Study of transactivating effect of pre-S2 protein of hepatitis B virus and cloning of genes transactivated by pre-S2 protein with suppression subtractive hybridization

Dong Ji, Jun Cheng, Guo-Feng Chen, Yan Liu, Lin Wang, Jiang Guo

INTRODUCTION

Hepatitis B virus (HBV) causes acute and chronic infections of the liver. Acute infections may produce serious illness, and approximately 0.5% terminate with fatal, fulminant hepatitis. Chronic infections may also have serious consequences[1]. In addition to causing acute and chronic hepatitis, HBV is considered to be a major etiologic factor in the development of human hepatocellular carcinoma (HCC), one of the most frequent fatal malignancies worldwide, and worldwide deaths from HCC caused by HBV infection probably exceed one million per year[2-4]. Epidemiological studies have demonstrated an approximately 10-fold increase in the relative risk of HCC among HBV carriers compared to noncarriers[5-8].

The precise role of HBV in the etiology of HCC is not well understood. Only occasionally, genes controlling the cell growth and differentiation are disturbed by HBV DNA sequences integration, but since no common sites of viral DNA integration have been observed, the induction of cell
growth by HBV enhancer or promoter insertion cannot be regarded as a general mechanism of transformation in human HCC. An alternative mechanism of hepatocarcinogenesis could be the activation and/or repression, operated by HBV proteins, of the expression of genes crucial for cell growth regulation. Recent data have shown that some HBV proteins can exert a significant transactivation activity on both viral and cellular promoter[9]. Almost all HBV-associated HCCs studied so far harbor chromosomally integrated HBV DNA[10]. Integrated HBV DNA can encode two types of transcriptional transactivators: the already well studied HBx[11] and the pre-S2 transactivators: LHBs (large hepatitis B virus surface protein) and MHBs (C-terminally truncated middle surface protein)[12-14].

Although it is true the transactivator functions are preformed by the LHBs or MHBs, on closer inspection, one can easily see that this role is mostly performed by the pre-S region of the envelope protein. This observation naturally leads to the question, whether pre-S protein fragments alone might also have the transactivating role in the absence of the S region. Actually, in vitro studies with protease-treated HBV particles showed specific cleavage of pre-S fragments from LHBs, which indicate the presence of protease-sensitive sites within the junction of the pre-S and S proteins[15,16]. So, while the proteolytic cleavage and generation of the free pre-S fragments are quite evident, their biological meanings remain obscure[17-19]. Recently, we have studied the transactivator function of pre-S proteins. In the present study, we showed that pre-S2 protein functions as a transcriptional transactivator, and constructed the subtractive library of genes transactivated by HBV pre-S2 protein, successfully.

MATERIALS AND METHODS

Plasmid construction

The pre-S2 gene was amplified by PCR from the plasmid GA376-7 (GenBank number: AF384371)[20-22] using sense (5'- GAT ATC ATG CAG TGG AAC TCC ACC -3’) and antisense (5’- GGA TCC TTA GTT CCG TGC AGG GTC -3’) primers (Shanghai BioAsia Biotechnology Co., Ltd.). As these primers contain EcoRV and BamHI recognition sites on their respective 5’ ends, the amplified 180 bp PCR fragment was subcloned into the EcoRV/BamHI sites of pcDNA3.1(-) vector (Invitrogen), the expression vector, pcDNA3.1(-)-pre-S2 which could direct expression of pre-S2 fusion protein was obtained, then identified by PCR and digested of EcoRV/BamHI.

Cell culture and DNA transfection

HepG2 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) containing 100 IU of penicillin and 100 µg of streptomycin per mL, supplemented with 10% (vol/vol) heat-inactivated fetal bovine serum (FBS), at 37 °C in a 50 mL/L CO2 atmosphere. 1.5×104 cells were seeded in 35-mm plates 12 h prior to transfection and reached 50% confluence at the time of transfection. Cells were transfected with FuGENE6 Transfection Reagent (Roche), the transfection was carried out with 2.0 µg of pcDNA3.1(-) empty and pcDNA3.1(-)-pre-S2 plasmid DNA according to the manufacturer’s protocol, respectively.

mRNA and cDNA isolation

The mRNA from HepG2 cells transfected with pcDNA3.1(-)-pre-S2 and pcDNA3.1(-) empty vector was isolated by using a micro mRNA purification kit (Amersham Biosciences), respectively. cDNAs were reverse-transcribed from mRNA. Identification was done by PCR with pre-S2-specific primers.

Effect of pre-S2 protein on SV40 early promoter

HepG2 cells were transfected with various concentrations of pSV-lacZ (0.1-1.8 µg) (promega) plasmid DNA, expression of β-gal was detected by using a β-gal assay kit (promega). In pSV-LacZ plasmid, the LacZ gene is under the control of the SV40 early promoter element. The best concentration of pSV-lacZ was selected, HepG2 cells with pSV-lacZ (1.0 µg) and pcDNA3.1(-)-pre-S2 (2.0 µg) were cotransfected as a test group. At the same time, cotransfected with empty pcDNA3.1 (-) (2.0 µg) and pSV-lacZ (1.0 µg) was used as control group. The cells were collected after 48 h, and the expression of β-gal was detected. Seven separate transfections were present in test and control groups, respectively, and Stata 7.0 program was used to analyze the experimental data.

Suppression subtractive hybridization (SSH)

Genome comparisons was done by suppression subtraction hybridization according to the manufacturer’s instructions of PCR-select™ cDNA subtraction kit (Clontech). In brief, 2 µg of mRNA from the tester and the driver was subjected to cDNA synthesis. Tester and driver cDNAs were digested with Rsal. The tester cDNA was split into two groups, and each was ligated with a different cDNA adapter. In a first hybridization reaction, an excess of driver was added to each sample of tester. The samples were heat denatured and allowed to anneal. Because of the second-order kinetics of hybridization, the concentration of high- and low-abundance sequences is equalized among the single-stranded tester molecules. At the same time, single-stranded tester molecules were significantly enriched for differentially expressed sequences. During a second hybridization, the two primary hybridization samples were mixed together without denaturation. Only the remaining equalized and subtracted single-stranded tester cDNAs can reassociate forming double-stranded tester molecules with different ends. After filling in the ends with DNA polymerase, the entire population of molecules was subjected to nested PCR with two adapter-specific primer pairs. After that, secondary PCR products were used as templates for PCR amplification of G3PDH (a housekeeping gene) at 18, 23, 28, 33 cycles to assure subtracted efficiency.

Cloning of subtracted cDNA libraries

Products of these amplified overhangs containing a subtracted cDNA library (6 µL) were ligated into a pGEM-Teasy vector (Promega). Subsequently, the plasmid was transformed into E. coli strain DH5α. Bacteria were taken up in 800 µL of LB medium and allowed to incubate for 45 min at 37 °C and 225 r/min. After incubation, Bacteria were plated onto agar plates containing ampicillin (100 µg/mL),
5-bromo-4-chloro-3-indolyl-β-D-galactoside (X-Gal, 20 µg/cm²) and isopropyl-β-D-thiogalactoside (IPTG, 12.1 µg/cm²) and incubated overnight at 37 °C. White colonies were selected and identified by PCR. Primers were T7/SP6 primer of pGEM-Teasy vector. After sequencing the plasmids DNA of positive colonies (Shanghai BioAsia Biotechnology Co., Ltd), nucleic acid homology searches were performed using the BLAST (basic local alignment search tool) server at the National Center for Biotechnology Information.

RESULTS
Identification of expression vector
Restriction enzyme analysis of pcDNA3.1(-)-pre-S2 plasmid with EcoRV/BamHI yielded two bands: 5 396 bp empty pcDNA3.1(-) and 172 bp HBV pre-S2, cleaved with PstI got only one 5 568 bp band (5 396 bp+172 bp). The plasmid by PCR amplification with pre-S2-sepcific primers got a clear band of the expected size (180 bp, Figure 1). Sequencing the PCR products was correct.

Expression of HBV pre-S2 protein
Reverse-transcribed by three different Oligo dT, identification of cDNA by PCR yielded common 180 bp band (Figure 2).

Transactivation of HBV pre-S2 protein on early promoter of SV40
The A data about expression of β-gal of the test group (n = 7) was 0.238±0.007. In contrast, the A data about that of the control group (n = 7) was 0.034±0.009. Expression of β-gal were 7.0-fold higher when contransfected pcDNA3.1(-)-pre-S2 and pSV-lacZ than when contransfected empty pcDNA3.1(-) and pSV-lacZ. The significant increase of expression of β-gal (P<0.01) was attributed to the transactivating effect of HBV pre-S2 protein on early promoter of SV40, increasing the expression of downstream gene lacZ (Figure 3).

Analysis of the subtraction library
Subtraction efficiency analysis showed that the PCR products of G3PDH in unsubtracted library were visible after 18 cycles, however, 28 cycles were required in the subtracted one for G3PDH to be detected (Figure 4). The abundance of non-differentially expressed gene was effectively reduced, which indicated that the subtraction library had the high subtraction efficiency. Using SSH technique, we obtained a total of 96 positive clones. These clones were prescreened by using PCR amplification to ensure that only clones with different inserts were subjected to sequencing (Figure 5). Among these clones,
eighty-six clones contained 200–1,000 bp inserts. A total of 50 clones from the cDNA library were randomly chosen and sequenced, altogether 25 coding sequences were obtained. Summary of the data is presented in Table 1.

DISCUSSION

The sequence encoding the pre-S2 transactivators is localized in the HBV surface gene. The surface gene consists of a single open reading frame divided into three coding regions: pre-S1, pre-S2 and S, each starting with an in-frame ATG codon. Through alternate translational initiation at each of the three AUG codons, a large (LHBs, pre-S1+pre-S2+S), a middle (MHBs, pre-S2+S) and a small (SHBs, S) envelope glycoprotein can be synthesized\[23-27\]. The transactivator function of the surface protein requires the cytoplasmic orientation of the pre-S2 domain (the minimal functional unit) that occurs in the case of MHBs\[28,29\] and in a fraction of LHBs\[30\]. In contrast, full-length MHBs displays no transcriptional activator function, here the pre-S2 domain directs into the lumen of the endoplasmic reticulum (ER). The generation of functional MHBs\[31,32\] from MHBs requires deletion of the 3’ end of the pre-S2/S gene encoding at least the last 70 amino acids corresponding to the hydrophobic region III of the S domain during the integration process\[30\]. Deletions of 3’ sequences of the pre-S2/S gene generating functional MHBs transactivators were found in one-third of the integrates investigated so far\[31,32\]. This fact and the presence of complete pre-S/S genes in some other systematically studied integrates indicate the biological significance of the pre-S2 transactivators\[33\].

The transactivator function of the pre-S2 activators is based on the cytoplasmic orientation of the pre-S2 domain, and many reports have demonstrated that the pre-S2 region is sufficient for generation of the transcriptional transactivator function. The pre-S2 domain is PKC-dependent phosphorylated. Moreover, the pre-S2 domain binds of PKCα/β and triggers a PKC-dependent activation of the c-Raf-1/MAPKKK signal transduction cascade, resulting in an activation of transcription factors such as AP-1 and NF-κB. Furthermore, by activation of this signaling cascade, the pre-S2 activators cause an increased proliferation rate of hepatocytes. According to the two-step model of carcinogenesis (initiation/promotion), the pre-S2 activators could exert a tumor-promoter-like function by activation of the PKC/c-Raf-1/MAPKKK signaling cascade: cells harboring critical mutations (initiation) may be positively selected (promotion). Such a multistep process may account for the long latency period in HCC development, but it also leads to the hypothesis that each tumor reflects an individual case\[34-37\].

We cotransfected HepG2 cells with pcDNA3.1(-)-pre-

Table 1 Homolog searching of sequenced cDNA fragments from SSH library

Eukaryotic translation elongation factor1 alpha 1	BC018641	15
Ribosomal protein	BC004294	7
Fibronectin 1 (FN1)	BC016787	3
Mitochondrion	AY289054	2
Ferritin, heavy polypeptide 1	BC036354	2
Albumin	BC036003	2
Keratin 18	BC006989	1
Phospholipase A2	HUMPHPLA2	1
Pituitary tumor-transforming 1, interacting protein	BC034250	1
NADH dehydrogenase 2 (MTND2)	NM_173709	1
Cytochrome c oxidase II (MTCO2)	NM_173705	1
Laminin, beta 1	BC026618	1
Tumor rejection antigen (gp96) I (TRA1)	NM_003299	1
Calmodulin 2 (phosphorylase kinase, delta) (CALM2)	NM_001743	1
M-phase phosphoprotein, mpp11	HSMPP11	1
Spermidine/spermine N1-acetyltransferase (S6AT)	Hsu40369	1
Nucleophosmin	BC024667	1
Alpha-2-macroglobulin	HUMA2MCGL	1
Tubulin	BC019498	1
Prostaglandin F synthase	AB032145S4	1
Methionine-tRNA synthetase (MARS)	NM_004990	1
Bile acid-binding protein	AB032151S1	1
Tyrosine 3-monoxygenase/tryptophan 5-monoxygenase activation protein, zeta polypeptide	BC013265	1
Ras-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Rac1) (RAC1)	NM_198829	1
Aldo-keto reductase family 1, member C3 (alpha-hydroxysteroid dehydrogenase, type II)	BC001479	1
S2 and pSV-lacZ and demonstrated that the HBV pre-S2 protein is successfully expressed in transfected HepG2 cells. Expression of β-gal were 7.0-fold higher when co-transfected with pcDNA3.1(-)-pre-S2 and pSV-lacZ than when co-transfected with empty pcDNA3.1(-) and pSV-lacZ. HBV pre-S2 protein has significant transactivating effect on early promoter of SV40, increasing the expression of downstream gene lacZ. This result indicates that the HBV pre-S2 protein expressed in HepG2 cells retains its biological activity in terms of transcriptional activation, which is consistent with the previous report[38,39].

To get insight into the transactivation mechanism of HBV pre-S2 protein, the SSH was used for identification of transactivating relative target genes of pre-S2 protein, and a subtractive library was set up successfully. Sequence analysis was performed in 50 clones, and 25 coding sequences were obtained. These genes can be divided into 4 groups: (1) The genes involving in cell structure and cell cycle. They possess the important ability to control cell growth, differentiation and adherence, such as ribosomal protein, mitochondrion, nucleophosmin, tubulin, keratin, M-phase phosphoprotein, eukaryotic translation elongation factor, and so on. (2) The genes relating to cell energy or substance metabolism, (i.e., ferritin, albumin, NADH dehydrogenase 2, cytochrome c oxidase II, spermide/spermine N1-acetyltransferase, 3-alpha hydroxysteroid dehydrogenase, methionine-tRNA synthetase). Bile acids may be important regulators of gene expression in the liver and intestines. Bile acids have been shown to modulate a variety of cellular functions, such as secretion of lipoproteins from hepatocytes and translocation of bile acid transporters to the hepatocyte canalicular membrane[40-42]. Our results indicate that the HBV pre-S2 protein interact with the bile acid-binding protein, maybe it is a way that HBV affect cellular lipid metabolism. (3) The genes involving in the formation mechanism of hepatic fibrosis. alpha-2-macroglobulin (A2M) is a glycoprotein with high molecular weight, which can bind with different proteases, including interstitial collagenases and the other metalloproteases. A2M's proteinase inhibitor effect can inhibit the activity of collagenases, and participate the formation of hepatic fibrosis[43,44]. Laminin (LN) is a kind of serum fibrosis markers, during fibrogenesis LN continuously accumulate in liver tissues and form basement membrane resulting in sinusoidal capillarization[45], the stages of hepatic fibrosis are correlated with the serum levels of LN, so LN can be used in detecting the degree of hepatic fibrosis. The serum levels of LN were elevated from S1 to S4, because of the increase of hepatic fibrosis. Our data suggest that the HBV pre-S2 protein may play a role in the progress of liver cirrhosis[46-48].

(4) The genes controlling cell signal transduction and apoptosis. Such as tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, calmodulin 2, rs-related C3 botulinum toxin substrate 1 (rho family, small GTP binding protein Rac1) (RAC1), Phospholipase A2 (PLA2). PLA2 is a family of enzymes thought to play a key role in inflammation by releasing arachidonic acid for the synthesis of eicosanoids and lysophospholipid for the synthesis of platelet-activating factor and take part in different singaling pathways, including apoptosis and MAPKKK signaling cascade. PLA2 (cytosolic phospholipase A2) is activated by MAP kinase due to a phosphorylation of serine residue 505[49].

Altogether, we testified the transactivator ability of HBV pre-S2 protein again, and obtained the subtractive cDNA library of genes transactivated by pre-S2 protein with SSH technique, successfully. Furthermore, we brought some new clues for studying the biological functions of HBV pre-S2 protein and and pave the way for elucidating the pathogenesis of HBV infection.

REFERENCES

1. Shouval D. Hepatitis B vaccines. J Hepatol 2003; 39: S70-S76
2. Humphries JC, Dixon JS. Antivirals for the treatment of chronic hepatitis B: current and future options. Interivirology 2003; 46: 413-420
3. Colombo M, Sangiovanni A. Etiology, natural history and treatment of hepatocellular carcinoma. Antiviral Res 2003; 60: 145-150
4. Gjorup IE, Skinhoj P. New aspects on the natural history of chronic hepatitis B infection: implication for therapy. Scand J Infect Dis 2003; 35: 808-813
5. Dong J, Cheng J, Wang Q, Shi S, Wang G, Si C. Cloning and analysis of the genomic DNA sequence of augmenter of liver fibrosis. Antiviral Res 2004; 60: 192-204
6. Dohmen K, Shigematsu H, Irie K, Ishibashi H. Trends in clinical characteristics, treatment and prognosis of hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2004; 3: 11-22
7. Seeger C, Mason WS. Hepatitis B virus biology. Microbial Mol Biol Rev 2000; 64: 51-68
8. Beasley RP, Hwang LY, Lin CC, Chien CS. Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22 707 men in Taiwan. Lancet 1981; 1: 1129-1133
9. Murakami S. Hepatitis B virus X protein: structure, function and biology. Interivirology 1999; 42: 81-99
10. Kekule AS, Urban S, Eckerskorn C, Hofschneider PH. Isolation of hepatitis B: virus large surface protein (LHBs) is a transcriptional activator. J Virol 1990; 343: 457-461
11. Hildt E, Saher G, Bruss V, Hofschneider PH. The hepatitis B virus large surface protein (LHBs) is a transcriptional activator. Virology 1996; 225: 235-239
12. Hildt E, Urban S, Eckerskorn C, Hofschneider PH. Isolation of highly purified, functional carboxy-terminally truncated hepatitis B virus middle surface protein activators from eucaryotic expression systems. Hepatology 1996; 24: 502-507
13. Gerlich WH, Lu X, Heermann KH. Studies on the attachment and penetration of hepatitis B virus. J Hepatol 1993; 17: S10-S14
14. Lu X, Block TM, Gerlich WH. Protease-induced infectivity of hepatitis B virus for a human hepatoblastoma cell line. J Virol 1996; 70: 2277-2285
15. Cho EW, Park JH, Yoo OJ, Kim KL. Translocation and accumulation of exogenous hepatitis B virus preS surface proteins in the cell nucleus. J Cell Sci 2001; 114: 1115-1123
16. Sugaiachi F, Ohno T, Orito E, Sakagawa H, Ichida T, Komatsu M, Kuramitsu T, Ueda R, Miyakawa Y, Mizokami M. Influence of hepatitis B virus genotypes on the development of preS deletions and advanced liver disease. J Med Virol 2003; 70: 537-544
17. Kondo J, Shimomura H, Fujioka S, Iwasaki Y, Takagi S,
Ohnishi Y, Tsuji H, Sakaguchi K, Yamamoto K, Tsuji T. Mutations in the hepatitis B virus preS2 region and abrogated receptor activity for polymerized human albumin. Acta Med Okayama 2002; 56: 193-198

Liu Y, Cheng J, Shao DZ, Wang L, Zhong YW, Dong J, Li K, Li L. Synergetic transactivating effect of HCV core and HBV X proteins on SV40 early promoter/enhancer. Zhonghua Shi Yan He Liu Dian Xue Bao 2003; 17: 70-72

Huangfu J, Dong J, Deng H, Cheng J, Shi S, Hong Y, Ren X, Li L. A preliminary study on the heterogeneity of preS2 region in hepatitis B virus. Zhonghua Nei Ke Za Zhi 2002; 41: 233-236

Dong J, Cheng J, Wang Q, Wang G, Shi S, Liu Y, Xia X, Si C. Cloning and sequence analysis of truncated S gene from circulation of patients with chronic hepatitis B virus infection. Zhonghua Ganzang Bing Za Zhi 2001; 9: 163-165

Borchani-Chabchoub I, Mokdad-Gargouri R, Gargouri A. Glucose dependent [correction of dependant] negative translational control of the heterologous expression of the preS2 HBV antigen in yeast. Gene 2003; 311: 165-170

Soussan P, Pol S, Garreau F, Brechet C, Kremsdorf D. Vaccination of chronic hepatitis B virus carriers with preS2/S protein is not associated with the emergence of envelope escape mutants. J Gen Virol 2001; 82: 367-371

Park JH, Lee MK, Kim HS, Kim KL, Cho EW. Targeted destruction of the polymerized human serum albumin binding site within the preS2 region of the HBV surface antigen while retaining full immunogenicity for this epitope. J Viral Hepat 2003; 10: 70-79

Borchani-Chabchou I, Gargouri A, Mokdad-Gargouri R. Genotyping of Tunisian hepatitis B virus isolates based on the sequencing of preS2 and S regions. Microbes Infect 2000; 2: 607-612

Tai PC, Suk FM, Gerlich WH, Neurath AR, Shih C. Hypermodification and immune escape of an internally deleted middle-envelope (M) protein of frequent and predominant hepatitis B virus variants. Virology 2002; 292: 44-58

Hildt E, Urban S, Hofschneider PH. Characterization of essential domains for the functionality of the MHBS t transcriptional activator and identification of a minimal MHBS t activator. Oncogene 1995; 11: 2053-2066

Bruss V, Lu X, Thomssen R, Gerlich WH. Post-translational alterations in transmembrane topology of the hepatitis B virus large envelope protein. EMBO J 1994; 13: 2273-2279

Lauer U, Weiss L, Hofschneider PH, Kekule AS. The hepatitis B virus pre-S/S(S) transactivator is generated by 3’ truncations within a defined region of the S gene. J Virol 1992; 66: 5284-5289

Schluter V, Meyer M, Hofschneider PH, Koshy R, Caselmam WH. Integrated hepatitis B virus X and 3’ truncated preS/S sequences derived from human hepatomas encode functionally active transactivators. Oncogene 1994; 9: 3335-3344

Zhong S, Chan JY, Yeo W, Tam JS, Johnson PJ. Hepatitis B virus envelope protein mutants in human hepatocellular carcinoma tissues. J Viral Hepat 1999; 6: 195-202

Hildt E, Munz B, Saher G, Reifenberg K, Hofschneider PH. The PreS2 activator MHBS(t) of hepatitis B virus activates c-raf-1/Erk2 signaling in transgenic mice. EMBO J 2002; 21: 525-535

Hildt E, Hofschneider PH. The PreS2 activators of the hepatitis B virus promoters of tumour promoter pathways. Recent Results Cancer Res 1998; 154: 315-329

Bock CT, Tillmann HL, Manns MP, Trautwein C. The pre-S region determines the intracellular localization and appearance of hepatitis B virus. Hepatology 1999; 30: 517-525

Henkle F F, Koshy R. Hepatitis B virus transcriptional activators: mechanisms and possible role in oncogenesis. J Viral Hepat 1996; 3: 109-121

Stockl L, Berting A, Mallkowski B, Forerste R, Hofschneider PH, Hildt E. Integrity of c-Raf-1/MEK signal transduction cascade is essential for hepatitis B virus gene expression. Oncogene 2003; 22: 2604-2610

Caselmann WH, Meyer M, Kekule AS, Lauer U, Hofschneider PH, Koshy R. A trans-activator function is generated by integration of hepatitis B virus preS/S sequences in human hepatocellular carcinoma DNA. Proc Natl Acad Sci USA 1990; 87: 2970-2974

Su TS, Hwang WL, Yauk YK. Characterization of hepatitis B virus integrant that results in chromosomal rearrangement. DNA Cell Biol 1998; 17: 415-425

Lin Y, Havinga R, Schippers IJ, Verkade HJ, Vonk RJ, Kuipers F. Characterization of the inhibitory effects of bile acids on very-low-density lipoprotein secretion by rat hepatocytes in primary culture. Biochem J 1996; 316: 531-538

Lin Y, Havinga R, Verkade HJ, Moshage H, Sloff MJ, Vonk RJ, Kuipers F. Bile acids suppress the secretion of very-low-density lipoprotein by human hepatocytes in primary culture. Hepatology 1996; 23: 218-228

Misra S, Ujahzy P, Gaitman Z, Varticovski L, Arias IM. The role of phosphoinositide 3-kinase in taurocholesterol-induced trafficking of ATP-dependent canalicul transporters in rat liver. J Biol Chem 1998; 273: 26638-26644

Naveau S, Poynard T, Benattar C, Bedossa P, Chaput JC. Alpha-2-macroglobulin and hepatic fibrosis. Diagnostic interest. Dig Dis Sci 1994; 39: 2426-2432

Lu LG, Zeng MD, Wan MB, Li CZ, Mao YM, Li JQ, Qiu DK, Cao AP, Ye J, Cai X, Chen CW, Wang JY, Wu SM, Zhou JS, Zhou XQ. Grading and staging of hepatic fibrosis, and its relationship with noninvasive diagnostic parameters. World J Gastroenterol 2003; 9: 2574-2578

Xiao W, Wang Y, Liu X. The coordinated expression of laminin and its integrin receptor in hepatic sinusoidal capillarization. J Hepatobiliary Pancreat Dis Int 2002; 1: 246-248

Castera L, Hartmann DJ, Chapel F, Guettier C, Mall F, Lons T, Richardet JP, Grimbert S, Morassi O, Beauagrand M, Trinchet JC. Serum laminin and type IV collagen are accurate markers of histologically severe alcoholic hepatitis in patients with cirrhosis. J Hepatol 2000; 32: 412-418

Cai WM, Tao J, Weng HL, Liu RH. Study on the influence factors of the serum fibrosis markers. Zhonghua Ganzang Bing Za Zhi 2011; 11: 23-25

Lindblom J, Ljungman AG, Lindahl M, Tagesson C. Expression of members of the phospholipase A2 family of enzymes in human nasal mucosa. Eur Respir 2001; 18: 130-138

Science Editor Guo SY Language Editor Elsevier HK