Synthesis, characterization and photoluminescence properties of Tm$^{3+}$-doped Ca$_2$YTaO$_6$ blue-emitting phosphors

Jianhua Li1, Jinyu Huang2,3, Jing Liao2,3, Jinjin Fu2,3, and Bin Deng2,3*

1Xiangnan Preschool Education College, Chenzhou 423000, Hunan, P. R. China
2College of Chemistry & Biology and Environmental Engineering, Xiangnan University, Chenzhou 423043, Hunan, P. R. China
3Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, Chenzhou 423043, Hunan, P. R. China

Abstract. A series of Ca$_2$YTaO$_6$: Tm$^{3+}$ blue-emitting phosphors were firstly prepared by the solid-state method. The phase formations and purity of Ca$_2$YTaO$_6$: xTm$^{3+}$ (x = 0.3%-5% mol) were verified by X-ray powder diffraction. The morphological characteristics of Ca$_2$YTaO$_6$: 0.005Tm$^{3+}$ were detected by scanning electron microscopy (SEM). Photoluminescence properties were discussed by emission ($\lambda_{em} = 460$ nm) and excitation ($\lambda_{ex} = 359$ nm) spectra. The critical doping concentration of the products was 0.005 mol. The proposed concentration quenching mechanism in Ca$_2$YTaO$_6$ materials was the electric multipole interaction. Besides, the color coordinates (0.1408, 0.0891) of Ca$_2$YTaO$_6$: 0.005Tm$^{3+}$ were located in blue region. The results suggested the Ca$_2$YTaO$_6$: Tm$^{3+}$ phosphors can be promising blue-emitting components for the WLED applications.

1 Introduction

Attaching great importance of energy-saving and environment protection, the traditional fluorescent lamps and incandescent lamps in daily lighting were fade away. White light-emitting diodes (WLEDs) are getting growing attention for the merits of energy-saving, improving efficiency, etc.[1-7]. Nowadays, two common methods of WLED fabrication were widely used. (1) Combining the blue LED chips with Ce$^{3+}$ doped Y$_2$AlO$_2$: phosphors. However, the great limitations of the method are low color rendering index (CRI) and high correlated color temperature. And the low CRI was due to the lack of red composition [8-10]. Method (2) was mixing the tricolor (RGB) emission phosphors with a near-UV chip [11-13]. The quest for blue-emitting phosphors for lighting is an important and urgent challenge for investigators.

Tantalates enjoy the merits of excellent chemical and physical stability, which have drawn widespread attention in the synthesis of phosphors. Recently, Eu$^{3+}$, Sm$^{3+}$, Dy$^{3+}$, and Mn$^{2+}$ doped Ca$_2$YTaO$_6$ phosphors were proved to be well applied in the WLED applications [14, 15]. However, Tm$^{3+}$ doped Ca$_2$YTaO$_6$ phosphors were still unreported. Tm$^{3+}$ is a good blue-emitting center. Many published works reported Tm$^{3+}$ doped phosphors for the WLED applications, such as Y$_2$Mg$_2$AlSi$_2$O$_{12}$: Eu$^{2+}$, Ce$^{3+}$, Na$_2$SiO$_3$: Ce$^{3+}$, Eu$^{2+}$, NaSrPO$_4$: Tm$^{3+}$, and Li,Gd$_{1/3}$TeO$_{3/2}$: Tm$^{1+}$ [16-19]. In this work, Ca$_2$YTaO$_6$:Tm$^{3+}$ phosphors were firstly synthesized through solid-state reaction (at 1550 ℃, in air condition). The XRD data of the products were collected and discussed. At the same time, the morphology, the concentration quenching mechanism, photoluminescence (PL) properties, and CIE color coordinates were investigated in detail.

2 Experimental

2.1 Synthesis method

The Ca$_2$YTaO$_6$: xTm$^{3+}$ (x = 0.3%-5% mol) phosphors were obtained by solid-state reaction. Starting materials CaCO$_3$ (99.99%), Y$_2$O$_3$ (99.99%), Ta$_2$O$_5$ (99.5%), and Tm$_2$O$_3$ (99.9%) were weighed according to the stoichiometric ratio. Following the general process, the mixed powder was ground for 15 minutes and was transferred into crucibles. Then, the reaction system was calcined at 1550 ℃ for 3 hours in the muffle furnace. After the calcination was finished, hard white phosphors were obtained and reground for the subsequent luminescence characterizations.

$$\text{2CaCO}_3 + 0.5(1-x)\text{Y}_2\text{O}_3 + 0.5\text{Ta}_2\text{O}_5 + 0.5x\text{Tm}_2\text{O}_3 \xrightarrow{1550\text{°C} \times 3h} \text{2CaY}_{(0.5,0.5x)}\text{Tm}_{0.5x}\text{Ta}_{0.5}\text{O}_3$$

2.2 Characterization method

The phase purity of phosphor was detected by the XRD through a Bruker D2 PHASER X-ray diffractometer with Cu Kα radiation source (λ = 0.15405 nm), and the result was presented in 2θ range between 10° and 70°. The morphology was measured by a scanning electron microscope (JEOL JSM-6490). The PL spectra were...
achieved by Edinburgh FLS 980 spectrometer.

3 Results and discussion

![Figure 1. XRD patterns of the Ca$_2$YTaO$_6$:xTm$^{3+}$ phosphors (x = 0.3%-5% mol).](image)

The XRD patterns of Ca$_2$YTaO$_6$:xTm$^{3+}$ (x = 0.3%-5% mol) phosphors were presented in Figure 1. A comparison of the patterns revealed that the diffraction peaks of the products match well with the simulated card of Ca$_2$YTaO$_6$, indicating that the as-prepared products have a high phase purity, and the Ca$_2$YTaO$_6$: Tm$^{3+}$ phosphors were successfully synthesized. For the composition of Ca$_2$YTaO$_6$: 0.005Tm$^{3+}$, the cell parameters are a = 5.814 Å, b = 8.050 Å, c = 5.578 Å, V = 261.07 Å3, respectively. As the ionic radii of the Y$^{3+}$ (0.90 Å) are approximate to that of Tm$^{3+}$ ions (1.052 Å), while the coordination number equals 6 [20], suggesting Tm$^{3+}$ ions can take place of Bi$^{3+}$ ions in relatively low concentration in the Ca$_2$YTaO$_6$ compound.

![Figure 2. SEM micrograph of Ca$_2$YTaO$_6$: 0.005Tm$^{3+}$ product.](image)

The surface morphology and particle sizes of phosphors are important for WLED applications. The SEM micrograph of the typical Ca$_2$YTaO$_6$: 0.005 Tm$^{3+}$ product is shown in Figure 2. At 10000× and 5000× magnification, the particle sizes are distributed in the range of a few microns to dozens of microns. The products have an irregular surface morphology with uneven size distribution among the pieces, which was the result of high-temperature annealing.
Figure 3(a) shows the intrinsic emission of Ca$_2$YTaO$_6$:0.005Tm$^{3+}$ under the excitation of 359 nm, which has a maximum wavelength at 460 nm. In the pink curve, a broadband (200-250 nm) is corresponding to O$^2-$→Tm$^{3+}$ charge transfer band [21, 22]. And another strong peak at 359 nm is attributed to the characteristic 4f–4f transition of 3H$_6$→1D$_2$ of Tm$^{3+}$. In the blue curve, the single emission band at 460 nm is attributed to the electronic dipole transition of 1G$_4$→3H$_6$ of Tm$^{3+}$ [23]. The energy level diagram of Tm$^{3+}$ illustrates the corresponding radiative process in the host. Under 359 nm excitation, the electrons in Tm$^{3+}$ transitioned from the 3H$_6$ level of the ground state to the 1D$_0$ level of the excited state. Subsequently, the electrons of Tm$^{3+}$ relaxed to 1G$_4$ level and returned to the 3H$_6$ level via radiative transitions and emitted blue light. The typical blue emission peaks of Ca$_2$YTaO$_6$: Tm$^{3+}$ suggest its potential applications as blue-emitting phosphors.

The PL spectra of Ca$_2$YTaO$_6$:xTm$^{3+}$ (x = 0.3%-5% mol) are shown in Figure 4(a). All the emission curves have the same peak shapes while the doping concentration of Tm$^{3+}$ is different. In Figure 4(b), when the doping concentration of Tm$^{3+}$ reached 0.5% mol in the Ca$_2$YTaO$_6$ host, the emission intensity of the Ca$_2$YTaO$_6$:0.005Tm$^{3+}$ reached its maximum. Whereafter, the intensity gradually decreased with further increasing Tm$^{3+}$ doping concentration, which is caused by concentration quenching.
The energy transfer mechanism in the Ca$_2$YTaO$_6$: Tm$^{3+}$ system is discussed in terms of critical energy transfer distance (R_c), which can be estimated by the equation (1) [24-28]:

$$R_c \approx 2 \left(\frac{3V}{4\pi N} \right)^{1/3}. \tag{1}$$

Here X_c (0.005) represents the critical doping concentration. In the unit cell, V (261.07 Å3) refers to the volume, and N (4) is the number of substitutable cations. According to equation (1), R_c was calculated to be 29 Å, more than that of exchange interaction distance (5.0 Å). Thus, the electric multipole interactions between Tm$^{3+}$ ions are proposed for the concentration quenching mechanism.

Besides, the specific type of the energy transfer mechanism among Tm$^{3+}$ in Ca$_2$YTaO$_6$ host is discussed according to Dexter’s theory [29]:

$$\frac{I}{x} = K \left[1 + \beta (x)^{-\frac{Q}{3}} \right]^{-1}. \tag{2}$$

Where Q is a certain constant, representing types of energy transfer interaction, which are the nearest-neighbor ions ($Q=3$), electric dipole-dipole ($Q=6$), dipole-quadrupole ($Q=8$), and quadrupole-quadrupole ($Q=10$) interactions, respectively. x is the Tm$^{3+}$ doping concentration, K and β are constants. The experimental data of the relationship between $\lg(I/x)$ and $\lg x$ (Figure 5) can be fitted by a linear relationship. The slope ($-Q/3$) of the line is well fitted to be -1.11. Thus Q value is expected to be 3, suggesting the nearest neighbor ions interaction is the main mechanism for the concentration quenching in Ca$_2$YTaO$_6$: Tm$^{3+}$ compounds.
CIE chromaticity coordinates are important parameters that should be characterized to determine the luminescent properties of materials. The color coordinates of Ca$_3$YTaO$_6$: Tm^{3+} ($\chi = 0.3\%-5\%$ mol) are displayed in Figure 6 with the uniform locations in blue region. The color purity of the products can be estimated by equation (3) [30, 31]:

$$\text{Color purity} = \frac{\sqrt{(x-x_i)^2 + (y-y_i)^2}}{\sqrt{(x-x_i)^2 + (y-y_i)^2}} \times 100 \quad (3)$$

Here (x, y) are the chromaticity coordinates of the phosphors; (x_i, y_i) are the chromaticity coordinates of the white light source, equal to $(0.333, 0.333)$; and (x_h, y_h) are the chromaticity coordinates of the dominant wavelength points [32]. As shown in Figure 6, the color coordinates of the products were in the blue region. In the Ca$_3$YTaO$_6$: 0.05Tm^{3+} compound, the color purity was calculated around 94.6%. When the Ca$_3$YTaO$_6$: Tm^{3+} is excited by UV light, it can emit blue light effectively with a high color purity.

4 Conclusions

The Ca$_3$YTaO$_6$: Tm^{3+} ($\chi = 0.3\%-5\%$ mol) phosphors were firstly prepared through solid-state method. At 359 nm excitation wavelength, the Ca$_3$YTaO$_6$: Tm^{3+} phosphors present strong emission peaks at 460 nm. The critical doping concentration of Tm^{3+} is 0.5% mol in Ca$_3$YTaO$_6$: xTm^{3+}. The concentration quenching mechanism is proposed for the interaction of the nearest-neighbor ions, while the relevant critical distance is around 29 Å. The CIE color coordinates near the standard blue position. The results indicate that the Ca$_3$YTaO$_6$: Tm^{3+} products have blue-emission ability with good color purity. As a result, the Ca$_3$YTaO$_6$: Tm^{3+} phosphors are promising blue-emitting candidates for WLED applications.

Acknowledgments

This project was financially supported by Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications (2019XGJSDKFJ01), the Construction Program of the key discipline in Hunan Province, the Projects of the Education Department of Hunan Province (No.18A465), Science and Technology Plan Project of Chenzhou city (jyf2017014).

References

1. L. Tang, L. Zhou, A. Liu, X. Yan, K. Zhong, X. Liu, and J. Li 2021 Dyes. Pigm. 186 109034
2. L. Tang, L. Zhou, X. Yan, K. Zhong, X. Gao, J. Li 2020 “J. Photochem. Photobiol., A” 387 112160
3. M. Cen, Y. Ding, J. Wang, X. Yuan, B. Lu, Y. Wang, Y. Yao 2020 Acs Macro Letters 9 1558
4. J. Chen, Y. Wang, C. Wang, R. Long, T. Chen, Y. Yao 2019 Chem. Commun. 55 6817
5. L. Chen, L. Zhou, H. Lu, Y. Zhou, J. Huang, J. Wang, and Y. Yao 2020 Chem. Commun. 56 9138
6. J. Ding, X. Liu, M. Wan, Q. Liu, T. Sun, G. Jiang, Y. Tang 2018 CrystEngComm 20 4499
7. X. Gu, X. Li, S. Wu, J. Shi, G. Jiang, G. Jiang, S. Tian 2016 Rsc Advances 6 8070
8. Y. Guo, N. Liu, T. Sun, H. Cui, J. Wang, M. Wang, and Y. Tang 2020 CrystEngComm 22 7543
9. G. Jiang, X. Gu, G. Jiang, T. Chen, W. Zhan, S. Tian 2015 Sens. Actuators, B 209 122
10. A. Jing, Q. Xu, W. Peng, Y. Li, G. Liang 2019 Int. J. Electrochem. Sci. 14 11212
11. Q. Li, H. Zhu, Y. Tang, P. Zhu, H. Ma, C. Ge, F. Yan 2019 Chem. Commun. 55 12108
12. L. Liu, J. Sun, J. Ding, Y. Zhang, J. Jia, T. Sun 2019 Inorg. Chem. 58 14275
13. L. Liu, J. Sun, J. Ding, Y. Zhang, T. Sun, J. Jia 2019 Inorg. Chem. 58 13241
14. Q. Liu, Q. Chen, H. Yu, X. Zhao, W. Zhang, J. Lang 2015 Chinese J. Inorg. Chem 31 1805
15. L. Ming, T. Peng, Y. Tu 2016 Microchim. Acta 183 305
16. Q. Zhao, G. Tao, C. Ge, Y. Cai, Q. Qiao, X. Jia 2018 Spectr. Lett. 51 216
17. Y.F. Shang, H.L. Wang, H. Bai 2020 Spectrochim. Acta 228 8
18. Y. Shen, S. Han, Q. Xu, Y. Wang, Z. Xu, B. Zhao, R. Zhang 2016 J. Taiwan Inst. Chem. E 60 302
19. L. Zhang, J. Che, Y. Ma, J. Wang, R. Kang, B. Deng, and H. Geng 2020 J. Lumin. 225 117374
20. R.D. Shannon 1976 Acta Crystallogr., Sect. B A32 751
21. Y. Tang, Y. Huang, Y. Chen, L. Lu, C. Wang, T. Sun, and J. Zhu 2019 Spectrochim. Acta. 218 359
22. L. Zhang, S. Chen, S. Zhao, J. Guo, Q. Lv, H. Wang, and H. Geng 2021 Ceram. Int. 47 11887
23. J. Wang, L. Lu, C. Wang, M. Wang, J. Ju, J. Zhu, T. Sun 2020 New J. Chem. . 44 15426
24. G. Blasse, B.C. Grabmaier 1994 Springer-Verlag, Berlin, Heidelberg 46
25. G. Zhang, W. Chen, Y. Wang, X. Chen, Y. Li, L. Zhao, Y. Yang 2020 Spectrochim. Acta A 240
26. Z. Wang, Z. Wei, N. Li, P. Zhang, G. Zhang, L. Zhao 2020 J. Lumin. 228
27. M. Wang, Z. Jin, M. Liu, G. Jiang, H. Lu, Q. Zhang, and Y. Tang 2017 Rsc Advances 7 32528
28. M. Wang, C. Wang, M. Wang, T. Sun, Y. Huang, Y. Tang, and J. Zhu 2020 Chemistrselect 5 1331
29. Y. Wang, Y. Cai, L. Cao, M. Cen, Y. Chen, R. Zhang, and Y. Yao 2019 Chem. Commun. 55 10132
30. C. Wu, D. Wang, M. Cen, L. Cao, Y. Ding, J. Wang, and Y. Yao 2020 Chem. Commun. 56 14491
31. G. Zhu, Y. Huang, C. Wang, L. Lu, T. Sun, M. Wang, and J. Zhu 2019 Spectrochim. Acta 210 105
32. L. Zhang, Y. Xie, X. Geng, B. Deng, H. Geng, R. Yu 2020 J. Lumin. 225 117365