Cool WISPs for stellar cooling excesses

Maurizio Giannotti, Igor Irastorza, Javier Redondo and Andreas Ringwald

Abstract. Several stellar systems (white dwarfs, red giants, horizontal branch stars and possibly the neutron star in the supernova remnant Cassiopeia A) show a mild preference for a non-standard cooling mechanism when compared with theoretical models. This exotic cooling could be provided by Weakly Interacting Slim Particles (WISPs), produced in the hot cores and abandoning the star unimpeded, contributing directly to the energy loss. Taken individually, these excesses do not show a strong statistical weight. However, if one mechanism could consistently explain several of them, the hint could be significant. We analyze the hints in terms of neutrino anomalous magnetic moments, minicharged particles, hidden photons and axion-like particles (ALPs). Among them, the ALP or a massless HP represent the best solution. Interestingly, the hinted ALP parameter space is accessible to the next generation proposed ALP searches, such as ALPS II and IAXO and the massless HP requires a multi TeV energy scale of new physics that might be accessible at the LHC.

Keywords: axions, stars

ArXiv ePrint: 1512.08108
1 Introduction

For over two decades, observations of different stellar systems have shown deviations from the expected behavior, indicating in all cases an over-efficient cooling [1, 2]. Deviations from the standard model expectations were found in very diverse stellar systems: white dwarfs (WDs) [3–10], old stars with inactive degenerate core; red giants (RGs) [11, 12], with a dense, degenerate core and a nondegenerate burning shell; horizontal branch (HB) stars [13], with a nondegenerate helium burning core; helium burning supergiants [14, 15], a few times more massive than our sun and with a hot and relatively low dense core; and finally, very dense and hot neutron stars (NS) [16–18]. Although each deviation, taken independently, has a small statistical significance, normally about 1σ, together they overwhelmingly seem to indicate a systematic tendency of stars to cool more efficiently than predicted, as evident from figure 1.

Is this a hint to new physics? More observational data, and new specifically designed experiments may help answering this question in the near future. With the data presently at hand we cannot exclude the possibility that all the anomalous observations are the result of inadequate understanding or poor statistics. However, we cannot discard the new physics option either. In particular, the observed additional cooling could be due to a novel weakly interactive slim particle (WISP) [19], responsible for efficiently carrying energy away from the stellar interior. This possibility is certainly appealing and should be examined in detail.

The purpose of this work is to investigate quantitatively the new physics solution and to select the candidate(s) which would better satisfy all the observations. Given the very different properties of the stars which show anomalous cooling, the novel production mechanisms should have a quite peculiar dependence on temperature and density. This allows to select only a few new physics candidates.
As we shall see, axions, or more generally axion-like particles (ALPs), are the best available candidates. The axion [20, 21] is a light pseudoscalar particle predicted by the most widely accepted solution of the strong CP problem [22, 23] and a prominent dark matter candidate [24–26]. At low energies, its most relevant interactions with photons and fermions are described by the Lagrangian terms

\[ \mathcal{L}_{\text{int}} = -\frac{1}{4} g_a \gamma \text{F}_{\mu\nu} \bar{\text{F}}^{\mu\nu} - \sum_{\text{fermions}} g_a a \bar{\psi}_i \gamma_5 \psi_i, \]  

(1.1)

where \( g_a = C_a^\alpha \alpha/(2\pi f_a) \) and \( g_a = C_a^\alpha m_i/f_a \), with \( C_a \) and \( C_i \) model dependent parameters and \( f_a \) a phenomenological scale known as the Peccei-Quinn symmetry breaking scale. Moreover, in the so called QCD axion models, mass and Peccei-Quinn scale are related as\(^1\)

\[ \left( \frac{m_a}{1 \text{ eV}} \right) = 6 \times 10^6 \text{ GeV}/f_a. \]

More general models of pseudoscalar particles, known as ALPs, which couple to photons and, possibly, to fermions but do not satisfy the above mass-coupling relation, emerge naturally in various extensions of the Standard Model though, in general, their existence is not related to the strong CP problem [30]. If light enough, these ALPs have been invoked to solve various astrophysical puzzles, including the quest of the transparency of the universe to very high energy (TeV) gamma rays (see section 7).

All this certainly accounts for the enthusiasm in the axion/ALP solution. However, presently, there is not a coherent analysis which excludes, just on the basis of the various observations, other possible candidates.

Neutrino electromagnetic form factors, if large enough, could, for example, account for some of the observed anomalies. In particular, a neutrino magnetic moment could explain the observed brightness of the RG tip in the M5 cluster [11]. However, as we will show, it would be inadequate to explain the observed deviations of the number distribution of WD per luminosity bin, the so called WD luminosity function (WDLF), from predictions, and would not be helpful in explaining the anomalous behavior of He-burning stars. Analogously, a neutrino minicharge would not help solving the anomalies observed in very dense stars, such as RGs and WDs.

Another prominent new physics candidate is the Hidden Photon (HP), a spin one field associated with a hidden U(1) gauge group. The most general effective Lagrangian of dimension 4 describing this field is [31, 32]

\[ \mathcal{L}^{(4)}_V = -\frac{1}{4} F^2_{\mu\nu} - \frac{1}{4} V^2_{\mu\nu} - \frac{\chi}{2} F_{\mu\nu} V^{\mu\nu} + \frac{m^2}{2} V_{\mu\nu} V^{\mu\nu}, \]  

(1.2)

where \( F \) and \( V \) represent, respectively, the standard photon and the HP fields, \( m \) is the HP mass and \( \chi \) is a dimensionless coupling constant.

Being massive spin one particles, HPs have two transverse and one longitudinal modes. Contrarily to what happens for ALPs, ordinary photons can oscillate into HPs without the need of an external magnetic or electric field. These oscillations can contribute to HP production in the stellar medium and, ultimately, to a more efficient stellar cooling.

This HP scenario has not been considered so far in the interpretations of the cooling anomalies, perhaps since only recently a more clear description of the HP production rate became available [33–37]. As we will show, for a particular combination of mass and coupling

\(^{1}\)This mass-coupling relation is not a mandatory requirement for the solution of the strong CP problem, though relaxing it may require non-minimal assumptions [27–29].
HP could actually explain some of the cooling anomalies. However, most of the allowed region in the parameter space hinted by the observations is excluded by other arguments.

What discussed above applies to the simplest case of massive HP model (1.2), in which the HP acquires its mass through the St"uckelberg mechanism. Another possibility is that an extra (hidden) complex scalar charged under the hidden U(1) (sometimes called Hidden Higgs, but here denoted as hidden scalar) exists and takes a vacuum expectation value. In this case, the hidden scalar behaves as a minicharged particle, due to the kinetic mixing [32], and can be produced in stars. If the hidden scalar is light, the phenomenology would be essentially equivalent to that of any other minicharged particle [38] and it could dominate the stellar losses [34]. If it is very massive, it decouples and one recovers the St"uckelberg limit.

If the new vector is massless, the term proportional to $\chi$, which describes a kinetic mixing between the standard and hidden photons, can be rotated away giving no observable consequences [32]. In this scenario, the most relevant interactions between the (massless) HP and the standard model fields emerge from dimension 6 operators [39]. In particular, we should expect an interaction term with ordinary electrons $e_{L,R}$ by virtue of an induced electron magnetic moment

$$\mathcal{L}_6^V \ni \frac{1}{\Lambda^2} i L \sigma^{\mu \nu} H e_R V_{\mu \nu} + h.c. \rightarrow \frac{v}{\Lambda^2} \bar{e}_L \sigma^{\mu \nu} e_R V_{\mu \nu} + h.c. \quad (1.3)$$

where $v = 246$ GeV is the Higgs vev [39]. Note that SU(2)$_L$ gauge invariance requires the presence of the Higgs vev and thus the dimension 5 operator at low energies emerges from dimension 6 and thus requires a suppression $\Lambda^2$ from the scale of new physics. At low energies where electrons are non-relativistic, the vector couples to the electron spin, just like an ALP interacting with fermions [40, 41], so we will cover both cases together.

In this paper we will analyze the available observational data in order to quantify the hints to new physics. We will proceed in the following way: in section 2 we review the status of the cooling anomalies. In section 3 we analyze the WDLF and derive some hints from general emission rates which are expressed as a power-law of the temperature, in a model independent way. In section 4, we begin a discuss of the most common new-physics candidates, starting with the neutrino magnetic moment. In section 5 we consider the case of minicharged particles and in section 6 the case of massive hidden photons. The axion/ALP and massless HP cases are studied in detail in section 7, where we also consider the global significance of the combined hints from WD and RG on the axion-electron coupling. Finally, in section 8 we give our discussion and conclusion.

2 Cooling anomalies

Deviation from the standard cooling theory have been observed for over 20 years in various stellar systems. The current observational status is summarized in figure 1, which shows the missing energy loss $\Delta L$, normalized over a reference luminosity, $L_{st}$, for all cases where a statistical analysis of the uncertainties is available. The hinted anomalous luminosities, with their 1$\sigma$ uncertainties, were calculated from the errors provided in the original references (see caption to figure 1).

The original hint to a cooling anomaly was derived from the measurement [3], in 1991, of the period decrease $\dot{P}/P$ of the star G117-B15A, a spectral type DA pulsating WD, a class known as DAV or ZZ Ceti. The reported measured period rate of change for the 215 s mode was $\dot{P} = (12.0 \pm 3.5) \times 10^{-15}$ s s$^{-1}$, substantially larger than what expected from standard pulsation theory $\dot{P} = (2 \pm 6) \times 10^{-15}$ s s$^{-1}$ (see, e.g., [10]).
Figure 1. Missing energy loss, $\Delta L$, normalized over a reference luminosity, $L_{\text{st}}$, for different stellar systems. The plot includes only stars for which an analysis with confidence levels was provided: the three white dwarf variables G117-B15A [4], R548 [6] and PG 1351+489 [7]; an example from the central region of the WDLF ($M_{\text{bol}} \sim 9$) [8, 9]; red giants [11, 12]; and HB stars [13]. For RG and HB stars, the reference luminosity is taken to be the core average energy loss. The errors are derived from the 1 $\sigma$ uncertainties provided in the original literature.

| WD                        | class  | $\dot{P}_{\text{obs}}$ [s/s] | $\dot{P}_{\text{th}}$ [s/s] |
|---------------------------|--------|-----------------------------|-----------------------------|
| G117-B15A DA              | 4.19 ± 0.73 x 10^{-15}   | 1.25 ± 0.09 x 10^{-15}       |
| R548 DA                   | 3.33 ± 1.1 x 10^{-15}     | 1.1 ± 0.09 x 10^{-15}        |
| PG 1351+489 DB            | 2.0 ± 0.9 x 10^{-13}      | 0.81 ± 0.5 x 10^{-13}        |

Table 1. Results for $\dot{P}$ for G117-B15A [4], R548 [6], and PG 1351+489 [7].

Since $\dot{P}/P$ is practically proportional to the cooling rate $T/T$, it appears that this specific WD was cooling substantially faster than expected. The anomalous energy loss, $L_x$, can be estimated as [10]

$$
\frac{L_x}{L_{\text{st}}} \simeq \frac{\dot{P}_{\text{obs}}}{\dot{P}_{\text{th}}} - 1,
$$

where $L_{\text{st}}$ is the standard energy loss. Accordingly, even in the most optimistic hypothesis, one would find $L_x \gtrsim L_{\text{st}}$ from the results reported in [3].

After several years of improved modeling and observations, G117-B15A still shows hints to exotic cooling. Additionally, two more WD variables have shown a similar anomalous behavior: R548, a DA variable very similar to G117-B15A, and PG 1351+489, a DB variable (DBV) with quite different properties. The latest results are shown in table 1.

Besides this, various studies of the WD luminosity function (WDLF), which represents the WD number density per brightness interval, also seem to indicate a preference for an additional cooling channel. This has been quantified in the literature in terms of cooling by axion electron bremsstrahlung, pointing to an axion-electron coupling $g_{\text{ae}} \simeq (1.4 \pm 0.3) \times 10^{-13}$ (at 1 $\sigma$) [8], while showing no improvement in the assumption of a neutrino magnetic moment [9]. In figure 1, we show the additional cooling deduced by the hinted results for the axion electron coupling in [8]. Notice that $\Delta L$, in the case of the WDLF, depends on the

2 Notice that eq. (2.1) is strictly valid only when $L_x \ll L_{\text{st}}$, so that the unperturbed model can be used to estimate the energy loss. However, numerical studies show that the above estimates are reasonable even for $L_x \sim$ a few $L_{\text{st}}$. 

\[ \text{Figure 1. Missing energy loss, } \Delta L, \text{ normalized over a reference luminosity, } L_{\text{st}}, \text{ for different stellar systems. The plot includes only stars for which an analysis with confidence levels was provided: the three white dwarf variables G117-B15A [4], R548 [6] and PG 1351+489 [7]; an example from the central region of the WDLF (} M_{\text{bol}} \sim 9 \text{) [8, 9]; red giants [11, 12]; and HB stars [13]. For RG and HB stars, the reference luminosity is taken to be the core average energy loss. The errors are derived from the 1} \sigma \text{ uncertainties provided in the original literature.} \]

\[ \text{Table 1. Results for } \dot{P} \text{ for G117-B15A [4], R548 [6], and PG 1351+489 [7].} \]

Since $\dot{P}/P$ is practically proportional to the cooling rate $T/T$, it appears that this specific WD was cooling substantially faster than expected. The anomalous energy loss, $L_x$, can be estimated as [10]

$$
\frac{L_x}{L_{\text{st}}} \simeq \frac{\dot{P}_{\text{obs}}}{\dot{P}_{\text{th}}} - 1,
$$

where $L_{\text{st}}$ is the standard energy loss. Accordingly, even in the most optimistic hypothesis, one would find $L_x \gtrsim L_{\text{st}}$ from the results reported in [3].

After several years of improved modeling and observations, G117-B15A still shows hints to exotic cooling. Additionally, two more WD variables have shown a similar anomalous behavior: R548, a DA variable very similar to G117-B15A, and PG 1351+489, a DB variable (DBV) with quite different properties. The latest results are shown in table 1.

Besides this, various studies of the WD luminosity function (WDLF), which represents the WD number density per brightness interval, also seem to indicate a preference for an additional cooling channel. This has been quantified in the literature in terms of cooling by axion electron bremsstrahlung, pointing to an axion-electron coupling $g_{\text{ae}} \simeq (1.4 \pm 0.3) \times 10^{-13}$ (at 1 $\sigma$) [8], while showing no improvement in the assumption of a neutrino magnetic moment [9]. In figure 1, we show the additional cooling deduced by the hinted results for the axion electron coupling in [8]. Notice that $\Delta L$, in the case of the WDLF, depends on the

2 Notice that eq. (2.1) is strictly valid only when $L_x \ll L_{\text{st}}$, so that the unperturbed model can be used to estimate the energy loss. However, numerical studies show that the above estimates are reasonable even for $L_x \sim$ a few $L_{\text{st}}$. 

\[ \text{Table 1. Results for } \dot{P} \text{ for G117-B15A [4], R548 [6], and PG 1351+489 [7].} \]
particular WD luminosity. In figure 1 we show the hinted anomalous cooling for an example of WD of intermediate brightness, $M_{\text{Bol}} \sim 9$, where the bolometric magnitude $M_{\text{Bol}}$ is defined as $M_{\text{Bol}} = 4.75 - 2.5 \log(L/L_\odot)$, with $L_\odot$ the solar luminosity.

Further hints to anomalous energy loss in stars emerged in the recent analysis of the Red Giant Branch (RGB) stars in [11, 12]. The studies showed a brighter than expected tip of the RGB in the M5 globular cluster, indicating a somewhat over-efficient cooling during the evolutionary phase preceding the helium flash. The anomalous brightness, $\Delta M_{I, \text{tip}} \approx 0.2$ mag in absolute $I$-band magnitude, is within the calculated observational and modeling errors, which include uncertainties in the mass loss, treatment of convection, equation of state and cluster distance. However, as evident from figure 1, the error budget seems to just barely compensate for the difference between observed and expected brightness. A reduction of the uncertainties, particularly a better determination of the cluster distance, which may become possible with the GAIA mission, will certainly help clarifying the physical significance of this discrepancy.

Finally, a recent analysis [13] showed a mild disagreement between the observed and the expected $R$-parameter, $R = N_{\text{HB}}/N_{\text{RGB}}$, which compares the numbers of stars in the HB ($N_{\text{HB}}$) and in the upper portion of the RGB ($N_{\text{RGB}}$). More specifically, the observed value, $R = 1.39 \pm 0.03$ is somewhat smaller than the expected one $1.44 \leq R \leq 1.50$. This indicates a surplus of RGB with respect to the numerical prediction and suggests that HB stars are cooling more efficiently, and therefore are less numerous, than expected.

Besides what shown in figure 1, additional deviations from the standard cooling theory have been observed also in core He-burning stars of intermediate mass ($M \sim 10 M_\odot$). The problem, in this case, is that numerical simulations predict a larger number ratio of blue over red supergiants (B/R), with respect to what is actually observed [14, 15]. The predicted number would be lowered (alleviating or, perhaps, solving the B/R problem) in the hypothesis of an additional cooling channel efficient in the stellar core (but not in the H-burning shell) [42–45]. An exact prediction of the required additional cooling is, however, presently unavailable.

Finally, x-ray observations of the surface temperature of a neutron star in Cassiopeia A [16, 46, 47] showed a cooling rate considerably faster than expected. The effect seems to indicate the need for an additional energy loss roughly equal to the standard one. This was interpreted in terms of an axion-nucleon coupling $g_{an} \sim 4 \times 10^{-10}$ [17] or as due to a phase transition of the neutron condensate into a multicomponent state [18].

The most remarkable aspect of all these results is that the hints seem to overwhelmingly point toward a positive $\Delta L$, roughly of the same order of the standard luminosity, as clear from figure 1, indicating a systematic problem common to all the studied stellar systems. The current inability to reconcile these relatively large anomalous observations with models shows the limits of our understanding of stellar evolution, either in the theoretical modeling or in the observations. The current data is not sufficient to provide a clear solution to this problem. A new physics option is certainly appealing but should be critically investigated. In the following sections we will show that, among the new physics candidates, ALPs provide an ideal solution. Interestingly, the ALP hinted region of the parameter space is accessible to the new generation ALP detectors, in particular ALPS II [48] and the International Axion Observatory (IAXO) [49–51].

### 3 Model independent analysis of the WDLF

The analysis of the WDLF can reveal interesting insights in new physics. Since WDs are (practically) only loosing energy, during their evolution they become less and less luminous.
Therefore, the number distribution of WD per luminosity bin provides information about the WD evolution and so about the cooling efficiency.

For a WD of fixed mass and chemical composition, the stellar luminosity is, with a good approximation, a function of the (central) temperature only. Therefore, an accurate analysis of the observed and expected WDLF may reveal not only the presence of an additional cooling channel, but also of its temperature dependence.

Some recent analyses of the WDLF at intermediate luminosities seem to indicate the need for additional cooling to properly fit the expected distribution of WDs. However, the situation is far from clear since different observations seem to be in disagreement even within their reported errors, especially in the hottest bins, $M_{\text{bol}} \lesssim 7$ (see [8] and reference therein).

The WDLF has been used to test new physics hypothesis, in particular, the axion and the anomalous magnetic moment. Recent analyses showed a considerable improvement of the fitting when an ALP coupled to electrons is included as an additional cooling channel [8], hinting to an ALP-electron coupling $g_{ae} = 1.4^{+0.28}_{-0.35} \times 10^{-13}$ (at 1 $\sigma$), while a neutrino magnetic moment has shown negligible effects [9].

A more recent study of the hot part of the WDLF [52] showed no significant improvement of the fit, even with the addition of an ALP coupled to electrons. The hot section, however, has larger errors and the effect of axions may be hidden by the standard neutrino cooling there, since they have a production rate steeper in temperature. Further analysis is perhaps necessary to clarify this issue and we will not consider it further in this paper.

For the colder WDs, $7.75 \lesssim M_{\text{bol}} \lesssim 14.25$, the neutrino cooling can be ignored and the particular shape of the WDLF can be described by a simple power law [41, 53, 54]:

$$L_{\gamma} = C_{\gamma} L_{\odot} T_7^{3.5}, \quad (3.1)$$

where $C_{\gamma}$ is a dimensionless constant, and $T_7$ is the central temperature in units of $10^7$K. In this case, the expected number of WD per luminosity bin, $N_{\exp}$, can be approximated by $\tilde{N}_{\exp}$ given by $\log \tilde{N}_{\exp} = \frac{2}{3} M_{\text{bol}} + b$, where $b$ is a function of the WD characteristics.\(^3\) Comparing the exact form of $\tilde{N}_{\exp}$ from [9] with eq. (3.1) and using $M = 0.6 M_{\odot}$ we find the best fit value $C_{\gamma} = 8.5 \times 10^{-4}$.

Adopting the approximation in eq. (3.1), allows a more general model-independent analysis of exotic cooling rates of the form

$$L_x = C_x L_{\odot} T_7^n. \quad (3.2)$$

Let us define

$$q = \left( \frac{\tilde{N}_{\exp} - N_{\text{obs}}}{\tilde{N}_{\exp}} \right) / L_{\gamma} \simeq L_x / L_{\gamma}, \quad (3.3)$$

where the last equality is valid when $L_x \ll L_{\gamma}$. Notice that $q$ is a function of $C_x$ and $n$. A comparison of the measured $q$ with the one calculated in terms of $C_x$ and $n$ can therefore provide insights about the two parameters characterizing the anomalous rate (3.2).

We performed a $\chi^2$-test with our $\chi^2$ variable computed as

$$\chi^2(C_x, n) = \sum \left( \frac{q(C_x, n) - q}{\delta q} \right)^2, \quad (3.4)$$

\(^3\)See, e.g., [41], section 2.2.2.
with \( q \) calculated directly from \( \tilde{N}_{\text{exp}} \) and \( N_{\text{obs}} \), and \( q(C_x, n) \) as a function of \( C_x \) and \( n \). The data for the analysis, including the uncertainties in \( N_{\text{obs}} \), are taken from ref. [9]. The errors in \( \tilde{N}_{\text{exp}} \) have been calculated, conservatively, as \( \delta \tilde{N}_{\text{exp}} = |N_{\text{exp}} - \tilde{N}_{\text{exp}}| \).

With this hypothesis, we find \( \chi^2_{\text{min}} = 3.4 \) for \( n = 3.5 \) and \( C_x = 1.3 \times 10^{-4} \). The contours for the hinted parameters at 1 to 4 \( \sigma \) are shown in figure 2. The fit is excellent. We have used 14 data points for a two-parameter fit. So, \( N_{\text{d.o.f.}} = 12 \) and \( \chi^2/N_{\text{d.o.f.}} = 0.28 \). Notice also that, taking \( T_7 \sim 1 \), the values of \( C_x \) show that indeed \( L_x \ll L_\gamma \), as we had originally assumed.

In general, our analysis indicates a clear preference for additional cooling, at about 4 \( \sigma \). This is a higher confidence level than what is derived from the analysis in ref. [8], which used a wider range of WD magnitudes and assumed the cooling to be induced by axions only (which corresponds to fixing \( n = 4 \)).

Although our procedure is necessarily approximate and cannot be extended to the hot part of the WDLF, it does show a preference for additional cooling and, as we shall see, in particular for ALPs or HPs, among the most common new-physics candidates.

4 The case of a neutrino magnetic moment

Among the possible new physics candidates the neutrino magnetic moment is certainly one of the most widely studied. If equipped with a large (with respect to the standard model prediction) magnetic moment, neutrinos could be efficiently produced in a dense environment through an electromagnetically induced plasmon decay \( \gamma \rightarrow \nu \bar{\nu} \) [55].

The most current bound on the neutrino magnetic moment is derived from the analysis of RG branch stars in M5 [11, 12]. The reported constraint is \( \mu_\nu \leq 2.6(4.5) \times 10^{-12} \mu_B \), at 68\% (95\%) C.L., where \( \mu_B \) is the Bohr magneton. In the same analysis, it was also pointed out that a small neutrino magnetic moment, \( \mu_\nu \simeq 1.8 \times 10^{-12} \mu_B \), could actually improve...
the agreement between the observed and predicted brightness of the RG branch tip in M5 discussed in section 2.

The recent asteroseismology analysis [7] of PG 1351+489, a WD variable of spectral type DB, hinted to a somewhat larger value, \( \mu_\nu \approx 5 \times 10^{-12} \mu_B \). This is a little above the 2\( \sigma \) bound from the RGB analysis. However, given the large uncertainties in the physics of the DBV, the two results are compatible and may indicate that a neutrino magnetic moment could provide a good solution at least for the anomalies observed in dense stars.

As we shall see, this is not the case. Allowing neutrinos to have a neutrino magnetic moment of a few \( 10^{-12} \mu_B \) would not help explaining the observed WD behaviors.

As shown in [55], the electromagnetically induced plasmon emission rate has the same temperature dependence of the standard plasmon process, which, at the high density characterizing the WD interior, is very steep in \( T \). More precisely, in the environment typical of the WD interior the neutrino emission rate is roughly proportional to \( T^8 \) [56]. As shown in section 3, this temperature dependence is too steep to account for the observed behavior of the WDLF and is excluded at more than 4\( \sigma \). This result is in agreement with the analysis in ref. [9] which showed no substantial improvement of the WDLF (in this case the analysis included also the hotter section) when a neutrino magnetic moment was added.

Additionally, again because of this steep temperature dependence, it would be impossible for a neutrino magnetic moment to explain simultaneously the pulsation problems observed in the DA and DB variables. A rough estimate is enough to prove this statement. The internal temperature in the DA stars is about a factor of 3.8 lower than the one in PG 1351 (compare figure 1 in [5] and figure 4 in [7]). Hence, according to the temperature dependence of the production rate, the magnetic moment induced rate would be suppressed by a factor of roughly \( 4 \times 10^4 \). However, the hinted luminosity in the DA WDs is only about an order of magnitude smaller than in PG 1351. Since the neutrino rate is proportional to \( \mu_\nu^2 \), one would need an enormous neutrino magnetic moment to explain the additional cooling observed in the DA variables, something about two orders of magnitude above the current upper limit.

Besides this, the magnetic moment induced plasmon decay rate (just like the standard one) is largely suppressed in low density environments. In fact, because of the peculiar plasmon dispersion relation [41], a low plasma frequency kinematically restricts the ability for plasmon to decay into neutrinos. Hence, for any reasonable value of \( \mu_\nu \), the additional magnetic moment induced cooling would be negligible during the HB evolution [41] or the He-burning stage of a massive star [57], and would therefore be inadequate to explain the cooling excesses observed in those stars.

## 5 Minicharged particles

Another widely discussed option for physics beyond the standard model is a minicharged particle (MCP). A MCP is a fermion \( \psi \) coupled to ordinary photons \( A \) just like standard model fermions, however with a very small charge: \( L_{\text{int}} = e \epsilon \bar{\psi} \gamma_\mu \psi A^\mu \), with \( e \) the electron charge and \( \epsilon \ll 1 \) a phenomenological parameter [58]. Additionally, one expects a dimension 5 magnetic operator and 4-fermion dimension 6 operators to appear at some level in the effective field theory where the new physics interacting with both the SM and the MCP has been integrated out. These terms are suppressed by a new energy scale \( \Lambda \) which is expected to be above the TeV. This suppresses enormously the MCP production at the typical temperatures \( \sim \)keV of stellar interiors and introduces additional powers of the temperature in the energy loss production rates with respect to the minicharge. The discussion of these
terms is parallel to that of the non-standard neutrino emission and, we argue, does not help fitting the anomalies. So we will concentrate on the minicharge henceforth.

Light fermions with a small charge could be produced through plasmon decay, just like ordinary neutrinos or neutrinos with an anomalous magnetic moment. The emission rate would in this case have the same temperature dependence as these processes, but a less steep density dependence [55].

Because of the weaker density dependence, an MCP could be more efficiently produced in low density stars such as HBs or the sun [41]. The most recent bound, $\epsilon \leq 2 \times 10^{-14}$ (95% C.L.), is derived from a careful helioseismological analysis of the sun [59], and corresponds to the results previously obtained from the analysis of RG branch and HB stars [58].

The MCP, however, offers an inadequate solution to the cooling anomalies. In particular, because of the steep temperature dependence we can draw the same conclusions about WDs derived for the neutrino magnetic moment. Namely, this new physics mechanism would not permit the simultaneous explanation of the DA and DB WD variables, nor improve the fit of the WDLF.

Similar conclusions can be drawn when a massive HP mediates, through kinetic mixing with the standard photon, interactions between the standard and a dark sector. In this scenario, the charged fields of the standard model become (mini)charged under the new Abelian gauge symmetry and this would enhance the stellar cooling efficiency. In this case, the temperature dependence of the loss-rate is expected to be $T^6$ [60], still too steep to explain the WDLF anomaly.

6 Hidden photons

Hidden Photons have enjoyed a considerable interest revival recently [33–36, 60–62]. However, there is currently no study of the cooling excesses in terms of HPs. In this section we analyze separately the hints to the HP parameter space from our analysis of the cold section of the WDLF and from the other cooling anomalies.

6.1 Hints from the WD luminosity function

Here we apply the results of section 3 to find for which parameters the emission of HPs from WDs could substantially improve the WDLF fit.

The analysis, in this case, is not quite as straightforward as for the other candidates discussed in this work. In fact, the HP production rate, dominated by the emission of longitudinal modes, is, in general, not a power law of the temperature. Additionally, the rate is a function of both the HP mass and coupling constant.

In the case of low mass, the emission rate of longitudinal HPs is [35]

$$\varepsilon \simeq \frac{\chi^2 m^2 \omega_{pl}^3}{4\pi \rho \left(e^{\omega_{pl}/T} - 1\right)},$$

where $\omega_{pl}$ is the plasma frequency of the WD in the location where the HP energy $\omega$ satisfies the resonance condition $\omega = \omega_{pl}$.

In the center of a WD, $\omega_{pl} \simeq 30 \text{ keV}$ while the temperature is a few keV. Therefore, the exponential factor $e^{\omega_{pl}/T}$ in the denominator is huge and suppresses considerably the HP emission. The HP production will then peak somewhat off center where the density has decreased sufficiently.
Figure 3. Summary of the regions in the HP parameter space hinted by the observed cooling anomalies. Left panel: areas in the HP mass-coupling parameter space corresponding to the 1 and 2σ regions shown in figure 2. The numerical analysis was performed on a grid of WD models simulated with MESA [63]. The regions excluded by the sun and the HB stars are also shown. Right panel: summary of the hints to HP from the WD pulsation (the yellow band represents the region hinted by the analysis of R548 while the orange band that hinted by PG 1351+489) and HB stars (dark magenta band labeled in black). Superimposed are the constraints from the sun (blue area), HB (light magenta area), and RGB stars (gray area above the dashed line). For clarity, we have not included the region hinted by the WDLF, shown in the left panel.

The rate in eq. (6.1) can be approximated as a power law in the temperature around a relevant temperature $T_0 \sim (2–3)$ keV

$$n = \frac{d \log \varepsilon}{d \log T} \approx \frac{\omega_{pl}}{T_0}.$$  \hspace{1cm} (6.2)

A numerical analysis performed on a grid of WD models shows that the HP emission rate (for masses well below $\omega_{pl}$) follows a power law with $n \sim 3.7$ with surprising accuracy. This corresponds to a HP emission from a shell where the density has decreased by a factor of 10 or so from its central value. The numerical result shows that, according to our discussion in section 3, for particular combinations of coupling and mass HPs can indeed help the WDLF fit.

At small masses, since the emission rate is proportional to $(\chi m)^2$, we see that the hinted HP region should be a band in the log $\chi$ – log $m$ parameter space between two parallel lines of slope $-1$. Our numerical calculation of the emission rate (without approximating the exponent and without assuming a small mass) confirms this behavior, as shown in the left panel of figure 3.

6.2 Hints from WD pulsation, RG and HB stars

As said, there is currently no study of the cooling anomalies in terms of HPs. In particular, there is no analysis with simulations which include HPs as a possible cooling channel. We can, however, gain some insight on the hinted HP parameter space by comparing the anomalous luminosities, shown in figure 1, with the HP rates calculated from standard (unperturbed) stellar models. The result of this analysis is shown in the right panel of figure 3.

The solar exclusion region is calculated by integrating the HP emission rate, both the transverse and longitudinal contributions, over the standard solar model [64] and selecting only the parameter space such that $L_x \leq 0.1L_\odot$. 

\hspace{1cm} – 10 –
For the RGB and HB stars, we used typical models derived by means of the FUNS (FUll Network Stellar evolution) code [65–67] (courtesy of Oscar Straniero). Based on the discussion in [36], as dominant cooling channel we used the HP L-mode for RGB stars and the HP T-mode for HB stars. The HB hinted region (light magenta area) corresponds to the luminosity shown in figure 1, derived from the 1σ interval for $g_{\alpha \gamma}$ in [13]. For the RGB, we are showing only the exclusion plot, calculated according to the results in the most recent analyses [11, 12].

In the case of the pulsating WDs, we compared the measured and expected period change as reported in [6] for R548 (which we chose as a representative for the DA class) and [7] for PG 1351+489. In both cases, we derived the exotic energy loss using eq. (2.1). This could be not completely accurate since the additional energy loss is quite large, especially in the case of R548. The hinted HP parameter space (mass and coupling) is derived using MESA simulations of WD models with characteristics similar to those used in the references above. The results are shown in the yellow (WD-DA) and orange (WD-DB) bands in figure 3. In the case of the pulsating WD PG 1351+489, the 1σ interval could extend to include the standard case, where no additional cooling is necessary. So, the lower bound in the hinted band in figure 3 is only indicative and could extend to lower couplings.

Although these results are based on several simplifications and the exact regions could be slightly modified, it is clear from the figure that a HP cannot easily accommodate the different hints, no matter its mass and coupling. A more detailed analysis, however, should require a full simulation of the stellar evolution including the HP cooling channel.

We finally notice that the strong bounds on the HP vanish in models of a massless vector field with leading interaction terms emerging from dimension 6 operators [39, 40]. The massless HP production rate in WD and RGB has the same functional form as that of an ALP coupled to electrons, which is discussed in section 7.

7 Axion-like particles

ALPs have enjoyed a considerable attention lately, in relation to several astrophysical observations.

Besides being able to explain the stellar cooling anomalies, as we shall discuss further in this section, and being dark matter candidates [68], light ALPs have been invoked to explain other astrophysical anomalies, such as the seeming transparency of the universe to very high energy (TeV) gamma rays in the galactic and extragalactic medium [69–71] and some anomalous redshift-dependence of AGN gamma-ray spectra [72] (though this last hypothesis currently shows some conflict with the SN1987A bound on the axion-photon coupling [73]). More recently, it was also pointed out that anomalous X-ray observations of the active Sun suggest an ALP-photon coupling of the same size hinted by the other analyses [74]. Interestingly, the required couplings are not excluded by experiments nor by phenomenological considerations and are accessible to the new generation ALP detectors, in particular ALPS II [48] and the International Axion Observatory (IAXO) [49–51].

In this section we present the hints on the axion/ALP coupling from the cooling anomalies, based on the published literature. In section 7.1 and 7.2 we review, respectively, the hints on the ALP-photon coupling from helium burning stars and on the ALP-nucleons coupling from neutron stars. In section 7.3 we propose a new global analysis for the hints on the ALP-electron coupling from all the combined anomalous observations.
7.1 Hints to the ALP-photon coupling from He-burning stars

The analysis of the $R$-parameter in [13] showed a mild preference for additional cooling, as shown in figure 1. This can be interpreted as a hint to an ALP, produced through Primakoff process in the HB core. Such an analysis indicates

$$g_{a\gamma} = 0.45^{+0.12}_{-0.16} \times 10^{-10} \text{ GeV}^{-1} \quad (68\% \text{ CL}), \quad \text{for } m_a \lesssim 30 \text{ keV},$$

(7.1)

for the ALP-photon coupling. At $2\sigma$ the result for the coupling is compatible with zero. Remarkably, the hinted value for $g_{a\gamma}$ is roughly the same of what required for the ALP explanation of the observed transparency hints — the latter requiring however $m_a \lesssim 10^{-7} \text{ eV}$ — and is in full reach of the next generation ALP detectors [48–51].

A recent revision by one of us (MG), which included errors from the most important nuclear reactions and a more careful determination of the $R$-parameter, suggested a more conservative estimate [75],

$$g_{a\gamma} = (0.29 \pm 0.18) \times 10^{-10} \text{ GeV}^{-1} \quad (68\% \text{ CL}), \quad \text{for } m_a \lesssim 30 \text{ keV}.$$

(7.2)

Additionally, the observed smaller than predicted number ratio of blue over red supergiants in open clusters (see ref. [15] and references therein) could also point to an ALP-photon coupling [43–45]. ALPs produced through the Primakoff process would be efficient in the He-burning stellar core, while would be irrelevant in the colder H-burning shell. Such a mechanism is known to accelerate the blue loop stage, reducing therefore the number of blue with respect to red supergiants [42].

The analysis in ref. [43] indicated that an axion-photon coupling of a few $10^{-11} \text{ GeV}^{-1}$, in the same range as the one hinted by the HB anomaly, would reduce the number of expected blue stars, alleviating or perhaps solving the anomaly. However, in this case the uncertainties in the microphysics and in the observations are, essentially, unquantifiable.

We finally notice that the emission of ALPs with a comparative coupling may affect the nucleosynthesis in massive stars, particularly the Neon yield [77]. However, at the moment the predictions need quite some refinement and reliable observables are missing.

7.2 Hints to the ALP-nucleon coupling from neutron stars

Recently, x-ray observations of the surface temperature of a neutron star (NS) in the supernova remnant Cassiopeia A showed a cooling rate considerably faster than expected. The effect may be interpreted in terms energy loss due to ALP bremsstrahlung on nucleons, requiring an ALP-nucleon coupling [17] of the order of

$$g_{an} \sim 4 \times 10^{-10},$$

(7.3)

within the current limits from NS cooling [78, 79].

A confidence level in this result is at the moment unavailable. Moreover, the uncertainties in the physics of neutron stars cooling make this only a marginal hint and the effect could have a different origin [18]. If one insists on an ALP interpretation, it would be important to make sure that such a coupling does not shorten significantly the neutrino pulse of the SN1987A. It has been pointed out recently that this anomaly is compatible with the constraints and the WD and RG hints if the ALP is a QCD axion of the DFSZ type [80].
Figure 4. Hinted 1 and 2σ regions from the analysis of the $R$-parameter in section 7.3. The current bound from the RGB analysis in M5 [12] is also shown.

7.3 Hints to the ALP-electron coupling from WDs and RGs

All the observed anomalies from WDs (both pulsation and luminosity function) and RGB stars can be interpreted as a hint to a possible ALP-electron coupling. We shall argue that the same applies also to the HB star hint, discussed in section 7.1, which so far has been studied only in relation to the ALP-photon coupling.

The dominant ALP production mechanism in a WD or RGB star is electron bremsstrahlung, $e + X \rightarrow e + X + a$, where $X$ is either an electron or a nucleus and $a$ is the ALP. The emission rate for this process is proportional to $T^4$ [81], a power law of the temperature with an exponent remarkably close to our best fit value in the analysis of the WDLF in section 3.

In He-burning stars, the Compton production, $\gamma + e^- \rightarrow a + e^-$, contributes as much as the bremsstrahlung processes. Using the HB models of [82] and the emission rates summarized in [83] we obtain the HB axion luminosity $L_{a\gamma} \approx 1.33\alpha_{26}L_\odot$, with $\alpha_{26} = g_{a\gamma}/4\pi$ in units of $10^{-26}$, and a reduction of the HB lifetime $\delta t_{\text{HB}}/t_{\text{HB}} \approx -0.067\alpha_{26}$, where we adopted a typical Helium fusion luminosity of $20L_\odot$.

The ALP-electron coupling has also an indirect effect on the $R$-parameter. The energy loss during the RGB phase leads to a larger core mass. From the recent simulations [11, 12] of the RGs of the cluster M5 we found the analytical approximation, valid for $\alpha_{26} \lesssim 2.8$,

$$\delta M_c = 0.024M_\odot \left(\sqrt{4\pi\alpha_{26}} + (1.23)^2 - 1.23 - 0.921\alpha_{26}^{0.75}\right).$$

With both these additions, the ratio of HB to RG stars presented in [13] is updated to

$$R = 6.26Y - 0.12 - 0.14g_{10}^2 - 1.61\delta M_c - 0.067\alpha_{26},$$

where $\delta M_c$ is in solar mass units, $Y$ is the primordial He abundance and $g_{10} = g_{a\gamma} \times 10^{10}$ GeV. The factor $\frac{dR}{d\delta M_c} = -0.7 \times \ln(10) = -1.61$ was derived in [84, 85]. Repeating the analysis of [13] but now with two possible energy loss channels, we find the $1\sigma, 2\sigma$ intervals depicted in the left panel of figure 4.

Notice that a value of $\alpha_{26} = 0.63^{+0.5}_{-0.4}$ could account for the anomaly even in the absence of the ALP-photon channel. Although — within the error — this possibility cannot be
Table 2. Results for $\alpha_{26}$ at 1 $\sigma$ from WD pulsation, WDLF and RGB stars. In the case of the WDLF analysis, the 1 $\sigma$ interval is extracted from the inset in figure 6 in [8].

|       | $\alpha_{26}$  | references |
|-------|----------------|------------|
| G117-B15A | 1.87 ± 0.53 | [4]        |
| R548   | 1.82 ± 1.03  | [6]        |
| PG 1351+489 | 0.52 ± 0.67 | [7]        |
| WDLF   | 0.156 ± 0.068| [8]        |
| RG     | 0.26 ± 0.28  | [12]       |
| HB     | 0.38 ± 0.3   | this work |

The required coupling is slightly above the most current bound $\alpha_{26} < 0.54$ [12]. Additionally, a comparison with the other hints, along the line discussed below, shows that the assumption that the HB hint could be explained solely by an ALP-electron coupling is quite disfavored ($\chi^2_{\text{min}} = 20$, for 4 d.o.f.).

The result changes slightly when we adopt the new analysis in [75]. In this case, we find a somewhat different prediction for the $R$-parameter dependence on the ALP-photon coupling,

$$R = 7.33Y + 0.02 - 0.095\sqrt{21.86 + 21.08g_{10}} - 1.61\delta\mathcal{M}_c - 0.067\alpha_{26},$$

which leads to the 1 and 2 $\sigma$ intervals shown in the right panel of figure 4.

In this case, the suggested value for the ALP-electron coupling necessary to explain the HB hint without requiring also an additional ALP-photon coupling is lowered to $\alpha_{26} = 0.38^{+0.3}_{-0.24}$, within the currently allowed range and more in agreement with the other hints, as discussed below.

The hinted values from the different analyses are shown in table 2. The last row refers to the hint from the $R$-parameter discussed above (the HB hint) but with the assumption that the ALP interacts only with electrons. Notice that an additional ALP-photon coupling would change this hinted value, as shown in figure 4, or even eliminate it, as discussed in section 7.3. The other hints, on the other hand, would be essentially unaffected by an ALP-photon coupling below the allowed bounds. Therefore, we treat these hints on a different footing and, in presenting the analysis of the data in the table, we will show separately the cases where we include or not the HB hint.

All the observations hint to a positive coupling square (therefore to an additional energy loss) though in two cases the 1 $\sigma$ intervals are compatible with the standard model solution or even with an additional energy source. In the case of PG 1351+489, there is no study which considered the axion and we derived the 1 $\sigma$ limits on $\alpha_{26}$ shown in table 2 using the approximate formula (2.1).

What can we learn from the results in table 2?

First of all, it is noticeable that the results from the two DA WD, G117-B15A and R548, hint to a much larger coupling constant than all other observations. This may be due to the hypothesis that the particular oscillating mode examined (in both cases, the one with period about 215 s) is trapped in the envelope (see, e.g., [4]). This assumption may be incorrect (see, e.g. discussion in [8]) although currently there is no certainty and this is still subject to speculations.

Relaxing the trapping hypothesis, the period change can be estimated as $\dot{P} \simeq 3.9 \times 10^{-15}$ s/s [4], now within 1 $\sigma$ of the measured one, though still smaller. Interestingly, in this case we would expect an additional luminosity corresponding to $g_{ae} \simeq 10^{-13}$, quite
Table 3. Results for $g_{ae}$ at 1σ from WD pulsation, WDLF and RG stars.

| mode trapped | HB hint | $\chi^2_{\text{min}}$ (d.o.f.) | $g_{ae}$ (1σ) | $\alpha_{26}$ (1σ) | $g_{ae}$ (×10^{13}) (1σ) |
|--------------|---------|-------------------------------|---------------|-------------------|---------------------------|
| YES          | NO      | 2.96                          | 0             | 0.17 ± 0.13       | 1.47 ± 0.48               |
| NO           | NO      | 0.57                          | 0             | 0.16 ± 0.13       | 1.41 ± 0.48               |
| YES          | YES     | 3.42                          | 0             | 0.18 ± 0.13       | 1.50 ± 0.47               |
| NO           | YES     | 1.11                          | 0             | 0.17 ± 0.12       | 1.46 ± 0.45               |

Closer to what predicted by RG and WDLF. More accurately, from eq. (2.1) we find $L_x = (0.074 ± 0.19)L_{st}$, with $L_{st} = 1.2 \times 10^{31}$ erg/s [4]. So, using for example eq. (6) in reference [5] for the ALP emission, we find $\alpha_{26} = 0.079 ± 0.201$.

To quantitatively compare the different hints to $\alpha_{26}$ shown in table 2 we performed a $\chi^2$ analysis, where each hint is weighted with its own 1σ error. In our analysis, however, we did not consider the two results from the DAV as independent hints. Although the two measurements were independently performed, the two stars share very similar properties and both results were based on a very similar hypothesis. Perhaps, the most conservative procedure should be to consider R548 as the representative for the DAV, since it has a larger error. In this case we find the results shown in table 3. The significance level of the combined analysis is shown in figure 5.

Notice that using the result from G117-B15A, rather than R548, would give a somewhat worse fit ($\chi^2_{\text{min}} = 10.5$) perhaps indicating that the errors provided in this case are too optimistic or that the mode is indeed not trapped, or simply that ALPs are not the correct solution for this problem.

Finally, note that all the considerations above apply to massless HPs with a magnetic coupling to electrons (1.3). The amplitudes of emission of an ALP and a massless HP from non-relativistic electrons are proportional after angular averaging [40, 41]. Defining

$$\alpha_{V26} = 2 \frac{1}{4\pi} \left( \frac{4m_e v}{\Lambda^2} \right)^2 10^{26},$$

(7.7)

where the factor of 2 accounts for the two HP polarisations, the emission rate of HPs is
Figure 5. Global fits for $\alpha_{26}$ from WD pulsation, WDLF, and RGB (cfr. table 3). The black (red) curves show the analysis which includes (does not include) the hint from the R-parameter (HB-hint). Left panel: assuming that the analyzed WD DA mode is trapped; Right panel: removing the WD DA mode trapped assumption.

identical to that of an ALP coupled to electrons, with the substitution $\alpha_{26} \rightarrow \alpha_{V,26}$. In particular, the HP emission can fit the WD, RG and HB anomalies as efficiently as an ALP coupled to electrons. Note also that the best fits $\alpha_{V,26} \sim 0.17$ correspond to a new energy scale $\Lambda \sim 2$ PeV. However, the new physics can appear at lower energies if the operator (1.3) has an additional chirality suppression, i.e. $1/\Lambda^2 \sim \lambda_e/M^2$ where $\lambda_e$ is the electron Yukawa coupling. In this case $M \sim 3$ TeV and new physics could be at reach at the LHC [39].

8 Conclusions

For several years various independent observations of different stellar systems have shown an anomalous efficient cooling. The current situation is summarized in figure 1.

In this work we have presented a coherent analysis of these anomalies and of the possible new physics solutions based on WISPs. Our analysis shows a particular preference for a pseudoscalar axion-like solution. A summary of the hinted regions in the ALP-photon/ALP-electron parameter space is shown in figure 6, where the light blue band labeled HB/RG is derived assuming the more recent results in [75] for the $R$-parameter (cf. section 7.3).

The other WISPy candidates studied, on the other hand, seem to be inadequate to explain the combined observed cooling excesses. As discussed in section 4, a neutrino magnetic moment would be a good candidate to explain the observation of the RGB tip, but fails to improve the WDLF or to explain the longer than expected rate of period change in the DAV. Additionally, it would be inadequate in explaining the hinted faster than expected cooling of the HB stars.

The massive hidden photon solution, though appealing since HPs could explain some of the observed anomalies and have a peculiar emission rate which could improve the WDLF fit, seem to require mass and coupling in regions already excluded by other astrophysics arguments (see figure 3). Additionally, there does not seem to be a good overlap of the hinted areas.

The ALP solution, on the other hand, seems to be particularly efficient.

First of all, observations of the cold section of the WDLF, which can be approximated as a power law and so allow for a model independent analysis of new physics processes, show a preference for an additional cooling channel characterized by an emission rate of the form $T^n$, with $n \sim 4$, the exponent predicted for the ALP production rate in a WD.
Additionally, the combined analysis of the WDs and RGB stars hints to an axion-electron coupling \( g_{ae} \approx 1.5 \times 10^{-13} \), while the non-ALP solution seems to be excluded at more than 2.5 \( \sigma \), as shown in table 3. As shown in figure 6, large portions of the hinted area is within reach of the proposed ALP search experiments, ALPS II [48] and IAXO [49–51].

Last but not least, if appropriately coupled to photons and nucleons, ALPs could also explain the observed anomalous \( R \)-parameter [13] and the fast cooling of the NS in Cassiopeia A [17]. In fact, it has been noted in ref. [1], that all the cooling excesses and even the transparency hint can be explained by a pseudo Nambu-Goldstone boson ALP with \( m_a \lesssim 0.1 \mu eV \) and symmetry breaking scale

\[
f_a \sim 10^8 \text{ GeV},
\]

provided that the dimensionless coefficients relating the respective coupling strength and \( f_a \),

\[
g_{a\gamma} = \frac{\alpha}{2\pi} \frac{C_{a\gamma}}{f_a}, \quad g_{ae} = \frac{C_{ae} m_e}{f_a}, \quad g_{an} = \frac{C_{an} m_n}{f_a},
\]

are of order\(^4\)

\[
C_{a\gamma} \sim 1, \quad C_{ae} \sim C_{an} \sim 10^{-2}.
\]

\(^4\)Intriguingly, in LARGE volume string compactifications, in which the volume \( V \) of the compactified extra dimensions is stabilized at an exponentially large value in units of the string size, the decay constant of closed string ALPs is generically much smaller than the Planck scale, \( f_a \sim M_P/\sqrt{V} \), and their matter coupling coefficients \( C_{af} \) are generically suppressed by a factor \( \alpha \sim 10^{-2} \) in comparison to the photon coupling coefficient \( C_{a\gamma} \), realizing the required properties [86].
Alternatively, the stellar cooling excesses may be explained by a QCD axion $A$ with

$$f_A \sim 10^9 \, \text{GeV}, \quad m_A \sim \text{meV}, \quad C_{A\gamma} \sim C_{Ac} \sim C_{An} \sim 1,$$

(8.4)

while the transparency hint requires then an additional ALP with

$$f_a \sim 10^8 \, \text{GeV}, \quad m_a \lesssim 0.1 \mu\text{eV}, \quad C_{a\gamma} \sim 1, \quad C_{ae} \sim C_{an} \ll 1.$$  

(8.5)

Intriguingly, a QCD axion of DFSZ type in the above mass range could even account for the dark matter in the universe [87]. A more detailed analysis of specific well motivated models which could account for such parameters is in preparation.

Note finally that a massless hidden photon would provide another appealing solution. In fact, though such a field would have a quite different UV completion, its low energy phenomenology associated with electron interactions due to dimension 6 operators [39] would be, up to a constant scaling factor, identical to that of an axion [40]. Therefore, a massless HP could address the WD, RGB and R-parameter hints as efficiently as an ALP coupled to electrons. The new energy scale in this case can be a few TeV and testable in particle colliders. Note however that the R-parameter fit prefers also some additional cooling for HB stars which could not be provided by a massless HP.

Though a novel cooling channel induced by a new particle is not the only solution to the cooling anomalies, it may be the simplest, if we are willing to accept new physics. Additionally, it is certainly an appealing solution. After the negative results of the LHC searches for a massive dark matter candidate, perhaps we should look elsewhere, to the low energy frontier, and stars may be hinting at its presence.

Acknowledgments

We acknowledge interesting discussions with Miller Bertolami, Dieter Horns, Axel Lindner, Alexandre Payez and Maxim Pospelov. We also wish to thank the anonymous referee for constructive critical comments that improved the discussion. J. R. acknowledges support from the Ramón y Cajal fellowship RYC-2012-10957.

References

[1] A. Ringwald, *The hunt for axions*, PoS(NEUTEL2015)021 [arXiv:1506.04259] [inSPIRE].

[2] M. Giannotti, *ALP hints from cooling anomalies*, arXiv:1508.07576 [inSPIRE].

[3] S.O. Kepler et al., *A detection of the evolutionary time scale of the DA white dwarf G117-B15A with the Whole Earth Telescope*, *Astrophys. J.* **378** (1991) L45.

[4] A.H. Corsico et al., *The rate of cooling of the pulsating white dwarf star G117-B15A: a new asteroseismological inference of the axion mass*, *Mon. Not. Roy. Astron. Soc.* **424** (2012) 2792 [arXiv:1205.6180] [inSPIRE].

[5] A. Bischoff-Kim, M.H. Montgomery and D.E. Winget, *Strong limits on the DFSZ axion mass with G117-B15A*, *Astrophys. J.* **675** (2008) 1512 [arXiv:0711.2041] [inSPIRE].

[6] A.H. Corsico et al., *An independent limit on the axion mass from the variable white dwarf star R548*, *JCAP* **12** (2012) 010 [arXiv:1211.3389] [inSPIRE].

[7] A.H. Corsico, L.G. Althaus, M.M. Miller Bertolami, S.O. Kepler and E. García-Berro, *Constraining the neutrino magnetic dipole moment from white dwarf pulsations*, *JCAP* **08** (2014) 054 [arXiv:1406.6034] [inSPIRE].
[8] M.M. Miller Bertolami, B.E. Melendez, L.G. Althaus and J. Isern, Revisiting the axion bounds from the Galactic white dwarf luminosity function, *JCAP* **10** (2014) 069 [arXiv:1406.7712] [inSPIRE].

[9] M.M. Miller Bertolami, Limits on the neutrino magnetic dipole moment from the luminosity function of hot white dwarfs, *Astron. Astrophys.* **562** (2014) A123 [arXiv:1407.1404] [inSPIRE].

[10] J. Isern, M. Hernanz and E. García-Berro, Axion cooling of white dwarfs, *Astrophys. J.* **392** (1992) L23 [inSPIRE].

[11] N. Viaux et al., Particle-physics constraints from the globular cluster M5: Neutrino Dipole Moments, *Astron. Astrophys.* **558** (2013) A12 [arXiv:1308.4627] [inSPIRE].

[12] N. Viaux et al., Neutrino and axion bounds from the globular cluster M5 (NGC 5904), *Phys. Rev. Lett.* **111** (2013) 231301 [arXiv:1311.1669] [inSPIRE].

[13] J. Isern, M. Hernanz and E. García-Berro, Axion cooling of white dwarfs, *Astrophys. J.* **392** (1992) L23 [inSPIRE].

[14] A. Ayala, I. Domínguez, M. Giannotti, A. Mirizzi and O. Straniero, Revisiting the bound on axion-photon coupling from Globular Clusters, *Phys. Rev. Lett.* **113** (2014) 191302 [arXiv:1406.6053] [inSPIRE].

[15] R.C. Dohm-Palmer and E.D. Skillman, The ratio of blue to red supergiants in sextans a from HST imaging, *astro-ph/0203284* [inSPIRE].

[16] K.B.W. McQuinn et al., Observational Constraints on Red and Blue Helium Burning Sequences, *Astrophys. J.* **740** (2011) 48 [arXiv:1108.1405] [inSPIRE].

[17] L.B. Leinson, Axion mass limit from observations of the neutron star in Cassiopeia A, *JCAP* **08** (2014) 031 [arXiv:1405.6573] [inSPIRE].

[18] L.B. Leinson, Superfluid phases of triplet pairing and rapid cooling of the neutron star in Cassiopeia A, *Phys. Lett. B* **741** (2015) 87 [arXiv:1411.6833] [inSPIRE].

[19] J. Jaeckel and A. Ringwald, The Low-Energy Frontier of Particle Physics, *Ann. Rev. Nucl. Part. Sci.* **60** (2010) 405 [arXiv:1002.0329] [inSPIRE].

[20] S. Weinberg, A New Light Boson?, *Phys. Rev. Lett.* **40** (1978) 223 [inSPIRE].

[21] F. Wilczek, Problem of Strong p and t Invariance in the Presence of Instantons, *Phys. Rev. Lett.* **40** (1978) 279 [inSPIRE].

[22] R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, *Phys. Rev. Lett.* **38** (1977) 1440 [inSPIRE].

[23] R.D. Peccei and H.R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, *Phys. Rev. D* **16** (1977) 1791 [inSPIRE].

[24] L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, *Phys. Lett. B* **120** (1983) 133 [inSPIRE].

[25] M. Dine and W. Fischler, The Not So Harmless Axion, *Phys. Lett. B* **120** (1983) 137 [inSPIRE].

[26] J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the Invisible Axion, *Phys. Lett. B* **120** (1983) 127 [inSPIRE].

[27] V.A. Rubakov, Grand unification and heavy axion, *JETP Lett.* **65** (1997) 621 [hep-ph/9703409] [inSPIRE].

[28] Z. Berezhiani, L. Gianfagna and M. Giannotti, Strong CP problem and mirror world: The Weinberg-Wilczek axion revisited, *Phys. Lett. B* **500** (2001) 286 [hep-ph/0009290] [inSPIRE].
[29] L. Gianfagna, M. Giannotti and F. Nesti, Mirror world, supersymmetric axion and gamma ray bursts, *JHEP* 10 (2004) 044 [hep-ph/0409185] [SPIRE].

[30] A. Ringwald, Exploring the Role of Axions and Other WISPs in the Dark Universe, *Phys. Dark Univ.* 1 (2012) 116 [arXiv:1210.5081] [SPIRE].

[31] L.B. Okun, Limits of Electrodynamics: Paraphotons?, *Sov. Phys. JETP* 56 (1982) 502 [Zh. Eksp. Teor. Fiz. 83 (1982) 892] [SPIRE].

[32] B. Holdom, Two U(1)'s and Epsilon Charge Shifts, *Phys. Lett.* B 166 (1986) 196 [SPIRE].

[33] J. Redondo, Helioscope Bounds on Hidden Sector Photons, *JCAP* 07 (2008) 008 [arXiv:0801.1527] [SPIRE].

[34] H. An, M. Pospelov and J. Pradler, New stellar constraints on dark photons, *Phys. Lett.* B 725 (2013) 190 [arXiv:1302.3884] [SPIRE].

[35] J. Redondo and G. Raffelt, Solar constraints on hidden photons re-visited, *JCAP* 08 (2013) 034 [arXiv:1305.2920] [SPIRE].

[36] H. An, M. Pospelov, J. Pradler and A. Ritz, Direct Detection Constraints on Dark Photon Dark Matter, *Phys. Lett.* B 747 (2015) 331 [arXiv:1412.8378] [SPIRE].

[37] J. Redondo, ATLAS of solar hidden photon emission, *JCAP* 07 (2015) 024 [arXiv:1501.07292] [SPIRE].

[38] M. Ahlers, J. Jaeckel, J. Redondo and A. Ringwald, Probing Hidden Sector Photons through the Higgs Window, *Phys. Rev.* D 78 (2008) 075005 [arXiv:0807.4143] [SPIRE].

[39] B.A. Dobrescu, Massless gauge bosons other than the photon, *Phys. Rev. Lett.* 94 (2005) 151802 [hep-ph/0411004] [SPIRE].

[40] S. Hoffmann, Paraphotons and Axions: Similarities in Stellar Emission and Detection, *Phys. Lett.* B 193 (1987) 117 [SPIRE].

[41] G.G. Raffelt, Stars as laboratories for fundamental physics: the astrophysics of neutrinos, axions, and other weakly interacting particles, Chicago University Press, Chicago U.S.A. (1996).

[42] D. Lauterborn, S. Refsdal and A. Weigert, Stars with Central Helium Burning and the Occurrence of Loops in the H-R Diagram, *Astron. Astrophys.* 10 (1971) 97 [SPIRE].

[43] A. Friedland, M. Giannotti and M. Wise, Constraining the Axion-Photon Coupling with Massive Stars, *Phys. Rev. Lett.* 110 (2013) 061101 [arXiv:1210.1271] [SPIRE].

[44] G. Carosi, A. Friedland, M. Giannotti, M.J. Pivovaroff, J. Ruz and J.K. Vogel, Probing the axion-photon coupling: phenomenological and experimental perspectives. A snowmass white paper, arXiv:1309.7035 [SPIRE].

[45] M. Giannotti, Stellar Evolution Bounds on the ALP-Photon Coupling: new Results and Perspectives, arXiv:1409.7981 [SPIRE].

[46] W.C.G. Ho and C.O. Heinke, A Neutron Star with a Carbon Atmosphere in the Cassiopeia A Supernova Remnant, *Nature* 462 (2009) 71 [arXiv:0911.0672] [SPIRE].

[47] C.O. Heinke and W.C.G. Ho, Direct Observation of the Cooling of the Cassiopeia A Neutron Star, *Astrophys. J.* 719 (2010) L167 [arXiv:1007.4719] [SPIRE].

[48] R. Bähre et al., *Any light particle search II — Technical Design Report, 2013 JINST* 8 T09001 [arXiv:1302.5647] [SPIRE].

[49] I.G. Irastorza et al., Towards a new generation axion helioscope, *JCAP* 06 (2011) 013 [arXiv:1103.5334] [SPIRE].

[50] E. Armengaud et al., Conceptual Design of the International Axion Observatory (IAXO), 2014 *JINST* 9 T05002 [arXiv:1401.3233] [SPIRE].
[51] J.K. Vogel et al., The Next Generation of Axion Helioscopes: The International Axion Observatory (IAXO), Phys. Procedia 61 (2015) 193 [arXiv:1507.05665] [SPIRE].

[52] B.M.S. Hansen, H. Richer, J. Kalirai, R. Goldsbury, S. Frewen and J. Heyl, Constraining Neutrino Cooling using the Hot White Dwarf Luminosity Function in the Globular Cluster 47 Tucanae, Astrophys. J. 809 (2015) 141 [arXiv:1507.05665] [SPIRE].

[53] L. Mestel, On the theory of white dwarf stars. I. The energy sources of white dwarfs, Mon. Not. Roy. Astron. Soc. 112 (1952) 583.

[54] S.L. Shapiro and S.A. Teukolsky, Black holes, white dwarfs, and neutron stars: The physics of compact objects, Wiley, New York U.S.A. (1983).

[55] M. Haft, G. Raffelt and A. Weiss, Standard and nonstandard plasma neutrino emission revisited, Astrophys. J. 425 (1994) 222 [Erratum ibid. 438 (1995) 1017] [astro-ph/9309014] [SPIRE].

[56] J. Isern, E. Garcia-Berro, S. Torres and S. Catalan, Axions and the cooling of white dwarf stars, Astrophys. J. 682 (2008) L109 [arXiv:0806.2807] [SPIRE].

[57] A. Heger, A. Friedland, M. Giannotti and V. Cirigliano, The Impact of Neutrino Magnetic Moments on the Evolution of Massive Stars, Astrophys. J. 696 (2009) 608 [arXiv:0809.4703] [SPIRE].

[58] S. Davidson, S. Hannestad and G. Raffelt, Updated bounds on millicharged particles, JHEP 05 (2000) 003 [hep-ph/0001179] [SPIRE].

[59] N. Vinyoles and H. Vogel, Minicharged Particles from the Sun: A Cutting-Edge Bound, JCAP 03 (2016) 002 [arXiv:1511.01122] [SPIRE].

[60] H.K. Dreiner, J.-F. Fortin, J. Isern and L. Ubaldi, White Dwarfs constrain Dark Forces, Phys. Rev. D 88 (2013) 043517 [arXiv:1303.7232] [SPIRE].

[61] H.K. Dreiner, J.-F. Fortin, C. Hanhart and L. Ubaldi, Supernova constraints on MeV dark sectors from $e^+e^−$ annihilations, Phys. Rev. D 89 (2014) 105015 [arXiv:1310.3826] [SPIRE].

[62] M. Schwarz et al., Results from the Solar Hidden Photon Search (SHIPS), JCAP 08 (2015) 011 [arXiv:1502.04490] [SPIRE].

[63] P. Luciano, C. Sergio and S. Oscar, The effects of rotation on the s-process nucleosynthesis in Asymptotic Giant Branch stars, Astrophys. J. 774 (2013) 98 [arXiv:1307.2017] [SPIRE].

[64] O. Straniero, R. Gallino and S. Cristallo, s-Process in low-mass asymptotic giant branch stars, Nucl. Phys. A 777 (2006) 311 [astro-ph/0501405] [SPIRE].

[65] P. Arias, D. Cadamuro, M. Goodsell, J. Jaeckel, J. Redondo and A. Ringwald, WISPy Cold Dark Matter, JCAP 06 (2012) 013 [arXiv:1201.5902] [SPIRE].

[66] A. De Angelis, M. Roncadelli and O. Mansutti, Evidence for a new light spin-zero boson from cosmological gamma-ray propagation?, Phys. Rev. D 76 (2007) 121301 [arXiv:0707.4312] [SPIRE].

[67] D. Horns and M. Meyer, Indications for a pair-production anomaly from the propagation of VHE gamma-rays, JCAP 02 (2012) 033 [arXiv:1201.4711] [SPIRE].
[71] M. Meyer, D. Horns and M. Raue, *First lower limits on the photon-axion-like particle coupling from very high energy gamma-ray observations*, Phys. Rev. D 87 (2013) 035027 [arXiv:1302.1208] [SPIRE].

[72] G. Galanti, M. Roncadelli, A. De Angelis and G.F. Bignami, *Advantages of axion-like particles for the description of very-high-energy blazar spectra*, arXiv:1503.04436 [SPIRE].

[73] A. Payez, C. Evoli, T. Fischer, M. Giannotti, A. Mirizzi and A. Ringwald, *Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles*, JCAP 02 (2015) 006 [arXiv:1410.3747] [SPIRE].

[74] V.D. Rusov, M.V. Eingorn, I.V. Sharph, V.P. Smolyar and M.E. Beglaryan, *Thermomagnetic Ettingshausen-Nernst effect in tachocline and axion mechanism of Sun luminosity*, arXiv:1508.03836 [SPIRE].

[75] O. Straniero, *Axion-Photon Coupling: Astrophysical Constraints*, in proceedings of the 11th Patras Workshop on Axions, WIMPs and WISPs (PATRAS2015), Zaragoza, Spain, 22–26 June 2015, DESY-PROC-2015-02.

[76] I.G. Irastorza, J. Redondo, J.M. Carmona, S. Cebrian, T. Dafni, F.J. Iguaz and G. Luzon eds., *Proceedings of the 11th “Patras” Workshop on Axions, WIMPs and WISPs (PATRAS2015)*, Zaragoza, Spain, 22–26 June 2015, DESY-PROC-2015-02.

[77] S. Aoyama and T.K. Suzuki, *Effects of axions on Nucleosynthesis in massive stars*, Phys. Rev. D 92 (2015) 063016 [arXiv:1502.02357] [SPIRE].

[78] J. Keller and A. Sedrakian, *Axions from cooling compact stars*, Nucl. Phys. A 897 (2013) 62 [arXiv:1205.6940] [SPIRE].

[79] A. Sedrakian, *Axion cooling of neutron stars*, Phys. Rev. D 93 (2016) 065044 [arXiv:1512.07828] [SPIRE].

[80] J. Redondo, *Axions at the International AXion Observatory*, in proceedings of the 11th Patras Workshop on Axions, WIMPs and WISPs (PATRAS2015), Zaragoza, Spain, 22–26 June 2015, DESY-PROC-2015-02.

[81] M. Nakagawa, Y. Kohyama and N. Itoh, *Axion Bremsstrahlung in Dense Stars*, Astrophys. J. 322 (1987) 291 [SPIRE].

[82] D. Dearborn, G. Raffelt, P. Salati, J. Silk and A. Bouquet, *Dark Matter and Thermal Pulses in Horizontal Branch Stars*, Astrophys. J. 354 (1990) 568 [SPIRE].

[83] J. Redondo, *Solar axion flux from the axion-electron coupling*, JCAP 12 (2013) 008 [arXiv:1310.0823] [SPIRE].

[84] A. Buzzoni et al., *Helium abundance in globular clusters: The R-method*, Astron. Astrophys. 128 (1983) 94.

[85] G.G. Raffelt, *Core Mass at the Helium Flash From Observations and a New Bound on Neutrino Electromagnetic Properties*, Astrophys. J. 365 (1990) 559 [SPIRE].

[86] M. Cicoli, M. Goodsell and A. Ringwald, *The type IIB string axiverse and its low-energy phenomenology*, JHEP 10 (2012) 146 [arXiv:1206.0819] [SPIRE].

[87] A. Ringwald and K. Saikawa, *Axion dark matter in the post-inflationary Peccei-Quinn symmetry breaking scenario*, Phys. Rev. D 93 (2016) 085031 [arXiv:1512.06436] [SPIRE].