HBT radii : Comparative studies on collision systems and beam energies

Debasish Dasa1

aSaha Institute of Nuclear Physics, HBNI, 1/AF, Bidhannagar, Kolkata 700064, India

Abstract

Two-particle Hanbury-Brown-Twiss (HBT) interferometry is an important probe for understanding the space-time structure of particle emission sources in high energy heavy ion collisions. We present the comparative studies of HBT radii in Pb+Pb collisions at $\sqrt{s_{NN}} = 17.3$ GeV with Au+Au collisions at $\sqrt{s_{NN}} = 19.6$ GeV. To further our understanding for this specific energy regime we also compare the HBT radii for Au+Au collisions at $\sqrt{s_{NN}} = 19.6$ GeV with Cu+Cu collisions at $\sqrt{s_{NN}} = 22.4$ GeV. We have found interesting similarity in the $R_{\text{out}}/R_{\text{side}}$ ratio with m_T across the collision systems while comparing the data for this specific energy zone which is interesting as it acts as a bridge from SPS energy regime to the RHIC energy domain.

Keywords: quark-gluon plasma, pion interferometry, HBT, HBT radii

1 Introduction

A phase transition from a hadronic state to a “plasma” of deconfined quarks and gluons when the energy density exceeds a critical value, is predicted from Quantum Chromo-Dynamics (QCD). The complicated structure of nuclear matter at low temperatures, where it is composed of a multitude of hadronic particles, baryons and mesons, is thus expected to give way at high temperatures to a plasma of weakly composed quarks and gluons, the Quark – Gluon Plasma (QGP). QGP is a thermalized system where the properties of the system are governed by the quark and gluon degrees of freedom [1].

1email : debasish.das@saha.ac.in , dev.deba@gmail.com
Understanding the deconfining phase transition in hadronic matter and of the QGP properties is a challenging task. For systems created in the Relativistic Heavy Ion Collider (RHIC) and Large Hadron collider (LHC) energy region with high temperatures and low baryo-chemical potential, Lattice QCD calculations predict a cross-over transition between the hadron gas and the QGP phase. Lattice QCD predicts a phase transformation to a quark-gluon plasma at a temperature of approximately $T \approx 170 \text{ MeV}$ ($1 \text{ MeV} \approx 1.1604 \times 10^{10} \text{K}$) (1) corresponding to an energy density $\epsilon \approx 1 \text{ GeV/fm}^3$, which is nearly an order of magnitude larger than normal nuclear matter.

Experimental studies in relativistic heavy ion physics aim to study the QCD nature of matter under the conditions of extreme temperature and high energy density both at RHIC and at LHC. The discovery of the QGP can describe the system (governed by the quarks and gluons) in which the degrees of freedom are no more the colour neutral hadron states.

The equation of state (EoS) of nuclear matter enables us to understand the relationship between the pressure and the energy at a given net-baryon density. Phase transitions from the hadronic resonance gas phase to the color-deconfined QGP (see e.g., [2, 3]), contribute to the changes of the EoS. The experimental measurements should also be able to determine the physical characteristics of the transition, for example the critical temperature, the order of the phase transition, and the speed of the sound along with the nature of the quasi-particles. The EoS of hot and dense QCD matter is still not precisely understood. Modern nuclear physics, has an important goal to explore the phase diagram of quark matter in various temperatures and baryon density so as to confirm the existence of the new phase of quark matter [4, 5].

The intermediate Super Proton Synchrotron (SPS) energy regime still remains interesting since the onset of deconfinement is expected to happen at those energies. Possibility of a critical endpoint [6, 7] and a first-order phase transition is yet not excluded. Several beam-energy dependent observables such as the particle ratios [8, 9], the flow [10, 11], the HBT parameters [12, 13] show a non-monotonic behaviour
for which the interpretation still remains unclear. The Beam Energy Scan (BES) programs at RHIC, show that directed flow is strong for both the lowest and highest RHIC energies as shown by results from STAR experiment [14]. The net-proton $v_1(y)$ slope have a minimum between 11.5 and 19.6 GeV and changing sign twice between 7.7 and 39 GeV, which is quite contrary to the UrQMD transport model predictions for that energy regime. The vanishing of directed flow when the expansion stops and its appearance when the matter has passed through the change is the “latent heat”, where the predicted “softest point disappearance” of flow can become a possible signature of a first-order phase transition between hadronic matter and a deconfined QGP phase.

Assuming a first-order phase transition, there is a mixed phase of the QGP and hadronic gas. A slow-burning fireball is expected in the absence of pressure gradient, when the initial system is at rest in the mixed phase, and this leads to a time-delay in the system evolution [12, 15, 16, 17]. Investigation of the time-delay signatures for the first-order phase transition is hence-forth a subject of interest.

Two-particle Hanbury-Brown-Twiss (HBT) interferometry is an important tool for detecting the space-time structure of particle emission sources in high energy heavy ion collisions [18, 19, 20]. The occurrence of first-order phase transition between the QGP and hadronic matter, will lead to the time-delay of the system evolution and hence making the emission duration of particles more prolonged [12, 15, 16, 17]. As explained in these references [12, 15, 16, 17] the three HBT radius parameters, R_{out}, R_{side}, R_{long}, describe the dimensions of a Gaussian source in longitudinal co-moving system (LCMS) framework. The $R_{\text{out}}/R_{\text{side}}$ ratio can be related to the emission time [12, 15, 16, 17]. We have explored in this paper the energy region of 17.3 GeV to 22.4 GeV through comparative studies of two-pion HBT radii. This energy region has shown interesting results in STAR experiment [14] for other correlation measurements (like flow).
1. Results

Two-pion interferometry yields HBT radii that describe the geometry of these regions of homogeneity (regions that emit correlated pion pairs). The HBT radii increases for more central collisions due to the increasing volume of the source and
Figure 2: The comparison of system size dependence in HBT radii of STAR Au+Au collisions at $\sqrt{s_{NN}} = 19.6$ GeV with Cu+Cu collisions at $\sqrt{s_{NN}} = 22.4$ GeV. Only statistical errors are shown for the top central data of both the Au+Au and Cu+Cu datasets.

thus an example of how HBT can probe spatial sizes and shapes [24]. The decrease of HBT radii with mean pair transverse momentum, $k_T (=|\vec{p}_{1T} + \vec{p}_{2T}|)/2)$, has been due to transverse and longitudinal flow [24]. Flow causes space-momentum correlations since the size of the regions emitting the particles do not correspond to the entire fireball created in a relativistic heavy ion collision [24].

In this paper, the results of two-pion HBT analyses of Pb+Pb at 17.3 GeV from NA49 experiment [25] are compared in Fig.1 and discussed with other STAR HBT results from Au+Au 19.6 GeV [26]. Fig.1 shows the HBT radii of SPS and RHIC collision species where for Pb+Pb 17.3 GeV(NA49) and Au+Au 19.6 GeV(STAR) show similar trend for R_{side} and R_{long} with m_T. For R_{out} the SPS data has a flatter slope when compared with RHIC, but the $R_{\text{out}}/R_{\text{side}}$ ratios with $m_T (=\sqrt{k_T^2 + m_\pi^2})$ are very similar for the top central data of both experiments. The $R_{\text{out}}/R_{\text{side}}$ ratios
19.6 GeV Au+Au (0-5%) and 22.4 GeV Cu+Cu (0-10%)

19.6 GeV Au+Au (0-5%) [STAR Published in Phys. Rev. C 92, 014904 (2015)]
22.4 GeV Cu+Cu (0-10%) [STAR Preliminary in DAE Symp. Nucl. Phys. 54 (2009) 540-541]

Figure 3: Ratios of HBT radii at top centralities for Au+Au and Cu+Cu collisions at $\sqrt{s_{NN}} = 19.6$ and 22.4 GeV vs. m_T. Only statistical errors are shown for Au+Au collisions at $\sqrt{s_{NN}} = 19.6$ GeV and Cu+Cu collisions at $\sqrt{s_{NN}} = 22.4$ for their top central datasets.

of NA49 and STAR show weak m_T dependence and have values close to unity.

The HBT radii from Au+Au 19.6 GeV and Cu+Cu 22.4 GeV both from STAR experiment are also included in this paper since they are different collision species with close by collision energies. Reference [27] explains the analysis methodology for Cu+Cu collisions at $\sqrt{s_{NN}} = 22.4$ GeV. In Fig.2 we present this comparison of two-pion HBT radii to include central (0-5%) Au+Au collisions at $\sqrt{s_{NN}} = 19.6$ GeV and central (0-10%) Cu+Cu collisions at $\sqrt{s_{NN}} = 22.4$ GeV from the STAR experiment.

The HBT radii for Cu+Cu collisions at $\sqrt{s_{NN}} = 22.4$ GeV are smaller than those for Au+Au collisions at $\sqrt{s_{NN}} = 19.6$ GeV. The variations of the R_{out}/R_{side} ratios with m_T are similar for the Au+Au and Cu+Cu collision data as we see in Fig.2. The ratios also show weak m_T dependence with the values close to unity.
In Fig. 3 we present the m_T dependences of the ratios of two-pion HBT radii for the most-central Au+Au at $\sqrt{s_{NN}}=19.6$ GeV and Cu+Cu collisions at $\sqrt{s_{NN}} = 22.4$ GeV. Details about the Cu+Cu systems are explained in [27] and references therein. As seen in Fig. 3 the ratios of radii for Au+Au to Cu+Cu collisions are ~ 1.5. Although we see that the individual HBT radii decrease significantly with increasing m_T but the the ratios in Fig. 3 show that the HBT radii for Au+Au and Cu+Cu collisions at 19.6 GeV and 22.4 GeV share a common m_T dependence. Such trends can be understood in terms of models [28, 29] where participant scaling is used to predict the HBT radii in Cu+Cu collisions from the measured radii for Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV, assuming the radii are proportional to $A^{1/3}$, where A is the atomic mass number of the colliding nuclei.

3 Summary

The R_{out}/R_{side} ratio is important since it is able to provide the information of the emission duration. We also know that the HBT radii are affected by transverse and longitudinal flow. The SPS energy regime is still zone of interest where the recent flow results from STAR experiment [14] (within 11.5 and 19.6 GeV) have shown some new and interesting features. When we compare the HBT (two-particle correlation) radii in Pb+Pb collisions at $\sqrt{s_{NN}} = 17.3$ GeV with Au+Au collisions at $\sqrt{s_{NN}} = 19.6$ GeV we find very similar R_{out}/R_{side} ratio with m_T. To explore this interesting energy regime we have compared the HBT radii for Au+Au collisions at $\sqrt{s_{NN}} = 19.6$ GeV with Cu+Cu collisions at $\sqrt{s_{NN}} = 22.4$ GeV. The similarity in the R_{out}/R_{side} ratio with m_T persists across the collision systems from SPS to RHIC energies and even in close by RHIC energies for Au+Au and Cu+Cu systems as well. The rise of the ratio R_{out}/R_{side} with collision energy which was predicted [12] due to a possible phase transition is not observed. Such inferences establish that HBT radii R_{out}/R_{side} ratios are very much comparable and consistent across the different colliding species in (an exciting zone of interest of the RHIC BES program), the energy region of 17.3 GeV to 22.4 GeV.
Acknowledgements: Author D.D. acknowledges the facilities of Saha Institute of Nuclear Physics, Kolkata, India.
“The author declares that there is no conflict of interest regarding the publication of this paper.”

References

[1] F. Karsch, Lect. Notes Phys. 583, 209 (2002) [arXiv:hep-lat/0106019]. F. Karsch, Nucl. Phys. A 698, 199 (2002)

[2] C. Spieles, H. Stöcker and C. Greiner, Phys. Rev. C 57 (1998) 908.

[3] M. Bluhm, B. Kampfer, R. Schulze, D. Seipt and U. Heinz, Phys. Rev. C 76 (2007) 034901.

[4] Z. Fodor and S. D. Katz, JHEP 0203 (2002) 014.

[5] P. de Forcrand and O. Philipsen, JHEP 0701 (2007) 077.

[6] R. A. Lacey et al., Phys. Rev. Lett. 98, 092301 (2007)

[7] F. H. Liu, L. N. Gao and R. A. Lacey, Adv. High Energy Phys. 2016, 9467194 (2016)

[8] S. V. Afanasiev et al. [The NA49 Collaboration], Phys. Rev. C 66 (2002) 054902.

[9] C. Alt et al. [NA49 Collaboration], Phys. Rev. C 77 (2008) 024903.

[10] P. F. Kolb, P. Huovinen, U. W. Heinz and H. Heiselberg, Phys. Lett. B 500 (2001) 232.

[11] H. Petersen, Q. Li, X. Zhu and M. Bleicher, Phys. Rev. C 74 (2006) 064908.

[12] D. H. Rischke and M. Gyulassy, Nucl. Phys. A 608 (1996) 479.
[13] D. Adamova et al. [CERES Collaboration], Phys. Rev. Lett. 90 (2003) 022301.

[14] L. Adamczyk et al. [STAR Collaboration], Phys. Rev. Lett. 112, no. 16, 162301 (2014)

[15] Pratt S 1986 Phys. Rev. D 33 1314

[16] Bertsch G and Brown G E 1989 Phys. Rev. C 40 1830

[17] Soff S, Bass S A, Hardtke D H and Panitkin S Y 2002 Phys. Rev. Lett. 88 072301

[18] Wong C Y Introduction to High-Energy Heavy-Ion Collisions (World Scientific, Singapore, 1994), Chap. 17.

[19] Wiedemann U A and Heinz U 1999 Phys. Rept. 319 145

[20] Weiner R M 2000 Phys. Rept. 327 249

[21] R. Hanbury Brown and R. Q. Twiss, Nature 178, 1046 (1956). doi:10.1038/1781046a0

[22] G. Goldhaber, S. Goldhaber, W. Y. Lee and A. Pais, Phys. Rev. 120, 300 (1960). doi:10.1103/PhysRev.120.300

[23] Lisa M A, Pratt S, Soltz R and Wiedemann U 2005 Ann. Rev. Nucl. Part. Sci. 2005 55 357

[24] S. Pratt and J. Vredevoogd, Phys. Rev. C 78 (2008) 054906.

[25] C. Alt et al. [NA49 Collaboration], Phys. Rev. C 77, 064908 (2008) doi:10.1103/PhysRevC.77.064908 [arXiv:0709.4507 [nucl-ex]].

[26] L. Adamczyk et al. [STAR Collaboration], Phys. Rev. C 92, no. 1, 014904 (2015) doi:10.1103/PhysRevC.92.014904

[27] D. Das [STAR Collaboration], DAE Symp. Nucl. Phys. 54, 540 (2009).
[28] J. G. Cramer, G. A. Miller, J. M. S. Wu and J. H. S. Yoon, Phys. Rev. Lett. 94, 102302 (2005).

[29] G. A. Miller and J. G. Cramer, J. Phys. G 34, 703 (2007).