Analysis of SiC grain size variation and NaCl concentration on the corrosion susceptibility of AA1070 aluminium matrix composites

Roland Tolulope Loto¹ and Phillip Babalola¹

Abstract: Analysis of the impact SiC grain size at 10% wt. on the corrosion resistance of AA1070 aluminium matrix composites was studied in Cl⁻ anion containing dilute H₂SO₄ solution. Studies were performed with potentiodynamic polarization and open circuit potential (OCP) measurement. Optical microscopic studies were performed on the corroded matrix composites. Results show that the corrosion susceptibility of the composites increased proportionately with increase in Cl⁻ ion concentration. The matrix composites at 3 um and 9 um SiC grain size exhibited the lowest corrosion rate values in comparison to the base alloy and composites with larger SiC grain sizes. OCP values for the matrix composite at 0 µm SiC in the acid solution (0.25 M H₂SO₄/0% and 0.25% NaCl) was the most electronegative due to lower thermodynamic stability than matrix composites with larger SiC grain sizes. Optical microscopic studies show that corrosion was mainly localized for all specimens tested due to pitting at low Cl⁻ ion concentration in comparison to general corrosion for the metal substrate and total destruction of the matrix composite morphology at higher chloride concentration. Results of statistical analysis through ANOVA showed that SiC grain sizes are more...
relevant than NaCl concentration in evaluation of the corrosion susceptibility of the matrix composite.

Subjects: Chemistry; Material Science; Materials Science

Keywords: corrosion; silicon carbide; aluminium; sodium chloride; composite

1. Introduction
Corrosion resistance of aluminium alloys is the product of interfacial oxide evolution; however, the oxide is subject to localized breakdown resulting in pitting and general and crevice corrosion of the substrate metal. The major limitation in the application of aluminium alloys for high-performance tribological application in extreme environments is their poor wear properties for engineering applications such as low hardness, poor degradation resistance and weldability, thus the need to develop more efficient materials with greater efficiency without reducing the strength to weight ratio (Sinclair & Gregson, 1997). Aluminium silicon matrix composites (Al-SiC) are new generation of engineering materials for applications such as in automobiles, aeronautics, electronics, recreation and military industries (Chawla, 2013; Lees, Dhihra, & McCullough, 2005; Surappa, 2003). They consist of SiC grains scattered within aluminium alloy substrate. The desired mechanical properties of aluminium and silicon are admixed to give matrix composites with superior strength, higher specific modulus, enhanced rigidity, lighter weight, lower coefficient of thermal expansion, higher thermal conductivity, customized electrical properties, superior abrasion and damping properties than their unreinforced counterparts (Mohendra, Arulshri, & Iyandurai, 2013; Neelima, Mahesh, & Selvaraj, 2013; Singh & Singla, 2012; Singla, Dwivedi, Singh, & Chawla, 2009). Matrix composites are basically an admixture of contrasting metals and intermetallic compounds ingrafted within the substrate metal. The characteristics of the composites is subject to the individual characteristics of the intermetallic phases, their corresponding volume, grain dimension and orientation within the matrix (George, Totten, & Scott, 2003; William, 2007). They transmit applied loads to scattered reinforcements secured with the matrix (Pai, Rajan, & Pillai, 2004). Silicon carbide (SiC) is a chemical combination of silicon and carbon elements. It possesses excellent resistance to acids, alkalis and liquefied NaCl till 800°C. It forms a chemically resistant silicon oxide film in air at 1,200°C, with appreciable applicability till 1,600°C. Dispersion of SiC substituents within the matrix material is dependent on properties such as deformation and flow of the molten matrix, technique of grain incorporation and their interaction during the admixture process (Hashim, Looney, & Hashmi, 2002).

The major drawback of Al-SiC is the extent to which the intermetallic constituents affect the resistance of the aluminium matrix to interfacial degradation. Addition of SiC can result in the presence of discontinuities, inclusions and defects in the protective film exposing more areas to corrosion (Trowsdale et al., 1996). The resulting microstructural heterogeneity increases the corrosion susceptibility of Al-SiC due to galvanic effect and interfacial issues. Their excellent heat conduction and small expansion coefficients have resulted in applications which expose them to astringent conditions (Bakkar & Neubert, 2007; Candan & Biligic, 2004; Griffiths & Turnbull, 1994). Processing specifications also significantly affect the composite microstructure and, consequently, their corrosion behaviour. Previous research on modification of SiC content on aluminium matrix composite in H2SO4 solution showed that the presence of SiC at low chloride concentration exposed the matrix material to greater corrosion attack (Loto & Babalola, 2017). Result also showed that SiC at the lowest content of 10% had the highest corrosion resistance in acid chloride solution. This investigation focuses on the effect of SiC grain size variation with respect to chloride concentration on the corrosion susceptibility of AA1070 aluminium. The mechanical properties of aluminium alloys infused with nonmetallic particulates are influenced by the grain size and the volume fraction. Due to lack of improvement in strength and porosity of Al-SiC, when the volume fraction of silicon carbide exceeds 10%, this research is limited to 10% silicon carbide content added in the aluminium alloy as reinforcement.
2. Experimental methods

2.1. Materials and preparation
AA1070 aluminium metal (AA1070) was purchased from Aluminium Rolling Mills, Ota, Ogun State, Nigeria. Energy-dispersive spectrometer analysis at Materials Characterization Laboratory, Department of Mechanical Engineering, Covenant University, Ota, Ogun State, Nigeria, gave ostensible (wt.%) constitution shown in Table 1. Silicon carbide (SiC) with ostensible (wt.%) constitution shown in Table 2 and of 320 grit size was sourced from Logitech, UK, and added to AA1070 at weight percentages of 10%. A tilting furnace of 20 kg capacity was used to melt AA1070 for 45 min at 650ºC. SiC was added to molten AA1070, stirred, shaped into moulds (AA1070/SiC) and cooled for 24 h. AA1070/SiC was sectioned mechanically and metallographically prepared using silicon carbide grinding papers (80, 320, 600, 800 and 1,000 grit) and cleansed with deionized H₂O and propanone for electrochemical tests. Analar grade sodium chloride purchase from Titan Biotech, India, was produced in proportional volumes of 0%, 0.25%, 0.5%, 0.75% and 1% in 200 mL of 0.25 M H₂SO₄ solution, prepared from standard grade of H₂SO₄ acid (98%) with deionized H₂O. Microhardness test, tensile test and electrical conductivity and resistivity tests were performed on AA1070/SiC specimens as shown in Table 3. Microhardness test of AA1070/SiC specimens were performed with LECO 700AT microhardness tester with a load of 492.3mN and a waiting time of 10 s (ASTM Standard E 384). Six tests were performed for every specimen and the mean value was used as the microhardness value. Instron (Model 3369) Universal Testing Machine with 30 kN load (ASTM International E8/E8M-09) was used to perform tensile test on AA1070/SiC specimens. The test specimens with mean cross-sectional dimensions of 5 mm by 10 mm and gauge length of 25 mm were produced and tested five successive times with the measurement taken (modulus) for each sample and the mean value was used as the parameter value. Electrical conductivity and resistivity test was performed on AA1070/SiC specimen with Keithley Instruments Model 2400.

Table 1. Percentage constitution of AA1070

Element symbol	Fe	Si	Mn	Cu	Zn	Ti	Mg	Pb	Sn	Al
% constitution	0.232	0.078	0.000	0.0006	0.0016	0.006	0.0027	0.0012	0.007	99.66

Table 2. Percentage constitution of SiC

Element symbol	C	Al	Fe	Si	SiO₂	Magnetic Fe	SiC
% constitution	0.50	0.30	0.20	0.80	0.0016	0.04	97.6

Table 3. AA1070/SiC test results on modulus of elasticity, hardness values and electrical conductivity

S/N	SiC grain size (µm) of AA1070/SiC samples	Modulus (N/mm²)	Hardness (HV)	Electrical Conductivity (MV/m)
1	0	402.413	19.6	70.254
2	3	645.463	35.2	50.271
3	9	990.415	34.3	56.635
4	29	760.357	26.2	48.963
5	45	760.357	26.2	48.963
Each specimen with cross-sectional area of 10 mm by 10 mm with length of 100 mm were prepared for testing in 4-point probe set up machine. The working voltage is 20 mV. Voltage, current, resistivity and conductivity were obtained from this setup.

Polarization tests were conducted 37°C with a triple electrode consisting of platinum counter electrodes, Ag/AgCl reference electrodes and embedded AA1070/SiC working electrode with visible surface area of 1 cm² with a transparent/aerated cell accommodating 200 mL of the test electrolyte media and connected to Digi-Ivy 2311 potentiostat. Anodic/cathodic potentiodynamic polarization curves were produced at 0.0015V/s scan rate between set potentials of −1.25V and +1.5V. Corrosion current density (j_c) and corrosion potential (E_c) values were determined using the Tafel extrapolation method. The corrosion rate (C_R) and the inhibition efficiency (η, %) were calculated from the formulae below:

\[
C_R = \frac{0.00327 \times j_c \times E_q}{D}
\]

\[j_c\] is the current density (A/cm²), \(D\) is the density in (g/cm³); \(E_q\) is the equivalent weight (g) and 0.00327 is the corrosion rate constant (mm/y). Open circuit potential (OCP) values were acquired at 0.05 V/s step potential for 1,500 s. Optical images of AA1070/SiC morphology was studied after corrosion with Omax trinocular metallurgical microscope using ToupCam analytical software.

The statistical importance of SiC grain size and chloride concentration on the corrosion rate of AA1070/SiC was studied through analysis of variance (ANOVA) at 95% confidence (significance level, \(\alpha = 0.05\)) with respect to the following equations.

The sum of squares among columns (NaCl concentration)

\[
SS_c = \frac{\sum T^2}{nr} - \frac{\bar{T}^2}{N}
\]

Sum of squares among rows (SiC grain size)

\[
SS_r = \frac{\sum T^2}{nc} - \frac{\bar{T}^2}{N}
\]

Total sum of squares

\[
SS_{Total} = \sum x^2 - \frac{\bar{x}^2}{N}
\]

3. Result and discussion

3.1. Potentiodynamic polarization studies

Anodic–cathodic polarization plots for AA1070/SiC with specific SiC grain size (3µm, 9 µm, 29 µm and 45 µm SiC grain size) in 0.25M H₂SO₄ solution at 0%, 0.25%, 0.5%, 0.75% and 1% NaCl concentration are shown from Figure 1(a) to 1(e). Results of corrosion rate, corrosion potential, corrosion current density, anodic and cathodic Tafel constants and polarization resistance obtained from the polarization test are shown in Table 4. Observation of AA1070 corrosion at 0 µm SiC grain size in 0.25M H₂SO₄/0%, 0.25%, 0.5%, 0.75% and 1% NaCl solution shows a relative increase in corrosion rate of AA1070 with increase in Cl⁻ concentration from 1.185 mm/y at 0% NaCl to 2.251 mm/y at 1% NaCl. AA1070 generally exhibits good corrosion resistance in astringent conditions due to the evolution of a protective oxide on the metal surface. However, Cl⁻ ions tend to cause instability and possible degradation of the passive film, leading to breakdown and pitting corrosion of the metal. The experiment was conducted in aerated containers; thus it can be concluded that the aluminium metal without SiC content was readily polarized in the acid chloride solution. The chlorides probably contributed to the formation of soluble chlorinated aluminium
hydroxide in the presence of oxygen, which hindered the formation and or repassivation of the protective oxide.

Addition of 3 µm and 9 µm SiC grain size to AA1070 matrix at 0% NaCl concentration improved the corrosion resistance of AA1070/SiC with relative reduction in corrosion rate in comparison to values obtained at 0 µm SiC grain size. The corrosion rate decreased to 0.386 mm/y and 0.287 mm/y from 1.185 mm/y as earlier mentioned. Further increase in SiC grain size to 29 µm and 54 µm did not confer a positive effect on the corrosion rate of AA1070/SiC as the corrosion rates increased to 1.479 mm/y and 1.715 mm/y, respectively. This observation is probably due to changes in the microstructural and interfacial properties between the enlarged SiC grain size and AA1070 matrix. Furthermore, addition of the increased SiC grain size could lead to coarse discontinuities in the protective oxide film, thereby causing an increase in number of sites prone to corrosion (Aziz, Qi, & Min, 2009; Trowsdale et al., 1996). This assertion is confirmed from the observation of Brinell hardness values on Table 3 which shows that at 3 µm and 9 µm SiC particle size the HV value of AA1070/SiC matrix composite increases from 19.6 HV at 0 µm to 35.2 HV and 34.3 HV, respectively. However, increase in the SiC particle size to 29 µm and 45 µm caused a significant decrease in Brinell hardness value to 26.2 µm, respectively. The higher HV values obtained at 3 µm and 9 µm SiC particle size are due to decrease in porosity within the matrix composite microstructure and hence less discontinuities on the oxide protective film of the composite (Akin et al., 2009; Mashhadi, Khaksario, & Sofi, 2015). Significant cathodic shift was observed on the polarization plots of Figure 1(a) on addition of SiC compound (3 µm, 9 µm, 29 µm and 45 µm SiC grain sizes) to AA1070 in 0.25M H₂SO₄/0% NaCl due to dominant hydrogen evolution and oxygen reduction reactions on the composite surface. Cathodic polarization is responsible for the destabilization of the oxide film during the activation step, leading to selective dissolution of AA1070/SiC. This reaction involves alkalinization of the aluminium/solution boundary during oxygen reduction causing chemical dissolution of the oxide layer (Baeck and Frankel, 2003; Serdechnova, Volavitch, Brisset, & Ogle, 2014).
Sample	SiC Grain size (µm)	Corrosion rate (mm/y)	Corrosion current (A)	Corrosion current density (A/cm²)	Corrosion potential (V)	Polarization resistance, R_p (Ω)	Cathodic Tafel slope, B_c (V/dec)	Anodic Tafel slope, B_a (V/dec)
A	0	1.185	1.09E-04	1.09E-04	-0.581	236.20	-6.739	6.518
B	3	0.386	3.54E-05	3.54E-05	-0.466	725.4	-7.199	5.131
C	9	0.287	2.63E-05	2.63E-05	-0.417	976.00	-6.857	7.365
D	29	1.479	1.36E-04	1.36E-04	-0.420	189.20	-8.595	4.741
E	45	1.715	1.58E-04	1.58E-04	-0.438	138.90	-7.033	4.213

0.25% NaCl

Sample	SiC Grain size (µm)	Corrosion rate (mm/y)	Corrosion current (A)	Corrosion current density (A/cm²)	Corrosion potential (V)	Polarization resistance, R_p (Ω)	Cathodic Tafel slope, B_c (V/dec)	Anodic Tafel slope, B_a (V/dec)
A	0	1.236	1.14E-04	1.14E-04	-0.519	349.30	-7.847	9.131
B	3	1.033	9.49E-05	9.49E-05	-0.421	268.60	-3.466	18.960
C	9	1.153	1.06E-04	1.06E-04	-0.459	204.10	-9.377	10.380
D	29	2.727	2.51E-04	2.51E-04	-0.476	102.60	-9.484	9.933
E	45	3.178	2.92E-04	2.92E-04	-0.487	62.30	-8.111	8.105

0.5% NaCl

Sample	SiC Grain size (µm)	Corrosion rate (mm/y)	Corrosion current (A)	Corrosion current density (A/cm²)	Corrosion potential (V)	Polarization resistance, R_p (Ω)	Cathodic Tafel slope, B_c (V/dec)	Anodic Tafel slope, B_a (V/dec)
A	0	1.315	1.21E-04	1.21E-04	-0.489	212.60	-6.180	16.707
B	3	1.143	1.05E-04	1.05E-04	-0.505	223.21	-7.775	22.130
C	9	1.242	1.14E-04	1.14E-04	-0.575	206.70	-7.251	19.450

(Continued)
Table 4. (Continued)

Sample	SiC Grain size (µm)	Corrosion rate (mm/y)	Corrosion current (A)	Corrosion current density (A/cm²)	Corrosion potential (V)	Polarization resistance, R_p (Ω)	Cathodic Tafel slope, B_c (V/dec)	Anodic Tafel slope, B_a (V/dec)
D	29	1.595	1.47E-04	1.47E-04	−0.577	185.40	−6.068	13.280
E	45	1.687	1.55E-04	1.55E-04	−0.559	142.60	−7.504	13.350
	0.75% NaCl							
Sample	SiC Grain size (µm)	Corrosion rate (mm/y)	Corrosion current (A)	Corrosion current density (A/cm²)	Corrosion potential (V)	Polarization resistance, R_p (Ω)	Cathodic Tafel slope, B_c (V/dec)	Anodic Tafel slope, B_a (V/dec)
A	0	2.073	1.90E-04	1.90E-04	−0.533	217.55	−6.099	28.680
B	3	1.797	1.65E-04	1.65E-04	−0.525	261.70	−7.950	22.490
C	9	1.965	1.81E-04	1.81E-04	−0.511	237.21	−7.661	19.100
D	29	2.795	2.57E-04	2.57E-04	−0.541	179.73	−5.309	14.070
E	45	3.065	2.82E-04	2.82E-04	−0.545	125.50	−7.159	17.400
	1% NaCl							
Sample	SiC Grain size (µm)	Corrosion rate (mm/y)	Corrosion current (A)	Corrosion current density (A/cm²)	Corrosion potential (V)	Polarization resistance, R_p (Ω)	Cathodic Tafel slope, B_c (V/dec)	Anodic Tafel slope, B_a (V/dec)
A	0	2.251	2.07E-04	2.07E-04	−0.520	124.30	−5.678	22.840
B	3	1.939	1.78E-04	1.78E-04	−0.526	199.55	−8.071	21.33
C	9	2.036	1.87E-04	1.87E-04	−0.505	234.84	−7.301	18.396
D	29	2.919	2.68E-04	2.68E-04	−0.493	96.20	−7.540	19.111
E	45	3.261	3.00E-04	3.00E-04	−0.509	78.80	−7.343	15.310
At 0.25%–1% NaCl concentration, the corrosion rates of AA1070/SiC at 3 µm and 9 µm SiC grain sizes are marginally lower than the corrosion rate of AA1070/SiC at 0 µm SiC grain size; however, a proportionate increase in value at these SiC grain sizes (3 µm and 9 µm) was observed with increase in NaCl concentration. As earlier observed, AA1070/SiC at 29 µm and 45 µm SiC grain size significantly reduced the corrosion resistance of AA1070/SiC in 0.25 M H₂SO₄/0.25%–1% NaCl. Their corrosion rates were observed to increase with increase in NaCl concentration. Cathodic shift also occurred on the polarization plots of AA1070/SiC (Figure 1(b)) at 3 µm, 29 µm and 45 µm in 0.25 M H₂SO₄/0.25% NaCl solution for reasons earlier discussed; however, from 0.25 M H₂SO₄/0.5%–1% NaCl minimal anodic shift was observed on the polarization plots (Figure 1(c)–(e)) due to increase in dissolution rate of AA1070/SiC resulting from increased Cl⁻ ion concentration. This phenomenon results in extensive localized attack of Cl⁻ ions and is attributed to galvanic action between the enlarged SiC grains (Loto & Adeleke, 2016; Reena, Nayak, & Nityanand, 2016). The corrosion resistance characteristic of AA1070/SiC is associated closely with its SiC grain size, which might be responsible for the limited formation of second-phase precipitates and interaction products. Optical microscopy analysis of AA1070/SiC morphology (to be discussed later) shows the presence corrosion pits formed on AA1070/SiC than in AA1070 alloy.

3.2. Open circuit potential (OCP) measurement

The thermodynamic stability of AA1070/SiC at 0 µm, 3 µm, 9 µm, 29 µm and 45 µm SiC grain sizes in 0.25 M H₂SO₄/0%, 0.25% and 1% NaCl are shown in the graphical plots of OCP versus exposure time (Figure 2(a)–(c)). OCP values for AA1070/SiC at 0 µm SiC in 0.25 M H₂SO₄/0% NaCl (Figure 2(a)) tend to be more electronegative than AA1070/SiC at higher SiC grain sizes, thus more likely to participate in the electrochemical corrosion reactions in the acid chloride solution without applied potential (Hoar, 1967; Hoar & Jacob, 1967). At 0 s, its OCP value (−0.505 mV) decreased to −0.565 mV at 127 s due to active electrochemical reactions, before increasing progressively to −0.479 mV at 1,500 s. Similar OCP behaviour was observed for AA1070/SiC at 3 µm SiC, but at higher OCP values. The OCP values for AA1070/SiC at 9 µm, 29 µm and 45 µm SiC grain sizes showed relative thermodynamic stability at much higher potentials.

Addition of 0.25% NaCl (Figure 2(b)) to the electrolyte solution did not necessarily change the dynamics of the OCP curves compared to Figure 2(a); however, potential transients are visible due to current flow from localized corrosion sites on AA1070/SiC as a result of the presence of Cl⁻ ions (Strehblow, 1984). The potential transients are absent on AA1070/SiC (0 µm SiC) between potentials of −0.555 V and −0.529 V despite visible change in the OCP curve probably due to electrochemical dynamics associated with repassivation of the oxide layer on the composite (Stellwag, 1998). Potential transients were completely absent from AA1070/SiC (3 µm SiC) despite relative thermodynamic instability throughout the exposure hours due to higher resistance of AA1070/SiC.
at 3 µm grain size. This observation agrees with the result from the polarization test. At higher SiC grain size, the OCP values shift to noble potentials, indicating higher thermodynamic stability as earlier mentioned. At 1% NaCl [Figure 2(c)], the effect of SiC grain size seems too negligible with respect to thermodynamic stability of AA1070/SiC within the electrolyte with minimal variation between −0.509V (0 µm) and −0.497V (29 µm) at 1,500 s; however, at 45 µm there is a large anodic shift to −0.401V (0s) and −0.459V (1500s). Potential transients are clearly visible through the exposure hours at all SiC grain sizes due to excess Cl\(^−\) ions. Delineation of the results from OCP shows addition of SiC of different grain size shifts the overall OCP plots of AA1070/SiC anodically. Though it does not necessarily improve the corrosion resistance, it actually improves the thermodynamic stability of the composite in the acid chloride media.

3.3. Optical microscopy analysis
Optical microscopic images of AA1070 and AA1070/SiC surface morphologies before and after corrosion at magnification ×40 are shown from Figures 3 to 6(e). Figure 3 shows the general morphology of AA1070 and AA1070/SiC before corrosion test. The morphologies of AA1070 and AA1070/SiC after corrosion in 0.25 M H\(_2\)SO\(_4\)/0% NaCl media [Figure 4(a)–(e)] are quite similar to the morphology in Figure 3. There seems to be no significant alteration on the surface features of the aluminium composite in the presence of SO\(_4^{2−}\) ions in the acid media with respect to SiC grain size except for mild deterioration due to wear, resulting from charge transfer reaction of the SO\(_4^{2−}\) ions. This shows the composite is reasonably resistant to corrosion in the absence of Cl\(^−\) ions. Images [Figure 5(a)–4(e)] from 0.25 M H\(_2\)SO\(_4\)/0.25% NaCl media showed a marked difference from their counterparts in Figure 4(a)–(e). The presence of corrosion pits is quite visible with respect to SiC grain size. AA1070 at 0 µm grain size [Figure 5(a)] showed the highest pitting corrosion resistance whereby its morphological deterioration tends to be shallow compared to AA1070/SiC at 3 µm, 9 µm, 29 µm and 45 µm [Figure 5(b)–(e)]. Second, higher SiC grain size connotes more and deeper micropits on the composite surfaces. Formation of corrosion pits occurs due to adsorption of Cl\(^−\) ions at discontinuities in the surface oxide film resulting from chemical reaction between the Cl\(^−\) ions and valence electrons on the aluminium matrix (Foley, 1986). The nonhomogeneous properties of the composite most importantly involving the reaction of SiC and the aluminium matrix dominate the outcome reaction of the composite with its environment (Nunes & Ramanathan, 1995). The visible corrosion features on AA1070/SiC morphology corrosion than AA1070 are due to galvanic action due to lack of continuous surface oxide on the composite (Reena et al., 2016). Microstructural anomalies and processing factors also play a major role because at 29 µm SiC grain size the depth of AA1070/SiC pitted surface seems more shallow than at 9 µm SiC grain size (Gnecco & Beccaria, 1999; Hihara, 2005; Trzaskoma, 1990). Figure 6(a)–(e) shows the morphology of AA1070/SiC of different grain size from 0.25 M H\(_2\)SO\(_4\)/1% NaCl solution. Severe
deterioration can be observed with respect to SiC content; however, the extent of deterioration is much more severe for AA1070/SiC at 29 µm and 45 µm SiC grain size [Figure 6(d), (e)] with deep corrosion pits prevalent in Figure 6(e).

3.4. Statistical analysis
Table 5 shows ANOVA results on the statistical importance of SiC grain size variation and NaCl concentration on the corrosion resistance of AA1070/SiC. Both SiC grain size and NaCl concentration prove to be statistically relevant with F values of 14.92 and 8.76. The values are most importantly greater than the theoretical significance factor (significance F) of 3.86. The F values correspond to a percentage significance of 55.9% for SiC grain size and 32.8 for NaCl concentration. Despite the significant effect of NaCl concentration on AA1070/SiC corrosion, statistical results show that variation in SiC grain size has stronger influence on the corrosion resistance of AA1070/SiC matrix composite. Result from potentiodynamic polarization shows that SiC grain size at 3 µm and 9 µm gave the lowest corrosion rate values; hence limiting the SiC particle size in matrix composite.
4. Conclusion
SiC grain size variations significantly influence the corrosion resistance properties and OCP values of AA1070 aluminium matrix composite in acid chloride media. Low SiC grain size had a positive effect on the matrix alloy, while higher SiC grain size increased the corrosion resistance susceptibility of the aluminium matrix due to galvanic action among the intermetallic precipitates. Cathodic corrosion potential shift at low SiC grain size is due to cathodic polarization of the matrix surface, while the anodic shift at higher SiC grain size is due to anodic deterioration of the matrix alloy. SiC grain size tends to be more statistically relevant on the matrix alloy corrosion resistance from ANOVA analysis. Microanalytical studies show pitted morphology of the aluminium matrix for composites improves the corrosion resistance properties of the matrix composite in chloride-containing environments.
Figure 6. Optical images of AA1070/SiC at magnification ×40 after corrosion in 0.25 M H₂SO₄/1% NaCl (a) 0 µm SiC grain size, (b) 3 µm SiC grain size, (c) 9 µm SiC grain size, (c) 29 µm SiC grain size and (d) 45 µm SiC grain size.

Table 5. Data on the statistical importance of SiC grain size and NaCl concentration on AA1070/SiC corrosion in 0.25 M H₂SO₄/(0%–1% NaCl) at 95% confidence level

Source of variation	Sum of squares	Degree of freedom	Mean square	Mean square ratio (F)	Significance F	F (%)
NaCl concentration	3.03	3	1.01	8.76	3.86	32.8
SiC grain size	5.17	3	1.72	14.92	3.86	55.9
Residual	1.04	9	0.12			
Total	9.24	15				
all SiC grain size at low chloride concentration, while the morphology of the aluminium matrix at higher chloride concentration showed total degradation.

Acknowledgements
The authors acknowledge Covenant University Ota, Ogun State, Nigeria, for the sponsorship and provision of research facilities for this project.

Funding
This work was supported by the Covenant University.

Author details
Roland Tokulope Loto
E-mail: tolutolu@gmail.com
Philip Babalola
E-mail: philip.babalola@covenantuniversity.edu.ng

Department of Mechanical Engineering, Covenant University, Ota, Nigeria.

Citation information
Cite this article as: Analysis of SiC grain size variation and NaCl concentration on the corrosion susceptibility of AA1070 aluminium matrix composites, Roland Tokulope Loto & Philip Babalola, Cogent Engineering (2018), 5: 1473002.

References
Akin, I., Hotto, M., Sahin, F. C., Yucel, O., Goller, G., & Goto, T. (2009). Microstructure and densification of ZrB2–SiC composites prepared by spark plasma sintering. Journal of the European Ceramic Society, 29(11), 2379–2385. doi:10.1016/j.jeurceramsoc.2009.01.011
Aziz, I., Qi, Z., & Min, X. (2009). Corrosion inhibition of SiCp/5A06 aluminium metal matrix composite by cerium conversion treatment. Chinese Journal Aeronautics, 22(6), 670–676. doi:10.1007/s1000-9361(08)60157-0
Boeck, Y., & Frankel, G. S. (2003). Electrochemical quartz crystal microbalance study of corrosion of phases in AA 2024. Journal of Electrochemical Society, 150(1), B1–B9. doi:10.1149/1.1524172
Bokkar, A., & Neubert, V. (2007). Corrosion characterization of alumina–Magnesium metal matrix composites. Corrosion Science, 49(3), 1110–1110. doi:10.1016/j.corsci.2006.07.002
Candan, S., & Biligic, E. (2004). Corrosion behavior of Al–60 vol.% SiCp composites in NaCl solution. Materials Letters, 58(22–23), 2787–2790. doi:10.1016/j.matlet.2004.04.009
Chawla, K. K. (2013). Composite materials: Science and engineering. New York, NY: Springer-Verlag. doi:10.1007/978-0-387-74365-3
Foley, R. T. (1986). Localized corrosion of aluminium alloys—a review. Corrosion, 42(5), 277–288. doi:10.5006/1.3584905
George, E., Totten, D., & Scott, M. (2003). Handbook of aluminium alloy production and materials manufacturing (Vol. 2). New York, NY: Taylor & Francis Inc.
Gnecco, F., & Beccaria, A. M. (1999). Corrosion behaviour of Al–Si/SiC composite in sea water. British Corrosion Journal, 34(1), 57–62. doi:10.1179/bcj.1999.34.1.157
Griffiths, A. J., & Turnbull, A. (1994). An investigation of the electrochemical polarization behaviour of 6061 aluminium metal matrix composites. Corrosion Science, 36(1), 23–35. doi:10.1016/0010-938X(94)90106-6
Hashim, J., Looney, L., & Hashmi, M. S. J. (2002). Particle distribution in metal matrix composites, part I. Journal of Materials Processing Technology, 123(2), 251–257. doi:10.1016/S0924-0136(02)00098-5
Hihara, L. H. (2005). Corrosion of metal-matrix composites. ASM Handbook, 138, 526–542.
Hoar, T. P. (1967). The production and breakdown of the passivity of metals. Corrosion Science, 7(6), 341–355. doi:10.1016/0010-938X(67)80024-4
Hoar, T. P., & Jacob, W. R. (1967). Breakdown of passivity of stainless steel by halide ions. Nature, 216, 1299–1301. doi:10.1038/2161299a0
Lees, J. K., Dhriha, A. K., & McCullough, R. L. (2005). Composite materials. Wiley-VCH Verlag GmbH & Co.
Loto, R. T., & Adeleke, A. (2016). Corrosion of aluminium alloy metal matrix composites in neutral chloride solutions. Journal of Failure Analysis and Prevention., 16(5), 874–885. doi:10.1179/s11668-016-0157-3
Loto, R. T., & Babalola, P. (2017). Corrosion polarization behavior and microstructural analysis of AA1070 aluminium silicon carbide matrix composites in acid chloride concentrations. Cogent Engineering, 4, 1. doi:10.1080/23311916.2017.1422229
Mahendra, B. M., Arulshri, K., & Iyandurai, N. (2013). Evaluation of mechanical properties of aluminium alloy 2024 reinforced with silicon carbide and fly ash hybrid metal matrix composites. American Journal of Applied Science, 10(3), 219–229. doi:10.3844/ajasssp.2013.219.229
Masahidi, M., Khaksaria, H., & Saffi, S. (2015). Pressureless sintering behavior and mechanical properties of ZrB2–SiC composites: Effect of SiC content and particle size. Journal of Materials Research and Technology, 4(4), 416–422. doi:10.1016/j.jmrt.2015.02.004
Neelima, D. C., Mahesh, V., & Selvaraj, N. (2011). Mechanical characterization of aluminium silicon carbide composite. International Journal of Applied Engineering Research, 1(4), 793–799.
Nunes, P. C. R., & Ramanathan, L. V. (1995). Corrosion behavior of alumina-aluminium and silicon carbide-aluminium metal-matrix composites. Corrosion, 51(8), 610–617. doi:10.5006/1.3293621
Pai, B., Rojan, T., & Pillai, R. (2004). Aluminium matrix composite castings for automotive applications. Indian Foundry, 50(9), 30–39.
Reena, K. P. D., Noyak, J., & Nityanand, S. A. (2016). Corrosion behavior of 6061/Al-15 vol. pct. SiC(p) composite and the base alloy in sodium hydroxide solution. Arabian Journal of Chemistry, 9(2), S1144–S1154. doi:10.1016/j.arabjc.2011.12.003
Serdchenko, M., Volovitch, P., Bristet, F., & Oggle, K. (2016). On the cathodic dissolution of Al and Al alloys. Electrochimica Acta, 124(2014), 9–16. doi:10.1016/j.electacta.2013.09.145
Sinclair, I., & Gregson, P. J. (1997). Structural performance of discontinuous metal matrix composites. Materials Science and Technology, 13(9), 709–726. doi:10.1179/mst.1997.3.9.709
Singh, R., & Singla, E. (2012).tribological characterization of aluminium-silicon carbide composite prepared by mechanical alloying. International Journal of Applied Engineering Research, 7(11), 1420–1423.
Singla, M., Dwivedi, D., Singh, L., & Chawla, V. (2009). Development of aluminium based silicon carbide particulate metal matrix composite. Journal of Minerals & Materials Characterization & Engineering, 8(6), 455–467. doi:10.4236/jmme.2009.86040
Stellwag, B. (1998). The mechanism of oxide film formation on austenitic stainless steels in high temperature water. Corrosion Science, 40(2–3), 337–370. doi:10.1016/S0010-938X(97)00140-6
Strehlow, H. H. (1984). Breakdown of passivity and localized corrosion: Theoretical concepts and fundamental experimental results. *Materials and Corrosion*, 35(10), 437-448. doi:10.1002/maco.19840351002

Surappa, M. K. (2003). Aluminium matrix composites: Challenges and opportunities. *Sadhana*, 28(1–2), 319-334. doi:10.1007/BF02717141

Trowsdale, A. J., Noble, B., Harris, S. J., Gibbins, I. S. R., Thompson, G. E., & Wood, G. C. (1996). The influence of silicon carbide reinforcement on the pitting behaviour of aluminium. *Corrosion Science*, 38(2), 177-191. doi:10.1016/0010-938X(96)00098-4

Trzaskoma, P. P. (1990). Pit morphology of aluminum alloy and silicon carbide/aluminum alloy metal matrix composites. *Corrosion*, 46(5), 402-409. doi:10.5006/1.3585124

William, D. C., Jr. (2007). *Materials science and engineering: an introduction* (7th ed.). New York, NY: Wiley.