Combining subspace codes with classical linear error-correcting codes

Olav Geil1, Louise Foshammer1 and Malte Neve-Græsbøll1

1Department of Mathematical Sciences, Aalborg University

July 31, 2014

Abstract

The below paper was written in May 2014. The authors have come to know that there is a significant overlap with previous results by Vitaly Skachek, Olgica Milenkovic, and Angelia Nedic published in July 2011 as arXiv:1107.4581. Their paper entitled “Hybrid Noncoherent Network Coding” appeared in \textit{IEEE Transactions on Information Theory}, June 2013.

We discuss how subspace codes can be used to simultaneously correct errors and erasures when the network performs random linear network coding and the edges are noisy channels. This is done by combining the subspace code with a classical linear error-correcting code. The classical code then takes care of the errors and the subspace codes take care of the erasures.

\textbf{Keywords}: Linear code, noisy channel, operator channel, random network coding, subspace code.

1 Introduction

In this paper we consider networks with one sender and more receivers. All receivers wish to obtain all messages generated at the sender. In the seminal paper\cite{1} Ahlswede, Cai, Li, and Yeung showed that it is often possible to obtain a much higher throughput than what can be achieved by using routing. This is done by allowing the vertices of the network to linearly combine received information before forwarding it. This method is now known as linear network coding. Another important breakthrough was made in\cite{4} where it was shown that if the field size is chosen large enough and if the coefficients in the linear combinations are chosen by random then with a very high probability the maximal throughput is attained. The above model can be extended to also deal with errors and erasures in the network\cite{10,3,2,11}. However, another important model was introduced by Kötter, Kschischang and Silva in\cite{5,8} where the network is treated as a black box. They named their channel-model the operator channel and showed how to correct errors and erasures with respect to the corresponding metric by employing subspace codes. Subspace codes by
now is a very active research area attracting a lot of attention. In the present paper we are concerned with building a bridge between the two points of view on a network. We will assume that what the black box is actually doing is random network coding. It is well-known [12] that in such a case the strength of subspace codes lies in its ability to correct erasures and in its ability to keep adversaries from obtaining too much information [7, 6] rather than in its error-correcting ability. In this paper we discuss why subspace codes are vulnerable to errors in the network. We then show how to combine them with a classical linear code to obtain simultaneously protection against errors and erasures.

2 The protocol for communication through the network

Consider an acyclic network $G = (V, E)$ with one sender s and t receivers r_1, \ldots, r_t. Without loss of generality we shall assume that s has no incoming edges. All edges in the network have capacity 1. We consider a multicast scenario meaning that all receivers wish to obtain the entire message generated at s. As a preparation – before sending information into the network – the given message is encoded using a subspace code. A subspace code is a collection of subspaces $C = \{V_1, \ldots, V_C\}$. Each of these subspaces is called a code word. We have $V_i \subseteq W \subseteq \mathbb{F}_q^k$, $i = 1, \ldots, |C|$, where W is called the ambient space of C. When errors and erasures possibly occurs during the communication process a send code word will be transformed into another word (vectorspace) in W. In the following we shall without loss of generality always assume that $W = \mathbb{F}_q^k$.

We have a set M of messages with $|M| = |C|$ and a bijective encoding function identifying each message with a code word (that is, one of the V_is). We assume that s has b outgoing edges j_1, \ldots, j_b where $b = \max\{\dim V_1, \ldots, \dim V_C\}$. When we want to send the message corresponding to V_i we start by finding by random a generating set $\{\bar{v}_1, \ldots, \bar{v}_b\} \subseteq \mathbb{F}_q^k$ for V_i. We then inject the codeword V_i into the network by sending vector \bar{v}_z on edge j_z, $z = 1, \ldots, b$. These outgoing edges (channels) may experience errors meaning that at the receiving end of each edge what arrives is $Y(j_z) = \bar{v}_z + \epsilon(j_z)$ where $\epsilon(j_z) \in \mathbb{F}_q^k$ is an error vector.

Consider a vertex $u \in V\setminus\{s\}$. Let i_1, \ldots, i_l be its incoming edges and let j be an outgoing edge. Denote by $Y(i_1), \ldots, Y(i_l)$ the information arriving at u along i_1, \ldots, i_l, respectively. Then the information injected into edge j is $\sum_{z=1}^{l} f_{i_z,j} Y(i_z)$ where the coefficients $f_{i_z,j} \in \mathbb{F}_q$ are chosen by random. As a general assumption the coefficients $f_{i,j}$ in the network are chosen uniformly and independently. Hence, we can assume the encoding to take place in a distributed manner. At the receiving end of j what arrives is $Y(j) = \sum_{z=1}^{l} f_{i_z,j} Y(i_z) + \epsilon(j)$, where again $\epsilon(j)$ is an error vector. Given a receiver r let g_1, \ldots, g_w be its incoming edges from which r receives the vectors $Y(g_1), \ldots, Y(g_w)$. If the network is noiseless – meaning that $\epsilon(j) = 0$ for all $j \in E$ – then we can use the results from [4] to deduce that each receiver r will receive a generating set for V_i with a probability as close to 1 as needed provided that the field size q is large enough and that for each receiver there is a flow from s to r of size at least $\dim V_i$. For a fixed q there is some fixed probability that things do not work perfectly and also some of the receivers may not have flows that are large enough. In this situation what will arrive at receiver r is a generating
set for some subspace \(U \) of \(V \). The receiver knows which subspace code that has been used, hence if \(U \) is close enough to \(V \) in some meaning that we shall describe in the following section, the receiver can recover \(V \). Turning to the situation where in addition to the above problems also noise is present, receiver \(r \) obtains a generating set for some space \(U \subseteq W \). If \(U \) is close enough to \(V \) in the meaning described in the next section and if the code \(C \) has been chosen in a clever manner receiver \(r \) can recover \(V \) by a decoding procedure. In the next section we shall introduce the operator channel which is a model for communication through networks suitable when subspace codes are used. Our main concern will be how errors are measured. In the above model we have the error vectors \(\tilde{e}(j) \). We shall discuss how they transform into errors and erasures in the operator channel model and discuss how to possibly overcome them.

3 The operator channel

Following [5] we now introduce the operator channel. Let \(W \subseteq \mathbb{F}_q^n \) be an \(N \)-dimensional vectorspace (as mentioned in the previous section one will often assume that \(W = \mathbb{F}_q^n \) and consequently that \(N = k \)). For an integer \(z \geq 0 \) we define a stochastic operator \(\mathcal{H}_z \) that given a subspace \(V \subseteq W \) returns a subspace of \(V \). If \(\dim V > z \) then a randomly chosen \(z \)-dimensional subspace is returned. Otherwise, \(V \) itself is returned.

Definition 1. An operator channel associated with the ambient space \(W \) is a channel with input and output alphabet \(\mathcal{P}(W) \) (here \(\mathcal{P} \) means the set of subspaces of \(W \)). The channel input \(V \) and channel output \(U \) can always be related as \(U = \mathcal{H}_z(V) \oplus E \) where \(z = \dim(U \cap V) \) and \(E \) is an error space. We say that \(\rho = \dim V - z \) erasures and \(t = \dim E \) errors occurred.

We already described the concept of a subspace code. Hence, as the next thing we introduce a distance measure on \(\mathcal{P}(W) \) that matches the definition of erasure and errors in the above definition.

Definition 2. Given \(A, B \in \mathcal{P}(W) \) the subspace distance \(d(A, B) \) is given as \(\dim A + \dim B - 2 \dim(A \cap B) \). For a subspace code the minimum distance is the smallest non-zero distance between codewords.

By [5, Th. 2] a subspace code with minimum distance \(d \) allows for unique decoding whenever the number of erasures and errors sum up to a number smaller than \(d/2 \). Kötter and Kschischang modified the construction of Gabidulin codes slightly to get a very general class of codes having very good parameters. Also they devised a minimum distance decoder for these codes correcting the number of errors and erasures as described above.

In the next section we shall discuss how errors and erasures can occur when the protocol of Section 2 is applied.

4 Errors and erasures

For a receiver \(r \), a cut in the network is a partition of \(V \) into two disjoint sets \(P_1 \) and \(P_2 \) such that \(s \in P_1 \) and \(r \in P_2 \). The corresponding edges from \(P_1 \) to
P_2 are denoted by $C(P_1, P_2)$. Cuts play a crucial role in network coding. We start this section by discussing a claim which at a first glance seems correct, but which is actually wrong, namely that an error-vector $\vec{e}(j)$ which is different from $\vec{0}$ may cause widespread error propagation. Consider a receiver r and a corresponding cut such that $C(P_1, P_2)$ contains j (if such a cut does not exist then the error does not have any implication for what is received on the ingoing edges to r). If we name the edges in $C(P_1, P_2)$ different from j by ℓ_1, \ldots, ℓ_x then $X = \text{Span}\{Y(\ell_1), \ldots, Y(\ell_x), Y(j)\}$ is what is passed on from the part of the network containing P_1 to the remaining part of the network. If in a “later” cut P'_1, P'_2 with $P_1 \subseteq P'_1$ the Y-values traveling on $C(P'_1, P'_2)$ does not span X but spans some other space X' then it is solely due to addition of new errors or/and it is a consequence of dimension loss caused by a bad choice of coding coefficients $f_{s,t}$ or by the lack of a flow of size at least the dimension of $\dim X$. Hence, errors do not propagate.

The correct reason that subcodes are often not very good when the network experience noise is that altering even a single of the symbols send into an edge will often cause one error as well as one erasure, Definition 1. (In principle an error vector $\vec{e}(j)$ may cause -1, 0 or 1 error and -1, 0 or 1 erasure.) In many cases such errors and erasures caused by different edges will not cancel out each other. Hence if a non-trivial portion of the edges E experience noise it may in total have a dramatic effect. A reasonable model would be to assume that the edges are all q-ary symmetric channels with the same error probability. If this probability is not extremely small and if the vectors of W are not very short then a network with even a modest number of edges will cause many errors and erasures to the code word V_i. In the following we shall always assume that the edges correspond to memoryless channels with an identical probability p of errors and probability 0 for erasure. These channels are always assumed to act independently of each other.

We conclude the section by mentioning that the lack of flows of size equal to $\dim V_i$ and bad choices of coding coefficients $f_{i,j}$ can of course cause erasures. But this should happen with a low probability if the maximum dimension of code words in C are not too high compared to the expected min cut of the network.

5 Using an additional linear code

Fortunately, there is a simple fix to the problem of errors that we described in the previous section. Consider as in Section 2 a generating set of vectors $\{\vec{v}_1, \ldots, \vec{v}_b\}$ for V_i. These vectors are of length k. Now as a preparation before sending them on the outgoing edges of s we protect them by a, say systematic, linear code D with parameters $[n, k, \delta]$ and obtain a new set of vectors $\{\vec{c}_1, \ldots, \vec{c}_b\} \subseteq D \subseteq \mathbb{F}_q^n$. These are the vectors send on the outgoing edges of s. At any point of the communication the k first symbols are unaffected by this action. However, any linear combination of $\vec{c}_1, \ldots, \vec{c}_b$ is still in D. Hence, a receiver r can simply start by performing for each of its incoming edges the decoding algorithm of D to the incoming vector in \mathbb{F}_q^n. If the minimum distance δ of D are large enough the first k symbols of the resulting vectors will with high probability span a subspace
of V_i, meaning that we have corrected the errors. To hopefully recover V_i from this subspace we finally perform the decoding algorithm of the subspace code C.

Recall, that we previously assumed that all edges correspond to memoryless channels with error probability p and erasure probability e. Also recall that these channels are assumed to act independently of each other. For an incoming edge i to a receiver r we define

$$K(i) = \# \{e \in E | e \text{ belongs to a path from } s \text{ to } r \text{ with the last edge being } i\}.$$

Define

$$K = \max\{K(i) | i \text{ is an incoming edge for some receiver } r\}.$$

We may have some information on the topology of the network allowing us to derive an upper estimate $K \leq K'$. The linear code D then should be chosen such that it is suitable for a channel with probability for errors being

$$1 - (1 - p)^K'$$

and the probability of erasure being 0.

The above method of course comes with the price of a drop in communication rate. We leave it as an open research problem if possibly the two error-corrections involved could be integrated with each other in such a way that the drop in communication rate is less dramatic.

6 Concluding remarks

It is known that if one protects the communication on each edge by a linear code and that if one performs a decoding algorithm at the end point of that edge then one can attain the capacity of the network if simultaneously one use linear network coding [9, 11]. Our approach is somehow related as it also treats error-correction and erasure correction independently of each other. Unfortunately, our approach does not attain the capacity of the network. However, there are situations where subspace codes are natural to use, and in such situations our approach provides a procedure to deal with noise.

Acknowledgments

The authors gratefully acknowledge the support from The Danish Council for Independent Research (Grant No. DFF–4002-00367). They also would like to thank Muriel Médard, Frank Fitzek, Diego Ruano, Daniel Lucani Roetter, and Morten Videbæk Pedersen for enlightening discussions.

References

[1] Ahlswede, R., Cai, N., Li, S.Y., Yeung, R.W.: Network information flow. Information Theory, IEEE Transactions on 46(4), 1204–1216 (2000)
[2] Balli, H., Yan, X., Zhang, Z.: On randomized linear network codes and their error correction capabilities. Information Theory, IEEE Transactions on 55(7), 3148–3160 (2009)

[3] Cai, N., Yeung, R.W., et al.: Network error correction, ii: Lower bounds. Communications in Information & Systems 6(1), 37–54 (2006)

[4] Ho, T., Médard, M., Koetter, R., Karger, D.R., Effros, M., Shi, J., Leong, B.: A random linear network coding approach to multicast. Information Theory, IEEE Transactions on 52(10), 4413–4430 (2006)

[5] Koetter, R., Kschischang, F.R.: Coding for errors and erasures in random network coding. Information Theory, IEEE Transactions on 54(8), 3579–3591 (2008)

[6] Kurihara, J., Uyematsu, T., Matsumoto, R.: Explicit construction of universal strongly secure network coding via mrd codes. In: Information Theory Proceedings (ISIT), 2012 IEEE International Symposium on, pp. 1483–1487. IEEE (2012)

[7] Silva, D., Kschischang, F.R.: Universal secure network coding via rank-metric codes. Information Theory, IEEE Transactions on 57(2), 1124–1135 (2011)

[8] Silva, D., Kschischang, F.R., Koetter, R.: A rank-metric approach to error control in random network coding. Information Theory, IEEE Transactions on 54(9), 3951–3967 (2008)

[9] Song, L., Yeung, R.W., Cai, N.: A separation theorem for single-source network coding. Information Theory, IEEE Transactions on 52(5), 1861–1871 (2006)

[10] Yeung, R.W., Cai, N., et al.: Network error correction, i: Basic concepts and upper bounds. Communications in Information & Systems 6(1), 19–35 (2006)

[11] Zhang, Z.: Linear network error correction codes in packet networks. Information Theory, IEEE Transactions on 54(1), 209–218 (2008)

[12] Zhang, Z.: Theory and applications of network error correction coding. Proceedings of the IEEE 99(3), 406–420 (2011)