A study of random walks on wedges

Xinxing Chen *

May 2, 2014

Abstract

In this paper we develop the idea of Lyons and gives a simple criterion for the recurrence and the transience. We also show that a wedge has the infinite collision property if and only if it is a recurrent graph.

2000 MR subject classification: 60K
Key words: random walk, wedge, infinite collision property, recurrence, resistance

1 Introduction

Let us recall briefly the definition of a wedge of \mathbb{Z}^{d+1}. Let f_1, \cdots, f_d be a collection of d increasing functions from $\mathbb{Z}^+ \to \mathbb{R}^+ \cup \{+\infty\}$. They induces a wedge, $\text{Wedge}(f_1, \cdots, f_d) = (V, E)$, which has vertex set

$$V = \{(x_1, \cdots, x_d, n) \in \mathbb{Z}^{d+1} : n \geq 0, \ 0 \leq x_i \leq f_i(n) \text{ for each } 1 \leq i \leq d\}$$

and edge set

$$E = \{[u, v] : \|u - v\|_1 = 1, u, v \in V\}.$$

Is a wedge recurrent or transient? (A locally finite connect graph is called transient or recurrent according to the type of simple random walk on it.) Lyons[8] first give

*Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, China; Research partially supported by the NSFC grant No. 11001173. chenxinx@sjtu.edu.cn
the result that suppose (A) holds, then \(\text{Wedge}(f_1, \cdots, f_d) \) is recurrent if and only if

\[
\sum_{n=0}^{\infty} \prod_{i=1}^{d} \frac{1}{f_i(n) + 1} = \infty. \tag{1.1}
\]

Where

(A): \(f_i(n+1) - f_i(n) \in \{0, 1\} \) for all \(1 \leq i \leq d \) and all \(n \geq 0 \).

Readers can refer to [1][9] for more background about wedge and the reference therein.

We develop the idea of Lyons in this paper. However, our result does not rely on the condition (A). Define \(d \) increasing integer valued functions \(h_1, \cdots, h_d \). Let \(h_i(0) = 0 \) for each \(1 \leq i \leq d \). For each \(1 \leq i \leq d \) and \(n \geq 1 \), if \(h_i(n-1) + 1 > f_i(n) \) then let

\[
h_i(n) = h_i(n-1);
\]

otherwise, if \(h_i(n-1) + 1 \leq f_i(n) \) then let

\[
h_i(n) = h_i(n-1) + 1.
\]

Then we have our first result.

Theorem 1.1 \(\text{Wedge}(f_1, \cdots, f_d) \) is recurrent if and only if

\[
\sum_{n=0}^{\infty} \prod_{i=1}^{d} \frac{1}{h_i(n) + 1} = \infty. \tag{1.2}
\]

Example. Suppose \(d = 2 \), \(f_1(x) = 2^x \) and \(f_2(x) = \log(x + 1) \). Obviously (1.1) does not succeed. On the other hand, \(h_1(n) = n \) and \(h_2(n) = \lfloor \log(n + 1) \rfloor \). Then (1.2) holds and \(\text{Wedge}(f_1, f_2) \) is recurrent.

Now we turn to another question. As usual, we say that a graph has the infinite collision property if two independent simple random walks on the graph will collide infinitely many times, almost surely. Likewise we say that a graph has the finite collision property if two independent simple random walks on the graph collide finitely many times almost surely. It is interesting to known whether or not a graph
has the infinite collision property. Refer to Polya [10], Liggett [7] and Krishnapur & Peres [6] for details. To my interest is the type of a wedge. Other graphs, such as wedge combs, trees or random environment, are studied in [2] [3] [4] [5] [11] etc..

Theorem 1.2 \(\text{Wedge}(f_1, \cdots, f_d) \) has the infinite collision property if and only if \(\text{Wedge}(f_1, \cdots, f_d) \) is recurrent.

To understand the conditions better, it is worthwhile to compare a wedge with a wedge comb. \(\text{Wedge}(g) \) always has the infinite collision property since any subgraph of \(\mathbb{Z}^2 \) is recurrent. However, \(\text{Comb}(\mathbb{Z}, g) \) may have the finite collision property [2] [6]. Refer to Figure 1 and Figure 2. It implies that our theorem holds owing to the monotone property of the profile \(f_i(\cdot) \) of the wedge.
2 A partition of vertex set \(\mathbb{V} \)

Obviously, the functions \(h_1, \ldots, h_d \) defined in Section 1 satisfy that for each \(1 \leq i \leq d \) and each \(n \geq 0 \),

\[
0 \leq h_i(n) \leq f_i(n) \quad \text{and} \quad h_i(n + 1) - h_i(n) \in \{0, 1\}.
\] (2.1)

We shall define a class of subsets \(\Delta_i(n) \) and \(\partial_n \) through these functions. We shall show later that \(\{\partial_n : n \geq 0\} \) is a partition of \(\mathbb{V} \). For each \(1 \leq i \leq d + 1 \), let

\[
\Delta_i(0) = \{(0, \ldots, 0)\} \in \mathbb{Z}^{d+1}.
\]

Fix \(n \geq 1 \), let

\[
\Delta_{d+1}(n) = \{(x_1, \ldots, x_d, n) \in \mathbb{Z}^{d+1} : 0 \leq x_i \leq h_i(n), 1 \leq i \leq d\}.
\]

Then \(\Delta_{d+1}(n) \) is a subset of \(\mathbb{V} \). Fix \(1 \leq i \leq d \). If \(h_i(n) = h_i(n - 1) + 1 \) then let

\[
\Delta_i(n) = \{(x_1, \ldots, x_d, x_{d+1}) \in \mathbb{V} : x_j \leq h_j(n) \text{ for each } 1 \leq j \leq d, x_i = h_i(n), x_{d+1} \leq n\}.
\]

Otherwise, if \(h_i(n) = h_i(n - 1) \) then let \(\Delta_i(n) = \emptyset \).

For each \(n \geq 0 \) we set

\[
\partial_n = \bigcup_{i=1}^{d+1} \Delta_i(n).
\]

Finally, for each \(x \in \mathbb{R}^{d+1} \) and each \(1 \leq i \leq d+1 \), we denote by \(x_i \) the \(i \)-th coordinate of \(x \). For each \(x \in \mathbb{V} \) and \(1 \leq i \leq d \), we set

\[
p_i(x) = \min \{m : h_i(m) \geq x_i\}.
\]

By (2.1)

\[
h_i(p_i(x)) = x_i.
\]

For each \(x \in \mathbb{V} \), set

\[
u(x) = \max \{x_{d+1}, p_1(x), \ldots, p_d(x)\}.
\]

Then we have the following lemma.
Lemma 2.1 For each pair of $m \geq 0$ and $x \in \mathbb{V}$, vertex $x \in \partial_m$ if and only if $u(x) = m$.

Proof. Fix $x = (x_1, \cdots, x_d, n) \in \mathbb{V}$. For conciseness, we write p_i instead of $p_i(x)$. First we shall prove the statement that if $u(x) = m$ then $x \in \partial_m$. Set

$$S = \{i : 1 \leq i \leq d, x_i > h_i(n)\}.$$

We consider two cases $S = \emptyset$ and $S \neq \emptyset$.

Case I: $S = \emptyset$. Then for each $1 \leq i \leq d$,

$$x_i \leq h_i(n).$$

As a result,

$$x \in \Delta_{d+1}(n) \subset \partial_n.$$

Since $h_i(p_i) = x_i$,

$$h_i(p_i) \leq h_i(n).$$

By the definition of $p_i(\cdot)$,

$$p_i \leq n.$$

Therefore, $u(x) = n$ as claimed above.

Case II: $S \neq \emptyset$. Fix $j \in S$ which satisfies that for all $l \in S$,

$$p_l \leq p_j.$$ (2.2)

We shall show that $u(x) = p_j$ and $x \in \partial_{p_j}$. Since $j \in S$,

$$h_j(p_j) = x_j > h_j(n).$$

It implies that

$$n < p_j.$$ (2.3)

Furthermore, for each $l \in \{1, \cdots, d\} \setminus S$

$$h_l(p_l) = x_l \leq h_l(n) \leq h_l(p_j).$$ (2.4)
As a result of that

\[p_l \leq p_j. \] (2.5)

Owing to (2.2), (2.3) and (2.5),

\[u(x) = p_j. \]

On the other hand, by the definition of \(p_j(\cdot) \) there has

either \(p_j = 0 \) or \(h_j(p_j - 1) < h_j(p_j) \).

However, there always have

\[\Delta_j(p_j) = \{(y_1, \cdots, y_d, y_{d+1}) \in \mathbb{V} : y_l \leq h_l(p_j) \text{ for each } 1 \leq l \leq d, y_j = h_j(p_j), y_{d+1} \leq p_j \}. \] (2.6)

By (2.2), for each \(l \in S \)

\[x_l = h_l(p_l) \leq h_l(p_j). \] (2.7)

By (2.4), (2.6) and (2.7), we have that

\[x \in \Delta_j(p_j) \subset \partial p_j. \]

Such we have proved the first statement for both cases.

Next we shall show that \(\partial_0, \partial_1, \cdots \) are disjoined. Fix \(n > m \geq 0 \). Since that for any \(x \in \Delta_{d+1}(n) \) and any \(y \in \partial_m \),

\[x_{d+1} = n > m \geq y_{d+1}. \]

So,

\[\partial_m \cap \Delta_{d+1}(n) = \emptyset. \] (2.8)

Fix \(1 \leq i \leq d \) and \(1 \leq j \leq d \). We will show that \(\Delta_i(m) \cap \Delta_j(n) = \emptyset \). Otherwise, suppose \(\Delta_i(m) \cap \Delta_j(n) \neq \emptyset \). Then

\[\Delta_i(m) = \{(x_1, \cdots, x_d, x_{d+1}) \in \mathbb{V} : x_l \leq h_l(m) \text{ for each } 1 \leq l \leq d, x_i = h_i(m), x_{d+1} \leq m \}, \]
\[\Delta_j(n) = \{(x_1, \cdots, x_d, x_{d+1}) \in \mathbb{V} : x_l \leq h_l(n) \text{ for each } 1 \leq l \leq d, x_j = h_j(n), x_{d+1} \leq n \}. \]
And then
\[h_j(n) = h_j(n-1) + 1. \]
Furthermore, since \(\Delta_i(m) \cap \Delta_j(n) \neq \emptyset \) there exists \(z \in \Delta_i(m) \cap \Delta_j(n) \). Then
\[z_j = h_j(n) \text{ and } z_l \leq \min\{h_l(m), h_l(n)\} \text{ for each } 1 \leq l \leq d. \]
Hence,
\[h_j(n) \leq h_j(m). \tag{2.9} \]
On the other hand, since \(h_j(\cdot) \) is an increasing function and \(n > m \),
\[h_j(n-1) \geq h_j(m). \]
It deduces that
\[h_j(n) = h_j(n-1) + 1 \geq h_j(m) + 1 > h_j(m). \]
This contradict (2.9). Therefore,
\[\Delta_i(m) \cap \Delta_j(n) = \emptyset. \tag{2.10} \]
Similarly, we can prove that
\[\Delta_i(n) \cap \Delta_{d+1}(m) = \emptyset. \tag{2.11} \]
Taking (2.8), (2.10) and (2.11) together, we get that \(\partial_n \) and \(\partial_m \) are disjoined. We have finished the proof of the lemma. \(\square \)

The next lemma shows that the neighbor of \(\partial_n \) are \(\partial_{n-1} \) and \(\partial_n \) for each \(n \geq 1 \). It implies that \(\partial_n \) is a cutset of the graph \(\text{Wedge}(f_1, \cdots, f_d) \). We write
\[e_i = (0, \cdots, 0, 1, 0, \cdots, 0) \]
for the \(i \)-th unit vector of \(\mathbb{R}^{d+1} \).

Lemma 2.2 Let \(x \in \mathbb{V} \) and \(1 \leq i \leq d+1 \). If \(x + e_i \in \mathbb{V} \) then
\[u(x+e_i) - u(x) = 0 \text{ or } 1. \]
Proof. Fix $x \in V$. Obviously for each $1 \leq i \leq d + 1$ and $1 \leq l \leq d + 1$ with $i \neq l$, if $x + e_l \in V$ then

$$p_i(x + e_l) = p_i(x).$$

First we consider the easy case $i = d + 1$. Obviously, $x + e_{d+1} \in V$. Hence

$$u(x + e_{d+1}) - u(x) = \max\{x_{d+1} + 1, p_1(x + e_{d+1}), \ldots, p_d(x + e_{d+1})\} - \max\{x_{d+1}, p_1(x), \ldots, p_d(x)\}$$

$$= \max\{x_{d+1}, p_1(x), \ldots, p_d(x)\} - \max\{x_{d+1}, p_1(x), \ldots, p_d(x)\}$$

$$= 0 \text{ or } 1.$$

Next we consider the case $1 \leq i \leq d$. Fix $x \in V$ and $x + e_i \in V$. If $f_i(p_i(x) + 1) \geq x_i + 1$, then

$$f_i(p_i(x) + 1) \geq x_i + 1 = h_i(p_i(x)) + 1.$$

Hence

$$h_i(p_i(x) + 1) = h_i(p_i(x)) + 1 = x_i + 1.$$

Such

$$p_i(x + e_i) = p_i(x) + 1.$$

Similarly we have

$$u(x + e_i) - u(x)$$

$$= \max\{x_{d+1}, p_1(x + e_i), \ldots, p_d(x + e_i)\} - \max\{x_{d+1}, p_1(x), \ldots, p_d(x)\}$$

$$= \max\{x_{d+1}, p_1(x), \ldots, p_{i-1}(x), p_i(x) + 1, p_{i+1}(x), \ldots, p_d(x)\} - \max\{x_{d+1}, p_1(x), \ldots, p_d(x)\}$$

$$= 0 \text{ or } 1.$$

Otherwise, $f_i(p_i(x) + 1) < x_i + 1$. Let

$$\eta_i = \min\{m : f_i(m) \geq x_i + 1\}.$$

Then

$$\eta_i > p_i(x) + 1.$$
Furthermore,

\[h_i(\eta_i - 1) \geq h_i(p_i(x)) = x_i. \]

On the other hand

\[h_i(\eta_i - 1) \leq f_i(\eta_i - 1) < x_i + 1. \]

Since \(h_i(\cdot) \) is integer valued,

\[h_i(\eta_i - 1) = x_i. \]

As a result,

\[f_i(\eta_i) \geq x_i + 1 = h_i(\eta_i - 1) + 1. \]

Hence

\[h_i(\eta_i) = h_i(\eta_i - 1) + 1 = x_i + 1. \]

Therefore,

\[p_i(x + e_i) \leq \eta_i. \] (2.12)

Since \(x + e_i \in \mathbb{V} \),

\[f_i(x_{d+1}) \geq x_i + 1. \]

and then

\[\eta_i \leq x_{d+1}. \]

By (2.12),

\[p_i(x + e_i) \leq x_{d+1}. \]

So that,

\[
\begin{align*}
 u(x + e_i) - u(x) &= \max\{x_{d+1}, p_1(x + e_i), \ldots, p_d(x + e_i)\} - \max\{x_{d+1}, p_1(x), \ldots, p_d(x)\} \\
 &\leq \max\{x_{d+1}, p_1(x), \ldots, p_{i-1}(x), x_{d+1}, p_{i+1}(x), \ldots, p_d(x)\} - \max\{x_{d+1}, p_1(x), \ldots, p_d(x)\} \\
 &\leq 0.
\end{align*}
\]

By the increasing property of \(u(\cdot) \), we get that

\[u(x + e_i) - u(x) = 0. \]

\[\square \]
At the end of this section, we shall estimate the cardinality of \(\partial_n \).

Lemma 2.3 For each \(n \geq 0 \),

\[
\prod_{i=1}^{d} (h_i(n) + 1) \leq |\partial_n| \leq (d + 1) \prod_{i=1}^{d} (h_i(n) + 1).
\]

Proof. For each \(n \geq 0 \)

\[
|\partial_n| \geq |\Delta_{d+1}(n)| = \prod_{i=1}^{d} (h_i(n) + 1),
\]

since \(\Delta_{d+1}(n) \subseteq \partial_n \).

Fix \(n \geq 1 \) and \(1 \leq i \leq d \). Without making confusion, we set

\[
p_i = p_i(n) = \min \{ m : h_i(m) = n \}.
\]

Then

\[
\Delta_i(p_i) = \{(x_1, \ldots, x_d, x_{d+1}) \in V : x_l \leq h_l(p_i) \text{ for each } 1 \leq l \leq d, \ x_i = n, \ x_{d+1} \leq p_i \}.
\]

As we have known that if \(x \in V \) with \(x_i = n \) then \(f_i(x_{d+1}) \geq n \). Let

\[
k = \min \{ u \in \mathbb{Z}^+ : f_i(u) \geq n \}.
\]

Then

\[
\Delta_i(p_i) = \{(x_1, \ldots, x_d, x_{d+1}) \in V : 0 \leq x_l \leq h_l(p_i) \text{ for each } 1 \leq l \leq d, \ x_i = n, \ k \leq x_{d+1} \leq p_i \}
\]

\[
\subseteq \{(x_1, \ldots, x_d, x_{d+1}) \in \mathbb{Z}^{d+1} : 0 \leq x_l \leq h_l(p_i) \text{ for each } 1 \leq l \leq d, \ x_i = n, \ k \leq x_{d+1} \leq p_i \}.
\]

Therefore,

\[
|\Delta_i(p_i)| \leq \frac{p_i - k + 1}{h_i(p_i)} \prod_{i=1}^{d} (h_i(p_i) + 1).
\]

If \(k \leq \eta < p_i \), then

\[
h_i(\eta) + 1 \leq h_i(p_i - 1) + 1 = h_i(p_i) = n \leq f_i(k) \leq f_i(\eta).
\]
And then
\[h_i(\eta) = h_i(\eta - 1) + 1. \]

Therefore,
\[h_i(p_i) - h_i(k) = p_i - k. \]

Such
\[|\Delta_i(p_i)| \leq \frac{h_i(p_i) - h_i(k) + 1}{h_i(p_i) + 1} \prod_{l=1}^{d} (h_l(p_i) + 1) \leq \prod_{l=1}^{d} (h_l(p_i) + 1). \]

So that for any \(m \geq 0 \), if \(m \in \{p_i(n) : n \geq 1\} \), then
\[|\Delta_i(m)| \leq \prod_{l=1}^{d} (h_l(m) + 1). \tag{2.13} \]

Obviously, (2.13) is true for \(m = 0 \) since \(\Delta_i(0) = \{(0, \cdots , 0)\} \). Notice that \(p_i(0) = 0 \) and the fact that if \(m \in \mathbb{Z}\{p_i(n) : n \geq 0\} \) then \(\Delta_i(m) = \emptyset \). Therefore, (2.13) are true for all \(m \geq 0 \). Finally, for any \(m \geq 0 \)
\[|\partial_m| \leq \sum_{i=1}^{d+1} |\Delta_i(m)| \leq \sum_{i=1}^{d+1} \prod_{l=1}^{d} (h_l(m) + 1) \leq (d + 1) \prod_{l=1}^{d} (h_l(m) + 1). \]

We have completed the proof of the lemma. \(\square \)

3 Proof of Theorem 1.1

We shall use the notation of electric network. Every edge of \(\text{Wedge}(f_1, \cdots , f_d) \) is assigned a unit conductance. So that, we get an electric network. For sets \(A, B \subset \mathbb{V} \) with \(A \cap B = \emptyset \), denote by \(\mathcal{R}(A \leftrightarrow B) \) the effective resistance between \(A \) and \(B \) in the electric network. For simplicity, we label \(O \) as the origin of \(\mathbb{Z}^{d+1} \) and set
\[\mathbb{V}_r = \bigcup_{n=0}^{r} \partial_r \]
for each \(r \geq 1 \). Then we have the following lemma.

Lemma 3.1 For each \(r \geq 1 \)
\[\mathcal{R}(O \leftrightarrow \partial_r) \geq \frac{1}{2(d + 1)^2} \sum_{n=0}^{r-1} \prod_{i=1}^{d} \frac{1}{h_i(n) + 1}. \]
Proof. Notice that \(\partial_0 = \{O\} \). By Lemma 2.2 for each \(n \geq 1 \) the neighbor of \(\partial_n \) are \(\partial_{n-1} \) and \(\partial_{n+1} \) in \(\text{Wedge}(f_1, \cdots, f_d) \). So that \(\partial_n \) is a cutset which separates \(O \) from \(\partial_{n+s} \). The rest proof is easy and one can refer to [9]. Fix \(r \). The effective resistance from \(O \) to \(\partial_r \) in \((V, E)\) is equal to that in its subgraph with vertex set \(V_r \).

We short together all the vertices in \(\partial_n \) for each \(0 \leq n \leq r \). And replace the edges between \(\partial_n \) and \(\partial_{n+1} \) by a single edge of resistance \(\frac{1}{b_n} \), where \(b_n \) is the number of edges connect \(\partial_n \) with \(\partial_{n+1} \). This new network is a series network with the same effective resistance from \(O \) to \(\partial_r \). Thus, Rayleigh’s monotonicity law shows that the effective resistance from \(O \) to \(\partial_r \) in \(V_r \) is at least \(\sum_{n=0}^{r-1} \frac{1}{b_n} \). By Lemma 2.3 and the fact that every vertex of \(\text{Wedge}(h_1, \cdots, h_d) \) has at most \(2(d+1) \) neighbor,

\[
R(\partial_0 \leftrightarrow \partial_r) \geq \frac{1}{2(d+1)} \sum_{n=0}^{r-1} \frac{1}{|\partial_n|} \geq \frac{1}{2(d+1)^2} \sum_{n=0}^{r-1} \sum_{i=1}^{d} \frac{1}{h_i(n)+1}.
\]

\(\blacksquare \)

On the other hand we can estimate the upper bound of \(R(x \leftrightarrow \partial_r) \).

Lemma 3.2 There exists \(C_d > 0 \) which depends only on \(d \) such that for any \(r \geq 1 \) and any \(x \in \mathbb{V}_{r-1} \),

\[
R(x \leftrightarrow \partial_r) \leq C_d \sum_{n=0}^{r-1} \prod_{i=1}^{d} \frac{1}{h_i(n)+1}.
\]

Proof. Outline of the proof. We shall construct \(2d \) functions \(g_{\pm i}(\cdot) \) first. These functions will help us to find a subset \(\mathbb{V}_x \) which satisfies that \(x \in \mathbb{V}_x \subseteq \mathbb{V}_r \). Such \(R_{\mathbb{V}_x}(x \leftrightarrow \Delta_{d+1}(r) \cap \mathbb{V}_x) \), the resistance between \(x \) and \(\Delta_{d+1}(r) \cap \mathbb{V}_x \) in the subgraph with vertex set \(\mathbb{V}_x \), is greater than \(R(x \leftrightarrow \partial_r) \). Furthermore, we show the relation between \(\mathbb{V}_x \) and \(\text{Wedge}(h_1, \cdots, h_d) \). As known from Lyons [8], the related resistance in \(\text{Wedge}(h_1, \cdots, h_d) \) can be gotten. So do \(R_{\mathbb{V}_x}(x \leftrightarrow \Delta_{d+1}(r) \cap \mathbb{V}_x) \).

Fix \(x = (x_1, \cdots, x_d, s) \in \mathbb{V}_{r-1} \). We shall construct \(2d \) nonnegative integer valued functions on \(\mathbb{Z}^+ \). Fix \(1 \leq i \leq d \). First set

\[
g_{\pm i}(0) = x_i.
\]
Suppose that the definition of $g_{±i}(n)$ is known, we define $g_{±i}(n + 1)$ in three cases.

1. If $h_i(n + 1) = h_i(n)$, then we set $g_{±i}(n) = g_{±i}(n + 1)$.
2. If $h_i(n + 1) = h_i(n) + 1$ and if $g_{-i}(n) = 0$, then we set $g_{-i}(n + 1) = 0$ and $g_{i}(n + 1) = g_{i}(n) + 1$.
3. Otherwise, if $h_i(n + 1) = h_i(n) + 1$ and if $g_{-i}(n) > 0$, then we set $g_{-i}(n + 1) = g_{-i}(n) - 1$ and $g_{i}(n + 1) = g_{i}(n)$.

We say that these functions $g_{±i}(n)$ has the properties (a), (b) and (c). Where

(a) : $g_{i}(n + 1) - g_{i}(n) \in \{0, 1\}$ and $g_{-i}(n + 1) - g_{-i}(n) \in \{0, -1\}$ for each $n \geq 0$;
(b) : $g_{i}(n) - g_{-i}(n) = h_i(n)$ for each $n \geq 0$;
(c) : $0 \leq g_{-i}(n) \leq g_{i}(n) \leq \min\{f_{i}(n + s), h_i(r)\}$ for each $0 \leq n \leq r - s$.

Obviously, (a) are true for all $n \geq 0$. Next we shall prove (b) by induction to n. It is true for $n = 0$ since $h_i(0) = 0$. Suppose (b) is true for $n = m$ and we shall check $n = m + 1$. In any case of (1), (2) and (3), there has

$$h_i(m + 1) - h_i(m) = [g_{i}(m + 1) - g_{i}(m)] - [g_{-i}(m + 1) - g_{-i}(m)].$$

By the assumption that (b) is true for $n = m$, we can get that (b) is still true for $n = m + 1$. Such (b) is true for any $n \geq 0$. Again we prove (c) by induction. Owing to $x \in \mathbb{V}_{r-1}$ and $x_{d+1} = s$,

$$0 \leq x_i \leq h_i(x_{d+1}) = h_i(s) \leq \min\{h_i(r), f_i(s)\}.$$

So (c) is true for $n = 0$. Suppose (c) is true for $n = m < r - s$ and we shall check $n = m + 1$.

If (1) is true for $n = m + 1$, then by the assumption that (c) is true for $n = m$ and the monotone property of $f_i(\cdot)$, we have (c) for $n = m + 1$.

If (2) is true for $n = m + 1$, then what we need to care is only $g_i(n + 1)$. However, by the result (b) we have proved

$$g_i(n + 1) = h_i(n + 1) + g_{-i}(n + 1) = h_i(n + 1) \leq f_i(n + 1) \leq f_i(s + n + 1).$$

Furthermore, since $n < r - s$,

$$h_i(n + 1) \leq h_i(r).$$
Therefore (c) is true for \(n = m + 1 \).

If (3) is true for \(n = m + 1 \), then what we need to care is only \(g_{-i}(n + 1) \). But by the condition that \(g_i(n) > 0 \), we have

\[
g_{-i}(n + 1) = g_{-i}(n) - 1 \geq 0.
\]

Hence (c) is true, too. Therefore, in any case (c) is true for \(n = m + 1 \) with \(n < r - s \).

As a result, we can define vertex set \(\mathbb{V}_x \) and edge set \(\mathbb{E}_x \). Let

\[
\mathbb{V}_x = \{(u_1, \cdots, u_d, n+s) \in \mathbb{Z}^{d+1} : 0 \leq n \leq r-s, \ g_{-i}(n) \leq u_i \leq g_i(n) \text{ for each } 1 \leq i \leq d\}.
\]

Let

\[
\mathbb{E}_x = \{[u, v] \in \mathbb{E} : u, v \in \mathbb{V}_x\}.
\]

The definition does not make confusion of \(\mathbb{V}_x \) and \(\mathbb{V}_n \) since \(x \) is a vector. By (c),

\[
x \in \mathbb{V}_x \subseteq \mathbb{V}_r.
\]

Hence graph \((\mathbb{V}_x, \mathbb{E}_x)\) is a subgraph of \(\text{Wedge}(f_1, \cdots, f_d)\). Notice that

\[
\partial_r \cap \mathbb{V}_x \supseteq \Delta_{d+1}(r) \cap \mathbb{V}_x.
\]

(Actually \(\partial_r \cap \mathbb{V}_x = \Delta_{d+1}(r) \cap \mathbb{V}_x \), but we omit the proof here since it is irrelevant to our main result.) By the Rayleigh’s monotonicity law, the effective resistance between \(x \) and \(\Delta_{d+1}(r) \cap \mathbb{V}_x \) in the subgraph is greater than that in the old graph. That is,

\[
\mathcal{R}(x \leftrightarrow \partial_r) \leq \mathcal{R}_{\mathbb{V}_x}(x \leftrightarrow \Delta_{d+1}(r) \cap \mathbb{V}_x). \tag{3.1}
\]

So that we need only to estimate the upper bound of \(\mathcal{R}_{\mathbb{V}_x}(x \leftrightarrow \Delta_{d+1}(r) \cap \mathbb{V}_x) \).

We shall show the relation between \((\mathbb{V}_x, \mathbb{E}_x)\) and \(\text{Wedge}(h_1, \cdots, h_d)\). Let

\[
\mathbb{H} = \{(x_1, \cdots, x_d, n) \in \mathbb{Z}^{d+1} : 0 \leq x_i \leq h_i(n) \text{ for each } 1 \leq i \leq d, 0 \leq n \leq r-s\}.
\]

Obviously, \(\mathbb{H} \) is a subset of vertices of \(\text{Wedge}(h_1, \cdots, h_d)\). By the construction of \(g_{\pm i}(\cdot) \), one can easily check that there has for each \(n \geq 1 \).
either \(g_{-i}(n) = g_{-i}(n-1) \) or \(g_{i}(n) = g_{i}(n-1) \).

So we can define
\[
L_i(n) = \min\{g_{si}(n) : g_{si}(n) = g_{si}(n-1), s \in \{-1, 1\}\}.
\]

Let \(\Gamma(x) = O \). For each \((u_1, \cdots, u_d, n + s) \in \mathbb{V}_x\) with \(n \geq 1\), let
\[
\Gamma(u_1, \cdots, u_d, n + s) = (|u_1 - L_1(n)|, \cdots, |u_d - L_d(n)|, n).
\]

By (b), \(\Gamma \) is a bijection function from \(\mathbb{V}_x \) to \(\mathbb{H} \). Obviously, \([u,v] \in \mathbb{E}_x\) if and only if \([\Gamma(u), \Gamma(v)]\) is an edge of Wedge\((h_1, \cdots, h_d)\) for each pair of \(u\) and \(v\) with \(u_{d+1} = v_{d+1}\). Moreover, for any \(u \in \mathbb{V}_x\) we have that \(u - e_{d+1} \in \mathbb{V}_x\) if and only if \(\Gamma(u) - e_{d+1} \in \mathbb{H}\).

Since \(h_i(\cdot)\) increases at most one at each step, we can use the result of Lyons[8]. That is, there exists a unit flow \(w\) from \(O\) to \(\Delta_{d+1}(r - s)\) in the subgraph of Wedge\((h_1, \cdots, h_d)\) with vertex set \(\mathbb{H}\), such that for each \(u \in \mathbb{H}\) with \(u_{d+1} = n < r - s\),
\[
w(u, u + e_{d+1}) = \prod_{i=1}^{d} \frac{1}{h_i(n) + 1}, \quad (3.2)
\]
and the energy of \(w\) has upper bound
\[
\mathcal{E}(w) \leq C_d \sum_{n=0}^{r-s-1} \prod_{i=1}^{d} \frac{1}{h_i(n) + 1}, \quad (3.3)
\]
where \(C_d < \infty\) and depends only on \(d\). Let \(w_x\) be a function on \(\mathbb{E}_x\) and satisfies that for each \([u,v] \in \mathbb{E}_x\) with \(u_{d+1} = v_{d+1}\),
\[
w_x(u,v) = w(\Gamma(u), \Gamma(v)).
\]

and for each \(u \in \mathbb{V}_{r-1}\) with \(u_{d+1} = n\), let
\[
w_x(u, u + e_{d+1}) = \prod_{i=1}^{d} \frac{1}{h_i(n) + 1}.
\]

Directly calculate
\[
\sum_{v: [u,v] \in \mathbb{E}_x} w_x(u,v)
\]
= \text{w}_x(u, u + e_{d+1}) + \text{w}_x(u, u - e_{d+1})1_{\{u - e_{d+1} \in \mathbb{V}_x\}} + \sum_{v : [u, v] \in E, u_{d+1} = v_{d+1}} \text{w}_x(u, v)

= \prod_{i=1}^{d} \frac{1}{h_i(n) + 1} - \prod_{i=1}^{d} \frac{1}{h_i(n - 1) + 1} 1_{\{u - e_{d+1} \in \mathbb{V}_x\}} + \sum_{v : [u, v] \in E, u_{d+1} = v_{d+1}} \text{w}((u), (v))

= \text{w}((u), (u) + e_{d+1}) + \text{w}((u), (u) - e_{d+1})1_{\{(u) - e_{d+1} \in \mathbb{H}\}} + \sum_{z \in \mathbb{H} : \|u - z\|_1 = 1, u_{d+1} = z_{d+1}} \text{w}((u), (z))

= \sum_{z \in \mathbb{H} : \|u - z\|_1 = 1} \text{w}((u), (z)).

Together with the fact that \text{w} is a unit flow, we get that \text{w}_x is a unit flow from \text{x} to \Delta_{d+1}(r) \cap \mathbb{V}_x in graph (\mathbb{V}_x, E_x). Obviously

\mathcal{E}(ext{w}_x) = \mathcal{E}(\text{w}). \tag{3.4}

Together (3.1), (3.3) and (3.4), we have

\mathcal{R}(x \leftrightarrow \partial_r) \leq \mathcal{R}_{\mathbb{V}_x}(x \leftrightarrow \Delta_{d+1}(r) \cap \mathbb{V}_x) \leq \mathcal{E}(\text{w}_x) = \mathcal{E}(\text{w}) \leq C \frac{r - 1}{\prod_{n=0}^{d} \frac{1}{h_i(n) + 1}}.

\square

Proof of Theorem 1.1. As it is well known, a connect graph with local finite degree is recurrent if and only if the resistance from any one vertex to the infinity in the graph is infinite (Refer to [9], Proposition 9.1). Together with Lemmas 3.1 and 3.2 we have the desired result. \square

4 Proof of Theorem 1.2

Lemma 4.1 Let G be a graph of bounded degrees with a distinguished vertex o and suppose that there exists a sequence of sets (B_r)_r growing with r and satisfying

\text{g}_{B_r}(o, o) \rightarrow \infty \text{ as } r \rightarrow \infty \text{ and } \text{g}_{B_r}(x, x) \leq C \text{g}_{B_r}(o, o), \ \forall x \in G,

for a uniform constant C > 0. Here, \text{g}_{B}(\cdot, \cdot) is the green function of the simple random walk on G killed when it exits B. Then the graph G has the infinite collision property.
Proof. Refer to [2].

Proof of Theorem 1.2. First suppose $\text{Wedge}(f_1, \ldots, f_d)$ is not a recurrent graph. Then $\text{Wedge}(f_1, \ldots, f_d)$ is a transient graph. It implies that $g_V(O, O)$, the expected number of returning to O, is finite. One can easily get that the expected number of collisions between two independent simple random walks starting from O is less than $2(d+1)g_V(O, O)$. So that, almost surely the number of collisions is finite. Hence, $\text{Wedge}(f_1, \ldots, f_d)$ has the finite collision property.

On the other hand, suppose $\text{Wedge}(f_1, \ldots, f_d)$ is recurrent. By Theorem 1.1 we have (1.2). Furthermore, by Lemma 3.1

$$\lim_{r \to \infty} R(O \leftrightarrow \partial_r) \geq \lim_{r \to \infty} \frac{1}{2(d+1)^2} \sum_{n=0}^{r-1} \prod_{i=1}^{d} \frac{1}{f_i(n) + 1} = \infty.$$

As it is known to all (refer to [2]) that for each $r \geq 1$

$$R(O \leftrightarrow \partial_{r+1}) = g_{V_r}(O, O).$$

So $\lim_{r \to \infty} g_{V_r}(O, O) = \infty$. By Lemmas 3.1 and 3.2 for all $r \geq 1$ and $x \in \text{Wedge}(f_1, \ldots, f_d)$

$$g_{V_r}(x, x) \leq 2(d+1)^2 C_d g_{V_r}(O, O).$$

By Lemma 4.1 $\text{Wedge}(f_1, \ldots, f_d)$ has the infinite collision property.

References

[1] Angel, O., Benjamini, I., Berger, N., Peres, Y., Transience of percolation clusters on wedges, Electric Journal of Probability, Vol. 11, No. 25, 655-669, (2006).

[2] Barlow, M.T., Peres, Y., Sousi, P., Collisions of Random Walks, preprint, available at http://arxiv.org/PS_cache/arxiv/pdf/1003/1003.3255v1.pdf

[3] Chen, X., Chen, D., Two random walks on the open cluster of \mathbb{Z}^2 meet infinitely often. Science China Mathematics, 53, 1971-1978 (2010).
[4] Chen, X., Chen, D., *Some sufficient conditions for infinite collisions of simple random walks on a wedge comb*, electronic Journal of Probability, No. 49, 1341-1355 (2011)

[5] Chen, D., Wei, B. and Zhang, F., *A note on the finite collision property of random walks*. Statistics and Probability Letters, 78, 1742-1747, (2008).

[6] Krishnapur, M. and Peres, Y., *Recurrent graphs where two independent random walks collide finitely often*. Elect. Comm. in Probab. 9, 72-81, (2004).

[7] Liggett T M. A characterization of the invariant measures for an infinite particle system with interaction II. Trans Amer Math Soc, 1974, 198: 201C213

[8] Lyons, T. *A simple criterion for transience of a reversible Markov chain*, Annal of Probability, 1983, Vol 11, No.2, 393-402.

[9] Peres, Y., *Probability on trees: an introductory climb*, Lectures on probability theory and statistics (Saint-Flour, 1997), 193C280, Lecture Notes in Math., 1717, Springer, Berlin.

[10] Polya, G., *George Polya: Collected Papers*, Volume IV, 582-585, The MIT Press, Cambridge, Massachusetts.

[11] Shan, Z., Chen, D., *Voter model in a random envoirment in Z^d*, Frontiers of Mathematics in China, 2012, Volume 7, No. 5, 895-905.