Introduction and Main Results

In this paper, we are interested in the hydrodynamical limit of the Boltzman-Monge-Ampere system (BMA)

\begin{equation}
 f + \xi V f + V \psi f, f = Q(f, f) \quad \text{(1.1)}
 \end{equation}

\begin{equation}
 \text{det}(I_j + \varepsilon^2 D\Psi) = \rho \quad \text{(1.2)}
 \end{equation}

where \(f(t, x, \xi) \geq 0 \) the electronic density at time \(t \geq 0 \) point \(x \in [0, 1]^3 = Td \), and with a velocity \(\xi \in \mathbb{R}^d \), and \(I_d \) is the identity matrix defined by

\[
\begin{bmatrix}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{bmatrix}
\]

The spatially periodic electric potential is coupled with \(\rho \) through the nonlinear Monge-Ampere equation (1.2). The quantities \(\varepsilon > 0 \) and \(\rho(t, x) \geq 0 \) denote respectively the vacuum electric permittivity and the electronic density at time \(t \geq 0 \).

\[Q(f, f) \text{ is the Boltzman collision integral. This integral operates only on the } \xi \text{-argument of the distribution } f \text{ and is given by}
\]

\[Q(f, f) = \int_{\mathbb{R}^d} Q(f'(t)), f'(t, x, \xi) \, d\sigma \, d\xi, \]

where the terms \(f'(t), f'(t, x, \xi) \) defines, respectively the values \(f(t, x, \xi) \) and \(f'(t, x, \xi) \) with \(\xi \) and \(\xi' \) given in terms of \(\xi, \xi' \in \mathbb{R}^d \), and \(\sigma = S^{t-1} = \{ \sigma \in S^{d-1} | \sigma \xi = \sigma \xi' \} \) by

\[
\begin{bmatrix}
\xi' \\
\xi
\end{bmatrix} = \frac{\xi + \xi'}{2} + \frac{\xi - \xi'}{2} \alpha.
\]

The aim of this work is to investigate the hydrodynamic limit of the (BMA) system with optimal transport techniques.

Remark 1

- Existence and uniqueness of \(\Phi \) is due to the polar factorization theorem.

- By setting the change of variables \(y = \nabla \Psi(x) \), we get \(dy = \det D\Psi(x) dx \). So (1.6) can be transformed to:

\[
\varepsilon^2 \Delta \phi \approx \rho - 1
\]
We have
\[
\frac{d}{dt} H_L = \frac{d}{dt} \left[\frac{1}{2} f(t,x,\xi) \left| \nabla \phi \right|^2 \right] dx dz
\]
\[
= \int f(t,x,\xi) \left(\partial_t \nabla \phi - \nabla \phi \right) dz dx
\]

From the BMA we have
\[
\int \partial_t f \left| \nabla \phi \right|^2 dx dz = - \int \nabla \cdot \left(f(t,x,\xi) \nabla \phi \right) \left| \nabla \phi \right|^2 dx dz
\]
\[
+ \int \nabla \cdot \left(\frac{1}{\epsilon} \nabla \phi \right) f(t,x,\xi) |\nabla \phi|^2 dx dz
\]
\[
+ \int \Omega(f'(u,f^2) |\nabla \phi|^2) dx dz
\]

The last term is equal to zero from the property of Boltzman Operator [1,3,5,7-9,11].

It follows by integrating by party that
\[
\int \partial_t f \left| \nabla \phi \right|^2 dx dz = 2 \int f(t,x,\xi) \nabla \phi \cdot \nabla \phi dx dz + 2 \int f(t,x,\xi) \frac{1}{\epsilon} \nabla \phi \cdot \nabla \phi dx dz.
\]

Thus
\[
\int \partial_t f \left| \nabla \phi \right|^2 dx dz = 2 \int f(t,x,\xi) \nabla \phi \cdot \nabla \phi dx dz + 2 \epsilon \int f(t,x,\xi) \frac{1}{\epsilon} \nabla \phi \cdot \nabla \phi dx dz.
\]

Let us begin with the first term. Use Holder inequality and that \(|\nabla \phi| \leq C \) to decompose
\[
A = \int \frac{1}{\epsilon} f(t,x,\xi) \nabla \phi \cdot \nabla \phi dx dz = 2 \int f(t,x,\xi) \frac{1}{\epsilon} \nabla \phi \cdot \nabla \phi dx dz.
\]

From the second term \(D \), one has
\[
D = \int \frac{1}{\epsilon} f(t,x,\xi) \nabla \phi \cdot \nabla \phi dx dz = \int \nabla \phi \cdot \nabla \phi dx dz.
\]

From the definition of \(\phi \), we have
\[
\nabla \phi \cdot \nabla \phi = |\nabla \phi|^2.
\]

Since \(\nabla \phi \) is divergence free, once gets
\[
\int \nabla \phi dx = 0. \quad \text{Thus form Lemma 4}
\]
 \[
(G = \nabla \phi), \text{ once has}
\]
\[
\int |\nabla \phi|^2 dx = 0.
\]

Since it costs no generality to suppose that for all \(\epsilon \in [0,T] \int f(t,x,\xi) dx = 0, \)
we get from the equation of conservation of mass
\[\int f(t, x, \xi) \xi \nabla p = -\int \nabla (f(t, x, \xi) \xi) p = \int \frac{d}{dt} \rho \hat{p} \xi - \int \rho \hat{p} \xi \frac{\partial}{\partial t} \]

By Lemma 4 and setting \(Q(t) = -\int \rho \hat{p} \) we can deduce that
\[\int f(t, x, \xi) \xi \nabla p \leq C(\varepsilon^2 + H(t)) - \frac{dQ}{dt} \]

Thus
\[D \leq C(H(t) + \varepsilon^2) - \frac{dQ}{dt} \]

We deduce then the following inequality
\[\frac{d}{dt} (H(t) + Q) \leq C H(t) + \beta(\varepsilon^2) \quad (2.1) \]

Still using 4,
\[|Q(t)| = |\int \rho \hat{p}| \leq C \varepsilon^2 + \frac{1}{2} H(t) \]

Thus
\[H(t) + Q \geq \frac{1}{2} H(t) - C \varepsilon^2 \]

So once can transform (2.1) as
\[\frac{d}{dt} (H(t) + Q) \leq C(H(t) + Q) + C \varepsilon^2 \]

And by Gronwall’s inequality [11] yields
\[H(t) + Q(t) \leq (H(0) + Q(0)) \exp(Ct) \]

Finally we conclude that
\[H(t) \leq C(H(0) + C \varepsilon^2) \exp(Ct) \]

Which achieves the proof of the theorem.

References
1. Cercignani C (1988) The Boltzmann equation. The Boltzmann Equation and Its Applications. Springer New York, pp: 40-103.
2. Cercignani C, Illner R, Pulvirenti M, Bardos C (1995) The mathematical theory of dilute gases. SIAM Review 37: 622-623.
3. DiPerna RJ, Lions PL (1989) On the Cauchy problem for Boltzmann equations: global existence and weak stability. Annals of Mathematics 130: 321-366.
4. DiPerna RJ, Lions PL (1989) Global weak solutions of Vlasov-Maxwell systems. Communications on Pure and Applied Mathematics 42: 729-757.
5. Desvillettes L, Dolbeault J (1991) On long time asymptotics of the Vlasov-Poisson-Boltzmann equation. Communications in Partial Differential Equations 16: 451-489.
6. Glassey RT (1996) The Cauchy problem in kinetic theory. Society for Industrial and Applied Mathematics.
7. Guo Y (2002) The Vlasov-Poisson-Boltzmann system near Maxwellians. Communications on Pure and Applied Mathematics 55: 1104-1135.
8. Yang T, Zhao HJ (2006) A new energy method for the Boltzmann equation. Journal of Mathematical Physics 47: 053301.
9. Yang T, Yu H, Zhao H (2006) Cauchy problem for the Vlasov Poisson Boltzmann system. Archive for Rational Mechanics and Analysis 182: 415-470.
10. Sone Y (2012) Kinetic theory and fluid dynamics. Springer Science & Business Media, Boston.
11. Hsiao L, Li FC, Wang S (2007) Convergence of the Vlasov-Poisson–Boltzmann system to the incompressible Euler equations. Acta Mathematica Sinica English Series 23: 761-768.
12. Brenier Y (1991) Polar factorization and monotone rearrangement of vector-valued functions. Communications on Pure and Applied Mathematics 44: 375-417.
13. Loeper G (2004) A geometric approximation to the Euler equations: the Vlasov–Monge–Ampere system. Geometric & Functional Analysis GAFA 14: 1182-1218.