The cancer stem cell: Evidence for its origin as an injured autoreactive T Cell

Peter Grandics*

Address: A-D Research Foundation 5922 Farnsworth Ct, Carlsbad, CA 92008, USA
Email: Peter Grandics* - pgrandics@earthlink.net
* Corresponding author

Abstract

This review explores similarities between lymphocytes and cancer cells, and proposes a new model for the genesis of human cancer. We suggest that the development of cancer requires infection(s) during which antigenic determinants from pathogens mimicking self-antigens are co-presented to the immune system, leading to breaking T cell tolerance. Some level of autoimmunity is normal and necessary for effective pathogen eradication. However, autoreactive T cells must be eliminated by apoptosis when the immune response is terminated. Apoptosis can be deficient in the event of a weakened immune system, the causes of which are multifactorial. Some autoreactive T cells suffer genomic damage in this process, but manage to survive. The resulting cancer stem cell still retains some functions of an inflammatory T cell, so it seeks out sites of inflammation inside the body. Due to its defective constitutive production of inflammatory cytokines and other growth factors, a stroma is built at the site of inflammation similar to the temporary stroma built during wound healing. The cancer cells grow inside this stroma, forming a tumor that provides their vascular supply and protects them from cellular immune response.

As cancer stem cells have plasticity comparable to normal stem cells, interactions with surrounding normal tissues cause them to give rise to all the various types of cancers, resembling differentiated tissue types. Metastases form at an advanced stage of the disease, with the proliferation of sites of inflammation inside the body following a similar mechanism. Immunosuppressive cancer therapies inadvertently re-invigorate pathogenic microorganisms and parasitic infections common to cancer, leading to a vicious circle of infection, autoimmunity and malignancy that ultimately dooms cancer patients. Based on this new understanding, we recommend a systemic approach to the development of cancer therapies that supports rather than antagonizes the immune system.

Introduction

Understanding the pathomechanism of cancer is of primary interest in medical research. In the past century, several mechanisms were proposed: It was hypothesized that cancer arises out from a single cell that loses its differentiated state through sequential mutations [1]. This initiation-promotion-progression concept explains the steps in a sequential process [2]. Later, this hypothesis led to the mutagenic and recently the oncogenic theories which hypothesize that defects in tumor suppressor genes are responsible for the development of cancer [3]. The impairment of cell-to-cell communication as a cause of cancer has also been postulated [4].
Mutations and other genetic abnormalities observed in cancer cells could also be caused by environmental effects, e.g., chemical carcinogens or lifestyle factors such as alcohol or tobacco consumption or drug abuse [5]. The discovery of the cancer stem cell [6-8] lent support to the theory that cancer may develop out of a single cell, and raised the question of cancer stem cells arising from normal stem cells [9]. Indeed, if normal stem cells could undergo the type of mutations observed in tumor cells, this would potentially compromise the genetic stability of the organism. Therefore, the likelihood that normal stem cells are extremely well protected is demonstrated by their resistance to radiation and toxins [9].

One fascinating finding is that immunosuppressive cytotoxic antineoplastic therapies may on occasion cause the regression of a clinically established cancer. At first, applying this as a therapeutic strategy may seem counterintuitive, considering the fundamental role of the immune system in protecting the body against infectious organisms and aberrant cells. In addition, cancer itself is frequently immunosuppressive, so exacerbating a pre-existing immunosuppression may not seem like a rational strategy.

In this light, it appears paradoxical that the same degree of immunosuppression that is lethal in a bacterial or fungal infection actually benefits cancer suppression. In other words, the deletion of the T cell compartment that accompanies cytotoxic antineoplastic therapies [10] may facilitate cancer regression. This suggests that cancer itself may arise out of the immune system, potentially from the T cell compartment, which would explain why the suppression of cellular immunity could also lead to the suppression of the disease.

Another observation is that tumor cells are poorly immunogenic, despite the fact that tumor cells are antigenic [11,12]. Therefore, they do not generate a T cell-mediated immune response, and if so, it is of low intensity [13]. If tumor cells were derived from injured lymphocytes, particularly T cells that still share some functional properties with their normal counterparts, an immune tolerance to cancer cells could be explained, as the immune system is not made to attack itself. In pathological situations, T cells do attack self-tissue in a manner reminiscent of the autoreactive nature of cancer cells which have the ability to attack and invade host tissues. In other words, cancer cells behave like autoreactive lymphocytes. Here, we explore the evidence suggesting that such a mechanism could be at work during the development of cancer.

The prevalent genetic theories of cancer are built upon observations of genetic abnormalities in tumor cells. These theories do not generally take into account the demonstrated importance of environmental factors in human cancer development. In a previous paper [14] we have shown that specific dietary deficiencies mimic the effects of chemical or radiation damage to DNA, which we propose plays an important role in human carcinogenesis and tumorigenesis. This observation allows us to consider cancer as a single disease, possibly developing from a single cancer stem cell. Based on this, we could assume that the observed genomic abnormalities in cancer cells are an effect rather than the cause of the disease. This idea also points to the direction of upstream events preceding the development of the malignant cell. We propose that identifying these events will be fundamental to understanding the pathomechanism of cancer. By exploring the functional similarities between lymphocytes and cancer cells, we provide an insight into this realm of possible upstream events.

The exterior cell surface layer (cell coat)
The lymphocyte cell coat is a labile structure, and the treatment of cells may lead to the loss of its components [15-20]. The cell coat plays an important role in lymphocyte functions including homing, cell-mediated immunity, electrophoretic properties and antigen expression [21]; cell surface proteins are thought to be involved in cell propagation and differentiation [18]. After treatment with β-glucosidase [22], sialidase [23,24] and trypsin [25], lymphocytes lose their homing abilities. Cytotoxic lymphocytes transiently lose their cytotoxic ability after a brief papain treatment [26]. Lysis of the cell coat suppresses cell-mediated immunity [27-29]. Treatment by glycosidases including neuraminidase affects the bodily distribution of lymphocytes [23,24] and demonstrates alterations in their antigenicity [30-34]. Treatment with trypsin and neuraminidase reversibly eliminates the mitogenic response of lymphocytes [35,36]. The cell coat on thymocytes is significantly thicker than on splenic lymphocytes, [20] suggesting a role for the cell coat in T cell function. The cell coat of the lymphocyte cell membrane has been characterized using various stains [15-17], [37-39]. These investigations found high acid mucopolysaccharide content with a significant number of acidic amino sugar end groups.

Cancer cells also exhibit an exterior cell surface coat [40-45]. The similarities between the cell coat of normal and leukemic lymphocytes have been investigated [39,41]. Pathological lymphocytes (CLL) have a uniformity of staining similar to their normal counterparts, with some differences observed with cationic stains that could be due to a decrease in the sialoprotein of the cell coat of CLL cells. With some similarity to lymphocytes, the tumor cell coat has been suggested to play a role in cell contact and adhesion, cell recognition [44], as well as the capacity to metastasize [46].
The tumor cell coat is also sensitive to neuraminidase [47-49] and can rapidly re-grow following treatment with the enzyme [50]. The enzyme treatment also changes the immunological properties of tumor cells. Trypsin and EDTA removes the tumor cell coat [51]. The cell coat is involved in the mechanism by which tumor cells escape cellular immune attack [45,52-54]. The degradation of the cell coat by brief hyaluronidase treatment of glioma cells sensitizes them to cytotoxic lymphocyte attack [52,53]. Although normal human glial cells also produce hyaluronic acid, glioma lines produced significantly more. Hyaluronidase-sensitive coats have been found on a variety of murine sarcoma and carcinoma cell lines [54]. It appears that a mucopolysaccharide coat on tumor cells impedes the successful use of immunotherapy. It was demonstrated that the displacement of the tumor cell coat by charge-functionalized lipids or polycationic substances leads to tumor cell apoptosis and tumor destruction [45,55,56].

It is demonstrated that the cell coat of lymphocytes and tumor cells are functionally significant. The degradation/removal of cell coat significantly impacts the functionality of both tumor cells and lymphocytes; therefore, tumor cell isolation methods could alter the functionality of isolated cells. In other words, with the loss of the cell coat, lymphocytes lose fundamental functions, i.e., cannot attack target cells, while tumor cells also lose cell contact and adhesive properties, as well as the ability to metastasize. In addition, tumor cells become sensitive to apoptosis.

Activation of coagulation

The activation of coagulation occurs during tissue injury as well as in various pathologies. Infection leads to an inflammatory reaction as well as the activation of coagulation, as there is a crosstalk between these functions [57-59]. Blood coagulation components can inhibit or amplify the inflammatory response. Blood clotting is initiated when pathogenic components such as endotoxin or inflammatory cytokines induce the synthesis of tissue factor on leukocytes [60]. The coagulation cascade is subsequently triggered. The formation of negatively charged membrane phospholipid surfaces amplifies the coagulation reaction [61]. Natural anticoagulant pathways such as the protein C anticoagulant pathway limit the coagulation process, thereby suppressing the inflammatory response including reducing inflammatory cytokine secretion [62], decreasing NF-κB signaling [63], minimizing leukocyte chemotaxis [64] and endothelial cell interactions [65], and suppressing apoptosis [66].

Platelets are also involved in the link between inflammation and coagulation. Inflammatory cytokines such as IL-6 or IL-8 increase platelet production, and such platelets are more thrombogenic [67]. In addition, the platelets release the CD40L protein, a potent proinflammatory mediator, which subsequently induces tissue factor synthesis [68,69] and amplifies the secretion of proinflammatory cytokines [70,71]. This in turn leads to a progressive cycle that ultimately can produce severe vascular and organ injury.

In 1865, Trousseau first described a cancer-associated condition now called migratory thrombophlebitis in which a spontaneous coagulation of the blood occurs in the absence of inflammatory reactions [72]. It manifests as migratory thrombosis in the superficial veins of the chest wall and arms, but it can occur in other sites as well. This condition is a variant of venous thromboembolism. Thrombosis is a frequent complication of malignancy, and thromboembolic death is the second leading cause of mortality in cancer [73,74]. Malignant cells interact with the blood coagulation system by releasing procoagulant and fibrinolytic substances and inflammatory cytokines [75-83]. In addition, direct interaction with endothelial cells, monocytes/macrophages, and platelets also leads to localized clotting activation [85-87]. Similar to normal activated inflammatory cells, malignant cells release tissue factor [75-77] which promotes the formation of fibrin deposits in the tumor cell microenvironment [88-90].

The fibrin gel matrix along with other connective tissue components form the basis for the tumor stroma, a matrix in which tumor cells are dispersed and which provides the vascular supply as well as a barrier against rejection by the cellular immune system [89]. The tumor stroma shares properties in common with the temporary stroma of a healing wound [91]. Similar to the fibrin coating on macrophages [92], the observed fibrin coating of tumor cells is involved in the mechanism by which tumor cells escape destruction by NK cells [93,94]. Histological evidence suggests that inflammatory lymphocytes are confined to the tumor-host interface, and do not not significantly penetrate the tumor [89,95]. Malignant cells secrete inflammatory cytokines such as TNF-α and IL-1β that downregulate the anticoagulant system of vascular endothelial cells [96,97]. The secretion of IL-8 promotes new blood vessel formation, [98] and the fibrin deposited around tumor cells facilitates angiogenesis [99-101].

Tumor cells attach to the vascular endothelium and promote the adhesion of leukocytes and platelets [102-105]. Monocytes and macrophages also home in on vascular surfaces due to inflammatory stimuli [106-108]. In response to inflammatory molecules, complement, lymphokines and immune complexes, these cells subsequently secrete procoagulant tissue factor; tumor-associated macrophages express significantly higher levels of tissue factor than control cells [109,110]. These macro-
phages also increase their fibrinolytic enzyme production [111].

Both human and animal cancer causes platelet aggregation in vitro and in vivo [112-114]. The ability of tumor cells to aggregate platelets and secrete plasminogen activator correlates with their metastatic potential [115]. Indeed, thrombocytopenia reduces the metastases of tumors [116,117] as do compounds capable of reducing platelet aggregation [117-125]. These include aspirin, prostaglandins and other nonsteroidal (NSAID) anti-inflammatory drugs. A reduced risk of fatal colon cancer has been observed among aspirin users [120-122]. Administration of heparin and fibrinolysin also reduces the incidence of experimental metastases [126-128], while the administration of anti-fibrinolytic agents increases their incidence [129,130].

Cancer treatment by surgery, cytotoxic antineoplastic drugs and hormonal therapy all contribute to the hypercoagulable state and risk factors for thromboembolism in cancer patients [131,132]. The risk of fatal pulmonary embolism increases four-fold after surgery in cancer patients [133,134]. Chemotherapy drugs including cisplatin, mytomycin C and tamoxifen as well as high-dose and multi-drug regimes increase the risk of thrombotic complications [135-139]. Prophylactic treatment with warfarin reduces this risk [140]. The use of hematopoietic growth factors subsequent to chemotherapy was shown to induce thrombosis in breast cancer patients [141,142]. Venous thrombosis could also be a marker for an otherwise asymptomatic cancer [143,144].

Similarly to a normal inflammatory reaction, activation of coagulation takes place in cancer. The events of tumor stroma development are comparable to wound healing [91] and it is possible that tumor formation may be associated with defective wound healing initiated by an inflammatory reaction due to infection and/or tissue injury. Therefore, we believe it is important to investigate potential links between infection, inflammation and cellular immune response in searching for the origins of the cancer cell.

Infection and inflammation

The etiological role of infectious agents has been indicated in various cancers. In 100 cases of human leukemia, *Mycoplasma*, *Salmonella*, *Micropolyspora*, *Mycobacterium*, *Absidia*, pseudorabies virus and adenovirus antigens were commonly detected in the patient's sera [145]. Hepatotropic viruses (hepatitis B and C) cause hepatic necrosis followed by hepatocellular, B cell and gastric malignancies [146-149]. Antiviral therapy of hepatitis C infection led to the regression of virus-associated B cell lymphoma [150]. Adenoviral infection has been associated with childhood leukemia [151] and cytomegalovirus infection with testicular cancer [152]. *Helicobacter pylori* infection is widespread in the population (an estimated 40–80% infected) and is linked to gastric cancer and mucosa-associated lymphoid tissue (MALT) lymphoma [153,154]. A reversal of lymphoma-induced neutropenia has been observed with the eradication of *H. pylori* infection [154]. Simian virus 40 (SV40) is associated with human brain cancers and non-Hodgkin's lymphoma [155]. Ocular adnexal lymphoma is linked to *Chlamydia psittaci* infection, and the reversal of lymphoma was observed with pathogen-eradicating antibiotic therapy [156]. The list continues: Cervical intraepithelial neoplasia (CIN) is associated with human papilloma virus (HPV) infection with a co-etiological presence of chronic bacterial cervicitis [157-159]. *Mycoplasma* and HPV association was found to be dominating. The role of mycoplasma in the dysplasia of the uterine cervix and development of CIN has also been demonstrated [160].

Mycoplasmas are particularly interesting due to their widespread presence in the human population. Although many mycoplasmas are not directly pathogenic in humans, they are associated with many diseases [161-165]. Mycoplasmas have co-leukemogenic activity [166-168] and are found to increase tumor cell invasiveness [169]. In approximately half of the examined cases, mycoplasma DNA was present in ovarian and gastric carcinoma specimens [170,171]. In gastric, lung, esophageal, breast and colon cancers as well as glioma specimens, *Mycoplasma hyorhinis* was detected in about 50% of the cases [172]. Mycoplasmas are known to cause chromosomal changes [173]. Mixed *Mycoplasma pneumoniae* and influenza virus infection induced lung cancer in an animal model [174]. The direct role of the AIDS-associated *Mycoplasma fermentans* and *Mycoplasma penetrans* in oncogenesis has been investigated [175]. These mycoplasma strains induced gradual malignant transformations that eventually became irreversible. Besides its direct oncogenic potential, *Mycoplasma fermentans* was found to exhibit a unique cytocidal effect on the undifferentiated myelomonocytic lineage, but not on differentiated myelomonocytic cells [176]. The depletion of immature myelomonocytic cells likely contributes to the functional immunodeficiency present in cancer patients.

In response to pathogens, the host mounts a protective inflammatory response. Immune cells migrate to the area of infection and produce inflammatory messengers called cytokines. Initially, cells of the innate immune system (macrophages, neutrophils, NK cells) become involved, followed by the activation of cells of the adaptive immune system. These include antigen-presenting cells (APCs), T and B cells, which play an important role in propagating the inflammatory response. T cell inflammation plays a
Intracellular pathogens (e.g., viruses, mycoplasmas) use the Toll-like receptor (TLR) signaling mechanism to escape host defenses [177]. Pathogen-associated molecular patterns on the surface of mycoplasmas engage TLRs 1, 2, and 6 on the surface of APCs that lead to a Th2-type polarization of the immune response and the secretion of IL-10, IL-4, IL-5 and IL-13 [178-180]. These cytokines are antagonistic to Th1 type cytokines (TNF-α, IL-2, IFN-γ, IL-6, IL-12); excessive production of either type of cytokine upsets the homeostatic balance needed to maintain a proper mix of cellular and humoral immune responses. Utilizing this mechanism, mycoplasmas suppress cell-mediated immunity, which allows them to persist and predispose the host for colonization by other pathogens. The observation that leukemia patients were colonized by over half a dozen pathogens besides mycoplasmas [145] suggests that suppression of the cellular immune system provides a fertile ground for a variety of pathologies.

Besides regulating innate and adaptive immune responses, cytokines are involved in cell growth and differentiation. Normally, the secretion of cytokines is of short radius and limited duration, typically regulating self or adjacent cell functions. The activity of cytokines is tightly regulated, and there is evidence that cytokines contribute to inflammatory autoimmune diseases [181-184] and malignancies. Similarly to activated T cells, various tumor cells secrete immune response-polarizing cytokines (IL-10, IL-6, IL-8, IL-13, TGF-β) serving as autocrine and/or paracrine growth factors for the cancer [185-199]. The progression of the disease and patient survival was correlated with increasing levels of cytokine secretion [200]. This secretion is frequently constitutive, leading to elevated serum levels of cytokines in malignancies including melanoma, non-small cell lung carcinoma, renal cell carcinoma and bladder carcinoma [186-190,201]. In addition, tumor cells can induce IL-10 in the tumor environment [191]. IL-10, the most potent Th2 polarizing cytokine, suppresses the tumoricidal activity of macrophages [202]. blocks presentation of tumor antigens to professional APCs [203-205], and inhibits tumor-specific cytotoxic T cells [206]. However, in cancers both cellular and humoral immune response may be depressed, as in the absence of IL-4 production IL-10 secretion alone cannot induce a Th2-type response.

It appears that the immune response becomes distorted at multiple levels during the development of cancer. First, infectious agents may act in concert to subvert cellular immunity, thereby upsetting the homeostatic balance of a proper mix of cellular and humoral immune response. This leads to an aberrant cytokine-signaling that results in depressed apoptosis and excessive proliferation [207,208]. Cytokines seem to be the key substance of apoptosis of leukemic cells [207]. Abnormal inflammatory cytokine secretion by tumor cells reinforces the existing imbalances and thus promotes disease progression. Similarly to T cells, cancer cells use inflammatory cytokines as autocrine and paracrine growth factors, suggesting a functional relationship between cancer cells and cells of the immune system.

Infection, autoimmunity and cancer

Several lines of evidence suggest a direct relationship between infection, autoimmunity and cancer. Hepatitis B and C viruses are involved in an autoimmune condition that precedes the development of hepatocellular carcinoma [209]. Data also demonstrate a higher prevalence of B-cell non-Hodgkin’s lymphoma in HCV-infected patients with autoimmune manifestations [147-149] including Sjogren syndrome [210], cryoglobulinemia [211,212] and systemic lupus erythematosus (SLE) [213,214]. Adenovirus infection is associated with childhood leukemia, (151) and family studies in acute childhood leukemia have shown possible associations with autoimmune disease [215]. Epstein-Barr virus [216] and human T lymphotrophic virus type 1 infection [217] is associated with abnormal lymphoproliferation and Hodgkin’s lymphoma. Cytomegalovirus infection is linked to autoimmunity [218] and testicular cancer [152].

H. pylori infection can lead to autoimmune neutropenia and MALT-lymphoma [154] in addition to its well-established role in the development of gastric cancer. Systemic rheumatic disease has also been linked to lymphoid malignancy [219]. These findings underline a close relationship between infection, autoimmunity and proliferative disorders, possibly mediated by an abnormally functioning cytokine signaling network [220].

Antinuclear antibodies (ANA) were demonstrated in the sera of 19% of patients with malignancies in the absence of overt autoimmune manifestations [221]. In cancer patients, a large number of autoantibodies are observed against tissue-specific antigens, nucleoproteins, membrane receptors, proliferation-associated antigens, tissue-restricted antigens, etc. [reviewed in [222]]. Autoimmune connective tissue disorders are also commonly associated with malignancies [223]. It was reported that gastric atrophy and pernicious anemia carries a risk for gastric carcinoma 18 times that of the population average [224]. It appears that a variety of infections may induce autoimmune serological features without overt autoimmune disease or organ involvement [225]; however, this condition
may progress to clinical autoimmune disease and malignancy if impaired T cell function prevails. Such condition develops at a higher frequency among the elderly [226].

It was observed 30 years ago that a low percentage of human T cells (3.4%) have the ability to form rosettes with autologous erythrocytes; in breast cancer and melanoma patients, the ratio was elevated to 6.1% and 7.4%, respectively [227]. This observation implied that some level of autoreactivity is normal, confirmed later by studies on T cell tolerance [228,229]. However, the observation also pointed to an elevated level of autoreactive T cells involved in cancer. The mechanism of activation of an autoreactive T cell response was linked subsequently to bacterial and viral infections through the process of molecular mimicry [218,230-234] in which pathogen-derived peptides mimic self-peptides. This phenomenon was studied in animal models [235-240] and was supported by clinical observations [241-243]. As a highlight, when lymphocytic choriomeningitis virus (LCV) antigens were expressed in the pancreas of transgenic mice, infection with the virus led to autoimmunity and diabetes [239].

H. pylori antigens mimic epitopes on H+, K+-adenosine triphosphatase in the gastric mucosa [230] thereby activating cross-reactive gastric T cells. Viral peptides mimic sequences on myelin basic protein [234], leading to multiple sclerosis. Cytochrome c (cyt c) as an antigen was used to study how self-proteins prime autoreactive T cell responses [244,245], as SLE patients possess autoantibodies to cyt c [246]. When non-self cyt c was co-administered with the self-protein, B cells specific for the foreign antigen primed autoreactive T cells that led to breaking tolerance to self-cyt c. The same autoimmune phenomenon occurs in the LCV transgenic mice when LCV antigens on pancreatic cells and the intact virus antigens are co-presented to the immune system [239]. Therefore, it is quite likely that autoimmunity spontaneously develops during a variety of infections when antigens on microorganisms mimic self antigens and are presented together, breaking T cell tolerance.

The presence of autoreactive T cells has been observed in healthy persons, which indicates a role for these cells in immune defense. If autoreactive T cells were always absent from the T cell repertoire, the responsiveness toward foreign antigens that resemble self-antigens would be reduced. This notion is supported by the observation that T cells which recognized variants of self-antigen are of lower avidity than those recognizing a foreign antigen [247,248]. Also, tolerance to self-antigen reduced T cell variants for these peptides as well as the diversity of T cell receptor α and β-chain sequences of self-specific T cells [249,250]. It appears that some level of autoreactive T cells is necessary for immune defenses. Clinical autoimmunity may develop when persistent infection provides a continuing high dose of antigenic stimulus, [251] and this situation could predispose patients for the development of proliferative disorders.

Defective apoptosis

Normal tissue development requires damaged, dangerous or unnecessary cells to be eliminated while healthy cells survive. The survival of harmful or damaged cells can lead to various pathologies. The evolutionarily conserved mechanism of apoptosis eliminates unwanted or abnormal cell populations. Lymphocytes require IL-2, IL-4, IL-7, IL-9 and IL-15 for viability [252,253], and withdrawal of these cytokines leads to apoptotic cell death. Leukemia patients who went into complete remission following chemotherapy developed a different type of leukemia after being placed on IL-2 therapy [185]. IL-2 is an essential cytokine for the viability of activated T-cells [254], suggesting a link between the survival of activated T-cells and leukemic cells. Myeloid leukemia cells are also cytokine-dependent and undergo apoptotic cell death following cytokine withdrawal [253]. The various immune response-polarizing cytokines that tumor cells secrete [185-201] inhibit chemotherapy- or radiation-induced apoptosis [256-261]. There are myeloid leukemia cell lines that have become independent of an external cytokine supply [257], but generally cytokines can protect both normal and cancer cells against apoptosis induced by various cytotoxic agents. The persistence of infectious agents and chronic inflammation in cancer patients promotes NF-κB activation and inflammatory cytokine production, thereby contributing to the diminished apoptosis of abnormal cells [262,263].

The completion of immune response against pathogenic microorganisms requires the deletion of activated T and B cells that participated in the immune defenses, particularly self-reactive ones [264] (although a fraction of them survive as memory cells). Apoptosis plays an important role in the regulation of peripheral immunity through the Fas/APO-1 cytokotoxic pathway. Defective apoptosis can lead to autoimmune disease [265,266] and cancer [267,268]. As cancer cells are not immortal, they maintain a program for apoptotic cell death [269].

The apoptosis marker Fas receptor (FasR) is expressed on numerous cell types, whereas the Fas ligand (Fasl) is mainly expressed on T cells [266]. Fasl mediates the apoptosis of effector T cells as part of an immune response termination and tolerance development. FasL is also expressed in “immune-privileged” tissues such as the brain, testes and eyes with the purpose of preventing inflammation. Mutations in Fas or Fasl can lead to autoimmune disease [270,271]. Similarly to cytotoxic T
cells, various tumor cells also express FasL and use it to induce apoptosis of invading lymphocytes. Breast tumor cells express FasL that can kill Fas-sensitive lymphoid cells [272]. The co-expression of Fas and FasL was observed in brain tumors that can use this mechanism to obtain a proliferating advantage by "counter-attacking" tumor-infiltrating activated Fas-sensitive T lymphocytes [273,274]. Similar observations have been made in Ewing sarcoma [275], gastric cancer [276], cholangiocarcinoma [277], B cell chronic lymphocytic leukemia (B-CLL) [278], colon adenocarcinoma [279-281], head and neck cancer [282], lung carcinoma [283], esophageal carcinoma [284], ovarian carcinoma [285], lymphoma [286], pancreatic carcinoma [287], melanoma [288], and other malignancies [289,290]. Childhood glial tumor cells (but not normal cells) in the brain express the common leukocyte-associated antigen and Fas [273].

The expression of apoptosis-related molecules on the surface of both neoplastic cells and cytotoxic lymphocytes (CTL) in tumor specimens raises the question of whether neoplastic cells are formed from CTLs by a premature termination of the apoptotic mechanism. Indeed, neoplastic cells behave like CTLs in their expression of FasL and in the induction of apoptotic death of activated T cells, as well as other cancer cells carrying a functional FasR [291,292]. In other words, cancer cells continue to act like T cells performing their immune-regulating functions.

Discussion and therapeutic implications

Infections by various pathogenic microorganisms are a common occurrence in humans and other animals. In response to invading pathogen(s), an inflammatory reaction develops in the host organism. Initially, the innate immune system becomes involved, followed by the development of an adaptive immune response. Activated leukocytes produce inflammatory cytokines and chemokines as well as other growth factors aimed at clearing up the infection and facilitating tissue healing. The inflammatory reaction at the infection site triggers a variety of physiological responses. Antigen-presenting cells activate T and B cells in response to molecular patterns expressed on the surfaces of pathogenic microorganisms. Intracellular pathogens are overcome by the cellular immune response; in addition, the T cell inflammatory reaction is also key to antitumor immunity. Activated T helper 1 (Th1) cells secrete specific cytokines orchestrating this response.

Pathogenic microorganisms, however, have evolved strategies to evade immune surveillance in order to persist in the host. Several intracellular pathogens including mycoplasmas and viruses deploy molecular patterns on their surfaces that trigger a Th2-type (humoral) immune response and consequently depress cellular immunity. In addition, some infections such as the mycoplasmas remain sub-clinical, and by subverting the cellular immune response, these microorganisms predispose the host for colonization by other pathogens eventually leading to various pathologies.

Molecular mimicry is initiated when viruses integrate host genes within their genome, [293] and pathogens with host-like genes may have a survival advantage over those lacking such traits. Animal viruses are capable of fusing with prokaryotic cells that may facilitate gene transfer between distant microbial taxa [294]. Influenza virus hemagglutinin A sequences have been located in the p37 protein of *Mycoplasma hyorhinis*, and this protein increases tumor cell invasiveness [295]. The exchange of genes among various microorganisms [296] leads to the development of antibiotic resistance. Gene uptake also occurs by phagocytosis of apoptotic bodies [297,298] while High Mobility Group (HMG) proteins, commonly associated with human DNA, may facilitate this process in bacteria [299].

When antigens from pathogens mimic self-antigens in the process of molecular mimicry, cross-reactive T cells may be generated. The study on breaking T cell tolerance with co-administered foreign and self-cytochrome c is a sobering reminder of just how easy is to induce autoimmunity. However, evidence also demonstrates that a low level of autoimmunity is normal and necessary to mount an effective immune response to infections. Clinical autoimmunity may develop if a continuing high-dose antigenic stimulus persists, as in cases of chronic infection. In addition, there is also evidence that autoimmunity can lead to proliferative disorders.

As discussed, normal tissue development requires the elimination of dangerous and abnormal cells, and autoimmune T cells belong into this category. With the completion of the immune response, the evolutionarily conserved mechanism of apoptosis eliminates effector T cells, leading to immune response termination and tolerance development. However, defective apoptosis can lead to autoimmunity and cancer.

We propose that an aberration in the apoptosis process leads to formation of the cancer stem cell from autoreactive T cells. In support of this observation, *Helicobacter*-induced gastric epithelial carcinoma was found to originate from bone marrow-derived cells [300]. This is direct proof of cancer that is not arising from mutated epithelial cells. Also, the cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), a regulator of the effector function of T cells, is expressed in various leukemias and solid tumors [304]. This suggests a link between CTLs, hematopoietic neoplasias and solid tumors.
Further evidence: the common acute lymphoblastic leukemia antigen was detected on glioma [301] and melanoma [302] cell lines. The melanoma-associated PRAME antigen is expressed both in leukemias and some solid tumors [303]. The majority of leukemia and lymphoma cells test positive for the leukocyte common antigen (CD45) [305]. Seminoma [306], rhabdomyosarcoma [307] and some metastatic undifferentiated and neuroendocrine carcinomas [308] have also been found to express CD45. The myeloid antigen Leu-7, typically expressed on natural killer (NK) cells and T cell subsets, was detected on small cell lung carcinoma [309,310] and a variety of other solid tumors including astrocytoma, neuroblastoma, retinoblastoma, carcinoid tumors, etc. [311]. Neoplastic cells of Hodgkin’s disease expressing Leu-7 may be related to NK cells or T cells rather than B cells [312]. We propose that the unexpected presence of some T cell markers on cancer cells may provide an insight into their origins. In addition, the observation that cancer stem cells embedded in an environment of normal host tissue can undergo a differentiation process (during which surface markers of lymphoid origin disappear) explains the absence of leukocyte-derived surface antigens in some solid tumors.

In benign colonic adenomatous polyps and synchronous adenocarcinoma, comparable and very large numbers of genomic alterations (>10,000 events per cell) were found [313], demonstrating massive genomic damage characteristic of apoptosis as opposed to sequential mutations. In addition, this demonstrates that genomic instability precedes the development of a malignant state, indicating that malignancy is an effect rather than the cause of genetic abnormalities in cancer cells. It is therefore reasonable to conclude that there is no fundamental difference between benign and malignant tumors, and that possibly just a small difference in the deregulation of proliferative controls leads to a malignant phenotype.

We further propose that the resultant cancer stem cell still preserves some functions of an effector T cell, such as homing in to sites of inflammation such as the inflamed bronchi of a cigarette smoker, the damaged liver of an alcohol abuser, an H. pylori-infected gastric mucosa, an HPV-infected uterine cervix, an inflamed colon, etc. The cancer cell retains some capabilities of an effector T cell to secrete inflammatory cytokines (even if in an aberrant, constitutive fashion), thereby distorting local immune responses, disabling cytotoxic T cells and diminishing apoptosis in its environment.

Like normal activated inflammatory cells, cancer cells activate the coagulation system, leading to the formation of the tumor stroma in which tumor cells proliferate. Dvorak in his paper entitled “Tumors: wounds that do not heal” [91] succinctly described similarities between the formation of the temporary stroma of a healing wound and tumor stroma development. While the cancer cell continues to act as if it participated in a wound healing process, it actually enlarges the wound stroma due to its constitutive secretion of tissue factor, inflammatory cytokines and other growth factors which also provide stimuli for the propagation of the malignant cells. This leads to an ever-continuing cycle of tumor growth.

Every human cell has the ability to repair itself, and cancer cells retain some of this capacity [314]. As cancer stem cells exhibit plasticity similar to normal stem cells, we propose that a cell-to-cell communication between cancer stem cells and surrounding host tissues allows tumor cells to develop varying degrees of differentiated phenotypes resembling cells of normal differentiated tissues. This in turn leads to the emergence of various tumor types and creates the illusion of a great multitudes of cancers.

It has been long known that cancer cells, besides growing inside tumors, also circulate in the blood [315-317]. This is easy to rationalize if cancer cells are indeed damaged autoreactive T cells, and also provides an explanation for metastasis formation. Cancer cells interact with neutrophils, macrophages and platelets that lead to the formation of micrometastases that can remain in the blood for a long time [318]. These aggregates persist even after adjuvant chemotherapy, although in reduced numbers. Larger cell clumps are more effective in promoting metastases than smaller ones [319]. With the progression of inflammation in cancer patients, the circulating micrometastases find new sites of proliferation that lead to the formation of metastases.

Current cancer therapies are tumor-centric, as tumors are equated with cancerous disease. Main therapeutic modalities include the surgical removal of tumors as well as radiation and chemotherapies. All of these contribute to the hypercoagulable state and risk of thromboembolism, which have a significant negative impact on the morbidity and mortality of cancer patients. If tumor cells did originate from T cells, any therapeutic approach targeting tumor cells will likely diminish T cell function. Cytotoxic antineoplastic therapy represents an extreme situation in this regard, resulting in the deletion of even resting T cells, the reconstitution of which takes several months [10]. This makes the combination of chemotherapy and immunotherapy an unrealistic proposition.

If cancer cells indeed originate from damaged autoreactive T cells, our current views on cancer immunotherapy need to be revised. The immune system was not made to attack itself, and this is supported by the unresponsiveness of the cellular immune system to cancer even if tumor cells are antigenic. When we attempt to induce an immune
response against tumors, we run the risk of developing autoimmune disease [320] and ultimately, secondary malignancies.

The suppression of the immune system by chemotherapeutic agents and radiation encourages the propagation of microbial and parasitic infections already present in cancer patients. However, pathogenic microorganisms are intimately involved as co-etiological agents in the development of various malignancies via molecular mimicry-induced autoimmunity, and maintain a cytokine milieu that favors proliferation as opposed to apoptosis. Current immunosuppressive cancer therapies establish the conditions for disease recurrence as well as the emergence of new primary tumors, which is in fact, a common experience. Also, the cancer patient’s system appears to retain a “memory” of the disease as the risk of developing another cancer is higher than those who have never had the disease. This memory could be attributed to autoimmune memory T cells, reactivated by recurrent infections which become cancerous later on as a consequence of defective apoptosis.

The eradication of pathogens could have a favorable effect on the course of malignant diseases, as demonstrated by therapies of HCV [150], *H. pylori* [154], and *Chlamydia psittaci* infections [156]. Mycoplasmas are difficult to eradicate and require high-dose, long-term antibiotic therapies, but even after that the pathogens are found to persist [321]. There are no therapies for many viral infections at this time. With our new understanding of the mechanism of TLR signaling, opportunities have opened for overcoming these types of pathogens. Very recently, a therapeutic oral mycoplasma vaccine was described [322], the principle of which could be utilized for the therapy of other intracellular infections.

If defective apoptosis of autoreactive T cells leads to the emergence of the cancer stem cell, our research must focus on the physiological events associated with apoptosis. Any therapeutic approach downstream from this step is merely symptomatic, and offers little hope of defeating cancer. A century of accumulated evidence on the use of immunosuppressive cancer therapies supports this observation.

It was demonstrated that the exterior mucopolysaccharide cell surface coat on cancer cells protects them from apoptosis [52,53]. Kovacs has explored this understanding to the greatest degree by synthesizing unsaturated aminolipids capable of displacing the cell coat on tumor cells [45]. Administration of these compounds led to the apoptotic death of a variety of tumor cells *in vitro* and *in vivo* [45]. Normal lymphocytes are less sensitive to the apoptotic effects of a fatty acid mixture than leukemic cells, although they do show some sensitivity [323]. This observation may explain why the continuing administration of synthetic unsaturated aminolipids led to a diminishing efficacy of the therapy [324], as normal lymphocytes are also surrounded by an exterior cell surface layer coat essential for their functions.

Endocrine hormonal signaling also affects apoptosis. Corticosteroids facilitate the apoptosis of lymphocytes and exert an immunosuppressive effect when the organism is subject to prolonged stress. Stress also down-regulates the digestive functions of the gut, including those of the stomach and pancreas. This in turn suppresses the uptake of critical nutrients that are essential for genomic stability [14]. It was reported that breast cancer patients as a group exhibit a depressed thyroid function [14], suggesting an etiological role for thyroid deficiency in neoplasia. Thyroid function is profoundly affected by the iodine supply, and thyroid, breast and gastric cancers have been linked to iodine deficiency [14]. Previously we have pointed out that critical nutrient deficiencies mimic the effects of chemical or radiation damage to DNA, and suggested that the correction of these deficiencies could reverse the progression of malignant proliferation [14].

In the past century, insufficient attention was paid to the role of dietary factors in the development and progression of malignant diseases. No Recommended Daily Allowances (RDAs) are available for a number of essential nutrients, and where available, the RDA is of questionable value. Iodine, a vital micronutrient, is an example: the current WHO recommendation for iodine is 0.15 mg/day. However, some Japanese consume as much as 50–80 mg of iodine/day through their seaweed rich diet [325] and exhibit significantly lower rates of the major cancer types than seen in the Western world [14]. In addition, iodine supplementation clinical trials have demonstrated that an iodine intake vastly exceeding the RDA (more than 6,000 times higher) was both safe and clinically useful [326,327]. This could not possibly be the case if the RDA for iodine had been correctly determined. Similar clinical observations were made for high-dose administration of folate and vitamin B₁₂ [328,329] as well as vitamin C [330]. These findings question the accuracy of dietary RDAs, and suggest that current regulatory initiatives aimed at restricting the active ingredient contents in vitamin supplements are based on an erroneous scientific rationale.

It is also important to recognize that vitamin and mineral levels have significantly declined over the past 60 years in our food supply [reviewed in [331]] possibly due to intensive agricultural production methods and industrial food processing. Experience teaches us that in the Western world, despite an abundance of food, people have diffi-
cultivates in meeting their nutritional needs, demonstrated by now-rampant obesity as well as the historically proven explosion of degenerative diseases including cardiovascular diseases, diabetes and cancer. This suggests that we are still far from understanding the dietary needs of the human organism.

It is known that diabetics develop malignancies at a higher frequency than the population average [332,333], which implicates pancreas dysfunction in the etiology of cancer. Besides secreting digestive enzymes, the pancreas is also a source of hormonal regulators. We hypothesize that a combined effect of adrenal, thyroid and pancreas dysfunction may predispose patients for neoplasia in a process promoted by dietary deficiencies as well as lifestyle factors including prolonged stress, poor hygiene, smoking, alcoholism and drug abuse, all of which are known to subvert immunity. It appears that we need to make the most important scientific discoveries in the simplest things, i.e., how to conduct our lives in a manner optimal for well-being. Therefore, the main operative principle of health care should be prevention.

To finally defeat cancer, our research need to focus on the identification of those endocrine-signaling mechanisms that enable CTLs to complete their mission of apoptotic elimination of autoreactive T cells. We must abandon our focus on the tumor cell as far as the development of cancer therapies are concerned, as the destruction of cancer itself negatively impacts the immune system, thereby reactivating the vicious circle of infection, autoimmunity and malignancy that ultimately dooms cancer patients. By redirecting our focus toward physiological events preceding the formation of the cancer stem cell, we will be able to overcome this scourge that has haunted humanity since time immemorial. A systemic approach described in a previous paper [14] offers an alternative to current cancer therapies that works with the immune system, and which helps to re-establish homeostatic balance in the human body.

References
1. Sell S: Cellular origin of cancer: de-differentiation or stem cell maturation arrest. Environ Health Perspect 1993, 101(Suppl 5):15-26.
2. Pitor HC, Goldsworthy T, Moran S: The natural history of carcinogenesis: implications of experimental carcinogenesis in the genesis of human cancer. J Supramol Struct Cellul Biochem 1981, 17:133-146.
3. Trosko JE, Chang CC, Madhukar BV, Dupont E: Oncogenes, tumor suppressor genes and intercellular communication in the 'oncology as partially blocked ontogeny' hypothesis. In New Frontiers in Cancer Causation Edited by: Iversen OH, Wash DC. Taylor and Francis Publishers; 1993:181-197.
4. Trosko JE, Chang CC, Medcalf A: Mechanisms of tumor: potential role of intercellular communication. Cancer Invest 1983, 1:511-526.
5. Wogan GN, Hecht SS, Felton JS, Conney AH, Loeb LA: Environmental and chemical carcinogenesis. Semin Cancer Biol 2004, 14:473-486.
6. Passegue E, Jamieson CH, Ailles LE, Weissman IL: Normal and leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of stem cell characteristics? Proc Natl Acad Sci USA 2003, 100(Suppl 1):11842-11849.
7. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB: Identification of a cancer stem cell in human brain tumors. Cancer Res 2003, 63:5821-5828.
8. Dick JE: Breast cancer stem cells revealed. Proc Natl Acad Sci USA 2003, 100:3547-3549.
9. Dean M, Fojo T, Bates S: Tumour stem cells and drug resistance. Nature Rev Cancer 2005, 5:275-284.
10. Mackall CL: T-cell immunodeficiency following cytotoxic antineoplastic therapy: A review. Stem Cells 2000, 18:10-18.
11. Boon T, Coule PG, Van den Eynde B: Tumor antigens recognized by T cells. Immunal Today 1997, 18:267-268.
12. Boon T, Old LJ: Cancer tumor antigens. Curr Op Inmunol 1997, 9:581-683.
13. Jones BM: A unifying hypothesis of cell adhesion. Nature 2003, 421:362-365.
14. Bona C, Anteunis A: Structure of the lymphocyte membrane. IV. Cell coat of lymphocytes obtained from various lymphoid organs in chicken and mice. Ann Immunol (Paris) 1973, 124:321-344.
15. Anteunis A, Vial M: Cytochemical and ultrastructural studies concerning the cell coat glycoprotein in normal and transformed human blood lymphocytes. I. Variations of sialic acid containing glycoproteins subsequent to transformation of T and B lymphocytes by various kinds of stimulating agents. Exp Cell Res 1974, 84:31-39.
16. Anteunis A, Vial M: Cytochemical and ultrastructural studies concerning the cell coat glycoproteins in normal and transformed human blood lymphocytes. II. Comparison of lanthanum-retaining cell coat components in T and B lymphocytes transformed by various kinds of stimulating agents. Exp Cell Res 1975, 90:47-55.
17. Bona C, Anteunis A: Structure of the lymphocyte membrane. II. Comparison of lanthanum-retaining cell coat components in T and B lymphocytes transformed by various kinds of stimulating agents. Exp Cell Res 1975, 90:47-55.
18. Santer V, Cone RE, Marchalonis JJ: The glycoprotein surface coat on different classes of murine lymphocytes. Exp Cell Res 1973, 79:404-416.
19. Bona C: Physiological significance of the lymphocyte cell coat. BioMedicine 1975, 22:97-104.
20. Berney SN, Gesner BM: The circulatory behaviour of normal and enzyme altered thymocytes in rats. Immunology 1970, 18:681-691.
21. Woodruff J, Gesner BM: The effect of neuraminidase on the fate of transfused lymphocytes. J Exp Med 1969, 129:551-567.
22. Woodruff J, Gesner BM: Lymphocytes: circulation altered by trypsin. Science 1968, 161:176-178.
23. Lightbody JI, Bach PH: Cell mediated lympholysis: effect of papain on effector and target cells. Ann Immunol (Inst Pasteur) 1973, 124:311-319.
24. Lindahl-Kiessling K, Peterson RD: The mechanism of phytohemagglutinin (PHA) action II. The effect of certain enzymes and sugars. Exp Cell Res 1969, 55:81-94.
25. Kemp RB: Effect of the removal of cell surface sialic acids on cell aggregation in vitro. Nature 1968, 218:1255-1256.
26. Douglas SD, Hoffamn PF, Borjeson J, Chessin LN: Studies on human peripheral blood lymphocytes in vitro. J. Fine structural features of lymphocytes transformation by pokeweed mitogen. J Immunol 1967, 98:17-30.
27. Bona C, Anteunis A, Robineaux R, Halpern B: Structure of the lymphocyte membrane. 3. Chemical nature of the guinea pig lymphocyte membrane. J Exp Med 1970, 131:344-362.
28. Lindahl-Kiessling K, Peterson RD: The mechanism of phytohemagglutinin (PHA) action II. The effect of certain enzymes and sugars. Exp Cell Res 1969, 55:81-94.
29. Kemp RB: Effect of the removal of cell surface sialic acids on cell aggregation in vitro. Nature 1968, 218:1255-1256.
30. Douglas SD, Hoffamn PF, Borjeson J, Chessin LN: Studies on human peripheral blood lymphocytes in vitro. J. Fine structural features of lymphocytes transformation by pokeweed mitogen. J Immunol 1967, 98:17-30.
31. Currie GA, van Doorninck W, Baghawde KD: Effect of neuraminidase on the immunogenicity of early mouse trophoblast. Nature 1968, 219:191-192.
32. Ray PK, Gewurz H, Simmons RL: The serologic behaviour of neuraminidase treated lymphoid cell. Allointagenicity and complement sensitivity. J Immunol 1972, 11:441-460.
33. Schlesinger M, Amos DB: The effect of neuraminidase on the serological properties of murine lymphoma cells. Transpl Proc 1971, 3:895-897.
34. Simmons RL, Rios A, Ray PK: Immunogenicity and antigenicity of lymphoid cells treated with neuraminidase. Nature New Biol 1971, 231:179-181.
35. Kaplan JG, Bona C: Prostates as mitogens: the effect of trypsin and pronase on mouse and human lymphocytes. Exp Cell Res 1974, 88:388-394.
36. Flye MW, Grothaus EA, Amos DB: Reactivity of human lymphoma cells following neuraminidase treatment. Surg Forum 1971, 22:97-99.
37. Gasic G, Berwick L: Hale stain for sialic acid containing mucins. Adaptation to electron microscopy. J Cell Biol 1963, 19:223-228.
38. Parsons A: Electronmicroscope observation on carbohydrate-rich cell coat present at the surface of cells in the rat. J Cell Biol 1967, 32:27-53.
39. Lichtman MA, Weed RL: Electrophoretic mobility and N-acetyl neuraminic acid content of human normal and leukemic lymphocytes and granulocytes. J Cell Biol 1970, 46:1023-107.
40. Abercrombie M, Ambrose EJ: The surface properties of cancer cells: a review. Cancer Res 1962, 22:525-548.
41. Calman F: Ultrastructural comparison of the cell coat in normal and chronic lymphocytic leukemic blood lymphocytes. J Cell Biol 1968, 39:1-72.
42. Mallucci L, Poste GH, Wells V: Expression of cell in normal and transformed cells. Nat New Biol 1972, 235:222-223.
43. Gasic G, Loebe F: Cytochemical identification of protein amino acids in the cell coat of mouse ascites tumor cells. Lab Invest 1966;130:1139.
44. Rittenhouse HG, Rittenhouse JW, Takemoto L: Characterization of the cell coat of Ehrlich ascites tumor cells. Biochemistry 1978, 17:2540-2546.
45. Kovacs A: Process for the preparations of anti-tumor therapeutics. Hungarian Patent No. 200093 B 1983.
46. Gasic G, Gasic T: Removal of sialic acid from the cell coat of tumor cells and vascular endothelium, and its effect on anticoagulant activity. Blood 1962, 34:1227-1232.
47. Bagshawe KD, Currie GA: Immunogenicity of L 1210 murine leukemia cells after treatment with neuraminidase. Nature 1968, 218:1254-1255.
48. Sanford BH: An alteration in tumor histocompatibility induced by neuraminidase. Transplantation 1967, 5:1273-1279.
49. Gasic G, Gasic T: Removal of PAS positive surface sugars in tumor cells by glycosidases. Proc Soc Exp Biol Med 1963, 114:660-663.
50. Gasic G, Gasic T: Removal and regeneration of the cell coating of tumour cells. Nature 1962, 196:170.
51. Anghileri LJ, Dermietzel R: Cell coat in tumor cells-Effects of trypsin and EDTA: A biochemical and morphological study. Oncology 1978, 33:17-23.
52. Gately MK, Glaser M, McCarron DM, Dick SJ, Dick MD, Metzela RW, Kornblith PL: Mechanisms by which human gliomas can escape cellular immune attack. Acta Neurochir 1982, 64:175-197.
53. Dick SJ, Macchi B, Papazoglou S, Oldfield EH, Kornblith PL, Smith BH, Gately MK: Lymphoid cell-gloma cell interaction enhances cell coat production by human gliomas: novel suppressor mechanisms. Science 1983, 220:739-742.
54. McBride WH, Bard JB: Hyaluronidase sensitive hais located around adherent cells. Their role in blocking lymphocyte-mediated cytosis. J Exp Med 1979, 149:507-515.
55. Thörning EB, Larsen B, Nielsen H: Histological effect of DEAE-dextran on tumour growth. 3. Effect of charge density and molecular size. Acta Path Microbiol Scand A 1971, 79:81-90.
56. Marquez M, Nilsson S, Lennartsson L, Liu Z, Tammela T, Raitanen M, Holmberg AR: Charge-dependent targeting: Results in six tumor cell lines. Anticancer Res 2004, 24:1347-1352.
57. Opal SM: Interactions between coagulation and inflammation. Scand J Infect Dis 2003, 35:545-554.
58. Semeraro N, Lattanzio A, Montemurro P, Papanic M, De Lucia O, De Bellis G, Giordano D: Mechanisms of blood clotting activa-

Fibrinolysis and Cancer

The role of plasminogen activators in cancer progression is well established. Tissue plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA) are two key enzymes involved in the degradation of fibrin and other extracellular matrix proteins. Enhanced fibrinolysis has been implicated in promoting tumor growth, metastasis, and angiogenesis. The balance between fibrinolytic and antifibrinolytic factors plays a crucial role in the progression of cancer. Understanding the regulation of fibrinolysis and its implications in cancer provides insights into potential therapeutic targets.

Key References

- **Tissue factor as a tumor procoagulant.** Blood Coagul Fibrinolysis 2002, 13:117-125.
- **Activation of blood coagulation in cancer.** Thromb Haemost 2001, 85:14-24.
- **Fibrinolytic system in cancer.** Front Horm Res 2000, 28:129-141.

Conclusion

Fibrinolysis plays a multifaceted role in cancer biology. Enhanced fibrinolysis is associated with poor clinical outcomes and metastatic potential. Identifying the mechanisms that modulate fibrinolysis in cancer could lead to the development of novel therapeutic strategies to overcome cancer progression.
83. Falanga A, Marchetti M, Giovannelli S, Barbi T: All-trans-retinoic acid counteracts endothelial cell procoagulant activity induced by human promyelocytic leukaemia-derived cell line (NB4). Blood 1996, 87:163-167.

84. Gianni M, Norio P, Terao M, Falanga A, Marchetti M, Rambaldi A, Garratini E: The effect of dexamethasone on proinflammatory cytokine expression, cell growth and maturation during granulocytic differentiation of acute promyelocytic leukaemic cells. Eur Cytokine Netw 1995, 6:157-167.

85. Honn KV, Tang DG, Chen YQ: Platelets and cancer metastasis: more than an epiphenomenon. Semin Thromb Haemost 1992, 18:392-415.

86. Marchetti M, Falanga A, Giovannelli S, Oldani E, Barbi T: All-trans-retinoic acid increases the adhesion to endothelium of the acute promyelocytic leukaemia cell line NB4. Br J Haematol 1996, 93:360-366.

87. Rickles FR, Edwards RL: Leukocytes and tumour cells in thrombosis. In Haemostasis and Thrombosis: Basic Principles and Clinical Practice Edited by: Colman RW, Hirsh J, Marder VJ, Saltman EW. Lippincott, Philadelphia, PA, USA; 1994:1164-1179.

88. O'Meara RAQ: Mic cells. Fibrinolysin/fibrinogen/fibrin on the surface of macrophages: detection, distribution binding requirements, and possible role in the macrophage adherence phenomena. J Exp Med 1975, 142:1377-1390.

89. Dvorak HF, Towner: wounds that do not heal. N Engl J Med 1986, 315:1650-1659.

90. Colvin RB, Dvorak HF: Fibrinogen/fibrin on the surface of macrophages: detection, distribution binding requirements, and possible role in the macrophage adherence phenomena. J Exp Med 1986, 163:1459-1472.

91. Gunji Y, Gorelik E: Role of fibrin coagulation in protection of murine tumor cells from destruction by cytotoxic cells. Cancer Res 1988, 48:5216-5221.

92. Gorelik E: Augmentation of the antimetastatic effect of anti-coagulant drugs by immunostimulation in mice. Cancer Res 1987, 47:809-815.

93. Dvorak HF, Dvorak AM, Manseau EJ, Wiberg L, Churchill WH: Fibrin gel investment associated with line 1 and line 10 solid tumor growth, angiogenesis, and fibrinplasia in guinea pigs. Role of cellular immunity, myofibroblasts, microvascular damage, and infection in line 1 tumor regression. J Natl Cancer Inst 1979, 62:1459-1472.

94. Ditman WA, Majerus PW: Mechanisms of platelet aggregation with possible pharmaco- logical significance. Cancer Res 1979, 39:402-411.

95. Dittman WA, Majerus PW: Cooperation between mononuclear phagocytes and platelet aggregation: a possible mechanism contributing to blood clotting activation within malignant tissue. Blood 1983, 62:271-273.

96. Gunji Y, Gorelik E: Possible role in the macrophage adherence phenomena. J Exp Med 1975, 142:1377-1390.

97. Moore KL, Esmon CT, Esmon NL: Tumor necrosis factor leads to the internalization and degradation of thrombomodulin from the surface of bovine aortic endothelial cells in culture. Blood 1989, 73:159-165.

98. Qi J, Kreuzer DL: Fibrin activation of vascular endothelial cells: induction of IL – 8 expression. J Immunol 1995, 155:867-876.

99. Contrino J, Hair G, Kreuzer DL, Rickles FR: In situ detection of tissue factor in vascular endothelial cells: correlation with the malignant phenotype of breast disease. Nat Med 1996, 2:209-215.

100. Koomag R, Volm M: Tissue factor expression in human non-small-cell lung carcinoma measured by immunohistochemistry: correlation between tissue factor and angiogenesis. Int J Cancer 1997, 70:122-127.

101. Abdulkadir SA, Carvalhal GF, Kaleem Z, Kiel W, Humphrey PA, Catalona WJ, Milbrandt J: Tissue Factor expression and angiogenesis in human prostate carcinoma. Hum Pathol 2000, 31:43-447.

102. Honn KV, Tang DG, Chen YQ: Platelets and cancer metastasis: more than an epiphenomenon. Semin Thromb Haemost 1992, 18:392-415.

103. Schwartz GK: Invasion and metastases in gastric cancer: in vitro and in vivo models with clinical correlations. Semin Oncol 1996, 23:316-324.

104. Orr FW, Wang HH: Tumor cell interactions with the microvasculature: a rate-limiting step in metastasis. Surg Oncol Clin N Am 2001, 10:357-381.

105. Haru Y, Steiner M, Baldini MG: Characterization of the platelet-aggregating activity of tumour cells. Cancer Res 1980, 40:1217-1222.

106. Nathan CF: Mechanism of macrophage antimicrobial activity. Trans R Soc Trop Med Hyg 1983, 77:620-630.

107. Unanue ER: Cooperation between mononuclear phagocytes and lymphocytes in immunity. New Engl J Med 1980, 303:977-985.

108. van Furth R: Mononuclear phagocytes. Characteristics, Physiology, and Function. Martinus Nijhoff Publishers; 1985.

109. Semararo N, Colucci M: Tissue factor in health and disease. Thromb Haemost 1997, 78:759-764.

110. Lorentzen R, Pers C, Locati D, Alleva P, Colucci M, Serenaro M, Mantovani A, Donati MB: Generation of procoagulant activity by mononuclear phagocytes: a possible mechanism contributing to blood clotting activation within malignant tissue. Blood 1983, 62:271-273.

111. Falanga A, Rickles FR: Pathophysiology of the thrombophilic state in the cancer patient. Semin Thromb Haemost 1999, 25:173-182.

112. Gastpar H: Platelet-cancer cell interaction in metastasis formation: a possible therapeutic approach to metastasis. Semin Thromb Haemost 1985, 11:1217-1222.

113. Karpas S, Pearlstein E: Heterogeneous mechanisms of tumor cell-induced platelet aggregation with possible pharmacological strategy toward prevention of metastases. In Hemostatic Mechanisms and Metastases Edited by: Honn KV, Sloane BF. Martinus Nijhoff, Boston; 1984:139-169.

114. Gasic GJ, Gasic TB, Stewart CJ: Mechanisms of platelet aggregation by murine tumor cell shedding. In Hemostatic Mechanisms and Metastases Edited by: Honn KV, Sloane BF, Martinus Nijhoff, Boston; 1984:127-138.

115. Falanga A, Rickles FR: Pathophysiologic effects of plasminogen activator as a marker of stimulation in tumor-associated macrophages. Haemostasis 1988, 18:66-71.

116. Gastpar H: Platelet-cancer cell interaction in metastasis formation: a possible therapeutic approach to metastasis. Semin Thromb Haemost 1985, 11:1217-1222.
Effect of inhibitors of fibrinolytic enzymes on development of pulmonary metastases. J Natl Cancer Inst 1968, 52:753-762.

Lee AY, Levine MN: The thrombophilic state induced by therapeutic agents in cancer patients. Semin Thromb Hemost 1999, 25:337-344.

Kakkar VV, Howe CT, Nicolaides AN, Renney JT, Clarke MB: Deep vein thrombosis of the leg. Is there a "high risk" group? Am J Surg 1970, 120:527-530.

Clagett GP, Anderson FA, Geerts W, Heit JA, Knudson M, Lieberman JR, Merli GJ, Wheeler HB: Prevention of venous thromboembolism. Chest 1998, 114(Suppl):331S-360S.

Pritchard KI, Paterson AH, Paul NA, Zee B, Fine S, Pater J: Increased thromboembolic complications with concurrent tamoxifen and chemotherapy in a randomized trial of adjuvant chemotherapy for breast cancer. J Natl Cancer Inst 1991, 83:926-929.

Goodnough LT, Saito H, Manni A, Jones PK, Pearson OH: Increased risk of deep vein thrombosis following chemotherapy. J Clin Oncol 1989, 7:501-504.

Falanga A: Mechanisms of hypercoagulation in malignancy and during chemotherapy. Haemostasis 1998, 28(Suppl S1):30-60.

Levine M, Hirsh J, Gent M, Arnold A, Warr D, Falanga A, Samosh M, Bramwell V, Pritchard KI, Stewart D, et al.: Double-blind randomized trial of very-low-dose warfarin for prevention of thromboembolism in stage IV breast cancer. Lancet 1994, 343:886-889.

Barbui T, Finazzi G, Grassi A, Marchioli R: Thrombosis in cancer patients treated with hematopoietic growth factors – a meta-analysis. On behalf of the Subcommittee on Hemostasis and Malignancy of the Scientific and Standardization Committee of the ISTH. Thromb Haemost 1996, 75:368-371.

Falanga A, Marchetti M, Evangelista V, Manarini S, Oldani E, Giovannelli M, Galbusera M, Cerletti C, Barbui T: Neutrophil activation and hematopoietic changes in healthy donors given granulocyte-colony stimulating factor. Blood 1999, 93:2054-2061.

Sorensen HT, Møllemkjaer L, Olsen JH, Nielsen GL: The risk of a diagnosis of cancer after primary deep venous thrombosis or pulmonary embolism. J Natl Cancer Inst 1998, 90:62-66.

Rhem DC, Gaultier CR, Daar ES, Zakowski PC: Said J: Infections in patients with chronic adult T-cell leukemia/lymphoma: case report and review. Clin Infect Dis 1995, 21:1014-1016.

Krepler F: Infections in children with malignant disease. Wien Klin Wochenschr 1999, 111:970-715.

Smidhauser C, Dudler R, Schmidt T, Parish RW: Mycoplasmas and ureaplasmas in reproductive failure. Contemp Obstet Gynecol 1983, 28:271-286.

Rakovskaia IV, Gorina LG: Co-leukemogenic activity of protein preparations, isolated from cells of Mycoplasma arthritidis. Vestn Akad Med Nauk SSSR 1985, 531S-560S.
177. Mihai G, Netea J, van der Meer WM, Kullberg BJ: Toll-like receptors as an escape mechanism from the host defense. Trends Immunol 2004; 25:482-488.

178. Kogo E, Medzhitov R: Recognition of microbial infection by Toll-like receptors. Curr Opin Immunol 2003, 15:396-401.

179. Akira S, Hemmi H: Recognition of pathogen-associated molecular patterns by TLR family. Immunity 2003, 5:85-95.

180. Takahashi S, et al: Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 2001; 13:933-940.

181. Choy EH, Panayi GS: Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 2008; 344:907-916.

182. Lucas K, Hoefeld R: Differential aspects of cytokines in the immunopathology of multiple sclerosis. Neurology 1995, 45:54-55.

183. Arnett HA, Mason J, Marino M, Suzuki K, Matsushima GK, Ting JP: TNA校区 promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci 2001, 4:1116-1122.

184. Linker-Israeli M: Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 2001; 13:933-940.

185. Choy EH, Panayi GS: Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 2008; 344:907-916.

186. Lattime EC, Mastrangelo MJ, Bagasra O, Li W, Berd D: Selective expression of IL-10 mRNA in human melanoma. Clin Cancer Res 2003; 9:267-276.

187. Krugcr-Krasagakes S, Krasagakis K, Garbe C, Schmitt E, Huls C, Kiessling R: Recognition of microbial infection by Toll-like receptors. Curr Opin Immunol 2003, 15:396-401.

188. Lattime EC, Creeve PA, Keely FX, Li W, Gomella LG: Expression of IL-10 mRNA in biopsies of superficial and invasive TCC of the bladder. Am J Surg Pathol 2003, 27:133-139.

189. Lattime EC, Creeve PA, Keely FX, Li W, Gomella LG: Expression of IL-10 mRNA in biopsies of superficial and invasive TCC of the bladder. Am J Surg Pathol 2003, 27:133-139.

190. Lattime EC, Creeve PA, Keely FX, Li W, Gomella LG: Expression of IL-10 mRNA in biopsies of superficial and invasive TCC of the bladder. Am J Surg Pathol 2003, 27:133-139.

191. Lattime EC, Creeve PA, Keely FX, Li W, Gomella LG: Expression of IL-10 mRNA in biopsies of superficial and invasive TCC of the bladder. Am J Surg Pathol 2003, 27:133-139.

192. Lattime EC, Creeve PA, Keely FX, Li W, Gomella LG: Expression of IL-10 mRNA in biopsies of superficial and invasive TCC of the bladder. Am J Surg Pathol 2003, 27:133-139.

193. Lattime EC, Creeve PA, Keely FX, Li W, Gomella LG: Expression of IL-10 mRNA in biopsies of superficial and invasive TCC of the bladder. Am J Surg Pathol 2003, 27:133-139.

194. Lattime EC, Creeve PA, Keely FX, Li W, Gomella LG: Expression of IL-10 mRNA in biopsies of superficial and invasive TCC of the bladder. Am J Surg Pathol 2003, 27:133-139.

195. Lattime EC, Creeve PA, Keely FX, Li W, Gomella LG: Expression of IL-10 mRNA in biopsies of superficial and invasive TCC of the bladder. Am J Surg Pathol 2003, 27:133-139.

196. Lattime EC, Creeve PA, Keely FX, Li W, Gomella LG: Expression of IL-10 mRNA in biopsies of superficial and invasive TCC of the bladder. Am J Surg Pathol 2003, 27:133-139.

197. Lattime EC, Creeve PA, Keely FX, Li W, Gomella LG: Expression of IL-10 mRNA in biopsies of superficial and invasive TCC of the bladder. Am J Surg Pathol 2003, 27:133-139.

198. Lattime EC, Creeve PA, Keely FX, Li W, Gomella LG: Expression of IL-10 mRNA in biopsies of superficial and invasive TCC of the bladder. Am J Surg Pathol 2003, 27:133-139.

199. Lattime EC, Creeve PA, Keely FX, Li W, Gomella LG: Expression of IL-10 mRNA in biopsies of superficial and invasive TCC of the bladder. Am J Surg Pathol 2003, 27:133-139.
fracti
on of T cell clones escapes clonal deletion. *Immunity* 2000, 13:829-840.

250. Carswell JA, Cerottini JC, Matthes M, Neckel A, Gournier H, Barra C, Widmann C, MacDonald HR, Lemmonier F, Malissen B, Mayanski JL: H-2-restricted cytolytic T lymphocytes specific for HL
A display T cell receptors of limited diversity. *J Exp Med* 1992, 176:439-447.

251. Kurts C, Sutherland RM, Davey G, Li M, Lew AM, Blanaz S, Carbone FR, Miller JF, Heath WR: CTD T cell ignorance or tolerance to islet antigens depends on antigen dose. *Proc Natl Acad Sci USA* 1999, 96:12703-12707.

252. Thomis DC, Berq LJ: The role of Jak3 in lymphoid development, activation, and signaling, in autoimmune gastritis. *J Exp Med* 1997, 183:541-547.

253. Sadack B, Kuhn R, Schorle F, Rajewsky K, Muller W, Horak D: Development and proliferation of lymphocytes in mice deficient for both interleukins.-2 and -4. *Eur J Immunol* 1994, 24:281-284.

254. Mier JW, Gallo RC: Purification and some characteristics of human T-cell growth factor from phytotoxagglutinin stimu-
lated lymphocyte conditioned media. *Proc Natl Acad Sci USA* 1990, 87:6134-6138.

255. Griffin JD, Lowenberg B: Clonogenic cells in acute myeloblastic leukaemia. *Blood* 1986, 68:1185-1195.

256. Tsuzuki J, Sachs L: Hematopoietic cytokines inhibit apoptosis induced by transforming growth factor beta 1 and cancer chemotherapy compounds in myeloid leukemic cells. *Blood* 1992, 80:1750-1757.

257. Sachs L, Lotan R: Control of programmed cell death in normal and leukemic cells: new implications for therapy. *Blood* 1993, 82:15-21.

258. Zubiaga AM, Munoz E, Huber BT. IL-4 and IL-2 selectively rescue Th cell subsets from glucocorticoid-induced apoptosis. *J Exp Med* 1992, 174:107-112.

259. Hardin J, MacLeod S, Gregoire A, Chang R, Barlogie B, Xiao H, Epstein J: Interleukin-6 prevents dexamethasone-induced myeloma cell death. *Blood* 1994, 84:3063-3070.

260. Collins MK, Marvil J, Malde P, Lopez-Rivas A: Interleukin 3 protects murine bone marrow cells from apoptosis induced by DNA damaging agents. *J Exp Med* 1992, 176:1043-1051.

261. Strasser A, Bouillet P: The control of apoptosis in lymphocyte selection. *Immune Rev* 2003, 193:82-92.

262. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan L, Kagnoff MF, Kan M: IKK-beta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. *Cell* 2004, 118(3):285-296.

263. Pikarsky E, Porat RM, Stein I, Abramovic R, Amit S, Kasem S, Guk-
ovich-Pyest E, Urieli-Shoval S, Galun E, Ben-Neriah Y: NF-kappaB functions as a tumour promoter in inflammation-associated cancer. *Nature* 2004, 431(7007):461-466.

264. Strasser A, Whittingham S, Vaux DL, Bath ML, Adams JM, Cory S, Harris AW: Enforced BCL2 expression in B-lymphoid cells prolongs antibody responses and elicits autoimmune disease. *Proc Natl Acad Sci USA* 1991, 88:8641-8645.

265. Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Vaux DL, Adams JM, Cory S, Griffin JD, Lowenberg B: Clonogenic cells in acute myeloblastic leukemia. *Blood* 1986, 68:1185-1195.

266. Oldstone MB, Nerenberg M, Southern P, Price J, Lewicki H: Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. *Cell* 1991, 65:305-317.

267. Fujimori RS, Oldstone MB: Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. *Science* 1985, 230:1043-1045.

268. Singh VK, Nagaraju K: Experimental autoimmune uveitis: molecular mimicry and oral tolerance. *Immuno Res* 1996, 13:123-146.

269. Garza KM, Tung KS: Frequency of molecular mimicry among T cell peptides as the basis for autoimmune disease and autoantibody induction. *J Immunol* 1995, 155:5444-5448.

270. Ohishi PS, Ooshi S, Buerki K, Pircher H, Ohashi CT, Odermatt B, Malissen B, Zinkernagel RM, Hengartner H: Ablation of ‘tolerance’ and induction of diabetes by virus infection in viral antigen transgenic mice. *Cell* 1991, 65:305-317.

271. Albert LJ, Inman RD: Molecular mimicry and autoimmunity. *N Engl J Med* 1999, 341:2068-2074.

272. Manula MJ, Lin RH, Janeway CA Jr, Hardin JA: Breaking T cell tol-
erance with foreign and self co-immunogens. A study of autoimmune B and T cell epitopes of cytochrome c. *J Immunol* 1992, 149:789-795.

273. Lin RH, Manula MJ, Hardin JA, Janeway CA Jr: Induction of auto-
reactive B cells allows priming of autoreactive T cells. *J Exp Med* 1991, 173:1431-1439.

274. Manula MJ, Jennerson R, Hardin JA: The specificity of human anti-
cytochrome c autoantibodies that arise in autoimmune disease. *J Immunol* 1990, 144:1835-1840.

275. Pircher H, Rohrer UH, Moskophidis D, Zinkernagel RM, Hengartner H. Lower receptor avidity required for thymic clonal de-
tion than for effector T-cell function. *Nature* 1991, 351:482-485.

276. Sandberg JK, Franckson L, Sundback J, Michaelsson J, Peterson M, Achorou A, Wallin RP, Sherman NE, Bergman T, Jornvall H, Hunt DF, Kiessling R, Karre K: T cell tolerance based on avidity thresh-
olds rather than complete deletion allows maintenance of maximal repertoire diversity. *J Immunol* 2000, 165:25-33.

277. Bouneaud C, Kourilsky P, Bossu P: Impact of negative selection on the T cell repertoire reactive to a self-peptide: a large
272. O’Connell J, Bennett MW, O’Sullivan GC, O’Callaghan J, Collins JK, Shanahan F: Expression of Fas (CD95/APO-1) ligand by human breast cancers: significance for tumor immune privilege. Clin Diagn Lab Immunol 1999, 6:457-463.

273. Bodey B, Bodey B Jr, Siegel SE, Kaiser HE: Immunocytochemical detection of leukocyte-associated and apoptosis-related antigen expression in childhood brain tumors. Crit Rev Oncol Hematol 2001, 39:13-16.

274. Saas P, Walker PR, Hahne M, Quiquerez AL, Schnuriger V, Perrin G, French L, Van Meir EG, de Tribolet N, Tschopp J.J, Dietrich PY: Fas ligand expression by astrocytoma in vivo: maintaining immune privilege in the brain. J Clin Invest 1997, 99:1173-1178.

275. Mitsiades N, Poulaki V, Kotoula V, Leone A, Tsokos M: Fas ligand is present in tumors of the Ewing’s sarcoma family and is cleaved into a soluble form by a metalloproteinase. Am J Pathol 1998, 153:1947-1956.

276. Koyama S, Kolke N, Adachi S: Fas receptor counterattack at the cost of tumor immunity in vivo as a mechanism of immune escape in gastric carcinoma. J Cancer Res Clin Oncol 2001, 127:20-26.

277. Que FG, Phan VA, Phan VH, Celli A, Batts K, LaRusso NF, Gores GJ: Cholangiocarcinomas express Fas ligand and disable the Fas receptor. Hepatology 2001, 33:1038-1046.

278. Tinhofer I, Marschitz I, Kos M, Hahne M, Quicke AL, Schnuriger V, Perrin G, French L, Van Meir EG, de Tribolet N, Tschopp J.J, Dietrich PY: Fas ligand expression in primary colon adenocarcinomas: evidence that the Fas counterattack is a prevalent mechanism of immune evasion in human colon cancer. J Pathol 1998, 186:240-246.

279. Shiraki K, Taubi N, Shurda T, Isselbacher KJ, Takahashi H: Expression of Fas ligand in liver metastases of human colon adenocarcinomas. Proc Natl Acad Sci USA 1999, 94:6420-6425.

280. O’Connell J, O’Sullivan GC, Collins JK, Shanahan F: The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J Exp Med 1996, 184:1075-1082.

281. Young MR, Wright MA, Wright MR, Lozano Y, Mathews JP, Benefield J, Falk KL: Horizontal transfer of DNA by the uptake of apoptotic bodies. Blood 1999, 93(11):3956-3963.

282. Speet AL, Patterson BK, Loke K, Andersson J, Holmgren L: Functional gene transfer of HIV DNA by an HIV receptor-independent mechanism. J Immunol 1999, 163(2):726-742.

283. Sloots A, Wels WS: Recombinant derivatives of the human high-mobility group protein HMG2B mediate efficient non-viral gene delivery. FEBS J 2005, 272(14):4221-4236.

284. Hoogen H, Stojacic V, Nomura S, Rogers AB, Carlson J, Li H, Cai X, Fouch G, Goldenring JR, Wang GC: Gastric cancer originating from bone marrow-derived cells. Science 2004, 306(5701):1568-1571.

285. Contardi E, Palmisano GL, Tzarrzi PL, Marrelli AM, Fala F, Fabbi M, Kato T, Lucarelli E, Donati D, Polito L, Bolognesi A, Ricci F, Salvi G, Galliglione V, Mantei S, Amini F, Ferrara GB, Pistillo MP: CTLA-4 is constitutively expressed on tumor cells and can trigger apoptosis upon ligand interaction. J Immunol 2005, 174(4):338-530.

286. Carrel S, De Tribolet N, Gross N: Expression of HLA-DR and common acute lymphoblastic leukemia antigen on gliomas. Eur J Immunol 1982, 12(4):354-357.

287. Carrel S, Schmidt-Kessen A, Macc JP, Heumann D, Girardet C: Expression of common acute lymphoblastic leukemia antigen (CALLA) on human malignant melanoma cell lines. J Immunol 1983, 130(5):2456-2460.

288. Paydas S, Tanriverdi K, Yavuz S, Disel U, Baslamisli F, Burgut R: PRAME mRNA levels in cases with acute leukemia: clinical importance and future prospects. Am J Hematol 2005, 79(4):257-261.

289. Dahlke MH, Larsen SR, Rasko JE, Schlitt HJ: The biology of CD45 and its use as a therapeutic target. Leuk Lymphoma 2004, 45(2):229-236.

290. Warrick RA, Rouse RV: Limitations encountered in the application of tissue section immunodetection to the study of lymphomas and related disorders. Hum Pathol 1985, 16:326-331.

291. McDonnell JM, Beschorner WE, Kuhajda FP, Dement SH: Common leukocyte antigen staining sarcoma. Cancer 1987, 59:138-141.

292. Nandigam MA, Palazzo J, Abbondanzo SL, Lasota J, Miettinen M: CD45 (leukocyte common antigen) immunoreactivity in metastatic undifferentiated and neuroendocrine carcinoma: a potential diagnostic pitfall. Mod Pathol 1998, 11(12):1204-1210.

293. Wolff HR, Pert CB: Small cell carcinoma of the lung: macrophase-specific antigens suggest hemopoietic stem cell origin. Science 1984, 225:1034-1036.

294. Ball ED, Sorensen GD, Pettengill OS: Expression of myeloid and major histocompatibility antigens on small cell carcinoma of the lung cells analyzed by cytofluorography: modulation by γ-interferon. Cancer Res 1986, 46:2335-2339.

295. Lipinski M, Braham K, Caillaud J-M, Tursz T: Expression of Fas (CD95/APO-1) in neuroectodermal tumors. Cancer Res 1993, 53:6215-6218.

296. Ketcham CM, Anai S, Reutzel R, Sheng S, Schuster SM, Brenes RB, Agbandje-McKenna M, McKenna R, Rosser CJ, Bohlein SK, et al: Fas/CD95 Ig superfamily member induces tumor invasiveness. Mol Cancer Ther 2005, 4(7):1031-1038.

297. Lawrence JG: Horizontal and vertical gene transfer: the life history of pathogens. Contrib Microbiol 2005, 12:255-271.

298. Melamed E, Donachy D, Shing J: Fas ligand expression is a marker of lymphoma cell differentiation. Leuk Lymphoma 1995, 2:1361-1366.

299. Chappell DB, Restifo NP: T cell-tumor cell: a fatal interaction? J Immunol 1998, 160:47-51.

300. Tyler KL, Fields BN: Pathogenesis of viral infections. In Fields Virology Edited by: Fields BN, Knipe DM, Howley PM. Philadelphia, Lippincott-Raven Publishers; 1996:173-203.

301. Contardi E, Palmisano GL, Tzarrzi PL, Marrelli AM, Fala F, Fabbi M, Kato T, Lucarelli E, Donati D, Polito L, Bolognesi A, Ricci F, Salvi G, Galliglione V, Mantei S, Amini F, Ferrara GB, Pistillo MP: CTLA-4 is constitutively expressed on tumor cells and can trigger apoptosis upon ligand interaction. J Immunol 2005, 174(4):338-530.
313. Stoler DL, Chen N, Basik M, Kahlenberg MS, Rodriguez-Bigas MA, Petrelli NJ, Anderson GR: The onset and extent of genomic instability in sporadic colorectal tumor progression. Proc Natl Acad Sci USA 1999, 96:15121-15126.

314. Degos L: All-trans-retinoic acid treatment and retinoic acid receptor alpha gene rearrangement in acute promyelocytic leukemia: a model for differentiation therapy. Int J Cell Cloning 1992, 10:63-69.

315. Griffiths JD, McKinnon JA, Rowbotham HD, Tsalakidis P, Salsbury AJ: Carcinoma of the colon and rectum: circulating malignant cells and five-year survival. Cancer 1973, 31:226-236.

316. Koo J, Fung K, Siu KF, Lee NW, Lest Z, Ho J, Wong J, Ong GB: Recovery of malignant tumor cells from the right atrium during hepatic resection for hepatocellular carcinoma. Cancer 1983, 52:1952-1956.

317. Sako K, Marchetta FC: Radioautography of in vitro labeled tumor cells in postoperative wound drainage. Cancer 1966, 19:735-737.

318. Molnar B, Ladanyi A, Tanko L, Sreter L, Tulassay Zs: Molecular Cancer Patients. Clin Cancer Res 2001, 7:4080-4085.

319. Loitla LA, Kleinerman J, Saito M, Kato H, Tsuchida T, Konaka C: Endemic goitre in elementary schools children. J Clin Endocrinol Metab 1994, 79:20-24.

320. Stathmali S: Immunomodulation of pathogen-host interactions. In PhD Thesis Szent Istvan University, Faculty of Veterinary Medicine, Budapest Hungary; 2005.

321. Ottoun R, Curry R: Toxicity of a mixture of fatty acids on human blood lymphocytes and leukemia cell lines. Toxicol In Vitro 2005, 19:749-753.

322. Kovacs A: Personal communication.

323. Hetzel BS, Clugston GA: Iodine. In Nutrition in Health and Disease Volume 9. Edited by: Shils M, Olson JA, Shike M, Ross AC. Baltimore. Williams & Wilkins; 1999:253-264.

324. Bennmiloud M, Chaouki ML, Gutekunst R, Teichert HM, Wood WG, Dunn JT: Oral iodized oil for correcting iodine deficiency: optimal dosing and outcome indicator selection. J Clin Endocrinol Metab 1994, 79:20-24.

325. Abuye C, Hailemariam B, Tibe HN, Urga K, Gebre H: The effect of varying doses of oral iodized oil in the prophylaxis of endemic goitre in elementary schools children. Ethiop Med J 1995, 33:115-123.

326. Heimbucher DC, Alexander CB, Birch R, Butterworth CE Jr, Bailey WC, Krumdieck CL: Improvement in bronchial squamous cell metaplasia in smokers treated with folic acid and vitamin B-12. Report of a preliminary randomized, double-blind intervention trial. JAMA 1988, 259:1525-1530.

327. Saito M, Kato H, Tsushita T, Konaka C: Chemoprevention effects on bronchial squamous metaplasia by folate and vitamin B-12. Chest 1994, 106:496-499.

328. Gonzalez MJ, Miranda-Massari JR, Mora EM, Guzman A, Riordan NH, Riordan HD, Cascieri JJ, Jackson JA, Roman-Franco A: Ascorbic acid and cancer 25 years later. Integrative Cancer Ther 2005, 4:35-44.

329. Worthington V: Analyzing data to compare nutrients in conventional versus organic crops. J Altern Complement Med 2002, 8:529-532.

330. Strickler HD, Wylie-Rosett J, Rohan T, Hoover DR, Smoller S, Burk RD, Yu H: The relation of type 2 diabetes and cancer. Diabetes Technol Ther 2001, 3:263-274.

331. Frank BH, Manson JE, Liu S, Hunter D, Colditz GA, Michaels KB, Speizer FE, Giovannucci E: Prospective study of adult onset diabetes mellitus (Type 2) and risk of colorectal cancer in women. J Natl Cancer Inst 1999, 91:542-547.