FEKETE-SZEGÖ INEQUALITY OF BI-STARLIKE AND BI-CONVEX FUNCTIONS OF ORDER b ASSOCIATED WITH SYMMETRIC q-DERIVATIVE IN CONIC DOMAINS

R. B. SHARMA, K. RAJYA LAXMI AND N. MAGESH

Abstract. In this paper, two new subclasses of bi-univalent functions related to conic domains are defined by making use of symmetric q-differential operator. The initial bounds for Fekete-Szegö inequality for the functions f in these classes are estimated.

1. Introduction

Let A denotes the set of all functions which are analytic in the unit disc $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ with Taylor’s series expansion of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are normalized by $f(0) = 0$, $f'(0) = 1$.

The subclass of A consisting of all univalent functions is denoted by S. That is

$$S = \{f \in A : f \text{ is univalent in } \Delta\}.$$

A function $f \in A$ is said to be a starlike function if

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > 0, \ z \in \Delta.$$

A function $f \in A$ is said to be a convex function if

$$\Re\left(1 + \frac{zf''(z)}{f'(z)}\right) > 0, \ z \in \Delta.$$

Goodman [8–10] introduced the classes uniformly starlike and uniformly convex functions as subclasses of starlike and convex functions. A starlike function (or convex function) is said to be uniformly starlike (or uniformly convex) if the image of every circular arc ζ contained in Δ, with center at ξ also in Δ is starlike (or convex) with respect to $f(\xi)$. The class of uniformly starlike functions is represented by UST and the class of uniformly convex functions is represented by UCV. The class of parabolic starlike functions is represented by S_p. Rønning [22] and Minda [16,17] independently gave the characterization for the classes S_p and UCV as follows.

A function $f \in A$ is said to be in the class S_p if and only if

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > \left|\frac{zf'(z)}{f(z)} - 1\right|, \ z \in \Delta.$$

2010 Mathematics Subject Classification. Primary 30C45, 30C50.

Key words and phrases. Analytic function, Bi-univalent function, Bi-starlike function, Bi-convex function, Conic domain, q-differential operator, Fekete-Szegö inequality.

* Corresponding author.
A function \(f \in \mathcal{A} \) is said to be in the class \(UCV \) if and only if
\[
\Re \left(1 + \frac{zf''(z)}{f'(z)} \right) > k \left| \frac{zf''(z)}{f'(z)} \right|, \quad z \in \Delta.
\]

Also, it is clear that \(f \in UCV \iff zf'(z) \in S_p \).

Kanas and Wisniowska [13, 14] introduced \(k \)-uniformly starlike functions and \(k \)-uniformly convex functions as follows.
\[
k - ST = \left\{ f : f \in S \text{ and } \Re \left(\frac{zf'(z)}{f(z)} \right) > k \left| \frac{zf'(z)}{f(z)} - 1 \right|, z \in \Delta, k \geq 0 \right\}
\]
\[
k - UCV = \left\{ f : f \in S \text{ and } \Re \left(1 + \frac{zf'(z)}{f(z)} \right) > k \left| \frac{zf''(z)}{f'(z)} \right|, z \in \Delta, k \geq 0 \right\}.
\]

Bharati, et al. [6], defined \(k - ST(\beta) \) and \(k - UCV(\beta) \) as follows. A function \(f \in \mathcal{A} \) is said to be in the class \(k - ST(\beta) \) if and only if
\[
\Re \left(\frac{zf'(z)}{f(z)} \right) - \beta > k \left| \frac{zf'(z)}{f(z)} - 1 \right|, \quad z \in \Delta.
\]

A function \(f \in \mathcal{A} \) is said to be in the class \(k - UCV(\beta) \) if and only if
\[
\Re \left(1 + \frac{zf''(z)}{f'(z)} \right) - \beta > k \left| \frac{zf''(z)}{f'(z)} \right|, \quad z \in \Delta.
\]

Sim et al. [24], generalized above classes and introduced \(k - ST(\alpha, \beta) \) and \(k - UCV(\alpha, \beta) \) as below.

Definition 1. A function \(f \in \mathcal{A} \) is said to be in the class \(k - ST(\alpha, \beta) \) if and only if
\[
\Re \left\{ \frac{zf'(z)}{f(z)} \right\} - \beta > k \left| \frac{zf'(z)}{f(z)} - \alpha \right|, \quad z \in \Delta,
\]
where \(0 \leq \beta < \alpha \leq 1 \) and \(k(1 - \alpha) < 1 - \beta \).

Definition 2. A function \(f \in \mathcal{A} \) is said to be in the class \(k - UCV(\alpha, \beta) \) if and only if
\[
\Re \left(1 + \frac{zf''(z)}{f'(z)} \right) - \beta > k \left| 1 + \frac{zf''(z)}{f'(z)} - \alpha \right|, \quad z \in \Delta.
\]
where \(0 \leq \beta < \alpha \leq 1 \) and \(k(1 - \alpha) < 1 - \beta \).

In particular, for \(\alpha = 1, \beta = 0 \) the classes \(k - ST(\alpha, \beta) \) and \(k - UCV(\alpha, \beta) \) reduces to \(k - ST \) and \(k - UCV \) respectively. Further, for \(\alpha = 1 \) these classes coincides with the classes studied by Nishiwaki et al. [18] and Shams et al. [23]. In 2017, Annamalai et al. [5], obtained second Hankel determinant of analytic functions involving conic domains.

Geometric Interpretation: A function \(f \in k - ST(\alpha, \beta) \) and \(k - UCV(\alpha, \beta) \) if and only if \(z \frac{f'(z)}{f(z)} \) and \(1 + z \frac{f''(z)}{f'(z)} \), respectively takes all the values in the conic domain \(\Omega_{k, \alpha, \beta} \).

\[
\Omega_{k, \alpha, \beta} = \{ \omega: \omega \in \mathbb{C} \text{ and } k|\omega - \alpha| < \Re(\omega) - \beta \}
\]
or
\[
\Omega_{k, \alpha, \beta} = \{ \omega: \omega \in \mathbb{C} \text{ and } k\sqrt[4]{|\Re(\omega) - \alpha|^2 + |\Im(\omega)|^2} < \Re(\omega) - \beta \},
\]
where $0 \leq \beta < \alpha \leq 1$ and $k(1 - \alpha) < 1 - \beta$. Clearly $1 \in \Omega_k, \alpha, \beta$ and Ω_k, α, β is bounded by the curve

$$\partial \Omega_k, \alpha, \beta = \{ \omega : \omega = u + iv \text{ and } k^2(u - \alpha)^2 + k^2v^2 = (u - \beta)^2 \}.$$

Definition 3. The Caratheodory functions $p \in P$ is said to be in the class $\mathcal{P}(p_k, \alpha, \beta)$ if and only if p takes all the values in the conic domain Ω_k, α, β. Analytically it is defined as follows:

$$\mathcal{P}(p_k, \alpha, \beta) = \{ p : p \in \mathcal{P} \text{ and } p(\Delta) \subset \Omega_k, \alpha, \beta \},$$

$$\mathcal{P}(p_k, \alpha, \beta) = \{ p : p \in \mathcal{P} \text{ and } p(z) < p_k, \alpha, \beta, z \in \Delta \}.$$

Note that $\partial \Omega_k, \alpha, \beta$ represents conic section about real axis. In particular, Ω_k, α, β represents an elliptic domain for $k > 1$, parabolic domain for $k = 1$, hyperbolic domain for $0 < k < 1$. Sim et al. [24] obtained the functions $p_k, \alpha, \beta(z)$ which play the role of extremal functions of $\mathcal{P}(p_k, \alpha, \beta)$ as

$$p_k, \alpha, \beta(z) = \left\{ \begin{array}{ll} 1 + (1 - 2\beta)z, & \text{for } k = 0; \\ \frac{1 - z}{\alpha + \frac{2(\alpha - \beta)}{\pi^2}\log^2\left(1 + \frac{\sqrt{u_k(z)}}{1 - \sqrt{u_k(z)}}\right)}, & \text{for } k = 1; \\ \frac{(\alpha - \beta)}{1 - k^2}\cosh\{u(k)\log\left(\frac{1 + \sqrt{u_k(z)}}{1 - \sqrt{u_k(z)}}\right)\} + \frac{\beta - \alpha k^2}{1 - k^2}, & \text{for } 0 < k < 1; \\ \frac{(\alpha - \beta)}{k^2 - 1}\sin^2\left(\frac{\pi}{2K(k)}\int_0^\omega dt\right) + \frac{\alpha k^2 - \beta}{k^2 - 1}, & \text{for } k > 1; \end{array}\right.$$

where $u(k) = \frac{2}{\pi}\cos^{-1}k$, $u_k(z) = \frac{z + \rho_k}{1 + \rho_k z}$ and

$$\rho_k = \left\{ \begin{array}{ll} \frac{(e^A - 1)^2}{(e^A + 1)^2}, & \text{for } k = 1; \\ \exp\left(-\frac{1}{u_k(z)}\arccosh B\right) - 1, & \text{for } 0 < k < 1; \\ \exp\left(-\frac{1}{u_k(z)}\arccosh B\right) + 1, & \text{for } k > 1; \end{array}\right.$$

with $A = \sqrt{\frac{1 - \alpha}{2(\alpha - \beta)}}, B = \frac{1}{\alpha - \beta}(1 - k^2 - \beta + \alpha k^2)$, $C = \frac{1}{\alpha - \beta}(k^2 - 1 + \beta - \alpha k^2)$. Also

$$K(k) = \frac{\pi}{\sqrt{1 - t^2}K(1 - t^2)},$$

$$K'(\kappa) = K(\sqrt{1 - \kappa^2}),$$

$$\kappa = \cosh\left(\frac{\pi K'(\kappa)}{4K(k)}\right).$$

According to Koebe’s $\frac{1}{4}$ theorem, every analytic and univalent function f in Δ has an inverse f^{-1} and is defined as

$$f^{-1}(f(z)) = z, (z \in \Delta), f(f^{-1}(w)) = w\left(|w| < r_0(f); r_0(f) \geq \frac{1}{4}\right).$$
Also the function f^{-1} can be written as

$$f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \ldots.$$ (1.6)

Definition 4. A function $f \in \mathcal{A}$ is said to be bi-univalent if both f and analytic extension of f^{-1} in Δ are univalent in Δ. The class of all bi-univalent functions is denoted by Σ. That is a function f is said to be bi-univalent if and only if

1. f is an analytic and univalent function in Δ.
2. There exists an analytic and univalent function g in Δ such that $f(g(z)) = g(f(z)) = z$ in Δ.

The class of bi-univalent functions was introduced by Lewin [15] in 1967. Recently many researchers ([1], [4], [12], [19], [20], [25], [26], [27], [28], [29], [30], [31], [32]) have introduced and investigated several interesting subclasses of the bi-univalent functions and they have found non-sharp estimates of two Taylor-Maclaurin coefficients $|a_2|, |a_3|$, Fekete-Szegö inequality and second Hankel determinants. In 2017, Şahsene Altinkaya, Sibel Yalçın [2], [3] estimated the coefficients and Fekete-Szegö inequality for some subclasses of bi-univalent functions involving symmetric q-derivative operator subordinate to the generating function of Chebyshev polynomial.

Definition 5. [11] Jackson defined q-derivative operator D_q of an analytic function f of the form (1.1) as follows:

$$D_qf(z) = \begin{cases} \frac{f(qz) - f(z)}{(q-1)z}, & \text{for } z \neq 0, \\ f'(0), & \text{for } z = 0 \end{cases}$$

$$D_qf(0) = f'(0) \text{ and } D_q^2 = D_q(D_qf(z)).$$

If $f(z) = z^n$ for any positive integer n, the q-derivative of $f(z)$ is defined by

$$D_qz^n = \frac{(q^nz^n - z^n)}{qz - z} = [n]_q z^{n-1},$$

where $[n]_q = \frac{q^n - 1}{q - 1}$. As $q \to 1^-$ and $k \in \mathbb{N}$, we have $[n]_q \to n$ and $\lim_{q \to 1}(D_qf(z)) = f'(z)$ where f' is normal derivative of f. Therefore

$$D_qf(z) = 1 + \sum_{n=2}^{\infty} [n]_q a_n z^{n-1}.$$ (1.1)

Definition 6. [7] The symmetric q-derivative operator \tilde{D}_q of an analytic function f is defined as follows:

$$\tilde{D}_qf(z) = \begin{cases} \frac{f(qz) - f(q^{-1}z)}{(q - q^{-1})z}, & \text{for } z \neq 0, \\ f'(0), & \text{for } z = 0 \end{cases}.$$ (1.2)

It is clear that $\tilde{D}_qz^n = [n]_q z^{n-1}$ and $\tilde{D}_qf(z) = 1 + \sum_{n=2}^{\infty} [n]_q a_n z^{n-1}$, where $[n]_q = \frac{q^n - q^{-n}}{q - q^{-1}}$. The relation between q-derivative operator and symmetric q-derivative operator is given by

$$(\tilde{D}_qf)(z) = D_q^2 f(q^{-1}z).$$
If \(g \) is the inverse of \(f \) then

\[
\tilde{(D_q g)}(w) = \frac{g(qw) - g(q^{-1}w)}{(q - q^{-1})w} = 1 - [2]_q a_2 w + [3]_q (2a_2^2 - a_3)w^2 - [4]_q (5a_2^3 - 5a_2a_3 + a_4)w^3 + \ldots
\]

The \(q \)-calculus has so many applications in various branches of mathematics and physics. Jackson [11] developed \(q \)-integral and \(q \)-derivative in a systematic way. The fractional \(q \)-calculus is an important tool used to study various families of analytic functions. In recent years, several subclasses of analytic functions involving fractional \(q \)-integral and fractional \(q \)-derivative operators were constructed and coefficient inequality, Fekete-Szegö inequality and Hankel determinant were estimated for the functions in these classes.

Motivated by the above mentioned work, in this paper, bi-starlike functions of order \(b \) and bi-convex functions of order \(k \) involving \(q \)-derivative operator subordinate to the conic domains are defined and the Fekete-Szegö inequality for the function in these classes are obtained.

Definition 7. A function \(f \in \Sigma \) is said to be in the class \(k-ST_{\Sigma, b}(\alpha, \beta) \); where \(0 \leq \beta < \alpha \leq 1 \) and \(k(1 - \alpha) < 1 - \beta \), and \(b \) is a non-zero complex number, if it satisfies the following conditions:

\[
1 + \frac{1}{b} \left[\frac{z\tilde{D}_q f(z)}{f(z)} - 1 \right] < p_k, \alpha, \beta(z) \quad \text{and} \quad 1 + \frac{1}{b} \left[\frac{w\tilde{D}_q g(w)}{g(w)} - 1 \right] < p_k, \alpha, \beta(w)
\]

where \(g \) is an extension of \(f^{-1} \) to \(\Delta \).

Definition 8. A function \(f \in \Sigma \) is said to be in the class \(k-UCV_{\Sigma, b}(\alpha, \beta) \); where \(0 \leq \beta < \alpha \leq 1 \) and \(k(1 - \alpha) < 1 - \beta \), and \(b \) is a non-zero complex number, if it satisfies the following conditions:

\[
1 + \frac{1}{b} \left[\frac{z\tilde{D}_q(\tilde{D}_q f(z))}{\tilde{D}_q(f(z))} \right] < p_k, \alpha, \beta(z) \quad \text{and} \quad 1 + \frac{1}{b} \left[\frac{w\tilde{D}_q(\tilde{D}_q g(w))}{\tilde{D}_q(g(w))} \right] < p_k, \alpha, \beta(w)
\]

where \(g \) is an extension of \(f^{-1} \) to \(\Delta \).

2. **Main Results**

In this section, Fekete-Szegö inequality for the functions in the \(f \) classes \(k-ST_{\Sigma, b}(\alpha, \beta) \) and \(k-UCV_{\Sigma, b}(\alpha, \beta) \) are estimated.

Theorem 1. If \(f \in k-ST_{\Sigma, b}(\alpha, \beta) \) and is of the form (1.1) then

\[
|a_2| \leq \frac{P_1 \sqrt{P_1} b^2}{\sqrt{[P_1 b([3]_q - [2]_q) + 2(P_1 - P_2)([2]_q - 1)^2]}} \quad \text{and} \quad |a_3| \leq \frac{b^2 P_1}{([2]_q - 1)^2} + \frac{b P_1}{([3]_q - 1)}
\]

and

\[
|a_3 - \mu a_2^2| \leq \begin{cases} \frac{P_1 b}{([3]_q - 1)} & \text{if } 0 \leq |s(\mu)| \leq 1 \\ \frac{P_1 |s(\mu)|}{([3]_q - 1)} & \text{if } |s(\mu)| \geq 1, \end{cases}
\]

where

\[
s(\mu) = \frac{P_1 b (1 - \mu)}{4([P_1 b([3]_q - [2]_q) + 2(P_1 - P_2)([2]_q - 1)^2])}.
\]
\textbf{Proof.} Let $f \in k - ST_{\Sigma, b}(\alpha, \beta)$ and g be an analytic extension of f^{-1} in Δ. Then there exist two Schwarz functions u, v in Δ such that

\begin{equation}
1 + \frac{1}{b} \left[\frac{z \tilde{D}_q f(z)}{f(z)} - 1 \right] = P_{k, \alpha, \beta}(u(z)),
\end{equation}
\begin{equation}
1 + \frac{1}{b} \left[\frac{w \tilde{D}_q g(w)}{g(w)} - 1 \right] = P_{k, \alpha, \beta}(v(w)).
\end{equation}

Define two functions $h, q \in P$ such that

$$h(z) = \frac{1 + u(z)}{1 - u(z)} = 1 + h_1 z + h_2 z^2 + h_3 z^3 + \ldots$$

and

$$q(w) = \frac{1 + v(w)}{1 - v(w)} = 1 + q_1 w + q_2 w^2 + q_3 w^3 + \ldots$$

Then

\begin{align*}
P_{k, \alpha, \beta} \left(\frac{h(z) - 1}{h(z) + 1} \right) &= 1 + \frac{P_1 h_1 z}{2} + \left(\frac{P_1}{2} h_2 - \frac{h_1^2}{4} + \frac{P_2 h_1^2}{4} \right) z^2 \\
&+ \left(\frac{P_1}{2} \left(\frac{h_3}{4} - h_1 h_2 + h_3 \right) + \frac{P_2}{4} (2h_1 h_2 - h_1^3) + \frac{P_3}{8} h_1^3 \right) z^3 + \ldots \\
P_{k, \alpha, \beta} \left(\frac{v(w) - 1}{v(w) + 1} \right) &= 1 + \frac{P_1 q_1 w}{2} + \left(\frac{P_1}{2} q_2 - \frac{q_1^2}{4} + \frac{P_2 q_1^2}{4} \right) w^2 \\
&+ \left(\frac{P_1}{2} \left(\frac{q_3}{4} - q_1 q_2 + q_3 \right) + \frac{P_2}{4} (2q_1 q_2 - q_1^3) + \frac{P_3}{8} q_1^3 \right) w^3 + \ldots.
\end{align*}

Then the above equations become

\begin{align}
1 + \frac{1}{b} \left[\frac{z \tilde{D}_q f(z)}{f(z)} - 1 \right] &= P_{k, \alpha, \beta} \left(\frac{h(z) - 1}{h(z) + 1} \right), \\
1 + \frac{1}{b} \left[\frac{w \tilde{D}_q g(w)}{g(w)} - 1 \right] &= P_{k, \alpha, \beta} \left(\frac{v(w) - 1}{v(w) + 1} \right).
\end{align}

Comparing the coefficients of similar powers of z in equations (2.5) and (2.6), we get

\begin{align}
\frac{1}{b} \left([2]_q - 1 \right) a_2 &= \frac{P_1 h_1}{2}, \\
\frac{1}{b} \left([3]_q - 1 \right) a_3 - ([2]_q - 1) a_2^2 &= \frac{P_1}{2} (h_2 - \frac{h_1^2}{4} + \frac{P_2 h_1^2}{4},
\end{align}

and

\begin{align}
-\frac{1}{b} \left([2]_q - 1 \right) a_2 &= \frac{P_1 q_1}{2}, \\
\frac{1}{b} \left([3]_q - 1 \right) (2a_2 - a_3) - ([2]_q - 1) a_2^2 &= \frac{P_1}{2} (q_2 - \frac{q_1^2}{2} + \frac{P_2 q_1^2}{4}.
\end{align}

From the equations (2.5) and (2.7)

\begin{equation}
h_1 = -q_1.
\end{equation}
Now squaring and adding the equations (2.5) from (2.7), we get
\[h_1^2 + q_1^2 = \frac{8(\tilde{[2]}_q - 1)^2 a_2^2}{P_1^2 b^2}. \]
(2.10)

Now adding (2.6) and (2.8), use the equation (2.10), one can get
\[a_2^2 = \frac{P_1^3(h_2 + q_2)b^2}{4[P_1^2 b([3]_q - [2]_q) + 2(P_1 - P_2)([2]_q - 1)^2]}. \]
(2.11)

Now subtract the equation (2.8) from (2.6),
\[a_3 = a_2^2 + \frac{bP_1(h_2 - q_2)}{4([3]_q - 1)}. \]
(2.12)

Then using the equation (2.10), we get
\[a_3 = \frac{P_1^3 b^2(h_1^2 + q_1^2)}{8([2]_q - 1)^2} + \frac{bP_1(h_2 - q_2)}{4([3]_q - 1)}. \]
(2.13)

Then using the equations (2.11) and (2.12), we get
\[a_3 - \mu a_2^2 = \frac{bP_1}{4([3]_q - 1)} \left[h_2(1 + s(\mu)) + q_2(-1 + s(\mu)) \right], \]
(2.14)

where
\[s(\mu) = \frac{P_2^2 b(1 - \mu)}{4[P_1^2 b([3]_q - [2]_q) + 2(P_1 - P_2)([2]_q - 1)^2]}. \]

By applying the modulus for the equations (2.11), (2.13) and (2.14), we get the required results.

\[|a_2| \leq \frac{P_1 \sqrt{P_1 b}}{\sqrt{2[2]_q([3]_q - [2]_q)bP_1^2 + [2]_q^2(P_1 - P_2)}} \quad \text{and} \quad |a_3| \leq \frac{P_2^2 b^2}{[2]_q} + \frac{bP_1}{[2]_q [3]_q} \]

and
\[|a_3 - \mu a_2^2| \leq \begin{cases} \frac{P_1 b}{[2]_q [3]_q}, & \text{if } 0 \leq |s(\mu)| \leq 1 \\ \frac{P_2 b |s(\mu)|}{[2]_q [3]_q}, & \text{if } |s(\mu)| \geq 1, \end{cases} \]

where
\[s(\mu) = \frac{P_2^2 b(1 - \mu)}{4[2]_q([3]_q - [2]_q)bP_1^2 + [2]_q^2(P_1 - P_2)}. \]

Theorem 2. If \(f \in k - UCV_{\Sigma, \nu}(\alpha, \beta) \) and is of the form (1.1) then

\[|a_2| \leq \frac{P_1 \sqrt{P_1 b}}{\sqrt{2[2]_q([3]_q - [2]_q)bP_1^2 + [2]_q^2(P_1 - P_2)}} \quad \text{and} \quad |a_3| \leq \frac{P_2^2 b^2}{[2]_q} + \frac{bP_1}{[2]_q [3]_q} \]

and

\[|a_3 - \mu a_2^2| \leq \begin{cases} \frac{P_1 b}{[2]_q [3]_q}, & \text{if } 0 \leq |s(\mu)| \leq 1 \\ \frac{P_2 b |s(\mu)|}{[2]_q [3]_q}, & \text{if } |s(\mu)| \geq 1, \end{cases} \]

where
\[s(\mu) = \frac{P_2^2 b(1 - \mu)}{4[2]_q([3]_q - [2]_q)bP_1^2 + [2]_q^2(P_1 - P_2)}. \]

Proof. If \(f \in k - UCV_{\Sigma, \nu}(\alpha, \beta) \) and \(g \) is an analytic extension of \(f^{-1} \) in \(\Delta \), then there exist two Schwarz functions \(u, v \) in \(\Delta \) such that
\[1 + \frac{1}{b} \left[z\tilde{D}_q(\tilde{D}_q f(z)) \right] = p_{k, \alpha, \beta}(u(z)), \]
(2.15)
Comparing the coefficients of similar powers of \(z \),

\[1 + \frac{1}{b} \left[\frac{w \tilde{D}_q(\tilde{D}_q g(w))}{\tilde{D}_q(g(w))} \right] = p_{k, \alpha, \beta}(v(w)). \]

(2.16)

Define two functions \(h, q \) such that

\[h(z) = \frac{1 + u(z)}{1 - u(z)} = 1 + h_1 z + h_2 z^2 + h_3 z^3 + \ldots \]

and

\[q(w) = \frac{1 + v(w)}{1 - v(w)} = 1 + q_1 w + q_2 w^2 + q_3 w^3 + \ldots . \]

Then

\[P_{k, \alpha, \beta} \left(\frac{h(z)}{h(z) + 1} \right) = 1 + \frac{P_1 h_1 z}{2} + \left(\frac{P_1}{2}(h_2 - \frac{h_1^2}{2}) + \frac{P_2 h_1^2}{4} \right) z^2 \]

\[+ \left(\frac{P_1}{2} \left(\frac{h_3}{4} - h_1 h_2 + h_3 \right) + \frac{P_2}{4}(2h_1 h_2 - h_3) + \frac{P_3}{8} h_1^3 \right) z^3 + \ldots \]

and

\[P_{k, \alpha, \beta} \left(\frac{v(w)}{v(w) + 1} \right) = 1 + \frac{P_1 q_1 w}{2} + \left(\frac{P_1}{2}(q_2 - \frac{q_1^2}{2}) + \frac{P_2 q_1^2}{4} \right) w^2 \]

\[+ \left(\frac{P_1}{2} \left(\frac{q_3}{4} - q_1 q_2 + q_3 \right) + \frac{P_2}{4}(2q_1 q_2 - q_3) + \frac{P_3}{8} q_1^3 \right) w^3 + \ldots \]

Then the above equations reduces to

\[1 + \frac{1}{b} \left[\frac{z \tilde{D}_q(\tilde{D}_q f(z))}{\tilde{D}_q(f(z))} \right] = P_{k, \alpha, \beta} \left(\frac{h(z)}{h(z) + 1} \right), \]

(2.17)

\[1 + \frac{1}{b} \left[\frac{w \tilde{D}_q(\tilde{D}_q g(w))}{\tilde{D}_q(g(w))} \right] = P_{k, \alpha, \beta} \left(\frac{v(w)}{v(w) + 1} \right). \]

(2.18)

Comparing the coefficients of similar powers of \(z \) in equations (2.17) and (2.18)

\[\frac{1}{b} \left[\tilde{a}_q \right] \left[\tilde{a}_q \right] a_2 = \frac{P_1 h_1}{2}, \]

(2.19)

\[\frac{\left[\tilde{a}_q \right] \left[\tilde{a}_q \right] \left[\tilde{a}_q \right] a_3 - \left[\tilde{a}_q \right] \left[\tilde{a}_q \right] a_2^2}{b} = \frac{P_1}{2}(h_2 - \frac{h_1^2}{2}) + \frac{P_2 h_1^2}{4}, \]

(2.20)

and

\[-\frac{1}{b} \left[\tilde{a}_q \right] \left[\tilde{a}_q \right] \left[\tilde{a}_q \right] a_2 = \frac{P_1 q_1}{2}, \]

(2.21)

\[\frac{1}{b} \left[\tilde{a}_q \right] \left[\tilde{a}_q \right] \left[\tilde{a}_q \right] \left(2a_2 - a_3 \right) - \left[\tilde{a}_q \right] \left[\tilde{a}_q \right] \left[\tilde{a}_q \right] a_2^2 = \frac{P_1}{2}(q_2 - \frac{q_1^2}{2}) + \frac{P_2 q_1^2}{4}. \]

(2.22)

From the equations (2.19) and (2.21), we get

\[h_1 = -q_1. \]

(2.23)

Squaring and adding the equations (2.19) from (2.21), we get

\[h_1^2 + q_1^2 = \frac{4 \left[\tilde{a}_q \right] \left[\tilde{a}_q \right] ^2 a_2^2}{P_1^2 b^2}. \]

(2.24)
Adding (2.20) and (2.22), and using the equation (2.24), one can get
\[a_2^2 = \frac{P_1^3(h_2 + q_2)b^2}{4[2]_{q^3}([3]_q - [2]_q)P_1^2 + ([2]_q)^2(P_1 - P_2)}. \] (2.25)
Subtracting the equation (2.22) from (2.20), we get
\[a_3 = a_2^2 + \frac{bP_1(h_2 - q_2)}{4([2]_q[3]_q)}. \] (2.26)
Using the equation (2.24), we obtain
\[a_3 = \frac{P_1^2b^2(h_1^2 + q_1^2)}{8[2]_q^2} + \frac{bP_1(h_2 - q_2)}{4([2]_q[3]_q)}. \] (2.27)
Then using the equations (2.25) and (2.26), we get
\[a_3 - \mu a_2^2 = \frac{bP_1}{4([2]_q[3]_q)} \left[h_2(1 + s(\mu)) + q_2(-1 + s(\mu)) \right], \] (2.28)
where
\[s(\mu) = \frac{bP_1^2(1 - \mu)}{4[2]_{q^3}([3]_q - [2]_q)bP_1^2 + [2]_q^2(P_1 - P_2)^2}. \]
By applying modulus for the equations (2.25), (2.27) and (2.28) on both sides we get the required results. \(\square\)

Acknowledgement: The work presented in this paper is partially supported by DST-FIST-Grant No.SR/FST/MSI-101/2014, dated 14/1/2016.

References

[1] Ş. Altunkaya and S. Yalçın, Upper bound of second Hankel determinant for bi-Bazilevič functions, Mediterr. J. Math. 13 (2016), no. 6, 4081–4090.
[2] Ş. Altunkaya and S. Yalçın, Estimates on coefficients of a general subclass of bi-univalent functions associated with symmetric \(q\)-derivative operator by means of the Chebyshev polynomials, Asia Pacific Journal of Mathematics, Vol.4, no.2 (2017), pp. 9099.
[3] Ş. Altunkaya and S. Yalçın, On the Chebyshev polynomial coefficient problem of some subclasses of bi-univalent functions, Gulf J. Math. 5 (2017), no. 3, 34–40.
[4] R. M. Ali, S. K. Lee, V. Ravichandran, S. Supramanian, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), no. 3, 344–351.
[5] S. Annamalai, S. Sivasubramanian and C. Ramachandran, Hankel determinant for a class of analytic functions involving conical domains defined by subordination, Math. Slovaca 67 (2017), no. 4, 945–956.
[6] R. Bharati, R. Parvatham and A. Swaminathan, On subclasses of uniformly convex functions and corresponding class of starlike functions, Tamkang J. Math. 28 (1997), no. 1, 17–32.
[7] K. Brahimi and Y. Sidomou, On some symmetric \(q\)-special functions, Matematiche (Catania) 68 (2013), no. 2, 107–122.
[8] A. W. Goodman, Univalent functions. Vol. I & II, Mariner Publishing Co., Inc., Tampa, FL, 1983.
[9] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991), no. 1, 87–92.
[10] A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl. 155 (1991), no. 2, 364–370.
[11] F. H. Jackson, On \(q\)-functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46 (1908), 253–281.
[12] J. M. Jahangiri, N. Magesh and J. Yamini, Fekete-Szegő inequalities for classes of bi-starlike and bi-convex functions, Electron. J. Math. Anal. Appl. 3 (2015), no. 1, 133–140.
[13] S. Kanas and A. Wiśniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl. 45 (2000), no. 4, 647–657.

[14] S. Kanas and A. Wiśniowska, Conic regions and \(k \)-uniform convexity, J. Comput. Appl. Math. 105 (1999), no. 1-2, 327–336.

[15] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63–68.

[16] W. C. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math. 57 (1992), no. 2, 165–175.

[17] W. C. Ma and D. Minda, Uniformly convex functions. II, Ann. Polon. Math. 58 (1993), no. 3, 275–285.

[18] J. Nishiwaki and S. Owa, Certain classes of analytic functions concerned with uniformly starlike and convex functions, Appl. Math. Comput. 187 (2007), no. 1, 350–355.

[19] H. Orhan, N. Magesh and V. K. Balaji, Fekete-Szegő problem for certain classes of Ma-Minda bi-univalent functions, Afr. Mat. 27 (2016), no. 5-6, 889–897.

[20] H. Orhan, N. Magesh and J. Yamini, Bounds for the second Hankel determinant of certain bi-univalent functions, Turkish J. Math. 40 (2016), no. 3, 679–687.

[21] R. K. Raina and J. Sokół, On coefficient estimates for a certain class of starlike functions, Hacet. J. Math. Stat. 44 (2015), no. 6, 1427–1433.

[22] F. Rønning, On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 45 (1991), 117–122.

[23] S. Shams, S. R. Kulkarni and J. M. Jahangiri, Classes of uniformly starlike and convex functions, Int. J. Math. Math. Sci. 2004, no. 53-56, 2959–2961.

[24] Y. J. Sim, O. S. Kwon, N. E. Cho, H. M. Srivastava, Some classes of analytic functions associated with conic regions, Taiwanese J. Math. 16 (2012), no. 1, 387–408.

[25] H. M. Srivastava, S. Bulut, M. Çağlar, N. Yaşmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27 (2013), no. 5, 831–842.

[26] H. M. Srivastava, S. S. Eker and R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat 29 (2015), no. 8, 1839–1845.

[27] H. M. Srivastava, S. Gaboury and F. Ghanim, Initial coefficient estimates for some subclasses of \(m \)-fold symmetric bi-univalent functions, Acta Math. Sci. Ser. B (Engl. Ed.) 36 (2016), no. 3, 863–871.

[28] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afr. Mat. 28 (2017), no. 5-6, 693–706.

[29] H. M. Srivastava, A. K. Mishra and P. Goswami, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), no. 10, 1188–1192.

[30] H. M. Srivastava, G. Murugusundaramoorthy, N. Magesh, On certain subclasses of bi-univalent functions associated with Hohlov operator, Global J. Math. Anal. 1 (2013), no. 2, 67–73.

[31] H. Tang, H. M. Srivastava, S. Sivasubramanian and P. Gurusamy, The Fekete-Szegő functional problems for some subclasses of \(m \)-fold symmetric bi-univalent functions, J. Math. Inequal. 10 (2016), no. 4, 1063–1092.

[32] P. Zaprawa, On the Fekete-Szegő problem for classes of bi-univalent functions, Bull. Belg. Math. Soc. Simon Stevin 21 (2014), no. 1, 169–178.