Effects of Phytohormones and Alternative Sources on the Propagation of *Ternstroemia cameroonensis* Cheek. by Marcotting in the Lebialem Highlands, Cameroon

Francoline Jong Nkemnkeng a*, Mendi Grace Anjah b, Walter Ndam Tacham a, Christiana Ngyete Nyikob Mbogue b and Victor-FrançoisNguetsop b

a Department of Biological Sciences, Faculty of Sciences, University of Bamenda, Bamenda, Cameroon, P.O Box 39 Bambili, Cameroon.

b Department of Plant Biology, Faculty of Sciences, University of Dschang, P. O. Box 67, Dschang, Cameroon.

Authors’ contributions

This work was carried out in collaboration among all authors. Authors FJN, WNT and CNNM carried out the field exercise and produced the first draft of manuscript while authors MGA and V-FN edited and fine-tuned the first draft manuscript. Authors MGA and VFN supervised the work. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/AJOB/2021/v13i430195

Editor(s):
(1) Dr. P. Dhasarathan, Anna University, India.

Reviewer(s):
(1) Metoui Nebiha, Technical Center of Citrus, Tunisia.
(2) Sandeep Bhardwaj, CCS Haryana Agricultural University, India.

Complete Peer review History, details of the editor(s), Reviewers and additional Reviewers are available here: https://www.sdiarticle5.com/review-history/76620

Received 08 September 2021
Accepted 17 November 2021
Published 14 December 2021

ABSTRACT

Marcotting is a method of vegetative propagation which still finds its relevance in the present day forest management and routine practice to produce viable seedlings for the regeneration of *Ternstroemia cameroonensis*. There is dearth of information regarding the propagation of *T. cameroonensis* by marcotting. Hence effects of phytohormone application (Indole-3-acetic acid, Indole-3-butyric acid) and alternative sources (coconut water) on the propagation of *T. cameroonensis* by marcotting were investigated in the Lebialem Highlands. Mortality rates, number of roots, root length as well as marcotts position in the crown was evaluated. The propagation trials were carried under natural environmental conditions. Marcotts had an overall survival percentage of

*Corresponding author: E-mail: tebafranc24@yahoo.com;
Marcotting is a vegetative propagation technique characterized by the initiation of adventitious roots on one part of the tree branch in situ. After root initiation, the marcots is weaned from the tree and transplanted in a substrate where it grows independently of the mother tree. Like other vegetative propagation techniques, the main advantages of marcotting are cloning selected trees with desirable traits and shortening the period for fruit production [13,14].

Diverse factors (genetic, environmental and physiological) may influence the rooting and shooting abilities of marcots. Studies had shown that rooting ability of marcots in some species may vary with marcott length, branch diameter, bark thickness, rooting substrate, hormone type and concentration [13,15]. It has also been demonstrated that rooting and sprouting requirements are highly variable within and among species. Therefore, assessing factors that affect rooting and sprouting abilities of marcots in each species is an important prerequisite for its successful propagation through air-layering. The purpose of this study was to determine the effect of phytohormones as well as alternative sources, branch diameter, branch length and the marcott's position in the crown on rooting and survival of weaned marcots.

2. METHODOLOGY

2.1 Study Site

This study was carried out in two phases. The first phase in the Lebialem Highlands located in the North Eastern part of the Southwest Region of Cameroon between latitude 5°38 N and 5°43 N and longitude 9°58 E and 10°27 E [16].

The climate of this region is that of the Cameroon mountain range characterized by high winds and low sunshine. The average daily temperature varies very much with season and ranges from 17°C to 32°C [17]. The area is between altitudes 1000 m to 2700 m above sea level and annual rainfall is 2222 mm.
2.2 Marcotts Preparation and Setting

Trees were selected in the wild considering areas which are less prone to anthropogenic activities. On each selected tree marcotts were set at each level that is lower, middle and upper section of the crown. These levels consisted the blocks within which were treatment and repetitions on different tree. The marcotts were set up is a 2x2x4 factorial design with 3 levels and 3 repetitions on different trees that is a total of 144 marcotts were setup for this trial. Marcotts were set up in August on orthopropic and oblique oriented branches in the morning to reduce stress that may arise with extreme environmental conditions during the day. The bark was completely stripped off with a knife 5 cm away from the crotch (formed by two branches) and over a length of 5 to 10 cm. After application of hormone and coconut water on the stripped area, it was covered with moist decomposed sawdust wrapped in a transparent plastic sheet and secured at each end with a rubber band [18].

Three experiments were setup with details presented below (Fig. 1).

- **Experiment 1:** Effect of IAA, IBA and Coconut water on marcotts’ rooting abilities

 In this experiment, three trees were used for this experiment. On each tree marcotts setting were taken at random in the crown. After stripping, rooting reagents were applied and the branch was covered with moist decomposed sawdust. A total of 48 marcotts were established per tree with IAA applied to 12 of them, IBA to another 12, CW applied to 12 and 12 marcotts left untreated (control).

- **Experiment 2:** Effect of marcotts’s position on rooting ability

 Position of marcotts on the tree was also evaluated. On this note, the tree crown was divided three portions namely: lower, middle and upper sections. In each section, four marcotts were set with respect to treatment; IAA, IBA, CW untreated and (control).

- **Experiment 3:** The effect of branch length and diameter on marcotts' survival

 Marcotts were established on branches with different branch length and diameter. Branch length and diameter were within different ranges that is 40-60 cm (L50), 80-120 cm (L100) and 2-4 cm (D3), 4-6 cm (D5) respectively [18].

 After stripping, rooting reagent were applied and covered with decomposed sawdust using polythene paper and tied at both ends. The marcotts were watered with about 20 ml of water every 2 weeks using a 10 ml syringe. The experimental design was randomized complete block. Assessment of dependent variables that is rooted marcotts, unrooted marcotts and mortality were evaluated every after 14 weeks for a period of 10 months.

2.3 Data Collection

This consisted of survival percentage, number of rooted marcotts as well as root length. All these were evaluated every after 8 weeks for a period of 8 months. Number of roots were counted on each rooted marcott while the root length was measured using a meter rule. The survival percentages were evaluated based on the formula below.

\[
\text{Survival percentage} = \frac{\text{Number of rooted marcotts}}{\text{Total number of marcotts established}} \times 100
\]

2.4 Data analysis.

Data collected were entered into excel and subjected into various analysis.

Survival percentages of rooted marcotts, number of roots as well as root length were subjected to analysis of variance (ANOVA) using the statistical programme XLSTAT, 2016 where the least significant differences (LSD) between the mean were detected and separated at p≤0.05.

3. RESULTS

3.1 Effects of Coconut Water (CW) and Hormones (IAA and IBA) Marcotts Rooting of *T. cameroonensis*

Out of the 144 marcotts established, 51 survived after a period of 8 months given a survival percentage of 35.41%. Those established at the middle of the crown had the highest survival percentage (15.27%) followed by those at the base (11.80 %) and lastly by those at the top (8.33%). Also marcotts established on branches with larger diameter (4-6 cm) and shorter length (50cm) had the highest survival percentage that is 20.13% and 19.44 respectively while those with smaller diameter and longer branch length had the least. Generally, marcotts treated with IBA and CW had the best performance compared to other treatments.
3.2 Effect of Coconut Water, and Hormones on Rooting Ability, and Marcotts Performance

There was a significant difference in marcotts survival percentage, number of roots and root length with respect to pre-treatment. IBA had the best survival percentage (47.22%), number of roots (2.33) and root length (2.76 cm) followed by CW with survival percentage (41.57%), root number of roots (0.83) and root length (1.33 cm) while the control treatment had the least (Table 1).

3.3 Effect of Branch Diameter and Branch Length on Rooting Ability and Marcotts Performance

Branch length and diameter had no significant effect on the survival percentages of marcotts. This is also observed in branch length and diameter of 80-120 cm and 2-3 cm respectively. There was a significant difference in the rooting of marcotts within branch length of 40 – 60 cm and diameter of 4-6 cm. Marcotts of branch length within 40-60 cm had the highest number of roots (1.44), root length (1.64 cm) while those of branch length within 80-120 cm had the least number of roots (0.167), root length (0.083 cm) (Table 2). In addition, marcotts of branch diameter within 4-6 cm had the highest number of roots and root length (1.72 and 1.972 cm respectively) while those of branch length within 2-3 cm had the least number of roots and root length (0.056) (Table 3).

3.4 Effect of Marcotts Position on Rooting Ability and Marcotts Performance

Marcotts position did not significantly affected survival percentage, as well as number of roots and root length. Despite this, marcotts established at middle of the tree crown had better performance in terms of survival percentages (66.67%), number of root (4.67) and root length (5.67 cm) than those in lower and upper positions (Table 4, 5 and 6).

3.5 Survival of Marcotts of T. cameroonensis

Rooted marcotts of T. cameroonensis were weaned into polythene bags at the nursery (Figure 26). Out of 51 rooted marcotts weaned, only seven survived giving a percentage of 13.72% after a period of two months.

Table 1. Effect of coconut water and hormones on rooting ability and marcotts performance

Treatment	Sur%	NR	RL
Control	27.78±19.54^a	0.39±0.54^a	0.305±0.41^a
CW	41.67±12.50^{ab}	0.83±0.75^a	1.33±2.29^{ab}
IBA	47.22±23.19^b	2.33±2.41^b	2.76±3.17^b
IAA	25.0±21.65^a	0.5±0.75^a	0.56±0.98^a

Means followed by the same letters in the same column are not significantly different at p≤0.05. Sur%: survival percentage, NR: number of roots, RL: root length.

Table 2. Effect of branch length on rooting ability and marcotts performance

Treatment	Sur%^(L50)	Sur%^(L100)	NR^(L50)	NR^(L100)	RL^(L50)	RL^(L100)
Control	33.33±25.0^a	22.22±26.35^a	0.22±0.36^a	0.167±0.35^a	0.22±0.38^a	0.08±0.17^a
CW	44.44±16.67^a	38.89±22.04^a	0.39±0.48^a	0.44±0.58^a	0.44±0.71^{ab}	0.89±1.63^{ab}
IBA	50.0±43.30^a	44.44±39.08^a	1.44±2.08^b	0.89±1.29^a	1.64±2.57^b	1.12±1.60^b
IAA	27.78±36.32^a	22.22±36.32^a	0.27±0.50^a	0.22±0.66^a	0.22±0.36^a	0.33±1.00^a

Means followed by the same letters in the same column are not significantly different at p≤0.05. Sur%^(L50): survival percentage at 50%, Sur%^(L100): survival percentage at 100%. NR^(L50): number of roots at 50%, NR^(L100): number of roots at 100%, RL^(L50): root length at 50%, RL^(L100): root length at 100%.

Table 3. Effect of branch diameter on rooting ability and marcotts performance

Diameter	Sur^(D3)	Sur^(D6)	NR^(D3)	NR^(D6)	RL^(D3)	RL^(D6)
Control	22.22±26.35^a	33.33±35.35^a	0.056±0.16^a	0.33±0.58^a	0.11±0.17^a	0.19±0.32^a
CW	33.33±35.35^a	50.0±43.30^a	0.167±0.35^a	0.67±0.75^{ab}	0.25±0.21^a	1.08±1.71^{ab}
IBA	44.44±30.0^b	50.0±25.0^a	0.81±0.54^{ab}	1.72±1.95^b	0.79±0.89^b	1.97±2.52^b
IAA	22.22±26.35^a	27.78±26.35^a	0.056±0.16^a	0.44±0.76^a	0.056±0.10^a	0.5±1.00^a

Means followed by the same letters in the same column are not significantly different at p≤0.05. Sur^(D3): survival percentage at 3 cm, Sur^(D6): survival percentage at 6 cm. NR^(D3): number of roots at 3 cm, NR^(D6): number of roots at 6 cm, RL^(D3): root length at 3 cm, RL^(D6): root length at 6 cm.
Table 4. Effects of position on survival percentage of marcotts

Treatment	(D₆, L₅₀)	(D₃, L₅₀)	(D₆, L₁₀₀)	(D₃, L₁₀₀)				
L	**M**	**U**	**L**	**M**	**U**	**L**	**M**	**U**
Control	33.33±57.73*	33.33±57.73*	50.0±60.71*	33.33±57.73*	33.33±57.73*	33.33±57.73*	33.33±57.73*	33.33±57.73*
CW	66.67±57.73*	33.33±57.73*	33.33±57.73*	66.67±57.73*	33.33±57.73*	66.67±57.73*	33.33±57.73*	33.33±57.73*
IBA	66.67±57.73*	33.33±57.73*	33.33±57.73*	66.67±57.73*	33.33±57.73*	66.67±57.73*	33.33±57.73*	33.33±57.73*
IAA	33.33±57.73*	33.33±57.73*	33.33±57.73*	33.33±57.73*	33.33±57.73*	33.33±57.73*	33.33±57.73*	33.33±57.73*

Means followed by the same letters in the same column are not significantly different at p≤0.05

L: Lower position, M: Middle position, U: Upper position

Table 5. Effects of position on number of roots of rooted marcotts

Treatment	(D₆, L₅₀)	(D₃, L₅₀)	(D₆, L₁₀₀)	(D₃, L₁₀₀)				
L	**M**	**U**	**L**	**M**	**U**	**L**	**M**	**U**
Control	0.33±0.57*	0.67±1.15*	0.33±0.27*	0.33±0.57*	0.67±0.64*	0.33±0.57*	0.67±0.64*	0.33±0.57*
CW	0.67±1.15*	0.67±1.15*	0.67±1.15*	1.0±0.73*	1.0±1.00*	0.67±1.15*	1.0±1.00*	0.67±1.15*
IBA	0.67±1.15*	4.67±5.03*	0.67±0.54*	1.67±1.52*	0.33±0.57*	2.67±0.05*	0.33±0.57*	0.67±0.55*
IAA	0.33±0.57*	1.0±1.73*	-	0.33±0.27*	-	1.33±2.30*	-	-

Means followed by the same letters in the same column are not significantly different at p≤0.05

Table 6. Effects of position on root length of rooted marcotts

Treatment	(D₆, L₅₀)	(D₃, L₅₀)	(D₆, L₁₀₀)	(D₃, L₁₀₀)				
L	**M**	**U**	**L**	**M**	**U**	**L**	**M**	**U**
Control	0.16±0.28*	0.5±0.86*	0.67±1.15*	0.33±0.27*	0.16±0.28*	-	-	-
CW	0.33±0.57*	0.83±1.44*	1.33±2.30*	0.33±0.57*	4.33±5.13*	0.33±0.57*	-	-
IBA	0.5±0.46*	5.67±5.00*	0.5±0.86*	0.33±0.57*	0.83±0.44*	4.0±4.0*	0.33±0.57*	1.0±1.01*
IAA	0.33±0.57*	0.87±1.15*	-	0.33±0.27*	-	2.0±3.46*	-	-

Means followed by the same letters in the same column are not significantly different at p≤0.05
Fig. 1. Marcots establishment and monitoring in the field; A: stripped branch; B and C: stripped branch covered with decomposed sawdust and tied with polythene paper; D: irrigation of marcots in the dry season

Fig. 2. Characteristics of root emergence from marcots of T. cameroonensis; A: most marcots treated IAA and at upper position, B and C: marcots treated with IBA, CW and at middle and lower position

4. DISCUSSION

Ascertaining the suitability of marcotting or any other vegetative propagation technique for that matter for the propagation of any particular species before recommendation for large scale use is very important to avoid the loss of tree stands to mortality due to incompatibility. The results are however in agreement with the findings of Steward, [19] who reported that variation in the rooting of marcots is a factor that can be attributed to environmental conditions that increases the chances of marcots or mother tree being susceptible to varying degrees of stress and therefore different levels of response to the marcotting procedure. Marcots within the diameter class of 4-6 cm performed better maybe due to high carbohydrate and auxin reserves. This corroborates with the results of Assah, [20]; Okonkwo et al. [21] on vegetative propagation of
Fig. 3. Transplant of weaned marcots of *T. cameroonensis*; A: rooted marcots transplanted into polythene bags; B: sprouted transplanted marcots

"Dacryodes edulis", *Garcinia kola* respectively through marcotting. This result is supported by the work of Menzel, [22] who reported variations in root growth in marcotted trees of *Artocarpus altillis*, and the findings of Kengue, [14] and Mialoundama et al. [15] who found differences in root volume in marcotted trees of *Dacryodes edulis* and *Ricinodendron heudelotii* respectively and associated the variations to differences in size of marcotted branches. This is in agreement with Brian and Nina, [23] who postulated that large diameter tree branches tend to have higher carbohydrate and auxin reserves than smaller ones and are therefore more likely to root better than their smaller counterparts. The benefit of the present study is that it reveals that the high carbohydrate reserves in larger diameter branches that promotes rooting also promotes and supports the survival of marcots while still attached to the mother plant.

In addition, marcots position equally had an influence on rooting ability, number of roots and root length. Those at the middle of the crown rooted better maybe due the high humid content compared to lower part as well as upper parts of the crown. This is apparent with the findings of Ogbu et al. [24] that adventitious root formation by marcotted branches of *P. macrophylla* required high humid condition which is naturally guaranteed during the peak of wet season weather, and vice versa. Obviously, this behaviour may be attributed to the prevailing high moisture and cool temperature associated with the period of peak rainfall. It has been long established that root formation is influenced by auxins produced by the plant itself [10,25,26]. The physiology of tree growth phases show that as plant undergoes active vegetative growth cycle; buds release endogenous auxin that moves basipetally to stimulate root production [25,26]. So by implication and in response to the deliberate wound caused by girdling in marcotting operation, branches of the species began formation of adventitious roots. This is an affirmation of similar reports by Awodoyin and Olaniyan [25], Leakey [27] and Hartmann et al. [10] that infliction of wounds on stem brings about auxin induced stimulation of vascular meristematic tissues to form adventitious roots in cuttings and layering techniques.

5. CONCLUSION

Rooting ability of *T. cameroonensis* marcots proved successful in phytohormones (IAA and IBA) as well as alternative sources (coconut water). IBA had the best performance followed by coconut water while IAA was the least. Thus, rooting of marcots of *Ternstroemia cameroonensis* with plant growth regulator (IBA, CW) presents a viable propagation technique to be used in enrichment planting programmed of this important highly endangered medicinal plant, though weaned marcots had a very low survival percentage.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely
no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

ACKNOWLEDGEMENT

We wish to acknowledge the support of URBOA (Unité de Recherché en Botanique Appliqué) of the Department of Plant Biology, University of Dschang. We also appreciate the Regional Delegation of Forestry and Wildlife for the North West of Cameroon for allowing us to carry out the research work at their nursery as well as their materials and technical support.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. IUCN. Red List categories and criteria: Version 3.1. Second edition. Gland, Switzerland and Cambridge, UK: IUCN;2012. Available: [accessed: Jan. 2020].
2. Cheek M, Tchiengue B, Tacham WN. Ternstroemia cameroonensis (Ternstroemiaceae), a new medicinally important species of montane tree, nearly extinct in the Highlands of Cameroon. Blumea. 2017;62:53–57.
3. Whinconet. Plant and Animal Guide for the Western Cameroon Highlands. Tropical trees: the potential for domestication and the rebuilding of forest resources. London: HMSO. 2007;15.
4. Focho DA, Ndam WT, Fonge BA. Medicinal plants of Aguambu—Bamumbu in the Lebialem highlands, southwest province of Cameroon. African Journal of Pharmacy and Pharmacology. 2009;3(1):1–13.
5. Cheek M. Ternstroemia polypetala poster. Royal Bontanic Gardens, Kew. Ternstroemia (Pentaphylacaceae) from La Amistad Binational Park and World Heritage Property, Costa Rica and Panama. Phytotaxa. 2000;217:87–91.
6. Tacham WN, Fonge BN, Fonkou T. Traditional medicine and ethnobotanical use of wild plants by the Mundani people of Wabane, South West Region, Cameroon. Journal of Ethnobiology and Traditional Medicine. Photon. 2015;125:1060–1080.
7. Nkemnkeng FG, Anjah GM, Tacham WN, Mbogue CNN, Wouokoue JBT, Nguetsop VF. Population distribution, conservation status and vulnerability of Ternstroemia cameroonensis Cheek in the Lebialem Highlands, Cameroon. International Journal of Current Research in Bioscience and Plant Biology. 2021;8(2):1-10.
8. Xavier C, Carmen UU. Ternstroemia washikiatii (Pentaphylacaceae): a new tree species from Eastern Ecuador. Harvard Papers in Botany. 2016;21(2):337–339.
9. Nkemnkeng FJ, Anjah GM, Tacham WN, Mbogue CNN, Nguetsop VF. Propagation of Ternstroemia cameroonensis: an approach towards the conservation of a critically endangered medicinal plant species in the Lebialem Highlands, Cameroon. Journal of Biodiversity and Environmental Sciences. 2021;239–603.
10. Tchoundjeu Z, De-Wolf J, Jaenicke H. Vegetative propagation for domestication of agroforestry trees. Agroforestry Today. 1997;9(2):10–12.
11. Awodoyin RO, Olubode OS, Ogbu JU, Balogun RB, Nwawusi IU, Orji KO. Indigenous Fruit Trees of Tropical Africa: Status, Opportunity for Development and Biodiversity Management. Agricultural Sciences. 2015;6:31-41. Available: [accessed: Jan. 2020].
12. Hartmann HT, Kester DE, Davies FT, Geneve RL. Plant propagation: principles and practices (7th ed.). Prentice- Hall Inc., New Delhi. 2007;15.
13. Tchoundjeu Z, De-Wolf J, Jaenicke H. Vegetative propagation for domestication of agroforestry trees. Agroforestry Today. 1997;9(2):10–12.
14. Hamman HT, Kester DE, Davies FT, Geneve RL. Plant propagation: principle and Practices. Sixth Edition. Prentice Hall. 1997;239-513.
15. Mialoundama F, Avana ML, Youmbi-EMampouya PC, Tchoundjeu Z, Mbeuyo M, Galamo GR, Bell JM, Kogupec F, Tsoeng AC, Abega J. Vegetative propagation of Dacryodes edulis (G. Dom) H. J. Lam, by marcots, cuttings and micro-
propagation. Journal of Forests Trees and livelihoods. 2002;12(1):85-96.
16. Nkembi L. Comparative study of community and government patrols in enhancing sustainable wildlife conservation in the Banyang-Mbo sanctuary, Cameroon. Report for the Ministry of Environment and Forestry. MINEF. 2004; Unpublished, 14.
17. Zogning CN, Tiafack O. The catastrophic geomorphological processes in humid tropical Africa: a case study of the recent land slide disasters in Cameroon. Sedimentary Geology. 2007;199(1-2):13–27.
18. Tchoundjeu Z, Tsobeng AC, Asaah E, Anegbeh P. Domestication of Irvingia gabonensis (Aubry Lecomte) by air layering. Journal of Horticulture and Forestry. 2010;2(7):171-179.
19. Steward A. Let’s propagate: A plant propagation manual for Australia. ABC books Sydney, Australia. 2012;240.
20. Asaah EK. Beyond vegetative propagation of indigenous fruit trees: case study of Dacryodes edulis (G. Don) H. J. Lam and Allanblackia floribunda Oliv. PhD. Thesis, Faculty of Bioscience Engineering Ghent University, Belgium. 2012;231.
21. Menzel CM. Litchi chinensis Sonn. In: Verheij, E. W. M, and Coronel, R. E., (eds.), Plant Resources of South-East Asia. Pudoe, Wageningen, the Netherlands: 1991;191-195.
22. Okonkwo HO, Koyejo OA, Oyediran RI. Pre-Severance and Post-Severance Survival, Growth and Fruiting of Allanblackia floribunda Oliv. Marcotts. World Journal of Agricultural Sciences. 2019;15(4):215-219.
23. Brian KM, Nina LB. Etiolation and banding effects on adventitious root formation. In Davis TD, Haisig BE., Sankhla N. (eds): Adventitious root formation in cuttings. Advances in Plant Sciences Series, 2. Dioscorides press. 1988;30-43.
24. Ogbu JU, Awodoyin RO, Isienyi NC. Effect of phytohormone and phenology on domestication of Pentaclethra macrophylla benth. by marcotting in derived savanna zone of southeast nigeria. Nigerian agricultural journal. 2019;50(2):18-23.
25. Awodoyin RO, Olaniyan AA. Air layering in clonal propagation of Guava (Psidium guajava L.): Effects of season and IBA growth hormone on root production. Proceedings of 18th Annual Conference of the Horticultural Society of Nigeria. 2000;113–116.
26. Jaenicke H, Beniest J. Vegetative tree propagation in agroforestry. ICRAF, Nairobi, Kenya. 2002;1–30:75–82.
27. Leakey RRB. Physiology of vegetative reproduction. In: Burley J, Evans E, Younquist JA, editors. Encyclopaedia of forest sciences. London: Academic Press. 2004;1655–1668.

© 2021 Nkemnkeng et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/76620