Effect of areca on contraction of colonic muscle strips in rats

Dong-Ping Xie, Wei Li, Song-Yi Qu, Tian-Zhen Zheng, Ying-Li Yang, Yong-Hui Ding, Yu-Ling Wei, Lian-Bi Chen

Dong-Ping Xie, Lian-Bi Chen, Department of Physiology, Medical College, Shandong University, Jinan 250012, Shandong Province, China
Wei Li, Song-Yi Qu, Tian-Zhen Zheng, Department of Physiology, Lanzhou Medical College, Lanzhou 730000, Gansu Province, China
Ying-Li Yang, Northwest Normal University, Lanzhou 730070, Gansu Province, China
Yong-Hui Ding, Yu-Ling Wei, Drug Control Institute of Gansu Province, Lanzhou 730000, Gansu Province, China
Supported by the Natural Science Foundation of Shandong Province, No. Y2001C06
Correspondence to: Dong-Ping Xie, Department of Physiology, Medical College, Shandong University, Jinan 250012, Shandong Province, China, xiedping@sdu.edu.cn
Telephone: +86-531-2942037 Fax: +86-531-2942156 Received 2001-07-19 Accepted 2002-01-20

Abstract
AIM: To investigate the effects of areca on the contractile activity of isolated colonic muscle strips in rats and mechanism involved.

METHODS: Each strip (LMPC, longitudinal muscle of proximal colon; CMPC, circular muscle of proximal colon; LMDC, longitudinal muscle of distal colon; CMDC, circular muscle of distal colon) was suspended in a tissue chamber containing 5mL Krebs solution (37°C), bubbled continuously with 950mL·L⁻¹ O₂ and 50mL·L⁻¹ CO₂. The mean contractile amplitude (A), the resting tension (T), and the contractile frequency (F) were simultaneously recorded on recorders.

RESULTS: Areca dose dependently increased the mean contractile amplitude, the resting tension of proximal and distal colonic smooth muscle strips in rats (P<0.05). It also partly increased the contractile frequency of colonic smooth muscle strips in rats (P<0.05). The effects were partly inhibited by atropine (the resting tension of LMPC decreased from 0.44±0.12 to 0.17±0.03; the resting tension of LMDC decreased from 0.71±0.14 to 0.03±0.01; the mean contractile amplitude of LMPC increased from -45.8±7.2 to -30.5±2.9; the motility index of CMDC decreased from 86.6±17.3 to 32.8±9.3; P<0.05 vs areca), but the effects were not inhibited by hexamethonium (P>0.05).

CONCLUSION: Areca increased the motility of isolated colonic smooth muscle strips in rats. The stimulation of areca might be relevant with M receptor partly.

Xie DP, Li W, Qu SY, Zheng TZ, Yang YL, Ding YH, Wei YL, Chen LB. Effect of areca on contraction of colonic muscle strips in rats. World J Gastroenterol 2002;8(2):350-352

INTRODUCTION
Areca (Areca catechu L.) had already been shown to relieve indigestion, unblocked stagnation of the circulation of vital energy. It had been used to treat abdominal distention and constipation, which were caused by stagnation of the circulation of vital energy in taste. But the actions and mechanisms of areca on the colonic smooth muscle motility are not reported. In this study, we observed the effect of areca on the different colonic smooth muscle strips in rats and investigated the mechanism involved.

MATERIALS AND METHODS

Animal preparation
Wistar rats of either sex (graded, purchased from Animal Center of Lanzhou Medical College), weighing 200-250g, were sacrificed, and the proximal colon and distal colon were removed. The segments of the colon were opened along the mesentery. Muscle strips (8×3mm) were cut, parallel to either the circular or the longitudinal fibers, and named circular muscle of proximal colon (CMPC), longitudinal muscle of proximal colon (LMPC), circular muscle of distal colon (CMDC), and longitudinal muscle of distal colon (LMDC). The mucosa on each strip was carefully removed.

Experiments
The muscle strip was suspended in a tissue chamber containing 5mL Krebs solution (37°C) and bubbled continuously with 950mL·L⁻¹ O₂ and 50mL·L⁻¹ CO₂. One end of the strip was fixed to a hook on the bottom of the chamber. The other end was connected to an external isometric force transducer (JZ-BK, BK). Motility of colonic strips (under an initial tension of 1g) in 4 tissue chambers were simultaneously recorded on ink-writing recorders (LMS-ZB, Cheng-Du). After 1h equilibration, areca(10,100,1000g·L⁻¹) was added in the tissue chamber to observe their effects on colon; atropine(0.1µmol·L⁻¹) or hexamethonium(10µmol·L⁻¹), given 3min before the administration of areca(100g·L⁻¹), was added separately to investigate whether the actions of areca were relevant with M receptor or N receptor. The resting tension, the frequency, and the mean contractile amplitude of LMPC, CMPC and LMDC, as well as the motility index of CMDC were measured. Motility index=∑(amplitude×duration).

Drugs preparation
Areca was broken into pieces, boiled, filtrated, and diluted to 1000g·L⁻¹ (the drug was appraised and prepared by Drug Control Institute of Gansu Province). The following agents were used: atropine (Pharmaceutical Factory in Yancheng, Jiangsu Province), hexamethonium (Sigma Chemical Company).

Data analysis
The results were presented as x±s, and statistically analyzed by paired t-test, P<0.05 was considered to be significant.

RESULTS

Effect of areca on the spontaneous contraction of colonic smooth muscle strips
Areca (10,100,1000g·L⁻¹) dose dependently increased the mean contractile amplitude of CMPC and LMDC, the motility index of CMDC, and the resting tension of LMPC, LMDC and CMDC; but it
decreased the mean contractile amplitude of LMPC (Figure 1). It increased the contractile frequency of CMPC and LMDC (Table 1). It had no significant effects on the resting tension of CMPC and the contractile frequency of LMPC and CMDC.

Figure 1 Effect of areca on the mean contractile (the motility index of CMDC) and the resting tension (T, n=12) of LMPC: longitudinal muscle of proximal colon; CMPC: circular muscle of proximal colon; LMDC: longitudinal muscle of distal colon; CMDC: circular muscle of distal colon. A, the mean contractile amplitude; T, the resting tension. *P<0.05, **P<0.01 vs control.

Table 1 Effect of areca on the contractile frequency of colonic contractile in rats (Tas, waves·min⁻¹, n=12)

Areca (g·L⁻¹)	0	10	100	1000		
LMPC	1.8±0.2	1.9±0.2	2.2±0.2	2.5±0.3	1.8±0.2	1.8±0.4
CMPC	1.5±0.1	1.5±0.1	1.6±0.1	2.1±0.2	1.6±0.1	2.3±0.1*
LMDC	1.3±0.1	1.3±0.1	1.5±0.1	2.3±0.2*	1.5±0.2	2.7±0.5*
CMDC	0.7±0.1	0.7±0.1	0.6±0.1	0.6±0.1	0.6±0.1	0.6±0.1

Effect of atropine on the responses caused by areca
Atropine (0.01µmol·L⁻¹) itself had no significant effects on rat colon. But when given 3min before the administration of areca (100g·L⁻¹), it reduced the increasing action of areca on the resting tension of LMPC and LMDC, the motility index of CMDC, and the mean contractile amplitude of LMPC. It had no significant effects on the other action of areca (Table 2).

Table 2 Effect of areca on the mean contractile amplitude and the resting tension of colon, and the motility index of distal colon after atropine pre-treatment in rats (Tas, n=12)

Areca (g·L⁻¹)	0	10	100	1000				
LMPC	T/g	A/mm	T/g	A/mm	T/g	MI/min×cm²		
Areca	0.44±	-45.8±	0	40.0±	0.71±	79.7±	0.11±	86.6±
Atropine 0.1µmol·L⁻¹	0.12±	7.2±	3.5±	0.14±	12.8±	0.05±	17.3±	
Atropine 0.17µmol·L⁻¹	0.1±	0.6±	0	1.3±	0	0.9±		
+Areca 0.3µmol·L⁻¹	0.3±	2.9	2.5±	0.01±	13.6±	0.02	98.3±	

Effect of hexamethonium on the responses caused by areca
Hexamethonium (10µmol·L⁻¹) had no significant effect on the contractile activity of each colonic smooth muscle strip. Hexamethonium given 3 minute before administration of areca (100g·L⁻¹) had no significant effects on the action of areca.

DISCUSSION
There are many diseases which are caused by colonic motility disorder or accompany with colonic motility abnormality, such as constipation, diarrhea, irritable bowel syndrome and so on[10-11]. There are some reports on the study of normal colonic motility and intestinal diseases that are connected with colonic motility[12-20]. The studies on how to treat the diseases that are caused by colonic motility disorder have also been reported[28-30]. But it still needs a long time for us to recognize the colonic motility completely. Recently, the effects of Chinese herbas on the gastrointestinal motility have been reported[26-28]. Areca had been used to treat abdominal distention, constipation, abdominal pain and non-ulcer dyspepsia, which were considered to be connected with intestinal motility disorder[31-40]. Whether the clinical use is connected with its effects on colonic motility The present study revealed that areca dose dependently stimulated the contractions of proximal and distal colonic smooth muscle strips of rats. The exciting actions suggested that areca might caused the colonic contents to be mixed, stirred, promoted, and even excreted. These results can partly explained why areca was used to treat intestinal motility disorder. Areca has been showed to stimulate both cholinergic M and N receptors. Our results showed that the stimulating effects of areca were partly blocked by atropine but not by hexamethonium. Our results suggested that the stimulating effects of areca on rat colonic smooth muscle strips were relevant with M receptor but irrelevant with N receptor. When M receptor was stimulated, the potential sensitive Ca²⁺ channel was opened, which will cause the influx of extracellular Ca²⁺ and then cause the contraction of smooth muscle[30]. Areca might stimulate M receptor and then cause the concentration of intracellular Ca²⁺ increased, areca might also act on the Ca²⁺ channel receptor directly, which still need to be further studied. In conclusion, areca stimulates the contractile activity of colonic smooth muscle of rats in vitro. The effect of areca is partly relevant with M receptor, but irrelevant with N receptor.

REFERENCES
1. Xie DP, Li W, Qu SY, Zheng TZ, Yang YL, Ding YH, Wei YL. Effects of ranitidine and cimetidine on the contractile activity of isolated gastric muscle strips in rats. Zhongguo Yaoliuxue Yu Dulixue Zazhi 2001;15:12-16
2. Qu SY, Zheng TZ, Li W. Comparative study of ranitidine and cimetidine on contractile activity of isolated gastric muscle strips in rats. Xin Xinhuaobingyue Zazhi 1997;5:75-76
3. Rajapakse R, Warman J, Korelitz BI. Colchicine for persistent constipation after total abdominal colectomy with ileorectostomy for colonic inertia. J Clin Gastroenterol 2001;33:81-85
4. O'Sullivan MA, O'Morain CA. Bacterial supplementation in the irritable bowel syndrome. A randomised double placebo-controlled crossover study. Dig Liver Dis 2000;32:294-301
5. Chey WY, Jin HO, Lee MH, Sun SW, Lee KY. Colonic motility abnormality in patients with irritable bowel syndrome exhibiting abdominal pain and diarrhea. Am J Gastroenterol 2001;96:1499-1506
6. Coulie B, Camilleri M, Bharucha AE, Sandborn WJ, Burton D. Colonic motility in chronic ulcerative colitis and the effects of nicotine on colonic motility in patients and healthy subjects. Aliment Pharmacol Ther 2001;15:653-663
7. Bonapace ES, Maurer AH, Davidoff S, Krevsky B, Fisher RS, Parkman HP. Whole gut transit scintigraphy in the clinical evaluation of patients with upper and lower gastrointestinal symptoms. Am J Gastroenterol 2000;95:2838-2847
8. Borum ML. Irritable bowel syndrome. Prim Care 2001;28:523-538
9. Knowles CH, Scott SM, Lunniss PJ. Slow transit constipation: a disorder of pelvic autonomic nerves Dig Dis Sci 2001;46:389-401
10. Knowles CH, Nickols CD, Scott SM, Bennett NJ, de Oliveira RB, Chimelli L, Feakins R, Williams NS, Martin JE. Smooth muscle inclusion bodies in slow transit constipation. J Pathol 2001;193:390-397
11. Ringel Y, Sperber AD, Drossman DA. Irritable bowel syndrome. Annu Rev Med 2001;52:319-338
12. Eglen RM. Muscarinic receptors and gastrointestinal tract smooth muscle function. Life Sci 2001;68:2573-2578
13. Plattner V, Leray V, Leclair MD, Aube AC, Cherbut C, Galmiche JP. Interleukin-8 increases acetylcholine response of rat intestinal segments. Aliment Pharmacol Ther 2001;15:1227-1232
21 Portincasa P, Moschetta A, Giampaolo M, Palasciano G. Diffuse gas-

20 Sun WM, Hasler WL, Lien HC, Montague J, Owyang C. Nizatidine

22 Carini F, Lecci A, Tramontana M, Giuliani S, Maggi CA. Tachykinin

18 Herve S, Leroi AM, Mathiex-Fortunet H, Garnier P, Karoui S, Menard

15 Lin VW, Hsiao I, Goodwin D, Perkash I. Functional magnetic stimu-

24 Lecci A, Carini F, Tramontana M, D'Aranno V, Marinoni E, Crea A,

23 Ye JH, Ponnudurai R, Schaefer R. Ondansetron: a selective 5-HT(3)

26 Crowell MD. The role of serotonin in the pathophysiology of irritable

28 Schwartz D, Stollman N. University of Miami Division of Clinical

27 Menzies JR, McKee R, Corbett AD. Differential alterations in tachykinin

30 Niedzielin K, Kordecki H, Birkenfeld B. A controlled, double-blind,

randomized study on the efficacy of Lactobacillus plantarum 299V in

patients with irritable bowel syndrome. Eur J Gastroenterol Hepatol

2001;13:1143-1147

31 Villanueva A, Dominguez-Munoz JE, Mearin F. Update in the therapeu-
tic management of non-ulcer dyspepsia. Eur J Gastroenterol Hepatol.
2001;13:254-360

32 Beglinger C. Tegaserod a novel, selective 5-HT4 receptor partial
agonist for irritable bowel syndrome. Int J Clin Pract 2002;56:47-51

33 De Ponti F, Tonini M. Irritable bowel syndrome: new agents target-
ing serotonin receptor subtypes. Drugs 2001;61:317-332

34 De Schryver AM, Samsoen M. New developments in the treatment of
irritable bowel syndrome. Scand J Gastroenterol 2000; 232:38-42

35 Bouras EP, Camilleri M, Burton DD, Thombre G, McKinzie S,
Zinsmeister AR. Prucalopride accelerates gastrointestinal and colonic
transport in patients with constipation without a rectal evacuation disorder.
Gastroenterology 2001;120:354-360

36 Tian XL, Mourelle M, Li YL, Guaner F, Malagelada JR. The role of
Chinese herbal medicines in a rat model of chronic colitis. World J
Gastroenterol 2000;8:640

37 Zheng BJ. Understanding of gastrointestinal prokinetic Chinese
drugs. Zhongyi Zazhi 1996; 37:697-698

38 Yang YL, Zheng TZ, Qu SY, Li W, Xie DP. Action of Binglang on
contractile activity of isolated small intestinal strips in rats.
Lanzhou Daxue Xuebao 2000;36:43-46

39 Yang YL, Zheng TZ, Qu SY, Li W, Xie DP, Ding YH, Wei YL. Action
of Zhishi on the smooth muscle of isolated small intestine in rats.
Xibei Shifan Daxue Xuebao 1998;34:69-72

40 Xie DP, Li W, Qu SY, Zheng TZ, Yang YL, Ding YH, Wei YL,Zhang
MY. Effect of Fructus Aurantii Immaturus on contractile activity of
colonic muscle strips in rats. Shandong Yike Daxue Xuebao 2001;294:350-358

41 Xie DP, Li W, Qu SY, Zheng TZ, Yang YL, Ding YH, Wei YL. Effect
of Qing Pi on contractile of colonic muscle strips in rats. Lanzhou
Xicaiyuan Xuebao 1998;24:1-5

42 Song YJ. Treatment of chronic colitis by integration of traditional and
western medicine method in 92 cases. Huaren Xiaohua Zazhi 1998;4:854

43 Li Y, Sun SY, Zhou Z. Effect of Chinese herbal medicines Xiaohuaxing
qi on gastrointestinal motility in mice. Xin Xiaohuabingxue Zazhi
1997;5:153

44 Chen RS, Zhang YF, Deng LM, Guo DQ. The Influences of Juechang-
Kangtai on the Movement Function of Intestine. Zhongguo Zhongxiyi
Jixue Zazhi 1998;157-159

45 Zhang RX, Ren P, Huang X, Li Y. Regulation of Chinese herbal
on gastrointestinal hormones and gastrointestinal motility. Shijie Huaren
Xiaohua Zazhi 2000;6:1141-1144

46 Deo DP, Cai G. Regulation of gastric motility. Shijie Huaren Xiaohua
Zazhi 1999;7:353-354

47 Zhao XP, Zhang BL. Therapy of qingfutongchangchongji for 46 pa-
tients with intestinal disorder after abdomen operated. Shanshi Zhongyi
1999;20: 57-58

48 Qin ZD. Abstracts about therapy of mingxiubinglangwan for pa-
tients with rectostenosis in 23 cases. Guangxi Zhongyi Zazhi 1999;22:33

49 Xiao CH, Huo GQ. Therapy of simowubeitang for 60 patients with
non-ulcer dyspepsia. Shijie Huaren Xiaohua Zazhi 2000:8:98

50 Zhou L,Ke MY. Textbook of Gastrointestinal Motility-Basic and Clinical
Aspects. Beijing: Science Press 1999:202

Edited by Wang YQ