A Framework for Interactive Teaching of Virtual Borders to Mobile Robots

Dennis Sprute1,2, Robin Rasch1, Klaus Tönnies2 and Matthias König1

Abstract—The increasing number of robots in home environments leads to an emerging coexistence between humans and robots. Robots undertake common tasks and support the residents in their everyday life. People appreciate the presence of robots in their environment as long as they keep the control over them. One important aspect is the control of a robot’s workspace. Therefore, we introduce virtual borders to precisely and flexibly define the workspace of mobile robots. First, we propose a novel framework that allows a person to interactively restrict a mobile robot’s workspace. To show the validity of this framework, a concrete implementation based on visual markers is implemented. Afterwards, the mobile robot is capable of performing its tasks while respecting the new virtual borders. The approach is accurate, flexible and less time consuming than explicit robot programming. Hence, even non-experts are able to teach virtual borders to their robots which is especially interesting in domains like vacuuming or service robots in home environments.

I. INTRODUCTION

There is a trend towards service robots in home environments. Robots support the residents of the building by performing tasks, e.g. vacuum cleaning [1] or unloading items from the dishwasher [2]. There is a wide range of different tasks that service robots are capable of. Xu et al. [3] identify other functionalities like picking and placing objects, opening doors, meal preparation and cooperative object carrying with humans. Furthermore, they are used in the health-care sector, e.g. as social robots to support elderly people [4]. The result is a shared environment between humans and robots.

The workspace of such a mobile robot is limited by the walls of the building or furniture. Along these physical workspace limitations, it is desirable to further restrict the spatial workspace of a mobile robot, e.g. if there are areas in the building that should not be intruded by a robot due to privacy concerns. Besides, the precise definition of a space for working, such as vacuuming or mopping, plays an important role. An illustration of the problem is shown in Fig. 1. Since there is an expensive carpet on the ground, the resident wants the robot to exclude the carpet area from its workspace. The blue polygon visualizes the area to be respected by the robot. Hence, the non-expert user has to interact with the robot in order to update its navigation map.

in the workspace of a robot that have to be respected by the robot while performing its tasks.

The “classical” way would be to program the virtual borders into the program flow of the robot, but this is expensive and not feasible for non-expert users. Therefore, it is important that a method for teaching virtual borders is applicable by non-experts without programming skills. Teaching should take little effort to guarantee the acceptance of the users. Additionally, such a method should allow flexible virtual borders teaching, i.e. the user can define any area in the environment according to his needs. Finally, the learned virtual borders need to be as accurate as possible in order to precisely navigate around virtually occupied areas in future navigation tasks. By restricting the workspace of a mobile robot, the user keeps the control over the robot and is able to flexibly define certain areas for working.

In this paper, we address the above mentioned problem of how to teach virtual borders to mobile robots. Our contribution is twofold: first, we propose a framework for teaching virtual borders to mobile robots working in the two-dimensional plane. It is an interactive approach that can be easily adapted to different human-robot interfaces, such as human gestures. Second, to demonstrate the validity of this framework, we use the framework to implement a teaching method based on visual markers as human-robot interface. We chose visual markers because it is the easiest way to evaluate the proposed framework concerning correctness, accuracy and effort. Our interactive approach differs from

11The authors are with Campus Minden, University of Applied Sciences Bielefeld, 32427 Minden, Germany forename.surname@fh-bielefeld.de
2The authors are with the Faculty of Computer Science, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany dennis.sprute@ovgu.de, klaus@isg.cs.uni-magdeburg.de

\hspace{1cm}Fig. 1: Motivation scenario to teach virtual borders. A resident wants the robot to exclude the carpet area from its workspace. The blue polygon visualizes the area to be respected by the robot. Hence, the non-expert user has to interact with the robot in order to update its navigation map.
other approaches in that it is accurate, flexible and applicable by non-experts.

The remainder of this paper is organized as follows. Next, we give an overview of related works concerning the topic, and we motivate the development of a new framework to teach virtual borders. Subsequently, we formally define the problem and detail the proposed framework. We use this framework to implement a marker-based teaching method and highlight details in the following section. Afterwards, we evaluate the marker-based approach with respect to its correctness, accuracy and teaching effort. Finally, we summarize our work and show future research opportunities.

II. RELATED WORK

Mapping and SLAM (Simultaneous Localization and Mapping) are own subareas of robotics that overlap with the topic of this paper. SLAM algorithms try to build maps of the robot’s physical environment while simultaneously localizing the robot inside the map [5]. A history and formal definition of the SLAM problem are given by Durrant-Whyte and Bailey [6]. We refer the interested reader to the article by Cadena et al. [7] who give a good overview of the evolution of SLAM from the past to the future.

In contrast to mapping physical environments, virtual borders have to be mapped in a different way. Sakamoto et al. [8] propose a stroke-based interface on a tablet PC to control the workspace of a vacuum cleaning robot. This technique needs several top-down view cameras in the robot’s environment to cover the whole working area. Commercial solutions to the problem of defining the robot’s workspace comprise magnetic strips that are placed on the ground to indicate the borders [9] or beacon devices to generate infrared signals [10]. These conic beams will not be crossed by the robot and can be used to block doors or corridors. The disadvantages are intrusiveness, low flexibility and energy consumption. Other explicit methods to incorporate additional information into maps encompass situated dialogues [11] or activity recognition based on wearables [12]. These works integrate semantics into maps, but they do not allow the flexible definition of certain areas, e.g. arbitrary polygons inside a room. The flexibility of our approach distinguishes our work from previous works.

In contrast to these direct approaches to incorporate additional information into maps, several works focused on the implicit integration of further information, e.g. social information [13]. O’Callaghan et al. [14] learn human motion patterns and update the robot’s navigational map according to humans’ trajectories. In addition, Alempijevic et al. [15] use a map learned from robots’ sensors and human trajectory observations to navigate to any goal in the environment. Human motion maps are proposed by Ogawa et al. [16] to represent the motion distribution in particular areas. Furthermore, Wang et al. [17] learn about human behaviors associated with areas in the environment. Another approach based on implicit observations is proposed by Papadakis et al. [18] who learn the locations of doors and staircases by observing humans’ interactions around them. Virtual border teaching, as we use this term throughout the paper, is a certain form of semantic mapping [19] in that we give semantics, free and occupied space, to certain areas.

Although these implicit approaches are more user-friendly compared to explicit techniques, we argue that it is inevitable to use an explicit technique in the case of teaching arbitrary virtual borders. From our experiences, we know that users want robots to avoid certain areas in the environment, and this can only be defined in an explicit way using human-robot interaction. Therefore, we set a focus on the interactive teaching of virtual borders.

To allow non-experts the teaching of virtual borders, a user-friendly approach has to be chosen. Along classical robot programming, LfD (Learning from Demonstration) is a technique that deals with teaching robots new skills by (human) demonstrations. Argall et al. [20] present a comprehensive survey of robot LfD and explain the foundations of the technique. The authors categorize different approaches according to the mapping between the teacher and the learner. Teleoperation is used to learn the grasping of objects [21] or to perform tasks demonstrated by kinesthetic teaching [22]. If the learner uses its own sensors, but the teacher does not directly control the learner’s platform, it is referred to as shadowing. Nehmzow et al. [23] program a robot’s movement by demonstration through system identification, and autonomous navigation in complex unstructured terrain is learned in the work of Silver et al. [24]. Other recent applications range from learning handwriting by demonstration [25] to controlling a robot arm manipulator [26]. The last two applications also use visual markers in their teaching process.

III. VIRTUAL BORDER TEACHING

As stated in the previous section, SLAM is used to build maps of physical environments, and there are explicit approaches to restrict the workspace of a mobile robot. However, these approaches are intrusive [9], power-consuming [10] and inflexible in terms of the definition of an arbitrary area [11], [12]. Furthermore, implicit methods are not flexible enough to teach arbitrary virtual borders because the approaches do not directly take the users’ intentions into account. In order to address these restriction and overcome the shortcomings, we propose a new framework for restricting the workspace of mobile robots in an interactive way. It is inspired by LfD shadowing technique and features correct, accurate, flexible and user-friendly border teaching. By means of user-friendly, we understand an approach that allows teaching by non-expert users with no programming skills.

A. Problem Definition

In this subsection, we formally define the problem and introduce the notation that is used throughout the paper. The environment of a robot is modeled as an occupancy grid map M consisting of $m \times n$ cells. Each cell contains a probability for the occupancy of the corresponding area in the
environment. $M(x,y)$ allows the access of the cell’s value at position x and y.

A two-dimensional mobile robot’s pose is defined as a triple (x,y,θ) comprising the robot’s position (x,y) and orientation θ with respect to a map coordinate frame. While moving through the environment, the mobile robot’s pose history up to a certain time k is referred to $X_{0:k}$. The transformation between two consecutive poses x_{k-1} and x_k is described by the control vector u_k. These notations are consistent with the SLAM formulation of Durrant-Whyte and Bailey [6].

We define a virtual border as a polygon $P := (P_1, P_2, \ldots, P_n)$ consisting of n points where $P_i \in \mathbb{R}^2, 1 \leq i \leq n$. It is the goal to construct a map $M_{\text{posterior}}$ given a prior map M_{prior} and a virtual border map M_{virtual}. The prior map M_{prior} is constructed from a common mapping algorithm or is a result of a previous teaching process, whereas the virtual border map M_{virtual} is constructed in the interactive teaching process. It is defined by a border polygon and a keep off area. The resulting posterior map $M_{\text{posterior}}$ will contain physical as well as virtual borders. It can be used as basis for a costmap in future navigation tasks.

B. Framework

To address the problem of teaching virtual borders in an interactive way, we propose a learning framework based on shadowing where the mobile robot is encouraged to follow a position in space and to record its pose history. The position data are further used to define the virtual border polygon. It is a novel event-based framework that consist of three states representing the states of the teaching process. In order to use this framework, a concrete implementation only has to define the events in an appropriate way, while the implementation of the states can remain the same between different applications. This framework makes it easy to adapt to other human-robot interfaces, such as human gestures or remote control. The transitions between the states are based on events, that are triggered by user interactions, and are visualized in Fig. 2. The three states are described below:

1) **Start** The mobile robot follows a position on the ground plane that is indicated by the human teacher in the teaching process. Note that this is independent of the concrete human-robot interface, e.g. a teacher could use human gestures or a mediator device to provide a position to follow.

2) **Record** The mobile robot follows the position on the ground plane and records its pose history $X_{a:b}$. The robot enters the state at time a and leaves the state at time b.

3) **Keep Off** The mobile robot stops recording its pose history $X_{a:b}$, and a virtual border polygon B is extracted from the robot’s pose history. Furthermore, the keep off area is defined. There are two possibilities: the inner area of the border polygon B is set to be **occupied**. This keeps the robot away from the inner of the polygon and is useful to exclude an area from the robot’s workspace.

The other possibility is to declare the inner area of the polygon as **free** and the rest as **occupied**. This is useful to define a working area for the robot. The keep off area is defined by the last known position provided by the user. Finally, the virtual border and their keep off area are integrated into the prior map resulting in a posterior map consisting of physical and virtual borders.

IV. MARKER-BASED VIRTUAL BORDER TEACHING

In order to validate the proposed framework, we use the framework to implement a teaching method based on visual markers to guide the mobile robot. We chose visual markers because they are widely used for preliminary experiments, e.g. [25], [26], [27], and provide an easy human-robot interface. Since the framework is easily adaptable, it will serve as basis for more intuitive human-robot interfaces in the future.

A. Method

We use three different markers in the teaching process. A change of the marker corresponds to a transition between two states. The complete marker-based teaching method is illustrated in Fig. 3 where each marker id is represented by a different color. It is inspired by the previous illustration example of defining a virtual border around a carpet. At the beginning of the process, there is an initial map of the environment, and the mobile robot is only restricted in its workspace by the physical borders of the room. To start the teaching process, the user places the **green** marker in the robot camera’s field of view, and the robot starts following the marker. The **green** marker is used to guide the robot to a start position. By changing the id of the marker to **blue**, the robot continues following the marker and starts recording its pose history $X_{a:b}$. Recording starts at time a and ends at time b when leaving the state. Subsequently, the **red** marker indicates the end of the border learning procedure, and the robot’s position data as part of the robot’s pose history $X_{a:b}$ are extracted to define the virtual border. Finally, the keep off area has to be defined. Since the robot does not have to cross the carpet, the final rotation of the robot is adjusted by placing the marker in the inner of the polygon. In the case of defining a working area as opposed to a keep off area, the...
final robot rotation has to point away from the polygon. The teaching process is successfully finished if the robot does not move for a time \(t \) which is currently set to \(t = 10 \) seconds. Additionally, the teaching can be canceled by switching to marker id \textit{green} from any other state.

B. Implementation Details

The following requirements have to be fulfilled to realize the introduced method of marker-based border teaching:

1) **Mapping**: A prior map representation of the environment has to be available. It should be stored as an occupancy grid map with probabilities ranging from \([0, 1]\). Unknown areas are marked with a \(-1\). In the current implementation, mapping is performed using a laser scanner and ROS gmapping package which is based on a particle filter to solve the SLAM problem [28]. This map is further referred to the prior map \(M_{\text{prior}} \) of the environment. Note that \(M_{\text{prior}} \) can also be a resulting map from previous teaching processes.

2) **Localization**: The robot needs to be localized with respect to the map’s coordinate frame. In the current implementation, adaptive Monte Carlo localization [29] is chosen which is implemented in the ROS amcl package.

3) **Sensors**: The robot needs a monochrome camera to acquire gray-scale input images. It has to be mounted on the robot pointing towards the robot’s \(x \)-axis (forward direction). The camera’s intrinsic parameters need to be known to obtain the 3D-position of the marker with respect to the camera frame.

Virtual border teaching is performed by following visual markers. For this purpose, a 10 cm \(\times \) 10 cm \(\times \) 10 cm marker cube with one ArUco marker [30] per site is created. Three different ids are generated and used by the teaching person. Every marker has a fixed size, provides two-dimensional image features and is represented by its four corner points. The ArUco library performs marker detection and identification to obtain markers from an input image. If intrinsic camera parameters are given additionally, the pose of the marker with respect to the camera can be estimated. Therefore, depth information of the marker’s position can be obtained with a single camera. These marker positions are used to guide the robot towards the marker. Distance information of the marker acts as stop condition and controls the speed of the robot.

While following the \textit{blue} marker, the robot records its pose. Motion data \(u_k \) are acquired by wheel odometry, and the new pose of the robot \(x_k \) is updated by applying \(u_k \) to the previous pose of the robot \(x_{k-1} \). Since the robot is localized inside the map, the poses are transformed from the robot’s odometry coordinate frame into the map’s coordinate frame.

When the marker id changes from \textit{blue} to \textit{red}, the user has the possibility to rotate the robot around its \(z \)-axis to indicate the keep off area. If the robot points towards the inner of the polygon, the inner area is considered as \textit{occupied}, otherwise as \textit{free}. The underlying geometry is illustrated Fig. 4.

The decision is based on the last marker’s position \(P \). Since the robot turns around its \(z \)-axis pointing towards the marker, the vector \(\overrightarrow{RP} \) from the robot’s current position to the marker is described by the robot’s orientation \(\theta \). This vector is defined as follows:

\[
\begin{align*}
 d &= \sqrt{\| \overrightarrow{CP} \|^2 - \| \overrightarrow{RC} \|^2} \\
 \overrightarrow{RP} &= d \cdot (\cos(\theta), \sin(\theta))^T
\end{align*}
\]

(1)

The distance between the camera and the marker \(\| \overrightarrow{CP} \| \) is determined by utilizing the intrinsic camera parameters and the known size of the marker. Subsequently, the position of
the marker \(P \) is calculated:

\[
P = R + \overrightarrow{RP}
\]

(2)

This point \(P = (P_x, P_y) \) is used in a standard point-in-polygon test \(\Phi(P_x, P_y, B) \in \{true, false\} \) with the virtual border polygon \(B \) to define the keep off area. The test returns true if the point \((P_x, P_y) \) lies inside the polygon \(B \).

Finally, the map containing the virtual borders \(M_{\text{virtual}} \) can be defined as follows:

\[
M_{\text{virtual}}(x,y) = \begin{cases}
1 & \text{if } \Phi(x,y,B) \land \Phi(P_x, P_y, B) \\
0 & \text{if } \neg\Phi(x,y,B) \land \Phi(P_x, P_y, B) \\
1 & \text{if } \neg\Phi(x,y,B) \land \neg\Phi(P_x, P_y, B) \\
0 & \text{if } \Phi(x,y,B) \land \neg\Phi(P_x, P_y, B)
\end{cases}
\]

(3)

After creating a virtual border map \(M_{\text{virtual}} \), we integrate it into the prior map \(M_{\text{prior}} \) of the environment resulting in the posterior map \(M_{\text{posterior}} \):

\[
M_{\text{posterior}}(x,y) = \max(M_{\text{prior}}(x,y), M_{\text{virtual}}(x,y))
\]

(4)

This is necessary to restrict the workspace of the mobile robot in future navigation tasks by serving as basis for a 2D costmap.

The whole system is implemented as a ROS package [31] and can be deployed on any mobile robot with a forward mounted monochrome camera to perceive the marker cube. Additionally, the above mentioned requirements concerning mapping and localization have to be met.

V. EVALUATION

We evaluated the marker-based teaching method concerning three criteria that serve as measurements for the previously mentioned system requirements. First, the correctness of the method is evaluated showing the overall functionality of the system. Subsequently, the accuracies of the learned posterior maps are assessed by comparing them with a self-recorded dataset containing maps with integrated virtual borders. These maps have been recorded previously and are further referred to as ground truth data. Finally, the time to teach a border is measured, which serves as an indicator for the effort of the teaching method. The dataset contains ten different maps of a 6.1 m \(\times \) 3.5 m lab environment with virtual borders’ lengths ranging from 4 m to 13 m. The virtual borders are defined by different polygons that are convex and non-convex. The teaching process is performed five times for each map resulting in 50 trials. The robot starts from different positions in each trial to show the general applicability of the approach. Each trial is performed by guiding the robot along a predefined virtual border. We used a TurtleBot V2 with a front-mounted camera and laser scanner to obtain the experimental results. Before performing the experiments, a physical map of the lab environment is created using ROS gmapping package and the robot is localized using ROS amcl package. All experiments are performed on maps with a resolution of 2.5 cm per pixel.

A. Correctness

This section is intended to provide results concerning the correctness of the proposed method. Therefore, we take up again the previously mentioned scenario of teaching a virtual border around a carpet. It is the goal to declare the area of the carpet as occupied, whereas the rest of the map should stay the same. A user takes the marker cube and guides the robot around the carpet according to Fig. 3. The teaching process finishes successfully by placing the marker cube on the carpet to indicate the keep off area. The results of this teaching process are visualized in Fig. 5. The left figure shows an image of the lab environment, and the right image depicts the resulting map containing the physical as well as the virtual border around the carpet area. This area is marked in black and indicates an occupied area. It can be used as input map for further navigation tasks, and the robot will not enter the area of the carpet. The results demonstrate the general functionality of the proposed framework as specified before.

B. Accuracy

The evaluation of the accuracy aims to provide a measure for the accuracy of the learned virtual borders compared to ground truth data. A high accuracy value entails precisely learned borders. While performing the experiments, the generated posterior maps are stored and associated with their ground truth maps. To assess the accuracy, the Jaccard index between two corresponding maps \(A \) and \(B \) is calculated:

\[
J(A, B) = \frac{|A \cap B|}{|A \cup B|}
\]

(5)

\(|A \cap B|\) is the number of cells that are equal in \(A \) and \(B \), while \(|A \cup B|\) is defined by the total amount of cells in a map. The index is in the range of \([0, 1]\) with a high value corresponding to a high accuracy of the maps. Table I shows the Jaccard indices for the different maps:

| TABLE I: Accuracy results of the experiments |
|-----------------|-------|-------|-------|
| Map Length [in m] | Minimum | Maximum | Average |
| Map 1 | 4 | 99.0% | 99.6% | 99.2% |
| Map 2 | 5 | 98.0% | 99.1% | 98.5% |
| Map 3 | 6 | 97.0% | 98.2% | 97.6% |
| Map 4 | 7 | 97.9% | 98.7% | 98.3% |
| Map 5 | 8 | 97.4% | 98.9% | 98.1% |
| Map 6 | 9 | 97.7% | 98.2% | 98.0% |
| Map 7 | 10 | 97.2% | 98.3% | 97.8% |
| Map 8 | 11 | 96.9% | 98.7% | 97.9% |
| Map 9 | 12 | 96.8% | 97.6% | 97.1% |
| Map 10 | 13 | 96.0% | 97.7% | 96.9% |

The average accuracy in the experiments is 97.9% which underlines the high accuracy of the teaching method. There is a small range between the minimum and the maximum showing the stability of the system. Small errors occur due to the human-robot interaction and localization inaccuracies. Additionally, the accuracy decreases minimally with an increasing border length. The longer the length of the virtual
Fig. 5: Marker-based teaching example. (a) shows the operating environment of the robot with a carpet placed on the ground. This area should not be crossed by the robot while performing its task, e.g., vacuuming. (b) depicts the occupancy grid map after the teaching process. The cells corresponding to the area of the carpet are marked as occupied, while the rest of the map remains the same as the prior map.

Fig. 6: Teaching time dependent on the border length. There are blue circles for each trial of the experiment and five circles per map with borders ranging from 4 to 13 meters. The average teaching time per map is depicted with a red circle, and the trend of the averages depending on the border length is visualized by a red line.

There is a linear relationship between the teaching time and the length of a border, which is caused by the nature of the proposed framework. A mobile robot follows a marker, and the longer it follows the marker, the more time it takes. The minimal teaching time for a 4 meters long border is 59 seconds, and 176 seconds are the maximum for teaching a 13 meters long border. Since there is only a small deviation from the average teaching time, the time to teach virtual borders can be easily estimated.

D. Discussion

The experimental results in this section demonstrate the correctness of the proposed teaching framework and the high accuracies of the learned posterior maps. Furthermore, it takes little effort to teach virtual borders and the framework is applicable by non-expert users. The effort of teaching virtual borders gives an indicator for the usability of the system, but this also strongly depends on the chosen human-robot interface. We chose markers as the basis for interaction with the robot to validate the proposed framework with respect to the correctness, accuracy, and teaching effort. In order to deploy the framework in a real-world scenario, we currently implement more intuitive human-robot interfaces in combination with the framework.

VI. CONCLUSIONS & FUTURE WORK

We propose a new framework for teaching virtual borders to mobile robots in an interactive way. The framework is inspired by shadowing technique and addresses non-experts as users. Furthermore, it is easily adaptable to different human-robot interfaces, such as human gestures. We evaluated the validity of the proposed framework by implementing a method based on the robot’s on-board camera and visual markers as the interaction interface. The learned virtual borders will be respected by the robot in future navigation tasks. Experimental results revealed the correctness of the system, a high accuracy as well as a good teaching time. Furthermore, the user is able to flexibly define polygonal areas as virtual borders. Maps containing arbitrary virtual borders can be defined by successively iterating the teaching process. Such a framework is especially interesting for residents in home
environments to restrict their mobile robots workspaces in an interactive way. Therefore, this framework serves as a good basis for future developments in this area.

Thanks to the easily adaptable framework, future work will focus on implementations using intuitive human-robot interfaces to increase the usability of the system. Currently, we work on the realization using a laser pointer as mediator device and human gestures to guide the robot. We are particular interested in the user’s perspective in the teaching process. Therefore, we plan to conduct a comprehensive study to investigate the influence of different human-robot interaction methods on the teaching process. Furthermore, we will focus on the implementation of different border types in order to define the workspace more flexible. Currently, only polygons are supported but other types such as curves or lines separating a room will be explored. Finally, the development of an adequate feedback system showing the learned virtual borders is also planned.

ACKNOWLEDGMENT

This work is financially supported by the German Federal Ministry of Education and Research (BMBF, Funding number: 03FH006PX5).

REFERENCES

[1] J. Hess, M. Beinhefer, and W. Burgard, “A probabilistic approach to high-confidence cleaning guarantees for low-cost cleaning robots,” in 2014 IEEE International Conference on Robotics and Automation (ICRA), 2014, pp. 5600–5605.
[2] A. Saxena, J. Driemeyer, and A. Y. Ng, “Robotic Grasping of Novel Objects using Vision,” The International Journal of Robotics Research, vol. 27, no. 2, pp. 157–173, 2008.
[3] Y. Xu, H. Qian, and X. Wu, Household Service Robotics, ser. Intelligent systems series. Elsevier Science, 2014.
[4] H. M. Gross, S. Mueller, C. Schroeter, M. Volkhardt, A. Scheidig, K. Debes, K. Richter, and N. Doering, “Robot companion for domestic health assistance: Implementation, test and case study under everyday conditions in private apartments,” in Intelligent Robots and Systems, 2015 IEEE/RSJ International Conference on, 2015, pp. 5992–5999.
[5] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The MIT Press, 2005.
[6] H. Durrant-Whyte and T. Bailey, “Simultaneous localization and mapping: part I,” IEEE Robotics & Automation Magazine, vol. 13, no. 2, pp. 99–110, 2006.
[7] C. Cadenà, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid, and J. J. Leonard, “Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age,” IEEE Transactions on Robotics, vol. 32, no. 6, pp. 1309–1332, 2016.
[8] D. Sakamoto, K. Honda, M. Inami, and T. Igarashi, “Sketch and Run: A Stroke-based Interface for Home Robots,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ser. CHI ’09. ACM, 2009, pp. 197–200.
[9] Neato, “Boundary Markers for Neato Botvac Series,” https://www.neatotorobotics.com/accessories/botvac boundary-markers-for-neato-robot-vacuum/, 2017, [Access: 01/17].
[10] T.-Y. Chiu, “Virtual wall system for a mobile robotic device,” 2011, European Patent Application EP20000208867A1.
[11] H. Zender, O. M. Mozos, P. Jensfelt, G.-J. Kruijff, and W. Burgard, “Conceptual spatial representations for indoor mobile robots,” Robotics and Autonomous Systems, vol. 56, no. 6, pp. 493 – 502, 2008.
[12] G. Li, C. Zha, J. Du, Q. Cheng, W. Sheng, and H. Chen, “Robot semantic mapping through wearable sensor-based human activity recognition,” in 2012 IEEE International Conference on Robotics and Automation (ICRA), 2012, pp. 5228–5233.
[13] T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch, “Human-aware Robot Navigation: A Survey,” Robot. Auton. Syst., vol. 61, no. 12, pp. 1726–1743, 2013.
[14] S. T. O’Callaghan, S. P. N. Singh, A. Alempijevic, and F. T. Ramos, “Learning navigational maps by observing human motion patterns,” in 2011 IEEE International Conference on Robotics and Automation (ICRA), 2011, pp. 4333–4340.
[15] A. Alempijevic, R. Fitch, and N. Kirchner, “Bootstrap navigation and path planning using human positional traces,” in 2013 IEEE International Conference on Robotics and Automation (ICRA), 2013, pp. 1242–1247.
[16] Y. Ogawa, Z. Wang, T. Wada, Y. Hirata, and K. Kosuge, “Generating human motion transition map in indoor environment and analyzing human behavior by geographical clustering,” in 2014 IEEE International Conference on Robotics and Automation, 2014, pp. 3700–3705.
[17] Z. Wang, P. Jensfelt, and J. Folkesson, “Building a human behavior map from local observations,” in 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), 2016, pp. 64–70.
[18] P. Papadakis and P. Rives, “Binding human spatial interactions with mapping for enhanced mobility in dynamic environments,” Autonomous Robots, pp. 1–13, 2016.
[19] I. Kostavelis and A. Gasteratos, “Semantic mapping for mobile robotics tasks: A survey,” Robotics and Autonomous Systems, vol. 66, pp. 86 – 103, 2015.
[20] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A Survey of Robot Learning from Demonstration,” Robotics and Autonomous Systems, vol. 57, no. 5, pp. 469–483, 2009.
[21] J. D. Sweeney and R. Grupen, “A model of shared grasp affordances from demonstration,” in 7th IEEE-RAS International Conference on Humanoid Robots, 2007, pp. 27–35.
[22] N. Somani, E. Dean-Leon, C. Cai, and A. Knoll, “Scene Perception and Recognition for Human-Robot Co-Operation,” in ICIA’13 workshop: First International Workshop on Assistive Computer Vision and Robotics (ACVR 2013). The 17th International Conference on Image Analysis and Processing., 2013.
[23] U. Nehmzow, O. Akanyeti, C. Weinrich, T. Kyriacou, and S. A. Billings, “Robot programming by demonstration through system identification,” in 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, pp. 801–806.
[24] D. Silver, J. A. Bagnell, and A. Stentz, “Learning from Demonstration for Autonomous Navigation in Complex Unstructured Terrain,” Int. J. Rob. Res., vol. 29, no. 12, pp. 1565–1592, 2010.
[25] D. Hood, S. Lemaignan, and P. Dillenbourg, “When Children Teach a Robot to Write: An Autonomous Teachable Humanoid Which Uses Simulated Handwriting,” in Proceedings of the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction, ser. HRI ’15, 2015, pp. 83–90.
[26] C. Cai, N. Somani, and A. Knoll, “Orthogonal Image Features for Visual Servoing of a 6-DOF Manipulator With Uncalibrated Stereo Cameras,” IEEE Transactions on Robotics, vol. 32, no. 2, pp. 452–461, 2016.
[27] P. Stein, V. Santos, A. Spalanzani, and C. Laugier, “Navigating in populated environments by following a leader,” in 2013 IEEE RO-MAN, 2013, pp. 527–532.
[28] G. Grisetti, C. Stachniss, and W. Burgard, “Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters,” IEEE Transactions on Robotics, vol. 23, no. 1, pp. 34–46, 2007.
[29] D. Fox, “Adapting the Sample Size in Particle Filters Through KLD-Sampling,” The International Journal of Robotics Research, vol. 22, no. 12, pp. 965–1003, 2003.
[30] S. Garrido-Jurado, R. Munoz-Salinas, F. Madrid-Cuevas, and M. Marin-Jiménez, “Automatic generation and detection of highly reliable fiducial markers under occlusion,” Pattern Recognition, vol. 47, no. 6, pp. 2280–2292, 2014.
[31] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B. Foote, J. Leibs, R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating System,” in ICRA Workshop on Open Source Software, 2009.