Thermodynamic matchers for the construction of the cuckoo RNA family

Jan Reinkensmeier and Robert Giegerich*

Universität Bielefeld; Technische Fakultät and Center of Biotechnology; Bielefeld, Germany

Keywords: alphaproteobacteria, cuckoo RNA, family model, homology search, small RNA, structural RNA, thermodynamic matcher

Abbreviations: sRNA, small non-coding RNA; RFM, RNA family model; CM, covariance model; HMM, hidden Markov model; MFE, minimum free energy; TDM, thermodynamic matcher; dRNA-seq, differential RNA sequencing; aSD, anti Shine-Dalgarno; CIN, conserved intergenic neighborhood; OG, orthologous group of genes; RBS, ribosome binding site.

RNA family models describe classes of functionally related, non-coding RNAs based on sequence and structure conservation. The most important method for modeling RNA families is the use of covariance models, which are stochastic models that serve in the discovery of yet unknown, homologous RNAs. However, the performance of covariance models in finding remote homologs is poor for RNA families with high sequence conservation, while for families with high structure but low sequence conservation, these models are difficult to build in the first place. A complementary approach to RNA family modeling involves the use of thermodynamic matchers. Thermodynamic matchers are RNA folding programs, based on the established thermodynamic model, but tailored to a specific structural motif. As thermodynamic matchers focus on structure and folding energy, they unfold their potential in discovering homologs, when high structure conservation is paired with low sequence conservation. In contrast to covariance models, construction of thermodynamic matchers does not require an input alignment, but requires human design decisions and experimentation, and hence, model construction is more laborious. Here we report a case study on an RNA family that was constructed by means of thermodynamic matchers. It starts from a set of known but structurally different members of the same RNA family. The consensus secondary structure of this family consists of 2 to 4 adjacent hairpins. Each hairpin loop carries the same motif, CCUCCUCCC, while the stems show high variability in their nucleotide content. The present study describes (1) a novel approach for the integration of the structurally varying family into a single RNA family model by means of the thermodynamic matcher methodology, and (2) provides the results of homology searches that were conducted with this model in a wide spectrum of bacterial species.

Introduction

Modeling RNA families

Recent interest in the non-coding part of the genome has created a wealth of new results about the functional repertoire of RNA. RNA-seq experiments based on next-generation sequencing technology have become common practice in discovering novel small non-coding RNAs (sRNAs).1,2 The advantage of homology searches for sRNAs that employ the results of RNA-seq experiments, compared to in-silico de novo sRNA prediction, is that one starts from an experimentally verified transcript, and often, the exact length of the hypothetical RNA gene is known.3 Even when a function of a newly detected transcript is not yet suspected, its conservation in sequence and/or structure in a number of related species can be taken as first evidence that the transcript is a bona-fide RNA gene. As a result of RNA gene hunting efforts, the Rfam database4 has grown from 400 RNA family models (RFMs) in 2004 to 2,208 at the time of this writing.

The Rfam effort has established the creation of covariance models (CMs)5 as the de-facto standard for modeling structural RNA families. A covariance model starts from a sequence alignment that supports a conserved consensus structure, and creates a stochastic model.4,6 It can be used to test individual transcripts for family membership, or to scan complete genomes for RNA gene prediction.

CMs are implemented as stochastic context free grammars, a generalization of profile hidden Markov models (HMMs)7 to incorporate conserved structural information. When sequence conservation is high and structure conservation is weak in a family, CMs behave much like profile HMMs. In contrast, when structure is strongly conserved, but sequence is diverged, CMs generalize better, i.e. they are more successful in finding family members also in remotely related species. However, when creating such a
model, we face a chicken-and-egg problem: How do we find a group of sequences in the first place, which are diverged in sequence but not in structure? Even when there are some sequence motifs with high conservation, these may not allow for a BLAST search of high specificity. In this situation, an alternative or complementary route to construct an RFM is desirable. One such strategy is the construction of thermodynamic matchers (TDMs). It is worked out in this study for the “cuckoo” RNA family.

Biology background: the cuckoo family

In recent years, high-throughput sequencing studies of the transcriptome (RNA-seq) in bacteria revealed a multitude of novel sRNAs. In 2009, Berghoff et al.8 used differential RNA sequencing (dRNA-seq) for the identification of sRNAs in the photosynthetic alphaproteobacterium Rhodobacter sphaeroides, which are induced under photooxidative stress. Among other sRNAs, a cluster of 4 paralogous sRNAs, named Rs0680a-d, was discovered and verified by Northern blot experiments. Berghoff et al.8 showed that Rs0680a-d are co-transcribed with an upstream located, so far uncharacterized hypothetical gene, RSP_6037, and expressed under the control of an RpoH/RpoHII dependent promoter. Besides, a terminator-like hairpin was found downstream of the sRNA cluster. In two complementing studies it could be demonstrated that Rs0680a is induced under heat stress as well, and is directly bound by Hfq.9,10 Despite the characterization efforts, the precise function of the Rs0680a family remains to be elucidated.

Derived from the Rs0680a-d sRNAs, the Rs0680 RNA family features a modular secondary structure, which is composed of 2 adjacent stem loops of similar size and a conserved loop motif CCUCCUCCC, resembling an anti Shine-Dalgarno sequence (aSD). Comparative analysis in selected alphaproteobacteria led to the identification of 17 Rs0680a homologs in the orders of the Rhodobacterales and the Rhizobiales.8 For 14 of these sRNAs, a preserved genomic context was observed.

Besides, several studies using computational and experimental approaches identified sRNAs in Sinorhizobium meliloti, which represent structural variants of Rs0680. The first structural variants, C14 and A6, were described by del Val et al.11 who predicted a total set of 32 S. meliloti sRNAs by means of eQRNA12 and RNAz.13 C14 was further confirmed by Northern analysis under various conditions except for the stationary growth phase. Different from Rs0680a, the secondary structures of C14 and A6 harbor 3 and 4 adjacent stem loops, respectively, each carrying again the sequence motif CCUCCUCCC. Based on sRNApredictHT, Valverde et al.14 rediscovered C14 and predicted the sm7 sRNA, which is structurally similar to C14. In addition, it could be demonstrated in a microarray experiment that C14 is induced under salt stress. The dRNA-Seq study of Schlüter et al.15 revealed numerous sRNAs in S. meliloti. In addition to the previously known sRNAs, A6 (SmelA099), C14 (SmelC397), and sm7 (SmelC398), they identified 3 new sRNAs, SmelA075, SmelB161, and SmelC025, which consist of 3 CCUCCUCCC-modules. Experimentally determined transcription start sites by 5'-RACE and RNA-seq for the 6 S. meliloti sRNAs are in good agreement, differing by only a few nucleotides.11,15,16 A first attempt to identify homologs of C14, as part of a study that aimed at kingdom-wide predictions and annotations of trans-encoded sRNA genes, yielded 9 predictions in closely related Rhizobiales.17 Recently, 52 trans-encoded sRNAs of Schlüter et al.15 including SmelA075 and SmelA099, served as the basis for the construction of 39 RNA family models.18 While we mainly used CMs for the compilation of RFMs, in case of SmelA075 and SmelA099 we constructed the respective RFMs, RFM_smelA075 and RFM_smelA099, by means of TDMs. Relatives of SmelA075 and SmelA099 are highly abundant and have been found in multiple copies in the Rhizobiaceae, Phyllobacteriaceae and Brucellaceae. As an example, S. meliloti encodes 5 copies of RFM_smelA075, which are located not only on the chromosome (SmelC025, SmelC397, SmelC398) but are also present on the megaplasmids pSymA (SmelA075) and pSymB (SmelB161). Northern hybridization showed that SmelA075, similar to Rs0680, is induced under heat stress.15 In total, both families comprise 121 sRNAs (RFM_smelA075 83 sRNAs, RFM_smelA099 38 sRNAs). Due to the presumably paralogous copies on different replicons, fragmented microsynteny was observed for both models. Nevertheless, subsets of homologous RNAs showed a preserved genomic context. Additionally, 3 members of RFM_smelA075 and RFM_smelA099 have been confirmed by RNA-seq studies in Rhizobium etli and Agrobacterium tumefaciens.19,20

![Figure 1. RNA structures of experimentally validated cuckoo RNAs obtained by TDM folding. (A) Rs0680a RNA (position 692386-692458, Rhodobacter sphaeroides 2.4.1), (B) Rec11 RNA (462572-462689, Rhizobium etli CFN 42), (C) LS RNA (1831446-1831604, Agrobacterium tumefaciens str. C58).](image-url)
Table 1. Distribution of cuckoo RNAs. The table summarizes the number of cuckoo RNAs and their distribution across CINs for each species. The occurrences of cuckoo RNAs divided into structural variants are displayed in columns HP2 to HP4. Columns CIN1–CIN6 show the distribution of cuckoo RNAs within the 6 CINs. Each digit represents a cuckoo RNA within a CIN, while the digit’s value reflects the number of modules. Unless denoted by a leading character (c = secondary chromosome, p = plasmid), a CIN and therefore the corresponding cuckoo RNA is located on the primary chromosome of the respective bacterium. The first row, for example, reads in words as follows: “In Brucella abortus A13334, we find 4 cuckoo RNAs, one with 2 hairpins, 2 with 3 hairpins, and one with 4 hairpins. The 4HP cuckoo is found on the main chromosome in neighborhood CIN1; in the same neighborhood, but on the secondary chromosome, we find a 2HP cuckoo. The 3HP cuckoos are found on the main chromosome in neighborhood CIN5, and on the secondary chromosome in neighborhood CIN6.” See Table S1 for complete sequences and detailed results.

Species	HP2	HP3	HP4	CIN1	CIN2	CIN3	CIN4	CIN5	CIN6
Polymorphum gilvum SL003B-26A1	0	1	1	4;c2	3	c3			
Brucella abortus A13334	1	2	1	4;c2	3	c3			
Brucella abortus S19	1	2	1	4;c2	3	c3			
Brucella canis ATCC 23365	1	1	1	4	c2				
Brucella canis HSK AS2141	1	1	1	4	c2				
Brucella melitensis ATCC 23457	1	1	1	4;c2	3				
Brucella melitensis M28	1	1	1	4;c2	3				
Brucella melitensis MS-90	1	1	1	4;c2	3				
Brucella melitensis NI	1	1	1	4;c2	3				
Brucella melitensis biovar Abortus 2308	2	1	1	4;c2	3	c2			
Brucella melitensis bv. 1 str. 16M	2	1	1	4	c2				
Brucella microti CCM 4915	2	1	1	4;c2	3	c2			
Brucella ovis ATCC 25840	1	1	1	4;c2					
Brucella pinnipedialis B2/94	1	2	1	4;c2	3	c3			
Brucella suis 1330	1	2	1	4;c2	3	c3			
Brucella suis ATCC 23445	1	2	1	4;c2					
Brucella suis VBI22	1	2	1	4;c2	3	c3			
Ochrobactrum anthropi ATCC 49188	0	4	1	4;c3					
Pelagibacterium halotolerans B2	0	2	0						
Phyllobacteriaceae									
Chelatiorans sp. BNC1	2	4	0	3					
Mesorhizobium australicum WSM2073	0	5	0	333					
Mesorhizobium ciceri biovar biserrulae WSM1271	0	6	0	333					
Mesorhizobium loti MAFF303099	0	6	0						
Mesorhizobium opportunitum WSM2075	0	5	0	333					
Rhizobiaceae									
Agrobacterium tumefaciens str. C58	0	1	2						
Agrobacterium radiobacter KB4	0	3	3	3	3				
Agrobacterium sp H13-3	0	2	2	4					
Agrobacterium vitis S4	0	3	3	4					
Rhizobium etli CFN 42	0	4	2	p4	3				
Rhizobium etli CIAT 652	1	3	3	p4	3				
Rhizobium etli bv. mimosae str. Mim1	0	4	1	p4	3				
Rhizobium leguminosarum bv. trifolii WSM1325	0	4	2	p4					
Rhizobium leguminosarum bv. trifolii WSM2304	1	4	2	3;p4	3				
Rhizobium leguminosarum bv. viciae 3841	0	4	1	p4	3				
Rhizobium tropici CIAT 899	0	3	1	p4	3				
Sinorhizobium fredii HH103	0	6	0	33					
Sinorhizobium fredii NGR234	0	4	0	33					
Sinorhizobium fredii USDA 257	0	6	0	33					
Sinorhizobium medicae WSM419	1	4	2	33;p4					
Sinorhizobium meliloti 1021	0	5	1						
Sinorhizobium meliloti 2011	0	5	1	3					
Sinorhizobium meliloti AK83	0	5	1	3					
Sinorhizobium meliloti BL225C	0	4	1	33					
Sinorhizobium meliloti GR4	0	4	1	33					
Sinorhizobium meliloti RM41	0	5	1	3					
Sinorhizobium meliloti SM11	0	4	1	33					
Rhodobacteraceae									
Parvibaculum lavamentivorans DS-1	1	0	0						

(Continued on next page)
In a comparative analysis, del Val et al.21 applied CMs to build RFMs for C14, termed ar14, and 5 other S. meliloti RNAs. The ar14 RFM includes 101 sRNAs. ar14 and RFM_{SmelA075}, which describe the same family of 3 hairpin forming sRNAs, are generally in good agreement, aside from single members that exist exclusively in either of the families. However, as we know today, 33 members of the ar14 family exhibit 4 instead of the 3 annotated stem loops, and thus belong to RFM_{SmelA099}. This is not the only example for misclassification, several sequences that were defined as homologs of RSs0680 actually belong to either RFM_{SmelA075} or RFM_{SmelA099}.8,18

In this study we (1) present a novel approach to integrate the structurally varying RFMs RSs0680, RFM_{SmelA075}, and RFM_{SmelA099} into a single RFM by means of the thermodynamic matcher methodology, (2) use the novel family model to conduct extensive homology searches and provide an updated list of family members. In the following we refer to the joint family as the cuckoo family. Our name for the family is derived from this sequence motif CCUCCUCCC, which in German is phonetically the same as "Kuckuck" (cuckoo).

Results

Our study has 2 results: One is the considerably extended cuckoo family, and the other one is the TDM developed for its construction and to be used for its maintenance as new bacterial genome sequences become available. The former result is described in this paragraph, the latter in the methods section.

In this study we (1) present a novel approach to integrate the structurally varying RFMs RSs0680, RFM_{SmelA075}, and RFM_{SmelA099} into a single RFM by means of the thermodynamic matcher methodology, (2) use the novel family model to conduct extensive homology searches and provide an updated list of family members. In the following we refer to the joint family as the cuckoo family. Our name for the family is derived from this sequence motif CCUCCUCCC, which in German is phonetically the same as "Kuckuck" (cuckoo).
additional rhodobacterial genomes that were part of the comparative study of Berghoff et al.8 A list of all included bacterial genomes is provided in Table S6. Our approach revealed in total 321 cuckoo RNAs, which were distributed on 156 replicons of 78 alphaproteobacteria (Table 1, Tables S1-S5). 176 of the 321 cuckoo RNAs were previously unknown. Within the alphaproteobacteria, cuckoo RNAs were found in the genomes of 31 Rhizobaculaeae; and in the families of Rhizobiaceae, Brucellaceae, Hyphomicrobiaceae, and Phyllobacteriaceae of the order of the Rhizobiales, cuckoo RNAs occur in 22, 18, 1, and 5 genomes, respectively. Besides, members of the cuckoo family were recovered in the unclassified alphaproteobacterium Polymorphum gilvum.

Regarding the distribution of the different structures which cuckoo RNAs exhibit, the group of 150 cuckoo members with 3 hairpins (HP3) represents the most abundant structural variant, followed by 105 cuckoo RNAs exhibiting 2 hairpins (HP2) and 66 RNAs that form 4 stem loops (HP4). Despite their high abundance, HP3 cuckoo RNAs are limited mainly to the Rhizobiales and are additionally present as a single copy only in few Rhodobacteraceae. The distribution of HP4 cuckoo RNAs is similar except for the genera of Paracoccus and Octadecabacter, which harbor 2 to 4 RNAs of this structural variant. In contrast, HP2 cuckoo RNAs were identified in all families of the Rhizobiales but are predominant in the Rhodobacteraceae where they are found in clusters with highly variable numbers of up to 9 copies.

Synteny
The analysis of the genomic context of cuckoo RNA loci indicated several conserved intergenic neighborhoods (CIN). A CIN refers to a conserved genomic segment containing a cuckoo RNA or a cluster of cuckoo RNAs which is furthermore flanked at least on one side by an orthologous group of genes (OG).22 See Methods for a detailed definition of CIN. The most prominent CIN, CIN1, harbors nearly half of all cuckoo RNAs (148) and is present in 63 out of 78 bacteria, representing almost the entire taxonomic range of cuckoo RNAs (Table 1, Fig. 2, Table S2). CIN1 is characterized by its association with an orthologous gene of unknown function (OG1) and is the only CIN that was discovered in the Rhodobacteraceae and the Phyllobacteriaceae. On the other end, CIN1 is flanked either by genes for which no orthology could be determined or by OGs, which are conserved among specific taxa. For example, 27 cuckoo RNAs in the Rhodobacteraceae were identified between a benzoate transporter gene (OG18) and OG1 while 14 cuckoo RNAs associated with OG1 and a leucine tRNA gene were found in members of the

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{Conserved intergenic neighborhoods of cuckoo RNAs. CINs are drawn as graphs. Nodes and edges depict conserved flanking features of cuckoo RNAs and represent single and combinations of OGs, respectively. Nodes and edges are annotated with the number of involved cuckoo. Each node is a pie chart to display the phylogenetic distribution. The area of the nodes is proportional to the number of flanked cuckoo RNAs. The colors green, yellow, purple and red correspond to the taxa Brucellaceae, Rhizobiaceae, Phyllobacteriaceae, and Rhodobacterales.}
\end{figure}
Rhizobiaceae. The association of OG1 and a tRNA-methyltransferase (OG7) was observed for 28 cuckoo RNA across the families Brucellaceae, Phyllobacteriaceae, and Rhizobiaceae. All kinds of structural variants of cuckoo RNAs were found in CIN1 and it is the only CIN that harbors clusters of cuckoo RNAs. While the Brucellaceae lack cuckoo RNA clusters, CIN1 in Rhizobiaceae and Phyllobacteriaceae species often exhibit 2 and 3 HP3 cuckoo RNAs, respectively. A different picture is found for CIN1 in the Rhodobacteraceae. Here, the HP2 cuckoo RNA constitutes the most common variant within cuckoo clusters that are located in CIN1. Besides, next to a small number of species that have pure HP4 cuckoo RNA clusters, clusters in CIN1 exist that start with a series of HP2 cuckoo RNAs and end with different structural variants.

Interestingly, no other CIN could be identified among cuckoo RNAs in the Rhodobacteraceae and the Phyllobacteriaceae. However, we discovered 5 CINs within the Rhizobiaceae (CIN2, CIN3, CIN4), the Brucellaceae (CIN6) or within both families (CIN5). CIN2, CIN3, and CIN5 reside only on primary chromosomes while CIN6 is located on the secondary chromosome of the Brucellaceae. CIN4, in contrast, represents a cuckoo RNA locus which is located on the plasmids of Sinorhizobium species with 2 exceptions with CIN4 residing on a chromosome and a secondary chromosome, respectively. Nearly all cuckoo RNAs associated with CIN2 to CIN6 consist of 3 hairpins. An exception is CIN6, which harbors HP3 as well as HP2 cuckoo RNAs.

The analysis of the genomic neighborhoods of cuckoo RNAs shows an occurrence pattern that is biased toward a primary conserved neighborhood (CIN1) accompanied by several smaller CINs, with respect to the number of associated cuckoo RNAs that are limited to smaller taxa within the Rhizobiales. In summary, we developed a unifying model of structurally varying cuckoo RNAs and using our approach, we discovered 176 previously unknown cuckoo RNAs, thereby extending the cuckoo family to 321 members.

Conclusions

In this study, we have built an integrative model of the cuckoo RNA family based on TDMs, which is capable to distinguish between different cuckoo RNA structure variants. Applying the cuckoo family model, we have performed systematic homology searches and have identified 321 cuckoo RNAs, 176 of which were previously undescribed. According to our data, cuckoo RNAs are distributed across the Rhodobacteraceae, Phyllobacteriaceae, Brucellaceae, and the Rhizobiaceae. The primary locus of cuckoo RNAs is found in an intergenic region next to a protein homolog of unknown function (OG1) and is present in almost all prokaryotes that harbor cuckoo RNAs.

Homology search for cuckoo RNAs is difficult not only because of the modular nature of the family’s secondary structure, which leads to different variants in structure and size, but also of the lack of sequence conservation (beyond the genus level). This is caused by a high number of compensatory mutations, which dominate the stem-loops. The only conserved sequence pattern is the cuckoo loop motif CUCUCUCCCC, which in part represents an aSD motif. In such a scenario TDMs prove their strengths, as TDMs can be tailored to multiple competing consensus structures and can emphasize single motifs.

The posttranscriptional regulation mechanism that represses the translation of target mRNAs by occluding the ribosome binding site (RBS) is widespread among sRNA. Consistently, C-rich loop sequences are a common feature among sRNAs and it was postulated that these motifs generally are signatures of sRNAs that repress the translation of target mRNAs by pairing with the RBS. An example is RNAIII, a sRNA which is predominant in Staphylococcus species. RNAIII harbors a conserved motif, UCCC, in 3 of its hairpin loops. In Staphylococcus aureus these hairpins are suggested to facilitate the initial binding between RNAIII and the RBS of the target mRNAs of several virulence factor mRNAs and the mRNA of the transcriptional regulator roT. Moreover, in a comparative study in S. aureus strains, several distinct sRNAs were identified that carry the identical C-rich loop motif. The authors hypothesized that these sRNAs are the product of convergent evolution. A similar picture is found in S. meliloti where several representatives of RNA families occur which are either similar to cuckoo HP2 (RFM_SmelA003), cuckoo HP3 (RFM_SmelB008, RFM_SmelC416, RFM_SmelC601) or cuckoo HP4 (RFM_SmelC023) RNAs. Pairwise alignment of these sRNAs in our study (data not shown) with cuckoo members of S. meliloti revealed their sequence dissimilarity and therefore they likely do not share a common history but might act on their target mRNAs in an analogous way. Furthermore, sRNAs with sequence motifs reminding of the cuckoo motif are sX13 RNA and RepG RNA, which are highly conserved in the Xanthomonadaceae family and in Helicobacter pylori strains, respectively.

So far homologs of neither family could be discovered in other species that would establish a phylogenetic connection between the above mentioned RNA families and thus no homology seems to exists. This is in concordance with observations that only a small proportion of RNA families are widely distributed.

Concerning the aSD pattern of the cuckoo RNAs, the question arises, if cuckoo RNAs act as global translational repressors or if they occlude specific RBS more effectively thus repressing the respective genes. A comparative target analysis conducted to investigate this question could start from our compilation of cuckoo RNAs.

Note added in revision: In the most recent release of Rfam, a RNA family model RF02344 has been added. Its members overlap with the ones of our cuckoo family. As is current practice in Rfam, the family RF02344 is described as a covariance model, which is inherently limited to a fixed consensus structure. It assumes exactly 3 hairpins, and as a consequence, many family members of type HP2 and HP4 are wrongly annotated and some missing. This supports the use of a new, more flexible method (as presented herein) for model construction in the case of significant structural variation.
Methods

Thermodynamic matchers

Let x be an RNA sequence, and $F(x)$ its folding space, i.e., the set of secondary structures it can fold into. The thermodynamic model assigns a free energy state $E(s)$ to a secondary structure s. A structure prediction algorithm, such as RNAfold, uses this energy model to predict the structure of minimum free energy (MFE),

$$mfe(x) = \arg\min_s \{E(s) | s \in F(x)\}.$$

A thermodynamic matcher (TDM) solves the same minimization problem on a specific subset of $F(x)$. Let M be a function that, given sequence x, yields a subset of the folding space, $M(x)F(x)$. Our intention is that M somehow captures a class of structures that contains a consensus structure for a family of sequences. Then, a thermodynamic matcher for M computes

$$tdm_M(x) = \arg\min_s \{E(s) | s \in M(x)\}.$$

This is mathematically strict, with no heuristics involved. The matcher folds the given RNA sequence into the prescribed structure class as good as it – the RNA – can. Should $mfe(x) \notin M(x)$, we find $tdm_M(x) = mfe(x)$. Therefore, it makes sense to compare $E(tdm_M(x))$ to $E(mfe(x))$. This allows to evaluate whether the matching structure comes close enough to minimal free energy to be plausible from the thermodynamic point of view.

Although notations are quite different, a TDM is similar to a descriptive motif matcher as provided e.g. with RNAMotif. However, its implementation is different. It uses dynamic programming during the matching phase, rather than constructing combinatorial matches and evaluating them afterwards. Thus, only the best possible match (if any) for a sequence window is returned. Even with a loosely defined motif, the output is bounded by $O(n^3)$, which otherwise grows exponentially.

Heretofore, the idea of TDMs has found a variety of applications, but not in RFM construction. A TDM, tuned to a subset of the folding space, is a nontrivial program to construct, similar but with specialized recurrences compared to a standard structure prediction algorithm. In fact, a TDM typically requires more recurrences and dynamic programming tables than a standard RNA folding algorithm. Hand-programming such a matcher, possibly modifying its design several times and debugging the implemented dynamic programming algorithm, would be prohibitive in practice. Fortunately, there is some automated support.

- The program RapidShapes generates TDMs from abstract shape specifications, such as ”[][][]” for the cloverleaf shape. This allows one to directly compute this shape’s contribution to the partition function of x in $O(n^3)$, which otherwise requires computing all shapes and has exponential runtime.
- The tool Locomotif generates TDMs from structure graphics, which a non-programmer can compile from predefined building blocks (stems, bulges, multiloops, simple pseudoknots, ...). These building blocks can be specialized and decorated with sequence motifs in various ways. But in principle, Locomotif’s fixed set of blocks is a restriction of the TDM concept.
- The recent Bellman’s GAP system provides the declarative language GAP-L, which allows to describe TDMs by (tree) grammars and evaluation algebras, and comes with a repository of re-usable components for RNA folding algorithms. In particular, there is an algebra for MFE calculation, which can be used off-the-shelf, and the TDM designer does not have to worry about the intricacies of the energy model. It implements the TDM grammar with the best asymptotic efficiency and a minimal number of dynamic programming tables.

In this study, we chose to first produce a shape matcher with Locomotif, obtain its GAP-L source code, and then to further refine the GAP-L program according to our design decisions.

General overview of TDM construction

The TDM construction process, like other descriptor based approaches for modeling RNA families, is neither standardized nor fully automated, but driven by human design decisions. Nevertheless, the steps that are involved in TDM construction follow a general scheme:

1. parameter derivation from an input RNA or a set of related RNAs,
2. creation of a graphical description using Locomotif,
3. compilation of the underlying folding grammar into a TDM,
4. screening for sequences applying the TDM,
5. assessment of new candidates.

Steps 1 to 5 are repeated until the final model of the RNA family is obtained. In this study, we started with a structurally varying set of 145 known cuckoo RNAs (Table S5) and derived structure and sequence features of the cuckoo family. We thereby focused on the modular nature of the cuckoo RNAs. See Supplementary Methods for a detailed description of how initial parameters were derived. In order to capture all important features of the cuckoo family we built two complementary TDMs, the skeleton TDM and the cuckoo TDM, which are described in the following sections. The Locomotif editor was used to draw annotated structure graphics and obtain basic grammars for both TDMs. We manually adapted these basic grammars to match variable numbers of consecutive cuckoo modules and introduced restrictive structure constraints and sequence motifs according to the parameters gathered initially. For the screening of genome sequences, we implemented a variant aware search procedure, which integrates the skeleton and the cuckoo TDM and separates structural variants of cuckoo RNAs (see section below). After

\footnote{The name "thermodynamic matcher" goes back to Reeder et al., but no formal definition was given there.}
assessment, in the subsequent modeling process we refined the TDMs by relaxing constraints gradually, by adding new cuckoo motifs, and by the integration of new constraints.

The skeleton TDM

The skeleton TDM aims at evaluating an input RNA sequence to be a potential cuckoo RNA by focusing on two aspects. One is the definition of sequence motifs that are considered instances of the cuckoo motif, the other is the distance between two such motifs. The output is an unfolded RNA sequence, annotated with the genomic coordinates and the predicted cuckoo motifs in upper case letters.

Conceptually, the underlying grammar of the skeleton TDM defines the (valid) sequence of a cuckoo RNA as a series of two or more basic blocks (non-terminal \textit{motif}), which might be enclosed by leading and/or trailing bases (Fig. 3A). \textit{struct}, derived from the grammars axiom, is the complete sequence of a cuckoo RNA without a secondary structure. \textit{struct} is the start point of the grammar and defines alternative productions of leading unpaired bases (\textit{sadd}) and the first (leftmost) generation of \textit{motif}, which is concatenated with one or more instances of \textit{motif} (\textit{struct_m}) by applying the algebra function \textit{cadd}. \textit{struct_f} might add trailing bases before terminating the generation of the cuckoo RNA. The nonterminal \textit{motif} designates a sequence that is concatenated of an unpaired sequence of length 12, an instance of the cuckoo motif, and an unpaired sequence with variable length of 12 to 34 bases. \textit{motif} is derived from a set of productions that stem from the set of specified cuckoo motif variants. The sequence motifs are described in IUPAC code.

The cuckoo TDM

The cuckoo TDM provides a single structural model that integrates all variants of cuckoo RNAs and is able to discover also (so far unknown) cuckoo RNAs that consist of more than four

Figure 3. Skeleton (A), cuckoo TDM grammar (B), and cuckoo sequence motif constraints (C). In both grammars \textit{struct} is the axiom. Vertical bars separate alternative productions that start at the same nonterminal. Algebra functions are colored in green and built the tree-like data structure from terminals and nonterminals. In case of the cuckoo TDM grammar, these functions call upon the energy functions of the thermodynamic model to compute free energies for the corresponding substructure. The following terminals (in blue) are used: \textit{e} denotes the empty word, \textit{b} a single base from the RNA alphabet \{A,C,G,U\}, \textit{r} a region of unpaired bases, and \textit{loc} the end-position of a neighbor subword. Numbers depict thresholds for size filters. A single number specifies the maximum size while two numbers determine a size range. \textit{dangle} applies a base pair filter (in red), requiring at least six base pairs. For each cuckoo motif in C, an alternative production of \textit{seqmotif} exists, where \textit{rm} corresponds to the cuckoo motif. The IUPAC convention is used to express cuckoo motifs.
hairpins. Given a single RNA sequence, the cuckoo TDM predicts the energetically most stable RNA secondary structure that forms the shape of the cuckoo RNA family structure. Basically, the underlying grammar follows the same rules for the construction of substructures than a standard RNA folding grammar using the thermodynamic model (Fig. 3B). dangle represents closed substructures, which is the term for substructures that start with a base stack. The function drem passes on the energy of the substructure and implements the dangling-end model OverDangle.39 This model handles energies of dangling bases in a simplified form, by accounting energy for dangling bases on both sides of the helix, regardless if a base is available for dangling or not. strong has two production rules that are repeatedly applied to construct a substructure. sr, used in both productions, adds a stacking base pair and either extends a helix (strong) or introduces one of four (allowed) helix interrupting structural motifs (weak) that end with a closing base pair: internal loop (iloop), bulge (leftB, rightB), or hairpin (hairpin). Since cuckoo RNAs naturally do not form multiloops, the production for multiloops is removed from the standard grammar. Hence, dangle defines a single hairpin, which is at the same time the basic structural component of cuckoo RNAs. The axiom struct describes a complete cuckoo RNA folded into the family structure. In combination with struct_m and struct_f, different structural variants are realized, by connecting variable numbers of components by stretches of unpaired sequences.

For tailoring the grammar to the family structure of cuckoo RNAs, we introduced a number of modifications, which involve the introduction of size restrictions, filter, and sequence patterns. The overall size of hairpins is restricted to sizes between 24 and 50 bases, while hairpin loops, represented by motif, are allowed to range between 9 and 27 bases. For each cuckoo motif or set of cuckoo motifs (Fig. 3C), specified in IPUAC code, an alternative production (seqmotif) exists that encloses a cuckoo motif (rcm) with two flanking unpaired regions of bases r. Helix interruptions by bulges and internal loops are limited to six bases. The maximal length of an unpaired sequence connecting two hairpins is 10 bases. Finally, we defined a helix length filter (hls_len), which defines a minimal number of six base pairs a helix must exhibit.

Variant-aware homology search of cuckoo RNAs

The search for homologs of the cuckoo family in a single genome sequence can be divided into three main stages. In the first stage the skeleton TDM screens the genome in a sliding-window mode for initial candidate homologs that meet the primary sequence constraints. Here, a window of 120 nt size and a step size of 50 nt is used. Overlapping matches, provided that the discovered cuckoo motifs in the overlapping part are at identical genomic positions, are assembled to a single candidate. The assembly step enables the generation of candidates with variable numbers of cuckoo motifs, corresponding to an equal number of stem-loops. The screen in 2,689 bacterial genomes resulted in 42,312 candidates.
pointed shape refers to the abstract shape representation of an RNA. Structural similarity is assessed by using pointed shapes. A second filter, which tests if the candidate folds also without structural constraints into the cuckoo RNAs characteristic structure(s). This led to the implementation of a sequence boundaries, the MFE structure often resembles the strategy. We apply RNAfold to calculate the number of candidate sequences by more than 60% to return 150 HP3 and 66 HP4 cuckoo RNAs. Therefore, we built a new TDM, tdmtmHP2, that is specific to HP2 cuckoo RNAs, only. The parameters used for adapting tdmtmHP2 were derived from already known HP2 cuckoo RNAs and manually selected candidates that showed a high plausibility based on synteny, distribution pattern, and structural properties. See Figure S2 for details on the grammar of tdmtmHP2. The additional application of tdmtmHP2 on the 973 HP2 candidates narrowed down the number of cuckoo RNAs to 105.

Analysis of preserved genomic context of cuckoo RNAs
We analyzed the genomic context of cuckoo RNAs for conservation. For this purpose we searched for orthologous genes that flank cuckoo RNA loci using Proteinortho. Orthologous groups of genes that had more than 5 members were retained. We defined a conserved intergenic neighborhood as the locus of a cuckoo RNA or a cluster of cuckoo RNAs, which is flanked at least on one side by an orthologous group of genes.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Supplemental Material
Supplemental data for this article can be accessed on the publisher’s website.

References
1. Vogel J, Bartels V, Tang TH, Churakov G, Slagter-Jüger JG, Hüttenhofer A, Wagner EGH. RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. Nucleic Acids Res 2003; 31:6435-43; PMID:14662901; http://dx.doi.org/10.1093/nar/gkg867
2. Willkom DK, Minnerup J, Hüttenhofer A, Hartmann RK. Experimental RNomics in Aquifex aeolicus: identification of small non-coding RNAs and the putative 6S RNA homolog. Nucleic Acids Res 2005; 33:1949-60; PMID:15814812; http://dx.doi.org/10.1093/nar/gkj334
3. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolution in gene expression analysis. Nat Rev Genet 2009; 10:57-63; PMID:19015606; http://dx.doi.org/10.1038/nrg2484
4. Burge SW, Daub J, Eberhardt R, Tare J, Barquist L, Nawrocki EP, Eddy SR, Gardner PP, Bateman A. Rfam 11.0: 10 years of RNA families. Nucleic Acids Res 2013; 41:D226-32; PMID:23125362; http://dx.doi.org/10.1093/nar/gkt1005
5. Eddy SR, Durbin R. RNA sequence analysis using covariance models. Nucleic Acids Res 1994; 22:2079-88; PMID:8029015; http://dx.doi.org/10.1093/nar/22.11.2079
6. Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics 2013; 29:2935-5; doi:10.1093/bioinformatics/btt509
7. Durbin R, Eddy SR, Kroug A, Mitchison G. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge, UK: Cambridge University Press; 1998
8. Nuss AM, Gasper J, Berghoff BA, Vogel J, Kugl G. Overlapping alternative sigma factor regulons in the response to singlet oxygen in Rhodobacter sphaeroides. J Bacteriol 2010; 192:2613-23; PMID:20304993; http://dx.doi.org/10.1128/JB.01605-09
9. Berghoff BA, Gasper J, Sharma CM, Zohua M, Lortspeich F, Vogel J, Kugl G. Contribution of Hfq to photostress resistance and global regulation in Rhodobacter sphaeroides. Mol Microbiol 2011; 80:1479-95; PMID:21535243; http://dx.doi.org/10.1111/j.1365-2958.2011.05758.x
10. Berghoff BA, Gasper J, Sharma CM, Zohua M, Lortspeich F, Vogel J, Kugl G. Contribution of Hfq to photostress resistance and global regulation in Rhodobacter sphaeroides. Mol Microbiol 2011; 80:1479-95; PMID:21535243; http://dx.doi.org/10.1111/j.1365-2958.2011.05758.x
11. del Val C, Rivas E, Torres-Quesada O, Torro N, Jiménez-Zurdo JI. Identification of differentially expressed small non-coding RNAs in the legume endosymbiont Sinorhizobium meliloti by comparative genomics. Mol Microbiol 2007; 66:1080-91; PMID:17971083; http://dx.doi.org/10.1111/j.1365-2958.2007.05978.x
12. Rivas E. Evolutionary models for insertions and deletions in a probabilistic modeling framework. BMC Bioinformatics 2005; 6:63; PMID:15780137; http://dx.doi.org/10.1186/1471-2105-6-63
13. Wuthier S, Hofacker IL, Stadler PF. Fast and reliable prediction of noncoding RNAs. Proc Natl Acad Sci USA 2005; 102:2454-9; PMID:1565081; http://dx.doi.org/10.1073/pnas.0409169102
14. Valverde C, Livny J, Schütze J-P, Reinkensmeier J, Becker A, Parisi G. Prediction of Sinorhizobium meliloti sRNA genes and experimental detection in strain 2011. BMC Genomics 2008; 9:416; PMID:18793445; http://dx.doi.org/10.1186/1471-2164-9-416
15. Schütze J-P, Reinkensmeier J, Daschley S, Evguenieva-Hackenberg E, Janssen S, Janicke S, Becker JD, Giegerich R, Becker A. A genome-wide survey of sRNAs in the symbiotic nitrogen-fixing alpha-proteobacterium Sinorhizobium meliloti. BMC Genomics 2010; 11:245; PMID:20398411; http://dx.doi.org/10.1186/1471-2164-11-245
24. Geissmann T, Chevalier C, Cros M-J, Boisset S, Krol E, Giegerich R, Long SR, Becker A. Global mapping of transcription start sites and promoter motifs in the symbiotic alpha-proteobacterium Sinorhizobium meliloti. BMC Genomics. 2013; 14:156; PMID:23336765; http://dx.doi.org/10.1186/1471-2164-11-53

25. Boisset S, Geissmann T, Hunzinger E, Fechter P. Parameters improving prediction of RNA secondary structure based on thermodynamics. BMC Bioinformatics 2004; 5:104; PMID:15294028; http://dx.doi.org/10.1186/1471-2105-5-104

26. Reeder J, Reeder J, Giegerich R. Locomotif: from graphical motif description to RNA motif search. Bioinformatics 2007; 23:392-400; PMID:17664632; http://dx.doi.org/10.1093/bioinformatics/btm022

27. Mathews DH, Sabina J, Zuker M, Turner DH. A variable homopolymeric G-repeat defines small RNA-mediated posttranscriptional regulation of a chemotaxis receptor in Helicobacter pylori. Proc Natl Acad Sci USA 2014; 111:E501-10; PMID:24474799; http://dx.doi.org/10.1073/pnas.1315152111

28. Hofacker MP, Gardner PP, Poole AM. Comparative analysis of RNA families reveals distinct repertoires for each domain of life. PLoS Comput Biol 2012; 8: e1002572; PMID:23497285; http://dx.doi.org/10.1093/bioinformatics/btq014

29. Korber B, Grunert C, Struyf S, Giegerich R. Yield grammar analysis and product optimization in a domain-specific language for RNA shape probabilities. Bioinformatics 2010; 26:632-9; PMID:20080511; http://dx.doi.org/10.1093/bioinformatics/btq014

30. Janssen S, Giegerich R. Faster computation of exact RNA folding energies. Comput Syst Bioinformatics Conf 2006; 111-21; PMID:17369630; http://dx.doi.org/10.1093/bioinformatics/btm179

31. Sauthoff G, Giegerich R. Lost in dynamic matchers: strengthening the significance of RNA shape parameters. RNA 2012; 18:2135-47; PMID:22939697; http://dx.doi.org/10.1093/bioinformatics/btt022

32. Reeder J, Reeder J, Giegerich R. yield grammar analysis and product optimization in a domain-specific language for RNA shape probabilities. Bioinformatics 2013; 29:551-60; PMID:2355290; http://dx.doi.org/10.1093/bioinformatics/btq014

33. Sauthoff G, Giegerich R. Yield grammar analysis and product optimization in a domain-specific language for RNA shape probabilities. Bioinformatics 2013; 29:551-60; PMID:2355290; http://dx.doi.org/10.1093/bioinformatics/btq014

34. Prohaska SJ. Proteinortho: detection of (co-)orthologs through similarity analysis based on helices. BMC Bioinformatics 2000; 1:2; 22. http://dx.doi.org/10.1186/1471-2105-12-429

35. Zdobnov EM, Borodina T, Tatusova T, Maglott DR. NCBI Gene: gene across genomes. Trends Genet 2008; 24:880-91; PMID:17596630; http://dx.doi.org/10.1016/j.ygeno.2008.03.009

36. Sauthoff G, Giegerich R. Yield grammar analysis and product optimization in a domain-specific language for RNA shape probabilities. Bioinformatics 2010; 26:632-9; PMID:20080511; http://dx.doi.org/10.1093/bioinformatics/btq014

37. Janssen S, Schudoma C, Steger G, Giegerich R. Lost in folding space? Comparing four variants of the thermodynamic model for RNA secondary structure prediction. BMC Bioinformatics 2011; 12:429; http://dx.doi.org/10.1186/1471-2105-12-429

38. Storz G, Vogel J, Wassarman KM. Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 2011; 43:890-91; PMID:21925377; http://dx.doi.org/10.1016/j.molcel.2011.08.022

39. Storz G, Vogel J, Wassarman KM. Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 2011; 43:890-91; PMID:21925377; http://dx.doi.org/10.1016/j.molcel.2011.08.022

40. Kuzniar A, van Ham RCHJ, Pongor S, Leunissen JAM. Conservation and occurrence of trans-encoded sRNAs in the Rhizobiales. Genes [Internet] 2011; 2:925-56. Available from: http://www.mdpi.com/2073-4425/2/4/925; PMID:24710299; http://dx.doi.org/10.3390/genes20400925

41. Jeong Y, Hsu P, Seo E, Carroll M, Meister G. A survey of sRNA families in Agrobacterium tumefaciens. RNA Biol 2012; 9:119-29; PMID:22418845; http://dx.doi.org/10.4161/rna.17212

42. Liao R, Zhao Y, Zhao Z, Hurst LD, Pavesi G. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 1999; 288:911-40; PMID:10329189; http://dx.doi.org/10.1006/jmbi.1999.2700

43.報道 T, 藤尾 Y, 藤尾 Y, 乾生 T. Small RNA sX13: a multifaceted regulator of transcription start sites and promoter motifs in each domain of life. PLoS Comput Biol 2012; 8: e1002572; PMID:23133357; http://dx.doi.org/10.1073/pnas.1315121111

44. Pernitzsch SR, Tirier SM, Beier D, Sharma CM. A variable homopolymeric G-repeat defines small RNA-mediated posttranscriptional regulation of a chemotaxis receptor in Helicobacter pylori. Proc Natl Acad Sci USA 2014; 111:E501-10; PMID:24474799; http://dx.doi.org/10.1073/pnas.1315121111

45. Vercruysse M, Fauvart M, Cloots L, Engelen K, Thijs IM, Marchal K, Michiels J. Genome-wide detection of predicted non-coding RNAs in Rhizobium etli. Genes [Internet] 2011; 2:925-56. Available from: http://www.mdpi.com/2073-4425/2/4/925; PMID:24710299; http://dx.doi.org/10.3390/genes20400925

46. Prohaska SJ. Proteinortho: detection of (co-)orthologs through similarity analysis based on helices. BMC Bioinformatics 2000; 1:2; 22. http://dx.doi.org/10.1186/1471-2105-12-429

47. Huang J, Backofen R, Voss B. Abstract folding space? Comparing four variants of the thermodynamic model for RNA secondary structure prediction. BMC Bioinformatics 2011; 12:429; http://dx.doi.org/10.1186/1471-2105-12-429

48. Prohaska SJ. Proteinortho: detection of (co-)orthologs through similarity analysis based on helices. BMC Bioinformatics 2000; 1:2; 22. http://dx.doi.org/10.1186/1471-2105-12-429

49. Prohaska SJ. Proteinortho: detection of (co-)orthologs through similarity analysis based on helices. BMC Bioinformatics 2000; 1:2; 22. http://dx.doi.org/10.1186/1471-2105-12-429