A GENERAL SPLITTING FORMULA FOR THE SPECTRAL FLOW

M. DANIEL AND P. KIRK, WITH AN APPENDIX BY K.P. WOJCIECHOWSKI

Abstract. We derive a decomposition formula for the spectral flow of a 1-parameter family of self-adjoint Dirac operators on an odd-dimensional manifold M split along a hypersurface $\Sigma (M = X \cup_{\Sigma} Y)$. No transversality or stretching hypotheses are assumed and the boundary conditions can be chosen arbitrarily. The formula takes the form $SF(D) = SF(D|_{X}, B_{X}) + SF(D|_{Y}, B_{Y}) + \mu(B_{Y}, B_{X}) + S$ where B_{X} and B_{Y} are boundary conditions, μ denotes the Maslov index, and S is a sum of explicitly defined Maslov indices coming from stretching and rotating boundary conditions. The derivation is a simple consequence of Nicolaescu’s theorems and elementary properties of the Maslov index. We show how to use the formula and derive many of the splitting theorems in the literature as simple consequences.

1. Introduction

Several articles have been written containing formulas expressing the spectral flow of a path of self-adjoint Dirac operators on a closed, split manifold $M (M = X \cup_{\Sigma} Y)$ in terms of quantities determined by each piece in the decomposition and “interaction” terms. For example see [4, 6, 18, 15, 8]. The article of Nicolaescu [15] is perhaps the most elegant and conceptually appealing. Additionally, a large number of articles consider the closely related but more delicate problem of splitting theorems for the Atiyah-Patodi-Singer invariant. The bibliography to Bunke’s article [4] contains a long list of citations. Most of these articles, with the exception of Nicolaescu’s, use delicate analytical methods and estimates such as heat kernel methods, and the results apply only after one has stretched the collar neighborhood of the separating hypersurface. Nicolaescu instead treats the problem largely from the point of view of linear algebra in a symplectic Hilbert space, and his main result is appealing in the simplicity of its statement: the spectral flow of the path equals the Maslov index $\mu(\Lambda_{X}, \Lambda_{Y})$. Here Λ_{X} and Λ_{Y} denote the paths of Cauchy data spaces consisting of the restrictions of nullspace elements of the operators on X and Y to their common boundary Σ. Unfortunately, Nicolaescu’s formulation does not lend itself easily to computation. What is needed is a splitting formula that isolates the contribution from each of the two pieces of the decomposition to the spectral flow. This is especially important when studying spectral flow in the context of cut-and-paste constructions.

In this article we prove a general splitting theorem and show how it can be used to derive most of the various splitting theorems in the literature. The proof of our result is quite simple, and uses only elementary properties of the Maslov index in addition to three results of Nicolaescu: the theorem described in the preceding paragraph, a version from his subsequent article for manifolds with boundary [16], and the calculation of the adiabatic limit of the Cauchy data space from [15].

Our main result, Theorem 5.1 states:

Date: July 31, 2018.
Theorem. Let $D(t)$ be a continuous path of self-adjoint Dirac operators on a smooth, closed, oriented, odd-dimensional, Riemannian manifold M. Suppose that M can be split along a hypersurface Σ ($M = X \cup_\Sigma Y$) and that each $D(t)$ is cylindrical and neck-compatible with respect to this splitting. Let $B_X(t)$ and $B_Y(t)$ be paths of self-adjoint elliptic boundary conditions for the restriction of $D(t)$ to X and Y respectively.

Then

$$SF(D) = SF(D|_X, B_X) + SF(D|_Y, B_Y) + \mu(B_Y(1-t), B_X(1-t)) + \sum_{i=1,2,4,5,7,8,10,11} \mu(L_i, M_i)$$

The terms appearing in the sum are certain Maslov indices of explicitly defined paths of Lagrangians.

Notice that this formula, in contrast to the theorems cited above, holds without any preliminary stretching assumptions, nor any prescription on what the boundary conditions should be.

Perhaps the method itself is more important than the actual formula, in the sense that in any given application it is probably easier to adapt the method we introduce here to the specific situation than to make the problem fit our formula. (This is the case in the article \cite{2} on the $SU(3)$ Casson invariant.) For that reason we include a lengthy “user’s guide” (Section \[3]) which indicates how various additional hypotheses can be used to force some of the terms $\mu(L_i, M_i)$ to vanish. We also show how to easily derive many of the different versions of the splitting theorems cited above. In particular, we derive the splitting theorem of Bunke, give a generalization of this theorem and the splitting theorem of Yoshida and Nicolaescu, and indicate the relation between our formula and the formula of \cite{6}.

Our results are stated and proven for Dirac operators on odd dimensional manifolds since these include most of the geometrically important classes of self-adjoint elliptic operators such as the odd signature operator and the spin Dirac operator.

We finish this introduction with a brief example of the method for those readers who are familiar with this subject. Other readers can return to the following paragraphs after finishing Section \[4].

Suppose that $D(t) : \Gamma(E) \to \Gamma(E)$, $t \in [0,1]$ is a path of self-adjoint Dirac operators on a manifold M decomposed along a hypersurface $M = X \cup_\Sigma Y$. Let $\Lambda_X(t)$ and $\Lambda_Y(t)$ be the Cauchy data spaces associated to the restrictions of $D(t)$ to X and Y respectively. These are Lagrangian subspaces of the symplectic Hilbert space $L^2(E|_\Sigma)$. Assume further that each $D(t)$ is cylindrical ($D(t) = J(\partial/\partial s + S(t))$) on a collar neighborhood of Σ and neck-compatible (for each t, $S(t)$ is self-adjoint). Furthermore, suppose that the kernels of the tangential operators $S(t)$ are trivial for all t and denote by $P^\pm(t)$ the positive/negative eigenspace of $S(t)$.

Finally, suppose that $\Lambda_X(0) = P^-(0)$, $\Lambda_X(1) = P^-(1)$, $\Lambda_Y(0) = P^+(0)$, and $\Lambda_Y(1) = P^+(1)$. These four equalities rarely hold except in artificial examples, but Nicolaescu’s adiabatic limit theorem says these conditions are asymptotically true; compensating for this leads to the extra terms in our formula.

The path $\Lambda_X(t)$ is clearly homotopic rel endpoints to the composite of the three paths $P^-(t)$, $P^-(1-t)$ and $\Lambda_X(t)$. Similarly the path $\Lambda_Y(t)$ is homotopic rel endpoints to the composite of
the three paths $\Lambda_Y(t)$, $P^+(1-t)$, and $P^+(t)$. Because the Maslov index is invariant under rel endpoint homotopies and additive with respect to compositions of paths, we conclude

$$SF(D, M) = \mu(\Lambda_X, \Lambda_Y) \quad \text{(Nicolaescu’s splitting theorem)}$$

$$= \mu(P^-, \Lambda_Y) + \mu(P^-(1-t), P^+(1-t)) + \mu(\Lambda_X; P^+)$$

$$= SF(D|Y; P^-) + SF(D|X; P^+)$$

The last step follows from the version of Nicolaescu’s theorem for manifolds with boundary and the fact that P^+ and P^- are transverse. The proof of our main result is no more difficult than this. The extra terms come about by moving to the adiabatic limits at the endpoints and from allowing general boundary conditions.

The authors thank H. Boden, D. Hoff, K. P. Wojciechowski for helpful discussions, and especially L. Nicolaescu who first gave us a proof of Lemma 3.2. The authors thank K. P. Wojciechowski for letting us use his proof of this lemma in the appendix.

2. **Dirac operators**

There are many different definitions of *Dirac operator* in the literature. For our purposes, we adopt that of [15]. Briefly, a Dirac operator is determined by a Clifford module over a manifold along with a compatible connection. More precisely, suppose we are given the following

1. An oriented Riemannian manifold (M, g).
2. A *self-adjoint* Clifford module $E \to M$. So E is a vector bundle over M with an action $c : C(M) \to \text{End}(E)$. Here $C(M)$ is the bundle of Clifford algebras over M generated by the cotangent bundle using the metric. The adjective self-adjoint means that c carries each element of T^*M to a skew-adjoint endomorphism. Together with the Clifford relations, this implies that the each element of T^*M acts orthogonally. For convenience we assume the vector bundle E is a complex vector bundle.
3. A *Clifford compatible covariant derivative* ∇^E on E. Thus

$$\nabla^E : \Gamma(E) \to \Gamma(E \otimes T^*M)$$

is a differential operator satisfying the Leibnitz rule

$$\nabla^E(f s) = df \otimes s + f \nabla^E s$$

for any $f \in C^\infty(M)$ and $s \in \Gamma(E)$, and compatible with the Clifford action in the sense that

$$[\nabla^E, c(a)] = c(\nabla a)$$

where $a \in \Gamma(C(M))$ and ∇ is the Levi-Civita connection (naturally extended from TM to $C(M)$).

This data determines a Dirac operator as the composition

$$\Gamma(E) \xrightarrow{\nabla^E} \Gamma(E \otimes T^*M) \xrightarrow{CC} \Gamma(E)$$

where CC denotes contraction with respect to the Clifford action (denoted by c above). Incidentally, this definition agrees with that of a *Dirac operator on a Dirac bundle* as defined in [14]. In this article, we consider only self-adjoint Dirac operators over odd-dimensional manifolds.
We are particularly interested in Dirac operators over split manifolds. A manifold \(M \) is split along a hypersurface \(\Sigma \) if it can be expressed as the union of two manifolds with boundary, \(X \) and \(Y \), such that \(\partial X = -\partial Y = \Sigma = X \cap Y \). In this case we also require the existence of a neighborhood \(U \) of \(\Sigma \) in \(M \) that is isometric to \(\Sigma \times (-1, 1) \). Over this neighborhood, all relevant structures (e.g. the Clifford bundle \(E \)) should decompose similarly.

Thus we are led to consider Dirac operators on manifolds with boundary, and in this context we impose two further restrictions on such operators. Such a Dirac operator must be cylindrical, meaning that in a neighborhood of the boundary (of the form \(\Sigma \times (-1, 0) \) or \(\Sigma \times [0, 1) \) as described above) \(D \) can be written as

\[
D = c(du)(\partial/\partial u + S)
\]

where \(u \) is the second factor in \(\Sigma \times (-1, 0) \) (or \(\Sigma \times [0, -1) \)), chosen so that \(||du|| = 1 \), and \(S \) is a Dirac operator on \(E|_{\partial M} \), referred to as the tangential operator. Note that \(S \) is assumed to be constant in that it does not depend on the coordinate \(u \). Finally, we require that \(D \) be neck compatible, meaning that the tangential operator \(S \) is self-adjoint.

In what follows we consider only Dirac operators satisfying these conditions. Although these conditions may appear restrictive, most important geometrically defined self-adjoint operators are of this type e.g. the spin Dirac and odd signature operators.

The Clifford relation \((v \otimes w + w \otimes v = -2\langle v, w \rangle) \) implies that the algebraic operator \(c(du) : \Gamma(E|_{\partial M}) \to \Gamma(E|_{\partial M}) \) is a fiberwise isometry satisfying \(c(du)^2 = -\text{Id} \), and so it induces a complex structure on \(L^2(E|_{\partial M}) \) which we rename suggestively

\[
J : L^2(E|_{\partial M}) \to L^2(E|_{\partial M}).
\]

So \(J^2 = -\text{Id} \). Moreover, \(SJ = -JS \) and so the spectrum of the elliptic self-adjoint operator \(S : L^2(E|_{\partial M}) \to L^2(E|_{\partial M}) \) is symmetric, and its \(\lambda \) and \(-\lambda \) eigenspaces are interchanged by \(J \).

Define a hermitian symplectic structure on \(L^2(E|_{\partial M}) \) by

\[
\omega(x, y) = \langle x, Jy \rangle
\]

where \(\langle \cdot, \cdot \rangle \) denotes the \(L^2 \) inner product.

Definition 2.1. Two closed subspaces \(L_1, L_2 \) of a Hilbert space form a Fredholm pair if \(L_1 \cap L_2 \) is finite dimensional, and \(L_1 + L_2 \) is closed with finite codimension.

Definition 2.2.

1. A closed subspace \(L \subset L^2(E|_{\partial M}) \) is called isotropic if \(L \) and \(JL \) are orthogonal. Thus \(\omega(l, m) = 0 \) for all \(l, m \in L \).

2. A closed subspace \(L \subset L^2(E|_{\partial M}) \) is called Lagrangian if \(JL \) is the orthogonal complement of \(L \). Thus \(\omega(l, m) = 0 \) for all \(l, m \in L \) and \(L + JL = L^2(E|_{\partial M}) \).

Since \(SJ = -JS \), the Hilbert space \(L^2(E|_{\partial M}) \) has an orthogonal decomposition into the orthogonal direct sum of the negative eigenspace, kernel, and positive eigenspace of \(S \)

\[
L^2(E|_{\partial M}) = P^-(S) \oplus \ker S \oplus P^+(S).
\]

In this decomposition, \(\ker S \) is finite dimensional since \(S \) is elliptic on the closed manifold \(\partial M \). Moreover \(J \) preserves \(\ker S \) and so \(\ker S \) is a symplectic subspace. The spaces \(P^+(S) \) and \(P^-(S) \)
are interchanged by J since $JS = -SJ$, and so $P^+(S)$ and $P^-(S)$ are infinite dimensional and isotropic.

If $L \subset \ker S$ is a (finite dimensional) Lagrangian subspace (this is defined just as before, substituting $\ker S$ for $L^2(E_{\partial M})$), then the spaces $P^-(S) \oplus L$ and $L \oplus P^+(S)$ are easily seen to be Lagrangian subspaces of $L^2(E_{\partial M})$. An important case occurs when $\ker S = 0$, in which case $P^\pm(S)$ are themselves Lagrangian subspaces.

It will be convenient to have a slightly more general decomposition of $L^2(E_{\partial M})$ than Equation 2.3. To this end, let ν be any nonnegative real number and define

$$H_\nu(S) = \text{span}_{L^2} \{ \phi \mid S\phi = \lambda \phi \text{ and } |\lambda| \leq \nu \},$$

(2.4)

$$P^-_\nu(S) = \text{span}_{L^2} \{ \phi \mid S\phi = \lambda \phi \text{ and } \lambda < -\nu \},$$

(2.5)

and

$$P^+_\nu(S) = \text{span}_{L^2} \{ \phi \mid S\phi = \lambda \phi \text{ and } \lambda > \nu \}.$$

(2.6)

Then as before the $P^\pm_\nu(S)$ are infinite dimensional isotropic subspaces and H_ν is a finite dimensional symplectic subspace. Moreover the decomposition of Equation 2.3 is a special case ($\nu = 0$) of the decomposition

$$L^2(E_{\partial M}) = P^-_\nu(S) \oplus H_\nu(S) \oplus P^+_\nu(S).$$

(2.7)

It is proven in [13] that if S is taken to vary continuously over some parameter space T, i.e. if the map $t \mapsto S(t) - S(t_0)$ is a continuous map from T into the space of bounded operators (here t_0 is some fixed base point in T) and $\nu(t)$ is a continuous non-negative function on T so that $S(t)$ has a spectral gap at $\nu(t)$ (i.e. $\nu(t)$ misses the spectrum of $S(t)$), then the decomposition (2.7) is continuous in T. Continuity for subspaces will always be taken in the gap topology [11].

3. Cauchy data spaces

For a given Dirac operator D on a manifold X with non-empty boundary Σ, its Cauchy data space $\Lambda_X(D)$ is a Lagrangian subspace of $L^2(E_{\partial M})$ consisting roughly of boundary values of its kernel elements. We give a definition suitable for our purposes, referring to [15] for a careful construction.

In [3] it is shown that in the present context there is a well defined, bounded, injective restriction map (see Proposition 2.2 of [13])

$$R : \ker \left(D : L^2_\frac{\partial}{2}(E) \to L^2_{-\frac{\partial}{2}}(E) \right) \to L^2(E_{|\Sigma}).$$

(3.1)

Here $L^2_s(E)$ means the Sobolev space of sections of E with s derivatives in L^2, extended in the usual way to real s.

The image of R is a closed, infinite dimensional Lagrangian subspace of $L^2(E_{|\Sigma})$. It will be denoted by

$$\Lambda_X(D) := R \left(\ker \left(D : L^2_\frac{\partial}{2}(E) \to L^2_{-\frac{\partial}{2}}(E) \right) \right)$$

(3.2)

and called the Cauchy data space of the operator D on X. Sometimes we will abbreviate $\Lambda_X(D)$ to Λ_X or even Λ when D or X are clear from context. Thus the Cauchy data space is
space of boundary values of solutions to $D\sigma = 0$. In [13], it is proven that if D varies regularly (smooth is sufficient but not necessary) in the space of Dirac operators with respect to some parameter space T, then the Cauchy data spaces $\Lambda_X(D(t))$ vary regularly (at least C^1) in $t \in T$. Regularity for closed subspaces may be interpreted in terms of the norm topology of the associated projections. The resulting topology is equivalent to the gap topology [11].

An important property of the Cauchy data space of a Dirac operator D of the form $J(\partial/\partial u + S)$ on the collar $\Sigma \times [-1, 0]$ of the boundary of X is that the pair $(\Lambda_X(D), P^+(S))$ forms a Fredholm pair of subspaces [12]. Since $P^0(S) \subset P^+(S)$ has finite codimension, it follows that if B is any closed subspace of $L^2(E|\Sigma)$ which contains $P^0(S)$ for some ν with finite codimension, then $(\Lambda_X(D), B)$ form a Fredholm pair.

The proof of our main theorem will require stretching, which we now describe. Given a manifold X with boundary Σ and (open) collar $\Sigma \times (-1, 0]$, define, for $r \geq 0$,

$$X^r = X \cup_{\Sigma \times (-1, 0]} \Sigma \times (-1, r].$$

Thus $X = X^0$. Using Equation 2.1 to define D on $\Sigma \times (-1, r]$ gives a natural extension of D to X^r. In this way one obtains a 1-parameter family of Cauchy data spaces $\Lambda_X(D)$. The limit of $\Lambda_X(D)$ as r approaches infinity is identified in Theorem 4.9 of [15]. We elaborate on this important and interesting result.

For notational convenience we write Λ^r_X for $\Lambda_X(D)$ and $P^+_{\nu_0}$ for $P^+(S)$. Since $\Lambda^0_X \cap P^+_0$ is finite dimensional, and since $\cap_{\nu \to \infty} P^+_\nu = 0$, there exists a number $\nu_0 \geq 0$ so that

$$\Lambda^0_X \cap P^+_\nu = 0.$$

(3.4)

Following Nicolaescu, the set of all non-negative real numbers satisfying Equation 3.4 is a non-empty, closed, unbounded interval called the nonresonance range of D. The smallest such ν_0 is called the nonresonance level of D. Fix some ν_0 in the nonresonance range of D.

The symplectic reduction of Λ^0_X to H_{ν_0} is the Lagrangian subspace

$$\tilde{\Lambda}_X(D) = \text{proj}_{H_{\nu_0}}(\Lambda^0_X \cap (H_{\nu_0} \oplus P^+_0)) = \frac{\Lambda^0_X \cap (H_{\nu_0} \oplus P^+_\nu_0)}{\Lambda^0_X \cap P^+_\nu_0} \subset H_{\nu_0}.$$

(3.5)

The decomposition of Equation 2.7 is preserved by S since this is an decomposition in terms of eigenspaces of S. In particular S preserves H_{ν_0} and the restriction of S to H_{ν_0} is self-adjoint with all eigenvalues in $[-\nu_0, \nu_0]$. Thus we can form the 1-parameter family of (finite dimensional) operators

$$e^{-rS} : H_{\nu_0} \to H_{\nu_0}.$$

(3.6)

It is not too hard to see that the limit

$$L_X(D) := \lim_{r \to \infty} e^{-rS}\tilde{\Lambda}_X(D)$$

exists and is a Lagrangian subspace of H_{ν_0}.

We may now state Nicolaescu’s adiabatic limit theorem [15].
Theorem 3.1. As \(r \to \infty \)

\[
\Lambda^r_X(D) \to P^-_{\nu_0} \oplus L_X(D).
\]

(3.8)

The limiting subspace is called the adiabatic limit of \(\Lambda^r_X \). Thus the adiabatic limit is determined, up to a finite dimensional piece, by the tangential operator.

The identification of the adiabatic limit is an important ingredient in the proof of our splitting formula, but we require a little bit more. We complement the previous theorem with a lemma stating that the adiabatic deformation is in fact regular.

Lemma 3.2. Let \(r(t) = \frac{1}{1-t} \) for \(t \in [0, 1) \). The path of Lagrangian subspaces

\[
t \mapsto \begin{cases}
\Lambda^r(t) & t < 1, \\
P^-_{\nu_0} \oplus L_X(D) & t = 1.
\end{cases}
\]

is continuous.

The proof of Lemma 3.2 was provided to us by K.P. Wojciechowski and can be found in the appendix.

One warning is in order here. It is not true that the adiabatic limits of the Cauchy data spaces vary continuously when \(D \) is varying continuously over some parameter space, even if \(\nu_0 \) is larger than the nonresonance level for every operator \(D \) in this family. The reason for this is that the dynamics of \(e^{-rS} \) acting on subspaces of \(H_{\nu_0} \) is quite sensitive the initial subspace. See [2] for an explicit example of an analytic path of Dirac operators \(D(t) \) for which the path of adiabatic limits of the Cauchy data spaces \(P^- \oplus L_X(D(t)) \) is not continuous. There are some special circumstances when one can conclude that the adiabatic limits vary continuously, and in those cases a splitting theorem can be proven easily. One such example is Theorem 6.8 below.

We now let \(M \) be a closed manifold split along a hypersurface \(\Sigma \) into two pieces \(X \) and \(Y \) \((M = X \cup_{\Sigma} Y)\). As above, we identify a closed neighborhood of \(\Sigma \) in \(M \) as \(\Sigma \times (-1, 1) \), with \(\Sigma = \partial X = -\partial Y \). In the previous paragraphs we have stated various facts about Dirac operators from the point of view of the “\(X \) side”. For convenience we state the analogous facts for the “\(Y \) side”. The main thing to keep in mind here is that the complex structure \(J \) on \(L^2(E|_{\Sigma}) \) and the cylindrical decomposition (2.1) in the collar use the outward normal to \(X \) which is the inward normal to \(Y \). This generally has the effect of switching signs. Chasing down the repercussions one obtains the following facts (see [13]):

1. \((P^-(S), \Lambda_Y(D))\) is a Fredholm pair.
2. The limit as \(r \to \infty \) of \(\Lambda^r_Y(D) \) is \(L_Y(D) \oplus P^+_{\nu_1}(S) \) where \(\nu_1 \) is in the nonresonance range of \(D \) acting on \(Y \) and \(L_Y(D) \) is defined similarly to \(L_X(D) \) but by taking \(r \to -\infty \).
3. The pair \((\Lambda_X(D), \Lambda_Y(D))\) is a Fredholm pair.
4. The kernel of \(D : \Gamma(E) \to \Gamma(E) \) is taken isomorphically to the intersection \(\Lambda_X(D) \cap \Lambda_Y(D) \) by restricting to \(\Sigma \).
4. Spectral flow equals Maslov index

The theorems of Nicolaescu presented in this section establish the equality of two a priori different invariants that can be associated to a path of Dirac operators. Accordingly, we begin with a description of these two invariants.

The spectrum of a Dirac operator D on a closed manifold M consists of discrete eigenvalues of finite multiplicity. The spectral flow of a continuous path $D(t)$ ($t \in [0,1]$) of self-adjoint Dirac operators is (roughly) defined to be the algebraic count (with multiplicity) of the number of eigenvalues crossing through zero. While this definition is somewhat imprecise, it suffices for our purposes, particularly because we never actually work with the spectral flow directly. Instead, we use Nicolaescu’s theorems below to convert the spectral flow to the Maslov index. In any case, precise definitions of the spectral flow can be found in [12, 15, 6].

An important technical point is appropriate here. One must set conventions so that the spectral flow is well defined on paths $D(t)$ for which $D(0)$ and/or $D(1)$ have non-trivial kernel. One must decide whether or not an eigenvalue that starts or ends at 0 counts as crossing through 0. It is important to be precise here, because different conventions appear in the literature, and the particular choice effects the properties of the invariant. Among the several such conventions that can be found in the literature, we will use the following. Given a path $D(t)$, $t \in [0,1]$ of Dirac operators, let $\epsilon > 0$ be a number smaller than the smallest positive eigenvalues of $D(0)$ and $D(1)$. We define the spectral flow of the path $D(t)$ to be the spectral flow of the path $D(t) - \epsilon \text{Id}$:

$$SF(D(t)) := SF(D(t) - \epsilon \text{Id}).$$

Effectively, we count the eigenvalues that cross ϵ rather than those that cross 0. Notice that this avoids the issue of starting or ending at the crossing value, because by definition, no eigenvalues start or end at ϵ.

Given a continuous path of Fredholm pairs of Lagrangians $(\Lambda_1(t), \Lambda_2(t))$ in a symplectic vector space the Maslov index $\mu(\Lambda_1, \Lambda_2)$ is the integer defined to be the algebraic count of how many times $\Lambda_1(t)$ passes through $\Lambda_2(t)$ along the path. The complex structure J is used to specify the signs in this algebraic count. In particular, the normalization is chosen so that $\mu(\Lambda_1, e^{tJ}\Lambda_2)$, $t \in [-\epsilon, \epsilon]$ equals $\dim(\Lambda_1, \Lambda_2)$ when Λ_1 and $\Lambda - 2$ are constant paths.

See [13, 15, 17] for the precise definition. Note, the condition that the Lagrangians be Fredholm is vacuous in the finite dimensional case, but critical in our context ($L^2(E|_{\Sigma})$). The Fredholm property is typically easily verified for any pair of paths we consider by appealing to facts about Cauchy data spaces and related Lagrangians as discussed in Section 2.

As with the spectral flow, a convention must be chosen to define the Maslov index for paths of pairs that are not transverse at the endpoints. Again, it is important to be explicit here because there are a number of possibilities. We use a convention defined in terms of the complex structure J as explained in [17]. Choose a small positive ϵ so that

1. $(e^{sJ}\Lambda_1(t), \Lambda_2(t))$ form a Fredholm pair for each t and each $0 \leq s \leq \epsilon$. This is possible since Fredholm pairs form an open subspace of the space of closed pairs [17].
2. $e^{sJ}\Lambda_1(0)$ is transverse to $\Lambda_2(0)$ and $e^{sJ}\Lambda_1(1)$ is transverse to $\Lambda_2(1)$ for all $0 < s < \epsilon$. The proof that such an ϵ exists can be found in [17].
Thus the path of pairs \((e^{J_0}L_1(t), L_2(t))\) forms a path of Fredholm pairs which are transverse at the endpoints. One then defines the Maslov index of \(L_1\) and \(L_2\) by taking

\[
\mu(L_1, L_2) := \mu(e^{J_0}L_1, L_2).
\]

We will use the following two elementary properties of the Maslov index.

1. **Path Additivity**: Let \(L_1, L_2, K_1,\) and \(K_2\) be paths of Lagrangians such that \(L_i(1) = K_i(0)\) for \(i = 1, 2\) and let \(M_i\) be the path obtained by concatenating \(L_i\) and \(K_i\) (we write \(M_i = L_i * K_i\)). Then

\[
\mu(M_1, M_2) = \mu(L_1, L_2) + \mu(K_1, K_2).
\]

2. **Homotopy Invariance**: Let \(L_1, L_2, K_1,\) and \(K_2\) be paths of Lagrangians such that \(L_i\) is homotopic rel endpoints to \(K_i\). Then

\[
\mu(L_1, L_2) = \mu(K_1, K_2).
\]

Proofs of these facts follow from the interpretation of the Maslov index as an intersection number and can be found in [7]. It is worth noting that the proof of our main theorem requires only these elementary properties of the Maslov index and avoid more technical tools such as symplectic reduction.

Path additivity does not hold with all possible conventions, and it is the reason we use the chosen convention. There are other conventions; a popular choice is to use the \((-\epsilon, \epsilon)\) Maslov index and spectral flow, since this choice fits in with the index theorem of Atiyah-Patodi-Singer as stated in [1]. To go back and forth between conventions one needs only to know that if \(\mu'\) is another convention, then there exist numbers \(\sigma_0\) and \(\sigma_1\) in \([-1, 0, 1]\) and \(e \in \{1, -1\}\) so that

\[
\mu'(L, M) = e \cdot \mu(L, M) + \sigma_0 \cdot \dim(L(0) \cap M(0)) + \sigma_1 \cdot \dim(L(1) \cap M(1)).
\]

A similar remark applies to the spectral flow, and it is not hard to see that the formula of our main result, Theorem 5.1, remains true provided one chooses the spectral flow and Maslov index conventions compatibly, after perhaps adding a correction term depending only on the dimensions of \(\ker D(0)\) and \(\ker D(1)\).

Two further simple facts we will use in Section 6 without explicit mention are that (with our chosen conventions),

1. \(\mu(L, M) = 0\) if \(L\) and \(M\) are constant paths.
2. If \(L, M\) are paths of Lagrangians in \(H_\nu(S)\), then

\[
\mu(P^-_\nu \oplus L, M \oplus P^+_{\nu}) = \mu(L, M).
\]

These are easy consequences of the definitions.

The following remarkable theorem of Nicolaescu will be the basis of what follows.

Theorem 4.1. Let \(D(t), t \in [0, 1]\) be a smooth path of (cylindrical, neck-compatible, self-adjoint) Dirac operators on a smooth, oriented, closed, odd dimensional Riemannian manifold \(M\) which splits as \(M = X \cup_\Sigma Y\). Then

\[
SF(D) = \mu(\Lambda_X(D), \Lambda_Y(D)).
\]
So the theorem explicitly states the intuitively appealing idea that counting kernel elements along the path (i.e. counting eigenvalues that cross through zero) is equivalent to counting pairs of boundary values that match up (i.e. nontrivial intersections between the Cauchy data spaces). Theorem 4.1 was first proved by Nicolaescu for paths of Dirac operators whose endpoints have trivial kernel in [15]. The restriction to trivial kernel at the endpoints was removed in [8].

A similar theorem may be stated for manifolds with boundary. In this case we must impose boundary conditions for the spectral flow to be well defined. This is the subject of the next definition.

Definition 4.2. Let X be a manifold with boundary $\partial X = \Sigma$ and D a self-adjoint Dirac operator on X in cylindrical form with tangential operator S. A **self-adjoint elliptic boundary condition** is a Lagrangian subspace $B \subset L^2(E|_{\Sigma})$ which contains $P^+_{\nu}(S)$ as a finite codimensional subspace for some ν.

See [3] and [16] for details. The condition that B be Lagrangian implies that the operator D on X with boundary conditions B is self-adjoint. The requirement that B contain P^+ with finite codimension ensures that the operator D acting of sections over X whose restriction to the boundary lies in B is elliptic. Thus given a path $D(t)$ of Dirac operators on X and a path of elliptic self-adjoint boundary conditions $B(t)$ the spectral flow $SF(D, B)$ is defined.

Then Nicolaescu’s theorem extends to the bounded case as follows.

Theorem 4.3. Let $D(t)$, $t \in [0, 1]$ be a smooth path of (cylindrical, neck-compatible, self-adjoint) Dirac operators on a smooth, oriented, odd dimensional Riemannian manifold X with nontrivial boundary $\partial X = \Sigma$. Let $B(t)$ be a smooth path of elliptic boundary conditions for $D(t)$. Then

$$SF(D, B) = \mu(\Lambda_X(D), B).$$

5. **The General Splitting Formula**

In this section we state and prove the general splitting formula. The formula expresses the spectral flow of a path of Dirac operators on a closed manifold in terms of the spectral flows of the restricted paths (with associated elliptic boundary conditions). Whereas other results of this type have many additional hypotheses and produce more succinct formulas, our result requires only the minimal hypotheses, but produces a longer formula. In Section 6 we discuss additional conditions that may be imposed to make various terms in our formula vanish or cancel.

The set-up is as follows. Let $D(t)$ be a smooth path of Dirac operators on a smooth, oriented, closed, odd dimensional Riemannian manifold M. Suppose that M can be split along a hypersurface Σ ($M = X \cup \Sigma Y$) and that each $D(t)$ is cylindrical and neck-compatible with respect to this splitting. Let $B_X(t)$ and $B_Y(t)$ be paths of elliptic boundary conditions for $D(t)$ restricted to X and Y respectively. Then we will show that there is an 11 term formula

$$SF(D) = SF(D_X, B_X) + SF(D_Y, B_Y) + \mu(B_Y(1-t), B_X(1-t)) + \sum_{i=1,2,4,5,7,8,10,11} \mu(L_i, M_i)$$

(5.1)
Moreover Λ and there exists a Lagrangian (and gives a recipe for constructing it) so that the adiabatic limit theorem (Theorem 3.1 above) shows that there exists a Lagrangian $L(\Lambda)$.

Theorem 3.1 allows us to replace $SF(D)$ by $\mu(\Lambda_X(D), \Lambda_Y(D))$. We have at our disposal the path additivity and the homotopy invariance of the Maslov index. We will describe paths L and M that are homotopic rel endpoints to $\Lambda_X(D)$ and $\Lambda_Y(D)$ respectively. These new paths will each be the concatenation of eleven pieces (L_i and M_i respectively). Each piece will contribute a term to the right hand side of Formula (5.1).

To begin let $\nu_0 \geq 0$ and $\nu_1 \geq 0$ be numbers chosen so that

1. ν_0 is in the nonresonance range for $D(0)$ on X and the tangential operator $S(0)$ has a spectral gap at ν_0, and

2. ν_1 is in the nonresonance range for $D(1)$ on Y and the tangential operator $S(1)$ has a spectral gap at ν_1.

We abbreviate the notation for the Cauchy data spaces using the symbol $\Lambda_X^r(t)$ for $\Lambda_X(\nu^r(D(t))$. Moreover $\Lambda_X(t)$ means $\Lambda_X(\nu^0(D(t)) = \Lambda_X(D(t))$. Similar notation applies to Y. Nicolaescu’s adiabatic limit theorem (Theorem 3.1 above) shows that there exists a Lagrangian $L_X(0) \subset H_{\nu_0}$ (and gives a recipe for constructing it) so that

$$\lim_{r \to \infty} \Lambda_X^r(0) = P_{\nu_0}^-(S(0)) \oplus L_X(0)$$

and there exists a Lagrangian $L_Y(1) \subset H_{\nu_0}$ so that

$$\lim_{r \to \infty} \Lambda_Y^r(1) = L_Y(1) \oplus P_{\nu_1}^+(S(1)).$$

We can now enumerate the eleven pieces of each path.

1. Let L_1 be the path starting at $\Lambda_X^0(0)$ and ending at $\lim_{r \to \infty} \Lambda_X^r(0) = P_{\nu_0}^-(S(0)) \oplus L_X(0)$ obtained by stretching. An explicit formula is given in the statement of Lemma 4.1. Let M_1 be the constant path at $\Lambda_Y(0)$.

2. Let L_2 be any path of Lagrangians starting at $P_{\nu_0}^-(S(0)) \oplus L_X(0)$ and ending at $B_Y(0)$ so that for all t, $L_2(t)$ is a self-adjoint elliptic boundary condition for the restriction of $D(0)$ to Y (or more generally it suffices to assume that $(L_2(t), \Lambda_Y(0))$ are a Fredholm pair). Let M_2 be the constant path $\Lambda_Y(0)$.

3. Let $L_3(t)$ be $B_Y(t)$ and let $M_3(t)$ be $\Lambda_Y(t)$. Theorem 4.3 applied to Y implies that

$$\mu(L_3, M_3) = SF(D(Y, B_Y)).$$

4. Take L_4 to be the constant path $B_Y(1)$, and let M_4 be the path from $\Lambda_Y(1)$ to $\lim_{r \to \infty} \Lambda_Y^r(1) = L_Y(1) \oplus P_{\nu_1}^+(S(1))$ obtained by stretching as in Lemma 4.2.

5. Let L_5 be the constant path $B_Y(1)$. For M_5 choose a path of Lagrangians starting at $L_Y(1) \oplus P_{\nu_1}^+(S(1))$ and ending at $B_X(1)$ so that for all t, $M_5(t)$ is a self-adjoint elliptic boundary condition for the restriction of $D(1)$ to X (or more generally so that $(\Lambda_X(1), M_5(t))$ form a Fredholm pair).

6. Let L_6 be the path as L_3 run backwards, i.e. $L_6(t) = L_3(1-t)$, and let M_6 be B_X run backwards. Thus

$$\mu(L_6, M_6) = \mu(B_Y(1-t), B_X(1-t))$$
7. Let L_7 be L_2 run backwards and let M_7 be the constant path $B_X(0)$.
8. Let L_8 be L_1 run backwards and M_8 the constant path $B_X(0)$.
9. Let L_9 be the path $\Lambda_X(t)$ and let M_9 be the path $B_X(t)$. Theorem 4.3 says:

$$\mu(L_9, M_9) = SF(D_{|X}, B_X).$$

(5.4)

10. Take L_{10} to be the constant path $\Lambda_X(1)$ and M_{10} to be M_5 run backwards.
11. Finally, let L_{11} be the constant path $\Lambda_X(1)$ and M_{11} to be M_4 run backwards.

The reader may verify that the composite path $L = L_1 \ast L_2 \ast \cdots \ast L_{11}$ is defined and is homotopic rel endpoints to the path Λ_X. Similarly $M = M_1 \ast M_2 \ast \cdots \ast M_{11}$ is homotopic rel endpoints to Λ_Y. Hence

$$SF(D) = \mu(\Lambda_X, \Lambda_Y) = \mu(L, M) = \sum_{i=1}^{11} \mu(L_i, M_i),$$

using homotopy invariance of the Maslov index and additivity of the Maslov index under composition of paths.

We summarize our conclusions in the following theorem.

Theorem 5.1. Let $D(t)$ be a continuous path of self-adjoint Dirac operators on a smooth, closed, oriented, odd dimensional Riemannian manifold M. Suppose that M can be split along a hypersurface Σ ($M = X \cup_\Sigma Y$) and that each $D(t)$ is cylindrical and neck compatible with respect to this splitting. Let $B_X(t)$ and $B_Y(t)$ be paths of self-adjoint elliptic boundary conditions for the restriction of $D(t)$ to X and Y.

Then

$$SF(D) = SF(D_{|X}, B_X) + SF(D_{|Y}, B_Y) + \mu(B_Y(1-t), B_X(1-t)) + \sum_{i\neq 3,6,9} \mu(L_i, M_i).$$

6. User’s guide to Theorem 5.1

In this section we explain how to use Theorem 5.1. Specifically we show how various natural hypotheses simplify the formula, and then derive some earlier theorems as consequences. We will not exhaust all the possibilities, but hope to give some indication of the utility of the formula.

The authors’ background concerns the application of this subject to the odd signature operator coupled to a path of connections starting and ending at flat connections. This is the kind of operator considered in topological applications of spectral flow, such as computations of Atiyah-Patodi-Singer ρ_α invariants, Casson’s invariant, and Floer homology. The methods we describe are particularly well suited for this class of problem.

6.1. **Transversality at endpoints and stretching.** First some notation. We have defined X^r and Y^r to be the manifolds obtained by adding a collar of length r to X and Y. Let M^r be the closed manifold obtained by stretching M along Σ, so

$$M^r = X^r \cup_\Sigma Y^r.$$
Hypothesis 1. The adiabatic limits of the Cauchy data spaces are transverse at the endpoints.

\[\lim_{r \to \infty} \Lambda_X^r(i) \cap \lim_{r \to \infty} \Lambda_Y^r(i) = 0, \quad i = 0, 1. \]

Proposition 6.1. Suppose that Hypothesis 1 holds. Then there exists an \(r_0 \geq 0 \) so that replacing \(M \) by \(M^r \) for \(r \geq r_0 \) in Theorem 5.1, the terms \(\mu(L_1, M_1) \) and \(\mu(L_{11}, M_{11}) \) vanish.

Proof. Continuity of the path of Lemma 3.2 implies that there exists some \(r_0 \) so that the Lagrangians \(\Lambda^r_X(i) \) and \(\Lambda^r_Y(i) \) are transverse for \(r \geq r_0 \) and \(i = 0, 1 \). Then the Lagrangians \(L_1(t) \) and \(M_1(t) \) are transverse for all \(t \in [0, 1] \) and hence \(\mu(L_1, M_1) = 0 \). The same argument applies at the other end of the path to show that \(\mu(L_{11}, M_{11}) = 0. \)

Notice that the two cases are independent, i.e. if the limits of the Cauchy data spaces are transverse at the initial point then \(\mu(L_1, M_1) = 0 \) for \(r \) large enough, and if they are transverse at the terminal point then \(\mu(L_{11}, M_{11}) = 0 \) for \(r \) large enough.

A slight generalization of this can be obtained by using the following hypothesis.

Hypothesis 2. For \(i = 0 \) and \(1 \), the dimension of \(\Lambda^r_X(i) \cap \Lambda^r_Y(i) \) is independent of \(r \) for \(r \geq r_0 \) and equals the dimension of the intersection of the limits of the Cauchy data spaces

\[\dim(\Lambda^r_X(i) \cap \Lambda^r_Y(i)) = \dim(\lim_{r \to \infty} \Lambda^r_X(i) \cap \lim_{r \to \infty} \Lambda^r_Y(i)). \]

Notice that the intersection \(\Lambda^r_X(i) \cap \Lambda^r_Y(i) \) is isomorphic to the kernel of \(D(i) \) on \(M^r \), so Hypothesis 2 implies (but is in general stronger) that the dimension of this kernel is independent of \(r \).

Proposition 6.2. If Hypothesis 2 holds then after replacing \(M \) by \(M^r \) for \(r \geq r_0 \) in Theorem 5.1, the terms \(\mu(L_1, M_1) \) and \(\mu(L_{11}, M_{11}) \) vanish.

Proof. Let \(\Lambda^\infty_X(0) \) denote the adiabatic limit of \(\Lambda^r_X(0) \) with similar notation for \(Y \).

Fix \(r \geq r_0 \) and let \(u \geq r \). Since \(\dim(\Lambda^r_X(0) \cap \Lambda^r_Y(0)) \) is isomorphic to the kernel of \(D \) on \(M^{u+r} \), which in turn is isomorphic to \(\dim(\Lambda_X^{(u+r)/2}(0) \cap \Lambda_Y^{(u+r)/2}(0)) \), Hypothesis 2 implies that

\[\dim(\Lambda^r_X(0) \cap \Lambda^r_Y(0)) = \dim(\Lambda^\infty_X(0) \cap \Lambda^\infty_Y(0)). \]

Thus the dimension of the intersection of \(L_1(t) \) with \(M_1(t) \) is independent of \(t \). This implies that \(\mu(L_1, M_1) = 0 \). A similar argument shows that \(\mu(L_{11}, M_{11}) \) vanishes.

6.2. Choice of Boundary Conditions. The boundary conditions \(B_X \) and \(B_Y \) can be restricted to simplify the splitting formula. The most direct way to do this is just to kill the terms \(\mu(L_2, M_2) \), \(\mu(L_5, M_5) \), \(\mu(L_7, M_7) \), and \(\mu(L_{10}, M_{10}) \) by choosing the boundary conditions \(B_Y(0) \) and \(B_X(1) \) as follows.

Hypothesis 3. \(B_Y(0) = P_{v_0}(0) \oplus L_X(0) \) and \(B_X(1) = L_Y(1) \oplus P_{v_1}^+(1) \).
Proposition 6.3. Assume that Hypothesis 3 holds. Then one can choose the paths L_2 and M_5 (and their reverses L_7 and M_{10}) so that

$$
\mu(L_2, M_2) = \mu(L_5, M_5) = \mu(L_7, M_7) = \mu(L_{10}, M_{10}) = 0.
$$

Proof. Take L_2 and M_5 to be constant paths. Then L_7 and M_{10} are also constant. By definition, M_2, L_5, M_7, and L_{10} are constant. Thus the four terms are Maslov indices of constant paths, and so all vanish. \qed

We could have taken the point of view in Theorem 5.1 that only boundary conditions satisfying Hypothesis 3 are allowed. This would have given a formula with four fewer terms, but the result would have been less flexible. The decision to state the theorem as we did was made to decouple the choice of boundary conditions from the analysis of the adiabatic limits of the Cauchy data spaces.

6.3. The nonresonance range, limiting values of extended L^2 solutions, and adiabatic limits. We next give a slightly more detailed description of the adiabatic limit $\lim_{r \to \infty} \Lambda_r X$ which can be useful in controlling some of the terms.

Definition 6.4. Let D be a cylindrical Dirac operator as above on a manifold X with boundary. The Lagrangian subspace

$$
\widetilde{L}_X(D) \subset \ker S
$$

defined to be the symplectic reduction of the Cauchy data space to the kernel of S

$$
\widetilde{L}_X(D) = \text{proj}_{\ker S} (\Lambda_X(D) \cap (\ker S \oplus P^+(S)))
$$

is called the limiting values of extended L^2 solutions. (This terminology comes from [1].)

For convenience, we recall the notation for several Lagrangians that appear in this section.

1. Λ_X^r, the Cauchy data space on X^r. This is an infinite dimensional Lagrangian subspace of $L^2(E|\Sigma)$.

2. $\widetilde{\Lambda}_X$, the symplectic reduction of the (length 0) Cauchy data space Λ_X^0 to H_{ν_0} (Equation 3.3) where $\nu_0 \geq 0$ is greater than or equal to the nonresonance level of D and S has a spectral gap at ν_0. This is a finite dimensional Lagrangian subspace of the symplectic vector space H_{ν_0} defined in Equation 2.4.

3. L_X, the limit of $e^{-rS}\widetilde{\Lambda}_X$ as $r \to \infty$, a Lagrangian subspace of H_{ν_0} (Equation 3.7). Thus the adiabatic limit $\lim_{r \to \infty} \Lambda_X^r = P_{\nu_0}^- \oplus L_X$.

4. \bar{L}_X, the limiting values of extended L^2 solutions, defined as the symplectic reduction of the Cauchy data space Λ_X^0 to the kernel of S in Definition 6.4.

The following Theorem relates these Lagrangians, and indicates the structure of L_X. It is convenient to extend the notation slightly, so that for the statement and proof of this Theorem we will allow $\nu < 0$ in the definition of P_{ν}^+ (Equation 2.4). For example if ν is positive and in the complement of the spectrum of S, then $H_{\nu} \oplus P_{\nu}^+ = P_{-\nu}^+$.

14
Notice that there is a descending filtration of $H_{v_0} \oplus P_{v_0}^+$ corresponding to the increasing list of eigenvalues $-\lambda_{n+1} < -\lambda_n < 0 < \lambda_1 < \cdots$, assuming that $\lambda_n \leq v_0 < \lambda_{n+1}$.

\begin{equation}
(6.1) \quad P_{-\lambda_{n+1}}^+ \supset P_{-\lambda_n}^+ \supset \cdots \supset P_0^+ \supset P_{\lambda_1}^+ \supset \cdots
\end{equation}

Theorem 6.5. With notation as described above, the following statements are true.

1. $L_X = \lim_{r \to \infty} e^{-rS} \tilde{\Lambda}_X$.
2. $\tilde{L}_X \subset L_X$.
3. If $\nu_0 = 0$, then $L_X = \tilde{L}_X = \tilde{\Lambda}_X$.
4. Let $0 < \lambda_1 < \lambda_2 < \cdots < \lambda_n < \lambda_{n+1}$ denote the ordered list of positive eigenvalues of the tangential operator S so that $\lambda_n \leq \nu_0 < \lambda_{n+1}$. Let E_i^\pm denote the $\pm \lambda_i$ eigenspace. Then

\begin{equation}
(6.2) \quad H_{\nu_0} = E_i^- \oplus E_{i-1}^- \oplus \cdots \oplus \ker S \oplus E_i^+ \oplus \cdots \oplus E_n^+
\end{equation}

and the Lagrangian L_X decomposes in this direct sum in the form

\begin{equation}
(6.3) \quad L_X = W_n \oplus W_{n-1} \oplus \cdots \oplus \tilde{L}_X \oplus JV_1 \oplus \cdots \oplus JV_n
\end{equation}

where $W_i \subset E_i^-$ are subspaces, $V_i \subset E_i^-$ are their orthogonal complement in E_i^- (and so $JV_i \subset E_i^+$). Moreover this decomposition exhibits L_X as the associated graded to the filtration of $\Lambda_X \cap (H_{\nu_0} \oplus P_{v_0}^+)$ obtained by intersecting Λ_X with the decreasing filtration given in Equation (6.1).

Proof. The first assertion is the definition of L_X. For the third assertion, if $\nu_0 = 0$, then $\tilde{L}_X = \tilde{\Lambda}_X$ by definition. Since the operator S is zero on its kernel, the restriction of e^{-rS} to $\ker S$ is the identity so that $L_X = \tilde{\Lambda}_X$. The second assertion follows from the fourth. So we will prove the fourth.

This result follows from a more careful analysis of the flow to the adiabatic limit. Notice that because the P_{ν}^+ are defined in terms of strict inequalities, $P_{-\lambda_i}^+$ is the span of the eigenvectors whose eigenvalues are greater than $-\lambda_i$. Thus $E_i^- = P_{-\lambda_{i+1}}^+ / P_{-\lambda_{i}}^+$ and $E_i^+ = P_{\lambda_{i-1}}^+ / P_{\lambda_{i}}^+$.

Let

$$W_n = \text{proj}_{E_n^-}(\Lambda_X \cap P_{-\lambda_{n+1}}^+) \subset E_n^-.$$

Thus

$$W_n = (\Lambda_X \cap P_{-\lambda_{n+1}}^+) / (\Lambda_X \cap P_{-\lambda_{n}}^+).$$

Next let

$$W_{n-1} = \text{proj}_{E_{n-1}}^- (\Lambda_X \cap P_{-\lambda_n}^+) \subset E_{n-1}^-.$$

Continue, peeling one space off at a time in the decomposition (6.2) of H_{v_0}. We change notation when we get to $\ker S$ to be consistent with our previous notation, Thus (by definition)

$$\tilde{L}_X = \text{proj}_{\ker S}(\Lambda_X \cap P_{-\lambda_{1}}^+) \subset \ker S.$$

Continue by letting

$$V_1' = \text{proj}_{E_1^+}(\Lambda_X \cap P_0^+) \subset E_1^+,$$

$$V_2' = \text{proj}_{E_2^+}(\Lambda_X \cap P_{\lambda_1}^+) \subset E_2^+. $$
and so forth until the last step

$$V'_n = \text{proj}_{E^+_n}(\Lambda_X \cap P^+_{\lambda_{n-1}}) \subset E^+_n.$$

Suppose that \((w_n, w_{n-1}, \cdots, w_1, h, v_1, \cdots, v_n, q)\) is an element of \(\Lambda_X \cap (H_{\nu_0} \oplus P^+_{\nu_0})\) expressed in the decomposition \([72]\) with the additional element \(q \in P^+_{\nu_0}\). Then \((w_n, w_{n-1}, \cdots, w_1, h, v_1, \cdots, v_n)\) is in \(\tilde{X}\).

Either \(w_n = 0\) or else \(w_n \in W_n - \{0\}\). Since

$$\frac{1}{e^{r\lambda_n}}(w_n, w_{n-1}, \cdots, w_1, h, v_1, \cdots, v_n) \in \tilde{X}$$

and since \(e^{-rS}\) acts on the decomposition of Equation \([6.2]\) diagonally with (decreasing) eigenvalues \(e^{r\lambda_n}, e^{r\lambda_{n-1}}, \cdots\) it follows that if \(w_n \neq 0\)

$$\lim_{r \to \infty} e^{-rS} \frac{1}{e^{r\lambda_n}}(w_n, w_{n-1}, \cdots, w_1, h, v_1, \cdots, v_n) = (w_n, 0, 0, \cdots, 0)$$

and so \(w_n\) is in \(\lim_{r \to \infty} e^{-rS}\tilde{X} = L_X\). Arguing by induction one obtains

$$L_X = W_n \oplus \cdots \oplus W_1 \oplus \tilde{L}_X \oplus V'_1 \oplus \cdots \oplus V'_n.$$

We must now see that \(V'_i = JW_i\) where \(V_i\) is the orthogonal complement of \(W_i\) in \(E_i^-\). But this follows from the fact that \(L_X\) is a Lagrangian subspace and dimension counting. Indeed, since the symplectic structure on \(H_{\nu_0}\) is given by \(\omega(x, y) = \langle x, Jy \rangle\), \(JV'_i\) is orthogonal to \(W_i\) and so lies in \(V_i\). If for some \(i\), \(JV'_i\) were a proper subspace of \(V_i\) then by counting dimensions (and using the fact that the limiting values of extended \(L^2\) solutions \(\tilde{L}_X \subset \ker S\) is a Lagrangian subspace of \(\ker S\)) it would follow that \(L_X\) has too small a dimension to be a Lagrangian. Thus \(JV'_i = V_i\) and so \(V'_i = JW_i\) as claimed.

The assertion that \(L_X\) is the associated graded to the filtration is simply a brief description of how the \(W_i, \tilde{L}_X, V'_i\) were constructed.

The fourth statement of Theorem \([6.5]\) suggests a more useful and sophisticated alternative to Hypothesis \([3]\). The underlying motivation comes from the fact that it is much easier to calculate \(\tilde{L}_X \subset \ker S\) than to calculate \(L_X \subset H_{\nu_0}\). Even getting a handle on the nonresonance level \(\nu_0\) can be a difficult problem.

There is a natural choice of path of Lagrangians starting at \(P^-_{\nu_0} \oplus L_X\) and ending at \(P^- \oplus \tilde{L}_X\) defined as follows. Notice that the symplectic subspaces \(E^-_i \oplus E^+_i\) have a further decomposition as a direct sum

$$E^-_i \oplus E^+_i = (W_i \oplus V_i) \oplus (JW_i \oplus JW_i) = (W_i \oplus JW_i) \oplus (V_i \oplus JW_i).$$

Use these decompositions to define a path \(C(t)\) by the formula

$$C : t \mapsto P^-_{\nu_0} \oplus \tilde{L}_X \oplus (W_1 \oplus e^{-(1-t)\frac{\pi}{2}}V_1) \oplus \cdots \oplus (W_n \oplus e^{-(1-t)\frac{\pi}{2}}V_n).$$

Then we can make the hypothesis

Hypothesis 4. \(B_Y(0) = P^- \oplus \tilde{L}_X, B_X(0) = A \oplus P^+\) for some Lagrangian \(A \subset \ker S(0),\) and \(L_2(t) = C(t)\).
Lemma 6.6. If Hypothesis 4 holds, then \(\mu(L_7, M_7) = 0 \).

Proof. This is a consequence of the conventions we are using for spectral flow. Recall that \(L_7 \) is \(L_2 \) run backwards, and \(M_7 \) is the constant path at \(B_X(0) \).

Using Theorem 5.3 we see that the Lagrangians \(L_7(t) = C(1-t) \) and \(M_7(t) = B_X(0) \) intersect in the direct sum

\[
L_7(t) \cap M_7(t) = \begin{cases}
(\tilde{L}_X \cap A) \oplus JV_1 \oplus JV_2 \oplus \cdots \oplus JV_n & \text{if } t = 1 \\
\tilde{L}_X \cap A & \text{if } 0 \leq t < 1.
\end{cases}
\]

Thus \(e^{tJ}L_7(t) \) is transverse to \(M_7(t) \) for all \(t \), so that \(\mu(L_7, M_7) = 0 \).

A similar argument shows that if \(B_X(1) = \tilde{L}_Y \oplus P^+ \), \(B_Y(1) = P^- \oplus A \) for some Lagrangian \(A \subseteq \ker S(1) \), and \(M_5 \) is chosen in a manner similar to \(C(t) \) above, then \(\mu(L_5, M_5) = 0 \).

Finally, with these choices and some additional transversality conditions, one can sometimes also compute \(\mu(L_2, M_2) \) and \(\mu(L_{10}, M_{10}) \) in terms of the sum of the dimensions of the \(V_i \) (which is the same as the dimension of the \(L^2 \)-kernel of \(D \) on \(X^\infty \); see below) after a preliminary stretching. Lemma 6.6 will be used in a slightly different context in Theorem 6.13 below.

6.4. When the \(L^2 \) kernel of \(D|_X \) or \(D|_Y \) vanishes at the endpoints. The nonresonance level for \(D|_X \) is zero if \(\Lambda_X \cap P^+ = 0 \). This is equivalent (see [1]) to the vanishing of the \(L^2 \)-kernel of the natural extension of \(D|_X \) to \(X^\infty = X \cup \Sigma \times [0, \infty) \).

Nicolaescu’s adiabatic limit theorem in this context says that if \(\Lambda_X \cap P^+ = 0 \) (i.e. if the \(L^2 \) kernel of \(D|_X \) on \(X^\infty \) is zero), then \(\lim_{r \to \infty} \Lambda^r_X = P^- \oplus \tilde{L}_X \).

Hypothesis 5. The operators \(D(i)|_{X^\infty} \) and \(D(i)|_{Y^\infty} \) have no \(L^2 \) kernels for \(i = 0 \) and 1.

(In the terminology of [15] the operators \(D(i)|_{X^\infty} \) and \(D(i)|_{Y^\infty} \) are non-resonant.)

If Hypothesis 3 holds, then Hypothesis 4 holds if and only if \(\tilde{L}_X(0) \cap \tilde{L}_Y(0) = 0 \) and \(\tilde{L}_X(1) \cap \tilde{L}_Y(1) = 0 \). Moreover, in this case one can satisfy Hypothesis 3 by letting \(B_Y(0) = P^- (0) \oplus \tilde{L}_X(0) \) and \(B_X(1) = \tilde{L}_Y(1) \oplus P^+ (1) \).

Let us use these ideas to give a simple proof of a theorem of Bunke [4] (see also [3], Theorem A).

Consider the case when the tangential operator has no kernel along the path. The following theorem appears (in different notation) in [4], it also follows from Theorem A of [3].

Theorem 6.7. Suppose that the kernel of the tangential operator \(S(t) \) vanishes for all \(t \). Suppose that Hypothesis 3 holds (at the endpoints).

Then there exists an \(r_0 \) so that for \(r \geq r_0 \),

\[
SF(D, M^r) = SF(D_{X^r}; P^+) + SF(D_{Y^r}; P^-).
\]

Proof. Hypothesis 3 together with the vanishing of the kernels of the tangential operators \(S(0) \) and \(S(1) \) imply that the adiabatic limits are

\[
\lim_{r \to \infty} \Lambda^r_X(i) = P^- (i)
\]
and

\[\lim_{r \to \infty} \Lambda^r_Y(i) = P^+(i) \]

for \(i = 0 \) and \(1 \). Since \(P^+(i) \) is transverse to \(P^-(i) \), Hypothesis \(\text{H} \) holds. Thus, Proposition \(\text{P} \) implies that \(\mu(L_1, M_1) \) and \(\mu(L_{11}, M_{11}) \) vanish after sufficient stretching.

Since the kernel of \(S(t) \) is zero for all \(t \), the spaces \(P^\pm_i(t) \) vary continuously (\(\text{P} \)) and so we can take \(B_X(t) = P^+(t) \) and \(B_Y(t) = P^-(t) \). This immediately implies that \(\mu(L_i, M_i) \) vanishes for \(i = 2, 5, 7 \) and \(10 \) according to Proposition \(\text{P} \) since Hypothesis \(\text{H} \) holds.

We also have \(\mu(L_6, M_6) = 0 \) since this equals \(\mu(P^-(1-t), P^+(1-t)) \) and \(P^+(t) \) is transverse to \(P^-(t) \) for all \(t \).

The path \(L_4 \) is the constant path at \(B_Y(1) = P^-(1) \). The path \(M_4 \) is the path from \(\Lambda_Y(1) \) to \(\lim_{r \to \infty} \Lambda^r_Y(1) = P^+(1) \). Since \(P^-(1) \) is transverse to \(P^+(1) \), after perhaps making \(r \) larger, \(\mu(L_4, M_4) = 0 \). Similarly, after perhaps making \(r \) larger, \(\mu(L_8, M_8) = 0 \).

The only terms remaining are \(\mu(L_3, M_3) = SF(D|_{Y^r}; P^-) \) and \(\mu(L_9, M_9) = SF(D|_{X^r}, P^+) \). This completes the proof.

We next state and prove the theorem of Yoshida and Nicolaescu. The proof we give is identical to Nicolaescu’s. We include it for the convenience of the reader and to introduce another useful technique which can be combined with the our methods. Theorem \(\text{T} \) below generalizes both Theorem \(\text{T} \) and Theorem \(\text{P} \).

Notice that if the operator \(D(t)|_{X^\infty} \) has no \(L^2 \) kernel for all \(t \in [0, 1] \), and if the kernel of the tangential operator \(S(t) \) has constant dimension along the path, then the limiting values of extended \(L^2 \) solutions \(\widetilde{L}_X(t) \) is a continuous path of Lagrangians. (The symplectic reduction is \text{clean} in the sense of \(\text{C} \).) This is because for all \(t \) the projection

\[\Lambda_X(t) \cap (\ker S(t) \oplus P^+(S(t))) \to \ker S(t) \]

(with image \(\widetilde{L}_X(t) \)) has no kernel and it is easily checked that the image is continuous since the path \(\Lambda_X(t) \) is continuous.

Thus the statement of the following theorem makes sense. This is Corollary 4.4 in \(\text{C} \).

Theorem 6.8. (Yoshida, Nicolaescu) Suppose that for all parameters \(t \in [0, 1] \), the operators \(D(t)|_{X^\infty} \) and \(D(t)|_{Y^\infty} \) have no \(L^2 \) kernel. Assume furthermore that the kernel of the tangential operator \(\ker S(t) \) has constant dimension, i.e. independent of \(t \in [0, 1] \). Assume that

\[\widetilde{L}_X(0) \cap \widetilde{L}_Y(0) = 0 \]

(6.5)

and

\[\widetilde{L}_X(1) \cap \widetilde{L}_Y(1) = 0. \]

(6.6)

Then there exists an \(r_0 \geq 0 \) so that for \(r \geq r_0 \),

\[SF(D, M^r) = \mu(\widetilde{L}_X, \widetilde{L}_Y). \]
Proof. Since 0 is the nonresonance level, \(\lim_{r \to \infty} \Lambda_X^r(t) = P^-(t) \oplus \tilde{L}_X(t) \) and \(\lim_{r \to \infty} \Lambda_Y^r(t) = \tilde{L}_Y(t) \oplus P^+(t) \) for all \(t \in [0,1] \). Together with Equations 6.5 and 6.6 this implies that if \(r \) is large enough, \(\Lambda_X^r(i) \) is transverse to \(\Lambda_Y^r(i) \) for \(i = 0 \) and 1. Fix \(r_0 \geq 0 \) so that they are transverse for all \(r \geq r_0 \). Let \(r_1 \) be any number greater than or equal to \(r_0 \).

Consider the homotopy from the path of pairs \((\Lambda_X^r(t), \Lambda_Y^r(t)) \) to \((P^-(t) \oplus \tilde{L}_X(t), \tilde{L}_Y(t) \oplus P^+(t)) \) obtained by letting \(r \) go to infinity. This is not a rel endpoints homotopy, but does exhibit a rel endpoint homotopy from the path of pairs \((\Lambda_X^r(t), \Lambda_Y^r(t)) \) to the composite of three paths:

\[
A(t) = \begin{cases}
(\Lambda_X^{r/t}(0), \Lambda_Y^{r/t}(0)) & \text{if } t < 1, \\
(P^{-}(0) \oplus \tilde{L}_X(0), \tilde{L}_Y(0) \oplus P^{+}(0)) & \text{if } t = 1,
\end{cases}
\]

\[B(t) = (P^{-}(t) \oplus \tilde{L}_X(t), \tilde{L}_Y(t) \oplus P^{+}(t)),\]

and

\[
C(t) = \begin{cases}
(P^{-}(1) \oplus \tilde{L}_X(1), \tilde{L}_Y(1) \oplus P^{+}(1)) & \text{if } t = 0, \\
(\Lambda_X^{r/t}(1), \Lambda_Y^{r/t}(1)) & \text{if } t > 0,
\end{cases}
\]

and so \(SF(D, M^{r_1}) = \mu(A \ast B \ast C) = \mu(A) + \mu(B) + \mu(C) \).

Since \(\Lambda_X^r(i) \) is transverse to \(\Lambda_Y^r(i) \) for \(i = 0 \) and 1 and all \(r \geq r_1 \), \(\mu(A) = 0 = \mu(C) \). Thus

\[SF(D, M^{r_1}) = \mu(B) = \mu(\tilde{L}_X, \tilde{L}_Y).\]

The transversality assumptions in Theorem 6.8 can in some contexts be relaxed by requiring only assumptions similar to Hypothesis 2. Some care must be taken with the steps calculating \(\mu(L_3, M_3) \) and \(\mu(L_9, M_9) \).

Next we give a generalization of the two theorems above by assuming the existence of a continuously varying spectral gap.

Definition 6.9. A continuous function \(\lambda : [0,1] \to [0, \infty) \) is a spectral gap for the family of tangential operators \(S(t) \) if for each \(t \in [0,1] \), \(\lambda(t) \) is not in the spectrum of \(S(t) \).

Hypothesis 6. The path of tangential operators \(S(t) \) has a spectral gap \(\lambda(t) \).

As we have remarked above, if Hypothesis 2 holds, then the decomposition of Equation 2.8 varies continuously. Notice that by subdividing the path as necessary, Hypothesis 2 can always be arranged to hold. However, this hypothesis by itself is not usually sufficient to simplify the formula of Theorem 5.1. The following theorem gives one possible clean statement which generalizes both Theorems 6.7 and 6.8.

Assume that Hypothesis 2 hold. Let \(A_X(t) \) and \(A_Y(t) \) be continuously varying Lagrangian subspaces of \(H_{\lambda(t)} \). Then we can take the self-adjoint boundary conditions to be

\[
(6.7) \quad B_X(t) = A_X(t) \oplus P^+_X(t) \quad \text{and} \quad B_Y(t) = P^-_X(t) \oplus A_Y(t).
\]

Then Theorem 5.1 says

\[
SF(D) = SF(D_X, A_X \oplus P^+_X) + SF(D_Y, P^-_X \oplus A_Y) + \mu(A_Y(1-t), A_X(1-t)) + \sum_{i \neq 3, 6, 9} \mu(L_i, M_i).
\]
By adding hypotheses we can make many of the extra terms vanish.

Theorem 6.10. Assume that Hypotheses 5 and 6 hold, with spectral gap $\lambda(t)$. Assume that the limiting values of extended L^2 solutions $\tilde{L}_X(i)$ and $\tilde{L}_Y(i)$ are transverse for $i = 0$ and 1. Let $A_X(t)$ and $A_Y(t)$ be continuously varying Lagrangian subspaces of $H_{\lambda(t)}$, with $A_Y(0) = (P^-(0) \cap H_{\lambda(0)}) \oplus X(i)$ and $A_X(1) = \tilde{L}_Y(1) \oplus (P^+(1) \cap H_{\lambda(1)})$. Assume further that $A_X(0)$ is transverse to $A_Y(0)$ and that $A_X(1)$ is transverse to $A_Y(1)$.

Then there exists an $r_0 \geq 0$ so that for all $r \geq r_0$,

$$SF(D, M^r) = SF(D|_X, A_X \oplus P^+_X) + SF(D|_{P^-Y}, P^- \oplus A_Y) + \mu(A_X, A_Y).$$

Proof. Since Hypothesis 5 hold,

$$\lim_{r \to \infty} A_X^i(i) = \tilde{L}_X(i) \oplus P^-(i)$$

for $i = 0$ and 1. Since we assumed that $\tilde{L}_X(i)$ is transverse to $\tilde{L}_Y(i)$ for $i = 0$ and 1, Hypothesis 8 holds, so that by Proposition 6.1 there exists an r_1 so that after replacing M by M^r for $r \geq r_1$, $\mu(L_1, M_1)$ and $\mu(L_{11}, M_{11})$ vanish.

Take elliptic boundary conditions $B_X(t) = A_X(t) \oplus \tilde{P}^{+}_{\lambda_0}(t)$ and $B_Y(t) = P^-_{\lambda(t)}(t) \oplus A_Y(t)$. Since $B_Y(0) = \tilde{L}_X(0) \oplus P^-(0)$ and $B_X(1) = \tilde{L}_Y(1) \oplus P^+(1)$, Hypothesis 3 holds, so that $\mu(L_i, M_i) = 0$ for $i = 2, 5, 7, 10$.

The path L_4 is the constant path at $B_Y(1) = P^-_{\lambda(1)}(1) \oplus A_Y(1)$ and M_4 is obtained by stretching $A_Y(1)$ to its adiabatic limit $\tilde{L}_Y(1) \oplus P^+(1)$. Since $A_Y(1)$ is transverse to $A_X(1) = \tilde{L}_Y(1) \oplus (P^+(1) \cap H_{\lambda(1)})$ by hypothesis, $\mu(L_4, M_4)$ vanishes, after perhaps replacing M by M^r for large enough r.

The path L_8 is the reverse of stretching $A_X(0)$ to its adiabatic limit $P^-(0) \oplus \tilde{L}_X(0)$ and M_8 is the constant path at $B_X(0) = A_X(0) \oplus P^+(0)$. By the same argument as in the preceding paragraph $\mu(L_8, M_8)$ vanishes after perhaps replacing M by M^r for large enough r.

Now $\mu(B_Y(1 - t), B_X(1 - t)) = \mu(A_Y(1 - t), A_X(1 - t))$. Since $A_X(i)$ is transverse to $A_Y(i)$ for $i = 0, 1$ by hypothesis,

$$\mu(A_Y(1 - t), A_X(1 - t)) = \mu(A_X(t), A_Y(t)).$$

Combining these computations proves the theorem. \(\square\)

The following useful corollary is just the special case of the previous theorem when the path of tangential operators has a spectral gap $\lambda(t) = \epsilon$ for ϵ small.

Corollary 6.11. Assume that Hypotheses 4 and 5 hold, that the path of tangential operators has constant dimensional kernel, and that $A_X(t)$ and $A_Y(t)$ are paths of Lagrangians in $\ker S(t)$ with $\tilde{L}_X(i) = A_Y(i)$ and $\tilde{L}_Y(i) = A_X(i)$ for $i = 0, 1$. Then for r large enough

$$SF(D, M^r) = SF(D|_X, A_X \oplus P^+_X) + SF(D|_{P^-Y}, P^- \oplus A_Y) + \mu(A_X, A_Y).$$
Proof. Hypotheses 1 and 5 together imply that $\tilde{L}_X(i)$ is transverse to $\tilde{L}_Y(i)$ for $i = 0, 1$. Thus the hypotheses of Theorem 6.10 hold with $\lambda(t) = \epsilon$, where ϵ is smaller than the smallest non-zero eigenvalue of $S(t)$ for $t \in [0, 1]$. The Corollary follows.

We finish this subsection with a few comments about comparing Theorem 5.1 to Theorem C of [6]. This theorem expresses the spectral flow as a sum of three terms; formally the theorem looks identical to the Formula 6.8, but no transversality hypotheses are assumed in their theorem, (although they do assume that preliminary stretching has been done and they restrict the boundary conditions at the endpoints.) This might suggest that some of our $\mu(L_i, M_i)$ (in particular $\mu(L_1, M_1)$ and $\mu(L_{11}, M_{11})$) vanish without any of the transversality conditions. But this is not true (examples can be concocted). The reason that their formula has only three terms is that their definition of spectral flow differs from ours in the case when transversality hypotheses do not hold at the endpoint. In particular, in Theorem C of [6] the “exponentially small” eigenvalues at the endpoints of the path are treated as if they were zero.

To derive the result of [6] from Theorem 5.1 would require a more careful analysis of the rate at which Λ^n_X converges to its adiabatic limit. An examination of Nicolaescu’s proof shows that this rate is exponential. We speculate that by replacing the definition of the Maslov index with the “$1/r^2$-Maslov index” one could derive Theorem C of [6] from ours. The article [3] should be helpful for such a project. We will not pursue this any further since we know of no uses for such an identification.

6.5. Spectral flow around loops. One nice application of Theorem 5.1 is perhaps of more interest to index theorists than geometric topologists.

Theorem 6.12. Let $D(t)$ be a loop of cylindrical, neck-compatible Dirac operators on a manifold $M = X \cup \Sigma Y$, and let B_X, B_Y be loops of self-adjoint elliptic boundary conditions for the restrictions of D to X and Y respectively. Then

$$SF(D|_X; B_X) + SF(D|_Y; B_Y) + \mu(B_X, B_Y) = 0.$$

(6.9)

Proof. This follows from the formula in Theorem 5.1 after much cancellation. First of all, the collection of all Dirac operators (on a fixed Clifford bundle) is a vector space, hence contractible. It follows that the spectral flow of a loop of Dirac operators on a closed manifold is 0. This is the 0 on the right hand side of Equation 6.3.

Next, one can compute that $\mu(B_Y(1-t), B_X(1-t)) = \mu(B_X(t), B_Y(t))$ if B_X and B_Y are loops.

It remains to show that the sum of all the other terms in Theorem 5.1 vanish. This is easy: the composite paths

$Q_1 = L_1 * L_2 * L_4 * L_5 * L_7 * L_8 * L_{10} * L_{11}$

and

$Q_2 = M_1 * M_2 * M_4 * M_5 * M_7 * M_8 * M_{10} * M_{11}$
are defined since the path is a loop. But it is immediate from the definitions of these paths that Q_1 is homotopic to the constant path at $\Lambda_X(0)$ and Q_2 is homotopic to the constant path at $\Lambda_Y(0)$. Thus
\[
\sum_{i \neq 3,6,9} \mu(L_i, M_i) = \mu(Q_1, Q_2) = 0.
\]

Notice that there are no hypotheses on stretching, boundary conditions, etc. in Theorem 6.6. Applying the method to the spectral flow on manifolds with boundary. We conclude the user's guide with a discussion on how to apply our method to compute the spectral flow of the path of operators on a manifold with boundary obtained by fixing the underlying Dirac operator but varying the boundary conditions.

For simplicity we consider just the special case when the boundary conditions are of the special form $B_X(t) = A(t) \oplus P^+$ for $A_X(t) \subset \ker S$ a path of Lagrangians; more general situations can be handled by a similar method. This theorem is very similar to Theorem D of 3.

Theorem 6.13. Let D be a cylindrical, neck-compatible Dirac operator on a smooth manifold X with boundary Σ. Let $A(t) \subset \ker S$ be a path of Lagrangian subspaces of the kernel of the tangential operator and let $B(t) = A(t) \oplus P^+$ be the corresponding path of elliptic boundary conditions. Let ν be in the nonresonance range and let $M(t)$ be the path starting at Λ_X and stretching to the adiabatic limit $P^\nu_\nu \oplus L_X$ (given in Lemma 3.2). Let $\tilde{L}_X \subset \ker S$ denote the limiting values of extended L^2 solutions.

Then
\[
SF(D, B) = \mu(\tilde{L}_X, A(t)) + \mu(M(t), A(0) \oplus P^+) + \mu(M(1-t), A(1) \oplus P^+).
\]

In particular, if $P^\nu \oplus L_X$ is transverse to $A(0) \oplus P^+$ (resp. transverse to $A(1) \oplus P^+$) then after replacing X by X^r for r sufficiently large, $\mu(M(t), A(0) \oplus P^+) = 0$ (resp. $\mu(M(1-t), A(1) \oplus P^+) = 0$). Hence if both transversality conditions hold,
\[
SF(D, B) = \mu(\tilde{L}_X, A(t)).
\]

Proof. First, $SF(D, B) = \mu(\Lambda_X, B)$ by Theorem 4.3. Apply the method as follows.

1. Let $L_1(t) = M(t)$ and let $M_1(t)$ be the constant path at $A(0) \oplus P^+$. So $\mu(L_1, M_1) = \mu(M(t), A(0) \oplus P^+)$.
2. Let $L_2(t)$ be the path defined in Equation 6.4 and let M_2 be the constant path at $A(0) \oplus P^+$. Then $\mu(L_2, M_2) = 0$ by Lemma 6.6.
3. Let L_3 be the constant path at $P^\nu \oplus L_X$ and let $M_3(t) = B(t) = A(t) \oplus P^+$. So $\mu(L_3, M_3) = \mu(\tilde{L}_X, A(t))$.
4. Let L_4 be L_2 run backwards and M_4 be the constant path at $A(1) \oplus P^+$. Then $\mu(L_4, M_4) = 0$ by Lemma 6.6.
5. Let L_5 be L_1 run backwards and M_5 the constant path at $A(1) \oplus P^+$. Then $\mu(L_5, M_5) = \mu(M(1-t), A(1) \oplus P^+)$.

22
Thus $L_1 * L_2 * L_3 * L_4 * L_5$ is defined and homotopic rel endpoints to the constant path at Λ_X. Also $M_1 * M_2 * M_3 * M_4 * M_5$ is defined and homotopic rel endpoints to the path B. Applying the homotopy invariance and additivity of the Maslov index finishes the proof.

7. Concluding remarks

We finish with a few comments about Theorem 5.1. First, there is a certain asymmetry in the formula with respect to the roles that X and Y play. This turns out to be useful sometimes, for example Hypothesis 3 only restricts B_Y at one endpoint and B_X at the other, rather than restricting both at each endpoint.

Another comment is that the sums $\mu(L_2, M_2) + \mu(L_7, M_7)$ and $\mu(L_5, M_5) + \mu(L_{10}, M_{10})$ (the terms depending on the auxiliary choice of the paths L_2 and M_5) depend only on the endpoints of these paths. Thus each of these sums could be thought of as a single quantity, and perhaps expressed in terms of invariants (such as the Maslov triple index) of the endpoints alone, without making any reference to the choice of L_2 and M_5. As we have seen, it is nevertheless convenient for calculation to have the formula expressed the way we did.

Last (but not least), one significant benefit of our formulation is that since our formula expresses the spectral flow entirely as a sum of Maslov indices, with the ordered pairs (L_i, M_i) explicitly described, it is easy to keep the signs and conventions under control when carrying out spectral flow calculations.

Appendix A. The proof of Lemma 3.2, by K. P. Wojciechowski

The set up is as follows. We are given a Dirac operator D on manifold X with boundary in cylindrical form $D = J(\partial/\partial u + S)$ on a collar $\Sigma \times [-1, 0]$ of the boundary $\Sigma = \Sigma \times \{0\}$. This extends to an operator on $X^r = X \cup \Sigma \times [0, r]$ in the obvious way. To this extension we associate the Cauchy data spaces Λ^r.

Nicolaescu’s adiabatic limits theorem, Theorem 3.1, says that the path $(r(t) = 1/(1-t))$

\[
t \mapsto \begin{cases}
\Lambda^r(t) & t < 1, \\
\Lambda^0 \oplus L_X(D) & t = 1.
\end{cases}
\]

is continuous at $t = 1$. What must be shown is that this path is continuous at finite neck lengths r, that is, that the Cauchy data spaces Λ^r vary continuously in r. Continuity is measured in the gap topology, or equivalently in the norm of the associated projections.

For notational convenience we will prove continuity at $r = 0$; by reparameterizing continuity at all r follows easily.

Let ν be a number in the nonresonance range for D on $X = X^0$. Thus $\Lambda^0 \cap \Lambda^r_\nu = 0$ for all $\nu' \geq \nu$. We will make frequent use of the splitting $L^2(E|\Sigma) = \Lambda^r_\nu \oplus H_\nu \oplus \Lambda^r_\nu$. Notice that the tangential operator S preserves this splitting since the summands are defined by the eigenspace decomposition of S. The almost complex structure J of Equation 2.2 preserves H_ν and interchanges Λ^r_ν and Λ^r_ν.

23
Lemma A.2. The restriction of operator of order at most \(-P \) principal symbol. Putting these facts together shows that Corollary 14.3 of [3] shows that the pseudo-differential operators and \(H \) image in order 0.

Notice that \(P \) from the results in Chapter 12 and 14 of [3] that \(\Lambda^0 \cap (H_0 + P_0^+) \). Clearly \(JL + P_0^+ \) is transverse to \(\Lambda^0 \).

Lemma A.1. For each \(r \geq -1 \), \(\Lambda^r \) is transverse to \((e^{-rS}JL) \oplus P_0^+ \).

Proof. Suppose that \(v \in \Lambda^r \cap ((e^{-rS}JL) \oplus P_0^+) \). Then there exists \(\alpha \) a section of \(E \) on \(X^r \) so that \(D\alpha = 0 \) and the restriction of \(\alpha \) to \(\Sigma \times \{r\} \) equals 0. Thus \(\alpha(u) = e^{(r-u)S}v \) for \(u \in [-1, r] \). But this formula defines an extension of \(\alpha(u) \) for all \(u \in [-1, \infty) \) since \(H_r \) is finite dimensional and since the restriction of \(e^{(r-u)S} \) to \(P_0^+ \) exponentially decays as \(u \to \infty \). Hence \(\alpha \) extends to a bounded smooth section on \(X^u \) for all \(u > -1 \), and the extension satisfies \(D\alpha = 0 \). In particular, \(\alpha(0) \) is defined, equals \(e^{rS}v \), and lies in \(\Lambda^0 \). Since \(v \in (e^{-rS}JL) \oplus P_0^+ \), \(\alpha(0) \in e^{(r-0)S}((e^{-rS}JL) \oplus P_0^+) = JL \oplus P_0^+ \). By the choice of \(L \) this implies that \(\alpha(0) = 0 \) and so also \(v = 0 \).

For convenience we introduce some notation for certain projections \(L^2(E|\Sigma) \).

1. The orthogonal Calderon projection \(P^r : L^2(E|\Sigma) \to L^2(E|\Sigma) \) is the orthogonal projection to the Cauchy data space \(\Lambda^r \).
2. The negative spectral projection \(\pi_- : L^2(E|\Sigma) \to L^2(E|\Sigma) \) is the orthogonal projection to the space \(P^-(S) \), the negative eigenspan of the tangential operator \(S \).
3. Fix \(\nu \geq 0 \) and suppose \(L \subset H_\nu \) is a Lagrangian (thus \(P_\nu^- \oplus L \) is a Lagrangian in \(L^2(E|\Sigma) \)).

Define \(\pi_{-L} : L^2(E|\Sigma) \to L^2(E|\Sigma) \) to be the orthogonal projection to \(P_\nu^- \oplus L \).

What must be shown is that the projections \(P^r \) are continuous in norm as \(r \) varies. It follows from the results in Chapter 12 and 14 of [3] that \(P^r \), \(\pi_- \), and \(\pi_{-L} \) are pseudodifferential of order 0.

Let \(L \) and \(\nu \) be as in Lemma A.1. For notational ease, define

\[
M_r = e^{rS}L \subset H_\nu
\]

and

\[
\pi_r = \pi_{-M_r} : L^2(E|\Sigma) \to M_r \oplus P_\nu^-.
\]

Notice that \(M_r \) varies continuously in \(r \), and hence so does \(\pi_r \). The difference \(\pi_- - \pi_r \) has image in \(H_\nu \), a finite dimensional space of smooth sections, and hence is a smoothing operator. Corollary 14.3 of [3] shows that the pseudo-differential operators \(P^r \) and \(\pi_- \) have the same principal symbol. Putting these facts together shows that \(P^r - \pi_r \) is a pseudo-differential operator of order at most \(-1\), and in particular is a compact operator.

Lemma A.2. The restriction of \(\pi_r \) to \(\Lambda^r \) induces an isomorphism

\[
\pi_r : \Lambda^r \to M_r \oplus P_\nu^-
\]
Proof. It is easy to observe that the operator
\[\pi_r : \Lambda^r \rightarrow M_r \oplus P_\nu^- \]
is a Fredholm operator (see [3]), hence in particular it has closed range. The kernel of this map is \(\Lambda^r \cap (M_r \oplus P_\nu^-)^\perp = \Lambda^r \cap (JM_r \oplus P_\nu^+) = 0 \). Since \(\Lambda^r \) and \(M_r \oplus P_\nu^- \) are Lagrangians the isometry \(J \) identifies the cokernel with the kernel of \(\pi_r \), and so the map is surjective. \(\square \)

Since the map of Lemma A.2 is an isomorphism, the Cauchy data space \(\Lambda^r \) can be expressed as a graph of a bounded operator\[k_r : M_r \oplus P_\nu^- \rightarrow JM_r \oplus P_\nu^+; \]
here \(k_r \) is the composite of the inverse of \(\pi_r : \Lambda^r \rightarrow M_r \oplus P_\nu^- \) and the orthogonal projection to \(JM_r \oplus P_\nu^+ \).

Hence
\[(A.1) \quad \Lambda^r = \{ (v, k_r(v)) \mid v \in M_r \oplus P_\nu^- \}. \]

Let \(r > -1 \). Choose \(v_- \in M_r \oplus P_\nu^- \). Hence \(v = v_- + k_r(v_-) \in \Lambda^r \). Thus there exists a section \(\alpha \) in \(\ker D \) on \(X^r \) with \(\alpha(r) = v \). As observed above, on the cylinder \(\Sigma \times [-1, r] \) \(\alpha \) has the form
\[(A.2) \quad \alpha(u) = e^{(r-u)S} v = e^{(r-u)S} v_- + e^{(r-u)S} k_r(v). \]

On the other hand, for \(u \leq r \) \(\alpha(u) \in \Lambda^u \), and taking \(u = -1 \) we have
\[(A.3) \quad \alpha(-1) = w_- + k_{-1}(w_-) \]
for some \(w_- \in M_{-1} \oplus P_\nu^+ \).

Combining Equations A.2 and A.3 yields \[w_- = e^{(r+1)S} v_- \quad \text{and} \quad e^{-(r+1)S} k_{-1}(w_-) = k_r(v_-). \]
hence
\[(A.4) \quad k_r = e^{-(r+1)S} k_{-1} e^{(r+1)S} \]
where we have denoted the restriction of \(S \) to \(H_\nu \oplus P_\nu^\pm \) by \(S_{\pm} \) for clarity.

For the next lemma, we recall the standard fact that the operators \(e^{tS_-} : H_\nu \oplus P_\nu^- \rightarrow H_\nu \oplus P_\nu^- \) and \(e^{-tS_+} : H_\nu \oplus P_\nu^+ \rightarrow H_\nu \oplus P_\nu^+ \) are norm-continuous in \(t \) for \(t \) away from 0.

Lemma A.3.
\[
\lim_{r \to 0} \|k_r - k_0\| = 0.
\]

Proof. Using Equation A.4 we compute, for \(-\frac{1}{2} \leq r \leq \frac{1}{2}\)
\[
\|k_r - k_0\| = \|e^{-(r+1)S} k_{-1} e^{(r+1)S} - e^{-S} k_{-1} e^{S} \|
\leq \|(e^{-(r+1)S} k_{-1} e^{(r+1)S} - e^{-(r+1)S} k_{-1} e^{(r+1)S}) + (e^{-(r+1)S} k_{-1} e^{S} - e^{S} k_{-1} e^{S})\|
\leq C_1 \|k_{-1} e^{(r+1)S} - e^{S} k_{-1}\| + C_2 \|e^{-(r+1)S} k_{-1} e^{S} - e^{S} k_{-1}\|.
\]

25
The last inequality follows from the continuity of \(e^{(r+1)S_+} \) in norm for \(r \) near 0 and the fact that \(e^{S_-} \) is independent of \(r \). Continuing the estimate using the fact that \(k_{-1} \) is bounded, we obtain

\[
\|k_r - k_0\| \leq \|k_{-1}\| \left(C_1 \|e^{(r+1)S_-} - e^{S_-}\| + C_2 \|e^{-(r+1)S_+} - e^{-S_+}\| \right).
\]

The right hand side approaches 0 as \(r \to 0 \) since \(e^{tS_-} \) and \(e^{-tS_+} \) are continuous in norm at \(t = 1 \). This proves the Lemma. \(\square \)

In the decomposition

\[
L^2(E|\Sigma) = (M_r \oplus P_{\nu}^-) \oplus (JM_r \oplus P_{\nu}^+),
\]

the matrix

\[
Q_r = \begin{pmatrix} 1 & 0 \\ k_r & 0 \end{pmatrix}
\]

is a (non-orthogonal) projection to \(\Lambda^r \). The formula of Lemma 12.8 in [3] shows that

\[
\mathcal{P}^r = Q_r Q_r^* (Q_r Q_r^*)^{-1} + (Id - Q_r^*) (Id - Q_r)^{-1}
\]

(A.6)

Thus, the \(\mathcal{P}^r \) are continuous in \(r \) for \(r \) near 0, completing the proof of Lemma 3.2. \(\square \)

We note that the proof of Lemma A.3 can be modified to show that \(\lim_{r \to \infty} \Lambda^r = (\lim_{r \to \infty} M_r) \oplus P_{\nu}^- = (\lim_{r \to \infty} e^{rS} L) \oplus P_{\nu}^- \). In contrast to the proof of continuity at finite \(r \) given above, in this case one must be careful with the estimates over the finite-dimensional piece \(H_{\nu} \). The argument is straightforward, and is essentially the proof given in Nicolaescu [1].

Let us also notice that in fact we proved here the following important result.

Theorem A.4. The difference \(\mathcal{P}^r - \pi_- \) is an operator with a smooth kernel

Proof. The difference \(\pi_r - \pi_- \) is a smoothing operator and using Equation A.6 the difference \(\mathcal{P}^r - \pi_r \) can be represented as

\[
\mathcal{P}^r - \pi_r = \begin{pmatrix} (Id + k_r^* k_r)^{-1} - Id & (Id + k_r^* k_r)^{-1} k_r^* \\ k_r (Id + k_r^* k_r)^{-1} & k_r (Id + k_r^* k_r)^{-1} k_r^* \end{pmatrix}.
\]

All entries in the formula presented above are smoothing operators due to the fact that \(k_r \) has a smooth kernel. \(\square \)
S. Scott proved this Theorem in the non-resonant case (see [7]). The proof given above basically extends his proof to cover the general case. A different proof, purely analytical, was offered by G. Grubb in (see [10]).

Mark Daniel
Advanced Power Technologies, Inc.
Washington, DC 20037
e-mail: amdaniel@apti.com

Paul Kirk
Indiana University
Bloomington IN, 47405
e-mail: pkirk@indiana.edu

Krzysztof P. Wojciechowski
Indiana University-Purdue University at Indianapolis
Indianapolis, IN 46202
e-mail: kwojciechowski@math.iupui.edu
REFERENCES

1. M. Atiyah, V. Patodi, & I. Singer Spectral asymmetry and Riemannian geometry. I, Math. Proc. Camb. Phil. Soc. 77 (1975) 43–69.
2. H. Boden, C. Herald, P.Kirk, & E. Klassen The C^2 spectral flow, rho invariants, and the SU(3) Casson invariant, in preparation.
3. B. Boos-Bavnbek & K. Wojciechowski, Elliptic Boundary Problems for Dirac Operators. Mathematics: Theory and Applications, Birkhäuser, 1993.
4. U. Bunke, On the gluing problem for the η-invariant, J. Diff. Geom 41 (1995), 397–448.
5. S.Cappell, R.Lee, & E.Miller, Self-adjoint elliptic operators and manifold decompositions, Part I: Low eigen-modes and stretching, Comm. Pure Appl. Math. 49 (1996), 825–866.
6. S.Cappell, R.Lee, & E.Miller, Self-adjoint elliptic operators and manifold decompositions, Part II: Spectral flow and Maslov index, Comm. Pure Appl. Math. 49 (1996), 869–909.
7. S.Cappell, R.Lee, & E.Miller, On the Maslov index, Comm. Pure Appl. Math. 47 (1994), 121-186.
8. M.Daniel, Maslov index, symplectic reduction in a symplectic Hilbert space and a splitting formula for spectral flow, Doctoral Dissertation, Indiana University, Bloomington, 1997.
9. M.Daniel, An extension of a theorem of Nicolaescu on spectral flow and the Maslov index, preprint, to appear in Proc. Amer. Math. Soc., 1998.
10. G. Grubb, Heat trace expansions for generalized Dirac operators with well–posed boundary conditions, Preprint (1997).
11. T.Kato, Perturbation Theory for Linear Operators. Classics in Mathematics, Springer-Verlag, 1995.
12. P.Kirk & E.Klassen, Analytic deformation of the spectrum of a family of Dirac operators on an odd-dimensional manifold with boundary, Mem. Amer. Math. Soc. 124 (1996), number 592.
13. P. Kirk & E. Klassen, Continuity and analyticity of families of self-adjoint Dirac operators on a manifold with boundary, Illinois J. Math. 42 (1998), no. 1, 123–138.
14. H.B. Lawson, Jr. & M-L. Michelson, Spin Geometry. Princeton Mathematical Series 38, Princeton University Press, 1989.
15. L.I.Nicolaescu, The Maslov index, the spectral flow, and decompositions of manifolds, Duke Math J. 80, 1995.
16. L.I.Nicolaescu, Generalized symplectic geometries and the index of families of elliptic problems, Mem.Amer. Math. Soc. 128 (1997) Number 609.
17. S.G. Scott, Determinants of Dirac boundary value problems over odd-dimensional manifolds, Comm. Math. Phys. 173 (1995), 43–76.
18. T. Yoshida Floer homology and splittings of manifolds, Ann. of Math. (2) 134 (1991), no. 2, 277–323.