ON SEMI-INFINITE COHOMOLOGY OF FINITE DIMENSIONAL ALGEBRAS

ROMAN BEZRUKAVNIKOV

ABSTRACT. We show that semi-infinite cohomology of a finite dimensional graded algebra (satisfying some additional requirements) is a particular case of a general categorical construction. An example of this situation is provided by small quantum groups at a root of unity.

1. INTRODUCTION

Semi-infinite cohomology of associative algebras was studied, in particular, by S. Arkhipov (see [Ar1], [Ar2], [Ar3]). Recall that the definition of semi-infinite cohomology in [Ar1] works in the following set-up. We are given an associative graded algebra A, two subalgebras $B, N \subset A$ such that $A = B \otimes N$ as a vector space, satisfying some additional assumptions. In this situation the space of semi-infinite Ext’s, $\text{Ext}^{\infty/2+\bullet}(X, Y)$ is defined for X, Y in the bounded derived category of graded A-modules. The definition makes use of explicit complexes.

In this note we show that under some additional assumptions semi-infinite Ext groups $\text{Ext}^{\infty/2+\bullet}(X, Y)$ has a categorical interpretation. More precisely, given a category \mathcal{A} and subcategory $B \subset \mathcal{A}$ one can define for $X, Y \in \mathcal{A}$ the set of morphisms from X to Y “through B”; we denote this space by $\text{Hom}_{\mathcal{A}_{B}}(X, Y)$. We then show that if \mathcal{A} is the bounded derived category of A-modules, and B is the full triangulated subcategory generated by B-projective A-modules, then, under certain assumptions one has

$$\text{Ext}^{\infty/2+i}(X, Y) = \text{Hom}_{\mathcal{A}_{B}}(X, Y[i]).$$

Notice that the right hand side of (1) makes sense for a wide class of pairs (A, B) (an associative algebra, and a subalgebra), and $X, Y \in D^b(A - \text{mod})$; in particular we do not need A, B to be graded. Thus one may consider (1) as providing a generalization of the definition of semi-infinite Ext’s to this set up. However, we should warn the reader that under our working assumptions, but not in general, B also equals the full triangulated subcategory generated by B-injective modules, or by modules (co)induced from a ”complemental” subalgebra $N \subset A$, so one has at least four different obvious generalizations of the definition of the right-hand side of (1).

In fact, a description of semi-infinite cohomology similar to (1) in a general situation (in particular, in the case of enveloping algebras of infinite-dimensional Lie algebras) requires additional ideas, and is the subject of a forthcoming joint work with Arkhipov and Positselskii.

An example of the situation considered in this paper is provided by a small quantum group at a root of unity [L], or by the restricted enveloping algebra of a simple Lie algebra in positive characteristic. Computation of semi-infinite cohomology in
the former case is due to S. Arkhipov [Ar1] (the answer suggested as a conjecture by B. Feigin). This example was a motivation for the present work. We informally explain the relation of our Theorem 1 to the answer for semi-infinite cohomology of small quantum groups in Remark 5 below (we plan to derive it from Theorem 1 elsewhere).

Acknowledgements. I thank S. Arkhipov for stimulating interest, and L. Posit-selskii for helpful comments. I thank the Clay Mathematical Institute and NSF grant DMS-0071967 for financial support.

2. Categorical preliminaries: morphisms through a functor

Let \(A, B \) be (small) categories, and \(\Phi : B \to A \) be a functor. For \(X, Y \in \text{Ob}(A) \) define the set of "morphisms from \(X \) to \(Y \) through \(\Phi \)" as \(\pi_0 \) of the category of diagrams

\[
(2) \quad X \to \Phi(?) \to Y, \quad ? \in B.
\]

This set will be denoted by \(\text{Hom}_{A \Phi}(X, Y) \). Thus elements of \(\text{Hom}_{A \Phi}(X, Y) \) are diagrams of the form (2), with two diagrams identified if there exists a morphism between them. Composing the two arrows in (2) we get a functorial map

\[
(3) \quad \text{Hom}_{A \Phi}(X, Y) \to \text{Hom}_{A}(X, Y).
\]

If \(A, B \) are additive and \(\Phi \) is an additive functor, then addition of diagrams of the form (2) is defined by

\[
(X \xrightarrow{f} \Phi(Z) \xrightarrow{g} Y) + (X \xrightarrow{f'} \Phi(Z') \xrightarrow{g'} Y) = (X \xrightarrow{f \oplus f'} \Phi(Z \oplus Z') \xrightarrow{g \oplus g'} Y);
\]

it induces an abelian group structure on \(\text{Hom}_{A \Phi}(X, Y) \). Proposition 3 in [M1], VIII.2 shows that for \(Z \in B \) the tautological map

\[
\text{Hom}(X, \Phi(Z)) \otimes_{Z} \text{Hom}(\Phi(Z), Y) \to \text{Hom}_{A \Phi}(X, Y)
\]

is compatible with addition.

We have the composition map

\[
\text{Hom}_{A}(X', X) \times \text{Hom}_{A \Phi}(X, Y) \times \text{Hom}_{A}(Y, Y') \to \text{Hom}_{A \Phi}(X', Y);
\]

in particular, for \(A, B, \Phi \) additive, \(\text{Hom}_{A \Phi}(X, Y) \) is an \(\text{End}(X) - \text{End}(Y) \) bimodule.

Given \(\Phi : A \to B, \Phi' : A' \to B' \) and \(F : A \to A', G : B \to B' \) with \(F \circ \Phi \cong \Phi' \circ G \) we get for \(X, Y \in A \) a map

\[
(4) \quad \text{Hom}_{A \Phi}(X, Y) \to \text{Hom}_{A' \Phi'}(F(X), F(Y)).
\]

If the left adjoint functor \(\Phi^* \) to \(\Phi \) is defined on \(X \), then we have

\[
\text{Hom}_{A \Phi}(X, Y) = \text{Hom}_{A}(\Phi(\Phi^*(X)), Y),
\]

because in this case the above category contracts to the subcategory of diagrams of the form \(X \xrightarrow{\text{can}} \Phi(\Phi^*(X)) \to Y \), where \(\text{can} \) stands for the adjunction morphism.

If the right adjoint functor \(\Phi^! \) is defined on \(Y \), then

\[
\text{Hom}_{A \Phi}(X, Y) = \text{Hom}_{A}(X, \Phi(\Phi^!(Y)))
\]

for similar reasons. In particular, if \(\Phi \) is a full imbedding then (3) is an isomorphism provided either \(X \) or \(Y \) lie in the image of \(\Phi \).

In all examples below \(A \) will be a triangulated category, and \(\Phi : B \to A \) will be an imbedding of a (strictly) full triangulated subcategory. Given \(B \subset A \) we will
tacitly assume Φ to be the imbedding, and write Hom_{A^0} ("morphisms through B^0") instead of Hom_{A^0}.

Example 1. Let M be a Noetherian scheme, and $A = D^b(\text{Coh}_M)$ be the bounded derived category of coherent sheaves on M; let $i : B \hookrightarrow A$ be the full subcategory of complexes whose cohomology ia supported on a closed subset $i : N \hookrightarrow M$. Then the functor $i \circ i^! = i \circ i^*$ takes values in a larger derived category of quasi-coherent sheaves (i.e. ind-coherent sheaves), and $i \circ i^! = i \circ i^*$ takes values in the Grothendieck-Serre dual category, the derived category of pro-coherent sheaves (introduced in Deligne's appendix to [H]). Still we have

$$\text{Hom}_{A^0}(X, Y) = \text{Hom}(X, i_*(i^!(Y))) = \text{Hom}(i_*(i^!(X)), Y).$$

In particular, if $X = \mathcal{O}_M$ is the structure sheaf, we get

$$\text{Hom}_{A^0}(\mathcal{O}_M, Y[i]) = H^i_N(Y),$$

where $H^i_N(Y)$ stands for cohomology with support on N (local cohomology) [H].

3. **Recollection of the definition of $\text{Ext}^{\infty/2+\bullet}$**

All algebras below will be associative and unital algebras over a field.

We recall a variant of definition of semi-infinite Ext's (available under certain restrictions on the algebra and subalgebras) suited for our purpose (see e.g. [FS], §2.4, pp 180-183, for this definition in the particular case of small quantum groups; the general case is analogous).

We make the following assumptions. A \mathbb{Z}-graded algebra A and graded subalgebras A^0, $A^{\leq 0}$, $A^{\geq 0} \subset A$ are fixed and satisfy the following conditions:

1. $A^{\leq 0}$, $A^{\geq 0}$ are graded by, respectively, $\mathbb{Z}^{\leq 0}$, $\mathbb{Z}^{\geq 0}$, and $A^0 = A^{\leq 0} \cap A^{\geq 0}$ is the component of degree 0 in $A^{\geq 0}$ and in $A^{\leq 0}$.

2. The maps $A^{\geq 0} \otimes A^0 A^{\leq 0} \to A$ and $A^{\leq 0} \otimes A^0 A^{\geq 0} \to A$ provided by the multiplication map are isomorphisms.

3. A is finite dimensional; A^0 is semisimple, and $A^{\geq 0}$ is self-injective (i.e. the free $A^{\geq 0}$-module is injective).

By a "module" we will mean a finite dimensional graded module, unless stated otherwise. By $A - \text{mod}$ we denote the category of (graded finite dimensional) A-modules.

Recall that a bounded below complex of graded modules is called convex if the weights "go down", i.e. for any $n \in \mathbb{Z}$ the sum of weight spaces of degree more than n is finite dimensional. A bounded below complex of graded modules is called concave if the weights "go up" in the similar sense.

Lemma 1. i) Any A-module admits a right convex resolution by A-modules, which are injective as $A^{\geq 0}$-modules. It also admits a right concave resolution by A-modules, which are $A^{\leq 0}$-injective.

ii) Any finite complex of A-modules is a quasiisomorphic subcomplex of a bounded below convex complex of $A^{\geq 0}$-injective A-modules. It is also a quasiisomorphic subcomplex of a bounded below concave complex of $A^{\leq 0}$-injective A-modules.

Proof. To deduce (ii) from (i) imbed given finite complex $C^\bullet \in \text{Com}(A - \text{mod})$ into a complex of A-injective modules $I^\bullet \in \text{Com}^{\geq 0}(A - \text{mod})$ (notice that condition (2) above implies that an A-injective module is also $A^{\geq 0}$ and $A^{\leq 0}$ injective), and apply (i) to the module of cocycles $Z^n = I^n/d(I^{n-1})$ for large n.

To check (i) it suffices to find for any $M \in A - \text{mod}$ an imbedding $M \hookrightarrow I$, where I is $A^{\leq 0}$ injective, and if n is such that all graded components M_i for $i < n$ vanish, then $M_n \overset{\sim}{\longrightarrow} I_n$. (This would prove the second part of the statement; the first one is obtained from the first one by renotation.) It suffices to take $I = \text{CoInd}_{A^{\leq 0}}^A(\text{Res}_{A^{\leq 0}}^A(M))$. It is indeed $A^{\leq 0}$-injective, because of the equality
\[(6) \quad \text{Res}_{A^{\leq 0}}^A(\text{CoInd}_{A^{\geq 0}}^A(M)) = \text{CoInd}_{A^{\geq 0}}^A(M),\]
which is a consequence of assumption (2) above. □

We set $D = D^b(A - \text{mod})$.

Definition 1. (cf. [FS], §2.4) The assumptions (1–3) are enforced. Let $X, Y \in D$. Let J^X be a convex bounded below complex of $A^{\geq 0}$-injective (= projective) modules quasiisomorphic to X, and J^Y be a concave bounded below complex of $A^{\leq 0}$-injective modules quasiisomorphic to Y. Then one defines
\[(7) \quad \text{Ext}^{\infty/2+i}(X, Y) = H^i(\text{Hom}^\bullet(J^X \downarrow J^Y \uparrow)).\]

Remark 1. Independence of the right-hand side of (7) on the choice of resolutions J^X, J^Y follows from the argument below. Since particular complexes used in [Ar1] to define $\text{Ext}^{\infty/2+i}$ satisfy our assumptions, we see that this definition agrees with the one in loc. cit.

Remark 2. Notice that Hom in the right-hand side of (7) is Hom in the category of graded modules. As usual, it is often convenient to denote by $\text{Ext}^{\infty/2+i}(X, Y)$ the graded space which in present notations is written down as $\bigoplus_n \text{Ext}^{\infty/2+i}(X, Y(n))$, where (n) refers to shift of grading by $-n$.

Remark 3. The next standard Lemma shows that conditions on the resolutions J^X, J^Y used in the (7) can be formulated in terms of the subalgebra $A^{\geq 0}$ alone (or, alternatively, in terms of $A^{\leq 0}$ alone); this conforms with the fact that the left-hand side of (11) in Theorem 1 below depends only on $A^{\geq 0}$. However, existence of a "complemental" subalgebra $A^{\leq 0}$ is used in the construction of a resolution $J^X \downarrow$ with required properties.

Lemma 2. An A-module is $A^{\leq 0}$-injective iff it is has a filtration with subquotients of the form $\text{CoInd}_{A^{\geq 0}}^A(M), M \in A^{\geq 0} - \text{mod}$.

Proof. The "if" direction follows from semisimplicity of A^0, and equality (6) above. To show the "only if" part let M be an $A^{\leq 0}$-injective A-module. Let M^- be its graded component of minimal degree; then the canonical morphism
\[(8) \quad M \rightarrow \text{CoInd}_{A^{\leq 0}}^A(M^-)\]
is surjective. If M is actually an A-module, then the projection $M \rightarrow M^-$ is a surjection of $A^{\geq 0}$-modules, hence yields a morphism
\[(9) \quad M \rightarrow \text{CoInd}_{A^{\geq 0}}^A(M^-).\]

(6) shows that $\text{Res}_{A^{\leq 0}}^A$ sends (8) into (9); in particular (8) is surjective. Thus the top quotient of the required filtration is constructed, and the proof is finished by induction. □
Remark 4. In two special cases \(\mathrm{Ext}^{\infty/2+i}(X,Y) \) coincides with a traditional derived functor. First, suppose that \(\operatorname{Res}^{A}_{A^{\leq 0}}(X) \) has finite injective (equivalently, projective) dimension; then one can use a finite complex \(J^X_\infty \) in \(\overline{\mathbb{C}} \) above. It follows immediately, that in this case we have

\[
\mathrm{Ext}^{\infty/2+i}(X,Y) \cong \mathrm{Hom}(X,Y[i]).
\]

On the other hand, suppose that \(\operatorname{Res}^{A}_{A^{\leq 0}}(Y) \) has finite injective dimension, so that the complex \(J^Y_i \) in \(\overline{\mathbb{C}} \) can be chosen to be finite. To describe semi-infinite \(\mathrm{Ext} \)'s in this case we need another notation. Let \(A^* \) denote the co-regular \(A \)-bimodule; for \(M \in A - \text{mod} \) let \(M* = \mathrm{Hom}_{A}(M,A^*) \) denote the corresponding right \(A \)-module, and we use the same notation for the corresponding functor on the derived categories. Let also \(S : D^b(A - \text{mod}) \rightarrow D^+(A - \text{mod}) \) be given by \(S(Y) = R\mathrm{Hom}_{A}(A^*,Y) \). Notice that \(A^* \) is \(A^{\geq 0} \)-projective by self-injectivity of \(A^{\leq 0} \); thus Lemma \(2 \) shows that \(\mathrm{Ext}^i_A(A^*,N) = 0 \) for \(i > 0 \) if \(N \) is \(A^{\leq 0} \)-injective. In particular, \(S(Y) \in D^b(A - \text{mod}) \) if \(Y|_{A^{\leq 0}} \) has finite injective dimension. We claim that in this case we have

\[
\mathrm{Ext}^{\infty/2+i}(X,Y) \cong X \otimes_A S(Y).
\]

This isomorphism an immediate consequence of the next Lemma. We also remark that if \(A \) is a Frobenius algebra, then \(S \cong \text{Id} \).

Lemma 3. Let \(M, N \in A - \text{mod} \) be such that \(M \) is \(A^{\geq 0} \)-projective, while \(N \) is \(A^{\leq 0} \)-injective. Then we have

a) \(\mathrm{Ext}^i_A(M,N) = 0; \) \(\mathrm{Ext}^i_A(A^*,N) = (R^iS)(N) = 0, \mathrm{Tor}^A_i(M^*,S(N)) = 0 \) for \(i \neq 0 \).

b) The natural map

\[
(10) \quad M^* \otimes_A S(N) = \mathrm{Hom}_{A}(M,A^*) \otimes_A \mathrm{Hom}_{A}(A^*,N) \rightarrow \mathrm{Hom}_{A}(M,N)
\]

is an isomorphism.

Proof. The first equality in (a) follows from Lemma \(2 \) and the second one was checked above. Self-injectivity of \(A^{\geq 0} \) shows that \(M^* \) is \(A^{\geq 0} \)-projective, and a variant of Lemma \(2 \) ensures that it is filtered by modules induced from \(A^{\leq 0} \). Thus it suffices to show that \(S(N) \) is \(A^{\leq 0} \)-projective. This follows from isomorphisms

\[
\mathrm{Hom}_{A}(A^*,\text{CoInd}_{A^{\geq 0}}(N_0)) = \mathrm{Hom}_{A^{\geq 0}}(A^*,N_0) \cong \mathrm{Hom}_{A^{\geq 0}}((A^{\geq 0})^*,N_0) \otimes_{A^{0}} A^{\leq 0}.
\]

Let us now deduce (b) from (a). Notice that (a) implies that both sides of (10) are exact in \(N \) (and also in \(M \)), i.e. send exact sequences \(0 \rightarrow N' \rightarrow N \rightarrow N'' \rightarrow 0 \) with \(N', N'' \) being \(A^{\leq 0} \)-injective into exact sequences. Also (10) is evidently an isomorphism for \(N = A^* \). For any \(A^{\leq 0} \)-injective \(N \) there exists an exact sequence

\[
0 \rightarrow N \rightarrow (A^*)^n \xrightarrow{\phi} (A^*)^m
\]

with image and cokernel of \(\phi \) being \(A^{\leq 0} \)-injective. Thus both sides of (10) turn it into an exact sequence, which shows that (10) is an isomorphism for any \(A^{\leq 0} \)-injective \(N \). \(\square \)
4. Main result

Theorem 1. Let $D_{\infty/2} \subset D$ be the full trinagulated subcategory of D generated by $A^{\geq 0}$-injective (=projective) modules. For $X, Y \in D^b(A - \text{mod})$ we have a natural isomorphism
\[Hom_{D_{\infty/2}}(X, Y[i]) \cong \text{Ext}^{\infty/2+i}(X, Y). \]

The proof of Theorem 1 is based on the following

Lemma 4. i) Every graded $A^{\geq 0}$-injective A-module admits a concave right resolution consisting of A-injective modules.

ii) A finite complex of graded $A^{\geq 0}$-injective A-modules is quasismorphic to a concave bounded below complex of A-injective modules.

Proof. (ii) follows from (i) as in the proof of Lemma 1. (Recall that, according to Hilbert, if a bounded below complex of injectives represents an object $X \in D^b$ which has finite injective dimension, then for large n the module of cocycles is injective.)

To prove (i) it is enough for any $A^{\geq 0}$-injective module M to find an imbedding $M \hookrightarrow I$, where I is A-injective, and $M_n \hookrightarrow I_n$ provided $M_i = 0$ for $i < n$. (Notice that cokernel of such an imbedding is $A^{\geq 0}$-injective, because I is $A^{\geq 0}$-injective by condition (2).) We can take I to be $\text{CoInd}_{A^{\geq 0}}^A(\text{Res}_{A^{\geq 0}}^A(M))$. Then I is indeed injective, because M is $A^{\geq 0}$-injective by semi-simplicity of A^0, and condition on weights is clearly satisfied.

Proposition 1. a) Let J_{\prec} be a convex bounded below complex of A-modules. Let J_{\prec}^n be the n-th stupid truncation of J_{\prec} (thus J_{\prec}^n is a quotient complex of J_{\prec}).

Let Z be a finite complex of $A^{\geq 0}$-injective A-modules. Then we have
\[Hom_D(X, Z) \cong \varinjlim Hom_D(J_{\prec}^n, Z). \]

In fact, for n large enough we have
\[Hom_D(X, Z) \cong Hom_D(J_{\prec}^n, Z). \]

Proof. Let I_{\succ} be a concave bounded below complex of A-injective modules quasiisomorphic to Z (which exists by Lemma 2(ii)). Then the left-hand side of (12) equals $Hom_{\text{Hot}}(J_{\prec}, I_{\succ})$ where Hot stands for the homotopy category of complexes of A-modules. Conditions on weights of our complexes ensure that there are only finitely many degrees for which the corresponding graded components both in J_{\prec} and I_{\succ} are nonzero; thus any morphism between graded vector spaces J_{\prec}, I_{\succ} factors through the finite dimensional sum of corresponding graded components. In particular, $Hom^*(J_{\prec}^n, I_{\succ}) \cong Hom^*(J_{\prec}, I_{\succ})$ for large n, and hence
\[Hom_D(A - \text{mod})(J_{\prec}^n, I_{\succ}) = Hom_{\text{Hot}}(J_{\prec}^n, I_{\succ}) \cong Hom_{\text{Hot}}(J_{\prec}, I_{\succ}) \]
for large n.}

Proof of the Theorem. We keep notations of Definition 3. It follows from the Proposition that
\[Hom_{D_{\infty/2}}(X, Y[i]) = \varinjlim_n Hom_D((J_{\prec}^X)^n, Y[i]). \]
The right-hand side of (11) (defined in (3)) equals $H^i(Hom^*(J_{\prec}^X, J_{\succ}^Y))$. Conditions on weights of J_{\prec}^X, J_{\succ}^Y show that for large n we have
\[Hom^*((J_{\prec}^X)^n, J_{\succ}^Y) \cong Hom^*(J_{\prec}^X, J_{\succ}^Y). \]
Lemma 2 implies that \(\text{Ext}^i_A(M_1, M_2) = 0 \) for \(i > 0 \) if \(M_1 \) is \(A^{\geq 0} \)-projective, and \(M_2 \) is \(A^{\leq 0} \)-injective. Thus

\[
\text{Hom}_D((J_X[n])/Y[i]) = H^i(\text{Hom}^\bullet(J_X[n], J_Y)).
\]

The Theorem is proved. \(\Box \)

Remark 5. This remark concerns with the example provided by a small quantum group. So let \(g \) be a simple Lie algebra over \(\mathbb{C} \), \(q \in \mathbb{C} \) be a root of unity of order \(l \), and let \(A = u_q = u_q(\mathfrak{g}) \) be the corresponding small quantum group \([4]\). Let \(A^{\geq 0} = b_q \subset u_q \) and \(A^{\leq 0} = b_q^- \subset u_q \) be respectively the upper and the lower triangular subalgebras. Then the above conditions (1-3) are satisfied.

Let \(I \) denote the trivial \(u_q \)-module. The cohomology \(\text{Ext}^\bullet(I, I) \), and the semi-infinite cohomology \(\text{Ext}^{\infty/2+\bullet}(I, I) \) were computed respectively in \([3K]\) and \([Ar1]\). Let us recall the results of these computations.

Assume for simplicity that \(l \) is prime to twice the maximal multiplicity of an edge in the Dynkin diagram of \(\mathfrak{g} \). Let \(N \subset \mathfrak{g} \) be the cone of nilpotent elements, and \(n \subset N \) be a maximal nilpotent subalgebra. Then the Theorem of Ginzburg and Kumar asserts that

\[
\text{Ext}^\bullet(I, I) \cong \mathcal{O}(N),
\]

the algebra of regular functions on \(N \). Also, a Theorem of Arkhipov (conjectured by Feigin) asserts that

\[
\text{Ext}^{\infty/2+\bullet}(I, I) \cong H^d_{\mathfrak{n}}(N, \mathcal{O}),
\]

where \(d \) is the dimension of \(n \), and \(H^d_{\mathfrak{n}}(N, \mathcal{O}) \) denotes the cohomology with support on \(\mathfrak{n} \); one also has \(H^i_{\mathfrak{n}}(N, \mathcal{O}) = 0 \) for \(i \neq d \) (here the choice of \(\mathfrak{n} \) is assumed to be compatible with the choice of an upper triangular subalgebra \(b_q \subset u_q \) via isomorphism \([3]\) in a natural sense).

The aim of this remark is to point out a formal similarity between \([4]\) and equality \([3]\) in Example \([1]\) above. Namely, the Ginzburg-Kumar isomorphism \([3]\) yields a functor \(F : D^b(u_q - \text{mod}) \to \text{Coh}(N), F(X) = \text{Ext}^\bullet(I, X) \), such that \(F(I) = \mathcal{O}_X \) is the structure sheaf. It is easy to see that if \(X \in D^b(u_q - \text{mod}) \) has finite projective (equivalently, injective) homological dimension over \(b_q \), then the support of \(F(X) \) lies in \(\mathfrak{n} \) (here by support we mean set-theoretic rather than scheme-theoretic support, so the coherent \(\mathcal{O}_X \) may be annihilated by some power of the ideal of \(\mathfrak{n} \)). Thus if we assume for a moment that the functor \(F \) can be lifted to a triangulated functor \(\tilde{F} : D^b(u_q - \text{mod}) \to D^b(\text{Coh}(N)), \) then \([4]\) and Theorem \([2]\) would yield a morphism from the left-hand side to the right-hand side of \([1]\). Here we say that \(\tilde{F} \) is a lifting of \(F \) if \(F \cong \text{R} \Gamma \circ \tilde{F} \), where \(\text{R} \Gamma \mathcal{F} = \bigoplus_i H^i(\mathcal{F}) \) for \(\mathcal{F} \in D^b(\text{Coh}(N)) \).

It is easy to see that such a functor \(\tilde{F} \) does not exist. A meaningful version of the argument is as follows. Let \(\mathcal{O} \) be the differential graded algebra \(R\text{Hom}_{u_q}(I, I) \) (thus \(\mathcal{O} \) is a well-defined object of the category of differential graded algebras with inverted quasiisomorphisms); the Ginzburg-Kumar theorem \([3]\) shows that the cohomology algebra \(H^\bullet(\mathcal{O}) \cong \mathcal{O}(N) \). Let \(\text{DGmod}(\mathcal{O}) \) be the triangulated category of differential graded modules over \(\mathcal{O} \) with inverted quasiisomorphisms. Let \(D \subset \text{DGmod}(\mathcal{O}) \) be the full subcategory of DG-modules whose cohomology is a finitely generated module over \(H^\bullet(\mathcal{O}) = \mathcal{O}(N) \), and let \(D_{\infty/2} \subset D \) be the full triangulated
subcategory of DG-modules, whose cohomology is a coherent sheaf on \mathcal{N} supported (set-theoretically) on \mathfrak{n}.

We have a functor $\tilde{F} : D^b(u_q - \text{mod}) \to D$ given by $\tilde{F} : X \mapsto R\text{Hom}(\mathbb{I}, X)$. It is easy to see that \tilde{F} sends complexes of finite homological dimension over \mathfrak{b}_q to $D_{\infty}/2$; and that $\tilde{F}(\mathbb{I}) = \mathcal{O}$. Thus, by Theorem 1, (3) provides a morphism

$$\text{Ext}^{\infty}_{\mathfrak{b}_q}(\mathbb{I}, \mathbb{I}) \to \text{Hom}_{D_{\infty}/2}^\bullet(\mathcal{O}, \mathcal{O}).$$

One can then show that this morphism is an isomorphism; and also that the DG-algebra \mathcal{O} is formal (quasi-isomorphic to the DG-algebra $H^\bullet(\mathcal{O})$ with trivial differential), which implies that

$$\text{Hom}_{D_{\infty}/2}^\bullet(\mathcal{O}, \mathcal{O}) \cong H^\bullet(\mathcal{N}, \mathcal{O})$$

(notice that the latter isomorphism is not compatible with homological gradings). This yields the isomorphism (14).

References

[Ar1] Arkhipov, S., Semiinfinite cohomology of quantum groups, Comm. Math. Phys. 188 (1997), no. 2, 379–405.

[Ar2] Arkhipov, S., Semi-infinite cohomology of associative algebras and bar duality, Internat. Math. Res. Notices 17 (1997), 833–863.

[Ar3] Arkhipov, S., Semi-infinite cohomology of quantum groups. II, in: Topics in quantum groups and finite-type invariants, 3–42, Amer. Math. Soc. Transl. Ser. 2, 185, Amer. Math. Soc., Providence, RI, 1998.

[FS] Bezrukavnikov, R., Finkelberg, M., Schechtman, V., Factorizable sheaves and quantum groups, Lecture Notes Math. 1691, Springer Verlag, 1998.

[GK] Ginzburg, V., Kumar, S., Cohomology of quantum groups at roots of unity, Duke Math. J. 69 (1993), no. 1, 179–198.

[H] Hartshorne, R., Residues and Duality, Lecture Notes Math. 20, Springer Verlag, 1966.

[L] Lusztig, G., Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra, J. Amer. Math. Soc. 3 (1990), no. 1, 257–296.

[ML] Mac Lane, S., Categories for the working mathematician, second edition, Springer Verlag, New York, 1998.