An obvious consequence of the coronavirus disease (COVID-19) pandemic is the worldwide reduction in social interaction, which is associated with many adverse effects on health in humans from babies to adults. Although social development under normal or isolated environments has been studied since the 1940s, the mechanism underlying social isolation (SI)-induced brain dysfunction remains poorly understood, possibly due to the complexity of SI in humans and translational gaps in findings from animal models. Herein, we present a systematic review that focused on brain changes at the molecular, cellular, structural, and functional levels induced by SI at different ages and in different animal models. SI studies in humans and animal models revealed common socioemotional and cognitive deficits caused by SI in early life and an increased occurrence of depression and anxiety induced by SI during later stages of life. Altered neurotransmission and neural circuitry as well as abnormal development and function of glial cells in specific brain regions may contribute to the abnormal emotions and behaviors induced by SI. We highlight distinct alterations in oligodendrocyte progenitor cell differentiation and oligodendrocyte maturation caused by SI in early life and later stages of life, respectively, which may affect neural circuit formation and function and result in diverse brain dysfunctions. To further bridge animal and human SI studies, we propose alternative animal models with brain structures and complex social behaviors similar to those of humans.

Molecular Psychiatry (2023) 28:191–201; https://doi.org/10.1038/s41380-022-01835-w

INTRODUCTION
Social interactions are considered a basic human need, analogous to other fundamental requirements such as nutrition and sleep [1–6]. Since the first report of the novel SARS-CoV-2 in late 2019, public health organizations have advocated for preventative policies to prevent the virus from spreading, including stay-at-home orders that closed businesses, day care centers, schools, and playgrounds, which dramatically reduced the opportunities for face-to-face social interaction outside the household. Mandated measures, including physical distancing, quarantines, and lockdowns during the COVID-19 pandemic, have been associated with increased mental health issues, including anxiety and depression in adults and adolescents, as well as significantly reduced verbal, motor, and overall cognitive performance in children born during the pandemic [7–12]. People experiencing prolonged social isolation (SI), such as orphans and empty nesters, suffer from various neuropsychiatric conditions, including depression and reduced sleep [13–15]. Thus, reduced social interaction at different ages has broad adverse impacts on socioemotional development and mental health. However, our understanding of the effects of SI and the mechanisms by which it affects brain structure and function is far from complete.

Previous reviews have summarized the benefits of social bonds among humans [16] and different aspects of the effects of SI, including social homeostasis (an adaptive function that optimizes behaviors that govern social connection) [17], adolescent development and mental health [18], and endocrine functions [19]. Herein, we review alterations in emotion, behavior, and brain structure and function, together with molecular and cellular changes induced by SI at different ages in different animal models, and summarize the similarities and differences in the effects of SI shown in humans and animal models. We also discuss the limitations of current rodent models and suggest nonhuman primates, marmosets, and domestic dogs as promising animal models for future SI studies. The purpose of this review was to help bridge animal and human studies on SI so that discoveries made using animal models can be better translated to humans.

MAJOR ADVANCES IN SI STUDIES
A PubMed search using the keywords social isolation, social deprivation, and maternal separation revealed that the number of publications on SI has increased substantially in recent years, likely due to preventive measures to halt the spread of SARS-CoV-2 infection (Fig. 1A). The repeated SI experienced by millions due to physical distancing, quarantines or lockdowns during the COVID-19 pandemic has been reported to be related to an increased incidence of anxiety and depression [20] (Fig. 1B).

The effects of orphans’ infantile experiences on the development of their physical growth, speech, character, and social relationship were first reported in 1944 [21] (Fig. 1B). To understand the relationship between SI and social behavioral changes, Harry Harlow performed famous experiments on rhesus

Received: 17 June 2022 Revised: 5 October 2022 Accepted: 10 October 2022
Published online: 25 November 2022
monkeys and demonstrated that animals raised in partial or total isolation from birth were hostile and could not form adequate social attachments to others when such opportunities were provided in adolescence or adulthood [22, 23]; the degree of social damage is related to the duration of SI [23]. Magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) neuroimaging analysis revealed structural alterations in specific brain regions, including the prefrontal cortex (PFC) and amygdala, in humans and monkeys after SI [24–27]. The potential molecular and cellular mechanisms underlying SI-induced brain structural and behavioral changes have been mostly explored using rodent models in recent decades (Fig. 1B), including SI-induced alterations in neuronal activity [28, 29], neurotransmission [30, 31], oligodendrocyte development [32], and signaling pathways [33, 34]. Moreover, various neural circuits that are impaired by SI in mice have been recently characterized [35, 36]. Despite significant progress, the mechanisms underlying distinct phenotypes caused by SI across different ages and species and to what extent SI-induced brain changes in animal models mimic those in humans remain unclear.

BEHAVIORAL, EMOTIONAL, AND COGNITIVE ABNORMALITIES INDUCED BY SI IN HUMANS

There are two well-described critical periods for social development in childhood, when environmental inputs result in irreversible changes in brain development and function with permanent effects on social behavior. The first critical period, which is called “primary socialization”, occurs between 6 weeks and 6 months of age, beginning with the onset of learning abilities, continuing with the smiling response, and ending with the fear of strangers [37–40]. Thus, early positive interactions with a primary caregiver are very important for the development of social capacities. From ~27 months of age, the use and understanding of sentences mark the beginning of the second critical period, ‘verbal socialization’, in which the process of socialization begins all over again through a different form of communication [40]. Thus, during the first few years of life, the developing brain is particularly vulnerable to environmental stresses [41]. The disruption of social interaction during early critical periods will negatively impact cognitive, social, and verbal performance, resulting in a predisposition to mental health issues [42–44].

The adverse effects of early-life SI have been studied mostly in orphans in institutions. Early life social deprivation in orphans has life-long impacts on their brain development and socioemotional functioning, based on studies from cohorts of Romanian orphans who entered institutions in the first few weeks after birth and spent different lengths of time there before being adopted [42–44] (Fig. 2 and Table 1). In these institutions, the children experienced minimal social contact, received insufficient care, and had a lack of toys for cognitive stimulation, which resulted in a devastating and pervasive effect on their cognitive and social development [45]. Children who spent more than 6 months in the institutions displayed increased symptoms of neurodevelopmental disorders, including attention deficit/hyperactivity disorder, autism spectrum disorder, and disinhibited social engagement disorder [45]. These disorders persisted in many of the orphans from infancy through young adulthood [42, 43, 46]. Thus, SI during early life has profound effects on socioemotional development and cognitive abilities (Fig. 2 and Table 1), although the effects of other confounding factors such as malnutrition and negligence of orphans cannot be excluded [47–49].
Infants born during the COVID-19 pandemic were forced to stay at home during their first year with limited social interaction outside the household due to physical distancing, quarantines, or lockdowns. Studies of these babies showed that they had significantly lower scores for gross and fine motor control and communication skills than those born before the pandemic at the age of 6 months, regardless of whether their parents had been infected with the virus [11] (Fig. 2). Another study showed that children born during the pandemic had significantly reduced verbal, motor, and overall cognitive performance compared with children born in the prepandemic period [12]. Reduced human-to-human interactions during the pandemic, including reduced peer interactions, are considered major factors inhibiting the development of children born during this period [50]. In addition, prenatal and postnatal maternal distress during the COVID-19 pandemic have been associated with slower infant socioemotional development [51]. Whether other factors, such as mask wearing (obstructed face recognition) during the pandemic, affect the brain development of infants remains unclear. Longitudinal studies are required to determine whether the socioemotional and cognitive delays are transient or long lasting.

SI during juvenile and adult stages has substantial emotional impacts (Fig. 2). For example, school closures during COVID-19 lockdowns have been associated with mental health problems among students due to a prolonged state of physical isolation from their peers, teachers, extended family, and community networks [52, 53]. Depressive symptoms increased from 18.5% before school closures to 24.9% after school reopenings [54]. Similarly, physical distancing measures leading to reduced social interactions during the pandemic have been associated with substantial increases in anxiety and depression, substance use and domestic violence in adults [7, 8, 55–57]. Approximately 10.9% of 1,450 English-speaking adult participants in the USA met the criteria for generalized anxiety disorder between March and April 2020, which was significantly higher than the 3.1% estimated prior to the pandemic [55]. Other stressors that occur during the pandemic, such as economic loss and caregiving burden, may also contribute to mental abnormalities in adults. Another example of

Fig. 2 Social isolation at different ages has distinct impacts on human health.

Table 1. Summary of changes induced by SI in humans and nonhuman primates.

Brain structure and function	Early life*	Juvenile	Adult	Ref				
H	NHP	H	NHP	H	NHP			
Altered brain region volume*	PFC, Amy, Hipp	Visual cortex	na	na	Amy	na	26, 27, 61–64, 79	24, 81
Altered inter-regional functional connectivity*	Amy–PFC, Hipp–PFC, Stri–PFC	na	na	na	na	na	73, 75, 76	
Altered WM volume or structural connectivity*	Limbic and frontostriatal circuits	pSTS	na	na	na	na	25, 64, 66–69	81
Activation of neurons	na	na	na	na	na	Midbrain	na	77

Behavior and cognition	Early life*	Juvenile	Adult	Ref				
Impaired socioemotional development	Yes	Yes	na	na	na	11, 12, 42, 43, 46	22, 23, 80, 81, 109	
Impaired cognitive ability	Yes	Yes	na	na	na	na	42, 45	24
Increased depression and anxiety	na	na	Yes	Yes	Yes	Yes	7, 8, 53–55, 58, 59	83, 140

*Early life means 0–5 years old for humans and 0–1 year old for primates.
*decreased or increased; na, data not available.

Amy: amygdala, H: humans, Hipp: hippocampus, NHP: non-human primates, pSTS: posterior superior temporal sulcus, PFC: prefrontal cortex, Stri: striatum, WM: white matter.
SI in adults includes prisoners under solitary confinement, who experience more severe SI than those experiencing social distancing, and they exhibit increased distress, depression, and aggression as well as an increased prevalence of self-harm [58]. In addition, empty nesters were reported to be more vulnerable to depressive symptoms than nonempty nesters [59]. It was hypothesized that SI in adulthood induces a reduction in the social homeostatic set-point, which may make a social stimulus that was previously perceived as optimal now be interpreted as a surplus, thus leading to depression, aggression, or social anxiety [17].

In summary, the apparently different effects of SI during early life and later stages of life suggest the importance of the timing of SI when studying the underlying neural mechanisms.

BRAIN REGIONS AND INTERREGIONAL CONNECTIVITIES AFFECTED BY SI IN HUMANS

Human social and cognitive functions are regulated by information that is processed through neural circuit hierarchies connecting different brain regions [17, 60]. Studies on adopted children exposed to SI in institutions during early childhood offer opportunities to disentangle the effects of early life SI on brain structure and function using MRI (Fig. 3 and Table 1). In general, neuroimaging studies of individuals with early life institutional experiences showed brain structure abnormalities in the PFC, amygdala, and hippocampus. These abnormalities include consistently reduced total gray and white matter volumes in the PFC and hippocampus [61–64]. The effects of SI on amygdala volume are inconsistent, probably due to different methods of brain volume analysis [26, 27, 61]. With brain volume correction, the relative amygdala volume was larger in the institutionalized group than in the control group, which has been associated with profound emotional problems [27]. Moreover, electroencephalography analysis revealed abnormal patterns of brain activity in the frontal, temporal, and occipital regions among children reared in institutions, which reflects a delay in cortical maturation [65].

Children under institutional care also exhibit altered structural connections between brain regions. The DTI-based structural connectome of children reared in institutions showed significant reductions in global connectivity strength and local connectivity, especially in the ventral medial PFC, compared with matched controls [66]. Children who experienced early social deprivation in Romanian orphanages showed decreased white matter integrity in the left uncinate fasciculus connecting the orbitofrontal and temporal lobes [25, 67]. Compromised integrity of the white matter tracts involved in limbic and frontostriatal circuitry was also observed in children under institutional care [68], while another study of previously institutionalized children using DTI identified increased frontostriatal connectivity, which was associated with increased externalizing behavioral problems [69].

Altered functional connectivities between brain regions of children under institutional care were examined by functional MRI (fMRI). The amygdala and its connections with the medial PFC (mPFC), which are critical for emotion regulation and fear learning, are markedly immature in children [70–72]. However, children reared in institutions showed mature amygdala-mPFC connectivity by fMRI [73]. Moreover, previously institutionalized children showed elevated amygdala activity in response to emotional faces [74]. Children and adolescents who experienced prior institutionalization also showed increased connectivity between the hippocampus and PFC by fMRI during fear learning [75]. In addition, resting-state fMRI showed that early institutional care enhanced ventral striatal-mPFC connectivity, which is associated with social problems [76]. While other factors may impact the brain development of institutionalized children, the brain regions most affected by early life SI include the PFC, amygdala, hippocampus, and striatum, which are involved in fear, reward, anxiety, cognitive, and social brain circuitry (Fig. 3).

Only a few studies have examined brain structural and functional changes after SI during adulthood. For example, in adults, the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) in the midbrain were selectively activated for social cues such as images of social activities after acute SI for 10 h, similar to the way fasting causes midbrain activation in response to food cues [77]. Activation of the neural circuit that induces hunger is also observed in adult Drosophila after chronic SI [78]. In addition, long-term reduced social interaction during the COVID-19 outbreak and lockdown resulted in volumetric increases in the bilateral amygdala, putamen, and anterior temporal cortices [79]. Changes in the amygdala diminished as time elapsed following lockdown relief, suggesting that the intense experience associated with the lockdown induced reversible brain changes that are commonly associated with stress and anxiety [79]. Whether the volume increase in specific brain regions is primarily due to SI or other stresses during lockdowns remains unclear.

SI AFFECTS NEURAL CIRCUITS AND BEHAVIORS IN ANIMAL MODELS

Studies of SI in animal models are an important complement to human studies because randomization and experimental manipulations of isolation in humans are limited in intensity and duration by ethical restrictions. SI-induced effects at different ages in nonhuman primates and rodents are summarized in Table 1 and Table 2, respectively. SI studies in monkeys were performed mostly during early life, similar to those in humans, while those in rodents were mostly performed at juvenile stages.

Early life SI-induced brain structural alterations and abnormal behaviors are studied the earliest and the most in monkeys [22–24, 80–82]. Specifically, baby rhesus monkeys raised individually from 2 to 12 months of age exhibited a significantly decreased size of corpus callosum, fewer interhemispheric projections, and
The SI of adult mice decreased cAMP response reduced aggressive, communicative, sexual, and parental behaviors and temporal sulcus together with abnormal emotional and social visual cortex and premature myelination in the posterior superior temporal gyrus of mice. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult mice for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala. The SI of adult rats for 7 days induced social memory loss, which is associated with molecular changes in the medial amygdala.
familiar conspecific; the resulting social recognition deficit can be reversed by activation of these neurons [36]. Moreover, the SI of mice during the juvenile stage resulted in acute hyperexcitability of putative dopamine neurons in the VTA and long-lasting expression of GluA-lacking AMPARs at excitatory inputs onto putative dopamine neurons that project to the PFC [89]. The SI-induced changes in neural activity and synaptic plasticity in the VTA and behavioral deficits can be reversed by the chemogenetic inhibition of paraventricular nucleus (PVN)-VTA projection neurons [89]. DAergic neurons of the VTA contribute to both social and reward-seeking behaviors [91, 92]. Moreover, PVT neurons project to various reward-associated areas, including the VTA and NAc, which are key nodes of reward circuitry [93, 94]. In summary, SI during juvenile stages interferes with the functions of multiple neural circuits, including the reward circuit.

Social abilities are shaped by the interactions of multiple neural circuits during different critical periods of development. If we can further identify social behavior-related neural circuits that develop during early life and adulthood, it may be possible to manipulate key factors regulating circuit plasticity at specific stages and restore normal function to the affected circuits of individuals who experience SI.

NEURONAL ABNORMALITIES IN ANIMAL MODELS INDUCED BY SI
The SI of individuals at different ages exerts adverse impacts and causes different symptoms, suggesting distinct molecular and cellular mechanisms underlying the abnormalities, including neuronal dysfunction. Indeed, previous studies of SI at different developmental stages in animal models have reported distinct changes in neuronal excitability and synaptic transmission.

Alterations in neuronal excitability have been observed in rodents that were socially isolated at both neonatal and juvenile stages [28, 29, 95–97]. Isolating neonatal mice from the nest activated hypothalamic agouti-related protein (Agrp) neurons, which modulate isolation-induced ultrasonic vocalizations. The increased activity of Agrp neurons and ultrasonic vocalizations were ameliorated by care and warmth, suggesting that Agrp neurons play a role in offspring-to-caregiver bonding [95]. The SI of mice at the juvenile stage acutely increased the excitatory inputs to fast-spiking parvalbumin-expressing (FSPV) interneurons and thus increased the firing of FSPV interneurons [29]. The increased intrinsic excitability of FSPV interneurons was still observed in the mPFC of mice in the adult stage after SI in the juvenile stage [96], together with increased inhibitory synaptic inputs onto a subtype of layer 5 pyramidal cells (prominent h-current [PH] cells) [28]. These results suggest that juvenile SI primarily disturbs circuits involving FSPV interneurons and eventually affects circuits involving PH pyramidal cells in adulthood. In addition, SI in the juvenile stage caused altered maturation of parvalbumin-positive interneurons (PVIs) in the dorsal medial PFC, which are activated preceding an active social approach toward a novel animal, and thus led to reduced excitability of dorsal medial PFC PVIs and decreased social interaction [97].

In addition, the isolation of neonatal rats inhibited α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor trafficking by increasing corticosterone, and disrupted long-term potentiation (LTP) in the barrel cortex [30], while the SI of juvenile rats enhanced LTP of N-methyl-D-aspartate (NMDA) receptor-mediated glutamatergic transmission in the VTA [31]. The synaptic trafficking of AMPA receptors in rats was affected by an increased level of actin filament through the inactivation of actin-depolymerizing factor coflin after SI [98].

The SI of animals also resulted in other neuronal changes, including decreased adult neurogenesis [99], reduced synaptogenesis [100], increased neuronal necroptosis [101], altered levels of transmitters or receptors [102, 103], cytoskeletal changes [104], decreased dendritic spines and fiber density [105, 106], disturbed signaling pathways [84, 86, 107], and altered expression of specific genes [34, 108–110] (Table 2). For example, SI in adult mice broadly induced an upregulated expression of neuropeptide neurokinin B (Nkb) encoded by tachykinin 2 (Tac2), which is involved in fear memory consolidation [111], in neurons of multiple brain regions [34]. The systemic administration of an antagonist of the Nkb receptor NK3R prevented virtually all behavioral abnormalities caused by chronic SI; conversely, enhancing Nkbb expression and release phenocopied SI in group-housed mice [34].

GLIAL ALTERATIONS INDUCED BY SI IN ANIMAL MODELS
In addition to neuronal changes, altered glial development and functions also play an important role in SI-induced brain dysfunction. For example, maternal separation or early-life SI of mice decreased the pool of oligodendrocyte progenitor cells (OPCs) and promoted the premature differentiation of OPCs to oligodendrocytes (OLs) [112]. Early-life SI also induced astrocyte activation in the locus coeruleus of female mice [113]. Maternal separation or early-life SI in rats led to fewer hippocampal microglia and depressive-like behavior, which can be reversed by promoting microglial proliferation in the hippocampus [114]. Moreover, studies of chronic SI during adulthood in mice also showed a decreased number and overactivation of microglia in the hippocampus, together with increased anxiety levels, which were ameliorated by anxiolytic dihydromyricetin [115]. Thus, the SI of animals at different stages affects the development and function of different glial cell types.

Specifically, the SI of mice during juvenile and adult stages resulted in reduced OL gene expression and myelin thickness, and simpler morphology with shorter processes and fewer branches of OLs in the mPFC (Fig. 4) [32, 116]. Socially isolated mice showed a significant decrease in the expression of NRG1 [32]. The NRG1–ErbB signaling pathway, which is important for OL maturation, is linked to reduced mPFC myelination in response to SI in juvenile mice [32]. Unlike the effects of SI during the juvenile stage, maternal separation in the form of repeated daily separation of dams from their litters leads to depletion of the OPC pool and premature differentiation of OPCs to OLs in the mPFC and hippocampus [112, 117]. These results indicate that maternal separation in mice results in earlier differentiation of OPCs into OLs and thus fewer OPCs, while SI during juvenile or adult stages inhibits OL maturation. In the postnatal developing mouse brain, the critical period of OPC differentiation in the corpus callosum is 3–8 days after birth [118], while the critical period of OL maturation in the mPFC is from P21 to P35 [32]. Thus, these different effects of SI on oligodendrocytes may reflect whether the period of SI overlaps with the critical periods of oligodendrogenesis (the formation of myelinating OLs from OPCs), OL maturation or both (Fig. 4).

Notably, alterations in mPFC myelination and function caused by the SI of juvenile mice for 2 weeks after weaning (P21–P35) could not be reversed by social reintegration, demonstrating that P21–P35 is a critical period of OL maturation for mPFC myelination [32]. In contrast, the reduced white-matter volume in the PFC of orphans could be ameliorated significantly many years after adoption [64]. This recovery may be due to the adoption of orphans in early life (<5 years of age) before the completion of oligodendrogenesis (Fig. 4) [119]. Moreover, prolonged myelin growth and maturation extends at least through the first 20 years of human life [120], allowing long-term neural plasticity. As the developmental trajectory of neocortical myelination in rodents is distinct from that in humans [118, 119], we must be cautious when translating results from mice to humans.
These molecular and cellular changes in OPCs and OLs induced by SI demonstrate an important role of myelination in SI-induced brain dysfunctions. Myelin enables the rapid transmission of action potentials through salutatory conduction [121, 122] and provides trophic support to maintain axon integrity [123–125]. Genetic manipulations of oligodendrogenesis and myelination result in profound alterations in neural circuit structure and function [126, 127] and brain dysfunction [128]. The apparent abnormalities in OPC differentiation and OL maturation induced by SI at different developmental stages may explain the more profound phenotypes induced by SI in early life than by SI in adulthood.

CONCLUDING REMARKS AND FUTURE PERSPECTIVES

Humans are social creatures, and social interaction and cooperation have promoted the rapid development of human culture and civilization. The reduced social interaction outside the household in the last few years imposed by ongoing measures in response to the COVID-19 pandemic has caused apparent public health consequences, including increased anxiety, depression, self-harm, and suicide attempts [7, 8]. However, the mechanisms underlying SI-induced behavioral and emotional alterations remain unclear. This review helps bridge previous animal and human studies of SI. Although the exact timing of SI in most studies on animals and humans is different, animal research provides valuable insights into the effects of SI in humans at both the molecular and neural circuit levels, which are important for understanding the underlying mechanisms and developing potential interventions.

Despite substantial progress, there are still important aspects of SI to be further investigated. For example, human social performance relies on social touch and posture, affective visual cues such as social gazing and facial expressions, and verbal communication [129, 130]. Whether structural and functional alterations occur in the somatosensory and visual cortices of humans following SI during early life requires further investigation. In addition, virtual social methods combined with advanced brain imaging techniques can be applied to determine which forms of virtual social interactions best mimic the neural circuit activation that underlies real-life social interaction [131]. The identification of neural circuits affected by virtual social interactions may guide the development of interventions to mitigate the detrimental effects of SI.

Human social behaviors are probably the most complex among any species. In addition to the duration and frequency, the quality of social interactions, which is affected by relationships with family members and engagement with broader communities, is also important. While rodent models have contributed substantially to our current understanding of the molecular mechanisms underlying SI-induced brain dysfunction, the translational value of rodent models may be limited to certain aspects due to anatomical, behavioral, and cognitive properties of rodents that diverge from those of humans [132, 133]. For example, in the rodent brain, the white matter (WM) underneath the cerebral neocortex is poorly developed and occupies a much smaller volume than humans [134]. The brains of nonhuman primates, such as those of macaques, closely resemble human brains in terms of structure and function [135]. However, extremely high costs and slow reproduction rates (5 years to reach adulthood) render macaques hardly practical and not readily accessible for most researchers.

Recently, another species of nonhuman primates, the common marmosets (Callithrix jacchus), has emerged as a promising animal model for social neuroscience research, including studies on social isolation [136–141]. Marmosets share many similarities in behavior and social structure with humans, including social monogamy and cooperative breeding [139]. Moreover, marmosets have a much smaller body size and faster reproduction rates (1.5 years to reach...
adulthood) than macaques, with 2–3 offspring per pregnancy [142]. When three offspring are born, one is typically abandoned by the parents due to limited nursing capabilities, resulting in a natural model for SI studies.

In addition to nonhuman primate models, domestic dogs (Canis familiaris), with a long history of coevolution and coadaptation with humans, have developed exquisite and complex hetero-specific dog-human social and cognitive capabilities that are not apparent in other animal models [143, 144]. The behavior of dogs as long-standing favorite pets worldwide has been well documented in the literature [145]. Moreover, some of the complex and cross-species social behaviors, such as tail wagging in dogs, can be analyzed quantitatively by artificial intelligence-based methods [146]. The critical periods of social development in dogs have been extensively studied since the 1960s [39, 40, 147], which provides an accurate time window for SI studies. Furthermore, dogs not only have similar brain structures (gyri and cross-species social behaviors, such as tail wagging in dogs, can be analyzed quantitatively by artificial intelligence for objective and quantitative behavioral and emotional analysis [154–156], integrative multilomics including proteomics and metabolomics to elucidate molecular changes at different levels, and genome-editing techniques [151, 157, 158], offer a unique opportunity for a deeper understanding of the neural mechanisms operating in response to SI.

REFERENCES

1. Baumeister RF, Leary MR. The need to belong - desire for interpersonal attachments as a fundamental human motivation. Psychol Bull. 1995;117:497–529.
2. Insel TR, Young LJ. The neurobiology of attachment. Nat Rev Neurosci. 2001;2:129–36.
3. Cohen S. Social relationships and health. Am Psychol. 2004;59:676–85.
4. Lee CR, Chen A, Tye KM. The neural circuitry of social homeostasis: consequences of acute versus chronic social isolation. Cell. 2021;184:1500–16.
5. Orben A, Tomova L, Blakemore S-J. The effects of social deprivation on adolescent development and mental health. Lancet Child Adolesc Health. 2020;4:634–40.
6. Mumtaz F, Khan MI, Zubair M, Dehpour AR. Neurobiology and consequences of social isolation stress in animal model-A comprehensive review. Biomed Pharmacother. 2018;105:1205–22.
7. Twenge JM, Joiner TEUS. Census Bureau-assessed prevalence of anxiety and depressive symptoms in 2019 and during the 2020 COVID-19 pandemic. Depress Anxiety. 2020;37:954–6.
8. Freel A, Burlingham D. Infants without families, reports of the Hampstead nurseries 1939–1945. New York: International Universities Press; 1944.
9. Harlow HF, Harlow M. Social deprivation in monkeys. Sci Am. 1962;207:136–46.
10. Sanacchi MM, Hearn EF, Do D, Rilling JK, Herndon JG. Differential rearing affects corpus callosum size and cognitive function of rhesus monkeys. Brain Res. 1998;812:38–49.
11. Ellwahaling TJ, Chugani HT, Behen ME, Juhasz C, Muzik O, Maqbool M, et al. Abnormal brain connectivity in children after early severe socioemotional deprivation: a diffusion tensor imaging study. Pediatrics. 2006;117:2093–100.
12. Mehta MA, Golembi NS, Nosarti C, Colvert E, Mota A, Williams SC, et al. Amygdala, hippocampal and corpus callosum size following severe early institutional deprivation: the English and Romanian Adoptees study patient. J Child Psychol Psychiatry. 2005;46:943–51.
13. TottenHAM N, Hare TA, Quinn BT, Mccary TW, Nurse M, Gilhooly T, et al. Prolonged institutional rearing is associated with atypically large amygdala volume and difficulties in emotion regulation. Dev Sci. 2010;13:46–61.
14. Yamamura K, Yoshino H, Ogawa Y, Makinodan M, Tortuska M, Yamashita M, et al. Social isolation during the critical period reduces synaptic and intrinsic excitability of a subtype of pyramidal cell in mouse prefrontal cortex. Cereb Cortex. 2018;28:998–1010.
15. Okamura K, Yoshino H, Ogawa Y, Yamamura K, Kimoto S, Yamaguchi Y, et al. Juvenile social isolation immediately affects the synaptic activity and firing property of fast-spiking parvalbumin-expressing interneuron subtype in mouse medial prefrontal cortex. Cereb Cortex. 2022;bbz192.
16. Miyazaki T, Takase K, Nakajima W, Tada H, Ohya D, Sano A, et al. Disrupted cortical function underlies behavior dysfunction due to social isolation. J Clin Invest. 2012;122:2690–701.
17. Whitaker LR, Degoulet M, Morikawa H. Social deprivation enhances VTA synaptic plasticity and drug-induced contextual learning. Neurosci. 2013;7:335–45.
18. Makinodan M, Rosen KM, Ito S, Corfas G. A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science. 2012;337:1357–60.
19. Wallace DL, Han MH, Graham DL, Green TA, Vialou V, Iniguez SD, et al. CREB regulation of nucleus accumbens excitability mediates social isolation-induced behavioral deficits. Nat Neurosci. 2009;12:200–9.
20. Zelikowsky M, Hui K, Karigo T, Choe A, Yang B, Blanco MR, et al. The Neuro-peptide TAC2 controls a distributed brain state induced by chronic social isolation stress. Cell. 2018;173:1265–79 e1219.
21. Yamamura K, Bicks LM, Leventhal MB, Kato D, Ito S, Flanigan ME, et al. A prefrontal-paraventricular thalamus circuit requires juvenile social experience to regulate adult sociability in mice. Nat Neurosci. 2020;23:1240–52.
22. Park G, Ryu C, Kim S, Jeong SJ, Koo JW, Lee YS, et al. Social isolation impairs the prefrontal-nucleus accumbens circuit subserving social recognition in mice. Cell Rep. 2021;35:109104.
23. Gray PH. Theory and evidence of imprinting in human infants. J Psychol. 1958;46:155–66.
24. Spitz RA. The smiling response: a contribution to the ontogenesis of social relations. Genet Psychol Monogr. 1946;43:57–125.
25. Scott JP. Critical periods in behavioral development. Science. 1962;138:949–58.
26. Scott JP. The process of primary socialization in canine and human infants. Monogr Soc Res Child Dev. 1963;28:1–47.
27. Bock J, Rether K, Groger N, Xie L, Braun K. Perinatal programming of emotional brain circuits: an integrative view from systems to molecules. Front Neurosci. 2014;8:11.
28. Sonuga-Barke EJS, Kennedy M, Kumsta R, Knights N, Gohm D, Rutter M, et al. Child-to-adult neurodevelopmental and mental health trajectories after early
life deprivation: the young adult follow-up of the longitudinal English and Romanian Adoptees study. Lancet. 2017;389:1539–48.
43. Kennedy M, Keppner J, Knights N, Kumsta R, Maughan B, Golm D, et al. Early severe institutional deprivation is associated with a persistent variant of adult attention-deficit/hyperactivity disorder: clinical presentation, developmental continuities and life circumstances in the English and Romanian Adoptees study. J Child Psychol Psychiatry. 2015;56:71:113–25.
44. Zeahah CH, Egger HL, Smyke AT, Nelson CA, Fox NA, Marshall PJ, et al. Insti-
tutionalized and foster care on long-term white matter development: a randomized clinical trial. JAMA Pediatr. 2015;169:211–9.
45. Behen ME, Muzik O, Saporta AS, Wilson BJ, Pai D, Hu J, et al. Abnormal fronto-
striatal connectivity in children with histories of early deprivation: a diffusion tensor imaging study. Brain Imaging Behav. 2009;3:292–7.
46. Maitzy AB, Humphreys KL, Flannery J, Goff B, Humphreys KL, Telzer EH, Shapiro M, et al. A development shift from positive to negative connectivity in human amygdala-pre-
frontal circuitry. J Neurosci. 2013;31:4584–93.
47. Monk CS. The development of emotion-related neural circuitry in health and psychopathology. Dev Psychopathol. 2008;20:1231–50.
48. Hanuk AR, Mattay VS, Tessitore A, Fera F, Weinberger DR. Neocortical modulation of the amygdala response to fearful stimuli. Biol Psychiatry. 2003;53:494–501.
49. DG, Gabard-Durand L, Flannery J, Goff B, Humphreys KL, Telzer EH, et al. Early developmental emergence of human amygdala-prefrontal connectivity after maternal deprivation. Proc Natl Acad Sci USA. 2012;109:15163–83.
50. Tottenham N, Hare TA, Milliner A, Gilhooly T, Zevin JD, Casey BJ. Elevated amygdala response to faces following early deprivation. Dev Sci. 2012;114:190–204.
51. Silvius JA, Luman DS, Gabard-Durnam L, Gee DG, Goff B, Fareri DS, et al. Pre-
vious institutionalization is followed by broader amygdala-hippocampal-fPFC network connectivity during aversive learning in human development. J Neurosci. 2016;36:4620–30.
52. Fareri DS, Gabard-Durnam L, Goff B, Flannery J, Gee DG, Luman DS, et al. Altered ventral striatal-medial prefrontal cortex resting-state connectivity mediates adolescent social problems after early institutional care. Dev Psychopathol. 2017;29:1865–76.
53. Tomova L, Wang KL, Thompson T, Matthews GA, Takahashi A, Tye KM, et al. Acute social isolation evokes midbrain craving responses similar to hunger. Nat Neurosci. 2020;23:1597–605.
54. Liu W, Wang Z, Syed S, Lye C, Lincoln S, O'Neill J, et al. Chronic social isolation signals starvation and reduces sleep in Drosophila. Nature. 2021;597:239–44.
55. Salomon T, Cohen A, Barazany D, Ben-Zvi G, Botvinik-Nezer R, Gera R, et al. Brain volumetric changes in the general population following the COVID-19 outbreak and lockdown. NeuroImage. 2021;239:118311.
56. Feng X, Wang L, Yang S, Qin D, Wang J, Li C, et al. Maternal separation produces lasting changes in cortisol and behavior in rhesus monkeys. Proc Natl Acad Sci USA. 2011;108:14312–7.
57. Wang J, Feng X, Wu J, Xie S, Li L, Xu L, et al. Alterations of gray matter volume and white matter integrity in maternal deprivation monkeys. Neuroscience. 2018;384:14–20.
58. Conti G, Hansman C, Heckman JJ, Novak MF, Ruggiero A, Suzuki SJ. Primate evidence on the late health effects of early-life adversity. Proc Natl Acad Sci USA. 2014;111:10986–71.
59. Li X, Xu F, Xie L, Ji Y, Cheng K, Zhou Q, et al. Depression-like behavioral phe-
notyped by social and plus visual isolation in the adult female Macaca fascicularis. PLoS One. 2013;8:e73293.
60. Lavenda-Grosberg D, Lalzar M, Leser N, Yaseen A, Malik A, Maroun M, et al. Acute social isolation and regrouping cause short- and long-term molecular changes in the rat medial amygdala. Mol Psychiatry. 2022;27:886–95.
61. Fabrinc K, Heeb-Oe L, Steindl R, Bittl C, Fink-Jemans A, Pakkenberg B. Stereo-
logical brain volume changes in post-weaned socially isolated rats. Brain Res. 2010;1345:233–9.
62. Cuesta S, Funes A, Pacchioni AM. Social isolation in male rats during adoles-
cence inhibits the Wnt/beta-Catenin pathway in the prefrontal cortex and enhances anxiety and cocaine-induced plasticity in adulthood. Neurosci Bull. 2020;36:611–24.
63. Day-Wilson KM, Jones DN, Southam E, Cilia J, Torterolle S. Medial prefrontal cortex volume loss in rats with isolation rearing-induced deficits in prepulse inhibition of acoustic startle. Neuroscience. 2006;141:1113–21.
64. Liu C, Li Y, Edwards TJ, Kurniawan ND, Richards LJ, Jiang T. Altered structural connectome in adolescent socially isolated mice. Neuroimage. 2016;139:259–70.
65. Musardo S, Continentale A, Knoop M, Baud Q, Bellone C. Oxytocin neurons mediate the effect of social isolation via the VTA circuits. Elife. 2022;11:e73421.
66. Wang JZ, Shwami T, Liu J, Zhong P, Yang F, Schatz K, et al. Molecular and cellular mechanisms for differential effects of chronic social isolation stress in males and females. Mol Psychiatry. 2022;27:3056–68.
91. Solie C, Girard B, Righetti B, Tapparel M, Bellone C. VTA dopamine neuron activity encodes social interaction and promotes reinforcement learning to social prediction error. Nat Neurosci. 2022;25:86–97.
92. Morales M, Margolis EB. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat Rev Neurosci. 2017;18:73–85.
93. Dong X, Li S, Kiroauci CJ. Collateralization of projections from the paraventricular nucleus of the thalamus to the nucleus accumbens, bed nucleus of the stria terminalis, and central nucleus of the amygdala. Brain Struct Funct. 2017;222:3927–43.
94. Hung LW, Neuner S, Polepalli JS, Beier KT, Wright M, Walsh JJ, et al. Gating of social reward by oxytocin in the ventral tegmental area. Science. 2017;357:1406–11.
95. Ziro A, Srivastava AR, Fonseca AHO, Ylikulik O, Pra RD, Dietrich MG. Functional ontogeny of hypothalamic AgRP neurons in neonatal mouse brains. Cell. 2019;178:48–59 e47.
96. Yamamoto K, Yoshino H, Ogawa Y, Okamura K, Nishihata Y, Makinodan M, et al. Juvenile social isolation enhances the activity of inhibitory neuronal circuits in the medial prefrontal cortex. Front Cell Neurosci. 2020;14:105.
97. Bicks LG, Yamamoto K, Flanagan ME, Kim JM, Kato D, Lucas EK, et al. Prefrontal parvalbumin interneurons require juvenile social experience to establish adult social behavior. Nat Commun. 2020;11:1003.
98. Tada H, Miyazaki T, Takemoto K, Takase K, Jitsuki S, Nakajima W, et al. Neonatal social separation attenuates BDNF-ERK signaling correlated with spine formation in the hippocampus during early brain development. J Neurochem. 2017;141:79–94.
99. Zhang J, Liu D, Fu P, Liu ZQ, Lai C, Yang CQ, et al. Social isolation reinforces aging-related behavioral inflexibility by promoting neuronal remodeling in basolateral amygdala. Mol Psychiatry. 2022;1–14.
100. Preece MA, Dalley JW, Theobald DEH, Robbins TW, Reynolds GP. Region specific changes in forebrain 5-hydroxytryptamine1A and 5-hydroxytryptamine2A receptors in isolation-reared rats: an in vitro autoradiography study. Neuroscience. 2004;123:725–32.
101. Bean G, Lee T. Social isolation and cohabitation with haploderoid-treated partners: effect on density of striatal dopamine D2 receptors in the developing rat brain. Psychiatry Res. 1991;36:307–17.
102. Bianchi M, Fone KF, Azmi N, Heidbrink CA, Hagan JJ, Marsden CA. Isolation rearing induces recognition memory deficits accompanied by cytoskeletal alterations in rat hippocampus. Eur J Neurosci. 2006;24:2894–902.
103. Preece MA, Dalley JW, Theobald DEH, Robbins TW, Reynolds GP. Regional specific changes in forebrain 5-hydroxytryptamine1A and 5-hydroxytryptamine2A receptors in isolation-reared rats: an in vitro autoradiography study. Neuroscience. 2004;123:725–32.
104. Bradl M, Werner HW, Lassmann H. Myelination of the nervous system: mechanisms and functions. Annu Rev Cell Dev Biol. 2010;26:337–65.
105. Bradl M, Werner HW, Lassmann H. Oligodendroglial function and neuropathology. J Neurosci. 2012;32:14883–90.
106. Bradl M, Lassmann H. Oligodendrocytes: biology and pathology. Acta Neuropathol. 2017;40:27–46.
107. Miller DJ, Duka T, Simpson CD, Schapiro SJ, Baze WB, McArthur MJ, et al. Prolonged myelination in human neocortical evolution. Proc Natl Acad Sci USA. 2012;109:16480–5.
108. Miller AJ, Nieuwenhuys R, Puelles L. Myelination and support of axonal integrity by glia. Nature. 2010;468:244–52.
109. Pulschilling U, Supplie LM, Mahad D, Boretti S, Saab AS, Edgar J, et al. Gliocytic oligodendrocytes maintain myelin and long-term axonal integrity. Nat. 2012;485:517–21.
110. Miller AJ, Nieuwenhuys R, Puelles L. Myelination and support of axonal integrity by glia. Nature. 2010;468:244–52.
111. Chen A, Fang G, Nan J, Zhang Z, Liang X, Li T, et al. Myelin dysfunctions caused by Olig2 deficiency lead to cognitive dysfunction and increase vulnerability to social withdrawal in adult mice. Neurosci Bull. 2020;36:419–26.
112. Cascio CJ, Moore D, McGlone F. Social touch and human development. Dev Neurosci. 2010;32:64–76.
113. Rojas-Flores M, da Fonseca N, Bellon M, de Medeiros CB, Camilo JR, Aroney TH, et al. Oligodendrocyte generation during a critical temporal window after NG2 cell division. Nat Neurosci. 2020;14:715–18.
114. Bath KG, Manzano-Nieves G, Goodwill H. Early life stress accelerates behavioral and neural maturation of the hippocampus in male mice. Horm Behav. 2016;82:64–71.
115. Liu H, Patel KD, Goncalves CM, Grutzendler J, Nishiyama A. Modulation of oligodendrocyte generation during a critical temporal window after NG2 cell division. Nat Neurosci. 2020;25:1159–61.
116. Bacci A, et al. Early-life stress impairs postnatal oligodendrogenesis and adult molecular mechanisms of the Tac2 pathway in fear learning. Neuropsychopharmacology. 2016;41:2174–22.
117. Teissier A, Le Magueresse C, Olusakin J, Andrade da Costa BLS, De Stasi AM, Bacci A, et al. Early-life stress impairs postnatal oligodendrogenesis and adult emotional behaviour through activity-dependent mechanisms. Mol Psychiatry. 2020;25:1159–74.
118. Nakamoto K, Aizawa F, Kinoshita M, Koyama Y, Tokuyama S. Astrocyte activation in locus coeruleus is involved in neuropathic pain exacerbation mediated by maternal separation and social isolation stress. Front Pharmacol. 2017;8:401.
142. Tardif SD, Smucny DA, Abbott DH, Mansfield K, Schultz-Darken N, Yamamoto ME. Reproduction in captive common marmosets (Callithrix jacchus). Comp Med. 2003;53:364–8.

143. Hare B, Brown M, Williamson C, Tomasello M. The domestication of social cognition in dogs. Science. 2002;298:1634–6.

144. MacLean EL, Herrmann E, Suchindran S, Hare B. Individual differences in cooperative communicative skills are more similar between dogs and humans than chimpanzees. Anim Behav. 2017;126:41–51.

145. Handelman, B. Canine Behavior: A Photo Illustrated Handbook; Dogwise Publishing: Wenatchee, 2012.

146. Ren W, Wei P, Yu S, Zhang YQ. Left-right asymmetry and attractor-like dynamics of dog’s tail wagging during dog-human interactions. iScience. 2022;25:104747.

147. Freedman DG, King JA, Elliot O. Critical period in the social development of dogs. Science. 1961;133:1016–7.

148. Hong H, Zhao Z, Huang X, Guo C, Zhao H, Wang GD, et al. Comparative proteome and cis-regulatory element analysis reveals specific molecular pathways conserved in dog and human brains. Mol Cell Proteom. 2022;21:100261.

149. Andics A, Gabor A, Gaszt D, Szabo D, Miklosi A. Neural mechanisms for lexical processing in dogs. Science. 2016;353:1030–2.

150. Liu X, Tian R, Zuo Z, Zhao H, Wu L, Zhuo Y, et al. A high-resolution MRI brain template for adult Beagle. Magn Reson Imaging. 2020;68:148–57.

151. Kishi N, Sato K, Sasaki E, Okano H. Common marmoset as a new model animal for neuroscience research and genome editing technology. Dev Growth Differ. 2014;56:53–62.

ACKNOWLEDGEMENTS

We thank L. Zhu, M. Ho and W. Li for comments on the manuscript. We apologize for not citing all relevant references due to space limitations. We thank the two anonymous reviewers for comments and suggestions on the manuscript.

AUTHOR CONTRIBUTIONS

YX: conceptualization, visualization, writing—original draft, writing—review and editing; HH: visualization, writing—original draft; CL: writing—review and editing; YQZ: conceptualization, writing—review and editing, supervision.

FUNDING

This work was supported by grants from The National Key Research and Development Program (2019YFA0707100 to YQZ and 2021ZD0203901 to YQZ and CL), the Strategic Priority Research Program B of the Chinese Academy of Sciences (XDB51020100 to YQZ), and the National Science Foundation of China (31830036 and 31921002 to YQZ and 32171088 to CL).

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Correspondence and requests for materials should be addressed to Yong Q. Zhang.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.