Hemodialysis vascular access care during the COVID-19 pandemic

Chih-Yu Yang,b,c,d,e Yi-Fang Wangb, Yang Hob, Cheng-Hsueh Wuc,f, Chiu-Yang Lee,c,g, Der-Cherng Tarnga,b,c,e,h,*

*Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC; bDivision of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC; cFaculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC; dStem Cell Research Center, National Yang-Ming University, Taipei, Taiwan, ROC; eCenter for Intelligent Drug Systems and Smart Bio-devices (IDS2B), Taiwan, ROC; fDivision of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC; gPeripheral Vascular Treatment and Research Center and Division of Cardiovascular Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan, ROC; hDepartment and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC.

Abstract: Dialysis patients are more vulnerable and susceptible to the severe coronavirus disease 2019 (COVID-19) infection due to multiple comorbidities. Since Taiwan has the highest incidence and prevalence of treated end-stage kidney disease worldwide, it is crucial to advance in prevention to avoid a potential disaster. In the face of the COVID-19 pandemic, we implement proactive infection control measures to prevent it from spreading without sacrificing the dialysis care quality. In this article, we focused on hemodialysis vascular access (HVA) care in particular. As a life-line of hemodialysis (HD) patients, HVA care has a profound impact on the patient’s quality of dialysis and life. Specifically, in our facility, the working and office areas of the HD units are separated to reduce cross-infection. All elective procedures for HVA are postponed, and operating rooms equipped with a negative-pressure anteroom are used for suspected or confirmed COVID-19 patients. Herein, we share how we modified our HVA care policy not only to prevent our patients from COVID-19 infection but also to maintain the quality of HVA care.

Keywords: COVID-19; Hemodialysis vascular access; Infection control; Severe acute respiratory syndrome coronavirus 2

1. INTRODUCTION

Coronavirus disease 2019 (COVID-19) struck China first in late 2019 and then spread worldwide in an enormous way in early 2020. Taiwan, being geographically 80 miles nearby China, was predicted to have the second-highest number of cases worldwide.1 On the contrary, this prediction did not become a reality, and Taiwan earned recognition as a successful example against this crisis.2 The low COVID-19 rate in Taiwan has partly attributed to the government's immigration and screening policies, spontaneous mask-wearing by the general public (either cloth or surgical masks), and the proactive infection control measures implemented at the hospital level.

Many COVID-19-infected patients were detected at the airport in Taiwan; however, there are still some civilians who got infected with an unidentified infection source.3 Taiwan has the highest incidence and prevalence of treated end-stage kidney disease worldwide.4 Since dialysis patients are more vulnerable and susceptible to severe COVID-19 infection due to old age and multiple comorbidities,5 we, therefore, have to implement proactive infection control measures to prevent a potential disaster.6 As a life-line of hemodialysis (HD) patients, hemodialysis vascular access (HVA) care has a profound impact on the patient's quality of dialysis and life. Our HVA Care Unit belongs to the HD center in Taipei Veterans General Hospital, which is a national tertiary-care referral hospital with 2,947 beds in total, including 187 intensive care unit beds, 90 HD beds, 82 regular isolation beds, and 16 negative-pressure isolation rooms.7 As a nation-run hospital, we are responsible for taking care of suspected and confirmed patients of COVID-19 in the special ward.

Our facility provides multidisciplinary and interdepartmental HVA care for HD patients, with 6,965 HD sessions per month. Our HVA care team comprises 10 nephrology physicians, three vascular interventionists, two vascular surgeons, three case managers, and one medical radiological technician. HVA services that we provide include routine HVA care, active and overall surveillance of intradialytic access flow quarterly for every patient using a Transonic HD03 monitor (Transonic, Ithaca, NY, USA); Doppler ultrasound of HVA for patients with abnormal access flow; angiographic examination and percutaneous intervention for HVA complications; and surgical intervention for HVA build-up and complication management. In this article, we share our experiences in the infection control measures implemented in our daily care for HVA.

2. GENERAL INFECTION CONTROL MEASURES

The entrance and exit numbers of our hospital are reduced for effective access control. For each building, only one entrance and one exit are open, and the rest are closed. Before entering
the building, wearing a mask is obligatory for every employee and visitor to reduce respiratory droplet transmission. Every open entrance was installed a thermal camera scanner with the automatic alarm function (Table 1). After temperature checks, the people flow separates into an express lane for hospital staffs with ID and an access control lane for visitors. For the access control lane, there is visitor number limit (i.e., one companion maximum for one outpatient; one visitor maximum for one inpatient), and documentation of the Travel/Occupation/Contact/Clustering (TOCC) history at the register counter is mandatory for every visitor. Besides, another measure to limit the people flow is to restrict the inpatient visiting hours, which is limited to 6:00 to 7:00 p.m. unless the inpatient encounters a medical emergency.

As shown in the Figure, the TOCC history declaration for COVID-19 is registered for every visitor at the hospital entrance, and the questionnaire is as follows: (1) Have you traveled abroad in the last 14 days? (2) Have you had a fever, respiratory symptoms such as cough, runny nose, sore throat, breathing asthma/dyspnea, and so on in the last 14 days? (3) What is your occupation? (4) Have you contacted and entered the following places in the past 14 days? (5) Your group history in the past month. When the visitor finishes the registry, a certificate sticker (valid for 1 day) is placed on the visitor’s ID card for recognition.

For patients/visitors who were screened positive, a special team wearing full personal protective equipment will transfer him/her to a specific zone where SARS-CoV2 will be tested. Confirmed and suspected cases will be quarantined in a COVID-19 special ward. Given the fact that an estimated 25% of patients infected with SARS-CoV2 are asymptomatic and can still transmit the virus, our facility requests patients/visitors to wear the mask at all times, a measure that may effectively reduce respiratory droplet transmission.12,13 However, most countries have a shortage of surgical masks. Although randomized controlled trial evidence is lacking, some data suggest that in terms of blocking droplet transmission, cloth masks may be only marginally less effective than surgical masks and fivefold more effective than not wearing masks.14 Therefore, face mask-wearing by the general public (either cloth or surgical masks) could have a substantial impact on transmission with a relatively small impact on social and economic life. Therefore, face mask-wearing by the general public (either cloth or surgical masks) could have a substantial impact on transmission with a relatively small impact on social and economic life.15–17 Herein, we would like to emphasize that the cloth mask is simple yet potentially effective in blocking the emission of particles.

3. INFECTION CONTROL MEASURES FOR HEMODIALYSIS UNIT AREAS

Our dialysis facility comprises of an office area, an outpatient hemodialysis unit (HDU) area, and an inpatient HDU area. Each area of the dialysis facility is connected through doors, which are temporarily closed to avoid cross-infection. These three major zones are separated, and checkpoints are set at each entrance. At each HDU checkpoint, we installed a thermal camera scanner, which alarms if the body temperature is higher than normal. Besides, our staffs take shifts to stay at each HDU checkpoint to record the body temperature for each visitor using a forehead thermometer. Because the ear thermometer is time-consuming for the probe cover replacement, we use an infrared forehead thermometer instead, but the fever threshold is 0.5°C lower (fever criteria: ≥37.5°C for a forehead thermometer; ≥38.0°C for an ear thermometer). Meanwhile, the ID registry for patients and their companions (one companion maximum for one patient) is mandatory at every checkpoint. On the other hand, in the office area checkpoint, the body temperature is measured and recorded by the staff themselves on a daily basis.

As the COVID-19 pandemic is a devastating threat to dialysis patients, we made every effort to prevent our patients from getting infected. Food and drink are prohibited in all HDU areas to reduce droplet transmission. We would like to emphasize that the purpose of obligatory mask-wearing at all times is to reduce respiratory droplet transmission.12,13 Taiwan government boosts the production of surgical masks since January 2020 and dispenses two surgical masks per HD session to every HD patient. Meanwhile, because contact transmission can be effectively prevented by hand washing,18 chlorhexidine (0.5%) dispensers are available at all checkpoints, all doors (both sides), all rooms, and all beds throughout the hospital for consistent hand hygiene. All hospital staff, patients, and visitors are encouraged to use chlorhexidine dispensers. In addition, chairs in the public area are marked to be seated separately for social distancing. With the measures conducted above, we continue the quarterly intradialytic access flow monitoring and the Doppler ultrasound of HVA to ensure that every HD patient is under the proper surveillance of HVA health.

4. INFECTION CONTROL MEASURES FOR ANGIOGRAPHIC AND OPERATING ROOMS

As listed in Table 2, we postpone all elective angiography and surgery for HVA, as guidelines suggested.20–22 For urgent angiography or surgery for HVA, the aforementioned general infection control measures have complied. However, when there is a suspected or confirmed COVID-19 patient who requires an immediate angiography or surgery for his/her HVA complication, an operating room with a negative-pressure anteroom is used. When the postoperative care and observation are needed, the patient is transferred to a negative-pressure recovery room after the surgery. Because the angiographic rooms in our hospital are not equipped with a negative-pressure anteroom, any suspected or confirmed COVID-19 patient who needs an urgent angiography is managed in the operating room instead.

5. HD FOR SUSPECTED OR CONFIRMED COVID-19 PATIENTS

Once there is a suspected or confirmed COVID-19-infected patient who requires renal replacement therapy. Intermittent HD is performed as appropriate in the isolation room of the COVID-19 special ward, which is equipped with reverse osmosis

Table 1

Patient and companion flow before HDU arrival

Site	Infection control measure
Hospital entrance	Obligatory mask-wearing at all times in all in-hospital areas (no mask no entry)
	Thermal camera scanner with the automated alarm function
	Express lane for hospital staffs with ID
	Visitor number limit (one companion maximum for one outpatient; one visitor maximum for one inpatient)
	Inpatient visiting hours restriction (6:00-7:00 p.m. unless the inpatient encounters a medical emergency)
	TOCC history declaration for every visitor at the register counter
	Place a certificate sticker (valid for 1 day) on the visitor’ ID card
HDU entrance	Thermal camera scanner with the automated alarm function
	ID registry for every visitor
	Body temperature measurement and record for every visitor
	People flow restriction (only open at the beginning/end of HD)
	Prohibition of food and drink in all HDU areas
	Every HD patient is provided with two surgical masks per HD session by the government

HD = hemodialysis; HDU = hemodialysis unit; TOCC= Travel/Occupation/Contact/Clustering.
In conclusion, HD patients are more comorbid and at risk of severe COVID-19 pneumonia once they get infected. In this article, we present the primary infection prevention measures for COVID-19 in an HVA care unit of the tertiary-care referral hospital, including obligatory mask-wearing at all times, body temperature measurement, visitor number limit, inpatient visiting hours restriction, and visitor’s TOCC history registry. We would like to highlight two easy yet effective measures, obligatory mask-wearing and consistent hand hygiene, to reduce respiratory droplet and contact transmission risks. Although in most parts of the world where stocks of surgical masks are quite limited for now, evidence suggests that cloth masks may be only...
marginal less effective than surgical masks and fivefold more effective than not wearing masks in blocking droplet transmission. Therefore, the cloth mask for hospital visitors is likely to be a good alternative in areas having a shortage of surgical masks and is better than wearing no mask at all.

In our facility, the working and office areas of the HD units are separated to reduce cross-infection. With the implementation of proactive infection control measures, we continue the quarterly intradialytic access flow monitoring and the Doppler ultrasound of HVA to ensure that every HD patient is under the proper surveillance of HVA health. All elective procedures for HVA are postponed, and operating rooms equipped with a negative-pressure anteroom are used for the suspected or confirmed COVID-19 patient who requires an urgent angiography or surgery for his/her HVA complication. By modifying our HVA care policy, we not only prevent our patients from getting infected with COVID-19 but also maintain HVA care quality.

ACKNOWLEDGMENTS

This work was supported financially for research purpose by the “Yin Yen-Liang Foundation Development and Construction Plan” of the School of Medicine, National Yang-Ming University, Taipei, Taiwan (107F-M01-0504); the Ministry of Science and Technology, Taipei, Taiwan (MOST 105-2628-B-075-008-MY3 and MOST 108-2633-B-009-001); and grants from Taipei Veterans General Hospital, Taipei, Taiwan (V106D25-003-MY3, VGHUST107-G3-3-3, and VGHUST109-V5-1-2); also, this work was in part supported financially for research purposes by the “Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B)” from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan. The funders have no role in study design, data collection, analysis, and interpretation, or in writing or submission of the manuscript.

REFERENCES

1. Gardner L. Modeling the spread of 2019-nCoV. 2020. Available at https://systems.jhu.edu/wp-content/uploads/2020/01/Gardner-JHU_nCoV-Modeling-Report_Jan-26.pdf. Accessed May 3, 2020.
2. Wang CJ, Ng CY, Brook RH. Response to COVID-19 in Taiwan: big data analytics, new technology, and proactive testing. JAMA 2020. Doi: 10.1001/jama.2020.3151.
3. Press Releases. Taiwan Centers for Disease Control, 2020. Available at https://www.cdc.gov.tw/En. Accessed May 3, 2020.
4. Lee JJ, Robinson B, Abbott KC, Agodoa LYC, Bhave N, Bragg-Gresham J, et al. US Renal Data System 2017 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis 2018;71(3 Suppl 1):A7.

5. Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int 2020. Doi: 10.1016/j.kint.2020.03.005.

6. Taiwan Society of Nephrology. Guideline of COVID-19 infection prevention in dialysis facilities [article in Mandarin]. Available at https://www.tsn.org.tw/tsnFile/news/GBD7CFDB252A7DC%7E%9%99A2%5%9B%A6%87%99%99%25%9A%5%85%7%97%8%5%9E%4%BA%9%9%9F%99%7%99%BC%7%99%9FCOVID-19%5%96%AD%6%6%BC%A2%8%2%BA%7%2%8%8%7%A%2%BA%5%AE%9%A%7%9%5%4%BE%8%B%9%9%8%7%8%9%8%4%8%A%8%9%7%9%5%7%9%BD%AE1090323.pdf. Accessed March 23, 2020.

7. Service Statistics. Taipei Veterans General Hospital, 2018. Available at https://www.vghtpe.gov.tw/vghtpe/Fpage.action?muid=3210&fid=2317. Accessed May 3, 2020.

8. Visitor Health Declaration and Affidavit (TOCC History for COVID-19). Taipei Veterans General Hospital, 2020. Available at https://www6.vghtpe.gov.tw/vghtpe/Fpage.action?muid=3210&fid=2317. Accessed May 3, 2020.

9. Qiu H, Wu J, Hong L, Luo Y, Song Q, Chen D. Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study. Lancet Infect Dis 2020;20(3):217–20.

10. Service Statistics. Taipei Veterans General Hospital, 2018. Available at https://www6.vghtpe.gov.tw/vghtpe/Fpage.action?muid=3210&fid=2317. Accessed May 3, 2020.

11. Lee JJ, Robinson B, Abbott KC, Agodoa LYC, Bhave N, Bragg-Gresham J, et al. US Renal Data System 2017 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis 2018;71(3 Suppl 1):A7.

12. Lee JJ, Lin CY, Chiu YW, Hwang SJ. Take proactive measures for the pandemic COVID-19 infection in the dialysis facilities. J Chin Med Assoc 2020. Doi: 10.1016/j.jcma.2020.03.022.

13. Wu YC, Chen CS, Chan YJ. The outbreak of COVID-19: an overview. J Chin Med Assoc 2020;83:217–20.

14. Davies A, Thompson KA, Giri K, Kafatos G, Walker J, Bennett A. Testing the efficacy of homemade masks: would they protect in an influenza pandemic? Disaster Med Public Health Prep 2013;7:413–8.

15. Greenthal T, Schmid MB, Czyronka T, Bassler D, Gruer L. Face masks for the public during the COVID-19 crisis. BMJ 2020;369:m1435.

16. Javid B, Weekes MP, Matheson NJ. COVID-19: should the public wear face masks? BMJ 2020;369:m1442.

17. Esposito S, Principi N, Leung CC, Migliori GB. Universal use of face masks for success against COVID-19: evidence and implications for prevention policies. Eur Respir J 2020. Doi: 10.1183/13993003.01260-2020.

18. Hsieh VC. Putting resiliency of a health system to the test: COVID-19 in Taiwan. J Formos Med Assoc 2020;119:848–5.

19. Chao LM, Chen JS, Chu KH, Yang GY, Hsueh PR. Interrupting COVID-19 transmission by implementing enhanced traffic control bundling: implications for global prevention and control efforts. J Microbiol Immunol Infect 2020. Doi: 10.1016/j.jmii.2020.03.011.

20. European Centre for Disease Prevention and Control. Checklist for hospitals preparing for the reception and care of coronavirus 2019 (COVID-19) patients. ECDC: Stockholm; 2020. Available at https://www.ecdc.europa.eu/sites/default/files/documents/COVID-19-infection-prevention-and-control-healthcare-settings-march-2020.pdf. Accessed May 3, 2020.

21. Centers for Disease Control and Prevention (CDC). Interim guidance for healthcare facilities: preparing for community transmission of COVID-19 in the United States. Available at https://www.cdc.gov/coronavirus/2019-ncov/hospital-preparedness-guidance.html. March 2020.

22. NSW Government, Australia. COVID-19: Interim guidance for elective surgery and outpatient clinics. Available at https://www.health.nsw.gov.au/Infectious/covid-19/Pages/elective-outpatient.aspx. April 2020.

23. Claxton J, Pouw JJ, van der Zee R. A systematic review of the effectiveness of social distancing and face masks in the prevention of tuberculosis transmission. J Public Health Policy 2012;33:107–26.

24. Kliger AS, Silberzweig J. Mitigating risk of COVID-19 in dialysis facilities. Clin J Am Soc Nephrol 2020;15:707–9.

25. Cozzolino M. ERA-EDTA sharing Milan experience on corona-virus policies. Eur Respir J 2020;55:1901006.

26. Rombolá G, Heidempergher M, Pedrini L, Farina M, Assoula F, Messa P, et al. Recommendations for the prevention, mitigation and containment of the emerging SARS-CoV-2 (COVID-19) pandemic in haemodialysis centres. Nephrol Dial Transplant 2020;35:737–41.

27. Basile C, Combe C, Pizzarelli F, Covic A, Davenport A, Kanbay M, et al. Practical indications for the prevention, mitigation and containment of the emerging SARS-CoV-2 (COVID-19) pandemic in haemodialysis centres. Nephrol Dial Transplant 2020;35:737–41.

28. Ikizler TA, Kliger AS. Minimizing the risk of COVID-19 among patients on dialysis. Nat Rev Nephrol 2020. Doi: 10.1038/s41581-020-0280-y.