SHORT REPORT

Female sex workers incarcerated in New York City jails: prevalence of sexually transmitted infections and associated risk behaviors

Farah Parvez,1,2 Monica Katyal,1 Howard Alper,1 Ruth Leibowitz,3 Homer Venters1

ABSTRACT

Objectives Sexually transmitted infections (STIs) are an important cause of morbidity among incarcerated women and female sex workers (FSW). Little is known about FSW incarcerated in New York City (NYC) jails. We reviewed jail health records to identify the STI and HIV prevalence among newly incarcerated FSW in NYC jails. We also examined the relationship of demographics and self-reported clinical and risk behaviour history with FSW status and compared FSW with non-FSW incarcerated women to identify FSW predictors and, guide NYC jail programme planning and policy.

Methods We retrospectively reviewed routinely collected jail health record data to identify the prevalence of chlamydia (Ct), gonorrhoea (Ng) and HIV infection among women newly incarcerated in NYC jails in 2009–2010 (study period) and studied the relationship of STIs, demographics and self-reported clinical and risk behaviour history with FSW status.

Results During the study period, 10 828 women were newly incarcerated in NYC jails. Of these, 10 115 (93%) women were tested for Ct and Ng; positivity was 6.2% (95% CI 5.7% to 6.7%) and 1.7% (95% CI 1.4% to 1.9%), respectively. Nine percent had HIV infection. Seven hundred (6.5%) were defined as FSW. FSW were more likely to have Ct (adjusted OR (AOR): 1.55; 95% CI 1.17 to 2.05; p<0.0001) but not Ng or HIV. FSW were more likely to have report age ≥20–24 years, reside in boroughs other than Manhattan, ≥6 prior incarcerations, ≥2 incarcerations during the study period, condom use with current sex partners, multiple sex partners and current drug use.

Conclusions Women incarcerated in NYC jails had high rates of Ct, Ng, and HIV infection. FSW were at higher risk for Ct than non-FSW incarcerated women. These findings are being used to design targeted interventions to identify FSW, provide clinical and preventive services in jail and coordinate care with community partners.

INTRODUCTION

Sexually transmitted infections (STI) are an important cause of morbidity among incarcerated women and female sex workers (FSW).1–3 Incarcerated women, particularly FSW are at increased risk for STI and often report risk behaviours including unprotected sex, sex for drugs or money or multiple sex partners.2 4 Inadequate health insurance coverage and access to needed clinical and social services are commonly reported.4 5 Incarceration, thus, provides a unique opportunity to screen high-risk women for STI. Correctional settings with comprehensive screening programmes identify high rates of human immunodeficiency virus (HIV), chlamydia (Ct) and gonorrhoea (Ng) infection among women.6 As such, STI and HIV testing, treatment and prevention efforts are public health priorities for correctional settings and public health agencies.

Little is known about STI and HIV infection among FSW incarcerated in New York City (NYC) jails. Identifying FSW in jail is difficult; women may not disclose sex work, and currently, jail clinicians do not specifically inquire about it. Prostitution criminal charge is often the only available, though insufficient, FSW marker; other means to identify FSW are needed. We retrospectively reviewed NYC jail health records of newly incarcerated FSW (identified by prostitution charges) with medical intake examinations during 2009–2010 to identify their STI and HIV positivity. We also examined the relationship of demographics and self-reported clinical and risk behaviour history with FSW status and compared FSW to non-FSW incarcerated women to identify FSW predictors and guide NYC jail programme planning and policy.

METHODS

NYC’s jail system is the second largest in the USA, annually receiving >80 000 new admissions, including >9 000 women. Facilities are operated by the Department of Correction (DOC); healthcare delivery is overseen by Department of Health and Mental Hygiene (DOHMH). Within 24 h of jail admission, newly incarcerated women receive a medical history and physical (intake) including routine voluntary rapid HIV testing and urine- or endocervical swab-based Ct and Ng screening. Median length of stay (LOS) is 7 days; ~25% of women are released ≤3 days after admission. Ct and Ng test results are available within 3 days, enabling treatment of >65% of STI-diagnosed women with appropriate antimicrobials prior to release. During testing, women are educated about DOHMH STI clinics where they may receive test results, treatment and partner notification assistance. HIV-infected women receive treatment if indicated and discharge planning.

Routine jail electronic health record (EHR) data were extracted for newly incarcerated women having ≥1 medical intake from 1 January 2009 to 31 December 2010 (study period) and included demographics, self-reported HIV history, sexual

To cite: Parvez F, Katyal M, Alper H, et al. Sex Transm Infect 2013;89:280–284.
Table 1 Factors associated with being a female sex worker among women incarcerated in New York City jails, 2009–2010

Demographic/incarceration characteristics	Total	Female sex worker-Yes	Univariate logistic regression	Multivariate logistic regression
	N	N (Row %)	OR (95% CI)	OR (95% CI)
TOTAL	10828	700 (6.5)		
Gender				
Male	9122	573 (6.3)		
Female	706	47 (6.6)	0.80 (0.62 to 1.02)	0.83 (0.63 to 1.10)
Age, years				
16–19	1070	69 (6.4)	0.96 (0.72 to 1.28)	1.07 (0.77 to 1.49)
20–24	1689	136 (8.1)	1.22 (0.97 to 1.53)	1.42 (1.09 to 1.85)
25–34	2595	198 (7.6)	1.15 (0.94 to 1.42)	1.26 (1.00 to 1.58)
35–44	2852	191 (6.7)	Reference	Reference
≥55	2258	102 (4.5)	0.66 (0.52 to 0.84)	0.83 (0.64 to 1.08)
Unknown	10	0 (0.0)	<0.01 (<0.01 to >999.99)	<0.01 (<0.01 to >999.99)
Race/ethnicity				
NH Black	6406	414 (6.5)	Reference	Reference
Hispanic	2810	176 (6.3)	0.97 (0.81 to 1.16)	1.00 (0.82 to 1.23)
NH White	1239	85 (6.7)	1.07 (0.84 to 1.36)	0.96 (0.73 to 1.27)
NH API/American Indian/Other	353	24 (6.8)	1.06 (0.69 to 1.62)	1.68 (1.06 to 2.66)
Unknown	20	1 (0.1)	0.76 (0.10 to 5.71)	0.26 (0.03 to 2.42)
Borough of Residence				
Bronx	2336	144 (6.2)	2.57 (1.81 to 3.64)	2.73 (1.90 to 3.94)
Brooklyn	3415	232 (6.8)	2.85 (2.04 to 3.98)	2.47 (1.75 to 3.50)
Manhattan	1683	42 (2.5)	Reference	Reference
Queens	1561	141 (9.0)	3.88 (2.73 to 5.52)	4.93 (3.41 to 7.14)
Staten Island	446	27 (6.1)	2.52 (1.53 to 4.13)	2.43 (1.44 to 4.11)
Other	1387	114 (8.2)	3.50 (2.44 to 5.02)	4.53 (3.03 to 6.76)
Ever homeless during study period				
Yes	791	94 (11.9)	2.10 (1.67 to 2.64)	0.70 (0.52 to 0.95)
No	10037	606 (6.0)	Reference	Reference
Marital status				
Single, never married	8616	600 (7.0)	Reference	Reference
Married/Cohabiting	1617	72 (4.5)	0.62 (0.49 to 0.80)	0.73 (0.56 to 0.95)
Divorced/Separated	371	15 (4.0)	0.56 (0.33 to 0.95)	0.72 (0.41 to 1.27)
Widowed	158	6 (3.8)	0.53 (0.23 to 1.20)	0.94 (0.40 to 2.25)
Unknown	66	7 (10.6)	1.59 (0.72 to 3.49)	2.15 (0.84 to 5.52)
Education				
<High school diploma/equivalent	4960	362 (7.3)	1.00 (0.84 to 1.19)	0.98 (0.81 to 1.18)
High school diploma/equivalent	2921	214 (7.3)	Reference	Reference
Some college	1756	74 (4.2)	0.56 (0.42 to 0.73)	0.70 (0.52 to 0.93)
≥College degree	483	12 (2.5)	0.32 (0.18 to 0.58)	0.42 (0.23 to 0.79)
Unknown	708	38 (5.4)	0.72 (0.50 to 1.02)	0.79 (0.47 to 1.33)
Number of prior incarcerations (in last 3 years)				
0	7866	427 (5.4)	Reference	Reference
1	1268	62 (4.9)	0.90 (0.68 to 1.18)	0.76 (0.57 to 1.01)
2	628	51 (8.1)	1.54 (1.14 to 2.08)	1.01 (0.73 to 1.41)
3–5	713	73 (10.2)	1.99 (1.53 to 2.58)	1.05 (0.78 to 1.40)
≥6	353	87 (24.6)	5.70 (4.39 to 7.40)	1.81 (1.32 to 2.47)
Number of incarcerations during study period				
1	7657	263 (3.4)	Reference	Reference
2	1752	135 (7.7)	2.35 (1.89 to 2.91)	2.32 (1.84 to 2.93)
3	652	101 (15.5)	5.15 (4.03 to 6.59)	4.86 (3.66 to 6.45)
≥4	767	201 (26.2)	9.98 (8.15 to 12.23)	8.61 (6.59 to 11.25)
Current drug use				
Yes	4411	403 (9.1)	2.07 (1.77 to 2.42)	1.24 (1.02 to 1.50)
No	6417	297 (4.6)	Reference	Reference
Physical assault history				
Yes	2501	179 (7.2)	1.12 (0.93 to 1.33)	0.88 (0.69 to 1.11)
No	7641	494 (6.5)	Reference	Reference
Unknown	686	27 (3.9)	0.59 (0.40 to 0.88)	1.53 (0.84 to 2.78)
risk behaviours, current drug use, lifetime physical assault/sexual abuse/intimate partner violence (IPV) history; current pregnancy; and jail Ct, Ng and HIV testing (table 1). Demographics (age, race/ethnicity, borough of residence, marital status, education) and sexual risk behaviours (current condom use, number of sex partners) were tabulated from the first incarceration during the study period. Remaining variables were computed across all incarcerations during the study period and counted as ‘yes’/positive if ever so in any incarceration. HIV positivity was determined using self-reported history, EHR documentation of infection and jail testing data. Ct and Ng positivity with exact binomial 95% CIs were calculated using jail testing results (no. of unique women testing positive/no. of unique women tested). Women with multiple positive tests were counted once as ‘positive’. DOC provided data on self-reported homelessness, LOS, prior NYC jail incarceration (≤3 years) and criminal charges. ‘Ever homeless’ status was assigned by report of homelessness at any incarceration. Cumulative LOS was calculated by summing all incarceration days. FSW were identified by ≥1 prostitution charges (New York Penal Law §110-230.00,110-240.37,230.00,240.37) among the top five charges occurring across all incarcerations.

Data were tabulated; χ²-statistics were used to identify factors associated with FSW status. Unadjusted ORs and 95% CIs were calculated for all variables in table 1. Variables significant in bivariate analysis (p<0.10) were analysed using multivariate logistic regression to determine predictors of FSW status; adjusted ORs (AORs) and 95% CIs were calculated. Variables ‘unknown’ values were retained to maximise statistical power because some variables had >500 unknown observations. Analyses were conducted using SAS V.9.2 (SAS Institute Inc., Cary, North Carolina, USA).

This study was deemed research-exempt by the NYC DOHMH Institutional Review Board.

RESULTS

During the study period, there were 19 677 admissions to NYC jails among 12 078 unique women. Of 12 078 women, 10 828 (89.7%) received medical intake; the remainder were released from jail prior to intake. Median age was 35 (range: 28-82 Parvez F, et al. Sex Transm Infect 2013;89:280–284. doi:10.1136/sextrans-2012-050977

Table 1 Continued

Total N	Female sex worker-Yes N (Row %)	Univariate logistic regression OR (95% CI)	Multivariate logistic regression OR (95% CI)	
Sexual abuse history				
Yes	1890	159 (8.4)	1.38 (1.14 to 1.66)	1.00 (0.79 to 1.28)
No	8309	520 (6.4)	Reference	Reference
Unknown	629	21 (3.3)	0.52 (0.33 to 0.81)	1.02 (0.49 to 2.11)
Intimate partner violence history				
Yes	1558	140 (9.0)	1.48 (1.22 to 1.80)	1.01 (0.79 to 1.29)
No	8585	536 (6.2)	Reference	Reference
Unknown	685	24 (3.5)	0.55 (0.36 to 0.83)	1.23 (0.73 to 2.07)
Condom use with current sex partner(s)*				
Yes	3330	349 (10.5)	2.36 (2.01 to 2.77)	1.76 (1.47 to 2.10)
No	6453	305 (4.7)	Reference	Reference
Unknown	1045	46 (4.4)	0.93 (0.68 to 1.28)	1.00 (0.64 to 1.54)
Number of current sex partners*				
0	2112	75 (3.6)	Reference	Reference
1	6833	425 (6.2)	1.80 (1.40 to 2.31)	1.53 (1.17 to 2.00)
2–3	703	91 (12.9)	4.04 (2.94 to 5.56)	2.56 (1.80 to 3.63)
4+	284	70 (24.6)	8.88 (6.23 to 12.67)	4.57 (3.05 to 6.89)
Unknown	896	39 (4.3)	1.24 (0.83 to 1.84)	1.69 (1.01 to 2.83)
Pregnant during study period				
Yes	639	66 (10.3)	1.71 (1.31 to 2.24)	1.00 (0.74 to 1.35)
No	9963	628 (6.3)	Reference	Reference
Unknown	226	6 (2.7)	0.41 (0.18 to 0.92)	0.91 (0.38 to 2.18)
Clinical status				
Ever Chlamydia-positive				
Yes	623	85 (13.6)	2.34 (1.84 to 2.99)	1.55 (1.17 to 2.05)
No	9492	600 (6.3)	Reference	Reference
Not tested	713	15 (2.1)	0.32 (0.19 to 0.54)	N/A†
Ever Gonorrhoea-positive				
Yes	167	30 (18.0)	3.11 (2.08 to 4.65)	1.46 (0.92 to 2.33)
No	9948	655 (6.6)	Reference	Reference
Not tested	713	15 (2.1)	0.31 (0.18 to 0.51)	0.41 (0.22 to 0.78)
HIV status				
Positive	975	76 (7.8)	1.03 (0.80 to 1.33)	0.95 (0.71 to 1.27)
Negative	6585	499 (7.6)	Reference	Reference
Unknown	3268	125 (3.8)	0.49 (0.40 to 0.59)	0.94 (0.76 to 1.18)

*Reported at first incarceration during study period.
†OR not generated as parameter set to 0 in model (equal to linear combination of other parameters).
NH, non-Hispanic, API, Asian/Pacific Islander.
remained associated with FSW status, as did age 20 level interest. In multivariate analysis, Ct (AOR: 1.55; 95% CI (p=0.96), which was retained in multivariate analysis for study- table 1 in bivariate analysis (p<0.05) except race/ethnicity Ct, Ng or HIV infection; 114 (1.1%) had two, and 4 (0.04%) identi
women were HIV-tested in jail; 27 (0.4%) tested positive. 723 women, 478 (66.1%) were treated with antimicrobials prior to jail release. Fourteen percent (103/723) of all Ct and Ng were among FSW; of these, 76% (78/103) were treated in jail. Of 10 828 women, 975 (9.0%) had HIV infection; the 6612(61.1%) women were de

DISCUSSION
This is the first study to examine STI prevalence among FSW in NYC jails. We found many women had Ct, particularly FSW, consistent with published reports.6–9 FSW were more likely to be age 20–24 years, the age often at highest Ct risk.3, 7 While the association between FSW and increased STI rates is not new, the high Ct prevalence detected among FSW in our study merits further attention. Nearly 25% of STI-positive FSW were released from jail prior to treatment, increasing risk of STI sequelae and transmission.4 Prevention interventions including peer outreach services, HIV counselling and testing, harm reduction education, and STI testing and management are associated with declines in HIV and STI prevalence among FSW.6 In NYC jails, our study findings are being used to design similar targeted interventions to identify FSW, provide clinical and preventive services in jail, and coordinate care with community partners. Interventions will be designed to address not only the medical, but also mental health and social services needs of this medically vulnerable population.4 5 8

Key messages

► Sexually transmitted infections (STI) are an important cause of morbidity among correctional populations in the USA.

► Incarcerated women, particularly female sex workers (FSW), are at high risk for STI and report sexual behaviours such as unprotected sex, sex for drugs or money or multiple sex partners.

► FSWs incarcerated in New York City (NYC) jails were at higher risk for chlamydia STI than non-FSW incarcerated women.

Handling editor David Gunham.

Contributors FP, MK, HA and HV designed the study. FP, MK, HA and RL collected and analysed the data. All authors contributed to writing and revising the manuscript.

Disclaimers The findings and conclusions in this paper are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which
permits others to distribute, remix, adapt, build upon this work non-commercially,
and license their derivative works on different terms, provided the original work is
properly cited and the use is non-commercial. See: http://creativecommons.org/
licenses/by-nc/3.0/

REFERENCES

1 Franklin W, Katyal M, Mahajan R, et al. Chlamydia and gonorrhea screening using
urine–based nucleic acid amplification testing among males entering New York
City jails: a pilot study. J Correct Health Care 2012;18:120–30.

2 Willers D, Piepert J, Allsworth J, et al. Prevalence and predictors of sexually
transmitted infection among newly incarcerated females. Sex Transm Dis
2008;35:68–72.

3 Joesoef RM, Weinstock HS, Kent CK, et al. & the Corrections STD Prevalence
Monitoring Group. Sex and age correlates of chlamydia prevalence in adolescents
and adults entering correctional facilities, 2005: implications for screening policy.
Sex Transm Dis 2009;36:567–71.

4 Murphy AK, Venkatesh SA. Vice careers: the changing contours of sex work in
New York City. Qual Sociol 2006;29:129–54.

5 Lee J, Vlahov D, Freudenberg N. Primary care and health insurance among women
released from New York City Jails. J Health Care Poor Underserved 2006;17:200–17.

6 Parvez FM, Tang ALF, Blank S. Sexually transmitted infections in correctional
settings. In: Zenilman J, Shahmanesh M, eds. Sexually transmitted infections:
diagnosis, management, and treatment. Massachusetts, USA: Jones & Bartlett
Learning, LLC, 2012.

7 Mertz K, Schwebke J, Gavdos C, et al. Screening women in jails for chlamydial and
gonococcal infection using urine tests: feasibility, acceptability, prevalence, and
treatment rates. Sex Transm Dis 2002;29:271–6.

8 Steen R, Dallabetta G. Sexually transmitted infection control with sex workers:
regular screening and presumptive treatment augment efforts to reduce risk and
vulnerability. Reprod Health Matters 2003;11:74–90.

9 Pitpitinan EV, Kalichman SC, Eaton LA, et al. HIV/STI risk among venue-based female
sex workers across the globe: a look back and the way forward. Curr HIV/AIDS Rep
2013;10:65–78.

10 Salazar LF, Crosby RA, Diclemente RJ. Exploring the mediating mechanism between
gender-based violence and biologically confirmed Chlamydia among detained
adolescent girls. Violence Against Women 2009;15:258–75.