Association between Vitamin D receptor gene polymorphism and the risk of Multiple Sclerosis: Systematic review and meta-analysis

CURRENT STATUS: ACCEPTED

Danyal Imani
Tehran University of Medical Sciences

Bahman Razi
Tarbiat Modares University Faculty of Medical Sciences

Morteza Motallebnezhad
Tabriz University of Medical Sciences

Ramazan rezaei ramin.rezaei25@gmail.com
Shaheed Beheshti University of Medical Sciences

Corresponding Author
ORCiD: 0000-0002-4504-7238

DOI:
10.21203/rs.2.17139/v1

SUBJECT AREAS
Neurosurgery

KEYWORDS
Vitamin D receptor, Multiple sclerosis, polymorphism, meta-analysis
Abstract

Background The association between the vitamin D receptor (VDR) gene polymorphism and the risk of Multiple sclerosis (MS) has been evaluated in several studies. However, the findings were inconsistent and inconclusive.

Methods All relevant studies reporting the association between the FokI (rs2228570) or/and TaqI (rs731236) or/and BsmI (rs1544410) or/and Apal (rs7975232) polymorphisms of the VDR and susceptibility to multiple sclerosis published up to September 2019 were identified by comprehensive systematic database search in web of science, Scopus, and PubMed.

Results A total of 30 case-control studies were included in this meta-analysis. The overall results suggested a significant association between TaqI gene polymorphism and MS risk under heterozygote contrast (OR = 1.27, 95%CI = 1.01-1.59, REM). Moreover, the pooled results of subgroup analysis decline presence of significant association under all defined genotype model. In subgroup analysis, BsmI gene polymorphism was associated with increased risk of MS under the recessive model in Asian population. In other hand, Apal gene polymorphism was associated with decreased risk of MS under recessive and homozygote contrast (aa vs AA) models in Asian population.

Conclusions This meta-analysis suggested a significant association between TaqI gene polymorphism and MS susceptibility. Furthermore, BsmI gene polymorphism was associated with an increased risk of MS in Asian population. In contrast, Apal gene polymorphism was associated with a decreased risk of MS in Asian population. Future large scale studies on gene-environment and gene- gene interactions are required to estimate related risk factors and assist early diagnosis of patients at high risk for MS.

1. Background
Multiple sclerosis (MS) is a chronic, demyelinating disorder of the brain and spinal cord that mainly develops in young individuals [1]. Autoantibodies and reactive T cells against the myelin are recognized as implicit pathogenic function in the tissue damage and development of CNS inflammation [2]. The main etiology of the disease remains to be elusive, but it has been demonstrated genetic and environmental factors play important roles in susceptibility to the disease [3]. Vitamin D is a group of fat-soluble secosteroids that have functional and regulatory effects in the body. Vitamin D has been implicated in the development of the brain and spinal cord. Alternatively, the active form of vitamin D, 1,25-dihydroxyvitamin D has a wide anti-inflammatory and immunomodulatory properties [4, 5]. Vitamin D exerts its immunomodulatory functions within the immune system by decreasing the presentation of major histocompatibility complex II (MHC-II) on T cells and monocytes. Vitamin D also reduces T cell proliferation and pro-inflammatory cytokine release [6]. The lower serum vitamin D levels compared to healthy controls have been reported in MS patients. Moreover, Vitamin D has positive effects on regulating MS risk development [7, 8]. The effects of Vitamin D on the immune system are exerted by binding to the nuclear vitamin D receptor (VDR) [9]. Particular variants of the VDR gene are related to changes in vitamin D metabolism and function [10]. Taken together, these results suggested that VDR may play an important role in the pathogenesis of MS.

The human VDR gene is located on chromosome 12q12-14 and series of restriction fragment length polymorphisms (RFLP) in the human VDR gene have been reported, containing BsmI (rs1544410), Apal (rs7975232), FokI (rs2228570), TaqI (rs731236) restriction sites [11]. Apal, BsmI, and TaqI are localized near the 3’ end of the VDR gene in the intron between exons 8 and 9, and shown to be in strong linkage disequilibrium (LD) [12]. The 3’UTR of the VDR gene involved in the regulation of gene expression by regulation of mRNA stability and expression level [13]; Polymorphism FokI is located at
the translation starting codon [14].

The association between MS and VDR single nucleotide polymorphisms (SNPs) has been investigated in several studies. Particularly, studies have evaluated associations between the most common SNPs of the VDR gene (the TaqI, ApaI, FokI, and BsmI polymorphisms) and MS. While studies in Australia [15], Kuwait [16], and Southeast Iran [17], reported a significant association between Taq I, Apa I, and Fok I gene polymorphisms and MS, other studies in Tunisia [18], Slovakia [19], and Greece [20] failed to find such an association. The reasons for this disparity may be small sample sizes, low statistical power, clinical heterogeneity, or a combination of the above factors. To offset these limitations, this meta-analysis was performed to investigate whether VDR gene polymorphisms contribute to MS or not. Up to now, there are four meta-analysis studies, which investigated the association between VDR polymorphisms and MS. The two studies performed by Huang et al. [21], and Garcia-Martin et al. [22] have indicated that there was no association between VDR gene polymorphism and MS risk. Nevertheless, the other meta-analysis by Zhang et al. [23], and Tizaoui et al. [24] demonstrated a significant association between ApaI and FokI VDR gene polymorphisms and MS susceptibility. Since the publication of the last meta-analysis, seven new studies have been founded in electronic databases. Therefore, we set out a meta-analysis of all eligible published case-control studies to obtain an exact evaluation of the association between MS and VDR gene polymorphisms.

2. Methods

The current meta-analysis was conducted according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement [25].

2.1 Literature review

All relevant studies reporting the association between the FokI (rs2228570) or/and TaqI (rs731236) or/and BsmI (rs1544410) or/and ApaI (rs7975232) polymorphisms of the
Vitamin D receptor and susceptibility to multiple sclerosis published up to September 2019 were identified by comprehensive systematic electronic database search in web of science, Scopus, and PubMed. The following search terms were applied: (VDR” OR “vitamin D receptor”) AND (“multiple sclerosis” OR “MS”) AND (“polymorphisms” OR “single nucleotide” OR “polymorphism” OR “SNP” OR “variation” OR “mutation”). As a complementary approach, in order to detect additional relevant studies, manual references evaluation of the included studies was performed. In this meta-analysis, the strategy of the search was restricted solely to the English-language publications and human population.

2.2 Study selection

Two reviewers independently assessed titles and abstracts of all studies retrieved in the initial search. Articles not following the eligibility criteria were excluded by applying a hierarchical approach based on study design. The full-text examination was applied if we could not decide include or exclude based on title and abstract. In particular conditions, if an author has published more than one study by the same case series, the most recently published study was included. Any disagreements were discussed and resolved by consensus.

2.3 Eligibility criteria

Studies considered eligible if met the following criteria: 1) all eligible case-control studies that evaluate the relationship between the VDR SNPs and the risk of MS as the main outcome; 2) sufficient data are available to extract or calculate odds ratios (ORs) and 95% confidence intervals; 3) contained genotype or allele distributions of case and healthy individuals for VDR gene polymorphism in the studies. The exclusion criteria were as
follows: 1) studies which genotype or allelic frequency could not be extracted; 2) letter, case report, review, comment, book chapter, and abstract; 3) duplicated reports and studies with repetitive subjects. The application of these criteria recognized 30 case-control studies eligible for the meta-analysis.

2.4 Data extraction

Two reviewers independently extracted all data according to standardized extraction form for the following data: the author's name, journal and year of publication, country of origin, ethnicity, number of case and control for each gender separately, mean or range of age, genotyping method, total sample size of cases and controls, and the number of cases and controls for each genotype. For quality assessment of the included publications, the Newcastle-Ottawa Scale (NOS) was applied[26]. Studies with scores 0-3, 4-6 or 7-9 were of low, moderate or high-quality, respectively.

2.5 Statistical analysis

Deviation from Hardy-Weinberg equilibrium (HWE) for distribution of the allele frequencies was analyzed using Chi-Square test in the control group. Sensitivity analysis was conducted to evaluate the stability of the results by removing the studies not in HWE. The strength of association between the FokI and/or TaqI and/or BsmI and/or ApaI polymorphisms of the Vitamin D Receptor and susceptibility to multiple sclerosis was calculated by OR and their 95 % CI. Defined model for FokI, TaqI, BsmI, ApaI were: FokI: dominant model (ff+Ff vs FF), recessive model (ff vs Ff+FF), allelic model (f vs F), homozygote (ff vs FF), and heterozygote (Ff vs FF); TaqI: dominant model (tt+Tt vs TT), recessive model (tt vs Tt+TT), allelic model (t vs T), homozygote (tt vs TT), and
heterozygote (Tt vs TT):\textit{BsmI}; dominant model (bb+Bb vs BB), recessive model (bb vs Bb+BB), allelic model (b vs B), homozygote (bb vs BB), and heterozygote (Bb vs BB):\textit{ApaI}; dominant model (aa+Aa vs AA), recessive model (aa vs Aa+AA), allelic model (a vs A), homozygote (aa vs AA), and heterozygote (Aa vs AA).. For each genetic contrast, subgroup analysis was applied to evaluate ethnicity effects. In consideration of the possible heterogeneity (between-study variability) across included studies chi-square based Q-test was used[27]. Additionally, to show heterogeneity quantitatively, the other index (I^2) calculated. There was significant heterogeneity if an I^2 values exceeded 50% or the Q statistic had a p-value less than 0.1. In the presence of significant heterogeneity, the random-effects model (DerSimonian–Laird approach) was performed. Otherwise, the fixed-effects model (Mantel–Haenszel approach) was performed for combination of data[28, 29]. Visual inspection of asymmetry in funnel plots asymmetry, Begg's and Egger's tests were conducted to evaluate publication bias (p value< 0.05 considered statistically significant)[30, 31]. The data analyses were carried out using STATA (version 14.0; Stata Corporation, College Station, TX) and SPSS (version 23.0; SPSS, Inc. Chicago, IL).

3. Results

3.1 Study characteristics

The primary search yielded a total of 636 publications from web of science, Scopus, and PubMed databases. After the removal of duplicates and title abstract review, only 76 studies remained for full-text examination. Eventually, 30 studies have met inclusion criteria and included for quantitative synthesis. The search workflow is shown in Figure 1. Study characteristics are summarized in Table 1. Among 30 eligible studies, 16 Studies investigate \textit{FokI} SNP, 23 Studies \textit{TaqI} SNP, 16 studies \textit{BsmI} SNP and 20 Studies \textit{ApaI} SNP.
The studies were published between 1999 and 2019. Taq-Man and PCR-RFLP genotyping method were used by most studies.

3.2 Quantitative synthesis

The distributions of Fokl, TaqI, BsmI and Apal genotypes of the included studies are shown in Table 2. FF for Fokl SNP, TT for TaqI SNP, BB for BsmI SNP and AA for Apal were used as the reference category. The heterogeneities in the comparisons ($I^2 \leq 50\%$, fixed-effects models; $I^2 > 50\%$, random-effects models) ascertain the application of Fixed-effects or random-effects models.

3.3 Meta-analysis for Fokl (rs2228570) polymorphism and MS

Overall 16 case-control studies with 3057 cases and 2852 controls were analyzed for assessment of Fokl gene polymorphism and MS risk. Of 16 studies, 9 studies carried out in Europe continent [19, 22, 32-38] 4 studies in Asia continent [16, 17, 39, 40] One study in America continent [41] and finally 2 studies in Australia [15, 42] (Table 1). No significant association was observed between Fokl gene polymorphism and MS risk across all genetic models. Additionally, subgroup analysis based on geographical location was performed which the pooled results rejected any association between Fokl gene polymorphism and risk of MS in European and Asian population. Since there was only one study for American, and two studies for Australian populations, these studies were excluded from the subgroup analysis. The results of pooled ORs, heterogeneity tests and publication bias tests for different analysis models are shown in Table 3. (Supplementary file Figure 1 and 2).

3.4 Meta-analysis for TaqI (rs731236) polymorphism and MS
There were 23 Case-control studies with 3758 cases and 3992 controls concerning TaqI gene polymorphism and MS risk. Among them, 13 studies were conducted in European countries [19, 20, 22, 32, 34, 35, 37, 38, 43-47] 5 studies in Asian countries [16, 39, 40, 48, 49] 2 studies in each Australian [15, 42] and American [41, 50] countries and one study in Tunisia [18]. The TaqI gene polymorphism was demonstrated to associate with MS risk under heterozygote contrast (OR = 1.27, 95%CI = 1.01–1.59, random effect) (Figure 2) whilst, No significant association was detected across other genotype models (Table3). In addition, the pooled results of subgroup analysis decline presence of significant association under all defined genetic model (Supplementary file Figure 3 and 4). The group with less than three studies were removed from the subgroup analysis. The results of pooled ORs, heterogeneity tests and publication bias tests for different analysis models are shown in Table 3.

3.5 Meta-analysis for BsmI (rs1544410) polymorphism and MS

16 case-control studies with 1793 cases and 1815 controls subjects examined the association between BsmI polymorphism and MS risk. Among 16 studies, Six studies were performed in Europe [19, 20, 34, 38, 46, 47], eight studies in Asia [16, 39, 48, 49, 51-53] and only two studies in America continent [41, 50]. The pooled results demonstrate no significant association between BsmI polymorphism and MS risk under all genotype model but subgroup analysis revealed that BsmI gene polymorphism across recessive model increase risk of Multiple sclerosis in Asian population (OR = 1.78 , 95%CI = 1.01–2.93, random effect) compared to European population (OR = 0.84, 95%CI = 0.66–1.06, random effect) Figure 3 . The results of pooled ORs, heterogeneity tests and publication bias tests for different analysis models are shown in (Table 3) (Supplementary file Figure 5 and
3.6 Meta-analysis for Apa1 (rs7975232) polymorphism and MS

20 Case-control studies with 2306 cases and 2669 controls were identified eligible for quantitative synthesis of the association between Apa1 polymorphism and MS risk. Overall, 9 studies were conducted in Europe [19, 34, 35, 37, 38, 43, 44, 46, 47], 8 studies in Asia [16, 39, 40, 48, 49, 52-54] and one study in Africa [18], America [41] and Australia [15], respectively. There was no evidence of association between Apa1 gene polymorphism and MS risk in the pooled results. However, subgroup analysis detected significant association between presence of Apa1 SNP and risk of MS under Recessive model (OR = 0.61, 95%CI = 0.42–0.89, random effect) and homozygote contrast model (OR = 0.52, 95%CI = 0.32–0.86, random effect) in Asian population in comparison with European population (OR = 1.01, 95%CI = 0.78–1.33, Recessive) and (OR = 1.11, 95%CI = 0.76–1.63, homozygote contrast) Figure 3. The results of pooled ORs, heterogeneity tests and publication bias tests for different analysis models are shown in Table 3 (Supplementary file Figure 7 and 8).

3.7 Evaluation of heterogeneity

Significant heterogeneity existed for FokI, TaqI, BsmI and Apa1 gene polymorphism in all of the genetic models. Furthermore, in subgroup analysis, there was significant heterogeneity for studies were carried out in Asian and European countries (Table 3).

3.8 Publication bias

Publication bias was estimated by using funnel plot, Begg's and Egger's tests. No evidence of Publication bias was seen for all four SNP and subgroup analysis under all genetic
models. Additionally, the shape of the funnel plot appeared to be symmetrical which demonstrated that there was no significant publication bias (Figure 4).

3.9 Sensitivity analysis

Sensitivity analysis was conducted after sequentially removing each eligible study. This approach is to enumerate as an inevitable step for analyzing multiple criteria. The significance of the pooled ORs was not affected by any single study in the dominant model for *FokI, TaqI, BsmI* and *ApaI* SNPs (Figure 5), indicating that our results were statistically robust.

4. Discussion

The *VDR* gene, as a pleiotropic gene, has been associated with several diseases. In the previous studies, the relationship between *VDR* gene SNPs and autoimmune disorders was evaluated in several meta-analyses. The study of Feng *et al.* [55] described that *TaqI* or *BsmI* gene polymorphism in the *VDR* gene was significantly connected with autoimmune thyroid diseases. Mao *et al.* [56] represented that the *BsmI* B allele may act as a risk factor for the onset of systemic lupus erythematosus (SLE) among Asians and overall populations and also the *FokI* FF genotype act as a potential risk factor for SLE predisposition in Asians. Furthermore, Tizaoui *et al.* [57] showed that the *VDR TaqI* and *FokI* gene polymorphisms may increase the risk of rheumatoid arthritis (RA) in European population. And finally, Wang *et al.* [58] reported that the *ApaI* and *BsmI* gene polymorphisms were related with elevated susceptibility to type 1 diabetes (T1D) in Asian population. Collectively, it could be assumed that *VDR* gene polymorphisms act as a potential risk factor in the development or progression of autoimmune disorders. Although four meta-analyses have been conducted over the course of past 10 years to
evaluate the association between the VDR gene polymorphisms and MS, these findings were inconclusive due to the variations of the literature and selected databases. Hence, for resolving these inconsistencies, and to decrease the heterogeneity and the probability of random errors, we set out an updated meta-analysis. In this meta-analysis, 30 studies met the inclusion criteria and included quantitative synthesis. No evidence of publication bias for all four SNP in subgroup analysis and overall populations under five genetic models was observed. Regarding the essential role of genetic factors in the pathogenesis of MS, we categorized our results according to ethnicity. Our meta-analysis revealed that BsmI, ApaI, and TaqI VDR gene polymorphisms may play a significant role in the pathogenesis of MS in overall and Asian population, respectively. The results of this study indicated that TaqI polymorphism was associated with MS susceptibility under heterozygote contrast in the overall population. Moreover, BsmI gene polymorphism was associated with an increased risk of MS under a recessive model in Asian population. In other hand, ApaI gene polymorphism was associated with decreased risk of MS under recessive and aa vs. AA models in Asian population. These findings are inconsistent with the results of Huang et al.. [21] and Garcia-Martin et al.. [22] studies. In the study of Huang et al, they included 11 case-control studies with 2599 cases and 2816 controls for assessing the association between VDR gene polymorphisms and the MS susceptibility, but no significant association was found. Another study by Garcia-Martin et al.. that analyzed ten studies with 2944 MS patients and 3166 healthy subjects reported that TaqI and FokI gene polymorphisms are not associated with the MS risk. In accordance with our study, the study of Zhang et al.. [23] and Tizaoui et al.. [24] showed a significant association between VDR gene polymorphisms and MS susceptibility. However, there are some obvious differences in the findings of these studies in comparison with our study. Meta-analysis of Tizaoui et al.. reported an association of the FF FokI and AA ApaI genotypes with an
elevated susceptibility to MS in a total of 3300 MS patients and 3194 healthy subjects from 13 case-control studies. In contrast, our analysis consists of 20 case-control studies showed that Apal gene polymorphism was associated with decreased risk of MS in Asian population. In addition, the study of Zhang et al. reported that the A allele was related to the onset of disease in Asian population. Nevertheless, the sensitivity analysis removing the studies not in HWE, rejected any association between the A allele and risk of MS, which was dissimilar from the results of the overall analysis. Moreover, they failed to find any association between TaqI, BsmI, and Apal gene polymorphisms and MS susceptibility in overall populations, Asians, and Caucasians. The main reasons that VDR gene polymorphism plays a diverse function across different studies or in different ethnic populations may be due to the following hints. Firstly, in many cases, controls in included studies deviated from HWE. Secondly, the differences in the ethnic contextual characteristics of the patients may be an important factor for these variations. Thirdly, VDR gene SNPs were suggested to be related with the basal levels of 1,25(OH)2D3 and vitamin D structure and function [59], which in turn could influence MS predisposition. Finally, MS is regarded to be a polygenic disorder, and therefore it is expected that various gene loci have interacted in the pathogenesis of MS.

Permutations and combinations of common variants account as predisposition factors in the etiology of several complex diseases. Variations of DNA sequences such as single nucleotide polymorphisms exert modest biological impacts [9]. Three polymorphisms of VDR including TaqI, Apal, and BsmI do not influence the structure of VDR protein. Their effect may be associated with alterations in translation efficiency and/or stability of the RNA. On the other hand, the FokI polymorphism has related to changes in both transcriptional activity and VDR protein structure [60]. The wild-type short transcript of FokI is related to the elevated transcriptional activity [60]. One potential exception is the
differential effect of the \textit{FokI} gen polymorphism on the immune system \cite{14}. Our data suggested that the \textit{ApaI} gene polymorphism has a significant functional effect on MS. Furthermore, the \textit{TaqI} gene polymorphism was associated with MS risk. However, there are some other factors have not examined in the current meta-analysis that might affect the \textit{TaqI} expression. At this point, the expression and function of VDR in transactivating target genes are indicated by environment, genetics, and ethnicity due to its complex interactions \cite{61}. Thus, three essential environmental risk factors for MS have been determined: vitamin D insufficiency, cigarette smoking, and Epstein–Barr virus infection \cite{62, 63}. Moreover, sun exposure interacts with VDR gene functional variants in childhood to affect MS predisposition.

Some limitations of this meta-analysis should be considered. First, inaccessibility to the original data of the included studies restricted our further assessment of potential interactions, since the interactions between and even various polymorphic regions of the same gene may affect the risk. Moreover, this study was solely focused on the articles published in the English language. We detected significant heterogeneity in all of the genetic models, which could be derived by various factors such as variations in ethnicities. In the current study, ethnicities were Caucasians from Asians, Caucasians from Europe and Australia. Additionally, heterogeneity may be created by the publication year of included studies, which extended between 1999 to 2018. There are several other possible reasons which may be regarded as a source of heterogeneity. Firstly, the criteria for MS diagnosis are inconsistent between studies. While some of them employed Poser's criteria, other studies used McDonald's criteria for MS diagnosis. Secondly, gender may act as a potential source for heterogeneity. Although both male and female subjects were enrolled in most studies, two studies were not sex-matched and one study only included women subjects \cite{33, 41, 43}. Thirdly, genotyping methods were not consistent. While half
of the included studies used RFLP-PCR approximately the other half employed Taqman assay and one study used PCR-SPP. Fourthly, geographical and ethnic factors may also participate in heterogeneity, because studies with the same ethnic source were accompanied in various geographical regions.

The results from the studies examined in this meta-analysis should be interpreted with cautious for some reasons. Our findings suggest that to afford accurate estimates of the relation between VDR gene polymorphisms and MS risk, several factors should be regarded. Although there are many functional VDR gene polymorphisms in the promoter region of the VDR gene, only four single nucleotide polymorphisms in the VDR gene have been evaluated. The interaction of the HLA genes with the VDR gene has been demonstrated to be important in MS [64, 65]. Remarkably, various environmental factors may interact with VDR gene SNPs to alter MS susceptibility. The current meta-analysis could not assess all interactions between VDR gene polymorphisms and study characteristics because of insufficient data from the original publications.

Conclusion

Taken all together, the current meta-analysis affords a comprehensive investigation of the available information for the association between the VDR gene polymorphisms and MS susceptibility. This meta-analysis of 30 case-control studies revealed a significant association between TaqI gene polymorphism and MS susceptibility. In subgroup analysis, BsmI gene polymorphism was associated with increased risk of MS in Asian population. On the other hand, ApaI gene polymorphism was associated with decreased risk of MS in Asian population. However, neither in the overall population nor in subgroup analysis, the significant association between FokI gene polymorphism and MS susceptibility was found.
Future large scale studies on gene–environment and gene–gene interactions are required to estimate related risk factors and assist early diagnosis of patients at high risk for MS.

Abbreviations

VDR: Vitamin D receptor polymorphism
MS: Multiple sclerosis
MHC-II: major histocompatibility complex II
CNS: central nervous system
RFLP: restriction fragment length polymorphisms
LD: linkage disequilibrium
UTR: untranslated region
PRISMA: Preferred Reporting Items for Systematic reviews and Meta-Analyses
SNP: Single Nucleotide Polymorphisms
OR: Odd Ratio
CI: Confidence Interval
SLE: systemic lupus erythematosus
T1D: type 1 diabetes
PCR-SPP: Polymerase chain reaction - Sequence Specific
HLA: human leukocyte antigen

Declarations

Ethics approval and consent to participate

This study has been approved by ethic committee of Tehran University of Medical Sciences.

Consent for publication

Not applicable.
Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sector.

Authors’ contributions

Conceived and designed the experiments: DI and BR. Extracted data: DI and MA. Performed the data analysis: BR. Writing original draft: RR and BR. All authors read and approved the final manuscript.

Acknowledgements

We would like to thank Dr. Saeid Aslani for his valuable comments that greatly improved the manuscript.

Authors’ information (optional)

Ramazan Rezaei is an associate researcher of the department of Immunology at Shahid Beheshti University of Medical Sciences, Tehran, Iran. His research focuses on autoimmune diseases, Immunogenetics, and Immunotherapy, with a particular interest in the Manipulation of Tumor deriver exosomes as a therapeutic vaccine in colorectal cancer.

References

1. Imani, D., et al., Association of nod-like receptor protein-3 single nucleotide gene polymorphisms and expression with the susceptibility to relapsing-remitting multiple sclerosis. International journal of immunogenetics, 2018. 45(6): p. 329-336.
2. Saxena, A., et al., *Role of CD8 T cell subsets in the pathogenesis of multiple sclerosis*. FEBS letters, 2011. **585**(23): p. 3758-3763.

3. McFarland, H.F. and R. Martin, *Multiple sclerosis: a complicated picture of autoimmunity*. Nature immunology, 2007. **8**(9): p. 913.

4. Adorini, L. and G. Penna, *Control of autoimmune diseases by the vitamin D endocrine system*. Nature Reviews Rheumatology, 2008. **4**(8): p. 404.

5. DeLuca, H.F., *Overview of general physiologic features and functions of vitamin D*. The American journal of clinical nutrition, 2004. **80**(6): p. 1689S-1696S.

6. Gorman, S., et al., *Topically applied 1, 25-dihydroxyvitamin D3 enhances the suppressive activity of CD4+ CD25+ cells in the draining lymph nodes*. The Journal of Immunology, 2007. **179**(9): p. 6273-6283.

7. Smolders, J., et al., *Association of vitamin D metabolite levels with relapse rate and disability in multiple sclerosis*. Multiple Sclerosis Journal, 2008. **14**(9): p. 1220-1224.

8. Runia, T.F., et al., *Lower serum vitamin D levels are associated with a higher relapse risk in multiple sclerosis*. Neurology, 2012. **79**(3): p. 261-266.

9. Uitterlinden, A.G., et al., *Genetics and biology of vitamin D receptor polymorphisms*. Gene, 2004. **338**(2): p. 143-156.

10. Zmuda, J.M., J.A. Cauley, and R.E. Ferrell, *Molecular epidemiology of vitamin D receptor gene variants*. Epidemiologic reviews, 2000. **22**(2): p. 203-217.

11. Fang, Y., et al., *Promoter and 3′-untranslated-region haplotypes in the vitamin D receptor gene predispose to osteoporotic fracture: the Rotterdam study*. The American Journal of Human Genetics, 2005. **77**(5): p. 807-823.

12. Ručević, I., et al., *Vitamin D endocrine system and psoriasis vulgaris-review of the literature*. Acta Dermatovenerologica Croatica, 2009. **17**(3): p. 0-0.

13. Saccone, D., F. Asani, and L. Bornman, *Regulation of the vitamin D receptor gene by*
environment, genetics and epigenetics. Gene, 2015. 561(2): p. 171-180.

14. van Etten, E., et al., The vitamin D receptor gene FokI polymorphism: functional impact on the immune system. European journal of immunology, 2007. 37(2): p. 395-405.

15. Tajouri, L., et al., Variation in the vitamin D receptor gene is associated with multiple sclerosis in an Australian population. Journal of neurogenetics, 2005. 19(1): p. 25-38.

16. Al-Temaimi, R.A., et al., The association of vitamin D receptor polymorphisms with multiple sclerosis in a case-control study from Kuwait. PloS one, 2015. 10(11): p. e0142265.

17. Narooie-Nejad, M., et al., Positive association of vitamin D receptor gene variations with multiple sclerosis in South East Iranian population. BioMed research international, 2015. 2015.

18. Ben-Selma, W., et al., Age-and gender-specific effects on VDR gene polymorphisms and risk of the development of multiple sclerosis in Tunisians: a preliminary study. International journal of immunogenetics, 2015. 42(3): p. 174-181.

19. Čierny, D., et al., FokI vitamin D receptor gene polymorphism in association with multiple sclerosis risk and disability progression in Slovaks. Neurological research, 2015. 37(4): p. 301-308.

20. Sioka, C., et al., Vitamin D receptor gene polymorphisms in multiple sclerosis patients in northwest Greece. Journal of negative results in biomedicine, 2011. 10(1): p. 3.

21. Huang, J. and Z.-F. Xie, Polymorphisms in the vitamin D receptor gene and multiple sclerosis risk: a meta-analysis of case-control studies. Journal of the neurological sciences, 2012. 313(1-2): p. 79-85.
22. García-Martín, E., et al., Vitamin D3 receptor (VDR) gene rs2228570 (Fok1) and rs731236 (Taq1) variants are not associated with the risk for multiple sclerosis: results of a new study and a meta-analysis. PloS one, 2013. 8(6): p. e65487.

23. Zhang, Y.-J., et al., Association between VDR polymorphisms and multiple sclerosis: systematic review and updated meta-analysis of case-control studies. Neurological Sciences, 2018. 39(2): p. 225-234.

24. Tizaoui, K., et al., Association between vitamin D receptor polymorphisms and multiple sclerosis: systematic review and meta-analysis of case-control studies. Cellular & molecular immunology, 2015. 12(2): p. 243.

25. Moher, D., et al., Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. 2010.

26. Stang, A., Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. European journal of epidemiology, 2010. 25(9): p. 603-605.

27. Huedo-Medina, T.B., et al., Assessing heterogeneity in meta-analysis: Q statistic or I² index? Psychological methods, 2006. 11(2): p. 193.

28. Mantel, N. and W. Haenszel, Statistical aspects of the analysis of data from retrospective studies of disease. Journal of the national cancer institute, 1959. 22(4): p. 719-748.

29. DerSimonian, R. and N. Laird, Meta-analysis in clinical trials Control Clin Trials 7: 177-188. Find this article online, 1986.

30. Egger, M., et al., Bias in meta-analysis detected by a simple, graphical test. Bmj, 1997. 315(7109): p. 629-634.

31. Begg, C.B. and M. Mazumdar, Operating characteristics of a rank correlation test for publication bias. Biometrics, 1994: p. 1088-1101.
32. Partridge, J., et al., *Susceptibility and outcome in MS: associations with polymorphisms in pigmentation-related genes.* Neurology, 2004. *62*(12): p. 2323-2325.

33. Smolders, J., et al., *Fok-I vitamin D receptor gene polymorphism (rs10735810) and vitamin D metabolism in multiple sclerosis.* Journal of neuroimmunology, 2009. *207*(1-2): p. 117-121.

34. Agnello, L., et al., *Vitamin D receptor polymorphisms and 25-hydroxyvitamin D in a group of Sicilian multiple sclerosis patients.* Neurological Sciences, 2016. *37*(2): p. 261-267.

35. Yucel, F.E., et al., *Analysis of vitamin D receptor polymorphisms in patients with familial multiple sclerosis.* Medical Archives, 2018. *72*(1): p. 58.

36. Bettencourt, A., et al., *The vitamin D receptor gene FokI polymorphism and Multiple Sclerosis in a Northern Portuguese population.* Journal of neuroimmunology, 2017. *309*: p. 34-37.

37. Kamisli, O., et al., *The association between vitamin D receptor polymorphisms and multiple sclerosis in a Turkish population.* Multiple sclerosis and related disorders, 2018. *20*: p. 78-81.

38. Křenek, P., et al., *The Impact of Five VDR Polymorphisms on Multiple Sclerosis Risk and Progression: a Case-Control and Genotype-Phenotype Study.* Journal of Molecular Neuroscience, 2018: p. 1-8.

39. Abdollahzadeh, R., et al., *Predisposing role of vitamin D receptor (VDR) polymorphisms in the development of multiple sclerosis: A case-control study.* Journal of the neurological sciences, 2016. *367*: p. 148-151.

40. SADEGHI, A., et al., *The Bsml, Fokl, Apal and TaqI Polymorphisms in Vitamin D Receptor Gene in Iranian Multiple Sclerosis Patients: A Case-Control Study.*
41. Simon, K.C., et al., *Polymorphisms in vitamin D metabolism related genes and risk of multiple sclerosis*. Multiple Sclerosis Journal, 2010. **16**(2): p. 133-138.

42. Dickinson, J.L., et al., *Past environmental sun exposure and risk of multiple sclerosis: a role for the Cdx-2 Vitamin D receptor variant in this interaction*. Multiple Sclerosis Journal, 2009. **15**(5): p. 563-570.

43. Smolders, J., et al., *Association study on two vitamin D receptor gene polymorphisms and vitamin D metabolites in multiple sclerosis*. Annals of the New York Academy of Sciences, 2009. **1173**(1): p. 515-520.

44. Irizar, H., et al., *HLA-DRB1* 15: 01 and multiple sclerosis: a female association? Multiple Sclerosis Journal, 2012. **18**(5): p. 569-577.

45. Agliardi, C., et al., *Vitamin D receptor (VDR) gene SNPs influence VDR expression and modulate protection from multiple sclerosis in HLA-DRB1* 15-positive individuals. Brain, behavior, and immunity, 2011. **25**(7): p. 1460-1467.

46. Cakina, S., et al., *Vitamin D receptor gene polymorphisms in multiple sclerosis disease: A case-control study*. Revista Romana de Medicina de Laborator, 2018. **26**(4): p. 489-495.

47. Terzi, M., et al.. *Vitamin D Receptor Gene Polymorphism in Patients with Multiple Sclerosis*. in *MULTIPLE SCLEROSIS JOURNAL*. 2018. SAGE PUBLICATIONS LTD 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND.

48. Narooie-Nejad, M., et al.. *Vitamin D receptor gene polymorphism and the risk of multiple sclerosis in South Eastern of Iran*. Journal of molecular neuroscience, 2015. **56**(3): p. 572-576.

49. Yamout, B., et al.. *Vitamin D receptor biochemical and genetic profiling and HLA-class II genotyping among Lebanese with multiple sclerosis—a pilot study*. Journal of neuroimmunology, 2016. **293**: p. 59-64.
50. Bermúdez-Morales, V.H., et al., Vitamin D receptor gene polymorphisms are associated with multiple sclerosis in Mexican adults. Journal of neuroimmunology, 2017. 306: p. 20-24.

51. Fukazawa, T., et al., Association of vitamin D receptor gene polymorphism with multiple sclerosis in Japanese. Journal of the neurological sciences, 1999. 166(1): p. 47-52.

52. Bing W, H.L., Tao W et al. Association of vitamin D receptor gene polymorphism with multiple sclerosis. Henan Med Res 49(24):86-87, 2009.

53. Qinlin S, R.X., Yinhua W, et al., Association of vitamin D receptor gene polymorphism with multiple sclerosis. Chin J Tissue Eng Res,, 2004.

54. Niino, M., et al., Vitamin D receptor gene polymorphism in multiple sclerosis and the association with HLA class II alleles. Journal of the neurological sciences, 2000. 177(1): p. 65-71.

55. Feng, M., et al., Polymorphisms in the vitamin D receptor gene and risk of autoimmune thyroid diseases: a meta-analysis. 2013, Springer.

56. Mao, S. and S. Huang, Association between vitamin D receptor gene Bsml, Fokl, Apal and Taql polymorphisms and the risk of systemic lupus erythematosus: a meta-analysis. Rheumatology international, 2014. 34(3): p. 381-388.

57. Tizaoui, K. and K. Hamzaoui, Association between VDR polymorphisms and rheumatoid arthritis disease: systematic review and updated meta-analysis of case-control studies. Immunobiology, 2015. 220(6): p. 807-816.

58. Wang, G., X. Kuanfeng, and T. Yang, Associations between polymorphisms of vitamin D receptor gene and type 1 diabetes susceptibility: a meta-analysis. Chinese Journal of Diabetes, 2015(2): p. 110-114.

59. Morán-Auth, Y., M. Penna-Martinez, and K. Badenhoop, VDR Fokl polymorphism is
associated with a reduced T-helper cell population under vitamin D stimulation in type 1 diabetes patients. The Journal of steroid biochemistry and molecular biology, 2015. 148: p. 184-186.

60. Jurutka, P.W., et al., *The polymorphic N terminus in human vitamin D receptor isoforms influences transcriptional activity by modulating interaction with transcription factor IIB*. Molecular endocrinology, 2000. 14(3): p. 401-420.

61. O’Gorman, C., R. Lucas, and B. Taylor, *Environmental risk factors for multiple sclerosis: a review with a focus on molecular mechanisms*. International journal of molecular sciences, 2012. 13(9): p. 11718-11752.

62. Pierrot-Deseilligny, C. and J.-C. Souberbielle, *Contribution of vitamin D insufficiency to the pathogenesis of multiple sclerosis*. Therapeutic advances in neurological disorders, 2013. 6(2): p. 81-116.

63. Canbay, C., *The essential environmental cause of multiple sclerosis disease*. Progress In Electromagnetics Research, 2010. 101: p. 375-391.

64. Handunnetthi, L., S.V. Ramagopalan, and G.C. Ebers, *Multiple sclerosis, vitamin D, and HLA-DRB1* 15. Neurology, 2010. 74(23): p. 1905-1910.

65. Ramagopalan, S.V., et al., *Expression of the multiple sclerosis-associated MHC class II Allele HLA-DRB1* 1501 is regulated by vitamin D. PLoS genetics, 2009. 5(2): p. e1000369.

Tables

Table 1: Characteristics of studies included in Meta-analysis of overall MS.

Study author	Year	Country	Ethnicity	Sex cases/controls	
FokI (rs2228570)					
Partridge et al.	2004	UK	European	M=NR F=NR	
Tajouri et al.	2005	Australia	Australian	M=NR F=NR	
Smolders et al.	2009	Netherlands	European	M=62/142 F=150/147	
Dickinson et al.	2009	Australia	Australian	M=NR	
Study	Year	Country	Ethnicity	M (Range)	F (Range)
------------------------------	------	------------	-----------	-----------	-----------
Simon et al.	2010	USA	American	M=NR	F=NR
Garcia-Martin et al.	2013	Spain	European	M=94/98	F=209/212
Al-Temaimi et al.	2015	Kuwait	Asian	M=17/19	F=33/31
Narooie-Nejad et al.	2015	Iran	Asian	M=25/28	F=88/94
Cierny et al.	2015	Slovakia	European	M=66/74	F=204/229
Luisa Agnello et al.	2016	Italy	European	M=24/30	F=80/42
Abdollahzadeh et al.	2016	Iran	Asian	M=40/38	F=120/112
Yucel et al.	2017	Turkey	European	M=NR	F=NR
Bettencourt et al.	2017	Portugal	European	M=185/198	F=348/248
Kamisli et al.	2018	Turkey	European	M=46/58	F=121/88
Sadeghi et al.	2018	Iran	Asian	M=17/11	F=63/39
Křenek et al.	2018	Czech Republic	European	M=80/49	F=216/86
TaqI (rs731236)					
Partridge et al.	2004	UK	European	M=NR	F=NR
Tajouri et al.	2005	Australia	Australian	M=NR	F=NR
Smolders et al.	2009	Netherland	European	M=62/142	F=150/147
Dickinson et al.	2009	Australia	Australian	M=NR	F=NR
Simon et al.	2010	USA	American	M=NR	F=NR
Sioka et al.	2011	Greece	European	M=23/23	F=46/58
Agliardi et al.	2011	Italy	European	M=NR	F=NR
Irizar et al.	2012	Spain	European	M=NR	F=NR
Garcia-Martin et al.	2013	Spain	European	M=94/98	F=209/212
Selma et al.	2015	Tunisia	African	M=22/47	F=38/67
Narooie-Nejad et al.	2015	Iran	Asian	M=25/28	F=88/94
Al-Temaimi et al.	2015	Kuwait	Asian	M=17/19	F=33/31
Yamout et al.	2016	Lebanon	Asian	M=NR	F=NR
Cierny et al.	2016	Slovakia	European	M=66/74	F=204/229
Luisa Agnello et al.	2016	Italy	European	M=24/30	F=80/42
Terzi et al.	2016	Turkey	European	M=NR	F=NR
Abdollahzadeh et al.	2016	Iran	Asian	M=40/38	F=120/112
Yucel et al.	2017	Turkey	European	M=NR	F=NR

TaqI (rs731236)					
Partridge et al.	2004	UK	European	M=NR	F=NR
Tajouri et al.	2005	Australia	Australian	M=NR	F=NR
Smolders et al.	2009	Netherland	European	M=62/142	F=150/147
Dickinson et al.	2009	Australia	Australian	M=NR	F=NR
Simon et al.	2010	USA	American	M=NR	F=NR
Sioka et al.	2011	Greece	European	M=23/23	F=46/58
Agliardi et al.	2011	Italy	European	M=NR	F=NR
Irizar et al.	2012	Spain	European	M=NR	F=NR
Garcia-Martin et al.	2013	Spain	European	M=94/98	F=209/212
Selma et al.	2015	Tunisia	African	M=22/47	F=38/67
Narooie-Nejad et al.	2015	Iran	Asian	M=25/28	F=88/94
Al-Temaimi et al.	2015	Kuwait	Asian	M=17/19	F=33/31
Yamout et al.	2016	Lebanon	Asian	M=NR	F=NR
Cierny et al.	2016	Slovakia	European	M=66/74	F=204/229
Luisa Agnello et al.	2016	Italy	European	M=24/30	F=80/42
Terzi et al.	2016	Turkey	European	M=NR	F=NR
Abdollahzadeh et al.	2016	Iran	Asian	M=40/38	F=120/112
Yucel et al.	2017	Turkey	European	M=NR	F=NR
Study	Year	Country	Region	M (♀)	F (♂)
-----------------------------------	------	-------------	------------	-------	----------
Kamisli et al.	2018	Turkey	European	M=46	F=58
Morales et al.	2018	Mexico	American	M=39	F=57
Sadeghi et al.	2018	Iran	Asian	M=17	F=111/123
Cakina et al.	2018	Turkey	European	M=19	F=22/48
Křenek et al.	2018	Czech Republic	European	M=80	F=49/216

BsmI (rs1544410)

Study	Year	Country	Region	M (♀)	F (♂)
Fukazawa et al.	1999	Japan	Asian	M=21	F=56/62
Qinli Sun et al.	2004	China	Asian	M=NR	F=NR
Bing Wu et al.	2009	China	Asian	M=NR	F=NR
Simon et al.	2010	USA	American	M=NR	F=NR
Sioka et al.	2011	Greece	European	M=23	F=46/58
Al-Temaimi et al.	2015	Kuwait	Asian	M=17	F=33/31
Narooie-Nejad et al.	2015	Iran	Asian	M=25	F=88/94
Abdollahzadeh et al.	2016	Iran	Asian	M=40	F=120/112
Yamout et al.	2016	Lebanon	Asian	M=NR	F=NR
Cierny et al.	2016	Slovakia	European	M=66	F=204/229
Luisa Agnello et al.	2016	Italy	European	M=24	F=80/42
Terzi et al.	2016	Turkey	European	M=NR	F=NR
Morales et al.	2017	Mexico	American	M=39	F=81/123
Sadeghi et al.	2018	Iran	Asian	M=17	F=63/39
Cakina et al.	2018	Turkey	European	M=19	F=51/48
Křenek et al.	2018	Czech Republic	European	M=80	F=49/216

Apal (rs7975232)

Study	Year	Country	Region	M (♀)	F (♂)
Niino et al.	2000	Japan	Asian	M=21	F=56/62
Qinli Sun et al.	2004	China	Asian	M=NR	F=NR
Tajouri et al.	2005	Australia	Australian	M=NR	F=NR
Smolders et al.	2009	Netherland	European	M=62	F=150/147
Bing Wu et al.	2009	China	Asian	M=NR	F=NR
Simon et al.	2010	USA	American	M=NR	F=NR
Irizar et al.	2012	Spain	European	M=NR	F=NR
Narooie-Nejad et al.	2015	Iran	Asian	M=25	F=88/94
NR, not reported; M, male; F, female; MS, Multiple Sclerosis.

Table 2. Distribution of genotype and allele among MS patients and controls.

Study author	2015	2016	2016	2016	2016	2017	2018	2018	2018	2018	2018	2018	2018	2018
Al-Temaimi et al.	Kuwait	Asian	M=17/19 F=33/31											
Selma et al.	Tunisia	African	M=22/47 F=38/67											
Yamout et al.	Lebanon	Asian	M=NR F=NR											
Luisa Agnello et al.	Tunisia	European	M=24/30 F=80/42											
Abdollahzadeh et al.	Iran	Asian	M=40/38 F=120/112											
Cierny et al.	Slovakia	European	M=66/74 F=204/229											
Terzi et al.	Turkey	European	M=NR F=NR											
Yucel et al.	Turkey	European	M=NR F=NR											
Kamisli et al.	Turkey	European	M=46/58 F=121/88											
Sadeghi et al.	Iran	Asian	M=17/11 F=63/39											
Cakina et al.	Turkey	European	M=19/22 F=51/48											
Křenek et al.	Turkey	European	M=80/49 F=216/86											

NR, not reported; M, male; F, female; MS, Multiple Sclerosis.

Table 2. Distribution of genotype and allele among MS patients and controls.

Study author	MS cases	Healthy control					
	FF	Ff	ff	F	f	FF	Ff
FokI (rs2228570)							
Partridge et al.	155	196	55	506	306	83	105
Tajouri et al.	47	40	11	134	62	34	48
Smolders et al.	79	103	30	261	163	113	134
Dickinson et al.	58	61	17	177	95	86	110
Simon et al.	36	45	19	117	83	41	44
Garcia-Martin et al.	130	141	32	401	205	144	124
AI-Temaimi et al.	33	14	3	80	20	33	16
Narooie-Najad et al.	73	32	8	178	48	93	29
Cierny et al.	96	143	31	335	205	118	143
Luisa Agnello et al.	34	52	18	120	88	29	36
Abdollahzadeh et al.	14	67	79	95	225	11	59
Yucel et al.	22	6	1	50	8	72	34
Bettencourt et al.	223	227	83	673	393	204	197
Kamisli et al.	75	77	15	227	107	94	46
Sadeghi et al.	47	32	1	126	34	20	26
Křenek et al.	102	145	49	349	243	37	74

TaqI (rs731236)

Study author	MS cases	Healthy control						
	TT	Tt	tt	T	t	T	Tt	tt

27
Study author	MS cases	Hef					
	BB	Bb	bb	B	b	BB	Bb
BsmI (rs1544410)							
Fukazawa et al.	0	11	66	11	143	3	24
Qinli Sun et al.	0	7	56	7	119	0	11
Bing Wu et al.	0	5	78	5	161	0	26
Simon et al.	39	49	13	127	75	34	47
Study author	MS cases	Healthy control					
------------------------	----------	-----------------	---				
Sioka et al.	28	41	0				
Al-Temaimi et al.	20	30	0				
Narooie-Nejad et al.	59	50	4				
Abdollahzadeh et al.	46	79	35				
Yamout et al.	10	21	19				
Cierny et al.	43	139	88				
Luisa Agnello et al.	23	48	33				
Terzi et al.	19	40	28				
Morales et al.	60	38	22				
Sadeghi et al.	12	51	17				
Cakina et al.	14	36	20				
Křenek et al.	114	153	29				

Study author	MS cases	Healthy control	
Apal (rs7975232)			
Niino et al.	21	23	33
Qinli Sun	9	17	37
Tajouri et al.	35	55	14
Smolders et al.	58	99	55
Bing Wu et al.	14	39	30
Simon et al.	29	45	26
Irizar et al.	39	60	35
Narooie-Nejad et al.	40	62	11
Al-Temaimi et al.	20	25	5
Selma et al.	14	36	10
Yamout et al.	19	22	9
Luisa Agnello et al.	31	58	15
Abdollahzadeh et al.	18	67	75
Cierny et al.	78	132	60
Terzi et al.	28	46	13
Table 3. Main results of pooled ORs in meta-analysis of Vitamin D Receptor Gene Polymorphisms.

Test of publication bias (Egger’s test)	Test of publication bias (Begg’s test)	Test of heterogeneity	Test of association				
P	Z	I² (%)	95% CI	Odds			
FokI (rs2228570)							
0.29	-1.09	0.15	-1.44	0.02	45.7	0.94 - 1.19	1.06
0.90	0.13	0.45	0.78	0.14	23.8	0.81 - 1.13	0.56
0.65	0.46	0.52	0.63	≤0.001	66.6	0.93 - 1.26	1.08
0.54	-0.63	0.96	0.05	0.01	48.4	0.80 - 1.16	0.56
0.20	-1.33	0.15	-1.44	0.16	26.4	0.93 - 1.19	1.06
0.55	-0.62	0.24	-1.16	0.08	41.7	0.97 - 1.26	1.10
0.84	0.20	0.24	1.16	0.10	38.1	0.80 - 1.16	0.56

P-HWE, p-value for Hardy–Weinberg equilibrium; MAF, minor allele frequency of control group.
						1.1	5
0.75	-0.32	0.78	0.27	0.01	56.5	0.9	0–1.20
0.86	-0.17	0.78	0.27	0.07	42.8	0.7	5–1.30
0.81	0.24	0.78	0.27	0.21	24.9	0.7	7–1.28
0.54	-0.86	0.60	-0.52	0.03	70.9	0.6	8–1.61
*	*	0.31	-1	0.12	57.9	0.2	1–7.61
0.77	-0.36	0.60	-0.52	≤0.001	80.9	0.4	6–2.45
*	*	0.31	1	0.01	84	0.0	2–14.1
0.42	-1.02	0.60	-0.52	0.17	43.5	0.6	0–1.45

TaqI (rs731236)

						1.1	5
0.71	0.38	0.89	-0.13	≤0.001	80.5	0.9	9–1.60
0.16	1.46	0.08	1.75	≤0.001	63	0.9	1–1.57
0.81	0.24	0.38	-0.87	≤0.001	87.2	0.9	4–1.42
0.34	0.98	0.58	0.54	≤0.001	65.9	0.9	3–1.71
0.67	0.43	0.61	-0.50	≤0.001	74.5	1.0	1–1.59
0.94	0.08	0.42	-0.80	0.90	0	0.9	1.1

31
		0.27	0.14	0.24	1.17	0.63	0	0.8	0.4
		0.96	0.05	0.12	-1.55	0.76	0	0.9	1.6
		0.34	0.98	0.52	0.63	0.82	0	0.9	1.4
		0.94	-0.08	0.47	-0.72	0.79	0	0.9	1.2
		0.82	-0.24	0.32	-0.98	≤0.001	95	0.3	1.5
		0.84	0.22	1	0	≤0.001	84.4	0.5	2.5
		0.59	-0.59	0.05	-1.96	≤0.001	96.9	0.4	3.4
		0.87	0.18	1	0	≤0.001	90.5	0.4	4.3
		0.81	-0.25	0.32	-0.98	≤0.001	91.7	0.3	1.8

Bsml(rs1544410)

		0.09	1.81	0.80	-0.24	≤0.001	91.3	0.4	1.3
		0.12	1.67	0.35	0.93	≤0.001	62.9	0.9	1.0
		0.82	0.23	0.85	0.18	≤0.001	69.7	0.8	1.0
		0.59	-0.55	0.05	-1.95	≤0.001	64.9	0.7	1.4
------	------	------	------	------	------	------	------	------	
0.12	-1.65	0.14	-1.46	0.02	49.6	0.9	6 - 1.3	7	
0.2	1.50	0.85	-0.19	≤0.001	93.3	0.2	5 - 1.5	2	
0.16	1.84	0.14	1.47	0.66	0	0.6	5 - 1.0	9	
0.22	-1.45	0.34	-0.94	0.51	0	0.8	5 - 1.1	6	
0.28	-1.29	0.05	-1.96	0.46	0	0.7	6 - 1.5	0	
0.07	-2.34	0.34	-0.94	0.05	54.1	0.7	2 - 1.6	2	
0.78	-0.30	1	0	≤0.001	78.5	0.5	4 - 2.2	2	
0.35	-1.01	0.17	-1.35	0.09	44.2	1.0	8 - 2.9	3	
0.80	0.26	0.69	-0.49	≤0.001	79	0.8	1 - 2.0	2	
0.43	-0.97	0.17	-1.36	≤0.001	76.3	0.4	6 - 4.8	8	
0.91	-0.12	0.62	-0.49	0.01	66.9	0.5	9 - 1.9	6	
Apal (rs7975232)									
0.26	-1.14	0.21	-1.23	≤0.001	58	0.8	2 - 1.3	1	
0.57	-0.57	0.55	-0.58	≤0.001	51	0.6	6 - 1.0	5	
0.32	-1.02	0.58	-0.55	≤0.001	68.2	0.8	0 - 1.1	0	
0.22	-1.26	0.43	-0.78	≤0.001	55.1	0.6	3 - 1.6	6	
0.53	-0.64	0.33	-0.97	≤0.001	72.2	0.8	8 - 1.6	4	
0.84	0.21	1	0	0.04	49.8	0.8	7 - 1.4	7	
0.64	-0.49	0.67	-0.42	0.11	38.7	0.7	8 - 1.3	1	

ApaI (rs7975232)
0.59	-0.56	1	0	0.02	53.6	3
0.95	0.06	0.40	0.83	0.01	56.9	0.76
0.61	0.52	0.40	0.83	≤0.001	81.4	0.86-
0.03	-2.67	0.08	-1.73	≤0.001	70.9	0.49-
0.54	0.64	0.32	0.99	0.11	40.4	0.42-
0.51	0.69	0.17	1.37	≤0.001	76.1	0.57-
0.72	0.37	0.80	0.25	0.20	28	0.32-
0.07	-2.17	0.02	-2.23	≤0.001	64.5	0.59-

Figures
Figure 1. Flow diagram of study selection process

1. Identification
 - Records identified through database searching (n = 636)
 - Records after duplicates removed (n = 450)

2. Screening
 - Records screened (n = 450)
 - Records excluded (n = 374)
 - Full-text articles excluded, with reasons (n = 46)
 - Reviews (29)
 - Editorial, Letter, comments and meeting abstracts (7)
 - Studies of no control (3)
 - Other SNP of VDR (4)
 - Insufficient data (3)

3. Eligibility
 - Full-text articles assessed for eligibility (n = 76)
 - Studies included in qualitative synthesis (n = 30)

4. Included
 - Studies included in meta-analysis (n = 30)
 - Studies on FokI SNP (16)
 - Studies on TaqI SNP (23)
 - Studies on Bsml SNP (16)
 - Studies on Apal SNP (20)
Figure 2: Pooled OR and 95% CI of individual studies and pooled data for the association between TaqI gene polymorphism and MS risk in Tt vs. TT Model (TaqI).

Figure 2
Pooled OR and 95% CI of individual studies and pooled data for the association between TaqI gene polymorphism and MS risk in Tt vs. TT Model (TaqI).
Figure 3

Pooled odds ratio (OR) and 95% confidence interval of individual studies and pooled data for the association between BsmI, Apal gene polymorphism and MS risk in different ethnicity subgroups and overall populations for A; Recessive Model (Apal), B; aa vs. AA Model (Apal), and C; Recessive Model (BsmI).
Figure 4

Begg’s funnel plot for publication bias test. A; Dominant Model FokI . B; Dominant Model TaqI. C; Dominant Model BsmI. D; Dominant Model ApaI . Each point represents a separate study for the indicated association.
Sensitivity analysis in present meta-analysis investigates the single nucleotide polymorphisms of Vitamin D Receptor contribute to risk for multiple sclerosis susceptibility (A, FokI; B, TaqI; C, BsmI; D, Apal).

Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.

Supplementary figure.docx