Hybrid Document Indexing with Spectral Embedding

Irina Matveeva
Dept. of Computer Science
University of Chicago
Advisers: Gina-Anne Levow and Partha Niyogi
Motivation

- Content analysis and information analysis requires more linguistic knowledge
- Recent applications such as Summarization, Lexical Entailment, IE work with short paragraphs and sentences and don’t have much disambiguating context
- Bag-of-words does not account for semantic associations between words
- Language Modeling (Ponte and Croft, ‘98) with term translation probabilities (Zhai and Lafferty, ‘01)
- Treat subsets of the vocabulary differently
Overview

- Term and document representation and similarity measure
 - locality
 - collection independence
 - no manually build resources
- Dimensionality reduction
 - spectral embedding
- Multi-level document similarity
 - hybrid representation to support it
Goal: Multi-Level Similarity and Hybrid Document Indexing

- Multi-level document similarity
 - the same people or events
 - semantically related topics
- Vocabulary subsets
 - nouns, Named Entities, verbs
- Define a suitable similarity measure for each subset and compute a representation that supports that measure
 - term matching for Named Entities
 - semantic association between pairs of nouns, similar to language modeling with term translation probabilities
Linguistic Features in Document Indexing

- **Named entities, Noun phrase heads, WordNet synonyms**
- **Synonymy induction using distributional similarity**
 - for nouns (Turney, ‘01)
 - distributional syntactic similarity for verbs (Pantel and Lin, ‘02)
- **Vector space models and spectral methods work well for words** (Schutze ‘97, Widdows ‘03, Matveeva et al. ‘05)
 - for nouns better than for verbs
Overview

• Term and document representation and similarity measure
• Dimensionality reduction
• Multi-level document similarity
Spectral Embedding

• Low-dimensional representation for subsets of the vocabulary
 – Embed words as vectors in a Euclidean space in which cosine is linguistically motivated measure of semantic association

• LSA, PLSA, LDA model term-document association

• Model term-term semantic relations
 – different vocabulary subsets
 – independent of the document collection
Eigenvalue Decomposition

• Obtain a matrix S of pair-wise similarities for all pairs of terms (WordNet, distributional similarity)

• The eigenvalue decomposition of S

 $$S = U \Sigma U^T$$

 $$S_k = U_k \Sigma_k U_k^T$$ use k largest eigenvalues

 S_k is a product of two matrices

 $$S_k = U_k \Sigma_k U_k^T = U_k \Sigma_k^{1/2} \Sigma_k^{1/2} U_k^T = TT^T$$

• T contains the vector space representation for words

• Cosine between the vectors in T preserves the similarities in S
Singular Value Decomposition

- Claim: pair-wise similarities are preserved
- If S is symmetric, its eigenvalue decomposition is the same as SVD
- Singular value decomposition (SVD)
 \[S = U \Sigma V^T \]
 \[S_k = U_k \Sigma_k V_k^T \]
- (Eckart and Young) S_k is a matrix X of rank k to minimize
 \[\|S - X\|_F^2 \]
 where
 \[\|S - X\|_F^2 = \sum_{ij} (S[i][j] - X[i][j])^2 \]
Spectral Embedding for Nouns with PMI Similarities

- Point-wise mutual information (PMI-IR, Turney ‘00, Terra and Clark ‘03)

\[\text{PMI}(w_1, w_2) = \log_2 \frac{P(W_1=1, W_2=1)}{P(W_1=1)P(W_2=1)} \]

- Similarities in \(S[i][j] = \text{PMI}(w_i, w_j) \)

- Cosine similarity between the term vectors preserves PMI-based term similarities

- Good performance on the synonymy test (Matveeva et al. ‘05)
Spectral Embedding for Nouns with PMI Similarities - 2

- Vector space embedding for words in which cosine preserves linguistic similarities
 - Good performance on the synonymy test

- Generalizes the ideas of Latent Semantic Analysis, GLSA (Matveeva et al. ‘05)
 - term-term relations
 - locality in computing term associations
 - term associations collection independent
 - different methods of spectral embedding
Synonymy Test

- TOEFL Test 80 questions
- TS 1 Test 50 questions (used 46)
- TS 2 Test 60 questions (used 49)
- Example:
 1. enormously
 a) appropriately, b) uniquely
 c) tremendously, d) decidedly
- Synonymy test was used for LSA
- Better performance than high school students
- PMI-IR (Turney ‘00, Terra and Clark ‘03) outperformed LSA on this test
Synonymy Test: LSA, PMI-IR and Spectral Embedding (GLSA)

- 700,000 documents from the English GigaWord collection to compute PMI
- PMI is computed with a sliding window of a fixed size - notion of locality in the co-occurrence based measures

Test	LSA	PMI-IR	GLSA
TOEFL	0.65	0.81	0.86
TS 1	___	0.73	0.73
TS 2	___	0.75	0.82
Overview

- Term and document representation and similarity measure
- Dimensionality reduction
- Multi-level document similarity
Document Representation with Spectral Embedding

• Low-dimensional term vectors $t_j \in \mathbb{R}^k$
 in the space of latent concepts c_k
• Documents are linear combinations of term vectors
 $d_i = \sum \alpha(w_j,d_i) \cdot t_j = (c_1, c_2, ..., c_k)$
Hybrid Indexing

- Combine Two Representations
- Tf-idf document vectors
 - \(d_i = (\alpha(w_1,d_i), \alpha(w_2,d_i),..., \alpha(w_n,d_i)) \)
 - \(\alpha(w_j,d_i) = \text{tf}(w_j,d_i) \times \text{idf}(w_j) \)
- Low-dimensional term vectors \(t_j \in \mathbb{R}^k \)
 - in the space of latent concepts \(c_k \)
 - \(d_i = \sum \alpha(w_j,d_i) \times t_j = (c_1, c_2, ..., c_k) \)
- Hybrid Indexing
 - \(d_i = (\alpha(w_1,d_i), \alpha(w_2,d_i),..., \alpha(w_n,d_i), c_1, c_2, ..., c_k) \)
Clustering and classification algorithms are based on the kernel matrix of pair-wise similarities

\[<d_i,d_j> = \sum_v \alpha(w_v,d_i)*\alpha(w_v,d_j) + \]
\[(\sum_v \alpha(w_v,d_i) \ t_v)^* (\sum_v \alpha(w_v,d_j) \ t_u) = \]
\[\sum_v \alpha(w_v,d_i)^* \alpha(w_v,d_i) + \]
\[\sum_v \sum_u \alpha(w_v,d_i)^* \alpha(w_v,d_j) <t_v,t_u> \]
TDT2 Experiments

• **Collection**
 – Broadcast news from 6 English speaking news sources
 – 10,100 documents assigned to a single topic

• **Question I**
 – Characteristics of the collection
 – Role of Named Entities, similarity measures for verbs

• **Question II**
 – PMI is computed using a large collection with a different word distribution
 – Spectral embedding with PMI has the notion of locality
Document Clustering with Min Squared Residue Algorithm

- Evaluation for cluster \(c_i \) labeled with topic \(t_j \)
 \[
 F(c_i, t_j) = \frac{p*r}{2*(p+r)}
 \]
 \[
 F(C, T) = \sum N_j/N \max F(c_i, t_j)
 \]
- Minimum Squared Residue Co-clustering (Cho et al. ‘04)
 \[
 \beta: \{1, 2, ..., m\} \rightarrow \{1, 2, ..., k\}
 \]
 \[
 \gamma: \{1, 2, ..., k\} \rightarrow \{1, 2, ..., l\}
 \]
 \[
 A(I, J) \text{ is a co-cluster matrix}
 \]
 minimize the sum of the squared differences between the entries in \(A \) and the cluster mean
TDT2 Clustering

	5-10	50-150	500-1000	1000-5000
All words	0.60(0.09)	0.80(0.04)	0.95(0.03)	0.88(0.07)
LSA	0.73(0.05)	0.78(0.05)	0.98(0.00)	0.88(0.03)
GLSA_local	0.81(0.04)	0.84(0.04)	0.99(0.00)	0.90(0.09)
GLSA	0.64(0.05)	0.75(0.04)	0.97(0.00)	0.93(0.06)
only Nouns	0.67(0.05)	0.75(0.03)	0.97(0.00)	0.82(0.04)
GLSA_Nouns	0.80(0.04)	0.84(0.04)	0.99(0.00)	0.92(0.00)
Hybrid	0.85(0.04)	0.90(0.03)	1.00(0.00)	0.97(0.05)
k-NN for Embedded Nouns

GigaWord	witness	testify	prosecutor	trial	testimony	juror	eyewitness
TDT2	witness	substitution	intimidation	eric	swoop	testimony	material
GigaWord	finance	fund	bank	investment	economy	crisis	category
TDT2	finance	fund	bank	investment	economy	crisis	category
GigaWord	broadcast	television	tv	satellite	abc	cb	radio
TDT2	broadcast	television	live	cb	station	interview	network
GigaWord	hearing	hearing	judge	voice	chatter	sound	appeal
TDT2	Hearing	federal	voice	sound	court	loudness	chant
GigaWord	Surprise	announc.	disappoint.	stunning	shock	reaction	astonishment
TDT2	Surprise	catch	demon	illumination	speciality	bag	wine
GigaWord	Rest	stay	remain	keep	leave	portion	economy
TDT2	Rest	world	half	custom	sound	lay	rest
Conclusions

- Spectral Embedding preserves linguistically motivated similarities and performs particularly well for nouns
- Named Entities and other characteristic features play an important role
- Multi-level measures of similarity improve document classification and clustering
- Hybrid indexing with spectral embedding provides a principled way to compute a representation that supports that similarity measure
THANK YOU!

Questions?
Comments?