Nutritional and functional attributes of mungbean (Vigna radiata [L] Wilczek) flour as affected by sprouting time

Chinelo S. Elobuike1 | Michael A. Idowu1 | Abiodun A. Adeola2 | Henry A. Bakare3

1Food Science and Technology Department, Federal University of Agriculture (FUNAAB), Abeokuta, Nigeria
2Food and Nutrition Research Programme, Institute of Food Security, Environmental Resources and Agricultural Research, FUNAAB, Abeokuta, Nigeria
3Hotel and Tourism Management Department, FUNAAB, Abeokuta, Nigeria

Correspondence
Abiodun A. Adeola, Food and Nutrition Research Programme, Institute of Food Security, Environmental Resources and Agricultural Research, FUNAAB, Abeokuta, Nigeria. Email: adeolaroni@yahoo.com

Abstract
Sprouting of grains improves their nutritional value and functionality, but information on the appropriate sprouting time required to obtain an optimum quality of mungbean flour is limited. This study evaluated the attributes of mungbean flour as influenced by sprouting time. Mungbean seeds were cleaned, sorted, surface-sterilised, rinsed and sprouted (28°C and 26% R.H) for 24 to 120 hr. Proximate, amino acids (AA), vitamins, mineral, anti-nutritional (phytate, tannin, oxalate, trypsin inhibitor, raffinose and stachyose) composition, functional properties (viscosity, bulk density and swelling index), microbial quality (total plate and mould counts) and energy of the flours obtained from the sprouted seeds were analysed. Data were subjected to analysis of variance and the means separated by Duncan’s Multiple Range Test. Significant (P < 0.05) differences were observed in the energy contents, chemical and functional properties of mungbean flour. There was no fungal growth in the samples until after 72 hr. Leucine, followed by lysine, was the dominant essential AA while methionine was the least. In conclusion, increase in sprouting period improved the nutrient composition but reduced the anti-nutrients of mungbean flour. Samples sprouted for 24 hr had the highest total essential and conditionally essential AA.

KEYWORDS
anti-nutrients, functional properties, mungbean, nutritional properties

1 | INTRODUCTION

Legumes rank second after cereals as an essential source of food worldwide and are significant supply of protein in developing countries (Onwurafor et al., 2014). According to Mensah and Olukoya (2007) mungbean (Vigna radiata), popularly called olaludi by the Igbo tribe of Nigeria, is an underutilised legume with high nutritional potentials. It contains appreciable quantity of lysine, and can therefore be used to complement cereals (Onwurafor et al., 2014). The protein, carbohydrate, fat, fibre and ash contents of mungbean are 22.9%, 61.8%, 1.2%, 4.4% and 3.5%, respectively (Offia & Madubuike, 2014). Unlike most other legumes, consumption of mungbean results in little flatulence because of the easy digestibility of the protein and carbohydrate (Nair et al., 2013). Generally, the consumption of mungbean and sprouts maintains the microbial flora in the gut, and reduces the risks of toxic substance absorption, hypercholesterolemia, coronary heart disease and cancer (Ganesan & Xu, 2018). In Eastern Nigeria where it is commonly grown, mungbean can be eaten alone or in combination with yam, cocoyam or abacha.

Sprouting, as a basic pre-processing operation, results in the improvement of edibility, nutritional and functional properties of legumes and cereals (Eleme et al., 2011; Elkhalifa & Bernhardt, 2010;
Ozumba et al., 2002; Zhang et al., 2012). According to Shah et al. (2011) the protein, crude fibre, ash, and vitamin C contents of mungbean increased while the fat, carbohydrate and phytic acid reduced throughout the 96 hr of sprouting. However, Afam et al. (2016) revealed that all the other nutrients (protein, fibre, calcium, iron, magnesium and potassium) except fat, ash, carbohydrate, phosphorus, sodium, flavonoids and antinutrients increased during a 72-hr sprouting of mungbean. Duration is significant in assessing the impact of sprouting on the properties of grains, and enzymatic activities have been reported to reduce when sprouting went beyond 96 hr (Nkhata et al., 2018). According to El-Adawy et al. (2003) and Elkhalifa et al. (2010) sprouting of cereal grains for 120 hr has desirable influence on their functional properties. Furthermore, Helland et al. (2002) who germinated maize grain for 7 days reported increase in germination period led to increased production of α-amylase and reduced viscosity. Little or no information exists on the influence of sprouting on the functional, microbial and amino acid profile of flour obtained from Nigerian mungbean.

This study therefore determined the nutrient and functional attributes of mungbean flour as influenced by sprouting.

MATERIALS AND METHODS

2.1 Procurement and preparation of sample

Mungbean seeds were obtained from a local market in Enugu, Nigeria. The seeds were sorted, sterilised, washed and sprouted in duplicate for 24, 48, 72, 96 and 120 hr. They were dry-milled and sieved with 60 mesh size screen to obtain the flour (Figure 1).

2.2 Chemicals and reagents

The chemicals, which were all of analytical grade, and the standards of β-carotene, ascorbic acid, vitamins (B1 and B2) were purchased obtained from Sigma–Aldrich.

2.3 Analyses of samples

2.3.1 Proximate

The methods described by AOAC (1990) were used to determine the proximate [crude protein by Kjeldahl method using a Kjeltec (Tecator TM, 91716369) (method 978.04), crude fat by soxhlet extraction (method 930.09), crude fibre by defatting, extraction and ashing (method 930.10), ash incinerating in a muffle furnace (Gallenkamp, SG93/11/888) (method 930.05), moisture by drying at 105°C in an oven (Genlab DC 500, 12B154) (method 930.04)]. The carbohydrate content was determined by subtracting the summation of the values of crude protein, crude fat, crude fibre, ash and moisture from 100 while the energy value was determined by multiplying the values of crude protein, crude fat and carbohydrate by 4, 9 and 4 respectively (Bakare et al., 2020).

2.3.2 β-Carotene

For β-Carotene the modified method of Pearson (1076) was used. About 2 g of mung bean flour was put in a flat bottom reflux flask, followed by the addition of 10 ml of distilled water. The content was shaken with care to form a suspension. About 25 ml of 10% KOH in methanol (v/v) solution was added, and with the mounting of a reflux condenser, the flask and its content were heated in a water bath (70–80°C) for 1 hr. The flask was shaken frequently during the heating. On rapid cooling of the flask, 30 ml of water was added. The flask's content was transferred into a separating funnel and extracted three times with 250 ml of chloroform. About 2 g of anhydrous sodium sulphate was employed to remove traces of water. Thereafter, the flask's content was filtered (using Whatman filter paper No. 42) into a 100-ml volumetric flask, and chloroform was added until the 100 ml was reached. Standard solutions of β-carotene (0–50 μg/ml) were prepared. The absorbance of each of the standard solutions was...
taken, from which a standard graph of absorbance against concentration was constructed, and the slope was calculated as the ratio of the absorbance to concentration. The absorbance of the sample solution was read on a Methrohm Spectronic 21 D Spectrophotometer (Gallenkamp, UK) at 328 nm.

\[
\beta - \text{carotene (µg 100 g}^{-1}) = \frac{\text{absorbance of sample} \times \text{gradient factor} \times \text{dilution factor}}{\text{weight of sample} \times \text{concentration}}
\]

\[
\text{gradient factor} = \text{slope} = \frac{\text{absorbance}}{\text{concentration}}
\]

2.3.3 | Ascorbic acid, vitamin B1 and vitamin B2

Ascorbic acid was determined by titrimetry as described by Onwuka (2005). A known weight of the sample was mixed with 3% meta phosphoric acid, filtered using a Whatman filter No. 3, and titrated with a standardised solution of 2.6-dichlorophenolindophenol to a faint pink endpoint.

Vitamin B1 was determined according to the modified method of Pearson (1976). About 25 ml of 0.1 M H2SO4 was added to a 100-ml volumetric flask containing 1-g sample. Additional 25 ml of 0.1 M H2SO4 was used to wash down adhering particles on the flask. The flask was put on a boiling water bath to ensure a complete dissolution of the sample in the acid. The flask was shaken frequently in the first 5 min and subsequently every 5 min for 3 hr. The flask was then cooled under running water to less than 50°C. The flask was stoppered and kept at 45–50°C for 2 hr. About 5 ml of taka-diastase in 0.5 M C2H3NaO2 solution was added. Thereafter, the flask and its content were made up to 100 ml with water in the dark after mixing thoroughly. The mixture was filtered (Whatman filter No. 42), and 10 ml of the filtrate was transferred into a 50-ml volumetric flask. Five millilitres of acidic potassium chloride solution (8.5 ml of conc. HCl diluted with 25% [w/v] potassium chloride solution) was then added, shaking thoroughly to mix well. Standard thiamine solutions of range 10–50 mg ml⁻¹ were prepared. The absorbance of both the standard and samples was using at 285 nm using the spectrophotometer.

Vitamin B1 = \frac{\text{absorbance of sample} \times \text{average gradient} \times \text{dilution factor}}{\text{weight of sample}}

For vitamin B2 the method described by Onwuka (2005) was used with modification. About 1 g of sample was put in a 250-ml volumetric flask. Five millilitres each of 5 N HCl and dichloroethene were added sequentially. On shaking the mixture, 90 ml of deionised water was added. The mixture was thoroughly mixed and heated on a water bath for 30 min so as to extract all the riboflavin. This was followed by filtration and cooling. The absorbance of sample and standard was read on a fluorescence Spectrophotometer (DS-11 FX Series, DeNovix Inc) at 460-nm wavelength.

2.3.4 | Minerals

For mineral determination method 975.03 of AOAC (1990) was used. The sample was dried by initially drying in an oven at 70–80°C for 2 hr, and then at 105°C until weight was constant. Wetashing of the sample was done by adding 10-ml nitric-perchloric acid (2:1, v/v) to a flask containing 5-g sample. The flask was heated until a clear digest was obtained. This was followed by cooling and filtration through a Whatman No 1 filter paper. The filtrate was diluted to 100 ml in measuring cylinder. Ca, Mg, Fe and Zn were analysed on atomic absorption spectrophotometer (54 AAS series, GE712354) using air-acetylene gas mixture as oxidant.

Calculation: mg/kg sample = digest conc. X DF (Analyte reading on AAS)

Potassium was analysed using Model 410 Corning Clinical Flame Photometer (2655-00).

Calculation: mg/kg sample = digest conc. X DF (Analyte reading on the photometer)

For the determination of phosphorus, 25 ml distilled water added to a flask containing 5 ml of the digest. Within 5 min, 10 ml of vanadomolybdate reagent was transferred to the flask, followed by mixing. The P content was obtained from the standard curve obtained from plotting absorbance against concentration.

2.3.5 | Plate count

The plate count was done using the method described by Jideani and Jideani (2006) while the fungal and coliform counts were carried out using the method of Harrigan and McCance (1976). For each microbial determination, serial dilutions (10⁻¹ to 10⁻⁴) of the sample were made with Ringers solution. About 1 ml of each dilution was added to a Petri dish containing 15 ml of the appropriate media (nutrient agar for plate count, Sabroud Dextrose agar for fungal count and Mac-Conkey for coliform count). The petri dish was shaken in a circular movement for 10 s. The plates were then allowed to set and incubated (inverted) in incubator (Gallenkamp, SG-94/02/853) for 24 hr at 38°C for plate count, 72 hr at 38°C for fungal count and 48 hr at 38°C for coliform count. The colonies formed were counted and recorded as colony forming unit (cfu) per gram.

Number of colonies = \frac{\text{average count} \times \text{dilution factor}}{	ext{weight of sample}}

2.3.6 | Viscosity, bulk density and swelling power

The methods described by Onwuka (2005) were used to determine the viscosity and bulk density while the swelling power was
determined by the method described by Ikegwu et al. (2010). The viscosity using a viscometer (Brookfield DV-E, RVDVE230) was measured by mixing sample of mung bean flour with water at a ratio of 1:1.

\[
\text{Viscosity at } 30^\circ C (ml/s) = \frac{\text{Volume of flow to maximum time at } 30^\circ C}{\text{maximum time used at } 30^\circ C}
\]

A previously weighed measuring cylinder was filled to the 10 ml mark with the sample. The bottom of the cylinder was tapped gently but repeatedly on a laboratory bench until there was no further reduction of the sample level at the 10-ml mark. The cylinder with the sample was weighed. The bulk density of the samples was determined by using the formula:

\[
\text{BD (g/ml)} = \frac{W_2 - W_1}{V}
\]

where BD = bulk density in g/cm³; W₁ = weight of empty cylinder (g); W₂ = weight of cylinder + sample (g); V = Volume of cylinder occupied by the sample (ml).

One gram of the flour sample was mixed with 10-ml distilled water in a centrifuge tube and heated at 80°C for 30 min under continued shaking. After heating, the suspension was centrifuged (Gallemkamp, 90–1) at 1000 × g for 15 min. The supernatant was decanted and the weight of the paste taken. The swelling power was calculated as follows:

\[
\text{Swelling power (g/g)} = \frac{\text{weight of the paste}}{\text{weight of dry flour}}
\]

2.3.7 | Phytic acid, oxalate, trypsin inhibitor activity and tannin

The phytic acid, oxalate, trypsin inhibitor activity, tannin and the oligosaccharides were determined following the methods described by Maga (1983), Onwuka (2005), Kakade et al. (1974), Swain (1979) and Tanaka et al. (1975), respectively. The determination of the phytate involved the extraction of sample with HCl and titration of the extract with acidic solution of FeCl₃ in the presence of ammonium thiocyanate. The oxalate determination involved the digestion of the sample with HCl; oxalate precipitation with conc. NH₄OH, 5% CaCl₂ and phytate. The oxalate determination involved the digestion of the sample with acidic solution of FeCl₃ in the presence of ammonium thiocyanate. The oxalate determination involved the digestion of the sample with HCl; oxalate precipitation with conc. NH₄OH, 5% CaCl₂ and permanganate titration. The oxalate content was given by the relationship that 1 ml of 0.05 m KMnO₄ solution = 0.00225 g oxalate. The oxalate content was calculated using the formula:

\[
\% \text{oxalate} = 100 \times \frac{\text{titre} \times 0.00225 \times W}{2}
\]

where W = Weight of sample used

The determination of trypsin inhibitor involved the centrifugation of the suspension of the sample and phosphate buffer; digestion with 2% casein solution; termination of the digestion with 5% trichloroacetic acid; and measurement of the absorbance at a wavelength of 280 nm on a spectrophotometer. The Folin–Denis spectrophotometric method was used for the determination of tannins. A known weight of sample was measured into a 50-ml beaker of 50% methanol, covered with paraffin and placed in a water bath at 77–80°C for 1 hr. It was shaking thoroughly to ensure a uniform mixing. The extract was quantitatively filtered using a double layered Whatman No. 1 filter paper into a 100-ml volumetric flask, 20-ml water added. 2.5-ml Folin–Denis reagent and 10 ml of 17% Na₂CO₃ were added and mixed properly. The mixture was made up to the 100-ml mark with water, mixed well and allowed to stand for 20 min. The absorbance of the samples was read a Spectronic 21D spectrophotometer at a wavelength of 760 nm.

2.3.8 | Starchose and raffinose

For the determination of starchyose and raffinose, a known weight of the sample was suspended in 80% ethanol, refluxed for 1 hr, filtered through Whatman No. 1 filter paper, and washed further with 80% ethanol. The combined filtrate was evaporated in a rotary vacuum evaporator at 40°C, freeze dried and re-suspended in 10 ml of distilled water. Ten microlitres of the suspension was spotted on triplicate on chromatographic plates (19 × 19 cm) precoated with cellulose powder-G. The plates were kept in a chromatographic chamber containing n-propanol: ethyl acetate: water (6:1:3) as the solvent system. The developed plates were sprayed with 1% α-naphthol in ethyl alcohol containing 10% orthophosphoric acid to locate the sugar spots. The quantitative estimation involved the elution of the spot in distilled water overnight, mixing 1 ml of eluent with 1 ml of 0.02 M thiobarbituric acid and 1 ml of concentrated HCl, heating the mixture in a boiling water bath, and cooling under running water. The resulting yellow colour solution was read at 432.5 nm in a spectrophotometer.

Benitez (1989) method was adopted to determine the amino acid profile using the Applied Biosystems PTH Amino Acid Analyzer. About 500 mg of the sample was put in extraction thimble and extracted for 15 hr in soxhlet extraction apparatus. Nitrogen was determined using the Kjeldahl method (digestion of the sample with H₂SO₄ and Na₂SO₄, distillation, neutralisation with NaOH and titration with HCl). About 30 mg of the defatted sample was weighed into glass ampoules. Thereafter, 7 ml of 6 mol/L HCl was added and oxygen expelled by passing nitrogen gas into the samples. The glass ampoules were sealed with a Bunsen flame and placed in an oven at 105 ± 5°C for 22 hr, and then allowed to cool. The content was filtered and the filtrate evaporated to dryness at 40°C under vacuum in a rotary evaporator. Each residue was dissolved with 5 ml of acetate buffer (pH 2.0) and stored in a plastic specimen bottle kept in the deep freezer. Then the hydrolysate was dispensed into the cartridge of the analyser.
2.4 | Statistical analysis

Triplicate data were analysed using one-way analysis of variance. Duncan’s Multiple Range Test of the SPSS version computer software 20 was used to separate the means of the data. The significance of the determinations was accepted at \(P < 0.05 \).

3 | RESULTS AND DISCUSSION

3.1 | Effect of sprouting on the proximate composition of mungbean flour

Except for carbohydrate and fat, the proximate composition of mungbean flour increased as the sprouting period increased (Table 1). Table 1 also revealed that as the sprouting period progressed the calorie content of the flour decreased. The enhancement of the protein may be a result of the bio-synthesis of proteases during the sprouting process (Afam et al., 2016; Kaushik et al., 2010) and the hydrolysis of the protein-enzyme-mineral bond resulting in the release of the nutrients (Elemo et al., 2011; Nonogaki et al., 2010; Shah et al., 2011). This result is in line with the findings of many other authors (Afam et al., 2016; Camacho et al., 1992; Ghavidel & Prakash, 2007; Kaushik et al., 2010; Ohtsubo et al., 2005; Urbano et al., 2005; Shah et al., 2011). The fact that fat is utilised as a source of energy may due to its decrease during sprouting (Afam et al., 2016; Devi et al., 2015; El-Adawy, 2002; Ghavidel & Prakash, 2007; Onimawo & Asugo, 2004; Shah et al., 2011). Fibre is an essential part of the diet that regulates bowel movement and weight. The increase in the crude fibre and ash contents of the flour is supported by Shah et al. (2011) and Devi et al. (2015), respectively. Moisture content increased slightly as sprouting increased. The increase in the moisture content with time may be due to an increase in the number of cells within the seed becoming hydrated (Nonogaki et al., 2010). However, the rate at which seeds imbibe water during sprouting varies with time (Devi et al., 2015), thus the varying moisture content. Uwaegbute et al. (2000), Shah et al. (2011) and Devi et al. (2015) also reported moisture increases during the sprouting of legumes. However, a contradictory result was observed by Ohtsubo et al. (2005) during the sprouting of brown rice. The reduction of the carbohydrate contents of the flour samples is in line with the findings of Jirapa et al. (2001), Inyang and Zakari (2008), Megat Rusydi et al. (2011) and Uppal and Bains (2012). The decrease in carbohydrate during sprouting might be due to the catabolic action of \(\alpha \)-amylase (Shah et al., 2011). According to Vidal-Valverde et al. (2002) carbohydrate is used as source of energy for the growing seedlings during sprouting. The observed decrease in carbohydrate promotes sprouted mungbean seeds as a useful diet in weight management or any other diet-related health condition requiring low carbohydrate consumption. The decline in the energy level of the flour samples as sprouting time increased, which was also reported by Kalimbira et al. (2004), may be due to its use for the metabolic activities of the young shoot. This low energy makes mungbean sprouts beneficial for individuals with obesity and diabetes (Zheng, 1999).

3.2 | Sprouting effect on the vitamin content of mungbean

Sprouting leads to the activation of several enzyme systems which brings about notable changes in the chemical constituents of legumes. As presented in Table 2, there were significant \(P < 0.05 \) increases in

Sprouting time (hr)	\(\beta \)-carotene (\(\mu \)g/100 g)	Vitamin C (mg/100 g)	Vitamin B1 (mg/100)	Vitamin B2 (mg/100 g)
0	115.72	2.65	0.21	0.03
24	119.18	2.87	0.27	0.05
48	121.13	2.95	0.35	0.03
72	123.71	3.12	0.41	0.06
96	125.47	3.19	0.43	0.06
120	127.06	3.22	0.47	0.07

Note: Means in a column having same alphabets are not significantly different at \(P > 0.05 \).
the β-carotene, vitamins C, B1 and B2 contents of the sample as the sprouting period increased, and this agrees with previous reports (Fernandez & Berry, 1988; Riddoch et al., 1998; Shah et al., 2011; Uppal & Bains, 2012; Vidal-Valverde et al., 2002; Yang et al., 2001). Germination has been reported to result in the synthesis of water soluble vitamins (Bibi et al., 2008; Nkhata et al., 2018).

3.3 | Effect of sprouting on the mineral content of mungbean flour

Table 3 shows that there were significant increases in the mineral content (Ca, Zn, P, Mg, Fe and K) of the flour samples. Previous researchers (Afam et al., 2016; Dave et al., 2008; Devi et al., 2015; Tizazu et al., 2011) also reported increases in mineral contents of legumes during sprouting, and this may be due to increase in the activity of phytase, which breaks down protein-enzyme-mineral bond to release the minerals (Abdelrahaman et al., 2007; Elemo et al., 2011). Nout and Motarjemi (1997) attributed the increase in mineral contents to the decrease in the antinutrients during sprouting. On the other hand, sprouting had been reported to have no significant influence on the iron content of cowpea (Bains et al., 2011; Devi et al., 2015).

Sprouting time (hr)	Ca (mg/kg)	Mg (mg/kg)	Fe (mg/kg)	Zn (mg/kg)	P (mg/kg)	K (%)
0	1705.48a	311.14a	460.49a	21.32a	527.43a	1.17a
24	1995.87b	313.43a	477.21b	22.27b	666.62b	1.30b
48	2263.67c	316.81b	481.63b	23.83c	701.73c	1.39c
72	2483.94d	319.10b	627.88c	23.83c	775.45d	1.56d
96	3599.60e	323.87c	630.09c	25.22d	1243.66e	1.66e
120	3860.92f	328.55d	1163.10d	27.59e	2918.06f	1.75f

Note: Means in a column having same alphabets are not significantly different at P > 0.05.

3.4 | Effect of sprouting on the antinutrient composition of mungbean flour

Table 4 shows that the phytate, oxalate, trypsin inhibitor, raffinose and starchyose decreased as the sprouting time increased. Tannin was not detected in the flour samples. The enzymatic break down of phytate-phosphorus during sprouting may have resulted in the decrease in the phytic acid (Gupta et al., 2015; Shah et al., 2011). According to Murugkar et al. (2013), oxalic acid is broken down to carbon (IV) oxide and hydrogen peroxide during sprouting and subsequent release of calcium. The reduction in the trypsin inhibitor may be due to the proteolytic activity of enzymes during sprouting (Chauhan & Chauhan, 2007). Several other workers (Chopra & Sankhalla, 2004; Devi et al., 2015; Modgil et al., 2009; Uppal & Bains, 2012) also reported that antinutrients of legumes decreased as sprouting period increased. Murugkar and Jha (2009) similarly reported a decrease in trypsin inhibitor activity during sprouting of soybean. The non-detection of tannin in the samples might be a result of the development of hydrophobic association of tannins with proteins and enzymes and the subsequent leakage of tannin into water (Afam et al., 2016; Megat Rusydi & Azrina, 2012). Adeleke et al. (2017) similarly reported a reduction in the tannin content of sprouted Bambara nut. The decrease in the raffinose and starchyose of the flour samples may be due to the enzymatic attack of starchyose and raffinose by galactosidase during sprouting (Adeleke et al., 2017). This observation is in line with the findings of Nnanna and Phillips (1988) and Jood et al. (1985). Adeleke et al. (2017) reported considerable losses of stachyose and raffinose in Bambara groundnut flour after 72 hr of sprouting which resulted in better digestibility.

Sprouting time (hr)	Phytate (%)	Oxalate (%)	Trypsin inhibitor (TUI/mg)	Tannin (%)	Raffinose (%)	Starchyose (%)
0	0.18f	0.13c	31.77f	0.01	1.50a	1.92a
24	0.15e	0.12bc	28.92e	ND	1.41d	1.78c
48	0.13d	0.11b	27.88d	ND	1.34c	1.76c
72	0.13c	0.11b	26.29c	ND	1.29b	1.65b
96	0.12b	0.10a	22.20b	ND	1.25ab	1.59b
120	0.10a	0.09a	19.87a	ND	1.21a	1.49a

Note: Means in a column having same alphabets are not significantly different at P > 0.05.
degradation by α- and β-amylases that are formed during germination (Helland et al., 2002). The bulk density, which is a measure of heaviness of flour as well as a determinant of the packaging requirement of food (Adebowale et al., 2005; Murugkar et al., 2013; Nicole et al., 2010) decreased as the sprouting time increased. This agrees with the reports of Elkhalifa and Bernhardt (2010) and Ocheme et al. (2015). This reduction may be attributed to the fact that starch and proteins are broken down during sprouting (Ocheme et al., 2015). There was a decrease in the swelling power of the flour samples as the sprouting time increased. Similar decrease was reported by Gernah et al. (2011) during the sprouting of maize, and this may be due to the dextrinization of the starches.

3.6 Effect of sprouting on the microbial count of mungbean flour

The total plate and fungal counts of the samples increased with increase in sprouting time (Table 6). Yang et al. (2001) and Dziki et al. (2015) also observed a similar occurrence. Aydin et al. (2009) reported that although flour has a low water activity, the indigenous microbial population is diverse and their activities are triggered by the warm and humid conditions characteristic of sprouting.

3.7 Influence of sprouting on the amino acid composition of mungbean flour

Protein quality is influenced by amino acid pattern (Ayalew et al., 2017). There was an increase in the total essential amino acids (TEAA; valine, tryptophan, histidine, isoleucine, leucine, methionine, phenylalanine, lysine and threonine) as sprouting time increased (Table 7). This agrees with Mubarak (2005). This increase may be due to the breakdown of protease-resistant prolamin protein, releasing some amount of amino acids (Afify et al., 2012). Leucine in the range from 6.48 to 8.33 g/100 g was the dominant essential amino acid while methionine (0.85 to 1.85 g/100 g) was the least essential amino acid in all the samples. Among the conditionally essential amino acid, arginine (5.33 to 7.74 g/100 g) was the most abundant amino acid while cystine (0.61 to 1.45 g/100 g) was the least concentration in all the samples. Regarding the non-essential amino acids, glutamic acid (10.75 to 17.50 g/100 g) was dominant while alanine (3.41 to 4.48 g/100 g) was the least amino acid.

The TEAA ranged from 30.13 to 35.67 g/100 g with the flour sample obtained from 24-hr sprouted seed having the highest. Mubarak (2005) also reported 38.6 g/100 g as the TEAA for mung bean seeds germinated for 72 hr. On the other hand, Grela et al. (2017) reported 33.61 to 40.55 g/100 g for some legume species (chickpea, broad bean, grasspea and pea). However, Ayalew et al. (2017) reported that the TEAA of Anchote tuber and leaf powder ranged from 17.10 to 29.28 g/100 g. The total conditionally essential amino acids ranged from 16.85 to 23.67 g/100 g with 96-hr sprouted sample having the least. The total non-essential amino acids ranged from 27.79 to 40.21 g/100 g with the control having the least. Sprouting at 24 hr showed the highest concentration of both essential amino acids and conditionally essential amino acids, while sprouting at 72 hr showed the highest non-essential amino acids. The total amino acid content of the samples ranged 75.02 to 95.31 g/100 g with the 24-hr sprouting time having the highest concentration and control having the least concentration.
The results of the conditionally essential and non-essential amino acid concentration in this study compares favourably with most vegetable proteins (Mune et al., 2011).

4 | CONCLUSIONS

Increase in sprouting period resulted in increase in protein, crude fibre, ash, moisture, vitamins A, C, B1, B2, calcium, magnesium, iron, zinc, phosphorus, and potassium, as well as the microbial count, of mungbean flour. On the other hand, increase in sprouting period led to decrease in crude fat, carbohydrate, energy, phytate, oxalate, trypsin inhibitor, tannin, raffinose and starchyose contents of mungbean flour. The functional properties (viscosity, bulk density and swelling power) of mungbean reduced as sprouting period increased. Highest microbial count (total plate count and mould count) was observed in the flour sample obtained from mungbean sprouted for 120 hr. Mungbean flour sprouted for 24 hr had the highest TEAA and total conditionally essential amino acid, although flour sample sprouted for at least 96 hr was richer in protein, while 120-hr sprouted sample had the highest contents of fibre, ash, ascorbic acid and minerals elements.

CONFLICT OF INTEREST
All the authors declare that there are no conflicts of interest.

AUTHOR CONTRIBUTIONS
Chinelo Elobuike: investigation, methodology. Michael Idowu: conceptualization, methodology, project administration, supervision, validation, writing-original draft, writing-review & editing. Abiodun Adeola: conceptualization, formal analysis, investigation, methodology, project administration, supervision, writing-original draft, writing-review & editing. Henry Bakare: conceptualization, formal analysis, investigation, methodology, project administration, supervision, writing-review & editing.

DATA AVAILABILITY STATEMENT
The corresponding author declares the availability of data upon reasonable request.
REFERENCES

Abdelrahaman, S. A., Elmaki, H. B., Idris, W. H., Hassan, A. B., Babiker, E. E., & El Tinay, A. H. (2007). Anti-nutritional factors content and hydrochloric acid extractability of minerals in pearl millet cultivars as affected by sprouting. International Journal of Food Science and Nutrition, 58, 6–17. https://doi.org/10.1080/09637480601093236

Adebowale, Y. A., Adeyemi, I. A., & Oshodi, A. A. (2005). Functional and physiochemical properties of flours of six Mucuna species. African Journal of Biotechnology, 4(12), 1461–1468. https://doi.org/10.4314/ajb.v4i12.71409

Adeleke, O. R., Adiamo, O. Q., Fawale, O. S., & Olamiti, G. (2017). Effects of processing methods on antinutrients and oligosaccharides contents and protein digestibility of the flours of two newly developed bambara groundnut cultivars. International Food Research Journal, 24(5), 1948–1955.

Afam, A. O. C., Agugo, U. A., & Anyaegbu, E. C. (2016). Effect of sprouting on the nutritional and anti-nutritional contents of mungbean (Vigna radiata). African Journal of Agricultural Science and Technology, 4(7), 801–805.

Affify, A. E.-M. M. R., El-Beltagi, H. S., Abd El-Salam, S. M., & Omran, A. A. (2012). Protein solubility, digestibility and fractionation after germination of sorghum varieties. PLoS ONE, 7(2), e31154. https://doi.org/10.1371/journal.pone.0031154

AOAC. (1990). Official methods of analysis. In Methods 930.04, 930.05, 930.09, 930.10, 975.03, and 978.04 (15th ed.). Maryland, USA: Association of Official Analytical Chemists.

Ayalew, Y., Retta, N., Desse, G., Mohammed, A., & Mellese, A. (2017). Amino acid profile and protein quality in tuber and leaf of Cocconia abyssinica (Lam.) accessions of Ethiopia. Food Science & Nutrition, 5, 722–729. https://doi.org/10.1002/fsn3.452

Aydin, A., Peter, P., & Smulders, F. J. M. (2009). The physico-chemical and microbiological properties of wheat flour in Thrace. Turkish Journal of Agriculture and Forestry, 33, 445–454. https://doi.org/10.3906/tar-0901-20

Bains, K., Deol, J., & Brar, J. K. (2011). Effect of heat treatment on nutritional quality of cowpea (Vigna unguiculata). Indian Journal of Nutrition and Dietetics, 48, 26–33.

Bakare, A. H., Adeola, A. A., Otesile, I., Obadina, A. O., Afolabi, W. A., Adegunwa, M. O., Akerede, R., Bambose, O. O., & Alamu, E. O. (2020). Nutritional, texture, and sensory properties of composite biscuits produced from breadfruit and wheat flours enriched with edible fish meal. Food Science & Nutrition, 8, 6226–6246. https://doi.org/10.1002/fsn3.2191

Benitez, L. V. (1989). In S. L. De Silva (Ed.), Amino acid and fatty acid profiles in aquaculture nutrition studies. Manila, Philippines: Asian Fisheries Society.

Bibi, N., Aurang, Z., Amal, B. K., & Mohammad, S. K. (2008). Effect of sprouting time and type of illumination on proximate composition of chickpea seed (Cicer arietinum L.). American Journal of Food Technology, 3, 24–32. https://doi.org/10.3923/ajft.2008.24.32

Camacho, L., Sierra, C., Campos, R., Guzman, E., & Marcus, D. (1992). Nutritional changes caused by the sprouting of legumes commonly eaten in Chile. Archivos Latinoamericanos De Nutricion, 42, 283–290.

Chauhan, O. P., & Chauhan, G. S. (2007). Development of anti-nutrients free soy beverage using sprouted soybean. Journal of Food Science and Technology, 44, 62–65.

Chopra, S., & Sankhalla, A. (2004). Effect of soaking and sprouting on tannin, phytate and in vitro iron in under-utilized legumes-horse gram (Dolichos biflorus) and moth bean (Phaseolus aconitifolius). Journal of Food Science and Technology, 41, 547–550.

Dave, S., Yadav, B. K., & Tarafder, J. C. (2008). Phytate phosphorous and mineral changes during soaking, boiling and sprouting of legumes and pearl millet. Journal of Food Science and Technology, 45, 346–347.

Devi, C. B., Kushwaha, A., & Kumar, A. (2015). Sprouting characteristics and associated changes in nutritional composition of cowpea (Vigna radiata). Journal of Food Science and Technology, 52, 6821–6827. https://doi.org/10.1007/s13197-015-1832-1

Dzik, D., Gawkil-Dziki, U., Kordowska-Wlter, M., & Domani-Pytka, M. (2015). Influence of elicitation and germination conditions on biological activity of wheat sprouts. Journal of Chemistry, 2015, 1–8. https://doi.org/10.1155/2015/649709

El-Adawy, T. A., Rahma, E. H., El-Bedaway, A. A., & El-Betagy, A. E. (2003). Nutritional potential and functional properties of sprouted mungbean, pea and lentil seeds. Plant Foods for Human Nutrition, 57, 83–97. https://doi.org/10.1023/A:1013189626052

El-Adawy, T. A., Rahma, E. H., El-Bedaway, A. A., & El-Betagy, A. E. (2003). Influence of grain sprouting on functional properties of sorghum flour. Food Chemistry, 121, 387–392. https://doi.org/10.1016/j.foodchem.2009.12.041

Fernandez, M. L., & Berry, J. W. (1988). Nutritional evaluation of chickpea and sprouted chickpea flours. Plant Foods for Human Nutrition, 38, 127–134. https://doi.org/10.1007/bf01091717

Ganesan, K., & Xu, B. (2018). A critical review on phytochemical profile and health promoting effects of mung bean (Vigna radiata). Food Science and Human Wellness, 7, 11–33. https://doi.org/10.1016/j.fshw.2017.11.002

Gernah, D. I., Ariahu, C. C., & Ingbian, E. K. (2011). Effects of malting and lactic fermentation of some chemical and functional properties of maize (Zea mays). American Journal of Food Technology, 6, 413–421. https://doi.org/10.3923/ajft.2011.404.412

Ghavideil, R. A., & Prakash, J. (2007). The impact of germination and dehulling on nutrients, antinutrients, in vitro iron and calcium bioavailability and in vitro starch and protein digestibility of some legume seeds. LWT- Food Science and Technology, 40(7), 1292–1299. https://doi.org/10.1016/j.lwt.2006.08.002

Grelo, E. R., Kiczkowska, B., Sameksteva, W., Matras, J., Kiczkowski, P., Rybkinski, W., & Hanczakowska, E. (2017). Chemical composition of leguminous seeds: Part I—Content of basic nutrients, amino acids, phytochemical compounds, and antioxidant activity. European Food Research and Technology, 243, 1385–1395. https://doi.org/10.1007/s00217-017-2849-7

Gupta, R. K., Gangoliya, S. S., & Singh, N. K. (2015). Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. Journal of Food Science and Technology, 52, 676–684. https://doi.org/10.1007/s13197-013-0978-y

Harrigan, W. F., & McCance, M. E. (1976). Laboratory methods in microbiology. New York, NY: Academic Press.

Helland, M. H., Wicklund, T., & Narvhus, J. A. (2002). Effect of germination time on alpha-amylase production and viscosity of maize porridge. Food Research International, 35, 315–321.

Ikegwu, O. J., Okechukwu, P. E., & Ekumankama, E. O. (2010). Physico-chemical and pasting characteristics of flour and starch from achi Brachystegia eurycoma seed. Journal of Food Technology, 8(2), 58–66.

Imtiaz, H., Burhanuddin, M., & Gulzar, M. A. (2011). Evaluation of weaning foods formulated from sprouted wheat and mungbean from Bangladesh. African Journal of Food Science, 5(17), 897–903. https://doi.org/10.5897/AJFS11.180

Inyang, C. U., & Zakari, U. M. (2008). Effect of sprouting and fermentation of pearl millet of proximate chemical and sensory properties of instant
Mensah, J. K., & Olukoya, R. T. (2007). Performance of mungbeans (Vigna unguiculata) and its application in home prepared powdered weaning foods. *Plant Foods for Human Nutrition*, 56, 203–216. https://doi.org/10.1007/s11114-007-0127-50

Jood, S., Mehta, U., Singh, R., & Bhat, C. M. (1985). Effect of processing on flatus-producing factors in legumes. *Journal of Agricultural and Food Chemistry*, 33(2), 268–271. https://doi.org/10.1021/jf00062a028

Kakade, M. C., Racks, J. J., McGhee, J. E., & Puski, G. (1974). Determination of trypsin inhibitor activity of soy products: A collaborative analysis of an improved procedure. *Cereal Chemistry*, 51, 376–382.

Kalimbira, A. A., Mitummi, B. M., & Mitumuni, J. P. (2004). Effect of incorporating legumes on the nutritive value of cassava-based complementary foods. *Bunda Journal of Agriculture, Environmental Science and Technology*, 2, 13–21.

Kaushik, G., Satya, S., & Naik, S. N. (2010). Effect of domestic processing techniques on the nutritional quality of the soybean. *Journal of Nutrition and Metabolism*, 3, 39–46. https://doi.org/10.3233/s12349-009-0079-7

Maga, J. A. (1983). Phytate: Its chemistry, occurrence, food interactions, nutritional significance and method of analysis. *Journal of Agricultural and Food Chemistry*, 30, 1–9.

Megat Rusydi, M. R., & Azrina, A. (2012). Effect of germination on total phenolic, tannin and phytic acid contents in soy bean and peanut. *International Food Research Journal*, 19, 673–677.

Megat Rusydi, M. R., Noraliza, C. W., Azirina, A., & Zulkhairi, A. (2011). Nutritional changes in sprouted legumes and rice varieties. *International Food Research Journal*, 18, 705–713.

Mensah, J. K., & Olukoya, R. T. (2007). Performance of mungbeans (Vigna mungo [L] Hepper) grown in mid-western Nigeria. *American-Eurasian Journal of Agriculture and Environmental Science*, 2, 696–701.

Modgil, R., Joshi, R., Gupta, R., Verma, R., & Anand, S. (2009). Effect of spraying on anti-nutritional factors and the biological protein quality of fenugreek cultivars. *Journal of Food Science and Technology*, 46, 591–594.

Mubarak, A. E. (2005). Nutritional composition and anti-nutritional factors of mungbean seeds (Phaseolus aureus) as affected by some home traditional processes. *Food Chemistry*, 89, 89–95. https://doi.org/10.1016/j.foodchem.2004.01.007

Mune, M. A., Minka, S. R., Mbane, I. L., & Etoa, F. X. (2011). Nutritional potential of bambara bean protein concentrate. *Pakistan Journal of Nutrition*, 10, 112–119. https://doi.org/10.3923/pjn.2011.112.119

Murugkar, D. A., Gulati, P., & Gupta, C. (2013). Effect of spraying on physical properties and functional and nutritional components of multi-nutrient mixes. *International Journal of Food and Nutritional Sciences*, 2, 8–13.

Murugkar, D. A., & Jha, K. (2009). Effect of spraying on nutritional and functional characteristics of soybean. *Journal of Food Science and Technology*, 46, 240–243.

Nair, R. M., Yang, R., Esdown, W. J., Thavarajah, D., Thavarajah, P., D’A Hughes, J., & Keatinge, J. D. H. (2013). Biofortification of mungbean (Vigna radiata) as a whole food to enhance human health. *Journal of the Science of Food and Agriculture*, 93, 1805–1813. https://doi.org/10.1002/jsfa.6110

Nicole, M., Yu-Fei, H., & Pierre, C. (2010). Characterization of ready-to-eat composite porridge foods made by soy-maize-sorghum-wheat extrusion cooking process. *Pakistan Journal of Nutrition*, 9, 171–178. https://doi.org/10.3923/pjn.201.171.178

Nkhat, S. G., Ayua, E., Kamau, E. H., & Shingiro, J. (2018). Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. *Food Science & Nutrition*, 6, 2446–2458. https://doi.org/10.1002/fsn3.846

Nnanna, I. A., & Phillips, R. D. (1988). Changes in oligosaccharide content, enzyme activities and dry matter during controlled sprouted of cowpeas (Vigna unguiculata). *Journal of Food Science*, 53, 1782–1786. https://doi.org/10.1111/j.1365-2621.1988.tb07842.x

Nonogaki, H., Bassel, G. W., & Bewley, J. W. (2010). Germination—Still a mystery. *Plant Science*, 179, 574–581. https://doi.org/10.1016/j.plantsci.2010.02.010

Nout, M. J. R. & Motarjemi, Y. (1997). Assessment of fermentation as a household technology for improving food safety: A joint FAO/WHO workshop. *Food Control*, 8, 2011–2236. https://doi.org/10.1016/S0956-7135(97)00021-2

Ocheme, O. B., Adedeji, O. E., Lawal, G., & Zakari, U. M. (2015). Effects of germination on the functional properties and degree of starch gelatinization of sorghum flour. *Journal of Food Research*, 4, 159–165. https://doi.org/10.5539/jfr.v4n2p159

Offa, O. B. I., & Madubuike, U. B. (2014). The dehulling efficiency and physicochemical properties of pre-conditioned mungbean (Vigna radiata [L] Wilczek) seeds and flour. *African Journal of Food Science and Technology*, 6, 1–11. https://doi.org/10.14303/ajfst.2014.104

Ohtsubo, K., Suzuki, K., Yasui, Y., & Kasumi, T. (2005). Bio-functional components in the processed pre-sprouted brown rice by a twin-screw extruder. *Journal of Food Composition and Analysis*, 18, 303–316. https://doi.org/10.1016/j.jfca.2004.10.003

Onimawo, I. A., & Asugo, S. (2004). Effects of spraying on the nutrient content and functional properties of pigeon pea flour. *Journal of Food Science and Technology*, 41, 170–174.

Onwuka, G. I. (2005). *Food analysis and instrumentation: Theory and practice*. Lagos, Nigeria: Naphthalin Print.

Onwurafo, E. U., Omwewo, J. C., & Ezeko, A. M. (2014). Effects of fermentation methods on chemical and microbial properties of mungbean (Vigna radiata) flour. *Nigerian Journal of Food Science*, 32, 89–96. https://doi.org/10.5018/s1301-1741(13)01004-4

Ozumba, A. U., Olatunji, O. O., & Odunfa, J. A. (2002). Development and quality evaluation of semi-instant homemade weaning foods. *Journal of Applied Science*, 5, 3124–3138.

Pearson, D. (1976). *The chemical analysis of foods*. Edinburgh, London: Churchill Livingstone.

Riddoch, C. H., Mills, C. F., & Duthie, G. G. (1998). An evaluation of germinating beans as a source of vitamin C in refugee foods. *European Journal of Clinical Nutrition*, 52, 115–118. https://doi.org/10.1038/sj.ejcn.1600524

Shah, S. A., Zeb, A., Masood, T., Noreen, N., Abbas, S. J., Samiuillah, M., Alim, M. A., & Muhammad, A. (2011). Effects of spraying time on biochemical and nutritional qualities of mungbean varieties. *African Journal of Agricultural Research*, 6(22), 5091–5098.

Swain, T. (1979). In G. A. Rosenthal & D. H. Janzen (Eds.), *Tannins and lignins*. New York, NY: Academic press.

Tanaka, M., Thananunkit, D., Lee, T. C., & Chicherio, C. O. (1975). A simplified method for the quantitative determination of sucrose, raffinose and stachyose in legume seeds. *Journal of Food Science*, 40, 1087–1088. https://doi.org/10.1111/j.1365-2621.1975.tb02274.x

Tizazu, S., Urga, K., Belay, A., Abuye, C., & Retta, N. (2011). Effect of spraying on mineral bioavailability of sorghum-based complementary foods. *African Journal of Food, Agriculture, Nutrition and Development*, 11(5), 5083–5094.

Uppal, V., & Bains, K. (2012). Effect of germination time and hydrothermal treatments on in-vitro protein and starch digestibility of sprouted legumes. *Journal of Food Science and Technology*, 49, 184–191. https://doi.org/10.1007/s13197-011-0273-8

Urban, G., Jurado, M. L., Frejnegal, S., Villalva, E. G., Porres, J. M., Frias, J., Valverde, C. V., & Aranda, P. (2005). Nutritional assessment of raw and sprouted pea (*Pisum sativum* L) protein and carbohydrate by in vitro and in vivo techniques. *Nutrition*, 21, 230–239. https://doi.org/10.1016/j.nut.2004.04.025
Uwaegbute, A., Iroegbu, C. U., & Eke, O. (2000). Chemical and sensory evaluation of germinated cowpea (Vigna unguiculata) and their products. Food Chemistry, 68, 141–146. https://doi.org/10.1016/S0308-8146(99)00134-X

Vidal-Valverde, C., Frías, J., Sierra, I., Blázquez, I., Lambein, F., & Kuo, Y. H. (2002). New functional legume foods by germination: Effect on the nutritive value of beans, lentils and peas. European Food Research and Technology, 215, 472–477. https://doi.org/10.1007/s00217-002-0602-2

Yang, F., Basu, T. K., & Ooraikul, B. (2001). Studies on germination conditions and antioxidant contents of wheat grain. International Journal of Food Science and Nutrition, 52, 319–330. https://doi.org/10.1080/09637480120057567

Zhang, L., Mao, X., & Xia, Z. (2012). Effects of sodium metavanadate and germination on the sprouting of chickpeas and its content of vanadium, formononetin and biochanin a in the sprouts. Journal of Dietary Supplements, 9(1), 34–44. https://doi.org/10.3109/19390211.2011.639858

Zheng, J. X. (1999). Functional foods (Vol. 2). Beijing: China Light Industry Press.

How to cite this article: Elobuike, C. S., Idowu, M. A., Adeola, A. A., & Bakare, H. A. (2021). Nutritional and functional attributes of mungbean (Vigna radiata [L] Wilczek) flour as affected by sprouting time. Legume Science, 1–11. https://doi.org/10.1002/leg3.100