EPIDEMIOLOGICAL SCIENCE

Characteristics associated with poor COVID-19 outcomes in individuals with systemic lupus erythematosus: data from the COVID-19 Global Rheumatology Alliance

Manuel Francisco Ugarte-Gil 1,2, Graciela S Alarcón 3,4, Zara Izadi 5,6, Ali Duarte-García 7,8, Cristina Reátegui-Sokolova 2,9, Ann Elaine Clarke, Leanna Wise,11 Guillermo J Pons-Estel 12,13, Maria Jose Santos 14,15, Sasha Bernatsky 16, Sandra Lúcia Euzêbio Ribeiro 17, Samar Al Emadi 18, Jeffrey A Sparks 19, Tiffany Y-T Hsu 19, Naomi J Patel 20, Emily L Gilbert 21, Maria O Valenzuela-Almada 7, Andreas Jönsen 22, Gianpiero Landolfi 23, Micaela Fredi 24,25, Tiphaine Goulenok 26,27, Mathilde Devaux 28, Xavier Mariette 29, Viviane Queyrel 30, Vasco C Romão 31,32, Graca Sequeira 33, Rebecca Hassel 34, Bimba Hoyer 35, Reinhard E Voll 36, Christof Specker 37, Roberto Baez 38, Vanessa Castro-Coelho 39, Hernan Maldonado Ficco 40, Edgard Torres Reis Neto 41, Gilda Aparecida Aparecida Ferreira 42,43, Odirlei Andre André Monticielo 44,45, Emily Sirotich 46,47, Jean Liew 48, Jonathan Hausmann 49,50, Paul Sufka 51, Rebecca Grainger 52, Suleiman Bhana 53, Wendy Costello 54, Zachary S Wallace 20, Lindsay Jacobsohn 6, Tiffany Taylor 6, Clairissa Ja 6, Anja Strangfeld 55, Elsa F Mateus 56,57, Kimme L Hyrich 58,59, Loreto Carmona 60, Saskia Lawson-Tovey 59,61, Lianne Kearsley-Fleet 62, Martin Schäfer 63, Pedro M Machado 64,65,66,67, Philip C Robinson 68,69, Milena Gianfrancesco 6, Jinoos Yazdany 6

Handling editor Josef S Smolen

To cite: Ugarte-Gil MF, Alarcón GS, Izadi Z, et al. Ann Rheum Dis 2022;0:1–9. doi:10.1136/annrheumdis-2021-221636
Data from the COVID-19 Global Rheumatology Alliance (C19-GRA) registry, a large physician reported registry of individuals with rheumatic diseases and COVID-19, suggest that those with moderate or high disease activity, as well as those receiving specific medications, including moderate or high doses of prednisone, rituximab, immunosuppressive drugs (ie, mycophenolate mofetil/mycophenolic acid (MMF), tacrolimus, azathioprine and cyclophosphamide) compared with a reference group of individuals receiving methotrexate have poorer outcomes. Furthermore, in an analysis of patients in the C19-GRA registry with rheumatoid arthritis (RA), treatment with rituximab or Janus Kinase (JAK) inhibitors was associated with poorer outcomes compared with treatment with tumour necrosis factor inhibitors. However, medications associated with more severe COVID-19 outcomes in SLE have not been extensively examined.

OpenSAFELY, a large analysis of primary care records of >17 million adults linked to 10 926 COVID-19-related deaths reported that after adjustment for a wide variety of factors such as demographic characteristics and comorbidities, those with autoimmune disease (SLE, RA or psoriasis as a group) had a higher risk of mortality, but this study did not adjust for medication use, nor did it evaluate SLE as a discrete or separate disease. Several case series or single-centre/country studies suggest that some individuals with SLE can have a severe disease course, but the small size of these studies has precluded a comprehensive analysis of risk factors for poor COVID-19 outcomes.

We used the C19-GRA registry to identify sociodemographic and clinical factors associated with more severe COVID-19 outcomes in individuals with SLE.

METHODS

Data source

Subjects with rheumatic disease and COVID-19 from the C19-GRA registry and European Alliance of Associations for Rheumatology (EULAR) COVID-19 registry were included in the analyses, which covered the period from 12 March 2020 to 1 June 2021. Data entry portals include one limited to European countries (eular.org/eular_covid19_database.cfm; hosted by the University of Manchester, UK) and a second for all other countries (rheum-covid/provider-global/; hosted by the University of California, San Francisco (UCSF), California, USA). Cases are entered into these registries by their treating clinicians. This study includes all individuals from these registries with SLE diagnosed with COVID-19 by 1 June 2021. Prior studies using C19-GRA and EULAR databases have included some individuals also reported in this study, but the number of individuals in this analysis is significantly higher than reported in previous publications.

Data quality was assessed by the data coordinating centres at UCSF and the University of Manchester and included procedures to identify and remove any duplicate cases.

COVID-19 outcomes

We used an ordinal severity outcome in the analyses, with mutually exclusive categories including: (1) not hospitalised, (2) hospitalised with no oxygenation, (3) hospitalised with any ventilation or oxygenation or (4) death. These outcomes were chosen so that the analyses could reflect the full spectrum of disease associated with COVID-19 and are analogous to outcome measures used in many trials evaluating COVID-19 therapeutics. Only the highest severity level of the outcome occurring during the patient’s disease course was included, and all individuals were required to have a resolved clinical course.

Covariates, including medication exposure

Covariates included demographic characteristics, including age, sex and region (Europe, the USA and Canada, Latin America and other), as well as clinical characteristics, including number of comorbidities (including lung, liver or neurological diseases, cancer, diabetes, obesity, among others), specific comorbidities (chronic renal insufficiency or end-stage renal disease and hypertension or cardiovascular disease), disease activity (assessed by a physician global assessment categorised as remission, low, moderate or high), dose of glucocorticoids (GCs; entered as daily oral prednisone equivalents) and use of immunosuppressive or immunomodulating medications. Additionally, the date of the case report was analysed in three time periods: 24 March 2020 to 15 June 2020, 16 June 2020 to 30 September 2020 and 1 October 2020 to 1 June 2021. The first period ended at the release of the RECOVERY study, which changed COVID-19 treatment protocols to incorporate GCs. The second cut-off was based on the beginning of the second wave in many countries around the world.

Medications taken by patients prior to COVID-19 were categorised as: conventional synthetic drugs (antimalarials (hydroxychloroquine, chloroquine), conventional disease-modifying monotherapies generally considered to represent less intensive immunosuppression (sulfasalazine, methotrexate and leflunomide), conventional disease-modifying monotherapies with more intense immunosuppressive drugs (MMF, tacrolimus, cyclophosphamide, ciclosporin, azathioprine)); biologics (abatacept, belimumab, rituximab, interleukin (IL)-6 inhibitors, IL-12/IL-23 inhibitors, IL-17 inhibitors, tumour necrosis factor inhibitors (anti-TNF)) and targeted synthetic drugs, specifically JAK inhibitors and GCs. In analyses, we divided medications into five groups: no SLE medications, antimalarial only, conventional disease-modifying monotherapies generally considered to represent less intensive immunosuppression (sulfasalazine, methotrexate and leflunomide), conventional disease-modifying monotherapies with more intense immunosuppressive drugs (MMF, tacrolimus, ciclophosphamide, ciclosporin, azathioprine) and GCs.
monotherapies with more intense immunosuppressive drugs (MMF, tacrolimus, cyclophosphamide, cyclosporin, azathioprine), biologic/targeted synthetic drug monotherapy and finally combination therapy with conventional and biologic disease-modifying immunosuppressive drugs. GCs were categorised into four groups by dose: prednisone dose=0 mg/day, between 1 and 5 mg/day, between 6 and 9 mg/day and ≥10 mg/day.

Statistical analyses
We used proportional odds logistic regression with severity as dependent variable, and covariates as described in the next paragraphs. This is similar to using binary logistic regression for each of the three possible dichotomisations of the four-category dependent variable, with the assumption that the OR is the same for each cut-off. The parallel lines test for proportional odds ordinal logistic regression confirmed that this assumption was not violated.

Models included demographic variables and clinical characteristics as well as the time period in the pandemic during which the case was reported. Random effects were included for country and time. These variables were applied to capture the significant variability in regulations enforcing personal protective equipment, hospital resource allocation and quarantine procedures between countries and over the course of the pandemic.

We assumed that missing data were ‘missing at random’ and missing data were handled using multiple imputation, with 50 imputed data sets.

In all models, we included sex, age, region, GCs as a categorical variable (0, 1–5, 6–9, ≥10 mg/day), immunosuppressive medication category, time period and random effects of country and time. To assess the additional impact of comorbidities, we constructed an additional model that included the number of comorbidities and, separately, that included key comorbidities in SLE, including renal disease and hypertension/cardiovascular disease. Finally, we constructed a model that included the above variables but additionally included SLE disease activity.

We conducted several additional analyses to examine associations of six medications of interest in SLE with COVID-19 outcomes: methotrexate (n=173), azathioprine (n=235), MMF (n=332), cyclophosphamide (n=29), rituximab (n=68) and belimumab (n=104). In these analyses, the drug of interest was excluded from the medication category of monotherapies with immunosuppressive drugs or from the biologics/targeted synthetic only category, and their effects were estimated separately. Four models were constructed for each medication: (1) unadjusted, (2) age-adjusted and sex-adjusted, (3) adjusted for age, sex, renal disease, hypertension/cardiovascular disease, comorbidity count, disease activity, region, time period and (4) confirmed cases (diagnosis made by PCR, antibody or antigen) adjusted for age, sex, renal disease, hypertension/cardiovascular disease, comorbidity count, disease activity, region and time period. Additionally, to evaluate the interaction between GC therapy and disease activity, an additional analysis was done adding this multiplicative interaction term.

A sensitivity analysis combining mechanical ventilation or death in the highest category was also performed.

Results were considered statistically significant using a two-sided p<0.05. Analyses were conducted in R V4.0.2 (R Core Team, 2020).

RESULTS
As of 1 June 2021, 1922 subjects with SLE and COVID-19 were reported in the C19 GRA and EULAR registries. Baseline demographic and clinical characteristics are shown in table 1. Individuals were predominantly female (90.4%) and the mean age was 44.4 years (SD=14.1). Of the 1922 cases, 555 (28.9%) were reported from the USA and Canada, 543 (28.3%) from Europe, 643 (33.5%) from Latin America and 181 (9.4%) from other regions. The majority were non-white (57.3%).

Antimalarials were used as monotherapy by 665 individuals (34.6%), more intense immunosuppressive monotherapies (MMF, tacrolimus, cyclophosphamide, cyclosporin, azathioprine, with or without antimalarials) were used by 630 individuals.

Table 1 Characteristics of patients with SLE at the time of COVID-19 diagnosis (n=1922)

Characteristics	Mean (SD) or number (percentage)
Age, years, mean (SD)	44.4 (14.1)
Female, n (%)	1734 (90.4%)
Race/Ethnicity, n (%)	
White	639 (33.3%)
Non-white	1102 (57.3%)
Missing	181 (9.4%)
Region, n (%)	
Europe	543 (28.3%)
USA and Canada	555 (28.9%)
Latin America	643 (33.5%)
Other	181 (9.4%)
Time period, n (%)	
<15 June 2020	733 (38.1%)
16 June–30 September 2020	444 (23.1%)
1 October 2020–12 April 2021	745 (38.8%)
Comorbidities, n (%)	
0	1098 (57.1%)
1	511 (26.6%)
≥2	313 (16.3%)
Specific comorbidities, n (%)	
Chronic renal insufficiency or ESRD	223 (11.8%)
Hypertension or cardiovascular disease	597 (31.1%)
Disease activity, n (%)	
Remission	587 (30.5%)
Minimal or low	700 (36.4%)
Moderate	229 (11.9%)
Severe or high	77 (4.0%)
Missing	329 (17.1%)
Prednisone dose*, n (%)	
0 mg/day	846 (44.0%)
1–5 mg/day	467 (24.3%)
6–9 mg/day	78 (4.1%)
≥10 mg/day	280 (14.6%)
Missing	251 (13.1%)
Medication category, n (%)	
Antimalarials only	665 (34.6%)
No SLE therapy	230 (12.0%)
Oral synthetic drug monotherapy with methotrexate, leflunomide or sulfasalazine only	175 (9.1%)
Oral synthetic drug monotherapy with (metyrapone/mycophenolic acid, tacrolimus, cyclophosphamide, ciclosporin or azathioprine)*	630 (32.8%)
Biologic/Targeted synthetic monotherapy	45 (2.3%)
Biologic/Targeted and immunosuppressive drug combination therapy†	177 (9.2%)

*All glucocorticoids were converted to prednisone-equivalent doses.
†These patients could be also on antimalarials.
ESRD, end-stage renal disease; SLE, systemic lupus erythematosus.

Ugarte-Gil MF, et al. Ann Rheum Dis 2022;0:1–9. doi:10.1136/annrheumdis-2021-221636
During the COVID-19 pandemic, rheumatologists have been particularly concerned about individuals with SLE. These individuals are often significantly immunosuppressed, commonly use moderate or high doses of GCs and have a high comorbidity burden. Moreover, many types of immune dysregulation occur in SLE, including in the interferon pathway, which is critical to the innate immune response during SARS-CoV-2 infection. However, SLE is a relatively uncommon disease and it has been difficult to accumulate a sufficient number of cases to examine risk factors for poor COVID-19 outcomes in this population.

DISCUSSION

Table 3

Covariate	OR (95% CI)	P value	
Age (years)	1.03 (1.02 to 1.04)	<0.001**	
Sex	Male	1.50 (1.01 to 2.23)	0.042*
Region	Europe	Reference	
	USA and Canada	0.82 (0.22 to 3.02)	0.76
	Latin America	1.97 (0.87 to 4.48)	0.11
	Other	4.79 (2.21 to 10.37)	<0.001**
Time period	≤15 June 2020	Reference	
	16 June–30 September 2020	0.50 (0.35 to 0.72)	<0.001**
	1 October 2020–12 April 2021	0.40 (0.29 to 0.57)	<0.001**
GC dose	0 mg/day	Reference	
	1–5 mg/day	1.86 (1.30 to 2.66)	<0.001**
	6–9 mg/day	2.47 (1.25 to 4.86)	0.009**
	≥10 mg/day	1.95 (1.27 to 2.99)	0.002**
Medication category	Antimalarial only	Reference	
	No SLE therapy	1.80 (1.17 to 2.75)	0.007**
	Monotherapy with methotrexate, leflunomide or sulfasalazine only†	0.74 (0.44 to 1.24)	0.25
	Monotherapy with mycophenolate/mycophenolic acid, tacrolimus, cyclophosphamide, ciclosporin or azathioprine†	1.01 (0.71 to 1.43)	0.95
	Biologic/Targeted synthetic drug monotherapy†	1.38 (0.58 to 3.26)	0.47
	Biologic/Targeted synthetic drug and immunosuppressive drug combination therapy†	1.17 (0.72 to 1.91)	0.52
	Chronic renal insufficiency or end-stage renal disease	3.51 (2.42 to 5.09)	<0.001**
	Cardiovascular/hypertension	1.69 (1.25 to 2.29)	<0.001**
Disease activity	Remission	Reference	
	Minimal or low	0.86 (0.61 to 1.21)	0.38
	Moderate	1.61 (1.02 to 2.54)	0.041*
	Severe or high	3.94 (2.11 to 7.34)	<0.001**

Each model adjusted for all variables listed, and random effects for country and time. *P<0.05; **P<0.01.
†These patients could be also on antimalarials.
GC, glucocorticoids; SLE, systemic lupus erythematosus.
of hospitalisation in patients with SLE. 22 These findings suggest glucocorticoid dose was positively associated with a higher risk disease activity. Like our results, in a small study from Belgium, more severe COVID-19 outcomes, including in those with low

However, in SLE, even low doses of GCs were associated with poorer outcomes in our analysis. In the C19-registry we found that in the absence of disease activity, the relationship between GC and mortality diminished. 21

Table 4

Number of individuals taking medication prior to COVID-19 diagnosis with observed outcome	Unadjusted n=1606	Age-adjusted and sex-adjusted n=1606	Fully adjusted model† n=1606	Fully adjusted model† confirmed COVID-19‡ n=1283					
Methotrexate	173	0.71 (0.50 to 1.01)	0.06	0.67 (0.47 to 0.97)	0.032*	0.71 (0.43 to 1.16)	0.17	0.71 (0.48 to 1.25)	0.23
Azathioprine	235	0.88 (0.66 to 1.19)	0.42	0.95 (0.70 to 1.29)	0.75	0.87 (0.57 to 1.34)	0.53	0.89 (0.54 to 1.47)	0.65
Mycophenolate/Mycophenolic acid	332	1.20 (0.93 to 1.55)	0.15	1.36 (1.05 to 1.76)	0.021*	1.08 (0.73 to 1.59)	0.72	1.27 (0.82 to 1.98)	0.29
Cyclophosphamide	29	1.92 (0.95 to 3.91)	0.07	2.55 (1.23 to 5.28)	0.012*	–	–	–	–
Rituximab	68	1.62 (1.00 to 2.63)	0.048*	1.69 (1.04 to 2.75)	0.016*	1.56 (0.84 to 2.90)	0.16	1.91 (0.97 to 3.79)	0.063
Belimumab	104	0.52 (0.32 to 0.86)	0.011*	0.51 (0.31 to 0.85)	<0.001**	0.66 (0.34 to 1.28)	0.22	0.65 (0.31 to 1.34)	0.24

*P<0.05; **p<0.01.
†Model adjusted for age, sex, renal disease, hypertension/cardiovascular disease, comorbidity count, disease activity, region, time period, glucocorticoid and other DMARD medication categories; random effects applied for country and time.
‡Confirmed cases were defined as having a diagnosis made by PCR, antibody or antigen test or a CT scan.
DMARD, disease-modifying antirheumatic drug; SLE, systemic lupus erythematosus.

vulnerable population. Here, we report the largest study of SLE and COVID-19 to date. In our analyses of over 1600 cases, we found that the use of GCs, having untreated or active SLE, or using rituximab was associated with more severe COVID-19 outcomes. In addition to these factors specific to SLE, our findings also highlight that many factors associated with more severe COVID-19 outcomes in the general population are important in SLE, including male gender, 17–18 age 17–20 and comorbidity burden.17–19

Prednisone use, even at relatively low doses of <5 mg/day, was associated with poorer outcomes in our analysis. In the C19-registry, which included a wide array of rheumatic diseases, only prednisone at doses ≥10 mg/day was associated with hospitalisation or mortality. 22 Interestingly, in additional analyses of the registry we found that in the absence of disease activity, the relationship between GC and mortality diminished. 21

However, in SLE, even low doses of GCs were associated with more severe COVID-19 outcomes, including in those with low disease activity. Like our results, in a small study from Belgium, glucocorticoid dose was positively associated with a higher risk of hospitalisation in patients with SLE. 22 These findings suggest that GCs are of special concern during the pandemic for people with SLE.

Our analyses also demonstrated that individuals not receiving treatment for their SLE at the time of COVID-19 diagnosis had poorer outcomes. The poor outcomes seen in this group may be multifactorial, and it is plausible that social risk factors play a role, such as lack of access to SLE care or treatment, or poor adherence with medications. Consistent with these results, individuals outside Europe, the USA and Canada had a poorer outcome, possibly related to healthcare access, but it was not statistically significant for Latin American individuals. Poverty and inequality have been associated with a higher risk and severity of COVID-19 globally, 14 23 and it is likely that health disparities in SLE may be exacerbated by the pandemic.

Rituximab has been associated with poorer outcomes in patients with RA. 2 We also found this association in SLE in our analysis, but it was present only in the unadjusted and age-adjusted and sex-adjusted models; this may be due to the smaller number of individuals on rituximab in our study and resultantly low power in statistical analyses (n=68). In fully adjusted models (including confirmed cases and those diagnosed based on symptoms and epidemiological criteria), there was a trend for an association between rituximab and poorer outcomes. It is important to point out that in the age-adjusted and sex-adjusted models MMF, cyclophosphamide was associated with poorer outcomes, Cyclophosphamide was not evaluated in a fully adjusted model due to a small sample size. These findings are similar to what has been reported in other studies. For example, in a recent meta-regression including several rheumatic diseases, GC use and immunosuppressive drugs use in monotherapy or combination were associated with hospitalisation and death from COVID-19. 24 Patients using belimumab generally had more favourable outcomes in our study; it is unclear if this may partly reflect confounding by healthcare access or socioeconomic status, as this drug is more commonly used in high-income nations. The association between methotrexate and better outcomes in the age-adjusted and sex-adjusted model could be related to a better disease activity control, as it did not remain significantly associated in the fully adjusted model. Because there were multiple comparisons, significance should be interpreted with caution. Given that there were six statistical comparisons made, one approach is to adjust the p value to a 0.01 level of significance. Using this more conservative approach, belimumab still remains statistically associated with less severe COVID-19 outcomes in the age-adjusted and sex-adjusted model.

Previous investigators have found an association between SLE disease activity and serious infections. 25 It is likely that both underlying immune dysfunction and the use of immunosuppressive therapies increase the risk of infection in SLE, which would explain the association between SLE disease activity and the severity of SARS-CoV-2 infection reported here.

The prognosis of patients with COVID-19 has improved over the course of the pandemic, which may be the result of many factors, including more widespread testing (leading to diagnosis of milder cases), improved pharmacological therapy and a better understanding of the timing, method of ventilatory support in critically ill patients and vaccination status for the most recent cases. Our findings suggest that patients with SLE diagnosed in later periods of the pandemic had better outcomes relative to the first part of the pandemic, which is consistent with the overall trends in the general population. 26

It is important to note that chronic kidney disease, a common and serious complication of SLE, has one of the strongest associations with poor COVID-19 outcomes. Chronic kidney disease is also an important risk factor for severe COVID-19 in the general population and may even pose a greater risk than the presence of diabetes. 27 In addition to renal disease, our findings indicate that other comorbidities also increase the risk of severe outcomes, which is consistent with numerous previous studies. 14 21 In SLE, medications, particularly GCs, can impact important comorbidities such as hypertension,
diabetes or obesity, which likely increases vulnerability to severe COVID-19 outcomes.

Several limitations of this study should be noted. First, the C19-GRA is a registry that is predicated on physician reporting of COVID-19 in patients with rheumatic disease, and as such, may be skewed to include more severe COVID-19 cases. Patients with more severe COVID-19 are more likely to come to the attention of their rheumatology provider. Second, even though we were able to examine the relationship of several factors with more severe outcomes, we cannot exclude other confounders like access to healthcare or socioeconomic status. Third, although the physician global assessment is a valid, responsive and feasible instrument, given its less than optimal reliability it is not ideal to just assess it to the exclusion of the patient’s assessment or other measures of disease activity; this is a limitation of our study. Finally, we were underpowered to look at some important treatments for SLE, such as cyclophosphamide, in our fully adjusted models; data on voclosporin and anifrolumab, two newly approved therapies for SLE, were not available in the registry at the time of our analyses.

In conclusion, we found that in addition to age, male sex and comorbidities, the use of GCs and having untreated or active disease were associated with more severe COVID-19 outcomes in individuals with SLE. Individuals with these characteristics should be prioritised for close monitoring, counselled to receive vaccination and receive preventive therapies such as monoclonal antibodies (if available) if exposed to SARS-CoV-2.

Author affiliations
1Grupo Peruano de Estudio de Enfermedades Autoinmunes Sistémicas, Universidad Científica del Sur, Lima, Peru
2Rheumatology Department, Hospital Nacional Guillermo Almenara Irigoyen, EsSalud, Lima, Peru
3Weersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
4School of Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru
5Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
6Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, California, USA
7Division of Rheumatology, Mayo Clinic, Rochester, Minnesota, USA
8Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA
9Unidad de Investigación Para La Generación y Síntesis de Evidencias en Salud, Universidad San Ignacio de Loyola, Lima, Peru
10Division of Rheumatology Department of Medicine. Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
11Department of Internal Medicine, Division of Rheumatology, University of Southern California, Los Angeles, California, USA
12Centro Regional de Enfermedades Autoinmunes y Reumáticas (GO-CREAT), Rosario, Argentina
13Research Unit, Argentine Society of Rheumatology, Buenos Aires, Argentina
14Rheumatology, Hospital Garcia de Orta, Almada, Portugal
15Rheumatology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
16Divisions of Rheumatology and Clinical Epidemiology, McGill University Health Centre, Montreal, Québec, Canada
17Faculdade de Medicina, Universidade federal do Amazonas, UFMAM, Manaus, Amazonas, Brazil
18Rheumatology Department, Hamad Medical Corp, Doha, Qatar
19Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, Massachusetts, USA
20Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
21Division of Rheumatology, Mayo Clinic, Jacksonville, Florida, USA
22Lund University, Lund, Sweden
23Epidemiology Research Unit, Italian Society for Rheumatology, Milan, Italy
24Rheumatology and Clinical Immunology, ASST Sperdali Civile, Brescia, Italy
25Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
26Internal Medicine Department, Bichat Claude Bernard Hospital, APHP, Paris, France
27Université de Paris, Paris, France
28Internal Medicine Department, Poissy Saint-Germain-en-Laye Hospital, Poissy, France
29Department of Rheumatology, Université Paris-Saclay, Assistance Publique – Hôpitaux de Paris, Le Kremlin Bicêtre, France
30Department of Rheumatology, Pasteur 2 Hospital, University of Nice - Sophia-Antipolis, Nice, France
31Rheumatology Research Unit, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
32Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
33Centro Hospitalar Universitário do Algarve, Unidade de Faro, Faro, Portugal
34Department of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus Liebig University Giessen, Bad Nauheim, Germany
35Department of Rheumatology and Clinical Immunology, Clinic for Internal Medicine I, University Hospital Schleswig-Holstein, Kiel, Germany
36Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
37Department of Rheumatology and Clinical Immunology, Klinikum Essen-Mitte, Essen, Germany
38Hospital Francisco Lopez Lima, General Roca, Argentina
39Sanatorio Güemes, Buenos Aires, Argentina
40Hospital San Antonio de Padua, Río Cuarto, Argentina
41Hospital São Paulo, Universidade Federal de São Paulo, São Paulo, Brazil
42Hospital das Crianças, Belo Horizonte, Brazil
43Universidade Federal de Minaís Gerais, Belo Horizonte, Brazil
44Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
45Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
46Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
47Canadian Arthritis Patient Alliance, Toronto, Ontario, Canada
48Section of Rheumatology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
49Rheumatology, Boston Children’s Hospital, Boston, Massachusetts, USA
50Division of Rheumatology and Clinical Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
51Healthpartners, St Paul, Minnesota, USA
52Department of Medicine, University of Otago, Wellington, New Zealand
53Pfizer, Inc, New York, New York, USA
54Irish Children’s Arthritis Network (ICAN), Tipperary, Ireland
55Epidemiology and Health Services, German Rheumatism Research Center (DRFZ Berlin), Berlin, Germany
56Portuguese League Against Rheumatic Diseases (LPCDR), Lisbon, Portugal
57European League Against Rheumatism (EULAR) Standing Committee of People with Arthritis/Rheumatism in Europe (PARE), Klicheberg, Switzerland
58Centre for Epidemiology Versus Arthritis, The University of Manchester, Manchester, UK
59National Institute of Health Research Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
60Instituto de Salud Musculosqueletica, Madrid, Spain
61Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
62Centre for Epidemiology Versus Arthritis, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
63Epidemiology and Health Care Research, German Rheumatism Research Center (DRFZ Berlin), Berlin, Germany
64Centre for Rheumatology & Department of Neuro muscular Diseases, University College London, London, UK
65National Institute for Health Research (NIHR), University College London Hospitals, London, UK
66Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK
67Department of Rheumatology, Northwick Park Hospital, London North West University Healthcare NHS Trust, London, UK
68School of Clinical Medicine, The University of Queensland, Herston, Queensland, Australia
69Department of Rheumatology, Metro North Health & Service Royal Brisbane and Woman’s Hospital, Herston, Queensland, Australia

Twitter Manuel Francisco Ugarte-Gil @mugartegil, Zara Izadi @IzadiZara, Ali Duarte-Garcia @AliDuarteMD, Leanne Wise @LeannaWiseMD, Guillermo J Pons-Estel @gponsel, Samar Al Emaili @Dr_samaralemaldy, Jeffrey A Sparks @jeffsparks, Christof Specker @CSpecker, Vanessa Castro-Coello @vane_castro_c, Emily Siroch @emilysiroch, Jean Liew @jeuhem, JH, Jonathan Hausmann @hausmanmm, Rebecca Grainger @drbeckezy, Zachary S Wallace @zach_wallace_md, Loreto Carmona @carmona_loreto, Saskia Lawton-Tovey @saskiaamber, Pedro Machado @pedromachadom and Philip C Robinson @philiprobinson

Systemic lupus erythematosus
Acknowledgements We wish to thank all rheumatology providers who entered data into the registry.

Collaborators The COVID-19 Global Rheumatology Alliance (GRA); Brahmi Dahou (Association Rhumatologues Algériens Privés (ARAP), Algeria); Rosana Quintana (Argentine Society of Rheumatology, Argentina); Gimena Gómez (Argentine Society of Rheumatology, Argentina); Karen Roberts (Argentine Society of Rheumatology, Argentina); Vanessa Castro Coello (Argentine Society of Rheumatology, Argentina); Maria J. Haye Salinas (Argentine Society of Rheumatology, Argentina); Federico Nicolas Maldonado Benitez (Argentine Society of Rheumatology, Argentina); Alvaro Andres Iteyes Torres (Argentine Society of Rheumatology, Argentina); Gelsomina Alle (Argentine Society of Rheumatology, Argentina); Romina Tanten (Argentine Society of Rheumatology, Argentina); Hernán Maldonado Facco (Argentine Society of Rheumatology, Argentina); Romina Nieto (Argentine Society of Rheumatology, Argentina); Carla Gobbi (Argentine Society of Rheumatology, Argentina); Yohana Tissera (Argentine Society of Rheumatology, Argentina); Cecilia Pisoni (Argentine Society of Rheumatology, Argentina); Alba Palacios (Argentine Society of Rheumatology, Argentina); Juan Alejandro Alberio (Argentine Society of Rheumatology, Argentina); Maria Marcela Schmid (Argentine Society of Rheumatology, Argentina); Micaela Consatti (Argentine Society of Rheumatology, Argentina); Maria Julia Gamba (Argentine Society of Rheumatology, Argentina); Calefavors Leandro (Argentine Society of Rheumatology, Argentina); Maria Alejandra Cusa (Argentine Society of Rheumatology, Argentina); Noelia German (Argentine Society of Rheumatology, Argentina); Veronica Bellomio (Argentine Society of Rheumatology, Argentina); Lorena Takashima (Argentine Society of Rheumatology, Argentina); Mariana Pera (Argentine Society of Rheumatology, Argentina); Karina Cogo (Argentine Society of Rheumatology, Argentina); Maria Soledad Galvez Elkin (Argentine Society of Rheumatology, Argentina); Maria Alejandra Medina (Argentine Society of Rheumatology, Argentina); Veronica Zalba (Argentine Society of Rheumatology, Argentina); Ivanna Rolina Rosales Tess (Argentine Society of Rheumatology, Argentina); Rodolfo Perez Alamo (Argentine Society of Rheumatology, Argentina); Laura Maria Werne (Argentine Society of Rheumatology, Argentina); Sofia Omella (Argentine Society of Rheumatology, Argentina); Luciana Casalia (Argentine Society of Rheumatology, Argentina); Maria de la Vega (Argentine Society of Rheumatology, Argentina); Maria Serena (Argentine Society of Rheumatology, Argentina); Mercedes Garcia (Argentine Society of Rheumatology, Argentina); Luciana Cinti (Argentine Society of Rheumatology, Argentina); Cecilia Romeo (Argentine Society of Rheumatology, Argentina); Sebastian Moyano (Argentine Society of Rheumatology, Argentina); Tatiana Barbi (Argentine Society of Rheumatology, Argentina); Ana Bertoli (Argentine Society of Rheumatology, Argentina); Andrea Bahos (Argentine Society of Rheumatology, Argentina); Sandra Petruzelli (Argentine Society of Rheumatology, Argentina); Carla Matesian (Argentine Society of Rheumatology, Argentina); Silvana Conti (Argentine Society of Rheumatology, Argentina); Ma. Alicia Lazaro (Argentine Society of Rheumatology, Argentina); Gustavo Fabian Rodriguez Gil (Argentine Society of Rheumatology, Argentina); Fabian Risueño (Argentine Society of Rheumatology, Argentina); Maria Isabel Quaglia (Argentine Society of Rheumatology, Argentina); Julia Scalaf (Argentine Society of Rheumatology, Argentina); Natalia Lili Cuchiaro (Argentine Society of Rheumatology, Argentina); Jonathan Eliseo Rebuff (Argentine Society of Rheumatology, Argentina); Susana Isabel Pineda (Argentine Society of Rheumatology, Argentina); Maria Elena Calvo (Argentine Society of Rheumatology, Argentina); Eugenio Picco (Argentine Society of Rheumatology, Argentina); Josefina Gallino Tanzi (Argentine Society of Rheumatology, Argentina); Pablo Maid (Argentine Society of Rheumatology, Argentina); Debora Guaglianone (Argentine Society of Rheumatology, Argentina); Julieta Silvana Morbiddi (Argentine Society of Rheumatology, Argentina); Sabrina Porta (Argentine Society of Rheumatology, Argentina); Natalia Hersovich (Argentine Society of Rheumatology, Argentina); José Luís Velasco Zamora (Argentine Society of Rheumatology, Argentina); Boris Kislik (Argentine Society of Rheumatology, Argentina); Maria Sol Castaños Menescardi (Argentine Society of Rheumatology, Argentina); Rosana Gallo (Argentine Society of Rheumatology, Argentina); Maria Victoria Martinez (Argentine Society of Rheumatology, Argentina); Carla Maldini (Argentine Society of Rheumatology, Argentina); Cecilia Goizueta (Argentine Society of Rheumatology, Argentina); Sabrina Solange de la Vega Fernandez (Argentine Society of Rheumatology, Argentina); Carolina Aeschlimann (Argentine Society of Rheumatology, Argentina); Gisela Subils (Argentine Society of Rheumatology, Argentina); Eva Rath (Hansch Krankenhaus, Vienna, Austria); Yves Pletz (AZ Sint-Jan Brugge, Belgium); Mieke Devink (AZ Sint-Jan Brugge); Gulnara Brugge, Belgium); Markus Brugge, Belgium); Mieke Devink (AZ Sint-Jan Brugge, Belgium); Gelsomina Alle (University Hospital Center Zagreb, Croatia); Branimir Anic (Division of Clinical Immunology and Rheumatology; Department of Internal Medicine, School of Medicine Zagreb, University Hospital Center Zagreb, Croatia); Melanie-Ivana Culo (University Hospital Dubrava, Zagreb, Croatia); Tea Ahel Pavlic (Clinical Hospital Center Rijeka, Croatia); Kristina Kovačević Strani (University Hospital Osijek, Croatia); Boris Karonavic (UHC Zagreb, Croatia); Jiri Vencovsky (Institute of Rheumatology, Prague, Czechia); Marta Pichova (Medipont plus s.r.o., Ceske Budjovice, Czechia); Maria Filippa (Institute of Rheumatology, Prague, Czechia); Hospital Hamouali Al Azhar University, Egypt); Dimitrios Vassilopoulos (Hippokration General Hospital, Athens, Greece); Gabriela Maria, Guzman Melgar (Hospital del Valle, Honduras, Honduras); Soo (Chinese University of Hong Kong, Hong Kong); Márta Király, (Petz Aladár University Teaching Hospital, Győr, Hungary); Mahdi Vojdanian (Iran Rheumatology Research, Iran); Alexandre Balbir-Gurman (Rambam Rheumatology Institute, Haifa, Israel); Fatemah Abutiban (Kuwait Rheumatology Research, Kuwait); Julija Zepa (Pauls Stradins Clinical University Hospital, Latvia); Luta Borekuskieni (Klaipeda University Hospital, Lithuania); Beatriz Zuazua (Centro Medico del Angel, Mexico); Angel Alejandro Castillo Ortíz (Centro Medico Las Americas, Mexico); Erick Zamora Tehzol (Centro Medico Pensiones, Mexico); David Yega (Hospital General de Zona #1, Mexico); Diana Cervantes Rosete (Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico); Eduardo Martin Naires (Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico); Tatiana Sofia Rodriguez-Reyna (Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico); Marina Rull Gabayet (Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico); Dshire Alpizar-Rodriguez (Mexican College of Rheumatology, Mexico); Fedra Irazoque (Private Practice, Mexico); Xochitl Jimenez (Centro Medico Naval, Mexico); Lenny Geurts-van Bon (Ziekenhuisgroep Twente, The Netherlands); Theo Oetterová (Safarik University Hospital, Kosice, Slovak Republic); Olga Lukacova (University Hospital od L. Pasteur Kosice, Slovak Republic); Mária Skamlova (FNSPFDR, Banská Bystrica, Slovak Republic); Martin Zinay (National Institute of Rheumatic Diseases, Pieszany, Slovak Republic); Dagmar Míčková (National Institute of Rheumatic Diseases, Pieszany, Slovak Republic); Lubica Capova (University Hospital Bratislava, Slovak Republic); Zelmira Macejova (University Hospital, Kosice, Slovak Republic); Helena Raffayova (National Institute of Rheumatic Diseases, Pieszany, Slovak Republic); Gabriela Belakova (Medipont plus s.r.o., Martin, Slovak Republic); Eva Strakova (Faculty Hospital Pevc, Slovak Republic); Marieta Senčárová (Louis Pasteur University Hospital, Kosice, Slovak Republic); Soňa Žímová (Poľská Lékařská, Martin, Slovak Republic); Natalia Lili Cuchiaro (Argentine Society of Rheumatology, Argentina); Jonathan Eliseo Rebuff (Argentine Society of Rheumatology, Argentina); Susana Isabel Pineda (Argentine Society of Rheumatology, Argentina); Maria Elena Calvo (Argentine Society of Rheumatology, Argentina); Eugenio Picco (Argentine Society of Rheumatology, Argentina); Josefina Gallino Tanzi (Argentine Society of Rheumatology, Argentina); Pablo Maid (Argentine Society of Rheumatology, Argentina); Debora Guaglianone (Argentine Society of Rheumatology, Argentina); Julieta Silvana Morbiddi (Argentine Society of Rheumatology, Argentina); Sabrina Porta (Argentine Society of Rheumatology, Argentina); Natalia Hersovich (Argentine Society of Rheumatology, Argentina); José Luís Velasco Zamora (Argentine Society of Rheumatology, Argentina); Boris Kislik (Argentine Society of Rheumatology, Argentina); Maria Sol Castaños Menescardi (Argentine Society of Rheumatology, Argentina); Rosana Gallo (Argentine Society of Rheumatology, Argentina); Maria Victoria Martinez (Argentine Society of Rheumatology, Argentina); Carla Maldini (Argentine Society of Rheumatology, Argentina); Cecilia Goizueta (Argentine Society of Rheumatology, Argentina); Sabrina Solange de la Vega Fernandez (Argentine Society of Rheumatology, Argentina); Carolina Aeschlimann (Argentine Society of Rheumatology, Argentina); Gisela Subils (Argentine Society of Rheumatology, Argentina); Eva Rath (Hansch Krankenhaus, Vienna, Austria); Yves Pletz (AZ Sint-Jan Brugge, Belgium); Mieke Devink (AZ Sint-Jan Brugge, Belgium); Markus Brugge, Belgium); Markus Brugge, Belgium); Mieke Devink (AZ Sint-Jan Brugge, Belgium); Gelsomina Alle (University Hospital Center Zagreb, Croatia); Branimir Anic (Division of Clinical Immunology and Rheumatology; Department of Internal Medicine, School of Medicine Zagreb, University Hospital Center Zagreb, Croatia); Melanie-Ivana Culo Systemic lupus erythematosus

Ugarte-Gil MF, et al. Ann Rheum Dis 2022;0:1–9. doi:10.1136/annrheumdis-2021-221636
Royal Infirmary, UK); Diana O’Kane (RNHRD at Royal United Hospital Bath, UK); Audrey Low (Salford Royal NHS FT, UK); Sarah Horton (Minerva Health Centre, UK); Shradha Jatwani (Albert Einstein Medical Center, Pennsylvania, USA); Sara Baig (Arthritis and Rheumatology Consultants, Pennsylvania, USA); Hammad Bajwa (Arthritis and Rheumatology Consultants, Pennsylvania, USA); Vernon Berglund (Arthritis and Rheumatology Consultants, Pennsylvania, USA); Angela Morgan (Arthritis and Rheumatology Consultants, Pennsylvania, USA); Walter Dorman (Arthritis and Rheumatology Consultants, Pennsylvania, USA); Jody Hargrove (Arthritis and Rheumatology Consultants, Pennsylvania, USA); Maren Hilton (Arthritis and Rheumatology Consultants, Pennsylvania, USA); Nicholas Leboff (Arthritis and Rheumatology Consultants, Pennsylvania, USA); Susan Leonard (Arthritis and Rheumatology Consultants, Pennsylvania, USA); Jennifer Morgan (Arthritis and Rheumatology Consultants, Pennsylvania, USA); Emily Pfeifer (Arthritis and Rheumatology Consultants, Pennsylvania, USA); Archibald Skemp (Arthritis and Rheumatology Consultants, Pennsylvania, USA); Jeffrey Wilson (Arthritis and Rheumatology Consultants, Pennsylvania, USA); Anne Wolff (Arthritis and Rheumatology Consultants, Pennsylvania, USA); Eduardo Cepeda (Austin Diagnostic Clinic, USA); Kristin D’Silva (Brigham and Women’s Hospital, USA); Tiffany Hsu (Brigham and Women’s Hospital, USA); Naomi Serling-Boyd (Brigham and Women’s Hospital, USA); Jeffrey Sparks (Brigham and Women’s Hospital, USA); Derrick Todd (Brigham and Women’s Hospital, USA); Zachary Wallace (Brigham and Women’s Hospital, USA); Denise Hare (Capital Health Rheumatology, USA); Cassandra Calabrese (Cleveland Clinic, USA); Christopher Adams (East Alabama Medical Center, USA); Azeez Khosroshahi (Emory University, USA); Adam Klian (George Washington University, USA); Douglas Watkins (Mayo Health System, USA); Kurt Pehl (Mayo Health System, USA); Theodore Fields (Hospital for Special Surgery, USA); Caroline Siegel (Hospital for Special Surgery, USA); Nicole Daver (Institute of Rheumatic and Autoimmune Diseases, USA); Melissa Harvey (Institute of Rheumatic and Autoimmune Diseases, USA); Neil Kramer (Institute of Rheumatic and Autoimmune Diseases, USA); Concrete Lamore (Institute of Rheumatic and Autoimmune Diseases, USA); Sunaya Hogarty (Integrative Arthritis and Pain Consultants, USA); Karen Yeter (Kalmar, Sweden); Karen Caram (Las Vegas County-US Medical Center, USA); Faizah Siddique (Loyola University Medical Center, USA); Byung Ban (Medstar Georgetown University Hospital, USA); Tamar Tanner (Montefiore Medical Center, USA); Eric Ruderman (Northwestern Memorial, USA); William Davis (Ochsner Medical Center Rheumatology Department, USA); Robert Quinet (Ochsner Medical Center Rheumatology Department, USA); Evangeline Scopelitis (Ochsner Medical Center Rheumatology Department, USA); Karen Torchio (Ochsner Medical Center Rheumatology Department, USA); Tameka Webb-Detiege (Ochsner Medical Center Rheumatology Department, USA); Jerald Zemek (Ochsner Medical Center Rheumatology Department, USA); Khurram Abbasi (Private Practice, USA); Gilbert Kepes (Private Practice, USA); Lillian Miranda (Rheumatology Center INC, USA); Michael Guma (Riverside Medical Group, USA); Ammar Haikal (Riverside Medical Group, USA); Sushma Mody (Riverside Medical Group, USA); Daric Mueller (Shores Rheumatology Practice, USA); Sujata Mathai (Javall Medical, USA); JoAnn Zell (University of Colorado, USA); Alison Bays (University of Washington, Seattle, USA); Kathryn Dao (UT Southwestern Medical Center, USA); Ezzati Fatemeh (UT Southwestern Medical Center, USA); Deborah Parks (Washington University Division of Rheumatology, USA); David Karp (UT Southwestern Medical Center, USA); Guillermo Quiceno (UT Southwestern Medical Center, USA).

Contributors MFU-G, GSA, MG and JY had access to the study data, developed the figures and tables and vouch for the data and analyses. AMG performed the statistical analyses and contributed to data quality control, data analysis and interpretation of data. BA authors contributed to data collection, data analysis and interpretation of data. MFU-G, GSA, MG and JY directed the work, designed the data collection methods, contributed to data collection, data analysis and interpretation of data and had final responsibility for the decision to submit for publication. All authors contributed intellectual content during the drafting and revision of the work and approved the final version to be published. JY is the guarantor.

Funding The study received support from the American College of Rheumatology (ACR) and European Association of Alliances for Rheumatology (EULAR).

Competing interests MFU-G has received research grants from Pfizer and Janssen, not related to this manuscript. AD-G is supported by the Rheumatology Research Foundation (Scientist Development Award) and the Centers for Disease Control and Prevention. CR-S has received research grants from Janssen, not related to this manuscript. AEC has received consulting fees from AstraZeneca and GSK, all unrelated to this manuscript. LW has received consulting fees and speaker’s honoraria from Aurinia Pharma unrelated to this manuscript. JY has received consulting fees from AbbVie, AstraZeneca, Novartis, Pfizer and Roche, all unrelated to this manuscript. WO has received no consulting fees related to this work. Outside of this work, he reports personal consulting and/or speaking fees from Pfizer, GSK, and Sanofi all <US$10 000. MS has received speaker’s fees from AbbVie, AstraZeneca, Novartis, Pfizer and Roche, all unrelated to this manuscript. TR has received no consulting fees related to this work. JF has received no consulting or speaking fees from AbbVie, AstraZeneca, Novartis, Pfizer and Roche, all unrelated to this manuscript. QV has no disclosure related to this manuscript. RH was supported by the Justus-Liebig University Giessen (Germany) Clinician Scientist Program in Biomedical Research (JLU-CAREER) to work on the German COVID-19 registry. RH has received consulting/speaker’s fee from Pfizer, Novartis, Amgen, Medac, AbbVie, Gilead, Mylan, Takeda/Shire, Roche/Chugui, Bristol-Myers Squibb and Galapagos, all unrelated to this manuscript. RH has no competing interests related to this work. He has received personal consulting and/or speaking fees from AbbVie, Amgen, Boehringer Ingelheim, BMS, Janssen-Cilag, GSK, Hexal, Neutrolis, Novartis, Pfizer (all <US$10 000) and “Pfizer and Roche, all unrelated to this manuscript (all <US$10 000). Institutional research grants were received from Amgen, BMS, Novartis, Pfizer. ETRN has received speaker’s fees from GSK, Novartis, Bioerca, unrelated to this manuscript. GAAF has received speaker’s fees from Boehringer Ingelheim, unrelated to this manuscript. QAAM has received speaker’s fees from AbbVie, Boehringer Ingelheim, GSK, Janssen, Novartis, Pfizer, UC Roch and Roche, all unrelated to this manuscript. JL has received research funding from Pfizer outside the submitted work. JH is supported by grants from the Rheumatology Research Foundation and has salary support from the Childhood Arthritis and Rheumatology Research Alliance. He has performed consulting for Novartis, Sobi, Biogen, all unrelated to this manuscript. PS reports honoraria from Roche and Pfizer, all unrelated to this manuscript. JLL has received research grants from Amgen, BMS, Novartis, Pfizer, Roche, all unrelated to this manuscript. JL has received research funding from the German COVID-19 registry (‘<US$10 000). RG reports non-financial support from Pfizer Australia, personal fees from Pfizer Australia, personal fees from Cornerstones, personal fees from Janssen New Zealand, non-financial support from Janssen Australia, personal fees from Novartis outside the submitted work. SB reports non-branded consulting fees for AbbVie, Horizon, and Novartis (all <US$10 000), and is employed by Pfizer. ZSW reports grant support from Bristol-Myers Squibb and Principia/Sanoft and performed consultancy for ViaBio and MedPace, outside the submitted work. His work is supported by grants from the National Institutes of Health. AS reports grants from a consortium of 13 companies (among them AbbVie, BMS, Celltrion, Fresenius Kabi, Lilly, Mylan, Hexal, MSD, Pfizer, Roche, Samsung, Sanofi-Aventis and UCB) supporting the German RABBIT register and personal fees from lectures for AbbVie, MSD, Roche, BMS, Pfizer, outside the submitted work. EFM reports that LPCDR received support for specific activities: grants from AbbVie, Novartis, Janssen-Cilag, Lilly, Rosco, Sanofi, Grünenthal S.A., MSD, Celgene, Medac, Pharmakem, GAPA; grants and non-financial support from Pfizer; non-financial support from Grünenthal GmbH, outside the submitted work. KLH has received speaker’s honoraria from AbbVie and grant support from Pfizer and BMS, all unrelated to this manuscript. KLH is also supported by the NIHR Manchester BRC. LC has not received fees or personal grants from any laboratory, but her institute works by contract for laboratories among other institutions, such as AbbVie, Gepro Pharma, MSD, Novartis, Pfizer, Roche, Sanofi-Aventis, Grünenthal and UCB. All unrelated to this manuscript. PMM has received consulting/speaker’s fees from AbbVie, BMS, Celgene, Galapagos, Eli Lilly, Janssen, MSD, Novartis, Orphazyme, Pfizer, Roche and UCB, all unrelated to this manuscript. PCR reports personal fees from AbbVie, BMS, Eli Lilly, Gilead, GlaaxSmithkline, Janssen, Rukdong, Novartis, UCB, Roche, Pfizer; meetings, Plasco support from BMS and grant funding from Janssen, Novartis, Pfizer and UCB Pharma. MG is supported by grants from NIH/NIAM. SIJ has received research grants from AstraZeneca, Gilead and BMS, and consulting fees from Aurora, Pfizer and AstraZeneca. GSA, ZI, SB, SLER, SAE, JY-TH, ELG, MOV-A, AI, GL, MF, TG, MD, VCR, GS, BH, CS, RB, VC-C, HIMF, ES, WC, LJ, TT, CI, SL-T, LF-K and MS have nothing to disclose.

Patient consent for publication Not applicable.

Ethics approval This study involves human participants but the UK Health Research Authority and the University of Manchester, as well as the University of California, San Francisco Institutional Review Board exempted this study. The C19-GRA physician-reported registry was defined as ‘not human subjects research’ by the UK Health Research Authority and the University of Manchester, as well as under Federal Guidelines approved by the University of California, San Francisco Institutional Review Board. Due to the de-identified and non-interventional nature of the study, it was determined to be exempt by each institutional review board.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available on reasonable request. Data are available on reasonable request. Applications to access the data should be made to the C19-GRA Steering Committee.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content
includes any translated material, BMI does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

This article is made freely available for personal use in accordance with BMJ’s website terms and conditions for the duration of the covid-19 pandemic or until otherwise determined by BMJ. You may use, download and print the article for any lawful, non-commercial purpose (including text and data mining) provided that all copyright notices and trade marks are retained.

ORCID iDs
Manuel Francisco Ugarte-Gil http://orcid.org/0000-0003-1728-1999
Gricel S Alarcón http://orcid.org/0000-0001-5190-9175
Zara Izadi http://orcid.org/0000-0002-1867-0905
Ali Duarte-Garcia http://orcid.org/0000-0003-1749-5719
Christina Reategui-Sokolova http://orcid.org/0000-0003-3421-2717
Guilermo J Pons-Estel http://orcid.org/0000-0002-0647-929X
Maria Jose Santos http://orcid.org/0000-0002-7946-1365
Sasha Bernatsky http://orcid.org/0000-0002-9515-2802
Sandra Lúcia Euzébio Ribeiro http://orcid.org/0000-0003-4777-8659
Samar Al Emadi http://orcid.org/0000-0001-7942-4831
Odirlei Andre André Monticielo http://orcid.org/0000-0003-0720-2097
Emily Siroich http://orcid.org/0000-0002-7087-8543
Jonathan Hausmann http://orcid.org/0000-0003-0786-8788
Anja Strangfeld http://orcid.org/0000-0002-6233-022X
Elsa F Mateus http://orcid.org/0000-0003-0059-2141
Kimme L Hyrich http://orcid.org/0000-0001-8242-9262
Loreto Carmona http://orcid.org/0000-0002-4401-2551
Saskia Lawson-Tovey http://orcid.org/0000-0002-8611-162X
Lianne Kearsley-Fleet http://orcid.org/0000-0003-0377-1575
Martin Schäfer http://orcid.org/0000-0001-6487-3634
Pedro M Machado http://orcid.org/0000-0002-9411-7972
Philip C Robinson http://orcid.org/0000-0002-3156-3418

REFERENCES
1 Pons-Estel GI, Ugarte-Gil MF, Alarcón GS. Epidemiology of systemic lupus erythematosus. Expert Rev Clin Immunol 2017;13:799–814.
2 Strangfeld A, Schäfer M, Gian Francesco MA, et al. Factors associated with COVID-19-related death in people with rheumatic diseases: results from the COVID-19 global rheumatology alliance physician-reported registry. Ann Rheum Dis 2020;80:930–42.
3 Sparks JA, Wallace ZS, Seet AM, et al. Associations of baseline use of biologic or targeted synthetic DMARDs with COVID-19 severity in rheumatoid arthritis: results from the COVID-19 global rheumatology alliance physician-reported registry. Ann Rheum Dis 2021;80:1137–46.
4 O’Driscoll M, Ribeiro Dos Santos G, Wang L, et al. Age-Specific mortality and immunity patterns of SARS-CoV-2. Nature 2021;590:140–5.
5 Fernandez-Ruiz R, Masson M, Kim MY, et al. Leveraging the United States epicenter to provide insights on COVID-19 in patients with systemic lupus erythematosus. Arthritis Rheumatol 2020;72:1971–80.
6 Wallace B, Washer L, Marder W, et al. Patients with lupus with COVID-19: University of Michigan experience. Ann Rheum Dis 2020. doi:10.1136/annrheumdis-2020-217794. [Epub ahead of print: 31 May 2020].
7 Favalli EG, Ingegnoletti F, Cimaz R, et al. What is the true incidence of COVID-19 in patients with rheumatic diseases? Ann Rheum Dis 2021;80:e12.
8 Gartshtein Y, Askana D, Schmidt NM, et al. COVID-19 and systemic lupus erythematosus: a case series. Lancet Rheumatol 2020;2:e452–4.
9 Bertoglio IM, Valim JM, Dal D, et al. Poor Prognosis of COVID-19 Acute Respiratory Distress Syndrome in Lupus Erythematosus: Nationwide Cross-Sectional Population Study Of 252 119 Patients. ACR Open Rheumatol 2021;3:804–11.
10 Corti R, Kristensen S, Dalgaard UPH, et al. Incidence of COVID-19 hospitalisation in patients with systemic lupus erythematosus: a nationwide cohort study from Denmark. J Clin Med 2021;10:3842.
11 Harris PA, Taylor R, Minor BL, et al. The REDCap Consortium: building an international community of software platform partners. J Biomed Inform 2019;95:103208.
12 Harris PA, Taylor R, Thieleke R, et al. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform 2009;42:377–81.
13 Gian Francesco M, Hyrich KL, Al-Adey S, et al. Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: data from the COVID-19 global rheumatology alliance physician-reported registry. Ann Rheum Dis 2020;79:859–66.
14 Gian Francesco MA, Leykina LA, Izaizi Z, et al. Association of race and ethnicity with COVID-19 outcomes in rheumatic disease: data from the COVID-19 global rheumatology alliance physician registry. Arthritis Rheumatol 2021;73:374–80.
15 RECOVERY Collaborative Group, Horby P, Lim WS, et al. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med 2021;384:693–704.
16 Spithman AP, Gadi N, Wu SC, et al. COVID-19 and systemic lupus erythematosus: focus on immune response and therapeutics. Front Immunol 2020;11:589474.
17 Parohon M, Yaghoubi S, Senaj A, et al. Risk factors for mortality in patients with coronavirus disease 2019 (COVID-19) infection: a systematic review and meta-analysis of observational studies. Aging Male 2020;23:146–24.
18 Noor FM, Islam MM. Prevalence and associated risk factors of mortality among COVID-19 patients: a meta-analysis. J Community Health 2020;45:1270–82.
19 Tian W, Jiang W, Yao J, et al. Predictors of mortality in hospitalized COVID-19 patients: a systematic review and meta-analysis. J Med Virol 2020;92:1875–83.
20 Hassell R, Mueller-Ladner U, Hoyer BF, et al. Older age, comorbidity, glucocorticoid use and disease activity are risk factors for COVID-19 hospitalisation in patients with inflammatory rheumatic and musculoskeletal diseases. RMD Open 2021;7:e001464.
21 Schäfer M, Strangfeld A, Hyrich KL, et al. Response to: 'Correspondence on ‘Factors associated with COVID-19-related death in people with rheumatic diseases: results from the COVID-19 Global Rheumatology Alliance physician reported registry’" by Mulhearn et al. Ann Rheum Dis 2021. doi:10.1136/annrheumdis-2021-203134. [Epub ahead of print: 01 Mar 2021].
22 Gendebien Z, von Frenckell C, Ribbens C, et al. Systematic analysis of COVID-19 infection and symptoms in a systemic lupus erythematosus population: correlation with disease characteristics, hydroxychloroquine use and immunosuppressive treatments. Ann Rheum Dis 2020. doi:10.1136/annrheumdis-2020-218244. [Epub ahead of print: 25 Jun 2020].
23 Patel JA, Nielsen FBH, Badiani AA, et al. Poverty, inequality and COVID-19: the forgotten vulnerable. Public Health 2020;183:110–1.
24 Akýama S, Hamdhe S, Micic D, et al. Response to: ‘Correspondence on ‘Prevalence and clinical outcomes of COVID-19 in patients with autoimmune disease: a systematic review and meta-analysis’’ by Lee. Ann Rheum Dis 2021. doi:10.1136/annrheumdis-2021-219918. [Epub ahead of print: 27 Jan 2021].
25 Pimentel-Quiroz VR, Ugarte-Gil MF, Harvey GB, et al. Factors predictive of serious infections over time in systemic lupus erythematosus patients: data from a multi-ethnic, multi-national, Latin American lupus cohort. Lupus 2019;28:1101–10.
26 Jorge A, D’Silva KM, Cohen A, et al. Temporal trends in severe COVID-19 outcomes in patients with rheumatic disease: a cohort study. Lancet Rheumatol 2021;3:e131–7.
27 ERA-EDTA Council, ERACODA Working Group. Chronic kidney disease is a key risk factor for severe COVID-19: a call to action by the ERA-EDTA. Nephrol Dial Transplant 2021;36:87–94.
28 Ugarte A, Danza A, Ruiz-Inastroza G. Glucocorticoids and antimarialars in systemic lupus erythematosus: an update and future directions. Curr Opin Rheumatol 2018;30:482–9.