Osteonecrosis of The Hip: Is There A Difference In The Survivorship Of Total Hip Arthroplasty With or Without Previous Vascular Iliac Bone Grafting

Wai Wang Chau
The Chinese University of Hong Kong Faculty of Medicine https://orcid.org/0000-0002-6973-1915

Jonathan Patrick Ng
Alice Ho Miu Ling Nethersole Hospital

Hiu-Woo Lau
Prince of Wales Hospital

Michael Tim-Yun Ong
The Chinese University of Hong Kong Faculty of Medicine

Kwong-Yin Chung
Prince of Wales Hospital

Kevin Ki-Wai Ho (kevinho@cuhk.edu.hk)
Chinese University of Hong Kong https://orcid.org/0000-0001-8647-8475

Research article

Keywords: osteonecrosis of the femoral head, survivorship, hip, arthroplasty, vascular iliac bone graft

DOI: https://doi.org/10.21203/rs.3.rs-157717/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

Osteonecrosis of the femoral head (ONFH) is a debilitating condition. Vascularized iliac bone grafts (VIBG) is a joint preserving surgery to improve blood supply to the avascular portion of the femoral head which may delay secondary osteoarthritis and total hip arthroplasty (THA). However, whether VIBG will affect the subsequent THA survivorship and outcomes is still uncertain.

Methods

Implant survivorship and clinical outcomes were compared between 37 patients who had undergone prior VIBG and 302 patient who had only undergone THA for ONFH. Baseline characteristics and the postoperative Harris Hip Score (HHS) were also recorded and compared between the two groups. Implant survivorship was determined using Kaplan–Meier survival analysis.

Results

The overall implant survival for all patients who had a primary diagnosis of ONFH and eventually underwent THA was 92.9%. There was no significant difference in the implant survivorship between the group who directly received THA (survivorship of 93%), and the group which failed VIBG and was subsequently converted to THA (survivorship of 91.9%) (p= 0.71). In addition, higher THA revision rates were associated with smokers and drinkers.

Conclusions

VIBG may be a reasonable option as a “buy-time” procedure for ONFH. Even if conversion to THA is eventually required, patients may be reassured that the overall survivorship and clinical outcomes may not be compromised. Patients are recommended to give up smoking and binge drinking before THA to increase the implant survival rate.

Background

Symptomatic osteonecrosis of the femoral head (ONFH) is a debilitating condition that has a poorly understood pathogenesis[1]. The etiology of ONFH is believed to be a combination of genetic predisposition, metabolic factors, and local factors affecting the blood supply to the femoral head[2]. For early-stages of this disease, a joint-preserving approach is adopted, including pharmacological agents, core decompression with or without adjunctive biological agents, non-vascularised or vascularised bone-grafting (VIBG), and resurfacing arthroplasty[3–13]. However, once collapse occurs, the only definitive treatment is total hip arthroplasty (THA)[14–16].

In contrast to the smaller proportion of ONFH in Sweden (< 5%)[17] and in the US (7%)[18] in patients undergoing hip replacement, a local study showed that 45.6% of all THA were performed for patients who
had a primary diagnosis of ONFH[19]. Furthermore, ONFH most commonly affects younger patients, with an average age of 33 to 38 years at treatment, and is the commonest indication for total hip arthroplasty in this population[20, 21]. Given this, primary THA as a treatment is often not expected to outlive the patient's lifespan. Therefore, procedures such as VIBG have been developed in an attempt to save the femoral head, or at least slow down the rate of progression of ONFH before its collapse. In a European study, 42% of patients reported good and excellent results after vascularized iliac crest graft[22]. In a Japanese study of 14 patients who underwent VIBG between 1992 and 2002, 12 of 17 hips (71%) had no disease progression to a more advanced stage in by a mean of 51 months[23]. Therefore, VIBG is a reasonable “buy-time” procedure to delay or even obviate the need for THA. On the other hand, VIBG converting to THA has been reported with different reasons. These include asymmetric bone healing and non-union between the graft and the necrotic subchondral bone in the weight-bearing area, and failure of revascularization of vascularized fibular graft[24, 25]. However, there is a paucity of literature reporting the outcomes of THA in patients who have undergone previous joint-preserving procedures.

The aims of the study was to (1) assess the overall long term survivorship of THA for ONFH; (2) compare the long term implant survivorship of THA in patients who had previous VIBG versus THA without previous joint preservation surgeries; (3) compare the long term clinical outcomes of THA in patients who had previous VIBG versus THA without previous joint preservation surgeries.

Methods

Joint registry data from a tertiary referral joint replacement centre were retrieved, and a retrospective cohort study of all ONFH patients who underwent THA between 1987 and 2019 was conducted. Ethics approval was obtained from the institutional ethics review committee (Ethics approval number: 2020.183).

A total of 304 patients (339 hips) were recruited, of which 37 hips had received previous VIBG. Patients who underwent THA for avascular necrosis of the femoral head with at least five years of follow-up were included. The exclusion criteria were 1) patients who underwent core decompression surgery only, 2) patients with previous avascular bone graft surgical treatment, 3) patients clinically diagnosed with inflammatory arthritis, and 4) patients with vasculitis conditions. The severity of ONFH was graded according to Ficat and Arlet staging[26]. The procedure and surgical technique for VIBG have been reported in the previous literature[27]. All primary THA was performed either through a posterior or anterolateral approach. For those with prior VIBG who later received THA, THA was also performed either through a posterior or anterolateral approach, with cementless femoral and acetabular components.

Baseline characteristics in terms of age, sex, side, and risk factors were extracted from electronic patient records. Patients who underwent THA visited the outpatient clinic at the postoperative one, three, six, twelve, eighteen, twenty-four months, and annually thereafter. Patients were examined and assessed by evaluating the Harris Hip Score (HHS)[28] at each visit. Additionally, medical and surgical complications during earlier visits were also recorded.
The end-point of survivorship was defined as revision THA for any cause. Revision THA included any hip exploration following THA (with or without previous VIBG) including the exchange of the acetabular or femoral component for aseptic or septic reasons, including component malalignment, osteolysis and component failure.

Statistical analysis

Baseline characteristics were compared using the Student’s T-test or Chi-square test where appropriate. Kaplan-Meier (K-M) product-limit method and mean and standard error of survival time estimates were presented. Censorship of K-M curve was defined as the THA survivorship which turned out to be the implant survivorship (i.e. endpoint as THA revision) for both groups. *post-hoc* Bonferroni comparisons were carried out and presented using the log-rank test. Data analysis were carried out using IBM SPSS 26.0 (Armonk, New York). A two-sided p-value ≤ 0.05 was considered statistically significant.

Results

A total of 339 hips (37 hips in the THA with previous VIBG group (i.e. VIBG + THA) and 302 hips in the THA without previous VIBG group (i.e. THA only)) were recruited. In the VIBG + THA group, the mean age of patients receiving VIBG was 38.7 years old, and the mean age of VIBG failure with subsequent THA was 47.5 years old (Table 1). In THA only group, patients received THA at a mean age of 58.1 years. The mean age of the patients who underwent THA was significantly higher in the in THA only group (p < 0.01). Male gender and steroid treatment were independent risk factors for failure of VIBG (Male: Odds ratio and 95% CI = 3.63 (1.27, 10.31), p = 0.01; Steroid treatment: Odds ratio and 95% CI = 4.38 (1.14, 16.80), p = 0.03) and subsequent conversion to THA (Male: Odds ratio and 95% CI = 2.70 (1.20, 6.11), p = 0.01; Steroid treatment: Odds ratio and 95% CI = 1.20 (1.01, 1.44), p = 0.01). The mean number of years from VIBG to conversion to THA was 9.3 years. The mean follow-up was 11.8 years for the VIBG + THA group, and 11.7 years for the THA group (p = 0.95). The mean Harris Hip Score in the VIBG + THA group was significantly higher than the THA only group (92.63 vs. 81.83, p = 0.05). The percentages of THA revision were 8.1% in VIBG + THA patients and 7.3% in THA only patient, and the comparison was not statistically different (p = 0.74).
Table 1
Baseline characteristics of patients came across both VIBG and THA (“VIBG + THA” group) (N = 37) and those with primary THA (“THA only” group) (N = 302)

Baseline characteristics	VIBG + THA (N = 37)	THA only (N = 302)	P value
Age at VIBG	38.73 ± 9.96 (19, 56)	-	-
Age at THA	47.47 ± 12.06 (29, 78)	58.06 ± 13.12 (21, 84)	< 0.01
Sex			
Male	29 (78.4)	173 (57.3)	0.01
Female	8 (21.6)	129 (42.7)	
Side			
Left	18 (48.6)	150 (49.7)	1.00
Right	19 (51.4)	152 (50.3)	
Risk factors			
Drinking/Smoking	19 (51.4)	155 (51.3)	< 0.01
Steroid	10 (27.0)	28 (9.3)	
Trauma	5 (13.5)	36 (11.9)	
Others	3 (8.1)	83 (27.5)	

VIBG: Vascularized iliac bone graft
THA: Total Hip Arthroplasty

The overall implant survival for all patients who had a primary diagnosis of ONFH and eventually underwent THA was 92.9% (N = 315 of 339). Overall, 24 patients underwent revision THA for aseptic loosening. 21 revisions were in the THA only group (survivorship of 93%). In contrast, the overall survivorship in the VIBG + THA group was 91.9%, with 3 patients undergoing revision surgery (two separate revisions for acetabular loosening and one revision for femoral loosening). The 5th, 10th, and 20th survival rates were similar in both VIBG + THA and THA only groups (5th -year: 92.4% vs. 98.5%; 10th -year: 92.4% vs. 93.1%; 20th -year: 87.3% vs. 88.6%), and there were no significant differences in the overall implant survivorship between these two groups (p = 0.71) (Fig. 1). Considering the effects of risk factors on the implant survival rates, patients who drank or smoked were more likely to have their implant revised after 10 years of THA (Implant survival rates at the 10th -year = 70.2% (VIBG + THA) vs. 68.6% (THA only), and at the 20th -year = 61.4% (VIBG + THA) vs. 44.9% (THA only), overall p-value = 0.02) (Fig. 2). Patients who smoke or drank had significantly worse overall implant survivorship (mean years 23.14 for smokers or drinkers versus 30.48 in non-smokers or drinkers, p < 0.01).

Discussion
There is a paucity of literature reporting the outcomes of THA in patients who have failed prior joint preservation surgeries. In particular, this was the first study to assess whether previous VIBG or associated risk factors would affect the results and survivorship of subsequent THA for patients with ONFH. The most important finding from this study was that the THA implant survivorship was not affected by previous VIBG procedure. The mean HHS appeared to be better in those who have had previous VIBG. However, this must be interpreted with caution as those in the VIBG + THA group are generally younger.

Results from our study are in agreement with previous studies reviewing the outcomes of THA in patients who have undergone previous hip preservation surgeries. Issa et al compared the implant survivorship, HHS, and radiographic outcomes between 92 hips who had undergone prior hip preserving procedures, and 121 hips who had only undergone THA[29]. They found similar survivorship at a mean follow-up of 75 months (93% in the prior hip preservation surgery group, and 98% in THA only group). Also, there were no significant differences in the mean HHS of patients who had previous femoral neck-preserving procedures compared to those who had only undergone total hip arthroplasty. However, none of the patients had undergone VIBG in their cohort. Previous literature have also reported outcomes of THA with other previous hip preservation procedures, such as rotational osteotomies or resurfacing arthroplasties. Kawasaki et al evaluated the clinical and radiographic outcomes of 15 hips that initially underwent a transtrochanteric rotational osteotomy and later converted to THA. When compared with a matched control group of 16 hips, they found no significant difference in the HHS and survival rates[30]. McGrath et al compared clinical outcomes of 39 hips who had surface replacement arthroplasties converted to standard total hip arthroplasty with a matched group of 39 hips who had standard THAs[31]. At a mean follow-up of 45 months, they reported similar implant survivorship and mean HHS between two groups. In contrast, Ferle et al proposed that previous strut grafting prevented optimal positioning of the femoral stem and canal fit, especially for a cementless THA[32]. In their series of 13 cementless THA at a minimum follow-up of two years, they reported suboptimal alignment of the femoral component, with two hips requiring revision for femoral stem loosening. Berend et al also suggested that vascularized fibular grafting altered the biomechanics of the hips, which led to more difficult subsequent THA conversion. In their series of 89 hips who underwent THA for failed vascularized fibular grafting, they reported overall implant survivorship of 82% at a mean follow-up of nine years[33]. In addition, 50% of revised hips had required multiple revisions.

We also investigated the effects of different risk factors on THA survivorship and found that percentages of implant survival of ONFH patient who underwent primary THA were much affected (i.e. much smaller) than patients underwent VIBG + THA if they smoked or drank alcohol. Smokers or drinkers had worse implant survival in both the THA only and VIBG + THA groups. A systematic review carried out in Minneapolis found that smoking was associated with a significantly higher risk of post-operative complication following THA, and the effect was regardless whether the patients were current smokers (risk ratio: 1.24 (1.01 to 1.54)) or ex-smokers (risk ratio: 1.32 (1.05 to 1.66))[34]. Complications arose from smoking on implant outcome after THA had also been reported in population register-based case-control study (1997)[35], another meta-analysis of cohort studies conducted later (2015)[36], and a larger
scale population-based cohort study (2019)[37]. Risk factors considered in this K-M survival comparisons were smoking or drinking, which means drinking is another risk factor, complementary or independently, affecting implant survival. As a result, smoking or drinking had a much bigger impact on implant survival in the THA only group than the VIBG + THA only group. This finding has not been reported before. Smoking cessation and stop binge drinking should be encouraged for ONFH patients who suggested to undergo THA and after THA to increase the implant survival rate.

Conclusions

This study reported an excellent overall survivorship at a mean follow-up of 11.8 years, regardless of whether the patient had undergone previous VIBG. In light of these findings, the authors believe that VIBG may be a reasonable option as a “buy-time” procedure for ONFH. Even if conversion to THA is eventually required, patients may be reassured that the overall survivorship and clinical outcomes may not be compromised. Apart from drinking, smoking is also another risk factor associated with worsening implant survival rate, particularly in patients who underwent THA only.

Limitations Of This Study

There are several limitations to our study. Firstly, it is a retrospective cohort study with relatively small sample size, albeit the largest cohort of long term follow-up of THA with previous VIBG in the literature. Also, patient-reported outcomes and broader quality of life measures were not evaluated. However, the authors believe that the data presented are valuable to clinicians in choosing and discussing the management options for patients with ONFH. Moreover, we did not include other hip preservation surgeries in our study as our centre was the major regional institution performing VIBG in ONFH patients, the inclusion of a relatively smaller number of patients who underwent other hip preservation surgeries would have resulted in more heterogeneous data. Future studies that use pooled data from multiple institutions may be useful to better evaluate and draw conclusions on the survivorship and outcome of THA with prior hip preservation surgeries as a whole.

Abbreviations

ONFH
Osteonecrosis of the femoral head
VIBG
Vascularized iliac bone graft
THA
Total hip arthroplasty
HHS
Harris Hip Score
K-M
Kaplan-Meier
CI
Declarations

Ethics and Consent to participate:

- Ethical approval was obtained from the ethics review board of the Joint NTEC/CUHK Ethics Committee (Research Ethics Committee approval number: 183).
- Written informed consent was obtained from all participants.

Consent to publish:

- Not applicable.

Availability of data and materials:

- The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests:

- The authors declare that they have no competing interests.

Funding

- This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author's contributions

- KKWH, HWL, MTYO, and KYC designed the research, collected the data, and wrote the paper. HML assembled the data. WWC and JN analysed, interpreted the data and wrote the paper. All authors took part in the writing and final editing of the manuscript. All authors have been given a copy of the manuscript, all have approved the final version of the manuscript, and all are prepared to take public responsibility for the work and share responsibility and accountability for the results.

Acknowledgements

- Not applicable.

References

1. Baig SA, Baig MN. Osteonecrosis of the Femoral Head: Etiology, Investigations, and Management. Cureus. 2018;10(8):e3171. doi:10.7759/cureus.3171.
2. Zhao D, Zhang F, Wang B, Liu B, Li L, Kim SY, et al. Guidelines for clinical diagnosis and treatment of osteonecrosis of the femoral head in adults (2019 version). J Orthop Translat. 2020;21:100–10. doi:10.1016/j.jot.2019.12.004.

3. Marker DR, Seyler TM, McGrath MS, Delanois RE, Ulrich SD, Mont MA. Treatment of early stage osteonecrosis of the femoral head. J Bone Joint Surg Am. 2008;90(Suppl 4):175–87. doi:10.2106/jbjs.H.00671.

4. Mont MA, Marulanda GA, Seyler TM, Plate JF, Delanois RE. Core decompression and nonvascularized bone grafting for the treatment of early stage osteonecrosis of the femoral head. Instr Course Lect. 2007;56:213–20.

5. Pritchett JW. Statin therapy decreases the risk of osteonecrosis in patients receiving steroids. Clin Orthop Relat Res. 2001(386):173–8. doi:10.1097/00003086-200105000-00022.

6. Gangji V, Hauzeur JP, Matos C, De Maertelaer V, Toungouz M, Lambermont M. Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. A pilot study. J Bone Joint Surg Am. 2004;86(6):1153–60. doi:10.2106/00004623-200406000-00006.

7. Mont MA, Einhorn TA, Sponseller PD, Hungerford DS. The trapdoor procedure using autogenous cortical and cancellous bone grafts for osteonecrosis of the femoral head. J Bone Joint Surg Br. 1998;80(1):56–62. doi:10.1302/0301-620x.80b1.7989.

8. Wang CJ, Wang FS, Huang CC, Yang KD, Weng LH, Huang HY. Treatment for osteonecrosis of the femoral head: comparison of extracorporeal shock waves with core decompression and bone-grafting. J Bone Joint Surg Am. 2005;87(11):2380–7. doi:10.2106/jbjs.E.00174.

9. Dean MT, Cabanela ME. Transtrochanteric anterior rotational osteotomy for avascular necrosis of the femoral head. Long-term results. J Bone Joint Surg Br. 1993;75(4):597–601. doi:10.1302/0301-620x.75b4.8331115.

10. Mont MA, Rajadhyaksha AD, Hungerford DS. Outcomes of limited femoral resurfacing arthroplasty compared with total hip arthroplasty for osteonecrosis of the femoral head. J Arthroplasty. 2001;16(8 Suppl 1):134–9. doi:10.1054/arth.2001.28722.

11. Nam KW, Kim YL, Yoo JJ, Koo KH, Yoon KS, Kim HJ. Fate of untreated asymptomatic osteonecrosis of the femoral head. J Bone Joint Surg Am. 2008;90(3):477–84. doi:10.2106/jbjs.F.01582.

12. Seyler TM, Marker DR, Ulrich SD, Fatscher T, Mont MA. Nonvascularized bone grafting defers joint arthroplasty in hip osteonecrosis. Clin Orthop Relat Res. 2008;466(5):1125–32. doi:10.1007/s11999-008-0211-x.

13. Marker DR, Seyler TM, Ulrich SD, Srivastava S, Mont MA. Do modern techniques improve core decompression outcomes for hip osteonecrosis? Clin Orthop Relat Res. 2008;466(5):1093–103. doi:10.1007/s11999-008-0184-9.

14. Mont MA, Seyler TM, Plate JF, Delanois RE, Parvizi J. Uncemented total hip arthroplasty in young adults with osteonecrosis of the femoral head: a comparative study. J Bone Joint Surg Am. 2006;88(Suppl 3):104–9. doi:10.2106/jbjs.F.00451.
15. Hungerford DS. Treatment of osteonecrosis of the femoral head: everything's new. J Arthroplasty. 2007;22(4 Suppl 1):91–4. doi:10.1016/j.arth.2007.02.009.

16. Mont MA, Seyler TM, Marker DR, Marulanda GA, Delanois RE. Use of metal-on-metal total hip resurfacing for the treatment of osteonecrosis of the femoral head. J Bone Joint Surg Am. 2006;88(Suppl 3):90–7. doi:10.2106/jbjs.F.00543.

17. Herberts P, Malchau H. How outcome studies have changed total hip arthroplasty practices in Sweden. Clin Orthop Relat Res. 1997(344):44–60.

18. Parvizi J, Sullivan T, Duffy G, Cabanela ME. Fifteen-year clinical survivorship of Harris-Galante total hip arthroplasty. J Arthroplasty. 2004;19(6):672–7. doi:10.1016/j.arth.2004.01.005.

19. Chiu PKY, Ng TP, Poon KC, Ho WY, Yau WP. Primary total hip replacement in Hong Kong Chinese - a review of 647 hips. Hong Kong Journal of Orthopaedic Surgery. 1998.

20. Petek D, Hannouche D, Suva D. Osteonecrosis of the femoral head: pathophysiology and current concepts of treatment. EFORT Open Rev. 2019;4(3):85–97. doi:10.1302/2058-5241.4.180036.

21. Moya-Angeler J, Gianakos AL, Villa JC, Ni A, Lane JM. Current concepts on osteonecrosis of the femoral head. World J Orthop. 2015;6(8):590–601. doi:10.5312/wjo.v6.i8.590.

22. Pavlovic V, Dolinar D, Arnez Z. Femoral head necrosis treated with vascularized iliac crest graft. Int Orthop. 1999;23(3):150–3. doi:10.1007/s002640050334.

23. Matsusaki H, Noguchi M, Kawakami T, Tani T. Use of vascularized pedicle iliac bone graft combined with transtrochanteric rotational osteotomy in the treatment of avascular necrosis of the femoral head. Arch Orthop Trauma Surg. 2005;125(2):95–101. doi:10.1007/s00402-004-0777-z.

24. Malizos KN, Quarles LD, Dailiana ZH, Rizk WS, Seaber AV, Urbaniak JR. Analysis of failures after vascularized fibular grafting in femoral head necrosis. Orthop Clin North Am. 2004;35(3):305–14. doi:https://doi.org/10.1016/j.ocl.2004.02.002.

25. Lim T, Tang Q, Wang Q, Zhu Z, Wei X, Feng Y, et al. Histopathological Findings of Failed Free Vascularized Fibular Grafting for Osteonecrosis of the Femoral Head after Long-Term Follow-Up. Biomed Res Int. 2020;2020:6493585. doi:10.1155/2020/6493585.

26. Ficat RP. Ischemia and necrosis of bone. Histopathological signs. 1980.

27. Leung PC. Femoral head reconstruction and revascularization. Treatment for ischemic necrosis. Clin Orthop Relat Res. 1996(323):139–45. doi:10.1097/00003086-199602000-00019.

28. Harris WH. Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by mold arthroplasty. An end-result study using a new method of result evaluation. J Bone Joint Surg Am. 1969;51(4):737–55.

29. Issa K, Johnson AJ, Naziri Q, Khanuja HS, Delanois RE, Mont MA. Hip osteonecrosis: does prior hip surgery alter outcomes compared to an initial primary total hip arthroplasty? J Arthroplasty. 2014;29(1):162–6. doi:10.1016/j.arth.2013.04.028.

30. Kawasaki M, Hasegawa Y, Sakano S, Masui T, Ishiguro N. Total hip arthroplasty after failed transtrochanteric rotational osteotomy for avascular necrosis of the femoral head. J Arthroplasty.
31. McGrath MS, Marker DR, Seyler TM, Ulrich SD, Mont MA. Surface replacement is comparable to primary total hip arthroplasty. Clin Orthop Relat Res. 2009;467(1):94–100. doi:10.1007/s11999-008-0478-y.

32. Fehrle MJ, Callaghan JJ, Clark CR, Peterson KK. Uncemented total hip arthroplasty in patients with aseptic necrosis of the femoral head and previous bone grafting. The Journal of Arthroplasty. 1993;8(1):1–6. doi:https://doi.org/10.1016/S0883-5403(06)80101-4.

33. Berend KR, Gunneson E, Urbaniak JR, Vail TP. Hip arthroplasty after failed free vascularized fibular grafting for osteonecrosis in young patients. J Arthroplasty. 2003;18(4):411–9. doi:10.1016/s0883-5403(03)00066-4.

34. Singh JA. Smoking and outcomes after knee and hip arthroplasty: a systematic review. J Rheumatol. 2011;38(9):1824–34. doi:10.3899/jrheum.101221.

35. Espehaug B, Havelin LI, Engesaeter LB, Langeland N, Vollset SE. Patient-related risk factors for early revision of total hip replacements. A population register-based case-control study of 674 revised hips. Acta Orthop Scand. 1997;68(3):207–15. doi:10.3109/17453679708996686.

36. Teng S, Yi C, Krettek C, Jagodzinski M. Smoking and risk of prosthesis-related complications after total hip arthroplasty: a meta-analysis of cohort studies. PLoS One. 2015;10(4):e0125294. doi:10.1371/journal.pone.0125294.

37. Matharu GS, Mouchti S, Twigg S, Delmestri A, Murray DW, Judge A, et al. The effect of smoking on outcomes following primary total hip and knee arthroplasty: a population-based cohort study of 117,024 patients. Acta Orthop. 2019;90(6):559–67. doi:10.1080/17453674.2019.1649510.