NOTE

Transparent porous La$_2$Mo$_2$O$_9$ thin film preparation and antibacterial and antiviral activities

Akira SARUWATARI1, Kayano SUNADA2, Toshihiro ISOBÉ1, Sachiko MATSUSHITA1, Takeshi NAGAI2, Hitoshi ISHIKRO2 and Akira NAKAJIMA1,7

1 Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2–12–1 O-okayama, Meguro, Tokyo 152–8550, Japan
2 Antibacterial and Antiviral Research Group, Kanagawa Institute of Industrial Science and Technology, LiSE4c-1, 3–25–13 Tonomachi, Kawasaki-ku, Kawasaki 210–0821, Japan

Thin La$_2$Mo$_2$O$_9$ (LMO) films were prepared using wet processing with acetylactonates as starting materials. After acetylactonates of La and Mo were dissolved into a mixture of 2-methoxyethanol and acetylactone, the obtained precursor solution was coated onto Pyrex glass plates by spin coating. Transparent porous LMO thin film was obtained after vacuum ultraviolet light illumination and firing at 500 °C for 1 h in ambient air. The film exhibited antibacterial and antiviral activities that were almost equivalent to those of LMO powder against Escherichia coli, Staphylococcus aureus, bacteriophage Qβ, and bacteriophage Φ6.

©2021 The Ceramic Society of Japan. All rights reserved.

Key-words: Acetylacetone, Bacteriophage, Spin coating, Vacuum ultraviolet

Today, coronavirus (SARS-CoV-2) has spread among humans worldwide. Its infectivity and lethality pose major threats to human life. Suppression and prevention of the spread of viral infections of this kind are becoming important issues, increasingly necessitating the use of antiviral materials.

Recently, studies of inorganic antiviral materials are increasing gradually because they have low probability of causing development of resistance by viruses. Moreover, they can affect various viruses under widely various temperatures. Various inorganic antiviral materials exist: metals (e.g. Ag and Cu$^{1–3}$), photocatalysts (e.g. TiO$_2$4,5), and others (e.g. ZnO, alkaline earth oxides, and polyacids$^{6–9}$). Protein inactivation, reactive oxygen species generation, and pH change are proposed as mechanisms of antiviral activity. Nevertheless, these materials present some shortcomings such as discoloration and activity degraded by oxidation, high cost, and restricted usage environments (requiring light illumination or alkalization). New inorganic antiviral materials must be developed to overcome these shortcomings.

Very recently, we prepared La$_2$Mo$_2$O$_9$ (hereinafter, LMO) using a polymerizable complex method. We demonstrated that this material exhibits antibacterial activity against both gram-negative (Escherichia coli, E. coli) and gram-positive (Staphylococcus aureus, S. aureus) bacteria, and antiviral activity against non-envelope type (bacterio-
obtain the film that we had expected because of the poor wettability of the precursor solution on the glass substrate and because of the carbonization of organic compounds during firing. Therefore, we changed our strategy and used acetylacetonates as starting materials. We performed solubility tests with various organic solvents on both lanthanum(III) acetylacetone hydrate (La(C₅H₇O₂)₃·H₂O, Sigma-Aldrich Corp., MI, U.S.A.) and bis(acetylacetonato)dioxomolybdenum(VI) (MoO₂(C₅H₇O₂)₂, MoO₂(acac)₂; Fujifilm Wako Pure Chemical Corp., Tokyo Japan). These chemicals were found to dissolve into a mixture of 2-methoxyethanol (C₃H₈O₂, MtxE; Fujifilm Wako) and acetylacetone (C₅H₈O₂, Ac; Fujiwako) (MtxE:Ac = 5–20), although La(acac)₃ does not dissolve into either pure solvent. Stabilization of the precursor solution, including La by the MtxE-Ac mixture, has been reported also for another system. After detailed investigation of solid concentration and solution stability, we optimized the final molar ratio of the starting materials as MtxE:Ac:La(acac)₃:MoO₂(acac)₂ = 420:35:1:1 for the precursor solution of the wet coating. We confirmed that the pot life of the mixture solution for the film processing was at least one week at room temperature.

After mixing the starting materials in due ratio, sonication was conducted. A clear solution was obtained. After the solution was coated onto Pyrex glass plates (5 cm × 5 cm × 0.5 mm) using spin coating at 1500 rpm for 5 s, it was dried at room temperature for approx. 10 s. This coating–drying cycle was repeated five times. Vacuum ultraviolet (VUV) light was illuminated onto the film for 10 min using a Xe excimer lamp (172 nm wavelength, UEM20-172; Ushio Inc., Tokyo, Japan). The LMO film was obtained after firing the glass plate at 500 °C for 1 h in ambient air atmosphere.

The film morphology was observed using scanning electron microscopy (SEM, JSM-7500F; JEOL Co., Tokyo, Japan). The crystalline phase of the powder was identified using X-ray diffraction (XRD, X′Pert-Pro-MRP D; Philips (PANalytical), Tokyo, Japan) with Cu Kα radiation. Film thickness was measured using a contact probe profilometer (DEKTAK 6m; Bruker Corp., MA, U.S.A.). The amount and state of functional groups of organic compounds in the film were examined using the attenuated total reflectance mode of a Fourier transform infrared spectroscope (FT-IR, FT/IR-6100; Jasco Corp., Tokyo, Japan). Transmittance of the samples in the visible wavelength range was measured using a UV–Vis spectrophotometer (UV–vis, V-660; Jasco Corp.) with the same pristine glass plate used as a reference.

Figure 1 presents FT-IR spectra of the prepared film before and after VUV illumination. Absorances at 1517, 1535, and 1598 cm⁻¹, which were assigned to symmetric or asymmetric stretch modes of C=O bonds of the acetylacetonates used as starting materials, decreased after VUV treatment. The film thickness was also decreased by approx. 15 % by this treatment. These results indicate decomposition of some chelated acetylacetone in the precursor film. Because DTA/TG analysis revealed that crystallization of the dried precursor solution occurs at temperatures (570–600 °C) higher than the firing temperature of the film (500 °C), we inferred that the film crystallization is facilitated by removal of some organic compounds from the film through the VUV treatment. Similar trends were reported also for precursor films of TiO₂ prepared from a Ti-alkoxide solution.

Figure 2 displays the XRD pattern of the obtained film. Almost all peaks in the XRD pattern were identified as La₂Mo₂O₉ (card No. 28-0509), suggesting almost single phase of LMO. Figure 3 depicts the appearance and transmittance of the film against light in the visible wavelength range. The film possessed high transmittance: the value was more than 88 %. Figure 4 presents top-view and
cross-section SEM images of the film. The porous film included 50-300 nm pores. The microstructure was apparently of an intermediate stage of sintering for LMO particles after removal of organic compounds during firing. The film thickness was almost 200 nm. It became almost half that of the precursor film after firing at 500 °C for 1 h. The film adhered onto the glass plate with a certain degree of strength: it did not peel easily during rubbing with fingers.

We evaluated antibacterial and antiviral activities of the film using procedures described for our earlier studies. The test was conducted using the entire film on a 5-cm-square glass substrate. A pristine glass plate or a PP film of the same size was used for control data. Before the evaluation, disinfection treatment was conducted at 80 °C for 15 min for all samples. The antibacterial test and the antiviral test were performed respectively using the film adhesion methods described in JIS R 1702 (ISO 27447) and JIS R 1706 (ISO 18061), with minor modifications. For this study, we used *E. coli* (NBRC 3972) and *S. aureus* (NBRC 12732) to evaluate antibacterial activity.

For antiviral activity measurements, we used two bacteriophages, a virus whose host is a bacterium: Qβ (NBRC 20012) and Φ6 (NBRC 105899).

The activity test results are displayed in Fig. 5. We also present results for LMO powders reported by Matsumoto et al. The y-axis in the figure shows the logarithm of the number of colonies for viable bacteria or that of plaques for virus. Values of both the *E. coli* and *S. aureus* dropped below the detection limit in 2–4 h. The titer of Qβ also reached the detection limit during 6 h. That of Φ6 decreased by two orders in 6h. Activity against Φ6 was found to be inferior to that against Qβ. The reason for the tailing trend of Φ6 against time for LMO remains unclear at this stage. We extended the measurement time to 24 h and confirmed that the number (*N*) of Φ6 continued to decrease gradually even at 24 h. Very recent studies revealed that antiviral activity against Φ6 can be improved by substituting Ce for La in LMO. We can infer that Ce...
is more effective for Φ6 than La is; however, finding can only be characterized as a characteristic of Φ6 at this time. Investigation of this reason remains as a subject to be addressed in future work. However, all these results and trends correspond to those of LMO powder in work reported by Matsumoto et al., suggesting that prepared transparent porous LMO films possess antibacterial and antiviral activities that are almost equivalent to those of LMO powder.

Acknowledgments The authors are grateful to the staff of the Center of Advanced Materials Analysis (CAMA) at the Tokyo Institute of Technology for various characterizations and for helpful discussion. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (20H02432).

References
1) S. Galdiero, A. Falanga, M. Vitiello, M. Cantisani, V. Marra and M. Galdiero, Molecules, 16, 8894–8918 (2011).
2) K. Zodrow, L. Brunet, S. Mahendra, D. Li, A. Zhang, Q. Li and P. J. J. Alvarez, Water Res., 43, 715–723 (2009).
3) S. Gaikwad, A. Ingle, A. Gade, M. Rai, A. Falanga, N. Incoronato, L. Russo, S. Galdiero and M. Galdiero, Int. J. Nanomed., 8, 4303–4314 (2013).
4) R. Nakano, H. Ishiguro, Y. Yao, J. Kajioka, A. Fujishima, K. Sunada, M. Minoshima, K. Hashimoto and Y. Kubota, Photoch. Photobio. Sci., 11, 1293–1298 (2012).
5) C. Zhang, Y. Li, D. Shuai, Y. Shen and D. Wang, Chem. Eng. J., 355, 399–415 (2019).
6) H. Ghaffari, A. Tavakoli, A. Moradi, A. Tabbaraei, F. Bokharaei-Salim, M. Zahmatkeshan, M. Farahmand, D. Javanmard, S. J. Kiani, M. Esghaei, V. Pirhajati-Mahabadi, A. Ataei-Pirkooh and S. H. Monavari, J. Biomed. Sci., 26, 1–10 (2019).
7) K. Motoike, S. Hirano, H. Yamana, T. Onda, T. Maeda, T. Ito and M. Hayakawa, Biocontrol Sci., 13, 131–138 (2008).
8) S. G. Sarafianos, U. Kortz, M. T. Pope and M. J. Modak, Biochem. J., 319, 619–626 (1996).
9) D. A. Judd, J. H. Nettles, N. Nevins, J. P. Snyder, D. C. Liotta, J. Tang, J. Ermolieff, R. F. Schinazi and C. L. Hill, J. Am. Chem. Soc., 123, 886–897 (2001).
10) T. Matsumoto, K. Sunada, T. Nagai, T. Isobe, S. Matsushita, H. Ishiguro and A. Nakajima, J. Hazard. Mater., 378, 120610 (2019).
11) T. Matsumoto, K. Sunada, T. Nagai, T. Isobe, S. Matsushita, H. Ishiguro and A. Nakajima, Mat. Sci. Eng. C-Mater., 111, 111323 (2020).
12) Z. Zhuang, X. P. Wang, A. H. Sun, Y. Li and Q. F. Fang, J. Sol-Gel Sci. Techn., 48, 315–321 (2008).
13) P. Laffez, X. Y. Chen, G. Banerjee, T. Pezeril, M. D. Rossell, G. Van Tendeloo, P. Lacorre, J. M. Liu and Z. G. Liu, Thin Solid Films, 500, 27–33 (2006).
14) T. Paul and A. Ghosh, J. Appl. Phys., 121, 135106 (2017).
15) L. Hu, G. T. Lin, X. Luo, R. H. Wei, X. B. Zhu, W. H. Song, J. M. Dai and Y. P. Sun, J. Appl. Phys., 120, 215303 (2016).
16) Z. Zhao, Y. Zhang, J. Yang, H. Li, W. Song and X. Zhao, J. Ceram. Soc. Jpn., 113, 67–70 (2005).
17) E. M. Nour and M. S. Refat, J. Mol. Struct., 994, 289–294 (2011).
18) H. Gehrke, Jr. and J. Veal, Inorg. Chim. Acta, 3, 623–627 (1969).
19) A. Nakajima, N. Hayashi, Y. Kameshima and K. Okada, Surf. Coat. Tech., 192, 112–116 (2005).
20) T. Ito, K. Sunada, T. Nagai, H. Ishiguro, R. Nakano, Y. Suzuki, A. Nakano, H. Yano, T. Isobe, S. Matsushita and A. Nakajima, Mater. Lett., 290, 129510 (2021).