Implementation strategies to improve statin utilization in individuals with hypercholesterolemia: a systematic review and meta-analysis

Laney K. Jones 1*, Stephanie Tilberry 1, Christina Gregor 2, Lauren H. Yaeger 3, Yirui Hu 4, Amy C. Sturm 1, Terry L. Seaton 5,6, Thomas J. Waltz 7, Alanna K. Rahm 1, Anne Goldberg 8, Ross C. Brownson 9,10, Samuel S. Gidding 1, Marc S. Williams 1 and Michael R. Gionfriddo 2

Abstract

Background: Numerous implementation strategies to improve utilization of statins in patients with hypercholesterolemia have been utilized, with varying degrees of success. The aim of this systematic review is to determine the state of evidence of implementation strategies on the uptake of statins.

Methods and results: This systematic review identified and categorized implementation strategies, according to the Expert Recommendations for Implementing Change (ERIC) compilation, used in studies to improve statin use. We searched Ovid MEDLINE, Embase, Scopus, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials, and Clinicaltrials.gov from inception to October 2018. All included studies were reported in English and had at least one strategy to promote statin uptake that could be categorized using the ERIC compilation. Data extraction was completed independently, in duplicate, and disagreements were resolved by consensus. We extracted LDL-C (concentration and target achievement), statin prescribing, and statin adherence (percentage and target achievement). A total of 258 strategies were used across 86 trials. The median number of strategies used was 3 (SD 2.2, range 1–13). Implementation strategy descriptions often did not include key defining characteristics: temporality was reported in 59%, dose in 52%, affected outcome in 9%, and justification in 6%. Thirty-one trials reported at least 1 of the 3 outcomes of interest: significantly reduced LDL-C (standardized mean difference [SMD] −0.17, 95% CI −0.27 to −0.07, \(p = 0.0006 \); odds ratio [OR] 1.33, 95% CI 1.13 to 1.58, \(p = 0.0008 \)), increased rates of statin prescribing (OR 2.21, 95% CI 1.60 to 3.06, \(p < 0.0001 \)), and improved statin adherence (SMD 0.13, 95% CI 0.06 to 0.19, \(p = 0.0002 \); OR 1.30, 95% CI 1.04 to 1.63, \(p = 0.023 \)). The number of implementation strategies used per study positively influenced the efficacy outcomes.

Conclusion: Although studies demonstrated improved statin prescribing, statin adherence, and reduced LDL-C, no single strategy or group of strategies consistently improved outcomes.

Trial registration: PROSPERO CRD42018114952.

Keywords: Statin, Hypercholesterolemia, Implementation strategies, Uptake, Meta-analysis

* Correspondence: Ljones14@geisinger.edu
1Genomic Medicine Institute, Geisinger, 100 N Academy Ave., Danville, PA 17822, USA

Full list of author information is available at the end of the article
Contributions to the literature

- A variety of implementation strategies have been used to promote statin uptake.
- Lack of generalizability of implementation strategies to improve statin use is due in part to lack of detailed reporting of these strategies in the literature.
- No single implementation strategy appears to be associated with improved outcomes when compared with others.
- Multiple implementation strategies are likely to be required to improve statin utilization.

Introduction

Statin medications reduce low-density lipoprotein cholesterol (LDL-C) blood concentrations and cardiovascular events in patients with hypercholesterolemia, and guidelines recommend statin therapy to lower LDL-C in patients who are at risk for developing or have known atherosclerotic cardiovascular disease [1]. Despite evidence for the benefits of statins, the medications are widely underutilized [2–6]. Previous studies highlight both patient- and prescriber-barriers to statin use including side effects, competing medical conditions, busy clinics, and patient reluctance affecting adherence to prescribed medications [7–9]. Lack of adherence is associated with increased mortality in a dose dependent relationship [10].

Implementation strategies can be used to promote the uptake of interventions, such as statin therapy, and are defined as “methods or techniques used to enhance the adoption, implementation, and sustainability of a clinical program or practice” [11]. Numerous implementation strategies have been attempted to improve utilization of statins, all with varying degrees of success. These studies have targeted a variety of actors (e.g., patients, clinicians, or systems) and employed a variety of implementation strategies (e.g., education, reminders, or financial incentives). A computer-based clinical decision support system to aid in prescribing of evidence-based treatment for hyperlipidemia, which targeted clinicians, was found to significantly reduce blood LDL-C concentrations [12]. However, when providing financial incentives to providers, patients, or both, a study found that only the combination incentive was successful in reducing LDL-C levels to target [13]. The absolute and comparative effectiveness of these strategies, however, is unclear. Knowing which strategies are most effective can facilitate the uptake of statins and lead to reduce mortality.

To address this issue, we aimed to address the following key questions:

1. What implementation strategies have been used to promote the uptake of statins?
2. How completely are the implementation strategies utilized reported in studies designed to promote statin uptake?
3. Which implementation strategy, or combination of strategies, is (are) the most effective at promoting the uptake of statins?

We conducted a systematic review of studies aimed at improving statin use and categorized implementation strategies by the Expert Recommendations for Implementing Change (ERIC) compilation [14]. Our primary objective was to better understand the impact of specific implementation strategies on the utilization of statins in patients with hypercholesterolemia. Our secondary objective was to evaluate statin adherence, statin prescribing, and lowering of LDL-C after intervention.

Methods

This registered (PROSPERO CRD42018114952) systematic review adhered to the reporting guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement [15].

Search strategy

A medical librarian (L.H.Y.) searched the literature for records including the concepts of hypercholesterolemia, hyperlipidemia, and statins. The search strategies used a combination of keywords and controlled vocabulary and searched the following databases from inception to October 2018: MEDLINE, Embase, Scopus, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials, and Clinicaltrials.gov. References were imported into Endnote™ and duplicates were identified and removed. An example of the search string can be found in Table 1 and the fully reproducible search strategies for each database can be found in Additional file 1: Appendix 1.

Study selection

We included studies reported in English, regardless of the country where the study was conducted, that had at least one strategy promoting statin uptake that could be categorized using the ERIC compilation [14, 16]. Seven manuscripts were excluded for this reason. The ERIC compilation was created so that researchers have a standardized way to name, define, and categorize implementation strategies. The ERIC compilation was selected for use in this review because the implementations strategies in the included articles most closely matched the ERIC taxonomy compared to other available choices [17]. For key questions 1 and 2, we did not limit inclusion based on study design or outcome. For key question 3, we
limited inclusion to randomized controlled trials (RCTs). Studies were excluded for key questions if full text was not available.

Search results were uploaded into systematic review software (DistillerSR, Ottawa, Canada). In the first round of screening, abstracts and titles were evaluated for inclusion. Following abstract screening, eligibility was assessed through full-text screening. Prior to both abstract and full text screening, reviewers underwent training to ensure a basic understanding of the background of the field and purpose of the review as well as comprehension of the inclusion and exclusion criteria. The initial 20 abstracts were reviewed independently and then discussed as a group. Eligibility at both levels (abstract and full-text) was assessed independently and in duplicate (L.K.J., S.T., L.R.F., and C.G.). Disagreements at the level of abstract and full text screening were resolved by consensus. If consensus could not be achieved between the two reviewers, a third reviewer arbitrated (M.R.G., T.W., or T.S.).

Data collection
The following characteristics were extracted from included studies: first author, year of publication, location, age of patient population (adult vs. child), study design, implementation strategies, inclusion and exclusion criteria, and any of the following outcomes: statin prescribing or use, statin adherence, or LDL-C measurements.

Key question 1: what implementation strategies have been used to promote the uptake of statins?
We first summarized and described the populations, interventions, comparisons, and outcomes presented for all studies that reported at least one implementation strategy that could be mapped to the ERIC compilation. The ERIC compilation of nine implementation strategies categories (73 total strategies) was applied to each of the interventions to (1) count the total number of strategies and (2) describe how complete each implemented strategy was defined. One study team member, who was an author on the original ERIC compilation, ensured validity of the categories selected (T.W.) [14].

Key question 2: how completely are the implementation strategies utilized reported in studies designed to promote statin uptake?
Based on guidance from proctor and colleagues, we assessed the degree to which each strategy was completely reported including actor, action, action target, temporality, dose, implementation outcome affected, and justification (Table 2) [11].

Key question 3: which implementation strategy, or combination of strategies, is (are) the most effective at promoting the uptake of statins?
When present, we extracted data related to statin prescribing, statin adherence, and LDL-C reported from included RCTs. All outcomes were collected at

Characteristics	Definition	% (N)
Actor	Identify who enacts the strategy	98% (254/258)
Action	Specific actions, steps, or processes that need to be enacted	100% (258/258)
Action Target	1) Specify targets according to conceptual models of implementation 2) Identify unit of analysis for measuring implementation outcomes	95% (245/258)
Temporality	Specify when the strategy is used	59% (151/258)
Dose	Specify dosage of implementation strategy	52% (134/258)
Implementation outcome affected	Identify and measure the implementation outcome(s) that are affected by each strategy	9% (23/258)
Justification	Justification for choice of implementation strategies	6% (16/258)

Characteristics and definitions were utilized from Proctor 2013. The justification definition was adjusted to reflect an argument for the implementation strategy by noting an implementation science framework or guidance and not an evidence-base for the intervention.
intervention completion. Statin prescribing or use included all orders for statin medications. Statin adherence included only objective measures of adherence by either medication possession ratio (MPR) or proportion of days covered (PDC) [18]. MPR or PDC were captured as a percentage or attainment of greater than 80% adherence. LDL-C levels were recorded as LDL-C measured or achievement of an LDL-C target.

Risk of bias assessment
The Cochrane Collaboration’s risk of bias tool version 2 to evaluate methodological quality of studies included in the meta-analysis for key question 3 [19]. The risk of bias in included studies was assessed in duplicate by two reviewers (L.K.J. and L.R.F.) working independently. Any disagreements were resolved by consensus; if consensus was unable to be achieved, a third reviewer arbitrated (M.R.G.).

Statistical analysis
Standardized mean differences (SMDs) with corresponding 95% CIs were estimated for continuous outcomes, and odds ratios (ORs) and 95% confidence intervals (CIs) were calculated for binary outcomes from included studies. Publication bias was evaluated by Egger’s test [20]. Variability between included studies was assessed by heterogeneity tests using I^2 statistic [21]. If overall results showed significant heterogeneity, potential sources of heterogeneity were explored by subgroup analysis. All analyses were conducted using RStudio (Version 1.0.136) using the “Meta” and “Metafor” package.

Results
Description of study selection
We initially identified 65,118 studies. After removing duplicates, we identified 38,585 unique citations (Fig. 1). Through abstract and title screening, 208 reports were...
Year	Author last name	Location	Population	Study design	Outcomes measured	Included in meta-analysis
1996	Schectman [34]	United States	Adult	RCT	LDL-C, Statin Adherence	✓
1997	Bogden [65]	United States	Adult	RCT	LDL-C	✓
2000	Nordmann [37]	Switzerland	Adult	RCT	Statin Prescribing	✓
2000	Nguyen [38]	France	Adult	RCT	LDL-C	✓
2000	Faulkner [71]	United States	Adult and Child	RCT	LDL-C	✓
2005	Rachmani [36]	Israel	Adult	RCT	LDL-C, Statin Prescribing	✓
2006	Lester [41]	United States	Adult	RCT	LDL-C	✓
2006	Lee [78]	United States	Adult	RCT	LDL-C	✓
2007	Khanal [77]	United States	Adult	RCT	LDL-C, Statin Prescribing	✓
2008	Riesen [35]	Switzerland	Adult	RCT	LDL-C	✓
2009	Stacy [31]	United States	Adult	RCT	Statin Adherence	✓
2009	Willich [89]	Germany	Adult	RCT	LDL-C	✓
2009	McAlister [101]	Canada	Adult	RCT	LDL-C, Statin Prescribing	✓
2010	Webster [23]	Australia	Adult	RCT	LDL-C	✓
2010	Villeneuve [103]	Canada	Adult	RCT	LDL-C, Statin Prescribing	✓
2012	Nieuwkerk [86]	Netherlands	Adult	RCT	LDL-C	✓
2013	Zamora [12]	Spain	Adult	RCT	LDL-C	✓
2013	Kooij [42]	Netherlands	Adult	RCT	Statin Adherence	✓
2013	Kardas [43]	Poland	Adult	RCT	Statin Adherence	✓
2013	Goswami [72]	United States	Adult	RCT	Statin Adherence	✓
2014	McAlister [83]	Canada	Adult	RCT	LDL-C, Statin Prescribing	✓
2014	Lowrie [100]	United Kingdom	Adult	RCT	Statin Prescribing	✓
2015	Mols [54]	Denmark	Adult	RCT	LDL-C	✓
2015	Asch [13]	United States	Adult	RCT	LDL-C	✓
2015	Patel [82]	Australia	Adult	RCT	LDL-C	✓
2016	Jakobsson [44]	Sweden	Adult	RCT	LDL-C, Statin Prescribing	✓
2016	Damush [79]	United States	Adult	RCT	Statin Adherence	✓
2018	Choudhry [76]	United States	Adult	RCT	LDL-C, Statin Adherence	✓
2018	Mehrpooya [80]	Iran	Adult	RCT	LDL-C	✓
2018	Martinez [81]	Spain	Adult	RCT	LDL-C	✓
2018	Osborn [104]	United Kingdom	Adult	RCT	LDL-C, Statin Prescribing	✓
1996	Lindholm [39]	Sweden	Adult	RCT	LDL-C	✓
2003	Sebregts [99]	Netherlands	Adult and Child	RCT	LDL-C	✓
2007	Choe [95]	United States	Adult	RCT	LDL-C, Statin Adherence	✓
2008	Hung [90]	Taiwan	Adult	RCT	LDL-C, Statin Prescribing	✓
2010	Bhattacharyya [62]	Canada	Adult	RCT	LDL-C, Statin Prescribing	✓
2013	Dresser [55]	Canada	Adult	RCT	LDL-C	✓
2013	Brath [60]	Austria	Adult	RCT	LDL-C, Statin Adherence	✓
2013	Derose [85]	United States	Adult	RCT	Statin Adherence	✓
2005	Straka [28]	United States	Adult	Nonrandomized Clinical Trial	LDL-C	✓
Year	Author last name	Location	Population	Study design	Outcomes measured	Included in meta-analysis
------	-----------------	----------	------------	--------------	-------------------	--------------------------
2005	Paulos [105]	Chile	Adult	RCT	LDL-C, Statin Adherence	
2006	Vrijens [24]	Belgium	Adult	RCT	Statin Adherence	
2015	Persell [102]	United States	Adult	RCT	LDL-C, Statin Prescribing	
2017	Bosworth [61]	United States	Adult	RCT	LDL-C, Statin Adherence	
2018	Etcheberria [33]	Spain	Adult and Child	RCT	Statin Prescribing	
1995	Shaffer [94]	United States	Adult	Observational	LDL-C	
1997	Shibley [32]	United States	Adult	Observational	LDL-C	
1999	Schwed [33]	Switzerland	Adult	Observational	LDL-C, Statin Adherence	
2000	Robinson [92]	United States	Adult	Observational	LDL-C, Statin Prescribing	
2000	Bircher [93]	United States	Adult	Observational	Statin Prescribing	
2001	Ford [52]	United Kingdom	Adult	Observational	Statin Prescribing	
2002	Viola [25]	United States	Adult	Observational	LDL-C, Statin Prescribing	
2002	Geber [50]	United States	Adult	Observational	LDL-C	
2002	Gavish [51]	Israel	Adult	Observational	LDL-C, Statin Adherence	
2002	Hilleman [70]	United States	Adult	Observational	LDL-C, Statin Prescribing	
2003	Truppo [27]	United States	Adult	Observational	LDL-C, Statin Adherence	
2003	Ryan [98]	United States	Adult	Observational	LDL-C, Statin Prescribing	
2004	Hilleman [45]	United States	Adult and Child	Observational	LDL-C	
2004	de Velasco [56]	Spain	Adult	Observational	LDL-C, Statin Prescribing	
2004	Lappe [69]	United States	Adult	Observational	Statin Prescribing	
2005	Harats [47]	Israel	Adult	Observational	LDL-C	
2005	Bassa [63]	Spain	Adult	Observational	LDL-C	
2005	Brady [91]	United Kingdom	Adult	Observational	Statin Prescribing	
2005	McLeod [96]	United Kingdom	Adult	Observational	Statin Adherence	
2005	Rabinowitz [97]	Israel	Adult	Observational	LDL-C	
2006	de Lusignan [57]	United Kingdom	Adult and Child	Observational	Statin Prescribing	
2006	Rehring [66]	United States	Adult	Observational	LDL-C	
2007	Goldberg [48]	United States	Adult	Observational	LDL-C	
2008	Stocki [29]	United States	Adult	Observational	Statin Prescribing, Statin Adherence	
2008	Hatfield [67]	United Kingdom	Adult	Observational	LDL-C, Statin Adherence	
2008	Coodley [88]	United States	Both	Observational	LDL-C	
2009	Stephenson [30]	United States	Adult and Child	Observational	LDL-C	
2009	Lima [40]	Brazil	Adult	Observational	LDL-C	
2009	Casebeer [59]	United States	Adult	Observational	Statin Adherence	
2010	Chen [75]	Taiwan	Adult	Observational	LDL-C	
2011	Gitt [49]	Germany	Adult	Observational	LDL-C	
2011	Chung [58]	Hong Kong	Adult	Observational	LDL-C	
2011	Schmittdiel [87]	United States	Adult	Observational	LDL-C	
identified for full-text review. During full-text review, 86 were selected for inclusion \([12, 13, 22–105]\). A complete list of excluded full-text studies with rationale for exclusion is available in Additional file 1: Appendix 2.

Description of studies

Table 3 describes the included studies (more details are included in Additional file 1: Appendix 3). Almost all the implementation strategies targeted adults (two studies included pediatric patients), half were implemented in the USA, and almost all were conducted in individuals with hypercholesterolemia (two studies were conducted in individuals with familial hypercholesterolemia).

Implementation strategies

All implementation strategies except “provide interactive assistance” were used (Table 4). A total of 258 uses of strategies were identified across 86 studies. On average, each study utilized three strategies (SD 2.2, range 1–13). The most utilized strategies were “train and educate the stakeholders” (studies utilized strategies in this grouping 79 times), “support clinicians” (68), and “engage consumers” (47). The most utilized individual strategies were “intervene with patients and consumers to enhance uptake and adherence” (41), and “distribute educational materials” (41) (Additional file 1: Appendix 4). Implementation strategies often did not include key defining characteristics: temporality was reported 59% of the time, dose 52%, affected outcome 9%, and justification 6% (Table 2 provides a summary and Additional file 1: Appendix 5 provides a more detailed version).

Meta-analysis

Due to the large heterogeneity between studies, effectiveness outcomes (statin prescribing, statin adherence, and LDL-C) were only extracted from RCTs. Thirty-one trials reported at least one of the three outcomes of interest. The implementation strategies examined demonstrated: significantly reduced LDL-C (LDL-C reduction: SMD \(-0.17\), 95% CI \(-0.27\) to \(-0.07\), \(p = 0.0006\); met LDL-C target: OR 1.33, 95% CI 1.13 to 1.58, \(p = 0.0008\); Fig. 2), increased rates of statin prescribing (OR 2.21, 95% CI 1.60 to 3.06, \(p < 0.0001\); Fig. 3), and improved statin adherence (PDC/MPR: SMD 0.13, 95% CI 0.06 to 0.19; \(p = 0.0002\); \(\geq 80\%\) PDC/MPR: OR 1.30, 95% CI 1.04 to 1.63, \(p = 0.023\); (Fig. 4). There was inconsistency across trials based on the outcome measured; statin prescribing (\(I^2 = 73\%\)), statin adherence (\(I^2 = 0\%\)), and LDL-C (\(I^2 = 79\%\) (LDL-C reduction) and 76% (met LDL-C targets)). Publication bias using the Egger’s test
Fig. 2 Forest plot of implementation strategies’ impact on LDL-C compared to control.

- **a** Achievement of target LDL-C.
- **b** Standardized mean difference in LDL-C.

Fig. 3 Forest plot of implementation strategies’ impact on statin prescribing compared to control.
indicated no publication bias for statin prescribing \((p = 0.63)\), statin adherence \((p = 0.83\) for SMD, \(p = 0.22\) for OR\), and potential publication bias for LDL-C \((p = 0.08\) for SMD, \(p = 0.01\) for OR\).

Although subgroup analyses were conducted for statin prescribing and LDL-C, there were not enough studies to conduct a subgroup analysis for statin adherence (Table 5). We identified a significant difference among studies published in 2013 or later for LDL-C measured as a binary outcome (OR 1.62, 95% CI 1.19–2.19, \(p = 0.05\)). We also found a significant effect on LDL-C measured as a continuous variable when more than 2 implementation strategies were utilized (SMD −0.38 95% CI −0.67; −0.09, \(p = 0.05\)). There was no significant effect in the between country analysis.

Most studies were found to be at a low risk of bias (Fig. 5 and Additional file 1: Appendix 6); therefore, we did not conduct subgroup analyses based on the risk of bias.

Discussion

Our findings

In this review of implementation strategies regarding uptake of statins in hypercholesterolemia, we found that 38 different strategies were utilized to lower LDL-C, improve

Table 5	Subgroup analyses		
Study subgroup (number of studies)	**Subgroup**	**Comparison group**	**P value for interaction**
Odds ratio, (95% CI)			
Statin prescribing (11)			
More than 2 implementation strategies (6)	2.19 (1.32–3.63)	2.40 (1.43–4.06)	0.80
Study published in 2013 or later (5)	1.97 (1.29–3.01)	2.84 (1.41–5.74)	0.36
Conducted in the United States (2)	4.00 (1.03–15.50)	1.95 (1.33–2.84)	0.32
LDL-C (14)			
More than 2 implementation strategies (4)	1.53 (1.23–1.90)	1.20 (0.97–1.48)	0.12
Study published 2013 or later (5)	1.62 (1.19–2.19)	1.13 (0.95–1.35)	0.05
Conducted in the United States (5)	1.48 (1.12–1.95)	1.29 (1.03–1.61)	0.35
Standardized mean difference, (95% CI)			
LDL-C (17)			
More than 2 implementation strategies (6)	−0.38 (−0.67; −0.09)	−0.07 (−0.15; −0.01)	0.05
Study published in 2013 or later (8)	−0.12 (−0.21; −0.02)	−0.23 (−0.39; −0.07)	0.24
Conducted in the United States (6)	−0.20 (−0.36; −0.04)	−0.17 (−0.31; −0.03)	0.79

Statin adherence was excluded because there were not enough studies to make a comparison.
statin prescribing, and promote adherence. However, strategy components were not well defined and there was not a single strategy or group of strategies that demonstrated superior impact compared to others. Consistent with management of other diseases and conditions and literature from implementation science [106], we found evidence to support the use of multiple concurrent strategies; the use of three or more implementation strategies was associated with a greater reduction in LDL-C. We also found that studies published after 2012 had, on average, greater reductions in LDL-C through the use of the reported implementation strategies. While it cannot be definitely attributed, this could result from a better understanding of which strategies work best or could reflect a switch toward the utilization of high dose statin therapy. There was no difference in outcomes based on country where the study was conducted.

An important limitation of the many strategies described was incomplete definitions, limiting generalizability to other settings. Often, we were able to discern the actor, action, and action target but were unable to determine temporality, dose, implementation outcome affected, or justification. Without clear reporting of these factors, we are unable to interpret when these strategies should be used (temporality), how often (dosage), how the success of a specific strategy is measured (implementation outcomes affected), or when to justify the choice of a particular strategy (justification) to influence clinical practice. While the interventions appeared to be effective at increasing the utilization of statins and reducing LDL-C overall, the variable nature of the interventions studied and outcomes examined, the effectiveness of any specific strategy or set of strategies was unclear.

In addition, one category of strategies, “provide interactive assistance,” was not utilized in any of the studies included in the analysis. Among the strategies that were used, many were used in combination, but specific combinations were not used frequently enough to permit reliable subgroup analysis.

Comparison with other studies
In the field of implementation science, there has recently been a desire to improve specification of implementation strategies utilized in practice and to develop standard language and definitions for reporting these implementation strategies [11, 14, 107]. This trend has led to the development of two implementation strategy taxonomies: the ERIC compilation [14], used in this study, and the Effective Practise and Organization of Care (EPOC) taxonomy [17]. Use of these taxonomies has allowed for consistent language in reporting implementation strategies and development of tailored compilations of strategies specific to certain disease states [108, 109]. Other systematic reviews of implementation strategies in other fields (i.e., intensive care setting and oral health) have found improved outcomes when multiple implementation strategies are used but have not been able to identify the groups of strategies most likely to produce the most favorable outcomes [110–112].

An investigation of enablers and barriers to treatment adherence in familial hypercholesterolemia found seven enablers for patients that could be used to develop new interventions and matched to implementation strategies we identified in our study [113]. These enablers were “other family members following treatment regime,” “commencement of treatment from a young age,” “parental responsibility to care for children,” “confidence in ability to successfully self-manage their condition,” “receiving formal diagnosis of familial hypercholesterolemia,” “practical resources and support for following lifestyle treatment,” and a “positive relationship with healthcare professionals” [113]. By linking the two most frequently used strategies identified in our systematic review “intervene with patients and consumers to enhance uptake and adherence” and “distribute educational materials,” with the enablers identified above, effective implementations strategies for statin utilization can be designed.

The sustainability of interventions to promote the uptake of guidelines when intervening at the clinician level has been limited in a variety of settings [114–116]. Specifically, in cardiovascular disease, a systematic review of interventions to improve uptake of heart failure medications saw an increase in guideline uptake but not improvement in clinical outcomes [117]. Similar findings have been found in hypertension [118]. However, the success of these interventions have been limited.
Limitations and strengths
Our review is the first to comprehensively map the strategies used to increase utilization of statins among persons with hypercholesterolemia to the ERIC compilation. We chose to use ERIC due to a perceived better fit over alternatives (i.e. EPOC); however, we identified 7 studies (out of 208 identified) which could not be mapped to ERIC, exclusion of which could lead to missing important strategies. Other strengths include utilization of a medical librarian to conduct the search, searching of multiple databases which covered parts of the gray literature, and utilizing trained reviewers. Finally, we limited our search to studies in English with full-texts available. Thus, we may have missed studies not published in English or published in the gray literature (e.g., only conference abstract available in published literature) and be at risk for language bias [119] or publication bias [120]. While the Egger’s test suggested possible publication bias, we think that the risk of this is low due to our comprehensive search strategy. Further, while language bias is a possibility [119], few studies were excluded based on language so any potential impact is likely to be small.

Suggestions for future research
Consistent strategies for reporting LDL-C would significantly improve the ability to assess efficacy of an intervention. Some studies used arbitrary cut-offs for LDL-C, some used absolute values, and others used thresholds published in cholesterol guidelines [121]. This led to difficulty in aggregating data across studies. Future studies should report absolute values of LDL-C to facilitate meta-analyses directed at change of LDL-C with intervention. Generating a core outcome set for trials in hypercholesterolemia would facilitate meta-analyses and ensure all relevant outcomes are consistently measured [122]. Ideally, these studies should be registered and included in a meta-analysis in a prospective manner [123].

Clarity in the terminology, definition, and description of implementation strategies by researchers would help translation and replication of efforts. Completely reporting implementation strategies facilitates interpretation of results as well as facilitating reproducibility and scalability [11]. The field of implementation science offers guidance on how to name and report these strategies [11]. Even though this study was unable to identify a single or gold standard approach to improving statin therapy for hypercholesterolemia disorders, it provides examples of many different approaches that have some impact on outcomes relevant to care. In this way, this study provides a roadmap for future implementation to better define implementation strategies and to rigorously define and test the outcomes associated with those strategies. More guidance will be needed on the impact of strategies in different healthcare settings, because different strategies may work better in different healthcare settings so these idiosyncrasies need to be understood.

Conclusion
Implementation strategies to improve the uptake of statins among patients with hypercholesterolemia exist but they are poorly reported and generalizability is limited. While these strategies lowered LDL-C and improved adherence, significant heterogeneity made assessment of the comparative effectiveness of strategies difficult. Future studies for increasing the utilization of statins among patients with hypercholesterolemia should more clearly define strategies used, prospectively test comparative effectiveness of different strategies, and use standardized efficacy endpoints.

Abbreviations
CIs: Confidence intervals; ERIC: Expert Recommendations for Implementing Change; LDL-C: Low density lipoprotein cholesterol; ORs: Odds ratios; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-analyses; SMIDs: Standardized mean differences; RCTs: Randomized clinical trials

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13012-021-01108-0.

Acknowledgements
Not applicable.

Authors’ contributions
JK designed the systematic review, reviewed abstracts and full-text extracted and analyzed data, and prepared the manuscript file. ST and CG reviewed abstracts and full-text for inclusion and extracted data and reviewed manuscript file. LYH completed search and reviewed final manuscript file. YH performed statistical analyses and risk of bias and reviewed final manuscript. ACS, AKR, AG, RCB, and SSG reviewed data and reviewed final manuscript. TLS and TJW reviewed implementation strategies categorization and final manuscript. MSW and MRG designed systematic strategy organized by category and strategy. Appendix 5. Detailed Proctor’s framework description of each strategy. Appendix 6. Risk of bias

Funding
Research reported in this publication was supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health under Award Number K12HL137942.

Availability of data and materials
All data generated or analyzed during this study are included in this published article and its supplementary information files.

Declarations
Ethics approval and consent to participate
Not applicable. Registered in PROSPERO.
Consent for publication Not applicable.

Competing interests The authors declare that they have no competing interests.

Author details
1 Genomeic Medicine Institute, Geisinger, 100 N Academy Ave., Danville, PA 17822, USA. 2Center for Pharmacy Innovation and Outcomes, Geisinger, Danville, PA, USA. 3Bernard Becker Medical Library, Washington University in St. Louis, St. Louis, MO, USA. 4Population Health Sciences, Geisinger, Danville, PA, USA. 5University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, USA. 6Population Health, Mercy Clinic—East Communities, St. Louis, MO, USA. 7Eastern Michigan University, Ypsilanti, MI, USA. 8Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA. 9Prevention Research Center in St. Louis, Brown School, Washington University in St. Louis, St. Louis, MO, USA. 10Department of Surgery (Division of Public Health Sciences) and Alvin J. Siteman Cancer Center, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA.

Received: 29 September 2020 Accepted: 29 March 2021 Published online: 13 April 2021

References
1. Grundy SM, Stone NJ, Bailey AL, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACP/WADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2019;139(25):e1082–143.
2. Akhabue E, Rittner SS, Carroll JE, et al. Implications of American College of Cardiology/American Heart Association (ACC/AHA) cholesterol guidelines on statin underutilization for prevention of cardiovascular disease in diabetes mellitus among several US networks of community health centers. J Am Heart Assoc. 2017;6(7):e005627.
3. Bansilal S, Castellano JM, Garrido E, Wei HG, Freeman A, Spettell C, et al. Assessing the impact of medication adherence on long-term cardiovascular outcomes. J Am Coll Cardiol. 2016;68(8):789–801. https://doi.org/10.1016/j.jacc.2016.06.005.
4. Martin-Ruiz E, Olly-de-Labay-Lima A, Ocalar-Rola R, Epstein D. Systematic review of the effect of adherence to statin treatment on critical cardiovascular events and mortality in primary prevention. J Cardiovasc Pharmacol Ther. 2018;23(3):200–15. https://doi.org/10.1177/1074248117745357.
5. De Vera MA, Bhole V, Burns LC, Lacaille D. Impact of statin adherence on cardiovascular disease and mortality outcomes: a systematic review. Br J Clin Pharmacol. 2014;78(4):894–98. https://doi.org/10.1111/bcp.12339.
6. Rodriguez F, Maon DJ, Knowles JW, Yiran SS, Lin S, Heidenreich PA. Association of statin adherence with mortality in patients with atherosclerotic cardiovascular disease. JAMA Cardiol. 2019;4(3):206–13. https://doi.org/10.1001/jamacardio.2018.4936.
7. Jones LR, Sturm AC, Seaton TL, Gregor C, Gidding SS, Williams MS, et al. Barriers, facilitators, and solutions to familial hypercholesterolemia treatment. PLoS One. 2020;15(2):e0244193. https://doi.org/10.1371/journal.pone.0244193.
8. Tanner RM, Safford MM, Monda KL, Taylor B, O’Beirne R, Morris M, et al. Primary care physician perspectives on barriers to statin treatment. Cardiovasc Drugs Ther. 2017;31(3):305–9. https://doi.org/10.1007/s10557-017-6738-8.
9. Lu A, Hanson CS, Banks E, Korda R, Craig JC, Usherwood T, et al. Patient beliefs and attitudes to taking statins: systematic review of qualitative studies. Br J Gen Pract. 2018;68(671):e408–19. https://doi.org/10.3399/bjgp18X2156365.
10. Lansberg P, Lee A, Lee Z-Y, Subramaniam K, Setia S. Nonadherence to statins: individualized intervention strategies outside the pill box. Vasc Health Risk Manag. 2014;10(1):92–102. https://doi.org/10.2147/VHRM.S158641.
11. Proctor EK, Powell BJ, McMillen JC. Implementation strategies: recommendations for specifying and reporting. Implement Sci. 2013;8(1):139. https://doi.org/10.1186/1748-7006-8-139.
12. Zamora A, Fernández De Bobadilla F, Cárnon C, et al. Pilot study to validate a computer-based clinical decision support system for dyslipidemia treatment (HTE-DLP). Atherosclerosis. 2013;231(2):401–4. https://doi.org/10.1016/j.atherosclerosis.2013.09.029.
13. Asch DA, Troxel AB, Stewart WF, Sequist TD, Jones JB, Hirsch AMG, et al. Effect of financial incentives to physicians, patients, or both on lipid levels: a randomized clinical trial. JAMA. 2015;314(18):1926–35. https://doi.org/10.1001/jama.2015.14850.
14. Powell BJ, Waltz TJ, Chinman MJ, Danschoder LJ, Smith JL, Matthieu MM, et al. A refined compilation of implementation strategies: results from the Expert Recommendations for Implementing Change (ERIC) project. Implement Sci. 2015;10(1):21. https://doi.org/10.1186/s13012-015-0209-1.
15. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097.
16. Waltz TJ, Powell BJ, Matthieu MM, Danschoder LJ, Chinman MJ, Smith JL, et al. Use of concept mapping to characterize relationships among implementation strategies and assess their feasibility and importance: results from the Expert Recommendations for Implementing Change (ERIC) study. Implement Sci. 2015;10(1):109. https://doi.org/10.1186/s13012-015-0295-0.
17. Effective Practice and Organisation of Care (EPOC). 2015; epoc.cochrane.org | epoc-taxonomy Accessed 1 Feb 2021.
18. Nau DP. Proportion of days covered (PDC) as a preferred method of measuring medication adherence: Pharmacy Quality Alliance; 2012.
19. Sterne JA, Egger M. Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J Clin Epidemiol. 2001;54(10):1046–55. https://doi.org/10.1016/S0895-4356(01)00377-8.
20. Higgins JP, Thompson SG, Deeks J, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7419):557–60. https://doi.org/10.1136/bmj.327.7419.557.
21. Sterne JA, Gough G, Smith P. The PRISMA statement for reporting systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2019;16(1):e1002768. https://doi.org/10.1371/journal.pmed.1002768.
22. Vrijens B, Belmans A, Matthys K, de Klerk E, Leufkens HP, Debeer R. Implementation of pharmaceutical care services for the management of chronic conditions: an overview of the evidence. Implement Sci. 2015;10(1):21. https://doi.org/10.1186/s13012-015-0209-1.
23. Asch DA, Troxel AB, Stewart WF, Sequist TD, Jones JB, Hirsch AMG, et al. Effect of financial incentives to physicians, patients, or both on lipid levels: a randomized clinical trial. JAMA. 2015;314(18):1926–35. https://doi.org/10.1001/jama.2015.14850.
24. Powell BJ, Waltz TJ, Chinman MJ, Danschoder LJ, Smith JL, Matthieu MM, et al. A refined compilation of implementation strategies: results from the Expert Recommendations for Implementing Change (ERIC) project. Implement Sci. 2015;10(1):109. https://doi.org/10.1186/s13012-015-0295-0.
25. Effective Practice and Organisation of Care (EPOC). 2015; epoc.cochrane.org | epoc-taxonomy Accessed 1 Feb 2021.
26. Nau DP. Proportion of days covered (PDC) as a preferred method of measuring medication adherence: Pharmacy Quality Alliance; 2012.
27. Sterne JA, Gough G, Smith P. The PRISMA statement for reporting systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2019;16(1):e1002768. https://doi.org/10.1371/journal.pmed.1002768.
practice. J Clin Pharmacol. 1999;39(4):402–9. https://doi.org/10.1177/00927092992107976.

34. Schectman G, Wolff N, Byrd JC, Hiatt JG, Hartz A. Physician extenders for cost-effective management of hypercholesterolemia. J Gen Intern Med. 1996;11(5):277–86. https://doi.org/10.1007/BF02598268.

35. Eisele WF, Noll G, Darioli R. Impact of enhanced compliance initiatives on the efficacy of rosuvastatin in reducing low density lipoprotein cholesterol levels in patients with primary hypercholesterolemia. Swiss Med Wkly. 2008;138(29-30):420–6. DOI: 2008/29/swm-12120.

36. Rachmani R, Slavacheshi I, Berla M, Frommer-Shapira R, Ravid M. Treatment of high-risk patients with diabetes: motivation and teaching intervention: a randomized, prospective 8-year follow-up study. J Am Soc Nephrol. 2005;16; SUPPL. 1):522–6.

37. Nordmenn A, Blattmann L, Gallino A, Khetra R, Martina B, Müller P, et al. Systematic, immediate in-hospital initiation of lipid-lowering drugs during acute coronary events improves lipid control. Eur J Intern Med. 2000;11(6): 309–16. https://doi.org/10.1053/ejim.2000.00110-2.

38. Nguyen G, Cruickshank J, Moulaard A, Dumuis ML, Picard C, Callelaux X, et al. Comparison of achievement of treatment targets as perceived by physicians and as calculated after implementation of clinical guidelines for the management of hypercholesterolemia in a randomized, clinical trial. Curr Ther Res Clin Exp. 2006(51)9:597–608. https://doi.org/10.1016/j.ccr.2006.08.012.

39. Lindholm LH, Eiborn T, Dachs C. Changes in cardiovascular risk factors by combined pharmacological and nonpharmacological strategies: the main results of the CELT study. J Intern Med. 1996;240(13):13–22. https://doi.org/10.1046/j.1365-2796.1996.492831000.x.

40. Lima EMO, Gualandro DM, Yu PC, Giuliano ICB, Marques AC, Calderaro D, et al. Cardiovascular prevention in HIV patients: results from a successful intervention program. Atherosclerosis. 2009;204(1):229–32. https://doi.org/10.1016/j.atherosclerosis.2008.08.017.

41. Lester WT, Grant RW, Barnett GO, Chueh HC. Randomized controlled trial of an informatics-based intervention to increase statin prescription for secondary prevention of coronary disease. J Gen Intern Med. 2006;21(1):22–9. https://doi.org/10.1111/j.1525-1497.2005.00368.x.

42. Kooy MJ, Van Wijk BLG, Heerdink ER, De Boer A, Bouvy ML. Does the use of an electronic reminder device with or without counseling improve adherence to lipid-lowering treatment? The results of a randomized controlled trial. Front Pharmacol. 2013;4:69.

43. Kardas P. An education-behavioural intervention improves adherence to statins. Cent Eur J Med. 2013;8(5):580–5.

44. Jakobsson S, Huber D, Björklund F, Mooe T. Implementation of a new guideline in cardiovascular secondary preventive care: subanalysis of a randomized controlled trial. BMC Cardiovasc Disord. 2016;16:1–9.

45. Hillerman DE, Faulkner MA, Monaghan MS. Cost of a pharmacist-directed intervention program. Atherosclerosis. 2009;204(1):42–5. https://doi.org/10.1016/j.atherosclerosis.2009.01.007.

46. Harrison TN, Green KR, Liu IIA, Vansophorne SS, Handler J, Scott RD, et al. Automated outreach for cardiovascular-related medication refill reminders. J Clin Hypertens. 2004;6(8):1077–83. https://doi.org/10.1592/phco.2004.6.10773145.

47. Harrison TN, Green KR, Liu IIA, Vansophorne SS, Handler J, Scott RD, et al. Automated outreach for cardiovascular-related medication refill reminders. J Clin Hypertens. 2004;6(7):641–6. https://doi.org/10.1592/phco.2004.6.10773145.

48. Harata D, Leibovitz E, Maislos M, Wolfzve E, Chajek-Shaul T, Leitersdorf E, et al. Cardiovascular risk assessment and treatment to target low density lipoprotein cholesterol levels in hospitalized ischemic heart disease patients: results of the HOLEM study. Isr J Med Sci. 2005;36:355–9.

49. Goldberg KC, Melnych SD, Smel DL. Overcoming inertia: improvement in achieving target low-density lipoprotein cholesterol. Am J Manag Care. 2007;13(9):530–4.

50. Gitt AK, Jünger C, Jannowitz C, Karmann B, Senges J, Bestehorn K. Adherence of hospital-based cardiologists to lipid guidelines in patients at high risk for cardiovascular events (2L registry). Clin Res Cardiol. 2011;100(4): 277–87. https://doi.org/10.1007/s00392-010-0420-9.

51. Geber J, Parra D, Beckey NP, Korman L. Optimizing drug therapy in patients with cardiovascular disease: the impact of pharmacist-managed pharmacotherapy clinics in a primary care setting. Pharmacotherapy. 2002;22(6):738–47.

52. Gitt AK, Jünger C, Jannowitz C, Karmann B, Senges J, Bestehorn K. Impact of enhanced compliance initiatives on cardiovascular disease patients. Isr Med Assoc J. 2002;4(9):694–7.
therapy in patients undergoing coronary artery recascularization: a randomized, controlled trial. Pharmacotherapy. 2000;20(4):410–6. https://doi.org/10.1592/phco.20.4.35048.

72. Goswami NJ, DeKoven M, Kuznitz A, et al. Impact of an integrated intervention program on atorvastatin adherence: a randomized controlled trial. Int J Gen Med. 2013;6:647–55. https://doi.org/10.2147/IJGM.S47518.

73. Clark B, DuChane J, Hou J, Rubinstein E, McMurray J, Duncan I. Evaluation of increased adherence and cost savings of an employer-value-based benefits program targeting generic antihyperlipidemic and antidiabetic medications. J Manag Care Pharm. 2014;20(2):141–50. https://doi.org/10.18533/jmcp.2014.02.141.

74. Farley JF, Wansink D, Lindquist JH, Parker JC, Maciejewski ML. Medication adherence changes following value-based insurance design. Am J Manag Care. 2012;18(3):265–74.

75. Chen C, Chen K, Huo CY, Chiu WT, Li YC. A guideline-based decision support for pharmacological treatment can improve the quality of hyperlipidemia management. Comput Methods Prog Biomed. 2010;97(3): 280–5. https://doi.org/10.1016/j.cmpb.2009.12.004.

76. Choudhry NK, Isaac T, Lauffenburger JC, et al. Effect of a remotely delivered tailored multicomponent approach to enhance medication taking for patients with hyperlipidemia, hypertension, and diabetes the STIC2IT cluster randomized clinical trial. JAMA Intern Med. 2018;178(9):1190–8.

77. Khanal S, Obedat O, Hudson MP, et al. Active lipid management in coronary artery disease (ALMICAID) study. Am J Med. 2007;120(8):734–41.

78. Lee JI, Grace KA, Taylor AJ. Effect of a pharmacy care program on medication adherence and persistence, blood pressure, and low-density lipoprotein cholesterol: a randomized controlled trial. J Am Med Assoc. 2006;296(21):2563–71. https://doi.org/10.1001/jama.2006.10062.

79. Damush TM, Myers L, Anderson JA, Yu Z, Ofner S, Nicholas G, et al. The effect of a locally adapted, secondary stroke risk factor self-management program on medication adherence among veterans with stroke/TIA. [Erratum appears in Transl Behav Med. 2016 Sep;6(3):469; 2016 Sep;6(3):469]. Transl Behav Med. 2016;6(3):457–68. https://doi.org/10.1007/s13142-015-0348-6.

80. Mehpoooya M, Larki-Harchegani A, Ahmadimoghadam D, et al. Evaluation of the effect of education provided by pharmacists on hyperlipidemic patient’s adherence to medications and blood level of lipids. J Appl Pharm Sci. 2018;8(1):29–33.

81. Párraga-Martínez I, Escobar-Rabadan F, Rabanales-Sotos J, Lago-Deibe F, Téllez-Lapeira JM, Villena-Ferrer A, et al. Efficacy of a combined strategy to improve use of indicated statins and lipid-lowering therapy in patients undergoing coronary artery revascularization: a randomized controlled trial. JAMA Intern Med. 2018;178(9):1190–8.

82. Shaffer J, Weckler LF. Reducing low-density lipoprotein cholesterol levels in an ambulatory care system: results of a multidisciplinary collaborative practice lipid clinic compared with traditional physician-based care. Arch Intern Med. 1995;155(21):2330–5. https://doi.org/10.1001/archinte.1995.01430210080012.

83. Cho HM, Stevenson KG, Streetman DS, Heider M, Sandiford CJ, Pette JD. Impact of patient financial incentives on participation and outcomes in a statin pill-splitting program. Am J Manag Care. 2007;13(6 Part 1):298–304.

84. McLeod AL, Brooks L, Taylor V, Wylie A, Currie PF, Dewhurst NG. Non-attendance at secondary prevention clinics: the effect on lipid management. Scott Med J. 2005;50(2):54–6. https://doi.org/10.1177/003693370500500204.

85. Rabinowitz I, Tamir A. The SaM (Screening and Monitoring) approach to cardiovascular risk-reduction in primary care—cyclical monitoring and individual treatment of patients at cardiovascular risk using the electronic medical record. Eur J Cardiovasc Prev Rehabil. 2005;12(1):56–62.

86. Ryan MJ, Gibson J, Simmons P, Stanek E. Effectiveness of aggressive management of dyslipidemia in a collaborative-care practice model. Am J Cardiol. 2003;91(12):1427–31. https://doi.org/10.1016/S0002-9149(03)00399-X.

87. Seibergs EH, Falger PR, Bar FW, Kester AD, Appels A. Cholesterol changes in coronary patients after a short behavior modification program. Int J Behav Med. 2003;10(4):315–30. https://doi.org/10.1207/s15327958ibm1004_3.

88. Lowrie R, Lloyd SM, McConachie A, Morrison J. A cluster randomised controlled trial of a pharmacist-led collaborative intervention to improve statin prescribing and attainment of cholesterol targets in primary care. PLoS One. 2014;9(1):e113370. https://doi.org/10.1371/journal.pone.0113370.

89. McAlistair FA, Fredette M, Kjuus J, McEwan JR, et al. The enhancing secondary prevention in coronary artery disease trial. CMAJ. 2009;181(12):897–904. https://doi.org/10.1503/cmaj.090917.

90. Pensel SD, Shah S, Brown T, et al. Individualized risk communication and lay outreach for the primary prevention of cardiovascular disease in community health centers: a randomized controlled trial. Circulation. 2015;130(A14008).

91. Villeneuve J, Genest J, Blais L, Vanier MC, Lamarre D, Fredette M, et al. A cluster randomized controlled trial to evaluate an ambulatory primary care management program for patients with dyslipidemia: the TEAM study. CMAJ. 2010;182(5):447–55. https://doi.org/10.1503/cmaj.090933-X.

92. Osborn D, Burton A, Hunter R, Marston L, Atkins L, Barnes T, et al. Clinical and cost-effectiveness of an intervention for reducing cholesterol and cardiovascular risk for people with severe mental illness in English primary care: a cluster randomised controlled trial. Lancet Psychiatry. 2015;2(2):145–54. https://doi.org/10.1016/S2215-0366(14)003007-5.

93. Paulós CP, Akeson Nygren CE, Cárdeno C, Cárcamo CA. Impact of a pharmaceutical care program in a community pharmacy in patients with dyslipidemia. Ann Pharmacother. 2005;39(9):939–43. https://doi.org/10.1348/152604105X94660.

94. Briss PA, Brownson RC, Fielding JE, Zaza S. Developing and using the guide to community preventive services: lessons learned about evidence-based public health. Annu Rev Public Health. 2004;25(1):281–302. https://doi.org/10.1146/annurev.pubhealth.25.050503.153933.

95. Powell BJ, Fernandez ME, Williams NJ, et al. Enhancing the Impact of Implementation Strategies in Healthcare: A Research Agenda. Front Public Health. 2019;7(3). https://doi.org/10.3389/fpubh.2019.00003.
108. Powell BJ, McMillen JC, Proctor EK, et al. A compilation of strategies for implementing clinical innovations in health and mental health. Med Care Res Rev. 2012;69(2):123–57. https://doi.org/10.1177/1077558711430690.

109. Graham AK, Lattie EG, Powell BJ, Lyon AR, Smith JD, Schuessler SM, et al. Implementation strategies for digital mental health interventions in health care settings. Am Psychol. 2020;75(8):1080–92. https://doi.org/10.1037/amp0000685.

110. Trogrlić Z, van der Jagt M, Bakker J, et al. A systematic review of implementation strategies for assessment, prevention, and management of ICU delirium and their effect on clinical outcomes. Crit Care. 2015;19(1):157.

111. Yi Mohammadi JJ, Franks K, Hines S. Effectiveness of professional oral health care intervention on the oral health of residents with dementia in residential aged care facilities: a systematic review protocol. JBI Database System Rev Implement Rep. 2015;13(10):110–22. https://doi.org/10.11124/jbisrir-2015-2330.

112. Mills KT, Obst KM, Shen W, Molina S, Zhang HJ, He H, et al. Comparative effectiveness of implementation strategies for blood pressure control in hypertensive patients: a systematic review and meta-analysis. Ann Intern Med. 2018;168(2):110–20. https://doi.org/10.7326/M17-1805.

113. Kinney FJ, Wainwright E, Perry R, Latham FE, Bayly G, Huntley A, et al. Enablers and barriers to treatment adherence in heterozygous familial hypercholesterolaemia: a qualitative evidence synthesis. BMJ Open. 2019; 9(7):e030290. https://doi.org/10.1136/bmjopen-2019-030290.

114. Ament SM, de Groot JJ, Dirksen CD, van der Weijden T, Kleijnen J. Sustainability of professionals’ adherence to clinical practice guidelines in medical care: a systematic review. BMJ Open. 2015;5(12):e008073. https://doi.org/10.1136/bmjopen-2015-008073.

115. Jordan P, Mpasa F, Ten Ham-Baloyi W, Bowers C. Implementation strategies for guidelines at ICUs: a systematic review. Int J Health Care Qual Assur. 2017;30(4):358–72. https://doi.org/10.1108/IJHCQA-08-2016-0119.

116. Unverzagt S, Dernier M, Braun K, Klement A. Strategies for guideline implementation in primary care focusing on patients with cardiovascular disease: a systematic review. Fam Pract. 2014;31(3):247–66. https://doi.org/10.1093/fampra/cmt080.

117. Shanbhag D, Graham ID, Harlos K, Haynes RB, Gabizon I, Connolly SJ, et al. Effectiveness of implementation interventions in improving physician adherence to guideline recommendations in heart failure: a systematic review. BMJ Open. 2018;8(3):e017765. https://doi.org/10.1136/bmjopen-2017-017765.

118. Milchak JL, Carter BL, James PA, Ardery G. Measuring adherence to practice guidelines for the management of hypertension: an evaluation of the literature. Hypertension. 2004;44(5):602–8.

119. Morrison A, Polisena J, Husereau D, Moulton K, Clark M, Fidler M, et al. The effect of English-language restriction on systematic review-based meta-analyses: a systematic review of empirical studies. Int J Technol Assess Health Care. 2012;28(2):138–44. https://doi.org/10.1017/S0266462312000086.

120. Schmucker CM, Biunno A, Schell JK, et al. Systematic review finds that study data not published in full text articles have unclear impact on meta-analyses results in medical research. PLoS One. 2017;12(4):e0176210. https://doi.org/10.1371/journal.pone.0176210.

121. Bays HE, Jones PH, Brown WW, Jacobson TA, National LA. National lipid association annual summary of clinical lipidology 2015. J Clin Lipidol. 2014; 8(6 Suppl):S1–36. https://doi.org/10.1016/j.jacl.2014.10.002.

122. Williamson PR, Altman DG, Bagley H, et al. The COMET Handbook: version 1. 0. Trials. 2017;18(3):280.

123. Seidler AL, Hunter KE, Cheyne S, Ghersi D, Berlin JA, Askie L. A guide to prospective meta-analysis. BMJ. 2019;367:l5342.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.