SUBSTELLAR OBJECTS IN NEARBY YOUNG CLUSTERS (SONYC). VI. THE PLANETARY-MASS DOMAIN OF NGC 1333

ALEXANDER SCHOLZ1, RAY JAYAWARDHANA2,6, KORALJKA MUZIC2, VINCENT GEERS3, MOTORIDE TAMURA4, AND ICHI TANAKA5

1 School of Cosmic Physics, Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland; aleks@cp.dias.ie
2 Department of Astronomy & Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada
3 Institute for Astronomy, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich, Switzerland
4 National Astronomical Observatory, Osawa 2-21-2, Mitaka, Tokyo 181, Japan
5 Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, HI 96720, USA

ABSTRACT

Within the SONYC (Substellar Objects in Nearby Young Clusters) survey, we investigate the frequency of free-floating planetary-mass objects (planemos) in the young cluster NGC 1333. Building upon our extensive previous work, we present spectra for 12 of the faintest candidates from our deep multi-band imaging, plus seven random objects in the same fields, using MOIRCS on Subaru. We confirm seven new sources as young very low mass objects (VLMOs), with T_{eff} of 2400–3100 K and mid-M to early-L spectral types. These objects add to the growing census of VLMOs in NGC 1333, now totaling 58. Three confirmed objects (one found in this study) have masses below $15 M_{\text{Jup}}$, according to evolutionary models, thus are likely planemos. We estimate the total planemo population with $5–15 M_{\text{Jup}}$ in NGC 1333 is $\lesssim 8$. The mass spectrum in this cluster is well approximated by $dn/dM \propto M^{-\alpha}$, with a single value of $\alpha = 0.6 \pm 0.1$ for $M < 0.6 M_{\odot}$, consistent with other nearby star-forming regions, and requires $\alpha \lesssim 0.6$ in the planemo domain. Our results in NGC 1333, as well as findings in several other clusters by ourselves and others, confirm that the star formation process extends into the planetary-mass domain, at least down to $6 M_{\text{Jup}}$. However, given that planemos are 20–50 times less numerous than stars, their contribution to the object number and mass budget in young clusters is negligible. Our findings disagree strongly with the recent claim from a microlensing study that free-floating planetary-mass objects are twice as common as stars—if the microlensing result is confirmed, those isolated Jupiter-mass objects must have a different origin from brown dwarfs and planemos observed in young clusters.

Key words: brown dwarfs – planets and satellites: formation – stars: formation – stars: luminosity function, mass function – stars: pre-main sequence

1. INTRODUCTION

The frequency of free-floating objects with masses below the deuterium burning limit ($<0.015 M_{\odot}$)—in the following called “planemos,” short for planetary-mass objects—is a subject of debate in the literature. Deep surveys in nearby star-forming regions indicate the presence of at least some planemos (e.g., Tamura et al. 1998; Zapatero Osorio et al. 2000; Lucas & Roche 2000; Jayawardhana & Ivanov 2006; Luhman et al. 2008; Marsh et al. 2010a), but they yield conflicting results regarding their numbers. On the other hand, a recent microlensing study (Sumi et al. 2011) reports the presence of a large population of Jupiter-mass objects in the field (“almost twice as common as stars”), which are either without host star or on very wide orbits. Direct detections of field objects in this mass domain have been reported as well (e.g., Liu et al. 2011; Leggett et al. 2012). So far, it is unclear whether the mass function declines in the planemo domain or not. Young planemos are also useful as benchmark objects for testing models for atmospheres and evolution in a new mass and age domain.

One of the goals of our SONYC survey (short for Substellar Objects in Nearby Young Clusters) is to probe the planemo domain in several nearby star-forming regions, using broadband imaging surveys followed by spectroscopic verification of the candidates. One of our targets is the young cluster NGC 1333, a ∼1 Myr old compact star-forming region in the Perseus OB association (see Figure 1). In this cluster, we found a rich substellar population, with about 30–40 brown dwarfs (Scholz et al. 2009, hereafter SONYC-I). In our most recent paper on this cluster, we also report the discovery of a handful of objects with estimated masses below 0.02 M_{\odot}, one of them at roughly 0.006 M_{\odot} and thus firmly in the planemo regime (Scholz et al. 2012a, hereafter SONYC-IV).

Thus far, the number of planemos in this cluster seems low compared with other regions. This, however, is a preliminary result for two reasons. (1) Our spectroscopic follow-up was not sufficiently complete in the planemo domain. (2) Our optical survey might not be sufficiently deep in some of the parts of NGC 1333 subject to high attenuation due to reddening. Here, we aim to resolve these issues through additional spectroscopy of faint candidates and a cumulative analysis, thus providing more definitive constraints on the planemo population of this cluster.

2. TARGET SELECTION

The goal of this paper is to probe specifically the planemo regime in NGC 1333 and to address the potential biases outlined in Section 1. To that end, we selected three samples of objects for follow-up spectroscopy, in total 19 objects, which are listed in Tables 1 and 2.

1. IZ candidates. Here, we started with our primary set of 196 candidates identified based on the $(i, i-z)$ color–magnitude diagram (SONYC-I). This diagram is

6 Principal Investigator of SONYC.
shown in Figure 2; objects for which we previously obtained spectra are marked with crosses, confirmed very low mass objects (VLMOs) with squares. A subsample of 22 objects with \(i > 22 \) has not yet been verified spectroscopically. Twenty of these objects are within 0.25 of the cluster center, which is the area where all confirmed very low mass members are located. From these 20, we select six for follow-up spectroscopy, marked with triangles in Figure 2. As can be seen in the figure, these candidates cover \(i - B \) magnitudes from 22.5 to 25, extending beyond the nominal completeness limit of the photometric survey (dashed line). Including this new selection, 27 out of 43 IZ candidates with \(i > 22 \) and 9 out of 15 with \(i > 24 \) have been observed spectroscopically. The lowest mass confirmed member of the cluster, SONYC-NGC 1333-36, with an estimated mass of 0.006 \(M_\odot \) appears in this plot at \(i = 23.39 \) and \(i - z = 1.96 \).

2. **JKS candidates.** We correlated the deep JK catalog presented in SONYC-I with the “HREL” catalog from the *Spitzer* “Cores to Disks” (C2D) legacy program (Evans et al. 2009). We accepted a source if it has a *Spitzer* counterpart within 1” and uncertainties below 0.2 mag in the first two IRAC bands at 3.6 and 4.5 \(\mu m \) (hereafter \(I_1 \) and \(I_2 \)). This yields a catalog of 824 objects (called the JKS catalog). The \((J, I_1 - I_2)\) color–magnitude diagram for this sample is plotted in Figure 3. The figure illustrates that this catalog is significantly deeper than the IZ selection: the faintest IZ candidates have \(I > 19 \), whereas the JKS catalog is complete down to \(J < 18 \). Out of these 17, we selected six for follow-up spectroscopy, which are marked with triangles. The aforementioned SONYC-NGC 1333-36 appears in this plot at \(J = 18.53 \) and \(I_1 - I_2 = 0.35 \). Note that spectroscopic verification for objects beyond \(J = 19 \) is not feasible with the currently available facilities.

3. **Random candidates.** After selecting the IZ and JKS candidates, we decided to observe two MOIRCS fields (see Section 3 and Figure 1), which cover a large fraction of the SONYC-I area (hereafter \(I_1 \) and \(I_2 \)). This new selection, 27 out of 43 IZ candidates with \(i > 22 \) and 9 out of 15 with \(i > 24 \) have been observed spectroscopically. The lowest mass confirmed member of the cluster, SONYC-NGC 1333-36, with an estimated mass of 0.006 \(M_\odot \) appears in this plot at \(i = 23.39 \) and \(i - z = 1.96 \).
We note that most of the selected objects are listed as candidates from photometric surveys in the literature, in papers by Aspin et al. (1994), Lada et al. (1996), Wilking et al. (2004), Oasa et al. (2008), and Gutermuth et al. (2008).

Two caveats need to be pointed out with regard to the selection of candidates from color–magnitude diagrams, as done here for the IZ and JKS candidates.

First, the completeness of the survey depends strongly on the definition of the color and magnitude criteria used to select the candidates for follow-up spectroscopy. For the IZ sample, we defined the selection box based on the position of previously identified brown dwarfs and extend it at the faint end—we are simply probing the extension of the color space occupied by the known brown dwarfs toward fainter magnitudes. A similar strategy was used for the JKS sample, but as argued above, we need to introduce an additional color cut (see also the discussion in Section 5.3). In the two samples, the color cuts are independent of evolutionary models.

Second, the photometric uncertainties may cause us to miss some brown dwarfs. For the IZ selection, this is not a major problem: the median error (excluding systematics) for $i > 22$ is 0.05 mag, and 95% of the errors are below 0.1 mag. The width of the selection box (1 mag in $(i-z)$ color) is significantly larger than the errors. In addition, most of the confirmed objects are 0.1–0.2 mag to the right side of the left boundary of the box. Assuming that these objects show a reliable representation of the cluster isochrone in NGC 1333, even large uncertainties are unlikely to move the data points of substellar members out of our selection box. Note that the right side of our selection criterion was only formal, no objects in our survey had colors redder than this boundary.

In the JKS sample, the median error in the $(I - 12)$ color is 0.1 mag for $16 < J < 19$. For $18 < J < 19$, i.e., at the faint end of our candidate selection, the errors are ≤ 0.22 mag. These errors do not depend significantly on the $(I - 12)$ color. The expected $(I - 12)$ colors of brown dwarfs and planemos are close to the bulk of the data points in this diagram (see Section 5.3), i.e., we may lose objects on the left side of our color cut due to large photometric errors.

We used our two MOS masks, the grism HK500 with an order sorting filter, and slits with a length of 11′′ and a width of 1′′.7. At 2 a.m. local time, about 2 hr before the end of the visibility for our target region, the humidity increased above 80% forcing us to close the dome. In total, we spent 3:20 hr telescope time on mask 1 and 3:10 hr on mask 2. At the beginning of the night and between mask 1 and mask 2, we observed three standard stars with spectral type around A0 intended to be used for telluric calibration.

We used our two MOS masks, the grism HK500 with a nominal resolution of 600–800 and a wavelength coverage from 1.3 to 2.4 µm, an order sorting filter, and slits with a length of 11′′7 and a width of 1′′17. For each mask, we obtained a series of individual exposures of at most 5 minutes. Due to an incident with the spillage of cooling liquid earlier in the year (2011 July 2), the autoguider system was not operational at the time of the observations. Therefore, we checked the position of the mask alignment stars between individual exposures and re-aligned the mask if the offset was more than the typical seeing in the direction perpendicular to the slit. If the offsets were large, we reduced the integration time to be able to track the sources reliably. The mask position was typically stable over
several minutes, the integration times for individual exposures were 240 s for mask 1 and 80–300 s for mask 2. The total on-source time was 88 minutes for mask 1 and 60 minutes for mask 2. Between consecutive exposures, the telescope was nodded along the slits by 2°.

We reduced the MOIRCS spectra using the recipes described in detail in SONYC-I. This includes the (1) subtraction of consecutive exposures that are offset along the slit, (2) division by a normalized domeflat calculated from lamp-on and lamp-off exposures, and (3) the stacking of the individual frames for each mask. For the last step, we measured the position of one of the sources in the slit for each individual frame and shifted the frames accordingly, to account for small offsets.

Spectra were extracted using apall in IRAF. This includes aperture definition, background subtraction, and trace fitting. We opted for a full aperture integration across the profile (as opposed to optimum extraction), because many of our sources are faint and lack a well-defined profile. The same procedure was carried out for the standard stars. The wavelength solution was determined from ∼10 telluric lines in the raw spectra. For each target, the two resulting spectra, corresponding to the two positions in the slit, were co-added. The final spectra are rebinned to 40 Å per wavelength element.

The three standards HIP6855, HIP9196, and HIP21115 have been observed at airmasses of 1.46, 1.64, and 1.10, while the average airmass for the science exposures was 1.30 for mask 1 and 1.06 for mask 2. The spectrum for HIP6855 has a significantly lower flux level in the K band (by 10%–20%) than the two other stars and was not used. The scaled spectra for HIP9196 and HIP21115, however, are very similar with small differences in the range of 1%–2%, well explained by the differences in airmass. This is consistent with an extinction coefficient difference (mag/airmass) in the range of 0.01 between H and K bands, which is plausible for Mauna Kea.

Because HIP21115 was observed between the two masks and thus should give the best approximation to the conditions during the science exposures, we used its spectrum for the calibration. All science spectra were divided by the quotient between the telluric standard spectrum and the tabulated spectrum of an A0 star (Pickles 1998).7

4. SPECTRAL ANALYSIS

The 19 available spectra were analyzed using the recipes described in detail in SONYC-IV. In the following, we give a brief summary of the four steps and describe the results.

1. Selection of young very low mass objects. Seven spectra show the characteristic spectral signature of young VLMOs. Specifically, they exhibit the sharp “H-band peak” at 1.68 μm caused by broad water absorption features at 1.3–1.5 and 1.75–2.05 μm (Cushing et al. 2005), which is an indication for low gravity (Brandeker et al. 2006). These seven sources are considered to be VLMOs. Given the compact nature of NGC 1333 and the low space densities for these objects (Caballero et al. 2008), contamination by foreground or background objects is negligible. Thus, these seven objects are most likely young members of NGC 1333. Their spectra are shown in Figure 4; their properties listed in Table 1. The remaining 12 spectra are either featureless or show only little structure in the H band. They are listed in Table 2.

2. Spectral types. For the seven objects from Table 1, we measured spectral types using the H-peak index (hereafter HPI) introduced in SONYC-IV, after dereddening the spectra using the spectroscopic A_V (see below). As discussed in the previous paper, other near-infrared indices suggested in the literature are not suitable for our type of data. The HPI calculates the flux ratio between the wavelength intervals 1.68 and 1.50 μm and is usable for M7 spectral types. Using the calibration given in SONYC-IV, all seven objects identified here have spectral types of M7 or later (see Table 1); the latest type is ~L1 (albeit with a noisy spectrum). The typical uncertainty is one subtype.

3. Effective temperatures. We calculate a grid of model spectra for effective temperatures from 1500 to 3900 K (in steps of 100 K) and extinctions A_V from 0 to 30 mag. This grid is based on the DUSTY models by Allard et al. (2001). For all objects with any indication of structure in the H band, we searched for the best matching model spectrum. This was done in the following way. For each model, we subtracted observed spectrum from model spectrum, squared this quantity, divided by the model spectrum, and averaged the residual over the wavelength domain 1.38–1.78 and 2.10–2.32 μm. We selected the model spectrum for which this quantity is minimal, and adopted its parameters as best fit (see Table 1). The typical uncertainty is ±200 K in T_eff and ±1 mag in A_V. Whenever possible we also calculated

7 Although HIP21115 is a B9V star, we used the tabulated A0 spectrum because the Pickles et al. spectrum for spectral type A0 has much better resolution. The difference in the flux levels between A0 and B9 do not matter in the H and K bands for our purposes.
A$_V$ from the J- and K-band photometry. The results are given in Table 1. The seven VLMOs have effective temperatures between 2400 and 3100 K. The remaining sources with recognizable structure in the H band have temperature around or above 3500 K (Table 2). The object SONYC-NGC 1333-42, the coolest source in our sample, has a noisy spectrum; therefore we manually chose the best-fitting model. The best-fitting reddened models are overplotted in Figure 4.

Two of the objects in Table 1 were selected randomly. One of them (SONYC-NGC 1333-45) turns out to be on our initial list of IZ candidates but much brighter than the cutoff used for this paper ($i = 18.609$ versus $i = 22$). It was previously confirmed by Winston et al. (2009). They find a spectral type of M8 and a temperature of 2700 K; our analysis yields consistent results (M8 and 2900 K). The second random source, SONYC-NGC 1333-44, has been listed before as a photometric candidate (Aspin et al. 1994; Oasa et al. 2008). It was not found in our IZ survey because it sits very close to a blooming spike caused by a bright star.

4. Sanity checks. As in our previous papers, we additionally compared the spectra to literature spectra of other brown dwarfs. This is particularly important to make sure that our results are not severely affected by the often low signal-to-noise ratio in our data. For comparison, we use the spectra for the three young objects 2M1207 A, DH Tau B, and 2M1207 B, published by Patience et al. (2012) in a detailed comparison with model spectra. For all three, they find a satisfying match with different types of model spectra and consistent temperatures for a variety of spectral ranges and model spectra. According to their analysis, these objects have effective temperatures of 3100, 2600, and 1600 K, when HK spectra are compared with DUSTY models, which is comparable to the way we have determined temperatures. With our method, we derive T_{eff} of 3200, 2800, and 1700 K for the same data, consistent with the published values.

In Figure 5, we plot their spectra in comparison with three of our newly identified objects in NGC 1333 with similar temperatures: SONYC-NGC 1333-41, 40, and 42 with T_{eff} of 3100, 2700, and 2400 K, respectively. The SONYC spectra were reddened using the spectroscopic A_V given in Table 1. From Figure 5, it seems plausible that the two pairs SONYC-NGC 1333-41/2M1207 A and SONYC-NGC 1333-40/DH Tau B have similar temperatures. Based on the slope of the H-band peak, it is also justified to say that SONYC-NGC 1333-42 is probably somewhat hotter than 2M1207 B. There are some offsets in the flux level in the K-band, which may be explained by inaccuracies in the extinction and/or excess flux from a disk. Overall, the results of our analysis are confirmed.

For the same three new SONYC objects, we compare the photometric fluxes from 0.8 to 8 μm, as far as available, with the model spectra, adopting T_{eff} and the photometric A_V as listed in Table 1; see Figure 6. Again, this comparison confirms the results from our analysis. For SONYC-NGC 1333-40 mid-infrared excess is clearly visible and can be attributed to the presence of a disk. As pointed out in SONYC-IV, spectroscopy covering the wide spectral range from the J to the M band promises to be the ideal tool to improve the characterization of substellar objects.

5. DISCUSSION

With the new spectra presented in this paper, we have enlarged the number of known very low mass members in NGC 1333. In SONYC-IV, we list 51 confirmed objects with spectral type M5 or later and/or effective temperature of 3200 K or lower (41 previously known and 10 new); this new campaign adds seven new objects to this census. Based on the currently available isochrones for this mass domain, most of these seven are cool enough to be considered to be brown dwarfs. In the following, we will discuss the implications of the new results for the substellar population in NGC 1333, with particular focus on the planemo domain.

5.1. The Distribution of Spectral Types and Magnitudes

We begin by showing the spectral type distribution for all spectroscopically classified M- and L-type objects in NGC 1333 in Figure 7. This includes the VLMOs listed in SONYC-IV, new objects identified in the same paper and this new study, plus earlier type objects classified in Winston et al. (2009). Their spectroscopic survey is essentially complete down to the substellar boundary (for $A_V < 10$), and thus ideally complements our own studies, which are not complete above the substellar boundary.

For the stellar regime, the distribution of spectral types in NGC 1333 resembles those found for other regions (Cha-I, IC348, Taurus; see Luhman 2007), with a peak around M4 and
an increase in the frequency between M0 and M5 by about a factor of three. For later spectral types, we observe a second peak around M7, which is not seen in these three other regions.

Another relevant feature in the context of this paper is the sharp drop of the numbers at M9. Based on the COND (Baraffe et al. 2003) and DUSTY (Chabrier et al. 2000) isochrones, M9 corresponds to a mass around the deuterium burning limit. Only two objects (SONYC-NGC 1333-36 at L3 and SONYC-NGC 1333-42 at L1) have later spectral types. Thus, the number of observed planemos in this cluster is very low. This feature will be further discussed in the following subsections.

As an independent check of the distribution shown in Figure 7, we examine the histogram of absolute J-band magnitudes for the population of Class II sources in NGC 1333, as identified by Gutermuth et al. (2008) based on Spitzer data. Of their 137 objects, 94 have photometry in 2MASS. We calculate A_V from J- and K-band photometry, using the same prescription as in SONYC-IV, deredden the J-band photometry and subtract the distance modulus of 7.4 (assuming a distance of 300 pc; see Belikov et al. 2002). We exclude the most reddened objects and consider only the 74 with $A_V < 10$. In this extinction regime, the distribution of J-band magnitudes does not show a dependence on A_V.

Figure 8 shows again a peak slightly above the substellar limit, which corresponds to the peak around M4–M5 in the spectral type distribution. A second peak is visible in the substellar regime (for M_J of 7–8), but it is much less pronounced than the peak at M7 seen in Figure 7. In fact, within the statistical errors the magnitude distribution is consistent with a broad peak around $M_J = 5$ and a decline at fainter magnitudes, which agrees with previously published results for Cha-I and IC348 (Luhman 2007). Thus, the second peak in the spectral type distribution could be spurious. One possible explanation is a gap in completeness between the spectroscopic samples from Winston et al. (2009) and ours, causing us to miss objects at ~M6.

5.2. The Hertzsprung–Russell Diagram

In Figure 9 we show the Hertzsprung–Russell diagram (HRD) for NGC 1333, focusing on the VLMOs with spectral types of M5 or later. Out of the 41 previously known sources listed in SONYC-IV (crosses), the 10 newly identified in SONYC-IV (plusses), and the seven newly identified in this paper (squares), 51 have estimated effective temperatures and are plotted in the figure.

Instead of luminosity, we prefer to plot the absolute J-band magnitude to avoid additional errors from the bolometric correction. The absolute J-band magnitudes are calculated in the same way as in Section 5.1, including dereddening of the J-band data and subtraction of the distance modulus. The
typical error bar in the absolute J-band magnitude is \pm 0.5 mag, which combines the errors in A_V (\pm 1 mag), distance (\pm 20 pc), and photometry (up to \pm 0.1 mag). The uncertainty in effective temperature, as outlined above, is \pm 200 K. The approximate mass limits according to the DUSTY and COND isochrones, assuming an age of 1 Myr, are given as well.

The general trend in this diagram is in good agreement with three sets of isochrones from the Lyon group: DUSTY, COND, and BCAH (Baraffe et al. 1998). Typical for HRDs of star-forming regions, the objects show a large spread due to various effects (e.g., Littlefair et al. 2011). However, only seven objects (14\%) are inconsistent with the 1–5 Myr isochrones within the error bars. Some of them could be affected by ongoing accretion or strong magnetic activity (overluminosity)—see Scholz et al. (2012b) for a discussion—or gray extinction by an edge-on disk (underluminosity). Some might experience variability (Scholz 2012). In addition, there remains a small chance that an outlier is a fore- or background source; Perseus is known to have a complex substructure (Enoch et al. 2006; Ridge et al. 2006), i.e., there may be young objects at different distances. Moreover, in some cases the signal to noise in our spectra is not sufficient to confirm low gravity, i.e., we cannot completely exclude older objects in the field. Given these caveats, the overall agreement with the isochrones is good.

Only a very small number of three objects have temperature below 2500 K—SONYC-NGC 1333-31, 36, and 42—two of them also with spectral type later than M9, see Section 5.1 and would have masses around or below the deuterium burning limit. The plot demonstrates that the frequency of objects per bin in effective temperature drops significantly below 2500 K. There are 19 objects with 2800 \leq T_{\text{eff}} < 3100, 13 with 2500 \leq T_{\text{eff}} < 2800, but only three with 2200 \leq T_{\text{eff}} < 2500. This confirms the finding from the spectral type distribution.

The drop in the frequency of observed objects below 2500 K and spectral type M9, already found in Section 5.1, can either be explained by an actual lack of planemos in this cluster, or by biases in our photometric survey and the selection of objects for follow-up spectroscopy, which will be discussed in the following subsection. In addition, there are three more caveats:

1. Extinction might limit the completeness of our survey below 2500 K. To test this, we have overplotted with dash-dotted lines the J-band limit of our survey ($J = 19$, see Section 2) for $A_V = 0$ and $A_V = 5$. We should have been able to find objects with $T_{\text{eff}} > 2200$ K and $A_V \leq 5$. The clear majority of the confirmed VLMOs have $A_V < 5$. Also, $A_V \sim 5$ is the median extinction for the sample of Class II objects published by Gutermuth et al. (2008), as far as their 2MASS photometry is available. Therefore, we are unlikely to miss a significant number of planemos down to 2200 K due to their high extinction. For extinctions well below A_V of 5 mag, we should be able to find sources even cooler than 2200 K (as proven by the detection of SONYC-NGC 1333-36).

2. The isochrones might not accurately reflect the luminosity versus effective temperature relation in young star-forming regions. To explain a lack of planemos in Figure 9, the isochrones would have to turn downward below 2500 K, i.e., cooler objects need to be significantly fainter than expected based on these models. While this cannot be definitely excluded at the moment, the data for the eclipsing binary brown dwarf in Orion—currently the only available empirical test for these isochrones—do not indicate such a trend (Stassun et al. 2007). The luminosities for its components are in agreement with the predictions from the isochrones, in fact, for the lower mass component ($M = 0.036 M_\odot$), the isochrone underestimates the luminosity, the reverse of what would be needed to explain the lack of planemos in NGC 1333. Furthermore, it is difficult to conceive a significant departure from the smooth (almost linear) trend in the isochrones in Figure 4, since this would require an additional and strong source of opacity in the J band. To our knowledge, this is not born out by the available data, for example, the same isochrones fit the optical and near-infrared colors for the substellar population in σ Ori quite well down to the lowest masses (Caballero et al. 2007).

3. The effective temperatures—mostly determined with the routines used in this paper, i.e., by fitting DUSTY models to the near-infrared spectra—could be systematically unreliable in a way that T_{eff} is overestimated for very cool sources. The study by Patience et al. (2012), already mentioned in Section 4, does not indicate any such trend. Specifically, their comparison with the DUSTY models yields effective temperatures below 2000 K when compared with the spectra for 2M1207B, CT Cha B, and GQ Lup B, three very young objects with L spectral types. This seems to work well even when only the H- and K-band spectra are considered, which is the case for our objects in NGC 1333.

We conclude that these three caveats cannot be used to explain the lack of observed objects cooler than 2500 K and later than M9.

5.3. Survey Completeness

In this subsection, we will explore the possibility that our survey has missed a significant number of planemos due to a lack of depth or biases in the color cuts.

Our initial candidate selection was based on a $(i, i-z)$ color–magnitude diagram (the IZ catalog, see Section 2). From the set of 196 candidates, more than half are now covered by
follow-up spectroscopy. In particular, 27 out of 43 IZ candidates with $i > 22$ and 9 out of 15 with $i > 24$ have been verified spectroscopically. As illustrated in Figure 2, the spectroscopy covers the entire color–magnitude space of this selection down to the faint end. This candidate sample contains two likely planemos (SONYC-NGC 1333-31 is not found in this survey). Statistically, the remaining candidates that have not been verified yet are expected to contain one more.

This selection, however, might have missed planemos, because the depth of the IZ survey is not sufficient. As argued in SONYC-IV, this is a distinct possibility; while the nominal completeness limit is $i = 24.8$, it might be lower in some parts of the cluster with strong background emission.

To overcome the depth limitation of the IZ survey, we have used the JKS catalog, which contains all objects with J- and K-band photometry from our own survey and Spitzer photometry in the first two IRAC bands at 3.6 and 4.5 μm (see Section 2). As illustrated in Figure 3, this survey is much deeper and extends significantly beyond the limiting magnitude for follow-up spectroscopy ($J = 19$). It should be complete down to $J = 20.8$. The near-infrared images do not show strong background structure due to the cloud, i.e., the completeness should be uniform across the cluster. The JKS catalog contains about two-thirds of the confirmed VLMOs in NGC 1333; most of the ones that are not in this catalog are relatively bright and therefore affected by saturation in our deep near-infrared images. This catalog contains two likely planemos (SONYC-NGC 1333-42 does not have a Spitzer counterpart).

The color–magnitude diagram from this catalog is shown in Figure 3. Our spectroscopic follow-up covers a large fraction of this diagram to the $J = 19$ limit. According to the COND and DUSTY 1 Myr isochrones, this should correspond to a mass of $0.003–0.004 M_\odot$ for $A_V = 0$ and $0.006–0.008 M_\odot$ for $A_V = 5$. For $15 < J < 17$, the entire color range in $I1-I2$ has been probed by spectroscopy; it turns out that most of the confirmed objects in this magnitude range (11/13) have $I1-I2 > 0.2$. As the IRAC color can be affected by excess emission due to a disk, this simply might reflect the high disk fraction in NGC 1333 (see SONYC-IV). For $17 < J < 19$, we verified about three quarters of the objects with $I1-I2 > 0.3$. Thus, in these color domains the spectroscopic survey is sufficiently complete to rule out the existence of more than 1–2 additional planemos.

To further analyze the color space from the JKS catalog, we show a $(J-K, I1-I2)$ color–color diagram in Figure 10. In comparison with other color combinations in this catalog, this plot shows a relatively clear distinction between objects confirmed as very low mass cluster members and those rejected. All confirmed objects are marked with squares, all objects verified with spectroscopy with crosses. For this plot, we estimate the expected position of planemos based on the photometry of known young ultracool objects: In the σ Ori cluster (Scholz & Jayawardhana 2008), the average color of 16 M9-L5-type objects is $I1-I2 = 0.2$, albeit with a spread of ± 0.2 mag due to photometric uncertainties. Among 10 young field dwarfs with $L0-L4$ spectral type, the average color is $I1-I2 = 0.17$ with a spread of 0.05 mag (Luhman et al. 2009). Based on these two samples, we adopt $I1-I2 = 0.2$ as typical intrinsic color of planemos.

The dashed line in Figure 10 shows the reddening path for $A_V = 0–15$ starting with this intrinsic color. Shifting this line by 0.1 mag to the left is in good agreement with the left boundary for most of the confirmed VLMOs in NGC 1333 (dash-dotted line). This line combined with a limit of $J-K > 1.0$ is adopted as the color space where brown dwarfs and planemos are expected.

In this regime, we have 250 objects out of which 103 have $16 < J < 19$ and are thus sufficiently faint to be planemos ($J = 16$ corresponds to $\sim 0.015 M_\odot$ for zero extinction in COND/DUSTY isochrones) and sufficiently bright to be accessible for spectroscopy. About one quarter of them have been observed spectroscopically. Thus, the catalog could contain a few additional planemos—up to six, statistically, which would yield a total of up to eight. This analysis shows that one particular bias in the selection of candidates, the cutoff at $I1-I2 = 0.3$ which was necessitated by the large amounts of contaminating objects at bluer colors, might affect our ability to find planemos.

We should not miss any significant number of planemos with enhanced mid-infrared colors due to the presence of a disk. If the disk fraction for planemos is as high as for brown dwarfs, as shown for the σ Ori cluster (Scholz & Jayawardhana 2008), excess emission should be expected for about half of the planemos in NGC 1333 (see SONYC-IV for more information on disk fractions). These objects should be located to the right of the dashed line. In this area, we find 39 objects from which about half have been verified spectroscopically (including the two planemos). This implies that we might miss about two more objects in this color domain. Assuming a disk fraction of around $>50\%$, this again gives a total number of up to eight planemos.

The JKS catalog can further be used to probe the regime $J > 19$, which is not accessible for spectroscopy. The JKS catalog contains 292 objects with $J > 19$, 124 in the color space expected for planemos (dash-dotted lines in Figure 10). However, this sample is dominated by strongly reddened objects with high $J-K$ color. Only about 30 of them have $J-K$ colors consistent with $A_V < 5$ and only seven are below $A_V = 3$. Given that two-thirds of the confirmed brown dwarfs have an optical extinction below 5 mag and about half below 3 mag, this basically rules out that the candidates too faint for spectroscopy down to $J \sim 21$ contain a sizable population of planemos. According to the COND and DUSTY isochrones, this limit corresponds to object masses of $0.002–0.003 M_\odot$ (for A_V of 0–5 and age of 1 Myr).
5.4. The Frequency of Planemos

In the following, we will use the survey results in NGC 1333 to give a quantitative constraint on the frequency of planemos, which can be compared with other star-forming regions. To do this, we estimate the fraction of brown dwarfs that have a mass in the planemo domain, \(f_P = N_P / N_{bd} \). This quantity serves as a proxy for the shape of the mass function in the substellar regime. Here, we treat the population of planemos as a subsample of the population of brown dwarfs.

Our survey in NGC 1333 yields only three objects with effective temperatures below 2500 K or spectral types later than M9. According to the currently available 1–5 Myr isochrones, these objects have masses below the deuterium burning limit of 0.015 \(M_\odot \) and are thus good candidates for planemos. As outlined above, we might miss about six more planemos due to our cutoff in the mid-infrared color.

The total number of brown dwarfs can be calculated as follows. Adding the objects listed in SONYC-IV and this paper, there are 58 with spectral type M5 or later or effective temperatures of 3200 K or below. From these around 10–20 are likely to be above the substellar boundary, which leaves 38–48 brown dwarfs. Following the same statistical arguments that we have used in Section 4.1, of SONYC-IV, we estimate that we might miss up to 13 more brown dwarfs, plus six planemos (see above), i.e., the total is 57–67.

Thus, for NGC 1333 we estimate that \(f_P \) is 12%–14%. Just counting the number of confirmed objects, the ratio becomes 6%–8%. This includes all planemos down to masses of 0.006–0.008 \(M_\odot \) (the mass limit for \(J = 19 \) and \(A_V = 5 \)).

This value can be compared with other star-forming regions. This comparison comes with three caveats. (1) Only \(\sigma \) Ori and UpSco have been surveyed with a depth comparable to our survey in NGC 1333, i.e., all other ratios should be considered lower limits. (2) While the general survey strategy is similar in all cases (candidate selection based on optical/near-infrared photometry plus follow-up spectroscopy), the details of the strategy differ from region to region, which might introduce unknown biases. To be conservative, we focus in the following mostly on samples with spectroscopic confirmation. (3) Most of the studies listed below do not make an attempt to estimate the total substellar population, by taking into account possible survey biases.

We note that all existing surveys use the COND/DUSTY isochrones for mass estimates, as in our paper. In the case, these isochrones turn out to be systematically off, the results of the comparison should still be valid and merely shifted to different mass regimes.

\(\sigma \) Ori. The summary paper by Caballero et al. (2007) lists 46 confirmed brown dwarfs, out of which 12 are expected to be in the planemo regime, i.e., \(f_P \sim 26 \). Not all of these objects are spectroscopically confirmed, but the contamination in this cluster is generally low due to the negligible extinction. The surveys in this region are similarly deep as in NGC 1333, i.e., the numbers should be comparable.

Upper Scorpius. Based on photometry and proper motions from UKIDSS, the total number of brown dwarfs in this region is 68 in the UKIDSS covered area, out of which 49 are in the northern area where follow-up spectroscopy is available (Dawson et al. 2011). The currently ongoing spectroscopic verifcation shows that essentially all these objects are indeed members of UpSco (Lodieu et al. 2008, 2011a). Converting the photometry to masses, this sample should cover the mass range down to 0.01 \(M_\odot \) and contains about half a dozen objects below 0.015 \(M_\odot \). A deeper survey by Lodieu et al. (2011b) does not find new members in the planemo domain.\(^{10}\) This yields \(f_P \sim 10 \% \).

\(\rho \)-Ophiuchus. This region is affected by very high and variable extinction, which strongly hampers any survey. The existing census is not nearly complete below 0.03 \(M_\odot \). So far, there are around 40 confirmed objects with spectral types later or equal M6 from Wilking et al. (2008), Geers et al. (2011), Marsh et al. (2010a), Mužič et al. (2012), Alves de Oliveira et al. (2010), and Alves de Oliveira et al. (2012). Out of these, eight might be in the planemo regime based on spectral type and effective temperature, which results in \(f_P \sim 20 \% \).

Chamaeleon-I. The census by Luhman (2007) and Luhman & Muench (2008) contains 35 objects with spectral type of M6 or later that are to be considered brown dwarfs. Five of these have estimated masses below 0.015 \(M_\odot \), i.e., \(f_P \sim 14 \% \). We note that our own deep survey work in Cha-I has not revealed any additional planemos yet down to 0.008 \(M_\odot \) (Mužič et al. 2011).

Taking into account the caveat listed above, the values for \(f_P \) in the various regions are consistent with each other and in the range between 10% and 20%; only \(\sigma \) Ori might have a slightly larger planemo fraction. Focusing on the confirmed objects, NGC 1333 has a relatively low planemo fraction compared with other star-forming areas.

We can also estimate the fraction of planemos with respect to the population of young stars, \(g_P = N_P / N_S \). For NGC 1333, we have recently determined that the star-versus-brown dwarf ratio, defined as \(R_1 = N(0.08–1.0 \ M_\odot) / N(0.03–0.08 \ M_\odot) \), is 2.3 ± 0.5, for most other regions this ratio is larger. Taking this into account, for NGC 1333 the fraction of planemos with respect to the total cluster population is in the range of 2%–3%. For the other regions where this type of census is available this number becomes 2%–5%, i.e., stars are 20–50 times more frequent than planemos. This is consistent with the planemo fraction of <10% (Lucas et al. 2005) and 1–14% (Lucas et al. 2006) derived for the Orion Nebulae Cluster (ONC), albeit for slightly different mass limits. Thus, the number of planemos is insignificant compared with the total population of stars and brown dwarfs. The planemo contribution to the mass budget of young clusters is negligible (well below 1%).

5.5. The Mass Spectrum

With the available database of spectroscopically confirmed objects in NGC 1333, we are in the position to construct the initial mass function (IMF) in the low-mass regime. We choose to express the IMF as a mass spectrum \(dN / dM \propto M^\alpha \). To do that, we use the same spectroscopic samples as in Section 5.1, combining the confirmed low-mass stars from Winston et al. (2009) with the census of VLMOs. We select all M and L dwarfs, in total 107 objects, out of which 100 have an estimate for the effective temperature, either from our survey or from Winston et al. (2009).

Masses were derived for this sample by comparing the temperatures with theoretical evolutionary tracks. Temperatures do not significantly depend on age in the 1–10 Myr phase, as opposed to luminosities and magnitudes, and thus provide a mass estimate that is insensitive to age spread. We use the 1 Myr isochrone from the BCAH models for \(M \geq 0.1 \ M_\odot \) and the 1 Myr isochrone from the DUSTY models for \(M < 0.1 \ M_\odot \).

\(^{10}\) Here, we neglect the five T-dwarf candidates identified based on imaging in methane-sensitive narrowband filters without spectroscopic or proper motion confirmation.
For each object with a given T_{eff}, we selected the isochrone data points within ± 200 K around T_{eff}, fitted this section either linearly (if there are less than five data points) or with a second order polynomial, and used that function to calculate the mass corresponding to T_{eff}. All masses are tied to this isochrone and should not be compared with values derived using other models.

The mass spectrum was calculated in a way to achieve similar statistical uncertainties in each mass bin, i.e., with a large number of brown dwarfs relative to stars) in regions with monotonically rising mass spectrum—as it is indeed found for NGC 1333. As discussed in SONYC-IV, a comparison of these ratios possibly indicates environmental differences in the formation of brown dwarfs.

The focus of this study is the planetary-mass domain. Assuming a monotonic continuation of the power law shown in Figure 11 with $\alpha = 0.6 \pm 0.1$, we would expect 8 ± 3 objects with $0.005 M_{\odot} < M < 0.015 M_{\odot}$, i.e., in the planemo domain and detectable in our survey. For comparison, in Section 5.3 we derive an upper limit of eight planemos in this mass regime from our survey, taking into account the incompleteness in the spectroscopic follow-up of our candidates. Thus, the data are consistent with a monotonic power-law mass spectrum across the deuterium burning limit, but a smaller slope is possible as well. Our survey rules out that the slope of the mass spectrum in NGC 1333 increases in the planemo regime.

Again this is in agreement with previous findings for other regions. In σ Ori, the census of substellar objects is well approximated by a monotonic slope down to planetary masses (Caballero et al. 2007; Béjar et al. 2011; Peña Ramírez et al. 2012), with a possible turnover (i.e., a lower α) in the mass spectrum below 0.006 M_{\odot}. For Upper Scorpius, the results by Lodieu et al. (2011b) favor a turndown below 0.01 M_{\odot}. We note that Marsh et al. (2010b) show a mass function of ρ-Ophiuchus covering the entire planemo regime based on a photometrically selected candidate sample, which resembles the one in σ Ori. Taken together, it seems safe to conclude that the slope of the mass function in the planemo domain is $\alpha \lesssim 0.6$. We note that $\alpha \lesssim 0.6$ corresponds to a planemo fraction as defined in Section 5.4 of $f_P \lesssim 20\%$ (if the entire planemo domain is considered) or $f_P \lesssim 30\%$ (with a lower mass cutoff at 0.005 M_{\odot}). Indeed, no regions show a larger planemo fraction: Most surveys indicate significantly lower values, including our own work in NGC 1333.

Thus, the current census of star-forming regions provides support for the idea that planemos are an extension of the...
population of stars and brown dwarfs and form through the same mechanisms. The observations indicate that free-floating objects with planetary masses exist down to at least 0.006 \(M_\odot \), but, as pointed out in Section 5.4, their numbers and their mass budget are insignificant compared with the total population of stars and brown dwarfs.

Some theoretical estimates for the lower mass limit in the star formation process—the opacity limit for fragmentation—are 0.007 (Low & Lynden-Bell 1976) or 0.01 \(M_\odot \) (Silk 1977) from analytical arguments and <0.001 (Boss 2001) or 0.003–0.009 \(M_\odot \) (Bate 2005) from numerical simulations. Except for the lowest-mass values, all these estimates are consistent with the current observational picture.

Sumi et al. (2011) recently determined the slope of the mass spectrum based on microlensing surveys, and find \(1.3^{+0.3}_{-0.4} \) for \(M < 0.01 M_\odot \), significantly higher than for brown dwarfs (0.49 in their work), indicating that Jupiter-mass objects are almost twice as common as stars. Their estimate includes planetary-mass objects without host stars (i.e., free-floating) and those on wide orbits, but they argue that the majority of them are indeed unbound (but see Quanz et al. 2012 for a criticism of this claim). This is in clear disagreement with the results from the surveys in star-forming regions, where the number of planemos per star is much smaller (see Section 5.4) and the slope in the mass spectrum is not rising (see above). If the microlensing result holds, the additional planemos would have to be in the mass regime <0.005 \(M_\odot \), which is not sufficiently probed by the cluster surveys. This would imply a break in the slope of the mass spectrum in the planemo domain, favoring a scenario where the Jupiter-mass objects form in a different way than the planemos and brown dwarfs seen in the star-forming regions—as indeed concluded by Sumi et al. (2011). Larger samples of short-period microlensing events and deeper surveys in star-forming regions are critical to understand whether they are in fact different populations or not.

In another recent paper, Strigari et al. (2012) estimate that there may be up to \(10^5 \) objects with masses between \(10^{-6} \) and \(10^{-2} M_\odot \) (called “nomads” in their paper) per-main-sequence star. To arrive at this number, they use the slope of the mass spectrum in the brown dwarf/planemo regime as a constraint. Their upper limit of \(10^5 \) can only be obtained by using \(\alpha = 2 \). As shown above, this is inconsistent with the surveys in star-forming regions. For a more realistic value of \(\alpha = 0.5 \), the result given in their paper is \(\gtrsim 1 \) nomads per-main-sequence star. Given the enormous difficulties in extrapolating the mass function over six orders of magnitude in mass and different modes of formation, these estimates remain highly speculative.

6. CONCLUSIONS

We present new spectroscopy for 19 very faint candidate members in the young cluster NGC 1333. Seven of them are confirmed as VLMOs, most or all of them should be brown dwarfs. Based on the combined spectroscopic follow-up from SONYC-I, SONYC-IV, and this paper, we are able to put limits on the IMF and the number of free-floating planetary-mass objects (planemos, \(M < 0.015 M_\odot \)) in this cluster. The mass spectrum is in good agreement with a monotonically rising power law \(dN/dM \propto M^{-\alpha} \), with \(\alpha = 0.6 \pm 0.1 \) for \(M < 0.6 M_\odot \). The overall slope is in agreement with all previous studies in other regions, with the ONC as the only exception.

Among the substellar population in NGC 1333 are three with estimated masses in the planemo domain. Taking into account the incompleteness of the spectroscopic follow-up in our survey, we estimate that the cluster could harbor a total of eight planemos down to masses of \(\sim 0.005 M_\odot \). This translates into a planemo fraction (the fraction of brown dwarfs in the planetary-mass domain) of 12%–14%. This is comparable to the planetary fractions determined for other regions. We estimate that there are 20–50 times more stars than planemos in young clusters.

Based on the constraints on the number of planemos in star-forming regions, the slope of the mass spectrum is \(\lesssim 0.6 \) below 0.015 \(M_\odot \). Indeed, it does not increase in the planemo domain. These findings support the idea that planemos form through the same mechanisms as young stars and brown dwarfs.

The authors thank the Subaru staff for the assistance during the observations and their preparation. We thank Jenny Patience for making her spectra available to us. The careful review by an anonymous referee helped us to improve the manuscript. A.S. acknowledges financial support the grant 10/RFP/AST2780 from the Science Foundation Ireland. The research was supported in large part by grants from the Natural Sciences and Engineering Research Council (NSERC) of Canada to R.J. R.J.’s work was also supported in part by the Radcliffe Institute for Advanced Study at Harvard University.

REFERENCES

Allard, F., Hauschildt, P. H., Alexander, D. R., Tamanai, A., & Schweitzer, A. 2001, ApJ, 556, 357
Alves de Oliveira, C., Moraux, E., Bouvier, J., & Bouy, H. 2012, A&A, 539, 151
Alves de Oliveira, C., Moraux, E., Bouvier, J., et al. 2010, A&A, 515, A75
Aspin, C., Sandell, G., & Russell, A. P. G. 1994, A&AS, 106, 165
Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. H. 1998, A&A, 337, 403
Baraffe, I., Chabrier, G., Barman, T. S., Allard, F., & Hauschildt, P. H. 2003, A&A, 402, 701
Barrado y Navascués, D., Bouvier, J., Stauffer, J. R., Lodieu, N., & McCaughrean, M. J. 2002, A&A, 395, 813
Bate, M. R. 2005, MNRAS, 363, 363
Bayo, A., Barrado, D., Stauffer, J., et al. 2011, A&A, 536, A63
Bénard, J. V. S., Zapatero Osorio, M. R., Rebolo, R., et al. 2011, ApJ, 743, 64
Belikov, A. N., Kharchenko, N. V., Piskunov, A. E., Schilbach, E., & Scholz, R.-D. 2002, A&A, 387, 117
Boss, A. P. 2001, ApJ, 551, L167
Brandeker, A., Jayawardhana, R., Ivanov, V. D., & Kurtev, R. 2006, ApJ, 653, L61
Caballero, J. A., Béjar, V. J. S., Rebolo, R., et al. 2007, A&A, 470, 903
Caballero, J. A., Burgasser, A. J., & Klement, R. 2008, A&A, 488, 181
Chabrier, G., Baraffe, I., Allard, F., & Hauschildt, P. 2000, ApJ, 542, 464
Cushing, M. C., Rayner, J. T., & Vacca, W. D. 2005, ApJ, 623, 1115
Da Rio, N., Robberto, M., Hillenbrand, L. A., Henning, T., & Stassun, K. G. 2012, ApJ, 748, 14
Dawson, P., Scholz, A., & Ray, T. P. 2011, MNRAS, 418, 1231
Enoch, M. L., Young, K. E., Glenn, J., et al. 2006, ApJ, 638, 293
Evans, N. J., Dunham, M. M., Jørgensen, J. K., et al. 2009, ApJS, 181, 321
Geers, V., Scholz, A., Jayawardhana, R., et al. 2011, ApJ, 726, 23
Gutermuth, R. A., Myers, P. C., Megeath, S. T., et al. 2008, ApJ, 674, 336
Jayawardhana, R., & Ivanov, V. D. 2006, ApJ, 647, L167
Kroupa, P. 2001, MNRAS, 322, 231
Lada, C. J., Alves, J., & Lada, E. A. 1996, AJ, 111, 1964
Leggett, S. K., Saumon, D., Marley, M. S., et al. 2012, ApJ, 748, 74
Littlefair, S. P., Naylor, T., Mayne, N. J., Saunders, E., & Jeffries, R. D. 2011, MNRAS, 413, L56
Liu, M. C., Delorme, P., Dupuy, T. J., et al. 2011, ApJ, 740, 108
Lodieu, N., Hambly, N. C., Dobie, P., & Hambly, N. C. 2011a, A&A, 527, A24
Lodieu, N., Hambly, N. C., Dobie, P. D., et al. 2011b, MNRAS, 418, 2604
Lodieu, N., Hambly, N. C., Jameson, R. F., & Hodgkin, S. T. 2008, MNRAS, 383, 1385
Lodieu, N., Hambly, N. C., Jameson, R. F., et al. 2007, MNRAS, 374, 372
Low, C., & Lynden-Bell, D. 1976, MNRAS, 176, 367
Lucas, P. W., & Roche, P. F. 2000, MNRAS, 314, 858
Lucas, P. W., Roche, P. F., & Tamura, M. 2005, MNRAS, 361, 211

The Astrophysical Journal, 756:24 (12pp), 2012 September 1

Scholz et al.
Lucas, P. W., Weights, D. J., Roche, P. F., & Riddick, F. C. 2006, MNRAS, 373, L60
Luhman, K. L. 2007, ApJS, 173, 104
Luhman, K. L., Allen, L. E., Allen, P. R., et al. 2008, ApJ, 675, 1375
Luhman, K. L., Mamajek, E. E., Allen, P. R., & Cruz, K. L. 2009, ApJ, 703, 399
Luhman, K. L., & Muench, A. A. 2008, ApJ, 684, 654
Marsh, K. A., Kirkpatrick, J. D., & Plavchan, P. 2010a, ApJ, 709, L158
Marsh, K. A., Plavchan, P., Kirkpatrick, J. D., et al. 2010b, ApJ, 719, 550
Moraux, E., Bouvier, J., Stauffer, J. R., Barrado y Navascués, D., & Cuillandre, J.-C. 2007, A&A, 471, 499
Moraux, E., Bouvier, J., Stauffer, J. R., & Cuillandre, J.-C. 2003, A&A, 400, 891
Muench, A. A., Lada, E. A., Lada, C. J., & Alves, J. 2002, ApJ, 573, 366
Mužić, K., Scholz, A., Geers, V., Fissel, L., & Jayawardhana, R. 2011, ApJ, 732, 86
Mužić, K., Scholz, A., Geers, V., Jayawardhana, R., & Tamura, M. 2012, ApJ, 744, 134
Oasa, Y., Tamura, M., Sunada, K., & Sugitani, K. 2008, AJ, 136, 1372
Patience, J., King, R. R., De Rosa, R. J., et al. 2012, A&A, 540, 85
Peña Ramírez, K., Béjar, V. J. S., Zapatero Osorio, M. R., Petr-Gotzens, M. G., & Martín, E. L. 2012, ApJ, 754, 30
Pickles, A. J. 1998, PASP, 110, 863
Quanz, S. P., Lafrenière, D., Meyer, M. R., Reggiani, M. M., & Buenzli, E. 2012, A&A, 541, A133
Ridge, N. A., Schnee, S. L., Goodman, A. A., & Foster, J. B. 2006, ApJ, 643, 933
Scholz, A. 2012, MNRAS, 420, 1495
Scholz, A., Geers, V., Jayawardhana, R., et al. 2009, ApJ, 702, 805
Scholz, A., & Jayawardhana, R. 2008, ApJ, 672, L49
Scholz, A., Muzic, K., Geers, V., et al. 2012a, ApJ, 744, 6
Scholz, A., Stelzer, B., Costigan, G., et al. 2012b, MNRAS, 419, 1271
Silk, J. 1977, ApJ, 214, 152
Stassun, K. G., Mathieu, R. D., & Valenti, J. A. 2007, ApJ, 664, 1154
Strigari, L. E., Barnabi, M., Marshall, P. J., & Blandford, R. D. 2012, MNRAS, 423, 1856
Sumi, T., Kamiya, K., Bennett, D. P., et al. 2011, Nature, 473, 349
Tamura, M., Itoh, Y., Oasa, Y., & Nakajima, T. 1998, Science, 282, 1095
Wilking, B. A., Gagné, M., & Allen, L. E. 2008, in Star Formation in the ρ Ophiuchi Molecular Cloud, ed. B. Reipurth (San Francisco, CA: ASP), 351
Wilking, B. A., Meyer, M. R., Greene, T. P., Mikhail, A., & Carlson, G. 2004, AJ, 127, 1131
Winston, E., Megeath, S. T., Wolk, S. J., et al. 2009, AJ, 137, 4777
Zapatero Osorio, M. R., Béjar, V. J. S., Martín, E. L., et al. 2000, Science, 290, 103