Magnetoelectric Cr$_2$O$_3$ and relativity theory

Friedrich W. Hehl1,2,a, Yuri N. Obukhov3,b, Jean-Pierre Rivera4,c, and Hans Schmid4,d

1 Institute for Theoretical Physics, University of Cologne, 50923 Köln, Germany
2 Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
3 Department of Theoretical Physics, Moscow State University, 117234 Moscow, Russia
4 Department of Inorganic, Analytical and Applied Chemistry, University of Geneva, Sciences II, 1211 Geneva 4, Switzerland

06 March 2009, file SantaBarbaraP11.tex

Abstract. Relativity theory is useful for understanding the phenomenology of the magnetoelectric effect of the antiferromagnet chromium sesquioxide Cr$_2$O$_3$ in two respects: (i) One gets a clear idea about the physical dimensions of the electromagnetic quantities involved, in particular about the dimensions of the magnetoelectric moduli that we suggest to tabulate in future as dimensionless relative quantities; (ii) one can recognize and extract a temperature dependent, 4-dimensional pseudoscalar from the data of magnetoelectric experiments with Cr$_2$O$_3$. This pseudoscalar piece of Cr$_2$O$_3$ is odd under time reflections and parity transformations and is structurally related (“isomorphic”) to the gyrator of electric network theory, the axion of particle physics, and the perfect electromagnetic conductor of electrical engineering.

PACS. 75.50.Ee Antiferromagnetics – 03.50.De Classical electromagnetism, Maxwell equations – 06.20.F-Units and standards – 46.05.+b General theory of continuum mechanics of solids – 14.80.Mz Axions and other Nambu-Goldstone bosons

1 Introduction

Magnetism is caused by moving electric charge, and the motion of an object is closely related to relativity theory; at least if the charge moves with a speed v that cannot be neglected as compared to the speed of light c. Accordingly, in the theory of magnetoelectricity that deals with materials where a magnetisation M is induced by an electric field E or a polarization P by a magnetic field B (or a magnetic excitation H), magnetic and electric fields are closely intertwined, and it is wise to put the electrodynamical theory in a relativistic form right away; and this all the more since Maxwell’s theory is known to be a relativistic theory covariant under all coordinate transformations (see Post [46]).

2 Physical dimensions in magnetoelectrics

2.1 Permittivity and permeability

Before one formulates a physical theory, in the case under consideration electrodynamics of material media, one has to make a basic decision: Do we want to formulate the laws in terms of “quantity equations” or in terms of “numerical equations”? A quantity $A = \{A\}[A]$ is always a “numerical value” $\{A\}$ times a “dimension” $[A]$; and quantity equations interrelate these quantities. By their very definition quantity equations are valid in any system of units. Thus, if one puts the Maxwell equations in such a form, they are valid in SI (the international system of units), in the Gauss system of units, etc. By contrast, in the book of Jackson [29], for instance, on the top of each second page, it is indicated for which system of units (SI or Gaussian) the equations displayed are valid. Clearly, this distracts from the universal nature of the Maxwell equations—and we will not follow that convention. Also the elementary particle physicist prefer to formulate the laws in such a way that they are only valid in a certain system of units, with $\hbar = 1$, $c = 1$, etc.

In order to recognize the archetypal structure of the Maxwell equations, one should write them, as already Maxwell has done himself—who also discusses physical dimensions in quite some detail—in terms of quantity equations, see Post [46] or [18]. We will follow Post in this context.

In the past these matters of dimensions and units caused heated debates. One can get a good idea of this from the article of Brown [9]. He gives a good and complete description of how to change from one system of units to another one. However, in contrast to Post, he argues that choice of a dimension is more or less a convention. We disagree with this position. In our opinion the dimension of a quantity encodes the operational procedure of how to measure this quantity.

a email: hehl@thp.uni-koeln.de (corresponding author)
b email: yo@thp.uni-koeln.de
c email: Jean-Pierre.Rivera@unige.ch
d email: Hans.Schmid@unige.ch
The dimension of a quantity is an intrinsic and defining property of a quantity. We cannot, by suitable units, kill the dimension of a physical quantity. A dimension is something invariant. The electric excitation \(\mathbf{D} \), for instance, can be measured in vacuum with the help of the Maxwellian double plates implying the dimension \([\mathbf{D}] = \text{charge/area} = \text{q}/\ell^2 \), where \(q \) denotes the dimension of charge and \(\ell \) the dimension of length. Similarly the electric field strength \([\mathbf{E}] = \text{force/charge} = (\text{w}/\ell)/\text{q} = (\text{UIt}/\ell)/(\text{It}) = U/\ell \), with \(\text{w}, \text{U}, \text{I}, \) and \(\ell \) as dimensions of work (energy), voltage, current, and time, respectively. Clearly then, quite independently of the system of units chosen, the permittivity defined by the ratio of the electric excitation and the electric field \(\varepsilon = \mathbf{D}/\mathbf{E} \) has the intrinsic dimension \([\varepsilon] = [\mathbf{D}]/[\mathbf{E}] = (\text{q}/\ell^2)/\text{U} = (\text{It}/\ell^2)/(\text{U}) = 1/(\text{R} \ell) \), where \(R \) and \(v \) are the dimensions of resistance and velocity, respectively. In particular, also in vacuum \([\varepsilon_0] = \text{Y}/\nu \), with \(Y = 1/R \) as the dimension of admittance. Note that we talk about dimensional analysis, not about a system of units. Our discussion looks like one relating to SI; however, we talk about dimensional analysis, not about a system of units. In the Gaussian system, for example, one introduces this is not the case—rather SI also uses quantity equations with \(Y \), \(\nu \), and \(\lambda \) as quantities, respectively. In particular, also in SI resemble those we discuss here. In the Gaussian system, for example, one introduces effectively a new quantity \(d : = \mathbf{D}/\varepsilon_0 \) and thereby finds in vacuum \(d = \mathbf{E} \). However, \(d \) carries no longer the dimension of an excitation and, accordingly, is only some superficial notational construct without operational interpretation. The conventional vacuum relation \(\mathbf{D} = \mathbf{E} \), used in Gaussian units, defies a reasonable dimensional analysis.

For ordinary linear and isotropic materials we can write

\[
\mathbf{D} = \varepsilon_0 \varepsilon \mathbf{E}, \quad \mathbf{H} = \frac{1}{\mu_0 \mu} \mathbf{B},
\]

\[
[\varepsilon_0] = \text{Y}/\nu, \quad [\mu_0] = \frac{1}{\text{Y}/\nu}, \quad [\varepsilon] = [\mu] = 1,
\]

where \(\mathbf{H} \) is the magnetic excitation and \(\mathbf{D} \) the electric excitation that are induced by the externally applied fields \(\mathbf{E} \) and \(\mathbf{B} \). We immediately recognize that the moduli characterizing the material, namely the (relative) permittivity \(\varepsilon_r \) and the (relative) permeability \(\mu_r \), are both dimensionless, quite independently of any system of units. This convenient parameterization is achieved as soon as we introduce some standard and constant \(\varepsilon_0 \) and \(\mu_0 \), with the dimensions of \(\text{Y}/\text{v} \) and \(1/(\text{Y}/\nu) \), respectively.

It turns out in a relativistic analysis of the Maxwell equations that an admittance—or resistance as its reciprocal—are four-dimensional scalar quantities even in the Riemannian spacetime of general relativity. This is why we concentrate on such a quantity with a dimension of admittance. That a velocity is inherent in electrodynamics is something invariant. The electric excitation \(\mathbf{D} \) and the electric field strength \(\mathbf{E} \) on an electrodynamical point of view. In different systems of units they have different values, in SI, for instance, we have \(Y_0 = \sqrt{\varepsilon_0/\mu_0} \approx 1/(377 \Omega) \) and \(c = 1/\sqrt{\varepsilon_0 \mu_0} \approx 3 \times 10^8 \text{m/s}. \) But the dimensionless permittivity/permeability, \(\varepsilon_r \) and \(\mu_r \), keep their values in all systems of units.

2.2 Four-dimensional excitation and field strength tensors

In order to extend this characterization of materials by dimensional quantities also to magnetoelectric moduli, we first have to turn to the 4-dimensional representation of electrodynamics. Each of the two sets \((\mathbf{D}, \mathbf{H}) \) and \((\mathbf{E}, \mathbf{B}) \) constitutes a relativistic “couple” that is, we can define 4-dimensional 2nd rank antisymmetric tensors according to \((\lambda, \nu, \mu, \gamma) = 0, 1, 2, 3 \)

\[
\Theta = (\Theta^{\lambda\nu}) = -(\Theta^{\nu\lambda}) = \left(\begin{array}{cccc}
0 & D^1 & D^2 & D^3 \\
-D^1 & 0 & H_3 & -H_2 \\
-D^2 & -H^3 & 0 & H_1 \\
-D^3 & H_2 & -H_1 & 0
\end{array} \right), \quad (2)
\]

\[
F = (F^{\lambda\nu}) = -(F^{\nu\lambda}) = \left(\begin{array}{cccc}
0 & -E_1 & -E_2 & -E_3 \\
E_1 & 0 & B_3 & -B^2 \\
E_2 & B_3 & 0 & B_1 \\
E_3 & B^2 & -B_1 & 0
\end{array} \right). \quad (3)
\]

Even if one is not familiar with these expressions, we can see by a dimensional analysis that each couple is really intrinsically interrelated. We have \([\mathbf{H}] = I/\ell = q/(\ell t) \), \([\mathbf{D}] = q/\ell^2 \), and \([\mathbf{D}] = (1/\nu) [\mathbf{H}] \). Accordingly, \(\mathbf{D} \) and \(\mathbf{H} \) are both charge-related quantities distinguished only by the dimension of velocity. This dimension of velocity mediates between time and space components like for a coordinate where \([x^0] = t, [x^1] = \ell = vt, \ldots \), that is, \([x^0] = (1/\nu)[x^1], \ldots \). Analogously, we have \([\Theta^{\lambda\nu}] = [D^i] = (1/\nu)[H_i] = (1/\nu)[\Theta^{\nu\lambda}] \). etc.

For the couple \((\mathbf{E}, \mathbf{B}) \) we have, with \(\phi \) as dimension of magnetic flux, \([\mathbf{E}] = U/\ell = \phi/(\ell t) \) and \([\mathbf{B}] = \phi/\ell^2 \), that is, \([\mathbf{E}] = \nu [\mathbf{B}] \). In other words, \(\mathbf{E} \) and \(\mathbf{B} \) are flux-related (or, via the Lorentz force, force-related) quantities.

Apparently, the matrices in (2) and (3) can be consistently set up from a dimensional point of view, including the factors involving the velocity, provided the mentioned couples are used. Thus, \([\Theta] \sim \text{charge}, [F] \sim \text{flux}, \) and \([\Theta] \times [F] \sim \text{charge} \times \text{flux} = \text{action}; \) for a detailed discussion see [18]. We recognize thereby that the scalar (density) with the dimension of an action,

\[
\frac{1}{4} \Theta^{\lambda\nu} F_{\lambda\nu} = \frac{1}{2} (\mathbf{B} \cdot \mathbf{H} - \mathbf{D} \cdot \mathbf{E}), \quad (4)
\]

must have a fundamental importance in electrodynamics: It represents the Lagrangian of the electromagnetic field and is equally well a 4-dimensional general relativistic scalar.

In the literature these results are hardly recognized. Landau-Lifshitz [24], for example, like most of the engineers, see Silhava and Lindell [54], take the bastard pair \((\mathbf{E}, \mathbf{H}) \) for their considerations. From a dimensional as
well as from a relativistic point of view, there is no legitimacy to give birth to such a hybrid. All dimensions in relations get mixed up by such an unholy pair.

2.3 Dimensionless magnetoelectric moduli

According to (2) and (3), the general local and linear constitutive law is expected to be of the general form \(\mathcal{G} \propto F \). The simplest case is that of an isotropic medium. If then, in the magnetoelectric case, a magnetic field \(B \) (or an electric field \(E \)) is applied, the additional response will be an electric excitation \(D \) (or a magnetic excitation \(H \)):

\[
D = \alpha_0 \alpha_0 B, \quad H = \beta_0 \beta_0 E; \quad [\alpha_0] = [\beta_0] = 1.
\]

Since the dimensions of \(\alpha_0 \) and \(\beta_0 \) are the same, we can put them equally to the vacuum admittance: \(\alpha_0 = \beta_0 = Y_0 \). If we allow an electric and a magnetic field to be present at the same time, then (1) combined with (5) for isotropic media leads to the ansatz

\[
D = Y_0 \left(\varepsilon c^{-1} E + \alpha \varepsilon B \right), \quad H = Y_0 \left(\mu \mu c^{-1} B + \beta \varepsilon E \right); \quad [\varepsilon] = [\mu] = 1.
\]

Note that \(Y_0/c = \varepsilon_0 \) and \(Y_0 \mu = 1/\mu_0 \).

Hence we see that all electric, magnetic, and magnetoelectric moduli, independent of any system of units, can be described by the dimensionless quantities \(\varepsilon, \mu, \alpha, \beta \). This has been shown, amongst others, by Post [40], O’Dell [41], Ascher [12,23,1], and Hehl et al. [21]. Units such as those used in Ref. [10], p. R128, for example, namely (V/cm)/\(\mu \) should be abandoned. They complicate the comparison of different experiments.

If experimentalists collect magnetoelectric constants, then our suggestion is to tabulate them in their dimensionless relative form, since these values are totally independent of the system of units used and represent their genuine values.

2.4 Local and linear magnetoelectric constitutive law

Now that we have an elementary understanding of the dimensions of the magnetoelectric moduli, we proceed to formulate, following Tamm [63], Post [40], and our discussion in [21], a 4-dimensional covariant law for a local, linear, and anisotropic medium thereby generalizing the corresponding isotropic law (6), (7).

\[
\mathcal{G}^{\alpha \beta} = \frac{1}{2} \chi^{\lambda \sigma \alpha \beta} F_{\lambda \sigma}, \quad F_{\alpha \beta} = \frac{1}{2} Y_0 \xi^{\lambda \sigma \alpha \beta} F_{\lambda \sigma}, \quad (8)
\]

where the constitutive tensor \(\chi \) of rank 4 and weight +1 is of dimension \([\chi] = Y\); thus, \([\xi] = 1\). Because of the antisymmetry of \(\mathcal{G}^{\alpha \beta} \) and \(F_{\alpha \beta} \), we have \(\chi^{\lambda \alpha \beta \gamma} = -\chi^{\lambda \beta \gamma \alpha} \). An antisymmetric pair of indices corresponds, in four dimensions, to six independent components. Thus, the constitutive tensor can be considered as a \(6 \times 6 \) matrix with 36 independent components.

A \(6 \times 6 \) matrix can be decomposed in its tracefree symmetric part (20 independent components), its antisymmetric part (15 components), and its trace (1 component). On the level of \(\chi^{\lambda \sigma \alpha \beta} \), this decomposition is reflected in

\[
\chi^{\lambda \sigma \alpha \beta} = (1) \chi^{\lambda \sigma \alpha \beta} + (2) \chi^{\lambda \sigma \alpha \beta} + (3) \chi^{\lambda \sigma \alpha \beta}. \quad (9)
\]

The third part, the skewon part, is defined according to (2) \(\chi^{\mu \nu \lambda \rho} := 1/2 (\chi^{\mu \nu \lambda \rho} - \chi^{\mu \lambda \rho \nu}) \). If the constitutive equation can be derived from a Lagrangian, which is the case as long as only reversible processes are considered, then (2) \(\chi^{\lambda \sigma \alpha \beta} = 0 \). The principal part \((1) \chi^{\lambda \sigma \alpha \beta} \) fulfills the symmetries \((1) \chi^{\lambda \sigma \alpha \beta} = (1) \chi^{\sigma \lambda \alpha \beta} \) and \((1) \chi^{\lambda \sigma \alpha \beta} = 0 \). The constitutive relation now reads

\[
\Omega^{\alpha \beta} = \frac{1}{2} \left((1) \chi^{\lambda \sigma \alpha \beta} + (2) \chi^{\lambda \sigma \alpha \beta} + (3) \chi^{\lambda \sigma \alpha \beta} \right) F_{\lambda \sigma}, \quad (10)
\]

with \(\tilde{\alpha} \) as dimensionless, \([\tilde{\alpha}] = 1 \).

In order to compare (10) with experiments—the law (10) is a special case of it—we have to split (10) into time and space parts. As shown in [20] in detail, we can parameterize the principal part by the 6 permittivities \(\varepsilon^{ab} = \varepsilon^{ba} \), the 6 permeabilities \(\mu^{ab} = \mu^{ba} \), and the 8 magnetoelectric pieces \(\gamma^{ab} \) (its trace vanishes, \(\gamma_{cc} = 0 \); sumation over c!) and the skewon part by the 3 permittivities \(\varepsilon_a \), the 3 permeabilities \(\mu^a \), and the 9 magnetoelectric pieces \(s_{ab} \). Then (10) can be rewritten as \((a, b, c = 1, 2, 3) \)

\[
D_a = (\varepsilon^{ab} - \varepsilon^{abc} n_c) E_b + \big(\gamma^{ab} + s^b_a - \delta^0_b s^c_c \big) B^b + \tilde{\alpha} B^a, \quad (11)
\]

\[
H_a = \left(\mu^{ab} - \varepsilon^{abc} n_c \right) B^b + \big(-\gamma^{ab} + s^a_b - \delta^0_a s^c_c \big) E_b - \tilde{\alpha} E_a. \quad (12)
\]

Here \(e^{abc} = \varepsilon_{abc} = \pm 1, 0 \) are the 3-dimensional Levi-Civita symbols. As can be seen from our derivation, \(\tilde{\alpha} = \alpha \varepsilon Y_0 \) is a
4-dimensional pseudo- (or axial) scalar, whereas \(s_c \) is only a 3-dimensional scalar. The cross-term \(\gamma^{\alpha} \) is related to the Fresnel-Fizeau effects. The skew contributions \(m^\alpha, n_c \) are responsible for electric and magnetic Faraday effects, respectively, whereas the skew terms \(s_{a}^{\beta} \) describe optical activity. Equivalent constitutive relations were formulated, amongst others, by Serdyukov et al. [55], by Lindell [55], and by Spaldin et al. [62]. Magnetoelectric effects in spiral magnets and in ferromagnets were recently studied by Mostovoy [39] and Dzyaloshinskii [14], respectively.

From \([\text{11}], [\text{12}]\), for \(\varepsilon^{ab} = \varepsilon g^{ab} \), where \(g^{ab} \) are the components of the 3-dimensional (contravariant) metric, \((\mu^{-a})_{ab} = (\mu^{-1}) g_{ab} \), and all other magnetoelectric moduli vanishing, we recover the special case

\[
D^a = \varepsilon E^a + \tilde{\alpha} B^a, \quad (13)
\]

\[
H_a = (\mu^{-1}) B_a - \tilde{\alpha} E_a, \quad (14)
\]

with \(E^a = g^{ab} E_b \) and \(B_a = g_{ab} B^b \). This is the isotropic case of \([\text{6}],[\text{7}]\): but additionally, we recognize that in \([\text{7}]\) we have to require

\[
\beta_x = -\alpha_x \quad (15)
\]

for consistency.

Incidentally, if necessary, the linear law \([\text{8}]\) can be amended with a quadratic term according to the scheme

\[
\Theta^{\lambda\nu} = \frac{1}{2} \chi^{\lambda\nu\sigma} F_{\sigma\kappa} + \frac{1}{4} \eta^{\lambda\nu\mu\tau} F_{\sigma\kappa} F_{\tau\mu} , \quad (16)
\]

with an additional constitutive tensor \(\eta \) of 126 independent components. In the reversible case they reduce to 56 independent components.

3 The relativistic pseudoscalar \(\tilde{\alpha} \)

3.1 Violation of the Post constraint

According to some hand-waving arguments of Post, see \([\text{4}],[\text{6}]\), p. 129, the pseudoscalar \(\tilde{\alpha} \) in \([\text{11}],[\text{12}]\) (and even its first derivative) should vanish for the vacuum as well as for all media. Lakhtakia, see \([\text{32}]\), dubbed the relation \(\tilde{\alpha} = 0 \) the “Post constraint” and pushed it as a presumed consequence of Maxwell’s equations quite vigorously. Lakhtakia’s arguments have never been convincing to a determined minority, see, for instance, Shihvola and Tretyakov \([\text{56}],[\text{60}]\). More recently Lakhtakia \([\text{33}]\) admitted that he was driven to the Post constraint by the following two prejudices \([\text{33}]\):

“(i) The idea of a nonreciprocal but isotropic medium appears oxymoron [contradictory].”

“(ii) The idea of a constitutive parameter that vanishes from the macroscopic Maxwell equations for a linear medium but leaves behind its spatiotemporal derivatives appears bizarre.”

To (i): This is the case of \([\text{13}], [\text{14}]\). If a material is “charged” with the 4-dimensional pseudoscalar \(\tilde{\alpha} \)—admittedly a case that is rare in nature—then an orientation dependence of \(\tilde{\alpha} \) is implied: why should this contradict the 3-dimensional isotropy of the medium?

To (ii): If \(\tilde{\alpha} \) is spacetime dependent, \(\tilde{\alpha} = \tilde{\alpha}(x) \), then it emerges in the field equations of electrodynamics, as had already been shown by Wilczek \([\text{70}]\) in his axion-electrodynamics. In the constant case, the \(\tilde{\alpha} \) jumps at the interface between the medium and vacuum and yields a contribution to the corresponding boundary conditions, see \([\text{11}]\). Moreover, at least since the very exact measurements of Wiegelmann et al. \([\text{68}]\) no doubt was possible at the violation of the Post constraint in the case of the antiferromagnet \(\text{Cr}_2\text{O}_3 \).

3.2 Dzyaloshinskii’s theory for the magnetoelectric effect of the antiferromagnet \(\text{Cr}_2\text{O}_3 \)

Landau and Lifshitz (1956, see the first Russian edition of \([\text{34}]\)) predicted the magnetoelectric effect as a phenomenon that “results from a linear relation between the magnetic and the electric fields in a substance, which would cause, for example, a magnetization proportional to the electric field...” It “can occur for certain magnetic crystal symmetry classes.” Dzyaloshinskii \([\text{11}]\) on the basis of neutron scattering data and susceptibility measurements, found out that the antiferromagnetic chromium sesquioxide \(\text{Cr}_2\text{O}_3 \) has the desired magnetic symmetry class. Starting from a thermodynamic potential quadratic and bilinear in \(\mathbf{E} \) and \(\mathbf{H} \), he developed a theory for the magnetoelectric constitutive relations for \(\text{Cr}_2\text{O}_3 \). Written as quantity equations, they are valid in an arbitrary system of units and read

\[
D_x = \varepsilon_x \frac{Y_0}{c} E_x + \alpha_x \frac{1}{c} H_x, \quad (17)
\]

\[
D_y = \varepsilon_y \frac{Y_0}{c} E_y + \alpha_y \frac{1}{c} H_y, \quad (18)
\]

\[
D_z = \varepsilon_z \frac{Y_0}{c} E_z + \alpha_z \frac{1}{c} H_z, \quad (19)
\]

\[
B_x = \mu_x \frac{1}{Y_0 c} H_x + \alpha_x \frac{1}{c} E_x, \quad (20)
\]

\[
B_y = \mu_y \frac{1}{Y_0 c} H_y + \alpha_y \frac{1}{c} E_y, \quad (21)
\]

\[
B_z = \mu_z \frac{1}{Y_0 c} H_z + \alpha_z \frac{1}{c} E_z. \quad (22)
\]

The \(z \)-axis is parallel to the optical axis of \(\text{Cr}_2\text{O}_3 \). Here we have (relative) permittivities parallel and perpendicular to the \(z \)-axis of the crystal, namely \(\varepsilon_{||}, \varepsilon_{\perp} \), analogous (relative) permeabilities \(\mu_{||}, \mu_{\perp} \) and magnetoelectric moduli \(\alpha_{||}, \alpha_{\perp} \).

As we can see from \([\text{11}],[\text{12}]\), we have to get \((\mathbf{D}, \mathbf{H}) \) on the left hand side and \((\mathbf{E}, \mathbf{B}) \) on the right hand side in order to end up with a constitutive law that is
written in a relativistically covariant form. We find,

\[
D_x = Y_0 \left(\varepsilon_{\perp} - \frac{\alpha_{\perp}^2}{\mu_{\perp}} \right) \frac{1}{c} E_x + \frac{\alpha_{\perp}}{\mu_{\perp}} B_x ,
\]

(23)

\[
D_y = Y_0 \left(\varepsilon_{\perp} - \frac{\alpha_{\perp}^2}{\mu_{\perp}} \right) \frac{1}{c} E_y + \frac{\alpha_{\perp}}{\mu_{\perp}} B_y ,
\]

(24)

\[
D_z = Y_0 \left(\varepsilon_{\perp} - \frac{\alpha_{\perp}^2}{\mu_{\perp}} \right) \frac{1}{c} E_z + \frac{\alpha_{\perp}}{\mu_{\perp}} B_z .
\]

(25)

We can compare these equations with (11) and (12). Since Dzyaloshinskii assumed reversibility, the skewon piece with its 15 independent components vanishes identically. Hence (11) and (12) reduce to

\[
D^a = \varepsilon^{ab} E_b + \gamma^{ab} B^b + \tilde{\alpha} B^a ,
\]

(29)

\[
H_a = \mu_{ab}^{-1} B^b - \gamma^b_a E_b - \tilde{\alpha} E_a ,
\]

(30)

with 21 independent moduli. The 4-dimensional pseudoscalar \(\tilde{\alpha} \) (alternatively called the axion parameter) represents 1 component. We compare (29) and (30) with (28) and note that Dzyaloshinski used Cartesian coordinates such that \(B^z = B_x \) etc. Then we find the permittivity

\[
\varepsilon^{ab} = \frac{Y_0}{c} \begin{pmatrix}
\varepsilon_{\perp} - \frac{\alpha_{\perp}^2}{\mu_{\perp}} & 0 & 0 \\
0 & \varepsilon_{\perp} - \frac{\alpha_{\perp}^2}{\mu_{\perp}} & 0 \\
0 & 0 & \varepsilon_{\perp} - \frac{\alpha_{\perp}^2}{\mu_{\perp}}
\end{pmatrix},
\]

(31)

the impermeability

\[
\mu_{ab}^{-1} = Y_0 c \begin{pmatrix}
\frac{\mu_{\perp}^{-1}}{\mu_{\perp}} & 0 & 0 \\
0 & \frac{\mu_{\perp}^{-1}}{\mu_{\perp}} & 0 \\
0 & 0 & \frac{\mu_{\perp}^{-1}}{\mu_{\perp}}
\end{pmatrix},
\]

(32)

the magnetoelectric \(\gamma \) matrix

\[
\gamma^{ab} = \frac{1}{3} \left(\frac{\alpha_{\perp}}{\mu_{\perp}} - \frac{\alpha_{\perp}}{\mu_{||}} \right) Y_0 \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{pmatrix},
\]

(33)

and the pseudoscalar (or axion) piece

\[
\tilde{\alpha} = \frac{1}{3} \left(2 \frac{\alpha_{\perp}}{\mu_{\perp}} + \frac{\alpha_{\perp}}{\mu_{||}} \right) Y_0 .
\]

(34)

Conventionally, in the magnetoelectric literature the \(\gamma \)-matrix and \(\tilde{\alpha} \) are collected in the “relativistic” matrix

\[
\text{rel} \alpha_{ab} := \gamma_{ab} + \tilde{\alpha} \delta_{ab} = Y_0 \begin{pmatrix}
\frac{\alpha_{\perp}}{\mu_{\perp}} & 0 & 0 \\
0 & \frac{\alpha_{\perp}}{\mu_{\perp}} & 0 \\
0 & 0 & \frac{\alpha_{\perp}}{\mu_{||}}
\end{pmatrix} .
\]

(35)

We called it relativistic, since it occurs in the context of the relativistic (\(\textbf{E}, \textbf{B} \)) system. Later, the general form of these matrices for the crystal structure of \(\text{Cr}_2\text{O}_3 \) was confirmed by O’Dell [44], amongst others. Note that \(\varepsilon_{\perp}, \varepsilon_{\perp}, \mu_{\perp}, \alpha_{\perp}, \text{and} \alpha_{\perp} \), according to their definitions (17) to (22), are measured in an external \(\textbf{E} \) and/or an external \(\textbf{H} \) field.

3.3 Experiments of Astrov, Rado & Folen, and Wiegelmann et al.

The magnetoelectric effect for \(\text{Cr}_2\text{O}_3 \) was first found experimentally by Astrov [4] for the electrically induced magnetoelectric effect (called ME\(_{\text{E}}\) in future) and by Rado & Folen [47] for the magnetically induced magnetoelectric effect (ME\(_{\text{H}}\)). In both investigations single crystals of \(\text{Cr}_2\text{O}_3 \) were used. In the ME\(_{\text{E}}\) experiments [3,47], Eqs. (20) to (22) were verified (\(\text{H} \) switched off) and in the ME\(_{\text{H}}\) experiments [47] Eqs. (17) to (19) (\(\text{E} \) switched off). In particular, Rado & Folen made both type of experiments and found that the magnetoelectric moduli \(\alpha_{\perp} \) and \(\alpha_{||} \) for ME\(_{\text{E}}\) experiments coincide with those of the ME\(_{\text{H}}\) experiments. This proves the vanishing of the skewon part \((\text{ME}^2) \) of the constitutive tensor \(\chi^{\nu\sigma\kappa} \) for \(\text{Cr}_2\text{O}_3 \).

Accordingly, these experiments confirmed Dzyaloshinskii’s theory for \(\text{Cr}_2\text{O}_3 \) below the spin-flop phase. Further experiments were then done mainly for the ME\(_{\text{H}}\) case. Particularly accurate measurements are those of Wiegelmann et al. [68], see also [67, 69]. They took magnetic fields \(\text{B} \) as high as 20 tesla and measured from liquid Helium up to room temperature. Wiegelmann et al. took a quasi-static magnetic field and thereby proved explicitly that measurements with magnetic fields of some kilo hertz can be extrapolated to static measurements. The sign of \(\alpha_{\perp} (T) \) relative to \(\alpha_{||} (T) \) was left open in [68]. Hence we took that from Astrov [4].

We plotted the values of \(\alpha_{\perp} (T) \) and \(\alpha_{||} (T) \) from the references quoted. We have shown in [21] that the permeabilities \(\mu_{\perp} \approx \mu_{||} \approx 1 \). Then we can determine \(\tilde{\alpha} \) by means of (34). The values we found [21] are displayed in Fig. 1. Up to about 163 K, the pseudoscalar \(\tilde{\alpha} \) is negative, for higher temperatures positive until it vanishes at the Néel temperature of about 308 K. Its maximal value we find at 285 K:

\[
\tilde{\alpha}_{\text{max}} \ (\text{at} \ 285 \text{ K}) \approx 3.10 \times 10^{-4} \ Y_0 .
\]

(36)

Consequently, we have definitely a nonvanishing pseudoscalar \(\tilde{\alpha} = \tilde{\alpha}_T Y_0 \) with a maximal \(\tilde{\alpha}_T \) of the order of \(10^{-4} \). It is a small effect, but it does exist.

3.4 New predictions

3.4.1 Search for the first cubic magnetoelectric crystal

As we saw in Sec. 3.3, the parallel and perpendicular permeabilities for \(\text{Cr}_2\text{O}_3 \) are approximately equal, \(\mu_{||} \approx \mu_{\perp} = \mu \). Then the magnetoelectric \(\gamma \) matrix of (33) becomes

\[
\gamma_{ab} \approx \frac{Y_0}{3} \left(\frac{\alpha_{\perp} - \alpha_{||}}{\mu} \right) \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{pmatrix} .
\]

(37)
that is, in which the matrix \(\gamma b \) vanishes for all temperatures? This would be interesting to know since then one would have a substance, like in (13) and (14), in which the only magnetoelectric piece would be the pseudoscalar (or axion) piece \(\tilde{\alpha} \).

We can take from Rivera [48], Fig. 2, box 16, that three equal entries in the diagonal of the matrix \((37) \) are only possible in the following five antiferromagnetic cubic point groups:

\[
23, \ m\overline{T}, \ 432, \ T3m', \ m\overline{T}m'.
\]

Schmid [52], p.23, has explained that the Cr-Br- and Cr-I-boracites are antiferromagnetic and cubic below 17 K and 54 K, respectively. The Cu-I boracite stays also cubic down to very low temperatures [7] and is expected to behave analogously to Cr-I boracite, since both Cr\(^{++}\) and Cu\(^{++}\) are Jahn-Teller ions. However, the Néel temperature of Cu-I boracite is not known so far. Due to the cubic para- magnetic prototype point group \(T3m \), only two antiferromagnetic point groups are allowed:

\[
T3m' \text{ and } T3m.
\]

Whereas the point group \(T3m' \) allows the linear magnetoelectric (ME) effect (invariant \(\tau_{ab} E_a H_b \)) and both higher order ME effects (invariants \(\tau_{abc} H_a E_b E_c \) and \(\tau_{ab} E_a H_b H_c \)), the point group \(T3m \) allows only the invariant \(\tilde{\beta}_{abc} E_a H_b H_c \) (see [52], Table 2). It could be that one or more of these boracites have \(T3m' \) symmetry.

In order to check this, ME measurements on single crystals would be desirable. However, the linear ME effect can in principle also be detected on compacted, magnetoelectrically annealed, polycrystalline powders or ceramics [22][23][24], both by ME\(_H\) and ME\(_E\) methods. The \(\tilde{\beta}_{abc} E_a H_b H_c \)-effect cancels out statistically in powders and ceramics because the sign of the coefficient is rigorously linked to the orientation of the non-centrosymmetric, nuclear absolute structure (note, only in poled ferroelectric ceramics this statistics is broken and the effect becomes measurable in principle, when using the ME\(_H\) effect). Because the \(\tau_{abc} H_a E_b E_c \)-effect cannot be measured by a ME\(_H\) quasistatic method, it would not disturb when one measures the linear effect of a phase of the point group \(T3m' \). The \(\tau_{abc} H_a E_b E_c \)-effect can be measured by a ME\(_E\) method or by a ME\(_H\) technique in presence of a static electric field, as first shown by O’Dell [43]. As a consequence, even ME measurements on compacted powders or on ceramics would allow to distinguish between the two point groups, with \(T3m \) showing no ME effect at all and with \(T3m' \) only the linear effect when a ME\(_H\) quasistatic method is used. We would like to suggest to grow single crystals [51][54] and to perform ME\(_H\) measurements [49] both on single crystals and polycrystalline samples. A polycrystalline probe of a cubic magnetoelectric crystal is obviously completely isotropic for the linear magnetoelectric effect. Hence with a view on applications, the production of polycrystalline material could be simpler than growing single crystals.

3.4.2 External magnetic octupole field of a cubic magnetoelectric crystal

Dzyaloshinskii [13] hypothesized that there may exist an external magnetic field for free cubic (or axion type) magnetoelectric media. Normally, the external magnetic field outside an antiferromagnet decays exponentially. Much earlier, Dzyaloshinskii [12] predicted the existence of an external magnetic and electric field for magnetoelectric media with high symmetry, and specifically for the antiferromagnetic \(\text{Cr}_2\text{O}_3 \). Such a field decreases according to a power law from the surface of a body, in contrast to the exponential decay typical for substances with lower symmetries. For \(\text{Cr}_2\text{O}_3 \), this external magnetic field behaves as the field of a magnetic quadrupole, which was subsequently confirmed experimentally by Astrov et al. [5][6].

For the magnetoelectric crystal with a cubic symmetry, which is characterized by the purely axion piece in the linear constitutive relation, we expect the similar effect [13]. Taking, for definiteness, a ball made of such a material (recall that Astrov et al. in the 1960s used little balls made out of the antiferromagnetic \(\text{Cr}_2\text{O}_3 \)), one can perform a usual expansion of the electric and magnetic fields into spherical harmonics. From a preliminary qualitative analysis of the surface charges and currents induced, one can expect an external magnetic field of the octupole structure, namely,

\[
B \sim -\tilde{\alpha} \nabla \left(\frac{\mathcal{Y}_{4m}}{r^5} \right),
\]

which is directly proportional to the axion piece \(\tilde{\alpha} \) (here, as usual, the \(\mathcal{Y}_{4m} (\theta, \varphi) \) denote the spherical harmonics). This preliminary result is based on the fact that \(\mathcal{Y}_{4m} \) is
invariant under the cubic symmetry group of the prospective cubic axion material.

3.5 Relations of $\tilde{\alpha}$ to gyrator, axion, and perfect electromagnetic conductor (PEMC)

The constitutive law for the pseudoscalar piece, namely \([5]\) together with \([13]\), reads

$$
\begin{align*}
D^\alpha &= \tilde{\alpha} B^\alpha, \\
H^\alpha &= -\tilde{\alpha} E^\alpha,
\end{align*}
$$

see also \([13]\), \([14]\). This structure is not unprecedented, see the discussion in \([20]\). In electrical engineering, in the theory linear networks, more specifically in the theory of gyrator, axion, and perfect electromagnetic conductor (PEMC). It also obeys the constitutive law \((42)\). Some applications were studied by Jancewicz \([30]\) and by Illahi and Naqvi \([25]\), see also the references given therein.

As we saw, in Cr\(_2\)O\(_3\) we had $\tilde{\alpha}_\epsilon \approx 10^{-4}$. It is everybody’s guess what it could be in elementary particle theory. There, in spite of extended searches via the coupling of photons to the hypothetical pseudoscalar axion field, amongst other methods, nothing has been found so far, see the review of Carosi et al. \([10]\).

These isomorphisms even found a further field of applications: In 2005, Lindell & Sihvola \([36, 37]\), see also \([35]\), introduced the new concept of a perfect electromagnetic conductor (PEMC). It also obeys the constitutive law \((42)\). Some applications were studied by Jancewicz \([30]\) and by Illahi and Naqvi \([25]\), see also the references given therein.

Accordingly, \(\alpha\) (i) the gyrator, (ii) the axion field of axion electrodynamics, (iii) the pseudoscalar $\tilde{\alpha}$ of Cr\(_2\)O\(_3\), and (iv) the PEMC are isomorphic structures. Wilczek (private communication) remarked to these isomorphisms between these four systems: “It’s a nice demonstration of the unity of physics.” Already in his paper of 1987 \([70]\) he argued that “…it is...not beyond the realm of possibility that fields whose properties partially mimic those of axion fields can be realized in condensed-matter systems.” …This is, indeed, the case: The pseudoscalar $\tilde{\alpha}$ of Cr\(_2\)O\(_3\) is the structure Wilczek looked for.

We would like to thank the organizers, in particular Nicola Spalding (Santa Barbara), for giving us the possibility to present a seminar at their workshop. We are grateful to Nicola Spalding for pointing out to us reference \([9]\).

References

1. E. Ascher, The interactions between magnetization and polarization: phenomenological symmetry considerations on Boracites, J. Phys. Soc. Japan 28 (Supplement), 7–17 (1970)
2. E. Ascher, Relativistic symmetries and lower bounds for the magneto-electric susceptibility and the ratio of polarization to magnetization in a ferro-electric crystal, Phys. Stat. Sol. B 65, 677–688 (1974)
3. E. Ascher, Kineto-electric and kineto-magnetic effects in crystals, Int. J. Magnetism 5, 287–295 (1974)
4. D. N. Astrov, Magnetoelectric effect in chromium oxide, Sov. Phys. JETP 13, 729–733 (1961) [Zh. Eksp. Teor. Fiz. 40, 1035–1041 (1961)]
5. D. N. Astrov and N. B. Ermakov, Quadrupole magnetic field of magnetoelectric Cr\(_2\)O\(_3\), JETP Lett. 59, 297-300 (1994) [Pisma Zh. Eksp. Teor. Fiz. 59, 274-277 (1994) (in Russian)]
6. D. N. Astrov, N. B. Ermakov, A. S. Borovik-Romanov, E. G. Kolevatov, and V. I. Nizhankovskii, External quadrupole magnetic field of antiferromagnetic Cr\(_2\)O\(_3\),

\[D^\alpha = \tilde{\alpha} B^\alpha, \]
\[H^\alpha = -\tilde{\alpha} E^\alpha, \]

where v are voltages and i currents of the ports 1 and 2, respectively, see also \([13]\). Let us quote from Tellegen \([65]\), p.189: “The ideal gyrator has the property of ‘gyrating’ a current into a voltage, and vice versa. The coefficient s, which has the dimension of a resistance, we call the gyration resistance; $1/s$ we call the gyration conductance.”

The gyrator is a nonreciprocal network element that is discussed in the electrical engineering literature \([15, 31]\), for more recent developments see, e.g., \([50]\) and \([71]\).

If we put $s = 1/\tilde{\alpha}$, then \((44)\) and \((42)\) coincide. Similar as the gyrator rotates currents into voltages, the axion piece ‘rotates’ the excitations, modulo a resistance, into the field strengths.

The next “isomorphic” structure to discuss is axion electrodynamics, see Ni \([40]\), Wilczek \([70]\), and, for more recent work, Itin \([29, 27, 23]\). We add to the usual Maxwell-Lorentz law for vacuum electrodynamics $\mathcal{G}^{\lambda \nu} = Y_0 \sqrt{-g} \epsilon^{\lambda \mu \nu}$ an axion piece patterned after the last term in \((10)\), then we have the constitutive law for axion electrodynamics,

$$
\mathcal{G}^{\lambda \nu} = Y_0 \sqrt{-g} \epsilon^{\lambda \mu \nu} + \frac{1}{2} \tilde{\alpha} \epsilon^{\lambda \mu \nu \sigma \kappa} F_{\sigma \kappa}.
$$

In order to get a feeling for the Lagrangian of axion electrodynamics, we substitute \([13]\), \([14]\), and \([15]\) into the right-hand-side of \((1)\); after some algebra we find

$$
\frac{1}{4} \mathcal{G}^{\lambda \nu} F_{\lambda \mu} = \frac{1}{2} \left(B \cdot H - D \cdot E \right)
$$

\[= \frac{1}{2} \mu_0 \mu_0 B^2 - \frac{1}{2} \tilde{\epsilon}_0 \tilde{\epsilon}_0 E^2 - \tilde{\alpha}_\epsilon Y_0 E \cdot B. \]
48. J. P. Rivera, *On definitions, units, measurements, tensor forms of the linear magnetoelectric effect and on a new dynamic method applied to Cr-Cl boracite*, Ferroelectrics **161**, 165–180 (1994)

49. J.-P. Rivera, *A short review of the magnetoelectric effect and related measurement techniques on single phase (multi-)ferroics*, this issue

50. P. Russer, *Electromagnetic properties and realisability of gyrator surfaces*, Conference on Electromagnetics in Advanced Applications, ICEAA 2007, pp. 320–323

51. H. Schmid, *Synthesis of boracites by chemical transport reactions*, Physics and Chemistry of Solids **26**, 973–988 (1965)

52. H. Schmid, *Magnetoelectric classification of materials*, Int. J. Magnetism **4**, 337–361 (1973)

53. H. Schmid, *Some supplementing comments on the Proceedings of MEIPIC-5*, in: M. Fiebig, V.V. Eremenko and I.E. Chupis (eds.), *Magnetoelectric Interaction Phenomena in Crystals* (Kluwer Academic Publishers, Dordrecht, 2004), pp.1–34

54. H. Schmid and H. Tippmann, *Gas phase synthesis of epitaxial layers of Nickel-Chlorine Boracite on Chromium Chlorine Boracite*, J. Crystal Growth **46**, 723–742 (1979)

55. A. Serdyukov, I. Semchenko, S. Tretyakov, and A. Sihvola, *Electromagnetics of Bi-anisotropic Materials, Theory and Applications* (Gordon and Breach, Amsterdam, 2001)

56. A. H. Sihvola, *Are nonreciprocal bi-isotropic media forbidden indeed?*, IEEE Trans. Microwave Theory Techn. **43**, 2160–2162 (1995); see also the discussion on pp.2722–2724

57. A. H. Sihvola, *Metamaterials in electromagnetics*, *Meta-materials* **1**, 2–11 (2007)

58. A.H. Sihvola and I.V. Lindell, *Material effects on bi-anisotropic electromagnetics*, IEICE Trans. Electron. (Tokyo) **E78-C** (1995) 1383–1390.

59. A. Sihvola and I. V. Lindell, *Perfect electromagnetic conductor medium*, Annalen der Physik (Berlin) **17**, 787–802 (2008)

60. A. Sihvola and S. Tretyakov, *Comments on boundary problems and electromagnetic constitutive parameters*, Optik – International Journal for Light and Electron Optics **119**, 247–249 (2008)

61. I. S. Sokolnikoff, *Tensor Analysis* (Wiley, New York, 1951)

62. N. A. Spaldin, M. Fiebig and M. Mostovoy, *The toroidal moment in condensed-matter physics and its relation to the magnetoelectric effect*, J. Phys.: Cond. Matter **20**, 434203 (2008) (15 pages)

63. I. E. Tamm, *Relativistic crystal optics and its relation to the geometry of a bi-quadratic form*, Zhurn. Ross. Fiz.-Khim. Ob. **57**, n. 3-4, 209-224 (1925) (in Russian). Reprinted in: I. E. Tamm, *Collected Papers* (Nauka: Moscow, 1975) Vol. 1, pp. 33-61 (in Russian). See also: I. E. Tamm, *Electrodynamics of an anisotropic medium in special relativity theory*, ibid, pp. 19-31; a short version therefrom appeared in German: L. Mandelstam and J. Tamm, Mathematische Annalen **95**, 154–160 (1925)

64. B. D. H. Tellegen, *The gyrator, a new electric network element*, Philips Res. Rep. **3**, 81–101 (1948)

65. B. D. H. Tellegen, *The gyrator, an electric network element*, Philips Technical Review **18**, 120–124 (1956/57). Reprinted in H. B. G. Casimir and S. Gradstein (eds.) *An Anthology of Philips Research* (Philips’ Gloeilampenfabrieken, Eindhoven, 1966), pp. 186–190

66. S. A. Tretyakov, S. I. Maslovski, I. S. Nefedov, A. J. Vitanen, P. A. Belov, and A. Sanmartin, *Artificial Tellegen particle*, Electromagnetics **23**, 665–680 (2003)

67. H. Wiegelmann, *Magnetoelectric effects in strong magnetic fields*, Ph.D. thesis (University of Konstanz, 1994)

68. H. Wiegelmann, A. G. M. Jansen, P. Wyder, J.-P. Rivera, and H. Schmid, *Magnetoelectric effect of Cr$_2$O$_3$ in strong static magnetic fields*, Ferroelectrics **162**, 141–146 (1994)

69. H. Wiegelmann, A. G. M. Jansen, J.-P. Rivera, H. Schmid, A. A. Stepanov, I. M. Vitebsky, *Magnetoelectric effect of antiferromagnetic crystals in strong magnetic fields*, Physica **B204**, 292–297 (1995)

70. F. Wilczek, *Two applications of axion electrodynamics*, Phys. Rev. Lett. **58**, 1799–1802 (1987)

71. J. Zhai, *Magnetoelectric gyrator*, this issue