التحليل الجيومورفولوجي للخصائص المورفومترية للجزء الأعلى من حوض وادي الرميمين وحوض نهر تكال

دراسة مقارنة في الجيومورفولوجيا المناخية -

د. صبري محمد التوم

الملخص

ركزت الدراسة على التحليل الجيومورفولوجي للخصائص المورفومترية لحوضي تكالا والجزء الأعلى من حوض وادي الرميمين. إذ يتعانى القليل من المناخين المختلفين تمامًا (الاستوائي والبحر المتوسط شبه الحاف). وقد تم تحديد الشبكة النهرية في كلا الحوضين بالاعتماد على الخرائط الطبيعية والصور الجوية. والعمل الميداني. وأظهرت الدراسة مجموعة من الحقائق المتمثلة في: وجود اختلافات أساسية في الخصائص المورفومترية بين الحووضين (أطول الروافد، ومساحة الأحواض، والكثافة، والتكرار النهري، والاستطالة، والاستدارة، ونسبة التغطية، والانعدام، والانحدار، والانحدار الروافد). وأرجع الاختلاف في هذه الخصائص إلى الظروف المناخية. انتقلت قوانين هورتون على كلا الحو الشعب إلى إيجابية وبالاعتماد على الخرائط الطبيعية، واحتل التكرار النهري الدرجة الأولى تفاصيل المورفومترية (متوسط سرعة الأحواض، وانحدار أطول الروافد، والروافد، وانعدام الروافد، والانحدار الروافد، والانحدار النهري) والنتيجة النهارية العلاقة المتميزة بين هذه المواقف الفردية والأحواض (ص = أَسّ). أظهر توضيح المعتقدات أن العلاقة الأساسية (ص = أَسّ) كانت أفضل الروابط التي أظهرها التحليل. العلاقة بين المؤشرات المختلفة سواء كانت العلاقة سالبة أو موجبة. وقد ارتبطت مساحة الأحواض بعلاقات ارتباط موجبة مع أطول الروافد في المرتبة الأولى والثانية في كلا الحو الشعب. وسجل مؤشر أطول الروافد أعلى معدل تحديد (80%) مع مساحة الأحواض في المرتبة الأولى، ارتبطت الكثافة التصريفية ب чисلة سلبية مع مساحة الأحواض في المرتبة الأولى والثانية، في حين كانت موجبة مع التكرار النهري. واحتل التكرار النهري درجة الأولى تفاصيلًا للتنبؤ في الكثافة التصريفية من بين المؤشرات المورفومترية.

* أستاذ الجغرافيا الطبيعية والخريطة المشارك - الجامعة الإسلامية - غزة - فلسطين
Geomorphological analysis of
Morphometric Characteristics of
the Upper Part of the Rumeimine and
Tekala Catchments:
A study in the Climatic Geomorphology

Dr. SAbri Mohammed AlTom

Abstract

The study concentrated on the Geomorphological analysis of morphometric characteristics of two catchments (The upper parts of the Rumeimine and Tekala) which are located in two different climate regions (Tropical and semiarid). The network was defined in both catchments depending on topographic maps, Arial photographs (1: 25000) and fieldwork. The study showed a group of main basic different facts in the morphometric characteristics between the two catchments (Stream length; Catchment area; Drainage density; Stream frequency, Elongation; Circularity; Relative relief and Streams slopes). The difference is endowed to climate conditions. Horton’s laws were applied in both cachments gave the power equations \((Y=aX^b)\) between morphometric variables: (mean of basin area, mean of Stream length, Stream number, mean of Streams slopes, Stream frequency and stream order). Curves fitting indicate that the power equations \((Y=aX^b)\) is the best relation between different indices, whether the relation is negative or positive. The basin area is positively correlated with stream length in both the first and second stream orders in both catchments. The index of stream length shows the highest Coefficients of Determination (80%) with the basin area in the first order. The relationships between the stream density and the basin area in the first and the second order are negatively correlated with exponential equation \((Y=aX^b)\) where it was powerly correlated with stream frequency. The stream frequency holds the first class in the interpretation of variance in the drainage density of the morphometric indices.
المقدمة

استوحى تدريس الأحواض النهرية على جانب كبير من الدراسات الجيومورفولوجية. فركزت على كيفية تشكيل سطح الأرض بواسطة المياه الجارية، وكيفية تحرك مياه الأمطار على السفوح، ومن ثم إلى الروافد النهرية. تشكل الشبكات النهرية الوسيط الذي من خلاله يتم نقل المياه، والحماية خلال الأحواض النهرية، وتعد شبكة التصريف المائي في الأحواض النهرية انعكاسًا حقيقيًا للعوامل البيئية الطبيعية المتمثلة في الوضع الجيولوجي والبنية الجيولوجية والظروف المناخية والنباتية، ومن ثم أي تغييرات تحدث لهذه العوامل تؤثر بطريقة مباشرة أو غير مباشرة في الشبكة المورفومترية للأحواض النهرية، والتي بدورها تؤثر في تطوير أشكال أرضية في الأحواض النهرية من خلال نشاط عمليات التح nouns النقل والإرساب النهري.

زاد الاهتمام بالدراسات المورفومترية لشبكات الأنهار بعد الدراسة الرائدة لهورتون (Horton. 1945) في النصف الأول من القرن الماضي، وتبعت ذلك مجموعة من الباحثين أمثال (Strahler 1957، وSchumm 1956، وMaxwell 1959، وSalama 1966، وDay 1980، وShreve 1984، وموريساوا 1980). أظهرت تلك الدراسات أن الخصائص المورفومترية للأحواض النهرية هي نتاج العوامل الطبيعية المتمثلة في التكوين الصخري والبنية والمناخ والنبات، وحاول الباحثون إيجاد علاقات ما بين خصائص الشبكات النهرية المورفومترية وبعض المؤشرات الطبيعية مثل العلاقة بين الكثافة التصريفية والمناخ (Abraham. 1972، وChorley & Morgan. 1962، ومرتبط بين الخصائص المورفومترية والتكوين الصخري (Melton 1957، وWilson 1971، وMalin 1980، وSalama 1980). وحاول وضع مؤشر نباتي كدليل على الخصائص المورفومترية (Chorley 1957)
المدرسة الجيومورفولوجية العربية، والتي كان للمدرسة الجيومورفولوجية المصرية قرص السباق والرائدة فيها، على دراسة الحوض النهري كوحدة جيومورفولوجية مع اختلاف مساحاتها وخصائص تلك الأحواض، وكانت الدراسات المورفومترية العامة جزءًا منها، ولا يسع المقام لذكرها، ويكنى أن نذكر بعض الأسماء المتميزة في هذا المقام مثل دراسات كل من: أبو العز، وأبو العينين، وعاشور، ومشوب، وشاو، وجاد، وأبو راضي، وتراب، ومحمود، ومصر، والدراسات الرايدة التي أعدها سلامة الأردن.

أهداف الدراسة

كثير الدراسات التي تعرضت لدراسة الخصائص المورفومترية للأحواض النهرية المختلفة المساحة، خاصة تلك الدراسات التي تدرس الحوض النهري كوحدة جيومورفولوجية. ويلاحظ أن كل هذه الدراسات تعرضت لدراسة حوض نهري واحد أو مجموعة أحواض نهرية بيئة جغرافية واحدة، إلا أن قلة منها التي حاولت عقد مقارنات بين الخصائص المورفومترية للأحواض النهريات أقائيم مناخية مختلفة تمامًا، وبعيدة عن بعضها، لذلك جاءت هذه الدراسة: لتحقيق الأهداف التالية:

- دراسة انعكاس الظروف المناخية على الخصائص المورفومترية لحوض الجزء الأعلى من حوض الرميمين، وحوض تكالا من الناحية الجيومورفولوجية.
- دراسة الخصائص المورفومترية لحوضي الجزء الأعلى من حوض الرميمين وتكالا، إذ يقعان في إقليمين مناخيين مختلفين تمامًا (الاستوائي، والبحر المتوسط شبه الجاف).
- دراسة العلاقات المتبادلة بين الخصائص المورفومترية لكلا الحوضين.
- إبراز الخصائص المورفومترية لكلا الحوضين، مما لتلك الخصائص من أهمية إزالة الضوء على مائة الروافد النهيرية، ونتائجها الرسومي، ودورها في تشكيل وتطوير الأشكال الأرضية في أحواضها.
التحليل الجيولوجي لمخلصات المورفومترية
للجزء الأعلى من حوض وادي الرميمين وحوض نهر تكالا

منطقة الدراسة:

اجتمعت الدراسة على حوضين نهرين، الأول يشكل جزءًا من الأجزاء العليا لحوض وادي الرميمين في وسط غرب الأردن برافته الأساسيين: وادي زي و وادي الحرمية، و يقع بين خطى طول 35°20’ و 35°35’ شرقًا، و دائري عرض 42°30’ شرقًا. و يتجه نظام التصريف من الغرب إلى الشرق ثم إلى الشمال. والثاني حوض نهر تكالا الذي يشكل أحد الروافد العليا لنظام حوض نهر ألونجات في ولاية سالانور بمالزيا، المحصور بين خطى طول 32°30’ شرقًا و دائري عرض 3°15’ شرقًا (الشكل 1).

الملاحظ البيئية لحوض الدراسة:

أولاً: حوض وادي الرميمين

الوضع الجيولوجي

يعود أحد روافد وادي الرميمين من الجهولة الغربية، والذي بدوره يشكل جزءًا من نظام حوض نهر الزرقاء، وهو جزء من الهضبة الكاسمية الصوانية ذات التصريف الغوري في وسط غرب الأردن. وأهم الوحدات الصخرية التي تتكشف في المنطقة الوحدة الكلسية العقدية التي ترسبت فوق صخر الحجر الرملي، و تعود إلى السينوماني الأسفل (عابد، 1982)، وتتجمع إلى قسمين: تكوين ناعور (وحدة الحجر الطيني الباردي) ويتكون من عباقر المرال والفضار مع الكلاس الدولوميتي الرمادي مع وجود بعض الصوان، وتتميز بصلايبها، وتشكل أحيانًا جروفًا حادة. وتظهر على السطح مناطق كثيرة، وتكوين النفيص (وحدة الحجر الكلسي الباردي) ترسب فوق تكوين ناعور. وتظهر على السطح بعض الأماكن. و ترسبت الوحدة الكلسية الأكوادية فوق الوحدة العقدية السابقة، و ترجع إلى السينوماني الأعلى (بنتنجر، 1974). وتتجمع إلى تكوين الحمر الذي يرجع إلى السينوماني، الذي ترسب فوق تكوين الفحيص: ويتكون من عباقر طبقات الكلس والكلاس الدولوميتي مع المرال.
ويحتوي على طبقات من الصوان (خضير، 1988)، ويظهر على شكل شريط ضيق يُعرف وادي الحرمية، يعلوه 특يboxing مشهور: الذي يعود إلى التوروني (عهد، 1982)، ويتكون من تعاون ماز وطباشير تتحلل طبقات من الكرس الخفيف، وينشر في وادي الحرمية، وترسب صخور الوحدة الكلسية الكثيلة فوق صخور الوحدة الأكناوية وهي عبارة عن طبقات متتالية من الكرب الكتلي الصلبي رقيق التطابق مع بعض عقيدات وطبقات من الصوان (عهد، 1982)، وتعود إلى التوروني، وتظهر أجزاء قليلة جديدة من أعلاه وادي الحرمية.

أدى عدم استمرار غور وادي الأردن، وتوالي عمليات الهبوط حتى البليستوسين الأعلى إلى تصابي الأنظمة النهرية، ومنها حوض الرميمين، فارتفعت نسبة التضرر، والتقليل، وعدم انتظام المفاطع الطولية، والعرضية للأنهار (النور، 1990)، بالإضافة إلى تكون الأودية الخانقية، ويظهر ذلك على قطاعات الانحدار المقيمة على المنحدرات الجانبية للأودية (النور، 2004).

العوامل المناخية:

يتبين الرميمين مناخ البحر المتوسط الجبلي شبه الجاف، وتتباین معدلات الأمطار السنوية في الحوض، فبقل معدل سقوط الأمطار كلما انجهنا ناحية الشرق، بينما سجل المعدل السنوي 91.7 ملم في محطة أم جوزة تناقص إلى 37.6 ملم في محطة الرميمين الواقعة إلى الشرق من أم جوزة، وتتركزة الأمطار في شهور الشتاء، إذ يضط糯米 85 % منها في أشهر كانون الأول وكانون الثاني وشباط وأذار (ديسمبر ويناير وفبراير) ومارس.

نظرًا لعدم وجود محطة في الحوض لقياس درجات الحرارة، أخذت قراءات محطة البقعة، التي هي أقرب إلى الحوض من جهة الشرق، وتمتاز درجات الحرارة باعتدالها وتتراوح معدلاتها الشهرية ما بين 6 °C في كانون الثاني (يناير) إلى 23 °C في تموز وآب (يوليو وأغسطس) (النور، 1990).
التحليل الجيولوجي للخصائص المورفومترية للجزء الأعلى من حوض وادي الرميين وحوض نهر تكالا

الترية

تنتشر تربة البحر المتوسط الحمراء والبيلوشول المتطرفة عن الصخور الكلسية والمارلية والطينية (مورمان 1959)، ويختلف سمك التربة من مكان إلى آخر حسب طبيعة درجة الانحدار والموقع، ولاحظت علاقة عكسية بين درجة الانحدار وسمك التربة، باستثناء المناطق التي توجد بها الغابات، ويزداد سمك التربة على المدرجات الجبلية، ونتيجة لقلة الغطاء النباتي العشبي تنتشر التربة إلى الأفق، والمواد العضوية (أبو سمر 1986)، وتتراوح الطاقة الاستيعابية للرطوبة من 8.5 إلى 19.5 %.

تنتشر التربة الفيضية الحديثة في قينع الأودية، مثل وادي زي، لذلك ترتفع فيها نسبة الطين، ويصل عمقها أحيانًا إلى 3 م، وتنشر بها بعض الكتل الصخرية الصغيرة المتساقطة، والمنقولة لها من المجررات شديدة الانحدار.

الغطاء النباتي

تغطي سطح الحوض مناطق متفرقة شجيرات مختلفة، مثل الصنوبر الحليبي المنطقية التي يزيد ارتفاعاتها على 850م فوق منسوب البحر، حين تنتشر أشجار البلوط من المناطق المحصورة بين 790 إلى 850م، وتغطي الشجيرات المختلفة أجزاء متفرقة من الحوض، وتتعرض الغطاء النباتي الحوض إلى عمليات الإزالة: لإحلال الزراعة محل الغطاء الشجري (أبو سمر، 1987).

تنتشر الحشائش مناطق قليلة في الحوض، ولا تزيد ارتفاعاتها على 25سم، ولا تشكل نطاقًا متساً لحبر يتسع منشأة أو تحت الشجيرات الحرجية.

ثانيًا: حوض نهر تكالا:

الوضع الجيولوجي

يشكل جزءًا بسيطًا من نظام العرف الجبلي، الذي يعد العمود الفقري Range.
يضمن الجزر المالحة، ويرجع إلى التنوع الجيولوجي والبيئي. ويعتقد أن هذا التكوين يشكل باثوليث يتكون معظمه من الصخور الجرانيتية. ويقع حوض تكالا في الجزء الغربي من العرف حيث تسود الصخور الجرانيتية التي ترجع إلى الترياسي والجوراسي، وتصنف الصخور الحوض ضمن تكوين جرانيت سميّه Semenyih Granite الكبيرة (Gobbet and Hutchison، 1973).

العوامل المناخية:

يقع الحوض ضمن المناخ الاستوائي الموسمي، يتميز بسقاط أمطار عالية، له فصائل تتبع الأولى الرياح الموسمية الجنوبية الغربية الممتدة من مارس إلى سبتمبر، والثانية الرياح الموسمية الشمالية الشرقية الممتدة من أكتوبر إلى مارس، ويترابط معدل الأمطار بـ الحوض 2290-2510 ملم/عام.

لا توجد فوارق في المتوسطات الحرارية الشهرية: إذ يُعد شهر أيار (مايو) أكثر شهور العام حرارة بمعدل 25.1 م، حين سجل شهر كانون الثاني (يناير) أدنى المتوسطات بمعدل 23.5 م.

الترية:

تصنف ترية حوض تكالا بأنها ترية الأراضي شديدة الانحدار المعروفة باسم Rangom (Rangom، 1979، Gopinahtan & Paramananthan)، وتغلب عليها الترية الرملية الطينية والرملية الطينية، ومع العمق تتحول إلى طينية، ويتباين سمك الترية من منطقة إلى أخرى: إذ تظهر الصخور مباشرة على سطح المنحدرات أحيانًا، وبشكل عام تكسو المنحدرات طبقة من الترية يصل سمكها إلى 6 أمتار أحيانًا، يرجع ذلك إلى الظروف المناخية، وتسارع عمليات التجوية المختلفة، وما يلعبه الغطاء الجليدي.
التحليل الجيومورفولوجي للخصائص المورفومترية للجزء الأعلى من حوض وادي الرميمين وحوض نهر تكالا

(Al Toum. 1997).

النباتي من دور حماية للتربة من الانجريف.

الغطاء النباتي يقع الحوض ضمن الغابة الاستوائية، فلا تخلو أي بقعة منه من الأشجار، باستثناء مجاري الأنهار التي تغطيها الأغصان من أعلى أحياناً، وتتميز أشجار الغابة هنا بالتنوع الكبير، وكانت نتيجة المسح الميداني لثلاثة منحدرات، ظهور أكثر من خمسين نوعًا، وتتباؤن ارتفاعاتها تصل إلى أكثر من 50 متراً، وتصنف بـ (Hill Dipterocarp) و (and Non- Dipterocarp - Al Toum. 1997

يلعب النبات دورًا مهمًّا في سير العمليات الجيومورفولوجية على المنحدرات، سواء كان ذلك عن طريق عمليات التجوية، أو تقليل تأثير ارتطام قطرات المطر على التربة، وارتفاع معدل التسرب إلى داخل التربة، وتقليل معدل الجريان السطحي.

طريقة الدراسة :

أسلوب الدراسة

من أجل دراسة الخصائص المورفومترية للحوضين فيد الدراسة: تم توفير مجموعة من الخرائط والصور الجوية للحوضين، وقد اشتملت على ما يلي:

أولاً: حوض الجزء الأعلى من حوض الرميم:
- خرائط طبغرافية مقياس 1 : 50000، و ألوحتي السلط وصويلح 1947.
- خرائط حوض الزرقاء السفلي أرقام 3، 5، 6 مقياس 1: 25000 لعام 1977، وباصل كنتوري 5 و 10 م.
- خرائط جيولوجية مقياس 1 : 25000، لوحات عمان، عمان، السلط، العالوك.
- غطاء من الصور الجوية مقياس 1: 25000، تصوير عام 1953 و 1984.

ثانياً: حوض نهر تكالا
- خريطة طبغرافية رقم 94 أصولنجات مقياس 1: 25000 لعام 1969، وباصل كنتوري 10 أقدم.
- خريطة جيولوجية للمنطقة نفسها 1 : 100000.
طريقة تحديد الشبكة النهرية

تم تحديد شبكة الروافد النهرية على الخرائط الطبغرافية مباشرة كما هي موظفة عليها بواسطة الخط الأزرق، إذ تُعد الخرائط ذات مقياس 1:25000 من أدق الخرائط المستخدمة في الدراسات المورفومترية (عاصور، 1983)، على الرغم من أنها فقد لا توضح بعض روافد المرتبة الأولى، لذلك أشارت دراسات مختلفة إلى أخذ الحيطة والحذر عند التعامل معها (Cotton. 1964 ; Eyles، 1966).

استخدمت طريقة تعرجات خطوط الكنتور؛ لتتبع الروافد غير المحددة بالخط الأزرق، وتستخدم على تتبع خطوط الروافد النهرية من خلال انجناء خطوط الكنتور حتى تصبح خفيفة التقوس (Smart. 1972 ; Butzer. 1969). واستخدم جهاز استيريوسكوب؛ لتتبع الروافد غير الواضحة بالأسلوب السابقين، تلا ذلك العمل الميداني؛ للتأكد من صحة توقع الروافد النهرية، وتوقع أي رافد لم يسبق تعيينه، خاصة في موقع تكاثر ذات الغطاء النباتي الكثيف الذي يغطي سطح الأرض، فلا تظهر بعض روافد المرتبة الأولى بتحليل الصور الجوية (Eyles. 1966)، وبذلك تم تحديد ورسم الشبكة النهرية النهائية في الحوضين (الشكل 2)، للمزيد عن الخصائص المورفومترية للأحواض النهرية راجع (Doornkamp & King، 1971)، ومحساس (1998)، و أبو العين (2000)، وسلامة (2004).

استخدمت عجلة القياس؛ لقياس الأطول، ويلانيميت بلاكوم؛ لقياس المساحات على الخرائط، وعند الحالتين كان يتم القياس ثلاث مرات، ويعتمد المتوسط، إلا إذا كان الفرق بين القياسات كبيرًا فيتم القياس مرة رابعة.

وبناء على ما سبق تم تحديد وتصنيف شبكة الروافد النهرية في كل الحوضين بجميع رتبها حسب طريقة سترايلر (Strahler، 1964) (المعدلة عن طريقة هورتون، Horton 1945).

تنقسم المؤشرات المورفومترية التي تم قياسها واشتقاقها إلى مجموعتين:

الأولى: تشمل العناصر التي قيست، وعينت مباشرة، وتشمل: المساحة، وأطوال
التحليل الجيولوجي للخصائص المورفومترية
للجزء الأعلى من حوض وادي الرميين ووضوح نهر تكالا الروافد، وعدد الأنهر في كل مرتبة نهرية، ومجيتي وأطوال الأحواض، ومناسب منطقة المصب وأعلى نقطة في الحوض وربطة الروافد.

الثانية: تشمل المؤشرات التي تم اشتقاقها، وهي:

1- خصائص الشبكة النهرية، وتشمل: الكثافة التصريفية (كم/كم²) = (الطول الإجمالي لشبكة الروافد النهرية (كم) / مساحة الحوض (كم²))
التركم النهري (روافد/كم²) = عدد الروافد في الحوض / مساحة الحوض (كم²)
نسبة التقطع = عدد الروافد بجميع ربتها في الحوض / محيط الحوض (كم)

الترتبة الروافد:
وتعبر عن مكانة الرافد بالنسبة إلى الشبكة النهرية في الحوض، وحسب على أساس أسلوب Strahler (1964) فكل رافد لا يغذيه رافد يصنف بالمرتبة الأولى، وهكذا تتكون روافد المرتبة الثانية من التقاء رافدين من المرتبة الأولى، وبالأسلوب نفسه تتكون روافد المرتبة الثالثة، من التقاء رافدين من المرتبة الثانية، وهكذا، وكذلك صنفت روافد المرتبة الأولى، والثانية إلى روافد المصدر (الخارجة)، والروافد الداخلية (سلامة 1980، 1976).

المعدل أو نسبة التشعب = عدد الروافد في مرتبة معينة/عدد الروافد في المرتبة التي تعلوها

الخصائص الشكلية
تشمل الخصائص الشكلية المؤشرات التالية:

المادة = مساحة الحوض (كم)
الاستدارة = مساحة دائرة محليها يساوي محيط الحوض (كم)
المجلة الإنسانية - العدد 20 - 2011

الاستطالة = قطر دائرة مساحتها تكافأً مساحة الحوض (كم)
طول الحوض (كم)

7

معامل الشكل = مربع مساحة الحوض (كم)
مساحة الحوض (كم)

8

متوسط أطوال الأنهار = متوسط أطوال الروافد في المرتبة التي تعلوها (كم)
متوسط أطوال الروافد في مرتبة ما (كم)

الخصائص التضاريسية

تشمل الخصائص التضاريسية المؤشرات التالية:

9

الاتجاهان: النسبة بين نصف القطر وال]|[س (متر)
فرق البربج)| طول الحوض (كم)

المنحنى الهيبرومتري

يعتبر المنحنى الهيبرومتري في حساباته على العلاقة بين النسب الملاحية المحصورة في ارتفاعات مختلفة (Strahler، 1957).

الارتفاع النسبي = طول الحوض (كم)
المنحنى الهيبرومتري

يرتكب ذلك من خلال الخطوات التالية:
1 - حساب نسبة ارتفاع خط كنتور معين فوق مستوى القاعدة للحوض إلى أقصى ارتفاع الحوض، ويمثل ذلك على الإحداثي الرأسي.
2 - قياس مساحة الحوض النهري كله، ثم تقاس المساحات المحصورة بين (كل خط كنتور والذي يعلوه) خطوط كنتور السابق تحديد نسب الارتفاعات لها.
التحليل الجيومورفولوجي للخصائص المورفومترية للجزء الأعلى من حوض وادي الرميمين وحوض نهر تكالا

- حساب نسبة المساحة بين أي خط كنترول والخط الذي يعلوه إلى المساحة الكلية للحوض ويمثل على الإحداثي الأفقي.
- توقيع النسب السابقة على الشكل البياني المكون من محورين أفقي ورأسي.
- توصيل النقاط وتقاس المساحة أدناه وأعلى المنحنى: لمعرفة مقدار ما تم نحته وما هو المتبقّي.

نتائج الدراسة والمناقشة العامة

مساحة الأحواض النهرية

تشكل مساحة حوض الجزء الأعلى من حوض الرميمين (33.25 كم²). وتضاعف ورباع ضعف مساحة حوض تكالا (9.78 كم²). وبما أن مساحة الأحواض في المراتب النهرية المختلفة (الجدول 1) تبين أن المتوسط العام لأحواض الروافد في المراة المختلفة، حوض الرميمين يعبر أربعة أضعاها حوض تكالا. ويمكن ربط مساحة الأحواض النهرية بالظروف المناخية، تمثلة في ارتفاع معدل الأمطار، ونظام سقوطها شبه اليومي، وارتفاع معدل الحرارة اليومي، أدى ذلك إلى تقدم التأثيرات التكوين الصخري الجرانيتي، حيث تكالا، حيث يحدث عكس ذلك في حوض الرميمين فالظروف المناخية شبه الجافة التي يمر بها الحوض الآن أدت إلى قلة معدل تطور عمليات الحفر النهري، والصخور الجيرية أصبحت أكثر صلابة (سلامة، 1980). يمكن تقدير تزايد مساحة حوض الجزء الأعلى من وادي الرميمين بالرغم من تساوي المراتب النهرية، كلا الحوادث إلى عمليات التصاميب التي مر بها حوض الرميمين. متمثّلة في حركات الرفع التي أصابت الهضبة الكلسية، وعمليات الهبوط. مستوى الأساس متمثّل في منطقة الغور، بالإضافة إلى الظروف المناخية الرطبة في البلابوتوسوسين الأعلى، فأدّى ذلك إلى سرعة تطور الحوض سابقاً، وبطء العمل الجيومورفولوجي الآن.
و أشار سلامة (1980) إلى قلة الأثر الجيومورفولوجي للأمطار الهائطة مع زيادة مساحة الأحواض النهارية، وفسر ذلك بأن زيادة مساحة الأحواض النهارية يؤدي إلى زيادة الفاقد من مياه الأمطار عن طريق البخر والتسرب، الأمر الذي يؤدي إلى قلة تطور جريانات مائية ببعض مائي كبير، ومن ثم تقلة الطاقة الحثية للأنهار. أما أبو العينين (2000) فأوضح أن علاقة طردية بين الصبيب المائي، ومساحة الأحواض النهارية. وذلك عكس ما يحدث الآن ووحيد تكالا من نشاط حثي كبير جدا بسبب توافر الأمطار، ونظام توزيعها شبه المنتظم على كل أيام السنة، وقلة مساحة الحوض.

يتميز تركز المساحات الحوضية على الحوضين نحو الفئات الصغيرة، فحوالي 83.5% من إجمالي أحواض المرتبة الأولى مساحتها أقل من 0.2 كم²، وحوالي 65.8% من أحواض المرتبة الأولى تكالا مساحتها أقل من 0.03 كم²، والملاحظة نفسها تتكرر في مساحة أحواض المرتبة الثانية، إذ إن 62.6% من إجمالي أحواضها تتركز في الفئات الأولى الصغيرة حوضي الرميمين وتكالا على التوالي، يعني ذلك أن اثناء المنحنى التكراري لتوزيع مساحات المرتبتين في الحوضين يميل إلى اتجاه اليمين، أو موجب (الشكل 3 أ).

أطوال الروافد:
تركزت معظم أطوال الروافد المائية في المرتبتين الأولى والثانية في الفئات الدنيا، بمعنى أن التواء المنحنى التكراري لأطوال الروافد كان موجبا في الحوضين (الشكل 3 أ)، وبمقارنة أطوال الروافد نجد أن متوسط أطوال الروافد حوض تكالا أقل منه حوض الرميمين (الجدول 1)، ويرجع ذلك إلى زيادة معدل الأمطار حوض تكالا مما يؤدي إلى سرعة تشكيل روافد المراتب الدنيا على المنحدرات، ومن ثم ترتفع مراتب الروافد المختلفة بشكل سريع، وقد جاء المعدل قريبا من معدل الأطول الذي
التحليل الجيومورفولوجي للخصائص المورفومترية للجزء الأعلى من حوض وادي الرميمين وحوض نهر تكالا

توصّل إليه Peh (1980) في ماليزيا، وتشكل نسبة أطوال روافد المرتبة الأولى من أجمالي أطوال الروافد (كلا الحوضين) حوالي 54.6% و94% لكل من حوضي الرميمين وتكالا على التوالي، وهي مشابهة لما توصل إليه محمود (كلا الحوضين) دجلة بمصر (محمود، 2005)، وأقل مما سجله سلامة (كلا شعيب، الأردن). أما تطور روافد الرميمين فتأخذ وقتًا أطول بسبب نشاط الجيولوجي التراجعي الذي يؤدي إلى إطالة الروافد الموجودة بدلاً من تكوين روافد أخرى، وتوصّل إلى النتيجة نفسها سلامة (الأردن، 1980). ويستطيع الجيومورفولوجي الاستفادة من أطوال الروافد وحوض تغصنة كثافة التعرية، ونقل الرواسب والحمولة، وكمية المياه ومعدل التسرب.

الكثافة التشريفيّة:

تُعَد الكثافة التشريفيّة انعكاسًا للظروف البيئية خاصة الأمطار؛ إذ ترتفع الكثافة مع ارتفاع معدلات الأمطار، والصخور قليلة النفاذية؛ لأن ذلك يؤدي إلى زيادة الصريف المائي، ومن ثم سرعة تطور شبكة الروافد النهرية، ولحساسية الكثافة للظروف البيئية رأى كثير من الكتب إمكانية اعتبارها أساسًا للتميز بين الأحواض النهرية المختلفة (Strahler، 1957، 1958 وHorton، 1945)؛ وتمثل أهمية الكثافة إنها مؤشر على الظروف المناخية (Gregory، 1976)؛ إذ تعمل الأمطار الغزيرة على شدة الشتاء التراجعي، ويؤدي ارتفاع الكثافة إلى شهولة التشريفي، ومن ثم تُعَد مؤشرًا على حجم وسرعة تطور الفيضانات.

تركزت تكرارات الكثافة التشريفيّة في الفئات الدنيا؛ إذ سيطرت الفئة الثانية من مجموع التكرارات، بمعنى أن منبوذ المنحنى التكراري لكثافة النهر كان موجبا (الشكل 3 ب)؛ إذ ارتفع معدل الكثافة التشريفيّة حوض تكالا (13 كم/كم²) أكثر من حوض الجزء الأعلى من الرميمين (2.26 كم/كم²)، ومن ثم جميع المرتبات النهرية المختلفة.
(الجدول 1)، بالرغم من تطور حوض تكالا فوق صخور جرانيتية، والرميمين فوق صخور جيرية، وتبعت تصنيف سميث (Smith، 1950)، وستيرلر (Strahler، 1957) فـ\(\text{كلاه مكلا ألونة} \) في حوض الرميمين تصنف النسيج بأنه خشن، أما حوض تكالا فهو متوسط النسيج (Gregory & Willing، 1973).

ويفسر ذلك بزيادة معدل الأمطار، وقلة نفاذية صخر الجرانيت، والغطاء النباتي الكثيف، وارتفاع درجات الحرارة، كل ذلك أدى إلى نشاط زيادة المياه الجارية السطحية، ومن ثم سرعة تكون روافد على المنحدرات المختلفة في حوض تكالا. العكس في حوض الرميمين، فالصخور الجيرية ذات مسامية ونفاذية عالية، الأمر الذي يؤدي إلى زيادة تسرب مياه الأمطار على حساب الجريان السطحي، ومن ثم قلة تطور روافد نهرية على المنحدرات، وضعف القدرة الحنكة للمجري النهرية الموجودة فعلا. لذلك تعكس الكثافة التصريفية الظروف المناخية بشكل أساسي، وأشارت دراسة (Melton، 1957) أن 93% من الاختلافات في الكثافة التصريفية ترجع إلى الظروف المناخية: إذ تعمل الأمطار الغزيرة وشدة الحم يتراجعي على تقطيع السطح بعدد من الأنهار القصيرة، الشديدة الانحدار، والعميقة السريعة الجريان (أبو العينين، 2000)، وبالمقارنة مع أحواض أخرى من البيئتين نسبهما تقارب المعدل في تكالا مع نظيره في ولونج Chongkak و Shonkak-Malaysia (1992)، أما في الأردن فقد انخفض المعدل في حوض الرميمين عن أحواض أخرى تطورت فوق صخور جيرية (4.97 مجرى/كم²) في ماليزيا (سلامة، 1980)، في حين تساوته معها في وادي الكرك في الأردن (2.2 مجرى/كم²) (القرالة، 2005).

التكرار النهري:
ارتفع متوسط التكرار النهري في تكالا (28.6 مجرى/كم²) عليه في الرميمين (6.9 مجرى/كم²)، بمعنى أن معدل التكرار النهري في حوض تكالا ارتفع إلى أربعة أضعاف نظيره في حوض الرميمين، وهذا الحال تكرر في كل المراتب النهارية الأربعة.
التحليل الجيولوجومورفولوجي للخصائص المورفومترية للجزء الأعلى من حوض وادي الرميمين وحوض تكالا

(الجدول 1)، كذلك اختلف شكل التوزيع التكاري للفئات، إذ سجل أكثر من 60٪ من التكرارات في الفئتين الأولى والثانية، في حوض الرميمين. لذا ظهر التواتر موجب
في المرتبتين الأولى والثانية. مختلفة. شكل التوزيع التكاري في حوض تكالا فكان توزيع القيم أكثر تقلطًا في المرتبتين الأولى والثانية (الشكل 3 ب). ويدل معدل التكرار النهري على أن النسيج ناعم في حوض تكالا، حين هو متوسط النسيج في الرميمين، ويمكن تفسير ذلك بأن الظروف البيئية في حوض تكالا متماثلة في: الظروف المناخية الحالية من زيادة الأمطار، وارتفاع متوسط انحدار سطح الحوض العام في تكالا إلى 36.53٪. والغطاء النباتي الكثيف، وقلة الغبار من ملي الأمطار بالتسرب والبخر، ومن ثم زيادة الجريان السطحي، كل ذلك أدى إلى زيادة قوة العمل الجيولوجي مثل تسارع عمليات التحت الرأسى، والتراجعي، وتطور أودية المنحدرات بشكل سريع رغم أن التكوين الصخري جرانيتي صلب، عكس ذلك قلة الأمطار وقلة متوسط انحدار السطح (10.23٪) وقلة الغطاء النباتي، وارتفاع مسامية ونافذية الصخور الجيرية في حوض الرميمين أدى إلى ضعف العمل النهري الحثي، ومن ثم قلة تطوير أودية المنحدرات.

نسبة التقطع

ارتفع معدل نسبة التقطع في حوض تكالا عنه في الرميمين في المراتب الثلاثة العليا (الجدول 1)، وهذا أمر طبيعي، إذ يزداد عدد الروافد في تكالا، وتقل المساحة إلى الربيع تقلطًا، ويرجع ذلك إلى الظروف المناخية الاستوائية، والخصائص الطبيعية في حوض تكالا، فارتفاع نسبة التضرس، ومعدل درجة انحدار المنحدرات والظروف المناخية أدت إلى سرعة تكون الروافد النهارية على المنحدرات. هذا يؤكد أن الحوض يمر في مرحلة الشباب الجيولوجومورفولوجي.

يمر:

 معدل التشطب:

ارتفاع نسبة التشطب في حوض تكالا (5.2٪) عنها في الرميمين (4.7٪) (الجدول 1)، ويفسر ذلك بسرعة تطور الروافد في تكالا عن الرميمين بسبب الظروف المناخية.
الرطبة فيه، وتتوافق معدل التشغب في حوض تكالا مع ما توصل إليه بيه (1980) على مستوى كل الأحواض النهرية في الأردن، في حين ارتفع عن العدالة سلامة شعبين (سلامة 1988) وسجل وادي الكرك معدل تشغب تراوح بين 2.89 و 10 (القرالة 2005)، وجاء وادي بيشة الأعلى في السعودية كان العدالة كان معدل 4.59 (محسوس 1998).

أشكال الأحواض النهرية

تتتخذ الأحواض النهرية أشكالًا مختلفة، وقد أصنفت مقاييس الاستدارة والاستطالة والشكل: لتحديد مدى اقتراب الأحواض النهرية من المستطيل، أو الدائرة، أو المثلث (الجدول 1) وكانت النتائج على النحو الآتي:

1- الاستدارة

tدل على مدى تقارب أو تباعد الحوض النهري من الشكل الدائرى، وكلما ارتفع العدالة، كلما ارتفع معدل الاستدارة، على مدى اقتراب شك الحوض من الشكل الدائرى، ارتفع معدل الاستدارة في حوض الرميمين عنه في حوض تكالا، وذلك في المرتبة الثانية والثالثة، حين كان العدالة في المرتبة الرابعة فسجل 55% في الرميمين و 58% في تكالا، يرجع ذلك إلى طول الفترة الزمنية التي تعرض فيها حوض الرميمين للحوض النهري، قبل تغير الظروف المناخية من الفترة الرطبة إلى المرحلة شبه الجافة حاليا. يعكس حوض تكالا إذ يشهد حالياً ظروفًا مناخية رطبة تسمح بنشاط حتي كبير. ويلاحظ أن العدالة يمر في المرحلة المتوسطة، يفسر ذلك بأن الروافد النهرية في حوض تكالا تتعت خطوط عيوب جيولوجية، وأنها تأخذ الشكل شبه المتوازي، فجعلت من الحوض يأخذ الشكل المربع لذا ارتفعت نسبة الدائرية فيه.

عند رسم التوزيع التكراري لفئات الاستدارة في الحوضين في المرتبة الثانية جاء التوزيع معتدلًا (الشكل 3 ج).
- الاستطالة

تشير الاستطالة إلى مدى اقتراب الحوض من الشكل المستطيل، بمعنى الاقتراب من الامتداد الطولي. سجل معدل ارتفاعًا بين جميع مراتب حوض تكالا عند حوض الرميمين (الجدول 2) وتسلت المرتبة الرابعة أعلى قيمة بين المراقب النهرية في حوض تكالا بلغت 0.84، حين سجل أقل من ذلك في حوض الرميمين (0.65). يفسر ذلك بنشاط عمليات الحط الرئيسي والتراجعي؛ إذ يؤديان إلى إطالة الأودية النهرية في مرحلة الشبب، إضافة إلى ما سبقت الإشارة إليه بأن الروافد تتبع خطوط ضعف جيولوجي. وتأخذ الشكل شبه المنطوي، حين الظروف شبه الجافة في الرميمين أدت إلى شبه تحنط للأشكال الأرضية، بمعنى أن عمليات الحط الرئيسي والتراجعي شبه متوقفين. وتجر الإشارة إلى أنه كلما زاد معدل طول الحوض عن عرضه مال الحوض نحو زيادة معدل الاستطالة، بما أن الحط التراجعي في حوض تكالا أسرع من الحط الجانبي، لذلك تمت الأحواض بين الاتجاه الطولي أكثر منها بين الاتجاه العرقي، ويظهر أن الاستطالة مؤشر مهم على عنصر الانحدار والتضرس، فكلما زاد معدلهما زادت الاستطالة الناجمة عن معدل زيادة الحط الرئيسي، وما يتبع ذلك من زيادة الانهيارات الأرضية على جوانب الأنهار، وهذا ما لوحظ في حوض تكالا من تسارع عمليات انهيارات الجوانب النهرية التي أدت إلى ارتفاع معدل انحدار أكبر من جوانب الأنهار إلى أكثر من 50، لم يختلف شكل التوزيع التكراري لمعدل الاستطالة عنه في معدل الاستدامة؛ إذ اختار الشكل المتعدّد في المرتبتين الأولى والثانية في كلا الحوضين (الشكل 3 ج).

- معايير الشكل:

ارتفع معايير الشكل في حوض تكالا (0.56) عن حوض الرميمين (0.33)، وبدلاً بذلك على أن عرض الأحواض النهرية في منطقة المنابع لا يزيد كثيرًا على عرضها في الحوضين.
منطقة المصب في حوض تكالا: لأن الأحواض في تكالا تميل إلى الاستطالة أكثر منها إلى الاستدارة. أما في حوض الرميمين فالعدل قريب من العدل الذي توصل إليه سلامة (1980) في الأردن، فالبنايات النهرية في الأردن تميل إلى أن تكون بشكل مثلث، معروف بشكل النقطة المتبقي، وضيق شك النقطة المصب، قد يفسر ذلك بالنظر إلى شبكة التصريف النهري في الشكل (2). لندن أن شبكة المجاري النهرية في حوض الرميمين تأتي الشكل الشجري في اتجاه عام ناحية الشمال الشرقي، الأمر مختلف في حوض تكالا. فجميع الروافد الفرعية متوازية مع بعضها في اتجاه عام نحو الجنوب، لتصبح جميعها في الروافد الرئيسية الذي يأخذ اتجاهًا عامًا من الغرب إلى الشرق. لذلك الشكل في حوض تكالا يخصه لعوامل البنية الجيولوجية.

درجة ارتفاع الروافد النهرية والسطح

قل متواتر درجات ارتفاع الروافد المختلفة في حوض تكالا عنه في الرميمين في المراتب الثلاثة الدنيا، حين تساو כאן المنحنى الرابعة، وقد تركز معظم تكرارات زوايا الانحدار في المرتبتين الأولى والثانية في كلا الحوضتين في الفئات الوسطى، بمعنى أن المنحنى التكراري لفئات ارتفاع الروافد كان معتملاً الشكل 3، للمقارنة بين الحوضين يلاحظ انخفاض متوسط ارتفاع الروافد النهرية في جميع المراتب بتكالا إلى 4.92، حين ارتفع المتوسط في الرميمين إلى 6.36. وبائق ارتفاع الروافد مع زيادة المرتبة النهرية، وهذا أمر طبيعي في كل الروافد النهرية.

ارتفاع متوسط ارتفاع السطح في تكالا عنه في الرميمين: إذ سجل متوسط درجات الانحدار في الحوضين 26.53 و 10.33 على التوالي، وبناء على تصنيف ينتج لزوايا الانحدار، يصنف تكالا بأنه شديد الانحدار، حين أن متوسط الانحدار في الرميمين، يرجع إلى العامل المناخي يمثل زيادة كميات الأمطار، وارتفاع كثافتها، إذ أدى إلى زيادة القدرة الحالية للروافد النهرية متمثلة في زيادة معدل الحت الرأسي في تكالا.
التحليل الجيومورفولوجي للخصائص المورفومترية للجزء الأعلى من حوض وادي الرميمين وحوض نهر تكالا

ومن ثم زيادة تعميق مجري الأنهار، وبدوره يزيد من مدى تعرض جوانب المنحدرات إلى الانهيارات الأرضية، لذلك تزداد درجات انحدار المنحدرات في الأجزاء السفلى عنها في الأجزاء العليا، اختلف الوضع في الرميمين، إذ تغيرت الأحوال المناخية إلى الجاف فانعكس ذلك على قلة العمل الجريني، فأصبح شبه محنط، وأقيمت الفرصة لعوامل الجيومورفولوجية الأخرى أن تسوي المنحدرات، لذلك قلت درجات انحدار المنحدرات به.

نسبة التضطرس

زاد متوسط نسبة التضطرس في حوض تكالا (0.2 م/كم) عن الرميشين (7.62 م/كم) (الجدول 1)، إلا أن زيادة نسبة التضطرس في المرتبة الثانية في الرميشين عنها في تكالا، وافتراب معدلات من بعضها في المرتبتين الثالثة والرابعة، يؤكد حتمية أن الرميشين مر بظروف مناخية رطبة أدت إلى تقدمه في المرحلة الجيومورفولوجية، ومن ثم زادت المساحات الحوضية، وانخفض معدل التضطرس، وانضمtoDate مرحلة ركود حتي حين المكس في تكالا إذما زال الوضع في مرحلة النشاط الجيومورفولوجي، سواء الحبت أو النقل النهري أو الحبت المنحدرات، وما تبع ذلك من تراجع مناطق تمسيم المياه، وانخفاض منسوبها العام، وترجم المنحدرات (التوم، 2004)، وساعد على سرعة عمليات التعميق النهري كثرة الصدوع في تكالا، وأن معظم الروافد تتبع خطوطاً انسكاسية، إضافة إلى أن العلاقة عكسية بين المساحة الحوضية وتسمية التضطرس (سلامة، 1980).

منحنى الهبسوتميزي

بعد استعراض بعض الخصائص المورفومترية لكل الحوضين من مختلف وتشابه، وللوقوف على المرحلة الجيومورفولوجية التي يمر بها الحوضان، لذلك تم حساب التكامل الهبسوتميزي للحوضين؛ إذ إن المنحنى يشير إلى مدى التضطرس،
المرحلة الجيومورفولوجية التي تمر بها الأحواض النهرية، ومن ثم سلوك العمليات النهرية في أحواضها.

سجل التكامل الهييشوميتيري 58.5% و 59.3% يُشجاع حوضي الرميمين وتكالا على التوالي (الشكل 4). وبناء على هذه النتائج يمكننا الحكم بأن الحوضتين يتجاوزا مرحلة عدم التوازن، ودخلا مرحلة النضج الجيومورفولوجي (شاور، 1982)، وتشير شدة الانحدار إلى منطقة المصب كلا النابفين إلى شدة عمليات الحفظ النهرية ومن ثم تطور المناطق العليا، إلا أن وجه الاختلاف في أن عمليات الحفظ النهرية الآن شبه متوافقة بين حوض الرميمين بسبب ظروف الجاف، بينما العكس ينفك عكساً إذ يشاهد ظروفًا مناخية طرحت، ولاكتمال الصورة الجيومورفولوجية تقارن هذه النتائج بآخرى في ظروف النهرية في الأردن عن أحواض الراين، بالنسبة إلى الأردن نجد أن المعدل أقل بكثير مما توصل إليه سلامة و وادي شعب (2005) و وادي الكرك، يُمكن إرجاع النتائج والتشابه إلى زيادة مساحة الأحواض النهرية في الأردن عن حوض الجزء الأعلى من الرميمين، حين يشابه المساحة والظروف المناخية مع تكالا ماليزيا.

بناء على كل ما سبق نخلص إلى أن الظروف المناخية، خاصة الأمطار، تلعب دورا أساسيا في العمل الجيومورفولوجي النهري، فزيادة معدل سقوط الأمطار يُشجع كميات (2500 ملم سنويا) أدت إلى زيادة نشاط العمل النهرية فيه، انعكس ذلك على العناصر التالية:

- سرعة تكوين روافد المرتبة الأولى: ليزعج بذلك من درجات المراتب العليا، ليعادل بذلك مع حوضي الرميمين الذي يكبحه أربع مرات السهولة تقريباً، بالإضافة إلى ارتفاع كل من معدل الكثافة التصدري، والتنقل والتشكل.
- أدى ارتفاع معدل الحفظ الرئيسي إلى زيادة تعميق الروافد النهرية، وما تبع ذلك من انهيارات جوانب النهر، ليزيد من درجة انحدارها، ويرفع من معدل التضريس.
التحليل الجيولوجيمي للخصائص المورفومترية
للجزء الأعلى من حوض وادي الرميمين وحوض نهر تكالاً

- كذلك ارتفع معدل الارتفاع فأدى إلى إطالة الأودية: ليرفع من معدل الاستطالة.

لكن الظروف شبه الجافة في حوض الجزء الأعلى من الرميمين أدت إلى ضعف العمل الجيولوجي النهري، فأصبح النهر ونظامه شبه محتوم بعدما تكون في البلايوستوسيس يوم أن كانت الظروف المناخية أكثر رطوبة من الآن، ولم يطور النهر كثيراً في نظامه الحالي بالرغم من الصخور الجيري المنتشرة فيه.

خصائص المرتبة الأولى (الروافد الخارجية والداخلية):
تختلف الخصائص الجيولوجيمية والمورفومترية للروافد المرتبة الأولى في الحوض الواحد بالمقارنة بين الحوضين، بناء على توزيعها المكاني. تقسم إلى قسمين: الروافد الخارجية (المصادر) والداخلية. تنتشر الروافد الخارجية على أطراف الحوض بالقرب من المحيط، وهي المستفادة من تطور المراتب النهرية العليا، وتوسيع مساحة الحوض، مما يتبع ذلك من سرعة تقدم المرحلة الجيولوجيمية، وعمليات الأسر النهري، ويمكن أن تتكون الروافد الداخلية داخل الحوض، بعيدة عن خط تقسيم المياه مع الأحواض الأخرى (المحيط). يوضح الجدول رقم (2) الخصائص المورفومترية لأحواض المرتبتين الأولى والثانية في الحوضين موضع الدراسة، ومنه يمكن استخلاص النتائج التالية:

ارتفع عدد روافد المرتبة الأولى إلى 98 و 120 رافدًا في حوضي الرميمين وتكالاً على التوالي، وكذلك اشتملت على نسبة 77.2 % و 78.4 % من إجمالي الروافد التي قطعت سطح الحوضين، شكلت الروافد الخارجية 23 % و 43 % من مجموع أعداد روافد المرتبة الأولى في حوضي الرميمين وتكالاً على التوالي، وبالمقارنة مع الأردن فقد ارتفعت وادي شعيب وبلغت 34.35 % (Salameh. 1988)، وتلتقي معظم الروافد الخارجية مع نفسها؛ لتشكل روافد المرتبة الثانية، وكانت النسبة 72.7 % و 61.5 % في الرميمين وتكالاً على التوالي.
تشكل مساحة أحواض المرتبة الأولى من مساحة كلا الحواضين ما نسبته 39.78% من الرميمين و 34.05% من حوض تكالا. زادت مساحة أحواض الروافد الخارجية على الداخلية في المرتبتين الأولى والثانية في كلا الحواضين (الجدول 2)، برجع ذلك إلى عمليات الحط التراجمية التي تؤدي إلى إطالة الروافد. ومن ثم زيادة مساحتها على حساب منطقة تقسيم المياه مع الأحواض النهرية الأخرى. بعكس الروافد الداخلية التي تقل مساحتها مع تقدم الدورة الجيومورفولوجية، لأنها محصورة في وسط الحوض، وتؤدي إلى تخفيف سطح الحوض، وكل زيادة في أعدادها تكون على حساب مساحة الأحواض الداخلية الأخرى.

الجدول رقم (2): المتوسط والانحراف المعياري الخاص بالرواكد الداخلية والصادر في المرتبتين الأولى والثانية في الرميمين وتكالا

المرتبة الثانية	المرتبة الأولى
الرميمين	الرميمين
عدد الروافد	عدد الروافد
المساحة (كم²)	المساحة (كم²)
طول الحوض (م)	طول الحوض (م)
درجة انحدار الراوها	درجة انحدار الراوها
التكار النهري	التكار النهري
الكثافة الترميزية	الكثافة الترميزية
الاستالة	الاستالة
شكل الحوض	شكل الحوض
الاضادة	الاضادة
نسبة التضريس	نسبة التضريس
التحليل الجيومورفولوجي للخصائص المورفومترية للجزء الأعلى من حوض وادي الرميمين وحوض نهر تكالا

لم تختلف أطول الروافد الخارجية عن الداخلية في الحوضين في المرتبة الأولى بكلا الحوضين، وفي حين في المرتبة الثانية زاد متوسط أطول الروافد الخارجية عن الداخلية في كل الحوضين، ولا يوجد تفسير مقنع لهذه الظاهرة، إلا إذا افترضنا أن روافد المرتبة الثانية في الحوضين تشكل الامتدادات العليا للمراتب العليا، وكما سبقت الإشارة إلى أن الروافد النهرية في تكالا تتبع خطوطًا انكسارية في ذلك بعث الروافد فرصة للتطور السريع.

قُلت درجات انحدار الروافد الخارجية عن الداخلية في المرتبتين الأولى والثانية في كل الحوضين، يسائر ذلك بطول عمر الروافد الخارجية عن الداخلية، أي تقدم المرحلة الجيمورفولوجية في الروافد الخارجية، الأمر الذي يؤدي إلى قلة انحدار الروافد، وسرعة تكون الروافد الداخلية على المنحدرات المختلفة، الأمر الذي يعكس زيادة درجات انحدارها.

ارتفع معدل الكثافة للروافد الداخلية عن الخارجية في الحوض تكالا في المرتبتين، حين تقارب المعدل في حوض الرميمين، ويمكن تفسير ذلك بأن عمليات التعرية المتسارعة، وطول فترة الاستمرار المناخي الحالية أدت إلى تطور الشبكة النهرية بشكل متساو مثالي. إلا أن استمرار عمليات الهبوط المتكرر في مستوى القاعدة العام في الرميمين سابقا أدت إلى سرعة تطور الروافد الداخلية، ومن ثم قلة مساحتها، حين بقيت الروافد الخارجية بعيدة عن تأثير مرحلة التصامي، صاحب ذلك تحول الظروف المناخية نحو الجفاف في العصر الحديث.

تأتي نتائج الاستطالة لتؤكد كل ما سبق؛ إذ ارتفع معدل الاستطالة للأحواض الخارجية عن الداخلية في المرتبتين (الأولى والثانية) في كل الحوضين.

نخلص إلى وجود اختلافات أساسية في الخصائص الجيمورفولوجية والمورفومترية بين الروافد الداخلية والخارجية في المرتبتين الأولى والثانية بكلا الحوضين.
العلاقات المتبادلة بين المؤشرات المورفومترية

أولاً - بواسطة تطبيق بعض قوانين هورتون تم تطبيق بعض قوانين هورتون على الشبكة النهرية، وقد رسمت نتائج توفيق المنحنىات على النحو المذكور في الشكل (5).

قانون عدد المجاري النهرية

ظهرت علاقة خطية عكسية بين عدد الروافد النهرية والمرتبة النهرية في كلا الحوضين، وارتفع معامل التحديد إلى معدل عال جدا (0.996) بـ كلية، بمستوى معنوية عالٍ (0.001)، معنى نقص عدد الروافد النهرية مع زيادة المرتبة.

قانون أطوال المجاري النهرية

ظهرت علاقة خطية بين متوسط أطوال الروافد النهرية والمرتبة، وتميل العلاقة إلى التجانس والثبات في حوض تكالا أكبر منها، حيث حوض الرميمين، يفسر ذلك بتجانس الظروف المناخية والجيولوجية في كلا الحوضين، فارتفع معامل التحديد إلى 0.99، وانخفاض إلى 0.93 في الرميمين، ومعامل ثقة عالية (0.001)، وبذلك انطبق قانون هورتون لأطوال الروافد في الأحواض النهرية.

قانون مساحة الأحواض النهرية

يتكرر الأمر في العلاقة بين متوسط المساحات الحوضية والمرتبة النهرية، وظهرت العلاقة السابقة نفسها، فقد ارتفع معامل التحديد إلى قيم عالية جدا في كلا الحوضين (0.98)، وبمعامل ثقة بلغ (0.001)، ذلك بسبب أن لكل رتبة أكبر من الرتبة التي تسبقها (الأدنى منها) في الحوض، لذلك أحواض المرتبة الثانية أكبر من الأولى والثانية أكبر من الثانية، وهكذا.
التحليل الجيومورفولوجي للخصائص المورفومترية
للجزء الأعلى من حوض وادي الرميمين وحوض نهر تكالا

Law of stream slopes
قانون انحدار المجاري النهرية

ظهرت علاقة خطية عكسية بين متوسط درجة انحدار الروافد والمرتبة النهرية
بكلا الحوضين، وقلت درجة الانحدار ببنسب تكاد تكون ثابتة، وارتقت معامل التحديد
(0.992) في حوض الرميمين، و(0.999) في حوض تكالا. وقد اكتشفت النقطة الخاصة
 بالرميمين حول خط الانحدار، في حين هناك تكابس بسيطة لبعض النقاط عن الخط
في حوض تكالا، وربما يفسر ذلك بأن بعض الروافد تتبع خطوطًا انسنارية، وأخرى
لا تبعها بالإضافة إلى اختلاف مرحلة الجيومورفولوجية التي يمر بها كلا الحوضين
فحوض تكالا ما زال في المرحلة الشباب المتأخر، ويتبع بعضه بظروف مناخية رطبة تؤدي
إلى تضارب عمليات الحجميع. في العكس من ذلك في حوض الرميمين الذي استطاع ولو
بشكل بسيط أن يسوي من مقطعه الطولي بسبب طول عمر الحوض النهري.

عند رسم متوسط التكرار النهري على المراتب النهرية جاءت العلاقة خطية
عكسية في كلا الحوضين، وارتقت معامل التحديد إلى 0.94 في حوض الرميمين
في حوض تكالا.

نخلص إلى القول بأن قوانين هرتون انطبقت على الحوضين عدا بعض النقاط
خرجت عن المسار بعد توقيع المتنحيات. وأرجع ذلك إلى أن بعض الروافد النهرية
تتبع عيوبًا جيولوجية.

ثانياً- العلاقة بين العناصر المورفومترية

1- العلاقة بين أطوال الروافد النهرية والساحات الحوضية

أظهر تحليل الانحدار بين الساحات الحوضية (م ح) وأطوال الروافد النهرية (ط ر)
المرتبتين الأولى والثانية، سواء طول النهر الأساسي (ط ر) أو مجموع أطوال الروافد
في الحوض (م ح) علاقات ارتباط خطية موجبة، وبثقة عالية في الحوضين قيد
دراسة: إذ ارتفعت معامل التحديد ومعامل الثقة إلى درجة عالية. وكانت العلاقة
كما هي مبنية على المعادلات من 11 إلى 16. إلا أن العلاقة لم تظهر بالثقة نفسها في
التوت.
الموضوع الثالثة بكلا الحوضين، ويرجع ذلك إلى قلة الأحواض في المرتبة الثالثة (أربعة أحواض مرتبة ثالثة في كل من الحوضين).

F قيمة	R²	الحوض	المعادلة	المرتبة
11-----	76.2	**0.445	م حـ = 0.24768 ط لم	الرهتين الأولين
12-----	245.3	**0.675	م حـ = 0.8125 ط لم	الرهتين الأولين
13-----	32.1	**0.594	م حـ = 0.85988 ط لم	الرهتين deuxième
14-----	102.9	**0.824	م حـ = 0.0027 ط لم	الرهتين الثانية
15-----	118.3	**0.820	م حـ = 0.3943 ط لم	الرهتين الثانية
16-----	520.9	**0.960	م حـ = 0.19114 ط لم	الرهتين الثانية

** مستوى المعنوية 0.001، م حـ مساحة الأحواض، ط لم طول الرافد، مـ مجموع أطوال الروافد.

ويُذكر أن مساحة الأحواض النهرية في البيئات الخاصة نفسها بالحوضين من خلال قياس أطوال الأنهار بها، ومساعدة المعادلات السابقة (من 11 إلى 16)، وقد ظهرت قيمة الثابتين أ، ب بثقة عالية (0.01)، ويمكن ارتفاع كل من معامل التحديد ومستوى الثقة، أي إنْ أية زيادة في مساحة الأحواض النهرية في الحوضين ترجع إلى الزيادة في طول النهر الأساسي، أو مجموع أطوال الروافد النهرية في الحوض، وارتفاع معامل التحديد في المعادلتين 14 و 16 عنه في المعادلتين 13 و 15 مؤشر على أن المساحة في المرتبة الثانية في الحوضين يمكن تفسيرها بأطوال مجموع الروافد، أكثر من تفسيرها بواسطة طول الرافد الأساسي المصيف بالمرتبة الثانية، وقد أشارت دراسات سابقة إلى وجود العلاقات الخطية نفسها بين مساحة الأحواض النهرية وطول الرافد الأساسي أمثال مورجان (1971)، ونبوسون (1978) و كومراري، و حسن و كومراري ومادي (1981).
التحليل الجيولوجي المورفومترية للجزء الأعلى من حوض وادي الرميمين وحوض نهر تكالا

Sharma & Padmaja (1982) والتركماني (1988) وشـامن ودامـنجا (1997).

في حين أظهر معامل الارتباط (الجدول 3) أن العلاقة سالبة وبمستوى ثقة عالية بين أطوال الروافد وكل من درجة انحدار الروافد والتكرار النهري، ونسبة التضرس، ومعدل الاستدارة. ويمكن تفسير ذلك بأن زيادة طول الروافد تؤدي إلى زيادة مساحة الأحواض، لكن في الوقت نفسه يقل معدل الانحدار بسبب زيادة الطول مع ثبات فرق المنسوب، ومن ثم يقل معدل نسبة التضرس، وإطالة النهر حتما بسيئي إلى زيادة واضحة في طول الحوض، ومن ثم يزيد من معدل الاستدارة، ويقلل من معدل الاستدارة.

الجدول رقم 3: علاقات الارتباط بين بعض المتغيرات المدروسة

أولا: علاقات الارتباط بين مساحة الأحواض النهارية مع بعض المتغيرات المورفومترية في المرتبة الأولى والثانية في الرميمين وتكالا

المتغير المورفومترية	الحویض المرتبة الأولى	الحویض المرتبة الثانية
درجة انحدار الروافد	**0.69**	**0.67**
عد الروافد	-	**0.71**
التكرار النهري	-	0.21
طول الروافد	**0.62**	**0.71**
نسبة التضرس	-	**0.64**
طول الحوض	-	**0.55**

ثانيا: علاقات الارتباط بين الكثافة التصريفية مع كل من المساحة والتكرار النهري وطول الحوض

العربي الوادي	المساحة	التكرار النهري	طول الحوض
الرميمين الأول	**0.40**	**0.45**	**0.64**
الرميمين الثانية	-	-	**0.58**

** الاستثناء جيد: يظهر عنصر إضافي من العلاقة بين تغيرات مساحة الحوض والمعملات الإيجابية، والتحكم يمكن أن يكون نتائج الإلاح. تمثل هذه العلاقة بين الحوض والمعملات إيجابية.

* الصفر يظهر عنصر إضافي من العلاقة بين تغيرات مساحة الحوض والمعملات الإيجابية، والتحكم يمكن أن يكون نتائج الإلاح. تمثل هذه العلاقة بين الحوض والمعملات إيجابية.
ثالثاً: علاقات الارتباط بين طول الرايدين الأساسي مع كل من درجة انحدار الرايدين الأساسي والتركم النهر

الحوض	درجة انحدار الرايدين الأولى	درجة انحدار الرايدين الثانية	التكرار النهري	التكرار النهري الرميمين	
0.48	**0.27**	**0.48**	**0.83**	**0.48**	**0.83**
0.47	0.27	0.47	0.83	0.47	0.83

** مستوي الثقة 0.0001
*
مستوى الثقة 0.01

مما سبق يتضح أن أحوال المرتبة النهارية الثانية تميل إلى الاستطالا; إذ إن قيمة exponent الأس ارتفعت إلى 0.8، وهذا مؤشر على أن مساحة الأحوال تزداد بسبب زيادة تدفق الماء الطولي عن امتدادها العرضي، وبذلك تزداد استطالا الأحوال النهارية. وكما سبقت الإشارة إلى أن استطالا الأحوال النهارية تزداد بتكونات الصخرية الصعبة ذات الانحدارات الشديدة، وهذا ما تمثل في حوضي الدراسة.

لمعرفة درجة تأثير المؤشرات المورفومترية المختلفة في الدراسة على المساحات الحوضية في الحووصي، تم تشغيل الانحدار الخطوي مرتين على اعتبار أن مساحة الأحوال متغير تابع، والمؤشرات المورفومترية الأخرى متغيرات مستقلة (الجدول رقم 4)، ظهر أن أطول الرايدين النهارية تشكل المتغير الأساسي تقريباً للتباين في المساحة. إذا حل مؤشر طول الرايدين الأساسي في المرتبة الثانية بالدرجة الأولى في حوض الرايدين (R² = 0.82) ومستوى معنوية (0.001)، في حين جاء مؤشر مجموع أطوال الرايدين النهارية في الدرجة الأولى بالمرتبة الثانية في حوض تكالا، وبمعامل تحديد ارتفع إلى 0.97 وبمستوى معنوية للمؤشرين (0.001)، واحتل مؤشر الكثافة
التحليل الجيوپروفُولوجي للخصائص المورفومتالية للجزء الأعلى من حوض وادي الرميمين وحوض نهر تكالا

التصريفية من درجة الثانية، بمعامل تحديد يبلغ 0.10 و 0.01 لكل من حوضي الرميمين وتكالا على التوالي، وحل في درجة الثالثة التكرار النهري.

2- العلاقة بين الكثافة التصريفية ومساحة الأحواض النهارية

أظهر تحليل الارتباط أن الكثافة التصريفية ترتبط بعلاقات عكسية مع مساحة الأحواض، وبعلاقات ارتباط موجبة مع التكرار النهري، أما مؤشر مساحة الأحواض وحجم الحوب وطول الحوب، فيرتبط بعلاقات موجبة وعالية، وذات دالة إحصائية مع كل من عدد الروافد في الحوض، وطول الحوض، وذين ارتبط بعلاقات سالبة مع كل من درجة الانحدار، ونسبة التغذير، والكثافة التصريفية، والتكرار النهري، وهذا أمر طبيعي فقد سبقت الإشارة إلى أن زيادة أطوال الروافد تؤدي إلى زيادة المساحة، لذلك فإن المساحة تزداد مع زيادة عدد الروافد؛ لأن تشكل أي رافد جديد، خاصة الخارجية منها سوف يؤدي إلى زيادة في المساحة، وزيادة المساحة ستؤدي إلى قلة التغذير، وقلة التتروس تؤدي إلى قلة عدد الروافد، ومن ثم يقل معدل التكرار النهري (الجدول رقم 3).

معنى ذلك أن العلاقة خطية سالبة بين المتغيرين، وهذه النتائج أكدت نتائج دراسات سابقة مثل (1975) و(1978) و(Ferguson و Pethick 1979 & 1981). يعنى كلما زادت مساحة الأحواض النهارية قلتها كثافتها النهارية، ويمكن التوقع ببساطة قيمة الكثافة التصريفية من مساحة الأحواض النهارية طبقًا للمعادلات الأربعة (17 إلى 20).

أخذت نتائج توفيق المنحنات بين المتغيرين و الكثافة التصريفية (ك ت) ومساحة الأحواض النهارية (م ح) في المقابلتين الأولي والثاني من الحوضين

العلاقات التالية:

الحوض	المعادلة	المثلثية	المربعات	F	قيم F
الرميمين الأولي	ك ت = 1.2367 م ح + 0.44293	0.336	48.1	17	**
الرميمين الأولي	ك ت = 2.2458 م ح + 0.35665	0.377	71.6	18	**
الرميمين الثاني	ك ت = 2.384 م ح + 0.20452	0.239	6.9	19	**
الرميمين الثاني	ك ت = 3.9722 م ح + 0.1659	0.438	20.2	20	**

(سَتَئْلُعُونَ) 0.001، (سَتَئْلُعُونَ) 0.01.
لمعرفة أكثر المؤشرات المورفومترية تأثيرًا في معدل الكثافة التصريفية، تم تشغيل الانحدار الخطوي على اعتبار الكثافة التصريفية متغيرًا تابعًا والمتغيرات الأخرى مستقلة في المرتبة الثانية، فاحتل التكرار النهري الموقع الأول في المرتبتين الأولى والثانية في حوض الرميمين والثانية في تكالا، ويمكن تأكد مما ذكر مساحة الأحواض لوقت متأخر: إذ بلغ معامل تكالا في المرتبة الثانية 0.07 و 0.09 لكل من حوضي تكالا والرميمين على التوالي (الجدول رقم 4)، وهذا يعكس مدى العلاقة بين المساحة والكثافة التصريفية وأن كانت عكسية.

(الجدول رقم 4: نتائج تحليل الانحدار الخطوي في المرتبتين الأولى والثانية في الحوضين)

المتغير المتبوع	الكثافة التصريفية في الرميمين	المساحة في كل الحواسم	الكثافة التصريفية في الرميمين	المترتبة الأولى	المترتبة الثانية	المترتبة الأولى	المترتبة الثانية	المترتبة المستقلة
التكرار النهري	**0.96**	**0.69**	**0.45**	**0.82**	**0.34**	**0.40**	**0.22**	**0.07**
الكثافة	**0.07**	**0.07**	**0.08**	**0.03**	**0.13**	**0.13**	**0.03**	**0.01**
الطول النهر	**0.28**	**0.07**	**0.03**	**0.13**	**0.09**	**0.09**	**0.09**	**0.01**
معدل التدفق	**0.01**	**0.01**	**0.02**	**0.07**	**0.13**	**0.13**	**0.13**	**0.01**
مساحة الوادي	0.98	0.88	0.81	0.97	0.89	0.75	0.97	0.01 **

متوسط الثقة 0.0001 * مستوى الثقة 0.01 **
التحليل الجيومورفولوجي للخصائص المورفومترية للجزء الأعلى من حوض وادي الرميمين وحوض نهر تكالا

3- العلاقة بين الكثافة التصريفية والتكرار النهري:

العلاقة علامة خطية موجبة بمستوى ثقة عالية جداً، وأظهر تفوق المحاذاة بين الكثافة التصريفية (ك ت)، والتكرار النهري (ت ن)، وارتفعت معامل التحديد، وأخذت العلاقة بينهما في المرتبتي الأولى والثانية وفِي كلا كما الحوضين الشكل الآتي:

(المعادلات من 21 إلى 24):

الحوض	المعادلة	الترتيب	ر²	قيمة F
الرميمين الأول	ك ت = 0.2366 ن ن 1.303014	1.35055	0.34	48.1
تكالا	ك ت = 0.1246 ن ن 1.303014	1.35055	0.38	71.5
الرميمين الثانية	ك ت = 0.37335 ن ن 1.303014	1.35055	0.43	16.4
تكالا	ك ت = 0.29205 ن ن 1.303014	1.35055	0.63	44.3

** مستوى معنوية (0.01)**

هنا تأكيد لنتائج دراسات سابقة توصلت إلى العلاقات ذات نفسها، مثل (Newson 1978) و (Melton 1957). وقد أدرك تحليل الانحدار الخطوي هذه النتيجة عند اعتبار الكثافة التصريفية في المرحلة الثانية مترابطًا، وباقى المتغيرات كتغيرات مستقلة. احتر ضعف التكرار النهري المرحلة الأولى في الحوضين وقد بلغ معامل التحديد 0.69 و 0.34 في تكالا والرميمين على التوالي، وبمستوى معنوي عال جداً (الجدول رقم 4).

النتائج:

خلصت الدراسة إلى الإجابة عن مجموعة الأسئلة التي طرحت في البداية، ولَبِّت الأهداف العامة للدراسة، وأهم هذه النتائج هي:

- بروز دور العوامل المناخية أساسية في العمل الجيومورفولوجي، فالطبوسية الآن في حوض تكالا لعبت وما زالت تلعب دورًا مباشرًا على سير العمليات الجيومورفولوجية.

268
النهرية، متصلة بنية زيادة معدلات الاعتدال الرئاسي والتراعي في الروافد النهرية. فإن ذلك إلى تكرار عمليات الانهيارات الأرضية على السفوح الدنيا المجاورة مباشرة لتلك المجاري النهرية. بالرغم من أن صخور الحوام من الجرانيت الصلب جداً قليل المسامية والنفاذية. لذا حين اختلف الوضع بين حوض الجزء الأدنى من الرميمين: إذ تشهد المنطقة مرحلة شبه جفاف الآن أثرت سلباً في العمل الجيومورفولوجي النهري، وجعلته شبه محنت. كيف لا والعمل النهري نفسه ضعيف جداً. على الرغم من أن صخور الحوام صخور جيرية ضعيفة أمام الرطوبة: إذ ترجع غالبية تطور الصخور النهرية والأشكال الأرضية على الحوام إلى الفترات الرطبة التي مرت على الحوض
- البلايوستوين.

- وجود اختلافات بين الخصائص المورفومترية بين الحوامين متصلة بنية زيادة أطوال الروافد، وزيادة مساحة أحواضها في حوض الائمين منها. أكثر، على العكس من ذلك زاد معدل الكثافة، والتكرار النهري في حوض تكالا. عند الرميمين. ارتفع معدل الاستطالة في تكالا، لذا حين ارتفع معدل الاستدارة في الرميمين. ارتفع معدل نسبة التضرس وقل معدل انحدار الروافد في تكالا، وعلى العكس من ذلك في حوض الائمين بمعنى قل معدل نسبة التضرس، وارتفع معدل انحدار الروافد.

- انطبقت قوانين هورتون على كلا الحوامين، وقد أخذت العلاقة بين مجموعة من المتغيرات المورفومترية (متوسط مساحة الأحواض، ومتوسط أطوال الروافد، وعدد الروافد، ومتوسط درجات انحدار الروافد، والتكرار النهري) في المرتبة النهرية

- العلاقة الأساسية (ص = أَسَّ)

- أظهر تفوق المنحنى أن العلاقة الأسية (ص = أَسَّ) كانت أفضل الروابط التي أظهرها التحليل في العلاقة بين المؤشرات المختلفة سواء آتى على العلاقة سالبة أو موجبة. فقد ارتبطت مساحة الأحواض بعلاقات ارتباط موجبة وأسية مع أطوال الروافد في المرتبتين الأولى والثانية في كلا الحوامين. وقد أظهر تحليل الانحدار الخطوي أن أطوال الروافد من أهم المؤشرات المورفومترية تفسيرًا للتبابين في
التحليل الجيومورفولوجي للخصائص المورفومترية للجزء الأعلى من حوض وادي الرممين وحوض نهر تكالا

المساحات الحوضية، إذ ارتفع معامل التحديد إلى أكثر من 80% في المرتبة الأولى في كلا الحوضين. وتكررت العلاقة نفسها بين الكثافة التصريفية ومساحة الأحواض، وكانت العلاقة سلبية بين المرتبتين الأولى والثانية في كلا الحوضين. ارتفع معامل الارتباط الإيجابي بين الكثافة التصريفية والتكرار النهري في الحوضين. وقد أظهر تحليل الانحدار الخطوي أن التكرار النهري أهم المؤشرات المورفومترية تفسيرًا للتبانين بين الكثافة التصريفية، واحتل المرتبة الأولى في كلا الحوضين.
المراجع العربية والأجنبية

أبو العينين، حسن سيد (2000) أصول الجيومورفولوجيا، دراسة الأشكال التضاريسية لسطح الأرض.
ط 12، مؤسسة الثقافة الجامعية، الإسكندرية.

أبو سمره، حسن (1987) الطبقات النباتية المتكونة للمجموعات النباتية في حوض وادي زي، دراسات العالم، 12: 15-37.

التركماني، جودة فتحي (1988) تطبيق الطرق الكمية: للكشف عن بعض خصائص الأودية من منطقة شرق شبه جزيرة سيناء، المجلة الجغرافية العربية، 20: 101-135.

التركماني، جودة فتحي (1988) تطبيق الطرق الكمية: للكشف عن بعض خصائص الأودية من منطقة شرق شبه جزيرة سيناء، المجلة الجغرافية العربية، 20: 101-135.

التوم، صبري محمد (1990) حوض وادي الرميمين، عمان.

منشوره، الجامعة الأردنية، عمان.

التركماني، جودة فتحي (1988) تطبيق الطرق الكمية: للكشف عن بعض خصائص الأودية من منطقة شرق شبه جزيرة سيناء، المجلة الجغرافية العربية، 20: 101-135.

التوم، صبري محمد (2004) مورفولوجية المنحدرات في الجزء الأعلى من حوض الرميمين، دراسات الجيومورفولوجية المتاخمة، مجلة الجامعة الإسلامية، غزة، 12 (2): 59-87.

القرارة، محمد جميل (2005) التحليل الجيومورفولوجي للخصائص المورفومترية لحوض وادي الكرك، جurnal كلية الآداب جامعة عين شمس، 30: 171-194.

جودة، جودة حسن (1998) الجيومورفولوجيا علم الأشكال الأرضية، دار المعرفة الجامعية، الإسكندرية.

خضير، كمال محمد (1988) جيولوجية عمان، شقر، وعكشة للطباعة والنشر، عمان.

سلامة، حسن رمضان (1980) التحليل الجيومورفولوجي للخصائص المورفومترية للأحواض المائية في الأردن، دراسات، 7 (1): 97-132.

سلامة، حسن رمضان (2004) أصول الجيومورفولوجيا، دار المعرفة، الأردن.

شثار، آمال (1982) التعبير الكمي لدورة التعرية عند ديفز مع التطبيق على بعض الأودية في مصر، المجلة الجغرافية العربية، 14: 39-55.

عابد، عبد القادر (1985) جيولوجية الأردن، مكتبة النهضة الإسلامية، عمان.

كساني، محمود محمد (1983) التحليل المورفومترى لشبكات التصريف المائي (مصادر البيانات، جامعة الزرقاء، الأردن)
التحليل الجيومورفولوجي للخصائص المورفومترية
للجزء الأعلى من حوض وادي الرميمين وحوض نهر تكالا

وطريقة القياس)، المجلة الجغرافية العربية، 15: 101-124.

محسوب، محمد صبري (1998) جيومورفولوجية الأشكال الأرضية، دار الفكر العربي، القاهرة.

محمود، سمير سامي (2005) جيومورفولوجية وادي دجلة، المجلة الجغرافية العربية، 45: 341-391.

مزرا، ماجج نواب والبارودي، محمد سعيد (2005) السمات المورفولوجية والخصائص المورفومترية
والهيدروولوجية لأودية الحرم المكي، مجلة جامعة أم القرى للعلوم التربوية والاجتماعية والإنسانية،
عدد خاص: 175-264.
- Abrahams. A. D. (1984) Channel networks a geomorphological perspective. WRR. 20:161168–.
- Abrahams. A. D. (1972) Drainage densities and sediment yields in Eastern Australia. Aust. Geogr. Studies. 10. 1941–.
- Abrahams. A. D. & R. N. Campbell (1976) Source and tributary-source link lengths in natural channel networks. Geol. Soc. Am. Bull. 87: 10161020–.
- Al-Toum. S. M. M. (1997) Surface erosion study in the granite area of Hulu langat. Selangor D. E. Malaysia. Unpublished Ph.D thesis. UKM. Malaysia.
- Bender. F. (1974) Geology of Jordan. Gebruder Borntraeeger. Berlin.
- Butzer. K. W. (1976) Geomorphology from the Earth. New York. Haper & Row Publishers.
- Chorley. R. J. (1957) Illustrating the Laws of Morphometry. Geol. Magazine. 94: 140-150.
- Cotton. C. A. (1964) The control of drainage density. N. Z. J. Geol. & Geophy. 7: 348352–.
- Day. D. G. (1980) Lithologic controls of drainage density. a study of six small rural catchments in New England. N.S.W. Catena. 7: 339351–.
- Doornkamp. J. C. & King. C. A. M. (1971) Numerical analysis in geomorphology an introduction. Edward Arnold. London. 272p
- Engstrom. W. N. (1989) Morphometric analysis of mountain drainage basins in the basin and range province. U S A. Z Geomorph N F 33 (4): 443453–.
- Engstrom. W. N. (1981) Quantitative Geomorphology of Some Desert Mountain Drainage Basins. Z Geomorph N F. 25 (4): 383390–.
- Eyles. R. J. (1966) Stream representation on Malayan Maps. J. Trop. Geography. 22:
- Ferguson. R. I. (1978) Drainage density - basin area relationship. Area. 10: 350352-
- Gregory. K. J.. (1976) Drainage network and climate. In: Geomorphology and climate. Derbyshire. E. (Ed) London: John Wiley and Sons.
- Gregory. K.J.. & D.E. Walling (1973) Drainage Basin Form and Process. A Geomorphological Approach. London: Edward Arnold. 456p.
- Gobbett. D. J. & C. S. Hutchinson (1973) Geology of the Malay Peninsula. Wiley-Interscience. New York: John Wiley and Sons.
- Gopinahtan. B. & S. Paramananthan (1979) Steepland soils of Peninsular Malaysia. In. Malaysian Seminar on fertility and management of deforested land. 6167-
- Hassn. F. A. & Yehia. M. A. Abdallah & H. Hamroush (1982) Morphometry of desert wadi drainage on the West Bank between Danfiq and Ballas. Luxor- Qena Region. Egypt. Qatar Univ. Sci. bull. 2 (1): 143166-
- Horton. R. E. (1945) Erosional development of streams and their drainage basins. Bull. Geol. Soc. Amer.. 56: 275370-
- Kumar. A.. & Pandey. R. N.. (1981) Quantitative geomorphology of small drainage basins of Hazaribagh plateau. Geogr. Rev. India. 43 (2): 196203-
- Lai. F. S.. (1992) Sediment and solute yields from logged. steep upland catchments in Peninsular Malaysia. Unpublished Ph.D thesis. University of Manchester. UK.
- Maxwell. J. C.. (1955) The bifurcation Ratio in Horton>s law Numbers. Am. Geophys. Union. Tr.. 36: 520.
- Melton. M. A.. (1957) An analysis of the relations amang elements of climate. surface properties and geomorphology. tech. Report. II. office of naval research. Dept. Geol.. Colombia Univ. NY.
- Moorman. F. (1959) Report to the government of Jordan on soil of east Jordan. FAO. no. 1132.
- Morgan R. P. C. (1971) A morphometric study of some valley systems on the English chalklands. Ins. Br. Geogr.. 54: 3343-.
- Morisawa. M. E. (1959) Relation of morphometric properties to runoff in the little Mill Greek. Ohio. Drainage basin tech. Report No. 17. Dep. Geol.. Colombia Univ. NY
- Padmaja. G. (1975) Some aspects of quantitative drainage characteristics of the Dhund basin. Geogr. Rev. India. 37 (2): 158164-.
- Pethick J. S. (1975) A note on the drainage density- basin area relationship. Area. 7.21722-.
- Roe. F. W. (1953) The geology and mineral resources of the neighbourhood of Kuala Selangor and Rasa-Selangor. Federation of Malaya. with an account of Geology of Batu Arang Coalfield. Geol. Sur. Dept. Memoir No. 7. New Series. Kuala Lumpur: Caxton Press.
- Salameh. H. R. (1988) Morphology of the first-order streams in a semi-arid watershed: Wadi shueib Basin. Jordan. Arab J. for the humanities. 8 (30): 405435-.
- Schumm. S. A. (1956) Evolution of drainage systems and slopes in Badlands at Perth Amboy. New Jersey. Geol. Soc. Am. Bull.. 67: 597646-.
- Shreve. R. L. (1966) Statistical law of stream numbers. J. Geology. 74: 1738-.
- Sharma. H.S. & G. Padmaja. (1977) Quantitative geomorphic characteristics of streams of the morel basin. Rajasthan. Geogr. review of India. 39 (4) : 353366-.
- Smart. J. S. (1972) Quantitative characterization of channel network structure. WRR.. 8(6) :148796-.
- Strahler. A.N.. (1957) Quantitative analysis of watershed geomorphology. Trans. Am. Geophys. Union. 38 (6): 913920-.
- Strahler. A. N., (1958) Dimensional analysis applied to fluvial eroded landforms. Bull. Geol. Soc. Am. 69: 279300-.
- Strahler. A. N., (1964) Quantitative geomorphology of drainage basin and Channel Networks. Part II Sect 4-II. In: Handbook of Applied Hydrology. V. T. Chow (Ed.) New York: McGraw-Hill Book Company. Section 4-II.
- Wilson. l. (1971) Drainage density, length ratios. and lithology in a glaciated area of southern connecticut. Geol. Soc. Am. Bull. 82: 29552956-.
- Zakaria. A. S., (1972) Morphometry of part of Kelantan river catchment. Sains Malaysian. 1 (1): 5976-.
الجدول رقم (1) : المتوسط (س -) والانحراف المعياري (ع) لخصائص النموذجية من القساء والسموحة على جميع المراتب النهرية في الرميمين وتكالا

أولاً : المساحة وطول الروافد والكثافة النهرية والتكرار النهري ونسبة التقطع وعدد الروافد، معدل التشمب

النوع	السعة (كم²)	الكثافة النهرية	التكرار النهري	نسبة التقطع	عدد الروافد
الرمية الأولى	0.028	217	423	0.028	0.136
الرمية الثانية	0.021	119	267	0.021	0.097
الرمية الثالثة	0.068	571	685	0.25	0.709
الرمية الرابعة	0.109	493	1051	0.98	0.08

ثانياً : الاستدامة والاستطالة والشكل ودرجة الانحدار ونسبة التعرس

النوع	نسبة التعرس	درجة الانحدار	الاستطالة	الاستدامة		
الرمية الأولى	*	*	0.32	0.63	*	*
السعة	4.54	4.79	0.10	0.109	0.109	0.109
الرمية الثانية	0.36	0.37	0.66	0.677	0.61	0.67
الرمية الثالثة	0.14	0.13	0.133	0.122	0.126	0.12
الرمية الرابعة	0.013	0.055	0.15	0.05	0.13	0.11

القيمة لم تحسب
التحليل الجيولوجي للخصائص المورفومتية للجزء الأعلى من حوض وادي الرميمين وحوض نهر تكالا

الشكل رقم (1): موقع الخريطة الكنتورية لكل من الجزء الأعلى من حوض الرميمين وحوض تكالا
الشكل رقم (2): المراتب النهرية في الحوضين
التحليل الجيولوجي للمورفومتريّة

للجزء الأعلى من حوض وادي الرميمين وحوض تكالا

الشكل رقم (3): بعض التكرازات النهارية في المرتبتين الأولى والثانية من حوضي الجزء الأعلى من الرميمين وتكالا
الشكل رقم (3 ب): بعض التكرارات النهرية في المرتبتين الأولى والثانية من حوضي الجزء الأعلى من الرممين وتكالاً
التحليل الجيومورفولوجي للخصائص المورفومتيرية للجزء الأعلى من حوض وادي الرميمين وحوض نهر تكالا

الشكل رقم (3 م): بعض التكرارات النهرية في المرتبتين الأولى والثانية من حوضي الجزء الأعلى من الرميمين وتكالا
الشكل رقم (3): بعض التكرارات النهرية في المرتبتين الأولى والثانية
من حوضي الجزء الأعلى من الرميمين وتكالاً
التحليل الجيومورفولوجي للخصائص المورفومتريكية للجزء الأعلى من حوض وادي الرميمين وحوض نهر تكالا.
الشكل رقم (5) العلاقات المتباينة بين المرتبة النهرية وكل من المساحة وعدد الروافد النهرية ودرجة انحدارها ومتوسط أطوالها في كلا الحوضين.
Tomozeiu, R. Busuioc, A. Stefan, S. 2002. Changes in Seasonal Mean Maximum Air Temperature in Romania and their Connection with Large-Scale Circulation. International Journal of Climatology, 22: 12181-1196.

Turkes, M. and Erelat, E. 2003. Precipitation Changes and Variability in Turkey Linked to the North Atlantic Oscillation During the Period 1930-2000. International Journal of Climatology, 23: 1771-1796.

Turkes, M and Erelat E. 2005. Climatological Responses of Winter Precipitation in Turkey to Variability of the North Atlantic Oscillation During the Period 1930-2001. Theoretical and Applied Climatology, 81: 45-69.

Uvo, C. 2003. Analysis and Regionalization of Northern European Winter Precipitation Based on its Relationship with the North Atlantic Oscillation. International Journal of Climatology, 23: 1185-1194.

Wedgbrow, C.S. Wilby, R.L. Fox, H.R. and O>Hare, G.O. 2002. Prospects for Seasonal Forecasting Summer Drought and Low River Flow Anomalies in England and Wales. International Journal of Climatology, 22: 219-236.

Wilby, R.L. O>Hare, G.P. Barnsley, N. 1997. The North Atlantic Oscillation and British Isles Climate Variability. Weather, 52: 266-276.

Wang, W. Anderson, B.T. Kaufman, R.K. and Myneni, R.B. 2004. The Relation Between the North Atlantic Oscillation and SSTs in the North Atlantic Basin. Journal of Climate, 17: 4752-4759.

Wood, N.L.H. 2004. Regional Climate Trends in South-West England and the North Atlantic Oscillation. Weather, 59: 38-41.
Observed Record (1901-2000) and 16 Scenarios (2001-2100). Tyndall Centre Working Paper No 55.

Mitchell, T.D and Jones, P.D. 2005. Improved Method of Constructing a Database of Monthly Climate Observations and Associated High-Resolution Grids. International Journal of Climatology, 25: 693-712.

Mote, T.L. 1998. Mid-Tropospheric Circulation and Surface Melt on the Greenland Ice Sheet. Part I: Atmospheric Teleconnections. International Journal of Climatology, 18: 111-129.

Panagiotopoulos, F. Shahgedanova, M. Hannachi, A. Stephenson, D. 2005. Observed Trends and Teleconnections of the Siberian High: A Recent Declining Center of Action. Journal of Climate, 18: 1411-1422.

Perry, A. 2000. The North Atlantic Oscillation: an Enigmatic See-Saw. Progress in Physical Geography. 24: 289-294.

Pirazzoli, P. A. and Tomasin, A. 2003. Recent Near-Surface Wind Changes in the Central Mediterranean and Adriatic Areas. International Journal of Climatology, 23: 963-973.

Pryor, S.C. Barthelmie, R.J. 2003. Long-Term Trends in Near-Surface Flow Over the Baltic. International Journal of Climatology, 23: 271-289.

Scheifinger, H. Menzel, A. Koch, E. Peter, C. and Ahas, R. 2002. Atmospheric Mechanisms Govering the Spatial and Temporal Variability of Phenological Phases in Central Europe. International Journal of Climatology, 22: 1739-1755.

Sheridan, S. C. 2003. North America Weather-type Frequency and Teleconnection Indices. International Journal of Climatology, 23: 27-45

Stephenson, D.B. Pavan, V. Bojariu, R. 2002. Is the North Atlantic Oscillation a Random Walk. International Journal of Climatology, 20: 1-18.

Spraks, T.H. and Menzel, A. 2002. Observed Changes in Seasons: An Overview. International Journal of Climatology, 22: 1715-1725.

Terray, L. Demory. M-E. Deque, M. Coetlogon, G. Maisonnave, E. 2004. Simulation of Late-Twenty-First-Century Changes in Wintertime Atmospheric Circulation Over Europe Due to Anthropogenic Causes. Journal of Climate, 17: 4630-4635.
Link Between El-NINO and Springtime North Atlantic Oscillation and European-North African Rainfall. International Journal of Climatology, 23: 1239-1311
Kozuchowski, K. M. 1993. Variation of the Hemispheric Zonal Index Since 1899 and its Relationship with Air Temperature. International Journal of Climatology, 13:853-861.
Krichak, S.O. and Alpert, P. 2005. Signature of the NAO in the Atmospheric Circulation During Wet Winter Months Over the Mediterranean Region. Theoretical and Applied Climatology, 82:27-39.
Kysely, J. 2002. Temporal Fluctuations in Heat Waves at Prague-Klementinum, the Czech Republic, from 1901-97, and their Relationship to atmospheric Circulation. International Journal of Climatology, 22: 33-50.
Laternser, M. and Schneebli, M. 2003. Long-term Snow Climate Trends of the Swiss Alps (1931-1999). International Journal of Climatology, 23: 733-750.
Lolis, C.J. Bartzokas, A. and Katsoulis, B.D. 2002. Spatial and Temporal 850hPa Air Temperature and Sea-Surface Temperature Covariance’s in the Mediterranean Region and Their Connection to Atmospheric Circulation. International Journal of Climatology, 22: 663-676.
Lucero, O.A and Rodriguez, N.C. 2002. Spatial Organization in Europe of Decadal and Interdecadal Fluctuation in Annual Rainfall. International Journal of Climatology, 22: 805-820.
Luterbacher, J. and Xoplaki, E. 2003. 500-Year Winter Temperature and Precipitation Variability Over Mediterranean Area and its Connection to the Large-scale Atmospheric Circulation. Mediterranean Climate: 133-153, Eds.Bolle, H-J. Springer-Verlag.
New, M. Hulme, M. and Jones, P. 2000. Representing Twentieth-Century Space-Time Climate Variability. Part II: Development of 1901-96 Monthly Grids of Terrestrial Surface Climate. Journal of Climate, 13: 2217-2238.
Mitchell, T.D. Hulme, M. and New, M. 2002. Climate Data for Political area. Area, 34: 109-112.
Mitchell, T.D. Carter, T.R. Jones, P.D. Hulme, M. and New, M. 2004. A Comprehensive Set of High-Resolution Grids of Monthly Climate for Europe and the Globe: The
Goodess, C.M. and Jones, P.D. 2002. Links Between Circulation and Changes in the Characteristics of Iberian Rainfall. International Journal of Climatology, 22: 1593-1615.

Gouirand, I. and Moron, V. 2003. Variability of the Impact of El NINO-Southern Oscillation on Sea-Level Pressure Anomalies over the North Atlantic in January to March (1874-1996). International Journal of Climatology, 23: 1549-1566.

Hanna, E. Jonsson, T. and Box, J.E. 2006. Recent Changes in Icelandic Climate. Weather, 61: 3-8

Hasanean, H.M. 2004. Wintertime Surface Temperature in Egypt in Relation to the Associated Atmospheric Circulation. International Journal of Climatology, 24: 985-999.

Honda, M. Yamane, S. and Nakamura, H. 2005. Impacts of the Aleutian-Icelandic Low Seesaw on Surface Climate during the Twentieth Century. Journal of Climate. 18: 2793-2802.

Hurrell, J.W. 1995. Decadal trends in the North Atlantic Oscillation: Regional Temperature and Precipitation. Science, 269:676-679.

Jones, P.D Jonsson, T. Wheeler D. 1997. Extension to the North Atlantic Oscillation Using Early Instrumental Pressure Observations from Gibraltar and South-west Iceland. International Journal of Climatology, 17:1433-1450.

Junge M.M. and Stephenson, D.B. 2003. Mediated and Direct Effects of the North Atlantic Ocean on Winter Temperatures in Northwest Europe. International Journal of Climatology, 23: 245-261

Keevallik, S. 2003. Changes in Spring Weather Conditions and Atmospheric Circulation in Estonia (1955-95). International Journal of Climatology, 23: 263-270.

Kettlewell, P.S. Stephenson, D.B. Atkinson, M.D. and Hollins, P.D. 2003. Summer Rainfall and Wheat Grain Quality: Relationships with the North Atlantic Oscillation. Weather, 58: 155-164

Knippertz, P Ulbrich, U Mrques F. and Corte-Real J. 2003. Decadal Changes in the
References

Bader, J. Latif, M. 2005. North Atlantic Oscillation Response to Anomalous Ocean SST in a Coupled GCM. Journal of Climate, 18: 5382-5389.

Bednorz, E. 2002. Snow Covers in Western Poland and Macro-Scale Circulation Conditions. International Journal of Climatology, 22: 533-541.

Bartzokas, A. Lolis, C.J. and Metaxas, D.A. 2003. The 850hPa Relative Vorticity Centres of Action for Winter Precipitation in the Greek Area. International Journal of Climatology, 23: 813-828.

Box, J.E. 2002. Survey of Greenland Instrumental Temperature Records: 1873-2001. International Journal of Climatology. 22:1829-1847.

Brunetti, M. Maugeri, M. Nanni, T. 2002. Atmospheric Circulation and Precipitation in Italy for the Last 50 Years. International Journal of Climatology, 22: 1455-1471

Cohen, J. and Barlow, M. 2005. The NAO, the AO and Global Warming: How Closely Related. Journal of Climate, 18: 4498-4513.

El-Kadi, A.K.A. 2007. 20th Century Temperatures of Palestine: Variability, Trend and the Global Warming (1901-2000). Journal of the Social Sciences, Faculty of Arts, Bahrain University. (Submitted).

Eshel, G. Cane, M.A. Farrell, B.F. 2000. Forecasting Eastern Mediterranean Droughts. Monthly Weather Review, 128: 3618-3630.

Feidas, H. Makrogiannis, T. Bora-Senta, E. 2004. Trend Analysis of Air Temperature Time Series in Greece and their Relationship with Circulation Using Surface and Satellite Data: 1955-2001. Theoretical and Applied Climatology, 79: 185-208.

Fowler, H.J. and Kilsby, C.G. 2003. A Regional Frequency Analysis of United Kingdom Extreme Rainfall from 1961 to 2000. International Journal of Climatology, 23:1313-1334

Fowler, H.J. and Kilsby, C.G. 2002. Precipitation and the North Atlantic Oscillation: A Study of Climatic Variability in Northern England. International Journal of Climatology, 22:843-866.

Garcia, R. Munoz, T. Hernandez, E. Ribera, P. and Gimeno, L. 2003. Temperature Predictability in the Great Mediterranean Area. Theoretical and Applied Climatology,
the 20th century, similar to those observed in surface temperature changes, whereas they don’t correlate with the NAO index variability (Pirazzoli, and Tomasin, 2003).

Wood (2004) concluded that NAO as bipolar indexes it cannot be expected to adequately represent the three-dimensional temperature field that sets boundary conditions for the forced hemispheric waves.

Weak but statistically significant relationships were found between Iceland climate and NAO (Hanna, et al 2006). They concluded that NAO index is a purely statistical measure, imperfectly representing the underlying physical mechanisms and causes.

The negative mode is associated with westerly wind and moving depression over the Mediterranean and brings mild and wet westerly maritime wind over the Eastern Mediterranean.

The results of this study lead to the conclusion that the North Atlantic atmospheric circulation (NAO) has strong impact and significant connection to the temperature variability over Palestine. Annual NAO results in predominantly negative relationships with monthly and seasonal temperature. These negative relationships were strengthened in the case of monthly and seasonal NAO and associated monthly and seasonal temperatures. These results confirmed the well-known dipole patterns of the atmospheric circulation between North-Atlantic Western-Europe and the Eastern Mediterranean (Hurrel, 1995, Jones et al 1997, Turkes and Erlat, 2005).

Negative NAO is associated with warmer temperature and the apposite with positive NAO. Same conclusions have been found over Greece (Feidas, et al, 2004), Egypt (Hasanean, 2004) and for the whole Eastern Mediterranean countries (Luterbacher and Xoplaki, 2003).
temperatures were associated significantly with annual NAO, and changed to higher significant level with seasonal NAO. The relationships were predominantly negative. Categories of NAO and their relationships also satisfied the objection of its categorizations.

Negative NAO indices bring warmer conditions, whereas the positive NAO indices are associated with the apposite conditions (Tables 3 and 4). These results were in apposite to that found over Europe-North Atlantic sector, confirming the well known dipole teleconnections pattern between the Eastern Mediterranean and the North Atlantic Western Europe.

This is climatologically sound, since positive NAO is associated with strong westerly circulation and moving depression over Europe and it is absent over the Mediterranean. The Mediterranean in this phase may be influenced by more meridional circulation.

The NAO phases also shows clear and negative significant relationships with Palestine temperature. However the explained variance was not high, and does not exceed 40% at it is best in February (Table 5) in the period 1930-1970. However it is larger than that found in other countries. Meanwhile, NAO represents a mode of atmospheric variability that is not yet completely understood (Uvo, 2003).

Junge and Stephenson (2003) concluded that NOA alone is not a good model for explaining a large fraction of the interannual variance of winter means temperature of Central England, and NOA is no longer the dominant SLP pattern for determining Central England temperature. The prediction of European climate needs more than just NOA prediction.

Wind activity in the central Mediterranean decreased from at least 1951 to the mid 1970s, and then increased until the end of
these relationships were significant. These findings imply strong relationships between NAO and Eastern Mediterranean and the Middle East. The results obtained here are also in accordance to that found over Greece (Feidas, et al 2004) and to the strong predictability of North Atlantic mean sea level pressure (NAO) and the Eastern Mediterranean (Eshel, et al 2000, Garcia et al, 2003). The least significant relationships were found between winter temperature and winter NAO (Table 5). In contrast to the stronger relationships were usually found in Europe.

NAO	December	January	February	Winter	Annual
1901-2000	-0.419	-0.500	-0.531	-0.204	-0.433
1901-1930	-0.421	-0.221	-0.495	-0.161	-0.380
1930-1970	-0.369	-0.584	-0.626	-0.007	-0.585
1970-2000	-0.363	-0.524	-0.364	-0.193	-0.184
1970-1994	-0.407	-0.547	-0.340	-0.241	-0.049

Table 5. Correlation Coefficient between winter season, winter months, annual temperatures and NAO positive and negative phases. Bold values are significant at 0.05 and bold italic at 0.01 or more.

Therefore it is reasonable to conclude that the effects of NAO go beyond the Western-Europe North Atlantic regions into the Middle East and the Eastern Mediterranean. Therefore, the conclusion of Scheifinger, et al (2002) cannot be supported and is questionable.

Conclusion

Annual and monthly temperatures have significantly been shown to relate to annual NAO. These relationships increased when using the monthly NAO and monthly temperature. Seasonal
The end of the century winter North Atlantic European region atmospheric circulation is characterized by a doubling (halving) of the occurrence of the NAO+ (NAO-) climate regime (Terray et al 2004).

Temperature and precipitation patterns during the 1995-1996 winter changed dramatically as the oscillation reversed its sign from extremely positive to extremely negative index, the winter of this period in many parts of Northern Europe was the coldest for at least 10 years and reminiscent of many in the 1960s, it was also very dry winter in Northern Europe, in contrast, the prolonged drought broke in the western Mediterranean (Jones et al 1997).

NAO Positive, Negative Phases and the Temperature

According to the above definition of the negative and positive phases of winter and annual NAO (Figure 3), Table 5 shows the correlation coefficient between NAO and winter months, winter season and annual temperatures.

The relationships between NAO positive, negative phases and the temperature were predominantly negative (Table 5). Most of
spring months and seasons, as well as no relationships was found in spring months and season with \((+0.5 \leq \text{NAO} \leq -0.5)\). The same result was with \(\text{NAO} \leq -0.5\). Spearman indicates a significant relationship of \(-0.207\) significant at 0.05 between April \(\text{NAO} \geq +0.5\) and April temperature. May \(\text{NAO} \geq +0.5\) was significantly correlated with a value of \(-0.396\) with May temperature and it was significant at 0.03.

Positive and Negative NAO Phases.

At this section we examined the relationships between the long-term run of positive and negative sequences of NAO and the temperature.

From the turn of the 20th century until about 1930 the NAO showed a positive trend, which subsequently reversed from the early 1940s to early 1970s (Hurrell, 1995 and Gouirand and Moron, 2003) (see Figure 3).

From early 1970s to early 1990s NAO was in positive phase (Hurrell, 1995, Wilby et al 1997, Stephenson, et al, 2002, Pryor and Barthelmie, 2003, Bartzokas, 2003, Laternser and Schneebeli, 2003, Pirazzoli and Tomasin, 2003 and Turkes and Erlat, 2003).

Moreover Jones et al (1997) stated that the period since 1970s is the most prolonged positive phase of the oscillation and the late 1980s and early 1990s, (Figure 3), is the period with highest values (strongest westerlies), the winter of 1995-1996 marked a dramatic switch in the index, with the change from 1994-1995 being the greatest change recorded from one year to the next since the series began in 1823. Bader and Latif (2005) concluded that the observed recent positive trend in NAO has a likely contribution from the observed warming in the Indian Ocean via the circum-global pattern.

NAO has vigorous upward trends during the 1970s-early
Spring

The overall relationships of spring months and season were negatively correlated with NAO. Spring months except April were correlated significantly with annual NAO (Table 2A). When monthly NAO was used the relationships were strengthened and attained higher significant levels except April (Table 2B).

The correlation coefficient between annual NAO and spring temperature was -0.317 and it is highly significant at 0.001 level of significant (Table 1A). The relationship between Spring NAO and spring temperature was significant at 0.006 (Table 1B). This means that the annual (Table 1A) and seasonal spring temperatures were significantly related to spring seasonal and annual NAO (Table 1B).

No significant relationships were found with NAO≥+0.5, NAO≤-0.5, and (0.5+≥ NOA ≥ -0.5) and the temperature.

Spring negative NAO≤-0.5 was warmer by 0.6°C than NAO≥+0.5 (Table 3). The negative spring NAO≥-1 is warmer by 0.7°C than the positive spring NAO≥+1 (Table 3). March negative NAO≤-1 was warmer by 1.9°C than March positive NAO≥+1 (Table 4). This means that negative spring NAO index was associated with warmer temperature than the positive NAO index (Table 3). Using extreme positive spring NAO≥+1, the correlation was -0.493 and it is significant at 0.06. When spring NAO in the extreme negative index of NAO≤-1 the relationship was not significant.

No significant relationship was found in both March and April temperature and the NAO≥+1. No correlation were found between Annual NAO≥+0.5 and spring months, however Spearman Rank correlation indicate a values of -0.454 with March temperature and it was significant at 0.05.

No relationships were found between annual NAO≤0.5 and
Months	NAO≥+1	NAO≤-1	-0.5≥NAO≤+0.5	NAO≥+0.5	NAO ≤-0.5
January	10.6	12.1	11.1	11	12.2
February	11.2	13.2	12.0	11.2	13.3
March	13.2	15.1	14.3	13.3	14.0
April	17.7	17.6	17.8	17.4	17.9
May	20.7	21.7	21.4	20.9	22.1
June	23.8	24.1	24.0	23.6	24.8
July	26.0	25.9	25.9	25.7	26.4
August	26.3	26.9	26.4	26.2	26.4
September	24.6	25.0	24.8	24.7	24.8
October	21.7	22.5	22.1	22.3	21.7
November	16.9	17.8	17.6	16.8	17.3
December	12.3	13.6	13.1	12.3	13.2

Table 4. Monthly Average Temperature Associated with Monthly NAO Indices

No relationships were found between all annual NAO categories and autumn season and its months (September, October and November). Small differences of the average autumn temperature associated with Annual NAO≥ +0.5 and NAO≤-0.5 was found (Table 3). Autumn negative NAO indices were associated with warmer conditions than autumn positive NAO indices (see Table 3). Furthermore only October and autumn temperatures was correlated significantly at 0.01 level of significant with a value of -0.38 and -0.38 with NAO≤-0.5 respectively.

Autumn temperature associated with negative NAO≤-0.5 is warmer by 0.4°C than the positive Autumn NAO≥+0.5. Negative NAO≤-1 is warmer by 0.8°C than positive NAO≥+1 (Table 3)

The non exist significant relationships between autumn temperature and annual NAO (Tables 1A and 2A) could be interpreted by the irregular and unsettled weather conditions peculiar for this season in the year.
negative relationships of -0.303 and -0.247 with annual NAO (Table 2A).

Average summer temperatures associated with NAO ≥+1 and NAO ≤-1 were 26.3°C and 25.9°C (Table 3) respectively while the correlation coefficients were positive but not significant. However it is interesting to note that only positive NAO in summer season was associated with warmer conditions over Palestine than the negative NAO (Tables 3 and 4). This apposite pattern may signify the change of Northern Hemisphere atmospheric circulation between winter and summer. Positive NAO index is statistically significantly related to higher than normal summer temperatures over the Balkans and vice versa (Lolis, et al 2002).

No relationship were found in June, July and August with both indices of NAO ≥+1 and NAO ≤-1, despite the NAO≤-1 in July were it was -0.433 and significant at 0.05.

No significant relationships were found with each summer NAO indices of ≤-0.5, and ≥+0.5 and the monthly, seasonal and annual temperatures of summer. Lolis et al (2002) stated that no significant relationship between 850hPa temperature and NAO was found in the Mediterranean region in summer. Furthermore only in summer there was non significant correlation between NAO and south-west England (Wood, 2004).

Autumn

No relationships were found between annual NAO and the months of autumn (Table 2A), however when the monthly NAO was used the relationships with autumn monthly temperatures was turned to strong negative significant relationships (Table 2B). The correlation between autumn temperature and autumn NAO was -0.276 and significant at 0.005 level of significant (Table 1B).
NAO≥+1 was significant at 0.05. No significant relationships were detected in December with the two indices.

The formations of the positive phase with strong Icelandic Low in winter led to warmer conditions simultaneously over Europe, the southeastern United States, and the Far East and colder conditions on the other coastal regions of North America and around the Middle East, the apposite conditions are observed for the negative phase (Honda, et al 2005, Uvo, 2003) (see Table 3). In addition, cold anomalies in winter around the Middle East are associated with the intensified Azores high (Honda et al 2005), i.e., positive NAO (see Figure 1). In winter a seesaw pattern of 850hPa temperature was found between Western Europe and the Middle East, and a positive NAO is significantly related to negative 850hPa temperature anomalies over the Eastern Mediterranean and the Middle East and vise versa (Lolis et al 2002). February negative NAO≤-1 was warmer by +2°C than February positive NAO≥+1 (Table 4). In winter during positive NAO Egypt becomes cooler and during negative NAO years the zonal trajectories of Atlantic heat brings anomalously warmer period to Egypt (Hasanean, 2004), as identified in Palestine. Tomozeiu, et al (2002) found a good relation between the winter NAO index and the Romanian temperature in the period 1960-1998.

Summer

Summer months and season all display a negative correlation with NAO and annual NAO showed strong negative relationships with summer temperature (Table 1A). On contrary the relationships between summer seasonal NAO and summer temperature declined and not significant (Table 1B).

June and July, in spite of August, showed strong significant
Table 2. Correlation Coefficient (CC) between (A) Annual NAO, (B) Monthly NAO and the Monthly Average Temperatures and their Significant (Sig.) levels.

CC	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Sig.	.007	.000	.003	.435	.003	.002	.014	.144	.126	.420	.450	.052

| CC | -0.5 | -0.31 | -0.505 | 0.077 | -0.326 | -0.127 | -0.016 | -0.238 | -0.194 | -0.310 | -0.270 | -0.419 |
| Sig. | 0.000 | 0.000 | 0.448 | 0.001 | 0.208 | 0.871 | 0.017 | 0.053 | 0.002 | 0.007 | 0.000 | 0.000 |

Table 3. Seasonal NAO and Associated Seasonal Average Temperature

January NAO≥+1 was significantly correlated with January temperature with a value of -0.332 and it was significant at 0.05 level. At the same time January NAO≤-0.5 was also correlated with January temperature with a value of -0.348 and it was significant at 0.05. Only February temperature associated with
Preliminary results dividing the Mediterranean into sub-regions indicate close relation between the winter NAO and winter temperature over the Eastern Mediterranean whereas for the Western and Central parts this is not the case (Luterbacher and Xoplaki, 2003).

Winter average temperature associated with NAO ≥+1 was not significant (42 years having this value). Negative index of NAO is associated with warmer condition than the positive mode (Table 3). The temperature of the negative mode is warmer by 0.9°C. Only January, February and annual temperature were correlated significantly with annual NAO (≥-0.5 to ≤+0.5) gives values of -0.240, -0.336 and -0.287 respectively. Annual NAO ≥+0.5 showed only a negative significant correlation of -0.39 and -0.4 with February and March respectively. Furthermore no relationships were found between annual NAO ≤-0.5 and monthly, seasonal and annual temperatures.

The correlation coefficient between winter NAO ≤-1 and winter temperature was +0.745, it is very strong and highly significant at 0.03. However, only 8 years were associated with this value.

	Winter	Spring	Summer	Autumn
Annual NAO (A)				
CC.	-0.147	-0.317	-0.283	-0.069
Sig.	0.148	0.001	0.005	0.500

	Winter	Spring	Summer	Autumn
Seasonal NAO (B)				
CC.	-0.204	-0.272	-0.176	-0.276
Sig.	0.043	0.006	0.08	0.005

Table 1. Correlation Coefficient (CC) between (A) Annual NAO, (B) Seasonal NAO and the Seasonal Average Temperatures and their Significant (Sig.) levels.
Winter

The correlation coefficient between winter NAO and winter temperature was -0.204 (Table 1B), which is significant at 0.04 level of significant. It is weaker than the relationships between annual NAO and the annual temperature (1901-2000). However the correlation of annual NAO and winter temperature was not significant (Table 1A).

Winter months (December, January and February) were significantly negatively correlated with the annual NAO (Table 2A). The negative relationships were strengthened and attained higher significant levels between monthly NAO and the monthly winter temperatures (Table 2B). It is noted that February attained the highest significant relationship, with an explained variance of 28% (Table 2B and Figure 2).
Discussion

Annual NAO

The correlation coefficient between annual NAO and the annual temperature (1901-2000) was -0.420 and it is statistically significant at 0.001 level (Figure 1). The annual NAO ≥+1 resulted only in three years. If we select NAO ≥+0.5 the number of year having this index is 23 years and the average temperature was 17.8°C, without significant relationships. On the other hand using the values of NAO ≤-0.5, the average annual temperature was 19.5°C, only 10 years having these values, the correlation coefficient was -0.448, but was also not significant. Negative mode of NAO seems to be associated with warm conditions over Palestine, while positive mode ≥+0.5 is associated with lower temperature. The temperature of the positive mode was 1.7°C cooler than the temperature of the negative mode. This is climatologically sound since positive NAO is associated with strong westerly over Northern Europe and more meridional winds associated with strong anticyclonic circulation over the Eastern Mediterranean. Negative NAO is associated with blocking circulation and weaker westerly wind over Europe and the westerly circulation and the associated depression is enhanced and moved over the Mediterranean. This mode is normally associated with maritime westerly component of wind and moving depression over the Mediterranean Sea. Positive NAO is significantly related to positive 850hPa temperature anomalies over France and negative anomalies over the Eastern Mediterranean and the Middle East and vice versa with negative NAO (Lolis, et al 2002).

The correlation coefficient between (-0.5≤NAO≤+0.5) and the temperature was -0.335 and it is significant at 0.01.
month variations for 289 countries covering the land surface of the earth (Mitchell, et al 2002, Mitchell and Jones, 2005). The seasons for both the NAO index and the temperature are defined as March-April-May for spring, June-July-August for summer, September-October-November for autumn, and December-January-February for winter.

Pearson correlation coefficient and Spearman rank correlation coefficient were used to test the significance of the relationships between NAO and the temperatures. The second was introduced when the first failed to do so. Linear trend and time series fitting curves were applied to highlight the most significant link between NAO and temperatures.

Different categories of NAO are used. Negative NAO anomaly index corresponding to normalize NAO index value ≤-1.0 (less than or equal) and a positive NAO anomaly index corresponding to normalized index values ≥+1.0 (greater than or equal) (Sheridan, 2003, Turkes and Erlat, 2003) and a neutral for those values between (0.5+≥NAO≥-0.5). In addition a positive values ≥+0.5 and negative value ≤-0.5 were also used in order to increase the frequency of the index.

NAO represents a large-scale shift in atmospheric mass, and is generally observed via anomalies of sea level pressure, a positive value of +NAO signifies a stronger than average Icelandic Low and Azores High, a greater pressure gradient accompanied by increased wind velocity across the Atlantic (Sheridan, 2003) and a northward shift of storm tracks (Pryor and Barthelmie, 2003, Krichak and Alpert, 2005), and conversely, negative NAO values (-NAO) signify weaker than average pressure centers (Sheridan, 2003) (see Map 1).
among the three indices corresponding to extreme NAO indices. The variability of winter precipitation at most stations in Turkey significantly correlated with variability of the three indices.

Garcia et al (2003) discussed the temperature predictability over the Mediterranean area including Europe to forecast the mean temperature values. They suggest that the NAO can be a major ruling predictability in some areas and NAO is the most important factor influencing temperature predictability over Europe and it is significantly related to NAO. In the Mediterranean area short-range predictability exists and it can be considered as dominated by persistence. They suggest that the influence of NAO on temperature is not homogeneous over the area and North West Europe is the limit of the area under direct thermal influence of the NAO. The influence of NOA is reduced with increasing distance from the Atlantic coast (Scheifinger, et al 2002).

Data and Methodology
For the investigation of the NOA, we used the index supplied by Climatic Research Unit, University of East Anglia which was given on a monthly, seasonal and annual basis, the normalized pressure difference between Gibraltar-Ponta Delgada and Reykjavik (1901-2000). This index might to a certain extent, be influenced by Mediterranean effects (Knippertz, et al 2003). The two sites are located close to the centre of action that comprises the NAO (Jones et al 1997). Temperature data was taken from the same source. The temperature data is a gridded data of high spatial and temporal resolution that are also continuous over the space time domain of interest (New, et al 2000) at a 0.5 degree latitude by 0.5 degree longitude grids resolution (Mitchell et al 2004). This gridded temperature data set contains month by
North Atlantic Oscillation: Concept and Definition

The dipole pattern of variation of the North Atlantic versus the central Atlantic and Western Europe is generally classified as a mode of atmospheric circulation known as the North Atlantic Oscillation (NAO). It is the only mid-tropospheric teleconnection to show up in all months of the year (Mote, 1998).

NAO is a redistribution of atmospheric mass between the North Atlantic subtropical high (Azores high) and Polar low (Icelandic Low). It is a dominant cause of winter variability in the Northern Hemisphere from North America to Europe and a large portion of Asia (Uvo, 2003). The monthly NOA index is estimated as the difference of normalized sea-level pressure between Ponta Delagada, the Azores, and Stykkishomur/ Reykjavic, Iceland (Jones et al., 1997 and Bednorz, 2002).

Goodess and Jones (2002) used two different indices: Gibraltar minus Reykjavik and Ponta Delgada minus Reykjavik from four surrounding pressure grid points to define NAO index.

Brunetti et al (2002) used a number of atmospheric indices to examine the 1951-1995 Italian precipitation. They concluded that NOA plays an important role in the winter seasons. However, for the other seasons, it does not explain a significant proportion of the precipitation and wet day’s variance. Hasanean (2004) discussed the relationships between Egypt stations temperature and NAO for the period 1901-2000. Different strong relationships were found across Egypt and found that Upper and Lower Egypt behave differentially with NAO index. Turkes and Erlat (2005) examined the relationships between Turkish precipitation and three different NAO indices: Ponta Delegada-Reykjavik, Lisbon-Stykkisholmur and Lisbon-Reykjavik, and concluded that the Ponta Delgada-Reykjavik NAO index is the most superior
circulation typical for this season and reveal a negative correlation with air temperature in Greece. However, they concluded that NOA was not the most appropriate index for understanding temperature variability in Greece (Feidas, et al 2004).

Weaker significant relationships exist between NOA index and both the Sea Surface Temperatures (SSTs) and the 850hPa temperatures over the Mediterranean (Lolis, et al 2002). Wang et al (2004) examined the relationships between SSTs over the Northern Hemisphere and NAO, suggested that the Gulf Stream SSTs anomalous have an important influence in initiating disturbances of the atmospheric circulation over the winter time North Atlantic. However, a suit of GCMs forced with observed SSTs suggested that recent observed trends (1973-2004) in the winter NAO could not be attributed to North Atlantic SSTs variability (Cohen and Barlow, 2005).

Hanna, et al (2006) discussed the relationships between Iceland climate and NAO in the period 1823-2003 and concluded that the existing relationships were not satisfactory.

El-kadi (2007) discussed the variability, trends and the characteristics of Palestine temperature to detect the effects of the global warming. The major objectives of the present study were to examine the existence of any significant relationships between NAO and the temperature of Palestine.

Map 1. Mean Sea Level Pressure Anomalies of (A) Positive North Atlantic Oscillation (+NAO) and (B) Negative North Atlantic Oscillation (-NAO) from Jim Hurrell, 2008, Colorado State University, USA.). The Arrow indicates the Position of Palestine.
may contribute to regional warming trend the patterns strongly suggested that the patterns and magnitude of global warming trends over the last 30 years are largely independent of NAO and AO.

The NOA exerts a significant influence on 850hPa mean winter wind speed over the Baltic and the trend towards greater prevalence of positive NOA phase will be enhanced in a greenhouse gas warmed climate, which will thus be characterized by strong zonal flow (Pryor and Barthelmie, 2003). Examining the zonal circulation between 35-65°N Kozuchowski, (1993) found that there was an increase in its value during the 1970-1980s reaching a maximum in 1990. An increase in the zonal index corresponds with an increase in air temperature in Europe. The increased of zonality, positive NAO mode may be viewed with the finding of Panagiotopoulos et al (2005) of the progressive decline and downward trends of the Siberian High intensity index in the last three decades of the last century, particularly from around 1977 onward.

This may be manifested in the increase of wind activity since 1970s onward, and a general decrease of wind activity from 1951 to about 1975, followed by a predominant increase to the end of the 20th century (Pirazzoli and Tomasin, 2003). Thus the increase/decrease of the wind activity corresponds to positive/negative NAO index. The increase of westerlies is also confirmed by the frequent positive phase of the NAO during recent decades (Tomozeiu, et al 2002).

Feidas et al (2004) examined the relationships between temperature variability in Greece and the atmospheric circulation indices of NAO. They found that the correlation coefficient was significant only in winter, due to the more coherent large-scale
pressure associated with stronger than usual northward-shifted westerlies i.e. a positive phase of NAO. Bader and Latif (2005) using a coupled ocean-atmosphere model, found that a warm Indian Ocean produces a stronger NAO and a cold Indian Ocean produced a weaker NAO pattern. However the changes in the atmospheric circulation above Estonia can only be partly attributed to the intensification of the NOA during 1955-1995, while February wind speed and zonal characteristics are directly related to the increase of the NOA index and have caused a warming tendency at the surface (Keevallik, 2003). Kysely (2002) discussed the relationships of heat waves in Prague and Basil with NOA index, where significant relationships were found. The persistent period of negative NAO indices were accompanied mainly by cold and snowy winter in the Swiss Alps, while with extremely positive NAO index mode resulted in warm winter temperature records (Laternser and Schneebeli, 2003).

Based on an ensemble of climate change scenarios performed with the global general circulation model of the atmosphere with high horizontal resolution over Europe Terray, et al (2004), suggested that the end-of-century anthropogenic climate change over the North Atlantic-European region strongly projects onto the positive phase of the NAO during wintertime. That anthropogenic forcing may induce climate change over the North Atlantic-European region for the winter period through changes in the occurrence of the NAO regimes, in addition to direct radiative forcing.

Cohen and Barlow (2005) confirmed that over the last 16 years, when the Northern Hemisphere temperature trend continued strongly, the NAO and AO (Arctic Oscillation) indices have been decreasing. They suggested that while the NAO and AO
Plant Phonology in spring correlated well with spring temperature and NOA phases in spring (Spraks and Menzel, 2002) and the variability of phonological events in Europe is explained to a great extent by the NOA index (Scheifinger, et al 2002).

Bednorz (2002) studied the connection between the duration of snow cover in western Poland and the fluctuation of NOA. A strong relationship between snow cover in Poland and NOA index was found. The NAO have the greatest influence on snow melting extent on the Greenland (Mote, 1998). Box (2002) concluded that most of the observed variability of Greenland temperatures is shown to be linked to NOA. Wedgbrow et al (2002) investigated the relationships between NAO and river flow and drought conditions over England and Wales.

In winter, during positive NAO phase there is a positive snow/ice season surface air temperature anomaly over northwestern Eurasia caused by enhanced advection of the warm Atlantic air and vice versa during the negative phase. The positive winter surface air temperature in Europe is caused by a positive NAO (Scheifinger, et al 2002).

Significant relationships were also found between winter NAO and UK summer rainfall and wheat production (Kettlewell, et al 2003). Over North America as a whole, NAO associated with many significant changes across the continents, and clear, but different, relationships between frequencies of weather type and NAO have been established (Sheridan, 2003).

Gouirand and Moron (2003) examined the relationship between El-Nino Southern Oscillation (ENSO) and the sea-level pressure over the North Atlantic-European sector (i.e. NOA) in winter over the period 1874-1996. In cold ENSO events the mean sea-level
Introduction

Since its formulations, the North Atlantic Oscillation (NAO) has attracted numerous and a wide range climatological investigations. One of the points of focus in contemporary research is the extent of the influence on climate produced by NAO (Lucero and Rodriguez, 2002). It is one of the best known atmospheric circulation patterns, that control the weather and climate conditions and the extremes in the regions of the Atlantic and the Mediterranean basin (Turkes and Erlat, 2003). It is a part of the major variability of the Northern Hemisphere (Pirazzoli and Tomasin, 2003) and it is a useful index of atmospheric variability on a hemispheric scale that provides an important link to larger scale atmospheric dynamics (Pryor and Barthelmie, 2003). It is an example of a teleconnection or correlation between weather conditions in one area and those occurring elsewhere (Perry, 2000). The NOA is a pressure seesaw between the Icelandic Low and the Azores high (Godess and Jones, 2002).

NAO represents a preferred mode of variant in the atmosphere over the North Atlantic (Junge and Stephenson, 2003), and produces a very clear signature of surface temperature over the North Atlantic region and the surrounding land masses (Stephenson, et al, 2002) (see Map 1).

Variation of Northern England precipitation was found to be significantly linked with NAO and prominent relationships were also found between NAO and precipitation. The signs and magnitude were different between the windward, leeward and the NAO (positive and negative) index (Fowler and Kilsby, 2003). Similar relationship between NAO and rainfall were found over Iberian Peninsula (Fowler and Kilsby, 2002), though much weaker than over Northern England.