Residence at moderately high altitude and its relationship with WHO Group 1 pulmonary arterial hypertension symptom severity and clinical characteristics: the Pulmonary Hypertension Association Registry

Shoaib Fakhri1, Kelly Hannon1, Kelly Moulden1, Ryan Peterson1, Peter Hountras1, Todd Bull1, James Maloney1, Teresa De Marco2, Dunbar Ivy1,3, Thenappan Thenappan4, Jeffrey S. Sager5, John J. Ryan6, Sula Mazimba7, Russel Hirsch8, Murali Chakinala9, Oksana Shlobin10, Matthew Lammi11, Dianne Zwicke12, Jeffrey Robinson13, Raymond L. Benza14, James Klinger15, Daniel Grinnan16, Stephen Mathai17 and David Badesch1; on behalf of the PHAR Investigators

1University of Colorado, Anschutz Medical Campus, Aurora, CO, USA; 2University of California, San Francisco, CA, USA; 3Children’s Hospital of Colorado, Aurora, CO, USA; 4University of Minnesota, Minneapolis, MN, USA; 5Cottage Health Pulmonary Hypertension Center, Santa Barbara, CA, USA; 6University of Utah, Salt Lake City, UT, USA; 7University of Virginia, Charlottesville, VA, USA; 8Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA; 9Washington University at Barnes-Jewish Hospital, St. Louis, MO, USA; 10Inova Fairfax Medical Campus, Falls Church, VA, USA; 11Louisiana State University, Comprehensive Pulmonary Hypertension Center, New Orleans, LA, USA; 12Aurora St. Luke’s Medical Center, Milwaukee, WI, USA; 13The Oregon Clinic, Portland, OR, USA; 14Allegheny General Hospital, Pittsburg, PA, USA; 15Rhode Island Hospital, Providence, RI, USA; 16Virginia Commonwealth University, Richmond, VA, USA; 17Johns Hopkins University, Baltimore, MD, USA

Abstract

Background: WHO Group 1 pulmonary arterial hypertension is a progressive and potentially fatal disease. Individuals living at higher altitude are exposed to lower barometric pressure and hypobaric hypoxemia. This may result in pulmonary vasoconstriction and contribute to disease progression. We sought to examine the relationship between living at moderately high altitude and pulmonary arterial hypertension characteristics.

Methods: Forty-two US centers participating in the Pulmonary Hypertension Association Registry enrolled patients who met the definition of WHO Group 1 pulmonary arterial hypertension. We utilized baseline data and patient questionnaire responses. Patients were divided into two groups: moderately high altitude residence (home >4000 ft) and low altitude residence (home <4000 ft) based on zip-code. Clinical characteristics, hemodynamic data, patient demographics, and patient reported quality of life metrics were compared.

Results: Controlling for potential confounders (age, sex at birth, body mass index, supplemental oxygen use, race, 100-day cigarette use, alcohol use, and pulmonary arterial hypertension medication use), subjects residing at moderately high altitude had a 6-min walk distance 32 m greater than those at low altitude, despite having a pulmonary vascular resistance that was 2.2 Wood units higher. Additionally, those residing at moderately high altitude had 3.7 times greater odds of using supplemental oxygen.

Conclusion: Patients with pulmonary arterial hypertension who live at moderately high altitude have a higher pulmonary vascular resistance and are more likely to need supplemental oxygen. Despite these findings, moderately high altitude Pulmonary Hypertension Association Registry patients have better functional tolerance as measured by 6-min walk distance. It is possible that a “high-altitude phenotype” of pulmonary arterial hypertension may exist. These findings warrant further study.

Keywords
pulmonary arterial hypertension, elevation, 6-min walk distance, pulmonary vascular resistance, vascular

Date received: 22 July 2020; accepted: 15 September 2020

Pulmonary Circulation 2020; 10(4) 1–8
DOI: 10.1177/2045894020964342

Corresponding author:
Shoaib Fakhri, 12401 E. 17th Ave., Mail Stop L957, Aurora, CO 80045, USA.
Email: shoaib.fakhri@cuanschutz.edu

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Introduction

WHO Group 1 pulmonary arterial hypertension (PAH) is a progressive and potentially fatal disease primarily affecting the pulmonary arterial circulation that often presents with exertional dyspnea and functional limitation.\(^1\) PAH is defined as having a resting mean pulmonary artery pressure (mPAP) of 25 mm Hg or above (based on 2015 definition), a pulmonary capillary wedge pressure (PCWP) below 15 mm Hg, and a pulmonary vascular resistance (PVR) above 3 Wood units (WU), in the absence of significant left heart disease, chronic lung disease, or venous thromboembolism.\(^2\) Individuals living at moderately high altitude are exposed to lower barometric pressure and hypobaric hypoxemia. Alveolar hypoxemia can lead to pulmonary vasoconstriction and contribute to worsening pulmonary vascular remodeling with chronic exposure.\(^3\) These changes result in higher pulmonary artery pressures (PAP) at altitude compared to sea level, with increased afterload that may induce changes in right ventricular (RV) function.\(^4,6\) It is theoretically possible that increased PAP with associated changes in RV function may contribute to PAH disease progression in patients who reside at higher altitude. The Pulmonary Hypertension Association Registry (PHAR) is currently the largest longitudinal registry of PAH patients in the United States. Since its inception in 2015, it has grown to include 42 (at the time of this study) accredited Pulmonary Hypertension Care Centers. The PHAR not only captures important clinical and patient reported variables, but also permits geographic specificity through zip codes, which in turn allows estimation of the altitude at which patients live. We sought to examine the relationship between moderately high altitude living and PAH characteristics utilizing data from the PHAR.

Methods

Study population & data collection

Forty-two centers across the United States participating in the PHAR enrolled adult patients (age ≥18 years) who met the definition of WHO Group 1 PAH (hemodynamically defined by a mPAP at rest ≥25 mm Hg in the presence of a PCWP ≤15 mm Hg and PVR > 3 WU). All participants provided written informed consent. Analysis was performed on the cohort enrolled between 30 September 2015 and 30 August 2019. Patients were divided into two pre-specified groups: defined as moderately high altitude residence (≥4000 ft) and low altitude residence (<4000 ft) based on patient-provided zip code, using the United States Geological Services TNM elevation tool. We had initially pre-specified two cut-offs at 4000 and 8000 ft, but since we did not observe sufficient data at >8000 ft to perform our analyses, we abandoned this higher cut-off in the primary analysis. For patients residing at moderately high altitude, classification into WHO Group 1 PAH was made by the patients’ pulmonary hypertension providers based upon the standard definition, excluding WHO Groups 2 through 5, and clinical determination that their pulmonary hypertension was disproportionate to what might be expected due solely to the relatively mild hypoxemia that is often seen in patients exposed to moderately high altitude (WHO Group 3 pulmonary hypertension related to hypobaric hypoxemia). All WHO Group 1 PAH subgroups were included. Upon enrollment, patients and staff completed a baseline questionnaire reporting clinical characteristics, hemodynamic data, patient demographics and patient reported quality of life metrics. Registry data included age, gender at birth, race, use of supplemental oxygen, use of pulmonary hypertension medications for ≥6 months, lifetime use of ≥100 cigarettes, history of methamphetamine use, current alcohol use, 6-min walk distance (6MWD) in meters, PVR in WU, right atrial pressure (RAP), mPAP, and the results of vasoreactivity testing. Questionnaires were also utilized to calculate the validated emPHAsis-10 (Emph-10) and the NEMC physical health short-form 12 (SF-12) survey.\(^7,8\)

Statistical analysis

To test for marginal relationships between the variables of interest in our sample with altitude group, Fisher’s exact tests for categorical features and Welch’s t tests for continuous variables were used. Six continuous response variables (6MWD, mPAP, RAP, PVR, Emph-10 score, and SF-12 score) were analyzed using multiple linear regression. In addition, two binary response variables were analyzed with logistic regression. Each model accounted for age, sex at birth, body mass index (BMI), supplemental oxygen use (yes/no), race (white/nonwhite), 100-day cigarette use, alcohol use, and PAH medication use (yes/no) as possible confounders. Due to small observed sample sizes at moderately high altitude, race was dichotomized (white/nonwhite). Each continuous confounder was first presumed to linearly relate to the response variable, but if any such relationship was found to exhibit lack of fit, polynomial terms were added to the model to adequately capture the relationship. While altitude was treated as a two-group categorical covariate in each of these models, we also investigated the possibility of a nonlinear effect of altitude (treated continuously) on each of the outcomes using generalized additive models with penalized thin plate splines. These models were fit using the mgcv package\(^9\) in R version 3.6.0,\(^10\) where the smoothing parameters were fit using restricted maximum likelihood.

We observed missing data in some of our response and independent variables. Elements with the highest percent missing were vasoreactivity testing (60%), 6MWD (14.5%), and PVR (13.3%). All other confounders and response variables had less than 6% missing data. Using the mice package\(^11\) in R, we built chained equations and produced multiple (m = 25) imputed data sets. Analyses were performed on all imputed data sets and pooled, although only the complete cases are presented in Table 1.
Table 1. Sample characteristics stratified by altitude.

|                        | Low altitude (N = 782) | Moderately high altitude (N = 74) | p value  | Overall (N = 856) |
|------------------------|------------------------|-----------------------------------|----------|------------------|
| Age (years)            |                        |                                   |          |                  |
| Mean (SD)              | 55.2 (17.0)            | 47.8 (17.7)                       | <0.001   | 54.5 (17.2)      |
| Missing                | 1 (0%)                 | 0 (0%)                            |          | 1 (0%)           |
| Sex at birth           |                        |                                   |          |                  |
| Male                   | 185 (23.7%)            | 27 (36.5%)                        | 0.02     | 212 (24.8%)      |
| Female                 | 594 (76.0%)            | 47 (63.5%)                        |          | 641 (74.9%)      |
| Missing                | 3 (0%)                 | 0 (0%)                            |          | 3 (0%)           |
| BMI                    |                        |                                   |          |                  |
| Mean (SD)              | 29.5 (7.39)            | 29.0 (6.55)                       | 0.52     | 29.5 (7.32)      |
| Missing                | 30 (4%)                | 5 (7%)                            |          | 35 (4%)          |
| Distance walked in 6 min (m) |                  |                                   |          |                  |
| Mean (SD)              | 334 (127)              | 390 (120)                         | <0.001   | 339 (127)        |
| Missing                | 115 (15%)              | 9 (12%)                           |          | 124 (14%)        |
| White                  |                        |                                   |          |                  |
| No                     | 178 (22.8%)            | 10 (13.5%)                        | 0.10     | 188 (22.0%)      |
| Yes                    | 561 (71.7%)            | 58 (78.4%)                        |          | 619 (72.3%)      |
| Missing                | 43 (5%)                | 6 (8%)                            |          | 49 (6%)          |
| Over 100 cigarettes smoked in lifetime |             |                                   |          |                  |
| No                     | 404 (51.7%)            | 39 (52.7%)                        | 0.71     | 443 (51.8%)      |
| Yes                    | 357 (45.7%)            | 31 (41.9%)                        |          | 388 (45.3%)      |
| Missing                | 21 (3%)                | 4 (5%)                            |          | 25 (3%)          |
| Used methamphetamine at least once |            |                                   |          |                  |
| No                     | 648 (82.9%)            | 55 (74.3%)                        | 0.22     | 703 (82.1%)      |
| Yes                    | 112 (14.3%)            | 14 (18.9%)                        |          | 126 (14.7%)      |
| Missing                | 22 (3%)                | 5 (7%)                            |          | 27 (3%)          |
| Presently drinks alcohol |                      |                                   |          |                  |
| No                     | 490 (62.7%)            | 51 (68.9%)                        | 0.19     | 541 (63.2%)      |
| Yes                    | 273 (34.9%)            | 19 (25.7%)                        |          | 292 (34.1%)      |
| Missing                | 19 (2%)                | 4 (5%)                            |          | 23 (3%)          |
| PH medication for >6 months |                 |                                   |          |                  |
| No                     | 575 (73.5%)            | 52 (70.3%)                        | 0.58     | 627 (73.2%)      |
| Yes                    | 207 (26.5%)            | 22 (29.7%)                        |          | 229 (26.8%)      |
| Suppemental oxygen meds |                      |                                   |          |                  |
| No                     | 472 (60.4%)            | 29 (39.2%)                        | <0.001   | 501 (58.5%)      |
| Yes                    | 306 (39.1%)            | 45 (60.8%)                        |          | 351 (41.0%)      |
| Missing                | 4 (1%)                 | 0 (0%)                            |          | 4 (0%)           |
| Positive vasoreactivity test |              |                                   |          |                  |
| No                     | 250 (32.0%)            | 35 (47.3%)                        | 0.29     | 285 (33.3%)      |
| Yes                    | 47 (6.0%)              | 10 (13.5%)                        |          | 57 (6.7%)        |
| Missing                | 485 (62%)              | 29 (39%)                          |          | 514 (60%)        |
| Mean pulmonary artery pressure |              |                                   |          |                  |
| Mean (SD)              | 48.8 (13.5)            | 53.5 (16.4)                       | 0.02     | 49.2 (13.8)      |
| Missing                | 20 (3%)                | 2 (3%)                            |          | 22 (3%)          |
| Right atrial pressure  |                        |                                   |          |                  |
| Mean (SD)              | 9.86 (5.93)            | 9.96 (5.79)                       | 0.90     | 9.87 (5.92)      |
| Missing                | 34 (4%)                | 4 (5%)                            |          | 38 (4%)          |

(continued)
and all figures. Visualizations for Figs. 2 and 3 were generated with the visreg R package\textsuperscript{12} using only the complete data. The $p$ values listed in Fig. 3 for the spline terms represent the median $p$ value for models across all multiply imputed data sets.

**Results**

**Patient characteristics**

Among 1021 patients enrolled in the registry, 856 met the diagnostic definition for PAH and had altitude data available, with 782 living at low altitude and 74 living at moderately high altitude. Table 1 shows sample characteristics stratified by altitude. Several significant bivariate relationships between altitude and examined variables of interest were identified. Specifically, altitude is associated with increased supplemental oxygen use ($p < 0.001$), male sex ($p = 0.0234$), higher mPAP ($p = 0.0221$), higher PVR ($p = 0.0031$), greater 6MWD ($p < 0.001$), and younger age ($p = 0.001$). We found no significant marginal (unadjusted) associations between altitude and any of the following: PH medication use, cigarette use, methamphetamine use, alcohol use, RAP, positive vasoreactivity, BMI, SF-12 score,

and all figures. Visualizations for Figs. 2 and 3 were generated with the visreg R package\textsuperscript{12} using only the complete data. The $p$ values listed in Fig. 3 for the spline terms represent the median $p$ value for models across all multiply imputed data sets.

**Results**

**Patient characteristics**

Among 1021 patients enrolled in the registry, 856 met the diagnostic definition for PAH and had altitude data available, with 782 living at low altitude and 74 living at moderately high altitude. Table 1 shows sample characteristics stratified by altitude. Several significant bivariate relationships between altitude and examined variables of interest were identified. Specifically, altitude is associated with increased supplemental oxygen use ($p < 0.001$), male sex ($p = 0.0234$), higher mPAP ($p = 0.0221$), higher PVR ($p = 0.0031$), greater 6MWD ($p < 0.001$), and younger age ($p = 0.001$). We found no significant marginal (unadjusted) associations between altitude and any of the following: PH medication use, cigarette use, methamphetamine use, alcohol use, RAP, positive vasoreactivity, BMI, SF-12 score,
and Emph-10 score. Fig. 1 displays the distributions of some of the response variables of interest.

**Relationship between altitude and variables of interest**

Table 2 shows the unadjusted and adjusted relationships between altitude and each of our response variables of interest using pooled results from the multiply imputed data and controlling for the potential confounding effects of age, BMI, sex at birth, supplemental oxygen use, race, cigarette use, methamphetamine use, alcohol use, and PAH medication use. We found that controlling for these confounders, subjects at moderately high altitude residence had a 6MWD 32.2 m greater than those at low altitude residence (95% CI: [3.3, 61.1]; \( p = 0.0294 \)), and had a PVR 2.2 WU higher (95% CI: [0.9, 3.5]; \( p = 0.0011 \)). Additionally, those at moderately high altitude residence had 3.7 times the odds of using supplemental oxygen (95% CI: [2.2, 6.3]; \( p < 1 \times 10^{-04} \)) compared to those at low altitude residence. Fig. 2 shows the adjusted effects of altitude group on each of the outcomes, controlling for the confounders.

Fig. 3 shows the potentially nonlinear effects of altitude, treated continuously, for each outcome controlling for all confounders. For PVR, the expected value increases somewhat linearly from sea level to about 6000 ft where it levels off. This relationship is statistically significant \( (p = 0.020) \). Above 7000 ft, the variance in the relationship between altitude and PVR increases substantially due to the data paucity at higher altitudes. As expected, the relationship between altitude and supplemental oxygen medication use is highly statistically significant in the nonlinear model, with the odds of supplemental oxygen use increasing with altitude.

**Discussion**

Our study shows that PAH patients who reside at moderately high altitude have a higher PVR. Previous studies have established that a hypoxic stimulus leads to diffuse pulmonary vasoconstriction of the arterioles and an increase in PVR.\(^{13,14}\) This increase in PVR is possibly attributable to the chronic effects of hypoxic pulmonary vasoconstriction due to hypobaric hypoxemia at altitude. Indeed, this increase in PVR has been shown with acute and sub-acute high/moderate altitude exposure. Hilty et al. showed that this increase in PVR remained persistent after four weeks of acclimation to high altitude in healthy individuals.\(^{15,16}\) When comparing healthy Peruvian adult individuals born
and living at high altitude to those at sea level, Penaloz et al. found that the calculated PVR was significantly greater in those residing at high altitude, suggesting the PVR remains elevated when at altitude. It is hypothesized that the persistent increase in PVR due to the chronic hypoxic stimuli at elevation can result in permanent pulmonary vascular remodeling.

In our study, those with PAH residing at moderately high altitude were found more likely to need supplemental oxygen. This is an expected result, as it has been established

Table 2. Effect of altitude on response variables of interest (moderately high compared to low altitude).a

| Continuous response             | Unadjusted                  | Adjusted                  |
|---------------------------------|-----------------------------|---------------------------|
|                                 | Estimate  | 95% CI  | p value | Estimate  | 95% CI  | p value |
| 6-Min walk distance (m)         | 46.5      | (13.6, 79.5) | 0.006   | 32.2      | (3.3, 61.1) | 0.03   |
| Mean pulmonary artery pressure  | 4.6       | (1.3, 8)   | 0.006   | 2.4       | (−0.9, 5.8) | 0.15   |
| Right atrial pressure           | 0.0       | (−1.4, 1.5) | 0.97    | −0.1      | (−1.6, 1.3) | 0.87   |
| PVR (Wood units)                | 2.7       | (1.4, 4)   | <0.001  | 2.2       | (0.9, 3.5)  | 0.001  |
| Emph 10 score                   | 0.2       | (−2.8, 3.1) | 0.91    | −0.6      | (−3.4, 2.2) | 0.68   |
| Physical health score           | 0.0       | (−1.7, 1.6) | 0.96    | 0.1       | (−1.5, 1.7) | 0.86   |
| Binary response                 |           |          |         |           |          |         |
| Positive vasoreactivity test    | 1.2       | (0.6, 2.5) | 0.60    | 1.1       | (0.5, 2.5)  | 0.87   |
| Use of supplemental oxygen      | 2.4       | (1.5, 3.9) | <0.001  | 3.7       | (2.2, 6.3)  | <0.001 |

aAdjusted comparisons control for the potential confounding effects of age, BMI, sex at birth, supplemental oxygen medication use, race, cigarette use, methamphetamine use, alcohol use, and PH medication use.
with multiple studies that patients with underlying lung disease (chronic obstructive pulmonary disease (COPD), cystic fibrosis, restrictive lung disease) develop significant arterial hypoxemia when exposed to altitude. Patients with PAH may have a number of reasons to have hypoxemia, such as abnormalities in diffusing capacity; right-to-left shunts (whether intracardiac or intrapulmonary); ventilation/perfusion mismatch; pulmonary veno-occlusive disease/pulmonary capillary hemangiomatosis; or any combination of these. Hypobaric hypoxia at altitude is likely to make this systemic arterial hypoxemia worse, increasing the need for supplemental oxygen.

Interestingly, despite their higher PVR, patients with PAH living at higher altitude have a greater 6MWD. This result does not appear to be due to differences in age, sex at birth, BMI, supplemental oxygen use, race, 100-day cigarette use, alcohol use, or PAH medication use as results were adjusted for these potential confounders. Although patients with PAH who use supplemental oxygen seem to have a higher symptom burden and shorter 6MWD, those residing at moderately high altitude might have better overall conditioning and be more physically active than patients living at lower altitude.

Health-related quality of life measured by the SF-12 and Emph-10 scores did not significantly differ between the two groups. This is an important finding as it has been shown that aspects of health-related quality of life play an important role in clinical end points and predictors of prognosis.

We recognize that various limitations and unobserved confounders may impact our results. Limitations that we have identified include the number of subjects in the registry, particularly those that live at altitude (there are only two PHAR sites above 4000 ft, located in Denver and Salt Lake City, with each seeing patients from the surrounding regions). Given that there are only two sites at altitude, we are cognizant of the fact that there may be inherent differences at these two sites (such as access to care, provider practice differences and differences in demographics) that may confound our results. We therefore focused on patient data upon presentation to a PHAR site (baseline, enrollment questionnaires) to mitigate this confounder, and avoid comparing patient care and clinical outcomes across sites. We also recognize that our altitude cut-off of 4000 ft, though pre-specified, is somewhat arbitrary, which is why we investigated whether other cut-offs would be more appropriate in Fig. 3. Furthermore, given the small sample size at altitude we were unable to comment upon differences related to PAH diagnostic subgroups. Other limitations include inability to identify duration of residence at altitude, as this is not collected in the PHAR, and missing data points, as highlighted in our methods section. In addition, patients with lung disease, such as COPD, might have difficulties at higher elevations, and could out-migrate and self-select with respect to residence at higher altitude. Finally, it is possible that patients living at moderately high altitude have a higher hematocrit (unfortunately hematocrit values were not collected in the PHAR), and that this could explain in part a better aerobic exercise capacity. A higher hematocrit might also increase viscosity and impact PAP and PVR.

Conclusion

This study highlights several differences in clinical characteristics between patients with PAH living at moderately high vs. low altitude. Patients presenting with PAH who live at moderately high altitude have a higher PVR, and are more likely to need supplemental oxygen. Despite their higher PVR, they appear to have a better 6MWD, which could be related in part to better overall conditioning. This somewhat paradoxical finding warrants further study to better define the relationship between PAH characteristics and chronic exposure to higher altitude. It is interesting to speculate that there might exist a “high-altitude phenotype” of PAH.

Acknowledgments

We would like to acknowledge the Pulmonary Hypertension Association (PHA) for providing the data used in this study through their registry (PHAR). The PHAR is supported by Pulmonary Hypertension Care Centers, Inc., a supporting organization of the Pulmonary Hypertension Association. The authors thank the other investigators, the staff, and particularly participants of the PHAR for their valuable contributions. A full list of participating PHAR sites and institutions can be found at www.PHAssociation.org/PHAR.

Additional PHAR Investigators: Roblee Allen, MD, Sahil Bakshi, DO, Sonja Bartolome, MD, Charles D. Burger, MD, Linda M. Cadaret, MD, Michael Duncan, MD, Michael Eggert, MD, Jean M. Elwing, MD, Grant Farr, DO, Jeremy Feldman, MD, Jeff Fineman, MD, Raymond J. Foley, DO, Hubert James Ford, MD, Robert P. Frantz, MD, Anna R. Hennes, MD, Evelyn M. Horn, MD, Steven M. Kawut, MD, MS, Peter J. Leary, MD, PhD, John W. McConnell, MD, Kishan S. Parikh, MD, Kenneth W. Presberg, MD, Amresh Raina, MD, Gautam Ramani, MD, Erika B. Rosenzweig, MD, James R. Runo, MD, Marc A. Simon, MD, MS, John W. Swisher, MD, PhD, Nidhy P. Varghese, MD, Corey E. Ventetuolo, MD, R. James White, MD, PhD, Timothy Williamson, MD, Delphine Yung, MD, Roham T. Zamanian, MD.

Conflict of interest

The author(s) declare that there is no conflict of interest.

Ethical approval

The PHAR is IRB approved and all subjects were consented prior to enrollment. All subject data used in the PHAR are de-identified. This study is approved by Colorado Multiple Institutional Review Board under protocol #15-0882. The University of Pennsylvania IRB has also approved and primarily oversees the ethical conduct of this study under protocol #822830.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.
References

1. Frost A, Badesch D, Gibbs JSR, et al. Diagnosis of pulmonary hypertension. *Eur Respir J* 2019; 53: 1801904.
2. Thenappan T, Ormiston ML, Ryan JJ, et al. Pulmonary arterial hypertension: pathogenesis and clinical management. *BMJ* 2018; 360: j5492.
3. Young JM, Williams DR and Thompson AAR. Thin air, thick vessels: historical and current perspectives on hypoxic pulmonary hypertension. *Front Med* 2019; 6: 93.
4. Groves BM, Reeves JT, Sutton JR, et al. Operation Everest II: elevated high-altitude pulmonary resistance unresponsive to oxygen. *J Appl Physiol (1985)* 1987; 63: 521–530.
5. Huez S, Retailleau K, Unger P, et al. Right and left ventricular adaptation to hypoxia: a tissue Doppler imaging study. *Am J Physiol Heart Circ Physiol* 2005; 289: H1391–1398.
6. Soria R, Egger M, Scherrer U, et al. Pulmonary artery pressure and arterial oxygen saturation in people living at high or low altitude: systematic review and meta-analysis. *J Appl Physiol (1985)* 2019; 121: 1171–1178.
7. Wort SJ, Favoccia C, Kempny A, et al. emPHasis-10 score predicts mortality in patients with pulmonary hypertension. *Eur Respir J* 2018; 52: OA273.
8. Wood S. *Generalized additive models: an introduction with R*. Boca Raton, FL: Chapman & Hall/CRC, 2006, p.391.
9. Team RC. *R: a language and environment for statistical computing*. Vienna: R Foundation for Statistical Computing, 2019.
10. Buuren S and Groothuis-Oudshoorn C. MICE: multivariate Imputation by chained equations in R. *J Stat Software* 2011; 45..
11. Breheny P and Burchett W. Visualization of regression models using visreg. *R J* 2014; 9: 56–71.
12. Kylhammar D and Radegran G. The principal pathways involved in the in vivo modulation of hypoxic pulmonary vasoconstriction, pulmonary arterial remodelling and pulmonary hypertension. *Acta Physiol* 2017; 219: 728–756.
13. Hakim TS, Michel RP, Minami H, et al. Site of pulmonary hypoxic vasoconstriction studied with arterial and venous occlusion. *J Appl Physiol Respir Environ Exerc Physiol* 1983; 54: 1298–1302.
14. Hilty MP, Muller A, Fluck D, et al. Effect of increased blood flow on pulmonary circulation before and during high altitude acclimatization. *High Alt Med Biol* 2016; 17: 305–314.
15. Faoro V, Deboeck G, Vicenzi M, et al. Pulmonary vascular function and aerobic exercise capacity at moderate altitude. *Med Sci Sports Exerc* 2017; 49: 2131–2138.
16. Peñaloza D, Sime F, Banchero N, et al. Pulmonary hypertension in healthy men born and living at high altitudes. *Am J Cardiol* 1963; 11: 150–157.
17. Mirrakhimov AE and Strohl KP. High-altitude pulmonary hypertension: an update on disease pathogenesis and management. *Open Cardiovasc Med J* 2016; 10: 19–27.
18. Christensen CC, Ryg MS, Refvem OK, et al. Effect of hypobaric hypoxia on blood gases in patients with restrictive lung disease. *Eur Respir J* 2002; 20: 300–305.
19. Fischer R, Lang SM, Bruckner K, et al. Lung function in adults with cystic fibrosis at altitude: impact on air travel. *Eur Respir J* 2005; 25: 718–724.
20. Graham WG and Houston CS. Short-term adaptation to moderate altitude. Patients with chronic obstructive pulmonary disease. *JAMA* 1978; 240: 1491–1494.
21. Luks AM and Swenson ER. Travel to high altitude with pre-existing lung disease. *Eur Respir J* 2007; 29: 770–792.
22. Farber HW, Badesch DB, Benza RL, et al. Use of supplemental oxygen in patients with pulmonary arterial hypertension in REVEAL. *J Heart Lung Transplant* 2018; 37: 948–955.
23. Favoccia C, Kempny A, Yorke J, et al. EmPHasis-10 score for the assessment of quality of life in various types of pulmonary hypertension and its relation to outcome. *Eur J Prev Cardiol* 2019; 26: 1338–1340.
24. Mathai SC, Suber T, Khair RM, et al. Health-related quality of life and survival in pulmonary arterial hypertension. *Ann Am Thorac Soc* 2016; 13: 31–39.
25. Vanderpool RR and Naeije R. Hematocrit-corrected pulmonary vascular resistance. *Am J Respir Crit Care Med* 2018; 198: 305–309.