The Cayley isomorphism property for groups of order $8p$

Gábor Somlai
Department of Algebra and Number Theory
Eötvös Loránd University
1117 Budapest, Pázmány Péter sétány 1/C, Hungary
email: zsomlei@gmail.com

October 10, 2018

Abstract

For every prime $p > 3$ we prove that $Q \times \mathbb{Z}_p$ and $\mathbb{Z}_3^2 \times \mathbb{Z}_p$ are DCI-groups. This result completes the description of CI-groups of order $8p$.

1 Introduction

Let G be a finite group and S a subset of G. The Cayley graph $Cay(G, S)$ is defined by having the vertex set G and g is adjacent to h if and only if $gh^{-1} \in S$. The set S is called the connection set of the Cayley graph $Cay(G, S)$. A Cayley graph $Cay(G, S)$ is undirected if and only if $S = S^{-1}$, where $S^{-1} = \{ s^{-1} \in G \mid s \in S \}$. Every right multiplication via elements of G is an automorphism of $Cay(G, S)$, so the automorphism group of every Cayley graph on G contains a regular subgroup isomorphic to G. Moreover, this property characterises the Cayley graphs of G.

It is clear that $Cay(G, S) \cong Cay(G, S^\mu)$ for every $\mu \in Aut(G)$. A Cayley graph $Cay(G, S)$ is said to be a CI-graph if, for each $T \subseteq G$, the Cayley graphs $Cay(G, S)$ and $Cay(G, T)$ are isomorphic if and only if there is an automorphism μ of G such that $S^\mu = T$. Furthermore, a group G is called a DCI-group if every Cayley graph of G is a CI-graph and it is called a CI-group if every undirected Cayley graph of G is a CI-graph.

It was proved in [5] that $\langle a, z \mid a^p = 1, z^8 = 1, z^{-1}az = a^{-1} \rangle$ is a CI-group, though not a DCI-group. Let G be a DCI-group of order $8p$, where p is odd prime. It can easily be seen that every subgroup of a DCI-group is also a DCI-group. It follows that the Sylow 2-subgroup of G can only be the quaternion group Q of order 8 or \mathbb{Z}_2^3.

*Research supported by the Hungarian Scientific Fund (OTKA), grant no. K84233
If \(p > 8 \) or \(p = 5 \), then by Sylow’s Theorem the Sylow \(p \)-subgroup of \(G \) is a normal subgroup therefore \(G \) is isomorphic to one of the following groups: \(\mathbb{Z}_2^3 \times \mathbb{Z}_p, Q \times \mathbb{Z}_p, \mathbb{Z}_2^3 \times \mathbb{Z}_p \) or \(Q \times \mathbb{Z}_p \). It was proved in \([2]\) in that \(\mathbb{Z}_2^3 \times \mathbb{Z}_p \) is a CI-group with respect to ternary relational structures if \(p \geq 11 \). Moreover, Dobson and Spiga proved in \([3]\) that \(\mathbb{Z}_2^3 \times \mathbb{Z}_p \) is a CI-group with respect to ternary relational structures for all primes \(p \) and it is a CI-group with respect to color ternary relational structures if and only if \(p \neq 3 \) and 7.

Spiga proved in \([6]\) that \(Q \times \mathbb{Z}_3 \) is not a CI-group with respect to colour ternary relational structures and the non-nilpotent group \(Q \times \mathbb{Z}_3 \) is not a CI-group.

If \(p = 7 \), then either the Sylow 7-subgroup is normal, in which case \(G \) is as before, or \(G \) has 8 Sylow 7-subgroups, when \(G \cong \mathbb{Z}_2^3 \times \mathbb{Z}_7 \). The non-nilpotent groups above are not DCI-groups, see \([4]\). We show that the other groups are DCI-groups.

Theorem 1. For every prime \(p > 3 \) the groups \(Q \times \mathbb{Z}_p \) and \(\mathbb{Z}_2^3 \times \mathbb{Z}_p \) are DCI-groups.

Our paper is organized as follows. In section \([2]\) we introduce the notation that will be used throughout this paper. In section \([3]\) we collect important ideas that we will use in the proof of Theorem \([1]\). Section \([4]\) contains the proof of Theorem \([1]\) for primes \(p > 8 \) and Section \([5]\) contains the proof of Theorem \([1]\) for \(p = 5 \) and 7.

2 Technical details

In this section we introduce some notation. Let \(G \) be a group. We use \(H \leq G \) to denote that \(H \) is a subgroup of \(G \) and by \(N_G(H) \) and \(C_G(H) \) we denote the normalizer and the centralizer of \(H \) in \(G \), respectively.

Let us assume that the group \(H \) acts on the set \(\Omega \) and let \(G \) be an arbitrary group. Then by \(G \wr_H H \) we denote the wreath product of \(G \) and \(H \). Every element \(g \in G \wr_H H \) can be uniquely written as \(hk \), where \(k \in K = \prod_{\omega \in \Omega} G_{\omega} \) and \(h \in H \). The group \(K = \prod_{\omega \in \Omega} G_{\omega} \) is called the base group of \(G \wr_H H \) and the elements of \(K \) can be treated as functions from \(\Omega \) to \(G \). If \(g \in G \wr_H H \) and \(g = hk \) we denote \(k \) by \((g)_b \). In order to simplify the notation \(\Omega \) will be omitted if it is clear from the definition of \(H \) and we will write \(G \wr_H H \).

The symmetric group on the set \(\Omega \) will be denoted by \(\text{Sym}(\Omega) \). Let \(G \) be a permutation group on the set \(\Omega \). For a \(G \)-invariant partition \(B \) of the set \(\Omega \) we use \(G^B \) to denote the permutation group on \(B \) induced by the action of \(G \) and similarly, for every \(g \in G \) we denote by \(g^B \) the action of \(g \) on the partition \(B \).

For a group \(G \), let \(\hat{G} \) denote the subgroup of the symmetric group \(\text{Sym}(G) \) formed by the elements of \(G \) acting by right multiplication on \(G \). For every Cayley graph \(\Gamma = \text{Cay}(G, S) \) the subgroup \(\hat{G} \) of \(\text{Sym}(G) \) is contained in \(\text{Aut}(\Gamma) \).

Definition 1. Let \(G \leq \text{Sym}(\Omega) \) be a permutation group. Let

\[
G^{(2)} = \left\{ \pi \in \text{Sym}(\Omega) \mid \forall a, b \in \Omega \exists g_{a,b} \in G \text{ with } \pi(a) = g_{a,b}(a) \text{ and } \pi(b) = g_{a,b}(b) \right\}.
\]
We say that $G^{(2)}$ is the 2-closure of the permutation group G.

Lemma 1. Let Γ be a graph. If $G \leq \text{Aut}(\Gamma)$, then $G^{(2)} \leq \text{Aut}(\Gamma)$.

3 Basic ideas

In this section we collect some results and some important ideas that we will use in the proof of Theorem 1.

We begin with a fundamental lemma that we will use all along this paper.

Lemma 2 (Babai [1]). $\text{Cay}(G, S)$ is a CI-graph if and only if for every regular subgroup $\hat{\varrho}G$ of $\text{Aut}(\text{Cay}(G, S))$ isomorphic to G there is a $\mu \in \text{Aut}(\text{Cay}(G, S))$ such that $\hat{\varrho}G\mu = \hat{G}$.

We introduce the following definition.

Definition 2.

(a) We say that a Cayley graph $\text{Cay}(G, S)$ is a CI(2)-graph iff for every regular subgroup $\hat{\varrho}G$ of $\text{Aut}(\text{Cay}(G, S))$ isomorphic to G there is a $\sigma \in \langle \hat{\varrho}G, \hat{G} \rangle^{(2)}$ such that $\hat{\varrho}G\sigma = \hat{G}$.

(b) A group G is called a DCI(2)-group if for every $S \subset G$ the Cayley graph $\text{Cay}(G, S)$ is a CI(2)-graph.

Let us assume that $A = \text{Aut}(\text{Cay}(G, S)) \leq \text{Sym}(8p)$ contains two copies of regular subgroups, $\hat{Q} \times \hat{Z}_p$ and $\hat{Q} \times \hat{Z}_p$. By Sylow’s theorem we may assume that \hat{Z}_p and \hat{Z}_p are in the same Sylow p-subgroup P of $\text{Sym}(8p)$. If $p > 8$, then P is isomorphic to \mathbb{Z}_p^\ast. Moreover, P is generated by 8 disjoint p-cycles. It follows that both \hat{Q} and \hat{Q} normalize P so we may assume that \hat{Q} and \hat{Q} lie in the same Sylow 2-subgroup of $N_A(P)$. Let P_2 denote a Sylow 2-subgroup of $\text{Sym}(8)$. It is also well known that P_2 is isomorphic to the automorphism group of the following graph Δ:

![Graph Delta](image)

Every automorphism of Δ permutes the leaves of the graph and the permutation of the leaves determines the automorphism, therefore $\text{Aut}(\Delta)$ can naturally be embedded into $\text{Sym}(8)$.

It is easy to see that the same holds if we change $Q \times \mathbb{Z}_p$ to $\mathbb{Z}_2^3 \times \mathbb{Z}_p$.
Lemma 3. (a) There are exactly two regular subgroups of P_2 which are isomorphic to Q.

(b) There are exactly two regular subgroups of P_2 which are isomorphic to \mathbb{Z}_2^3.

Proof. (a) Let Q be a regular subgroup of $\text{Aut} (\Delta)$ isomorphic to the quaternion group with generators i and j. For every $1 \leq m \leq 4$ there is a $q_m \in Q$ such that $q_m(2m - 1) = 2m$. These are automorphisms of Δ so $q_m(2m) = 2m - 1$ and hence the order of q_m is 2. There is only one involution in Q so $q_m = i^2$ for every $1 \leq m \leq 4$ and this fact determines completely the action of i^2 on Δ.

We can assume that $i(1) = 3$. Such an isomorphism of Δ fixes setwise $\{1, 2, 3, 4\}$ so we have that $i(3) = 2$, $i(2) = 4$ and $i(4) = 1$ since i is of order 4. Using again the fact that Q is regular on Δ and $i^2(5) = 6$, we get that there are two choices for the action of i: $i = (1324)(5768)$ or $i = (1324)(5867)$.

We can also assume that $j(1) = 5$. This implies that $j(5) = j^2(1) = i^2(1) = 2$, and $j(2) = 6$ since $j \in \text{Aut} (\Delta)$ and $j(6) = 1$. The action of i determines the action of j on Δ since $iji = j$. Applying this to the leaf 3 we get that $j(3) = 8$ if $i = (1324)(5768)$ and $j(3) = 7$ if $i = (1324)(5867)$ so there is no more choice for the action of j. Finally, i and j generate Q and this gives the result.

(b) Let us assume that $x \in \mathbb{Z}_2^3$ such that $x(1) = 2$ A fixed point free automorphism of Γ of order 2 which maps 1 to 2 will map 3 to 4. There is an $y \in \mathbb{Z}_2^3$ such that $y(1) = 5$. Such an automorphism of Γ maps 2 to 6 so we have that $x(5) = 6$ since x and y commute. This determines x completely so we have that $x = (12)(34)(56)(78)$.

We have two possibilities for $y(3)$. If $y(3) = 7$, then $y = (15)(26)(37)(48)$ and if $y(3) = 8$, then $y = (15)(26)(38)(47)$. The third generator of the group \mathbb{Z}_2^3 which maps 1 to 3 is determined by x and y since \mathbb{Z}_2^3 is abelian.

The previous proof also gives the following.

Lemma 4. (a) The following two pairs of permutations generate the two regular subgroups of $\text{Aut} (\Delta) \leq \text{Sym}(8)$ isomorphic to Q:

\[
i_1 = (1324)(5768), \quad j_1 = (1526)(3748)
\]

and

\[
i_2 = (1324)(5867), \quad j_2 = (1526)(3847)
\]
(b) The elements of these regular subgroups of $\text{Aut}(\Delta)$ are the following:

\[
\begin{array}{ccc}
Q_l : & Q_r : \\
\text{id} & \text{id} \\
(12)(34)(56)(78) & (12)(34)(56)(78) \\
(1324)(5768) & (1324)(5867) \\
(1423)(5867) & (1423)(5768) \\
(1526)(3748) & (1526)(3847) \\
(1625)(3847) & (1625)(3748) \\
(1728)(3546) & (1728)(3645) \\
(1827)(3645) & (1827)(3546)
\end{array}
\]

Using the following identification Q_l and Q_r act on Q by left-multiplication and right-multiplication, respectively:

1 2 3 4 5 6 7 8
1 -1 i -i j -j k -k'

(c) The following permutations generate two regular subgroups of $\text{Aut}(\Delta) \leq \text{Sym}(8)$ isomorphic to \mathbb{Z}_3^2.

A_1 is generated by:

$x_1 = (12)(34)(56)(78), x_2 = (13)(24)(57)(68), x_3 = (15)(26)(37)(48)$

and A_2 is generated by:

$y_1 = (12)(34)(56)(78), y_2 = (13)(24)(58)(67), y_3 = (15)(26)(38)(47)$.

Lemma 5. Let us assume that $G_1 \leq P_2$ is generated by two different regular subgroups Q_a and Q_b of $\text{Aut}(\Delta)$ which are isomorphic to Q and $G_2 \leq P_2$ is generated by two different regular subgroups A_1 and A_2 of $\text{Aut}(\Delta)$ which are isomorphic to \mathbb{Z}_3^2. Then $G_1 = G_2$.

Proof. It is clear that $|P_2| = |\text{Aut}(\Delta)| = 2^7$. One can see using Lemma 4(a) that G_1 and G_2 are generated by even permutations. Both G_1 and G_2 induce an action on the set $V = \{A, B, C, D\}$ which is a set of vertices of Δ and it is easy to verify that every permutation of V induced by G_1 and G_2 is even. This shows that G_1 and G_2 are contained in a subgroup of P_2 of cardinality 2^5.

Lemma 4(b) shows that $|Q_a \cap Q_b| = 2$ and one can also check that $|A_1 \cap A_2| = 2$. This gives $|G_1| \geq 2^5$ and $|G_2| \geq 2^5$, finishing the proof of Lemma 5. ■

Proposition 1. (a) The quaternion group Q is a $\text{DCI}^{(2)}$-group.
(b) \mathbb{Z}_2^3 is a $\text{DCI}^{(2)}$-group.

Proof. (a) Let Q_a and Q_b be two regular subgroups of $\text{Sym}(8)$ isomorphic to the quaternion group Q. By Sylow’s theorem we may assume that Q_a and Q_b lie in the same Sylow 2-subgroup of $H = \langle Q_a, Q_b \rangle$. Since every Sylow
2-subgroup of H is contained in a Sylow 2-subgroup of $\text{Sym}(8)$, we may assume that Q_a and Q_b are subgroups of $\text{Aut}(\Delta)$.

Our aim is to find an element $\pi \in \langle Q_a, Q_b \rangle^{(2)}$ such that $Q_a^\pi = Q_b$ so let us assume that $Q_a \neq Q_b$. Using Lemma 4(a) we may also assume that Q_a and Q_b are generated by the permutations $(1324)(5768)$, $(1526)(3748)$ and $(1324)(5867)$, $(1526)(3847)$, respectively. Lemma 4(b) shows that H contains the following three permutations:

\[
(12)(34) = (1324)(5768)(1324)(5867) \\
(12)(56) = (1526)(3748)(1526)(3847) \\
(12)(78) = (1728)(3546)(1728)(3645).
\]

Now one can easily see that the permutation (12) is in $H^{(2)}$. Finally, it is also easy to check using Lemma 4(b) that $Q_a^{(12)} = Q_b$.

(b) Let A_1 and A_2 be two regular subgroups of $\text{Sym}(8)$ isomorphic to \mathbb{Z}_3^2. Let H' denote the group generated by A_1 and A_2. Similarly to the previous case we may assume that A_1 and A_2 are different regular subgroups of $\text{Aut}(\Delta)$. By Lemma 4, A_1 and A_2 are generated by the permutations $x_1 = (12)(34)(56)(78)$, $x_2 = (13)(24)(57)(68)$, $x_3 = (12)(34)(56)(78)$, $y_1 = (13)(24)(57)(68)$, $y_2 = (13)(24)(58)(67)$, $y_3 = (15)(26)(37)(48)$, respectively.

By Lemma 4 the group H' contains the permutations $(12)(34)$, $(12)(56)$ and $(12)(78)$. Therefore H' contains the permutation (12) which conjugates A_1 to A_2 since (12) centralizes x_1 and we also have $(12)x_2(12) = y_2y_1$ and $(12)x_3(12) = y_1y_3$, finishing the proof of Proposition 1.

\[\square\]

Definition 3. Let Γ be an arbitrary graph and $A, B \subset V(\Gamma)$ such that $A \cap B = \emptyset$. We write $A \sim B$ if one of the following four possibilities holds:

(a) For every $a \in A$ and $b \in B$ there is an edge from a to b but there is no edge from b to a.

(b) For every $a \in A$ and $b \in B$ there is an edge from b to a but there is no edge from a to b.

(c) For every $a \in A$ and $b \in B$ the vertices a and b are connected with an undirected edge.

(d) There is no edge between A and B.

We also write $A \asymp B$ if none of the previous four possibilities holds.

Lemma 6. Let A, B be two disjoint subsets of cardinality p of a graph. We write $A \cup B = \mathbb{Z}_p \cup \mathbb{Z}_p$. Let us assume that \mathbb{Z}_p acts naturally on $A \cup B$ and for a generator \hat{a} of the cyclic group \mathbb{Z}_p the action of \hat{a} is defined by $\hat{a}(a_1, a_2) = (a_1 + b, a_2 + c)$ for some $b, c \in \mathbb{Z}_p$.

\[6\]
(a) If $b = c$, then the action of \mathbb{Z}_p and $\hat{\mathbb{Z}}_p$ on $A \cup B$ are the same.

(b) If $A \sim B$, then $b = c$.

(c) If $A \sim B$, then every $\pi \in \text{Sym}(A \cup B)$ which fixes A and B setwise is an automorphism of the graph defined on $A \cup B$ if $\pi \mid A \in \text{Aut}(A)$ and $\pi \mid B \in \text{Aut}(B)$.

Proof. These statements are obvious. ■

4 Main result for $p > 8$

In this section we will prove that $Q \times \mathbb{Z}_p$ and $\mathbb{Z}_2^3 \times \mathbb{Z}_p$ are DCI-groups if $p > 8$. We will first prove it for $Q \times \mathbb{Z}_p$ and then we will repeat the argument for the case of $\mathbb{Z}_2^3 \times \mathbb{Z}_p$.

Proposition 2. For every prime $p > 8$, the group $Q \times \mathbb{Z}_p$ is a DCI-group.

Our technique is based on Lemma 2 so we have to fix a Cayley graph $\Gamma = \text{Cay}(Q \times \mathbb{Z}_p, S)$. Let $A = \text{Aut}(\Gamma)$ and $\hat{G} = Q \times \hat{\mathbb{Z}}_p$ be a regular subgroup of A isomorphic to $Q \times \hat{\mathbb{Z}}_p$. In order to prove Proposition 2 we have to find an $\alpha \in A$ such that $\hat{G}^\alpha = \hat{G} = Q \times \hat{\mathbb{Z}}_p$ what we will achieve in three steps.

4.1 Step 1

We may assume $\hat{\mathbb{Z}}_p$ and \mathbb{Z}_p lie in the same Sylow p-subgroup P of $\text{Sym}(8p)$. Then both \hat{Q} and \hat{Q} are subgroups of $N_{\text{Sym}(8p)}(P) \cap A$ so we may assume that \hat{Q} and \hat{Q} lie in the same Sylow 2-subgroup of $N_{\text{Sym}(8p)}(P) \cap A$ which is contained in a Sylow 2-subgroup of A.

The Sylow p-subgroup P gives a partition $B = \{B_1, B_2, \ldots, B_8\}$ of the vertices of Γ, where $|B_i| = p$ for every $i = 1, \ldots, 8$ and B is P-invariant. It is easy to see that B is invariant under the action of \hat{Q} and \hat{Q} and hence $\langle \hat{G}, \hat{G} \rangle \leq \text{Sym}(p) \cdot \text{Sym}(8)$. Moreover, both \hat{G} and \hat{G} are regular so \hat{Q} and \hat{Q} induce regular action on B which we denote by Q_1 and Q_2, respectively. The assumption that \hat{Q} and \hat{Q} lie in the same Sylow 2-subgroup of A implies that Q_1 and Q_2 are in the same Sylow 2-subgroup of $\text{Sym}(8)$.

4.2 Step 2

Let us assume that $Q_1 \neq Q_2$. We intend to find an element $\alpha \in A$ such that $(\hat{Q}^\alpha)^B = Q_2$.

Using Lemma 4(b) we can assume that \hat{Q} is generated by the permutations i and j such that i and j induce the permutations $(B_1B_3B_4)(B_5B_7B_8)$ and $(B_1B_5B_2B_6)(B_3B_7B_4B_8)$, respectively. Similarly, \hat{Q} is generated by i and j with $i^B = (B_1B_3B_2B_4)(B_5B_8B_6B_7)$ and $j^B = (B_1B_3B_2B_6)(B_3B_8B_4B_7)$.
We define a graph Γ_0 on \mathcal{B} such that B_i is connected to B_j if and only if $B_i \sim B_j$. This is an undirected graph with vertex set \mathcal{B} and both Q_1 and Q_2 are regular subgroups of $Aut(\Gamma_0)$. It follows that Γ_0 is a Cayley graph of the quaternion group of order 8.

Definition 4. (a) For a pair $(B_i, B_j) \in \mathcal{B}^2$ we write $B_i \equiv B_j$ if either there exists a path C_1, C_2, \ldots, C_n in Γ_0 such that $C_1 = B_1, C_n = B_2$ or $i = j$. (b) For a pair $(B_i, B_j) \in \mathcal{B}^2$ we write $B_i \not\equiv B_j$ if $B_i \equiv B_j$ does not hold. (c) If both H and K are subsets of the vertices of Γ_0 such that $H \cap K = \emptyset$ and for every $B_i \in H, B_j \in K$ we have $B_i \not\equiv B_j$, then we write $H \not\equiv K$.

Observation 1. (a) The relation \equiv defines an equivalence relation on \mathcal{B}. The equivalence classes defined by the relation \equiv will be called equivalence classes. (b) Since Q_1 acts transitively on \mathcal{B} we have that the size of the equivalence classes defined by the relation \equiv divides 8.

We can also define a colored graph Γ_1 on \mathcal{B} by coloring the edges of the complete directed graph on 8 points. B_i is connected to B_j with the same color as B_i' is connected to B_j' in Γ_1 if and only if there exists a graph isomorphism ϕ from $B_i \cup B_j$ to $B_i' \cup B_j'$ such that $\phi(B_i) = B_i'$ and $\phi(B_j) = B_j'$. The graph Γ_1 is a colored Cayley graph of the quaternion group. Moreover, both Q_1 and Q_2 act regularly on Γ_1. Using the fact that Q has property $DCI(2)$ it is clear that there exists an $\alpha' \in \langle Q_1, Q_2 \rangle^{(2)} \leq Aut(\Gamma_1)$ such that $Q_2^{\alpha'} = Q_1$. We would like to lift α' to an automorphism α of Γ such that $\alpha_B = \alpha'$.

(a) Let us assume first that Γ_0 is a connected graph.

Lemma 7. (a) $\hat{Q} \times \hat{\mathbb{Z}}_p \leq \hat{\mathbb{Z}}_p \wr Sym(8)$. (b) If $\hat{Q} \times \hat{\mathbb{Z}}_p \leq \hat{\mathbb{Z}}_p \wr Sym(8)$, then for every $\hat{q} \in \hat{Q}$ we have $(\hat{q})_b = id$.

Proof. (a) We first prove that $\hat{\mathbb{Z}}_p = \hat{\mathbb{Z}}_p$. Let x and y generate $\hat{\mathbb{Z}}_p$ and $\hat{\mathbb{Z}}_p$, respectively. We can assume that $x \mid B_1 = y \mid B_1$. Using Lemma 4(b) we get that $x \mid B_1 = y \mid B_1$ if there exists a path in Γ_0 from B_1 to B_1. This shows that $x = y$ since Γ_0 is connected. Moreover, $\hat{Q} \times \hat{\mathbb{Z}}_p \leq \hat{\mathbb{Z}}_p \wr Sym(8)$ since the elements of $\hat{\mathbb{Z}}_p$ and the elements of \hat{Q} commute.

(b) Let $A' = A \cap \hat{\mathbb{Z}}_p \wr Sym(8)$. We have already assumed that \hat{Q} and \hat{Q} lie in the same Sylow 2-subgroup of A'. Let \hat{q} be an arbitrary element of \hat{Q}. For every $(a, u) \in Q \times \mathbb{Z}_p$ we have $\hat{q}(a, u) = (b, u+t)$ for some $b \in Q$ and $t \in \mathbb{Z}_p$, where t only depends on \hat{q} and a since $\hat{q} \leq \hat{\mathbb{Z}}_p \wr Sym(8)$. The permutation group \hat{G} is transitive, hence there exist $\hat{q}_1, \hat{q}_2 \in \hat{Q}$ such that $\hat{q}_1(1, u) = (a, u)$ and $\hat{q}_2(b, u + t) = (1, u + t)$. The order of $\hat{q}_2\hat{q}_1$ is a power of 2 since $\hat{q}_2, \hat{q}, \hat{q}_1$ lie in a Sylow 2-subgroup. Therefore $t = 0$ and hence $(\hat{q})_b = id$.

\[\square\]
Lemma 7 says that if \(\Gamma_0 \) is connected, then \(\langle \hat{Q}, \hat{Q} \rangle \leq \hat{Z}_p \wr Sym(8) \) and \((q)_b = id \) for every \(q \in \langle \hat{Q}, \hat{Q} \rangle \). Therefore we can define \(\alpha = \alpha' id_B \) to be an element of the wreath product \(\hat{Z}_p \wr Sym(8) \) and clearly \(\alpha' id_B \) is an element of \(A \) with \(\alpha^B = \alpha' \).

(b) Let us assume that \(\Gamma_0 \) is the empty graph.

Then Lemma 4(c) shows that every permutation in \(\langle Q_1, Q_2 \rangle^{(2)} \) lifts to an automorphism of \(\hat{\Gamma} \).

(c) Let us assume that \(\Gamma_0 \) is neither connected nor the empty graph.

Observation 2. If \(Q_1 \neq Q_2 \), then \(\langle \hat{Q}, \hat{Q} \rangle \leq A \) contains \(\beta_1, \beta_2, \beta_3 \) such that

\[
\beta^B_1 = (B_1 B_2)(B_3 B_4), \quad \beta^B_2 = (B_1 B_2)(B_5 B_6), \quad \beta^B_3 = (B_1 B_2)(B_7 B_8).
\]

Proof. By Lemma 4 the elements \(\beta_1, \beta_2, \beta_3 \) can be generated as products of an element of \(\hat{Q} \) and \(\hat{Q} \).

Lemma 8. We claim that \(B_{2k-1} \equiv B_{2k} \) for \(k = 1, 2, 3, 4 \).

Proof. Since \(\Gamma_0 \) is a Cayley graph and \(Q_1 \) is transitive on the pairs of the form \(\langle B_{2k-1}, B_{2k} \rangle \) it is enough to prove that \(B_1 \equiv B_2 \). If \(B_1 \sim B_2 \), then \(B_1 \equiv B_2 \) so we can assume that \(B_1 \sim B_2 \). Since \(\Gamma_0 \) is not the empty graph \(B_1 \) is connected to \(B_l \) for some \(l > 2 \). By Observation 2 there exists \(\beta \in A \) such that \(\beta(B_1) = B_2 \) and \(\beta(B_l) = B_l \). This shows that \(B_2 \sim B_l \) and hence \(B_1 \equiv B_2 \).

Lemma 9. There exists \(\alpha \in A \) such that \(\alpha^B = \alpha' \).

Proof. Let us assume first that \(H_1 = \{B_1, B_2, B_3, B_4\} \). Then we define \(\alpha_1 \) to be equal to \(\beta_2 \) on \(H_1 \) and the identity on \(H_2 \). Using Lemma 4(b) we get that \(\alpha_1 \) is in \(\langle \hat{Q}, \hat{Q} \rangle^{(2)} \).

If \(H_1 = \{B_1, B_2, B_5, B_6\} \) or \(H_1 = \{B_1, B_2, B_7, B_8\} \), then we define \(\alpha_2 \) by \(\alpha_2 \mid H_1 = \beta_1 \) and \(\alpha_2 \mid H_2 = id \). Lemma 4(b) shows again that \(\alpha_2 \in A \).

It is easy to see that \(\alpha^B_1 = \alpha^B_2 = (B_1 B_2) \). Therefore \(A \) contains an element \(\alpha \) such that \(Q_1^{\alpha} = Q_2 \).

We conclude that we can assume that \(Q_1 = Q_2 \).

4.3 Step 3

Let us now assume that \(Q_1 = Q_2 \). We intend to find \(\gamma \in A \) such that \(\hat{Q}^\gamma = \hat{Q} \).

Let \(\hat{x} \) and \(\hat{\hat{x}} \) denote the generators of \(\hat{Z}_p \) and \(\hat{\hat{Z}}_p \), respectively. We may assume that \(\hat{x} \mid B_1 = \hat{x} \mid B_1 \).
Lemma 10. There exists \(\gamma \in A \) such that \(\hat{x}^\gamma = \hat{x} \).

Proof. Let us assume first that \(\Gamma_0 \) is connected. In this case there is only one equivalence class of size 8. It is clear by Lemma 6 (b) that \(\hat{x} = \hat{x} \).

Let us assume that \(\Gamma_0 \) is not connected. In this case there are at least two equivalence classes which we denote by \(\mathcal{C}_1, \ldots, \mathcal{C}_n \). The permutations \(\hat{x} \) and \(\hat{x} \) are elements of the base group of \(\hat{\mathcal{Z}}_p \wr \text{Sym}(8) \) and hence they can be considered as functions on \(B \). By Lemma 10 we may assume that \(\hat{x} \) is constant on every equivalence class of size 8. It is clear by Lemma 6 (b) that \(\hat{x} = \hat{x} \).

For every \(1 \leq m \leq n \) there exists \(\hat{q}_m \in \hat{Q} \) such that \(\hat{q}_m(\mathcal{C}_1) = \mathcal{C}_m \) and for every \(\hat{q}_m \in \hat{Q} \) there exists \(\hat{q}_m \in \hat{Q} \) such that \(\hat{q}_m^\mathcal{B} = \hat{q}_m^\mathcal{B} \). Let \(\gamma \) be defined as follows:

\[
\begin{align*}
\gamma &\mid \cup \mathcal{C}_1 = id \\
\gamma &\mid \cup \mathcal{C}_m = \hat{q}_m \hat{q}_m^{-1} \text{ for } 2 \leq m \leq n.
\end{align*}
\]

Let \((b, v) \in \hat{q}_m(B_e) \) with \(B_e \in \mathcal{C}_1 \) and we denote \(\hat{q}_m^{-1}(b, v) \) by \((a, u) \). Since \(\hat{x} \) is constant on \(\mathcal{C}_m \) we have \(\hat{x}(b, v) = (b, v + c_m s) \) for some \(c_m \) which only depends on \(\mathcal{C}_m \). Thus \(\hat{q}_m(a, u + s) = (b, v + c_m s) \) since \(\hat{x} \) and \(\hat{q}_m \) commute and \(\hat{x} \mid B_e = \hat{x} \mid B_e \). Therefore for every \(w \in \mathbb{Z}_p \) we have

\[
\gamma(b, w) = \hat{q}_m(a, w) = \hat{q}_m(a, u + (w - u)) = (b, v + c_m (w - u))
\]

for every \((b, w) \in \hat{q}_m(B_e) \). It is easy to verify that \(\gamma^{-1}(b, w) = (b, \frac{w - v + uc_m}{c_m}) \) for every \(w \in \mathbb{Z}_p \) which gives

\[
\gamma^{-1}\hat{x}\gamma(b, w) = \gamma^{-1}\hat{x}(b, wc_m + v - uc_m) = \gamma^{-1}(b, wc_m + v - uc_m + c_m) = (b, w + 1).
\]

It remains to show that \(\gamma \in A \). Let \(y \) and \(z \) be two points of \(Q \times \mathbb{Z}_p \).

If \(y \) and \(z \) are in the same equivalence class \(\mathcal{C}_m \), then either \(\gamma \) is defined on \(y \) and \(z \) by \(\hat{q}_m \hat{q}_m^{-1} \) which is the element of the group \((\hat{G}, \hat{G}) \leq A \) or \(\gamma(y) = y \) and \(\gamma(z) = z \).

We denote by \(B_y \) and \(B_z \) the elements of \(B \) containing \(y \) and \(z \), respectively. If \(y \) and \(z \) are not in the same equivalence class, then \(B_y \sim B_z \). The definition of \(\gamma \) shows that \(\gamma^B = id \). Using Lemma 6 (c) we get that \(\gamma \mid B_y \cup B_z \) is an automorphism of the induced subgraph of \(\Gamma \) on the set \(B_y \cup B_z \), which proves that \(\gamma \in A \), finishing the proof of Lemma 10.

Using Lemma 10 we may assume that \(\hat{x} = \hat{x} \). Since \(\hat{x} \) and \(\hat{q} \) commute we have \(\hat{Q} \times \mathbb{Z}_p \leq \hat{Z}_p \wr \text{Sym}(8) \). Now we can apply Lemma 6 which gives \((\hat{q})_b = id \) for every \(\hat{q} \in \hat{Q} \). This proves that \(\hat{Q} = \hat{Q} \) since \(Q_1 = Q_2 \). Therefore \(\hat{G} = \hat{G} \), finishing the proof of Proposition 2.

Our method also gives the analogous result for \(\mathbb{Z}_2^3 \times \mathbb{Z}_p \), what also follows from the theorem of Dobson and Spiga.

Proposition 3. For every prime \(p > 8 \), the group \(\mathbb{Z}_2^3 \times \mathbb{Z}_p \) is a DCI-group.
In order to prove Proposition 3 we will modify the proof of Proposition 2. Let Γ be a Cayley graph of $G = \mathbb{Z}_3^2 \times \mathbb{Z}_p$ and let $A = Aut(\Gamma)$. Let $\hat{G} = \mathbb{Z}_3^2 \times \mathbb{Z}_p$ be a regular subgroup of A isomorphic to $\mathbb{Z}_3^2 \times \mathbb{Z}_p$. It is enough to prove that there exists $\alpha \in A$ such that $\hat{G}^\alpha = (\mathbb{Z}_3^2 \times \mathbb{Z}_p)^\alpha = \mathbb{Z}_3^2 \times \mathbb{Z}_p = \hat{G}$.

It is easy to verify that the argument of the first step in subsection 4.1 only uses the fact that $p > 8$. Therefore there exists a P-invariant partition $\mathcal{D} = \{D_1, D_2, \ldots, D_8\}$, where P is a Sylow p-subgroup of $Sym(8p)$ containing \hat{Z}_p and \mathbb{Z}_p. We denote A_1 and A_2 the regular action on \mathcal{D} induced by \mathbb{Z}_3^2 and \mathbb{Z}_3^2, respectively.

Let us assume that $A_1 \neq A_2$. We will repeat the argument of Step 2. Similarly to the definition of Γ_1 one can define a colored graph Γ'_1 on \mathcal{D}. Since \mathbb{Z}_3^2 is also a DCI-group there exists $\beta' \in Aut(\Gamma'_1)$ such that $A_2^{\beta'} = A_1$.

One can also define the graph Γ'_0 using the relation \equiv and similarly to Lemma 7 one can prove that if Γ'_0 is connected, then there exists $\beta \in A$ such that $\beta^p = \beta'$.

If Γ'_0 is the empty graph, then every automorphism of Γ'_1 lifts to an automorphism of Γ.

Similarly to Observation 2 the automorphism group A contains $\delta_1, \delta_2, \delta_3$ such that

$$\delta_1^p = (D_1D_2)(D_3D_4), \quad \delta_2^p = (D_1D_2)(D_5D_6), \quad \delta_3^p = (D_1D_2)(D_7D_8).$$

since $\langle A_1, A_2 \rangle = \langle Q_1, Q_2 \rangle$ by Lemma 5.

It is straightforward to check that Lemma 8 and Lemma 9 only uses the existence of the involutions $\beta_1, \beta_2, \beta_3$ so the argument can be repeated using δ_1, δ_2 and δ_3. Therefore we may assume that $A_1 = A_2$.

Finally, the proof of Lemma 10 can also be repeated for $\mathbb{Z}_3^2 \times \mathbb{Z}_p$ which gives that the generators of \hat{Z}_p and \mathbb{Z}_p coincide. Since $A_1 = A_2$ we have $\hat{G} = \hat{G}$, finishing the proof of Proposition 3.

It is straightforward to check that the proof of Proposition 2 and Proposition 3 only uses the fact that $p > 8$ in the first step of the argument. We can formulate this fact in Proposition 4.

Proposition 4. Let Γ be a Cayley graph of $G = Q \times \mathbb{Z}_p$ or $G = \mathbb{Z}_3^2 \times \mathbb{Z}_p$, where p is an odd prime and let $\hat{G} = Q \times \hat{Z}_p$ or $\hat{G} = \mathbb{Z}_3^2 \times \hat{Z}_p$ be a regular subgroup of $Aut(\Gamma)$ isomorphic to G. Let us assume that there exists a (\hat{G}, \hat{G})-invariant partition $\mathcal{B} = \{B_1, B_2, \ldots, B_8\}$ of $V(\Gamma)$, where $|B_i| = p$ for every $i \in \{1, \ldots, 8\}$. In addition, we assume that \hat{Z}_p is a subgroup of the base group of $\hat{Z}_p \wr Sym(\mathcal{B})$. Then there is an automorphism α of the graph Γ such that $\hat{G}^\alpha = \hat{G}$.

5 Main result for $p = 5$ and 7

In this section we will prove that $Q \times \mathbb{Z}_5$, $Q \times \mathbb{Z}_7$, $\mathbb{Z}_3^2 \times \mathbb{Z}_5$ and $\mathbb{Z}_3^2 \times \mathbb{Z}_7$ are CI-groups.

The whole section is based on the paper [5], so we will only modify the proof of Lemma 5.4 of [5].
Proposition 5. Every Cayley graph of $Q \times \mathbb{Z}_5$, $Q \times \mathbb{Z}_7$, $\mathbb{Z}_2^3 \times \mathbb{Z}_5$ and $\mathbb{Z}_2^3 \times \mathbb{Z}_7$ is a CI-graph.

We denote by R one of the groups Q and \mathbb{Z}_2^3. Let Γ be a Cayley graph of one of these groups, $A = Aut(\Gamma)$ and P a Sylow p-subgroup of A for $p = 5, 7$, respectively. Let us assume that A contains two copies of regular subgroups which we denote by $\hat{G} = \hat{R} \times \hat{\mathbb{Z}}_p$ and $\hat{G} = \hat{R} \times \hat{\mathbb{Z}}_p$. We can assume that Γ is neither the empty nor the complete graph and both $\hat{\mathbb{Z}}_p$ and $\hat{\mathbb{Z}}_p$ are contained in P.

It was proved in [5] that the action of A on the points of graph Γ cannot be primitive so there is a nontrivial A-invariant partition $\mathcal{B} = \{B_0, B_1, \ldots, B_{t-1}\}$ of $V(\Gamma) = G$. The elements of the partition \mathcal{B} have the same cardinality since the action of A is transitive on \mathcal{B} so $|B_i| < p^2$ for every $i = 0, 1, \ldots, t - 1$. The partition \mathcal{B} is P-invariant so P acts on \mathcal{B}. Since P is a p-group, the length of every orbit of P is a power of p.

If the length of every orbit of P on $V(\Gamma)$ is p, then it is clear from Proposition 4 that Γ is a CI-graph. Therefore P has an orbit $\Lambda \subset G$ such that $|\Lambda| = p^2$ since $p^3 > |G|$ and the remaining orbits of P have length p since $2p^2 > 8p$.

Let $\mathcal{C} = \{C_0, C_1, \ldots, C_{s-1}\}$ be an orbit of P on \mathcal{B} such that $\Lambda \subseteq \cup_{i=0}^{s-1} C_i$. We may assume that $B_i = C_i$ for $i = 0, 1, \ldots, s - 1$. It is clear that s is a power of p. If $s \geq p^2$, then $|\cup_{i=0}^{s-1} C_i| \geq 2p^2 > 8p$ which is a contradiction. It follows that $1 < s < p^2$ which implies $s = p$.

For every $i < s$ and every $x \in P$ the following equalities hold for some $j < s$

$$(B_i \cap \Lambda)^x = B_i^x \cap \Lambda^x = B_j \cap \Lambda.$$

This implies that

$$|B_0 \cap \Lambda| = |B_i \cap \Lambda|$$

for every $0 \leq i < s$. Therefore

$$p^2 = |\Lambda| = \left|\cup_{i=0}^{p-1} (B_i \cap \Lambda)\right| = s |B_0 \cap \Lambda| = p |B_0 \cap \Lambda|.$$

This gives $|B_0 \cap \Lambda| = p$ so $|B_0| = p$ since $|B_0| t = 8p$ and both $|B_0|$ and t are at least p.

If $|B_0| = p$, then Λ is the union of p elements of the A-invariant partition \mathcal{B} and every orbit Λ' of P is an element of the partition \mathcal{B} if $\Lambda' \neq \Lambda$. For every orbit $\Lambda' \neq \Lambda$ of P and for every $y \in \hat{\mathbb{Z}}_p \cup \hat{\mathbb{Z}}_p$ we have $y(\Lambda') = \Lambda'$. By Proposition 4 we may assume that there exists an element x' in $\hat{\mathbb{Z}}_p \cup \hat{\mathbb{Z}}_p$ such that $x'(B_0) \neq B_0$ and clearly $x'(B_7) = B_7$ for every $x' \in \hat{\mathbb{Z}}_p \cup \hat{\mathbb{Z}}_p$. Since both \hat{G} and \hat{G} are regular there exists $a \in C_A(x')$ such that $a(B_0) = B_7$, which contradicts the fact that \mathcal{B} is A-invariant and B_7 is an orbit of P.

Let us assume that $|B_0| = 8$ and let \hat{x} and \hat{x} generate $\hat{\mathbb{Z}}_p$ and $\hat{\mathbb{Z}}_p$, respectively. Since \hat{G} and \hat{G} are regular we have that neither \hat{x}^R nor \hat{x}^R is the identity, while for every $r \in \hat{R} \cup \hat{R}$ we have $r^R = id$. Since \hat{x} and \hat{x} are in the same Sylow p-subgroup of P we may assume that $\hat{x}(B_i) = \hat{x}(B_i) = B_{i+1}$ for $i = 0, 1, \ldots, p - 1$, where the indices are taken modulo p. By Proposition 4 we may also assume that $\hat{x} \neq \hat{x}$.
For every m there exists an l such that the action of $\tilde{\tau}^l \tilde{\tau}^{-l}$ is nontrivial on B_m since $\tilde{\tau} \neq \tilde{\tau}$. Therefore $A_{B_m} \upharpoonright B_m$ contains a regular subgroup and a cycle of length p such that $p > \frac{|B_m|}{2}$. A theorem of Jordan says that such a permutation group is 2-transitive and hence the induced subgraph by B_m of Γ is the complete or the empty graph for every m.

Lemma 11. $B_m \sim B_n$ for $0 \leq m \neq n \leq p - 1$.

Proof. There exists a unique element $\tilde{g} \in \tilde{\mathbb{Z}}_p \leq P$ such that $\tilde{g}(B_m) = B_n$. We also have a unique element $\tilde{g} \in \tilde{\mathbb{Z}}_p \leq P$ with $\tilde{g}^B = \tilde{g}^B$. Since \mathbb{Z}_p is cyclic and $\tilde{\tau} \neq \tilde{\tau}$ we have $\tilde{g} \neq \tilde{g}$. Moreover, we may also assume that $\tilde{g} \upharpoonright B_m \neq \tilde{g} \upharpoonright B_m$ since $\tilde{g} \neq \tilde{g}$ and the induced subgraphs of Γ by $A_{B_m+c} \cup B_{n+c}$ are all isomorphic, where both $m + c$ and $n + c$ are taken modulo p.

Clearly, $\tilde{g} = \tilde{g}^{\tilde{g}^{-1}}$ is cycle of length p on B_n. The points of $V(\Gamma) \setminus \Lambda$ are contained in P-orbits of length p so and \tilde{g} fixes every point of the set $B_m \cup B_n \setminus \Lambda$ since $\tilde{g}^B = id$.

Let $u \in B_m \setminus \Lambda$. It is enough to show that if u is connected to some $v \in B_n$, then u is connected to every point of B_n. We will prove that A is transitive on the following pairs: $\{(u, w) \mid w \in B_n\}$.

A is transitive on $\{(u, w) \mid w \in B_n \cap supp(\tilde{g})\} = \{(u, w) \mid w \in B_n \cap \Lambda\}$ since \tilde{g} fixes u. Therefore we may assume that $v \in B_n \setminus \Lambda$ and we only have to find an element $u \in A$ such that $a(u) = u$ and $a(v) \in B_n \cap \Lambda$.

The restriction of \tilde{g} to B_n is a cycle of length p which does not commute with $\tilde{r} \upharpoonright B_n$, where \tilde{r} is an involution of \tilde{R}. Since \tilde{r} and \tilde{g} commute we have that there is a $u' \in B_n$ such that $\tilde{r}\tilde{g}(u') \neq \tilde{g}\tilde{r}(u')$. Since the action of \tilde{R} is transitive on B_n there exists $\tilde{r} \in \tilde{R}$ such that $\tilde{r}(u) = u'$. Then

\[(\tilde{r}\tilde{r})\tilde{g}(u) = \tilde{r}\tilde{g}\tilde{r}(u) = \tilde{r}\tilde{g}(u') \neq \tilde{g}\tilde{r}(u') = \tilde{r}(\tilde{r})\tilde{g}(u)\]

so there exists $a' \in A$ such that

\[a'\tilde{g}(u) \neq \tilde{g}a'(u).\]

(1)

Let us assume that $v = \tilde{g}(u)$. Then the inequality 1 gives $a'(v) \neq \tilde{g}a'(u)$. Since $\tilde{R} \upharpoonright B_m$ is regular on B_m there exists $\tilde{s} \in \tilde{R}$ such that $\tilde{s}(u) = a'(u)$ and since \tilde{s} and \tilde{g} commute we have $\tilde{s}(v) = \tilde{g}\tilde{s}(u) = \tilde{g}a'(u)$. Therefore $\tilde{s}(v) \neq a'(v)$ and hence $\tilde{s}^{-1}a'$ fixes u and $\tilde{s}^{-1}a'(v) \neq v$ so we may assume that $v \neq \tilde{g}(u)$.

If $p = 7$, then $v \in B_n \cap \Lambda$.

If $p = 5$, then there exists $\tilde{t} \in \tilde{R}$ such that $\tilde{t}(u) \in B_m \setminus \Lambda = B_m \setminus supp(\tilde{g})$ while $\tilde{t}(v) \in B_m \cap \Lambda \subset supp(\tilde{g})$ since both $\tilde{R} \upharpoonright B_m$ and $\tilde{R} \upharpoonright B_n$ are regular and $\gcd(8,5) = 1$. The permutations $\tilde{t}^{-1}\tilde{g}\tilde{t}$ fix the point u for every $0 \leq l \leq 4$ and $\tilde{t}^{-1}\tilde{g}\tilde{t}(y) \neq \tilde{t}^{-1}\tilde{g}\tilde{t}(y)$ if $l_1 \neq l_2 \pmod{5}$. At least one of the four elements $\tilde{t}^{-1}\tilde{g}\tilde{t}$, $\tilde{t}^{-1}\tilde{g}^2\tilde{t}$, $\tilde{t}^{-1}\tilde{g}^3\tilde{t}$, $\tilde{t}^{-1}\tilde{g}^4\tilde{t}$ of A fixes u and maps v to an element of $B_n \cap fix(\tilde{g}) = B_n \cap \Lambda$ since $|B_n \setminus supp(\tilde{g})| = 3$, finishing the proof of the fact that $B_m \sim B_n$ for $0 \leq m \neq n \leq 7$.

\[\bbox{\text{\textbullet\textbullet\textbullet\textbullet\textbullet}}\]
Every permutation of $V(\Gamma)$ which fixes setwise B_m for every m is an automorphism of Γ so there is an $a \in A$ such that $\hat{x}^a = \hat{x}$. Applying Proposition 4 we get that there exists $\alpha \in A$ such that $\left(\hat{R} \times \hat{\mathbb{Z}}_p\right)^{\alpha} = \hat{R} \times \hat{\mathbb{Z}}_p$, finishing the proof of Proposition 5.

References

[1] L. Babai, Isomorphism problem for a class of point-symmetric structures, Acta Math. Acad. Sci. Hungar. 29 (1977) 329–336.
[2] E. Dobson, Discrete Math. 310, (2010) 2895–2909
[3] E. Dobson, P. Spiga, CI-groups with respect to ternary relational structures: new examples, Ars Mathematica Contemporenea 6 (2012) 351-364
[4] C. H. Li, On isomorphisms of finite Cayley graphs- a survey, Discrete Mathematics 256, (2002) 301-334
[5] C. H. Li, Z. P. Lu, P. P. Pálfy, Further restrictions on the structure of finite CI-groups, J. Algebr. Comb. (2007) 161–181
[6] P. Spiga, On the Cayley isomorphism problem for a digraph with 24 vertices, Ars. Math. Contemp. 1 (2008), no. 1, 38-43.