Combining Off-the-shelf Grammar and Spelling Tools for the Automatic Evaluation of Scientific Writing (AESW) Shared Task 2016

René Witte and Bahar Sateli
Knowlet Networks Inc.
Montréal, QC, Canada
http://www.knowlet.net

Abstract

We applied two standard, open source tools for detecting spelling and grammar errors to the AESW2016 shared task: After the Deadline and LanguageTool. The tools’ output was combined with a Maximum Entropy machine learning model to classify each input sentence as requiring or not requiring any edits. This approach yielded the second-highest precision of 64.41% in the binary estimation task at AESW 2016, but also the lowest recall of 36.85%, resulting in an F-Measure of 46.34%.

1 Introduction

The Automated Evaluation of Scientific Writing Shared Task (AESW 2016) targeted the analysis of individual sentences, in order to assess whether or not a sentence as a whole requires editing or not (Daudaravicius et al., 2016). The long-term vision behind this task is to “promote the development of automated writing evaluation tools that can assist authors in writing scientific papers”.1

Our work in this area is similarly motivated by the idea of providing an interactive “virtual research assistant” that supports researchers in their daily tasks. Writing support includes providing interactive feedback on the quality of textual artifacts to academic authors. Such a support generally requires achieving high precision over recall, as tools with too many false positives tend to be ignored by authors. Additionally, providing salient feedback on detected mistakes – ideally together with suggestions for improvements – to the authors is an important feature. Standard, open source grammar and spelling tools have addressed these questions for quite some time, but are generally not focused on academic texts. Hence, we were interested in how well existing, general-purpose tools perform when applied to academic writing. In our experiments, we applied two well-known tools, After the Deadline and LanguageTool (described in Section 2.3), to the AESW data sets. Our hypothesis was that these two tools are (i) complementary to some degree, so that their combination can increase precision and/or recall; and (ii) a machine learning approach can combine the tools’ output with additional syntactical context information, thereby attuning them to academic writing.

2 Methods

In this section, we discuss the setup of our AESW 2016 experiments.

2.1 Data and Task Description

Here, we briefly describe the datasets and tasks; for the full details, please refer to (Daudaravicius et al., 2016).

The input sentences were randomly selected from more than 9,000 journal articles across different domains (Computer Science, Physics, Human Sciences, etc.). The training and development data sets contain 256,389 and 31,732 sentences, respectively. Some sentences contain changes that were applied by professional editors, who are native English speakers. These sentences have inline <ins> and tags that mark inserted and removed content, respectively. An example sentence is shown in Fig. 1.

The test data set (31,085 sentences) “retain texts
The enterprise aims to increase the output (at the same time to reduce expenses) and to decrease the consumed efforts.

The goal of the AESW tasks was to predict whether a given sentence as a whole requires editing – that is, individual insertions or deletions did not have to be annotated. Thus, the output for the two tasks was either a boolean feature (True meaning a sentence requires editing) or a probabilistic feature with a value in \([0,1]\) (where “1” indicates that an edit is required).

2.2 Preprocessing

To facilitate cross-fold evaluations, we split all AESW data sets (development, training, and testing) into individual XML files containing 1000 sentences each.

For machine learning, each sentence from the development and training sets received an edit feature of True if it contained at least one \(<ins>\) or \(\) tag, otherwise the edit feature was set to False. For training, content marked as ‘inserted’ (between \(<ins>\) tags as shown in Fig. 1) was removed from the texts. The \(\) tags were likewise removed, but the content was retained, thereby showing a sentence’s content before any changes performed by an editor. Note that this conforms to the format of the test set, as described above.

2.3 Writing Error Detection Tools

We experimented with two open source tools for writing error detection:

After the Deadline (AtD) detects spelling, grammar, and style errors (Mudge, 2010).\(^3\) We used version atd-081310 in its default configuration for our experiments.

LanguageTool (LT) is another popular open source spelling and grammar tool,\(^4\) which also supports multiple languages. We used version 3.2-SNAPSHOT from the LT GitHub repository\(^5\) for our experiments.

2.4 Experimental Setup

To facilitate the combination of the individual results, we integrated both tools into a pipeline through the General Architecture for Text Engineering (GATE) (Cunningham et al., 2011). Each error reported by one of the tools is added to the input text in the form of an annotation, which holds a start- and end-offset, as well as a number of features, such as the type of the error, the internal rule that generated the error, and possibly suggestions for improvements, as shown in Figure 2.

Additionally, we added a number of standard GATE plugins from the ANNIE pipeline (Cunningham et al., 2002) to perform tokenization, part-of-speech tagging, and lemmatization on the input texts. Finally, annotations spanning placeholder texts in the sentences, such as \(_MATH_\), were filtered out, as these were particular to the AESW data.

2.5 Machine Learning

In addition to applying the AtD and LT tools individually, we experimented with their combination through machine learning. Essentially, we follow a stacking approach (Witten and Frank, 2011) by treating the AtD and LT tools as individual classifiers and use them to train a model for assigning the output ‘edit’ feature to a sentence.

ML Features. Table 1 lists all features we derive from the input sentences. We experimented with different token root and category n-grams, including unigrams, bigrams and trigrams.

ML Algorithms. Training and evaluation were performed using the Weka\(^6\) (Witten and Frank, 2011) and Mallet\(^7\) (McCallum, 2002) toolkits. These were executed from within GATE using the Learning

2AESW 2016 Data Set, see http://textmining.lt/aesw/index.html#data
3After the Deadline, http://www.afterthedeadline.com/
4LanguageTool, https://languagetool.org/
5LanguageTool GitHub repository, https://github.com/languagetool-org/languagetool
6Weka, https://sourceforge.net/projects/weka/
7Mallet, http://mallet.cs.umass.edu/
We experimented with a number of classification algorithms, including Decision Trees, Winnow, Naïve Bayes, KNN, PAUM, and Maximum Entropy. The latter generally performed best for the dataset and features, hence in this paper we only report the results from the MaxEnt model.

Baseline experiments

To establish a baseline, we ran the AtD and LT tools on the development set. Here, every sentence that had at least one error annotation received an edit feature of True. Table 3 shows the results as reported by the Codalab site used in the competition.

Tool	Precision	Recall	F-Measure
AtD	0.4318	0.7448	0.5467
LT	0.4719	0.4739	0.4729

Feature analysis

We measured the impact of the various features shown in Table 1 on the classification performance. A selected set of results is shown in Table 2. Accuracy was calculated using Mallet with a three-fold cross-validation on the training data set. Generally, adding more features increased precision, but did not improve recall.

Submitted run

For the submitted run, we retrained the MaxEnt classifier using the full feature set.
Table 2: Three-fold cross-validation of the MaxEnt classifier on the training data with different feature sets

Feature Set	Accuracy
AtD.rule, AtD.string, LT.string	0.6261
AtD.rule, AtD.string, LT.string, Token.root unigrams, Token.category unigrams	0.6584
AtD.rule, AtD.string, LT.string, Token.root bigrams, Token.category bigrams	0.7300
AtD.rule, AtD.string, LT.string, Token.root trigrams, Token.category trigrams	0.8525

Table 4: Submitted runs for the AESW 2016 task on the test set (as reported by CodaLab)

Tool	Precision	Recall	F-Measure
binary	0.6241 (1)	0.3685 (8)	0.4634 (7)
probabilistic	0.7294 (2)	0.6591 (6)	0.6925 (5)

4 Conclusions

Based on our experiments, standard spell and grammar checking tools can help in assessing academic writing, but do not cover all different types of edits observed in the training data. In future work, we plan to categorize the false negatives and develop additional features to capture specific writing errors.

As the AESW 2016 task was performed on individual sentences, the results do not accurately reflect the interactive use within a tool: False positive errors, such as spelling mistakes reported for an unknown acronym, are counted for every sentence, rather than once for the entire document, thereby decreasing precision significantly when an entity appears multiple times. Also, document-level writing errors, such as discourse-level mistakes, cannot be captured with this setup – for example, use of acronyms before they are defined or inconsistent use of American vs. English spelling. Finally, while the sentence-level decision can be helpful in directing the attention of an editor to a possibly problematic sentence, by itself it does not explain why a given sentence was flagged or how it could be improved, which are important information for academic writers.

References

Hamish Cunningham, Diana Maynard, Kalina Bontcheva, and Valentin Tablan. 2002. GATE: A Framework and Graphical Development Environment for Robust NLP Tools and Applications. In Proceedings of the 40th Anniversary Meeting of the Association for Computational Linguistics (ACL’02).

Hamish Cunningham, Diana Maynard, Kalina Bontcheva, Valentin Tablan, Niraj Aswani, Ian Roberts, Genevieve Gorrell, Adam Funk, Angus Roberts, Danica Damljanovic, Thomas Heitz, Mark A. Greenwood, Horacio Saggion, Johann Petrak, Yao Yong Li, and Wim Peters. 2011. Text Processing with GATE (Version 6). http://tinyurl.com/gatebook.

Vidas Daudaravicius, Rafael E. Banchs, Elena Volodina, and Courtney Napoles. 2016. A report on the automatic evaluation of scientific writing shared task. In Proceedings of the Eleventh Workshop on Innovative Use of NLP for Building Educational Applications, San Diego, CA, USA, June. Association for Computational Linguistics.

Andrew Kachites McCallum. 2002. MALLET: A Machine Learning for Language Toolkit. http://mallet.cs.umass.edu/.

Raphael Mudge. 2010. The Design of a Proofreading Software Service. In Workshop on Computational Linguistics and Writing: Writing Processes and Authoring Aids (CL&W 2010).

Ian H. Witten and Eibe Frank. 2011. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, 2nd edition.