Determination of Differentiating Markers in Coicis Semen From Multi-Sources Based on Structural Similarity Classification Coupled With UPCC-Xevo G2-XS QTOF

Ruyi Zhu†, Xiaofen Xu†, Qiyuan Shan†, Kuilong Wang, Gang Cao* and Xin Wu*

Research Center of TCM Processing Engineering, College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China

Coicis semen, a medicinal food, is derived from the dried and mature seeds of Coix lacryma-jobi L. var. ma-yuen (Rom.Caill.) Stapf, a member of the Gramineae family. Lipids are its main constituents. Previous literature reported that coicis semen contains twenty triglycerides and twelve diglycerides. However, we identified fifty-five triglycerides, sixteen diglycerides, four monoglycerides, and two sterols under the preoptimized conditions of UPCC-Xevo G2-XS QTOF combined with a personalized TCM database. Furthermore, we successfully determined glycerol trioleate content to evaluate quality differences. Finally, we identified the fatty acid compositions of seven out of nine differential markers via Progenesis QI using principal component analysis, orthogonal projection to latent structures–discriminant analysis, and the LipidMaps database. In addition, we applied a software-based classification, a method that was previously developed by our team, to verify and predict structurally similar compounds. Our findings confirmed that UPCC-Xevo G2-XS QTOF combined with software-based group classification could be used as an efficient method for exploring the potential lipid markers of seed medicine.

Keywords: markers, coicis semen, triglyceride, qualitative and quantitative, MATLAB

INTRODUCTION

Common sense dictates that various natural ingredients exist in TCM. However, most reports on the active components of TCM have focused on polysaccharides, alkaloids, and flavonoids. Fatty oils are widely available ingredients of herbs, and the limited attention that they have received may restrict their further development and application. Fatty oils can be obtained as an active ingredient from animals and plants (Liu et al., 2015; Chen et al., 2016; Hong et al., 2016). A number of TCM contain fatty oils, which are mainly derived from the seeds and fruits of herbs. Diverse fatty oils comprise of glycerol and different types of saturated, monounsaturated, and polyunsaturated fatty acids that each exert therapeutic effects.

Coicis semen (Job’s tears seed or adlay), which has been documented in the 2015 edition of the Chinese pharmacopoeia, is the dry and mature seed of Coix lacryma-jobi L. var. ma-yuen (Rom.Caill.)
Stapf. It is not only a commonly used TCM, but it is also a commonly consumed food. Coicis semen has been proven to have numerous functions, such as detoxification and dampness and arthralgia removal; it also reduces cancer risk (Yu et al., 2011; Bai et al., 2018; Duan, 2018; Xu et al., 2018; Choi et al., 2019; Huang Q. et al., 2019; Huang Y. L. et al., 2019; Li et al., 2019; Liu H. Q. et al., 2019; Liu Y. N. et al., 2019; Manosroi et al., 2019; Qian et al., 2019; Zhang et al., 2019). Moreover, it has a wide range of anti-inflammatory, antioxidation, analgesic, and sedative effects, as well as pharmacological effects against gastric cancer, hepatocellular cancer, Lewis lung cancer, non-small cell lung cancer, pancreatic cancer, and pulmonary cancer (“Fuzheng” category represented by coicis semen oil) (Manosroi et al., 2016a; Manosroi et al., 2016b; Qian et al., 2016; Xi et al., 2016; Wang et al., 2016; Han et al., 2017; Qu et al., 2017a; Schwartzberg et al., 2017; Jang et al., 2018; Kim et al., 2018; Zhang et al., 2018). It has a variety of clinical dosage forms, such as microporous microspheres, microemulsions, and intravenous emulsions (Qu et al., 2016; Qu et al., 2017b; Qu et al., 2017c; Trinh et al., 2017; Chen et al., 2018; Guo et al., 2019). Discrepancies in curative effects can be attributed to the various types, contents, and other nutrients of different fatty oils.

Recent research shows that the variety and content of the active components of different fatty oils remarkably influence human health and have their own specific advantages in treatment. Near-infrared spectroscopy analysis showed that the lipid contents of forty-one polished coicis semen samples range from 5.14% to 9.40%. Coicis semen oils contain seven types of triglycerides (trilinolein, 1,2-linolein-3-olein, 1-palmitin-2-linolein-3-olein, 1-palmitin-2,3-linolein, 1-palmitin-2, 3-olein, triolein, and 1,2-linolein-3-olein). Hou et al. identified twenty triglycerides and twelve diglycerides in the lipid profile of coicis semen and developed a green quantification strategy for simultaneously determining the content of 7 TGs (LLL, LLP, LLP, POL, OOL, OOP, and OOQ) by combining core–shell column technology and SDDMCs. Lin et al. found β-sitosterol and stigmasterol in the ethyl acetate fraction of an adlay hull extract. Dong et al. established a rapid and reliable m-SPE approach using magnetic multiwalled carbon nanotubes as the adsorbent for the purification of type A trichothecenes, including T-2 toxins, HT-2 toxins, diacetoxyisocerinol, and neosolanol, in coicis semen (Dong et al., 2016; Hou et al., 2018a; Hou et al., 2018b; Lin et al., 2019).

However, several components, especially glycerides, of coicis semen oil still require analysis, and the identification of the active ingredients of this material needs in-depth research. Therefore, our team used Acquity UPLC-Xevo G2-XS QTOF coupled with software-based group classification to further excavate, identify, and visually classify active ingredients in coicis semen oils. Coicis semen oils have boundless development prospects and need to be explored in-depth to lay a foundation for its new preparation, development, and extensive clinical application.

MATERIALS AND METHODS

Materials and Reagents

Glycerol trioleate with the purity of more than 99.9% as determined via HPLC–ELSD was purchased from the Nature Standard Co. Ltd (Shanghai, China). Acetonitrile and methanol (HPLC–MS grade) were purchased from Merck (Darmstadt, Germany). Ammonium formate (HPLC grade) was purchased from Sigma-Aldrich. High-purity CO2 (99.999%) was purchased from the Shanghai Yizhi Industry Gases Co., Ltd. (Shanghai, China). All other reagents used in sample preparation were of analytical grade. Seven batches of dried coicis semen were purchased from different TCM enterprises in China. The manufacturers and batch numbers of the samples were as follows: batch number 180901 (Zhejiang Chinese Medical University Medical Pieces Co., Ltd., Hangzhou); batch number 190101 (Jirentang Pharmaceutical Co., Ltd., Guiyang); batch number 190105 (Zuoli Baicao Herbal Pieces Co., Ltd., Jiangxi); batch number 181201 (Huadong Herbal Pieces Co., Ltd., Hangzhou); batch number 181206 (Zuoli Baicao Herbal Pieces Co., Ltd., Zhejiang); batch number 190122 (Haiyuan Prepared Slices of Chinese Crude Drugs Co., Ltd., Nanjing); and batch number 190216 (Haichang Chinese Medicine Group Co., Ltd., Nanjing).

Preparation of Reference and Sample Solutions

The appropriate amount of glyceryl trioleate, which was used as the reference substance, was weighed accurately and diluted with n-hexane to prepare a series of working solutions with concentrations of 0.0099, 0.0988, 0.9881, 4.9405, and 9.8810 μg/mL.

All samples were ground and passed through a No. 3 sieve (355 ± 13 μm). The passing rate of the particles was maintained at more than 80%. The sample preparation procedure was as follows:

A total of 50.0 mL of n-hexane was added to 0.6 g of powdered coicis semen. The seed powder was soaked for 2 h and then sonicated (50 kHz, 250 W, KQ-500DB) for 30 min. The supernatant was filtered to obtain the sample solution. The filtrate was diluted with n-hexane 5 times and 100-fold for the analysis of different components of different samples and the quantitative analysis of glyceride trioleate, respectively. A total of 200 μL solution of each batch was mixed together and used as a pooled QC sample solution for the analysis of free fatty acids.

UPCC-Xevo G2-XS QTOF Parameters

On the basis of preliminary experiments, the final experimental conditions were determined as follows: Liquid phase system: ACQUITY UPLC; column: Torus 2-PIC, 3.0 × 100 mm, 1.7 μm; mobile phase A: CO2, mobile phase B: methanol acetonitrile = 9:1; column temperature: 55°C, ABPR: 2600 psi; compensation solution: methanol solution with 0.5 mM ammonium formate; flow rate: 0.5 mL/min; and injection volume: 0.3 μL. The gradient program was used with a flow rate of 1.0 mL/min and was as follows: 0–2 min (1% B), 2–7 min (1%–5% B), 7–10 min (5% B), and 10–13 min (5%–1% B).

The conditions for mass spectrometry are as follows: Mass spectrometry system: Xevo G2-XS QTOF; ionization method: ESI+; data acquisition mode: M5; M5 impact energy: low, off, high, 20–50 eV; quantitative ion: m/z 902.8177; collection mass range: 100–1200 Da; capillary voltage: 2.0 kV; cone-hole voltage: 40 V; ion source
temperature: 120°C; atomization temperature: 500°C; cone-hole gas flow rate: 50 L/h; and atomized gas flow rate: 1000 L/h. Data calibration was performed by using an external reference (LockSpray) with the constant infusion of leucine–enkephalin solution (200 pg/µL) at a flow rate of 5 µL/min.

The data processing software included UNIFI 1.9.4 and Masslynx V 4.1.

Data Acquisition and Analysis

Xevo G2-XS QTOF uses the patented LockSpray technology to ensure the accuracy of the collected data in real time. High-accuracy mass numbers can be obtained, and the combination of high-accuracy mass numbers and isotope distribution and secondary fragment information accurately provides molecular formulas. Xevo G2-XS QTOF applies patented MSE technology to obtain the primary and secondary mass spectral information of the compounds for further structural confirmation with one injection at the same time.

The ESI+/− mode was used for the analysis of glycerides and free fatty acids. The first step involved understanding the fragmentation pattern of glycerides as a whole. In the second step, by combining the fragmentation patterns and consulting related literature, a UNIFI database for the glyceride analysis of coicis semen was established. In the third step, the self-built database was imported into UNIFI in addition to the ChemSpider online database, and the appropriate analysis method was set. Furthermore, the software automatically analyzed primary and secondary mass spectral information. Finally, it quickly screened out the target through a unique workflow.

Our team developed a classification program in the Visual Basic for Applications (VBA; Microsoft, USA) and MATLAB v7.1 (The Mathworks, Natick, USA) environments. The classification program consisted of three parts (Shan et al., 2012).

A total of 2,916 features were introduced into the SIMCA-P 13.5 software (Umetrics, Umeå, Sweden) for principal component analysis (PCA) and orthogonal projection to latent structures–discriminant analysis (OPLS–DA). The corresponding variable importance in the projection value (VIP value) was calculated in the OPLS–DA model. A potential differential marker was selected when its VIP value exceeded 2.00 and its S-Plot exceeded 0.95.

RESULTS AND DISCUSSION

Qualitative Results of Glycerides and Free Fatty Acids in Coicis Semen Oils

In the ESI+ mode, fifty-six and fifty-seven compounds were identified in five (No. 180901, No. 181201, No. 181206, No. 190101, and No. 190122) and two (No. 190105 and No. 190216) batches of samples, respectively. These compounds were mainly composed of glycerides. The total ion chromatogram of all samples is provided in Figure 1A, and the corresponding identified glycerides are listed in Table 1. Among them, fifty-six common compounds, including thirty-five triglycerides, fifteen diglycerides, four glycerides, and two sterols, were identified in comparison with the corresponding results of twenty triglycerides and twelve diglycerides (Hou et al., 2018a). However, the OP of diglycerides was identified only in two batches of samples, namely 190105 and 190216, likely because of the different processing technologies of different medical enterprises. The QC sample mentioned in Figure 1B was overlaid in the following differential component analysis.

A total of thirty free fatty acids were identified in the ESI− mode, and some unsaturated fatty acids could have had isomers, which needed to be confirmed further by using a reference substance. The total ion chromatogram of the QC sample is given in Figure 1C.
and the corresponding identified free fatty acids are listed in Table 2.

As shown in Figure 2A, PLO (t_P 3.90 min) provided a precursor ion ([M+NH₄H]⁺) at m/z 874.7874 with a double-bond equivalent. The MS/MS product ions at m/z 601.5184 ([M-P+H]⁺ palmitic acid), m/z 577.5175 ([M-L+H]⁺ linoleic acid), and m/z 575.5025 ([M-O+H]⁺ oleic acid) resulted from the sn-1, sn-2, and sn-3 cleavages of the ester groups, respectively. Figure 2B shows the

Table 2

No.	Component name	Formula	Neutral mass (Da)	Observed m/z	Mass error (mDa)	Observed RT (min)	Response	Adducts
26	OLC19:1	C₅₈H₁₀₄O₆	896.7833	896.7800	3.00	3.11	+Na, +Na, +H2O+H	
20	OOO	C₅₇H₁₀₄O₆	884.7833	884.7800	3.00	3.11	+Na, +Na, +H2O+H	
47	OP	C₃₇H₇₀O₅	594.5223	594.5206	3.00	3.11	+Na, +Na, +H2O+H	
46	LL	C₃₉H₆₈O₅	616.5067	616.5046	3.00	3.11	+Na, +Na, +H2O+H	
45	OL	C₃₉H₇₀O₅	618.5223	618.5206	3.00	3.11	+Na, +Na, +H2O+H	
42	OS	C₃₉H₇₄O₅	622.5536	622.5510	3.00	3.11	+Na, +Na, +H2O+H	
38	PP	C₃₅H₆₈O₅	568.5067	568.5046	3.00	3.11	+Na, +Na, +H2O+H	
4	PMO	C₅₁H₉₆O₆	804.7207	804.7180	3.00	3.11	+Na, +Na, +H2O+H	

The qualitative results of glycerides in coicis semen oils in ESI+.
secondary fragment matching diagram for OOO generated by the UNIFI software.

Software-Based Group Classification of Glycerides

Our teams previously developed a program in VBA and MATLAB for the classification of multiple complex components. This program successfully grouped the constituents in the n-hexane extract of coicis semen. Through the comprehensive analysis of herbal samples, fifty-seven peaks were identified and divided into four groups as shown in Figures 3, 4. Three of these groups consisted of triglycerides and diglycerides. The remaining group was composed of four monoglycerides, two diglycerides, and two sterols. The chemical structures and special MS fragmentation pathways of these compounds indicated that the same group might have similar features, and unknown ingredients could be identified through the comprehensive software-based group classification of these compounds.

Differential Component Analysis of Different Samples

The Progenesis QI omics analysis software was used for differential component research. Before exploring quality markers, the analytical system was first validated for repeatability upon the injection of six QC samples. A total of 2,916 features were extracted and then imported into EZinfo for multivariate statistical analysis. PCA was used to study the variations in the oils of seven batches of coicis semen (Figure 5A). The differences between the groups of samples, namely No. 181216 and No.190122, were large. Furthermore, No. 190105 and No. 190101, which showed the largest differences, were subjected to OPLS–DA analysis (Figure 5B). These two groups were clearly distinct. Furthermore, we selected compounds with VIP ≥ 0.95 and VIP ≥ 2 as markers (Figures 5C, D), and transferred them back to the QI for identification. Finally, nine markers were found (Table 3). Then, the LipidBlast, LipidMaps, and Chemspider databases were searched in QI for further identification. Among the nine markers found, seven were identified (five diglycerides, one triglyceride, and one stigmastanol), and the molecular formulas of the remaining two unknown compounds were estimated using an elemental composition tool. The abundance distribution of the nine markers in all the samples is shown in Figure 6. The abundance of markers, except diglycerides (16:0/18:0/0:0), in No. 190105 were remarkably higher than that in No. 190101. This result could be related to the largest differences between No. 190105 and No. 190101 and indicated that massive differences in resources and processing technologies existed among medical enterprises.

TABLE 2 | The qualitative results free fatty acids in coicis semen oils in ESI.

No.	Component name	Formula	Neutral mass (Da)	Observed m/z	Mass error (mDa)	Observed RT (min)	Response	Adducts
1	Oleic acid	C18H36O2	282.2559	281.2486	0.0	4.74	7887721	-H, +HCOO
2	Linoleic acid	C18H32O2	280.2402	279.2330	0.1	4.92	4629367	-H, +HCOO
3	Palmitic acid	C16H32O2	256.2402	255.2329	0.0	4.32	2866760	-H, +HCOO
4	Stearic acid	C18H34O2	284.2715	283.2642	-0.1	4.58	940078	-H, +HCOO
5	Arachidic acid	C20H34O2	312.3028	311.2956	0.0	4.82	131638	-H, +HCOO
6	cis-Vaccenic acid	C18H34O2	282.2559	281.2484	-0.2	6.02	128409	-H
7	9, 10-EPOXOCTADECANOIC ACID	C18H32O2	298.2508	297.2432	-0.3	5.79	88969	-H
8	9, 10-EPOXOCTADECANOIC ACID	C18H32O2	298.2508	297.2432	-0.3	5.92	79177	-H
9	11-Eicosanoic acid	C20H34O2	310.2872	309.2798	-0.1	4.97	75288	-H
10	Linolenic acid	C18H34O2	278.2246	277.2172	-0.1	5.09	61260	-H
11	Linoceric acid	C22H42O2	368.3654	367.3579	-0.2	5.23	58141	-H
12	Behenic acid	C24H46O2	340.3341	339.3265	-0.3	5.03	55860	-H
13	Palmitoleic acid	C16H30O2	254.2246	253.2173	0.0	4.50	38739	-H
14	Margaric acid	C17H36O2	270.2559	269.2486	0.0	4.45	29580	-H
15	Arachidonic acid	C20H34O2	304.2402	303.2325	-2.5	4.74	22657	+HCOO
16	TRICOSANOIC ACID	C22H36O2	354.3498	353.3422	-0.3	5.13	17977	-H
17	Myristic acid	C14H28O2	228.2089	227.2017	0.1	4.05	15915	-H
18	10-Heptadecenoic acid	C19H32O2	268.2402	267.2327	-0.3	4.82	11423	-H
19	Eicosapentaenoic acid	C22H34O2	302.2246	301.2178	-2.8	4.92	11013	+HCOO, -H
20	Hexacosanoic acid	C26H46O2	396.3967	395.3887	-0.7	5.42	8914	-H
21	Pentacosanoic acid	C30H58O2	382.3811	381.3733	-0.5	5.33	8708	-H
22	Pentadecylic acid	C24H42O2	242.2246	241.2173	0.0	4.20	8677	-H
23	NONADECANOIC ACID	C26H52O2	298.2572	297.2498	-0.1	4.69	6204	-H
24	HENICOSANOIC ACID	C28H52O2	326.3185	325.3111	-0.1	4.93	5972	-H
25	Octacosanoic acid	C30H64O2	424.4280	423.4200	-0.7	5.60	5361	-H
26	Lauric acid	C16H32O2	200.1776	199.1704	0.0	3.71	5056	-H
27	Erucic acid	C18H34O2	338.3185	337.3115	0.3	5.19	4770	-H
28	Nervonic acid	C24H46O2	386.3498	411.3476	-0.4	6.38	3848	+HCOO
29	11-14-Eicosadielnoic acid	C28H52O2	308.2715	307.2643	0.1	5.14	2012	-H
30	Homo gamma linolenic acid	C30H56O2	306.2559	305.2481	-3.0	4.58	1984	+HCOO
FIGURE 2 | Fragmentation patterns of PLO (A) and OOO (B) with MS1 and MS2 spectra.

FIGURE 3 | Affinity diagram of the mass spectra of glycerides with software-based group classification.
FIGURE 4 | Network diagram of the mass spectra of glycerides with software-based group classification.

FIGURE 5 | Differential component analysis of different samples. (A) PCA classification of seven batches of samples; (B) OPLS–DA analysis of No. 190101 and No. 190105 with significant differences; (C) S-Plot of No. 190101 and No. 190105; (D) VIP diagram of No. 190101 and No. 190105.
Quantitation of Glycerol Trioleate in Coicis Semen Oils
Investigation of Linear Relations
Reference solutions with concentrations of 0.0099, 0.0988, 0.9881, 4.9405, and 9.8810 μg/mL were used to perform three consecutive injections. The results showed that glycerol trioleate had a good linear relationship in the range of 0.0090–9.8810 mg/mL, \(r^2 > 0.9990 \).

Quantitative Limit Investigation
The reference solution was diluted stepwise at certain multiples until glyceride trioleate presented \(S/N \approx 10 \). The results showed that the quantitative limit was 4.94 ng/mL.

Instrument Precision Inspection
The low, middle, and high concentrations (0.0099, 0.9881, and 9.8810 μg/mL) of the reference solution on the calibration curve
were taken and used in six consecutive injections to check instrument precision. The RSD value was less than 3%, which indicated good precision.

Repeatability Test

Six powder samples (0.6 g each) of the same batch (No. 180901) were weighed and prepared via the sample solution preparation method. The average content of glyceryl trioleate was determined and calculated as 0.91%. The results showed that the RSD value was 4.12% (n = 6).

Recovery Rate Test

Six powder samples (0.3 g each) of the same batch of known content were weighed, and then low, medium, and high levels of the three different concentrations of the reference substance were added precisely. The reference substance/sample ratio was controlled at 0.5:1, 1:1, 1.5:1, and each concentration level was tested in triplicate. The results showed a high average recovery of 102.28%.

Sample Measurement Results

The content of glyceryl trioleate in seven batches of the samples was determined using the established method above. The representative chromatogram is shown in Figure 7. Each batch was replicated in triplicate. The average content ranged from 0.84% to 1.05%. The RSD value was less than 5%.

CONCLUSION

The established analytical method fully demonstrated that ACQUITY UPCC enabled the fast and efficient chromatographic separation of lipids in coicis semen. Xevo G2-XS QTOF combined with LockSpray real-time external standard mass calibration technology ensured mass accuracy. The data collection method based on MS5 tandem mass spectrometry without content discrimination ensured the full collection of information, and one-shot collection could obtain precursor ion and fragment ion information simultaneously with convenient, fast, and high-throughput characteristics.

By using the ACQUITY UPCC/Xevo G2-XS QTOF system combined with the UNIFI software, fifty-seven compounds of glycerides were identified and divided into four groups on the basis of their similar features via software-based group classification in the ESI+ mode. Moreover, thirty free fatty acids were identified in ESI−. In addition, QI omics analysis software found nine differential compounds between No. 190101 and No. 190105, and seven of these compounds were identified. Finally, the quantitative analysis of glyceryl trioleate (quality control component in the 2015 Edition of the Chinese Pharmacopoeia) and methodological verification were performed, and the results showed that the linearity, precision, reproducibility, recovery, and other parameters of the method were good. The established quantitative method determined that the glyceryl trioleate contents of the seven batches of samples ranged from 0.84% to 1.05%.

In summary, we identified additional glycerides and free fatty acids in coicis semen oils. Our results could supplement corresponding component research. Furthermore, nine differential components were found to be potential markers of quality for differentiating coicis semen with different origins. Finally, glyceryl trioleate was determined to evaluate its pros and cons. This approach might be useful for assessing the quality of TCM.

DATA AVAILABILITY STATEMENT

All datasets presented in this study are included in the article/Supplementary Material.

AUTHOR CONTRIBUTIONS

Conceptualization: XW and GC. Data curation: RZ, XX, and QS. Formal analysis: KW. Funding acquisition: GC. Investigation: RZ, XX, and KW. Writing—original draft: RZ and XX. Writing—review and editing: XW and GC. All authors contributed to the article and approved the submitted version.

FUNDING

This research was supported by the Zhejiang Public Welfare Technology Application Research Project (2017C33175) and the National Natural Science Foundation of China (No. 81703707).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2020.549181/full#supplementary-material
Yu, F., Gao, J., Zeng, Y., and Liu, C. X. (2011). Effects of adlay seed oil on blood lipids and antioxidant capacity in hyperlipidemic rats. J. Sci. Food Agric. 91, 1843–1848. doi: 10.1002/jsfa.4393

Zhang, P. R., Meng, X. Y., Tang, X. H., Ren, L., and Liang, J. (2018). The effect of a coix seed oil injection on cancer pain relief. Support. Care Cancer. 27, 461–465. doi: 10.1007/s00520-018-4313-z

Zhang, C. F., Zhang, W. F., Shi, R. Y., Tang, B. Y., and Xie, S. C. (2019). Coix lachryma-jobi extract ameliorates inflammation and oxidative stress in a complete Freund’s adjuvant-induced rheumatoid arthritis model. Pharm. Biol. 57, 792–798. doi: 10.1080/13880209.2019.1687526

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Zhu, Xu, Shan, Wang, Cao and Wu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.