Abstract

This report proposes a method for underwater image enhancement using the principle of histogram equalization. Since underwater images have a global strong dominant colour, their colourfulness and contrast are often degraded. Before applying the histogram equalisation technique on the image, the image is converted from coloured image to a gray scale image for further operations. Histogram equalization is a technique for adjusting image intensities to enhance contrast. The colours of the image are retained using a convolutional neural network model which is trained by the datasets of underwater images to give better results.

Keywords: Underwater image enhancement, 1-D CNN, 2-D CNN, LSTM

*Corresponding author: ghanapriya@nituk.ac.in
INTRODUCTION

Image enhancement is the process of adjusting digital images so that the results are more suitable for display or further image analysis. Underwater photography, underwater imaging has also been an important source of interest in different branches of technology and scientific research, such as inspection of underwater infrastructures and cables, detection of manmade objects, control of underwater vehicles, marine biology research, and archaeology. Different from common images, underwater images suffer from poor visibility resulting from the attenuation of the propagated light, mainly due to absorption and scattering effects. The absorption substantially reduces the light energy, while the scattering causes changes in the light propagation direction. They result in foggy appearance and contrast degradation, underwater image normally has several problems including limited range of visibility, low contrast, non-uniform lighting, bright artifacts, noise, blurring, and diminishing colour. It is a challenging task to remove a dominant color while keeping sharpness or brightness for various image processing tasks, e.g., image recognition. Consequences from these problems, researchers are improving the image contrast to extract as many information as possible by applying various algorithms. Different from common images, underwater images suffer from poor visibility resulting from the attenuation of the propagated light, mainly due to absorption and scattering effects. The absorption substantially reduces the light energy, while the scattering causes changes in the light propagation direction. They result in foggy appearance and contrast degradation.

The proposed image enhancement is based on three main steps, first step is decolouring the image. The first step includes conversion of a RGB image to gray scale image so that instead of dealing with three planes and their values, major processing will be done on the intensity values in the second step. The second step of this process is performing histogram equalisation on the converted gray scale image, by which the layer of a particular intensity that was shadowing over the entire image hiding the necessary details is removed. This histogram equalised greyscale image is converted back into a coloured RGB image using a convolutional neural network model. The model is trained with Dataset containing underwater images.
LITERATURE REVIEW

Based on the research done by Tatsuya Baba, Keishu Nakamura, Seisuke Kyochi, and Masahiro Okuda cited in the research paper [1], he described a novel image enhancement method for underwater images based on discrete cosine eigenbasis transformation (DCET). Since underwater images have a global strong dominant colour, their colourfulness and contrast are often degraded. Typical colour correction methods for natural images, i.e., computational colour constancy, achromatize the coloured illuminant of input images by dividing with an estimated illuminant colour. However, this procedure produces unwanted colour artifacts for underwater images. To solve this problem, we introduce a novel assumption that achromatic illuminant images should have the DCT basis vectors as their principal component vectors, which is termed as discrete cosine eigenbasis (DCE). According to the assumption, we achromatize underwater images by using a DCET that transforms the input image to the images having the DCE. By incorporating post image enhancement techniques, the proposed method provides sharper and brighter visual quality than conventional colour correction and image enhancement methods. This paper proposed the colour correction and image enhancement method for underwater images. Based on the new assumption, we introduced the DCET in the CCC procedure, which enables us to robustly correct the dominant colour of underwater images. In the image enhancement, a chroma contrast enhancement image and a luma contrast enhancement image are generated, and an image having a vivid colour and sharp detail is generated through the integration. The experiments showed the effectiveness of the proposed method by comparing with the conventional methods.

Based on the research done by Ahmad Shahrizan Abdul Ghani, Nor Ashidi Mat Isa cited in the research paper[1], they described the major issues with underwater images. The physical property of water medium causes attenuation of light travels through the water medium, resulting in low contrast, blur, inhomogenous lighting and colour diminishing of the underwater images. This paper extends the method of enhancing the quality of underwater image. The proposed method in this research consists of two stages. at the first stage, the contrast correction technique is applied to the image, where the image is applied with the modified Von Kries hypothesis and stretching the image into two different intensity image at the average value with respect to the Rayleigh distribution. At the second stage, colour correction technique is applied to the image
where the image is first converted into hue-saturation value (HSV) colour model. The modification of the colour component increases the image colour performance. To evaluate the proposed technique 300 underwater images, which are captured in three different Malaysian islands namely Tioman, Langkawi and Perhentian are used in the experiments. The proposed technique is compared with ICM and UCM in terms of entropy, mean square error (MSE), and peak signal to noise ratio (PSNR). Two other methods are also used for comparison, namely, the pixel distribution shifting colour correction (PDSCC). PDSCC is the latest contrast enhancement technique that is also designed for underwater images.

The results of our method has been compared to the above mentioned methods and it has been observed that on comparing with these proposed method our method gives better results based on the entropy, mean square error (MSE) and peak to signal noise ratio.

METHODOLOGY

The proposed image enhancement is based on three main steps, first step is decolouring the image. Fig 1 shows the process of proposed method. In the first step, the coloured image which is specifically dominant in a few colours that are likely to be blue and green is converted into a grayscale image. The first step includes conversion of a RGB image to grayscale image so that instead of dealing with three planes and their values, major processing will be done on the intensity values in the second step. The second step of this process is performing histogram equalisation on the converted gray scale image, by which the layer of a particular intensity that was shadowing over the entire image hiding the necessary details is removed. In case of the coloured image it appears to be the dominant colour region (a layer of blue or green colour). After performing the histogram equalisation, the image appears to hold required details which were not present at first. This histogram equalised grayscale image is converted back into a coloured RGB image using a convolutional neural network model. The model is trained with Dataset containing underwater images.
Fig1: Flowchart of the Methodology

Histogram equalization:

It is a method in image processing of contrast adjustment using the image's histogram. This method usually increases the global contrast of many images, especially when the usable data of the image is represented by close contrast values. Through this adjustment, the intensities can be better distributed on the histogram. This allows for areas of lower local contrast to gain a higher contrast. Histogram equalization accomplishes this by effectively spreading out the most frequent intensity values.

Let f be a given image represented as an mr by mc matrix of integer pixel intensities ranging from 0 to $L - 1$. L is the number of possible intensity values, often 256. Let p denote the normalized histogram of f with a bin for each possible intensity. So

$$ p_n = \frac{\text{number of pixels with intensity } n}{\text{total number of pixels}} \quad n = 0, 1, ..., L - 1. $$

The histogram equalized image g will be defined by

$$ g_{i,j} = \text{floor}((L - 1) \sum_{n=0}^{f_{i,j}} p_n), \quad \text{where} \quad g_{i,j} \in \{0, 1, ..., L - 1\}. $$

where floor() rounds down to the nearest integer. This is equivalent to transforming the pixel intensities, k, of f by the function

$$ T(k) = \text{floor}((L - 1) \sum_{n=0}^{k} p_n). $$
The motivation for this transformation comes from thinking of the intensities of f and g as continuous random variables X, Y on $[0, L - 1]$ with Y defined by

$$Y = T(X) = (L - 1) \int_0^X p_X(x) dx,$$

where p_X is the probability density function of f. T is the cumulative distributive function of X multiplied by $(L - 1)$. Assume for simplicity that T is differentiable and invertible. It can then be shown that Y defined by $T(X)$ is uniformly distributed on $[0, L - 1]$, namely that

$$p_Y(y) = \frac{1}{L-1}. $$

$$
\int_0^y p_Y(z) dz = \text{probability that } 0 \leq Y \leq y \\
= \text{probability that } 0 \leq X \leq T^{-1}(y) \\
= \int_0^{T^{-1}(y)} p_X(w) dw \\
= \frac{d}{dy} \left(\int_0^y p_Y(z) dz \right) = p_Y(y) = p_X(T^{-1}(y)) \frac{d}{dy} (T^{-1}(y)).
$$

Note that \(\frac{d}{dy}T(T^{-1}(y)) = \frac{d}{dy}y = 1\), so

$$
\frac{dT}{dx} \big|_{x=T^{-1}(y)} \frac{d}{dy} (T^{-1}(y)) = (L - 1)p_X(T^{-1}(y)) \frac{d}{dy} (T^{-1}(y)) = 1,
$$

which means $p_Y(y) = \frac{1}{L-1}.$

Our discrete histogram is an approximation of $p_X(x)$ and the transformation in Equation 1 approximates the one in Equation 2. While the discrete version won’t result in exactly flat histograms, it will flatten them and in doing so enhance the contrast in the image.

The grayscale image is then converted to a coloured image by using convolutional neural network.
Convolutional Neural Network:

In deep learning, a convolutional neural network (CNN) is a class of deep neural networks, most commonly applied to analyzing visual imagery. CNNs use a variation of multilayer perceptrons designed to require minimal pre-processing. They are also known as shift invariant or space invariant artificial neural networks (SIANN), based on their shared-weights architecture and invariance characteristics. Convolutional networks were inspired by biological processes in that the connectivity pattern between neurons resembles the organization of the animal visual cortex. Individual cortical neurons respond to stimuli only in a restricted region of the visual field known as the receptive field. The receptive fields of different neurons partially overlap such that they cover the entire visual field. CNNs use relatively little pre-processing compared to other image classification algorithms. This means that the network learns the filters that in traditional algorithms were hand-engineered. This independence from prior knowledge and human effort in feature design is a major advantage.

Autoencoder:

An autoencoder learns to compress data from the input layer into a short code, and then uncompress that code into something that closely matches the original data. This forces the autoencoder to engage in dimensionality reduction, for example by learning how to ignore noise. Some architectures use stacked sparse autoencoder layers for image recognition. The first encoding layer might learn to encode easy features like corners, the second to analyze the first layer's output and then encode less local features like the tip of a nose, the third might encode a whole nose, etc., until the final encoding layer encodes the whole image into a code that matches (for example) the concept of "cat". The decoding layers will learn to decode the learnt code representation back into its original form as close as possible.
CONCLUSION:

We have presented an alternative approach to enhance underwater images. Our strategy builds on the histogram equalisation and does not require additional information than the single original image. We have shown in our experiments that our approach is able to enhance a wide range of underwater images (e.g. different cameras, depths, light conditions) with high accuracy, being able to recover important faded features and edges. Moreover, for the first time, we demonstrate the utility and relevance of the proposed image enhancement technique for several challenging underwater computer vision applications. The proposed methods produces lesser Mean Square Error (MSE), better Entropy and Peak Signal to Noise Ratio (PSNR) value when compared to existing ICM techniques.
REFERENCES

[1] Tatsuya Baba, Keishu Nakamura, Seisuke Kyochi, and Masahiro Okuda, “Image enhancement method for underwater images based on DiscreteCosine Eigen basis Transformation”, *2017 IEEE International Conference on Image Processing (ICIP)*.

[2] Ahmad Shahrizan Abdul Ghani and Nor Ashidi Mat Isa, Underwater image quality enhancement through composition of dual-intensity images and Rayleigh-stretching, *SpringerPlus* 2014.

[3] Shrinivas T. Shirkande, Dr.M.J.Lengare, “Optimization of Underwater Image Enhancement Technique by Combining WCID and Wavelet Transformation Technique”, *2017 International Conference on Computing, Communication, Control and Automation (ICCUBEA)*.

[4] Ritu Singh, Mantosh Biswas, “Contrast and Color Improvement based Haze Removal of Underwater Images using Fusion Technique”, *2017 4th International Conference on Signal Processing, Computing and Control (ISPCC)*.

[5] Bindhu, O. Uma Maheswari, “Underwater image enhancement based on linear image interpolation and limited image enhancer techniques”, *2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN)*.

[6] Codruta O. Ancuti, Cosmin Ancuti, Christophe De Vleeschouwer, and Philippe Bekaert, “Color Balance and Fusion for Underwater Image Enhancement”, *IEEE Transactions on image processing, vol. 27, no.1, January 2018* 379.

[7] Singh, Ghanapriya, Ratnesh Kumar Singh, Rajesh Saha, and Nidhi Agarwal. "IWT based iris recognition for image authentication." *Procedia...*
[8] Agarwal, Nidhi, Akanksha Sondhi, Khyati Chopra, and Ghanapriya Singh. "Transfer learning: Survey and classification." In *Smart Innovations in Communication and Computational Sciences*, pp. 145-155. Springer, Singapore, 2021.

[9] Singh, Ghanapriya, Mahesh Chowdhary, Arun Kumar, and Rajendr Bahl. "A personalized classifier for human motion activities with semi-supervised learning." *IEEE Transactions on Consumer Electronics* 66, no. 4 (2020): 346-355.

[10] Singh, Ghanapriya, and T. Rawat. "Color image enhancement by linear transformations solving out of gamut problem." *International Journal of Computer Applications* 67, no. 14 (2013): 28-32.

[11] Singh, Preeti, Ratnesh Kumar Singh, and Ghanapriya Singh. "An Efficient Iris Recognition System Using Integer Wavelet Transform." In *2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI)*, pp. 1029-1034. IEEE, 2018.

[12] Singh, Ghanapriya. "Probabilistic framework and related studies for context awareness of a mobile device user." PhD diss., 2018.

[13] Saha, Rajesh, Ratnesh Kumar Singh, Rajeev Kumar, Ghanapriya Singh, Tushar Goel, and Pankaj Kumar Pal. "Classification of human heart signals by novel feature extraction techniques for rescue application." In *2019 Fifth International Conference on Image Information Processing (ICIIP)*, pp. 156-160. IEEE, 2019.

[14] Singh, Ratnesh Kumar, Rajesh Saha, Pankaj Kumar Pal, and Ghanapriya Singh. "Novel feature extraction algorithm using DWT and temporal statistical techniques for word dependent speaker’s recognition." In *2018 Fourth International Conference on Research in Computational
Intelligence and Communication Networks (ICRCICN), pp. 130-134. IEEE, 2018.

[15] Bijalwan, Vishwanath, Vijay Bhaskar Semwal, Ghanapriya Singh, and Ruben Gonzalez Crespo. "Heterogeneous computing model for post-injury walking pattern restoration and postural stability rehabilitation exercise recognition." Expert Systems (2021): e12706.

[16] Chhillar, Sachin, Ghanapriya Singh, Ajeet Singh, and Vikas Kumar Saini. "Quantitative Analysis of Pulmonary Emphysema by Congregating Statistical Features." In 2019 3rd International Conference on Recent Developments in Control, Automation & Power Engineering (RDCAPE), pp. 329-333. IEEE, 2019.

[17] Gupta, Rinki, and Ghanapriya Singh. "Binary Differential Evolution-Based Feature Selection for Hand Gesture Classification." In Advances in Smart Communication and Imaging Systems, pp. 221-231. Springer, Singapore, 2021.

[18] Singh, Ghanapriya, Mahesh Chowdhary, Arun Kumar, and Rajendar Bahl. "A probabilistic framework for base level context awareness of a mobile or wearable device user." In 2019 IEEE 8th Global Conference on Consumer Electronics (GCCE), pp. 217-218. IEEE, 2019.

[19] Kanagaraj, Nitin, David Hicks, Ayush Goyal, Sanju Tiwari, and Ghanapriya Singh. "Deep learning using computer vision in self driving cars for lane and traffic sign detection." International Journal of System Assurance Engineering and Management (2021): 1-15.

[20] Kannojia, Shilpi, Ghanapriya Singh, and Sanjay Mathur. "A text to speech synthesizer using acoustic unit based concatenation for any Indian language of Devanagari script." In 2016 11th International Conference on Industrial and Information Systems (ICIIS), pp. 759-763. IEEE, 2016.
[21] Singh, Ghanapriya. "A generalized contrast enhancement algorithm for seamless high contrast image across devices in Internet of Things." In 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), pp. 294-298. IEEE, 2015.

[22] Pandey, Shubha, Ritu Sharma, and Ghanapriya Singh. "Implementation of 5-Block Convolutional Neural Network (CNN) for Saliency Improvement on Flying Object Detection in Videos." In 2020 3rd International Conference on Emerging Technologies in Computer Engineering: Machine Learning and Internet of Things (ICETCE), pp. 1-6. IEEE, 2020.

[23] Agarwal, Nidhi, Akanksha Sondhi, and Ghanapriya Singh. "State Estimation of a Quantum System Using Extended Kalman Filter." In 2019 International Conference on Cutting-edge Technologies in Engineering (ICon-CuTE), pp. 97-100. IEEE, 2019.