RITA1 drives the growth of bladder cancer cells by recruiting TRIM25 to facilitate the proteasomal degradation of RBPJ

Huancheng Tang1,2 | Xiangdong Li1,2 | Lijuan Jiang1,2 | Zefu Liu1,2 | Lei Chen1,2 | Jiawei Chen1,2 | Minhua Deng1,2 | Fangjian Zhou1,2 | Xianchong Zheng1,2 | Zhuowei Liu1,2

1Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
2State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China

Correspondence
Xianchong Zheng and Zhuowei Liu, Department of Urology, Sun Yat-sen University Cancer Center, No. 651, Dongfeng Road East, Guangzhou 510060, China.
Emails: zhengxc@sysucc.org.cn (X.Z.); liuzhw@sysucc.org.cn (Z.L.)

Abstract
Bladder cancer (BC) is one of the most prevalent malignancies worldwide, but it lacks effective targeted therapy due to its elusive molecular mechanism. Therefore, it is important to further investigate the molecular mechanisms that mediate BC progression. By performing a tumor tissue–based gene microarray and shRNA library screening, we found that recombination signal binding protein for immunoglobulin kappa J region (RBPJ) interacting and tubulin associated 1 (RITA1) is crucial for the growth of BC cells. Moreover, RITA1 is aberrantly highly expressed in BC tissues and is also correlated with poor prognosis in patients with BC. Mechanistically, we determined that RITA1 recruits tripartite motif containing 25 (TRIM25) to ubiquitinate RBPJ to accelerate its degradation via proteasome, which leads to the transcriptional inhibition of Notch1 downstream targets. Our results suggest that aberrant high expression of RITA1 drives the growth of BC cells via the RITA1/TRIM25/RBPJ axis and RITA1 may serve as a promising therapeutic target for BC.

KEYWORDS
bladder cancer, proliferation, RBPJ, RITA1, TRIM25

1 | INTRODUCTION

Bladder cancer (BC) is one of the most prevalent malignancies worldwide, with a continuous increase in morbidity over the past few decades. There are an estimated 170,000 deaths from BC worldwide annually. Moreover, nearly 20% of new BC cases are muscle-invasive BC (MIBC). Due to the lack of effective therapeutic strategies, the 5-year overall survival (OS) rate for patients with MIBC is approximately 50%, with a poor prognosis.1,2 Therefore, there is an urgent need to determine the pathogenic mechanisms mediating the progression of BC in order to find potential therapeutic targets.

Transcriptome abnormalities are key internal factors driving the progression of BC; however, knowledge regarding BC transcription is limited. To screen the potential molecular biomarkers of BC, we...
compared the transcription levels of genes between BC tissues and their paired normal tissues via gene microarray. To identify genes that are essential for the growth of BC cells, we performed a proliferation-based screening, with a short hairpin RNA (shRNA) library targeting the top 24 genes highlighted by the gene microarray analysis. Notably, we found that RBPJ interacting and tubulin-associated 1 (RITA1) is crucial for the growth of BC cells. RITA1 is a highly conserved protein with no apparent homology to any other protein. Interestingly, it has been reported that RITA1 impedes Notch signaling by facilitating the nuclear export of RBPJ. However, the role of Notch signaling is heterogeneous among different tumors, and it has the potential to play oncogenic or tumor-suppressive roles. Similarly, many studies have shown that RITA1 acts heterogeneously in different tumors, including anal malignancies, breast cancer, and hepatocarcinoma. Therefore, it is possible that Notch signaling and RITA1 are regulated heterogeneously in different tumors. Based on the above observations, we speculated that RITA1 and Notch signaling may have a unique regulatory mechanism in BC.

In our study, we identified the oncogenic effect of RITA1 in BC through in vivo and in vitro experiments. We also investigated a novel mechanism of RITA1 in impeding Notch1 signaling by recruiting TRIM25 to ubiquitinate and degrade RBPJ. In summary, our results explain the oncogenic role of RITA1 in BC via Notch1 signaling, providing a possibility for the molecular mechanism of targeting Notch downstream genes.

2 | MATERIALS AND METHODS

2.1 | Immunohistochemistry

The main steps of the immunohistochemical (IHC) experiment were performed according to previous studies. The results were obtained by double-blind reading, with scoring performed by two experienced pathologists. The staining index was recorded as negative = 0, weak brown = 1, moderate brown = 2, or dark brown = 3. RITA1-positive cells were identified by looking at the sections, and a final positive score was obtained based on their percentage: <5%, 0; 6%-25%, 1; 26%-50%, 2; 51%-75%, 3; 76%-100%, 4; the final immunoreactivity score was then derived from the product of the staining index and the positive area score; 0–4 was low expression and 6–12 was high expression. Anti-RITA1 (NBP2-38441, 1:50 dilution, Novus Biologicals), anti-NOTCH1 (20687-1-AP, 1:200 dilution, Proteintech), and anti-RBPJ (5313, 1:3000 dilution, Cell Signaling Technology) were used for IHC.

2.2 | Cell lines and cell cultures

The cell lines used in this study were purchased from the American Type Culture Collection (ATCC) and were used with 10% fetal bovine serum (Invitrogen). In our laboratory, all cell lines were passaged for <6 months. The cells were incubated in a 37°C incubator at 5% CO₂ and saturated humidity.

2.3 | Cell-counting kit-8 (CCK-8) assay

Transfected cells were seeded in 96-well plates for the corresponding time in an incubator. Subsequently, 10μl of CCK reagent was added to each well and incubated according to the protocol of the CCK-8 assay kit (Dojindo). The absorbance of each well was measured at 450 nm using an enzyme-labeled instrument.

2.4 | Western blotting and cointeracted immunoprecipitation

Western blot was performed according to standard protocols. The intensities of bands were detected and quantified by ImageJ software. Nucleocytoplasmic protein fractionation was performed using an extraction kit for nuclear and cytoplasmic proteins (Beyotime) according to the manufacturer’s protocol. For cointeracted immunoprecipitation (Co-IP), protein lysates were first incubated overnight at 4°C with anti-HA-magnetic beads, anti-Myc-magnetic beads, or anti-Flag-magnetic beads, and then the precipitates were washed three times with RIPA buffer and analyzed by protein blotting. The antibodies used in this experiment are shown in Table S2.
In brief, total RNA from tissues and cells were extracted using TRIzol reagent (Invitrogen). The total RNA was synthesized into cDNA by using HiScript II Q RT Super Mix (Vazyme). Quantitative polymerase chain reaction (qPCR) was performed using SYBR Green Master Mix (Vazyme) on a Roche 480 quantitative real-time PCR system. The primers used to amplify the corresponding genes are displayed in Table S3.

2.6 Statistical analysis

Data were analyzed using SPSS version 23.0 software (IBM Corp.). Survival curves were plotted by Kaplan-Meier analysis and compared by the log-rank test. Cox regression analysis was conducted to assess the significance of variables for survival. Data from cell line experiments are expressed as mean ± SD (X ± SD), and independent Student’s t tests were used to analyze statistical significance between groups. P values <0.05 were considered statistically significant.

3 RESULTS

3.1 RITA1 is negatively correlated with Notch1 expression in BC, and its higher expression predicts poor prognosis in patients with BC

We compared the transcription levels of genes between BC tissues and their paired normal tissues via gene microarray. As a result, we identified 639 upregulated genes and 1473 downregulated genes in tumor tissues (supplementary excel file Table S5); the heatmap and volcano map are shown in Figure 1A, B. To identify genes that are essential for the growth of BC cells, we performed an shRNA library targeting the top 24 genes. Remarkably, we found that shRITA1 had a...
significant inhibitory effect on the growth of BC cells (Figure 1C and Figure S1). To determine whether RITA1 was associated with Notch1 signaling in BC, we evaluated the expression of RITA1, RBPj, and Notch1 in BC tissues and their paired normal tissues by Western blot (Figure 1D). We next analyzed the expression of these proteins relative to GAPDH. The results showed that RITA1 expression was higher in BC tissues than in paired paraneoplastic tissues. In contrast, RBPj and Notch1 expression in BC tissues was significantly lower than that in paired paraneoplastic tissues (Figure 1E). Remarkably, the expressions of RITA1 and Notch were negatively correlated in BC tissues (Figure 1F). The negative correlation of protein expression between RITA1 and NOTCH1 was consistent with the microarray data. In addition, the protein expression levels of RITA1 and RBPj were also negatively correlated in BC tissues (Figure 1F). These data indicated that higher expression of RITA1 and lower expression of Notch1 are associated with BC and they are negatively correlated with each other in BC.

To determine the role of RITA1 in predicting the prognosis of patients with BC, we examined RITA1 protein levels in the other 150 BC tissues by IHC staining (Table 1). The results showed that RITA1 was highly expressed in 65 BC cases, whereas normal bladder tissues had inadequate or low levels of RITA1. In contrast, lower expression of NOTCH1 was found in BC tissues than in adjacent normal bladder tissues (Figure 1G). Based on IHC staining data from 150 patients with BC, Kaplan-Meier analysis confirmed that higher expression of RITA1 and lower expression of Notch1 are associated with BC and they are negatively correlated with each other in BC.

3.2 | RITA1 promotes the growth, migration, and invasion of BC cells

To verify the oncogenic function of RITA1, we knocked down the expression of RITA1 in T24 and UMUC-3 cells with two independent shRNAs by lentivirus. We also overexpressed the exogenous RITA1 in UMUC-3 cells. The expression of RITA1 in these stable-expression cells was validated by Western blot and qRT-PCR (Figure 2A,B). Next, we tested the proliferation of these stable-expression BC cells using a CCK-8 assay. Knockdown of RITA1 significantly inhibited, while overexpression of RITA1 significantly promoted the proliferation of BC cells (Figure 2C,D). We performed colony formation assay to validate this result. Similarly, knockdown of RITA1 reduced, while overexpression of RITA1 increased the number of colonies of BC cells (Figure 2E,F). Flow cytometry showed that knockdown of RITA1 significantly increased the percentage of apoptotic cells in both T24 and UMUC-3 cells (Figure S2). These results indicated that RITA1 promotes the growth of BC cells in vitro. In addition, we examined the role of RITA1 in BC cell migration and invasion using wound-healing assay and transwell invasion assay, respectively. Our data showed that knockdown of RITA1 suppressed the migration and invasion of BC cells, while overexpression of RITA1 promoted these properties (Figure S3).

3.3 | RITA1 inhibits Notch1 signaling to promote the growth of BC cells

Previous studies have shown that RITA1 inhibits Notch signaling by interacting with RBPj. However, Notch signaling can be oncogenic or tumor suppressive in solid tumors, depending on the tissue type and tumor microenvironment. Therefore, we examined how RITA1 affects the expressions of Notch downstream targets by Western blot. We found that knockdown of RITA1 decreased the protein expression of c-Myc and cyclin D3 and increased the protein expression of Hes family bHLH transcription factor 1 (HES1), hairy/enhancer-of-split related with YRPW motif 1 (HEY1), and p21 in T24 and UMUC-3 cells (Figure 3A). Consistently, overexpression of RITA1 increased the protein expression of c-Myc and cyclin D3 but decreased the protein expression of HES1, HEY1, and p21 in UMUC-3 cells (Figure 3B). We
found that knockdown of RITA1 increased the mRNA expression levels of HES1 and HEY1 in T24 and UMUC-3 cells. Consistently, RITA1 overexpression decreased the mRNA expression levels of HES1 and HEY1 in UMUC-3 cells (Figure 3C,D). We next analyzed whether RITA1 redistributed the levels of RBPJ, a transcriptional regulator important in the Notch signaling pathway, between the nucleus and cytoplasm. We found that knockdown of RITA1 increased the nuclear RBPJ and decreased the cytoplasmic RBPJ in T24 cells. Conversely, we found that overexpression of RITA1 resulted in increased cytoplasmic RBPJ and decreased nuclear RBPJ (Figure 3E,F).

As nuclear RBPJ directly governs Notch signaling and RITA1 inhibits Notch1 signaling, we next investigated whether RITA1 inhibited the Notch1 signaling through RBPJ. We used a specific siRNA to knock down RBPJ in RITA1-knockdown T24 cells. Western blot analysis showed that knockdown of RBPJ in RITA1-knockdown T24 cells restored the Notch1 signaling that was inhibited by RITA1 knockdown (Figure 3G). Moreover, data from the CCK-8 and colony formation assays showed that knockdown of RBPJ in RITA1-knockdown T24 cells recovered the proliferation and colony formation that were suppressed by RITA1 knockdown (Figure 3H,I). Overall, these results indicated that RITA1 inhibits RBPJ-dependent Notch1 signal in BC cells.

3.4 RITA1 recruits TRIM25 to interact with RBPJ in UMUC-3 cells

We next sought to explore the potential mechanism of RITA1 in orchestrating the subcellular distribution of RBPJ. To this end, we performed immunoprecipitation followed by mass spectrometry (MS) to identify the potential interacting proteins of RITA1 in UMUC3 cells. Surprisingly, we found that tripartite motif containing 25 (TRIM25), a E3 ubiquitin ligase, was identified in the interacting candidates of RITA1 (Figure 4A,B). Meanwhile, we noted that numerous 26S proteasome subunits were shown in the interaction list (Table S4).

As RBPJ is widely reported to interact with RITA1,3,9 we speculated that RITA1 recruits TRIM25 to ubiquitinate RBPJ and promote its degradation by the proteasome. If this were true, RITA1, RBPJ, and TRIM25 would probably interact with each other and be located together. To investigate this, we cotransfected plasmids expressing these three proteins with different tags in UMUC-3 cells followed by immunoprecipitation. Data from Western blot showed that RITA1, RBPJ, and TRIM25 interacted with each other in UMUC-3 cells (Figure 4C–F). Following knockdown of RITA1, the protein HA-TRIM25 was significantly reduced by the coimmunoprecipitation of Flag-RBPJ as a bait, and, similarly, the protein Flag-RBPJ was significantly reduced by using the coimmunoprecipitation of HA-TRIM25 as a bait (Figure 4G). Taken together, these results indicated that RITA1, RBPJ, and TRIM25 interacted with each other, and that RITA1 was required for the interaction of RBPJ and TRIM25.

3.5 TRIM25 ubiquitates RBPJ in a RITA1-dependent manner

Our data revealed that RBPJ could colocalize with RITA1 in the proteasome and also interact with TRIM25 in a RITA1-dependent manner. Therefore, we sought to identify whether RITA1 recruited TRIM25 to promote the proteasomal degradation of RBPJ. We inhibited protein synthesis with cycloheximide (CHX) to observe the stability of RBPJ and RITA1 in UMUC-3 cells. Data from Western blot showed that RBPJ, but not RITA1, was unstable in UMUC-3 cells (Figure 5A). Further, we treated UMUC-3 cells with lysosome inhibitor bafloymycin A1 (Baf-1) and proteasome inhibitor MG132 to determine the degradation pathway of RBPJ. Indeed, inhibition of the proteasome but not the lysosome obviously increased the stability of RBPJ in UMUC-3 cells (Figure 5B,C).

To determine whether TRIM25 accelerated the degradation of RBPJ in BC cells, we overexpressed TRIM25 in UMUC-3 cells followed by treatment with CHX. Data from Western blot and protein remaining curve showed that overexpression of TRIM25 decreased the half-life of RBPJ in UMUC-3 cells (Figure 5D). We also examined whether RITA1 had any effect on the half-life of RBPJ protein. In the presence of CHX, RBPJ appeared to become more stable after knocking down RITA1, suggesting a significant RITA1-dependent decline in RBPJ protein levels with a distinct reduction in half-life (Figure 5E). We performed a ubiquitination assay to confirm our observation. Western blot showed that knockdown of TRIM25 reduced the ubiquitination level of RBPJ in UMUC-3 cells (Figure 5F). Importantly, we observed that knockdown of RITA1 reduced the ubiquitination of RBPJ that was mediated by TRIM25 (Figure 5G). Overall, these results indicated that TRIM25 ubiquititates RBPJ to promote its degradation by the proteasome in a RITA1-dependent manner.
3.6 | RITA1 promotes the growth of BC cells in a mouse xenograft model

Finally, to verify the effect of RITA1 on tumor growth in vivo, we used a subcutaneous tumor-forming xenograft nude mouse model. To generate this model, we subcutaneously inoculated T24 cells with RITA1 knockdown or UMUC-3 cells with RITA1 overexpression. Remarkably, knockdown of RITA1 in T24 cells suppressed the growth of tumors, as determined by reduced tumor size, weight, and volume (Figure 6A–C). In contrast, overexpression of RITA1 in UMUC-3 cells markedly promoted the growth of tumors (Figure 6A–C). We further analyzed the critical role of RITA1 in the mouse xenograft model. We found that the protein expression of RBPI, but not NOTCH1, increased in xenografts derived from T24 cells with RITA1 knockdown; conversely, the protein expression of RBPI, but not NOTCH1, decreased in xenografts derived from UMUC-3 cells with RITA1 overexpression (Figure 6D,E). We found that the mRNA expression levels of HES1 and HEY1 increased after the knockdown of RITA1, while the mRNA expression levels of HES1 and HEY1 decreased after overexpression of RITA1 (Figure 6F). These results indicated that RITA1 promotes the growth of BC cells in vivo, which verified the finding that RITA1 promotes the growth of BC cells in vitro.

4 | DISCUSSION

Notch signaling has been proven to play various roles in tumor progression, including tumor growth, invasion, metastasis, and even tumor immunity.10–12 The role of Notch signaling is fairly heterogeneous among different tumors and has the potential to be oncogenic or tumor suppressive.13–20 Although inactivation of Notch signaling is associated with BC progression, the regulatory mechanism of Notch downstream targets remains unclear.21–25 In this study, we identified a novel mechanism whereby overexpression of RITA1 drives the growth of BC cells by recruiting TRIM25 to ubiquitinate RBPI and accelerate its proteasomal degradation, thus leading to the transcriptional inhibition of Notch1 downstream targets (Figure 6G).

As a transcription factor, RBPI is an integral component of Notch signaling, which activates the transcription of target genes, including those of the HES and HEY family.26 It has been previously reported that RITA1 suppresses Notch signaling by facilitating the nuclear export of RBPI.2 The excessive accumulation of RBPI in the cytoplasm may also re-enter the nucleus and reactivate Notch signaling. As RITA1 can dramatically inhibit Notch signaling, we speculated that RITA1 may have further functions on RBPI. Indeed, our molecular investigation demonstrated that RITA1 served as a bridge between RBPI and TRIM25, which accelerates the proteasomal degradation of cytoplasmic RBPI. Deshmukh et al.27 have previously reported that cyclin F could mediate polyubiquitination of RBPI at Lys315. Therefore, we wondered whether there are other ways of ubiquitinating degradation of RBPI. Intriguingly, RITA1 could also recruit RBPI to the proteasome, providing a site for its degradation. Thus, our data suggested that inhibition of RBPI-mediated Notch1 signaling by RITA1 is multifaceted.

Post-translational modification (PTM) has a direct regulatory effect on the activation or inactivation of protein functions.28 In tumors, the PTMs of proteins are relatively active, especially for key signal molecules that mediate tumor progression, which play a decisive role in the activation of oncogenes or the inactivation of tumor suppressors.29 However, as a transcription factor regulating canonical Notch signaling, the PTM of RBPI has rarely been reported. Although it was previously reported that RITA1 can facilitate the nuclear export of RBPI,3 its PTM is unknown. Through further investigation, we found that in BC cells, RITA1 is relatively stable, while RBPI is easily degraded. It is easy to speculate that stable proteins may assist in the degradation of unstable proteins. Through RBPI interaction–based MS, we found that TRIM25 is a potential E3 ligase of RBPI. More importantly, we found that the ubiquitination and degradation of RBPI are dependent on RITA1. We have reported for the first time that TRIM25 is the E3 ligase of RBPI. Indeed, the oncogenic function of TRIM25 has also been reported in various tumors, including prostate cancer,30 hepatocellular carcinoma,31 and colorectal cancer.32 We suspect that this is most likely to be related to the degradation of RBPI and inhibition of the Notch1 signaling. Nevertheless, concrete evidence is necessary to clarify this matter, such as the ubiquitination site of RBPI by TRIM25.

In conclusion, we demonstrate that aberrant upregulation of RITA1 is crucial for maintaining the growth of BC cells by inhibiting Notch1 signaling. We determined a novel mechanism whereby RITA1 recruits TRIM25 to ubiquitinate RBPI to accelerate its proteasomal degradation, which leads to the transcriptional inhibition of Notch1 downstream targets. Therefore, the RITA1/TRIM25/RBPI axis may serve as a therapeutic target for BC.
ACKNOWLEDGMENT
This work was supported by grants from the National Natural Science Foundation of China (82073103 and 81772716 to Z.L., 82103264 to X.Z., and 82002666 to X.L.).

DISCLOSURE
The authors declare no conflict of interest.

ETHICS STATEMENT
Approval of the research protocol by an institutional reviewer board: This study was reviewed and approved by the Ethics Committee of Sun Yat-sen University Cancer Center (approval nos.: B2019-227 and B2022-117).

ANIMAL STUDIES
Animal experiments were performed in strict accordance with the “Guide for the Care and Use of Laboratory Animals” and were approved by the Animal Ethics Committee of Sun Yat-sen University Cancer Center (approval no.: L102042021040E).

ORCID
Huancheng Tang https://orcid.org/0000-0002-3671-6073

REFERENCES
1. Malkowicz SB, van Poppel H, Mickisch G, et al. Muscle-invasive urothelial carcinoma of the bladder. Urology. 2007;69:3-16. doi:10.1016/j.urology.2006.10.040
2. Patel VG, Oh WK, Galsky MD. Treatment of muscle-invasive and advanced bladder cancer in 2020. CA Cancer J Clin. 2020;70:404-423. doi:10.3322/caac.21631
3. Wacker SA, Alvarado C, von Wichert G, et al. RITA, a novel modulator of Notch signalling, acts via nuclear export of RBP-J. EMBO J. 2011;30:43-56. doi:10.1038/emboj.2010.289
4. Wang H, Yang Z, Liu C, et al. RBP-J-interacting and tubulin-associated protein induces apoptosis and cell cycle arrest in human hepatocellular carcinoma by activating the p53–Fbxw7 pathway. Biochem Biophys Res Commun. 2014;454:71-77. doi:10.1016/j.bbrc.2014.10.023
5. Wang H, Chen G, Wang H, Liu C. RITA inhibits growth of human hepatocellular carcinoma through induction of apoptosis. Oncol Lett. 2012;20:437-445. doi:10.3727/096504013X13685487925059
6. Hoock SC, Ritter A, Steinhäuser K, et al. RITA modulates cell migration and invasion by affecting focal adhesion dynamics. Mol Oncol. 2019;13:2121-2141. doi:10.1002/1878-0261.12551
7. Rödel F, Steinhäuser K, Kreis N, et al. Prognostic impact of RITA expression in patients with anal squamous cell carcinoma treated with chemoradiotherapy. Radiother Oncol. 2018;126:214-221. doi:10.1016/j.radonc.2017.10.028
8. Li KD, Huang CW, Liu ZF, et al. Prognostic role of the immunoscore for patients with uterine carcinoma of the bladder who underwent radical cystectomy. Ann Surg Oncol. 2019;26:4148-4156. doi:10.1245/s10434-019-07529-y
9. Tabana N, Yuan Z, Oswald F, Koval RA. Structure-function analysis of RBP-J-interacting and tubulin-associated (RITA) reveals regions critical for repression of Notch target genes. J Biol Chem. 2017;292:10549-10563. doi:10.1074/jbc.M117.791707
10. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signalling: cell fate control and signal integration in development. Science. 1999;284:770-776. doi:10.1126/science.284.5415.770
11. Wilson A, Radtke F. Multiple functions of Notch signaling in self-renewing organs and cancer. FEBS Lett. 2006;580:2860-2868. doi:10.1016/j.febslet.2006.03.024
12. Wang J, Sullenger BA, Rich JN. Notch signaling in cancer stem cells. Adv Exp Med Biol. 2012;727:174-185. doi:10.1007/978-1-4614-0899-4_13
13. Reedijk M, Odoric S, Chang L, et al. High-level coexpression of JAG1 and NOTCH1 is observed in human breast cancer and is associated with poor overall survival. Cancer Res. 2005;65:8530-8537. doi:10.1158/0008-5472.CAN-05-1069
14. Fan X, Mikolaenko I, Ehassan I, et al. Notch1 and notch2 have opposite effects on embryonal brain tumor growth. Cancer Res. 2004;64:7787-7793. doi:10.1158/0008-5472.CAN-04-1446
15. Nguyen BC, Lefort K, Mandinova A, et al. Cross-regulation between Notch and p63 in keratinocyte commitment to differentiation. Genes Dev. 2006;20:1028-1042. doi:10.1101/gad.140606
16. Viator P, Ehmer U, Sadic LA, et al. Notch signaling inhibits hepatocellular carcinoma following inactivation of the RB pathway. J Exp Med. 2011;208:1963-1976. doi:10.1084/jem.20110198
17. Baumgart A, Mazur PK, Anton M, et al. Opposing role of Notch1 and Notch2 in a KrasG12D-driven murine non-small cell lung cancer model. Oncogene. 2014;34:578-589. doi:10.1038/onc.2013.592
18. Hanlon L, Avila JL, Demarest RM, et al. Notch2 is required for prostate tumor suppressor role for the Notch pathway in bladder cancer. Nat Med. 2014;20:1199-1205. doi:10.1038/nm.3678
19. Hayashi T, Gust KM, Wyatt AW, et al. Not all NOTCH is created equal: the oncogenic role of NOTCH2 in bladder cancer and its implications for targeted therapy. Clin Cancer Res. 2016;22:2981-2992. doi:10.1158/1078-0432.CCR-15-2360
20. Maraver A, Fernandez-Marcos PJ, Cash TF, et al. NOTCH pathway inactivation promotes bladder cancer progression. J Clin Invest. 2015;125:824-830. doi:10.1172/JCI78185
21. Rampias T, Vgenopoulos P, Averis M, et al. A new tumor suppressor role for the Notch pathway in bladder cancer. Nat Med. 2014;20:1199-1205. doi:10.1038/nm.3678
22. Schulz GB, Elezkurtaj S, Börding T, et al. Therapeutic and prognostic implications of NOTCH and MAPK signaling in bladder cancer. J Clin Invest. 2011;121:1897-1996. doi:10.1111/j.1524-0504.2011.02180.x
23. Greife A, Jankowiak S, Steinbring J, et al. Canonical Notch signaling is inactive in urothelial carcinoma. BMC Cancer. 2014;14:628. doi:10.1186/1471-2407-14-628
24. Yuan X, Wu H, Xu H, et al. Notch signaling: an emerging therapeutic target for cancer treatment. Cancer Lett. 2015;369:20-27. doi:10.1016/j.canlet.2015.07.048
25. Gurushastra KG, Kankel MW, Artavanis-Tsakonas S. The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet. 2012;13:654-666. doi:10.1038/nrg3272
26. Deshmukh RS, Sharma S, Das S. Cyclin F-dependent degradation of RBPI inhibits IDH1R132H-mediated tumorigenesis. Cancer Res. 2018;78:6386-6398. doi:10.1158/0008-5472.CAN-18-1772
27. Qin G, Lu Q, Xiong Y, et al. New opportunities and challenges of patocellular carcinoma through induction of apoptosis. Mol Oncol. 2017;11:208-216. doi:10.1016/j.molonc.201604670
28. Sun T, Liu Z, Yang Q. The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer. 2020;19:146. doi:10.1186/s12943-020-01262-x
29. Takayama KI, Suzuki T, Tanaka T, et al. TRIM25 enhances cell proliferation and invasion by affecting focal adhesion dynamics. Mol Oncol. 2015;9:43-56. doi:10.1002/1878-0261.12551
30. Takayama KI, Suzuki T, Tanaka T, et al. TRIM25 enhances cell proliferation and invasion by affecting focal adhesion dynamics. Mol Oncol. 2015;9:43-56. doi:10.1002/1878-0261.12551
31. Takayama KI, Suzuki T, Tanaka T, et al. TRIM25 enhances cell proliferation and invasion by affecting focal adhesion dynamics. Mol Oncol. 2015;9:43-56. doi:10.1002/1878-0261.12551
32. Takayama KI, Suzuki T, Tanaka T, et al. TRIM25 enhances cell proliferation and invasion by affecting focal adhesion dynamics. Mol Oncol. 2015;9:43-56. doi:10.1002/1878-0261.12551
31. Liu Y, Tao S, Liao L, et al. TRIM25 promotes the cell survival and growth of hepatocellular carcinoma through targeting Keap1-Nrf2 pathway. *Nat Commun*. 2020;11:348. doi:10.1038/s41467-019-14190-2

32. Zhou S, Peng J, Xiao L, et al. TRIM25 regulates oxaliplatin resistance in colorectal cancer by promoting EZH2 stability. *Cell Death Dis*. 2021;12:463. doi:10.1038/s41419-021-03734-4

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.