Appendix to:
EFSA (European Food Safety Authority), 2017. Conclusion on the peer review of the pesticide risk assessment of the active substance mecoprop-P. EFSA Journal 2017;15(6):4832, 64 pp. doi:10.2903/j.efsa.2017.4832
© European Food Safety Authority, 2017

Appendix A – List of end points for the active substance and the representative formulation

Identity, Physical and Chemical Properties, Details of Uses, Further Information (Regulation (EU) N° 283/2013, Annex Part A, points 1.3 and 3.2)

Identity (Regulation (EU) N° 283/2013, Annex Part A, point 1)	Mecoprop-P
Active substance (ISO Common Name)	Mecoprop-P
Function (e.g. fungicide)	Herbicide
Rapporteur Member State	UK
Co-rapporteur Member State	IE
Chemical name (IUPAC)	(R)-2-(4-chloro-2-tolyloxy)propionic acid
Chemical name (CA)	(2R)-2-(4-chloro-2-methylphenoxy)propanoic acid
CIPAC No	475
CAS No	16484-77-8
EC No (EINECS or ELINCS)	240-539-0
FAO Specification (including year of publication)	None
Minimum purity of the active substance as manufactured	890 g/kg
Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured	4-chloro-2-methylphenol (PCOC) max. 5 g/kg
Molecular formula	C_{10}H_{11}ClO_{3}
Molar mass	214.65 g/mol
Structural formula	![Structural formula](image)
Physical and chemical properties (Regulation (EU) N° 283/2013, Annex Part A, point 2)

Property	Value
Melting point (state purity)	93.5 – 97.5°C (99.8%)
Boiling point (state purity)	Boiling point could not be determined. Decomposes above 240°C without boiling.
Temperature of decomposition (state purity)	240 °C (99.8%)
Appearance (state purity)	White solid at 20°C (99.8 %)
Vapour pressure (state temperature, state purity)	1.4 x 10⁻³ Pa at 25°C (99.8 %)
Henry’s law constant	1.7 x 10⁻⁴ Pa.m³.mol⁻¹
Solubility in water (state temperature, state purity and pH)	Measured at 20°C (99.8 %)
	pH 4 6.65 g/L
	pH 7 >250 g/L
	pH 10 >250 g/L
	Purified water (pH3) 880 mg/L
Solubility in organic solvents (state temperature, state purity)	Measured at 20°C (92.63 %)
	acetone >250 g/L
	dichloromethane >250 g/L
	ethyl acetate >250 g/L
	methanol >250 g/L
	heptane 7.69 g/L
	toluene >250 g/L
Surface tension (state concentration and temperature, state purity)	50.0 mN/m at 20 °C (90 % saturated solution) (99.8%)
Partition coefficient (state temperature, pH and purity)	log $P_{OW} = 2.19$ at 20°C (pH 4) (99.8%)
	log $P_{OW} = -0.19$ at 20°C (pH 7) (99.8%)
	log $P_{OW} = -0.64$ at 20°C (pH 10) (99.8%)
Metabolite CCPP :	Log $P_{OW} = 0.23$ at 20°C (pH 4) (91.45%)
	log $P_{OW} = -3.47$ at 20°C (pH 7) (91.45%)
	log $P_{OW} = -3.57$ at 20°C (pH 10) (91.45%)
Calculated values of log$_{10}$Pow	HMCCP = 1.47
	Data on metabolite HMCCP should be provided, as this is included in the plant risk assessment residue definition. Only a calculated value has been supplied and test data is required.
	o-cresol : data gap in section 5
Dissociation constant (state purity)	pKa = 3.7 (99.8%)
UV/VIS absorption (max.) incl. ε (state purity, pH)	Distilled water solution:
	λ_{max} (nm) = 229 ε (L mol⁻¹ cm⁻¹) = 9530
	λ_{max} (nm) = 280 ε (L mol⁻¹ cm⁻¹) = 1470
	λ_{max} (nm) = 285 ε (L mol⁻¹ cm⁻¹) = 1290
	No UV adsorption maxima > 400 nm. (99.8%)
	0.1M HCl solution:
	λ_{max} (nm) = 227 ε (L mol⁻¹ cm⁻¹) = 8860
	λ_{max} (nm) = 279 ε (L mol⁻¹ cm⁻¹) = 1340
	λ_{max} (nm) = 284 ε (L mol⁻¹ cm⁻¹) = 1770
	No UV adsorption maxima > 400 nm. (99.8%)
Flammability (state purity) Not flammable (91.5% technical)

Explosive properties (state purity) Not explosive (91.5% technical)

Oxidising properties (state purity) Not oxidising (91.5% technical)

0.1M NaOH solution:
λ_{max} (nm) = 229 ε (L mol$^{-1}$ cm$^{-1}$) = 9520
λ_{max} (nm) = 280 ε (L mol$^{-1}$ cm$^{-1}$) = 1560
λ_{max} (nm) = 286 ε (L mol$^{-1}$ cm$^{-1}$) = 1360

No UV adsorption maxima > 400 nm. (99.8%)
Summary of representative uses evaluated, for which all risk assessments needed to be completed (mecoprop-P) (Regulation (EU) N° 284/2013, Annex Part A, points 3, 4)

Crop and/or situation (a)	Member State or Country	Product name	Preparation	Application	Number of treatments	Interval between application	kg a.s./ha	Water L/ha	Remarks				
Winter Cereals - Wheat (including durum and spelt), Barley, Rye, Oats, Triticale	AT, BE, CY, CZ, EE, FI, FR, DE, GR, HU, IE, IT, LU, NL, SK, SI, UK	Mecoprop-P K 600	F	Broadleaved weeds SL	600 g/L	Tractor mounted boom spray	1	N/A	0.3 - 0.6	200 – 400 L	1.2	N/A	Applied from 01/03
Spring Cereals - Wheat (including durum and spelt), Barley, Rye, Oats, Triticale	AT, BE, CY, CZ, EE, FI, FR, DE, GR, HU, IE, IT, LU, NL, SK, SI, UK	Mecoprop-P K 600	F	Broadleaved weeds SL	600 g/L	Tractor mounted boom spray	1	N/A	0.3 - 0.6	200 – 400 L	1.2	N/A	Applied from 01/03

SL – Soluble concentrate
N/A – Not Applicable

(a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure)
(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)
(c) e.g. biting and sucking insects, soil born insects, foliar fungi, weeds
(d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
(e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide
(f) All abbreviations used must be explained
(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench
(h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant - type of equipment used must be indicated
(i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypr). In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).
(j) Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
(k) Indicate the minimum and maximum number of applications possible under practical conditions of use
(l) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha
(m) PHI - minimum pre-harvest interval
Summary of additional intended uses for which MRL applications have been made, that in addition to the uses above, have also been considered in the consumer risk assessment (mecoprop-P)
Regulation (EC) N° 1107/2009 Article 8.1(g))

Important note: efficacy, environmental risk and risk to humans by exposure other than via their diet have not been assessed for these uses

Crop and/or situation (a)	Member State or Country	Product name	F, G or I (b)	Pests or Group of pests controlled (c)	Preparation Type (d-f)	Conc. a.s. (g)	method kind (f-h)	range of growth stages & season (j)	number min-max (k)	Interval between application (min)	kg a.s./hl min-max (l)	Water L/ha min-max	kg a.s./ha min-max (l)	PHI (day) (m)	Remarks
MRL Application (according to Article 8.1(g) of Regulation (EC) No 1107/2009)	None														

(a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure)
(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)
(c) e.g. biting and sucking insects, soil born insects, foliar fungi, weeds
(d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
(e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide
(f) All abbreviations used must be explained
(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench
(h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant- type of equipment used must be indicated
(i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypry). In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).
(j) Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
(k) Indicate the minimum and maximum number of applications possible under practical conditions of use
(l) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha
(m) PHI - minimum pre-harvest interval
Further information, Efficacy

Effectiveness (Regulation (EU) N° 284/2013, Annex Part A, point 6.2)

| Control of broad-leaved weeds. Mecoprop-P, which is a hormone type herbicide, is absorbed mainly by the green parts of the plants, but with some absorption through the roots and is rapidly translocated within herbaceous plants. It has been used in broad leaved weed control for many years with product registration in many EU Member States. Details to be evaluated at product renewal. |

Adverse effects on field crops (Regulation (EU) N° 284/2013, Annex Part A, point 6.4)

| Mecoprop-P has been used in broad leaved weed control for many years with product registration in many EU Member States. Details to be evaluated at product renewal. |

Observations on other undesirable or unintended side-effects (Regulation (EU) N° 284/2013, Annex Part A, point 6.5)

| Mecoprop-P has been used in broad leaved weed control for many years with product registration in many EU Member States. Details to be evaluated at product renewal. |

Groundwater metabolites: Screening for biological activity (SANCO/221/2000-rev.10-final Step 3 a Stage 1)

| Activity against target organism No metabolites reached levels that triggered assessment |
Methods of Analysis

Analytical methods for the active substance (Regulation (EU) N° 283/2013, Annex Part A, point 4.1 and Regulation (EU) N° 284/2013, Annex Part A, point 5.2)

Technical a.s. (analytical technique)	HPLC with UV detection
Impurities in technical a.s. (analytical technique)	HPLC with UV detection
Plant protection product (analytical technique)	HPLC with UV detection

Analytical methods for residues (Regulation (EU) N° 283/2013, Annex Part A, point 4.2 & point 7.4.2)

Residue definitions for monitoring purposes

Food of plant origin	Mecoprop-P
Food of animal origin	Open
Soil	Mecoprop-P
Sediment	Mecoprop-P
Water	Mecoprop-P
- surface	Mecoprop-P
- drinking/ground	Mecoprop-P
Air	Mecoprop-P
Body fluids and tissues	Mecoprop-P

Monitoring/Enforcement methods

Food/feed of plant origin (analytical technique and LOQ for methods for monitoring purposes)	Single method LC-MS/MS (LOQ 0.01 mg/kg) Wheat grain and straw (dry), wheat foliage (high water), olives (high oil) and orange (high acid). Note: Method does not separate enantiomers
Food/feed of animal origin (analytical technique and LOQ for methods for monitoring purposes)	Single method LC-MS/MS (LOQ 0.01 mg/kg) Note: Method does not separate enantiomers
Soil (analytical technique and LOQ)	Single method LC-MS/MS (LOQ 0.01 mg/kg) Note: Method does not separate enantiomers
Water (analytical technique and LOQ)	Single method LC-MS/MS (LOQ 0.02 µg/L) Note: Method does not separate enantiomers
Air (analytical technique and LOQ)	Single method LC-MS/MS (LOQ 0.28 µg/m³) Note: Method does not separate enantiomers
Body fluids and tissues (analytical technique and LOQ)	Data gap
Classification and labelling with regard to physical and chemical data (Regulation (EU) N° 283/2013, Annex Part A, point 10)

Substance	Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]¹:
Mecoprop-P	Not classified.

Peer review proposal ² for harmonised classification according to Regulation (EC) No 1272/2008:

- Not classified.

¹ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

² It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008. Proposals for classification made in the context of the evaluation procedure under Regulation (EC) No 1107/2009 are not formal proposals.
Impact on Human and Animal Health

Absorption, distribution, metabolism and excretion (toxicokinetics) (Regulation (EU) N° 283/2013, Annex Part A, point 5.1)

Rate and extent of oral absorption/systemic bioavailability	In rats 90 to 100 % in males and 80 to 95% in females (based on urinary excretion within 168 h) (based on available data, single administration) 100% oral absorption assumed for AOEL
Toxicokinetics	Following single oral dose of 5 mg/kg bw: Cmax 27.8/31.5 µg equivalents/g T max 1.8/2.7 hr Plasma T1/2 6.4/4.2 hr in males/females respectively
Distribution	Thyroid, kidney, blood and plasma were main organs of exposure.
Potential for bioaccumulation	Elimination from fat and skin slower than for other tissues but no clear evidence of accumulation.
Rate and extent of excretion	Rapid, > 95% (low dose) within 48 hours, mainly via urine (>90%)
Metabolism in animals	Limited, 66-83% excreted as parent. Main metabolic step hydroxylation.
In vitro metabolism	Mouse and rat considered more relevant to humans. Limited metabolism (only 3 to 5%) in *in vitro* comparative metabolism study in human, rat, mouse, dog, rabbit microsomes.

Toxicologically relevant compounds (animals and plants)

Parent compound (Mecoprop-P; toxicity of individual metabolites not known)

Toxicologically relevant compounds (environment)

None

Acute toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.2)

Rat LD₅₀ oral (Mecoprop-P)	431 mg/kg bw	H302
Rat LD₅₀ dermal (Mecoprop-P)	> 2000 mg/kg bw	
Rat LC₅₀ inhalation (Mecoprop-P)	> 2.13 mg/L air /4h (whole body exposure)	
Skin irritation (Mecoprop-P)	Non-irritant	
Eye irritation (Mecoprop-P)	Severe irritant	H318
Skin sensitisation (Mecoprop-P)	Not sensitising	
Phototoxicity (Mecoprop-P)	Not phototoxic	

Short-term toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.3)

| Target organ / critical effect | Rat: kidney (increased weight, increased blood urea nitrogen) Dog: Haematological changes |
| Relevant oral NOAEL | 90-day, dog (Mecoprop): 4 mg/kg bw per day 7 week rat (Mecoprop): 4.4 mg/kg bw |
Relevant dermal NOAEL

per day
90-day, rabbit (Mecoprop-P): 1000 mg/kg bw per day

Relevant inhalation NOAEL

| No data - not required |

Genotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.4)

In vitro studies (Mecoprop-P)

- Ames tests and mammalian cell gene mutation studies negative. Equivocal findings for clastogenicity in human lymphocytes.

In vivo studies (Mecoprop-P)

- Mouse micronucleus and Chinese hamster cytogenetic tests negative for clastogenicity

Photomutagenicity

| Not provided |

Potential for genotoxicity

Taking a weight of evidence approach, mecoprop-P is unlikely to be genotoxic.

Long-term toxicity and carcinogenicity (Regulation (EU) N°283/2013, Annex Part A, point 5.5)

Long-term effects (target organ/critical effect)

- Rat & mouse: Kidney (increase weight, chronic nephropathy. Liver (increased weight, enzyme induction)

Relevant long-term NOAEL

| 2-year, rat (Mecoprop): 1 mg/kg bw per day |
| 18-month, mouse (Mecoprop-P): 4 mg/kg bw per day |

Carcinogenicity (target organ, tumour type)

- Rat: no neoplastic findings
- Mouse: slight increase in hepatocellular carcinoma in females considered equivocal and not sufficient for classification. However, the carcinogenic potential was not considered relevant for humans.

Relevant NOAEL for carcinogenicity

| 2-year, rat: >65 mg/kg bw per day; 18-month, mouse: 4 mg/kg bw per day |

Reproductive toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.6)

Reproduction toxicity (Mecoprop)

Reproduction target / critical effect

- Parental toxicity: 50% reduction in bw gain in females on days 0-7 during gestation
- Reproductive toxicity: 21% reduction in implantation sites
- Offspring’s toxicity: increased pup mortality days 0 to 4 post-partum. Up to 11% reduction in body weight

Relevant parental NOAEL

| 40 mg/kg bw per day |

Relevant reproductive NOAEL

| 8.0 mg/kg bw per day |

Relevant offspring NOAEL

| 8.0 mg/kg bw per day |
Developmental toxicity

Developmental target / critical effect

Animal	Maternal toxicity	Developmental toxicity
Rat (Mecoprop-P):	22% ↓ food consumption, 18% ↓ bodyweight gain	2% ↓ foetal weight, four fold ↑ rudimentary cervical ribs, four fold ↑ sternebrae not ossified
Rabbit (Mecoprop-P):	no adverse findings	no adverse findings

Relevant maternal NOAEL

Animal	NOAEL
Rat (Mecoprop-P):	50 mg/kg bw per day
Rabbit (Mecoprop-P):	>50 mg/kg bw per day

Relevant developmental NOAEL

Animal	NOAEL
Rat (Mecoprop-P):	50 mg/kg bw per day
Rabbit (Mecoprop-P):	20 mg/kg bw per day

Neurotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.7)

Acute neurotoxicity

No evidence of neurotoxicity up to maximum dose of 700 mg/kg bw. NOAEL < 175 mg/kg bw (general toxicity)

Repeated neurotoxicity

Study not required

Additional studies (e.g. delayed neurotoxicity, developmental neurotoxicity)

Study not required

Other toxicological studies (Regulation (EU) N° 283/2013, Annex Part A, point 5.8)

Supplementary studies on the active substance

Evidence of liver enzyme induction in the mouse. Immunotoxicity studies in rats suggested indirect effects related to a stress-induced release of steroid hormones from adrenals.

Endocrine disrupting properties

No studies available - no endocrine mode of action was observed

Studies performed on metabolites or impurities

- Hydroxymethyl-mecoprop-P (HMCPP):
 - Acute oral LD50 concluded to be > 2150 mg/kg bw.
 - Negative in Ames test.
- Mouse in vivo micronucleus bone marrow test negative but not reliable.
- 28 day rat NOAEL > 1487 mg/kg bw/day.
- 4-chloro-2-methylphenol (CCPP) and 4-glucosyl-MPP metabolites: data gap

Medical data (Regulation (EU) N° 283/2013, Annex Part A, point 5.9)

Cases of acute poisoning have been reported. Available epidemiological data are inadequate for determining an association between exposure and cancer in humans.
Summary (Regulation (EU) N°1107/2009, Annex II, point 3.1 and 3.6)

Study	Uncertainty factor
Acceptable Daily Intake (ADI)	0.01(1) rat, 2-year 100
Acute Reference Dose (ARfD)	0.2(2) rabbit developmental 100
Acceptable Operator Exposure Level (AOEL)	0.04(1) dog, 90-day 100*
Acute Acceptable Operator Exposure Level (AAOEL)	0.2(2) rabbit developmental 100*

* No correction required for oral absorption
(1) Same reference values as in the first review (European Commission, 2003b)
(2) Not set in the first review (European Commission, 2003b)

Dermal absorption (Regulation (EU) N° 284/2013, Annex Part A, point 7.3)

Representative formulation: Mecoprop-P K 600 g/L (CA3015).

Study	Uncertainty factor
Concentrate: 25% (600g/L) Spray dilution 75% for all dilutions.	

Exposure scenarios (Regulation (EU) N° 284/2013, Annex Part A, point 7.2)

Operators

| Use: cereals, tractor mounted /trailed field crop sprayer, application rate 1.2 kg a.s./ha |
| Exposure estimates (model): % of AOEL |
UK POEM4	Gloves during mixing/loading and application: 1381%
German model5	Gloves during mixing/loading, and gloves, coveralls and sturdy footwear during application: 99%
EFSA calculator	Gloves during mixing/loading 72% of the AOEL and application 119% of the AAOEL

Workers

| Activity: Crop inspection |
| Exposure estimates (model): % of AOEL |
Europoem II worker re-entry model6	Without PPE: 563%
EFSA calculator	% of AOEL
Without PPE	315%

1 If available include also reference values for metabolites
4 Estimation of Exposure and Absorption of Pesticides by Spray Operators, Scientific subcommittee on Pesticides and British Agrochemical association Joint Medical Panel Report (UK MAFF), 1986 and the Predictive Operator Exposure Model (POEM) V 1.0, (UK MAFF), 1992, 2007 version. ("UK POEM").
5 Uniform Principles for Safeguarding the Health of Applicators of Plant Protection Products (Uniform Principles for Operator Protection), Mitteilungen aus der Biologischen Bundesanstalt für Land-und Forstwirtschaft, Berlin-Dahlem, Heft 277, 1992. ("German Model").
6 van Hemmen et al (2002). Post-application exposure of workers to pesticides in agriculture. Report of the re-entry working group, EUROPOEM II project: FAIR3-CT96-1406
Bystanders and residents

Modelling Approach: UK	% of AOEL
• Bystander and resident exposure to vapour (surrogate value derived from 10% adult Californian Environmental Protection Agency studies)	21%
• Bystander and resident exposure to 20% spray drift (measurements of simulated bystander exposure for field crop sprayers in a UK study)	
• Bystander and resident exposure to fallout (children model)	8%

EFSA calculator (residents)	% of AOEL
Spray drift (75th percentile)	302% child 72% adult
Vapour (75th percentile)	3% child <1% adult
Surface deposits (75th percentile)	35% child 15% adult
Entry into treated crops (75th percentile)	380% child 211% adult
All pathways (mean)	497% child 214% adult

EFSA calculator (bystanders)	% of AAOEL
Spray drift (95th percentile)	137% child 37% adult
Vapour (95th percentile)	<1% child <1% adult
Surface deposits (95th percentile)	21% child 9% adult
Entry into treated crops (95th percentile)	76% child 42% adult

\(^7\) California Environmental Protection Agency, Air Resources Board (1998). Report for the application and ambient air monitoring for chlorpyrifos (and the oxon analogue) in Tulare County during spring/summer 1996.

\(^8\) Lloyd G.A. and Bell G.J. (1983). Hydraulic nozzles: comparative spray drift study (MAFF/ADAS).

\(^9\) Series 875, Occupational and Residential Exposure Test Guidelines: Group B – Postapplication Exposure Monitoring Test Guidelines (v 5.4, February 1998). USA EPA, Science Advisory Council for Exposure Policy 12, (February 2001): Recommended Revisions to the Standard Operating Procedures (SOPs) for Residential Exposure Assessment, USA EPA and Overview of Issues Related to the Standard Operating Procedures for Residential Exposure Assessment (August 1999 Presentation to the FIFRA Scientific Appraisal Panel), US EPA. Rautmann, D., Strelke, M. and Winkler, R. (2001). New basic drift values in the authorisation procedure for plant protection Products. In Forster, R. and Strelke, M. Workshop on risk assessment and risk mitigation measures in the context of the authorisation of plant protection Products (WORMM). Mitt. Biol. Bundesanst. Land-Forstwirtsch. Berlin-Dahlem, Heft 381
Classification with regard to toxicological data (Regulation (EU) No 283/2013, Annex Part A, Section 10)

Substance:
Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]\(^\text{10}\):

Peer review proposal \(^\text{11}\) for harmonised classification according to Regulation (EC) No 1272/2008:

Mecoprop-P
H302 Harmful if swallowed (Category 4 for acute oral toxicity)
H318 Causes serious eye damage (Category 1 for eye irritancy/corrosion)
H361 Suspected of damaging fertility or the unborn child

\(^\text{10}\) Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

\(^\text{11}\) It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.
Residues in or on treated products food and feed
Metabolism in plants (Regulation (EU) N° 283/2013, Annex Part A, points 6.2.1, 6.5.1, 6.6.1 and 6.7.1)

Primary crops (Plant groups covered)	Crop groups	Crop(s)	Application(s)	DAT (days)
Fruit crops	N/A			
Root crops	N/A			
Leafy crops	N/A			
Cereals/grass crops	Wheat	1st study: 1.41 kg as/ha at BBCH 32 (post-emergence)	Foliage: 28 Straw: 103 Grain: 103	
		2nd study: 14.1 kg as/ha at BBCH 32		
Pulses/Oilseeds	N/A			
Miscellaneous	N/A			

Rotational crops (metabolic pattern)	Crop groups	PBI (days)	Comments
Root/tuber crops			
Leafy crops			
Cereal (small grain)			
Other			

Rotational crop and primary crop metabolism similar? No data required. Mecoprop-P showed a very low persistence in soil (DT$_{90}$ 20-33 days)

Processed commodities (standard hydrolysis study)	Conditions
	20 min, 90°C, pH 4
	60 min, 100°C, pH 5
	20 min, 120°C, pH 6

Residue pattern in processed commodities similar to residue pattern in raw commodities? The requirement for standard hydrolysis studies is pending upon the outcome of the requested residue field trials to address the magnitude of residues of the different relevant compounds in cereal grain.

Plant residue definition for monitoring (RD-Mo)	Mecoprop-P
OECD Guidance, series on pesticides No 31	Cereal whole plant, straw, grain: mecoprop-P, HMCPP (free and conjugated), CCPP and 4-glucosyl-MPP (provisional)

Plant residue definition for risk assessment (RD-RA)	Conversion factor (monitoring to risk assessment)
Mecoprop-P	Based on the metabolism data:
	-Cereal grain: 4
	-Cereal straw: 2.2
	-Cereal whole plant (forage): 6
	To be reconsidered pending upon the outcome of
	the requested residue trials analyzing for all
	compounds included in the residue definition for
	risk assessment (data gap) and their relative
	toxicity profile.
Metabolism in livestock (Regulation (EU) N° 283/2013, Annex Part A, points 6.2.2, 6.2.3, 6.2.4, 6.2.5 6.7.1)

OECD Guideline 503 and SANCO/11187/2013 rev. 3 (fish)	Animals covered	Dose (mg/kg bw/d)	Duration (days)	N rate/comment
Laying hen	Study not submitted			
Goat	0.13 mecoprop-P	1.27 mecoprop-P	7	5 N (lamb sheep)
	7		50 N (lamb sheep)	
Pig	Open			
Fish	Open			

Data gap: All analytical evidence available in the raw data from the goat metabolism study for further metabolites' identification in ruminants' matrices.

Time needed to reach a plateau concentration in milk and eggs (days) 2 days
Animal residue definition for monitoring (RD-Mo) Open
OECD Guidance, series on pesticides No 31
Animal residue definition for risk assessment (RD-RA) Open
Conversion factor (monitoring to risk assessment) Open
Metabolism in rat and ruminant similar (Yes/No) Open
Fat soluble residues (Yes/No) (FAO, 2009) Open

Residues in succeeding crops (Regulation (EU) N° 283/2013, Annex Part A, point 6.6.2)

Confined rotational crop study (Quantitative aspect) No data required (DT₉₀ Mecoprop-P: 20-33 days)
OECD Guideline 502
Field rotational crop study No data required.
OECD Guideline 504

Stability of residues (Regulation (EU) N° 283/2013, Annex Part A, point 6.1)

Plant products (Category)	Commodity	T (°C)	Stability (Months)
High water content	wheat green plant	< -18	12
High starch content	wheat grain	< -18	12
Wheat straw	< -18	12	

Animal	Animal commodity	T (°C)	Mecoprop-P	HMCPP	CCPP	PCOC
Cattle	Muscle	≤ -18	9	9	9	3
	Fat	≤ -18	9	9	9	0
	Liver	≤ -18	9	9	9	3
	≤ -18	9	9	9	0	
------------------------	-------	---	---	---	---	
Kidney						
Whole Milk/skimmed milk/cream	≤ -18	9	9	9	9	

Summary of residues data from the supervised residue trials (Regulation (EU) N° 283/2013, Annex Part A, point 6.3) OECD

Guideline 509, OECD Guidance, series on pesticides No 66 and OECD MRL calculator

Crop	Region/Indoor (a)	Supervised residue trials results (mg/kg) and other studies (pollen and bee products) (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg) (c)	HR (mg/kg) (c)	STMR (mg/kg) (d)
Representative uses		Combined residue trials on wheat and barley with a possible extrapolation to rye, oats and triticale. NEU and SEU residue datasets on wheat straw can be merged as considered as similar (Mann-Whitney U-test; α=0.05)				
Wheat grain	SEU	**Mo:** 8 x < 0.05				
RA: 8 x <0.2	-	0.05*	0.2 (0.05)	0.2 (0.05)		
Wheat grain	NEU	**Mo:** 4 x < 0.01				
RA: 4 x <0.04	0.01*	0.04 (0.01)	0.04 (0.01)			
Wheat straw	NEU + SEU	**Mo:** <0.01, 2 x <0.05, 0.06, 0.07, 0.10, 0.11, 0.20, 0.27, 0.28, 0.29, 0.32				
RA: 0.022, 2 x 0.11, 0.13, 0.15, 0.22, 0.24, 0.44, 0.59, 0.62, 0.64, 0.70 | - | 0.70 (0.32) | 0.23 (0.11) |

Data gap: NEU and SEU GAP-compliant residue trials to address the magnitude of residues of mecoprop-P, HMCPP (free and conjugated), CCPP and 4-glucosyl-MPP in cereals whole plant, grain and straw.

Data gap: Sufficient residue trials on cereal grain and compliant with the NEU and SEU GAP on cereals for the determination of mecoprop-P residues at a lower limit of determination (0.01 mg/kg).

MRL application

N/A

Summary of the data on formulation equivalence OECD Guideline 509

Crop	Region	Residue data (mg/kg)	Recommendations/comments
N/A			

Summary of data on residues in pollen and bee products (Regulation (EU) No 283/2013, Annex Part A, point 6.10.1)

Data gap: Based on the metabolism data non negligible translocation of the residues throughout plant parts are expected as attested by TRRs observed in cereals grains (0.165 mg eq/kg) at an application rate of 1.41 kg/ha (1.2N). Information is requested on the potential residues of mecoprop-P and its degradation products in pollen and bee products.

(a): **NEU** or **SEU** for northern or southern outdoor trials in EU member states (**N+SEU** if both zones), **Indoor** for glasshouse/protected crops, **Country** if non-EU location.

(b): Residue levels in trials conducted according to GAP reported in ascending order (e.g. 3x <0.01, 0.01, 0.02, 0.04, 0.08, 3x 0.10, 2x 0.15, 0.17). When residue definition for monitoring and risk assessment differs, use **Mo**/**RA** to differentiate data expressed according to the residue definition for Monitoring and Risk Assessment.

(c): **HR**: Highest residue. When residue definition for monitoring and risk assessment differs, HR according to residue definition for monitoring reported in brackets (HR_{mo}).

(d): **STMR**: Supervised Trials Median Residue. When residue definition for monitoring and risk assessment differs, STMR according to definition for monitoring reported in brackets (STMR_{mo}).

www.efsa.europa.eu/efsajournal 18 EFSA Journal 2017;15(6):4832
Inputs for animal burden calculations

Feed commodity	Median dietary burden (mg/kg)	Comment	Maximum dietary burden (mg/kg)	Comment
Representative uses				
Cereal (wheat, barley, oats, rye and triticale) grain	0.2	STMR_M x CF	0.2	STMR_M x CF
Cereal (wheat, barley, oats, rye and triticale) straw	0.23	STMR_M x CF	0.70	HR_M x CF
MRL application	N/A			

(1) Provisional inputs for livestock dietary burden calculation considering HR/STMR values for mecoprop-P and conversion factors for risk assessment (CF) derived for cereal grain and straw based on the metabolism data. These input values will be reassessed considering the outcome of the requested NEU and SEU residue trials to address the magnitude of residues of mecoprop-P, HMCPP (free and conjugated), CCPP and 4-glucosyl-MPP in cereals whole plant, grain and straw and the relative toxicity of these compounds.
Residues from livestock feeding studies (Regulation (EU) N° 283/2013, Annex Part A, points 6.4.1, 6.4.2, 6.4.3 and 6.4.4)

Animal dietary burden calculation have been performed in line with OECD 73

MRL calculations

Highest expected intake (mg/kg bw/d)	Ruminant	Pig/Swine	Poultry	Fish
Beef cattle (mg/kg DM for fish)	0.009	0.019	0.004	0.011
Dairy cattle	0.013	0.024	0.005	0.019

Intake >0.004 mg/kg bw

Feeding study submitted

- Open

Representative feeding level (mg/kg bw/d, mg/kg DM for fish) and N rates

Muscle	Fat	Meat	Liver	Kidney	Milk	Eggs
Level	Level	Level	Level	Level	N rates	Level
Beef: N	Dairy: N	Beef: N	Dairy: N	Level	N rate	Level
MRL proposals	MRL proposals	MRL proposals	MRL proposals	Level	MRL proposals	MRL proposals
Estimated HR at 1N	Level	Estimated HR at 1N	Estimated HR at 1N			

Method of calculation:

1. Estimated HR calculated at 1N level (estimated mean level for milk).
2. HR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry
3. The OECD guidance document on residues in livestock (series on pesticides 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by extrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.
4. Provisional livestock dietary burden calculation to be reconsidered pending upon the outcome of the requested residue trials to determine the magnitude of mecoprop-P, HMCPP (free and conjugated), CCPP and 4-glucosyl-MPP residues in feed items and the relative toxicity of these compounds.
5. If significant transfer of residues of HMCPP (free and conjugated), CCPP and 4-glucosyl-MPP into animal commodities is observed, the magnitude of these compounds or their degradation products should be further investigated in livestock feeding studies dosing with a representative mixture of mecoprop-P and these compounds in feed items.

STMR calculations

Median expected intake (mg/kg bw/d)	Ruminant	Pig/Swine	Poultry	Fish
Beef cattle (mg/kg DM for fish)	0.0057	0.0082	0.004	0.011
Dairy cattle	0.0065	0.0105	0.005	0.016

Intake >0.1 mg/kg DM

Feeding study submitted

- Open

Representative feeding level (mg/kg bw/d, mg/kg DM for fish) and N rates

Muscle	Fat	Meat	Liver	Kidney	Milk	Eggs
Level	Level	Level	Level	Level	N rates	Level
Beef: N	Dairy: N	Beef: N	Dairy: N	Level	N rate	Level
Estimated	Estimated	Estimated	Estimated	Level	Estimated	Estimated

Method of calculation:

1. Estimated HR calculated at 1N level (estimated mean level for milk).
2. HR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry
3. The OECD guidance document on residues in livestock (series on pesticides 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by extrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.
4. Provisional livestock dietary burden calculation to be reconsidered pending upon the outcome of the requested residue trials to determine the magnitude of mecoprop-P, HMCPP (free and conjugated), CCPP and 4-glucosyl-MPP residues in feed items and the relative toxicity of these compounds.
5. If significant transfer of residues of HMCPP (free and conjugated), CCPP and 4-glucosyl-MPP into animal commodities is observed, the magnitude of these compounds or their degradation products should be further investigated in livestock feeding studies dosing with a representative mixture of mecoprop-P and these compounds in feed items.
| tissue | in feeding level | STMR^(b) at 1N | in feeding level | | | | | | |
|---|---|---|---|---|---|---|---|---|---|
| Muscle | | | | | | | | | |
| Fat | | | | | | | | | |
| Meat^(a) | | | | | | | | | |
| Liver | | | | | | | | | |
| Kidney | | | | | | | | | |
| Milk | | | | | | | | | |
| Eggs | | | | | | | | | |

Method of calculation^(c)

- STMR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry
- When the mean level is set at the LOQ, the STMR is set at the LOQ.
- The OECD guidance document on residues in livestock (series on pesticide 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by intrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.
Conversion Factors (CF) for monitoring to risk assessment

Animal products
Open

Plant products
Open

Processing factors (Regulation (EU) N° 283/2013, Annex Part A, points 6.5.2 and 6.5.3)
No data required.

Consumer risk assessment (Regulation (EU) N° 283/2013, Annex Part A, point 6.9)

Including all uses (representative uses and uses related to an MRL application).

ADI	0.01 mg/kg bw per day
TMDI according to EFSA PRIMo	Not relevant
NTMDI, according to (to be specified)	
IEDI (% ADI), according to EFSA PRIMo	
NEDI (% ADI), according to (to be specified)	
Factors included in the calculations	N/A

ARfD	0.2 mg/kg bw
IESTI (% ARfD), according to EFSA PRIMo	Not relevant
NESTI (% ARfD), according to (to be specified)	
Factors included in IESTI and NESTI	N/A

Consumer risk assessment limited to the representative uses

TMDI (% ADI), according to EFSA PRIMo	Highest TMDI: 20.6% ADI (Danish child) (provisional)
NTMDI (% ADI), according to UK	Highest NTMDI: 46% ADI (UK infant, UK chronic consumer version 1.1) (provisional)
IEDI (% ADI), according to EFSA PRIMo	Not relevant
NEDI (% ADI), according to UK	Not relevant
Factors included in the calculations	N/A
IESTI (% ARfD, according to EFSA PRIMo)	Highest IESTI: 1.4% ARfD (wheat) (provisional)
NESTI (% ARfD, according to UK)	Highest NESTI: 2.5% ARfD (Milk) (provisional)
Factors included in IESTI and NESTI	N/A

Proposed MRLs (Regulation (EU) No 283/2013, Annex Part A, points 6.7.2 and 6.7.3)

Code(a)	Commodity/Group	MRL/Import tolerance(b) (mg/kg) and Comments
Plant commodities (RD-Mo = Mecoprop-P)		

(a) Code

(b) MRL/Import tolerance

www.efsa.europa.eu/efsajournal 22 EFSA Journal 2017;15(6):4832
Commodity Code	Commodity	MRL
0500090	Wheat (including triticale)	0.05* (provisional)
0500010	Barley	0.05* (provisional)
0500050	Oat	0.05* (provisional)
0500070	Rye	0.05* (provisional)

Animal commodities (RD-Mo: open\(^{(4)}\))

Commodity Code	Commodity	MRL
1012000	Bovine (all commodities)	Open
1013000	Sheep (all commodities)	Open
1014000	Goat (all commodities)	Open
1020000	Milk (cattle, sheep, goat)	Open

\(^{(a)}\): Commodity code number, as listed in Annex I of Regulation (EC) No 396/2005

\(^{(b)}\): MRLs proposed at the LOQ, should be annotated by an asterisk (*) after the figure.

\(^{(4)}\): Livestock exposure assessment not finalised.
Environmental Fate and Behaviour

Route of Degradation (Aerobic) in Soil
(Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.1)

Parameter	Value
Mineralisation after 100 days	39.7% after 191 d, $[^{14}\text{C}]$-phenyl-label (n= 1)
	42-51% after 100 d, $[^{14}\text{C}]$-phenyl-label (n = 3)
Non-extractable residues after 100 days	44.4% after 191 d, $[^{14}\text{C}]$-phenyl-label (n= 1)
	43-51% after 100 d, $[^{14}\text{C}]$-phenyl-label (n= 3)
Metabolites requiring further consideration	No metabolites that required further consideration
- name and/or code, % of applied (range and maximum)	

Route of Degradation (Anaerobic) in Soil
(Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.2)

Parameter	Value
Mineralisation after 100 days	No data – not required
Non-extractable residues after 100 days	No data – not required
Metabolites that may require further consideration	No data – not required
- name and/or code, % of applied (range and maximum)	

Route of Degradation (Photolysis) on Soil
(Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3)

Parameter	Value
Mineralisation at study end	3% after 30 d, $[^{14}\text{C}]$-phenyl-label (n= 1)
Non-extractable residues at study end	15% after 30 d, $[^{14}\text{C}]$-phenyl-label (n= 1)

Rate of Degradation in Soil (Aerobic) Laboratory Studies
Active Substance
(Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Parent	Soil type	pH$^{(a)}$	t. °C / % FMC (1/3 bar)	DT$_{50}$/DT$_{90}$ (d)	DT$_{50}$ (d) 20 °C pH2/10kPa$^{(b)}$	St. (χ^2)	Method of calculation
Sandy Loam (Timmerman)	7.4	20 / 75	7.67 / 25.5	4.7	8.52	SFO	
Sand (Speyer 2.1)	6.9	20 / 75	7.0 / 23.1	4.0	10.5	SFO	
Loamy Sand (Speyer 2.2)	6.0	20 / 75	10.12* / 33.6	8.2	4.9	FOMC *DT$_{50}$/3.32	
Sandy Loam (Speyer 2.3)	7.4	20 / 75	6.0 / 19.9	4.9	3.98	SFO	
Geometric mean (if not pH dependent)							5.24
pH dependence	No						

(a): Solution measured in is not reported
(b): Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7

1 14 n corresponds to the number of soils.
Rate of degradation in soil (aerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)
Not required / no aerobic soil transformation products to consider

Rate of degradation field soil dissipation studies (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.2.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1.2.1)
No field dissipation data available, not required

Combined laboratory and field kinetic endpoints for modelling (when not from different populations)
Not required / no field data available

Soil accumulation (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.2)
Soil accumulation and plateau concentration

Rate of degradation in soil (anaerobic) laboratory studies active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)
Not required / no anaerobic soil studies available

Rate of degradation in soil (anaerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.4 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)
Not required / no anaerobic soil studies available

Rate of degradation on soil (photolysis) laboratory active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3)

Parent	Soil photolysis				
Soil type	pH[^a]	t. °C / % FMC (1/3bar)	DT₅₀ / DT₉₀ (d) calculated at 42ºN	St. (χ²)	Method of calculation
Sandy Loam	7.4	25 / 75	20.7 / 68.6	3.96	SFO

[^a]: Solution measured in is not reported
Soil adsorption active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Soil Type	OC %	Soil pH*	K_d (mL/g)	K_{doc} (mL/g)	K_F (mL/g)	K_{Foc} (mL/g)	1/n
Sandy (Zeist)	3.2	5.2*	-	-	4.5	139	0.66
Sandy (De Krakeling)	2.1	5.3*	-	-	3.5	167	0.69
Sandy (Maarn)	2.4	5.2*	-	-	3.3	135	0.75
Sandy Loam (Fox)	1.3	7.6**	-	-	0.30	22	0.94
Silty Clay Loam (Hagerstown)	1.5	6.6**	-	-	0.43	30	1.01
Silt Loam (Plano)	3.4	6.8**	-	-	0.69	20	0.96
sandy Loam (Calke)	3.1	5.8	-	-	0.56	18	0.85
Clay Loam (South Witham)	3.7	7.3	-	-	0.46	12	0.89
Sandy Clay Loam (Lockington)	3.1	5.7	-	-	0.64	21	0.85
Loamy Sand (Hagen)	2.9	5.7	-	-	0.98	34	0.93

| Geometric mean pH <5.5 (n = 3) | 3.7 | 0.54 | 146 | 21 |

| pH >5.5 (n = 7) | 0.70 | 0.92 |

Measured in water

* Calculated from $\text{pH(H}_2\text{O)} = 0.820 \text{pH(KCl)} + 1.69$

** Solution not reported in study, assumed to be H$_2$O

Soil adsorption transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Not required / no transformation products to consider

Mobility in soil column leaching active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Not required / no data available

Mobility in soil column leaching transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Not required / no data available

Lysimeter / field leaching studies (Regulation (EU) N° 283/2013, Annex Part A, points 7.1.4.2 / 7.1.4.3 and Regulation (EU) N° 284/2013, Annex Part A, points 9.1.2.2 / 9.1.2.3)

Lysimeter/ field leaching studies	Location: Fraunhofer, Germany
Study type (e.g. lysimeter, field): lysisimeter	
Soil properties: sandy loam, 0-30cm depth - pH = 5.7, OC = 1.5, FMC = 20-30%	
Dates of application : 18th May 1989	
Crop : summer wheat (seeded April 1989), winter	
wheat (seeded September 1989), winter rape (seeded September 1990)
Interception estimated: 0% (applied to bare soil)
Number of applications: 1 years, 1 applications per year
Duration – 2 years
Application rate: 1200 g/ha/year
Average annual rainfall (mm): 868 mm
Average annual leachate volume (mm): 443 mm
Neither Mecoprop-P nor 4-chloro-2-methylphenol were detected at concentrations > 0.03µg/L.
Unidentified compounds were present at 0.4-0.5 and 0.1-0.2µg/L a.s. equivalents 1 and 2 years after application, respectively.

Hydrolytic degradation (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.1.1)

| pH 5: stable to hydrolysis at 25 and 70 °C |
| pH 7: stable to hydrolysis at 25 and 70 °C |
| pH 9: stable to hydrolysis at 25 and 70 °C |

Aqueous photochemical degradation (Regulation (EU) N° 283/2013, Annex Part A, points 7.2.1.2 / 7.2.1.3)

| DT50: 7 days (SFO, determined at pH 7) |
| Natural light, 42°N; DT50 4.65 days (SFO) |
| o-cresol: max 30.4 % AR (30 d) |
| Estimated DT50 at 42°N 42 days (SFO-SFO, formation fraction from parent 0.38) |

Quantum yield of direct phototransformation in water at Σ > 290 nm

Not calculated

‘Ready biodegradability’ (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.1)

| Readily biodegradable (yes/no) |
| Yes |
Aerobic mineralisation in surface water (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.1.1)

Parent	System identifier (indicate fresh, estuarine or marine)	pH water phase	pH sed a)	t. °C b)	DT₅₀ /DT₉₀ whole sys. (suspended sediment test)	St. (χ²)	DT₅₀ /DT₉₀ Water (pelagic test)	St. (χ²)	Method of calculation
Rhineland-Palatinate (fresh)	8.28	-	20	-	-	-	>100 0days	-	Default value

(a): Measured in [medium to be stated, usually calcium chloride solution or water]
(b): Temperature of incubation=temperature that the environmental media was collected or std temperature of 20°C
(c): Normalised using a Q10 of 2.58

Not required/no metabolites to consider

Mineralisation and non extractable residues (for parent dosed experiments)

System identifier (indicate fresh, estuarine or marine)	pH water phase	pH sed	Mineralisation x % after n d. (end of the study)	Non-extractable residues. max x % after n d (suspended sediment test)	Non-extractable residues. max x % after n d (end of the study) (suspended sediment test)
Rhineland-Palatinate (fresh)	8.28	-	2% after 58 days	-	-

Water / sediment study (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.2)

Parent	Distribution (Max. sed 22.13 % after 56 d)									
Water / sediment system	pH water phase	pH sed a)	t. °C	DT₅₀ whole sys.	St. (χ²)	DistT₅₀ water	St. (χ²)	DT₅₀ sed	St. (χ²)	Method of calculation
Manningtree	5.57	6.7	20	59	8.7	83	6.12	-	-	SFO (whole sys)
Ongar	6.94	8.6	20	163	2.9	86	1.63	-	-	HS, slow phase
Calwich Abbey	8.2	7.2	20	171	1.2	73	2.89	-	-	HS, slow phase
Swiss Lake	7.1	6.6	20	244	2.4	171	3.95	-	-	SFO

Geometric mean at 20°C^{c)} 141 92 -

(a): Measured in water
(b): Normalised using a Q10 of 2.58
No metabolites to consider

Mineralisation and non extractable residues (from parent dosed experiments)
Water / sediment system

Manningtree
Ongar
Calwich Abbey
Swiss Lake

Fate and behaviour in air (Regulation (EU) N° 283/2013, Annex Part A, point 7.3.1)

- **Direct photolysis in air**
 - Not studied - no data requested

- **Photochemical oxidative degradation in air**
 - DT$_{50}$ of 22 hours derived by the Atkinson model, OH ($24\; \text{h}$) concentration assumed = $5 \times 10^6 \text{cm}^{-3}$

- **Volatilisation**
 - from plant surfaces (BBA guideline): <0.1 % after 24 hours
 - from soil surfaces (BBA guideline): <1 % after 24 hours

Metabolites

- No data

Residues requiring further assessment (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.1)

- Environmental occurring residues requiring further assessment by other disciplines (toxicology and ecotoxicology) and or requiring consideration for groundwater exposure
 - Soil: mecoprop-P
 - Surface water: mecoprop-P, o-cresol
 - Sediment: mecoprop-P
 - Ground water: mecoprop-P
 - Air: mecoprop-P

Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2)

- See section 5, Ecotoxicology

Monitoring data, if available (Regulation (EU) N° 283/2013, Annex Part A, point 7.5

- **Soil (indicate location and type of study)**
 - No monitoring data available

- **Surface water (indicate location and type of study)**
 - Survey of monitoring programmes (2009-2014) – 28 European Union Member States + Norway and Switzerland
 - Mecoprop-P monitored in Ireland, Italy, Luxembourg, Norway, Slovakia, Switzerland and the Netherlands.
 - Total 341 sites monitored and 4,169 samples analysed.
Ground water (indicate location and type of study)

Survey of monitoring programmes (2009-2014) – 28 European Union Member States + Norway and Switzerland.

Mecoprop-P monitored in Luxembourg, Norway and the Netherlands – total 267 sites, 1047 samples

Mecoprop-P > 0.1µg/l in ≥43 samples. Maximum 1.8µg/l (Norway)

Air (indicate location and type of study)

No monitoring data available

PEC soil (Regulation (EU) N° 284/2013, Annex Part A, points 9.1.3 / 9.3.1)

Parent

Method of calculation

DT$_{50}$ (d): 10.12 days

Kinetics: pseudo-SFO (FOMC DT$_{90}$/3.32)

Field or Lab: worst case non-normalised from laboratory studies.

Application data

Crop: spring cereals

Depth of soil layer: 5cm

Soil bulk density: 1.5g/cm3

% plant interception: 0%

Number of applications: 1

Interval (d): -

Application rate(s): 1200 g a.s./ha

PEC$_{(s)}$ (mg/kg)	Single application	Single application	Multiple application	Multiple application
	Actual	Time weighted average	Actual	Time weighted average
Initial	1.600	-	-	-
Short term 24h	1.494	1.546	-	-
2d	1.395	1.495	-	-
4d	1.217	1.400	-	-
Long term 7d	0.991	1.271	-	-
28d	0.613	1.029	-	-
50d	0.235	0.712	-	-
100d	0.052	0.452	-	-
Plateau concentration	**Not calculated**			

Not required/no metabolites to consider
PEC ground water (Regulation (EU) No 284/2013, Annex Part A, point 9.2.4.1)

Method of calculation and type of study (e.g. modelling, field leaching, lysimeter)

For FOCUS gw modelling, values used –

Modelling using FOCUS model(s), with appropriate FOCUSgw scenarios, according to FOCUS guidance.

Model(s) used: PEARL v4.4.4, PELMO v5.5.3, MACRO v4.4.2

Crop: Spring/winter cereals

Crop uptake factor: 0

Water solubility (mg/L): 250 000 mg/l at 20°C

Vapour pressure: 0.0014 Pa at 25°C

Geometric mean parent DT$_{50}^{lab}$ 5.24 d (normalisation to 10kPa or pF2, 20 °C with Q10 of 2.58 and Walker equation coefficient 0.7).

K$_{OC}$: 21 mL/g, $^{1}/_{n}$ = 0.92 (pH > 5.5).

Metabolites: not required

Application rate

Gross application rate: 1200 g/ha.

Crop growth stage: BBCH13-32 spring cereals / BBCH20-32 winter cereals

Canopy interception %: 0% spring cereals / 20% winter cereals

Application rate net of interception: 1200 g/ha spring cereals / 960 g/ha winter cereals.

No. of applications: 1

Time of application (absolute or relative application dates): 1st March

PEC(gw) - FOCUS modelling results (80th percentile annual average concentration at 1m)

Scenario	Parent (µg/L)		
	PEARL	PELMO	MACRO
Châteaudun	<0.001	<0.001	0.010
Hamburg	0.024	0.052	-
Jokioinen	0.005	0.035	-
Kremsmünster	0.010	0.007	-
Okehampton	0.023	0.056	-
Piacenza	-	-	-
Porto	<0.001	0.002	-
Sevilla	-	-	-
Thiva	-	-	-

Scenario	Parent (µg/L)		
	PEARL	PELMO	MACRO
Châteaudun	<0.001	0.002	<0.001
Hamburg	0.015	0.073	-
Jokioinen	0.005	0.076	-
Kremsmünster	0.009	0.017	-
Okehampton	0.031	0.115	-
Piacenza	0.015	0.047	-
PEC surface water and PEC sediment (Regulation (EU) N° 284/2013, Annex Part A, points 9.2.5 / 9.3.1)

Parent

Parameters used in FOCUSsw step 1 and 2

Parameter	Value
Molecular weight (g/mol)	214.65
K_{OC}/K_{OM} (mL/g)	21 / 12.18
DT₅₀ soil (d)	5.24 days (Lab)
DT₅₀ water/sediment system (d)	141 d
DT₅₀ water (d)	141 d
DT₅₀ sediment (d)	1000 d
Crop interception (%)	spring cereals - 0 % (no interception) / winter cereals - 25% (minimal crop cover)

Parameters used in FOCUSsw step 3 (if performed)

Parameter	Value
Version control no. ‘s of FOCUS software: SWASH v3.1 / SWAN v3.0 (MACRO v4.4.2, PRZM v3.1.1, TOXSWA v3.3.1)	
Water solubility (mg/L)	250000
Vapour pressure:	1.4 x 10^-3 Pa at 25°C
Kom/Koc (mL/g)	12.18 / 21
1/n: (Freundlich exponent)	0.92
Q10=2.58, Walker equation coefficient	0.7
Crop uptake factor	0

Application rate

Crop and growth stage: spring cereals BBCH 13-32 / winter cereals BBCH 20-32
Number of applications: 1
Interval (d): -
Application rate(s): 1200 g a.s./ha
Application window:
Step 1+2; Mar-May
Step 3:
Spring cereals – 7 days post emergence to 31st July
Winter cereals – 1st March to 31st July

FOCUS STEP 1 Scenario	Day after overall maximum	PEC_{SW} (µg/L) Actual	TWA	PEC_{SED} (µg/kg) Actual	TWA
Spring and Winter Cereals	0 h	400.14		81.71	
	24 h	397.88	399.01	83.55	82.63
	2 d	395.93	397.96	83.15	82.99
	4 d	392.05	395.97	82.33	82.86
	7 d	386.32	393.06	81.13	82.38
	14 d	373.25	386.40	78.38	81.06
	21 d	360.62	379.90	75.73	79.72
	28 d	348.42	373.55	73.17	78.40
FOCUS STEP 1

Scenario	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)			
		Actual	TWA	Actual	TWA	
42 d	325.25	361.27	68.30	75.84		

FOCUS STEP 2

Scenario	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)			
		Actual	TWA	Actual	TWA	
Northern EU (Spring Cereals / March-May)						
0 h	56.47			11.83		
24 h	56.10	56.29	11.77	11.80		
2 d	55.83	56.13	11.72	11.77		
4 d	55.30	55.84	11.61	11.72		
7 d	54.51	55.44	11.44	11.63		
14 d	52.71	54.52	11.06	11.44		
21 d	50.96	53.62	10.70	11.25		
28 d	49.28	52.77	10.34	11.07		
42 d	46.08	51.05	9.67	10.71		
Southern EU (Spring Cereals / March-May)						
0 h	102.32			21.45		
24 h	101.72	102.01	21.35	21.40		
2 d	101.23	101.79	21.25	21.35		
4 d	100.27	101.29	21.04	21.25		
7 d	98.83	100.52	20.74	21.10		
14 d	95.57	98.86	20.06	20.75		
21 d	92.40	97.23	19.39	20.41		
28 d	89.35	95.64	18.75	20.07		
42 d	83.55	92.57	17.53	19.43		
Northern EU (Winter Cereals / March-May)						
0 h	45.01			9.43		
24 h	44.69	44.85	9.38	9.40		
2 d	44.48	44.72	9.34	9.38		
4 d	44.05	44.49	9.25	9.34		
7 d	43.43	44.17	9.11	9.27		
14 d	41.99	43.44	8.81	9.12		
21 d	40.60	42.72	8.52	8.97		
28 d	39.26	42.02	8.24	8.82		
42 d	36.71	40.67	7.70	8.54		
Southern EU (Winter Cereals / March-May)						
0 h	79.39			16.64		
24 h	78.91	79.15	16.56	16.60		
2 d	78.53	78.94	16.48	16.56		
4 d	77.78	78.55	16.32	16.48		
7 d	76.67	77.98	16.09	16.36		
14 d	74.14	76.69	15.56	16.09		
21 d	71.69	75.43	15.05	15.83		
28 d	69.32	74.19	14.55	15.57		
42 d	64.81	71.81	13.60	15.07		
FOCUS STEP 3 Scenario	Water body	Day after overall maximum	PEC\(_{SW}\) (µg/L) Actual	PEC\(_{SED}\) (µg/kg) Actual	PEC\(_{SW}\) TWA	PEC\(_{SED}\) TWA
----------------------	------------	---------------------------	-----------------------------	-----------------------------	----------------	----------------
D1	Ditch	0	13.363	8.248		
		24	13.320	8.244	8.247	8.247
		2d	13.214	8.237	8.232	8.246
		4d	12.883	8.187	8.187	8.242
		7d	12.225	8.078	8.078	8.231
		14d	9.855	7.679	7.679	8.180
		21d	7.724	7.153	7.153	8.099
		28d	5.956	6.584	6.584	7.987
		42d	3.440	5.481	5.481	7.685
		50d	2.504	4.918	4.918	7.480
		100d	0.407	2.744	2.744	6.076
D1	Stream	0 h	8.276	4.214		
		24 h	8.233	4.177	4.177	4.212
		2 d	8.122	4.023	4.023	4.204
		4 d	7.764	3.280	3.280	4.172
		7 d	6.899	2.732	2.732	4.085
		14 d	0.0238	2.135	2.135	3.730
		21 d	0.00797	1.793	1.793	3.359
		28 d	0.00460	1.548	1.548	3.055
		42 d	0.00231	1.201	1.201	2.604
		50d	0.00175	1.057	1.057	2.407
		100d	0.000624	0.569	0.569	1.666
D3	Ditch	0 h	7.599	0.810		
		24 h	3.405	0.577	0.577	0.765
		2 d	0.346	0.414	0.414	0.676
		4 d	0.00663	0.295	0.295	0.536
		7 d	0.00183	0.225	0.225	0.424
		14 d	0.000583	0.161	0.161	0.310
		21 d	0.000317	0.131	0.131	0.256
		28 d	0.000200	0.112	0.112	0.223
		42 d	0.000112	0.0868	0.0868	0.182
		50d	0.000106	0.0763	0.0763	0.166
		100d	0.000059	0.0404	0.0404	0.111
D4	Pond	0 h	0.263	0.249		
		24 h	0.260	0.249	0.249	0.249
		2 d	0.257	0.249	0.249	0.249
		4 d	0.253	0.249	0.249	0.249
		7 d	0.246	0.248	0.248	0.249
		14 d	0.233	0.247	0.247	0.249
		21 d	0.221	0.245	0.245	0.248
		28 d	0.210	0.243	0.243	0.248
		42 d	0.190	0.237	0.237	0.247
		50 d	0.178	0.233	0.233	0.247
		100 d	0.125	0.203	0.203	0.241
D4	Stream	0 h	6.304	0.235		
		24 h	0.000523	0.0581	0.0581	0.108
		2 d	0.000333	0.0421	0.0421	0.0791
		4 d	0.000269	0.0304	0.0304	0.0574
		7 d	0.000233	0.0233	0.0233	0.0442
		14 d	0.000177	0.0169	0.0169	0.0319
Spring Cereals

FOCUS STEP 3 Scenario

Water body	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)	
	Actual	TWA	Actual	TWA
21 d	0.000113	0.0343	0.0138	0.0264
28 d	0.000067	0.0258	0.0119	0.0230
42 d	0.000003	0.0173	0.00938	0.0188
50 d	0.000002	0.0146	0.00834	0.0172
100 d	0.000005	0.00755	0.00464	0.0117

D5

Water body	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)	
	Actual	TWA	Actual	TWA
0 h	0.262	0.257		
24 h	0.258	0.260	0.257	0.257
2 d	0.256	0.259	0.256	0.257
4 d	0.251	0.256	0.256	0.257
7 d	0.245	0.252	0.256	0.256
14 d	0.233	0.245	0.255	0.256
21 d	0.222	0.239	0.252	0.256
28 d	0.211	0.234	0.250	0.256
42 d	0.191	0.223	0.243	0.255
50 d	0.182	0.217	0.239	0.254
100 d	0.134	0.187	0.210	0.248

D5

Water body	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)	
	Actual	TWA	Actual	TWA
0 h	5.958	0.107		
24 h	0.000028	0.221	0.0172	0.0329
2 d	0.000014	0.110	0.0124	0.0237
4 d	0.000009	0.0552	0.00894	0.0171
7 d	0.000007	0.0316	0.00682	0.0131
14 d	0.000005	0.0158	0.00489	0.00940
21 d	0.000004	0.0105	0.00401	0.00774
28 d	0.000004	0.00789	0.00345	0.00673
42 d	0.000003	0.00526	0.00274	0.00551
50 d	0.000002	0.00442	0.00245	0.00504
100 d	0.000000	0.00222	0.00139	0.00344

R4

Water body	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)	
	Actual	TWA	Actual	TWA
0 h	32.316	3.377		
24 h	0.0137	20.891	1.474	2.627
2 d	0.00494	10.459	1.106	2.056
4 d	2.125	6.808	1.515	1.746
7 d	0.00175	4.202	0.968	1.545
14 d	0.000494	2.119	0.664	1.181
21 d	0.000252	1.463	0.530	0.988
28 d	0.000159	1.098	0.447	0.864
42 d	0.000084	0.732	0.340	0.707
50 d	0.000064	0.615	0.296	0.645
100 d	0.000000	0.308	0.150	0.428

Winter Cereals

FOCUS STEP 3 Scenario

Water body	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)		
	Actual	TWA	Actual	TWA	
0	158.372	3.777			
24	151.690	157.712	54.830	54.826	
2d	137.512	155.477	54.787	54.826	
4d	115.752	148.964	54.678	54.813	
7d	93.779	136.698	54.342	54.764	
14d	63.302	113.633	53.696	54.641	
21d	48.843	96.932	53.411	54.199	
28d	43.743	85.352	53.120	53.806	
42d	28.095	69.997	51.473	51.824	
Water body	Day after overall maximum	PEC_{SW} (µg/L) Actual	PEC_{SW} (µg/L) TWA	PEC_{SED} (µg/kg) Actual	PEC_{SED} (µg/kg) TWA
------------	---------------------------	-------------------------------	-------------------------	-------------------------------	-------------------------
D1 Stream	0 h	98.801	54.630		
	24 h	94.401	54.787	54.826	
	2 d	84.822	54.678	54.813	
	4 d	71.331	54.342	54.764	
	7 d	57.289	53.696	54.641	
	14 d	37.524	53.411	54.199	
	21 d	27.780	51.260	53.806	
	28 d	26.634	48.167	51.824	
	42 d	12.373	42.412	51.824	
	50 d	0.0583	37.357	50.667	
	100 d	0.0118	37.357	50.667	
D2 Ditch	0 h	184.278	33.285		
	24 h	87.999	33.210	33.269	
	2 d	70.834	33.053	33.241	
	4 d	142.741	32.203	33.113	
	7 d	69.496	30.734	32.720	
	14 d	31.306	30.488	32.067	
	21 d	25.102	31.307	31.885	
	28 d	14.342	27.755	31.570	
	42 d	10.230	22.525	30.488	
	50 d	8.723	21.426	29.729	
	100 d	2.614	19.395	28.569	
D2 Stream	0 h	116.438	19.447		
	24 h	43.514	19.402	19.427	
	2 d	89.013	18.405	19.206	
	4 d	89.013	18.405	19.206	
	7 d	90.13	17.195	18.815	
	14 d	16.457	16.809	18.199	
	21 d	31.306	18.191	18.031	
	28 d	15.550	17.934	17.934	
	42 d	4.855	16.879	17.934	
	50 d	8.723	16.196	16.196	
	100 d	2.614	10.900	12.134	
D3 Ditch	0 h	7.583	0.724		
	24 h	2.031	0.314	0.666	
	2 d	0.104	0.333	0.568	
	4 d	0.104	0.333	0.568	
	7 d	0.00345	0.182	0.345	
	14 d	0.00345	0.182	0.345	
	21 d	0.00345	0.182	0.345	
	28 d	0.00345	0.182	0.345	
	42 d	0.00345	0.182	0.345	
	50 d	0.00345	0.182	0.345	
	100 d	0.00345	0.182	0.345	
D4 Pond	0 h	0.263	0.314		
	24 h	0.260	0.314	0.314	
	2 d	0.260	0.314	0.314	
	4 d	0.260	0.314	0.314	
	7 d	0.260	0.314	0.314	
	14 d	0.260	0.314	0.314	
	21 d	0.260	0.314	0.314	
	28 d	0.260	0.314	0.314	
	42 d	0.260	0.314	0.314	
	50 d	0.260	0.314	0.314	
	100 d	0.260	0.314	0.314	
Spring Cereals

FOCUS STEP 3 Scenario

Water body	Day after overall maximum	PEC_{SW} (µg/L) Actual	PEC_{SW} TWA	PEC_{SED} (µg/kg) Actual	PEC_{SED} TWA
D4 Stream	0 h	6.187	0.203		
	24 h	0.000421	0.545	0.0440	0.122
	2 d	0.000308	0.297	0.0320	0.122
	4 d	0.000261	0.280	0.0232	0.121
	7 d	0.000306	0.250	0.0178	0.119
	14 d	0.000560	0.193	0.0130	0.112
	21 d	0.00136	0.148	0.0111	0.104
	28 d	0.0383	0.116	0.0157	0.0963
	42 d	0.102	0.0808	0.114	0.0846
	50 d	0.0278	0.0745	0.0881	0.0795
	100 d	0.000382	0.0409	0.0368	0.0575
D5 Pond	0 h	0.262	0.250		
	24 h	0.258	0.260	0.250	0.250
	2 d	0.256	0.259	0.250	0.250
	4 d	0.251	0.256	0.249	0.250
	7 d	0.244	0.252	0.249	0.250
	14 d	0.232	0.245	0.248	0.249
	21 d	0.218	0.238	0.246	0.249
	28 d	0.204	0.231	0.244	0.249
	42 d	0.183	0.218	0.238	0.248
	50 d	0.175	0.212	0.233	0.248
	100 d	0.132	0.182	0.203	0.242
D5 Stream	0 h	5.978	0.109		
	24 h	0.000037	0.225	0.0176	0.0336
	2 d	0.000023	0.131	0.0127	0.0243
	4 d	0.000018	0.0563	0.00915	0.0175
	7 d	0.000016	0.0322	0.00698	0.0134
	14 d	0.000014	0.0161	0.00501	0.00961
	21 d	0.000010	0.0107	0.00411	0.00792
	28 d	0.000009	0.00806	0.00354	0.00689
	42 d	0.000008	0.00538	0.00282	0.00564
	50 d	0.000007	0.00452	0.00252	0.00517
	100 d	0.000000	0.00227	0.00143	0.00353
D6 Ditch	0 h	8.127	1.397		
	24 h	4.483	6.680	1.176	1.357
	2 d	1.059	4.526	1.009	1.274
	4 d	0.530	2.587	0.888	1.133
	7 d	0.491	1.703	0.819	1.021
	14 d	0.450	1.100	0.761	0.906
	21 d	0.316	0.887	0.702	0.851
	28 d	0.347	0.779	0.664	0.806
	42 d	0.115	0.673	0.590	0.761
	50 d	0.0140	0.675	0.486	0.728
	100 d	0.00141	0.499	0.237	0.586
R1 Pond	0 h	0.662	0.598		
	24 h	0.655	0.658	0.598	0.598
	2 d	0.648	0.655	0.598	0.598
	4 d	0.636	0.649	0.597	0.598
	7 d	0.619	0.640	0.595	0.598
	14 d	0.582	0.620	0.589	0.597
	21 d	0.547	0.602	0.581	0.596
	28 d	0.515	0.584	0.568	0.595
	42 d	0.453	0.551	0.541	0.591
	50 d	0.418	0.533	0.524	0.598
	100 d	0.249	0.430	0.411	0.562
Spring Cereals

FOCUS STEP 3 Scenario

Water body	Day after overall maximum	PEC_{sw} (µg/L)	PEC_{sed} (µg/kg)
		Actual TWA	Actual TWA
R1 Stream	0 h	19.599	1.825
	24 h	0.0120	9.663
	2 d	0.00277	4.984
	4 d	0.000898	2.493
	7 d	0.000368	1.425
	14 d	0.000133	0.715
	21 d	0.000072	0.525
	28 d	0.000046	0.395
	42 d	0.000024	0.264
	50 d	0.000022	0.221
	100 d	0.000008	0.111
R3 Stream	0 h	44.152	4.230
	24 h	0.0466	27.071
	2 d	0.0126	13.603
	4 d	0.00451	6.806
	7 d	0.00193	3.891
	14 d	1.397	2.089
	21 d	0.000454	1.418
	28 d	0.000341	1.079
	42 d	0.000180	0.719
	50 d	0.000140	0.604
	100 d	0.000054	0.302
R4 Stream	0 h	5.012	0.261
	24 h	0.000545	0.952
	2 d	0.000161	0.476
	4 d	0.000055	0.238
	7 d	0.000023	0.136
	14 d	0.000008	0.0681
	21 d	0.000005	0.0454
	28 d	0.000017	0.0355
	42 d	0.000002	0.0237
	50 d	0.000002	0.0199
	100 d	0.000001	0.0102

Spring Cereals – Surface Water

Max PEC_{sw} (µg/L)

Step 4 Scenario	5m NSBZ	10m NSBZ	5m VFS	10m VFS	50% DRT	75% DRT	95% DRT	5m NSBZ + 5m VFS	10m NSBZ + 5m VFS	10m NSBZ + 10m VFS
D1 (Ditch)	13.36	13.36	N/A	N/A	13.36	13.36	13.36	13.36	13.36	13.36
D1 (Stream)	8.276	8.276	N/A	N/A	8.276	8.276	8.276	8.276	8.276	8.276
D3 (Ditch)	2.060	1.092	N/A	N/A	3.800	1.900	0.487	2.060	1.093	1.092
D4 (Pond)	0.259	0.188	N/A	N/A	0.173	0.108	0.057	0.259	0.196	0.188
D4 (Stream)	2.334	1.245	N/A	N/A	3.192	1.617	0.373	2.334	1.255	1.245
D5 (Pond)	0.258	0.187	N/A	N/A	0.172	0.107	0.056	0.258	0.195	0.187
D5 (Stream)	2.193	1.167	N/A	N/A	3.001	1.511	0.320	2.193	1.172	1.167
R4 (Stream)	32.31	32.31	5.033	7.640	32.31	32.31	32.31	32.31	1.838	14.62

NSBZ = No spray buffer zone
VFS – Vegetated filter strip: 5m VFS – run-off and erosion reduction calculated using VFS mod. 10m VFS – Run-off reduction 0.6, Erosion reduction 0.85. 20m VFS – Run-off reduction 0.8, Erosion reduction 0.95.
DRT – Drift reduction technology

Winter Cereals – Surface Water

Scenario	Step 4	Max PECsw (µg/L)									
	5m NSBZ	10m NSBZ	5m VFS	10m VFS	20m VFS	50% DRT	75% DRT	95% DRT	5m NSBZ + 5m VFS	10m NSBZ + 5m VFS	10m NSBZ
D1 (Ditch)	158.3 72	158.3 72	N/A	N/A	N/A	158.3 72	158.3 72	158.3 72	158.3 72	158.3 72	158.37 2
D1 (Stream)	98.80 1	98.80 1	N/A	N/A	N/A	98.80 1	98.80 1	98.80 1	98.80 1	98.80 1	98.801
D2 (Ditch)	184.2 78	184.2 78	N/A	N/A	N/A	184.2 78	184.2 78	184.2 78	184.2 78	184.2 78	184.27 8
D2 (Stream)	116.4 38	116.4 38	N/A	N/A	N/A	116.4 38	116.4 38	116.4 38	116.4 38	116.4 38	116.43 8
D3 (Ditch)	2.055 1090	2.055 1090	N/A	N/A	N/A	3.792 1896	0.522	2.055 1090	1.090	1.090	
D4 (Pond)	0.273 0.204	0.273 0.204	N/A	N/A	N/A	0.198 0.154	0.119	0.273 0.204	0.204		
D4 (Stream)	2.308 1.236	2.308 1.236	N/A	N/A	N/A	3.154 1.607	0.370	2.308 1.236	1.236		
D5 (Pond)	0.272 0.197	0.272 0.197	N/A	N/A	N/A	0.189 0.125	0.073	0.272 0.197	0.197		
D5 (Stream)	2.208 1.177	2.208 1.177	N/A	N/A	N/A	3.020 1.526	0.330	2.208 1.177	1.177		
D6 (Ditch)	2.586 1.638	2.586 1.638	N/A	N/A	N/A	4.327 2.450	1.105	2.586 1.638	1.638		
R1 (Pond)	0.674 0.609	0.674 0.609	0.262 0.402	0.315	0.602 0.545	0.499 0.273	0.208 0.349				
R1 (Stream)	19.59 9	19.59 9	5.030 8.866	5.030	19.59 9	19.59 9	19.59 9	1.837	1.829	8.866	
R3 (Stream)	44.15 2	44.15 2	10.08	10.51	10.08	44.15 2	44.15 2	44.15 2	2.571	2.136	20.082
R4 (Stream)	1.830 0.971	1.830 0.971	5.012 5.012	5.012 5.012	2.506 1.253	0.251	1.830 0.971	0.971			

NSBZ - No spray buffer zone
VFS – Vegetated filter strip: 5m VFS – run-off and erosion reduction calculated using VFS mod. 10m VFS – Run-off reduction 0.6, Erosion reduction 0.85. 20m VFS – Run-off reduction 0.8, Erosion reduction 0.95.
DRT – Drift reduction technology

Spring Cereals - Sediment

Scenario	Step 4	Max PECsed (µg/kg)									
	5m NSBZ	10m NSBZ	5m VFS	10m VFS	20m VFS	50% DRT	75% DRT	95% DRT	5m NSBZ + 5m VFS	10m NSBZ + 5m VFS	10m NSBZ
D1 (Ditch)	8.101 8.072	N/A	N/A	N/A	8.150 8.098	8.056	8.101 8.074	8.072			
D1 (Stream)	4.211 4.210	N/A	N/A	N/A	4.212 4.210	4.209	4.211 4.210	4.210			
D3 (Ditch)	0.247 0.138	N/A	N/A	N/A	0.436 0.234	0.071	0.247 0.143	0.138			
D4 (Pond)	0.248 0.182	N/A	N/A	N/A	0.168 0.107	0.058	0.248 0.190	0.182			
D4	0.090 0.050	N/A	N/A	N/A	0.122 0.064	0.017	0.090 0.050	0.050			

NSBZ - No spray buffer zone
VFS – Vegetated filter strip: 5m VFS – run-off and erosion reduction calculated using VFS mod. 10m VFS – Run-off reduction 0.6, Erosion reduction 0.85. 20m VFS – Run-off reduction 0.8, Erosion reduction 0.95.
DRT – Drift reduction technology
Winter Cereals - Sediment

Step 4 Scenario	Max PECsed (µg/kg)										
	5m NSBZ	10m NSBZ	5m VFS	10m VFS	20m DRT	50% DRT	75% DRT	95% DRT	5m NSBZ + 5m VFS	10m NSBZ + 5m VFS	10m NSBZ + 10m VFS
D1 (Ditch)	54.76	54.75	N/A	N/A	54.78	54.76	54.74	54.76	54.75	54.75	54.75
D1 (Stream)	33.94	33.94	N/A	N/A	33.94	33.94	33.94	33.94	33.94	33.94	33.94
D2 (Ditch)	32.60	32.47	N/A	N/A	32.84	32.59	32.40	32.60	32.47	32.47	32.47
D2 (Stream)	19.01	18.88	N/A	N/A	19.10	18.93	18.79	19.01	18.88	18.88	18.88
D3 (Ditch)	0.225	0.127	N/A	N/A	0.395	0.215	0.071	0.225	0.127	0.127	0.127
D4 (Pond)	0.326	0.260	N/A	N/A	0.252	0.195	0.148	0.326	0.260	0.260	0.260
D4 (Stream)	0.118	0.117	N/A	N/A	0.119	0.118	0.116	0.118	0.117	0.117	0.117
D5 (Pond)	0.262	0.193	N/A	N/A	0.185	0.124	0.074	0.262	0.193	0.193	0.193
D5 (Stream)	0.042	0.023	N/A	N/A	0.057	0.030	0.007	0.042	0.023	0.023	0.023
D6 (Ditch)	0.816	0.701	N/A	N/A	1.016	0.806	0.639	0.816	0.701	0.701	0.701
R1 (Pond)	0.610	0.547	0.264	0.383	0.310	0.540	0.485	0.440	0.276	0.211	0.330
R1 (Stream)	1.812	1.808	0.276	0.857	0.467	1.816	1.810	1.805	0.190	0.186	0.840
R3 (Stream)	4.195	4.183	0.433	2.004	1.099	4.204	4.189	4.176	0.163	0.088	1.958
R4 (Stream)	0.098	0.053	0.261	0.261	0.261	0.133	0.068	0.015	0.098	0.053	0.053

NSBZ - No spray buffer zone
VFS - Vegetated filter strip: 5m VFS – run-off and erosion reduction calculated using VFS mod. 10m VFS – Run-off reduction 0.6, Erosion reduction 0.85. 20m VFS – Run-off reduction 0.8, Erosion reduction 0.95.
DRT - Drift reduction technology
Metabolite *o*-cresol

Parameters used in FOCUSsw step 1 and 2

- Molecular weight: 108.14
- Soil or water metabolite: aqueous photolysis (water)
- Koc/Kom (mL/g): 1
- DT₅₀ soil (d): 1000
- DT₅₀ water/sediment system (d): 1000
- DT₅₀ water (d): 1000
- DT₅₀ sediment (d): 1000
- Crop interception (%): spring cereals - 0 % (no interception) / winter cereals - 25% (minimal crop cover)
- Maximum occurrence observed (% molar basis with respect to the parent):
 - Total Water and Sediment: 30.4 % (aqueous photolysis study)
 - Soil: 0% (value used in modelling 0.001%)

Parameters used in FOCUSsw step 3 (if performed)

- Not performed

Application rate

- Crop and growth stage: spring cereals BBCH 13-32 / winter cereals BBCH 20-32
- Number of applications: 1
- Interval (d): -
- Application rate(s): 1200 g a.s./ha
- Application window: Mar-May

Main routes of entry

- Formed in water

FOCUS STEP 1

Scenario

Spring and Winter Cereals

Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)
0h	1.68	<0.001
24h	1.68	1.68
7d	1.67	1.68
14d	1.66	1.67
28d	1.65	1.66
42d	1.63	1.65

FOCUS STEP 2

Scenario

Northern EU

(Spring and Winter Cereals / March-May)

Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)
0 h	1.68	0.017
24h	1.68	0.017
7d	1.67	0.017
14d	1.66	0.017
21 d	1.65	0.017
28 d	1.65	0.016
42 d	1.63	0.016

Southern EU

(Spring and Winter Cereals / March-May)

Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)
0 h	1.68	0.017
24h	1.68	0.017
7d	1.67	0.017
14d	1.66	0.017
21 d	1.65	0.017
28 d	1.65	0.016
FOCUS STEP 2 Scenario	Day after overall maximum	PEC_{sw} (µg/L)
-----------------	--------------------------	------------------
	Actual	TWA
42 d	1.63	1.65

Estimation of concentrations from other routes of exposure (Regulation (EU) N° 284/2013, Annex Part A, point 9.4)

Method of calculation

Not required

PEC

Maximum concentration

Not required
Ecotoxicology
Effects on birds and other terrestrial vertebrates (Regulation (EU) N° 283/2013, Annex Part A, point 8.1 and Regulation (EU) N° 284/2013, Annex Part A, point 10.1)

Species	Test substance	Time scale	End point	Toxicity (mg/kg bw per day)
Birds				
C. virginianus	a.s.	Acute	LD₅₀	>500
C. virginianus	a.s.	Acute	LD₅₀	500
C. virginianus	a.s.	Acute	LD₅₀	497
C. virginianus	a.s.	Acute	LD₅₀	648
C. virginianus	a.s.	Acute	LD₅₀geomean	532.7
A. platyrhynchos	a.s.	Dietary	LD₅₀	>712.2
C. virginianus	a.s.	Long-term	LD₅₀/10	53.3
C. japonica	a.s.	Long-term	NOAEL	70.9⁴
Mammals				
Rat	a.s.	Acute	LD₅₀	1050
Rat	a.s.	Acute	LD₅₀	431
Rat	a.s.	Acute	LD₅₀	775
Rat	a.s.	Acute	LD₅₀	>700 ¹
Rat	a.s.	Acute	LD₅₀geomean	703.9
Mouse	a.s.	Acute	LD₅₀	>3393 ²
Rat	a.s.	Long-term	NOAEL	8.5 ³

Endocrine disrupting properties (Annex Part A, points 8.1.5)
With regard to the endocrine disruption potential, as discussed in Section 2, it is unlikely that mecoprop-P is an endocrine disruptor in mammals, however, no firm conclusion can be drawn regarding fish and birds.

Additional higher tier studies (Annex Part A, points 10.1.1.2): None submitted

Terrestrial vertebrate wildlife (birds, mammals, reptile and amphibians) (Annex Part A, points 8.1.4, 10.1.3):
No data submitted

¹ Acute exposure neurotoxicity study
² dosed over 1 day duration as opposed to single gavage dose.
³ based upon consideration of available long-term, reproductive and developmental dataset
⁴ Sub-chronic toxicity study

Toxicity/exposure ratios for terrestrial vertebrates (Regulation (EU) N° 284/2013, Part A, Annex point 10.1)

Spring and winter cereals at 1200 g a.s./ha x 1 (BBCH 13-32)

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Screening Step (Birds)					
All	Small omnivorous bird	Acute	190.56	2.8	10
All	Small omnivorous bird	Long-term	41.2	1.3	5
Tier 1 (Birds)					
BBCH 10-29	Small omnivorous bird “lark”	Acute	28.8	18.5	10
BBCH 30-39	Small omnivorous bird “lark”	Acute	14.4	37.0	10
Early (shoots)	Large herbivorous bird “goose”	Long-term	36.6	14.5	10
BBCH 10-29	Small omnivorous bird “lark”	Long-term	6.93	7.7	5
Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
--------------	---------------------------	------------	------------------------	-----	---------
BBCH 30-39	Small omnivorous bird “lark”	Long-term	3.43	15.5	5
Early (shoots) autumn-winter BBCH 10-29	Large herbivorous bird “goose”	Long-term	10.2	5.21	5
Tier 1 (birds – risk from plant metabolite HMCPP)*					
BBCH 10-29	Small omnivorous bird “lark”	Acute	4.30	12.4	10
BBCH 30-39	Small omnivorous bird “lark”		2.15	24.8	
Early (shoots) autumn-winter BBCH 10-29	Large herbivorous bird “goose”	Acute	5.5	9.76	
BBCH 10-29	Small omnivorous bird “lark”	Long-term	1.03	5.2	5
BBCH 30-39	Small omnivorous bird “lark”		0.51	10.5	
Early (shoots) autumn-winter BBCH 10-29	Large herbivorous bird “goose”	Long-term	1.5	3.47	
Tier 1 (birds – risk from plant metabolite CCPP)*					
BBCH 10-29	Small omnivorous bird “lark”	Acute	4.13	12.9	10
BBCH 30-39	Small omnivorous bird “lark”		2.06	25.9	
Early (shoots) autumn-winter BBCH 10-29	Large herbivorous bird “goose”	Acute	5.2	10.2	
BBCH 10-29	Small omnivorous bird “lark”	Long-term	0.99	5.4	5
BBCH 30-39	Small omnivorous bird “lark”		0.50	10.7	
Early (shoots) autumn-winter BBCH 10-29	Large herbivorous bird “goose”	Long-term	1.5	3.6	

Screening Step (Mammals)

	Indicator or focal species	Time scale	DDD (mg/kg bw)	TER	Trigger
All	All small herbivorous mammal	Acute	142.08	5.0	10
All	All small herbivorous mammal	Long-term	30.72	0.28	5

Tier 1 (Mammals)

	Indicator or focal species	Time scale	DDD (mg/kg bw)	TER	Trigger
BBCH 10-19	Small insectivorous mammal “shrew”	Acute	9.12	77.2	10
BBCH ≥20	Small insectivorous mammal “shrew”	Acute	6.48	108.6	10
Early (shoots)	Large herbivorous mammal “lagomorph”	Acute	50.52	13.9	10
BBCH 10-29	Small omnivorous mammal “mouse”	Acute	20.64	34.1	10
BBCH 30-39	Small omnivorous mammal “mouse”	Acute	10.32	68.2	10
BBCH 10-19	Small insectivorous mammal “shrew”	Long-term	2.67	3.2	5
BBCH ≥20	Small insectivorous mammal “shrew”	Long-term	1.21	7.0	5
Early (shoots)	Large herbivorous mammal “lagomorph”	Long-term	14.18	0.60	5
BBCH 10-29	Small omnivorous mammal “mouse”	Long-term	4.96	1.7	5
BBCH 30-39	Small omnivorous mammal “mouse”	Long-term	2.48	3.4	5

Higher tier (Mammals) – Refined f_{max} = 0.08 (green plant food items only)
Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Early (shoots)	Large herbivorous mammal “lagomorph”	Long-term	2.14	4.0	5
BBCH 10-29	Small omnivorous mammal “mouse”	Long-term	3.79	2.2	5
BBCH 30-39	Small omnivorous mammal “mouse”	Long-term	1.90	4.5	5

Tier 1 (Mammals - risk from plant metabolite CCPP)*

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Early (shoots)	Large herbivorous mammal “lagomorph”	Acute	7.24	9.7	10
BBCH 10-29	Small omnivorous mammal “mouse”	Acute	2.96	23.8	10
BBCH 30-39	Small omnivorous mammal “mouse”	Acute	1.48	47.6	10
Early (shoots)	Large herbivorous mammal “lagomorph”	Long-term	2.03	0.42	5
BBCH 10-29	Small omnivorous mammal “mouse”	Long-term	0.71	1.2	5
BBCH 30-39	Small omnivorous mammal “mouse”	Long-term	0.36	2.4	5

Risk from bioaccumulation and food chain behaviour
Not required for mecoprop-P, data gap for o-cresol

Risk from consumption of contaminated water
Leaf scenario: Not required for representative crops

Puddle scenario, Screening step
Birds acute and long-term, mammals acute: Application rate (g a.s./ha)/relevant endpoint <50 (koc < 500 L/kg), TER calculation not needed

Puddle scenario, risk assessment

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Cereals	Small granivorous mammal	Long-term	0.56	15.1	5

*10 times parental toxicity assumed

Toxicity data for all aquatic tested species (Regulation (EU) N° 283/2013, Annex Part A, points 8.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.2)

Group	Test substance	Time-scale (Test type)	End point	Toxicity
Laboratory tests				
Fish				
S.gairdneri	a.s.	Acute 96 hr (static)	Mortality, LC50	171 mg a.s./L (nom)
L.macrophirus	a.s.	Acute 96 hr (static)	Mortality, LC50	>100 mg a.s./L (nom)
O.mykiss	a.s.	Acute 96 hr (static)	Mortality, LC50	>93 mg a.s./L (nom)
L.macrophirus	a.s.	Acute 96 hr (static)	Mortality, LC50	>93 mg a.s./L (nom)
O.mykiss	*Mecoprop-P K 600 g/L*	Acute 96 hr (static)	Mortality, LC50	>100 mg form./L (>58.7 mg a.s./L (nom))
Group	Test substance	Time-scale (Test type)	End point	Toxicity[^1]
---------------	----------------	------------------------	--------------------------------	--------------
O. mykiss	a.s.	Chronic (flow-through)	21-day adult NOEC	50 mg a.s./L (nom)
O. mykiss	a.s.	Chronic (flow-through)	89-day NOEC	11.1 mg a.s./L (mm)
Aquatic invertebrates				
D. magna	a.s.	48 h (static)	Mortality, EC₅₀	>91 mg a.s./L (mm)
D. magna	a.s.	48 h (static)	Mortality, EC₅₀	>100 mg a.s./L (nom)
D. magna	Mecoprop-P K 600 g/L	48 h (static)	Mortality, EC₅₀	>100 mg form./L (>58.7 mg a.s./L_(nom))
D. magna	Duplosan KV	48 h (static)	Mortality, EC₅₀	>1000 mg form./L (>600 mg a.s./L_(nom))
D. magna	Optica MP	48 h (static)	Mortality, EC₅₀	>272 mg form./L (>186 mg a.s./L_(nom))
D. magna	a.s.	21 d (semi-static)	Reproduction or development, NOEC	50 mg a.s./L (nom)
C. gigas	a.s.	36-hr (static)	Development EC₁₀	50.49 mg a.s./L (nom)
Sediment-dwelling organisms				
No data submitted				
Algae				
P. subcapitata	a.s.	72 h (static)	Growth rate: E_C50 \((E_C10) \) \[Biomass: E_BC₅₀ \((E_BC<sub>10) \) \]	>729 mg a.s./L (nom) 145 mg a.s./L 270 mg a.s./L (nom) 35 mg a.s./L
A. flos-aquae	a.s.	72 h (static)	Growth rate: E_C50 \((NOEC) \) \[Biomass: E_BC₅₀ \((NOEC) \) \]	23.9 mg a.s./L (mm) 7.21 mg a.s./L 16.2 mg a.s./L (mm) 7.21 mg a.s./L
N. pelliculosa	a.s.	72 h (static)	Growth rate: E_C50 \(E_C10 \) \(E_C20 \) \((NOEC) \) \[Biomass: E_BC₅₀ \(E_BC<sub>10 \) \(E_BC<sub>20 \) \((NOEC) \) \]	105 mg a.s./L (mm) 40.2 mg a.s./L 60.9 mg a.s./L 21.1 mg a.s./L 57.8 mg a.s./L (mm) 24.5 mg a.s./L 34.6 mg a.s./L 10.3 mg a.s./L
Group	Test substance	Time-scale (Test type)	End point	Toxicity¹
--------------	----------------	------------------------	---	-----------
S. costatum	a.s.	72 h (static)	Growth rate: E_{C50} E_{C10} E_{C20} (NOEC) [Biomass: E_{bC50} E_{bC10} E_{bC20} (NOEC)]	102 mg a.s./L (mm) 86 mg a.s./L 92 mg a.s./L 47 mg a.s./L 84 mg a.s./L (mm) 63 mg a.s./L 70 mg a.s./L 47 mg a.s./L
P. subcapitata	Mecoprop-P K 600 g/L	72 h (static)	Growth rate E_{C50} E_{C10} E_{C20} (NOEC) [Biomass E_{bC50} E_{bC10} E_{bC20} (NOEC)]	>100 mg form./L (>58.7 mg a.s./L) >100 mg form./L >100 mg form./L (>58.7 mg a.s./L) >100 mg form./L >100 mg form./L >100 mg form./L (>58.7 mg a.s./L) 19 mg form./L 38 mg form./L 12.5 mg form./L
Higher plant				
L. minor	a.s.	7 d (semi-static)	Fronds number E_{C50} E_{C10} E_{C20} (NOEC) AUC EC50 AUC NOEC Biomass, E_{bC50} Biomass, NOEC	>56 mg a.s./L (nom) 0.18 mg a.s./L 22.6 mg a.s./L (nom) 0.22 mg a.s./L 36.1 mg a.s./L (nom) 6.7 mg a.s./L
L. gibba	a.s.	14 d (semi-static)	Fronds number, EC50 (NOEC)	1.6 mg a.s./L (mm) <0.53 mg a.s./L
L. gibba	Mecoprop-P K 600 g/L	7 d (static)	Frond number, E_{C50} E_{C10} E_{C20} (NOEC) E_{bC50} E_{bC10} E_{bC20} (NOEC)	59 mg form./L (34.7 mg a.s./L) 1.9 mg form./L 6.2 mg form./L 1.0 mg prep./L 11 mg form./L (6.46 mg a.s./L) 0.61 mg form./L 1.6 mg form./L 0.32 mg form./L
Test results and conclusions

Group	Test substance	Time-scale (Test type)	End point	Toxicity\(^1\)
M. spicatum	Mecoprop-P K 600 g/L	14 d (static)	Shoot length, ErC\(_{50}\)	56.1 µg form./L (26.9 µg a.s./L (nom))
			ErC\(_{10}\) (NOEC)	3.12 µg form./L
			Shoot length, ErC\(_{50}\)	19.15 µg form./L
			ErC\(_{10}\) (NOEC)	19.6 µg form./L (9.41 µg a.s./L (nom))
			Biomass (dry wt.), ErC\(_{50}\)	1.15 µg form./L
			ErC\(_{10}\) (NOEC)	1.91 µg form./L
			Biomass (wet wt.), ErC\(_{50}\)	<10 µg form./L
			ErC\(_{10}\) (NOEC)	<10 µg form./L

Further testing on aquatic organisms

No Further data submitted

Potential endocrine disrupting properties (Annex Part A, point 8.2.3)

With regard to the endocrine disruption potential, as discussed in Section 2, it is unlikely that mecoprop-P is an endocrine disruptor in mammals, however, no firm conclusion can be drawn regarding fish and birds.

\(^1\) (nom) nominal concentration; (mm) mean measured concentration; prep.: preparation; a.s.: active substance
Bioconcentration in fish (Annex Part A, point 8.2.2.3)

	Active substance	o-cresol
logP_{O/W}	-0.19	Data gap
Steady-state bioconcentration factor (BCF) (total wet weight)	3.0	-
Uptake/depuration kinetics BCF (total wet weight/normalised to 5% lipid content)	-	-
Annex VI Trigger for the bioconcentration factor	-	-
Clearance time (days) (CT₅₀)	ca 1	-
(CT₉₀)	-	-
Level and nature of residues (%) in organisms after the 14 day depuration phase	-	-
Higher tier study		
No further data submitted		
Toxicity/exposure ratios for the most sensitive aquatic organisms (Regulation (EU) No 284/2013, Annex Part A, point 10.2)

FOCUS_{sw} step 1-3 - TERs for Mecoprop-P – Spring cereals at 1200 g a.s./ha x 1

Scenario	PEC global max (µg L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	Higher plant	Higher plant
		O.mykiss	O.mykiss	D.magna	D.magna	A.flos-aquae	L.gibba	M.spicatum***
		LC₅₀	NOEC	EC₅₀	NOEC	ErC50	EC₅₀	ErC50
	>93 000 µg/L	11 100 µg/L	>91 000 µg/L	50 000-µg/L	23900 µg/L	1600 µg/L	26.9 µg/L	

		FOCUS Step 1	FOCUS Step 2	FOCUS Step 3[*]	Trigger**
		400.14	56.47	13.363	100
		232	28	8.276	10
		28	227	7.599	10
		125	50	0.263	100
		60	23900 µg/L	6.304	10
		4.0	28	0.262	10
		0.07	0.48	102.3	10
				102.7	10
				102.3	10
				102.7	10
				32.316	10

[*]Only scenarios where the trigger is not met at FOCUS_{sw} step 1-2 should be included in step 3.

^{**}If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.

^{***}study with representative product, endpoint expressed in terms of a.s. content
FOCUS\textsubscript{sw} Step 4 - TERs for Mecoprop-P – Spring cereals at 1200 g a.s./ha x 1

Organisms	M. spicatum
Toxicity endpoint:	26.9 µg/L

Mitigation options	(m) non-spray buffer zone (corresponding to ≤ 95 % drift reduction)	(m) vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	PEC\textsubscript{sw} (µg/L)	TER	Trigger
FOCUS Step 4					
D1 (Ditch)	5	5	13.36	**2.0**	10
D1 (Stream)	5	5	8.28	**3.2**	10
D3 (Ditch)	5	5	2.06	13.1	10
D4 (Pond)	5	5	0.26	103.5	10
D4 (Stream)	5	5	2.33	11.5	10
D5 (Pond)	5	5	0.26	103.5	10
D5 (Stream)	5	5	2.19	12.3	10
R4 (Stream)	5	5	1.84	14.6	10
FOCUS\textsubscript{sw} step 1-3 - TERs for Mecoprop-P – Winter cereals at 1200 g a.s./ha x 1

Scenario	PEC global max (µg L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	Higher plant	Higher plant
	O. mykiss	O. mykiss	D. magna	D. magna	N. pelliculosa	L. gibba	M. spicatum***	
	LC\textsubscript{50}	NOEC	EC\textsubscript{50}	NOEC	ErC\textsubscript{50}	EC\textsubscript{50}	ErC\textsubscript{50}	
	>93 000 µg/L	11 100 µg/L	>91 000 µg/L	50 000 µg/L	23900 µg/L	1600 µg/L	26.9 µg/L	

FOCUS Step 1

| | 400.14 | 232 | 28 | 227 | 125 | 60 | 4.0 | 0.07 |

FOCUS Step 2

	45.01	36	0.60
North Europe			
South Europe	79.39	20	0.34

FOCUS Step 3

	158.372	0.2
D1 ditch	98.801	0.3
D2 ditch	184.278	0.1
D2 stream	116.438	0.2
D3 ditch	7.583	3.5
D4 pond	0.263	102.3
D4 stream	6.187	4.3
D5 pond	0.262	102.7
D5 stream	5.978	4.5
D6 ditch	8.127	3.3
R1 pond	0.662	40.6
R1 stream	19.599	1.4
FOCUS\textsubscript{sw} step 4 - TERs for Mecoprop-P – Winter cereals at 1200 g a.s./ha x 1

Organisms	M. spicatum
Toxicity endpoint:	29.7 µg/L

Mitigation options	(m) non-spray buffer zone	(m) vegetated buffer strip	PEC\textsubscript{sw} (µg/L)	TER	Trigger
	(corresponding to ≤ 95 % drift reduction)	(corresponding to ≤ 90 % run-off reduction)			
FOCUS Step 4					
D1 (Ditch)	5	5	158.37	0.17	10
D1 (Stream)	5	5	98.80	0.27	10
D2 (Ditch)	5	5	184.28	0.15	10
D2 (Stream)	5	5	116.44	0.23	10
D3 (Ditch)	5	5	2.06	13.06	10
D4 (Pond)	5	5	0.27	99.63	10
D4 (Stream)	5	5	2.31	11.65	10
D5 (Pond)	5	5	0.27	99.63	10
D5 (Stream)	5	5	2.21	12.17	10
D6 (Ditch)	5	5	2.59	10.39	10
R1 (Pond)	5	5	0.27	99.63	10
R1 (Stream)	5	5	1.84	14.62	10
R3 (Stream)	5	5	2.57	10.47	10
R4 (Stream)	5	5	1.83	14.70	10

Only scenarios where the trigger is not met at FOCUS\textsubscript{sw} step 1-2 should be included in step 3.

If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.

Study with representative product, endpoint expressed in terms of a.s. content
FOCUS$_{sw}$ step 1 - TERs for metabolite O-cresol* – Spring and winter cereals at 1200 g a.s./ha x 1

Scenario	PEC global max (µg L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	Higher plant	
		O. mykiss	O. mykiss	D. magna	D. magna	N. pelliculosa		M. spicatum
		LC$_{50}$	NOEC	EC$_{50}$	NOEC	EC$_{50}$	EC$_{50}$	
		9300 µg/L	1110µg/L	9100µg/L	5000µg/L	2390µg/L	2.69 µg/L	
FOCUS Step 1	1.68	-5536	661	5417	2976	1423	**1.6**	

*Assumed to be 10 times more toxic than the parent compound.
Effects on bees (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.1 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.1)

Species	Test substance	Time scale/type of endpoint	End point	toxicity
A. mellifera a.s.		Acute	48 hr Oral toxicity (LD_{50})	>83 µg/bee
A. mellifera	MCPP-P DMA formulated as water soluble concentrate liquid (SL)	Acute	48 hr Contact toxicity (LD_{50})	> 83 µg a.s./bee
A. mellifera	Mecoprop-P K 600 g/L	Chronic	10 d oral LC_{50}	2.751 g a.s./kg food
			10 d oral LDD_{50}	89.3 µg a.s./bee/day
			10 d NOEC	< 0.321 g a.s./kg food**
			10 d NOED	< 10.9 µg a.s./bee/day**
A. mellifera	a.s.	Acute (larval)*	7 d LD_{50}	89.4 µg/bee
			7 d LD_{50}	43.7 µg/bee
			7 d NOED	49.6 µg/bee
A. mellifera	Mecoprop-P K 600 g/L	Field study (brood development)	27 d brood effects	No adverse effects at 0.15 g a.s./hive
				No statistically significant effects at 3.75 g a.s./hive

*Single dose test type
** statistically significant reduction in the acini diameter between all the test item groups and the control group, therefore, a NOED could not be derived

Risk assessment for – Winter and spring cereals at 1200 g a.s./ha x 1

Species	Test substance	Risk quotient	HQ	Trigger
A. mellifera a.s.		HQcontact	<14.5	50
A. mellifera a.s.		HQoral	<14.5	50

Effects on other arthropod species (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.2)

Laboratory tests with standard sensitive species

Species	Test Substance	End point	Toxicity
Typhlodromus pyri	Mecoprop-P K 600 g/L	Mortality, LR_{50}	>1468 g a.s./ha
		Reproduction	28.1% effects at 1468 g a.s./ha
Aphidius rhopalosiphi	Mecoprop-P K 600 g/L	Mortality, LR_{50}	447.6 g a.s./ha
		Reproduction	-9.5% effects at 293.7 g a.s./ha
Additional species		Artificial substrate:	Not reported
Aleochara bilineata	Optica MPK	Mortality	2.8% effects at 1064 g a.s./ha
First tier risk assessment for - Winter and spring cereals at 1200 g a.s./ha x 1

Test substance	Species	Effect (LR$_{50}$ g/ha)	HQ in-field	HQ off-field1 (1m)	Trigger
Mecoprop-P K 600 g/L	Typhlodromus pyri	>1468	<0.82	<0.03	2
Mecoprop-P K 600 g/L	Aphidius rhopalosiphi	447.6	2.7	0.07	2

1indicate distance assumed to calculate the drift rate

Extended laboratory tests, aged residue tests

Species	Life stage	Test substance, substrate	Time scale	Dose (g a.s./ha)1,2	End point(s)	% effect3	ER$_{50}$
A.rhopalosiphi	Adult	Mecoprop-P K 600 g/L 3D natural substrate	48 hr exposure	Initial residues 1457	Mortality, reproduction	13.3% 4.6%	-
C.carnea	Larvae	Mecoprop-P K 600 g/L 2D natural substrate	Larval phase exposure	Initial residues 1457	Mortality, reproduction	2.8% -4.5%	-
A.rhopalosiphi	Adult	BAS 037 29 H 3D natural substrate	48 hr exposure	Initial residues 1800	Mortality, reproduction	0% 7.7%	-

1indicate whether initial or aged residues
2 for preparations indicate whether dose is expressed in units of a.s. or preparation
3positive percentages relate to adverse effects

First tier risk assessment for - Winter and spring cereals at 1200 g a.s./ha x 1 based on extended lab test or aged residue tests

Species	50% effects (g a.s./ha)	In-field rate (g a.s./ha)	Off-field rate3 (g a.s./ha)
A.rhopalosiphi	>1457	1200	332.4 (1m distance, 3D)
C.carnea	>1457	1200	33.24 (1m distance, 2D)
A.rhopalosiphi	>1800	1200	332.4 (1m distance, 3D)
A.bilineata	>1064*	1200	33.24 (1m distance, 2D)

3indicate distance assumed to calculate the drift rate if 3D or 2D.
*Low in-field risk concluded due to low level of effects at limit rate tested.

Semi-field tests
No data submitted

Field studies
No data submitted

Additional specific test
No data submitted
Effects on non-target soil meso- and macro fauna; effects on soil nitrogen transformation (Regulation (EU) N° 283/2013, Annex Part A, points 8.4, 8.5, and Regulation (EU) N° 284/2013 Annex Part A, points 10.4, 10.5)

Test organism	Test substance	Application method of test a.s./OM	Time scale	End point	Toxicity (mg a.s./kg soil dry wt.)
Earthworms					
E. fetida	a.s.	Soil incorporation (10% OM)	Chronic	Growth, reproduction, behaviour	EC_{10} 9.0 EC_{20} 26.4 NOEC 10.8
Other soil macro-organisms					
Folsomia candida	Mecoprop-P K 600 g/L	Soil incorporation (5% OM)	Chronic	Mortality, reproduction	EC_{10} 44.0 EC_{20} 68.6 NOEC 52.9
Hypoaspis aculeifer	Mecoprop-P K 600 g/L	Soil incorporation (5% OM)	Chronic	Mortality, reproduction	EC_{10} >1000 EC_{20} >1000 NOEC 1000
Soil micro-organisms					
Nitrogen mineralisation	Mecoprop-P K 600 g/L	Soil incorporation (field soil)	28-days	Treatment causing <25% deviation from control:	8.98

1 To indicate whether the test substance was oversprayed/to indicate the organic content of the test soil (e.g. 5 % or 10 %).

Higher tier testing (e.g. modelling or field studies): No data submitted

Nitrogen transformation | No valid data submitted

Toxicity/exposure ratios for soil organisms

Winter and spring cereals at 1200 g a.s./ha x 1

Test organism	Test substance	Time scale	Soil PEC	TER	Trigger
Earthworms					
E. fetida	a.s.	Chronic	1.600	6.8	5
			5.5	5	5
Other soil macroorganisms					
Folsomia candida	Mecoprop-P K 600 g/L	Chronic	1.600	33	5
				28	5
Hypoaspis aculeifer	Mecoprop-P K 600 g/L	Chronic	1.600	625	5
				>625	5

1 maximum initial PEC soil was used
2 Utilising study NOEC
3 Utilising study EC_{10}

Effects on terrestrial non target higher plants (Regulation (EU) N° 283/2013, Annex Part A, point 8.6 and Regulation (EU) N° 284/2013 Annex Part A, point 10.6)

Screening data

Not required for herbicides or plant growth regulators as ER_{50} tests should be provided

Laboratory dose response tests
Peer review of the pesticide risk assessment of the active substance mecoprop-P

Species	**Test substance**	**ER$_{50}$ (g a.s./ha)2**	**ER$_{50}$ (g a.s./ha)2 emergence**	**Exposure1 (g a.s./ha)2**	**TER**	**Trigger**
Brassica napus (oilseed rape) | Mecoprop-P K 600 g/L | - | 19.2 | 33.2 (1m) 6.84 (5m) 3.48 (10m) | **0.58** 2.80 5.52 | 5 |
Cucumis stativa (cucumber) | Mecoprop-P K 600 g/L | 19.9 | - | 33.2 (1m) 6.84 (5m) 3.48 (10m) | **0.60** 2.91 5.72 | 5 |
11 distinct species | Mecoprop-P K 600 g/L | Median HC$_S$ = 23.4 | - | 33.2 (1m) 6.84 (5m) | **0.7** 3.4 | 1 |
9 distinct species | Mecoprop-P K 600 g/L | - | Median HC$_S$ = 16.6 | 33.2 (1m) 6.84 (5m) | **0.5** 2.4 | 1 |

Extended laboratory studies: No data submitted
Semi-field and field test: No valid data submitted

1 Exposure has been estimated based on Ganzelmeier drift data
2 For preparations indicate whether dose is expressed in units of a.s. or preparation

Effects on biological methods for sewage treatment (Regulation (EU) N° 283/2013, Annex Part A, point 8.8)

Test type/organism	end point
Activated sludge | EC$_{50}$ = 319 mg a.s./L |

Monitoring data (Regulation (EU) N° 283/2013, Annex Part A, point 8.9 and Regulation (EU) N° 284/2013, Annex Part A, point 10.8)

Available monitoring data concerning adverse effect of the a.s.
Available monitoring data concerning effect of the PPP.

Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2) Ecotoxicologically relevant compounds1

Compartment	Mecoprop-P
soil | Mecoprop-P |
water | Mecoprop-P |
sediment | Mecoprop-P |
groundwater | Mecoprop-P |

1 Metabolites are considered relevant when, based on the risk assessment, they pose a risk comparable or higher than the parent

Classification and labelling with regard to ecotoxicological data (Regulation (EU) N° 283/2013, Annex Part A, Section 10)

Substance	Mecoprop-P
Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]13:

Peer review proposal14 for harmonised classification according to Regulation (EC) No 1272/2008:

Aquatic Chronic 2 H411
The lowest relevant LC/EC50 value used in support of the active substance is the ErC50 from testing with the aquatic plant *Myriophyllum spicatum*. The ErC50 is 0.0269 mg a.s./L. This is lower than the trigger for acute classification of 1.0 mg/L, meaning that the classification Acute category 1 (H400) - 'Very toxic to aquatic life' is triggered. The related acute M-factor is 10. In addition, the lowest NOEC value, also from the above study, is 0.00937 mg a.s./L (growth rate inhibition). According to the environmental fate data the active substance is classified as readily biodegradable. As this lowest NOEC is less than 0.01 mg a.s./L and the substance is readily biodegradable the classification Chronic category 1 (H410) 'very toxic to aquatic life with long lasting effects' is triggered. The related chronic M-factor is 1.

13 Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

14 It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008.
Abbreviations

1/n slope of Freundlich isotherm
λ wavelength
ε decadic molar extinction coefficient
a.s. active substance
AChE acetylcholinesterase
ADE actual dermal exposure
ADI acceptable daily intake
AF assessment factor
AAOEL acute acceptable operator exposure level
AOEL acceptable operator exposure level
AP alkaline phosphatase
AR applied radioactivity
ARfD acute reference dose
AST aspartate aminotransferase (SGOT)
AUC area under the blood concentration/time curve
AV avoidance factor
BCF bioconcentration factor
BUN blood urea nitrogen
bw body weight
CAS Chemical Abstracts Service
CFU colony-forming units
ChE cholinesterase
CI confidence interval
CIPAC Collaborative International Pesticides Analytical Council Limited
CL confidence limits
Cmax concentration achieved at peak blood level
DAA days after application
DAT days after treatment
DDD daily dietary dose
DM dry matter
DT_{50} period required for 50% dissipation (define method of estimation)
DT_{90} period required for 90% dissipation (define method of estimation)
dw dry weight
EbC_{50} effective concentration (biomass)
EC_{50} effective concentration
ECHA European Chemicals Agency
EEC European Economic Community
EMDI | estimated maximum daily intake
ER₅₀ | emergence rate/effective rate, median
ErC₅₀ | effective concentration (growth rate)
ETR | exposure toxicity ratio
ETR_{acute} | exposure toxicity ratio for acute exposure
ETR_{larvae} | exposure toxicity ratio for chronic exposure
ETR_{larvae} | exposure toxicity ratio for larvae
ETR_{HPG} | exposure toxicity ratio for effects on honeybee hypopharyngeal glands
EU | European Union
EUROPOEM | European Predictive Operator Exposure Model
f(twa) | Time-weighted average factor
FAO | Food and Agriculture Organization of the United Nations
FID | flame ionisation detector
FIR | food intake rate
FOB | functional observation battery
FOCUS | Forum for the Co-ordination of Pesticide Fate Models and their Use
GAP | Good Agricultural Practice
GC | gas chromatography
GCPF | Global Crop Protection Federation (formerly known as International Group of National Associations of Manufacturers of Agrochemical Products; GIFAP)
GGT | gamma glutamyl transferase
GM | geometric mean
GS | growth stage
GSH | glutathione
Hb | haemoglobin
Hct | haematocrit
HPLC | high-pressure liquid chromatography
HPLC-MS | high-pressure liquid chromatography–mass spectrometry
HPG | hypopharyngeal glands
HQ | hazard quotient
HQ_{contact} | hazard quotient for contact exposure
HR | hazard rate
IEDI | international estimated daily intake
IESTI | international estimated short-term intake
ISO | International Organization for Standardization
IUPAC | International Union of Pure and Applied Chemistry
iv | intravenous
JMPR | Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Expert Group on Pesticide Residues (Joint Meeting on
Pesticide Residues)

K_{soc}: organic carbon linear adsorption coefficient

K_{Foc}: Freundlich organic carbon adsorption coefficient

LC: liquid chromatography

LC_{50}: lethal concentration, median

LC-MS: liquid chromatography–mass spectrometry

LC-MS-MS: liquid chromatography with tandem mass spectrometry

LD_{50}: lethal dose, median; dosis letalis media

LDD_{50}: lethal dietary dose; median

LDH: lactate dehydrogenase

LOAEL: lowest observable adverse effect level

LOD: limit of detection

LOQ: limit of quantification

M/L: mixing and loading

MAF: multiple application factor

MCH: mean corpuscular haemoglobin

MCHC: mean corpuscular haemoglobin concentration

MCV: mean corpuscular volume

mm: millimetre (also used for mean measured concentrations)

mN: milli-newton

MRL: maximum residue level

MS: mass spectrometry

MSDS: material safety data sheet

MTD: maximum tolerated dose

MWHC: maximum water-holding capacity

NESTI: national estimated short-term intake

NOAEC: no observed adverse effect concentration

NOAEL: no observed adverse effect level

NOEC: no observed effect concentration

NOEL: no observed effect level

NPD: nitrogen–phosphorus detector

OECD: Organisation for Economic Co-operation and Development

OM: organic matter content

Pa: pascal

PD: proportion of different food types

PEC: predicted environmental concentration

PEC$_{air}$: predicted environmental concentration in air

PEC$_{gw}$: predicted environmental concentration in groundwater
W/S water/sediment
w/v weight per unit volume
w/w weight per unit weight
WBC white blood cell
WG water-dispersible granule
WHO World Health Organization