A FAKE SMOOTH $\mathbb{C}P^2\#\mathbb{R}P^4$

DANIEL RUBERMAN AND RONALD J. STERN

ABSTRACT. We show that the manifold $\ast\mathbb{R}P^4\#\ast\mathbb{C}P^2$, which is homotopy equivalent but not homeomorphic to $\mathbb{R}P^4\#\mathbb{C}P^2$, is in fact smoothable.

1. INTRODUCTION

In Kirby’s problem list [Kir97, Problem 4.82] and in a recent lecture at MSRI, P. Teichner raised the question of the smoothability of a certain non-orientable 4-manifold. In this note we show that the manifold in question, denoted $\ast\mathbb{R}P^4\#\ast\mathbb{C}P^2$, which is homotopy equivalent but not homeomorphic to $\mathbb{R}P^4\#\mathbb{C}P^2$, is in fact smoothable. The smooth model we construct will have the additional property that its universal cover is diffeomorphic to $\mathbb{C}P^2\#\overline{\mathbb{C}P^2}$. To describe the manifold in question, we remind the reader that one of the first consequences of Freedman’s simply-connected surgery theory was a construction of a manifold $\ast\mathbb{C}P^2$, sometimes called CH in honor of Chern, which is homotopy equivalent but not homeomorphic to $\mathbb{C}P^2$. The manifold $\ast\mathbb{C}P^2$ is not smoothable for classical reasons: it has non-trivial Kirby-Siebenmann invariant $KS \in \mathbb{Z}_2$. Given any simply-connected non-spin manifold M, a similar construction produces a homotopy equivalent ‘\ast-partner’ $\ast M$ with opposite Kirby-Siebenmann invariant [Teich96]. In 1983, the first author [Rub84] constructed what is in effect the \ast-partner of $\mathbb{R}P^3$. The connected sum $\ast\mathbb{C}P^2\#\ast\mathbb{R}P^4$ has trivial KS-invariant and so might expected to be smoothable; on the other hand [HKT94] it is not homeomorphic to $\mathbb{C}P^2\#\mathbb{R}P^4$.

Theorem 1. The manifold $\ast\mathbb{C}P^2\#\ast\mathbb{R}P^4$ has a smooth structure. Moreover, it has a smooth structure such that its universal cover is diffeomorphic to $\mathbb{C}P^2\#\overline{\mathbb{C}P^2}$.

The classification [HKT94] of non-orientable manifolds with $\pi_1 = \mathbb{Z}_2$ implies that such manifolds which have $b_2 > 1$ are smoothable if and only if their Kirby-Siebenmann invariant vanishes. Together with theorem 1 this yields:

Corollary 2. Let X be a closed non-orientable 4-manifold with $\pi_1(X) = \mathbb{Z}_2$. Then X has a smooth structure if and only if $KS(X) = 0$.

2. CONSTRUCTION OF THE MANIFOLD

The proof of Theorem 1 is constructive; we will find a smooth manifold homeomorphic to $\ast\mathbb{C}P^2\#\ast\mathbb{R}P^4$. The construction uses a homology sphere satisfying the conclusion of the following lemma, whose proof will be given in the next section.

The first author was partially supported NSF Grant DMS9650266 and the second author by NSF Grant DMS9626330.
Lemma 2.1. There is a homology 3–sphere Σ^3 with the following properties.

(i) Σ is obtained by ± 1 surgery on a knot K in S^3.
(ii) The Rohlin invariant $\mu(\Sigma) = 1 \pmod 2$.
(iii) Σ admits a free, orientation preserving involution τ, which is isotopic to the identity.

Different Σ’s could in principle give rise to different smooth structures on $\ast \mathbb{CP}^2 \# \ast \mathbb{RP}^4$, but we know of no way to tell them apart. The situation is quite analogous to that for the fake \mathbb{RP}^4’s constructed in [FS81].

Proof of Theorem 1. Let Σ be a homology 3–sphere as described in the lemma; choose an orientation on Σ so that it becomes surgery on a knot with coefficient $= +1$. Items (i) and (ii) are the ingredients in Freedman’s construction [Fre82] of $\ast \mathbb{CP}^2$. That is, let Y be the result of adding a 2–handle to B^4 along K, with framing 1, then $\partial Y = \Sigma$ and $\ast \mathbb{CP}^2 = Y \cup_{\Sigma} \Delta^4$ where Δ^4 is a contractible 4-manifold with boundary $-\Sigma$. (The sign of the framing is not really important, for the difference between $\ast \mathbb{CP}^2$ and $\ast \mathbb{RP}^4$ will disappear when we connect sum with $\ast \mathbb{RP}^4$.) The non-trivial μ-invariant is readily identified with the Kirby-Siebenmann invariant of $\ast \mathbb{CP}^2$.

Now items (ii) and (iii) are exactly the ingredients for the construction of $\ast \mathbb{RP}^4$ given in [Rub84], i.e.

$$\ast \mathbb{RP}^4 = \Delta^4/(x \in \Sigma \sim \tau(x)) = (\Sigma/\tau \times I) \cup_{\Sigma} \Delta^4$$

(The authors of [HKT94] seem to have been unaware of this earlier construction of $\ast \mathbb{RP}^4$; compare the discussion in [Kir97, Problem 4.74].)

Let X be the smooth manifold obtained as the union of Y and the mapping cylinder of the orbit map of the free involution τ on Σ, i.e.

$$X = Y \cup_{\Sigma} (\Sigma/\tau \times I) = Y/(x \in \Sigma \sim \tau(x)).$$

Then X is manifestly smooth, and we claim that it is homeomorphic to $\ast \mathbb{CP}^2 \# \ast \mathbb{RP}^4$. This seems quite plausible, for the construction amounts to performing a sort of connected sum, where instead of removing disks and gluing, we remove the ‘pseudo-disc’ Δ^4 and glue up. Unfortunately, we do not know an elementary proof, and must appeal to the homeomorphism classification theorem of [HKT94].

According to that work, the manifold $\ast \mathbb{CP}^2 \# \ast \mathbb{RP}^4$ is distinguished among non-orientable manifolds with $\pi_1 = \mathbb{Z}_2$ by having $b_2 = 1$, trivial Kirby-Siebenmann invariant, and by a codimension-2 Pinc Arf-invariant. (The other possible manifolds, up to homeomorphism, with the same homology are $\mathbb{CP}^2 \# \mathbb{RP}^4$, $\ast \mathbb{CP}^2 \# \ast \mathbb{RP}^4$, and $\mathbb{CP}^2 \# \ast \mathbb{RP}^4$.) The Arf-invariant, whose value for $\ast \mathbb{CP}^2 \# \ast \mathbb{RP}^4$ is $\pm 3 \pmod 8$, is that of a surface pulled back from \mathbb{CP}^N via a map $\varphi : X \to \mathbb{CP}^{N+1}$ which classifies c_Φ of the (primitive) Pinc structure Φ.

A (topological) Spinc structure on $\ast \mathbb{CP}^2$ also determines such a map, say φ'; it is easy to see that (in terms of the decomposition of $\ast \mathbb{CP}^2$ given above) that φ' can be taken to be smooth on Y, and constant on Δ^4. To be more concrete, the dual surface F could be taken as a Seifert surface of K, capped off in the 2-handle. The Arf invariant of F (in $\ast \mathbb{CP}^2$)
is 4 (mod 8), as can be seen from this description of F, or by using Rohlin’s theorem as in [IKT94].

The Pin-c structure on $\ast \mathbb{RP}^4$ has for its characteristic class the non-trivial class in $H^2(\ast \mathbb{RP}^4; \mathbb{Z})$. This class is ‘dual’ to a surface in $\ast \mathbb{RP}^4$ which again may be assumed to lie in $\ast \mathbb{RP}^4 - \Delta^4$. By the homotopy invariance of the Arf-invariant for Pin- structures, $\text{Arf}(\ast \mathbb{RP}^4) \equiv \text{Arf}(\mathbb{RP}^4) \equiv \pm 1 \pmod{8}$. There is a unique Pin-c structure on Σ, so the Pin-c structures on $\ast \mathbb{RP}^4 - \Delta^4$ and $\ast \mathbb{CP}^2 - \Delta^4$ glue up to give a Pin-c structure Φ_X on X. The characteristic class c_{Φ_X} is clearly dual to the disjoint union of surfaces lying in the two pieces of X, so the Arf invariant is $\pm 4 \equiv \pm 3 \pmod{8}$, just as for $\ast \mathbb{CP}^2 \# \ast \mathbb{RP}^4$. Since X is smooth, its Kirby-Siebenmann invariant is trivial, and so X is homeomorphic to $\ast \mathbb{CP}^2 \# \ast \mathbb{RP}^4$.

The additional remark about the universal cover of X being standard may be seen as follows (cf. [FS81]). By the construction of X, its cover $\tilde{X} \cong Y \cup \tau \tilde{Y} \cong Y \cup Y$ since τ is isotopic to the identity. On the other hand, $Y \cup \tilde{Y}$ is obtained by adding two 2-handles to B^4, together with a 4-handle. The first is added along K, with framing 1, and the second is added along a meridian of K, with framing 0. (This is a standard argument in handle theory, see for example [Kir89].) It is then easy to unknot K, by repeatedly sliding over the 0-framed handle, resulting in a standard picture of $\mathbb{CP}^2 \# \overline{\mathbb{CP}^2}$.

\square

3. Proof of Lemma 2.1

In this section, we give two examples of homology spheres satisfying the conclusions of Lemma 2.1. Both examples are Brieskorn spheres, i.e. Seifert-fibered homology spheres of the form $\Sigma(p, q, r)$, where p, q, and r are relatively prime odd numbers. The involution τ is nothing more than multiplication by $-1 \in S^1$ in the natural circle action on $\Sigma(p, q, r)$. The condition that the numbers p, q, and r be odd guarantees that τ is free; since -1 is contained in a circle, the involution is isotopic to the identity.

There are many Brieskorn spheres which are integral surgery on a knot—for some examples see [KT90, MM97] or adapt the technique of [CH81]. For most of these constructions one of the indices turns out to be even. One construction is given below, where it is shown that adding a handle (along the curve denoted γ) to the Brieskorn sphere $\Sigma(5, 9, 13)$ yields S^3. Turning the picture upside down shows that $\Sigma(5, 9, 13)$ is integral surgery on a knot in S^3. As remarked in the proof of Theorem 1, it doesn’t matter whether the coefficient is positive or negative. Again, the μ-invariant is 1 (from the picture just after blowing down the first -1 curve), so this example proves the lemma.

Another construction from the literature which provides Seifert fibered spaces is $rs(p + q)^2 + pq$ surgery on the knot denoted $K_{p,q}(r, s)$ in the recent paper [MM97, §9]. Choosing $p = -13$, $q = 23$, $r = 3$, and $s = 1$ gives the homology sphere $\Sigma(3, 13, 23)$ as $+1$ surgery on a hyperbolic knot. Since $\mu(\Sigma(3, 13, 23)) = 1$, this manifold gives an example which yields the proof of Lemma 2.1. This is the only example of a μ-invariant 1 homology sphere constructible by this method found by a moderately long computer search. It is possible to give a Kirby-calculus proof that $\Sigma(3, 13, 23)$ is surgery on a knot similar to the one for $\Sigma(5, 9, 13)$: aficionados of the subject may wish to check if the knot is the same as the one in the knot from the paper [MM97].
\[\Sigma(5,9,13) = -\frac{5}{2} -1 -\frac{13}{2} = -2 -3 -1 -7 -2 \]
\[-\frac{9}{4} \]

\[\partial \approx \]
blow down -1

\[\partial \approx \]
blow down \(\gamma \)

Add (-1) framed 2-handle to \(\gamma \)

\[\partial \approx \]
blow down \(\gamma \)

\[\approx -2 -0 \approx S^3 \]

References

[CH81] A. Casson and J. Harer, Some homology lens spaces which bound rational homology balls, Pacific J. Math. 96 (1981), 23–36.

[Fre82] M. Freedman, The topology of four-dimensional manifolds, J. Diff. Geo. 17 (1982), 357–432.

[FS81] R. Fintushel and R. Stern, An exotic free involution on \(S^4 \), Annals of Math. 113 (1981), 357–365.

[HKT94] I. Hambleton, M. Kreck, and P. Teichner, Nonorientable 4-manifolds with fundamental group of order 2, Trans. A.M.S. 344 (1994), 649–665.

[Kir89] R.C. Kirby, Topology of 4-manifolds, Lecture Notes in Math., vol. 1374, Springer-Verlag, 1989.

[Kir97] R.C. Kirby, Problems in low-dimensional topology, Geometric Topology (W. Kazez, ed.), American Math. Soc./International Press, Providence, 1997.

[KT90] John Kalliongis and Chichen M. Tsau, Seifert fibered surgery manifolds of composite knots, Proc. Amer. Math. Soc. 108 (1990), 1047–1053.

[MM97] Katura Miyazaki and Kimihiko Motegi, Seifert fibred manifolds and Dehn surgery, Topology 36 (1997), 579–603.
[Rub84] D. Ruberman, *Equivariant knots of free involutions of S^4*, Top. Appl. 18 (1984), 217–224.

[Teich96] P. Teichner, *On the star-construction for topological 4-manifolds*, Geometric Topology (W. Kazez, ed.), American Math. Soc./International Press, Providence, 1997, 300–312.

DEPARTMENT OF MATHEMATICS, BRANDEIS UNIVERSITY
WALTHAM, MASSACHUSETTS 02254
E-mail address: ruberman@binah.cc.brandeis.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA
IRVINE, CALIFORNIA 92697
E-mail address: rstern@math.uci.edu