A new species of the Asian leaf litter toad genus *Leptobrachella* Smith, 1925 (Anura, Megophryidae) from northwest Guizhou Province, China

Yan-Lin Cheng¹, Sheng-Chao Shi², Jiaqi Li³, Jing Liu¹, Shi-Ze Li¹,², Bin Wang¹,²

¹ Department of Resources and Environment, Moutai Institute, Renhuai 564500, China ² Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China ³ Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China

Corresponding author: Shi-Ze Li (976722439@qq.com); Bin Wang (wangbin@cib.ac.cn)

Academic editor: A. Ohler | Received 13 November 2020 | Accepted 4 February 2021 | Published 2 March 2021

Citation: Cheng Y-L, Shi S-C, Li J, Liu J, Li S-Z, Wang B (2021) A new species of the Asian leaf litter toad genus *Leptobrachella* Smith, 1925 (Anura, Megophryidae) from northwest Guizhou Province, China. ZooKeys 1021: 81–107. https://doi.org/10.3897/zookeys.1021.60729

Abstract

A new species of the Asian leaf litter toad genus *Leptobrachella* is described from Guizhou Province, China. Molecular phylogenetic analyses support the new species as an independent lineage deeply nested in the *Leptobrachella* clade. The new species is distinguished from its congeners by a combination of the following morphological characters: body size medium (SVL 29.7–31.2 mm in five adult males); dorsal skin shagreened, some of the granules forming longitudinal short skin ridges; tympanum distinctly discernible, slightly concave; supra-axillary, femoral, pectoral and ventrolateral glands distinctly visible; absence of webbing and lateral fringes on fingers; toes with narrow lateral fringes but without webbing; heels overlapping when thighs are positioned at right angles to the body; tibia-tarsal articulation reaching the middle of eye when leg stretched forward. The discovery highlighted the underestimated species diversity in the *Leptobrachella* toads in southwestern China.

Keywords

Leptobrachella jinhaensis sp. nov., molecular phylogenetic analyses, morphology, Taxonomy

* These authors have contributed equally to this work.

Copyright Yan-Lin Cheng et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Introduction

The Asian leaf litter toads of the genus *Leptobrachella* Smith, 1925 (Anura, Megophryidae) are widely distributed from southern China west to northeastern India and Myanmar, through mainland Indochina to peninsular Malaysia and the island of Borneo (Frost 2020). Many species in this genus have been classified into *Leptolalax* Dubois, 1983 (e.g., Fei et al. 2009, 2012), but Chen et al. (2018) placed *Leptolalax* as a junior synonym of *Leptobrachella* based on large-scale molecular analyses. Currently, the genus *Leptobrachella* contains 82 species (Frost 2020) but a series of cryptic species is still suggested by molecular phylogenetic analyses (Chen et al. 2018). To date, 25 species of this genus have been recorded in China, i.e., *L. alpina* (Fei, Ye & Li, 1990) and *L. bourreti* (Dubois, 1983) from Yunnan and Guangxi; *L. eos* (Ohler, Wollenberg, Grosjean, Hendrix, Vences, Ziegler & Dubois, 2011), *L. nyx* (Ohler, Wollenberg, Grosjean, Hendrix, Vences, Ziegler & Dubois, 2011), *L. pelodytoides* (Boulenger, 1893), *L. tengchongensis* (Yang, Wang, Chen & Rao, 2016), *L. yingjiangensis* (Yang, Zeng & Wang, 2018), *L. feii* (Chen, Yuan & Che, 2020), *L. flaviglandulosa* (Chen, Wang & Che, 2020), and *L. niveimontis* (Chen, Poyarkov, Yuan & Che, 2020) from Yunnan; *L. laui* (Sung, Yang & Wang, 2014) and *L. yunkaiensis* Wang, Li, Lyu & Wang, 2018 from Guangdong and Hong Kong; *L. liui* (Fei & Ye, 1990) from Fujian, Jiangxi, Guangdong, Guangxi, Hunan, and Guizhou; *L. oshanensis* (Liu, 1950) from Gansu, Sichuan, Chongqing, Guizhou, and Hubei; *L. purpuraventra* (Wang, Li, Li, Chen & Wang, 2019), *L. bijie* (Wang, Li, Li, Chen & Wang, 2019), *L. chishuiensis* (Li, Liu, Wei & Wang, 2020), and *L. suiyangensis* (Luo, Xiao, Gao & Zhou, 2020) from Guizhou; *L. purpurus* (Yang, Zeng & Wang, 2018), *L. ventripunctata* (Fei, Ye & Li, 1990) from Guizhou and Yunnan; *L. mangshanensis* (Hou, Zhang, Hu, Li, Shi, Chen, Mo & Wang, 2018) from Hunan; and *L. sungi* (Lathrop, Murphy, Orlov & Ho, 1998), *L. maershanensis* (Yuan, Sun, Chen, Rowley & Che, 2017), *L. shangsiensis* (Chen, Liao, Zhou & Mo, 2019), and *L. wuhuangmontis* (Wang, Yang & Wang, 2018) from Guangxi. Among them, ten *Leptobrachella* species occur in Guizhou Province, China, highlighting the high species diversity of the genus in this region.

In recent years, we collected some specimens of *Leptobrachella* from northwest Guizhou Province, China. Molecular phylogenetic analyses, morphological comparisons, and bioacoustics data consistently indicated these specimens as an undescribed species of *Leptobrachella*. We describe it herein as a new species.

Materials and methods

Specimens

Five adult males of the new species were collected on 16 May 2020 from Lengshuihe Nature Reserve, Jinsha County, Guizhou Province, China (Fig. 1; Table 1). After taking photographs, toads were euthanised using isoflurane, and then the specimens were fixed in 10% buffered formalin. Tissue samples were taken and preserved separately
A new species of *Leptobrachella*

in 95% ethanol prior to fixation. Specimens were deposited in Chengdu Institute of Biology, Chinese Academy of Sciences (CIB, CAS).

Molecular phylogenetic analyses

All five adult male specimens of the new species collected in this work were included in the molecular phylogenetic analyses (Table 1). For phylogenetic analyses, the corresponding gene sequences for all those related species for which comparable sequences were available were also downloaded from GenBank (Table 1). Corresponding sequences of one *Leptobrachium tengchongensis*, one *Leptobrachium huashen*, and one *Megophrys major* were downloaded (Table 1) and used as outgroups based on previous studies (Chen et al. 2018; Li et al. 2020a).

Total DNA was extracted using a standard phenol-chloroform extraction protocol (Sambrook et al. 1989). The mitochondrial 16S rRNA genes were amplified, and the primers P7 (5’-CGCCTGTTTACCAAAAACAT-3’) and P8 (5’-CCGGTCTCTGAACTCAGATCAGGT-3’) were used following Simon et al. (1994). Gene fragments were amplified under the following conditions: an initial denaturing step at 95 °C for 4 min; 36 cycles of denaturing at 95 °C for 30 sec, annealing at 51 °C for 30 sec and extending at 72 °C for 70 sec. Sequencing was conducted using an ABI3730 automated

Figure 1. Location of the type locality of *Leptobrachella jinshaensis* sp. nov., Lengshuihe Nature Reserve, Jinsha County, Guizhou Province, China.
Table 1. Information for samples used in molecular phylogenetic analyses in this study.

ID	Species	Voucher	Locality	GenBank accession number
1	Leptobrachella jinshaensis sp. nov.	CIBJS20200516001	Lengshuihe Nature Reserve, Jinsha County, Guizhou Province, China	MTB14014
2	Leptobrachella jinshaensis sp. nov.	CIBJS20200516002	Lengshuihe Nature Reserve, Jinsha County, Guizhou Province, China	MTB14015
3	Leptobrachella jinshaensis sp. nov.	CIBJS20200516003	Lengshuihe Nature Reserve, Jinsha County, Guizhou Province, China	MTB14016
4	Leptobrachella jinshaensis sp. nov.	CIBJS20200516004	Lengshuihe Nature Reserve, Jinsha County, Guizhou Province, China	MTB14017
5	Leptobrachella jinshaensis sp. nov.	CIBJS20200516005	Lengshuihe Nature Reserve, Jinsha County, Guizhou Province, China	MTB14018
6	Leptobrachella chisbuiensis	CIBC20190518047	Alsophila National Nature Reserve, Chishui City, Guizhou Province, China	MT17053
7	Leptobrachella chisbuiensis	CIBC20190518042	Alsophila National Nature Reserve, Chishui City, Guizhou Province, China	MT17054
8	Leptobrachella chisbuiensis	CIBC20190518043	Alsophila National Nature Reserve, Chishui City, Guizhou Province, China	MT17055
9	Leptobrachella bijie	SYS a007313/	Mt. Zhaozi Nature Reserve, Bijie City, Guizhou Province, China	MK14532
10	Leptobrachella bijie	SYS a007314	Mt. Zhaozi Nature Reserve, Bijie City, Guizhou Province, China	MK14533
11	Leptobrachella bijie	SYS a007315	Mt. Zhaozi Nature Reserve, Bijie City, Guizhou Province, China	MK14534
12	Leptobrachella suiyangensis	SYS a006530	Yingjiang County, Yunnan Province, China	KG203554
13	Leptobrachella suiyangensis	SYS a006530	Yingjiang County, Yunnan Province, China	KG203554
14	Leptobrachella suiyangensis	SYS a006530	Yingjiang County, Yunnan Province, China	KG203554
15	Leptobrachella suiyangensis	SYS a007081	Wujing Nature Reserve, Bijie City, Guizhou Province, China	MK14541
16	Leptobrachella purpuraventra	SYS a007081	Wujing Nature Reserve, Bijie City, Guizhou Province, China	MK14541
17	Leptobrachella purpuraventra	SYS a007277/	Mt. Zhaozi Nature Reserve, Bijie City, Guizhou Province, China	MK14542
18	Leptobrachella purpuraventra	SYS a007278	Wujing Nature Reserve, Bijie City, Guizhou Province, China	MK14542
19	Leptobrachella bourreti	AMS R 177673	Lao Cai Province, Vietnam	KR180124
20	Leptobrachella pararum	SYS a006530	Yingjiang County, Yunnan Province, China	KG203554
21	Leptobrachella alpina	KIZ046816	Zhuangzi Nature Reserve, Yunnan Province, China	MH059866
22	Leptobrachella shanensis	KIZ025777	Emei Shan, Sichuan Province, China	MH055899
23	Leptobrachella nos	MNHN:2004.0278	Phongsaly Province, Laos	JN484560
24	Leptobrachella tchengegensis	SYS a004598	Tengchong County, Yunnan Province, China	KUS89209
25	Leptobrachella pabataensis	AMSR184852	Pu Hoat Nature Reserve, Nghe An Province, Vietnam	KY489588
26	Leptobrachella nambengensis	VNUF A.2017.37	Thanh Hoa Province, Vietnam	MK655389
27	Leptobrachella petropi	AMSR184826	Vietnam	KY549997
28	Leptobrachella khaicisum	SDRDU 2009.329	East Khasi Hills, Meghalaya, India	KY223303
29	Leptobrachella yingxiangensis	SYS a006532	Yuanjiang County, Yunnan Province, China	KG203554
30	Leptobrachella mangshanensis	MSZT201701	Mt. Mang, Yingxiang County, Hunan Province, China	MG132196
31	Leptobrachella kui	SYS a001597	Mt. Wuji, Yiwu Xian City, Fujian Province, China	KM014547
32	Leptobrachella kui	SYS a001507	Mt. Wuji, Shenzhen City, Guangdong Province, China	KM014544
33	Leptobrachella yunkaiensis	SYS a004664/	Dawuling Forest Station, Maoming City, Guangdong Province, China	MH055858
34	Leptobrachella mauershanensis	KIZ019385	Mt. Miaoer Nature Reserve, Zuyuan County, Guangxi Province, China	KY980930
35	Leptobrachella flaviglandulina	KIZ016072	Xiaojiaogou Nature Reserve, Yunnan Province, China	MH055934
36	Leptobrachella zhanggapingi	KIZ07258	Pang Num Poo, Chiang Mai Province, Thailand	MH055864
37	Leptobrachella suiyi	ROM 20236	Tam Dao, Vinh Phuc, Vietnam	MH055858
38	Leptobrachella iusi	VNMIN A 2015.4/	Gia Lai Province, Vietnam	KB247690
39	Leptobrachella flabri	AMS R 176524	Kon Tum Province, Vietnam	JQ739206
40	Leptobrachella fangminia	KUHE:19201	Thanh Hoa Province, Vietnam	LC201981
41	Leptobrachella crenipunctata	SYS a004536	Zhusihue, Yunnan Province, China	MH055831
42	Leptobrachella fei	KIZ048893	Xiaojiaogou Nature Reserve, Yunnan Province, China (E)	MH055841
43	Leptobrachella aerata	ZFMK 86366	Quang Binh Province, Vietnam	JN484609
44	Leptobrachella flavidulosa	MNHN:1999.5675	Mt. Fan Si Pan, Lao Cai Province, Vietnam	JN484931
45	Leptobrachella shuangensis	NHMG1704003	Shangui County, Guangxi Zhuang minority, Autonomous Region, China	MH059463
46	Leptobrachella wuhanwangnanensis	SYS a003500/	Mt. Wuhuang, Pubei County, Guangxi Zhuang minority	MH059581
		CIB107274	Autonomous Region, China	** **
Table 2. Measurements of adult males of *Leptobrachella jinshaensis* sp. nov. Units given in mm. See abbreviations for morphometric characters in Materials and methods section.

Voucher number	Sex	SVL	HSI	HDW	SL	IND	IOD	UEW	ED	TYP	LAL	LW	ML	THL	TW	TL	FL	
CIBCS20200516001	male	31.1	11.4	10.1	4.9	3.4	5.1	2.8	3.9	2.5	15.4	2.6	8.4	15.0	4.9	15.3	21.4	14.4
CIBCS20200516002	male	31.2	10.8	10.4	4.6	3.2	3.2	2.7	3.9	2.8	13.7	2.1	7.7	15.2	3.2	15.6	19.3	13.0
CIBCS20200516003	male	29.7	10.0	10.1	4.6	3.2	3.4	3.0	4.2	2.5	14.4	2.2	7.2	14.0	3.6	15.1	19.5	13.0
CIBCS20200516004	male	31.1	10.3	10.0	4.5	2.8	3.7	2.9	4.3	2.6	15.2	2.4	8.2	14.6	3.5	15.1	21.4	14.2
CIBCS20200516005	male	30.9	11.3	10.4	4.6	3.5	4.0	3.2	3.7	3.2	14.1	2.2	8.2	14.1	3.6	14.5	21.2	14.2

DNA sequencer in Shanghai DNA BioTechnologies Co., Ltd. (Shanghai, China). New sequences were deposited in GenBank (for GenBank accession numbers see Table 1).

Sequences were assembled and aligned using the Clustalw module in BioEdit v. 7.0.9.0 (Hall 1999) with default settings. Alignments were checked by eye and revised
manually if necessary. Phylogenetic analyses were conducted using maximum likelihood (ML) and Bayesian Inference (BI) methods, implemented in PhyML v. 3.0 (Guindon et al. 2010) and MrBayes v. 3.12 (Ronquist and Huelsenbeck 2003), respectively. We ran Jmodeltest v. 2.1.2 (Darriba et al. 2012) with Akaike and Bayesian information criteria on the alignment, resulting in the best-fitting nucleotide substitution models of GTR + I + G for the data. For the ML tree, branch supports were drawn from 10,000 nonparametric bootstrap replicates. In BI analyses, the parameters for each partition were unlinked, and branch lengths were allowed to vary proportionately across partitions. Two runs each with four Markov chains were simultaneously run for 50 million generations with sampling every 1,000 generations. The first 25% trees were removed as the “burn-in” stage followed by calculations of Bayesian posterior probabilities and the 50% majority-rule consensus of the post burn-in trees sampled at stationarity. Finally, genetic distance between Leptobrachella species based on uncorrected p-distance model was estimated on 16S gene using MEGA v. 6.06 (Tamura et al. 2013).

Morphological comparisons

All five adult male specimens of the new species were measured (Table 2). The terminology and methods followed Fei et al. (2005), Mahony et al. (2011), and Wang et al. (2019). Measurements were made with a dial caliper to the nearest 0.1 mm (Watters et al. 2016) with digital calipers. Corresponding measurements of *L. bijie* and *L. chishuiensis* were retrieved from Wang et al. (2019) and Li et al. (2020a). Nineteen morphometric characters of adult specimens were measured:

- **ED** eye diameter (distance from the anterior corner to the posterior corner of the eye);
- **FL** foot length (distance from tarsus to the tip of the fourth toe);
- **HDL** head length (distance from the tip of the snout to the articulation of jaw);
- **HDW** head width (greatest width between the left and right articulations of jaw);
- **HLL** hindlimb length (distance from tip of fourth toe to vent);
- **IND** internasal distance (minimum distance between the inner margins of the external nares);
- **IOD** interorbital distance (minimum distance between the inner edges of the upper eyelids);
- **LAL** length of lower arm and hand (distance from the elbow to the distal end of the Finger IV);
- **LW** lower arm width (maximum width of the lower arm);
- **ML** manus length (distance from tip of third digit to proximal edge of inner palmar tubercle);
- **SL** snout length (distance from the tip of the snout to the anterior corner of the eye);
- **SVL** snout-vent length (distance from the tip of the snout to the posterior edge of the vent);
A new species of *Leptobrachella*

TEY tympanum-eye distance (distance from anterior edge of tympanum to posterior corner of eye);

TFL length of foot and tarsus (distance from the tibiotarsal articulation to the distal end of the toe IV);

THL thigh length (distance from vent to knee);

TL tibia length (distance from knee to tarsus);

TW maximal tibia width;

TYD maximal tympanum diameter;

UEW upper eyelid width (greatest width of the upper eyelid margins measured perpendicular to the anterior-posterior axis).

In order to reduce the impact of allometry, the correct value from the ratio of each character to SVL was calculated and then all of the data were log-transformed for the following morphometric analyses. Mann-Whitney *U* tests were conducted to test the significance of differences on morphometric characters between *Leptobrachella jinshaensis* sp. nov., *L. bijie* and *L. chishuiensis*. The significance level was set at 0.05. Furthermore, principal component analyses (PCA) were conducted to highlight whether the different species were separated in morphometric space. Due to only the measurements SVL, HDL, HDW, SL, IND, IOD, ED, TYD, TEY, LAL, ML, TL, HLL, and FL of male *L. bijie* being available from Wang et al. (2019), the morphometric analyses were conducted only based on these 14 morphometric characters for male group.

Leptobrachella jinshaensis sp. nov. was also compared with all other congeners of *Leptobrachella* based on morphological characters. Comparative morphological data were obtained from literatures (Table 3).

Bioacoustics data

The advertisement calls of *L. jinshaensis* sp. nov. were recorded from the holotype specimen CIBJS20200516004 in the field on 16 May 2020 in Lengshuihe Nature Reserve, Jinsha County, Guizhou Province, China. The advertisement call of *L. jinshaensis* sp. nov. was recorded in the stream at ambient air temperature of 20 °C and air humidity of 87%. A SONY PCM-D50 digital sound recorder was used to record within 20 cm of the calling individual. The sound files in wave format were resampled at 48 kHz with sampling depth 24 bits. Calls were recorded and examined as described by Wijayathilaka and Meegaskumbura (2016). Call recordings were visualised and edited with SoundRuler 0.9.6.0 (Gridi-Papp 2003–2007) and Raven Pro 1.5 software (Cornell Laboratory of Ornithology, Ithaca, NY, USA). Ambient temperature of the type locality was taken by a digital hygrothermograph. For comparison, bioacoustics data for the related species *L. bijie* and *L. chishuiensis* were obtained from Li et al. (2020a).
Table 3. References for morphological characters for congeners of the genus *Leptobrachella*.

No.	*Leptobrachella* species	References
1	*L. aerea* (Rowley, Stuart, Richards, Phimmachak & Sivongxay, 2010)	Rowley et al. 2010a
2	*L. alpina* (Fei, Ye & Li, 1990)	Fei et al. 1990
3	*L. applebyi* (Rowley & Cao, 2009)	Rowley and Cao 2009
4	*L. anquai* (Matsui, 1997)	Matsui 1997
5	*L. ardru* (Rowley, Tran, Le, Dau, Peloso, Nguyen, Hoang, Nguyen & Ziegler, 2016)	Rowley et al. 2016
6	*L. baluensis* (Smith, 1931)	Dring 1983; Eto et al. 2016, 2018
7	*L. brefci* (Rowley, Tran & Hoang, 2011)	Rowley et al. 2011
8	*L. bijie* (Wang, Li, Li, Chen & Wang, 2019)	Wang et al. 2019
9	*L. boudangensis* (Eto, Matsui, Hamidy, Munir & Iskandar, 2018)	Eto et al. 2018
10	*L. botafordi* (Dubois, 1983)	Rowley et al. 2013
11	*L. bourreti* (Dring, 1983)	Ohler et al. 2011
12	*L. brevicrus* (Dring, 1983)	Dring 1983; Eto et al. 2015
13	*L. chishuiensis* Li, Liu, Wei & Wang, 2020	Li et al. 2020a
14	*L. crocea* (Rowley, Hoang, Le, Dau & Cao, 2010)	Rowley et al. 2010b
15	*L. dringi* (Dubois, 1987)	Inger et al. 1995; Matsui and Dehling 2013
16	*L. eos* (Ohler, Wollenberg, Grosjean, Hendrix, Vences, Ziegler & Dubois, 2011)	Ohler et al. 2011
17	*L. euthi* (Rowley, Hoang, Dau, Le & Cao, 2012)	Chen et al. 2020
18	*L. flaviglandulosa* (Chen, Yuan & Che, 2020)	Chen et al. 2020
19	*L. fritinniens* (Dehling & Matsui, 2013)	Dehling and Matsui 2013
20	*L. fuliginosa* (Matsui, 2006)	Matsui 2006
21	*L. fusca* (Eto, Matsui, Hamidy, Munir & Iskandar, 2018)	Eto et al. 2018
22	*L. gracilis* (Günther, 1872)	Günther 1872; Dehling 2012a
23	*L. hamidi* (Matsui, 1997)	Matsui 1997
24	*L. heteropus* (Boulenger, 1900)	Boulenger 1900
25	*L. lateralis* (Anderson, 1871)	Anderson 1871; Hunttoe et al. 2008
26	*L. laui* (Sung, Yang & Wang, 2014)	Sung et al. 2014
27	*L. liui* (Fei & Ye, 1990)	Fei et al. 2009; Sung et al. 2014
28	*L. macrops* (Duong, Do, Ngo, Nguyen & Poyarkov, 2018)	Duong et al. 2018
29	*L. maculosa* (Rowley, Stuart, Neang, Hoang, Dau, Nguyen & Emmett, 2015)	Rowley et al. 2015
30	*L. marmorata* (Matsui, Zainudin & Nishikawa, 2014)	Matsui et al. 2014a
31	*L. marina* (Inger, Lakim, Biun & Yambun, 1977)	Inger et al. 1997
32	*L. melica* (Rowley, Stuart, Neang & Emmett, 2010)	Rowley et al. 2010c
33	*L. melina* (Taylor, 1962)	Taylor 1962; Ohler et al. 2011
34	*L. melanoleuca* (Matsui, 2006)	Matsui 2006
35	*L. minima* (Taylor, 1962)	Taylor 1962; Ohler et al. 2011
36	*L. melanoleuca* (Matsui, 2006)	Matsui 2006
37	*L. nyx* (Ohler, Wollenberg, Grosjean, Hendrix, Vences, Ziegler & Dubois, 2011)	Ohler et al. 2011
38	*L. oshaensis* (Liu, 1950)	Liu 1950, 1961; This paper
39	*L. paludis* (Rowley, Tran, Le, Dau, Peloso, Nguyen, Hoang, Nguyen & Ziegler, 2016)	Rowley et al. 2016
40	*L. para* (Dring, 1983)	Dring 1983
41	*L. petrops* (Rowley, Dau, Hoang, Le, Cutajar & Nguyen, 2017)	Rowley et al. 2017a
42	*L. picta* (Malkmus, 1992)	Malkmus 1992
43	*L. platyccephala* (Dehling, 2012)	Dehling 2012b
Results

Aligned sequence matrix of 16S rRNA gene contained 537 bps. ML and BI analyses resulted in essentially identical topologies (Fig. 2). All samples of *L. jinshaensis* sp. nov. were clustered into one independent clade nested into the *Leptobrachella* clade. The relationships between *L. jinshaensis* sp. nov. and its congeners are not resolved though it is likely sister to a clade comprising of *L. bijie* and *L. chishuiensis* (Fig. 2). The smallest pairwise genetic divergence between *L. jinshaensis* sp. nov. and all other species of the genus *Leptobrachella* is 2.6% (vs. *L. niveimontis* or vs. *L. purpurus*), being at the same level with or higher than that between some pairs of substantial species, such as *L. bijie* vs. *L. chishuiensis* (2.1%), and *L. chishuiensis* vs. *L. alpina* (2.6%; Suppl. material 1: Table S1).

For the male group, PCA extracted five principal component axes with eigenvalues greater than one, and the percentage of variance of the first five principal components are 37.7%, 15.7%, 13.0%, 9.0% and 8.1%, with percentage of cumulative is 83.5% (Suppl. material 2: Table S2). There were 14 morphological features with major contributions in the first five principal components, and these morphological features were distributed in the anterior, middle, and posterior parts of the body (Suppl. material 2: Table S2). The total variation of the first two principal components was 53.4% (Suppl. material 2: Table S2). On the PCA plot (PC1 vs. PC2), the first principal component axis could separate *L. jinshaensis* sp. nov. from *L. bijie* and *L. chishuiensis* (Fig. 3) mainly based on SVL, HDL, HDW, SL, ED, IND, TEY, and FL, and the second component axis mainly based on ML, FL, and LAL. Mann-Whitney *U* tests indicated that *L. jinshaensis* sp. nov. was significantly different from *L. bijie* on HDW, SL, IOD, TYD, TEY, LW, and FL, and from *L. chishuiensis* on SVL, TYD, and TL (*p*-values < 0.05; Table 4).
In total, 109 advertisement calls of *Leptobrachella jinshaensis* sp. nov. were recorded in Lengshuihe Nature Reserve, Jinsa County, Guizhou Province, China on 16 May 2020 between 21:00–22:00. The call description is based on recordings of the holotype CIB-JS20200516004 under a stone nearby a stream, and the ambient air temperature was 20 °C. The call characters of *L. jinshaensis* sp. nov. were demonstrated in the following section for describing it. There were some differences in sonograms and waveforms of calls between *L. jinshaensis* sp. nov., *L. bijie*, and *L. chishuiensis* (Suppl. material 3: Table S3). *Leptobrachella jinshaensis* sp. nov. has longer call interval (132.7 ± 8.6, *N* = 109) than *L. bijie* (101.9 ± 6.4, *N* = 33), and has lower dominant frequency (4525 ± 0.065 Hz) than *L. bijie* (4780.4 ± 76.5 Hz) and *L. chishuiensis* (6064–6284 Hz). Each call of *L. jinshaensis* sp. nov. has two kinds of notes, while each call of *L. chishuiensis* only has one kind of note.

Figure 2. Bayesian Inference (BI) tree based on the mitochondrial 16S rRNA sequences. Bootstrap supports from Maximum Likelihood analyses/Bayesian posterior probabilities from BI analyses are labelled beside nodes. Information of samples 1–86 refer to Table 1.
A new species of *Leptobrachella*

Leptobrachella jinshaensis sp. nov.

http://zoobank.org/C2982600-D9EF-46C1-A539-CC1151444B18

Figs 3–6; Tables 1, 2, 4, Suppl. material 1: Table S1, Suppl. material 2: Table S2

Holotype. CIBJS20200516004, adult male (Figs 4, 5), collected from Lengshuihe Nature Reserve, Jinsha County (27.536944°N, 105.999166°E, ca. 770 m a. s. l.), Guizhou Province, China by Shi-Ze Li on 16 May 2020.

Paratypes. Four adult males from the same place as holotype. Two adult males CIBJS20200516001 and CIBJS20200516002 collected by Shi-Ze LI, and two adult males CIBJS20200516003 and CIBJS20200516005 collected by Jing LIU, all of them were collected on 16 May 2020.

Diagnosis. *Leptobrachella jinshaensis* sp. nov. is assigned to the genus *Leptobrachella* based on molecular phylogenetic analyses and the following morphological characters: medium size, rounded finger tips, the presence of an elevated inner palmar tubercle not continuous to the thumb, the presence of macroglands on body (including supra-axillary, pectoral, and femoral glands), vomerine teeth absent, tubercles on eyelids, and the anterior tip of snout with a vertical white bar.

Leptobrachella jinshaensis sp. nov. can be distinguished from its congeners by a combination of the following characters: body of medium size (SVL 29.7–31.2 mm in five adult males); dorsal skin shagreened, some of the granules forming longitudi-
nal short skin ridges; tympanum distinctly discernible, slightly concave; supra-axillary, femoral, pectoral, and ventrolateral glands distinctly visible; absence of webbing and lateral fringes on fingers; toes with narrow lateral fringes and without webbing; heels overlapping when thighs positioned at right angles to the body; tibia-tarsal articulation reaching the middle eye when leg stretched forward.

Description of holotype (Figs 4, 5). Adult male. SVL in 31.1 mm. **Head** length slightly longer than head width (HDL/HDW 1.02); snout slightly protruding, projecting slightly beyond margin of the lower jaw; nostril closer to snout than eye; canthus rostralis gently rounded; loreal region slightly concave; interorbital space flat, interorbital distance slightly longer than internarial distance; pineal ocellus absent; vertical pupil; eye diameter slightly shorter than snout length; tympanum distinct, rounded, and slightly concave, diameter smaller than that of the eye (TMP/ED 0.61); upper margin of tympanum in contact with supratympanic ridge; vomerine teeth absent; tongue notched behind; supratympanic ridge distinct, extending from posterior corner of eye to supra-axillary gland.

Forelimbs slender, 48.9% of snout-vent length; tips of fingers rounded, slightly swollen; relative finger lengths I < II <= IV < III; absence of webbing; nuptial pad and subarticular tubercles absent; inner palmar tubercle large, rounded separated from the smaller, round outer palmar tubercle.

Hindlimbs slender, tibia slightly longer than thigh length and 48.4% of snout-vent length; heels overlapping when thighs are positioned at right angles to the body,
A new species of *Leptobrachella*

A new species of *Leptobrachella*.

tibiotarsal articulation reaching middle eye when leg stretched forward; relative toe lengths I < II < V < III < IV; tips of toes round, slightly dilated; subarticular tubercle at the articulations of the toes absent; toes without webbing; lateral fringes narrow on all toes; inner metatarsal tubercle present, large, oval, outer metatarsal tubercle absent.

Dorsal surface shagreened and granular, some of the granules forming short longitudinal folds dorsally on the flank; ventral skin smooth; dense tiny granules present on ventral surface of thigh and tibia; pectoral gland and femoral gland white, oval, distinctly visible. Ventrolateral gland distinctly visible and forming an incomplete line.

Colouration of holotype in life. Dorsum brown, with small, distinct darker brown markings and spots, and irregularly dispersed light orange speckles. A dark brown inverted triangular pattern between anterior corners of eyes. Tympanum brown, a dark brown bar above tympanum, and a dark brown bar under the eye, distinct black supratympanic line present; transverse dark brown bars on dorsal surface of limbs; distinct dark brown blotches on flanks from groin to axilla, longitudinally in two rows; elbow and upper arms with dark bars and distinct coppery orange colouration; fingers and toes with distinct dark bars. Ventral surface of throat cream white, chest, and belly cream yellow with purple speckling, and on flanks presence of distinct nebulous greyish speckling; ventral surface of limbs grey purple. Supra-axillary gland, femoral, pectoral, and ventrolateral glands white (Fig. 5).

Colouration of holotype in preservation. Dorsum of body and limbs fade to brown copper; transverse bars on limbs become more distinct. Ventral surface of body
and limbs fade to cream white. Supra-axillary, femoral, and pectoral glands fade to creamy yellow (Fig. 4).

Variation. Measurements of adult specimens were presented in Tables 2 and 4. All specimens were similar but some individuals different from the holotype in colour pattern. In CIBJS20200516002, the tympana are dark brown (Fig. 6A); in CIBJS20200516005, the dorsum is olive grey (Fig. 6B) and the pectoral glands on the left side not obviously (Fig. 6D); in CIBJS20200516003 ventrolateral glands scattered and unlined (Fig. 6C).

Advertisement call. In total, 109 advertisement calls of *Leptobrachella jinshaensis* sp. nov. were recorded in Lengshuihe Nature Reserve, Jinsa County, Guizhou Province, China on 16 May 2020 between 21:00–22:00. The call description is based on recordings of the holotype CIBJS20200516004 under a stone nearby a stream, and the ambient air temperature was 20 °C. The sonograms and waveforms of the new species are shown in Fig. 7 and Suppl. material 2: Table S2. The call has two kinds of notes, and each call contains two or three notes (mean 2.12 ± 0.33, n = 109). Call duration was 117–156 ms (mean 132.7 ± 8.6, n = 109). Call interval was 62–106 ms (mean 84.3 ± 10.4, n = 108), and each consists of two types of note. The first type of note is the start note in each call and beginning with lowest energy pulses, then increasing to the peak; in the second type, the amplitude begins with highest pulses and then decreasing
A new species of Leptobrachella

The duration of first type of note with 35–71 ms (mean 48.77 ± 7.90, n = 109), the duration of the second type of note with 39–78 ms (mean 52.93 ± 8.85, n = 122), the duration between notes 18–40 ms (mean 23 ± 5.68, n = 122). The dominant frequency of calls is 4500–4688 Hz (mean 4525 ± 0.065 Hz).

Secondary sexual characteristics. Adult males with a comparatively large single subgular vocal sac and nuptial pads and spines absent.

Comparisons. Measurements were given in mm. In male, by body size moderate in male (SVL 29.7–31.2, n = 5), Leptobrachella jinshaensis sp. nov. is larger than L. aerea (25.1–28.9), L. alpina (24.0–26.4), L. applebyi (19.6–22.3), L. ardens (21.3–24.7), L. baluensis (14.9–15.9), L. bidoupensis (18.5–25.4), L. bondangensis (17.8), L. brevicrus (17.1–17.8), L. crocea (22.2–27.3), L. feii (21.5–22.8), L. flaviglandulosa (23.0–27.0), L. fusca (16.3), L. isos (23.7–27.9), L. itiokai (15.2–16.7), L. juliandringi (17.0–17.2), L. khasiorum (24.5–27.3), L. laui (24.8–26.7), L. maculosa (24.2–26.6), L. mangshanensis (22.2–27.76), L. maura (26.1), L. melica (19.5–22.8), L. mjobergi (15.7–19.0), L. natunae (17.6), L. niveimontis (22.5–23.6), L. parva (15.0–16.9), L. palmata (14.4–16.8), L. pallida (24.5–27.7), L. petrops (23.6–27.6), L. pluvialis (21.3–22.3), L. purpurus (25.0–27.5), L. rowleyae (23.4–25.4), L. serasanae (16.9), L. tengchongensis (23.9–26.0), L. ventripunctata (25.5–28.0), and L. yingjiangensis (25.7–27.6); and smaller than L. eos (33.1–34.7), L. gracilis (34.3–39.0), L. marmorata (32.3–38.0), L. nahangensis (40.8), L. platycephala (35.1), L. sungi (48.3–52.7), L. tamdil (32.0), and L. zhangyapingi (45.8–52.5).

By the presence of supra-axillary and ventrolateral glands, Leptobrachella jinshaensis sp. nov. can be easily distinguished from L. arayai, L. dringi, L. fritinniens, L. gracilis, L. hamidi, L. heteropus, L. kajangensis, L. kecil, L. marmorata, L. melanoleuca, L. maura,
By tympanum distinctly visible, Leptobrachella jinshaensis sp. nov. differs from Leptobrachella crocea and L. tuberosa (vs. invisible in the latter).

By having black spots on flanks, Leptobrachella jinshaensis sp. nov. differs from L. aerea, L. botsfordi, L. firthi, L. crocea, L. isos, L. pallida, L. petrops, and L. tuberosa (vs. lacking in the latter).

By toes without webbing, Leptobrachella jinshaensis sp. nov. differs from L. aerea, L. alpina, L. applebyi, L. bidoupensis, L. bijie, L. botsfordi, L. bourreti, L. chishuiensis, L. crocea, L. eos, L. feii, L. firthi, L. fuliginosa, L. isos, L. khasiorum, L. lateralis, L. laui, L. liui, L. macrops, L. mangshanensis, L. maoershanensis, L. marmorata, L. melica, L. minima, L. namdongensis, L. namdongensis, L. niveimontis, L. nokrekensis, L. nyx, L. pluvialis, L. pluvialis, L. puhaoensis, L. purpuris, L. purpuraventra, L. pyrrhops, L. sabahmontauts, L. shangsiensis, L. suisiangensis, L. tengchongensis, L. tuberosa, L. ventripunctata, L. wuhuangmontis, L. yingjiangensis, L. yunkaiensis, and L. zhangyapingi (vs. webbing rudimentary in the latter); and differs from L. flaviglandulosa and L. pelodytoides (vs. webbing present in the latter).

By toes with narrow lateral fringes, Leptobrachella jinshaensis sp. nov. differs from L. aerea, L. alpina, L. firthi, L. laui, L. liui, L. khasiorum, and L. yunkaiensis (vs. wide in the latter); and differs from L. kalonensis, L. macrops, L. minima, L. marmorata, L. namdongensis, L. nyx, L. oshanensis, L. pyrrhops, L. rowleyae, and L. tuberosa (vs. lacking in the latter).

By dorsal surface shagreened and granular, lacking enlarge tubercles or warts, Leptobrachella jinshaensis sp. nov. differs from L. applebyi, L. bidoupensis, L. kalonensis, L. melica, L. minima, L. namdongensis, L. shangsiensis, and L. tadungensis (all of which have the dorsum smooth), and L. bourreti (dorsum smooth with small warts), L. fuliginosa (dorsum smooth with fine tubercles), L. liui (dorsum with round tubercles), L. macrops (dorsum roughly granular with large tubercles), L. maoershanensis (dorsum shagreened with tubercles), L. minima (dorsum smooth), L. nyx (dorsum with round tubercles), L. nokrekensis (dorsum tubercles and longitudinal folds), L. pelodytoides (dorsum with small, smooth warts), L. tamdil (dorsum weakly tuberculate, with low, oval tubercles), L. tuberosa (dorsum very tuberculate), L. yunkaiensis (dorsum with raised warts), and L. wuhuangmontis (dorsum rough with conical tubercles).

By having higher dominant frequency (4.5–4.7 kHz, 20 °C), Leptobrachella jinshaensis sp. nov. differs from L. applebyi (3.9–4.3 kHz, 21.5 °C), L. ardens (3.1–3.4 kHz, 23.6 °C), L. bidoupensis (1.9–2.3 kHz, 19.9 °C), L. botsfordi (2.6–3.2 kHz, 14 °C), L. crocea (2.6–3.0 kHz, 21.6–25.1 °C), L. fuliginosa (2.3–2.4 kHz, 19.3–19.6 °C), L. heteropus (2.8 kHz, 21 °C), L. maculosa (2.7 kHz, 23.3–24.1 °C), L. melanoleuca (3.1–3.3 kHz, 23.9 °C), L. melica (2.9–3.8 kHz, 26.1 °C), L. pallida (2.4–2.7 kHz, 18.9 °C), L. pyrrhops (1.9–22 kHz, 25 °C), L. rowleyae (2.6–3.0 kHz, 21.6–25.1 °C), L. sola (3.1–3.2 kHz, 24.2–24.3 °C), L. tadungensis (2.6–3.1 kHz, 12.9–22.3 °C) and L. tuberosa (2.6–2.8 kHz, 22.5–24.5 °C). The call of the new species appears to have lower frequency compared to the calls attributed to L. aerea (6.2–6.4 kHz, 22.4 °C), L. isos (7.83–8.55 kHz, 26.4 °C), L. marmorata (6.0–6.2 kHz, 22.8 °C), L. pelodytoides (6.4–6.6 kHz, 22.7 °C), L. ventripunctata (6.1–6.4 kHz, 15 °C) and L. yingjiangensis (5.7–5.9 kHz, 19 °C).
By call duration 117–156 ms, *Leptobrachella jinshaensis* sp. nov. differs from *L. aerea* (16–28 ms), *L. bidoupensis* (308–400), *L. botsfordi* (239–303 ms), *L. firthi* (18–24 ms), *L. fuliginosa* (51–80 ms), *L. isos* (31–38 ms), *L. maculosa* (889–907 ms), *L. marmorata* (1900–6700 ms), *L. melanoleuca* (40–63 ms), *L. pallida* (627–729 ms), *L. petrops* (44–57 ms), *L. puboatensis* 6–14 ms, *L. shangsiensis* (64–69 ms), *L. tadungensis* (248–353 ms) and *L. yingjiangensis* (28–42 ms).

Seven species (*L. liui, L. oshanensis, L. purpuraventra, L. bijie, L. suiyangensis, L. chishuiensis*, and *L. ventripunctata*) of the genus occur in Guizhou Province, China (Fei et al. 2012; Wang et al. 2019; Luo et al. 2020; Li et al. 2020a). The new species differs from *L. liui* by having narrow lateral fringes on toes (vs. wide in the latter), dorsal surface shagreened with small granules, and lacking enlarge tubercles or warts (vs. dorsum with round tubercles in the latter); differs from *L. oshanensis* by having narrow lateral fringes on toes (vs. lacking in the latter); differs from *L. purpuraventra* and *L. suiyangensis* by heels overlapping when thighs are positioned at right angles to the body (vs. just meeting in the latter); differs from *L. purpuraventra* by tibia-tarsal articulation reaches the middle eye when leg stretched forward (vs. only reaches the level between tympanum to eye in the latter).

In mitochondrial DNA trees, *Leptobrachella jinshaensis* sp. nov. clustered as an independent clade and appears to be sister to a clade in comprising of *L. bijie* and *L. chishuiensis*. The latter two species also occur near the type locality of the new species. The new species differs from *L. bijie* by the following characters: webbing on toes absent (vs. webbing rudimentary in the latter), heels overlapping when thighs are positioned at right angles to the body (vs. just meeting in the latter), having longer call (308–400), having narrow lateral fringes on toes (vs. wide in the latter), toe webbing rudimentary in the latter; differs from *L. suiyangensis* by having narrow lateral fringes on toes (vs. lacking in the latter); differs from *L. purpuraventra* and *L. suiyangensis* by heels overlapping when thighs are positioned at right angles to the body (vs. just meeting in the latter).

Character	*Leptobrachella jinshaensis* sp. nov.	*L. chishuiensis*	*L. bijie*	P-value				
	Male (n = 5)	Male (n = 7)	Male (n = 8)					
Ranging	Mean ± SD	Ranging	Ranging	Mean ± SD	Lj vs. LC	Lj vs LB		
SVL	29.7–31.2	30.8 ± 0.6	30.8–33.4	32.1 ± 1.0	29.0–30.4	29.7 ± 0.6	0.088	0.019
HDL	10.0–11.4	10.7 ± 0.6	11.1–12.3	11.8 ± 0.4	10.0–10.6	10.2 ± 0.2	0.123	0.661
HDW	10.0–10.4	10.2 ± 0.2	10.6–11.9	11.4 ± 0.5	9.5–10.2	9.8 ± 0.3	0.012	0.463
SL	4.5–4.9	4.6 ± 0.1	4.8–5.8	5.2 ± 0.3	4.0–4.7	4.2 ± 0.2	0.019	0.057
IND	2.8–3.5	3.2 ± 0.3	3.5–3.8	3.7 ± 0.1	2.8–3.4	3.1 ± 0.2	0.062	0.046
IOD	3.1–4.0	3.5 ± 0.4	2.7–3.1	3.0 ± 0.2	2.8–3.4	3.1 ± 0.2	0.004	0.242
UEW	2.7–3.2	2.9 ± 0.2	3.0–3.3	3.2 ± 0.1	/	/	0.223	/
ED	3.7–4.3	4.0 ± 0.2	4.0–5.0	4.4 ± 0.4	3.6–4.1	3.8 ± 0.2	0.064	0.558
TYD	2.5–3.2	2.7 ± 0.3	2.0–2.6	2.3 ± 0.2	1.9–2.2	2.0 ± 0.1	0.019	0.003
TET	0.9–1.4	1.0 ± 0.2	1.2–1.6	1.4 ± 0.2	0.9–1.1	1.0 ± 0.1	0.042	0.464
LAL	13.7–15.4	14.6 ± 0.7	14.7–17.0	15.6 ± 0.8	14.0–14.8	14.3 ± 0.3	0.570	0.661
LW	2.1–2.6	2.3 ± 0.2	2.6–3.2	3.0 ± 0.2	/	/	0.004	/
ML	7.2–8.4	7.9 ± 0.5	7.9–8.8	8.2 ± 0.39	7.4–8.3	7.8 ± 0.3	0.935	0.770
HLL	41.3–46.4	44.4 ± 2.0	43.3–49.7	49.7 ± 2.7	43.0–45.5	43.7 ± 0.8	0.291	0.464
THL	14.0–15.2	14.6 ± 0.5	13.7–17.1	15.1 ± 1.2	/	/	0.465	/
TW	3.2–4.9	3.8 ± 0.7	3.3–4.3	3.8 ± 0.4	/	/	0.935	/
TL	14.5–15.6	15.1 ± 0.4	14.9–16.8	15.6 ± 0.6	13.5–14.4	13. ± 0.3	0.685	0.008
TFL	19.3–21.4	20.6 ± 1.0	20.9–22.3	21.7 ± 0.6	/	/	0.962	/
FL	13.0–14.4	13.7 ± 0.7	14.4–15.9	15.1 ± 0.5	13.0–13.8	13.3 ± 0.2	0.019	0.558
having lower dominant frequency of 4525 ± 0.065 Hz vs. 4780.4 ± 76.5 Hz in the latter, having significantly higher value of SVL in males, and having significantly higher value of TYD and TL to SVL in males. *Leptobrachella jinshaensis* sp. nov. differs from *L. chishuiensis* by webbing on toes absent (vs. webbing rudimentary in the latter), tibiotoral articulation reaches the middle of eye when leg stretched forward (vs. reaches the tympanum or the level between tympanum to eye in the latter), the lower dominant frequency of calls 4500–4688 Hz (mean 4525 ± 0.065, 20 °C) vs. 6064–6284 Hz (6140.15 ± 69.35, 20 °C) in the latter, each call with two kinds of notes vs. only one kind of note in the latter, and having significantly higher value of HDW, SL, IOD, TYD, TEY and FL to SVL in males (all *p*-values < 0.05; Table 4).

Ecology. *Leptobrachella jinshaensis* sp. nov. is known from the type locality, Lengshuihe Nature Reserve, Jinsha County, Guizhou Province, China. Specimens of the new species are frequently found from stream covered with reeds, and under the rocks (Fig. 8).

Etymology. The specific name *jinshaensis* refers to the distribution of this species, Jinsha County, Guizhou Province, China. We suggest its English common name “Jinsha leaf litter toads” and Chinese name “Jin Sha Zhang Tu Chan (金沙掌突蟾)”.

![Figure 8. Habitats of *Leptobrachella jinshaensis* sp. nov. in the type locality Lengshuihe Nature Reserve, Jinsha County, Guizhou Province, China. Forest and a mountain stream in the type locality (insert holotype CIBCS20200516004 in life in the field).](image-url)
Discussion

Molecular phylogenetic analyses, detailed morphological comparisons, and advertisement call data all supported the new species distinctly separated from its congeners especially the superficially-morphological-similar species, *L. bijie* and *L. chishuiensis*. Although the relationships between the new species and other closely related species were not resolved, the new species appears to be phylogenetically closer to *L. bijie* and *L. chishuiensis*, corresponding to their high similarity on morphology. However, the new species appears to have lower dominant frequency on calling than the two closely related species. Moreover, they could be separated by morphometric analyses on contributions of some characters, for example, on PC1 of PCA, several characters of head, SVL and FL, which might be associated the calling behaviours, breeding behaviours, and jumping behaviours. We need future work to detect the function of the characters of these species to explore the ecological differences between them.

The large-scale molecular phylogenetic analyses in Chen et al. (2018) revealed many cryptic species in the genus *Leptobrachella* but did not included samples of *Leptobrachella jinshaensis* sp. nov. Similarly, this large phylogenetic framework likely included a few population samples in Guizhou Province, China. However, the phylogenetic framework indicated that Guizhou Province might be the biogeographical zone of transition for western-to-eastern or southwestern-to-northeastern clades (Chen et al. 2018). The findings of series of new species (*Leptobrachella jinshaensis* sp. nov., *L. chishuiensis*, *L. suiyangensis*, *L. bijie*, and *L. purpuraventra*) obviously supply important supplemental materials for detecting detailed evolutionary and biogeographical models of the genus. Moreover, the findings of the new species also indicated a high degree of localised diversification and micro-endemism for the species in the genus *Leptobrachella* because in Guizhou Province, China, the five recent-described *Leptobrachella* species are just known only from their type localities or nearby areas. In addition, in recent years, large number of discoveries have been made from Guizhou, dramatically raising the number of frog species known from the region (Zhang et al. 2017; Li et al. 2018a, b, 2019a, b, 2020a, b, c; Lyu et al. 2019; Wang et al. 2019; Luo et al. 2020; Su et al. 2020; Xu et al. 2020; Wei et al. 2020). This further indicated that more investigations should be conducted in Guizhou Province to define more precisely distribution area of the new species and detect more cryptic species especially in the poorly-investigated areas.

Acknowledgements

This work was supported by Project supported by the National Natural Science Foundation of China (Nos. 32070426 and 31960099), Biodiversity Conservation Key Laboratory of Guizhou Province Education Department, Guiyang College, Basic research project of science and technology department of Guizhou Province (Nos. [2020]1Y083), Guizhou Provincial Science and Technology Project (No. [2020]4Y029), Guizhou
Provincial Department of Education Youth Science and Technology Talents Growth Project (Nos. KY[2018]455 and KY[2018]468), and China Biodiversity Observation Networks (Sino BON–Amphibian & Reptile).

References

Anderson J (1871) A list of the reptilian accession to the Indian Museum, Calcutta from 1865 to 1870, with a description of some new species. Journal of the Asiatic Society of Bengal 40: 12–39.

Boulenger GA (1893) Concluding report on the reptiles and batrachians obtained in Burma by Signor L. Fca dealing with the collection made in Pegu and the Karin Hills in 1887–88. Annali del Museo Civico di Storia Naturale di Genova 13: 304–347.

Boulenger GA (1900) Descriptions of new batrachians and reptiles from the Larut Hills, Perak. Annals and Magazine of Natural History 6: 186–194. https://doi.org/10.1080/00222930008678356

Chen JM, Poyarkov NJ, Suwannapoom C, Lathrop A, Wu YH, Zhou WW, Yuan ZY, Jin JQ, Chen HM, Liu HQ, Nguyen TQ, Nguyen SN, Duong TV, Eto K, Nishikawa K, Matsui M, Orlov NL, Stuart BL, Brown RM, Rowley J, Murphy RW, Wang YY, Che J (2018) Large-scale phylogenetic analyses provide insights into unrecognized diversity and historical biogeography of Asian leaf-litter frogs, genus Leptolalax (Anura: Megophryidae). Molecular Phylogenetics and Evolution 124: 162–171. https://doi.org/10.1016/j.ympev.2018.02.020

Chen WC, Liao X, Zhou SC, Mo YM (2019) A new species of Leptobrachella (Anura: Megophryidae) from southern Guangxi, China. Zootaxa 4563: 67–82. https://doi.org/10.11646/zootaxa.4563.1.3

Chen JM, Xu K, Poyarkov NA, Wang K, Yuan ZY, Hou M, Suwannapoom C, Wang J, Che J (2020) How little is known about “the little brown frogs”: description of three new species of the genus Leptobrachella (Anura: Megophryidae) from Yunnan Zoological Research 41(3): 292–313. https://doi.org/10.24272/j.issn.2095-8137.2020.036

Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9(8): 772–772. https://doi.org/10.1038/nmeth.2109

Das I, Tron RKL, Rangad D, Hooroo RN (2010) A new species of Leptolalax (Anura: Megophryidae) from the sacred groves of Mawphlang, Meghalaya, north-eastern India. Zootaxa 2339: 44–56. https://doi.org/10.11646/zootaxa.2339.1.2

Dehling JM (2012a) Eine neue Art der Gattung Leptolalax (Anura: Megophryidae) vom Gunung Benom, Westmalaysia/A new species of the genus Leptolalax (Anura: Megophryidae) from Gunung Benom, Peninsular Malaysia. Sauria 34: 9–21.

Dehling JM (2012b) Redescription of Leptolalax gracilis (Günther, 1872) from Borneo and taxonomic status of two populations of Leptolalax (Anura: Megophryidae) from Peninsular Malaysia. Zootaxa 3328: 20–34. https://doi.org/10.11646/zootaxa.3328.1.2

Dehling JM, Matsui M (2013) A new species of Leptolalax (Anura: Megophryidae) from Gunung Mulu National Park, Sarawak, East Malaysia (Borneo). Zootaxa 3670: 33–44.
A new species of *Leptobrachella*

Dring J (1983) Frogs of the genus *Leptobrachella* (Pelobatidae). Amphibia-Reptilia 4: 89–102. https://doi.org/10.1163/156853883X00012

Dubois A (1983) Note preliminaire sur le genre *Leptolalax* Dubois, 1980 (Amphibiens, Anoure), avec diagnose d’une espece novelle du Vietnam. Alytes 2: 147–153.

Duong TV, Do DT, Ngo CD, Nguyen TQ, Poyarkov Jr NA (2018) A new species of the genus *Leptolalax* (Anura: Megophryidae) from southern Vietnam. Zoological Research 39: 181–196. https://doi.org/10.42472/j.issn.2095-8137.2018.009

Eto K, Matsui M, Nishikawa K (2015) Description of a new species of the genus *Leptobrachella* (Amphibia, Anura, Megophryidae) from Borneo. Current Herpetology 34(2): 128–139. https://doi.org/10.5358/hsj.34.128

Eto K, Matsui M, Nishikawa K (2016) A new highland species of dwarf litter frog genus *Leptobrachella* (Amphibia, Anura, Megophryidae) from Sarawak. Raffles Bulletin of Zoology. Singapore 64: 194–203.

Eto K, Matsui M, Hamidy A, Munir M, Iskandar DT (2018) Two new species of the genus *Leptobrachella* (Amphibia: Anura: Megophryidae) from Kalimantan, Indonesia. Current Herpetology 37(2): 95–105. https://doi.org/10.5358/hsj.37.95

Fei L, Ye CY, Huang YZ (1990) Key to Chinese Amphibians. Publishing House for Scientific and Technological Literature, Chongqing, 364 pp.

Fei L, Ye CY (2005) The key and illustration of Chinese. Sichuan Publishing House of Science and Technology, Chongqing, 253–255.

Fei L, Hu SQ, Ye CY, Huang YZ (2009) Fauna Sinica. Amphibia Vol. 2 Anura. Science Press, Beijing, 957 pp.

Fei L, Ye CY, Jiang JP (2012) Colored atlas of Chinese amphibians and their distributions. Sichuan Publishing House of Science and Technology, Chengdu, 619 pp.

Fouquet A, Gilles A, Vences M, Marty C, Blanc M, Gemmell NJ (2007) Underestimation of species richness in Neotropical frogs revealed by mtDNA analyses. PLoS ONE 2(10): e1109. https://doi.org/10.1371/journal.pone.0001109

Frost DR (2020) Amphibian species of the world. Version 6.0. New York: American Museum of Natural History. http://research.amnh.org/vz/herpetology/amphibia/index.html [accessed 22 Sep 2020]

Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16(3): 183–190.

Grisser LL, Grisser JL, Youmans TM (2004) A new species of *Leptolalax* (Anura: Megophryidae) from Pulau Tioman, West Malaysia. Asiatic Herpetological Research 10: 8–11.

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59(3): 307–321. https://doi.org/10.1093/sysbio/syq010

Günther A (1872) On the reptiles and amphibians of Borneo. Proceedings of the Scientific Meetings of the Zoological Society of London 1872: 586–600.

Günther A (1895) The reptiles and batrachians of the Natuna Islands. Novitates Zoologicae 2: 499–502.

Hall TA (1999) BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41(41): 95–98. https://doi.org/10.1021/bk-1999-0734.ch008
Hoang CV, Nguyen TT, Luu VQ, Nguyen TQ, Jiang JP (2019) A new species of Leptobrachella Smith 1925 (Anura: Megophryidae) from Thanh Hoa Province, Vietnam. Raffles Bulletin of Zoology. Singapore 67: 536–556. https://doi.org/10.26107/RBZ-2019-0042

Hou YM, Zhang MF, Hu F, Li SY, Shi SC, Chen J, Mo XY, Wang B (2018) A new species of the genus Leptolalax (Anura, Megophryidae) from Hunan, China. Zootaxa 4444(3): 247–266. https://doi.org/10.11646/zootaxa.4444.3.2

Humtsoe LN, Bordoloi S, Ohler A, Dubois A (2008) Rediscovery of a long known species, Ixalus lateralis Anderson, 1871. Zootaxa 2011: 24–34. https://doi.org/10.11646/zootaxa.1921.1.2

Inger RF, Stuebing RB (1992 [“1991”]) A new species of frog of the genus Leptobrachella Smith (Anura: Pelobatidae), with a key to the species from Borneo. Raffles Bulletin of Zoology. Singapore 39: 99–103.

Inger RF, Stuebing RB, Tan F (1995) New species and new records of anurans from Borneo. Raffles Bulletin of Zoology. Singapore 43: 115–132.

Inger RF, Lakim M, Biun A, Yambun P (1997) A new species of Leptolalax (Anura: Megophryidae) from Borneo. Asiatic Herpetological Research 7: 48–50. https://doi.org/10.5962/bhl.part.18855

Inger RF, Orlov N, Darevsky I (1999) Frogs of Vietnam: a report on new collections. Fieldiana Zoology 92: 1–46.

Jiang K, Yan F, Suwannapoom C, Chomdej S, Che J (2013) A new species of the genus Leptolalax (Anura: Megophryidae) from northern Thailand. Asian Herpetological Research 4: 100–108. https://doi.org/10.3724/SPJ.1245.2013.00100

Lathrop A, Murphy RW, Orlov N, Ho CT (1998) Two new species of Leptolalax (Anura: Megophryidae) from northern Vietnam. Amphibia-Reptilia 19: 253–267. https://doi.org/10.1163/156853898X00160

Li SZ, Xu N, Lv JC, Jiang JP, Wei G, Wang B (2018a) A new species of the odorous frog genus Odorrana (Amphibia, Anura, Ranidae) from southwestern China. PeerJ 6(e5695): 1–28. https://doi.org/10.7717/peerj.5695

Li SZ, Xu N, Liu J, Jiang JP, Wei G, Wang B (2018b) A new species of the Asian Toad genus Megophrys sensu lato (Amphibia: Anura: Megophryidae) from Guizhou Province, China. Asian Herpetological Research 9: 224–239. https://doi.org/10.16373/j.cnki.ahr.180072

Li SZ, Wei G, Xu N, Cui JG, Fei L, Jiang JP, Liu J, Wang B (2019a) A new species of the Asian music frog genus Nidirana (Amphibia, Anura, Ranidae) from Southwestern China. PeerJ 7: e7157. https://doi.org/10.7717/peerj.7157

Li SZ, Zhang MH, Xu N, Lv JC, Jiang JP, Liu J, Wei G, Wang B (2019b) A new species of the genus Microhyla (Amphibia: Anura: Microhylidae) from Guizhou Province, China. Zootaxa 4624: 551–575. https://doi.org/10.11646/zootaxa.4624.4.7

Li SZ, Liu J, Wei G, Wang B (2020a) A new species of the Asian leaf litter toad genus Leptobrachella (Amphibia, Anura, Megophryidae) from southwest China. ZooKeys 943: 91–118. https://doi.org/10.3897/zookeys.943.51572

Li SZ, Lu NN, Liu J, Wang B (2020b) Description of a new Megophrys Kuhl & Van Hasselt, 1822 (Anura, Megophryidae) from Guizhou Province, China. ZooKeys 986: 101–126. https://doi.org/10.3897/zookeys.986.57119
A new species of *Leptobrachella*

Li SZ, Wei G, Cheng YL, Zhang BW, Wang B (2020c) Description of a new species of the Asian newt genus *Tylototriton sensu lato* (Amphibia: Urodela: Salamandridae) from Southwest China. Asian Herpetological Research 11(4): 282–296. https://doi.org/10.16373/j.cnki.ahr.200026

Liu CC (1950) Amphibians of western China. Fieldiana Zoology Memoires 2: 1–397. [+ 10 pl.] https://doi.org/10.5962/bhl.part.4737

Luo T, Xiao N, Gao K, Zhou J (2020) A new species of *Leptobrachella* (Anura, Megophryidae) from Guizhou Province, China. ZooKeys 923: 115–140. https://doi.org/10.3897/zook.eys.923.47172

Lyu ZT, Zeng ZC, Wan H, Yang JH, Li YL, Pang H, Wang YY (2019) A new species of *Amolops* (Anura: Ranidae) from China, with taxonomic comments on *A. liangshanensis* and Chinese populations of *A. marmoratus*. Zootaxa 4609: 247–268. https://doi.org/10.11646/zootaxa.4609.2.3

Mahony S, Sengupta S, Kamei RG, Biju SD (2011) A new low altitude species of *Megophrys* Kuhl and van Hasselt (Amphibia: Megophryidae), from Assam, Northeast India. Zootaxa 3059: 36–46. https://doi.org/10.11646/zootaxa.3059.1.2

Malkmus R (1992) *Leptolalax pictus* sp. nov. (Anura: Pelobatidae) vom Mount Kinabalu/Nord Borneo. Sauria 14: 3–6.

Mathew R, Sen N (2010 [“2009”]) Description of a new species of *Leptobrachium* Tschudi, 1838 (Amphibia: Anura: Megophryidae) from Meghalaya, India. Records of the Zoological Survey of India 109: 91–108.

Matsui M (1997) Call characteristics of Malaysian *Leptolalax* with a description of two new species (Anura: Pelobatidae). Copeia 1997: 158–165. https://doi.org/10.2307/1447851

Matsui M (2006) Three new species of *Leptolalax* from Thailand (Amphibia, Anura, Megophryidae). Zoological Science 23 (9): 821–830. https://doi.org/10.2108/zsj.23.821

Matsui M, Belabut DM, Ahmad N, Yong HS (2009) A new species of *Leptolalax* (Amphibia, Anura, Megophryidae) from Peninsular Malaysia. Zoological Science 26(3): 243–247. https://doi.org/10.2108/zsj.26.243

Matsui M, Dehling JM (2012) Notes on an enigmatic Bornean megalophyid, *Leptolalax dringi* Dubois, 1987 (Amphibia: Anura). Zootaxa 3317(1): 49–58. https://doi.org/10.11646/zootaxa.3317.1.4

Matsui M, Zainudin R, Nishikawa K (2014a) A new species of *Leptolalax* from Sarawak, Western Borneo (Anura: Megophryidae). Zoological Science 31(11): 773–779. https://doi.org/10.2108/zs140137

Matsui M, Nishikawa K, Yambun P (2014b) A new *Leptolalax* from the mountains of Sabah, Borneo (Amphibia, Anura, Megophryidae). Zootaxa 3753(3): 440–452. https://doi.org/10.11646/zootaxa.3753.5.3

Nguyen LT, Poyarkov Jr NA, Le DT, Vo BD, Ninh HT, Duong TV, Murphy RW, Sang NV (2018) A new species of *Leptolalax* (Anura: Megophryidae) from Son Tra Peninsula, central Vietnam. Zootaxa 4388: 1–21. https://doi.org/10.11646/zootaxa.4388.1.1

Ohler A, Marquis O, Swan S, Grosjean S (2000) Amphibian biodiversity of Hoang Lien Nature Reserve (Lao Cai Province, northern Vietnam) with description of two new species. Herpetozoa 13(1/2): 71–87.
Ohler A, Wollenberg KC, Grosjean S, Hendrix R, Vences M, Ziegler T, Dubois A (2011) Sorting out Lalos: description of new species and additional taxonomic data on megophryid frogs from northern Indochina (genus *Leptolalax*, Megophryidae, Anura). Zootaxa 3147: 1–83. https://doi.org/10.11646/zootaxa.3147.1.1

Poyarkov NJ, Rowley JJ, Gogoleva SI, Vassilieva AB, Galoyan EA, Orlov NL (2015) A new species of *Leptolalax* (Anura: Megophryidae) from the western Langbian Plateau, southern Vietnam. Zootaxa 3931(2): 221–252. https://doi.org/10.11646/zootaxa.3931.2.3

Qian TY, Xiao X, Cao Y, Xiao NW, Yang DD (2020) A new species of *Leptobrachella* (Anura: Megophryidae) Smith, 1925 from Wuling Mountains in Hunan Province, China. Zootaxa 4816: 491–526. https://doi.org/10.11646/zootaxa.4816.4.4

Ronquist FR, Huelsenbeck JP (2003) MrBayes3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12): 1572–1574. https://doi.org/10.1093/bioinformatics/btg180

Rowley JJ, Cao TT (2009) A new species of *Leptolalax* (Anura: Megophryidae) from central Vietnam. Zootaxa 2198: 51–60. https://doi.org/10.11646/zootaxa.2198.1.5

Rowley JJ, Hoang DH, Le TTD, Dau QV, Cao TT (2010a) A new species of *Leptolalax* (Anura: Megophryidae) from Vietnam and further information on *Leptolalax tuberosus*. Zootaxa 2660: 33–45.

Rowley JJ, Stuart BL, Neang T, Emmett DA (2010b) A new species of *Leptolalax* (Anura: Megophryidae) from northeastern Cambodia. Zootaxa 2567: 57–68. https://doi.org/10.11646/zootaxa.2567.1.3

Rowley JJ, Stuart BL, Richards SJ, Phimmachak S, Sivongxay N (2010c) A new species of *Leptolalax* (Anura: Megophryidae) from Laos. Zootaxa 2681: 35–46. https://doi.org/10.11646/zootaxa.2681.1.3

Rowley JJ, Le DTT, Tran DTA, Hoang DH (2011) A new species of *Leptobrachella* (Anura: Megophryidae) from southern Vietnam. Zootaxa 2796: 15–28. https://doi.org/10.11646/zootaxa.4563.1.3

Rowley JJ, Hoang HD, Dau VQ, Le TTD, Cao TT (2012) A new species of *Leptolalax* (Anura: Megophryidae) from central Vietnam. Zootaxa 3321: 56–68. https://doi.org/10.11646/zootaxa.3321.1.4

Rowley JJ, Dau VQ, Nguyen TT (2013) A new species of *Leptolalax* (Anura: Megophryidae) from the highest mountain in Indochina. Zootaxa 3737(4): 415–428. https://doi.org/10.11646/zootaxa.3737.4.5

Rowley JJ, Stuart BL, Neang T, Hoang HD, Dau VQ, Nguyen TT, Emmett DA (2015) A new species of *Leptolalax* (Anura: Megophryidae) from Vietnam and Cambodia. Zootaxa 4039: 401–417. https://doi.org/10.11646/zootaxa.4039.3.1

Rowley JJ, Tran DTA, Le DTT, Dau VQ, Peloso PLV, Nguyen TQ, Hoang HD, Nguyen TT, Ziegler T (2016) Five new, microendemic Asian Leaf-litter Frogs (*Leptolalax*) from the southern Annamite mountains, Vietnam. Zootaxa 4085: 63–102. https://doi.org/10.11646/zootaxa.4085.1.3

Rowley JJ, Dau VQ, Hoang HD, Le DTT, Cutajar TP, Nguyen TT (2017a) A new species of *Leptolalax* (Anura: Megophryidae) from northern Vietnam. Zootaxa 4243: 544–564. https://doi.org/10.11646/zootaxa.4243.3.7
Rowley JJ, Dau VQ, Cao TT (2017b) A new species of *Leptolalax* (Anura: Megophryidae) from Vietnam. Zootaxa 4273(1): 61–79. https://doi.org/10.11646/zootaxa.4273.1.5

Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York.

Sengupta S, Sailo S, Lalremmsanga HT, Das A, Das I (2010) A new species of *Leptolalax* (Anura: Megophryidae) from Mizoram, north-eastern India. Zootaxa 2406: 56–68. https://doi.org/10.11646/zootaxa.2406.1.3

Stuart BL, Rowley JJL (2020) A new *Leptobrachella* (Anura: Megophryidae) from the Cardamom Mountains of Cambodia. Zootaxa 4834: 556–572. https://doi.org/10.11646/zootaxa.4834.4.4

Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flock P (1994) Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87(6): 651–701. https://doi.org/10.1093/esa/87.6.651

Su H, Shi S, Wu Y, Li G, Yao X, Wang B, Li S (2020) Description of a new horned toad of *Megophrys* Kuhl & Van Hasselt, 1822 (Anura, Megophryidae) from southwest China. ZooKeys 974: 131–159. https://doi.org/10.3897/zookeys.974.56070

Sung YH, Yang JH, Wang YY (2014) A new species of *Leptolalax* (Anura: Megophryidae) from southern China. Asian Herpetological Research 5(2): 80–90. https://doi.org/10.3724/SPJ.1245.2014.00080

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Phylogenetics and Evolution 28: 2725–2729. https://doi.org/10.1093/molbev/mst197

Taylor EH (1962) The amphibian fauna of Thailand. University of Kansas Science Bulletin 43: 265–599. https://doi.org/10.5962/bhl.part.13347

Wang J, Yang JH, Li Y, Lyu ZT, Zeng ZC, Liu ZY, Ye YH, Wang YY (2018) Morphology and molecular genetics reveal two new *Leptobrachella* species in southern China (Anura, Megophryidae). ZooKeys 776: 105–137. https://doi.org/10.3897/zookeys.776.22925

Wang J, Li YL, Li Y, Chen HH, Zeng YJ, Shen JM, Wang YY (2019) Morphology, molecular genetics, and acoustics reveal two new species of the genus *Leptobrachella* from northwestern Guizhou Province, China (Anura, Megophryidae). ZooKeys 848: 119–154. https://doi.org/10.3897/zookeys.848.29181

Watters JL, Cummings ST, Flanagan RL, Siler CD (2016) Review of morphometric measurements used in anuran species descriptions and recommendations for a standardized approach. Zootaxa 4072(4): 477–495. https://doi.org/10.11646/zootaxa.4072.4.6

Wei G, Li SZ, Liu J, Cheng YL, Xu N, Wang B (2020) A new species of the Music frog *Nidirana* (Anura, Ranidae) from Guizhou Province, China. ZooKeys 904: 63–87. https://doi.org/10.3897/zookeys.904.39161

Wijayathilaka N, Meegaskumubura M (2016) An acoustic analysis of the genus *Microhyla* (Anura: Microhylidae) of Sri Lanka. PLoS ONE 11: e0159003. https://doi.org/10.1371/journal.pone.0159003

Xu N, Li S-Z, Liu J, Wei G, Wang B (2020) A new species of the horned toad *Megophrys* Kuhl & Van Hasselt, 1822 (Anura, Megophryidae) from southwest China. ZooKeys 943: 119–144. https://doi.org/10.3897/zookeys.943.50343
Yang JH, Wang YY, Chen GL, Rao DQ (2016) A new species of the genus *Leptolalax* (Anura: Megophryidae) from Mt. Gaoligongshan of western Yunnan Province, China. Zootaxa 4088: 379–394. https://doi.org/10.11646/zootaxa.4088.3.4

Yang JH, Zeng ZC, Wang YY (2018) Description of two new sympatric species of the genus *Leptolalax* (Anura: Megophryidae) from western Yunnan of China. PeerJ 6(e4586): 1–32. https://doi.org/10.7717/peerj.4586

Yuan ZY, Sun RD, Chen JM, Rowley JJ, Wu ZJ, Hou SB, Wang SN, Che J (2017) A new species of the genus *Leptolalax* (Anura: Megophryidae) from Guangxi, China. Zootaxa 4300: 551–570. https://doi.org/10.11646/zootaxa.4300.4.5

Zhang Y, Li G, Xiao N, Li J, Pan T, Wang H, Zhang B, Zhou J (2017) A new species of the genus *Xenophrys* (Amphibia: Anura: Megophryidae) from Libo County, Guizhou, China. Asian Herpetological Research 8: 75–85.

Supplementary material 1

Table S1. Uncorrected p-distance between *Leptobrachella* species on the 16S rRNA gene

Authors: Bin Wang

Data type: molecular data

Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/zookeys.1021.60729.suppl1

Supplementary material 2

Table S2. Variable loadings for principal components with Eigenvalue greater than 1, from morphometric characters corrected by SVL

Authors: Yan-Lin Cheng, Sheng-Chao Shi, Jiaqi Li, Jing Liu, Shi-Ze Li, Bin Wang

Data type: species data

Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/zookeys.1021.60729.suppl2
Supplementary material 3

Table S3. Advertisement call comparisons between *Leptobrachella jinshaensis* sp. nov. and its congeners

Authors: Yan-Lin Cheng, Sheng-Chao Shi, Jiaqi Li, Jing Liu, Shi-Ze Li, Bin Wang

Data type: statistical data

Copyright notice: This dataset is made available under the Open Database License (http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement intended to allow users to freely share, modify, and use this Dataset while maintaining this same freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/zookeys.1021.60729.suppl3