Built environment, lifestyle, and diabetes

den Braver, N.R.

2021

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
den Braver, N. R. (2021). Built environment, lifestyle, and diabetes.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 07. Jul. 2021
CHAPTER 2

Built environmental characteristics and diabetes: a systematic review and meta-analysis

NR den Braver, J Lakerveld, F Rutters, LJ Schoonmade, J Brug, JWJ Beulens

Published as: den Braver NR, Lakerveld J, Rutters F, Schoonmade LJ, Brug J, Beulens JWJ. Built environmental characteristics and diabetes: a systematic review and meta-analysis. BMC Medicine. 2018;16(1):12.
Chapter 2

Abstract

Background: The built environment influences behaviour, like physical activity, diet or sleep, that affects the risk of type 2 diabetes (T2D). This study systematically reviewed and meta-analysed evidence on the association between built environmental characteristics related to lifestyle behaviour and T2D risk/prevalence, worldwide.

Methods: We systematically searched PubMed, EMBASE.com, and Web of Science from their inception to June 6th, 2017. Studies were included with: adult populations (>18y); T2D or glycaemic markers as outcomes; and physical activity and/or food environment and/or residential noise as independent variables. We excluded studies: in specific subsamples of the population; focused on built environmental characteristics that directly affect the cardiovascular system; that performed prediction analyses; and that do not report original research. Data appraisal and extraction was based on published reports (PROSPERO-ID: CRD42016035663).

Results: From 11,279 studies 109 were eligible and 40 were meta-analysed. Urban residence was associated with higher T2D risk/prevalence (n=19, OR: 1.40 (95% CI: 1.2-1.6; I^2=83%)) as compared to rural residence. Higher neighbourhood walkability was associated with lower T2D risk/prevalence (n=6, OR: 0.79 (95% CI: 0.72-0.87; I^2=92%)) and more green space tended to be associated with lower T2D risk/prevalence (n=4, OR: 0.91 (95% CI: 0.88–0.95; I^2=0%)). No convincing evidence was found of an association between food environment with T2D risk/prevalence.

Conclusions: An important study strength was the comprehensive overview of literature, but our study was limited by the conclusion of mainly cross-sectional studies. In addition to other positive consequences of walkability and access to green space, these environmental characteristics may also contribute to T2D prevention. These results may be relevant for infrastructure planning.
Introduction

Key risk factors for type 2 diabetes (T2D) are lack of physical activity (PA), an unhealthy diet, and lack of sleep (1, 2). Real-life T2D prevention programmes aimed at changing people's lifestyle behaviours have often been ineffective on the long term (3). An important reason for this may be the focus on individual-level determinants of these lifestyle behaviours, such as motivation and ability, whereas they are also determined by more ‘upstream’ drivers, such as availability and accessibility of healthy options in an individual’s environment. In terms of changing and sustaining healthy lifestyle behaviours, the built environment is of importance (4-7).

Urbanisation is one example of an upstream driver. Urbanisation is associated with less total PA and increased consumption of processed foods, which are high in fat, added sugars, animal products and refined carbohydrates (4, 8). However, urbanisation has also been linked to higher total walking and cycling for transportation (4). Built environmental characteristics such as higher walkability, access to parks, and access to shops and services are consistently associated with higher PA (4, 5). Food built environmental characteristics such as perceived availability of healthy foods, are also associated with higher diet quality. In addition, greater availability of fast-food outlets has been associated with lower fruit and vegetable consumption (9, 10). Other built environmental characteristics have been associated with higher stress and lack of sleep through residential noise, e.g. noise due to road and air traffic (11, 12).

By influencing PA, diet, and sleep, these built environmental characteristics may also affect the risk/prevalence of T2D. Indeed, the diabetes atlas showed higher T2D prevalence in urban versus rural areas (8), and a recent systematic meta-analysis reported similar results for Southeast Asia (13). Two other systematic reviews addressed the association between specific built environmental characteristics and T2D (14, 15). However, one review only included German studies (14), while the second review included a broad range of cardiovascular disease outcomes, but only one study was included that considered T2D as an outcome (15). Regarding residential noise, a recent meta-analysis showed that higher residential noise was associated with higher T2D risk (16).
A comprehensive systematic review and meta-analysis of the current international evidence is thus lacking. This study aims to systematically review the evidence on the association between built environmental characteristics, related to lifestyle behaviours, and T2D risk or prevalence, worldwide. Since characteristics of the built environment may vary alongside country-specific income level, we stratified our analyses by this factor when possible. Meta-analyses were performed when ≥3 studies investigated the same exposure and outcome.

Methods

Data sources and searches
A literature search was performed based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement (www.prisma-statement.org). We systematically searched the bibliographic databases PubMed, EMBASE.com, and Web of Science Core Collection from their inception to June 6th, 2017 (NdB and LS). Search terms included indexed terms from MeSH in PubMed, EMtree in EMBASE.com, as well as free text terms. We used free text terms only in Web of Science. Search terms expressing ‘diabetes’ were used in combination with search terms comprising ‘environment’. Bibliographies of the identified articles were hand-searched for relevant publications. Duplicate articles were excluded. The full search strategies for all databases can be found in Supplementary file 1. The protocol and search strategy used was uploaded to PROSPERO prior to the study being carried out (ID: CRD42016035663).

Study selection
Two reviewers independently screened titles, abstracts and full-text articles for eligibility (NdB and JL, or JBe). Studies were included if they: (i) studied a population of adults, 18 years or older; (ii) had T2D incidence or prevalence, or the glycaemic markers glycated haemoglobin (HbA1c), glucose, or insulin sensitivity as outcomes; (iii) included independent variables covering built environmental characteristics that potentially influence the risk of T2D via lifestyle behaviours, PA, diet and sleep; and (iv) were written in English, Dutch, or German. We excluded studies if they: (i) were not conducted in the general population, but in specific subsamples, like pregnant women, or T2D patients; (ii) focused on built environmental characteristics that directly
Built environmental characteristics and diabetes: a systematic review and meta-analysis

(i.e. not via lifestyle behaviours) affect the cardiovascular system, such as exposure to particulates due to roadway proximity; (iii) performed prediction analyses; and (iv) were specific publication types that do not report original scientific research (editorials, letters, legal cases, interviews). As in the general population the vast majority of diabetes cases are T2D (>90%), studies were included if they did not specify type of diabetes (Type 1 Diabetes Mellitus or T2D). Inconsistencies in study selection were resolved through consensus with a third reviewer (JL or JBe).

Data extraction
One reviewer (NdB) performed data extraction, according to a standard protocol, including measures of study design, outcome, outcome assessment and exposure assessment, demographics, and prevalence or effect measure. Data extraction was appraised by a second reviewer (JL) for a random subsample of the included studies.

Quality assessment
Two reviewers (NdB and JBe or JL) independently evaluated the methodological quality of the full-text papers using the Quality Assessment Tool for Quantitative Studies, as described earlier by Mackenbach et al. (17). This tool provides a quality score based on study design, representativeness at baseline (selection bias) and follow-up (withdrawals, drop-outs), confounders, data collection, data analysis, and reporting. Each domain received a weak, moderate, or strong score, resulting in seven scores. A study was rated as strong if it received four strong ratings and no weak ratings. Second, a study was rated as moderate if it received one weak rating and less than four strong ratings. Finally, a study was rated weak if it received two or more weak ratings. Study quality was assessed in terms of the reported association between the relevant built environmental characteristic and T2D, even if this was not the primary analysis presented in the study. Studies with a weak rating (n=23) are presented in Supplementary file 2 and were included in sensitivity analyses, but excluded from the main analyses.

Data synthesis
Study characteristics were described in a systematic manner, according to the built environmental characteristics under investigation. These categories were made as
homogeneous as possible, based on the lifestyle behaviours. Findings were further described according to country-level income, based on the World Bank list of economies, 2016 (18).

Studies were meta-analysed when ≥ 3 studies investigated the same exposure and outcome variables. In addition, the studies had to provide at least age and sex adjusted or standardised risk ratios or prevalence, and have a moderate or strong quality rating. If reported ratios were stratified and could not be pooled with the information provided in the publication, the study’s authors were contacted and asked to provide the pooled-risk ratio (19-23). Reference categories were harmonised by taking the inverse of the risk ratio and 95% confidence interval (95% CI). In case a risk ratio for a continuous variable was reported, we transformed this to a categorical risk ratio based on the methods of Danesh et al (24). Forest plots and random-effects meta-analyses models were fitted to relative risks or odds ratios. Plots and models were stratified for country-income level and study quality, where permitted. In sensitivity analyses, the studies with weak quality ratings were added to the models. Heterogeneity was tested using I^2. Analyses were performed in R version 3.2.5 and using the Metafor package.

Results

From the 11,279 identified references, 299 full articles were screened, and 109 of these studies were included in our review, of which 23 were not included in our main analyses due to a weak quality rating (Figure 1, Supplementary file 2). Included studies were categorised according to the built environmental characteristic investigated (Tables 1 and 2), and built environment were subdivided by PA environment, food environment and residential noise (Table 2).
Urban versus rural environment

Sixty studies compared T2D risk/prevalence in urban versus rural environments (Table 1, Supplementary file 2). The studies rated weak (n=16) did not differ in terms of country-income levels from the other studies (25-40).

Of the remaining 44 studies, 25 (57%) of them found a higher risk or prevalence of T2D in urban areas as compared to rural areas. Nineteen studies were eligible for meta-analysis, which revealed a significantly higher risk/prevalence of T2D in urban areas versus rural areas (1.40 (95% CI: 1.22 – 1.61)) (Figure 2). This association was stronger in studies with strong quality ratings (1.44 (95% CI: 1.18 – 1.75)), as compared to those with
moderate quality ratings (1.38 (95% CI: 1.11 – 1.70)). After stratifying for country-income level, one study was excluded (41) because the subgroup contained fewer than three studies. Associations were not different for upper-middle income countries (1.49 (95% CI: 1.16 – 1.92)) and lower-middle income countries (1.45 (95% CI: 1.20 – 1.74)), but were non-significant for high-income countries (1.16 (95% CI: 0.70 – 1.89)).

Sensitivity analyses that included studies with weak quality ratings (33, 40) did not significantly change the results (Supplementary file 3).

Physical activity environment

Thirty studies investigated PA environment (19-22, 42-64) (Figure 1, Table 2, Supplementary file 2). All studies were performed in high-income level countries, except for one, which was performed in an upper-middle level income country (49).

Ten studies investigated the association between neighbourhood walkability and T2D risk/prevalence. Six studies received a strong quality rating (20, 48, 57, 58, 62, 65). Six studies observed that highly walkable neighbourhoods were associated with a lower T2D risk/prevalence (19-22, 45, 54, 65). In the meta-analyses of six studies, a pooled-risk ratio of 0.79 (95% CI: 0.72 - 0.87) was found, with an I² for heterogeneity of 91.9%.

Six studies investigated the association between facilities for PA and T2D risk/prevalence. Three studies received a strong quality rating (48, 49, 61). Four studies did not observe an association between density of facilities and T2D risk/prevalence (46, 48, 49, 61). In two other studies, higher availability of neighbourhood resources for PA was associated with lower T2D risk (47, 63).

Eight studies investigated the association between green space and T2D risk/prevalence. Two studies received a strong quality rating (44, 59). Five studies observed that a higher availability of green space was associated with lower T2D risk/prevalence (44, 54, 59, 64, 66). Three studies did not observe an association (42, 53, 60). In meta-analyses of four studies, more green space was associated with lower T2D risk/prevalence with a pooled-risk ratio of 0.91 (95% CI: 0.88 – 0.95) with an I² for heterogeneity of 0%.
Four studies investigated infrastructure in relation to T2D risk/prevalence. Two studies received a strong quality rating (49, 67). Four studies did not observe an association between connectivity, infrastructure, and road quality and T2D risk/prevalence (49, 56, 68). One study observed that a better transportation infrastructure, defined as more paved roads, was associated with higher T2D prevalence (67).

Four studies investigated the association between safety and T2D risk/prevalence. One study received a strong rating (49). None of the studies showed an association between either traffic safety, or safety from crime and T2D risk/prevalence (49, 50, 56).

Food environment

Twenty studies investigated characteristics of food environment (46-48, 51-55, 60, 61, 63, 69-77) (Figure 1, Table 2, Supplementary file 2). All studies were performed in high-income level countries.

Eight studies investigated the association between supermarkets and grocery stores and T2D risk/prevalence. Two studies received a strong quality rating (61, 69). One study observed that greater availability of grocery stores was associated with lower T2D prevalence and that a higher percentage of households without a car located far from a supermarket was associated with higher T2D prevalence (46). A second study observed an unadjusted correlation between a greater distance to markets and lower fasting-glucose levels (53). Five studies did not observe a significant association between availability of supermarkets/grocery stores and T2D prevalence (60, 61, 63, 69, 71, 75). In meta-analysis of three studies (48, 60, 61), a higher density of grocery stores was not associated with T2D risk/prevalence (1.01 (95% CI: 0.98-1.05) I²=0%).

Seven studies investigated the association between availability of fast-food outlets and convenience stores and T2D risk/prevalence. Three studies received a strong quality rating (61, 69, 72). Four studies did not observe an association between availability of fast-food outlets/convenience stores and T2D prevalence (61, 63, 69, 71, 75). A higher availability of fast-food outlets and convenience stores was associated with higher T2D prevalence in two studies (46, 72). Studies could not be meta-analysed because the studies did not investigate consistent outcomes (T2D risk versus markers).
Figure 2: Forest plots of meta-analysis of the association between built environmental characteristics and T2D risk/prevalence. (A) urban versus rural environments, stratified for study quality; (B) urban versus rural environments, stratified for country income level; (C) walkability; (D) green space; (E) grocery stores; (F) noise
C

Author(s) and Year	Relative Risk [95% CI]
Booth (long-term residents), 2013	0.76 [0.73, 0.80]
Booth (recent immigrants), 2013	0.63 [0.57, 0.70]
Sundquist, 2015	0.84 [0.73, 0.97]
Paquet, 2015	0.88 [0.80, 0.97]
Muller-Remenschneider, 2013	0.95 [0.72, 1.23]
Lee, 2015	0.86 [0.75, 0.99]
Glazier, 2014	0.75 [0.74, 0.76]
RE Model (I² = 91.9%)	0.79 [0.72, 0.87]

D

Author(s) and Year	Relative Risk [95% CI]
Ngorn, 2016	0.92 [0.88, 0.96]
Dalton, 2016	0.81 [0.66, 1.00]
Bodicoat, 2014	0.53 [0.35, 0.81]
Axell-Burt, 2014	0.94 [0.85, 1.03]
RE Model (I² = 0.0%)	0.91 [0.88, 0.95]

E

Author(s) and Year	Relative Risk [95% CI]
Gebreab, 2017	1.03 [0.98, 1.09]
Fujiwara, 2017	0.97 [0.88, 1.07]
Christine, 2015	1.01 [0.96, 1.07]
RE Model (I² = 0.0%)	1.01 [0.98, 1.05]

F

Author(s) and Year	Relative Risk [95% CI]
Heideman, 2014	1.97 [1.07, 3.63]
Dahambov, 2016	4.49 [1.38, 14.60]
Eriksson, 2014	0.94 [0.33, 2.69]
RE Model (I² = 44.2%)	1.95 [0.96, 3.97]

Figure 2: Forest plots of meta-analysis of the association between built environmental characteristics and T2D risk/prevalence. (A) urban versus rural environments, stratified for study quality; (B) urban versus rural environments, stratified for country income level; (C) walkability; (D) green space; (E) grocery stores; (F) noise (continued)
Chapter 2

Four studies investigated healthiness of the food environment subjectively or as an index and the association with T2D risk/prevalence. One study received a strong quality rating (48). Two studies focused on the perceived availability of healthy foods, rather than objectively measured availability. One study observed greater self-reported availability of healthy food resources to be associated with lower T2D risk (47). The second study assessed perceived availability, objective availability, and a combination of the two, of which only perceived availability was associated with a lower T2D risk (48). Another study found no association between the presence of food deserts and T2D prevalence (78).

Three studies used a ratio of unhealthful food stores to more healthful food stores, such as the Relative Food Environment Index (RFEI), with a higher value indicating an unhealthier food environment. One study received a strong quality rating (70). This study observed that a higher ratio, i.e. a relatively unhealthier food environment, was associated with a higher risk of T2D. Two studies did not observe consistent associations between RFEI and T2D risk (54, 74).

Six studies used composite measures of PA and food related built environmental characteristics (Table 2, 3, Supplementary file 4). One study received a strong quality rating (79). A summary score indicating the presence of more healthy food resources and PA resources was associated with lower T2D incidence (47). Furthermore, residing in a neighbourhood with physical and social-environmental disadvantages was associated with higher T2D prevalence (79). Clusters of large metropolitan counties, characterised by low population density, median income, low socioeconomic status index, greater access to food observed less T2D (73). Finally, no association was observed between vibrancy index, density, and obesogenicity clusters and T2D risk/prevalence (68, 80, 81).

Residential noise

Five studies investigated the association between residential noise and T2D risk/prevalence. One study received a strong quality rating (82). Four studies observed that higher exposure to residential noise was associated with increased T2D risk/prevalence (82-84, 86), and two studies did not observe an association (56, 85). In meta-analyses of three studies (83, 85, 86), higher exposure to residential noise was not associated with T2D risk/prevalence (1.95 (95% CI: 0.96 – 3.97), I² = 44.2%).
Discussion

This systematic review investigated evidence of the association between built environmental characteristics, related to lifestyle behaviours, and T2D risk/prevalence, worldwide. The association between built environmental characteristics and T2D risk/prevalence has been investigated a fair amount, with 84 studies on the subject - although for our review, 23 of these studies were excluded due to their low quality ratings. Urbanisation was associated with a higher T2D risk/prevalence. The evidence for an association between the PA environment and T2D risk was more consistent than it was for the food environment. Higher neighbourhood walkability was associated with lower T2D risk and more green space tended to be associated with lower T2D risk.

First, we observed that residing in urban areas was associated with higher T2D risk/prevalence, in line with the findings of the IDF diabetes atlas (8) and a recent meta-analysis for Southeast Asia (13). Urbanisation describes a process by which inhabitants of a particular region increasingly move to more densely populated areas. Urbanisation is a broad operationalisation of the built environment and includes a range of characteristics such as higher availability of food, facilities, and infrastructure. In general, previous reviews have observed conflicting results with regard to urbanisation (4, 5, 8). Urbanisation has consistently been associated with less PA and unhealthier dietary habits, but also with higher total walking and cycling for transportation (4, 5, 8). The observed heterogeneity in terms of results might be due to the variety in definitions used to classify an urban area, which is distinct for different countries and studies. To account for this, we stratified our analyses by country-income level (18), and the majority (38 out of 60) was conducted in middle-income countries, which reduces the heterogeneity in the included studies. It must be recognised that great heterogeneity in definitions of urban versus rural exists beyond stratification on country-income level. Across countries with the same country-income level, there is a large variety of what urban or rural areas may look like and the populations that reside in these areas. At present there is no homogeneous and generally accepted definition of urban or rural areas and the majority of studies did not include a definition that was used to make this classification.
Second, the present study provides consistent evidence for an association between built PA environment and T2D risk/prevalence. Higher walkability and availability of green space were most consistently associated with lower T2D risk/prevalence. Our results on urbanisation seem contradictory to the lower T2D risk/prevalence associated with greater neighbourhood walkability, since greater walkability is often observed in more urbanised environments (5). These seemingly contradictory results could be explained by the underrepresentation of high-income countries in the urban to rural comparison studies, and the overrepresentation of these countries in walkability studies. The (perceived) walkability of urban area also varies across different parts of the world. So, whereas walkability may be a feature of cities in high-income regions, this may not be the case in cities in lower-income regions. Furthermore, urbanisation is a much broader construct than walkability, and even within one urban area, walkability may differ between or even within neighbourhoods. In addition, other urbanisation-related issues, besides walkability, may be more important, such as other PA environmental characteristics and the food environment, that counterbalance the effects of walkability in urban areas. These results would suggest that certain aspects of the built food environment were associated with a higher T2D risk, but we could not find consistent evidence of this in our review.

An association between the built food environment and T2D risk/prevalence was not consistently observed. Availability of fast-food and convenience stores and perceived healthiness of the food environment tended to be associated with higher T2D risk/prevalence and lower T2D risk/prevalence, respectively. However, due to heterogeneity in the studies, insufficient studies were available for meta-analysis, thus preventing us from drawing solid conclusions. The only possible meta-analyses were three studies including the density of grocery stores, but this confirmed that no significant associations could be observed. Furthermore by reviewing the evidence, supermarkets and grocery stores and the Relative Food Environment Index were not associated with T2D risk/prevalence. These findings are consistent with an earlier systematic review that reported that perceived availability was associated with healthy dietary behaviours, whereas objective measures of accessibility and availability of food environment yielded mixed results (9). The association between perceived environment and healthier diet can be explained by not limiting the concept of
environment to specific shops or locations, but rather to the participant’s resources for healthy food, e.g. garden, market. On the other hand, perceptions may also reflect an individual’s intentions and motivations rather than a location alone. A difficulty with regard to establishing useful diet measures is that they are very heterogeneous and difficult to define. For instance, access to a supermarket is often seen as contributing to a healthy food environment, despite the fact that it is also a source of unhealthy products (9). Establishing a comprehensive definition is further complicated by the fact that food can be bought in a variety of shops and locations that are not directly associated with food, e.g. at the counter of a pharmacy. The same heterogeneity was observed to a lesser extent in the built PA environment. For instance, infrastructure includes drivers for active transportation (sidewalks, cycling lanes) as well as for passive transportation (public transport, roads) (87). We conclude that the heterogeneity in exposure assessment associated with built environmental variables made the examination of the associations with T2D risk/prevalence more difficult.

Finally, although higher exposure to residential noise was consistently associated with higher T2D risk/prevalence in individual studies, this was not confirmed in our meta-analysis, in contrast with an earlier meta-analysis (16). This difference could be explained by the inclusion of only confounder adjusted risk ratios in our study.

A strength of this study is the comprehensive overview of literature on the association between built environmental characteristics and T2D risk/prevalence provided, in which we included worldwide evidence, assessed study quality and took country-income levels into account. However, certain limitations of this study need to be addressed.

A weakness of any systematic review and meta-analysis is that its quality is dependent on the quality of studies included. For instance, not all studies that were included distinguished between T2D and Type 1 Diabetes Mellitus. However, the majority of all people with diabetes have T2D, therefore the evidence provided in our review was very likely applicable to T2D risk/prevalence (1). Secondly, because most studies in the present review were cross sectional, our review cannot provide the foundation for causal inferences. Third, publication bias could influence our findings, but our search turned out a relatively high number of null findings, suggesting publication
bias is unlikely to have been a major issue here. Finally, residential self-selection is an important issue that should be included in studies investigating the associations between built environment and disease. Self-selection occurs when residents choose their residence based on socioeconomic or other circumstances, or lifestyle preferences. Evidently, such selections may influence our results, as for instance higher SES neighbourhoods may contain more green space, as well as more highly educated and health conscious residents. However, the true effect of residential self-selection on these associations has often not been accounted for in the included studies and is difficult to investigate. One narrative review observed that studies using various approaches to identify self-selection (i.e. questionnaire, statistical methods) explained only a minor part of the associations between built environment and travel behaviours (88). Two studies included in the present review observed that residential relocation, as an indicator of self-selection, resulted in inconsistent effects on associations with health outcomes (57, 58). It is therefore hard to conclude on the effect of self-selection bias on our results, based on the current evidence.

Despite the limitations of our study, our results may be relevant for infrastructure planning. For example, in addition to other positive consequences of walkability and access to green space, these environmental characteristics may also contribute to T2D prevention. Future research should focus on developing a more homogeneous definition of environmental characteristics, particularly in relation to the food environment. Also, more in-depth explorations are necessary of the pathways through which environments affect diabetes risk, while taking the potential confounding variables into account.

Conclusion

In conclusion, urbanisation is associated with higher T2D risk/prevalence. The built PA environment - walkability and access to green space, in particular - was consistently associated with reduced T2D risk/prevalence, while no consistent evidence was found for an association between the built food environment and T2D risk/prevalence. These conclusions have implications in terms of urban planning and the inclusion of walkable and green cities.
Table 1: Study characteristics and results of studies investigating the association of urban and rural built environment with T2D

Author	Year	Country	Country income level	Study design	Sample size	Age	Outcome* Outcome assessment‡	Result	Adjustment for confounding	Quality statement	
Aekplakorn et al. (89)	2011	Thailand	Upper middle	Cross-sectional	18,629	NFG: 44.3 ± 0.3 DM: 54.1 ± 0.7	T2D/T1D Blood prevalence sample	X	Age and sex	Moderate	
Agyemang et al. (90)	2016	Ghana, Netherlands, Germany, England	Lower middle and high	Cross-sectional	5,659	25-70y (NR)	T2D Blood prevalence sample	X	Age, sex, education	Moderate	
Ali et al. (91)	1993	Malaysia	Upper middle	Cross-sectional	681	38.6 ± 13.7	T2D/T1D Blood prevalence sample	X	Age	Moderate	
Al-Moosa et al. (92)	2006	Oman	High	Cross-sectional	5,840	24% > 50y 41% < 30y	T2D/T1D Blood prevalence sample	X	-	Moderate	
Anjana et al. (93)	2011	India	Lower middle	Cross-sectional	13,055	40 ± 14	T2D/T1D Blood prevalence sample	Southern area, Western area, Eastern area	Northern area	Age and sex	Moderate
Assah et al. (94)	2011	Cameroon	Lower middle	Cross-sectional	552	38.4 ± 8.6	T2D/T1D Blood prevalence sample	X	-	Moderate	
Attard et al. (67)	2012	China	Upper middle	Cross-sectional	NA	51 ± 0.4	T2D/T1D Blood prevalence sample, self-report	X	Age, sex, income, region, BMI	Strong	
Table 1: Study characteristics and results of studies investigating the association of urban and rural built environment with T2D (continued)

Author	Year	Country	Country income level	Study design	Sample size	Age	Outcome*	Outcome assessment‡	Result	Adjustment for confounding	Quality statement
Allender et al. (95)	2011	Sri Lanka	Lower middle	Cross-sectional	4,485	46.1 ± 15.1	T2D/T1D	Blood prevalence sample	X	Age, sex, income	Moderate
Bahendeka et al. (41)	2016	Uganda	Low	Cross-sectional	3,689	35.1 ± 12.6	T2D/T1D	Blood prevalence sample	X	Age, sex, region of residence, floor finishing of dwelling, BMI, waist circumference, total cholesterol	Moderate
Baldé et al. (96)	2007	Guinea	Low	Cross-sectional	1,537	47.7 ± 12.5	T2D/T1D	Blood prevalence sample	X	Age, Location excess of waist, raised systolic BP, raised diastolic BP	Moderate
Balogun et al. (97)	2012	Nigeria	Lower middle	Longitudinal	1,330	77.3 ± 0.3	T2D	Self-report incidence	X	Age, sex, education	Strong
Baltazar et al. (98)	2003	Philippines	Lower middle	Cross-sectional	7,044	39.0 ± 0.5	T2D/T1D	Blood prevalence sample	X	Age and sex	Moderate
Table 1: Study characteristics and results of studies investigating the association of urban and rural built environment with T2D (continued)

Author	Year	Country	Country income level	Study design	Sample size	Age	Outcome*	Outcome assessment‡	Result	Adjustment for confounding	Quality statement	
Barnabé-Ortiz (99)	2016	Peru	Upper middle	Longitudinal	3,123	24% < 45y, 25% > 65y	T2D incidence	Blood sample	X	Sex, age, education level, socioeconomic status, family history of diabetes, daily smoking, hazardous drinking, TV watching for 2+ hours per day, transport-related physical inactivity, fruits and vegetables consumption, body mass index, and metabolic syndrome	Moderate	
Bocquier et al. (100)	2010	France	High	Cross-sectional	3,038,670	48.9 ± 18.6	T2D/T1D prevalence	Secondary X	Age and sex	Strong		
Cubbin et al. (23)	2006	Sweden	High	Cross-sectional	18,081	48% > 45y, 25% < 35y	T2D/T1D prevalence	Self-report X				
Christensen et al. (101)	2009	Kenya	Lower middle	Cross-sectional	1,459	38.6 ± 12.6	T2D/T1D prevalence	Blood sample X	Age and sex	Moderate		
Author	Year	Country	Country income level	Study design	Sample size	Age	Outcome*	Outcome assessment‡	Result	Adjustment for confounding	Quality statement	
-----------------	------	---	----------------------	--------------	-------------	-----	----------	--------------------	--------	------------------------	------------------	
Dagenais et al. (102)	2016	Bangladesh, India, Pakistan, Zimbabwe, China, Colombia, Iran, Argentina, Brazil, Chile, Malaysia, Poland, South Africa, Turkey, Canada, Sweden, United Arab Emirates	Lower, lower middle, upper middle and high	Cross-sectional	119,666	52 ± 9.3	T2D/T1D prevalence sample	Blood sample	X	Age, sex, residency location, BMI, waist-to-hip ratio, PA levels, AHEI score, combined former and current smoking, education level, family history of diabetes, and ethnicity	Strong	
Dar et al. (25)	2015	India	Lower middle	Cross-sectional	3,972	43% > 50y	T2D Blood prevalence sample	Blood sample	X	-	Weak	
Davila et al. (103)	2013	Colombia	Upper middle	Cross-sectional	1,026	35% > 55y	T2D/T1D Blood prevalence sample	Blood sample	X	Age, sex, education, SES, marital status, smoking, alcohol, intake of fruit and vegetables, PA	Strong	
Author	Year	Country	Country income level	Study design	Sample size	Age	Outcome*	Outcome assessment‡	Result	Adjustment for confounding	Quality statement	
------------------------	--------	-----------------	----------------------	--------------	-------------	-------	----------	---------------------	--------	------------------------	------------------	
Delisle et al. (104)	2012	Benin	Low	Cross-sectional	541	38.2 ± 0.6	Glycaemic marker: HOMA index	Blood sample	X	Age, sex, SES, location, diet quality, PA, alcohol, BMI	Moderate	
Dong et al. (105)	2005	China	Upper middle	Cross-sectional	12,240	46.4 ± 13.9	T2D prevalence	Blood sample	X (men)	Age and sex	Moderate	
Du et al. (106)	2016	China	Upper middle	Cross-sectional	3,797	15% > 60y 8% 20-29y	T2D/T1D prevalence	Blood sample	X	Age and sex	Moderate	
Esteghamati et al. (107)	2009	Iran	Upper middle	Cross-sectional	3,397	23% > 55y 25% < 35y	T2D/T1D prevalence	Blood sample	X	Age, sex, residential area	Moderate	
Georgous-opoulou et al. (108)	2017	Mediterranean islands	High	Cross-sectional	2,749	75 ± 7.3	T2D/T1D prevalence	Blood sample	X	age, sex, BMI, physical inactivity, smoking, siesta habit, education, living alone, adherence to Mediterranean diet, GDS, number of friends and family members, frequency of going out with friends and family, number of holiday excursions per year	Moderate	
Author	Year	Country	Country income level	Study design	Sample size	Age	Outcome*	Outcome assessment‡	Result	Adjustment for confounding	Quality statement	
-----------------	------	-------------	----------------------	----------------	-------------	--------------	-----------	---------------------	--------	------------------------	---------------------------------------	
Gong et al.	2015	China	Upper middle	Cross-sectional	5,923	38% > 50y, 62% < 50y	T2D/T1D prevalence	Blood sample	X	Urban > rural	Age, sex, education, PA, smoking, alcohol, BMI, triglycerides, HDL-cholesterol, hypertension.	Strong
Hussain et al.	2004	Bangladesh	Lower middle	Cross-sectional	6,312	14% > 50y, 46% < 30y	T2D/T1D prevalence	Blood sample	X	Rural > urban	Age and sex	Moderate
Han et al.	2017	Korea	High	Longitudinal	7,542	52 ± 8.8	T2D incidence	Blood sample	X	No difference	Age, sex, residential area, family history of diabetes, smoking, alcohol, exercise, abdominal obesity, hypertension, high triglycerides, and low HDL cholesterol	Strong
Katchunga et al.	2012	Congo	Low	Cross-sectional	699	42.5 ± 18.1	T2D/T1D prevalence	Blood sample	X	X	-	Moderate
Keel et al.	2017	Australia	High	Cross-sectional	4,836	Non-indigenous: 66.6 ± 9.7, Indigenous: 54.9 ± 8.7	T2D/T1D Self-report prevalence	X (indigenous), X (non-indigenous)	Age, sex, ethnicity, education, English-speaking at home, ethnicity	Moderate		
Table 1: Study characteristics and results of studies investigating the association of urban and rural built environment with T2D (continued)

Author	Year	Country	Country income level	Study design	Sample size	Age	Outcome*	Outcome assessment‡	Result	Adjustment for confounding	Quality statement
Mayega et al.	2013	Uganda	Low	Cross-sectional	1,497	45.8% > 45y, 54.2% < 45y	T2D	Blood prevalence sample	X		
Mohan et al.	2016	India	Lower middle	Cross-sectional	6,853	35-70y (NR)	T2D/T1D	Blood prevalence sample	X		
Msyamboza et al.	2014	Malawi	Low	Cross-sectional	3,056	12.5% > 55y, 45% < 35y	T2D/T1D	Blood prevalence sample			
Ntandou et al.	2009	Benin	Low	Cross-sectional	541	38.2 ± 10	T2D/T1D	Blood prevalence sample	X		
Oyebode et al.	2015	China, Ghana, India, Mexico, Russia, South Africa	Upper and Lower middle	Cross-sectional	39,436	47.3% > 60y, 12.3% < 40y	T2D/T1D	Self-prevalence report (pooled)	X		
Papoz et al.	1996	New Caledonia	High	Cross-sectional	9,390	30-59y (NR)	T2D/T1D	Blood prevalence sample	X		
Pham et al.	2016	Vietnam	Lower middle	Cross-sectional	16,730	54 ± 8	T2D/T1D	Blood prevalence sample	X (men)		
Author	Year	Country	Country income level	Study design	Sample size	Age	Outcome*	Outcome assessment‡	Result	Adjustment for confounding	Quality statement
----------------------	-------	---------	----------------------	--------------	-------------	-----	----------	---------------------	--------	------------------------	------------------
Raghupathy *et al.* (121)	2007	India	Lower middle	Longitudinal	2,218	28 ± 1.2	T2D prevalence	Blood sample	X	Age, sex, number of household possessions, education, PA, smoking, alcohol, parental consanguinity, family history of DM, body fat, BMI, WH ratio, subcapular/triceps ratio	Strong
Ramdani *et al.* (122)	2012	Morocco	Lower middle	Cross-sectional	1,628	54.2 ± 10.9	T2D/T1D prevalence	Blood sample	X	Age, sex, BMI	Moderate
Sadikot *et al.* (123)	2004	India	Lower middle	Cross-sectional	41,270	36% > 50y, 34% < 40y	T2D Blood prevalence	sample	X	Age and sex	Moderate
Sobngwi *et al.* (124)	2004	Cameroon	Lower middle	Longitudinal	1,726	24% > 55y, 28% < 35y	T2D/T1D Blood prevalence	sample (women)	X (men)	Age, sex, residence, socio-professional category, alcohol, smoking, PA.	Moderate
Stanifer *et al.* (125)	2016	Tanzania	Low	Cross-sectional	481	25% > 60y	T2D/T1D Blood prevalence	sample	X	Age and sex	Moderate
Table 1: Study characteristics and results of studies investigating the association of urban and rural built environment with T2D (continued)

Author	Year	Country	Country income level	Study design	Sample size	Age	Outcome* Outcome assessment‡	Result	Adjustment for confounding	Quality statement
Weng et al. (126)	2007	China	Upper middle	Cross-sectional	529	NR	T2D/T1D Blood prevalence sample		X Age and sex	Moderate
Wu et al. (127)	2016	China	Upper middle	Cross-sectional	23,010	40 (30.4 – 56.3)	T2D/T1D Blood prevalence sample		X Age	Moderate
Zhou et al. (128)	2015	China	Upper middle	Cross-sectional	98,658	20% > 60y 80% < 60y	T2D/T1D Blood prevalence sample		X Age, sex, region	Moderate

Abbreviations: T2D = type 2 diabetes; T1D = type 1 diabetes, NR = Not Reported, PA = Physical Activity, *Prevalence; incidence or glycaemic marker level, ‡Blood sample = study diagnosed diabetes based on glycaemic marker or oral glucose tolerance test; secondary = from data sources such as national health survey; self-report = ever diagnosed with diabetes.
Table 2: Study characteristics of studies investigating the association of physical activity environment, food environment or residential noise with T2D

Author	Year	Country	Income level	Study design	Sample size	Age	Outcome*	Outcome assessment†	Exposure category	Exposure assessment	Level geodata	Quality statement
Ahern et al. (46)	2011	US	High	Cross-sectional	3,128	NR	T2D/T1D prevalence	Secondary	PA, food	Place of residence	Aggregate	Moderate
AliHasan et al. (69)	2016	US	High	Cross-sectional	NA	NR	T2D/T1D prevalence	Secondary	Food	GIS	Aggregate	Strong
Astell-Burt et al. (42)	2014	Australia	High	Cross-sectional	48,072	28%	T2D/T1D prevalence	Self-report	PA	GIS	Individual	Moderate
Auchincloss et al. (47)	2009	US	High	Longitudinal	2,285	62.1 ± 10	T2D incidence	Blood sample, self-report	PA, food	Self-report	Individual	Moderate
Bodicoat et al. (44)	2014	UK	High	Cross-sectional	10,476	59 ± 10.4	T2D prevalence	Secondary (screen detected)	PA	GIS	Individual	Strong
Bodicoat et al. (72)	2015	UK	High	Cross-sectional	10,461	59 ± 10.4	T2D prevalence	Secondary (screen detected)	Food	GIS	Individual	Strong
Booth et al. (19)	2013	Canada	High	Longitudinal	1,024,380	30-64y (NR)	T2D/T1D incidence	Secondary	PA, food	GIS	Aggregate	Moderate
Braun et al. (80)	2015	US	High	Cross-sectional	NA	NR	T2D/T1D prevalence	Secondary	PA, food	Register	Aggregate	Moderate
Braun et al. (58)	2016	US	High	Longitudinal	1,079	39.7 ± 3.7	Glycaemic marker: ln(HOMA index)	Blood sample	PA	GIS	Individual	Strong
Braun et al. (57)	2016	US	High	Longitudinal	583	69.4 ± 9.5	Glycaemic marker: fasting glucose	Blood sample	PA	GIS	Individual	Strong
Cai et al. (82)	2017	The Netherlands	High	Cross-sectional	93,277	44.9 ±12.3	Glycaemic marker: fasting glucose	Blood sample	Noise	GIS	Aggregate	Strong
Table 2: Study characteristics of studies investigating the association of physical activity environment, food environment or residential noise with T2D (continued)

Author	Year	Country	Income level	Study design	Sample size	Age	Outcome*	Outcome assessment†	Exposure category	Exposure assessment	Level geodata	Quality statement
Carroll et al. (71)	2017	Australia	High	Longitudinal	2,582	50 ± 15	Glycaemic marker: HbA1c	Blood sample	Food	GIS	Aggregate Moderate	
Christine et al. (48)	2015	US	High	Longitudinal	2,157	60.7 ± 9.9	T2D incidence	Blood sample	PA, food	GIS, self-report	Individual Strong	
Creatore et al. (20)	2016	Canada	High	Longitudinal	±4,505,000	61% 30-49y	T2D/T1D incidence	Secondary	PA	GIS	Aggregate Strong	
Cunningham-Myrie et al. (49)	2015	Jamaica	Upper middle	Cross-sectional	2,848	36.9 ± 2.7	T2D/T1D prevalence	Blood sample	PA	Environmental audit	Individual Strong	
Dalton et al. (59)	2016	UK	High	Longitudinal	23,865	59.1 ± 9.3	T2D/T1D incidence	Self-report	PA	GIS	Individual Strong	
Dzhambov et al. (83)	2016	Bulgaria	Upper middle	Cross-sectional	581	36.5 ± 15.4	T2D/T1D prevalence	Secondary	Noise	Secondary	Aggregate Moderate	
Eichinger et al. (50)	2015	Austria	High	Cross-sectional	660	47.1 ± 14.1	T2D/T1D prevalence	Blood sample	PA	Self-report	Individual Moderate	
Eriksson et al. (85)	2014	Sweden	High	Longitudinal	5,156	47 ± 5	T2D incidence	Blood sample	Noise	GIS	Individual Moderate	
Flynt et al. (73)	2015	US	High	Cross-sectional	NA	NR	T2D/T1D prevalence	Secondary	Food	Secondary	Aggregate Moderate	
Frankenfeld et al. (74)	2015	US	High	Cross-sectional	3,227	11% > 65y	T2D/T1D prevalence	Blood sample	Food	GIS	Aggregate Moderate	
Freedman et al. (68)	2011	US	High	Cross-sectional	NA	100% > 50y	T2D/T1D prevalence	Self-report	PA, food	Secondary	Aggregate Moderate	
Fujiware et al. (60)	2017	Japan	High	Cross-sectional	8,904	72.5 ± 5.2	T2D/T1D prevalence	Blood sample	PA, food	GIS	Individual Moderate	
Table 2: Study characteristics of studies investigating the association of physical activity environment, food environment or residential noise with T2D (continued)

Author	Year	Country	Income level	Study design	Sample size	Age	Outcome*	Outcome assessment†	Exposure category	Exposure assessment	Level geodata	Quality statement
Gebreab et al. (61)	2017	US	High	Longitudinal	3,661	54 ± 12	T2D incidence	Blood sample	PA, Food	GIS	Individual	Strong
Glazier et al. (21)	2014	Canada	High	Cross-sectional	2,446,029	T2D/T1D prevalence	Secondary	PA	GIS	Aggregate	Moderate	
Hipp et al. (78)	2015	US	High	Cross-sectional	3,109 counties	44.8 ± 13.7	T2D prevalence	Secondary	Noise	Self-report	Individual	Strong
Heideman et al. (86)	2014	Germany	High	Longitudinal	3,604	44.8 ± 13.7	T2D incidence	Secondary	Noise	Self-report	Individual	Strong
Lee et al. (45)	2015	Korea	High	Cross-sectional	13,478	47.6 ± 12.2	T2D/T1D prevalence	Secondary	PA	GIS	Aggregate	Moderate
Liu et al. (79)	2014	US	High	Cross-sectional	17,254	46.5 ± 18.5	T2D/T1D prevalence	Blood sample	PA, food	Self-report	Individual	Strong
Loo et al. (62)	2017	Canada	High	Cross-sectional	78,023	35% 18-40y 23% > 65y	Glycaemic marker: HbA1c and fasting glucose	Blood sample	PA	GIS	Individual	Strong
Maas et al. (66)	2009	Netherlands	High	Cross-sectional	345,103	38% > 45y 63% < 45y	T2D/T1D prevalence	Secondary	PA	Register	Individual	Moderate
Mena et al. (53)	2015	Chile	High	Cross-sectional	832	45 ± 14	Glycaemic marker: Fasting glucose level	Blood sample	PA, food	GIS	Individual	Moderate
Meyer et al. (81)	2015	US	High	Longitudinal	14,379 (observations)	45.2 ± 3.6	Glycaemic marker: HOMA index	Blood sample	PA, food	GIS	Individual	Moderate
Mezuk et al. (70)	2016	Sweden	High	Longitudinal	2,948,851	NR	T2D incidence	Secondary	Food	GIS	Individual	Strong
Table 2: Study characteristics of studies investigating the association of physical activity environment, food environment or residential noise with T2D (continued)

Author	Year	Country	Income level	Study design	Sample size	Age	Outcome*	Outcome assessment†	Exposure category	Exposure assessment	Exposure level geodata	Quality statement
Morland et al. (75)	2006 US	High		Cross-sectional	10,763	100% > 50y	T2D/T1D prevalence	Blood sample	Food	GIS	Aggregate	Moderate
Müller-Riemenschneider et al. (65)	2013 Australia High	Cross-sectional	5,970	29% > 65y, 30% < 45y	T2D prevalence	Self-report	PA	GIS	Individual Strong			
Myers et al. (63)	2016 US	High		Cross-sectional	NA	NR	T2D/T1D prevalence	Secondary	PA, food	Secondary	Aggregate Moderate	
Ngom et al. (64)	2016 Canada	High		Cross-sectional	3,920,000	NR	T2D/T1D prevalence	Secondary	PA	GIS	Aggregate Strong	
Paquet et al. (54)	2014 Australia High	Longitudinal	3,145	51.5 ± 15.5	T2D incidence	Blood sample	PA, food	GIS	Individual Moderate			
Schootman et al. (56)	2007 US	High		Longitudinal	644	56.2 ± 4.3	T2D/T1D incidence	Self-report	PA, noise	Self-report, environmental audit	Individual Moderate	
Sørensen et al. (84)	2013 Denmark High	Longitudinal	57,053	56.1 (50.7 – 64.2)	T2D/T1D incidence	Secondary	Noise	GIS	Individual Moderate			
Sundquist et al. (22)	2015 Sweden High	Longitudinal	512,061	55 ± 14.9	T2D incidence	Secondary	PA	GIS	Aggregate Moderate			

Abbreviations: US = United States; UK = United Kingdom; T2D = type 2 diabetes; T1D = type 1 diabetes; PA = Physical activity; GIS = Geographic Information Systems; NA = not applicable

*Prevalence; incidence or glycaemic marker level, †Blood sample = study diagnosed diabetes based on glycaemic marker or oral glucose tolerance test; secondary = from data sources such as national health survey; self-report = ever diagnosed with diabetes.
Author	Exposure	Study result	95% Confidence interval or p-value	Adjustment for confounding
Ahern et al., 2011	Food environment:	Beta (SE)		
	1. % household with no car living more than 1 mile from a grocery store	1. 0.07 (0.01)	1. $P < 0.001$	Age and obesity rate
	2. fast food restaurants per 1000	2. 0.41 (0.07)	2. $P < 0.001$	
	3. Full service restaurants per 1000	3. -0.15 (0.04)	3. $P < 0.01$	
	4. grocery stores per 1000	4. -0.37 (0.09)	4. $P < 0.001$	
	5. convenience stores per 1000	5. 0.30 (0.06)	5. $P < 0.001$	
	6. direct money made from farm sales per capita	6. -0.01 (0.02)	6. $P < 0.01$	
	PA environment:	Beta (SE)		
	7. recreational facilities per 1000	7. -0.12 (0.21)	7. NS	
Al Hasan et al., 2016	Food outlet density:	Beta (SE)		
	1. Fast food restaurant density (per 1000 residents)	1. -0.55 (0.90)	1. NS	Age, obesity, PA, recreation facility density, unemployed, education, household with no cars and limited access to store and race.
	2. Convenience store density	2. 0.89 (0.86)	2. NS	
	3. Super store density	3. -0.4 (1.66)	3. NS	
	4. Grocery store density	4. -3.7 (2.13)	4. NS	
Astell-Burt et al., 2014	Green space (percent):	OR:	95% CI:	
	1. >81	1. 0.94	1. 0.85 - 1.03	
	2. 0-20	2. 1	2. NA	
Auchincloss et al., 2009	Neighbourhood resources:	HR:	95% CI:	
	1. Healthy food resources	1. 0.63	1. 0.42 - 0.93	Age, sex, family history, income, assets, education, ethnicity, alcohol, smoking, PA, diet, BMI
	2. PA resources	2. 0.71	2. 0.48 - 1.05	
	3. Summary score	3. 0.64	3. 0.44 - 0.95	
Table 3: study results of studies investigating physical activity environment, food environment, residential noise and DM. (continued)

Author	Exposure	Study result	95% Confidence interval or p-value	Adjustment for confounding
Bodicoat et al., 2014	Green space (percent)	OR:	95%CI:	Age, sex, area social deprivation score, urban/rural status, BMI, PA, fasting glucose, 2 h glucose, total cholesterol
	1. Least green space (Q1)	1. 1	1. NA	
	2. Most green space (Q4)	2. 0.53	2. 0.35 - 0.82	
Bodicoat et al., 2015	Number of fast-food outlets (per 2)	OR:	95%CI:	Age, sex, area social deprivation score, urban/rural status, ethnicity, PA
	1.	1. 1.02	1. 1.00 – 1.04	
	2. Density of fast-food outlet (per 200 residents)	2. 13.84	2. 1.60 – 119.6	
Booth et al., 2013	Walkability:	HR:	95%CI:	Age, sex, income
Men Recent immigrants	Least walkable quintile	1. 1.58	1. 1.42 – 1.75	
	2. Most walkable quintile	2. 1	2. NA	
Long-term residents	Least walkable quintile	1. 1.32	1. 1.26 – 1.38	
	2. Most walkable quintile	2. 1	2. NA	
Women Recent immigrants	Least walkable quintile	1. 1.67	1. 1.48 – 1.88	
	2. Most walkable quintile	2. 1	2. NA	
Long-term residents	Least walkable quintile	1. 1.24	1. 1.18 – 1.31	
	2. Most walkable quintile	2. 1	2. NA	
Table 3: study results of studies investigating physical activity environment, food environment, residential noise and DM. (continued)

Author	Exposure	Study result	95% Confidence interval or p-value	Adjustment for confounding
Braun et al., 2016	Walkability index, after residential relocation 1. Fixed effects model	Beta (SE) 1. -0.011 (0.015)	1. P > 0.05	1. income, household size, marital status, employment status, smoking status, health problems that interfere with PA 2. Additionally adjusted for age, gender, ethnicity, education
		2. -0.016 (0.010)	2. P > 0.05	
Braun et al., 2016	Walkability: within person change in Street Smart Walk Score	Beta (SE): 0.999 (0.002)	P > 0.05	Age, sex, ethnicity, education, household income, employment status, marital status, neighbourhood SES
Cai et al., 2017	Daytime noise (dB)	% change in fasting glucose per IQR	P < 0.05	age, sex, season of blood draw, smoking status and pack-years, education, employment and alcohol consumption, air pollution
Carroll et al., 2017	Count of fast-food outlets: 1. Interaction with overweight/obesity 2. Interaction with time 3. Interaction with time and overweight/obesity	Beta per SD change:	95% CI:	Age, sex, marital status, education, employment status, and smoking status
		−0.0094	−0.030 − 0.011	
		1. −0.002	1. −0.023 − 0.019	
		2. 0.0003	2. −0.003 − 0.004	
		3. −0.002	3. −0.006 − 0.001	
	Count of healthful food resources: 4. Interaction with overweight/obesity 5. Interaction with time 6. Interaction with time and overweight/obesity	0.012	−0.008 − 0.032	
		4. 0.021	4. −0.000 − 0.042	
		5. −0.003	5. −0.006 − 0.001	
		6. −0.006	6. −0.009 − 0.002	
Table 3: study results of studies investigating physical activity environment, food environment, residential noise and DM. (continued)

Author	Exposure	Study result	95% Confidence interval or p-value	Adjustment for confounding
Christine et al., 2015	Neighbourhood physical environment, diet related:	HR:	95%CI:	Age, sex, family history, household per capita income, educational level, smoking, alcohol, neighbourhood SES
	1. Density of supermarkets and fruit and vegetable markets (GIS)	1. 1.01	1. 0.96 – 1.07	
	2. Healthy food availability (self-report)	2. 0.88	2. 0.78 – 0.98	
	3. GIS and self-report combined measure	3. 0.93	3. 0.82 – 1.06	
	Neighbourhood physical environment, PA related:	HR:	95%CI:	Age, sex, family history, household per capita income, educational level, smoking, alcohol, neighbourhood SES
	1. Density of commercial recreational facilities (GIS)	1. 0.98	1. 0.94 – 1.03	
	2. Walking environment (self-report)	2. 0.80	2. 0.70 – 0.92	
	3. GIS and self-report combined measure	3. 0.81	3. 0.68 – 0.96	
Creatore et al., 2016	Walkability:	Absolute incidence rate difference over 12 year FU:	95%CI:	Age, sex, area income and ethnicity
	1. Low walkable neighbourhoods (Q1)	-0.65	1. -1.65 – 0.39	
	2. High walkable neighbourhoods over (Q5)	-1.5	2. -2.6 – -0.4	
Cunningham-Myrie et al, 2015	Neighbourhood characteristics:	OR:	95%CI:	Age, sex, district, fruit and vegetable intake
	1. Neighbourhood infrastructure	1. 1.02	1. 0.95 – 1.1	
	2. Neighbourhood disorder score	2. 0.99	2. 0.95 – 1.03	
	3. Home disorder score	3. 1	3. 0.96 – 1.03	
	4. Recreational space in walking distance	4. 1.12	4. 0.86 – 1.45	
	5. Recreational space availability	5. 1.01	5. 0.77 – 1.32	
	6. Perception of safety	6. 0.99	6. 0.88 – 1.11	
Table 3: study results of studies investigating physical activity environment, food environment, residential noise and DM. (continued)

Author	Exposure	Study result	95% Confidence interval or p-value	Adjustment for confounding
Dalton et al.,	Green space:	HR:	95%CI:	Age, sex, BMI, parental diabetes, and SES. Effect modification by urban-rural status and SES was investigated, but association was not moderated by either
2016	1. Least green space (Q1)	1. 1	1. NA	
	2. Most green space (Q4)	2. 0.81	2. 0.65 – 0.99	
	3. Mediation by PA	3. 0.96	3. 0.88 -1.06	
Dzhambov et al.,	Day-evening-night equivalent sound level:	OR:	95%:	Age, sex, fine particulate matter, benzo alpha pyrene, body mass index, family history of T2D, subjective sleep disturbance, and bedroom location
2016	1. 51-70 decibels	1. 1	1. NA	
	2. 71-80 decibels	2. 4.49	2. 1.39 – 14.7	
Eichinger et al.,	Characteristics of built residential environment:	Beta:		Age, sex, individual-level SES
2015	1. Perceived distance to local facilities	1. 0.006	1. P < 0.01	
	2. Perceived availability / maintenance of cycling/walking infrastructure	2. NS		
	3. Perceived connectivity	3. NS		
	4. Perceived safety with regards to traffic	4. NS		
	5. perceived safety from crime	5. NS		
	6. Neighbourhood as pleasant environment for walking / cycling	6. NS		
	7. Presence of trees along the streets	7. NS		
Eriksson et al.,	Aircraft noise level:	OR:	95%CI:	Age, sex, family history, SES based on education, PA, smoking, alcohol, annoyance due to noise.
2014	1. <50 dB	1. 1	1. NA	
	2. ≥55 dB	2. 0.94	2. 0.33 – 2.70	
Table 3: study results of studies investigating physical activity environment, food environment, residential noise and DM. (continued)

Author	Exposure	Study result	95% Confidence interval or p-value	Adjustment for confounding
Flynt et al., 2015	Clusters (combination of number of counties, urban-rural classification, population density, income, SES, access to food stores, obesity rate, diabetes rate):	Median standardized DM rate:	IQR:	-
		1. 0	1. -0.05 - 0.7	
		2. 0	2. -0.04 – 0.7	
		3. 0	3. -0.08 – 0.01	
		4. -0.04	4. -1.01 – 0.6	
		5. -0.08	5. -1.5 – -0.04	
Frankenfeld et al., 2015	RFEI† ≤ 1 Clusters: 1. Grocery stores 2. Restaurants 3. Specialty foods	Predicted prevalence:	95% CI:	Demographic and SES variables
		1. 7.1	1. 6.3 – 7.9	
		2. 5.9	2. 5.0 – 6.8, p < 0.01	
		3. 6.1	3. 5.0 – 7.2, p < 0.01	
		4. 6.0	4. 4.9 – 7.1, p < 0.01	
		5. 6.1	5. 4.9 – 7.3, p < 0.01	
Freedman et al., 2011	Built environment: Men: 1. Connectivity (2000 Topologically Integrated Geographic Encoding and Referencing system). 2. Density (number of food stores, restaurants, housing units per square mile)	OR:	95% CI:	Age, ethnicity, marital status, region of residence, smoking, education, income, childhood health, childhood SES, region of birth, neighbourhood scales
		1. 1.06	1. 0.86 – 1.29	
		2. 1.05	2. 0.89 – 1.24	
		3. 1.01	3. 0.84 – 1.20	
		4. 0.99	4. 0.99 – 1.17	
Table 3: study results of studies investigating physical activity environment, food environment, residential noise and DM. (continued)

Author	Exposure	Study result	95% Confidence interval or p-value	Adjustment for confounding
Fujiware et al., 2017	Count within neighbourhood unit (mean 6.31 ± 3.9 km²)	OR per IQR increase:	95%CI:	age, sex, marital status, household number, income, working status, drinking, smoking, vegetable consumption, walking, going-out behaviour, frequency of meeting, BMI, depression
	1. Grocery stores	1. 0.97	1. 0.88 – 1.08	
	2. Parks	2. 1.16	2. 1 – 1.34	
Gebreab et al., 2017	Density within 1 mile buffer:	HR:	95%CI:	age, sex, family history of diabetes, SES, smoking, alcohol consumption, PA and diet
	1. Favourable food stores	1. 1.03	1. 0.98 – 1.09	
	2. Unfavourable food stores	2. 1.07	2. 0.99 – 1.16	
	3. PA resources	3. 1.03	3. 0.98 – 1.09	
Glazier et al., 2014	Walkability index	Rate ratio:	95%CI:	Age and sex
	1. Q1	1. 1	1. NA	
	2. Q5	2. 1.33	2. 1.33 – 1.33	
	Index components:			
	1. Population density (Q1:Q5)	1. 1.16	1. 1.16 – 1.16	
	2. Residential density (Q1:Q5)	2. 1.33	2. 1.33 – 1.33	
	3. Street connectivity (Q1:Q5)	3. 1.38	3. 1.38 – 1.38	
	4. Availability of walkable destinations (Q1:Q5)	4. 1.26	4. 1.26 – 1.26	
Heideann et al., 2014	Residential traffic intensity:	OR:	95%CI:	Age, sex, smoking, passive smoking, heating of house, education, BMI, waist circumference, PA, family history
	1. No traffic	1. 1	1. NA	
	2. Extreme traffic	2. 1.97	2. 1.07 – 3.64	
Hipp et al., 2015	Food deserts	Correlation: NR	NS	-
Lee et al., 2015	Walkability:	OR:	95%CI:	Age, sex, smoking, alcohol, income level
	1. Community 1	1. 1	1. NA	
	2. Community 2	2. 0.86	2. 0.75 – 0.99	
Table 3: study results of studies investigating physical activity environment, food environment, residential noise and DM. (continued)

Author	Exposure	Study result	95% Confidence interval or p-value	Adjustment for confounding
Loo et al., 2017	Walkability (Walk score) Difference between Q1 and Q4	Beta for HbA1C:		Age, sex, current smoking status, BMI, relevant medications and medical diagnoses, neighbourhood violent crime rates and neighbourhood indices of material deprivation, ethnic concentration, dependency and residential instability
		1. -0.06	1. -0.11 – 0.02	
		2. 0.03	2. -0.04 – 0.1	
Maas et al., 2009	Green space:	OR:	95%CI:	Demographic and socioeconomic characteristics, urbanity
		1. Q1	1. NA	
		2. Q4	2. 0.83 – 0.85	
Mena et al., 2015	Distance to parks:	Correlation:		-
		1. NR	1. NA	
		2. -0.094	2. P < 0.05	
Mezuk et al., 2016	Ratio of the number of health-harming food outlets to the total number of food outlets within a 1,000-m buffer of each person	OR per km²: 2.11	95%CI:	Age, sex, education, and household income
Morland et al., 2006	Presence of:	Prevalence ratio:	95%CI:	Age, sex, income, education, ethnicity, food stores and service places, PA
	Supermarkets	1. 0.96	1. 0.84 – 1.1	
	Grocery stores	2. 1.11	2. 0.99 – 1.24	
	Convenience stores	3. 0.98	3. 0.86 – 1.12	
Müller-Riemenschneider et al., 2013	Walkability (1,600 m buffer):	OR:	95%CI:	Age, sex, education, household income, marital status.
	High walkability	1. 0.95	1. 0.72 – 1.25	
	Low walkability	2. 1	2. NA	
	Walkability (800 m buffer):	3. 0.69	3. 0.62 – 0.90	
	High walkability	4. 1	4. NA	
	Low walkability	4. 1	4. NA	
Table 3: study results of studies investigating physical activity environment, food environment, residential noise and DM. (continued)

Author	Exposure	Study result	95% Confidence interval or p-value	Adjustment for confounding
Myers et al., 2016	Physical activity:	Beta:	95%CI:	Age
1. Recreation facilities per 1000	1.	-0.457	1. -0.809 – -0.104	
2. Natural amenities (1–7)	2.	0.084	2. 0.042 – 0.127	
Food:				
3. Grocery stores & supercentres per 1000	3.	0.059	3. -0.09 – 0.208	
4. Fast food restaurants per 1000	4.	-0.032	4. -0.125 – 0.062	
Ngom et al., 2016	Distance to green space:	PR:	95%CI:	Age, sex, social and environmental predictors
1. Q1 (0 – 264 m)	1.	1	1. NA	
2. Q4 (774 – 27781 m)	2.	1.09	2. 1.03 – 1.13	
Paquet et al., 2014	Built environmental attributes:	RR:	95%CI:	Age, sex household income, education, duration of FU, area-level SES.
1. RFEIV	1.	0.99	1. 0.9 – 1.09	
2. Walkability	2.	0.88	2. 0.8 – 0.97	
3. POS	3.			
a. POS count	a.	1	a. 0.92 – 1.08	
b. POS size	b.	0.75	b. 0.69 – 0.83	
c. POS greenness	c.	1.01	c. 0.9 – 1.13	
d. POS type	d.	1.09	d. 0.97 – 1.22	
Table 3: study results of studies investigating physical activity environment, food environment, residential noise and DM. (continued)

Author	Exposure	Study result	95% Confidence interval or p-value	Adjustment for confounding
Schootman et al.,	Neighbourhood conditions (objective):	OR:	95%CI:	Age, sex, income, perceived income adequacy, education, marital status, employment, length of time at present address, own the home, area
2007	1. Housing conditions	1. 1.11	1. 0.63 – 1.95	
	2. Noise level from traffic, industry, etc.	2. 0.9	2. 0.48 – 1.67	
	3. Air quality	3. 1.2	3. 0.66 – 2.18	
	4. Street and road quality	4. 1.03	4. 0.56 – 1.91	
	5. Yard and sidewalk quality	5. 1.05	5. 0.59 – 1.88	
	Neighbourhood conditions (subjective):			
	6. Fair - poor rating of the neighbourhood	6. 1.04	6. 0.58 – 1.84	
	7. Mixed or terrible feeling about the neighbourhood	7. 1.1	7. 0.6 – 2.02	
	8. Undecided or not at all attached to the neighbourhood	8. 0.68	8. 0.4 – 1.18	
	9. Slightly unsafe - not at all safe in the neighbourhood	9. 0.61	9. 0.35 – 1.06	
Sørensen et al.,	Exposure to road traffic noise per 10 dB:	Incidence rate ratio:	95%CI:	
2013	1. At diagnosis	1. 1.08	1. 1.02 – 1.14	Age, sex, education, municipality SES, smoking status, smoking intensity, smoking duration, environmental tobacco smoke, fruit intake, vegetable intake, saturated fat intake, alcohol, BMI, waist circumference, sports, walking, pollution.
	2. 5 years preceding diagnosis	2. 1.11	2. 1.05 – 1.18	
Sundquist et al.,	Walkability:	OR:	95%CI:	Age, sex, income, education, neighbourhood deprivation.
2015	1. D1 (low)	1. 1.16	1. 1.00 – 1.34	
	2. D10 (high)	2. 1	2. NA	

Abbreviations: NA = not applicable; NS = not significant; NR = not reported; 95%CI = 95% Confidence interval; RFEI = Retail Food Environment Index; PSE = Neighbourhood physical and social environment; POS = Public open space; SE = standard error; RR = relative risk; OR = odds ratio; HR = hazard ratios. *Prevalence: Beta (SE); RR; OR; HR. Quality of accessible groceries, likelihood that neighbours help each other, examples of neighbours working together, sense of belonging, degree of trust in neighbours, poverty level, † RFEI = ratio of fast-food restaurants and unhealthful food stores to healthful food stores.
Chapter 2

References

1. WHO. Diabetes, Fact Sheet. 2016.
2. Cappuccio FP, D’Elia L, Strazzullo P, Miller MA. Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care. 2010;33(2):414-20.
3. Teixeira PJ, Carraca EV, Marques MM, Rutter H, Oppert JM, De Bourdeaudhuij I, et al. Successful behaviour change in obesity interventions in adults: a systematic review of self-regulation mediators. BMC Med. 2015;13:84.
4. Van Holle V, Deforche B, Van Cauwenberg J, Goubert L, Maes L, Van de Weghe N, et al. Relationship between the physical environment and different domains of physical activity in European adults: a systematic review. BMC Public Health. 2012;12:807.
5. Sallis JF, Cerin E, Conway TL, Adams MA, Frank LD, Pratt M, et al. Physical activity in relation to urban environments in 14 cities worldwide: a cross-sectional study. Lancet. 2016;387(10034):2207-17.
6. Osei-Kwasi HA, Nicolau M, Powell K, Terragni L, Maes L, Stronks K, et al. Systematic mapping review of the factors influencing dietary behaviour in ethnic minority groups living in Europe: a DEDIPAC study. Int J Behav Nutr Phys Act. 2016;13:85.
7. Popkin BM. Nutrition Transition and the Global Diabetes Epidemic. Curr Diab Rep. 2015;15(9):64.
8. Cho N, Whiting, D et al. Diabetes Atlas - 7th Edition. International Diabetes Federation; 2015.
9. Caspi CE, Sorensen G, Subramanian S, Kawachi I. The local food environment and diet: A systematic review. Health Place. 2012;18(5):1172-87.
10. Fraser LK, Edwards KL, Cade J, Clarke GP. The Geography of Fast Food Outlets: A Review. Int J Environ Res Public Health. 2010;7(5):2290-308.
11. Ising H, Braun C. Acute and chronic endocrine effects of noise: Review of the research conducted at the Institute for Water, Soil and Air Hygiene. Noise Health. 2000;2(7):7-24.
12. Pirrera S, De Valck E, Cluydts R. Nocturnal road traffic noise: A review on its assessment and consequences on sleep and health. Environ Int. 2010;36(5):492-8.
13. Angkurawaranon C, Jiraporncharoen W, Chenthanakij B, Doyle P, Nitsch D. Urbanization and non-communicable disease in Southeast Asia: a review of current evidence. (1476-5616 (Electronic)).
14. Schulz M, Romppel M, Grande G. Built environment and health: a systematic review of studies in Germany. J Public Health (Oxf). 2016.
15. Malambo P, Kengne AP, De Villiers A, Lambert EV, Puoane T. Built Environment, Selected Risk Factors and Major Cardiovascular Disease Outcomes: A Systematic Review. PLoS One. 2016;11(11):e0166846.
16. Dzhambov AM. Long-term noise exposure and the risk for type 2 diabetes: a meta-analysis: Erratum. Noise Health. 2015;17(75):123.
17. Mackenbach JD, Rutter H, Compensolle S, Glonti K, Oppert JM, Charreire H, et al. Obesogenic environments: a systematic review of the association between the physical environment and adult weight status, the SPOTLIGHT project. BMC Public Health. 2014;14:233.
18. Bank W. World Bank list of economies 2016 [Available from: http://www.ispo2017.org/wp-content/uploads/2016/11/World-Bank-List-of-Economies.pdf.
19. Booth GL, Creatore MI, Moineddin R, Godzyra P, Weyman JT, Matheson FI, et al. Unwalkable neighborhoods, poverty, and the risk of diabetes among recent immigrants to Canada compared with long-term residents. Diabetes Care. 2013;36:302-5.
20. Creatore MI, Glazier RH, Moineddin R, Fazli GS, Johns A, Godzyra P, et al. Association of Neighborhood Walkability With Change in Overweight, Obesity, and Diabetes. JAMA. 2016;315(20):2211-20.
21. Glazier RH, Creatore MI, Weyman JT, Fazli G, Matheson FI, Gozdyra P, et al. Density, destinations or both? A comparison of measures of walkability in relation to transportation behaviours, obesity and diabetes in Toronto, Canada. PLoS One. 2014;9(1):e85295.

22. Sundquist K, Eriksson U, Mezuk B, Ohlsson H. Neighborhood walkability, deprivation and incidence of type 2 diabetes: a population-based study on 512,061 Swedish adults. Health Place. 2015;31:24-30.

23. Cubbin C, Sundquist K, Ahlen H, Johansson SE, Winkleby MA, Sundquist J. Neighborhood deprivation and cardiovascular disease risk factors: protective and harmful effects. Scand J Public Health. 2006;34(3):228-37.

24. Danesh J, Collins R, Appleby P, Peto R. Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: meta-analyses of prospective studies. JAMA. 1998;279(18):1477-82.

25. Dar HI, Dar SH, Bhat RA, Kamili MA, Mir SR. Prevalence of type 2 diabetes mellitus and its risk factors in the age group 40 years and above in the Kashmir valley of the Indian subcontinent. JIACM. 2015;16(3-4):187-97.

26. Mi T, Sun S, Du Y, Guo S, Cong L, Cao M, et al. Differences in the distribution of risk factors for stroke among the high-risk population in urban and rural areas of Eastern China. Brain Behav. 2016;6(5):e00461.

27. Kodaman N, Aldrich MC, Sobota R, Asselbergs FW, Poku KA, Brown NJ, et al. Cardiovascular Disease Risk Factors in Ghana during the Rural-to-Urban Transition: A Cross-Sectional Study. PLoS One. 2016;11(10):e0162753.

28. Gangquiang D, Ming Y, Weiwei G, Ruying H, MacLennan R. Nutrition-related disease and death in Zhejiang Province. Asia Pacific J Clin Nutr. 2004;13(2):162-5.

29. Azizi F, Vazirian P, Dolatshi P, Habibian S. Screening for type 2 diabetes in the Iranian national programme: a preliminary report. Eastern Mediterranean Health Journal. 2003;9(5-6):1122-7.

30. Mierzecki A, Kloda K, Gryko A, Czarnowski D, Chelstowski K, Chlabicz S. Atherosclerosis risk factors in rural and urban adult populations living in Poland. Exp Clin Cardiol. 2014;20(8):3152-7.

31. Njelekela M, Sato T, Nara Y, Miki T, Kuga S, Noguchi T, et al. Nutritional variation and cardiovascular risk factors in Tanzania--rural-urban difference. S Afr Med J. 2003;93(4):295-9.

32. Ceesay MM, Morgan MW, Kamanda MO, Willoughby VR, Lisk DR. Prevalence of diabetes in rural and urban populations in southern Sierra Leone: a preliminary survey. Tropical Medicine & International Health. 1997;2(3):272-7.

33. Asadollahi K, Delpisheh A, Asadollahi P, Abangah G. Hyperglycaemia and its related risk factors in Ilam province, west of Iran- a population-based study. J Diabetes Metab Disord. 2015;14(81).

34. Bharati D, Pal R, Rekha R, Yamuna T, Kar S, Radjou A. Ageing in Puducherry, South India: An overview of morbidity profile. Journal of Pharmacy And Bioallied Sciences. 2011;3(4):537-42.

35. Colleran KM, Richards A, Shafer K. Disparities in cardiovascular disease risk and treatment: demographic comparison. J Invest Med. 2007;55(8):415-22.

36. Khan MM, Gruebner O, Kraemer A. The geography of diabetes among the general adults aged 35 years and older in Bangladesh: recent evidence from a cross-sectional survey. PLoS One. 2014;9(10):e110756.

37. Nakiibuuka J, Sajatovic M, Nankabirwa J, Furlan AJ, Kayima J, Ddumba E, et al. Stroke-Risk Factors Differ between Rural and Urban Communities: Population Survey in Central Uganda. Neuroepidemiology. 2015;44(3):156-65.

38. Shera AS, Jawad F, Maqsood A. Prevalence of diabetes in Pakistan. Diabetes Res Clin Pract. 2007;76(2):219-22.

39. Valverde JC, Tormo MJ, Navarro C, Rodriguez-Barranco M, Marco R, Egea JM, et al. Prevalence of diabetes in Murcia (Spain): a Mediterranean area characterised by obesity. Diabetes Res Clin Pract. 2006;71(2):202-9.
Chapter 2

40. Mohamud WN, Ismail AA, Sharifuddin A, Ismail IS, Musa KI, Kadir KA, et al. Prevalence of metabolic syndrome and its risk factors in adult Malaysians: results of a nationwide survey. Diabetes Res Clin Pract. 2011;91(2):239-45.

41. Bahendeka S, Wesonga R, Mutungi G, Muwonge J, Neema S, Guwatudde D. Prevalence and correlates of diabetes mellitus in Uganda: a population-based national survey. Trop Med Int Health. 2016;21(3):405-16.

42. Astell-Burt T, Feng X, Kolt GS. Is neighborhood green space associated with a lower risk of type 2 diabetes? Evidence from 267,072 Australians. Diabetes Care. 2014;37(1):197-201.

43. Shaffer K, Bopp M, Papalia Z, Sims D, Bopp CM. The Relationship of Living Environment with Behavioural and Fitness Outcomes by Sex: an Exploratory Study in College-aged Students. Int J Exerc Sci. 2017;10(3):330-9.

44. Bodicoat DH, O’Donovan G, Dalton AM, Gray LJ, Yates T, Edwardson C, et al. The association between neighbourhood greenspace and type 2 diabetes in a large cross-sectional study. BMJ Open. 2014;4(12):e006076.

45. Lee H, Kang HM, Ko YJ, Kim HS, Kim YJ, Bae WK, et al. Influence of urban neighborhood environment on physical activity and obesity-related diseases. Public Health. 2015;129(9):1204-10.

46. Ahern M, Brown C, Dukas S. A national study of the association between food environments and county-level health outcomes. J Rural Health. 2011;27(4):367-79.

47. Auchincloss AH, Diez Roux AV, Mujahid MS, Mingwu Shen MS, Bertoni AG, Carnethon MR. Neighborhood resources for physical activity and healthy foods and incidence of type 2 diabetes mellitus. Arch Intern Med. 2009;169(18).

48. Christine PJ, Auchincloss AH, Bertoni AG, Carnethon MR, Sanchez BN, Moore K, et al. Longitudinal Associations Between Neighborhood Physical and Social Environments and Incident Type 2 Diabetes Mellitus: The Multi-Ethnic Study of Atherosclerosis (MESA). JAMA Intern Med. 2015;175(8):1311-20.

49. Cunningham-Myrie CA, Theall KP, Younger NO, Mabile EA, Tulloch-Reid MK, Francis DK, et al. Associations between neighborhood effects and physical activity, obesity, and diabetes: The Jamaica Health and Lifestyle Survey 2008. J Clin Epidemiol. 2015;68(9):970-8.

50. Eichinger M, Titze S, Haditsch B, Dorner TE, Stonerger WJ. How are physical activity behaviours and cardiovascular risk factors associated with characteristics of the built and social residential environment? PLoS One. 2015;10(6):e0126010.

51. Herrick CJ, Yount BW, Eyler AA. Implications of supermarket access, neighbourhood walkability and poverty rates for diabetes risk in an employee population. Public Health Nutr. 2016;19(11):2040-8.

52. Marshall WE, Piatkowski DP, Garrick NW. Community design, street networks, and public health. Journal of Transport & Health. 2014;1(4):326-40.

53. Mena C, Fuentes E, Ormazabal Y, Palomo-Velez G, Palomo I. Role of access to parks and markets with anthropometric measurements, biological markers, and a healthy lifestyle. Int J Environ Health Res. 2015;25(4):373-83.

54. Paquet C, Coffee NT, Haren MT, Howard NJ, Adams RJ, Taylor AW, et al. Food environment, walkability, and public open spaces are associated with incident development of cardio-metabolic risk factors in a biomedical cohort. Health Place. 2014;28:173-8.

55. Salois MJ. Obesity and diabetes, the built environment, and the ‘local’ food economy in the United States, 2007. Econ Hum Biol. 2012;10(1):35-42.

56. Schootman M, Andresen EM, Wolinsky FD, Malmstrom TK, Miller JP, Yan Y, et al. The effect of adverse housing and neighborhood conditions on the development of diabetes mellitus among middle-aged African Americans. Am J Epidemiol. 2007;166(4):379-87.

57. Braun LM, Rodriguez DA, Evenson KR, Hirsch JA, Moore KA, Diez Roux AV. Walkability and cardiometabolic risk factors: Cross-sectional and longitudinal associations from the Multi-Ethnic Study of Atherosclerosis. Health Place. 2016;39:9-17.
58. Braun LM, Rodriguez DA, Song Y, Meyer KA, Lewis CE, Reis JP, et al. Changes in walking, body mass index, and cardiometabolic risk factors following residential relocation: Longitudinal results from the CARDIA study. J Transp Health. 2016;3(4):426-39.

59. Dalton AM, Jones AP, Sharp SJ, Cooper AJ, Griffin S, Wareham NJ. Residential neighbourhood greenspace is associated with reduced risk of incident diabetes in older people: a prospective cohort study. BMC Public Health. 2016;16(1):1171.

60. Fujiwara T, Takamoto I, Amemiya A, Hanazato M, Suzuki N, Nagamine Y, et al. Is a hilly neighborhood environment associated with diabetes mellitus among older people? Results from the JAGES 2010 study. Soc Sci Med. 2017;182:45-51.

61. Gebreab SY, Hickson DA, Sims M, Wyatt SB, Davis SK, Correa A, et al. Neighborhood social and physical environments and type 2 diabetes mellitus in African Americans: The Jackson Heart Study. Health Place. 2017;43:128-37.

62. Loo CK, Greiver M, Aizarzadeh B, Lewis D. Association between neighbourhood walkability and metabolic risk factors influenced by physical activity: a cross-sectional study of adults in Toronto, Canada. BMJ Open. 2017;7(4):e013889.

63. Muller-Riemenschneider F, Pereira G, Villanueva K, Christian H, Knuiman M, Giles-Corti B, et al. Neighborhood walkability and cardiometabolic risk factors in Australian adults: an observational study. BMC Public Health. 2013;13:755.

64. Maas J, Verheij RA, de Vries S, Spreeuwenberg P, Schellevis FG, Groenewegen PP. Morbidity is related to a green living environment. Journal of epidemiology and community health. 2009;63(12):967-73.

65. Attard SM, Herring AH, Mayer-Davis EJ, Popkin BM, Meigs JB, Gordon-Larsen P. Multilevel examination of diabetes in modernising China: what elements of urbanisation are most associated with diabetes? Diabetologia. 2012;55(12):3182-92.

66. Freedman VA, Grafova IB, Rogowski J. Neighborhoods and chronic disease onset in later life. Am J Public Health. 2011;101(1):79-86.

67. AlHasan DM, Eberth JM. An ecological analysis of food outlet density and prevalence of type II diabetes in South Carolina counties. BMC Public Health. 2016;16:10.

68. Mezuk B, Li X, Cederin K, Rice K, Sundquist J, Sundquist K. Beyond Access: Characteristics of the Food Environment and Risk of Diabetes. Am J Epidemiol. 2016;183(12):1129-37.

69. Bodicoat DH, Carter P, Comber A, Edwardson C, Gray LJ, Hill S, et al. Is the number of fast-food outlets in the neighbourhood related to screen-detected type 2 diabetes mellitus and associated risk factors? Public Health Nutr. 2015;18(9):1698-705.

70. Frankenfeld CL, Leslie TF, Makara MA. Diabetes, obesity, and recommended fruit and vegetable consumption in relation to food environment sub-types: a cross-sectional analysis of Behavioural Risk Factor Surveillance System, United States Census, and food establishment data. BMC Public Health. 2015;15:491.
Chapter 2

75. Morland K, Diez Roux AV, Wing S. Supermarkets, other food stores, and obesity: the atherosclerosis risk in communities study. Am J Prev Med. 2006;30(4):333-9.
76. Babey SH, Diamant AL, Hastert TA, Harvey S. Designed for disease The link between local food environments and obesity and diabetes. UCLA Center for Health Policy Research. 2008.
77. Jiao J, Moudon AV, Kim SY, Hurvitz PM, Drewnowski A. Health Implications of Adults’ Eating at and Living near Fast Food or Quick Service Restaurants. Nutr Diabetes. 2015;5:e171.
78. Hipp JA, Chalise N. Spatial analysis and correlates of county-level diabetes prevalence, 2009-2010. Prev Chronic Dis. 2015;12:E08.
79. Liu L, Nunez AE. Multilevel and urban health modeling of risk factors for diabetes mellitus: a new insight into public health and preventive medicine. Adv Prev Med. 2014;2014:246049.
80. Braun LM, Malizia E. Downtown vibrancy influences public health and safety outcomes in urban counties. Journal of Transport & Health. 2015;2(4):540-8.
81. Meyer KA, Boone-Heinonen J, Duffey KJ, Rodriguez DA, Kiefe CI, Lewis CE, et al. Combined measure of neighborhood food and physical activity environments and weight-related outcomes: The CARDIA study. Health Place. 2015;33:9-18.
82. Cai Y, Hansell AL, Blangiardo M, Burton PR, BioShaRe, de Hoogh K, et al. Long-term exposure to road traffic noise, ambient air pollution, and cardiovascular risk factors in the HUNT and lifelines cohorts. Eur Heart J. 2017;38(29):2290-6.
83. Dzhambov A, Dimitrova D. Exposures to road traffic, noise, and air pollution as risk factors for type 2 diabetes: A feasibility study in Bulgaria. Noise and Health. 2016;18(82):133-42.
84. Sorensen M, Andersen ZJ, Nordsborg RB, Becker T, Tjonneland A, Overvad K, et al. Long-term exposure to road traffic noise and incident diabetes: a cohort study. Environ Health Perspect. 2013;121(2):217-22.
85. Eriksson C, Hilding A, Pyko A, Bluhm G, Pershagen G, Ostenson CG. Long-term aircraft noise exposure and body mass index, waist circumference, and type 2 diabetes: a prospective study. Environ Health Perspect. 2014;122(7):687-94.
86. Heidemann C, Niemann H, Paprott R, Du Y, Rathmann W, Scheidt-Nave C. Residential traffic and incidence of Type 2 diabetes: the German Health Interview and Examination Surveys. Diabet Med. 2014;31(10):1269-76.
87. Sallis JF, Cervero RB, Ascher W, Henderson KA, Kraft MK, Kerr J. An ecological approach to creating active living communities. Annu Rev Public Health. 2006;27:297-322.
88. Cao X, Mokhtarian PL, Handy SL. Examining the Impacts of Residential Self-Selection on Travel Behaviour: A Focus on Empirical Findings. Transport Reviews. 2009;29(3):359-95.
89. Aekplakorn W, Chariyalertsak S, Kessomboon P, Sangthong R, Inthawong R, Putwatana P, et al. Prevalence and management of diabetes and metabolic risk factors in Thai adults. Diabetes care. 2011;34(9):1980-5.
90. Agymang C, Meeks K, Beune E, Owusu-Dabo E, Mockenhaupt FP, Addo J, et al. Obesity and type 2 diabetes in sub-Saharan Africans - Is the burden in today's Africa similar to African migrants in Europe? The RODAM study. BMC Med. 2016;14(1):166.
91. Ali O, Tan TT, Sakinah O, Khalid BAK, Wu LL, Ng ML. Prevalence of NIDDM and impaired glucose tolerance in aborigines and Malays in Malaysia and their relationship to sociodemographic, health, and nutritional factors. Diabetes Care. 1993;16(1):68 - 75.
92. Al-Moosa S, Allin S, Jemiai N, Al-Lawati J, Mossialos E. Diabetes and urbanization in the Omani population: an analysis of national survey data. Popul Health Metr. 2006;4:5.
93. Anjana RM, Pradeepa R, Deepa M, Datta M, Sudha V, Unnikrishnan R, et al. Prevalence of diabetes and prediabetes (impaired fasting glycaemia and/or impaired glucose tolerance) in urban and rural India: phase I results of the Indian Council of Medical Research-India DIABetes (ICMR-INDIAB) study. Diabetologia. 2011;54(12):3022-7.
94. Assah FK, Ekelund U, Brage S, Mbanya JC, Wareham NJ. Urbanization, physical activity, and metabolic health in sub-Saharan Africa. Diabetes Care. 2011;34(2):491-6.

95. Allender S, Wickrampinghe K, Goldacre M, Matthews D, Katulanda P. Quantifying urbanization as a risk factor for noncommunicable disease. J Urban Health. 2011;88(5):906-18.

96. Balde NM, Diallo I, Balde MD, Barry IS, Kaba L, Diallo MM, et al. Diabetes and impaired fasting glucose in rural and urban populations in Futa Jallon (Guinea): prevalence and associated risk factors. Diabetes Metab. 2007;33(2):114-20.

97. Balogun WO, Gureje O. Self-reported incident type 2 diabetes in the Ibadan study of ageing: relationship with urban residence and socioeconomic status. Gerontology. 2013;59(1):3-7.

98. Baltazar JC, Ancheta CA, Aban IB, Fernando RE, Baquilod MM. Prevalence and correlates of diabetes mellitus and impaired glucose tolerance among adults in Luzon, Philippines. Diabetes Res Clin Pract. 2004;64(2):107-15.

99. Bernabe-Ortiz A, Carrillo-Larco RM, Gilman RH, Miele CH, Checkley W, Wells JC, et al. Geographical variation in the progression of type 2 diabetes in Peru: The CRONICAS Cohort Study. Diabetes Res Clin Pract. 2016;121:135-45.

100. Bocquier A, Cortaredona S, Nauleau S, Jardin M, Verger P. Prevalence of treated diabetes: Geographical variations at the small-area level and their association with area-level characteristics. A multilevel analysis in Southeastern France. Diabetes Metab. 2011;37(1):39-46.

101. Christensen DL, Friis H, Mwaniki DL, Kilonzo B, Tetens I, Boit MK, et al. Prevalence of glucose intolerance and associated risk factors in rural and urban populations of different ethnic groups in Kenya. Diabetes research and clinical practice. 2009;84(3):303-10.

102. Dagenais GR, Gerstein HC, Zhang X, McQueen M, Lear S, Lopez-Jaramillo P, et al. Variations in Diabetes Prevalence in Low-, Middle-, and High-Income Countries: Results From the Prospective Urban and Rural Epidemiological Study. Diabetes Care. 2016;39(5):780-7.

103. Davila EP, Quintero MA, Orrego ML, Ford ES, Walke H, Arenas MM, et al. Prevalence and risk factors for metabolic syndrome in Medellin and surrounding municipalities, Colombia, 2008-2010. Prev Med. 2013;56(1):30-4.

104. Delisle H, Ntandou-Bouzitou G, Agueh V, Sodjinou R, Fayomi B. Urbanisation, nutrition transition and cardiometabolic risk: the Benin study. Br J Nutr. 2012;107(10):1534-44.

105. Dong Y, Gao W, Nan H, Yu H, Li F, Duan W, et al. Prevalence of Type 2 diabetes in urban and rural Chinese populations in Qingdao, China. Diabet Med. 2005;22(10):1427-33.

106. Du GL, Su YX, Yao H, Zhu J, Ma Q, Tuerdi A, et al. Metabolic Risk Factors of Type 2 Diabetes Mellitus and Correlated Glycemic Control/Complications: A Cross-Sectional Study between Rural and Urban Uygur Residents in Xinjiang Uygur Autonomous Region. PLoS One. 2016;11(9):e0162611.

107. Esteghamati A, Maysame A, Khalilzadeh O, Rashidi A, Haghzali M, Asgari F, et al. Third national Surveillance of Risk Factors of Non-Communicable Diseases (SuRFNCD-2007) in Iran: methods and results on prevalence of diabetes, hypertension, obesity, central obesity, and dyslipidemia. BMC Public Health. 2009;9:167.

108. Georgousopoulou EN, Mellor DD, Naumovski N, Polychronopoulos E, Tyrovolas S, Piscopo S, et al. Mediterranean lifestyle and cardiovascular disease prevention. Cardiovasc Diagn Ther. 2017;7(Suppl 1):S39-S47.

109. Gong H, Pa L, Wang K, Mu H, Dong F, Ya S, et al. Prevalence of Diabetes and Associated Factors in the Uyghur and Han Population in Xinjiang, China. Int J Environ Res Public Health. 2015;12(10):12792-802.

110. Hussain A, Rahim MA, Azad Khan AK, Ali SMK, Vaaler S. Type 2 diabetes in rural and urban population: diverse prevalence and associated risk factors in Bangladesh. Diabetic Medicine. 2005;22(7):931-6.

111. Han SJ, Kim HJ, Kim DJ, Lee KW, Cho NH. Incidence and predictors of type 2 diabetes among Koreans: A 12-year follow up of the Korean Genome and Epidemiology Study. Diabetes Res Clin Pract. 2017;123:173-80.
112. Katchunga P, Masumbuko B, Belma M, Kashongwe Munogolo Z, Hermans MP, M’Buyamba-Kabangu JR. Age and living in an urban environment are major determinants of diabetes among South Kivu Congolese adults. Diabetes Metab. 2012;38(4):324-31.

113. Keel S, Foreman J, Xie J, van Wijngaarden P, Taylor HR, Dirani M. The Prevalence of Self-Reported Diabetes in the Australian National Eye Health Survey. PLoS One. 2017;12(1):e0169211.

114. Mayega RW, Guwatudde D, Makumbi F, Nakwagala FN, Peterson S, Tomson G, et al. Diabetes and pre-diabetes among persons aged 35 to 60 years in eastern Uganda: prevalence and associated factors. PLoS One. 2013;8(8):e72554.

115. Mohan I, Gupta R, Misra A, Sharma KK, Agrawal A, Vikram NK, et al. Disparities in Prevalence of Cardiometabolic Risk Factors in Rural, Urban-Poor, and Urban-Middle Class Women in India. PLoS One. 2016;11(2):e0149437.

116. Msyamboza KP, Mvula CJ, Kathyola D. Prevalence and correlates of diabetes mellitus in Malawi: population-based national NCD STEPS survey. BMC endocrine disorders. 2014;14(1):41.

117. Ntandou G, Delisle H, Agueh V, Fayomi B. Abdominal obesity explains the positive rural-urban gradient in the prevalence of the metabolic syndrome in Benin, West Africa. Nutr Res. 2009;29(3):180-9.

118. Oyebode O, Pape UJ, Laverty AA, Lee JT, Bhan N, Millett C. Rural, urban and migrant differences in non-communicable disease risk-factors in middle income countries: a cross-sectional study of WHO-SAGE data. PLoS One. 2015;10(4):e0122747.

119. Papoz L, Bamy S, Simon D, Group CS. Prevalence of diabetes mellitus in New Caledonia: ethnic and urban-rural differences. American journal of epidemiology. 1996;143(10):1018-24.

120. Pham NM, Eggleston K. Prevalence and determinants of diabetes and prediabetes among Vietnamese adults. Diabetes Res Clin Pract. 2016;113:116-24.

121. Raghupathy P, Antonisamy B, Fall CH, Geethanjali FS, Leary SD, Saperia J, et al. High prevalence of glucose intolerance even among young adults in south India. Diabetes Res Clin Pract. 2007;77(2):269-79.

122. Ramdani N, Vanderpas J, Boutayeb A, Meziane A, Hassani B, Zoheir J, et al. Diabetes and obesity in the eastern Morocco. Mediterranean Journal of Nutrition and Metabolism. 2011;5(2):49-55.

123. Sadikot SM, Nigam A, Das S, Bajaj S, Zargar AH, Prasannakumar KM, et al. The burden of diabetes and impaired fasting glucose in India using the ADA 1997 criteria: prevalence of diabetes in India study (PODIS). Diabetes Res Clin Pract. 2004;66(3):293-300.

124. Sobngwi E, Mbanya JC, Unwin NC, Porcher R, Kengne AP, Fezeu L, et al. Exposure over the life course to an urban environment and its relation with obesity, diabetes, and hypertension in rural and urban Cameroon. Int J Epidemiol. 2004;33(4):769-76.

125. Stanifer JW, Egger JR, Turner EL, Thielman N, Patel UD, Comprehensive Kidney Disease Assessment for Risk factors eK, et al. Neighborhood clustering of non-communicable diseases: results from a community-based study in Northern Tanzania. BMC Public Health. 2016;16:226.

126. Weng X, Liu Y, Ma J, Wang W, Yang G, Caballero B. An urban-rural comparison of the prevalence of the metabolic syndrome in Eastern China. Public Health Nutr. 2007;10(2):131-6.

127. Wu J, Cheng X, Qiu L, Xu T, Zhu G, Han J, et al. Prevalence and Clustering of Major Cardiovascular Risk Factors in China: A Recent Cross-Sectional Survey. Medicine (Baltimore). 2016;95(10):e2712.

128. Zhou M, Astell-Burt T, Bi Y, Feng X, Jiang Y, Li Y, et al. Geographical variation in diabetes prevalence and detection in china: multilevel spatial analysis of 98,058 adults. Diabetes Care. 2015;38(1):72-81.

129. Ewing R, Meakins G, Hamidi S, Nelson AC. Relationship between urban sprawl and physical activity, obesity, and morbidity - update and refinement. Health Place. 2014;26:118-26.
Supplementary files

Supplementary file 1: Search strategy

Search strategy in PubMed February 29, 2016 (read from bottom-up).

Set	Search terms	Result
#3	#1 AND #2	3726
#2	“Environment Design”[Mesh] OR “City Planning”[Mesh] OR “Spatial Analysis”[Mesh] OR “Geographic Information Systems”[Mesh] OR “Noise”[Mesh] OR “Parks, Recreational”[Mesh] OR “Crowding”[Mesh] OR green space*[tiab] OR greenspace*[tiab] OR green environment*[tiab] OR green infrastructure*[tiab] OR natural space*[tiab] OR natural environment*[tiab] OR environmental influence*[tiab] OR environmental determinant*[tiab] OR environmental support*[tiab] OR environmental approach*[tiab] OR environmental variable*[tiab] OR environmental attribute*[tiab] OR environmental barrier*[tiab] OR environmental characteristic*[tiab] OR environmental correlat*[tiab] OR environment design*[tiab] OR city planning*[tiab] OR urban design*[tiab] OR urban planning*[tiab] OR urban form*[tiab] OR town planning*[tiab] OR neighbourhood*[tiab] OR neighborhood*[tiab] OR geospatial*[tiab] OR local environment*[tiab] OR rural environment*[tiab] OR urban environment*[tiab] OR objective environment*[tiab] OR perceived environment*[tiab] OR measured environment*[tiab] OR obesogenic environment*[tiab] OR built environment*[tiab] OR physical environment*[tiab] OR geoepidemiology*[tiab] OR spatial analysis*[tiab] OR land use*[tiab] OR spatial access*[tiab] OR residential environment*[tiab] OR urban-rural epidemiology*[tiab] OR geographic cluster*[tiab] OR residential factor*[tiab] OR residence characteristic*[tiab] OR geographic information system*[tiab] OR geographical information system*[tiab] OR sprawl*[tiab] OR zoning*[tiab] OR residential location*[tiab] OR residential proximit*[tiab] OR population densit*[tiab] OR food outlet*[tiab] OR grocery store*[tiab] OR fast food density*[tiab] OR fast food restaurant*[tiab] OR retail densit*[tiab] OR walkability*[tiab] OR cyclability*[tiab] OR sidewalk*[tiab] OR pedestrian*[tiab] OR cycle path*[tiab] OR cyclepath*[tiab] OR recreational facilit*[tiab] OR recreation facility*[tiab] OR worksite*[tiab] OR sports facilit*[tiab] OR food environment*[tiab] OR food suppl*[tiab] OR public open space*[tiab] OR crowding*[tiab] OR park access*[tiab] OR urban park*[tiab] OR noise pollution*[tiab] OR contextual research*[tiab] OR ecological stud*[tiab] OR ecological analysis*[tiab] OR remoteness*[tiab] OR aesthetic*[tiab] OR active travel*[tiab] OR passive travel*[tiab] OR travel to work*[tiab]	157779
#1	“Diabetes Mellitus”[Mesh:NoExp] OR “Diabetes Mellitus, Type 2”[Mesh] OR “Blood Glucose”[Mesh] OR “Hyperglycemia”[Mesh] OR “Insulin Resistance”[Mesh] OR diabetes*[tiab] OR diabetic*[tiab] OR dm2*[tiab] OR niddm*[tiab] OR dm 2*[tiab] OR T2D*[tiab] OR dm type 2*[tiab] OR insulin*[tiab] OR glucose*[tiab] OR prediabetes*[tiab] OR pre-diabetes*[tiab] OR prediabetic*[tiab] OR glycemic*[tiab] OR glycaemic*[tiab] OR glycemia*[tiab] OR glycaemia*[tiab] OR HbA1*[tiab] OR HbA1c*[tiab] OR hemoglobin*[tiab] OR haemoglobin*[tiab] OR hyperglycemia*[tiab]	1024441
Search strategy in Embase.com February 29, 2016 (read from bottom-up).

Set	Search terms	Result
#4	#3 NOT ('conference abstract'/it OR 'editorial'/it OR 'erratum'/it OR 'letter'/it OR 'note'/it)	6934
#3	#1 AND #2	8753
#2	‘environmental planning'/exp OR ‘city planning'/exp OR ‘spatial analysis'/exp OR ‘geographic information system'/exp OR ‘noise pollution'/exp OR ‘land use'/exp OR ‘neighbourhood'/exp OR ‘recreational park'/exp OR ‘crowding (area)'/exp OR ‘green space':ab,ti OR ‘green infrastructure':ab,ti OR ‘natural space':ab,ti OR ‘natural environment':ab,ti OR ‘natural infrastructure':ab,ti OR ‘environment’ design*:ab,ti OR ‘environment’ influence*:ab,ti OR ‘environment’ determinant*:ab,ti OR ‘environment’ support*:ab,ti OR ‘environment’ approach*:ab,ti OR ‘environment’ variable*:ab,ti OR ‘environment’ attribute*:ab,ti OR ‘environment’ barrier*:ab,ti OR ‘environment’ characteristic*:ab,ti OR ‘environment’ correlat*:ab,ti OR ‘city planning’:ab,ti OR ‘urban design’:ab,ti OR ‘urban form’:ab,ti OR ‘urban planning’:ab,ti OR ‘town planning’:ab,ti OR ‘neighbourhood’:ab,ti OR ‘geospatial’:ab,ti OR ‘local environment’:ab,ti OR ‘rural environment’:ab,ti OR ‘urban environment’:ab,ti OR ‘objective environment’:ab,ti OR ‘perceived environment’:ab,ti OR ‘measured environment’:ab,ti OR ‘obesogenic environment’:ab,ti OR ‘built environment’:ab,ti OR ‘physical environment’:ab,ti OR ‘geoepidemiology’:ab,ti OR ‘spatial analysis’:ab,ti OR ‘land use’:ab,ti OR ‘spatial access’:ab,ti OR ‘residential environment’:ab,ti OR ‘urban rural epidemiology’:ab,ti OR ‘geographic cluster’:ab,ti OR ‘residential factor’:ab,ti OR ‘residence characteristic’:ab,ti OR ‘geographic information system’:ab,ti OR ‘sprawl’:ab,ti OR ‘zoning’:ab,ti OR ‘residential location’:ab,ti OR ‘residential’ proximit*:ab,ti OR ‘population densit*:ab,ti OR ‘food outlet’:ab,ti OR ‘grocery store’:ab,ti OR ‘fast food densit*:ab,ti OR ‘fast food restaurant’:ab,ti OR ‘retail densit*:ab,ti OR ‘walkability’:ab,ti OR ‘cycability’:ab,ti OR ‘sidewalk’:ab,ti OR ‘pedestrian’:ab,ti OR ‘cycle path’:ab,ti OR ‘cyclepath’:ab,ti OR ‘recreation’ facilit*:ab,ti OR ‘worksite’:ab,ti OR ‘sport’ facilit*:ab,ti OR ‘food environment’:ab,ti OR ‘park access’:ab,ti OR ‘urban park’:ab,ti OR ‘noise pollution’:ab,ti OR ‘contextual research’:ab,ti OR ‘ecological stud*:ab,ti OR ‘ecological analys*:ab,ti OR ‘remoteness’:ab,ti OR ‘aesthetic’:ab,ti OR ‘active travel’:ab,ti OR ‘passive travel’:ab,ti OR ‘travel to work’:ab,ti	
#1	‘diabetes mellitus'/de OR ‘non insulin dependent diabetes mellitus'/exp OR ‘glucose blood level'/exp OR ‘hyperglycemia'/exp OR ‘insulin resistance'/exp OR ‘insulin sensitivity'/exp OR ‘diabetes':ab,ti OR ‘diabetic’:ab,ti OR ‘dm2’:ab,ti OR ‘niddm’:ab,ti OR ‘dm 2’:ab,ti OR ‘t2d’:ab,ti OR ‘dm type 2’:ab,ti OR ‘insulin':ab,ti OR ‘glucose':ab,ti OR ‘pre-diabetes':ab,ti OR ‘pre-diabetic’:ab,ti OR ‘glycemic':ab,ti OR ‘glycaemic':ab,ti OR ‘glycemia':ab,ti OR ‘glycaemia':ab,ti OR ‘HbA1c':ab,ti OR ‘HB A1c':ab,ti OR ‘HbA1c':ab,ti OR ‘haemoglobin':ab,ti OR ‘haemoglobiwn':ab,ti OR ‘hyperglycemia':ab,ti	

1416599
Search strategy in Web of Science Core Collection, February 29, 2016 (read from bottom-up).

Set	Search terms	Result
#4	#2 AND #1 **Refined by:** WEB OF SCIENCE CATEGORIES: (ENDOCRINOLOGY METABOLISM OR PUBLIC ENVIRONMENTAL OCCUPATIONAL HEALTH OR GERIATRICS GERONTOLOGY OR SPORT SCIENCES OR NUTRITION DIETETICS OR ECOLOGY OR HEALTH POLICY SERVICES OR MEDICINE GENERAL INTERNAL OR BEHAVIOURAL SCIENCES OR ENVIRONMENTAL SCIENCES OR MULTIDISCIPLINARY SCIENCES OR PATHOLOGY OR FOOD SCIENCE TECHNOLOGY OR PHYSIOLOGY OR GEO SCIENCES MULTIDISCIPLINARY OR CARDIAC CARDIOVASCULAR SYSTEMS OR HEALTH CARE SCIENCES SERVICES OR PSYCHOLOGY OR ANTHROPOLOGY) Indexes=SCI-EXPANDED, SSCI, A&HCI, ESCI Timespan=All years	4067
#3	#1 AND #2	11217
#2	TS=(“environment design*” OR “city planning*” OR “spatial analysis” OR “geographic information system*” OR noise OR crowding OR “green space*” OR greenspace* OR “green environment*” OR “green infrastructure*” OR “natural space*” OR “natural environment*” OR “natural infrastructure*” OR “environmental influence*” OR “environmental determinant*” OR “environmental support*” OR “environmental approach*” OR “environmental variable*” OR “environmental attribute*” OR “environmental barrier*” OR “environmental characteristic*” OR “environmental correlat*” OR “urban design*” OR “urban planning*” OR “urban form” OR “town planning*” OR “neighbourhood*” OR neighborhood* OR “local environment*” OR “rural environment*” OR “urban environment*” OR “objective environment*” OR “perceived environment*” OR “measured environment*” OR “obesogenic environment*” OR “built environment*” OR “physical environment*” OR geoepidemiology OR “spatial analysis” OR “land use” OR “spatial access” OR “residential environment*” OR “urban-rural epidemiology” OR “geographic cluster*” OR “residential factor*” OR “residence characteristic*” OR “geographic information system*” OR “geographical information system*” OR sprawl OR zoning OR “residential location*” OR “residential proximit*” OR “population densit*” OR “food outlet*” OR “grocery store*” OR “fast food density” OR “fast food restaurant*” OR “retail densit*” OR “walkability” OR “cyclicity” OR sidewalk* OR pedestrian OR “cycle path*” OR cyclepath* OR “recreational facilit*” OR “recreational park*” OR “recreation facility*” OR worksite* OR “sports facilit*” OR “food environment*” OR “food suppl*” OR “public open space*” OR crowding OR “park access” OR “urban park*” OR “noise pollution” OR “contextual research” OR “ecological stud*” OR “ecological analy*” OR “ remoteness OR aesthetic*” OR “active travel*” OR “passive travel*” OR “travel to work”) Indexes=SCI-EXPANDED, SSCI, A&HCI, ESCI Timespan=All years	116726
#1	TS=(diabetes OR diabetic* OR “blood glucose” OR “hyperglycemia” OR insulin* OR dm2 OR niddm OR dm 2 OR T2D* OR dm type 2 OR glucose OR prediabetes OR “pre-diabetes” OR prediabetic OR glycemic OR glycaemic OR glycaemia* OR glycemia* OR HbA1 OR “HB A1” OR HbA1c OR hemoglobin* OR haemoglobin* OR hyperglycemia*) Indexes=SCI-EXPANDED, SSCI, A&HCI, ESCI Timespan=All years	1173823
Supplementary file 2: Study characteristics and results of studies with a weak quality rating

Supplementary table 2.1: Study characteristics and results of studies with a weak quality rating investigating the association of urban and rural environment with T2D

Author	Year	Country	Country income level	Study design	Sample size	Age	Outcome†	Outcome assessment‡	Result: At least adjusted for age and sex	Quality statement	
Asadollahi et al.	2015	Iran	Upper middle	Cross-sectional	2,158	45.5 ± 14.0	T2D/T1D prevalence	Blood sample	Yes	Weak	
Azizi et al.	2003	Iran	Upper middle	Cross-sectional	595,717	62% < 50 y	38% ≥ 50 y	T2D/T1D prevalence	Blood sample	No	Weak
Bharati et al.	2011	India	Lower middle	Cross-sectional	214	100% > 60 y	T2D/T1D prevalence	Self-report	No	Weak	
Ceesay et al.	1997	Sierra Leone	Low	Cross-sectional	501	35.7 ± 15.7	Glycaemic marker: random blood glucose	Blood sample	No	Weak	
Colleran et al.	2007	Mexico	Upper middle	Cross-sectional	200	100% > 50 y	T2D/T1D prevalence	Secondary	X	No	Weak
Dar et al.	2015	India	Lower middle	Cross-sectional	3,972	100% > 40 y	T2D prevalence	Blood sample	X	No	Weak
Gangqiang et al.	2004	China	Upper middle	Longitudinal	3,650,000	NA	T2D/T1D incidence	Secondary	X	No	Weak
Khan et al.	2014	Bangladesh	Lower middle	Cross-sectional	7,543	100% > 35 y	T2D/T1D prevalence	Secondary	Yes	Weak	
Supplementary table 2.1: Study characteristics and results of studies with a weak quality rating investigating the association of urban and rural environment with T2D (continued)

Author	Year	Country	Country income level	Study design	Sample size	Age	Outcome†	Outcome assessment‡	Result: Urban > Rural	Rural > Urban	No difference	At least adjusted for age and sex	Quality statement
Kodaman et al.	2016	Ghana	Lower middle	Cross-sectional	3,316	43.5 ± 13.4	T2D/T1D prevalence	Blood sample	X	Sex	No	Weak	
Mi et al.	2016	China	Upper middle	Cross-sectional	231,289	56.4 ± 11.4	T2D/T1D prevalence	Blood sample	X	Yes	Weak	Weak	
Mierzecki et al.	2014	Poland	High	Cross-sectional	271	25-45 years	Glycaemic marker: fasting blood glucose	Blood sample	X	No	Weak	Weak	
Mohamud et al.	2010	Malaysia	Cross-sectional	Cross-sectional	4,341	47.8 ± 14.5	Insulin resistance: HOMA-IR ≥ 2.6	Blood sample	X	No	Weak	Weak	
Nakibuuka et al.	2015	Uganda	Low	Cross-sectional	5,420	Urban: 32.7 ± 12.4 Rural: 40.1 ± 16.3	T2D/T1D prevalence	Blood sample	X	No	Weak	Weak	
Njelekeka et al.	2003	Tanzania	Low	Cross-sectional	445	51.8 ± 3.4	Glycaemic marker: HbA1c	Blood sample	X	(women)	(men)	Weak	
Shera et al.	2007	Pakistan	Lower middle	Cross-sectional	5,433	74% < 55y 26% ≥ 55y	T2D/T1D prevalence	Secondary	X	No	Weak	Weak	
Valverde et al.	2006	Spain	High	Cross-sectional	1,556	58% < 50y 42% ≥ 50y	T2D/T1D prevalence	Blood sample	X	No	Weak	Weak	
Supplementary table 2.2: Study characteristics of studies with a weak quality rating investigating physical activity environment, food environment and T2D

Author	Year	Country	Income level	Study design	Sample size	Age	Outcome†	Outcome assessment‡	Exposure category	Exposure assessment	Level geodata	Quality statement
Babey et al. (76)	2008	US	High	Cross-sectional	43,000	> 18y	T2D/T1D prevalence rate	Self-report	Food GIS	Individual	Weak	
Ewing et al. (129)	2014	US	High	Cross-sectional	709,234	> 18y	T2D/T1D prevalence	Blood sample	PA Secondary	Aggregate	Weak	
Herrick et al. (51)	2015	US	High	Cross-sectional	15,522	41.0 ± 12.6	T2D/T1D prevalence	Blood sample	PA food Place of residence	Individual	Weak	
Jiao et al. (77)	2015	US	High	Cross-sectional	2,001	54.0 ± 15.0	T2D/T1D prevalence	Blood sample	Food GIS	Individual	Weak	
Marshall et al. (52)	2014	US	High	Cross-sectional	1,044	35.5 ± 8.3	T2D/T1D prevalence	Self-report	PA food	Aggregate	Weak	
Salois et al. (55)	2012	US	High	Cross-sectional	NA NA	NA	T2D/T1D prevalence	Secondary PA food	Secondary Aggregate	Weak		
Shaffer et al.	2017	US	High	Cross-sectional	444	21.3 ± 1.43	Glycaemic marker: fasting glucose	Blood sample	PA	Self-report	Individual	Weak
Author	Exposure	Study result*	95% Confidence interval or p-value	At least age and sex adjusted								
-----------------	--	---------------	-----------------------------------	------------------------------								
Babey et al., 2008	Food environment: RFEI^a	Prevalence:	P < 0.05 (high vs. low RFEI)	No								
	1. RFEI > 5											
	2. RFEI 3 - 4,9											
	3. RFEI < 3											
Ewing et al., 2014	1. Original sprawl index (density)	T-ratio	P < 0.05	Yes								
	2. Refined sprawl index[‡]											
Herrick et al., 2015	1. Walkability (per SD change)	OR:	95% CI:	Yes								
	2. Supermarket density (per square mile)		1.04 – 1.37									
Jiao et al., 2015	Distance to closest fast food restaurant	OR:	0.83 – 1.99	Yes								
Marshall et al., 2014	Block group level variables	Beta (SE):		No								
	1. Intersection variables		1. NS									
	2. Intersection density (per square mile)		2. NS									
	3. Number of fast food restaurants		3. NS									
	4. Number of big box stores		4. P < 0.10									
	5. Number of grocery stores		5. NS									
	City level:											
	6. Intersection density (per square mile)	-0.0004	6. P < 0.05									
	7. Average tot number of lanes on major streets	0.029	7. P < 0.05									
	8. Percent of major streets with bike lanes	-0.07	8. P < 0.05									
	9. Number of fast food restaurants	-0.001	9. P < 0.05									
	10. Number of fitness centres	NR	10. NS									
	11. Number of convenience stores	0.008	11. P < 0.05									
Salois et al., 2012	Local food economy:	Intercept = 9.5,		No								
	1. Farmers’ market density	-0.925	1. p < 0.05									
	2. Direct farm sales per capita (dollars)	-0.013	2. p < 0.01									
	3. Percent of farms with direct sales	-0.007	3. NS									
	4. Fast food restaurants density	0.321	4. p < 0.01									
	5. Full-service restaurants density	-0.606	5. p < 0.01									
	6. Supermarkets-grocery store density	-0.002	6. NS									
	7. Convenience stores no gas density	1.993	7. p < 0.01									
	8. Convenience stores with gas density	0.199	8. NS									
	9. Supercentres and club density	1.69	9. NS									
	10. Recreational and fitness facilities density	-0.644	10. NS									
	11. ERS natural amenity index	-0.051	11. NS									
Chapter 2

Supplementary table 2.3: Study results of studies a weak quality rating investigating the association of physical activity environment, food environment or residential noise with T2D (continued)

Author	Exposure	Study result*	95% Confidence interval or p-value	At least age and sex adjusted
Shaffer et al., 2017	Walkability:	Correlation:		
	Males:			
	1. sidewalks	1. 0.17	1. P > 0.05	
	2. traffic	2. -0.08	2. P > 0.05	
	3. crime during day	3. -0.09	3. P > 0.05	
	4. crime at night	4. -0.02	4. P > 0.05	
	Females			
	5. sidewalks	5. 0.09	5. P > 0.05	
	6. traffic	6. 0.28	6. P < 0.05	
	7. crime during day	7. 0.21	7. P < 0.05	
	8. crime at night	8. -0.16	8. P > 0.05	
Supplementary file 3: Sensitivity analyses

Forest plots of meta-analysis of the association between built environmental characteristics and T2D risk/prevalence, including studies with a weak quality rating.

Strong quality rating

Author(s) and Year	Relative Risk [95% CI]
Balogun, 2012	4.25 [1.81, 9.90]
Raghupathy, 2007	1.06 [0.84, 1.33]
Du, 2016	1.14 [0.88, 1.48]
Attard, 2012	1.94 [1.35, 2.79]
Davila, 2013	0.71 [0.31, 1.63]
Gong, 2015	1.90 [1.27, 2.84]
Oyebode, 2015	1.88 [1.28, 2.76]
Han, 2017	1.38 [1.23, 1.55]
Dagenais, 2016	1.24 [1.11, 1.39]
Pharm, 2016	1.20 [1.06, 1.36]
Bahendeka, 2016	1.80 [0.75, 4.33]
Allender, 2011	2.05 [1.35, 3.11]

Moderate quality rating

Author(s) and Year	Relative Risk [95% CI]
Anjana, 2011	1.30 [1.11, 1.52]
Christensen, 2009	2.10 [1.43, 3.07]
Ramdani, 2012	1.22 [0.89, 1.68]
Barnabe–ortiz, 2016	1.94 [1.35, 2.79]
Zhou, 2015	1.22 [1.05, 1.42]
Keel (non–indigenous), 2017	1.01 [0.65, 1.57]
Keel (indigenous), 2017	0.62 [0.40, 0.97]
Georgousopoulou, 2017	2.57 [1.09, 6.03]

Weak quality rating

Author(s) and Year	Relative Risk [95% CI]
Asadollahi, 2015	1.60 [1.37, 1.86]

RE Model for All Studies (I² = 81.9%)

High income

Author(s) and Year	Relative Risk [95% CI]
Han, 2017	1.38 [1.23, 1.55]
Keel (non–indigenous), 2017	1.01 [0.65, 1.57]
Keel (indigenous), 2017	0.62 [0.40, 0.97]
Georgousopoulou, 2017	2.57 [1.09, 6.03]

Upper middle income

Author(s) and Year	Relative Risk [95% CI]
Dagenais, 2016	1.24 [1.11, 1.39]
Du, 2016	1.14 [0.88, 1.48]
Attard, 2012	1.94 [1.35, 2.79]
Davila, 2013	0.71 [0.31, 1.63]
Gong, 2015	1.90 [1.27, 2.84]
Oyebode, 2015	1.88 [1.28, 2.76]
Barnabe–ortiz, 2016	1.94 [1.35, 2.79]
Zhou, 2015	1.22 [1.05, 1.42]

Lower middle income

Author(s) and Year	Relative Risk [95% CI]
Pharm, 2016	1.20 [1.06, 1.36]
Asadollahi, 2015	1.60 [1.37, 1.86]
Balogun, 2012	4.25 [1.81, 9.96]
Raghupathy, 2007	1.06 [0.84, 1.33]
Allender, 2011	2.05 [1.35, 3.11]
Anjana, 2011	1.36 [1.11, 1.52]
Christensen, 2009	2.10 [1.43, 3.07]
Ramdani, 2012	1.22 [0.89, 1.68]

Low income

Author(s) and Year	Relative Risk [95% CI]
Bahendeka, 2016	1.80 [0.75, 4.33]

RE Model for All Studies (I² = 81.9%)
Supplementary file 4: Studies investigating combined characteristics

Supplementary table 4: Study characteristics and results of studies investigating combinations of environmental characteristics

Author	Exposure	Study result*	95% Confidence interval or p-value	At least age and sex adjusted
Braun et al., 2015	Vibrancy index†	Beta (SE):	NS	Yes
		-0.002 (0.001)		
Freedman et al., 2011	Built environment:	OR:	95% CI:	Yes
	Men:			
	5. Connectivity (2000 Topologically Integrated Geographic Encoding and Referencing system).	5. 1.06	5. 0.86 – 1.29	
	6. Density (number of food stores, restaurants, housing units per square mile)	6. 1.05	6. 0.89 – 1.24	
	Women:			
	7. Connectivity	7. 1.01	7. 0.84 – 1.20	
	8. Density	8. 0.99	8. 0.99 – 1.17	
Liu et al., 2014	PSE ‡:	OR:	95% CI:	Yes
	1. Q1 (< 0.62)	1. 1	1. NA	
	2. Q4 (0.70 – 0.76)	2. 1.53	2. 1.25 – 1.88	
Meyer et al., 2015	Obesogenicity clusters (latent class analyses)	Beta:	95% CI:	Yes
	Lower population density clusters:			
	1. Low obesogenicity, moderate development: moderate level of neighbourhood features, relatively more Pa resources (than the other two low-population-density classes) and a diverse mix of food resources	1. 0	1. NA	
	2. Moderate obesogenicity, moderate development: high connectivity, moderate Pa resources, high convenience store, supermarkets, grocery store (relative to other food resources)	2. -0.038	2. -0.083 – 0.006	
	3. High obesogenicity, low development: low connectivity, few PA resources, food environment relatively high in convenience store and moderate in fast food	3. -0.013	3. -0.045 – 0.019	
	Higher population density clusters:			
	4. Low obesogenicity, high development: high connectivity, many PA resources, food environment characterised by high in coops, specialty markets, and non-fast-food restaurants, low in convenience stores	4. 0	4. NA	
	5. Moderate obesogenicity, moderate development: moderate levels of all features	5. 0.034	5. 0.002 – 0.067	
	6. High obesogenicity, high development: high connectivity, large number of parks and PA resources, convenience stores, grocery stores	6. -0.007	6. -0.045 – 0.032	

†Vibrancy index = composed of compactness, density, regional connectivity, local connectivity, destination accessibility, mixed use, social diversity. ‡ Refined sprawl index = density, land use mix, population and employment centering, street accessibility, D PSE = access to and usage of recreational facilities, access to fruits and vegetables, quality of accessible groceries, likelihood that neighbours help each other, examples of neighbours working together, sense of belonging, degree of trust in neighbours, poverty level.
Built environmental characteristics and diabetes: a systematic review and meta-analysis