POLYNOMIALS WITH SURJECTIVE ARBOREAL GALOIS REPRESENTATIONS EXIST IN EVERY DEGREE

JOEL SPECTER

Abstract. Let E be a Hilbertian field of characteristic 0. R.W.K. Odoni conjectured that for every positive integer n there exists a polynomial $f \in E[X]$ of degree n such that each iterate $f^{\circ k}$ of f is irreducible and the Galois group of the splitting field of $f^{\circ k}$ is isomorphic to the automorphism group of a regular, n-branching tree of height k. We prove this conjecture when E is a number field.

1. Introduction

Given a polynomial $f \in \mathbb{Q}[X]$, the roots of f are the most evident set on which the absolute Galois group acts. This note concerns the Galois action on the second most evident set: the set of roots of all compositional iterates of f.

We begin by establishing some notation. All fields considered in this note have characteristic 0. If F is a field and $f \in F[X]$ is a polynomial, for each positive integer k, we denote the k-th iterate of f under composition by $f^{\circ k}$. The set of all pre-images of 0 under the iterates of f is denoted $T_f := \prod_{k=0}^{\infty} \{ r \in F : f^{\circ k}(r) = 0 \}$.

To organize T_f, we give it the structure of a rooted tree: a zero r_k of $f^{\circ k}$ is connected to a zero r_{k-1} of $f^{\circ (k-1)}$ by an edge if $f(r_k) = r_{k-1}$. We call T_f the pre-image tree of 0. The absolute Galois group G_F of F acts on T_f by tree automorphisms. The resulting map $\rho_f : G_F \to \text{Aut}(T_f)$
is called the arboreal Galois representation associated to f. We will say ρ_f is regular if T_f is a regular, rooted tree of degree equal to the degree of f.

Interest in arboreal Galois representations originates from the study of prime divisors appearing in the numerators of certain polynomially-defined recursive sequences. Explicitly, given a polynomial $f \in \mathbb{Q}[X]$ and an element $c_0 \in \mathbb{Q}$, one wishes to understand the density of the set of primes

$$ S_{f,c_0} := \{ p : v_p(f^{\circ n}(c_0)) > 0 \text{ for some value of } n \} $$

inside the set of all prime integers. An observation, first made by Odoni in [Odo85b], is that one may bound this density from above using Galois theory. Specifically, if one excludes the primes p for which c_0 and f are not p-integral, a prime p is contained in S_{f,c_0} if and only if c_0 is a root of some iterate of $f \mod p$. By the Chebotarev Density Theorem, the proportion of primes p for which $f^{\circ k} \mod p$ has a root is determined by the image of ρ_f. As a general
principle, if a polynomial has an arboreal Galois representation with large image, then few primes appear in $S_{f,c}$. For specific results, we refer the reader to [Odo85b] or [Jon08].

In [Odo85a], Odoni showed that for any field F of characteristic 0, the arboreal Galois representation associated to the generic monic, degree n polynomial

$$f_{gen}(X) := X^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0 \in F(a_{n-1}, \ldots, a_0)[X]$$

is regular and surjective. When F is Hilbertian, for example when $F = \mathbb{Q}$, one expects that most monic, degree n polynomials behave like f_{gen}. Indeed, this expectation holds true for any finite number of iterates: for each $k > 0$, the set of monic, degree n polynomials f such that the Galois group of f^k over F is smaller than the Galois group of f_{gen} over $F(a_{n-1}, \ldots, a_0)$ is thin. Alas, in general, the intersection of the complement of countably many thin sets may be empty; therefore, Odoni’s theorem does not imply the existence of any specialization with surjective arboreal Galois representation. He conjectures that such specializations exist.

Conjecture 1.1 ([Odo85a], Conjecture 7.5). Let E be a Hilbertian field of characteristic 0. For each positive integer n, there exists a monic, degree n polynomial $f \in E[X]$ such that every iterate of f is irreducible and the associated arboreal Galois representation

$$\rho_f : G_E \to \text{Aut}(T_f)$$

is surjective.

In this note, we prove Odoni’s conjecture when E is a number field. More generally, we prove Conjecture 1.1 for extensions of \mathbb{Q} that are unramified outside of finitely many primes of \mathbb{Z}.

Theorem 1.2. If E/\mathbb{Q} is an algebraic extension that is unramified outside finitely many primes, then for each positive integer n there exists a positive integer $a < n$ and infinitely many $A \in \mathbb{Q}$ such that the polynomial

$$f_{a,A}(X) := X^n(X - A)^{n-a} + A$$

and all of its iterates are irreducible over E and the arboreal G_E-representation associated to $f_{a,A}$ is surjective.

Our choice to consider the polynomial families in Theorem 1.2 was inspired by examples of surjective arboreal Galois representations over \mathbb{Q} constructed by Robert Odoni and Nicole Looper. In [Odo85b], Odoni shows that the arboreal $G_\mathbb{Q}$-representation associated to $X(X - 1) + 1$ is regular and surjective. In [Loo16], Looper proves Conjecture 1.1 for polynomials over \mathbb{Q} of prime degree by analyzing the arboreal Galois representations associated to certain integer specializations of the trinomial family $X^n - ntX^{n-1} + nt = X^{n-1}(X - nt) + nt$.

In addition to our note, there have been a series of recent, independent works concerning Odoni’s conjecture. Borys Kadets [Kad18] has proved Conjecture 1.1 when n is even and greater than 19, and $E = \mathbb{Q}$. Robert Benedetto and Jamie Juul [BJ18] have proved Conjecture 1.1 when E a number field, and n is even or $\mathbb{Q}(\sqrt{n}, \sqrt{n - 2}) \not\subseteq E$.

The organization of this paper is as follows. Section 2 provides a criterion with which to check if an arboreal Galois representation contains a congruence subgroup $\Gamma(N)$. This

1 Jamie Juul has shown that the arboreal Galois representation associated to the generic monic, degree n polynomial over a field F of any characteristic is regular and surjective under the assumption that the characteristic of F and the degree n do not both equal 2 [Juu14].
criterion is that the image of the arboreal Galois representation contains, up to conjugation, some set of preferred elements
\[\{\sigma_0\} \cup \{\sigma_k : k > N\} \cup \{\sigma_{\infty, N}\} \]
which topologically generate a subgroup containing \(\Gamma(N) \). In Section 2, we show that for various explicit choices of \(A \) and \(a \) there are prime integers
\[\{p_0\} \cup \{p_k : k > 0\} \cup \{p_{\infty}\} \]
such that the image of the inertia group \(I_{p_k} \leq G_{\mathbb{Q}_{p_k}} \) under \(\rho_{f_{a,A}} \) contains an element conjugate to \(\sigma_k \) if \(k < \infty \), and conjugate to either \(\sigma_{\infty,1} \) or \(\sigma_{\infty,0} \) if \(k = \infty \). By choosing \(A \) well, one can force \(p_k \) to lie outside any fixed, finite set of primes; hence if \(E/\mathbb{Q} \) is unramified outside finitely many primes, then there is a choice of \(a \) and \(A \) such that the image of \(G_E \) under \(\rho_{f_{a,A}} \) contains \(\Gamma(1) \). Given such a polynomial, its arboreal Galois representation is surjective if and only if its splitting field is an \(S_n \)-extension. In Section 4 we prove there are infinitely many values of \(A \) and \(a \) for which the representation \(\rho_{f_{a,A}} : G_E \to \text{Aut}(T_{f_{a,A}}) \) is surjective by means of a Hilbert Irreducibility argument.

2. Recognizing Surjective Representations

Fix a field \(F \) of characteristic 0 and let \(f \in F[X] \) be a polynomial. For every non-negative integer \(N \), let
\[T_{f,N} := \prod_{k=0}^{N} \{ r \in \overline{F} : f^{\circ k}(r) = 0\} \subseteq T_f \]
denote the full subtree of \(T_f \) whose vertices have at most height \(N \). The subtree \(T_{f,N} \) is stable under the action of \(\text{Aut}(T_f) \). Let \(\Gamma(N) \leq \text{Aut}(T_f) \) be the vertex-wise stabilizer of \(T_{f,N} \) in \(\text{Aut}(T_f) \). In this section, we describe a condition under which the image of \(\rho_f \) contains \(\Gamma(\bar{N}) \). Since \(\Gamma(0) \) equals \(\text{Aut}(T_f) \), the case when \(N = 0 \) is of primary interest.

To state our criterion, we introduce some terminology. For each non-negative integer \(k \), we denote the splitting field of \(f^{\circ k} \) over \(F \) by \(F_k \). If \(k \) is negative, we define \(F_k := F \). By a branch of the tree \(T_f \), we mean a sequence of vertices \((r_i)_{i=0}^{\infty} \) such that \(r_0 = 0 \) and \(f(r_i) = r_{i-1} \) for \(i > 0 \). The group \(G_F \) acts on the branches of \(T_f \). If \(X \) is some set of branches and \(\sigma \in G_F \), we say that \(\sigma \) acts transitively on \(X \) if the closed, pro-cyclic subgroup \(\langle \sigma \rangle \subseteq G_F \) stabilizes \(X \) and acts transitively in the usual sense.

The following is a sufficient condition for the image of a regular aboreal Galois representation to contain \(\Gamma(N) \).

Lemma 2.1. Let \(N \) be a non-negative integer, \(f \in F[X] \) be a monic polynomial of degree \(n \), and \(a < n \) be a positive integer such that either \(a = 1 \), or \(a < n/2 \) and \(n - a \) is prime. Assume that all iterates of \(f \) are separable. Furthermore, assume that:

1. there is an element \(\sigma_0 \in G_F \) which acts transitively on the branches of \(T_f \),
2. there is an element \(\sigma_{\infty,N} \in G_F \) and a regular, \((n - a)\)-branching subtree \(T \subseteq T_f \) such that \(\sigma_{\infty,N} \) acts transitively on the branches of \(T \), and
3. for every positive integer \(k > N \), there is an element \(\sigma_k \in \text{Gal}(F_k/F_{k-1}) \) which acts on the roots of \(f^{\circ k} \) in \(F_k \) as a transposition,

then all iterates of \(f \) are irreducible, and the image of the arboreal Galois representation associated to \(f \) contains \(\Gamma(N) \).
Proof. Since all iterates of \(f \) are separable, Hypothesis \(\square \) implies that all iterates of \(f \) are irreducible. We show that \(\Gamma(N) \) is contained in the image of \(\rho_f \).

For all integers \(k > N \), the subgroup \(\Gamma(k) \leq \Gamma(N) \) is finite index, and \(\Gamma(N) \) is isomorphic to the inverse limit \(\varprojlim_{k>N} \Gamma(N)/\Gamma(k) \). We regard \(\Gamma(N) \) as a topological group with respect to the topology induced by the system of neighborhoods \(\{ \Gamma(k) \}_{k>N} \). The map \(\rho_f : G_F \rightarrow \text{Aut}(T_f) \) is continuous in this topology. Since \(G_F \) is compact, the image, \(\rho_f(G_F) \), is closed.

To show that the closed subgroup \(\rho_f(G_F) \) contains \(\Gamma(N) \), it suffices to show that for all \(k > N \)
\begin{equation}
(\rho_f(G_F) \cap \Gamma(k-1))/(\rho_f(G_F) \cap \Gamma(k)) = \Gamma(k-1)/\Gamma(k) \tag{2.1}
\end{equation}

Fix an integer \(k > N \). Concretely, \(\Gamma(k-1)/\Gamma(k) \) is the group of permutations \(\sigma \) of the roots of \(f^{\circ k} \) which satisfy the relation \(\rho(\sigma(r)) = \rho(r) \). For each root \(\pi \) of \(f^{\circ (k-1)} \), let \(X_{\pi} \) denote the set of roots of \(f(X) - \pi \) in \(F \). The group \(\Gamma(k-1)/\Gamma(k) \) stabilizes \(X_{\pi} \), and there is an isomorphism
\begin{equation}
\Gamma(k-1)/\Gamma(k) \cong \bigoplus_{\pi \in X \text{ \Gamma(k-1)-conjugate to a transposition} \;
X_{\pi} \quad \text{given by the direct sum of the restriction maps. Note that } \text{Gal}(F_k/F_{k-1}) \text{ is the subquotient of } G_F \text{ which is mapped isomorphically to } (\rho_f(G_F) \cap \Gamma(k-1))/(\rho_f(G_F) \cap \Gamma(k)) \text{ via the map induced by } \rho_f.
\end{equation}

To show Equation (2.1) holds (and therefore prove the lemma), it suffices by Equation (2.2) to show that:

(\star) If \((r r') \) is a transposition in the symmetric group on the roots \(f^{\circ k} \) and \(f(r) = f(r') \), then \((r r') \) is realized by an element of the Galois group \(\text{Gal}(F_k/F_{k-1}) \).

We will say a transposition \((r r') \) on the set of roots of \(f^{\circ k} \) lies above a root \(\pi \) of \(f^{\circ (k-1)} \) if
\[f(r) = f(r') = \pi. \]

We conclude the proof by demonstrating that (\star) holds.

First, we show that \(\text{Gal}(F_k/F_{k-1}) \) contains at least one transposition above each root of \(f^{\circ (k-1)} \). Fix a root \(\pi \) of \(f^{\circ (k-1)} \). By Assumption \(\square \) the automorphism \(\sigma_k \in \text{Gal}(F_k/F_{k-1}) \) acts on roots of \(f^{\circ k} \) as a transposition. Since \(\sigma_k \) is an element of \(\text{Gal}(F_k/F_{k-1}) \), it necessarily lies above a root \(\pi' \) of \(f^{\circ (k-1)} \). By Assumption \(\square \) there is some \(\tau \in \langle \sigma_0 \rangle \) such that \(\tau(\pi') = \pi \). The conjugate \(\sigma_k^\tau \) acts on the roots of \(f^{\circ k} \) as a transposition above \(\pi \).

To conclude the proof, we show that \(\text{Gal}(F_k/F_{k-1}) \) contains every transposition above \(\pi \). Observe that elements of \(\text{Gal}(F_k/F_{k-1}) \) which are \(\text{Gal}(F_k/F_{k-1}) \)-conjugate to a transposition above \(\pi \) are also transpositions and lie above \(\pi \). We know \(\text{Gal}(F_k/F_{k-1}) \) contains some transposition above \(\pi \). To show \(\text{Gal}(F_k/F_{k-1}) \) contains all transpositions above \(\pi \), it suffices to show \(G_{F(\pi)} \) acts doubly transitively on \(X_{\pi} \).

Let \(F_{\pi} \) be the splitting field of \(f(X) - \pi \) over \(F(\pi) \). We want to show that \(G_{F(\pi)} \) acts doubly transitively on \(X_{\pi} \), we will show \(\text{Gal}(F_{\pi}/F(\pi)) \) is isomorphic to the symmetric group \(S_{X_{\pi}} \).

We use the following criterion for recognizing the symmetric group:

Lemma 2.2 (pg. 98 [Gal73], Lemma 4.4.3 [Ser92]). Let \(G \) be a transitive subgroup of \(S_n \). Assume \(G \) contains a transposition. If \(G \) either contains

(i) an \((n-1) \)-cycle, or
(ii) a \(p \)-cycle for some prime \(p > n/2 \),

then \(G \) is the symmetric group \(S_n \) or the alternating group \(A_n \).
then $G = S_n$.

We show these conditions hold for $\mathrm{Gal}(F_\pi/F(\pi)) \leq S_{X_\pi}$. First, by Assumption 1 the automorphism σ_0 acts on the roots of $f^{\circ k}$ as an n^k-cycle. It follows σ_0^{k-1} is an element of $G_{F(\pi)}$ which acts on X_π as an n-cycle. Consequently, $\mathrm{Gal}(F_\pi/F(\pi))$ acts transitively on X_π.

Next, consider the element $\sigma := \sigma_{\infty, N}^{(n-a)^{k-1}-1}$. If π_2 is a root of $f^{\circ k-1}$ contained in T, then σ fixes π_1 and cyclically permutes the $(n-a)$-vertices of T which lie above π_1. It follows that the image of σ in $\mathrm{Gal}(F_{\pi_1}/F(\pi_1))$ is either a $(n-1)$-cycle, or has an order divisible by a prime $p := n - a > n/2$. Taking a further power of σ if necessary, we deduce that there is a root π_1 of $f^{\circ k}$ such that the image of the permutation representation of $\mathrm{Gal}(F_{\pi_1}/F(\pi_1))$ on X_{π_1} contains either an $(n-1)$-cycle or a p-cycle for some prime $p > n/2$. By Hypothesis 1 there is some element $\tau \in \langle \sigma_0 \rangle$ which maps π_1 to π. Under such an element τ, the set X_{π_1} is mapped to X_π, and the actions of $\mathrm{Gal}(F_{\pi_1}/F(\pi'))$ and $\mathrm{Gal}(F_\pi/F(\pi))$ are intertwined. In particular, the cycle types occurring in $\mathrm{Gal}(F_{\pi_1}/F(\pi_1))$ are the same as $\mathrm{Gal}(F_\pi/F(\pi))$. By Lemma 2.2, we conclude $\mathrm{Gal}(F_\pi/F(\pi)) \cong S_{X_\pi}$. \hfill \Box

Remark 2.3. Hypothesis 2 of Lemma 2.1 can be replaced by the weaker assumption that T_f is a regular, n-branching tree and G_F acts transitively on the branches of T_f, i.e. that $f^{\circ k}$ is irreducible for all k. We have chosen to state Lemma 2.1 in this form, as it better indicates our strategy for the proof of the main theorem of Section 3.

3. Almost Surjective Representations

Fix an integer $n \geq 2$ and a field $E \subset \overline{Q}$ that is ramified outside of finitely many primes in \mathbb{Z}. In this section, we give explicit examples of polynomials of degree n whose arboreal G_E-representation contains $\Gamma(1)$. In fact, many of our examples have surjective arboreal Galois representation.

Given a non-zero rational number α, define $\alpha^+ \in \mathbb{Z}^+$ and $\alpha^- \in \mathbb{Z}$ to be the unique positive integer and integer, respectively, such that $(\alpha^+, \alpha^-) = 1$ and $\alpha = \frac{\alpha^+}{\alpha^-}$. Our main theorem in this section is:

Theorem 3.1. Let E/\mathbb{Q} be an extension which is unramified outside finitely many primes of \mathbb{Z}. Choose $a < n$ to satisfy:

- (a.1) if $n \leq 6$, then $a = 1$,
- (a.2) if $n \equiv 7 \mod 8$, then $a = 1$,
- (a.3) otherwise, $n - a$ is a prime and $a < n/2$.

Assume $A \in \mathbb{Q}$ satisfies:

- (A.1) if p is a prime which ramifies in E, then p-adic valuation $v_p(A) > 0$,
- (A.2) there is a prime p_0 which is unramified in E and prime to n such that $v_{p_0}(A) = 1$,
- (A.3) $A > 2^{\frac{n}{n-1}} \left(\frac{a}{n}\right)^{\frac{n}{n-1}} |\frac{a}{n} - 1|^{-\frac{n}{n-1}} > 1$,
- (A.4) $v_2(A) \geq \frac{3}{n-1} + \frac{n}{n-1} v_2(n)$,
- (A.5) $(A^+, n) = 2^v_2(n)$,
- (A.6) $(A^-, a(a - n)) = 1$,
- (A.7) there is a prime $p_{\infty} > n$ which is unramified in E such that $v_{p_{\infty}}(A) = -1$, and
- (A.8) if n is even, then $A^- \not\equiv \pm 1 \mod 8$,

then the polynomial

$$f(X) := X^a(X - A)^{n-a} + A$$
and all of its iterates are irreducible over E and the image of the arboreal G_E-representation associated to f:

(1) contains $\Gamma(1)$ if $a = 1$ and $n > 2$, (i.e. n satisfies $2 < n \leq 6$ or $n \equiv -7 \mod 8$), and (2) equals $\text{Aut}(T_f)$, otherwise.

It is clear that there infinitely many values of A satisfying Hypotheses (A.1) - (A.8). The fact that there is a value of a satisfying Hypotheses (a.1) - (a.3) is a consequence of Bertrand’s postulate.

The remainder of this section constitutes the proof of Theorem 3.1. Fix elements $a < n$ and $A \in \mathbb{Q}$ which satisfy the hypotheses of this theorem, and let $f(X) = X^n(X - A)^{n-a} + A$. Let $N = 1$ if $a = 1$ and $n > 2$; otherwise, let $N = 0$. As in Section 2 for each non-negative integer k, we denote the extension of E generated by all roots of $f^{\circ k}$ by $E_k \subseteq \overline{\mathbb{Q}}$. Finally, for each prime $p \in \mathbb{Z}$, fix for once and for all an embedding $\iota_p : \overline{\mathbb{Q}} \hookrightarrow \mathbb{Q}_p$. The map ι_p induces an inclusion on Galois groups $G_{\mathbb{Q}_p} \hookrightarrow G_{\mathbb{Q}}$. Throughout the remainder of this note, we will regard $\overline{\mathbb{Q}}$ as a subfield of \mathbb{Q}_p, and $G_{\mathbb{Q}_p}$ as a subgroup of $G_{\mathbb{Q}}$ via these maps. We denote the maximal unramified extension of \mathbb{Q}_p by \mathbb{Q}_p^{un}.

We will use Lemma 2.1 to show that the image of G_E under $\rho_f : G_{\mathbb{Q}} \rightarrow \text{Aut}(T_f)$ contains $\Gamma(N)$. To do so, we will show that G_E contains a set of elements $\{\sigma_k : k \in \mathbb{N} \cup \{\infty\}\}$ that satisfy the hypotheses of Lemma 2.1 where σ_∞ denotes $\sigma_{\infty,N}$, an element satisfying Hypothesis 2. As described in the introduction, our strategy will be to find a set of prime integers $\{p_k : k \in \mathbb{N} \cup \{\infty\}\}$ that are unramified in E and have the property that the inertia subgroup $I_{p_k} \leq G_{\mathbb{Q}_p} \leq G_E$ contains an element σ_k satisfying the relevant hypothesis of Lemma 2.1. The primes p_0 and p_∞ are those primes described in Theorem 3.1 that satisfy hypotheses (A.2) and (A.7), respectively. The local behavior of ρ_f at these primes mimic the local behavior at 0 and \(\infty\) in the arboreal Galois representation attached to $f(X,t) = X^a(X - t)^{n-a} + t$ over $\mathbb{C}(t)$. In Lemmas 3.2 and 3.3, we show that when k is 0 or ∞, the I_{p_k}-action on T_f factors through its tame quotient, and a lift σ_k of any generator of tame inertia satisfies the relevant hypothesis of Lemma 2.1. From Lemma 3.2, we will also deduce all iterates of f are separable. The primes p_k for k a positive integer are found in Lemma 3.3. Every iterate of the polynomial f has a critical point at $\frac{a}{n}A$. Therefore, $f^{\circ k}(\frac{a}{n}A)$ divides the discriminant of $f^{\circ k}$. Furthermore, $\frac{a}{n}A$ is a simple critical point of f. In Lemma 3.3 we find a prime p_k that is prime to the numerator of A (and hence by Assumption (A.1) is unramified in E) and divides the numerator of $f^{\circ k}(\frac{a}{n}A)$ to odd order. Assumptions (A.3) - (A.6) and (A.8) are made to guarantee that such a prime divisor occurs. In Lemma 3.6 we show the ring of integers of E_k is simply branched over $\text{Spec}(\mathbb{Z})$ at p_k. At such primes p_k, the elements of the inertia group I_{p_k} that act non-trivially on the roots $f^{\circ k}$ act as a transposition σ_k.

We begin by verifying that all iterates of f are separable and that Hypothesis 1 of Lemma 2.1 holds for f. Let p_0 be a prime that satisfies Assumption (A.2). We wish to show that all iterates of f are separable, and that there is an element $\sigma_0 \in G_E$, which acts transitively on the branches of T_f. We will show that all iterates of f are separable over \mathbb{Q}_{p_0}, and that there is an element $\sigma_0 \in I_{p_0}$ which acts transitively on the branches. This is immediate consequence of the following lemma:

Lemma 3.2. Let $a \in \mathbb{Z}_+$ and $A \in \mathbb{Q}$ satisfy the assumptions of Theorem 3.1. Let p_0 be a prime that witnesses Assumption (A.2). For all positive integers i, the polynomial $f^{\circ i}$ is irreducible over $\mathbb{Q}_{p_0}^{un}$ and splits over a cyclic extension.
Proof. We show that f^{o_i} is an Eisenstein polynomial over \mathbb{Z}_{p_0}. By Assumption (A.2), the polynomial f has p_0-integral coefficients, and satisfies the congruence $f \equiv X^n \mod p_0$. Therefore, $f^{o_k} \in \mathbb{Z}_{p_0}[X]$ and satisfies the congruence $f^{o_k}(X) \equiv X^{kn} \mod p_0$. Noting that $f(0) = A$ and that A is a fixed point of f, we conclude that $f^{o_i}(0) = A$, which is a uniformizer in \mathbb{Z}_{p_0}. Therefore, $f^{o_i} \in \mathbb{Z}_{p_0}[X]$ is an Eisenstein polynomial.

Since the degree $\deg(f^{o_i}) = n^i$ is prime to p_0, an Eisenstein polynomial of this degree is irreducible over $\mathbb{Q}^{un}_{p_0}$ and splits over the cyclic, tame extension of $\mathbb{Q}^{un}_{p_0}$ of ramification degree n^i. \hfill \Box

Our next task is to verify that Hypothesis 2 of Lemma 3.1 holds for f. Note that the conditions (a.1)-(a.3) of Theorem 3.1 are those on a that appear in the statement of Lemma 3.1. Therefore, we must show that there is a regular $(n-a)$-branching subtree $T \subseteq T_f$ whose lowest vertex has height N, and an element $\sigma_\infty \in G_E$ which preserves T and acts transitively on the branches of T. This claim is vacuously true if $n = 2$; in this case one can take T to be any branch of T_f and σ_∞ to be the identity. We may therefore restrict our attention to the case that $n > 2$.

Let p_∞ be a prime that witnesses Assumption (A.7) of Theorem 3.1. Since $p_\infty > n$, the pro-p_∞-Sylow of $\text{Aut}(T_f)$ is trivial and the action of I_{p_∞} on T_f factors through its pro-cyclic, tame quotient. By the unramifiedness condition in (A.7), we have $I_{p_\infty} \leq G_E$. To verify the Hypothesis 2 it thus suffices to show there is an I_{p_∞}-stable, regular, $(n-a)$-branching tree T whose lowest vertex has height N such that I_{p_∞}-acts transitively on the branches of T. In Lemma 3.3 we will find such a tree.

Before proving Lemma 3.3 we prove the following lemma, which explains the failure of our methods to produce surjective arboreal Galois representations in Theorem 3.1 under the assumption that $a = 1$. In Section 4 we will utilize this lemma to produce examples of surjective arboreal Galois representations when $n \equiv 7 \mod 8$ or n is in the range $3 \leq n \leq 6$, i.e. in the cases that $a = 1$.

Lemma 3.3. Let l be a prime integer which does not divide $n-1$. Assume that $B \in \mathbb{Q}_l$ satisfies $v_l(B) = -1$. Then the polynomial

$$g(X) := X(X-B)^{n-1} + B$$

splits completely over an unramified extension of \mathbb{Q}_l.

Proof. Consider the polynomial

$$S(X) := B^{-1}f(B + X) = B^{-1}X^n + X^{n-1} + 1 \in \mathbb{Z}_l[X]$$

The polynomial S splits over a given field if and only if g does. We show S splits over an unramified extension of \mathbb{Q}_l. Consider the Newton polygon of S; it has one segment of slope 0 and length $n-1$, and one segment of length 1 and slope 1. It follows that S has $n-1$ roots of valuation 0 and one root of valuation -1. The root of valuation -1 is necessarily \mathbb{Q}_l-rational. As for the roots of valuation 0, since

$$S(X) \equiv X^{n-1} + 1 \mod l$$

is separable, these roots have distinct images in the residue field. By Hensel’s lemma, we conclude S splits over an unramified extension of \mathbb{Q}_l. \hfill \Box

Lemma 3.4. Assume $n > 2$. Let $a \in \mathbb{Z}_+$ and $A \in \mathbb{Q}$ satisfy the assumptions of Theorem 3.1. Let p_∞ be a prime that witnesses Assumption (A.7). Then there is a subtree $T \subseteq T_f$ whose

...
lowest vertex has height N which is $I_{p_{\infty}}$-stable, regular, and $(n - a)$-branching such that $I_{p_{\infty}}$ acts transitively on the branches of T.

Proof. Consider the subtree of $T_{f_{\infty}} \subseteq T_f$ consisting of 0 and the roots $r \in \overline{Q}_{p_{\infty}}$ of $f^{\circ i}$ such that the valuation $v_{p_{\infty}}(f^{\circ i}(r)) = -1$ for all non-negative integers $j < i$. Since the action of $G_{Q_{p_{\infty}}}$ on $\overline{Q}_{p_{\infty}}$ preserves the valuation, the tree $T_{f_{\infty}}$ is $G_{Q_{p_{\infty}}}$-stable.

We claim that $T_{f_{\infty}}$ is a regular, $(n - a)$-branching tree. To see this, observe that if ϵ is any element of $\overline{Q}_{p_{\infty}}$ of valuation less than or equal to -1. Then the Newton polygon of

$$f(X) - \epsilon = X^a(X - A)^{n-a} + (A - \epsilon) = (A - \epsilon) + \sum_{j=a}^{n-a} \binom{n-a}{n-j} A^{n-j} X^j$$

has two segments: one has length $n - a$ and slope $-v_{p_{\infty}}(A) = 1$, and the other has length a and slope

$$\frac{v_{p_{\infty}}(A^{n-a}) - v_{p_{\infty}}(A - \epsilon)}{a} = \frac{a - n - v_{p_{\infty}}(A - \epsilon)}{a} \leq \frac{a - n + 1}{a} \leq \frac{n}{a},$$

which is less than 1. It follows that the pre-image of ϵ under f contains exactly $n - a$ elements of valuation -1. Specializing to the pre-image tree of 0, we deduce that the tree $T_{f_{\infty}}$ is regular and $(n - a)$-branching.

When $a = 1$, by Lemma 3.3 the polynomial f splits completely over an unramified extension of $Q_{p_{\infty}}$. In this case, choose T to be any of the $(n - a)$ full subtrees of $T_{f_{\infty}}$ whose lowest vertex has height 1. The inertia group $I_{p_{\infty}}$ acts on T. If $a > 1$, let T equal $T_{f_{\infty}}$. We claim that the inertia group $I_{p_{\infty}}$ acts transitively on the branches of T.

Let r_k be a root of $f^{\circ k}$ contained in $T_{f_{\infty}}$. The ramification index of $Q_{p_{\infty}}(r_k)/Q_{p_{\infty}}$ is the size of the orbit of r_k in $\overline{Q}_{p_{\infty}}$ under $I_{p_{\infty}}$. We wish to show that $I_{p_{\infty}}$ acts transitively on T. By induction on k, it suffices to show that r_k orbit has size:

$$e_k := \begin{cases} (n - a)^k, & \text{if } a > 1, \\ (n - a)^{k-1}, & \text{if } a = 1. \end{cases}$$

(3.1)

We show $e(Q_{p_{\infty}}(r_k)/Q_{p_{\infty}}) = e_k$. Note that $e(Q_{p_{\infty}}(r_k)/Q_{p_{\infty}})$ is at most e_k as the size of the orbit of r_k under $I_{p_{\infty}}$ is at most the number of vertices in T that have height k in $T_{f_{\infty}}$. To conclude the of proof, it suffices to show that e_k greater than or equal to $e(Q_{p_{\infty}}(r_k)/Q_{p_{\infty}})$.

We will show a root r_k of $f^{\circ k}$ contained in $T_{f_{\infty}}$ satisfies:

$$v_{p_{\infty}}((r_k - A)) = 1 + \sum_{i=1}^{k} \frac{n-1}{(n-a)^i}.$$

(3.2)

For each integer i in the range $0 \leq i \leq k$ define

$$r_i := f^{\circ k-i}(r_k) \text{ and } \epsilon_i := (r_i - A)/A.$$

Equation (3.2) is equivalent to the assertion that

$$v_{p_{\infty}}(\epsilon_0) = 0 \text{ and } v_{p_{\infty}}(\epsilon_i) = \frac{v_{p_{\infty}}(\epsilon_{i-1})}{n-a} + \frac{n-1}{n-a} \quad \text{if } i > 1.$$

(3.3)
We verify (3.3). The case when \(i = 0 \) is clear, as \(\epsilon_0 = -1 \). Consider the case where \(i > 0 \). Then since \(A(1 + \epsilon_i) = r_i \), we see that \(\epsilon_i \) is a root of
\[
g_i(X) := f(A(1 + X)) - r_{i-1}
= A^n(1 + X)^a X^{a - n} + (A - r_{i-1})
= A^n(1 + X)^a X^{a - n} + \epsilon_{i-1} A.
\]

Examining the Newton polygon of \(g_i \), one sees that \(g_i \) has exactly \(a \) roots of valuation 0 and \(n - a \) roots of valuation
\[
-\frac{v_{p_{\infty}}(\epsilon_{i-1} A) - v_{p_{\infty}}(A^n)}{n - a} = \frac{v_{p_{\infty}}(\epsilon_{i-1})}{n - a} + \frac{n - 1}{n - a}.
\]

Since \(f - r_{i-1} \) has exactly \(n - a \) roots of valuation \(-1\), it must be the case that \(\epsilon_i \) is a root of \(g_i \) of valuation
\[
\frac{v_{p_{\infty}}(\epsilon_{i-1})}{n - a} + \frac{n - 1}{n - a} > 0.
\]

Hence, Equation (3.2) holds and \(e_k \geq e(\mathbb{Q}_{p_{\infty}}(r_k)/\mathbb{Q}_{p_{\infty}}) \). \(\square \)

We thus conclude that Hypothesis 2 of Lemma 2.1 holds for \(f \).

The final hypothesis of Lemma 2.1 is that for every positive integer \(k > N \) the permutation representation of \(\text{Gal}(E_k/E_{k-1}) \) acting on the roots of \(f^ok \) in \(E_k \) contains a transposition. It is shown to hold for \(f \) for all values of \(k \geq 0 \) by the following two lemmas. Recall our convention for writing a rational number as a fraction: for \(\alpha \in \mathbb{Q} \), we denote by \(\alpha^+ \in \mathbb{Z}_+ \) and \(\alpha^- \in \mathbb{Z} \) the unique positive integer and integer, respectively, such that \((\alpha^+, \alpha^-) = 1\) and \(\alpha = \frac{\alpha^+}{\alpha^-} \).

Note that \(\frac{a}{n} A \) is a critical point of \(f \), and therefore by the chain rule, a critical point of all iterates of \(f \). The next lemma, Lemma 3.5, shows that for every \(k > 0 \), there is a prime \(p_k \) (satisfying certain conditions), which does not divide \(A^+ \), so that \(\frac{a}{n} A \) is a root of \(f^{ok} \mod p_k \).

By assumption A.2 all primes which ramify in \(E \) divide \(A^+ \). Hence, \(p_k \) is unramified in \(E \). In Lemma 3.6 we will show that under the Hypotheses of Lemma 3.5 the inertia group \(I_{p_k} \) acts on the roots of \(f^{ok} \) as a transposition.

Lemma 3.5. Let \(a \in \mathbb{Z}_+ \) and \(A \in \mathbb{Q} \) satisfy the assumptions of theorem 3.1. For each positive integer \(k \), there exists a prime integer \(p_k \nmid nA^- A^+ \) so that the \(p_k \)-adic valuation of \(f^{ok}(\frac{a}{n} A) \) is positive and odd.

Proof. For each positive integer \(k \), let \(c_k \) denote \(\frac{f^{ok}(\frac{a}{n} A)}{A} \). To prove this lemma it suffices to show for all positive integers \(k \) that \(c_k^+ \) is relatively prime to \(nA^- A^+ \) and is not a perfect square. We will show the following. First, we show that \(c_k^+ \) and \(A^+ \) are relatively prime. Then, we show that \(c_k = c_k^+ c_k^- \) is a square in \(\mathbb{Z}_2^\times \). To finish the proof, we analyze the denominator \(c_k^- \). We show that if \(n_2 = n/2^{n(a(n))} \), then \(n_2 A^- | c_k^- \) and that \(c_k^- \) is not a square in \(\mathbb{Z}_2^\times \). Noting that \(2 | A^+ \) by Hypothesis (A.4), these claims imply that \(nA^- A^+ \) and \(c_k^+ \) are relatively prime, and that \(c_k^+ \) is not a square.

Define \(c_0 = \frac{a}{n} \). Then for all \(k > 0 \),
\[
(3.4) \quad c_k = A^{n-1} c_{k-1}^a (c_{k-1} - 1)^{n-a} + 1.
\]
Let \(p \neq 2 \) be a prime integer factor of \(A^+ \). By Assumption (A.5), the prime \(p \) is not a factor of \(n \). Hence, \(c_0 \) is \(p \)-integral. Using Equation (3.4), one concludes by induction that \(c_k \) is \(p \)-integral and \(c_k \equiv 1 \mod p \).

Now consider the case where \(p = 2 \). By Hypothesis (A.4), the valuation \(v_2(A) \) satisfies
\[
v_2(A) \geq \frac{3}{n-1} + \frac{n}{n-1} v_2(n) > 0.
\]

Combining this with Equation (3.4), we observe \(c \equiv 1 \mod 8 \) and therefore is not a square in \(\mathbb{Z}^\times_2 \). Furthermore, recalling that the squares in \(\mathbb{Z}^\times_2 \) are relatively prime. Furthermore, recalling that the squares in \(\mathbb{Z}^\times_2 \) are exactly the elements congruent to 1 mod 8. We conclude that \(c_k \) and \(A^+ \) are relatively prime. Furthermore, recalling that the squares in \(\mathbb{Z}^\times_2 \) are exactly the elements congruent to 1 mod 8. We conclude that \(c_k \) is a square in \(\mathbb{Z}^\times_2 \).

Now, we examine \(c_k^- \). We’ve seen that \(c_k^- \) is prime to 2. Let \(n_2 := n/2^{v_2(n)} \). We will show by induction that
\[
(3.5)\quad c_k^- = (A^-)^{k-1}n_2^{n^k}(-1)^{(n-a)n^{k-1}}.
\]

This equation shows that \(c_k^- \) is prime to \(n_2A^- \). More subtly, Equation (3.5) shows \(c_k^- \equiv 1 \mod 8 \), and therefore is not a square in \(\mathbb{Z}^\times_2 \). To see this, observe that
\[
(A^-)^{n^k-1}n_2^{n^k}(-1)^{(n-a)n^{k-1}} \equiv \begin{cases}
\pm A^- \mod 8 & \text{if } n \equiv 0 \mod 2 \\
(-1)^{n-a} \mod 8 & \text{if } n \equiv 1 \mod 8 \\
\pm n \mod 8 & \text{if } n \equiv 3, 5 \mod 8 \\
(n(-1)^{(n-a)} \mod 8 & \text{if } n \equiv 7 \mod 8.
\end{cases}
\]

Hence, to conclude the proof, it suffices to confirm Equation (3.5).

We will prove Equation (3.5) by induction on \(k \). We begin by showing the equation holds when \(k = 1 \). The element
\[
c_1 = A^{n-1} \left(\frac{a}{n}\right)^a \left(\frac{a}{n} - 1\right)^{n-a} + 1 = (-1)^{n-a} \frac{(A^+)^{n-1}a^a(n-a)^{n-a}}{(A^-)^{n-1}n^n} + 1.
\]

So a prime \(p \) divides \(c_1^- \) only if \(p | A^- \) or \(p | n_2 \). To deduce Equation (3.5) in this case, we must show that for all \(p | A^-n_2 \) the valuation:
\[
(3.6)\quad v_p(c_1^-) = v_p((A^-)^{n-1}n_2^n),
\]

and the sign
\[
(3.7)\quad \frac{c_1^-}{|c_1^-|} = (-1)^{n-a}.
\]
These equalities hold if and only if

\[(A^{-}n_2, A^{+}a(n - a)) = 1,\]

and

\[(A^{+})^{n-1}a^n(n - a)^{n-a} > 1,\]

respectively. We prove (3.8) and (3.9). By Assumption (A.6), if \(p\) divides \(n_2\), then \(p\) is prime to \(A^{+}\). Since \(a\) and \(n\) are relatively prime, a prime \(p\) dividing \(n_2\) does not divide \(a(n - a)\). Similarly, if \(p\) divides \(A^{-}\), then by definition \(p\) is prime to \(A^{+}\), and by Assumption (A.6), the prime \(p\) does not divide \(a(n - a)\). We conclude Equation (3.8) holds. To see (3.9), observe that

\[(A^{+})^{n-1}a^n(n - a)^{n-a} > 1,\]

by Assumption (A.3). We conclude Equation (3.8) holds when \(k = 1\).

Now assume that Equation (3.5) holds \(k \geq 1\), we show Equation (3.5) holds for \(k + 1\). Observe that

\[c_{k+1} = A^{n-1}c_k^a(c_k - 1)^{n-a} + 1 = \frac{(A^{+})^{n-1}(c_k^+)^a((c_k - 1)^+)^{n-a}}{(A^-)^{n-1}(c_k^-)^n} + 1.\]

Hence, a prime \(p\) divides \(c_{k+1}^{-}\) only if \(p|A^{-}c_k^-\). By induction, it follows that all prime divisors of \(c_{k+1}^{-}\) must divide \(A^{-}n_2\). Note that,

\[(A^-)^{n-1}(c_k^-)^n = (A^-)^{n-1}((A^-)^{n}n_2^{-1}n_2^{-1})^n = (A^-)^{n}n_2^{-1}n_2^{-1}.
\]

Hence, to show Equation (3.5), it is sufficient to show for all \(p|A^{-}n_2\) the valuation

\[v_p(c_{k+1}^-) = v_p((A^{-})^{n-1}(c_k^-)^n),\]

and that the sign

\[\frac{c_{k+1}^-}{|c_{k+1}^-|} = \left(\frac{c_k^-}{|c_k^-|}\right)^n.\]

These equations are implied by

\[(A^{-}n_2, A^{+}c_k^+(c_k - 1)^+ = 1,\]

and

\[\left|\frac{(A^{+})^{n-1}(c_k^+)^a((c_k - 1)^+)^{n-a}}{(A^-)^{n-1}(c_k^-)^n}\right| = |A^{n-1}c_k^a(c_k - 1)^{n-a}| = |c_k+1 - 1| > 2 > 1,\]

respectively.

We conclude the proof by demonstrating equations (3.13) and (3.14). Because \(n_2\) and \(A^{+}\) are relatively prime (by Assumption (A.5)), and \(A^{-}n_2\) divides \(c_k^-\) and \(A^{-}n_2\) divides \((c_k - 1)^-\) by induction, we conclude equality (3.13) holds. By Equation (3.10), we see that \(|c_k + 1| > 2\) when \(k = 1\). It follows by induction that

\[|c_{k+1} - 1| = |A^{n-1}c_k^a(c_k - 1)^{n-a}| > |A|^{n-1}||c_k|^a|(c_k - 1)^{n-a} > 2^{n-a}.
\]

Hence, Equation (3.14) holds. \(\square\)
By Lemma 3.3, the prime \(p_k \) does not divide \(A^+ \). Therefore by Assumption (A.2), this prime is unramified in \(E \). To finish the proof of Theorem 3.1 we show that some element of the inertia group \(I_{p_k} \subset G_E \) acts on the roots of \(f^{ok} \), as a transposition.

Lemma 3.6. Let \(a \in \mathbb{Z}_+ \) and \(A \in \mathbb{Q} \) satisfy the assumptions of theorem 3.1. Let \(p_k \) be a prime integer such that \(p_k \not| nA^+A^+ \) and the \(p_k \)-adic valuation of \(f^{ok}(\frac{a}{n}A) \) is positive and odd, then

1. there is a factorization of \(f^{ok}(X) \equiv g(X)b(X) \mod p_k \) as where \(g(X) \) and \(b(X) \) are coprime, \(g(X) \) is a separable, and \(b(X) = (X - \frac{aA}{n})^2 \), and
2. the inertia group \(I_{p_k} \subset G_{\mathbb{Q}_{p_k}} \subset G_E \) acts on the set of roots \(f^{ok} \) in \(\mathbb{Q}_{p_k} \) as a transposition.

Proof of Claim 4. We show that \(\frac{a}{n}A \) is the unique multiple root of \(f^{ok} \) and its multiplicity is 2.

We begin by showing \(\frac{a}{n}A \) is a multiple root of \(f^{ok} \). A polynomial over a field \(F \) has a multiple root at \(\alpha \in \overline{F} \) if and only if \(\alpha \) is both a root and a critical point. By assumption, the value \(\frac{a}{n}A \) is a root of \(f^{ok} \mod p_k \). To see \(\frac{a}{n}A \) is a multiple root, observe that

\[
(f^{ok})'(X) = f'(X) \prod_{0 < i < k} f'(f^{oi}(X))
\]

and

\[
f'(X) = aX^{a-1}(X - A) + (n - a)X^a(X - A)^{n-a-1} = X^{a-1}X^{n-a-1}(nX - aA),
\]

and therefore \(\frac{a}{n}A \) is a critical point of \(f^{ok} \).

Now assume \(c \) is a root of \(f^{ok} \mod p_k \) with multiplicity \(m > 1 \). Let \(\mathbb{Z}_{p_k}^{ok} \) be the ring of integers of \(\mathbb{Q}_{p_k} \) and \(\mathfrak{m} \) be its maximal ideal. Because \(f^{ok} \) is separable, there exists exactly \(m \) roots \(r_1, \ldots, r_m \in \mathbb{Z}_{p_k} \) of \(f^{ok} \) such that \(r_i \equiv c \mod \mathfrak{m} \). Let \(L(c) := \{r_1, \ldots, r_m\} \). To prove Claim 4 it suffices to show \(c \) equals \(\frac{a}{n}A \) and \(m = |L(c)| \) equals 2.

For each pair of pairs of distinct roots \(r \) and \(r' \) lifting \(c \), let \(l(r, r') \) be the smallest positive integer such that \(f^{oi}(r, r')(r') = f^{oi}(r, r') \). Considering \(r \) and \(r' \) as vertices of the tree \(T_f \), the value \(l(r, r') \) is the distance to the most common recent ancestor between \(r \) and \(r' \). Let

\[
N(c) := \max\{l(r, r') : r, r' \in L(c)\}.
\]

We claim that if \(N(c) \) equals 1, then \(c \) equals \(\frac{a}{n}A \) and \(m \) equals 2. To see why, assume \(N(c) \) equals 1. Then \(r_1, \ldots, r_m \) are all roots of the polynomial \(f(X) - f(r_1) \). Therefore, \(c \) is a critical point of \(f(X) \mod \mathfrak{m} \). From Equation (3.16), one observes that the critical points of \(f(X) \) are \(0, A \) and \(\frac{a}{n}A \). By assumption \(f^{ok}(c) \equiv 0 \mod \mathfrak{m} \). On the other hand, since \(A \) is a fixed point of \(f \) and \(f(0) = A \),

\[
f^{ok}(0) = f^{ok}(A) = A \not\equiv 0 \mod \mathfrak{m}.
\]

Thus, \(c \) must equal \(\frac{a}{n}A \). The critical point \(\frac{a}{n}A \) has multiplicity 1. Therefore, \(m = L(c) = 2 \).

To finish the proof we must show \(N(c) = 1 \). Assume this is not the case, and let \(r \) and \(r' \) be a pair of lifts such that \(l := l(r, r') \geq 2 \). Then \(f^{oi-l}(r) \) and \(f^{oi-l}(r') \) are distinct root of the polynomial

\[
g_{r, r'}(X) := f(X) - f^{oi-l}(r) = f(X) - f^{oi-l}(r')
\]
which reduce to \(f^{ol-1}(c) \) modulo \(m \). It follows \(f^{ol-1}(c) \) is a root of \(g'_{r,r'}(X) = f'(X) \), and hence equals \(A \) or 0 or \(\frac{a}{n} A \). Since \(f^{ok}(c) \equiv 0 \mod p_k \) and
\[
f^{ok-l-1}(0) = f^{ok-l-1}(A) = A \not\equiv 0 \mod p_k,
\]
it must be the case that \(f^{ol-1}(c) \) equals \(\frac{a}{n} A \). But this implies, as 0 \(\equiv f^{ok}(\frac{a}{n} A) \mod p_k \) by assumption, that
\[
0 \equiv f^{ok}(\frac{a}{n} A) \mod p_k
\]
\[
\equiv f^{ok}(f^{ol-1}(c)) \mod p_k
\]
\[
\equiv f^{l-1}(f^{ok}(c)) \mod p_k
\]
\[
\equiv f^{l-1}(0) \mod p_k
\]
\[
\equiv A \mod p_k,
\]
a contradiction. □

Proof of Claim 2. The factorization \(b(x)g(x) = f(x) \), appearing in Claim 1, lifts by Hensel’s Lemma to a factorization
\[
B(X)G(X) = f(X)
\]
in \(\mathbb{Z}_{p_k}[X] \), where \(B(X) \) and \(G(X) \) are monic polynomials such that
\[
B \equiv b \mod p_k \text{ and } G \equiv g \mod p_k.
\]
As \(g \) is separable, \(G \) splits over an unramified extension of \(\mathbb{Q}_{p_k} \). To show \(I_p \) acts a transposition, we show the splitting field of \(B \) is a ramified quadratic extension of \(\mathbb{Q}_{p_k} \).

Consider the quadratic polynomial \(B(X + \frac{a}{n} A) = X^2 + B'(\frac{a}{n} A)X + B(\frac{a}{n} A) \). As
\[
B'(\frac{a}{n} A)G(\frac{a}{n} A) + B(\frac{a}{n} A)G'(\frac{a}{n} A) = f'(\frac{a}{n} A) = 0,
\]
and
\[
G(\frac{a}{n} A) \equiv g(\frac{a}{n} A) \not\equiv 0 \mod p_k,
\]
we observe \(v_{p_k}(B'(\frac{a}{n} A)) \geq v_{p_k}(B(\frac{a}{n} A)) \). It follows that the Newton polygon \(B(X + \frac{a}{n} A) \) has a single segment of slope \(\frac{v_{p_k}(B(\frac{a}{n} A))}{2} \) and width 2. As
\[
v_{p_k}(B(\frac{a}{n} A)) = v_{p_k}(f(\frac{a}{n} A)) - v_{p_k}(G(\frac{a}{n} A)) = v_{p_k}(f(\frac{a}{n} A))
\]
the slope is non-integral. We conclude \(B(X + \frac{a}{n} A) \) is irreducible and splits over a ramified (quadratic) extension. □

Having verified that the conditions of Lemma 2.1 hold for \(f \), we conclude that Theorem 3.1 is true.
4. Bridging the Gap

Having proven Theorem 3.1 we observe that our main theorem, Theorem 1.2, holds in polynomial degrees n satisfying $n \not\equiv 7 \mod 8$ and $n \geq 6$, or $n = 2$. In this section, we prove that Theorem 1.2 holds in all remaining cases.

Assume that either $n \equiv 7 \mod 8$, or n is in the range $3 \leq n \leq 6$. Define

$$f(X, t) := X(X - t)^{n-1} + t \in \mathbb{Q}[t, X].$$

By Theorem 3.1 there are infinitely many values of $A \in \mathbb{Q}$ such that the image of the arboreal Galois representation $\rho_{f(X, A)} : G_E \to \text{Aut}(T_{f(X, A)})$ associated to the specialization $f(X, A) = X(X - A)^{n-1} + A \in \mathbb{Q}[X]$ contains $\Gamma(1)$. To prove Theorem 1.2, we will use the Hilbert Irreducibility Theorem to show that for some infinite subset of these values the splitting field of the specialization $f(X, A)$ over E is an S_n-extension. For our first step, we calculate the geometric Galois group of the 1-parameter family $f(X, t)$.

Lemma 4.1. Let F be a field of characteristic 0. The splitting field of the polynomial $f(X, t)$ over $F(t)$ is an S_n-extension.

Proof. Without loss of generality, we may assume F is the complex numbers \mathbb{C}. Let

$$g(X, t) = f(X - t, -t) = X^n - tX^{n-1} - t.$$

It suffices to show that the splitting field of $g(X, t)$ over $\mathbb{C}(t)$ is an S_n-extension. Let $\pi : C_0 \to \mathbb{P}^1$ be the étale morphism whose fiber above a point $t_0 \in \mathbb{C}$ is the set of isomorphisms

$$\phi_t : \{0, \ldots, n-1\} \sim \{r \in \mathbb{C} : g(r, t_0) = 0\}.$$

Let C be a smooth, proper curve containing C_0, and let $\pi : C \to \mathbb{P}^1$ be the map extending $\pi : C_0 \to \mathbb{P}^1$. The splitting field of g is an S_n-extension if and only if C is connected. We show the latter.

We will analyze the monodromy around the branch points of $\pi : C \to \mathbb{P}^1$. The cover C is ramified above the roots of

$$\Delta g(X, t) = n^n \prod_{c \in \mathbb{C}(t), \frac{\partial g}{\partial t}(c, t) = 0} g(c, t)^{m_c}$$

$$= n^n g(0, t)^{n-2} g\left(\frac{n-1}{n}, t\right)$$

$$= n^n (-t)^{n-2} \left(\left(-\frac{1}{n}t\right)\left(\frac{n-1}{n}t\right)^{n-1} - t\right)$$

$$= n^n (-t)^{n-1} \left(\frac{1}{n}\left(\frac{n-1}{n}t\right)^{n-1} + 1\right)$$

where m_c is the multiplicity of the critical point c. Hence, $\pi : C \to \mathbb{P}^1$ is branched at 0 and

$$\alpha_k := Me\left(\frac{2k+1}{n-1}\right),$$

where $k \in \{0, \ldots, n-2\}$ and M is a positive real number which is independent of k. Each of the branch points α_k is simple. One may check (though it is not relevant to our proof)
that $\pi : C \to \mathbb{P}^1$ is unramified at ∞; for a proof, see Lemma 3.3. We let $D := \{0, \alpha_0, \ldots, \alpha_{n-2}\}$ denote the branch locus.

Since $g(X, t) = X^n - tX^{n-1} - t$ is t-Eisenstein, it splits over $\mathbb{C}[[t^{1/n}]]$. Observing that

$$t^{-1}g(Xt^{1/n}, t) \equiv X^n - 1 \mod t^{1/n},$$

it follows that each of the roots r of g in $\mathbb{C}[[t^{1/n}]]$ satisfy

$$r = e^{2\pi ik/n}t^{1/n} \mod t^{2/n}$$

for some unique value of $k \in \{0, \ldots, n-1\}$. Let $pt_{\alpha_0 \to 0}$ be the set $(0, |\alpha_0|)\alpha_0 \in \mathbb{C}$, i.e. the image of the straight line path from 0 to α_0. Let $s : pt_{\alpha_0 \to 0} \to C$ be the unique holomorphic section of $\pi : C \to \mathbb{P}^1$ such that

$$\lim_{t \to 0^+} \frac{s(t)(k)}{|s(t)(k)|} = e^{\frac{2\pi ik}{n}} e^{\frac{\pi}{n(n-1)}}.$$

We consider the monodromy representation $\varphi : \pi_1(\mathbb{P}^1 \setminus D, pt_{\alpha_0 \to 0}) \to S_n$ which maps a path p in $\mathbb{P}^1 \setminus D$ with endpoints in $pt_{\alpha_0 \to 0}$ to $\hat{p}(1)^{-1} \circ \hat{p}(0)$ where \hat{p} is the unique lift of p satisfying $\hat{p}(0) = s(p(0))$. To show C is connected, it suffices to show φ is surjective. Our strategy will be to show that the generators of the symmetric group $(0 \ 1 \ 2 \ldots n-1)$ and $(0 \ 1)$ are contained in the image of φ.

Consider a counterclockwise circular path p_0 around 0 with endpoints in $pt_{\alpha_0 \to 0}$. Since 0 is the only branch point contained in the circle bounded by p_0, the image of p_0 under φ is the cycle $(0 \ 1 \ 2 \ldots n-1)$. Let p_1 be a path with endpoint in $pt_{\alpha_0 \to 0}$ which bounds a punctured disk in $\mathbb{P}^1 \setminus D$ around α_0. Since the branch point α_0 is simple, the image of p_1 under φ is a transposition. We claim $\varphi(p_1) = (0 \ 1)$.

Let S be the set of complex numbers z which satisfies

$$\frac{\pi}{n(n-1)} \leq \text{Arg}(z) \leq \frac{2\pi}{n} + \frac{\pi}{n(n-1)}.$$

Note that $\alpha_0 \in S$. Furthermore, observe the boundary rays of S are the two tangent directions by which the 0-th and 1-st root of $g(X, t_0)$ (in the labeling given by the section s) converge to 0. To show $\varphi(p_1) = (0 \ 1)$, we will demonstrate that

$$(\ast) \text{ for all } t_0 \in pt_{\alpha_0 \to 0} \text{ there exists a unique pair of roots of } g(X, t_0) \text{ contained in } S.$$

From (\ast), one concludes by uniqueness $\varphi(p_1) = (0 \ 1)$.

Since α_0 is a simple branch point contained in S, when t_0 is sufficiently close to α_0 there are at least two roots in S. On the other hand, as t_0 approaches 0, there is a unique pair of roots whose tangent directions are contained in S. Hence for t_0 sufficiently close to 0, there are at most two roots contained in S. To prove (\ast) for all $t_0 \in pt_{\alpha_0 \to 0}$, we will show that there is no value $t_0 \in pt_{\alpha_0 \to 0}$ such that $g(X, t_0)$ has a root r whose argument equals $\frac{\pi}{n(n-1)}$ or $\frac{2\pi}{n} + \frac{\pi}{n(n-1)}$, i.e. roots cannot leave or enter the sector S as one varies t_0 along $pt_{\alpha_0 \to 0}$.

Assume for the sake of contradiction that there is a value $t_0 \in pt_{\alpha_0 \to 0}$ and a root r of $g(X, t_0)$ such that $\text{Arg}(r) = \frac{\pi}{n(n-1)}$ or $\text{Arg}(r) = \frac{\pi}{n(n-1)} + \frac{2\pi}{n}$. Then since $g(r, t_0) = 0$, one observes that $r^n = t_0(r^{n-1} + 1)$.
And so,
\[
\frac{\pi}{n-1} \equiv \text{Arg}(r^n) \mod 2\pi \\
\equiv \text{Arg}(t_0) + \text{Arg}(r^{n-1} + 1) \mod 2\pi \\
\equiv \frac{\pi}{n-1} + \text{Arg}(r^{n-1} + 1) \mod 2\pi.
\]

From which it follows \(\text{Arg}(r^{n-1} + 1) \equiv 0 \mod 2\pi\). Note however,
\[
\text{Arg}(r^{n-1}) \equiv \begin{cases}
\frac{\pi}{n} \mod 2\pi & \text{if } \text{Arg}(r) = \frac{\pi}{n(n-1)}, \\
2\pi - \frac{\pi}{n} \mod 2\pi, & \text{if } \text{Arg}(r) = \frac{\pi}{n(n-1)}.
\end{cases}
\]

Therefore, \(r^{n-1}\) is not a real number. It follows \(r^{n-1} + 1\) is not real, and therefore has non-zero argument, a contradiction. We conclude that there is no value \(t_0 \in \mathbb{P}_\alpha \to 0\) such that \(g(X, t_0)\) has a root with argument \(\frac{\pi}{n(n-1)}\) or \(\frac{\pi}{n(n-1)} + \frac{2\pi}{n}\). Therefore, \(\varphi(p_1) = (0 1)\) and \(C\) is connected.

We deduce our main theorem, Theorem 1.2, via a Hilbert irreducibility argument.

Proof of Theorem 1.2. If \(n \not\equiv 7 \mod 8\) or in the range \(3 \leq n \leq 6\), then the theorem is a consequence of Theorem 3.1.

Assume that \(n \equiv 7 \mod 8\) or \(3 \leq n \leq 6\). Without loss of generality, we may assume \(E\) is a Galois extension of \(\mathbb{Q}\). Let \(D\) be the unique positive, square-free integer which is divisible by the primes which ramify in \(E\) and those that divide \(n(n-1)\). In particular, note that \(2\) divides \(D\). Let \(B = D/(D,n-1)\). Consider the polynomial
\[
h(X, t) = f(X, B^{-1}(1 + Dt)) \in \mathbb{Q}[t, X].
\]

By Lemma 4.1, the polynomial \(h(X, t)\) has Galois group \(S_n\) over \(\mathbb{Q}(B^{-1}(1 + Dt)) = \mathbb{Q}(t)\). Therefore by the Hilbert Irreducibility Theorem, there exists infinitely many values \(t_0 \in \mathbb{Z}\) such that the splitting field \(K_{t_0}\) of \(h(X, t_0) = f(X, B^{-1}(1 + Dt_0))\) is an \(S_n\)-extension of \(\mathbb{Q}\). Fix such a value \(t_0\). We claim that there is a finite set \(L\) of prime integers which satisfy the following two conditions.

1. If \(l \in L\), then \(l \nmid D\).
2. The closed, normal subgroup \(S_L \leq G_{\mathbb{Q}}\) generated by the inertia groups \(I_l\) for \(l \in L\) acts on the roots \(f(X, B^{-1}(1 + Dt_0))\) as the full symmetric group \(S_n\).

Since there are no everywhere unramified extensions of \(\mathbb{Q}\), the set of primes which ramify in \(K_{t_0}\) satisfy Condition 2. We show this set satisfies Condition 1, i.e. that \(K_{t_0}\) is unramified at all primes dividing \(D\).

Recall that \(D = B(D,n-1)\). If \(l\) divides \(B\), then \(l\) is prime to \(n-1\) and the valuation \(v_l(B^{-1}(1 + Dt_0)) = -1\). It follows by Lemma 3.3 that the extension \(L_{t_0}\) is unramified at \(l\). On the other hand, if \(l\) divides \(n-1\), then \(f(X, B^{-1}(1 + Dt_0))\) has \(l\)-integral coefficients.

\footnote{the subgroup \(S_L\) is simply the absolute Galois group of the maximal extension of \(\mathbb{Q}\) in which all primes in \(L\) are unramified.}
then
\[\Delta(f(X, B^{-1}(1 + Dt_0))) = n^n \prod_{c \in \mathbb{Q} : h'(c, t_0) = 0} f(c, B^{-1}(1 + Dt_0))^{m_c} \]
\[= n^n(B^{-1}(1 + Dt_0))^{n-1} \left((B^{-1}(1 + Dt_0))^{n-1} \left(\frac{1}{n} - 1\right) + 1 \right) \equiv B^{1-n} \mod l, \]
is prime to \(l \). Hence, \(K_{t_0} \) is unramified at \(l \). We conclude that \(K_{t_0} \) is unramified at all primes dividing \(D \).

To conclude the proof of the Theorem, we perturb \(B^{-1}(1 + Dt_0) \) in \(\prod_{l \in L} \mathbb{Q}_l \) to produce values of \(A \) for which \(f(X, A) \) has a surjective arboreal \(G_E \)-representation. Let \(X_0 \) denote the set of roots of \(f(X, B^{-1}(1+Dt_0)) \) over \(\mathbb{Q} \). Note that since the splitting field of \(f(X, B^{-1}(1+Dt_0)) \) over \(\mathbb{Q} \) is \(S_n \)-extension, the polynomial \(f(X, B^{-1}(1+Dt_0)) \) is separable over \(\mathbb{Q}_l \). Let
\[\delta_l := \min\{|r_1 - r_2| : f(r_1, B^{-1}(1 + Dt_0)) = f(r_2, B^{-1}(1 + Dt_0)) = 0 \text{ and } r_1 \neq r_2 \} \]
be the minimum distance between a distinct pair of roots. By Krasner’s Lemma, there exists an open ball \(U_l \subseteq \mathbb{Q}_l \) centered at \(B^{-1}(1 + Dt_0) \) such that if \(A_l \in U_l \) and \(r \) is a root of \(f(X, B^{-1}(1 + Dt_0)) \), then there is a unique root \(r(A_l) \) of \(f(X, A_l) \) such that \(|r - r(A_l)|_l < \delta_l \).

Since the action of \(I_l \) on \(\mathbb{Q}_l \) preserves distances, the map \(r \mapsto r(A_l) \) is \(G_{\mathbb{Q}_l} \)-equivariant. Identifying the set of roots of \(f(X, A_l) \) and \(f(X, B^{-1}(1 + Dt_0)) \) via this map, we see that for all \(A_l \in U_l \) the image of \(I_l \) in the symmetric group \(S_{X_0} \) is locally constant.

The group \(S_L \) is the normal closure of the group generated by the subgroups \(I_l \) for \(l \in L \). Let \(U_L := \prod_{l \in L} U_l \). Since the action of \(S_L \) on \(X_0 \) surjects onto \(S_{X_0} \), for all \(A \in U_L \cap \mathbb{Q} \) the permutation representation of \(S_L \) on the roots of \(f(X, A) \) is surjective. Since \(E \) is Galois and unramified at the primes in \(L \), the group \(G_E \leq G_{\mathbb{Q}} \) is normal and contains \(S_L \). It follows that for any \(A \in U_L \cap \mathbb{Q} \) the splitting field of \(f(X, A) \) over \(E \) is an \(S_n \)-extension.

We conclude the proof by showing that there are infinitely many values \(A \in U_L \cap \mathbb{Q} \) such that the arboreal Galois representation attached to \(f_{1,A}(X) := f(X, A) \) contains \(\Gamma(1) \). By Theorem 4.1, it suffices show that there are infinitely many \(A \in U_L \cap \mathbb{Q} \) satisfying Hypotheses (A.1) - (A.8). Let \(p_0 \) and \(p_\infty \) be any choice of distinct primes which are greater than \(n \), unramified in \(E \), and not contained in \(L \). Then Hypotheses (A.1) - (A.7) are open local conditions on \(A \) at the finite set of places dividing \(Dp_0p_\infty \) and \(\infty \). In particular, they are conditions at places distinct from those in \(L \). Let \(U_{\Gamma(1)} \) denote the open subset of \(\mathbb{R} \times \prod_{p|Dp_0p_\infty} \mathbb{Q}_p \) consisting of values which satisfy Hypotheses (A.1) - (A.7) locally. Let \(S \) denote the set of places
\[S := \{ | \cdot |_p : p \subseteq L, \text{ or } p = \infty, \text{ or } p|Dp_0p_\infty \}. \]
By weak approximation there are infinitely many values \(A_0 \in (U_{\Gamma(1)} \times U_L) \cap \mathbb{Q} \). Fix any such value. Since \(U_{\Gamma(1)} \times U_L \) is open, there exists a real number \(\epsilon > 0 \) such that if \(|1 - w|_p < \epsilon \) at all places in \(S \), then \(wa_0 \in U_{\Gamma(1)} \times U_L \). Fix such an \(\epsilon > 0 \). Let \(M \) be a positive integer such that \(|M|_p < \epsilon \) at all \(\text{finite} \) places \(| \cdot |_p \in S \). If \(x \) is any positive integer which is
(1) not divisible by the primes contained in \(S \), and
(2) sufficiently large: specifically \(M/x < \epsilon \),
then \(A_x := \frac{x-1}{M} A_0 \in U_{\Gamma(1)} \times U_L \), and therefore satisfies hypotheses (A.1) - (A.7). For such a value \(x \in \mathbb{Z}_+ \), if one additionally asks that
(3) \((x, A_0^+) = 1 \) and \(x \equiv \pm(A_0^-)^{-1} \mod 8 \),
then $A_x \equiv A_0 x \not\equiv \pm 1 \mod 8$, and hence A_x satisfies hypothesis (A.8). There are infinitely many $x \in \mathbb{Z}_+$ satisfying conditions 1, 2, and 3. For every such value, the arboreal G_E-representation associated to $f(X, A_x)$ is surjective.

Acknowledgements

The author would like to thank Nicole Looper for explaining her arguments in [Loo16], the University of Chicago for its hospitality, and Mathilde Gerbelli-Gauthier for reading a preliminary draft of this work.

References

[BJ18] Robert Benedetto and Jamie Juul, Odoni’s conjecture for number fields, arXiv e-prints arXiv:1803.01987 (2018).

[Gal73] Patrick X Gallagher, The large sieve and probabilistic galois theory, Proc. Sympos. Pure Math, vol. 24, 1973, pp. 91–101.

[Jon08] Rafe Jones, The density of prime divisors in the arithmetic dynamics of quadratic polynomials, Journal of the London Mathematical Society 78 (2008), no. 2, 523–544.

[Juu14] Jamie Juul, Iterates of generic polynomials and generic rational functions, arXiv preprint arXiv:1410.3814 (2014).

[Kad18] Borys Kadets, Large arboreal Galois representations, ArXiv e-prints arXiv:1802.09074 (2018).

[Loo16] Nicole R Looper, Dynamical galois groups of trinomials and Odoni’s conjecture, arXiv preprint arXiv:1609.03398 (2016).

[Odo85a] RWK Odoni, The galois theory of iterates and composites of polynomials, Proceedings of the London Mathematical Society 3 (1985), no. 3, 385–414.

[Odo85b] , On the prime divisors of the sequence $w_{n+1} = 1 + w_1 \ldots w_n$, Journal of the London Mathematical Society 2 (1985), no. 1, 1–11.

[Ser92] Jean-Pierre Serre, Topics in Galois theory, Jones and Bartlett Publishers, Boston, MA, 1992.