When is Sirt1 activity bad for dying neurons?

Fanny Ng1,2 and Bor L. Tang1,2,3 *

1 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
2 National University Health System, National University of Singapore, Singapore, Singapore
3 National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore

The yeast Silent Information Regulator 2 (Sir2p)-related family of proteins, or sirtuins, are NAD+-dependent class III histone deacetylases that has been extensively investigated in association with aging and longevity in model organisms ranging from yeast to invertebrates (Donmez and Guarente, 2010). Albeit controversial, the life span extension effect of SIR2 orthologs has been proposed to underlie the almost universal life span extension effect of caloric restriction (Hu et al., 2011). The mammalian SirT1 has been linked to a myriad of physiological functions, as well as pathological roles in cancer, metabolic diseases, and multiple aging-associated organ/system disorders (Haigis and Sinclair, 2010). Sirt1 activity appears to aid neuronal survival in a wide variety of proteolytic enzymes (Donmez et al., 2010), enhanced expression of chaperone proteins (Donmez et al., 2012), the reduction of neuro-inflammation (Nimmagadda et al., 2013) to the regulation of DNA repair of double strand breaks resulting from genotoxic stress (Dobbin et al., 2013). In spite of this, there are findings which clearly run counter to the notion that SirT1 activation is neuroprotective. One of the most recent amongst these is the report by Pucci and colleagues (Sansone et al., 2013).

NEGATIVE IMPLICATIONS OF Sirt1 ACTIVATION IN NEURONAL SURVIVAL – THE ACCUMULATING EVIDENCE

While SirT1 activation’s neuroprotective effect has been extensively demonstrated, there is also no lack of evidence of a similar effect resulting from SirT1 inhibition. For example, earlier studies have demonstrated that inhibition of SirT1 by nicotinamide protects neuronal death from acute anoxic injury (Chong et al., 2005) as well as fluid percussion injury (Holland et al., 2008). More recent work from Longo and colleagues also showed that nicotinamide increased neuronal survival from oxidative damage by exogenous H2O2 (Li et al., 2008), and brains of Sirt1 knockout mice exhibited reduced levels of cumulative oxidative damage as assessed by protein carbonylation and lipid peroxidation. Of note, the authors found that SirT1 inhibition increased acetylation and decreased phosphorylation of the insulin/IGF-1 signaling adaptor IRS-2, thus reducing the activation of the downstream Ras/ERK1/2 pathway (which promotes oxidative stress). Two reports from Mattson and colleagues have also showed that SirT1 inhibition by nicotinamide and sirtinol promotes survival in models of excitotoxic neuronal death (Liu et al., 2008, 2009). Other than the above studies using chemical inhibitors of SirT1, at least two other studies that utilized genetic manipulation of SirT1 levels are also not supportive of its perceived neuroprotective effect. In Drosophila, ubiquitous transgenic sir2 overexpression...
using the pan-neuronal driver elav-gal4 resulted in premature death during development (Girwold et al., 2008), and transgenic overexpression of the in the developing eye in fact resulted in enhanced apoptosis. Another study, which involves the neuron-specific transgenic expression of human Sirt1 in mice driven by the enolase promoter, revealed no enhancement of protection against ischemia or neurotoxin induced neuronal death (Kakefuda et al., 2009). In fact, these mice suffer from a reference memory deficit. Although transgenic expression models like such are not particular refined, it does attest to the notion that over-expression of Sirt1 alone did not help conditions of acute neuronal injury.

Pucci and colleagues (Sansone et al., 2013) showed very recently that Sirt1 silencing attenuates, while Sirt1 over-expression enhances, death of NG108-15 neuroblastoma cells induced by staurosporine and a host of other apoptotic agents. This effect is more pronounced in butyrate differentiated cells. Sirt1 activity is in fact reduced after differentiation, and differentiated cells were more resistant to death insults. The authors showed that Sirt1 silencing enhanced the expression of both IGF-1 and IGF-1 receptor (IGF-1R), and signaling from the latter likely promoted cell survival. These findings are interesting not just in as far as the addition of another line of evidence “against” a simple notion of Sirt1 activation being neuroprotective, but it also brought forth an interesting point of reciprocity between Sirt1 activity and IGF-1 signaling.

WHEN IS Sirt1 ACTIVATION BAD FOR NEURONS?

How does one reconcile the complete opposite findings made on the role of Sirt1 in neuroprotection? Perhaps the foremost issue to consider is whether Sirt1 activity could in fact be in anyway detrimental to neurons. In this regard, a particularly important point made by Mattson and colleagues in their papers mentioned above (Liu et al., 2008, 2009) is the role of cellular NAD+ levels, a determinant of the bioenergetic state of neurons, in influencing neuronal survival or demise during acute energy-depriving conditions. Poly(ADP-ribose) polymerase-1 (PARP-1) is a key mediator of cell death in excitotoxicity, ischemia, and oxidative stress. NAD+ depletion by PARP-1 appears necessary and sufficient for PARP-1-mediated neuronal death (Alano et al., 2010). Sirtuins are the other major users of cellular NAD+. A concurrent activation of Sirt1 during the acute phase of neuronal injury may therefore accelerate the consumption of NAD+ and exacerbate death. This could effectively precede any survival promoting effects of Sirt1’s deacetylase effect on other substrates, which may need more time to take effect. In other words, increasing Sirt1 levels or promoting its activity during acute neuronal death could simply be counterproductive as far as survival is concerned.

The next question to ponder upon is how does Sirt1 activity protect neurons against death insults? Sirt1’s protective effect is of course not limited to neurons, but many other cell types under stress (Tang, 2011). Other than its deacetylleylation of classical death pathway inducers p53 and p65/RelA, one of the major target substrate of Sirt1 is the forkhead box class Q (FoxO) family of transcription factors. Sirt1’s activation of FoxO has multiple consequences, with the general outcome being the activation of genes that could counter cellular stress and promote survival (Giannakou and Partridge, 2004), as well as pro-survival processes such as autophagy (Lee et al., 2008; Harhara et al., 2010). All these processes require response time and the availability of sufficient energy, neither of which would be in ample supply during acute neuronal injury. In neurons subjected to chronic and sub-acute and sub-lethal insults, however, Sirt1 activation would be beneficial because there are time and energetic means of triggering Sirt1 activity-induced survival mechanisms. There is a caveat to this line of thought, as we assumed that Sirt1’s protective effect occurs solely via its deacetylase activity. It has been shown that Sirt1’s neuroprotective effect may not be entirely dependent on its enzymatic activity (Plister et al., 2008).

In theory therefore, if there is a way to reconcile the disparate findings, it could be when and how elevated Sirt1 activity is elevated in the context of injury/insult onset and pathological progression of the compromised neurons that matters. It would appear that Sirt1 activity is likely to benefit neurons subjected to chronic stresses and are dying slowly, rather than those suffering from acute insults. This is, of course, a gross generalization. Very recent reports have attested that Sirt1 activity has been shown to benefit neuronal survival in acute injuries, such as optic nerve crush (Zuo et al., 2013) and stroke (Hernández-Liménez et al., 2013). One should also bear in mind that cytoplasmatic Sirt2, which shares activators and inhibitors with Sirt1, has a well-documented pro-apoptotic property (Omeite et al., 2007; Plister et al., 2008). Any attempt to inhibit Sirt1 that might also inhibit Sirt2 may have a context-dependent net beneficial effect, and thus complicates the outcome and its interpretation. It is also conceivable that the ability to engage certain signaling pathways may influence Sirt1’s effects, one of which is insulin/IGF-1 signaling.

AN INTERESTING RECIPROCITY/FEEDBACK LOOP BETWEEN Sirt1 ACTIVITY AND IGF SIGNALING IMPINGS ON NEURONAL SURVIVAL

Signaling through the insulin/IGF-1, although largely pro-survival and neuroprotective, is paradoxically associated with a reduced overall lifespan (Tang, 2006). Defects in insulin/IGF-1 signaling have been shown to significantly extend lifespan in multiple animal models (Bartke, 2008). In C. elegans, restoring defects in the insulin receptor-like gene daf-2 (which extends lifespan) in neurons alone, but not muscle or intestine, reduces lifespan to wild-type levels (Wolkow et al., 2000). This pointed toward the importance of neuronal insulin/IGF-1 signaling in determining lifespan. The relationship between Sirt1 and insulin/IGF-1 signaling in neurons, both during normal physiological existence, as well as during stressed conditions, is therefore of interest.

Sinclair and colleagues has reported in a paper connecting Sirt1 activation to caloric restriction that Sirt1 levels were elevated in non-neuronal cells grown in serum from rats subjected to caloric restriction. This elevation was, however, suppressed by the addition of insulin or IGF-1 (Cohen et al., 2004). On the other hand, IGF-1 has been shown to increase Sirt1 expression in cardiomyocytes in a c-Jun N-terminal kinase 1 (JNK1)-dependent manner (Vinciguerra et al., 2012). Conversely, it was reported that Sirt1
activity enhances IGF-1 signaling through deacetylation of IRS-2 in neuronal cells, which may ultimately compromises neuronal cell survival through oxidative damage resulting from the downstream Ras/Erk1/2 pathway (Li et al., 2008). Pucci et al. now showed the opposite, that Sirt1 activity could potentially reduce signaling from the IGF-1-IGF-1R, at least in some neuronal cell types, by suppressing the expression of both ligand and receptor (Sansone et al., 2013). These disparate findings are summarized in Figure 1.

Viewed from the cellular and organismal perspective, Sirt1 activity and IGF-1 signaling are diametrically opposite modulators of lifespan. Inhibition or attenuation of IGF-1 signaling promoted longevity in multiple animal models (Kenyon et al., 1993; Kimura et al., 1997; Tatar et al., 2001; Holzenberger et al., 2003; Heidler et al., 2010). On the other hand, Sirt1 activation has been largely associated with lifespan extension (Cohen et al., 2004; Ho et al., 2009; Mercken et al., 2013). Intriguingly, neurons appear to have critical roles in determination of lifespan in multicellular organisms. As mentioned above, restoring wild type IGF-1 signaling in neurons alone nullified the lifespan extension effect of IGF-1 signaling deficiency in other tissues (Wolkow et al., 2000). Furthermore, manipulation of respiratory function of neurons appears to generate, in a non-cell autonomous manner, mitochondrial stress response in other tissues that enhanced survival (Durieux et al., 2011). All in all it appears that Sirt1 action is connected to IGF-1 signaling via a rather complex feedback system that could affect neuronal survival in a cell type- and context-dependent manner.

In other words, the status of IGF-1 signaling, both in terms of components and pathway activity, at the point of Sirt1 elevation or activation could influence the outcome of either enhanced survival or heightened demise. For mouse cardiomyocytes, it was in fact shown that locally acting IGF-1 increased Sirt1 expression and activity, whereas circulating IGF-1 isoform did not have the same effect (Vinciguerra et al., 2009). Granted that the relationship between Sirt1 action and IGF-1 signaling is complex, context dependent and not yet completely mapped, we now know a few ground rules that should be useful to keep in mind when we attempt to rescue neurons in distress.

ACKNOWLEDGMENTS

The authors declare no conflict of interest, and are supported by a National University Health Service (NUHS) bench-bedside project grant (NUHSRO/2011/009/STB/B2-B-05).

REFERENCES

Alano, C. C., Garnier, P., Ying, W., Higashi, Y., Kauppinen, T., Spassky, E., and Swanson, R. A. (2010). NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-I-mediated neuronal death. J. Neurosci. 30, 2967–2978. doi: 10.1523/JNEUROSCI.5552-09.2010

Alban, D., Polén, L., and Forslin, G. (2010). Steroids as novel targets for Alzheimer’s disease and other neurodegenerative disorders: experimental and genetic evidence. J. Alzheimer’s Dis. 19,
Durieux, J., Wolff, S., and Dillin, A. M. M., Madabhushi, R., Pan, Donmez, G., and Guarente, L. (2010). October 2013 | Volume 7 | Article 186 | Frontiers in Cellular Neuroscience www.frontiersin.org

Ng and Tang Is Sirt1 bad for neurons?

A. (2011). The cell-non-autonomous ADAM10. Cell Aging and disease: connections to sirtuins. doi: 10.1016/j.cell.2010.12.016

Kumar, K. D., Tsuionbaum, H. A., Liu, Y., and Berkun, G. (1997). dal-2, an insulin receptor-like gene that regulates longevity and dis- pulse in Caenorhabditis elegans. Science 277, 942–946. doi: 10.1126/science.277.5328.942

Liu, H., I. Cao, L., Motolskaya, R., Lombard, D. B., Liu, J., Brown, N. E., et al. (2008). A role for the NAD-dependent deacetylase Sir1 in the regulation of autophagy. Proc. Natl. Acad. Sci. U.S.A. 105, 3574–3579. doi: 10.1073/pnas.0712145105

Li, Y., Xu, W., McBurney, M. W., and Longo, V. D. (2008). SirT1 inhibition reduces IGF-1/2/2/Ras/ERK1/2 signaling and protects neurons. Cell 136, 18–26. doi: 10.1016/j.cell.2008.07.004

Liu, D., Gharaibeh, R., Pitta, M., Glidewell, M., and Mattson, M. P. (2009). Niacinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cere- bral ischemia: NAD+ consumption by SirT1 may endanger oxy- gen-compromised neurons. Neurosci. Res. 61, 28–42. doi: 10.1016/j.nis.2007.09.014

Sansone, L., Ruili, V., Pellegrotin, L., Villanova, L., Brunengraber, M., Marfì, G., et al. (2011). SirT1 silencing combats neuroprotection through IGF-1 signaling impairment. J. Phys.iol. 58:481. doi: 10.1113/jphysiol.2011.208954

Tang, B. L. (2008). SirT1, neuronal cell survival and the insulin-like aging paradigm. Age 27, 501–505. doi: 10.1007/s11357-006-0201-0

Tang, B. L. (2010). SirT1’s complex roles in neuroprotection. Cell Mol. Life Sci. 67, 1059–1065. doi: 10.1007/s00018-010-0441-2

Tang, B. L. (2011). SirT1’s systemic protective roles and its promise as a target in antiaging medicine. Trends Cell Biol. 21, 270–274. doi: 10.1016/j.tcb.2010.11.008

Tatin, M., Koparde, A., Epstein, D., Tu, M. P., Yin, C. M., and Garfiofs, B. S. (2001). A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292, 107–110. doi: 10.1126/science.1067955

Vincaigna, M., Santini, M. P., Claycomb, W. C., and Lamon, A. 11–26. doi: 10.1323/EMBO-J.2010-1215

Baralle, A. (2008). Impact of reduced insulin-like growth factor-I/insulin signaling on aging in mammalian novel findings. Aging Cell 7, 283–290. doi: 10.1111/j.1474-9726.2008.00387.x

Brajda, N., Jeyarasa, T., Pol- lard, A., and Yoshida, P. S. (2012). Sirtuins in cognitive age- ing and Alzheimer’s disease. Curr. Opin. Pharmacol. 23, 220–226. doi: 10.1016/j.coph.2012.11.012

Chung, Z. F., Lou, S. L., Li, P., and Mauve, K. (2015). The sirtuin inhibitors metformin mimics enhanced neuronal cell survival during acute anoxic injury through AKT, BAD, PARP and mitochondrial associ- ated “anti-apoptotic” pathways. Curr. Neurovasc. Res. 2, 273–283. doi: 10.2174/156720205774316112

Cohen, H. Y., Miller, C., Bitterman, K. J., Walf, S. T., and Magalhaes, P. T. (2013). The cell-non-autonomous ADAM10. Cell Aging and disease: connections to sirtuins. doi: 10.1016/j.cell.2010.06.020
Local IGF-1 isoform protects cardiomyocytes from hypertrophic and oxidative stress via SirT1 activity.

Aging (Albany NY) 2, 43–62.

Vinciguerra, M., Santini, M. P., Martin, C., Pautreau, V., Claverie, W., C., Giudici, A., et al. (2012). mIGF-1/SIR2/SirT1 signaling confers protection against oxidative stress in the heart. Aging Cell 11, 139–149. doi: 10.1111/j.1474-9726.2011.00769.x

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Wolkow, C. A., Kimura, K. D., Lee, M. S., and Ruvkun, G. (2000). Regulation of C. elegans lifespan by insulin like signaling in the nervous system. Science 290, 147–150. doi: 10.1126/science.290.5489.147

Zuo, L., Khan, R. S., Lee, V., Dimz, K., Wei, W., and Shindler, K. S. (2013). SirT1 promotes RGC survival and delays loss of function following optic nerve crush. Invest. Ophthalmol. Vis. Sci. 54, 5097–5102. doi: 10.1167/iovs.13-12137

Ng and Tang Is SirT1 bad for neurons?

G., and Rosenthal, N. (2009). Local IGF-1 isoform protects cardiomyocytes from hypertrophic and oxidative stress via SirT1 activity. Aging (Albany NY) 2, 45–62.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 06 September 2013; accepted: 02 October 2013; published online: 24 October 2013.

Citation: Ng F and Tang BL (2013) When is SirT1 activity bad for dying neurons? Front. Cell. Neurosci. 7:186. doi: 10.3389/fncel.2013.00186

This article was submitted to the journal Frontier in Cellular Neuroscience. Copyright © 2013 Ng and Tang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.