Metagenomes from Arctic Soil Microbial Communities from the Barrow Environmental Observatory, Utqiagvik, AK, USA

Neslihan Tas, Baptiste Dafflon, Craig Ulrich, Yuxin Wu, Susannah G. Tringe, Janet K. Jansson

Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, California, USA
Biosciences Area, Lawrence Berkeley National Laboratory, Berkeley, California, USA
Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA

ABSTRACT

Here, we report 36 active-layer and 17 permafrost metagenomes from Utqiagvik, AK, USA. Samples were collected from different topographical features and depths to study Arctic tundra microbiomes.

Increasing global temperatures are affecting Arctic ecosystems more than any other on the planet (1). With accelerated permafrost thaw, vast Arctic soil carbon stocks (2) are expected to become available for microbial decomposition (3) and result in a positive feedback loop. In this study, we investigated the active-layer (AL) soil and permafrost microbiomes from a coastal Arctic tundra location (4).

AL soils and permafrost were collected from the Next Generation Ecosystem Experiments—Arctic (NGEE-Arctic) research site located in the Barrow Environmental Observatory (BEO), Utqiagvik, AK, USA (4). The BEO landscape is dominated by different polygon types, representing a gradient of permafrost degradation (4, 5). The AL depth varies between 0.35 and 0.45 m (4). In total, 36 AL samples from organic and mineral layers of polygons were collected in two sampling trips in 2012 (Table 1). Presterilized PVC tubes of 3 cm diameter were inserted into soil incrementally (6), sampling the organic and mineral horizons separately. The soil horizons were visually confirmed; the samples were placed into Whirl-Pak (Madison, WI, USA) bags and flash frozen in liquid nitrogen in the field. The samples were transported to the laboratory in a liquid nitrogen dewar and then stored at −80°C. DNA was extracted as previously described (4).

Permafrost cores were collected with a SIPRE soil corer between 2012 and 2014 (7). The corer was augmented with a hydraulic-driven rotary coring platform (Big Beaver; Little Beaver, Inc.) or manually with a gas-powered motor on a 4-m tripod auger. After retrieval, the cores were packed with dry ice in coolers during transport and stored at −25°C in the laboratory. Each permafrost core was first sliced into subsections 10 cm long with a rotary saw in a −18°C room. Then, these subsections were further cut to remove potential surface contaminants via removing the outermost 2 cm using sterile blades on a sonic cutting tool (4). DNA was extracted via the PowerSoil DNA isolation kit (MOBIO, Carlsbad, CA, USA) using 2 g material (Table 1) and quantified using the Qubit double-stranded DNA (dsDNA) high-sensitivity (HS) assay (Invitrogen, Carlsbad, CA, USA).

Metagenomic sequencing was performed at the DOE Joint Genome Institute (JGI). AL soils were submitted for regular DNA library preparation and sequenced using the Illumina HiSeq 2000 platform (2 × 150 bp; Table 1). Permafrost samples were submitted for low-input DNA library preparation and sequenced using the Illumina HiSeq 2500 platform (2 × 150 bp; Table 1). BBDuk was used to remove known Illumina adapters, low-quality (>Q12) reads, spike-ins or phiX, and reads <51 bp long (8). De novo annotation of unassembled and SPAdes-assembled (9) sequences was done in JGI’s Integrated Microbial Genomes & Microbiomes (IMG/M) system (10). These data provide a resource to analyze microbial functions across topographical features and at different depths at a changing Arctic tundra site in order to understand and predict future climate trends and threads (11–13).
The Next Generation Ecosystem Experiments (NGEE-Arctic) project is supported by the Office of Biological and Environmental Research in the Department of Energy (DOE) Office of Science. Funding for this work was provided to N. Tag in part through the Early Career Researcher Program.

ACKNOWLEDGMENTS

The sequences were deposited at the National Center for Biotechnology Information (NCBI) database under the SRA accession numbers listed in Table 1. The sequences and annotations are available under JGI IMG/M proposal ID 1044. A summary of the scaffolds and genes can be found at https://doi.org/10.6084/m9.figshare.20164358.v1.

Data availability. The sequences were deposited at the National Center for Biotechnology Information (NCBI) database under the SRA accession numbers listed in Table 1. The sequences and annotations are available under JGI IMG/M proposal ID 1044. A summary of the scaffolds and genes can be found at https://doi.org/10.6084/m9.figshare.20164358.v1.
Announcement

Research program of the Office of Biological and Environmental Research in the DOE Office of Science. Pacific Northwest National Laboratory is a multiprogram national laboratory operated by Battelle for the DOE under contract number DE-AC06-76RL01830. The work (proposal, https://genome.jgi.doe.gov/portal/NexGenithearctic/NexGenithearctic.info.html; awarded to J.K. Jansson), conducted by the DOE JGI (https://ror.org/04xm1d337), a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. DOE and operated under contract number DE-AC02-05CH11231.

REFERENCES

1. Biskaborn BK, Smith SL, Noetzli J, Matthes H, Vieira G, Streletsky DA, Schoeneich P, Romanovsky VE, Lewkowicz AJ, Abramov A, Allard M, Boike J, Cable WL, Christiansen HH, Delaune R, Diekmann B, Drozdov D, Etzelmüller B, Grosse G, Guglielmin M, Ingeman-Nielsen T, Isaksen K, Ishikawa M, Johannsson M, Johannsson H, Joo A, Kaverin D, Kholodov A, Konstantinov P, Kröger T, Lambiel C, Lanckman JP, Luo D, Malkova G, Meiklejohn I, Oliva M, Phillips M, Ramos M, Sannel ABK, Skryabin P, Vasiliev A, Wu Q, Yoshikawa K, Zheleznyak M, Lantuit H. 2019. Permafrost is warming at a global scale. Nature Comm 10:264. https://doi.org/10.1038/s41467-018-08240-4.

2. Mishra U, Hugelius G, Shiek E, Yang Y, Strauss J, Lupachev A, Harden JW, Jastrow JD, Riley WJ, Schuur EAG, Matamala R, Siewert M, Nave LE, Koven CD, Fuchs M, Palmtag J, Treat CC, Zubrzycki S, Hoffman FM, Elberling B, Camill P, Veremeeva A, Orr A. 2021. Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks. Science 7:eaaz5236. https://doi.org/10.1126/sciadv.aaz5236.

3. Graham DE, Wallenstein MD, Vishnivetskaya TA, Waldrop MP, Phelps TJ, Pfiffner SM, Onstott TC, Whyte LG, Rivkina EM, Gilichinsky DA, Elias DA, Mackelprang R, VerBerkmoes NC, Hettich RL, Wagner D, Wullschleger SD, Jansson JK. 2012. Microbes in thawing permafrost: the unknown variable in the climate change equation. ISME J 6:709–712. https://doi.org/10.1038/ismej.2011.163.

4. Taş N, Prestat E, Wang S, Wu Y, Ulrich C, Kneafsey T, Tringe SG, Torn MS, Hubbard SS, Jansson JK. 2018. Landscape topography structures the soil microbiome in Arctic polygonal tundra. Nature Comm 9:777. https://doi.org/10.1038/s41467-018-03089-z.

5. Wainwright HM, Dafflon B, Smith LJ, Hahn MS, Curtis JB, Wu Y, Ulrich C, Peterson Jë, Torn MS, Hubbard SS. 2015. Identifying multiscale zonation and assessing the relative importance of polygon geomorphology on carbon fluxes in an Arctic tundra ecosystem. J Geophys Res Biogeosci 120:788–808. https://doi.org/10.1002/2014JG002799.

6. Hubbard SS, Ganggodagamage C, Dafflon B, Wainwright H, Peterson J, Guimerola A, Ulrich C, Wu Y, Wilson C, Rowland J, Tweedle C, Wullschleger SD. 2013. Quantifying and relating land-surface and subsurface variability in permafrost environments using LiDAR and surface geophysical datasets. Hydrogeol J 21:149–169. https://doi.org/10.1007/s10040-012-0939-y.

7. Wu Y, Ulrich C, Kneafsey T, Lopez R, Chou C, Geller J, McKnight D, Dafflon B, Soom F, Peterson J, Hubbard S. 2018. Depth-resolved physicochemical characteristics of active layer and permafrost soils in an Arctic polygonal tundra region. J Geophys Res Biogeosci 123:1366–1386. https://doi.org/10.1002/2018JG004413.

8. Bushnell B. 2014. BBMap: a fast, accurate, splice-aware aligner. Lawrence Berkeley National Lab, Berkeley, CA.

9. Nurk S, Meleshko D, Korobeinikov A, Pevzner PA. 2017. metaSPAdes: a new versatile metagenomic assembler. Genome Res 27:824–834. https://doi.org/10.1101/gr.213959.116.

10. Chen I-MA, Chu K, Palaniappan K, Ratner A, Huang J, Huntermann M, Hajek P, Ritter S, Varghese N, Seshadi R, Roux S, Woyke T, Elze-Fadrosh EA, Ivanova NN, Kyrpides NC. 2021. The IMG/M data management and analysis system v. 6.0: new tools and advanced capabilities. Nucleic Acids Res 49:D751–D763. https://doi.org/10.1093/nar/gkaa939.

11. Wu R, Trubl G, Taş N, Jansson JK. 2022. Permafrost as a potential pathogen reservoir. One Earth 5:351–360. https://doi.org/10.1016/j.oneear.2022.03.010.

12. Jansson JK, Taş N. 2014. The microbial ecology of permafrost. Nat Rev Microbiol 12:414–425. https://doi.org/10.1038/nrmicro3262.

13. Mackelprang R, Saleska SR, Jacobson CS, Jansson JK, Taş N. 2016. Permafrost meta-omics and climate change. Annu Rev Earth Planet Sci 44:439–462. https://doi.org/10.1146/annurev-earth-060614-105126.