the detection is performed based on the trends in the values of the conformance metrics. This loop processes
the remaining windows, starting at index i, until a new change is detected or to the end of the log if no change is present (line 12). For each window ω_i, the fitness and the precision of the last discovered model $N[|N|]$ are computed, and their values are appended to Γ and P, respectively (lines 13 and 14). Then, using the function \text{IdentifyDriftCandidate} from Algorithm 2, the window ω_i is classified or not as a drift candidate (lines 15 to 16). To carry out this classification step, a simple linear regression —using the ordinary least squares method— is computed over the metric values (Algorithm 2, line 17). If there are enough data for computing the regression and the slope of the fitted line is different from 0 with enough statistical confidence —p-value < 0.05 in the t-test, where H_0 states that the slope of the regression is 0—, or the slope is 0 and the previous window has been marked as a drift candidate, the window ω_i will be marked as a drift candidate. To finalize this detection step the function \text{ConfirmDrift} from Algorithm 2 is executed (line 29). This function is in charge of checking whether a drift candidate persists over time, becoming a real change, or, on the contrary, only represents a noisy trace. A drift candidate is confirmed as a real change if the last n windows have been also marked as drift candidates (Algorithm 2, lines 23 to 26).

Once the change is confirmed, it should be pinpointed in time to an specific trace. In case the drift comes from a change in fitness, the trace causing the drift is the last trace from the first window identified as a candidate —i.e., the first trace causing a change in the metric—. In the case of a change in precision, the trace causing the drift is the first trace from the first window identified as candidate —i.e., the first trace from the first window causing a change in precision—. Then, the flag indicating a detection is updated (line 23) and the sublog L' between confirmed drifts is stored for later. The drift must then be classified as sudden or gradual. Figure 5 illustrates this part of the algorithm. The first step is to update both the index at which the next window will start and its optimal size (lines 25 and 26). Then, the new window is populated with the traces and the model describing the behavior contained in this window is discovered (lines 27 and 28). This model is stored in the model list. Since gradual changes are delimited by two drifts, the last three models of this list —$N[|N| - 2], N[|N| - 1]$, and $N[|N|]$— are used to check the conditions that determine whether the drift is gradual or not. Note that the model $N[|N| - 1]$ corresponds with the sublog in which the confirmed drift has been detected. These conditions are the following (line 29):

1. There are more than two models in the model list ($|N| > 2$).
2. At least, one trace from L' is supported by $N[|N|]$.
3. At least, one trace from L' is supported by $N[|N| - 2]$.
4. The behaviour from every trace in L' is part of the behaviour of $N[|N| - 2]$ or $N[|N|]$.

Figure 5: Drift classification phase in CRIER.
Figure 6: Petri net model used in the validation of the algorithm, where activity names are shortened for better understandability.

Table 1: Change patterns applied to the original model from Figure 6 and resulting models.

Code	Change pattern	Class	Model code	Applied change patterns
cm	Move fragment into/out of conditional branch	I	cp	cp
cp	Duplicate fragment	I	pm	pm
pm	Move fragment into/out of parallel branch	I	re	re
re	Add/remove fragment	I	rp	rp
rp	Substitute fragment	I	sw	sw
sw	Swap two fragments	I	cf	cf
cb	Make fragment skippable/non-skippable	0	0IR	lp + re + cd
lp	Make fragments loopable/non-loopable	0	0RI	lp + pl + re
cd	Synchronize two fragments	R	R10	cf + cp + cb
cf	Make two fragments conditional/sequential	R	ROI	pl + lp + rp
pl	Make two fragments parallel/sequential	R		

If \(L' \) fulfills these four requirements, the change is classified as gradual, indicating that the drift starts at the trace where the last sudden drift \(D^S_{D^S} \) was detected and lasts until \(\tau' \). Furthermore, \(D^S_{D^S} \) is removed from the sudden drift list (line 31), and appended to the list \(D^G \) of classified drifts (line 32).

On the other hand, if the candidate cannot be classified as gradual because it does not meet any of the requirements, the change at \(\tau' \) is classified as sudden (line 34). Finally, the index \(i \) is incremented by 1 (line 38), the sliding window is updated to this index (line 39), and the cycle starts again.

6 Experimentation

6.1 Validation Data

Concept drift algorithms are validated with synthetic data generated from real processes, in which changes are introduced at a specific moment and with a specific duration, since there are no real logs in which these change regions are identified. In this paper, CRIER has been validated with synthetic logs generated from a loan granting process, which is the de-facto benchmark used to validate concept drift approaches in process mining (Seeliger et al. 2017; Zheng et al. 2017; Maaradji et al. 2017; Yeshchenko et al. 2019). Its model, represented in Figure 6, consist of 19 different activities structured according to typical control constructs such as sequences, parallels, and choices (Dumas et al. 2018).

From this base model, and applying the patterns of change presented by Weber et al. (2008), modified models have been generated using the methodology described by Maaradji et al. (2017). These patterns can be classified into three categories (Table 1a): (i) changes involving the insertion of new behavior —marked with \(I \) —; (ii) changes involving the optionalization of a part of the model —marked with \(O \) —; and (iii) changes involving the restructuring and rearrangement of some parts of the model —marked
with \(R \). In addition, logs combining the different patterns have also been generated. Only the patterns or patterns combination that can generate a gradual change —i.e., those that add some new, unobserved behaviour, forcing a change in fitness— have been applied to create the validation models, as they are the only ones that can generate a gradual drift (Table 1b). Note that the other patterns —specifically, \(\text{cm} \), \(\text{cb} \), \(\text{lp} \), \(\text{cd} \), and \(\text{pl} \)— produce models that only would change the precision and, therefore, no gradual changes could be generated from these models (see Theorem 1). As a result of this procedure, 10 derived models are created. These models are used to generate the trace logs with which the approach is validated since each one is the result of applying the gradual change that takes place from the base model. For this generation, a cumulative probability function (\(\text{cdf} \)) selects the model —base or derived— that will generate each trace according to a given probability distribution (\(P \)). Specifically, the following procedure is applied to create the validation logs:

1. The base model \(M_1 \) —i.e., the loan application process model—, the modified model \(M_2 \) —i.e., one of the 10 derived models—, and the probability distribution \(P \) are chosen.

2. A block of 500 traces corresponding to model \(M_1 \) is generated.

3. While the \(\text{cdf} \) of \(P \) is below the stopping criterion —\(\text{cdf}(P) \leq 0.999 \)—, a model is chosen between \(M_1 \) and \(M_2 \) with probabilities \(1 - \text{cdf}(P) \) and \(\text{cdf}(P) \), respectively, and a new trace is generated from the selected model. Note that this stopping criterion is due to the fact that the cumulative probability function for some distributions is asymptotic to 1.

4. Repeat from step 2 interchanging \(M_1 \) and \(M_2 \).

Figure 7 shows an example of log generation where the base model is combined with a model derived from applying the \(\text{pm} \) pattern by using a linear probability distribution.

In our experimentation, 4 different probability functions have been considered: (i) linear, where the frequency of the new behaviour increment linearly when new traces are observed; (ii) Gaussian, where the change starts to appear slowly and accelerates to end with the old behavior fading away slowly as well; (iii) exponential, where the frequency of the new behavior grows very fast at the beginning and slows down as new traces are observed; and (iv) constant, where the old and the new behavior have a constant
When evaluating the performance of a drift detection solution, there are two main metrics used in the performance evaluation:

- **F-score**: This metric calculates the harmonic mean between precision and recall. It is defined as:
 \[F_{\text{score}}(p, r) = \frac{2 \times p \times r}{p + r} \]
 where \(p \) is the precision and \(r \) is the recall.

- **Morgan Square Error (MSE)**: This metric measures the squared difference between the predicted values and the actual values. It is defined as:
 \[\text{MSE}(\hat{y}, y) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2 \]
 where \(\hat{y}_i \) is the predicted value for the input \(x_i \), and \(y_i \) is the actual value.

Both metrics provide a comprehensive evaluation of the model's performance on both the training and validation sets. The F-score is particularly useful in cases where the class distribution is skewed, as it gives equal weight to both precision and recall.

6.2 Metrics

When evaluating the performance of a drift detection solution, there are two main metrics used in the state-of-the-art. The first metric, called F_{score}, calculates the harmonic mean between precision and recall. It is defined as:

$$ F_{\text{score}}(p, r) = \frac{2 \times p \times r}{p + r} $$

where \(p \) is the precision and \(r \) is the recall. This metric is particularly useful in cases where the class distribution is skewed, as it gives equal weight to both precision and recall.

The second metric is the **Morgan Square Error (MSE)**, which measures the squared difference between the predicted values and the actual values. It is defined as:

$$ \text{MSE}(\hat{y}, y) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2 $$

where \(\hat{y}_i \) is the predicted value for the input \(x_i \), and \(y_i \) is the actual value.

Both metrics provide a comprehensive evaluation of the model's performance on both the training and validation sets.
recall, allowing to evaluate how reliable the results are, based on the number of true/false positives and negatives. For gradual changes, a true positive (TP) is any change whose detection area overlaps with a real change not previously detected, while a false positive (FP) is any change that does not correspond to a region of real change, or that matches a region of change previously detected. In addition, a false negative (FN) is a region of change that does not overlap with anyone of the detected changes. Considering this, the \(F_{\text{score}} \) metric is defined as follows:

\[
F_{\text{score}} = \frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}}
\]

\[
\text{precision} = \frac{TP}{TP + FP}
\]

\[
\text{recall} = \frac{TP}{TP + FN}
\]

The second metric, called delay (\(\Delta \)), measures how late a drift is reported from the actual occurrence until its detection. In the case of gradual changes, since we are dealing with areas of change and not single points, we measure the delay in detecting the beginning of the region.

\[
\Delta(d^R, d^D) = |\min(d^R) - \min(d^D)|
\]

where \(d^R \) and \(d^D \) are intervals indicating a real and a detected drift region, respectively.

Finally, and to better reflect the goodness of the results when dealing with gradual changes, these two metrics are complemented with a third one: the change region overlapping (\(\Upsilon \)). This metric evaluates the percentage of the actual region of change that has been detected by the algorithm, reflecting how well the duration of the changes is captured.

\[
\Upsilon(d^R, d^D) = \frac{|d^R \cap d^D|}{|d^R|}
\]

where \(d^R \) and \(d^D \) are intervals indicating a real and a detected drift region, respectively.

Figure 9 shows an example of how these metrics are applied in the evaluation of the results. This example presents a log with two gradual changes, one between traces \(\tau_{10} \) and \(\tau_{20} \), and the other one between traces \(\tau_{35} \) and \(\tau_{45} \). The algorithm detects two changes, one between traces \(\tau_{4} \) and \(\tau_{7} \), classified as a false positive as no real change happened in this time interval, and one between traces \(\tau_{17} \) and \(\tau_{23} \), classified as a true positive because it overlaps a real change. In this second detection, the delay would be 7 traces —from trace \(\tau_{10} \) to trace \(\tau_{17} \)—. On the other hand, the change region overlapping would be 30 %, since only 3 traces out of the 10 that constitute the region of change are detected. Finally, the second change, between traces \(\tau_{35} \) and \(\tau_{45} \), will be classified as a false negative, since the algorithm has not detected any change in that region.
Table 3: Evidence levels proposed by Jeffreys (1998) for the Bayes factors.

Bayes factor $BF_{H_iH_j}$	Interpretation
$BF_{H_iH_j}$ > 100	Extreme evidence for H_i
100 > $BF_{H_iH_j}$	Very strong evidence for H_i
30 > $BF_{H_iH_j}$	Strong evidence for H_i
10 > $BF_{H_iH_j}$	Moderate evidence for H_i
3 > $BF_{H_iH_j}$	Anecdotal evidence for H_i
$BF_{H_iH_j}$ = 1	No evidence
0.3333 > $BF_{H_iH_j}$	Anecdotal evidence for H_j
0.1 > $BF_{H_iH_j}$	Moderate evidence for H_j
0.0333 > $BF_{H_iH_j}$	Strong evidence for H_j
0.01 > $BF_{H_iH_j}$	Very strong evidence for H_j
	Extreme evidence for H_j

Furthermore, results of the different algorithms have been also evaluated using a Bayesian hypothesis test. We opted for a Bayesian approach instead of a traditional null hypothesis significance test (NHST) (Ly et al. 2020) because:

1. **NHST** does not provide any certainty about the validity of the null hypothesis. Thus, if the hypothesis is not rejected, it can only be established that there is no evidence to reject it, but never to accept it as such.

2. **NHST** does not estimate the probability of the hypotheses to be valid, so comparing the algorithms is harder.

In this paper, we have performed a BAyesian INformative Hypothesis Evaluation (BAIN) (Gu et al. 2018) to analyze the experimentation. BAIN is based on the use of Bayes factors to compare the conditional probability between two competing hypotheses. In a simplified form, a Bayesian factor $BF_{H_iH_j}$ is the ratio of the probability of the hypothesis H_i to the probability of the hypothesis H_j. For example, $BF_{H_iH_j} = 5$ would indicate that the hypothesis H_i is 5 times more likely than hypothesis H_j. The most frequent interpretation of these Bayes factors was proposed by Jeffreys (1998), where the Bayes factor values are classified in 11 levels, from no evidence to extreme evidence. Table 3 shows the different levels of evidence defined in this classification. For all the hypothesis proposed for the test, symbols $>$, $=$ and $<$ refer to the algorithm obtaining better, equal or worst results. All tests have been executed using the software package JASP (Love et al. 2019).

6.3 Set up

The results of **CRIER** have been compared with the two main publicly available state-of-the-art algorithms: the proposal from Martjushev et al. 2015 —available as a plugin of the process mining platform ProM²—and ProDrift³ (Maaradji et al. 2017). Note that ProDrift has not been run for logs with Gaussian, exponential, and constant distributions since authors explicitly state that it only deals with linear changes. The rest of the approaches identified in the state-of-the-art have not been tested as the source code of their

²https://www.promtools.org/
³https://kodu.ut.ee/dumas/tools/ProDrift2.5.zip
implementations are not available. The specific configurations used for these two algorithms were as follows:

1. Martjushev et al.: local features using the follows relations for all pairs of activities; J-measure with a window size of 10; adaptive window with a minimum size of 50 and a maximum of 500; a step of 1, and an automatic gap size; and comparing windows with the Kolmogorov-Smirnov test with a p-value of 0.4 —the default value specified by the authors—.

2. ProDrift: trace-based detection, with a fixed-size window of 100 traces.

6.4 Results

The results show that CRIER performs better than Martjushev et al. and ProDrift in all datasets and for all metrics evaluated. In further detail:

- **Linear logs.** Table 4 shows the results for the linear gradual changes with slopes of 0.1%, 0.2%, 0.5%, and 1%. CRIER clearly outperforms the other proposals in terms of delay (Δ), with values of an order of magnitude smaller than the obtained by the rest of approaches. CRIER achieves better results also in terms of average F_{score}, with ProDrift getting better values for some logs from the collection of linear logs with 0.1% slope, but severely underperforming in other logs —sw, OIR and ROI—, where no changes are detected by this approach. However, when changes happen at a faster rate —i.e. the slope of the linear combination increases—, ProDrift performance significantly drops, detecting almost no changes, while the results from Martjushev et al. improve, but still clearly worst than CRIER. Finally, in terms of γ, CRIER obtains better results than the rest of the algorithms in all cases but two.

	CRIER	Martjushev et al.	ProDrift						
	F_{score}	Δ	γ	F_{score}	Δ	γ	F_{score}	Δ	γ
cF									
slope = 0.1%	0.8000	45.5000	79.86%	0.6207	477.1111	27.90%	0.8750	240.7143	66.28%
slope = 0.2%	1.0000	14.4444	90.93%	0.7826	100.4444	47.42%	0.3636	240.0000	9.00%
slope = 0.5%	1.0000	19.8889	78.67%	0.7273	219.1250	18.00%	0.0000	-	0.0000
slope = 1.0%	1.0000	15.3333	66.22%	0.3810	182.2500	10.11%	0.0000	-	0.0000
slope = 0.1%	0.7619	42.7500	79.23%	0.7200	364.5556	29.44%	0.8750	245.4286	64.96%
slope = 0.2%	1.0000	24.7778	87.29%	0.8000	137.7500	41.80%	0.7143	235.7500	24.42%
slope = 0.5%	1.0000	18.1111	77.94%	0.7368	243.2857	30.44%	0.0000	-	0.0000
slope = 1.0%	1.0000	11.2222	70.33%	0.4444	280.7500	8.89%	0.0000	-	0.0000
slope = 0.1%	0.3448	105.6000	43.72%	0.5000	283.3333	15.09%	0.8750	216.2857	68.73%
slope = 0.2%	0.8000	38.3750	74.80%	0.6154	139.7500	25.84%	0.8235	203.1667	42.67%
slope = 0.5%	0.9474	27.6667	78.28%	0.5000	170.3333	29.78%	0.3333	406.5000	22.00%
slope = 1.0%	0.7368	15.4286	54.00%	0.0000	-	0.00%	0.5000	433.6667	22.44%

Continues on next page
Table 4: F_{score}, $Δ$ and Y values for the logs with linear gradual changes. The colors highlight the best performing approach for each metric. (Continued)

	CRIER	Martjashev et al.	ProDrift							
	F_{score}	$Δ$	Y	F_{score}	$Δ$	Y	F_{score}	$Δ$	Y	
re	slope = 0.1%	0.8571	27.6667	82.39%	0.5806	337.7500	24.82%	0.4615	288.3333	20.26%
	slope = 0.2%	1.0000	16.7778	88.20%	0.7500	157.1111	34.47%	0.0000	-	0.00%
	slope = 0.5%	1.0000	10.3333	82.39%	0.4762	193.6000	16.78%	0.0000	-	0.00%
	slope = 1.0%	1.0000	8.1111	68.78%	0.1905	41.0000	12.00%	0.0000	-	0.00%
rp	slope = 0.1%	0.5385	60.5714	56.30%	0.2000	881.0000	13.22%	0.8750	236.1429	63.11%
	slope = 0.2%	0.9474	41.6667	81.89%	0.0000	-	0.00%	0.5000	243.3333	12.91%
	slope = 0.5%	0.9474	12.5556	71.94%	0.0000	-	0.00%	0.0000	-	0.00%
	slope = 1.0%	1.0000	12.0000	68.89%	0.0000	-	0.00%	0.0000	-	0.00%
sw	slope = 0.1%	0.7273	54.0000	79.32%	0.0000	-	0.00%	0.0000	-	0.00%
	slope = 0.2%	1.0000	21.1111	86.33%	0.0000	-	0.00%	0.0000	-	0.00%
	slope = 0.5%	1.0000	13.3333	81.00%	0.0000	-	0.00%	0.0000	-	0.00%
	slope = 1.0%	1.0000	10.1111	66.44%	0.0000	-	0.00%	0.0000	-	0.00%
oir	slope = 0.1%	0.6087	45.4286	70.71%	0.5455	474.1111	26.09%	0.0000	-	0.00%
	slope = 0.2%	0.6364	14.7143	70.18%	0.6667	173.1250	37.71%	0.0000	-	0.00%
	slope = 0.5%	1.0000	8.2222	90.56%	0.6957	186.1250	13.44%	0.0000	-	0.00%
	slope = 1.0%	1.0000	11.6667	80.56%	0.5600	60.8571	27.00%	0.0000	-	0.00%
ori	slope = 0.1%	0.4444	81.5000	56.19%	0.5000	435.8889	26.08%	0.8750	325.1429	54.56%
	slope = 0.2%	0.7619	27.6250	77.40%	0.5385	208.7143	22.62%	0.3636	341.5000	3.36%
	slope = 0.5%	0.9474	34.4444	73.94%	0.6087	209.1429	17.00%	0.0000	-	0.00%
	slope = 1.0%	1.0000	11.4444	68.67%	0.4348	31.4000	29.44%	0.0000	-	0.00%
rio	slope = 0.1%	0.6364	80.2857	67.39%	0.3636	209.5000	10.09%	0.8750	216.5714	69.41%
	slope = 0.2%	1.0000	36.7778	83.76%	0.2000	79.0000	7.58%	0.9412	196.8571	56.84%
	slope = 0.5%	1.0000	27.6667	78.22%	0.2000	32.0000	11.11%	0.0000	-	0.00%
	slope = 1.0%	1.0000	17.2222	70.78%	0.5000	145.0000	33.33%	0.0000	-	0.00%
roi	slope = 0.1%	0.7619	31.3750	81.29%	0.8421	287.0000	26.34%	0.0000	-	0.00%
	slope = 0.2%	1.0000	13.7778	92.36%	0.7368	194.7143	34.51%	0.0000	-	0.00%
	slope = 0.5%	0.9000	9.0000	82.28%	0.9412	247.3750	46.28%	0.0000	-	0.00%
	slope = 1.0%	1.0000	7.3333	81.00%	0.3333	223.6667	22.89%	0.0000	-	0.00%
average	slope = 0.1%	0.6481	57.4667	69.66%	0.4873	416.6944	17.70%	0.5712	252.6599	37.89%
	slope = 0.2%	0.9146	25.0048	83.31%	0.5090	148.8261	22.73%	0.3706	243.4345	15.58%
	slope = 0.5%	0.9742	18.1222	79.52%	0.4886	187.6234	18.31%	0.0333	406.5000	2.22%
	slope = 1.0%	0.9737	11.9873	69.57%	0.2844	137.8463	14.84%	0.0500	433.6667	2.24%

- **Gaussian logs.** Table 5 shows the results for the detection of gradual changes in logs that follow two Gaussian distributions. CRIER clearly outperforms Martjashev et al. in F_{score}, $Δ$ and Y, obtaining values very close to 1 in F_{score}, delays always lower than 25 traces for almost all the logs, and Y of more than 60%.

23
Table 5: F_{score}, Δ and Υ values for the logs with Gaussian gradual changes. The colors highlight the best performing approach for each metric.

	CRIER							
	F_{score}	Δ	Υ					
cf	$\mu = 20$	$\sigma^2 = 10$	0.9412	10.8750	61.22%	0.2727	25.6667	20.92%
	$\mu = 50$	$\sigma^2 = 30$	1.0000	9.7778	70.78%	0.5000	255.6000	6.84%
cp	$\mu = 20$	$\sigma^2 = 10$	1.0000	8.2222	67.97%	0.2105	170.0000	0.44%
	$\mu = 50$	$\sigma^2 = 30$	1.0000	8.6667	63.33%	0.7368	283.0000	18.80%
pm	$\mu = 20$	$\sigma^2 = 10$	1.0000	10.6667	55.56%	0.3636	168.5000	22.22%
	$\mu = 50$	$\sigma^2 = 30$	1.0000	14.8888	66.36%	0.6154	94.2500	44.44%
re	$\mu = 20$	$\sigma^2 = 10$	1.0000	6.4444	63.40%	0.2000	55.5000	12.42%
	$\mu = 50$	$\sigma^2 = 30$	1.0000	10.0000	62.94%	0.4000	176.0000	9.25%
rp	$\mu = 20$	$\sigma^2 = 10$	1.0000	7.1111	64.49%	0.0000	-	0.00%
	$\mu = 50$	$\sigma^2 = 30$	1.0000	9.8889	60.22%	0.0000	-	0.00%
sw	$\mu = 20$	$\sigma^2 = 10$	1.0000	12.2222	63.83%	0.0000	-	0.00%
	$\mu = 50$	$\sigma^2 = 30$	0.9474	8.1111	59.75%	0.0000	-	0.00%
OIR	$\mu = 20$	$\sigma^2 = 10$	1.0000	6.4444	64.05%	0.5000	5.3333	61.44%
	$\mu = 50$	$\sigma^2 = 30$	1.0000	25.6667	61.93%	0.5000	72.6667	26.34%
ORI	$\mu = 20$	$\sigma^2 = 10$	1.0000	8.6666	62.31%	0.2727	11.6667	29.85%
	$\mu = 50$	$\sigma^2 = 30$	1.0000	6.1429	47.40%	0.6087	141.7143	20.44%
R10	$\mu = 20$	$\sigma^2 = 10$	0.9412	10.3750	60.57%	0.0000	-	0.00%
	$\mu = 50$	$\sigma^2 = 30$	1.0000	15.4444	64.34%	0.3636	13.0000	21.13%
ROI	$\mu = 20$	$\sigma^2 = 10$	1.0000	6.7777	69.28%	0.4444	253.5000	17.86%
	$\mu = 50$	$\sigma^2 = 30$	0.9847	7.3333	68.07%	0.8421	254.5000	36.52%
Average	$\mu = 20$	$\sigma^2 = 10$	0.9882	8.7806	63.50%	0.2264	98.5952	16.03%
	$\mu = 50$	$\sigma^2 = 30$	0.9847	11.5921	61.59%	0.4567	161.3414	19.66%

* Exponential logs. Table 6 shows the results for the detection of gradual changes in logs that follow three exponential distributions with λ set to 0.05, 0.1, and 0.5. CRIER also obtains the best results, with Δ values two orders of magnitude smaller than those of Martjushev et al.. In terms of F_{score} and Υ, CRIER still achieves results that are, on average, almost twice better than Martjushev et al.. It is worth noting that Υ values are usually lower with the exponential distribution, if compared with the other distributions.

Table 6: F_{score}, Δ and Υ values for the logs with exponential gradual changes. The colors highlight the best performing approach for each metric.

	CRIER						
	F_{score}	Δ	Υ				
$\lambda = 0.05$	0.5000	6.0000	23.02%	0.3333	205.2500	11.99%	
cf	$\lambda = 0.10$	1.0000	5.2222	60.00%	0.2857	38.6667	11.43%
$\lambda = 0.50$	0.3636	2.0000	19.05%	0.2857	9.0000	33.33%	
$\lambda = 0.05$	0.4615	8.8333	12.39%	0.5000	297.8000	15.83%	
cp	$\lambda = 0.10$	0.9412	6.3750	53.81%	0.2222	300.5000	6.51%
$\lambda = 0.50$	0.3636	3.0000	17.46%	0.1111	285.0000	0.79%	

Continues on next page
Table 6: F_{score}, Δ and Υ values for the logs with exponential gradual changes. The colors highlight the best performing approach for each metric. *(Continued)*

CRIER	Martjushev et al.					
	F_{score}	Δ	Υ	F_{score}	Δ	Υ
$\lambda = 0.05$	0.4167	9.8000	25.82%	0.2000	166.0000	11.11%
pm $\lambda = 0.10$	1.0000	8.7778	49.68%	0.2000	217.0000	11.11%
	0.2000	3.0000	8.73%	0.0000	-	0.00%
re $\lambda = 0.10$	1.0000	3.7778	57.46%	0.4348	47.6000	17.14%
	0.7143	2.8000	44.44%	0.1905	7.5000	11.11%
	0.0000	0.0000	-	0.0000	-	0.00%
Rp $\lambda = 0.10$	0.9412	4.2500	52.70%	0.0000	-	0.00%
	0.5000	-	0.00%	0.0000	-	0.00%
sw $\lambda = 0.05$	0.2963	11.5000	15.51%	0.0000	-	0.00%
	0.7000	5.7143	38.73%	0.0000	-	0.00%
	0.8000	3.3333	50.79%	0.0000	-	0.00%
OIR $\lambda = 0.10$	1.0000	3.7778	60.48%	0.6667	20.8889	61.27%
	0.6154	2.5000	36.51%	0.6667	13.1111	99.21%
ORI $\lambda = 0.05$	0.5000	9.8333	29.42%	0.5600	52.0000	29.58%
	0.6000	6.5000	35.40%	0.5000	22.1429	53.02%
	0.3636	2.5000	18.25%	0.4167	11.2000	49.21%
RIO $\lambda = 0.10$	0.9412	8.1250	56.67%	0.2000	233.0000	11.11%
	0.3636	3.5000	16.67%	0.2000	192.0000	11.11%
	0.5000	6.6667	29.26%	0.7368	247.1429	25.34%
ROI $\lambda = 0.10$	0.8750	4.4286	46.98%	0.5263	236.6000	38.10%
	0.8000	2.8333	53.17%	0.2222	251.5000	22.22%
Average $\lambda = 0.05$	0.5591	8.5742	31.11%	0.3646	158.9043	17.37%
	0.8999	5.6948	50.21%	0.3036	139.5498	22.03%
	0.4584	2.8296	27.34%	0.2093	109.9016	21.52%

- **Constant logs.** Table 7 shows the results for the detection of gradual changes in logs that follow three different constant distributions. In these logs, CRIER obtained the best results, with a perfect F_{score} for all the cases, average Δ of less than 10 traces, and Υ values above 80%. On the contrary, Martjushev et al. achieves average Δ values between 140 and 220 traces, Υ values always below 60%, and average F_{score} values that do not reach 0.6, with several cases in which no change is detected—as rp and sw.
Table 7: F_{score}, Δ and Y values for the logs with constant gradual changes. The colors highlight the best performing approach for each metric.

	CRIER	Marjushev et al.						
	F_{score}	Δ	Y					
	Δ	Y	Δ	Y				
$p = 0.5$	$n = 100$	1.0000	5.4444	84.33%	0.3158	230.0000	2.22%	
cf	$p = 0.5$	$n = 200$	1.0000	6.2222	93.00%	0.7273	172.5000	26.06%
	$p = 0.5$	$n = 500$	1.0000	6.2222	97.36%	0.9474	127.2222	46.69%
	0.0000	5.6667	84.33%	0.0000	263.5556	30.44%		
cp	$p = 0.5$	$n = 200$	1.0000	5.1111	92.22%	0.8889	287.7500	28.72%
	$p = 0.5$	$n = 500$	1.0000	4.8889	96.56%	1.0000	125.7778	53.64%
	0.0000	4.5556	86.44%	0.0000	-	0.00%		
pm	$p = 0.5$	$n = 200$	1.0000	4.4444	94.72%	0.0000	-	0.00%
	$p = 0.5$	$n = 500$	1.0000	6.6667	97.67%	0.6154	81.7500	37.73%
	0.0000	5.6667	84.22%	0.1053	93.0000	0.78%		
re	$p = 0.5$	$n = 200$	1.0000	3.5556	93.39%	0.5714	230.1667	17.33%
	$p = 0.5$	$n = 500$	1.0000	3.0000	96.49%	0.7273	213.7500	37.71%
	0.0000	17.1111	63.11%	0.0000	-	0.00%		
rp	$p = 0.5$	$n = 200$	1.0000	5.2222	90.94%	0.0000	-	0.00%
	$p = 0.5$	$n = 500$	1.0000	5.8889	96.89%	0.0000	-	0.00%
	0.0000	4.6667	87.33%	0.0000	-	0.00%		
sw	$p = 0.5$	$n = 200$	1.0000	4.2222	94.44%	0.0000	-	0.00%
	$p = 0.5$	$n = 500$	1.0000	6.8889	96.29%	0.0000	-	0.00%
	0.0000	5.2222	90.94%	0.1053	93.0000	0.78%		
OIR	$p = 0.5$	$n = 200$	1.0000	3.0000	95.06%	0.5455	191.8333	19.22%
	$p = 0.5$	$n = 500$	1.0000	3.1111	96.73%	0.8571	198.7778	38.87%
	0.0000	5.4444	86.56%	0.4545	88.6000	25.89%		
ORI	$p = 0.5$	$n = 200$	1.0000	3.5556	96.06%	0.8571	232.5556	19.61%
	$p = 0.5$	$n = 500$	1.0000	3.8889	97.24%	0.6667	256.4444	40.60%
	0.0000	12.1111	83.67%	0.0000	-	0.00%		
RIO	$p = 0.5$	$n = 200$	1.0000	10.0000	93.11%	0.5000	171.6667	33.06%
	$p = 0.5$	$n = 500$	1.0000	9.8889	97.40%	0.3636	21.0000	20.22%
	0.0000	3.3333	90.89%	0.8421	245.5714	42.22%		
ROI	$p = 0.5$	$n = 200$	1.0000	3.0000	96.33%	1.0000	254.4444	44.94%
	$p = 0.5$	$n = 500$	1.0000	3.3333	98.36%	0.9474	153.3333	54.98%
	0.0000	6.4333	83.98%	0.3333	160.0795	16.53%		
$Average$	$p = 0.5$	$n = 200$	1.0000	4.8333	94.03%	0.5090	220.1310	18.10%
	$p = 0.5$	$n = 500$	1.0000	5.3778	97.07%	0.6125	147.2569	33.04%

Table 8 shows the findings of the BAIN test performed over the results obtained by all approaches. In this test, the hypothesis H_1 considers that CRIER achieves better results than the other state-of-the-art approaches —i.e., CRIER > Marjushev et al. and CRIER > ProDrift—, while H_0^r considers the contrary hypothesis. As Table 8 shows, the Bayes factor BF_{H_1,H_0^r} for all metrics in all distributions is greater than 100, meaning that there is an extreme evidence for H_1, i.e., CRIER is better than ProDrift and Marjushev et al..

6.5 Discussion

As shown in the previous Section, CRIER clearly outperforms the current state-of-the-art approaches. In particular, for linear logs, ProDrift has a higher accuracy for some logs —cf, cp, rp, ORI and RIO with
whether we are at the beginning or at the end of the change. Consequently, Table 8: BAIN test results for the validation logs, where BF_{H, H_i} shows the Bayesian factor for H_i against its complementary $H_i^C = \neg H_i$. The most likely hypothesis is shown shaded in blue.

	F_{score}	Δ	Y
Linear logs			
H_1: CRIER > Martjushev et al. and CRIER > ProDrift	1.20×10^{12}	1.99×10^{13}	2.28×10^{13}
H_2: CRIER < Martjushev et al.	4.30×10^{-12}	3.40×10^{-16}	7.42×10^{-48}
H_3: CRIER < ProDrift	9.56×10^{-23}	1.96×10^{-14}	8.96×10^{-55}
H_4: CRIER = Martjushev et al.	5.81×10^{-10}	5.10×10^{-14}	2.10×10^{-45}
H_5: CRIER = ProDrift	1.83×10^{-20}	2.16×10^{-12}	2.71×10^{-52}
Gaussian logs			
H_1: CRIER > Martjushev et al.	2.29×10^{13}	4.74×10^{7}	2.29×10^{13}
H_2: CRIER < Martjushev et al.	8.57×10^{-29}	2.11×10^{-8}	2.04×10^{-31}
H_3: CRIER = Martjushev et al.	1.52×10^{-26}	1.75×10^{-6}	3.79×10^{-29}
Exponential logs			
H_2: CRIER < Martjushev et al.	8.60×10^{-8}	3.28×10^{-11}	1.51×10^{-3}
H_3: CRIER = Martjushev et al.	9.03×10^{-7}	3.94×10^{-9}	0.10
Constant logs			
H_1: CRIER > Martjushev et al.	9.00×10^{-3}	2.29×10^{-5}	2.29×10^{-3}
H_2: CRIER = Martjushev et al.	1.21×10^{-13}	1.38×10^{-33}	5.64×10^{-75}
H_3: CRIER < Martjushev et al.	1.75×10^{-11}	2.94×10^{-31}	2.01×10^{-72}

$slope$ of 0.1% and pm with slopes of 0.1% and 0.2%— in which the traces of the new behavior are added at a slower rate at the beginning of the change, while CRIER has clearly the best performance with higher insertion rates. This low frequency forces the conformance checking metrics to change slowly, as the behavior causing the change appears rarely, which in turn leads the slope of the regression to stay invariant until the behaviour is more frequent; resulting in a late/early confirmation of the change depending on whether we are at the beginning or at the end of the change. Consequently, CRIER obtains high delays in detecting the start of the change, and premature detections at the end of the change, having a high number of false positives that lead to a decrease in accuracy. Particularly interesting are the logs with slowest changes —0.1% slope, i.e., 1,000-trace change regions—, where ProDrift obtains the best F_{score} in 6 out of 10 logs. For these 6 logs, CRIER detects a lower change region overlapping, but obtains the best results in terms of Δ, which reinforces the idea that the detection errors are due to false positives in determining the end of the change. However, with respect to the average values of the metrics, CRIER is the best positioned since ProDrift is not able to detect any change in 3 of the logs, while Martjushev et al. obtains many false positives, detecting less than 18% of the traces as a region of change.

In the remaining linear logs, the results of ProDrift suffer a significant degradation, detecting changes only in 2 of 20 logs with a greater slope than 0.1 %, in which it obtains F_{score} values of 0.5 or less, and Δ of more than 400 traces. This degradation may be due to the fact that, as changes are much faster, the algorithm does not have enough information to correctly extract the distribution of partially-ordered-runs before and after the change, not being able to correctly detect the drifts.

In logs with Gaussian distributions, the results obtained by CRIER are clearly better than those of Martjushev et al., with F_{score} of 1.0 in 17 of 20 logs. These logs are characterized by relatively fast changes, but with both a slow start and termination. The results are consistent with what was previously established for the linear changes: as these are relatively fast changes —slightly more than 150 traces in the slowest case—the slope of the regression changes abruptly, facilitating the detection of changes. The
values of Δ and Υ obtained by Martjushev et al. are particularly indicative. The slow start and termination of the new behavior lead to smaller changes in the distributions of the features, making the statistical test employed by this approach unable to detect the drifts and causing the beginning of the changes to be detected late —increasing Δ values— while their termination is detected prematurely —resulting in low Υ values—.

Something similar happens for logs with constant distribution. In this case, CRIER obtains the best results, with a perfect average F_{score} and an average Υ of around 90%. This is because, as soon as the change starts, half of the observed behavior is part of the new model. Consequently, conformance metrics change very fast, which means that the slope of the regression is significantly modified and changes are detected almost instantly. For Martjushev et al., there are several logs in which no change is detected —rp and sw for all cumulative probability functions—. The poor performance of this algorithm for the same change patterns may be caused by the selected features since they are not able to capture such changes. Perhaps selecting other features that might be more sensitive to this type of changes would improve the results, however a more in-depth analysis should be performed to confirm this intuition.

Finally, for logs with exponential changes, the results of CRIER are quite degraded when compared to the other distributions. These results are due to two distinct situations: on the one hand, in logs with $\lambda = 0.5$, changes are so fast —only 14 traces— that CRIER is not able to detect them as gradual, leading to false negatives; and, on the other hand, in logs with $\lambda = 0.05$, changes have such long tails that they are terminated prematurely, and consequently, a high number of false positives are detected in traces that belong to the actual change but have not been detected as part of the drift. This behavior of the algorithm is reflected by the values of Δ and Υ. As Table 6 shows, all changes are detected very close where they begin —with Δ below 10 traces in almost all cases—, but Υ values remain around 20%, indicating that only the initial part of the change region is detected. In addition, logs in which CRIER obtains the lowest Υ coincide with those with the worst F_{score}, confirming this hypothesis.

7 Conclusions and Future Work

In this paper, we presented CRIER, an offline gradual-drift detection algorithm. CRIER is based on the hypothesis that change detection and classification can be addressed by analyzing how the fitness and precision of the process models —the old model and the new one after the change— vary from the beginning to the end of the gradual change. Specifically, the hypothesis is that at the beginning there is a modification of the fitness, keeping the precision; while at the end the precision changes. This hypothesis has been mathematically demonstrated.

The approach has been validated using a synthetic dataset with 120 logs that present different change patterns and gradual change distributions, from linear to Gaussian, exponential and constant. The experiments show that CRIER outperforms the results of the main state-of-the-art approaches in terms of accuracy (F_{score}); delay (Δ), so drifts are detected faster; and change region overlapping (Υ), so the time interval during which two processes coexist is clearly identified.

Furthermore, CRIER is more robust for all types of change distributions and particularly better for those in which the traces of the new model start to arise with a higher frequency at the beginning of the
gradual drift, such as Gaussian, exponential, and constant distributions. Nonetheless, our approach has proven to be more consistent even when the former conditions are not present such as when the drift follows a linear distribution with a low slope, being able to detect all the change patterns with less delay Δ and better Υ.

References

van der Aalst WMP (1998) The Application of Petri Nets to Workflow Management. Journal of Circuits, Systems and Computers 8:21–66, 10.1142/S0218126698000043

den Aalst WMP, Adriansyah A, van Dongen BF (2012) Replaying History on Process Models for Conformance Checking and Performance Analysis. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2:182–192, 10.1002/widm.1045

Adriansyah A (2014) Aligning observed and modeled behavior. PhD thesis, Department of Mathematics and Computer Science, 10.6100/IR770080

van der Aalst et al WMP (2011) Process Mining Manifesto. In: Proceedings of the 2011 international conference on business process management workshops (BPM 2011), Springer, pp 169–194, 10.1007/978-3-642-28108-2_19

Bifet A, Gavaldà R (2007) Learning from Time-Changing Data with Adaptive Windowing. In: Proceedings of the 7th SIAM international conference on data mining (SDM 2007), SIAM, pp 443–448, 10.1137/1.9781611972771.42

Bose RPJC, van der Aalst WMP (2009) Trace Clustering Based on Conserved Patterns: Towards Achieving Better Process Models. In: Proceedings of the 2009 international conference on business process management workshops (BPM 2009), Springer, pp 170–181, 10.1007/978-3-642-12186-9_16

Bose RPJC, van der Aalst WMP, Zliobaite I, Pechenizkiy M (2014) Dealing With Concept Drifts in Process Mining. IEEE Transactions on Neural Networks and Learning Systems 25:154–171, 10.1109/TNNLS.2013.2278313
vanden Broucke SKLM, Weerdt JD, Vanthienen J, Baesens B (2014) Determining Process Model Precision and Generalization with Weighted Artificial Negative Events. IEEE Transactions on Knowledge and Data Engineering 26:1877–1889, 10.1109/TKDE.2013.130

Carmona J, Gavalda R (2012) Online Techniques for Dealing with Concept Drift in Process Mining. In: Proceedings of the 11th international symposium on advances in intelligent data analysis (IDA 2012). Springer, pp 90–102, 10.1007/978-3-642-34156-4_10

Carmona J, van Dongen BF, Solti A, Weidlich M (2018) Conformance Checking - Relating Processes and Models. Springer, 10.1007/978-3-319-99414-7

Dumas M, La Rosa M, Mendling J, Reijers HA (2018) Fundamentals of Business Process Management, Second Edition. Springer, 10.1007/978-3-662-56509-4

Gallego-Fontenla V, Vidal J, Lama M (2021) A Conformance Checking-based Approach for Sudden Drift Detection in Business Processes. IEEE Transactions on Services Computing 10.1109/TSC.2021.3120031

Gama J, Zliobaite I, Bifet A, Pechenizkiy M, Bouchachia A (2014) A Survey on Concept Drift Adaptation. ACM Computing Surveys 46:44:1–44:37, 10.1145/2523813

Gu X, Mulder J, Hoijtink H (2018) Approximated Adjusted Fractional Bayes Factors: A General Method for Testing Informative Hypotheses. British Journal of Mathematical and Statistical Psychology 71:229–261, 10.1111/bmsp.12110

Jeffreys H (1998) The Theory of Probability. OUP Oxford, 10.1126/science.92.2395.479.b

Junior SB, Tavares GM, da Costa VGT, Ceravolo P, Damiani E (2018) A Framework for Human-in-the-loop Monitoring of Concept-drift Detection in Event Log Stream. In: Proceedings of the web conference 2018 (WWW 2018), ACM, pp 319–326, 10.1145/3184558.3186343

de Leoni M, van der Aalst WMP (2013) Aligning Event Logs and Process Models for Multi-perspective Conformance Checking: An Approach Based on Integer Linear Programming. In: Proceedings of the
2013 international conference on business process management (BPM 2013), Springer, pp 113–129, 10.1007/978-3-642-40176-3_10

Li T, He T, Wang Z, Zhang Y, Chu D (2017) Unraveling Process Evolution by Handling Concept Drifts in Process Mining. In: Proceedings of the 2017 IEEE international conference on services computing (SCC 2017), IEEE Computer Society, pp 442–449, 10.1109/SCC.2017.63

Love J, Selker R, Marsman M, Jamil T, Dropmann D, Verhagen J, Ly A, Gronau QF, Šmíra M, Epskamp S, et al. (2019) JASP: Graphical Statistical Software for Common Statistical Designs. Journal of Statistical Software 88:1–17, 10.18637/jss.v088.i02

Luengo D, Sepúlveda M (2011) Applying Clustering in Process Mining to Find Different Versions of a Business Process That Changes over Time. In: Proceedings of the 2011 international conference on business process management workshops (BPM 2011), Springer, pp 153–158, 10.1007/978-3-642-28108-2_15

Ly A, Stefan A, van Doorn J, Dablander F, van den Bergh D, Sarafoglou A, Kucharsky S, Derks K, Gronau QF, Raj A, et al. (2020) The Bayesian Methodology of Sir Harold Jeffreys as a Practical Alternative to the p-value Hypothesis Test. Computational Brain & Behavior 3:153–161, 10.1007/s42113-019-00070-x

Maaradji A, Dumas M, Rosa ML, Ostovar A (2015) Fast and Accurate Business Process Drift Detection. In: Proceedings of the 2015 international conference on business process management (BPM 2015), Springer, pp 406–422, 10.1007/978-3-319-23063-4_27

Maaradji A, Dumas M, La Rosa M, Ostovar A (2017) Detecting Sudden and Gradual Drifts in Business Processes from Execution Traces. IEEE Transactions on Knowledge and Data Engineering 29:2140–2154, 10.1109/TKDE.2017.2720601

Maggi FM, Burattin A, Cimitile M, Sperduti A (2013) Online Process Discovery to Detect Concept Drifts in LTL-Based Declarative Process Models. In: Proceedings of the On the Move to Meaningful Internet Systems Conferences (OTM 2013), Springer, pp 94–111, 10.1007/978-3-642-41030-7_7

Martjushev J, Bose RPJC, van der Aalst WMP (2015) Change Point Detection and Dealing with
Gradual and Multi-order Dynamics in Process Mining. In: Proceedings of the 14th international conference on perspectives in business informatics research (BIR 2015), Springer, pp 161–178, 10.1007/978-3-319-21915-8_11

Munoz-Gama J (2016) Conformance Checking and Diagnosis in Process Mining - Comparing Observed and Modeled Processes. Springer, 10.1007/978-3-319-49451-7

Rozinat A, van der Aalst WMP (2008) Conformance Checking of Processes Based on Monitoring Real Behavior. Information Systems 33:64–95, 10.1016/j.is.2007.07.001

Sato DMV, De Freitas SC, Barddal JP, Scalabrin EE (2021) A Survey on Concept Drift in Process Mining. ACM Computing Surveys 54:189:1–189:38, 10.1145/3472752

Seeliger A, Nolle T, Mühlhäuser M (2017) Detecting Concept Drift in Processes using Graph Metrics on Process Graphs. In: Proceedings of the 9th conference on subject-oriented business process management (S-BPM ONE 2017), ACM, pp 1–10

Stertz F, Rinderle-Ma S (2018) Process Histories - Detecting and Representing Concept Drifts Based on Event Streams. In: Proceedings of the On the Move to Meaningful Internet Systems Conferences (OTM 2018), Springer, pp 318–335, 10.1007/978-3-030-02610-3_18

Tavares GM, Ceravolo P, da Costa VGT, Damiani E, Junior SB (2019) Overlapping Analytic Stages in Online Process Mining. In: Proceedings of the 2019 IEEE international conference on services computing (SCC 2019), IEEE, pp 167–175, 10.1109/SCC.2019.00037

Weber B, Reichert M, Rinderle-Ma S (2008) Change Patterns and Change Support Features - Enhancing Flexibility in Process-aware Information Systems. Data and Knowledge Engineering 66:438–466, 10.1016/j.datak.2008.05.001

Yeshchenko A, Ciccio CD, Mendling J, Polyvyanyy A (2019) Comprehensive Process Drift Detection with Visual Analytics. In: Proceedings of the 38th international conference on conceptual modeling (er 2019), Springer, pp 119–135, 10.1007/978-3-030-33223-5_11
Zheng C, Wen L, Wang J (2017) Detecting Process Concept Drifts from Event Logs. In: Proceedings of
the On the Move to Meaningful Internet Systems Conferences (OTM 2017), Springer, pp 524–542,
10.1007/978-3-319-69462-7_33