Abstract—Reachability analysis provides formal guarantees for performance and safety properties of nonlinear control systems. Here, one aims to compute the backward reachable set (BRS) or tube (BRT) – the set of states from which the system can be driven into a target set at a particular time or within a time interval, respectively. The computational complexity of current approaches scales exponentially, making application to high-dimensional systems intractable. We propose a technique that decomposes the dynamics of a general class of nonlinear systems into subsystems which may be coupled through common states, controls, and disturbances. Despite this coupling, BRSs and BRTs can be computed efficiently using our technique without incurring additional approximation errors and without the need for linearizing dynamics or approximating sets as polytopes. Computations of BRSs and BRTs now become orders of magnitude faster, and for the first time BRSs and BRTs for many high-dimensional nonlinear control systems can be computed using the Hamilton-Jacobi (HJ) formulation. In situations involving bounded adversarial disturbances, our proposed method can obtain slightly conservative results. We demonstrate our theory by numerically computing BRSs and BRTs using the HJ formulation for several systems, including the 6D Acrobatic Quadrotor and the 10D Near-Hover Quadrotor.

I. INTRODUCTION

Many important real-world systems are described by complex nonlinear models whose behavior can be non-intuitive and difficult to predict. These systems include power [2], [3], biological [4], [5], and robotic systems such as autonomous cars and unmanned aerial vehicles [6], [7]. With the recent advancements of sophisticated system modeling in these areas, the dimensionality of system models has grown significantly. Many of these systems are also safety-critical, making their verification extremely important. As a result, computationally tractable tools for the analysis of these nonlinear, high-dimensional, and safety-critical systems are urgently needed.

Verification of systems is challenging for many reasons. First, all possible system behaviors must be accounted for. This makes most simulation-based approaches insufficient, and thus formal verification methods are needed. Second, many practical systems are affected by disturbances in the environment. In addition, the systems evolve in continuous time with complex, nonlinear dynamics. Lastly, perhaps the most difficult challenge of all is that these systems often have high-dimensional state spaces.

Reachability analysis is an important formal verification method for guaranteeing performance and safety properties of systems. However, current methods do not simultaneously address all of the above challenges. For example, [8], [9] excel in determining whether system trajectories from a small set of initial conditions could potentially enter a set of unsafe states, but do not provide the backward reachable set (BRS) or tube (BRT) – the set of all initial states from which entering some target set is inevitable. Due to the challenges of computing BRSs and BRTs, the state-of-the-art methods need to make tradeoffs on different axes of considerations such as computational scalability, generality of system dynamics, existence of control and/or disturbance variables, and flexibility in representation of sets.

For example, the methods presented in [10]–[14] have had success in analyzing relatively high-dimensional affine systems using sets of pre-specified shapes, such as polytopes or hyperplanes. Other potentially less scalable methods are able to handle systems with the more complex dynamics [11], [15]–[18]. Computational scalability varies among these different methods, with the most scalable methods requiring that the system dynamics do not involve control and disturbance variables. The work in [19] accounts for both control and disturbances, but is only applicable to linear systems. Methods that can account for general nonlinear systems such as [20] also sometimes represent sets using simple shapes such as polytopes, potentially sacrificing representation fidelity in favor of the other aspects mentioned earlier. Hamilton-Jacobi (HJ) formulations [21]–[24] excel in handling general nonlinear dynamics, control and disturbance variables, and flexible set representations via a grid-based approach; however, these methods are the least computationally scalable. Still other methods make a variety of other assumptions to make desirable tradeoffs [25]–[27]. In addition, under some special scenarios, it may be possible to obtain small computational benefits while minimizing tradeoffs in other axes of consideration by exploiting system structure [28]–[32].

In this paper, we present a system decomposition method for computing BRSs and BRTs of a class of nonlinear systems. Our method drastically reduces dimensionality without making any other tradeoffs. Our method first computes BRSs for lower-dimensional subsystems, and then reconstructs the full-dimensional BRS without incurring additional approximation errors other than those arising from the lower-dimensional computations. Crucially, the subsystems can be coupled through common states, controls, and disturbances. The treatment of this coupling distinguishes our method from others which consider completely decoupled subsystems, potentially obtained through transformations [33], [34]. Since BRTs are also of great interest in many situations, we prove conditions under which BRTs can also be decomposed.
The theory we present in this paper is compatible with any methods that compute BRSs and BRTs, such as [11], [15], [16], [28], [31] and others mentioned earlier. In addition, when different decomposition methods are combined together, even more dimensionality reduction can be achieved. This paper will be presented as follows:

- In Sections [II] and [III] we introduce the basic concept of reachability, and all the definitions needed for our proposed decomposition technique.
- In Sections [IV] and [V] we present our theoretical results related to decomposing BRSs for systems involving a control variable, but not involving a disturbance variable.
- In Section [VI] we show how BRTs can be decomposed.
- In Section [VII] we demonstrate our decomposition method on high-dimensional systems.
- In Section [VIII] we discuss how the presence of disturbances affects the above theoretical results.
- We will also present numerical results obtained through the Hamilton-Jacobi (HJ) reachability formulation in [22] throughout the paper to validate our theory.

II. BACKGROUND

There are various formulations for computing the BRS and BRT when the system dimensionality is low. In this section, we give the basic mathematical problem setup to provide a foundation on which we build the new proposed theory.

A. System Dynamics

Let $z \in \mathbb{R}^n$ be the system state, which evolves according to the ordinary differential equation (ODE)

$$\frac{dz(s)}{ds} = f(z(s), u(s)), s \in [t, 0], u(s) \in \mathcal{U} \quad (1)$$

In general, the theory we present is applicable when some states are periodic dimensions (such as angles), but for simplicity we will consider \mathbb{R}^n. The control is denoted by $u(s)$, with the control function $u(\cdot) \in \mathcal{U}$ being drawn from the set of measurable functions.

The control signal $u \in \mathcal{U} \subset \mathbb{R}^{n_u}$ is compact and $t < 0$. The system dynamics, or flow field, $f : \mathbb{R}^n \times \mathcal{U} \rightarrow \mathbb{R}^n$ is assumed to be uniformly continuous, bounded, and Lipschitz continuous if z for fixed u. Therefore, given $u(\cdot) \in \mathcal{U}$, there exists a unique trajectory solving (1) [36]. We will denote solutions, or trajectories of (1) starting from state z at time t under control $u(\cdot)$ as $\zeta(s; z, t, u(\cdot)) : [t, 0] \rightarrow \mathbb{R}^n$. ζ satisfies (1) with an initial condition almost everywhere:

$$\frac{d}{ds}\zeta(s; z, t, u(\cdot)) = f(\zeta(s; z, t, u(\cdot)), u(s))$$

$$\zeta(t; z, t, u(\cdot)) = z \quad (2)$$

Since the dynamics (1) is time-invariant, the time variables in trajectories can also be shifted by some constant τ:

$$\zeta(s; z, t, u(\cdot)) = \zeta(s + \tau; z, t + \tau, u(\cdot)), \forall z \in \mathbb{R}^n \quad (3)$$

1For the remainder of the paper, we will omit the notation “(s)” from variables such as z and u when referring to function values.

2In this case, it is implicit that the control function $u(\cdot)$ is also time-shifted by the same amount τ.

B. Backward Reachable Sets and Tubes

We consider two different definitions of the BRS and two different definitions of the BRT.

Intuitively, a BRS represents the set of states $z \in \mathbb{R}^n$ from which the system can be driven into some set $T \subseteq \mathbb{R}^n$ at the end of a time horizon of duration $|t|$. We call T the “target set”. First we define the “Maximal BRS”; in this case the system seeks to enter T using some control function. We can think of T as a set of goal states. The Maximal BRS represents the set of states from which the system is guaranteed to reach T. The second definition is for the “Minimal BRS”; in this case the BRS is the set of states that will lead to T for all possible controls. Here we often consider T to be an unsafe set such as an obstacle. The Minimal BRS represents the set of states that leads to violation of safety requirements. Formally, the two definitions of BRSs are below:\[1\]

Definition 1: Maximal BRS.

$$\mathcal{R}(t) = \{ z : \exists u(\cdot) \in \mathcal{U}, \zeta(0; z, t, u(\cdot)) \in T \}$$

Definition 2: Minimal BRS.

$$\mathcal{A}(t) = \{ z : \forall u(\cdot) \in \mathcal{U}, \exists s \in [t, 0], \zeta(s; z, t, u(\cdot)) \in T \}$$

While BRSs indicate whether a system can be driven into T at the end of a time horizon, BRTs indicate whether a system can be driven into T at some time during the time horizon of duration $|t|$. Figure [1] demonstrates the difference. BRTs are very important notions especially in safety-critical applications, in which we are interested in determining the “Minimal BRT” the set of states that could lead to danger at some time within a specified time horizon. Formally, the two definitions of BRTs are as follows:

Definition 3: Maximal BRT.

$$\bar{\mathcal{R}}(t) = \{ z : \exists u(\cdot) \in \mathcal{U}, \exists s \in [t, 0], \zeta(s; z, t, u(\cdot)) \in T \}$$

Definition 4: Minimal BRT.

$$\bar{\mathcal{A}}(t) = \{ z : \forall u(\cdot) \in \mathcal{U}, \exists s \in [t, 0], \zeta(s; z, t, u(\cdot)) \in T \}$$

The terms “maximal” and “minimal” refer to the role of the optimal control [37]. In the maximal (or minimal) case, the control causes the BRS or BRT to contain as many (or few) states as possible – to have maximal (or minimal) size.

While BRSs and BRTs indicate sets of states of interest, from a practical implementation perspective controller synthesis based on the reachable sets is extremely important. Much of the prior work on reachable set computations also include controller synthesis, which is usually done by casting the reachability problem as an optimal control or optimization problem, often with a functional representation of BRSs and BRTs. The controller is given as decision variables in the optimization [17], [21], [22], [24], [38], [39]. We will not delve into the details of controller synthesis, since the theory we present in this paper is agnostic to these details.

3Sometimes in the literature, the argument of \mathcal{R}, A, $\bar{\mathcal{R}}$, or \bar{A} is some non-negative number $\tau = -t$; however, for simplicity we will use the non-positive number t to refer to the time horizon of the BRS and BRT.
In this paper, we seek to obtain the BRSs and BRTs in Definitions 1 to 4 via computations in lower-dimensional subspaces under the assumption that the system (1) can be decomposed into self-contained subsystems (SCSs) (5). Such a decomposition is common, since many systems involve components that are loosely coupled. In particular, the evolution of position variables in vehicle dynamics is often weakly coupled though other variables such as heading.

A. Definitions

1) **Subsystem Dynamics:** Let the state \(z \in \mathbb{R}^n \) be partitioned as \(z = (z_1, z_2, z_c) \), with \(z_1 \in \mathbb{R}^{n_1}, z_2 \in \mathbb{R}^{n_2}, z_c \in \mathbb{R}^{n_c} \), \(n_1, n_2 > 0, n_c \geq 0, n_1 + n_2 + n_c = n \). Note that \(n_c \) could be zero. We call \(z_1, z_2, z_c \) “state partitions” of the system. Intuitively, \(z_1 \) and \(z_2 \) are states belonging to subsystems 1 and 2, respectively, and \(z_c \) states belong to both subsystems.

Under the above notation, the system dynamics (1) become

\[
\begin{align*}
\dot{z}_1 &= f_1(z_1, z_2, z_c, u) \\
\dot{z}_2 &= f_2(z_1, z_2, z_c, u) \\
\dot{z}_c &= f_c(z_1, z_2, z_c, u)
\end{align*}
\]

(4)

In general, depending on how the dynamics \(f \) depend on \(u \), some state partitions may be independent of the control.

We group these states into subsystems by defining the SCS states \(x_1 = (z_1, z_c) \in \mathbb{R}^{n_1+n_c} \) and \(x_2 = (z_2, z_c) \in \mathbb{R}^{n_2+n_c} \), where \(x_1 \) and \(x_2 \) in general share the “common” states in \(z_c \). Note that our theory is applicable to any finite number of subsystems defined in the analogous way, with \(x_1 = (z_1, z_c) \); however, without loss of generality (WLOG), we assume that there are just two subsystems.

Definition 5: Self-contained subsystem. Consider the following special case of (4):

\[
\begin{align*}
\dot{z}_1 &= f_1(z_1, z_c, u) \\
\dot{z}_2 &= f_2(z_2, z_c, u) \\
\dot{z}_c &= f_c(z_c, u)
\end{align*}
\]

(5)

We call each of the subsystems with states defined as \(x_i = (z_i, z_c) \) a “self-contained subsystem” (SCS), or just “subsystem” for short. Intuitively (5) means that the evolution of each subsystem depends only on the subsystem states: \(\dot{x}_i \) depends only on \(x_i = (z_i, z_c) \). Explicitly, the dynamics of the two subsystems are as follows:

\[
\begin{align*}
\dot{z}_1 &= f_1(z_1, z_c, u) \quad &\dot{z}_2 &= f_2(z_2, z_c, u) \\
\dot{z}_c &= f_c(z_c, u) \quad &\dot{z}_c &= f_c(z_c, u)
\end{align*}
\]

(Subsystem 1) (Subsystem 2)

Note that the two subsystems are coupled through the common state partition \(z_c \) and control \(u \). When the subsystems are coupled through \(u \), we say that the subsystems have “shared control”.

An example of a system that can be decomposed into SCSs is the Dubins Car with constant speed \(\omega \):

\[
\begin{bmatrix}
\dot{p}_x \\
\dot{p}_y \\
\dot{\theta}
\end{bmatrix} =
\begin{bmatrix}
v \cos \theta \\
v \sin \theta \\
\omega
\end{bmatrix}, \quad \omega \in \mathcal{U}
\]

(6)

with state \(z = (p_x, p_y, \theta) \) representing the \(x \) position, \(y \) position, and heading, and control \(u = \omega \) representing the turn rate. The state partitions are simply the system states: \(z_1 = p_x, z_2 = p_y, z_c = \theta \). The subsystem states \(x_1 \) and the subsystem controls \(w_i \) are

\[
\begin{align*}
\dot{x}_1 &= \begin{bmatrix}
\dot{z}_1 \\
\dot{z}_c
\end{bmatrix} = \begin{bmatrix}
\dot{p}_x \\
\dot{\theta}
\end{bmatrix} = \begin{bmatrix}
v \cos \theta \\
\omega
\end{bmatrix} \\
\dot{x}_2 &= \begin{bmatrix}
\dot{z}_2 \\
\dot{z}_c
\end{bmatrix} = \begin{bmatrix}
\dot{p}_y \\
\dot{\theta}
\end{bmatrix} = \begin{bmatrix}
v \sin \theta \\
\omega
\end{bmatrix}
\end{align*}
\]

(7)

where the overlapping state is \(\theta \), and the subsystem controls and their shared component is the control \(u \) itself. The control partitions \(u_1, u_2 \) do not exist, since the state partitions \(z_1, z_2 \) do not depend on the control. For more examples of systems decomposed into SCSs, see (59), (60) and other numerical examples in this paper.

Although there may be common or overlapping states in \(x_1 \) and \(x_2 \), the evolution of each subsystem does not depend on the other explicitly. In fact, if we for example entirely ignore the subsystem \(x_2 \), the evolution of the subsystem \(x_1 \) is well-defined and can be considered a full system on its own; hence, each subsystem is self-contained.

2) **Projection Operators:** For the projection operators, it will be helpful to refer to Fig. 2. Define the projection of a state \(z = (z_1, z_2, z_c) \) onto a subsystem state space \(\mathbb{R}^{n_1+n_c} \) as

\[
\text{proj}_1(z) = x_1 = (z_1, z_c)
\]

(8)

This projects a point in the full dimensional state space onto a point in the subsystem state space. Also define the back-projection operator to be

\[
\text{proj}^{-1}(x_i) = \{ z \in \mathcal{Z} : (z_i, z_c) = x_i \}
\]

(9)

This back-projection lifts a point from the subsystem state space to a set in the full dimensional state space. We will also need the ability to apply the back-projection operator on subsystems set to full dimensional sets. In this case, we overload the back-projection operator:

\[
\text{proj}^{-1}(S_i) = \{ z \in \mathcal{Z} : \exists x_i \in S_i, (z_i, z_c) = x_i \}
\]

(10)
3) **Subsystem Trajectories:** Since each subsystem in \(\mathcal{S} \) is self-contained, we can denote the subsystem trajectories \(\xi_i(s; x_i, t, u(\cdot)) \). When needed, we will write the subsystem trajectories more explicitly in terms of the state partitions as \(\xi_i(s; z_i, t, u(\cdot)) \). The subsystem trajectories satisfy the subsystem dynamics and initial condition:

\[
\frac{d}{ds} \xi_i(s; x_i, t, u(\cdot)) = g_i(\xi_i(s; x_i, t, u(s))
\]

\[
\xi_i(t; x_i, t, u(\cdot)) = x_i
\]

where \(g_i(x_i, u) = (f_i(x_i, z_i, u), f_c(z_i, u)) \), and the full system trajectory and subsystem trajectories are simply related to each other via the projection operator:

\[
\text{proj}_i(\xi_i(s; z, t, u(\cdot))) = \xi_i(s; x_i, t, u(\cdot))
\]

where \(x_i = \text{proj}_i(z) \).

B. Goals of This Paper

We assume that the full system target set \(\mathcal{T} \) can be written in terms of the subsystem target sets \(\mathcal{T}_1 \subseteq \mathcal{X}_1, \mathcal{T}_2 \subseteq \mathcal{X}_2 \) in one of the following ways:

\[
\mathcal{T} = \text{proj}^{-1}(\mathcal{T}_1) \cap \text{proj}^{-1}(\mathcal{T}_2)
\]

where the full target set is the intersection of the back-projections of subsystem target sets, or

\[
\mathcal{T} = \text{proj}^{-1}(\mathcal{T}_1) \cup \text{proj}^{-1}(\mathcal{T}_2)
\]

where the full target set is the union of the back-projections of subsystem target sets. Fig. 2 helps provide intuition for these concepts: applying (13) to \(\mathcal{S}_1 \) and \(\mathcal{S}_2 \) results in the black cube. Applying (14) would result in the cross-shaped set encompassing both \(\text{proj}^{-1}(\mathcal{S}_1) \) and \(\text{proj}^{-1}(\mathcal{S}_2) \).

In practice, this is not a strong assumption, since \(\mathcal{T}_1 \) and \(\mathcal{T}_2 \) share the common variables \(z_c \). Relatively complex shapes, for example those in Fig. 4 and 6, can be represented by an intersection or union of back-projections of lower-dimensional sets that share common variables. In addition, such an assumption is reasonable since the full system target set should at least be representable in some way in the lower-dimensional spaces.

Next, we define the subsystem BRSs \(\mathcal{R}_i, \mathcal{A}_i \) the same way as in Definitions 1 and 2 but with the subsystems in \(\mathcal{S} \) and subsystem target sets \(\mathcal{T}_i, i = 1, 2 \), respectively:

\[
\mathcal{R}_i(t) = \{ x_i : \exists u(\cdot), \xi_i(0; x_i, t, u(\cdot)) \in \mathcal{T}_i \}
\]

\[
\mathcal{A}_i(t) = \{ x_i : \forall u(\cdot), \xi_i(0; x_i, t, u(\cdot)) \in \mathcal{T}_i \}
\]

Subsystem BRTs are defined analogously:

\[
\bar{\mathcal{R}}_i(t) = \{ x_i : \exists u(\cdot), \exists s \in [t, 0], \xi_i(s; x_i, t, u(\cdot)) \in \mathcal{T}_i \}
\]

\[
\bar{\mathcal{A}}_i(t) = \{ x_i : \forall u(\cdot), \exists s \in [t, 0], \xi_i(s; x_i, t, u(\cdot)) \in \mathcal{T}_i \}
\]

Given a system in the form of (5) with target set that can be represented by (13) or (14), our goals are as follows.

- **Decomposition of BRSs.** First, we would like to compute full-dimensional BRSs by performing computations in lower-dimensional subspaces. Specifically, we would like to first compute the subsystem BRSs \(\mathcal{R}_i(t) \) or \(\mathcal{A}_i(t) \), and then reconstruct the full system BRS \(\mathcal{R}(t) \) or \(\mathcal{A}(t) \). This process greatly reduces computation burden by decomposing the full system into two lower-dimensional subsystems. Formally, we would like to investigate the situations in which the following four cases is true:

\[
(13) \implies \mathcal{R}(t) = \text{proj}^{-1}(\mathcal{R}_1(t)) \cap \text{proj}^{-1}(\mathcal{R}_2(t))
\]

\[
(13) \implies \mathcal{A}(t) = \text{proj}^{-1}(\mathcal{A}_1(t)) \cap \text{proj}^{-1}(\mathcal{A}_2(t))
\]

\[
(14) \implies \mathcal{R}(t) = \text{proj}^{-1}(\mathcal{R}_1(t)) \cup \text{proj}^{-1}(\mathcal{R}_2(t))
\]

\[
(14) \implies \mathcal{A}(t) = \text{proj}^{-1}(\mathcal{A}_1(t)) \cup \text{proj}^{-1}(\mathcal{A}_2(t))
\]

Results related to BRSs are outlined for SCs in Theorems 1 and 2. In the case that the subsystem controls do not share any components, Propositions 1 and 2 state stronger results.

- **Decomposition of BRTs.** BRTs are useful since they provide guarantees over a time horizon as opposed to at a particular time. However, often BRTs cannot be decomposed the same way as BRSs. Therefore, our second goal is to propose how BRTs can be decomposed. These results are stated in Propositions 3 and 4 and Theorem 3.

- **Treatment of disturbances.** Finally, we investigate how the above theoretical results change in the presence of disturbances. In Section VIII, we will show that slightly conservative BRSs and BRTs can still be obtained using our decomposition technique.

Tables I and ?? summarize our theoretical results and where details of each result can be found.

IV. **Self-Contained Subsystems**

Suppose the full system (1) can be decomposed into SCs given in (5). Then, the full-dimensional BRS can be reconstructed without incurring additional approximation errors from lower-dimensional BRSs in the situations stated in Theorems 1 and 2.

Remark 1: If \(\mathcal{T} \) represents states the system aims to reach, then \(\mathcal{R}(t) \) represents the set of states from which \(\mathcal{T} \) can be reached. If the system goal states are the union of subsystem goal states, then it suffices for any subsystem to reach its subsystem goal states, regardless of any coupling that exists between the subsystems. Theorem 1 states this intuitive result.
Summary of possible decompositions of the BRS, whether they are possible, and if so whether they are exact or conservative. Exact means that no additional approximation errors are introduced. Note that in the cases marked “no” for shared control (or shared disturbance), the results hold for both decoupled control (or disturbance) and for no control (or disturbance). All cases shown are for scenarios with shared states, with the shared states being z_c in [5]; in the case that there are no shared states this becomes a straightforward decoupled system.

* the solution here can be found only if the minimum BRSSs are non-empty for the entire time period.

Table II: BRT Results for Reconstruction from Tubes

Table III: BRT Results for Reconstruction from Sets

Theorem 1: Suppose that the full system in (1) can be decomposed into the form of (5), then

$$\mathcal{T} = \text{proj}^{-1}(\mathcal{T}_1) \cup \text{proj}^{-1}(\mathcal{T}_2)$$

$$\Rightarrow \mathcal{R}(t) = \text{proj}^{-1}(\mathcal{R}_1(t)) \cup \text{proj}^{-1}(\mathcal{R}_2(t))$$

Remark 2: If \mathcal{T} represents the set of unsafe states, then $\mathcal{A}(t)$ is the set of states from which the system will be driven into danger. Thus outside of $\mathcal{A}(t)$, there exists a control for the system to avoid the unsafe states. For the system to avoid \mathcal{T}, it suffices to avoid the unsafe states in either subsystem, regardless of any coupling that exists between the subsystems. Theorem 2 formally states this intuitive result.

Theorem 2: Suppose that the full system in (1) can be decomposed into the form of (5), then

$$\mathcal{T} = \text{proj}^{-1}(\mathcal{T}_1) \cap \text{proj}^{-1}(\mathcal{T}_2)$$

$$\Rightarrow \mathcal{A}(t) = \text{proj}^{-1}(\mathcal{A}_1(t)) \cap \text{proj}^{-1}(\mathcal{A}_2(t))$$

To prove the theorems, we need some intermediate results.

Lemma 1: Let $\tilde{z} \in \mathcal{Z}$, $\tilde{x}_i = \text{proj}_i(\tilde{z})$, $\mathcal{S}_i \subseteq \mathcal{X}_i$. Then,

$$\tilde{x}_i \in \mathcal{S}_i \iff \tilde{z} \in \text{proj}^{-1}(\mathcal{S}_i)$$

(20)

Proof of Lemma 7. Forward direction: Suppose $\tilde{x}_i \in \mathcal{S}_i$, then trivially $\exists x_i \in \mathcal{S}_i, \text{proj}_i(\tilde{z}) = x_i$. By the definition of back-projection in (10), we have $\tilde{z} \in \text{proj}^{-1}(\mathcal{S}_i)$.

Backward direction: Suppose $\tilde{z} \in \text{proj}^{-1}(\mathcal{S}_i)$, then by (10) we have $\exists x_i \in \mathcal{S}_i, \text{proj}_i(\tilde{z}) = x_i$. Denote such an x_i to be \hat{x}_i, and suppose $\hat{x}_i \notin \mathcal{S}_i$. Then, we have $\hat{x}_i \neq \tilde{x}_i$, a contradiction, since $\hat{x}_i = \text{proj}_i(\tilde{z}) = \tilde{x}_i$.

Corollary 1: If $\mathcal{S} = \text{proj}^{-1}(\mathcal{S}_1) \cup \text{proj}^{-1}(\mathcal{S}_2)$, then

$$\tilde{z} \in \mathcal{S} \iff \tilde{x}_1 \in \mathcal{S}_1 \lor \tilde{x}_2 \in \mathcal{S}_2$$

where $\tilde{x}_i = \text{proj}_i(\tilde{z})$

Corollary 2: If $\mathcal{S} = \text{proj}^{-1}(\mathcal{S}_1) \cap \text{proj}^{-1}(\mathcal{S}_2)$, then

$$\tilde{z} \in \mathcal{S} \iff \tilde{x}_1 \in \mathcal{S}_1 \land \tilde{x}_2 \in \mathcal{S}_2$$

where $\tilde{x}_i = \text{proj}_i(\tilde{z})$

A. Proof of Theorem 7

We will prove the following equivalent statement:

$$\tilde{z} \in \mathcal{R}(t) \iff \tilde{z} \in \text{proj}^{-1}(\mathcal{R}_1(t)) \cup \text{proj}^{-1}(\mathcal{R}_2(t))$$

(21)
Consider the relationship between the full system trajectory and subsystem trajectory in [12]. Define $\bar{x}_1 = \text{proj}_i(\bar{z})$ and $\xi_1(0; \bar{x}_1, t, u(\cdot)) = \text{proj}_i(\zeta(0; \bar{z}, t, u(\cdot)))$.

We first prove the backward direction. By Corollary 1 [21], this is equivalent to

$$\bar{x}_1 \in R_1(t) \vee \bar{x}_2 \in R_2(t)$$ \hspace{1cm} (22)

WLOG, assume $\bar{x}_1 \in R_1(t)$. By the subsystem BRS definition in [15], this is equivalent to

$$\exists u(\cdot), \xi_1(0; \bar{x}_1, t, u(\cdot)) \in T_1$$ \hspace{1cm} (23)

By Lemma 1 we equivalently have $\bar{z} \in \text{proj}^{-1}(R_1(t))$. This proves the backward direction.

For the forward direction, we begin with $\bar{z} \in R(t)$, which by Definition 1 is equivalent to $\exists u(\cdot), \zeta(0; \bar{z}, t, u(\cdot)) \in T$. By Corollary 1 we then have

$$\exists u(\cdot), \xi_1(0; \bar{x}_1, t, u(\cdot)) \in T_1 \vee \xi_2(0; \bar{x}_2, t, u(\cdot)) \in T_2$$ \hspace{1cm} (24)

Finally, distributing “$\exists u(\cdot)$” gives (22).

B. Proof of Theorem 2

We will prove the following equivalent statement:

$$\bar{z} \notin A(t) \Leftrightarrow \bar{z} \notin \text{proj}^{-1}(A_1(t)) \cap \text{proj}^{-1}(A_2(t))$$ \hspace{1cm} (25)

The above statement is equivalent to

$$\bar{z} \in A^c(t) \Leftrightarrow \bar{z} \in \left[\text{proj}^{-1}(A_1(t))^c\right] \cup \left[\text{proj}^{-1}(A_2(t))^c\right]$$ \hspace{1cm} (26)

By the Definition 2 (minimal BRS), we have that $\bar{z} \in A^c(t)$ is equivalent to $\exists u(\cdot) \in \mathbb{U}, \zeta(0; \bar{z}, t, u(\cdot)) \in T^c$. Also,

$$\bar{z} \in \left[\text{proj}^{-1}(A_1(t))^c\right] \cup \left[\text{proj}^{-1}(A_2(t))^c\right]$$

is equivalent to $\bar{x}_1 \in A^c_1(t) \vee \bar{x}_2 \in A^c_2(t)$.

From here, we can proceed in the same fashion as the proof of Theorem 1 with “$R(t)$” replaced with “$A(t)$”, “$\text{proj}^{-1}(R(t))$” replaced with “$\text{proj}^{-1}(A(t))$”, “$R^c(t)$” replaced with “$A^c(t)$”, and “T”, “T^c” replaced with “T^c”, “T^c”, respectively.

The conditions for reconstruction the maximal BRS for an intersection of targets, as well as the minimal BRS for a union of targets, are more complicated and beyond the scope of this paper. Table IV summarizes the results from this section.

TABLE IV: BRS Results from Section IV

Shared Controls	Yes		
Shared Disturbance	No		
Target	Intersection	Union	
Recover Max. BRS?	No	Yes, exact	
Recover Min. BRS?	Yes, exact	No	
Equation(s)	Thm 2 [19]	Thm 1 [18]	

 Fig. 3: Comparison of the Dubins Car BRS $A(t = -0.5)$ computed using the full formulation and via decomposition. Left top: BRSs in the lower-dimensional subspaces and how they are combined to form the full-dimensional BRS. Top right: BRS computed via decomposition. Bottom left: BRSs computed using both methods, superimposed, showing that they are indistinguishable. Bottom right: BRS computed using the full formulation.

C. Numerical Example: The Dubins Car

The Dubins Car is a well-known system whose dynamics are given by (6). This system is only 3D, and its BRS can be tractably computed in the full-dimensional space, so we use it to compare the full formulation with our decomposition method. The Dubins Car dynamics can be decomposed according to (7). For this example, we computed the BRS from the target set representing positions near the origin in both the p_x and p_y dimensions:

$$T = \{(p_x, p_y, \theta) : |p_x|, |p_y| \leq 0.5\}$$ \hspace{1cm} (27)

Such a target set T can be used to model an obstacle that the vehicle must avoid. Given T, the interpretation of the BRS $A(t)$ is the set of states from which a collision with the obstacle may occur after a duration of $|t|$. From T, we computed the BRS $A(t)$ at $t = -0.5$. The resulting full formulation BRS is shown in Fig. 3 as the red surface which appears in the bottom subplots. To compute the BRS using our decomposition method, we write the unsafe set T as

$$T_1 = \{(p_x, \theta) : |p_x| \leq 0.5\}, T_2 = \{(p_y, \theta) : |p_y| \leq 0.5\}$$

$$T = \text{proj}^{-1}(T_1) \cap \text{proj}^{-1}(T_2)$$ \hspace{1cm} (28)

From T_1 and T_2, we computed the lower-dimensional BRSs $A_1(t)$ and $A_2(t)$, and then reconstructed the full-dimensional BRS $A(t)$ using Theorem 2 $A(t) = \text{proj}^{-1}(A_1(t)) \cap \text{proj}^{-1}(A_2(t))$. The subsystem BRSs and their back-projections are shown in magenta and green in the top left subplot of Fig. 3. The reconstructed BRS is shown in the top left, top right, and bottom left subplots of Fig. 3 (black mesh).
In the bottom left subplot of Fig. 5 we superimpose the full-dimensional BRS computed using the two methods. We show the comparison of the computation results viewed from two different angles in Fig. 4. The results are indistinguishable.

Theorem 2 allows the computation to be performed in lower-dimensional subspaces, which is significantly faster. Another benefit of the decomposition method is that in the numerical methods for solving the HJ PDE, the amount of numerical dissipation increases with the number of state dimensions. Thus, computations in lower-dimensional subspaces lead to a slightly more accurate numerical solution.

The computation benefits of using our decomposition method can be seen from Fig. 5. The plot shows, in log-log scale, the computation time in seconds versus the number of grid points per dimension. One can see that the direct computation of the BRS in 3D becomes time-consuming as the number of grid points per dimension is increased, while the computation via decomposition hardly takes any time in comparison. Directly computing the BRS with 251 grid points per dimension in 3D took approximately 80 minutes, while computing the BRS via decomposition in 2D only took approximately 30 seconds! The computations were timed on a computer with an Intel Core i7-2600K processor and 16GB of random-access memory.

Fig. 6 illustrates Theorem 1. We chose the target set to be
\[T = \{(p_x, p_y, \theta) : p_x \leq 0.5 \lor p_y \leq 0.5\}, \]
and computed the BRS \(\mathcal{R}(t) \), \(t = -0.5 \) via decomposition. No additional approximation error is incurred in the reconstruction process. The target set can be written as \(T = \text{proj}^{-1}(T_1) \cup \text{proj}^{-1}(T_2) \) where \(T_1 = \{(p_x, \theta) : p_x \leq 0.5\}, T_2 = \{(p_y, \theta) : p_y \leq 0.5\}. \)

V. SCSs with Decoupled Control

In this section, we consider a special case of (5) in which the subsystem controls do not have any shared components. The results from [4] still hold, and in addition we can state the results in Propositions 1 and 2. The special case of (5) is as follows:

\[
\begin{align*}
\dot{z}_1 &= f_1(z_1, z_c, u_1) \\
\dot{z}_2 &= f_2(z_2, z_c, u_2) \\
\dot{z}_c &= f_c(z_c)
\end{align*}
\]

where the subsystem controls do not have any shared components, so that we have \(u = (u_1, u_2) \). Furthermore, we can define the trajectory of \(z_c \) as \(\eta(s; z_c, t) \), which satisfies

\[
\begin{align*}
\frac{d}{ds} \eta_c(s; z_c, t) &= f_c(\eta_c(s; z_c, t)) \\
\eta_c(t; z_c, t) &= z_c
\end{align*}
\]

Note that since the trajectory \(\eta_c(s; z_c, t) \) does not depend on the control, we can treat \(\eta_c(s; z_c, t) \) as a constant when given \(z_c \) and \(s \). Therefore, given \(z_c \), the other state partitions also become self-contained, with dynamics

\[
\begin{align*}
\dot{z}_i &= f_i(z_i, z_c, u_i) = f_i(z_i, u_i; \eta_c(s; z_c, t)) \\
\end{align*}
\]

and with trajectories \(\eta_i(s; z_i, z_c, t, u_i(\cdot)) \) satisfying

\[
\begin{align*}
\frac{d}{ds} \eta_i(s; z_i, z_c, t, u_i(\cdot)) &= f_i(\eta_i(s; z_i, z_c, t, u_i(\cdot)), u_i(s); \eta_c(s; z_c, t)) \\
\eta_i(t; z_i, z_c, t, u_i(\cdot)) &= z_i
\end{align*}
\]

Therefore, the subsystem trajectories can be written as

\[
\xi_i(s; x_i, t, u_i(\cdot)) = (\eta_i(s; z_i, z_c, t, u_i(\cdot)), \eta_c(s; z_c, t))
\]

Proposition 1: Suppose that the full system in (1) can be decomposed into the form of (29). Then,

\[
\mathcal{T} = \text{proj}^{-1}(T_1) \cap \text{proj}^{-1}(T_2)
\]

\[
\Rightarrow \mathcal{R}(t) = \text{proj}^{-1}(\mathcal{R}_1(t)) \cap \text{proj}^{-1}(\mathcal{R}_2(t))
\]

Proposition 2: Suppose that the full system in (1) can be decomposed into the form of (29). Then,

\[
T = \text{proj}^{-1}(T_1) \cup \text{proj}^{-1}(T_2)
\]

\[
\Rightarrow \mathcal{A}(t) = \text{proj}^{-1}(\mathcal{A}_1(t)) \cup \text{proj}^{-1}(\mathcal{A}_2(t))
\]

(35)

Remark 3: Systems with fully decoupled subsystems in the form of \(x_1 = z_1, x_2 = z_2\) are a special case of (29). A numerical example illustrating this case will be presented in the 10D Near-Hover Quadrotor example in Section VII-B.

A. Proof of Proposition 1

We will prove the following equivalent statement:

\[
\bar{z} \in \mathcal{R}(t) \Leftrightarrow \bar{z} \in \text{proj}^{-1}(\mathcal{R}_1(t)) \cap \text{proj}^{-1}(\mathcal{R}_2(t))
\]

(36)

By Definition 1 (maximal BRS), we have

\[
\bar{z} \in \mathcal{R}(t) \Leftrightarrow \exists u(\cdot), \zeta(0; \bar{z}, t, u(\cdot)) \in \mathcal{T}
\]

(37)

Consider the relationship between the full system trajectory and subsystem trajectory in (12). Define

\[
\bar{x}_i = (\bar{z}_i, \bar{z}_c) = \text{proj}_i(\bar{z}), \quad \text{and} \quad \xi_i(s; \bar{x}_i, t, u(\cdot)) = \text{proj}_i(\zeta(0; \bar{z}, t, u(\cdot)))
\]

By (33) we can write

\[
(\eta_i(s; \bar{z}_i, \bar{z}_c, t, u(\cdot)), \eta_c(s; \bar{z}_c, t)) = \text{proj}_i(\zeta(0; \bar{z}, t, u(\cdot)))
\]

Since \(T = \text{proj}^{-1}(T_1) \cap \text{proj}^{-1}(T_2)\), (37) is equivalent to

\[
\exists (u_1(\cdot), u_2(\cdot)), \quad (\eta_1(s; \bar{z}_1, \bar{z}_c, t, u_1(\cdot)), \eta_c(s; \bar{z}_c, t)) \in T_1 \wedge (\eta_2(s; \bar{z}_2, \bar{z}_c, t, u_2(\cdot)), \eta_c(s; \bar{z}_c, t)) \in T_2
\]

(38)

\[
\Leftrightarrow \exists u_1(\cdot), (\eta_1(s; \bar{z}_1, \bar{z}_c, t, u_1(\cdot)), \eta_c(s; \bar{z}_c, t)) \in T_1 \wedge \exists u_2(\cdot), (\eta_2(s; \bar{z}_2, \bar{z}_c, t, u_2(\cdot)), \eta_c(s; \bar{z}_c, t)) \in T_2
\]

(since subsystem controls do not share components)

(39)

\[
\Leftrightarrow x_1 \in \mathcal{R}_1(t) \wedge x_2 \in \mathcal{R}_2(t)
\]

(by definition of subsystem BRS in (15))

\[
\Leftrightarrow \bar{z} \in \text{proj}^{-1}(\mathcal{R}_1(t)) \cap \text{proj}^{-1}(\mathcal{R}_2(t))
\]

(by Corollary 2)

B. Proof of Proposition 2

This proof follows the same arguments as 1 but with “\(\bar{R}\)”, “\(\cap\)”, “\(\exists\)” replaced with “\(\mathcal{A}\)”, “\(\cup\)”, “\(\forall\)”, respectively.

Remark 4: When the subsystem controls have shared components, the control chosen by each subsystem may not agree with the other. This is the intuition behind why the results of Propositions 1 and 2 only hold true when there are no shared components in the subsystem controls. Note that the theorems hold despite the state coupling between the subsystems.

The results from this section are summarized in Table V.

VI. DECOMPOSITION OF REACHABLE TUBES

Sometimes, BRTs are desired; for example, in safety analysis, the computation of the BRT \(\mathcal{A}(t)\) in Definition 2 is quite important, since if the target set \(T\) represents an unsafe set of states, then \(\mathcal{A}(t)\) contains all states that would lead to some unsafe state at some time within a duration of length \(|t|\).

We now first discuss a special case where the full system BRT can be directly reconstructed from subsystem BRTs in Section VI-A and then present a general method in which a BRT can be obtained via the union of BRSs in Section VI-B.

A. Full System BRTs From Subsystem BRTs

Intuitively, it may seem like the results related to BRSs outlined in Sections IV and V trivially carry over to BRTs, and the relationship between BRSs and BRTs are relatively simple; however, this is only partially true. The results related to BRSs presented so far in this paper only easily carry over for BRTs if \(T = \text{proj}^{-1}(T_1) \cup \text{proj}^{-1}(T_2)\). This is formally stated in the following Proposition:

Proposition 3: Suppose (14) holds, that is,

\[
T = \text{proj}^{-1}(T_1) \cup \text{proj}^{-1}(T_2)
\]

Then, the full-dimensional BRT can be reconstructed from the lower-dimensional BRTs without incurring additional approximation errors. For systems with SCs as in (5), we have

\[
\mathcal{R}(t) = \text{proj}^{-1}(\mathcal{R}_1(t)) \cup \text{proj}^{-1}(\mathcal{R}_2(t))
\]

(40)

This can be proven by starting the proof of Theorem 1 with Definition 3 for the BRT \(\mathcal{R}(t)\) instead of Definition 1 for the BRS \(\mathcal{R}(t)\).

For systems with subsystem controls that do not share any components, we in addition have

\[
\mathcal{A}(t) = \text{proj}^{-1}(\mathcal{A}_1(t)) \cup \text{proj}^{-1}(\mathcal{A}_2(t))
\]

(41)

This can be proven by starting the proof of Proposition 2 from Definition 4 for the BRT \(\mathcal{A}(t)\) instead of Definition 2 for the BRS \(\mathcal{A}(t)\). Note that (41) does not necessarily hold for systems with shared controls.

B. BRTs From Union of BRSs

If \(T = \text{proj}^{-1}(T_1) \cap \text{proj}^{-1}(T_2)\), the BRT cannot be directly reconstructed from lower-dimensional BRTs because when computing with BRTs, we lose information about the exact time that a trajectory enters a set. Instead, we provide a general method of obtaining the BRT that can also be used in the case of Section VI-A. We first compute the BRSs, and then take their union to obtain the BRT. For this case, we

TABLE V: BRS Results from Section V

Shared Controls	No	
Recover Max. BRS?	Yes, exact	Yes, exact
Recover Min. BRS?	Yes, exact	Yes, exact

Shared Disturbance	No		
Target	Intersection	Union	
Equation(s)	Prop 1 [14]	Thm 1 [15]	Prop 2 [15]
show that \(R(t) = \bigcup_{s \in [t,0]} R(s) \), and \(\bar{A}(t) = \bigcup_{s \in [t,0]} A(s) \) when \(A(s) \neq \emptyset \) \(\forall s \in [t,0] \). These results related to the indirect reconstruction of BRTs are given in Propositions 4 and Theorem 3.

Proposition 4:

\[
\bigcup_{s \in [t,0]} R(s) = \bar{R}(t)
\]

(42)

Theorem 3:

\[
\bigcup_{s \in [t,0]} A(s) \subseteq \bar{A}(t)
\]

(43)

In addition, if \(\forall s \in [t,0], A(s) \neq \emptyset \), then

\[
\bigcup_{s \in [t,0]} A(s) = \bar{A}(t).
\]

(44)

Propositions 4 and the first part of Theorem 3 are known [37], but we present them in our paper in greater detail for clarity and completeness. The second part of Theorem 3 is the main new result related to obtaining the BRT from BRSs.

Remark 5: The reason the theorems in Sections XV and XVII merely carry over when \(T = \text{proj}^{-1}(T_1) \cup \text{proj}^{-1}(T_2) \) is that in this case, any subsystem trajectory that reaches the corresponding subsystem target set implies that the full system trajectory reaches the full system target set.

In contrast, in the case \(T = \text{proj}^{-1}(T_1) \cap \text{proj}^{-1}(T_2) \), both subsystem trajectories must be in the corresponding subsystem target sets at the same time. Mathematically, recall the definitions of subsystem BRTs in (16):

\[
\bar{A}_i(t) = \{ x_i : \exists u(\cdot), \exists s \in [t,0], \xi_i(s; x_i, t, u(\cdot)) \in T_i \}
\]

\[
\bar{R}_i(t) = \{ x_i : \exists u(\cdot), \exists s \in [t,0], \xi_i(s; x_i, t, u(\cdot)) \in T_i \}
\]

The set of “\(s \)” during which each subsystem trajectory is in \(T_i \) may not overlap for the different subsystems. In this case, we can still first compute the BRSSs in lower-dimensional subspaces, and then convert the BRSSs to the BRT using Propositions 4 and Theorem 3.

C. Proof of Proposition 4

We start with Definition II (maximal BRS):

\[
R(t) = \{ z : \exists u(\cdot) \in U, \zeta(0; z, t, u(\cdot)) \in T \}
\]

If some state \(z \) is in the union \(\bigcup_{s \in [t,0]} R(s) \), then there is some \(s \in [t,0] \) such that \(z \in R(s) \). Therefore, the union can be written as

\[
\bigcup_{s \in [t,0]} R(s) = \{ z : \exists s \in [t,0], \exists u(\cdot), \zeta(0; z, s, u(\cdot)) \in T \}
\]

(45)

Suppose \(z \in \bigcup_{s \in [t,0]} R(s) \), then equivalently

\[
\exists s \in [t,0], \exists u(\cdot) \in U, \zeta(0; z, s, u(\cdot)) \in T
\]

(46)

Using definition, the time-invariance of the system, we can shift the trajectory time arguments by \(t - s \) to get

\[
\exists s \in [t,0], \exists u(\cdot) \in U, \zeta(t - s; z, t, u(\cdot)) \in T
\]

(47)

Since \(s \in [t,0] \iff t - s \in [t,0] \), we can equivalently write

\[
\exists s \in [t,0], \exists u(\cdot) \in U, \zeta(0; z, t, u(\cdot)) \in T
\]

(48)

We can swap the expressions \(\exists s \in [t,0] \) and \(\exists u(\cdot) \in U \) without changing meaning since both quantifiers are the same:

\[
\exists u(\cdot) \in U, \exists s \in [t,0], \zeta(0; z, s, u(\cdot)) \in T
\]

(49)

which is equivalent to \(z \in \bar{R}(t) \) by Definition II (maximal BRT).

D. Proof of Theorem 3

We first establish \(\bigcup_{s \in [t,0]} A(s) \subseteq \bar{A}(t) \). Consider Definition II (minimal BRS):

\[
A(t) = \{ z : \exists u(\cdot) \in U, \zeta(0; z, t, u(\cdot)) \in T \}
\]

If some state \(z \) is in the union \(\bigcup_{s \in [t,0]} A(s) \), then \(\exists s \in [t,0] \) such that \(z \in A(s) \). Thus, the union can be written as

\[
\bigcup_{s \in [t,0]} A(s) = \{ z : \exists s \in [t,0], \exists u(\cdot), \zeta(0; z, s, u(\cdot)) \in T \}
\]

(50)

Suppose \(z \in \bigcup_{s \in [t,0]} A(s) \), then

\[
\exists s \in [t,0], \exists u(\cdot) \in U, \zeta(0; z, s, u(\cdot)) \in T
\]

(51)

Using definition, the time-invariance of the system, we can shift the trajectory time arguments by \(t - s \) to get

\[
\exists s \in [t,0], \exists u(\cdot) \in U, \zeta(t - s; z, t, u(\cdot)) \in T
\]

(52)

Since \(s \in [t,0] \iff t - s \in [t,0] \), we can equivalently write

\[
\exists s \in [t,0], \exists u(\cdot) \in U, \zeta(0; z, s, u(\cdot)) \in T
\]

(53)

Let such an \(s \in [t,0] \) be denoted \(\bar{s} \), then

\[
\forall u(\cdot) \in U, \zeta(s; z, t, u(\cdot)) \in T
\]

\[
\Rightarrow \forall u(\cdot) \in U, \exists s \in [t,0], \zeta(s; z, t, u(\cdot)) \in T
\]

(54)

By Definition II we have \(z \in \bar{A}(t) \).

Next, given \(\forall s \in [t,0], A(s) \neq \emptyset \), we show \(\bigcup_{s \in [t,0]} A(s) \supseteq \bar{A}(t) \). Equivalently, we show

\[
\neg z \notin \bigcup_{s \in [t,0]} A(s) \Rightarrow z \notin \bar{A}(t)
\]

(55)

First, observe that by the definition of minimal BRS, we have that if any state \(\bar{z} \in A(t) \), then

\[
\forall s \in [t,0], \exists u(\cdot) \in U, \zeta(s; \bar{z}, t, u(\cdot)) \in A(s)
\]

(56)

since otherwise, we would have for some \(\bar{s} \in [t,0] \),

\[
\exists u(\cdot) \in U, \zeta(\bar{s}; \bar{z}, t, u(\cdot)) \notin A(s)
\]

\[
\Rightarrow \exists u(\cdot) \in U, \zeta(0; \bar{z}, \bar{s}, t, u(\cdot)) \notin A(s)
\]

(57)

\[

\Leftrightarrow \exists u(\cdot) \in U, \zeta(0; \bar{z}, \bar{s}, u(\cdot)) \notin T
\]

which contradicts \(z \in A(t) \).
Given $z \notin \mathcal{A}(t)$, there exists some control $\bar{u}(\cdot)$ such that $\zeta(0; z, t, \bar{u}(\cdot)) \notin \mathcal{T} = \mathcal{A}(0)$. Moreover, we must have $\forall s \in [t, 0], \zeta(s; z, t, \bar{u}(\cdot)) \notin \mathcal{T}$, since otherwise, we would have $\exists s$ such that
\[
\zeta(s; z, t, \bar{u}(\cdot)) = t\mathcal{A}(0) \Rightarrow z = \zeta(t; z, t, \bar{u}(\cdot)) \in \mathcal{A}(t - \hat{s})
\]
which contradicts $z \notin \bigcup_{s \in [t, 0]} \mathcal{A}(s)$.

Using time-invariance of the system dynamics, we have $\forall s \in [t, 0], \zeta(0; z, t - s, \bar{u}(\cdot)) \notin \mathcal{T}$, which is equivalent to $\forall s \in [t, 0], \zeta(0; z, s, \bar{u}(\cdot)) \notin \mathcal{T}$. Therefore, $\exists \mathcal{U}(\cdot) \in \mathcal{U}, \forall s \in [t, 0], \zeta(0; z, s, \bar{u}(\cdot)) \notin \mathcal{T} \Leftrightarrow z \notin \mathcal{A}(t)$.

Remark 6: When $\exists s \in [t, 0]. \mathcal{A}(s) = \emptyset$, it is currently not known whether the union of the BRSs $\mathcal{A}(s)$ will be equal to the BRT $\hat{\mathcal{A}}(t)$ or a proper subset of the BRT $\hat{\mathcal{A}}(t)$. Both are possibilities. Finding a weaker condition under which the union of BRSs equals to the BRT is an important future direction that we plan to investigate.

Remark 7: Note that Proposition 4 and Theorem 5 also hold for decoupled control.

TABLE VI: BRT Results for Reconstruction from Tubes

Shared Controls	Yes	No
Target		
Recover Max. BRT?	No	Yes, exact
Recover Min. BRT?	No	Yes, exact
Equation(s)	Table VII	Prop 4

TABLE VII: BRT Results for Reconstruction from Sets

Shared Controls	Yes	No
Shared Disturb.		
Target		
Recover Max. BRT?	Yes	exact
Recover Min. BRT?	Yes	exact
Equation(s)	Prop 4	Thm 3

E. Numerical Results

Fig. 7: The BRT computed directly in 3D (red surface) and computed via decomposition in 2D (black mesh). Using our decomposition technique, we first compute the BRSs $\mathcal{A}(s), s \in [-0.5, 0]$, and then obtained the BRT by taking their union.

We now revisit the Dubins Car, whose full system and subsystem dynamics are given in (6) and (7) respectively.

Using the target set \mathcal{T} given in (27) and writing \mathcal{T} in the form of (28), we computed the BRT $\hat{\mathcal{A}}(t), t = -0.5$ by first computing $\mathcal{A}(s), s \in [-0.5, 0]$, and then taking their union.

VII. HIGH-DIMENSIONAL NUMERICAL RESULTS

In this section, we show numerical results for the 6D Acrobatic Quadrotor and the 10D Near-Hover Quadrotor, two systems whose exact BRSs and BRTs were intractable to compute with previous methods to the best of our knowledge.

A. The 6D Acrobatic Quadrotor

In (40), a 6D quadrotor model used to perform backflips was simplified into a series of smaller models linked together in a hybrid system. The Quadrotor has state $z = (p_x, v_x, p_y, v_y, \phi, \omega)$, and dynamics

\[
\begin{bmatrix}
\dot{p}_x \\
\dot{v}_x \\
\dot{p}_y \\
\dot{v}_y \\
\dot{\phi} \\
\dot{\omega}
\end{bmatrix}
= \begin{bmatrix}
\frac{-1}{m} C_D v_x - \frac{v_x}{m} \sin \phi - \frac{T_x}{m} \sin \phi \\
\frac{-1}{m} (m g + C_D v_x) v_y + \frac{T_y}{m} \cos \phi + \frac{T_x}{m} \cos \phi \\
- \frac{1}{I_{yy}} C_D^0 \omega - \frac{1}{I_{yy}} T_1 + \frac{1}{I_{yy}} T_2
\end{bmatrix}
\]

where x, y, ϕ represent the quadrotor’s horizontal, vertical, and rotational positions, respectively. Their derivatives represent the velocity with respect to each state. The control inputs T_1 and T_2 represent the thrust exerted on either end of the quadrotor, and the constant system parameters are m for mass, C_D^0 for translational drag, C_D^0 for rotational drag, g for acceleration due to gravity, l for the length from the quadrotor’s center to an edge, and I_{yy} for moment of inertia.

We decompose the system into the following subsysystems:

\[
x_1 = (p_x, v_x, \phi, \omega), \quad x_2 = (p_y, v_y, \phi, \omega)
\]

Fig. 8: A 3D slice in (p_x, p_y, ϕ) space at $v_x = v_y = 1, \omega = 0$. The yellow
respectively:

\[T = \{(p_x, v_x, \theta_x, \omega_x, p_y, v_y, \theta_y, \omega_y, p_z, v_z) : \\
|p_x|, |p_y| \leq 1, |p_z| \leq 2.5 \} \]

This target set can be written as \(T = \bigcap_{i=1}^{3} \text{proj}^{-1}(T_{x_i}) \),

where \(\text{proj}^{-1}(T_{x_i}), i = 1, 2, 3 \) are given by

\[T_1 = \{(p_x, v_x, \theta_x, \omega_x) : |p_x| \leq 1 \} \]
\[T_2 = \{(p_y, v_y, \theta_y, \omega_y) : |p_y| \leq 1 \} \]
\[T_3 = \{(p_z, v_z) : |p_z| \leq 2.5 \} \]

Since the subsystems do not have any common controls or disturbances, and \(T = \bigcap_{i=1}^{3} \text{proj}^{-1}(T_{x_i}) \), we can compute the full-dimensional \(\mathcal{R}(t) \) and \(\bar{\mathcal{R}}(t) \) by reconstructing lower-dimensional BRSs and BRTs. A discussion of disturbances can be found in Section VIII.

B. The 10D Near-Hover Quadrotor

The 10D Near-Hover Quadrotor was used for experiments involving learning-based MPC [41]. Its dynamics are

\[
\begin{bmatrix}
\dot{p}_x \\
\dot{v}_x \\
\dot{\theta}_x \\
\dot{\omega}_x \\
\dot{p}_y \\
\dot{v}_y \\
\dot{\theta}_y \\
\dot{\omega}_y \\
\dot{p}_z \\
\dot{v}_z
\end{bmatrix} =
\begin{bmatrix}
v_x + d_x \\
g \tan \theta_x \\
d_1 \theta_x + \omega_x \\
-d_0 \theta_x + n_0 S_x \\
v_y + d_y \\
g \tan \theta_y \\
-d_1 \theta_y + \omega_y \\
-d_0 \theta_y + n_0 S_y \\
v_z + d_z \\
k_f T_z - g
\end{bmatrix}
\]

(61)

where \((p_x, p_y, p_z)\) denotes the position, \((v_x, v_y, v_z)\) denotes the velocity, \((\theta_x, \theta_y)\) denotes the pitch and roll, and \((\omega_x, \omega_y)\) denotes the pitch and roll rates. The controls of the system are \((S_x, S_y)\), which respectively represent the desired pitch and roll angle, and \(T_z\), which represents the vertical thrust. The system experiences the disturbance \((d_x, d_y, d_z)\) which represents wind in the three axes. \(g\) denotes the acceleration due to gravity. The parameters \(d_0, d_1, n_0, k_f\), as well as the control bounds \(U\), that we used were \(d_0 = 10, d_1 = 8, n_0 = 10, k_f = 0.91\), \(|u_x|, |u_y| \leq 10\) degrees. \(0 \leq u_z \leq 2g, |d_x|, |d_y| \leq 0.5\) m/s, \(|d_z| \leq 1\) m/s. The system can be fully decoupled into three subsystems of 4D, 4D, and 2D, respectively:

\[
x_1 = (p_x, v_x, \theta_x, \omega_x),
x_2 = (p_y, v_y, \theta_y, \omega_y),
x_3 = (p_z, v_z)
\]

The target set is chosen to be

\[
\mathcal{R}(s) = \bigcup_{i=1}^{3} \text{proj}^{-1}(T_{x_i})
\]

From the target set, we computed the 10D BRS and BRT, \(\mathcal{R}(s), \bar{\mathcal{R}}(s), s \in [-1, 0]\). In the left subplot of Fig. 9 we show a 3D slice of the BRS and BRT sliced at \((v_x, v_y, v_z) = (-1.5,-1.8,1.2), (\theta_x = \theta_y = \omega_x = \omega_y = 0)\). The colored sets show the slice of the BRSs \(\mathcal{R}(s), s \in [-1, 0]\), with the times color-coded according to the legend. The slice of the BRT is shown as the black surface; the BRT is the union of BRSs by Proposition IV.

The right subplot of Fig. 9 shows the BRS and BRT in \((\theta_x, \theta_y, v_z)\) space, sliced at \((p_x, p_y, p_z) = (-1.5,0,1), (v_x, v_y) = (1.2,-0.6), \omega_x = \omega_y = -0.5\). To the best of our knowledge, such a slice of the exact BRS and BRT is not possible to obtain using previous methods, since a high-dimensional system model like \((61) \) is needed for analyzing the angular behavior of the system.

VIII. HANDLING DISTURBANCES

Under the presence of disturbances, the full system dynamics changes from \((1) \) to

\[
\frac{dz}{ds} = \dot{z} = f(z, u, d), s \in [t, 0], u \in U, d \in D
\]

(65)
where \(d \in \mathcal{D} \) represents the disturbance, with \(d(\cdot) \in \mathcal{D} \) drawn from the set of measurable functions.

In addition, we assume that the disturbance function \(d(\cdot) \) is drawn from the set of non-anticipative strategies \(\mathcal{D} \), denoted \(\Gamma(\cdot) \). We denote the mapping from \(u(\cdot) \) to \(d(\cdot) \) as \(\gamma[u(\cdot)] \) as in [22]. The subsystems in (5) are now written as

\[
\begin{align*}
\hat{z}_1 &= f_1(z_1, z_c, u, d) \\
\hat{z}_2 &= f_2(z_2, z_c, u, d) \\
\hat{z}_c &= f_c(z_c, u, d)
\end{align*}
\] (66)

In general, subsystem disturbances may have shared components. Whether this is the case is very important, as some of the results involving disturbances become stronger when the subsystem disturbances do not have shared components.

Trajectories of the system and subsystems are now denoted

\[\zeta(s; t, u(\cdot), d(\cdot)), \xi_i(s; x_i, t, u(\cdot), d(\cdot)), \] and satisfy conditions analogous to (2) and (11) respectively. We also need to incorporate the disturbance into the BRS and BRT definitions:

\[
\begin{align*}
\mathcal{A}(t) &= \{ z : \exists \gamma[u(\cdot)], \forall u(\cdot), \exists s \in [t, 0], \\
&\quad \zeta(s; z, t, u(\cdot), \gamma[u(\cdot)]) \in \mathcal{T} \} \\
\mathcal{R}(t) &= \{ z : \forall \gamma[u(\cdot)], \exists \eta(\cdot), \exists s \in [t, 0], \\
&\quad \zeta(s; z, t, \gamma[u(\cdot)], d(\cdot)) \in \mathcal{T} \} \\
\mathcal{A}(t) &= \{ z : \forall \gamma[u(\cdot)], \exists u(\cdot), \exists s \in [t, 0], \\
&\quad \zeta(s; z, t, \gamma[u(\cdot)], d(\cdot)) \in \mathcal{T} \} \\
\mathcal{R}(t) &= \{ z : \exists \gamma[u(\cdot)], \forall u(\cdot), \exists s \in [t, 0], \\
&\quad \zeta(s; z, t, u(\cdot), \gamma[u(\cdot)]) \in \mathcal{T} \}
\end{align*}
\] (67)

Subsystem BRSs \(\mathcal{R}_i, \mathcal{A}_i, i = 1, 2 \) are defined analogously.

A. Self-Contained Subsystems

Under the presence of disturbances, the results from Section VIII carry over with some modifications. Theorems 1 and 2 need to be changed slightly, and the reconstructed BRS is now an approximation conservative in the right direction.

Corollary 3: Suppose that the full system in (1) can be decomposed into the form of (66), then

\[T = \text{proj}^{-1}(\mathcal{T}_1) \cup \text{proj}^{-1}(\mathcal{T}_2) \]

\[\Rightarrow \mathcal{R}(t) \supseteq \text{proj}^{-1}(\mathcal{R}_1(t)) \cup \text{proj}^{-1}(\mathcal{R}_2(t)) \] (68)

To solve this, in the proof of Theorem 1 (24) becomes

\[\forall \gamma[u(\cdot)], \exists u(\cdot), \xi_1(0; \bar{x}_1, t, u(\cdot), d(\cdot)) \in \mathcal{T}_1 \lor \xi_2(0; \bar{x}_2, t, u(\cdot), d(\cdot)) \in \mathcal{T}_2 \] (69)

The expression \(\forall \gamma[u(\cdot)], \exists u(\cdot) \) cannot be distributed, thus making the reconstructed BRS a conservative approximation of the true BRS in the right direction. By conservative in the right direction, we mean that a state \(z \) in the reconstructed BRS is guaranteed to be able to reach the target.

Corollary 4: Suppose that the full system in (1) can be decomposed into the form of (66), then

\[T = \text{proj}^{-1}(\mathcal{T}_1) \cap \text{proj}^{-1}(\mathcal{T}_2) \]

\[\Rightarrow \mathcal{A}(t) \subseteq \text{proj}^{-1}(\mathcal{A}_1(t)) \cap \text{proj}^{-1}(\mathcal{A}_2(t)) \] (70)

The proof of Theorem 2 makes the same arguments except that it involves complements of sets instead. Again, the reconstructed BRS is a conservative approximation of the true BRS in the right direction, meaning that a state \(z \) outside of the reconstructed BRS is guaranteed to be able to avoid the target.

If the subsystem disturbances have no shared components, then (69) becomes

\[\forall (\gamma_1[u(\cdot)], \gamma_2[u(\cdot)]), \exists u(\cdot), \xi_1(0; \bar{x}_1, t, u(\cdot), \gamma_1[u(\cdot)])) \in \mathcal{T}_1 \lor \xi_2(0; \bar{x}_2, t, u(\cdot), \gamma_2[u(\cdot)])) \in \mathcal{T}_2 \]

where \(\gamma[u(\cdot)] \) is written as \((\gamma_1[u(\cdot)], \gamma_2[u(\cdot)]) \).

In this case, the expression \(\forall (\gamma_1[u(\cdot)], \gamma_2[u(\cdot)]), \exists u(\cdot) \) can be distributed. Therefore, in this case Theorems 1 and 2 still hold.

B. Subsystems with Decoupled Control

For systems with decoupled control, but shared disturbance in the subsystems, results from Section VIII-A still hold since the system dynamics structure is a special case of that in Section VIII-A. In addition, results from Section V hold with some modifications. Propositions 1 and 2 need to be modified, and again the reconstructed BRS is now an approximation conservative in the right direction.

Corollary 5: Suppose that the full system in (1) can be decomposed into the form of (29), with the addition of shared disturbances. Then,

\[T = \text{proj}^{-1}(\mathcal{T}_1) \cap \text{proj}^{-1}(\mathcal{T}_2) \]

\[\Rightarrow \mathcal{R}(t) \supseteq \text{proj}^{-1}(\mathcal{R}_1(t)) \cap \text{proj}^{-1}(\mathcal{R}_2(t)) \] (71)

To prove this, we modify Proposition 1 by changing (38) to

\[\forall \gamma[u(\cdot)], \exists (u_1(\cdot), u_2(\cdot)) \\
(\eta_1(s; z_1, z_c, t, u_1(\cdot), \gamma[u(\cdot)]), \eta_2(s; z_c, t) \in \mathcal{T}_1 \lor (\eta_2(s; z_2, z_c, t, u_2(\cdot), \gamma[u(\cdot)]), \eta_1(s; z_c, t) \in \mathcal{T}_2 \] (72)

The expression \(\forall \gamma[u(\cdot)], \exists (u_1(\cdot), u_2(\cdot)) \) cannot be distributed to lead to a statement analogous to (39). Hence, the forward direction of Proposition 1 does not hold, and conservativeness is introduced.

By the same reasoning, the result of Proposition 2 changes to the following.

Corollary 6:

\[T = \text{proj}^{-1}(\mathcal{T}_1) \cap \text{proj}^{-1}(\mathcal{T}_2) \]

\[\Rightarrow \mathcal{A}(t) \subseteq \text{proj}^{-1}(\mathcal{A}_1(t)) \cap \text{proj}^{-1}(\mathcal{A}_2(t)) \] (73)

In both cases, conservative approximations of the BRS can still be obtained.

TABLE VIII: BRS Results from Subsections VIII-A & VIII-B

Target Controls	Shared Disturbance					
Yes	No					
Recover Max. BRT	No	Yes, conserv	Yes, conserv			
Recover Max. BRT	Yes, conserv	No	Yes, conserv			
Equation(s)	Cor 1	1	Cor 3	68		
Table 4	Cor 1	70	Cor 4	71	Cor 5	72
C. Decomposition of Reachable Tubes

Under disturbances, the results from Section VII carry over with modifications. For reconstruction from other BRTs, the arguments in Proposition 3 do not change. However, in the case where there are overlapping components in the subsystem disturbances, the reconstructed BRTs become conservative approximations:

Corollary 7: Suppose our system has coupled control and disturbance as in (66), then

\[
\mathcal{T} = \text{proj}^{-1}(\mathcal{T}_1) \cup \text{proj}^{-1}(\mathcal{T}_2) \\
\Rightarrow \bar{\mathcal{R}}(t) \supseteq \text{proj}^{-1}(\bar{\mathcal{R}}_1(t)) \cup \text{proj}^{-1}(\bar{\mathcal{R}}_2(t))
\]

(74)

Corollary 8: Suppose our system has subsystem controls that do not share any components, then

\[
\mathcal{T} = \text{proj}^{-1}(\mathcal{T}_1) \cup \text{proj}^{-1}(\mathcal{T}_2) \\
\Rightarrow \mathcal{A}(t) \subseteq \text{proj}^{-1}(\mathcal{A}_1(t)) \cup \text{proj}^{-1}(\mathcal{A}_2(t))
\]

(75)

For Proposition 4, the union of the BRSs now becomes an under-approximation of the BRT in general:

Corollary 9: Suppose our system has coupled control and disturbance as in (66), then

\[
\mathcal{T} = \text{proj}^{-1}(\mathcal{T}_1) \cap \text{proj}^{-1}(\mathcal{T}_2) \\
\Rightarrow \bigcup_{s \in [t,0]} \mathcal{R}(s) \subseteq \bar{\mathcal{R}}(t)
\]

(76)

To show this, all arguments in the proof of Proposition 4 remain the same, except (45) no longer implies (49). Instead, the implication is unidirectional:

\[
\exists s \in [t,0], \forall \gamma [u(\cdot)], \exists u(\cdot), \zeta(0; z, s, u(\cdot), \gamma[u(\cdot)]) \in \mathcal{T} \\
\Rightarrow \forall \gamma [u(\cdot)], \exists u(\cdot), \exists s \in [t,0], \zeta(s; z, t, u(\cdot), \gamma[u(\cdot)]) \in \mathcal{T}
\]

(77)

This is due to the switching of the order of the expressions “\(\exists s \in [t,0]\)” and “\(\gamma[u(\cdot)]\)”. Therefore, the union of the BRSs becomes an under-approximation of the BRT, a conservatism in the right direction: a state in the under-approximated BRT is still guaranteed to be able to reach the target.

In contrast to Proposition 4, all the arguments of Theorem 5 hold, since there no change of order of expressions involving existential and universal quantifiers.

TABLE IX: BRT Results for Reconstruction from Tubes

Shared Controls	Yes	No		
Recover Max. BRT?	Intersection	Union	Intersection	Union
No	Yes, conserv	No	Yes, conserv	
Recover Min. BRT?	No	No	No	Yes, conserv
Equation(s)	N/A	Cor [74]	N/A	Cor [74]

D. Dubins Car with Disturbances

Under disturbances, the Dubins Car dynamics are given by

\[
\begin{bmatrix}
\dot{p}_x \\
\dot{p}_y \\
\dot{\theta}
\end{bmatrix} =
\begin{bmatrix}
v \cos \theta + d_x \\
v \sin \theta + d_y \\
\omega + d_\theta
\end{bmatrix}
\]

\[
\omega \in \mathcal{U}, \quad (d_x, d_y, d_\theta) \in \mathcal{D}
\]

(78)

with state \(z = (p_x, p_y, \theta)\), control \(u = \omega\), and disturbances \(d = (d_x, d_y, d_\theta)\). The state partitions are \(z_1 = p_x, z_2 = p_y, z_3 = \theta\). The subsystem states \(x_i\), controls \(w_i\), and disturbances \(b_i\) are

\[
\dot{x}_1 = \begin{bmatrix}
\dot{z}_1 \\
\dot{z}_2 \\
\dot{z}_3
\end{bmatrix} = \begin{bmatrix}
p_x \\
p_y \\
\gamma
\end{bmatrix} = \begin{bmatrix}
v \cos \theta + d_x \\
v \sin \theta + d_y \\
\omega + d_\theta
\end{bmatrix}
\]

\[
\dot{x}_2 = \begin{bmatrix}
\dot{z}_1 \\
\dot{z}_2 \\
\dot{z}_3
\end{bmatrix} = \begin{bmatrix}
p_x \\
p_y \\
\gamma
\end{bmatrix} = \begin{bmatrix}
v \cos \theta + d_x \\
v \sin \theta + d_y \\
\omega + d_\theta
\end{bmatrix}
\]

(79)

where the overlapping state is \(\theta = z_3\). We assume that each component of disturbance is bounded in some interval centered at zero: \(|d_x| \leq d_x, |d_y| \leq d_y, |d_\theta| \leq d_\theta\). The subsystem disturbances \(b_1\) and \(b_2\) have the shared component \(d_\theta\).

Fig. 10 compares the BRT \(\mathcal{A}(t)\) computed directly in 2D for the Dubins Car under disturbances with shared components. The reconstructed BRT is an over-approximation of the true BRT. The over-approximated regions of the reconstruction are indicated by the arrows.

Fig. 11: Minimal BRTs computed directly in 3D and via decomposition in 2D for the Dubins Car under disturbances with shared components. The reconstructed BRT is an over-approximation of the true BRT.
technique from the subsystem target sets in \cite{28}. For this computation, we chose $d_x, d_y = 1, d_\theta = 5$.

Since there is a shared component in the disturbances, the BRT computed using our decomposition technique becomes an over-approximation of the true BRT. One can see the over-approximation by noting that the black set is not flush against the red set, as marked by the arrows in Fig. \ref{fig:example}.

Fig. \ref{fig:example} shows the same computation with $d_\theta = 0$, so that subsystem disturbances effectively have no shared components. In this case, one can see that the BRTs computed directly in 3D and via decomposition in 2D are the same.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a general system decomposition method for efficiently computing BRs and BRTs in several scenarios. By performing computations in lower-dimensional subspaces, computation burden is substantially reduced, allowing currently tractable computations to be orders of magnitude more faster, and currently intractable computations to become tractable. Unlike related work on computation of BRs and BRTs, our method can significantly reduce dimensionality without sacrificing any optimality. Under disturbances, the reconstructed BRs and BRTs sometimes become slightly conservative approximations which are still useful for providing performance and safety guarantees. To the best of our knowledge, such guarantees for high-dimensional systems are now possible for the first time. Our decomposition technique can also be used in combination with other dimensionality reduction or approximation techniques, further alleviating the curse of dimensionality.

We are currently extending our decomposition technique to other scenarios, including more representations of full-dimensional sets in lower-dimensional subspaces and more families of system dynamics. In addition, we look forward to combining our technique with other related techniques such as reinforcement learning and machine learning, automating the system decomposition process, and demonstrating our theory in hardware experiments.

REFERENCES

[1] M. Chen, S. Herbert, and C. J. Tomlin, “Exact and efficient Hamilton-Jacobi-based guaranteed safety analysis via system decomposition,” in Proc. IEEE Int. Conf. on Robotics and Automation, 2017.

[2] C. Zhao, U. Topcu, N. Li, and S. Low, “Design and Stability of Load-Side Primary Frequency Control in Power Systems,” IEEE Trans. Autom. Control, vol. 59, no. 5, pp. 1177–1189, May 2014.

[3] R. Dobbe, D. Arnold, S. Liu, D. Callaway, and C. Tomlin, “Real-Time Distribution Grid State Estimation with Limited Sensors and Load Forecasting,” in Int. Conf. on Cyber-Physical Syst., Apr. 2016, pp. 1–10.

[4] R. Ghosh and C. J. Tomlin, “Lateral Inhibition through Delta-Notch Signaling: A Piecewise-Affine Hybrid Model,” in Proc. ACM Int. Conf. Hybrid Syst.: Computation and Control, 2001, pp. 232–246.

[5] R. Ghosh and C. Tomlin, “A query-based technique for interpreting reachable sets for hybrid automaton models of protein feedback signaling,” in Proc. Amer. Control Conf., 2005, pp. 4417–4422.

[6] G. Hoffmann, H. Huang, S. Waslander, and C. Tomlin, “Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment,” in Guidance, Navigation, and Control Conf. and Exhibit, Aug. 2007.

[7] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli, “Kinematic and dynamic vehicle models for autonomous driving control design,” in Intelligent Vehicles Symp., Jun. 2015, pp. 1094–1099.

[8] S. Kong, S. Gao, W. Chen, and E. Clarke, “dReach: δ-Reachability Analysis for Hybrid Systems,” in Proc. Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems, 2015, pp. 200–205.

[9] P. S. Duggirala, S. Mitra, M. Viswanathan, and M. Potok, “C2E2: A Verification Tool for Stateflow Models,” in Proc. Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems, 2015, pp. 206–208.

[10] M. R. Greenstreet and I. Mitchell, “Integrating projections,” in Hybrid Systems: Computation and Control, 1998, pp. 159–174.

[11] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang, and O. Maler, “SpaceEx: Scalable Verification of Hybrid Systems,” in Proc. Int. Conf. on Computer Aided Verification, 2011, pp. 379–395.

[12] A. Kurzhanski and P. Varaiya, “Ellipsoidal techniques for reachability analysis: internal approximation,” Sys. & Contr. Lett., vol. 41, no. 3, pp. 201–211, Oct. 2000.

[13] ——, “On Ellipsoidal Techniques for Reachability Analysis. Part II: Internal Approximations Box-valued Constraints,” Optimization Methods and Software, vol. 17, no. 2, pp. 207–237, Jan. 2002.

[14] J. N. Maidens, S. Kaynama, I. M. Mitchell, M. M. K. Oishi, and G. A. Dumont, “Lagrangian methods for approximating the viability kernel in high-dimensional systems,” Automatica, vol. 49, no. 7, pp. 2017–2029, Jul. 2013.

[15] X. Chen, E. Abraham, and S. Sankaranarayanan. “Flow*: An Analyzer for Non-linear Hybrid Systems,” in Proc. Conf. Computer Aided Verification, 2013, pp. 258–263.

[16] M. Althoff, “An Introduction to CORA 2015,” in Proc. Workshop on Applied Verification for Continuous and Hybrid Systems, 2015.

[17] A. Majumdar, R. Vasudevan, M. M. Toonen and, R. Tedrake, Convex optimization of nonlinear feedback controllers via occupation measures. Springer Berlin Heidelberg, 2014, vol. 33, no. 9, pp. 1209–1230.

[18] T. Dresassi, T. Dang, and C. Piazza, “Parallelotope Bundles for Polynomial Reachability,” in Proc. ACM Int. Conf. Hybrid Syst.: Computation and Control, 2016, pp. 297–306.

[19] P. Nilsson and N. Ozay, “Synthesis of separable controlled invariant sets for modular local control design,” in American Control Conference, Jul. 2016, pp. 5656–5663.

[20] M. Althoff and B. H. Krogh, “Reachability Analysis of Nonlinear Differential-Algebraic Systems,” IEEE Trans. Automat. Contr., vol. 59, no. 2, pp. 371–383, Feb. 2014.

[21] E. N. Barron, “Differential games with maximum cost,” Nonlinear Anal., vol. 14, no. 11, pp. 971–989, Jun. 1990.

[22] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games,” IEEE Trans. Autom. Control, vol. 50, no. 7, pp. 947–957, 2005.

[23] K. Margellos and J. Lygeros, “Hamilton-Jacobi Formulation for Reach-Avoid Differential Games,” IEEE Trans. Automat. Contr., vol. 56, no. 8, pp. 1849–1861, Aug. 2011.

[24] O. Bokanowski and H. Zidani, “Minimal Time Problems with Moving Targets and Obstacles,” IFAC Proc. Volumes, vol. 44, no. 1, pp. 2589–2593, Jan. 2011.

[25] J. Darbon and S. Osher, “Algorithms for overcoming the curse of dimensionality for certain Hamilton-Jacobi equations arising in control theory and elsewhere,” Res. Math. Sci., vol. 3, no. 1, p. 19, Dec. 2016.

[26] M. R. Hafner and D. Del Vecchio, “Computation of safety control for uncertain piecewise continuous systems on a partial order,” in Proc. Conf. Decision and Contr., 2009, pp. 1671–1677.

[27] S. Coogan and M. Arcak, “Efficient finite abstraction of mixed monotone systems,” in Proc. ACM Int. Conf. Hybrid Syst.: Computation and Contr., 2015, pp. 58–67.

[28] I. Mitchell, “Scalable calculation of reach sets and tubes for nonlinear systems with terminal integrators: a mixed implicit explicit formulation,” in Proc. ACM Int. Conf. Hybrid Syst.: Computation and Contr., 2011, pp. 103–112.

[29] J. F. Fisac, M. Chen, C. J. Tomlin, and S. S. Sastry, “Reach-avoid problems with time-varying dynamics, targets and constraints,” in Proc. ACM Int. Conf. Hybrid Syst.: Computation and Contr., 2015, pp. 11–20.

[30] I. M. Mitchell and C. J. Tomlin, “Overapproximating Reachable Sets by Hamilton-Jacobi Projections,” J. Scientific Computing, vol. 19, no. 1-3, pp. 323–346, 2003.

[31] M. Chen, S. Herbert, and C. J. Tomlin, “Fast reachable set approximations via state decoupling disturbances,” in IEEE Conf. Decision and Contr., Dec. 2016, pp. 191–196.

[32] S. Kaynama and M. Oishi, “Schar-based decomposition for reachability analysis of linear time-invariant systems,” in Proc. IEEE Conf. on Decision and Contr., Dec. 2009, pp. 69–74.
—, “A Modified Riccati Transformation for Decentralized Computation of the Viability Kernel Under LTI Dynamics,” IEEE Trans. on Automatic Control, vol. 58, no. 11, pp. 2878–2892, Nov. 2013.

[34] F. M. Callier and C. A. Desoer, “The System Representation R=[A,B,C,D], Part II,” in Linear System Theory. Springer, 1991, pp. 103–139.

[35] S. S. Sastry, “Linearization by State Feedback,” in Nonlinear Systems: Analysis, Stability, and Control. Springer-Verlag, 1999, ch. 9, p. 384.

[36] E. A. Coddington and N. Levinson, Theory of ordinary differential equations. Tata McGraw-Hill Education, 1955.

[37] I. M. Mitchell, “Comparing Forward and Backward Reachability as Tools for Safety Analysis,” in Proc. ACM Int. Conf. Hybrid Syst.: Computation and Contr., 2007, pp. 428–443.

[38] P. P. Varaiya, “On the Existence of Solutions to a Differential Game,” SIAM J. Contr., vol. 5, no. 1, pp. 153–162, Feb. 1967.

[39] P. Zhao, S. Mohan, and R. Vasudevan, “Control Synthesis for Nonlinear Optimal Control via Convex Relaxations,” Oct. 2016. [Online]. Available: http://arxiv.org/abs/1610.00394

[40] J. H. Gilbala, G. M. Hoffmann, Haomao Huang, M. P. Vitus, and C. J. Tomlin, “Applications of hybrid reachability analysis to robotic aerial vehicles,” Int. J. of Robotics Res., vol. 30, no. 3, pp. 335–354, Mar. 2011.

[41] P. Bouffard, “On-board model predictive control of a quadrotor helicopter: Design, implementation, and experiments,” Master’s thesis, University of California, Berkeley, 2012.

Mo Chen received the B.A.Sc. degree in Engineering Physics from the University of British Columbia, Vancouver, BC, Canada, in 2011, and is currently a Ph.D. candidate in Electrical Engineering and Computer Sciences at the University of California, Berkeley.

Sylvia L. Herbert received her B.S. and M.S. degrees in Mechanical Engineering at Drexel University, Philadelphia, PA, in 2014. She is currently a Ph.D. student in Electrical Engineering and Computer Sciences at the University of California, Berkeley.

Mahesh S. Vashisht is currently an undergraduate student in Computer Science at the University of California, Berkeley.

Claire J. Tomlin is the Charles A. Desoer Professor of Engineering in Electrical Engineering and Computer Sciences at the University of California, Berkeley. She was an Assistant, Associate, and Full Professor in Aeronautics and Astronautics at Stanford from 1998 to 2007, and in 2005 joined Berkeley. Claire works in the area of control theory and hybrid systems, with applications to air traffic management, UAV systems, energy, robotics, and systems biology. She is a MacArthur Foundation Fellow (2006) and an IEEE Fellow (2010), and in 2010 held the Tage Erlander Professorship of the Swedish Research Council at KTH in Stockholm.

Somil Bansal received the B.Tech. degree in Electrical Engineering from the Indian Institute of Technology, Kanpur, India, in 2012, and is currently a Ph.D. student in Electrical Engineering and Computer Sciences at the University of California, Berkeley.