Shear-free perfect fluids with solenoidal magnetic curvature and a γ-law equation of state

N Van den Bergh1, J Carminati2 and H R Karimian1

1 Faculty of Applied Sciences TW16, Gent University, Galglaan 2, 9000 Gent, Belgium
2 School of Engineering and Information Technology, Deakin University, Australia

E-mail: norbert.vandenbergh@ugent.be, jcarm@deakin.edu.au and Hamidreza.Karimian@UGent.be

Received 26 April 2007, in final form 1 June 2007
Published 4 July 2007
Online at stacks.iop.org/CQG/24/3735

Abstract
We show that shear-free perfect fluids obeying an equation of state $p = (\gamma - 1)\mu$ are non-rotating or non-expanding under the assumption that the spatial divergence of the magnetic part of the Weyl tensor is zero.

PACS numbers: 04.20.Jb, 04.40.Nr

1. Introduction

The shear-free fluid conjecture claims that for any general relativistic perfect fluid, in which the energy density μ and the pressure p satisfy a barotropic equation of state $p = p(\mu)$ with $p + \mu \neq 0$, necessarily the expansion θ or the vorticity ω vanishes. The conjecture has been demonstrated in a number of particular cases: constant p ('dust' with a cosmological constant) [9, 10, 16], spatial homogeneity [1, 11], $dp/d\mu = 1/3$ [20], $dp/d\mu = -1/3$ or $1/9$ [8, 21], aligned vorticity and acceleration [22], vanishing magnetic part [7] or vanishing electric part [8] of the Weyl tensor, $\theta = \theta(\mu)$ [12], $\theta = \theta(\omega)$ [18], Petrov types N [3], III [4] and models in which there is a conformal Killing vector parallel to the fluid flow [6]. It should be noted that this conjecture is not true in Newtonian theory and hence if true in general relativity, then it would highlight essential differences, like that of a well defined universal time, between the two theories [17]. Although in most of the above-mentioned results a tetrad formalism was used, recently it has been shown that a covariant approach can also be successfully employed with considerable potential for future analysis [5, 17, 18].

Motivated by the continued absence of a general proof of the conjecture (or lack of counter-example), we have decided, as an important step forward, to investigate a direct generalization of Collins’ 1984 result that $\omega \theta = 0$ holds when the magnetic part H of the Weyl curvature (with respect to the fluid congruence) vanishes. In our analysis, we shall make the weaker assumption that H is solenoidal, that is, that its spatial divergence (see below)

3 Otherwise the fluid velocity is not uniquely determined by the geometry and shear-free, rotating and expanding examples are known [15].
vanishes. Interestingly, it has been recently shown [2, 19] that the assumption of third order restrictions, such as $\text{div} \, \mathbf{H} = 0$ and/or $\text{div} \, \mathbf{E} = 0$, leads to physically interesting families of perfect fluid solutions. Also, in a classification attempt of these fluids the shear-free sub-family would appear to be a natural first candidate for further investigation. Although a large part of our analysis holds for a general barotropic equation of state $p = p(\mu)$ (such as the positive definiteness of the coefficient matrix of the system (54) and the ensuing existence of a Killing vector parallel to the vorticity), at a certain point, we shall need to simplify matters by assuming a γ-law equation of state (with a possible non-vanishing cosmological term ‘effectively’ present by allowing $p = (\gamma - 1)\mu + \text{constant}$). In the general barotropic case with $D^a H_{ab} = 0$, technical difficulties of a very different nature are present and a number of extra subcases remain to be investigated (work in progress).

2. Tetrad choice and relevant equations

We consider shear-free perfect fluid solutions of the Einstein field equations

$$R_{ab} - \frac{1}{2} R g_{ab} = \mu u_a u_b + p h_{ab},$$

(1)

where u is the future-pointing (time-like) unit tangent vector to the flow, μ and p are the energy density and pressure of the fluid, respectively, and $h_{ab} = g_{ab} + u_a u_b$ is the projection tensor into the rest space of the observers with 4-velocity u. The vanishing of the shear can be expressed by

$$u_{a;b} = \frac{1}{3} \theta h_{ab} + \omega_{ab} - \dot{u}_a u_b,$$

(2)

where θ is the (rate of) volume expansion, \dot{u} is the acceleration and ω is the vorticity.

Throughout, we will assume familiarity with the notations and conventions of the formalism of MacCallum [14]. Crucial in the successful investigation of any problem with tetrad formalisms is the choice of the tetrad alignment as it can dramatically alter the appearance and complexity of the resulting complete set of equations. We have chosen our tetrad as follows. We begin by aligning e_0 and e_3 with u and ω, respectively, such that $\omega = \omega e_3 \neq 0$. The relevant variables then become μ, p, θ, u_α and the quantities Ω_α which determine the rotation of the triad e_α with respect to a set of Fermi-propagated axes), together with the quantities n_{ab} and a_α. Latin indices will be spacetime indices while Greek indices will take the values 1, 2 and 3. Further, it is advantageous to replace n_{ab} ($\alpha \neq \beta$) and a_α with the new variables q_α and r_α, defined by

$$n_{a+1\alpha-1} = (r_\alpha + q_\alpha)/2, \quad a_\alpha = (r_\alpha - q_\alpha)/2,$$

(3)

expressions which have to be read modulo 3 (for example, $\alpha = 3$ gives $n_{12} = (q_3 + r_3)/2$). The relation between these quantities and the Ricci rotation coefficients can be deduced from the commutators (A.1). We will also use, as extra (extension) variables, the components of the spatial gradient of the expansion

$$z_\alpha = \partial_\alpha \theta$$

(4)

and the (3+1) covariant divergence of the acceleration,

$$j \equiv \dot{u}_a^{\alpha} = \partial_\alpha \dot{u}^{\alpha} + \ddot{u}^{\alpha} \dot{u}_a - \dot{u}^{\alpha} (r_\alpha - q_\alpha).$$

(5)

Note that the definition of the variables z_α differs from that used in [21].

As neither the Jacobi identities nor the field equations contain expressions for the evolution of Ω_α, it is good practice to choose the triad e_0 such that $\Omega + \omega = 0$. The fact that this is always possible follows from the results of the action of the commutators $[\partial_\alpha, \partial_\beta]$ and $[\partial_\alpha, \partial_\beta]$ on p. One finds that $\Omega_1 = \Omega_2 = 0$ after which a rotation in the (12)-plane can be chosen...
such that $\Omega_3 + \omega = 0$. Herewith, the tetrad is determined up to rotations in the (12)-plane by an angle α satisfying $\partial_0 \alpha = 0$ (see also [21]). Noting that the evolution equations for the quantities $n_{11} - n_{22}$ and n_{12} are identical (see [14]) allows one to further fix the tetrad by making either $n_{11} - n_{22} = 0$ or $n_{12} = 0$. Henceforth, our choice will be

$$n_{11} = n_{22} \equiv n. \quad (6)$$

We express the vanishing of the spatial divergence of the magnetic part of the Weyl tensor, $H_{ab} = C^{acbd} u^c u^d$, by means of the Bianchi identity [13],

$$(\text{div} H)_a \equiv D^b H_{ab} = 3\omega_b E_{ab} + (\mu + p)\omega_a. \quad (7)$$

Here, the spatial derivative operator is defined by

$$D_a S^{c, d...e...f} = h_{a}^{b} h_{c}^{h} p^{\cdots} h_{d}^{q} h_{e}^{r} \cdots h_{f}^{s} \nabla h_{a}^{b p...q r...s}. \quad (10)$$

This shows that when $D^b H_{ab} = 0$, the vorticity is an eigenvector of the electric part of the Weyl tensor, $E_{ab} = C^{acbd} u^c u^d$, with the eigenvalue $-(\mu + p)/3$. With our choice of tetrad, this implies

$$E_{13} = E_{23} = 0, \quad (8)$$
$$E_{33} = -\frac{\mu + p}{3}. \quad (9)$$

In order to relate the components of E_{ab} with the spatial gradient of the acceleration, we will make use of the Ricci identity [13]

$$E_{ab} = D_{(a} u_{b)} - \omega_b \omega_{(a} + \dot{u}_{(a} u_{b)}, \quad (10)$$

where $S_{(ab)}$ stands for the spatially projected and trace-free part of S_{ab}. The basic equations of the formalism are now the Einstein field equations and the Jacobi equations, which we present, using the simplifications above, in the appendix. Henceforth, we will assume $\gamma \neq 1$ [9, 10, 16], $\gamma \neq \frac{4}{3}$ [20], $\gamma \neq \frac{7}{3}$ [21], $\gamma \neq \frac{10}{9}$ [21] and, of course, $\gamma \neq 0$ (cf introduction).

We shall argue by contradiction in order to establish that a shear-free fluid under the given conditions satisfies $\omega \theta = 0$. The important step is contained in section 3, where we first prove that, if $\omega \theta \neq 0$, a Killing vector exists parallel to the vorticity. This results in a great simplification of the governing equations and, although this subcase still contains all the intricacies of the ‘general’ problem, it allows us to complete the proof in section 4.

3. Proof of the existence of a Killing vector parallel to ω for $\omega \theta \neq 0$

First, note that equations (A.9), (A.12) immediately lead to evolution equations for the variables r_a and q_a:

$$3\partial_0 r_a = -\theta u_a - z_a - \theta r_a \quad (11)$$
$$3\partial_0 q_a = z_a + \theta (u_a + q_a), \quad (12)$$

while (A.2) and the (0ϵ) field equations (A.14)--(A.16) give us the spatial derivatives of ω:

$$\partial_1 \omega = \frac{\gamma}{2} z_2 - \omega (q_1 + 2\dot{u}_1) \quad (13)$$
$$\partial_2 \omega = -\frac{\gamma}{2} z_1 + \omega (r_2 - 2\dot{u}_2) \quad (14)$$
$$\partial_3 \omega = \omega (u_3 + r_3 - q_3) \quad (15)$$

together with the algebraic restriction

$$n_{33} = \frac{2}{3\omega} z_3. \quad (16)$$

We shall argue by contradiction in order to establish that a shear-free fluid under the given conditions satisfies $\omega \theta = 0$. The important step is contained in section 3, where we first prove that, if $\omega \theta \neq 0$, a Killing vector exists parallel to the vorticity. This results in a great simplification of the governing equations and, although this subcase still contains all the intricacies of the ‘general’ problem, it allows us to complete the proof in section 4.
The evolution equation for n follows from (A.10):

$$\partial_t n = -\frac{\theta}{3} n. \quad (17)$$

Acting with the commutators $[\partial_0, \partial_\alpha]$ and $[\partial_\alpha, \partial_\beta]$ on the pressure and using (A.8) together with the conservation laws,

$$\partial_0 \mu = -(\mu + p)\theta \quad (18)$$
$$\partial_\alpha p = -(\mu + p)\dot{u}_\alpha \quad (19)$$

leads to a first set of evolution equations for the acceleration and vorticity:

$$\partial_0 \dot{u}_\alpha = (\gamma - 1)z_\alpha + \left(\gamma - \frac{3}{4}\right) \theta \dot{u}_\alpha, \quad \partial_\alpha \omega = \left(\gamma - \frac{5}{4}\right) \omega \theta. \quad (20)$$

The spatial derivatives of the acceleration can be obtained from (10), using (5):

$$\partial_1 \dot{u}_1 = -\frac{1}{3} \omega^2 + \frac{1}{2} j - \dot{u}_2 q_2 + \dot{u}_3 r_3 - \dot{u}_1^2 + E_{11} \quad (21)$$
$$\partial_2 \dot{u}_2 = -\frac{1}{3} \omega^2 + \frac{1}{2} j - \dot{u}_3 q_3 + \dot{u}_1 r_1 - \dot{u}_2^2 + E_{22} \quad (22)$$
$$\partial_3 \dot{u}_3 = -\frac{1}{3} \omega^2 + \frac{1}{2} j - \dot{u}_1 q_1 + \dot{u}_2 r_2 - \dot{u}_3^2 + E_{33} \quad (23)$$
$$\dot{u}_1 = \omega (1 - \gamma) + q_2 u_1 + \frac{1}{2} n_{33} u_3 - u_1 u_2 + E_{12} \quad (24)$$
$$\dot{u}_2 = -\omega \theta (1 - \gamma) - r_1 u_2 - \frac{1}{2} n_{33} u_3 - u_1 u_2 + E_{12} \quad (25)$$
$$\dot{u}_3 = -r_3 u_1 - \frac{1}{2} u_2 n_{33} - u_3 u_2 + E_{13} \quad (26)$$
$$\partial_2 \dot{u}_3 = \frac{1}{2} u_1 n_{33} + q_3 u_2 - u_2 u_3 + E_{23} \quad (27)$$
$$\partial_3 \dot{u}_1 = -\frac{1}{2} u_2 n_{33} + n u_2 + q_3 u_3 - u_1 u_3 + E_{13} \quad (28)$$
$$\partial_3 \dot{u}_2 = \frac{1}{2} u_1 n_{33} - n u_1 - r_2 u_3 - u_2 u_3 + E_{23}. \quad (29)$$

Next, we act with the $[\partial_0, \partial_\alpha]$ commutators on ω and θ and use the propagation of (16) along the pressure and the spatial gradient of j:

$$\partial_0 z_1 = \theta (\gamma - 2) z_1 - \frac{9 \gamma - 10}{2} \omega (z_2 + \theta \dot{u}_2) \quad (30)$$
$$\partial_0 z_2 = \theta (\gamma - 2) z_2 + \frac{9 \gamma - 10}{2} \omega (z_1 + \theta \dot{u}_1) \quad (30)$$

and

$$\partial_1 j = \theta z_1 (\gamma - 1) - z_2 \frac{-14 + 27 \gamma}{6} \omega - \dot{u}_1 j - \frac{1}{2} \frac{2 \gamma}{\gamma - 1} \dot{u}_1 \mu - \frac{\gamma - 1}{2} \dot{u}_1 p + \frac{1}{3} \dot{u}_1 (18 \omega^2 + \theta^2) - u_2 \left(\frac{9 \gamma - 10}{2} \theta \omega + 4 \omega^2 q_1\right) \quad (31)$$
$$\partial_2 j = \theta z_2 (\gamma - 1) + z_1 \frac{-14 + 27 \gamma}{6} \omega - \dot{u}_2 j - \frac{1}{2} \frac{2 \gamma}{\gamma - 1} \dot{u}_2 \mu - \frac{\gamma - 1}{2} \dot{u}_2 p + \frac{1}{3} \dot{u}_2 (18 \omega^2 + \theta^2) + \dot{u}_1 \left(\frac{9 \gamma - 10}{2} \theta \omega - 4 \omega^2 r_2\right) \quad (32)$$
$$\partial_3 j = \theta z_3 (\gamma - 1) - \dot{u}_3 j - \frac{1}{2} \frac{2 \gamma}{\gamma - 1} \dot{u}_3 \mu - \frac{\gamma - 1}{2} \dot{u}_3 p + \frac{1}{3} \dot{u}_3 (-18 \omega^2 + \theta^2) - 4 (r_3 - q_3) \omega^2. \quad (33)$$
Now we may evaluate $\sum_a [\partial_\beta, \partial_\alpha] \dot{u}_a$ by using (5) and (21)–(23), and this leads to the evolution of j as

$$\partial_0 j = (\gamma - 1)\partial_\alpha \theta^\alpha + \theta (\gamma - \frac{5}{4}) j + (2\gamma - \frac{5}{4}) \theta \dot{u}_a u^a + (4\gamma - \frac{11}{4}) \dot{u}_a e^a + (\gamma - 1)(r_\alpha - r_\alpha) z^a.$$ (34)

Next a long calculation, involving the propagation of the field equations (A.17)–(A.22) along u and the use of the $[\partial_\alpha, \partial_\beta]$ commutators on $r_\beta, \psi_\beta, \dot{u}_\beta$ together with the $[\partial_\alpha, \partial_\beta]$ commutators on θ and ω, allows one to obtain algebraic expressions for the directional derivatives $\partial_\alpha z_\beta$, as well as evolution equations for j and $E_{a\beta}$ (the latter can equally well be obtained by writing out the ‘dot E’ Bianchi identities [13]). The resulting expressions can be simplified by the introduction of the following nonlinear combinations of kinematic quantities, each having a clear geometric meaning:

$$U = \dot{u}_1^2 + \dot{u}_2^2, \quad V = \dot{u}_1 z_1 + \dot{u}_2 z_2, \quad W = \dot{u}_1 z_2 - \dot{u}_2 z_1, \quad Z = z_1^2 + z_2^2.$$ (35)

We obtain

(a) the evolution of j:

$$\partial_0 j = \frac{5\gamma - 5}{3} \left(V + \theta U + \dot{z}_3 + \theta \dot{u}_3^2 \right) + (\gamma - 1) (9\gamma - 10) \omega^2 \theta + \frac{3\gamma - 5}{3} j \theta;$$ (36)

(b) the evolution of $E_{a\beta}$:

$$\begin{align*}
\partial_0 E_{11} &= -\frac{2}{3} \theta E_{11} + \frac{2(3\gamma - 4)}{9(3\gamma - 2)} (2\dot{u}_1 z_1 - \dot{u}_2 z_2 - \dot{u}_3 z_3 + (\omega^2 (9\gamma - 8) + 2\dot{u}_2^2 - \dot{u}_2^2 - \dot{u}_3^2) \theta), \\
\partial_0 E_{22} &= -\frac{2}{3} \theta E_{22} - \frac{2(3\gamma - 4)}{9(3\gamma - 2)} (2\dot{u}_1 z_1 - 2\dot{u}_2 z_2 + \dot{u}_3 z_3 - (\omega^2 (9\gamma - 8) - \dot{u}_1^2 + 2\dot{u}_2^2 - \dot{u}_3^2) \theta), \\
\partial_0 E_{12} &= -\frac{2}{3} \theta E_{12} + \frac{3\gamma - 4}{3(3\gamma - 2)} (\dot{u}_2 z_1 + \dot{u}_1 z_2 + 2\dot{u}_1 \dot{u}_2 \theta), \\
\partial_0 E_{13} &= -\frac{2}{3} \theta E_{13} + \frac{3\gamma - 4}{3(3\gamma - 2)} (\dot{u}_3 z_1 + \dot{u}_1 z_3 + 2\dot{u}_1 \dot{u}_3 \theta), \\
\partial_0 E_{23} &= -\frac{2}{3} \theta E_{23} - \frac{3\gamma - 4}{3(3\gamma - 2)} (\dot{u}_2 z_2 + \dot{u}_3 z_3 + 2\dot{u}_2 \dot{u}_3 \theta).
\end{align*}$$ (37–41)

(c) the spatial derivatives of z_α:

$$\begin{align*}
\partial_1 z_1 &= -\frac{2(15\gamma - 14)}{3(3\gamma - 2)} \dot{u}_1 z_1 + \frac{\dot{u}_2 (6\gamma - 8) + q_2 (6 - 9\gamma)}{3(3\gamma - 2)} z_2 + \frac{\dot{u}_3 (6\gamma - 8) + r_3 (9\gamma - 6)}{3(3\gamma - 2)} z_3 \\
&\quad + \frac{\theta}{3(3\gamma - 2)} (\omega^2 (2 - 33\gamma + 27\gamma^2) - (6\gamma - 8)(2\dot{u}_1^2 - \dot{u}_2^2 - \dot{u}_3^2) + (6 - 9\gamma) E_{11}), \\
\partial_2 z_2 &= -\frac{2(15\gamma - 14)}{3(3\gamma - 2)} \dot{u}_2 z_2 + \frac{\dot{u}_1 (6\gamma - 8) + r_1 (9\gamma - 6)}{3(3\gamma - 2)} z_1 + \frac{\dot{u}_3 (6\gamma - 8) - q_3 (9\gamma - 6)}{3(3\gamma - 2)} z_3 \\
&\quad + \frac{\theta}{3(3\gamma - 2)} (\omega^2 (2 - 33\gamma + 27\gamma^2) + (6\gamma - 8)(\dot{u}_1^2 - 2\dot{u}_2^2 + \dot{u}_3^2) + (6 - 9\gamma) E_{22}), \\
\partial_3 z_3 &= -\frac{2(15\gamma - 14)}{3(3\gamma - 2)} \dot{u}_3 z_3 + \frac{\dot{u}_1 (6\gamma - 8) + q_1 (6 - 9\gamma)}{3(3\gamma - 2)} z_1 + \frac{\dot{u}_2 (6\gamma - 8) - r_2 (6 - 9\gamma)}{3(3\gamma - 2)} z_2 \\
&\quad + \frac{\theta}{3(3\gamma - 2)} (\omega^2 (56 - 78\gamma + 27\gamma^2) + (6\gamma - 8) U + (16 - 12\gamma) \dot{u}_1^2 + (6 - 9\gamma) E_{33}),
\end{align*}$$ (42–44)
First, suppose that $z_3 + 2\theta \bar{u}_3 \neq 0$. Now propagating equations (52), (53) along u results in a linear system in z_1, z_2:

$$\alpha z_1 + \beta z_2 = 0, \quad -\beta z_1 + \alpha z_2 = 0$$

with

$$\alpha = (\gamma - 1)(z_3 + \bar{u}_3)^2 + \left(\frac{\mu + 3p}{2} - j + \left(\gamma - \frac{4}{3}\right)\theta^2 + 2\omega^2\right)\bar{u}_3^3$$

$$\beta = -\frac{9\gamma - 10}{4}(z_3 + \bar{u}_3)\omega \bar{u}_3.$$
If \(\beta \neq 0 \) the system (54) has only the 0-solution, and consequently (52), (53) would imply \(\dot{u}_1 = \dot{u}_2 = 0 \). In this case, the acceleration would be parallel to the vorticity and the conjecture \(\omega \theta = 0 \) follows by [22]. When \(\beta = 0 \), we have the following possibilities:

- \(\gamma = \frac{10}{3} \): in this case the conjecture \(\omega \theta = 0 \) has been established [21],
- \(\dot{u}_3 = 0 \): (52), (53) now imply \(\dot{u}_1 = \dot{u}_2 = 0 \) which takes us back to the ‘dust’ cases with a cosmological constant [9, 10, 16],
- \(z_3 + \theta \dot{u}_3 = 0 \) and \(\dot{u}_3 \neq 0 \): by (52), (53) one then has \(z_1 + \theta \dot{u}_1 = z_2 + \theta \dot{u}_2 = 0 \), which implies that the spatial gradient of \(\log \theta - \int \frac{dp}{\mu + \rho} \) vanishes, and hence the fluid flow is irrotational (unless of course \(\log \theta - \int \frac{dp}{\mu + \rho} = 0 \), in which case the \(\omega \theta = 0 \) conjecture would follow from [12]), which contradicts our assumption.

3.2. \(z_3 + 2 \theta \dot{u}_3 = 0 \)

If \(z_3 + 2 \theta \dot{u}_3 = 0 \), then (52) implies that \(\dot{u}_3 z_1 = \dot{u}_3 z_2 = 0 \). If \(\dot{u}_3 \neq 0 \) propagation of the conditions \(z_1 = z_2 = 0 \) along \(u \) gives, using (30),

\[
\dot{u}_1 (9 \gamma - 10) \omega \theta = \dot{u}_2 (9 \gamma - 10) \omega \theta = 0, \tag{56}
\]

which again would imply that the vorticity and acceleration are parallel. We, therefore, conclude that \(\dot{u}_3 = 0 \) and hence also \(z_3 = 0 \). By (16), one then also has \(n_{33} = 0 \). Furthermore, with (26), (27) and (49), (50) the conditions \(u_3 = z_3 = 0 \) yield

\[
r_3 z_1 = q_3 z_2 = 0, \quad r_3 \dot{u}_1 = q_3 \dot{u}_2 = 0, \tag{57}
\]

such that, unless acceleration and vorticity are parallel, at least one of \(q_3 \) or \(r_3 \) is zero. Without loss of generality, we can suppose \(q_3 = 0 \). If \(r_3 \neq 0 \) then \(z_1 = \dot{u}_1 = 0 \), after which (30) would imply \((9 \gamma - 10) \omega (z_2 + \dot{u}_2) = 0 \). The spatial gradients of \(\theta \) and \(p \) would then be parallel (with the coefficient of proportionality depending on \(\theta \) only), which again would imply that the flow is irrotational. We conclude that both \(q_3 = r_3 = 0 \). A straightforward calculation then shows that there is a Killing vector along \(e_3 \), although in the following this property will not be explicitly used.

4. Proof of \(\omega \theta = 0 \)

From (23), (44) and \(\dot{u}_3 = z_3 = 0 \), one obtains

\[
\begin{align*}
\dot{j} + 2 \omega^2 - 3 \dot{u}_1 q_1 + 3 \dot{u}_2 r_2 + 3 E_{33} &= 0, \\
(3 \gamma - 2)(-3q_1 z_1 + 3 r_2 z_2 - 3 \theta E_{33}) + (3 \gamma - 4)(2 \theta U + 2 V + (9 \gamma - 14) \omega^2 \theta) &= 0.
\end{align*}
\tag{58}
\tag{59}
\]

Propagating (9) along \(u \) gives a third algebraic relation among the same variables, which allows us to express \(q_1 \) and \(r_2 \) as

\[
\begin{align*}
q_1 &= ((\gamma - 1)(p + \mu) + 3(3 \gamma - 4) \omega^2) \dot{u}_2 W^{-1} + (j - p - \mu + 2 \omega^2) z_2 (3W)^{-1}, \\
r_2 &= ((\gamma - 1)(p + \mu) + 3(3 \gamma - 4) \omega^2) \dot{u}_1 W^{-1} + (j - p - \mu + 2 \omega^2) z_1 (3W)^{-1}.
\end{align*}
\tag{60}
\tag{61}
\]

and by which we can rewrite (59) as

\[
(3 \gamma - 2)^2 (p + \mu) \dot{\theta} + (3 \gamma - 4)(4(9 \gamma - 8) \theta \omega^2 + 2 V + 2 \theta U) = 0.
\tag{62}
\]

Note that \(W \neq 0 \) since propagating \(W = 0 \) along \(u \) would imply \((9 \gamma - 10) U \omega (z_1 + \theta \dot{u}_1) = (9 \gamma - 10) U \omega (z_2 + \dot{u}_2) = 0 \), and hence \(z_1 + \theta \dot{u}_1 = z_2 + \dot{u}_2 = 0 \). Applying the same reasoning as in section 3.2 would then lead to an irrotational flow.
We now focus on equations (31), (32). Applying the \([\partial_1, \partial_2]\) commutator on \(f\) and using (13), (14), (21), (22), (24), (25), (42), (43), (45), (46), (A.5), (A.17), we obtain

\[
2(4\gamma - 5)W + (7\gamma - 10)\omega f + (3\gamma - 2)(11\gamma - 8)(p + \mu)\omega + (459\gamma^2 - 1048\gamma + 580)\omega^3 = 0.
\]

(63)

Propagating this relation twice along \(u\) and simplifying the result using (62) and (63) results in a linear system

\[
\begin{bmatrix}
6\gamma(21\gamma - 20)(3\gamma - 4) & (3\gamma - 2)(47\gamma^2 - 76\gamma + 30) \\
4(5 - 3\gamma)(21\gamma - 20)(3\gamma - 4) & (3\gamma - 2)(47\gamma^2 - 76\gamma + 30)
\end{bmatrix}
\begin{bmatrix}
\omega^2 \\
p + \mu
\end{bmatrix} = 0,
\]

(64)

which clearly implies \(\omega = 0\) or \(p + \mu = 0\).

5. Discussion

We have demonstrated that a shear-free perfect fluid, obeying an equation of state \(p = (\gamma - 1)\mu\) and satisfying the ‘solenoidal’ condition \(\text{div} \, H = 0\), is either expansion free or vorticity free. Our proof relies heavily on the subcases discussed earlier in the literature for various values of \(\gamma\). In addition, we have presented an interesting framework which shows promise for successfully mounting an assault on the shear-free conjecture with the assumption of just a \(\gamma\)-law. Presently, we are trying to generalize our result to include an arbitrary barotropic equation of state \(p = p(\mu)\) with the solenoidal condition. Preliminary work shows that almost all relations in the present work can be generalized (in particular, the fact that \(\omega \theta \neq 0\) would imply the existence of a Killing vector parallel to the vorticity). Some technical difficulties still remain to be dealt with in the final stage of the proof. This is primarily due to the resulting more complicated nature of equation (63) and its subsequent derivatives. A proof of the conjecture would be very desirable, as the classification of the shear-free case would form a necessary and natural first step in the study of purely ‘solenoidal’ perfect fluids.

Appendix

Commutator relations, using \(\sigma_{ab} = 0\):

\[
\begin{align*}
[\partial_0, \partial_1] &= \dot{u}_1 \partial_0 - \dot{u}_0 \partial_1 + (\omega_1 + \Omega_1) \partial_2 - (\omega_2 + \Omega_2) \partial_3 \\
[\partial_0, \partial_2] &= \dot{u}_2 \partial_0 - (\omega_1 + \Omega_1) \partial_1 - \dot{u}_2 \partial_2 + (\omega_1 + \Omega_1) \partial_3 \\
[\partial_0, \partial_3] &= \dot{u}_3 \partial_0 + (\omega_2 + \Omega_2) \partial_1 - \dot{u}_3 \partial_3 - (\omega_1 + \Omega_1) \partial_2 \\
[\partial_1, \partial_2] &= -2\omega_1 \partial_0 + q_2 \partial_1 + r_1 \partial_2 + n_{33} \partial_3 \\
[\partial_1, \partial_3] &= -2\omega_1 \partial_0 + q_3 \partial_2 + r_2 \partial_3 + n_{11} \partial_1 \\
[\partial_1, \partial_3] &= -2\omega_2 \partial_0 + r_1 \partial_1 + q_1 \partial_3 + n_{22} \partial_2.
\end{align*}
\]

(A.1)

Using, in addition, the simplifications \(\omega_1 = \omega_2 = \Omega_1 = \Omega_2 = 0\), \(\Omega_3 = -\omega_3\), \(n_{11} = n_{22} = n\) one obtains the Jacobi equations:

\[
\begin{align*}
\dot{\omega}_3 &= \omega(u_3 + r_3 - q_3) \\
\dot{\omega}_1 n + \dot{\omega}_2 r_3 + \dot{\omega}_3 q_2 - n(r_1 - q_1) - r_3 r_2 + q_3 q_2 &= 0 \\
\dot{\omega}_2 n + \dot{\omega}_3 r_1 + \dot{\omega}_1 q_3 - n(r_2 - q_2) - r_3 r_1 + q_3 q_1 &= 0 \\
\dot{\omega}_1 r_2 + \dot{\omega}_2 q_1 + \dot{\omega}_3 n_{33} - \frac{2}{3}\dot{\omega} - r_2 r_1 + q_2 q_1 - n_{33}(r_3 - q_3) &= 0 \\
\dot{\omega}_3 u_3 - \dot{\omega}_2 u_2 - n u_1 - q_3 u_2 - r_2 u_3 &= 0.
\end{align*}
\]

(A.2) (A.3) (A.4) (A.5) (A.6)
\[
\begin{align*}
\partial_3 \dot{u}_1 - \partial_1 \dot{u}_3 - n \dot{u}_2 - r_3 \dot{u}_1 - q_1 \dot{u}_3 &= 0 \\
2 \partial_0 \omega + \partial_1 \dot{u}_2 - \partial_2 \dot{u}_1 - \dot{u}_1 q_2 - \dot{u}_2 r_1 - \dot{u}_3 n_{33} + \frac{4}{3} \theta \omega &= 0 \\
\partial_0 (r_0 - q_0) - \frac{1}{3} \partial_0 \theta + \frac{\theta}{3} (r_0 - q_0 + 2 \dot{u}_0) &= 0 \\
3 \partial_0 \mu + 3 \partial_3 \omega + n \theta - 3 \omega (\dot{u}_3 + r_3 - q_3) &= 0 \\
3 \partial_0 n_{33} + 3 \partial_3 \omega + n_{33} \theta - 3 \omega (\dot{u}_3 + r_3 - q_3) &= 0 \\
\partial_2 (r_2 + q_2) + \frac{1}{3} \theta (r_2 + q_2) &= 0, \\
\end{align*}
\]

Einstein equations:

\[
\begin{align*}
\partial_0 \theta &= -\frac{1}{3} \theta^2 - \frac{1}{2} (\mu + 3 p) + j \\
2/3 \partial_0 \omega - \omega (r_2 - 2 \dot{u}_2) &= 0 \\
2/3 \partial_0 \omega - \omega (q_1 + 2 \dot{u}_1) &= 0 \\
2/3 \partial_2 \omega - n_{33} &= 0 \\
- \partial_1 r_2 + \partial_2 q_1 - r_1 r_2 - q_1 q_2 - 2 r_2 q_1 - 2 r_3 n + n_{33} (r_3 + q_3) &= -2 q_3 n \\
&= - \partial_1 u_2 - \partial_2 u_1 - 2 u_1 \dot{u}_2 + \dot{u}_1 q_2 - u_2 r_1 \\
- \partial_2 r_3 + \partial_3 q_2 + n_3 - n (\dot{r}_3 - q_3) &= -2 q_1 n_{33} - r_2 r_3 - q_2 q_3 - 2 r_3 q_2 \\
&= - \partial_2 u_3 - \partial_3 u_2 - u_1 (2 \dot{u}_3 + r_3) + u_2 (n_{33} + \dot{u}_3) \\
\partial_1 q_3 - \partial_3 r_1 + \partial_3 n_{33} - 2 n_2 - r_2 (2 n_{33} - n) &= q_2 - r_1 r_3 - q_1 q_3 - 2 r_1 q_3 \\
&= - \partial_1 u_3 - \partial_3 u_1 + u_1 (2 \dot{u}_3 + r_3) + u_2 (n_{33} + \dot{u}_3) \\
- \partial_1 r_1 + \partial_1 q_1 + \partial_2 q_2 - \partial_1 r_3 + q_2^2 + r_1^2 + \frac{1}{2} n_{33} - n_{33} + q_1^2 - r_2 q_2 - r_3 q_3 \\
&= \frac{1}{2} \theta^2 + \frac{1}{3} \omega^2 - \frac{1}{2} (\mu - j) - \partial_1 u_1 - \dot{u}_1^2 + \dot{u}_3 r_3 - \dot{u}_2 q_2 \\
- \partial_2 r_2 + \partial_2 q_2 - \partial_3 r_3 + q_2^3 + r_1^3 + \frac{1}{2} n_{33} - n_{33} + q_2^3 + r_2^3 - r_1 q_2 - r_3 q_3 \\
&= \frac{1}{2} \theta^2 + \frac{1}{3} \omega^2 - \frac{1}{2} (\mu - j) - \partial_2 u_2 - \dot{u}_2^2 + \dot{u}_1 r_1 - \dot{u}_3 q_3 \\
- \partial_3 r_3 + \partial_3 q_3 + \partial_1 q_1 - \partial_2 r_2 + q_1^2 + r_2^2 + \frac{1}{2} n_{33} + r_3^2 + q_2^3 - r_1 q_1 - r_2 q_2 \\
&= \frac{1}{2} \theta^2 + \frac{1}{3} \omega^2 - \frac{1}{2} (2 \mu - j) - \partial_1 u_3 - \dot{u}_2^2 + \dot{u}_2 r_2 - \dot{u}_1 q_1.
\end{align*}
\]

References

[1] Banerji S 1968 Prog. Theor. Phys. 39 365
[2] Bastiaensen B, Karimian H R, Van den Bergh N and Wylleman L 2007 Class. Quantum Grav. 24 3211 (Preprint gr-qc/0703022)
[3] Carminati J 1990 J. Math. Phys. 31 2434
[4] Carminati J and Cyganowski S 1997 Class. Quantum Grav. 11 1167
[5] Chebok T 2004 PhD Thesis Berlin University
[6] Coley A A 1991 Class. Quantum Grav. 8 955
[7] Collins C B 1984 J. Math. Phys. 25 995
[8] Cyganowski S and Carminati J 2000 Gen. Rel. Grav. 32 221
[9] Ellis G F R 1967 J. Math. Phys. 8 1171
[10] Gödel K 1949 Rev. Mod. Phys. 21 447
[11] King A R and Ellis G F R 1973 Commun. Math. Phys. 31 209
[12] Lang J M and Collins C B 1988 Gen. Rel. Grav. 20 683
[13] Maartens R and Bassett B A 1998 Class. Quantum Grav. 15 705
[14] MacCallum M A H 1971 Cosmological Models from a Geometric Point of View (Cargèse) vol 6 (New York: Gordon and Breach) p 61
[15] Obukhov Yu N, Chrobok T and Scherfner M 2002 Phys. Rev. D 66 043518
[16] Schücking E 1957 Naturwissenschaften 19 507
[17] Senovilla J M M, Sopuerta C F and Szekeres P 1998 Gen. Rel. Grav. 30 389
[18] Sopuerta C F 1998 Class. Quantum Grav. 15 1043
[19] Sopuerta C F, Maartens R, Ellis G F R and Lesame W M 1999 Phys. Rev. D 60 024006
[20] Treciokas R and Ellis G F R 1971 Commun. Math. Phys. 23 1
[21] Van den Bergh N 1999 Class. Quantum Grav. 16 117
[22] White A J and Collins C B 1984 J. Math. Phys. 25 332