A GATA Transcription Factor from Soybean (Glycine max) Regulates Chlorophyll Biosynthesis and Suppresses Growth in the Transgenic Arabidopsis thaliana

Chanjuan Zhang 1, Yi Huang 1, Zhiyuan Xiao 1, Hongli Yang 1, Qingnan Hao 1, Songli Yuan 1, Haifeng Chen 1, Limiao Chen 1, Shuilian Chen 1, Xinan Zhou 1,* and Wenjun Huang2,3,*

Supplementary Materials:

Figure S1. Multiple alignment of deduced amino acids of GmGATA58 with other three GATA factors. The highly conserved GATA domain, conserved leucine-leucine-methionine (LLM) domain and nuclear localization signal (NLS) were indicated. The protein alignment was generated based on the full-length protein sequences using the Clustal Omega algorithm at the EMBL-EBI website (http://www.ebi.ac.uk/Tools/msa/clustalo/) with the default settings. Protein sequences were retrieved from GenBank and their accession numbers were as follows: Glycine max GATA58 (XP_003550634.1) and GATA44 (XP_003543725.1), Arabidopsis thaliana GNC (NP_200497.1) and GNL (NP_194345.1).
Figure S2. Restoration of greening defect of Arabidopsis thaliana gnc mutant by GmGATA58 overexpression. Phenotypic comparison of wild-type (WT), gnc mutant and overexpression of GmGATA58 in the gnc mutant background (gnc-OX7).

Table S1. Putative cis-acting regulatory elements predicted in the GmGATA58 promoter sequence.

No.	Cis-Element Name	Sequence	Function	Element Number
1	ABRE (ACGT-containing ABA Response Element)	CACGTG	abscisic acid responsiveness	1
2	ACE (ACGT-Containing Element)	AAAACGTTTA	light responsiveness	1
3	AE-box (Activating Element)	AGAAACCTT	light response	1
4	ARE (Anaerobic Response Element)	TGGTTT	anaerobic induction	2
5	ATI-motif Box 4	ATTAATTTTACA	light responsive module	1
6	Box 4	ATTAAT	light responsiveness	3
7	CATT-motif	GCACTTC	light responsive element	2
8	(Chs Conserved DNA Module Array 2)	TTACTTTAA	light responsive element	1
9	Circadian (Circadian Control)	CAAAGATATC	circadian control	1
10	G-Box	CACGTG	light responsiveness	1
11	G-box	GACATGGTGT	light responsiveness	1
12	GA-motif	AAGGAAGA	light responsive element	1
13	GATA-motif	AAGATAAGATT	light responsive element	1
14	GCN4_motif	TGACTCA	endosperm expression	1
15	HSE (Heat Shock Element)	AAAAAATTTTC	heat stress responsiveness	2
16	I-box	AGATAAGG	light responsive element	1
17	MBS (MYB Binding Site)	T(C)AACTG	drought-inducibility	4
18	MRE (MYB Recognition Element)	AACCTAA	light responsiveness	2
19	O2-site (Opaque-2 site)	GT(A)TGACG(A)TGA	zein metabolism regulation	2
20	P-box (Pyrimidine Box)	CCTTTTG	gibberellin-responsive element	1
21	Ski-1_motif	GTCAT	endosperm expression	5
22	Sp1	CC(G/A)CCC	light responsive element	1
23	TATC-box	TATCCCC	gibberellin-responsive	1
24	TCA-element	CCATCTTTTTT	salicylic acid responsiveness	1
25	TCCC-motif	TCTCCCT	light responsive element	2
26	TCT-motif	TCTTAC	light responsive element	1
27	TGA-element	AACGAC	auxin-responsive element	1
Table 2. Primers used in this study for cloning, vector construction, semi-quantitative RT-PCR and qPCR assay.

Gene Name	Accession No.	Primer Sequence (Forward/Reverse)	Note
GmGATA58	Glyma.17G055200	GTGTTTTTATATGTGTGTTCCTCCA; ATGGAAGTGGTGGTACCTCTAGCC	Full-length cDNA cloning
		TCCCCGGGAGATTCCAGCTATGGCCCA; CGGATGATCACTGGAACAAGCCCTATAAGATTAA	Subcellular localization assay
		TGATGTTAGGTTAGCTTTACATGTC; GATGGAGGAACACACATATAAAAC	Promoter isolation
GmGATA58	Glyma.17G055200	TCCCCCGGGAGATTCCAGCTATGGCCCA; CGGATGATCACTGGAACAAGCCCTATAAGATTAA	Subcellular localization assay
	Glyma.17G055200	ATGATCAGAGCCTGTGCAG; TCAATGAACAAGCCCTATAAGATTAA	Semi-quantitative RT-PCR assay
	Glyma.17G055200	ATGATCAGAGCCTGTGCAG; TCAATGAACAAGCCCTATAAGATTAA	Semi-quantitative RT-PCR assay
AtUBQ10	At4g05320	GGCTGATTACAATATCCAGTCG; GCCACCATTGGAGGAGAGT	Semi-quantitative RT-PCR assay
GmCHLH1	Glyma.03G137000	ACGGTATCGGATAAGTCGGTCCTACCCCTACCTCGT; AGAATCTGTGTTGATCTTTAAATATGTAAGTAAAC	promoter isolation for dual-luciferase reporter assay
GmCHLH3	Glyma.19G139300	ACGGTATCGGATAAGTCGGTCCTACCCCTACCTCGT; AGAATCTGTGTTGATCTTTAAATATGTAAGTAAAC	promoter isolation for dual-luciferase reporter assay
GmCHLII1	Glyma.13G232500	ACGGTATCGGATAAGTCGGTCCTACCCCTACCTCGT; AGAATCTGTGTTGATCTTTAAATATGTAAGTAAAC	promoter isolation for dual-luciferase reporter assay
GmACT11	Glyma.18G290800	ATCTTGACCTGACGCTGTTATCC; GCTTGCTCCTGCTGCTCC	qPCR assay
AtDXS	At4g15560	AACTTACTTGTGGGAGGACATTAG; CATCTTGGTGGAGAGCG	qPCR assay
AtDXR	At5g62790	GCCGTATGCTGTATAGCCTGTGCTTACA; AGAATCTGTGTTGATCTTTAAATATGTAAGTAAAC	qPCR assay
AtHEMA1	At1g58290	CACCGGTTTACATGTGGACGG; CACCCATCGTCTCAACACTGTG	qPCR assay
AtHEMA3	At2g31250	GACAAAAAGACGAGGAAGCAG;	qPCR assay
Gene	Accession	Primer Forward	Primer Reverse
--------	-----------	----------------	----------------
AtGSA1	At5g63570	GCTGCTACCAGTCCCATCGTA	ATACCTTTGGAAATCACGCCTGATC; ATCTCCAATAATATCAGCCTACC
AtGSA2	At3g48730	GACCGATGTATCAAGCTGGTACG; AAGTATCATATGTCCCTGGGTGAC	ATCTCCATAATATCAGCCTACC
AtPPX I1	At4g01690	TGAGCATGAAACGCAGGTTTG; AAGTCCCTTCTGAAAAGAACC	AGACATAGTGACTAAACAGACAGCAGC
AtPPX I2	At5g14220	CAACCTTTATTGGTGGGAGTAGGAA; TGGTTGACAGAACCGGTTCA	AGACATAGTGACTAAACAGACAGCAGC
AtCHLI1	At4g18480	AGACCATAGTGACTAAACAGACAGCAGC	AGACATAGTGACTAAACAGACAGCAGC
AtCHLI2	At5g45930	GACCGGAGCTGAGTAGTAAGA; CTTCCTTGCAGTAAATCTCGCTCC	ATGTGGTAGGTAGG
AtCHLD	At1g08520	CCGATGGCTAGCCACCATTA; TTGGACGCTGGGCTAGGAGCA	AGACATAGTGACTAAACAGACAGCAGC
AtCHLH	At5g13630	ACACCAATCCCAACTCTCTTCG; TCAGCGGAAGTCCCTGAGTAG	AGACATAGTGACTAAACAGACAGCAGC
AtCHLM	At4g25080	TGAGATGAAGGCAAGACCCAGCACA; GTCTGCTTGGTGTGGGTA	AGACATAGTGACTAAACAGACAGCAGC
AtCHL27	At3g56940	GATTTCGCCGAGTTTGAGCC; AAATCAAGAACCAGCCGTAANACTC	AGACATAGTGACTAAACAGACAGCAGC
AtPORA	At5g54190	TGATTTGGAGCTGGAACACACAGCACA; CCAAAACGTGAAACACCCGAGG	AGACATAGTGACTAAACAGACAGCAGC
AtPORB	At4g27440	AAGGCTCTGAAAGTGTGGGAGA; TCGATTGGTACCAGGAGGTTGC	AGACATAGTGACTAAACAGACAGCAGC
AtPORC	At1g03630	ACACATACGCTGTTTCCG; CAATACACTCTGACTCTCAAGAAG	AGACATAGTGACTAAACAGACAGCAGC
AtCHLP	At1g74470	GATGCTCTGTGATTTAGACTACG; CACTTACCGGAAACCACACCATAG	AGACATAGTGACTAAACAGACAGCAGC
AtCHLG	At3g51820	CTCTTACGCCAGATGTTGTTTC; TGCCAAAGCTACTGGGAGAGA	AGACATAGTGACTAAACAGACAGCAGC
AtGAPDH	At3g26650	CTTGGAAGAGCCTAGGATGGAAC	AGACATAGTGACTAAACAGACAGCAGC
