Magnetic resonance T1w/T2w ratio in multiple system atrophy: A combined study with voxel-based morphometry

Sara Ponticorvo
University of Salerno

Renzo Manara
University of Padua

Maria Claudia Russillo
University of Salerno

Roberto Erro
University of Salerno

Marina Picillo
University of Salerno

Gianfranco Di Salle
Scuola Superiore di Studi Universitari e Perfezionamento Sant’Anna

Francesco Di Salle
University of Salerno

Paolo Barone
University of Salerno

Fabrizio Esposito
University of Campania "Luigi Vanvitelli"

Maria Teresa Pellecchia
University of Salerno

Research Article

Keywords: multiple system atrophy, MRI, T1w/T2w ratio

DOI: https://doi.org/10.21203/rs.3.rs-698281/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Diagnosis of multiple system atrophy (MSA) may be improved by using multimodal imaging approaches. We investigated the use of T1-weighted/T2-weighted (T1w/T2w) images ratio combined with voxel-based morphometry to evaluate brain tissue integrity in MSA compared to Parkinson’s disease (PD) and healthy controls (HC).

Twenty-six patients with MSA, 43 patients with PD and 56 HC were enrolled. Whole brain voxel-based and local regional analyses were performed to evaluate gray and white matter (GM and WM) tissue integrity and mean regional values were used for patients classification using logistic regression.

Increased mean regional values of T1w/T2w in bilateral putamen were detected in MSA-P compared to PD and HC. The combined use of regional GM and T1w/T2w values in the right and left putamen showed the highest accuracy in discriminating MSA-P from PD and good accuracy in discriminating MSA from PD and HC. A good accuracy was also found in discriminating MSA from PD and HC by either combining regional GM and T1w/T2w values in the cerebellum or regional WM and T1w/T2w in the cerebellum and brainstem.

The T1w/T2w image ratio alone or combined with validated MRI parameters can be further considered as a potential candidate biomarker for differential diagnosis of MSA.

1.0 Introduction

Multiple system atrophy (MSA) is an adult-onset progressive neurodegenerative disorder featured by autonomic failure, parkinsonism and cerebellar ataxia with a prevalence of about 5 cases per 100,000. Oligodendroglial cytoplasmatic inclusions consisting of misfolded α-synuclein are required for a definite diagnosis of MSA on postmortem examination [1]. Neuronal loss, pathologic inclusions, iron accumulation and reactive astrogliosis are observed in the striatonigral and olivopontocerebellar systems [2, 3]. MSA can be clinically classified into the parkinsonian variant (MSA-P) and the cerebellar variant (MSA-C) based on the predominant motor features which is dependent on the distribution of pathology within the basal ganglia and cerebellum [1]. However, the predominant motor features can change with time and the variability of the severity and regional distribution of pathological process accounts for a spectrum of disease.

The differential diagnosis between MSA, particularly the parkinsonian subtype, and Parkinson's disease (PD), the most frequent α-synucleinopathy, may be difficult due to the presence of common clinical features, as demonstrated by the relatively high rate of misdiagnosis at post-mortem evaluation [4].

Previous studies suggested a role of different imaging techniques in aiding the differential diagnosis between PD and MSA. Atrophy on Magnetic Resonance Imaging (MRI) of putamen, middle cerebellar peduncle, pons, or cerebellum on conventional MRI and hypometabolism on FDG-PET in the putamen, middle cerebellar peduncle, pons, and cerebellum are already included as additional features for a diagnosis of possible MSA in the current diagnostic criteria [1]. Moreover, it has been shown that suboptimal accuracy of neuroradiological diagnosis may be improved by the use of multimodal imaging approaches and advanced MRI techniques [5].

So far, the ratio of the signal intensity of the T1-weighted and T2-weighted (T1w/T2w) MRI images, has been used as semi-quantitative measure for myelin content in gray matter [6]. Compared to other quantitative MRI
techniques, it has the advantage that images can be easily acquired during routine clinical examination and without complex modeling of the MR signal, with high spatial resolution and sensitivity to neurodegenerative changes [7–9].

In disorders with a strong demyelinating component (as e.g. in multiple sclerosis), the T1w/T2w ratio has been found to be lowered in pathologically vulnerable regions [10, 11]. However, recent studies have also pointed out on a different interpretation of the T1w/T2w ratio, suggesting that this measure may also reflect axon and dendrite density or iron content [7]. Consistently, increased T1w/T2w ratio has been recently found in the substantia nigra pars compacta of PD patients compared with healthy controls [12].

Since MSA-related pathology involves oligodendrogial and neuronal loss, with astroglial and microglial activation and increased iron content, in this study, we have performed a multimodal evaluation of tissue integrity by assessing both T1w/T2w ratio images and voxel-based morphometry (VBM) on gray and white matter (GM and WM) brain compartments. A multi-parameter analysis was performed with the aims of unveiling tissue damage in MSA patients as compared to healthy controls (HC) and PD patients and for assessing a new potential candidate MRI biomarker for differential diagnosis with PD.

2.0 Methods

2.1 Subjects

Twenty-six patients with probable MSA according to current diagnostic criteria [14 with the parkinsonian variant (MSA-P) and 12 with the cerebellar variant (MSA-C)], 43 patients with idiopathic PD and 56 healthy controls (HC) participated to the current study. Motor disability was assessed with the Unified MSA Rating Scale, part two (UMSARS-II) and the Unified PD Rating Scale, part three (UPDRS-III) in MSA and PD patients, respectively. Demographic and clinical data of enrolled subjects are reported in Table 1. The study was approved by the local Ethics committee – Comitato Etico Campania Sud - and all participants signed informed consent. The study was conducted in accordance with the Declaration of Helsinki principles.

2.2 MRI acquisition

All brain imaging data were acquired on a 3T MRI scanner (MAGNETOM Skyra, Siemens, Erlangen Germany) operated with a 20-channel head and neck coil. The imaging protocol consisted of a 3D anatomical T1-weighted (T1w) Magnetization Prepared RAdip Gradient Echo (MPRAGE) sequence with repetition time (TR) = 2400 ms and echo time (TE) = 2.25 ms, spatial resolution = 1 x 1 x 1 mm3, matrix size = 256 x 256, anterior-posterior phase encoding direction, generalized autocalibrating partially parallel acquisitions (GRAPPA) factor of 2 in phase-encoding direction and a 3D T2-weighted (T2w) Sampling Perfection with Application optimized Contrast using different angle Evolutions (SPACE) sequence with TR = 3200, TE = 408 ms, variable flip angle, resolution = 1 x 1 x 1 mm3, matrix size = 256 x 256, anterior-posterior phase encoding direction, GRAPPA factor of 2 in phase-encoding [9].

2.3 MRI data processing

For VBM analysis tissue probabilistic maps were obtained from T1w images and used to evaluate differences in terms of grey and white matter (GM and WM) atrophy. T1w native space images of each subject were segmented into GM and WM and normalized to MNI standard space using DARTEL algorithm. [13] Then the
resulting tissue (GM/WM) probabilistic maps were modulated by the Jacobian determinants of the deformations
to account for local compression and expansion due to linear and non-linear transformation [14] and then
smoothed with a Gaussian kernel of 6 mm FWHM. For the group analysis a group mask was created for each
tissue, averaging and then binarizing with a threshold of 0.2 all the smoothed GM/WM maps of the HC subjects.
Total intracranial volume (ICV) was also calculated for each subject as the sum of the three main brain tissue
volumes (GM, WM and CSF).

In order to obtain semi-quantitative maps markers of myelin content, before the validated preprocessing, [6] T1w
and T2w images were corrected for intensity nonuniformity with the bias correction tool implemented in the
unified segmentation [14] and available in SPM12. Then the T2w images were linearly registered to the T1w
images using the FSL tool FLIRT [15] for estimating and applying a rigid-body affine transformation with 6
degrees of freedom and cubic spline interpolation to minimize the WM and CSF contamination of GM voxels. [6]
T1w/T2w maps were obtained using FSLMATHS to divide the T1w volumes by the corresponding aligned T2w
ones. For the group analysis the DARTEL algorithm with the same group template and deformation fields as
calculated for VBM analysis were used to normalize the T1w/T2w ratio maps to the standard MNI space. During
the normalization procedure, T1w/T2w maps were smoothed with a Gaussian kernel of 6 mm FWHM.

2.4 Statistical analysis

The whole brain maps (GM and WM probability tissue maps and T1w/T2w ratio maps) were compared between
groups in a voxel-based full factorial analysis as implemented in SPM12. Particularly a general linear model was
used considering one factor of three levels for the group (MSA, PD, HC) and two (age and sex) and three (age,
sex and ICV) covariate factors respectively for T1w/T2w and GM or WM analyses. Voxels were considered
significant with p < 0.05 after family-wise error correction (FWE) for multiple comparisons as implemented in
SPM12.

A post-hoc regional analysis was also performed by extracting the mean parameter values (GM and WM
probability and T1w/T2w ratio) in the voxels of detected differences in the voxel-based analysis and comparing
the values between groups (MSA, PD, HC) and MSA subgroups (MSA-C, MSA-P) with a two-sample t-test after
correcting for age with linear regression.

Receiver operating characteristic (ROC) curve analysis was then performed to evaluate the ability of the MRI
parameters to discriminate between MSA and HC, MSA and PD and MSA-P and PD. For this analysis, a
generalized linear model with binomial distribution and logit link function as setting parameters was first
computed on the regional values of GM or WM and T1w/T2w. For each ROI, the ROC curve was calculated on the
obtained predictive values, allowing to calculate the corresponding area under the curve (AUC), confidence
interval, and p-values. The optimal cutoff point (and corresponding sensitivity and specificity) was determined
using the Youden method.

Correlations between MRI parameters and clinical variables were checked with the Spearman’s rank correlation
coefficient; a 5% level of significance was used for all tests.

3.0 Results
The three groups did not differ in age and sex distribution (Table 1). Patients with MSA and PD had similar disease duration (Table 1). Disease severity, as assessed by UPDRS-III and UMSARS, is reported in Table 1.

Table 1
Demographic and clinical findings of enrolled subjects

MSA (n = 26)
Age, ys (mean ± SD)
Disease duration, ys (mean ± SD)
UPDRS-III (mean ± SD)
UMSARS-I (mean ± SD)
UMSARS-II (mean ± SD)
UMSARS-IV (mean ± SD)

Compared to HC, MSA patients showed reduced GM volume in bilateral putamen (left cluster size = 128 voxels, right cluster size = 1143 voxels) and in an extended cluster in the cerebellar gray matter (cluster size = 379270 voxels) (Fig. 1a). When comparing MSA vs PD patients, the former showed reduced GM volume in two clusters of bilateral putamen (left cluster size = 119 voxels, right cluster size = 749 voxels) and in an extended area of the cerebellar gray matter (cluster size = 134350 voxels) (Fig. 1b). No significant differences were detected when comparing PD vs HC. Post-hoc regional analyses displayed significant between-group differences, between MSA-P and both PD and HC, and between MSA-C and both PD and HC (Fig. 1c).

Compared to HC, MSA patients showed reduced WM volume in a cluster extending from the cerebellar WM to the brainstem (cluster size = 413700 voxels, Fig. 2a). When compared to PD patients, MSA showed a WM volume reduction in a cluster extending from the cerebellar WM to the brainstem (cluster size = 257580 voxels, Fig. 2b). No significant differences were detected when comparing PD vs HC. Regional post-hoc analyses showed a significant difference in WM atrophy of the cerebellum/brainstem cluster between MSA-P and both PD and HC and between MSA-C and both PD and HC (Fig. 2c).

4 HC, 1 PD and 3 MSA patients were excluded from the T1w/T2w imaging analysis due to missing 3D T2w series.

Whole brain voxel-based comparison of T1w/T2w maps did not show any difference between groups. Nonetheless, regional post-hoc analysis in the aforementioned clusters of GM or WM atrophy showed significant differences between MSA-P and HC and between MSA-P and PD in the right and left putamen, with increased T1w/T2w values in the MSA-P subgroup (see Fig. 3b and 3c). No significant differences in terms of T1w/T2w values were detected in the clusters of GM atrophy in the cerebellum and WM atrophy in the cerebellum/brainstem (Fig. 3a and 3d).

Regional values in significantly different clusters were also used for discriminant analysis between groups by using both T1w/T2w parameters and combined GM or WM with T1w/T2w.
T1/T2w value in the left putamen discriminated MSA vs HC, and MSA vs PD, but not MSA-P vs PD. T1/T2w value in the right putamen discriminated MSA vs HC and MSA vs PD, but not MSA-P vs PD.

Combination of regional GM and T1/T2w in the cerebellum significantly discriminated MSA from HC and MSA from PD, but not MSA-P from PD. The multi-parameter (multi-variate) combination of regional GM and T1/T2w in the left putamen significantly discriminated MSA from HC, MSA from PD and MSA-P from PD. The multi-parameter (multi-variate) combination of regional GM and T1/T2w in the right putamen significantly discriminated MSA from HC, MSA from PD, and MSA-P from PD. The multi-parameter (multi-variate) combination of regional WM and T1/T2w in the cerebellum/brainstem significantly discriminated MSA from HC, MSA from PD, but not MSA-P from PD. The detailed results of the ROC analysis (AUC, sensitivity, specificity and p-values) are summarized in Table 2.

	T1/T2w	T1/T2w + Tissue density (GM or WM)						
	AUC	p	Sensitivity	Specificity	AUC	p	Sensitivity	Specificity
MSA vs HC								
L-Putamen	0.70	0.005	0.87	0.46	0.84	<0.001	0.74	0.83
R-Putamen	0.71	0.003	0.91	0.50	0.88	<0.001	0.78	0.87
Cerebellum GM	0.54	>0.05	0.30	0.88	0.93	<0.001	0.78	0.96
Brainstem WM	0.60	>0.05	0.65	0.62	0.88	<0.001	0.83	0.75
MSA vs PD								
L-Putamen	0.67	0.019	0.52	0.81	0.78	<0.001	0.57	0.92
R-Putamen	0.68	0.010	0.83	0.56	0.83	<0.001	0.78	0.83
Cerebellum GM	0.57	>0.05	0.48	0.56	0.85	<0.001	0.74	0.98
Brainstem WM	0.59	>0.05	0.52	0.65	0.81	<0.001	0.61	0.90
MSA-P vs PD								
L-Putamen	0.72	>0.05	0.30	0.92	0.89	0.01	0.22	1
R-Putamen	0.66	>0.05	0.57	0.63	0.93	<0.001	0.26	1
Cerebellum GM	0.40	>0.05	0.52	0.52	0.68	>0.05	0.78	0.88
Brainstem WM	0.35	>0.05	0.70	0.44	0.61	>0.05	0.39	1
After correcting regional GM or WM tissue density for age and sex, residual GM volume in the cerebellum/brainstem was significantly correlated with UMSARS-II ($\rho = -0.515, p = 0.05$) and residual WM volume in the cerebellum/brainstem was significantly correlated with UMSARS-I ($\rho = -0.560, p = 0.037$) and UMSARS-II ($\rho = -0.537, p = 0.047$) in MSA-P patients. There were no significant correlations between T1w/T2w values in any region and the clinical variables.

4.0 Discussion

In this study we performed a multi-parametric evaluation of tissue integrity assessing both T1w/T2w ratio images and voxel-based morphometry on GM and WM tissue density to investigate whole brain damage in MSA patients as compared to PD patients and HC and evaluate a potential semi-quantitative biomarker for differential diagnosis with PD.

As expected, we found MSA patients to have GM atrophy in bilateral putamen and cerebellum and WM atrophy in the cerebellum/brainstem compared to both PD patients and HC. On the other hand, T1w/T2w changes did not strictly parallel the obtained atrophy patterns, with MSA and PD patients showing similar values in the cerebellum/brainstem, but MSA-P showing a significant increase in T1w/T2w values in both right and left putamen as compared to PD and HC.

Consistently, the combined use of regional GM and T1w/T2w values in the right and left putamen showed the highest accuracy in discriminating MSA-P from PD, while the combined use of the same parameters showed a good accuracy in discriminating MSA from both PD and HC. A similar good accuracy was also found in discriminating MSA from PD and HC by either combining regional GM and T1w/T2w values in the cerebellum or regional WM and T1w/T2w in the cerebellum and brainstem.

The higher degree of putaminal and cerebellar gray matter atrophy of MSA patients largely confirm previous results [17–19] and is in keeping with the evidence of MSA being a more aggressive and widespread disorder than PD. We also found a significant WM volume reduction in a cluster extending from the cerebellum to the brainstem in both MSA-P and MSA-C vs PD and HC. Consistently, few previous studies have already described WM atrophy in brainstem and cerebellum in MSA-C and MSA-P patients as compared to HC. [20–22] In patients with PD we found no differences in terms of atrophy when compared to HC, which is also in line with previous results obtained in patients with similar disease duration. [23]

Previous studies have used the T1w/T2w ratio to detect cortical changes in patients with multiple sclerosis, showing lower values in pathologically vulnerable regions. [10, 11]

On the other hand, higher cortical values of the T1w/T2w ratio have been found in Alzheimer's disease [24] and Huntington's disease [25] as compared to HC, and a similar finding has been reported in a subcortical structure, namely substantia nigra pars compacta, in PD patients compared to HC. [12] Decrease in neuronal density, resulting in higher myelin proportions, or iron accumulation have been suggested to account for such previous results [25] and may also account for the increased T1w/T2w ratio found in the atrophic putamen of our MSA-P patients. Indeed, putaminal diffusivity changes have been reported corresponding to prominent neuronal loss, [26] and quantitative susceptibility mapping has confirmed increased iron deposition in the putamen of MSA-P patients. [27, 28]
More recently, a reduced T1w/T2w ratio in the medium cerebellar peduncle has been reported in MSA-C compared to HC, [29] suggesting that this measure can also be useful as a quantitative biomarker of myelin loss. Indeed, this measure was also found to be correlated with the ICARS score in early MSA-C but, consistently with our results, not with UMSARS part 2 scores, possibly due to the inadequacy of the latter scale that was originally developed to characterize cerebellar ataxia and parkinsonism. [29] There are, however, some important conceptual and methodological differences between this study and ours: in fact, differently from the previous study, we adhered to the original protocol described to assess T1w/T2w ratio, [6] using 3D acquisition schemes and 1 mm³ spatial resolution in both T1w and T2w images acquisition. This protocol was specifically developed to analyze the entire brain, i.e., without prior assumptions on the potentially affected regions. To this more general purpose, we combined the T1w/T2w analysis with a classical VBM analysis at the same (typical) resolution of morphometric studies at 3 Tesla.

We found that UMSARS motor scores in MSA-P patients were worse in patients with greater GM and WM atrophy in the cerebellum/brainstem and, similarly, UMSARS functional scores were worse in patients with greater WM atrophy in the cerebellum/brainstem. We can speculate that correlations with such clinical parameters may reflect the progressive brainstem/cerebellar involvement during the course of MSA-P. Consistently, a similar relationship between UMSARS motor scores and cerebellar atrophy in MSA-P patients has been reported in a previous VBM study, also failing to show relationships between UMSARS scores and putaminal atrophy. [30] We must acknowledge that evaluating our MSA patients also with UPDRS and an ataxia specific scale would have been desirable to better evaluate relationships with MRI parameters.

Further validation of the T1w/T2w ratio in MSA is needed to establish if this measure alone or combined with other validated MRI parameters can be useful as a quantitative MRI biomarker for differential diagnosis and follow-up of MSA patients.

Declarations

Author contribution

SP performed MRI data processing and analysis and wrote the first draft of the paper

RM, GDS, FDS and FE critically revised MRI analyses and the final version of the paper

MCR, RE, MP, PB collected clinical data and critically revised the final version of the paper

MTP collected clinical data and wrote the final version of the paper

Competing interests

The authors declare no competing interests.

References

1. Gilman, S. et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology, 71, 670–676 (2008).
2. Ubhi, K., Low, P. A. & Masliah, E. Multiple system atrophy: A clinical and neuropathological perspective. *Trends in Neurosciences*, **34**, 581–590 (2011).

3. Jellinger, K. & Neuropathology, in Multiple system atrophy (ed. Wenning, G.K.) 17–56 (Springer Verlag, 2014).

4. Koga, S. *et al.* When DLB, PD and PSP masquerade as MSA: An autopsy study of 134 patients. *Neurology*, **85**, 404–412 (2015).

5. Stankovic, I. *et al.* A critique of the second consensus criteria for multiple system atrophy. *Mov. Disord*, **34**, 975–984 (2019).

6. Glasser, M. F. & Van Essen, D. C. Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. *J. Neurosci*, **31**, 11597–11616 (2011).

7. Arshad, M., Stanley, J. A. & Raz, N. Test–retest reliability and concurrent validity of in vivo myelin content indices: Myelin water fraction and calibrated T1w/T2w image ratio. *Hum. Brain. Mapp*, **38**, 1780–1790 (2017).

8. Grydeland, H., Walhovd, K. B., Tamnes, C. K., Westlye, L. T. & Fjell, A. M. Intracortical myelin links with performance variability across the human lifespan: Results from T1- and T2-weighted MRI myelin mapping and diffusion tensor imaging. *J. Neurosci*, **33**, 18618–18630 (2013).

9. Canna, A. *et al.* A group-level comparison of volumetric and combined volumetric-surface normalization for whole brain analyses of myelin and iron maps. *Magn. Reson. Imaging*, **54**, 225–240 (2018).

10. Beer, A. *et al.* Tissue damage within normal appearing white matter in early multiple sclerosis: Assessment by the ratio of T1- and T2-weighted MR image intensity. *J. Neurol.* **263**, 1495–1502 (2016).

11. Nakamura, K., Chen, J. T., Ontaneda, D., Fox, R. J. & Trapp, B. D. T1-/T2-weighted ratio differs in demyelinated cortex in multiple sclerosis. *Ann. Neurol*, **82**, 635–639 (2017).

12. Du, G., Lewis, M. M., Sica, C., Kong, L. & Huang, X. Magnetic resonance T1w/T2w ratio: A parsimonious marker for Parkinson’s disease. *Ann. Neurol*, **85**, 96–104 (2019).

13. Ashburner, J.. A fast diffeomorphic image registration algorithm. *NeuroImage* 17, 95–113 (2007).

14. Good, C. D. *et al.* A voxel-based morphometric study of ageing in 465 normal adult human brains. *NeuroImage* 14, 21–36 (2001).

15. Ashburner, J. & Friston, K. J. Unified segmentation. *NeuroImage* 26, 839–851 (2005).

16. Jenkinson, M. Improved optimization for the robust and accurate linear registration and motion correction of brain images. *NeuroImage* **17**, 825–841 (2002).

17. Minnerop, M. *et al.* Voxel-based morphometry and voxel-based relaxometry in multiple system atrophy – A comparison between clinical subtypes and correlations with clinical parameters. *NeuroImage*, **36**, 1086–1095 (2007).

18. Shao, N., Yang, J. & Shang, H. Voxelwise meta-analysis of gray matter anomalies in Parkinson variant of multiple system atrophy and Parkinson’s disease using anatomic likelihood estimation. *Neurosci. Lett*, **587**, 79–86 (2015).
24. Lin, J., Xu, X., Hou, Y., Yang, J. & Shang, H. Voxel-based meta-analysis of gray matter abnormalities in multiple system atrophy. *Front. Aging Neurosci*, **12**, 1–12 (2020).

25. Specht, K., Minnerop, M., Muller-Hubenthal, J. & Klockgether, T. Voxel-based analysis of multiple system atrophy of cerebellar type: complementary results by combining voxel-based morphometry and voxel-based relaxometry. *Neuroimage*, **25**, 287–293 (2005).

26. Shigemoto, Y. *et al.* In vivo evaluation of gray and white matter volume loss in the parkinsonian variant of multiple system atrophy using SPM8 plus DARTEL for VBM. *Neuroimage Clin*, **2**, 491–496 (2013).

27. Faber, J. *et al.* Prominent white matter involvement in multiple system atrophy of cerebellar type. *Mov. Disord*, **35**, 816–824 (2020).

28. Pan, P. L., Song, W. & Shang, H. F. Voxel-wise meta-analysis of gray matter abnormalities in idiopathic Parkinson's disease. *Eur. J. Neurol*, **19**, 199–206 (2012).

29. Pelkmans, W. *et al.* Gray matter T1-w/T2-w ratios are higher in Alzheimer's disease. *Hum. Brain Mapp*, **40**, 3900–3909 (2019).

30. Rowley, C. D. *et al.* Altered intracortical T1-weighted/T2-weighted ratio signal in Huntington's disease. *Front. Neurosci*, **12**, 1–9 (2018).

31. Bajaj, S. *et al.* Diffusion-weighted MRI distinguishes Parkinson disease from the parkinsonian variant of multiple system atrophy: a systematic review and meta-analysis. *PLoS One*, **12**, e0189897 (2017).

32. Mazzucchi, S. *et al.* Quantitative susceptibility mapping in atypical Parkinsonisms. *Neuroimage Clin*, **24**, 101999 (2019).

33. Sjostrom, H., Granberg, T., Westman, E. & Svenningsson, P. Quantitative susceptibility mapping differentiates between parkinsonian disorders. *Parkinsonism Relat. Disord*, **44**, 51–57 (2017).

34. Sugiyama, A., Yokota, H. & Hirano, S. Magnetic resonance T1w/T2w ratio in the middle cerebellar peduncle might be a sensitive biomarker for multiple system atrophy. *Eur. Radiology*, **31**, 4277–4284 (2021).

35. Tsuda, M., Asano, S., Kato, Y., Murai, K. & Miyazaki, M. Differential diagnosis of multiple system atrophy with predominant parkinsonism and Parkinson's disease using neural networks. *J. Neurol. Sci*, **401**, 19–26 (2019).

Figures
Figure 1

Upper panel t-maps of the voxel-wise GM comparisons respectively between HC and MSA (a) and PD and MSA (b). Statistical threshold is set to p<0.05 after FWE correction for multiple comparison. Lower panel box-plots of the GM density distribution in the significant clusters (from the comparison HC vs MSA) for each group, and results of the post-hoc t-tests on the regional values (c). *p<0.05, **p<0.01, ***p<0.001.
Figure 2

Upper panel t-maps of the voxel-wise WM comparisons respectively between HC and MSA (a) and PD and MSA (b). Statistical threshold is set to $p<0.05$ after FWE correction for multiple comparison. Lower panel box-plots of the WM density distribution in the significant cluster (from the comparison HC vs MSA) for each group, and results of the post-hoc t-tests on the regional values. *$p<0.05$, **$p<0.01$, ***$p<0.001$.
Figure 3

Box-plots of the T1w/T2w distribution in the significant clusters (from the comparison HC vs MSA in GM and WM) for each group, and results of the post-hoc t-tests on the regional values. *p<0.05, **p<0.01.