K-THEORY OF C*-ALGEBRAS FROM ONE-DIMENSIONAL GENERALIZED SOLENOIDS

YI, INHYEOP

Abstract. We compute the K-groups of C^*-algebras arising from one-dimensional generalized solenoids. The results show that Ruelle algebras from one-dimensional generalized solenoids are one-dimensional generalizations of Cuntz-Krieger algebras.

1. Introduction

Ian Putnam and David Ruelle have developed a theory of C^*-algebras for certain hyperbolic dynamical systems ([16, 17, 18, 21]). These systems include Anosov diffeomorphisms, topological Markov chains and some examples of substitution tiling systems. The corresponding C^*-algebras are modeled as reduced groupoid C^*-algebras for various equivalence relations.

This paper is concerned with C^*-algebras of an orientable one-dimensional generalized solenoid (X, f), where X has local canonical coordinates which are contracting and expanding directions for f. Naively speaking, Williams’s orientable generalized solenoids are higher dimensional analogues of topological Markov chains ([23, 24]). We consider the principal groupoids of stable and unstable equivalence on (X, f), denoted $G_s(X, f)$ and $G_u(X, f)$, respectively. We give them topologies and Haar systems ([16, 17]) so that we may build their reduced groupoid C^*-algebras $S(X, f)$ and $U(X, f)$, respectively, as in [19]. The homeomorphism $f: X \to X$ induces automorphism of $G_s(X, f)$ and $G_u(X, f)$, and we form semi-direct products $G_s \rtimes \mathbb{Z}$ and $G_u \rtimes \mathbb{Z}$. Their groupoid C^*-algebras are denoted $R_s(X, f)$ and $R_u(X, f)$, respectively, and are called the Ruelle algebras ([17, 18]). In the case of topological Markov chains, the Ruelle algebras are the Cuntz-Krieger algebras, and the stable and unstable equivalence algebras are the corresponding AF-subalgebras of the Cuntz-Krieger algebras.

An important tool in the study of C^*-algebras is K-theory. Giordano, Herman, Putnam and Skau showed that almost complete information about the orbit structure of Cantor systems is encoded by the K-theory of their associated C^*-algebras ([5, 6]). And Kirchberg and Phillips showed in their recent papers ([8, 14]) that nuclear, purely infinite, separable, simple C^*-algebras are classified by their K-theory.

In this paper, we compute the K-groups of the unstable equivalence algebras and the Ruelle algebras of 1-solenoids to answer the questions posed in [17, §4]. We show that the unstable equivalence algebra of a 1-solenoid (X, f) with an adjacency matrix M is strongly Morita equivalent to the crossed product of a natural Cantor system of (X, f) by \mathbb{Z} so that its K_0-group is order isomorphic to the dimension group of M and its K_1-group is \mathbb{Z}. Then we use the Pimsner-Voiculescu exact
sequence, the Universal Coefficient Theorem and Spanier-Whitehead duality to obtain that the K_0-groups of Ruelle algebras are isomorphic to $\mathbb{Z} \oplus \{ \Delta_M / \text{Im}(\text{Id} - \delta_M) \}$ and the K_1-groups are $\mathbb{Z} \oplus \text{Ker}(\text{Id} - \delta_M)$. Thus C^*-algebras from one-dimensional generalized solenoids are one-dimensional analogues of the Cuntz-Krieger algebras.

The outline of the paper is as follow: In section 2, we recall the axioms of one-dimensional generalized solenoids and their ordered group invariants. In section 3, we review the definitions of Smale spaces, and show that orientable one-dimensional solenoids are Smale spaces. Then we observe that the stable equivalence algebras are strongly Morita equivalent to inductive limit systems of C^*-algebras, and that the K-theory of the unstable equivalence algebras are determined by the adjacency matrices of one-dimensional generalized solenoids. In section 4, we compute K-groups of unstable and stable Ruelle algebras, and show that they are $*$-isomorphic to each other by the classification theorem of Kirchberg-Phillips.

2. ONE-DIMENSIONAL SOLENOIDS

We review the properties of one-dimensional generalized solenoids of Williams which will be used in later sections. As general references for the notions of one-dimensional generalized solenoids and their ordered group invariants we refer to [23, 24, 25, 26].

One-dimensional generalized solenoids. Let X be a finite directed graph with vertex set V and edge set E, and $f : X \to X$ a continuous map. We define some axioms which might be satisfied by (X, f) ([25]).

Axiom 0. (Indecomposability) (X, f) is indecomposable.
Axiom 1. (Nonwandering) All points of X are nonwandering under f.
Axiom 2. (Flattening) There is $k \geq 1$ such that for all $x \in X$ there is an open neighborhood U of x such that $f^k(U)$ is homeomorphic to $(-\epsilon, \epsilon)$.
Axiom 3. (Expansion) There are a metric d compatible with the topology and positive constants C and λ with $\lambda > 1$ such that for all $n > 0$ and all points x, y on a common edge of X, if f^n maps the interval $[x, y]$ into an edge, then $d(f^n x, f^n y) \geq C\lambda^n d(x, y)$.
Axiom 4. (Nonfolding) $f^n|_{X - V}$ is locally one-to-one for every positive integer n.
Axiom 5. (Markov) $f(V) \subseteq V$.

Let \overline{X} be the inverse limit space

$$\overline{X} = X \xleftarrow{f} X \xleftarrow{f} \cdots = \{ (x_0, x_1, x_2, \ldots) \in \prod_{0}^{\infty} X | f(x_{n+1}) = x_n \},$$

and $\overline{f} : \overline{X} \to \overline{X}$ the induced homeomorphism defined by

$$(x_0, x_1, x_2, \ldots) \mapsto (f(x_0), f(x_1), f(x_2), \ldots) = (f(x_0), x_0, x_1, \ldots).$$

Remark 2.1. Williams’ construction ([24, 6.2]) gives a (unique) measure μ_0 for which there is a constant $\lambda > 1$ such that $\mu_0(X) = 1$ and $\mu_0(f(I)) = \lambda \mu_0(I)$ for every small interval $I \subset X$. Define $d_0(x_0, y_0)$ to be the measure of the smallest interval from x_0 to y_0 in X, and

$$d(x, y) = \sum_{i=0}^{\infty} \lambda^{-i} d_0(x_i, y_i).$$
for $x = (x_0, x_1, x_2, \ldots)$ and $y = (y_0, y_1, y_2, \ldots)$ in \overline{X}. Then (\overline{X}, d) is a compact metric space.

Let Y be a topological space and $g: Y \to Y$ a homeomorphism. We call Y a 1-dimensional generalized solenoid or 1-solenoid and g a solenoid map if there exist a directed graph X and a continuous map $f: X \to X$ such that (X, f) satisfies all six Axioms and (\overline{X}, f) is topologically conjugate to (Y, g). We call a point $x \in X$ a non-branch point if x has an open neighborhood which is homeomorphic to an open interval, and branch point otherwise. An elementary presentation (X, f) of a 1-solenoid is such that X is a wedge of circles and f leaves the unique branch point of X fixed.

Proposition 2.2 ([24, 5.2]). For each 1-solenoid (\overline{X}, f), there exists an integer m such that (\overline{X}, f^m) has an elementary presentation.

Suppose that (X, f) is a presentation of a 1-solenoid. Since the inverse limit spaces of (X, f) and (X, f^n) are homeomorphic ([1]) for every positive integer n, for the purpose of computing invariants of the space X there is no loss of generality in replacing (X, f) with (X, f^n) where $n = m \cdot k$ is a positive integer such that (\overline{X}, f^m) has an elementary presentation (Y, g) and for every $y \in Y$ there is an open set U_y such that $g^k(U_y)$ is an open interval. Hence we can assume that every point $x \in X$ has a neighborhood U_x such that $f(U_x)$ is an interval.

Recall that a continuous map $\gamma: [0, 1] \to G$, a directed graph, is orientation preserving if $e^{-1} \circ \gamma: I \to [0, 1]$ is increasing for every interval $I \subset [0, 1]$ such that $\gamma(I)$ is a subset of a directed edge e. A continuous map $\phi: G_1 \to G_2$ between two directed graphs is orientation preserving if, for every orientation preserving map $p: [0, 1] \to G_1$, the map $\phi \circ p: [0, 1] \to G_2$ is orientation preserving ([24]).

When we can give a direction to each edge of X so that the connection map $f: X \to X$ is orientation preserving, we call (X, f) an orientable presentation. For a 1-solenoid Y with a solenoid map g, if there exists an orientable presentation (X, f) then Y is called an orientable 1-solenoid.

Standing Assumption. In this paper, we always assume that (X, f) is an orientable elementary presentation such that every point $x \in X$ has a neighborhood U_x such that $f(U_x)$ is an interval.

Notation 2.3. Suppose that (X, f) is a presentation of a 1-solenoid, and that $\mathcal{E} = \{e_1, \ldots, e_n\}$ is the edge set of the directed graph X. For each edge $e_i \in \mathcal{E}$, we can give e_i the partition $\{I_{i,j}\}$, $1 \leq j \leq l(i)$, such that

1. the initial point of $I_{i,1}$ is the initial point of e_i,
2. the terminal point of $I_{i,j}$ is the initial point of $I_{i,j+1}$ for $1 \leq j < l(i)$,
3. the terminal point of $I_{i,l(i)}$ is the terminal point of e_i,
4. $f|_{\text{Int} I_{i,j}}$ is injective, and
5. $f(I_{i,j}) = e_{i,j}^{s(i,j)}$ where $e_{i,j} \in \mathcal{E}$, $s(i,j) = 1$ if the direction of $f(I_{i,j})$ agree with that of $e_{i,j}$, and $s(i,j) = -1$ if the direction of $f(I_{i,j})$ is reverse to that of $e_{i,j}$.

The wrapping rule $\tilde{f}: \mathcal{E} \to \mathcal{E}^*$ associated with f is given by

\[
\tilde{f}: e_i \mapsto e_{i,1}^{s(i,1)} \cdots e_{i,l(i)}^{s(i,l(i))},
\]
and the adjacency matrix M of (\mathcal{E}, \hat{f}) is given by
$$M(i, k) = \#\{I_{i,j} \mid f(I_{i,j}) = e_k^{-1}\}.$$

Remark 2.4 ([24, 6.2]). The measure μ_0 in remark 2.1 is given as follows: Suppose that λ is the Perron-Frobenius eigenvalue of the adjacency matrix M and that $v = (v_1, \ldots, v_n)$ is the corresponding Perron eigenvector such that $\sum_{i=1}^n v_i = 1$. For edges e_i, e_j of X and an interval I of e_i such that $f^n(I) = e_j$ and $f^n|_{\text{Int}I}$ is injective, let
$$\mu_0(e_i) = v_i \text{ and } \mu_0(I) = \lambda^{-n}v_j.$$ Then μ_0 is extended to a regular Borel measure on X by the standard procedure.

Theorem 2.5 ([11, 27]). Suppose that $(\overline{X}, \overline{f})$ is a 1-solenoid. Then there exists a uniquely ergodic flow ϕ whose phase space is \overline{X}.

Suppose that (X, f) is a presentation of a 1-solenoid and that μ_0 is the measure given on X as in remark 2.4. For a measurable set I in X, we let $U_n(I) = \{(x_0, \ldots, x_n, \ldots) \in \overline{X} \mid x_n \in I\}$, and define a measure μ on \overline{X} by
$$\mu(U_n(I)) = \mu_0(I).$$ Then μ is extended to a regular Borel measure on \overline{X} in the standard way. We call this measure **Williams measure** of the flow ϕ on \overline{X}. It is not difficult to verify that μ is the unique ϕ-invariant measure on \overline{X}.

A closed subset K of a phase space Y of a flow ϕ is called a **cross section** if the mapping $\phi: K \times \mathbb{R} \to Y$ defined by $(p, t) \mapsto p \cdot t$ is a local homeomorphism onto Y. The **return time map** $r_K: K \to K$ of a cross section K is defined by $x \mapsto y = x \cdot t_x$ where $x \in K$ and t_x is the smallest positive number such that $x \cdot t_x = y \in K$.

Theorem 2.6 ([10, 2]). Suppose that $(\overline{X}, \overline{f})$ is a 1-solenoid with the corresponding adjacency matrix M, and that (K, r_K) is a cross section with the return time map of \overline{X}. Then
1. $K_1(C(K) \times_{r_K} \mathbb{Z}) = \mathbb{Z}$,
2. $K_0(C(K) \times_{r_K} \mathbb{Z})$ is order isomorphic to Δ_M, and
3. $K_0(C(K) \times_{r_K} \mathbb{Z})$ has a unique state.

3. Smale spaces and C*-algebras from solenoids

Smale spaces ([16, 21]). Suppose that (Y, d) is a compact metric space and ϕ is a homeomorphism of Y. Assume that we have constants
$$0 < \lambda_0 < 1, \; \epsilon_0 > 0$$
and a continuous map
$$(x, y) \in \{(x, y) \in Y \times Y \mid d(x, y) \leq 2\epsilon_0\} \mapsto [x, y] \in Y$$
satisfying the following:
$$[x, x] = x, \quad [[x, y], z] = [x, z], \quad [x, [y, z]] = [x, z], \quad [\phi(x), \phi(y)] = \phi([x, y])$$
for $x, y, z \in Y$ whenever both sides of the equation are defined. For every $0 < \epsilon \leq \epsilon_0$ let
$$V^s(x, \epsilon) = \{y \in Y \mid [x, y] = y \text{ and } d(x, y) < \epsilon\}$$
$$V^u(x, \epsilon) = \{y \in Y \mid [y, x] = y \text{ and } d(x, y) < \epsilon\}.$$
We assume that
\[
d(\varphi(y), \varphi(z)) \leq \lambda_0 d(y, z) \quad y, z \in V^s(x, \epsilon),
\]
\[
d(\varphi^{-1}(y), \varphi^{-1}(z)) \leq \lambda_0 d(y, z) \quad y, z \in V^u(x, \epsilon).
\]

Then \((Y, d, \varphi)\) is called a **Smale space**.

Groupoids ([14, 15]). We refer to the work of Renault ([19]) for the detailed theory of topological groupoids and their associated \(C^*\)-algebras. We give two examples of groupoids.

Examples 3.1 ([11, 1.2]). (1) **Equivalence relations.** Suppose that \(R\) is an equivalence relation on a set \(S\). We give \(R\) the following groupoid structure:
\[
(s_1, t_1) \cdot (s_2, t_2) = (s_1, t_2) \text{ if } t_1 = s_2 \text{ and } (s, t)^{-1} = (t, s).
\]

(2) **Flows.** Suppose that \(S\) is a zero dimensional space and \(r: S \to S\) is a homeomorphism. We consider the space \(S \times \mathbb{R}\) with the equivalence relation, \((s, \tau + 1) \sim (r(s), \tau)\). Let \(\Sigma = S \times \mathbb{R}/\sim\) be the quotient space and define a flow \(\phi: \Sigma \times \mathbb{R} \to \Sigma\) by \(\phi_t(s, \tau) = [(s, t + \tau)]\). Give the following groupoid structure on \(\Sigma \times \mathbb{R}\):
\[
(\sigma_1, t_1) \cdot (\sigma_2, t_2) = (\sigma_1, t_1 + t_2) \text{ if } \sigma_2 = \phi_t(\sigma_1) \text{ and } (\sigma, t)^{-1} = (\phi_t(\sigma), -t).
\]

For a Smale space \((Y, d, \varphi)\), define
\[
G_{s,0} = \{(x, y) \in Y \times Y \mid y \in V^s(x, \epsilon_0)\} \quad G_{u,0} = \{(x, y) \in Y \times Y \mid y \in V^u(x, \epsilon_0)\}
\]
and let
\[
G_s = \bigcup_{n=0}^{\infty} (\varphi \times \varphi)^{-n} (G_{s,0}) \quad G_u = \bigcup_{n=0}^{\infty} (\varphi \times \varphi)^n (G_{u,0}).
\]

Then \(G_s\) and \(G_u\) are equivalence relations on \(Y\), called **stable** and **unstable equivalence**. Each \((\varphi \times \varphi)^{-n} (G_{s,0})\), \((\varphi \times \varphi)^n (G_{u,0})\) is given the relative topology of \(Y \times Y\), and \(G_s\) and \(G_u\) are given the inductive limit topology. Then \(G_s\) and \(G_u\) are locally compact Hausdorff principal groupoids. The Haar systems \(\mu^s_x \mid x \in Y\) and \(\mu^u_x \mid x \in Y\) for \(G_s\) and \(G_u\), respectively, are described in [17, 3.c]. The groupoid \(C^*\)-algebras of \(G_s\) and \(G_u\) are denoted \(S(Y, \varphi)\) and \(U(Y, \varphi)\), respectively.

The map \(\varphi \times \varphi\) acts as an automorphism of \(G_s\) and \(G_u\). We form the semi-direct products
\[
G_s \rtimes \mathbb{Z} = \{(x, n, y) \mid n \in \mathbb{Z} \text{ and } (\mathcal{F}^n(x), y) \in G_s\}
\]
\[
G_u \rtimes \mathbb{Z} = \{(x, n, y) \mid n \in \mathbb{Z} \text{ and } (\mathcal{F}^n(x), y) \in G_u\}
\]
with groupoid operations
\[
(x, n, y) \cdot (u, m, v) = (x, n + m, v) \text{ if } y = u \text{ and } (x, n, y)^{-1} = (y, -n, x).
\]

The product topology of \(G_s \times \mathbb{Z}\) is transferred to \(G_s \rtimes \mathbb{Z}\) by the bijective map \(\eta: (x, y, n) \mapsto (x, n, \varphi(y))\). And a Haar system on \(G_s \rtimes \mathbb{Z}\) is given by \(\mu^s_x \circ \eta^{-1}\) where \(\mu^s_x\) is the Haar system on \(G_s\). The groupoid \(C^*\)-algebras \(C^*(G_s \rtimes \mathbb{Z})\) and \(C^*(G_u \rtimes \mathbb{Z})\) are denoted \(R_s(Y, \varphi)\) and \(R_u(Y, \varphi)\) and are called the **Ruelle algebras**.
Theorem 3.2 (10, 13, 17). Suppose that \((Y, \varphi)\) is a topologically mixing Smale space. Then

1. \(S(Y, \varphi)\) and \(U(Y, \varphi)\) are amenable, nuclear, separable and simple \(C^*\)-algebras, and
2. \(R_s(Y, \varphi)\) and \(R_u(Y, \varphi)\) are amenable, non-unital, nuclear, purely infinite, separable, simple and stable \(C^*\)-algebras.

For general properties of these \(C^*\)-algebras, we refer to 10, 13, 18.

Suppose that \((\overline{\mathcal{X}}, \overline{f})\) is a 1-solenoid with the metric \(d\) given in remark 2.7. Let \(\lambda_0 = \epsilon_0 = \frac{k}{n}\) and define \([\cdot, \cdot]: \mathcal{X} \times \mathcal{X} \to [0, \infty)\) by \(d(x, y) = z\) where \(z_0 = x_0\) and \(z_n\) is the unique element contained in the \(\lambda_0^n\)-neighborhood of \(y_0\) such that \(f^n(z_n) = x_0\). Then it is not difficult to show that \((\overline{\mathcal{X}}, \overline{f}, d)\) satisfies the above conditions. Therefore we have the following:

Proposition 3.3. One-dimensional generalized solenoids are Smale spaces.

Stable equivalence algebras for 1-solenoids. Suppose that \(G_s\) is the stable equivalence groupoid of a 1-solenoid \((\overline{\mathcal{X}}, \overline{f})\) and that \(S(\overline{\mathcal{X}}, \overline{f})\) is the corresponding groupoid algebra. We first repeat the structural question of Putnam (17, §4). For classical 1-solenoids, we refer to 2, 10.

Question. Can \(S(\overline{\mathcal{X}}, \overline{f})\) be written as an inductive limit?

Solenoid \((\overline{\mathcal{X}}, \overline{f})\) of \(X\). Let \(U^*_s = \{x \in U_{p} \mid x = f^n(g_p) \text{ for some } n \in \mathbb{N}\} \cap U_p\). Then \(U^*_s\) is an \(r\)-discrete, second countable, locally compact, Hausdorff groupoid with counting measure as Haar system.

Proposition 3.4 (18, §3). (1) \(G_s(p)\) is an \(r\)-discrete, second countable, locally compact, Hausdorff groupoid with counting measure as Haar system.

(2) \(S(\overline{\mathcal{X}}, \overline{f})\) is strongly Morita equivalent to \(C^*(G_s(p))\).

Now we choose \(p\) to be a fixed point of \(\overline{f}\) such that \(\pi_k(p)\) is contained in the interior of an edge \(e \in \mathcal{E}\). Since the orbits of \((\overline{\mathcal{X}}, \overline{f})\) are determined by the cofinality relation, \(x = (x_0, x_1, \ldots) \in U_p\) if and only if there is a positive integer \(n = n(x)\) such that \(x_k \in e\) for every \(k \geq n\). Then \((\overline{f} \times \overline{f}) (G_s(p)) = G_s(p)\). Let

\[
G_{s, n}(p) = \{(x, y) \in G_{s, n} \mid x, y \in U_p\} = \{(x, y) \in G_s(p) \mid f^n(x_0) = f^n(y_0)\}.
\]

Then \(G_{s, n}(p)\) is a compact open subset of \(G_s(p)\), and \(G_{s, n}(p)^0 = G_s(p)^0 = g(U_p)\). Since \(G_s(p)\) is \(r\)-discrete, the range maps \(r: G_s(p) \to G_s(p)^0\) and \(r_n = r|_{G_{s, n}(p)}\) are local homeomorphisms. Hence the Haar system of \(G_s(p)\) restricted to \(G_{s, n}(p)\) gives a Haar system for each \(G_{s, n}(p)\). Then we can express \(C^*(G_s(p))\) as an inductive limit

\[
C^*(G_{s, 1}(p)) \to C^*(G_{s, 2}(p)) \to \cdots \to C^*(G_{s, n}(p)) \to \cdots.
\]
Unstable equivalence algebras. Suppose that \((\overline{X}, \overline{f})\) is an orientable solenoid and that \(\phi\) is the flow on \(\overline{X}\) given in theorem \ref{thm:SolenoidFlow}. Then there exists a cross section with return time map \((K, r)\) such that \(\overline{X}\) is the suspension space of \((K, r)\).

Lemma 3.5 \([\ref{ref:author2}, \text{p.59}]\). The \(C^*\)-algebra of \((\overline{X}, \mathbb{R}, \phi)\) is isomorphic to \(C(\overline{X}) \times \mathcal{R}\mathbb{R}\).

Proposition 3.6 \([\ref{ref:author2}, \ref{ref:author7}]\). Suppose that \((\overline{X}, \overline{f})\) is an orientable solenoid, and that \((Z, r)\) is a cross section with the return time map of the flow \(\phi\). Then

1. \(U(\overline{X}, \overline{f}) \simeq C(\overline{X}) \times \mathcal{R}\mathbb{R}\) and
2. \(C(\overline{X}) \times \mathcal{R}\mathbb{R}\) is strongly Morita equivalent to \(C(K) \times \mathbb{Z}\).

Proof. (1). Suppose \(x = (x_0, x_1, \ldots), y = (y_0, y_1, \ldots) \in \overline{X}\) and \((x, y) \in G_u\). Then
\[
\lim_{n \to -\infty} \left(\overline{f}^n(x), \overline{f}^n(y) \right) \to 0 \quad \text{as} \quad n \to -\infty \implies d_0(x_n, y_n) \to 0 \quad \text{as} \quad n \to \infty \quad \text{and that there exists a} \ t \in \mathbb{R} \quad \text{such that} \quad y = \phi_t(x).
\]
Let \(\alpha: (\overline{X}, \mathbb{R}, \phi) \to G_u\) be given by \((x, t) \mapsto (x, \phi_t(x))\). Then it is not difficult to see that \(\alpha\) is an isomorphism. Therefore \(U(\overline{X}, \overline{f})\) is isomorphic to \(C(\overline{X}) \times \mathcal{R}\mathbb{R}\) by lemma \ref{lem:isomorphism}. And by the same argument \(C(K) \times \mathbb{Z}\) is isomorphic to the groupoid \(C^*\)-algebra of \((K, Z, r)\).

(2). Since \(\overline{X}\) is the suspension of \((K, r)\), for every \(x \in \overline{X}\) there exist unique \(z_x \in K\) and \(\tau_x \in [0, 1]\) such that \(x = \phi_{\tau_x}(z_x)\). Define \(I = \{(x, n - \tau_x) \mid x \in \overline{X}, n \in \mathbb{Z}\}\), and let \(C(I)\) be the completion of \(C_c(I)\). Then by the Theorem in \([\ref{ref:author7}, \text{§4.a}]\) \(C(I)\) is a \(C(\overline{X}) \times \mathcal{R}\mathbb{R}\)-\(C(K) \times \mathbb{Z}\) imprimitivity bimodule. For completeness, we write down the module structures and the inner products.

Module structures. Suppose that \(\alpha \in C_c(I), g \in C_c(\overline{X}, \mathbb{R}, \phi)\) and \(h \in C_c(K, \mathbb{Z}, r)\). Then
\[
(g \cdot \alpha)(x, n - \tau_x) = \int g(x, t) \cdot \alpha(\phi_t(x), n - \tau_x - t) \, d\mu[^x](t) \quad \text{and}
\]
\[
(\alpha \cdot h)(x, n - \tau_x) = \sum_m \alpha(x, m - \tau_x) \cdot h(r^m(z_x), n - m)
\]
give that \(C(I)\) is a left \(C(\overline{X}) \times \mathcal{R}\mathbb{R}\) and right \(C(K) \times \mathbb{Z}\) bimodule with \((\hat{g} \cdot \hat{\alpha}) \cdot \hat{h} = \hat{g} \cdot (\hat{\alpha} \cdot \hat{h})\) for every \(\hat{\alpha} \in C(I), \hat{g} \in C(\overline{X}) \times \mathcal{R}\mathbb{R}\) and \(\hat{h} \in C(K) \times \mathbb{Z}\).

Inner products. Define \(\langle \cdot, \cdot \rangle_L: C_c(I) \times C_c(I) \to C_c(\overline{X}, \mathbb{R}, \phi)\) and \(\langle \cdot, \cdot \rangle_R: C(I) \times C(I) \to C_c(K, \mathbb{Z}, r)\) by
\[
\langle \alpha, \beta \rangle_L(x, t) = \sum \alpha(x, m - \tau_x) \cdot \beta(x, m - \tau_x) \quad \text{and}
\]
\[
\langle \alpha, \beta \rangle_R(z, k) = \int \alpha(\phi_t(z), k - t) \cdot \beta(\phi_t(z), k - t) \, d\mu[^\phi](z)(t).
\]

Then we have the following corollary from propositions \ref{prop:isomorphism}.

Corollary 3.7 \([\ref{ref:author2}, \ref{ref:author23}]\). (1) \(U(\overline{X}, \overline{f})\) is a simple \(C^*\)-algebra.

(2) \(K_1(U(\overline{X}, \overline{f})) = \mathbb{Z}\).

(3) \(K_0(U(\overline{X}, \overline{f}))\) is order isomorphic to \(\Delta_M\) where \(M\) is the adjacency matrix of \((\overline{X}, \overline{f})\).

Recall that the flow \(\phi\) on \(\overline{X}\) is uniquely ergodic without rest point (theorem \ref{thm:ergodic}). So \(C(\overline{X}) \times \mathcal{R}\mathbb{R}\) has the unique trace \(\tau_u\) induced by the Williams measure \(\mu\) \((\ref{ref:author23}, \text{3.3.10})\). Thus \(\tau_u^*\), the induced state on \(K_0(C(\overline{X}) \times \mathcal{R}\mathbb{R})\), is the unique state.
Proposition 3.8. Suppose that \((\mathcal{X}, \mathcal{J})\) is a 1-solenoid and that \(M\) is the corresponding adjacency matrix with the normalized Perron eigenvector \(v = (v_1, \ldots, v_n)\). Then
\[
\tau_\mu^*(K_0(U(\mathcal{X}, \mathcal{J})), K_0(U(\mathcal{X}, \mathcal{J})))_+ = \langle (\Delta_M, \Delta_M^+), v \rangle.
\]

Proof. Suppose that \(\mathcal{E}_k = \mathcal{E}\) is the edge set of the \(k\)th coordinate space of \(\mathcal{X}\). Then by proposition 2.6
\[
(K_0(U(\mathcal{X}, \mathcal{J})), K_0(U(\mathcal{X}, \mathcal{J})))_+ \cong \left(\lim_{\rightarrow} C(\mathcal{E}_k, \mathbb{Z}), \lim_{\rightarrow} C_+ (\mathcal{E}_k, \mathbb{Z}) \right) \cong (\Delta_M, \Delta_M^+).
\]

For \(g \in C(\mathcal{E}_k, \mathbb{Z})\), \(x = (x_0, \ldots, x_k, \ldots) \in \mathcal{X}\) with \(x_k = e^{2\pi i s} \in e_i \in \mathcal{E}_k\) and the canonical projection to the \(k\)th coordinate space \(\pi_k: \mathcal{X} \to X\), define \(g_k \in C(X_k, S^1)\) and \(\tilde{g} \in C(X, S^1)\) by
\[
g_k: x_k \mapsto \exp(2\pi i g_i) s \quad \text{and} \quad \tilde{g}: x \mapsto g_k \circ \pi_k(x).
\]

Then every \(\tilde{g}\) is a unitary element in \(C(\mathcal{X})\), and \(K_0(U(\mathcal{X}, \mathcal{J})) \cong K_1(C(\mathcal{X}))\) is generated by \(\tilde{g}\). If we denote \(g = (g(e_1), \ldots, g(e_n))\), then by Theorem 2.2 of [13]
\[
\tau_\mu^*(\tilde{g}) = \frac{1}{2\pi i} \int_{\mathcal{X}} \tilde{g}' \overline{\tilde{g}} \, d\mu = \int_{X_k} g' \overline{g} \, d\mu_0 = \sum_{i=1}^{n} g(e_i) \mu_0(e_i) = \sum_{i=1}^{n} g(e_i) v_i = \langle (g(e_1), \ldots, g(e_n)), v \rangle.
\]

The above proposition refines Theorem 2.2 of [13] that
\[
\tau_\mu^*(K_0(C(\mathcal{X}) \times_\phi \mathbb{R})) = \langle A_\mu, H^1(\mathcal{X}) \rangle.
\]

Corollary 3.9 ([13]). If \(p\) and \(q\) are projections in \(M_\infty (C(\mathcal{X}) \times_\phi \mathbb{R})\) such that \(\tau_\mu(p) < \tau_\mu(q)\), then \(p\) is equivalent to a subprojection of \(q\).

Lemma 3.10 ([13]). \(C(\mathcal{K}) \times_\phi \mathbb{Z}\) has real rank zero and topological stable rank one.

Since \(C(\mathcal{X}) \times_\phi \mathbb{R}\) and \(C(\mathcal{K}) \times_\phi \mathbb{Z}\) are separable algebras, they have strictly positive elements. So strong Morita equivalence of \(C(\mathcal{X}) \times_\phi \mathbb{R}\) and \(C(\mathcal{K}) \times_\phi \mathbb{Z}\) implies that they are stably isomorphic, i.e., \(C(\mathcal{X}) \times_\phi \mathbb{R} \otimes \mathcal{K}\) is \(*\)-isomorphic to \(C(\mathcal{K}) \otimes \mathcal{K}\) where \(\mathcal{K}\) is the algebra of compact operators on a separable Hilbert space. Therefore we have the following proposition.

Proposition 3.11. \(U(\mathcal{X}, \mathcal{J})\) has real rank zero and topological stable rank one.

4. Ruelle Algebras for Solenoids

We compute \(K\)-groups of Ruelle algebras for 1-solenoids to show that they are \(*\)-isomorphic.

Unstable equivalence Ruelle algebras. Suppose that \((\mathcal{X}, \mathcal{J})\) is an oriented 1-solenoid and that \(G_u \simeq (\mathcal{X}, \mathbb{R}, \phi)\) is the unstable equivalence groupoid on \(\mathcal{X}\). Recall that for \(x, y \in \mathcal{X}\) such that \(y = \phi_t(x), \ t \in \mathbb{R}\), we have \(\mathcal{J}^{-1}(y) = \phi_{t\lambda^{-1}} \circ \mathcal{J}^{-1}(x)\).
Definition 4.1 (\[14, \S 4\]). Let \(\alpha_u\) be an automorphism on \(U(X, f)\) defined by
\[
\alpha_u(g)(x, t) = \lambda^{-1} g(f^{-1}(x), t\lambda^{-1}) \quad \text{for} \quad g \in C_c(X, \mathbb{R}, \phi) \quad \text{and} \quad (x, t) \in (X, \mathbb{R}).
\]
The unstable equivalence Ruelle algebra \(R_u(X, f)\) is the crossed product
\[
R_u(X, f) = U(X, f) \rtimes_{\alpha_u} \mathbb{Z} = (C(X) \times_{\phi} \mathbb{R}) \times_{\alpha_u} \mathbb{Z}.
\]

Remarks 4.2. (1) Let \(A\) be an \(n \times n\) integer matrix and \(\Delta_A\) the dimension group of \(A\). The dimension group automorphism \(\delta_A\) of \(A\) is the restriction of \(\delta_A\) to \(A\) so that \(\delta_A(v) = Av\) (\[14, 7.5.1\]). Then \(\Delta_A/\text{Im}(\text{Id} - \delta_A)\) is isomorphic to \(\mathbb{Z}^n/(\text{Id} - A)\mathbb{Z}^n\).

(2) For \(g \in C(\mathcal{E}_k, \mathbb{Z})\), let \(g_k \in C(X_k, S^1)\) be as in the proof of proposition 3.8. The wrapping rule \(f: \mathcal{E}_{k+1} \to \mathcal{E}_k\) induces a map \(f^*: C(\mathcal{E}_k, \mathbb{Z}) \to C(\mathcal{E}_{k+1}, \mathbb{Z})\) by \(g \mapsto g \circ f\) where \((g \circ f)(e) = \sum_{i=1}^j g(e_i)\) such that \(f(e) = e_1 \cdots e_j\). Then \(g_k \circ f \circ \pi_k\) is homotopic to \((g \circ f^*)_{k+1} \circ \pi_{k+1}\) (\[14, 3.6\]).

Proposition 4.3. Suppose that \((X, f)\) is a 1-solenoid with the adjacency matrix \(M\) and corresponding dimension group automorphism \(\delta_M\). Then
\[
K_0(R_u(X, f)) \cong \mathbb{Z} \oplus \{\Delta_M/\text{Im}(\text{Id} - \delta_M)\} \quad \text{and} \quad K_1(R_u(X, f)) \cong \mathbb{Z} \oplus \ker(\text{Id} - \delta_M).
\]

Proof. We have the following Pimsner-Voiculescu exact sequence.
\[
K_0(U(X, f)) \xrightarrow{1-\alpha_u} K_0(U(X, f)) \xrightarrow{\iota_*} K_0(R_u(X, f)) \xrightarrow{1-\alpha_u} K_1(U(X, f)) \xrightarrow{\iota_*} K_1(R_u(X, f))
\]

We consider \(\alpha_u: K_0(U(X, f)) = K_0(C(X) \times_{\phi} \mathbb{R}) \to K_0(C(X) \times_{\phi} \mathbb{R})\) as the automorphism \(\delta_u: K_1(C(X)) \to K_1(C(X))\) given by the Thom isomorphism of Connes. Define \(\beta: C(X) \to C(X)\) by \(h \mapsto h \circ f^{-1}\) for \(h \in C(X)\). Then the induced automorphism \(\beta_*: K_1(C(X)) \to K_1(C(X))\) is the required isomorphism.

For \(g \in C(\mathcal{E}_k, \mathbb{Z})\), let \(\hat{g} \in C(X, S^1)\) be the induced unitary element as in the proof of proposition 3.8. Then \(\beta^{-1}(\hat{g}) = \hat{g} \circ f^{-1} = g_k \circ \pi_k \circ f = g_k \circ f \circ \pi_k\) is homotopic to \((g \circ f^*)_{k+1} \circ \pi_{k+1}\). Hence if we denote \(g\) as \((g(e_1), \ldots, g(e_n))\) \(\in \mathbb{Z}^n\), then \(g \circ f^*\) is given by \(Mg\) and the induced automorphism \(\beta_*^{-1}: K_1(C(X)) \to K_1(C(X))\) is the dimension group automorphism \(\delta_M\) of the adjacency matrix \(M\). Therefore \(\beta_*\) is the inverse of \(\delta_M\), and \(1 - \alpha_u: K_0(U(X, f)) \to K_0(U(X, f))\) is the same as \(\text{Id} - \delta_*: \Delta_M \to \Delta_M\).

Since \(K_1(U(X, f))\) is isomorphic to \(\mathbb{Z}\), \(\alpha_u: \mathbb{Z} \to \mathbb{Z}\) is trivially the identity map. Thus the six-term exact sequence is divided into the following two short exact sequences;
\[
0 \to \Delta_M/\text{Im}(\text{Id} - \delta_M^{-1}) \to K_0(R_u(X, f)) \to \mathbb{Z} \to 0
\]
and
\[
0 \to \mathbb{Z} \to K_1(R_u(X, f)) \to \ker(\text{Id} - \delta_M^{-1}) \to 0.
\]

Therefore we conclude that
\[
K_0(R_u(X, f)) \cong \mathbb{Z} \oplus \{\Delta_M/\text{Im}(\text{Id} - \delta_M^{-1})\} = \mathbb{Z} \oplus \{\Delta_M/\text{Im}(\text{Id} - \delta_M)\}
\]
and
\[
K_1(R_u(X, f)) \cong \mathbb{Z} \oplus \ker(\text{Id} - \delta_M^{-1}) = \mathbb{Z} \oplus \ker(\text{Id} - \delta_M).
\]
Examples 4.4. (1). Suppose that X is the unit circle and that $f: X \to X$ is given by $z \mapsto z^n$, $n \geq 2$. Then the adjacency matrix is (n), $K_0(U(X, \mathcal{J})) = \mathbb{Z}[\frac{1}{n}]$ and $K_1(U(X, \mathcal{J})) = \mathbb{Z}$. Since $\delta_{(n)}^{-1}$ is multiplication by $\frac{1}{n}$, we have $K_0(R_u(X, \mathcal{J})) = \mathbb{Z} \oplus \mathbb{Z}_{n-1}$ and $K_1(R_u(X, \mathcal{J})) = \mathbb{Z}$. See [3] for details.

(2). Suppose that Y is a wedge of two circles a and b and that $g: Y \to Y$ is given by $a \mapsto aab$ and $b \mapsto ab$. Then the adjacency matrix is $M = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$. So $K_0(U(Y, \mathcal{J})) = \mathbb{Z} \oplus \mathbb{Z}$ and $K_1(U(Y, \mathcal{J})) = \mathbb{Z}$. Since $1 - \alpha_{u*}: \mathbb{Z} \oplus \mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}$ is an isomorphism, we obtain $K_0(R_u(Y, \mathcal{J})) = K_1(R_u(Y, \mathcal{J})) = \mathbb{Z}.$

Stable equivalence Ruelle algebras. We use K-theoretic duality of the Ruelle algebras and the Universal Coefficient Theorem to compute K-groups of $R_u(X, \mathcal{J})$.

Remark 4.5 ([20]). Let \mathcal{N} be the category of separable nuclear C^\ast-algebras which contains the separable Type I C^\ast-algebras and is closed under strong Morita equivalence, inductive limits, extensions, and crossed products by \mathbb{Z} and by \mathbb{R}. Then it is not difficult to verify that unstable and stable equivalence Ruelle algebras of 1-solenoids are contained in \mathcal{N}.

Proposition 4.6 ([17, 5.c]). Suppose that (X, \mathcal{J}) is a 1-solenoid. Then $R_u(X, \mathcal{J})$ is dual to $R_u(X, \mathcal{J})$ so that $K_*(R_u(X, \mathcal{J}))$ is isomorphic to $K^{*+1}(R_u(X, \mathcal{J}))$.

Proposition 4.7 ([20, 1.19]). Suppose that (X, \mathcal{J}) is a 1-solenoid. Then there are short exact sequences

$$0 \to \text{Ext}^1_\mathbb{Z}(K_0(R_0(X, \mathcal{J})), \mathbb{Z}) \to K^1(R_u(X, \mathcal{J})) \to \text{Hom}(K_1(R_u(X, \mathcal{J})), \mathbb{Z}) \to 0$$

$$0 \to \text{Ext}^2_\mathbb{Z}(K_0(R_0(X, \mathcal{J})), \mathbb{Z}) \to K^0(R_u(X, \mathcal{J})) \to \text{Hom}(K_0(R_u(X, \mathcal{J})), \mathbb{Z}) \to 0$$

Hence K-groups of the stable equivalence Ruelle algebra are determined by Ext- and Hom-groups of $K_*(R_u(X, \mathcal{J}))$. Transform $Id - M$ to the Smith form

$$
\begin{pmatrix}
 d_1 \\
 d_2 \\
 \vdots \\
 d_n
\end{pmatrix}
$$

where $d_i \geq 0$ and d_i divides d_{i+1} ([17, §7.4]). Then $\Delta_M/\text{Im}(Id - \delta_M)$ is isomorphic to $\oplus_{i=1}^n \mathbb{Z}_{d_i}$. The dimension of $\text{Ker}(Id - \delta_M)$ is equal to the number of zeros in the diagonal of the Smith form. Suppose $d_1 = \cdots = d_m = 0$ and $d_{m+1} \neq 0$. Then we have

$$\text{Ext}^{1}_{\mathbb{Z}}(K_0(R_u(\mathcal{J})), \mathbb{Z}) = \text{Ext}^{1}_{\mathbb{Z}}(\mathbb{Z}_{d_{m+1}} \oplus \cdots \oplus \mathbb{Z}_{d_n}, \mathbb{Z}) = \mathbb{Z}_{d_{m+1}} \oplus \cdots \oplus \mathbb{Z}_{d_n}$$

and

$$\text{Hom}(K_1(R_u(\mathcal{J})), \mathbb{Z}) = \mathbb{Z}^{m+1}.$$

Hence we have

$$K^1(R_u(\mathcal{J})) \cong \text{Hom}(K_1(R_u(\mathcal{J})), \mathbb{Z}) \oplus \text{Ext}^{1}_{\mathbb{Z}}(K_0(R_u(\mathcal{J})), \mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z}^{m} \oplus \mathbb{Z}_{d_{m+1}} \oplus \cdots \oplus \mathbb{Z}_{d_n} \cong \mathbb{Z} \oplus \{ \Delta_M/\text{Im}(Id - \delta_M) \}.$$
Recall that $K_1(R_u(X,\mathcal{F})) = \mathbb{Z} \oplus \ker(1 - \delta_M)$ is a torsion-free subgroup of \mathbb{Z}^{n+1}. Thus we have $\text{Ext}_0^2(K_1(R_u(X,\mathcal{F})), \mathbb{Z}) = 0$ and

$$K^0(R_u(X,\mathcal{F})) \cong \text{Hom}(K_0(R_u(X,\mathcal{F})), \mathbb{Z}).$$

Then $K_0(R_u(X,\mathcal{F})) \cong \mathbb{Z} \oplus \mathbb{Z}/d\mathbb{Z}$ implies

$$\text{Hom}(K_0(R_u(X,\mathcal{F})), \mathbb{Z}) \cong \text{Hom}(\mathbb{Z} \oplus \mathbb{Z}/d\mathbb{Z}, \mathbb{Z}) \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \ker(1 - \delta_M).$$

Therefore we conclude that:

Proposition 4.8. Suppose that (X,\mathcal{F}) is a 1-solenoid. Then

$$K_0(R_u(X,\mathcal{F})) \cong \mathbb{Z} \oplus \{\Delta_M/\text{Im}(1 - \delta_M)\} \text{ and } K_1(R_u(X,\mathcal{F})) \cong \mathbb{Z} \oplus \ker(1 - \delta_M).$$

Remark 4.9. The isomorphisms in proposition 4.8 are unnatural as the short exact sequences in the Universal Coefficient Theorem split unnaturally.

Recall that the unstable and stable equivalence Ruelle algebras of a 1-solenoid are nuclear, purely infinite, separable, simple and stable C^*-algebras (proposition 2.2). Then the classification theorem of Kirchberg-Phillips implies the following proposition.

Proposition 4.10. $R_u(X,\mathcal{F})$ is $*$-isomorphic to $R_u(X,\mathcal{F})$.

Acknowledgment. I express my deep gratitude to Dr. M. Boyle and Dr. J. Rosenberg at UMCP and Dr. I. Putnam at University of Victoria, Canada, for their encouragement and useful discussions. The $[,]$-function for 1-solenoids was suggested by Dr. Putnam. By kind permission, I presented his definition.

References

1. J. Aarts and M. Martens, *Flows on one-dimensional spaces*, Fund. Math. 131 (1988), 53-67.
2. B. Blackadar, *Comparison theory for simple C^*-algebras*, Operator algebras and applications, D. E. Evans and M. Takesaki (eds.), LMS lecture Notes Series 135 (1988), 21-54.
3. V. Deaconu, *Groupoids associated with endomorphisms*, Trans. Amer. Math. Soc. 347 (1995), 1779-1786.
4. A. Forrest, *Cohomology of ordered Bratteli diagrams*, Pacific J. Math., to appear.
5. T. Giordano, I. Putnam and C. Skau, *Topological orbit equivalence and C^*-crossed products*, J. reine angew. Math. 469 (1995), 41-111.
6. R. Herman, I. Putnam and C. Skau, *Ordered Bratteli diagram, dimension groups and topological dynamics*, Intern. J. Math. 3 (1992), 827-864.
7. J. Kaminker, I. Putnam and J. Spielberg, *Operator algebras and hyperbolic dynamics*, Operator algebras and quantum field theory (Rome, 1996), S. Doplicher, R. Longo, J.E.Roberts and L. Zsido (eds.), 525-532, International Press, 1997.
8. E. Kirchberg, *The classification of purely infinite C^*-algebras using Kasparov’s theory*, preprint, 1994.
9. M. Laca and J. Spielberg, *Purely infinite C^*-algebras from boundary actions of discrete groups*, J. reine angew. Math. 480 (1996), 125-139.
10. D. Lind and B. Marcus, *An introduction to symbolic dynamics and coding*, Cambridge Univ. Press, 1995.
11. B. Marcus, *Unique ergodicity of some flows related to Axiom A diffeomorphisms*, Israel J. Math. 21 (1975), 111-132.
12. P. Muhly, J. Renault and D. Williams, *Equivalence and isomorphism for groupoid C^*-algebras*, J. Operator Theory 17 (1987), 3-22.
13. J. A. Packer, *K-theoretic invariants for C^*-algebras associated to transformations and induced flows*, J. Funct. Anal. 67 (1986), 25-59.
14. N. C. Phillips, *A classification theorem for nuclear purely infinite simple C^*-algebras*, Doc. Math. 5 (2000), 49-114.
15. I. Putnam, *On the topological stable rank of certain transformation group C*-algebras*, Ergod. Th. and Dynam. Sys. 10 (1990), 197-207.
16. I. Putnam, *C*-algebras from Smale spaces, Can. J. Math. 48 (1996), 175-195.
17. I. Putnam, *Hyperbolic systems and generalized Cuntz-Krieger algebras*, Lecture notes from Summer school in Operator algebras, Odense, Denmark, 1996.
18. I. Putnam and J. Spielberg, *The structure of C*-algebras associated with hyperbolic dynamical systems*, J. Funct. Anal. 163 (1999), 279-299.
19. J. Renault, *A groupoid approach to C*-algebras*, Lecture Notes in Math. 793 (1980) Springer-Verlag.
20. J. Rosenberg and C. Schochet, *The Künneth theorem and the universal coefficient theorem for Kasparov's generalized K-functor*, Duke Math. J. 55 (1987), 431-474.
21. D. Ruelle, *Noncommutative algebras for hyperbolic diffeomorphisms*, Invent. Math. 93 (1988), 1-13.
22. J. Tomiyama, *Invitation to C*-algebras and topological dynamics*, World Scientific Publishing Co. 1987.
23. R. F. Williams, *One-dimensional non-wandering sets*, Topology 6 (1967), 473-487.
24. R. F. Williams, *Classification of 1-dimensional attractors*, Proc. Symp. Pure Math. 14 (1970), 341-361.
25. I. Yi, *Canonical symbolic dynamics for one-dimensional generalized solenoids*, To appear in Trans. Amer. Math. Soc.
26. I. Yi, *Ordered group invariants for one-dimensional spaces*, Submitted for publication.
27. I. Yi, *Orientable double covers and Bratteli-Vershik systems for one-dimensional generalized solenoids*, Preprint.

Department of Mathematics, University of Maryland, College Park, MD, 20742
E-mail address: inhyeop@math.umd.edu