THE LAW OF THE HITTING TIMES TO POINTS
BY A STABLE LÉVY PROCESS WITH
NO NEGATIVE JUMPS

GORAN PESKIR
School of Mathematics, The University of Manchester
Oxford Road, Manchester M13 9PL, United Kingdom
email: goran@maths.man.ac.uk

Submitted March 26, 2008, accepted in final form December 4, 2008

AMS 2000 Subject classification: Primary 60G52, 45D05. Secondary 60J75, 45E99, 26A33.

Keywords: Stable Lévy process with no negative jumps, spectrally positive, first hitting time to
a point, first passage time over a point, supremum process, a Chapman-Kolmogorov equation of
Volterra type, Laplace transform, the Wiener-Hopf factorisation.

Abstract
Let \(X = (X_t)_{t \geq 0} \) be a stable Lévy process of index \(\alpha \in (1, 2) \) with the Lévy measure \(\nu(dx) = \frac{c}{x^{1+\alpha}} I_{(0,\infty)}(x) dx \) for \(c > 0 \), let \(x > 0 \) be given and fixed, and let \(\tau_x = \inf\{t > 0 : X_t = x\} \) denote the first hitting time of \(X \) to \(x \). Then the density function \(f_{\tau_x} \) of \(\tau_x \) admits the following series representation:

\[
f_{\tau_x}(t) = \frac{x^{\alpha-1}}{\pi(c \Gamma(-\alpha) t)^{2-1/\alpha}} \sum_{n=1}^{\infty} \left[(-1)^{n-1} \sin(\pi/\alpha) \frac{\Gamma(n-1/\alpha)}{\Gamma(n-1)} \left(\frac{x^\alpha}{c \Gamma(-\alpha) t} \right)^{n-1} \right.
\]

\[
- \sin \left(\frac{n \pi}{\alpha} \right) \frac{\Gamma(1+n/\alpha)}{n!} \left(\frac{x^\alpha}{c \Gamma(-\alpha) t} \right)^{(n+1)/\alpha-1} \left] \right.
\]

for \(t > 0 \). In particular, this yields \(f_{\tau_x}(0+) = 0 \) and

\[
f_{\tau_x}(t) \sim \frac{x^{\alpha-1}}{\Gamma(\alpha-1) \Gamma(1/\alpha)} \left(\frac{c \Gamma(-\alpha) t}{x^\alpha} \right)^{-2+1/\alpha}
\]

as \(t \to \infty \). The method of proof exploits a simple identity linking the law of \(\tau_x \) to the laws of \(X_t \) and \(\sup_{0 \leq s \leq t} X_s \) that makes a Laplace inversion amenable. A simpler series representation for \(f_{\tau_x} \) is also known to be valid when \(x < 0 \).

1 Introduction

If a Lévy process \(X = (X_t)_{t \geq 0} \) jumps upwards, then it is much harder to derive a closed form expression for the distribution function of its first passage time \(\tau_{(x,\infty)} \) over a strictly positive level \(x \), and
in the existing literature such expressions seem to be available only when X has no positive jumps (unless the Lévy measure is discrete). A notable exception to this rule is the recent paper \cite{11} where an explicit series representation for the density function of $\tau_{(x,\infty)}$ was derived when X is a stable Lévy process of index $\alpha \in (1,2)$ having the Lévy measure given by \(\nu(dx) = (c/x^{1+\alpha})I_{(0,\infty)}(x) \) \(dx \) with $c > 0$ given and fixed. This was done by performing a time-space inversion of the Wiener-Hopf factor corresponding to the Laplace transform of \((t,y) \mapsto P(S_t > y) \) where $S_t = \sup_{0 \leq s \leq t} X_s$ for $t > 0$ and $y > 0$.

Motivated by this development our purpose in this note is to search for a similar series representation associated with the first hitting time τ_x of X to a strictly positive level x itself. Clearly, since X jumps upwards and creeps downwards, τ_x will happen strictly after $\tau_{(x,\infty)}$, and since X reaches x by creeping through it independently from the past prior to $\tau_{(x,\infty)}$, one can exploit known expressions for the latter portion of the process and derive the Laplace transform for \((t,y) \mapsto P(\tau_y > t) \). This was done in \cite{6} Theorem 1 and is valid for any Lévy process with no negative jumps (excluding subordinators). A direct Laplace inversion of the resulting expression appears to be difficult, however, and we show that a simple (Chapman-Kolmogorov type) identity which links the law of τ_x to the laws of X_x and S_τ proves helpful in this context (due largely to the scaling property of X). It enables us to connect the old result of \cite{13} through an additive factorisation of the Laplace transform of \((t,y) \mapsto P(\tau_y > t) \). This makes the Laplace inversion possible term by term and yields an explicit series representation for the density function of τ_x.

2 Result and proof

1. Let $X = (X_t)_{t \geq 0}$ be a stable Lévy process of index $\alpha \in (1,2)$ whose characteristic function is given by

\[
\mathbb{E} e^{i\lambda X_t} = \exp \left(t \int_0^\infty (e^{i\lambda x} - 1 - i\lambda x) \frac{dx}{\Gamma(-\alpha) x^{1+\alpha}} \right) = e^{t(\psi(-\lambda))\alpha}
\]

for $\lambda \in \mathbb{R}$ and $t \geq 0$. It follows that the Laplace transform of X is given by

\[
\mathbb{E} e^{-\lambda X_t} = e^{t\lambda^\alpha}
\]

for $\lambda \geq 0$ and $t \geq 0$ (the left-hand side being $+\infty$ for $\lambda < 0$). From \cite{2} we see that the Laplace exponent of X equals $\psi(\lambda) = \lambda^\alpha$ for $\lambda \geq 0$ and $\varphi(p) := \psi^{-1}(p) = p^{1/\alpha}$ for $p \geq 0$.

2. The following properties of X are readily deduced from \cite{1} and \cite{2} using standard means (see e.g. \cite{2} and \cite{9}): the law of $(X_{ct})_{t \geq 0}$ is the same as the law of $(c^{1/\alpha} X_t)_{t \geq 0}$ for each $c > 0$ given and fixed (scaling property); X is a martingale with $EX_t = 0$ for all $t \geq 0$; X jumps upwards (only) and creeps downwards (in the sense that $P(X_{t+\Delta t} = x) = 1$ for $x < 0$ where $\tau_{(-\infty,x)} = \inf\{ t > 0 : X_t < x \}$ is the first passage time of X over x); X has sample paths of unbounded variation; X oscillates from $-\infty$ to $+\infty$ (in the sense that $\liminf_{t \to \infty} X_t = -\infty$ and $\limsup_{t \to \infty} X_t = +\infty$ both a.s.); the starting point 0 of X is regular (for both $(0,\infty)$ and $(0,0)$). Note that the constant $c = 1/\Gamma(-\alpha)$ in the Lévy measure $\nu(dx) = (c/x^{1+\alpha})dx$ of X is chosen/fixed for convenience so that X converges in law to $\sqrt{2}B$ as $\alpha \uparrow 2$ where B is a standard Brownian motion, and all the facts throughout can be extended to a general constant $c > 0$ using the scaling property of X.

3. Letting f_{X_1} denote the density function of X_1, the following series representation is known to be
valid (see e.g. (14.30) in [14, p. 88]):

\[f_{S_1}(x) = \sum_{n=1}^{\infty} \frac{\sin(n \pi / \alpha)}{\pi} \frac{\Gamma(1+n/\alpha)}{n!} x^{n-1} \]

(3)

for \(x \in \mathbb{R} \). Setting \(S_1 = \sup_{0 \leq t \leq 1} X_t \) and letting \(f_{S_1} \) denote the density function of \(S_1 \), the following series representation was recently derived in [11, Theorem 1]:

\[f_{S_1}(x) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{\sin(n \pi / \alpha)}{\pi} \frac{\Gamma(n-1/\alpha)}{\Gamma(\alpha n-1)} x^{\alpha n-2} \]

(4)

for \(x > 0 \). Clearly, the series representations (3) and (4) extend to \(t \neq 1 \) by the scaling property of \(X \) since \(X_t = \text{law} t^{1/\alpha} X_1 \) and \(S_t := \sup_{0 \leq s \leq t} X_s = \text{law} t^{1/\alpha} S_1 \) for \(t > 0 \).

4. Consider the first hitting time of \(X \) to \(x \) given by

\[\tau_x = \inf \{ t > 0 : X_t = x \} \]

(5)

for \(x > 0 \). Then it is known (see (2.16) in [6]) that the time-space Laplace transform equals

\[\int_0^\infty e^{-\lambda x} E(e^{-p \tau_x}) \, dx = \frac{1}{\lambda - \varphi(p)} + \frac{1}{\varphi'(p)(p-\psi(\lambda))} = \frac{1}{\lambda - p^{1/\alpha}} + \frac{\alpha}{p^{1+1/\alpha}(p-\lambda^\alpha)} \]

(6)

for \(\lambda > 0 \) and \(p > 0 \). Note that this can be rewritten as follows:

\[\int_0^\infty e^{-\lambda t} \int_0^\infty e^{-\lambda x} P(\tau_x > t) \, dx \, dt = \frac{1}{\lambda p} + \frac{1}{p(p^{1/\alpha} - \lambda)} - \frac{\alpha}{p^{1+1/\alpha}(p-\lambda^\alpha)} \]

(7)

for \(\lambda > 0 \) and \(p > 0 \).

Let \(\mathcal{L}^{-1}_p \) denote the inverse Laplace transform with respect to \(p \). Using that \(1/(p(p^{1/\alpha} - \lambda)) = \sum_{n=1}^{\infty} \lambda^n/p^{1+n/\alpha} \) and \(\mathcal{L}^{-1}_p[1/p^a] = t^{a-1}/\Gamma(a) \) for \(a > 0 \), it is easily verified that

\[\mathcal{L}^{-1}_p \left[\frac{1}{p(p^{1/\alpha} - \lambda)} \right](t) = \frac{1}{\lambda} E_{1/\alpha}(\lambda t^{1/\alpha}) - 1 \]

(8)

for \(t > 0 \) where \(E_{1/\alpha}(x) = \sum_{n=0}^{\infty} x^n/\Gamma(an+1) \) denotes the Mittag-Leffler function. On the other hand, by (3) in [8, p. 238] we find

\[\mathcal{L}^{-1}_p \left[\frac{1}{p^{1/\alpha}(p-\lambda^\alpha)} \right](t) = \frac{1}{\Gamma(1/\alpha)} \frac{e^{\lambda^\alpha t}}{\lambda} \gamma(1/\alpha, \lambda^\alpha t) \]

(9)

for \(t > 0 \) where \(\gamma(a,x) = \int_0^x y^{a-1} e^{-y} \, dy \) denotes the incomplete gamma function. Combining (7) with (8) and (9) we get

\[\int_0^\infty e^{-\lambda x} P(\tau_x > t) \, dx = \frac{1}{\lambda} E_{1/\alpha}(\lambda t^{1/\alpha}) - \frac{\alpha}{\Gamma(1/\alpha)} \frac{e^{\lambda^\alpha t}}{\lambda} \gamma(1/\alpha, \lambda^\alpha t) \]

\[= \frac{\alpha}{\Gamma(1/\alpha)} \frac{e^{\lambda^\alpha t}}{\lambda} \gamma(1/\alpha, \lambda^\alpha t) + \frac{1}{\alpha} E_{1/\alpha}(\lambda t^{1/\alpha}) \]

(10)
for \(\lambda > 0 \) and \(t > 0 \).

The first and the third term on the right-hand side of (10) may now be recognised as the Laplace transforms of particular functions considered in [11] and [13] respectively (recall also (2.2) above). The proof of the following theorem provides a simple probabilistic argument (of Chapman-Kolmogorov type) for this additive factorisation (see Remark 1 below).

Theorem 1. Let \(X = (X_t)_{t \geq 0} \) be a stable Lévy process of index \(\alpha \in (1, 2) \) with the Lévy measure \(\nu(dx) = (c/x^{1+\alpha})I_{(0,\infty)}(x)\,dx \) for \(c > 0 \), let \(x > 0 \) be given and fixed, and let \(\tau_x \) denote the first hitting time of \(X \) to \(x \). Then the density function \(f_{\tau_x} \) of \(\tau_x \) admits the following series representation:

\[
f_{\tau_x}(t) = \frac{x^{\alpha-1}}{\pi(c \Gamma(-\alpha)t)^{2-1/\alpha}} \sum_{n=1}^{\infty} \left[(-1)^{n-1} \sin(\pi/\alpha) \frac{\Gamma(n-1/\alpha)}{\Gamma(\alpha n-1)} \left(\frac{x^{\alpha}}{c \Gamma(-\alpha)t} \right)^{n-1} \right. \\
- \left. \sin \left(\frac{n \pi}{\alpha} \right) \frac{\Gamma(1+n)}{n!} \left(\frac{x^{\alpha}}{c \Gamma(-\alpha)t} \right)^{(n+1)/\alpha-1} \right]
\]

for \(t > 0 \). In particular, this yields:

\[
f_{\tau_x}(t) = o(1) \quad \text{as} \quad t \downarrow 0; \tag{12}
\]

\[
f_{\tau_x}(t) \sim \frac{x^{\alpha-1}}{\Gamma(1/\alpha)} (c \Gamma(-\alpha)t)^{-2+1/\alpha} \quad \text{as} \quad t \uparrow \infty. \tag{13}
\]

Proof. It is no restriction to assume below that \(c = 1/\Gamma(-\alpha) \) as the general case follows by replacing \(t \) in (11) with \(c \Gamma(-\alpha)t \) for \(t > 0 \).

Since \(X \) creeps downwards, we can apply the strong Markov property of \(X \) at \(\tau_x \), use the additive character of \(X \), and exploit the scaling property of \(X \) to find

\[
P(S_1 > x) = P(S_1 > x, X_1 > x) + P(S_1 > x, X_1 \leq x)
\]

\[
= P(X_1 > x) + \int_0^1 P(X_1 \leq x \mid \tau_x = t) F_{\tau_x}(dt)
\]

\[
= P(X_1 > x) + \int_0^1 P(x + X_{1-t} \leq x) F_{\tau_x}(dt)
\]

\[
= P(X_1 > x) + \int_0^1 P((1-t)^{1/\alpha}X_1 \leq 0) F_{\tau_x}(dt)
\]

\[
= P(X_1 > x) + (1/\alpha) P(\tau_x \leq 1)
\]

where we also use that \(P(X_1 \leq 0) = 1/\alpha \) and \(F_{\tau_x} \) denotes the distribution function of \(\tau_x \). Note that the second equality in (14) represents a Chapman-Kolmogorov equation of Volterra type (see [11] Section 2) for a formal justification and a brief historical account of the argument). Since \(\tau_x \simlaw x^\alpha \tau_1 \) by the scaling property of \(X \), we find that (14) reads

\[
P(S_1 > x) = P(X_1 > x) + (1/\alpha) F_{\tau_x}(1/x^\alpha)
\]

(15)

for \(x > 0 \). Hence we see that \(F_{\tau_x} \) is absolutely continuous (cf. [10] for a general result on the absolute continuity) and by differentiating in (15) we get

\[
f_{\tau_x}(1/x^\alpha) = x^{1+\alpha} [f_{S_1}(x) - f_{X_1}(x)]
\]

(16)
for $x > 0$. Letting $t = 1/x^a$ we find that
\[
f_{\tau_x}(t) = t^{-1-1/a} [f_{S_1}(t^{-1/a}) - f_{X_1}(t^{-1/a})]
\]
for $t > 0$. Hence (11) with $x = 1$ follows by (3) and (4) above. Moreover, since $\tau_x = \text{law } x^\alpha \tau_1$ we see that $f_{\tau_x}(t) = t^{-\alpha} f_{\tau_1}(t^{-\alpha})$ and this yields (11) with $x > 0$.

It is known that $f_{X_1}(x) \sim c x^{-1-\alpha}$ as $x \to \infty$ (see e.g. (14.34) in [14] p. 88) and likewise $f_{S_1}(x) \sim c x^{-1-\alpha}$ as $x \to \infty$ (see [1] Corollary 3 and [7] for a proof). From (16) we thus see that $f_{\tau_1}(0+) = 0$ and hence $f_{\tau_1}(0+) = 0$ for all $x > 0$ as claimed in (12). The asymptotic relation (13) follows directly from (11) using the reflection formula $\Gamma(1-x)\Gamma(x) = \pi/\sin \pi x$ for $x \in \mathbb{C}\setminus\mathbb{Z}$. This completes the proof. \hfill \Box

Remark 1. Note that (14) can be rewritten as follows:
\[
(1/a) P(\tau_x > 1) = 1/a + F_{S_1}(x) - F_{X_1}(x) = F_{S_1}(x) - (F_{X_1}(x) - F_{X_1}(0))
\]
for $x > 0$, and from (2.30) in [11] we know that
\[
\int_0^\infty e^{-\lambda x} f_{S_1}(x) \, dx = e^{\lambda a} \int_0^\infty e^{-\alpha x^a} \, dz
\]
for $\lambda > 0$. In view of (10) this implies that
\[
\int_0^\infty e^{-\lambda x} f_{S_1}(x) \, dx = e^{\lambda a} - \frac{1}{\alpha} E_{1/a}(\lambda)
\]
for $\lambda > 0$. Recalling (2) we see that (20) is equivalent to
\[
\int_{-\infty}^0 e^{-\lambda x} f_{X_1}(x) \, dx = \frac{1}{\alpha} E_{1/a}(\lambda)
\]
for $\lambda > 0$. An explicit series representation for f in place of f_{S_1} in (21) was found in [13] (see also [12]) and this expression coincides with (3) above when $x < 0$. (Note that (21) holds for all $\lambda \in \mathbb{R}$ and substitute $y = -x$ to connect to [13].) This represents an analytic argument for the additive factorisation addressed following (11) above.

Remark 2. In contrast to (12) note that
\[
f_{\tau_{x,\infty}}(0+) = \frac{c}{\alpha x^a}
\]
for $x > 0$. This is readily derived from $P(\tau_{x,\infty} \leq t) = P(S_t \geq x)$ using $S_t = \text{law } t^{1/a} S_1$ and $f_{S_1}(x) \sim c x^{-1-\alpha}$ for $x \to \infty$ as recalled in the proof above.

Remark 3. If $x < 0$ then applying the same arguments as in (14) above with $I_t = \inf_{0 \leq s \leq t} X_s$ we find that
\[
P(I_t \leq x) = P(I_t \leq x, X_t \leq x) + P(I_t \leq x, X_t > x)
\]
\[
= P(X_t \leq x) + \int_0^t P(X_{t-s} > x) f_{\tau_x}(ds)
\]
\[
= P(X_t \leq x) + (1-1/a) P(\tau_x \leq t)
\]
for \(t > 0 \). In this case, moreover, we also have \(\mathbb{P}(I_t \leq x) = \mathbb{P}(\sigma_x \leq t) \) since \(X \) creeps through \(x \), so that (23) yields

\[
P(\tau_x \leq t) = \alpha \mathbb{P}(X_t \leq x)
\]

(24) for \(x < 0 \) and \(t > 0 \). Since \(X_t = \text{law} \ t^{1/\alpha}X_1 \) this implies

\[
f_{\tau_x}(t) = -x t^{-1-1/\alpha} F_{\alpha x}(x t^{-1/\alpha}) = -\sum_{n=1}^{\infty} \frac{\sin(n \pi / \alpha)}{\pi} \frac{\Gamma(1+n/\alpha)}{n!} \left(\frac{x}{t} \right)^n
\]

(25) for \(t > 0 \) upon using (3) above. Replacing \(t \) in (25) by \(c \Gamma(-\alpha) t \) we get a series representation for \(f_{\tau_x} \) in the case when \(c > 0 \) is a general constant. The first identity in (25) is known to hold in greater generality (see [4] and [2] p. 190 for different proofs).

Remark 4. If \(c = 1/2 \Gamma(-\alpha) \) and \(\alpha \uparrow 2 \) then the series representations (11) and (25) with \(t/2 \) in place of \(t \) reduce to the known expressions for the density function \(f_{\tau_x} \) of \(\tau_x = \inf \{ t > 0 : B_t = x \} \) where \(B = (B_t)_{t \geq 0} \) is a standard Brownian motion:

\[
f_{\tau_x}(t) = \frac{|x|}{\sqrt{2\pi t^3}} e^{-x^2/2t} = \frac{|x|}{\sqrt{2\pi t^3}} \sum_{n=0}^{\infty} \frac{(-1)^n}{2^n n!} \frac{x^{2n}}{t^n}
\]

(26) for \(t > 0 \) and \(x \in \mathbb{R} \setminus \{0\} \).

Remark 5. Duality theory for Markov/Lévy processes (see [3] Chap. VI and [2] Chap. II and Corollary 18 on p. 64]) implies that

\[
\mathbb{E}e^{-\rho \tau} = \frac{\int_0^\infty e^{-\rho t} f_{\tau_x}(x) \, dt}{\int_0^\infty e^{-\rho t} f_{\tau_x}(0) \, dt}
\]

(27) from where the following identity can be derived (see [2] Lemma 13, p. 230]):

\[
P(\tau_x \leq t) = \frac{1}{\Gamma(1-1/\alpha) \Gamma(1/\alpha)} \int_0^t \frac{f_{\tau_x}(x)}{(t-s)^{1-1/\alpha}} \, ds
\]

(28) for \(x \in \mathbb{R} \) and \(t > 0 \) (being valid for any stable Lévy process). By the scaling property of \(X \) we have \(f_{\tau_x}(x) = s^{-1/\alpha} f_{\tau_x}(xs^{-1/\alpha}) \) for \(s \in (0, t) \) and \(x \in \mathbb{R} \). Recalling the particular form of the series representation for \(f_{\tau_x} \) given in (3), we see that it is not possible to integrate term by term in (28) in order to obtain an explicit series representation.

Remark 6. The density function \(f_{X_1} \) from (3) can be expressed in terms of the Fox functions (see [15]), and the density function \(f_{\tau_x} \) from (4) can be expressed in terms of the Wright functions (see [5] Sect. 12 and the references therein). In view of the identity (17) and the fact that \(f_{\tau_x}(t) = x^{-\alpha} f_{\tau_x}(tx^{-\alpha}) \), these facts can be used to provide alternative representations for the density function \(f_{\tau_x} \) from (11) above. We are grateful to an anonymous referee for bringing these references to our attention.

References

[1] **BENNYK, V. DALANG**, R. C. and **PESKIR**, G. (2008). The law of the supremum of a stable Lévy process with no negative jumps. *Ann. Probab.* 36 (1777–1789). MR2440923
[2] Bertoin, J. (1996). *Lévy Processes*. Cambridge Univ. Press. [MR1406564](https://www.ams.org/mathscinet-getitem?mr=1406564)

[3] Blumenthal, R. M. and Getoor, R. K. (1968). *Markov Processes and Potential Theory*. Academic Press. [MR0264757](https://www.ams.org/mathscinet-getitem?mr=264757)

[4] Borovkov, K. and Burq, Z. (2001). Kendall's identity for the first crossing time revisited. *Electron. Comm. Probab.* 6 (91–94). [MR1871697](https://www.ams.org/mathscinet-getitem?mr=1871697)

[5] Braaksma, B. L. J. (1964). Asymptotic expansions and analytic continuations for a class of Barnes-integrals. *Compositio Math.* 15 (239–341). MR not available. [MR0167651](https://www.ams.org/mathscinet-getitem?mr=167651)

[6] Doney, R. A. (1991). Hitting probabilities for spectrally positive Lévy processes. *J. London Math. Soc.* 44 (566–576). [MR2402160](https://www.ams.org/mathscinet-getitem?mr=2402160)

[7] Doney, R. A. (2008). A note on the supremum of a stable process. *Stochastics* 80 (151–155). [MR2402160](https://www.ams.org/mathscinet-getitem?mr=2402160)

[8] Erdélyi, A. (1954). *Tables of Integral Transforms*, Vol. 1. McGraw-Hill.

[9] Kyprianou, A. E. (2006). *Introductory Lectures on Fluctuations of Lévy Processes with Applications*. Springer-Verlag. [MR2250061](https://www.ams.org/mathscinet-getitem?mr=2250061)

[10] Monrad, D. (1976). Lévy processes: absolute continuity of hitting times for points. *Z. Wahrscheinlichkeitstheorie und Verw. Gebiete* 37 (43–49). [MR0423550](https://www.ams.org/mathscinet-getitem?mr=423550)

[11] Peskir, G. (2002). On integral equations arising in the first-passage problem for Brownian motion. *J. Integral Equations Appl.* 14 (397–423). [MR1984752](https://www.ams.org/mathscinet-getitem?mr=1984752)

[12] Pollard, H. (1946). The representation of e^{-x^4} as a Laplace integral. *Bull. Amer. Math. Soc.* 52 (908–910). [MR0018286](https://www.ams.org/mathscinet-getitem?mr=18286)

[13] Pollard, H. (1948). The completely monotonic character of the Mittag-Leffler function $E_a(-x)$. *Bull. Amer. Math. Soc.* 54 (1115–1116). [MR0027375](https://www.ams.org/mathscinet-getitem?mr=27375)

[14] Sato, K. (1999). *Lévy Processes and Infinitely Divisible Distributions*. Cambridge Univ. Press. [MR1739520](https://www.ams.org/mathscinet-getitem?mr=1739520)

[15] Schneider, W. R. (1986). Stable distributions: Fox functions representation and generalization. *Proc. Stoch. Process. Class. Quant. Syst.* (Ascona 1985), Lecture Notes in Phys. 262, Springer (497–511). [MR0870201](https://www.ams.org/mathscinet-getitem?mr=870201)