A Three-Loop Neutrino Model with Global $U(1)$ Symmetry

Hisaki Hatanaka, 1,∗ Kenji Nishiwaki, 1,† Hiroshi Okada, 1,‡ and Yuta Orikasa 1,2,§

1School of Physics, KIAS, Seoul 130-722, Republic of Korea
2Department of Physics and Astronomy, Seoul National University, Seoul 151-742, Republic of Korea

(Dated: March 30, 2015)

Abstract

We study a three-loop induced neutrino model with a global $U(1)$ symmetry at TeV scale, in which we naturally accommodate a bosonic dark matter candidate. We discuss the allowed regions of masses and quartic couplings for charged scalar bosons as well as the dark matter mass on the analogy of the original Zee-Babu model, and show the difference between them. We also discuss that the possibility of the collider searches in a future like-sign electron liner collider could be promising.

Keywords: Neutrinos, Dark Matter

1Electronic address: hatanaka@kias.re.kr
†Electronic address: nishiken@kias.re.kr
‡Electronic address: hokada@kias.re.kr
§Electronic address: orikasa@kias.re.kr
I. INTRODUCTION

Even after the discovery of the Higgs boson, the large Yukawa hierarchy required by the observed values of the fermion masses remains to be one of the unnatural issues in the Standard Model (SM). The situations get to be more serious in the neutrino sector since their corresponding values are sub-eV, which means that we have to realize at least $O(10^{11})$-magnitude hierarchy by hand when we adapt the Dirac-type mass terms for explanation. An elegant way for alleviating the unnaturalness is making the situation that the neutrino masses are loop-induced as initiated by A. Zee at one-loop level in Ref. [1].

In such a setting, loop factors naturally reduce their mass values and we can explain the minuscule neutrino masses with less fine-tuned Yukawa couplings. This mechanism is fascinating and lots of works have been done in this direction [1]–[73]. As a naive expectation, higher-loop generated neutrino masses would be preferable because much more improvement could be expected due to a large amount of loop factors. Several three-loop models have been proposed already, e.g., in Refs. [4, 10, 33, 48, 55]. In higher-loop models, a dark matter (DM) candidate tends to propagate inside the loop, whose stability is naturally ensured by symmetries for prohibiting lower-level neutrino masses. Also, when a continuous global symmetry is used in such a model, we would predict a Nambu-Goldstone boson (NGB). This kind of particles could play a significant role in an early stage of the Universe [74].

In this paper, we propose a model as a simple extension of the Zee-Babu model [3] with two-loop induced neutrino mass terms, by adding an additional singly-charged gauge singlet scalar and DM to the original one, where the radiative neutrino mass terms turn out to appear at the three-loop level. Note that a doubly-charged scalar ($k^{\pm\pm}$) and a singly-charged singlet scalar (h^\pm) are introduced in the Zee-Babu model [3]. Our model overcomes a shortcoming in the Zee-Babu model of the absence of DM candidate. On the other hand, the structure of the internal loops within the radiative neutrino masses gets to be morphed. Therefore, expected mass ranges of the charged particles are affected from the original ones.

This paper is organized as follows. In Sec. II we explain the construction of our model and analyze the system with declaring brief prospects in collider-related issues. We summarize and conclude in Sec. III.
II. DISCUSSIONS ON OUR MODEL

A. Model setup

We discuss a three-loop induced radiative neutrino model. The particle contents and their charges are shown in Tab. II We add new bosons, which are, two SU(2)_L singlet neutral bosons (Σ_0, χ_0), two singly-charged singlet scalars (h_1^+, h_2^+), and one SU(2)_L singlet doubly-charged boson k^{++} to the SM. We assume that only the SM-like Higgs Φ and Σ_0 have vacuum expectation values (VEVs), which are symbolized by ⟨Φ⟩ ≡ v/√2 and ⟨Σ_0⟩ ≡ v'/√2, respectively. x (≠ 0) is an arbitrary number of the charge of the global U(1) symmetry 1, and the assignments can realize our neutrino model at the three-loop U(1)_Y symmetry 2. Notice here that one can identify the global B − L symmetry in case x = 1. The NGB in Σ_0 due to breaking of the U(1) global symmetry can also evade experimental searches or constraints due to its very weak interactions with matter fields as can be seen in Ref. [75], when this symmetry is identified as the L symmetry. The Z_2 symmetry assures the stability of DM χ_0.

The relevant Lagrangian for Yukawa sector, mass terms, and scalar potential under these

1 This symmetry cannot be gauged because its anomaly cannot be canceled.
2 Notice here that one can realize our model by assigning zero global U(1) charge to χ_0 instead of −x, where χ_0 can be still a (real) DM candidate due to the Z_2 symmetry. Then the following two relevant terms h_1^+ h_2^- χ_0 and (Σ_0)^2(χ_0)^2 are respectively replaced by Σ_0 h_1^+ h_2^- and (χ_0)^2. Such a mechanism has been done by the authors in Ref. [19]. We would like to thank our referee to draw our attention.
symmetries are given by

\[-\mathcal{L}_Y = y_L \bar{L}_L \Phi e_R + y_L \bar{L}_L^i L_L h_1^+ + y_R \bar{e}_R^i e_R k^{++} + \text{h.c.}, \]

\[\mathcal{V} = m_{\Phi}^2 |\Phi|^2 + m_{\Sigma}^2 |\Sigma_0|^2 + m_{h_1}^2 |h_1^+|^2 + m_{h_2}^2 |h_2^+|^2 + m_{k}^2 |k^{++}|^2 + m_{\chi_0}^2 |\chi_0|^2 \]

\[+ \left[\mu_{12} h_2^- h_1^- \chi_0 + \mu_{22} h_2^- h_2^- k^{-} + \lambda_0 (\Sigma_0)^2 (\chi_0)^2 + \text{h.c.} \right] \]

\[+ \lambda_\Phi |\Phi|^4 + \lambda_{\Phi \Sigma} |\Phi|^2 |\Sigma_0|^2 + \lambda_{\Phi h_1} |\Phi|^2 |h_1^+|^2 \]

\[+ \lambda_{\Phi h_2} |\Phi|^2 |h_2^+|^2 + \lambda_{\Phi k} |\Phi|^2 |k^{++}|^2 + \lambda_{\Phi \chi_0} |\Phi|^2 |\chi_0|^2 \]

\[+ \lambda_{\Sigma} |\Sigma_0|^4 + \lambda_{\Sigma h_1} |\Sigma_0|^2 |h_1^+|^2 + \lambda_{\Sigma h_2} |\Sigma_0|^2 |h_2^+|^2 + \lambda_{\Sigma k} |\Sigma_0|^2 |k^{++}|^2 + \lambda_{\Sigma \chi_0} |\Sigma_0|^2 |\chi_0|^2 \]

\[+ \lambda_{h_1} |h_1^+|^4 + \lambda_{h_1 h_2} |h_1^+|^2 |h_2^+|^2 + \lambda_{h_1 k} |h_1^+|^2 |k^{++}|^2 + \lambda_{h_1 \chi_0} |h_1^+|^2 |\chi_0|^2 \]

\[+ \lambda_{h_2} |h_2^+|^4 + \lambda_{h_2 k} |h_2^+|^2 |k^{++}|^2 + \lambda_{h_2 \chi_0} |h_2^+|^2 |\chi_0|^2 + \lambda_k |k^{++}|^4 + \lambda_{k \chi_0} |k^{++}|^2 |\chi_0|^2, \]

where the first term of \(\mathcal{L}_Y \) generates the SM charged-lepton masses and \(y_L \) (\(y_R \)) are three-by-three antisymmetric (symmetric) matrices, respectively. We assume \(\mu_{12} \), and \(\mu_{22} \) to be positive real, but \(\lambda_0 \) to be negative real to identify \(\chi_{0R} \) as the DM candidate (see Eq. (II.7)). Here, we briefly mention the correspondence to the Zee-Babu model in the trilinear couplings among the charged scalars. In the Zee-Babu model, only one singly-charged scalar is introduced and we regenerate the forms by taking the limits in our model, \(h_1^+ \to h^\pm, h_2^\pm \to h^\pm, \mu_{22} \to \mu \).

B. Mass matrices of bosons

The scalar fields can be parameterized as

\[\Phi = \left[\begin{array}{c} w^+ \\ v + \Phi + i z \\ \sqrt{2} \end{array} \right], \quad \chi_0 = \frac{\chi_{0R} + i \chi_{0I}}{\sqrt{2}}, \quad \Sigma_0 = \frac{\nu' + \sigma e^{i\theta/\nu'}}{\sqrt{2}}, \]

where \(\nu \simeq 246 \text{ GeV} \) is the VEV of the Higgs doublet field, and \(w^\pm \) and \(z \) are respectively (would-be) NGB which are absorbed as the longitudinal components of \(W \) and \(Z \) bosons. Inserting the tadpole conditions, \(\partial \mathcal{V}/\partial \phi |_v = 0 \) and \(\partial \mathcal{V}/\partial \sigma |_{\nu'} = 0 \), the resultant mass matrix of the CP even bosons (\(\phi, \sigma \)) is given by

\[m^2(\phi, \sigma) = \left[\begin{array}{cc} 2\lambda_{\Phi} v^2 & \lambda_{\Phi \Sigma} v \nu' \\ \lambda_{\Phi \Sigma} v \nu' & 2\lambda_{\Sigma} v'^2 \end{array} \right] = \left[\begin{array}{cc} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{array} \right] \left[\begin{array}{cc} m_{h_1}^2 & 0 \\ 0 & m_{h_2}^2 \end{array} \right] \left[\begin{array}{cc} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{array} \right], \]

(II.4)
where h is the SM-like Higgs and H is an additional CP-even Higgs mass eigenstate. The mixing angle α is determined as

$$\sin 2\alpha = \frac{2\lambda_0 v}{m_H^2 - m_h^2}.$$ \hspace{1cm} \text{(II.5)}

The Higgs bosons ϕ and σ are rewritten in terms of the mass eigenstates h and H as

$$\phi = h \cos \alpha + H \sin \alpha, \quad \sigma = -h \sin \alpha + H \cos \alpha.$$ \hspace{1cm} \text{(II.6)}

An NGB appears due to the spontaneous symmetry breaking of the global $U(1)$ symmetry. The mass eigenvalues for the neutral bosons χ_{0R}, χ_{0I}, the singly-charged bosons h_{1}^{\pm}, h_{2}^{\pm} and the doubly-charged boson $k^{\pm\pm}$ are respectively given as

$$m_{\chi_{0R}}^2 = m_{\chi_0}^2 + \frac{\lambda_{\phi \chi_0} v^2 + (2\lambda_0 + \lambda_{\Sigma \chi_0}) v'^2}{2}, \quad m_{\chi_{0I}}^2 = m_{\chi_0}^2 + \frac{\lambda_{\phi \chi_0} v^2 + (-2\lambda_0 + \lambda_{\Sigma \chi_0}) v'^2}{2},$$

$$m_{h_{1}^{\pm}}^2 = m_{h_1}^2 + \frac{1}{2}(\lambda_{\phi h_1} v^2 + \lambda_{\Sigma h_1} v'^2), \quad m_{h_{2}^{\pm}}^2 = m_{h_2}^2 + \frac{1}{2}(\lambda_{\phi h_2} v^2 + \lambda_{\Sigma h_2} v'^2),$$

$$m_{k^{\pm\pm}}^2 = m_{k}^2 + \frac{1}{2}(\lambda_{\phi k} v^2 + \lambda_{\Sigma k} v'^2),$$ \hspace{1cm} \text{(II.7)}

where these particles are not mixed due to the invariance of the system and thus they themselves are mass eigenstates, respectively.

\section*{C. Vacuum stability of electrically charged bosons}

The vacuum stability has to be especially assured by the Higgs potential for electrically-charged bosons ($h_{1}^{\pm}, h_{2}^{\pm}, k^{\pm\pm}$). However, our model has some loop contributions to the leading order of these quartic couplings. Here, we examine this issue at the one-loop level. Let us define these quartic couplings as follows:

$$0 \leq \lambda_{h_1} = \lambda_{h_1}^{(0)} + \lambda_{h_1}^{(1)},$$

$$0 \leq \lambda_{h_2} = \lambda_{h_2}^{(0)} + \lambda_{h_2}^{(1)},$$

$$0 \leq \lambda_{k} = \lambda_{k}^{(0)} + \lambda_{k}^{(1)},$$ \hspace{1cm} \text{(II.8)}
where the upper indices denote the number of the order, and the one-loop contributions can be given as

\[
\lambda^{(1)}_{h_1} = -\frac{1}{2} |\mu_{12}|^4 \sum_{i=R,I} F_0(m_{h_1}^\pm, m_{\chi_0(i)}), \tag{II.9}
\]

\[
\lambda^{(1)}_{h_2} = -8 |\mu_{22}|^4 F_0(m_{h_2}^\pm, m_{k^{\pm\pm}}) - \frac{1}{2} |\mu_{12}|^4 \sum_{i=R,I} F_0(m_{h_2}^\pm, m_{\chi_0(i)}), \tag{II.10}
\]

\[
\lambda^{(1)}_k = -4 |\mu_{22}|^4 F_0(m_{h_2}^\pm, m_{h_2}^\pm), \tag{II.11}
\]

with

\[
F_0(m_1, m_2) = \frac{1}{(4\pi)^2} \int_0^1 dx dy \delta(x + y - 1) \frac{xy}{(xm_1^2 + ym_2^2)^2}, \tag{II.12}
\]

where each of \(m_1\) and \(m_2\) of \(F_0\) represent a mass of propagating fields in the loops. We will include these constraints in the numerical analysis later. To avoid the global minimum with electromagnetic charge-breaking \(\mathcal{V}(r \neq 0) > 0\), the following condition should be at least satisfied:

\[
2|\mu_{12} + \mu_{22}| < \sqrt{\Lambda} \left[m_{\Phi}^2 + m_{h_1}^2 + m_{h_2}^2 + m_k^2 + m_\Sigma^2 + m_{\chi_0}^2 \right]^{1/2}, \quad \Lambda \equiv \sum_{i=\text{all quartic couplings}} \lambda_i, \tag{II.13}
\]

where \(r \equiv |\Phi| = |h_1^+| = |h_2^+| = |k^{++}| = |\Sigma_0| = |\chi_0|\). If all these quartic couplings are of the order as \(\lambda_i \approx \mathcal{O}(\pi)^3\), the following condition can be given by

\[
|\mu_{12} + \mu_{22}| \lesssim 4.36 \sqrt{\pi} \left[m_{h_1}^2 + m_{h_2}^2 + m_k^2 + m_\Sigma^2 + m_{\chi_0}^2 \right]^{1/2}, \tag{II.14}
\]

where \(m_{\Phi}^2\) and \(\lambda_\Phi\) are neglected. Note that the vacuum stability conditions take the following forms in the Zee-Babu model,

\[
\lambda^{(1)}_{h_2} \to \lambda^{(1)}_h = -8 |\mu|^4 F_0(m_{h^\pm}, m_{k^{\pm\pm}}), \tag{II.15}
\]

\[
\lambda^{(1)}_k = -4 |\mu|^4 F_0(m_{h^\pm}, m_{h^\pm}), \tag{II.16}
\]

where no \(\lambda^{(1)}_{h_1}\)'s counterpart is there.

\(^3\lambda_0\) is excluded, because \(\lambda_0\) is negative and the maximum value is 0.
D. Neutrino mass matrix

The Majorana neutrino mass matrix m_ν is derived at the three-loop level from the diagrams depicted in Fig. 1 which is described by an effective operator, $-\frac{i}{2} (\nu_{\nu_a})^c (m_\nu)_{ab} \nu_{\nu_b}$. The concrete form of $(m_\nu)_{ab}$ is given by

$$(m_\nu)_{ab} = \frac{4\mu_1^2\mu_2^2}{(4\pi)^6 M^4} \sum_{i,j=1}^{3} \left[(y_L)_{ai} m_\ell_i (y_R)_{ij} m_\ell_j (y_L)_{jb} \right] \times$$

$$\left[F_1 \left(\frac{m^2_{\nu_a}}{M^2}, \frac{m^2_{\nu_b}}{M^2}, \frac{m^2_{\ell_i}}{M^2}, \frac{m^2_{\chi_{0R}}}{M^2}, \frac{m^2_{\chi_{0I}}}{M^2}, \frac{m^2_{\kappa_{\pm\pm}}}{M^2} \right) - F_1 \left(\frac{m^2_{\nu_a}}{M^2}, \frac{m^2_{\nu_b}}{M^2}, \frac{m^2_{\ell_i}}{M^2}, \frac{m^2_{\chi_{0R}}}{M^2}, \frac{m^2_{\chi_{0I}}}{M^2}, \frac{m^2_{\kappa_{\pm\pm}}}{M^2} \right) \right],$$

where $M = \max[m_{k_{\pm\pm}}, m_{h_{1\pm}}, m_{h_{2\pm}}, m_{\ell_{i/j}}, m_{\chi_{0R}}, m_{\chi_{0I}}]$ and the loop function F_1 is computed as

$$F_1 (X_1, X_2, X_3, X_4, X_5, X_6) = \int d^3x \frac{\delta(x+y+z-1)}{y(y-1)+z(z-1)+2yz}$$

$$\times \int d^4x' \frac{\delta(\alpha+\beta+\gamma+\delta-1)}{((\alpha Y + \delta)^2 - \delta - \alpha Y^2 - \alpha X)^2}$$

$$\times \int d^3x'' \frac{\rho \delta(\rho + \sigma + \omega - 1)}{[\rho A(X_1, X_2, X_3, X_4, X_6) - \sigma X_4 - \omega X_1]^2},$$

(II.18)
with

\[
A(X_1, X_2, X_3, X_5, X_6) = -\frac{\alpha((x + y)X_2 + zX_5)}{((\alpha Y + \delta)^2 - \delta - \alpha Y^2 - \alpha X)(y(y - 1) + z(z - 1) + 2yz)} + \frac{\beta X_1 + \gamma X_5 + \delta X_6}{((\alpha Y + \delta)^2 - \delta - \alpha Y^2 - \alpha X)}, \tag{II.19}
\]

\[
X = -\left(\frac{y}{y + z}\right)^2 + \frac{y(y - 1)}{y(y - 1) + z(z - 1) + 2yz}, \quad Y = \frac{y}{y + z}, \tag{II.20}
\]

where we define \(\int d^3x\delta(x + y + z - 1) \equiv \int_0^1 dx \int_0^{1-x} dy, \int d^4x'\delta(\alpha + \beta + \gamma + \delta - 1) \equiv \int_0^1 d\alpha \int_0^{1-\alpha} d\beta \int_0^{1-\alpha-\beta} d\gamma, \text{ and } \int d^3x''\delta(\rho + \sigma + \omega - 1) \equiv \int_0^1 d\rho \int_0^{1-\rho} d\sigma.\) The neutrino mass eigenstates and their mixings can be straightforwardly given by applying them to the Zee-Babu analogy, since the structure of the fermion line is the same as the the Zee-Babu model, that is, a rank two model of the neutrino mass matrix due to the antisymmetricity of \(y_L.\) Let us define the neutrino mass matrix as

\[
(m_\nu)_{ab} = (U_{\text{PMNS}}m_\nu^{\text{diag}}U^T_{\text{PMNS}})_{ab} \equiv \zeta(y_L)_{ai}\omega_{ij}(y_L^T)_{jb}, \tag{II.21}
\]

\[
\zeta = \frac{4\mu_1^2\mu_2}{(4\pi)^6 M^4}[F_1(X_{iR}) - F_1(X_{iI})], \tag{II.22}
\]

\[
\omega_{ij} = m_{\ell_i}(y_{iR})_{ij}m_{\ell_j}, \tag{II.23}
\]

where \(i\) runs over 1 to 3, \((m_\nu)_{ab} \equiv (m_1, m_2, m_3)\) are the neutrino mass eigenvalues, and \(U_{\text{PMNS}}\) (Pontecorvo-Maki-Nakagawa-Sakata matrix) is the mixing matrix to diagonalize the neutrino mass matrix, which is parametrized as

\[
U_{\text{PMNS}} = \begin{bmatrix}
 c_{13}c_{12} & c_{13}s_{12} & s_{13}e^{-i\delta} \\
 -c_{23}s_{12} - s_{23}s_{13}c_{12}e^{i\delta} & c_{23}c_{12} - s_{23}s_{13}s_{12}e^{i\delta} & s_{23}c_{13} \\
 s_{23}s_{12} - c_{23}s_{13}c_{12}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{13}s_{12}e^{i\delta} & c_{23}c_{13}
\end{bmatrix} = \begin{bmatrix}
 1 & 0 & 0 \\
 0 & e^{i\delta/2} & 0 \\
 0 & 0 & 1
\end{bmatrix}, \tag{II.24}
\]

where \(c_{ij} \equiv \cos \theta_{ij}\) and \(s_{ij} \equiv \sin \theta_{ij}\) with \((i, j) = (1 - 3).\) Depending on the ordering of the neutrino masses, whether normal \((m_1 (= 0) < m_2 < m_3)\) or inverted \((m_3 (= 0) < m_1 < m_2)\) in our case, one can derive some simple formulae.\(^5\) When we consider the normal ordering,

\(^4\) We assume \(m_{\ell_{i,j}} \approx 0\) in our numerical analysis, since these masses are much smaller than the other masses inside the loops.

\(^5\) More details are given in Ref.\(^6\) for both cases.
the following relations should hold for realizing the observed neutrino profiles,

\[y_{L13} = \left(s_{12}c_{23} / (c_{12}c_{13}) + s_{13}s_{23}e^{-i\delta} / c_{13} \right) y_{L23}, \]
\[y_{L12} = \left(s_{12}s_{23} / (c_{12}c_{13}) - s_{13}c_{23}e^{-i\delta} / c_{13} \right) y_{L23}, \]
\[\zeta y_{L23}^2 \omega_{33} \approx m_3^2 c_{13}^2 s_{23}^2 + m_2^2 e^{i\phi} (c_{12}c_{23} - e^{i\delta} s_{12}s_{13}s_{23})^2, \]
\[\zeta y_{L23}^2 \omega_{23} \approx -m_3^2 c_{13} c_{23} s_{23} + m_2^2 e^{i\phi} (c_{12}s_{23} + e^{i\delta} c_{23}s_{12}s_{13})(c_{12}c_{23} - e^{i\delta} s_{12}s_{13}s_{23}), \]
\[\zeta y_{L23}^2 \omega_{22} \approx m_3^2 c_{13}^2 c_{23}^2 + m_2^2 e^{i\phi} (c_{12}s_{23} + e^{i\delta} c_{23}s_{12}s_{13})^2. \]

(II.25)

where we use \(m_e \ll m_\mu, m_\tau \). In the case of the inverted neutrino mass hierarchy, the conditions are deformed as

\[y_{L13} = -(c_{13}s_{23}e^{-i\delta} / s_{13}) y_{L23}, \]
\[y_{L12} = +(c_{13}c_{23}e^{-i\delta} / s_{13}) y_{L23}, \]
\[\zeta y_{L23}^2 \omega_{33} \approx m_1 (c_{23}s_{12} + e^{i\delta} c_{12}s_{13}s_{23})^2 + m_2^2 e^{i\phi} (c_{12}c_{23} - e^{i\delta} s_{12}s_{13}s_{23})^2, \]
\[\zeta y_{L23}^2 \omega_{23} \approx m_1 (s_{12}s_{23} - e^{-i\delta} c_{12}c_{23}s_{13})(c_{23}s_{12} + e^{i\delta} c_{12}s_{13}s_{23}) + m_2^2 e^{i\phi} (c_{12}s_{23} + e^{i\delta} c_{23}s_{12}s_{13})^2, \]
\[\zeta y_{L23}^2 \omega_{22} \approx m_1 (s_{12}s_{23} - e^{-i\delta} c_{12}c_{23}s_{13})^2 + m_2^2 e^{i\phi} (c_{12}s_{23} + e^{i\delta} c_{23}s_{12}s_{13})^2. \]

(II.26)

Here, we mention that these conditions take the same forms in the Zee-Babu model up to the contexts of the loop factor \(\zeta \) in Eq. (II.21).

E. Lepton flavor violations and the universality of charged currents

In our model, there exist several lepton flavor violating processes and the universality violation of charged currents even at tree level order. They put some constraints on the parameter spaces. Since all the processes are exactly the same with the ones of the Zee-Babu model \[66\] after the replacement of \(h^\pm \) as \(h_1^\pm \), we just list up such kind of bounds
\[|y_{R_{12}} y_{R_{11}}^*| < 2.3 \times 10^{-5} \left(\frac{m_{k^{\pm \pm}}}{\text{TeV}} \right)^2, \quad |y_{R_{13}} y_{R_{12}}^*| < 0.005 \left(\frac{m_{k^{\pm \pm}}}{\text{TeV}} \right)^2, \]
\[|y_{R_{23}} y_{R_{11}}^*| < 0.007 \left(\frac{m_{k^{\pm \pm}}}{\text{TeV}} \right)^2, \quad |y_{R_{23}} y_{R_{12}}^*| < 0.007 \left(\frac{m_{k^{\pm \pm}}}{\text{TeV}} \right)^2, \]
\[|y_{R_{23}} y_{R_{22}}^*| < 0.008 \left(\frac{m_{k^{\pm \pm}}}{\text{TeV}} \right)^2, \quad |y_{R_{11}} y_{R_{22}}^*| < 0.2 \left(\frac{m_{k^{\pm \pm}}}{\text{TeV}} \right)^2, \]
\[(\text{II.27}) \]
\[|y_{L_{12}}|^2 < 0.007 \left(\frac{m_{h_{1}^\pm}}{\text{TeV}} \right)^2, \quad |y_{L_{23}}|^2 - |y_{L_{13}}|^2 < 0.024 \left(\frac{m_{h_{1}^\pm}}{\text{TeV}} \right)^2, \]
\[|y_{L_{13}}|^2 - |y_{L_{12}}|^2 | < 0.035 \left(\frac{m_{h_{1}^\pm}}{\text{TeV}} \right)^2, \quad |y_{L_{23}}|^2 - |y_{L_{12}}|^2 > 0.04 \left(\frac{m_{h_{1}^\pm}}{\text{TeV}} \right)^2, \]
\[(\text{II.28}) \]
\[r^2 |y_{L_{13}} y_{L_{23}}|^2 + 16 |y_{R_{11}} y_{R_{12}} + y_{R_{12}} y_{R_{22}} + y_{R_{13}} y_{R_{23}}|^2 < 1.6 \times 10^{-6} \left(\frac{m_{k^{\pm \pm}}}{\text{TeV}} \right)^4, \]
\[r^2 |y_{L_{12}} y_{L_{23}}|^2 + 16 |y_{R_{11}} y_{R_{13}} + y_{R_{12}} y_{R_{23}} + y_{R_{13}} y_{R_{33}}|^2 < 0.52 \left(\frac{m_{k^{\pm \pm}}}{\text{TeV}} \right)^4, \]
\[r^2 |y_{L_{12}} y_{L_{13}}|^2 + 16 |y_{R_{12}} y_{R_{13}} + y_{R_{22}} y_{R_{23}} + y_{R_{23}} y_{R_{33}}|^2 < 0.7 \left(\frac{m_{k^{\pm \pm}}}{\text{TeV}} \right)^4, \]
\[(\text{II.29}) \]

where \(r \equiv \left(\frac{m_{k^{\pm \pm}}}{m_{h_{1}^\pm}} \right)^2 \) and the constraints in Eqs. (II.27), (II.28) and (II.29) originate from (tree-level) lepton flavor violating decays of charged leptons, charged lepton gauge universalities and (loop-level) lepton flavor violating interactions associating with photon, respectively.

\[\text{F. Numerical analysis} \]

Here, we have numerical analysis on our model and also the Zee-Babu model considering all the above constraints, namely, the vacuum stability of the three charged scalars in Eq. (II.8), avoiding charge-breaking minimum in Eq. (II.14), the observed neutrino masses and the mixings in Eq. (II.25) or (II.26), the lepton flavor violating processes and gauge universality in the charged leptons in Eqs. (II.27), (II.28) and (II.29). In addition, we add the following two conditions: (i) the mass of the DM candidate, \(\chi_{0R} \), takes the smallest value among the particles with negative \(\mathbb{Z}_2 \) parity; (ii) all the quartic couplings at the one-loop level in Eq. (II.8), \(\lambda_{h_1}, \lambda_{h_2} \) and \(\lambda_k \), should be less than \(\pi \) to ensure the perturbativity to a reasonable extent.
We fix and take the following parameter ranges:

\[
\lambda_{h_1}^{(0)} \approx \lambda_{h_2}^{(0)} \approx \lambda_k^{(0)} \approx \pi, \quad (y_{R_{11}}) = (y_{R_{12}}) = (y_{R_{13}}) \approx 0, \quad -\pi \leq y_{L_{23}} \leq \pi,
\]

\[
0 \leq \delta \leq \pi, \quad 0 \leq \phi \leq \pi, \quad \mu_{12} \approx \mu_{22} \approx 10^5 \text{ GeV},
\]

\[
0 \text{ GeV} \leq m_{h_1^\pm}, \quad m_{h_2^\pm}, \quad m_{k^{\pm\pm}}, \quad m_{\chi_{0,R/I}} \leq 1.2 \times 10^5 \text{ GeV}
\]

(for our model in NH, Zee-Babu model in NH and IH),

\[
0 \text{ GeV} \leq m_{h_1^\pm}, \quad m_{h_2^\pm}, \quad m_{k^{\pm\pm}}, \quad m_{\chi_{0,R/I}} \leq 2.0 \times 10^5 \text{ GeV}
\]

(for our model in IH),

(II.30)

where NH and IH are short-hand notations of normal and inverted hierarchies, respectively.

In our three-loop situation, neutrino masses tend to be suppressed significantly because of the large three-loop suppression factor, where we remember that elements of \(y_L \) and \(y_R \) should not be so large to be consistent with the constraints in Eqs. (II.27), (II.28) and (II.29). Thereby, the option is assigning huge numbers in \(\mu_{12} \) and \(\mu_{22} \), as apparent from Eqs. (II.21) and (II.22), which enhances realized values of neutrino masses. Note that in the above choice, we safely avoid charge-breaking minimum when the masses of the scalars are compatible (or more) compared with \(\mu_{12} \) and \(\mu_{22} \). Then we focus on the other conditions in the scanning. Here, we remember that the trilinear couplings among the charged scalars, \(\mu_{12} \) and \(\mu_{22} \), should be very large for generating enough amounts of neutrino masses. From Eqs. (II.9)–(II.11), we notice that the largeness in \(\mu_{12} \) and \(\mu_{22} \) possibly endangers the vacuum stability due to negative quartic couplings at the one-loop level. To maintain the stability of these couplings, three charged scalars should be suitably heavy.

We can check that the three-loop function \(F_1 \) defined in Eq. (II.18) typically generates \(\mathcal{O}(1) \) values in most of the part of the parameter space. Therefore, we set the loop function part, \([F_1(X_{IR}) - F_1(X_{II})]\) in Eq. (II.22), as 0.625 in scanning as a typical value. We search for suitable points within \(10^6, 10^8 \) and \(10^5 \) candidates via the parameter landscape defined in Eq. (II.30) in the cases of our model in NH; our model in IH; Zee-Babu model in both of NH and IH, respectively. The results that satisfy all the data discussed above are found in Figures 2, 3 and 4.

Figure 2 shows the allowed mass ranges in the NH case for the singly-charged bosons \((h_1^\pm, h_2^\pm)\) and the doubly-charged boson \(k^{\pm\pm}\) to satisfy the vacuum stability of these charged bosons, all the lepton flavor violating processes, universality of the charged currents, the
observed neutrino masses and the mixings under our parameter set in Eq. (II.30). These figures tell us $10 \text{ TeV} \lesssim m_{k^{\pm \pm}} \lesssim 100 \text{ TeV}$, $10 \text{ TeV} \lesssim m_{h^{\pm}_{1}} \lesssim 100 \text{ TeV}$, and $20 \text{ TeV} \lesssim m_{h^{\pm}_{2}} \lesssim 100 \text{ TeV}$ are respectively allowed.

Figure 3 shows the allowed mass ranges in the IH case for the singly-charged bosons $(h^{\pm}_{1}, h^{\pm}_{2})$ and the doubly-charged boson $k^{\pm \pm}$ to satisfy all the constraints discussed in the NH case. Now, these figures tell us that $10 \text{ TeV} \lesssim m_{k^{\pm \pm}} \lesssim 170 \text{ TeV}$, $20 \text{ TeV} \lesssim m_{h^{\pm}_{1}} \lesssim 170 \text{ TeV}$, and $20 \text{ TeV} \lesssim m_{h^{\pm}_{2}} \lesssim 150 \text{ TeV}$ are respectively allowed. Comparing to the NH case, one finds that heavier charged particles are allowed. On the other hand, the allowed region in the parameter space is decreased, which is recognized via the densities of the points showing allowed configurations. Note that the numbers of scanned points are different between the normal case (10^{6}) and the inverted one (10^{8}).

Figure 4 shows the quartic couplings of $\lambda_{h^{1}, h^{2}, k}$ in terms of the allowed mass range of the DM candidate $m_{\chi_{0}R}$ for both ordering cases, in which one finds that the allowed region for the IH decreases drastically than the one for the NH. Since the mass of the DM should be the smallest among the particles with negative Z_{2} parity, its value is bounded from above via the allowed mass range of $m_{h^{\pm}_{2}}$ typically as $m_{h^{\pm}_{2}} \lesssim \mathcal{O}(10^{2}) \text{ TeV}$. In this sense, our DM can naturally explain the observed relic density [78] and the direct detection searches [79] which typically lies on the $\mathcal{O}(100)$ GeV mass scale. The details of the DM properties can be found in Ref. [42], just replacing $m_{5} \rightarrow v'/\sqrt{2}$.6

Figure 5 shows the allowed region of $m_{k^{\pm \pm}}$ and $m_{h^{\pm}}$ in the original Zee-Babu model in order to compare with our allowed regions, where one finds that the allowed parameter configurations are much wider than ours in both of the orderings. Here, we take the same parameter set in Eq. (II.30).

G. Collider-related issues

In this subsection, we discuss possible collider-related issues. In our model, apart from the Zee-Babu model, the masses of the charged scalars are apt to be very heavy as typically above 10 TeV. They are highly decoupled and it is very difficult to detect a signature of our model even in the 14 TeV Large Hadron Collider (LHC) at CERN. However, still some

6 Since the lower bound of the DM mass is assumed to be larger than the tau lepton mass $\approx 1 \text{ GeV}$ to simplify the neutrino mass formula in Eq. (II.17), the typical order could be larger than $\mathcal{O}(10)$ GeV.
FIG. 2: The allowed mass ranges in the NH for the singly-charged bosons \((h_1^\pm, h_2^\pm)\) and the doubly-charged boson \(k^{\pm\pm}\) to satisfy the vacuum stability of these charged bosons, all the lepton flavor violating processes, the observed neutrino masses and the mixings under our parameter set in Eq. (II.30). These figures tell us \(10 \text{ TeV} \lesssim m_{k^{\pm\pm}} \lesssim 100 \text{ TeV} \), \(10 \text{ TeV} \lesssim m_{h_1^\pm} \lesssim 100 \text{ TeV} \), and \(20 \text{ TeV} \lesssim m_{h_2^\pm} \lesssim 100 \text{ TeV} \) are respectively allowed. Note that we examine \(10^6\) points in this scanning.

rooms remain in colliders.

First, we consider the constraint from Higgs search at the LHC. Now, the SM-like Higgs boson was discovered\(^\text{[80, 81]}\) and the signal strengths in various channels have been measured precisely. The latest value of the diphoton decay channel in the ATLAS experiment is announced as \(\mu_{\gamma\gamma} = 1.17 \pm 0.27\) with the central value of the Higgs mass \(125.4\) GeV based on the data taken in the \(\sqrt{s} = 7\) TeV and \(\sqrt{s} = 8\) TeV LHC corresponding to a total integrated luminosity of \(25 \text{ fb}^{-1}\) \(^\text{[82]}\). The CMS counterparts are \(\mu_{\gamma\gamma} = 1.14^{+0.26}_{-0.23}\) and \(124.70\) GeV, where the integrated luminosities of the data samples are \(5.1 \text{ fb}^{-1}\) at \(\sqrt{s} = 7\) TeV and \(19.7 \text{ fb}^{-1}\) at \(\sqrt{s} = 8\) TeV \(^\text{[83]}\).

In our model, we find three charged scalar particles, \(k^{\pm\pm}, h_1^\pm, h_2^\pm\) coupling with the photon and the Higgs boson and their contributions modify the signal strength of the Higgs diphoton
FIG. 3: The allowed mass ranges in the IH for the singly-charged bosons (h^\pm_1, h^\pm_2) and the doubly-charged boson $k^{\pm\pm}$ to satisfy the vacuum stability of these charged bosons, all the lepton flavor violating processes, the observed neutrino masses and the mixings under our parameter set in Eq. (II.30). These figures tell us $10 \text{ TeV} \lesssim m_{k^{\pm\pm}} \lesssim 170 \text{ TeV}$, $20 \text{ TeV} \lesssim m_{h^\pm_1} \lesssim 170 \text{ TeV}$, and $20 \text{ TeV} \lesssim m_{h^\pm_2} \lesssim 150 \text{ TeV}$ are respectively allowed. Note that we examine 10^8 points in this scanning.

decay. Besides, the CP-even physical component of the $SU(2)_L$ doublet ϕ is mixed with the corresponding part of Σ_0, σ, which is never introduced in the Zee-Babu model, and consequently the factor via the mixing, $\cos \alpha$ in Eq. (II.6), deforms the couplings with respect to the SM-like Higgs boson h defined as a mass eigenstate.

With taking into account the points, we can write down the following form like in the Zee-Babu model [66, 84–86],

$$\mu_{\gamma\gamma} = \frac{\Gamma(h \to \gamma\gamma)_{\text{ours}}}{\Gamma(h \to \gamma\gamma)_{\text{SM}}} = \left| \cos \alpha + \delta R(m_{h^+_1}, \lambda_{\Phi h_1}) + \delta R(m_{h^+_2}, \lambda_{\Phi h_2}) + 4 \delta R(m_{k^{\pm\pm}}, \lambda_{\Phi k}) \right|^2,$$

(II.31)

where the function $\delta R(m_x, \lambda_{\Phi x})$ (x standing for a type of the charged particles) is defined
FIG. 4: The allowed range of quartic couplings for charged bosons (λ_{h_1}, λ_{h_2}, λ_k) and the DM mass, where the left figure is the NH case, while the right one is the IH case. Note that we examine 10^6 (10^8) points in the NH (IH), respectively.

FIG. 5: The allowed mass ranges of the original Zee-Babu model for the singly-charged bosons (h^\pm) and the doubly-charged boson $k^{\pm\pm}$ to satisfy all the constraints discussed in our model. These figures tell us that the allowed region is much wider than our allowed one for both of the orderings, where the left figure is the NH case, while the right one is the IH case. Note that we examine 10^5 points in this scanning.

with the loop functions $A_0, A_{1/2}, A_1$ as

$$
\delta R(m_x, \lambda_{\Phi x}) = \frac{\lambda_{\Phi x} v^2}{2m_x^2} \cos \alpha \frac{A_0(\tau_x)}{A_1(\tau_W) + \frac{4}{3} A_{1/2}(\tau_t)},
$$

(II.32)

$$
A_0(x) = -x + x^2 f(1/x),
$$

(II.33)

$$
A_{1/2}(x) = 2x + 2x(1-x) f(1/x),
$$

(II.34)

$$
A_1(x) = -2 - 3x - 3x(2-x) f(1/x).
$$

(II.35)
Here, τ_i means $4m_i^2/m_h^2$ and the concrete form of $f(x)$ is $\arcsin^2 \sqrt{x}$ (when $x \leq 1$). Here in our model, all the charged scalars are decoupled and contributions from these particles are negligible as $\mu_{\gamma\gamma} \approx \cos^2 \alpha$. It is very easy to estimate the lower bounds on $|\cos \alpha|$ with 2σ confidence level from the ATLAS and the CMS experiments are 0.794 and 0.825, respectively, while no upper bound arises on $|\cos \alpha|$. This issue highly suggests that the value of $\cos \alpha$ should be close to one. One possibility for realizing $\cos \alpha \simeq 1$ is that the mass of the additional CP-even scalar is very large (see Eq. (II.5)).

Next, we consider the prospects in future like-sign electron linear collider. For generating a doubly-charged scalar as an s-channel resonance, a like-sign linear collider is a fascinating option. As discussed in [62], after accumulating a total luminosity of 50 fb^{-1}, more than a few tens of signal events of $e^-e^- \rightarrow k^-- \rightarrow \ell^-\ell^-$ can be expected for a doubly-charged scalar with $m_{k^\pm \pm} \lesssim 10 \text{ TeV}$ (even) with the center of mass energy $\sqrt{s} = 500 \text{ GeV}$ in a like-sign electron linear collider, where possibly, we cannot reconstruct the mass of the doubly-charged scalar since this particle seems to be off-shell. Even though detailed expectations depend on the interrelation among the matrix elements of y_R, we can expect that our model and the Zee-Babu model are widely tested up to the parameter region with a large value in $m_{k^\pm \pm}$ (and also in $m_{h^\pm_{1,2}}$).

Now, we try to evaluate the prospects for the discovery of our model in a like-sign electron linear collider through the process $e^-e^- \rightarrow k^-- \rightarrow e^-e^-$. We choose the template value of $m_{k^\pm \pm}$ as 20 TeV (being rather close to the minimum) and assume $(y_R)_{ee} = 1$, these values are not favored for evading the bounds from lepton-flavor violation processes, but it would be realizable with fine tuning in the other elements of y_R. For other values, we assign 10^{-6} to circumvent the bounds. We consider the cases of $\sqrt{s} = 1$, 3, 5, 10 TeV and ignore the two singly-charged scalars in calculating the decay width of $k^{\pm \pm}$. For estimating the production cross section, we implement our model with the help of FeynRules 2.1 [87, 88] to generate the model file in the UFO format [89] for simulations in MadGraph5_aMC@NLO [90, 91]. The values of $\sigma_{e^-e^- \rightarrow k^-- \rightarrow h^+_1 h^-_2}$ are 0.0959 fb, 0.898 fb, 2.71 fb and 16.9 fb, respectively. Then,

7 In our case, every particle including the W boson and the top quark inside the loop fulfills the condition, $4m_i^2 > m_h^2$, being equivalent to $\tau_i \geq 1$.
8 Lots of works have already been done about the physics in a like-sign linear collider, e.g., see [62, 69].
9 Note that we can differentiate the the Zee-Babu model from $SU(2)_L$ triplet models (including a doubly-charged scalar) by measuring the processes $e^-e^- \rightarrow \ell^+_\alpha \ell^-_\beta$ with various final states and analyzing the patterns [62].
we can conclude that a multi-TeV like-sign electron linear collider could hold reasonable potential for exploring our model, at least in the specified choice. After accumulating a large amount of data, the case with \((y_R)_{ee} \lesssim 1\) could be reachable.

III. CONCLUSIONS

We have constructed a three-loop induced neutrino model with a global \(U(1)\) symmetry, in which we naturally accommodate a DM candidate. Taking into account for all the constraints, namely, the vacuum stability of these charged bosons, all the lepton flavor violating processes, the observed neutrino masses and the mixings under our parameter set in Eq. (II.30), we have obtained allowed regions at

\[
10 \text{ TeV} \lesssim m_{k^{++}} \lesssim 100 \text{ TeV},
10 \text{ TeV} \lesssim m_{h^\pm_1} \lesssim 100 \text{ TeV},
20 \text{ TeV} \lesssim m_{h^\pm_2} \lesssim 100 \text{ TeV}
\]

for the NH case, and

\[
10 \text{ TeV} \lesssim m_{k^{++}} \lesssim 170 \text{ TeV},
20 \text{ TeV} \lesssim m_{h^\pm_1} \lesssim 170 \text{ TeV},
20 \text{ TeV} \lesssim m_{h^\pm_2} \lesssim 150 \text{ TeV}
\]

for the IH case, respectively. We have found that the NH case is prone to have wider allowed region.

In our model, the masses of the charged scalars tend to be very large as around \(\mathcal{O}(10)\) TeV because of the required large trilinear couplings among these particles leading to the menace to the positivity of scalar quartic couplings at the one-loop level. After considering the stability of the DM, its mass is naturally bounded from above. In this sense, our DM candidate can naturally explain the observed relic density and the direct detection searches which typically lies on the \(\mathcal{O}(100)\) GeV mass scale.

We have discussed possible collider-related issues, in which, the masses of the charged scalars tend to be very heavy as above 10 TeV that is apart from the Zee-Babu model. Hence, they are highly decoupled from the SM particles and it is very difficult to detect a signature of our model even in the 14 TeV LHC. However, we expect that a future like-sign electron linear collider could detect such heavy particles such as \(k^{\pm\pm}\) (and also \(h^\pm_{1,2}\), probably).

Acknowledgments

H.O. thanks to Prof. Seungwon Baek, Dr. Takashi Toma, and Dr. Kei Yagyu for fruitful discussions. K.N. is grateful to Prof. Shinya Kanemura and Prof. Tetsuo Shindou
for useful communications. This work is supported in part by NRF Research Grant 2012R1A2A1A01006053 (H.H.), No. 2009-0083526 (Y.O.) of the Republic of Korea.

[1] A. Zee, Phys. Lett. B 93, 389 (1980) [Erratum-ibid. B 95, 461 (1980)].
[2] T. P. Cheng and L. F. Li, Phys. Rev. D 22, 2860 (1980).
[3] A. Zee, Nucl. Phys. B 264, 99 (1986); K. S. Babu, Phys. Lett. B 203, 132 (1988).
[4] L. M. Krauss, S. Nasri and M. Trodden, Phys. Rev. D 67, 085002 (2003) arXiv:hep-ph/0210389.
[5] E. Ma, Phys. Rev. D 73, 077301 (2006) hep-ph/0601225.
[6] T. Hambye, K. Kannike, E. Ma and M. Raidal, Phys. Rev. D 75, 095003 (2007) hep-ph/0609228.
[7] P. -H. Gu and U. Sarkar, Phys. Rev. D 77, 105031 (2008) arXiv:0712.2933 [hep-ph].
[8] N. Sahu and U. Sarkar, Phys. Rev. D 78, 115013 (2008) arXiv:0804.2072 [hep-ph].
[9] P. -H. Gu and U. Sarkar, Phys. Rev. D 78, 073012 (2008) arXiv:0807.0270 [hep-ph].
[10] M. Aoki, S. Kanemura and O. Seto, Phys. Rev. Lett. 102, 051805 (2009) arXiv:0807.0361.
[11] J. March-Russell, C. McCabe and M. McCullough, JHEP 1003, 108 (2010) arXiv:0911.4489 [hep-ph].
[12] M. Aoki, S. Kanemura, T. Shindou and K. Yagyu, JHEP 1007, 084 (2010) [Erratum-ibid. 1011, 049 (2010)] arXiv:1005.5159 [hep-ph].
[13] S. Kanemura, O. Seto and T. Shimomura, Phys. Rev. D 84, 016004 (2011) arXiv:1101.5713 [hep-ph].
[14] M. Lindner, D. Schmidt and T. Schwetz, Phys. Lett. B 705, 324 (2011) arXiv:1105.4626 [hep-ph].
[15] S. Kanemura, T. Nabeshima and H. Sugiyama, Phys. Lett. B 703, 66 (2011) arXiv:1106.2480 [hep-ph].
[16] M. Aoki, J. Kubo, T. Okawa and H. Takano, Phys. Lett. B 707, 107 (2012) arXiv:1110.5403 [hep-ph].
[17] S. Kanemura, T. Nabeshima and H. Sugiyama, Phys. Rev. D 85, 033004 (2012) arXiv:1111.0599 [hep-ph].
[18] D. Schmidt, T. Schwetz and T. Toma, Phys. Rev. D 85, 073009 (2012) arXiv:1201.0906
[hep-ph]].

[19] S. Kanemura and H. Sugiyama, Phys. Rev. D 86, 073006 (2012) arXiv:1202.5231 [hep-ph]].

[20] Y. Farzan and E. Ma, Phys. Rev. D 86, 033007 (2012) arXiv:1204.4890 [hep-ph]].

[21] F. Bonnet, M. Hirsch, T. Ota and W. Winter, JHEP 1207, 153 (2012) arXiv:1204.5862 [hep-ph]].

[22] K. Kumericki, I. Picek and B. Radovcic, JHEP 1207, 039 (2012) arXiv:1204.6597 [hep-ph]].

[23] K. Kumericki, I. Picek and B. Radovcic, Phys. Rev. D 86, 013006 (2012) arXiv:1204.6599 [hep-ph]].

[24] R. Bouchand and A. Merle, JHEP 1207, 084 (2012) arXiv:1205.0008 [hep-ph]].

[25] E. Ma, Phys. Lett. B 717, 235 (2012) arXiv:1206.1812 [hep-ph]].

[26] G. Gil, P. Chankowski and M. Krawczyk, Phys. Lett. B 717, 396 (2012) arXiv:1207.0084 [hep-ph]].

[27] H. Okada and T. Toma, Phys. Rev. D 86, 033011 (2012) arXiv:1207.0864 [hep-ph]].

[28] D. Hehn and A. Ibarra, Phys. Lett. B 718, 988 (2013) arXiv:1208.3162 [hep-ph]].

[29] S. Baek, P. Ko, H. Okada and E. Senaha, JHEP 1409, 153 (2014) arXiv:1209.1685 [hep-ph]].

[30] P. S. B. Dev and A. Pilaftsis, Phys. Rev. D 86, 113001 (2012) arXiv:1209.4051 [hep-ph]].

[31] Y. Kajiyama, H. Okada and T. Toma, Eur. Phys. J. C 73, 2381 (2013) arXiv:1210.2305 [hep-ph]].

[32] H. Okada, arXiv:1212.0492 [hep-ph]].

[33] M. Gustafsson, J. M. No and M. A. Rivera, Phys. Rev. Lett. 110, 211802 (2013) arXiv:1212.4806 [hep-ph]].

[34] M. Aoki, J. Kubo and H. Takano, Phys. Rev. D 87, no. 11, 116001 (2013) arXiv:1302.3936 [hep-ph]].

[35] Y. Kajiyama, H. Okada and K. Yagyu, Nucl. Phys. B 874, 198 (2013) arXiv:1303.3463 [hep-ph]].

[36] Y. Kajiyama, H. Okada and T. Toma, Phys. Rev. D 88, 015029 (2013) arXiv:1303.7356 [hep-ph]].

[37] S. Kanemura, T. Matsui and H. Sugiyama, Phys. Lett. B 727, 151 (2013) arXiv:1305.4521 [hep-ph]].

[38] A. E. Carcamo Hernandez, I. d. M. Varzielas, S. G. Kovalenko, H. Päs and I. Schmidt, Phys. Rev. D 88, 076014 (2013) arXiv:1307.6499 [hep-ph]].

[39] B. Dasgupta, E. Ma and K. Tsumura, Phys. Rev. D 89, 041702 (2014) arXiv:1308.4138 [hep-ph]].
[hep-ph]].
[40] A. E. Carcamo Hernandez, R Martinez and F. Ochoa, arXiv:1309.6567 [hep-ph].
[41] K. L. McDonald, JHEP 1311, 131 (2013) arXiv:1310.0609 [hep-ph]].
[42] S. Baek, H. Okada and T. Toma, JCAP 1406, 027 (2014) arXiv:1312.3761 [hep-ph].
[43] E. Ma, Phys. Lett. B 732, 167 (2014) arXiv:1401.3284 [hep-ph].
[44] A. Ahriche, S. Nasri and R. Soualah, Phys. Rev. D 89, 095010 (2014) arXiv:1403.5694 [hep-ph]].
[45] H. Okada, arXiv:1404.0280 [hep-ph].
[46] A. Ahriche, C. S. Chen, K. L. McDonald and S. Nasri, Phys. Rev. D 90, no. 1, 015024 (2014) arXiv:1404.2696 [hep-ph].
[47] A. Ahriche, K. L. McDonald and S. Nasri, JHEP 1410, 167 (2014) arXiv:1404.5917 [hep-ph].
[48] C.-S. Chen, K. L. McDonald and S. Nasri, Phys. Lett. B 734, 388 (2014) arXiv:1404.6033 [hep-ph].
[49] S. Kanemura, T. Matsui and H. Sugiyama, Phys. Rev. D 90, 013001 (2014) arXiv:1405.1935 [hep-ph].
[50] M. Aoki and T. Toma, JCAP 1409, 016 (2014) arXiv:1405.5870 [hep-ph].
[51] M. Lindner, S. Schmidt and J. Smirnov, arXiv:1405.6204 [hep-ph].
[52] H. Davoudiasl and I. M. Lewis, Phys. Rev. D 90, no. 3, 033003 (2014) arXiv:1404.6260 [hep-ph].
[53] Y. H. Ahn and H. Okada, Phys. Rev. D 85, 073010 (2012) arXiv:1201.4436 [hep-ph].
[54] E. Ma, A. Natale and A. Rashed, Int. J. Mod. Phys. A 27, 1250134 (2012) arXiv:1206.1570 [hep-ph].
[55] Y. Kajiyama, H. Okada and K. Yagyu, JHEP 10, 196 (2013) arXiv:1307.0480 [hep-ph].
[56] Y. Kajiyama, H. Okada and K. Yagyu, Nucl. Phys. B 887, 358 (2014) arXiv:1309.6234 [hep-ph].
[57] E. Ma, Phys. Rev. Lett. 112, 091801 (2014) arXiv:1311.3213 [hep-ph].
[58] E. Ma and A. Natale, Phys. Lett. B 723, 403 (2014) arXiv:1403.6772 [hep-ph].
[59] H. Okada and K. Yagyu, Phys. Rev. D 89, 053008 (2014) arXiv:1311.4360 [hep-ph].
[60] S. Baek, H. Okada and T. Toma, Phys. Lett. B 732, 85 (2014) arXiv:1401.6921 [hep-ph].
[61] H. Okada and K. Yagyu, Phys. Rev. D 90, no. 3, 035019 (2014) arXiv:1405.2368 [hep-ph].
[62] D. Schmidt, T. Schwetz and H. Zhang, Nucl. Phys. B 885, 524 (2014) arXiv:1402.2251 [hep-
[63] H. N. Long and V. V. Vien, Int. J. Mod. Phys. A 29, no. 13, 1450072 (2014) arXiv:1405.1622 [hep-ph].

[64] H. Okada and Y. Orikasa, Phys. Rev. D 90, no. 7, 075023 (2014) arXiv:1407.2543 [hep-ph].

[65] V. Van Vien, H. N. Long and P. N. Thu, arXiv:1407.8286 [hep-ph].

[66] J. Herrero-Garcia, M. Nebot, N. Rius and A. Santamaria, Nucl. Phys. B 885, 542 (2014) arXiv:1402.4491 [hep-ph].

[67] S. Fraser, E. Ma and O. Popov, Phys. Lett. B 737, 280 (2014) arXiv:1408.4785 [hep-ph].

[68] H. Okada, T. Toma and K. Yagyu, Phys. Rev. D 90, no. 9, 095005 (2014) arXiv:1408.0961 [hep-ph].

[69] E. Ma, Phys. Lett. B 741, 202 (2015) arXiv:1411.6679 [hep-ph].

[70] D. Aristizabal Sierra, A. Degee, L. Dorame and M. Hirsch, JHEP 1503, 040 (2015) arXiv:1411.7038 [hep-ph].

[71] H. Okada and Y. Orikasa, arXiv:1412.3616 [hep-ph].

[72] S. Baek, H. Okada and K. Yagyu, arXiv:1501.01530 [hep-ph].

[73] L. G. Jin, R. Tang and F. Zhang, Phys. Lett. B 741, 163 (2015) arXiv:1501.02020 [hep-ph].

[74] S. Weinberg, Phys. Rev. Lett. 110, no. 24, 241301 (2013) arXiv:1305.1971 [astro-ph.CO].

[75] Y. Chikashige, R. N. Mohapatra and R. D. Peccei, Phys. Lett. B 98, 265 (1981); A. Adulpravitchai, P. H. Gu and M. Lindner, Phys. Rev. D 82, 073013 (2010).

[76] Z. Maki, M. Nakagawa and S. Sakata, Prog. Theor. Phys. 28, 870 (1962).

[77] B. Pontecorvo, Sov. Phys. JETP 26, 984 (1968) [Zh. Eksp. Teor. Fiz. 53, 1717 (1967)].

[78] P. A. R. Ade et al. [Planck Collaboration], Astron. Astrophys. (2014) arXiv:1303.5076 [astro-ph.CO].

[79] D. S. Akerib et al. [LUX Collaboration], Phys. Rev. Lett. 112, 091303 (2014) arXiv:1310.8214 [astro-ph.CO].

[80] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716, 1 (2012) arXiv:1207.7214 [hep-ex].

[81] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716, 30 (2012) arXiv:1207.7235 [hep-ex].

[82] G. Aad et al. [ATLAS Collaboration], Phys. Rev. D 90, no. 11, 112015 (2014) arXiv:1408.7084 [hep-ex].

[83] V. Khachatryan et al. [CMS Collaboration], Eur. Phys. J. C 74, no. 10, 3076 (2014)
[84] J. R. Ellis, M. K. Gaillard and D. V. Nanopoulos, Nucl. Phys. B 106, 292 (1976).
[85] M. A. Shifman, A. I. Vainshtein, M. B. Voloshin and V. I. Zakharov, Sov. J. Nucl. Phys. 30, 711 (1979) [Yad. Fiz. 30, 1368 (1979)].
[86] M. Carena, I. Low and C. E. M. Wagner, JHEP 1208, 060 (2012) arXiv:1206.1082 [hep-ph].
[87] N. D. Christensen and C. Duhr, Comput. Phys. Commun. 180, 1614 (2009) arXiv:0806.4194 [hep-ph].
[88] A. Alloul, N. D. Christensen, C. Degrande, C. Duhr and B. Fuks, Comput. Phys. Commun. 185, 2250 (2014) arXiv:1310.1921 [hep-ph].
[89] C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, Comput. Phys. Commun. 183, 1201 (2012) arXiv:1108.2040 [hep-ph].
[90] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, JHEP 1106, 128 (2011) arXiv:1106.0522 [hep-ph].
[91] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao and T. Stelzer et al., JHEP 1407, 079 (2014) arXiv:1405.0301 [hep-ph].
[92] T. G. Rizzo, Phys. Rev. D 25, 1355 (1982) [Addendum-ibid. D 27, 657 (1983)].
[93] T. G. Rizzo, Phys. Lett. B 116, 23 (1982).
[94] D. London, G. Belanger and J. N. Ng, Phys. Lett. B 188, 155 (1987).
[95] F. Cuypers and M. Raidal, Nucl. Phys. B 501, 3 (1997) hep-ph/9704224.
[96] M. Raidal, Phys. Rev. D 57, 2013 (1998) hep-ph/9706279.
[97] O. Cakir, New J. Phys. 8, 145 (2006) hep-ph/0604183.
[98] W. Rodejohann, Phys. Rev. D 81, 114001 (2010) arXiv:1005.2854 [hep-ph].
[99] W. Rodejohann and H. Zhang, Phys. Rev. D 83, 073005 (2011) arXiv:1011.3606 [hep-ph].