Mining the Correlation between Human and Automatic Evaluation at Sentence Level

Yanli Sun

School of Applied Language and Intercultural Studies, Dublin City University
yanli.sun2@mail.dcu.ie

Abstract

Automatic evaluation metrics are fast and cost-effective measurements of the quality of a Machine Translation (MT) system. However, as humans are the end-user of MT output, human judgement is the benchmark to assess the usefulness of automatic evaluation metrics. While most studies report the correlation between human evaluation and automatic evaluation at corpus level, our study examines their correlation at sentence level. In addition to the statistical correlation scores, such as Spearman's rank-order correlation coefficient, a finer-grained and detailed examination of the sensitivity of automatic metrics compared to human evaluation is also reported in this study. The results show that the threshold for human evaluators to agree with the judgements of automatic metrics varies with the automatic metrics at sentence level. While the automatic scores for two translations are greatly different, human evaluators may consider the translations to be qualitatively similar and vice versa. The detailed analysis of the correlation between automatic and human evaluation allows us determine with increased confidence whether an increase in the automatic scores will be agreed by human evaluators or not.

1. Introduction

It is widely recognized that evaluation plays an important role in the development of language technologies. In the area of Machine Translation (MT), there are two types of commonly used evaluation methods. While human evaluation is still the most important means of providing valuable feedback on the further development of an MT system, its cost, labour-intensive and highly subjective characteristics have led to the popularity of automatic evaluation metrics, such as BLEU (Bilingual Evaluation Understudy) (Papineni et al. 2001), Precision and Recall (Turian et al. 2003), TER (Translation Error Rate) (Snover et al. 2006) etc. According to Coughlin (2001), automatic metrics have the advantages of high speed, convenience and comparatively lower-cost. However, as humans are the end-users of MT, human judgement is ultimately the benchmark to assess the usefulness of automatic metrics. How good an automatic metric is depends on its correlation with human evaluation. Two major forms of human evaluation in the area of MT are: scoring, which requires human evaluators to assign two scores (usually 1 to 5) representing the fluency and accuracy of a translation (LDC, 2005); and ranking, which asks human evaluators to compare the translations from different MT systems and assign rankings to them. The problem of scoring is that even with a clear guideline at hand, human evaluators still find it hard to assign appropriate scores to a translation. Ranking, on the other hand, is found to be quite intuitive and reliable (Vilar et al., 2007). Callison-Burch et al. (2008) concluded from their study that ranking was more reliable compared to scoring. Duh (2008) also pointed out that ranking could simplify the decision procedures for human evaluators compared to assigning scores.

Depending on the type of human evaluation used, the correlation between automatic and human evaluation is measured either by Pearson's correlation coefficient or Spearman's correlation coefficient. The correlation value ranges from -1 to 1 representing negative correlation to perfect positive correlation.

As automatic metrics are more effective at corpus level, more effort has been taken on finding out which automatic metric correlates better with human evaluation at corpus level. Nevertheless, increasing attention is being paid to correlation at sentence level. According to Lin and Och (2004), high sentence level correlation of automatic and human evaluation is crucial for machine translation researchers. Russo-Lassner et al. (2005) also pointed out that automatic metrics of high sentence level correlation could “provide a finer-grained assessment of translation quality” and could also “guide MT system development by offering feedback on sentences that are particularly challenging”(p3).

This paper extends the research on correlation at sentence level, aiming at finding out which automatic metric correlates better with human evaluation in terms of Chinese translation from English; and our second aim is to investigate how big a difference between two automatic scores has to be in order to reflect the qualitative changes of the translations. The remainder of the paper is organized as follows: Section two introduces the experiment setting; Section three reports the correlation level between automatic and human evaluation at sentence level; Section four examines the detailed difference between the judgement of automatic evaluation and human evaluation; and Section five summarizes the findings and points out future research questions.

2. Experiment Setting

The automatic evaluation and human evaluation results reported in this paper were collected from an experiment comparing Chinese translations from different MT systems. However, the focus in this paper is to examine the correlation between human evaluation and automatic evaluation and not to discuss the translation quality per se. The corpus is an installation manual of an anti-virus software composed in English by Symantec (Ireland).
Altogether 570 sentences were randomly selected as the test sample. The Chinese reference of the test sample was extracted from the company’s Translation Memory. Four MT systems (one Rule-Based system and three Statistical-Based systems) were employed to translate the test sample into Chinese for comparison. Both human and automatic evaluations were applied in order to rank the quality of the output from the four systems. Four professional translators were employed to rank the outputs from 1 to 4 (1 being the best, 4 being the worst) sentence by sentence. BLEU, TER and GTM (General Text Matcher, an implementation of precision and recall) were used to get the automatic scores of each translation at both corpus level and sentence level. The reasons for using these three metrics are: first, they can be used (and have been used) to evaluate Asian language outputs (in this paper, Chinese); second, they are among the most widely used metrics in the area; third, they are relatively easy and cost-effective to use. There are also many other automatic metrics, such as Meteor (Banerjee & Lavie, 2005), TERp (Snover et al., 2009), etc. However, additional conditions are needed to get the best advantage from these metrics. For example, Meteor functions better with a database of synonyms, such as the WordNet for English; TERp requires paraphrases which also function as “synonyms” of phrases. Since these resources for Chinese were not available in our pilot project, these metrics were not employed in this paper. The next section compares the scores from the automatic metrics with the rankings from human evaluators to check how consistent the two evaluation methods are at sentence level with detailed analysis followed in section four.

3. Correlation Check
The correlation between automatic evaluation and human evaluation at sentence level was obtained following the practice of Callison-Burch et al. (2008). As mentioned earlier, we have 570 source English sentences to be translated by four MT systems into Chinese. Therefore, for each source English sentence, four translations can be produced which are ranked by four professional translators and scored by three automatic evaluation metrics. In other words, there are 570 groups (with four items per group) each of which contains four columns of rankings from the four human evaluators and three columns of scores from the three automatic metrics. Figure 1 below shows a sample of the final results sheet. L1, L2, L3, L4 in Figure 1 refer to the four human evaluators respectively.

One approach to computing the correlation is Spearman’s ranking correlation coefficient (ρ). The process of getting Spearman’s ranking correlation is as follows: first, the scores assigned by the automatic metrics should be converted into rankings as well; second, for each of the 570 groups, calculate the p value between each automatic metric and each human evaluator using the four items; third, average all the p values to get the mean p value between each metric and each human. Table 1 below reports the correlation values using this method.

Metric	L1	L2	L3	L4	Average
GTM	0.32	0.50	0.14	0.26	0.30
TER	0.33	0.48	0.12	0.24	0.29
BLEU	0.34	0.44	0.13	0.26	0.29

Table 1: Spearman’s Correlation between Automatic and Human Evaluation

However, the validity of this approach was questioned by Callison-Burch et al. (2008) who claimed that getting the general correlation value by averaging the p values from a limited number of (here only four) items is not appropriate. Instead, in their study, they conducted pair-wise comparison of any two outputs, examining whether the automatic scores were consistent with human rankings given any two outputs (that is the higher-ranked system received a higher score). Following this approach, the 570 groups were expanded into 3420 pairs (each of the 570 groups can be expanded into 6 pairs). For each automatic metric, the total number of consistent evaluations was divided by the total number of comparisons to get a percentage. Table 2 reports the consistency.

Metric	L1	L2	L3	L4	Average
GTM	0.61	0.68	0.71	0.66	0.66
TER	0.58	0.64	0.70	0.64	0.64
BLEU	0.51	0.55	0.65	0.59	0.56

Table 2: Consistency of Automatic Evaluation with Human Evaluation

Table 2 indicates that these automatic metrics could correctly predict the human rankings of any pair of translations more than half the time. GTM correlates better with human evaluation than BLEU and TER at sentence level in Chinese output evaluation. Similar findings have been reported by Cahill (2009) in German evaluation which compared 6 metrics including the three metrics used in this paper. Besides, Agarwal and Lavie (2008) also mentioned that GTM and TER could produce more reliable sentence level scores than BLEU.

4. Further Analysis
As shown in Table 2, even for the best correlated metric GTM, there is only 66% consistency, indicating a large amount of discrepancy between humans and automatic evaluation metrics in ranking the quality of different translations. In order to further investigate the consistency and inconsistency at sentence level, we conducted a micro-analysis on the cases where humans and automatic metrics agree/disagree on the rankings of two translations. Given two translations of a source sentence, each of
which is associated with an automatic score, these two scores can suggest a difference in terms of the quality of these two translations. However, humans may or may not agree with the difference registered by the automatic metrics. Nevertheless, intuitively, the greater the differences between two automatic scores of two translations, the more likely that these scores predict the judgements of humans about the quality of the two translations. Based on such consideration, for any pairs of translations of a source sentence, the differences between the two corresponding automatic evaluation scores can be divided into different groups of scales. For example, if the GTM scores for two translations are 0.64 and 0.53 respectively, the difference between these GTM scores (0.11) falls into the difference scale (0.1-0.2). As mentioned in section 3, altogether there are 3420 pairs for comparison. For each automatic metric, the difference of scores within each pair were collected and categorized into different scales. Table 2 reports the number of pairs distributed in the difference scales of each automatic metric.

Difference Scale	GTM #pairs	TER #pairs	BLEU #pairs
0.9-1.0	/	/	18
0.8-0.9	/	/	7
0.7-0.8	/	/	28
0.6-0.7	/	4	35
0.5-0.6	4	11	58
0.4-0.5	12	52	137
0.3-0.4	73	127	201
0.2-0.3	232	278	261
0.1-0.2	627	659	364
0.0-0.1	1484	1026	776

Table 2: Number of Pairs Distributed in each Difference Scale of each Automatic Metric

Table 2 shows that the difference between the automatic scores of two different translations is mostly quite small. For example, 61.02% of the pairs have a difference below 0.1 in terms of GTM score, and this amounts to 47.57% in terms of TER and 41.17% in terms of BLEU.

It is worth pointing out that the scales refer to the difference between two scores for a pair of outputs, not the scale of the scores. The purpose of setting up these difference scales is to see whether the greater the difference between two scores, the more likely that humans agree with automatic metrics. For each of the three automatic evaluation metrics, we consider the following three scenarios: 1) the number of pairs for which human rankings are consistent with the scores assigned to the translations by the automatic metric (“Humans Agree”); 2) the number of pairs for which human rankings are contrary to the scores assigned by the automatic metric (“Humans Disagree”); 3) although the two translations in a pair are different and received two different automatic scores, humans do not think they are qualitatively different and rank the pair as ties (“Humans Assign Ties”) (see Figures 2, 3 and 4).
before the majority of the human evaluators agree with the
judgement of these automatic metrics.

Figures 2 to 4 also reflect that different evaluators have
different criteria in judging the quality of different
translations. As can be seen from the Figures, L3 assigned
many more ties in pair-wise comparison than other
evaluators. The inter-evaluator correlation within the four
human evaluators was measured using the Kappa
coefficient (K), a measurement of the agreement between
categorical data (Boslaugh & Watters, 2008). One widely
accepted interpretation of Kappa was proposed by Landis
and Koch (1977): 0-.2 is slight correlation, .2-.4 is fair
correlation, .4-.6 is moderate correlation, .6-.8 is
substantial correlation and .8-1 is almost perfect
correlation. Using the Microsoft Kappa Calculator
template (King, 2004), the inter-evaluator agreement
score between the four human evaluators is (K=.273).
Excluding human evaluator L3, the K value increases
to .381.

Generally speaking, even if there are slight differences in
two translations, automatic metrics could generate
different scores for them. However, there are also cases
where the automatic scores are the same for two different
translations. In this experiment, we found that for some
pairs of different translations for which the automatic
metrics assigned the same scores, humans didn’t consider
them qualitatively different either. On the other hand,
there are some other translations that were evaluated as
qualitatively different by humans but not by automatic
metrics. For each automatic metric, we summed the
number of pairs that received the same scores by
automatic evaluation but different rankings by human
evaluators. As there are four human evaluators, only those
pairs that were differentiated by the majority of human
evaluators (i.e. three or more evaluators assigned different
rankings to the translations in one pair) were taken into
consideration. Table 3 contains the total number of pairs
where no differentiation was made by the automatic
metrics but where humans differentiated.

	GTM	TER	BLEU
#pairs	141	209	331

Table 3: No. Pairs of Translations Differentiated by Humans but not by Automatic Metrics

GTM appears to have the smallest number of pairs that
were not differentiated demonstrating a stronger
differentiation ability at sentence level more in line with
the human evaluation while BLEU left a large number of
pairs undifferentiated showing its weakness at sentence
level evaluation in relation to the human evaluation. This
finding shows that in some cases automatic evaluation
cannot reflect the difference between two translations
which are apparent according to the human assessments.
Hence, if two scores show no sign of difference, it does
not always indicate there is no qualitative difference
between two translations.

5. Conclusion and Future Work

It is well known that precise automatic evaluation metrics
at sentence level can help MT developers determine what
sentence structures their MT system can or can not deal
appropriately. This study examines the correlation of
automatic evaluation and human evaluation at sentence
level in terms of Chinese translation evaluation. Several
conclusions have been drawn from this study: first, for
evaluation of Chinese translations of English technical
document, GTM correlates better with human evaluation
than TER and BLEU do at sentence level; second, only
when the difference between two scores is greater than a
certain value will the majority of human evaluators agree
with the judgement of the automatic metrics; third, when
two automatic scores of two translations are the same, it
does not always mean there is no qualitative difference
between the translations. There are also questions
remained unanswered: first, the statistical significance of
the correlation and consistency is not examined; second,
we are aware that the correlation between human and
automatic evaluation may vary depending on the MT
system involved; however no such distinction was made
in this study. Therefore, there is a lot of further work to be
done in the future. In addition to these, we have shown
that for a considerable number of paired, human
judgements are inconsistent with automatic metrics. In the
future, we plan to conduct a further analysis into the
causes for such discrepancies in an attempt to provide
some linguistically motivated patterns that may benefit the
design of the automatic metrics. Finally, although human
evaluation has been regarded as the golden standard in the
process of MT evaluation, the results in this paper reflects
some problems of human evaluation. How to standardize
human evaluation is another question worthy of exploring
in the future.

Acknowledgement

This work was financed by Enterprise Ireland and
Symantec Corporation (Ireland). The author would like to
thank Dr. Fred Hollowood for his inspiring ideas and
suggestions, Dr. Sharon O’Brien, Dr. Minako O’Hagan
and Dr. Johann Roturier for their precious corrections and
comments. Thanks also to the anonymous reviewers for
their insightful comments. However, the author is responsible for any errors in the paper.

Reference

Agarwal, A. & Lavie, A. (2008). 'Meteor, M-BLEU and
M-TER: Evaluation Metrics for High-Correlation with
Human Rankings of Machine Translation Output.' In
Proceedings of the Third Workshop on Statistical
Machine Translation, Columbus, Ohio, June, pp. 115-
118.

Banerjee, S. & Lavie, A. (2005). 'METEOR: An
Automatic Metric for MT Evaluation with Improved
Correlation with Human Judgments'. In Proceedings
of the ACL-2005 Workshop on Intrinsic and Extrinsic
Evaluation Measures for MT and/or Summarization,
Ann Arbor, Michigan, pp. 65-72.

Boslaugh, S. & Watters, P.A. (2008). 'Statistics in a
Nutshell.' O’Reilly Media, Inc., the United States of
America.

Cahill, A. (2009). 'Correlating Human and Automatic
Evaluation of a German Surface Realiser'. In
Proceedings of the ACL-UNLP 2009 Conference Short
Papers, Suntec, Singapore, August, pp. 97-100.

Callison-Burch, C., Fordyce, C., Koehn, P., Monz, C., &
Schroeder, J. (2008). 'Further Meta-evaluation of
Machine Translation'. In Proceedings of the Third
Workshop on Statistical Machine Translation, Columbus, Ohio, June, pp. 70-106.

Coughlin, D. (2001). 'Correlating Automated and Human Assessments of Machine Translation Quality'. In Proceedings of MT Summit IX, Santiago de Compostela, Spain, September, pp. 63-70.

Duh, K. (2008). 'Ranking vs. Regression in Machine Translation Evaluation'. In Proceedings of the Third Workshop on Statistical Machine Translation, Columbus, Ohio, June, pp.191–194.

Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A.& Herbst, E. (2007). "Moses: Open Source Toolkit for Statistical Machine Translation". In Proceedings of Annual Meeting of the Association for Computational Linguistics (ACL), demonstration session, Prague, June, pp.177-180.

King, J. E. (2004). 'Software Solutions for Obtaining a Kappa-type Statistic for Use with Multiple Raters'. Presented at the Annual Meeting of the Southwest Educational Research Association, Dallas, TX.

Landis, J.R. & Koch, G.G. (1977). 'The Measurement of Observer Agreement for Categorical Data.' Biometrics, 33:159-174.

LDC (2005). Linguistic Data Annotation Specification: Assessment of fluency and adequacy in translations. http://projects.ldc.upenn.edu/TIDES/tidesmt.html.

Lin, C. & Och, F.J. (2004). 'ORANGE: A Method for Evaluating Automatic Evaluation Metrics for Machine Translation'. In Proceedings of the 20th International Conference on Computational Linguistics, Geneva, Switzerland, August, pp. 501-508.

Papineni, K., Roukos, S., Ward, T., & Zhu, W. (2001). 'BLEU: A Method for Automatic Evaluation of Machine Translation'. Research Report RC22176 (W0109-022), IBM T.J.Watson Research Center, September.

Russo-Lassner, G., Lin, J. & Resnik, P. (2005). 'A Paraphrase-Based Approach to Machine Translation Evaluation'. Technical report, University of Maryland, College Park.

Snover, M., Dorr, B., Schwartz, R., Micciulla, L. & Weischedel, R. (2006). 'A Study of Translation Edit Rate with Targeted Human Annotation'. In Proceedings of AMTA, Cambridge, MA, August, pp.223-231.

Snover, M., Madnani, N., Dorr, B.J. & Schwartz, R. (2009). 'Fluency, Adequacy, or HTER? Exploring Different Human Judgments with a Tunable MT Metric'. In Proceedings of the EACL-2009 Workshop on Statistical Machine Translation (WMT09), Athens, pp. 259-268.

Turian, J.P., Shen, L., & Melamed, I.D. (2003). 'Evaluation of Machine Translation and its Evaluation'. In Proceedings of the MT Summit IX, New Orleans, LA, September, pp. 386-393.

Vilar, D., Leusch, G., Ney, H., & Bachs, R. (2007). 'Human Evaluation of Machine Translation Through Binary System Comparisons'. In Proceedings of the Second Workshop on Statistical Machine Translation, Prague, June, pp.96–103.