Microbiological Studies on Clostridium perfringens Isolated from Commercial Poultry of Balochistan

Ramla Achakzai1,*, Muhammad Kamran Taj1, Kamran Baseer Achakzai2

1Center for Advanced Studies in Vaccinology and Biotechnology (CASVAB), University of Balochistan, Quetta, PAKISTAN.
2Livestock and Dairy Development Department, Balochistan, PAKISTAN.

ABSTRACT

Necrotic enteritis is one of the most common enteric disease in poultry and a major problem in terms of morbidity and financial cost worldwide. This study was conducted to determine the prevalence of Clostridium perfringens in Division of Balochistan, Pakistan. 1000 samples were collected from commercial poultry; 68% samples were positive while 32% found negative for Clostridium perfringens. Area wise results showed that commercial poultry of Quetta division (19%) was most affected as compare to other divisions of Balochistan, 43.2% of broiler and 24.8% of layer were affected from necrotic enteritis, confirmed through gram staining, biochemical tests and Polymerase Chain Reaction. Polymerase Chain Reaction showed clear bands of 541bp of CPE gene. Antibigrams result showed that Clostridium perfringens was sensitive against Amoxycillin and Chloramphenicol while resistance to Sulfamethoxazole, Trimethoprim and Kanamycin. It was concluded that necrotic enteritis was caused by Clostridium perfringens that can be eradicated by treating with antibiotic Penicillin.

Key words: Clostridium perfringens, Commercial Poultry, Balochistan.

INTRODUCTION

In Pakistan poultry is one of the central and an active sector of agriculture with a substantial influence on the national GDP. Commercial poultry farming started in Pakistan during early 1960s. One of the most active and disciplined sectors in country is chicken production that contributed about 26.8% in overall meat production, 5.76% to agricultural area and 1.40% to total national GDP during 2016-17; however, its influence in agriculture and livestock worth additional raised at 7.1% and 12.2%, respectively. In previous few years, this sector shown an outstanding growth and developed as a source of employment for about 30 to 35 million from rural population of Pakistan in this very sub-sector of agriculture. During last decade, poultry industry growth maximized due to multiplicative qualities and the practice of poultry as a major source of animal protein. Due to poor performance, enteric disorders in poultry are mostly attended with high economic losses, increased mortality rates and medication costs. Several factors such as poor management, nutrition and numerous pathogens are possibly cause of enteric disorders or involve with non-contagious facilities much as feedstuff and supervision related factors.

Necrotic Enteritis (NE) is caused by C. perfringens, which is one of the most central enteric diseases in poultry. It is a non-motile, anaerobic, encapsulated, endospore forming, gram positive bacilli bacteria and is commonly found in the intestines of animals and humans. Causing agent of gangrene, gastrointestinal disease in human and enterotoxemic disease in other animals. Its strain produces different toxins and enzyme which induces a specific syndrome.

Enteritis negatively effects the combined system of poultry at high levels. Necrotic enteritis in poultry is associated with influencing factors, including...
C. perfringens types A or C. The organisms replicate in gastrointestinal tract (GIT) and produces α toxin that led to mucosal necrosis\[^{10}\]\ and it is the main virulence factor.\[^{11}\]

The C. perfringens is resistant to many antibiotics and this resistance could be due to the extensive use of antibiotics. Therefore, this study might help microbiologists to understand the different bacteriological patterns of C. perfringens.

MATERIALS AND METHODS

Collection of Samples

A total 1000 gastrointestinal tract and fecal samples were collected from commercial chickens (broiler and layer) of various commercial poultry facilities of Balochistan. Samples were collected aseptically in sterile contamination free polyethylene sachets; and then transported in cold box for further laboratory process at CASVAB, University of Balochistan for microbiological analysis.

Isolation and Identification

Samples were poured in Reinforced Clostridial Medium (RCM) broth and placed in water bath for 10-15 min at 80°C (heat shock) to kill non-spore forming bacteria. The tubes were incubated at 37°C in anaerobic jar for 24-48 hr. Next day culture from tube were taken and streaked on RCM plates and incubate at 37°C for 24 hr. The Colony morphology suggestive for C. perfringens were identified by gram staining, biochemical tests (Indole, Methyl red, Voges Proskauer, Citrate utilization test (IMVIC), Sugar fermentation test, Catalase test, Oxidase test, Stormy milk test, Gelatin liquefaction test, Lecithenase test) and PCR confirmation was also done.

Growth Characteristics of C. perfringens on Different Growth Media

The organism was cultivated anaerobically at 37°C for 24 hr for cultural characteristics study on variety of growth media such as Nutrient agar, Brain Heart Infusion (BHI) agar, Thioglycolate agar, Egg Meat agar and RCM agar.\[^{12}\]

Effect of Different Growth Media on C. perfringens

The presumptive detection of bacteria was carried out on various growth media like Nutrient broth, BHI broth, Egg Meat broth, Thioglycolate broth and RCM broth to observe the effect of organism on different growth media.

Molecular Detection of C. perfringens

PCR was used for colonies which were identified as C. perfringens. Entire genomic DNA was extracted from samples using genomic DNA purification kit (Thermo scientific, EU). In this study primers of the following arrangement (Forward primer: 5′ ACT GCA ACT ACT ACT CAT ACT GTG 3′; Reverse primer: 5′ CTG GTG CCT TAA TAG AAA GAC TCC 3′) were used, that amplified a 541bp portion of CPE gene of identified isolate. PCR was performed in 25µl mixture containing 10.5µl grade water, 1µl each set of primer (forward and reverse), 10.5µl master mix (2x AmpMasterTM Tag) and 2µl of DNA template. Samples were subjected to the following thermocycling process in 94°C for 5 min followed by 25 cycles at 94°C for 1 min, 55°C for 1 min, 72°C for 1 min and final extension at 72°C for 10 min. PCR product was run on agarose gel (1.5%) and bands were visualized under UV light.\[^{13}\]

Antibiogram of C. perfringens

Antibiotic sensitivity test was performed by modified Kirby-Bauer sensitivity testing technique. Isolates were considered as resistant, intermediate and sensitive to an antimicrobial agent based on inhibitory zone.\[^{14}\]

RESULTS

Total 1000 samples were collected from different commercial poultry facilities of Balochistan, among which 68% were positive for C. perfringens while 32% were negative as shown in Figure 1.

As for as broilers and layers were concerned, 43.2% of broiler and 24.8% of layer were found affected from necrotic enteritis as shown in Figure 2.

The area wise result revealed that, 19% samples were positive from Quetta division, 16% from Kalat division, 11% from Zhob division, 8% from Sibi division, 8%
from Naseerabad division and 6% were positive from Makran division as shown in Figure 3.

Confirmation through Biochemical tests

The present study was conducted to identify the causal agent of necrotic enteritis, which has been affecting commercial poultry of Balochistan and causing heavy economic losses.

Routine methods of bacterial cultures in different media, specific colony characters, staining techniques, microscopic examination and different types of biochemical tests (IMVIC, sugar fermentation, catalase, oxidase, gelatin liquefaction, stormy milk and lecithinase) were used for the isolation and identification of *C. perfringens* as shown in the Table 1.

Effect of Different Growth Media on *C. perfringens*

It was observed that inoculum in each media showed different growth effects after incubation anaerobically at 37°C for 24 hr. Their quantitative analysis showed that inoculated organism yielded 5.5g on RCM broth whereas on nutrient broth the rise was 1g. The detail about other media are given below (Table 2).

Molecular Identification of *C. perfringens*

In the present study, molecular finding based on gene specific polymerase chain reaction assay was practice in detecting *C. perfringens*. All the isolated of *C. perfringens*

Table 1: Colony morphology on different growth media, gram staining and biochemical tests for identification of *C. perfringens* isolated from commercial poultry of Balochistan.

Media	Confirmation of *Clostridium perfringens*
Nutrient Agar	1mm White color flat rough-edged colonies
BHI Agar	2-3mm yellowish flat round colonies
Thioglycolate Agar	3-3mm Yellowish color round raised colonies
Egg Meat Agar	2-3mm opaque flat irregular colonies
RCM Agar	3-5mm Yellowish color round raised colonies

Gram Staining
- Gram positive, Rods, Endospore (oval and sub terminal)

IMVIC
- Indole: Negative
- Methyl Red: Negative
- Voges Proskauer: Positive
- Citrate Utilization: Positive
- Glucose: Positive
- Dextrose: Positive
- Mannitol: Negative

Sugar Fermentation Tests
- Sucrose: Positive
- Mannose: Positive
- Maltose: Positive
- Xylose: Positive
- Oxidase Test: Negative
- Catalase Test: Negative
- Urease Test: Negative
- Gelatin Liquefaction Test: Positive
- Motility Test: Negative
- H2S gas production Test: Positive
- Stormy Milk Test: Positive
- Lecithinase Test: Positive

used in present study produced the predicted size of 541bp amplicon CPE gene as shown in Figure 4.

Antibiogram Sensitivity Test

The *C. perfringens* was sensitive to amoxycillin (28mm), chloramphenicol (26mm), vancomycin (20mm), while intermediate to tetracycline (16mm), ciprofloxacin (14mm) and resistant to (bacitracin, colistine sulphate), (sulfamethoxazole, trimethoprim), (kanamycin) antibiotics as shown in Table 3.

DISCUSSION

C. perfringens is one of the causative agents of necrotic enteritis reported in most areas of the world and badly affects the unified system of poultry production. In present study, isolates from commercial poultry were obtained from cultured samples by picking colonies from each of 1000 samples, in which 68% were positive for *C. perfringens* while 32% were found negative. Risk factor associated for the development of necrotic enteritis was intestinal environment that favors the growth of *C. perfringens*. In commercial poultry the percentage of affective-ness were 43.2% in broiler and 24.8% in layer birds, respectively from necrotic enteritis. Prevalence of *C. perfringens* in different administrative divisions of Balochistan were 19% in Quetta, 16% in Kalat, 11% in Zhob, 8% in Sibi, 8% in Naseerabad and 6% in Makran, respectively observed. Identified isolates were *C. perfringens* based on their cultural, morphological and biochemical characteristics; while all morphological characteristics and biochemical tests findings were in-lined,[15] comparative study of *C. perfringens* growth on various media showed that RCM is the best media for its growth. Antibiotic susceptibility test showed different result for *C. perfringens*, all were sensitive to penicillin, chloramphenicol, glycopeptide and resistance to quinolones, sulfonamides and polypeptide.[16] PCR assay was practiced in detecting *C. perfringens*. All the isolates of *C. perfringens* used in present study produced the predicted size of 541bp amplicon CPE gene.[13]

CONCLUSION

Investigation of necrotic enteritis in commercial chickens based on this study findings will certainly...
help in proper diagnosis of the disease, which causes considerable economic loss to the poultry farmers. Thus, this study will also alert poultry professionals about the disease and helps to dictate specific medication as well as postulate prevention and control strategies.

ACKNOWLEDGEMENT
The author would like to thank Director CASVAB, UoB for his support.

CONFLICT OF INTEREST
The Authors have declared that no competing interests exist.

ABBREVIATIONS
GDP: Gross Domestic Products; C. perfringens: Clostridium perfringens; NE: Necrotic Enteritis; GIT: Gastrointestinal Tract; UV: Ultraviolet; DNA: Deoxyribonucleic Acid; RCM: Reinforced Clostridial Medium; BHI: Brain Heart Infusion.

REFERENCES
1. Hussain J, Rabbani L, Aslam S, Ahmad HA. An overview of poultry industry in Pakistan. World Poultry Science Journal. 2015;71(4):689-700.
2. Wasti SE, Ahmad I. Economic Survey of Pakistan. Ministry of Finance, Government of Pakistan. 2017;1(1):19-40.
3. Godfray HC, Beddington JR, Crule IR, Haddad L, Lawrance D. Food security the challenge of feeding 9 billion people. Science. 2010;327(5967):812-8.
4. Hafez HM. Enteric diseases of poultry with special attention to Clostridium perfringens. Pakistan Veterinary Journal. 2011;31(3):175-84.
5. Cooper KK, Songer JG. Necrotic enteritis in chickens: A paradigm of enteric infection by Clostridium perfringens type A. Anaerobe. 2009;15(1-2):55-60.
6. Shojadoost B, Vince AR, Prescott JF. The successful experimental induction of necrotic enteritis in chickens by Clostridium perfringens. Veterinary Research. 2012;43(1):74.
7. Petit L, Gilbert M, Popoff MR. Clostridium perfringens: Toxinotype and genotype. Trends in Microbiology. 1999;7(3):104-10.
8. Tschirdevahn B, Notermans S, Wernars K, Untermann F. The presence of enterotoxigenic Clostridium perfringens strains in feaces of various animals. International Journal of Food Microbiology. 1991;14(2):175-8.
9. Elwinger K, Schneitz C, Berndtson E, Fossum O, Tegelof B, Engstrom B. Factors affecting the incidence of necrotic enteritis, caecal carriage of Clostridium perfringens and bird performance in broiler chicks. Acta Veterinaria Scandinavica 1992;33(4):369-78.
10. Ficken MD, Wages PD. Necrotic enteritis diseases of Poultry. Iowa State Press, Ames. 1997;1(10):261-4.
11. Sheedy SA, Ingham AB, Rood RJ, Moore RJ. Highly conserved alpha-toxin sequences of avian isolates of Clostridium perfringens. Journal of Clinical Microbiology. 2004;42(3):1345-7.
12. Javed S, Rafieeq M, Tariq MM, Rashid N, Ali M. Study on in vitro Biochemical Growth Characterization and Assessment of Hemolytic Toxin of Clostridium perfringens Type B and D. Pakistan Journal of Zoology. 2012;44(6):1575-80.
13. Abd El, Hamid HS, Ellakany HF, Bekhit AA, Elbostawy AR, Bedaway S. Pathogenicity and antibiotic sensitivity of Clostridium perfringens isolates from chickens in El Behera governorate, Egypt. Life Science Journal. 2015;12(5):175-82.
14. Bauer AW, Kirby WMM, Sherris JC, Tuck M. Antibiotic Susceptibility Testing by a Standardized Single Disk Method. American Journal of Clinical Pathology. 1966;45(1):493-6.
15. Miah MS, Asaduzzaman M, Sufian MA, Hossain MM. Isolation of Clostridium perfringens, Causal agents of necrotic enteritis in chickens. Journal of Bangladesh Agriculture University. 2011;9(1):97-102.
16. Almolaii M, Ezatkhah M, Bafti MS, Amini M. Antibiotic susceptibility of Clostridium perfringens from organic broiler chickens. Online Journal of Veterinary Research. 2015;19(7):465-70.

Cite this article: Achakzai R, Taj MK, Achakzai KB. Microbiological Studies on Clostridium perfringens Isolated from Commercial Poultry of Balochistan. Asian J Biol Life Sci. 2020;9(2):204-8.