SPIN-STRUCTURES ON REAL BOTT MANIFOLDS WITH KÄHLER STRUCTURE

ANNA GĄSIOR AND RAFAL LUTOWSKI

Abstract. Let M be a real Bott manifold with Kähler structure. Using Ishida characterization [6] we give necessary and sufficient condition for the existence of the spin-structure on M. In proof we use the technic developed in [10] and characteristic classes.

1. Introduction

Let Γ be a fundamental group of a real Bott manifold M. From [7] we know that Γ defines a short exact sequence

\begin{equation}
0 \to \mathbb{Z}^n \to \Gamma \to \mathbb{C}_2^k \to 1,
\end{equation}

where \mathbb{C}_2 is the cyclic group of order 2. Conjugation in Γ defines the integral holonomy representation $\theta: \mathbb{C}_2^k \to \text{GL}(n, \mathbb{Z})$ of Γ, i.e.

$$\theta_\gamma(z) = \gamma^{-1}(\gamma z \gamma^{-1}),$$

where $\gamma \in \mathbb{C}_2^k$, $\gamma \in \Gamma$ is such that $\pi(\gamma) = g$ and $z \in \mathbb{Z}^n$. Moreover, the image of θ is a group of diagonal matrices, i.e. Γ is a diagonal Bieberbach group and M a diagonal flat manifold.

Up to diffeomorphism, M is determined by a certain square matrix A with coefficients in \mathbb{F}_2. We call A a Bott matrix and we denote the manifold M by $M(A)$. In [6, Theorem 3.1] Ishida gives the necessary and sufficient condition for existence of the Kähler structure on $M(A)$: $A \in \mathbb{F}_2^{2n \times 2n}$ and one can split columns of A into n pairs of equal ones.

Let M be a real Bott and Kähler manifold, an RBK-manifold for short. In this note we examine the existence of spin structures on M. We would like to mention that the general condition for existence of spin structures on diagonal flat manifolds is considered in [4, 5]. However, in the specific case of RBK-manifolds, this condition can be formulated in much simpler – purely combinatorial – form. Namely, if \tilde{A} is obtained from A by a removal of one column from each pair of equal ones and S_i is the sum of elements from the i-th row of \tilde{A}, then:

Main Theorem. RBK-manifold $M(A)$ admits a spin structure if and only if

$$\forall_{1 \leq i \leq 2n} S_i = 1 \implies A^{(i)} = 0,$$

where $A^{(i)}$ denotes the i-th column of the matrix A.

We prove the above theorem in Section 3. We take advantage of the description of spin diagonal flat manifolds presented in [9]. For the convenience of readers it is recalled in Section 2.

2010 Mathematics Subject Classification. Primary 53C27; Secondary 53C29, 53B35, 20H15.

Key words and phrases. real Bott manifolds, Spin structure, Kähler structure

Author is supported by the Polish National Science Center grant DEC-2013/09/B/ST1/04125.
2. New definition of real Bott manifold

In this section we recall methods introduced in [10] and developed in [9]. Let S^1 be a unit circle in \mathbb{C} and we consider automorphisms $g_i : S^1 \to S^1$ given by
\begin{equation}
(2) \quad g_0(z) = z, \quad g_1(z) = -z, \quad g_2(z) = \bar{z}, \quad g_3(z) = -\bar{z},
\end{equation}
for all $z \in S^1$. If we identify S^1 with \mathbb{R}/\mathbb{Z}, then for each $[t] \in \mathbb{R}/\mathbb{Z}$ we get
\begin{equation}
(3) \quad g_0([t]) = [t], \quad g_1([t]) = \left[t + \frac{1}{2} \right], \quad g_2([t]) = [-t], \quad g_3([t]) = \left[-t + \frac{1}{2} \right].
\end{equation}
Let $D = \langle g_i : i = 0, 1, 2, 3 \rangle$. Then $D \cong C_2 \times C_2$ and $g_3 = g_1 g_2$. We define an action D^n on T^n by
\begin{equation}
(4) \quad (t_1, \ldots, t_n)(z_1, \ldots, z_n) = (t_1 z_1, \ldots, t_n z_n)
\end{equation}
for $(t_1, \ldots, t_n) \in D^n$ and $(z_1, \ldots, z_n) \in T^n = S^1 \times \cdots \times S^1$.

By taking any d generators of the group $C_d^d \subseteq D^n$, we define a $(d \times n)$-matrix with entries in D. This in turn defines a matrix with entries in the set $P = \{0, 1, 2, 3\}$, under the identification $i \leftrightarrow g_i$ for $i = 0, 1, 2, 3$. We call it a P-matrix of C_d^d. Note that under the above identification, P has the natural structure of vector space over \mathbb{F}_2.

Although a group $C_d^d \subseteq D^n$ can have many P-matrices in general, every such a matrix E encodes some important properties of its action the torus T^n. Namely, C_d^d acts freely on T^n if and only if there is 1 in the sum of any distinct collection of rows of E. In this case C_d^d is the holonomy group of the flat manifold T^n/C_d^d if and only if there is either 2 or 3 in each row of E (see [9] Lemma 2.4]).

Let us consider the linear forms $\alpha, \beta : P \to \mathbb{F}_2$ given by the following table
\[
\begin{array}{c|cccc}
\alpha & 0 & 1 & 2 & 3 \\
\hline
\beta & 0 & 1 & 1 & 0 \\
\end{array}
\]
Let $C_d^d \subseteq D^n$ and $j \in \{1, 2, \ldots, n\}$. We define epimorphisms
\begin{equation}
(5) \quad \alpha_j : C_d^d \subseteq D^n \xrightarrow{pr'_j} P \xrightarrow{\alpha} \mathbb{F}_2, \quad \beta_j : C_d^d \subseteq D^n \xrightarrow{pr'_j} P \xrightarrow{\beta} \mathbb{F}_2,
\end{equation}
where
\[pr'_j(g_1, \ldots, g_n) = i_n\]
for $g_1, g_2, \ldots, g_n \in D$. Since $H^1(C^d_2, \mathbb{F}_2) = \text{Hom}(C^d_2, \mathbb{F}_2)$, we can view α_j and β_j as 1-cocycles and define
\begin{equation}
(6) \quad \theta_j = \alpha_j \cup \beta_j \in H^2(C^d_2, \mathbb{F}_2),
\end{equation}
where \cup denotes the cup product. It is well known that $H^*(C^d_2, \mathbb{F}_2) \cong \mathbb{F}_2[x_1, \ldots, x_d]$ where $\{x_1, \ldots, x_d\}$ is a basis of $H^1(C^d_2, \mathbb{F}_2)$. Hence, elements α_j and β_j correspond to
\begin{equation}
(7) \quad \alpha_j = \sum_{i=1}^{d} \alpha(pr_j(b_i)) x_i, \quad \beta_j = \sum_{i=1}^{d} \beta(pr_j(b_i)) x_i \in C^d_2[x_1, \ldots, x_d],
\end{equation}
where b_1, \ldots, b_d are generators of C^d_2 (see [1] Proposition 1.3]). Moreover, if $[p_{ij}]$ is a P-matrix of C_d^d, which corresponds to those generators, we can write equations (5) and (7) as follows
\begin{equation}
(8) \quad \alpha_j = \sum_{i=1}^{d} \alpha(p_{ij}) x_i, \quad \beta_j = \sum_{i=1}^{d} \beta(p_{ij}) x_i, \quad \theta_j = \alpha_j \beta_j.
\end{equation}
There is an exact sequence

\[0 \to H^1(C^d_2, \mathbb{F}_2) \xrightarrow{\pi} H^1(\Gamma, \mathbb{F}_2) \xrightarrow{\iota} H^1(\mathbb{Z}^n, \mathbb{F}_2) \xrightarrow{d_2} H^2(C^d_2, \mathbb{F}_2) \xrightarrow{\pi^*} H^2(\Gamma, \mathbb{F}_2) \]

where \(d_2 \) is the transgression and \(\pi^* \) is induced by the quotient map \(\pi : \Gamma \to C^d_2 \), see [2].

Proposition 2.1 ([3 Proposition 3.2]). Suppose that free and diagonal action of \(C^d_2 \) on \(T^n \) corresponds to a \(P \)-matrix \(E \), which defines elements \(\alpha_j, \beta_j \) and \(\theta_j \) as in [3], for \(1 \leq j \leq n \). Let \(M = T^n/C^d_2 \) and \(\Gamma = \pi_1(M) \) be associated to the group extension ([1]). Then

1. \(\forall 1 \leq i \leq n \), \(\theta_i = d_2(\varepsilon_i) \), where \(\{\varepsilon_1, \ldots, \varepsilon_n\} \) is the basis of \(H^1(\mathbb{Z}^n, \mathbb{F}_2) \) dual to the standard basis of \(\mathbb{Z}^n \otimes \mathbb{F}_2 \).
2. The total Stiefel-Whitney class of \(M \) is given by

\[w(M) = \pi^*(w) \in H^*(\Gamma, \mathbb{F}_2) = H^*(M, \mathbb{F}_2), \]

where

\[w = \prod_{j=1}^{n} (1 + \alpha_j + \beta_j) \in \mathbb{F}_2[x_1, \ldots, x_d]. \]

We call the ideal

\[I_E = (\text{Im}(d_2)) = \langle \theta_1, \ldots, \theta_n \rangle \subseteq \mathbb{F}_2[x_1, x_2, \ldots, x_n] \]

the characteristic ideal of \(E \) and the quotient \(C_E = \mathbb{F}_2[x_1, \ldots, x_d]/I_E \) – the characteristic algebra of \(E \).

Corollary 2.1 ([3 Corollary 3.3]). Suppose that free and diagonal action of \(C^d_2 \) on \(T^n \) corresponds to a \(P \)-matrix \(E \). There is a canonical homomorphism of graded algebras \(\Phi : C_E \to H^*(T^n/C^d_2, \mathbb{F}_2) \) such that \(\Phi([w]) = w(T^n/C^d_2) \). Moreover, \(\Phi \) is a monomorphism in degree less than or equal to two.

Definition 2.1. Given a \(P \)-matrix \(E \in P^{d \times n} \), we define the Stiefel-Whitney class of \(E \), to be the class \([w] \in C_E \) defined by ([3]).

Corollary 2.2. Using notation of Corollary 2.1, let \(w_2 \) be the sum of degree 2 summands of \(w_2 \). Then, by [3 Proposition on page 40], \(T^n/C^d_2 \) admits a spin structure if and only if \(w_2 \in I_E \).

Now, we describe a real Bott manifold \(M(A) \). Let \(A = [a_{ij}] \) be an strictly upper triangular matrix with entries 0 or 1 and let \(s_i, i = 1, \ldots, n \) be Euclidean motions on \(\mathbb{R}^n \) defined by

\[s_i = \left(\text{diag}[1, \ldots, 1, (-1)^{a_{i,i+1}}, \ldots, (-1)^{a_{i,n}}], \left(0, \ldots, 0, \frac{1}{2}, 0, \ldots, 0 \right)^T \right) \]

where \((-1)^{a_{i,i+1}} \) is at the \((i+1)\)-th position and \(\frac{1}{2} \) is the \(i \)-th coordinate of the column, for \(i = 1, 2, \ldots, n-1 \) and \(s_n = (I, (0, 0, \ldots, 0, \frac{1}{2})) \). The group \(\Gamma(A) \) generated by \(s_1, \ldots, s_n \) is a crystallographic group. The subgroup generated by \(s_1^2, s_2^2, \ldots, s_n^2 \) consists of all translations of \(\mathbb{Z}^n \). The action of \(\Gamma(A) \) on \(\mathbb{R}^n \) is free and the orbit space \(\mathbb{R}^n/\Gamma(A) \) is compact.
3. Main results

We keep the notation of the previous section. Using the same methods as in \[10\] and \[8\], for each strictly upper triangular matrix \(A = [a_{ij}] \) which generates the fundamental group of real Bott manifold \(M(A) \) we get that the corresponding \(P \)-matrix \(P_A = [p_{ij}] \) is of the form

\[
P_A = \begin{bmatrix}
1 & 2a_{12} & \ldots & 2a_{1,n-1} & 2a_{1n} \\
0 & 1 & \ldots & 2a_{2,n-1} & 2a_{2n} \\
& \ddots && \\
0 & 0 & \ldots & 1 & 2a_{n-1,n} \\
0 & 0 & \ldots & 0 & 1
\end{bmatrix}.
\]

(11)

Note that in the above notation \(2a_{ij} \) is multiplication in integers. To be more specific, we have

\[
p_{ij} = \begin{cases}
1 & \text{if } i = j, \\
0 & \text{if } i \neq j \text{ and } a_{ij} = 0, \\
2 & \text{if } i \neq j \text{ and } a_{ij} = 1,
\end{cases}
\]

for \(1 \leq i, j \leq n \). Using the form (11) of \(P_A \) and definition of forms \(\alpha \) and \(\beta \) we get that

\[
\alpha_j = \sum_{i=1}^{j} \alpha(p_{ij})x_i = \sum_{i=1}^{j-1} \alpha(p_{ij})x_i + \alpha(p_{jj})x_j = \sum_{i=1}^{j-1} a_{ij}x_i + x_j,
\]

\[
\beta_j = \sum_{i=1}^{j} \beta(p_{ij})x_i = \beta(p_{jj})x_j = x_j
\]

and hence

\[
\alpha_j + \beta_j = \sum_{i=1}^{j-1} a_{ij}x_i,
\]

(12)

\[
\theta_j = \sum_{i=1}^{j-1} a_{ij}x_ix_j + x_j^2 = \sum_{i \neq j} a_{ij}x_ix_j + x_j^2
\]

(13)

for all \(1 \leq j \leq n \). Note that in the last formula we take advantage of the definition of a Bott matrix.

We go back to the matrix \(A \) of the real Bott manifold \(M(A) \). From \[6\] we have the following necessary and sufficient condition for the existence of a Kähler structure on \(M(A) \):

Theorem 3.1 (\[6\] Theorem 3.1). Let \(A \) be \(2n \)-dimensional matrix of real Bott manifold \(M(A) \). Then the following conditions are equivalent:

1. there exist \(n \) subsets \(\{j_1,j_{n+1}\} \ldots \{j_n,j_{2n}\} \) of the set \(\{1,2,\ldots,2n\} \) such that

 (a) \(\bigcup_{k=1}^{n} \{j_k,j_{k+n}\} = \{1,2,\ldots,2n\} \),

 (b) \(A^{(ij)} = A^{(j_{k}i)} \) for all \(1 \leq i < j_k \), where \(A^{(k)} \) is the \(k \)-th column of the matrix \(A \).

2. there exist a Kähler structure on \(M(A) \).

Let \(A \) be a Bott matrix of an RBK-manifold. Using the notation from Theorem 3.1 let \(\tilde{A} = [A^{(i_1)}A^{(j_2)} \ldots A^{(j_n)}] \) be a matrix obtained from \(A \) by removing duplicated columns. Then \(\tilde{A} \in \mathbb{F}_2^{2n \times 2n} \). Let

\[
S_i = \sum_{k=1}^{n} a_{ij_k} \in \mathbb{F}_2
\]
denote the sum of elements in the \(i\)-th row of the matrix \(\tilde{A}\), for \(1 \leq i \leq 2n\). Let us recall our main theorem.

Main Theorem. Let \(A\) be a matrix of of \(2n\)-dimensional RBK manifold \(M(A)\). Then \(M(A)\) admits a spin structure if and only if

\[
\forall 1 \leq i \leq 2n \ S_i = 1 \implies A^{(i)} = 0.
\]

Proof. \(M(A)\) is \(2n\)-dimensional RBK manifold, so from (12) we get

\[
\alpha_{jk+n} + \beta_{jk+n} = \alpha_{jk} + \beta_{jk} = \sum_{i=1}^{j_k-1} a_{ijk} x_i,
\]

and

\[
w(M(A)) = \prod_{k=1}^{2n} \left(1 + \alpha_{jk} + \beta_{jk}\right) = \prod_{k=1}^{n} \left(1 + \alpha_{jk} + \beta_{jk}\right)^2
\]

\[
= \prod_{k=1}^{n} \left(1 + \sum_{i=1}^{j_k-1} a_{ijk} x_i\right) = \prod_{k=1}^{n} \left(1 + \sum_{i=1}^{j_k-1} a_{ijk} x_i^2\right).
\]

From the above considerations and from the definition of a Bott matrix we have

\[
w_2 = w_2(M(A)) = \sum_{k=1}^{n} \sum_{i=1}^{2n} a_{ijk} x_i^2 = \sum_{k=1}^{n} \sum_{i=1}^{2n} a_{ijk} x_i^2
\]

\[
= \sum_{i=1}^{2n} \sum_{k=1}^{n} a_{ijk} x_i^2 = \sum_{i=1}^{2n} S_i x_i^2.
\]

Let \(J = \{j : S_j = 1\} \subset \{1, \ldots, 2n\}\). Then

(14)

\[
w_2 = \sum_{j \in J} x_j^2.
\]

By Corollary 2.2, the existence of a spin structure on \(M(A)\) is equivalent to \(w_2 \in \text{IP}_A\), which – by (13) – occurs if and only if

(15)

\[
\sum_{j \in J} x_j^2 = \sum_{j \in J} \theta_j.
\]

The above holds if \(A^{(j)} = 0\), since then, using formula (13) again, we get \(\theta_j = x_j^2\), for \(j \in J\).

Now, let

\[
K = \{(i, j) : a_{ij} = 1, j \in J, 1 \leq i \leq 2n\}.
\]

Then

(16)

\[
\sum_{j \in J} \theta_j = \sum_{j \in J} \left(\sum_{i \neq j} a_{ijk} x_i x_j + x_j^2\right) = \sum_{j \in J} x_j^2 + \sum_{(i, j) \in K} x_i x_j.
\]

From (14), (15) and (16) we have

\[
\sum_{j \in J} x_j^2 = \sum_{j \in J} x_j^2 + \sum_{(i, j) \in K} x_i x_j,
\]

hence \(K = \emptyset\), which means that the \(j\)-th column of the Bott matrix \(A\) has only zero entries.

\[\square\]
Example 3.1. Let

\[A = \begin{bmatrix}
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} \]

be a matrix of a manifold \(M(A) \). Then

\[\bar{A} = \begin{bmatrix}
0 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{bmatrix}, \]

\[S_1 = S_2 = S_5 = S_6 = 0, \quad S_3 = S_4 = 1 \]

and there are entries equal to 1 in columns \(A^{(3)} \) and \(A^{(4)} \), so \(M(A) \) has no spin-structure.

At the end let us note an easy corollary of our main theorem.

Corollary 3.1. Let \(A \in \mathbb{F}_2^{2n \times 2n} \) be a Bott matrix such that \(M(A) \) is a RBK-manifold. Let \(T = \{ j : A^{(j)} \neq 0 \} \). If

\[T = T_1 \sqcup \ldots \sqcup T_l \]

such that for every \(1 \leq k \leq l \) \(T_k \) is a four-elements set and

\[\forall i, j \in T_k A^{(i)} = A^{(j)}, \]

then \(M(A) \) admits a spin structure.

References

[1] S. Console, R. J. Miatello, and J. P. Rossetti. \(\mathbb{Z}_2 \)-cohomology and spectral properties of flat manifolds of diagonal type. J. Geom. Phys., 60(5):760–781, 2010.
[2] Leonard Evens. The cohomology of groups. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications.
[3] T. Friedrich. Dirac operators in Riemannian geometry, volume 25 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2000. Translated from the 1997 German original by Andreas Nestke.
[4] A. Gąsior and A. Szczepański. Flat manifolds with holonomy group \(\mathbb{Z}_2^k \) of diagonal type. Osaka J. Math., 51(4):1015–1025, 2014.
[5] Anna Gąsior. Spin-structures on real Bott manifolds. J. Korean Math. Soc., 54(2):507–516, 2017.
[6] Hiroaki Ishida. Symplectic real Bott manifolds. Proc. Amer. Math. Soc., 139(8):3009–3014, 2011.
[7] Y. Kamishima and M. Masuda. Cohomological rigidity of real Bott manifolds. Algebr. Geom. Topol., 9(4):2479–2502, 2009.
[8] R. Lutowski, N. Petrosyan, J. Popko, and A. Szczepański. Spin structures of flat manifolds of diagonal type. preprint, 2015.
[9] Rafał Lutowski, Nansen Petrosyan, Jerzy Popko, and Andrzej Szczepański. Spin structures of flat manifolds of diagonal type. Homology Homotopy Appl., 21(2):333–344, 2019.
[10] J. Popko and A. Szczepański. Cohomological rigidity of oriented Hantzsche–Wendt manifolds. Adv. Math., 302:1044–1068, 2016.