A retrospective study: Cardiac MRI of fulminant myocarditis in children - Can we evaluate the short-term outcomes?

Haipeng Wang 1, Bin Zhao 1, Haipeng Jia 2, Fei Gao 1, Junyu Zhao 3, Cuiyan Wang, Corresponding Author

1 Department of MR, Shandong Medical Imaging Research Institute, Ji’nan, China
2 Department of radiology, Shandong University Qilu Hospital, Ji’nan, China
3 Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Ji’nan, China

Corresponding Author: Cuiyan Wang
Email address: cywang0729@163.com

Background: Fulminant myocarditis (FM) is an inflammatory disease of the myocardium that results in ventricular systolic dysfunction and causes acute-onset heart failure. Cardiac magnetic resonance (CMR) has become the primary noninvasive tool for the diagnosis and evaluation of myocarditis. The aim of our study was to assess the CMR findings at different course of FM and the short-term outcomes of fulminant myocarditis (FM) in children.

Methods: 8 FM children with CMR examinations were included in our study. Initial baseline CMR was performed 10 days (range, 7 to 20 days) after onset of FM and follow-up CMR after 55 days (range, 33 to 75 days). Cardiac morphology and function and myocardial tissue characterization at baseline and follow-up CMR were compared using paired T-test and Mann-Whitney U test. The clinical data and initial CMR findings were also compared to predict short-term outcomes.

Results: The median age of eight FM children was 8.5 years old (range, 3 to 14). The initial CMR findings were most common with early gadolinium enhancement (EGE, 100%), followed by signal increasing on T2WI and late gadolinium enhancement (LGE, 87.5%), increased septal thickness (75.0%) and increased left ventricle ejection fraction (LVEF, 50.0%). Only three LGE (37.5%), one signal increasing on T2WI (12.5%) and one increased LVEF (12.5%) were found at follow-up. Statistically significant differences were found between initial and follow-up CMR abnormalities in the septal thickness, left ventricular end-diastolic diameter (LVEDD), end-systolic volume (ESV), LVEF, left ventricular mass, T2 ratio and LGE area (P=0.011, P=0.042, P=0.016, P=0.001, P=0.003, P=0.011, P=0.020). The children with full recovery performed higher incidence of III° atrioventricular block (AVB, 5 cases VS 0 case) and smaller LGE area (104.0±14.5 mm2 VS 138.0±25.2 mm2) at baseline CMR.

Discussion: The CMR findings of FM in children were characteristic and useful for early diagnosis. Full recovery of clinical manifestations, immunological features and CMR findings could be found in most FM children. The presence of III° AVB and smaller LGE area at baseline CMR might indicate better short-term outcomes.
A retrospective study: Cardiac MRI of fulminant myocarditis in children: can indicate the short-term outcomes?

Haipeng Wang¹, Bin Zhao¹, Haipeng Jia², Fei gao¹, Junyu Zhao³, Cuiyan Wang¹*,

¹ Department of MR Imaging, Shandong Medical Imaging Research Institute, Shandong University, Jinan, China
² Department of radiology, Shandong University Qilu Hospital, Jinan, China
³ Division of Endocrinology, Department of Internal Medicine, Shandong Provincial Qianfoshan Hospital, Jinan, China

*Corresponding author:

Cuiyan Wang

E-mail address: cywang0729@163.com
Abstract

Background: Fulminant myocarditis (FM) is an inflammatory disease of the myocardium that results in ventricular systolic dysfunction and causes acute-onset heart failure. Cardiac magnetic resonance (CMR) has become the primary noninvasive tool for the diagnosis and evaluation of myocarditis. The aim of our study was to assess the CMR findings at different course of FM and the short-term outcomes of fulminant myocarditis (FM) in children.

Methods: 8 FM children with CMR examinations were included in our study. Initial baseline CMR was performed 10 days (range, 7 to 20 days) after onset of FM and follow-up CMR after 55 days (range, 33 to 75 days). Cardiac morphology and function and myocardial tissue characterization at baseline and follow-up CMR were compared using paired T-test and Mann-Whitney U test. The clinical data and initial CMR findings were also compared to predict short-term outcomes.

Results: The median age of eight FM children was 8.5 years old (range, 3 to 14). The initial CMR findings were most common with early gadolinium enhancement (EGE, 100%), followed by signal increasing on T2WI and late gadolinium enhancement (LGE, 87.5%), increased septal thickness (75.0%) and increased left ventricle ejection fraction (LVEF, 50.0%). Only three LGE (37.5%), one signal increasing on T2WI (12.5%) and one increased LVEF (12.5%) were found at follow-up. Statistically significant differences were found between initial and follow-up CMR abnormalities in the septal thickness, left ventricular end-diastolic diameter (LVEDD), end-systolic volume (ESV), LVEF, left
ventricular mass, T2 ratio and LGE area \((P=0.011, P=0.042, P=0.016, P=0.001, P=0.003, P=0.011, P=0.020)\). The children with full recovery performed higher incidence of III° atrioventricular block (AVB, 5 cases VS 0 case) and smaller LGE area \((104.0\pm14.5 \text{ mm}^2 \text{ VS } 138.0\pm25.2 \text{ mm}^2)\) at baseline CMR.

Discussion: The CMR findings of FM in children were characteristic and useful for early diagnosis. Full recovery of clinical manifestations, immunological features and CMR findings could be found in most FM children. The presence of III° AVB and smaller LGE area at baseline CMR might indicate better short-term outcomes.
Introduction

Fulminant myocarditis (FM) is an inflammatory disease of the myocardium that results in ventricular systolic dysfunction and causes acute-onset heart failure (Gupta S, et al., 2008; Felker et al., 2000; Ginsberg&Parrillo, 2013). Despite the initial severe presentation, excellent short-term and long-term outcomes of FM with complete recovery of clinical manifestations and cardiac function have been found in the adult population (Felker et al., 2000; Ginsberg&Parrillo, 2013; McCarthy et al., 2000). While in the pediatric population, the outcomes of FM are controversial, with the mortality varied from 9.1% to 48.4% (Amabile N et al., 2006; Saji et al., 2012; Lee et al., 2014).

Dallas Criteria, the standardized histologic criteria, have been identified as the gold standard in the diagnosis of myocarditis (Cooper et al., 2007). Because of the disadvantages of invasive procedure, sampling error, severe complications and poor inter-observer agreement (Chow et al., 1989; Hauck, Kearney&Edwards, 1989; Shirani, Freant&Roberts, 1993), its application was limited only if it might alter management or offer a meaningful prognosis (Cooper et al., 2007).

Nowadays, cardiac magnetic resonance (CMR) has become the primary noninvasive tool for the diagnosis and evaluation of myocarditis (Bruder et al., 2009). The diagnostic CMR criteria for myocarditis, Lake Louise Criteria, have been proposed with a diagnostic accuracy of 78% (Friedrich et al., 2009). However, to our knowledge, few studies have reported the CMR findings of FM in adults, and scarce in children. Besides, the recovery of myocardial tissue characterization was seldom considered in the outcomes of FM.
The aim of our study was to assess the CMR findings at different course of FM in children, to evaluate the short-term outcomes of FM from the aspect of clinical manifestations, immunological features and initial CMR findings, to find out the predictors of the short-term outcomes of FM.

Materials & Methods

In this retrospective study, all FM children with CMR examinations in Shandong Provincial Hospital from January 2010 to December 2015 were assessed and eight children with initial and follow-up CMR examinations were enrolled in our study. Written informed consent was obtained from the parents of FM children. The median age of eight children was 8.5 years old (range, 3 to 14). All eight FM children were clinically diagnosed by an experienced pediatrician who had more than 30 years working experience and satisfied following criteria:(1) Recent history of viral prodromata with fever lasting<2 weeks;(2) Acute onset (time interval between onset and hospital admission <7 days); (3) Severe heart failure (at minimum requiring intravenous inotropic support), cardiac shock or severe arrhythmia; (4) Left ventricular dysfunction assessed by echocardiography; (5) Exclusion criteria: acute or chronic myocarditis, other non-ischemic cardiomyopathy, congenital heart disease, myocardial infarctions, cardiac tumors, autoimmune disease or extra-cardiac diseases that could explain the clinical manifestations (Lieberman et al., 1991; Ramachandra et al., 2010). Clinical manifestations, immunological features, viral serology, electrocardiography and initial
and follow-up CMR findings and treatment of eight children were recorded. The study protocol was approved by the institutional ethics committee of Shandong Medical Imaging Research Institute (NO.2016-001)

CMR imaging protocol

CMR imaging was performed with a clinical 3.0-T MR scanner (Achieva 3.0T TX; Philips Healthcare, Best, The Netherlands) equipped with dual-source parallel radiofrequency transmission. A 16-channel torso phased-array receiver coil was used for signal reception. All data acquisition was retrospective ECG gated. Children (>7 years) who could control breathing would acquire data with respiratory gating. Small children (<7 years) would be sedated with 10% chloral hydrate and examined under free-breathing condition. Multiple signal averaging were applied in children with free-breathing scanning to “average out” the respiratory motion and the through plane motion artifacts. (Krishnamurthy R, et al., 2015; Abd-Elmoniem KZ, et al., 2011)

The CMR imaging protocols included cine imaging, T2-weighted imaging, early gadolinium enhancement (EGE) and late gadolinium enhancement (LGE). Cine images in three long axis (4-chamber, 2-chamber and 3-chamber) and sequential short axis (SA) from ventricular base to apex were acquired with balanced steady state free precession (b-SSFP) sequences. Imaging parameters were: repetition time (TR), 3.0 ms; echo time (TE), 1.5 ms; flip angle (FA), 45°; field of view (FOV), 220×280 mm²; matrix, 200×256; slice thickness: 8 mm without slice gap; number of signal averages (NSAs), 1 (breath-hold children) or 3 (free-breathing children). T2-weighted images were acquired in 4-chamber...
and SA with a triple inversion recovery fast spin echo sequence to evaluate myocardial edema. Imaging parameters were: TR, 2 × beats ms; TE, 60 ms; FA, 90°; FOV, 220×280 mm²; matrix, 208×167; slice thickness: 8 mm. Pre and post T1 fast spin echo (FSE) imaging were acquired in 4-chamber before and after an intravenous bolus of 0.1 mmol/kg Gd-DTPA (Magnevist, Bayer, Germany) within 3 minutes. T1 FSE imaging parameters were: TR, 1 × beats ms; TE, 10 ms; FA, 90°; FOV, 220×280 mm²; matrix, 228×171; slice thickness: 8 mm. After EGE, another 0.1 mmol/kg Gd-DTPA was injected and LGE were performed in three long axis and sequential SA7-10 minutes later, using a 3D phase-sensitive inversion recovery (3D-PSIR) sequence. Imaging parameters were: TR, 5.3 ms; TE, 2.5 ms; FA, 25°; FOV, 220×280 mm²; matrix, 156×150; slice thickness: 8 mm; NSAs, 1 (breath-hold children) or 3 (free-breathing children).

CMR imaging analysis

The left ventricle (LV) morphology and cardiac function were quantitatively evaluated on the cine images with the work station (EWS, Philips Healthcare). Two experienced CMR radiologists assessed the CMR findings independently and consensus was reached. The endocardial and epicardial contours of LV in the sequential SA of cine images were adjusted manually and the following LV cardiac functional parameters were automatically acquired: the end-diastolic volume (EDV), end-systolic volume (ESV), ejection fraction (EF), and LV mass. The papillary muscles and trabeculations were included as part of LV mass (Buechel et al., 2009). Impaired LV systolic function were considered if EF<50% and enhanced LV systolic function if EF>70%. Left ventricular
end-diastolic diameter (LVEDD) was measured in 4-chamber. The end-diastolic mid-septal thickness was measured and averaged in 4-chamber and SA of cine images. Increased septal thickness was considered by visual comparison at different stages of FM.

In 4-chamber and SA of T2 weighted images, regional or global signal intensity of LV myocardium was measured as well as the signal intensity of subscapularis muscle in the same slice, excluding high signal of inadequately suppressed slowly flowing cavitary blood. The global signal intensity of LV myocardium as well as subscapularis muscle in 4-chamber of pre- and post-T1 weighted images were also measured. Then the T2 ratio and EGE ratio were calculated according to Lake Louise criteria (Friedrich et al., 2009). Myocardial edema and hyperemia were considered if T2 ratio > 1.9 and EGE ratio > 4.0. The segments, patterns and areas of myocardial necrosis/fibrosis on the LGE images were assessed and recorded using the 17-segment American Heart Association (AHA) model (Cerqueira et al., 2002).

Short-term outcomes

The short-term outcomes of FM in children were evaluated according to clinical manifestations, immunological features and CMR findings at follow-up CMR. Poor short-term outcomes were defined as persistent clinical manifestations, abnormal levels of myocardial enzymes and CMR abnormalities within 3 months. Then the clinical data and imaging findings at baseline CMR of FM were evaluated to find out the predictors of short-term outcomes of FM.
Statistical analysis

Categorical data were reported as percentage, and continuous data as the mean ± standard deviation (SD) or median (range). The normality of the variables was assessed by the Shapiro–Wilk test. Paired T-test and Mann-Whitney U test were used to compare the intervals from onset to CMR examinations, the levels of cardiac troponin T (cTnT) and brain natriuretic peptide (BNP), cardiac morphology and function parameters and myocardial tissue characterization (T2 ratio, EGE ratio and LGE) at baseline and follow-up CMR of FM. All statistical tests were two-sided, and P-values less than 0.05 were considered as statistical significant. The clinical data and initial CMR findings between FM children with different short-term outcomes were directly compared because of small sample size.

The statistical analysis was carried out using SPSS version 19.0 (SPSS INC, Chicago, Illinois)

Results

Patient characteristics

Patient characteristics and clinical data of FM at presentation were showed in Table 1. Viral serology was showed in Table S1. Echocardiography was performed within 72 hours of the onset and the LVEF of FM children were 36.5±8.2 %. The clinical manifestations of FM were varied, including heart failure (8 cases, 100.0%), cardiac shock (4 cases, 50.0%) and Adams-Stokes syndrome (4 cases, 50.0%). ST-T changes
171 in the electrocardiographic (ECG) examinations were observed in all FM children (100%),
172 followed by III° atrioventricular block (AVB, 62.5%). All children showed abnormal levels
173 of cTnT (1711.5 pg/ml, 129.4 to 6457.0 pg/ml; reference limit: 3.0-14.0 pg/ml) and
174 BNP(11426.5 pg/ml, 546.1 to 31648.0 pg/ml; reference limit: 0-125.0 pg/ml) in the
175 course of FM. All eight children received intravenous immunoglobulin and
176 methylprednisolone after admission. Inotropic support was required in children for
177 severe haemodynamic compromise: isoprenaline in five children and dobutamine in
178 three children. Ventricle-assist devices also were implanted in two children.
179 The median intervals from onset to initial and follow-up CMR examinations were 10 days
180 (range, 7 to 20) and 55 days (range, 33 to 75). At initial CMR, the clinical manifestations
181 of FM had been markedly improved. Abnormal levels of cTnT (79.7±71.1pg/ml) were
182 observed in six children (75%) and BNP (443.6pg/ml, 75.5 to 4498.0) in seven children
183 (87.5%). ST-T abnormalities were also observed in seven FM children (87.5%). At
184 follow-up CMR, the symptoms of all FM children recovered completely. Only one
185 children showed abnormal level of BNP (340.0 pg/ml).
186 CMR findings
187 The CMR findings of FM at baseline and follow-up CMR were shown in Table 2. Two
188 children (age, 3 and 6 years old) were sedated and examined under free-breathing
189 condition and the others with respiratory gating.
190 At baseline CMR, the characteristic CMR findings were the increased myocardial
191 thickness in six children (11.8±2.9mm). Four children (50.0%) performed increased
LVEF (77.2±4.5%) and others with normal LVEF. No obviously abnormal myocardial motion was found. Pericardial effusion was found in three children (37.5%). At follow-up CMR, myocardial thickness returned to normal and 1 children (12.5%) showed increased LVEF (79.0%). Pericardial effusion in three children disappeared. Compared with follow-up CMR, FM children at baseline CMR showed increased septal thickness ($P=0.011$), increased LV mass ($P=0.003$), higher EF ($P=0.001$), smaller LVEDD ($P=0.042$) and lower ESV ($P=0.016$). (Figure 1)

The myocardial tissue characterization of FM at baseline CMR were most common with increased EGE ratio (8.9±3.5) in five FM children (100%). Regional or global increased T2WI signal was found in seven FM children (87.5%), with mean T2 ratio of 2.03±0.15. In the LGE images, regional mid-wall enhancement were found in six cases (75.0%), followed by one subepicardial enhancement (12.5%). No predilections of myocardial segments were found for LGE. Diagnostic sensitivity of CMR abnormalities at baseline CMR for FM was 100% according to Lake Louise criteria. At follow-up CMR, only three children with decreased area of LGE (37.5%) and one child with increased T2WI signal (12.5%) were found. Statistically significant differences were found between initial and follow-up CMR in T2 ratio ($P=0.011$) and LGE area ($P=0.020$). (Figure 1)

Short-term outcomes

In our study, all children with FM survived. The short-term outcomes of FM in children were excellent. Full recovery of clinical manifestations, immunological features and CMR findings could be found in five FM children (62.5%) at follow-up CMR. (Figure 2)
Abnormal levels of BNP and myocardial tissue characterization were also found in three children (37.5%). There were no significant differences of age, heart rate or intervals from onset to CMR examinations between FM children with and without full recovery.

Compared with three children without full recovery, the other five children showed higher incidence of III° AVB (5 cases VS 0 case), smaller LGE area (104.0±14.5 mm² VS 138.0±25.2 mm²) at baseline CMR of FM, which might indicate better short-term outcomes.

Discussion

In this study, we assessed the CMR findings at different course of FM in children. The CMR findings of FM in children were characteristic and useful for early diagnosis. Full recovery of clinical manifestations, immunological features and CMR findings could be found in most FM children. The presence of III° AVB and smaller LGE area at baseline CMR might indicate better short-term outcomes.

In our study, positive viral antibodies were observed in children, while the viral serology was not applied in the diagnosis of FM. Positive viral serology does not imply myocardial infection but rather indicates the interaction of the peripheral immune system with an infectious agent. (Caforio AL et al., 2013) The prevalence of circulatory viral antibodies (IgG) was also found in health children. Besides, no correlation between virus serology and EMB findings was found. (Mahfoud F, et al., 2011)

In our study, myocardial thickness increased in 75% FM children at baseline CMR and
returned to normal at follow-up. Similar findings were also found in several previous studies. Felker GM and his coworkers found increased septal thickness in 11 FM patients at presentation by echocardiography and normal septal thickness six months later, compared with normal septal thickness in acute myocarditis (AM) (Felker et al., 2000). Felker GM attributed the increased myocardial thickness to inflammatory response seen on EMB. Severe LV wall thickening was also reported in a 22-year-old FM woman with cardiogenic shock (Shillcutt et al., 2015). In our study, we also found the correlation between increased myocardial thickness and myocardial edema. At baseline CMR, all FM children with increased myocardial thickness performed myocardial edema. At follow-up CMR, the myocardial thickness returned to normal, with only one myocardial edema left. Increased myocardial thickness might be the response of myocardial inflammation and could be a characteristic radiological finding to distinguish FM from AM.

In our study, increased or normal LVEF (71.8±6.9%) was found in all children at baseline CMR of FM, compared with impaired LVEF (36.5±8.2%) within 72 hours of onset. The LV cardiac function returned to normal (64.9±7.1%) at follow-up. Clinical interventions and treatment undoubtedly played a primary role in the recovery of LV systolic function (Ginsberg&Parrillo, 2013; McCarthy et al., 2000). While we thought that increased LVEF might also be associated with increased myocardial thickness. At baseline CMR, increased myocardial thickness could be found in 75% children, leading to significantly decreased ESV (12.9±5.0 VS 18.2±7.4 ml, \(P=0.016\)) and little change of EDV (44.6±12.6 VS 50.6±16.5 ml, \(P=0.161\)), compared with those at follow-up. Then LVEF increased
according to the formula:

\[\text{LVEF} = \frac{(\text{EDV} - \text{ESV})}{\text{EDV}} \]

The ESV in children was more vulnerable to be affected by myocardial thickness because of their small LV volume.

One of the advantages of CMR was the noninvasive evaluation of myocardial tissue characterization. In our study, myocardial hyperemia was shown in 100% children, followed by myocardial edema and necrosis/fibrosis (87.5%), which indicated more severe inflammatory response. The CMR diagnostic sensitivity for FM at baseline CMR was considerably high (100%). Endomyocardial biopsy (EMB) had confirmed that “active myocarditis” was more common in FM than that in AM, which indicated higher degree of myocardial inflammation in FM. (Felker et al., 2000). In AM with “borderline myocarditis”, myocardial tissue characterization might not be observed because of less severe inflammation (Friedrich et al., 2009; De Cobelli et al., 2006). While in FM with more common “active myocarditis”, CMR tissue characterization could be a useful tool for FM diagnosis.

The exact pathophysiology of LGE in myocarditis is still under investigation. Myocardial inflammation and/or necrosis in the acute phase seemed to play a major role. (Mavrogeni S et al., 2012) High specificity of LGE for the detection of myocardial injury in myocarditis had been demonstrated in several studies (Cooper et al., 2007; Abdel-Aty H et al., 2005; Mahrholdt H et al., 2004). In our study, patchy mid-wall or subepicardial LGE in the LV walls were found in seven FM children (87.5%), which were similar to those in
AM children (Banka et al., 2015; Sachdeva et al., 2015). Similar mid-wall LGE were also found in a 33-year-old female FM patient (Ryu et al., 2013). While Takeuchi and Mavrogeni found normal LGE in their reports (Takeuchi et al., 2010; Mavrogeni et al., 2012). One of the possible reasons for this might be the longer intervals from onset to CMR examinations (10 days, 7 to 20) in our study. Besides, the differences of FM between adult and children need further study.

The outcomes of FM in the pediatric population were controversial. Amabile N and his coworkers found that 90.9% FM children performed favorable outcomes, with no symptoms and normalized LVEF (Amabile et al., 2006). While in a nationwide survey of Japanese children and adolescents reported by Saji T showed that the survival rate for children with fulminant MC was disappointing (51.6%) (Saji et al., 2012). In our study, full recovery of clinical manifestations and cardiac function could be found in all FM children at follow-up. Myocardial inflammation disappeared completely in 62.5% FM children. Ryu DR et al. reported a 33-year-old female FM patient with increased T2WI signal and LGE and these findings disappeared 3 months later (Ryu et al., 2013). While for three children with potential myocardial inflammation, myocardial edema had lightened (T2 ratio, 1.96±0.22 VS 1.90±0.08) and LGE areas were smaller (138.0±25.2 mm² VS 95.0±26.0 mm²). We thought the still presences of myocardial inflammation were due to short intervals of follow-up CMR (median, 54 days).

In our study, we found the presence of III° AVB at baseline CMR of FM might indicate better short-term outcomes. The favorable outcomes associated with complete AVB in
FM and AM were also reported. Lee EY, et al. reported the short-term outcomes of FM children in a single center and found that all 7 FM children with complete AVB on the initial EKG survived. (Lee EY, et al., 2014) The AM patients with complete AVB perform excellent survival rates (89%-100%) and long-term outcomes (100%). 11-28% AM patients had persistent complete AVB at hospital discharge and became normal at follow-up. (Chien SJ, et al., 2008; Wang JN, et al., 2002; Batra AS, et al., 2003) The reason why FM children with complete AVB had good outcomes was unclear. We presumed that because of the more specific manifestations of myocarditis with CAVB, such as hypotension and Stokes-Adams seizures (Chien SJ, et al., 2008), patients could receive earlier treatment before the development of obvious congestive heart failure. (Wang JN, et al., 2002)

Smaller LGE area at baseline CMR of FM also indicated better short-term outcomes. The value of CMR in the assessment of FM outcomes had not been reported. CMR has been applied to predict the outcomes of AM. Sachdeva S et al. reported that LGE could be found in half of AM children and it could be identified as predictors of poor outcomes (Sachdeva et al., 2015). Barone-Rochette G et al. also applied a simplified visual quantitative score of LGE to identify the outcomes of AM patients, with LGE identified as an independent predictor of all cause and cardiac mortality in these AM patients. (Barone-Rochette G, et al., 2014) In patients with AM, significantly continuous decrease of LGE volume percentage had been observed over several follow-up CMR examinations, which demonstrated a rapid and continuous decrease of myocardial
inflammation (Luetkens JA et al., 2016). The myocardial inflammation was easier to subside in a small area of LGE, which indicated better outcomes.

Nowadays, T1 and T2 myocardial mapping techniques have been applied in the assessment of myocarditis as novel quantitative tissue markers. (Moon JC et al., 2013; Hamlin SA et al., 2014; Radunski UK et al., 2014; Lurz P et al., 2016) The extracellular volume (ECV), as calculated by the pre-and post-contrast T1 values and HCT, could directly and non-invasively measure the proportion of extracellular space within the myocardium. Compared with Lake louise criteria, significantly improved diagnostic accuracy had been reported in patients with myocarditis using mapping techniques (Radunski UK et al., 2014; Lurz P et al., 2016). Lurz et al. reported that mapping techniques could provide a useful tool for the diagnosis of acute myocarditis and were superior to the LLC (Lurz P et al., 2016). Radunski UK et al. found that ECV combined with LGE imaging could significantly improve the diagnostic accuracy of CMR compared with standard Lake-Louise criteria in patients with severe myocarditis (Radunski UK et al., 2014). In our study, Lake louise criteria was applied in the CMR diagnosis of FM. The diagnostic accuracy of mapping techniques would be discussed in the future.

This study has several potential limitations. First of all, the number of patients included in the study was small. While all children performed CMR examinations twice at different course of FM, the CMR findings were convicive by comparing at baseline and follow-up CMR. Second, we have utilized clinical rather than histologic criteria in making the diagnosis of FM. Since the clinical manifestations and CMR findings of our patients were
consistent with FM and full recovery of cardiac function was found with supportive care, the diagnosis of FM was definite. Third, the EGE examinations were performed in 62.5% FM children at baseline CMR and only 1 child at follow-up. As a result, we could not evaluate the recovery of myocardial hyperemia. Fourth, the intervals from onset to CMR examinations were varied based on patient’s conditions, which might had an influence on the CMR findings. Fifth, the CMR protocol in 8 children was different because multiple signal averaging were applied in the cine imaging and LGE imaging of two small children under free-breathing condition. In our study we focused on the CMR differences at baseline and follow-up. The CMR protocol at baseline and follow-up in each child was same and paired T-test was used. We didn’t compare the CMR findings between free-breathing and breath-hold children. So the protocol difference had no influence on our results. Sixth, because of the small sample size, the clinical data and initial CMR findings between FM children with different short-term outcomes were directly compared. The predictors of FM outcomes were not demonstrated by the statistical analysis but by the differences between the two groups that are only described.

Conclusions
The CMR findings of FM in children were characteristic and useful for early diagnosis. Full recovery of clinical manifestations, immunological features and CMR findings could be found in most FM children. The presence of III° AVB and smaller LGE area at baseline CMR might indicate better short-term outcomes.
Acknowledgements

We would like to acknowledge the participation of the study patients and their families.

We also wish to acknowledge the support of department of pediatrics.

References

Gupta S, Markham DW, Drazner MH, Mammen PP. 2008. Fulminant myocarditis. Nat Clin Pract Cardiovasc Med 5:693-706. DOI: 10.1038/ncpcardio1331.

Felker GM, Boehmer JP, Hruban RH, Hutchins GM, Kasper EK, Baughman KL, Hare JM. 2000. Echocardiographic Findings in Fulminant and Acute Myocarditis. J Am Coll Cardiol 36:227-232. DOI: 10.1016/S0735-1097(00)00690-2

Ginsberg F, Parrillo JE. 2013. Fulminant myocarditis. Crit Care Clin 29:465-483. DOI: 10.1016/j.ccc.

McCarthy RE, Boehmer JP, Hruban RH, Hutchins GM, Kasper EK, Hare JM, Baughman KL. 2000. Long-term outcome of fulminant myocarditis as compared with acute (nonfulminant) myocarditis. N Engl J Med 342:690-695. DOI: 10.1056/NEJM200003093421003.

Amabile N, Fraisse A, Bouvenot J, Chetaille P, Ovaert C. 2006. Outcome of acute fulminant myocarditis in children. Heart 92:1269-1273. DOI: 10.1136/hrt.2005.078402

Saji T, Matsuura H, Hasegawa K, Nishikawa T, Yamamoto E, Ohki H, Yasukochi S, Arakaki Y, Joo K, Nakazawa M. 2012. Comparison of the clinical presentation,
Lee EY, Lee HL, Kim HT, Lee HD, Park JA. 2014. Clinical features and short-term outcomes of pediatric acute fulminant myocarditis in a single center. Korean J Pediatr 57:489-495. DOI: 10.3345/kjp.2014.57.11.489.

Cooper LT, Baughman KL, Feldman AM, Frustaci A, Jessup M, Kuhl U, Levine GN, Narula J, Starling RC, Towbin J, Virmani R; American Heart Association; American College of Cardiology; European Society of Cardiology; Heart Failure Society of America; Heart Failure Association of the European Society of Cardiology. 2007. The role of endomyocardial biopsy in the management of cardiovascular disease: a scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Endorsed by the Heart Failure Society of America and the Heart Failure Association of the European Society of Cardiology. J Am Coll Cardiol 50:1914-1931. DOI: 10.1016/j.jacc.2007.09.008

Chow LH, Radio SJ, Sears TD, McManus BM. 1989. Insensitivity of right ventricular endomyocardial biopsy in the diagnosis of myocarditis. J Am Coll Cardiol 14:915–920. DOI: 10.1016/0735-1097(89)90465-8

Hauck AJ, Kearney DL, Edwards WD. 1989. Evaluation of postmortem endomyocardial biopsy specimens from 38 patients with lymphocytic myocarditis: implications for role of sampling error. Mayo Clin Proc 64:1235–1245. DOI: 10.1016/S0025-6196(12)61286-5.

Shirani J, Freant LJ, Roberts WC. 1993. Gross and semiquantitative histologic findings
in mononuclear cell myocarditis causing sudden death, and implications for endomyocardial biopsy. Am J Cardiol \textbf{72}:952–957. DOI:10.1016/0002-9149(93)91113-V.

Bruder O, Schneider S, Nothnagel D, Dill T, Hombach V, Schulz-Menger J, Nagel E, Lombardi M, van Rossum AC, Wagner A, Schwitter J, Senges J, Sabin GV, Sechtem U, Mahrholdt H. 2009. EuroCMR (European Cardiovascular Magnetic Resonance) registry: results of the German pilot phase. J Am CollCardiol \textbf{54}:1457–1466. DOI: 10.1016/j.jacc.2009.07.003.

Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, White JA, Abdel-Aty H, Gutberlet M, Prasad S, Aletras A, Laissy JP, Paterson I, Filipchuk NG, Kumar A, Pauschinger M, Liu P; International Consensus Group on Cardiovascular Magnetic Resonance in Myocarditis. 2009. Cardiovascular magnetic resonance in myocarditis: A JACC White Paper. J Am CollCardiol \textbf{53}:1475-1487. DOI: 10.1016/j.

Lieberman EB, Hutchins GM, Herskowitz A, Rose NR, Baughman KL. 1991. Clinicopathologic description of myocarditis. J Am CollCardiol \textbf{18}:1617-1626.

Ramachandra G, Shields L, Brown K, Ramnarayan P. 2010. The challenges of prompt identification and resuscitation in children with acute fulminant myocarditis: case series and review of the literature. J Paediatr Child Health \textbf{46}:579-582. DOI: 10.1111/j.1440-1754.2010.01799.x.

Krishnamurthy R, Pednekar A, Atweh LA, Vogelius E, Chu ZD, Zhang W, Maskatia S, Masand P, Morris SA, Krishnamurthy R, Muthupillai R. 2015. Clinical validation of
free breathing respiratory triggered retrospectively cardiac gated cine balanced steady-state free precession cardiovascular magnetic resonance in sedated children. J CardiovascMagn Reson 17:1. DOI: 10.1186/s12968-014-0101-1.

Abd-Elmoniem KZ, Obele CC, Sibley CT, Matta JR, Pettigrew RI, Gharib AM. 2011. Free-Breathing Single Navigator Gated Cine Cardiac Magnetic Resonance at 3 T: Feasibility Study in Patients. J Comput Assist Tomogr 35:382-386.DOI: 10.1097/RCT.0b013e31821b0ade.

Buechel EV, Kaiser T, Jackson C, Schmitz A, Kellenberger CJ. 2009. Normal right- and left ventricular volumes and myocardial mass in children measured by steady state free precession cardiovascular magnetic resonance. J CardiovascMagnReson 11:19. DOI: 10.1186/1532-429X-11-19

Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS; American Heart Association Writing Group on Myocardial Segmentation and Registration for Cardiac Imaging. 2002. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539-542.DOI:10.1161/hc0402.102975.

Caforio AL, Pankuweit S, Arbustini E, Basso C, Gimeno-Blanes J, Felix SB, Fu M, Heliö T, Heymans S, Jahns R, Klingel K, Linhart A, Maisch B, McKenna W, Mogensen J, Pinto YM, Ristic A, Schultheiss HP, Seggewiss H, Tavazzi L, Thiene G,
Yilmaz A, Charron P, Elliott PM; European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. 2013. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 34:2636-2648. DOI: 10.1093/eurheartj/eh210.

Mahfoud F, Gartner B, Kindermann M, Ukena C, Gadomski K, Klingel K, Kandolf R, Bohm M, Kindermann I. 2011. Virus serology in patients with suspected myocarditis: utility or futility? Eur Heart J 32:897-903. DOI: 10.1093/eurheartj/ehq493.

Shillcutt SK, Thomas WR, Sullivan JN, Duhachek-Stapelman A. 2015. Fulminant myocarditis: the role of perioperative echocardiography. Anesth Analg 120:296-299. DOI: 10.1213/ANE.0000000000000508.

De Cobelli F, Pieroni M, Esposito A, Chimenti C, Belloni E, Mellone R, Canu T, Perseghin G, Gaudio C, Maseri A, Frustaci A, Del Maschio A. 2006. Delayed gadolinium-enhanced cardiac magnetic resonance in patients with chronic myocarditis presenting with heart failure or recurrent arrhythmias. J Am Coll Cardiol 47:1649–1654. DOI: 10.1016/j.jacc.2005.11.067

Abdel-Aty H, Boye P, Zagrosek A, Wassmuth R, Kumar A, Messroghli D, Bock P, Dietz R, Friedrich MG, Schulz-Menger J. 2005. Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. J Am Coll Cardiol 45:1815-1822. DOI: 10.1016/j.jacc.2004.11.069.
Mahrholdt H, Goedecke C, Wagner A, Meinhardt G, Athanasiadis A, Vogelsberg H, Fritz P, Klingel K, Kandolf R, Sechtem U. 2004. Cardiovascular magnetic resonance assessment of human myocarditis: a comparison to histology and molecular pathology. Circulation 109:1250-1258. DOI: 10.1161/01.CIR.0000118493.13323.81.

Mavrogeni S, Bratis K, Georgakopoulos D, Karanasios E, Kolovou G, Pavlides G, Papadopoulous G. 2012. Evaluation of myocarditis in a pediatric population using cardiovascular magnetic resonance and endomyocardial biopsy. Int J Cardiol 160:192-195. DOI: 10.1016/j.ijcard.2011.04.019.

Banka P, Robinson JD, Uppu SC, Harris MA, Hasbani K, Lai WW, Richmond ME, Fratz S, Jain S, Johnson TR, Maskatia SA, Lu JC, Samyn MM, Patton D, Powell AJ. 2015. Cardiovascular magnetic resonance techniques and findings in children with myocarditis: a multicenter retrospective study. J Cardiovasc Magn Reson 17:96. DOI: 10.1186/s12968-015-0201-6.

Sachdeva S, Song X, Dham N, Heath DM, DeBiasi RL. 2015. Analysis of clinical parameters and cardiac magnetic resonance imaging as predictors of outcome in pediatric myocarditis. Am J Cardiol 115:499-504. DOI: 10.1016/j.amjcard.2014.11.029.

Ryu DR, Heo JW, Lee SH, Lee W, Choi JW, Kim HY, Lee BK, Cho BR. 2013. Fulminant myocarditis: the role of cardiac magnetic resonance imaging. Int J Cardiol 168:e58-59. DOI: 10.1016/j.ijcard.2013.07.002.

Takeuchi I, Imaki R, Inomata T, Soma K, Izumi T. 2010. MRI is useful for diagnosis of
H1N1 fulminant myocarditis. Circ J 74:2758–2759.

Mavrogeni S, Bratis K, Terrovitis J, Tsagalou E, Nanas J. 2012. Fulminant myocarditis. Can cardiac magnetic resonance predict evolution to heart failure? Int J Cardiol 159:e37–38. DOI: 10.1016/j.ijcard.2011.11.053.

Chien SJ, Liang CD, Lin IC, Lin YJ, Huang CF. 2008. Myocarditis complicated by complete atrioventricular block: nine years’ experience in a medical center. Pediatr Neonatol 49:218-222. DOI: 10.1016/S1875-9572(09)60014-0.

Wang JN, Tsai YC, Lee WL, Lin CS, Wu JM. 2002. Complete atrioventricular block following myocarditis in children. Pediatr Cardiol 23:518-521. DOI: 10.1007/s00246-002-0129-0.

Batra AS, Epstein D, Silka MJ. 2003. The clinical course of acquired complete heart block in children with acute myocarditis. Pediatr Cardiol 24:495-497. DOI: 10.1007/s00246-002-0402-2.

Barone-Rochette G, Augier C, Rodiere M, Quesada JL, Foote A, Bouvaist H, Marliere S, Fagret D, Baguet JP, Vanzetto G. 2014. Potentially simple score of late gadolinium enhancement cardiac MR in acute myocarditis outcome. J Magn Reson Imaging 40:1347-1354. DOI: 10.1002/jmri.24504.

Luetkens JA, Homsi R, Dabir D, Kuetting DL, Marx C, Doerner J, Schlesinger-Irsch U, Andrie R, Sprinkart AM, Schmeel FC, Stehning C, Fimmers R, Gieseke J, Naehle CP, Schild HH, Thomas DK. 2016. Comprehensive Cardiac Magnetic Resonance for Short-Term Follow-Up in Acute Myocarditis. J Am Heart Assoc 5. DOI:
Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, Gatehouse PD, Arai AE, Friedrich MG, Neubauer S, Schulz-Menger J, Schelbert EB; Society for Cardiovascular Magnetic Resonance Imaging; Cardiovascular Magnetic Resonance Working Group of the European Society of Cardiology. 2013. Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 15:92. DOI: 10.1186/1532-429X-15-92.

Hamlin SA, Henry TS, Little BP, Lerakis S, Stillman AE. 2014. Mapping the future of cardiac MR imaging: case-based review of T1 and T2 mapping techniques. Radiographics 34:1594-1611. DOI: 10.1148/rg.346140030.

Radunski UK, Lund GK, Stehning C, Schnackenburg B, Bohnen S, Adam G, Blankenberg S, Muellerleile K. 2014. CMR in patients with severe myocarditis: diagnostic value of quantitative tissue markers including extracellular volume imaging. JACC Cardiovasc Imaging 7:667-675. DOI: 10.1016/j.jcmg.2014.02.005.

Lurz P, Luecke C, Eitel I, Föhrenbach F, Frank C, Grothoff M, de Waha S, Rommel KP, Lurz JA, Klingel K, Kandolf R, Schuler G, Thiele H, Gutberlet M. 2016. Comprehensive Cardiac Magnetic Resonance Imaging in Patients With Suspected Myocarditis: The MyoRacer-Trial. J Am Coll Cardiol 67:1800-1811. DOI: 10.1016/j.jacc.2016.02.013.
Table 1. Characteristics and clinical data of eight FM children at presentation

Characteristics	N(%)/median(range)
Sex (M)	5 (62.5%)
Median age (years)	8.5 (3,14)
LVEF (%)	36.5±8.2

Clinical manifestations

- General symptoms: 5 (62.5%)
 - Fatigue: 5 (62.5%)
 - Fever: 1 (12.5%)
- Gastrointestinal symptoms: 8 (100%)
 - Nausea and vomiting: 6 (75.0%)
 - Abdominal pain: 5 (62.5%)
- Cardiovascular symptoms: 8 (100%)
 - Heart failure: 8 (100%)
 - Cardiac shock: 4 (50.0%)
 - Chest pain/distress: 3 (37.5%)
- Neurological symptoms: 5 (62.5%)
 - Headache/dizziness: 4 (50.0%)
 - Seizure: 4 (50.0%)

Abnormal electrocardiogram

- ST-T changes: 8 (100%)
- III°AVB: 5 (62.5%)
The highest levels of myocardial enzymes

Enzyme	Value
cTnT (pg/ml)	1711.5 (129.4, 6457.0)
BNP (pg/ml)	11426.5 (546.1, 31648.0)

Treatment

Treatment	Count (%)
Intravenous immunoglobulin	8 (100%)
Steroids	8 (100%)
isoprenaline	5 (62.5%)
dopamine	3 (37.5%)
ventricle-assist device	2 (25.0%)

Values are presented as N (%) or median (range). AVB, atrioventricular block; LVEF, left ventricle ejection fraction; cTnT, cardiac troponin T, reference limit: 3.0-14.0 pg/ml; BNP, brain natriuretic peptide, reference limit: 0-125.0 pg/ml.
Table 2. Comparison between clinical data and CMR findings at baseline and follow-up

	Baseline (N=8)	Follow-up (N=8)	P values
Heart rate (/min)	78.9±14.0	86.9±13.3	0.162
Interval (days)	10 (7,20)	55 (33,75)	<0.001*
cTNT (pg/ml)	79.7±71.1	12.5±5.5	0.061
BNP (pg/ml)	443.6 (75.5, 4498.0)	55.2 (1.0, 340.2)	0.011*
Cardiac morphology and function			
IVST (mm)	10.9±3.1	8.1±1.2	0.011*
EDV (ml)	44.6±12.6	50.6±16.5	0.161
ESV (ml)	12.9±5.0	18.2±7.4	0.016*
LVEF (%)	71.8±6.9	64.9±7.1	0.001*
LVM (g)	48.9±15.6	36.9±12.6	0.003*
LVEDD (mm)	36.8±4.4	38.4±4.5	0.042*
Myocardial tissue characterization			
T2 ratio	2.03±0.15	1.80±0.11	0.011*
EGER	8.9±3.5	3.5	-
LGE segments	21 (15.4%)	11 (8.1%)	0.060
LGE areas (mm²)	113.5 (0,165.0)	0 (0,125.0)	0.020*
Values are presented as a mean ± SD, median (range) or n (%). *P values < 0.05. cTnT, cardiac troponin T; BNP, brain natriuretic peptide; IVST, inter-ventricular septal thickness; EDV, end-diastolic volume, ESV, end-systolic volume, LVEF, left ventricle ejection fraction; LVM, LV mass; LVEDD, Left ventricular end-diastolic diameter; EGE, early gadolinium enhancement; LGE, late gadolinium enhancement.
Figure 1. Comparison of CMR findings in patients with FM at baseline and follow-up CMR. (A) EDV, end-diastolic volume; (B) ESV, end-systolic volume; (C) EF, ejection fraction; (D) LVEDD, left ventricular end-diastolic diameter; (E) IVS, inter-ventricular septal thickness; (F) LVM, LV mass; (G) T2 ratio; (H) LGE area. Compared with the CMR findings of FM at follow-up, FM children at baseline CMR performed increased septal thickness ($P=0.011$), LV mass ($P=0.003$), EF ($P=0.001$), T2 ratio ($P=0.011$), LGE area ($P=0.020$) and smaller LVEDD ($P=0.042$) and ESV ($P=0.016$).
Figure 2 showed the CMR findings of a 13 year-old child 10 days (A,B,E,F,I,J,L,M) and 56 days (C,D,G,H,K,N,O) after the onset of FM. He was hospitalized after four days of a viral syndrome followed by acute hemodynamic collapse with 38% of LVEF. Increased myocardial thickness and normal LVEDD was found in the end-diastolic (A,E) and end-systolic cine images (B,F) at baseline CMR. At follow-up CMR, myocardial thickness returned to normal (C,D,G,H). Diffuse myocardial edema was shown in the T2-weighted images with the T2 ratio of 1.98 at baseline CMR (I,J) and disappeared at follow-up (K, T2 ratio:1.64). Regional mid-wall LGE within the anteroseptal and inferoseptal walls were found at baseline CMR (L,M) and disappeared at follow-up(N,O).

CMR, cardiac magnetic resonance; FM, fulminant myocarditis; LVEF, left ventricle ejection fraction; LVEDD, Left ventricular end-diastolic diameter; LGE, late gadolinium enhancement.