Combined fibrinogen and neutrophil-lymphocyte ratio as a prognostic marker of advanced esophageal squamous cell carcinoma

Takashi Kijima,¹ Takaaki Arigami,¹,² Yasuto Uchikado,¹ Yoshikazu Uenosono,² Yoshiaki Kita,¹ Tetsuhiro Owaki,³ Shinichiro Mori,¹ Hiroshi Kurahara,¹ Yuko Kijima,¹ Hiroshi Okumura,¹ Kosei Maemura,¹ Sumiya Ishigami¹ and Shoji Natsugoe¹,²

¹Department of Digestive Surgery, Breast and Thyroid Surgery, Field of Oncology; ²Molecular Frontier Surgery; ³Education Center for Doctors in Remote Islands and Rural Areas, Course of Advanced Therapeutics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan

Key words
Drug response, esophageal squamous cell carcinoma, fibrinogen, neutrophils, prognosis

Correspondence
Takashi Kijima, Department of Digestive Surgery, Breast and Thyroid Surgery, Field of Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan.
Tel: +81-99-275-5361; Fax: +81-99-265-7426; E-mail: taka_msfs73@yahoo.co.jp

Funding Information
None.

Received June 18, 2016; Revised October 18, 2016; Accepted November 23, 2016

Cancer Sci 108 (2017) 193–199
doi: 10.1111/cas.13127

Patients with advanced esophageal squamous cell carcinoma (ESCC) is received chemoradiotherapy or chemotherapy for clinical management. However, it is difficult to predict tumor response and prognosis using blood markers before starting treatments. The purpose of this study was to investigate the pre-treatment plasma fibrinogen and neutrophil-lymphocyte ratio (NLR) in patients with advanced ESCC treated with chemoradiotherapy or chemotherapy, and to assess the clinical utility of a combined score using these blood markers, named as the F-NLR (fibrinogen and NLR) score, as a predictor of tumor response and prognosis. A total of 98 advanced ESCC patients, treated with chemoradiotherapy or chemotherapy, were classified into three groups: F-NLR score of 2, having both hyperfibrinogenemia (>400 mg/dL) and high NLR (>3.0), score of 1, one of these hematological abnormalities, and score of 0, having neither hyperfibrinogenemia nor high NLR. Fibrinogen and NLR were significantly higher in the progressive disease (PD) group than the non-PD group (P = 0.0140, and P = 0.0001, respectively). A significantly higher F-NLR score was found in the PD group than the non-PD group (P = 0.0140). Overall survival was significantly lower in patients with an F-NLR score of 2 than in those with an F-NLR score of 0 or 1 (P < 0.0001). Multivariate analysis showed that the F-NLR score was one of the independent prognostic factors (P = 0.0081). Our study demonstrates that the F-NLR score is promising as a predictive marker for therapeutic effects and prognosis in patients with advanced ESCC.

Esophageal cancer is one of the most aggressive carcinomas in many gastrointestinal tract cancers. Chemoradiotherapy has been recognized as an effective treatment for patients with esophageal cancer since the 1980s.¹,²,³ Ishida et al.⁴ reported that concurrent chemoradiotherapy using 5-fluorouracil and cisplatin along with radiation therapy was suitable for the clinical treatment of patients with unresectable advanced esophageal squamous cell carcinoma (ESCC) in Japan. However, since the recurrence rate of ESCC is high, the prognosis remains unsatisfactory.⁵ It is important to predict tumor response to chemoradiotherapy or chemotherapy and prognosis using several indicators before starting these treatments. To date, many investigators have demonstrated several potential blood markers for predicting disease recurrence after surgery, tumor response to chemoradiotherapy or chemotherapy, and prognosis in several malignancies including ESCC.⁶–¹³ The Glasgow Prognostic Score (GPS) consists of C-reactive protein (CRP) and serum albumin. Many investigators have reported the clinical impact of GPS as a predictive marker of prognosis in patients with various malignancies.¹⁴ Recently, the GPS was modified (mGPS) regarding cut-off values of CRP and albumin. The mGPS score has been introduced as a new predictive marker of disease outcomes.¹⁵,¹⁶ However, there are few useful predictive markers with the exception of GPS. We focused on the plasma fibrinogen and Neutrophil-Lymphocyte ratio (NLR) and reported the clinical usefulness of these combined markers in patients with surgery alone for ESCC.¹⁷ We have never assessed plasma fibrinogen and NLR in patients with advanced ESCC treated with chemoradiotherapy or chemotherapy. Fibrinogen is a pro-inflammatory protein produced in the liver via stimulation of interleukin (IL)-6 and IL-1β.¹⁸,¹⁹ Fibrinogen is transformed to fibrin by activated thrombin in the coagulation cascade, which plays an important role in the malignant process of tumor progression and metastasis.²⁰,²¹ Recent studies demonstrate that plasma fibrinogen levels are associated with tumor development in several types of malignancies.²²–²⁴ Similarly, NLR has been focused on as a prognostic factor in patients with many malignancies.⁹,²⁵–²⁷ Neutrophils promote tumor development and progression by providing an adequate tumor microenvironment via the production of cytokines and chemokines.²⁸ However, there have been no studies regarding a combined analysis based on plasma fibrinogen and NLR in patients...
with advanced ESCC treated with chemoradiotherapy or chemotherapy.

In this study, we investigated plasma fibrinogen, NLR, CRP, and albumin levels between responders and non-responders to chemoradiotherapy or chemotherapy in patients with advanced ESCC. Furthermore, we assessed the clinical utility of a combined score using cut-off values of fibrinogen and NLR (F-NLR score) as a predictor of tumor response and prognosis.

Materials and Methods

Patients. One hundred and nine patients with ESCC treated with chemoradiotherapy or chemotherapy at Kagoshima University Hospital between 2011 and 2014 were retrospectively analyzed. The exclusion criteria of this study were as follows: patients without detailed post-therapeutic information (n = 10) and patients with unknown fibrinogen concentrations (n = 1). Finally, 98 patients (86 men and 12 women; age range, 46–86 years; average, 64.9 years) with ESCC were enrolled in this study (Fig. 1). All patients were evaluated by blood examinations, esophagogastroduodenoscopy, fluoroscopy, endoscopic ultrasonography, and computed tomography (CT) before starting treatment. To date, we have demonstrated the clinical usefulness of endoscopic ultrasonography for predicting lymph node metastasis in patients with ESCC.29,30 According to these published reports, lymph nodes were classified into three grades (grade 1, grade 2, and grade 3). Lymph nodes with grade 2 or grade 3 were determined as a metastatic status in the present study. Patients were classified and staged based on the 7th International Union Against Cancer (UICC) criteria of tumor-node-metastasis (TNM) classification for esophageal carcinoma.31 Clinico-pathological features are shown in Table 1. In the present study, we defined advanced ESCC as a tumor status of clinical stage III or IV. The number of patients in clinical stage III and IV was 48 and 50, respectively. Among 50 patients with stage IV disease, distant lymph node metastases were identified in 36 patients. Eight and 28 patients had metastatic lesions in para-aortic lymph nodes and supraclavicular lymph nodes, respectively. Liver metastasis was found in seven patients, bone in five patients, and lung in two patients. In this study, resectable ESCC was defined as clinical stage III and T1–3 tumors (n = 31). Two therapeutic strategies were planned in resectable group. From 2011 to 2012, patients with ≥4 metastatic lymph nodes were treated with neoadjuvant chemoradiotherapy. From 2013, neoadjuvant chemotherapy or neoadjuvant chemoradiotherapy were selected based on randomized control trial. On the other hand, unresectable ESCC was defined as clinical stage IV or T4 tumors (n = 67). In the unresectable group, patients with distant metastasis or para-aortic lymph node metastasis were treated with chemotherapy. Patients having cT4 tumors without distant metastasis or para-aortic lymph node metastasis were treated with chemoradiotherapy.

The study received approval from the Ethics Committee of Kagoshima University and all patients provided written informed consent for the use and publication of their information.

Treatment and assessment of therapeutic effect. Seventy-nine of 98 patients received chemoradiotherapy. In chemoradiotherapy, the chemotherapy consisted of two different regimens as follows: a low-dose FP regimen using 5-fluorouracil (350 mg/m² body over 24 h) and cisplatin (7 mg/body over 2 h) or a DCF regimen using docetaxel (60 mg/m² over 2 h), cisplatin (60 mg/m² over 2 h), and 5-fluorouracil (350 mg/m² over 24 h). Fifty-nine and 20 patients received a low-dose FP regimen and a DCF regimen, respectively. A total dose of concurrent fractionated radiation for neoadjuvant and definitive chemoradiotherapy in the same period was 40 Gy and 60 Gy, respectively.1 Twenty-eight and 51 patients received neoadjuvant chemoradiotherapy and definitive chemoradiotherapy, respectively. Nineteen patients received chemotherapy alone. Chemotherapy was intravenously performed by a DCF regimen using docetaxel (60 mg/m² over 1.5 h), cisplatin (70 mg/m² over 3 h), and 5-fluorouracil (700 mg/m² over 24 h) or a modified DCF regimen using docetaxel (60 mg/m² over 2 h), cisplatin (6 mg/m² over 2 h), and 5-fluorouracil (350 mg/m² over 24 h).

Clinical responses were evaluated by CT, 1 month after chemoradiotherapy and two cycles of chemotherapy. Tumor response was assessed by the Response Evaluation Criteria in Solid Tumors (RECIST) guideline (version 1.1).32 Accordingly, tumor response was classified into four groups as follows: complete response (CR), partial response (PR), stable disease (SD), and progressive disease (PD).

Clinical follow-up. All patients were followed-up by routine blood tests including tumor marker studies (carcinoembryonic antigen, SCC antigen, and p53), CT every 3 months, and endoscopy 6–12 months after discharge. The median follow-up period in all patients was 15.4 months (range, 1.5–53.5 months). The median follow-up period in surviving patients was 29.1 months (range, 16.3–53.5 months).

Blood assessment for determination of fibrinogen, NLR, CRP, and albumin. Blood samples were obtained within the 2 weeks before the start of treatment. Plasma fibrinogen concentrations...
were assayed by the Clauss method using a STA-R coagulation analyzer (Roche Diagnostics K.K., Tokyo, Japan). Neutrophils and lymphocytes were counted using the XE-2100 automated hematology analyzer (Sysmex Co., Kobe, Japan). Then, the NLR was indicated as the neutrophil count divided by the lymphocyte count. CRP and albumin levels were determined by a JCA-BM automatic analyzer (JEL Ltd., Tokyo, Japan).

Grading system for F-NLR score and GPS. The cut-off value of plasma fibrinogen concentrations was set at 400 mg/dL based on previous published reports. The cut-off value of the NLR at 3.0 based on previous published reports. The F-NLR score was classified into three groups based on each cut-off value of plasma fibrinogen and NLR as follows; F-NLR score of 2: both hyperfibrinogenemia (>400 mg/dL) and high NLR (>3.0), F-NLR score of 1: one of these hematological abnormalities, and F-NLR score of 0: neither hyperfibrinogenemia nor high NLR. GPS was classified into three groups, as previously described; GPS of 2: both an elevated CRP (>1.0 mg/dL) and hypoalbuminemia (<3.5 g/dL), GPS of 1: one of these hematological abnormalities, and GPS of 0: neither an elevated CRP nor hypoalbuminemia.

Statistical analysis. The Wilcoxon rank sum test was used to evaluate differences in the relationship among fibrinogen, NLR, CRP, or albumin and tumor response. Overall survival curves were calculated using the Kaplan–Meier method and prognostic differences were determined by the log-rank test. Prognostic factors were assessed using univariate and multivariate analyses (Cox proportional hazard regression model). All statistical analyses were done using SAS statistical software (SAS Institute Inc., Cary, NC, USA). A P-value of < 0.05 was considered statistically significant.

Results

Tumor response to chemoradiotherapy or chemotherapy and additional surgery. Seven, 34, 19, and 38 patients had CR, PR, SD, and PD as a tumor response, respectively. Consequently, 60 and 38 patients were grouped as non-PD and PD, respectively. The disease control rate was 61.2% (60/98). Additional esophagectomy with lymphadenectomy was performed in 21 patients with non-PD and three patients with PD. The R0 resection rate was 91.7% (22/24).

Correlation between tumor response and fibrinogen, NLR, CRP, or albumin. Plasma fibrinogen concentrations range from 236 to 789 mg/dL in 98 patients with ESCC. The mean fibrinogen concentration (±SD) was 448.2 ± 122.2 mg/dL in all patients. The mean fibrinogen concentrations (±SD) for patients in the PD and non-PD groups were 481.0 ± 126.5 and 427.5 ± 115.7 mg/dL, respectively (Fig. 2a). Fibrinogen was significantly higher in the PD group than the non-PD group (P = 0.0419). The mean NLR (±SD) was 3.3 ± 2.8 in all patients (range, 0.5–22.2). The mean NLR (±SD) in patients in the PD and non-PD groups was 4.4 ± 3.8 and 2.5 ± 1.5, respectively (Fig. 2b). NLR was significantly higher in the PD group than the non-PD group (P = 0.0001).

The mean CRP (±SD) values in patients with PD and non-PD were 2.0 ± 3.1 and 1.0 ± 2.7 mg/dL, respectively (Fig. 2c). CRP was significantly higher in PD group than non-PD group (P = 0.0258). The mean albumin (±SD) values in patients with PD and non-PD were 3.6 ± 0.5 and 3.9 ± 0.4 mg/dL, respectively (Fig. 2d). Accordingly, albumin was significantly lower in PD group than non-PD group (P = 0.0305).

Prognostic analysis based on fibrinogen or NLR levels. Based on the cut-off value of plasma fibrinogen concentration, 63 and 35 patients were classified into two groups at high (>400 mg/dL) and low (≤400 mg/dL) fibrinogen levels, respectively. Furthermore, 38 and 60 patients had high (>3.0) and low (≤3.0) NLR levels, respectively, according to the determined cut-off value for the NLR. Patients with high fibrinogen and NLR levels had a significantly worse prognosis than those with low fibrinogen and NLR levels (P = 0.0242 and P = 0.0019, respectively; Fig. 3).

Correlation between tumor response and F-NLR score and GPS. According to the grading system of the F-NLR score, 25 (25.5%), 45 (45.9%), and 28 (28.6%) patients had an F-NLR score of 0, 1, and 2 respectively. An F-NLR score of 0, 1, and 2 was identified in six (15.8%), 15 (39.5%), and 17 (44.7%) of the 38 patients with PD, respectively (Table 2). In the 60 patients with non-PD, 19 (31.7%), 30 (50.0%), and 11 (18.3%) had an F-NLR score of 0, 1, and 2 respectively (Table 3). F-NLR score, and GPS were selected as independent prognostic factors (P = 0.0157, P = 0.0177, P = 0.0001, and P = 0.0002, respectively) (Table 3). F-NLR score, and GPS were selected as independent prognostic factors (P = 0.0157, P = 0.0177, P = 0.0001, and P = 0.0002, respectively) (Table 3).
as independent prognostic factors in the multivariate analysis ($P = 0.0081$ and $P = 0.0086$, respectively) (Table 3).

Discussion

In this study, we assessed the clinical significance of pre-treatment fibrinogen and NLR levels in patients with advanced ESCC treated with chemoradiotherapy or chemotherapy. Both fibrinogen and NLR have been known to be associated with tumor progression and metastatic developments in patients with various malignancies including ESCC. (6,10,22–25,36) Interestingly, several investigators have demonstrated hyperfibrinogenemia and elevated NLR as a predictor of poor therapeutic response in blood analysis before starting treatment. (8,9,26,33) In
In the present study, the blood levels of fibrinogen and NLR were significantly higher in patients in the PD group than those in the non-PD group. These findings indicate that fibrinogen and NLR are one of the promising markers for predicting tumor response to the initial chemoradiotherapy or chemotherapy in patients with advanced ESCC. Furthermore, hyperfibrinogenemia (>400 mg/dL) and high NLR (>3.0) significantly correlated with a worse prognosis in this study (P = 0.0242 and P = 0.0019, respectively). According to previous published reports, fibrinogen and NLR are potential predictive markers for prognosis in untreated patients in several resectable cancers, including ESCC.\(^\text{(6,22,25,36–38)}\) However, we simultaneously investigated fibrinogen and NLR to assess the relationship between the values of these blood markers and prognosis in patients with advanced ESCC treated with chemoradiotherapy or chemotherapy. To the best of our knowledge, this is the first report to demonstrate the clinical impact of fibrinogen and NLR in patients with ESCC treated with chemoradiotherapy or chemotherapy due to advanced tumor stage.

The most attractive issue of the present study is that we assess the clinical significance of the F-NLR score, which consisted of the plasma fibrinogen level and NLR, in patients with advanced ESCC. We had already demonstrated that F-NLR score is a useful blood predictor for tumor progression and prognosis in ESCC patients without preoperative treatment.\(^\text{(17)}\) In this study, surprisingly, 17 patients (44.7%) had an F-NLR score of 2 among the 38 patients in the PD group and 11 patients (18.3%) had an F-NLR score of 2 among the 60 patients in the non-PD group (Table 2). These findings indicate a close relationship between F-NLR score and therapeutic effect. Furthermore, this study showed that the median survival times of patients with F-NLR scores of 0–1 and 2 were 16.9 and 8.7 months, respectively. The survival rate was significantly lower in patients with an F-NLR score of 2 than in those with.

Table 2. Relationship between clinicopathological characteristics and F-NLR score or GPS (n = 98)

Factors	F-NLR score (%)	GPS (%)						
	0 (n = 25)	1 (n = 45)	2 (n = 28)	P-value	0 (n = 54)	1 (n = 30)	2 (n = 14)	P-value
Sex								
Male	22 (88.0)	39 (86.7)	25 (89.3)	0.9455	48 (88.9)	26 (86.7)	12 (85.6)	0.9268
Female	3 (12.0)	6 (13.3)	3 (10.7)		6 (11.1)	4 (13.3)	2 (14.4)	
Age (year)								
<70	17 (68.0)	32 (71.1)	19 (67.9)	0.9434	42 (77.8)	17 (56.7)	9 (64.3)	0.1196
≥70	8 (32.0)	13 (28.9)	9 (32.1)		12 (22.2)	13 (43.3)	5 (35.7)	
Tumor location								
Upper	3 (12.0)	11 (24.4)	8 (28.6)	0.4042	12 (22.2)	5 (16.7)	5 (35.7)	0.3775
Middle	19 (76.0)	26 (57.8)	14 (50.0)		35 (64.8)	17 (56.7)	7 (50.0)	
Lower	3 (12.0)	8 (17.8)	6 (21.4)		7 (13.0)	8 (26.7)	2 (14.3)	
Depth of tumor invasion								
T1–T3	21 (84.0)	21 (46.7)	20 (71.4)	0.0046	38 (70.4)	19 (63.3)	5 (35.7)	0.0565
T4	4 (16.0)	24 (53.3)	8 (28.6)		16 (29.6)	11 (36.7)	9 (64.3)	
Lymph node metastasis								
N1–N2	16 (64.0)	27 (60.0)	16 (57.1)	0.8778	33 (61.1)	20 (66.7)	6 (42.9)	0.3225
N3	9 (36.0)	18 (40.0)	12 (42.9)		21 (38.9)	10 (33.3)	8 (57.1)	
Stage								
III	14 (56.0)	24 (53.3)	10 (35.7)	0.2419	28 (51.9)	15 (50.0)	5 (35.7)	0.5510
IV	11 (44.0)	21 (46.7)	18 (64.3)		26 (48.1)	15 (50.0)	9 (64.3)	
Treatment								
Chemoradiotherapy	21 (84.0)	37 (82.2)	21 (75.0)	0.6628	47 (87.0)	22 (73.3)	9 (64.3)	0.1010
Chemotherapy	4 (16.0)	8 (17.8)	7 (25.0)		7 (13.0)	8 (26.7)	5 (35.7)	
Tumor response								
Non-PD(CR-PR-SD)	19 (76.0)	30 (66.7)	11 (39.3)	0.0140	38 (70.4)	18 (60.0)	4 (28.6)	0.0165
PD	6 (24.0)	15 (33.3)	17 (60.7)		16 (29.6)	12 (40.0)	10 (71.4)	

F-NLR Score, fibrinogen and neutrophil-lymphocyte ratio score; GPS, Glasgow prognostic score; PD, progressive disease.

Fig. 4. Kaplan-Meier survival curves according to (a) fibrinogen and neutrophil-lymphocyte ratio (F-NLR) score and (b) Glasgow Prognostic Score (GPS).
Table 3. Univariate and multivariate survival analyses

Independent factor	Univariate analysis	Multivariate analysis				
	Hazard ratio	95% CI	P-value	Hazard ratio	95% CI	P-value
Gender	1.03	0.52–2.33	0.9419	1.29	0.78–2.16	0.3180
Male/Female	1.03	0.61–1.70	0.9039	1.29	0.78–2.16	0.3180
Age	1.78	1.12–2.89	0.0157	2.97	1.63–5.42	0.0006
≥70/-70	2.74	1.66–4.43	0.0001	2.74	1.44–5.23	0.0026
cStage	3.54	1.83–6.84	0.0002	2.89	1.45–5.77	0.0030
Tumor marker	3.38	2.16–5.31	0.0001	3.38	2.16–5.31	0.0001
CEA	0.75	0.36–1.40	0.3872	0.75	0.36–1.40	0.3872
SCC	1.09	0.66–1.83	0.7494	1.09	0.66–1.83	0.7494
Treatment	2.01	1.14–3.38	0.0177	1.14	0.66–2.01	0.6693
Chemoradiotherapy/	2.16	1.27–3.65	0.0001	2.16	1.27–3.65	0.0001
Chemotherapy	2.01	1.27–3.65	0.0001	2.01	1.27–3.65	0.0001
F-NLR score	3.78	1.96–6.80	0.0002	2.60	1.21–4.87	0.0086
0–1/2	3.78	1.96–6.80	0.0002	2.60	1.21–4.87	0.0086
GPS	1.09	0.66–1.83	0.7494	1.09	0.66–1.83	0.7494
0–1/2	2.16	1.27–3.65	0.0001	2.16	1.27–3.65	0.0001

CEA, carcinoembryonic antigen; CI, confidence interval; F-NLR score, fibrinogen and neutrophil-lymphocyte ratio score; GPS, Glasgow prognostic score; SCC, squamous cell carcinoma antigen.

An F-NLR score of 0–1 (P < 0.0001). These results suggest that patients with an F-NLR score of 2 exhibit aggressive tumor behavior due to the resistance to chemoradiotherapy or chemotherapy. Here, we assessed the relationship between F-NLR score and tumor response in therapeutic modalities. In chemoradiotherapy group (n = 79), F-NLR score was significantly correlated with tumor response (P = 0.0062, data not shown). However, tumor response in chemotherapy group was not significantly associated with F-NLR score (P = 0.9169, data not shown). These inconsistent results may depend on the small sample size. In conclusion, we demonstrated that F-NLR score, as well as GPS, has a clinical utility for predicting tumor response and prognosis. Unfortunately, mGPS was not significantly associated with tumor response (P = 0.3514, data not shown). Therefore, we adopted GPS rather than mGPS as a predictor of tumor response in the present study. Here, we compared the F-NLR score with the GPS to assess the clinical significance of these scores. Univariate and multivariate analysis of survival showed that F-NLR score, and GPS were independent prognostic factors in this study. This finding indicates that F-NLR score, as well as GPS, has a clinical utility for predicting prognosis in patients with advanced ESCC treated with chemoradiotherapy or chemotherapy.

There are some limitations in this study. First, this retrospective study was planned by a single institution. Next, 98 patients with ESCC were enrolled in the present study and the sample size may be insufficient to strengthen our results. Accordingly, further multicenter validation studies are required to confirm our hypothesis. However, the clinical impact of the F-NLR score has shown that it may have a prominent role as a preliminary data.

In conclusion, we demonstrated that F-NLR score, as well as GPS, has clinical potential as a predictive marker for tumor response to chemoradiotherapy or chemotherapy and prognosis in patients with advanced ESCC. The F-NLR score may serve as an economical biomarker for determining the therapeutic plan in patients with advanced ESCC.

Disclosure Statement

All manuscripts have no conflicts of interest, and no financial disclosures. All manuscripts have no acknowledgement for the authors.

References

1. Natsugoe S, Okumura H, Matsumoto M et al. Randomized controlled study on preoperative chemoradiotherapy followed by surgery versus surgery alone for esophageal squamous cell cancer in a single institution. *Dis Esophagus* 2006; 19: 468–72.

2. John MJ, Flam MS, Mowry PA et al. Radiotherapy alone and chemoradiation for nonmetastatic esophageal carcinoma. A critical review of chemoradiation. *Cancer* 1989; 63: 2397–403.

3. Naunheim KS, Petruska P, Roy TS et al. Preoperative chemotherapy and radiotherapy for esophageal carcinoma. *J Thorac Cardiovasc Surg* 1992; 103: 887–93; discussion 893–5.
4 Ishida K, Ando N, Yamamoto S et al. Phase II study of cisplatin and 5-fluorouracil with concurrent radiotherapy in advanced squamous cell carcinoma of the esophagus: a Japan Esophageal Oncology Group (JEOG)/Japan Clinical Oncology Group trial (JCOG9516). Jpn J Clin Oncol 2004; 34: 615–9.

Ando N, Kato H, Igaki H et al. A randomized trial comparing postoperative adjuvant chemotherapy with cisplatin and 5-fluorouracil versus preoperative chemotherapy for localized advanced squamous cell carcinoma of the thoracic esophagus (JCOG9907). Ann Surg Oncol 2012; 19: 68–74.

Takeuchi H, Ikuechi S, Kitagawa Y et al. Pretreatment plasma fibrinogen level correlates with tumor progression and metastasis in patients with squamous cell carcinoma of the esophagus. J Gastroenterol Hepatol 2007; 22: 2222–7.

Tomimaru Y, Yano M, Takachi K et al. Correlation between pretherapeutic d-dimer levels and response to neoadjuvant chemotherapy in patients with advanced esophageal cancer. Dis Esophagus 2008; 21: 261–7.

Sato H, Tsaboya Y, Kawano T. Correlation between the pretherapeutic neutrophil to lymphocyte ratio and the pathologic response to neoadjuvant chemotherapy in patients with advanced esophageal cancer. World J Surg 2012; 36: 617–22.

Noble F, Hopkins J, Curtis N et al. The role of systemic inflammatory and nutritional blood-borne markers in predicting response to neoadjuvant chemotherapy and survival in oesophagogastric cancer. Med Oncol 2013; 30: 596.

Matsuda S, Takeuchi H, Fukuda K et al. Clinical significance of plasma fibrinogen level as a predictive marker for postoperative recurrence of esophageal squamous cell carcinoma in patients receiving neoadjuvant treatment. Dis Esophagus 2014; 27: 654–61.

Feng JF, Huang Y, Chen QX. Preoperative platelet lymphocyte ratio (PLR) is superior to neutrophil lymphocyte ratio (NLR) as a predictive factor in patients with esophageal squamous cell carcinoma. World J Surg Oncol 2014; 12: 58.

Matsuda S, Takeuchi H, Kawakubo H et al. Cumulative prognostic scores based on plasma fibrinogen and serum albumin levels in esophageal cancer patients treated with transcatheter esophagec-toomy: comparison with the Glasgow prognostic score. Ann Surg Oncol 2015; 22: 302–10.

Kumura J, Kunisaki C, Makino H et al. Evaluation of the Glasgow Prognostic Score in patients receiving chemoradiotherapy for stage III and IV esophageal cancer. Dis Esophagus 2015; 2016; 29: 1071–80.

McMillan DC. The systemic inflammation-based Glasgow Prognostic Score: a decade of experience in patients with cancer. Cancer Treat Rev 2013; 39: 534–40.

Hirashima K, Watanabe M, Shigaki H et al. Prognostic significance of the modified Glasgow prognostic score in elderly patients with gastric cancer. J Gastroenterol 2014; 49: 1040–6.

Nakagawa K, Tanaka K, Nojiri K et al. The modified Glasgow prognostic score as a predictor of survival after hepatectomy for colorectal liver metastases. Ann Surg Oncol 2014; 21: 1711–8.

Arigami T, Okumura H, Matsumoto M et al. Analysis of the fibrinogen and neutrophil-lymphocyte ratio in esophageal squamous cell carcinoma: a promising blood marker of tumor progression and prognosis. Medicine (Baltimore) 2015; 94: e1702.

Yamaguchi T, Yamamoto Y, Yokota S et al. Involvement of interleukin-6 in the elevation of plasma fibrinogen levels in lung cancer patients. Jpn J Clin Oncol 1998; 28: 740–4.

Tennent GA, Brennan SO, Stangou AJ et al. Human plasma fibrinogen is synthesized in the liver. Blood 2007; 109: 1971–4.