Partial Wave Analyses of the pp data alone
and of the np data alone

R.A.M.M. Klomp, J.-L. de Kok, M.C.M. Rentmeester,
Th.A. Rijken, and J.J. de Swart
Institute for Theoretical Physics
Nijmegen, The Netherlands

Abstract

We present results of the Nijmegen partial-wave analyses of all NN scattering data below $T_{\text{lab}} = 500$ MeV. We have been able to extract for the first time the important np phase shifts for both $I = 0$ and $I = 1$ from the np scattering data alone. This allows us to study the charge independence breaking between the pp and np $I = 1$ phases. In our analyses we obtain for the pp data $\chi^2_{\text{min}}/N_{\text{df}} = 1.13$ and for the np data $\chi^2_{\text{min}}/N_{\text{df}} = 1.12$.

Introduction

The last 15 years the Nijmegen group has been working on partial-wave analyses (PWA) of the NN-scattering data for energies below $T_{\text{lab}} = 350$ MeV. In these analyses, the pp data furnish the $I = 1$ phase shifts in the lower partial waves with $J \leq 4$. It has been customary to do these low energy PWA up to $T_{\text{lab}} = 350$ MeV, despite of the fact that the inelasticities set in at $T_{\text{lab}} \approx 280$ MeV. It can be shown, however, that up to $T_{\text{lab}} = 350$ MeV the inclusion of inelasticities in pp scattering improves the total $\chi^2 \approx 1787$ with only about 1, so neglecting the inelasticities is totally warranted.

In the PWA of all the np data below $T_{\text{lab}} = 350$ MeV, it has always been impossible to determine all important phase shifts, when only the np data were used. The standard procedure has therefore been to take the
$I = 1$ phases (except the 1S_0) over from the pp analyses, with or without corrections for Coulomb, and np and $\pi^0\pi^\pm$ mass difference effects. The $^1S_0 np$ phase shift was always searched for. It was found that there is a definite charge independence breaking in these 1S_0 phases. An attempt by us, to extract all the lower $I = 0$ and $I = 1$ phase shifts in an analysis of all np data below $T_{\text{lab}} = 350$ MeV failed. However, it was possible to determine the np 3P waves, when the higher partial waves were taken over from the pp analysis.

Recently, the Nijmegen group extended the pp PWA to energies so far above the pion production thresholds, that the inclusion of inelasticities was necessary. A preliminary version of such a PWA for all pp data with energies below $T_{\text{lab}} = 500$ MeV has already been presented [2].

When the np PWA was extended to energies up to $T_{\text{lab}} = 500$ MeV, it turned out to be possible to determine uniquely all the important partial waves. Comparing then with the analogous pp analysis gives indications for possible charge independence breaking effects in other waves besides the 1S_0 waves.

The method of analysis

In the np as well as in the pp partial wave analyses, the various phases are obtained by solving the relativistic Schrödinger equation with a well-known long-range potential $V_L = V_{\text{NUC}} + V_{\text{EM}}$ for $r \geq b = 1.4$ fm. This V_L contains the electromagnetic interaction (such as Coulomb, magnetic moment, and vacuum polarization), the OPEP tail, and the rest of the long range NN interaction as given by the Nijmegen potential [3].

For $r < b$ the short-range interaction is described by an energy-dependent, square-well potential

$$V_S = V_R - iV_I .$$

For V_R we follow the same procedure as in the Nijmegen PWA and write

$$V_R = \sum_{n=0}^{N} a_n(k^2)^n .$$

For the imaginary part of the potential we take

$$V_I = (k^2 - k_{\text{thr}}^2)^n V \cdot \theta(E - E_{\text{thr}}) .$$

2
Figure 1: Preliminary multienergy phase shifts and inelasticities in the 1D_2 partial wave in degrees vs. T_{lab} in MeV. Solid line: 0-500 MeV pp partial-wave analysis; dashed line: 0-500 MeV np partial-wave analysis. ●: pp single-energy analyses; ◦: Arndt et al. [4]; □: Dubois et al. [5]; ♦: Bugg et al. [6].

Results

The results of our PWA can be summarized as follows. The phase parameters were parametrized with 36 parameters in the pp analysis and 38 parameters in the np analysis. We allowed for up to four parameters in the real part of the potential in each partial wave, which was found to be enough. The actual number of parameters per partial wave varies from four in the 1S_0 to one or none in the higher G waves. An imaginary part of the potential was only used in the 1D_2 and 3F_3 partial waves and in the pp PWA also in the coupled $^3P_2-^3F_2$ partial waves. As an example, Fig. 1 shows preliminary results for the 1D_2 partial wave. We reach $\chi^2_{\text{min}} = 3555.4$ for 3455 pp scattering data and $\chi^2_{\text{min}} = 4142.0$ for 3968 np scattering data.
References

[1] J. R. Bergervoet, P. C. van Campen, R. A. M. Klomp, J.-L. de Kok, T. A. Rijken, V. G. J. Stoks, and J. J. de Swart, Phys. Rev. C 41, 1435 (1990).

[2] J. L. de Kok, T. A. Rijken, and J. J. de Swart, Two Partial-Wave Analyses from 0 to 500 MeV. Poster presented at the 14th European Conference on Few-body Problems in Physics.

[3] M. M. Nagels, T. A. Rijken, and J. J. de Swart, Phys. Rev. D 17, 768 (1978).

[4] R.A. Arndt, L.D. Roper, R.L. Workman, and M.W. McNaughton, Phys. Rev. D45, 3995 (1992).

[5] R. Dubois, D. Axen, R. Keeler, M. Comyn, G.A. Ludgate, J.R. Richardson, N.M. Stewart, A.S. Clough, D.V. Bugg, and J.A. Edgington, Nucl. Phys. A377, 554 (1982).

[6] D.V. Bugg, Phys. Rev. C41, 2708 (1990).