TRANSPOSITION ANTI-INVOLUTION IN CLIFFORD ALGEBRAS AND INVARIANCE GROUPS OF SCALAR PRODUCTS ON SPINOR SPACES

R. Abłamowicz* and B. Fauser+

*Department of Mathematics, Tennessee Technological University, Cookeville, TN 38505, USA
E-mail: rablamowicz@tntech.edu

+School of Computer Science, The University of Birmingham, Edgbaston-Birmingham, B15 2TT, UK
E-mail: b.fauser@cs.bham.ac.uk

Keywords: conjugation, involution, minimal left ideal, primitive idempotent, spinor representation, reversion, stabilizer, transversal, twisted group ring

Abstract. We introduce on the abstract level in real Clifford algebras $C_{\ell}^{p,q}$ of a non-degenerate quadratic space (V,Q), where Q has signature $\varepsilon = (p,q)$, a transposition anti-involution T_{ε}^{-}. In a spinor representation, the anti-involution T_{ε}^{-} gives transposition, complex Hermitian conjugation or quaternionic Hermitian conjugation when the spinor space \tilde{S} is viewed as a $C_{\ell}^{p,q}$-left and \tilde{K}-right module with \tilde{K} isomorphic to \mathbb{R} or \mathbb{C}, or, \mathbb{H} or $2\mathbb{H}$. This map and its application to SVD was first presented at ICCA 7 in Toulouse in 2005 [3].

The anti-involution T_{ε}^{-} is a lifting to $C_{\ell}^{p,q}$ of an orthogonal involution $t_{\varepsilon} : V \rightarrow V$ which depends on the signature of Q. The involution is a symmetric correlation [18] $t_{\varepsilon} : V \rightarrow V^{*} \cong V$ and it allows one to define a reciprocal basis for the dual space (V^{*}, Q). When the Clifford algebra $C_{\ell}^{p,q}$ splits into the graded tensor product $C_{\ell}^{p,0} \otimes C_{\ell}^{0,q}$, the anti-involution T_{ε}^{-} acts as reversion on $C_{\ell}^{p,0}$ and as conjugation on $C_{\ell}^{0,q}$. Using the concept of a transpose of a linear mapping one can show that if $[L_{u}]$ is a matrix in the left regular representation of the operator $L_{u} : C_{\ell}^{p,q} \rightarrow C_{\ell}^{p,q}$ relative to a Grassmann basis B in $C_{\ell}^{p,q}$, then matrix $[LT_{\varepsilon}^{-}(u)]$ is the matrix transpose of $[L_{u}]$, see [6].

Of particular importance is the action of T_{ε}^{-} on the spinor space. The algebraic spinor space \tilde{S} is realized as a left minimal ideal generated by a primitive idempotent f, or a sum $f + \hat{f}$ in simple or semisimple algebras as in [14]. The map T_{ε}^{-} allows us to define a new spinor scalar product $\tilde{S} \times \tilde{S} \rightarrow \tilde{K}$, where $\tilde{K} = fC_{\ell}^{p,q}f$ and $\tilde{K} = K$ or $K \oplus \hat{K}$ depending whether the algebra is simple or semisimple. Our scalar product is in general different from the two scalar products discussed in literature, e.g., [14]. However, it reduces to one or the other in Euclidean and anti-Euclidean signatures. The anti-involution T_{ε}^{-} acts as the identity map, complex conjugation, or quaternionic conjugation on \tilde{K}. Thus, the action of T_{ε}^{-} on spinors results in matrix transposition, complex Hermitian conjugation, or quaternionic Hermitian conjugation. We classify automorphism group of the new product as $O(N)$, $U(N)$, $Sp(N)$, $2O(N)$, or $2Sp(N)$.

1
1 INTRODUCTION

Let \mathcal{C}_n be a universal Clifford algebra over an n-dimensional real quadratic space (V, Q) with $Q(x) = \varepsilon_1 x_1^2 + \varepsilon_2 x_2^2 + \cdots + \varepsilon_n x_n^2$ where $\varepsilon_i = \pm 1$ and $x = x_1 e_1 + \cdots + x_n e_n \in V$ for an orthonormal basis $B_1 = \{e_i\}_{i=1}^n$. Let B be the canonical basis of $\bigwedge V$ generated by B_1. That is, let $[n] = \{1, 2, \ldots, n\}$ and denote arbitrary, canonically ordered subsets of $[n]$, by underlined Roman characters. The basis elements of $\bigwedge V$, or, of \mathcal{C}_n due to the linear space isomorphism $\bigwedge V \rightarrow \mathcal{C}_n$ [14], can be indexed by these finite ordered subsets as $e_i = \lambda_{\epsilon_1} e_1$. Then, an arbitrary element of $\bigwedge V$, can be written as $u = \sum_{\lambda \subseteq [n]} u_\lambda e_\lambda$ where $u_\lambda \in \mathbb{R}$ for each $\lambda \in 2^{[n]}$. The unit element 1 of \mathcal{C}_n is identified with e_0. Our preferred basis for \mathcal{C}_n is the exterior algebra basis B sorted by an admissible monomial order \prec on $\bigwedge V$. We choose for \prec the monomial order called InvLex, or, the inverse lexicographic order [45]. Let B be the symmetric bilinear form defined by Q and let $\prec, \triangleright : \bigwedge V \times \bigwedge V \rightarrow \mathbb{R}$ be an extension of B to $\bigwedge V$ [14]. We will need this extension later when we define the Clifford algebra $\mathcal{C}(V^*, Q)$.

We begin by defining the following map on (V, Q) dependent on the signature ε of Q.

Definition 1. Let $t_\varepsilon : V \rightarrow V$ be the linear map defined as

$$t_\varepsilon(x) = t_\varepsilon(\sum_{i=1}^n x_i e_i) = \sum_{i=1}^n x_i \left(\frac{e_i}{\varepsilon_i} \right) = \sum_{i=1}^n x_i (\varepsilon_i e_i)$$

(1)

for any $x \in V$ and for the orthonormal basis $B_1 = \{e_i\}_{i=1}^n$ in V diagonalizing Q.

The t_ε map can be viewed in two ways: (1) As a linear orthogonal involution of V; (2) As a correlation [18] mapping $t_\varepsilon : V \rightarrow V^* \cong V$. The set of vectors $B_1^* = \{t_\varepsilon(e_i)\}_{i=1}^n$ gives an orthonormal basis in the dual space (V^*, Q). Furthermore, under the identification $V \cong V^*$, t_ε is a symmetric non-degenerate correlation on V thus making the pair (V, t_ε) into a non-degenerate real correlated (linear) space [6]. Then, viewing t_ε as a correlation $V \rightarrow V^*$, we can define the action of $t_\varepsilon(x) \in V^*$ on $y \in V$ for any $x \in V$ as

$$t_\varepsilon(x)(y) = \langle t_\varepsilon(x), y \rangle,$$

(2)

and we get the expected duality relation among the basis elements in B_1 and B_1^*:

$$t_\varepsilon(e_i)(e_j) = \langle \varepsilon_i e_i, e_j \rangle = \varepsilon_i \langle e_i, e_j \rangle = \varepsilon_i \delta_{i,j} = \delta_{i,j}.$$

(3)

The extension of the duality $V \rightarrow V^*$ to the Clifford algebras $\mathcal{C}(V, Q) \rightarrow \mathcal{C}(V^*, Q)$ is of fundamental importance to defining a new transposition scalar product on spinor spaces. When we apply Porteous’ theorem [18] Thm. 15.32] to the involution t_ε, we get the following theorem and its corollary proven in [6].

Proposition 1. Let $A = \mathcal{C}_n$ be the universal Clifford algebra of (V, Q) and let $t_\varepsilon : V \rightarrow V$ be the orthogonal involution of V defined in [14]. Then there exists a unique algebra involution T_{t_ε} of A and a unique algebra anti-involution T_{t_ε} of A such that the following diagrams commute:

$$\begin{align*}
\begin{array}{ccc}
V & \xrightarrow{t_\varepsilon} & V \\
\downarrow & & \downarrow \\
A & \xrightarrow{T_{t_\varepsilon}} & A
\end{array} & \quad \text{and} \quad \begin{array}{ccc}
V & \xrightarrow{t_\varepsilon} & V \\
\downarrow & & \downarrow \\
A & \xrightarrow{T_{t_\varepsilon}} & A
\end{array}
\end{align*}$$

(4)

In particular, we can define T_{t_ε} and T_{t_ε} as follows:

\footnote{We view \mathcal{C}_n as Porteous’ L^α-Clifford algebra for (V, Q) under the identification $L = \mathbb{R}$ and $\alpha = 1_{\mathbb{R}}$.}
Definition 2. The Clifford algebra over the dual space V^* is the universal Clifford algebra $\mathcal{C}(V^*, Q)$ of the quadratic pair (V^*, Q). For short, we denote this algebra by \mathcal{C}^*_{η}.\footnote{The switches are defined on the basis tensors $e_i \otimes e_j \in \mathcal{C}^*_{\eta}$ as $S(e_i \otimes e_j) = e_j \otimes e_i$ and $\hat{S}(e_i \otimes e_j) = (-1)^{|i|+|j|} e_j \otimes e_i$. Then, their action is extended by linearity to the graded product \mathcal{C}^*_{η} as expected.}

(i) For simple k-vectors e_k in \mathcal{B}, let $T_\varepsilon(e_k) = T_\varepsilon(\prod_{i \in k} e_i) = \prod_{i \in k} t_\varepsilon(e_i)$ where $k = |i|$ and $T_\varepsilon(1_A) = 1_A$. Then, extend by linearity to all of \mathcal{A}.

(ii) For simple k-vectors e_k in \mathcal{B}, let

$$T_\varepsilon^\sim(e_k) = T_\varepsilon^\sim(\prod_{i \in k} e_i) = (\prod_{i \in k} t_\varepsilon(e_i))' = (-1)^{\frac{k(k-1)}{2}} \prod_{i \in k} t_\varepsilon(e_i) \tag{5}$$

where $k = |i|$ and $T_\varepsilon^\sim(1_A) = 1_A$. Then, extend by linearity to all of \mathcal{A}.

Maple code of the procedure tp which implements the anti-involution T_ε^\sim in \mathcal{C}^*_{η}, was first presented at ICCA 7 in Toulouse [3]. The procedure tp requires the CLIFFORD package [9]. In the following corollary, α, β, γ denote, respectively, the grade involution, the reversion, and the conjugation in \mathcal{C}^*_{η}.

Corollary 1. Let $\mathcal{A} = \mathcal{C}^*_{p,q}$ and let $T_\varepsilon : \mathcal{A} \to \mathcal{A}$ and $T_\varepsilon^\sim : \mathcal{A} \to \mathcal{A}$ be the involution and the anti-involution of \mathcal{A} from Proposition [7]

(i) For the Euclidean signature $(p, q) = (n, 0)$, or $p - q = n$, we have $t_\varepsilon = 1_V$. Thus, T_ε is the identity map $1_{\mathcal{A}}$ on \mathcal{A} and T_ε^\sim is the reversion β of \mathcal{A}.

(ii) For the anti-Euclidean signature $(p, q) = (0, n)$, or $p - q = -n$, we have $t_\varepsilon = -1_V$. Thus, T_ε is the grade involution α of \mathcal{A} and T_ε^\sim is the conjugation γ of \mathcal{A}.

(iii) For all other signatures $-n < p - q < n$, we have $t_\varepsilon = 1_{V_1} \otimes -1_{V_2}$ where $(V, Q) = (V_1, Q_1) \perp (V_2, Q_2)$. Here, (V_1, Q_1) is the Euclidean subspace of (V, Q) of dimension p spanned by $\{e_i\}_{i=1}^p$ with $Q_1 = Q|_{V_1}$ while (V_2, Q_2) is the anti-Euclidean subspace of (V, Q) of dimension q spanned by $\{e_i\}_{i=p+1}^q$ with $Q_2 = Q|_{V_2}$. Let $\mathcal{A}_1 = \mathcal{C}(V_1, Q_1)$ and $\mathcal{A}_2 = \mathcal{C}(V_2, Q_2)$ so $\mathcal{C}(V, Q) \cong \mathcal{C}(V_1, Q_1) \otimes \mathcal{C}(V_2, Q_2)$. Let S (resp. \hat{S}) be the ungraded switch (resp. the graded switch) on $\mathcal{C}(V_1, Q_1) \otimes \mathcal{C}(V_2, Q_2)$. Then,

$$T_\varepsilon = 1_{\mathcal{A}_1} \otimes \alpha_{\mathcal{A}_2} \quad \text{and} \quad T_\varepsilon^\sim = (\beta_{\mathcal{A}_1} \otimes \gamma_{\mathcal{A}_2}) \circ (\hat{S} \circ S).$$

(iv) The anti-involution T_ε^\sim is related to the involution T_ε through the reversion β as follows:

$$T_\varepsilon^\sim = T_\varepsilon \circ \beta = \beta \circ T_\varepsilon.$$

For an extensive discussion of the properties of the involutions T_ε^\sim and T_ε see [6].

Since (V^*, Q) is a non-degenerate quadratic space spanned by the orthonormal basis B_i^*, we can define the Clifford algebra $\mathcal{C}(V^*, Q)$ as expected.
Let B^* be the canonical basis of $\bigwedge V^* \cong \mathcal{Cl}^{\ast}_n$ generated by B_1^* and sorted by InvLex. That is, we define $B^* = \{ T_\varepsilon(e_\underline{\varepsilon}) | e_\underline{\varepsilon} \in B \}$ given that

$$<T_\varepsilon(e_\underline{\varepsilon}), e_\underline{\varepsilon}^\ast > = \delta_{\underline{\varepsilon} \underline{\varepsilon}}$$

(6)

for $e_\underline{\varepsilon}, e_\underline{\varepsilon}^\ast \in B$ and $T_\varepsilon(e_\underline{\varepsilon}) \in B^*$. An arbitrary linear form φ in $\bigwedge V^* \cong \mathcal{Cl}^{\ast}_n$ can be written as

$$\varphi = \sum_{\underline{\varepsilon} \in 2^n} \varphi_{\underline{\varepsilon}} T_\varepsilon(e_\underline{\varepsilon})$$

(7)

where $\varphi_{\underline{\varepsilon}} \in \mathbb{R}$ for each $\underline{\varepsilon} \in 2^n$. Due to the linear isomorphisms $V \cong V^*$ and $\bigwedge V^* \cong \mathcal{Cl}(V^*, Q)$, we extend, by a small abuse of notation, the inner product $<\cdot, \cdot>$ defined in $\bigwedge V$ to

$$<\cdot, \cdot> : \bigwedge V^* \times \bigwedge V^* \rightarrow \mathbb{R}.$$

(8)

In this way we find, as expected, that the matrix of this inner product on $\bigwedge V^*$ is also diagonal, that is, that the basis B^* is orthonormal with respect to $<\cdot, \cdot>$. We extend the action of dual vectors from V^* on V to all linear forms φ in \mathcal{Cl}^{\ast}_n acting on multivectors v in \mathcal{Cl}_n via the inner product (8) as

$$\varphi(v) = <\varphi, v> = \sum_{\underline{\varepsilon} \in 2^n} \varphi_{\underline{\varepsilon}} v_{\underline{\varepsilon}}$$

(9)

given that $\varphi = \sum_{\underline{\varepsilon} \in 2^n} \varphi_{\underline{\varepsilon}} T_\varepsilon(e_\underline{\varepsilon}) \in \mathcal{Cl}^*_n$ where $\varphi_{\underline{\varepsilon}} = \varphi(e_\underline{\varepsilon}) \in \mathbb{R}$ and $v = \sum_{\underline{\varepsilon} \in 2^n} v_{\underline{\varepsilon}} e_\underline{\varepsilon} \in \mathcal{Cl}_n$ for some coefficients $v_{\underline{\varepsilon}} \in \mathbb{R}$.

Properties of the left multiplication operator $L_u : \mathcal{Cl}_n \rightarrow \mathcal{Cl}_n$, $v \mapsto uv$, $\forall v \in \mathcal{Cl}_n$ and its dual $L_\overline{u}$ with respect to the inner product $<\cdot, \cdot> : \bigwedge V \times \bigwedge V \rightarrow \mathbb{R}$ are discussed in [6]. In particular, it is shown there that if $[L_u]$ is the matrix of the operator L_u relative to the basis B and $[L_Tv(u)]$ is the matrix of the operator $LTv(u)$ relative to the basis B, then $[L_u]^T = [L_Tv(u)] = [L_Tv(u)]^\ast$ where $[L_u]^\ast$ is the matrix transpose of $[L_u]$. However, in order to introduce a new scalar product on spinor spaces related to the involution T_ε^\ast, we need to discuss the action of T_ε^\ast on spinor spaces.

2 ACTION OF THE TRANSPPOSITION INVOLUTION ON SPINOR SPACES

Stabilizer groups $G_{p,q}(f)$ of primitive idempotents f are classified in [7]. The stabilizer $G_{p,q}(f)$ is a normal subgroup of Salingaros’ finite vee group $G_{p,q}$ [20, 22] which acts via conjugation on $\mathcal{Cl}_{p,q}$. The importance of the stabilizers to the spinor representation theory lies in the fact that a transversal \mathcal{T} of $G_{p,q}(f)$ in $G_{p,q}$ generates spinor bases in $S = \mathcal{Cl}_{p,q}^{\ast}$ and $\mathcal{S} = \mathcal{Cl}_{p,q}^{\ast}$. In [7] it is also shown that depending on the signature $\varepsilon = (p, q)$, the real anti-involution T_ε^\ast is responsible for transposition, the Hermitian complex, or the Hermitian quaternionic conjugation of a matrix $[u]$ for any u in all Clifford algebras $\mathcal{Cl}_{p,q}$ with the spinor representation realized either in S (simple algebras) or in $\mathcal{S} = \mathcal{S} \oplus \mathcal{S}$ (semisimple algebras). This is because T_ε^\ast acts on $\mathbb{K} = f\mathcal{Cl}_{p,q}^{\ast}$ and $\mathbb{K} = \mathbb{K} \oplus \mathbb{K}$ as an anti-involution. Thus, T_ε^\ast allows us to define a dual spinor space S^\ast or \mathcal{S}, a new spinor product, and a new spinor norm. The following results are proven in [7].

4Let K be a subgroup of a group G. A transversal ℓ of K in G is a subset of G consisting of exactly one element $\ell(bK)$ from every (left) coset bK, and with $\ell(K) = 1$ [19].
Proposition 2. Let $\psi, \phi \in S = \mathcal{C}(p,q,f)$. Then, $T_{\tilde{\varepsilon}}(\psi)\phi \in \mathbb{K}$. In particular, $T_{\tilde{\varepsilon}}(\psi)\psi \in \mathbb{R}f \subset \mathbb{K}$.

Thus, we can define an invariance group of the scalar product $S \times S \to \mathbb{K}$, $(\psi, \phi) \mapsto T_{\tilde{\varepsilon}}(\psi)\phi$, as follows:

Definition 3. Let $G^e_{p,q} = \{g \in \mathcal{C}(p,q) \mid T_{\tilde{\varepsilon}}(g)g = 1\}$.

We find that $G_{p,q}(f) \trianglelefteq G_{p,q} \leq G^e_{p,q} \triangleleft \mathcal{C}(p,q)$ (the group of units in $\mathcal{C}(p,q)$). Let $\mathcal{F} = \{f_i\}_{i=1}^N$ be a set of $N = 2^k$, $k = q - r_{q-p}$ mutually annihilating primitive idempotents adding up to 1 in a simple Clifford algebra $\mathcal{C}(p,q)$.

Proposition 3. Let $\mathcal{C}(p,q)$ be a simple Clifford algebra, $p - q \neq 1 \bmod 4$ and $p + q \leq 9$. Let $\psi_i \in S_i = \mathcal{C}(p,q)f_i$, $f_i \in \mathcal{F}$, and let $[\psi_i]$ (resp. $[T_{\tilde{\varepsilon}}(\psi_i)]$) be the matrix of ψ_i (resp. $T_{\tilde{\varepsilon}}(\psi_i)$) in the spinor representation with respect to the ordered basis $S_1 = [m_1 f_1, \ldots, m_N f_1]$ with $\alpha_i = m_i^2$.

Then,

$$[T_{\tilde{\varepsilon}}(\psi_i)] = \begin{cases} [\psi_i]^T & \text{if } p - q = 0, 1, 2 \bmod 8; \\ [\psi_i] & \text{if } p - q = 3, 7 \bmod 8; \\ [\psi_i]^\dagger & \text{if } p - q = 4, 5, 6 \bmod 8; \end{cases}$$

(10)

where T denotes transposition, \dagger denotes Hermitian complex conjugation, and $\hat{\dagger}$ denotes Hermitian quaternionic conjugation.

This action of $T_{\tilde{\varepsilon}}$ on $S = S_i$ extends to a similar action on \hat{S}, hence to $\hat{\hat{S}} = S \oplus \hat{S}$ as it is shown in [7],[8]. In particular, the product $(\psi, \phi) \mapsto T_{\tilde{\varepsilon}}(\psi)\phi$ is invariant under two of the subgroups of $G^e_{p,q}$. The Salingaros’ vee group $G_{p,q} < G^e_{p,q}$ and the stabilizer group $G_{p,q}(f)$ of a primitive idempotent f. Since the stabilizer group $G_{p,q}(f)$ and its subgroups play an important role in constructing and understanding spinor representation of Clifford algebras, we provide here a brief summary of related definitions and findings. See [8] for a complete discussion.

Primitive idempotents $f \in \mathcal{F} \subset \mathcal{C}(p,q)$ formed out of commuting basis monomials e_{2i}, \ldots, e_{2k} in B with square 1 have the form $f = \frac{1}{2}(1 \pm e_{2i})\frac{1}{2}(1 \pm e_{2j}) \cdots \frac{1}{2}(1 \pm e_{2k})$ where $k = q - r_{q-p}$. With any primitive idempotent f, we associate the following groups:

(i) The stabilizer $G_{p,q}(f)$ of f defined as

$$G_{p,q}(f) = \{m \in G_{p,q} \mid fm = m^{-1} f\} < G_{p,q}.$$

(11)

The stabilizer $G_{p,q}(f)$ is a normal subgroup of $G_{p,q}$. In particular,

$$|G_{p,q}(f)| = \begin{cases} 2^{1+p+r_{q-p}}, & p - q \neq 1 \bmod 4; \\ 2^{2+p+r_{q-p}}, & p - q = 1 \bmod 4. \end{cases}$$

(12)

(ii) An abelian idempotent group $T_{p,q}(f)$ of f, a subgroup of $G_{p,q}(f)$ defined as

$$T_{p,q}(f) = \langle \pm 1, e_{2i}, \ldots, e_{2k} \rangle < G_{p,q}(f),$$

(13)

where $k = q - r_{q-p}$.

3Here, r_i is Radon-Hurwitz number defined by recursion as $r_{i+8} = r_i + 4$ and these initial values: $r_0 = 0, r_1 = 1, r_2 = r_3 = 2, r_4 = r_5 = r_6 = r_7 = 3$ [13],[14].

4For the sake of consistency with a proof of this proposition given in [7] we remark that α_i is just the square of the monomial $m_i^2 \in \{\pm 1\}$.

5
(iii) A field group $K_{p,q}(f)$ of f, a subgroup of $G_{p,q}(f)$, related to the (skew double) field $\mathbb{K} \cong f\mathcal{Cl}_{p,q}f$, and defined as

$$K_{p,q}(f) = \langle \pm 1, m \mid m \in \mathbb{K} \rangle < G_{p,q}(f)$$

(14)

where \mathbb{K} is a set of Grassmann monomials in \mathcal{B} which provide a basis for $\mathbb{K} = f\mathcal{Cl}_{p,q}f$ as a real subalgebra of $\mathcal{Cl}_{p,q}$.

The following theorem proven in [8] relates the above groups to $G_{p,q}$ and its commutator subgroup $G'_{p,q}$.

Theorem 1. Let f be a primitive idempotent in a simple or semisimple Clifford algebra $\mathcal{Cl}_{p,q}$ and let $G_{p,q}$, $G_{p,q}(f)$, $T_{p,q}(f)$, $K_{p,q}(f)$, and $G'_{p,q}$ be the groups defined above. Furthermore, let $S = \mathcal{Cl}_{p,q}f$ and $\mathbb{K} = f\mathcal{Cl}_{p,q}f$.

(i) Elements of $T_{p,q}(f)$ and $K_{p,q}(f)$ commute.

(ii) $T_{p,q}(f) \cap K_{p,q}(f) = G'_{p,q} = \{\pm 1\}$.

(iii) $G_{p,q}(f) = T_{p,q}(f)K_{p,q}(f) = K_{p,q}(f)T_{p,q}(f)$.

(iv) $|G_{p,q}(f)| = |T_{p,q}(f)K_{p,q}(f)| = \frac{1}{2}|T_{p,q}(f)||K_{p,q}(f)|$.

(v) $G_{p,q}(f) < G_{p,q}$, $T_{p,q}(f) < G_{p,q}$, and $K_{p,q}(f) < G_{p,q}$ in particular, $T_{p,q}(f)$ and $K_{p,q}(f)$ are normal subgroups of $G_{p,q}(f)$.

(vi) $G_{p,q}(f)/K_{p,q}(f) \cong T_{p,q}(f)/G'_{p,q}$ and $G_{p,q}(f)/T_{p,q}(f) \cong K_{p,q}(f)/G'_{p,q}$.

(vii) $(G_{p,q}(f)/G'_{p,q})/(T_{p,q}(f)/G'_{p,q}) \cong G_{p,q}(f)/T_{p,q}(f) \cong K_{p,q}(f)/\{\pm 1\}$ and the transversal of $T_{p,q}(f)$ in $G_{p,q}(f)$ spans \mathbb{K} over \mathbb{R} modulo f.

(viii) A transversal of $G_{p,q}(f)$ in $G_{p,q}$ spans S over \mathbb{K} modulo f.

(ix) $(G_{p,q}(f)/T_{p,q}(f)) < (G_{p,q}/T_{p,q}(f))$ and $(G_{p,q}/T_{p,q}(f))/(G_{p,q}(f)/T_{p,q}(f)) \cong G_{p,q}/G_{p,q}(f)$ and a transversal of $T_{p,q}(f)$ in $G_{p,q}$ spans S over \mathbb{R} modulo f.

(x) The stabilizer $G_{p,q}(f) = \bigcap_{x \in T_{p,q}(f)} C_{G_{p,q}}(x) = C_{G_{p,q}}(T_{p,q}(f))$ where $C_{G_{p,q}}(x)$ is the centralizer of x in $G_{p,q}$ and $C_{G_{p,q}}(T_{p,q}(f))$ is the centralizer of $T_{p,q}(f)$ in $G_{p,q}$.

Recall that in CLIFFORD [9] information about each Clifford algebra $\mathcal{Cl}_{p,q}$ for $p + q \leq 9$ is stored in a built-in data file. This information can be retrieved in the form of a seven-element list with the command clidata([[p, q]]). For example, for $\mathcal{Cl}_{3,0}$ we find:

$$\text{data} = [\text{complex}, 2, \text{simple}, \frac{1}{2}\text{Id} + \frac{1}{2}e_1, [\text{Id}, e_2, e_3, e_{23}], [\text{Id}, e_{23}], [\text{Id}, e_2]]$$

(15)

where Id denotes the identity element of the algebra. In particular, from the above we find that: (i) $\mathcal{Cl}_{3,0}$ is a simple algebra isomorphic to $\text{Mat}(2, \mathbb{C})$; (data[1], data[2], data[3]) (ii) The expression $\frac{1}{2}\text{Id} + \frac{1}{2}e_1$ (data[4]) is a primitive idempotent f which may be used to generate a spinor ideal $S = \mathcal{Cl}_{3,0};$ (iii) The fifth entry data[5] provides, modulo f, a real basis for S, that is, $S = \text{span}_\mathbb{R}\{f, e_2, e_3, e_{23}, e_{23}f\};$ (iv) The sixth entry data[6] provides, modulo f, a real basis for $\mathbb{K} = f\mathcal{Cl}_{3,0}f \cong \mathbb{C}$, that is, $\mathbb{K} = \text{span}_\mathbb{R}\{f, e_{23}, e_{23}f\};$ and, (v) The seventh entry data[7] provides, modulo f, a basis for S over \mathbb{K}, that is, $S = \text{span}_\mathbb{K}\{f, e_{23}f\}$.

The above theorem yields the following corollary:

7We have $G'_{p,q} = \{1, -1\}$ since any two monomials in $G_{p,q}$ either commute or anticommute.
8See [12] how to use CLIFFORD.
Corollary 2. Let data be the list of data returned by the procedure clidata in CLIFFORD. Then, data[5] is a transversal of \(T_{p,q}(f) \) in \(G_{p,q} \); data[6] is a transversal of \(T_{p,q}(f) \) in \(G_{p,q} \); and data[7] is a transversal of \(G_{p,q} \) in \(G_{p,q} \). Therefore, \[|\text{data}[5]| = |\text{data}[6]| |\text{data}[7]| \]. This is equivalent to \[|G_{p,q}(f)| = |G_{p,q}(f)| \].

The theorem and the corollary are illustrated with examples in [8]. Maple worksheets verifying this and other results from [6–8] can be accessed from [10].

3 TRANSPOSITION SCALAR PRODUCT ON SPINOR SPACES

In [14, Ch. 18], Lounesto discusses scalar products on \(S = \mathcal{C}l_{p,q} f \) for simple Clifford algebras and on \(\tilde{S} = S \oplus \hat{S} = \mathcal{C}l_{p,q} e, e = f + \hat{f} \), for semisimple Clifford algebras where \(\hat{f} \) denotes the grade involution of \(f \). It is well known that in each case the spinor representation is faithful. Following Lounesto, we let \(K \) be either \(K \) or \(\mathbb{K} \) and \(\tilde{S} \) be either \(S \) or \(S \oplus \hat{S} \) when \(\mathcal{C}l_{p,q} \) is simple or semisimple, respectively. Then, in the simple algebras, the two \(\beta \)-scalar products are

\[
S \times S \to K, \quad (\psi, \phi) \mapsto \begin{cases}
\beta_+ (\psi, \phi) = s_1 \tilde{\psi} \phi \\
\beta_- (\psi, \phi) = s_2 \psi \phi
\end{cases}
\]

(16)

whereas in the semisimple algebras they are

\[
\tilde{S} \times \tilde{S} \to \mathbb{K}, \quad (\tilde{\psi}, \tilde{\phi}) \mapsto \begin{cases}
(\beta_+ (\tilde{\psi}, \tilde{\phi}), \beta_+ (\psi_g, \phi_g)) = (s_1 \tilde{\psi} \phi, s_1 \tilde{\psi} \phi) \\
(\beta_- (\tilde{\psi}, \tilde{\phi}), \beta_- (\psi_g, \phi_g)) = (s_2 \psi \phi, s_2 \psi \phi)
\end{cases}
\]

(17)

for \(\tilde{\psi} = \psi + \psi_g \) and \(\tilde{\phi} = \phi + \phi_g \), \(\psi, \phi \in S, \psi_g, \phi_g \in \tilde{S} \), and where \(\tilde{\psi}, \tilde{\psi}_g \) (resp. \(\tilde{\phi}, \tilde{\phi}_g \)) denotes reversion (resp. Clifford conjugation) of \(\psi, \psi_g \). Here \(s_1, s_2 \) are special monomials in the Clifford algebra basis \(\mathcal{B} \) which guarantee that the products \(s_1 \tilde{\psi} \phi, s_2 \psi \phi \), hence also \(s_1 \tilde{\psi}_g \phi_g, s_2 \psi_g \phi_g \), belong to \(K \approx \mathbb{K}^9 \). In fact, the monomials \(s_1, s_2 \) belong to the chosen transversal of the stabilizer \(G_{p,q} (f) \) in \(G_{p,q} \) [8]. The automorphism groups of \(\beta_+ \) and \(\beta_- \) are defined in the simple case as, respectively, \(G_+ = \{ s \in \mathcal{C}l_{p,q} \mid ss = 1 \} \) and \(G_- = \{ s \in \mathcal{C}l_{p,q} \mid ss = 1 \} \), and as \(2G_- \) and \(2G_+ \) in the semisimple case. They are shown in [14, Tables 1 and 2, p. 236].

3.1 Simple Clifford algebras

In Example 3 [7] it was shown that the transposition scalar product in \(S = \mathcal{C}l_{2,2} f \) is different from each of the two Lounesto’s products whereas Example 4 showed that the transposition product in \(S = \mathcal{C}l_{2,0} f \) coincided with \(\beta_+ \). Furthermore, it was remarked that \(T_{\varepsilon}^e (\psi) \phi \) always equaled \(\beta_+ \) for Euclidean signatures \((p,0)\) and \(\beta_- \) for anti-Euclidean signatures \((0,q)\). We formalize this in the following proposition. For all proofs see [8].

Proposition 4. Let \(\psi, \phi \in S = \mathcal{C}l_{p,q} f \) and \((\psi, \phi) \mapsto T_{\varepsilon}^e (\psi) \phi = \lambda f, \lambda \in K \), be the transposition scalar product. Let \(\beta_+ \) and \(\beta_- \) be the scalar products on \(S \) shown in (16). Then, there exist monomials \(s_1, s_2 \) in the transversal \(\ell \) of \(G_{p,q} (f) \) in \(G_{p,q} \) such that

\[
T_{\varepsilon}^e (\psi) \phi = \begin{cases}
\beta_+ (\psi, \phi) = s_1 \tilde{\psi} \phi, & \forall \psi, \phi \in \mathcal{C}l_{p,0} f, \\
\beta_- (\psi, \phi) = s_2 \psi \phi, & \forall \psi, \phi \in \mathcal{C}l_{0,q} f.
\end{cases}
\]

(18)

In simple Clifford algebras, the monomials \(s_1 \) and \(s_2 \) also satisfy: (i) \(\tilde{f} = s_1 f s_1^{-1} \) and (ii) \(f = s_2 f s_2^{-1} \). The identity (i) (resp. (ii)) is also valid in the semisimple algebras provided \(\beta_+ \neq 0 \) (resp. \(\beta_- \neq 0 \).
Table 1 (Part 1): Automorphism group $G^e_{p,q}$ of $T^e_\psi(\phi)$
in simple Clifford algebras $\mathcal{C}l_{p,q} \cong \text{Mat}(2^k, \mathbb{R})$

$k = q - r_{q-p}, p - q \neq 1 \mod 4, p - q = 0, 1, 2 \mod 8$

(p, q)	$G^e_{p,q}$
$(0, 0)$	$O(1)$
$(1, 1)$	$O(2)$
$(2, 0)$	$O(2)$
$(2, 2)$	$O(4)$
$(3, 1)$	$O(8)$
$(3, 3)$	$O(8)$
$(0, 6)$	

Table 1 (Part 2): Automorphism group $G^e_{p,q}$ of $T^e_\psi(\phi)$
in simple Clifford algebras $\mathcal{C}l_{p,q} \cong \text{Mat}(2^k, \mathbb{R})$

$k = q - r_{q-p}, p - q \neq 1 \mod 4, p - q = 0, 1, 2 \mod 8$

(p, q)	$G^e_{p,q}$
$(4, 2)$	$O(8)$
$(5, 3)$	$O(16)$
$(1, 7)$	$O(16)$
$(0, 8)$	$O(16)$
$(4, 4)$	$O(16)$
$(8, 0)$	$O(16)$

Let $u \in \mathcal{C}l_{p,q}$ and let $[u]$ be a matrix of u in the spinor representation π_S of $\mathcal{C}l_{p,q}$ realized in the spinor $(\mathcal{C}l_{p,q}, \mathbb{K})$-bimodule $\mathcal{C}l_S \mathbb{K} \cong \mathcal{C}l_{p,q} \mathbb{K}$. Then, by [7] Prop. 5,

\[
[T^e_\psi(u)] = \begin{cases}
[u]^T & \text{if } p - q = 0, 1, 2 \mod 8; \\
[u]^\dagger & \text{if } p - q = 3, 7 \mod 8; \\
[u]^\ddagger & \text{if } p - q = 4, 5, 6 \mod 8;
\end{cases}
\]

where T, \dagger, and \ddagger denote, respectively, transposition, complex Hermitian conjugation, and quaternionic Hermitian conjugation. Thus, we immediately have:

Proposition 5. Let $G^e_{p,q} \subset \mathcal{C}l_{p,q}$ where $\mathcal{C}l_{p,q}$ is a simple Clifford algebra. Then, $G^e_{p,q}$ is: The orthogonal group $O(N)$ when $\mathbb{K} \cong \mathbb{R}$; the complex unitary group $U(N)$ when $\mathbb{K} \cong \mathbb{C}$; or, the compact symplectic group $Sp(N)$ when $\mathbb{K} \cong \mathbb{H}$\footnote{See Fulton and Harris [12] for a definition of the quaternionic unitary group $U_{\mathbb{H}}(N)$. In our notation we follow loc. cit. page 100, ‘Remark on Notations’}. That is,

\[
G^e_{p,q} = \begin{cases}
O(N) & \text{if } p - q = 0, 1, 2 \mod 8; \\
U(N) & \text{if } p - q = 3, 7 \mod 8; \\
Sp(N) & \text{if } p - q = 4, 5, 6 \mod 8;
\end{cases}
\]

where $N = 2^k$ and $k = q - r_{q-p}$.

The scalar product $T^e_\psi(\psi)\phi$ was computed with CLIFFORD [9] for all signatures $(p, q), p+q \leq 9$ [10]. Observe that as expected, in Euclidean (resp. anti-Euclidean) signatures $(p, 0)$ (resp. $(0, q)$) the group $G^e_{p,0}$ (resp. $G^e_{0,q}$) coincides with the corresponding automorphism group of the scalar product β_+ (resp. β_-) listed in [14, Table 1, p. 236] (resp. [14, Table 2, p. 236]). This is indicated by a single (resp. double) box around the group symbol in Tables 1–5. For example, in Table 1, for the Euclidean signature $(2, 0)$, we show $G^e_{2,0}$ as $O(2)$ like for β_+ whereas for the anti-Euclidean signature $(0, 6)$, we show $G^e_{0,6}$ as $O(8)$ like for β_+. \footnote{See Fulton and Harris [12] for a definition of the quaternionic unitary group $U_{\mathbb{H}}(N)$. In our notation we follow loc. cit. page 100, ‘Remark on Notations’}.

For simple Clifford algebras, the automorphism groups $G^e_{p,q}$ are displayed in Tables 1, 2, and 3. In each case the form is positive definite and non-degenerate. Also, unlike in the case of the forms β_+ and β_-, there is no need for the extra monomial factor like s_1, s_2 in (16) (and (17)) to guarantee that the product $T^e_\epsilon(\psi)\phi$ belongs to \mathbb{K} since this is always the case [6][7]. Recall that the only role of the monomials s_1 and s_2 is to permute entries of the spinors $\psi\phi$ and $\tilde{\psi}\phi$ to assure that $\beta_+(\psi, \phi)$ and $\beta_-(\psi, \phi)$ belong to the (skew) field \mathbb{K}. That is, more precisely, that $\beta_+(\psi, \phi)$ and $\beta_-(\psi, \phi)$ have the form $\lambda f = f \lambda$ for some $\lambda \in \mathbb{K}$. The idempotent f in the spinor basis in S corresponds uniquely to the identity coset $G_{p,q}(f)$ in the quotient group $G_{p,q}/G_{p,q}(f)$. Based on [7] Prop. 2) we know that since the vee group $G_{p,q}$ permutes entries of any spinor ψ, the monomials s_1 and s_2 belong to the transversal of the stabilizer $G_{p,q}(f) < G_{p,q}$ [7] Cor. 2][4].

One more difference between the scalar products β_+ and β_-, and the transposition product $T^e_\epsilon(\psi)\phi$ is that in some signatures one of the former products may be identically zero whereas the transposition product is never identically zero. The signatures (p, q) in which one of the products β_+ or β_- is identically zero can be easily found in [14], Tables 1 and 2, p. 236] as the automorphism group of the product is then a general linear group.

3.2 Semisimple Clifford algebras

Faithful spinor representation of a semisimple Clifford algebra $C\ell_{p,q}$ ($p - q = 1 \mod 4$) is realized in a left ideal $\tilde{S} = S \oplus \tilde{S} = C\ell_{p,q} e$ where $e = f + \tilde{f}$ for any primitive idempotent f. Recall that $\tilde{\cdot}$ denotes the grade involution of $u \in C\ell_{p,q}$. We refer to [14] pp. 232–236] for some of the concepts. In particular, $S = C\ell_{p,q} f$ and $\tilde{S} = C\ell_{p,q} \tilde{f}$. Thus, every spinor $\tilde{\psi} \in \tilde{S}$ has unique components $\psi \in S$ and $\tilde{\psi}_g \in \tilde{S}$. We refer to the elements $\tilde{\psi} \in \tilde{S}$ as “spinors” whereas to its components $\psi \in S$ and $\tilde{\psi}_g \in \tilde{S}$ we refer as “$1\overline{2}$-spinors”.

For the semisimple Clifford algebras $C\ell_{p,q}$, we will view spinors $\tilde{\psi} \in \tilde{S} = S \oplus \tilde{S}$ as ordered pairs $(\psi, \tilde{\psi}_g) \in S \times \tilde{S}$ when $\tilde{\psi} = \psi + \tilde{\psi}_g$. Likewise, we will view elements $\tilde{\lambda}$ in the double

Table 2 (Part 1): Automorphism group $G^e_{p,q}$ of $T^e_\epsilon(\psi)\phi$ in simple Clifford algebras $C\ell_{p,q} \cong \text{Mat}(2^k, \mathbb{C})$

(p, q)	$(0, 1)$	$(1, 2)$	$(3, 0)$	$(2, 3)$	$(0, 5)$	$(4, 1)$	$(1, 6)$	$(7, 0)$
$G^e_{p,q}$	$U(1)$	$U(2)$	$U(2)$	$U(4)$	$U(4)$	$U(4)$	$U(8)$	$U(8)$

Table 2 (Part 2): Automorphism group $G^e_{p,q}$ of $T^e_\epsilon(\psi)\phi$ in simple Clifford algebras $C\ell_{p,q} \cong \text{Mat}(2^k, \mathbb{C})$

(p, q)	$(5, 2)$	$(3, 4)$	$(4, 5)$	$(6, 3)$	$(2, 7)$	$(0, 9)$	$(8, 1)$
$G^e_{p,q}$	$U(8)$	$U(8)$	$U(16)$	$U(16)$	$U(16)$	$U(16)$	$U(16)$

11In [14] Page 233], Lounesto states correctly that “the element s can be chosen from the standard basis of $C\ell_{p,q}$.” In fact, one can restrict the search for s to the transversal of the stabilizer $G_{p,q}(f)$ in $G_{p,q}$ which has a much smaller size $2^{q-r_{s-p}}$ compared to the size 2^{p+q} of the Clifford basis.
The two known spinor scalar products

4 CONCLUSIONS

All results in these tables, like in Tables 1, 2, and 3, have been verified with CLIFFORD [9] and the corresponding Maple worksheets are posted at [10].

Table 3 (Part 1): Automorphism group $G^e_{p,q}$ of $T^\sim_\psi(\phi)$ in simple Clifford algebras $\mathcal{C}l_{p,q} \cong \text{Mat}(2^k, \mathbb{H})$

(p, q)	(0, 2)	(0, 4)	(4, 0)	(1, 3)	(2, 4)	(6, 0)
$G^e_{p,q}$	$Sp(1)$	$Sp(2)$	$Sp(2)$	$Sp(2)$	$Sp(4)$	$Sp(4)$

Table 3 (Part 2): Automorphism group $G^e_{p,q}$ of $T^\sim_\psi(\phi)$ in simple Clifford algebras $\mathcal{C}l_{p,q} \cong \text{Mat}(2^k, \mathbb{H})$

(p, q)	(1, 5)	(5, 1)	(6, 2)	(7, 1)	(2, 6)	(3, 5)
$G^e_{p,q}$	$Sp(4)$	$Sp(4)$	$Sp(8)$	$Sp(8)$	$Sp(8)$	$Sp(8)$

fields $\bar{\mathbb{K}} = \mathbb{K} \oplus \mathbb{K}$ as ordered pairs $(\lambda, \lambda_q) \in \mathbb{K} \times \mathbb{K}$ when $\lambda = \lambda + \lambda_q$. As before, $\mathbb{K} = f\mathcal{C}l_{p,q}f$ while $\bar{\mathbb{K}} = \bar{f}\mathcal{C}l_{p,q}\bar{f}$. Recall that $\bar{\mathbb{K}} \cong 2\mathbb{R} \overset{\text{def}}{=} \mathbb{R} \oplus \mathbb{R}$ or $\bar{\mathbb{K}} \cong 2\mathbb{H} \overset{\text{def}}{=} \mathbb{H} \oplus \mathbb{H}$ when, respectively, $p - q = 1$ mod 8, or $p - q = 5$ mod 8.

In this section we classify automorphism groups of the transposition scalar product

$$\hat{S} \times \hat{S} \rightarrow \bar{\mathbb{K}}, \quad (\tilde{\psi}, \tilde{\phi}) \mapsto T^\sim_\psi(\tilde{\psi}, \tilde{\phi}) \overset{\text{def}}{=} (T^\sim_\psi(\psi, \phi), T^\sim_\psi(\psi_g, \phi_g) \in \bar{\mathbb{K}}$$

when $\tilde{\psi} = \psi + \psi_g$ and $\tilde{\phi} = \phi + \phi_g$.

Proposition 6. Let $G^e_{p,q} \subset \mathcal{C}l_{p,q}$ where $\mathcal{C}l_{p,q}$ is a semisimple Clifford algebra. Then, $G^e_{p,q}$ is:

The double orthogonal group $2O(N) \overset{\text{def}}{=} O(N) \times O(N)$ when $\bar{\mathbb{K}} \cong 2\mathbb{R}$ or the double compact symplectic group $2Sp(N) \overset{\text{def}}{=} Sp(N) \times Sp(N)$ when $\bar{\mathbb{K}} \cong 2\mathbb{H}$.

That is,

$$G^e_{p,q} = \begin{cases} 2O(N) = O(N) \times O(N) & \text{when } p - q = 1 \text{ mod 8}; \\ 2Sp(N) = Sp(N) \times Sp(N) & \text{when } p - q = 5 \text{ mod 8}; \end{cases}$$

where $N = 2^{k-1}$ and $k = q - r_{q-p}$.

The automorphism groups $G^e_{p,q}$ for semisimple Clifford algebras $\mathcal{C}l_{p,q}$ for $p + q \leq 9$ are shown in Tables 4 and 5. All results in these tables, like in Tables 1, 2, and 3, have been verified with CLIFFORD [9] and the corresponding Maple worksheets are posted at [10].

4 CONCLUSIONS

The transposition map T^\sim_ψ allowed us to define a new transposition scalar product on spinor spaces. Only in the Euclidean and anti-Euclidean signatures, this scalar product is identical to the two known spinor scalar products β_+ and β_- which use, respectively, the reversion and the

\[12\] Recall that $Sp(N) = U_{\mathbb{H}}(N)$ where $U_{\mathbb{H}}(N)$ is the quaternionic unitary group [12].
Table 4: Automorphism group $G_{p,q}^\varepsilon$ of $T_\varepsilon(\psi)\phi$

in semisimple Clifford algebras $\mathcal{Cl}_{p,q} \cong 2^{\text{Mat}(2^{k-1}, \mathbb{R})}$

\[
k = q - r_{q-p}, \quad p - q = 1 \mod 4, \quad p - q = 1 \mod 8
\]

(p, q)	$(1, 0)$	$(2, 1)$	$(3, 2)$	$(4, 7)$	$(4, 3)$	$(1, 8)$	$(5, 4)$	$(9, 0)$
$G_{p,q}^\varepsilon$	$^2O(1)$	$^2O(2)$	$^2O(4)$	$^2O(8)$	$^2O(8)$	$^2O(16)$	$^2O(16)$	$^2O(16)$

Table 5: Automorphism group $G_{p,q}^\varepsilon$ of $T_\varepsilon(\psi)\phi$

in semisimple Clifford algebras $\mathcal{Cl}_{p,q} \cong 2^{\text{Mat}(2^{k-1}, \mathbb{H})}$

\[
k = q - r_{q-p}, \quad p - q = 5 \mod 4, \quad p - q = \mod 8
\]

(p, q)	$(0, 3)$	$(1, 4)$	$(5, 0)$	$(2, 5)$	$(6, 1)$	$(3, 6)$	$(7, 2)$
$G_{p,q}^\varepsilon$	$^2Sp(1)$	$^2Sp(2)$	$^2Sp(2)$	$^2Sp(4)$	$^2Sp(4)$	$^2Sp(8)$	$^2Sp(8)$

conjugation and it is different in all other signatures. This new product is never identically zero and it does not require extra monomial factor to assure it is \mathbb{K}- or \mathbb{K}-valued. This is because the T_ε^- maps any spinor space to its dual. Then, we have identified the automorphism groups $G_{p,q}^\varepsilon$ of this new product in Tables 1–5 for $p + q = n \leq 9$. The classification is complete and sufficient due to the mod 8 periodicity.

We have observed the important role played by the idempotent group $T_{p,q}(f)$ and the field group $K_{p,q}(f)$ as normal subgroups in the stabilizer group $G_{p,q}(f)$ of the primitive idempotent f and their coset spaces $G_{p,q}/T_{p,q}(f)$, $G_{p,q}(f)/T_{p,q}(f)$, and $G_{p,q}/G_{p,q}(f)$ in relation to the spinor representation of $\mathcal{Cl}_{p,q}$. These subgroups allow to construct very effectively non-canonical transversals and hence basis elements of the spinor spaces and the (skew double) field underlying the spinor space. This approach to the spinor representation of $\mathcal{Cl}_{p,q}$ based on the stabilizer $G_{p,q}(f)$ of f leads to a realization that the Clifford algebras can be viewed as a twisted group ring $\mathbb{R}^\ell(\mathbb{Z}_2^n)$. In particular, we have observed that our transposition T_ε^- is then a ‘star map’ of $\mathbb{R}^\ell(\mathbb{Z}_2^n)$ which on a general twisted group ring $\ast : \mathbb{K}^\ell[G] \rightarrow \mathbb{K}^\ell[G]$ is defined as

\[
(\sum a_x \bar{x})^\ast = \sum a_x \bar{x}^{-1}.
\]

This is because we recall properties of the transposition anti-involution T_ε^-, and, in particular, its action $T_\varepsilon^-(m) = m^{-1}$ on a monomial m in the Grassmann basis \mathcal{B} which is, as we see now, identical to the action $\ast(m) = m^{-1}$ on every $m \in \mathcal{B}$. For a Hopf algebraic discussion of Clifford algebras as twisted group algebras, see [11,15] and references therein.

REFERENCES

[1] R. Abłamowicz, *Clifford Algebra Computations with Maple*, in “Clifford (Geometric) Algebras with Applications in Physics, Mathematics, and Engineering”, W. E. Baylis, (Ed.) (Birkhäuser, Boston, 1996) 463–502
[2] R. Abłamowicz, *Spinor Representations of Clifford algebras: A Symbolic Approach*, Computer Physics Communications Thematic Issue - Computer Algebra in Physics Research **115**, No. 2–3 (1998) 510–535

[3] R. Abłamowicz, *Computations with Clifford and Grassmann Algebras*. Adv. in Appl. Clifford Algebras, **19**, No. 3–4 (2009) 499–545

[4] R. Abłamowicz, *Computation of Non-Commutative Gröbner Bases in Grassmann and Clifford Algebras*. Adv. Applied Clifford Algebras **20** No. 3–4 (2010), 447–476

[5] R. Abłamowicz and B. Fauser, *GfG - Groebner for Grassmann - A Maple 12 Package for Groebner Bases in Grassmann Algebras*, http://math.tntech.edu/rafal/GfG12/ (2010)

[6] R. Abłamowicz and B. Fauser, *On the Transposition Anti-Involution in Real Clifford Algebras I: The Transposition Map*. Linear and Multilinear Algebra, Volume 59, Issue 12, December 2011, 1331–1358

[7] R. Abłamowicz and B. Fauser, *On the Transposition Anti-Involution in Real Clifford Algebras II: Stabilizer Groups of Primitive Idempotents*. Linear and Multilinear Algebra, Volume 59, Issue 12, December 2011, 1359–1381

[8] R. Abłamowicz and B. Fauser, *On the Transposition Anti-Involution in Real Clifford Algebras III: The Automorphism Group of the Transposition Scalar Product on Spinor Spaces* (to appear in Linear and Multilinear Algebra, DOI: 10.1080/03081087.2011.624093)

[9] R. Abłamowicz and B. Fauser, CLIFFORD with Bigebra – A Maple Package for Computations with Clifford and Grassmann Algebras, http://math.tntech.edu/rafal/ (©1996–2011)

[10] R. Abłamowicz and B. Fauser, Maple worksheets created with CLIFFORD for a verification of results presented in this paper and in [6, 7], http://math.tntech.edu/rafal/publications.html (©2011)

[11] H. Albuquerque and S. Majid, *Clifford Algebras Obtained by Twisting of Group Algebras*, J. of Pure and Appl. Algebra **171**, (2002) 133–148

[12] W. Fulton and J. Harris, *Representation Theory: A First Course*, (Springer, New York, 1991)

[13] A. J. Hahn, *Quadratic Algebras, Clifford Algebras, and Arithmetic Witt Groups*, (Undergraduate Texts in Mathematics) (Springer-Verlag, New York, 1994)

[14] P. Lounesto, *Clifford Algebras and Spinors*, 2nd ed. (Cambridge University Press, Cambridge, 2001)

[15] S. Morier-Genoud and V. Ovsienko, *Simple graded commutative algebras*, J. of Algebra **323** (2010) 1649–1664

[16] Z. Oziewicz, *Clifford hopf-gebra and bi-universal hopf-gebra*, Czechoslovak Journal of Physics Volume 47, Number 12, 1267-1274, DOI: 10.1023/A:1022833801475

[17] D. S. Passman, *The Algebraic Structure of Group Rings*, (Robert E. Krieger Publishing Company, Malabar, Florida, 1985)
[18] I. R. Porteous, *Clifford Algebras and the Classical Groups*, (Cambridge University Press, Cambridge, 1995)

[19] J.J. Rotman, *Advanced Modern Algebra*, Revised Printing, (Prentice Hall, Upper Saddle River, 2002)

[20] N. Salingaros, *Realization, extension, and classification of certain physically important groups and algebras*, J. Math. Phys. 22 (1981) 226–232

[21] N. Salingaros, *On the classification of Clifford algebras and their relation to spinors in n dimensions*, J. Math. Phys. 23 (1) (1982) 1–7

[22] N. Salingaros, *The relationship between finite groups and Clifford algebras*, J. Math. Phys. 25 (1984) 738–742