Immunomodulatory therapy for the management of critically ill patients with COVID-19: A narrative review

David Andaluz-Ojeda, Pablo Vidal-Cortes, Álvaro Aparisi Sanz, Borja Suberviola, Lorena Del Río Carbajo, Leonor Nogales Martín, Estefanía Prol Silva, Jorge Nieto del Olmo, José Barberán, Ivan Cusacovich

Specialty type: Critical care medicine
Provenance and peer review: Invited article; Externally peer reviewed
Peer-review model: Single blind
Peer-review report’s scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): B
Grade C (Good): 0
Grade D (Fair): 0
Grade E (Poor): 0
P-Reviewer: Samadder S, India
A-Editor: Yao QG
Received: July 22, 2021
Peer-review started: July 22, 2021
First decision: November 11, 2021
Revised: December 1, 2021
Accepted: May 16, 2022
Article in press: May 16, 2022
Published online: July 9, 2022

Abstract

BACKGROUND
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic. Understanding the physiological and immunological processes underlying the clinical manifestations of COVID-19 is vital for the identification and rational design of effective therapies.

AIM
To describe the interaction of SARS-CoV-2 with the immune system and the subsequent contribution of hyperinflammation and abnormal immune responses to disease progression together with a complete narrative review of the different immunoadjuvant treatments used so far in COVID-19 and their indication in
severe and life-threatening subsets.

METHODS
A comprehensive literature search was developed. Authors reviewed the selected manuscripts following the PRISMA recommendations for systematic review and meta-analysis documents and selected the most appropriate. Finally, a recommendation of the use of each treatment was established based on the level of evidence of the articles and documents reviewed. This recommendation was made based on the consensus of all the authors.

RESULTS
A brief rationale on the SARS-CoV-2 pathogenesis, immune response, and inflammation was developed. The usefulness of 10 different families of treatments related to inflammation and immunopathogenesis of COVID-19 was reviewed and discussed. Finally, based on the level of scientific evidence, a recommendation was established for each of them.

CONCLUSION
Although several promising therapies exist, only the use of corticosteroids and tocilizumab (or sarilumab in absence of this) have demonstrated evidence enough to recommend its use in critically ill patients with COVID-19. Endotypes including both, clinical and biological characteristics can constitute specific targets for better select certain therapies based on an individualized approach to treatment.

Key Words: COVID-19; Critically ill patients; Treatment; Immunomodulatory drugs; Phenotype; Immunosupression

INTRODUCTION
In late 2019, a virus, currently named coronavirus disease 2019 (COVID-19), caused an outbreak of 27 acute respiratory distress syndrome cases related to a seafood market in Wuhan, China. From that moment, the virus has spread rapidly worldwide until, on March 11th, the World Health Organization (WHO) classified it as a pandemic[1]. As of July 24th, 2021, more than 190 million people have been infected, and it has caused more than 4 million deaths[2].

Although most people with COVID-19 have only mild or uncomplicated symptoms, 10%-15% requires hospitalization and oxygen therapy[3,4]. From the beginning, a large number of patients presented severe respiratory failure, needing mechanical ventilation (MV) and intensive care unit (ICU) admission, exceeding the capacity of many of them and turning COVID-19 into a challenge for health systems all over the world[5-9]. Furthermore, we observed a relationship between ICU caseload and mortality[10,11].

The lack of an available, effective treatment has led to a spate of treatment recommendations[12-15], which are not always backed by sufficient scientific evidence[16,17]. We paid particular attention to a presumed specific cytokine storm secondary to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection[18-20], with a special effort to modulate the inflammatory response of these patients. One year after the onset of the disease, many questions remain unanswered, and we continue to search...
for the most appropriate treatment. This review aims to summarize the current evidence regarding the different immunomodulatory strategies tested in critically ill patients with COVID-19.

MATERIALS AND METHODS

A comprehensive literature search was developed by using the keywords: “immunotherapy”, “immunosuppressives”, “haemophagocytic syndrome”, “inflammation”, “antiinflammatory”, “hydroxychloroquine”, “chloroquine”, “anakinra”, “canakinumab”, “tocilizumab”, “sarilumab”, “corticosteroids”, “dexamethasone”, “methylprednisolone”, “immunoglobulins or convalescent” “JAK inhibitors”, “cyclosporine”, “colchicine”, “statins”, “interleukin 7”, “thymosin”, “PD1 and PD1-L blockers”. We restricted the search to: “SARS-CoV-2”, “COVID-19”, “severe COVID-19” and “treatment” to identify articles published in English from MEDLINE, PubMed, and The Cochrane Library (until January 2021). The meta-analysis, clinical trials, case-control or cohort studies, brief reports, reviews, and systematic reviews were included. Reference Citation Analysis, an artificial intelligence technology-based open citation analysis database was employed. Current international guidelines on the management of COVID-19 were also retrieved and included (Centers for Disease Control and Prevention, European Centre for Disease Prevention and Control, Infectious Diseases Society of America, WHO, National Health Service, Spanish Society of Intensive Care Medicine). Articles in preprint format were also evaluated if they were considered relevant and well designed. The authors reviewed the selected manuscripts and selected the most appropriate. Finally, we established a recommendation of the use of each treatment based on the level of evidence of the articles and documents reviewed. This recommendation was made based on the consensus of all the authors. We carried out the rest of the work methodology following the PRISMA recommendations for systematic review and meta-analysis documents (http://prisma-statement.org/PRISMAStatement/Checklist).

RESULTS

Viral infection and the inflammatory response

SARS-CoV-2 infects cells that express surface receptors for angiotensin-converting enzyme 2 (ACE-2) like airway epithelial cells, type II pneumocytes, vascular endothelial cells, and macrophages in the lung, and transmembrane protease, serine 2[21-23]. Active replication and release of the virus cause the host cell to undergo pyroptosis and release of damage-associated molecular patterns, including nucleic acids, adenosine triphosphate (ATP), and atypical squamous cell oligomers. These molecules are recognized by neighboring epithelial cells, endothelial cells, and alveolar macrophages, triggering the liberation of proinflammatory cytokines and chemokines [including interleukin (IL)-2γ, IL-6, IL-8, granulocyte-macrophage colony-stimulating factor, macrophage inflammatory protein 1α (MIP1α), MIP1β, and monocyte chemoattractant protein 1]. These mediators attract macrophages, monocytes, and T lymphocytes to the site of infection, promoting increased inflammation and establishing a pro-inflammatory feedback loop[24]. This inflammatory response is much more exaggerated in the subgroup of patients who require ICU admission and those with fatal outcomes and affects different organs and systems, including the endothelium[25-28].

Dysregulated immune response and COVID-19 immunophenotypes

In severe COVID-19, many patients express a dysregulated immune response characterized by a defective adaptive response and an exacerbated innate immune response. This situation leads to poor control of the virus, and overproduction of proinflammatory cytokines that initially damage lung infrastructure[29-31]. A cytokine storm similar to that in hemophagocytic syndrome has been described in a subgroup of COVID-19 patients with elevated levels of proinflammatory cytokines, particularly soluble receptor for IL-2γ, IL-6, and tumor necrosis factor-α (TNF-α)[32]. The resulting hypercytokinemia extends to other tissues and can cause considerable organic damage[28]. This finding would justify the use of immunosuppressive therapies such as corticosteroids or cytokine-targeted therapy.

Inflammation is not always the dominant phenomenon in COVID-19[33-35]. Different authors have revealed that in many severe cases of COVID-19 the presence of immune downregulation with profound immunosuppression as primary phenomenon precedes hyperinflammation. These immunological alterations are varied and can be classified into different subsets or phenotypes[30,36,37]. One of these immunophenotypes would be characterized by the presence in most patients with severe COVID-19 of coexisting alterations in numbers, subset composition, cycling, activation, and gene expression of T cells. Numerous studies show a relationship between profound lymphopenia with a worse prognosis and higher mortality in COVID-19[38-40]. This lymphopenia affects the different subsets of T cells, and the cause is not well established. We postulate several causes: T cell exhaustion, migration and sequestration of T cells to affected tissues (especially the lungs), a deficit of lymphopoiesis induced by the
presence of hypercytokinemia, or an increase in apoptosis mediated by a virus-induced overexpression of type 1 programmed death receptors (PD-1) and its ligand (PD-L1).

Another immunophenotype is characterized by decreased antigen presentation capacity, demonstrated by a deficit in human leukocyte antigen-DP expression in mononuclear-phagocytic system cells, particularly in intermediate monocytes. We observed this phenotype in more than 50% of severe and critical forms of COVID-19, and it is inversely related to the inflammatory activity mediated by cytokines such as IL-6 [37, 41]. In this regard, hypercytokinemia (both: Pro and anti-inflammatory cytokines) is another typical phenotype in severe forms of COVID-19. IL-6, IL-8, IL-1β, and IL-10 levels were higher in COVID-19, and the increases were severity-related. Induced protein 10 (IP-10) CXCL10, a chemokine rapidly and transiently induced following vaccination and other virus infections, almost invariably increased in COVID-19 and was severity-related [42]. Thus, many patients with COVID-19 were described by a severity-related triad of IP-10, IL-6, and IL-10 [20, 32, 36, 43]. Finally, emerging data indicate that complement and neutrophils contribute to an inadequate immune response that fuels hyperinflammation and thrombotic microangiopathy, increasing COVID-19 mortality. High plasma levels of neutrophil extracellular traps, tissue factor activity, and sC5b-9 were detected in critical patients [44, 45]. All these conditions constitute immune signatures associated with a worse prognosis of COVID-19 that, on the other hand, could also suppose therapeutic targets.

Antimalarials: Hydroxychloroquine and chloroquine

Hydroxychloroquine (HCQ) is an antimalarial 4-aminoquinoline that showed *in vitro* activity against various RNA viruses, including SARS-CoV-2 [46]. Some authors believe that HCQ acts against SARS-CoV-2 through multiple mechanisms [47]: Inhibition of viral entry; inhibition of viral release in the host cell; reduction of viral infectivity and immune modulation.

The absence of efficacious treatment tools at the beginning of the pandemic led to the wide use of chloroquine and HCQ. Thus, in several controlled studies carried out in Chinese hospitals, chloroquine treatment was able, compared to controls, to prevent the development of pneumonia, improve the radiological lung image, accelerate the elimination of the virus and shorten the duration of the disease [48-50]. Similarly, a French study with a small sample size found that treatment with HCQ accelerated conversion to a state of seronegativity for the virus [51]. However, these studies had significant methodological limitations that made their results questionable.

Nowadays, the body of evidence on HCQ e showed no benefit in terms of mortality reduction, invasive MV requirements, or time to clinical improvement. Until now, 31 randomized controlled trials (RCTs), including 16536 patients, have compared HCQ or chloroquine against standard of care or other treatments. The Recovery trial was the biggest, with over 11800 patients randomized to different treatment arms. 1561 patients were randomized to receive HCQ and 3155 to receive usual care after an interim analysis determined a lack of efficacy. Death within 28 d occurred in 421 patients (27.0%) in the HCQ group and in 790 (25.0%) in the usual-care group [rate ratio (RR) = 1.09; 95% confidence interval (CI): 0.97-1.23; *P* = 0.15]. The results suggested that patients in the HCQ group were less likely to be discharged from the hospital alive within 28 d than those in the usual-care group (59.6% vs 62.9%; RR = 0.90; 95%CI: 0.83-0.98). Moreover, among the patients who were not undergoing MV at baseline, those in the HCQ group had a higher frequency of invasive MV or death (30.7% vs 26.9%; RR = 1.14; 95%CI: 1.03-1.27) [52]. More recently, in the Solidarity trial, 947 patients were assigned to receive HCQ. Death occurred in 104 of 947 patients receiving HCQ and in 84 of 906 receiving its control (RR = 1.19; 95%CI: 0.89-1.59; *P* = 0.23) [53].

The main RCTs that have compared the effect of HCQ or chloroquine on mortality have been included in two metaanalyses. The one made by the WHO combined the Recovery and Solidarity trials with other six smaller studies involving hospitalized patients with suspected or confirmed COVID-19. The results of this metaanalysis showed that HCQ or chloroquine probably increase mortality, RR = 1.08 (95%CI: 0.99-1.19); does not reduce invasive MV requirement; RR = 1.05 (95%CI: 0.9-1.22) and may not improve time to symptom resolution, RR = 1.05 (95%CI: 0.94-1.18) [54]. These results are consistent with other published metaanalysis that included 28 published or unpublished RCTs, with 10319 patients, obtaining a combined odds ratio (OR) on all-cause mortality for HCQ of 1.11 (95%CI: 1.02-1.20; *P* = 0%; 26 trials; 10012 patients) and a combined OR for chloroquine of 1.77 (95%CI: 1.05-2.13; *P* = 0%; 4 trials; 307 patients) [55]. In contrast, in a recent retrospective observational study conducted by Schlesinger et al. [56] in 3451 unselected patients hospitalized in 33 clinical centers in Italy, HCQ use was associated with a 30% lower risk of in-hospital death COVID-19 hospitalized patients. In conclusion, awaiting new randomized clinical trials focused on critically ill patients, the treatment with HCQ is associated with increased risk of mortality in COVID-19 patients, and there was no benefit of chloroquine. For these reasons, its use is discouraged in patients with severe COVID-19 infection.

Colchicine

Colchicine has been in the spotlight as a treatment for SARS-CoV-2 infected patients given its anti-inflammatory and antiviral properties, which lead to the hypothesis that it might be beneficial with the systemic inflammation observed in the most severe cases. Many are the mechanism of action involved in colchicine’s properties, but they are underpinned mainly by inhibiting neutrophil chemotaxis by interfering with microtubule formation, modulation of proinflammatory cytokines, and attenuation of...
NOD-like receptor family pyrin domain containing 3 inflammasome formation, among others[56].

Several studies have explored the potential risk-benefit ratio of colchicine in ambulatory and inpatient based on its properties. A meta-analysis reported a survival benefit (OR = 0.62; 95% CI: 0.48-0.81) of patients with Colchicine treatment with a tendency towards a decreased need of MV [0.75 (95% CI: 0.45-1.25)]57. However, most studies focus on the out-hospital or mild cases of COVID-19 patients. Not much has been reported about colchicine in the most severe cases. In this sense, Scarsi et al [58] observed that colchicine was independently associated with survival [hazards ratio (HR) = 0.151; 95% CI: 0.062-0.368] despite it was given to patients with worse PaO2/FiO2. Similarly, Brunetti et al[59] also observed a significant decreased mortality in patients with severe COVID-19 among those who received colchicine (OR = 0.20; 95% CI: 0.05-0.80; P = 0.023).

To date, only one prospective, open-label, randomized trial has explored the potential benefits of colchicine among severe COVID-19 patients. In this trial, patients who received colchicine did show an improved time to clinical deterioration compared to those without colchicine[60]. However, recently, the RECOVERY trial closed the recruitment of colchicine for hospitalized COVID-19 patients after a review did not observe any clinical benefit[61].

In conclusion, given the disparity, we cannot recommend colchicine despite initial data being promising until further evidence. Among more than 30 randomized clinical trials ongoing analyzing the effect of Colchicine in COVID-19, only 3 focus specifically on severe cases or patients admitted to the ICU: In particular ECLA PHRI COLCOVID Trial (NCT04328480), COMBATCOVID trial (NCT04363437), and COLHEART-19 (NCT04762771). These trials will explore the requirement for MV, severe complications, or death among moderate-to-severe hospitalized COVID-19 patients.

Calcineurin inhibitors: Cyclosporine A and tacrolimus

Cyclosporine A and tacrolimus (also called FK-506) are immunosuppressive drugs known to prevent rejection after organ transplantation and for autoimmune diseases. These drugs bind to different cellular cyclophilins and FK506-binding proteins, respectively. This binding inhibits calcineurin (calcium-calmodulin-activated serine/threonine-specific phosphatase) blocking the translocation of the nuclear factor of the activated T cells from the cytosol to the nucleus, preventing the transcription of several genes that encode key cytokines involved in different immunological mechanisms[62-64].

Cyclosporin A binds cyclophilin A, which is essential for the replication of, among other viruses, SARS-CoV-2[65]. Therefore, the binding of cyclosporin A with the corresponding cyclophilin can block the replication of SARS-CoV-2[66]. Tacrolimus binds to FK506-binding proteins and inhibits calcineurin, in addition to suppressing the early phase of T-cell activation and the expression of numerous cytokines (IL-2, IL-4, TNF-α, INF-γ), which are necessary for the activation of the T cell in the immune response, perhaps preventing the cytokine storm seen in severe COVID-19 pneumonia[67].

In vitro evidence of inhibition of cyclosporine-mediated replication of various coronaviruses (including SARS) has been found. The cyclosporin analog, alisporivir, has been reported to inhibit SARS-CoV-2 in vitro but has never been tested in a clinical setting[68]. Given the antiviral and anti-inflammatory properties of calcineurin inhibitors, they could have the potential to prevent the uncontrolled inflammatory response and replication of SARS-CoV-2, in addition to acute lung injury. However, there is not enough evidence to recommend its use in severe COVID-19. Currently, several clinical trials are studying the possible benefit of the administration of cyclosporine (NCT04492891,
After TCZ administration, even in patients needing MV, the first available data obtained from case series showed clinical, analytical, and radiological improvement. Arthritis, juvenile idiopathic arthritis, giant cell arteritis, and cytokine release syndrome associated with soluble and membrane receptor. TCZ is approved to treat inflammatory diseases such as rheumatoid arthritis, positive, the severity of COVID-19, and the need for MV has been observed.

IL-1 blocker: Anakinra, canakinumab

Anakinra is a recombinant human IL-1 receptor antagonist that blocks the activity of the proinflammatory cytokines IL-1α and IL-1β, and it is approved to treat patients with rheumatoid arthritis, Still’s disease, and some rare auto-inflammatory syndrome. Reanalysis of data from a phase III randomized controlled trial showed anakinra is related to a significant improvement in survival in the subset of septic patients with features of macrophage activation syndrome (MAS)[69,70].

MAS is a subgroup of secondary hemophagocytic lymphohistiocytosis mainly appearing in rheumatologic disorders. It is an acute syndrome with a hyperinflammatory immune state characterized by the activation and expansion of macrophages and T-lymphocytes. This persistent activation leads to a cytokine storm with high IL-1, IL-6, IL-18, soluble IL-2 receptor (CD 25), IFN-γ, and TNF-α, and is thought to be responsible for the multiorgan failure and the high mortality of this syndrome[71,72].

A subgroup of severe COVID-19 patients shows hyperinflammatory symptoms similar to MAS, with the release of IL-1, IL-6, IL 18, and IFN-γ, and the evidence shows a direct correlation between the severity of systemic inflammation, progression to respiratory failure, and fatal outcome[73,74]. For this reason, it has been proposed to treat this patient subgroup with anakinra. At the date, only the RCT CORIMUNO-ANA-1 investigating the role of anakinra in COVID-19 patients has been published[75]. In this trial, patients were randomized to intravenous anakinra or usual care in mild-to-moderate COVID-19 pneumonia (not requiring ICU admission) with serum C-reactive protein (CRP) levels higher than 25 mg/L. They could not demonstrate that the use of anakinra effectively reduced the need for non-invasive ventilation (NIV), MV, or mortality. The study was stopped due to futility. Another trial within the CORINOMUNO platform (CORINOMUNO-ANA-2) aimed to assess the effect of anakinra in patients with more severe COVID-19 patients (ICU admitted) has now been completed, and it is being analyzed.

Few observational studies analyze the treatment with anakinra in COVID-19 patients, and they have methodological limitations (Table 1). Cavalli et al[75] have analyzed high-dose (5 mg/kg twice daily) of intravenous anakinra compared to standard care: Higher survival rate and progressive improvements in PaO2/FiO2 ratio have been observed, without significant differences in days free of MV. Huet et al[76] have studied subcutaneous anakinra vs standard treatment, and they observed that anakinra significantly reduced the need for MV or mortality. The control group was a historical cohort with high mortality (about 50%).

Kooistra et al[77] have analyzed mechanically ventilated COVID-19 patients treated with intravenous anakinra vs standard care in critically ill patients. Anakinra has been linked to a significant reduction in clinical signs of hyperinflammation, without significant differences in clinical outcomes. Dimopoulos et al[78] have studied rescue treatment with intravenous anakinra in seven MV-ICU patients and one non-ICU patient, all of them with a hemophagocytosis score positive. They concluded that anakinra could improve respiratory function and reduce mortality compared with the historical series of patients with MAS in sepsis. Canakinumab is a monoclonal antibody against IL-1β approved to treat familial Mediterranean fever and other chronic autoinflammatory syndromes[79].

In the setting of COVID-19 pneumonia, a small retrospective study has analyzed 10 patients with respiratory failure (not requiring MV) and hyperinflammation treated with canakinumab. A rapid improvement of the inflammatory response and oxygenation was observed[80]. An ongoing clinical phase 3, randomized, double-blind trial studies the efficacy and safety of canakinumab on Cytokine Release Syndrome in patients with COVID-19 pneumonia (NCT04362813). In conclusion, there is not enough data supporting the efficacy or safety of anakinra or canakinumab in treating critically ill patients with COVID-19, and therefore, we can’t establish a recommendation on their use or the optimal timing to start the treatment.

IL-6 blockers: Tocilizumab and sarilumab

COVID-19 patients who develop severe respiratory failure use to show a hyperinflammatory response, either MAS (driven by IL-1β) or, primarily, immune dysregulation (driven by IL-6). IL-6 is an inflammatory cytokine that exerts its effects inducing acute phase reactants (as CRP, fibrinogen, and hepcidin) in the liver and promotes antibody production and CD4 T helper and CD8 cytotoxic T cell differentiation[81,82]. A direct relationship between IL-6 levels and viral load, duration of SARS-CoV-2 viral positivity, the severity of COVID-19, and the need for MV has been observed[83-88].

Tocilizumab (TCZ) and sarilumab are two monoclonal antibodies that work by blocking the IL-6 soluble and membrane receptor. TCZ is approved to treat inflammatory diseases such as rheumatoid arthritis, juvenile idiopathic arthritis, giant cell arteritis, and cytokine release syndrome associated with chimeric antigen receptor T-cell therapy and sarilumab is approved for the treatment of rheumatoid arthritis[89]. Its use has been proposed to reduce the inflammatory response in COVID-19 patients. The first available data obtained from case series showed clinical, analytical, and radiological improvement after TCZ administration, even in patients needing MV[90-94].
The results obtained from comparative observational studies (cohorts or case-controls) were also promising[25-98]. Although some studies failed to show relevant differences between TCZ-treated and untreated patients[99,100], most of them showed a beneficial effect of the administration of TCZ: Oxygenation improvement, more days free of MV, less need for ICU admission or MV, and higher survival[101-105].

There are scarce studies that analyze the effect of TCZ in critically ill patients with COVID-19. In one of them, Biran et al[102] in 630 propensity score-matched ICU patients (> 90% of them receiving MV) found a lower in-hospital mortality risk (HR = 0.64; 95%CI: 0.47-0.87, P = 0.004) in patients treated with TCZ (400 mg). Rossotti et al[105] described similar results showing a lower risk of mortality in the...
general analysis and patients receiving MV, but not in less severe cases; Gupta et al[106] found an inhospital reduction in mortality in those critically ill patients who received TCZ in the first 2 d of ICU admission. On the other hand, Rojas-Marté et al[107] analyzed 193 patients (62.7% with MV) and found that TCZ was related to lower mortality in non-ventilated patients (6.1% vs 26.5%, \(P = 0.024 \)), but not in MV patients.

In addition, we have contradictory data from two studies focused on patients on MV. One of them shows a reduction in mortality risk (HR = 0.55; 95%CI: 0.33-0.90)[108], and the other failed to detect significant differences between those treated with TCZ and untreated patients[109,110]. More recently, we began to know the results of RCT investigating the effects of TCZ in COVID patients[85,111-113]. Among these, once again, there is no unanimity regarding the results. Salama et al[110] and Mariette et al[112], in hospitalized patients with SARS-CoV-2 pneumonia (not needing respiratory support), demonstrated a reduction in the risk of death or need of MV in patients treated with one or two doses of TCZ (8 mg/kg, maximum 800 mg). However, Stone et al[90] and Salvarani et al[111] failed to demonstrate a beneficial effect in patients treated with TCZ in similar patients (respiratory failure needing conventional oxygen therapy).

In a mixed population, including 38% of patients on MV, the COVACTA trial shows no evidence of improvement in the clinical situation on day 28 (primary outcome) but it shows a shorter hospital stay, less ICU admission, and less clinical failure rate in patients randomized to treatment with TCZ (8 mg/kg, max 800 mg, one or two doses)[113]. TOCIBRAS trial was prematurely interrupted because an excess of deaths at 15 d after randomization was detected in the TCZ group; this study included severe and critically ill COVID patients (23% receiving HFNO/NIV and 16% receiving MV)[114].

Recently, results of the RECOVERY platform trial were released[115]. In patients with clinical evidence of progressive COVID-19 (CRP ≥ 75 mg/L and need for supplemental oxygen to achieve oxygen saturation > 92%), treatment with TCZ improved survival and decreased the need for MV. The reduction in mortality with TCZ was higher in patients who also receive corticosteroids. REMAP-CAP trial addressed the impact of TCZ focused on critically ill patients. In this RCT, patients were randomized to be treated with TCZ (n = 366), sarilumab (n = 48), or usual care (n = 412). The authors reported that patients treated with IL-6 blockers (TCZ 8 mg/kg, max 800 mg, one or two doses; or sarilumab, 400 mg), within 24 h after the start of organ support, had more days free of hemodynamic or respiratory support and lower in-hospital mortality. Furthermore, it appears that the treatment effect is more significant when TCZ was combined with corticosteroids[116]. A summary of studies addressing IL-6 blockers on COVID-19 is available in Table 2.

One of the main concerns when using TCZ is the risk of superinfections. However, a higher incidence of superinfections in patients treated with TCZ has not been confirmed in critically ill COVID-19 patients (see Table 2). In the same way as TCZ, sarilumab administration has been related to series, clinical, analytical, and radiological improvement but the available data are scarce[117-120]. It has not shown benefit in comparative observational studies[121], but it has been shown in the aforementioned REMAP-CAP trial[116]. In most positive studies, TCZ is associated with corticosteroids (see Table 3), thus given the positive results described and the absence of significant side effects of this combination, it should be considered early in COVID-19 patients admitted to the ICU.

Janus kinase pathway inhibition: Ruxolitinib, baricitinib

Most viruses, SARS-CoV-2 included, enter cells through receptor-mediated endocytosis after binding its spike protein to the human ACE-2 receptor[122]. This endocytosis is mediated by clatrine and other mechanisms. AP2-associated protein kinase 1 (AAK1) and cycling G-associated kinase (GAK) regulates this process[123]. Disabling AAK1 might stop the virus’s entry into cells and the intracellular assembly of virus particles[124]. Janus kinase (JAK) inhibitors are biological agents that mainly inhibit type I/II cytokine receptors[125]. There are several JAK inhibitors such as fedratinib, tofacitinib, sunitinib, or erlotinib. Still, they have many secondary effects, which turns their use in COVID-19 patients controversial, but ruxolitinib and baricitinib may play a role in this setting. However, Food and Drug Administration recently raised a warning regarding treatment with JAK-inhibitors that we have to bear in mind before starting treatment: Increased thromboembolism risk or increased frequency of herpes zoster virus reactivation; pan-JAK inhibitors may repress some cytokines required for antiviral defense (IFN-α/β) or immune restoration (IL-2, IL-7)[126-128].

Baricitinib is an oral anti-JAK inhibitor, acting against JAK1 and JAK2, with less potency for JAK3, with an exceptionally high affinity for AAK1. It inhibits the JAK signal transducer and activator of the transcription (STAT) pathway[129]. Moreover, it can also inhibit the cyclin GAK, another regulator of endocytosis, so it has been suggested as a potential drug against SARS-CoV-2 due to its double effect: Decreasing both the immune response (inhibiting the proinflammatory signal of several cytokines, such as IL-6, IL-12, IL-23, and IFN-α) and interrupting the virus entry and assembly in the cells[130]. It is currently approved for rheumatoid arthritis[131]. Its advantages include once-a-day oral administration (either 2 mg or 4 mg), acceptable safety profile (can be used in combination with other treatments because of low plasma protein binding and minimum cytochrome P450 interactions), and the double mechanism of action[132]. There is certain reluctance about baricitinib due to the simultaneous inhibition of AAK1 and JAK, which can reduce IFN-α levels, leading to a worse immune response, as mentioned above[133]. A pilot study from Italy showed significantly improved clinical and laboratory
parameters in 12 patients with mild to moderate COVID-19 pneumonia. None of them required admission to the ICU nor MV[134].

An RCT evaluated baricitinib plus remdesivir in hospitalized COVID-19 patients. The treatment group needed fewer days to recovery (7 vs 8 d, *P* = 0.03) and 30% higher odds of improvement in clinical status at day 15. Precisely, patients on NIV or HFNO needed significantly less time to recovery (10 vs 18 d) and had fewer serious adverse events (16% vs 21%, *P* = 0.03)[135]. In conclusion, baricitinib combines anti-inflammatory characteristics and antiviral activity, making it a strong candidate for future evaluation in RCT.

Ruxolitinib is another oral JAK-kinase inhibitor currently indicated for intermediate or high-risk myelofibrosis, polycythemia vera, hemophagocytic lymphohistiocytosis, or steroid-refractory graft-versus-host disease. Ruxolitinib reduces the high level of cytokine release associated with these diseases [136,137]. It blocks JAK kinase activity and impedes STAT activation, decreasing levels of inflammatory cytokines (such as IL-1β, IL-2, IL-5, IL-6, IL-7, IL-13, IL-15, and IFN-γ)[138]. Pharmacokinetically, ruxolitinib has rapid oral absorption and a half-life of approximately 3 h and reaches peak plasma concentrations[139].

A non-randomized clinical study conducted in 93 severe COVID-19 patients not requiring MV at baseline showed a significant improvement in survival rate (89.1% vs 57.1%, *P* = 0.0034), a reduction of the inflammatory response (absence of fever and a decrease of at least 30% in CRP levels; 87% vs 23%, *P* = 0.0001) and no significant adverse event in patients treated with half the approved dose of ruxolitinib for hematologic diseases plus corticosteroids[140]. Similar results were communicated by La Rosée et al [140], in his retrospective study performed in 14 patients receiving ruxolitinib (10 receiving NIV, 1 HFNO, and 1 MV); they used a COVID inflammation score to evaluate the systemic inflammation, watching a reduction by 42% and 58% achieved on day 5 and 7 of treatment.

Only one Chinese RCT studied the efficacy of ruxolitinib. No death (14.3% vs 0%, *P* = 0.232) or deterioration [need for NIV/MV: (29% vs 10%, *P* = 0.663)/(14.3% vs 0%, *P* = 0.232)] occurred in ruxolitinib group, but no statistically difference was found. Both groups received a similar proportion of corticosteroids and antivirals[141]. To summarize, ruxolitinib may play a role in those patients with hypoxemic COVID-19 pneumonia but not yet needing MV, attenuating the immune response and therefore may prevent the progression of lung damage, bearing in mind that an early administration could favor viral replication. There is no data in critically ill patients regarding JAK inhibitors to establish a strong recommendation but, maybe, baricitinib could be used in patients on NIV or HFNO who are also receiving remdesivir, in order to shorten the time to recovery.

Corticosteroids

Corticosteroids have been widely used for years in autoimmune diseases with great success. A cytokine

Table 3 Coronavirus disease 2019 patients treated with tocilizumab and corticosteroids

Ref.	Tocilizumab group	Control
Salama et al[110], RCT	80.3%	87.5%
Rosas et al[113], RCT	36.1%	54.9%
Stone et al[90], RCT	11%	6%
Salvarani et al[111], RCT	10%	7.6%
Mariette et al[112], RCT	33%	61%
RECOVERY Collaborative Group[113], RCT	82%	82%
REMAP-CAP Investigators et al[116], RCT	> 80%	
Veiga et al[114], RCT	69%	73%
Gupta et al[189], observational	18.7%	12.6%
Somers et al[108], observational	29%	20%
Fisher et al[109], observational	73.3%	78.6%
Biran et al[102], observational	46%	42%
Guaraldi et al[101], observational	30%	17%
Rossotti et al[105], observational	Not reported	
Rojas-Martí et al[107], observational	43%	33%

RCT: Randomized clinical trial.
In the early stages of SARS-CoV-2 infection, the body’s immune response begins with the activation of innate immune mechanisms. These mechanisms include the recognition of viral antigens by pattern recognition receptors (PRRs) and the generation of type I interferons (IFNs) in response to viral RNA. The IFNs then act as chemokines, attracting immune cells like monocytes and dendritic cells to the infection site. These cells further activate T lymphocytes, which release cytokines that play a role in the immune response.

Corticosteroids are known to have anti-inflammatory effects by inhibiting the production of pro-inflammatory cytokines and the expression of adhesion molecules. In the context of COVID-19, corticosteroids can be used to inhibit the inflammatory response and reduce tissue damage, especially in patients with severe respiratory distress syndrome (ARDS).

In a study published in the *Lancet*, the effects of corticosteroid therapy on COVID-19 patients were compared in the Recovery trial. Participants were randomized to either a standard treatment group or a group that received corticosteroids. The results showed that patients in the corticosteroid group had a lower risk of death and a shorter duration of mechanical ventilation compared to those in the standard treatment group. However, this benefit was limited to patients who had evidence of respiratory distress syndrome and required oxygen supplementation.

The use of corticosteroids in COVID-19 patients should be guided by clinical trial results and individual patient characteristics. Early in the pandemic, recommendations were not to use or limit corticosteroids. However, as the evidence accumulated, it became clear that corticosteroids could be beneficial in certain situations. The use of corticosteroids in COVID-19 patients is complex and requires careful consideration of the benefits and risks.

Intravenous immunoglobulin and hyperimmune immunoglobulin

Intravenous immunoglobulin (IVIG) is a product derived from the plasma of thousands of donors. It contains primarily polyclonal immunoglobulin G with two functional fragments, the F(ab)2 fragment, for antigen recognition, and the crystallizable fragment (Fc), for the activation of innate immune responses, with small amounts of immunoglobulin (Ig)A and IgM. IVIG provides temporary protection against infections and may be used in patients with severe COVID-19 pneumonia.

Studies have shown that IVIG can reduce the duration of hospitalization and the need for mechanical ventilation in patients with COVID-19. The most accepted regimen for using IVIG is 250 mg daily for ten days. However, if this regimen is significantly better than lower doses, mortality improvement was more significant in the critical patient subgroup. This regimen (by extending periods in the few published results) showed better results than the median doses of corticosteroids for more extended periods in the few published results if this regimen is significantly better than lower doses and more prolonged periods must be demonstrated in ongoing head-to-head clinical trials.

Progression to MV

Progression to mechanical ventilation (MV) was lower in the corticosteroid arm in clinical trials and meta-analyses. Corticosteroids can also be used at a higher dose with methylprednisolone pulses for three days (250 mg for three days). One small clinical trial and some observational studies showed essential improvements in mortality using corticosteroid pulses. Again using corticosteroid pulses, mortality improvement was more significant in the critical patient subgroup. This regimen (by the non-genomic pathway) showed better results than the median doses of corticosteroids for more extended periods in the few published results. If this regimen is significantly better than lower doses and more prolonged periods must be demonstrated in ongoing head-to-head clinical trials.

Intravenous immunoglobulin and hyperimmune immunoglobulin

Intravenous immunoglobulin (IVIG) is a product derived from the plasma of thousands of donors. It contains primarily polyclonal immunoglobulin G with two functional fragments, the F(ab)2 fragment, for antigen recognition, and the crystallizable fragment (Fc), for the activation of innate immune responses, with small amounts of immunoglobulin (Ig)A and IgM. IVIG provides temporary protection against infections and may be used in patients with severe COVID-19 pneumonia.
Table 4 Summary of studies using corticosteroids in coronavirus disease 2019

Ref.	Patients	Treatment regimen	Population	Mortality	ICU administration	In-hospital stay	Secondary infections
RECOVERY Collaborative Group et al [177], RCT	11303	DXM 6 mg daily × 10 d	In-hospital	Decrease 2.8% RR 0.83	NS	Increase discharged 28 d (3.7%)	NA
RECOVERY Collaborative Group et al [177], RCT	1007	DXM 6 mg daily × 10 d	MV	Decrease 12.1% RR 0.64	NA	Increased discharged 28 d (9.7% RR 1.48)	NA
Tomazini et al[176], RCT	299	DXM 20 mg × 5d + DXM 10 mg × 5d	ICU patients	Decrease 2.4% (alive or ventilator-free)	NA	NA	DXM 21.9% vs 29.1% standard, (7.9% vs 9.5% bacteremia)
Jeronimo et al[178], RCT	416	MPD (0.5 mg/kg twice daily) × 5d	In-hospital	NS (MV)	NS (MV)	NS	NA
Angus et al[180], RCT	149	HCT 200 mg daily × 7d then decrease dose × 7d (14 d)	ICU patients	NS	NS	NS	NA
Edalatifard et al[181], RCT	68	MPD 250 mg × 3 d	In-hospital	Decrease 37%	No patients on MV	Decrease 4.6 d	2.9% (1 pt) in MPD vs 0% (0 pt) standard
Corral-Gudino et al[186], RCT	85	MPD 40 mg/12 h × 3 d, then MPD 20 mg/12 h × 3 d	In-hospital	Decrease 24% composite death, ICU Adm or NIV	NS	NS	NA
Kim et al[186], MA	49569	Variable regimens	ICU patients	OR 0.54 (0.40-0.73)	NA	NA	NA
Van Paassen et al[187], MA	20197	Variable regimens	In-hospital	OR 0.72 (0.57-0.87)	RR 0.71 (0.54-0.97)	NS	NA

1Preprint, not peer-reviewed.
2Absolute risk of mortality reduction in randomized clinical trial or odds ratio in meta-analysis.
ICU: Intensive care unit; RCT: Randomized clinical trial; MA: Meta-analysis; DXM: Dexamethasone; MPD: Methylprednisolone; HCT: Hydrocortisone; NS: Non-significant; NA: Not applicable; Adm: Admission; MV: Mechanical ventilation; NIV: Non-invasive ventilation; RR: Relative risk; OR: Odds ratio.

before being metabolized, requiring several doses over the disease course[189]. IVIG has been used to treat several immunodeficiencies, neurologic disorders, inflammatory and infectious conditions, such as pneumonia by influenza, SARS, and MERS[190].

The rationale for using IVIG in SARS-CoV-2 infection is a modulation of inflammation. The central mechanism of action of IVIG is the inactivation of phagocytes (neutrophils, monocytes, and macrophages) through FCγR. Moreover, it has a neutralizing effect by creating an antibodies–virus complex that prevents the binding of the virus to alveolar epithelial cells. Furthermore, it can also influence the process of lymphocyte differentiation and maturation[191,192].

Xie et al[193] conducted a retrospective study among 58 cases of severe or critically ill COVID-19 patients with lymphopenic immunophenotype (absolute lymphocyte count fell under 0.5 × 10^9/L), receiving IVIG (20 g/d), differentiating two groups: Those receiving IVIG early (<48 h after admission) and after 48 h. There was a significant reduction in 28-d mortality (23% vs 57%, P = 0.009), need for MV (6.67% vs 32.14%, P = 0.0016) and length of stay (11 ± 1 d vs 1966 ± 16 d, P = 0.005) in the <48 h group. However, a more recent RCT including 84 patients with severe COVID-19 (52 of which received IVIG at a dose of 400 mg/kg/d for three days plus standard care) showed no difference in terms of mortality nor need for MV or admission to the ICU[194]. Finally, an Iranian RCT including 59 patients who did not respond to initial treatments, showed a significantly lower in-hospital mortality (20% vs 48.3%, P = 0.025) in those patients (n = 30) receiving IVIG (20 g daily for three days)[195].

Taken together, the results of the studies show some limitations to attribute clinical improvement only to IVIG use (variations in previous/concomitants treatments, a small number of patients, or variations in dosage). So, in conclusion, we can’t make a statement recommending its use. Considering its overall safety profile, it may be a promising option at the early stage of severe COVID-19 disease. On the other hand, hyperimmune immunoglobulin (H-IG) is an IVIG obtained from patients with high antibody titers to specific pathogens. Its pharmacokinetic properties are similar to IVIG, suggesting that a single dose may be enough in an acute setting[196,197]. It has been used in previous coronavirus epidemics such as SARS1 in 2003, MERS in 2012, and influenza A[198]. H-IG was used at a dosage of 5 mL/kg with an antibodies neutralizing titer of 1:160, with an optimal administration within the first 7 d. One of its limitations is the generation of neutralizing antibodies in specific individuals who have
As mentioned before, the presence of hypercytokinemia with levels more than 2-fold higher than the control group without associated adverse effects noted in the 46%, respectively. IL-7 was associated with a restored lymphocyte count, with the IL-7 group having a lymphocyte count of 700/μL. An initial safety dose of 3 μg/kg was followed by a dose of 10 μg/kg by patients with COVID-19 and severe lymphopenia (defined as two consecutive absolute lymphocyte counts of less than 700/μL). The presence in most cases passed an infection. Another limitation is that donor availability is limited. A recent Cochrane revision was conducted regarding convalescent plasma and H-IG including 98 ongoing studies[199].

Recently an Indian RCT included 464 moderate COVID-19 patients (PaO_2/FiO_2 between 200-300 mmHg or a respiratory rate higher than 24 rpm with SaO_2 < 93% on room air), 235 of which received convalescent plasma (two doses of 200 mL separated 24 h). No difference was observed with the control group regarding the progression of disease or mortality[200]. Another RCT conducted in Wuhan involved 103 severe COVID-19 patients (44 on NIV or high-flow nasal cannula, 25 on MV or extracorporeal membrane oxygenation), where 52 received convalescent plasma plus standard therapy, observed an improvement of the negative conversion rate of viral polymerase chain reaction (87.2% vs 37.5%, P < 0.001) but did not result in a statistically significant improvement in time to clinical improvement within 28 d or in 28-d mortality[201].

We have limited data regarding critically ill patients. A small case series involving 5 critically ill patients on MV treated with convalescent plasma between day 10 to 22 from admission observed an improvement in their clinical status [increased PaO_2/FiO_2, decreased Sequential Organ Failure Assessment (SOFA) score, and body temperature normalized][202]. Another case report involving 4 critically ill patients (who received 200-2400 mL of convalescent plasma ranging from day 11 to day 18 post-admission) observed lung lesions resolution and decreased SARS-CoV-2 viral load clinical improvement[203]. A summary of RCTs and observational studies, including critically ill patients addressing IVIG and H-IG on COVID-19, is available in Table 5. Therefore, there are not enough data to support the use of H-IG and controversial results on convalescent plasma, so we can’t establish a recommendation.

Other potential therapies: Statins and T-lymphocyte restorative therapies

Statins: Statins are potent 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors that prevent the activation of Rho-kinase, and thus, gain cardiovascular protective effects that are low-density lipoprotein-cholesterol independent[204]. The existing published evidence suggests a potential benefit of statins[205,206], despite the higher risk profile of statin-users as opposed to non-users, with some discordant results[207,208].

Statins improve endothelial dysfunction through upregulation of ACE-2 and endothelial nitric oxide synthase, decrease endothelin-1 and reactive oxygen species, and decrease nuclear factor-kB activation as well as proinflammatory cytokine expression[204,209]. Statins might also lessen myocardium injury by increasing nitric oxide, improving coronary perfusion, and decreasing IL-6 synthesis[210-212]. Finally, we can obtain a potential reduction of acute coronary syndromes and cerebrovascular events (both increased in COVID-19 patients)[213,214].

If statins might benefit ARDS due to their pleiotropic properties, it has been evaluated before the current global pandemic. Two RCTs with rosuvastatin and simvastatin did not improve clinical outcomes in ARDS[215,216]. Similar findings were reported in a meta-analysis where stains did not have a clear net benefit among patients with acute lung injury or ARDS[217]. However, a sub-analysis of the HARP-2 trial (HMG-CoA reductase inhibition with simvastatin in acute lung injury to reduce pulmonary dysfunction) observed in the subgroup of patients with hyperinflammatory phenotype a survival benefit of simvastatin that was not observed with rosuvastatin[218]. The presence in most cases of severe COVID-19 both, of hyperinflammation and endothelial dysfunction might theoretically justify why statin treatment showed a protective effect against the need for MV and ICU admission in COVID-19 patients[25,28,30,219]. Unfortunately, no studies seem to have explicitly focused on lipid-lowering agents in critically ill patients with COVID-19. The lack of prospective data on this subset of patients does not allow us to provide a recommendation. However, several ongoing clinical trials will give us evidence-based insights about statin efficacy in severe COVID-19 (NCT04486508; NCT04390074). Until then, the decision about continuation should be individualized.

T-lymphocyte restorative therapies: As mentioned before, the presence of hypercytokinemia with lymphopenia represents a biological signature of a pathogen uncontrolled damage in critically ill patients with COVID-19. NK cells and cytotoxic T cells can kill the virally infected cells, whereas the helper T lymphocytes adjust the total adaptive immune response. In this regard, the lymphopenic immunophenotype is considered a bad prognosis factor and targets novel therapies. Several T-lymphocyte restorative treatments as IL-7 or thymosin alpha are under evaluation. IL-7 is a pleiotropic cytokine essential for lymphocyte survival and expansion. Administration of IL-7 invariably increases circulating and tissue lymphocytes and has an excellent safety profile[220,221]. Several trials are evaluating its use among patients with severe COVID-19 (NCT04442178, NCT04379076, NCT04407689). A recent clinical series by Laterre et al.[222] evaluated the compassionate use of IL-7 in 12 critically ill patients with COVID-19 and severe lymphopenia (defined as two consecutive absolute lymphocyte counts of less than 700/μL). An initial safety dose of 3 μg/kg was followed by a dose of 10 μg/kg by intramuscular injection twice a week for 2 wk. 13 patients with COVID-19 received standard-of-care treatment matched as a comparator control cohort. On day 30, secondary infections occurred in 7 patients (58%) in the IL-7 group compared with 11 (85%) in the control group; 30-d mortality was 42% vs 46%, respectively. IL-7 was associated with a restored lymphocyte count, with the IL-7 group having levels more than 2-fold higher than the control group without associated adverse effects noted in the...
intervention arm.

In a recent Chinese study, thymosin alpha-1 (Tα1), another lymphopoiesis-stimulating drug, was employed in two cohorts of critically ill patients with COVID-19[223]. Compared with the untreated group, Tα1 treatment significantly reduced the mortality of severe COVID-19 patients (11.1% vs 30.0%, P = 0.044). Interestingly, patients with counts of CD8+ T cells or CD4+ T cells in circulation less than 400/μL or 650/μL, respectively, gained more benefits from Tα1. Other drugs targeting lymphocyte apoptosis by suppressing PD1/PD-L1, like nivolumab, are also being studied as potential candidates for treatment COVID-19. Currently, several trials are analyzing the role of these novel drugs. Unfortunately, they only focus on mild and moderate forms of COVID-19.

DISCUSSION

Few treatments proposed in COVID-19 have been evaluated in patients critically ill with COVID-19, despite a high mortality rate (20%-40%)[224,225]. This fact makes it extremely difficult to establish degrees of recommendation regarding the different therapeutic options currently available. Therefore, new studies are needed to analyse the role of these and other novel treatments in this subset of patients. In this sense, future trials must employ a better design and careful selection criteria. It is critical not to consider all patients with severe forms of COVID-19 the same. Some of these patients (but not all) show specific hallmarks characterized by profound immune alterations, hyperinflammatory states, and even severe endothelial dysfunction that favors progression to different degrees of organ failure. This triad (hyperinflammation, immune dysregulation, and endothelial dysfunction) in presence of organ failure is not restricted to COVID-19, and we can find it in sepsis, which would support the theory that severe COVID-19 is a form of viral sepsis. These alterations allow the classification of critically ill COVID-19 patients into different phenotypes[226-228]. Recently Chen et al.[229], in a single-center study of critically ill patients with COVID-19, identified by a machine learning approach two phenotypes: One hyperinflammatory, characterized by elevated pro-inflammatory cytokines, higher SOFA score, and higher rates of complications and another hypo-inflammatory. Interestingly, corticosteroid therapy was associated with reduced 28-d mortality (HR = 0.45; 95%CI: 0.25-0.80; P = 0.0062) only in patients with the hyperinflammatory phenotype. These endotypes include clinical and biological characteristics and can constitute specific targets for better select specific therapies based on an individualized approach to treatment.
CONCLUSION

Likely many of the treatments above reviewed in this work might be helpful in specific subgroups of patients with certain clinical, analytical and biological characteristics, as occurs in other pathologies such as cancer, certain autoimmune diseases, or even sepsis. This approach, based on a personalized and precision medicine model, could help to better randomization of new clinical trials targeting the specific treatment of severe and critical forms of COVID-19.

ARTICLE HIGHLIGHTS

Research background
Although most people with coronavirus disease 2019 (COVID-19) have only mild or uncomplicated symptoms, 10%-15% requires hospitalization and oxygen therapy and, from the beginning, a large number of patients presented severe respiratory failure, needing mechanical ventilation (MV) and intensive care unit (ICU) admission. The lack of an available, effective treatment in this setting has led to a spate of treatment recommendations, which are not always backed by sufficient scientific evidence. Particular attention were paid to a presumed specific cytokine storm secondary to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, with a special effort to modulate the inflammatory response of these patients.

Research motivation
Two years after the onset of the pandemic, many questions remain unanswered, and we continue to search for the most appropriate treatment. This review aims to summarize the current evidence regarding the different immunomodulatory strategies tested in critically ill patients with COVID-19. Most of the main trials that have shown benefit of any immunomodulatory therapeutic agent against COVID-19 focus on hospitalized patients but not on critically ill patients. Furthermore, many of these studies consider ICU admission as a primary negative endpoint. Very few studies consider treatment in this setting (ICU) as a starting point, sometimes unavoidable, given that many patients with COVID-19 required admission to the ICU already in the first hours of their hospital admission. Therefore, there is a lack of information on the therapeutic approach in these patients.

Research objectives
To summarize the pathophysiology of SARS-CoV-2, including the normal and pathological inflammatory and immune responses that would justify the use of different immunomodulatory therapies in critically ill patients. To analyze the mechanism of action of the different immunomodulatory agents used against COVID-19. Review the scientific evidence collected so far and issue a recommendation for or against the use of each specific agent in this scenario.

Research methods
A comprehensive literature search was developed by using the keywords: “immunotherapy”, “immunosuppressives”, “haemophagocytic syndrome”, “inflammation”, “antimalarials”, “hydroxychloroquine”, “chloroquine”, “anakinra”, “canakinumab”, “tocilizumab”, “sarilumab”, “corticosteroids”, “dexamethasone”, “methylprednisolone”, “immunoglobulins or convalescent” “JAK inhibitors”, “cyclosporine”, “colchicine”, “statins”, “interleukin 7”, “tymosin”, “PD1 and PD-L1 blockers”. We restricted the search to: “SARS-CoV-2”, “COVID-19”, “severe COVID-19” and “treatment” to identify articles published in English from MEDLINE, PubMed, and The Cochrane Library (until January 2021). The authors reviewed the selected manuscripts and selected the most appropriate. Finally, we established a recommendation of the use of each treatment based on the level of evidence of the articles and documents reviewed. This recommendation was made based on the consensus of all the authors. We carried out the rest of the work methodology following the PRISMA recommendations.

Research results
Different recommendations regarding the use of these immunomodulatory agents (“antimalarials”, “hydroxychloroquine” “chloroquine”, “anakinra”, “canakinumab”, “tocilizumab”, “sarilumab”, “corticosteroids”, “dexamethasone”, “methylprednisolone”, “immunoglobulins or convalescent”, “JAK inhibitors”, “cyclosporine”, “colchicine”, “statins”, “interleukin 7”, “tymosin”, “PD1 and PD-L1 blockers”) were performed.

Research conclusions
Until then, although several promising therapies exist, only the use of corticosteroids and tocilizumab (or sarilumab in absence of this) has demonstrated evidence enough to recommend its use in critically ill patients with COVID-19. Probably other treatments of those analyzed could be beneficial in certain
critical patients with COVID-19 if they were administered in a selective and personalized way.

Research perspectives

From this work, two simple and clear messages can be extracted that could guide the future therapeutic approach of severe forms of COVID-19: (1) The critically ill patient constitutes a special subgroup of patients that should be studied differently from other patients, considering the ICU as an initial and not a final stage in the course of the disease; and (2) It is a mistake to administer the same treatments to all patients. It is key to individualize these treatments based on the immunological and clinical phenotypes of each patient.

FOOTNOTES

Author contributions: Andaluz-Ojeda D, Vidal-Cortes P, and Cusacovich I designed the study, developed the material and methods section, the introduction and a global discussion; Aparisi Sanz, Suberviola B, Del Río Carbajo L, Nogales Martin L, Prol Silva E, Nieto del Olmo J, and Barberán J carried out a selective bibliographic search in relation to each of the study points and developed a partial discussion; and all authors participated in the final recommendations for each class.

Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.

PRISMA 2009 Checklist statement: The authors have read the PRISMA 2009 Checklist, and confirm that the manuscript was prepared and revised according to the PRISMA 2009 Checklist.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: Spain

ORCID number: David Andaluz-Ojeda 0000-0001-8167-8871; Pablo Vidal-Cortes 0000-0003-0225-9975; Álvaro Aparisi Sanz 0000-0002-3230-6368; Borja Suberviola 0000-0001-7681-3890; Lorena Del Río Carbajo 0000-0002-1606-8785; Leonor Nogales Martin 0000-0003-2736-3760; Estefanía Prol Silva 0000-0002-4893-3075; Jorge Nieto del Olmo 0000-0002-4304-7795; José Barberán 0000-0002-8364-5765; Ivan Cusacovich 0000-0002-4084-0639.

S-Editor: Wang JJ
L-Editor: A
P-Editor: Wang JJ

REFERENCES

1. World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19 - 18 March 2020. [cited 13 April 2020]. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---18-march-2020
2. World Health Organization. WHO Coronavirus (COVID-19) Dashboard. [cited 28 January 2021]. Available from: https://covid19.who.int/
3. Rodríguez A, Moreno G, Gómez J, Carbonell R, Picó-Plana E, Benavent Bofill C, Sánchez Parrilla R, Trefler S, Esteve Pitarch E, Canadell L, Teixido X, Claverias L, Bodí M; por el HJ23-COVID-19 working group; Listado de Investigadores del HJ23-COVID-19 Working Group. Laboratorio clínico; Epidemiología y prevención de la infección nosocomial; Departamento de enfermería UCI; Farmacia clínica; Médicos UCI; UCI Data-Analitics. Severe infection due to the SARS-CoV-2 coronavirus: Experience of a tertiary hospital with COVID-19 patients during the 2020 pandemic. Med Intensiva (Engl Ed) 2020; 44: 525-533 [PMID: 32659421 DOI: 10.1016/j.medint.2020.05.018]
4. Vidal-Cortés P, Del Río-Cardajo L, Nieto-Del Olmo J, Prol-Silva E, Tizón-Varela A, Rodríguez-Vázquez A, Rodríguez-Rodríguez P, Díaz-López MD, Fernández-Ugidos P, Pérez-Veloso MA. COVID-19 and Acute Respiratory Distress Syndrome. Impact of corticosteroid treatment and predictors of poor outcome. Rev Exp Quimioter 2021; 34: 33-43 [PMID: 33317261 DOI: 10.37201/req/091.2020]
5. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, Cereda D, Coluccello A, Foti G, Fumagalli R, Iotti G, Latronico N, Lorini L, Merler S, Natafhi G, Piatti A, Raineri MV, Scandroglio AM, Storti E, Ceconi M, Pesenti A; COVID-19 Lombardy ICU Network. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 2020; 323: 1574-1581 [PMID: 32250385 DOI: 10.1001/jama.2020.5394]
6. Bhattraj PK, Ghassermen BJ, Nichols M, Kim R, Jerome KR, Nalla AK, Greninger AL, Pipavath S, Wurlf MM, Evans L, Kritek PA, West TE, Luska A, Gerbino A, Dale CR, Goldman JD, O’Mahony S, Mikacenic C. Covid-19 in Critically Ill
Andaluz-Ojeda D et al. Immunomodulatory therapy in critically ill COVID-19 patients. WJCCM 2020; 4(4): 26-25.

Immunomodulatory therapy in critically ill COVID-19 patients with inflammatory parameters and their correlation with disease severity and outcomes in patients with COVID-19 in Wuhan, China: a retrospective multicenter study.

Intensive Care Med 2020; 46: 1863-1872 [PMID: 32816098 DOI: 10.1007/s00134-020-06211-2]

Barrasa H, Rello J, Tejada S, Martín A, Balzískueta G, Vinuesa C, Fernández-Miret B, Villagrá A, Vallejo A, San Sebastián A, Cabanes S, Iribarren S, Fonseca F, Maynar J; Alava COVID-19 Study Investigators. SARS-CoV-2 in Spanish Intensive Care Units: Early experience with 15-day survival in Vitoria. Anaesth Crit Care Pain Med 2020; 39: 553-561 [PMID: 32278760 DOI: 10.1016/j.accpm.2020.04.001]

Ramírez P, Gordon M, Martín-Cerezo M, Villarreal E, Sancho E, Padrós M, Frasquet J, Levy A, Molina I, Barrios M, Gimeno S, Castellanos Á. Acute respiratory distress syndrome due to COVID-19: Clinical and prognostic features from a medical Critical Care Unit in Valencia, Spain. Med Intensiva (Engl Ed) 2021; 45: 27-34 [PMID: 32919796 DOI: 10.1016/j.medin.2020.06.015]

Bravata DM, Perkins AJ, Myers LJ, Aeling G, Zhang Y, Zillich AJ, Reese L, Dysangco A, Agarwai R, Myers J, Austin C, Sexson A, Leonard SJ, Dev S, Keyhani S. Association of Intensive Care Unit Patient Load and Demand With Mortality Rates in US Department of Veterans Affairs Hospitals During the COVID-19 Pandemic. JAMA Netw Open 2021; 4: e2034266 [PMID: 33264319 DOI: 10.1001/jamanetworkopen.2020.3426]

Bhimraj A, Morgan RL, Shumaker AH, Lavergne V, Baden L, Cheng VC, Edwards KM, Gandhi R, Muller WJ, O’Horo JC, Shoham S, Murad MH, Mustafa RA, Sultan S, Falck-Ytter Y. Infectious Diseases Society of America Guidelines on the management of critically ill adults with Coronavirus Disease 2019 (COVID-19). Clin Infect Dis 2020 [PMID: 32338708 DOI: 10.1093/cid/ciaa478]
Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. Skendros P, Fernandez-Barat L, Ferrer R, Barbé F, Torres A, Menéndez R, Eiros JM, Kelvin DJ. Viral RNA load in plasma is associated with critical illness and a dysregulated host response in COVID-19. Fernandez-Caso B, Mantecón MÁ, Motos A, JA, Ruiz Albi T, Puertas C, Berezo JÁ, Renedo G, Herrán R, Bustamante-Munguira J, Enríquez P, Cicuendez R, Blanco J, Ostadgavahi AT, Oneizat R, Ruiz LM, Miguéns I, Gargallo E, Muñoz I, Pelegrin S, Martín S, García Olivares P, Cedeño Ortega A, de la Fuente A, Del Campo F, Fernández-Ratero JA, Trapiello W, González-Jiménez P, Ruiz G, Kelvin AA, Bermejo-Martin JF. Immune Response, Inflammation, and the Clinical Spectrum of COVID-19. Front Immunol 2020; 11: 1441 [PMID: 32612615 DOI: 10.3389/fimmu.2020.01441]

Boechat JL, Chora I, Morais A, Delgado L. The immune response to SARS-CoV-2 and COVID-19 immunopathology - Current perspectives. Pulmonology 2021; 27: 423-437 [PMID: 33867315 DOI: 10.1016/j.pulmoe.2021.03.008]

Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Mansson JJ; HLH Across Speciality Collaboration, UK. 2019: What type of cytokine storm are we dealing with? J Med Virol 2021; 93: 197-198 [PMID: 32681651 DOI: 10.1002/jmv.26317]

Henry BM, Benoît SW, Vikse C, Hoehn J, Rose J, Santos de Oliveira MH, Lippi G, Benoit JL. The anti-inflammatory cytokine response can be elevated by interferon-κ-10 is a stronger predictor of severe disease and poor outcomes than the pro-inflammatory cytokine response in coronavirus disease 2019 (COVID-19). Clin Chem Lab Med 2021; 59: 599-607 [PMID: 33554561 DOI: 10.1055/cclm-2020-1284]

Monreter G, Benlyamani I, Osadgavahi AT, Ostadgavahi AT, Rezaei N. Lymphopenia in COVID-19: Therapeutic opportunities. Cell Biol Int 2020; 44: 1782-1789. DOI: 10.1038/s41577-020-0311-8

Huang I, Pranata R. Lymphopenia in severe coronavirus disease-2019 (COVID-19): systematic review and meta-analysis. J Intensive Care 2020; 8: 36 [PMID: 32485488 DOI: 10.1186/s40560-020-00453-4]

Wagner J, DuPont A, Larson S, Cash B, Farooq A. Absolute lymphocyte count is a prognostic marker in Covid-19: A retrospective cohort review. Int J Lab Hematol 2020; 42: 761-765 [PMID: 32779838 DOI: 10.1111/ijlh.13288]

Fathi N, Rezaei N. Lymphopenia in COVID-19: Therapeutic opportunities. Cell Biol Int 2020; 44: 1792-1797 [PMID: 32458561 DOI: 10.1002/cbin.11403]

Qin S, Jiang Y, Wei X, Liu X, Guan J, Chen Y, Lu H, Qian J, Wang Z, Lin X. Dynamic changes in monocytes subsets in COVID-19 patients. Hum Immunol 2021; 82: 170-176 [PMID: 33535126 DOI: 10.1016/j.humimm.2020.12.010]

Bermejo-Martín JF, González-Rivera M, Almansa R, Michaudel D, Tedim AP, Dominguez-Gil M, Resino S, Martín-Fernández M, Ryan Murua P, Pérez-García F, Tamayo L, Lopez-Izquierdo R, Bustamante E, Aldecoa C, Gómez JM, Rico-Feijoo J, Orduña A, Méndez R, Fernández Natal I, Megías G, González-Estecha M, Carriado D, Doncel J, Jorge N, Ortega A, de la Fuente A, Del Campo F, Fernández-Ratiero JA, Traipillo W, González-Jiménez P, Ruiz G, Kelvin AA, Ostadvahavi AT, Onceizat R, Ruiz LM, Miguéns I, Gargallo E, Muñoz I, Pálegui S, Martín S, García Olivares P, Cedeño JA, Ruiz Albi T, Puertas C, Berezo JÁ, Renedo G, Herrán R, Bustamante-Munguira J, Enriquez P, Cizcuendez R, Blanco J, Abadía J, Gómez Barquero J, Mamolol N, Blanco L, Nalavía LJ, Fernández Caso B, Mantecon MA, Motos A, Fernández-Barat L, Ferrer R, Barbé F, Torres A, Menéndez R, Eisenshmidt ER, Choi JH, Viral RNA load in plasma is associated with critical illness and a dysregulated host response in COVID-19. Crit Care 2020; 24: 691 [PMID: 33371610 DOI: 10.1186/s13054-020-03398-0]

Skendros P, Mifsud A, Chrysanthopoulou A, Mastellos DC, Metalidis S, Rafailidis P, Ninopoulou M, Sertaridou E, Tsonidou V, Tsigalou C, Tektonidou M, Konstantinidis T, Papagoras C, Mitroulis I, Germanidis G, Lambris JD, Ritsi K. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J Clin Invest 2020; 130: 6151-6157 [PMID: 32759504 DOI: 10.1172/JCI141374]

Java A, Apicelli AJ, Liszewski MK, Coler-Reilly A, Atkinson JP, Kim AH, Kulkarni HS. The complement system in...
COVID-19: friend and foe? *JCI Insight* 2020; 5 [PMID: 32554923 DOI: 10.1172/jci.insight.140711]

Touret F, de Lamballerie X. Of chloroquine and COVID-19. *Antiviral Res* 2020; 177: 104762 [PMID: 32147496 DOI: 10.1016/j.antiviral.2020.104762]

Devuax CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronaviruses: what to expect for COVID-19? *Int J Antimicrob Agents* 2020; 55: 105938 [PMID: 32171740 DOI: 10.1016/j.ijantimicag.2020.105938]

Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. *Biosci Trends* 2020; 14: 72-73 [PMID: 32074550 DOI: 10.5582/bst.2020.01047]

Chen J, Liu D, Liu L, Liu P, Xu Q, Xia L, Ling Y, Huang D, Song S, Zhang D, Qian Z, Li T, Shen Y, Lu H. A pilot study of hydroxychloroquine in the treatment of patients with common coronavirus disease-19 (COVID-19). *J Zhejiang Univ (Med Sci)* 2020

Chen Z, Hu J, Zhang Z, Jiang S, Han S, Yan D, Zhuang R, Hu B. Efficacy of hydroxychloroquine in COVID-19 patients with COVID-19: results of a randomised clinical trial. *Preprint*. Available from: MedRxiv: 2020.03.22.20040758 [DOI: 10.1101/2020.03.22.20040758]

Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, Doudier B, Courjon J, Giordano V, Vieira VE, Tissot Dupont H, Honoré S, Colson P, Charbharié E, La Scola B, Rolain JM, Brouqui P, Raoult D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomised clinical trial. *Int J Antimicrob Agents* 2020; 56: 105949 [PMID: 32205204 DOI: 10.1016/j.ijantimicag.2020.105949]

RECOVERY Collaborative Group, Horby P, Matthias M, Linsell L, Bell JL, Staplin N, Emberson J, Wiselka M, Ustianowski A, Elmahle E, Prudon B, Whitehouse T, Felton T, Williams J, Facenda C, Underwood J, Baillie JK, Chappell LC, Faust SN, Jaki T, Jeffery K, Lim WS, Montgomery A, Rowan K, Tarning J, Watson JA, White NJ, Ruszek Z, Eeckhout E, Haynes R, Landray MJ. Effect of hydroxychloroquine in Hospitalized Critically Ill Patients with COVID-19. *N Engl J Med* 2020; 383: 2030-2040 [PMID: 33016152 DOI: 10.1056/NEJMoa2022926]

WHO Solidarity Trial Consortium, Pan H, Petri R, Henaoo-Restrepo AM, Preziosi MP, Sathiyanoorthby V, Abdooll Karim Q, Alejandria MM, Hernández García C, Kieryy MP, Malekzadeh R, Murthy S, Reddy KS, Roses Periago M, Abi Hanna P, Ador F, Al-Bader K, Alhasawi A, Allum E, Alotaibi A, Alvarez-Moreno CA, Appadoss S, Asiri A, Aukrust P, Barratt-Due A, Bellani S, Branca M, Cappel-Porter HBC, Cerrato N, Chow TS, Como N, Eustace J, García PJ, Goldsbo S, Gotuzzo E, Griskevicius I, Hamra R, Hassam M, Hassany M, Hutton D, Imransyah I, Jancoriene L, Kirwan J, Kumar S, Lennon P, Lopardo G, Lydon P, Magrini N, Maguire T, Manesvsa S, Manouel O, McGinty S, Medina MT, Mesa Rubin ML, Miranda-Montoya MC, Nel J, Nunes EP, Perola M, Portolés A, Rasmin MR, Raza M, Rees H, Reges PPS, Rogers CA, Salami K, Salvadori M, Sinani N, Sterne JAC, Stevanovikj M, Tacconelli E, Tikkinen KAO, Trelle S, Zaid H, Röttingen JA, Swaminathan S. Repurposed Antiviral Drugs for Covid-19 - Interim WHO Solidarity Trial Results. *N Engl J Med* 2021; 384: 497-511 [PMID: 33264556 DOI: 10.1056/NEJMoa2023184]

World Health Organization. Ongoing Living Update of COVID-19 Therapeutic Options: Summary of Evidence. [cited 30 March 2021]. Available from: https://iris.paho.org/bitstream/handle/10665.2/52719/PAHO/ME/SE/COVID-19/20120002_eng.pdf?sequence=23&isrcid=7dc367346b11ec08c8d71f46e102799961

Axford C, Schmitt AM, Janiaud P, Van't Hoof J, Abd-Elsalam S, Abdo EF, Abella BS, Akram J, Amaravadi RK, Angus DC, Arabi YM, Azhar S, Baden LR, Baker AW, Belkhir L, Benfield T, Berrevoets MAH, Chen CP, Chen TC, Cheng SH, Cheng CY, Chung WS, Cohen YZ, Cowan DL, Dalgard O, de Almeida E Val FF, de Lacerda MVC, de Melo GC, Derde L, Dubre V, Elfakir A, Gordon AC, Hernandez-Cardenas CM, Hills T, Hoepelman AIM, Huang YW, Igau B, Jin R, Jurado-Camacho F, Khan S, Kremsner PG, Kreuels B, Kuo CY, Lin YC, Lin WP, Lin TH, Lyngbakken MN, McArthur C, McVerry BL, Meza-Montes P, Monteiro WM, Morsch SC, Moukarzel A, Murthy S, Naggie S, Narayanasamy S, Nichol A, Novack LA, O'Brien SM, Okeke NL, Perez L, Perez-Padilla R, Perrin L, Remigio-Luna A, Rogatko A, Romo-Marin M, Soliman S, Stout J, Thirion-Romero I, Troxel AB, Tseng TY, Turner NA, Ulrich RJ, Walsh SR, Webb SA, Wee-juinzen M, Velino M, Wong HL, Wrenn R, Zampieri FG, Zhong W, Moher D, Goodman SN, Ioannidis JPA.

COVID-19 2019 Risk and Treatments (CORIST) Collaboration. Use of hydroxychloroquine in hospitalised COVID-19 patients is associated with reduced mortality: Findings from the observational multicentre Indian CORIST study. *Eur J Intern Med* 2020; 82: 38-47 [PMID: 32859477 DOI: 10.1016/j.ejim.2020.08.019]

Schlesinger N, Firestein BL, Brunetti L. Colchicine in COVID-19: an Old Drug, New Use. *Curr Pharmaco Coll Rep* 2020; 1-9 [PMID: 32873583 DOI: 10.1016/j.cpcr.2020.02.0225-6]

Salah HM, Mehta JL. Meta-analysis of the Effect of Colchicine on Mortality and Mechanical Ventilation in COVID-19. *Am J Cardiol* 2021; 145: 170-172 [PMID: 33617817 DOI: 10.1016/j.amjcard.2021.02.005]

Scarsi M, Piantoni S, Colombo E, Airó P, Richini D, Micleini M, Bertasi V, Bianchi M, Bottone D, Civelli P, Cotelli MS, Damilouti E, Galbassinì G, Gatta D, Ghirardelli ML, Magri R, Malamani P, Mendeni M, Molinari S, Morotti A, Salada L, Turla M, Vender A, Tincani A, Brucato A, Franceschini F, Furloni R, Andreoli L. Association between treatment with colchicine and improved survival in a single-centre cohort of adult hospitalised patients with COVID-19 pneumonia and acute respiratory distress syndrome. *Ann Rheum Dis* 2020; 79: 1286-1289 [PMID: 32732245 DOI: 10.1136/annrheumdis-2020-217712]

Brunetti L, Diawara O, Tsai A, Firestein BL, Nahass RG, Poiani G, Schlesinger N. Colchicine to Weather the Cytokine Storm in Hospitalized Patients with COVID-19. *J Clin Med* 2020; 9 [PMID: 32937800 DOI: 10.3390/jcm9099269]

Deferesos SG, Giannopoulos G, Vrachatis DA, Siassos GD, Giotaki SG, Gargalianos S, Metallidis S, Sianos G, Baltagianis S, Palagkopoulos D, Dolianitis K, Randou E, Syrigos K, Kotanioudou A, Koulouris NG, Milanos H, Sipsas N, Gagos C, Tsakalas G, Olympios CD, Tsagalou E, Migdalis I, Gerakiari S, Angelidis C, Alexopoulos D, Davlouros P, Hahalis G, Kanonidis I, Katsiris D, Kolletis T, Manolis AS, Michalis L, Naka KK, Pyrgakis VN, Touzoukas KP, Triposkiadis F, Tsiouris K, Vourounarakis E, Martinéz-Dolz L, Reimers B, Stefanini GG, Cleman M, Goudeanov J.
61 Randomisation of COVID-19 Therapy. RECOVERY trial closes recruitment to colchicine treatment for patients hospitalised with COVID-19 [cited 14 March 2021]. Available from: https://www.recoverytrial.net/news/recovery-trial-closes-recruitment-to-colchicine-treatment-for-patients-hospitalised-with-covid-19

62 Schoot TS, Kreekhofs AP, Hilbrands LB, van Marum RJ. Immunosuppressive Drugs and COVID-19: A Review. Front Pharmacol 2020; 11: 1333 [PMID: 32982743 DOI: 10.3389/fphar.2020.01333]

63 Lai Q, Spalletini G, Bianco G, Graceffa D, Agnes S, Rossi M, Lerut J. SARS-CoV2 and immunosuppression: A double-edged sword. Transpl Infect Dis 2020; 22: e13404 [DOI: 10.1111/tid.13404]

64 Tanaka Y, Sato Y, Sasaki T. Suppression of coronavirus replication by cyclophilin inhibitors. Viruses 2013; 5: 1250-1260 [PMID: 23698397 DOI: 10.3390/v50501250]

65 Aliotas-Reij G, Esteve-Valverde E, Belizna C, Selva-O’Callaghan A, Pardos-Gea J, Quintana A, Mekinian A, Annunciation-Lulln A, Miró-Mar F. Immunomodulatory therapy for the management of severe COVID-19. Beyond the anti-viral therapy: A comprehensive review. Autoimmun Rev 2020; 19: 102569 [PMID: 32376394 DOI: 10.1016/j.autrev.2020.102569]

66 Hage R, Steinack C, Schuurmans MM. Calcineurin inhibitors revisited: A new paradigm for COVID-19? Braz J Infect Dis 2020; 24: 365-367 [PMID: 32603679 DOI: 10.1016/j.bjid.2020.06.005]

67 Poulsen NN, von Brunn A, Hornum M, Blomberg Jensen M. Cyclosporine and COVID-19: Risk or favorable? Am J Transplant 2020; 20: 2975-2982 [PMID: 32777170 DOI: 10.1111/ajt.16250]

68 Cour M, Ovize M, Argaud L. Cyclosporine A: a valid candidate to treat COVID-19 patients with acute respiratory failure? Crit Care 2020; 24: 276 [PMID: 32487139 DOI: 10.1186/s13054-020-03014-1]

69 Shakoory B, Cacciola JA, Chatham WW, Amdu RL, Zhao H, Dinnarello CA, Cron RQ, Opal SM. Interleukin-1 Receptor Blockade in Adults Associated With Reduced Mortality in Sepsis Patients With Features of Macrophage Activation Syndrome: Reanalysis of a Prior Phase III Trial. Crit Care Med 2016; 44: 275-281 [PMID: 26384195 DOI: 10.1097/CCM.0000000000001402]

70 Schulert GS, Grom AA. Pathogenesis of macrophage activation syndrome and potential for cytokine-directed therapies. Annu Rev Med 2015; 66: 145-159 [PMID: 25386930 DOI: 10.1146/annurev-med-061813-012806]

71 Carter SJ, Tattersall RS, Ramanan AV. Macrophage activation syndrome in adults: recent advances in pathophysiology, diagnosis and treatment. Rheumatology (Oxford) 2019; 58: 5-17 [PMID: 29481673 DOI: 10.1093/rheumatology/key006]

72 Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020; 46: 846-848 [PMID: 32125452 DOI: 10.1007/s00134-020-05991-x]

73 Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song J, Ou B, Gu X, Guan L, Wei Y, Li H, Wu X, Xu J, Tu S, Zhang Y, Chen H, Cao B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395: 1054-1062 [PMID: 32171076 DOI: 10.1016/S0140-6736(20)30566-3]

74 CORIMUNO-19 Collaborative group. Effect of anakinra vs usual care in adults in hospital with COVID-19 and mild-to-moderate pneumonia (CORIMUNO-ANA-1): a randomised controlled trial. Lancet Respir Med 2021; 9: 295-304 [PMID: 34394350 DOI: 10.1016/S2213-2600(20)30556-7]

75 Cavalli G, De Luca G, Camachoia C, Della-Torre E, Ripa M, Canetti D, Oltolini C, Castiglioni B, Tassan Din C, Boffini N, Tomelleri A, Farina N, Ruggeri A, Rovere-Querini P, Di Lucca G, Martinenghi S, Scotti R, Tresoldi M, Ciceri F, Landoni G, Zangrillo A, Della-Torre E, Ripa M, Canetti D, Oltolini C, Castiglioni B, Tassan Din C, Boffini N, Tomelleri A, Farina N, Ruggeri A, Rovere-Querini P, Di Lucca G, Martinenghi S, Scotti R, Tresoldi M, Ciceri F, Landoni G, Zangri A, Scarpellini F, Dagna L. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol 2020; 2: e325-e331 [PMID: 32501454 DOI: 10.1016/S2665-9913(20)30127-2]

76 Huet T, Beaussier H, Voisin O, Jouveshomme S, Daurier G, Lazareth I, Sacco E, Nacchane JM, Bézine Y, Laplanche S, Le Berre A, Le Pavec J, Salmeron S, Emmerich J, Mourad JJ, Chatellier G, Hayem G. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol 2020; 2: e349-e400 [PMID: 32835245 DOI: 10.1016/S2665-9913(20)30164-8]

77 Kooststra EJ, Waalders NJB, Grondman I, Janssen NAF, van de Veerdonk FL, Ewalds E, van der Hoeven JG, Kox M, Pickkers P; RCI-COVID-19 Study Group. Anakinra treatment in critically ill COVID-19 patients: a prospective cohort study. Crit Care 2020; 24: 688 [PMID: 33032991 DOI: 10.1186/s13054-020-03364-w]

78 Dimopoulos G, de Mast Q, Markou N, Theodorakopoulou M, Komnos A, Mouktaroudi M, Neto MG, Spyridopoulos T, Verheggen RJ, Hoogert-Wijtsch J, Lachana A, van de Veen FL, Giamarellos-Bourboulis EJ. Favorable Anakinra Responses in Severe Covid-19 Patients with Secondary Hemophagocytic Lymphohistiocytosis. Cell Host Microbe 2020; 28: 117-123.e1 [PMID: 32411313 DOI: 10.1016/j.chom.2020.05.007]

79 Rothman AM, Morton AC, Crossman DC; MRC-ILA Heart investigators. Canakinumab for Atherosclerotic Disease. N Engl J Med 2018; 378: 197-198 [PMID: 29322756 DOI: 10.1056/NEJMoa1714635]

80 Cecchirici C, Auricchio A, Di Nicola M, Potere N, Abbate A, Cicinone F, Vecchiet J, Falasca K. Canakinumab in a subgroup of patients with COVID-19. Lancet Rheumatol 2020; 2: e457-e458 [PMID: 32835251 DOI: 10.1016/S2665-9913(20)30167-3]

81 Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol 2014; 6: a016295 [PMID: 25190079 DOI: 10.1101/cshperspect.a016295]

82 Del Valle DM, Kim-Schulze S, Huang IH, Beckmann ND, Nierenberg S, Wang B, Lavin Y, Swartz TH, Madduri D, Stock A, Marron TU, Xie H, Patel M, Tuballes K, Van Oekelen O, Rahman A, Kovatch P, Abern JA, Chadhi E, Jagannath S, Mazumdar M, Charney AW, Firpo-Betancourt A, Mendu DR, Jiang J, Reich D, Sigel K, Gordon-Cardo C, Feldmann M, Parekh S, Merad M, Gnajtic S. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nat Med 2020; 26: 1636-1643 [PMID: 32839624 DOI: 10.1038/s41591-020-1051-9]
Andaluz-Ojeda D et al. Immunomodulatory therapy in critically ill COVID-19

83 Chen X, Zhao B, Qu Y, Chen Y, Xiong J, Feng Y, Men D, Huang Q, Liu Y, Yang B, Ding J, Li F. Detectable Serum Severe Acute Respiratory Syndrome Coronavirus 2 Viral Load (RNAemia) Is Closely Correlated With Drastically Elevated Interleukin-6 Level in Critically Ill Patients With Coronavirus Disease 2019. *Clin Infect Dis* 2020; 71: 1937-1942 [PMID: 32301997 DOI: 10.1093/cid/caa449]

84 Lin A, He ZB, Zhang S, Zhang XG, Zhang X, Yan WH. Early Risk Factors for the Duration of Severe Acute Respiratory Syndrome Coronavirus 2 Viral Positivity in Patients With Coronavirus Disease 2019. *Clin Infect Dis* 2020; 71: 2061-2065 [PMID: 32375591 DOI: 10.1093/cid/caa490]

85 Bransen CL, Christensen H, Olsen DA, Kahns S, Andersen RF, Madsen JB, Lassen A, Kierkegaard H, Jensen A, Sydøhann TV, Madsen IS, Moller JK. Brandslund I. Daily monitoring of viral load measured as SARS-CoV-2 antigen and RNA in blood, IL-6, CRP and complement C3d predicts outcome in patients hospitalized with COVID-19. *Clin Chem Lab Med* 2021; 59: 1988-1997 [PMID: 34455731 DOI: 10.1515/ccm-2021-0694]

86 Herold T, Jurinovic V, Armiracey C, Lipworth BJ, Hellmuth JC, von Bergwelt-Baldon M, Klein M, Weimerger T. Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19. *J Allergy Clin Immunol* 2020; 146: 128-136.e [DOI: 10.1016/j.jaci.2020.05.008]

87 Zeng F, Huang Y, Guo Y, Yin M, Chen X, Xiao L, Deng G. Association of inflammatory markers with the severity of COVID-19: A meta-analysis. *Int J Infect Dis* 2020; 96: 467-474 [PMID: 32425643 DOI: 10.1016/j.ijid.2020.05.055]

88 Leisman DE, Ronner L, Pinotti R, Taylor MD, Sinha P, Calfees CY, Hirayama AV, Mastrofranoi F, Turtle CJ, Harhay MO, Legrand M, Deutschman CS. Cytokine elevation in severe and critical COVID-19: A rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. *Lancet Respir Med* 2020; 8: 1233-1244 [PMID: 33075298 DOI: 10.1016/S2213-2600(20)30404-5]

89 EMC. RoActemra 20mg/mL. Concentrate for Solution for Infusion. [cited 28 March 2021]. Available from: https://www.medicines.org.uk/emc/product/6673

90 Stone JH, Frigault MJ, Serling-Boyd NJ, Fernandes AD, Harvey L, Foulkes AS, Horik NK, Healy BC, Shah R, Bencaci AM, Woolley AE, Nikfororow S, Lin N, Sagar M, Schrager H, Huckins DS, Axeldro M, Pincus MD, Fleisher J, Sacks CA, Doughan M, North CM, Halvorsen YD, Thuber TK, Dagher Z, Scherer A, Wallwork RS, Kim AM, Schoenfeld S, Sen P, Neill TG, Persicci R, Meyerowitz E, Zafar A, Drobni ZD, Bolster MB, Kohler M, D'Silva KM, Topal JE, D'Silva PM, Arian MU, Antony N, Prakash BV. Early use of tocilizumab in the prevention of acute respiratory failure in SARS-CoV-2 infections and the utilization of interleukin-6 Levels in the management. *J Med Virol* 2021; 93: 491-498 [PMID: 32644254 DOI: 10.1002/jmv.26288]

91 Alattar R, Ibrahim THB, Shaar SH, Abdalla S, Shukri K, Daghal FN, Khatib MY, Abookumar M, Abuabkhabat M, Alsoub HA, Almaslamawi MA, Omran AS. Tocilizumab for the treatment of severe coronavirus disease 2019. *J Med Virol* 2020; 92: 2042-2049 [PMID: 32369191 DOI: 10.1002/jmv.25964]

92 Price CC, Alice FL, Shyr Y, Koff A, Pischel L, Goshua G, Azar MM, Memanuses D, Chen SC, Gleeson SE, Britto CJ, Azyy V, Kaman K, Goston DC, Davis MG, Burrello T, Davis MA, Aoun-Barakat L, Kang I, Seropian S, Azmy V, Kaman K, Goston DC, Davis MG, Burrello T, Davis MA, Aoun-Barakat L, Kang I, Seropian S, Chugay G, Bucelli K, Kaminski N, Lee AE, Lo Russo PM, Topal JE, D’Silva PM, Arian MU, Antony N, Prakash BV. Early use of tocilizumab in the prevention of acute respiratory failure in SARS-CoV-2 infections and the utilization of interleukin-6 Levels in the management. *J Med Virol* 2021; 93: 491-498 [PMID: 32644254 DOI: 10.1002/jmv.26288]

93 Price CC, Alice FL, Shyr Y, Koff A, Pischel L, Goshua G, Azar MM, Memanuses D, Chen SC, Gleeson SE, Britto CJ, Azyy V, Kaman K, Goston DC, Davis MG, Burrello T, Davis MA, Aoun-Barakat L, Kang I, Seropian S, Chugay G, Bucelli K, Kaminski N, Lee AE, Lo Russo PM, Topal JE, D’Silva PM, Arian MU, Antony N, Prakash BV. Early use of tocilizumab in the prevention of acute respiratory failure in SARS-CoV-2 infections and the utilization of interleukin-6 Levels in the management. *J Med Virol* 2021; 93: 491-498 [PMID: 32644254 DOI: 10.1002/jmv.26288]

94 Antony SJ, Davis MA, Davis MG, Almaghlouth NK, Guevara R, Omar F, Del Rey F, Hassan A, Arian MU, Antony N, Prakash BV. Early use of tocilizumab in the prevention of acute respiratory failure in SARS-CoV-2 infections and the utilization of interleukin-6 Levels in the management. *J Med Virol* 2021; 93: 491-498 [PMID: 32644254 DOI: 10.1002/jmv.26288]

95 Colaneri M, Bogliolo L, Valsecchi P, Sacchi P, Zuccaro V, Brandolino F, Montecucco C, Mojoli F, Giusti EM, Bruno R, The Covid Irccs Sant Matteo Pavia Task Force. Tocilizumab for Treatment of Severe COVID-19 Patients: Preliminary Results from SMARTcoV19 REGistry (SMACORE). *Microorganisms* 2020; 8 [PMID: 32397399 DOI: 10.3390/microorganisms8050695]

96 Campochiaro C, Della-Torre L, Cavalli G, De Luca G, Ripa M, Boffini N, Tomelleri A, Baldiessa E, Rovere-Querini P, Ruggeri A, Monti G, De Cobelli F, Zangrillo A, Tresoldi M, Castagna A, Dagna L; TOCI-RAF Study Group. Efficacy and safety of tocilizumab in severe COVID-19 patients: a single-centre retrospective cohort study. *Eur J Intern Med* 2020; 76: 43-49 [PMID: 32482597 DOI: 10.1016/j.ejim.2020.05.021]

97 Potere N, Di Nisio M, Cirillo D, Scurti R, Frattari A, Portecea A, Abbate A, Parrat R, Interleukin-6 receptor blocker with subcutaneous tocilizumab in severe COVID-19 pneumonia and hyperinflammation: a case-control study. *Ann Rheum Dis* 2021; 80: 1-2 [PMID: 32647027 DOI: 10.1136/annrheumdis-2020-218243]

98 Jordan SC, Tomasoni G, Tomasoni LR, Turla F, Valsecchi A, Zani D, Zuccalà F, Zunica F, Focà E, Andreoli L, Latronico N, Rasulo FA, Renisi G, Ricci C, Rizzoni D, Romanelli G, Rossi M, Salvetti M, Scolari F, Signorini L, Taglietti M, Modina D, Moioli G, Montani G, Muiesan ML, Odolini S, Peli E, Pesenti S, Zuccherini A, Zuccalà F, Zunica F, Focà E, Andreoli L, Latronico N. Tocilizumab for Treatment of Severe COVID-19 Patients: Preliminary Results from SMARTcoV19 REGistry (SMACORE). *Microorganisms* 2020; 8 [PMID: 32397399 DOI: 10.3390/microorganisms8050695]

99 Colaneri M, Bogliolo L, Valsecchi P, Sacchi P, Zuccaro V, Brandolino F, Montecucco C, Mojoli F, Giusti EM, Bruno R, The Covid Irccs Sant Matteo Pavia Task Force. Tocilizumab for Treatment of Severe COVID-19 Patients: Preliminary Results from SMARTcoV19 REGistry (SMACORE). *Microorganisms* 2020; 8 [PMID: 32397399 DOI: 10.3390/microorganisms8050695]
Beane A, van Bentum-Puijk W, Berry LR, Bhimani Z, Bonten MJM, Bradbury CA, Brunkhorst FM, Buzgau A, Cheng RECOVERY Collaborative Group. Effect of tocilizumab on clinical outcomes at 15 days in patients with severe COVID-19: a randomised controlled trial. *Lancet Rheumatol* 2020; 2: e474-e484 [PMID: 32835227 DOI: 10.1016/S2352-3991(20)30373-9]

Biran N, Ip A, Ahn J, Go RC, Wang S, Mathura S, Sinclair BA, Bednarz U, Marafellas M, Hansen E, Siegel DS, Goy AH, Pecora AL, Sawczuk M, Metzler E, Varga DW, Tsaroulis I, Srinw worni V, Lin GS, Ozer WF, Tuma RA, Reichman J, Brusco L Jr, Carpenter KL, Costanzo EJ, Vivia V, Goldberg SL. Tocilizumab among patients with COVID-19 in the intensive care unit: a multicentre observational study. *Lancet Rheumatol* 2020; 2: e603-e612 [PMID: 32838323 DOI: 10.1016/S2352-3991(20)30277-4]

Klopfenstein T, Zayet S, Lohse A, Balblanc JC, Badie J, Royer PY, Toko L, Mezher C, Kadiane-Oussou NJ, Bossert M, Boggan AM, Charpentier A, Roux MF, Contrefois R, Mazarurier I, Dussert P, Gendrin V, Conrozier T; HNF Hospital Tocilizumab multidisciplinary team. Tocilizumab therapy reduced intensive care unit admissions and/or mortality in COVID-19 patients. *Med Mal Infect* 2020; 50: 397-400 [PMID: 32837720 DOI: 10.1016/j.medmal.2020.05.001]

Castelnuovo L, Tamburello A, Lurati A, Zaccara E, Marrazza MG, Olivieri M, Mummoli N, Mastroiacovo D, Colombò D, Ricchiuti E, Viganò P, Paola F, Mazzone A. Anti-IL6 treatment of serious COVID-19 disease: A monocentric retrospective experience. *Medicine (Baltimore)* 2021; 100: e23582 [PMID: 33429732 DOI: 10.1097/MD.00000000000253582]

Rossoiti R, Travi G, Ughi N, Corradin M, Baiguera C, Fumagalli R, Bottirolli M, Mondino M, Merli M, Bellone A, Basile A, Ruggieri R, Colombò F, Moreno M, Pastori S, Perno CF, Tarsia S, EpiS OM, Puoti M; Niguarda COVID-19 Working Group. Safety and efficacy of anti-il6-receptor tocilizumab use in severe and critical patients affected by coronavirus disease 2019: A comparative analysis. *J Infect* 2020; 81: e1-e17 [PMID: 32652169 DOI: 10.1016/j.jinf.2020.07.008]

Quinta S, Wang W, Hayek SS, Chan L, Mathews KS, Melamed ML, Brenner SK, Leonberg Yao A, Schenck EL, Radbel J, Reiser J, Bansal A, Srivastava A, Zhou Y, Finkel D, Green A, Mallapallini M, Faugno AJ, Zhang J, Velez JCQ, Shaefi S, Parikh CR, Charytan DM, Atharvale AM, Friedman AN, Redfern RE, Short SAP, Coerea S, Pokharel KK, Admon AJ, Donnelly JP, Gershengorn HB, Douin DJ, Semler MW, Hernán MA, Leaf DE; STOP-COVID Investigators. Association Between Early Treatment With Tocilizumab and Mortality Among Critically Ill Patients With COVID-19. *JAMA Intern Med* 2021; 181: 41-51 [PMID: 33080002 DOI: 10.1001/jama.2020.6252]

Rojas-Marte G, Khalid M, Mukhtar O, Hashmi AT, Waheed MA, Ehrlich S, Aslam S, Siddiqui S, Agarwal C, Malyshye Y, Henriquez-Felipe C, Sharma D, Sharma S, Chukwuka N, Rodriguez DC, Chukwuka N, Le J, Shani J. Outcomes in patients with severe COVID-19 disease treated with tocilizumab: a case-controlled study. *QJM* 2021; 113: 546-550 [PMID: 32569363 DOI: 10.1093/qjmed/hca206]

Somers EC, Eschenauer GA, Troost JP, Golob JL, Gandhi TN, Wang L, Zhou N, Petty LA, Baan JH, Dillman NO, Frame D, Gregg KS, Kaul DR, Nagel J, Patel TS, Zhou S, Laurus AS, Hanaeur DA, Martin E, Sharma P, Fung CM, Pogue JM. Tocilizumab for Treatment of Mechanically Ventilated Patients With COVID-19. *Clin Infect Dis* 2021; 73: e445-e454 [PMID: 32651997 DOI: 10.1093/cid/ciaa945]

Fisher MJ, Marcos Raymundo LA, Monteforte M, Taub EM, Go R. Tocilizumab in the treatment of critical COVID-19 pneumonia: A retrospective cohort study of mechanically ventilated patients. *Int J Infect Dis* 2021; 103: 536-539 [PMID: 33333202 DOI: 10.1016/j.ijid.2020.12.021]

Salama C, Han J, Yau L, Reiss WG, Kramer B, Neidhart JD, Criner GJ, Kaplan-Lewis E, Baden R, Pandit L, Cameron MJ, Garcia-Olivés, Kattan Díaz J, Chávez V, Mekebeh-Reuter M, Lima de Menezes F, Shah R, González-Lara MF, Assman B, Freedman J, Mohan SV. Tocilizumab in Patients Hospitalized With Covid-19 Pneumonia. *N Engl J Med* 2021; 384: 20-30 [PMID: 33323779 DOI: 10.1056/NEJMoa2030460]

Salvarani C, Dolci G, Massari M, Merlo MF, Davuto C, Savoldi L, Bruzzi P, Boni F, Braglia L, Turra C, Ballerini PF, Sciascia R, Zammarchi L, Para O, Scotton PG, Inosoa JO, Ravagnani V, Salerno ND, Sainaghi PP, Brignone A, Codeluppi M, Teopompi E, Milesi M, Bertomoro P, Claudio N, Salio M, Falcone M, Cenderello G, Donghi L, Del Boni V, Colombelli PL, Angheben A, Passaro A, Secondo G, Pascale R, Piazza I, Faciolio MQ, Nastantini M; RCT-TCZ-COVID-19 Study Group. Effect of Tocilizumab vs Standard Care on Clinical Worsening in Hospitalized Patients With COVID-19 Pneumonia: A Randomized Clinical Trial. *JAMA Intern Med* 2021; 181: 24-31 [PMID: 33080005 DOI: 10.1001/jama.2020.6615]

Mariette X, Hermine O, Tharaux PL, Resche-Rigon M, Steg PG, Porcher R, Ravaud P. Effectiveness of Tocilizumab in Patients Hospitalized With COVID-19: A Follow-up of the CORIMUNO-TOCI-1 Randomized Clinical Trial. *JAMA Intern Med* 2021; 181: 1241-1245 [PMID: 34028504 DOI: 10.1001/jama.2021.2209]

Rosas IO, Brúa N, Waters M, Go RC, Hunter BD, Bhagani S, Skiest D, Aziz MS, Cooper N, Douglas IS, Savic S, Youngstein T, Del Sorbo L, Cubillo Gracian A, De La Zerda DJ, Ustianowski A, Bao M, Dimonaco S, Gandhi TN, Wang L, Zhou N, Petty LA, Baan JH, Dillman NO, Frame D, Gregg KS, Kaul DR, Nagel J, Patel TS, Zhou S, Laurus AS, Hanaeur DA, Martin E, Sharma P, Fung CM, Pogue JM. Tocilizumab for Treatment of Mechanically Ventilated Patients With Severe Covid-19 Pneumonia. *N Engl J Med* 2021; 384: 1503-1516 [PMID: 33631666 DOI: 10.1056/NEJMoa2027700]

Veiga VC, Prats JAGG, Farias DLC, Rosa RG, Durado LK, Zampieri FG, Machado FR, Fung CM, Frame D, Gregg KS, Kaul DR, Nagel J, Patel TS, Zhou S, Laurus AS, Hanaeur DA, Martin E, Sharma P, Fung CM, Pogue JM. Tocilizumab for Treatment of Mechanically Ventilated Patients With Severe Covid-19 Pneumonia. *N Engl J Med* 2021; 384: 1503-1516 [PMID: 33631666 DOI: 10.1056/NEJMoa2027700]

RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. *Lancet* 2021; 397: 1637-1645 [PMID: 33933206 DOI: 10.1016/S0140-6736(21)00676-0]

REMAP-CAP Investigators. Gordan AC, Mouncey PR, Al-Beidh F, Rowan KM, Nichol AD, Arabi YM, Amman D, Beane A, van Bentum-Puijk W, Berry LR, Bhihman Z, Bonten MJM, Bradbury CA, Brunkhorst FM, Buzgau A, Cheng
Andaluz-Ojeda D et al. Immunomodulatory therapy in critically ill COVID-19

AC, Detry MA, Duffy EJ, Estcourt LJ, Fitzgerald M, Goossens H, Hanifia R, Higgins AM, Hills TE, Horvat CM, Lamontagne, Lawler PR, Leavis HL, Linstrum KM, Litton E, Lorenzi E, Marshall JC, Mary FB, McAuley DF, McLiothlin A, McGuinness B, McVerry BJ, Montgomery SK, Morpeth SC, Murphy S, Orr K, Parke RL, Parker JC, Pattanwala AE, Pettilla V, Rademacker E, Santos MS, Saunders CT, Seymour CW, Shankar-Hari M, Sligl WI, Turgeon AF, Turner AM, van de Verrdonk FL, Zarychanski R, Green C, Lewis RJ, Angus DC, McArthur CJ, Berry S, Webb SA, Derde LPG. Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19. *N Engl J Med* 2021; **384**: 1491-1502 [PMID: 33631568 DOI: 10.1056/NEJMoa2014033]

117 Grences E, Cingolani A, Bosello SL, Alivernia S, Tolusso B, Perinola S, Landi F, Pompili M, Murri R, Santoliquido A, Gargioli M, Sali M, De Pascale G, Gabrielli M, Biscetti F, Montalto M, Tosoni A, Gambassi G, Rapaccini GL, Iaconelli A, Zilieri Del Verme L, Petricca L, Fedele AL, Lizzio MM, Tumburini E, Natalelo G, Gigante L, Bruno D, Verardi L, Taddei E, Calabrese A, Lombardi F, Bernabei R, Cauda R, Franceschi F, Landolfi R, Richiedi L, Sanguinetti M, Fantoni M, Antonelli M, Gasbarrini A; GEMElli AGAINST COVID-19 Group. Sarilumab use in severe SARS-CoV-2 pneumonia. *EclinicalMedicine* 2020; **7**: 100553 [PMID: 33043284 DOI: 10.1016/j.eclinm.2020.100553]

118 Sinha P, Mostaghim A, Biellck CG, McLaughlin A, Hamer DH, Wetzelr LM, Bhadelia N, Fagan MA, Linas BP, Assoumou SA, Leong MH, Lin NH, Cooper ER, Brave KD, White LF, Barlam TF, Sagor M; Boston Medical Center Covid-19 Treatment Panel. Early administration of interleukin-6 inhibitors for patients with severe COVID-19 disease is associated with decreased intubation, reduced mortality, and increased discharge. *Int J Infect Dis* 2020; **99**: 28-33 [PMID: 32721528 DOI: 10.1016/j.ijid.2020.07.023]

119 Montesarchio V, Parrella R, Iommini C, Biaoan M, Manzillo E, Fraganza F, Palumbo C, Rea G, Murino P, De Rosa R, Attriapdi L, D’Abraccio M, Curvietto M, Mallardo D, Celentano E, Grimaldi AM, Palla M, Trojaniello C, Vitale MG, Million-Weaver SL, Ascierto PA. Outcomes and biomarker analyses among patients with COVID-19 treated with interleukin 6 (IL-6) receptor antagonist sarilumab at a single institution in Italy. *J ImmunoTher Cancer* 2020; **8**: DOI: 10.1136/jitc-2020-010859

120 Della-Torre E, Campochiaro C, Cavalli G, De Luca G, Napolitano A, La Marca S, Boffini N, Da Prat V, Di Terlizzi G, Lanzillotta M, Rovere Querini P, Ruggeri A, Landoni M, Tresoldi M, Ciceri F, Zangrillo A, De Cobelli F, Dagna L; SARI-RAF Study Group; SARI-RAF Study Group members. Interleukin-6 blockade with sarilumab in severe COVID-19 pneumonia: Implications in COVID-19 Therapy. *Autoimmun Rev* 2020; **19**; DOI: 10.1016/j.autrev.2020.102567

121 Tleyjeh IM, Kashour Z, Damlaj M, Riaz M, Tlayjeh H, Altannir M, Altannir Y, Al-Tannir M, Tleyjeh R, Hassett L, Kashour T. Efficacy and safety of tocilizumab in COVID-19 patients: a living systematic review and meta-analysis. *Clin Microbiol Infect* 2021; **27**: 215-227 [PMID: 33161150 DOI: 10.1016/j.cmi.2020.10.036]

122 Magro G. COVID-19: Review on latest available drugs and therapies against SARS-CoV-2. Coagulation and inflammation cross-talking. *Virus Res* 2020; **286**: 198070 [PMID: 32569708 DOI: 10.1016/j.virusres.2020.198070]

123 Jamiloux Y, Henry T, Belot A, Viol S, Fauter M, El Jammal T, Walzer T, François B, Sève P. Should we stimulate or suppress immune responses in COVID-19? *Autoimmun Rev* 2020; **19**: 102567 [PMID: 32376392 DOI: 10.1016/j.autrev.2020.102567]

124 Sataraker S, Tom AA, Shaji RA, Alosious A, Lavis M, Namphoorthi M. JAK-STAT Pathway Inhibition and their Implications in COVID-19 Therapy. *Postgrad Med* 2021; **133**: 489-507 [PMID: 33245005 DOI: 10.1089/pgm.2020.38592]

125 Stebbing J, Phelan A, Griffin I, Tucker C, Oechsle O, Smith D, Richardson P. COVID-19: combining antiviral and anti-inflammatory treatments. *Lancet Infect Dis* 2020; **20**: 400-402 [PMID: 32213509 DOI: 10.1016/S1473-3099(20)30312-8]

126 Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, Rawling M, Savory E, Stebbing J. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. *Lancet* 2020; **395**: e30-e31 [PMID: 32032529 DOI: 10.1016/S0140-6736(20)30304-4]

127 Favalli EG, Biggioggero M, Maioli G, Caporali R. Baricitinib for COVID-19: a suitable treatment? *Lancet Infect Dis* 2020; **20**: 1012-1013 [PMID: 32251638 DOI: 10.1016/S1473-3099(20)30262-0]

128 Zhang X, Zhang Y, Qiao W, Zhang J, Qi Z. Baricitinib, a drug with potential effect to prevent SARS-COV-2 from entering target cells and control cytokine storm induced by COVID-19. *Int ImmunoMed* 2020; **86**: 106749 [PMID: 32645632 DOI: 10.1016/j.intimm.2020.106749]

129 Seif F, Aazami H, Khoshmirsefha M, Kamali M, Mohsenzadegan M, Pornour M, Mansouri D. JAK Inhibition as a New Treatment Strategy for Patients with COVID-19. *Int Arch Allergy Immunol* 2020; **181**: 467-475 [PMID: 30992562 DOI: 10.1159/000508247]

130 Bronte V, Ugel S, Tinazzi E, Vella A, De Sanctis F, Canè S, Batani V, Trovato R, Fiore A, Petrova V, Hofer F, Barouni RM, Musia C, Caligola S, Pinton L, Torroni L, Polati E, Donadello K, Friso S, Pizzolo F, Iezzi M, Facciotti F, Pelacci PG, Righeerti D, Bazzoni P, Ramppudda M, Comel A, Mosaer W, Lunardi C, Olivieri O. Baricitinib restrains the immune dysregulation in patients with severe COVID-19. *J Clin Invest* 2020; **130**: 6409-6416 [PMID: 32809969 DOI: 10.1172/JCI141772]

131 Kubo S, Nakayamada S, Tanaka Y. Baricitinib for the treatment of rheumatoid arthritis and systemic lupus erythematosus: a 2019 update. *Expert Rev Clin Immunol 2019;* **15**: 693-700 [PMID: 30987474 DOI: 10.1080/1744666X.2019.1608821]

132 Zhang W, Zhao Y, Zhang F, Wang Q, Li T, Liu Z, Wang J, Qin Y, Zhang X, Yan X, Zeng X, Zhang S. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. *Clin Immunol* 2020; **214**: 108393 [PMID: 32222466 DOI: 10.1016/j.clinim.2020.108393]

133 Cantini F, Niccoli L, Matarrese D, Nicastri E, Stobbo Pine D, Goletti D. Baricitinib therapy in COVID-19: a pilot study on safety and clinical impact. *J Infect* 2020; **81**: 318-356 [PMID: 32333918 DOI: 10.1016/j.jinf.2020.04.017]

134 Kall A, Patterson TF, Mehta AK, Tomashek KM, Wolfe CR, Ghazaryan V, Marconi VC, Ruiz-Palacios GM, Hsieh L, Kline S, Tapon V, Iovine NM, Jain MK, Sweeney DA, El Sahly HM, Branche AR, Regalado Pineda J, Young DC, Sandikovius L, Ueltzemeyer AF, Cohen SH, Finberg RW, Jackson PEH, Taiwo B, Paules CS, Argenichena H, Erdmann
Influenza A (H7N9) Viral Pneumonia.

Cao B

DOI:

Soriano A, Garnacho-Montero J, Socias L, Del Valle Ortíz M, Correig E, Marín-Corral J, Vallverdú-Vidal M, Restrepo Moreno G

16625008

Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Efficacy and safety of orally dosed INCB018428 in healthy volunteers. J Clin Pharmacol 2011; 51: 1644-1654 DOI: 10.1177/0007414510389469

D’Allesio A, Del Poggio P, Bracchi F, Cesana G, Sertori N, Di Mauro D, Fargnoli A, Motta M, Giussani C, Moro P, Vitale G, Giacomini M, Borra G. Low-dose ruxolitinib plus steroid in severe SARS-CoV-2 pneumonia. Leukemia 2021; 35: 635-638 DOI: 10.1038/s41375-020-01087-z

La Rosé F, Bremer HC, Gehrke I, Kehr A, Hochhaus A, Birndt S, Fellhauer M, Henkes M, Kunle B, Russo SG, La Rosé P. The Janus kinase 1/2 inhibitor ruxolitinib in COVID-19 with severe systemic hyperinflammation. Leukemia 2020; 34: 1805-1815 DOI: 10.1182/blood.2020-0891-00

Cao Y, Wei J, Zou L, Jiang T, Wang G, Chen L, Huang L, Meng F, Wang N, Zhou X, Luo H, Mao Z, Chen X, Xie J, Liu J, Cheng H, Zhao J, Huang G, Wang W, Zhou J. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): A multicenter, single-blind, randomized controlled trial. J Allergy Clin Immunol 2020; 146: 137-146.e3 DOI: 10.1111/jaci.2020.05.019

Buttgereit F. Glucocorticoids: surprising new findings on their mechanisms of actions. Ann Rheum Dis 2021; 80: 137-139 DOI: 10.1136/annrheumdis-2020-218798

Cavalcanti DM, Lotufo CM, Borelli P, Ferreira ZS, Markus RP, Farsky SH. Endogenous glucocorticoids control neutrophil mobilization from bone marrow to blood and tissues in non-inflammatory conditions. Br J Pharmacol 2007; 152: 1291-1300 DOI: 10.1076/bjph.152.11.1291.1300

Liles WC, Dale DC, Kleanefoff SJ. Glucocorticoids inhibit apoptosis of human neutrophils. Blood 1995; 86: 3181-3188 DOI: 10.1182/blood.V86.8.3181.bloodjournal8683181

Dandonna P, Mohanty P, Harmouda W, Aljada A, Kumbkarni Y, Garg R. Effect of dexamethasone on reactive oxygen species generation by leukocytes and plasma interleukin-10 concentrations: a pharmacodynamic study. Clin Pharmacol Ther 1999; 66: 58-65 DOI: 10.1016/S0009-2936(99)70054-8

Llewellyn-Jones CG, Hill SL, Stockley RA. Effect of fluticasone propionate on neutrophil chemotaxis, superoxide generation, and extracellular proteolytic activity in vitro. Thorax 1994; 49: 207-212 DOI: 10.1136/thx.49.3.207

Rozkova D, Horvath R, Bartunkova J, Spieck R. Glucocorticoids severely impair differentiation and maturation of dendritic cells despite upregulation of Toll-like receptors. J Immunol 2007; 179: 2203-2210 DOI: 10.4049/jimmunol.179.4.2203

Zucca G, Leventhal J, Signorini L, Gambero G, Cravedi P. Effects of Antirejection Drugs on Innate Immune Cells After Kidney Transplantation. Front Immunol 2019; 10: 2978 DOI: 10.3389/fimmu.2019.02978

Stahn C, Buttgereit F. Genomic and nongenomic effects of glucocorticoids. Clin Pharmacol Ther 1999; 66: 58-65 DOI: 10.1016/S0009-2936(99)70054-8

Ruíz-Irastorza G, Danza A, Khamashta M. Glucocorticoid use and abuse in SLE. Rheumatology (Oxford) 2012; 51: 1145-1153 DOI: 10.1093/rheumatology/ker410

Roujeau JC. Pulse glucocorticoid therapy. The 'big shot' revisited. Arch Dermatol 1996; 132: 1499-1502 DOI: 10.1001/archderm.1996.01660050034003

Meduri GU, Chrousos GP. Effectiveness of prolonged glucocorticoid treatment in acute respiratory distress syndrome: the right drug, the right way? Crit Care Med 2006; 34: 236-238 DOI: 16374183 DOI: 10.1097/01.CCM.0000196068.75067.4C

Luce JM, Montgomery AB, Marks JD, Turner J, Metz CA, Murray JF. Ineffectiveness of high-dose methylprednisolone in preventing parenchymal lung injury and improving mortality in patients with septic shock. Am Rev Respir Dis 1998; 158: 62-68 DOI: 10.1164/ajrccm/168.1.62

Steinberg KP, Hudson LD, Goodman RB, Hough CL, Lanken PN, Hyzy R, Thompson BT, Ancukiewicz M. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med 2006; 354: 1671-1684 DOI: 10.1056/NEJMoa051603

Moreno G, Rodríguez A, Reyes LF, Gomez I, Sole-Violan J, Diaz E, Bodi M, Treffler S, Guardiola I, Yébenes JC, Soriano A, Gamacho-Montero J, Socías L, Del Valle Ortiz M, Correig E, Marín-Corral J, Vallverdú-Vidal M, Restrepo MI, Torres A, Martín-Loeches I; GETGAG Study Group. Corticosteroid treatment in critically ill patients with severe influenza pneumonia: a propensity score matching study. Intensive Care Med 2018; 44: 1470-1482 DOI: 10.1007/s00134-018-5332-4

Cao B, Gao H, Zhou B, Deng X, Hu C, Deng C, Lu H, Li Y, Gan J, Liu J, Li H, Zhang Y, Yang Y, Fang Q, Shen Y, Gu Q, Zhou X, Zhao W, Pu Z, Chen L, Sun B, Liu X, Hamilton CD, Li L. Adjuvant Corticosteroid Treatment in Adults With Influenza A (H7N9) Viral Pneumonia. Crit Care Med 2016; 44: e318-e328 DOI: 10.1093/clinemed/msw308
Immunomodulatory therapy in critically ill COVID-19

10.1097/CCM.0000000000001616

Li H, Yang SG, Gu L, Zhang Y, Yan XX, Liang ZA, Zhang W, Jia HY, Chen W, Liu M, Yu KJ, Xue CX, Hu K, Zou Q, Li LJ, Cao B, Wang C; National Influenza A(H1N1)pdm09 Clinical Investigation Group of China. Effect of low-to-moderate-dose corticosteroids on mortality of hospitalized adolescents and adults with influenza A(H1N1)pdm09 viral pneumonia. Influenza Other Respir Viruses 2017; 11: 345-354 [PMID: 28464462 DOI: 10.1111/irv.12456]

159 Bruyn-Buijzen C, Richard JC, Mercaut A, Thiébaut AC, Brochard L; REVA-SRLF A/H1N1v 2009 Registry Group. Early corticosteroids in severe influenza A/H1N1 pneumonia and acute respiratory distress syndrome. Am J Respir Crit Care Med 2011; 183: 1200-1206 [PMID: 21471082 DOI: 10.1164/rccm.201110-1835OC]

160 Díaz E, Martin-Loeches I, Canadell L, Vidaur L, Suarez D, Socias L, Estella A, Gil Rueda B, Guerrero JE, Valderriva Vidal M, Vergara JC, López-Pueyo MJ, Magret M, Recio T, López D, Bello J, Rodriguez A; H1N1 SEMICYUC-CIBERES-REIPI Working Group (GETTAG). Corticosteroid therapy in patients with primary viral pneumonia due to pandemic (H1N1) 2009 influenza. J Infect 2012; 64: 311-318 [PMID: 22240033 DOI: 10.1016/j.jinf.2011.12.010]

161 Vivas D, Paño-Pardo JR, Cordero E, Campins A, López-Medrano F, Vililloslada A, Farihacs MC, Moreno A, Rodríguez-Boaño J, Otero JA, Martínez-Montauti J, Torre-Cisneros J, Segura F, Carratalà J; Novel Influenza A (H1N1) Study Group, Spanish Network for Research in Infectious Diseases. Effect of immunomodulatory therapies in patients with pandemic influenza A (H1N1) 2009 complicated by pneumonia. J Infect 2011; 62: 199-199 [PMID: 21295604 DOI: 10.1016/j.jinf.2011.01.014]

162 Meduri GU, Headley AS, Golden E, Carson SJ, Umberger RA, Kelso T, Tolley EA. Effect of prolonged methylprednisolone therapy in unsusolving acute respiratory distress syndrome: a randomized controlled trial. JAMA 1998; 280: 159-165 [PMID: 9669790 DOI: 10.1001/jama.280.2.159]

163 Keel JB, Hauser M, Stocker R, Baumann PC, Speich R. Established acute respiratory distress syndrome: benefit of corticosteroid rescue therapy. Respiratio 1998; 65: 258-264 [PMID: 9730790 DOI: 10.1159/000029273]

164 Bone RC, Fisher CJ Jr, Clemmer TP, Slotman GJ, Metz CA. Early methylprednisolone treatment for septic syndrome and the adult respiratory distress syndrome. Chest 1987; 92: 1032-1036 [PMID: 3315478 DOI: 10.1378/chest.92.6.1032]

165 Bernard GR, Luce JM, Sprung CL, Rinaldo JE, Tate RM, Sibbald WJ, Karimian K, Higgin S, Bradley R, Metz CA. High-dose corticosteroids in patients with the adult respiratory distress syndrome. N Engl J Med 1987; 315: 1567-1570 [PMID: 3317054 DOI: 10.1056/NEJM198712171327204]

166 Meduri GU, Golden E, Freire AX, Taylor E, Zaman M, Carson SJ, Gibson M, Umberger R. Methylprednisolone infusion in early severe ARDS: results of a randomized controlled trial. Chest 2007; 131: 954-963 [PMID: 17426195 DOI: 10.1378/chest.06-2100]

167 Weigelt JA, Norcross JF, Borman KR, Snyder WH 3rd. Early steroid therapy for respiratory failure. Arch Surg 1985; 120: 536-540 [PMID: 3885915 DOI: 10.1001/arch Surg.1985.0130920018003]

168 Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, Huang H, Zhang L, Du C, Zhang Y, Song J, Wang S, Chao Y, Yang Z, Xu J, Chen D, Xiong W, Xu L, Zhou F, Jiang J, Bai C, Zheng J, Song Y. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med 2020; 180: 934-943 [PMID: 32167524 DOI: 10.1001/jamainternmed.2020.0994]

169 Georgiev T. Coronavirus disease 2019 (COVID-19) and anti-rheumatic drugs. Rheumatol Int 2020; 40: 825-826 [PMID: 32232532 DOI: 10.1007/s00296-020-04570-z]

170 Zhou W, Liu Y, Tian D, Wang C, Wang S, Cheng J, Hu M, Fang M, Gao Y. Potential benefits of precise corticosteroids therapy for severe 2019-nCoV pneumonia. Signal Transduct Target Ther 2020, 5: 18 [PMID: 3229612 DOI: 10.1038/s41392-020-0127-9]

171 Russell CD, Millar JE, Bailleik JK. Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 2020; 395: 473-475 [PMID: 32043983 DOI: 10.1016/S0140-6736(20)30317-2]

172 WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group, Sterne JAC, Murthy S, Diaz JV, Slutsky AS, Villar J, Angus DC, Anand A, Azevedo LCP, Berwanger O, Cavalcante AB, Dequin PF, Du B, Emberson J, Fisher D, Giraudaud B, Gordon AC, Granholm A, Green C, Haynes R, Heming N, Higgins JPT, Horby P, Juni P, Landry MJ, Le Gouge A, Leelerc M, Lim WS, Machado FR, McArthur C, Meziani F, Meuller MH, Perner A, Petersen MW, Savovic J, Tomazini B, Veiga WC, Webb S, Marshall JC. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19: A Meta-analysis. JAMA 2020; 324: 1330-1341 [PMID: 32876694 DOI: 10.1001/jama.2020.17023]

173 WHO World Health Organization. WHO management of severe acute respiratory infection (SARI) when COVID-19 disease is suspected: Interim guidance. [cited 22 June 2021]. Available from: https://www.who.int/docs/default-source/coronaviruse/clinical-management-of-novel-cov.pdf?sfvrsn=bca7d517_2&msclkid=b8ae9dc9bc5911ec94d5e91449472ec07

174 Peng F, Tu L, Yang Y, Hu P, Wang R, Hu Q, Cao F, Jiang T, Sun J, Xu G, Chang C. Management and Treatment of COVID-19: The Chinese Experience. Can J Cardiol 2020; 36: 915-930 [PMID: 32439306 DOI: 10.1016/j.cja.2020.04.010]

175 Lu X, Chen T, Wang Y, Wang J, Yan F. Adjuvant corticosteroid therapy for critically ill patients with COVID-19. Crit Care 2020; 24: 321 [PMID: 32450057 DOI: 10.1186/s13054-020-02964-w]

176 Tomazini BM, Maia IS, Cavalcante AB, Berwanger O, Rosa RG, Veiga VC, Avezaum A, Lopes RD, Bueno FR, Silva MVAO, Baldassaresi FP, Costa ELV, Moura RAB, Honorato MO, Costa AN, Damiani LP, Lisboa T, Kawano-Dourado L, Zampieri FG, Olivotlo GB, Righy C, Amendola CP, Roepke RML, Freitas DHM, Forte DN, Freitas FGR, Fernandes CCF, Melro LMG, Junior GFS, Morais DC, Zung S, Machado FR, Azvedo LPC; COALITION COVID-19 Brazil III Investigators. Effect of Dexamethasone on Days Alive and Ventilator-Free in Patients With Moderate or Severe Acute Respiratory Distress Syndrome and COVID-19: The CoDEX Randomized Clinical Trial. JAMA 2020; 324: 1307-1316 [PMID: 32876695 DOI: 10.1001/jama.2020.17021]

177 RECOVERY Collaborative Group. Horby P, Lim WS, Emberson JR, Machin M, Bell JL, Linsell L, Stefani N, Brightling C, Ustianowski A, Ellahi M, Prudon B, Green C, Felton T, Chadwick D, Rege K, Fegan C, Chappell LC, Faust SN, Jaki T, Jeffery K, Montgomery A, Rowan K, Juszczak E, Bailleik JK, Haynes R, Landry MJ. Dexamethasone in
Andaluz-Ojeda D et al. Immunomodulatory therapy in critically ill COVID-19

Carter J, Henderson S, Van Der Heyden K, Mehtrens J, Williams T, Kazemi A, Song R, Lai V, Girijadevi D, Everit R, Russell R, Hacking D, Buehner U, Williams E, Browne T, Grimwade K, Goodson J, Keet O, Callender O, Martinogna R, Trask K, Butler A, Schischka L, Young C, Lesena O, Olatunji S, Robertson Y, José N, Amaro dos Santos Catorze T, de Lima Pereira TNA, Neves Pessoa LM, Castro Ferreira RM, Pereira Sousa Bastos JM, Ayêslo Florescu S, Stanciu D, Zaharia MF, Kosa AG, Cochran D, Marabi Y, Al-Qasim M, Emeere Haguzy M, Al Swaidan L, Arishi H, Muhoz-Bernández R, Marin-Corral J, Salazar Dogracia A, Parrilla Gómez F, Mateo López MI, Rodrigues Fernandez J, Cárcel Fernández S, Carmona Flores R, León López R, de la Fuente Martos C, Allan A, Polgarova P, Farahi N, McWilliam S, Hawcutt D, Rad L, O’Malley L, Whitbread J, Kelsall O, Wild L, Thrush J, Wood H, Austin K, Donnelly A, Kelli M, O’Kane S, Mc Clintock D, Warnock M, Johnston P, Gallagher LJ, Mc Goldberg C, Mc Master M, Strzelecka A, Jha R, Kaligorui M, Ellis C, Krishnamurthy V, Deelchand V, Silversides J, McGuan P, Ward K, O’Neill A, Fin S, Phillips B, Mullan D, Ortiz-Ruiz de Gordoa L, Thomas M, Sweet K, Grimmer L, Johnson R, Pinnell J, Robinson M, Gledhill J, Wood T, Morgan M, Cole J, Hill H, Davies M, Antcliffe D, Templeton M, Rojo R, Coghlan P, Smeen J, Mackay E, Cort J, Whilamena A, Spencer T, Spittle N, Kasimandian P, Patel A, Aliibone S, Genetu RM, Ramali M, Ghosh A, Bamford P, London E, Cawley K, Faulkner M, Jeffrey H, Smith T, Brewer C, Gregory J, Limb J, Cowton A, O’Brien J, Nikitas N, Wells C, Lankester L, Pullett M, Williams P, Birch J, Wiseman S, Horton A, Algieris T, Surki S, Elsef T, Crisp N, Allen R, Callejas Rubio JL.

\[Effectiveness of corticoid pulses in patients with cytokine storm syndrome induced by SARS-CoV-2 infection\].

Edalatifard M, Aparisi A, Mataras M, Ybarra-Falcón C, Iglesias-Echevarría C, López-Veloso M, Barraza-Vengoechea J, Dueñas C, Juarros Martínez SA, Rodrigo-Alonso B, Martín-Oterino Já, Montero-Baladia M, Moralejo L, Andaluz-Ojeda D, Gonzalez-Fuentes R. Corticosteroid Pulses for Hospitalized Patients with COVID-19: Effects on Mortality. Mediators Inflamm 2021; 2021: 6637227 [PMID: 33776574 DOI: 10.1155/2021/6637227]
Corral-Gudino L. MP3-pulses-COVID-19. Methylenediprisolone Pulses Versus Dexamethasone according RECOVERY Protocol in Patients With Pneumonia Due to SARS-COV-2 Coronavirus Infection. [accessed 2021 Jul 3]. In: ClinicalTrials.gov [Internet]. Bethesda (MD): U.S. National Library of Medicine. Available from: https://clinicaltrials.gov/ct2/history/NCT04780581?V_2=2&View&msc=fcid=7c62981c851ecb7ef0bd1162a159 ClinicalTrials.gov Identifier: NCT04780581

KIM MS, An MH, Kim WJ, Hwang TH. Comparative efficacy and safety of pharmacological interventions for the treatment of COVID-19: A systematic review and network meta-analysis. PLoS Med 2020; 17: e1003501 [PMID: 33378357 DOI: 10.1371/journal.pmed.1003501]

van Paassen J, Vos IS, Hoekstra EM, Neuman KMI, Bood PC, Arbous SM. Corticosteroid use in COVID-19 patients: a systematic review and meta-analysis on clinical outcomes. Crit Care 2020; 24: 696 [PMID: 33317589 DOI: 10.1186/s13054-020-04300-9]

Corral-Gudino L, Bahamonde A, Arnaiz-Revillas F, Gómez-Barquero J, Abadía-Otero J, García-Ibarbia C, Mora V, Cerezo-Hernández A, Hernández JL, López-Muñiz G, Hernández-Blanco F, Cifrián JM, Olmos JM, Carrascosa M, Nieto L, Farías MC, Riancho JA; GLUCOCOVID investigators. Methylenediprisolone in adults hospitalized with COVID-19 pneumonia: An open-label randomized trial (GLUCOCOVID). Wien Klin Wochenschr 2021; 133: 303-311 [PMID: 33534047 DOI: 10.1007/s00508-020-01805-8]

Gupta A, Karki R, Dandu HR, Dhama K, Bhatt ML, Saxena SK. COVID-19: benefits and risks of passive immunotherapies. Hum Vaccin Immunother 2020; 16: 2963-2972 [PMID: 32962524 DOI: 10.1080/21645515.2020.1808410]

Mustafa S, Balkhy H, Gabere MN. Current treatment options and the role of peptides as potential therapeutic components for Middle East Respiratory Syndrome (MERS): A review. J Infect Public Health 2018; 11: 9-17 [PMID: 28684360 DOI: 10.1016/j.jiph.2017.08.009]

Nguyen AA, Habiballah SB, Platt CD, Ghea RS, Chou JS, McDonald DR. Immunoglobulins in the treatment of COVID-19 infection: Proceed with caution! Clin Immunol 2020; 216: 108459 [PMID: 32418917 DOI: 10.1016/j.clim.2020.108459]

Moradimajd P, Samaee H, Sedigh-Maroufi S, Kourosh-Aami M, Mohsenzadegan M. Administration of intravenous immunoglobulin in the treatment of COVID-19: A review of available evidence. J Med Virol 2021; 93: 2675-2682 [PMID: 33314173 DOI: 10.1002/jmv.26277]

Xie Y, Cao S, Dong H, Li Q, Chen E, Zhang W, Yang L, Fu S, Wang R. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patients with COVID-19. J Infect 2020; 81: 318-356 [PMID: 32283154 DOI: 10.1016/j.jinf.2020.03.044]

Tabarsi P, Barati S, Jamaati H, Haseli S, Marjani M, Moniri A, Abtahiyan Z, Dastan A, Yousefian S, Eskandari R, Saffaei A, Monjazebi F, Vahedi A, Dastan F. Evaluating the effects of Intravenous Immunoglobulin (IVIg) on the management of severe COVID-19 cases: A randomized controlled trial. Int Immunopharmacol 2020; 90: 107205 [PMID: 33214093 DOI: 10.1016/j.intimp.2020.107205]

Gharebaghi N, Nejadrahim R, Moussavi SJ, Sadat-Ebrahimi SR, Hajizadeh R. The use of intravenous immunoglobulin gamma for the treatment of severe coronavirus disease 2019: A randomized placebo-controlled double-blind clinical trial. BMC Infect Dis 2020; 20: 786 [PMID: 33087047 DOI: 10.1186/s12879-020-05507-4]

Perricone C, Triggianese P, Busiri R, Cafiaro G, Bartoloni E, Chimienti MS, Gerli R, Perricone R. Intravenous Immunoglobulin at the Crossroad of Autoimmunity and Viral Infections. Microorganisms 2021; 9 [PMID: 33430200 DOI: 10.3390/microorganisms9010121]

Hung IFN, To KK, Lee CK, Lee KL, Yan WW, Chan K, Chan WM, Ngai CW, Law KI, Chow FL, Liu R, Lai KY, Lau CCY, Liu SH, Chan KH, Lin CK, Yuen KY. Hyperimmune IV immunoglobulin treatment: a multicenter double-blind randomized controlled trial for patients with severe 2009 influenza A(H1N1) infection. Chest 2013; 144: 464-473 [PMID: 23450336 DOI: 10.1378/chest.12-2907]

Annamaria P, Eugenia Q, Paolo S. Anti-SARS-CoV-2 hyperimmune plasma workflow. Transfus Apher Sci 2020; 59: 102850 [PMID: 32540345 DOI: 10.1016/j.transci.2020.102850]

Pichchota V, Chai KL, Valk SJ, Doree C, Monsef I, Wood EM, Lamikanra A, Kimber C, McQuilten Z, So-Osman C, Escourt LJ, Skoetz N. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a living systematic review. Cochrane Database Syst Rev 2020; 7: CD013600 [PMID: 32648959 DOI: 10.1002/14651858.CD013600.pub2]

Agarwal A, Mukherjee A, Kumar G, Chatterjee P, Bhatnagar T, Malhotra P; PLACID Trial Collaborators. Convalescent plasma in the management of moderate covid-19 in adults in India: open label phase II multicentre randomised controlled trial (PLACID Trial). BMJ 2020; 371: m3939 [PMID: 33093056 DOI: 10.1136/bmj.m3939]

Li L, Zhang W, Hu Y, Tong X, Zheng S, Yang J, Kong Y, Ren L, Wei Q, Mei H, Hu C, Tao C, Yang R, Wang J, Yu Y, Guo Y, Wu X, Xu Z, Zeng L, Xiong N, Chen L, Man N, Liu Y, Xu H, Deng E, Zhang X, Li C, Wang C, Su S, Zhang L, Wu Y, Liu Z. Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients With Severe and Life-threatening COVID-19: A Randomized Clinical Trial. JAMA 2020; 324: 460-470 [PMID: 32492084 DOI: 10.1001/jama.2020.10044]

Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, Wang F, Li D, Yang M, Xing L, Wei J, Xiao H, Qu J, Qing L, Chen L, Xu Z, Peng L, Li Y, Zheng H, Chen F, Huang K, Jiang Y, Liu D, Zhang Z, Liu Y, Liu L. Treatment of 5 Critically Ill Patients With COVID-19: A Prospective Convalescent Plasma Study. JAMA 2020; 323: 1582-1589 [PMID: 32219428 DOI: 10.1001/jama.2020.4783]

Zhang B, Liu S, Tan T, Huang W, Dong Y, Chen L, Chen Q, Zhang L, Zhong Q, Zhang X, Zou Y, Zhang S. Treatment With Convalescent Plasma for Critically Ill Patients With Severe Acute Respiratory Syndrome Coronavirus 2 Infection. Chest 2020; 158: e9-e13 [PMID: 32243945 DOI: 10.1016/j.chest.2020.03.039]

Purkayastha SP, Gulker R, Brombacher F. Statins: a viable candidate for host-directed therapy against infectious diseases. Nat Rev Immunol 2019; 19: 104-117 [PMID: 30487528 DOI: 10.1038/s41577-018-0094-3]

Scheen AJ. Statins and clinical outcomes with COVID-19: Meta-analyses of observational studies. Diabetes Metab 2021;
Andaluz-Ojeda D et al. Immunomodulatory therapy in critically ill COVID-19

Andaluz-Ojeda D, Atam-Santos U, López-Otero D, Marcos-Mangas M, González-Juanatey JR, San Román JA. Impact of statins in patients with COVID-19. Rev Esp Cardiol (Eng Ed) 2021; 74: 637-640 [PMID: 33593686 DOI: 10.1016/j.recesp.2021.01.005]

Cariou B, Goronflot T, Rimbart A, Boullu S, Le May C, Moulin P, Pichelin M, Potier L, Smati S, Sultan A, Trumant B, Wargny M, Goudry P, Hadjaj S; CORONADO investigators. Routine use of statins and increased COVID-19 related mortality in inpatients with type 2 diabetes: Results from the CORONADO study. Diabetes Metab 2021; 47: 101202 [PMID: 33091555 DOI: 10.1016/j.diabetologia.2020.10.001]

Saced O, Castagna F, Agalliu I, Xue X, Patel SR, Rochlany I, Kataria R, Vukelic S, Sims DB, Alvarez C, Rivas-Lasarte M, Garcia MJ, Jorje UP. Statin Use and In-Hospital Mortality in Patients With Diabetes Mellitus and COVID-19. J Am Heart Assoc 2020; 9: e018475 [PMID: 33092446 DOI: 10.1161/JAHA.120.018475]

Lee HY, Ahn J, Park J, Kyung Kang C, Won SH, Wook Kim D, Park JH, Chung KH, Jang JS, Bang JH, Hee Kang C, Bum Pyun W, Oh MD; Korean Society of Hypertension, National Committee for Clinical Management of Emerging Infectious Diseases. Beneficial Effect of Statins in COVID-19-Related Outcomes-Brief Report: A National Population-Based Cohort Study. Arterioscler Thromb Vasc Biol 2021; 41: e175-e182 [PMID: 33535790 DOI: 10.1161/ATVBAHA.120.35551]

Owji H, Negahdarpour M, Hajighahramani N. Immunotherapeutic approaches to curtail COVID-19. Int Immunopharmacol 2020; 88: 106924 [DOI: 10.1016/j.intimp.2020.106924]

Atri D, Siddiqi HK, Lang JP, Naufulli V, Morrow DA, Bohula EA. COVID-19 for the Cardiologist: Basic Virology, Epidemiology, Cardiac Manifestations, and Potential Therapeutic Strategies. JACC Basic Trans Sci 2020; 5: 518-536 [PMID: 3229848 DOI: 10.1016/j.jacbts.2020.04.002]

Oesterle A, Laufs U, Liao JK. Pleiotropic Effects of Statins on the Cardiovascular System. Circ Res 2017; 120: 229-243 [PMID: 28057795 DOI: 10.1161/CIRCRESAHA.116.308537]

Bangalore S, Sharma A, Slotwiner A, Yatskar L, Harari R, Shah B, Ibrahim H, Friedman GH, Thompson C, Alviar CL, Chadow HL, Fishman GI, Reynolds HR, Keller N, Hochman JS. ST-Segment Elevation in Patients with Covid-19 - A Case Series. N Engl J Med 2020; 382: 2478-2480 [PMID: 32302081 DOI: 10.1056/NEJMoa2009202]

Osley TJ, Mostaghimi S, Shafran H, Singh J, De Leacy S, Kellner CP, Shimohata T, Ladner TR, Yaeger KA, Skluit M, Weinberger J, Dangayach NS, Bederson JB, Tuhrim S, Fifi JT. Large-Vessel Stroke as a Presenting Feature of COVID-19. N Engl J Med 2020; 382: e60 [PMID: 32343504 DOI: 10.1056/NEJMoa2009787]

National Heart, Lung, and Blood Institute ARDS Clinical Trials Network, Truwit JD, Bernard GR, Steinburg J, Matthay MA, Liu KD, Albertson TE, Brower RG, Shanholtz C, Rock P, Douglas IS, delBoisblanc BP, Hough CL, Hite RD, Thompson BT. Rosuvastatin for sepsis-associated acute respiratory distress syndrome. N Engl J Med 2014; 370: 2191-2200 [PMID: 24838549 DOI: 10.1056/NEJMoa1401520]

McAuley DF, Laffey JG, O’Kane CM, Perkins GD, Mullan B, Trinder TJ, Johnston P, Hopkins PA, Johnston AJ, McDowell C, McNally C; HARP-2 Investigators; Irish Critical Care Trials Group. Simvastatin in the acute respiratory distress syndrome. N Engl J Med 2014; 371: 1695-1703 [PMID: 25268516 DOI: 10.1056/NEJMoa1403285]

Xiong B, Wang C, Tan J, Cao Y, Zou Y, Yao O, Qian J, Rong S, Huang Y, Huang J. Statins for the prevention and treatment of acute lung injury and acute respiratory distress syndrome: A systematic review and meta-analysis. Respir Res 2016; 21: 1026-1033 [PMID: 27221951 DOI: 10.1111/resp.12820]

Callees DL, Delucchi KL, Sinha P, Matthay MA, Hackett J, Shankar-Hari M, McDowell C, Laffey JG, O’Kane CM, McAuley DF; Irish Critical Care Trials Group. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial. Lancet Respir Med 2018; 6: 691-698 [PMID: 30078618 DOI: 10.1016/S2213-2600(18)30177-2]

Nägele MF, Haubner B, Tanner FC, Ruschitzka F, Flammer AJ. Endothelial dysfunction in COVID-19: Current findings and therapeutic implications. Atherosclerosis 2020; 314: 58-62 [PMID: 33161318 DOI: 10.1016/j.atherosclerosis.2020.01.018]

Mackall CL, Fry TJ, Gress RE. Harnessing the biology of IL-7 for therapeutic application. Nat Rev Immunol 2011; 11: 330-342 [PMID: 21508983 DOI: 10.1038/nri2970]

Barata JT, Durum SK, Seddon B. Flip the coin: IL-7 and IL-7R in health and disease. Nat Immunol 2019; 20: 1584-1593 [PMID: 31745336 DOI: 10.1038/s41590-019-0479-x]

Latere PF, François B, Collienne C, Hantson P, Jeannet R, Remy KE, Hotchkiss RS. Association of Interleukin 7 Immune Infectious With Lymphocyte Counts Among Patients With Severe Coronavirus Disease 2019 (COVID-19). JAMA Netw Open 2020; 3: e2016485 [PMID: 32697322 DOI: 10.1001/jamanetworkopen.2020.16485]

Liu Y, Pan Y, Hu Z, Wu M, Wang C, Feng Z, Mao C, Tan Y, Liu Y, Chen L, Li M, Wang G, Yuan Z, Diao B, Wu Y, Chen Y. Thymosin Alpha 1 Reduces the Mortality of Severe Coronavirus Disease 2019 by Restoration of Lymphopoenia and Reversion of Exhausted T Cells. Clin Infect Dis 2020; 71: 2150-2157 [PMID: 32442287 DOI: 10.1093/cid/ciaa630]

Lim ZJ, Subramaniam A, Ponnapa Reddy M, Blecher G, Kadam U, Afroz A, Billah B, Ashwin S, Kubicki M, Bilotta F, Curtis JR, Rubulotta F. Case Fatality Rates for Patients with COVID-19 Requiring Invasive Mechanical Ventilation. A Meta-analysis. Am J Respir Crit Care Med 2021; 203: 54-66 [PMID: 33119402 DOI: 10.1164/rccm.202008-2405OC]

Chang R, Elhusseiny KM, Yeh YC, Sun WZ. COVID-19 ICU and mechanical ventilation patient characteristics and outcomes-A systematic review and meta-analysis. PLoS One 2021; 16: e0246318 [PMID: 33571501 DOI: 10.1371/journal.pone.0246318]

Penttilä PA, Van Gassen S, Panovska D, Vanderbeke L, Van Heek Y, Quintelier K, Emmaneul A, Filtiens J, Malengier-Devilies B, Ahmadzadeh K, Van Mol P, Borrsá DM, Antoranza A, Bossois FM, Wauters E, Marinod K, Matthys P, Saexs Y, Garg AD, Wauters J, De Smet F; CONTAGIOUS consortium. High dimensional profiling identifies specific immune types along the recovery trajectories of critically ill COVID19 patients. Cell Mol Life Sci 2021; 78: 3987-4002 [PMID: 33715015 DOI: 10.1007/s00018-021-03080-8]
Ortiz M, Ballesteros JC, Martín Iglesias L, Marín-Corral J, López Ramos E, Hidalgo Valverde V, Vidaur Tello LV, Sancho Chinesta S, González de Molina FJ, Herrero García S, Sena Pérez CC, Pozo Laderas JC, Rodríguez García R, Estella A, Ferrer R; COVID-19 SEMICYUC Working Group. Deploying unsupervised clustering analysis to derive clinical phenotypes and risk factors associated with mortality risk in 2022 critically ill patients with COVID-19 in Spain. *Crit Care* 2021; 25: 63 [PMID: 33588914 DOI: 10.1186/s13054-021-03487-8]

Osuchowski MF, Winkler MS, Skirecki T, Cajander S, Shankar-Hari M, Lachmann G, Monneret G, Venet F, Bauer M, Brunkhorst FM, Weis S, Garcia-Salido A, Kox M, Cavaillon JM, Uhlé F, Weigand MA, Flohé SB, Wiersinga WJ, Almansa R, de la Fuente A, Martin-Loeches I, Meisel C, Spinetti T, Scheffold JC, C Illoniz C, Torres A, Giamarellos-Bourboulis EJ, Ferrer R, Girardinus M, Cossarizza A, Netea MG, van der Poll T, Bermejo-Martin JF, Rubio I. The COVID-19 puzzle: deciphering pathophysiology and phenotypes of a new disease entity. *Lancet Respir Med* 2021; 9: 622-642 [PMID: 33965003 DOI: 10.1016/S2213-2600(21)00218-6]

Chen H, Xie J, Su N, Wang J, Sun Q, Li S, Jin J, Zhou J, Mo M, Wei Y, Chao Y, Hu W, Du B, Qiu H. Corticosteroid Therapy Is Associated With Improved Outcome in Critically Ill Patients With COVID-19 With Hyperinflammatory Phenotype. *Chest* 2021; 159: 1793-1802 [PMID: 33316235 DOI: 10.1016/j.chest.2020.11.050]
