Open access

Diagnosis of cardiac allograft vasculopathy in heart transplant patients using a pixelated stress perfusion analysis

Alexander Benjamin Hanna

BACKGROUND
Cardiac allograft vasculopathy (CAV) is a major cause of morbidity and mortality in heart transplant patients. CAV accounts for 17% of deaths within 3 years of transplant and is detectable by coronary angiography in 50% of patients within 10 years of transplant.1 2 The current gold standard for detecting CAV is by coronary angiography, which is an invasive procedure in which dye is injected into blood vessels of the heart and X-ray images are taken. This presents significant risks to patients such as bleeding, infection and radiation exposure. Cardiac MRI, on the other hand, is non-invasive and does not expose the patient to harmful radiation. Using cardiac MRI to detect CAV would thus provide a safer alternative to coronary angiography and reduce iatrogenic morbidity. This study sought to demonstrate that a new software programme could analyse MRI scans to reliably detect CAV.

DESIGN
This retrospective cohort study included 49 patients with an age range of 18–89 years old who were being evaluated for post-transplant rejection. As part of the current standard of care, these patients had routine cardiac MRI scans. These scans were run through the new software to measure blood flow in the heart muscle, which is reduced in CAV. Out of 49 scans, only 20 had an arterial input function (AIF) curve, which is a control necessary for the software to function. These 20 scans were then run through the software, but only two produced data that could quantify blood flow in the heart. The software represents this data as perfusion quantification (PQ) maps. The 18 scans that did not produce PQ maps were analysed for problems that would result in poor data. This quality control analysis included measuring the AIF curve, evaluating the amount of patient motion in each MRI scan, and assessing the ECG data which should have matched each heart beat to a time point in the MRI scan.

RESULTS
Out of the 20 analysed cases, only two generated good quality PQ maps (figure 1). During quality control analysis of the remaining 18 cases, a pattern of problems was found. Seven of these cases had poor AIF curves. For example, sometimes the AIF curve had a large second peak that suggested too high of a dose of contrast was administered. In other instances, the MRI scan was started halfway through the dose of contrast and so only half of an AIF curve was produced (figure 2). Eleven of the cases had problems with the ECG. The ECG is used to match the time of each heart beat with a time point in the MRI. In many instances, the timing of the ECG was incorrectly matched with the timing of the MRI. Finally, all of the 18 cases had excessive patient motion. This was because patients were instructed to hold their breath while the MRI was scanning, but many patients were unable to do so and took a breath mid-scan. The information learned from the quality control analysis resulted in recommendations to the host institution on how to improve scanning technique and led to several lessons learned about quality improvement.

LESSONS AND LIMITATIONS
Three main lessons were learnt from this study that can be broadly applied to other projects on quality improvement using retrospective cohorts.

Lesson 1: Verify that the data from control groups is of good quality before analysing the rest of the study. In our project, we should have checked if the AIF curves demonstrated good signal quality before running each study through the software. This would have saved...
time spent on troubleshooting the software and allowed
us to realise that our sample size would no longer be
sufficient. We could have then recruited new subjects,
ensured the AIF signal was good, and continued toward
our initial goal.

Lesson 2: Anticipate complications, particularly when
using older data sets. In this project, we knew that some
MRI scans were taken more than a decade ago. At that
time, patients were instructed to hold their breath during
scans and frequently patients needed to take a breath
mid-scan, resulting in motion that renders the data useless.
We should have anticipated this could be a problem and
screened for scans that had too much motion.

Lesson 3: Seek peer review early and avoid the sunken
cost fallacy. It was clear early on that several of the MRI
scans were failing to generate PQ maps, but the underly-
ing reasons were unknown. We decided to complete
analysis of all the remaining scans in the hope that some
would turn out better. However, had we conducted quality
analysis earlier and sought the opinions of experts in the
field, the errors with AIF curves and ECG timing would
have been found sooner, and time would not have been
lost on analysing all of the remaining poor-quality scans.

CONCLUSION
This study initially sought to demonstrate that CAV could
be detected by MRI and thus provide a safer alternative to
invasive coronary angiography. However, only two out of 49
MRI scans yielded good quality data. A quality control anal-
ysis revealed several issues with the MRI scans. This included
poor AIF curves which were necessary control data, incor-
crect ECG timing, and excessive patient motion during MRI
scans. This led to recommendations to the host institution
on how to improve scanning technique, such as by having
patients breathe freely during scans, having nurses manu-
ally check the timing of the ECG with the MRI, and on the
best dose of contrast used to generate the AIF curve. In
addition, several lessons were learned that could be broadly
applied to quality improvement projects. Moving forward,
the recommendations and lessons from this project should
provide a framework for a future study on our initial goal.

Figure 1 Perfusion quantification (PQ) map caption: these two
PQ maps show blood flow through the heart muscle during rest
(left) and stress perfusion (right). The colours represent flow rate with warmer, orange colours representing high flow rate and
cooler, green colours representing low flow rate. AIF, arterial input function.

Figure 2 Arterial input function (AIF) curve caption: these
two graphs demonstrate good-quality and poor-quality AIF
curves. The good quality curve on the left has sharp peaks
and the ratio of first pass peak to the valley between first
and second pass is appropriate. The poor-quality curve on
the right may appear smooth, but has a ratio of first pass
to valley that is too small. In addition, the ratio of first pass
peak to second pass peak is too high. These two findings
on the poor-quality AIF suggest that the first pass was
severely truncated. The cause of this type of problem is most
commonly related to the dose of contrast used.

Collaborators James Carr, Andrew Arai.
Contributors ABH: Put together the study, analysed the data, designed the figures
and wrote the manuscript.

Funding The authors have not declared a specific grant for this research from any
funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Open access This is an open access article distributed in accordance with the
Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which
permits others to distribute, remix, adapt, build upon this work non-commercially,
and license their derivative works on different terms, provided the original work is
properly cited, appropriate credit is given, any changes made indicated, and the use
is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.
REFERENCES

1. Lund LH, Edwards LB, Kucheryavaya AY, et al. The Registry of the International Society for Heart and Lung Transplantation: thirtieth official adult heart transplant report--2013; focus theme: age. *J Heart Lung Transplant* 2013;32:951–64.

2. Yusen RD, Edwards LB, Dipchand AI, et al. The registry of the International Society for heart and lung transplantation: thirty-third adult lung and heart-lung transplant Report-2016; focus theme: primary diagnostic indications for transplant. *J Heart Lung Transplant* 2016;35:1170–84.