Proof of a conjecture on unimodality

Yi Wanga, *, Yeong-Nan Yehb

a Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, P. R. China
b Institute of Mathematics, Academia Sinica, Taipei 11529, Taiwan

Received 30 September 2003; accepted 26 April 2004

Abstract

Let \(P(x) \) be a polynomial of degree \(m \), with nonnegative and non-decreasing coefficients. We settle the conjecture that for any positive real number \(d \), the coefficients of \(P(x + d) \) form a unimodal sequence, of which the special case \(d \) being a positive integer has already been asserted in a previous work. Further, we explore the location of modes of \(P(x + d) \) and present some sufficient conditions on \(m \) and \(d \) for which \(P(x + d) \) has the unique mode \(\left\lceil \frac{m-d}{d+1} \right\rceil \).

MSC: 05A20

Keywords: Log-concavity; Unimodality; Modes

1 Introduction

Let \(a_0, \ldots, a_m \) be a sequence of nonnegative real numbers. We say that the sequence is unimodal if there exists an index \(0 \leq t \leq m \) such that \(a_0 \leq \cdots \leq a_{t-1} \leq a_t \geq a_{t+1} \geq \cdots \geq a_m \). Such an index \(t \) is called a mode of the sequence. A property closely related to unimodality is log-concavity. We say that the sequence is log-concave if \(a_{i-1}a_{i+1} \leq a_i^2 \) for all \(1 \leq i \leq m-1 \). The sequence is said to have no internal zeros if there are not three indices \(i < j < k \) such that \(a_i, a_k \neq 0 \) and \(a_j = 0 \). It is well known that a log-concave sequence with no internal zeros is unimodal (see [3, Proposition 2.5.1] for instance). Unimodal and log-concave sequences occur naturally in many branches of mathematics. See the survey articles [8] and [4] for various techniques, problems, and results about unimodality and log-concavity.

Let \(P(x) = \sum_{i=0}^{m} a_i x^i \) be a polynomial with nonnegative coefficients. We say that \(P(x) \) is unimodal (respectively, log-concave, non-decreasing, etc.) if the sequence of coefficients \(a_0, a_1, \ldots, a_m \) of \(P(x) \) enjoys the corresponding property. A mode of \(a_0, \ldots, a_m \) is also called a mode of \(P(x) \).

It is well known that if \(P(x) \) is log-concave with no internal zeros, then \(P(x + 1) \) is log-concave (see [4, Corollary 8.4] or [7, Theorem 2]). Actually, it may also be shown that
$P(x + d)$ is log-concave for any positive number d by using [3, Theorem 2.5.3]. In the present paper, we consider the analogue problem concerning unimodality. Let $P(x)$ be nonnegative and non-decreasing. It is shown that $P(x + 1)$ is unimodal in [2] and more generally, that $P(x + n)$ is unimodal when n is a positive integer in [1]. Further, the following is conjectured.

Conjecture 1.1 ([1]). Let $P(x)$ be a polynomial of degree m and with nonnegative coefficients. Suppose that $P(x)$ is non-decreasing and that d is a positive real number. Then $P(x + d)$ is unimodal.

In this paper we settle the above conjecture. Moreover, we will explore the number and location of modes of the polynomial $P(x + d)$. Let $M_s(P, d)$ and $M^*(P, d)$ be the smallest and the greatest mode of $P(x + d)$ respectively. Denote $\overline{m}(d) = \lceil \frac{m - d}{d + 1} \rceil$ and $\underline{m}(d) = \lfloor \frac{m}{d + 1} \rfloor$ where $[x]$ and $\lceil x \rceil$ denote the least integer $\geq x$ and the greatest integer $\leq x$ respectively. It is not difficult to see that $\overline{m}(d)$ and $\underline{m}(d)$ coincide when d is a positive integer. In [1], it is shown that $\underline{m}(d)$ is a mode of $P(x + d)$ when d is a positive integer. The statement is not true when d is only a positive number. Generally speaking, the number and location of modes of $P(x + d)$ are related not only to m and d, but also to coefficients of the polynomial $P(x)$. The matter is somewhat different when $d \geq 1$. In this case, we can show that $P(x + d)$ has at most two modes $\overline{m}(d)$ and $\overline{m}(d) + 1$ if $P(x) = ax^m$, or $\overline{m}(d) - 1$ and $\overline{m}(d)$ otherwise. We will also present certain sufficient conditions on m and d that $P(x + d)$ has the unique mode $\overline{m}(d)$, including the case when d is a positive integer larger than 1.

Throughout this paper, let m be a positive integer and d a positive real number. We denote by P_m^+ the set of monic polynomials of degree m, with nonnegative and non-decreasing coefficients. When there is no danger of confusion, we simply write \overline{m} to mean $\overline{m}(d)$. By definition, it follows immediately that

$$m - d \leq (d + 1)\overline{m} < m + 1,$$

which will be used repeatedly in the sequel.

2 Proof of Conjecture 1.1

To prove Conjecture 1.1 we need the following two lemmas.

Lemma 2.1. Suppose that the polynomial $f(x)$ is unimodal with the smallest mode t and that $d > 0$. Then $(x + d)f(x)$ is unimodal with the smallest mode t or $t + 1$.

Proof. Let $f(x) = \sum_{i=0}^{n} c_i x^i$ where $c_0 \leq \cdots \leq c_{t-1} < c_t \geq c_{t+1} \geq \cdots \geq c_n$. Then

$$(x + d)f(x) = c_0 d + (c_0 + c_1 d)x + \cdots + (c_{t-2} + c_{t-1} d)x^{t-1} + (c_{t-1} + c_t d)x^t + (c_t + c_{t+1} d)x^{t+1} + \cdots + (c_{n-1} + c_n d)x^{n-1} + c_n x^n.$$

Clearly, $c_0 \leq c_0 + c_1 d \leq \cdots \leq c_{t-2} + c_{t-1} d < c_{t-1} + c_t d$ and $c_t + c_{t+1} d \geq \cdots \geq c_{n-1} + c_n d \geq c_n$. So the statement follows. \qed
Lemma 2.2. Let $P(x) = \sum_{i=0}^{m} a_ix^i$ be a polynomial of degree m, with nonnegative coefficients and $d > 0$. Suppose that $P(x + d) = \sum_{j=0}^{m} b_jx^j$. Then $b_{\bar{m}} \geq b_{\bar{m}+1} \geq \cdots \geq b_{m}$.

Furthermore, if $d \geq (m - 1)/2$, then $P(x + d)$ is unimodal and has the mode 0 or 1. In particular, if $d \geq m$ then $P(x + d)$ is non-increasing.

Proof. We have $b_j = P^{(j)}(d)/j! = \sum_{i=j}^{m} a_id^{i-j} {i \choose j}$, which yields that

$$(j + 1)d^{j+1}(b_{j+1} - b_j) = \sum_{i=j}^{m} a_id^j [i(i - 1) - (d + 1)(j + 1)].$$ \hfill (2)

Now let $j \geq \bar{m}$. Then $(d+1)(j+1) \geq (d+1)(\bar{m}+1) \geq m+1$ by (1). Every term in the sum (2) is therefore non-positive, and thus $b_{j+1} \leq b_j$. Finally, note that $(m - 1)/2 \leq d < m$ implies $\bar{m} \leq 1$, and that $d \geq m$ implies $\bar{m} = 0$. So the statement follows.

Proof of Conjecture 1.1. Let $P(x) = \sum_{i=0}^{m} a_ix^i$ and $P(x + d) = \sum_{j=0}^{m} b_jx^j$. We need to show that b_0, \ldots, b_m is unimodal. We do this by induction on m. If $m = 1$, the result is obvious, so we proceed to the inductive step. By Lemma 2.2, it suffices to consider the case $m > 2d + 1$.

Let $P(x) = a_0 + xf(x)$ where $f(x) = \sum_{i=0}^{m-1} a_{i+1}x^i$. Then

$$P(x + d) = a_0 + (x + d)f(x + d).$$

By the induction hypothesis, $f(x + d)$ is unimodal, so is $(x + d)f(x + d)$ by Lemma 2.1. Thus b_1, b_2, \ldots, b_m is unimodal.

Let $r = \lfloor d \rfloor$. Then $r < d + 1 < m$. By (2) we have

$$b_1 - b_0 = \sum_{i=0}^{m} a_i d^{i-1} (i - d)$$

$$= \sum_{i=r+1}^{m} a_i d^{i-1} (i - d) - \sum_{i=0}^{r} a_i d^{i-1} (d - i)$$

$$\geq a_r \sum_{i=r+1}^{m} d^{i-1} (i - d) - a_r \sum_{i=0}^{r} d^{i-1} (d - i)$$

$$= a_r [d + 2d^2 + \cdots + (m - 1)d^{m-1} - d^m]$$

$$\geq a_r [(m - 1)d^{m-1} - d^m]$$

$$= a_r (m - d - 1)d^{m-1}$$

$$\geq 0.$$

Thus b_0, b_1, \ldots, b_m is still unimodal. This completes the proof.

Corollary 2.1. Let $P(x) \in \mathbb{P}_m^+$ and $d > 0$. Suppose that $P(x) \neq x^m$. Then

$$M^*(P, d) \leq \bar{m}.$$
Proof. Let $P(x) = \sum_{i=0}^{m} a_i x^i$ and $P(x+d) = \sum_{j=0}^{m} b_j x^j$. We have by (2)

$$\sum_{i=m}^{m+1} (b_{m+1} - b_m) = \sum_{i=m}^{m+1} a_i d^i \left[\frac{(i+1) - (d+1)(m+1)}{m+1} \right].$$

By (1), $(i+1) - (d+1)(m+1) \leq (m+1) - (d+1)(m+1) \leq 0$ for each $i \leq m$. In particular, $m - (d+1)(m+1) \leq -1 < 0$. On the other hand, $a_m \neq 0$ since $P(x) \neq x^m$. Hence $b_{m+1} < b_m$. This implies that the unimodal sequence $\{b_j\}$ has no mode larger than m, and the proof is therefore complete.

3 Modes of $(x+d)^m$ and $\sum_{i=0}^{m} (x+d)^i$

This section is devoted to studying modes of $P(x+d)$ for two basic polynomials $P(x) = x^m$ and $P(x) = \sum_{i=0}^{m} x^i$ respectively, which will play a key role in investigating modes of $P(x+d)$ for generic polynomials $P(x) \in \mathbb{P}_m^m$.

Proposition 3.1. Let $d > 0$. If $\frac{m+1}{d+1} \in \mathbb{Z}^+$, then $(x+d)^m$ has two modes m and $m+1$; otherwise $(x+d)^m$ has the unique mode m.

Proof. Let $(x+d)^m = \sum_{i=0}^{m} c_i x^i$ where $c_i = \binom{m}{i} d^{m-i}$. Denote $f(x) = \frac{m-x+1}{dx}$. Then $\frac{c_i}{c_{i-1}} = f(i)$. Clearly, $f(x)$ is strictly decreasing and $f(\frac{m+1}{d+1}) = 1$. Now $i \leq m$ implies $i < \frac{m+1}{d+1}$, and $i \geq m+1$ implies $i \geq \frac{m+1}{d+1}$. So the statement follows.

Let $Q_m(x) = \sum_{i=0}^{m} x^i$ and $Q_m(x+d) = \sum_{j=0}^{m} d_j x^j$ where

$$d_j = \sum_{i=j}^{m} d^{i-j} \binom{i}{j}, \quad j = 0, 1, \ldots, m. \tag{3}$$

Then the sequence $\{d_j\}$ is log-concave with no internal zeros (see Brenti[3, Theorem 2.5.3] for instance). Actually, we have the following stronger result.

Proposition 3.2. The sequence $\{d_j\}$ is strictly log-concave, i.e., $d_{j-1}d_{j+1} < d_j^2$ for all $0 < j < m$, and is therefore unimodal with at most two modes.

Proof. Note that

$$d_{j-1} = \sum_{i=j-1}^{m} d^{i-j+1} \binom{i}{j-1} = \sum_{i=j-1}^{m} d^{i-j+1} \left[\binom{i+1}{j} - \binom{i}{j} \right] = (1-d)d_j + d^{m-j+1} \binom{m+1}{j}.$$
Thus we have
\[
d_j^2 - d_{j-1}d_{j+1} = d_j^2 - \left[(1 - d)d_j + d^{m-j+1}\binom{m+1}{j}\right]d_{j+1}
\]
\[
= [d_j - (1 - d)d_{j+1}]d_j - d^{m-j+1}\binom{m+1}{j}d_{j+1}
\]
\[
= d^{m-j}\binom{m+1}{j+1}d_j - d^{m-j+1}\binom{m+1}{j}d_{j+1}
\]
\[
= \sum_{i=j}^m \left[\binom{m+1}{j+1} - \binom{m+1}{i}d^{m-i-2j}\right]
\]
\[
= \sum_{i=j}^m \frac{m-i+1}{j+1}\binom{m+1}{i}d^{m+i-2j}
\]
\[
> 0,
\]
the desired inequality.

In what follows we explore the location of modes of the sequence \(\{d_j\}\). We first consider the case \(d \geq 1\). The matter is rather simple when \(d = 1\).

Proposition 3.3. If \(m\) is even then \(Q_m(x + 1)\) has two modes \(\frac{m}{2} - 1\) and \(\frac{m}{2}\); otherwise \(Q_m(x + 1)\) has the unique mode \(\frac{m}{2} - 1\).

Proof. Since \(Q_m(x) = \frac{1}{x - 1}(x^{m+1} - 1)\), we have
\[
Q_m(x + 1) = \frac{1}{x}[(x + 1)^{m+1} - 1].
\]

By Proposition 3.1, \((x + 1)^{m+1}\) has two modes \(m + 1\) and \(m + 1 + 1\) for \(m\) even, or only one mode \(m + 1\) otherwise, so does \((x + 1)^{m+1} - 1\). Thus the statement follows.

Proposition 3.4. Let \(d \geq 1\). Then \(Q_m(x + d)\) has at most two modes \(\overline{m} - 1\) and \(\overline{m}\). In particular, if \(m + 1 = \overline{m} + 1\), then \(Q_m(x + d)\) has the unique mode \(\overline{m}\).

Proof. By Lemma 2.2, it suffices to consider the case \(1 \leq d < m\). We have
\[
(x + d - 1)Q_m(x + d) = (x + d)^{m+1} - 1.
\]

By Proposition 3.1, \((x + d)^{m+1}\) has the smallest mode \(m + 1\), so does \((x + d)^{m+1} - 1\). Thus \(M_s(Q_m, d) \geq m + 1 - 1\) by Lemma 2.1. On the other hand, we have \(M_s(Q_m, d) \leq \overline{m}\) by Corollary 2.1. Note that \(\overline{m} = \overline{\overline{m}}\) or \(\overline{m} + 1\) since
\[
\frac{m - d}{d + 1} < \frac{m + 1 - d}{d + 1} < \frac{m - d}{d + 1} + 1.
\]

Hence \(Q_m(x + d)\) has at most two modes \(\overline{m} - 1\) and \(\overline{m}\), and in particular, only one mode \(\overline{m}\) provided \(m + 1 = \overline{m} + 1\). This completes the proof.

Corollary 3.1. If \(d \geq 1\) and \(\frac{d+1}{d+1} \in \mathbb{Z}^+\), then \(Q_m(x + d)\) has the unique mode \(\overline{m}\).
Proof. If $\frac{m+1}{d+1} \in \mathbb{Z}^+$, then $\frac{m-d}{d+1} \in \mathbb{Z}^+$, and so $\overline{m} = \frac{m-d}{d+1}$. On the other hand,
\[
\overline{m} + 1 = \left\lfloor \frac{m + 1 - d}{d + 1} \right\rfloor = \left\lfloor \frac{m + 1}{d + 1} - \frac{d}{d + 1} \right\rfloor = \frac{m + 1}{d + 1}.
\]
Thus $\overline{m} + 1 = \overline{m} + 1$. So the statement follows from Proposition 3.4.

Proposition 3.5. If $d > 1$ and $dm \in \mathbb{Z}^+$, then $Q_m(x + d)$ has the unique mode \overline{m}.

Proof. By Proposition 3.4, it suffices to prove $d^m m - d^{m-1}$. By (2), we have
\[
\overline{m} d^m (d_m - d_{m-1}) = \sum_{i=m-1}^{m} d^i \left(\frac{i}{m - 1} \right) [(i + 1) - (d + 1)\overline{m}].
\]
The sum contains terms of both signs. Let $r = [(d + 1)\overline{m}] - 1$. Denote
\[
S_1 = \sum_{i=r}^{m} d^i \left(\frac{i}{m - 1} \right) [(i + 1) - (d + 1)\overline{m}]
\]
and
\[
S_2 = \sum_{i=m-1}^{r-1} d^i \left(\frac{i}{m - 1} \right) [(d + 1)\overline{m} - (i + 1)].
\]
Then $\overline{m} d^m (d_m - d_{m-1}) = S_1 - S_2$. Thus we need to prove $S_1 > S_2$.

Since $(d + 1)\overline{m} < m + 1$ by (1) and the left is an integer by the assumption, we have $r \leq m - 1$. So
\[
S_1 \geq d^{r+1} \left(\frac{r + 1}{m - 1} \right) [(r + 2) - (d + 1)\overline{m}] = d^{r+1} \left(\frac{r + 1}{m - 1} \right).
\]
On the other hand,
\[
S_2 \leq \sum_{i=m-1}^{r-1} d^{r-1} \left(\frac{i}{m - 1} \right) [(r + 1) - (i + 1)]
\]
\[
\leq d^{r-1} \left[(r + 1) \sum_{i=m-1}^{r-1} \left(\frac{i}{m - 1} \right) - \overline{m} \sum_{i=m-1}^{r-1} \left(\frac{i + 1}{m - 1} \right) \right]
\]
\[
= d^{r-1} \left[(r + 1) \left(\frac{r}{m} \right) - \overline{m} \left(\frac{r + 1}{m + 1} \right) \right]
\]
\[
= d^{r-1} \left(\frac{r + 1}{m + 1} \right).
\]
Thus we have
\[
\frac{S_1}{S_2} \geq \frac{d^{r+1} \left(\frac{r + 1}{m - 1} \right)}{d^{r-1} \left(\frac{r + 1}{m + 1} \right)} = \frac{d^2 \overline{m} (m + 1)}{(r - \overline{m} + 1)(r - \overline{m} + 2)} = \frac{d(m + 1)}{d\overline{m} + 1} > 1,
\]
the desired inequality.
Corollary 3.2. If \(d > 1 \) and \(d \in \mathbb{Z}^+ \), then \(Q_m(x + d) \) has the unique mode \(\overline{m} \).

Corollary 3.3. If \(d > 1 \) and \(\frac{m}{d+1} \in \mathbb{Z}^+ \), then \(Q_m(x + d) \) has the unique mode \(\overline{m} \).

Proof. If \(\frac{m}{d+1} \in \mathbb{Z}^+ \), then

\[
\overline{m} = \left\lceil \frac{m - d}{d+1} \right\rceil = \left\lceil \frac{m}{d+1} - \frac{d}{d+1} \right\rceil = \frac{m}{d+1}.
\]

Thus \(d\overline{m} = m - \overline{m} \in \mathbb{Z}^+ \), and the statement follows from Proposition 3.5. \[\square\]

We next consider the case \(0 < d < 1 \), which is more complicated. For example, modes of \(Q_m(x + d) \) may be neither \(\overline{m} - 1 \) nor \(m \) (see Remark 3.1). The following is some rough estimate for location of modes of \(Q_m(x + d) \).

Proposition 3.6. Let \(0 < d < 1 \). Then

(i) \(\left\lceil \frac{m}{2} \right\rceil \leq M_0(Q_m, d) \leq M^*(Q_m, d) \leq \min\{m - 1, \overline{m}\} \).

(ii) If \(0 < d < 1/\left(\frac{m}{2}\right) \), then \(Q_m(x + d) \) has the unique mode \(m - 1 \). The converse is also true.

(iii) If \(0 < 1 - d \leq 1/m \), then \(Q_m(x + d) \) has at most two modes \(\overline{m} - 1 \) and \(\overline{m} \). In particular, if \(\frac{m+1}{d+1} \in \mathbb{Z}^+ \), then \(Q_m(x + d) \) has the unique mode \(\overline{m} \).

(iv) There exists a positive number \(\varepsilon \) such that for \(0 < 1 - d < \varepsilon \), \(Q_m(x + d) \) has the unique mode \(\left\lceil \frac{m}{2} \right\rceil \).

Proof. By the definition, \(M^*(Q_m, d) \) is the greatest integer \(j \) no larger than \(m \) such that

\[
d_j - d_{j-1} = \sum_{i=j}^{m} \binom{i}{j} d^{i-j} - \sum_{i=j-1}^{m} \binom{i}{j-1} d^{i-j+1}
= \sum_{i=j-1}^{m-1} \binom{i+1}{j} d^{i-j+1} - \sum_{i=j-1}^{m} \binom{i}{j-1} d^{i-j+1}
= \sum_{i=j}^{m-1} \binom{i}{j} d^{i-j+1} - \binom{m}{j-1} d^{m-j+1}.
\]

Hence

\[
M^*(Q_m, d) = \max \left\{ 1 \leq j \leq \overline{m} : \sum_{i=j}^{m-1} \binom{i}{j} d^{i-j+1} - \binom{m}{j-1} d^{m-j+1} > 0 \right\}.
\]

When \(0 < d < 1 \), we have

\[
\sum_{i=j}^{m-1} \binom{i}{j} d^{i-j+1} \geq d^{m-j} \sum_{i=j}^{m-1} \binom{i}{j} = \binom{m}{j+1} d^{m-j}.
\]

It is not difficult to see that

\[
\binom{m}{j+1} d^{m-j-1} - \binom{m}{j-1} d^{m-j} > 0
\]
is equivalent to
\[(m - j)(m - j + 1) - dj(j + 1) > 0.\]

Now let \(h(x) = (m - x)(m - x + 1) - dx(x + 1)\). Then \(h(x)\) is a decreasing function in the interval \(0 \leq x \leq m\) since \(h'(x) < 0\). Thus \(h(x_0) > 0\) for some \(x_0 \in (0, m)\) implies that \(M_s(Q_m, d) \geq \lfloor x_0 \rfloor\).

(i) Since \(h \left(\frac{m}{2} \right) = \frac{m}{2} \left(\frac{m}{2} + 1 \right) (1 - d) > 0\), we have \(M_s(Q_m, d) \geq \lfloor \frac{m}{2} \rfloor\).

It remains to show that \(M^*(Q_m, d) \leq m - 1\). It suffices to prove \(d_{m-1} > d_m\), which is obvious since \(d_m = 1\) and \(d_{m-1} = 1 + md\).

(ii) By (i), \(m - 1\) is the unique mode of \(Q_m(x + d)\) if and only if \(d_{m-1} > d_{m-2}\). Note that \(d_{m-1} = 1 + md\) and \(d_{m-2} = 1 + (m - 1)d + \left(\frac{m}{2}\right) d^2\). Hence \(Q_m(x + d)\) has the unique mode \(m - 1\) if and only if \(0 < d < 1/(\frac{m}{2})\).

(iii) If \(0 < 1 - d \leq 1/m\), then
\[
\frac{m(1 - x)}{d + 1} = \frac{d(m + 1)}{(d + 1)^2}[3d + 1 - (1 - d)m] > 0,
\]
which implies that \(M_s(Q_m, d) \geq \lceil \frac{m - d}{d + 1} \rceil\). On the other hand, \(M^*(Q_m, d) \leq \overline{m} = \left\lceil \frac{m - d}{d + 1} \right\rceil\) by Corollary 1.4. Note that
\[
\lfloor x \rfloor = \begin{cases}
\lceil x \rceil, & \text{if } x \in \mathbb{Z}; \\
\lceil x \rceil - 1, & \text{otherwise}.
\end{cases}
\]
Hence \(Q_m(x + d)\) has at most two modes \(\overline{m}\) and \(\overline{m} - 1\), and in particular, only one mode \(\overline{m}\) if \(\frac{m - d}{d + 1}\) is an integer.

(iv) Denote \(t = \left\lceil \frac{m}{2} \right\rceil\). Then \(M_s(Q_m, d) \geq t\) by (i). On the other hand, we have by \(\text{(1)}\)
\[
d_{t+1} - d_t = \sum_{i=t+1}^{m-1} \binom{i}{t+1} d^{i-t} - \binom{m}{t} d^{m-t}
\]
\[
\quad \rightarrow \sum_{i=t+1}^{m-1} \binom{i}{t+1} - \binom{m}{t}
\]
\[
= \binom{m}{t+2} - \binom{m}{t}
\]
when \(d\) tends to 1. Note that \(\binom{m}{t+2} - \binom{m}{t} < 0\). Hence \(d_{t+1} - d_t < 0\) if \(d\) is sufficiently close to 1, which implies that \(Q_m(x + d)\) has the unique mode \(t\). \(\Box\)

Remark 3.1. It is worth pointing out that modes of \(Q_m(x + d)\) may be neither \(\overline{m} - 1\) nor \(\overline{m}\) when \(0 < d < 1\). For example, let \(1/(\frac{m}{2}) < d < 1/m\). Then \(\overline{m} = m\). However, each mode of \(Q_m(x + d)\) is smaller than \(m - 1\) since \(d_{m-2} > d_{m-1}\).

4 Modes in General Case

The following theorem shows the importance of two basic polynomials considered in the last section.
Theorem 4.1. Let \(P(x) \in \mathbb{P}_m^+ \) and \(d > 0 \). Then

\[
M_*(Q_m, d) \leq M_*(P, d) \leq M^*(P, d) \leq M^*(x^m, d).
\]

Moreover, if \(Q_m(x + d) \) has the mode \(\overline{m} \), then so does \(P(x + d) \). In particular, if \(Q_m(x + d) \) has the unique mode \(\overline{m} \), then so does \(P(x + d) \) unless \(P(x) = x^m \) and \((m+1)/(d+1) \in \mathbb{Z}^+\).

Proof. The inequality \(M^*(P, d) \leq M^*(x^m, d) \) follows from Corollary 2.1 and Proposition 3.1 so it suffices to prove the inequality \(M_*(Q_m, d) \leq M_*(P, d) \).

Let \(P(x) = \sum_{j=0}^m a_j x^j \) and \(P(x + d) = \sum_{j=0}^m b_j x^j \). For \(1 \leq t \leq \overline{m} \), let \(r = \lceil (d+1)t \rceil - 1 \). Then \(t \leq r \leq m \). By (2), we have

\[
td^i(b_r - b_{r-1}) = \sum_{i=t-1}^{m} a_i d^{i-t} \binom{i}{t-1} [(i+1) - (d+1)t] \\
= \sum_{i=r}^{m} a_i d^i \binom{i}{t-1} [(i+1) - (d+1)t] \\
- \sum_{i=t-1}^{r-1} a_i d^i \binom{i}{t-1} [(d+1)t - (i+1)] \\
\geq a_r \sum_{i=r}^{m} d^i \binom{i}{t-1} [(i+1) - (d+1)t] \\
- a_r \sum_{i=t-1}^{r-1} d^i \binom{i}{t-1} [(d+1)t - (i+1)] \\
= a_r \sum_{i=r}^{m} d^i \binom{i}{t-1} [(i+1) - (d+1)t] \\
= a_r td^i(d_r - d_{r-1}),
\]

and the equality holds if and only if all \(a_i \)'s are equal, i.e., \(P \) coincides with \(Q_m \).

Take \(t = M_*(Q_m, d) \). Then \(d_t > d_{t-1} \) by the definition. Thus \(b_t > b_{t-1} \), which implies that \(M_*(P, d) \geq t \), the desired inequality.

Assume now that \(\overline{m} \) is a mode of \(Q_m(x + d) \). Then \(d_0 \leq d_1 \leq \cdots \leq d_{\overline{m}} \). Thus \(b_0 \leq b_1 \leq \cdots \leq b_{\overline{m}} \). However, \(b_{\overline{m}} \geq b_{\overline{m}+1} \geq \cdots \geq b_m \) by Corollary 2.1. Hence \(\overline{m} \) is a mode of \(P(x + d) \).

In particular, if \(\overline{m} \) is the unique mode of \(Q_m(x + d) \), then \(M_*(P, d) \geq \overline{m} \). Thus \(\overline{m} \) is the unique mode of \(P(x + d) \) if and only if \(b_{\overline{m}} > b_{\overline{m}+1} \), which holds if and only if \(P(x) = x^m \) and \((m+1)/(d+1) \in \mathbb{Z}^+\) by Corollary 2.1 and Proposition 3.1. This completes the proof of the theorem.

Combining Theorem 4.1, Corollary 2.1, and the results of the last section we conclude that

Corollary 4.1. Let \(P \in \mathbb{P}_m^+ \) and \(d \geq 1 \). Then \(P(x + d) \) has at most two modes \(\overline{m} \) and \(\overline{m} + 1 \) if \(P(x) = x^m \), or \(\overline{m} - 1 \) and \(\overline{m} \) otherwise.
Corollary 4.2. Let $P \in \mathbb{P}^m$. Then $P(x + 1)$ has the mode $\left\lfloor \frac{m-1}{2} \right\rfloor$. In particular, if $P(x)$ is neither x^m nor $\sum_{i=0}^{m} x^i$, then $\left\lfloor \frac{m-1}{2} \right\rfloor$ is the unique mode of $P(x + 1)$.

Corollary 4.3. Let $d > 1$ and $P \in \mathbb{P}^m$ be such that $P(x) \neq x^m$. Suppose that one of the following conditions holds:

(i) $m + 1 = m + 1$;
(ii) $\frac{m+1}{d+1} \in \mathbb{Z}^+$;
(iii) $\frac{d}{m} \in \mathbb{Z}^+$;
(iv) $d \in \mathbb{Z}^+$;
(v) $\frac{m}{d+1} \in \mathbb{Z}^+$.

Then $P(x + d)$ has the unique mode of \overline{m}.

Corollary 4.2 and Corollary 4.3(iv) strengthen the main results of [2] and [11], respectively.

In the case $0 < d < 1$, the number and location of modes of $P(x + d)$ depend heavily on coefficients of $P(x)$. Since we are mainly concerned with those properties of modes satisfied by generic polynomials in \mathbb{P}^m, we will not dwell on this case $0 < d < 1$ any further but give one useful consequence of Proposition 3.6 and Theorem 4.1, as follows.

Theorem 4.2. Let $0 < d < 1$ and $P \in \mathbb{P}^m$. Suppose that $P(x) \neq x^m$. Then

$$\left\lfloor \frac{m}{2} \right\rfloor \leq M_*(P,d) \leq M^*(P,d) \leq \overline{m}.$$

5 Remarks and Open Problems

Our results can be restated in terms of sequences instead of polynomials. For example, the statement of Conjecture [11] is equivalent to the following.

Theorem 5.1. Suppose that $0 \leq a_0 \leq a_1 \leq \cdots \leq a_m$ and that $d > 0$. Then the sequence

$$b_j = \sum_{i=j}^{m} a_id^{i-j} \binom{i}{j}, \quad j = 0, 1, \ldots, m$$

is unimodal.

It often occurs that unimodality of a sequence is known, but to find out the exact number and location of modes of the sequence is a much more difficult task. For example, it is well known that, for each positive integer n, the Stirling number of the second kind $S(n, k)$ is unimodal in k with at most two modes $K_n, K_n + 1$, and that $K_n \sim n/\ln n$. However it is very difficult to determine whether the mode of $S(n, k)$ is unique or not. See [5, 6] for the related results.

We end our paper by proposing the following.

Conjecture 5.1. Suppose that $P \in \mathbb{P}^m$ and that $0 < d_1 < d_2$. Then $M_*(P,d_1) \geq M_*(P,d_2)$ and $M^*(P,d_1) \geq M^*(P,d_2)$.
Acknowledgements

This research was completed during the first author’s stay in the Institute of Mathematics, Academia Sinica, Taipei. The first author would like to thank the Institute for its support.

The authors thank the anonymous referees for their valuable suggestions that led to an improved version of this manuscript.

The first author was partially supported by NSF of Liaoning Province of China Grant No. 2001102084 and the second author was partially supported by NSC 92-2115-M-001-016.

References

[1] J. Alvarez, M. Amadis, G. Boros, D. Karp, V. H. Moll and L. Rosales, An extension of a criterion for unimodality, Electron. J. Combin. 8(2001) #R30.

[2] G. Boros and V. H. Moll, A criterion for unimodality, Electron. J. Combin. 6(1999) #R10.

[3] F. Brenti, Unimodal, log-concave, and Pólya frequency sequences in combinatorics, Mem. Amer. Math. Soc. 81(1989) no. 413.

[4] F. Brenti, Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update, Contemp. Math. 178(1994) 71-89.

[5] E. R. Canfield, On the location of the maximum Stirling number(s) of the second kind, Studies in Appl. Math. 59(1978) 83-93.

[6] L. H. Harper, Stirling behavior is asymptotically normal, Ann. Math. Stat. 31(1967) 410-414.

[7] S. G. Hoggar, Chromatic polynomials and logarithmic concavity, J. Combin. Theory Ser. B 16(1974) 248-254.

[8] R. P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry, Ann. New York Acad. Sci. 576(1989) 500-534.