The human CIB1–EVER1–EVER2 complex governs keratinocyte-intrinsic immunity to β-papillomaviruses

Sarah Jill de Jong1, Amandine Créquer2*, Irina Matos3*, David Hum4*, Vignesh Gunasekharan5, Lazaro Lorenzo6, Fabienne Jabot-Hanin6, Elis Imahorn7, Andres A. Arias8,9, Hassan Vahidnejad8,10, Leila Youssefian11,12, Janet G. Markle1, Etienne Patin12,13,14, Aurelia D’Amico1, Claire F. Wang15, Florian Full16, Armin Ensser16, Tina M. Leisner17, Leslie V. Parise18, Matthieu Bouaziz19,25, Nataly Portilla Maya18, Xavier Rueda Cadena19, Bayaki Saka20, Amir Hossein Saедин19, Nessa Aghazadeh21, Sirous Zeinali20,22, Peter Itin21,22, James G. Krueger15,25, Steffen Hay23, Emmanuelle Jouanguy3,4,5,25,27,28 and Jean-Laurent Casanova4,5,26,27,28,29

Patients with epidermodysplasia verruciformis (EV) and biallelic null mutations of TMC6 (encoding EVER1) or TMC8 (EVER2) are selectively prone to disseminated skin lesions due to keratinocyte-tropic human β-papillomaviruses (β-HPVs), which lack E5 and E8. We describe EV patients homozygous for null mutations of the CIB1 gene encoding calcium- and integrin-binding protein-1 (CIB1). CIB1 is strongly expressed in the skin and cultured keratinocytes of controls but not in those of patients. CIB1 forms a complex with EVER1 and EVER2, and CIB1 proteins are not expressed in EVER1- or EVER2-deficient cells. The known functions of EVER1 and EVER2 in human keratinocytes are not dependent on CIB1, and CIB1 deficiency does not impair keratinocyte adhesion or migration. In keratinocytes, the CIB1 protein interacts with the HPV E5 and E8 proteins encoded by α-HPV16 and γ-HPV4, respectively, suggesting that this protein acts as a restriction factor against HPVs. Collectively, these findings suggest that the disruption of CIB1–EVER1–EVER2-dependent keratinocyte-intrinsic immunity underlies the selective susceptibility to β-HPVs of EV patients.

Introduction

Epidermodysplasia verruciformis (EV; OMIM ID 226400) is a rare Mendelian genodermatosis. EV patients are highly and selectively susceptible to skin diseases due to cutaneous human papillomaviruses (HPVs) of the β genus (Orth, 2006, 2008; de Jong et al., 2018). They are otherwise healthy and normally resistant to other microorganisms including other viruses and skin-tropic pathogens and even all other cutaneous and mucosal HPVs. Early in childhood, these patients present with persistent, disseminated, flat warts and pityriasis versicolor–like lesions of the skin that are induced by β-HPVs. Some patients develop...
nonmelanoma skin cancer, particularly on areas of the body exposed to the sun. By contrast, β-HPV infection is widespread and asymptomatic in the general population. EV is transmitted as an autosomal recessive (AR) trait in most families but was shown to be X-linked recessive in one family (Androphy et al., 1985). Biallelic null mutations of either TMC6 or TMC8 encoding EVER1 and EVER2, respectively, account for about half the patients and families displaying EV (Ramoza et al., 2002; Burger and Itin, 2014; Imahorn et al., 2017; de Jong et al., 2018). These genes are widely expressed throughout the body, including in leukocytes, but patients with null mutations display no consistent abnormalities of the development or function of any subset of leukocytes (Lazarczyk et al., 2012; Crequer et al., 2013). EVER1 or EVER2 deficiency in keratinocytes, which would normally express both proteins and are the natural and exclusive host cells of β-HPVs, has thus been proposed as the cellular basis of the disease (Orth, 2006, 2008). The exceedingly narrow infectious phenotype and the lack of detectable leukocyte abnormalities prevented EV from being recognized as a primary immunodeficiency until the discovery of genetic etiologies in 2002 (Ramoza et al., 2002; Notarangelo et al., 2004; Casanova, 2015a,b). However, EV was shown to be an inborn error underlyng viral lesions between 1922 and 1946 by the works of Wilhelm Lutz and Edward Cockayne (Lewandowsky and Lutz, 1922; Cockayne, 1933; Lutz, 1946), before the first descriptions of congenital neutropenia by Ralph Kostmann and inherited agammaglobulinemia by Ogden Bruton (Kostmann, 1950; Bruton, 1952).

Patients with an “atypical” form of inherited EV have recently been described (de Jong et al., 2018). These patients suffer from primary immunodeficiencies due to profound T cell defects caused by inactivating biallelic mutations of STK4 (Crequer et al., 2012a), RHOD (Crequer et al., 2012b), CORO1A (Stray-Pedersen et al., 2014), TPP2 (Stepensky et al., 2015), DCLRE1C (Tahiat et al., 2016), LCK (Li et al., 2016), RASGRPI (Platt et al., 2017), or DOCK8 (Sanal et al., 2012; Liu et al., 2017). Other patients with atypical EV have T cell deficits of unknown genetic etiology (Azzimonti et al., 2005; Borgogna et al., 2014; Landini et al., 2014). In all these patients, persistent infection with β-HPVs causes skin lesions identical to those of patients with classic EV, but in a context of broader infectious manifestations, the breadth and severity of which depend on the mutated gene and the nature of the T cell deficit. Indeed, patients with inherited T cell deficiencies typically suffer from various viral, bacterial, fungal, and parasitic infections, including many infections of the skin and viral infections in particular (Notarangelo et al., 2004; Fischer, 2015). These patients are also prone to various autoimmune and, more rarely, tumoral manifestations. An additional role of these gene products in keratinocytes has not been formally excluded, but the T cell deficit common to all these patients strongly suggests that full T cell development and function are required for protective immunity to β-HPVs. Intriguingly, not all T cell deficits seem to confer a predisposition to β-HPV–driven lesions, and not all patients with such deficits display lesions of this type. Finally, β-HPV–induced skin lesions resembling typical EV have also been reported in a third group of patients who are otherwise healthy years after successful allogeneic hematopoietic stem cell transplantation (HSCT) for severe combined immunodeficiency due to mutations of IL2RG and JAK3 (Laffort et al., 2004). As both these genes are also normally expressed in keratinocytes, this third type of EV might be caused by a persistent deficiency of their products in keratinocytes that is not corrected by allogeneic HSCT. The products of these genes may be physiologically connected with EVER1 and EVER2 in keratinocytes.

The molecular basis of “typical” EV remains elusive. One plausible hypothesis is that β-HPVs are defective for a growth-promoting function encoded by the E5 gene, located between the E2-L2 genes of cutaneous α-HPVs, or the E8 gene, located in the E6 region of γ-, κ-, and μ-papillomaviruses, and that EVER1/2 deficiency may compensate for the missing viral function (Bravo and Alonso, 2004; Nonnenmacher et al., 2006; Orth, 2006, 2008). Indeed, it has been shown in vivo that cottontail rabbit papilloma virus (CRPV)-E8 is essential for the development of lesions in rabbits (Hu et al., 2002; Nonnenmacher et al., 2006). EVER1 and EVER2 belong to a larger family of transmembrane channel–like (TMC) proteins (Keresztes et al., 2003; Kurima et al., 2003). TMC1 and TMC2 are components of the sensory transduction ion channel in inner ear hair cells (Kawashima et al., 2011; Pan et al., 2013; Kurima et al., 2015). Both TMC6 and TMC8 are broadly expressed in human tissues, but expression levels are generally lower for TMC8 (www.proteinatlas.org). No knockout mice have been reported for either of these genes. It has been suggested that EVER1 and EVER2 control intracellular zinc homeostasis in human leukocytes and keratinocytes through interaction with the ER-resident zinc transporter ZnT1 (Lazarczyk et al., 2008, 2009, 2012). HPV16-E5a (E5a being encoded by muscle- and E5β by cutaneous HPVs) has been shown to interact with EVER1/2 (Lazarczyk et al., 2008), and both HPV16-E5a and E8 from CRPV interact with ZnT1 (Nonnenmacher et al., 2006; Lazarczyk et al., 2008). It has also been suggested that EVER2 modulates TNF receptor signaling in human keratinocytes (Gaud et al., 2013; Vuillier et al., 2014). The pathogenesis of EV-like lesions in patients with IL2RG and JAK3 mutations years after successful HSCT also remains unknown. Overall, the pathogenesis of β-HPV–driven lesions in EVER1- and EVER2-deficient patients and the mechanisms by which human keratinocytes normally control β-HPVs remain unexplained. We investigated patients with typical EV but no mutations of TMC6 or TMC8. We hypothesized that the discovery of novel genetic etiologies of EV might open up new avenues of investigation into the pathogenesis of EV and the interaction between human keratinocytes and β-HPVs.

Results

Clinical features of EV patients

We investigated 24 individuals with unexplained typical EV (P1-P24) from six families originating from and living in five different countries (Colombia, France, Iran, Switzerland, and Togo; Fig. 1 A). None of the patients carried mutations in the exons and flanking intron regions of TMC6 or TMC8. The cohort was clinically homogeneous, with disseminated β-HPV–positive skin lesions at various sites on the body beginning in childhood or early adulthood (Table 1 and Fig. S1). β-HPVs and/or -HPV8 genotypes have been identified in the lesions of all patients tested (12 of 24). Cutaneous squamous cell carcinoma (SCC) developed in 14 of the
24 patients, mostly on sun-exposed areas of the skin (Table 1). 12 of the 24 patients died: two from disseminated skin cancer (at the ages of 71 yr for P13 and 21 yr for P16) and 10 from causes unrelated to EV (aged 47–91 yr). None of the patients displayed any other unusually severe infectious diseases despite exposure to a large number of different infectious agents in urban or rural areas of countries as diverse as Colombia, France, Iran, Switzerland, and Togo. The clinical features of all patients other than kindred F from Iran have been described in detail elsewhere with the confirmation of β-HPV genotype and/or typical histological signs of β-HPV infection (Lutz, 1946; Rueda and Rodriguez, 1976; Kienzler et al., 1979; Kremsdorf et al., 1984; Deau et al., 1991, 1993; Rueda, 1993; Saka et al., 2009; Arnold et al., 2011; Imahorn et al., 2017). Case studies for all 24 patients are listed in Materials and methods. P13 and P14 were among the first EV patients to be documented by Wilhelm Lutz in 1946 (Lutz, 1946). Overall, these patients were clinically and virologically indistinguishable from patients carrying homozygous inactivating mutations of TMC8 (Crequer et al., 2013). However, patients with EVER2 deficiency (Crequer et al., 2013) but not for patients with RHOH, MST1, CORO1A, ARTEMIS, RASGRP, DOCK8, and TFP2 deficiencies who suffer from CD4+ T cell lymphopenia and various degrees of impairment of circulating T cell response to CD3 stimulation (Crequer et al., 2012a,b; Sanal et al., 2012; Stray-Pedersen et al., 2014; Stepensky et al., 2015; Tahiat et al., 2016; Liu et al., 2017; Platt et al., 2017). Finally, more detailed analyses of skin-homing T cell populations (CLA+, CCR10+, CLA+CCR4+, and CLA+CCR10+ subsets) revealed no frequency abnormalities in the five patients tested (P1–P4 and P15; Table S4), again contrasting with the smaller sizes of these subsets within the CD4+ compartment in RHOH-deficient patients (Table S4; Crequer et al., 2012b). These skin-homing subsets even displayed mild expansion in three EVER2-deficient patients (Crequer et al., 2013). Thus, none of the patients tested displayed any detectable lymphocyte abnormalities, suggesting that they suffer from a new AR genetic etiology of EV affecting keratinocyte-intrinsic immunity as in EVER1- and EVER2-deficient patients.

Identification of a 2.4-Mb chromosomal region by genome-wide linkage (GWL)

We used GWL analyses to search for genetic etiologies of EV in this cohort. Kindreds A, D, E, and F were known to be consanguineous, and consanguinity was suspected for kindreds B and C. We confirmed that all patients were born to consanguineous parents (Table S5) by showing that their inbreeding coefficients, as estimated with FSuite (Gazal et al., 2014) and genotyping data obtained with the Affymetrix Genome-wide Human Single Nucleotide Polymorphism (SNP) or Illumina Infinium Global
Screening array, were high. GWL analysis was performed by homozygosity mapping on 22 members of two branches (termed A1 and A2; Fig. 1A) of the extended kindred A, P12 from kindred B, P14 from kindred C, P15 from kindred D, six members of kindred E, and four members of kindred F in two generations. A highly significant linkage peak was found on chromosome 15, with a logarithm of odds (LOD) score of 16.7 for a 2.4-Mb interval (Fig. S2, A and B), strongly suggesting genetic homogeneity across these kindreds. We then searched for allelic homogeneity by looking at the haplotypes common to the various families. Kindred A is an extended family with two branches: A1 and A2 (Fig. 1A). These two branches originate from the same region of Colombia and are homozygous for the same 3.5-Mb haplotype encompassing the linked interval, consistent with a common ancestral muta-

Patient	Case	Sex	Age (yr)	Age onset (yr)/SCC	HPV type	Skin lesions (location)	SCC	Reference
P1	A1.viii.4	F	50	12/no	Unknown	Head and hands	No	Rueda (1993)
P2	A1.viii.7	M	47*	6/18	8, 17, 20	Head, neck, trunk, hands, legs, and feet	Forehead	Rueda (1993), case 11
P3	A1.viii.10	F	46	7/13	8, 20	Head, trunk, legs, arms, and hands	Forehead, lips	Rueda (1993), case 12
P4	A1.viii.12	F	44	7/no	8	Head and trunk	No	Rueda (1993)
P5	A1.viii.15	M	37	5/17	8, 20	Head, trunk, hands, and upper legs	Forehead	Rueda (1993), case 13
P6	A1.vi.13	M	47*	1/15	Unknown	Head, trunk, hands, and legs	Nose, trunk	Rueda (1993), case 6
P7	A1.viii.30	M	47	5/10	5, 17, 36	Head, trunk, arms, hands, and legs	Canthus, nose	Rueda (1993), case 7
P8	A2.ii.1	F	78*	1/47	5, 8, 20, 24	Head, trunk, and extremities	Forehead	Rueda (1993) and Rueda and Rodriguez (1976), case 1 both papers
P9	A2.ii.10	F	Unknown	5/38	8, 9	Head, trunk, and extremities	-	Rueda (1993) and Rueda and Rodriguez (1976), case 2 both papers
P10	A2.ii.12	M	48*	1/26	Unknown	Head, trunk, and extremities	Forehead, lips	Rueda (1993) and Rueda and Rodriguez (1976), case 3 both papers
P11	A2.ii.13	M	47*	3/27	5, 8, 20	Head, trunk, and extremities	Forehead	Rueda (1993) and Rueda and Rodriguez (1976), case 4 both papers
P12	B.ii.2	M	72*	23/43	8, 15	Head, trunk, arms, hands, and legs	Forehead, check, ear	Kienzler et al. (1979)
P13	C.ii.1	F	71*	Childhood/35	5	Head, neck, hands, and legs	Scalp, nose	Lutz (1946) and Arnold et al. (2011), case 1 both papers
P14	C.ii.2	F	91*	<7/52	5	Head, neck, and hands	Nose, hand, neck, forehead, scalp	Lutz (1946) and Arnold et al. (2011), case 2 both papers
P15	D.iv.2	F	59	Childhood/54	5	Head, neck, arms, hand, knee, and lower leg	Forehead, nose	Imahorn et al. (2017)
P16	E.iv.4	F	21*	7/unknown	Unknown	Face and trunk	Multiple (sun-exposed skin)	Saka et al. (2009)
P17	E.iv.6	F	Unknown*	5/unknown	Unknown	Face and trunk	Unknown	Saka et al. (2009)
P18	E.iv.8	F	Unknown*	Unknown/unknown	Unknown	Unknown	Unknown	Saka et al. (2009)
P19	E.iv.10	M	14	2/unknown	Unknown	Face and trunk	Unknown	Saka et al. (2009)
P20	F.v.2	M	47	3/46	Unknown	Head, neck, trunk, and upper and lower limb	Forehead (basosquamous carcinoma)	This study
P21	F.v.3	M	44	2/no	Unknown	Head, neck, trunk, and upper and lower limb	-	This study
P22	F.v.7	F	30	5/no	Unknown	Head, neck, trunk, and upper and lower limb	-	This study
P23	F.vi.1	F	22	1/no	Unknown	Head, neck, trunk, and upper and lower limb	-	This study
P24	F.vi.2	M	21	4/no	Unknown	Head, neck, trunk, and upper and lower limb	-	This study

Information collected from listed references or oral communication with the treating physicians. Please see Fig. 1A for individual deidentifiers. F, female; M, male; ages of death are marked with asterisks.
tion. Kindreds C and D were not known to be related, but both are from Switzerland, albeit from different cantons. These two families share the same short homozygous 1.74-Mb haplotype encompassing the linked interval, suggesting a common ancestral mutation for these two Swiss families. The shared haplotype of kindreds C and D is part of the common haplotype of the Colombian patients. These findings reduce the interval of interest on chromosome 15 to 1.74 Mb between positions 89.8 and 91.5 Mb. Overall, these results strongly suggest that the 24 patients from these six families have the same AR genetic etiology of EV, different from EVER1 and EVER2 deficiency, as the corresponding genes TCM6 and TCM8, which are organized in tandem, are absent from this interval.

Identification of bi-allelic mutations of CIB1

We then performed whole-exome sequencing (WES) on the probands from kindreds A–C and E (P7, P12, P14, and P19) and four patients from kindred F (P20–P23; Figs. 1 A and S2 C). This analysis identified CIB1 (encoding calcium- and integrin-binding protein 1; CIB1) as the only gene carrying a very rare homozygous nonsynonymous coding mutation (minor allele frequency [MAF] < 0.001) in all patients tested. CIB1 is located within the 1.74-Mb interval detected by GWL and homozygosity mapping, which contains 33 other protein-coding genes and nine RNA genes. In particular, no other gene within the interval of interest on chromosome 15 was homozygous for rare nonsynonymous coding variants common to all patients. The coding exons of the 42 genes were all fully covered by WES. Sanger sequencing of genomic DNA confirmed that all 24 patients from the six kindreds were homozygous for CIB1 mutations (m/m), whereas the 34 unaffected family members tested were either heterozygous (wt/m) or homozygous for the WT (wt/wt) allele (Figs. 1 A and S2 D). The mutations were frameshift insertions (P1–P11, kindred A: c.465_465+1insG; P12, kindred B: c.549_550insTT) and deletions (P13–15, kindred C and D: c.248_249delEA) predicted to cause premature stop codons (P1–P11: p.I156Dfs*5; P13–15: p.K83Rfs*4) or a stop loss (P12: p.A184Lfs*70), a nonsense allele (P16–P19, kindred E: c.214C>T, p.R72*), and an essential splice site mutation (P20–P24, kindred F: c.52-2A>G; Fig. 1 B) predicted by the Genscan algorithm (Burge and Karlin, 1997) to eliminate the acceptor site of exon 2 and to activate a cryptic acceptor site in the Genscan algorithm (Burge and Karlin, 1997) to eliminate the acceptor site of exon 2 and to activate a cryptic acceptor site in intron 1. This would result in the retention of 319 bp of intron 1 and the creation of a 47-aa protein product from exon 1 (aa 1–17) and part of intron 1 followed by a stop codon (aa 18–47). All 24 patients from these six kindreds were homozygous for very rare mutations of CIB1 and had no other homozygous genetic lesion in common. Moreover, the segregation of the mutant alleles suggested an AR trait with complete penetrance as in families with EVER1 or EVER2 deficiency.

The CIB1 mutations are predicted to be deleterious

The frameshift indels and splice-site mutations were not found in the public databases Genome Aggregation Database (gnomAD; Lek et al., 2016), Bravo (https://bravo.sph.umich.edu/freeze5/hg38/), or the Greater Middle East variome project (http://igm.ucsd.edu/gme; Scott et al., 2016), and they were also absent from our own in-house database of >4,500 exomes. The nonsense R72* variant (dbSNP accession number rs143773090) was found in four heterozygous individuals from the total of 276,936 individuals for whom data were available in the gnomAD, indicating an allele frequency of <1.4 × 10⁻³, consistent with the very low prevalence of EV. Furthermore, no homozygous CIB1 nonsense or frameshift mutations were present in these public or in-house databases. The gene–damage index (Itan et al., 2015) of CIB1 is very low (1.31). Mutations of CIB1 predicted to be deleterious, with a combined annotation-dependent depletion (CADD) score above the CIB1-specific mutation significance cutoff of 2.3 (Kircher et al., 2014; Itan et al., 2016), are very uncommon in the general population, particularly in the homozygous state (only three missense mutations, each with a MAF <0.0027). The CADD scores of the CIB1 variants from the EV patients (35 for the insertions, 27.7 for the deletion, 24.8 for the essential splice, and 40 for the nonsense variants) were well above the mutation significance cutoff. These genetic findings strongly suggest that these CIB1 mutations, which are very rare or private to the six kindreds, are deleterious. Their strict unique recessive linkage with EV unambiguously demonstrates that homozygosity for deleterious CIB1 alleles is a new AR genetic etiology of EV.

Lack of CIB1 expression in patients’ cells

The CIB1 protein is ubiquitous throughout the body and was first identified as an intracellular regulator of integrin signaling in platelets on the basis of its calcium-binding EF-hand domains (Fig. 1B). Human CIB1 has since emerged as a regulator of diverse cellular processes including migration, adhesion, proliferation, and cell death/survival (Leisner et al., 2016; Wang et al., 2017). We first assessed the biochemical impact of the mutations by measuring endogenous CIB1 mRNA and protein levels in leukocytes. Lymphoblastoid cell lines (LCLs) from P1–P5 and P7 had much lower levels of CIB1 mRNA than those from WT family members (wt/wt), whereas homozygous (wt/m) family members had intermediate RNA levels (Fig. 2 A). The stop-loss mutation in P12 is predicted to lead to an elongated transcript. The levels of CIB1 mRNA in LCLs from P12 were higher than those for kindred A but much lower than those for WT controls (Fig. 2 A). P13 also had very low CIB1 mRNA levels in whole blood (Fig. 2 A), potentially reflecting nonsense-mediated mRNA decay due to the presence of premature stop codons. An antibody raised against an N-terminal epitope of CIB1 located upstream from all the premature stop codons seen in the patients detected no endogenous CIB1 protein in LCLs or peripheral blood mononuclear cells (PBMCs) from patients from kindreds A, B, and E, whereas CIB1 protein was detected in unrelated controls and healthy family members (whether WT homozygous or heterozygous for the mutant alleles; Fig. 2 B). Thus, all the CIB1 mutations tested greatly decreased mRNA levels and resulted in a complete absence of CIB1 protein from the cells tested. These data indicate that the patients had AR complete CIB1 deficiency.

CIB1 is expressed in keratinocytes

The ubiquitous pattern of expression and the pleiotropic functions assigned to CIB1 are not easy to reconcile with the very narrow clinical phenotype of EV patients. β-HPVs have a strict tropism for the epidermis, and hair follicle stem cells probably
serve as a reservoir for HPV persistence (Orth, 2008). We therefore assessed CIB1 protein levels by immunohistochemistry (IHC) in skin biopsy specimens from healthy controls. A strong signal for CIB1 was obtained for the epidermis and hair follicles (Fig. 2 C). We then assessed CIB1 protein levels in cultured primary keratinocytes from three healthy controls, one heterozygous healthy individual from kindred A (wt/m), and three patients from kindreds A, C, and D. CIB1 protein levels were high in control and heterozygous individuals, whereas this protein was not detected in the patients (Fig. 2 D). We also assessed CIB1 protein levels in whole-skin biopsy lyses from a heterozygous individual of kindred F (wt/m) and in lyses from both lesional and nonlesional skin biopsy specimens from his relatives P21 and P23. CIB1 protein was detected in the lystate from the heterozygous individual but not in lesional and nonlesional lyses from the patients (Fig. 2 D). Thus, CIB1 is clearly abundantly expressed in keratinocytes, the natural host cells of β-HPVs, and the patients’ skin and cultured keratinocytes display no detectable CIB1 expression. Finally, we showed that mRNA levels for CIB1, but also for TMGC6 and TMGS8, were not increased by type I IFN treatment in keratinocytes (Fig. S3), consistent with the lack of β-HPV lesions in patients with inborn errors of type I IFN immunity (Dupuis et al., 2001, 2003; Ciancanelli et al., 2015; Kreins et al., 2015; Lamborn et al., 2017). Collectively, these findings suggest that AR CIB1 deficiency may underlie EV by disrupting keratinocyte–intrinsic type I IFN–independent immunity to β-HPVs.

Lack of CIB1 expression in EVER1- and EVER2-deficient cells

The clinical and virological phenotypes of EVER1-, EVER2-, and CIB1-deficient patients are indistinguishable. We therefore analyzed CIB1 levels in LCLs derived from patients with EVER1 or EVER2 deficiency. Strikingly, individuals carrying inactivating mutations of either EVER1 (D576*; Ramoz et al., 2002) or EVER2 (D362* [Ramoz et al., 2002] or T150Mfs*3 [Crequer et al., 2013]) had very low levels of CIB1 protein, whereas their heterozygous relatives had normal CIB1 protein levels (Fig. 3 A). In EVER1- and EVER2-deficient LCLs, CIB1 mRNA levels were ∼50% lower than in control LCLs (Fig. 3 B). EVER1 and EVER2 are therefore required for the correct expression of CIB1 protein. We detected normal EVER1 and EVER2 mRNA levels in CIB1-deficient LCLs (Fig. 3 B), but a lack of reliable antibodies against EVER proteins made it impossible for us to assess the levels of the corresponding proteins. We also tested LCLs from patients with T cell defects associated with persistent cutaneous β-HPV infections due to RHOD or MST1 (encoded by STK4) deficiency (Crequer et al., 2012a,b). CIB1 levels were normal in cells from these patients (Fig. 3 A). This dichotomy mirrors the lymphocyte frequency data (Tables S1 and S4) and suggests that isolated β-HPV–induced disease in patients with typical EV is caused by a common EVER1/EVER2- and CIB1-dependent mechanism different from the T cell–dependent mechanisms of disease in patients with atypical EV as well as infectious phenotypes including but not limited to β-HPV–induced lesions.

CIB1, EVER1, and EVER2 form a complex

These findings suggest that CIB1 protein stability might be controlled posttranscriptionally by the EVER1 and EVER2 proteins. Consistent with this hypothesis, the stable overexpression of EVER1 in EVER1-deficient LCLs or of EVER2 in EVER2-deficient LCLs rescued CIB1 protein (Fig. 3 C) but not mRNA levels (Fig. 3 D). As a control, the overproduction of either EVER protein in CIB1-deficient LCLs did not rescue CIB1 expression (Fig. 3, C and D). In the absence of robust antibodies against the EVER1 and EVER2 proteins, overexpression was confirmed by assessing mRNA levels (Fig. 3 D). These data suggest that EVER1 and EVER2 regulate CIB1 expression posttranslationally. We therefore hypothesized that the CIB1, EVER1, and EVER2 proteins form a multimeric complex that controls CIB1 protein stability. Reciprocal communoprecipitation experiments in HEK293T cells showed that CIB1 interacted with both EVER1 and EVER2.
Subsequent immunofluorescence analysis in primary keratinocytes indicated that overproduced CIB1 was mostly localized in the nucleus. However, on coexpression with EVER1 or EVER2, CIB1 was localized in perinuclear and cytoplasmic web-like structures that strongly colocalized with EVER1 or EVER2 as demonstrated quantitatively by the calculation of Pearson's correlation coefficient (Fig. 3 E).

(Fig. 3 E). Subsequent immunofluorescence analysis in primary keratinocytes indicated that overproduced CIB1 was mostly localized in the nucleus. However, on coexpression with EVER1 or EVER2, CIB1 was localized in perinuclear and cytoplasmic web-like structures that strongly colocalized with EVER1 or EVER2 as demonstrated quantitatively by the calculation of Pearson's correlation coefficient (Fig. 3 E). Furthermore, mass spectrometry on CIB1 immunopurified after its ectopic expression in HEK293T cells identified endogenous EVER1 as the highest-ranked interactor of CIB1 (Fig. S4 A). EVER2 was not detected probably because its mRNA was barely detectable in HEK293T cells at levels lower than those of EVER1 by a factor of at least 60 (Fig. S4, B–D). Col-
selectively, these data strongly suggest that a multimeric complex of CIB1 and EVER1/EVER2 proteins is required for CIB1 protein stability. They connect CIB1 directly with the previously identified EV-causing proteins EVER1 and EVER2.

CIB1 does not affect intracellular free zinc and NF-κB signaling

The interaction between CIB1 and EVER1/2 led us to investigate the contribution of CIB1 to the known functions of EVER1 and EVER2 (Lazarczyk et al., 2008; Vuillier et al., 2014). EVER1 and EVER2 have been reported to control intracellular zinc homeostasis by binding to the zinc transporter ZnT1, increasing its activity to import zinc into the ER storage compartment, thereby controlling free intracellular zinc levels (Lazarczyk et al., 2008). We overproduced EVER1 and EVER2 in HEK293T cells; both proteins repressed the basal and zinc-induced transcription of a GFP reporter construct via the metal-response element (MRE; Günther et al., 2012; Fig. 4 A), consistent with previous findings (Lazarczyk et al., 2008). However, CIB1 overexpression had no effect on MRE activity, and no additional effect was observed when CIB1 was coexpressed with EVER1 or EVER2 (Fig. 4 A), consistent with the lack of colocalization of CIB1 and ZnT1 (Fig. S4 E). Moreover, our findings confirmed the interaction between the overproduced EVER1/2 and ZnT1 proteins (Lazarczyk et al., 2008), but we detected no interaction between CIB1 and ZnT1 in the same conditions (not depicted). At odds with this previous study (Lazarczyk et al., 2012), the absolute amounts of free zinc, determined with the fluorescent zinc reporter Fluozin-3, were unaffected in LCLs from patients with EVER1 or EVER2 deficiency (Fig. 4 B). Consistent with these findings, P1–P5, P7, and P12 also had normal free zinc levels in LCLs, and P14 had normal amounts of zinc in primary keratinocytes (Fig. 4 B). Furthermore, all cell lines had zinc flux kinetics in the control range (Fig. 4 C). No statistically significant effect of genotype was detected in a two-way repeated-measures ANOVA. Thus, the overexpression of EVER1 and EVER2 modulated zinc-dependent transcription, whereas that of CIB1 did not, and endogenous EVER1/2 and CIB1 deficiencies had no overt effect on zinc homeostasis, implying that the mechanism underlying EV is zinc independent. Finally, an analysis of TNFα-dependent canonical and noncanonical NF-κB activation upon overexpression of EVER1, EVER2, CIB1, or a combination of these genes in HEK293T cells revealed no differences relative to an empty vector–transfected control (Fig. 4 D), at odds with previous studies (Gaud et al., 2013; Vuillier et al., 2014). Moreover, CIB1-deficient keratinocytes from P5 and P14 displayed normal NF-κB activation in response to TNFα, as shown by assessments of IkBa phosphorylation (Fig. 4 E). This finding is consistent with the fact that none of the many known inborn errors of NF-κB underlie skin lesions caused by β-HPVs (Zhang et al., 2017). Thus, studies of the known functions of EVER1 and EVER2 identified no phenotype common to EVER1-, EVER2-, and CIB1-deficient cells. As the three genetic deficiencies are AR with complete penetrance and underlie strict virological and clinical phenocopies and the three proteins are required for the stability of an oligomeric complex, these findings suggest that the major mechanism of EV pathogenesis is probably unrelated to zinc metabolism and NF-κB activation.

CIB1 deficiency does not affect keratinocyte adhesion and migration

We then focused our attention on the known functions of CIB1. None of the four phenotypes of CIB1-deficient mice were seen in our patients, who had no cardiac, vascular, hemostasis, or fertility abnormalities (Yuan et al., 2006; Zayed et al., 2007; Naik et al., 2009; Heineke et al., 2010). CIB1 has not been studied in human or mouse keratinocytes. However, it has been reported to localize to focal adhesions and to modulate cell migration (Leisner et al., 2016). The keratinocytes of P5 contained normal levels of the focal adhesion proteins vinculin and focal adhesion kinase (FAK) and displayed normal FAK activation, as shown by Western blot analysis of phosphorylation (pFAK), relative to two unrelated healthy controls and a heterozygous family member (Fig. 5 A). We assessed the formation of focal adhesions by performing immunofluorescence staining for vinculin- and pFAK-positive focal adhesion structures in CIB1-deficient keratinocytes. Automated surface detection and quantification showed these adhesions to be of normal size, fluorescence intensity, and morphology, similar to those of healthy controls and heterozygous relatives (Fig. 5, B and C). Consistent with these results, CIB1 deficiency had no detectable effect on the ability of keratinocytes to migrate in scratch-wounding assays, although the results obtained were at the lower end of the control range (Fig. 5, D, E, and F). Finally, we compared the transcriptomes of WT keratinocytes and CIB1-deficient keratinocytes and of CIB1-deficient keratinocytes and GST- or WT-CIB1–transduced CIB1-deficient keratinocytes. We identified only 40 genes displaying at least a twofold down- or up-regulation. These genes included CIB1 but not EVER1 or EVER2, consistent with our quantitative PCR (qPCR) data. No enrichment in a specific pathway was detected among these genes (Table S6). Thus, the lack of CIB1 caused no overt cellular phenotype related or unrelated to the known functions of EVER1, EVER2, or CIB1 in LCLs or primary keratinocytes. These data are consistent with the very narrow clinical phenotype of EV patients, who are highly and selectively vulnerable to β-HPV but otherwise healthy. However, they provide no insight into the potential mechanism underlying β-HPV-driven lesions as even keratinocytes displayed no detectable phenotype.

CIB1, EVER1, and EVER2 interact with the HPV E5 and E8 proteins

These results suggest that CIB1-deficient keratinocytes may display their EV-causing phenotype only in the presence of β-HPV infection. Antiviral restriction factors are commonly targeted and antagonized by viral proteins (Duggal and Emerman, 2012). The specific feature of the β-HPVs underlying EV lesions is their lack of the E5 and E8 open reading frames (ORFs), rendering them defective in healthy individuals (Orth, 2006). The E8 ORFs from μ-HPV1, γ-HPV4, and κ-CRPV are structurally related to the E5 ORF, and the corresponding proteins function as growth-promoting factors in E5-deficient κ-papillomaviruses (Orth, 2008). Indeed, it has been shown that CRPV-E8 is crucial in vivo (Hu et al., 2002; Nonnenmacher et al., 2006). E5 and E8 are both hydrophobic transmembrane proteins with weak transforming activity in vitro (Nonnenmacher et al., 2006). As EV patients are prone only to cutaneous disease caused by β-HPVs, we hypothe-
esized that the EVER1–EVER2–CIB1 complex interacts with E8 and E5 produced early in infection. We considered γ-HPV4 E8 and κ-CRPV E8, all β-HPV5 early-expressed ORFs (E1, E2, E6, and E7), and as controls, all α-HPV16 early-expressed ORFs (E1, E2, E5α, E6, and E7). We assessed the ability of the corresponding proteins to interact with CIB1 in the human keratinocyte cell line HaCaT in Duolink proximity-ligation assays (PLAs) by fluorescence microscopy followed by the automated surface detection and quantification of total fluorescence intensity. This approach can be used to detect proteins lying in close proximity and therefore likely to form a complex. This approach revealed that CIB1 was indeed targeted by HPV4 E8, CRPV E8, and HPV16 E5 but also by HPV5 E1 and HPV16 E2 and not by any of the other six E proteins from these two HPVs (Fig. 6 A). We then confirmed these interactions by coimmunoprecipitation/immunoblotting in HaCaT cells (Fig. 6 B). Collectively, these experiments showed that CIB1 interacts with both the γ-HPV4 E8 and α-HPV16 E5 proteins. These findings are consistent with a previous study showing that EVER proteins interact with HPV16 E5 (Lazarczyk et al., 2008). The interaction between β-HPV5 E1 and HPV16 E2 and CIB1 but not between HPV5-E2 and CIB1 suggests that the CIB1–EVER1–EVER2 complex or at least CIB1 might be involved against other cutaneous or mucosal HPVs in patients without EV. All these observations provide a plausible mechanism of disease in patients with EV. β-HPVs lacking the E5 and E8 ORFs cannot overcome the CIB1–EVER1–EVER2 complex, which probably operates as a restriction factor in keratinocytes (Fig. 7). Conversely, in patients lacking EVER1, EVER2, or CIB1, the lack of this restriction factor allows β-HPV–driven lesions to develop.

Discussion
We report AR complete CIB1 deficiency as a new genetic cause of EV. We identified two frameshift insertions (I156Dfs*5 and A184Lfs*70), one frameshift deletion (K83Rfs*4 in two kindreds), one nonsense mutation (R72*), and one splice mutation (c.52-
2A>G) in 24 patients from six families from five ethnically and ecologically diverse countries: Colombia, France, Iran, Switzerland, and Togo. None of the heterozygous relatives of the patients show any clinical signs of EV, whereas all homozygous individuals suffer from EV. The familial segregation of the mutant CIB1 alleles is consistent with an AR trait displaying complete clinical penetrance, but CIB1 deficiency is associated with somewhat variable expressivity, as also reported for the deficiencies in families with EVER1 and EVER2 mutations (Orth, 2006, 2008; Burger and Itin, 2014). For example, in kindred A, the phenotype ranged from very mild manifestations in P1 and P4 to more aggressive disease with early cancer development in siblings P2, P3, and P5. Nevertheless, in all patients, CIB1 deficiency led to the development of EV from the age of 23 yr onward (the age at which clinical penetrance can be said to be complete in this cohort). Finally, none of these patients suffered from any other unusually severe infection, like patients with EVER1 or EVER2 deficiencies and unlike those with atypical EV and T cell deficits. AR CIB1, EVER1, and EVER2 deficiencies are therefore indistinguishable clinical and virological phenocopies, consistent with a typical form of EV.

CIB1 has been reported to have pleiotropic functions both in vitro in cell culture models and in vivo in knockout mice (Leisner et al., 2016). Mice lacking Cib1 have vascular, cardiac, and hemorrhagic phenotypes, and their males are sterile (Yuan et al., 2006; Naik et al., 2009). By contrast, none of these phenotypes were observed in patients, indicating that CIB1 is not essential for these functions in humans. Low CIB1 mRNA levels are unlikely to be causally associated with oligoasthenozoospermia-related sterility (Sun et al., 2014) as a complete absence of the CIB1 protein had no effect on male fertility in our cohort. We know that this observation is robust because we have diagnosed 24 CIB1-deficient patients from six kindreds originating from very diverse ethnicities. Our findings suggest that the only nonredundant function of CIB1 in humans in vivo is the control of β-HPVs in
keratinocytes. Cib1-deficient mice have not been challenged with infectious agents including skin-tropic viruses. The only known mouse-tropic papillomavirus, Mus musculus papillomavirus type 1 (MuPV1; Ingle et al., 2011), does not belong to the β genus (Joh et al., 2011).

Our identification of AR CIB1 deficiency establishes a third genetic etiology of typical EV after AR EVER1 and EVER2 deficiencies. Six different homozygous and two compound heterozygous mutations of TCM6 have been described in 14 patients from eight kindreds (Ramoz et al., 2002; Tate et al., 2004; Zuo et al., 2006; Aochi et al., 2007; Gober et al., 2007; Youssefian et al., 2018), and 11 homozygous mutations of TCM8 have been described in 17 patients from 11 kindreds (Ramoz et al., 2002; Sun et al., 2005; Berthelot et al., 2007; Rady et al., 2007; Landini et al., 2012; Burger and Itin, 2014; Miyachi et al., 2016; Imahorn et al., 2017; de Jong et al., 2018; Youssefian et al., 2018). All these mutations are loss of function. The identification of five homozygous loss-of-function alleles of CIB1 markedly increases the number of EV cases for which explanations have been found at the genetic and molecular levels. Moreover, we identified a molecular connection between CIB1, EVER1, and EVER2 as shown by the very low levels of CIB1 proteins in cells from patients with EVER1 or EVER2 deficiency. This is reminiscent of the interaction between TMC1, TMC2, and CIB2 in inner-ear hair cells, which is required for normal sensory transduction (Giese et al., 2017). Our observation provides a unifying cellular phenotype common to all known genetic etiologies of typical EV. CIB1 protein profiling could therefore be used as a simple laboratory test for screening patients with suspected EV, making it possible to target sequencing efforts on CIB1, TMC6, and TMC8 in patients with low levels of CIB1 protein.

The clinical characteristics of EVER1- and EVER2-deficient patients (EV in the absence of other clinical manifestations; Orth, 2006, 2008; Burger and Itin, 2014) and of the patients with CIB1 deficiency described in this study are identical and markedly different from those of patients with atypical EV due to RHOH, MST1 (encoded by STK4), CORO1A, ARTEMIS (encoded by DCLRE1C), DOCK8, RAS GRP1, LCK, and TPP2 deficiencies. In such patients, persistent β-HPV-induced lesions occur in the context of a much broader infectious, autoimmune, and tumoral phenotype (Crequer et al., 2017).
keratinocytes, the host cells of β-HPVs. Fourth, E5 and E8 are targets of immunity against cutaneous non–β-HPVs, suggesting that this complex might be involved in the pathogenesis of EV.

Inherited CIB1 deficiency is not associated with any detectable, constitutive phenotype in keratinocytes in terms of the transcriptome, cell growth, migration, or adhesion. CIB1 deficiency also has no impact on zinc homeostasis and NF-κB activation, suggesting that EVER proteins have other functions shared by CIB1 that are involved in the pathogenesis of EV. We reveal in this study a phenotype of CIB1, EVER1, and EVER2 deficiencies that is conditional on infection with β-HPVs. Our findings suggest that the CIB1–EVER1–EVER2 complex interacts in vivo with both cutaneous γ-HPV4 E8 and κ-CRPV E8 as well as with α-HPV16 E5. In this light, it is plausible that β-HPVs that lack both the E5 and E8 ORFs cannot overcome the CIB1–EVER1–EVER2 complex, unlike α-, γ-, and μ-HPVs and CRPV, which cause disease more widely in the general population (Fig. 2). Both E5 and E8 are hydrophobic and transmembrane proteins with weak transforming activity in vitro but potent growth-promoting activity in vivo (Hu et al., 2002; García-Vallvé et al., 2005; Nonnenmacher et al., 2006; Maufort et al., 2007; Orths, 2008; Wechsler et al., 2018).

Conversely, the E5 and E8 proteins target and antagonize the CIB1–EVER1–EVER2 complex, thereby contributing to virulence to α-, γ-, and μ-HPVs, which cause cutaneous warts in the general population. By contrast, β-HPVs are capable of causing disease only in EV patients lacking the CIB1–EVER1–EVER2 complex. The interaction of β-HPV5 E1 and α-HPV16 E2 with CIB1 is probably not sufficient to antagonize the EVER–CIB1 complex, yet it suggests that this complex might be involved in the pathogenesis of the disease caused by various HPVs. However, EV patients are apparently not more prone to develop common HPV warts, suggesting that immunity against cutaneous non-β-HPVs relies on mechanisms other than the CIB1–EVER1–EVER2 complex (Fig. 2). We have established that EV is caused by mutations of the genes encoding the proteins of the CIB1–EVER1–EVER2 complex, which acts as a restriction factor for HPVs in keratinocytes through interaction with two viral E proteins, E8 and E5, which are absent from β-HPVs.

The CIB1–EVER1–EVER2 complex fulfills the five criteria commonly used to define restriction factors active against viruses (Duggal and Emerman, 2012). First, the lack of CIB1, EVER1, or EVER2 is clinically associated with EV, lesions of which are caused by β-HPVs. Second, patients lacking the CIB1–EVER1–EVER2 complex display no other detectable cellular or clinical phenotype. Third, the CIB1–EVER1–EVER2 complex operates in keratinocytes, the host cells of β-HPVs. Fourth, E5 and E8 are viral virulence genes expressed by cutaneous α-, γ-, and μ-HPVs but not β-HPVs, and the products of these genes target the CIB1–EVER1–EVER2 complex. Fifth, human CIB1 belongs to a multigene family with four members. We do not provide experimental evidence for the control of β-HPVs by the CIB1–EVER1–EVER2 complex in keratinocytes in vitro as this work would have gone well beyond the scope of this study given the technical difficulties involved. Nevertheless, we provide the first in vivo evidence of a restriction factor operating in humans. Other restriction factors in humans have been validated in vitro or in animal models (Kluge et al., 2015; Subramanian et al., 2018). The pathogenesis of the β-HPV–driven skin lesions characteristic of EV in patients with AR CIB1, EVER1, or EVER2 deficiency involves the disruption of skin-restricted, cell-autonomous, nonhematopoietic, keratinocyte-intrinsic, IFN-independent restriction factor (the CIB1–EVER1–EVER2 complex)–mediated immunity against a specific set of defective viruses (β-HPVs, which lack E5 and E8).

Materials and methods

Patients and case studies

The clinical characteristics of all patients are summarized in Table 1. The experiments involving human subjects were conducted in accordance with local, national, and international regulations and were approved by the French Ethics Committee, the French National Agency for the Safety of Medicines and Health Products, and the French Ministry of Research (protocol C10-13) as well as The Rockefeller University Institutional Review Board (protocol JCA-0700). Informed consent was obtained from all patients or their family members included in this study.

Kindred A (branches A1 and A2; P1–11)

Branches A1 and A2 of kindred A originate from the same region of Colombia, and affected individuals in these two branches of the family are homozygous for the same 3-Mb haplotype encompassing a disease-linked interval on chromosome 15 that harbors the CIB1 gene family with four members. We do not provide experimental evidence for the control of β-HPVs by the CIB1–EVER1–EVER2 complex in keratinocytes in vitro as this work would have gone well beyond the scope of this study given the technical difficulties involved. Nevertheless, we provide the first in vivo evidence of a restriction factor operating in humans. Other restriction factors in humans have been validated in vitro or in animal models (Kluge et al., 2015; Subramanian et al., 2018). The pathogenesis of the β-HPV–driven skin lesions characteristic of EV in patients with AR CIB1, EVER1, or EVER2 deficiency involves the disruption of skin-restricted, cell-autonomous, nonhematopoietic, keratinocyte-intrinsic, IFN-independent restriction factor (the CIB1–EVER1–EVER2 complex)–mediated immunity against a specific set of defective viruses (β-HPVs, which lack E5 and E8).
P7 (A1.viii.10; Fig. 1 A), belonging to another branch of kindred A1, displayed consanguinity because one of his parents was the offspring of second cousins. Familial consanguinity was confirmed by a high inbreeding coefficient determined by SNP 6.0 array analysis (Table S5). From the age of 5 yr, P7 presented eruptions of pityriasis versicolor–like and scaly erythematous lesions on the face and neck, which spread as flat warts to his trunk, forearms, legs, and the backs of his hands. He developed infiltrative lesions, histologically defined as Bowen’s disease, at the left medial canthus and on the nose. P7 was treated surgically for Bowen’s disease and then topically with retinoic acid and 5-fluouracil. P7 tested positive for HPV5, HPV17, and HPV36 by restriction enzyme analysis and Southern blot hybridization. This patient was described as case 7 in a previous study (Rueda, 1993).

Kindred A, branch A2 (Fig. 1 A and Tables 1 and S5) P8–P11 were born to healthy parents. Familial consanguinity was suspected and confirmed on the basis of a high inbreeding coefficient in P1 as determined by 250K array analysis (Table S5). The clinical characteristics of P8–P11 have been described previously (Rueda and Rodriguez, 1976; Rueda, 1993). All patients had normal karyotypes and serum Ig levels.

P8 (A2.i.1; Fig. 1 A) first presented with EV at the age of 1 yr, but she was not formally diagnosed until the age of 59 yr. She presented with flat warts on her head, trunk, and extremities. She developed SCC on her forehead at the age of 47 yr. Restriction enzyme analysis and Southern blot hybridization demonstrated the presence of HPV5, HPV8, HPV20, and HPV24 in this patient. She died at the age of 78 yr. This patient was described as case 1 in previous studies (Rueda and Rodriguez, 1976; Rueda, 1993). HPV5 was cloned from benign and malignant lesions from P8 and characterized (Deau et al., 1993). HPV20 was originally cloned from a benign lesion from P8 (Kremsdorf et al., 1984).

P9 (A2.i.10; Fig. 1 A) first presented with EV at the age of 5 yr, but she was not formally diagnosed until the age of 40 yr. She presented with flat warts on her head, trunk, and extremities. SCC development has never been reported for this patient. Restriction enzyme analysis and Southern blot hybridization confirmed that this patient was carrying HPV8. This patient was described as case 2 in previous studies (Rueda and Rodriguez, 1976; Rueda, 1993). HPV5 from P9 was cloned and characterized (Deau et al., 1991) and case 4 by Deau et al. (1993).

P10 (A2.i.12; Fig. 1 A) first presented with EV at the age of 1 yr. He was not formally diagnosed until the age of 40 yr. He presented with flat warts on his head, trunk, and extremities. SCC development has never been reported for this patient. Restriction enzyme analysis and Southern blot hybridization confirmed that this patient was carrying HPVs 5, 8, and 20. He was described as case 3 in two previous studies (Rueda and Rodriguez, 1976; Rueda, 1993).

P11 (A2.i.13) first presented with EV at the age of 3 yr but was not formally diagnosed until the age of 36 yr. He presented with flat warts on his head, trunk, and extremities. He developed invasive SCC and basal cell carcinoma on his forehead after the age of 27 yr. He died at the age of 48 yr. Restriction enzyme analysis and Southern blot hybridization confirmed that this patient was carrying HPVs 5, 8, and 20. He was described as case 4 in two previous studies (Rueda and Rodriguez, 1976; Rueda, 1993).

Kindred B (P12; Fig. 1 A and Tables 1 and S5) P12 (B.i.2; Fig. 1 A) was previously described in a case study (Kienzler et al., 1979). He was born to French parents in 1933. Potential parental consanguinity was investigated by calculating an...
inbreeding coefficient with FSuite software (Gazal et al., 2014). This analysis indicated that his parents were first cousins (Table S5). P12 presented with recurrent polymorphic skin lesions typical of EV from the age of 23 yr onwards. He developed several SCCs on the forehead, cheek, and ear ~20 yr after the onset of the disease. The viral etiology of his disease was confirmed by the identification of HPV8 by restriction enzyme analysis and by Southern blotting. P12 had normal levels of Ig, complement components, and cellular immunity as shown by measurements of dinitrochlorobenzene sensitization, rosette assays, leukocyte migration, and lymphocyte proliferation. P12 died from natural causes at the age of 72 yr.

Kindred C (P13 and P14; Figs. 1 A and Tables 1 and S5)
P13 (C.ii.1; Fig. 1 A) and P14 (C.ii.2; Fig. 1 A) were among the first EV patients documented by Lutz, who was the first to describe this disease and followed these two sisters from 1929/1930 onwards (Lutz, 1946). Both patients were also described in a more recent study (Arnold et al., 2011). They were born to Swiss parents who were shown to be consanguineous by inbreeding coefficient analyses (Table S5). P13 was born in 1912. She developed flat wart-like lesions on her neck, face, and on the backs of her hands in childhood, and these warts persisted throughout her life. After the age of 35 yr, she developed several actinic keratoses and SCC. She died of locally invasive SCC with regional lymph node metastasis at the age of 71 yr. P14 was born in 1923 and developed symptoms of EV in early childhood. Persistent lesions spread from the neck and hands to the patient’s legs. After the age of 52 yr, P14 developed several actinic keratoses, SCCs, and basal cell carcinomas that were clinically well managed by a combination of surgery and topical treatment. P14 died from natural causes at the age of 91 yr. HPV5 was identified by PCR amplification from specimens obtained from these two patients.

Kindred D (P15; Figs. 1 A and S1; Tables 1, S1 B, S4, and S5)
P15 (D.iv.2; Fig. 1 A) was born to consanguineous parents from Switzerland, and her phenotype was recently described in a case study (Imahorn et al., 2017). Familial consanguinity was confirmed by a high inbreeding coefficient determined with an SNP 6.0 array (Table S5). P15 developed first lesions during early childhood (Fig. S1 B). She was treated for several carcinomas in situ (Bowen type) and SCCs from the age of 54 yr onwards. HPV5 was detected by PCR amplification and Sanger sequencing. This patient has no immunological abnormalities of T cells, B cells, or NK cells (Table S1 B). She was also extensively phenotyped for skin-homing total CD3⁺, CD4⁺, and CD8⁺ cells and T cell subsets (CLA⁺, CLA⁻CCR4⁺, CLA⁻CCR10⁺, and CCR10⁻), none of which displayed any marked difference relative to five unrelated healthy donors (Table S4).

Kindred E (P16–P19; Figs. 1 A and S1 C; Tables 1 and S5)
P16 (E.iv.4; Fig. 1 A), P17 (E.iv.6; Fig. 1 A), and P19 (E.iv.10; Fig. 1 A) were first described in a case study (Saka et al., 2009). In brief, P16–P19 were born to consanguineous parents from Togo. Familial consanguinity was confirmed on the basis of a high inbreeding coefficient in an SNP 6.0 array analysis (Table S5). P16 first developed papules on her face at the age of 7 yr, and these lesions subsequently disseminated over her entire body. She was diagnosed at the age of 15 yr and died at the age of 21 yr from a pulmonary metastasis secondary to the development of multiple SCCs on areas of the skin exposed to the sun. P17 first developed papules on her face at the age of 5 yr, and these lesions subsequently disseminated over her entire body. P18 was not included in the initial case study. Only limited information about her clinical characteristics is available. She died in 2013 after an episode of fever. P19 is currently 14 yr of age and was first presented with disseminated skin lesions at the age of 2 yr (Fig. S1 C). P16, P17, and P19 had normal blood counts and renal and hepatic functions and were confirmed to be HIV negative. Histological analysis confirmed the presence of the pathognomonic cytopathic effect in a lesional skin biopsy. It was not possible to type the causal HPV due to infrastructure-related difficulties.

Kindred F (P20–P24; Figs. 1 A, S1 D, and S2; Tables 1 and S5)
Two patients, a 47-yr-old man and his 22-yr-old daughter, were referred to the Dermatology Department of the Tehran University of Medical Sciences for the evaluation of a chronic condition that had begun during childhood. Similar presentations were observed in other family members, with five in total all born to consanguineous parents, suggesting the presence of an AR Mendelian disorder in the extended family. All patients were healthy at birth, but they developed cutaneous lesions resembling widespread flat warts and thin plaques from the ages of 1–3 yr onwards. Multiple hyperpigmented plaques were observed on the skin of the male patient. These plaques had an occasionally verrucous surface and displayed ulceration and scaling with raised pearly borders. Three excisional biopsies of the ulcerated plaques revealed the presence of islands of infiltrative malignant cells in the dermis with palisading basoloid cells and polygonal squamous differentiation with areas of keratinization and intercellular bridges consistent with basosquamous carcinoma. The patient also had numerous slightly raised brown papules and plaques on the face, neck, arms, chest, and back of the hands, some coalescing into larger plaques with a papillomatous surface. Microscopic evaluations of these lesions revealed hyperkeratosis and acanthosis, with keratinocytes displaying coarse keratohyaline granules, perinuclear halos, and a blue-gray pallor characteristic of EV. A jaw x-ray (orthopantomogram) was performed to evaluate jaw keratocysts and other abnormalities suggestive of nevoid basal cell carcinoma syndrome, which were found to be within normal limits. The index case and one of his affected siblings were positive for HBsAg, and both reported long-term hepatitis B infection and liver cirrhosis. The female patient had numerous erythematous or hyperpigmented papules with a flat surface, minimal scaling, and irregular borders on the face, neck, hands, and arms. Flat pink macules and larger patches with fine scales were present on the chest and upper arms. Biopsy of the lesions revealed pathological features typical of EV warts with minimal papillomatosis and hyperkeratosis, viral cytopathic effects, and a blue-gray hue.

Genome-wide linkage analysis and inbreeding coefficient determination
Genome-wide linkage analysis was performed essentially as previously described (Grant et al., 2011) but with minor modi-
22 members of kindred A, P14, P15, and six members of kindred E were genotyped with the Affymetrix Genome-wide Human SNP array 6.0. P10 was genotyped with the Affymetrix Genome-wide Human Mapping 250K, and P11 was genotyped with the Affymetrix CytoScanHD array. Four members of family F were genotyped with the Illumina Infinium Global Screening Array (642,824 SNP markers) using 200 ng genomic DNA in accordance with the manufacturer’s instructions (Illumina). Genotypes were called with the Power Tools Software Package (Affymetrix), and Chromosome Analysis Suite Software was used for P11. SNPs presenting more than one Mendelian inconsistency were discarded. SNPs were further filtered with population-based filters with PLINK software (Purcell et al., 2007) according to the ethnicity of the kindred. A subset of markers common to the three arrays and optimized to decrease their linkage disequilibrium (LD) was used for parametric multipoint linkage analyses in MERLIN (Abecasis et al., 2002) for kindreds A1, A2, B, D, E, and F, considering founders to be second-degree relatives and assuming AR inheritance with complete penetrance.

We estimated the inbreeding coefficient F by Markov processes to model homozygous states throughout the genome according to the FEstim method (Leutenegger et al., 2003). We used the FEstim_SUBS method to minimize LD between SNPs as recommended in a previous study (Gazal et al., 2014) for the random extraction of sparse markers at 0.5-cm intervals to create 100 submaps. This strategy does not require the estimation of LD scores for the data, and F is estimated by calculating the median value of the estimates obtained from the different maps. FSuite v1.0.3 software was used to calculate FEstim and to infer the degree of parental consanguinity for each individual from the genome-wide human SNP array data (Gazal et al., 2014).

WES

The method used for WES has been described previously (Bolze et al., 2010; Byun et al., 2010). Briefly, genomic DNA extracted from the patients’ blood cells or LCLs was sheared with a Covaris S2 Ultrasonicator. An adapter-ligated library was prepared with the Paired-End Sample Prep kit V1 (Illumina). Exome capture was performed with the SureSelect Human All Exon kit (50–71-Mb version; Agilent Technologies). Sequencing was performed on an Illumina Genome Analyzer Ix (Illumina) generating 72- or 100-base reads. For kindred F, DNA was extracted from peripheral blood samples by the salting out method. DNA concentration was measured with a Qubit 2.0 fluorimeter (Thermo Fisher Scientific). WES was performed for probands and affected family members. Exons and flanking intronic regions of ∼20,000 genes (45 Mb; 98% of consensus coding sequence exons) were captured with the Illumina TruSeq Exome Enrichment Kit and sequenced on a NextSeq 500 instrument (Illumina). We used a BWA-MEM algorithm (Li and Durbin, 2009) to align the sequences with the reference human genome sequence (hg19build). Downstream processing was performed with the Genome Analysis Toolkit (GATK; McKenna et al., 2010), SAMtools (Li et al., 2009), and Picard Tools (http://broadinstitute.github.io/picard/). Substitution calls were made with GATK UnifiedGenotyper, whereas indel calls were made with SomaticIndelDetector V2. All calls with a read coverage of <2x and a Phredscaled SNP quality of <20 were filtered out. Single-nucleotide variants were filtered on the basis of dbSNP135 (http://www.ncbi.nlm.nih.gov/SNP/) and 1000Genomes (http://www.internationalgenome.org) data. All variants were annotated with ANNOVAR (Wang et al., 2010). The sequence data are available from the Sequence Read Archive website under accession number SRP151153. All variant calls with a variant quality <200, depth of coverage <5, and mapping quality <40 were filtered out. Only exonic and splice variants were retained, and synonymous and heterozygous variants were subsequently removed. Single-nucleotide variants with a MAF of >0.1% in public databases were then excluded, given the rarity of EV. This process identified 26–56 variants per patient.

Sanger sequencing of genomic DNA

Genomic DNA samples from patients and their relatives were used as a template for the amplification of 300–600-bp regions encompassing the mutation by PCR with site-specific oligonucleotides. Amplicons were sequenced with BigDye Terminator technology on an ABI 3730 DNA sequencer. Lasergene Suite and SnapGene were used for sequence analysis (DNASTAR and SnapGene).

IHC

Briefly, skin punch biopsy specimens (6 mm in diameter) were obtained from waste skin removed from individuals undergoing abdominoplasty (two individuals). Biopsy specimens were frozen in optimal cutting temperature compound (Sakura) and stored at −80°C. Tissue sections were air dried, fixed with acetone, blocked by incubation with 10% normal serum, and stained with the anti-CIBI monoclonal antibody UN-2 (Naik et al., 1997) or an IgG1 isotype control (Sigma-Aldrich) at a concentration of 13 µg/ml overnight at 4°C. Tissue sections were thoroughly washed and incubated with biotin-labeled horse anti-mouse secondary antibody (Vector Laboratories) for 30 min at room temperature. The slides were then treated with 0.3% H2O2 and washed, and the staining signal was amplified with avidin–biotin complex Vectastain (Vector Laboratories), activated with 0.015% H2O2, and developed with a 5% solution of the chromogen 3-amin-9-ethylcarbazole (Sigma-Aldrich) for ∼20 min. IHC was performed on specimens from four healthy donors.

RNA sequencing

Total RNA was isolated from primary keratinocytes from P5 and P14, two healthy donors (control 1 and control 2), and cells from P5 stably expressing GST as an irrelevant protein or complemented with an untagged CIB1 construct. Total cellular mRNA was prepared for sequencing with the NextSeq 500/550 High Output V2 kit. We generated 75-bp single reads on a NextSeq 500. Reads were mapped onto the reference genome with STAR v2.5.3a (Dobin et al., 2013). A genome index specific to our data was first created, and the single-end reads were then aligned.
in a two-pass strategy. In this strategy, new splicing junctions are first detected and used for the final mapping. Read counts were obtained for each gene with HTSeq v. 0.9.1 (Anders et al., 2015). Gene expression levels were estimated with Transcripts Per Kilobase Million (TPM). TPM takes the size of each sample library and gene lengths into account to assess expression levels (Conesa et al., 2016). Statistical analysis was performed with R v.3.2.3 (The R Foundation, 2015). Gene expression profiles are represented as the log(fold change) in expression values between two different groups.

RT-qPCR

Human tissue

RNA was isolated from LCLs, primary keratinocytes, and HEK293T cells with the RNeasy mini kit and from whole blood with the PaxGene blood RNA kit (QiAGEN). Reverse transcription was performed with the SuperScript III first-strand synthesis system and oligo(dT) primers according to the manufacturer’s protocol (Thermo Fisher Scientific). RT-qPCR was then performed with TaqMan assays using exon-spanning probes for CIB1 (Hs01089679_ml), EVER1/TMC6 (Hs00273164_ml), or EVER2/TMC8 (Hs00380060_ml; Thermo Fisher Scientific) with normalization against GAPDH (4310884E), 18S (Hs99999901_sl), or RNaseP (4403326) as housekeeping genes by the ΔCT method. Data are represented as fold changes and were analyzed with the ΔΔCT method and comparison with an untreated control sample. The data shown are the means of three experiments.

Cell lines and primary cell isolation

HEK 293T cells were obtained from ATCC (CRL-3216). PBMCs were isolated by Ficoll-Hypaque density centrifugation (Amerham Pharmacia Biotech) from cytophoresis or whole-blood samples obtained from healthy volunteers and patients, respectively. EBV-immortalized LCLs (EBV-B cells) were obtained as previously described (Dupuis et al., 2001). Primary keratinocyte isolation: Punch biopsy specimens from the inner upper arm were washed three times with serum-free DMEM supplemented with 50 µg/ml gentamycin. They were then treated with dispase (354235; BD) at 4°C overnight. The following day, dermis and epidermis were separated manually and treated with Accutase (A6964; Sigma-Aldrich). The epidermis was then cut into pieces and wounded to obtain basal keratinocytes, which were cultured as described below.

Cell culture and transfection

HEK293T and HaCaT cells were maintained in DMEM supplemented with 10% FBS. LCLs were maintained in RPMI 1640 supplemented with 10% FBS. Primary keratinocytes were maintained on mitomycin-C–inactivated (10 µg/ml, 3 h) MEF 3T3-J2 feeder cells in complete Green medium (DMEM/Ham’s F12 in a 2:1 ratio supplemented with 10% FBS, 180 nM adenine, 10 ng/ml EGF, 0.4 µg/ml hydrocortisone, 8.47 ng/ml cholera toxin, 5 µg/ml insulin, 1.36 ng/ml triiodothyronine, and 10 µM ROCK inhibitor Y-27632). Transfections were performed with XtremeGENE 9 (Roche), FuGENE6 (Promega), Lipofectamine 2000 (Thermo Fisher Scientific), or Lipofectamine LTX (Thermo Fisher Scientific) in accordance with the manufacturer’s instructions.

Plasmids

Myc/DDK-tagged pCMV6-entry expression plasmids for EVER1/TMC6, EVER2/TMC8, CIB1, HPV5 E1, E2, E6, and E7 as well as HPV16 E1, E2, E5, E6, and E7 were obtained from Origene. An HA-tagged CIB1 expression construct was generated by inserting the CIB1 expression cassette from pCMV6-entry into pcDNA3.1 between the BamHI and EcoRI sites. CIB1 was amplified by PCR with the primers 5'TTATTAGGATCCGACCATGGGTCGGGCACTGCC-3' and 5'TCAGAAGTTCAACTGATACTGGAACATGATATTGCTACAGCAATCTTAAAAGAGAC-3'. DDK-tagged pcDNA3.1 expression constructs for CRPV E8 and HPV4 E8 were generated by inserting the E8 ORF (NCBI Reference Sequence NC_001541) amplified from the CRPV reference genome with 5'TTATTAGGATCCGACCATGCAACTACAAGGACGACCTGCAGAGACTGC-3' and 5'TCAGAAGTTCAACTGATACTGGAACATGATATTGCTACAGCAATCTTAAAAGAGAC-3'. The integrity of all expression cassettes was confirmed by Sanger sequencing.

Retrovirus production and transduction

Retroviruses containing EVER1- or EVER2-encoding or empty vectors were produced with the pLZRS-IREs-ΔNGFR (de Paus et al., 2013; Martinez-Barricarte et al., 2016) expression plasmids for EVER1/TMC6 and EVER2/TMC8 with the cold fusion cloning kit (System Bioscience) in accordance with the manufacturer’s instructions after linearization with EcoRI. The Myc/DDK-tagged expression cassettes were amplified by PCR from the abovementioned pCMV6 entry clones with the following primers: EVER1, 5′-ATT TAAATTCGAATTGGCCAGCCTGGGCGGCTGGAATTTTAAACCTTATGCTGCTATCTTGTTAATCCAGGATATCATT-3′; and EVER2, 5′-ATAAAAACTGCTCAATTGCTGTCATCTCCGCTCCGGAT-3′ and 5′-AGGCCCTTACACCTTTTAACTTATATCGGTGGGCGC-3′. The integrity of all expression cassettes was confirmed by Sanger sequencing.

Immunoblotting and immunoprecipitation

Cells were lysed by incubation in radioimmunoprecipitation assay (RIPA) buffer supplemented with the inhibitors aprotinin, NaF, N-ethylmaleimide, Na3VO4, and leupeptin for 30 min on ice, and the resulting lysate was then cleared. For immunoprecipitation, 10% of the lysate was set as the input control. Cleared lysates were incubated with 1 µg of the indicated antibodies (FLAG, HA, GFP, or an Ig control) at 4°C on an overhead shaker for 2–16 h. Protein A–coupled magnetic Dynabeads (50 µl from a stock solution; Thermo Fisher Scientific) were added, and antibody-bound protein was captured from the lysate by incubation for 1 h at 4°C on an overhead rotator. Beads were washed three
to five times with 200 µl lysis buffer, resuspended in 100 µl lysis buffer, and transferred to new reaction tubes to prevent the co-

ditioning of protein bound nonspecifically to the wall of the tube. The beads were resuspended in 25–50 µl 2× Laemmli buffer and
boiled at 95°C for 5 min. Samples were subjected to standard SDS-
PAGE in Mini-Protein TGX 4–20% gels (Bio-Rad Laboratories), and the
resulting bands were transferred onto polyvinylidene

difluoride membrane by semidyry transfer for 30–40 min at 200 mA and 25 V per gel. The primary antibodies used were specific
for CIB1 (raised against amino acids 24–43 [9, 11]), the HA epitope
(HA.11-16B12; Covance), the FLAG epitope (M2; HRP coupled or
unlabeled; Sigma-Aldrich), IKBα (L35A5), pIKBα (5A5), and p100/
p52 (18D10; Cell Signaling Technology), GAPDH HRP-coupled
(FL-335), pFAK (2D11), and pAK (D-1; Santa Cruz Biotechnology,
Inc.), vinculin (VIN-11-5; Sigma-Aldrich), GFP (JL-8; Takara Bio
Inc.), and actin (ACTC1; 2.1; Abgent). We used normal rabbit and
and mouse IgG (Santa Cruz Biotechnology, Inc.) as immunoprecipi-
tation controls. The secondary antibodies used were HRP-cou-
pled anti-mouse IgG and anti-rabbit IgG (GE Healthcare) or
anti-chicken IgY (Jackson ImmunoResearch Laboratories, Inc.).

Immunofluorescence, PLA, and microscopy

Primary keratinocytes were plated on poly-L-lysine–coated cov-

erslips and transfected as indicated above. The cells were fixed
by incubation with 4% PFA 24 h after transfection, permeabilized,
and blocked by incubation in 0.2% Triton X-100, 3% BSA, and
10% normal serum, and then they were incubated overnight with

the primary antibody. The antibodies used were directed against

the FLAG (anti-DDK; Origene) and HA epitopes (Sigma-Aldrich)
and were used at a dilution of 1:500. The secondary antibodies
used were Alexa Fluor 488– or 568–conjugated goat anti-mouse or

anti-rabbit IgG (Thermo Fisher Scientific) at a dilution of 1:500. Cells

were counterstained with DAPI (0.5 µg/ml). Coverslips

were mounted on slides in Prolong Antifade Gold (Thermo

Fisher Scientific) or ZnSO4 (100 µM) overnight. The next day,

they were allowed to adhere for another 24 h and were then

fixed in ice-cold acetone. Duolink PLA (Sigma-Aldrich) was per-

formed in accordance with the manufacturer’s instructions with

anti-rabbit HA (Sigma-Aldrich) and anti-mouse DDK (Origene)

antibodies at a dilution of 1:400 and then were incubated over-
night at 4°C with the cells. Duolink In Situ Detection Reagents Red

was used for visualization.

Reporter gene assay

HEK293T cells were cotransfected with the indicated plasmids

and pMRE-GFP, a GFP reporter construct driven by four copies
of a MRE 5′-TGACTC-3′ (provided by W. Schaffner, University
of Zurich, Zurich, Switzerland). This element is activated by the

zinc-dependent metal transcription factor 1 (MTF-1). After 24 h,

cells were stimulated with PMA/ionomycin (10 ng/ml and 50 ng/

ml; Sigma-Aldrich) or ZnSO4 (100 µM) overnight. The next day,

cells were stained with 1 µg/ml DAPI to exclude dead cells, and

fluorescence was acquired with an LSRII flow cytometer (BD).

Results are shown as the relative response ratio (RRR) calculated
as RRR = 100% × (sample − negative control)/(positive control −

negative control). Untreated mock-transfected cells served as the

negative control, and untreated vector-transfected cells served as

the positive control. The data shown are the mean and SD of three
independent experiments.

Determination of absolute free zinc levels and zinc kinetics

Labile zinc levels in LCLs and keratinocytes were determined

by flow cytometry as previously described (Haase et al., 2006).

Briefly, cells were loaded with the zinc-specific fluorescent

probe FluoZin-3 (1 µM; Thermo Fisher Scientific) for 30 min at

room temperature. Samples were either left untreated (F sample)
or were treated with ZnSO4 and the zinc ionophore pyrithi-
one/2-mercaptopyridine N-oxide (referred to as Fmax; 100 µM

and 50 µM; Sigma-Aldrich) or the zinc chelator TPEN (Fmin;

100 µM; Sigma-Aldrich). All samples were stained with DAPI
(0.5 µg/ml) to exclude dead cells. Fluorescence was recorded on

an LSRII flow cytometer. The concentration of intracellular labile

zinc was calculated from the mean fluorescence according to

the formula [Zn] = KD × ([F − Fmin]/[Fmax − F]). The dissoci-

ation constant of the FluoZin-3/zinc complex is 15 nM. The data
shown are the means of three independent experiments for LCLs and the mean and SD of three independent experiments for keratinocytes. For zinc kinetic measurements, LCLs were stained with FluoZin-3 (1 μM; 30 min at room temperature) in HBSS (Thermo Fisher Scientific) and then allowed to rest for 60 min at room temperature. Fluorescence was recorded on a VICTOR plate reader (PerkinElmer). Baseline fluorescence was monitored every 60 s for 10 min. Cells were then sequentially loaded with ZnSO4 (100 μM), the calcium chelator BAPTA (25 μM; Sigma-Aldrich), and the zinc-specific chelator TPEN (200 μM). In each set of conditions, fluorescence was determined every 60 s for 10–20 min. BAPTA treatment ensured the specificity of the zinc signal. Unstained cells were used to correct values for background fluorescence. The data shown are the mean and SD for three independent experiments.

Flow cytometry/immunophenotyping
Whole blood was either processed directly or used for the isolation of PBMCs on a Ficoll density gradient. The PBMCs obtained were then either processed directly or frozen for future use. We lysed the red blood cells by incubating 100 μl fresh whole blood with fluorophore-conjugated antibodies for 20 min and then with FACS lysis solution (BD) for 10 min at room temperature. The antibodies used for staining were CD45-FITC, CD3-PE-Cy7, CD19-PE-Cy7, CD20-FITC, CD45RO-BV421, CD4-BV605, CCR4-BV421, and CD3-APC. Fluorescence was measured on a FACSCanto II flow cytometer (BD). Frozen PBMCs were thawed, washed, and incubated with Zombie UV viability dye (BioLegend) and then with fluorophore-conjugated antibodies in brilliant stain buffer (BD) for 30 min. The antibodies used were CD45RO-BV421, CD4-BV605, CCR4-BV421, CLA-Alexa Fluor 647, CD45RA-Alexa Fluor 488, CCR7-Alexa Fluor 647, CD8-PE-Cy7, HLA-DR-FITC, CD3-APC-Cy7, CD20-PE (BioLegend), CD3-PerCP-Cy5.5, CCR10-BSB15, and CD56-APC (BD). Fluorescence was measured on an LSRII flow cytometer. Data were analyzed with FlowJo software (v.9.8.3; Tree Star). Whole-blood experiments were performed for two patients (P3 and P5). Frozen PBMCs from healthy donors (n = 5), WT family members (n = 5), healthy heterozygous family members (n = 4), and patients (n = 5; P1–P4 and P1S) were used. The data were obtained in a single-time point experiment.

T cell proliferation assay
Freshly isolated PBMCs were loaded with carboxyfluorescein succinimidyl ester (5 μM; Invitrogen) for 5 min, washed, and plated at a density of 1 × 105 cells/ml in RPMI 1640/10% FBS supplemented with 2% penicillin/streptomycin on plates coated with anti-CD3 antibody (5, 2.5, or 1.25 μg/ml; clone UCHT1). Cells were then stimulated with anti-CD28 antibody (1 μg/ml; clone ANC28/SD10) for 3 d at 37°C in a humidified incubator under an atmosphere containing 5% CO₂. Cells were harvested and processed for flow cytometry by incubation with an APC-conjugated anti-CD3 antibody in flow cytometry buffer for 20 min. Fluorescence was measured on a FACSCanto II flow cytometer. The data were analyzed with FlowJo software using the proliferation analysis tool. The parameters displayed included proliferation index (the total number of divisions divided by the number of cells entering division), division index (the mean number of cell divisions undergone by a cell from the original population), and percent division (precursor frequency). The data shown were obtained in a single-time point experiment on specimens from two patients (P3 and P5) and two controls processed in parallel.

Scratch wound healing assays
Primary keratinocytes were plated on fibronectin-coated (10 μg/ml; Corning) glass-bottomed six-well culture plates (MatTek). The cells were allowed to adhere to the plates overnight, and the resulting monolayer was then scratched with a pipette tip. Wound closure was monitored every 20 min for 16 h with an inverted Andor-driven spinning-disk confocal system equipped with a Zyla 4.2 (Andor Technology) camera in brightfield conditions with a 10× 0.3 NA air objective. During imaging, cells were maintained at 37°C under an atmosphere containing 5% CO₂. The images were subjected to automated analysis with the MiToBo plugin in ImageJ (National Institutes of Health) to determine the cell-free area, which was normalized relative to the initial cell-free area and expressed as a percentage. The start and endpoint images were also manually analyzed by measuring the total cell-free area with the freehand tool. The data shown are the means for two to three experiments with at least six data points per experiment.

Large-scale protein purification and mass spectrometry analysis
For identification of the cellular partners interacting with CIB1, we transfected HEK293T cells (∼10⁷ cells per 10-cm dish) in 10 dishes with 12 μg plasmid encoding CIB1-FLAG or ORF75-FLAG (control) in the presence of GenJet transfection reagent (Sigma-Gen). 36 h later, the cells were lysed with RIPA buffer supplemented with protease inhibitor cocktail and centrifuged at 13,000 rpm for 20 min at 4°C. Lysates were precleared with 100 μl Sepharose 4B (Sigma-Aldrich) to remove cell debris and then were mixed with a 50% slurry of anti-FLAG M2 Affinity Gel (Sigma-Aldrich) and incubated for 4 h at 4°C. The beads were thoroughly washed in lysis buffer, and the bound proteins were eluted by heating samples in 2× Laemmli SDS sample buffer for 5 min at 95°C before separation by electrophoresis on a NuPAGE 4–12% Bis-Tris gradient gel (Thermo Fisher Scientific). The coimmunoprecipitated proteins were stained by incubation with coloidal Coomassie solution (0.02% Coomassie Brilliant Blue G-250, 5% aluminum sulfate-(14–18)-hydrate, 10% ethanol, and 8% orthophosphoric acid [85%]; Kang et al., 2002) at room temperature overnight. Bands specifically present in the CIB1-FLAG sample but absent from the ORF75-FLAG sample were excised and analyzed by ion-trap mass spectrometry at the Ta-plin Biological Mass Spectrometry Facility (Harvard Medical School, Boston, MA).

Gene ontology analysis
Gene ontology analysis was performed according to the PANTHER classification system release 20170413 (Mi et al., 2013) with the overrepresentation test and the Reactome version 58 (release 20161207) against the Homo sapiens database. Bonferroni correction for multiple testing was applied. 239 mapped hits were run
against 21,042 database entries. The data are represented as fold enrichments, with P values <0.05 considered significant.

Statistical analyses
Statistical analyses were performed with Prism 5.0 (GraphPad Software).

Online supplemental material
Fig. S1 depicts photographs of the clinical EV manifestation of the studied patients. Fig. S2 depicts the results of GWL analysis and whole-exome filtering performed on the studied patient cohort and shows chromatographs obtained by Sanger sequencing that confirmed the mutations identified in CIB1. Fig. S3 shows qPCR expression data of EV-related genes after interferon treatment of primary human control keratinocytes. Fig. S4 shows the results obtained by performing mass spectrometry after immunoprecipitation of CIB1 expressed in HEK293T cells as well as immunofluorescent microscopy and colocalization analysis of CIB1 and ZnT1 in primary human control keratinocytes. Table S1 shows the results obtained by immunophenotyping for the studied patients using flow cytometry. Table S2 shows the T cell proliferation. Table S3 shows the viral serologies. Table S4 shows the skin-homing T cell subpopulations. Table S5 shows the skin-homing T cell subpopulations. Table S6 shows the inbreeding coefficient. Table S6 shows the transcriptomic analysis.

Acknowledgments
We thank the patients and their families for their collaboration, both branches of the Laboratory of Human Genetics of Infectious Diseases for helpful discussions and support, J. Bustamante for translations and discussions, J.A. Alvarez and Y. Lopez for sample collection and flow cytometry support, B. Vieco and M. Velazquez from the Dermatology section and Pathology Department of the University of Antioquia for their assistance, and Y. Nemirovskaya, E. Anderson, M. Woollett, L. Amar, C. Patissier, and D. Papandrea for administrative support. We wish to dedicate this study to the memory of Professor Luis-Alfredo Rueda and Professor Pierre Agache for their invaluable collaboration with one of us (G. Orth). We would like to thank the gnomAD and the groups that provided exome and genome variant data to this resource. We thank Ross Tomaino (Harvard Medical School, Boston, MA) for mass spectrometry analysis.

The Laboratory of Human Genetics of Infectious Diseases is supported by grants from the National Institutes of Health (grant 5 R21 AI07508-02) and the French Cancer Institute (grant 2013-1-PL B10-11-1). L.V. Paris and T.M. Leisner are supported by National Institutes of Health grant R41 CA200189. S.J. de Jong was supported by the German Research Foundation (Jo 1151-1), funds from the Women & Science Fellowship program at The Rockefeller University, and the National Institutes of Health Clinical and Translational Science Award program (UL1 TR001866). J.L. Franco and A.A. Arias were supported by the Fundación Diana Nemirovskaya, E. Anderson, M. Woollett, L. Amar, C. Patissier, and D. Papandrea for administrative support. We wish to dedicate this study to the memory of Professor Luis-Alfredo Rueda and Professor Pierre Agache for their invaluable collaboration with one of us (G. Orth). We would like to thank the gnomAD and the groups that provided exome and genome variant data to this resource. We thank Ross Tomaino (Harvard Medical School, Boston, MA) for mass spectrometry analysis.

The Laboratory of Human Genetics of Infectious Diseases is supported by grants from the National Institutes of Health (grant 5 R21 AI07508-02) and the French Cancer Institute (grant 2013-1-PL B10-11-1). L.V. Paris and T.M. Leisner are supported by National Institutes of Health grant R41 CA200189. S.J. de Jong was supported by the German Research Foundation (Jo 1151-1), funds from the Women & Science Fellowship program at The Rockefeller University, and the National Institutes of Health Clinical and Translational Science Award program (UL1 TR001866). J.L. Franco and A.A. Arias were supported by the Fundación Diana Nemirovskaya, E. Anderson, M. Woollett, L. Amar, C. Patissier, and D. Papandrea for administrative support. We wish to dedicate this study to the memory of Professor Luis-Alfredo Rueda and Professor Pierre Agache for their invaluable collaboration with one of us (G. Orth). We would like to thank the gnomAD and the groups that provided exome and genome variant data to this resource. We thank Ross Tomaino (Harvard Medical School, Boston, MA) for mass spectrometry analysis.

T.M. Leisner and L.V. Parise are cofounders of Reveris Therapeutics LLC. The authors declare no additional competing financial interests.

Author contributions: S.J. de Jong designed, performed, and interpreted most of the experiments and wrote the original manuscript. A. Créquer, E. Imahorn, H. Vahidnezhad, L. Youssefian, A.H. Saeidian, and A. d’Amico performed exome analysis. I. Matos helped with scratch wound healing experiments. D. Hum, A.A. Arias, and L. Lorenzo helped for constructs and patients’ material. C.Q.F. Wang performed IHC experiments. A.A. Arias, J.L. Franco, and J.G. Markle helped for flow cytometry experiments. F. Jabot-Hanin, E. Patin, and M. Bouaziz helped for linkage and RNA sequencing analyses. N. Pertilla Maya, X. Rueda Cadena, B. Saka, N. Aghazadeh, and S. Zeinali, were responsible for medical care of patients. F. Full, A. Ensser, T.M. Leisner, L.V. Parise, J.G. Krueger, L. Laimins, L. Abel, E. Fuchs, J. Utito, and B. Burger provided expertise and methodology. G. Orth, E. Jouanguy, and J.-L. Casanova conceptualized the study, supported design of experiments, analysis, and interpretation of data, and wrote the original manuscript. All coauthors reviewed and edited the manuscript.

Submitted: 16 February 2017
Revised: 21 May 2018
Accepted: 2 July 2018

References
Abecasis, G.R., S.S. Cherny, W.O. Cookson, and L.R. Cardon. 2002. Merlin--rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30:97–101. https://doi.org/10.1038/ng786
Anders, S., P.T. Pyl, and W. Huber. 2015. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 31:166–169. https://doi.org/10.1093/bioinformatics/btu638
Andreopoulou, E.J., I. Dvoretzky, and D.R. Lowy. 1985. X-linked inheritance of epidermodysplasia verruciformis. Genetic and virologic studies of a kindred. Arch. Dermatol. 121:864–868. https://doi.org/10.1001/archderm.1985.01660070054014
Aochi, S., G. Nakanishi, N. Suzuki, N. Setsu, D. Suzuki, K. Aya, and K. Iwatsuki. 2007. A novel homozygous mutation of the EVER1/TCMC6 gene in a Japanese patient with epidermodysplasia verruciformis. Br. J. Dermatol. 157:1265–1266. https://doi.org/10.1111/j.1365-2133.2007.08206.x
Arnold, A.W., R. Burger, E. Kump, A. Rufle, S.K. Tyring, W. Kempf, P. Häusermann, and P.H. Itin. 2011. Homozygosity for the c.917A→T (p.N306l) polymorphism in the EVER2/TCMC8 gene of two sisters with epidermodysplasia verruciformis. Lewandowski-Lutz originally described by Wilhelm Lutz. Dermatologica (Basel). 221:81–86. https://doi.org/10.11159/dermatologica.2011.000323536
Azizinnouri, B., M. Mondini, M. De Andrea, D. Göia, U. Dianzani, R. Mesturini, G. Leigheb, R. Tiberio, S. Landolfo, and M. Gariglio. 2005. CD8+ T-cell lymphocytopenia and lack of EVER mutations in a patient with clinically and virologically typical epidermodysplasia verruciformis. Arch. Dermatol. 141:1323–1325.
Berthelot, C., M.C. Dickerson, P. Rady, Q. He, F. Niroomand, S.K. Tyring, and A.G. Pandya. 2007. Treatment of a patient with epidermodysplasia verruciformis carrying a novel EVER2 mutation with imiquimod. J. Am. Acad. Dermatol. 56:882–886. https://doi.org/10.1016/j.jaad.2007.01.036
Bolze, A., M. Byun, D. McDonald, N.V. Morgan, A. Abhayankar, L. Premkumar, A. Puel, C.M. Bacon, F. Rieux-Laucat, K. Pang, et al. 2010. Whole-exome-sequencing-based discovery of human FADD deficiency. Am. J. Hum. Genet. 87:873–881. https://doi.org/10.1016/j.ajhg.2010.07.028
Borgogna, C., M.M. Landini, S. Lanfredini, J. Doorbar, J.N. Bouwes Bavinck, K.D. Quint, M.N. de Koning, R.E. Genders, and M. Gariglio. 2014. Characterization of skin lesions induced by skin-tropic α- and β-papillomaviruses in a patient with epidermodysplasia verruciformis. Br. J. Dermatol. 171:1550–1554. https://doi.org/10.1111/bjd.13156
Lek, M., K.J. Karcewski, E.V. Minikol, K.E. Samocha, E. Banks, T. Fennell, A.M. DePristo, J.A. Wicks, J.A. Eberle, A. Parmigiani, J.S. Wave, A.J. Hill, B.R. Cummings, et al. Exome Aggregation Consortium. 2016. Analysis of protein-coding genetic variation in 60,706 humans. *Nature.* 536:285–291. https://doi.org/10.1038/nature19105

Leutenegger, A.L., B. Prum, E. Génin, C. Verny, A. Lemaingue, F. Clerget-Darpoux, and E.A. Thompson. 2003. Estimation of the inbreeding co-efficient through use of genomic data. *Am. J. Hum. Genet.* 73:516–523. https://doi.org/10.1086/379507

Lewandowsky, F., and W. Lutz. 2012. Ein Fall einer bisher nicht beschriebenen Hauterkrankung (Epidermodysplasia verruciformis). *Arch. Dermatol.* Syph. 141:193–203. https://doi.org/10.1001/AFD1938833

Li, H., and R. Durbin. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics.* 25:1754–1760. https://doi.org/10.1093/bioinformatics/btp324

Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, and R. Durbin. 1000 Genome Project Data Processing Subgroup. 2009. The Sequence Alignment/Map format and SAMtools. *Bioinformatics.* 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

Li, S.L., L.N. Duo, H.J. Wang, W. Dai, E.H. Zhou, Y.N. Xu, Z. Zhao, Y.Y. Xiao, L. Xia, Z.H. Yang, et al. 2016. Identification of LCK mutation in a family with atypical epidermodysplasia verruciformis with T-cell defects and virus-induced squamous cell carcinoma. *Br. J. Dermatol.* 175:1204–1209. https://doi.org/10.1111/bjd.14679

Liu, Y.Q., G.L. Zhang, X.H. Mo, B. Wang, F. Wu, J. Chen, H. Luo, L.D. Zhu, M.Y. Xu, Q. Zhou, et al. 2017. A novel homozygous DOCK8 mutation associated with unusual coexistence of gross molluscum contagiosum and epidermodysplasia verruciformis in a DOCK8 deficiency patient. *J. Eur. Acad. Dermatol. Venereol.* 31:e504–e505. https://doi.org/10.1111/jdv.13580

Maier, L., T. Habel, C. Prin, and T. Fischbeck. 2013. Induction of antiviral responses by epidermodysplasia verruciformis virus (EVV) specific T cells. *Am. J. Transplant.* 13:1548–1559. https://doi.org/10.1111/ajt.12416

Macknight, L.E., J.A. Pahlow, and T.M. Heslop. 2013. Whole-brain surveillance for primary brain tumors in patients with EVV and ESK-3. *J. Exp. Med.* 210:1521–1536. https://doi.org/10.1084/jem.20121863

Maftouq, J.P., S.M. Williams, H.C. Pitot, and P.F. Lambert. 2007. Human papil-lomavirus 16 E5 oncogene contributes to two stages of skin carcinogenesis. *Cancer Res.* 67:6106–6112. https://doi.org/10.1158/0008-5472.CAN-07-0921

McKenna, A., M. Hanna, E. Banks, A. Sikivento, K. Kern, K. Guralnick, et al. 2008. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Res.* 19:1297–1303. https://doi.org/10.1101/gr.72410.108

Mi, H., A. Murguianujan, and P.D. Thomas. 2013. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. *Nucleic Acids Res.* 41(D1):D377–D385. https://doi.org/10.1093/nar/gks118

Miyaochi, T., S. Nomura, S. Suzuki, M. Takeda, S. Shinkuma, K. Arita, Y. Fujita, and H. Shimizu. 2016. Genetic analysis of a novel splice-site mutation in TMCO1 reveals the in vivo importance of TMCO1 in the transcriptional channel-like domain of TMCO1. *Br. J. Dermatol.* 175:803–806. https://doi.org/10.1111/bjd.14569

Naik, M.U., A. Nigam, P. Manrai, P. Millili, K. Czymmek, M. Sullivan, and U.P. Naik. 2009. CIB1 deficiency results in impaired thrombosis: the potential role of CIB1 in outside-in signaling through integrin alphaIIb beta3. *J. Exp. Med.* 206:2773–2783. https://doi.org/10.1084/jem.20090174

Naik, U.P., P.M. Patel, and L.V. Parise. 1997. Identification of a novel calci-um-binding protein that interacts with the integrin alphaIIb cytoplas-mic domain. *J. Biol. Chem.* 272:4651–4654. https://doi.org/10.1074/jbc.272.8.4651

Nonnenmacher, M., J. Salomon, Y. Jacob, G. Orth, and F. Breitburd. 2006. Cot-tontail rabbit papillomavirus E8 protein is essential for wart formation and provides new insights into viral pathogenesis. *J. Virol.* 80:4890–4900. https://doi.org/10.1128/JVI.80.4890-4900.2006

Notarangelo, L.L., J.C. Casanova, A. Fischer, J. Puck, F. Rosen, R. Segel, and R. Geha. International Union of Immunological Societies Primary Immuno-nodeficiency diseases classification committee. 2004. Primary immuno-nodeficiency diseases: an update. *J. Allergy Clin. Immunol.* 114:677–687. https://doi.org/10.1016/j.jaci.2004.06.044

Orth, G. 2006. Genetics of epidermodysplasia verruciformis: Insights into host defense against papillomaviruses. *Semin. Immunol.* 18:362–374. https://doi.org/10.1016/j.smim.2006.07.008

Orth, G. 2008. Host defenses against human papillomaviruses: lessons from epidermodysplasia verruciformis. *Curr. Top. Microbiol. Immunol.* 321:59–83.

Pan, B., G.S. Géloc, Y. Asai, G.C. Horwitz, K. Kurima, K. Ishikawa, Y. Kawashima, A.J. Griffith, and J.R. Holt. 2013. TMCO1 and TMCO2 are components of the mechanotransduction channel in hair cells of the mamma-
CIB1 deficiency in epidermodysplasia verruciformis

Subramanian, G. T. Kuzmanovic, Y. Zhang, C.B. Peter, M. Veleeparambil, R. Chakravarti, G.C. Sen, and S. Chattopadhyay. 2018. A new mechanism of interferon's antiviral action: Induction of autophagy, essential for paramyxovirus replication, is inhibited by the interferon stimulated gene, TDRD7. PLoS Pathog. 14:e1006877. https://doi.org/10.1371/journal.ppat.1006877

Sun, W., Q. Guan, J. Wen, Q. Zhang, W. Yang, B. Zhang, W. Cui, Z. Zou, and Y. Yu. 2014. Calcium- and integrin-binding protein 1 is down-regulated in the sperm of patients with oligoasthenozoospermia: CIB1 expression in patients with oligoasthenozoospermia. J. Assist. Reprod. Genet. 31:541–547. https://doi.org/10.1007/s10815-014-0177-4

Sun, X.K., J.F. Chen, and A.E. Xu. 2005. A homoygous nonsense mutation in the EVER2 gene leads to epidermodysplasia verruciformis. Clin. Exp. Dermatol. 30:573–574. https://doi.org/10.1111/j.1365-2230.2005.01858.x

Tahiat, A., Y.R. Badran, J. Chou, B. Gangemi, G. Lefranc, Z.M. Labgaa, S. Oussalam, A. Kaddouri-Slimani, A. Belbari, K. Bendissar-Bouzid, et al. 2016. Epidermodysplasia verruciformis as a manifestation of ARTEMIS deficiency in a young adult. J. Allergy Clin. Immunol.

Tate, G., T. Suzuki, K. Kishimoto, and T. Mitsuya. 2004. Novel mutations of EVER1/TMC6 gene in a Japanese patient with epidermodysplasia verruciformis. J. Hum. Genet. 49:223–225. https://doi.org/10.1007/s10815-004-0135-6

The R Foundation. 2015. The R Project for Statistical Computing. https://www.r-project.org/