Photoferrotrophs Produce a PioAB Electron Conduit for Extracellular Electron Uptake

Dinesh Gupta,a Molly C. Sutherland,a Karthikeyan Rengasamy,a J. Mark Meacham,b,c Robert G. Kranz,a Arpita Bosea

aDepartment of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
bDepartment of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri, USA
cInstitute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri, USA

ABSTRACT
Photoferrotrophy is a form of anoxygenic photosynthesis whereby bacteria utilize soluble or insoluble forms of ferrous iron as an electron donor to fix carbon dioxide using light energy. They can also use poised electrodes as their electron donor via phototrophic extracellular electron uptake (phototrophic EEU). The electron uptake mechanisms underlying these processes are not well understood. Using Rhodopseudomonas palustris TIE-1 as a model, we show that a single periplasmic decaheme cytochrome c, PioA, and an outer membrane porin, PioB, form a complex allowing extracellular electron uptake across the outer membrane from both soluble iron and poised electrodes. We observe that PioA undergoes postsecretory proteolysis of its N terminus to produce a shorter heme-attached PioA (holo-PioAC, where PioAC represents the C terminus of PioA), which can exist both freely in the periplasm and in a complex with PioB. The extended N-terminal peptide controls heme attachment, and its processing is required to produce wild-type levels of holo-PioAC and holo-PioACB complex. It is also conserved in PioA homologs from other phototrophs. The presence of PioAB in these organisms correlate with their ability to perform photoferrotrophy and phototrophic EEU.

IMPORTANCE
Some anoxygenic phototrophs use soluble iron, insoluble iron minerals (such as rust), or their proxies (poised electrodes) as electron donors for photosynthesis. However, the underlying electron uptake mechanisms are not well established. Here, we show that these phototrophs use a protein complex made of an outer membrane porin and a periplasmic decaheme cytochrome (electron transfer protein) to harvest electrons from both soluble iron and poised electrodes. This complex has two unique characteristics: (i) it lacks an extracellular cytochrome c, and (ii) the periplasmic decaheme cytochrome c undergoes proteolytic cleavage to produce a functional electron transfer protein. These characteristics are conserved in phototrophs harboring homologous proteins.

KEYWORDS
photoferrotrophy, phototrophic EEU, Rhodopseudomonas palustris TIE-1, decaheme cytochrome c, Fe(II)-oxidation

Several anoxygenic (nonoxygen evolving) phototrophs can grow by coupling oxidation of ferrous iron to carbon dioxide (CO₂) fixation using the energy of light, a process called photoferrotrophy (1). Photoferrotrophy plays an important role in biogeochemical cycling of iron and impacts microbial ecology in marine and freshwater ecosystems (2–4). A phylogenetically diverse group of bacteria carry out this process in natural environments (5). Photoferrotrophs use both soluble ferrous iron [Fe(II)] and insoluble mixed-valence iron minerals as electron donors (6, 7). Photoferrotrophy is considered to be one of the most ancient types of photosynthesis and may represent a transition state between anoxygenic and modern oxygenic photosynthesis (8). In addition, photoferrotrophy is suggested as a primary metabolism responsible for early...
marine productivity (9) and a potential process responsible for the deposition of the archean banded iron formations (BIFs) (1, 10–13). Photoferrotrophs can also use electrons from a poised electrode to fix CO₂ with light, a process called phototrophic extracellular electron uptake (EEU) (14, 15). Microbes capable of phototrophic EEU are good candidates for microbial electrosynthesis, a process in which microbes use electricity to produce biocommodities from CO₂ (16–18). Despite continued interest in microbes capable of photoferrotrophy and phototrophic EEU, the mechanisms underlying these processes are poorly understood.

The bacterial outer envelope is nonconductive to electrons and is impermeable to insoluble iron minerals/electrodes (19, 20). Therefore, the ability of phototrophs to use the extracellular electron donors likely involves an extracellular electron uptake (EEU) process. Studies in the nonphototroph model bacterium *Shewanella oneidensis* suggest that the mechanism of electron transfer across the outer membrane (OM) employs a porin-cytochrome complex (21). The *Shewanella* complex is comprised of a porin (MtrB) and two decaheme cytochrome c proteins (MtrA and MtrC from periplasmic and extracellular sides, respectively) as an electron conduit. Deletion of the extracellular decaheme cytochrome c component of the conduit (MtrC and its paralogues, OmcA and MtrF) abrogates *Shewanella*’s ability to reduce Fe(III) or transfer electrons to electrodes (22–24). Recently, it has been shown that the *Shewanella* MtrCAB conduit may also be employed for electron uptake (electron transfer in the opposite direction from its native function) from a cathode to an intracellular reduction reaction (18, 25).

In contrast to oxidation of insoluble iron/electrode, soluble iron oxidation could occur either extracellularly or in the periplasm of Gram-negative phototrophs (26–28). Evidence to date suggests that the oxidation of soluble iron in *Rhodopseudomonas palustris* TIE-1 (6) and *Rhodobacter* sp. strain SW2 (29) involves periplasmic iron oxidoreductases (PioA and FoxE, respectively). However, the oxidation of soluble iron could be extracellular because the product of this process is insoluble iron, which can be toxic if produced in the periplasm (10, 13, 30, 31). Genetic studies in *R. palustris* TIE-1, the only genetically tractable phototroph (32) that can perform both photoferrotrophy and phototrophic EEU (6, 7, 15), identified the pioABC operon as required for both of these processes (6, 15). The operon encodes PioA, a decaheme cytochrome c (cyt c), PioB, an outer membrane (OM) porin, and PioC, a high-potential iron-sulfur protein (HiPIP). A deletion mutant lacking *pioABC* cannot perform photoferrotrophy (6) and has a partial defect in phototrophic EEU (15). Beyond these genetic studies, only the iron-sulfur protein PioC has been biochemically characterized as a periplasmic electron transfer protein and proposed to shuttle electrons from PioA to the photosynthetic reaction center (33, 34). However, where Pio proteins oxidize Fe(II) during photoferrotrophy and how they transfer electrons across the outer membrane from poised electrodes during phototrophic EEU are unknown.

Here, we show that PioA undergoes novel postsecretory proteolysis of its N terminus to produce a decaheme-attached PioA (holo-PioA_C, where PioA_C represents the C terminus of PioA). The holo-PioA_C is an iron oxidoreductase that forms a membrane-associated protein complex with PioB. The holo-PioA_C,B complex acts as an electron conduit in TIE-1 to accept electrons from the extracellular oxidation of both Fe(II) and from the poised electrodes (that mimic insoluble iron minerals). Importantly, this process employs a single decaheme cyt c (holo-PioA_C) and a porin (PioB), with no apparent extracellular electron transfer protein. Therefore, the PioAB complex is distinct from other porin-cytochrome c systems found in nonphototrophic bacteria. The postsecretory proteolysis of the N-terminal extension of PioA-like homologs to produce a functional holo-PioA_C and the formation of holo-PioA,C,B electron conduit are conserved in phototrophs such as *Rhodomicrobium vannielii* and *Rhodomicrobium udaipurense*. Together, these results suggest that the PioAB system can serve as a molecular signature for photoferrotrophy and phototrophic EEU.
RESULTS AND DISCUSSION

Production and purification of recombinant PioA from *Escherichia coli*. The *pioA* gene (Rpal_0817) encodes a 540-amino-acid (aa) decaheme cyt c with a canonical signal peptide (SP; aa 1 to 40), a 200-residue N terminus, and the C terminus (Fig. 1A).
The C terminus contains a hydrophobic region (HR; aa 241 to 263) followed by 10 sites for c-type heme (CXXCH) attachment (Fig. 1A). PioA has a large (~200 aa) N terminal region not present in previously characterized decaheme cyt c homologs such as MtrA and MtoA (see Fig. S1 in the supplemental material). This N-terminal extension is conserved in PioA homologs annotated in the genomes of different phototrophic bacteria and does not harbor any clear protein domains (Fig. S2). Previous translational fusion studies suggest that a full-length PioA with its N terminus is produced in TIE-1 (35). Here, we wanted to investigate the role of the N terminal extension in these decaheme homologs by studying PioA. Although PioA expression in TIE-1 is upregulated only under photoferrotrophy, its slow growth (doubling time of 80 ± 10 h) and low biomass yields under this condition make it difficult to purify sufficient protein for biochemical analysis.

We heterologously expressed PioA with a C-terminal His tag in the E. coli (Δccm) RK103 strain carrying the ccmABCDEFGH genes under an inducible promoter to ensure heme attachment (36). For correct localization of the protein in E. coli’s periplasm, we replaced the PioA signal peptide with a validated signal peptide of the cytochrome c4 gene (36). We confirmed production of the predicted full-length apo-PioA (~54 kDa) in total E. coli lysate by immunoblotting with antibodies specific to the N-terminal 200-aa region (anti-PioAN) and the C terminus (anti-PioAC) of PioA (Fig. 1B). However, an ~34-kDa heme-containing polypeptide was observed upon enrichment using hexahistidine affinity purification (Fig. 1C). Heme stains were used to detect covalently bound (c-type) heme in the protein (37). The polypeptide was immunodetected with anti-PioAC but not with anti-PioAN antibodies (Fig. S3A). These results suggest that the 34-kDa protein is PioA after removal of the N-terminal 200-aa region. Here, the recombinant holo-PioA is termed holo-PioACr.

TIE-1 produces a 34-kDa holo-PioAC that exists as a free periplasmic protein and in a complex with PioB. To investigate the biological relevance of PioA N-terminal processing in the native photosynthetic host, we isolated soluble and membrane fractions of photoautotrophically grown wild-type (WT) and ΔpioABC mutant strains of TIE-1. We observed two heme-containing polypeptides: an ~34-kDa band in the soluble fraction and a larger (>170-kDa) band in the membrane fraction of WT TIE-1 (Fig. 1D). Both bands reacted with anti-PioAC antibodies (Fig. 1E) but not with anti-PioAN antibodies (Fig. 1F). Mass spectrometry analysis of these bands identified only the C-terminal peptides of PioA, consistent with processing of the N-terminal region in these heme-attached forms of PioA. These results suggest that TIE-1 produces only the 34-kDa heme-attached C terminus of PioA (here termed holo-PioAC). Mass spectrometry analysis of the >170-kDa protein band identified it as PioACB complex (Fig. S4A). This band also demonstrates heat modifiability (Fig. S4B), a feature reported for bacterial porins (38–42). Indeed, the holo-PioACB migrates as an ~120-kDa band without heat treatment and shifts to >170 kDa when the sample is heated to 90°C for 3 min (Fig. S4B). The 120-kDa holo-PioACB band (unheated) likely represents the observed size of holo-PioAC (~34 kDa) plus the expected size of PioB (~87 kDa), further indicating that the complex is composed of holo-PioAC (that lacks the N-terminal region) and PioB. Overall, these results suggest that TIE-1 produces a 34-kDa holo-PioAC that exists in two forms, a free soluble periplasmic protein and a membrane-associated protein in complex with PioB (holo-PioACB).

Holo-PioAC produced natively in TIE-1 is the same size as holo-PioACr produced heterologously in E. coli (as determined by SDS-PAGE). A similarly sized heme-stainable PioA (~40 kDa) was previously observed from the soluble fraction of TIE-1 by Jiao and Newman (6). The size observed for holo-PioAC is comparable to the size of the previously characterized decaheme homologs MtrA and MtoA (21, 31). Our biochemical results suggest that holo-PioAC is the functional component of a PioACB complex in TIE-1. However, holo-PioAC lacks the N-terminal 200-aa region of the predicted PioA protein. The question remains as to how TIE-1 produces holo-PioAC. There are two possibilities: (i) full-length PioA is produced and processed to produce holo-PioAC, or (ii) an internal methionine closer to the first heme attachment site is the functional start...
codon. Interestingly, the internal hydrophobic region (HR) of the C terminus of PioA starts with a methionine residue (Met241), and Met241 is the only internal methionine from which a putative Sec signal peptide is predicted based on PredTat (43). It is therefore possible that Met241 is used as a start codon for PioA, with the Sec signal in the HR serving as a periplasmic signal peptide and with the resulting protein being \(\sim 34 \text{kDa} \). There is, however, no observable canonical ribosome binding site (RBS) upstream of Met241. To directly test this possibility, we expressed the pioA gene encoding only the C terminus of PioA from the HR (241 to 540 aa; HR-PioAC) with a C-terminal 6×His tag in the \(\Delta \)pioA mutant using a pRhokS-2 plasmid under a constitutive promoter, \(P_{aphII} \), along with a strong RBS (Fig. 1G) (44). We observed (by PioAC Western blotting [WB]) the expected size of HR-PioAC upon enrichment using hexahistidine affinity purification, suggesting that this version of the protein can be produced artificially in TIE-1 (Fig. 1H, WB:PioAC). However, HR-PioAC was not heme attached as determined by heme staining (Fig. 1H, PioAC). Because \(c \)-heme maturation will depend on the periplasmic transport of HR-PioAC, the above result suggests that the Sec signal within the HR is not a functional periplasmic signal and that Met241 does not serve as an alternative start codon for PioA. These results demonstrate the importance of the N terminus (signal peptide and 200-aa region) in the synthesis of holo-PioAC in TIE-1.

N-terminal processing of PioA is required for photoferrotrophy. To gain insights into the biological role of N-terminal processing, we engineered a series of N-terminal-PioA chromosomal deletion mutants in TIE-1 (Fig. 2A). We tested the ability of these mutants to perform Fe(II) oxidation. The \(\Delta 240 \) mutant lacks the complete N terminal region that includes both the predicted signal peptide and the 200-aa region, the \(\Delta 43 \) mutant lacks only the signal peptide, and the \(\Delta 200 \) mutant lacks only the 200-aa region but contains the intact signal peptide. Photoautotrophically grown TIE-1 cells with hydrogen were used for cell suspension assays. We observed that the \(\Delta 200 \) mutant oxidized Fe(II) both in the cell suspension assays and during photoferrotrophy (Fig. 2B and C, green line, and Fig. S5). In contrast, the \(\Delta 240 \) and \(\Delta 43 \) mutants, which lack the signal peptide that is essential for periplasmic export, were unable to oxidize Fe(II) or perform photoferrotrophy (Fig. 2B and C, red and purple lines, respectively). Furthermore, only the \(\Delta 200 \) construct rescued the phenotype of a \(\Delta \)pioA mutant when expressed in trans from a plasmid (Fig. 2D). The ability of the \(\Delta 200 \) mutant to oxidize Fe(II) suggests that holo-PioAC is a functional iron oxidase in TIE-1. It also demonstrates that the N-terminal 200-aa region of PioA is not directly involved in the ability of PioA to oxidize Fe(II).

Although the \(\Delta 200 \) mutant was able to grow via photoferrotrophy, it had an extended lag phase compared to that of the WT (Fig. 2C). We examined whether this lag is due to the difference in PioA concentrations between these two strains. To approximate photoferrotrophy and obtain sufficient cells for total protein extraction, strains grown photoautotrophically with hydrogen (optical density at 660 nm \([OD_{660}] \) of 1.0) were exposed to 3 mM Fe(II) and harvested after 22 h when all Fe(II) was oxidized (Fig. 2E). We observed a smaller amount of both free holo-PioAC and holo-PioAC-B complex in the \(\Delta 200 \) mutant than in the WT (Fig. 2F and G). We also assessed the relative transcript levels of pioA under these conditions and observed a slight increase in pioA transcripts in the \(\Delta 200 \) mutant compared to the level in the WT (Fig. 2H). This result rules out the possibility that the lower level of free holo-PioAC and holo-PioAC-B complex in the \(\Delta 200 \) mutant could be due to lower protein expression in the mutant. Therefore, we propose that the N-terminal 200-aa region of PioA plays a role in maintaining the concentration of holo-PioAC in TIE-1 at wild-type levels. Edman degradation analyses of holo-PioAC purified from TIE-1 identified Ala243 as the N-terminal residue of the processed protein (Fig. 3). Cleavage at this site would produce a protein with a predicted molecular weight of 34 kDa, as calculated for the holo-PioAC.

N-terminally processed PioA is an iron oxidase. The fact that holo-PioAC is required for Fe(II) oxidation in TIE-1 suggests that it is an iron oxidoreductase. Thus, we affinity purified holo-PioAC and assayed its iron oxidation capacity by UV-visible light
Figure 2: Production of the holo-PioA_c (34 kDa) is required for photoferrotrophy in TIE-1. (A) Schematic representation of the pioA gene in the wild-type (WT) TIE-1 and Δ240, Δ200, and Δ43 TIE-1 mutant genomes. The mutants lack regions encoding the N terminus (Δ240), the 200-aa region (Δ200), and the putative signal peptide (Δ43) of PioA protein. (B) Fe(II) oxidation by WT and TIE-1 mutants in cell suspension assays. Data shown are representative of three independent experiments. Error bars are means ± standard deviations of three technical replicates. (C) Fe(II) oxidation by WT and TIE-1 mutants during photoferrotrophic growth. Data are means ± standard deviations of three biological replicates. Cell growth during photoferrotrophy was determined by OD₆₆₀ measurements at indicated time points and protein quantification at the initial (T₀) and final (T_f) time points (Fig. S5). (D) Complementation of the Fe(II)-oxidizing ability of ΔpioA mutant by expressing pioA-containing plasmids that mimic the Δ240, Δ200, and WT genotypes. Data shown are representative of three independent experiments. Error bars are means ± standard deviations of three technical replicates. (E) Fe(II) oxidation by the ΔpioA mutant and WT TIE-1. Fe(II) concentration at the initial time (T₀) and after 22 h (T₂₂) of Fe(II) exposure are shown. Error bars are means ± standard deviations of three technical replicates. (F and G) Heme staining and Western blotting (WB) with anti-PioAC antibodies for the soluble (F) and membrane (G) fractions of cells harvested after 22 h. Upregulation of other cyt c proteins was observed for the pioA mutants compared to expression in the WT. Open and filled triangles indicate holo-PioAC_c and holo-PioAC_B complex, respectively. (H) Relative expression of pioA (normalized to that of recA) in cells harvested after 22 h. qRT-PCR data are means ± standard errors for three biological replicates assayed in duplicate. The asterisk represents a low value (0.01) for the ΔpioA mutant control.

(UV-Vis) spectroscopy under anaerobic conditions. The UV-Vis spectra of holo-PioA_c show the spectral signatures of typical c-type cytochromes (Fig. 4A and Fig. S3B). Covalently bound heme in holo-PioA_c was determined by observing a 550-nm α peak in the pyridine hemochrome assay (Fig. 4A, inset) (45, 46). The dithionite-reduced holo-PioA_c (Fig. 4A, purple) was reoxidized after addition of Fe(III) chloride solution, as indicated by a shift of the Soret peak back from 418 to 408 nm and disappearance of the α and β peaks at 551 and 523 nm, respectively (Fig. 4A, teal blue). This spectral characteristic of holo-PioA_c is similar to that of the reduced-MtrCAB complex after addition of Fe(III) citrate (21). As reported for the decaheme cyt c MtoA (31), the reduction of holo-PioA_c with Fe(II) chloride was pH dependent and only detected at a basic pH of 9 to 10 (Fig. 4B). These results demonstrate that holo-PioA_c can donate electrons to Fe(III) and accept electrons from Fe(II). Thus, the N-terminal 200-aa region
of PioA is not required for iron oxidase activity, but its processing is required for proper attachment of the heme groups to PioA, suggesting a regulatory role during PioA maturation.

The holo-PioACB complex catalyzes the extracellular oxidation of iron in vivo.

An important unknown aspect of photoferrotrophy is the location of the Fe(II) oxidation activity in the bacterial cell. Our results suggest that Fe(II) oxidation could occur either in the periplasm by soluble holo-PioAC or extracellularly by the holo-PioACB complex. Both activities could also occur simultaneously in TIE-1. To dissect the roles of soluble holo-PioAC and holo-PioACB complex, we used the TIE-1 ΔpioB mutant. Deletions of pioA, pioB, and pioC in TIE-1 have been shown to be nonpolar (6). First, we tested the fate of holo-PioAC in the absence of the PioB protein. Analysis of holo-PioAC in the ΔpioB mutant showed that the protein is present only in the soluble fraction and not in the membrane fraction (Fig. 5A). This result agrees with the bioinformatic prediction of PioA as a periplasmic soluble protein and reveals the importance of PioB in the

![Image](mbio.asm.org/7)

FIG 3 PioA is processed at Ala243 in the hydrophobic region. (A) Coomassie and heme staining of affinity-purified holo-PioA from the ΔpioA TIE-1 mutant expressing full-length pioA under the pio promoter with a C-terminal His tag. The band corresponding to the heme band (34 kDa, boxed) from the Coomassie blot was used for Edman degradation analysis (5-aa N-terminal sequencing). (B) PioA sequence showing N-terminal amino acids determined in Edman analysis of 34-kDa holo-PioA (ATREPR, underlined). The arrowhead indicates a cleavage site between Val242 and Ala243. Colors of peptides are consistent with the colors of different regions (Sec signal, 200-aa, HR, and heme-binding C terminus) of PioA represented in the models in Fig. 1A and 2A. The peptides detected by mass spectrometry analysis of the 34-kDa PioA band are highlighted.

![Image](mbio.asm.org/7)

FIG 4 The holo-PioA_C is an iron oxido-reductase. UV-visible light spectral analysis of the affinity-purified PioA_C was performed under anaerobic conditions. (A) Purified PioA (black), PioA reduced with sodium dithionite (purple), and reoxidized PioA after addition of Fe(III) chloride solution (teal blue). The inset shows a pyridine hemochrome assay. (B) Purified PioA (black), PioA after addition of Fe(III) chloride solution (blue), PioA after increasing the pH to 8 (dark green), and PioA after increasing pH to 9 to 10 (orange).
localization of PioA to the membrane. Because the ΔpioB mutant contains only soluble holo-PioAC, it serves as an ideal construct to investigate the role of periplasmic soluble holo-PioAC in Fe(II) oxidation. We found that ΔpioB cannot oxidize Fe(II) in cell suspension assays (Fig. 5B). Because periplasmic holo-PioAC is produced in the ΔpioB mutant, this result indicates that Fe(II) oxidation is unlikely to be carried out by soluble holo-PioAC in the periplasm. Another explanation for this result might be that PioB acts as an Fe(II) import porin that makes Fe(II) available to periplasmic PioA for iron oxidation.

FIG 5 PioA and PioB codependence for outer membrane incorporation. (A) Heme staining and anti-PioA Western blotting (WB) of proteins in the soluble and membrane fractions of the ΔpioABC mutant, WT, and ΔpioB mutant. Open and filled triangles indicate holo-PioA and holo-PioA-B complex, respectively. (B) Fe(II) oxidation by the WT and the ΔpioABC and ΔpioB mutants in cell suspension assays. Data shown are representative of three independent experiments. Error bars are means ± standard deviations of three technical replicates. (C) Heme staining and immunoblotting with anti-PioB antibodies for the soluble and membrane fractions of the ΔpioABC, ΔpioA, and WT strains. The asterisk indicates free PioB.
fraction of the ΔpioB, we observed the presence of PioB in the soluble fraction but not in the membrane fraction. Similar to observations of MtrAB, using immunoblotting with an antibody specific to PioA, we investigated the fate of PioB in the absence of PioA by using a ΔpioA mutant. At the end, we monitored and compared the light-dependent electron uptake ability of WT TIE-1 and mutants. Intermediate electron uptake by the Δ200 mutant was observed compared to that of the WT TIE-1 (Fig. 5C). This result suggests that the holo-PioACB complex is required for phototrophic EEU in TIE-1. This result is further supported by the fact that we could detect only the holo-PioACB complex and not free PioB in the membrane fraction of WT TIE-1 (Fig. 5C). Together, these results suggest that it is unlikely that soluble holo-PioACB complex catalyzes Fe(III) oxidation extracellularly.

The holo-PioACB complex is required for phototrophic EEU in TIE-1. In addition to Fe(II), TIE-1 can oxidize insoluble iron minerals, such as hematite (7), and electrodes poised at the potential of insoluble iron minerals (15). Because these insoluble electron donors cannot cross the bacterial envelope, they are most likely oxidized by TIE-1 extracellularly via the holo-PioACB complex. Poised electrodes in bulk reactors have been used as proxies of natural interactions between microbes and minerals such as iron oxides (15, 48, 49). However, in such bulk reactors different factors, such as extracellular enzymes (50), presence of planktonic cells, mediators, and abiotic reactions, could affect the electrochemical signals (15, 51). Therefore, we examined the involvement of the holo-PioACB complex in EEU using a microfluidic bioelectrochemical cell (µ-BEC) developed in our laboratory (14). In the µ-BEC, an electrode poised at +100 mV versus a standard hydrogen electrode (SHE) was used to mimic the redox potential of insoluble iron minerals (15). We monitored and compared the light-dependent electron uptake ability of WT TIE-1 and mutants. Intermediate electron uptake by the Δ200 mutant was observed compared to that of the WT TIE-1 (Fig. 6A to C, green and blue, respectively; Table S1). This corroborates the observation that the Δ200 mutant contains a smaller amount of holo-PioACB complex (Fig. 2G). We did not detect electron uptake by either the ΔpioABC or ΔpioA mutant. Similar to findings with respect to Fe(II) oxidation, ΔpioB mutant could not perform phototrophic EEU (Fig. 6A to C, light brown). This result shows that the holo-PioACB complex, but not free periplasmic holo-PioACB, is responsible for phototrophic EEU in TIE-1. Phototrophic EEU has been studied in bulk bioelectrochemical systems (BESs) (15) and in µ-BECs (14). In
FIG 7 Phototrophic bacteria, *Rhodobacter vannieli* DSM 162 and *R. udaipurense* JA643, produce a PioAB complex and perform Fe(II) oxidation and phototrophic EEU. (A) Neighbor-joining phylogenetic tree of decaheme cyt c homologs of MtrA-like and PioA-like proteins. The highlighted clade contains a group of phototrophs that contains only PioA-like decaheme homologs. The clade clusters in the same way even when the N-terminal domain is excluded from the alignment. (B) Fe(II) oxidation by *R. vannieli* DSM 162 and *R. udaipurense* JA643 in cell suspension assays. Data shown are representative of three independent experiments. Error bars are means ± standard deviations of three biological replicates. Wild-type TIE-1 and the ΔpioABC mutant were used as the positive and negative controls, respectively. (C) Maximum phototrophic EEU (represented as current density) by *R. vannieli* DSM 162 and *R. udaipurense* JA643 in a microfluidic bioelectrochemical cell (µ-BEC) under continuous light. Asterisk represents a low average current density (0.0046 nA/cm²) for a no-cell negative (−) control. Error bars are means ± standard deviations of three biological replicates. The P values were determined by Student’s t test (1 star, P < 0.05; 2 stars, P < 0.01; 3 stars, P < 0.001). (D) and (E) Coomassie and heme staining for the soluble and membrane fractions, as indicated, of H₂CO₂ grown TIE-1 ΔpioABC, WT TIE-1, *R. vannieli* DSM 162, and *R. udaipurense* JA643. Open and filled triangles indicate a smaller heme-stainable band (like holo-PioA₄B) in the soluble fraction and a higher-molecular-mass band of >170 kDa (like holo-PioA₄B complex) in the membrane fraction, respectively. Mass spectrometry analysis of >170-kDa heme-stainable bands from *R. vannieli* DSM 162 and *R. udaipurense* JA643 confirm the presence of PioA and PioB homologs from the respective bacteria (see Fig. S6 in the supplemental material).

BESs, both planktonic cells (70% electron uptake) and biofilm-attached cells (30% electron uptake) contribute to phototrophic EEU (14, 15). The µ-BEC collects data only from biofilm-attached cells. Therefore, our results from the µ-BEC suggest that in biofilm-attached cells, the PioABC system is essential for phototrophic EEU. This supports previous results from bulk BESs where the ΔpioABC mutant lost 30% electron uptake ability (15). Overall, our results indicate that the holo-PioA₄B complex serves as an electron conduit in TIE-1 to take up electrons from poised electrodes that mimic insoluble iron minerals.

Postsecretory processing of PioA and holo-PioA₄B complex formation is a conserved trait in other phototrophs. Homologs of PioA/MtrA and PioB/MtrB occur as operons in the genomes of many proteobacteria (15, 21). Sequence alignment of decacheme homologs separates them out into two groups, one without the N-terminal extension (MtrA-like) and other with the N-terminal extension (PioA-like) (Fig. S2B). Additionally, phylogenetic analysis clusters bacteria with PioA-like homologs in a distinct clade (Fig. 7A, highlighted clade). Interestingly, this clade includes phototrophic bacteria known to be photoferrotrophs such as TIE-1 (32) and *Rhodobacter vannieli* (52). Although the N-terminal extensions vary in length and are not conserved at the level of amino acid sequence, the presence of a larger N terminal region and an internal
hydrophobic region (HR) upstream of the first heme-binding motif are conserved features of PioA-like homologs (Fig. S2B). Our data from TIE-1 has established that the N-terminal region of PioA is important to produce a functional iron oxidoreductase (holo-PioAC) and, hence, the holo-PioACB complex. To investigate the functional parallels of holo-PioA synthesis and PioAB complex formation in phototrophs, we studied *Rhodobacter vannelii* and *R. udaipurense*. Both of these organisms have PioABC homologs. *R. vannelii* can perform phototrophic Fe(II) oxidation (52) while the ability of *R. udaipurense* to oxidize Fe(II) is unknown. The ability of *R. vannelii* and *R. udaipurense* to perform phototrophic EEU is also unknown.

First, we studied the ability of *R. vannelii* DSM 162 (53) and *R. udaipurense* JA643 (54) to oxidize Fe(II) and perform phototrophic EEU. Both *R. vannelii* DSM 162 and *R. udaipurense* JA643 oxidized Fe(II) in cell suspension assays (Fig. 7B, chartreuse green and teal blue, respectively). We also observed that these phototrophs, similar to TIE-1, can perform phototrophic EEU from an electrode poised at +100 mV versus SHE in a μ-BEC reactor (Fig. 7C and Table S1) (14). Photoautotrophically grown *R. vannelii* DSM 162 and *R. udaipurense* JA643 with hydrogen were used for cell suspension assays, and their ability to oxidize Fe(II) suggests that the iron oxidase (PioA homologs) is produced under this growth condition. To investigate whether these phototrophs, like TIE-1, also synthesize holo-PioAC and holo-PioACB complex, cell fractions of photoautotrophically grown *R. vannelii* DSM 162 and *R. udaipurense* JA643 were analyzed. Heme staining of the soluble and membrane fractions from these bacteria showed band patterns similar to those of TIE-1. We observed two heme-stainable bands, an ~34-kDa band in the soluble fraction and a >170-kDa band in the membrane fraction (Fig. 7D and E), for both phototrophs. The >170-kDa bands from *R. vannelii* DSM 162 and *R. udaipurense* JA643 were confirmed to contain PioA and PioB homologs by mass spectrometry analysis (Fig. S6). Interestingly, these bacteria also contain a smaller holo-PioA (~34 kDa) in the soluble fraction than expected (~48 kDa) from their annotated sequences (Fig. 7D). Furthermore, only the C-terminal peptides of the PioA homologs were detected by the mass spectrometry of these heme-stainable PioAB complexes (>170 kDa). Together, these results suggest that the PioA-like homologs in *R. vannelii* DSM 162 and *R. udaipurense* JA643, similar to the PioA of TIE-1, undergo postsecretory proteolysis of the N-terminal region to produce a smaller holo-PioAC.

A holo-PioAC-B complex as the cornerstone for photoferrotrophy and phototrophic EEU. Our biochemical and genetic studies show that the holo-PioAC-B complex is responsible for extracellular oxidation and electron uptake from both soluble Fe(II) and poised electrodes (that mimic insoluble iron minerals). The molecular mechanism of electron transfer by a porin and a single decaheme protein, as in the holo-PioACB complex in TIE-1, is not well understood. To investigate whether the dimensions of predicted models of holo-PioAC and PioB could support the formation of a holo-PioACB complex in TIE-1, we performed *in silico* analysis of PioAC and PioB using RaptorX, a web-based server for protein structure prediction (55). The predicted structure of holo-PioAC has the dimensions of ~100 by 40 by 30 Å (Fig. S7A and B), and the predicted structure of PioB has an estimated pore diameter of ~30 to 40 Å (Fig. S7C and D). Although cryo-electron microscopy (cryo-EM) or crystal structures will be necessary to validate the topology and structure of PioAC-B, these *in silico* structure predictions suggest a holo-PioAC-B model (Fig. 8A and Fig. S7E) where holo-PioAC inserts through the entire length of PioB and supports EEU across the OM (~40 to 50 Å in width) of TIE-1.

Conclusions. The results support a model (Fig. 8B) for the synthesis and function of key proteins involved in photoferrotrophy and phototrophic EEU whereby the cytoplasmic PioA precursor (540 aa) is exported to the periplasm via the Sec pathway with the concomitant removal of its signal peptide (1 to 40 aa) (56). The periplasmic apo-PioA (500 aa) is then proteolytically processed at the Ala243 site by a periplasmic/membrane protease to facilitate heme attachment and produce holo-PioAC (297 aa, 34 kDa). Holo-PioAC exists in two forms, in a free periplasmic form and in a complex with...
PioB. The free periplasmic form of holo-PioAC is required for the stability and incorporation of PioB in the OM. Based on the dependency of MtrB on MtrA for its OM localization (21, 47) and the discovery of MtrB with an opposite orientation in the OM (57), it was proposed that the folding and insertion of MtrB to the OM follow a different pathway than a typical /H9252-barrel OM porin in Shewanella (57). Here, we propose that the orientation of PioB (Fig. 8 and Fig. S7) and its folding and insertion to the OM in TIE-1 are similar to those of MtrB. The holo-PioA-B complex catalyzes electron uptake from both extracellular electron donors such as Fe(II) and poised electrodes (that mimic insoluble iron minerals). Subsequently, electrons from the holo-PioA-B complex are transferred to the photosynthetic reaction center in the inner cytoplasmic membrane, most likely via PioC (periplasmic soluble iron-sulfur protein), as previously proposed (33, 34).

Although the 500-residue apo-PioA (54 kDa) is most likely secreted into the periplasm, we did not detect this apo-PioA in TIE-1. This lack of detection could be due to the rapid proteolysis of apo-PioA in TIE-1. In E. coli, we observed both the 54-kDa apo-PioA and the 34-kDa holo-PioA (Fig. 1B and C), detecting heme attachment only in the 34-kDa C-terminal PioA. These results suggest that the proteolysis of apo-PioA occurs before heme maturation in both TIE-1 (and other photoferrotrophs) and E. coli. We could not detect a PioAB complex containing full-length apo-PioA; so heme maturation of PioA is likely important for formation of the PioAB complex. Our data demonstrate that the deletion of the N-terminal 200-aa region of apo-PioA does not abrogate production of holo-PioA in TIE-1. However, it causes a decrease in the cellular concentration of holo-PioA and holo-PioA-B complex, likely leading to a lag in photoferrotrophy (Fig. 2C) and an overall reduction in phototrophic EEU (Fig. 6A to C). The 200-aa region of the N terminus of PioA may play a role in maintaining the concentration of holo-PioA in TIE-1 at wild-type levels. This region could control the C-terminal PioA secretion rate and/or access to the cyt c maturation pathway (i.e., CcmF/H synthetase) (58, 59). The exact function of the N-terminal region will require further investigation. Although the ΔpioB mutant can produce soluble holo-PioA, it did not oxidize Fe(II) (Fig. 5A and B) or perform phototrophic EEU (Fig. 6A to C). This indicates that both of these processes in TIE-1 are catalyzed extracellularly by holo-PioA-B complex (33, 60).

![Diagram of holo-PioA-B synthesis and function](image-url)
The PioAB system potentially catalyzes electron transfer from extracellular solid substrates, and its broad distribution suggests that this phenotype may also be widespread (15, 21). Interestingly, we found that PioA-like (decahemes with extended N termini) homologs are conserved only in phototrophic bacteria (Fig. 7A and Fig. S2). Although MtrA-like decaheme homologs and the MtrCAB electron conduit have been previously characterized, these proteins are found in nonphototrophic organisms such as *Shewanella* that use extracellular minerals as their terminal electron acceptors. Typically, these proteins allow electrons produced inside the cytoplasm to be transferred to the terminal electron acceptor. However, the MtrCAB conduit in *Shewanella* requires its extracellular decaheme component, MtrC, or its paralogues (OmcA and MtrF) to reduce Fe(III) or to transfer electrons to electrodes (23–25). In contrast, PioA-like homologs are found in phototrophic bacteria, and the PioAB conduit (with no apparent extracellular decaheme cyt c component) likely allow electrons to be transferred across the outer membrane from a variety of extracellular electron donors [such as soluble Fe(II), insoluble iron, and insoluble iron mineral proxies such as poised electrodes] (14). Subsequently, PioC transfers electrons from the PioAB conduit to the photosynthetic reaction center (33, 34). The transferred electrons are utilized to produce NAD(P)H that is required for carbon fixation via the Calvin-Bassham-Benson cycle in TIE-1 (14).

MATERIALS AND METHODS

Bacterial strains and plasmids. A complete list of strains, plasmids, and primers used in this study are described in Table S2 in the supplemental material. Bacteria were grown using medium and culture conditions as previously described (14, 15), and details are provided in Text S1.

Fractionation and preparation of soluble and membrane fractions of TIE-1. Photoautotrophically grown *R. palustris* TIE-1 strains with hydrogen in fresh water (FW) medium (10) were used for fractionation. Fractionation was done as previously described (6) with some modifications (see Text S1 in the supplemental material for a complete description of the methods used).

Protein expression and purification. Affinity purification of proteins from *E. coli* and *R. palustris* TIE-1 were performed as previously described (61). *E. coli* RK103 and the *R. palustris* TIE-1 ΔpioA mutant were used as the expression hosts (see Text S1 in the supplemental material for a complete description of the methods used).

Antibody production and immunoblots. Antibody production and immunoblotting are described in detail in Text S1.

Cell suspension assay. All cell suspensions were performed in an anaerobic chamber (80% N₂, 15% CO₂, and 5% H₂; Coy Laboratory, Grass Lake, USA) at room temperature as previously described (6, 28, 62). TIE-1 and other strains were inoculated from a prephotoautotrophic culture in FW medium with hydrogen (80% H₂, 20% CO₂) and grown to an OD₆₆₀ of ~0.3. The cells were harvested by centrifugation (10,000 × g for 5 min), washed three times with HEPES buffer (50 mM HEPES, pH 7.0, 20 mM NaCl), resuspended, and concentrated to an OD₆₆₀ of ~0.9 in HEPES buffer supplemented with 1 mM Fe(II) and 5 mM nitrilotriacetic acid (NTA). One hundred microliters of the cell suspensions was aliquoted in the 96-well plate. To start the assay, the plate was placed under a 60-W incandescent light at a distance of 25 cm. Fe(II) measurement at the initial time point (time zero [T₀]) was taken before the light source was turned on. All of the Fe(II) measurements were performed using a ferrozine assay (63).

RNA-preparations and RT-qPCR. RNA-preparations and reverse transcription-quantitative PCR (RT-qPCR) were done as previously described (14, 15), and details are provided in Text S1.

Microfluidic bioelectrochemical cell and conditions. The microfluidic bioelectrochemical cells (μ-BECs) were assembled and used as previously described (14) (see Text S1 in the supplemental material for a complete description of the methods used).

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/mBio.02668-19.

TEXT S1, DOCX file, 0.02 MB.

FIG S1, PDF file, 0.8 MB.

FIG S2, PDF file, 1.4 MB.

FIG S3, PDF file, 0.9 MB.

FIG S4, PDF file, 1.1 MB.

FIG S5, PDF file, 0.8 MB.

FIG S6, PDF file, 0.9 MB.

FIG S7, PDF file, 2.7 MB.
ACKNOWLEDGMENTS

We thank the following members of the Washington University community: Joseph Jez, Petra Levin, Joshua Blodgett, Rajesh Singh, Michael Guzman, Tahina Ranaivoarisoa, and Wei Bai for their helpful comments during this work; Josh Kim for technical assistance; and Marta Węgorzewska for her careful reading of the manuscript. We thank Bradley Evans and Shin-Cheng Tzeng from the Proteomics and Mass Spectrometry Facility, Donald Danforth Plant Science Center.

This work was supported by the following grants to A.B.: The David and Lucile Packard Foundation Fellowship (201563111), a U.S. Department of Energy grant (number DESC0014613), and a U.S. Department of Defense, Army Research Office grant (number W911NF-18-1-0037). A.B. and J.M.M. were also funded by a Collaboration Initiation Grant, an Office of the Vice Chancellor of Research Grant, and an International Center for Energy, Environment and Sustainability Grant from Washington University in St. Louis. R.G.K. is supported by NIH grant GM47909.

REFERENCES

1. Widdel F, Schnell S, Heising S, Ehrenreich A, Assmus B, Schink B. 1993. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362:834–836. https://doi.org/10.1038/362834a0.

2. Crowe SA, Jones C, Katsev S, Magen C, O’Neill AH, Sturm A, Canfield DE, Haffner GD, Micu A, Sundby B, Fowle DA. 2008. Photoferrotrrophic thrive in an Archean Ocean analogue. Proc Natl Acad Sci U S A 105:15938–15943. https://doi.org/10.1073/pnas.0805313105.

3. Llirós M, García-Armisen T, Darchambeau F, Morana C, Triadó-Margarit X, Inceoğlu O, Borrego CM, Bouillon S, Servais P, Borges AV, Descy JP, Canfield DE, Crowe SA. 2015. Pelagic photoferrotrrophy and iron cycling in a modern ferruginous basin. Sci Rep 5:13803. https://doi.org/10.1038/srep13803.

4. Otte JM, Harter J, Lauffer K, Blackwell N, Straub D, Kaplan A, Kleindienst S. 2018. The distribution of active iron-cycling bacteria in marine and freshwater sediments is decoupled from geochemical gradients. Environ Microbiol 20:2483–2499. https://doi.org/10.1111/1462-2920.14260.

5. Bryce C, Blackwell N, Schmidt C, Otte J, Huang YM, Kleindienst S, Tomaszewski E, Schad M, Warter V, Peng C, Byrne JM, Kappler A. 2018. Microbial anaerobic Fe(III) oxidation—ecology, mechanisms and environmental implications. Environ Microbiol 20:3462–3483. https://doi.org/10.1111/1462-2920.14328.

6. Jiao Y, Newman DK. 2007. The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1. J Bacteriol 189:1765–1773. https://doi.org/10.1128/JB.00776-06.

7. Byrne JM, Klueglen N, Pearce C, Rosso KM, Appel E, Kappler A. 2015. Redox cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science 347:1473–1476. https://doi.org/10.1126/science.aaa4834.

8. Olson JM, Blankenship RE. 2004. Thinking about the evolution of photosynthesis. Photosynth Res 80:373–386. https://doi.org/10.1023/B:PRES.0000030457.06495.83.

9. Canfield DE, Rosing MT, Bjerrum C. 2006. Early anaerobic metabolisms. In Canfield DE, Crowe SA. 2015. Pelagic photoferrotrrophy and iron cycling of Fe(II) and Fe(III) in magnetite by Fe-metabolizing bacteria. Science 347:1473–1476. https://doi.org/10.1126/science.aaa4834.

10. Jez, Petra Levin, Joshua Blodgett, Rajesh Singh, Michael Guzman, Tahina Ranaivoarisoa, and Wei Bai for their helpful comments during this work; Josh Kim for technical assistance; and Marta Węgorzewska for her careful reading of the manuscript. We thank Bradley Evans and Shin-Cheng Tzeng from the Proteomics and Mass Spectrometry Facility, Donald Danforth Plant Science Center.

This work was supported by the following grants to A.B.: The David and Lucile Packard Foundation Fellowship (201563111), a U.S. Department of Energy grant (number DESC0014613), and a U.S. Department of Defense, Army Research Office grant (number W911NF-18-1-0037). A.B. and J.M.M. were also funded by a Collaboration Initiation Grant, an Office of the Vice Chancellor of Research Grant, and an International Center for Energy, Environment and Sustainability Grant from Washington University in St. Louis. R.G.K. is supported by NIH grant GM47909.

TABLE S1

Document	Size
TABLE S1	0.01 MB
TABLE S2	0.02 MB
cytochrome oxidase, and rusticyanin in Thiobacillus ferrooxidans ATCC 13020. Appl Environ Microbiol 65:4781–4787.
27. Blake R, Shute EA, Waskovsky J, Harrison AP. 1992. Respiratory compo-
nents in acidophilic bacteria that respire on iron. Geomicrobiol J 10:
173–192. https://doi.org/10.1080/01490459209377919.
28. Yamanaka T, Fukumori Y. 1995. Molecular aspects of the electron trans-
fer system which participates in the oxidation of ferrous ion by Thiobia-
cillus ferrooxidans. FEBS Microbiol Rev 17:401–413. https://doi.org/10.
1128/MBR.15.3.287-312.1995.
29. Croal LR, Jiao Y, Newman DK. 2007. The fox operon from Rhodobacter
strain SW2 promotes phototrophic Fe(II) oxidation in Rhodobacter
capsulatus SB1003. J Bacteriol 189:1774–1782. https://doi.org/10.
1128/JB.01395-06.
30. Yarzábal A, Brasseur G, Ratouchniak J, Lund K, Lemesle-Meunier D,
Feissner RE, Richard-Fogal CL, Frawley ER, Loughman JA, Earley KW,
Bird LJ, Saraiva IH, Park S, Calçada EO, Salgueiro CA, Nitschke W, Louro
Liu J, Wang Z, Belchik SM, Edwards MJ, Liu C, Kennedy DW, Merkley ED,
Noinaj N, Kuszak AJ, Buchanan SK. 2015. Heat modifiability of outer
membrane proteins in Rhodobacter capsulatus. Protein Expr Purif 69:
137–146. https://doi.org/10.1016/j pepp.2009.08.008.
31. Sutherland MC, Tran NL, Tillman DE, Jarodsky JM, Yuan J, Kranz RG. 2018.
Structure-function analysis of the bifunctional CcsBA heme exporter and
cytochrome c synthetase. mbio 9:e02134-x. https://doi.org/10.1128/
mbio.asm.org.9.1.e02134-18.
32. Schickberger M, Bücking B, Schuetz B, Heide H, Gescher J. 2011. In-
volvement of the Shewanella oneidensis decaheme cytochrome MtrA in
the periplasmic stability of the β-barrel protein MtrB. Appl Environ
Microbiol 77:1520–1523. https://doi.org/10.1128/AEM.01201-10.
33. Lovley DR. 2008. Extracellular electron transfer: wires, capacitors, iron
lungs, and more. Geobiology 6:225–231. https://doi.org/10.1111/j.1472.
4699.2008.00148.x.
34. Katzke N, Arvani S, Bergmann R, Circolone F, Markert A, Svensson V,
Jaeger KE, Heck A, Drepper T. 2010. A novel T7 RNA polymerase depen-
dent expression system for high-level protein production in the pho-
totropic bacterium Rhodobacter capsulatus. Protein Expr Purif 69:
137–146. https://doi.org/10.1016/j pepp.2009.08.008.
35. Berry EA, Trumpower BL. 1987. Simultaneous determination of hemes a,
b, and c from pyridine hemochrome spectra. Anal Biochem 161:1–15.
https://doi.org/10.1016/0003-2697(87)90643-9.
36. Schickberger M, Bücking B, Schuetz B, Heide H, Gescher J. 2011. In-
volvement of the Shewanella oneidensis decaheme cytochrome MtrA in
the periplasmic stability of the β-barrel protein MtrB. J Bacteriol 189:
1774–1782. https://doi.org/10.1128/JB.01395-06.
37. Feissner R, Xiang Y, Kranz RG. 2003. Chemiluminescent-based methods
and analysis of haem delivery pathways in acidophilic bacteria that respir-
ate on iron. Geomicrobiol J 10:173–192. https://doi.org/10.1080/01490459209377919.
38. Sakonpairoj S, Saas CC, Rooney WA. 2016. Electron transfer by cyto-
chrome c2 and two redox states of cytochrome oxidase, and rusticyanin in
Thiobacillus ferrooxidans ATCC 13020. Appl Environ Microbiol 184:313–317.
https://doi.org/10.1128/jb.01395-06.
39. Liu J, Wang Z, Belchik SM, Edwards MJ, Liu C, Kennedy DW, Merkley ED,
Lipton MS, Butt JN, Richardson DJ, Zachara JM, Fredrickson JK, Rosso KM,
Shi L. 2012. Identification and characterization of MtxA: a decaheme
C2 type cytochrome of the neutrophilic Fe(II)-oxidizing bacterium Sid-
erovadns lithotrophicus ES-1. Front Microbiol 3:37. https://doi.org/10.
3389/fmicb.2012.00037.
40. Jiao Y, Kaplan A, Croal LR, Newman DK. 2005. Isolation and charac-
terization of a genetically tractable phototrophic Fe(II)-oxidizing bac-
terium, Rhodopseudomonas palustris strain TIE-1. Appl Environ
Microbiol 71:4487–4496. https://doi.org/10.1128/AEM.71.4487-4496.2005.
41. Bird LJ, Bonnefoy V, Newman DK. 2011. Bioenergetic challenges of
microbial iron metabolisms. Trends Microbiol 19:330–340. https://doi.org/10.
1006/tim.2011.05.001.
42. Bird LJ, Saraiva IH, Park S, Calçada EO, Salgueiro CA, Nitschke W, Louro
RO, Newman DK. 2014. Nonredundant roles for cytochrome c2 and two
high-potential iron-sulfur proteins in the photoferrothroph Rhodopseu-
domonas palustris TIE-1. J Bacteriol 196:850–858. https://doi.org/10.1128/
JB.00843-13.
43. Bose A, Newman DK. 2011. Regulation of the phototrophic iron oxida-
tion (pio) genes in Rhodopseudomonas palustris TIE-1 mediated by the
global regulator, FixK. Mol Microbiol 79:63–75. https://doi.org/10.1111/j.
1365-2958.2010.07430.x.
44. Feisssner RE, Richard-Fogal CL, Frawley ER, Loughman JA, Earley KW,
Kranz RG. 2006. Recombinant cytochromes c2 and two redox states of
cytochrome oxidase, and rusticyanin in Thiobacillus ferrooxidans ATCC
13020. Appl Environ Microbiol 65:563–577. https://doi.org/10.1128/1365-2958.2006.05132.x.
45. Feisssner R, Xiang Y, Kranz RG. 2003. Chemiluminescent-based methods
to detect subpicomole levels of c-type cytochromes. Anal Biochem 315:
90–94. https://doi.org/10.1016/s0003-2697(02)00658-9.
46. Hancock R, Carey AM. 1979. Outer membrane of Pseudomonas aeruginosa:
heat-2-mercaptoethanol-modifiable proteins. J Bacteriol 140:902–910.
47. Beher MG, Schnaitman CA, Pugsley AP. 1980. Major heat-modifiable
outer membrane protein in gram-negative bacteria: comparison with the
ompA protein of Escherichia coli. J Bacteriol 143:906–913.
48. Poonman J, De Marie S, Zanen H. 1980. Variability of low-molecular-
weight, heat-modifiable outer membrane proteins of Neisseria meningi-
tis. Infect Immun 30:642–648.
49. Kent NE, Wniesniski BL. 1983. Heat modifiability and detergent solubility
of outer-membrane proteins of Rhodobacter sphaeroides. J Bacteriol
156:956–961.
50. Noinaj N, Kusazak AJ, Buchanan SK. 2015. Heat modifiability of outer
membrane proteins from Gram-negative bacteria. Methods Mol Biol
1329:51–56. https://doi.org/10.1007/978-1-4939-2871-2_4.
51. Bagos PG, Nikolou EP, Liakopoulos TD, Tsirigos KD. 2010. Combined
prediction of Tat and Sec signal peptides with hidden Markov models.
Bioinformatics 26:2811–2817. https://doi.org/10.1093/bioinformatics/btq230.
52. Katze N, Arvani S, Bergmann R, Circolone F, Markert A, Svensson V,
Jaeger KE, Heck A, Drepper T. 2010. A novel T7 RNA polymerase depen-
dent expression system for high-level protein production in the pho-
tropic bacterium Rhodobacter capsulatus. Protein Expr Purif 69:
137–146. https://doi.org/10.1016/j pepp.2009.08.008.