Collateral implications of carbon and metal pollution on carbon dioxide emission at land-water interface of the Ganga River

Kavita Verma1 · Jitendra Pandey1

Received: 28 July 2021 / Accepted: 19 November 2021 / Published online: 25 November 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Atmospheric CO2 source and sink is among the most debated issues that have puzzled climate change geochemist for decades. Here, we tested whether heavy metal pollutants in river sediments favor preservation of organic matter through shielding microbial degradation. We measured CO2 emission and extracellular enzyme activities at land-water interface (LWI) of 7 sites along a 285 km main stem of the Ganga River and 60 locations up- and downstream of two contrasting point sources discharging urban (Assi drain; Asdr) and industrial (Rammagar drain; Rmdr) wastewaters to the river. We found the lowest CO2 flux at Rmdr mouth characterized by the highest concentrations of Cu, Cr, Zn, Pb, Ni, and Cd. The fluxes were relatively higher at locations up- and downstream Rmdr. Substrate induced respiration (SIR), protease, FDAase, and β-D-glucosidase all showed a similar trend, but phenol oxidase and alkaline phosphatase showed opposite trend at the main river stem and Asdr. Sites rich in terrestrially derived organic matter have high phenol oxidase activity with low CO2 emission. The CO2 emission in the main river stem showed curvilinear relationships with total heavy metals (∑THM; R2 = 0.68; p < 0.001) and TOC (R2 = 0.65; p < 0.001). The dynamic fit model of main stem data showed that the ∑THM above 337.4 µg g−1 were able to significantly decrease the activities of protease, FDAase, and β-D-glucosidase. The study has implications for understanding C-cycling in human-impacted river sediments where metal pollution shields microbial degradation consequently carbon and nutrient release and merits attention towards river management decisions.

Keywords β-D-Glucosidase · CO2 emission · Ganga River · Heavy metal · Land-water interface · Phenol oxidase

Introduction
The loading of terrestrially derived organic carbon (OC) influences ecosystem functioning in rivers and streams along hydrologic continuum, particularly through the processes controlled by microorganisms (Tezuka 1990; Taylor and Townsend 2010; Berggren and Giorgio 2015). Rivers and streams are the primary routes of delivering dissolved and particulate organic carbon emerging from terrestrial landscapes through inland waters to coastal areas and oceans (Cole et al. 2007; Park et al. 2018; Siddiqui et al. 2020). Increased interest in understanding global carbon cycle, as it relates to climate change, has encouraged researchers to work on carbon capture, storage and release in rivers, oceanic and terrestrial systems (Jaiswal and Pandey 2019a). Land-derived OC supply is an important energy source for riverine food webs and ecosystem functions, including C and nutrient cycling (Boyero et al. 2011; Pandey et al. 2014; Gessner et al. 2010; Rosemond et al. 2015). A large amount of terrestrially generated OC enters into rivers and streams where it is decomposed/accumulate in bed sediment and transported downstream (Foulquier et al. 2015; Austin and Vivanco 2006). A substantial portion of terrestrial plant litter entering forested headwaters is processed immediately by heterotrophic microbes and invertebrate shredders, resulting in significant quantities of fine particulate organic matter which is transported downstream (Vannote et al. 1980). Furthermore, point sources releasing sewage and industrial effluents and non-point sources such as surface runoff are continuing to add massive amount of C and nutrients to streams and rivers (Bernot et al. 2010; Yadav and Pandey...
The presence of both the C-sources (allochthonous and autochthonous) allows uncoupling of primary and secondary C-production and has implications for food web dynamics, CO₂ emission, and riverine transport (Van den Meersche et al. 2009; Lau et al. 2009).

Being a conducive habitat for microbial metabolism, inland waters act as effective bioreactors, where terrestrial organic matter is rapidly decomposed (Richey et al. 2002). The organic matter is relatively short-lived in inland waters (mean residence time 2.5 ± 4.7 years), as compared to centennial to millennial-scale residence times in soils and oceans (Catalán et al. 2016). Because of multiplicity of factors that regulate organic matter turnover, such as C-chemistry, sediment characteristics, microbial composition, hydrologic control, and disturbance, forecasting long-term stability of carbon compounds in large rivers is difficult (Kandeler et al. 1999; Dai et al. 2002; Schimel and Weintraub 2003). The microorganisms regulate biogeochemical transformations including the release of carbon dioxide (CO₂) (Guérin et al. 2006; Cole et al. 2007). Microbial degradation of organic matter in oxic sediments produces mainly CO₂. Because most of the inland waters are saturated with C gases, they constitute a net source of CO₂ to the atmosphere and are quantitatively important in ecosystem C-budgets (Butman and Raymond 2011; Aufdenkampe et al. 2011; Teodoru et al. 2015). Despite these facts, the C-metabolism and CO₂ emissions of large rivers remain poorly quantified. Surface waters receive about 1.9 Pg of carbon annually from different natural and anthropogenic sources. About 0.2 Pg of this C undergoes burial in sediments, and about 0.9 Pg is flushed to the ocean. The balance amount (0.8 Pg) returns to the atmosphere (Cole et al. 2007). Global emission of CO₂ from lotic waters is about 1.8 ± 0.25 Gt CO₂-C yr⁻¹ (Raymond et al. 2013). This amount is equivalent to about 70% of the oceanic C sink globally (Le Quéré et al. 2014). According to Cole and Caraco (2001), the world’s 80 largest rivers add about 0.15–0.3 Pg CO₂-C annually, whereas the inundated floodplains in humid tropics emit 0.9 Pg CO₂-C annually. This amount is about 3-fold of global riverine emission (Richey et al. 2002). The US rivers and streams release about 2370 ± 800 g CO₂-C m⁻² yr⁻¹ (Butman and Raymond 2011). Because of strong hydrologic control and heterogeneity of sub-habitats, quantification and prognostics modeling of CO₂ emission in large rivers are very difficult (Jaiswal and Pandey 2019a).

Our recent, multi-spatio-temporal scale studies show that, being a stable and biologically active zone, the land-water interface (LWI) of large rivers provides an imprint of hydrodynamic retention characterizing the processes and patterns in close correspondence with those occurring in the main river channel (Jaiswal and Pandey 2019a). The LWI can be used as a stable testbed and predictor of river ecosystem responses to human disturbances (Jaiswal and Pandey 2019a). The β-D-glucosidase, protease, and FDAase are widely used to address soil/sediment microbial processes. The β-D-glucosidase catalyzes the terminal step in cellulose breakdown with subsequent release of glucose monomers to the microorganism (Dick 2020). The activity of this enzyme varies with soil/sediment types and positively correlates organic matter supply (Sinsabaugh et al. 2008; Yan et al. 2010; Mariscal-Sancho et al. 2010). Understanding the variations in β-D-glucosidase activity can help understanding sediment/soil C-metabolism and C-cycling (Jaiswal and Pandey 2019a). The fluorescein diacetate hydrolytic assay (FDAase) is a widely accepted measure of total microbial activity in soils (Schnürer and Rosswall 1982; Battin 1997; Adam and Duncan 2001). The fluorescein diacetate hydrolysis requires three major group of enzymes, esterases, proteases, and lipases involved in the microbial decomposition of organic matter (Schnürer and Rosswall 1982). Also, it is used as a potential indicator of esterase activity of stream biofilms (Battin 1997). Phenol oxidase enters the environment through excretion or lysis and mediates lignin degradation and C-mineralization (Sinsabaugh 2010).

Aquatic ecosystems serve as reservoirs of terrestrial and anthropogenic-C accumulation. C-enrichment interacts with site-specific conditions, including occurrence of other contaminants. Thus, the rate of decomposition vis-à-vis CO₂ emission varies subject to the nature of C-source and site-specific conditions, for instance, presence of other contaminants. Anthropogenic input of C is often accompanied by a large supply of nutrient and non-nutrient contaminants (Smith and Schindler 2009). Thus, the fate of C in such water bodies can be strongly influenced by the interaction of multiple pollutants. For instance, nutrient supply, chiefly N and P, can gear up autochthonous C-build-up and decomposition, whereas metal enrichment can provide countervailing effect. Thus, the complex interactions, especially those pertaining to countervailing effect, deserve scaled-up studies from a climate change perspective and for understanding ecosystem level effects of heavy metal pollution. This has concern for the Ganga River because sewage sources alone add 110 Gg of TOC, 13.28 Gg of DIN, and 5.29 Gg of DRP annually into the river. In addition, the basin receives about 1.81 Tg, 2.77 Tg, and 0.13 Tg of TOC, TIN, and P, respectively, through atmospheric deposition annually (Singh and Pandey 2018).

Quantifying CO₂ emission and C-sequestration in large rivers requires an understanding of factors that regulate microbial processes-linked C-metabolism. The processes which inhibit microbial activities reduce CO₂ emission. Metals, for instance, inhibit microbial activity (Ford 2000; Verma and Pandey 2019) and, consequently, the CO₂ release (Dobler et al. 2000). Because most of the human impacted rivers simultaneously receive C and metal pollutants, it is expected that C enrichment will enhance carbon dioxide.
emission, whereas metal pollutants will cause a stabilizing effect. Thus, countervailing effect of such disturbances is likely to create a complex pattern of C-dynamics challenging to predict CO₂ release/C-sequestration (Jaiswal and Pandey 2019a). A clear understanding of such countervailing effects leading to unanticipated ecosystem consequences is essential for policy decision in river management (Jaiswal et al. 2021). The purpose of this work is to fill the gap in our understanding of how point- and non-point sources of C and metal input affect C-metabolism and CO₂ emission at the LWI of the Ganga River. Here, we have attempted to establish mechanistic links between C and metal pollutants to develop a new context to understand collateral implications of human-driven stressors. The study was designed in two parts: first, to evaluate the effects of two contrasting point sources, one releasing metal-rich and the other releasing C-rich wastewater, on microbial extracellular enzyme activities and CO₂ emission at LWI, and second, to assess the collateral impacts and linkages with regulatory determinants at selected sites along the main stem of the Ganga River. We attempted to identify patches with variabilities and mechanistic regulatory control which can be used to quantitatively extrapolate system level CO₂ emission scenario for large rivers. The study has relevance in up-scaling system-specific scenario for improving prognostic models of CO₂ emission in addition to evaluating collateral implications of C and metal pollution in human-impacted large rivers.

Material and methods

Study area

A 2-year study (2017 to 2018) was conducted between Allahabad (25°28′N; 81°54′E) and Varanasi (25°19′N; 83°1′E) covering 285 km of the Ganga River. The sampling was done during low flow at six sites: Hatwa (Htwa), Sangam (Sngm), Sitamarhi (Stmh), Adalpura (Adpr), Ramna (Rmna), and Rajghat (Rjht). We consider the least-polluted site, Devprayag (Dvpg): 812 km upstream to Hatwa, as a reference site. Also, we selected two contrasting point sources in Varanasi region (Assi drain, which discharge 66.4 mld urban sewage and Ramnagar drain, which discharge 24 mld of metal-rich industrial effluents) for trajectory analysis. For trajectories, we collected samples from 30 locations (each 100 m apart), selecting 15 upstreams and 15 downstreams of each point source (Fig. 1). The Ganga basin, a mixed landscape with predominance of highly fertile agricultural plains (> 73% of the total area), support over 26% of India’s population. The river experiences strong pressure from urban-industrial-agricultural releases and water regulation. The climate is tropical where March to June extends as a hot summer, July to October as a humid rainy season, and November to February as a cold winter. About 90% of the annual precipitation (870–1130 mm) occurs in the rainy season. The relative humidity ranged from 27 to 83% (summer) and 58 and 99% (rainy). Summer temperature maxima may reach 46°C.

Sampling and analysis

Triplicate samples were collected from land-water interface (LWI) of three sub-sites considered for each study site using sediment corers. Samples were brought to the laboratory and preserved (4°C) for the analysis of microbial variables. Samples were dried at room temperature, homogenized, and sieved (2-mm mesh) for heavy metals. After digestion in a tri-acid mixture at a ratio of 5:1:1 (HNO₃/HCl/HClO₄) in a microwave digestion system (SINEO model MDS-6G), the samples were analyzed in a Perkin Elmer atomic absorption spectrophotometer (Analyst 800, USA). The detection limits were 0.0008 (Cd), 0.003 (Cr), 0.001 (Cu), 0.006 (Ni), 0.015 (Pb), and 0.001 (Zn) mg/l. The standard stock solutions and drift blanks purchased from Sisco Research Laboratories (India) were used to calibrate the AAS for respective metal. For spiking of samples, we prepare the solutions using nitrate salts of Cd, Cr, Ni, and Pb and granules of Zn and Cu (99% purity). To ensure recovery strength, we repeatedly tested ratios of tri-acids, and a 5:1:1 ratio showed 99% recovery.

The sediment samples were analyzed for granulometric fractions (Stemmer et al. 1998). Chlorophyll a, extracted in acetone, was determined spectrophotometrically (Lorenzen and Jeffrey 1980). Conductivity was measured using multiparameter tester (Oakton 35425-10, USA). The ammonium molybdate stannous chloride method was used to measure soluble reactive phosphorus (SRP; Murphy and Riley 1962). Total organic carbon (TOC) was quantified using a TOC analyzer (LOTIX TOC analyzer). Total nitrogen (TN) was analyzed using Kjeldahl analysis and water soluble organic carbon (WSOC) following by Ciavatta et al. (1991). Following a chloroform fumigation extraction, microbial biomass C (Cmic), was measured as per Jenkinson and Powlson (1976), biomass-phosphorus (Pmic) following Brookes et al. (1982), and nitrogen (Nmic) following Shen et al. (1984). The substrate-induced respiration (SIR) was assessed following Wardle et al. (1993). The microbial metabolic quotient was calculated in terms of BR/SIR ratio. Protease activity was measured in terms of aromatic acid released during casein proteolysis and expressed as L-tyrosine equivalents (Ladd and Butler 1972). Phenol oxidase was determined as described by Sinsabaugh and Findlay (1995) and alkaline phosphatase (AP) by Tabatabai and Bremner (1969). The β-D-glucosidase was assayed following Eivazi and Tabatabai (1988). For fluorescein diacetate hydrolytic
assay (FDAase), the sample filtrates were incubated with fluorescein diacetate, and the fluorescein formed was estimated spectrophotometrically (Schnürer and Rosswall, 1982).

The CO$_2$ at LWI was collected in steel chambers (23 cm height; 22 cm diameter). The chambers contain a small fan for distribution of air and a thermometer to record temperature. The chambers were fixed 5-cm deep to ensure a seal against ambient air, and the gas was withdrawn through a rubber fitted valve. For quality control, and to avoid changes in temperature and moisture regime, attempts were made to collect samples at an identical time. A polypropylene syringe with three-way stopper was used for withdrawing the gas from the headspace at 1-h interval. Samples were brought in an icebox and analyzed in a Trace 1110 Thermo Fisher Analyzer. The accuracy was validated by repeated calibration with standard gas samples.

Fig. 1 Map of the area showing study locations up- and downstream of two point sources: a Ramnagar drain and b Assi drain. Zero represents mouth of the outlet, and – sign represents upstream locations to drain mouth.
Statistical analysis

Mean values of measurements are presented with standard errors (SE). Correlation coefficients and dynamic fit models were used to measure the extent to which variables covary. Principal component analysis was considered to verify major determinants. Confidence limit > 95 justifies significance. The Sigma plot (version 11.0) and SPSS (IBM SPSS statistics 20) were used for the statistical analysis. To find Euclidean distance and extent of dissimilarities, we used non-metric multidimensional scaling (NMDS) and Bray-Curtis neighbor-joining metrics.

Results

Main stem trends

CO2 emission

The CO2 flux at land-water interface (n = 24) varied between 83.9 mg m⁻² h⁻¹ (Rjht Site) and 339.2 mg m⁻² h⁻¹ (Sngm Site). The emission flux increased over time except at Rjht where it declined marginally on a temporal scale. At Sngm, the CO2 emission was 4-fold higher than those at Rjht Site (Fig. 2).

Regulatory variables

Substrate-induced respiration (SIR) showed a trend similar to CO2 emission. The enzyme activity-β-D-glucosidase, protease and FDAase did show maxima at Sngm Site and minima at Rjht Site with n = 24, whereas the microbial metabolic quotient (qCO2) showed an opposite trend (Fig. 2). The phenol oxidase and alkaline phosphatase showed highest activity at Stmh Site and lowest at Rjht (Fig. 2).

Sediment characteristics

The concentration of metals in the riverbed sediment (n = 24) ranged from 42.2 to 161 μg g⁻¹ (Zn), 35.2 to 188.2 μg g⁻¹ (Cr), 10.2 to 170.2 μg g⁻¹ (Cu), 10.5 to 82.4 μg g⁻¹ (Pb), 0.5 to 7.8 μg g⁻¹ (Cd), and 5.3 to 60.2 μg g⁻¹ (Ni). The values were highest at Rjht followed by Sngm and lowest at Dvpg. The concentrations were highest for Cr and lowest for Cd (Fig 3). In the main river stem, the concentrations of total organic carbon (TOC), water soluble organic carbon (WSOC), and total nitrogen (TN) with sample size n =24 were high at downstream sites. At Rjht Site (n = 24), the concentrations of TOC, WSOC, and TN were 6-fold, 2.4-fold, and 4.9-fold higher compared to their respective values at reference site Dvpg. The C:N ratio also was highest at Rjht Site. Microbial biomass carbon (Cmic), nitrogen (Nmic), and phosphorus (Pmic) and Chl a biomass showed trends similar to CO2 emission, with values being highest at Sngm and Lowest at Rjht Site. Conductivity and SRP (soluble reactive phosphorus) also followed trends similar to TOC. The proportion of coarse sand was relatively higher at upstream site (Dvpg), and percentage of fine sand was highest at Adpr while clay was highest at Rjht (Table 1). The CO2 emission showed curvilinear relationships with ∑THM (R² = 0.68; p <0.001), TOC (R² = 0.65; p <0.001), and phenol oxidase (R² = 0.72; p < 0.001) and significant positive correlations with FDAase, protease, and β-D-glucosidase (R² = 0.89–0.92; p < 0.001) (Fig. 4).

Point source up- and downstream trends

CO2 emission

The CO2 emission showed longitudinally variable trends at both the point sources. The CO2 emission was found highest at the mouth of the Assi drain (Asdr; 432 mg m⁻² h⁻¹; n = 24) and decreased towards downstream and upstream sites. At the mouth of the Ramnagar drain (Rmdr), the CO2 emission did show the lowest value (10 mg m⁻² h⁻¹). At Rmdr, the CO2 emission maxima at upstream sites of the drain was found 25-fold higher as compared to the mouth of the drain, whereas downstream maxima was over 38-fold higher. The CO2 emission showed a gradual increase with distance upstream and downstream from mouth of the drain. The CO2 efflux showed a wide variability and increased over time at Asdr but declined at Rmdr (Fig. 5).

Regulatory variables

To synchronize with CO2 emission, we measured microbial/EE activities with same number of replicates/sub-sites (n = 24). At Asdr, the microbial/enzyme activities (SIR, FDAase, β-D-glucosidase and protease) all followed a trend similar to CO2 emission with values being highest at the drain mouth. Metabolic quotient, phenol oxidase, and alkaline phosphatase showed opposite trends (Fig. 5). At Rmdr, microbial/enzyme (SIR, FDAase, β-D-glucosidase, protease, alkaline phosphatase, and phenol oxidase) followed a trend similar to CO2 emission with values being lowest at the drain mouth and increased towards downstream. Metabolic quotient showed an opposite trend (Fig. 5).

Sediment characteristics

The concentration of metals at the Assi drain (Asdr) ranged as follows: Cd, 2.3 to 15.2 μg g⁻¹; Cr, 36.2 to 118.3 μg g⁻¹; Cu, 22 to 51.2 μg g⁻¹; Ni, 21.3 to 78.2 μg g⁻¹; Pb, 42 to 77 μg g⁻¹; and Zn, 51 to 203 μg g⁻¹. At Rmdr, the values were ranged as follows: Cd, 12.2 to 38 μg g⁻¹; Cr, 58 to 162 μg g⁻¹; Cu,
43 to 122 µg g⁻¹; Ni, 64 to 152.3 µg g⁻¹; Pb, 62 to 142 µg g⁻¹; and Zn, 51 to 250 µg g⁻¹. The concentrations were highest at drain mouth and values decreased towards upstream and downstream sites. Metal concentrations were 1.5–2.34-fold higher at Rmdr compared to Asdr (Fig. 6). At Asdr, the CO₂ emission showed significant positive correlation with TOC, total heavy metal, FDAase, β-D-glucosidase, protease (R² = 0.78–0.89; p < 0.001) and strong negative correlation with phenol oxidase and alkaline phosphatase (R² = 0.84–0.88; p < 0.001), whereas at Rmdr, the CO₂ emission showed significant negative correlation with TOC and total heavy metal (R² = 0.64–0.70; p < 0.001) (Fig. 7). The concentrations of WSOC, TOC, and TN (n = 24), on spatio-temporal scale, showed similar trend at both the study drains. Asdr Site contained 1.5-fold high value of TOC and 1.2-fold high value of WSOC at the mouth as compared to Rmdr mouth. We found an opposite trend for total nitrogen. Microbial biomass-carbon (Cmic), nitrogen (Nmic), phosphorus (Pmic), and Chl a biomass showed trends similar to the CO₂ emission at Asdr with maxima at drain mouth (Table S1). We
found lowest levels of microbial biomass and Chl a at Rmdr (Tables S1 and S2). The C:N ratio was found to be the highest at Rmdr mouth and lowest at Asdr mouth. Conductivity and SRP both were highest at Asdr mouth. Both the drains showed high percentage of clay at the mouth (Table S1, S2).

Principal component analysis

Principal component analysis (PCA) showed three significant PCs for the main stem and Asdr and two significant PCs for Rmdr (Table 2). For the main stem, three PCs collectively explained 92.09% of the variance. The first PC, which explains 62.12% of the variance, showed strong loading of heavy metals, qCO₂, TOC, TN, WSOC, and sediment granulometry. Second PC explained 20.02% of the variance with strong loading of microbial activities, Chl a biomass, and CO₂ emission. Third PC have strong loading of alkaline phosphatase and phenol oxidase with 9.95% variance. The first PC at Asdr (66.12% variance) showed strong loading of microbial activities, TOC, nutrient, and granulometry while the second PC with 22.21% of variance showed strong loading of metals and qCO₂. The third PC (8.9% variance) separates phenol oxidase and alkaline phosphatase. For Rmdr, two significant PCs were obtained. The first PC explained 67.13% of the variance with strong loading of metals, TOC, TN, C:N ratio, silt, clay, and qCO₂, whereas PC 2 explained 27.04% of the variance and separates microbial activities and silt/clay (Table 2).

Discussion

CO₂ emission at land-water interface

The CO₂ emission reported here was significantly lower than those reported for a freshwater marsh (1456.60 ± 593.31 mg m⁻² hr⁻¹) and a brackish water marsh (1435.23 ± 689.71 mg m⁻² hr⁻¹) in the Min River estuary, Southeastern China (Hu et al. 2017). Mukhopadhyay et al. (2002) in their studies on monthly variations in the Hooghly River estuary found a CO₂ flux ranging from -5.5 to 154 mg m⁻² hr⁻¹, which was lower than the values recorded here.
Selvam et al. (2014) reported that the Indian inland waters are an important source of CO₂ reaching to the atmosphere with CO₂ emission flux in all the 45 studied systems that ranged from -51.7 to 481.06 mg m⁻² hr⁻¹. The upper limit of these values is comparable to the present study. Sawakuchi et al. (2017) reported an average value, including all seasons and sites, measured in the lower Amazon River and its tributaries to be 999.50 ± 896.5 mg m⁻² hr⁻¹. The direct measurements in the lower Amazon River main stem as by Alin et al. (2011) show values ranging from 296.20 to 1682.20 mg m⁻² hr⁻¹. Mann et al. (2014) found 572 to 2619.83 mg m⁻² hr⁻¹ at 25 sites during a single period (November 2010) from four major river basins in the Republic of the Congo (Alima, Lefini, Sangha, Likouala-Mossaka). These values are much higher than the values recorded in this study. Despite large spatial variation, we did not observe significant inter-annual difference in CO₂ emission. Sediment with favorable conditions tends to be substrate limited and shows high in situ activities and low organic matter accumulation. In contrast, sediments with stress conditions are activity limited and show low in situ activities, promoting C-storage (Sinsabaugh 2010). Also, the enzyme activity limited systems contribute to organic matter accumulation (Freeman et al. 2001, 2004). Earlier research shows that carbon quality and particle size distribution are an important regulator of microbial biomass distribution (Sinsabaugh and Findlay 1995). Small particle size support high concentration of TOC and TN, with concentrations generally high in clay, although the C:N ratio declines with diminishing particle size (Stemmer et al. 1998). Different soil particle size fractions possess different sizes of carbon pools (Von Lützow et al. 2007). Small clay and silt particles provide large specific surface areas with numerous reactive sites at which organic carbon can be sorbed by strong ligand exchange and polyvalent cation bridges (Feng et al. 2013). On the other hand, the large sand particles, which are dominated by quartz particles, exhibits only weak bond affinities to organic carbon (Balesdent et al. 1998; Christensen 1998; Kahle et al. 2002). The downstream sites, Sngm and Asdr, are rich in WSOC, TOC, and TN concentrations and also have high percentage of clay and silt at mouth of the drain. High substrate availability coupled with high percentage of silt and clay may invite the colonization of a large microbial population and create a suitable room for high microbial/enzyme activities that trigger CO₂ emission. Because microbial extracellular enzymes (EEs) mediate the decomposition and mineralization of organic matter and heavy metals inhibit the EE activities, here we identified, in addition to other variables, two major determinants, chemical recalcitrance and heavy metal enrichment, to address changes in microbial extracellular enzyme (EE) activities vis-à-vis CO₂ emission along the river gradient.

Sites	Cond (μS cm⁻¹)	WSOC (mg kg⁻¹)	TOC (%)	TN (%)	C:N ratio	Cmic (µg g⁻¹)	Nmic (µg g⁻¹)	Pmic (µg g⁻¹)	SRP (mg g⁻¹)	Chl a (µg g⁻¹)	Coarse sand (%)	Fine sand (%)	Silt (%)	Clay (%)
Dvpg	200	450	1.56	0.1	15.6	280	28	0.5	8	54	23	14	9	
Dvtna	280	850	3.6	0.3	12	690	50	28	1.2	12	22	25	18	
Sngm	380	980	4.5	0.35	12.5	750	78	25	0.5	15	25	13	22	13
Stmh	270	780	2.5	0.2	14.6	500	45	25	0.8	10	22	42	10	
Adpr	260	710	2.2	0.15	11.4	432	38	20	1.5	14	18	12	10	
Rmna	300	970	4	0.35	11.4	700	70	32	1.5	14	18	12	10	
Rjht	400	1100	9	0.49	15.1	181	181	350	20	28	10	25	25	33

Table 1 Biogeochemical characteristics of sediment at land-water interface (LWI) at different sampling sites of Ganga River during low flow period.
Regulatory determinants: recalcitrance

Two different classes of mechanisms are used to explain selective preservation of organic carbon in soil and sediments. These include the following: recalcitrance, where carbon molecules are generally preserved owing to being unreactive, and interaction with minerals that help escape remineralization (Hemingway et al. 2019). Microbial EEs mediate decomposition and mineralization of organic matter (OM). Terrestrially derived OM often shows recalcitrance to degradation (Sinsabaugh 2010; Ward et al. 2013). Terrestrially derived OM, rich in leaf litter, are generally poor in N content (high C:N ratio) and are poorly decomposable relative to autochthonous C. Lignin and cellulose constitute the most abundant C fractions on land (Boerjan et al. 2003). Lignin accounts about 30% of organic-C in the terrestrial C reservoir (Boerjan et al. 2003), and 55% of land sequestered lignin is degraded in the river continuum (Malhi et al. 2008; Bose et al. 2009; Houghton et al. 2001). Roughly 80 Tg C in the Amazon terrestrial biosphere is fixed as lignin each year (Mayorga et al. 2005; Ward et al. 2013). Similar to CO₂ emission, microbial/EE activities, except protease, did not show significant difference between years 2017 and 2018. Protease showed a significant ($p < 0.005$) increase in 2018 at Sngm and Rmna Sites indicating input of some nitrogenous substrate at these sites. Sites with chemical recalcitrance were measured in terms of phenol/phenol oxidase activity—a signature of terrestrially derived OC, and those rich in metal pollutants showed mismatch in CO₂ emission rates and C-inputs. Phenol oxidase is one of the key enzymes able to degrade recalcitrant phenolic materials such as lignin (McLatchey and Reddy 1998). Phenolic materials are highly inhibitory to enzymes, and their lower abundance at some sites allowed higher hydrolase activities. Sites, Stmh and Adpr, with high amount of terrestrially derived organic matter showed highest phenol concentration, and high C:N ratio.
The downstream sites, Sngm and Rjht, with easily utilizable soft-C, added from sewage for instance, showed less activity of phenol oxidase, but high activity of β-D-glucosidase. Sites with high concentration of Chl a (high autochthonous organic C) did show low phenol oxidase activity and high activity of β-D-glucosidase. The C:N ratio, a proxy of decomposability (Datry et al. 2018), was recorded lowest at highly productive site (Sngm). At the mouth of both the point sources (Asdr; Rmdr), the phenol oxidase activity was found to be the lowest which increased with upstream and downstream trajectories. Pandey and Yadav (2017) reported very low levels of DO close to the mouth of Assi drain. Thus, low amount of land-derived OC coupled with oxygen deficiency could decrease phenol oxidase activity, whereas the activity of hydrolases remained relatively higher even in an anaerobic environment (Lee et al. 1999). We also tested alkaline phosphatase (AP), an ectoenzyme of microbial origin, used as a measure of P status in soil and sediment (Sayler et al. 1979; Johnson et al. 1998; Sinsabaugh et al. 2009). The AP showed a trend similar to phenol oxidase, whereas sediment-SRP showed an opposite trend in the main stem as well as along point sources. Also, the sites with low productivity have high AP and phenol oxidase activities. Overall, these two enzymes can be used as an indicator of less polluted and low CO₂ emission sites, whereas high activities of other enzymes indicate sites acting as a hot spot of CO₂ emission.

Regulatory determinants: heavy metals, carbon and nutrients

We further tested whether heavy metal enrichment was able to reduce EEs activities and CO₂ emission in the main stem.
and source orientated sites. Although we did not observe significant between year differences in heavy metal concentration, yet we found a large difference spatially. The countervailing effect of heavy metals at Rjht and Rmdr reduced CO$_2$ emission. The NMDS separated microbial biomass, EE activity, Chl a biomass, and CO$_2$ emission in one group between the Sngm and Rmna (Fig. S1). Asdr also showed the similar pattern (Fig. S2), whereas for Rmdr, the NMDS showed that the microbial activity follows a concurrence with downstream sites (Fig. S3). The granulometry and organic matter content affect the distribution of heavy metal (Farkas et al. 2007). Fine grained sediments tend to have relatively higher metal contents due in part to high specific surface of particles (Rubio et al. 2000). Positive correlations among metals, organic substrate, and sediment particle size validate this concept. A higher proportion of fine sized particles lead easy transportation of the sediment downstream (Bartoli et al. 2012). Accordingly, the river sites down the industrial and the urban areas were significantly more polluted than upstream sites. The Rjht and Rmdr Sites showed C-storage in bed sediment. Despite high substrate availability, there were relatively lower in situ microbial/ enzymatic activities. Many investigators have reported that heavy metal stressors can induce change in the microbial biomass and activity (Khan et al. 1998; Jaiswal and Pandey 2018). The microorganisms release extracellular enzymes (EEs) to activate the lysis of organic matter (Romani et al. 2004). The EEs are produced as a result of cellular metabolism influenced by C and nutrient availability. The EEs are highly sensitive towards toxicants, including heavy metals, and respond sharply to even after small changes in sediment quality (Pandey and Yadav 2017; Jaiswal and Pandey 2018; Verma and Pandey 2019). The Rjht Site at the main river stem and the sites located downstream of Rmdr showed high concentrations of total heavy metals, nutrients, TOC, and high C:N ratios. Despite high TOC, an important resource/substrate for microbial activity, reduced microbial biomass and enzyme activity at these sites indicated that, when metal concentrations exceed certain level (here, ΣTHM > 337.4 µg g$^{-1}$), the carbon favored microbial activity declines (Jaiswal and Pandey 2019a).

Nutrient supply stimulates microbial activity and decomposition of organic matter and, under appropriate temperature and water conditions, leads to high respiration and
CO$_2$ emission (Liu et al. 2009). Because we did not observe significant inter-annual difference in carbon, nutrients, and other attributes, we presented data as means of 2017 and 2018. We found significant positive correlations between C availability and CO$_2$ emission at Asdr. However, at metal rich locations, this relationship implied up to certain levels only. As the concentration of metal increased, this relationship gone weaker. It seems that the microbial activities, and consequently the CO$_2$ release at LWI, are constrained by high concentration of toxic metals. Previous studies support these observations (Jaiswal and Pandey 2019a). At Rmdr, the CO$_2$ emission was found to be low at drain mouth followed by an increasing trend indicating that metal stressors inhibit enzyme activities and, thereby, the emission of CO$_2$. At Asdr, the enzyme activities and emission of CO$_2$ showed a response almost synchronous to changes in the concentration of organic carbon. The C rich sites, characterized by faster rates of CO$_2$ emission, did show high activity of FDAase and β-D-glucosidase. The FDAase is used as a proxy of total microbial activity and organic matter turnover (Schnürer and Rosswall 1982), whereas the β-D-glucosidase is responsible for the hydrolysis of glycosidic bonds and used as marker of C acquisition (Sinsabaugh et al. 2009). The metal concentrations at Asdr did not appear high enough to induce inhibitory effects. On the contrary, the Rmdr Sites showed metal concentrations high enough to suppress enzyme activities and, consequently, the CO$_2$ emission. The carbon as a
substrate stimulates EE activity, while metal stressors can suppress it. However, under high concentrations of C and metals, the inhibition by the latter might counterbalance the suppress it. However, under high concentrations of C and metals, the inhibition by the latter might counterbalance the

| Table 2 Loading of the sediment quality variables studied at the main stem river, Assi drain (Asdr), and Ramnagar drain (Rmdr) on significant principal components (Varifactor; VF) |
|---------------------------------|--------|--------|--------|--------|--------|--------|
| | VF 1 | VF 2 | VF 3 | VF 1 | VF 2 | VF 3 |
| Zn | 0.78 | -0.24 | -0.08 | 0.54 | 0.89 | -0.01 |
| Cr | 0.82 | -0.21 | -0.02 | -0.43 | 0.85 | -0.03 |
| Cu | 0.85 | -0.15 | -0.01 | 0.52 | 0.74 | -0.02 |
| Pb | 0.80 | 0.19 | -0.03 | -0.42 | 0.83 | -0.03 |
| Cd | 0.74 | 0.24 | -0.04 | -0.34 | 0.85 | -0.05 |
| Ni | 0.72 | 0.16 | -0.05 | 0.35 | 0.74 | -0.02 |
| qCO2 | 0.88 | 0.14 | -0.02 | 0.21 | 0.84 | -0.04 |
| Cond | 0.68 | -0.35 | -0.04 | 0.76 | -0.23 | -0.02 |
| SRP | 0.72 | -0.23 | -0.06 | 0.78 | -0.22 | -0.01 |
| TOC | 0.86 | -0.23 | -0.02 | 0.82 | -0.12 | -0.02 |
| TN | 0.82 | -0.26 | -0.01 | 0.80 | -0.13 | -0.01 |
| C:N ratio | -0.52 | 0.62 | -0.03 | 0.86 | -0.22 | -0.02 |
| WSOC | 0.84 | -0.24 | -0.04 | 0.83 | -0.18 | -0.06 |
| CO2 emission | 0.12 | 0.89 | -0.02 | 0.78 | -0.34 | -0.04 |
| SIR | -0.04 | 0.75 | -0.01 | 0.88 | 0.21 | -0.05 |
| β-D-glucosidase | -0.22 | 0.88 | -0.02 | 0.81 | 0.21 | -0.06 |
| FDAase | -0.23 | 0.83 | -0.01 | 0.89 | -0.32 | -0.04 |
| Protease | -0.15 | 0.85 | -0.04 | 0.82 | -0.20 | -0.08 |
| Phenol oxidase | -0.18 | 0.27 | 0.84 | 0.21 | -0.08 | 0.84 |
| AP | -0.12 | 0.23 | 0.72 | 0.23 | -0.05 | 0.82 |
| Cmic | 0.32 | 0.80 | 0.02 | 0.83 | -0.34 | 0.02 |
| Nnic | -0.12 | 0.84 | 0.03 | 0.86 | -0.18 | 0.03 |
| Pmic | -0.22 | 0.80 | 0.04 | 0.83 | -0.17 | 0.04 |
| Chl a | -0.23 | 0.79 | 0.03 | 0.82 | -0.20 | 0.05 |
| Coarse sand | 0.62 | 0.23 | 0.17 | 0.65 | 0.55 | 0.01 |
| Fine sand | 0.68 | 0.14 | 0.23 | 0.78 | 0.32 | 0.03 |
| Silt | 0.72 | -0.22 | 0.16 | 0.82 | -0.21 | 0.02 |
| Clay | 0.80 | -0.16 | 0.13 | 0.85 | -0.20 | 0.02 |
| % of Variance | 62.12 | 20.02 | 9.95 | 66.12 | 22.21 | 8.97 |
| % Cumulative | 62.12 | 82.14 | 92.09 | 66.12 | 22.21 | 97.23 |

Bold values indicate strong loading

$qCO2$: Microbial metabolic quotient, $Cond$: conductivity, SRP: substrate reactive phosphorus, TOC: total organic carbon, TN: total nitrogen, $WSOC$: water soluble organic carbon, SIR: substrate induced respiration, AP: alkaline phosphatase, $Cmic$: microbial carbon, $Nnic$: microbial nitrogen, $Pmic$: microbial phosphorus, $Cmic$: microbial biomass C.

in $Cmic$ and enzymes activities in metal polluted soils and sediments (Abaye et al. 2005; Li et al. 2009). We found significant positive relationships between $qCO2$ and metal concentrations. Earlier studies show that $Cmic$ declines and $qCO2$ increases as metal concentration increases (Liu et al. 2012). Metal-associated changes in C-utilization have been considered a microbial response to stressors and are used as an indicator of metal pollution (Brookes 1995). Overall, the patterns of CO2 emission shown here demonstrate that the distribution of co-occurrence of metal and C-sources ultimately regulate the pattern of carbon sequestration in the Ganga River. Similar spatial trajectories can be expected for other human-impacted rivers suggesting the need of caution for regional C-budgeting and modeling.
Conclusions

The auto- and allochthonous C input in human impacted large rivers is continuously increasing, and these increases are often paralleled by almost similar increase in metal pollutants. Many lines of evidence presented here indicate that although CO2 emission in human-impacted large rivers is controlled by multiplicity of factors including chemical recalcitrance, high concentration of heavy metals suppresses the microbial extracellular enzyme activities responsible for organic matter decomposition and, consequently, the magnitude of CO2 emission. Although we still have very less knowledge of how and to what magnitude metal enrichment will effect organic matter decomposition and CO2 release, our study clearly indicates that at source oriented locations, total metal concentration was sufficient to suppress microbial/enzyme activities vis-à-vis CO2 release. We conclude that the overall impacts of heavy metal pollution on large rivers are probably much larger than what is generally predicted. When riverine-C sequestration is considered, a completely different scenario emerges: A transition towards metal pollution leads to increase C storage relative to loss as CO2. This has implications for understanding C-cycling in human-impacted river sediments where metal pollution shields microbial degradation and, consequently, C and nutrient release. While this type of analysis is urgently needed from a climate change perspective, further studies need to include C-stabilizing effects for assessing ecosystem level impacts of heavy metal pollution for management and rejuvenation of large rivers.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11356-021-17729-3.

Acknowledgements The authors thank the Coordinators of the Centre of Advanced Study in Botany and DST-FIST, Banaras Hindu University for the facilities.

Author contribution K.V. contributed in data collection; validation; formal analysis; investigation; data curation; writing, original draft; and funding acquisition. J.P. contributed to designing of research idea review and editing of the original draft (preparation and creation of the paper), in the visualization process, formal analysis (analyzing the study data), and supervision and acting as the corresponding author of this manuscript.

Funding This study was fully funded by National Academy of Science (India).

Data availability All data generated or analyzed during this study are included in this published article.

Declarations

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

Competing interests The authors declare no competing interests.

References

Abaye DA, Lawlor K, Hirsch PR, Brooks PC (2005) Changes in the microbial community of an arable soil caused by long-term metal contamination. Eur J Soil Sci 56:93–102

Adam G, Duncan H (2001) Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol Biochem 33:943–951

Alin SR, de Fátima FL Rasera M, Salimon C, Richey JE, Holtgrieve GW, Krusche AV, Snidvongs A (2011) Physical controls on carbon dioxide transfer velocity and flux in low-gradient river systems and implications for regional carbon budgets. J Geophys Res Biogeosci 116:G01009. https://doi.org/10.1029/2010JG001398

Aufdenkampe AK, Mayorga E, Raymond PA, Melack JM, Doney SC, Alin SR, Aalto RE, Yoo (2011) Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere. Front Ecol Environ 9:53–60

Austin AT, Vivanco L (2006) Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature 442:555–558

Balesdent J, Besnard E, Arrouays D, Chenu C (1998) The dynamics of carbon in particle-size fractions of soil in a forest-cultivation sequence. Plant Soil 201:49–57

Bartoli G, Papa S, Sagnella E, Fioretto A (2012) Heavy metal content in sediments along the Calore river: relationships with physical-chemical characteristics. J Environ Manage 95:S9–S14

Battin TJ (1997) Assessment of fluorescein diacetate hydrolysis as a measure of total esterase activity in natural stream sediment biofilms. Sci Total Environ 198:51–60

Berggren M, del Giorgio PA (2015) Distinct patterns of microbial metabolism associated to riverine dissolved organic carbon of different source and quality. J Geophys Res Biogeosci doi. 120:989–999

Bernot MJ, Sobota DJ, Hall RO, Mulolland PJ, Dodds WK, Webster JR, Tank JL, Ashkenas LR, Cooper LW (2010) Inter-regional comparison of land-use effects on stream metabolism. Freshw Biol 55:1874–1890

Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

Bose SK, Francis RC, Govender M, Bush T, Spark A (2009) Lignin content versus syringyl to guaiacyl ratio amongst poplars. Biore- sour Technol 100:1628–1633

Boyard L, Pearson RG, Gesnner MO, Barmuta LA, Ferreira V, Graça MA, West DC (2011) A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration. Ecol Lett 14:289–294

Brookes PC, Powlson DS, Jenkinson DS (1982) Measurement of microbial biomass phosphorus in soil. Soil Biol Biochem 14:319–329

Brookes PC (1995) The use of microbial parameters in monitoring soil pollution by heavy metals. Biol Fertil Soils 19:269–279

Butman D, Raymond PA (2011) Significant efflux of carbon dioxide from streams and rivers in the United States. Nat Geosci 4:839

Catalán N, Marcé R, Kothawala DN, Tranvik LJ (2016) Organic carbon decomposition rates controlled by water retention time across inland waters. Nat Geosci 9:501–504

Christensen BT (1998) Carbon in primary and secondary organo-mineral complexes. In: Carter MR, Stewart BA (eds) Structure and organic matter storage in agricultural soils. CRC Press, Boca Raton, pp 97–165
Ciavatta C, Govi M, Antisari LV, Sequi P (1991) Determination of organic carbon in aqueous extracts of soils and fertilizers. Commun Soil Sci Plant Anal 22:795–807

Cole JJ, Caraco NF (2001) Carbon in catchments: connecting terrestrial carbon losses with aquatic metabolism. Mar Freshw Res 52:101–110

Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–185

Dai XY, Ping CL, Michaelson GJ (2002) Response of streams and rivers within the Congo Basin. J Geophys Res 107(GL):104-115

Jaiswal D, Pandey J (2019a) Carbon dioxide emission coupled C-eutrophication and heavy metal contamination in Ganga River, India. Ecol Indic 99:349–364

Jaiswal D, Pandey J (2019b) An ecological response index for simultaneous prediction of eutrophication and metal pollution in large rivers. Water Res 161:423–438

Jaiswal D, Pandey U, Mishra V, Pandey J (2021) Integrating resilience with functional ecosystem measures: a novel paradigm for management decisions under multiple-stressor interplay in freshwater ecosystems. Glob Chang Biol 27(16):3699–3717. https://doi.org/10.1111/gcb.15662

Jenkinson DS, Powls DN (1976) The effects of biocidal treatments on metabolism in soil—V: a method for measuring soil biomass. Soil Biol Biochem 8:209–213

Johnson D, Leake JR, Lee JA, Campbell CD (1998) Changes in soil microbial biomass and microbial activities in response to 7 years simulated pollutant nitrogen. Environ Pollut 103:239–250

Kahle M, Kleber M, Jahn R (2002) Predicting carbon content in illitic clay fractions from surface area, cation exchange capacity and dithionite-extractable iron. Eur J Soil Sci 53:639–644

Kandel E, Stemmer M, Klimeanek EM (1999) Response of soil microbial biomass, urease and xylanase within particle size fractions to long-term soil management. Soil Biol Biochem 31:261–273

Khan KS, Xie Z, Huanc C (1998) Relative toxicity of lead chloride and lead acetate to microbial biomass in red soil. Chin J Appl Environ Biol 4:179–184

Ladd JN, Butler JHA (1972) Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivates as substrates. Soil Biol Biochem 4:19–30

Lau DCP, Leung KMY, Dudgeon D (2009) What does stable isotope analysis reveal about trophic relationships and the relative importance of allochthonous and autochthonous resources in tropical streams? A synthetic study from Hong Kong. Freshw Biol 54:127–141

Le Quéré C, Peters GP, Andres RJ, Andrew RM, Boden TA, Ciais P, Friedlingstein P, Houghton RA, Marland G, Moriarty R, Sitch S (2014) Global carbon budget 2013. Earth Sys Sci Data 6:235–263

Lei Y, Roulard C, Benedetti M, Li FB, Pando A, Lavelle P, Dai J (2009) Microbial biomass, enzyme and mineralization activity in relation to soil organic C and P turnover influenced by acid stress. Soil Biol Biochem 41:969–977

Liu W, Zhang Z, Wan S (2009) Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob Chang Biol 15:184–195

Liu Y, Zhou T, Crowley D, Li L, Liu D, Zheng J, Yu X, Pan G, Hussein Q, Zhang X, Zheng J (2012) Decline in top soil microbial quotient, fungal abundance and C utilization efficiency of rice paddies under heavy metal pollution across South China. PLoS One 7:38858

Lorenzen C, Jeffrey J (1980) Determination of chlorophyll in sea water. Unesco Tech Papers Marine Sci 35:1–20

Malhi Y, Roberts JT, Betts RA, Killeen TJ, Li W, Nobre CA (2008) Climate change, deforestation, and the fate of the Amazon. Science 319:169–172

Mann PJ, Spencer GRM, Dinga BJ, Poulsen JR, Hernes PJ, Fiske G, Holmes RM (2014) The biogeochemistry of carbon across a gradient of streams and rivers within the Congo Basin. J Geophys Res Biogeosci 119:687–702

Mayorga E, Auffenкамpe AK, Maisello CA, Kruische AV, Hedges JL, Quay PD, Richey JE, Brown TA (2005) Young organic matter as...
a source of carbon dioxide outgassing from Amazonian rivers. Nature 436:538–541
McLatchey GP, Reddy KR (1998) Regulation of organic matter decomposition and nutrient release in a wetland soil. J Environ Qual 27:1268–1274
Mukhopadhyay SK, Biswas H, De TK, Sen S, Jana TK (2002) Seasonal effects on the air–water carbon dioxide exchange in the Hooghly estuary, NE coast of Bay of Bengal, India. J Environ Monit 4:549–552
Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36
Pandey J, Yadav A (2017) Alternative alert system for Ganga river eutrophication using alkaline phosphatase as a level determinant. Ecol Indic 82:327–343
Pandey J, Pandey U, Singh AV (2014) Impact of changing atmospheric deposition chemistry on carbon and nutrient loading to Ganga River: integrating land–atmosphere–water components to uncover cross-domain carbon linkages. Biogeochemistry 119:179–198
Park JH, Nayna OK, Begum MS, Chea E, Hartmann J, Keil RG, Kumar S, Lu X, Ran L, Richey JE, Sarma VV (2018) Reviews and syntheses: anthropogenic perturbations to carbon fluxes in Asian river systems–concepts, emerging trends, and research challenges. Biogeosciences 15:3049–3069
Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegel R, Mayorga E, Humborg C, Kortelainen P (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–360
Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617
Romani AM, Guasch H, Muñoz I, Ruana J, Vilalta E, Schwartz T, Emtiaz F, Sabater S (2004) Biofilm structure and function and possible implications for riverine DOC dynamics. Microbiol Ecol 47:316–326
Rosemond AD, Benstead JP, Bumpers PM, Galis V, Kominoski JS, Manning DW, Suberkropp K, Wallace JB (2015) Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. Science 347:1142–1145
Rubio B, Nombela MA, Villas F (2000) Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Mar Pollut Bull 40:968–980
Sawatsuchi HO, Niu V, Ward ND, Barros MDLC, Valerio AM, Gagne-Maynard W, Cunha AC, Less DFS, Diniz JEM, Brito DC, Kruysberghs AM, Richey JE (2017) Carbon dioxide emissions along the Zambezi River and major tributaries, and their implications for large scale greenhouse gas balances. Glob Chang Biol 20:3397–3407
Shen SM, Pruden G, Jenkinson DS (1984) Mineralization and immobilization of nitrogen in fumigated soil and the measurement of microbial biomass nitrogen. Soil Biol Biochem 16:437–444
Siddiqui E, Pandey J, Pandey U, Mishra V, Singh AV (2020) Integrating atmospheric deposition-driven nutrients (N and P), microbial and biogeochemical processes in the watershed with carbon and nutrient export to the Ganga River. Biogeochemistry 147:149–178
Singh R, Pandey J (2018) Non-point source-driven carbon and nutrient loading to Ganga River (India). Chem Ecol 35:344–360
Sinsabaugh RL (2010) Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem 42:391–404
Sinsabaugh RL, Findlay S (1995) Microbial production, enzyme activity and carbon turnover in surface sediments of the Hudson River Estuary. Microb Ecol 30:127–141
Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AR, Cusack D, Frey S, Gallo ME, Gartner TB (2008) Stoichiometry of soil enzyme activity at global scale. Ecol Lett 11:1252–1264
Sinsabaugh RL, Hill BH, Shah JF (2009) Eucenzyomatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462:795–798
Smith VH, Schindler DW (2009) Eutrophication science: where do we go from here? Trends Ecol Evol 24:201–207
Stemmer M, Gerzabek MH, Kandeler E (1998) Invertase and xylanase activity of bulk soil and particle-size fractions during maize straw decomposition. Soil Biol Biochem 31:9–18
Tabatabai MA, Bremmer JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301–307
Taylor PG, Townsend AR (2010) Stoichiometric control of organic carbon–nitrate relationships from soils to the sea. Nature 464:1178–1181
Teodoru CR, Nyoni FC, Borges AV, Darchambeau F, Nyambe I, Bouillon S (2013) Dynamics of greenhouse gases (CO2, CH4, N2O) along the Zambezi River and major tributaries, and their importance in the riverine carbon budget. Biogeosciences 12:2431–2453
Tezuka Y (1990) Bacterial regeneration of ammonium and phosphate as affected by the carbon: nitrogen: phosphorus ratio of organic substrates. Microb Ecol 19:227–238
Van den Meersche K, Van Rijswijk P, Soetaert K, Middelburg JJ (2009) Autochthonous and allochthonous contributions to mesozooplankton diet in a tidal river and estuary: integrating carbon isotope and fatty acid constraints. Limnol Oceanogr 54:62–74
Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137
Verma K, Pandey J (2019) Heavy metal accumulation in surface sediments of the Ganga River (India): speciation, fractionation, toxicity, and risk assessment. Environ Monit Assess 191:414
von Lützow M, Kögel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B (2007) SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biol Biochem 39:2183–2207
Ward ND, Keil RG, Medeiro PM, Brito DC, Cunha AC, Dittmar T, Yager PL, Kruysberghs AM, Richey JE (2013) Degradation of terrestrially derived macromolecules in the Amazon River. Nat Geosci 6:530–533
Wardle DA, Yeates GW, Watson RN, Nicholson KS (1993) Response of soil microbial biomass and plant litter decomposition in maize and asparagus cropping systems. Soil Biol Biochem 25:857–868
Yadav A, Pandey J (2017) Contribution of point sources and non-point sources to nutrient and carbon loads and their influence on the trophic status of the Ganga River at Varanasi, India. Environ Monit Assess 189:1–19
Yan J, Pan G, Li L, Quan G, Ding C, Luo A (2010) Adsorption, immobilization, and activity of β-glucosidase on different soil colloids. J Colloid Interface Sci 348:565–570
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.