The development and implementation of a performance appraisal framework for radiation therapists in planning and simulation

Jillian Becker, MHealthSc (MRS) (RT),1 Pete Bridge, MSc, BSc (Hons) (RT),2 Elizabeth Brown, PhD (RT),3 Janet Ferrari-Anderson, BAppSc (MRT) (RT),3 & Ryan Lusk, BAppSc (MRT) (RT)3

1Radiation Oncology Mater Centre, South Brisbane, Queensland, Australia
2School of Health Sciences, Institute of Clinical Sciences, Liverpool University, Liverpool, England
3Radiation Oncology Department, Princess Alexandra Hospital, Woolloongabba, Australia

Abstract

It is a challenge for radiation therapists (RTs) to keep pace with changing planning technology and techniques while maintaining appropriate skills levels. The ability of individual RTs to meet the demands of this constantly changing practice can only be assured through establishing clearly defined standards for practice and a systematic process for providing feedback on performance. Investigation into existing models for performance appraisal produced minimal results so a radiation therapy-specific framework was developed. The goal for this initiative was to establish a framework that would reflect the complexity of practice and provide a clear measure of performance against them. This paper outlines the implementation of this framework into practice and discusses some lessons learned in the process. The framework was developed and implemented in six stages: (1) project team, (2) scope, (3) dosimetry pilot, (4) staff consultation, (5) finalisation and implementation and (6) future development and evaluation. Both cultural and organisational obstacles needed to be addressed before this framework could be successfully introduced. Even though this slowed progress, addressing these obstacles during the development process was essential to the success of this framework. The incremental approach provided the opportunity for each aspect to be tested and the development of subsequent stages to be informed by lessons learned during the previous one. This approach may be beneficial when developing and implementing projects involving performance appraisal to promote consistency, fairness and quality.

Introduction

It is a challenge for radiation therapists (RTs) to keep pace with changing planning technology and techniques while maintaining appropriate skill levels. At the inception of a new department the challenge of managing the range of professional experience and skill in the new team was identified. The senior team comprised RTs from different departments, representing varied perceptions of standard practice, resulting in inconsistent expectations of junior staff. This raised the need for agreed practice standards and evidence-based skills assessment.

Investigation into existing performance appraisal models produced minimal results. The hospital-based template provided general role expectations but failed to adequately articulate technical and professional practice to support skills assessment. Examples of other competency assessments1,2 defined entry-level skill requirements but not the range of skills evident in an experienced staff group. Allied health professions have traditionally employed a task-based approach to
competency which carries the risk of ‘creating professionals who have isolated skill sets that are not integrated with the knowledge to create complex meaningful performance in the workplace’. McAllister et al. acknowledge the dilemma of defining competency that includes specific skills and the ability to practise in a dynamic environment. The initiative was taken to establish a framework that would reflect the complexity of practice and provide a means to measure performance. It was also anticipated that this would support progression to roles requiring higher levels of skill. Equally important was the promotion of a culture that was fair, consistent, objective, transparent, based on evidence and focused on skills development. Feedback can motivate staff by setting objectives and providing for training and development needs, but it must be based on explicit aims and objectives and be delivered with a real desire to assist learning.

This paper outlines the implementation of this framework into practice and discusses some lessons learned in the process.

Stages of Development and Implementation

The framework was developed and implemented in six stages as illustrated in Figure 1.

Stage 1: Project team

The project team was chosen to represent all levels of skill and experience. Involving more people than less in developing a performance appraisal process provides quality judgement of performance and enhances the perceptions of fairness and the chance of relevant feedback. Diversity of experience and perspective within the team proved valuable in developing a process to support the professional development of all staff.

Stage 2: Scope

To avoid adding load to a busy work area, the framework was designed to complement the existing workflow. Planning practice was structured such that each planning RT was responsible for the simulation, dosimetry and plan finalisation for patients allocated to them. Computed tomography (CT) simulation sessions were performed by the planning RT and a dedicated RT (CT RT) rostered to the simulation area. For the purpose of gathering evidence on performance, planning practice was divided into CT simulation, dosimetry and plan finalisation.

Stage 3: Dosimetry pilot

The next stage was to pilot the framework in a defined context to identify any ambiguity and oversights in the developmental process. Dosimetry was chosen because it was a discrete area of practice and supported by a plan evaluation process. The elements contributing to plan quality were identified by the senior RT team as technical complexity, innovation, practical application and compliance with standards of practice. The skills identified as contributing to plan quality were: knowledge of standard practice, appropriate deviation from standard practice, consideration of practical implications for treatment and autonomy. These were drafted into a patient-specific form to be included in the plan evaluation process.

Development of a criterion-referenced assessment

To support consistency and objectivity in plan evaluation, the elements of plan quality were reviewed to determine those open to interpretation. Complexity and innovation were considered most open to subjectivity so to test the understanding of these terms, 12 patient plans were submitted for evaluation. These included a standard 2-field breast technique, radical pelvic and head and neck techniques, and a palliative case including overlap with previous treatment. The plans were de-identified and rated by nine senior RTs with experience in routine plan evaluations. No definitions for complexity or innovation were provided, and participants were asked to rate the plans using the three-tier criterion-referenced system shown in Table 1 and include a justification to identify factors influencing the rating.

For **complexity**, 3 cases were rated consistently and 9 were rated across all 3 levels. For **innovation**, 2 cases were rated consistently and 10 were rated across all 3 levels. Justifications for ratings were collated and although the identified factors were common to all participants, the

![Figure 1. Development and implementation process.](image-url)
application to the level of complexity or innovation was inconsistent. The rating for innovation was consistently based on whether the approach was ‘common or known’ and whether the plan was supported by an existing protocol. Inconsistencies arose as to what was considered ‘common or known’. This illustrates a risk of an assumption of knowledge which can influence ratings and lead to unfair expectations of practice.

In consultation with the senior group and established practice standards, a criterion-referenced assessment was developed to support consistency in plan evaluation. For 2 weeks, each plan was then assessed against this criterion-referenced assessment to introduce the dosimetry rating form and the practice of completing it. The patient-specific rating form and criterion-referenced assessment for dosimetry are shown in Tables 2 and 3.

Table 1. Rating guide for complexity and innovation

Technical complexity	Innovation
A: Low level of complexity	A: Standard: Requiring no innovation
B: Moderate complexity but without complication	B: Moderate level of innovation
C: Highly complex: Requires problem solving and high level of skill	C: High level of innovation required

Stage 4: Staff consultation

Before proceeding, the framework outline and the work done to date were presented to the RT group. Response indicated both support for the initiative and concerns that the process may not be fair. Additional concerns were: lack of support for the CT RT role, lack of ready access to protocols and procedures, inconsistent advice from senior RTs and how confidentiality of feedback would be assured. These issues identified barriers to the success of the framework so further development was put on hold until they were addressed.

A role description and an orientation process for the CT RT role were developed to support transition to and consistency in this role.

Concerns regarding the availability of protocols and the communication of practice changes were responded to by initiating a review and update of protocols, improving access to them and providing a means for communicating any inconsistencies in practice and advice. These inconsistencies were discussed in the senior group, and once a consensus was reached, the decisions were documented as standard practice.

To support confidentiality, it was decided that the detailed feedback would remain the property of the recipient. The feedback conversation included devising a plan to address development needs or requests with the agreement that managers or clinical educators would be consulted to gain the support needed. An agreed summary of the feedback and development goals was then recorded in the mandatory performance appraisal document and filed with management. Over time the process was refined so that a senior was nominated to coordinate each cycle of feedback for the RT. Even though changed circumstance, staffing or personal preference could require flexibility in this, it was believed that consistency in the coordination of the feedback would allow trust to develop and for continuity of information and accountability for learning needs to be ensured.

Stage 5: Finalisation and implementation

After addressing staff concerns, skill sets were defined for the remaining areas of planning practice. CT simulation practice was assessed by the CT RT in terms of CT simulation practice and technique, patient positioning, communication and stabilisation and positioning (Table 4). Plan finalisation was assessed in terms of treatment plan presentation and data transfer to the treatment record and was evaluated at the final RT check.

A final feedback form was drafted to summarise the dosimetry, CT simulation and plan finalisation forms and include professional attitude, time/workload management, technical communication and commitment to quality. These were assessed through observation by the senior RTs.

Table 2. Patient-specific rating form – dosimetry

Pt UR	Planning RT	Evaluation RT	Technique	
Plan elements Rating	Technical complexity	A: Low level of complexity	B: Moderate level of complexity	C: Highly complex requiring problem solving and high level of skill
Level of innovation	A: Standard and required no innovation	B: Moderate level of innovation	C: High level of innovation required	
Practical application	A: Not practical or applicable: Alternative needs to be sought	B: Practical and applicable: Requires careful technical communication	C: Practical and applicable	
Compliance with protocol/standards of practice	A: Does not comply and needs to be replanned	B: Mostly complies: Requires some alteration	C: Complies or variations can be justified	
Autonomy	A: Required high level of input and direction	B: Required some input and direction	C: Plan was performed autonomously	
The entire process was then trialled with a planning RT and coordinating senior RT and at the completion of this trial, refinements were suggested. It was identified that the three-tiered rating did not apply to all performance indicators and a two-tier rating was included (Tables 4 and 5). Completing forms at the end of each CT session was found to hinder workflow, so it was decided that these would be completed after a block of simulations. Provision was also made in the dosimetry rating form for the RT to document any justifications for technical choices that may influence the rating.

Application of the tool

A senior RT was nominated to co-ordinate the process and only two RTs underwent the process at any one time, acknowledging the additional demand on senior staff. Those undergoing the process were rostered in planning for 2 weeks before their 4-week review period commenced. Feedback was collated and delivered shortly afterwards. This allowed for reorientation to practice, opportunity to demonstrate range of skill and opportunity to respond to feedback before being rostered out of the area. Timely

Table 3. Criterion-reference assessment for dosimetry

Innovation: ‘The introduction of a new idea, method, or device: having the skill to know and understand the appropriateness of introducing something new’
A Based on a supporting protocol (written or established)
B Requirements protocol required
C No supporting protocol

Complexity: ‘Complicated or having many aspects’
A Supporting protocol available (written or established)
B Judgement required in choice of technique
C High volume of work involved

Autonomy:
A: High level of input and direction
B: Some input and direction
C: Performed autonomously

Input regarding concept of plan
Input regarding choice of technique
Input resulting in a replan
Repeated input from categories C and B from autonomy
Solutions for added degrees of complexity
Significant problem solving beyond basic plan concept
Repeated reminders on housekeeping
Repetitive assistance from category C
High volume from category C
Adjustments which significantly affect plan optimisation
Slight adjustments which may further optimise the plan.
For example, minor adjustments to field angles or shielding
Final presentation of plan meets standards of practice
Offering an opinion on options devised by the planner
Negotiation on specific RO’s preference on dosimetry
Advice on changes to standards of practice unknown to the planner
delivery of feedback ensures that any issues raised are current and that opportunity is given for development. Frequent feedback is recommended, however the frequency was determined by rostering and being able to give opportunity for other RTs to participate.

The RT receiving feedback contributed to the feedback by completing a self-evaluation and at the end of the period, the feedback forms were collated in consultation with the senior team in planning. The collated feedback provided an overview of the RT’s performance, how self-perception aligned with the perception of the team and whether the allocated case mix had provided adequate opportunity for demonstration of skill. In this way, feedback was given to both the planner and the senior staff. It was also important to allow the RT to contribute additional information that may add context to the feedback given. Allowing feedback to be a ‘conversation about performance’ rather than a ‘one way transmission of information’ can contribute to the perception of justice.6

Table 4. CT evaluation form
Pt. UR
CT/simulator technique
Patient positioning
Rating guide

Communication

RT → Patient:
- Efficient: Considers time frames and work processes
- Effective: Sensitive to patient’s needs at all times
- Provides appropriate and accurate information

RT → CT RT:
- Collaborates on technical approach
- Communicates roles and tasks
- Seeks direction when required

RT → RO:
- Discusses patient-specific considerations
- Discusses feasibility and practicality of proposed technique
- Provides advice to RO regarding limitations of a technique

Wax/mouthpiece making

- Meets requirements of prescription
- Accuracy in contact and positioning
- Practical and effective. Appropriate to condition of patient

Stabilisation and immobilisation devices

- Application of equipment meets departmental guidelines
- Determines optimal solutions to challenging situations
- Alterations: Considers impact on treatment accuracy

Rating guide

D: Developing. Requires input and guidance

C: Self-directed
Stage 6: Further development and evaluation

Further development of the framework included supervisory roles, such as the CT RT. These incorporated 360° feedback which provides insight into the perceptions of impact on the team. These perceptions determine the success of an individual in their role. Following the implementation, a study was conducted to evaluate the effectiveness of the framework as experienced by RTs, the results of which are the subject of a previous paper.

Obstacles to implementation

Cultural and organisational obstacles were encountered during the introduction of this framework. Mistrust among staff was based on experience and concerns were expressed that the process would not be fair. The importance of a performance appraisal system may be denied if fairness and trust are not perceived in the process. Fairness and objectivity in a performance appraisal process are promoted through sharing control of the process, involving multiple contributors, open knowledge of the process and trust that supervisors are free of bias.

The work was initially based on the assumption of commonly understood practice standards and protocols. Staff identified the lack of accessible and current documentation to support consistent practice, and the dosimetry pilot emphasised the need to normalise expectations of senior staff. The issues surrounding defined practice standards are significant because the lack of a defined standard makes performance appraisal unreliable.

Table 5. Final feedback (excluding dosimetry and CT)

Time/workload management	D	C	NA
Meets deadlines consistently	D	C	NA
Demonstrates responsibility for workload:	D	C	NA
i Timely requests for assistance	D	C	NA
ii Appropriate hand over of work when planning absences	D	C	NA
Demonstrates effective management of broad case mix whilst maintaining appropriate case load	D	C	NA

Technical communication to ensure continuity of information

Sound written communication	D	C	NA
• Simulator/CT sheet	D	C	NA
• Evaluation sheet	D	C	NA
• Treatment sheet	D	C	NA
• Treatment plan	D	C	NA

Sound interpersonal communication

D	C	NA	
• Within RT planning team	D	C	NA
• Planning → Treatment	D	C	NA
• Within multidisciplinary team	D	C	NA

Demonstrates ability to negotiate with RO regarding dose distribution and constraints | D | C | NA |

Finalisation and presentation of work

| Finalised work reflects standards for documentation | D | C | NA |
| Documentation of work is clear and legible | D | C | NA |

Quality assurance

| Identifies evidence-based quality improvement | D | C | NA |

Rating guide

| D: Developing. Requires input and guidance | C: Self-directed |

Professional attitude

Self-directed and self-motivated	A	B	C	NA
Demonstrates consistency of practice	A	B	C	NA
Undertakes regular self-evaluation of own practice and is aware of development needs	A	B	C	NA
Seeks and considers feedback from colleagues regarding own practice	A	B	C	NA
Takes responsibility for and is committed to own development	A	B	C	NA
Contributes to the professional development of others	A	B	C	NA

Rating guide

| A: Developing. Requires guidance at all levels | C: Self-directed and innovative |
| B: Self-directed for standard situations. Requires guidance for complex situations | NA: Not attempted |
Even though progress was slowed, addressing these obstacles was essential to the success of this framework.

Conclusion

The ability of individual RTs to meet the demands of constantly changing practice can only be assured through establishing clearly defined standards for practice and a systematic process for providing feedback on performance. The framework was introduced to define standards of practice and assess the performance of RTs against them. The goal was to provide feedback on performance that was evidence based, objective and fair. The incremental approach allowed the opportunity for each aspect to be tested and the development of subsequent stages to be informed by lessons learned during the previous one. This approach may be beneficial when developing and implementing projects involving performance appraisal and feedback to promote consistency, fairness and quality.

Acknowledgement

The authors acknowledge all radiation therapists at the Radiation Oncology Centre, Princess Alexandra Hospital for their generous support of this project.

Conflict of Interest

The authors declare no conflict of interest.

References

1. Technologists CAoMR. Radiation Therapy Curriculum Guide, 2007.
2. COMPASS®: Competency Assessment in Speech Pathology, 2006.
3. Hodges B. Medical education and the maintenance of incompetence. *Med Teach* 2006; 28: 690–6.
4. McAllister SM, Lincoln M, Ferguson A, McAllister L. Dilemmas in assessing performance on fieldwork education placements, 2010.
5. Prowse P, Prowse I. The dilemma of performance appraisal. *Meas Bus Excell* 2009; 13: 69–77.
6. Cantillon P, Sargeant J. Giving feedback in clinical settings. *BMJ* 2008;337(Nov 10_2):1961.
7. Kondrasuk JN. So what would an ideal performance appraisal look like? *J Appl Bus Econ* 2011; 12: 57.
8. Roberts GE. Employee performance appraisal system participation: A technique that works. *Public Pers Manage* 2003; 32: 89–98.
9. Schuwirth L, Southgate L, Page G, et al. When enough is enough: A conceptual basis for fair and defensible practice performance assessment. *Med Educ* 2002; 36: 925–30.
10. Cleary ML, Walter G. Giving feedback to learners in clinical and academic settings: Practical considerations. *J Contin Educ Nurs* 2010; 41: 153–4.
11. Baker N. Employee feedback technologies in the human performance system. *Hum Resour Dev Int* 2010; 13: 477–85.
12. Leggat SG. A guide to performance management for the Health Information Manager. *Health Inf Manag J* 2009; 38: 11.
13. Maylett T. 360-degree feedback revisited: The transition from development to appraisal. *Compens Benefits Rev* 2009; 41: 52.
14. Becker J, Bridge P, Brown E, Lusk R, Ferrari-Anderson J. Evaluation of a performance appraisal framework for radiation therapists in planning and simulation. *J Med Radiat Sci* 2015; 62: 114–21.
15. Kavanagh P, Benson J, Brown M. Understanding performance appraisal fairness. *Asia Pac J Hum Resour* 2007; 45: 132–50.