Network Meta-analysis of Four Chinese Patent Medicines Combined with Angiotensin Converting Enzyme Inhibitors or Angiotensin Receptor Blockers in Early Diabetic Nephropathy Treatment

Jing Zhang, Jing Li*, Jia-Qin Huang*

*Department of Nephropathy and Endocrine Disease, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China

Abstract

The objective of the study is to systematically evaluate the efficacy of four Chinese patent medicines in combination with angiotensin-converting enzyme inhibitors/angiotensin receptor blockers (ACEI/ARB) in the treatment of early diabetic nephropathy (DN). Retrospectively, previously published randomized controlled trials (RCTs) of four different Chinese patent medicines combined with ACEI or ARB in the treatment of patients with early DN were searched overall from databases. The data were analyzed by R, Generate Mixed Treatment Comparisons and STATA softwares. A total of 78 RCTs were finally included. Network meta-analysis showed that the total effective rate of the Jinshuibao capsule-ACEI/ARB combination group and Huangkui capsule-ACEI/ARB combination groups were better than the others; Jinshuibao capsule-ACEI/ARB combination group reduced the 24-h urinary protein excretion (24-h UTP), urine microalbumin excretion rate (UAER), serum creatinine (Scr), and glycosylated hemoglobin (HbAlc) values. The Huangkui capsule-ACEI/ARB combination demonstrated a better reduction of (blood urea nitrogen [BUN]). Reduced incidences of adverse effects were only observed on treatment with Bailing capsule-ACEI/ARB combination. In early DN, combination of Jinshuibao capsule-ACEI/ARB provided the highest effective rate; moreover, it could reduce the 24-h values of UTP, UAER, Scr, and HbAlc; Huangkuai capsule-ACI/ARB combination group showed a good effect on reducing BUN. Bailing capsule-ACEI/ARB combination group had reduced the incidences of adverse reactions.

Keywords: Angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, Chinese patent medicine, drug combination, early diabetic nephropathy, network meta-analysis

INTRODUCTION

Diabetic nephropathy (DN) is among the most common and serious chronic complications of diabetes mellitus. The current therapeutic strategies for DN are based on changing lifestyle and dietary habits, controlling blood glucose and blood pressure, and lipid-lowering therapy.[1] A study found that the use of angiotensin-converting enzyme inhibitors (ACEI) and angiotensin receptor blockers (ARB) can reduce serum creatinine and albuminuria, and slow down the development of DN.[2] However, the use of ACEI/ARB has limitations. St Peter Wendy L researches showed that although there have been remarkable achievements in RAAS system blockers, it can only reduce the risk of developing end-stage renal disease in <30% of the patients with DN and slow the development of DN in 10% of the patients. The effect is not ideal. In addition, it is not cost-effective and can cause hyperkalemia, transient renal insufficiency, or other complications.[3] In recent years, the combination of Chinese patent medicine and ACEI/ARB has been reported to have improved the clinical efficacy for treating DN. However, because of

Address for correspondence: Prof. Jing Li, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China. E-mail: natashalee@163.com

How to cite this article: Zhang J, Li J, Huang JQ. Network meta-analysis of four Chinese patent medicines combined with angiotensin converting enzyme inhibitors or angiotensin receptor blockers in early diabetic nephropathy treatment. World J Tradit Chin Med 2020;6:51-60.
the lack of randomized controlled trials (RCTs) for direct comparison of Chinese patent medicine, and the inability of traditional meta-analyses to compare between different therapeutic effects, there is a lack of evidence as to which Chinese patent medicine is efficacious in the treatment of DN. Network meta-analysis (NMA) is an extension of traditional meta-analysis. Based on the frequency method or Bayesian theory, combined with direct and indirect comparison studies, the therapeutic effects of three or more interventions, can be compared. [4] The biggest advantage of NMA is that it can quantitatively compare different interventions in the treatment of the same disease and rank the efficacy of a certain outcome index, so as to provide evidence to support clinical drug selections. [5] Therefore, it is important to perform NMA to compare the efficacy between the Chinese patent medicine–ACEI/ARB combination group and ACEI/ARB alone.

MATERIALS AND METHODS

Search strategy

This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses: The PRISMA Statement. In this study, the following databases were searched: CNKI, Wanfang Data, VIP, PubMed, EMBASE, and the Cochrane Library. The search duration ranged from the inception of the individual database to August 2019. We also manually the reference lists of all full-text papers for additional relevant reports. The search terms used included “early DN,” “diabetic renal disease,” “Niaoduqing,” “Jinshuibao,” “Huangkui,” “Bailing,” “ACEI/ARB,” and “randomized control.”

Inclusion and exclusion criteria

Study design

RCTs or quasi-RCTs were included, regardless of whether the blind methods were blinded, and the assignment was hidden or not. No restrictions on language, population characteristics, and publication types were imposed.

Participants

Patients with DN diagnostic standards were eligible for inclusion, and patients were classified as Stage I–III DN according to the Mogensen DN staging system. [6]

Exclusion criteria

Exclusion criteria include (1) a control group was not included, or the control group was not designed to meet the principles of randomization or semi-randomization. (2) Animals experiments or cell experiments. (3) Theoretical articles and literature reviews. (4) Interventions included other traditional patent medicine. (5) Data were not available for analysis, or the article was identified as a repetitive publication. (6) Retrospective studies. (7) The target population did not meet the diagnostic criteria for DN Stages I–III diagnosis according to the Mogensen staging system.

Interventions

The study compared four different Chinese patent medicines–ACEI/ARB combinations with ACEI/ARB alone, regardless of the dosage, type, and duration of treatment. The basic therapies in the four kinds of Chinese patent medicines – ACEI/ARB combination group and ACEI/ARB group were similar.

Outcomes

The primary outcomes were the 24-h UTP, urinary microalbumin excretion (UAER), blood urea nitrogen (BUN), serum creatinine (Scr), and total effective rate. Secondary outcomes were glycosylated hemoglobin (HbA1c) level.

Efficacy criteria

Remarkable effect: Decrease in Scr decreased by 15%–30% or more; or increase in Ccr increased by >15% and obvious improvement in the clinical symptoms. Moderate effect: Decrease in Scr by 5%–15%; or increase in Ccr by 5%–15%, with partial improvement in clinical symptom. No effect: Therapy did not provide the standard of efficiency, and moreover, the clinical symptoms exacerbation. Therefore, total effect = remarkable effect + moderate effect.

Data extraction

Two investigators (Zhang J and Huang JQ) independently extracted information from the selected publications. The extracted contents included author (year), sample size, disease stage, patient age, interventions, comparators, treatment period, outcome measures, and main results. The difference of opinions was resolved by consultation with the corresponding author (Li J), who made an independent assessment and provided the final judgment.

Risk of bias assessment

Two investigators (Zhang J and Huang JQ) independently evaluated the quality of the selected publications using the Cochrane Collaboration’s risk of bias tool. Assessments included random sequence generation, allocation concealment, blinding, incomplete outcome data, selective outcome reporting, and other possible biases. Using relevant criteria listed in The Cochrane Handbook for Systematic Reviews of Interventions, the publications were categorized as having “low risk of bias,” “high risk of bias,” and “unclear risk of bias.”

Statistical analyses

Statistical analyses were performed using in The R Project for Statistical Computing (R version 3.5.1, Vienna, Austria, active worldwide), Generate Mixed Treatment Comparisons (Groningen, The Netherlands), and STATA 14.0 softwares (Texas, USA). Risk ratio and a 95% confidence interval were measured for dichotomous variables. Continuous data are presented as mean difference with 95% CI.

RESULTS

Studies identified

From among 2442 articles, 78 RCTs [7–84] were finally included.
in the NMA. All the RCTs were conducted in China and published in Chinese. Figure 1 shows the search process and study selection.

Study characteristics

All 78 RCTs were published between 2007 and 2019. A total of 5984 participants were included (3010 in the Chinese patent medicine-ACEI/ARB combination group and 2974 in the ACEI/ARB group). The sample sizes of the included studies ranged from 40 to 205. All 78 studies included the corresponding basic treatments in the treatment strategy. The duration of the combination treatment ranged from 4 to 48 weeks. Characteristics of the included trials are listed in Table 1.

Quality of the included studies

Randomized was mentioned in all 78 studies. However, only 24 trials claimed that they had used the random number table or random synthesis sequential. Only 2 trials mentioned single blind. In addition, all the trials did not mention allocation concealment. Therefore, the risk of bias of included studies was high. More details of the trials were presented in Figure 2.

Outcome measures

Total effective rate

All 78 RCTs included herein, all of which were dual-arm studies; therefore, a consistency test was not required. The effective evidence network of five therapeutic measures for early DN is shown in Figure 3.

NMA of 21 trials was conducted to compare the total effective rate of four Chinese patent medicines in the treatment of early DN. The results showed that the total effective rate of the Jinshuibao capsule-ACEI/ARB combination group and Huangkui capsule-ACEI/ARB combination groups was higher than that of the others, as shown in Figure 4.

Quantitation of 24-h urine protein

The 24-h UTP was reported in 28 studies. Only the Jinshuibao capsule-ACEI/ARB combination group demonstrated a reduced 24-h UTP level [Figure 5].

Urine microalbumin excretion rate

Forty-three studies reported UAER. The Niaoduqing granule-ACEI/ARB, Jinshuibao capsule-ACEI/ARB, and Bailing capsule-ACEI/ARB combination groups could reduce UAER. The Jinshuibao capsule-ACEI/ARB combination group compared to other groups, demonstrated a better effect to reduce UAER [Figures 6 and 7].

Serum creatine

Scr was reported in 56 studies. Jinshuibao capsule-ACEI/ARB, Huangkui capsule-ACEI/ARB, and Bailing capsule-ACEI/ARB combination groups could reduce UAER, and among them, the Jinshuibao capsule-ACEI/ARB combination group demonstrated a comparatively better effect [Figures 8 and 9].

Blood urea nitrogen

There were 30 studies that reported BUN values in their results. Only the Huangkui capsule-ACEI/ARB combination group reduced BUN values [Figure 10].

Glycosylated hemoglobin

Twenty-two studies reported HbA1c values in their results. The results show that only the Jinshuibao capsule-ACEI/ARB combination group reduced HbA1c values [Figure 11].

Adverse reactions

Twenty-six studies reported adverse reactions in their results. The results show that only the Bailing capsule-ACEI/ARB combination group reduced the incidence of adverse reactions, whether the other combinations could not [Figure 12].

Publication bias of effective rate

We used a funnel plot to visualize the publication bias of the effective rate. The scatter plot was generated using the effect value as the abscissa and sample size as the ordinate. Without any publication bias, the inverted funnel plot is basically appears symmetrical. However, because of publication bias, the inverted funnel plot is incomplete and partially asymmetrical. At present, the funnel plot was partially asymmetrical, which suggested the possibility of publication bias [Figure 13].

Discussion

Significance of network meta-analysis

DN belongs to consumption and thirst-associate illness in Chinese medicine and considered to be caused by kidney damage. The disease primarily affects the kidneys and often involves the liver, spleen, and other organs. Subsequently, the heart and lung are also affected, resulting in the Five Visceral...
Table 1: Characteristics of the included studies

Study ID	Participants (T/C)	Average age (years)	Therapeutic interventions	Course (weeks)	Outcomes	Mogensen stage
Hao 2015	24/24	T: 42.8±10.2	B	4	1 3 4 5 6	Phase III
		C: 45.2±10.8	A			
Li 2016	34/34	T: 57.6±6.5	B	12	2 4 5 6 7	Phase III
		C: 64.3±5.9	A			
Liu 2012	30/30	T: 56.35±9.82	B	24	4 5 6	Phase III
		C: 56.45±9.86	A			
Shi 2016	29/28	T: 51.3±9.2	B	12	4 5 6	Phase III
		C: 50.1±8.7	A			
Wang 2009	32/32	T: 57.45±9.82	B	24	4 5 6	Phase III
		C: 58.12±8.28	A			
Tao 2010	39/39	T: 68.4±5.1	C	6	4	I-III
		C: 67.5±4.7	A			
Zhang 2015	41/41	68.4±5.1	C	6	3 5	I-III
Ding 2016	50/50	51±9.5	C	16	3 5 6	I-III
Wang 2007	35/33	T: 58.3±3.6	C	24	1	I-III
		C: 57.6±3.8	A			
Wei 2010	30/30	51	C	8	3 5 6	III
Xu 2018	30/30	T: 56.1±7.5	C	12	1 3 5 6 7	I-III
		C: 54.6±6.8	A			
Shen 2018	30/30	T: 58.2±4.5	C	12	5 6 7	III
		C: 59.1±4.3	A			
Zhang 2014	41/41	50.4±10.2	C	8	5	I-III
Yang 2013	30/30	T: 50.8±7.3	C	12	5 6 7	III
		C: 49.1±7.9	A			
Huang 2010	32/32	T: 71.1±10.7	C	12	3 4 9	III
		C: 71.3±11.6	A			
Zhu 2017	53/53	T: 52.9±10.8	C	8	4	III
		C: 54.6±10.4	A			
Liu 2017	41/41	63.3±5.7	C	8	1 3 5 6 7	I-III
Feng 2017	43/43	T: 46.92±2.11	C	4	1 3 5 6 7	I-III
		C: 47.02±2.06	A			
Lv 2012	28/28	36-57	C	12	2 4 5	III
Yu 2013	40/40	47.6±3.2	C	12	3	I-III
Xiang 2014	60/60	T: 52	C	12	1 3 4 5 7	I-III
		C: 51	A			
Zhang 2016	33/34	T: 56.4±3.3	C	12	5 7	III
		C: 55.6±4.1	A			
Cao 2007	30/30	60.18±14.25	C	24	4	I-III
Wang 2014	22/22	T: 69.2±7.6	C	12	1 2	I-III
		C: 68.6±5.2	A			
Gao 2013	100/105	T: 57.3±5.7	C	12	3 5 6	III
		C: 59.3±5.2	A			
Shen 2015	30/30	T: 52.5±6.9	C	24	4 7	I-III
		C: 51.5±6.5	A			
Xiu 2016	55/55	T: 53.2±6.8	C	12	2 4 7	I-III
		C: 52.8±5.7	A			
Wu 2016	34/34	T: 52.12±3.23	C	8	1 5 6	I-III
		C: 50.56±4.12	A			
Wang 2018	40/40	T: 54.8±11	C	12	1	I-III
		C: 55.4±10.1	A			
Zhang 2014	30/30	64±6.3	C	8	5 6	I-III
Li 2012	38/38	T: 48.6	C	4	1	I-III
		C: 49.3	A			

Contd...
Table 1: Contd...

Study ID	Participants (T/C)	Average age (years)	Therapeutic interventions	Course (weeks)	Outcomes	Mogensen stage
Chen 2010	20/20	T: 60.84±6.4	C A	8	2③④⑤⑥	I-III
		C: 61.21±6.1				
Gao 2018	76/76	T: 67.20±5.34	C A	6	5⑥⑦	I-III
		C: 67.19±5.21				
Dai 2016	45/45	T: 52±7.5	C A	28	3④⑤⑦	I-III
		C: 51±7.5				
Ge 2011	45/45	57.4	C A	8	①②③④	I-III
Pan 2016	40/40	T: 64.5±4.7	C A	12	③⑤⑥	I-III
		C: 65.7±5.2				
Zhou 2016	48/48	T: 65.9±2.4	D A	8	④⑤	III
		C: 66.3±2.3				
Ou 2015	30/30	T: 54±4.8	D A	12	②③⑥⑦	I-III
Li 2014	3/33	T: 49.2±18.2	D A	16	③④⑤⑦	I-III
		C: 49.3±16.9				
Lin 2011	30/30	T: 47.4±5.23	D A	8	②④⑤	III
		C: 46.85±4.95				
Li 2015	36/36	48.3±8.6	D A	12	③④⑤	III
Jia 2015	38/32	T: 50.3±15.50	D A	4	②③⑤⑦	I-III
		C: 52.5±14.61				
Li 2017	60/60	T: 61.5±5.0	D A	8	①②	I-III
		C: 62.0±4.5				
Zhou 2007	60/37	Unclear	D A	8	①②	I-III
Hu 2011	40/40	Unclear	D A	8	①③④⑥	I-III
Xiao 2010	33/32	T: 57.98±16.07	D A	16	③④⑤⑦	I-III
		C: 58.53±16.24				
Liang 2013	25/25	43.2±12.8	D A	8	②④	I-III
Ding 2019	55/55	T: 56.35±6.34	D A	12	①⑤⑥	I-III
		C: 56.75±7.37				
Li 2010	39/33	T: 52±8.1	D A	8	①②	I-III
		C: 53±7.6				
Ma 2016	40/40	49.1±4.6	D A	6	②④⑤⑦	III
Cai 2010	25/25	T: 45.66±12.23	D A	8	②④⑤⑦	III
		C: 44.89±12.75				
Jin 2018	54/54	T: 58.4±5.9	D A	8	①②⑤	III
		C: 55.4±5.9				
Li 2014	48/47	48.3±11.41	D A	6	②④⑤⑥	III
Deng 2014	30/30	T: 42.3±11.8	D A	16	②④⑤	I-III
		C: 45.3±12.4				
Guo 2015	68/68	T: 42.5±11.5	D A	8	①②④⑤⑥	I-III
		C: 43.1±10.9				
Dai 2017	40/40	T: 46.21±12.13	D A	12	②③⑤⑥	I-III
		C: 47.24±11.18				
Tang 2017	42/42	T: 57.0±9.5	D A	8	②③④⑤⑦	I-III
		C: 56.1±10.4				
Qian 2013	36/34	47.6±6.5	D A	24	②④⑤⑥⑦	I-III
Qu 2013	25/31	45.3±1.2	D A	24	②④⑤⑥⑦	I-III
Hu 2016	20/20	T: 57.5±5.7	D A	8	①③④⑥⑦	I-III
		C: 56.3±5.6				
Qi 2016	42/42	T: 61.4±10.7	D A	12	④⑤⑥⑦	I-III
Song 2009	30/30	T: 51.2±17.2	E A	16	③④⑤⑦	III
		C: 50.3±16.7				

Contd...
Table 1: Contd...

Study ID	Participants (T/C)	Average age (years)	Therapeutic interventions	Course (weeks)	Outcomes	Mogensen stage
Wang 2009	25/25	Unclear	E: Combination, A: Control	12	④⑤	III
Ma 2011	25/25	T: 48.1±9.3, C: 46.2±7.9	E: Combination, A: Control	12	④⑤⑦	I-III
Luo 2011	40/40	Unclear	E: Combination, A: Control	12	④⑤	III
Luo 2018	31/31	T: 53.61±12.86, C: 54.75±10.69	E: Combination, A: Control	12	①3④⑤⑥	III
Wang 2016	50/50	69.5±7.0	E: Combination, A: Control	24	①2③④⑥⑦	I-III
Ye 2016	26/26	T: 54±5, C: 55±5	E: Combination, A: Control	4	④③	III
Zhu 2015	45/40	T: 57.4±6.4, C: 57.5±6.9	E: Combination, A: Control	16	⑤⑥	III
Wang 2008	30/30	Unclear	E: Combination, A: Control	12	④⑤	III
Jin 2016	50/50	T: 55.3±9.8, C: 54.1±10.1	E: Combination, A: Control	12	①③⑤⑥	III
Guan 2010	31/31	T: 53.3±5.7, C: 52.2±6.5	E: Combination, A: Control	24	⑤⑦	III
Liu 2011	32/32	T: 54±17, C: 52±14	E: Combination, A: Control	12	③⑤	III
Qiao 2013	62/62	T: 55.9±11.8, C: 54.6±12.4	E: Combination, A: Control	12	②④	III
Wu 2014	30/30	57.3±9.4	E: Combination, A: Control	12	④⑤⑦	III
Chen 2010	28/26	36.73	E: Combination, A: Control	8	③④	III
Cao 2015	45/45	T: 57.8±6.0, C: 57.4±6.1	E: Combination, A: Control	16	②⑤⑥	III
Xie 2013	34/34	T: 63.4±8.7, C: 62.2±7.9	E: Combination, A: Control	4	③⑤	I-III

A: ACEI/ARB, B: Niaoduqing granule+A, C: Jinshuibao capsule+A, D: Huangkui capsule+A, E: Bailing capsule+A, ①: Total effective rate, ②: Adverse reaction, ③: 24h UTP, ④: UAER, ⑤: Scr, ⑥: BUN, ⑦: HbAl: Glycosylated hemoglobin, 24-h UTP: 24-h urinary protein excretion, UAER: Urinary microalbumin excretion, BUN: Blood urea nitrogen, Scr: Serum creatinine

Figure 2: Risk of bias graph

Disease. Ancient physicians treated it as kidney deficiency, whereas modern physicians also focus on blood stasis.

Niaoduqing granule is composed of 16 traditional Chinese medicines, the synergistic effect of these components can improve renal function through multiple targets and pathways, and effectively slow the development of DN.[85] Several clinical studies have also reported that Niaoduqing granule improves renal function, and prevents glomerulosclerosis and renal interstitial fibrosis. In addition, it can also protect the endothelial function of patients with DN.[86] Cai HD reported that yellow sunflowers from Sichuan, a traditional Chinese herbal medicine, are widely used in the treatment of renal diseases in China, it reduces diuresis, reduces swelling and aids detoxification. It is found that the Huangkui capsule, extracted from Sichuan yellow sunflowers, confers nephroprotection by reducing the contents of urinary protein, Scr and BUN in

Figure 3: Network meta-analysis of five therapeutic measures
nephrotic rats, however, the underlying mechanism needs further exploration.\(^\text{[87]}\) Ma T found that there were four active ingredients of Huangkui capsule, which confers a protective effect on the kidneys.\(^\text{[88]}\) The Jinshuibao capsule is composed of artificially fermented Cordyceps sinensis hyphae (cs-4 strain), which can strengthen the lungs and kidneys, fills essence, and invigorates the qi.\(^\text{[89]}\) It can relieve cough, reduce blood lipid levels and inflammation, strengthen the heart and lungs, and prevent plaque to accumulation. Relevant studies have shown that Jinshuibao capsule can effectively improve the phenomenon of renal blood perfusion in patients, prevent the impairment of the physiological function of renal tubules from being impaired, and effectively inhibit the fibrosis of renal tubules.\(^\text{[90]}\) Bailing capsule is a commonly marketed artificial preparation made from Cordyceps sinensis hyphae. The pharmacologically active ingredient is present in the artificial extract of Cordyceps mycelia and has become an excellent substitute for natural Cordyceps sinensis. Clinical studies and animal experiments show that Bailing capsule can tonify and benefit the lungs and kidneys and has the ideal clinical effect of renal function improvement in patient with DN.\(^\text{[91]}\) These four kinds of common Chinese patent medicines demonstrate good curative effects in a patient with DN, and therefore, can be used as excellent supplements in routine treatment using western medicine. Therefore, the NMA of four different Chinese patent medicines combined with ACEI/ARB in the treatment of early DN was a pressing necessity.

Summaries of results

Seventy-eight RCTs were analyzed in the present study to evaluate the clinical effects of the four Chinese patent medicines-ACEI/ARB combinations in patients with early DN. A total of 5984 participants were included (3010 in the Chinese patent medicine-ACEI/ARB combination group and 2974 in the ACEI/ARB group). NMA showed that the total effective rate of Jinshuibao capsule and Huangkui capsules were better than the others; Jinshuibao capsule demonstrated superior effect to reduce the 24-h UTP, UAER, Scr, and HbAlc levels. Huangkui capsule was comparatively more...
effective to reduce BUN levels. However, only the Bailing capsule-ACEI/ARB combination group had less incidence of adverse reactions.

Limitations

1. The literature included in this study was not of superior quality. All the 78 trials included in this study described the use of randomization. However, no study provided the randomization protocol, and only 2 trials used blinded methods. These might have caused measurement bias and may have an impact on the overall quality of the NMA.

2. The risk of bias among the included studies was high and may affect the strength of the results. Most trials with positive findings had a small sample size. All the included RCTs were published in Chinese.

3. The trials included in this study had different treatment courses (range 4–48 weeks), many of which were short, had small sample size, lacked multicenter collaboration, and had differences in the evaluation of clinical efficacy judgment, all of these factors may have affected the reliability of the study results. Studies that reported adverse reactions were few, which might have contributed to limited research evidence.

Conclusion

The results in this study suggested that the combined treatment with Jinshuibao and Huangkui capsules with ACEI/ARB had superior effects on the total effective rate than treatment with ACEI/ARB. Jinshuibao capsule can reduce the 24-h UTP, UAER, Scr, and HbA1c levels, whereas, the Huangkui capsule could reduce BUN levels better than other treatment groups. However, compared with the ACEI/ARB group, only Bailing capsule-ACEI/ARB combination group demonstrated reduced the incidence of adverse reactions. The others cannot reduce the occurrence of adverse reactions. Adverse reactions primarily included cough, diarrhea, and fatigue. None of the adverse reactions required intervention. This observation, however, may have been caused by insufficient sample sizes of the included studies. Therefore, a more rigorous randomized, double-blind, multicenter, with a sufficiently large cohort is needed in future to validate the efficacy of Chinese patent medicines in combination with ACEI/ARB in the treatment of early DN. The Chinese patent medicines may have a significantly superior role in the treatment of early DN.

Acknowledgments

This study was supported by the National Natural Science Foundation Project of China (youth science fund project 81603570).

Financial support and sponsorship

This study was supported by the National Natural Science Foundation Project of China (youth science fund project 81603570).

Conflicts of interest

There are no conflicts of interest.

References

1. American Diabetes Association. 10. Microvascular complications and foot care: Standards of medical care in diabetes-2018. Diabetes Care 2018;41:S105-18.

2. Mora-Fernández C, Domínguez-Pimentel V, de Fuentes MM, Górriz JL, Martínez-Castelao A, Navarro-González JF. Diabetic kidney disease: From physiology to therapeutics. J Physiol 2014;592:3997-4012.

3. St Peter WL, Odum LE, Whaley-Connell AT. To RAS or not to RAS? The evidence for and cautions with renin-angiotensin system inhibition in patients with diabetic kidney disease. Pharmacotherapy 2013;33:496-514.

4. Lumley T. Network meta-analysis for indirect treatment comparisons. Stat Med 2002;21:2313-24.

5. Jansen JP, Crawford B, Bergman G, Stam W. Bayesian meta-analysis of multiple treatment comparisons: An introduction to mixed treatment comparisons. Value Health 2008;11:956-64.

6. Zhao JX, Wang SD, Li J, Huang WJ. Classification and syndrome differentiation of diabetic nephropathy and efficacy evaluation program and its study. World Journal of Traditional Chinese Medicine 2017;12:1-4.

7. Hao M. Efficacy analysis of uduqing combined with ARB/ACEI in the treatment of diabetic nephropathy with massive proteinuria. World Clin Med 2015;7:142-5.

8. Li RN, Lu Q, Yang XL, Chen N. Efficacy observation of uduqing granule in the treatment of early diabetic nephropathy. Med Theory Pract 2016;11:1406-8.

9. Liu XQ, Zhang ZY, Guan Y. Efficacy of urbesartan combined with uduqing granule in the treatment of early diabetic nephropathy. J Pract Med 2012;9:1567-8.

10. Shi GC, Su C, Cui L, Wang GL, DF. Effect of perindopril combined with uduqing granule in the treatment of diabetic nephropathy. Chin Med J 2014;7:679-81.
Zhang, et al. Network meta-analysis of four Chinese patent medicines combined with ACEI or ARB in early diabetic nephropathy treatment

11. Wang FX, Huang ZY, Wu JW. Treatment of early diabetic nephropathy with telmisartan combined with unduqin granules in 32 patients. Med Guide 2009;9:1152-4.
12. Tao Y. Clinical effect observation of erbesartan combined with jinshuibao capsule in the treatment of type 2 diabetic nephropathy in the elderly. Health J 2010;9:17.
13. Zhang YK. Clinical effect observation of erbesartan combined with jinshuibao capsule in the treatment of senile type 2 diabetic nephropathy. Jilin Med 2011;32:342.
14. Ding T. Observation of the clinical effect of erbesartan and jinshuibao on diabetic nephropathy. J Mathem Med 2014;27:207-8.
15. Wang HP. Clinical observation of fosinopril combined with jinshuibao in the treatment of early type 2 diabetic nephropathy. Tianjin pharmacy 2007;03:27-8.
16. Wei SJ. Observation on the efficacy of jinshuibao capsule combined with benazepril in the treatment of type 2 diabetic nephropathy. Heilongjiang Med Sci 2010;33:50.
17. Xu ZM. Efficacy observation of jinshuibao capsule combined with benazepril in the treatment of early diabetic nephropathy. Jilin Med Sci 2008;39:2097-8.
18. Shen XY, Wu J, Shao XH, Zhu CL, Zhou J, Lu K, et al. Effect of jinshuibao capsule combined with irbesartan tablet on the treatment of early diabetic nephropathy and the level of urinary microalbumin and oxidative stress. J Int Tradit Chin West Med 2012;27:2281-4.
19. Zhang C, Zuo ZH. Effect of jinshuibao capsule combined with losartan potassium in the treatment of patients with early diabetic nephropathy. J Pract Clin Med 2014;18:84-6.
20. Yang CH. Efficacy observation of jinshuibao capsule combined with losartan in the treatment of early diabetic nephropathy. J Mod Int Tradit Chin West Med 2013;22:65-6.
21. Huang T, Sun H, Wu TY. Effect of jinshuibao capsule combined with perindopril on renal function of elderly patients with early diabetic nephropathy. Med Rev 2010;29:990-2.
22. Zhu J, Li ZH. Study on the effect of jinshuibao capsule combined with valsartan on inflammatory factors, blood pressure and renal function in patients with type 2 diabetic nephropathy. J Mod Int Tradit Chin West Med 2017;26:2549-52.
23. Liu WY. Effect observation of jinshuibao capsule combined with valsartan in the treatment of early diabetic nephropathy. Compr Med 2017;30:267.
24. Feng ZL. Clinical evaluation of 43 cases of early diabetic nephropathy microinflammation treated by jinshuibao capsule combined with valsartan. China Pharm 2017;26:62-4.
25. Lv F. Efficacy observation of jinshuibao capsule in the treatment of early diabetic nephropathy. Clin Res Tradit Chin Med 2012;4:23-4.
26. Yu HT, Shi HT, Xiao LL, Dong CL. Observation of the efficacy of jinshuibao combined with omeprazol in the treatment of early type 2 diabetic nephropathy. Jilin Med Sci 2015;19:64-5.
27. Xiang JS. Clinical analysis of 60 cases of early diabetic nephropathy treated with jinshuibao combined with omeprazol. Chin Health Ind 2014;11:189-90.
28. Zhang LH. Clinical effect of jinshuibao combined with irbesartan in the treatment of diabetic nephropathy patients. Med Equip 2016;29:83-4.
29. Cao XX, Zhang RR, Yang JK. Early efficacy of jinshuibao combined with valsartan in the treatment of type 2 diabetic nephropathy. Chin J New Drugs 2007;16:1303-6.
30. Wang TP. Randomized parallel control study of jinshuibao combined with enalapril in the treatment of diabetic nephropathy. J Prat Chin Med 2014;28:77-9.
31. Gao TW. Efficacy analysis of jinshuibao in treating 100 cases of diabetic nephropathy. Health Reading 2013;3:291-1.
32. Shen ML, Tan LH, Li YL. Efficacy observation of kandisartan combined with jinshuibao capsule in the treatment of early type 2 diabetic nephropathy. Chin Med Mod Appl 2015;9:186-7.
33. Xu CT. Effect observation of kandisartan combined with jinshuibao capsule in the treatment of early type 2 diabetic nephropathy. Henan Med Res 2016;25:1658-9.
34. Wu QF, Pan XQ. Efficacy study of combination of kandisartan and jinshuibao in the treatment of patients with early type 2 diabetic nephropathy. Massage Rehabil Med 2016;7:42-4.
35. Wang LW. Efficacy analysis of kandisartan ester tablets combined with jinshuibao in the treatment of early type 2 diabetic nephropathy. Inner Mongolia Tradit Chin Med 2008;57:43-4.
36. Zhang ZY, Cao X, Chen H. Efficacy observation of huangkui capsule combined with valsartan in the treatment of diabetic nephropathy. Diabetases New World 2016;20:164-5.
37. Li ZH, Wang X, Shi YY, Shi G. Observation on the efficacy of combined medication in the treatment of diabetic nephropathy. Mod Distance Educ Chin Tradit Med 2012;10:51-2.
38. Chen X, Xie YY, Zhu YT, Miao L, Liu XL. Effect observation of potassium losartan combined with jinshuibao capsule in the treatment of type 2 diabetic nephropathy. J Wannan Med Coll 2010;29:352-4.
39. Gao X. Clinical efficacy observation of potassium losartan combined with jinshuibao capsule in the treatment of 76 cases of early type 2 diabetic nephropathy. Chin Med Guide 2008;16:102-3.
40. Dai HH. Clinical observation of valsartan combined with jinshuibao capsule in the treatment of diabetic nephropathy. J Henan Med coll 2016;28:12-4.
41. Ge QR. Efficacy observation of benazepril hydrochloride combined with jinshuibao capsule in the treatment of diabetic nephropathy. Chin Health Ind 2011;8:59.
42. Pan J, Shang SY. Efficacy observation of telmisartan combined with jinshuibao capsule in the treatment of diabetic nephropathy. Chin Geriatr Healthcare 2016;14:40-1.
43. Zhou XJ, Jing HZ, Nie MM. Observe the clinical effect of huangkui capsule combined with valsartan in the treatment of diabetic nephropathy. China Contin Med Educ 2016;8:180-2.
44. Ou YL, Luo WJ, Chen Y. Clinical effect of valsartan capsule combined with ACEI and ARB in the treatment of early diabetic nephropathy. Chin Contemp Med 2015;22:67-9.
45. Li YH. Effect of huangkui capsule combined with benazepril on urinary albumin excretion rate and c-reactive protein in patients with early diabetic nephropathy. Front 2016;49(1):6-7.
46. Lin M, Cai XY, Zeng LM, Guo J. Efficacy observation of huangkui capsule combined with irbesartan in the treatment of early diabetic nephropathy. Chin Community Phys Med Spec 2011;13:198.
47. Li WQ. Observation on the efficacy of huangkui capsule combined with irbesartan in the treatment of early diabetic nephropathy. Med Inf 2015;28:301.
48. Jia ZW. Clinical observation of huang kui capsule combined with kandisartan in the treatment of 38 cases of early diabetic nephropathy. Chin J Nephrop Int Tradit Chin West Med 2015;16:625-4.
49. Li HS. Efficacy of huangkui capsule combined with losartan in the treatment of 120 cases of early diabetic nephropathy and its effect on serum inflammatory factors. Zhongguo Kang Med Sci 2017;29:84-5.
50. Zhou BX, Bai XM. Efficacy observation of huangkui capsule combined with telmisartan in the treatment of early diabetic nephropathy. Chin Community Phys Med Spec 2012;16:497.
51. Hu JP, Cao S, Luo F. Clinical study of huangkui capsule combined with telmisartan in the treatment of early and middle stage diabetic nephropathy. Chin J Tradit Chin Med 2011;26:353-4.
52. Xiao ZZ, Sun HJ. Effect of huangkui capsule combined with valsartan on microalbuminuria in patients with early diabetic nephropathy. J Int Tradit Chin West Med 2010;19:263-4.
53. Liang YP. Efficacy observation of huangkui capsule combined with valsartan and irbesartan in the treatment of early diabetic nephropathy. China Prescript Drugs 2014;12:25-6.
54. Ding HH, Yu XM. Effect of huangkui capsule combined with valsartan on serum Vaspin, NGAL and Kim-1 levels in early diabetic nephropathy. Hebei Med 2019;41:78-81.
55. Li QH, He J. Clinical observation of huangkui capsule combined with valsartan in the treatment of early nephrotic proteinuria in type 2 diabetes mellitus. Chin J Nephrop Int Tradit Chin West Med 2010;11:142-3.
56. Ma F, Zhao HY. Clinical effect of huangkui capsule combined with valsartan in the treatment of diabetic nephropathy. Chin Pract Med 2016;11:183-4.
57. Cai XY, Huang BY, Wang YF, Chen ZP, Lin M. Clinical observation of huangkui capsule combined with valsartan in the treatment of diabetic nephropathy. Contemp Med 2010;16:153-4.
58. Jin S. Clinical observation of huangkui capsule combined with valsartan in the treatment of early diabetic nephropathy. J Tradit Med 2017;39:201-4.
Zhang, et al. Network meta-analysis of four Chinese patent medicines combined with ACEI or ARB in early diabetic nephropathy treatment

valsartan in the treatment of diabetic nephropathy. China Pract Med 2013;13:138-9.

59. Li YT. Clinical effect analysis of huangkui capsule combined with valsartan in the treatment of diabetic nephropathy. J Community Med 2014;12:36-7.

60. Deng SY. Clinical observation and nursing of huangkui capsule combined with valsartan in the treatment of early diabetic nephropathy. Med Inf 2014;8:78.

61. Guo G. Clinical efficacy of huangkui capsule combined with valsartan in the treatment of early diabetic nephropathy. J Clin Rat Drug Use 2015;8:142-3.

62. Dai X, Yuan LF, Li YH. Clinical efficacy and safety observation of huangkui capsule combined with valsartan in the treatment of early diabetic nephropathy. Tianjin Tradit Chin Med 2017;34:163-4.

63. Tang W. Clinical study of huangkui capsule combined with valsartan in the treatment of early diabetic nephropathy. J Hubei Univ Sci Technol 2017;31:396-9.

64. Qian JL. Clinical observation on treatment of 36 cases of early diabetic nephropathy with huangkui combined with candesartan. Clin Res Tradit Chin Med 2013;5:76-7.

65. Qu XS. Therapeutic characteristics of the treatment of early diabetic nephropathy with flavanthin combined with candesartan. Pharm Res 2003;12(28):77-8.

66. Hu YY, Gao MS. Joint ambrette valsartan capsules clinical observation of treatment of early diabetic nephropathy. J Inner Mongolia tradit Chin Med 2016;14:77-9.

67. Qi MG, Yu HY, Li RY. Clinical efficacy analysis of valsartan combined with huangkui capsule in the treatment of early diabetic nephropathy. Inner Mongolia Med J 2016;48:296-8.

68. Song J, Li YH, Yang XD. Effect of combined therapy with bailing capsule and benazepril on urinary albumin excretion rate and C-reactive protein in patients with early diabetic nephropathy. Zhongguo Zhong Xi Yi Jie He Za Zhi 2009;29:791-3.

69. Wang SY, Wu CF, Zhang H, Shi J, Chen BP. Efficacy of bailing capsule combined with benazepril in the treatment of early diabetic nephropathy. Chin Pharm 2009;12:501-2.

70. Ma YL, Chen F, Chen BP. Effect of bailing capsule combined with irbesartan on serum IL-18 level in early diabetic nephropathy. Chin Pharm 2011;14:1027-8.

71. Luo F, Cao S, Sun XY. Clinical study of bailing capsule combined with irbesartan in the treatment of early diabetic nephropathy. Chin J Tradit Chin Med 2011;26:466-7.

72. Luo JG, Su XH, Dai SZ, Cai JS. Effect observation of bailing capsule combined with irbesartan in the treatment of early diabetic nephropathy. Chin Foreign Med Res 2008;16:1-3.

73. Wang YJ, Li YJ, Cao XQ. Clinical study of bailing capsule combined with captopril in the treatment of senile diabetic nephropathy. Mod Med and Clinic 2016;31:826-9.

74. Ye JB, Liu ZM, Li JJ, Lin XZ, Li Z. Clinical observation of bailing capsule combined with candisartan ester in the treatment of early diabetic nephropathy. Int Med 2012;7:612-3.

75. Zhu HY. Efficacy analysis of bailing capsule combined with losartan in the treatment of diabetic nephropathy. New Chin Med 2015;47:88-9.

76. Wang YH, Yuan GF. Clinical observation of bailing capsule combined with telmisartan in the treatment of early diabetic nephropathy. Med Clin Res 2008;05:927-8.

77. Jin XB. Clinical analysis of 50 cases of early diabetic nephropathy treated with bailing capsule combined with valsartan. New Chin Med 2016;48:99-101.

78. Guan HB, He KP, Huan WM, Lu L, Huang H, Wang B. Effect of erbesartan combined with bailing capsule on urinary microalbumin/urinary creatinine ratio and hypersensitive c-reactive protein in patients with early diabetic nephropathy. Chin General Pract 2010;13:2934-6.

79. Liu CP, Li MJ. Efficacy observation of erbesartan combined with bailing capsule in the treatment of early diabetic nephropathy. Hebei Med 2011;33:1661-2.

80. Qiao AM. Efficacy observation of telmisartan combined with bailing capsule in the treatment of 62 cases of early diabetic nephropathy. Chin Pract Med 2013;8:177-8.

81. Wu L, Zhang LW. Clinical observation of 100 patients with early diabetic nephropathy treated with bailing capsule. Asiapacific Tradit Med 2012;8:100-1.

82. Chen F, Chen BP, Shi J. Clinical observation of valsartan combined with bailing capsule in early diabetic nephropathy. Chin Pharm 2010;13:551-2.

83. Cao XC. Effect analysis of valsartan combined with bailing capsule in the treatment of early diabetic nephropathy. Chin Contemp Med 2015;22:97-8.

84. Xie P. Efficacy observation of integrated Chinese and western medicine in the treatment of early diabetic nephropathy. Yunnan J Tradit Chin Med 2013;34:82-3.

85. Feng Q, Wan YG, Jiang CM, Wang CJ, Wei QX, Zhao Q, et al. The mechanism and effect of TCM in delaying the progression of chronic renal failure. Chin J Tradit Chin Med 2011;9:1122-8.

86. Hu DJ, Lu YB, Yang L. Protective effect of udaiqun granule on endothelial function in elderly patients with diabetic nephropathy. Chin J Gerontol 2012;14:3032-3.

87. Cai HD, Su SL, Qian DW, Guo S, Tao WW, Cong XD, et al. Renal protective effect and action mechanism of Huangkui capsule and its main five flavonoids. J Ethnopharmacol 2017;206:152-9.

88. Ma T, Wang Y, Chen X, Zhao X. LC/MS guided approach to discovering nephroprotective substances from Huangkui capsule. Zhejiang Da Xue Xue Bao Yi Xue Ban 2017;46:66-73.

89. Yan J, Zhang XY, Liu R. Research progress on clinical application and pharmacological effects of Jinsuibao capsule. Chin J Clin Pharmacol 2019;35:406-8.

90. Hu XJ. Efficacy evaluation of Jinsuibao capsule combined with benazepril in the treatment of early diabetic nephropathy. Diabetes New World 2019;22:174-5.

91. Kang LL, Tian M. Research progress of bailing capsule in the treatment of diabetic nephropathy patients. Med Equip 2017;30:190-1.