Gauge-invariant spherical linear perturbations of wormholes in Einstein gravity minimally coupled to a self-interacting phantom scalar field

Francesco Cremona
Dipartimento di Matematica, Università di Milano, Via C. Saldini 50, I-20133 Milano, Italy.

Livio Pizzocchero
Dipartimento di Matematica, Università di Milano, Via C. Saldini 50, I-20133 Milano, Italy
and Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Italy.

Olivier Sarbach
Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,
Edificio C-3, Ciudad Universitaria, 58040 Morelia, Michoacán, México.

Recently, there has been quite a lot of interest in static, spherical wormhole spacetimes and the question of their stability with respect to time-dependent perturbations. The consideration of linearized perturbations usually leads to a master wave equation with effective potential which can then be analyzed using standard tools from quantum mechanics. However, in the wormhole case, particular care must be taken with the gauge conditions when formulating the master equation. A poor coordinate choice, based for example on fixing the areal radial coordinate, may lead to singularities at the throat which complicates the stability analysis or might even lead to erroneous conclusions regarding the stability of the underlying wormhole configuration. In this work, we present a general method for deriving a gauge-invariant wave system of linearized perturbation equations in the spherically symmetric case, assuming that the matter supporting the wormhole is a phantom scalar field, that is, a self-interacting scalar field whose kinetic energy has the reversed sign. We show how this system can be decoupled and reduced to a single master wave equation with a regular potential, with no intermediate steps involving singularities at the throat. Two applications of our formalism are given. First, we re-derive the master equation for the linearly perturbed Ellis-Bronnikov wormhole using our new, singularity-free method. As a second application, we derive the master equation describing the linear perturbations of a certain AdS-wormhole, provide a detailed analysis of the spectral properties of the underlying operator and prove that, as in the Ellis-Bronnikov case, this wormhole is linearly unstable and possesses a single unstable mode.

I. INTRODUCTION

One of the most fascinating features of Einstein’s theory of General Relativity (GR) consists in the fact that spacetime may be curved and topologically non-trivial, describing intriguing objects like black holes and wormholes. Black hole spacetimes appear under rather natural conditions in GR, and they are expected to form in Nature, for instance, by the collapse of sufficiently massive stars at the end of their life. Furthermore, there is by now compelling evidence for their existence in our Universe which has recently been reinforced by the observation of gravitational waves from binary black hole mergers [1] and the first image of the shadow of the supermassive black hole in the center of the galaxy M87 [2]. In contrast to this, the occurrence of wormholes [1] is much more speculative, and so far, there is no observational evidence for the existence of such structures. From the theoretical point of view, there are important constraints, such as the topological censorship theorem [3]. This theorem implies that asymptotically flat, globally hyperbolic wormhole spacetimes (including those relevant to this paper whose Cauchy surfaces have topology \(\mathbb{R} \times S^2\), representing a throat connecting two asymptotically flat ends) require the existence of “exotic” matter to support the throat, that is, they require matter whose stress-energy-momentum tensor violates the (averaged) null energy condition. Intuitively, the need for exotic matter can be understood by the fact that a light bundle that traverses a wormhole throat must focus as it approaches the throat, but then must expand again as it moves away from the throat, which is opposite to the focusing effect for light due to ordinary matter [4]. On the other hand, it

*Electronic address: francesco.cremona@unimi.it
\[Electronic address: livio.pizzocchero@unimi.it
\[Electronic address: sarbach@ifm.umich.mx

\[In this article, when talking about wormholes, we always refer to traversable Lorentzian wormhole spacetimes in a metric theory of gravity.

has also been shown that an infinitesimally small quantity of matter violating the averaged null condition is sufficient to support the throat [3]. This leads to the hope that quantum effects may give rise to a semiclassical theory in which wormhole spacetimes are allowed, in a similar way than quantum effects (Hawking radiation) induce black hole evaporation although an area decrease of the event horizon is forbidden in classical GR with matter fields satisfying the null energy condition [1]. Nevertheless, it remains to be seen whether or not such effects are strong enough to give rise to a traversable wormhole throat of macroscopic size [6].

Instead of invoking quantum effects, an alternative way to violate the null energy condition (which has received important motivation from cosmology; see for example [4]) is the consideration of phantom scalar fields, i.e. scalar fields that have a negative kinetic energy (see for instance [8] and references therein). Due to this property, such fields may lead to gravitational repulsion, and hence induce interesting effects like the accelerated expansion in the universe.

All these solutions have been generalized to arbitrary dimensions [14] and to the following supporting fields: a scalar with a self-interaction potential [13, 14], a complex phantom scalar [17], a family of conventional and/or phantom scalars [18–21], a phantom scalar and an electromagnetic field [21], and, very recently, a k-essence scalar [22]. For the linear stability analysis of many of these solutions, see Refs. [16, 19, 21–25]. All these studies conclude that the static, spherically symmetric wormhole solutions are linearly unstable, with numerical simulations [18, 26, 27] revealing that the throat either collapses to a black hole or expands on timescales comparable to the light-crossing time of the radius of the throat. Therefore, finding a static, spherically symmetric wormhole solution in GR with exotic matter which can be shown to be linearly stable (or unstable with a large time scale associated with all the unstable modes) remains a challenging open problem. (2)

In this work, we focus on GR minimally coupled to a single, real phantom scalar field \(\Phi \) under the influence of an arbitrary potential \(V(\Phi) \) and provide a general framework to analyze the stability of static, spherically symmetric wormhole solutions in these theories. The first result of this paper is the derivation of a coupled, \(2 \times 2 \) linear wave system subject to a constraint, describing the dynamics of linearized, time-dependent perturbations of such solutions in terms of two gauge-invariant linear combination of the linearized metric coefficients and of the scalar field. Apart from being gauge-invariant, a key feature of this system relies in the fact that it is regular at the throat, provided the scalar field does not have a critical point there. This is a non-trivial achievement, since most direct approaches to the linearized equations are based on fixing the radial coordinate and deriving a wave equation for the linearized scalar field. Due to the fact that the radial coordinate has a critical point at the throat, the effective potential appearing in this wave equation is necessarily singular at the throat. As explained in [23] (see also [24]) this yields an artificial (mirror-like) boundary condition at the throat which prevents perturbations from traversing the wormhole. This artificial boundary condition effectively restricts the class of physically admissible perturbations, and as it turns out, the unstable modes associated with the wormholes is precluded from this class, leading to the erroneous conclusion that the wormhole is linearly stable. To overcome these problems, a method for transforming the singular wave equation to a regular one was introduced in [23] to treat the linearized perturbations of the Ellis-Bronnikov wormhole; this approach was subsequently generalized and referred to as “S-deformation method” in [24]. The present work proposes an alternative to the S-deformation method, based on the important assumption that the scalar field has no critical points, in which singularities (at the throat or elsewhere) do not appear at any stage of the derivation.

The second result of our work is that, provided a non-trivial time-independent solution of the coupled \(2 \times 2 \) system is known, it is possible to decouple the system, obtaining a single wave equation for an appropriate, gauge-invariant linear combination of the perturbed fields, from which all other perturbations can be reconstructed. In most situations,

2 However, the presence of unbounded negative kinetic energy by itself does not imply that any stationary solution in the theory is necessarily unstable. For example, it turns out that the Minkowski spacetime is nonlinearly stable in Einstein theory minimally coupled to a massless scalar field irrespectively of the sign of the gravitational coupling constant (see the comments and references in appendix B.5 in [12]).

3 See also [28] for the construction of static, spherically symmetric wormholes in Einstein-Dilaton-Gauss-Bonnet theory, a modified gravity theory, which does not require exotic matter. However, a careful stability analysis has recently revealed that these solutions are linearly unstable as well [22].
such a time-independent solution can be found by varying the parameters of a known family of static solutions. For the Ellis-Bronnikov wormhole, we show that the master equation obtained by our method agrees precisely with the one obtained in [23, 25, 30] by different means. Furthermore, we show that our gauge-invariant method for obtaining a master equation through the decoupling of the 2×2 system also works for wormhole solutions whose stability has not been addressed so far. As an explicit example, we consider a static, spherically symmetric AdS-type wormhole which connects two asymptotic AdS ends, and prove that it is linearly unstable as well.

Finally, we provide a detailed analysis for the behavior of the solution of the master equations in both the Ellis-Bronnikov and the AdS case, based on a rigorous spectral analysis of the Schrödinger operator appearing therein. A negative eigenvalue of the Schrödinger operator gives rise to a pair of modes, one exponentially growing and the other one exponentially decaying with respect to the time variable; a positive eigenvalue gives rise to a pair of oscillating modes, while a positive energy level lying in the continuous spectrum gives rise to a pair of non-normalizable oscillating modes, corresponding to generalized eigenfunctions of the Schrödinger operator. If zero is an eigenvalue it gives rise to a pair of normalizable modes, one of them constant and the other one linearly growing with time. We show that in the Ellis-Bronnikov case, the solution can be expanded in terms of an exponentially growing, an exponentially decaying, a constant, a linearly growing mode and a continuum of oscillators associated with non-normalizable modes. In contrast to this, in the AdS case the spectrum is a pure point spectrum giving rise to an exponentially growing, an exponentially decaying, and to an infinite, discrete set of oscillating normalizable modes. This is due to the Dirichlet-type boundary conditions imposed at the AdS boundary, which give rise to a regular Sturm-Liouville problem.

The article is organized as follows. In section II we specify our metric ansatz, make a few general comments regarding the coordinate conditions that will be relevant in this work and derive the field equations for a spherically symmetric, time-dependent configuration. In section III we discuss two static wormhole solutions that will serve as examples and applications for our perturbation formalism and stability analysis: the Ellis-Bronnikov solution and a wormhole connecting two AdS universes. In section IV we derive the relevant set of linearized equations in a gauge-fixed setting in which the scalar field is held fixed. In section V we introduce a set of combinations of the linearized fields which are invariant with respect to infinitesimal coordinate transformations, and the linearized field equations are cast into a constrained wave system for two of these gauge-invariant fields. In section VI we show how to decouple this wave system, provided a static solution of the linearized field equations is available, in which case a single master wave equation is obtained. This method is then applied to the examples of section III and it is shown that in each case the associated Schrödinger operator possesses a unique bound state with negative energy, implying that these wormholes are linearly unstable. In section VII we provide a detailed discussion on the spectral decomposition of the Schrödinger operator and the corresponding master equations (based on rigorous techniques from functional analysis) and contrast the Ellis-Bronnikov case with the one of the AdS wormhole. Conclusions, limitations and possible future applications of our method are given in section VIII. Technical details regarding the spectral theory of Schrödinger operators are given in the appendices.

Throughout this work, we use the signature convention $(-,+,+,+)$ and choose units in which $c = 1$, $\hbar = 1$.

II. SPHERICALLY SYMMETRIC FIELD EQUATIONS AND BACKGROUND

We consider a four-dimensional spacetime (M, g) in which the gravitational field g is minimally coupled to a massless phantom scalar field Φ, that is, a scalar field with the reversed sign in its kinetic term that self-interacts according to a potential $V(\Phi)$. The action functional of this system is

$$S[g, \Phi] := \int \left(\frac{R}{2\kappa} + \frac{1}{2} \nabla^\mu \Phi \cdot \nabla_\mu \Phi - V(\Phi) \right) dv, $$

where $\kappa = 8\pi G$ is the usual coupling constant while R and $dv = \sqrt{|\text{det}(g_{\mu\nu})|} \prod_{\mu=0}^{3} dx^\mu$ are the scalar curvature and the volume element associated with the metric g. The corresponding field equations are

$$R_{\mu\nu} = \kappa \left[-\nabla_\mu \Phi \cdot \nabla_\nu \Phi + V(\Phi) g_{\mu\nu} \right] ,$$

$$0 = \nabla^\mu \nabla_\mu \Phi + V(\Phi) ,$$

with ∇_μ and $R_{\mu\nu}$ denoting the covariant derivative and Ricci tensor, respectively, associated with g.

In this work, we focus on spherically symmetric spacetimes (M, g) of the form $M = \mathbb{M} \times S^2$ with metric

$$g = -\alpha(t, x)^2 dt^2 + \gamma(t, x)^2 (dx + \beta(t, x) dt)^2 + r(t, x)^2 (d\theta^2 + \sin^2 \theta \, d\varphi^2) ,$$

where

$$\alpha(t, x) = \alpha_0 - \frac{2M}{r_0} ,$$

$$\gamma(t, x) = \gamma_0 + \frac{2M}{r_0} ,$$

$$r(t, x) = r_0 + \frac{2M}{\alpha(t, x)} ,$$

and M, r_0, α_0, γ_0 are constants.
which, in a general spherically symmetric coordinate system \((t, x, \vartheta, \varphi)\), is parametrized in terms of the four functions \(\alpha, \beta, \gamma, r\) on the two-dimensional manifold \(\tilde{M}\). Of course, the number of these functions can be reduced from four to two by an appropriate choice of the coordinates \((t, x)\) on \(\tilde{M}\). There are several “natural” choices one can make. For example, given a smooth function \(f : \tilde{M} \to \mathbb{R}\) with the property that its gradient is everywhere spacelike, one can choose an orthogonal coordinate system \((t, x)\) on \(\tilde{M}\) such that \(x = f\) and \(\beta = 0\). (Likewise, if the gradient of \(f\) is everywhere timelike one can choose \((t, x)\) such that \(\beta = 0\) and \(t = f\).) In particular, if the gradient of the areal radius \(r\) is everywhere spacelike one can choose \(f = r\) and one is left with the two functions \(\alpha\) and \(\gamma\) on \(M\). Usually, however, the gradient of \(r\) is not everywhere spacelike due to the presence of minimal or trapped surfaces, and the resulting coordinate system is only locally defined on \(M\).

The field equations \((12)\) for a spherically symmetric metric \(3\) in any gauge such that \(\beta = 0\) can be written as

\[
\frac{\partial}{\partial t} \left(\frac{\dot{\gamma}}{\alpha} \right) - \frac{\partial}{\partial x} \left(\frac{\alpha'}{\alpha} \right) - \frac{\gamma}{\alpha^2} \frac{\alpha''}{\gamma} - \frac{\alpha'}{\gamma^2} \frac{\alpha'^2}{\gamma} = \frac{\kappa}{2} \left[\frac{\gamma}{\alpha} \Phi^2 - \frac{\alpha}{\gamma} \Phi'^2 \right],
\]

(4)

\[
\frac{\partial}{\partial t} \left[\frac{\gamma r'}{\alpha} \right] - \frac{\partial}{\partial x} \left[\frac{\alpha' r'}{\gamma} \right] = \alpha' \left(\kappa r^2 V(\Phi) - 1 \right),
\]

(5)

\[
\frac{\partial}{\partial t} \left[\frac{\gamma r'^2}{\alpha} \right] - \frac{\partial}{\partial x} \left[\frac{\alpha' r'^2}{\gamma} \right] = \alpha' r^2 \Phi'(\Phi),
\]

(6)

with the constraints

\[
\mathcal{H} := \frac{\alpha}{\gamma} \left[\frac{r''}{r} + \left(\frac{r'}{r} - 2 \frac{\gamma'}{\gamma} \right) \right] - \frac{\gamma}{\alpha} \left(\frac{r'}{r} + 2 \frac{\gamma'}{\gamma} \right) - \frac{\alpha'}{\gamma^2} = \frac{\kappa}{2} \left[\frac{\gamma}{\alpha} \Phi^2 + \frac{\alpha}{\gamma} \Phi'^2 \right] + \kappa \alpha \gamma V(\Phi) = 0,
\]

(7)

\[
\mathcal{M} := \frac{r''}{r} - \frac{r'}{r} \left(\frac{\gamma'}{\alpha} + \frac{\gamma}{r} \right) - \frac{2 \gamma'}{r} - \kappa \Phi \Phi' = 0.
\]

(8)

Here and in the following, a dot and a prime refer to partial differentiation with respect to \(t\) and \(x\), respectively. In the conformally flat gauge, in which \(\alpha = \gamma\), Eqs. \((15, 16)\) yield a hyperbolic wave system for the quantities \((\alpha, r, \Phi)\) which is subject to the constraints \((17, 18)\). This system (or slight variants thereof) is suitable for numerical time evolutions, see for instance \((19)\).

III. STATIC WORMHOLE SOLUTIONS

In this section, we discuss two examples of static wormhole solutions that have been considered previously in the literature: the Ellis-Bronnikov wormhole connecting two asymptotically flat ends \((10, 11)\) and a reflection-symmetric wormhole connecting two AdS ends \((3)\).

A. Ellis-Bronnikov wormhole

Let us assume a zero potential: \(V(\Phi) = 0\). In the static case, the functions \(\alpha, \gamma\) and \(r\) are \(t\)-independent and one can further adjust the coordinate \(x\) so that \(\alpha' \gamma = 1\). In this case, the field equations can be reduced to the three differential equations

\[
[\alpha'^2 r^2]'' = 2, \quad [\alpha'^2 r r']' = 1, \quad [\alpha'^2 \Phi]'' = 0,
\]

which arise, respectively, from a recombination of Eqs. \((15, 17)\), from Eq. \((5)\) and from Eq. \((6)\). These can easily be integrated with the result

\[
\alpha = \gamma^{-1} = e^{\gamma_1 \arctan \frac{x}{b}}, \quad r^2 = (x^2 + b^2) \gamma^2, \quad \Phi = \Phi_1 \arctan \frac{x}{b}.
\]

(9)

Here, \(b > 0\), \(\gamma_1\) and \(\Phi_1\) are integration constants, and the Hamiltonian constraint \(\mathcal{H} = 0\) enforces the relation \(\kappa \Phi_1^2 = 2(1 + \gamma_1^2)\) (while the momentum constraint \(\mathcal{M} = 0\) is obviously satisfied). These solutions were obtained long time ago by Ellis \((10)\) and Bronnikov \((11)\), and they describe traversable wormholes whose throat is located at \(x = \gamma_1 b\) (see also \((18)\) for their physical properties). The reflection-symmetric case \(\gamma_1 = 0\) for which \(\alpha = \gamma = 1\) results in a particularly simple form of the wormhole metric which has been posed as an exercise in general relativity in the popular article by Morris and Thorne \((13)\).
B. A wormhole connecting two AdS universes

We now look for a static solution in the gauge \(\alpha \gamma = 1 \), allowing \(V(\Phi) \) to be nonzero. Let us show that a simple solution of this form can be obtained by putting as before \(r = \sqrt{x^2 + b^2} \), where \(b > 0 \). With these choices it is easy to show that the combination (Eq. (5) + Eq. (7)) is satisfied if \(\Phi = \sqrt{2 / \kappa} \arctan(x/b) + \Phi_0 \) with \(\Phi_0 \) a constant. With this expression for the scalar field, Eq. (1) leads to

\[
\alpha = \sqrt{1 - K (b^2 + x^2) + M (b^2 + x^2) \arctan \frac{x}{b} + bM x},
\]

where \(K \) and \(M \) are two constants. The remaining two equations Eq. (5) (or, alternatively, Eq. (7)) and Eq. (6) can be solved putting

\[
V(\Phi(x)) = \frac{K(b^2 + 3x^2) - M (b^2 + 3x^2) \arctan \frac{x}{b} - 3bM x}{K(b^2 + x^2)}.\]

Choosing, without loss of generality, \(\Phi_0 = 0 \), we obtain for \(V(\Phi) \)

\[
V(\Phi) = \frac{K}{\kappa} \left[3 - 2 \cos^2 \left(\sqrt{\frac{\kappa}{2}} \Phi \right) \right] - \frac{M}{\kappa} \left\{ 3 \sin \left(\sqrt{\frac{\kappa}{2}} \Phi \right) \cos \left(\sqrt{\frac{\kappa}{2}} \Phi \right) + \sqrt{\frac{\kappa}{2}} \Phi \right\}.
\]

Actually, this solution is exactly the general solution given by Bronnikov and Fabris in (31) and reconsidered in the recent survey (8) (with some reparametrization of the involved constants).

From here to the end of the paper we focus on the choice

\[
M = 0, \quad K = -k^2 < 0,
\]

(with \(k > 0 \)) corresponding to a wormhole metric which is reflection-symmetric with respect to the throat. In this case, the solution simplifies to

\[
V(\Phi) = -\frac{k^2}{\kappa} \left[3 - 2 \cos^2 \left(\sqrt{\frac{\kappa}{2}} \Phi \right) \right], \quad \alpha = \gamma^{-1} = \sqrt{1 + k^2(x^2 + b^2)}, \quad r = \sqrt{x^2 + b^2}, \quad \Phi = \sqrt{\frac{2}{\kappa}} \arctan \frac{x}{b}. \tag{10}
\]

In the limit case \(b = 0 \) we should replace the third equality in (10) by \(r = x > 0 \); the corresponding metric describes an Anti de Sitter (AdS) universe with cosmological constant \(\Lambda = -3k^2 \). From now on we intend

\[
b > 0, \quad -\infty < x < +\infty;
\]

since \(r(x) \sim |x| \) for \(x \to \pm \infty \), we can interpret the metric in (10) as describing a wormhole connecting two separate asymptotically AdS universes with the same cosmological constant \(\Lambda = -3k^2 \) and minimal areal radius \(b \) at the throat. For this reason one could call the solution (10) an “AdS-AdS wormhole”; in the sequel this expression will be always shortened into “AdS wormhole”. Let us note that, for \(k \to 0 \), the potential \(V(\Phi) \) vanishes and the AdS wormhole (with \(b \) fixed) becomes the reflection-symmetric Ellis-Bronnikov wormhole (as in Eq. (3), with \(\gamma_1 = 0 \)).

For further convenience, we introduce the change of variable

\[
t = \frac{s}{2k \sqrt{1 + B^2}}, \quad x = \sqrt{1 + B^2} \frac{\tan \frac{u}{2}}{k}, \quad B := bk, \quad s \in (-\infty, \infty), \quad u \in (-\pi, \pi), \tag{11}
\]

so that in the new coordinates system the metric corresponding to the solution (10) is transformed into a metric of the form (3) with \((t, x)\) replaced by \((s, u)\) and

\[
\alpha = \gamma = \frac{1}{2k \cos \frac{u}{2}}, \quad \beta = 0, \quad r = \sqrt{1 + 2B^2 \cos u \frac{\tan \frac{u}{2}}{B}}, \quad \Phi = \sqrt{\frac{2}{\kappa}} \arctan \left(\frac{\sqrt{1 + B^2 \tan \frac{u}{2}}}{B} \right). \tag{12}
\]

(of course, \(V(\Phi) \) is still as in (10)). Let us observe that the limits \(x \to \pm \infty \), describing the far ends of the wormhole, are equivalent to the limits \(u \to \pm \pi \).
IV. LINEAR PERTURBATIONS AND THE $\delta \Phi = 0$ GAUGE

In the sequel we consider, for an arbitrary potential $V(\Phi)$, a family of static solutions $(\alpha, \gamma, r, \Phi)$ of Eqs. (18) (without necessarily assuming the gauge condition $\alpha \gamma = 1$). This family may depend on certain parameters (like the constants b, γ in subsection II A or the parameter B in subsection II B). In addition, we consider a (non-static) perturbation $(\delta \alpha, \delta \gamma, \delta r, \delta \Phi)$ of this static solution, which is treated linearizing Eqs. (18); let us recall that Eqs. (18) assume $\beta = 0$ for the metric (3), so their linearization corresponds to taking $\delta \beta = 0$.

For the particular case in which the potential vanishes ($V = 0$) it can be shown (see e.g. Ref. [23]) that the linearized constraint equations $\delta H = \delta \mathcal{M} = 0$ can be integrated. It turns out this is still the case for solutions with a non-trivial potential, yielding the conclusion that

$$
\sigma := \frac{\alpha r}{\gamma} \left(\delta r' - \frac{\alpha'}{\alpha} \delta r - r' \frac{\delta \gamma}{\gamma} - \frac{\kappa}{2} r \Phi' \delta \Phi \right)
$$

(13)
is a constant. This constant indeed describes a zero mode, that is, a perturbation corresponding to an infinitesimal variation of the parameters labelling the static solution (see section 3.1 of [23] for more details in the $V = 0$ case). Since we are mainly interested in dynamical perturbations (rather than infinitesimal deformations along the static branch in the solution space), we assume from now on that

$$
\sigma = 0.
$$

(14)

For future use, it is advantageous to introduce the quantities (4)

$$
D := \frac{\delta \alpha}{\alpha}, \quad A := \frac{\delta \gamma}{\gamma}, \quad C := \frac{\delta r}{r}.
$$

(15)

Then Eqs. (15,14) become

$$
\sigma = 0, \quad \sigma := \frac{\alpha r^2}{\gamma} \left[C' - \left(\frac{\alpha'}{\alpha} - \frac{r'}{r} \right) C - \frac{r'}{r} A - \frac{\kappa}{2} \Phi \delta \Phi \right];
$$

(16)

moreover, the linearization of Eqs. (15,16) and the condition $\sigma = 0$ give the following linear system of equations:

$$
\frac{\gamma}{\alpha} \tilde{A} - \frac{\partial}{\partial x} \left(\frac{\alpha}{\gamma} D' \right) - \frac{\alpha'}{\gamma} (D - A)' + 2 \frac{\alpha r'}{\gamma r} C' - \frac{2 \alpha \gamma}{r^2} (A - C) + \frac{\kappa \alpha}{\gamma} \Phi \delta \Phi' = 0,
$$

(17)

$$
\frac{\gamma}{\alpha} \tilde{C} - \frac{\partial}{\partial x} \left(\frac{\alpha}{\gamma} C' \right) - \frac{\alpha r'}{\gamma r} (D - A + 4 C)' + \frac{2 \alpha \gamma}{r^2} (A - C) - \kappa \alpha \gamma [2 V(\Phi) A + V'(\Phi) \delta \Phi] = 0,
$$

(18)

$$
\frac{\gamma}{\alpha} \tilde{D} - \frac{\partial}{\partial x} \left(\frac{\alpha}{\gamma} D \Phi' \right) - 2 \frac{\alpha}{\gamma} r' \delta \Phi' - \frac{\alpha}{\gamma} \Phi' (D - A + 2 C)' - \kappa \gamma [2 V'(\Phi) A + V''(\Phi) \delta \Phi] = 0.
$$

(19)

All the equations derived so far only assume the orthogonal gauge $\beta = 0$; at the linearized level there is still liberty which is related to the choice of a function f on \mathcal{M}, as explained in section I. One possible choice is fixing the areal radius function $r(x)$ to its background form, such that $\delta r = 0$ and $\mathcal{C} = 0$. Eqs. (10,13) then allow to express the metric fields A and D' in terms of $\delta \Phi$ and one obtains a master equation for the linearized scalar field $\delta \Phi$ (see e.g. [8]).

However, in this article, we are interested in deriving a master equation describing the dynamics of the linear perturbations of anyone of the two wormholes in the previous subsections II A and II B. Since these solutions have $dr = 0$ at the wormhole throat, fixing the areal radius function $r(x)$ amounts in forcing the perturbations to vanish at the throat, which from a physical point of view is much too restrictive. At the mathematical level, enforcing the $\delta r = 0$ gauge results in a master equation for $\delta \Phi$ with a potential that is singular at the throat (see [8,22] for more details). On the other hand, while $dr = 0$ at the wormhole throat, we note from Eq. (9) or Eq. (10) that $d \Phi = \text{const} \times dx/(x^2 + b^2)$ is everywhere spacelike, and hence the same will be true for sufficiently small perturbations of the static wormhole solution. As a consequence, we may choose the coordinates (t, x) such that Φ is given by exactly the same expression as in Eq. (9) or Eq. (10), even for the perturbed spacetime. This implies, in particular, that $\delta \Phi = 0$.

\footnote{This choice of notation is somehow awkward; however the reason for it is to maintain compatibility with the notation used in Ref. [30].}
In this case, Eqs. (22,23), along with Eq. (20), gives
\[\gamma = \Phi \]
the unperturbed quantity \(\Phi \).

In section VI we analyze the behavior of the perturbed fields under an infinitesimal coordinate transformation
\[x^a \rightarrow x^a + \delta x^a, \quad (x^a) = (t, x), \]
parametrized by a vector field \(\delta x = \delta x^a \partial_a = (\delta t) \partial_t + (\delta x) \partial_x \) on \(\tilde{M} \), and try to rewrite the equations from the previous section in terms of fields which are manifestly gauge-invariant with respect to these transformations.

Under the transformation (25) the linear perturbations of the radial part of the metric, \(\tilde{g}_{ab} \delta x^a dx^b := -\alpha^2 dt^2 + \gamma^2 (dx + \beta dt)^2 \), of the areal radius \(r \), and of scalar field \(\Phi \) transform according to
\[\delta \tilde{g}_{ab} \rightarrow \delta \tilde{g}_{ab} + L_{\delta x} \tilde{g}_{ab}, \quad \delta r \rightarrow \delta r + L_{\delta x} r, \quad \delta \Phi \rightarrow \delta \Phi + L_{\delta x} \Phi, \]
with \(L_{\delta x} \) denoting the Lie derivative with respect to \(\delta x \). In terms of the parametrization (3) and assuming that the background is static, this yields
\[\delta \alpha \rightarrow \delta \alpha + \alpha' \delta x + \alpha \delta t, \]
\[\delta \beta \rightarrow \delta \beta + \delta x - \frac{\alpha^2}{\gamma^2} \delta t', \]
\[\delta \gamma \rightarrow \delta \gamma + (\gamma \delta x)', \]
\[\delta r \rightarrow \delta r + r' \delta x, \]
\[\delta \Phi \rightarrow \delta \Phi + \Phi' \delta x \]
(\footnote{where \(\delta t, \delta x \) and \(\delta \Phi \) refer to \(\frac{\delta}{\partial t} (\delta t) \), \(\frac{\delta}{\partial x} (\delta x) \) and \(\frac{\delta}{\partial \Phi} (\delta \Phi) \), respectively; similar notations are used hereafter in relation to the other coordinates.})

which coincides with Eq. (15) in Ref. \([30] \). We will return to this subcase at the end of section V. The generalizations to the non reflection-symmetric Ellis-Bronnikov wormhole and to the AdS wormhole (subsections III A, III B) will be discussed in section VI.

V. GAUGE-ININVARIANT REINTERPRETATION

In this section we analyze the behavior of the perturbed fields under an infinitesimal coordinate transformation
\[x^a \rightarrow x^a + \delta x^a, \quad (x^a) = (t, x), \]
parametrized by a vector field \(\delta x = \delta x^a \partial_a = (\delta t) \partial_t + (\delta x) \partial_x \) on \(\tilde{M} \), and try to rewrite the equations from the previous section in terms of fields which are manifestly gauge-invariant with respect to these transformations.

Under the transformation (25) the linear perturbations of the radial part of the metric, \(\tilde{g}_{ab} \delta x^a dx^b := -\alpha^2 dt^2 + \gamma^2 (dx + \beta dt)^2 \), of the areal radius \(r \), and of scalar field \(\Phi \) transform according to
\[\delta \tilde{g}_{ab} \rightarrow \delta \tilde{g}_{ab} + L_{\delta x} \tilde{g}_{ab}, \quad \delta r \rightarrow \delta r + L_{\delta x} r, \quad \delta \Phi \rightarrow \delta \Phi + L_{\delta x} \Phi, \]
with \(L_{\delta x} \) denoting the Lie derivative with respect to \(\delta x \). In terms of the parametrization (3) and assuming that the background is static, this yields
\[\delta \alpha \rightarrow \delta \alpha + \alpha' \delta x + \alpha \delta t, \]
\[\delta \beta \rightarrow \delta \beta + \delta x - \frac{\alpha^2}{\gamma^2} \delta t', \]
\[\delta \gamma \rightarrow \delta \gamma + (\gamma \delta x)', \]
\[\delta r \rightarrow \delta r + r' \delta x, \]
\[\delta \Phi \rightarrow \delta \Phi + \Phi' \delta x \]
(\footnote{where \(\delta t, \delta x \) and \(\delta \Phi \) refer to \(\frac{\delta}{\partial t} (\delta t) \), \(\frac{\delta}{\partial x} (\delta x) \) and \(\frac{\delta}{\partial \Phi} (\delta \Phi) \), respectively; similar notations are used hereafter in relation to the other coordinates.})

which is still subject to the constraint given in Eq. (20).

As a simple example, let us consider the reflection-symmetric subcase of the Ellis-Bronnikov wormhole, already mentioned at the end of the subsection III A, corresponding to the choice \(V = 0, \alpha = \gamma = 1 \) and \(r \) as in Eq. (20). In this case, the difference between Eqs. (22,23), along with Eq. (20), gives
\[\chi' - \chi'' - \frac{3b^2}{r^4} \chi = 0, \quad \chi := \frac{A - C}{r}, \]
which coincides with Eq. (15) in Ref. \([30] \). We will return to this subcase at the end of section V. The generalizations to the non reflection-symmetric Ellis-Bronnikov wormhole and to the AdS wormhole (subsections III A, III B) will be discussed in section VI.
to $\delta \beta$ and $\delta \Phi$). The following three quantities are invariant with respect to these transformations:

$$A := \frac{\delta \gamma}{\gamma} - \frac{1}{2} \left(\frac{\delta \Phi}{\Phi} \right)' ,$$

$$C := \frac{\delta r}{r} - \frac{r'}{r} \frac{\delta \Phi}{\Phi} ,$$

$$E := \left(\frac{\delta \alpha}{\alpha} \right)' - \left(\frac{\alpha'}{\alpha} \frac{\delta \Phi}{\Phi} \right)' + \frac{\gamma^2}{\alpha^2} \left(\frac{\delta \beta}{\beta} - \frac{\delta \Phi}{\Phi} \right) .$$

In the particular gauge used in the second half of the previous section, for which $\delta \beta = \delta \Phi = 0$, it turns out that $A = A$, $C = C$ and $E = E'$, where A, C and D are defined by Eq. (15). Therefore, in this gauge, we may replace the quantities A, C and D' in Eqs. (20) by the quantities A, C, E of the present section. Since the linearized field equations are gauge-invariant, the equations obtained in this way are valid in any gauge.

Summing up, our gauge-invariant equations are

$$\sigma = 0, \quad \sigma = \frac{\alpha^2}{\gamma} \left[C + \left(\frac{r'}{r} - \frac{\alpha'}{\alpha} \right) C - \frac{r'}{r} A \right] ,$$

$$E - A' + 2C' + 2\gamma^2 \frac{V'(\Phi)}{\Phi'} A = 0 ,$$

$$\frac{\gamma}{\alpha} \ddot{A} - \frac{\partial}{\partial x} \left[\frac{\alpha}{\gamma} (A' - 2C') \right] + 2\frac{\alpha}{\gamma} \left(\frac{\alpha'}{\alpha} + \frac{r'}{r} \right) C' - 2\frac{\alpha \gamma}{r^2} (A - C)$$

$$+ 2\frac{\alpha \gamma}{r^2} V'(\Phi) A' + 2\frac{\alpha \gamma}{r^2} \left[\frac{\gamma^2 V'(\Phi)'}{\Phi'} + \left(3\frac{\alpha'}{\alpha} + 2\frac{r'}{r} \right) \frac{V'(\Phi)}{\Phi'} + V''(\Phi) \right] A = 0 ,$$

$$\frac{\gamma}{\alpha} \ddot{C} - \frac{\partial}{\partial x} \left[\frac{\alpha}{\gamma} C' \right] - 2\frac{\alpha}{\gamma} \frac{r'}{r} C' + 2\frac{\alpha}{r^2} (A - C) + 2\frac{\alpha \gamma}{r^2} \left(\frac{\alpha'}{\alpha} \frac{V'(\Phi)}{\Phi'} - \kappa V(\Phi) \right) A = 0 .$$

As a simple example, consider again the reflection-symmetric Ellis-Bronnikov wormhole, for which $V = 0$, $\alpha = \gamma = 1$ and $r = \sqrt{x^2 + b^2}$, i.e. the same example as the one described at the end of section IV with Eqs. (20) yielding Eq. (21). However, now Eq. (21) can be interpreted in a gauge-invariant framework where $\chi = (A - C)/r$. The interest of this equation is that it involves only one unknown function $\chi(t, x)$ and reduces the linear stability analysis of this wormhole to the spectral analysis of the Schrödinger operator $-\partial^2/\partial x^2 - 3\beta^2/(x^2 + b^2)^2$. Since this has one negative eigenvalue (see Refs. [22, 30]), one concludes that the wormhole is unstable.

In Ref. [30] an attempt was made to provide the present gauge-invariant formulation of the field equations in this particular subcase: while the two gauge-invariant quantities A and C were correctly defined, the quantity $D = \delta \alpha\alpha$ defined in [31] is only invariant with respect to the restricted set of gauge transformations for which $\delta \ell = 0$. However, in general, this restricted set is not sufficient to achieve both conditions $\delta \Phi = 0$ and $\delta \beta = 0$ simultaneously, on which the derivation in Ref. [30] was based.

Finally, let us observe that the $\delta $-invariant Eqs. (31, 35) (again in the present subcase $V = 0$, $\alpha = \gamma = 1$ and $r = \sqrt{x^2 + b^2}$) are related to the results presented in [22], which are based on the gauge $\delta \alpha = \delta \beta = 0$. For example, Eq. (31), when choosing the gauge $\delta \alpha = \delta \beta = 0$, yields Eq. (3.9) in [22]. The analysis of [22] also yields a final equation of the form (21), even though using a different approach related to the chosen gauge. (5)

VI. DECOPLING OF THE PULSATION EQUATIONS

After considering the simple example of the reflection-symmetric Ellis-Bronnikov wormhole, let us return to the case of an arbitrary potential $V(\Phi)$. In this section we try to reduce the gauge-invariant equations of section V to one involving only one unknown function $\chi(t, x)$ (generalizing the considerations which lead to Eq. (21) in the

5 In [22], the variables x and b of the present paper are denoted with ℓ and a; the field R fulfilling the master equation (3.15) of the cited work is related to the present gauge-invariant quantities C and E by the relation $\frac{\partial R}{\partial x} \left[R \left(\frac{t}{\ell}, \frac{x}{\ell} \right) \right] = \frac{e^2}{\ell^2} \left(r \ddot{C} - \ddot{E} r' \right)$. Using the linearized field equations, this can also be rewritten as $\frac{\partial R}{\partial x} \left[R \left(\frac{t}{\ell}, \frac{x}{\ell} \right) \right] = -\frac{1}{\ell^2} (A - C)$, which explains why R satisfies the same master equation as χ.

reflection-symmetric Ellis-Bronnikov subcase). To this purpose we note the following: setting

\[F := \frac{A - C}{r}, \quad G := \frac{C}{r} \]

and performing a lengthy calculation, we can reformulate the system of Eqs. (34,36,37) as the hyperbolic system of wave equations

\[
\begin{bmatrix}
\frac{\partial^2}{\partial t^2} - \left(\frac{\alpha}{\gamma} \frac{\partial}{\partial x} \right)^2 + \left(Y_0 \begin{pmatrix} Y_0 & 0 \\ 0 & 0 \end{pmatrix} \right) \frac{\alpha}{\gamma} \frac{\partial}{\partial x} + \frac{\alpha^2}{\gamma^2} \left(W_{11} & W_{12} \\ W_{21} & W_{22} \right) \right] \begin{pmatrix} F \\ G \end{pmatrix} = 0,
\]

subject to the constraint

\[G' = \left(\frac{\alpha'}{\alpha} - \frac{r'}{r} \right) G + \frac{r'}{r} F. \]

Here, the functions \(Y_0 \) and \(W_{ij} \) are given by the following functions of the background quantities:

\[Y_0 = 2\alpha\gamma \frac{V'(\Phi)}{\Phi'} , \]
\[W_{11} = \frac{r'}{r} \left(4\frac{\alpha'}{\alpha} + 3\frac{r'}{r} \right) - 3\frac{\gamma^2}{r^2} + Z_{11} , \]
\[W_{12} = 4\frac{\alpha'^2}{\alpha^2} + Z_{12} , \]
\[W_{21} = -4\frac{r'^2}{r^2} + 2\frac{\gamma^2}{r^2} + Z_{21} , \]
\[W_{22} = \frac{r'}{r} \left(-4\frac{\alpha'}{\alpha} + 3\frac{r'}{r} \right) - \frac{\gamma^2}{r^2} + Z_{22} , \]

where

\[Z_{11} = Z_{12} + \kappa\gamma^2 V(\Phi) , \]
\[Z_{12} = 2\gamma^2 \left[\frac{\gamma^2 V'(\Phi)^2}{\Phi'^2} + \left(3\frac{\alpha'}{\alpha} + 2\frac{r'}{r} \right) \frac{V'(\Phi)}{\Phi'} + V''(\Phi) \right] , \]
\[Z_{21} = 2\gamma^2 \left[-\kappa V(\Phi) + \frac{r'}{r} \frac{V'(\Phi)}{\Phi'} \right] , \]
\[Z_{22} = Z_{21} + \kappa\gamma^2 V(\Phi) . \]

In deriving the wave system (39) we have used the background equations

\[\frac{r'}{r} \left(2\frac{\alpha'}{\alpha} + \frac{r'}{r} \right) - \frac{\gamma^2}{r^2} + \frac{\kappa}{2} \Phi'^2 + \kappa\gamma^2 V(\Phi) = 0 , \]
\[\frac{\alpha''}{\alpha} - \frac{\alpha'}{\alpha} \left(\frac{\gamma'}{\gamma} - 2\frac{r'}{r} \right) + \kappa\gamma^2 V(\Phi) = 0 , \]
\[\frac{r''}{r} - \frac{r'}{r} \left(\frac{\gamma'}{\gamma} - \frac{\alpha'}{\alpha} - \frac{r'}{r} \right) - \frac{\gamma^2}{r^2} + \kappa\gamma^2 V(\Phi) = 0 . \]

Observe that in the reflection-symmetric Ellis-Bronnikov subcase \(V = 0 \), \(\alpha = \gamma = 1 \) and \(r = \sqrt{x^2 + b^2} \) it follows that \(Y_0 = W_{12} = 0 \), such that the equation for \(F \) in the system (39) decouples trivially from the remaining ones.

In the following, we describe a general trick which allows one to decouple the wave system (39). Let us suppose that we know a static solution \((F_0(x), G_0(x))\) of Eqs. (39) such that \(G_0(x) \neq 0 \) for all \(x \). In this case, based on Leibnitz’s product rule, it is not difficult to verify that the field

\[\tilde{\chi} := F - \frac{F_0}{G_0} G \]
satisfies the decoupled wave equation
\[
\left[\frac{\partial^2}{\partial t^2} - \left(\frac{\alpha}{\gamma} \frac{\partial}{\partial x} \right)^2 + Y_0 \frac{\alpha}{\gamma} \frac{\partial}{\partial x} + \frac{\alpha^2}{\gamma^2} \right] \chi = 0 ,
\]
(53)

with the potential
\[
\hat{V} = W_{11} - \frac{\mathcal{F}_0}{\mathcal{G}_0} W_{21} - 2 \frac{r'}{r} \left(\frac{\mathcal{F}_0}{\mathcal{G}_0} \right)' + \frac{\gamma}{\alpha} r' \frac{Y_0}{\gamma} \left(\frac{\mathcal{F}_0}{\mathcal{G}_0} + 1 \right) .
\]
(54)

Let us observe that it is possible to eliminate the first spatial derivative in Eq. (53). Indeed, let us define
\[
\chi := \tilde{\chi} / a , \quad a(x) = a_0 e^{\int_{x_0}^{x} \frac{Y_0(\gamma)(y)}{2a(y)} dy} ,
\]
(55)

where \(a_0\) and \(x_0\) are two constants. \(^6\) Then, it is found that \(\chi\) satisfies the wave equation
\[
\left[\frac{\partial^2}{\partial t^2} - \left(\frac{\alpha}{\gamma} \frac{\partial}{\partial x} \right)^2 + \frac{\alpha^2}{\gamma^2} \right] \chi = 0 ,
\]
(56)

with the potential \(^7\)
\[
\mathcal{V} = \hat{V} + \frac{1}{4} \frac{\gamma^2}{\alpha^2} Y_0^2 - \frac{1}{2} \frac{\gamma}{\alpha} Y_0' = \frac{r'}{r} \left(\frac{\alpha'}{\alpha} + 3 \frac{r'}{r} \right) - 3 \frac{\gamma^2}{\alpha^2} r^2 + \frac{\gamma}{\alpha} \left[2 \frac{\gamma^2 V'(\Phi)^2}{\Phi^2} + 4 \left(\frac{\alpha'}{\alpha} + \frac{r'}{r} \right) \frac{V'(\Phi)}{\Phi} + V''(\Phi) + \kappa V(\Phi) \right]
\]
\[+ \left[4 \frac{r'^2}{r^2} - 2 \frac{\gamma^2}{\alpha^2} + 2 \kappa \gamma^2 V(\Phi) \right] \frac{\mathcal{F}_0}{\mathcal{G}_0} - 2 \frac{r'}{r} \left(\frac{\mathcal{F}_0}{\mathcal{G}_0} \right)' .
\]
(57)

We refer to Eq. (56) as the master equation; this reduces the linear stability analysis to the spectral analysis of the linear, Schrödinger-type operator \(- \left(\frac{\alpha}{\gamma} \frac{\partial}{\partial x} \right)^2 + \frac{\alpha^2}{\gamma^2} \mathcal{V}^2\).

Once the master equation has been solved for the field \(\chi(t, x)\), it is possible to reconstruct the gauge-invariant quantities \(\mathcal{F}\) and \(\mathcal{G}\) by integrating the constraint equation \(^{10}\). Using the definition of \(\chi\) and the fact that \((\mathcal{F}_0, \mathcal{G}_0)\) satisfy the constraint, one obtains
\[
\mathcal{G}(t, x) = \mathcal{G}_0(x) \int_{x_0}^{x} \frac{r'(y)}{r(y)} \frac{a(y)}{\mathcal{G}_0(y)} \chi(t, y) dy ,
\]
(58)
\[
\mathcal{F}(t, x) = a(x) \chi(t, x) + \frac{\mathcal{F}_0(x)}{\mathcal{G}_0(x)} \mathcal{G}(t, x) ,
\]
(59)

and from this one can also reconstruct the gauge-invariant fields \(A\) and \(C\). Finally, the gauge-invariant field \(E\) is obtained from Eq. (55).

Let us repeat that the above approach requires the knowledge of a static solution \((\mathcal{F}_0(x), \mathcal{G}_0(x))\) of Eqs. \(^{39}40\). A general strategy to obtain such a static solution is to make an infinitesimal variation along a static solution \((\alpha, \gamma, r, \Phi)\) of the Einstein-scalar equations with respect to its parameters. Since this linearization of the static solution automatically satisfies the linearized system \(^{41}48\), the corresponding gauge-invariant fields \(A\) and \(C\) (defined by Eqs. \(^{51}52\)) fulfill the system \(^{30}37\), provided that we have the vanishing condition \(^{34}\) for \(\sigma\); obviously, under the same condition, the fields \(\mathcal{F}\) and \(\mathcal{G}\) associated with \(A\) and \(C\) represent a static solution of the wave system \(^{39}40\). In the following we will apply this general strategy to the cases of the Ellis-Bronnikov and AdS wormholes.

\(^6\) Note that \(a\) satisfies
\[
a' = \frac{Y_0 \gamma}{2\alpha} a , \quad a'' = \left[\frac{Y_0 \gamma}{2\alpha} \right]' + \left(\frac{Y_0 \gamma}{2\alpha} \right)^2 a .
\]

\(^7\) Here \(Y_0'\) can be computed by taking a derivative of Eq. \(^{44}\) and eliminating \(\Phi''\) via the static version of Eq. \(^{46}\).
A. Perturbed Ellis-Bronnikov wormhole

The Ellis-Bronnikov solution given in Eq. (31) can be linearized with respect to the parameters \(b \) and \(\gamma_1 \), which yields

\[
\frac{\delta \gamma}{\gamma} = - \left(\arctan \frac{x}{b} \right) \delta \gamma_1 + \frac{\gamma_1 x}{x^2 + b^2} \delta b,
\]

\[
\frac{\delta r}{r} = - \left(\arctan \frac{x}{b} \right) \delta \gamma_1 + \frac{b + \gamma_1 x}{x^2 + b^2} \delta b,
\]

\[
\frac{\delta \Phi}{\Phi r} = \frac{\gamma_1}{1 + \gamma_1^2} \left(x^2 + b^2 \right) \left(\arctan \frac{x}{b} \right) \delta \gamma_1 - x \frac{\delta b}{b}.
\]

Introduced into Eqs. (31,32) this gives rise to the gauge-invariant quantities

\[
A = \frac{1}{1 + \gamma_1^2} \left[\gamma_1 + \left(1 + 2 \gamma_1 \frac{x}{b} \right) \arctan \frac{x}{b} \right] \delta \gamma_1 + \frac{\delta b}{b},
\]

\[
C = \frac{1 + \gamma_1^2 \frac{x}{b} \arctan \frac{x}{b}}{1 + \gamma_1^2} \delta \gamma_1 + \frac{\delta b}{b}.
\]

As explained before, the fields \(A \) and \(C \) automatically satisfy the system of equations (34,36,37). In this case the definition of \(\sigma \) in Eq. (44) gives \(\sigma = -b \delta \gamma_1 - b \delta \gamma_0 = \delta (b \gamma_1)\), so that the condition \(\sigma = 0\) therein holds if

\[
\delta b = - \frac{\delta \gamma_1}{\gamma_1}.
\]

Inserting Eqs. (63,64,65) in the definition (38) of \(\mathcal{F} \) and \(\mathcal{G} \) (and omitting the proportionality factor \(\delta \gamma_1 \)), one obtains the following time-independent solution of the constrained wave system (39,40):

\[
\left(\mathcal{F}_0 \mathcal{G}_0 \right) := \frac{1}{r} \left(\frac{\gamma_1^2}{1 + \gamma_1^2} \left[1 + \frac{x}{b} \arctan \frac{x}{b} \right] \mathcal{F}(x) \right), \quad \mathcal{F}(x) := 1 + \frac{\gamma_1}{1 + \gamma_1^2} \left(1 + \gamma_1 \frac{x}{b} \right) \arctan \frac{x}{b}.
\]

Note that the function \(F : \mathbb{R} \to \mathbb{R} \) is smooth and strictly positive. (8)

Based on these observations, we can apply the general method for decoupling the wave system (39,40), choosing the static solution \(\mathcal{F}_0(x), \mathcal{G}_0(x) \) as in Eq. (64). Note that in this case we have \(Y_0 = 0\) and can choose \(a = 1 \) as \(V = 0 \), which implies that \(\mathcal{V} = \tilde{\mathcal{V}} \) and \(\chi = \tilde{\chi} \). One can verify that the function \(\frac{\alpha^2}{\gamma^2} \mathcal{V} \) appearing in the master equation (56) agrees up to a rescaling with the potential defined in Eq. (32) of Ref. [23], denoted therein with \(W \); more precisely,

\[
\left(\frac{\alpha^2}{\gamma^2} \mathcal{V} \right)(x) = \frac{1}{b^2} W \left(\frac{x}{b} \right).
\]

For future mention let us point out some features of this function, following from the analysis of \(W \) in [23]. First of all \(\frac{\alpha^2}{\gamma^2} \mathcal{V} : \mathbb{R} \to \mathbb{R} \) is a \(C^\infty \) bounded function; moreover, if \(\gamma_1 \neq 0 \) one has \(\left(\frac{\alpha^2}{\gamma^2} \mathcal{V} \right)(x) \sim 2e^{\pm 2\pi \gamma_1/x^2} \) for \(x \to \pm \infty \). In the reflection-symmetric case \(\gamma_1 = 0 \), where \(\alpha = \gamma = 1 \), one obtains

\[
\mathcal{V}(x) = - \frac{3b^2}{(x^2 + b^2)^2} = - \frac{3b^2}{r^2(x)},
\]

and the master equation (56) is found to coincide with Eq. (24).

Let us now sketch some spectral features of the Schrödinger operator \(- \left(\frac{d^2}{d x^2} + \frac{\alpha^2}{\gamma^2} \mathcal{V} \right) \) appearing in the master equation (56) (which can be regarded as a selfadjoint operator in \(L^2(\mathbb{R}, \frac{d}{dx}) \)); these features allow one to infer the

8 For \(\gamma_1 = 0, F = 1 \) and the statement is trivial. When \(\gamma_1 \neq 0 \) one has \(F(x) \to +\infty \) for \(x \to \pm \infty \), thus \(F \) has a global minimum at some \(x = x_0 \), where \(0 = (1 + \gamma_1^2) b F'(x_0) = \gamma_1 \left[\gamma_1 \arctan(x_0/b) + (b + \gamma_1 x_0)b/(x_0^2 + b^2) \right] \). Eliminating the arctan term one obtains from this \((1 + \gamma_1^2) F(x_0) = (x_0 - \gamma_1 b)^2/(x_0^2 + b^2) \). However, this minimum value must be strictly positive since otherwise \(x_0 = b \gamma_1 \) which would imply that \((1 + \gamma_1^2) b F'(x_0) = \gamma_1 \left(\gamma_1 \arctan \gamma_1 + 1 \right) \) which cannot be zero since \(\gamma_1 \neq 0 \).
linear instability of the Ellis-Bronnikov wormhole both for $\gamma_1 \neq 0$ and for $\gamma_1 = 0$. As shown in [23], the “zero energy” equation
\[- \left(\frac{2}{\gamma} \frac{d}{dx} \right)^2 + \frac{\alpha^2}{\gamma^2} V \] $\chi_0 = 0$ has a solution
\[\chi_0(x) = \frac{x - b \gamma_1}{r(x) F(x)} , \] (69)

which has precisely one zero in the interval $(−\infty, \infty)$. According to the Sturm comparison theorems (see for instance [32], [33] and references therein) it follows that for each γ_1 including $\gamma_1 = 0$, the Schrödinger operator in the master equation possesses a single bound state with negative energy. Note that for $\gamma_1 \neq 0$ the function χ_0 decays as $1/|x|$ for large $|x|$, so that it describes a bound state with zero energy, while for $\gamma_1 = 0$ it reduces to $\chi_0(x) = x/\sqrt{1 + x^2}$ which is not normalizable but still has a single zero. The existence of a single bound state with negative energy implies that the master equation (56) for each Ellis-Bronnikov wormhole possesses a unique mode diverging exponentially in time, a fact of course sufficient to infer the instability of the wormhole. In the next section we will give more details on the spectral properties of the Schrödinger operator and on the solution of the master equation (56) within a rigorous functional setting, also allowing comparison with the corresponding problem for the perturbed AdS wormhole.

B. Perturbed AdS wormhole

Next, we analyze the AdS wormhole in the coordinate system (s, u), as described by Eq. (12), for arbitrary parameters $k, B > 0$, and apply the general framework presented in this section with (s, u) in place of (t, x). Although the static solution formally depends on two parameters B and k, it is important to note that k also appears in the potential function $V(\Phi)$ (see Eq. (10)). However, since we regard the potential to be fixed in our perturbation analysis, we will exclude the possibility of varying k. In contrast to k, the parameter B is free, and variation of the solution (12) with respect to it gives

\[\delta \alpha = \delta \gamma = 0, \]
\[\delta r = \frac{2 B \delta B}{1 + 2 B^2 - \cos u}, \]
\[\delta \Phi = -\sin u \left(\frac{\delta B}{B(1 + B^2)} \right). \]

Eqs. (70, 71, 72), introduced into Eqs. (61, 62), yields the following expressions for the gauge-invariant quantities A and C:

\[A = \frac{1 + \cos u}{2B(1 + B^2)} \delta B, \quad C = \frac{\delta B}{B}. \] (73)

From here and from the definition of σ in Eq. (64), we see that $\sigma = 0$, as required, for every choice of the perturbation δB. Inserting Eq. (73) in the definition (63) of F and G (and omitting the proportionality factor δB) one obtains, also in this case, a static solution of the system (59, 60):

\[\left(\frac{F_0}{G_0} \right) := \frac{\sqrt{2} k}{B} \cos \left(\frac{u}{2} \right) \times \left(\frac{-\sqrt{1 + 2 B^2 - \cos u}}{\sqrt{1 + 2 B^2 - \cos u}} \right). \] (74)

Note that G_0 is a strictly positive function of $u \in (−\pi, \pi)$, and that $F_0/G_0 = -(1 + 2 B^2 - \cos u)/(2(1 + B^2))$.

Having found the non-trivial solution, we can now obtain the master equation governing the spherical symmetric linearized perturbations of the AdS wormhole, following the general method explained before. We observe that $Y_0 = -2 \tan \frac{u}{2}$ and that we can choose the constants a_0 and x_0 in Eq. (55) such that $a = 1/\alpha^2$; therefore Eq. (55) reads

\[\chi := \left(F - \frac{F_0}{G_0} G \right) \alpha^2 \]

and the master equation (55) becomes (recalling that $\alpha/\gamma = 1$ for the AdS wormhole in coordinates (s, u))

\[\left[\frac{\partial^2}{\partial s^2} - \frac{\partial^2}{\partial u^2} + V \right] \chi = 0, \] (75)
with the potential
\[\mathcal{V}(u) \equiv \mathcal{V}_B(u) = -\frac{B^2(2 + B^2 + \cos u)}{(1 + 2B^2 - \cos u)^2}. \] (76)

For the following, we assume Dirichlet boundary conditions at the two asymptotic AdS ends, that is,
\[\chi(s, \pm \pi) = 0. \] (77)

Since
\[\chi = \frac{1}{\sqrt{2\sqrt{1 + 2B^2 - \cos u}}} \delta \gamma - \frac{1 + \cos u}{4(1 + B^2)(1 + 2B^2 - \cos u)} \delta r \]
for \(\delta \Phi = 0 \), a sufficient condition for Eq. (77) to hold is that, in the gauge \(\delta \Phi = 0 \), the perturbed functions \(\delta r \) and \(\delta \gamma \) vanish at the far ends \(u = \pm \pi \) of the wormhole. For general considerations on boundary conditions for field theories on AdS spaces, see [34][35][36].

Now (following the same scheme of the previous subsection) let us sketch some spectral features of the Schrödinger operator \(-d^2/du^2 + \mathcal{V}(u)\) with Dirichlet boundary conditions at \(u = \pm \pi \) (to be regarded as a selfadjoint operator in \(L^2((-\pi, \pi), du) \)); these facts will allow us to infer the linear instability of the AdS wormhole. The zero energy Schrödinger equation \([-d^2/du^2 + \mathcal{V}]\chi_0 = 0 \) admits for each fixed \(B > 0 \) the general solution
\[\chi_0(u) = C_1 \frac{\sin \frac{u}{2}}{\sqrt{1 + 2B^2 - \cos u}} + C_2 \frac{-2u \sin \frac{u}{2} + 4B^2 \cos \frac{u}{2}}{\sqrt{1 + 2B^2 - \cos u}}, \quad -\pi < u < \pi, \] (78)
with constants \(C_1, C_2 \). The Dirichlet boundary conditions \(\chi_0(\pm \pi) = 0 \) are satisfied only in the trivial case \(C_1 = C_2 = 0 \), which shows that none of these solutions is an eigenfunction of our Schrödinger operator. For \(C_1 = -2\pi C_2 \neq 0 \) the zero energy solution satisfies the left boundary condition, i.e. \(\chi_0(0 -) = 0 \), and since this solution has precisely one zero in the interval \((-\pi, \pi) \), (9) it follows from the Sturm comparison theorem (e.g. Theorem 3.4 in [33]) that our Schrödinger operator (with Dirichlet boundary conditions) has a single bound state with negative energy \(E < 0 \). This state gives rise to an exponentially in time growing mode solution of the master equation (63) which is proportional to \(e^{\sqrt{-E}t} \); this establishes the linear instability of the AdS wormhole. In the next section we analyze the spectral properties of the Schrödinger operator and their implications for the solutions of the master equation in a rigorous functional setting.

VII. SPECTRAL REPRESENTATION OF THE SOLUTIONS OF THE MASTER EQUATIONS

In this section we provide a rigorous analysis regarding the spectral properties of the Schrödinger-type operators involved in the master equations discussed so far. The next subsection and the related Appendix A concern the reflection-symmetric Ellis-Bronnikov case; the subsequent subsection sketches a similar analysis for the non-symmetric case. The third subsection and the related Appendix B treat the corresponding problem for the AdS case (not previously considered in the literature, to the best of our knowledge); in the same subsection we establish bounds on the eigenvalues of the Schrödinger operator. Brief comments regarding the time scale associated with the instability are made in the final subsection.

A. Spectral decomposition of the master equation and instability of the Ellis-Bronnikov wormhole in the reflection-symmetric case

Let us consider the reflection-symmetric Ellis-Bronnikov wormhole and the corresponding master equation (24), containing the potential \(\mathcal{V}(x) = -3b^2/(x^2 + b^2)^2 \); this equation can be written as
\[\ddot{\chi}(t) + H\chi(t) = 0 \quad (t \in \mathbb{R}), \] (79)

9 Let us justifi this statement on the number of zeroes of \(\chi_0 \) for the special choice \(C_1 = -2\pi C_2 \neq 0 \). In this case we can write \(\chi_0(u) = (-2C_2 \cos \sqrt{\frac{u}{2}})w(u)/\sqrt{1 + 2B^2 - \cos u} \) where \(w : (-\pi, \pi) \to \mathbb{R}, u \mapsto w(u) := (u + \pi)\tan \frac{\pi}{2} - 2B^2 \). The zeroes of \(\chi_0 \) in \(-\pi, \pi\) coincide with the zeroes of the function \(w \). To find the zeroes of \(w \), it is useful to note that this function has derivative \(w'(u) = (\frac{1}{2} \sec^2 \frac{\pi}{2}) (u + \sin u + \pi) > 0 \) for all \(u \in (-\pi, \pi) \); from \(w' > 0 \) it follows that \(w \) is a strictly monotonic bijection of \(-\pi, \pi\) to \(-2B^2 - 2; +\infty\), and thus possesses a unique zero.
where \(\chi(t) \) stands for the function \(\mathbb{R} \ni x \mapsto \chi(t, x) \), and \(H \) indicates the operator \(-d^2/dx^2 + V\). If we want a rigorous functional setting for Eq. (79), we are led to consider the Hilbert space (10)

\[
\mathcal{H} := L^2(\mathbb{R}, dx)
\]

made of the functions \(f : \mathbb{R} \to \mathbb{C}, x \mapsto f(x) \) which are square integrable for the Lebesgue measure \(dx \); we will write \(\langle \cdot | \cdot \rangle \) and \(\| \cdot \| \) for the natural inner product and norm of this space, defined by \(\langle f | \ell \rangle := \int_0^\infty dx f(x)\ell(x) \) and \(\| f \|^2 = \langle f | f \rangle \) for \(f, \ell \in \mathcal{H} \). \(H \) can be regarded as a selfadjoint operator in \(\mathcal{H} \), if we give for it the precise definition

\[
H := -\frac{d^2}{dx^2} + V : \mathcal{D} \subset \mathcal{H} \to \mathcal{H}, \quad \mathcal{D} := \{ f \in \mathcal{H} \mid f_{xx} \in \mathcal{H} \}
\]

intending all \(x \)-derivatives in the distributional sense (11). Due to general facts on Schrödinger operators [38], and to a specific analysis performed in [23] for the potential \(V(x) = -3b^2/(x^2 + b^2)^2 \), we can state that the spectrum of \(H \) is the union of:

(i) the point spectrum, which consists of a unique, simple eigenvalue \(\mu_1 < 0 \);

(ii) the continuous spectrum \([0, +\infty)\).

One can construct a generalized orthonormal basis of the Hilbert space \(\mathcal{H} \), in the sense explained by Appendix A and by [38], using:

(i) a normalized eigenfunction \(e_1 \) for the eigenvalue \(\mu_1 \) (\(e_1 \in \mathcal{D}, He_1 = \mu_1 e_1, \| e_1 \| = 1 \); \(e_1 \) is proved to be \(C^\infty \));

(ii) two suitably chosen “improper eigenfunctions” \(e_{i\lambda} \) (\(i = 1, 2 \) for each \(\lambda \in (0, +\infty) \) (i.e., for each nonzero point \(\lambda \) of the continuous spectrum); these are two linearly independent \(C^\infty \) functions on \(\mathbb{R} \) which fulfill \(-d^2e_{i\lambda}/dx^2 + Ve_{i\lambda} = \lambda e_{i\lambda} \) but do not belong to \(\mathcal{H} \).

Then, one can search for the solution \(\mathbb{R} \ni t \mapsto \chi(t) \) of Eq. (79) with appropriate smoothness properties and with the initial conditions

\[
\chi(0) = q, \quad \dot{\chi}(0) = p,
\]

where \(q : x \mapsto q(x) \) and \(p : x \mapsto p(x) \) are sufficiently regular functions. For all technical details, we refer again to Appendix A here we introduce the selfadjoint operator \([H^{1/2} : \mathcal{D}^{1/2} \subset \mathcal{H}] \) and indicate how to regard the domains \(\mathcal{D}^{1/2} \) and \(\mathcal{D} \) as Hilbert spaces with their own inner products. One can show that, for any \(q \in \mathcal{D} \) and \(p \in \mathcal{D}^{1/2} \), Eqs. (79,82) have a unique solution \(\mathbb{R} \ni t \mapsto \chi(t) \) in \(C(\mathbb{R}, \mathcal{D}) \cap C^1(\mathbb{R}, \mathcal{D}^{1/2}) \cap C^2(\mathbb{R}, \mathcal{H}) \), which is as follows for all \(t \in \mathbb{R} \):

\[
\chi(t) = \left[\langle e_1 | q \rangle \cosh(\mu_1^{1/2}t) + \langle e_1 | p \rangle \frac{\sinh(\mu_1^{1/2}t)}{\mu_1^{1/2}} \right] e_1 + \sum_{i=1}^2 \int_0^\infty d\lambda \left[\langle e_{i\lambda} | q \rangle \cos(\lambda^{1/2}t) + \langle e_{i\lambda} | p \rangle \frac{\sin(\lambda^{1/2}t)}{\lambda^{1/2}} \right] e_{i\lambda}.
\]

As explained in Appendix A the symbols \(\langle \cdot | \cdot \rangle \) in the above formula indicate usual inner products in \(\mathcal{H} \), or suitably defined generalizations; the integrals over \(\lambda \) are understood in a weak sense. Of course we are interested in the case where \(\chi(t) \) is real valued for each \(t \), which occurs if and only if the data \(q, p \) are real valued functions.

The coefficient of \(e_1 \) in Eq. (83) diverges exponentially both for \(t \to -\infty \) and for \(t \to +\infty \) (except for very special choices of \(\langle e_1 | q \rangle \) and \(\langle e_1 | p \rangle \) (12)); this suffices to infer the (linear) instability of the reflection-symmetric Ellis-Bronnikov wormhole [31,23,22]. In addition, let us remark that the integrals over \(\lambda \) in Eq. (83) are superpositions of “non normalizable” oscillatory modes, living outside the space \(\mathcal{H} = L^2(\mathbb{R}, dx) \) like the improper eigenfunctions \(e_{i\lambda} \).

10 Throughout the paper, the expression “Hilbert space” is an abbreviation for “complex, separable Hilbert space”.

11 The conditions \(f \in \mathcal{H} \) and \(f_{xx} \in \mathcal{H} \) imply \(f_x \in \mathcal{H} \), due to the Gagliardo-Nirenberg interpolation inequality (see e.g. [37]); \(\mathcal{D} \) is just the usual Sobolev space \(W^{2,2}(\mathbb{R}) \equiv H^2(\mathbb{R}) \). Let us also remark that, for \(f \in \mathcal{H} \), one has automatically \(\forall f \in \mathcal{H} \) due to the boundedness of \(V \).

12 For \(\langle e_1 | q \rangle = \langle e_1 | p \rangle = 0 \), the coefficient of \(e_1 \) in (83) vanishes. For \(\langle e_1 | q \rangle = \xi \langle e_1 | p \rangle /\mu_1^{1/2} \neq 0 \), with \(\xi = \pm 1 \), the coefficient of \(e_1 \) diverges for \(t \to \xi(+\infty) \) and vanishes for \(t \to \xi(-\infty) \).
B. Spectral decomposition of the master equation and instability of the Ellis-Bronnikov wormhole in the non-symmetric case

Let us now pass to the non reflection-symmetric Ellis-Bronnikov wormhole (as in Eq. (4) with \(\gamma_1 \neq 0 \)). In this case the master equation for \(\chi(t, x) \) has the form \((69)\), involving the operator

\[
- \left(\frac{\alpha}{\gamma} \frac{\partial}{\partial x} \right)^2 + \frac{\alpha^2}{\gamma^2} \chi(x) = e^{2\gamma_1 \arctan \frac{x}{\gamma}} \quad (x \in \mathbb{R}).
\]

As noted in \((23)\), the spectral analysis of this case can be simplified introducing the new coordinate

\[
\rho = \rho(x) := \int_{0}^{x} \frac{\gamma(y)}{\alpha(y)}; \tag{85}
\]

note that the mapping \(x \mapsto \rho(x) \) is a diffeomorphism of \(\mathbb{R} \) to itself, and \(\rho(x) \sim e^{\mp \pi \gamma_1 x} \) for \(x \to \pm \infty \). By construction \(\frac{\partial}{\partial x} = \frac{\partial}{\partial \rho} \); so, writing \(\chi(t, \rho) \) as an abbreviation for \(\chi(t, x(\rho)) \) we can rephrase the master equation \((69)\) as

\[
\begin{align*}
\frac{\partial^2}{\partial t^2} - \left(\frac{\partial}{\partial \rho} \right)^2 + \mathcal{U}(\rho) \chi(t, \rho) &= 0, \\
\mathcal{U}(\rho) &= \left(\frac{\alpha^2}{\gamma^2} \chi \right)(\rho(x(\rho))) \quad (t, \rho \in \mathbb{R}).
\end{align*}
\]

The function \(\mathcal{U} : \mathbb{R} \to \mathbb{R} \) is \(C^\infty \); due to the \(x \to \pm \infty \) asymptotics of \(\rho(x) \) (see after Eq. \((59)\)) and \(\left(\frac{\alpha^2}{\gamma^2} \chi \right)(x) \) (see after Eq. \((67)\)), we have \(\mathcal{U}(\rho) \sim 2/\rho^2 \) for \(\rho \to \pm \infty \). A precise functional setting for Eq. \((86)\) can be obtained introducing the Hilbert space and the selfadjoint operator

\[
\mathcal{H} := L^2(\mathbb{R}, d\rho); \quad H := -\frac{d^2}{d\rho^2} + \mathcal{U} : \mathcal{D} \subset \mathcal{H} \to \mathcal{H}, \quad \mathcal{D} := \{ f \in \mathcal{H} \mid f_\rho \in \mathcal{H} \} \tag{87}
\]

(the \(\rho \)-derivatives are meant distributionally); \(\{ \cdot \} \) and \(\| \cdot \| \) indicate in the sequel the natural inner product and norm of \(\mathcal{H} \). \((13)\) After giving these prescriptions we write Eq. \((86)\) in the form \((79)\), where \(\chi(t) \) stands for the function \(\rho \mapsto \chi(t, \rho) \); obviously enough, the treatment of this equation is reduced to a spectral analysis of the Schrödinger operator \(H \) in Eq. \((77)\), which is rather similar to the discussion of the operator \((81)\) for the reflection-symmetric wormhole.

The main difference with respect to the symmetric case is that the operator \(H \) in Eq. \((77)\) has a point spectrum consisting of two simple eigenvalues \(\mu_1 < 0 \) and \(\mu_2 := 0 \), see the comments below Eq. \((69)\); the continuous spectrum is \((0, +\infty)\). Due to these facts there is a generalized orthonormal basis made of normalized eigenfunctions \(e_1, e_2 \) for the eigenvalues \(\mu_1 < 0 \) and \(\mu_2 = 0 \) (\(e_1, e_2 \in \mathcal{D}(H), H e_1 = \mu_1 e_1, H e_2 = 0, \| e_1 \| = \| e_2 \| = 1 \)), plus two improper eigenfunctions \(e_{i\lambda} \) \((i = 1, 2)\) for each \(\lambda \) in the continuous spectrum.

As in the symmetric case, one can define Hilbert space structures for the domains \(\mathcal{D}, \mathcal{D}^{1/2} \) of the operators \(H, |H|^{1/2} \). For \(q \in \mathcal{D} \) and \(p \in \mathcal{D}^{1/2} \), the master equation \((79)\) with initial conditions \((82)\) is proved again to possess a unique solution \(t \mapsto \chi(t) \) in \(C[\mathbb{R}, \mathcal{D}] \cap C^1[\mathbb{R}, \mathcal{D}^{1/2}] \cap C^2[\mathbb{R}, \mathcal{H}] \); this has a representation similar to \((83)\) with an additional term associated with the eigenvalue zero, namely:

\[
\chi(t) = \text{r.h.s. of Eq. } (83) + \left(e_2 |q\rangle + \langle e_2 |p\rangle t \right) e_2. \tag{88}
\]

So, besides the exponentially divergent term proportional to \(e_1 \), the expression of \(\chi(t) \) contains a term diverging linearly for \(t \to \pm \infty \) (if \(\langle e_2 |p\rangle \neq 0 \)); in any case the wormhole is linearly unstable. Let us note that, as in Eq. \((83)\), the present expression for \(\chi(t) \) contains an integral over \(\lambda \) of non normalizable oscillatory modes, proportional to the improper eigenfunctions \(e_{i\lambda} \) which live outside \(\mathcal{H} \).

\(^{13}\) Note that, since \(d\rho = \frac{1}{\gamma} dx \), working with the operator and the Hilbert space defined in Eq. \((77)\) is equivalent to working directly with the operator \(- \left(\frac{\alpha}{\gamma} \frac{d}{dx} \right)^2 + \frac{\alpha^2}{\gamma^2} \chi \) in the Hilbert space \(L^2(\mathbb{R}, d\rho) \), which is the formulation considered at the end of subsection \((68)\).
C. Spectral decomposition of the master equation and instability of the AdS wormhole

In the AdS case we introduce the Hilbert space

$$\mathcal{H} := L^2((−\pi, \pi), du)$$

(89)

formed by the functions \(f : (−\pi, \pi) \to \mathbb{C}, u \mapsto f(u) \) which are square integrable with respect to the Lebesgue measure \(du \); from now on we denote by \(\langle \cdot | \cdot \rangle \) and \(\| \cdot \| \) the natural inner product and norm of \(\mathcal{H} \), so that \(\langle f | \ell \rangle := \int_{−\pi, \pi} du f(u) \ell(u) \) and \(\| f \|^2 = (f | f) \) for \(f, \ell \in \mathcal{H} \). In addition, let us consider the potential \(\mathcal{V} \) appearing in Eq. (76) (a \(C^\infty \) function on \([-\pi, \pi]\)). A rigorous setting for the master equation (75) with boundary conditions (77) can be set up using the space (89) and the selfadjoint operator

$$H := -\frac{d^2}{du^2} + \mathcal{V} : \mathcal{D} \subset \mathcal{H} \to \mathcal{H}, \quad \mathcal{D} := \{ f \in \mathcal{H} | f_{uu} \in \mathcal{H}, f(\pm\pi) = 0 \} .$$

(90)

Here and in the sequel, the \(u \)-derivatives like \(f_{uu} \) are understood distributionally; a function \(f \in \mathcal{H} \) with \(f_{uu} \in \mathcal{H} \) is in fact in \(C^1([-\pi, \pi]) \), so it can be evaluated at \(u = \pm \pi \) (14). As an operator in the Hilbert space \(\mathcal{H} \), \(H \) has the following properties:

(i) it is selfadjoint;
(ii) it is bounded from below;
(iii) it has a purely discrete spectrum.

As known in general for Hilbert space operators fulfilling (i-iii), it is possible to represent the eigenvalues of \(H \) as an increasing sequence \(\mu_1 < \mu_2 < \ldots \). In addition, \(H \) has the following properties:

(iv) any of its eigenfunctions is in the space \(C^\infty([-\pi, \pi]) \);
(v) each one of its eigenvalues is simple.

For future mention, let us recall that the operator \(H^0 := -d^2/du^2 \) with domain \(\mathcal{D} \) as above also has the properties (i-v); in this case the eigenvalues are \(\mu_n^0 := n^2/4 \), with normalized eigenfunctions \(f_n^0(u) := (1/\sqrt{\pi}) \sin(n/2)(u + \pi)] \) \((n = 1, 2, \ldots)\) (15).

In the remainder of this section the notations \(\mathcal{V}, \mathcal{H}, \mathcal{D}, H, \mu_n \), \((n = 1, 2, \ldots)\) will always indicate, respectively, the potential \(\mathcal{V} \) in Eq. (76), the Hilbert space in Eq. (89), the domain and the operator in Eq. (90), and the eigenvalues of this operator in increasing order. Sometimes it will be useful to emphasize that the potential \(\mathcal{V} \) depends on the parameter \(B \in (0, +\infty) \), thus originating in a similar dependence for the corresponding operator and its eigenvalues:

$$\mathcal{V} = V_B, H = H_B, \mu_n = \mu_n(B) \, (n = 1, 2, \ldots) .$$

As discussed in section 11.13 the existence of the zero-energy solutions in Eq. (90) implies that the ground state energy is negative, while all other eigenvalues are positive, such that

$$\mu_1 < 0 < \mu_2 < \mu_3 < \ldots ,$$

(91)

the negative eigenvalue \(\mu_1 \) being associated with an exponentially in time growing mode of the master equation (75), whereas in contrast to this, the eigenvalues \(\mu_n \) for \(n \geq 2 \) are associated with oscillatory modes.

14 The conditions \(f \in \mathcal{H}, f_{uu} \in \mathcal{H} \) imply \(f_u \in \mathcal{H} \) due to the already mentioned Gagliardo-Nirenberg interpolation inequality (52). The space \(\{ f \in \mathcal{H} \, | \, f_{uu} \in \mathcal{H} \} \) coincides with the standard Sobolev space \(W^{2,2}(-\pi, \pi) \equiv H^2(-\pi, \pi) \), which is contained in \(C^1([-\pi, \pi]) \) by the Sobolev embedding theorem (see again (57)). Let us also remark that, due to the boundedness of the function \(\mathcal{V} \), for each \(f \in \mathcal{H} \) one has automatically \(\mathcal{V} f \in \mathcal{H} \).

15 Let us give more complete information on the above issues (i-v). For some general facts about Hilbert space operators with properties (i-iii) (including the possibility to arrange their eigenvalues in an increasing sequence), see e.g. (39) (especially, pages 37, 178 and 265-67). To go on, let us recall the following regularity result: if \(f \) is a distribution on an open interval \(\Omega \subset \mathbb{R} \) (with derivatives \(f^{(i)}, i = 0, 1, \ldots \)) and \(f \) fulfills a homogeneous linear ODE \(f^{(k)} + \sum_{i=0}^{k-1} a_i f^{(i)} = 0 \) of any order \(k \in \{1, 2, \ldots\} \) with \(C^\infty \) coefficients \(a_i : \Omega \to \mathbb{C}, \) then \(f \) is a \(C^\infty \) function on \(\Omega \); this follows from Theorem IX in (14), page 130. The properties (i-v) of \(H^0 \) and the expressions given above for its eigenvalues and eigenfunctions are checked “by hand”, keeping in mind that the eigenfunctions are smooth due to the previously mentioned regularity result. Now consider any function \(\mathcal{V} \in C^\infty([-\pi, \pi], \mathbb{R}) \); then, due to the boundedness of this function, the multiplication operator by \(\mathcal{V} \) is a bounded selfadjoint operator on \(\mathcal{H} \). As well known the properties (i), or (i-ii), or (i-iii) of an operator in an abstract Hilbert space are preserved by the addition of a bounded selfadjoint perturbation (see again (59)); therefore the operator \(H := H^0 + \mathcal{V} = -d^2/du^2 + \mathcal{V} \) with domain \(\mathcal{D} \) fulfills the implications (i-iii). The operator \(H \) also has the properties (iv-v). For the proof of (iv) one can use again the cited regularity result for distributional, homogeneous linear ODEs; a derivation of (v) can be found e.g. in (11), page 30. All the previous statements apply, in particular, with \(\mathcal{V} \) as in Eq. (76).
In what follows, we provide estimates for the eigenvalues of $\mu_n(B)$. We start with an upper bound for the ground state energy $\mu_1 \equiv \mu_1(B)$. According to the Rayleigh-Ritz variational characterization (see e.g. [39], pages 265-266) one has

$$\mu_1(B) = \inf_{f \in \mathfrak{D} \setminus \{0\}} \frac{\langle f \mid H_B f \rangle}{\|f\|^2}. \quad (92)$$

Choosing in \mathfrak{D} the function

$$f(u) := \cos \frac{u}{2} \quad (93)$$

we get

$$\frac{\langle f \mid H_B f \rangle}{\|f\|^2} = \frac{1}{4} - B^2 + \frac{\sqrt{1 + B^2 (4B^2 - 3)}}{4B} =: \varepsilon(B), \quad (94)$$

which, together with Eq. (92), yields the estimate

$$\mu_1(B) \leq \varepsilon(B) \quad (95)$$

for each $B > 0$. It can be checked that $B \mapsto \varepsilon(B)$ is a negative, monotonously increasing function on $(0, +\infty)$ with the properties

$$\lim_{B \to 0^+} \varepsilon(B) = -\infty, \quad \lim_{B \to +\infty} \varepsilon(B) = 0^{-}. \quad (96)$$

Therefore, we obtain the upper bound for the ground state energy,

$$\mu_1(B) \leq \varepsilon(B) < 0 \quad (96)$$

which provides an independent proof for the fact that it is negative, and hence also for the linear instability of the AdS wormhole.

Next, we provide two-sided bounds on the eigenvalues $\mu_n \equiv \mu_n(B)$ for arbitrary n. In order to achieve this, we check that for any fixed $B > 0$, one has

$$\min_{u \in [-\pi, \pi]} \mathcal{V}(u) = \mathcal{V}(0) = -\frac{1}{4} - \frac{3}{4B^2}, \quad \max_{u \in [-\pi, \pi]} \mathcal{V}_B(u) = \mathcal{V}_B(\pm \pi) = -\frac{1}{4} + \frac{1}{4(1 + B^2)}. \quad (97)$$

In the Hilbert space \mathfrak{H}, let us consider the operators $H = -\frac{\partial^2}{\partial u^2} + \mathcal{V}$, $H^- := -\frac{\partial^2}{\partial u^2} - \frac{1}{4} - \frac{3}{4B^2}$ and $H^+ := -\frac{\partial^2}{\partial u^2} - \frac{1}{4} + \frac{1}{4(1 + B^2)}$, all of them with the same domain \mathfrak{D} as defined in Eq. (99) (and all of them satisfying the properties (i-v) after the cited equation). Due to Eq. (97) we have $\langle f \mid H^- f \rangle \leq \langle f \mid H f \rangle \leq \langle f \mid H^+ f \rangle$ for all $f \in \mathfrak{D}$, and this implies (see e.g. [29], pages 230 and 267) $\mu_n \leq \mu_n \leq \mu_n^+$ for $n = 1, 2, \ldots$, where $\mu_1^+ < \mu_2^+ < \ldots$ are the eigenvalues of H^+. On the other hand, the eigenvalues of H^+ are obtained shifting those of $H^0 = -\frac{\partial^2}{\partial u^2}$, i.e., $\mu_n = \frac{n^2}{4} - \frac{1}{4} + \frac{3}{4B^2}$ and $\mu_n^+ = \frac{n^2}{4} - \frac{1}{4} + \frac{1}{4(1 + B^2)}$. In conclusion, the eigenvalues of H satisfy the two-side bounds

$$\frac{n^2 - 1}{4} - \frac{3}{4B^2} \leq \mu_n(B) \leq \frac{n^2 - 1}{4} + \frac{1}{4(1 + B^2)} \quad (n = 1, 2, \ldots). \quad (98)$$

Combining this result with Eq. (96) one obtains the following two-side bound for the ground state energy:

$$-\frac{3}{4B^2} \leq \mu_1(B) \leq \varepsilon(B) = -\frac{1}{2B^2} + \mathcal{O}\left(\frac{1}{B^4}\right). \quad (99)$$

After these remarks concerning the spectral values of the Schrödinger operator H, we discuss the spectral decomposition of the master equation. To this purpose, we choose for each n a normalized eigenfunction e_n for the (simple) eigenvalue μ_n:

$$e_n \in \mathfrak{D}, \quad He_n = \mu_n e_n, \quad \|e_n\| = 1 \quad (n = 1, 2, \ldots). \quad (100)$$

Then $(e_n)_{n=1,2,\ldots}$ is an orthonormal basis of \mathfrak{H} (in the ordinary sense), due to the spectral theorem for selfadjoint operators with purely discrete spectrum. In comparison with the previous analysis for the Ellis-Bronnikov wormhole,
we do not have the technical complications associated with the continuous spectrum and to the related “improper”
eigenfunctions.

Next, we write the master equation (75) in a form similar to (79) and add initial conditions as in (82); in this way
we obtain the system

\[\dot{\chi}(s) + H\chi(s) = 0 \quad (s \in \mathbb{R}), \quad \chi(0) = q, \quad \chi(0) = p, \quad (101) \]

where \(\chi(s) \) refers to the function \(u \mapsto \chi(s, u) \), the dots stand for \(s \)-derivatives and \(q : u \mapsto q(u), p : u \mapsto p(u) \) are functions with appropriate regularity.

A technically precise framework for the discussion of the system (101) is provided by Appendix B where we introduce
(similarly to the previous treatment for the Ellis-Bronnikov wormhole) the selfadjoint operator \(|H|^{1/2} : D^{1/2} \subset \mathfrak{H} \rightarrow \mathfrak{H}\) and indicate how to regard the domains \(D^{1/2} \) and \(D \) as Hilbert spaces with appropriate inner products. It turns out that, for any \(q \in \mathfrak{D} \) and \(p \in D^{1/2} \), the system (101) has a unique solution \(s \mapsto \chi(s) \) in \(C(\mathbb{R}, \mathfrak{D}) \cap C^1(\mathbb{R}, \mathfrak{D}^{1/2}) \cap C^2(\mathbb{R}, \mathfrak{F}) \); using an orthonormal basis \(\{e_n\}_{n=1,2,\ldots} \) as in Eq. (100), the solution can be written as follows for all \(s \in \mathbb{R} \):

\[\chi(s) = \left[\langle e_1 | q \rangle \cosh(|\mu_1|^{1/2}s) + \langle e_1 | p \rangle \frac{\sinh(|\mu_1|^{1/2}s)}{|\mu_1|^{1/2}} \right] e_1 + \sum_{n=2}^{\infty} \left[\langle e_n | q \rangle \cos(\mu_n^{1/2}s) + \langle e_n | p \rangle \frac{\sin(\mu_n^{1/2}s)}{\mu_n^{1/2}} \right] e_n, \quad (102) \]

The above function \(\chi(s) \) is real valued for each \(s \) if and only if the data \(q, p \) are real valued functions.

The coefficient of \(e_1 \) in Eq. (102) diverges exponentially both for \(s \to -\infty \), and for \(s \to +\infty \) (except for very special choices of \(\langle e_1 | q \rangle \) and \(\langle e_1 | p \rangle \)); hence, the AdS wormhole is linearly unstable. For each \(n \geq 2 \), the \(n \)-th term in Eq. (102) represents a “normalizable” oscillatory mode, living like \(e_n \) inside the Hilbert space \(\mathfrak{H} \) (indeed, inside the subspace \(D \subset \mathfrak{F} \)). This is a relevant difference with respect to the “non normalizable” oscillatory modes that we have found for the perturbed Ellis-Bronnikov wormhole, associated with the continuous spectrum and living outside the Hilbert space of the system (see the comments after Eqs. (30) and (31)).

D. Instability times

In the Ellis-Bronnikov case it has been shown [22] that the time scale \(\tau_{\text{unstable}} \) (measured with respect to proper
time at the throat of the unperturbed solution) associated with the unstable mode is of the order of the throat’s areal
radius \(r_{\text{throat}} \) divided by the speed of light. The estimates provided in Eq. (93) allows us to estimate the corresponding
time scale for the AdS wormhole, and yields

\[\frac{1}{\sqrt{3}} \leq \frac{\tau_{\text{unstable}}}{r_{\text{throat}}} \leq \frac{1}{2B \sqrt{-\varepsilon(B)}}, \quad (103) \]

with the function \(\varepsilon(B) \) defined in Eq. (34). Since \(2B \sqrt{-\varepsilon(B)} \to \sqrt{2} \) for large \(B \) and since for \(B \to 0 \) the AdS
wormhole reduces to the reflection-symmetric Ellis-Bronnikov wormhole (17), it follows also in this case that \(\tau_{\text{unstable}} \)
is of the order of the throat’s areal radius (divided by the speed of light in physical units).

VIII. CONCLUSIONS

In this work we have analyzed the linear stability of a class of static, spherically symmetric wormhole solutions in GR
minimally coupled with a self-interacting phantom scalar field. To this purpose, we have provided a gauge-invariant
perturbation formalism that describes the dynamics of linearized, spherical but time-dependent perturbations of the
metric and of the scalar field, resulting in a coupled \(2 \times 2 \) linear wave system subject to a constraint (see Eqs. (39) 10). Provided that a nontrivial, time-independent solution is known (as is usually the case when a family of static solutions
is known) we have shown that this system can be decoupled to yield a master wave equation which is manifestly
gauge-invariant and regular at the throat. This construction relies on a basic requirement (of course satisfied by the
examples that we treat): the derivative \(\Phi' \) of the (background) scalar field should vanish nowhere. The relevance of
this condition in our approach is indicated by the almost ubiquitous presence of the reciprocal \(1/\Phi' \) in the equations
of sections [146].
Based on our formalism we have re-derived the regular master equation first obtained in \cite{23}, describing linear spherical perturbations of the Ellis-Bronnikov wormhole in a fully gauge-invariant setting and without intermediate steps involving singularities at the throat. (For an alternative approach which treats the reflection-symmetric case in a fixed gauge, see \cite{25}.) Furthermore, we have analyzed the linear stability of an AdS wormhole introduced in \cite{31}, for which the scalar field is subject to a non-trivial self-interaction term, and we have shown that this solution is linearly unstable as well. In both examples the instability is characterized by a unique, exponentially in time growing mode associated with a bound state of negative energy of the Schrödinger operator arising in the master equation. As discussed in section \ref{sec:11}, the associated instability times are rather short (of the order of a light-crossing time corresponding to the areal radius of the throat.)

Based on spectral analysis, we have also provided a detailed and rigorous discussion for the mode decomposition of the solutions to the master wave equations in both the aforementioned examples, which revealed that besides the exponentially in time growing modes, there might be linearly growing modes, while all the remaining modes are oscillatory. In particular, the AdS wormhole has infinitely many normalizable, oscillatory modes in addition to the pair of exponential growing and decaying modes associated with the unique bound state of negative energy of the Schrödinger operator.

Before concluding, we think it is necessary to return to the basic requirement of our approach already indicated above, i.e., the condition that Φ has no critical points. Removing this requirement would be interesting since, recently, a large class of new wormhole solutions of the Einstein-scalar equations has been found \cite{20}, generalizing previous work \cite{17}, in which the scalar field Φ has an extremum at the throat. Since r has a global minimum at the throat and r' converges to zero as fast or faster than Φ', it turns out the gauge-invariant quantity C defined in Eq. \eqref{eq:32} is still well-defined; unfortunately, it is unclear if a decoupled equation for C can be obtained which is regular at the throat. In connection with this problem, one could try to recover the S-deformation method of \cite{22,23} (see the discussion in the Introduction; the formulation of this method in \cite{22} indeed considers the gauge-invariant quantity C). However, when the potential $V(\Phi)$ is non-zero, this method seems to require the numerical integration of a Riccati-type equation to find the regularized potential, and further one still needs to justify a posteriori the validity of the transformed equation at the throat. An alternative possibility consists in applying a variation of the approach discussed in this article, in which Φ' is absent from all denominators, thanks to the use of new gauge-invariant quantities in place of the functions A, C, E of Eqs. \eqref{eq:31,33}; however, it is not clear whether this will be possible, and we prefer to leave the discussion of the problem to future works.

Another problem that we think worthy of a future analysis is the following: is there a deep geometrical reason for which the present approach succeeds, in certain cases, in decoupling the perturbation equations \eqref{eq:39-40} and reducing them to a single, scalar master equation? Typically, the possibility of reducing to a simpler form a PDE or of a system of PDEs is due to the presence of a Lie group of symmetries; an interpretation of this kind could perhaps be given for our decoupling method. As already recalled, our approach uses a static solution of Eqs. \eqref{eq:31,33}, arising from variations with respect to the parameters of a family of static wormhole solutions. The availability of such parametric families could perhaps be interpreted in terms of a Lie group of symmetries, acting on the static solutions of the Einstein-scalar system; if so, it would be interesting to understand the interplay of these symmetries with the linearized perturbation equations.

Acknowledgments

F.C. and L.P. were supported by: INdAM, Gruppo Nazionale per la Fisica Matematica; Università degli Studi di Milano. LP was also supported by: INFN; MIUR, PRIN 2010 Research Project “Geometric and analytic theory of Hamiltonian systems in finite and infinite dimensions.”. O.S. was partially supported by a CIC grant to Universidad Michoacana.

Appendix A: On the master equation for the reflection-symmetric Ellis-Bronnikov wormhole

We refer to the master equation for this wormhole in the formulation \cite{79}, based on the Hilbert space $\mathcal{F} := L^2(\mathbb{R}, dx)$ of Eq. \eqref{eq:80} and on the selfadjoint operator H of Eq. \eqref{eq:81}, of domain $\mathcal{D} \subset \mathcal{F}$. We keep all notations introduced after these equations; in particular $\langle \ | \rangle$ and $\| \|$ are the natural inner product and norm of \mathcal{F}.

Relevant facts on the operator H and its spectral features. In the discussion following Eqs. \eqref{eq:79,81} we have mentioned a system made by a normalized eigenfunction e_1 for the unique eigenvalue $\mu_1 < 0$ of H, and by a pair of improper eigenfunctions $e_{i\lambda}$ ($i = 1, 2$) (lying in $C^\infty(\mathbb{R})$ but not in \mathcal{F}) for each $\lambda > 0$. We have called this system a generalized orthonormal basis of \mathcal{F}, which means that the following conditions (a-c) hold \cite{58}:

\[a \]
(a) Consider the space $C_c(\mathbb{R}) \equiv \mathcal{C} \subset \mathcal{H}$, made of the continuous functions $f : \mathbb{R} \to \mathbb{C}$ with compact support. For $f \in \mathcal{C}$, consider the usual inner product $\langle e_1 | f \rangle = \int_\mathbb{R} dx \bar{e}_1(x) f(x)$ and define in addition a “generalized inner product” $\langle e_{i\lambda} | f \rangle := \int_\mathbb{R} dx \bar{e}_{i\lambda}(x) f(x)$ (the integral converges since $\bar{e}_{i\lambda} f \in \mathcal{C}$); then, the maps

$$
(0, +\infty) \ni \lambda \mapsto \langle e_{i\lambda} | f \rangle \in \mathbb{C} \quad (i = 1, 2) \tag{A1}
$$

are both in $L^2((0, +\infty), d\lambda)$.

(b) For $i = 1, 2$, the linear map $\mathcal{C} \subset \mathcal{H} \to L^2((0, +\infty), d\lambda)$, $f \mapsto \left(\lambda \mapsto \langle e_{i\lambda} | f \rangle \right)$ is continuous with respect to the norms of the Hilbert spaces \mathcal{H} and $L^2((0, +\infty), d\lambda)$; thus, by the density of \mathcal{C} in \mathcal{H}, this map has a unique continuous (and linear) extension to \mathcal{H}, that we write as

$$
\mathcal{H} \to L^2((0, +\infty), d\lambda), \quad f \mapsto \left(\lambda \mapsto \langle e_{i\lambda} | f \rangle \right). \tag{A2}
$$

For each $f \in \mathcal{H}$, the map $\lambda \mapsto \langle e_{i\lambda} | f \rangle$ is said to give the “generalized inner products” between the $e_{i\lambda}$’s and f.

(c) Consider the direct sum Hilbert space $\mathcal{C} \oplus L^2((0, +\infty), d\lambda) \oplus L^2((0, +\infty), d\lambda)$ with its natural inner product; then the linear map

$$
\mathcal{H} \to \mathcal{C} \oplus L^2((0, +\infty), d\lambda) \oplus L^2((0, +\infty), d\lambda), \quad f \mapsto \left(\langle e_1 | f \rangle, \lambda \mapsto \langle e_{1\lambda} | f \rangle, \lambda \mapsto \langle e_{2\lambda} | f \rangle \right) \tag{A3}
$$

is a unitary, i.e., it is one-to-one and preserves inner products:

$$
\langle f | \ell \rangle = \langle \bar{e}_1 | f \rangle \langle e_1 | \ell \rangle + \sum_{i=1}^{2} \int_{0}^{+\infty} d\lambda \langle \bar{e}_{i\lambda} | f \rangle \langle e_{i\lambda} | \ell \rangle \quad (f, \ell \in \mathcal{H}). \tag{A4}
$$

The forthcoming items (i-ii) describe some consequences of (a-c):

(i) For $F \in L^2((0, +\infty), d\lambda)$ and $i = 1, 2$ there is a unique element of \mathcal{H}, indicated with $\int_{0}^{+\infty} d\lambda F(\lambda) e_{i\lambda}$, such that

$$
\left\langle \int_{0}^{+\infty} d\lambda F(\lambda) e_{i\lambda} \right| \ell \rangle = \int_{0}^{+\infty} d\lambda F(\lambda) \langle e_{i\lambda} | \ell \rangle \quad \text{for all } \ell \in \mathcal{H} \tag{A5}
$$

(note that the integral in the right hand side of Eq. (A5) exists, involving the product of two functions which are both in $L^2((0, +\infty), d\lambda)$). The element $\int_{0}^{+\infty} d\lambda F(\lambda) e_{i\lambda} \in \mathcal{H}$ is called the weak integral of the function $\lambda \mapsto F(\lambda) e_{i\lambda}$.

(ii) The inverse of the unitary map (A3) can be expressed in terms of weak integrals; more precisely, such inverse is the map

$$
\mathcal{C} \oplus L^2((0, +\infty), d\lambda) \oplus L^2((0, +\infty), d\lambda) \to \mathcal{H}, \quad (\alpha, F_1, F_2) \mapsto \alpha e_1 + \sum_{i=1}^{2} \int_{0}^{+\infty} d\lambda F_i(\lambda) e_{i\lambda}. \tag{A6}
$$

The fact that the composition of the maps (A3 A6) is the identity map $\mathcal{H} \to \mathcal{H}$, $f \mapsto f$ can be written explicitly as follows: for each $f \in \mathcal{H}$,

$$
f = \langle e_1 | f \rangle e_1 + \sum_{i=1}^{2} \int_{0}^{+\infty} d\lambda \langle e_{i\lambda} | f \rangle e_{i\lambda}. \tag{A7}
$$

The identity (A7) is said to give the expansion of f in terms of the generalized orthonormal basis under consideration.

Up to now, we have not used the fact that e_1 is an eigenfunction of H with eigenvalue $\mu_1 < 0$, nor the fact that $e_{i\lambda}$ is an “improper eigenfunction” with “eigenvalue” λ for $i = 1, 2$ and all $\lambda > 0$. These facts yield the following representation for the operator H and its domain \mathcal{D}:

$$
\mathcal{D} = \{ f \in \mathcal{H} \mid \lambda \mapsto \lambda \langle e_{i\lambda} | f \rangle \in L^2((0, +\infty), d\lambda) \text{ for } i = 1, 2 \}. \tag{A8}
$$

For $f \in \mathcal{D}$: $\langle e_1 | H f \rangle = \mu_1 \langle e_1 | f \rangle$, $\langle e_{i\lambda} | H f \rangle = \lambda \langle e_{i\lambda} | f \rangle$, i.e., $H f = \mu_1 \langle e_1 | f \rangle e_1 + \sum_{i=1}^{2} \int_{0}^{+\infty} d\lambda \lambda \langle e_{i\lambda} | f \rangle e_{i\lambda}$. (A8)
As well known, a functional calculus exists for selfadjoint Hilbert space operators (see, e.g., [39]). This allows to define an operator $\mathcal{F}(H) : \mathcal{D}^f \subset \mathcal{H} \to \mathcal{H}$ for each (Borel-) measurable function $\mathcal{F} : \sigma(H) \to \mathbb{C}$, where $\sigma(H) = \{\mu_1\} \cup [0, +\infty)$ is the spectrum of H and \mathcal{D}^f is a suitable domain, determined by $(H$ and \mathcal{F}; the operator $\mathcal{F}(H)$ is selfadjoint if \mathcal{F} is real valued. Making reference to the previously mentioned, generalized orthonormal basis of eigenfunctions of H, one can prove the following statements: $e_1 \in \mathcal{D}^f$ and $\mathcal{F}(H)e_1 = \mathcal{F}(\mu_1)e_1$; $\mathcal{D}^f = \{ f \in \mathcal{H} \mid (\lambda \mapsto \mathcal{F}(\lambda)(e_{i\lambda}f)) \in L^2((0, +\infty), d\lambda) \}$ for $i = 1, 2$; for all $f \in \mathcal{D}^f$, one has $\langle e_1|\mathcal{F}(H)f \rangle = \mathcal{F}(\mu_1)|e_1|f \rangle$ and $\langle e_{i\lambda}|\mathcal{F}(H)f \rangle = \mathcal{F}(\lambda)|e_{i\lambda}f \rangle$. For our purposes it is important to consider the choice $\mathcal{F}(\gamma) := |\gamma|^{1/2}$ for all $\gamma \in \sigma(H)$, producing a selfadjoint operator that we indicate with

$$|H|^{1/2} : \mathcal{D}^{1/2} \subset \mathcal{H} \to \mathcal{H}$$

and that behaves as follows in relation to our generalized orthonormal basis:

$$e_1 \in \mathcal{D}^{1/2}, \quad |H|^{1/2}e_1 = |\mu_1|^{1/2}e_1. \quad (A9)$$

$$\mathcal{D}^{1/2} = \{ f \in \mathcal{H} \mid (\lambda \mapsto \lambda^{1/2}(e_{i\lambda}f)) \in L^2((0, +\infty), d\lambda) \} \quad (A10)$$

$$\langle e_1|H|^{1/2}f \rangle = |\mu_1|^{1/2}\langle e_1|f \rangle, \quad (A11)$$

Finally, let us make explicit the Hilbert space structures for \mathcal{D} and $\mathcal{D}^{1/2}$ mentioned before Eq. [83]; these are provided by the (complete) inner products $\langle \cdot | \cdot \rangle_\mathcal{D} : \mathcal{D} \times \mathcal{D} \to \mathbb{C}$ and $\langle \cdot | \cdot \rangle_{\mathcal{D}^{1/2}} : \mathcal{D}^{1/2} \times \mathcal{D}^{1/2} \to \mathbb{C}$, where

$$\langle f|\ell \rangle_\mathcal{D} := \langle f|\ell \rangle + \langle Hf|H\ell \rangle = (1 + \mu_1^2)\langle e_1|f \rangle\langle e_1|\ell \rangle + \sum_{i=1}^{2} \int_0^{+\infty} d\lambda (1 + \lambda^2)\langle e_{i\lambda}|f \rangle\langle e_{i\lambda}|\ell \rangle, \quad (A12)$$

$$\langle f|\ell \rangle_{\mathcal{D}^{1/2}} := \langle f|\ell \rangle + \langle H^{1/2}f|H^{1/2}\ell \rangle = (1 + |\mu_1|)\langle e_1|f \rangle\langle e_1|\ell \rangle + \sum_{i=1}^{2} \int_0^{+\infty} d\lambda (1 + \lambda)\langle e_{i\lambda}|f \rangle\langle e_{i\lambda}|\ell \rangle. \quad (A13)$$

Solution of the master equation. Let us consider Eq. [79] with initial conditions [82] i.e., $\dot{\chi}(t) + H\chi(t) = 0$, $\chi(0) = q$, $\dot{\chi}(0) = p$; the unknown is a function $\mathbb{R} \ni t \mapsto \chi(t) \in \mathcal{D}$. We first proceed formally, assuming that the initial data q, p are in suitable spaces to be specified later. Applying $\langle e_1 | \cdot \rangle$ and $\langle e_{i\lambda} | \cdot \rangle$ to Eq. [79] we obtain $(d^2/dt^2 + \mu_1^2)(e_1|\chi(t)) = 0$ and $(d^2/dt^2 + \lambda^2)(e_{i\lambda}|\chi(t)) = 0$ for $i = 1, 2$ and all $\lambda > 0$. On account of the initial conditions [82] (and recalling that $\mu_1 < 0$), these equations imply

$$\langle e_1|\chi(t) = \langle e_1|q \rangle \cosh(\mu_1^{1/2}t) + \langle e_1|p \rangle \frac{\sinh(\mu_1^{1/2}t)}{\mu_1^{1/2}}, \quad (A14)$$

thus providing a formal justification for the expression [83] of $\chi(t)$. It can be checked a posteriori that, assuming $q \in \mathcal{D}$, $p \in \mathcal{D}^{1/2}$,

$$\chi \in C^2(\mathbb{R}, \mathcal{D}) \cap C^1(\mathbb{R}, \mathcal{D}^{1/2}) \cap C(\mathbb{R}, \mathcal{D}). \quad (A16)$$

As an example of the necessary tests, let us consider any $t \in \mathbb{R}$ and show that $\chi(t)$ defined by Eq. [83] is an element of \mathcal{D}. Due to the descriptions [A3] [A9] for \mathcal{D} and [A3] for \mathcal{D}, $\chi(t)$ in Eq. [83] is in fact in \mathcal{D} if we are able to prove the following for $i = 1, 2$ (and for fixed t, as already indicated):

$$\lambda \mapsto \left[\langle e_{i\lambda}|q \rangle \cos(\lambda^{1/2}t) + \langle e_{i\lambda}|p \rangle \frac{\sin(\lambda^{1/2}t)}{\lambda^{1/2}} \right] \in L^2((0, +\infty), d\lambda), \quad (A17)$$

$$\lambda \mapsto \lambda \left[\langle e_{i\lambda}|q \rangle \cos(\lambda^{1/2}t) + \langle e_{i\lambda}|p \rangle \frac{\sin(\lambda^{1/2}t)}{\lambda^{1/2}} \right] = \lambda \langle e_{i\lambda}|q \rangle \cos(\lambda^{1/2}t) + \lambda^{1/2}\langle e_{i\lambda}|p \rangle \sin(\lambda^{1/2}t) \in L^2((0, +\infty), d\lambda). \quad (A18)$$
Indeed, Eq. (A17) follows noting that
\[
\lambda \mapsto \cos(\lambda^{1/2}t), \quad \lambda \mapsto \frac{\sin(\lambda^{1/2}t)}{\lambda^{1/2}} \in L^\infty((0, +\infty), d\lambda);
\lambda \mapsto (e_{i\lambda}|q), \quad \lambda \mapsto (e_{i\lambda}|p) \in L^2((0, +\infty), d\lambda)
\] (A19)
(the statements on \(q, p\) in (A19) are correct, since Eq. (A15) obviously implies \(q, p \in \mathcal{H}\)). Moreover, Eq. (A18) follows noting that
\[
\lambda \mapsto \cos(\lambda^{1/2}t), \quad \lambda \mapsto \sin(\lambda^{1/2}t) \in L^\infty((0, +\infty), d\lambda);
\lambda \mapsto \lambda(e_{i\lambda}|q), \quad \lambda \mapsto \lambda^{1/2}(e_{i\lambda}|p) \in L^2((0, +\infty), d\lambda)
\] (A20)
(the statements on \(q, p\) in (A20) are correct, due to the assumption (A14) \(q \in \mathcal{D}, p \in \mathcal{D}^{1/2}\) and to the characterizations (A8) for \(\mathcal{D}\), (A11) for \(\mathcal{D}^{1/2}\)).

Appendix B: On the master equation for the AdS wormhole

Facts on the operator \(H\). Let us consider the Hilbert space of Eq. (89), i.e., \(\mathcal{H} := L^2((−\pi, \pi), du)\), with its natural inner product \((|)\); this is the environment for the selfadjoint operator of Eq. (90), i.e., \(H := -\frac{d^2}{du^2} + V : \mathcal{D} \subset \mathcal{H} \to \mathcal{H}\) with domain \(\mathcal{D} := \{f \in \mathcal{H} \mid f_{\pi\pi} \in \mathcal{H}, f(\pi) = 0\}\). Let us recall that \(H\) has purely discrete spectrum with simple eigenvalues \(\mu_1 < 0 < \mu_2 < \mu_3 < \ldots\) (see Eq. (101)); due to Eq. (94), we have \(\mu_n \sim \frac{n^2}{4}\) for \(n \to +\infty\).

In the sequel we frequently make use of an orthonormal basis \((e_n)_{n=1,2,\ldots}\) of \(\mathcal{H}\) as in Eq. (100), obtained choosing for each \(n\) a normalized eigenfunction \(e_n\) for the eigenvalue \(\mu_n\). The fact that we have an orthonormal basis ensures that there is a one-to-one linear map
\[
\mathcal{H} \to \ell^2, \quad f \mapsto \{(e_n|f)\}_{n=1,2,\ldots}
\] (B1)
where \(\ell^2\) is the Hilbert space of complex sequences \((a_n)_{n=1,2,\ldots}\) such that \(\sum_{n=1}^{\infty} |a_n|^2 < +\infty\), with its obvious inner product; moreover \<(f|\ell) = \sum_{n=1}^{\infty} \langle e_n|f\rangle \langle e_n|\ell\rangle\) for all \(f, \ell \in \mathcal{H}\), i.e., the map (B1) is unitary.

The fact that the orthonormal basis is formed by eigenfunctions of \(H\) ensures the following representation for this operator and its domain
\[
\mathcal{D} = \{f \in \mathcal{H} \mid \langle \mu_n|e_n|f\rangle \}_{n=1,2,\ldots} \in \ell^2\}. \text{ For } f \in \mathcal{D} : \langle e_n|Hf\rangle = \mu_n\langle e_n|f\rangle \quad (n = 1, 2, \ldots), \text{ i.e., } Hf = \sum_{n=1}^{+\infty} \mu_n\langle e_n|f\rangle e_n.
\] (B2)

In the previous Appendix (A) we have already mentioned the functional calculus for selfadjoint Hilbert space operators (33); this allows to define an operator \(\mathcal{F}(H) : \mathcal{D}^\mathcal{F} \subset \mathcal{H} \to \mathcal{H}\) for each function \(\mathcal{F} : \sigma(H) \to \mathbb{C}\) where \(\sigma(H) = \{\mu_1, \mu_2, \ldots\}\) is the spectrum of \(H\); the operator \(\mathcal{F}(H)\) is selfadjoint if \(\mathcal{F}\) is real valued. With the choice \(\mathcal{F}(\gamma) := |\gamma|^{1/2}\) we obtain a selfadjoint operator indicated with
\[
|H|^{1/2} : \mathcal{D}^{1/2} \subset \mathcal{H} \to \mathcal{H},
\] (B3)
which behaves as follows with respect to the previous orthonormal basis \((e_n)_{n=1,2,\ldots}\) of eigenfunctions of \(H\):
\[
e_n \in \mathcal{D}^{1/2}, \quad |H|^{1/2}e_n = |\mu_n|^{1/2}e_n \quad (n = 1, 2, \ldots),
\] (B4)
\[
\mathcal{D}^{1/2} = \{f \in \mathcal{H} \mid \langle |\mu_n|^{1/2}|e_n|f\rangle \}_{n=1,2,\ldots} \in \ell^2\}
\] (B5)
For \(f \in \mathcal{D}^{1/2}\) : \(\langle e_n||H|^{1/2}f\rangle = |\mu_n|^{1/2}\langle e_n|f\rangle \quad (n = 1, 2, \ldots)\), i.e., \(Hf = \sum_{n=1}^{+\infty} |\mu_n|^{1/2}\langle e_n|f\rangle e_n\)
(here and in the sequel, recall that \(|\mu_n| = \mu_n\) for \(n \geq 2\)). Now, let us give Hilbert space structures to the domains \(\mathcal{D}\) and \(\mathcal{D}^{1/2}\); these are provided by the (complete) inner products\((|)\) : \(\mathcal{D} \times \mathcal{D} \to \mathbb{C}\) and \((|)_{\mathcal{D}^{1/2}} : \mathcal{D}^{1/2} \times \mathcal{D}^{1/2} \to \mathbb{C}\),
where \(^{(18)}\)
\[
\langle f|\ell\rangle_{D} := \langle Hf|H\ell\rangle = \sum_{n=1}^{\infty} \mu_{n}^{2} \langle e_{n}|f\rangle \langle e_{n}|\ell\rangle, \tag{B6}
\]
\[
\langle f|\ell\rangle_{D^{1/2}} := \langle |H|^{1/2}f||H|^{1/2}\ell\rangle = \sum_{n=1}^{\infty} |\mu_{n}| \langle e_{n}|f\rangle \langle e_{n}|\ell\rangle. \tag{B7}
\]

Solution of the master equation. Let us consider the master equation as written in Eq. \((101)\) with the initial conditions given therein, i.e., \(\dot{\chi}(s) + H\chi(s) = 0\), \(\chi(0) = q\), \(\chi(0) = p\); the unknown is a function \(\mathbb{R} \ni s \mapsto \chi(s) \in \mathcal{D}\), and the spaces containing the data \(q, p\) are to be specified. As in the previous Appendix we first proceed formally. Applying \(\langle e_{n}\rangle\) to the differential equation in \((101)\) we obtain \((d^{2}/ds^{2} + \mu_{n})\langle e_{n}|\chi(s)\rangle = 0\) for \(n = 1, 2, \ldots\); taking into account the initial conditions in \((101)\) and the fact that \(\mu_{1} < 0 < \mu_{2} < \mu_{3} < \ldots\), we conclude
\[
\langle e_{1}|\chi(s)\rangle = \langle e_{1}|q\rangle \cosh(|\mu_{1}|^{1/2}s) + \langle e_{1}|p\rangle \frac{\sinh(|\mu_{1}|^{1/2}s)}{|\mu_{1}|^{1/2}},
\]
\[
\langle e_{n}|\chi(s)\rangle = \langle e_{n}|q\rangle \cos(\mu_{n}^{1/2}s) + \langle e_{n}|p\rangle \frac{\sin(\mu_{n}^{1/2}s)}{\mu_{n}^{1/2}} \quad (n = 2, 3, \ldots),
\]
thus providing a formal justification for the expression \((102)\) of \(\chi(s)\). It can be checked a posteriori that assuming \(q \in \mathcal{D}\) and \(p \in \mathcal{D}^{1/2}\), all the previous manipulations make sense and Eq. \((102)\) describes the unique solution \(\mathbb{R} \ni s \mapsto \chi(s)\) of Eq. \((101)\) in the space \(C^{2}(\mathbb{R}, \mathcal{D}) \cap C^{1}(\mathbb{R}, \mathcal{D}^{1/2}) \cap C(\mathbb{R}, \mathcal{D})\). The verification of these statements relies on arguments similar to those exemplified after Eqs. \((A13-A16)\) of the previous Appendix.

[1] B. P. Abbott et al. Observation of Gravitational Waves from a Binary Black Hole Merger. *Phys. Rev. Lett.*, 116(6):061102, 2016.

[2] Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. *Astrophys. J.*, 875(1):L1, 2019.

[3] J.L. Friedman, K. Schleich, and D.M. Witt. Topological censorship. *Phys. Rev. Lett.*, 71:1486–1489, 1993.

[4] S.W. Hawking and G.F.R. Ellis. *The Large Scale Structure of Space Time*. Cambridge University Press, Cambridge, 1973.

[5] M. Visser, S. Kar, and N. Dadhich. Traversable wormholes with arbitrarily small energy condition violations. *Phys. Rev. Lett.*, 90:201102, 2003.

[6] E.E. Flanagan and R.M. Wald. Does backreaction enforce the averaged null energy condition in semiclassical gravity? *Phys. Rev. D*, 54:6233–6283, 1996.

[7] R.R. Caldwell. A Phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. *Phys. Lett.*, B545:23–29, 2002.

[8] K.A. Bronnikov. Scalar fields as sources for wormholes and regular black holes. *Particles*, 1:56–81, 2018.

[9] D. Fermi, M. Gengo, and L. Pizzocchero. On the Necessity of Phantom Fields for Solving the Horizon Problem in Scalar Cosmologies. *Universe*, 5(3):76, 2019.

[10] H.G. Ellis. Ether flow through a drainhole: A particle model in general relativity. *J. Math. Phys.*, 14:104–118, 1973.

[11] K.A. Bronnikov. Scalar-tensor theory and scalar charge. *Acta Phys. Polonica B*, 4:251–266, 1973.

[12] M. Dafermos and I. Rodnianski. Lectures on black holes and linear waves. *Clay Math. Proc.*, 17:97–205, 2013.

[13] M.S. Morris and K.S. Thorne. Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. *Am. J. Phys.*, 56:395–412, 1988.

[14] J. Estvez-Delgado and T. Zanni. Wormholes of k-essence in arbitrary space-time dimensions. *Int. J. Mod. Phys.*, A23:3165–3175, 2008.

\(^{(18)}\) One could as well consider the alternative inner products \(\langle |\rangle_{D} : \mathcal{D} \times \mathcal{D} \to \mathbb{C}\) and \(\langle |\rangle_{D^{1/2}} : \mathcal{D}^{1/2} \times \mathcal{D}^{1/2} \to \mathbb{C}\), defined setting
\[
\langle f|\ell\rangle_{D} := \langle f|\ell\rangle + \langle Hf|H\ell\rangle = \sum_{n=1}^{\infty} (1 + \mu_{n}^{2}) \langle e_{n}|f\rangle \langle e_{n}|\ell\rangle, \quad \langle f|\ell\rangle_{D^{1/2}} := \langle f|\ell\rangle + \langle |H|^{1/2}f||H|^{1/2}\ell\rangle = \sum_{n=1}^{\infty} (1 + |\mu_{n}|) \langle e_{n}|f\rangle \langle e_{n}|\ell\rangle;
\]
these have structures more similar to those of the inner products for the spaces \(\mathcal{D}\) and \(\mathcal{D}^{1/2}\) in the previous Appendix, see Eqs. \((A13-A16)\). However, in the present situation \(\langle |\rangle_{D}\) and \(\langle |\rangle_{D^{1/2}}\) are equivalent, respectively, to the inner products \(\langle |\rangle_{D}\) and \(\langle |\rangle_{D^{1/2}}\) of Eqs. \((B6-B7)\).
[15] V. Dzhunushaliev, V. Folomeev, R. Myrzakulov, and D. Singleton. Non-singular solutions to Einstein-Klein-Gordon equations with a phantom scalar field. *JHEP*, 07:094, 2008.
[16] K.A. Bronnikov, R.A. Konoplya, and A. Zhidenko. Instabilities of wormholes and regular black holes supported by a phantom scalar field. *Phys. Rev. D*, 86:024028, 2012.
[17] V. Dzhunushaliev, V. Folomeev, B. Kleihaus, and J. Kunz. Wormhole solutions with a complex ghost scalar field and their instability. *Phys. Rev., D97*(2):024002, 2018.
[18] Hisa-aki Shinkai and Sean A. Hayward. Fate of the first traversible wormhole: Black hole collapse or inflationary expansion. *Phys. Rev. D*, 66:044005, 2002.
[19] O. Sarbach and T. Zannias. The propagation of particles and fields in wormhole geometries. *AIP Conf. Proc.*, 1473(1):223–232, 2012.
[20] B. Carvente, V. Jaramillo, J.C. Degollado, D. Núñez, and O. Sarbach. Traversable ℓ-wormholes supported by ghost scalar fields. *Class. Quant. Grav.*, 36(23):235005, 2019.
[21] J. A. González, F. S. Guzmán, and O. Sarbach. Instability of charged wormholes supported by a ghost scalar field. *Phys. Rev. D*, 80:024023, 2009.
[22] K.A. Bronnikov, J.C. Fabris, and Denis C. Rodrigues. On the instability of some k-essence space-times. *arXiv*, 1908.09126v1 [gr-qc], 2019.
[23] J. A. González, F. S. Guzmán, and O. Sarbach. Instability of wormholes supported by a ghost scalar field. I. Linear stability analysis. *Class. Quantum Grav.*, 26:015010, 2009.
[24] K.A. Bronnikov, J.C. Fabris, and A. Zhidenko. On the stability of scalar-vacuum space-times. *Eur. Phys. J., C71*:1791, 2011.
[25] F. Cremona, F. Pirotta, and L. Pizzocchero. On the linear instability of the Ellis-Bronnikov-Morris-Thorne wormhole. *Gen. Relativ. Gravitat.*, 51:19, 2019.
[26] J. A. González, F. S. Guzmán, and O. Sarbach. Instability of wormholes supported by a ghost scalar field. II. Nonlinear evolution. *Class. Quantum Grav.*, 26:015011, 2009.
[27] A. Doroshkevich, J. Hansen, I. Novikov, and A. Shatskii. Passage of radiation through wormholes. *Int. J. Mod. Phys., D18*:1665–1691, 2009.
[28] P. Kanti, B. Kleihaus, and J. Kunz. Wormholes in Dilatonic Einstein-Gauss-Bonnet Theory. *Phys. Rev. Lett.*, 107:271101, 2011.
[29] A. Doroshkevich, J. Hansen, I. Novikov, and A. Shatskii. Passage of radiation through wormholes. *Int. J. Mod. Phys., D18*:1665–1691, 2009.
[30] J. A. González, F. S. Guzmán, and O. Sarbach. Instability of wormholes supported by a ghost scalar field. I. Linear stability analysis. *Class. Quantum Grav.*, 26:015010, 2009.
[31] K.A. Bronnikov and J.C. Fabris. Regular phantom black holes. *Phys. Rev. Lett.*, 96:251101, 2006.
[32] J. Weidmann. *Spectral Theory of Ordinary Differential Operators*. Lecture Notes in Math. Vol. 1258, Springer-Verlag, Berlin, 1987.
[33] B. Simon. Sturm oscillation and comparison theorems. In D.P. Pearson W.O. Amrein, A.M. Hinz, editor, *Sturm-Liouville Theory*. Birkhäuser, Basel, 2005.
[34] S.J. Avis, C.J. Isham, and D. Storey. Quantum field theory in anti de Sitter space-time. *Phys. Rev. D*, 18:3565, 1978.
[35] C. Kent. Quantum scalar field theory on anti de Sitter space. *Ph.D. thesis, University of Sheffield*, 2013.
[36] C. Dappiaggi, H.R.C. Ferreira, and A. Marta. Ground states of a Klein-Gordon field with Robin boundary conditions in global anti de Sitter spacetime. *Phys. Rev. D*, 98:025005, 2018.
[37] R.A. Adams and J.F Fournier. *Sobolev Spaces, Second edition*. Academic Press, 2003.
[38] F.A. Berezin and M. A. Shubin. *The Schrödinger equation*. Springer Science + Business Media, Dordrecht, 1991.
[39] K. Schmüdgen. *Unbounded Self-adjoint Operators on Hilbert Space*. Springer, 2012.
[40] L. Schwartz. *Théorie des Distributions*. Hermann, Paris, 1978.
[41] J. Pöschel and E. Trubowitz. *Inverse Spectral Theory*. Academic Press, 1987.