要約

報告番号 甲乙 第号 氏名 定平 健

主論文題名

Gossypol induces apoptosis in multiple myeloma cells by inhibition of interleukin-6 signaling and Bcl-2/Mcl-1 pathway

（ゴシポールはインターロイキン6シグナルとBcl-2/Mcl-1経路の抑制を介して骨髄腫細胞のアポトーシスを誘導する）

内容の要旨

多発性骨髄腫は形質細胞が腫瘍性に増殖する疾患で、免疫不全を生じ、高カルシウム血症・腎不全・貧血・骨病変など多彩な症状を来す。抗アポトーシスタンパク質Bcl-2はがん細胞の生存や治療抵抗性に関与し、がん治療の標的分子として注目されている。骨髄腫細胞ではその80％以上でBcl-2が過剰発現していることが知られており、Bcl-2が高発現した骨髄腫患者の予後は不良である。ゴシポールは綿の実より抽出される天然化合物で、様々ながんで抗腫瘍効果が報告されている。立体構造解析により、ゴシポールはBcl-2もしくはBcl-X_L BH3ドメインに直接結合しうる構造であることが報告され、アポトーシス促進因子BH3-onlyタンパク質とBcl-2/Bcl-X_Lの結合を阻害して、アポトーシスを促進することが明らかとなっている。本研究では、骨髄腫細胞におけるゴシポールのアポトーシス誘導分子メカニズムを検討した。まず、骨髄腫細胞株OPM2にゴシポールを添加すると、時間依存性、濃度依存性にアポトーシス細胞は増加し、細胞増殖が抑制された。PI染色を用いたフローサイトメトリー法での細胞周期解析により、ゴシポール添加24時間後にG1期で停止した。また、ゴシポール添加により、カスパーゼ3およびカスパーゼ8が活性化することをウェスタンブロット法で示し、アガロースゲル電気泳動法を用いてアポトーシスによるDNA断片化がカスパーゼ阻害剤zVAD-FMKの添加で消失することから、アポトーシス誘導がカスパーゼ依存性であることを確認した。また、アポトーシスに先行してミトコンドリア膜電位が低下し、シトクロムCはミトコンドリアから細胞質に漏出した。次に、アポトーシス関連蛋白と細胞内シグナル経路への影響について、ウェスタンブロット法を用いて確認した。結果、Bcl-2発現量は変化せず、Ser70リン酸化部位がゴシポール曝露時間と濃度に依存して減衰した。また、Mcl-1はタンパク質発現量が低下した。Bcl-2 Ser70リン酸化には、ERK1/2の関与が示唆された。興味深いのは、ゴシポール投与によりJAK2、STAT3、ERK1/2、p38MAPKのリン酸化はすべて阻害されており、これはインターロイキン6シグナルが全般的に抑制されていることを示す。さらに、JAK2阻害剤は、ゴシポールを添加した場合と同様に、Bcl-2リン酸化を抑え、Mcl-1タンパク発現を低下させた。これらの結果から、ゴシポールが骨髄腫細胞をアポトーシスに誘導する過程では、アポトーシス促進因子とBcl-2の結合を阻害するのみではなく、インターロイキン6シグナルの抑制とBcl-2脱リン酸化およびMcl-1発現抑制が生じていることが明らかとなった。