Assessment of Tubewell Water Quality used for Irrigation in Kebbi State, North-Western, Nigeria

M. A. Augie a* and M. A. Adegbite a

a Department of Soil Science, Faculty of Agriculture, Kebbi State University of Science and Technology, Aliero, Nigeria.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJOB/2022/v14i430222

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here:
https://www.sdiarticle5.com/review-history/77373

Received 26 February 2022
Accepted 05 May 2022
Published 05 May 2022

ABSTRACT

Water is vital to the existence of all living organisms, but this valued resource is increasingly being threatened as human populations grow and demand for more water of high quality for domestic, agricultural and other economic activities like transportation and recreation increases. A field experiment was conducted with the aim of assessing the tubewell water quality used for irrigation in four (4) selected local Government Area of Kebbi State, North-Western Nigeria. From each local government area, water samples in triplicates were collected from in clean 2liter plastic bottles. Each water sample was analyzed for pH, electrical conductivity (Ec), total dissolved solid (TDS), sodium adsorption ratio (SAR), residual sodium concentration (RSC), calcium (Ca), magnesium (Mg), potassium (K), Sodium (Na), chloride (Cl) and (P) using standard procedures. Result obtained showed that overall mean of pH, SAR, Ca, Mg, K, Na, P and Cl were 6.3, 1.5mg/l, 165.17mg/l, 128.00mg/l, 1.20, 0.16 and 3.75 mg/l, respectively. However, Ca (165.17mg/l), and Mg (128.00mg/l) were observed to high concentration in almost all the selected local government areas. Furthermore, result obtained also revealed that tubewell water were high for the parameters considered and therefore special attention must be given to Bunza tubewell to avoid becoming saline or sodic which could have detrimental effects on growing crops.

Keywords: Tubewell; water quality; irrigation; sodicity; Nigeria.

*Corresponding author: E-mail: musaamaduaugi@gmail.com;
1. INTRODUCTION

Water is vital to the existence of all living organisms, but this valued resource is increasingly being threatened as human populations grow and demand for more water of high quality for domestic, agricultural and other economic activities like transportation and recreation [1]. Water sources other than rainfall, include streams, rivers, dams, ponds and tubewells. Despite its importance, water is the most poorly managed resource in the world. The quality of any body of surface or ground water is a function of either or both natural influences and human activities [2-4].

However, the way that water has been managed in agriculture has caused wide scale change in land cover with water courses, contributing to ecosystem degradation and undermining the process that supports ecosystem and the provision of a wide range of ecosystem services essential for human well-being [5-7].

Irrigation waters whether derived from springs, diverted from streams or pumped from well contain appreciable quantities of chemical substances in solution that may reduce crop yield and deteriorate soil fertility [8-11]. Also it may carry substances derived from its natural environment or from the waste products of man’s activities (domestic and industrial effluents). Understanding irrigation water quality is critical for sustainability of crop production [12]. Poor quality water may affect irrigated crops by causing accumulation of salts in the root zone, by causing loss of permeability of the soil due to excess sodium or calcium leaching, or by containing pathogens or contaminants which are directly toxic to plants or to those consuming them [13,14]. Water used for irrigation can vary greatly in quality depending upon types and quantity of dissolves salts, these salts are applied with the water and remained behind in the soil as water evaporates or is used by the crop [15,16]. However water quality in irrigated agriculture include salinity hazard (Total Soluble Salt Content), Sodium hazard, (ratio of Sodium (Na+) to Calcium (Ca2+) and Magnesium (Mg2+) ions, water pH, Alkalinity (Carbonate and Bicarbonate) specific ions: Chloride (Cl-) Sulfate (So42-), Boron (Bo) and nitrate – nitrogen (NO3N), Organic contaminant (Oil pollutant) and other factors such as heavy metals [17]. It is commonly accepted that the problems originating from irrigation water quality vary in type and severity as a function of numerous factors including the type of soil and the crop, the climate of the area as well as the farmer who utilizes the water. So, evaluation of water used for irrigation is a prime need for sustainable crop production as well as food security [18].

This research is therefore aimed at evaluating irrigation water quality from tubewell in selected local government areas of Kebbi State and to ascertain its suitability for crop production.

2. MATERIALS AND METHODS

2.1 Study Area

The Study comprises of four local government areas of the state, namely, Augie (4.6 12° 52’ N, 4° 36’ 0”E), Argungu (12° 44’36.02N, 4°31’36.73E), Birnin Kebbi (12° 27’ 7.79”N, 4° 12’ 0.60”E) and Bunza (12° 5’ 3.98”N, 4° 1’38.91”E) local government areas. Kebbi State is situated in the extreme north-west of Nigeria between latitudes 10°06’-13°10’ North and longitudes 3°01’-6’03” East (KARDA, 1998). It shares borderer with both Niger and Benin Republics in the west, On the East, it is bordered by Sokoto State and in the South by Niger State. The State enjoys a semi-arid climate where precipitation is usually less than the normal requirement of most agricultural crops. The rainy season consists of a short (May – October) period with rainfall poorly distributed throughout the growing period. Frequent and heaviest precipitation is experienced between August and September. The annual rainfall ranges from 400 to 850mm increasing both in quantity and intensity within the state from north to south [19].

2.2 Sample Collection

Water samples were collected in 1.5 liters sterilized bottles in triplicates. Water samples were collected from three (3) different boreholes per local government and blended together to form a representative sample in all the four (4) local government areas. Water sample was collected in March, 2021 during dry season. After sampling, the bottles were marked, sealed and taken to the laboratory for further analyses.

2.3 Sample Analysis

Water quality sampling was carried out according to American Public Health Association [20]. EC and pH measurements were determined using EC and pH Meters which were calibrated prior to taking readings. The sodium adsorption ratio...
(SAR) and residual sodium carbonate (RSC) were calculated as follows:

\[
\text{SAR} = \frac{\sqrt{\text{Na}^{2+}}}{\sqrt{\text{Ca}^{2+}} + \text{Mg}^{2+}} \quad \text{(Brady and Weil, 1999)}
\]

\[
\text{RSC} = (\text{CO}_3^{2-} + \text{HCO}_3^-) - (\text{Ca}^{2+} + \text{Mg}^{2+}) \quad \text{(Doneen, 1964)}
\]

2.5 Statistical Analysis

The data obtained was subjected to analysis of variance (ANOVA) using SPSS (2000). Means found to be significantly different were separated using Duncan New Multiple Range Test (DNMRT). The treatment means were separated at 5% level of probability.

3. RESULTS AND DISCUSSION

Table 1 showed that the pH of the tubewell water in the study areas ranged from 6.0 – 6.6 (overall mean pH 6.3 indicating that the water samples were slightly acidic). However, when comparing the mean values within the selected local government areas, Bunza local government area appeared to have highest pH value of 6.6 indicating that the water was neutral. While Argungu (6.4), Augie (6.3) and the lowest (6.0) was observed in Birnin Kebbi had a pH of 6.4, 6.3 and 6.0 respectively indicating a slightly acidic water samples. Although all the water samples from the study areas where observed to be within the recommended pH range of 6.5- 8.4 for irrigation water as given by FAO (2005) and WHO [21]. This result agrees with that obtained by Augie [22] for tubewell water (5.4-7.7) in fadama soils of Sokoto state. Similarly pH (5.1-7.8) was reported by Singh [23] for tubewell water in Zamfara state. The mean pH values obtained shows that the tubewell water is safe for irrigation, although application of irrigation water with pH outside the threshold could cause nutritional disparity or lead to toxic ion build up in the soil [24,25].

Electrical conductivity (EC) is the ability of water to transmit the electric current. It is a good indicator of the overall amounts of mineral salts contained in water (Warrence et al. 2003). When the EC of water is high, it shows that there is high concentration of ions in the water and also affects the plant growth. EC from table 1 shows that the value ranged from 0.124-2.413ds/m with a mean value of 0.896ds/m indicating low EC when compared with irrigation quality standard of 0-3ds/m as recommended by regulatory agency (Bauder et al., 2011). However, special attention must be given to tubewell water from Bunza with a mean value of 2.41ds/m because any increase in EC will lead soil clogging and permeability hence restricting the movement of nutrients from soil to crop through the roots (Bauder et al., 2011); [26]. Result obtained in this study agrees with report of Singh [27] that 98% of the tubewell water in Kebbi state belonged low to medium salinity water category.

The overall mean value of the Sodium Adsorption Ration (SAR) from table 1 ranged from 0.08-1.54mg/l with overall mean value of 0.64. SAR is the measure of the proportion of sodium to calcium and magnesium in the water. According to U S Salinity Laboratory Staff [28] who observed that, water with SAR value of <10 is considered excellent for irrigation. Therefore tubewell water from the study areas is considered as free from sodicity problems and could be suitable for irrigation without any restriction. This result agreed with Singh et al. [29] and Singh and Tsoho [30] who reported SAR values of 0.71 and 0.75 for Kandoli Shela Stream water.

LGA	pH	EC	SAR	TDS	RSC
Augie	6.3	0.247	0.24	0.933	36.57
Argungu	6.4	0.802	0.69	0.533	23.33
B/Kebbi	6.0	0.124	0.08	0.533	10.27
Bunza	6.6	2.413	1.54	3.767	117.33
Overall Mean	6.3	0.896	0.64	1.442	35.21
SE±	0.808	0.362	0.269	0.458	575.07

Table 1. Mean values of pH, EC (ds/m), SAR (mg/l), TDS (mg/l) RSC (mg/l) and HCO$_3^-$ for Tubewell Water of some selected Local Governments areas of Kebbi State.
Residual sodium carbonate (RSC) is used to determine the hazardous effects of carbonate and bicarbonate on irrigation water quality. RSC according to table 1 indicated Bunza had the highest value of 117.33mg/l while Augie had the lowest RSC value of 36.57. RSC value from all the study areas were below 2.5mg/l and therefore safe for irrigation. The tube well water of the fadama of Kebbi State with RSC could be safely used for irrigation free of carbonates and bicarbonates hazards. Similarly, Singh [27] reported low RSC value for irrigation water samples in Kebbi and Zamfara States and were also below the maximum permissible limit according to WHO [21] and Salifu et al. [31] The study revealed high concentration of Ca (165.17mg/l). However, when comparing within the selected local government areas, Bunza local government area had highest calcium value of 479.33mg/l while lowest value of Ca was observed in Birnin Kebbi local government area with mean value of 50mg/l. The values obtained falls within the Ca range of 29-467mg/l as reported by WHO 2008 and Salifu et al., 2017 and also for Kebbi state as reported by Singh [27]. High concentration of Ca in irrigation water is known to cause salinity problems. Unfortunately, the result revealed high concentration of Ca in Bunza irrigation water and therefore should be appropriately managed to avoid further accumulation of calcium salt on the irrigated soils.

The obtained exchangeable Mg value in the water of the study area was128.00mg/l. Similarly, the result in table 2 showed that Bunza local government area had significantly higher magnesium content than other local government areas with mean values of 320.40mg/l which is higher than the permissible limit set by WHO 2008 and Salifu et al., 2017 and therefore, urgent attention must be given to irrigation water samples in Bunza. Augie local government area recorded least mean value of 52mg/l for Mg. This result fell within the range of 18-898mg/l for tube well water in Kebbi state [20]. Similar result was reported (18-360mg/l) in Zamfara state [23]. Substantially, high concentration of Mg and K in irrigation water suggests that it contains a lot of Mg and K salts. Continuous and particularly excessive irrigation with such water may lead to a build-up of salts and subsequent salinization [33,34].

The concentrations of exchangeable cations in the tubewell water of Kebbi state were presented in Table 2. The table showed that the respective mean values in the tubewell water of Kebbi State for Ca, Mg, K, and Na were 165.17mg/l, 128.00mg/l, 1.20mg/l and 7.47mg/l, respectively. Furthermore, table 2 showed that the overall mean K value of the tubewell water of the study area was 1.20mg/l. In comparing the local government areas, Bunza local government area had the highest potassium content than other local government areas with mean value of

Table 2. Mean valuesCa (mg/l), Mg (mg/l), k (mg/l), Na (mg/l) and Clmg/l of some selected Local Governments Areas of Kebbi State

LGA	Ca	Mg	K	Na	Cl
Augie	51.33	52.00	0.33	1.77	1.33
Argungu	80.00	62.00	1.47	5.90	3.60
B/Kebbi	50.00	77.60	0.33	0.63	1.77
Bunza	479.33	320.40	2.67	21.57	8.30
Overall Mean	165.17	128.00	1.20	7.47	3.75
SE±	62.63	46.96	0.394	3.144	1.057

Means having different letter(s) along the same column differed significantly (p<0.05)
The overall Na mean value of the water of the study areas was 7.47mg/l (Table 2). It follows similar trend of Bunza having the highest Na content when compared with other local government areas with mean value of 21.57mg/l. This result fell within the range of 1-160mg/l for tubewell water in Kebbi state [27] and <200 according to WHO [21] and Salifu et al. [31]. Similarly, a sodium mean value of 0.2-49.0mg/l was recorded for West African ground water [35].

Chloride (Cl) is a toxic substance that requires special attention when water is used for irrigation. The observed mean concentration of the tubewell water of the study areas ranged from 1.33 to 8.30 mg/l (overall mean 3.75) mg/l. However, on the bases of comparison, it follows similar trend of Bunza having the highest Cl value with Augie recording the lowest value 1.33mg/l. Based on the classification of water for irrigation according to WHO 2008; Salifu et al., 2017 in terms of chloride concentration, the result indicated that the water is safe to be used for irrigation. Chloride is very essential to plants but at very low concentration. This is so because Cl- is not tied up by the soil, but it is moved with the soil-water, being absorbed by the crop, translocates in the transpiration stream, and eventually stored in the stems, roots and leaves of the growing plants [37-40].

4. CONCLUSION

The Tubewell water samples from all the selected local governments appeared to be safe for irrigation purpose because they were below the standard set by WHO 2006, 2008 and Salifu et al., 2017. However, special attention must be given to Bunza tubewell because of its high concentration of all the parameters considered and therefore has a tendency for the soil to become prone to sodic.

5. RECOMMENDATIONS

Based on the results obtained, the following recommendations would be given:

1. As a result of high concentration of Ca and Mg ions in the tube well water of the study area, farmers could be advised to ensure light but frequent irrigation with this water to avoid accumulation of these ions on the soil surface.
2. As a result of high concentration of other cations such as Na, Ka and Cl, farmers would be advised to apply proper water management practices to prevent the soil from being saline or sodic which could have detrimental effects on growing crops and soil physical characteristics.
3. Based on the salinity and sodicity parameters such as pH, Ec, TDS and ESP, the water could be used for irrigation without any restrictions.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. UNEP. The Mesopotamian Marshlands Demise of an Ecosystem. UNEP/DEW; 2001.
2. Choopra SL, Kanwar JS. Analytical Agricultural Chemistry.4th Edition, Kayani publishers, New Delhi. 1991:278.
3. Doneen LD. Notes on Water Quality in Agriculture. Water Science and Engineering Paper 4001. Department of Water Sciences and Engineering, Univ. of California; 1964.
4. Du Preez JM. The Distribution of Ground water in Northern Nigeria. Geological Survey of Nigeria, Report No. 1188.Lagos, Nigeria; 1961.
5. Megersa G, Abdulahi J. Irrigation System in Israel: A Review Internal Journal of
Water Resources and Environmental Engineering; 2005. Available: http://www.academicjournals.org/UWREE.

6. Malin F, Max C, Finlayson, Line JG. Agriculture, Water and Ecosystem: Avoiding the Costs of Going too far. Natural Ecosystem Services. Peter Grundy, United Kingdom; 2007.

7. Adelana SMA, Olasehinde PI. High nitrate in Water Supply in Nigeria. Implication for Human Health. Water Resources. 2003;14(1):1-10.

8. Adamu GK. (An assessment of soil properties of Watari Irrigation Project, Kano State, Nigeria. Academic Research International. 2013;4(4):254-266.

9. Ajayi F, Ndawa M, Gningwe A. Halting the salt that kills crops. African Farmer. 1990;4:22-27.

10. Bello S. Quality of irrigation water and soil characteristics of wetlands in sokoto metropolis. Unpublished B.Sc. Project. Department of Soil Science and Agricultural Engineering, Usman Danfodio University, Sokoto. 2001:69.

11. Bunda JD. Quality of irrigation water. Soil Sci. 1972:113: 277 - 284.

12. Cooper CM, Lipe WM. Water quality and agriculture: Mississippi experience, J. Soil and Water Con. 1992;47(3):220-223

13. Tanji KK. Agricultural Salinity Assessment and Management. America Society of Civil Engineers; 1990.

14. Longenecker DE, Lyerly PF. B-876 Control of Soluble Salts in Farming and Gardening. Texas Agricultural Experiment Station, Texas A&M University System, College Station. 1974:36.

15. Bauder TARM, Waskom, Davis JG. Colorado State University, Co-operativ Extension Fact Sheet NO.0506; 2007. Available: http://dickens.agrilife.org/file2011/03/irriwtrgalstd. pdf

16. Chukwuma CE, Godwin CC, Joseph U, Orakwe CL, Kingsley NO. Irrigation Water Quality Index Assessment of Ele River in Parts of Anamba State of Nigeria. Archives of Current Research International. 2016;4(3):1-6.

17. KiCL. Kebbi Investment Company limited Kebbi State, Nigeria. 2000:10-20.

18. American Public Health Association (APHA). Standard methods for the examination of water and wastewater (21st ed.). Washington, DC: American Public Health Association (APHA), American Water Works Association, and Water and Environment Federation; 2005.

19. WHO. Guidelines for Drinking Water Quality, 3rd Edition Incorporation the First and Second Agenda. Recommendations, World Health Organizations Geneva. 2008:1.

20. Augie MA. Assessment of the quality of tubewell water and irrigated fadama soils in Sokoto state, Nigeria. Unpublished M.Sc. Dissertation.Department of Soil Science and Agricultural Engineering, Usman Danfodio University, Sokoto. 2004:32-54.

21. Singh BR. Quality of irrigation water in Fadama lands of Northwestern Nigeria II. Tube wells water in Zamfara State. Nigerian Journal of Basic and Applied Science. 2000b:9:191-202.

22. Adegbola GA, Soyewo LT, Odey BO, Ajani AB. River water quality assessment and its suitability for irrigation purpose. FUDMINA Journal of Sciences (FJS). 2021;5(3):413 – 419.

23. Ayers RS, Westcot DW. Water quality for agriculture. FAO Irrigation and Rev. 1, FAO, Rome. 1985:97.

24. Sanda AR, Sani A, Musa MU, Adamu UK, Adam IA, Almu H. River water quality assessment and suitability for irrigation in Northern sudan savanna, ecological zone of Nigeria. International Journal of Environment and Pollution Research. 2020;8(3):30-40.

25. Richard LA. Diagnosis and improvement of saline and alkali soils.U.S.D.A. Handbook, U.S. Government Printing Press. Washington D.C.1954:60.

26. Singh BR. Quality of irrigation water in fadama lands of North-Western Nigeria. I. Ground and Surface Water in Kebbi state. Nigerian Journal of Basic Appl. Sci. 2000a:9:133-148.

27. Singh BR, Babaji GA, Ibrahim SA. Characteristics of the soil in Dundaye District 3. The Soils and Water Quality along the KandoliShela stream Valley,
Nigeria. Journal of Basic and Applied Science. 1996;5:77-84.

30. Singh BR, Tsoho HK. Fertility and salinity/sodicity studies of the fadama soils in North-Western Nigeria III; in Sokoto State along the perennial surface water bodies. Nigerian Journal of Basic and Applied Sciences. 2001;10:12-16.

31. Salifu M, Aidoo F, Saah M, Dickson H. Evaluating the Suitability of Groundwater for Irrigational Purposes in Some Selected Districts of the Upper West Region of Ghana. Applied Water Science. 2017:653–662.

32. Todd DK. Ground Water Hydrology. Second Edition. John Wiley and Sons, New York; 1980.

33. FAO. Guidelines: Land Evaluation for Irrigated Agriculture. Soils Bulletin 55. Food and Agriculture Organization of the United Nations, Rome, Italy; 1985.

34. KARD. Kebbi Agricultural and Rural Development Authority. Final report for the development of guidelines for sound management of surface and groundwater resources in fadama areas of Kebbi State. Resources and rural development, Abuja, Nigeria. 1998:185.

35. Roose EJ, Lelong F. Factors of the chemical composition of seepage and ground water in the inter-tropical zone (West Africa). J. Hydro. 1981;5:1-22.

36. Augie MA, Adegbite MA, Sanda AR, Ahmed I, Ibrahim M, Zakari SI. Assessment of Soil Quality Irrigated with Tube Well Water at University Fadama Farm Jega, Kebbi State University of Science and Technology, Aliero. Asian Soil Research Journal. 2019;2(2):1-7.

37. Kolawole OM, Afolayan O. Assessment of groundwater quality in Ilorin, North Central Nigeria. Arid Zone Journal of Engineering, Technology and Environment, February. 2017;13(1):111-126

38. A/TR.01-3. UNEP Division of Early Warning and Assessment/GRID–Europe. Geneva in cooperation with GRID Sioux Falls and the Regional Office for West Asia (ROWA) Geneva; 2016. Available:http://www.gridunep.ch/activities/sustainable/tigris/Mesopotamia

39. WHO. Guideline for Drinking Water Quality Vol.1 Recommendations. World Health Organization. Geneva. 2006:131.

40. Wilcox LV. Determining the quality of irrigation water. Agricultural Inf. Bull.194. USDA, Washington. D.C; 1958.

© 2022 Augie and Adegbite; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/77373