Studying the D_1D molecule in the Bethe-Salpeter equation approach

Zhen-Yang Wanga Jing-Juan Qib Jing Xuc Xin-Heng Guo,d,1
aPhysics Department, Ningbo University, Zhejiang 315211, China
bJunior College, Zhejiang Wanli University, Zhejiang 315101, China
cDepartment of Physics, Yantai University, Yantai 264005, China
dCollege of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
E-mail: wangzhenyang@nbu.edu.cn, qijj@mail.bnu.edu.cn, xj2012@mail.bnu.edu.cn, xhguo@bnu.edu.cn

ABSTRACT: We study the possible bound states of the D_1D system in the Bethe-Salpeter (BS) formalism in the ladder and instantaneous approximations. By solving the BS equation numerically with the kernel containing one-particle exchange diagrams and introducing three different form factors (monopole, dipole, and exponential form factors) at the vertices, we investigate whether the isoscalar and isovector D_1D bound states may exist, respectively. We find that $Y(4260)$ could be accommodated as a D_1D molecule, whereas the interpretation of $Z_{2}^{+}(4250)$ as a D_1D molecule is disfavored. The bottom analog of $Y(4260)$ may exist but that of $Z_{2}^{+}(4250)$ does not.

1Corresponding author.
1 Introduction

The charmonium-like state Y(4260) [or named as ψ(4260)] was first observed by BABAR Collaboration in the initial-state radiation process $e^+e^- \rightarrow \gamma_{ISR}J/\psi\pi^+\pi^-$ in 2005 [1], and then immediately confirmed by CLEO [2] and Belle [3] Collaborations in the same process. While BESIII Collaboration observed Y(4260) afterwards, it also reported a stunning particle-Zc(3900) in $e^+e^- \rightarrow Y(4260) \rightarrow J/\psi\pi^+\pi^-$ process [4]. The average mass and width of Y(4260) are $M = 4230 \pm 8$ MeV and $\Gamma = 55\pm 19$ MeV in PDG [5], respectively. In 2007, BESIII Collaboration performed a precise cross section measurement of $e^+e^- \rightarrow J/\psi\pi^+\pi^-$ for c.m. energies from $\sqrt{s} = 3.77$ to 4.60 GeV and observed two resonant structures, one with a mass of (4222.0\pm3.1\pm1.4) MeV and a width of (44.1\pm4.3\pm2.0) MeV and the other with a mass of (4320.0\pm10.4\pm7.0) MeV and a width of (101.4$^{+25.3}_{-19.7}$)\pm10.2) MeV [6]. The first resonance (named as Y(4220)) agrees with the Y(4260) resonance reported by previous experiments. Recently, the first experimental evidence for open-charm production ($e^+e^- \rightarrow Y(4220) \rightarrow \pi^+D^0\bar{D}^*$) associated with the Y(4220) state was observed by BESIII [7].

With Y(4260) being produced via e^+e^- annihilation, its J^{PC} should be 1^{--}. Since Y(4260) is well above the $D\bar{D}$ threshold, it should have a large phase space to decay into charmed meson pairs. However, unlike the charmonium states ψ(4040), ψ(4160), and ψ(4415) in the same mass range which decay predominantly into open charm final states, Y(4260) only show a strong coupling to $\pi^+\pi^-J/\psi$, and has not been observed in any open charm decay channels like $D\bar{D}$, $D^*\bar{D} + c.c.$, and $D^*\bar{D}^*$ [8–11]. Furthermore, Y(4260) does not fit in the conventional charmonium spectroscopy [12]. These features suggest a complicated substructure of Y(4260). In fact, Y(4260) has stimulated lots of studies with different theoretical structure assumptions, including hybrid state [13, 14], tetraquark state [15–17], charmonium and tetraquark mixing state [18, 19], hadronic molecule of $\chi_{c1}\rho^0$ [20], $\chi_{c1}\omega$ [21], $D_0\bar{D}^*$ [22], $J/\psi f_0(980)$ [23], $D_1 D$ [24–30] or $J/\psi K\bar{K}$ [31], and baryonium state [32]. Since the mass of Y(4260) is only about 29 MeV below the threshold of $D_1 D$ which is
the first open-charm S-wave channel coupling a state with $J^{PC} = 1^{--}$, the $D_1 D$ molecule is a good candidate for the structure of $Y(4260)$, which has remained controversial until now.

Years ago Belle Collaboration observed two charged resonance-like structures, $Z_1^+(4051)$ and $Z_2^+(4250)$, with the significance of more than 5σ in the $\chi_{c1}\pi^+$ mass distribution in $B \to K^-\pi^+\chi_{c1}$ decays [33]. Their Breit-Wigner masses and widths are $M_1 = 4051 \pm 14^{+20}_{-41}$ MeV, $\Gamma_1 = 82^{+21+47}_{-39-61}$ MeV, and $M_2 = 4248^{+44+180}_{-29-35}$ MeV, $\Gamma_2 = 177^{+54+316}_{-39-61}$ MeV, respectively. As both $Z_1^+(4051)$ and $Z_2^+(4250)$ carry one unit electric charge, if these states do exist they cannot be traditional $q\bar{q}$ quark bound states. In 2012, BABAR Collaboration searched for these resonances in the $B^0 \to \chi_{c1} K^-\pi^+$ and $B^+ \to \chi_{c1} K^0_{\pi^-} \pi^+$ decays and did not find any evidence of them [34]. In 2013, with more than twice the Belle and BABAR cumulative events and using the same analysis strategy as that of BABAR, LHCb Collaboration did not support the evidence for the existence of these two resonances in the $B^0 \to \chi_{c1} K^-\pi^+$ channel [35]. Since π^+ is an isovector meson with negative G parity and χ_{c1} is a isospin singlet with positive G parity, if $Z_1^+(4051)$ and $Z_2^+(4250)$ exist, their quantum numbers should be $I^G = 1^-$. In theoretical studies, $Z_2^+(4250)$ has been interpreted as a $D_1 \bar{D}$ molecular state [36] or a tetraquark state [37, 38].

$Y(4260)$ and $Z_2^+(4250)$ provide a great opportunity for understanding the strong interaction dynamics inside a hadron with molecular inner structure assumptions since their masses are close to the $D_1 D$ threshold. We will systematically study the $D_1 D$ molecular state in the Bethe-Salpeter (BS) equation approach with three different form factors at the interaction vertices. We will investigate the S-wave $D_1 D$ systems with isospins $I = 0$ and 1 being both considered. We will vary the binding energy $E_b = M - M_{D_1} - M_D$ (where M is mass of the bound state) in a wide range and search for all the possible solutions with the cutoff parameter Λ in the form factor in a reasonable interval. Through this process, we will naturally check whether $Y(4260)$ and $Z_2^+(4250)$ may exist as a S-wave $D_1 D$ molecular state. The possible $B_1 B$ molecular state will also been studied in our work.

In the rest of the manuscript we will proceed as follows. In Sec. 2, we will establish the BS equation for the bound state of an axial-vector meson (D_1 or B_1) and a pseudoscalar meson (D or B). Then the numerical results for the $D_1 D$ and $B_1 B$ systems will be presented in Sec. 3. In Sec. 4 we will present a summary of our results.

2 The BS formalism for $D_1 D$ system

As discussed in Ref. [24], the flavor wave functions of $Y(4250)$ and $Z_2^+(4250)$ are

$$|Y(4260)\rangle = \frac{1}{2}||D_0^0\bar{D}^0\rangle + |D_1^+\bar{D}^-\rangle - |D^0\bar{D}_1^-\rangle - |D^+\bar{D}_1^-\rangle|,$$ (2.1)

and

$$|Z_2^+(4250)\rangle = \frac{1}{\sqrt{2}}||D_1^+\bar{D}^0\rangle + |D_1^+\bar{D}^0\rangle|,$$ (2.2)

respectively.
Based on the picture that $Y(4250)$ and $Z_2^+(4250)$ are composed of an axial-vector meson (D_1) and a meson (D), its BS wave function is defined as

$$\chi^\mu(x_1, x_2, P) = \langle 0|TD_1^\mu(x_1)D(x_2)|P\rangle,$$ \hspace{1cm} (2.3)

where $D_1(x_1)$ and $D(x_2)$ are the field operators of the pseudoscalar mesons D_1 and D at space coordinates x_1 and x_2, respectively, $P = Mv$ is the total momentum of $Y(4250)$ or $Z_2^+(4250)$ and v is its velocity. Let m_{D_1} and m_D be the masses of the D_1 and D mesons, respectively, p be the relative momentum of the two constituents, and define $\lambda_1 = m_{D_1}/(m_{D_1} + m_D)$, $\lambda_2 = m_D/(m_{D_1} + m_D)$. The BS wave function in momentum space is defined as

$$\chi^\mu_P(x_1, x_2, P) = e^{-ipX} \int \frac{d^4q}{(2\pi)^4} e^{-ip\mu} \chi^\mu_P(q),$$ \hspace{1cm} (2.4)

where $X = \lambda_1 x_1 + \lambda_2 x_2$ is the coordinate of the center of mass and $x = x_1 - x_2$. The momentum of the D_1 meson is $p_1 = \lambda_1 P + p$ and that of the D meson is $p_2 = \lambda_2 P - p$.

It can be shown that the BS wave function of the D_1D system satisfies the following BS equation [39]:

$$\chi^\mu_P(p) = S_{D_1}^{\mu\nu}(p_1) \int \frac{d^4q}{(2\pi)^4} K_{\nu\lambda}(P, p, q) \chi^\nu_P(q) S_D(q),$$ \hspace{1cm} (2.5)

where $S_{D_1}^{\mu\nu}(p_1)$ and $S_D(p_2)$ are the propagators of D_1 and D, respectively, and $K_{\nu\lambda}(P, p, q)$ is the kernel, which is defined as the sum of all the two particle irreducible diagrams with respect to D_1 and D mesons. For convenience, in the following we use the variables $p_l(= p - pv)$ and $p_t(= p - pv)$ as the longitudinal and transverse projections of the relative momentum (p) along the bound state momentum (P), respectively. Then the propagator of the D_1 meson can be expressed as

$$S_{D_1}^{\mu\nu}(\lambda_1 P + p) = \frac{-i(g^{\mu\nu} - p_l^\mu p_l^\nu/m_{D_1}^2)}{(\lambda_1 M + p_l)^2 - \omega_1^2 + i\epsilon},$$ \hspace{1cm} (2.6)

and the propagator of the pseudoscalar D meson has the form

$$S_D(\lambda_2 P - p) = \frac{i}{(\lambda_2 M - p_t)^2 - \omega_2^2 + i\epsilon},$$ \hspace{1cm} (2.7)

where $\omega_1(2) = \sqrt{m_{D_1}^2 + p_l^2}$ (we have defined $p_t^2 = -p_l \cdot p_t$). The momentum of p_1 in the numerator of Eq. (2.6) are represented by p_l and p_t in the following:

$$p_1 = (\lambda_1 M + p_l)v + p_t.$$ \hspace{1cm} (2.8)

In the BS equation approach, the interaction between D_1 and D mesons can be due to the light vector-meson (ρ and ω) and the light scalar-meson (σ) exchanges. Based on the heavy quark symmetry and the chiral symmetry, the relevant effective Lagrangian used in
this work is shown in the following [24]:

\[\mathcal{L}_{DD\sigma} = g_{DD\sigma} D_\mu D^\mu \sigma + g_{DD\sigma} D_\mu D^\mu \sigma, \]
\[\mathcal{L}_{D1D1\sigma} = g_{D1D1\sigma} D_\mu D^\mu \sigma + g_{D1D1\sigma} D_\mu D^\mu \sigma, \]
\[\mathcal{L}_{DDD\sigma} = g_{DDD\sigma} D_\mu D^\mu \sigma + g_{DDD\sigma} D_\mu D^\mu \sigma + H.c., \]
\[\mathcal{L}_{DDV} = ig_{DDV}(D_\mu D^\mu \sigma) V^\mu + ig_{DDV}(D_\mu D^\mu \sigma) V^\mu, \]
\[\mathcal{L}_{D1D1V} = ig_{D1D1V}(D_\mu D^\mu \sigma) V^\mu + ig_{D1D1V}(D_\mu D^\mu \sigma)(V^\mu (\partial_\mu \nu - \partial_\nu \nu)_a), \]
\[\mathcal{L}_{DDDV} = g_{DDDV}(D_\mu D^\mu \sigma) V^\mu + g_{DDDV}(D_\mu D^\mu \sigma)(V^\mu (\partial_\mu \nu - \partial_\nu \nu)_a). \]

(2.9)

where \(a \) and \(b \) are represent the light flavor quark, \(V_\mu \) is a \(3 \times 3 \) Hermitian matrix containing \(\rho, \omega, K^*, \) and \(\phi \):

\[
V = \begin{pmatrix}
\frac{\rho^0}{\sqrt{2}} & \frac{\omega}{\sqrt{2}} & K^{*+} \\
-\frac{\rho^0}{\sqrt{2}} & \frac{\omega}{\sqrt{2}} & K^{*0} \\
K^{*-} & -K^{*0} & \phi
\end{pmatrix}.
\] (2.10)

The coupling constants involved in Eq. (2.9) are related to each other as follows [24]:

\[g_{DD\sigma} = -2 g_\sigma m_D, \quad g_{D1D1\sigma} = -2 g_\sigma m_D, \]
\[g_{DDD\sigma} = -2 g_\sigma m_D, \quad g_{D1D1\sigma} = -2 g_\sigma m_D, \]
\[g_{DDV} = -g_{D1D1V} = \frac{1}{\sqrt{2}} \beta g_\nu, \quad g_{DDDV} = -g_{D1D1DV} = \frac{1}{\sqrt{2}} \beta g_\nu, \]
\[g_{D1D1V} = -g_{D1D1V} = \frac{5 \lambda_2 g_\nu}{3 \sqrt{2}} m_D, \]
\[g_{DDV} = -g_{D1D1V} = \frac{2 \zeta g_\nu m_D}{\sqrt{3}}, \quad g_{DDDV} = -g_{D1D1DV} = \frac{1}{\sqrt{3}} \mu_1 g_\nu, \]

with

\[g_\sigma = -\frac{g_\pi}{2 \sqrt{6}}, \quad h_\sigma = \frac{g_A}{\sqrt{3}}, \]

(2.12)

where \(f_\pi = 132 \text{ MeV}, \ g_\pi = 3.73 \) and \(g_A = 0.6 \) [40]. As in Ref. [41], we take \(|g_\sigma'| = |g_\sigma| \) and \(|h_\sigma'| = |h_\sigma| \) approximately when performing the numerical analysis. The parameters \(\beta g_\nu \) and \(\lambda_2 g_\nu \) are given by \(2 g_\rho N N \) and \(\frac{3}{10 m_N}(g_\rho N N + f_\rho N N) \), respectively, where \(g_\rho N N / 4 \pi = 0.84 \) and \(f_\rho N N / g_\rho N N = 6.10 \) [42]. As to the two parameters \(\zeta_1 \) and \(\mu_1 \) involved in the coupling constants, the information about them is very scarce and these two parameters have not been determined. However in the heavy quark limit, we can roughly assume that the

\[-4 - \]
coupling constants g_{D1V} and g'_{D1V} are equal to g_{D*0V} ($=\zeta g V \sqrt{2m_Dm_{D^*}}$) and g'_{D*0V} ($=1/\sqrt{2}\mu g V$), respectively. The parameters $\mu = 0.1$ GeV$^{-1}$ and $\zeta = 0.1$ are taken in Ref. [43]. In our calculations, we will vary μ_1 from 0.05 to 0.5 GeV$^{-1}$ and ζ_1 from 0.05 to 0.5, while searching for possible solutions of the $D_1 D$ bound states.

In the following we will given the kernel for the BS equation in the ladder approximation. There have been some studies on the legitimacy of applying the ladder approximation in the BS equation [44–46]. In Ref. [44] it was shown that including only ladder graphs in the scalar-scalar system cannot lead to the correct one-body limit, and to solve these problems, at least crossed ladder graphs should be included. In addition, from the naive perspective, for a large coupling constant, the ladder approximation is not legitimate [45]. However, there is a significant difference between our work and that studied in Refs. [45], in which the mass of the exchanged particle (μ) is very small compared to the mass of the constituent particle (m) with $\mu/m = 0.15$. The exchanged particles in our work are σ, ρ and ω. In Ref. [46], the authors studied the $K\bar{K}$ bound states in the BS equation, they found that when ρ is exchanged the ratio of the contribution from the crossed graph to that from the ladder one is less than 15% and the result is almost the same when ω is exchanged. Therefore, the ladder approximation is a good one which should not affect our qualitative conclusions.

Figure 1. The direct-channel (a) and cross-channel (b) Feynman diagrams for the $D_1 D$ system at the tree level.

Then, at the tree level, in the t-channel the kernel for the BS equation of $D_1 D$ in the lader approximation includes the following terms (see Figs. 1(a) and 1(b) for direct and
crossed channels, respectively):

\[
K_{\text{direct}}^\tau(p, p; q; m_\sigma) = - (2\pi)^4 \delta^4(p_1^I + p_2^I - p_1 - p_2) \epsilon_I g_D \epsilon_D(\Delta(k, m_\sigma) g^\tau, \\
K_{\text{direct}}^\tau(p, p; q; m_V) = - (2\pi)^4 \delta^4(p_1^I + p_2^I - p_1 - p_2) \epsilon_I \left\{ g_D^2 \epsilon_D \Delta(k, m_V) \right\}, \\
K_{\text{crossed}}^\tau(p, p; q; m_\sigma) = - (2\pi)^4 \delta^4(p_1^I + p_2^I - p_1 - p_2) \epsilon_I \left\{ g_D^2 \epsilon_D \Delta(k, m_\sigma) \right\}, \\
K_{\text{crossed}}^\tau(p, p; q; m_V) = - (2\pi)^4 \delta^4(p_1^I + p_2^I - p_1 - p_2) \epsilon_I \left\{ g_D^2 \epsilon_D \Delta(k, m_V) \right\}, \\
\]

where \(m_V \) represent the masses of the exchanged light vector mesons \(\rho \) and \(\omega \), \(c_I \) is the isospin coefficient: \(c_0 = 3, 1, 1 \) and \(c_1 = -1, 1, 1 \) for \(\rho \), \(\omega \), and \(\sigma \), respectively, \(\Delta \) and \(\Delta^{\mu\nu} \) represent the propagators for the scalar and vector mesons, respectively.

In order to describe the phenomena in the real world, we should include a form factor at each interacting vertex of hadrons to include the finite-size effects of these hadrons. For the meson-exchange case, the form factor is assumed to take the following form [47]:

\[
F_M(k) = \frac{\Lambda_M^2 - m^2}{\Lambda_M^2 - k^2}, \\
F_D(k) = \frac{(\Lambda_D^2 - m^2)2}{(\Lambda_D^2 - k^2)^2}, \\
F_E(k) = e^{(k^2 - m^2)/\Lambda_E^2},
\]

(2.14)

where \(\Lambda \), \(m \) and \(k \) represent the cutoff parameter, the mass of the exchanged meson and the momentum of the exchanged meson, respectively. The value of \(\Lambda \) is near 1 GeV which is the typical chiral symmetry breaking scale.

In general, for an axial-vector meson (\(D_1 \)) and a pseudoscalar meson (\(D \)) bound state, the BS wave function \(\chi_P^\mu(p) \) has the following form:

\[
\chi_P^\mu(p) = f_0(p)p^\mu + f_1(p)P^\mu + f_2(p)\epsilon^\mu + f_3(p)\epsilon^{\mu\nu}\partial_\mu P_\beta \epsilon_\nu,
\]

(2.15)

where \(f_i(p) \) \((i = 0, 1, 2, 3) \) are Lorentz-scalar functions and \(\epsilon^\mu \) represents the polarization vector of the bound state. After considering the constraints imposed by parity and Lorentz transformations, it is easy to prove that \(\chi_P^\mu(p) \) can be simplified as

\[
\chi_P^\mu(p) = f(p)\epsilon^{\mu\nu}\partial_\mu P_\beta \epsilon_\nu,
\]

(2.16)

where the function \(f(p) \) contains all the dynamics.
In the following derivation of the BS equation, we will apply the instantaneous approximation, in which the energy exchanged between the constituent particles of the binding system is neglected. In our calculation we choose the absolute value of the binding energy E_b of the D_1D system (which is defined as $E_b = M - m_1 - m_2$) less than 60 MeV. In this case the exchange of energy between the constituent particles can be neglected.

Substituting Eqs. (2.6), (2.7), (2.13) and (2.14) into Eq. (2.5) and using the covariant
instantaneous approximation in the kernel, \(p_t = q_t \), one obtains the following expression:

\[
f(p) = \frac{ic_I}{3[(\lambda_1 M + p_t)^2 - \omega^2 + i\epsilon][(\lambda_2 M - p_t)^2 - \omega^2 + i\epsilon]} \int \frac{d^4q}{(2\pi)^4} \left\{ g_{D_1D_1} g_{D_1D_1} \frac{1}{(p_t - q_t)^2 - m^2_\sigma} \left[(\lambda_1 M + p_t)^2 - p_t^2 \right] - \frac{M(\lambda_1 M + p_t)(p_t(\lambda_1 M + p_t) - p_t \cdot q_t)}{m^2_1 M p_t} - 3 \right\}
\]

\[
- g_{D_1D_1} g_{D_1D_1} \frac{1}{(p_t - q_t)^2 - m^2_\sigma} \left[- (\lambda_1 M + p_t)^2 - p_t^2 \right] (p_t - q_t)^2 + \frac{3(p_t^2 - q_t^2)^2}{m^2_1 M p_t}
\]

\[
- \frac{(p_t^2 - q_t^2) M(\lambda_1 M + p_t)(p_t(\lambda_1 M + p_t) - p_t \cdot q_t)}{m^2_1 m^2_\sigma M p_t} - 3(4(\lambda_1 M + p_t)(\lambda_2 M - p_t) + (p_t + q_t)^2)
\]

\[
- \frac{M(\lambda_1 M + p_t)(p_t(\lambda_1 M + p_t) - p_t \cdot q_t)(4(\lambda_1 M + p_t)(\lambda_2 M - p_t) + (p_t + q_t)^2)}{m^2_1 M p_t}
\]

\[
+ \frac{(\lambda_1 M + p_t)^2 - p_t^2}{m^2_1} (4(\lambda_1 M + p_t)(\lambda_2 M - p_t) + (p_t + q_t)^2)
\]

\[
+ g'_{D_1D_1} g_{D_1D_1} \frac{1}{(p_t - q_t)^2 - m^2_\sigma} \left[\frac{2(p_t^2 + p_t \cdot q_t) M(\lambda_2 M - p_t)(p_t(\lambda_1 M + p_t) - p_t \cdot q_t)}{m^2_1 M p_t} - 2(p_t \cdot q_t - q_t^2) M(\lambda_2 M - p_t) \right]
\]

\[
- g_{D_1D_1} g_{D_1D_1} \frac{1}{(p_t - q_t)^2 - m^2_\sigma} \left[\frac{(p_t^2 - p_t \cdot q_t)^2}{m^2_1} + (p_t - q_t)^2 \right]
\]

\[
+ \frac{g_{D_1D_1} g_{D_1D_1}}{m^2_1 m^2_\sigma M p_t} \left[\frac{(p_t^2 - p_t \cdot q_t)^2}{m^2_1} + \frac{(p_t - q_t)^2}{m^2_1} - \frac{(\lambda_1 M + p_t)^2 - p_t^2}{m^2_1} \right]
\]

\[
+ \frac{M(\lambda_1 M + p_t)(p_t(\lambda_1 M + p_t) - p_t \cdot q_t)}{m^2_1 m^2_\sigma M p_t} - \frac{2(p_t - q_t)^2 + (p_t \cdot q_t - q_t^2) M^2}{m^2_1 M p_t}
\]

\[
+ \frac{g'_{D_1D_1} g_{D_1D_1}}{m^2_1 m^2_\sigma M p_t} \left[\frac{(p_t^2 - p_t \cdot q_t)^2 M^2(p_t(\lambda_1 M + p_t) - p_t \cdot q_t)}{m^2_1 M p_t} + \frac{(\lambda_1 M + p_t)^2 - p_t^2}{m^2_1} (p_t - q_t)^2 \right]
\]

\[
- \frac{(p_t^2 - q_t^2) M^2(p_t(\lambda_1 M + p_t) - p_t \cdot q_t)}{m^2_1 M p_t} - \frac{(p_t \cdot q_t - q_t^2) M^2(p_t(\lambda_1 M + p_t) - p_t \cdot q_t)}{m^2_1 M p_t}
\]

\[
+ \frac{g'_{D_1D_1} g_{D_1D_1}}{m^2_1 m^2_\sigma M p_t} \left[\frac{(M^2 + (p_t - q_t)^2)(p_t^2 - p_t \cdot q_t)}{m^2_1} - \frac{(p_t \cdot q_t - q_t^2) M^2}{m^2_1 M p_t} \right]
\]

\[
+ \frac{(p_t^2 - p_t \cdot q_t)^4 M^2(p_t(\lambda_1 M + p_t) - p_t \cdot q_t)}{m^2_1 M p_t} + \frac{(p_t^2 - q_t^2) (p_t - q_t)^2(M^2(\lambda_1 M + p_t) + (p_t^2 - p_t \cdot q_t)^2)}{m^2_1 M p_t}
\]

\[
+ \frac{(p_t - q_t)^4 M^2(p_t(\lambda_1 M + p_t) - p_t \cdot q_t)(\lambda_1 M + p_t)}{m^2_1 M p_t}
\]

\[
- \frac{(p_t^2 - p_t \cdot q_t)(p_t - q_t)^2(M^2(\lambda_1 M + p_t) - p_t^2 + p_t \cdot q_t)}{m^2_1 M p_t} - \frac{(p_t - q_t)^4 (p_t - q_t)^2(M^2 + (p_t - q_t)^2)}{m^2_1 M p_t}
\]

\[
- 8 - \{f(q) - \}
\]

\[(2.17)\]
3 Numerical results

In this subsection, we will solve the BS equations numerically for the \(D_1D \) systems with \(I = 0 \) and \(I = 1 \) based on the formulas presented in Sec. 2 and study whether the S-wave \(D_1D \) molecular states exist. We first need to reduce the BS equation (2.17) to a one-dimensional form. By choosing the appropriate contour and performing the integration over \(p_l \) on both sides through applying the residue theorem, we can reduce the BS equation (2.17) to a three-dimensional form. The corresponding BS wave function is in fact rotationally invariant, i.e. \(\tilde{f}(p_l) \) (where \(\tilde{f}(p_l) = \int dp_l f(p) \)) depends only on the norm of the three momentum, \(|p_l| \). Therefore, after completing the azimuthal integration, we can obtain the one-dimensional BS equation.

The BS wave functions for \(D_1D \) systems with \(I = 0 \) and \(I = 1 \) were solved numerically in our previous work by discretizing the integration region \((0, \infty)\) into \(n \) pieces \([52]\) (\(n \) is chosen to be sufficiently large and we use \(n \)-point Gauss quadrature rule to evaluate the integrals). Then the BS wave function can be written as an \(n \)-dimension vector. The coupled integral BS equation becomes a matrix equation

\[
\tilde{f}(|p_l|_n) = A(|p_l|_n, |q_t|_n) \cdot \tilde{f}(|q_t|_n),
\]

(3.1)

where \(A(|p_l|_n, |q_t|_n) \) corresponding to the coefficients in Eq. (2.17). Generally, \(|p_l| \) varies from 0 to \(+\infty \) and \(f(|p_l|) \) will decrease to zero when \(|p_l| \to \infty \). To apply the Gaussian quadrature rule, we need to convert the Gaussian integration nodes into the physical values for \(|q_t| \), which can be done using the following equation:

\[
|q_t| = \epsilon + w \log \left[1 + y \frac{1 + t}{1 - t} \right],
\]

(3.2)

where \(\epsilon \) is a parameter introduced to avoid divergence in numerical calculations, \(w \) and \(y \) are parameters used in controlling the slopes of wave functions and finding the proper solutions for these functions, and \(t \) varies from -1 to 1. One can then obtain the numerical results of \(f(|p_l|) \) by requiring the eigenvalue of the eigenvalue equation to be 1.

It can be seen from Eq. (2.17) that there is only one free parameter in our model, the cutoff \(\Lambda \), which can not be uniquely determined and has various forms phenomenologically. It contains the information about the nonpoint interaction due to the structures of hadrons. The value of \(\Lambda \) is near 1 GeV which is the typical scale of nonperturbative QCD interaction. In this work, we shall treat the cutoff \(\Lambda \) in the form factors as a parameter varying in a much wider range 0.8-4.8 GeV to see if the BS equation has solutions. We also vary the parameters \(\zeta_1 \) and \(\mu_1 \) in the reasonable range, in order to check if the results are sensitive to the effective coupling constants.

3.1 \(D_1D \) system

In our calculation, we choose to work in the rest frame of the system in which \(P = (M, 0) \). We take the averaged masses of the mesons from the PDG [5], \(m_D = 1868.04 \) MeV, \(m_{D_1} = 2422.00 \) MeV, \(m_\rho = 775.49 \) MeV, \(m_\omega = 782.65 \) MeV, \(m_\sigma = 600 \) MeV, and \(m_N = 938.27 \) MeV.
Then, we can explore whether there are bound states with \(I(J^P) = 0(1^-) \) and \(I(J^P) = 1(1^-) \) for the \(D_1 \bar{D} \) system by solving the BS equation.

From our calculations, we found that \(Y(4260) \) could be a \(D_1 \bar{D} \) molecular state, while \(Z_2^+(4250) \) cannot. \(Y(4260) \) could be a \(I = 0 \) \(D_1 \bar{D} \) molecular state with \(\Lambda_M, \Lambda_D \) and \(\Lambda_E \) in the range \((1362, 1312) \) MeV, \((1930, 1852) \) MeV and \((1380, 1320) \) MeV for different parameters \(\zeta_1 \) and \(\mu_1 \), respectively.

![Figure 2](image1)

Figure 2. Dependence of the cutoff \(\Lambda_M \) (a), \(\Lambda_D \) (b) and \(\Lambda_E \) (b) of \(Y(4260) \) on parameters \(\zeta_1 \) and \(\mu_1 \).

The 3D cutoff \(\Lambda_M, \Lambda_D \) and \(\Lambda_E \) graphics are presented in Figure 2. From these figures, we see that the cutoff show small variations with respect to the changes in the parameters \(\zeta_1 \) and \(\mu_1 \) and the cutoff \(\Lambda \) is more sensitive to \(\zeta_1 \) than \(\mu_1 \). We can also intuitively find the cutoff \(\Lambda \) in the dipole form factor are larger than those in the monopole and exponential form factors while they vary in reasonable regions. Therefore, \(Y(4260) \) could be a molecular state in appropriate effective coupling constants and the cutoff.

In Figure 3, we present the numerical results of the wave functions for three different form factors with parameters \(\mu = 0.1 \) GeV\(^{-1} \) and \(\zeta = 0.1 \). From these figures, we see that the numerical results of the wave functions with monopole, dipole and exponential form factors are almost the same. The numerical results of the wave functions corresponding to other parameter values show the same situation. This indicates that the different forms of the form factors have little effect on the wave function.

![Figure 3](image2)

Figure 3. Numerical results of the wave function \(\tilde{f}(|p_t|) \) for \(Y(4260) \) in the \(D_1 \bar{D} \) molecular picture with (a) the monopole form factor, (b) the dipole form factor, and (c) the exponential form factor for the parameters \(\mu = 0.1 \) GeV\(^{-1} \) and \(\zeta = 0.1 \).

In Ref. [26, 27], the authors interpreted \(Y(4260) \) as a \(D_1 \bar{D} \) bound state, but they also predicted a significantly smaller mass of about 4.22 GeV. Soon, after \(Y(4220) \) was observed
by BESIII Collaboration [6]. The mass of $Y(4220)$ is about 58 MeV below the threshold for D_1D. Therefore, we varying the binding energy E_b in the region from 0 to -60 MeV trying to find all the possible solutions.

From our calculations, the D_1D system can not be an $I = 1$ bound state. Hence like $Z_2^+(4250)$ can not be an $I = 1$ D_1D molecule. The reason for that is the exchanges of ρ and ω cancel each other for the quantum number $I = 1$, and the small coupling constant g_σ determines that including the σ contribution cannot make a substantial change to the kernel as studied in Ref. [53].

Table 1

E_b (MeV)	-60	-50	-40	-30	-20	-10
Λ_M (MeV)	1514-1443	1468-1403	1418-1360	1362-1312	1295-1254	1209-1178
Λ_D (MeV)	2176-2067	2103-2003	2022-1932	1930-1852	1820-1755	1676-1626
Λ_E (MeV)	1578-1495	1519-1443	1454-1386	1380-1320	1291-1240	1172-1133

Figure 4

Dependence of the cutoff $\Lambda_M(a)$, $\Lambda_D(b)$ and $\Lambda_E(b)$ for the $I = 0$ D_1D bound state on the parameters ζ_1 and μ_1 when $E_b = -60$ MeV.

For the $I = 0$ D_1D system, we find several regions for the cutoffs. The results are listed in Table 1, from which we can see the cutoffs Λ in three difference form factors are in reasonable ranges and all of them become smaller with the increase of the binding energy. We depict the 3D graphics (see Figure 4) showing the variation of the cutoffs with respect to the parameters ζ_1 and μ_1 when $E_b = -60$ MeV. For other 3D graphics with different E_b, the variation trend is the same as that of Figure 4. We can conclude that the D_1D system could be a molecular state. Our result is consistent with the meson exchange model based on the heavy meson chiral perturbation theory [24] and the chiral quark model in which the isoscalar channel is found to be easier to bind than the isovector channel for the same components [54].

3.2 B_1B system

The same procedure can be easily extended to study the bottom analogs of $Y(4260)$ and $Z_2^+(4250)$, by simply replacing the charm quark and antiquark with the bottom quark and antiquark, respectively. The masses of the bottom mesons are $m_{B_1} = 5726.0$ MeV and $m_B = 5279.4$ MeV [5]. Due to the heavier mass of the bottom meson the kinematic term is relatively small, resulting in the bottom system to form the molecular state more easier.
We use the same set of parameters as in the D_1D system. With these parameters the $I = 0$ B_1B bound state always exists with the reasonable cutoff. The numerical results for the B_1B system are shown in Table 2. Similar to the D_1D system, all the cutoffs Λ_M, Λ_D and Λ_E become smaller with the increase of the binding energy. The variations of the cutoffs with respect to the parameters ζ_1 and μ_1 when $E_b = -60$ MeV are presented in Figure 5.

E_b (MeV)	Λ_M (MeV)	Λ_D (MeV)	Λ_E (MeV)
-60	1211-1178	1712-1658	1229-1186
-50	1177-1148	1653-1606	1180-1142
-40	1141-1116	1589-1548	1126-1093
-30	1100-1080	1518-1483	1065-1037
-20	1055-1038	1434-1407	993-971
-10	997-986	1328-1308	900-884

Figure 5. Dependence of the cutoff $\Lambda_M(a)$, $\Lambda_D(b)$ and $\Lambda_E(b)$ for the $I = 0$ B_1B bound state on the parameters ζ_1 and μ_1 with $E_b = -60$ MeV.

4 summary

In this work, we studied whether $Y(4260)$ and $Z^{+}_2(4250)$ could be a D_1D molecular state in the Bethe-Salpeter equation approach. In our model, we applied the ladder and instantaneous approximations to obtain the kernel containing one-particle-exchange diagrams and introduced three different form factors (the monopole form factor, the dipole form factor, and the exponential form factor) since the constituent particles and the exchanged particles are not pointlike. The cutoff Λ introduced in the form factors reflects the effects of the structures of interacting particles. Since Λ is controlled by nonperturbative QCD and cannot be determined accurately, we let it vary in a reasonable range within which we try to find possible bound states of the D_1D system. Since the two effective coupling constants μ_1 and ζ_1 have not been determined we varied them in larger ranges, i.e. $[0.05, 0.5]$ GeV$^{-1}$ and $[0.05, 0.5]$, respectively.

Our numerical results indicated that when the parameters are within reasonable ranges the D_1D system can form an $I = 0$ molecular state but cannot form an $I = 1$ molecular state. In other words, $Y(4260)$ could be accommodated as a D_1D molecule. However, the existence of $Z^{+}_2(4250)$ as a molecule requires that the coupling constant g_σ be enhanced by several times. Consequently, the interpretation of $Z^{+}_2(4250)$ as a D_1D molecule is disfavored. Its structure should be studied further.
The bottom analogs of $Y(4260)$ and $Z_2^+(4250)$ were also studied. Similar to the D_1D system, the B_1B system with $I = 0$ also can form a molecular state but cannot for $I = 1$. We expect forthcoming experimental measurements to test our model for the D_1D and B_1B systems.

Acknowledgments

This work was supported by National Natural Science Foundation of China (Projects No. 11775024, No.11575023, No.11605150 and No.11947001), the Ningbo Natural Science Foundation (No.2019A610067) and K.C.Wong Magna Fund in Ningbo University.

References

[1] B. Aubert et al. [BaBar], Observation of a broad structure in the $\pi^+\pi^- J/\psi$ mass spectrum around 4.26-GeV/c^2, Phys. Rev. Lett. 95 (2005), 142001 [arXiv:hep-ex/0506081 [hep-ex]].
[2] Q. He et al. [CLEO], Confirmation of the $Y(4260)$ resonance production in ISR, Phys. Rev. D 74 (2006), 091104 [arXiv:hep-ex/0611021 [hep-ex]].
[3] C. Yuan et al. [Belle], Measurement of $e^+e^- \to \pi^+\pi^- J/\psi$ cross-section via initial state radiation at Belle, Phys. Rev. Lett. 99 (2007), 182004 [arXiv:0707.2541 [hep-ex]].
[4] M. Ablikim et al. [BESIII], Observation of a Charged Charmoniumlike Structure in $e^+e^- \to \pi^+\pi^- J/\psi$ at $\sqrt{s} = 4.26$ GeV, Phys. Rev. Lett. 110 (2013), 252001 [arXiv:1303.5949 [hep-ex]].
[5] M. Tanabashi et al. [Particle Data Group], Review of Particle Physics, Phys. Rev. D 98 (2018) no.3, 030001.
[6] M. Ablikim et al. [BESIII], Precise measurement of the $e^+e^- \to \pi^+\pi^- J/\psi$ cross section at center-of-mass energies from 3.77 to 4.60 GeV, Phys. Rev. Lett. 118 (2017) no.9, 092001 [arXiv:1611.01317 [hep-ex]].
[7] M. Ablikim et al. [BESIII], Evidence of a resonant structure in the $e^+e^- \to \pi^+D^0\bar{D}^*^-$ cross section between 4.05 and 4.60 GeV, Phys. Rev. Lett. 122 (2019) no.10, 102002 [arXiv:1808.02847 [hep-ex]].
[8] K. Abe et al. [Belle], Measurement of the near-threshold $e^+e^- \to D\bar{D}$ cross section using initial-state radiation, Phys. Rev. Lett. 98 (2007), 092001 [arXiv:hep-ex/0608018 [hep-ex]].
[9] G. Pakhlova et al. [Belle], Measurement of the near-threshold $e^+e^- \to D\bar{D}$ cross section using initial-state radiation, Phys. Rev. D 77 (2008), 011103 [arXiv:0708.0082 [hep-ex]].
[10] B. Aubert et al. [BaBar], Exclusive Initial-State-Radiation Production of the $D\bar{D}$, $D^*\bar{D}^*$, and $D_1^*\bar{D}^*$ Systems, Phys. Rev. D 79 (2009), 092001 [arXiv:0903.1597 [hep-ex]].
[11] D. Cronin-Hennessy et al. [CLEO], Measurement of Charm Production Cross Sections in e^+e^- Annihilation at Energies between 3.97 and 4.26-GeV, Phys. Rev. D 80 (2009), 072001 [arXiv:0801.3418 [hep-ex]].
[12] N. Brambilla et al., Heavy Quarkonium: Progress, Puzzles, and Opportunities, Eur. Phys. J. C 71 (2011), 1534 [arXiv:1010.5827 [hep-ph]].
[13] S. L. Zhu, The Possible interpretations of $Y(4260)$, Phys. Lett. B 625 (2005), 212 [arXiv:hep-ph/0507025 [hep-ph]].

[14] E. Kou and O. Pene, Suppressed decay into open charm for the $Y(4260)$ being an hybrid, Phys. Lett. B 631 (2005), 164-169 [arXiv:hep-ph/0507119 [hep-ph]].

[15] D. Ebert, R. Faustov and V. Galkin, Excited heavy tetraquarks with hidden charm, Eur. Phys. J. C 58 (2008), 399-405 [arXiv:0808.3912 [hep-ph]].

[16] A. Ali and W. Wang, Production of the Exotic 1^{--} Hadrons $\phi(2170), X(4260)$ and $Y_b(10890)$ at the LHC and Tevatron via the Drell-Yan Mechanism, Phys. Rev. Lett. 106 (2011), 192001 [arXiv:1103.4587 [hep-ph]].

[17] J. Dias, R. Albuquerque, M. Nielsen and C. Zanetti, $Y(4260)$ as a mixed charmonium-tetraquark state, Phys. Rev. D 86 (2012), 116012 [arXiv:1209.6592 [hep-ph]].

[18] R. Albuquerque, M. Nielsen and C. Zanetti, Production of the $Y(4260)$ state in B meson decay, Phys. Lett. B 747 (2015), 83-87 [arXiv:1502.00119 [hep-ph]].

[19] Z. G. Wang, Tetraquark state candidates: $Y(4260), Y(4360), Y(4660)$ and $Z_c(4020/4025)$, Eur. Phys. J. C 76 (2016) no.7, 387 [arXiv:1601.05541 [hep-ph]].

[20] X. Liu, X. Q. Zeng and X. Q. Li, Possible molecular structure of the newly observed $Y(4260)$, Phys. Rev. D 72, 054023 (2005) [arXiv:hep-ph/0507177 [hep-ph]].

[21] C. Z. Yuan, P. Wang and X. H. Mo, Phys. Lett. B 634 (2006), 399-402 [arXiv:hep-ph/0511107 [hep-ph]].

[22] R. Albuquerque and M. Nielsen, QCD sum rules study of the $J^{PC}=1^{--}$ charmonium Y mesons, Nucl. Phys. A 815 (2009), 53-66 [arXiv:0804.4817 [hep-ph]].

[23] R. M. Albuquerque, M. Nielsen and R. Rodrigues da Silva, Exotic 1^{--} States in QCD Sum Rules, Phys. Rev. D 84 (2011), 116004 [arXiv:1110.2113 [hep-ph]].

[24] G. J. Ding, Are $Y(4260)$ and $Z_2^+ D_1 D$ or D_0D^* Hadronic Molecules?, Phys. Rev. D 79 (2009), 014001 [arXiv:0809.4818 [hep-ph]].

[25] X. H. Liu and G. Li, Exploring the threshold behavior and implications on the nature of $Y(4260)$ and $Z_c(3900)$, Phys. Rev. D 88 (2013), 014013 [arXiv:1306.1384 [hep-ph]].

[26] M. Cleven, Q. Wang, F. K. Guo, C. Hanhart, U. G. Meißner and Q. Zhao, $Y(4260)$ as the first S-wave open charm vector molecular state?, Phys. Rev. D 90 (2014) no.7, 074039 [arXiv:1310.2190 [hep-ph]].

[27] W. Qin, S. R. Xue and Q. Zhao, Production of $Y(4260)$ as a hadronic molecule state of $DD^+_1 + c.c.$ in e^+e^- annihilations, Phys. Rev. D 94 (2016) no.5, 054035 [arXiv:1605.02407 [hep-ph]].

[28] M. Cleven and Q. Zhao, Cross section line shape of $e^+e^- \rightarrow \chi_c^0\omega$ around the $Y(4260)$ mass region, Phys. Lett. B 768 (2017), 52-56 [arXiv:1611.04408 [hep-ph]].

[29] S. R. Xue, H. J. Jing, F. K. Guo and Q. Zhao, Disentangling the role of the $Y(4260)$ in $e^+e^- \rightarrow D^*D^*$ and $D^*_cD^*_c$ via line shape studies, Phys. Lett. B 779 (2018), 402-408 [arXiv:1708.06961 [hep-ph]].

[30] Y. H. Chen, L. Y. Dai, F. K. Guo and B. Kubis, Nature of the $Y(4260)$: A light-quark perspective, Phys. Rev. D 99 (2019) no.7, 074016 [arXiv:1902.10957 [hep-ph]].

[31] A. Martinez Torres, K. P. Khemchandani, D. Gamermann and E. Oset, The $Y(4260)$ as a $J/\psi K\bar{K}$ system, Phys. Rev. D 80 (2009), 094012 [arXiv:0906.5333 [nucl-th]].
C. F. Qiao, One explanation for the exotic state Y(4260), Phys. Lett. B 639 (2006), 263-265 [arXiv:hep-ph/0510228 [hep-ph]].

R. Mizuk et al. [Belle Collaboration], Observation of two resonance-like structures in the \(\pi^+\chi_{c1} \) mass distribution in exclusive \(\bar{B}_0 \rightarrow K^-\pi^+\chi_{c1} \) decays, Phys. Rev. D 78 (2008), 072004 [arXiv:0806.4098 [hep-ex]].

J. P. Lees et al. [BaBar Collaboration], Search for the \(Z_1(4050)^+ \) and \(Z_2(4250)^+ \) states in \(\bar{B}_0 \rightarrow K^-\pi^+\chi_{c1} \) decays, Phys. Rev. D 85 (2012), 052003 [arXiv:1111.5919 [hep-ex]].

F. Sbordone, Study of the decay \(B^0 \rightarrow \chi_{c1}K^+\pi^− \) and search of exotic resonances at LHCb, CERN-THESIS-2013-294.

S. H. Lee, K. Morita and M. Nielsen, Width of exotics from QCD sum rules: Tetraquarks or molecules?, Phys. Rev. D 78 (2008), 076001 [arXiv:0808.3168 [hep-ph]].

Z. G. Wang, Another tetraquark structure in the \(\pi^+\chi_{c1} \) invariant mass distribution,” Eur. Phys. J. C 62 (2009), 375-382 [arXiv:0807.4592 [hep-ph]].

C. Deng, J. Ping, H. Huang and F. Wang, Systematic study of \(Z_1^+ \) family from a multiquark color flux-tube model, Phys. Rev. D 92 (2015) no.3, 034027 [arXiv:1507.06408 [hep-ph]].

David Lurie, Particles and Fields (Interscience Publishers, New York, 1968), Chap. 9.

W. A. Bardeen, E. J. Eichten and C. T. Hill, Phys. Rev. D 68 (2003), 054024 [arXiv:hep-ph/0305049 [hep-ph]].

X. Liu, Y. R. Liu, W. Z. Deng and S. L. Zhu, \(Z^+(4430) \) as a \(D_1^0D_1^{*0} \) molecular state,” Phys. Rev. D 77 (2008), 094015 doi:10.1103/PhysRevD.77.094015 [arXiv:0803.1295 [hep-ph]].

F. Wang, R. Chen, Z. Liu and X. Liu, Possible triple-charm molecular pentaquarks from \(\Xi_{cc}D_1/\Xi_{cc}D_1^{*} \) interactions, Phys. Rev. D 99 (2019) no.5, 054021 [arXiv:1901.01542 [hep-ph]].

R. Casalbuoni, A. Deandrea, N. Di Bartolomeo, R. Gatto, F. Feruglio and G. Nardulli, Phenomenology of heavy meson chiral Lagrangians, Phys. Rept. 281 (1997), 145-238 [arXiv:hep-ph/9605342 [hep-ph]].

F. Gross, The Relativistic Few Body Problem. 1. Two-Body Equations, Phys. Rev. C 26 (1982), 2203-2225.

L. Theussl and B. Desplanques, Crossed boson exchange contribution and Bethe-Salpeter equation, Few Body Syst. 30 (2001), 5-19 [arXiv:nucl-th/9908007 [nucl-th]].

X. H. Guo and X. H. Wu, Studying the scalar bound states of \(KK \) system in Bethe-Salpeter formalism, Phys. Rev. D 76 (2007), 056004 [arXiv:0704.3105 [hep-ph]].

R. Chen, A. Hosaka and X. Liu, Heavy molecules and one-\(\sigma/\omega \)-exchange model, Phys. Rev. D 96 (2017), 116012 [arXiv:1707.08306 [hep-ph]].

J. He, Study of the \(B\bar{B}^*/D\bar{D}^* \) bound states in a Bethe-Salpeter approach, Phys. Rev. D 90, 076008 (2014). Phys. Rev. D 90 (2014) no.7, 076008 [arXiv:1409.8506 [hep-ph]].

G. Q. Feng and X. H. Guo, \(DK \) molecule in the Bethe-Salpeter equation approach in the heavy quark limit, Phys. Rev. D 86 (2012), 036004

R. Chen, A. Hosaka and X. Liu, Searching for possible \(\Omega^- \)-like molecular states from meson-baryon interaction, Phys. Rev. D 97, 036016 (2018). Phys. Rev. D 97 (2018) no.3, 036016 [arXiv:1711.07650 [hep-ph]].
[51] X. H. Guo and T. Muta, Isgur-Wise function for $\Lambda_b \to \Lambda_c$ in B-S approach, Phys. Rev. D 54 (1996), 4629-4634 [arXiv:hep-ph/9706394 [hep-ph]].

[52] Z. Y. Wang, J. J. Qi, Q. X. Yu and X. H. Guo, $B_s(5778)$ as a $B^*\bar{K}$ molecule in the Bethe-Salpeter equation approach, Phys. Rev. D 100 (2019), 096009 [arXiv:1906.09002 [hep-ph]].

[53] H. Ke, X. Li, Y. Shi, G. Wang and X. Yuan, Is $Z_{b}(10610)$ a Molecular State?, JHEP 04 (2012), 056 [arXiv:1202.2178 [hep-ph]].

[54] E. S. Swanson, The New heavy mesons: A Status report, Phys. Rept. 429 (2006), 243-305 [arXiv:hep-ph/0601110 [hep-ph]].