Treg: A Promising Immunotherapeutic Target in Oral Diseases

Yujing Zhang¹, Jihua Guo¹,²* and Rong Jia¹*

¹ The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China, ² Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China

With the pandemic of COVID-19, maintenance of oral health has increasingly become the main challenge of global health. Various common oral diseases, such as periodontitis and oral cancer, are closely associated with immune disorders in the oral mucosa. Regulatory T cells (Treg) are essential for maintaining self-tolerance and immunosuppression. During the process of periodontitis and apical periodontitis, two typical chronic immune-inflammatory diseases, Treg contributes to maintain host immune homeostasis and minimize tissue damage. In contrast, in the development of oral precancerous lesions and oral cancer, Treg is expected to be depleted or down-regulated to enhance the anti-tumor immune response. Therefore, a deeper understanding of the distribution, function, and regulatory mechanisms of Treg cells may provide a prospect for the immunotherapy of oral diseases. In this review, we summarize the distribution and multiple roles of Treg in different oral diseases and discuss the possible mechanisms involved in Treg cell regulation, hope to provide a reference for future Treg-targeted immunotherapy in the treatment of oral diseases.

Keywords: Treg, immunotherapy, oral diseases, periodontitis, oral cancer

INTRODUCTION

Regulatory T cell (Treg) was first reported to be involved in maintaining self-tolerance as early as the 1970s, but there was still a lack of specific molecular markers (1). Until 1995, Sakaguchi et al. found that the IL-2 receptor α-chain (CD25) was constitutively expressed on Treg cells, the concept of regulatory T cells was formally put forward (2). Treg, as a subset of CD4⁺ T lymphocytes, is crucial for maintaining self-tolerance and immune homeostasis. It characteristically expresses the transcription factor forkhead box P3 (FOXP3), identified as the main regulator for Treg development and function (3).

During the emergency of COVID-19, maintenance of oral health has increasingly become the main challenge of global health due to the possibilities of increasing viral transmission (4). Oral diseases are ones of the common public health problems. Among them, periodontitis is the most important cause of adult permanent teeth loss; lip and oral cancer, as the 15th most common cancer worldwide, is closely related to the quality of human life (5). As the epitome of the whole body system, the oral cavity is affected by a variety of diseases and disorders, including apical periodontitis...
and periodontitis as acute and chronic infectious diseases, autoimmune diseases such as Pemphigus Vulgaris (PV), oral cancer, and oral potentially malignant disorders (6). Increasing evidence shows that the regulation of Treg cell number and function in different diseases have opposite expectations. In autoimmune diseases, Treg cells are expected to be more stable and polyclonal and play a practical immunosuppressive role (7). On the other hand, Treg cells suppress the anti-tumor immune response, accelerate tumor proliferation and metastasis in some tumors. Therefore, Treg targeted immunotherapy is often at the forefront of anti-tumor therapy (8). However, it is worth noting that the research on the role and regulatory mechanisms of Treg cells in oral diseases is incomplete. In this review, we discuss the immunosuppressive mechanisms of FOXP3+ Treg cells and summarize their distribution and function in different types of oral diseases, especially the possible mechanisms involved in the regulation of Treg distribution, proliferation, and function, to provide some new prospects that may eventually apply to clinical treatment.

TREG BIOLOGY

Treg cells are involved in maintaining immune tolerance, accounting for 5% - 10% of CD4+ T cells in the peripheral circulation (2, 9, 10). According to their different origins, the Treg population is further divided into three subgroups: thymus-derived Treg cells (tTregs), peripheral Treg cells (pTregs) and induced Treg cells (iTregs). tTregs are mainly derived from T-cell precursors stimulated by TCR signal and costimulatory molecules in the thymus; while pTregs are induced from naïve CD4+ T cells that are exposed to cytokine TGF-β and IL-2 in the periphery. Besides, iTregs are induced in the TGF-β environment *in vitro* with unstable Treg phenotypes (11). The transcription factor forkhead box P3 (FOXP3) has been considered as a specific Treg molecular marker, essential for its differentiation, phenotype maintenance, and immunosuppressive function (12). FOXP3 gene mutation leads to the impairment of Treg cells development and inhibition function, resulting in human IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome) disease and scurfy in rodents, respectively (13, 14). IPEX is also named X-linked autoimmune allergic dysregulation syndrome (XLAAD). Patients with the disease will present many immunopathological symptoms within infancy, including enteropathy, diabetes, dermatitis, thyroid disease, and anemia (15). The scurfy mice are characterized by scaly and ruffled skin, spleen and lymph node enlargement, and premature death about a few weeks after birth (16, 17).

The intrinsic commitment and stable maintenance of the Treg lineage depend on the sustained high expression of FOXP3. It endows Treg with a variety of essential characteristics, including high expression of CD25 and cell surface molecules like cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), suppression of proinflammatory cytokines as IL-4 and IL-17 conversely (18). At the same time, FOXP3 can interact with ~700 target genes and multiple microRNAs to regulate the development and function of Treg collectively (19, 20).

In addition, the stability of the Treg lineage is also regulated by epigenetics. The FOXP3 locus contains several conserved noncoding enhancer sequences (CNS) that are targeted by epigenetic modifications and several transcription factors (21). Mothers against decapentaplegic homologue 3 (SMAD3) and nuclear factor of activated T (NFAT) bind to CNS1 after the activation of TGF-β signal and promote FOXP3 expression, which plays a key role in the induction of pTreg cells (22). During Treg cell development, CpG elements within CNS2 manifest demethylation progressively. Besides, both runt-related transcription factor 1 (RUNX1) and core-binding factor subunit (CBF-β), forming a trimeric complex at the CNS2, enable the stable expression of FOXP3 (23). CNS3 also facilitates FOXP3 transcription via the combination of c-Rel (in the NF-κB pathway) after TCR signal activation (24). In general, Treg stability is closely related to the complex and interrelated genetic landscape shaped by FOXP3 and the higher-level epigenetic regulation involved in the induction and maintenance of FOXP3 expression.

However, the stability of Treg cells is not always immutable. It has strong adaptability in an inflammatory environment. Under the local inflammatory stimuli, dendritic-cell-derived IL-6 can induce Treg cells to transform into Th17 cells (25, 26). Th17 cells, as the representative of CD4+ T cell pro-inflammatory subsets, mainly secrete pro-inflammatory cytokine interleukin IL-17 (27). Retinoid-related orphan receptor γt (ROR γt) is a unique lineage-specific transcription factor of Th17 (28). Both Th17 and Treg cells share a common key regulatory factor TGF-β, which participates in the activation of RORγt and FOXP3 (29). In the stimulation of proinflammatory cytokines such as IL-6 or IL-21, a low concentration of TGF-β induces the development of Th17 cells, correspondingly, a high concentration of TGF-β can promote the differentiation of naïve CD4+ T cells into Tregs and maintain immune tolerance (30). IL-6 and IL-21 also upregulate the expression of RORγt via inhibiting FOXP3 activity in a signal transducer and activator of transcription 3 (STAT3) dependent manner (31). In addition, pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) could down-regulate the expression of FOXP3 by binding with tumor necrosis factor receptor RII (TNFRII) and interfere with the inhibitory function of Treg cells (32). At the same time, it promotes the recruitment of protein kinase C-θ (PKC-θ) and inhibited Treg function by activation downstream Akt signal (33). Therefore, the inflammatory microenvironment may induce the instability of Treg cells, and further exacerbate inflammatory responses and tissue damage in inflammatory diseases, such as apical periodontitis.

On the contrary, tumor-infiltrating Treg cells showed quite active inhibitory phenotypes, with high expression of immune checkpoint molecules, including CTLA-4, programmed cell death 1 (PD-1), T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), lymphocyte activation gene-3 (LAG-3) and T-cell immunoreceptor with Ig and ITIM domains (TIGIT) (34). Tumor cells can suppress the secretion of IL-6 in dendritic cells by the overexpression of indoleamine...
2,3-dioxygenase (IDO), inhibit the reprogramming of Treg cells to Th17 cells, and further enhance the stability of Treg cells in the tumor microenvironment by silencing the expression of the Akt/mTOR pathway (35). Therefore, the enhanced stability of Treg cells in the tumor microenvironment may contribute to the inhibition of anti-tumor immunity and immune escape.

MECHANISMS OF TREG-MEDIATED SUPPRESSION

Treg cells exert immunosuppressive function through cell-contact-independent or cell-contact-dependent mechanisms. Cell-contact-independent mechanisms mainly include secretion of inhibitory cytokines and metabolic disruption. Cell-contact-dependent mechanisms mainly include modulation of antigen-presenting cell (APC) function and mediating cytolysis or apoptosis of target cells.

Induction of Inhibitory Cytokines

Treg cells secrete cytokines with vital immunosuppressive function, including IL-10, TGF-β, and IL-35 (36). IL-10 downregulates the expression of class II major histocompatibility complex (MHC II) and costimulatory molecules, and directly inhibits the synthesis and secretion of inflammatory factors, thus inhibiting the capacity of antigen-presenting cells (APCs) and playing an anti-inflammatory role (37). Interestingly, IL-10-producing T regulatory type 1 (Tr1) cells are also endowed with similar inhibitory functions without FOXP3 expression (38). TGF-β also affects the differentiation, development, and function of various immune cells. TGF-β inhibits APCs’ function and limits cytotoxic T lymphocyte (CTL) proliferation (39). At the same time, immature CD4+ T cells could be induced to Tregs by antigen stimulation in an enriched TGF-β environment in vitro (40). Stimulated Treg cells also exert an immunosuppressive effect in the form of cell-cell interaction with persistently expressing TGF-β at a high level on the cell surface (41). As a novel member of the IL-12 family, IL-35 is another inhibitory cytokine explicitly secreted by Treg cells, involved in the maintenance of its maximum inhibitory function. Ectopic expression of IL-35 confers regulatory activity on naive T cells in a titratable fashion, whereas recombinant IL-35 alone is sufficient to suppress T-cell proliferation (42).

Regulation of Antigen-Presenting Cell (APC) Function

CTLA-4, constitutively expressed in Treg cells, is an inhibitory receptor associated with the T cell costimulatory molecule CD28 (43). CTLA-4 and CD28 compete for costimulatory receptors (CD80, CD86) on antigen-presenting cells, resulting in the downregulation of these two costimulatory molecules, thus inhibiting the T cell response (44, 45). Furthermore, CTLA-4 promotes the upregulation of the enzyme IDO by dendritic cells (DCs), which catalyzes the decomposition of tryptophan, an essential amino acid. The potential downstream effects lead to cell cycle arrest and more sensitivity to apoptosis of effector T cells, along with impairment of APCs function (46). Besides, lymphocyte activation gene 3 (LAG-3/CD223) is highly expressed on the surface of Treg cells, which combines with MHC class II molecules in higher affinity than CD4. It inhibits DC function and immunostimulatory capacity through the inhibitory signal pathway mediated by immunoreceptor tyrosine-based inhibition motif (ITAM) (47). Blocking LAG-3 attenuates the inhibitory effect of Treg cells, while the ectopic expression of LAG-3 endows CD4+ T cells the inhibitory activity (48).

Mediating Cytolysis or Apoptosis of Target Cells

Treg cells also cause immunosuppression by inducing target cell death via cell contact. Treg cells kill target effector cells, which are mediated by releasing granymes A and B in the perforin dependent or independent manner (49–51). Additionally, Tumor-necrosis-factor-related apoptosis-inducing ligand-death receptor 5 (TRAIL–DR5) pathway has been proved to be an important component of Treg-induced cytotoxicity (52).

Disruption of Metabolic Pathways

Another potential mechanism of Treg-mediated suppression is the metabolic blockade. Treg cells highly express the high-affinity IL-2 receptor (CD25), resulting in competitive consumption of IL-2 with effector T cells. Therefore, the effector T cells are prone to Bim-mediated apoptosis for the deprivation of the crucial metabolic and survival cytokines (10, 53). Treg cells express the ectoenzymes CD39 and CD73, which hydrolyze adenosine triphosphate (ATP) or adenosine diphosphate (ADP) to cAMP and adenosine, driving the accumulation of adenosine nucleosides and disrupting effector cell metabolism (54). Treg cells also promote the transfer of inhibitory second messenger cAMP to an effector T cell via cell contact-dependent gap junction and unexpectedly inhibit the immune function of effector T cell (55).

DISTRIBUTION AND FUNCTIONS OF TREG CELLS IN ORAL DISEASES

Treg Cells in Apical Periodontitis

Apical periodontitis is a local inflammatory immune response caused by bacterial infection in root canals, which often leads to periapical tissue damage and alveolar bone destruction (56). Thus, the balance between the host pro-inflammatory and anti-inflammatory responses supposedly determines the progression and outcome of apical periodontitis, which is regulated by different types of CD4+ T helper cells, including at least Th1, Th2, Th17, and Treg cells (57). As a potential protective subset of CD4+ T cells, accumulating studies have revealed that the beneficial role of Treg cells in restricting the overreactivity of the periapical inflammatory response (58, 59).

The number of Treg cells was found remained at relatively low levels from days 7 to 21 (acute phase, the lesions markedly expanded in 3-dimensional directions) after induced periapical
lesions of the lower first molars in rats, and then increased significantly by day 35 (chronic phase, the lesions expanded slowly). Interestingly, the ratio of IL17+/Foxp3+ and the number of osteoclasts correlated negatively with Treg cells (60). In addition to artificially induced acute periapical lesions in animal models, some human studies on chronic periapical lesions assessed the expression of FOXP3, which was associated with the histological type of lesion, the intensity of the inflammatory infiltrate, and the thickness of the cystic epithelial lining. Chronic periapical lesions include periapical granulomas (PGs), radicular cysts (RCs), and residual radicular cysts (RRCs). Periapical granulomas are the most common type of chronic apical periodontitis. It is granulomatous tissue composed of lymphocytes, fibroblasts, and other inflammatory cells to replace the normal bone structure. With the persistence of chronic inflammation, the epithelial cells of Malassez are stimulated by cytokines and growth factors, proliferate into epithelial masses, then liquefy and necrose in the center, and gradually form into RCs (61). The RRCs are defined as radicular cysts which remain in the jaw without proper treatment after the affected tooth was extracted (62). FOXP3 expression in RRCs, RCs, and PGs increased sequentially. The number of FOXP3+ cells was significantly higher in the inflammatory infiltrate grade III, followed by that in grades II and I (63).

In another study, the percentage of Foxp3+ Treg cells continued to increase after pulp exposure and was negatively correlated with (sphingosine-1-phosphate receptor 1) S1P1-positive cells by day 14 after the induction of periapical lesions in rats. Upregulated S1P1 triggers a series of intracellular responses to promote the receptor activator of nuclear factor kappa B ligand (RANKL) expression, which is related to osteoclast formation during the pathogenesis of periapical bone destruction (64). Besides, S1P1 promotes inflammatory cell infiltration and inhibits the function of Treg through the Akt-mTOR pathway in the acute stage. Therefore, the complex and precise regulatory network between S1P1 signal and Treg cells better explains the process of periapical lesions.

By contrast, inhibition of Treg function with anti-GITR (a phenotypic marker of Treg cells) in mice impelled the exacerbation of severity of periapical lesions at 14 and 21 days, increased expression of pro-inflammatory cytokines and destructive tissue mediators, thus preventing the formation of the inactive/stable status. Similar results were observed in CCR4KO mice. Conversely, the expansion of Treg cells attenuates lesion progression via the injection of cytokine C-C motif ligand 22 (CCL22)-releasing particles in the root canal system in a CCR4-dependent manner (58). These findings suggest that Treg chemoattractant application may be a promising option in the treatment of apical periodontitis.

A recent trial is also yielding promising results that Treg cells were enriched around regenerating tissues in the root canals of dogs after regenerative endodontic treatment (RET). In vitro, stem cells from the apical papilla (SCAP) promoted the conversion of pro-inflammatory T cells to Treg cells. It may suggest that the anti-inflammatory and anti-apoptotic abilities of upregulated Treg cells promote successful tissue repair and regeneration via releasing more cytokines and pro-healing growth factors, which may create an appropriate immune microenvironment for tissue regeneration (59).

These findings highlight that the infiltration of Treg cells is crucial for preventing the progression of apical periodontitis and promoting tissue regeneration. Treg cell dynamics plastically regulate pathogenic Th1, Th2, or Th17 cell phenotypes to maintain normal homeostasis and restrict inflammatory reaction’s overactivity (65). Therefore, promoting endogenous Treg recruitment-based therapy may provide a promising strategy for the treatment of periapical lesions and osteolytic diseases. At the same time, Treg enrichment creates an appropriate immune microenvironment for tissue regeneration, which lays a biological foundation for regenerative endodontic treatment. In the future, the researches on the effectiveness and biosafety of chemokine controlled release system and the exact role of Treg in the regeneration process will be conducive to the theoretical basis into clinical reality.

Treg Cells in Periodontitis

Most tissue damage in periodontitis is caused by the host immune response to infection, although the accumulation of plaque microorganisms is the initiating factor (66). Therefore, controlling the host immune-inflammatory response remains a challenge for periodontitis therapeutically interventions. Different clinical studies have described Treg accumulation preferentially in infected tissues, limiting the immune response. For instance, a large number of Treg cells have been reported in middle and advanced chronic periodontitis biopsies than gingivitis (67). Moreover, other studies have shown that chemokines such as CCL17 and CCL22 are more abundant in tissues with higher inflammatory infiltration, which seems to recruit more Treg cells from inflammatory sites in a CCR4 dependent manner (68). However, some FOXP3+ cells may function differently from conventional Treg cells. A small population of IL-17A+FOXP3+ cells were found in periodontitis, but not in gingivitis, suggesting the functional plasticity of Treg cells transforming into inflammatory Th17 cells in the periodontitis environment (69).

On the other hand, the defect of Treg cells function is identified in many animal models to promote the progression of periodontitis. In the A. actinomycetemcomitans induced mice model of periodontitis, inhibiting the function of Treg cells by anti-GITR resulted in alveolar bone resorption and increased inflammatory cell infiltration, accompanied by the decrease of IL-10, TGF-β, and CTLA-4 (70). A similar phenomenon was observed in the IDO knockout mouse model along with lipopolysaccharide (LPS)-induced inflammation, as IDO affects the metabolism of Treg cells (71). In an experimental periodontitis model, the phenotype and function of Treg cells were also affected. The down-regulated Foxp3 expression and the damage of the inhibitory effect of Treg cells on osteoclast differentiation further promoted Th17-driven bone loss. The hypermethylation of CpG sites in the Foxp3 locus caused by periodontitis may be responsible for its function impairment (72). In a recent study, the possible reason for the aggravation of periodontal disease during pregnancy has been attributed to Treg

Frontiers in Immunology | www.frontiersin.org June 2021 | Volume 12 | Article 667862

Zhang et al. Treg in Oral Diseases
cells' shortage. The expression of Foxp3, TGF-β, CTLA-4, and CD28 in the gingiva of pregnant mice was reduced after periodontal disease induction. Simultaneously, the frequency and inhibitory ability of Treg cells in cervical lymph nodes were also down-regulated in vitro, with the increase of inflammatory Th17 cells (73).

Currently, gratifying achievements have been reported in biochemical recruitment and positive regulation of Treg cells. Local or systemic administration of IL-35 also retards alveolar bone resorption in periodontitis mice via regulating the balance of Th17/Treg, down-regulating RANKL, and inducing osteoprotegerin (OPG) production (74). Similarly, an injectable and biomolecule-delivery of poly(L-lactic acid) (PLLA) nanofibrous spongy microspheres (NF-SMS) promote Treg enrichment, amplification, and Treg-mediated immunotherapy against bone loss in a mouse model of periodontitis via significantly releasing miRNA and IL-2/TGF-β (75). Exosomes from periodontal ligament stem cells, as communication mediators, are also involved in the regulation of Treg cell distribution and play an essential role in immunomodulation. Compared with normal conditions, the exosomes of periodontal ligament stem cells isolated from Porphyromonas gingivalis lipopolysaccharide (LPS) induced periodontitis environment transfer less miR-155-5p and increased Sir2atal-1 (SIRT1) protein into CD4+ T cells, and then led to the up-regulation of Th17 and the relaxation of Tregs, thus exacerbating the inflammatory microenvironment of periodontitis (76). In addition, the ratio of Th17/Treg also inclines by oral administration of all-trans retinoic acid (ATRA) in experimental periodontitis and thus providing protection against periodontitis (77).

Therefore, these findings indicate that Th17/Treg ratio imbalance is considered a critical role in the progression of periodontitis. Treg cells suppress immunopathology to avoid extensive periodontal tissue damage. It has been proved to suppress osteoclast differentiation through cell-cell contact way by Treg cells (78). Inhibitory cytokines released by Treg cells, such as IL-10 and IL-4, are also largely involved in the inhibition of RANKL, accelerating the resorption and destruction of alveolar bone (80). Therefore, Treg cells and Th17 cells are considered the key cells to connect the immune system and bone. Existing studies have shown that periodontitis is closely related to diabetes (81), rheumatoid arthritis, cardiovascular diseases (82), and other systemic diseases (83). However, at present, most of the clinical treatment methods for periodontitis are still the basic treatment for its initiating factors. Therefore, exploring new immunotherapy for periodontitis in humans may provide potential help for the macro-control of systemic diseases. In the future, more researches are needed to understand the diversity and plasticity of Treg subsets for a more advanced and safer drug delivery system.

Treg Cells in Head and Neck Squamous Cell Carcinoma

Immune escape is a characteristic of head and neck squamous cell carcinoma (HNSCC) (84). Treg cells might contribute to the occurrence and progression of HNSCC by suppressing antitumor immunity (85). Multiple pieces of evidence have described that the number and inhibitory activity of Treg cells is enhanced in tumors and peripheral circulation of patients with HNSCC, compared with healthy donors, along with the upregulated CD39, CD62L, CTLA-4, and FOXP3 (86–89). In addition, Treg level was proved to have a significant linear and positive correlation with tumor grades (90). Another study showed that the percentage of Treg in peripheral blood lymphocytes was also increasing correspondingly with the tumor malignant degree and lymph node metastasis. The higher the malignancy, the more activated Treg subsets (91). In the process of oral precancerous lesions to oral squamous cell carcinoma, Treg accumulation has also been widely proved, with the increase of the degree of epithelial dysplasia (92). Treg cells undoubtedly play a hostile role in the development of HNSCC. In precancerous lesions, the inflammatory response is at the peak, which is mainly maintained by Th17 cells with high levels of inflammatory cytokines, such as IL-2, IL-6, and IL-17. However, as the disease progresses, the increased level of TGF-β released by cancer cells promotes Treg differentiation, downregulates Th17 cells, further accelerating tumor progression (93).

However, there are some conflicting results about the prognostic value of Treg cells in HNSCC. Several data sustained that the high frequency of Treg cells in primary lesions and lymphogenic metastases were associated with a poor prognosis (94, 95). In contrast, other studies described that high Treg infiltration was associated with better overall survival (OS) of HNSCC (96, 97). These apparent contradictions were further explained in a recent study. Echarti et al. studied the effect of Treg cells on overall survival (OS) under different immune phenotypes and found that higher Treg cells level tended to worsen OS in “immune desert” tumors, but in “inflamed” tumors, high Treg cells significantly improved OS. This indicates that the prognostic value of Treg depends mostly on the inflammatory state of the tumor (98).

Another cross-sectional study showed that the amount of Treg cells increased and persisted in HNSCC patients after adjuvant chemoradiotherapy (CRT) compared with untreated or surgery-only patients and were resistant to activation-induced cell death (AICD) or cisplatin in vitro. These Treg cells have a stronger inhibitory function after CRT, which may be related to the upregulated latency-associated peptide (LAP), the glycoprotein A repetitions predominant (GARP), and CD39. This may be a potential driving factor for Immunotherapy resistance and relapse of HNSCC (99).

These studies suggest that Treg cells can block the effectiveness of antitumor immunity and contribute to tumor immune escape. Therefore, the reasonable strategy of depleting Treg cells or weakening their inhibitory functions should be pursued for immunotherapy (100). At present, blocking Treg-related immune checkpoint receptors (ICR) through immune checkpoint inhibitors (ICIS) has become one of the most
promising strategies for anti-cancer therapy, such as new monoclonal antibodies against CTLA-4, programmed cell death-ligand 1 (PD-L1), and PD-1 (101). Although ICIS has been approved for clinical application, the compensatory mechanisms in the tumor microenvironment, such as the up-regulation of other immunosuppressive molecules, remain as potential challenges in cancer treatment (102). Therefore, the study of combined therapy strategy for ICIS targeted Treg cells may bring hope to optimize the anti-tumor immunotherapy (34).

Treg Cells in Oral Mucosal Diseases

Oral mucosa is a vital barrier tissue to protect the oral cavity from the invasion of pathogens and foreign antigens. It was found that FOXP3+ Treg cells were highly abundant in oral mucosa than in secondary lymphoid tissues and other mucosal barrier sites, and they expressed a large number of CTLA-4 and tissue retention molecule CD103. This indicates that a uniquely large number of highly active Treg cells are needed to maintain oral mucosal immune quiescence. Interestingly, Treg cells in oral mucosa were mainly dependent on the recruitment and migration of exogenous Treg cells, rather than in-situ induction (103). Abnormal numbers of Treg cells caused many types of oral mucosal diseases. Through the comparative study of oral epithelial precursor lesions (OEPL) and oral squamous cell carcinoma (OSCC), the expression of CD25 and FOXP3 was found to be positively correlated with the malignant degree of oral epithelial lesions (92). In the precancerous condition of oral lichen planus (OLP) and precancerous lesion actinic cheilitis (AC), FOXP3+ cell infiltration increased, and CD8+/FOXP3+ cell ratio decreased, suggesting the promoting role of Treg in cancer progression (104). In contrast, the number of Treg cells increased in precancerous lesions of oral mucosal tissues. Through the comparative study of oral epithelial precursor lesions (OEPL) and oral squamous cell carcinoma (OSCC), the expression of CD25 and FOXP3 was found to be positively correlated with the malignant degree of oral epithelial lesions (92). In the precancerous condition of oral lichen planus (OLP) and precancerous lesion actinic cheilitis (AC), FOXP3+ cell infiltration increased, and CD8+/FOXP3+ cell ratio decreased, suggesting the promoting role of Treg in cancer progression (104). In contrast, the number of Treg cells increased in precancerous lesions of oral mucosal tissues. Through the comparative study of oral epithelial precursor lesions (OEPL) and oral squamous cell carcinoma (OSCC), the expression of CD25 and FOXP3 was found to be positively correlated with the malignant degree of oral epithelial lesions (92).

In summary, Treg cells function like a double-edged sword, which plays a protective role in inhibiting the course of inflammatory diseases such as apical periodontitis and periodontitis (Figure 1), and autoimmune diseases, but accelerate the deterioration of precancerous lesions in oral mucosa and HNSCC (Figure 2).

REGULATORY MECHANISMS OF TREG CELLS RECRUITMENT, PROLIFERATION, AND FUNCTION IN ORAL DISEASES

The recruitment, proliferation, and function of Treg cells are regulated by various complex regulatory networks, including cytokines, intracellular signaling pathways, epigenetic modification, and post-translational modification. These regulatory pathways affect the stability and plasticity of Treg from the cellular level to the expression of crucial genes (Figure 2).

CCL22-CCR4 Axis

Many pieces of evidence suggest that the CCL22-CCR4 axis is related to the regulation of Treg cells, involving different types of oral diseases. CCL22 was originally recognized as a chemokine produced by dendritic cells and macrophages under the stimulation of bacterial components. It induces the migration of target cells by binding to its specific receptor C-C chemokine receptor type 4 (CCR4) (109). CCR4 is specifically expressed on human Treg cells in response to its chemotaxis (110). In the chronic inflammatory environment, CCL20 expression is upregulated by the proinflammatory cytokine IL-1β, which is further enhanced by the TGF-β-SMADs pathway through an enhancer upstream of the CCL20 promoter (111). NF-kB is a significant mediator of inflammation. Activated NF-kB can transactivate CCL22 expression. CCL22 also can activate NF-kB, forming a positive feedback loop (112). Interestingly, CCR4 expression is also upregulated by NF-kB activation mediated by TNF-α (113), highlighting the essential roles of NF-kB in the CCL22-CCR4 axis.

In apical periodontitis, studies have shown that CCL22 combined with CCR4 seems to be able to recruit more Treg cells into periapical lesions of mice. CCR4 depletion significantly impaired the migration ability of Tregs and increased the severity of periapical lesions, associated with the expansion of pro-inflammatory cells and tissue destruction factors. On the contrary, local administration of CCL22 in wild-type (WT) mice attenuated periapical lesions with increased Treg number, but failed in CCR4KO mice, suggesting that CCL22 promotes Treg cell migration in a CCR4 dependent manner (58). Besides, it has been reported that LPS promotes the secretion of CCL22 in macrophages by downregulating the expression of miR-34a in the apical periodontitis model of rats. The high expression of CCL22 is parallel to the frequency of Foxp3+ Treg cells (114).

In periodontitis, chronic periodontitis patients showed high levels of CCL22 and CCR4 compared with healthy donors (68). It was early observed in murine and canine experimental periodontitis that the release of CCL22 particles could recruit more Treg cells to inflammatory sites, and significantly reduce the alveolar bone resorption (115). Furthermore, in experimental periodontitis, CCR4KO mice and the blockade of CCL22 in WT mice both showed impairment of Treg migration, accompanied by the expansive osteoclastogenic cytokine and increased inflammatory bone loss. Adoptive transfer of CCR4+ Treg cells...
to the CCR4KO mice or exogenous release CCL22 provided by poly (lactic-co-glycolic acid) (PLGA) microparticles rescued the increased disease phenotype by promoting migration of Treg cells (116).

Similar regulatory axes have also been described in oral cancer. CCL22, as an oncogene, is upregulated in oral cancer specimens to promote the migration and infiltration of Treg cells. Silencing CCL22 expression showed opposite effects. CCL22 expression in oral cancer cells was induced by IL-1β secreted by cancer-associated fibroblasts, suggesting a new therapeutic prospect by targeting the IL-1β-CCL22-CCR4 signaling axis for the treatment of oral cancer (117). Moreover, CCL22 is the target of tumor suppressor miR-34a. In cancers, CCL22 is unregulated by the suppression of miR-34a mediated by TGF-β (118).

Therefore, these findings suggest that the CCL22-CCR4 axis is involved in Treg recruitment in a variety of oral diseases, and the diverse regulation of the CCL22-CCR4 axis according to treatment goals may provide a potential immunotherapeutic target.

The Roles of Interleukins

A variety of interleukins participate in the stability of Treg phenotype and inhibitory function through different mechanisms. Through the stable expression of FOXP3 and CD25, IL-2 is irreplaceable for the development, stability, and function of Treg cells (119). Multiple studies have shown that IL-
2 receptor signaling can mediate the phosphorylation of signal transducer and activator of transcription 5 (STAT5) by activating Janus kinases (JAKs). Furthermore, activated STAT5 binds to the FOXP3 promoter and CNS2, promoting its expression (120–122). On the contrary, when IL-2 signal transduction was deficient, FOXP3 expression stability in Treg cells was lost (123). Interestingly, FOXP3 and other transcription factors jointly inhibit the expression of IL-2 in Treg cells, making it highly reliant on IL-2 produced by activated non-Treg cells, forming feedback control on the expansion of non-Treg cells (124).

Treg cells secrete inhibitory cytokines IL-10, TGF-β, and IL-35. Among them, IL-35 can produce regenerative feedback in Treg cell response by inducing the activation and differentiation of IL-35 producing Treg cells, termed iTReg (125). Therefore, the significant benefits of IL-35 based therapy lie in the direct inhibition of IL-35 and the synergetic amplification of iTReg immunosuppression (125).

Furthermore, IL-33, a member of the IL-1 cytokine family, has attracted attention as an important Treg cell immunomodulator recently (126). IL-1 receptor-like 1 (ST2) is considered as the only receptor of IL-33. IL-33 could support the expansion of ST2^Foxp3^ Treg cells (127), increasing the secretion of inhibitory cytokines IL-10 and TGF-β1 in ST2^Foxp3^ Treg cells and promoting their suppressive function in head and neck squamous cell carcinoma (HNSCC). ST2 antibody made the opposite effect, which suggested that ST2 may be a potential target for immunotherapy of HNSCC in the future (128). However, IL-33 is also a pro-inflammatory cytokine. In a mouse periodontitis model, systemic administration of IL-33 exacerbated bone loss in a RANKL dependent manner (129). Therefore, given the different roles of IL-33 in different diseases, a deeper understanding of IL-33 action mode in the future will be more targeted at the IL-33-ST2 signal to treat human diseases (130).

PI3K/Akt/mTOR Signaling Pathway

The PI3K/Akt/mTOR pathway is involved in many biological processes such as survival, proliferation, growth, apoptosis, and glucose metabolism (131). In Treg cells, the activation of PI3K/Akt/mTOR pathway by inflammatory Toll-like receptor (TLR) or T cell receptor (TCR) signals expand Treg cell amplification (132) but reduces FOXP3 expression (133). FOXP3 inhibits Akt phosphorylation and blunts PI3K/Akt/mTOR signal transduction, by which FOXP3 gives a negative feedback.
regulation and results in enhancing the suppressive function of Treg cells (134). On the contrary, phosphatase and tensin homologues (PTEN), a negative regulator of PI3K, is able to stabilize Treg cells in tumors (135). Moreover, the administration of PI3K-Akt pathway inhibitors in CT26 (a mouse colon carcinoma cell line) mouse models showed a significant therapeutic antitumor effect associated with a selective reduction in Treg cells activation and proliferation with no effect on conventional T cells. It was also demonstrated that PI3K-Akt pathway inhibitors could enhance the antitumor immune responses of the antitumor vaccine by inhibiting Treg cell proliferation (136). Interestingly, mTOR inhibition by rapamycin has been shown to support the proliferation and survival of Treg cells, which is opposed to Akt and PI3K (137–139). Specific deletion of the mTOR gene (Rictor) (140) or inhibition of mTOR activity by rapamycin promoted the induction of FOXP3 and maintained the function of Treg cells (141). On the other hand, the anti-tumor effect of PI3K, Akt, and mTOR inhibitors can directly present as the inhibition of tumor cell proliferation and angiogenesis, as well as the survival enhancement of CD8⁺ T cells (142). Taken together, these data suggested the complicated regulatory mechanisms of the PI3K/Akt/mTOR pathway in Treg cells. Combination of multiple PI3K/Akt/mTOR pathway inhibitors, targeting different steps, may suppress both proliferation and function of Treg cells and achieve better anti-tumor effects.

Methylation and Post-Translational Modifications

DNA methylation has long been considered as one of the important epigenetic modifications that regulate gene expression but not changing the DNA sequence (143). FOXP3 expression is also regulated by DNA methylation (144). Campos et al. evaluated DNA methylation patterns of 22 gene promoters involved in immune regulation of periapical lesions. The methylation level of the FOXP3 gene promoter was the highest in periapical granulomas and apical cysts, negatively correlated with the expression of FOXP3 mRNA. In addition, active periapical lesions showed higher levels of FOXP3 methylation than inactive periapical lesions. Therefore, the dynamic changes of
phenotype (149). PRMTs have been proved upregulated in PRMT1 could prevent Treg cells from tilting to Th1-like cell inhibitory function of Treg cells; while up-regulating with arginine methylation of FOXP3 and damage the inhibitory function.

arginine methyltransferases (PRMTs) is reported to interfere arginine methylations. The inhibition of type I protein positively affected by a posttranslational mechanism: FOXP3 involved in the regulation of Foxp3 functions, such as acetylation Treg cells (151). At present, the clinical research of various prospect of tumor therapy by inhibiting the function of Pharmacological ablation of PRMTs is showing a promising worldwide interest.

Besides epigenetic modification, FOXP3 function is also positively affected by a posttranslational mechanism: FOXP3 arginine methylations. The inhibition of type I protein arginine methyltransferases (PRMTs) is reported to interfere with arginine methylation of FOXP3 and damage the inhibitory function of Treg cells; while up-regulating PRMT1 could prevent Treg cells from tilting to Th1-like cell phenotype (149). PRMTs have been proved upregulated in several tumors, which indicates a poor prognosis (150). Pharmacological ablation of PRMTs is showing a promising prospect of tumor therapy by inhibiting the function of Treg cells (151). At present, the clinical research of various specific PRMTs inhibitors is in full swing and following widely interest.

In addition, other post-translational modifications are also involved in the regulation of Foxp3 functions, such as acetylation (152). Acetylation enhances both stability and activity of FOXP3 (152). Histone acetyltransferases (HTAs) and histone deacetylases (HDACs) have been widely reported to coordinate the differentiation, function, and stability of Treg cells (153). CBP and p300 are the members of the HTAs family. Their combined deletion leads to fatal autoimmunity in mice at 3 to 4 weeks (154). Interestingly, the selective deletion of p300 damages the inhibitory function of Treg cells and enhances anti-tumor immunity without autoimmune deficiency (155). By contrast, HDAC inhibitor therapy usually increases peripheral Treg cells and enhances Treg suppressive function, upregulates acetylation of FOXP3, and related markers like GITR and CTLA-4 (156).

So far, diverse regulatory mechanisms of Treg cell recruitment, proliferation, and function have been reported in oral diseases. Harnessing these mechanisms may help to treat oral diseases (Table 1). However, understanding these mechanisms needs to be improved.

CONCLUDING REMARKS

Oral diseases, as one of the most common public health problems worldwide, are closely associated with immune disorders. When patients suffer from autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus, oral manifestations such as chronic periodontitis, oral lupus erythematosus, and Sjogren’s syndrome are also common (157, 158). However, when the body’s immune function defect, whether primary or acquired, it is often accompanied by necrotizing ulcerative

Regulatory mechanisms	Defects or treatments	Effects on Treg cells	Oral diseases	References
CCL22-CCR4 axis	CCR4KO mice; Intraperitoneal injection of anti-CCL22 antibodies	Treg migration impairment	Aggravation of apical periodontitis and periodontitis	(58, 116)
	CCL22-releasing PLGA microparticles	Treg migration promotion	Remission of apical periodontitis and periodontitis	(117)
IL-2-JAKs-STAT5 signaling pathway	CCL22 gene silencing	Treg migration impairment	Impaired oral tumorigenesis	(121)
	CCL22 overexpression	Treg migration promotion	Promoted oral tumorigenesis	
IL-2-JAKs-STAT5 signaling pathway	IL-2KO mice; JAKsKO mice; STAT5a/b double KO mice	Reduction of Treg frequency	Unknown	
	Transient activation of STAT5 in IL-2-deficient mice	Increasing Treg number		
IL-35	Intragastric injections of IL-35	Increasing induction of iTi35 cells	Inhibition of periodontitis progress	(74)
IL-33	IL-33 overexpression	Expansion of Treg population and function	Poor prognoses of HNSCC	(129)
	Anti-STAT2 mAb	Inhibition of Treg number and function	Promotion of effector T cell proliferation	
PI3K/Akt/mTOR signaling	Targeting PI3K and Akt with specific inhibitors	Inhibition of Treg proliferation	Enhancement of the antitumor immune response	(136)
FOX3 gene methylation	Rapamycin (mTOR inhibitors)	Expansion of Treg	Inhibition of effector T cell function	(137)
FOX3 arginine methylation	Hypomethylation	Promotion FOXP3 expression; Increase of Treg infiltration	Inactive apical periodontitis; Promoted tumorigenesis	(145, 147)
FOX3 histone acetylation	Targeting PRMTs	Inhibition Treg function	Enhancement of the antitumor immune response	(149)
	Selective deletion or pharmacologic inhibition of p300	Inhibition Treg function	Enhancement of the antitumor immune response	(155)
periodontitis, oral candidiasis, and the risk of tumor is significantly increased (159). Treg cells play important roles in maintaining immune homeostasis and self-tolerance in oral tissues. They play protective roles in inhibiting the course of inflammatory diseases such as apical periodontitis and periodontitis but accelerate the deterioration of precancerous lesions in oral mucosa and HNSCC. Therefore, Treg is a promising immunotherapeutic target of oral diseases. So far, the regulatory mechanisms of Treg distribution, stability, and function remain largely unclear. Further researches are required to explore these mechanisms and help to design Treg-based therapeutic strategies for the treatment of oral diseases.

REFERENCES

1. Gershon RK, Kondo K. Cell Interactions in the Induction of Tolerance: The Role of Thymic Lymphocytes. *Immunology* (1970) 18:723–37.
2. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Pillars Article: Immunologic Self-Tolerance Maintained by Activated T Cells Expressing IL-2 Receptor Alpha-Chains (CD25). Breakdown of a Single Mechanism of Self-Tolerance Causes Various Autoimmune Diseases. *J Immunol* (1995) 155:1151–64.
3. Hori S, Nomura T, Sakaguchi S. Control of Regulatory T Cell Development by the Transcription Factor FoXP3. *Science* (2009) 299:1057–61. doi: 10.1126/science.1079490
4. Brian Z, Weintraub JA. Oral Health and COVID-19: Increasing the Need for Prevention and Access. *Prev Chronic Dis* (2020) 17:E82. doi: 10.5888/pcd17.200266
5. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. *CA Cancer J Clin* (2018) 68:394–424. doi: 10.3322/caac.21492
6. Jin LJ, Lamster IB, Greenspan JS, Pitts NB, Scully C, Warnakulasuriya S. Global Burden of Oral Diseases: Emerging Concepts, Management and Interplay With Systemic Health. *Oral Dis* (2016) 22:609–19. doi: 10.1111/odi.12428
7. Goscil L, Scheinecker C, Bonelli M. Treg Cells in Autoimmunity: From Identification to Treg-Based Therapies. *Semin Immunopathol* (2019) 41:301–14. doi: 10.1007/s00292-019-00741-8
8. Whiteside TL. Foxp3+ Treg as a Therapeutic Target for Promoting Anti-Immune System. *Expert Opin tech Ther* (2018) 22:353–63. doi: 10.1080/14728222.2018.1451514
9. Chen X, Wang YW, Gao P. SPION1. Negatively Regulated by miR-148/152, Enhances Adriamycin Resistance Via Upregulating Drug Metabolizing Enzymes and Transporter in Breast Cancer. *J Exp Clin Cancer Res* (2018) 37:100. doi: 10.1186/s13046-018-0748-9
10. Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ. CD4+CD25+Foxp3+ Regulatory T Cells Induce Cytokine Deprivation-Mediated Apoptosis of Effector CD4+ T Cells. *Nat Immunol* (2007) 8:1353–62. doi: 10.1038/ni1536
11. Dhamne C, Chung Y, Alousi AM, Cooper LJ, Tran DQ. Peripheral and Thymic foxp3(+) Regulatory T Cells in Search of Origin, Distinction, and Function. *Front Immunol* (2013) 4:253. doi: 10.3389/fimmu.2013.00253
12. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 Programs the Development and Function of CD4+CD25+ Regulatory T Cells. *Nat Immunol* (2003) 4:330–6. doi: 10.1038/ni904
13. Ramsdell F, Ziegler SF. FOXP3 and Scufy: How It All Began. *Nat Rev Immunol* (2014) 14:343–9. doi: 10.1038/nri3650
14. Sakaguchi S, Miyara M, Costantino CM, Hafler DA. Foxp3+ Regulatory T Cells in the Human Immune System. *Nat Rev Immunol* (2010) 10:490–500. doi: 10.1038/nri2785
15. Bennett CL, Christie J, Ramsdell F, Brunekow ME, Ferguson PJ, Whitesell L, et al. The Immune Dysregulation, Polyendocrinopathy, Enteropathy, X-Linked Syndrome (IPEX) Is Caused by Mutations of FOXP3. *Nat Genet* (2001) 27:20–1. doi: 10.1038/37313
16. Godfrey VL, Wilkinson JE, Russell LB. X-Linked Lymphoproliferative Disease in the Scurfy (Sf) Mutant Mouse. *Am J Pathol* (1991) 138:1379–87.
17. Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, et al. Disruption of a New Forkhead/Winged-Helix Protein, Scufy, Results in the Fatal Lymphoproliferative Disorder of the Scurfy Mouse. *Nat Genet* (2001) 27:68–73. doi: 10.1038/83784
18. Gavrin MA, Rasmussen JP, Fontenot JD, Vasta V, Manganiello VC, Beavo JA, et al. Foxp3-dependent Programme of Regulatory T-Cell Differentiation. *Nature* (2007) 445:771–5. doi: 10.1038/nature05543
19. Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavrin MA, Rudensky AY. Genome-Wide Analysis of Foxp3 Target Genes in Developing and Mature Regulatory T Cells. *Nature* (2007) 445:936–40. doi: 10.1038/nature05563
20. Zhou X, Jeker LT, Fife BT, Zhu S, Anderson MS, McManus MT, et al. Selective miRNA Disruption in T Reg Cells Leads to Uncontrolled Autoimmunity. *J Exp Med* (2008) 205:1983–91. doi: 10.1084/jem.20080707
21. Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY. Role of Conserved Non-Coding DNA Elements in the Foxp3 Gene in Regulatory T-Cell Fate. *Nature* (2010) 463:808–12. doi: 10.1038/nature08750
22. Tone Y, Furushchi K, Kojima Y, Tytkoinski ML, Greene MI, Tone M. Smad3 and NFAT Cooperate to Induce Foxp3 Expression Through Its Enhancer. *Nat Immunol* (2008) 9:194–202. doi: 10.1038/ni1549
23. Rudra D, Egawa T, Chong MM, Treuting P, Littman DR, Rudensky AY. Runx-CBFbeta Complexes Control Expression of the Transcript Factor Foxp3 in Regulatory T Cells. *Nat Immunol* (2009) 10:1170–7. doi: 10.1038/ni.1795
24. Wang KB, Yang J, Pagan AJ, Li LX, Wang J, Green JM, et al. Cutting Edge: CD28 and c-Rel-dependent Pathways Initiate Regulatory T Cell Development. *J Immunol* (2010) 184:4074–7. doi: 10.4049/jimmunol.0903933
25. Xu L, Kitani A, Fus i F, Strober W. Cutting Edge: Regulatory T Cells Induce CD4+CD25+Foxp3- T Cells or Are Self-Induced to Become Th17 Cells in the Absence of Exogenous TGF-Beta. *J Immunol* (2007) 178:6725–9. doi: 10.4049/jimmunol.178.11.6725
26. Voo KS, Wang YH, Santori FR, Boggiano C, Wang YH, Arima K, et al. Identification of IL-17-Producing FOXP3+ Regulatory T Cells in Humans. *Proc Natl Acad Sci USA* (2009) 106:4793–8. doi: 10.1073/pnas.0900408106
27. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, et al. A Distinct Lineage of CD4 T Cells Regulates Tissue Inflammation by Producing Interleukin 17. *Nat Immunol* (2005) 6:1133–41. doi: 10.1038/nili261
28. Ivanov II, McKenzie BS, Zhou L, Tedokoro CE, Lepelley A, Laloe lje, et al. The Orphan Nuclear Receptor RORα and RORγt Direct the Differentiation Program of Proinflammatory IL-17+ T Helper Cells. *Cell* (2006) 126:1121–33. doi: 10.1016/j.cell.2006.07.035
29. Bettelli E, Carrey R, Gao W, Korn T, Strom TB, Oukka M, et al. Reciprocal Developmental Pathways for the Generation of Pathogenic Effector TH17 and Regulatory T Cells. *Nature* (2006) 441:235–8. doi: 10.1038/nature04753
30. Zhou L, Ivanov II, Spolks R, Min R, Shenderov K, Egawa T, et al. IL-6 Programs T(H)-17 Cell Differentiation by Promoting Sequential

AUTHOR CONTRIBUTIONS

YZ, JG, and RJ wrote the manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

This work was supported by grant from Health Commission of Hubei Province Scientific Research Project (grant no. WJ2019Z014), and Key Research and Development Program of Hubei Province (grant no. 2020BC046).
Zhang et al. Treg in Oral Diseases

33. Zanin-Zhorov A, Ding Y, Kumari S, Attur M, Hippen KL, Brown M, et al. Protein Kinase C-theta Mediates Negative Feedback on Regulatory T Cell Function. J Immunol (2004) 172:5986–93. doi: 10.4049/jimmunol.172.10.5986

34. Cervenka A, Swain SL. Tgfl-Beta1: Immunosuppressant and Viability Factor for T Lymphocytes. Microbes Infect (1999) 1:1291–6. doi: 10.1016/s1286-4579(99)00253-5

35. Chen W, Jin W, Hardegen N, Lei KJ, Li L, Marinos N, et al. Conversion of Peripheral CD4+CD25- Naive T Cells to CD4+CD25+ Regulatory T Cells by TGF-Beta Induction of Transcription Factor Foxp3. J Exp Med (2003) 198:1875–86. doi: 10.1084/jem.20030152

36. Nakamura K, Kitani A, Strober W. Cell Contact-Dependent Immunosuppression by Cd4+(+CD25)(+) Regulatory T Cells Is Mediated by Cell Surface-Bound Transforming Growth Factor Beta. J Exp Med (2001) 194:629–44. doi: 10.1084/jem.194.5.629

37. Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, et al. Characterization of the Protective Role of Regulatory T Cells in Experimental Periapical Lesion Development and Their Chemokattraction Manipulation as a Therapeutic Tool. J Endod (2016) 42:120–6. doi: 10.1016/j.jendo.2015.09.022

38. Liu XM, Liu Y, Yu S, Jiang LM, Song B, Chen X. Potential Immunomodulatory Effects of Stem Cells From the Apical Papilla on Treg Conversion in Tissue Regeneration for Regenerative Endodontic Treatment. Int Endod J (2019) 52:1758–67. doi: 10.1111/iej.13197

39. Noack M, Miossec P. Th17 and Regulatory T Cell Balance in Autoimmune Diseases. J Endodontics (2014) 40:456–62. doi: 10.1016/j.jendod.2013.09.033

40. Nair PN. Pathogenesis of Apical Periodontitis and the Causes of Endodontic Failures. Crit Rev Oral Biol Med (2004) 15:348–81. doi: 10.1177/154405910401500604

41. Tinti-Ch, Farkel M. Residual Cyst of the Jaws: A Clinico-Pathologic Study of This Seemingly Inconspicuous Lesion. PloS One (2010) 5:1024420. doi: 10.1371/journal.pone.0024250

42. Andrade A, Nonaka CFW, Gordenín–Núñez MA, Freitas R, Galvão HC. Immunoperoxidase of Interleukin 17, Transforming Growth Factor β1, and Forkhead Box P3 in Periapical Granulomas, Radiolus Cysts, and Residual Radicular Cysts. J Endodontics (2013) 39:9900–4. doi: 10.1016/j.joen.2013.04.028

43. Xiao L, Zhu L, Yang S, Lei D, Xiao Y, Peng B. Different Correlation of Sphingosine-1-Phosphate Receptor 1 With Receptor Activator of Nuclear Factor Kappa B Ligand and Regulatory T Cells in Rat Periodontal Lesions. J Endodontics (2015) 41:479–86. doi: 10.1016/j.joen.2014.10.010

44. Noack M, Miessoc TH, and Regulatory T Cell Balance in Autoimmun and Inflammatory Diseases. Autoimmun Rev (2014) 13:668–77. doi: 10.1016/j.autrev.2013.12.004

45. Seymour GJ, Gemmell E, Reinhardt RA, Eastcott J, Taubman MA. Immunopathogenesis of Chronic Inflammatory Periodontal Disease: Cellular and Molecular Mechanisms. J Periodontal Res (1993) 28:478–86. doi: 10.1111/j.1600-0765.1993.tb02108.x

46. Nakajima T, Ueki-Maruyama K, Oda T, Ohsawa Y, Ito H, Seymour GJ, et al. Regulatory T-cells Infiltrate Periodontal Disease Tissues. J Dent Res (2005) 84:639–43. doi: 10.1177/00220345050840071

47. Cardoso CR, Garret GP, Moreira AP, Junior WM, Rossi MA, Silva JS. Characterization of CD4+CD25+ Natural Regulatory T Cells in the Inflammation of Human Chronic Periodontitis. J Leukoc Biol (2008) 84:311–8. doi: 10.1189/jlb.0107401

48. Okui T, Aoki Y, Ito H, Honda T, Yamazaki K. The Presence of IL-17+/FOXP3+ Double-Positive Cells in Periodontitis. J Dent Res (2012) 91:574–9. doi: 10.1177/0022034512446341
Zhang et al. Treg in Oral Diseases

70. Garrelt GP, Cardoso CR, Mariano FS, Claudino M, de Assis GF, Campanelli AP, et al. Regulatory T Cells Attenuate Experimental Periodontitis Progression in Mice. J Clin Periodontol (2010) 37:591–600. doi: 10.1111/j.1600-051X.2010.01856.x

71. Qin X, Liu YJ, Wang T, Pashley DH, Al-Hashim AH, Abdesayed R, et al. Role of Indoleamine 2,3-Dioxygenase in an Inflammatory Model of Murine Gingiva. J Periodontal Research (2017) 52:107–13. doi: 10.1111/jper.12374

72. Alvarez C, Suliman S, Almarhoumi R, Vega ME, Rojas C, Monasterio G, et al. Regulatory T Cell Phenotype and Anti-Osteoclastogenic Function in Experimental Periodontitis. Sci Rep (2020) 10:19018. doi: 10.1038/s41598-020-76538-w

73. Hays A, Duan X, Zhu J, Zhou W, Upadhyayula S, Shvide J, et al. Down-Regulated Treg Cells in Exacerbated Periodontal Disease During Pregnancy. Int Immunopharmacol (2019) 69:299–306. doi: 10.1016/j.intimp.2019.01.031

74. Cafferata EA, Terraza-Aguirre C, Barrera R, Faundez N, Gonzalez N, Rojas C, et al. Interleukin-35 Inhibits Alveolar Bone Resorption by Modulating the Th17/Treg Imbalance During Periodontitis. J Clin Periodontol (2020) 47:676–88. doi: 10.1111/jcpe.13282

75. Liu Z, Chen X, Zhang Z, Zhang X, Saunders L, Zhou Y, et al. Nanobiof Spongy Micropheres To Distinctly Release miRNA and Growth Factors To Enrich Regulatory T Cells and Rescue Periodontal Bone Loss. ACS Nano (2018) 12:9785–99. doi: 10.1021/acsnano.7b09876

76. Zheng Y, Dong C, Yang J, Jin Y, Zheng W, Zhou Q, et al. Exosomal microRNA-155-5p From PDLSCs Regulated Th17/Treg Balance by Targeting Sirtuin-1 in Chronic Periodontitis. J Cell Physiol (2019) 234:20662–74. doi: 10.1002/jcpp.28671

77. Wang L, Wang J, Jin Y, Gao H, Lin X. Oral Administration of All-Trans Retinoic Acid Suppresses Experimental Periodontitis by Modulating the Th17/Treg Imbalance. J Periodontal (2014) 85:740–50. doi: 10.1902/jop.2013.130132

78. Zais MM, Axmann R, Zwerina J, Polzer K, Guckel E, Skapenko A, et al. Treg Cells Suppress Osteoclast Formation: A New Link Between the Immune System and Bone. Arthritis Rheum (2007) 56:4104–12. doi: 10.1002/art.23138

79. Ernst CW, Lee JE, Nakamichi T, Karimbus NY, Karimbux N, Rezende TM, Stashenko P, et al. Increased Ectonucleotidase Expression and Activity in Regulatory T Cells of Patients With Head and Neck Cancer. Clin Cancer Res (2009) 15:6348–57. doi: 10.1158/1078-0432.Ccr-09-1143

80. Sato K, Suematsu A, Okamoto K, Yamaguchi A, Morishita Y, Kadono Y, et al. Alloantigen-Induced FoxP3+ Regulatory T Cells in Patients With Head and Neck Cancer. Jpn J Clin Oncol (2011) 40:636–42. doi: 10.1111/j.1348-0436.2011.01020.x

81. Sun W, Li WJ, Wu QL, Wu CY, Lin JZ, Zhu XL, et al. Functionally Distinct Subsets of CD4(+) Regulatory T Cells in Patients With Laryngeal Squamous Cell Carcinoma Are Indicative of Immune Deregulation and Disease Progression. Oncol Rep (2015) 33:354–62. doi: 10.3892/or.2014.3553

82. Nwizu N, Wactawski-Wende J, Genco RJ. Periodontal Disease and Cancer: Epidemiologic Studies and Possible Mechanisms. Periodontol 2000 (2006) 38:201–11. doi: 10.1111/j.1600-0714.2006.00776.x

83. Preshaw PM, Alba AL, Herrera D, Jepsen S, Konstantinidis A, Makrilakis K, et al. Differential Expression of Helios, Neuropilin-1 and FoxP3 in Head and Neck Cancers. Int J Cancer (2014) 134:97–104. doi: 10.1002/ijc.28671

84. Strauss L, Bergmann C, Al-Hashim AH, Abdesayed R, et al. Distinctive Treg Associated CCR4-CCL22 Expression Profile With Altered Frequency of Th17/Treg Cell in the Immunopathogenesis of Pephigus Vulgaris. Immunobiology (2015) 220:1129–35. doi: 10.1016/j.imbs.2015.06.008

85. Adil AAM, Bommamadraik A, Vaitthy A, Kumar S, Waseem M, Jamal S, et al. Differential Expression of Helios, Neuropilin-1 and FoxP3 in Head and Neck Squamous Cell Carcinoma (HNSCC) Patients. J Biotech (2019) 9:178. doi: 10.1016/j.sbiotech.2019-1707-7

86. Badoual C, Hans S, Rodriguez J, Peyrard S, Klein C, Agueznay N, et al. Interleukin-35 Inhibits Alveolar Bone Resorption by Modulating the Th17/Treg Phenotypes and Predict Survival in Locally Advanced Head and Neck Carcinoma. Int J Cancer (2014) 134:520–30. doi: 10.1002/ijc.28671

87. Sun W, Li WJ, Wu QL, Wu CY, Lin JZ, Zhu XL, et al. Functionally Distinct Subsets of CD4(+) Regulatory T Cells in Patients With Laryngeal Squamous Cell Carcinoma Are Indicative of Immune Deregulation and Disease Progression. Oncol Rep (2015) 33:354–62. doi: 10.3892/or.2014.3553

88. Strauss L, Bergmann C, Whiteside TL. Functional and Phenotypic Characteristics of CD4 (+)CD25highFoxp3 + Treg Clones Obtained From Peripheral Blood of Patients With Cancer. Int J Cancer (2007) 121:2473–83. doi: 10.1002/(issn)1521-6934.doi: 10.1002/jjim.21197032

89. Maggioni P, Pignatolo L, Garavello W. T-Helper and T-Regulatory Cells Modulation in Head and Neck Squamous Cell Carcinoma. Oncol Immunol (2017) 6:e1352066. doi: 10.2018/162402x.2017.1352066

90. Strauss L, Bergmann C, Whiteside TL. Frequency and Suppressor Function of CD4(+)CD25highFoxp3 + T Cells in the Circulation of Patients With Squamous Cell Carcinoma of the Head and Neck. Clin Cancer Res (2007) 13:6301–11. doi: 10.1158/1078-0432.CCR-07-1403

91. Adil AAM, Bommamadraik A, Vaitthy A, Kumar S, Waseem M, Jamal S, et al. Differential Expression of Helios, Neuropilin-1 and FoxP3 in Head and Neck Squamous Cell Carcinoma (HNSCC) Patients. J Biotech (2019) 9:178. doi: 10.1016/j.sbiotech.2019-1707-7
111. Brand OJ, Spencer ML, Zapata PA, Martinez A, Alarcon R, Marchesani FL, et al. CD8+ and Foxp3+ T-Cell Infiltration in Actinic Cheilitis. Int J Dermatol (2017) 56:54–62. doi: 10.1111/ijd.13446

112. Zhang D, Wang J, Li Z, Zhou M, Chen Q, Zeng X, et al. The Activation of NF-κB in Infiltrated Mononuclear Cells Negatively Correlates With Treg Cell Frequency in Oral Lichen Planus. Inflammation (2015) 38:1683–9. doi: 10.1007/s10753-015-0145-x

113. Spoerl S, Kremer AD, Luster AD. Chemokines and Chemokine Receptors: Positioning Cells for Host Defense and Immunity. Annu Rev Immunol (2014) 32:659–702. doi: 10.1146/annurev-immunol-032713-120145

114. Goldstein JD, Perol L, Zaragoza B, Baeyens A, Marodon G, Piaggio E. Role of Lung Homing in Patients With Severe Acute SARS-CoV-2 Infection. Annu Rev Immunol (2020) 38:1471–87. doi: 10.1146/annurev-immunol-032019-080143

115. Rojas IG, Spencer ML, Zapata PA, Martinez A, Alarcon R, Marchesani FL, et al. Blocking IL-33 Is an Unconventional Alarmin That Stimulates IL-2 Secretion by Dendritic Cells to Selectively Expand IL-33/STAT2+ Regulatory T Cells. J Immunol (2014) 193:6010–20. doi: 10.4049/jimmunol.1400481

116. Huang YH, Chang CY, Kuo YZ, Fang WY, Kao HY, Tsai ST, et al. Cancer-Associated Fibroblast-Derived Interleukin-1beta Activates Protumor C-C Chemokine/C-C Motif Chemokine Ligand 22 Signaling in Head and Neck Cancer. Cancer Sci (2019) 110:2783–93. doi: 10.1111/cas.14135

117. Basu S, Hubbard B, Shевич AM. Foxp3-mediated Inhibition of Akt Inhibits Glut1 (Glucose Transporter 1) Expression in Human T Regulatory Cells. J Leukoc Biol (2015) 97:279–83. doi: 10.1189/jlb.2A0514-273RR

118. Sharma MD, Shinde R, McGaha TL, Huang L, Holmgard RB, Wolchok JD, et al. The PTEN Pathway in Tregs Is a Critical Driver of the Suppressive Tumor Microenvironment. Sci Adv (2015) 1:e1500845. doi: 10.1126/sciadv.1500845

119. Abu-Eid R, Samara RN, Ozburn L, Abdalla MY, Berzofsky JA, Friedman KM, et al. Epigenetic Mechanisms of Regulation of Foxp3 Integration by Akt Regulates CD8 T Cell Effector and Memory Differentiation. J Immunol (2016) 197:5287–90. doi: 10.4049/jimmunol.1600995

120. Kim EH, Sullivan JA, Plisch EH, Tejera MM, Jatzek A, Choi KY, et al. Signal Integration by Akt Promotes Induction of Human CD4(+)CD25(+)FOXP3(+) T Cells. Sci Adv (2016) 2:1000. doi: 10.1126/sciadv.1500302

121. Bensinger SJ, Walsh PT, Zhang J, Carroll M, Parsons R, Rathmell JC, et al. Essential Role for PI3K, Akt, and mTOR. Cancer Immunol Immunother (2015) 64:1227–38. doi: 10.1007/s00262-015-1806-9

122. Delgoffe GM, Kole TP, Zheng Y, Zarek PE, Matthews KL, Xiao B, et al. The Mtor Kinase Differentially Regulates Effector and Regulatory T Cell Lineage Differentiation. J Immunol (2012) 188:1009–19. doi: 10.4049/jimmunol.1103568

123. Bird A. DNA Methylation Patterns and Epigenetic Memory. Genes Dev (2002) 16:6–21. doi: 10.1101/gad.947102

124. Kim EH, Sullivan JA, Plisch EH, Tejera MM, Jatzek A, Choi KY, et al. Signal Integration by Akt Regulates CD8 T Cell Effector and Memory Differentiation. J Immunol (2012) 188:14305–14. doi: 10.4049/jimmunol.1103568

125. Young MRI, Levinston CA, Johnson SD. Treatment to Sustain a Th17-type Phenotype to Prevent Squeezing Toward Treg and to Limit Premalignant Lesion Progression to Cancer. Int J Cancer (2016) 138:2487–98. doi: 10.1002/ijc.29989

126. Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, et al. T Cell Lineage Switching Upon Helminth Infection Can Result in the Positive Selection of Treg Cells. J Immunol (2017) 198:4076–82. doi: 10.4049/jimmunol.1601504

127. Kim EH, Sullivan JA, Plisch EH, Tejera MM, Jatzek A, Choi KY, et al. Signal Integration by Akt Promotes Induction of Human CD4(+)CD25(+)FOXP3(+) T Cells. Sci Adv (2016) 2:1000. doi: 10.1126/sciadv.1500302

128. De
145. Campos K, Franciscioni CF, Okehie V, de Souza LC, Trombone AP, Letra A, et al. Foxp3 DNA Methylation Levels as a Potential Biomarker in the Development of Periapical Lesions. J Endod (2015) 41:212–8. doi: 10.1016/j.joen.2014.10.003

146. Zhuo C, Xu Y, Ying M, Li Q, Huang L, Li D, et al. Foxp3+ Tregs: Heterogeneous Phenotypes and Conflicting Impacts on Survival Outcomes in Patients With Colorectal Cancer. Immunol Res (2015) 61:338–47. doi: 10.1007/s12026-014-8616-y

147. Waight JD, Takai S, Marelli B, Qin G, Hance KW, Zhang D, et al. Cutting Edge: Epigenetic Regulation of Foxp3 Defines a Stable Population of CD4+ Regulatory T Cells in Tumors From Mice and Humans. J Immunol (2015) 194:878–82. doi: 10.4049/jimmunol.1402725

148. Ma H, Gao W, Sun X, Wang W. STAT5 and TET2 Cooperate to Regulate Foxp3-Tsdr Demethylation in CD4(+) T Cells of Patients With Colorectal Cancer. J Immunol (2018) 2018:6985031. doi: 10.1155/2018/6985031

149. Kagoya Y, Sajo H, Matsunaga Y, Guo T, Saso K, Anczurowski M, et al. Arginine Methylation of FOXP3 Is Crucial for the Suppressive Function of Regulatory T Cells. J Autoimmun (2019) 97:10–21. doi: 10.1016/j.jaut.2018.09.011

150. Jarrold J, Davies CC. Prmts and Arginine Methylation: Cancer’s Best-Kept Secret? Trends Mol Med (2019) 25:993–1009. doi: 10.1016/j.molmed.2019.05.007

151. Nagai Y, Ji MQ, Zhu F, Xiao Y, Tanaka Y, Kambayashi T, et al. Prmt5 Associates With the FOXP3 Homomer and When Disabled Enhances Targeted P185(Erbb2/Neu) Tumor Immunotherapy. Front Immunol (2019) 10:174. doi: 10.3389/fimmu.2019.00174

152. Deng G, Song X, Fujimoto S, Piccirillo CA, Nagai Y, Greene MI. Foxp3 Post-translational Modifications and Treg Suppressive Activity. Front Immunol (2019) 10:2486. doi: 10.3389/fimmu.2019.02486

153. Xiao Y, Li B, Zhou Z, Hancock WW, Zhang H, Greene MI. Histone Acetyltransferase Mediated Regulation of FOXP3 Acetylation and Treg Function. Curr Opin Immunol (2010) 22:583–91. doi: 10.1016/j.coi.2010.08.013

154. Liu Y, Wang L, Han R, Beier UH, Akinova T, Bhatti T, et al. Two Histone/Protein Acetyltransferases, CBP and p300, Are Indispensable for Foxp3+ T-Regulatory Cell Development and Function. Mol Cell Biol (2014) 34:3993–4007. doi: 10.1128/MCB.00919-14

155. Liu Y, Wang L, Predina J, Han R, Beier UH, Wang LC, et al. Inhibition of p300 Impairs Foxp3+ T Regulatory Cell Function and Promotes Antitumor Immunity. Nat Med (2013) 19:1173–7. doi: 10.1038/nm.3286

156. Tao R, de Zoeten EF, Özkaynak E, Chen C, Wang L, Porrett PM, et al. Deacetylase Inhibition Promotes the Generation and Function of Regulatory T Cells. Nat Med (2007) 13:1299–307. doi: 10.1038/nm1652

157. Bartold PM, Lopez-Oliva I. Periodontitis and Rheumatoid Arthritis: An Update 2012-2017. Periodontol 2000 (2020) 83:189–212. doi: 10.1111/prd.12308

158. Fortuna G, Brennan MT. Systemic Lupus Erythematosus: Epidemiology, Pathophysiology, Manifestations, and Management. Dent Clin North Am (2013) 57:631–55. doi: 10.1016/j.cden.2013.06.003

159. Peacock ME, Arce RM, Cutler CW. Periodontal and Other Oral Manifestations of Immunodeficiency Diseases. Oral Dis (2017) 23:866–88. doi: 10.1111/odi.12584

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Zhang, Guo and Jia. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.