Prevalent Loss of Mitotic Spindle Checkpoint in Adult T-cell Leukemia Confers Resistance to Microtubule Inhibitors*

Takefumi Kasai, Yoichi Iwanaga, Hidekatsu Iha, and Kuan-Teh Jeang‡

From the Molecular Virology Section, Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0460

Human T-cell leukemia virus type I (HTLV-I) is the causative agent for adult T-cell leukemia (ATL). Moleculately, ATL cells have extensive aneugenic abnormalities that occur, at least in part, from cell cycle dysregulation by the HTLV-I-encoded Tax oncoprotein. Here, we compared six HTLV-I-transformed cells to Jurkat and primary peripheral blood mononuclear cells (PBMC) in their responses to treatment with microtubule inhibitors. We found that both Jurkat and PBMCs arrested efficiently in mitosis when treated with nocodazole. By contrast, all six HTLV-I cells failed to arrest comparably in mitosis, suggesting that ATL cells have a defect in the mitotic spindle assembly checkpoint. Mechanistically, we observed that in HTLV-I Tax-expressing cells human spindle assembly checkpoint factors hsMAD1 and hsMAD2 were mislocated from the nucleus to the cytoplasm. This altered localization of hsMAD1 and hsMAD2 correlated with loss of mitotic checkpoint function and chemoresistance to microtubule inhibitors.

In vivo infection by human T-lymphotropic virus type I (HTLV-I)1 engenders adult T-cell leukemia (ATL) in a minority of individuals after a prolonged latent period. The pathological course of ATL suggests a multistage process of transformation beginning from clonal expansion of an HTLV-I-bearing T-cell followed by the accumulation of cellular genetic lesions that likely inactivate several tumor-suppressor genes (1–7). ATL cells harbor significant clastogenic as well as aneugenic chromosomal abnormalities (8, 9). HTLV-I has been found to subvert several cellular checkpoints that guard against loss of genome integrity (10). Indeed, in a process that possibly explains aneuploidy in ATL cells, it was recently shown that the HTLV-I Tax oncoprotein inactivates the function of the human spindle assembly checkpoint protein, MAD1 (11).

Aneuploidy is seen in ~70% of all cancers. Genetic studies in yeast have implicated at least seven genes (MAD (mitotic arrest deficiency)-1, -2, -3; BUB (budding uninhibited by benomyl)-1, -2, -3; and MPS1 (monopolar spindle 1)) (12) in the mitotic spindle checkpoint, which censors against aneuploidy. These checkpoint proteins form complexes that regulate orderly chromosomal segregation and nuclear division (13–15). Interestingly, despite the high frequency of aneuploidy in human cancers, only rarely have genetic defects in mitotic checkpoint genes been found (16, 17). This suggests that events other than genetic changes may abrogate mitotic spindle checkpoint function and account for aneugenic alterations.

We have employed HTLV-I-transformed human T-cells as a model to investigate the biology of the mitotic spindle checkpoint in cancers. Here, we report the prevalent loss of mitotic spindle checkpoint in six out of six HTLV-I cells. We further show that this defect in mitotic checkpoint function correlated with resistance by ATL cells to MTIs.

EXPERIMENTAL PROCEDURES

Cell Lines and Cell Cycle Analysis—MT-1, MT-4, TL-Omi, TL-Su, ILT-Hod, and C8166 are human HTLV-I-transformed T-cell lines (MT-1, MT-4, TL-Omi, TL-Su, and C8166 are IL-2-independent; ILT-Hod is IL-2-dependent). IL-2-independent cells and Jurkat cells were cultured in RPMI 1640 supplemented with 10% fetal calf serum (RPMI-FCS). ILT-Hod was cultured in RPMI-FCS with 1 nt IL-2. HeLa and SW480 were cultured in DMEM with 10% FCS. Primary human PBMCs from anonymous normal donors were obtained from the NIH blood bank. PBMCs were activated to proliferate by treatment with 20 units/ml of recombinant human IL-2 (Roche Molecular Biochemicals) and 0.25 μg/ml phytohemagglutinin (Roche Molecular Biochemicals) in RPMI-FCS for 3 days prior to nocodazole assays.

Mitotic Index and Aapoptosis Analysis—Nocodazole (Sigma) was added to medium at final concentrations of 0.1, 0.5, or 1 μM, as indicated. Cells were harvested at 12-h time intervals up to 36 h. After harvesting, the cells were pelleted (1500 × g, 5 min) and washed with PBS. Cell pellets were resuspended in 50 μl of 1% formaldehyde, 0.2% glutaraldehyde. 20 μl of the cell suspension were dried onto a poly-l-lysine-coated slide, washed with PBS, and stained with PBS containing 10 μg/ml of Hoechst 33258 (Sigma) for 10 min at room temperature. Fluorescent microscopy was used to visualize viable cells arrested in mitosis. To measure the mitotic index, at least 300 cells were counted in each assay. All assays were repeated two to three times. Quantitations of apoptosis by Hoechst dye staining and by TUNEL assay (not shown) were also similarly performed. Cytogenetic analyses of cells, where reported, were performed by the Cell Culture Laboratory of the Children’s Hospital of Michigan.

[3H]Thymidine Incorporation—Suspension cells were incubated at 1 × 10^6 cells/ml. Twenty hours after the addition of nocodazole, [3H]thymidine was added (10 μCi/ml). Four hours later cells were pelleted and washed with 0.5 ml of PBS, then methanol/acetic acid (3:1) was added for 15 min to fix cells, followed by two washes with 0.5 ml of methanol/ acetic acid. The cell pellet was solubilized with 0.25 ml of 0.1 N NaOH and transferred to scintillation vials. After addition of 5 ml of scintillant, incorporated [3H]thymidine was measured by scintillation spectrophotometry.

Cell Viability Assay—Cells (5 × 10^6 cells/ml) were treated with nocodazole (0.5 μM) or vincristine (0.5 μM) or 300 nM of flurbiprofen and harvested at indicated intervals. Cell viability was measured by a modified MTT dye reduction assay using WST-8 (2-(2-methoxy-

* The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
‡ To whom correspondence should be addressed: Molecular Virology Section, Laboratory of Molecular Microbiology, NIAID, National Institutes of Health, Bldg. 4, Rm. 306, 9000 Rockville Pike, Bethesda, MD 20892-0460.
4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt) (Dojindo Molecular Technologies, Gaithersburg, MD). Fraction viable cells represent the ratio of WST-8 values from cells treated with drugs relative to that from untreated cells.

Western Blotting—Cells were collected by centrifugation at 1500 rpm, washed in PBS, then resuspended in 0.25 M Tris-HCl, pH 7.4, sonicated to fragment DNA, and were saved as the nuclear fractions. To inactivate potentially infectious HTLV particles, all fractions were adjusted to 0.1% Nonidet P-40. Protein concentrations were determined using the Bio-Rad protein assay (Bio-Rad). Anti-hsMAD2 and anti-hsMAD1 were raised in rabbits to GST-hsMAD2 and GST-hsMAD1 fusion proteins. Mouse monoclonal anti-actin (clone AC-15) was from Sigma. Chemiluminescent immunoblotting was according to manufacturer's procedures (Tropix, Bedford, MA). Visualized bands were detected by scanning and quantified using ImageQuant (Molecular Dynamics, Sunnyvale, CA).

Results

HTLV-I-transformed Cells Are Defective in Mitotic Spindle Assembly Checkpoint—To understand how proliferative dysregulation of ATL cells might correlate with aneuploidy, we investigated mitotic spindle checkpoint function in HTLV-I transformed cells. The mitotic index of cells in response to nocodazole or vincristine reflects the status of this checkpoint. To verify our assays, we first examined two well-characterized cancer cells, HeLa (a cervical epithelial cancer) and SW480 (a colon cancer), known to be spindle assembly checkpoint-intact. In our asynchronous cultures, usually between 1.8 and 3.2% of these suspension cells were in M-phase (Fig. 2B). Since normal PBMCs were relatively difficult to obtain frequently in large amounts for the many repetitions over which we performed these experiments, and since Jurkat cells had phenotypically intact spindle assembly checkpoint (Fig. 1B), we employed the latter cells as positive control. When the HTLV-I and Jurkat cells were treated with 0.5 μM nocodazole and examined serially over time, we found that by 24 h of treatment >60% of Jurkat cells arrested in M (Fig. 2A). By contrast, 80–95% of each of the six HTLV cells escaped arrest and exited mitosis (Fig. 2A). These results suggest that most, if not all, HTLV-transformed cells may be pervasively defective in the spindle assembly checkpoint.

Spindle Checkpoint-defective Cells Resist MTI-induced Apoptosis—To assess the role of spindle checkpoint on MTI treatment outcome, we measured the apoptotic indices of nocodazole-treated cells. Quantitation of apoptosis based on Hoechst staining and TUNEL assays (data not shown) showed a variance in MTI sensitivity between Jurkat and HTLV cells. At early times after treatment (12 h, Fig. 3A), all cells shared similar values. However, by 24–36 h after exposure to MTI, a high extent of apoptosis was observed for Jurkat but not for the HTLV cells (Fig. 3A). Thus, when considered together with the data above on mitotic indices, apoptotic sensitivity to MTI correlated inversely with intactness of spindle checkpoint.

Two control experiments excluded that the HTLV cells might...
have responded to MTI through non-apoptotic cell death or quiescence. First, we measured \[3H\]thymidine incorporation by nocodazole-treated cells. Relative to Jurkat, each of the six HTLV cells (Fig. 3B) incorporated significantly higher amounts of \[3H\]thymidine. An interpretation of these results is that nocodazole induced the arrest of Jurkat cells in mitosis (Figs. 1B and 2A) and that prolonged arrest leads to apoptosis (Fig. 3A). On the other hand, because of their spindle checkpoint defect, the HTLV cells were not arrested by MTI and instead progressed unimpeded from M into the next S-phase (i.e. DNA synthesis and \[3H\]thymidine incorporation). The MTT findings confirmed the differential viabilities of Jurkat and HTLV cells propagated in the presence of MTIs.

Mislocation of MAD1 and MAD2 Proteins in HTLV Cells—To better understand the reasons for spindle checkpoint loss, we inquired whether the human MAD1 or MAD2 checkpoint proteins might be mutated in the six HTLV cell lines. Full-length cDNAs for MAD1 and MAD2 from Jurkat as well as the six HTLV cells were sequenced. Surprisingly, except for sporadic polymorphic changes, MAD1 and MAD2 cDNAs from all the cells revealed intact open reading frames with no gross deletions or nonsense substitutions.\(^2\) This absence of overt mutation prompted us to consider mechanisms other than gross genetic changes for explaining spindle checkpoint loss in HTLV cells.

We, then, examined the protein expression patterns of MAD1 and MAD2. Intact spindle checkpoint requires nuclear congression of MAD1 and MAD2 (18). Interestingly, in surveying many different ambiently propagated animal cells, we found that in every cell type the great preponderance of MAD1 and MAD2 appeared in the cytoplasm (data not shown). Thus, nuclear migration of MAD1/MAD2 proteins potentially represents a regulatory step in checkpoint function. To ask whether this step might be defective in HTLV cells, we fractionated (by

\(^2\) Y. Iwanaga, unpublished data.
freeze-thawing) mock-treated and nocodazole-treated cells into insoluble “nuclear” (N) and soluble “cytoplasmic” (C) portions and probed for MAD1 and MAD2 proteins using specific antisera (Fig. 5). Western blotting revealed that Jurkat cells, both constitutively and in a nocodazole-inducible manner, had higher amounts of nuclear MAD1 and MAD2 (Fig. 5A) when compared with each of the six HTLV-cells. Consistently, the “nuclear/cytoplasmic” (N/C) ratios for both MAD1 and MAD2 in the HTLV cells were ~50% of that found for Jurkat cells (Fig. 5, B and C).

Because physical fractionation of cells can be inexact, we sought to confirm the observation of reduced nuclear presence of MAD1 in HTLV cells by immunostaining. Fig. 6 compares the immunofluorescent images of Jurkat and HTLV-I-transformed C8166 cells using monospecific anti-MAD1 serum. In these confocal analyses, the Jurkat cells stained for MAD1 prominently in the nucleus with a punctate distribution (Fig. 6, top), while similarly stained C8166 cells showed a nuclear-excluded MAD1 pattern (Fig. 6, bottom). Nuclear sparing of MAD1 was also seen in the other five HTLV cells (data not shown).

Enhanced Sensitivity of HTLV-transformed Cells to Combination Therapy with MTI Plus Flavopiridol—In principle, defects in cell cycle checkpoint might be exploited chemotherapeutically to the disadvantage of cancer cells. Here, spindle checkpoint-intact cells (i.e. Jurkat) when treated with MTI arrest transiently in M, while checkpoint-deficient cells (i.e. HTLV cells) do not arrest and continue into the subsequent G1. We reasoned that this difference could confer to the latter a heightened sensitivity to a combination of MTI plus a G1-specific inhibitor, while the former would be protected from G1 toxicity as a result of MTI-induced M arrest.

To check this reasoning, we treated in parallel Jurkat and HTLV-I-transformed MT4 cells with nocodazole alone, nocodazole followed by flavopiridol, or nocodazole simultaneous with flavopiridol (Fig. 7). Cellular viabilities were assessed by MTT assay. Jurkat cells, as expected, were more sensitive than MT4 cells to nocodazole alone (Fig. 7A). However, opposite relative susceptibility profiles were seen when a G1-potent inhibitor, flavopiridol (19), was added to nocodazole (Fig. 7, B and C). Checkpoint-defective MT4 cells exposed to either nocodazole followed by flavopiridol or nocodazole simultaneous with flavopiridol were significantly less viable than checkpoint-intact Jurkat cells. These effects relate to spindle checkpoint status and are independent of p53 activity, since both Jurkat (20) and HTLV-I-transformed cells lack p53 function (21).

DISCUSSION

Cancer cells differ from normal cells at multiple genetic loci. In evolving from a normal to a cancerous state, cells lose some or many of the biological checkpoints which monitor the fidelity of DNA replication, repair, and segregation (22). In different cancers, different losses in cell cycle control appear to be emphasized. For instance, most breast cancers have mutated p53 or pRb, leading to a defective G1/S control (23), while most colorectal cancers (85%) have lost the ability to censor against aneuploidy (24). Here, we report that ATL cells are prevalently defective in the spindle assembly checkpoint that monitors for fidelity of chromosomal segregation during mitosis.

What are some implications of checkpoint loss? A practical one applies to the treatment of cancers. Most current anticancer drugs have low therapeutic indices (25) (i.e. toxic dose per therapeutic dose). In vivo, chemotherapy of tumors is limited by drug toxicity for normal cells. Molecular differences in checkpoint functions between neoplastic and non-neoplastic tissues potentially permit selective drug designs that could target cancers while sparing normal counterparts. For example, initial results from model cell systems had encouraged the idea that loss of p53 (26) or p21 (27) proteins might potentiate cellular sensitivity to MTIs such as taxol and vincristine. Unfortunately, this was subsequently called into question by difficulties in reproducing enhanced MTI susceptibility in \textit{bona
fide human cancers (28, 29). Further exacerbating the confusion were reports that loss of p53 increased (30) and decreased (31) sensitivity to DNA-damaging agents. It, thus, remains unclear how p53 defects in cancers might be used to guide the chemotherapy of tumors.

The spindle assembly checkpoint monitors integrity of chromosomal segregation during mitosis (12, 31, 32) in a p53-independent manner. This checkpoint, activated in cells by exposure to MTIs, plays a central role in guarding against the emergence of aneuploidy. Current thinking assumes two links between the spindle checkpoint and oncogenesis: 1) defective spindle checkpoint is frequent in cancers (33), and 2) defects arise from mutations in one of seven known spindle checkpoint genes (12). Interestingly, a recent study has questioned the presumed prevalence of spindle checkpoint loss in cancers (17), and intensive searches for mutations in the spindle checkpoint genes have so far shown such changes to be exceedingly rare in human tumors (16, 34–37). Hence, three questions remain to be clarified. What is the true nature of the spindle checkpoint in human cancers? How could frequent checkpoint loss be reconciled with the rarity of mutations in checkpoint genes? And if spindle checkpoint functions differ between normal and cancer cells, could this difference, in analogy to the thinking with...
p53, play a role in the clinical response of cancers to chemotherapy agents?

Our findings here from HTLV-I-transformed cells begin to address the above questions. In studying six ATL cell lines, we found that 100% of the samples were defective in the mitotic spindle checkpoint. This suggests that loss of this M function is common, if not universal, in ATLs and argues that a similar defect could contribute to other tumors. Intriguingly, in HTLV-I cells, checkpoint loss does not require mutation in checkpoint genes. In these cells a not yet understood mechanism, which mislocates MAD1 and MAD2 proteins into the cytoplasm (Fig. 5 and 6), appears to explain loss-of-function. Cytoplasmic sequestration has also been reported for p53 in breast cancers (38). This type of mechanism potentially reconciles the paradox of frequent spindle checkpoint loss in cancers unaccompanied by mutations in checkpoint genes (16, 34–37).

In good agreement with our findings of mitotic checkpoint loss, in a review elsewhere of 107 ATL cases, Kamada et al. (8) found all HTLV-I leukemic samples to be karyotypically abnormal. We have independently verified Kamada’s conclusion of aneuploidy in ATL cells by direct cytogenetic examination of some of the HTLV-I cell lines used here (data not shown). For example, our MT-1 cell line showed a modal chromosome number of 83, and our TL-Omi cells had a modal number of 45. The TL-Su cells existed as two populations, one having a modal number of 83, and our TL-Omi cells had a modal number of 45. The same (39). Our cytogenetic results are consistent with HTLV-I transforming non-arrested ATL cancer cells (Fig. 7). This aspect of spindle checkpoint loss merits further investigation and could potentially be important in the design of future cancer drugs that exploit this cellular phenotype.

Acknowledgments—We thank M. Kannagi and M. Fujii for providing HTLV-I cells and L. Lin for preparation of manuscript.

REFERENCES

1. Whang-Peng, J., Bunn, P. A., Kretsch, T., Rao-Shan, C. S., Broder, S., Jaffe, E. S., Gelman, E., Blattner, W., Leiters, W., Young, R. C., and Gallo, R. C. (1985) J. Natl. Cancer Inst. 74, 357–369
2. Nagai, H., Kinoshi, T., Inamura, J., Marumaki, Y., Hayashi, M., Kukai, K., Ikeda, S., Tobinai, K., Saito, H., Shimoyama, M., and Shimotokho, K. (1991) Jpn. J. Cancer Res. 82, 1421–1427
3. Cesarmann, E., Chadburn, A., Inghirami, G., Gaidano, G., and Knowles, D. M. (1992) Blood 80, 3205–3216
4. Sakashita, A., Hattori, T., Miller, C. W., Suzukiama, H., Asou, N., Takatsuki, K., and Koeller, H. P. (1992) Blood 79, 477–480
5. Yamato, K., Oka, T., Hiroi, M., Iwabara, Y., Sugito, S., Tsuchida, N., and Miyoshi, I. (1995) Jpn. J. Cancer Res. 84, 4–8
6. Hatta, Y., Hiranuma, T., Miller, C. W., Yamada, Y., Tomonaga, M., and Koeller, H. P. (1995) Blood 85, 2699–2704
7. Yamada, Y., Hatta, Y., Murata, K., Sugawara, K., Ikeda, S., Mine, M., Maeda, T., Hirakata, Y., Kamihira, S., Tsukasaki, K., Ogawa, S., Hirai, H., Koeller, H. P., and Tomonaga, M. (1997) J. Clin. Oncol. 15, 1778–1785
8. Kamada, N., Sakurai, M., Miyamoto, K., Sanada, I., Sadamori, N., Fukuhara, S., Abe, S., Shiraishi, Y., Abe, T., Kaneko, Y., and Shimoyama, M. (1992) Cancer Res. 52, 1481–1493
9. Sadamori, N. (1991) Cancer Genet. Cytogenet. 51, 131–136
10. Kühler, K. V., and Jeang, K. T. (1999) J. Natl. Cancer Inst. 91, 903–904
11. Jin, D. Y., Spencer, F., and Jeang, K. T. (1998) Cell 93, 81–91
12. Gillet, E., and Sorger, P. (2001) Dev. Cell 1, 162–164
13. Livingston, D. M. (2001) Nature 410, 536–537
14. Orr-Weaver, T. L., and Weinberg, R. A. (1998) Nature 392, 223–224
15. Wassmann, K., and Bennet, R. (2001) Curr. Opin. Genet. Dev. 11, 83–90
16. Cahill, D. P., Lengauer, C., Yu, J., Riggins, G. J., Wilson, J. K., Markowitz, S. D., Kinzler, K. W., and Vogelstein, B. (1998) Nature 392, 300–303
17. Tighe, A., Johnson, V. L., Albertella, M., and Taylor, S. S. (2001) EMBO Rep. 2, 609–614
18. Chen, R. H., Shevchenko, A., Mann, M., and Murray, A. W. (1998) J. Cell Biol.
Loss of Mitotic Spindle Checkpoint in Adult T-cell Leukemia

19. Senderowicz, A. M. (2000) *Oncogene* 19, 6600–6606
20. Yamato, K., Yamamoto, M., Hirano, Y., and Tsujiha, N. (1995) *Oncogene* 11, 1–6
21. Yoshida, M. (2001) *Ann. Rev. Immunol.* 19, 475–496
22. Hartwell, L. H., and Kastan, M. B. (1994) *Science* 266, 1621–1628
23. Stewart, Z. A., and Pietenpol, J. A. (1999) *J. Mammary Gland Biol. Neoplasia* 4, 389–400
24. Kizler, K. W., and Vogelstein, B. (1996) *Cell* 87, 159–170
25. Kaelin, W. G., Jr. (1999) *J. Clin. Invest.* 104, 1503–1606
26. Wahl, A. F., Donaldson, K. L., Fairchild, C., Lee, F. Y., Foster, S. A., Demers, G. W., and Galloway, D. A. (1996) *Nat. Med.* 2, 72–79
27. Stewart, Z. A., Mays, D., and Pietenpol, J. A. (1999) *Cancer Res.* 59, 3831–3837
28. Fan, S., Cherny, B., Reinhold, W., Rucker, K., and O’Connor, P. M. (1998) *Clin. Cancer Res.* 4, 1047–1054
29. Blagosklonny, M. V., and Pojo, T. (1999) *Int. J. Cancer* 83, 151–156
30. Bunn, F., Hwang, P. M., Torrance, C., Waldman, T., Zhang, Y., Dillahay, L., Williams, J., Lengauer, C., Kinzler, K. W., and Vogelstein, B. (1999) *J. Clin. Invest.* 104, 263–269
31. Fan, S., El-Deiry, W. S., Bae, I., Freeman, J., Jondle, D., Bhatia, K., Fornace, A. J., Jr., Magrath, I., Kohn, K. W., and O’Connor, P. M. (1994) *Cancer Res.* 54, 5824–5830
32. Rudner, A. D., and Murray, A. W. (1996) *Curr. Opin. Cell Biol.* 8, 773–780
33. Lengauer, C., Kinzler, K. W., and Vogelstein, B. (1996) *Nature* 381, 645–649
34. Imai, Y., Shiratori, Y., Kato, N., Insue, T., and Omae, M. (1999) *Jpn. J. Cancer Res.* 90, 837–840
35. Myrie, K. A., Percy, M. J., Azim, J. N., Neeley, C. K., and Peety, E. M. (2000) *Cancer Lett.* 152, 193–199
36. Sato, M., Sekido, Y., Horio, Y., Takahashi, M., Saito, H., Minna, J. D., Shimokata, K., and Hasegawa, Y. (2000) *Cancer Res.* 61, 504–509
37. Yamaguchi, K., Okami, K., Hibi, K., Wehage, S. L., Jen, J., and Sidransky, D. (1999) *Cancer Lett.* 138, 183–187
38. Moll, U. M., Ricu, G., and Levine, A. J. (1992) *Proc. Natl. Acad. Sci. U. S. A.* 89, 7262–7266
39. Zimmet, J., and Ravid, K. (2000) *Exp. Hematol.* 28, 3–16
40. Ohshima, K., Suzumiya, J., Sato, K., Kanda, M., Simazaki, T., Kawasaki, C., Haraoaka, S., and Kikuchi, M. (1999) *J. Pathol.* 189, 539–545
41. Shimoyama, M., and Lymphoma Study Group (1991) *Br. J. Haematol.* 79, 428–437
42. Dumontet, C., and Sikic, B. I. (1999) *J Clin. Oncol.* 17, 1061–1070
43. Matsushita, K., Matsumoto, T., Ohi, H., Fujii, H., Umezawa, N., Hidaka, S., Kubota, T., Toguchi, K., Matsumoto, M., and Arai, N. (1999) *Leuk. Lymphoma* 36, 67–75