A long-lived stop with freeze-in and freeze-out dark matter in the hidden sector

Amin Aboubrahim
Northeastern University
Boston, MA

Searching for long-lived particles at the LHC: Sixth workshop of the LHC LLP Community

University of Ghent, Belgium
27th to 29th of November 2019
Table of Contents

1. Introduction
2. $U(1)_X$-extended MSSM/SUGRA model
3. Dark matter relic density
4. Sparticle spectrum and long-lived stop
5. Stop pair production at the LHC and signature analysis
6. Conclusions
Motivation: Hidden sector dark matter

- Under the assumption of R-parity conservation, supersymmetry (SUSY) provides a viable candidate for dark matter: the lightest neutralino (LSP).
- However, it is entirely possible that dark matter (DM) resides in hidden sectors which are ubiquitous in supergravity (SUGRA) and string models.
- We discuss a hidden $U(1)_X$ extension of MSSM/SUGRA model with gauge kinetic and Stueckelberg mass mixings between $U(1)_Y$ and $U(1)_X$.
- If a charged particle of the visible particle has suppressed decay into the hidden sector, it can be stable over detector length leaving a discernible track.
The model

- To the MSSM/SUGRA we add an extra $U(1)_{\chi}$ under which all visible sector particles are neutral.

- The extended model contains two vector superfields: B associated to $U(1)_{\gamma}$ and C associated to $U(1)_{\chi}$ and one chiral scalar superfield S.

- The contents of the superfields:

 $$B(B_\mu, \lambda_B, D_B), \quad C(C_\mu, \lambda_C, D_C), \quad S(\rho + i a, \chi, F)$$

- The gauge kinetic energy sector of the model is

 $$\mathcal{L}_{gk} = -\frac{1}{4}(B_{\mu\nu}B^{\mu\nu} + C_{\mu\nu}C^{\mu\nu}) - i\lambda_B\sigma^\mu \partial_\mu \bar{\lambda}_B - i\lambda_C\sigma^\mu \partial_\mu \bar{\lambda}_C + \frac{1}{2}(D_B^2 + D_C^2)$$
We allow gauge kinetic mixing between $U(1)_X$ and $U(1)_Y$

$$-\frac{\delta}{2} B^{\mu \nu} C_{\mu \nu} - i \delta (\lambda_C \sigma^\mu \partial_\mu \bar{\lambda}_B + \lambda_B \sigma^\mu \partial_\mu \bar{\lambda}_C) + \delta D_B D_C$$

We rotate into the diagonal basis using the transformation

$$\begin{pmatrix} B^\mu \\ C^\mu \end{pmatrix} = \begin{pmatrix} 1 & -s_\delta \\ 0 & c_\delta \end{pmatrix} \begin{pmatrix} B'^\mu \\ C'^\mu \end{pmatrix}, \quad \begin{pmatrix} \lambda_Y \\ \lambda_X \end{pmatrix} = \begin{pmatrix} 1 & -s_\delta \\ 0 & c_\delta \end{pmatrix} \begin{pmatrix} \lambda'_Y \\ \lambda'_X \end{pmatrix},$$

where $c_\delta = 1/(1 - \delta^2)^{1/2}$ and $s_\delta = \delta/(1 - \delta^2)^{1/2}$

We also assume a Stueckelberg mass mixing between the $U(1)_X$ and $U(1)_Y$ sectors

$$\mathcal{L}_{St} = \int d\theta^2 d\bar{\theta}^2 (M_1 C + M_2 B + S + \bar{S})^2,$$

with M_1 and M_2 being input mass parameters.
Neutralino mass matrix

- Written in this basis \((\psi_S, \lambda'_X, \lambda'_Y, \lambda_3, \tilde{h}_1, \tilde{h}_2)\) the mass matrix is:

\[
\begin{pmatrix}
0 & M_1 c_\delta - M_2 s_\delta & m_X c_\delta^2 + m_1 s_\delta^2 - 2 M_{XY} c_\delta s_\delta & \mathbf{M_2} & 0 & 0 & 0 \\
M_1 c_\delta - M_2 s_\delta & m_X c_\delta^2 + m_1 s_\delta^2 - 2 M_{XY} c_\delta s_\delta & -m_1 s_\delta + M_{XY} c_\delta & 0 & s_\delta c_\beta s_W M_Z & -s_\delta s_\beta s_W M_Z \\
M_2 & -m_1 s_\delta + M_{XY} c_\delta & m_1 & 0 & -c_\beta s_W M_Z & s_\beta s_W M_Z \\
0 & 0 & 0 & m_2 & c_\beta c_W M_Z & -s_\beta c_W M_Z \\
0 & s_\delta c_\beta s_W M_Z & -c_\beta s_W M_Z & c_\beta c_W M_Z & 0 & -\mu \\
0 & -s_\delta s_\beta s_W M_Z & s_\beta s_W M_Z & -s_\beta c_W M_Z & -\mu & 0
\end{pmatrix}
\]

- The masses of the hidden sector neutralinos are \((M_2 \ll M_1, \delta \ll 1)\):

\[
m_{\xi_1^0} = \sqrt{M_1^2 + \frac{1}{4} m_X^2} - \frac{1}{2} m_X, \quad \text{and} \quad m_{\xi_2^0} = \sqrt{M_1^2 + \frac{1}{4} m_X^2} + \frac{1}{2} m_X
\]
Scan the parameter space of the model while imposing the Higgs boson mass and relic density constraints

The sparticle spectrum contains as the two lightest particles

1. a neutralino $\tilde{\xi}_1$ from the hidden sector which is the LSP
2. a stop \tilde{t} NLSP from the visible sector such that

$$\tilde{t} \rightarrow \tilde{\xi}_1 t$$ (decays outside the detector)

The hidden and visible sectors communicate via the small gauge kinetic mixing δ and mass mixing $\propto \epsilon = M_2/M_1$

For a mixing $O(10^{-10})$ or less, $\tilde{\xi}_1$ is a FIMP and the stop decay width is suppressed allowing for very late decays
The input parameters from the hidden sector and the visible sector (MSSM)

A. Aboubrahim, WZ. Feng and P. Nath, arXiv:1910.14092 [hep-ph]

Model	m_0	A_0	m_1	m_2	m_3	M_1	m_X	$\tan \beta$	δ
(a)	2632	-6455	3150	2100	1450	1305	380	20	1.02×10^{-11}
(b)	4122	-7760	3363	2622	1165	1400	380	15	1.00×10^{-11}
(c)	2106	-4366	3756	2080	1263	1533	380	18	1.03×10^{-11}
(d)	5042	-9280	4163	3044	1206	1522	450	10	1.10×10^{-11}
(e)	3382	-7593	4046	2746	1695	1720	510	23	8.80×10^{-12}
(f)	4825	-7565	4551	3862	1097	1885	805	13	9.50×10^{-12}
(g)	3851	-6784	4950	3277	1426	1973	712	25	9.00×10^{-12}
(h)	5624	-9330	7532	5250	1434	2105	850	8	1.15×10^{-11}
(i)	6158	-10265	5000	4895	1303	1944	586	28	7.00×10^{-12}
(j)	6638	-11055	6532	5200	1507	2036	638	5	8.50×10^{-12}

Table: Input parameters for the benchmarks used in this analysis. Here $M_2 = M_{XY} = 0$ at the GUT scale. All masses are in GeV.
High scale models with DM candidates must satisfy the current DM relic density $\Omega h^2 = 0.1198 \pm 0.0012$.

The relic density of $\tilde{\xi}_1^0$ arises from two contributions: freeze-out of the stop and freeze-in of DM.

Stops annihilate rapidly giving rise to a small relic where the DM relic density from freeze-out can be determined by

$$\left(\Omega h^2 \right)_{FO} = \frac{m_{\tilde{\xi}_1^0}}{m_{\tilde{t}}} \left(\Omega h^2 \right)_{\tilde{t}}^{FO}$$

The slow decay of heavier sparticles to $\tilde{\xi}_1^0$ will constitute the second part of its relic abundance after the latter freezes-in owing to Boltzmann suppression for $m > T$.

\begin{itemize}
 \item N. Aghanim et al. [Planck Collaboration], arXiv:1807.06209 [astro-ph.CO]
\end{itemize}
The FI relic density from $\tilde{t} \rightarrow \tilde{\xi}_1^0 t$ is:

$$(\Omega h^2)_{FI} \propto \frac{m_{\xi_1^0} \Gamma_{\tilde{t}}}{m_{\tilde{t}}^2}$$

Variation of total relic density w.r.t to the DM mass. For the benchmarks shown, a range of $\tilde{\xi}_1^0$ mass can give the correct relic from FI and FO

DM and stop yields from FI as a function of x. Saturation is observed around $x \sim 3–5$
The spectrum has the hidden sector neutralino $\tilde{\chi}_1^0$ as the LSP while the stop is the NLSP of the extended model.

Lifetime of the stop is **less than one second** to avoid disrupting BBN predictions for light nuclei abundance.

Higgs boson mass and relic density constraints are satisfied as well as LHC constraints on sparticle masses.

Model	h^0	μ	$\tilde{\chi}_1^0$	$\tilde{\chi}_1^+ \tilde{\chi}_1^0$	\tilde{t}	\tilde{g}	$(\Omega h^2)_{\text{FO}}$	$(\Omega h^2)_{\text{FI}}$	Ωh^2	τ_0	
(a)	124.2	3122	1416	1759	1129	1409	3218	0.044	0.076	0.119	0.79
(b)	125.5	3168	1529	2218	1223	1502	2709	0.046	0.070	0.116	0.81
(c)	124.4	2324	1678	1727	1355	1618	2821	0.038	0.089	0.127	0.97
(d)	125.6	3665	1907	2587	1314	1702	2817	0.047	0.065	0.112	0.43
(e)	125.5	3556	1836	2310	1484	1804	3737	0.065	0.059	0.124	0.91
(f)	125.4	2763	2085	2773	1525	1903	2575	0.065	0.044	0.110	0.84
(g)	125.8	2900	2254	2737	1649	2005	3224	0.073	0.050	0.122	0.96
(h)	125.6	3513	3461	3519	1722	2102	3284	0.081	0.040	0.121	0.92
(i)	126.8	3444	2316	3465	1673	2201	3033	0.085	0.030	0.115	0.66
(j)	123.7	4454	3034	4360	1742	2304	3460	0.088	0.031	0.119	0.55
With a particular choice of A_0 at the GUT, the stop trilinear coupling at the EW scale can be large enough to generate a considerable mass splitting between the two stop mass eigenstates

$$M_{\tilde{t}}^2 = \begin{pmatrix}
 m_{\tilde{t}_R}^2 & m_t(A_t - \mu \cot \beta) \\
 m_t(A_t - \mu \cot \beta) & m_{\tilde{t}_L}^2
\end{pmatrix}$$

The lightest of the mass eigenstates is \tilde{t}. Stop-antistop production proceeds at the partonic level as

$$gg \rightarrow \tilde{t}\tilde{t}^* \quad \text{(dominant contribution)}$$

$$q\bar{q} \rightarrow \tilde{t}\tilde{t}^*$$

The NLO+NLL $\tilde{t}\tilde{t}^*$ production cross-section is calculated at 14 TeV and 27 TeV
The long-lived R-hadron is stable over detector length and will leave a track in the inner detector (ID) tracker and/or in the muon spectrometer (due to charge flipping).

In the detector, an R-hadron will look like a slow moving muon (small $\beta_s = p/E$) with large transverse momentum p_T.

To avoid dealing with charge-flipping of R-hadrons, we focus on information from ID only.

Pre-selection criteria

1. Events are selected by identifying muons/R-hadrons tracks which are central and have large p_T, i.e. $|\eta| < 2.4$ rad and $p_T > 150$ GeV

2. An electron veto is applied along with a Z veto.
\(\beta_s \) is peaked closer to one for lighter stops while it shifts for smaller values for heavier stops.

A cut on \(\beta_s \) greater than 0.6 will remove a large part of the signal.

Cuts on \(E_T^{\text{miss}} \) and \(p_T(\mu, R_{\tilde{t}}) \) are applied to signal and background.

Figure: Distributions in the velocity \(\beta_s \) of candidate \(R \)-hadrons at 14 TeV for points (a)–(f) (left panel) and 27 TeV for all points (right panel).
Introduction

$U(1)_X$-extended MSSM/SUGRA model

Dark matter relic density

Sparticle spectrum and long-lived stop

Stop pair production at the LHC and signature analysis

Conclusions

Amin Aboubrahim

LLPs at HL-LHC and HE-LHC
Projected integrated luminosities for discovery at HL-LHC and HE-LHC

Figure: Left panel: the integrated luminosity for discovery of the points (a)–(e) which are discoverable at both HL-LHC and HE-LHC. Right panel: the integrated luminosity for discovery of the points (f)–(j) at HE-LHC.
Conclusions

- We presented a $U(1)_X$ extension of the MSSM/SUGRA with ultra weakly coupled DM particle in the hidden sector.

- Small gauge kinetic and mass mixings make \tilde{t} a long-lived particle with late decay to the hidden sector neutralino $\tilde{\xi}^0_1$.

- The DM relic density arises from freeze-out and freeze-in (due to the feebleness of $\tilde{\xi}^0_1$) contributions.

- The charged stop will leave a track in the ID after it hadronizes into a composite particle known as an R-hadron.

- We show that half of the benchmarks considered can be discovered at the HL-LHC while all of them are within reach of the HE-LHC.
BACKUP SLIDES
The prototype Stueckelberg Lagrangian couples one abelian vector boson A_μ to one pseudo-scalar σ in the following way

$$\mathcal{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \frac{1}{2} (mA_\mu + \partial_\mu \sigma)(mA^\mu + \partial^\mu \sigma)$$

which is gauge invariant if σ transforms together with A_μ according to

$$\delta A_\mu = \partial_\mu \epsilon, \quad \delta \sigma = -m \epsilon$$

Add a gauge fixing term $\mathcal{L}_{gf} = -\frac{1}{2\xi} (\partial_\mu A^\mu + \xi m \sigma)^2$ so that the total Lagrangian reads

$$\mathcal{L} + \mathcal{L}_{\text{int}} + \mathcal{L}_{gf} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \frac{m^2}{2} A_\mu A^\mu - \frac{1}{2\xi} (\partial_\mu A^\mu)^2$$

$$-\frac{1}{2} \partial_\mu \sigma \partial^\mu \sigma - \xi \frac{m^2}{2} \sigma^2 + g J_\mu A^\mu$$
We assume a Stueckelberg mass mixing between the $U(1)_X$ and $U(1)_Y$ sectors so that

$$\mathcal{L}_{\text{St}} = \int d\theta^2 d\bar{\theta}^2 (M_1 C + M_2 B + S + \bar{S})^2$$

We note that \mathcal{L}_{St} is invariant under $U(1)_Y$ and $U(1)_X$ gauge transformation so that,

$$\delta_Y B = \Lambda_Y + \bar{\Lambda}_Y, \hspace{1cm} \delta_Y S = -M_2 \Lambda_Y,$$

$$\delta_X C = \Lambda_X + \bar{\Lambda}_X, \hspace{1cm} \delta_X S = -M_1 \Lambda_X$$

In component notation, \mathcal{L}_{St} is

$$\mathcal{L}_{\text{St}} = -\frac{1}{2} (M_1 C_\mu + M_2 B_\mu + \partial_\mu a)^2 - \frac{1}{2} (\partial_\mu \rho)^2 - i \chi \sigma^\mu \partial_\mu \bar{\chi} + 2 |F|^2$$

$$+ \rho (M_1 D_C + M_2 D_B) + \bar{\chi} (M_1 \bar{\lambda}_C + M_2 \bar{\lambda}_B) + \chi (M_1 \lambda_C + M_2 \lambda_B)$$
We introduce the Majorana spinors, ψ_S, λ_X and λ_Y so that

$$\psi_S = \left(\chi_\alpha \bar{\chi}_{\dot{\alpha}} \right), \quad \lambda_X = \left(\frac{\lambda_C \alpha}{\lambda_{\dot{\alpha}} C} \right), \quad \lambda_Y = \left(\frac{\lambda_B \alpha}{\lambda_{\dot{\alpha}} B} \right)$$

In addition to the above we add a soft SUSY breaking term to the Lagrangian so that

$$\Delta \mathcal{L}_{\text{soft}} = -\left(\frac{1}{2} m_X \bar{\lambda}_X \lambda_X + M_{XY} \bar{\lambda}_X \lambda_Y \right) - \frac{1}{2} m_{\rho}^2 \rho^2,$$

where m_X is mass of the $U(1)_X$ gaugino and M_{XY} is the $U(1)_X$-$U(1)_Y$ mixing mass.

In the unitary gauge, the axion field a is absorbed to generate mass for the $U(1)_X$ gauge boson so that $M_{Z^{'}} \sim M_1$.
After spontaneous electroweak symmetry breaking and the Stueckelberg mass growth the 3×3 mass squared matrix of neutral vector bosons in the basis (C_μ', B_μ', A_3^μ) is given by

$$
\mathcal{M}_V^2 = \begin{pmatrix}
M_1^2 \kappa^2 + \frac{1}{4} g_Y^2 v^2 s_\delta^2 & M_1 M_2 \kappa - \frac{1}{4} g_Y^2 v^2 s_\delta & \frac{1}{4} g_Y g_2 v^2 s_\delta \\
M_1 M_2 \kappa - \frac{1}{4} g_Y^2 v^2 s_\delta & M_2^2 + \frac{1}{4} g_Y^2 v^2 & -\frac{1}{4} g_Y g_2 v^2 \\
\frac{1}{4} g_Y g_2 v^2 s_\delta & -\frac{1}{4} g_Y g_2 v^2 & \frac{1}{4} g_2^2 v^2
\end{pmatrix}
$$

The Z boson mass receives a correction due to gauge kinetic and mass mixings. Knowing that $M_2 \ll M_1$ and $s_\delta \ll 1$, we can write M_\bot^2 as

$$
M_\bot^2 \simeq M_Z^2 + \frac{\epsilon}{2} g_Y^2 v^2 \frac{s_\delta}{c_\delta} + \frac{1}{4} g_2^2 v^2 \left(\frac{\epsilon}{\kappa} \right)^2
$$
The 27 TeV collider: HE-LHC

- The High Energy LHC (HE-LHC) is a possible candidate as the next generation pp collider at CERN

- Uses the existing LHC ring with 16 T FCC magnets replacing the current 8.3 T ones

- Center-of-mass energy boosted to 27 TeV with a design luminosity ~ 5 times that of the HL-LHC

- This set up necessarily means that a larger part of the parameter space of supersymmetric models beyond the reach of the 14 TeV collider will be probed
Stop pair production cross-sections

Model	$\sigma_{NLO+NLL}(pp \rightarrow \tilde{t} \tilde{t}^*)$	$\sigma_{LO}(pp \rightarrow \tilde{t} \tilde{t})$		
	14 TeV	27 TeV	14 TeV	27 TeV
(a)	0.654	13.5	0.092	1.190
(b)	0.387	9.03	0.060	0.840
(c)	0.197	5.56	0.033	0.550
(d)	0.129	4.00	0.021	0.412
(e)	0.075	2.69	0.013	0.290
(f)	0.046	1.89	0.008	0.214
(g)	0.029	1.29	0.005	0.155
(h)	0.018	0.92	0.003	0.115
(i)	0.011	0.66	0.002	0.085
(j)	0.006	0.47	0.001	0.063
The input parameters of the $U(1)_X$-extended MSSM/SUGRA are of the usual non-universal SUGRA model with additional parameters as below (all at the GUT scale)

$$m_0, A_0, m_1, m_2, m_3, [M_1, m_X, \delta, \tan \beta, \text{sgn}(\mu)]$$

The parameter M_2 is set to zero at the GUT scale. However, it does develop a small value at the EW scale due to RGE running.

Scan the parameter space of the model while imposing the Higgs boson mass and relic density constraints.

The LSP of the model is the lightest neutralino of the hidden sector, $\tilde{\xi}^0_1$

The NLSP is the stop of the visible sector such that

$$\tilde{t} \rightarrow \tilde{\xi}^0_1 t$$
The hidden sector LSP, $\tilde{\xi}_1$, is an admixture of the $U(1)_X$ gaugino λ_X, the Majorana spinor ψ_S, and the visible sector (MSSM) binos, winos and higgsinos, i.e.

$$\tilde{\xi}_1 = N_{11}\psi_S + N_{12}\lambda_X + N_{13}\lambda_Y + N_{14}\lambda_3 + N_{15}\tilde{h}_1 + N_{16}\tilde{h}_2$$

The Z boson mass receives a correction due to gauge kinetic and mass mixings

$$\simeq M_Z^2 + \frac{\epsilon}{2} g_Y^2 v^2 \frac{s_\delta}{c_\delta} + \frac{1}{4} g_2^2 v^2 \left(\frac{\epsilon}{\kappa} \right)^2$$
One of the reactions contributing to dark matter production via FI is $\tilde{t} \rightarrow \tilde{\xi}^0_1 t$ with a yield

$$Y_{\tilde{\xi}^0_1} = \frac{g_{\tilde{t}}}{2\pi^2} \Gamma_{\tilde{t}} m_{\tilde{t}}^2 \int_{T_0}^{T_R} \frac{dT}{H'(T)s(T)} H_1'(x_{\tilde{t}}, x_{\tilde{\xi}^0_1}, x_t, 1, 0, -1)$$

The FI relic density is then determined by

$$\left(\Omega h^2\right)_{FI} = \frac{m_{\tilde{\xi}^0_1} Y_{\tilde{\xi}^0_1} s_0 h^2}{\rho_c} \propto \frac{m_{\tilde{\xi}^0_1} \Gamma_{\tilde{t}}}{m_{\tilde{t}}^2}$$

The total relic density is

$$\Omega h^2 = (\Omega h^2)_{FO} + (\Omega h^2)_{FI}$$
In our model, the mass gap $\Delta m = m_{\tilde{t}} - m_{\tilde{\chi}_1^0}$ need not be small.

Long-lived stops hadronize forming bound states known as R-hadrons with 93% of them being R-mesons.

With an increasing stop mass, an inversion in the relative contribution to Ωh^2 from FI and FO is seen.

In realistic models, freeze-in alone is not enough to explain the relic abundance and freeze-out always factors in.
Selection criteria

- Main jet activity in the signal comes from ISR and FSR
- Large missing transverse energy E_T^{miss} arises due to ISR boosting the R-hadron system thus creating a momentum imbalance
- β_s of a muon/R-hadron must be greater than 0.6 so that an R-hadron can be associated with the same bunch crossing and pass the trigger requirement

Requirement	“ID-only” SR					
	14 TeV	27 TeV				
	SR-A	SR-B	SR-A	SR-B		
$N(\text{muons}/R$-hadrons)	≥ 1	≥ 1	≥ 1	≥ 1		
Z-veto	✓	✓	✓	✓		
$	\eta	$ (rad) $<$	2.4	2.4	2.4	2.4
E_T^{miss} (GeV) $>$	90	90	120	120		
$\Delta R(\text{track}, \text{jet}_1)$ (rad) $>$	0.4	0.4	0.6	0.6		
β_s $>$	0.6	0.6	0.6	0.6		
β_s $<$	0.9	0.9	0.9	0.9		
$p_T(\mu, R_\tilde{t})$ (GeV) $>$	500	600	600	1200		
Estimated integrated luminosities at HL-LHC and HE-LHC

Model	\mathcal{L} at 14 TeV	\mathcal{L} at 27 TeV		
	SR-A	SR-B	SR-A	SR-B
(a)	259	226	20	21
(b)	527	396	37	27
(c)	1309	756	85	41
(d)	2767	1226	150	55
(e)	…	2128	308	81
(f)	…	3667	591	119
(g)	…	…	1258	189
(h)	…	…	2387	285
(i)	…	…	4831	461
(j)	…	…	9922	791

Comparison between the estimated integrated luminosity (\mathcal{L}) for a 5σ discovery at 14 TeV (middle column) and 27 TeV (right column) for a stop R-hadron following the selection cuts, where the minimum integrated luminosity needed for a 5σ discovery is given in fb$^{-1}$. Entries with ellipses mean that the evaluated \mathcal{L} is much greater than 3000 fb$^{-1}$.