Energy transfer and luminescent properties in Tb$^{3+}$ and Eu$^{3+}$ co-doped CaMoO$_4$/SrMoO$_4$ thin films

Hui Yu1,2, Xinan Shi1,2, Lijian Huang1,2, Xiaojiao Kang3 and Daocheng Pan1,2

1. State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, People’s Republic of China
2. University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
3. School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan 523808, People’s Republic of China

E-mail: pan@ciac.ac.cn

Keywords: rare earth, co-doping, CaMoO$_4$/SrMoO$_4$, energy transfer, solution processed, luminescent thin film

Abstract

A series of Eu$^{3+}$ and Tb$^{3+}$ co-doped CaMoO$_4$/SrMoO$_4$ luminescent thin films were prepared by a facile solution method, and they were annealed at 550 °C for 2 h. The luminescent properties of the thin films were studied, which involve the energy transfer from Tb$^{3+}$ to Eu$^{3+}$. The emission color can be changed from green to red, with increasing Eu$^{3+}$ doping concentration in Tb$^{3+}$-doped CaMoO$_4$/SrMoO$_4$ thin films. In addition, it was observed that the PL intensity of Eu$^{3+}$ will enhance when Tb$^{3+}$ ions are incorporated into Eu$^{3+}$-doped CaMoO$_4$/SrMoO$_4$ thin films. The optical band gaps of the luminescent thin films are found to be in the range of 4.49 to 4.72 eV. These results revealed that Eu$^{3+}$ and Tb$^{3+}$ co-doped CaMoO$_4$/SrMoO$_4$ luminescent thin films have a significantly potential application in electroluminescent devices.

1. Introduction

In the recent years, rare earth ions-doped molybdates have been widely studied due to their excellent chemical, optical, and thermal properties. Rare earth ions doped luminescent materials have abundant emission spectra, because of their 4f orbits with rich energy levels [1–8]. Eu$^{3+}$ and Tb$^{3+}$ are red and green light activator ions, which have been well investigated in many luminescent materials [9–14]. The red and green luminescence of Eu$^{3+}$ and Tb$^{3+}$ ions are owing to the $^5D_0 \rightarrow ^7F_J$ transitions of Eu$^{3+}$ and Tb$^{3+}$ transitions of Tb$^{3+}$. In addition, the energy can be transferred from Tb$^{3+}$ ions to Eu$^{3+}$ ions in Tb$^{3+}$ and Eu$^{3+}$ co-doped CaMoO$_4$ phosphors, which can lead to the emission color change from green to red and the enhancement of luminescence intensity of Eu$^{3+}$ ions [14–25]. CaMoO$_4$ and SrMoO$_4$ crystals are two good host materials for Eu$^{3+}$ and Tb$^{3+}$ ions, owing to their scheelite structure and excellent chemical properties.

The optical band gap of Eu$^{3+}$ and Tb$^{3+}$ co-doped CaMoO$_4$/SrMoO$_4$ luminescent materials are significantly narrower than that of rare earth doped oxides, which means they may be used as the emitting layer in electroluminescent thin film devices. The luminescent thin films have a high potential application in plasma display panel [26], field emission display [27, 28], cathode ray tubes [29]. Therefore, developing an efficient and facile solution approach to deposit highly luminescent rare earth doped CaMoO$_4$/SrMoO$_4$ thin films is desirable. According to the previous reports, numerous methods were adopted to synthesize rare earth doped CaMoO$_4$/SrMoO$_4$ phosphors, such as solid-state reaction [30, 31], sol-gel method [32] and co-precipitation [33], but only few papers were focused on rare earth ions-doped CaMoO$_4$/SrMoO$_4$ thin films. In this work, we developed a facile solution method to fabricate Eu$^{3+}$ and Tb$^{3+}$ co-doped CaMoO$_4$/SrMoO$_4$ luminescent thin films. Their luminescent properties and energy transfer between Tb$^{3+}$ and Eu$^{3+}$ were investigated.
2. Materials and experimental

Ca(NO$_3$)$_2$·4H$_2$O (99%), CH$_3$(CH$_2$)$_2$COOH (99%) and CH$_3$OH (A.R.) were purchased from Beijing Chemical Works. MoO$_3$ (99.9%), Sr(CH$_3$COO)$_2$ (99%), CH$_3$(CH$_2$)$_2$NH$_2$ (99%), Eu(CH$_3$COO)$_3$·3H$_2$O (99.99%), and Tb(CH$_3$COO)$_3$·6H$_2$O (99.99%) were bought from Aladdin Inc.

First, 0.1 mmol MoO$_3$, 0.01 mmol Eu(AC)$_3$, 0.09-x mmol Ca(NO$_3$)$_2$, x mmol Tb(AC)$_3$ (0 ≤ x ≤ 0.01), 2.0 ml of CH$_3$(CH$_2$)$_2$COOH, and 2.0 ml of CH$_3$(CH$_2$)$_2$NH$_2$ were loaded into a glass vial and the mixture was stirred at 140 °C for 1 h. Afterwards, the solution was diluted with 6.0 ml of methanol to obtain Tb$^{3+}$ doped Ca$_{0.9-x}$MoO$_3$: Eu$^{3+}$ Tb$^{3+}$ precursor solution. Next, the thin film was deposited on a quartz substrate by spin-coating the precursor solution at 2000 rpm for 15 s and was sintered at 250 °C for 1 min. Then, the thin film was further annealed at 550 °C.
for 2 h in a furnace. The same procedures were used to fabricate Ca$_{0.97-x}$MoO$_4$: Eu$^{3+}$, Tb$^{3+}$ (0 ≤ x ≤ 0.1), Sr$_{0.85-x}$MoO$_4$: Eu$^{3+}$, Tb$^{3+}$ (0 ≤ x ≤ 0.1), and Sr$_{0.9}$MoO$_4$: Tb$_{0.15}$: Eu$^{3+}$ thin films.

3. Results and discussion

3.1. Photoluminescence (PL) properties

According to the previous reports, the Eu$^{3+}$ and Tb$^{3+}$ doping concentrations meaningfully affect the PL intensity of Eu$^{3+}$, Tb$^{3+}$ co-doped CaMoO$_4$ phosphors [14–25]. Figure 1(a) shows the PL spectra excited at 254 nm of Ca$_{0.97-x}$MoO$_4$: Eu$^{3+}$, Tb$^{3+}$ thin films with different Tb$^{3+}$ doping concentrations from 0 to 10 mol%. It should be noted that the thin films were annealed at same conditions. In emission spectra of Ca$_{0.97-x}$MoO$_4$: Eu$^{3+}$, Tb$^{3+}$ thin films, the emission peaks are attributed to the transition of Eu$^{3+}$ ions from 5D_0 to 7F_x, $x = 0, 1, 2, 3, 4$ levels, which locate at 545, 594, 616, 656, and 704 nm, respectively [34, 35]. But it was observed that the PL intensity at 616 nm (Eu$^{3+}$: from 3D_0 to 7F_2) firstly increases and then decreases with the increase of Tb$^{3+}$ doping concentration, indicating the existence of the energy-transfer from Tb$^{3+}$ to Eu$^{3+}$. We found that the optimal composition (the highest PL intensity) is Ca$_{0.97}$MoO$_4$: Eu$_{0.07}$, Tb$_{0.03}$. Under the irradiation of UV254 light, the emission colors of the thin films can be changed from red to orange with the increase of Tb$^{3+}$ doping concentration, as shown in figure 1(b).

For Ca$_{0.97-x}$MoO$_4$: Tb$_{0.03}$, Eu$^{3+}$ thin films, the energy transfer from Tb$^{3+}$ to Eu$^{3+}$ is more obvious. Figure 1(c) shows a series of PL spectra for Ca$_{0.97-x}$MoO$_4$: Tb$_{0.03}$, Eu$^{3+}$ thin films with different Eu$^{3+}$ doping concentrations (0 ≤ x ≤ 0.1). The Eu$^{3+}$ doped Ca$_{0.97-x}$MoO$_4$: Tb$_{0.03}$, Eu$^{3+}$ thin films were all annealed at 550 °C for 2 h. The PL characteristic peaks of Tb$^{3+}$ ions at 492, 546, 586, and 621 nm can be clearly observed for Eu-free Ca$_{0.97}$MoO$_4$: Tb$_{0.03}$ thin film, which are owing to 7D_4 to $^7F_{J}$ (J = 6, 5, 4, 3) f–f transitions of Tb$^{3+}$ ions [36, 37]. However, the PL characteristic peaks of Eu$^{3+}$ ions at 616, 656, and 704 nm appear in PL spectra when Eu$^{3+}$ ions were doped into Ca$_{0.97-x}$MoO$_4$: Tb$_{0.03}$, Eu$^{3+}$ thin films. Meanwhile, it was found that the PL intensities of Tb$^{3+}$ ions dramatically decrease when a tiny amount of Eu$^{3+}$ ions were doped into Ca$_{0.97-x}$MoO$_4$: Tb$_{0.03}$, Eu$^{3+}$ thin films, indicating that the energy transfer from Tb$^{3+}$ to Eu$^{3+}$ occurs. In addition, it was revealed that the PL intensities of Eu$^{3+}$ ions firstly increase and then decrease, with increasing Eu$^{3+}$ doping concentrations from 0 to 10 mol%. We found that the Ca$_{0.96}$MoO$_4$: Tb$_{0.03}$, Eu$^{3+}$ thin film has the
strongest PL intensity. Their emission colors can be tuned from green to red by changing the Eu$^{3+}$ doping concentration in Ca$_{0.97-x}$MoO$_4$: Eu$^{3+}$, Tb$^{3+}$ thin films, as shown in figure 1(d). Apart from Tb$^{3+}$ and Eu$^{3+}$ characteristic emission peaks, a broad emission peak at around 400 nm was observed, which can be ascribed to the oxygen vacancy-related intrinsic defects.

Apart from CaMoO$_4$ host, the luminescent properties and energy transfer were also investigated for Tb$^{3+}$ and Eu$^{3+}$ ions co-doped SrMoO$_4$ thin films. The PL spectra of Sr$_{0.85-x}$MoO$_4$: Eu$^{3+}$, Tb$^{3+}$ (0 ≤ x ≤ 0.1) thin films are showed in figure 2(a), which were excited at 254 nm. The emission spectra of Tb$^{3+}$ doped Sr$_{0.85-x}$MoO$_4$: Eu$^{3+}$, Tb$^{3+}$ thin films are similar to those of Tb$^{3+}$ doped Ca$_{0.9-x}$MoO$_4$: Eu$^{3+}$, Tb$^{3+}$ thin films. The changing trends of PL intensity and color of Sr$_{0.85-x}$MoO$_4$: Eu$^{3+}$, Tb$^{3+}$ thin films are the same with those of Ca$_{0.9}$MoO$_4$: Eu$^{3+}$, Tb$^{3+}$ thin films with increasing the Tb$^{3+}$ concentration. For Sr$_{0.85-x}$MoO$_4$: Eu$^{3+}$, Tb$^{3+}$ thin films, the strongest luminescence was achieved for Sr$_{0.76}$MoO$_4$: Eu$^{3+}$, Tb$^{3+}$ thin film, as shown in figures 2(a) and (b).

Additionally, the energy transfer from Tb$^{3+}$ and Eu$^{3+}$ ions was studied by changing the Eu doping concentration in Sr$_{0.85-x}$MoO$_4$: Tb$^{3+}$, Eu$^{3+}$ (0 ≤ x ≤ 0.1) thin films. As shown in figure 2(c), the PL peaks of Tb$^{3+}$ ions gradually decrease with increasing Eu$^{3+}$ doping concentration in Sr$_{0.85-x}$MoO$_4$: Tb$^{3+}$, Eu$^{3+}$ thin films; meanwhile the PL characteristic peaks of Eu$^{3+}$ ions increase, confirming that the energy transfer from Tb$^{3+}$ and Eu$^{3+}$ ions is evident. The emission colors of Sr$_{0.85-x}$MoO$_4$: Tb$^{3+}$, Eu$^{3+}$ thin films can be adjusted from green to red by changing the doping concentrations of Tb$^{3+}$ and Eu$^{3+}$ ions, as shown in figures 2(c) and (d). We found that the optimal chemical composition is Sr$_{0.78}$MoO$_4$: Tb$^{3+}$, Eu$^{3+}$.

3.2. UV–vis absorption properties

Figures 3(a)–(d) present the UV–vis absorption spectra of Ca$_{0.87}$MoO$_4$: Eu$^{3+}$, Tb$^{3+}$, Ca$_{0.9}$MoO$_4$: Tb$^{3+}$, Eu$^{3+}$, Sr$_{0.76}$MoO$_4$: Eu$^{3+}$, Tb$^{3+}$, and Sr$_{0.78}$MoO$_4$: Tb$^{3+}$, Eu$^{3+}$ thin films, respectively. The broad absorption band from 200 nm to 300 nm result from the charge transfer transitions of O-Mo in MoO$_4^2-$ groups. The strongest absorption peaks locate at around 230 nm for the four samples. In addition, the prominent absorption peaks should be due to the band-to-band transition rather than the transition of impurity levels.
The surface morphology of CaMoO$_4$: Tb$^{3+}$, Eu$^{3+}$ and SrMoO$_4$: Tb$^{3+}$, Eu$^{3+}$ thin films was observed by scanning electron microscope (SEM), as shown in figure 6(a). The thin film in figure 6(a) was fabricated by spin-coating precursor solution on a quartz substrate for once. The thickness of the thin film can be increased by repeating spin-coating/sintering process. After five spin-coating/sintering cycles, smooth and crack-free CaMoO$_4$: Tb$^{3+}$, Eu$^{3+}$ thin film with a thickness of 110 nm was fabricated, as shown in figures 6(b) and (c). In this work, all of the characterizations were conducted for the thin films spin-coated once except for the cross-sectional SEM image. It can be found that the thin film is consisted of dense nanoparticles with a mean particle size of 45 nm.
4. Conclusions

In conclusion, the luminescent properties of Eu$^{3+}$ and Tb$^{3+}$ co-doped CaMoO$_4$/SrMoO$_4$ thin films and the energy transfer from Eu$^{3+}$ and Tb$^{3+}$ ions were investigated. It was observed that the PL intensity of Eu$^{3+}$ can be enhanced when Tb$^{3+}$ ions are incorporated into Eu$^{3+}$-doped CaMoO$_4$/SrMoO$_4$ thin films. Fully coverage and crack-free luminescent thin films were fabricated by a facile solution approach. The band gaps (E_g) of luminescent thin films were found to be 4.71, 4.72, 4.55, and 4.49 eV for Ca$_{0.67}$Mo$_2$O$_7$: Eu$^{3+}_{0.15}$, Tb$^{3+}_{0.03}$, Ca$_{0.9}$Mo$_2$O$_7$: Tb$^{3+}_{0.03}$, Eu$^{3+}_{0.07}$Sr$_{0.78}$Mo$_2$O$_7$: Eu$^{3+}_{0.15}$, Tb$^{3+}_{0.07}$ and Sr$_{0.75}$Mo$_4$: Tb$^{3+}_{0.15}$, Eu$^{3+}_{0.07}$ thin films. These rare-earth ions co-doped luminescent thin films have a huge potential application in light-emitting diodes as the emitting layer or the photo-conversion layer.

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 51672267, 61974145, 51772287) and Jilin Provincial Science and Technology Development Program (20180101186C).

ORCID iDs

Daoceng Pan https://orcid.org/0000-0002-8273-6331

References

[1] Tiskula Z, Czajka J, Staninski K and Lis S 2014 Luminescence properties of calcium tungstate activated by lanthanide(III) ions J. Rare Earths 32 2215–5
[2] Liu S, Hui Y, Zhu L, Fan X, Zou B and Cao X 2014 Synthesis and luminescence properties of CeF$_3$:Tb$^{3+}$ nanodisks via ultrasound assisted ionic liquid method J. Rare Earths 32 508–13
[3] Zhang Y and Hao J 2013 Metal-alkaline luminescent thin films for optoelectronic applications Journal of Materials Chemistry C1 16657–18
[4] Gonçalves R F, Cavalcante L S, Nogueira I C, Longo E, Godinho M J, Szczoszka J C, Mastelaro V R, Pinatti I M, Rosa I L V and Marques A P A 2015 Rietveld refinement, cluster modelling, growth mechanism and photoluminescence properties of CaWO$_4$:Eu$^{3+}$ microparticles Cryst. Eng. Comm. 17 1654–66
[5] Jia G, Dong D, Song C, Li L, Huang C and Zhang C 2014 Hydrothermal synthesis and luminescence properties of monodisperse BaWO$_4$:Eu$^{3+}$ submicrometers Mater. Lett. 120 251–4
[6] Wang J, Zhang Z and Zhao J 2015 Luminescence properties of Eu$^{3+}$-doped new scheelite-type compounds J. Rare Earths 33 1241–5
[7] Liu Y, Sun L, Liu J, Peng Y X, Ge X, Shi J and Huang W 2015 Multicolor (Vis-NIR) mesoporous silica nanocaps with lanthanide complexes using 2-(5-bromothiophenyl)imidazo[4,5-f][1,10]phenanthroline for in vitro bioimaging Dalton Trans. 44 237–46
[8] Ge X, Dong L, Sun L, Song Z, Wei R, Shi L and Chen H 2015 New nanoplatforms based on UCNPs linking with polyedral oligomeric silsesquioxane (POSS) for multimodal bioimaging Nanoscale 7 7206–15
[9] Hu Y, Zhuang W, Ye H, Wang D, Zhang S and Huang X 2005 A novel red phosphor for white light emitting diodes J. Alloys Compd. 390 226–9
[10] Liu J, Lian H and Shi C 2007 Improved optical photoluminescence by charge compensation in the phosphor system CaMoO$_4$:Eu$^{3+}$ Opt. Mater. 29 1591–4
[11] Jin Y, Zhang J, Hao Z, Zhang X and Wang X-J 2011 Synthesis and luminescence properties of clew-like CaMoO$_4$:Sm$^{3+}$, Eu$^{3+}$ J. Alloys Compd. 509 1348–51
[12] Kang F, Hu Y, Wu H, Ju G, Mu Z and Li N 2011 Luminescence investigation of Eu$^{3+}$-Bi$^{3+}$ co-doped CaMoO$_4$ phosphor J. Rare Earths 29 837–42
[13] Ansari A A, Parchur A K, Alam M and Azzeer A 2014 Effect of surface coating on optical properties of Eu$^{3+}$-doped CaMoO$_4$ nanoparticles Spectrochim Acta A Mol Biol Spectrosc 131 30–6
[14] Wang X-F, Peng G-H, Li N, Liang Z-H, Wang X and Wu J-L 2014 Hydrothermal synthesis and luminescence properties of 3D walnut-like CaMoO$_4$:Eu$^{3+}$ red phosphors J. Alloys Compd. 599 102–7
[15] Liu C, Hou D, Yan J, Zhou L, Kuang X, Liang H, Huang Y, Zhang B and Tao Y 2014 Energy transfer and tunable luminescence of NaLa(PO$_4$)$_3$:Th$^{3+}$/Eu$^{3+}$ under UVI and low-voltage electron beam excitation The Journal of Physical Chemistry C 118 3228–9
[16] Wen D, Feng J, Li J, Shi J, Wu M and Su Q 2015 KZn(InPO$_4$)WO$_4$:Tb$^{3+}$, Eu$^{3+}$ (In = Y, Gd and Lu) phosphors: highly efficient pure red and tunable emission for white light-emitting diodes Journal of Materials Chemistry C 3 2107–14
[17] Liu Y, Liu G, Wang J, Dong X and Yu W 2014 Single-component and warm-white-emitting phosphor NaGd(WO$_4$)$_2$:Tm$^{3+}$, Dy$^{3+}$, Eu$^{3+}$: synthesis, luminescence, energy transfer, and tunable color Inorg. Chem. 53 11457–66
[18] Golyeva E V, Tolstikova D V, Kolesnikov I E and Mikhailov M D 2015 Effect of synthesis conditions and surrounding medium on luminescence properties of YVO$_4$:Eu$^{3+}$ nanowhiskers J. Rare Earths 33 129–34
[19] He F, Yang P, Niu W, Wang W, Gai S, Wang D and Lin J 2010 Hydrothermal synthesis and luminescence properties of YVO$_4$:Ln$^{3+}$ (Ln = Eu, Dy, and Sm) microspheres J. Colloid Interface Sci. 343 71–8
[20] Liu D, Tong L, Shi J and Yang H 2012 Luminescent and magnetic properties of YVO$_4$:Ln$^{3+}$ @Fe$_3$O$_4$ (Ln$^{3+}$ = Eu$^{3+}$ or Dy$^{3+}$) nanocomposites J. Alloys Compd. 512 361–5
[21] Liu Y, Xiong H, Zhang N, Leng Z, Li R and Gan S 2015 Microwave synthesis and luminescent properties of YVO$_4$:Ln$^{3+}$ (Ln = Eu, Dy and Sm) phosphors with different morphologies J. Alloys Compd. 653 126–34
[22] Wu J and Yan B 2008 Photoluminescence intensity of Y$_2$Gd$_{1-x}$V$_2$O$_5$:Eu$^{3+}$ dependence on hydrothermal synthesis time and variable ratio of Y/Gd J. Alloys Compd. 455 485–8
[23] Li L, Zhao M, Tong W, Guan X, Li G and Yang L 2010 Preparation of cereal-like YVO4:Ln3+ (Ln = Sm, Tb, Dy) for high quantum efficiency photoluminescence Nanotechnology 21 195601
[24] Dolinskaya Y A, Kolesnikov I E, Kurochkin A V, Man’shina A A, Mikhailov M D and Semenchuk A V 2013 Sol-gel synthesis and luminescent properties of YVO4: Eu nanoparticles Glass Phys. Chem. 39 308–10
[25] Jo D S, Luo Y Y, Senthil K, Masaki T and Yoon D H 2011 Synthesis of high efficient nanosized Y(V,P)O4:Eu3+ red phosphors by a new technique Opt. Mater. 35 2615–20
[26] Qiu Z, Zhou Y, Lü M, Zhang A and Ma Q 2007 Combustion synthesis of long-persistent luminescent MAl2O4:Eu2+,R3+ (M = Sr, Ba, Ca, R = Dy, Nd and La) nanoparticles and luminescence mechanism research Acta Mater. 55 2615–20
[27] Stefanski M, Marciniak L, Hreniak D and Strek W 2015 Influence of grain size on optical properties of Sr2CeO4 nanocrystals J. Chem. Phys. 142 184701
[28] Feldmann C, Justel T, Ronda C R and Schmidt P J 2003 Inorganic luminescent materials: 100 years of research and application Adv. Funct. Mater. 13 511–6
[29] Choe J Y, Ravichandran D, Blomquist S M, Morton D C, Ervin M H and Lee U 2001 Alkoxy sol-gel derived Y3−xAl2O3:Tbx thin films as efficient cathodoluminescent phosphors Appl. Phys. Lett. 78 3800–2
[30] Wang Z, Liang H, Zhou L, Wu H, Gong M and Su Q 2005 Luminescence of (Li0.333Na0.334K0.333)Eu(MO4)2 and its application in near UV InGaN-based light-emitting diode Chem. Phys. Lett. 412 313–6
[31] Liu L, Xie R-J, Hirooki N, Li Y, Takeda T, Zhang C-N, Li J and Sun X 2010 Crystal structure and photoluminescence properties of red-emitting Ca3La1−x(VO4)3:xEu3+ phosphors for white light-emitting diodes J. Am. Ceram. Soc. 93 4081–6
[32] Du P, Song L, Xiong J, Cao H, Xi Z, Guo S, Wang N and Chen J 2012 Electrospinning fabrication and luminescent properties of SrMoO4:Sm3+ nanofibers J. Alloys Compd. 540 179–83
[33] Peter A J and Shameem Banu I B 2014 Synthesis and luminescent properties of Tb3+ activated AWO4 based (A = Ca and Sr) efficient green emitting phosphors J. Mater. Sci., Mater. Electron. 25 2771–9
[34] Yan B and Gu J F 2009 Hydrothermal synthesis and luminescent properties of GdVO4: Eu3+ nanophosphors J. Exp. Nanosci. 4 301–11
[35] Wang Y, Zuo Y and Gao H 2006 Luminescence properties of nanocrystalline YVO4:Eu3+ under UV and VUV excitation Mater. Res. Bull. 41 2147–53
[36] Thomas K S, Singh S and Dieke G H 1963 Energy levels of Tb3+ in LaCl3 and other chlorides J. Chem. Phys. 38 2180–90
[37] Liao J, Qiu B, Wen H, Chen J and You W 2009 Hydrothermal synthesis and photoluminescence of SrWO4:Tb3+ novel green phosphor Mater. Res. Bull. 44 1863–6
[38] Wang W-S, Zhen L, Xu C-Y, Shao W-Z and Chen Z-L 2013 Formation of CdMoO4 porous hollow nanospheres via a self-assembly accompanied with Ostwald ripening process and their photocatalytic performance Cryst. Eng. Comm. 15 8014–21
[39] Ma M, Li H, Zhang H and Pan D 2018 Solution-deposited highly luminescent Eu3+–doped CdMoO4 thin films J. Lumin. 203 702–6
[40] Zhu Y, Zheng G, Dai Z, Zhang L and Ma Y 2017 Photocatalytic and luminescent properties of SrMoO4:Eu3+ phosphors prepared via hydrothermal method with different stirring speeds Journal of Materials Science & Technology 33 23–9