Person Re-Identification using Deep Learning Networks: A Systematic Review

Ankit Yadav¹, Dinesh Kumar Vishwakarma²

Biometric Research Laboratory, Department of Information Technology, Delhi Technological University, Bavana Road, Delhi-110042, India

ankan4607@gmail.com¹, dinesh@dtu.ac.in²

Abstract: Person re-identification has received a lot of attention from the research community in recent times. Due to its vital role in security based applications, person re-identification lies at the heart of research relevant to tracking robberies, preventing terrorist attacks and other security critical events. While the last decade has seen tremendous growth in re-id approaches, very little review literature exists to comprehend and summarize this progress. This review deals with the latest state-of-the-art deep learning based approaches for person re-identification. While the few existing re-id review works have analysed re-id techniques from a singular aspect, this review evaluates numerous re-id techniques from multiple deep learning aspects such as deep architecture types, common Re-Id challenges (variation in pose, lightning, view, scale, partial or complete occlusion, background clutter), multi-modal Re-Id, cross-domain Re-Id challenges, metric learning approaches and video Re-Id contributions. This review also includes several re-id benchmarks collected over the years, describing their characteristics, specifications and top re-id results obtained on them. The inclusion of the latest deep re-id works makes this a significant contribution to the re-id literature. Lastly, the conclusion and future directions are included.

Keywords: Person Re-Identification, Deep Learning, Convolutional Neural Network, Feature Extraction & Fusion

1. Introduction

Security and surveillance based applications in computer vision have gained tremendous popularity in recent times. Currently, security surveillances record videos and images whose analysis requires manual human interaction. Looking into yesterday’s robbery can be challenging as it involves a manual search through twenty hours of surveillance videos by humans prone to fatigue and making errors. The problem quickly becomes infeasible as the time span of recorded media under analysis is increased. The development of machine learning and later, deep learning approaches have opened a wide range of advanced possibilities that could lead to safer homes, offices, neighbourhood, bus stops, airports etc. The idea that machines can be taught to identify individuals of interest is a promising step towards a more secure environment.

Person re-identification means to find a person of interest in a query image/video from a large collection of recorded images and/or videos. While machine learning algorithms played crucial part in the early days, re-id approaches have made significant improvements with the
rise of deep learning based systems [1]. Several deep learning based approaches proposed in recent years have boosted the matching accuracy results, significantly outperforming the handcrafted feature based machine learning algorithms [2], [3]. Since deep learning models require a large number of training samples, recent years have also witnessed the collection of several medium to large-scale re-id datasets for training and testing different deep based re-id approaches.

2. Research Methodology

This section details the major contributions of this review, techniques followed in preparing this review and a comparison with some of the existing deep Re-Id reviews/surveys.

2.1 Contributions of this Review

This review studies deep learning based person re-identification. While person re-identification is not a new topic in the research community, deep learning based methods have become increasingly popular due their tremendous success in various computer vision domains. Hence, it is natural that deep learning based methods take lead in the Re-Id problem due to their superior feature learning capability when compared to hand-crafted feature based methods.
The focus of this review is to conduct an exhaustive study of the recent deep learning based Re-ID methods, specifying the various benchmark datasets and the classification of various image and video based deep methods as shown in Fig. 1, describing the organization of this review. Recent years have witnessed a sharp increase in the number of deep learning based Re-ID approaches and this review cites the latest developments in deep learning based Re-ID research. Fig. 2 describes the taxonomy of deep learning based Re-ID methods included in this review. Re-ID methods have been categorized into image-based and video-based methods. Image-based contributions have been explored from numerous aspects such as architectures involved, common visual challenges, modality specific methods, cross-domain approaches and metric learning methods.

The major contributions of this review are as follows:

- Provides a comprehensive review of deep learning based person re-identification methods.
- Conducts an exhaustive study of deep Re-ID methods (Table 3-14) by describing the “key ideas” behind numerous approaches mentioned.
- Since deep learning methods have gained popularity in recent years, this exhaustive review automatically incorporates the most recent contributions to deep learning based Re-ID approaches.
• Details several image based and video based benchmark datasets, specifying their technical specifications, challenges posed by samples and top results reported on them.
• Analyses deep learning based methods from several crucial aspects like architecture types, loss functions, Re-Id challenges, data modalities, cross-domain approaches and metric learning methods, helping the readers to understand and appreciate deep Re-Id from multiple perspectives.
• Explores the growing popularity of video based deep Re-Id methods that combine temporal data providing important motion cues with the usual visual characteristics.
• This review helps readers to gain a comprehensive and exhaustive understanding of the recent deep Re-Id contributions by categorically analysing contributions from numerous perspectives like architecture, challenges, modality, cross-domain approaches, metric learning and video based methods.

2.2 Review Techniques

This review includes journal papers, conference and workshop papers from several well-known repositories including IEEE Xplore, ScienceDirect, Springer, ACM and Google Scholar. The keywords used to search for relevant contributions include “person re-identification”, “Re-Id”, “deep”, “deep learning”, “review” and “survey”. Due to the growing popularity of deep approaches, this initial search resulted in a comprehensive list of contributions. Higher priority was given to publications from high quality journals such as IEEE Transactions, Pattern Recognition, Neurocomputing etc and top conferences such as CVPR, ECCV and ICCV. A separate search was conducted to include Re-Id dataset contributions. Finally, the included papers were analysed and a taxonomy of deep Re-Id methods was formulated as demonstrated in Fig. 2. Fig. 3 shows the graph of year-wise deep Re-Id contributions cited in this review clearly depicting a high percentage of recent deep Re-Id works.

![Fig. 3 Count of cited articles (year-wise)](image)

2.3 Comparison with Existing Reviews

While the number of deep Re-Id implementations have grown exponentially in recent years, there are very few reviews/surveys keeping pace with the growth of deep Re-Id research. This section presents a comparative analysis of this review against some existing deep learning
based Re-Id surveys. Compared to other surveys, this review includes the latest research publications (up to 2020). Table 1 presents Re-Id comparisons on the basis of several deep learning aspects such as architecture types, Re-Id datasets, challenges, modality, cross-domain approaches and metric learning methods. The green rows indicate the presence of theoretical analysis while the orange rows indicate the presence of tabular information.

Table 1 clearly shows the comprehensive nature of this review when compared to other existing surveys, presenting both theoretical and tabular analysis of various deep Re-Id aspects.

3. Benchmark Datasets for Person Re-identification

Several benchmark datasets have been collected over the years to train and test the robustness of person re-identification systems. These datasets are useful in validating different re-identification approaches in terms of recognition accuracy. Table 2 gives detailed information about various re-id datasets.

Dataset Type	Dataset	Release Year	Camera	Identity Count	Images/Video Count	Challenges	Top Results - Rank 1 Accuracy (%)
Image Re-Id Datasets	VIPeR [8]	2007	2	632	1264 images	Viewpoint variation	67.21 [9]
	iLIDS [10]	2009	2	119	476 images	Illumination variation and occlusion	82.20 [11]
	GRID [12]	2010	8	1800		Viewpoint, lightning and color variations, occlusion	28.00 [13]
	CAVIAR4RE-ID [14]	2011	2	72	720 images	Resolution, light and pose variations, occlusion	53.60 [15]
	CUHK01 [16]	2012	2	971	1942 images	Pose, viewpoint and lightning variations	98.73 [17]
	RGBD-ID [18]	2012 (RGB-D)	79	316 images		View and clothing variation for same identities	76.70 [19]
Dataset Type	Dataset	Year	Camera	Identity Count	Images/Video Count	Challenges	Top Results - Rank 1 Accuracy (%)
--------------	------------------	------	--------	----------------	--------------------	--	-----------------------------------
	CUHK02 [20]	2013	10	1816	7264 images	Illumination and pose variations, partial occlusion	-
	CUHK03 [21]	2014	2	1360	13164 images	Alignment variation, occlusion, missing body parts	96.43 [2]
	Market-1501 [22]	2015	6	1501	32668 images	Illumination, scale and pose variations, partial occlusion	95.34 [17]
	Kinect-Re-Id [23]	2015	1 RGB-D	71	483 videos	Viewpoint and lightning variations	99.40 [19]
	DukeMTMC-Re-Id [24]	2017	8	1852	4120 images	Illumination, view and pose variations, background clutter, occlusion	88.19 [17]
	RegDB [25]	2017	1 RGB	412	4120 thermal images	Pose, distance and lightning variation	48.43 [26]
	SYSU-MM01 [27]	2017	4 RGB	491	287628 IR images	Color and exposure variation	65.10 [28]
	Airport [29]	2019	6	9651	3.13 images per person on average	Viewpoint and illumination variation, detection error, occlusion, background clutter	-
	ETHZ [30]	2007	2			Partial occlusion	93.00 [31]
	PRID2011 [32]	2011	2	983	100 to 150 images per individual	Viewpoint, pose, lightning and background variations	98.80 [33]
	3DPES [34]	2011	6	200	500 videos	Viewpoint and illumination variation, occlusion, cluttered background, similar clothing for different identities	72.23 [35]
	iLIDS-VID [36]	2014	2	300	600 videos, 73 frames per video on average	Viewpoint and illumination variation, occlusion, cluttered background, similar clothing for different identities	88.00 [37]
	MARS [38]	2016	6	1261	20715 videos	Viewpoint and pose variations, partial occlusion, detection error, small inter-class and large intra-class variation	87.30 [39]
	DukeMTMC-VideoRe-Id [40]	2019	1812		12 frames per second in a tracklet, 2196 training tracklets with 369656 frames, 2636 testing tracklets having 445764 frames	Lightning, pose and viewpoint variation, noisy background, occlusion	-

Re-Id datasets can be broadly classified into two types: image-based and video based datasets.

3.1. Image Based Re-Id Datasets

The VIPeR [8] dataset has been created for viewpoint invariant pedestrian recognition. It contains 1264 images of 632 identities that have been captured from 2 cameras. The iLIDS [10] dataset has been acquired at an airport arrival hall and has 476 images of 19 identities from 2 cameras. The GRID [12] dataset is acquired from a busy underground train station having images of 800 identities from 8 cameras. CUHK03 [21] is another large scale re-id dataset having 13164 images of 1360 identities collected using 2 cameras.

Datasets like Market-1501 [22], DukeMTMC-Re-Id [24] and CUHK02 [20] have used 6,8 and 10 cameras respectively, thereby increasing the number of camera views used to collect...
people images. A few multi-modal re-id datasets also exist such as the RGBD-ID [18], KinectRe-Id [23] based on RGB-depth images and RegDB [25], SYSU-MM01 [27] containing both RGB and infrared images. The largest image based re-id dataset is the Airport [29] collected from 6 cameras of a mid-sized airport containing images for 9651 identities. Fig. 4 shows some sample images from the Market-1501 dataset.

![Sample Images from Market-1501 dataset](image)

3.2. Video Based Re-Id Datasets

PRID2011 [32] dataset contains 983 identities collected from 2 cameras. iLIDS-VID [36] contains 600 videos of 300 people from 2 cameras. Another popular video based re-id dataset is the large scale dataset MARS [38] which contains 20715 videos of 1261 identities from 6 cameras. The most recent addition to the video re-id dataset is the DukeMTMC-VideoRe-Id [40] containing 1812 identities.

Considering the growth of re-id datasets over the years, several inferences can be made. Firstly, Re-Id datasets have grown both in number and scale which is a great benefit since deep models require large amount of samples for effective training. Secondly, the variety of samples within these datasets present numerous re-id challenges such as variations in pose, lightning and scale, occlusion, background clutter, same people wearing different clothing (large intra-class disparity) or different people wearing similar clothing (small inter-class disparity), thereby allowing deep models to learn effective generalization of appearance. Thirdly, very few datasets are multi-modal [23], [18] leading to an over reliance on RGB image and video based approaches. Fourthly, in a supervised environment, deep models require labelled samples for learning. As the size of datasets grow, it becomes less feasible to annotate them manually. While most of the datasets discussed above have manually annotated samples, datasets like Market-1501 or CUHK03 have used Deformable Part Model (DPM) [41] for sample labelling.

4. Image Based Deep Re-Id Contributions

This section details the recent image based deep Re-Id contributions. These contributions have been categorized according to the following aspects: 1) Architecture types for Re-Id 2) Re-Id challenges 3) Data Modality for Re-Id 4) Cross-Domain Re-Id 5) Metric Learning for Re-Id. These categories are not exclusive and often overlap in various implementations but each has a distinct conceptual aspect to it.

4.1 Deep Re-Id Architecture Types

This section talks about the different kinds of architectures used for deep learning based re-identification. Specifically, the Re-Id contributions have been categorized as 1) Classification Models 2) Verification Models 3) Triplet Based Models 4) Part-Based Models 5) Attention Based Models as shown in Fig. 5.
4.1.1 Classification Models for Re-Id

Classification models (also known as Identification models) consider Re-Id as a multi-class classification problem [42]. Given a dataset with a finite number of identities and each identity having a number of samples, these models are trained using identity labels from samples. Classification models can be formally described as follows. Let there be an image gallery of κ people $P = \{p_1, p_2, p_3 \ldots p_\kappa\}$ with identity labels $L = \{l_1, l_2, l_3 \ldots l_\kappa\}$. The model is trained with labels L from various sample identities of people P. After training, given a query sample p_x having identity l_x the classification model tries to output a high score for label x and low score for all other identity labels. Since Re-Id models are trained on samples from various identities, they require large number of samples per identity to capture diverse features from each individual. Lack of diverse samples often lead to over-fitting. The softmax loss is usually employed in classification models which encourages the separation of different identity samples [43]. However, Re-Id presents large intra-class variations such as pose variations, view variations, lightning variations, occlusion, background clutter etc, for which the softmax loss has performed poorly. Several improvements have been suggested over the softmax loss to handle these intra-class challenges.

Zhu et al. [43] aim to overcome the inability of softmax loss to handle intra-class variations by using it in conjunction with the center loss [44] which was originally used for facial recognition. Authors train a convolutional neural network (CNN) with the proposed combination of softmax and center loss to extract discriminative features and obtain better Re-Id results as shown in Fig. 6.
Zhong et al. [42] enhance the Re-Id classification performance by using a multi-loss training setup having a combination of softmax loss, center loss and a novel “inter-center loss”. While the softmax loss differentiates between different identity samples, the center loss brings same class identities closer to their center and the inter-center loss maximizes the distance between centers of different identity as shown in Fig. 7.

Fan et al. [45] propose a novel “Sphere Softmax Loss” by modifying the softmax loss. Instead of mapping sample images to a Euclidean space embedding, sphere loss maps sample images to the surface of a hypersphere manifold, thereby limiting spatial distribution of data points to angular variations. The proposed loss trains using the angle between sample vector and target class vector.

4.1.2 Verification Models for Re-Id

Verification Models consider Re-Id to be a binary-classification problem. Given a pair of images, these models classify them to be either same or different. These models implement a pair of CNNs to extract features from input pair and compare their similarity. Verification models use the contrastive loss [46] which was first used for dimensionality reduction. In Re-Id, the contrastive loss tries to pull same identity pairs to zero distance in the feature space while pushing different identity pairs beyond a given margin. Verification models suffer from
the class imbalance problem. Consider a dataset having K number of identities, each of which has m number of image samples. The dataset is balanced with respect to different identity samples. However, if we consider the number of positive and negative samples present with respect to a single identity, there are m positive samples and (K-1)m number of negative samples. This leads to class imbalance in training verification based models.

Zhang et al. [47] combine the verification and classification Re-Id models to learn “deep features from body and parts” (DFBP). Specifically, the verification model is implemented using two neural networks that are trained by comparing body parts from image sub-regions of input pair while the global region features are extracted from a classification model to learn body-based features. The concatenated body-based and part-based features form the final representation. Zhong et al. [48] propose a novel “Feature Aggregation Network” (FAN) which also combines the classification and verification tasks. FAN extracts multi-level CNN features from input image pairs. Then, Recurrent Comparative Network (RCN) containing attention module compares appearance of input image pairs for verification loss. The CNN features are pooled directly using the Global Average Pooling (GAP) for classification loss. Fig. 8 shows the proposed model.

\[\| \Gamma(T_i^a) - \Gamma(T_i^p) \| < \| \Gamma(T_i^a) - \Gamma(T_i^n) \| \] (1)

Fig. 9 demonstrates the preservation of condition (1).

4.1.3 Triplet Based Re-Id Models

Triplet models for Re-Id take triplet input units. Each triplet unit contains three image samples: the anchor, a positive sample (having same identity as the anchor) and a negative sample (different identity from the anchor). The triplet loss [49] is trained to keep the Euclidean distance between anchor and positive sample less than anchor and negative sample. Let \(T_i \) represent the ith triplet such that \(T_i = \langle T_i^a, \ T_i^p, \ T_i^n \rangle \) having anchor image \(T_i^a \), positive sample \(T_i^p \) and negative sample \(T_i^n \). \(\Gamma(I) \) represents the extracted CNN features for image I. \(\| x \| \) represents the \(L_2 \) norm. The proposed triplet loss enforces the following condition:

\[\| \Gamma(T_i^a) - \Gamma(T_i^p) \| < \| \Gamma(T_i^a) - \Gamma(T_i^n) \| \] (1)

Fig. 9 demonstrates the preservation of condition (1).
The main drawback of triplet models is that they only use weak annotations from a triplet to learn discriminative features, unlike a classification model learning from numerous samples of a given identity available in the dataset [50]. The traditional triplet loss has faced the issue of slow convergence and hence, several improvements have been formulated to improve the discrimination ability of triplet based models. Table 3 demonstrates these novel improved triplet losses.

Table 3: Triplet Loss Improvements for Re-Identification

References	Year	Triplet Loss Improvements	Benefit
Ding et al. [49]	2015	Triplet Loss	Works on relative distance among intra-class and inter-class identities.
Cheng et al. [51]	2016	Improved Triplet Loss	Ensures intra-class compactness
Hermans et al. [52]	2017	Batch Hard Triplet Loss	Removes triplet mining step overhead. Learning from similar inter-class and varying intra-class samples
Zhu et al. [53]	2017	Hash Based Triplet Loss	Ensures that the hamming distance of hash codes from the anchor and positive sample is less than that of anchor and negative sample
Su et al. [54]	2018	Attribute Triplet Loss	Learns a large number of human attributes considering their contextual cues.
Wu et al. [50]	2019	OIM + Improved Triplet Loss	Learn similarity metric and fully utilize label information of samples
Yuan et al. [55]	2019	Mini-Cluster Loss	Reduce intra-class and enlarge inter-class differences
Si et al. [56]	2019	Compact Triplet Loss	Reduce intra-class and enlarge inter-class differences
Yang et al. [57]	2019	Adaptive Nearest Neighbour Loss (ANN)	Solves slow convergence and local optima for triplet based loss
Choe et al. [31]	2019	Mixed Distance Maximization Loss	Maximize intra-distance and keep triplet distance larger than sample distance
Zhou et al. [1]	2019	Symmetric Triplet Loss	Gradients derived for positive samples are symmetric allowing consistent minimization of intra-class distances
Fan et al. [45]	2019	Sphere Softmax Loss	Maps image samples to a hypersphere manifold
Zhang et al. [58]	2020	Hybrid Triplet Loss (HTL)	Learns domain invariant and camera invariant properties
Jiang et al. [59]	2020	Weighted Triple-Sequence Loss (WTSL)	Reduce impact of outlier frames in video sequences
4.1.4 Part-Based Re-Id Models

In the initial years, deep Re-Id methods focussed mostly on extracting global image-level features to identify individuals. However, this approach quickly became ineffective in handling small inter-class variations such as identifying different people wearing same color clothes. This has led to a gain in popularity of part-based Re-Id methods due to their superior discrimination capability based on finer part-level cues which are usually suppressed while extracting global features [2]. Part-Based Re-Id methods extract different image regions to find discriminative part-level features.

Yan et al. [62] propose a feature attention block for part-based Re-Id. The authors slice features maps into spatial features and assign them weights thereby highlighting the important part regions as demonstrated in Fig. 10. Tian et al. [63] propose a novel Strong Part Based Network (SP_Net) that divides feature maps into N parts, thereby learning part level features using N part losses combined to obtain a local loss. The local loss is combined with global loss in a weighted manner to obtain discriminative capabilities. The major challenges faced by part-based models are the variations in pose, alignment and scale of corresponding image regions (parts) under comparison.

4.1.5 Attention-Based Re-Id Models

Attention based Re-Id models aim to selectively choose regions of high interest from input information. The proposed “Attention Modules” focus on extracting regions containing highly discriminative features while ignoring other regions having little or no discriminative capability. Such an approach of targeting specific regions helps to overcome Re-Id challenges like background clutter, misalignment etc [64]. Attention models have proven their superior performance in several computer vision applications including Re-Id with the growth of

References	Year	Triplet Loss Improvements	Benefit
Zhang et al. [60]	2020	Wasserstein Triplet Loss	Uses the Wasserstein Distance to rearrange global distance between samples
Sikdar et al. [61]	2020	Batch Adaptive Triplet Loss	Exponential learning from hard positives compared easier positives in triplet scheme
Recurrent Neural Networks (RNN) based on Long Short Term Memory (LSTM) [65]. Various Re-Id implementations have incorporated the attention mechanism to enhance their performance. Table 4 presents an analysis of contributions of attention modules in Re-Id methods.

Reference	Year	Region of Attention	Benefit
Yang et al. [2]	2019	Whole body and body parts	Discriminative feature extraction
Bao et al. [66]	2019	Body parts	Robust to part misalignment and background clutter
Zhou et al. [1]	2019	Image foreground	Robust to background clutter
Wu et al. [67]	2019	Spatial regions in video frames, temporal pooling over entire video	Extract discriminative Re-Id features from essential frames within video
Li et al. [68]	2019	Convolutional features	Learns interdependence of channels within convolutional features
Zhang et al. [37]	2019	Video frames	Select informative frames for dimensionality reduction of features
Wan et al. [69]	2019	Spatial region of input images	Local parts discovery
Tay et al. [70]	2019	Physical appearance attributes like gender, hair, upper clothing color, lower clothing color, pant etc	Discriminative representation of identity based on appearance attributes (Fig. 11)
Hou et al. [71]	2019	Generated Frames created by GAN generator	Generate occluded regions in video frames using temporal attention module to remove occlusion
Subramaniam et al. [72]	2019	Common visual features across frames of a video	Robust to background noise and extracts common features in video frames
Chen et al. [73]	2019	Spatial and Channel-wise attention	Improved attention quality due to self-critical attention learning
Zhang et al. [74]	2020	Video frames focussed at multiple scales	Spatio-temporal video representations
Li et al. [75]	2020	Global image features at multiple scales	Robust to spatial misalignment and local feature dependencies
Qian et al. [17]	2020	Spatial regions of input, multi-scale features	Discriminative feature extraction
Zhang et al. [60]	2020	Global and local features	Robust to misalignment, helps to distinguish between important and misleading parts

Fig. 11: Attribute Attention Map (AAM) generated from six heat maps corresponding to attributes such as gender, hair, clothing etc [70]
Table 5 gives a detailed overview of various deep Re-Id contributions based on their architecture types.

Reference	Year	Architecture	Key idea	Loss Function
Ding et al. [49]	2015	Triplet	Propose “Triplet loss” the utilizes three samples to learn discriminative features and also propose a triplet generation scheme	Triplet loss
Zhu et al. [43]	2017	Classification	Combine Softmax and Center Loss [44] to improve discriminative capability of CNN features	Softmax + Center Loss
Zhu et al. [53]	2017	Triplet + Part	Propose a “Part Based Deep Hashing” (PDH) network that integrates hashing for higher efficiency of large scale Re-Id. Implement a triplet loss that reduces the Hamming distance of positive sample parts and increase that of negative sample parts.	Triplet loss
Huang et al. [76]	2017	Part	Propose a novel method DeepDiff to evaluate similarity between corresponding parts using original data, feature maps and spatial variations from three deep subnets	Softmax loss
Zhu et al. [43]	2018	Classification	Combine softmax and center loss to overcome intra-class variations in samples	Softmax loss + Center loss
Koo et al. [77]	2018	Part	Use information from face and body to obtain discriminative representations in indoor camera surveillance environment	Softmax loss
Tao et al. [78]	2018	Triplet	Propose a “Deep Multi-View Feature Learning” (DMVFL) method that fuses handcrafted and deeply learned features to obtain robust representations	Triplet loss
Su et al. [54]	2018	Triplet	Propose a three-stage “Weakly Supervised Multi-Type Attribute Learning Framework” using a novel “Attribute Triplet Loss” to predict visually invariant features containing contextual cues	Attribute triplet loss
Zhang et al. [47]	2018	Classification + Verification + Part	Learn deep features from body parts and entire body using verification and classification models respectively to obtain final representation	Softmax loss
Zhong et al. [42]	2019	Classification	Propose a novel “Inter-Center Loss” to improve the discriminative capability of CNN features	Softmax + Center + Inter-Center Loss
Fan et al. [45]	2019	Classification	Propose a novel CNN based network “SphereRe-Id” adopting a novel sphere loss mapping sample images to hypersphere manifold and a balanced sampling strategy to address class imbalance	Sphere Softmax Loss
Bao et al. [66]	2019	Classification + Attention	Propose a dual-branch CNN based network having a global branch to process features from overall human body and an attention branch to selectively focus on attentional part of information from input	Softmax Loss
Yang et al. [2]	2019	Part based + Attention	Introduce a novel attention driven multi-branch network to learn discriminative representations from whole body and body parts focussing on spatial and channel-wise information	Softmax loss
Bao et al. [66]	2019	Classification + Attention	Combine global features with attention focussed discriminative features to reduce impact of misalignment and background clutter	Softmax loss
Yan et al. [62]	2019	Part + Attention	Propose a feature attention block for Re-Id that pays attention to sliced part features in a weighted manner to highlight the most discriminative part regions which are robust to misalignment	Softmax loss
Zhou et al. [1]	2019	Triplet + Part + Attention	Propose a novel “Foreground Attentive Neural Network” (FANN) that utilizes a foreground attentive subnetwork and a novel regression loss function to learn foreground regions which is then fed to body part features using novel symmetric triplet loss	Regression loss + Symmetric Triplet loss
Wu et al. [3]	2019	Classification + Triplet	Combine classification loss, triplet loss and center loss to constrain Euclidean distance of same identity samples closer than those of different identities	Softmax loss + Triplet loss + Center loss
Zhang et al. [79]	2019	Classification + Triplet	Introduce a dual-branch “Multi Branch Slice-Based Network” (MSN) learning multi-level local and global features using a novel “triplet-center loss”	Triplet-Center loss
Zhao et al. [80]	2019	Triplet	Introduce a multi-level triplet model MT-net, extracting multi-level features which are both global and local	Triplet loss
Yuan et al. [81]	2019	Classification + Triplet	Introduce a deep joint embedding learning framework that uses classification and an improved triplet loss. The improved triplet loss works on hard triplets generated	Softmax loss + Improved Triplet loss
Reference	Year	Architecture	Key idea	Loss Function
------------	------	-------------------------------------	--	--
Wu et al.	2019	Classification + Triplet	Combine classification and triplet loss to make full use of labels as well as learn similarity measure simultaneously	Online Instance Matching loss + Triplet loss
Tian et al.	2019	Part	Propose a two-branch CNN to combine learning global and local part level features simultaneously	Softmax loss
Li et al.	2019	Classification + Verification + Attention	Propose a novel network with attention module to highlight essential features and a multi-loss function to reduce intra-class distance and increase inter-class distance	Cross-entropy loss + novel verification loss
Yuan et al.	2019	Triplet	Propose a novel “mini-cluster” loss that ensures the largest distance of same identity samples (inner divergence) to be less than the smallest distance of different identity samples (outer divergence)	Mini-cluster loss
Fan et al.	2019	Classification	Propose a novel classification CNN called SphereRe-Id that uses a novel “Sphere Softmax loss” mapping samples to a hypersphere manifold	Sphere Softmax loss
Ling et al.	2019	Classification + Verification	Introduce MTNet with four losses for identification and verification of person identity and person attributes	Softmax loss
Si et al.	2019	Classification + Triplet	Propose a novel “Compact Triplet Loss” that improves the batch hard triplet loss to reduce intra-class variations and increase inter-class differences.	Compact triplet loss + Softmax loss
Tian et al.	2019	Verification + Triplet	Propose a novel “Adaptive Verification Loss” (ADV loss) that learns only from meaningful hard sample pairs mined by using a weighted triplet loss.	ADV loss + Triplet loss
Zhong et al.	2019	Classification + Verification	Introduce a novel “Feature Aggregation network” (FAN) network to learn features from various layers of deep network along with multiple losses	Softmax loss
Wang et al.	2019	Part	Propose a novel “Part-Based Pyramid Loss” that takes quadruplet input samples and learns body part features using relationship of distance and angle among samples	Part based pyramid loss
Yao et al.	2019	Classification + Part	Propose a “Part Loss Network” (PL-net) that trains on body part and global features	Classification loss + Part loss
He et al.	2019	Classification + Verification	Adopt the “lifted structured loss” due to its superiority to contrastive and triplet losses. Combine it with identification loss to learn relative identity information from pairs and true identity information	Softmax loss + Lifted structured loss
Choe et al.	2019	Triplet	Consider intra-distance between positive samples of a triplet and distance between triplets using a novel “mixed distance” function to improve Re-Id performance	Mixed distance loss
Quispe et al.	2019	Classification + Triplet	Propose a novel “Saliency Semantic Parsing Re-Id” (SSP-Re-Id) network. The Saliency guided subnetwork learns from essential parts of image while semantic parsing guided subnetwork deals with Re-Id challenges	Softmax loss + Triplet loss
Wan et al.	2019	Part + Attention	Propose a novel “Concentrated SPR network” (CSPR-Net) having a “constrained attention module” to find discriminative local parts that work better than body parts and a novel “statistical-positional-relational (SPR) descriptor that gives better the performance than global features	Classification loss
Zhang et al.	2020	Classification + Triplet + Attention	Propose a novel triplet loss based on the “Wasserstein distance” (Earth Mover distance) to handle the part misalignment problem using part probabilities obtained from attention maps and part features.	Softmax loss + Wasserstein triplet loss
Li et al.	2020	Part	Propose a novel “Attributes-Aided Part Detection and Refinement Network” (APDR) that uses attribute learning for part localization handling the misalignment problem. Attribute features are fused to obtain discriminative features	Softmax loss + Triplet loss
Qian et al.	2020	Classification + Triplet + Attention	Propose a novel “Multi-Scale Deep Architecture” (MuDeep) having a “multi-scale deep learning layer” to learn features at different scales and a “leader-based attention learning layer” to determine optimal weighting for features from each scale	Softmax + Triplet loss
Bai et al.	2020	Classification + Triplet + Part	Propose a three-branch “Deep Person” framework that learns contextual body part information using LSTM and learn discriminative features using identification (global and part level) and triplet losses.	Softmax loss + Triplet loss
Zhang et al.	2020	Part	Propose a dual-branch “Heterogeneous Part-Based Deep Network” (HPDN) to learn part based features using batch hard triplet and cross entropy loss	Batch hard triplet loss + Cross-entropy loss
The highlights of deep Re-Id architectures are:

- Deep learning based Re-Id architectures can be classification models, verification models, triplet-based models, part-based models and attention based models.
- Classification models treat Re-Id as a multi-class classification problem that use the softmax loss to predict the class of an input query. Softmax loss encourages the separation of different classes but struggles with large intra-class variations. Several Re-Id works combine classification with other model types to overcome this limitation [44], [91], [82].
- Verification models treat Re-Id as a binary classification problem, taking a pair of inputs and categorizing them as same or different. These models suffer from the class imbalance problem since the number of positive pair combinations is far less than the negative pairs where each identity contains same number of samples in the dataset.
- Triplet models input triplets of images containing an anchor, a positive and a negative sample. These models are trained on the triplet loss that aims to pull the positive sample closer and pushes the negative sample away in feature space. Several improvements have been suggested over the traditional triplet loss having convergence issues. These improvements include solving slow convergence [57], removing triplet mining overhead [52], maintaining intra-class compactness [51] etc.
- Part-based Re-Id models aim to focus on sub-regions within input to extract finer feature representations crucial in differentiating samples with small inter-class variations, usually missed in global image level representations. Focus on different parts of feature maps [62], [63], face and body regions [77], attribute guided body parts [88] etc, have yielded discriminative feature representations.
- Attention models highlight regions of high interest within input holding highly discriminative information. Gaining popularity since the growth on RNN and LSTM, attention modules have helped in implementing spatial attention within image/frame regions such as human body parts [66], foreground [1], physical attributes. [70] and channel attention within deep features [68].

4.2 Methods Based on Re-Id Challenges

The task of person re-identification has faced several challenges like sample variations in view, pose, lightning and scale, partial or complete occlusion, background clutter etc. Fig. 12 demonstrates some of these Re-Id challenges presented by samples from various Re-Id datasets as detailed in Table 2. Any re-id system striving to achieve competent recognition rates must be able to counter these challenges effectively. Numerous research works have been conducted with this motivation.
Fig. 12. Re-Id challenges posed by dataset samples. Each column demonstrates samples from a unique identity. Columns (i) and (ii) show variations in pose, (iii) and (iv) show scale variations, (v) and (vi) display occlusion examples, (vii) and (viii) describe background clutter, (ix) and (x) show view variations in samples. All samples have been derived from the Market-1501 dataset.

Feng et al. [28] attempt to overcome the challenge of large intra-class disparity caused by view variations from images captured by cameras placed at different viewpoints. Authors propose a framework capable of learning view-specific features consistent with each camera view which utilizes a cross-view Euclidean constraint (CV-EC) and cross-view center loss to decrease the distance of features of same person from different views. Qi et al. [92] tackle lightning and viewpoint variation at two levels. Firstly, they extract deep features trained on multiple datasets which are robust to differences in illumination and view. Second, they use the learned features to find an optimal ensemble of metrics including the Cosine distance metric that reduces the intra-class disparity even further. Sikdar et al. [61] achieve scale-invariance by modifying the convolution functionality within a deep network. Instead of learning a kernel on a fixed scale input, the input is first transformed to a pyramid of multiple resolutions. The network then learns multiple scaled feature maps which are then re-scaled to original size before applying max pooling. Such an operation has proven to produce scale invariant results for re-id system. Input image misalignment can seriously hamper the feature learning and matching process. To handle the misalignment problem, Zheng et al. [93] introduce pose invariant embedding (PIE) which aligns identities within sample images to a standard pose using pose estimation. The transformed standard pose promotes learning of discriminative feature extraction and matching and is alignment invariant. Table 6 presents some novel Re-Id contributions that are robust to Re-Id challenges.

Table 6: Contributions Robust to Re-Id Challenges: Variations in Pose (P), Scale (S), Lightning (L) and View (V), Occlusion (O), Background Clutter (B) and Misalignment (M)

Reference	Year	Key Idea to Avert Re-Id Challenges	Robust to Challenges
Yu et al. [94]	2018	Use skeleton joint information and cloth-color type features to achieve pose and lightning invariance	✓
Feng et al. [28]	2018	Use Cross-View Euclidean constraint (CV-EC) to reduce distance of deep features of an identity from multiple views	✓
Zhou et al. [35]	2018	Propose a “self-paced learning” (SPL) method to isolate noisy samples in weighted way using model age and iteration and train CNN model with faithful samples gradually moving from easy to hard samples	✓ ✓
Chen et al. [95]	2018	Fuse attribute features learned from part-specific CNN and fuse them with Local Maximal Occurrence (LOMO) features to obtain robust features	✓ ✓ ✓ ✓
Fu et al. [96]	2019	Introduce a two stream spatial segmentation network that derives spatial and fine local features	✓ ✓ ✓
Zheng et al. [97]	2019	Use a novel “alignment branch” to learn the affine transformation of high level convolutional features utilizing a spatial transformer network that crops images with too much background and pads zero borders to missing part features thereby solving scale variation and misalignment	✓ ✓ ✓
Chen et al. [98]	2019	Study correlation among cross-view visual data from multiple camera views to compose view-specific representations	✓
Key Idea to Avert Re-ID Challenges

Reference	Year	Key Idea	Robust to Challenges
Luo et al. [99]	2019	Propose a novel “Dynamically Matching Local Information” (DMLI) method that automatically aligns horizontal stripes from input samples without any labeling supervision or pose estimation	✓
Zhou et al. [1]	2019	Use a novel “foreground attentive subnetwork” having a decoder trained on a novel “local regression loss” to create a binary mask suppressing background	✓
Qi et al. [92]	2019	Train CNN on six Re-ID datasets to learn robust features	✓ ✓
Yang et al. [57]	2019	Learn spatial dependencies among local regions of pedestrians in both horizontal and vertical directions using LSTM to overcome occlusion	✓ ✓
Zheng et al. [93]	2019	Propose a novel “pose invariant embedding” (PIE) by constructing a novel PoseBox through pose estimation and then training using two-stream PoseBox Fusion network	✓
Wei et al. [100]	2019	Estimate four human key points that are robust to pose and view variations. Head, upper body and lower body features are generated using these key points and a four-stream CNN is trained to generate the novel “Global Local Alignment Descriptor” (GLAD) features from both global and local regions	✓ ✓
Wu et al. [101]	2020	Use adversarial learning to learn asymmetric transformations to transform view-specific distribution to a generic view invariant feature space	✓
Li et al. [88]	2020	Use attribute learning to detect body parts thereby solving part misalignment problem	✓
Tang et al. [102]	2020	Propose a novel “Gradual Background Suppression” method that extract CNN features based on different weights assigned to body parts and background thereby suppressing the background	✓
Sikdar et al. [61]	2020	Resize input to different scales and convolve with a fixed size filter to obtain multi-resolution pyramid which is re-scaled back to fixed size to obtain scale invariant features	✓
Li et al. [75]	2020	Propose a “multi-scale attention” model evaluating important person regions in a weighted fashion and train on features fused globally and locally using cross-entropy and triplet loss	✓ ✓ ✓

The **highlights of contributions based on Re-ID challenges** are:

- Finding a person of interest is challenging due to visual variations in pose, view, lightning, scale, partial or complete occlusion, background clutter and misalignment.
- Several deep Re-ID contributions have aimed to develop robust methodologies against these Re-ID challenges.
- Skeleton joints data and cloth colors have produced pose and lightning invariance [94], learning view-specific representations for view invariance [98], utilizing foreground attentive network to suppress noisy background [1], convolving with multi-scale input to obtain scale invariant features [61] and using pose estimation to achieve pose invariance [93] are some of efforts to overcome these challenges.

4.3 Re-ID Methods Based On Modality

Visible images have proven to be the most common source of discriminative information crucial for identifying individuals. Hence, research literature is filled with visible image based Re-ID methods due to their superior identification power. Despite their popularity, the visible image based methods are prone to several challenges already discussed in Section 4.2. Hence, some cross-modal Re-ID methods have also been proposed to enhance the ability of Re-ID systems further. This section discusses various visible light based and cross-modality based Re-ID methods.
4.3.1 Visible Image Based Re-Id Methods

Numerous visible image based Re-Id contributions have focussed upon extracting discriminative deep features to achieve high recognition rates for re-identification [103], [104]. Table 7 details some novel Re-Id image based contributions.

Reference	Year	Key Idea	Benefit	Dataset	Rank 1 Result (%)
Wu et al. [105]	2018	Introduced a deep embedding approach using optimized robust features, positive mining and local adaptive similarity learning	Discriminative features	VIPeR	49.04
				CUHK01	71.6
				CUHK03	73.02
				Market-1501	84.14
Wu et al. [106]	2018	Introduce a multiplicative integration gating function combined with Hadamard product	Cross-view feature alignment	VIPeR	49.11
				CUHK03	73.23
				Market-1501	67.15
				Market-1501	93.91
				DukeMTMC	83.35
Ke et al. [107]	2018	Introduce ID-AdaptNet to adapt “seen” identity features to “unseen” identities	Discriminative features	CUHK03	30.36
				Market-1501	81.59
				DukeMTMC	67.77
Zhang et al. [108]	2019	Use group symmetry theory to extract and utilize information from middle layers of Resnet50 (ResGroupNet)	Discriminative features	CUHK03	71.20
				Market-1501	92.80
				DukeMTMC	86.20
Jiang et al. [109]	2019	Introduce PH-GCN network to learn spatial relation among body parts using hierarchical graphs	Context aware discriminative features	CUHK03	64.90
				Market-1501	93.50
				DukeMTMC-Re-Id	85.00
Wu et al. [110]	2019	Introduce a five-branch deep model that learns body features in horizontal- and vertical directions, relationship between feature channels and part features	Discriminative features	CUHK03	95.00
				Market-1501	94.70
				DukeMTMC-Re-Id	86.70
Liu et al. [111]	2019	Fuse Gaussian features with deep features	Fused discriminative features	VIPeR	57.20
				Market-1501	84.40
Zhang et al. [112]	2019	Introduce a PAAN network using layered partition strategy to fully utilize part-level and global attributes	Fused discriminative features	VIPeR	57.20
				Market-1501	91.86
				DukeMTMC-Re-Id	81.73
Tian et al. [63]	2019	Introduce a two-branch RJLN network to jointly learn global and local features	Fused discriminative features	CUHK03	66.60
				Market-1501	93.70
				DukeMTMC-Re-Id	85.50
Wu et al. [113]	2019	Introduce a multi-branch MFML network to represent features from multiple layers	Weighted multi-layered fused features	CUHK03	94.40
				Market-1501	92.50
				DukeMTMC-Re-Id	84.00
Zhao et al. [80]	2019	Introduce a multi-level triplet model MT-net, extracting multi-level features which are both global and local	Fused discriminative features	CUHK03	79.34
				Market-1501	81.95
Wang et al. [114]	2020	Propose a novel exclusively regularized softmax objective function	Multi-scale multi-patch features	CUHK03	70.40
				Market-1501	93.70
				DukeMTMC	84.40
Wang et al. [115]	2020	Fuse handcrafted features from local and global regions with deep features	Fused discriminative features	VIPeR	52.22
				CUHK01	71.91

Wu et al. [110] propose a five-branch deep model that is capable of learning features not only from the usual horizontal direction but also in the vertical direction. The model scans for spatial information of body parts from left to right and head to foot, thereby learning discriminative information. Working with one type of features is often limiting in finding discriminative capabilities for re-id systems. Hence, an obvious direction of improvement is to fuse different features together to obtain higher differentiation in re-id. Zhao et al. [80] introduce a novel deep triplet model (MT-net) performing multi-level feature extraction. Both detailed and global features from each layer are combined together in an optimal proportion through training. The fused features prove to have high discriminative capabilities. While most deep learning based re-id approaches extract features only from the top layer, middle layer...
features can also contribute to discriminative capabilities of the model in certain situations. Wu et al. [113] introduce a multi-level feature network with multiple losses (MFML) which is a multi-branch architecture representing multiple middle layer representations trained on triplet loss and top layer representation trained on the hybrid loss. The representation from various layers are fused in a weighted manner based on their importance in obtaining differentiating characteristics. Based on the idea that color features hold key information in reference to re-id task, Liu et al. [111] fuse traditional Gaussian of Gaussian (GOG) features from four color channels (RGB, Lab, HSV, RnG) with deep features to obtain highly discriminative features which achieve state-of-the-art performances.

4.3.2 Cross-Modality Re-Id Methods:

While image based methods have proven to be most popular in the Re-ID research community, these visual feature based methods have several limitations. Visual Re-ID methods face several challenges such as variations in pose, view, lightning, scale, partial or complete occlusion, background clutter which are already discussed in Section 4.2. Also, visual Re-ID methods are highly ineffective in dark environments such as night-time, due to the poor illumination that suppresses most of the visual cues [26]. This has led to the development of multi-modal Re-ID methods that combine data from multiple modalities to reduce dependency on visual information. Table 8 lists the novel multi-modal Re-ID methods combining RGB, depth, text and infrared (thermal) based data modalities.

Reference	Year	Modality	Key Idea	Device
Ren et al. [116]	2017	RGB + Depth	Fuse anthropometric features from depth images and visual features from RGB images using a novel “multi-modal fusion layer” to obtain discriminative features	RGB Camera + Kinect V1 sensor
Feng et al. [26]	2019	RGB + Infrared Data	Extract “modality specific representations” (MSR) from modality-specific networks trained on a modality-specific loss to learn discriminative features from each domain. Use a cross-modality Euclidean constraint to learn modality-invariant features	RGB + Infrared Cameras
Xiang et al. [117]	2019	RGB + Infrared Data	Propose a dual-branch neural network that fuses modality specific information from two branches using multiple granularity network (MGN) to obtain modality shared features	RGB + Infrared Cameras
Ren et al. [19]	2019	RGB + Depth	Propose a novel “uniform and vibrational deep learning” (UVDL) method that uses an auto-encoder to visible and deep features extracted from two neural nets into a common features space	RGB-D camera (Kinect)
Chang et al. [118]	2020	RGB + Textual	Combine visual CNN features with textual CNN features from textual descriptions including details of gender, clothes color and bag type information to obtain a generalized feature embedding	RGB Camera
Gohar et al. [119]	2020	Gait Data	Propose a novel “non-visual gait based” Re-ID method that uses gait data captured from accelerometer and gyroscope to learn discriminative features using Gated Recurrent Unit (GRU) to capture discriminative temporal information from input sequences	Accelerometer, Gyroscope
Wang et al. [120]	2020	RGB + Infrared Data	Propose a novel “multi-patch networking network” (MPMN) that utilizes a single deep neural net to process both RGB and thermal images. A novel “multi-patch modality alignment” loss mines for hard subspaces. A novel “cross-patch correlation distillation” (CPCD) loss enforces cross-patch similarity to boost cross-modality embedding. A novel “patch aware priority attention” (PAPA) method prioritizes training of hard patch tasks over others.	RGB + Infrared Cameras

Chang et al. [118] learn a similarity metric for visual and textual representations as demonstrated in Fig. 13. Authors use the Resnet architecture to extract visual features from image samples. A 2500-dimensional textual feature embedding is extracted from textual
description of each sample (gender, cloth color etc) using tokenization, lemmatization and stemming. The model is trained in an end to end manner using a triplet architecture on both visual and textual representations.

Gait information has proven to be highly discriminative for Re-Id tasks. Gohar et al. [119] formulate a multi-modal Re-Id method performing non-visual gait analysis on information extracted using wearable sensors namely, accelerometer and gyroscope. The proposed method learns discriminative information integrating the temporal aspect of gait data using Recurrent Gated Units (GRU).

The highlights of modality based deep Re-Id contributions are:

- Visible RGB images are the most widely used data modality for deep Re-Id methods due to the rich variety of visual information they contain and the growth of several image based Re-Id datasets developed over the years.
- Visible RGB image methods aim to extract discriminative features by using multi-branch networks [110], fusing multiple features together [80], proposing novel loss functions [114] etc.
- Visible RGB image methods face several visual challenges as discussed in Section 4.2 and lose most of their discriminative capabilities in dark/night environments.
- Multi-modal Re-Id methods reduce the dependency on visual information for extracting discriminative features.
- Several multi-modal Re-Id contributions have extracted anthropometric features from depth data [116], modality specific representations from thermal images [117], gait information from accelerometer and gyroscope [119] and combined with visual information to formulate multi-modal representations.

4.4 Cross-Domain Re-Id Methods

Based on the kinds of samples present, different re-id datasets hold different generalizations of human appearance. Hence a re-id model trained on one dataset performs poorly on a different
dataset. Several works have addressed this issue with domain adaptation techniques attempting to bridge the gap between the learned source domain to the unknown target domain as demonstrated in Table 9. Zhang et al. [58] introduce a novel Dual Generation Learning (DGL) method for unsupervised domain adaption such that a re-id model when evaluated on any relevant dataset shows acceptable recognition results. The DGL method generates target style images for samples from source dataset and camera style images for those from target dataset, thereby expanding them to consider varying domain styles. Ganin et al. [121] propose to augment few standard layers and a novel gradient reversal layer into deep architectures to learn features that are trained on both labelled source domain as well as unlabelled target domain. Such features cannot discriminate between source and target domain and hence are suitable for domain adaptation. Wang et al. [122] propose a Deep Multi-Task Transfer Network (DMTNet) to transfer discriminative features learnt from source domain to target domain by utilizing a cluster estimating algorithm, attribute attention important learning and multi-task learning. Other domain adaptation based re-id works involve refining learned augmented attribute features according to target domain [123], image to image translation using generative adversarial network [124], viewpoint transfer using generative adversarial network [125] etc.

Reference	Year	Cross-Domain Approach
Xiao et al. [126]	2016	Learn generic CNN features embedding from multiple dataset domains and use a novel “Domain Guided Dropout” to mute neurons learning domain specific information thereby improving Re-Id performance
Ganin et al. [121]	2016	Use few standard layers and a novel “gradient reversal layer” to learn from labelled source domain samples and unlabelled target domain samples
Xu et al. [123]	2019	Propose a novel “Deep Augmented Attribute Network” (DAAN) to learn augmented feature representations using augmented features and labels from source dataset and refine the learned features to unlabelled target dataset
Zhou et al. [124]	2019	Propose a novel “Multi-Camera GAN” (CTGAN) to transfer source dataset samples to multi-camera styles of target dataset
Genc et al. [127]	2019	Perform domain adaptation by training on different dataset combinations, learning part specific features and learning features form multiple layers and use a CycleGAN to perform camera view adaptations
Wang et al. [122]	2020	Propose a novel “Deep Multi-Task Transfer Network” (DMTNet) network for unsupervised cross domain Re-Id including cluster number estimation algorithm, learning of attribute attention importance and transfer of specific multi-task learning across domains
Sun et al. [125]	2020	Propose a novel “Conditional Transfer Network” (cTransNet) implementing conditional viewpoint transfer using StarGAN and obtain hybrid feature embeddings from original and transformed images to obtain similarity rankings
Zhang et al. [58]	2020	Propose a novel “Dual Generation Learning” (DGL) method to transfer source dataset images to target style domain and target dataset images to source camera styles to obtain better Re-Id results

The highlights of cross-domain Re-Id methods are:

- Most deep Re-Id methods that are trained/tested on few datasets perform poorly on other datasets.
- Several cross-domain Re-Id approaches have been developed to either learn better generalization across multiple datasets or transfer learned characteristics of source domain to another target domain.
- The cross-domain approaches have achieved sample style transfer from source to target dataset [58], training from multiple dataset combinations [127], transformation of learned features from labelled source to unlabelled target dataset [123], thereby improving the generalizability of deep Re-Id methods.
4.5 Metric Learning Methods for Re-Id

Metric learning has proven to be a significant step in computer vision problems such as person re-identification, face recognition etc. Metric learning aims to find a similarity function on extracted features that is used to decrease positive pair distance while increasing negative pair distance [11]. Table 10 highlights the different kinds of metric learning contributions reviewed in this article. Since the underlying data distributions varies with the nature of the computer vision task, the ideal similarity function is mostly task-specific [128]. Traditional metric learning methods focussed on learning linear Mahalanobis based metrics. Such linear metrics utilized the sample distribution centroid and standard deviation to evaluate the similarity with a give sample point. However, such linear metrics often failed to comprehend nonlinear relationships among the samples.

Reference	Year	Metric Learning Method	Short Form	Key Ideaogonal
Hu et al. [128]	2016	Deep Transfer Metric Learning	DTML	Cross domain metric learning
Lin et al. [129]	2017	Generic Similarity Metric	-	Robust to translation and shearing deformation
Zhu et al. [130]	2018	Deep Hybrid Similarity Learning	DHSL	More discriminative than Euclidean or Cosine distance based similarity
Duan et al. [131]	2018	Deep Localized Metric Learning	DLML	Metric learning over locally varying data
Hu et al. [132]	2018	Sharable and Individual Multi-View Deep Metric Learning	MvDML	View invariant metric learning
Chen et al. [133]	2018	Pose Invariant Deep Metric Learning	PIDML	Pose invariant metric learning
Ren et al. [134]	2019	Deep Structured Metric Learning	-	Robust person re-identification
Ding et al. [135]	2019	Robust Discriminative Metric Learning	RDL	Robust to noise
Xiong et al. [136]	2019	Multiple Deep Metric Learning	-	Instead of feature extraction, utilize a stacked auto-encoder to recognize individuals using multiple similarity probabilities from Softmax regression models

Recently, deep metric learning techniques have become increasingly popular due to their ability to capture hierarchal nonlinear affiliations. Hu et al. [128] propose a deep transfer metric learning (DTML) method that transfers discriminative information from labelled source domain to unlabelled target domain. DTML learns hierarchical nonlinear transformations, maximizing the inter-class disparity, minimizing the intra-class differences and restricting the divergence of source and target domain. Ding et al. [135] increase the generalizability of metric learning by introducing robust discriminative metric learning (RDML) which is insensitive to noise unlike most metric learning techniques. A fast low rank model is also used to discover global structure within data and ensure scalability to larger datasets. Lin et al. [129] argue that similarity transformations cannot capture deformations like translation and shearing in cross domain visual matching tasks. The authors propose a generic similarity metric that generalizes the similarity transformation to affine transformation capable of capturing complex deformations. While most metric learning techniques focus on the overall similarity learning of samples, Duan et al. [131] propose the deep localised metric learning (DLML) to learn multiple metrics fine-grained over numerous local subspaces. DLML specializes in handling data varying locally. Hu et al. [132] introduce the sharable and individual multi-view deep metric learning (MvDML) to utilize multi-view data in best possible manner. MvDML learns the best combination of distance metrics by focussing on both individual view specifics metric
as well as a combined multi-view representation. Chen et al. [133] propose a novel *pose invariant deep metric learning* (PIDML) method that utilizes pose invariant embedding [93] and an improved triplet loss to achieve pose invariance for metric learning. Ren et al. [134] propose a *deep structured metric learning method* that utilizes a novel structured loss function to achieve robust person re-identification. The proposed loss skips positive sample pairs of small distance and negative sample pairs having large distance.

The **highlights of deep metric learning based Re-Id methods** are:

- Metric learning means to learn a similarity function that pulls features from same identity samples closer and pushes different identity features away.
- Deep learning based metric learning have gained popularity in recent years due to their ability to learn nonlinear sample associations unlike the traditional Mahalanobis metric learning only linear relationships.
- Several novel deep metric learning approaches have been proposed that give better discrimination capability than the usual Euclidean or Cosine measure [130], can perform cross-domain learning [128], and are robust to noise [135], deformation [129] etc.

5. Video Based Deep Re-Id Contributions

This section explores the video based deep person re-identification methods.

![Advantages and Challenges of Video based Person Re-Identification methods](image)

Video Re-Id methods received less attention compared to image based techniques in the initial years of Re-Id research [67]. A major reason was the lack of large-scale video datasets. However, recent years have witnessed the growth of several video based Re-Id datasets such as [32], [36] and [38] encouraging the development of video Re-Id methods. Compared to images, video sequences have advantageous characteristics that can be exploited for Re-Id
tasks. Firstly, a video sequence comprising of multiple frames holds essential temporal information across frames giving crucial motion cues which are absent from image samples. Secondly, multiple frames from each video provide numerous visual examples per identity adding diversity in samples. Thirdly, while image based methods mostly focus on exploiting visual features, video Re-Id methods target a combination of visual and temporal features to extract discriminative features for Re-Id tasks which prove to be more robust to Re-Id challenges. While video based methods give rise to more discriminative feature embeddings, they also add to the existing Re-Id challenges as demonstrated in Fig. 14. Firstly, since the simplest way of generating video features is by fusing frame level features together and frame level features are based on 2D convolution operations that totally neglect the temporal aspect of frame sequences, the fusion operation misses all of the temporal cues crucial for video Re-Id. Secondly, videos have different frame rates and different time series that makes it hard to make comparisons among samples. Thirdly, not all frames provide discriminative information and some outlier frames prove misleading in learning robust video representations.

Recent developments in Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) models [65] have boosted video Re-Id by providing the capability of extracting motion cues from temporal information for robust video representations. McLaughlin et al. [137] propose a video re-identification system based on recurrent neural network for wide area tracking. The proposed network uses a recurrent layer to combine frame-level details from all frames into a single combined appearance feature representing the entire video showing competent recognition results. Attention modules have played key role in video Re-Id to identify and isolate outlier frames. They also help in extracting discriminative regions within video frames. Wu et al. [67] propose a Siamese attention network that learns to realize which regions (where) from which frames (when) are relevant for comparing identities. The attention mechanism learns the most relevant features by focussing on distinct regions helping to identify given identity. Zhang et al. [37] propose a self and collaborative attention network (SCAN) for video re-id. The proposed model takes a pair of videos as input, aligns and compares their discriminative frames using a generalized similarity measurement module and refines intra-sequence and inter-sequence features from videos using a non-parametric attention module. Wu et al. [138] argue that merely combining frame-wise features to obtain overall video features is ineffective as the temporal cues get lost in 2D convolutions. Authors propose a novel 3D Person VLAD Aggregation layer that helps to extract appearance and motion characteristics of entire video. The model also handles occlusions and misalignments through soft attention modules. Zhang et al. [74] propose a multi-scale spatial-temporal attention network (MSTA) that focusses attention to regions within video frames at different scales. It contains a ResNet50 based encoder responsible for extracting frame-level features from discriminative regions and an aggregator to fuse features from different scales Fig. 15.

![Fig. 15 Architecture of proposed MSTA model. The encoder extracts frame-wise features and the aggregator fuses the frame-level features to obtain video representations [74]](image-url)

Table 11 dives into several contributions highlighting the diverse approaches towards video person re-identification using deep learning.
Propose a novel “Adaptive Graph Representation Learning” method that uses adaptive structure-aware adjacency graphs via graph neural networks (GNN) highlighting two kinds of relations: pose alignment connection to capture human part relations and feature affinity connection to model semantic relationship among relevant video frames.

Wu et al. [145] 2020

Propose a novel “Adaptive Graph Representation Learning” method that uses adaptive structure-aware adjacency graphs via graph neural networks (GNN) highlighting two kinds of relations: pose alignment connection to capture human part relations and feature affinity connection to model semantic relationship among relevant video frames.

Zhang et al. [137] 2019

Propose a novel “Multi-scale Spatial-Temporal Attention” (MSTA) model that pays attention to different regions within each video frame at different scales to incorporate essential regions into whole video spatio-temporal representations. MSTA contains an encoder to extract frame wise features and an aggregator to fuse features

Liu et al. [142] 2019

Propose a novel “Dense 3D Convolutional Network” (D3DNet) that uses numerous three dimensional dense blocks and transition layers to extract discriminative features from appearance and temporal domains capturing visual and motion cues (both short term and long term) from videos without additional modules. Implement a combination of identification and center loss to reduce intra-class disparity and increase inter-class disparity

McLaughlin et al. [137] 2019

Extract frame-wise CNN features and use a temporal pooling recurrent layer to combine all time step features and obtain feature representation for entire video sequence

Zhang et al. [74] 2020

Propose a novel “Multi-Scale Spatial-Temporal Attention” (MSTA) model that pays attention to different regions within each video frame at different scales to incorporate essential regions into whole video spatio-temporal representations. MSTA contains an encoder to extract frame wise features and an aggregator to fuse features

Wu et al. [143] 2020

Use variational recurrent neural networks (VRNNs) to conduct a deep few-shot adversarial learning to extract discriminative features that are view invariant

Avola et al. [144] 2020

Propose a novel “LSTM based Re-IId Hashing model” that exploits bone proportion, gait and movement features of 2D skeletons extracted from RGB video frames. LSTM is used to learn temporal correlation between different frames while two dense layers are responsible for implementing bodyprint hashing via binary coding capable of unbounded labelling of all individuals possible

Wu et al. [141] 2019

Propose a novel “Self-attention hashing model” to jointly handle misalignment of person tracklets and eliminate specific and feature specific bias in appearance and motion features due to variations in view, lightning, background clutter etc.

Wang et al. [140] 2018

Perform image-to-video Re-IId using a novel end-to-end “Point-to-Set Network” (P2SNNet) that takes both image and video as input and jointly learns their features using point-to-set distance metric. A 4NN-triplet module helps to focus only on relevant video frames

Meng et al. [141] 2019

Learn view-specific and feature-specific transformations using a novel “Deep Asymmetric Metric Learning” from a two stream neural net to counter view-specific bias and feature-specific bias in appearance and motion features due to variations in view, lightning, background clutter etc

McLaughlin et al. [137] 2019

Utilize novel “3D Person VLAD Aggregation layer” based on the vector of locally aggregated descriptors to capture motion based features along with appearances and an aggregator to fuse features from appearance and temporal domains capturing visual and motion cues

Liu et al. [142] 2019

Utilize novel “3D Person VLAD Aggregation layer” based on the vector of locally aggregated descriptors to capture motion based features along with appearances and an aggregator to fuse features from appearance and temporal domains capturing visual and motion cues

Zhang et al. [37] 2019

Propose a novel “Self-attention Collaborative Attention Network” (SCAN) that utilizes two attention subnetworks (self-attention subnetwork and collaborative attention subnetwork) to select features from informative video frames and align discriminative frames from probe and gallery frames respectively and finally use a generalized similarity measure to compare video pair representations

Ksibi et al. [33] 2019

Propose a “Deep Spatio-Temporal Appearance” (DSTA) descriptor that uses a “Deep Salient-Gaussian Weighted Fisher Vector” (SGFV) to exploit trajectory information to handle misalignment of person tracklets and eliminate background noise using Gaussian and Saliency maps

Wu et al. [67] 2019

Propose a novel “Siamese attention architecture” to jointly learn feature representation and similarity measure for video Re-IId using an attention mechanism focussing on relevant frames (when) and regions of interest within frames (where)

Sun et al. [139] 2018

Extract visual features using a “Two-Branch Appearance Feature sub-structure” (TAF) and temporal features using a “Optical Flow Temporal Feature sub-structure” (OTF) and use a pair of Siamese networks to learn similarity measure among pairwise visual and temporal features. A saliency learning fusion layer learns fusion of global and local appearances.

Wang et al. [140] 2018

Perform image-to-video Re-IId using a novel end-to-end “Point-to-Set Network” (P2SNNet) that takes both image and video as input and jointly learns their features using point-to-set distance metric. A 4NN-triplet module helps to focus only on relevant video frames

Table 11 VIDEO BASED DEEP RE-IId CONTRIBUTIONS

Reference	Year	Key Idea	Dataset	Rank 1 Result (%)
Sun et al. [139]	2018	Extract visual features using a “Two-Branch Appearance Feature sub-structure” (TAF) and temporal features using a “Optical Flow Temporal Feature sub-structure” (OTF) and use a pair of Siamese networks to learn similarity measure among pairwise visual and temporal features. A saliency learning fusion layer learns fusion of global and local appearances.	MARS	73.00
Wang et al. [140]	2018	Perform image-to-video Re-IId using a novel end-to-end “Point-to-Set Network” (P2SNNet) that takes both image and video as input and jointly learns their features using point-to-set distance metric. A 4NN-triplet module helps to focus only on relevant video frames	MARS	55.25
Meng et al. [141]	2019	Learn view-specific and feature-specific transformations using a novel “Deep Asymmetric Metric Learning” from a two stream neural net to counter view-specific bias and feature-specific bias in appearance and motion features due to variations in view, lightning, background clutter etc	MARS	74.65
Wu et al. [67]	2019	Propose a novel “Siamese attention architecture” to jointly learn feature representation and similarity measure for video Re-IId using an attention mechanism focussing on relevant frames (when) and regions of interest within frames (where)	MARS	86.60
Ksibi et al. [33]	2019	Propose a “Deep Spatio-Temporal Appearance” (DSTA) descriptor that uses a “Deep Salient-Gaussian Weighted Fisher Vector” (SGFV) to exploit trajectory information to handle misalignment of person tracklets and eliminate background noise using Gaussian and Saliency maps	MARS	76.70
Zhang et al. [37]	2019	Propose a novel “Self-and-Collaborative Attention Network” (SCAN) that utilizes two attention subnetworks (self-attention subnetwork and collaborative attention subnetwork) to select features from informative video frames and align discriminative frames from probe and gallery frames respectively and finally use a generalized similarity measure to compare video pair representations	MARS	87.20
Wu et al. [138]	2019	Utilize novel “3D Person VLAD Aggregation layer” based on the vector of locally aggregated descriptors to capture motion based features along with appearances which is usually missed by 2D ConvNets and learn “global representations” for a full length video robust to occlusion and misalignment using soft attention module to learn 3D part alignment	MARS	80.80
Liu et al. [142]	2019	Propose a novel “Dense 3D Convolutional Network” (D3DNet) that uses numerous three dimensional dense blocks and transition layers to extract discriminative features from appearance and temporal domains capturing visual and motion cues (both short term and long term) from videos without additional modules. Implement a combination of identification and center loss to reduce intra-class disparity and increase inter-class disparity	MARS	76.00
McLaughlin et al. [137]	2019	Extract frame-wise CNN features and use a temporal pooling recurrent layer to combine all time step features and obtain feature representation for entire video sequence	iLID-VIDS	65.40
Zhang et al. [74]	2020	Propose a novel “Multi-Scale Spatial-Temporal Attention” (MSTA) model that pays attention to different regions within each video frame at different scales to incorporate essential regions into whole video spatio-temporal representations. MSTA contains an encoder to extract frame wise features and an aggregator to fuse features	MARS	82.82
Wu et al. [143]	2020	Use variational recurrent neural networks (VRNNs) to conduct a deep few-shot adversarial learning to extract discriminative features that are view invariant	MARS	54.60
Avola et al. [144]	2020	Propose a novel “LSTM based Re-IId Hashing model” that exploits bone proportion, gait and movement features of 2D skeletons extracted from RGB video frames. LSTM is used to learn temporal correlation between different frames while two dense layers are responsible for implementing bodyprint hashing via binary coding capable of unbounded labelling of all individuals possible	MARS	86.50
Wu et al. [145]	2020	Propose a novel “Adaptive Graph Representation Learning” method that uses adaptive structure-aware adjacency graphs via graph neural networks (GNN) highlighting two kinds of relations: pose alignment connection to capture human part relations and feature affinity connection to model semantic relationship among relevant video frames	MARS	89.80
6. Conclusion and Future Directions

This review provides a comprehensive and exhaustive analysis of deep learning based person re-identification methods. The objective of this work is to give the readers a thorough understanding of different approaches towards deep Re-Id. This reviewed literature has been divided into several logical categories as demonstrated in the taxonomy diagram Fig. 2. These approaches have been classified on the basis of adopted architecture types (classification, verification, triplet based, part based and attention models) integrating different kinds of losses (softmax, triplet), the common Re-Id challenges faced (variations in pose, lightning, view, scale, partial or complete occlusion, background clutter), image based methods and multi-modal Re-Id methods reducing the dependency on visible RGB approaches, cross-domain methods to improve generalizability of approaches across different datasets, metric learning approaches to learn ideal similarity functions and deep video Re-Id methods exploiting both spatial and temporal cues from multiple frames of a video sequence. Each category presented as a separate section provides an extensive look into these contribution types and the highlights at the end of each section gives a quick overview of the reviewed methods. Tables 3-11 provide the key ideas behind numerous deep Re-Id methods across various categories.

Part-Based and Attention architectures are the more popular architecture types in recent times owing to their ability to find regions of rich information and extraction of finer visual cues. Re-Id challenges have been conquered using different techniques like using pose estimation to achieve pose invariance [93], obtain scale invariance through multi-scale input convolutions [61] etc. Some multi-modal approaches have helped to reduce the over dependence on visible RGB based methods making them more viable for darker environments with fewer visual cues [117]. Deep video Re-Id methods provide more discriminative information when compared to image based approaches due the motion cues present in temporal information across frames. However, video Re-Id presents its own challenges of finding discriminative regions both spatially (within frames) and temporally (across frames) as demonstrated in Fig. 14.

Based on this review of deep Re-Id methods, the following research gaps can guide the future research motivations:

- Several Re-Id datasets have been collected under controlled environment like research labs, college campuses etc. While numerous Re-Id approaches have attained high performance on these datasets, their results suffer tremendously in realistic scenes. Datasets containing more real-like scenarios like [29] are needed to enhance the potential of proposed Re-Id methods.
Very few multi-modal datasets exist which seriously limit the growth of multi-modal Re-Id approaches. Preparation of large scale multi-modal datasets can greatly contribute to deep Re-Id research.

Gohar et al. [119] use gait-data collected from wearable sensors fixed on the chest of test subjects. Multi-modal methods can be developed that can process data from sensors without considering the positioning or orientation of data recording devices.

There are few end-to-end Re-Id research contributions that involve both person detection and re-identification together in a single framework. Since most datasets are collected under controlled environment, the person detection is usually performed automatically. End-to-end Re-Id is a promising research direction.

GAN based Re-Id works have greatly supported the style transfer requirements of cross-domain Re-Id approaches. However, the low to medium quality of generated samples has limited the performance of these approaches. An improvement in sample generation quality can significantly boost cross-domain Re-Id approaches.

Most part-based Re-Id contributions have focused on systematic comparison between corresponding part regions of input pairs. But the contextual relationship among different regions is mostly ignored. Preserving the semantic relationship among different parts like [89] is a potential way of improving part-based methods further.

Attribute-based methods have become increasingly popular in finding finer visual cues. These attribute-based methods can be extended further for applications like part localization like in [88] to achieve better Re-Id performance.

7. References

[1] S. Zhou, J. Wang, D. Meng, Y. Liang, Y. Gong and N. Zheng, “Discriminative Feature Learning With Foreground Attention for Person Re-Identification,” IEEE Transactions on Image Processing, vol. 28, no. 9, pp. 4671 - 4684, 2019.

[2] F. Yang, K. Yan, S. Lu, H. Jia, X. Xie and W. Gao, “Attention driven person re-identification,” Pattern Recognition, vol. 86, pp. 143-155, 2019.

[3] D. Wu, S.-J. Zheng, W.-Z. Bao, X.-P. Zhang, C.-A. Yuan and D.-S. Huang, “A novel deep model with multi-loss and efficient training for person re-identification,” Neurocomputing, vol. 324, pp. 69-75, 2019.

[4] K. Wang, H. Wang, M. Liu, X. Xing and T. Han, “Survey on person re-identification based on deep learning,” CAAI Transactions on Intelligence Technology, vol. 3, no. 4, pp. 219 - 227, 2018.

[5] M. O. Almasawa, L. A. Elrefaei and K. Moria, “A Survey on Deep Learning-Based Person Re-Identification Systems,” IEEE Access, vol. 7, pp. 175228 - 175247, 2019.

[6] D. Wu, S.-J. Zheng, X.-P. Zhang, C.-A. Yuan, F. Cheng, Y. Zhao, Y.-J. Lin, Z.-Q. Zhao, Y.-L. Jiang and D.-S. Huang, “Deep learning-based methods for person re-identification: A comprehensive review,” Neurocomputing, vol. 337, pp. 354-371, 2019.

[7] K. Islam, “Person search: New paradigm of person re-identification: A survey and outlook of recent works,” Image and Vision Computing, vol. 101, 2020.

[8] D. Gray, S. Brennan and H. Tao, “Evaluating appearance models for recognition, reacquisition, and tracking,” in IEEE International Workshop on Performance Evaluation for Tracking and Surveillance, Rio de Janeiro, 2007.

[9] J. C. J. Junior, X. Baró and S. Escalera, “Exploiting feature representations through similarity learning, post-ranking and ranking aggregation for person re-identification,” Image and Vision Computing, vol. 79, pp. 76-85, 2018.
[10] W.-S. Zheng, S. Gong and T. Xiang, “Associating Groups of People,” in British Machine Vision Conference, London, UK, 2009.

[11] S. Bäk and P. Carr, “Deep Deformable Patch Metric Learning for Person Re-Identification,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 28, no. 10, pp. 2690 - 2702, 2018.

[12] C. C. Loy, T. Xiang and S. Gong, “Time-Delayed Correlation Analysis for Multi-Camera Activity Understanding,” International Journal of Computer Vision, vol. 90, pp. 106-129, 2010.

[13] N. Perwaz, M. M. Fraz and M. Shahzad, “Person Re-Identification Using Hybrid Representation Reinforced by Metric Learning,” IEEE Access, vol. 6, pp. 77334 - 77349, 2018.

[14] D. S. Cheng, M. Cristani, M. Stoppa, L. Bazzani and V. Murino, “Custom Pictorial Structures for Re-identification,” in British Machine Vision Conference, Dundee, UK, 2011.

[15] S.-Z. Chen, C.-C. Guo and J.-H. Lai, “Deep Ranking for Person Re-Identification via Joint Representation Learning,” IEEE Transactions on Image Processing, vol. 25, no. 5, pp. 2353 - 2367, 2016.

[16] W. Li, R. Zhao and X. Wang, “Human Re-Identification with Transferred Metric Learning,” in Asian Conference on Computer Vision, Daejeon, Korea, 2012.

[17] X. Qian, Y. Fu, T. Xiang, Y.-G. Jiang and X. Xue, “Leader-Based Multi-Scale Attention Deep Architecture for Person Re-Identification,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 2, pp. 371-385, 2020.

[18] I. B. Barbosa, M. Cristani, A. D. Bue, L. Bazzani and V. Murino, “Re-identification with RGB-D Sensors,” in European Conference on Computer Vision (ECCV) Workshop, Florence, Italy, 2012.

[19] L. Ren, J. Lu, J. Feng and J. Zhou, “Uniform and Variational Deep Learning for RGB-D Object Recognition and Person Re-Identification,” IEEE Transactions on Image Processing, vol. 28, no. 10, pp. 4970-4983, 2019.

[20] W. Li and X. Wang, “Locally Aligned Feature Transforms across Views,” in IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 2013.

[21] W. Li, R. Zhao, T. Xiao and X. Wang, “DeepRe-Id: Deep Filter Pairing Neural Network for Person Re-identification,” in IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 2014.

[22] L. Zheng, L. Shen, L. Tian, S. Wang, J. Wang and Q. Tian, “Scalable Person Re-identification: A Benchmark,” in IEEE International Conference on Computer Vision, Santiago, Chile, 2015.

[23] F. Pala, R. Satta, G. Fumera and F. Roli, “Multimodal Person Re-Identification Using RGB-D Cameras,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 26, no. 4, pp. 788 - 799, 2016.

[24] M. Gou, S. Karanam, W. Liu, O. Camps and R. J. Radke, “DukeMTMC4Re-Id: A Large-Scale Multicamera Person Re-identification Dataset,” in IEEE Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 2017.

[25] D. T. Nguyen, H. G. Hong, K. W. Kim and K. R. Park, “Person Recognition System Based on a Combination of Body Images from Visible Light and Thermal Cameras,” Sensors, vol. 17, no. 3, 2017.

[26] Z. Feng, J. Lai and X. Xie, “Learning Modality-Specific Representations for Visible-Infrared Person Re-Identification,” IEEE Transactions on Image Processing, vol. 29, pp. 579 - 590, 2019.

[27] A. Wu, W.-S. Zheng, H.-X. Yu, S. Gong and J. Lai, “RGB-Infrared Cross-Modality Person Re-identification,” in IEEE International Conference on Computer Vision, Venice, Italy, 2017.

[28] Z. Feng, J. Lai and X. Xie, “Learning View-Specific Deep Networks for Person Re-Identification,” IEEE Transactions on Image Processing, vol. 27, no. 7, pp. 3472 - 3483, 2018.

[29] S. Karanam, M. Gou, Z. Wu, A. R. Borras, O. Camps and R. J. Radke, “A Systematic Evaluation and Benchmark for Person Re-Identification: Features, Metrics, and Datasets,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 3, pp. 523 - 536, 2019.

[30] A. Ess, B. Leibe and L. V. Gool, “Depth and Appearance for Mobile Scene Analysis,” in International Conference on Computer Vision, Rio de Janeiro, Brazil, 2007.

[31] C. Choe, G. Choe, T. Wang, S. Han and C. Yuan, “Deep feature learning with mixed distance maximization for person Re-identification,” Multimedia Tools and Applications, vol. 78, p. 27719–27741, 2019.

[32] M. Hirzer, C. Beleznai, P. M. Roth and H. Bischof, “Person Re-identification by Descriptive and Discriminative Classification,” in Scandinavian Conference on Image Analysis, Ystad, Sweden, 2011.

[33] S. Ksibi, M. Mejdoub and C. B. Amar, “Deep salient-Gaussian Fisher vector encoding of the spatio-temporal trajectory structures for person re-identification,” Multimedia Tools and Applications, vol. 78, p. 1583–1611, 2019.
[57] W. Yang, Y. Yan and S. Chen, “Adaptive deep metric embeddings for person re-identification under occlusions,” Neurocomputing, vol. 340, pp. 125-132, 2019.

[58] Z. Zhang, Y. Wang and S. Liu, “Cross-domain person re-identification using Dual Generation Learning in camera sensor networks,” Ad Hoc Networks, vol. 97, no. 102019, 2020.

[59] M. Jiang, B. Leng, G. Song and Z. Meng, “Weighted triple-sequence loss for video-based person re-identification,” Neurocomputing, vol. 381, pp. 314-321, 2020.

[60] Z. Zhang, Y. Xie, D. Li, W. Zhang and Q. Tian, “Learning to Align via Wasserstein for Person Re-Identification,” IEEE Transactions on Image Processing, vol. 29, pp. 7104-7116, 2020.

[61] A. Sikdar and A. Chowdhury, “Scale-invariant batch-adaptive residual learning for person re-identification,” Pattern Recognition Letters, vol. 129, pp. 279-286, 2020.

[62] Y. Yan, B. Ni, J. Liu and X. Yang, “Multi-level attention model for person re-identification,” Pattern Recognition Letters, vol. 127, pp. 156-164, 2019.

[63] Y. Tian, Q. Li, D. Wang and B. Wan, “Robust joint learning network: improved deep representation learning for person re-identification,” Multimedia Tools and Applications, vol. 78, p. 24187–24203, 2019.

[64] H. Liu, J. Feng, M. Qi, J. Jiang and S. Yan, “End-to-End Comparative Attention Networks for Person Re-Identification,” IEEE Transactions on Image Processing, vol. 26, no. 7, pp. 3492 - 3506, 2017.

[65] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, 1997.

[66] T. Bao, B. Wang, S. Karmoshi, C. Liu and M. Zhu, “Learning Discriminative Features through an Individual’s Entire Body and The Visual Attentional Parts for Person Re-Identification,” International Journal of Innovative Computing, Information and Control, vol. 15, no. 3, pp. 1037-1048, 2019.

[67] L. Wu, Y. Wang, J. Gao and X. Li, “Where-and-When to Look: Deep Siamese Attention Networks for Video-Based Person Re-Identification,” IEEE Transactions on Multimedia, vol. 21, no. 6, pp. 1412-1424, 2019.

[68] R. Li, B. Zhang, D.-J. Kang and Z. Teng, “Deep attention network for person re-identification with multi-loss,” Computers & Electrical Engineering, vol. 79, 2019.

[69] C. Wan, Y. Wu, X. Tian, J. Huang and X.-S. Hua, “Concentrated Local Part Discovery With Fine-Grained Part Representation for Person Re-Identification,” IEEE Transactions on Multimedia, vol. 22, no. 6, pp. 1605-1618, 2019.

[70] C.-P. Tay, S. Roy and K.-H. Yap, “AAANet: Attribute Attention Network for Person Re-Identifications,” in Conference on Computer Vision and Pattern Recognition, California, 2019.

[71] R. Hou, B. Ma, H. Chang, X. Gu, S. Shan and X. Chen, “VRSTC: Occlusion-Free Video Person Re-Identification,” in Conference on Computer Vision and Pattern Recognition, California, 2019.

[72] A. Subramaniam, A. Nambiar and A. Mittal, “Co-Segmentation Inspired Attention Networks for Video-Based Person Re-Identification,” in International Conference on Computer Vision, Seoul, 2019.

[73] G. Chen, C. Lin, L. Ren, J. Lu and J. Zhou, “Self-Critical Attention Learning for Person Re-Identification,” in International Conference on Computer Vision, Seoul, 2019.

[74] W. Zhang, X. He, X. Yu, W. Lu, Z. Zha and Q. Tian, “A Multi-Scale Spatial-Temporal Attention Model for Person Re-Identification in Videos,” IEEE Transactions on Image Processing, vol. 29, pp. 3365 - 3373, 2020.

[75] Y. Li, X. Jiang and J.-N. Hwang, “Effective person re-identification by self-attention model guided feature learning,” Knowledge, vol. 187, 2020.

[76] Y. Huang, H. Sheng, Y. Zheng and Z. Xiong, “DeepDiff: Learning deep difference features on human body parts for person re-identification,” Neurocomputing, vol. 241, pp. 191-203, 2017.

[77] J. H. Koo, S. W. Cho, N. R. Baek, M. C. Kim and K. R. Park, “CNN-Based Multimodal Human Recognition in Surveillance Environments,” Sensors, vol. 18, no. 9, 2018.

[78] D. Tao, Y. Guo, B. Yu, J. Pang and Z. Yu, “Deep Multi-View Feature Learning for Person Re-Identification,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 28, no. 10, pp. 2657 - 2666, 2018.

[79] Y. Zhang, Z. Zhou, B. Li, Y. Huang, J. Huang and Z. Chen, “Improving Slice-Based Model for Person Re-ID with Multi-Level Representation and Triplet-Center Loss,” IEICE TRANSACTIONS on Information and Systems, Vols. 102-D, no. 11, pp. 2230-2237, 2019.

[80] C. Zhao, K. Chen, Z. Wei, Y. Chen, D. Miao and W. Wang, “Multilevel triplet deep learning model for person re-identification,” Pattern Recognition Letters, vol. 117, pp. 161-168, 2019.
[81] C. Yuan, J. Guo, P. Feng, Z. Zhao, C. Xu, T. Wang, G. Choe and K. Duan, “A jointly learned deep embedding for person re-identification,” Neurocomputing, vol. 330, pp. 127-137, 2019.

[82] H. Ling, Z. Wang, P. Li, Y. Shi, J. Chen and F. Zou, “Improving person re-identification by multi-task learning,” Neurocomputing, vol. 347, pp. 109-118, 2019.

[83] H. Tian, X. Zhang, L. Lan and Z. Luo, “Person re-identification via adaptive verification loss,” Neurocomputing, vol. 359, pp. 93-101, 2019.

[84] Y. Wang, Z. Wang and M. Jiang, “Part-based pyramid loss for person re-identification,” International Journal of Information and Communication Technology, vol. 15, no. 4, 2019.

[85] H. Yao, S. Zhang, R. Hong, Y. Zhang, C. Xu and Q. Tian, “Deep Representation Learning With Part Loss for Person Re-Identification,” IEEE Transactions on Image Processing, vol. 28, no. 6, pp. 2860-2871, 2019.

[86] Z. He, C. Jung, Q. Fu and Z. Zhang, “Deep feature embedding learning for person re-identification based on lifted structured loss,” Multimedia Tools and Applications, vol. 78, p. 5863-5880, 2019.

[87] R. Quispe and H. Pedrini, “Improved person re-identification based on saliency and semantic parsing with deep neural network models,” Image and Vision Computing, vol. 92, 2019.

[88] S. Li, H. Yu and R. Hu, “Attributes-aided part detection and refinement for person re-identification,” Pattern Recognition, vol. 97, no. 107016, 2020.

[89] X. Bai, M. Yang, T. Huang, Z. Dou, R. Yu and Y. Xu, “Deep-Person: Learning discriminative deep features for person Re-Identification,” Pattern Recognition, vol. 98, 2020.

[90] Z. Zhang and M. Huang, “Person Re-Identification Based on Heterogeneous Part-Based Deep Network in Camera Networks,” IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 4, no. 1, pp. 51-60, 2020.

[91] C. Shen, Z. Jin, W. Chu, R. Jiang, Y. Chen, G.-J. Qi and X.-S. Hua, “Multi-level Similarity Perception Network for Person Re-identification,” ACM Transactions on Multimedia Computing, Communications, and Applications, vol. 15, no. 2, 2019.

[92] M. Qi, J. Han, J. Jiang and H. Liu, “Deep feature representation and multiple metric ensembles for person re-identification in security surveillance system,” Multimedia Tools and Applications, vol. 78, p. pages27029–27043, 2019.

[93] L. Zheng, Y. Huang, H. Lu and Y. Yang, “Pose-Invariant Embedding for Deep Person Re-Identification,” IEEE Transactions on Image Processing, vol. 28, no. 9, pp. 4500-4509, 2019.

[94] T. Yu, H. Jin, W.-T. Tan and K. Nahrstedt, “SKEPRID: Pose and Illumination Change-Resistant Skeleton-Based Person Re-Identification,” ACM Transactions on Multimedia Computing, Communications, and Applications, vol. 14, no. 4, 2018.

[95] Y. Chen, S. Duffner, A. Stoian, J.-Y. Dufour and A. Baskurt, “Deep and low-level feature based attribute learning for person re-identification,” Image and Vision Computing, vol. 79, pp. 25-34, 2018.

[96] M. Fu, S. Sun, N. Chen, D. Wang and X. Tong, “Deep Fusion Feature Presentations for Nonaligned Person Re-Identification,” IEEE Access, vol. 7, pp. 73253 - 73261, 2019.

[97] Z. Zheng, L. Zheng and Y. Yang, “Pedestrian Alignment Network for Large-scale Person Re-Identification,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 29, no. 10, pp. 3037 - 3045, 2019.

[98] Y.-C. Chen, X. Zhu, W.-S. Zheng and J.-H. Lai, “Person Re-Identification by Camera Correlation Aware Feature Augmentation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 2, pp. 392-408, 2018.

[99] H. Luo, W. Jiang, X. Zhang, X. Fan, J. Qian and C. Zhang, “AlignRe-Id++: Dynamically matching local information for person re-identification,” Pattern Recognition, vol. 94, pp. 53-61, 2019.

[100] L. Wei, S. Zhang, H. Yao, W. Gao and Q. Tian, “GLAD: Global–Local-Alignment Descriptor for Scalable Person Re-Identification,” IEEE Transactions on Multimedia, vol. 21, no. 4, pp. 986 - 999, 2019.

[101] L. Wu, R. Hong, Y. Wang and M. Wang, “Cross-Entropy Adversarial View Adaptation for Person Re-Identification,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 7, pp. 2081 - 2092, 2020.

[102] Y. Tang, X. Yang, N. Wang, B. Song and X. Gao, “Person Re-Identification with Feature Pyramid Optimization and Gradual Background Suppression,” Neural Networks, vol. 124, pp. 223-232, 2020.
[103] Z. Wang, J. Jiang, Y. Wu, M. Ye, X. Bai and S. Satoh, “Learning Sparse and Identity-Preserved Hidden Attributes for Person Re-Identification,” *IEEE Transactions on Image Processing*, vol. 29, pp. 2013 - 2020.

[104] D. K. Vishwakarma and S. Upadhyay, “A Deep Structure of Person Re-Identification Using Multi-Level Gaussian Models,” *IEEE Transactions on Multi-Scale Computing Systems*, vol. 4, no. 4, pp. 513-521, 2018.

[105] L. Wu, Y. Wang, J. Gao and X. Li, “Deep adaptive feature embedding with local sample distributions for person re-identification,” *Pattern Recognition*, vol. 73, pp. 275-288, 2018.

[106] L. Wu, Y. Wang, X. Li and J. Gao, “What-and-where to match: Deep spatially multiplicative integration networks for person re-identification,” *Pattern Recognition*, vol. 76, pp. 727-738, 2018.

[107] Q. Ke, M. Bennamoun, H. Rahmani, S. An, F. Sohel and F. Boussaid, “Identity Adaptation for Person Re-Identification,” *IEEE Access*, vol. 6, pp. 48147 - 48155, 2018.

[108] J. Zhang, X. Hu, M. Wang, H. Qiao, X. Li and T. Sun, “Person Re-Identification via Group Symmetry Theory,” *IEEE Access*, vol. 7, pp. 133686 - 133693, 2019.

[109] B. Jiang, X. Wang and B. Luo, “PH-GCN: Person Re-identification with Part-based Hierarchical Graph Convolutional Network,” *arXiv:1907.08822*, 2019.

[110] D. Wu, H.-W. Yang, D.-S. Huang, C.-A. Yuan, X. Qin, Y. Zhao, X.-Y. Zhao and J.-H. Sun, “Omnidirectional Feature Learning for Person Re-Identification,” *IEEE Access*, vol. 7, pp. 28402 - 28411, 2019.

[111] Y. Liu, N. Song and Y. Han, “Multi-cue fusion: Discriminative enhancing for person re-identification,” *Journal of Visual Communication and Image Representation*, vol. 58, pp. 46-52, 2019.

[112] Y. Zhang, X. Gu, J. Tang, K. Cheng and S. Tan, “Part-Based Attribute-Aware Network for Person Re-Identification,” *IEEE Access*, vol. 7, pp. 53585 - 53595, 2019.

[113] H. Wu, M. Xin, W. Fang, H.-M. Hu and Z. Hu, “Multi-Level Feature Network With Multi-Loss for Person Re-Identification,” *IEEE Access*, vol. 7, pp. 91052 - 91062, 2019.

[114] C. Wang, L. Song, G. Wang, Q. Zhang and X. Wang, “Multi-scale multi-patch person re-identification with exclusivity regularized softmax,” *Neurocomputing*, vol. 382, pp. 64-70, 2020.

[115] F. Wang, C. Zhang, S. Chen, G. Ying and J. Lv, “Engineering Hand-designed and Deeply-learned features for person Re-identification,” *Pattern Recognition Letters*, vol. 130, pp. 293-298, 2020.

[116] L. Ren, J. Lu, J. Feng and J. Zhou, “Multi-modal uniform deep learning for RGB-D person re-identification,” *Pattern Recognition*, vol. 72, pp. 446-457, 2017.

[117] X. Xiang, N. Lv, Z. Yu, M. Zhai and A. E. Saddik, “Cross-Modality Person Re-Identification Based on Dual-Path Multi-Branch Network,” *IEEE Sensors Journal*, vol. 19, no. 23, pp. 11706 - 11713, 2019.

[118] Y.-S. Chang, M.-Y. Wang, L. He, W. Lu, H. Su, N. Gao and X.-A. Yang, “Joint deep semantic embedding and metric learning for person re-identification,” *Pattern Recognition Letters*, vol. 130, pp. 306-311, 2020.

[119] I. Gohar, Q. Riaz, M. Shahzad, M. Z. Ul, H. Hashmi, H. Tahir and M. E. Ul Haq, “Person Re-Identification Using Deep Modeling of Temporally Correlated Inertial Motion Patterns,” *Sensors*, vol. 20, no. 3, 2020.

[120] P. Wang, Z. Zhao, F. Su, Y. Zhao, H. Wang, L. Yang and Y. Li, “Deep Multi-Patch Matching Network for Visible Thermal Person Re-Identification,” *IEEE Transactions on Multimedia*, 2020.

[121] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand and . V. . S. Lempitsky, “Domain-adversarial training of neural networks,” *The Journal of Machine Learning Research*, vol. 17, no. 1, 2016.

[122] H. Wang and J. Hu, “Deep Multi-Task Transfer Network for Cross Domain Person Re-Identification,” *IEEE Access*, vol. 8, pp. 5339 - 5348, 2020.

[123] B. Xu, J. Liu, X. Hou, K. Sun and G. Qiu, “Cross Domain Person Re-Identification With Large Scale Attribute Annotated Datasets,” *IEEE Access*, vol. 7, 2019.

[124] S. Zhou, M. Ke and P. Luo, “Multi-camera transfer GAN for person re-identification,” *Journal of Visual Communication and Image Representation*, vol. 59, pp. 393-400, 2019.

[125] R. Sun, W. Lu, Y. Zhao, J. Zhang and C. Kai, “A Novel Method for Person Re-Identification: Conditional Translated Network Based on GANs,” *IEEE Access*, vol. 8, pp. 3677 - 3686, 2020.

[126] T. Xiao, H. Li, W. Ouyang and X. Wang, “Learning Deep Feature Representations with Domain Guided Dropout for Person Re-identification,” in *IEEE Conference on Computer Vision and Pattern Recognition*, Las Vegas, NV, USA, 2016.
[127] A. Genç and H. K. Ekenel, “Cross-dataset person re-identification using deep convolutional neural networks: effects of context and domain adaptation,” *Multimedia Tools and Applications*, vol. 78, p. 5843–5861, 2019.

[128] J. Hu, J. Lu, Y.-P. Tan and J. Zhou, “Deep Transfer Metric Learning,” *IEEE Transactions on Image Processing*, vol. 25, no. 12, pp. 5576 - 5588, 2016.

[129] L. Lin, G. Wang, W. Zuo, X. Feng and L. Zhang, “Cross-Domain Visual Matching via Generalized Similarity Measure and Feature Learning,” *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 39, no. 6, pp. 1089 - 1102, 2017.

[130] J. Zhu, H. Zeng, S. Liao, Z. Lei, C. Cai and L. Zheng, “Deep Hybrid Similarity Learning for Person Re-Identification,” *IEEE Transactions on Circuits and Systems for Video Technology*, vol. 28, no. 11, pp. 3183 - 3193, 2018.

[131] Y. Duan, J. Lu, J. Feng and J. Zhou, “Deep Localized Metric Learning,” *IEEE Transactions on Circuits and Systems for Video Technology*, vol. 28, no. 10, pp. 2644 - 2656, 2018.

[132] J. Hu, J. Lu and Y.-P. Tan, “Sharable and Individual Multi-View Metric Learning,” *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 40, no. 9, pp. 2281 - 2288, 2018.

[133] M. Chen, Y. Ge, X. Feng, C. Xu and D. Yang, “Person Re-Identification by Pose Invariant Deep Metric Learning With Improved Triplet Loss,” *IEEE Access*, vol. 6, pp. 68089 - 68095, 2018.

[134] C.-X. Ren, X.-L. Xu and Z. Lei, “A Deep and Structured Metric Learning Method for Robust Person Re-Identification,” *Pattern Recognition*, vol. 96, 2019.

[135] Z. Ding, M. Shao, W. Hwang, S. Suh, J.-J. Han, C. Choi and Y. Fu, “Robust Discriminative Metric Learning for Image Representation,” *IEEE Transactions on Circuits and Systems for Video Technology*, vol. 29, no. 11, pp. 3173 - 3183, 2019.

[136] M. Xiong, D. Chen, J. Chen, B. Shi, C. Liang and R. Hu, “Person re-identification with multiple similarity probabilities using deep metric learning for efficient smart security applications,” *Journal of Parallel and Distributed Computing*, vol. 132, pp. 230-241, 2019.

[137] N. McLaughlin, J. M. d. Rincon and P. Miller, “Video Person Re-Identification for Wide Area Tracking Based on Recurrent Neural Networks,” *IEEE Transactions on Circuits and Systems for Video Technology*, vol. 29, no. 9, pp. 2613 - 2626, 2019.

[138] L. Wu, Y. Wang, L. Shao and M. Wang, “3-D personVLAD: learning deep global representations for video-based person Re-Identification,” *IEEE Transactions on Neural Networks and Learning Systems*, vol. 30, no. 11, pp. 3347-3359, 2019.

[139] R. Sun, Q. Huang, M. Xia and J. Zhang, “Video-Based Person Re-Identification by an End-To-End Learning Architecture with Hybrid Deep Appearance-Temporal Feature,” *Sensors*, vol. 18, no. 11, 2018.

[140] G. Wang, J. Lai and X. Xie, “P2SNet: Can an Image Match a Video for Person Re-Identification in an End-to-End Way?,” *IEEE Transactions on Circuits and Systems for Video Technology*, vol. 28, no. 10, pp. 2777 - 2787, 2018.

[141] J. Meng, A. Wu and W.-S. Zheng, “Deep asymmetric video-based person re-identification,” *Pattern Recognition*, vol. 93, pp. 430-441, 2019.

[142] J. Liu, Z.-J. Zheng-Jun Zha, X. Chen, Z. Wang and Y. Zhang, “Dense 3D-Convolutional Neural Network for Person Re-Identification in Videos,” *ACM Transactions on Multimedia Computing, Communications, and Applications*, vol. 15, no. 15, 2019.

[143] L. Wu, Y. Wang, H. Yin, M. Wang and L. Shao, “Few-Shot Deep Adversarial Learning for Video-Based Person Re-Identification,” *IEEE Transactions on Image Processing*, vol. 29, pp. 1233 - 1245, 2020.

[144] D. Avola, L. Cinque, A. Fagioli, G. L. Foresti, D. Pannone and C. Piciarelli, “Bodyprint—A Meta-Feature Based LSTM Hashing Model for Person Re-Identification,” *Sensors*, vol. 20, no. 18, 2020.

[145] Y. Wu, O. E. F. Bourahla, X. Li, F. Wu, Q. Tian and X. Zhou, “Adaptive Graph Representation Learning for Video Person Re-Identification,” *IEEE Transactions on Image Processing*, vol. 29, pp. 8821 - 8830, 2020.