Using more native-like language acquisition processes in the foreign language classroom

Kieran Green

Abstract: This work presents the case for using native-like language and learning networks in the classroom-based teaching of foreign languages and suggests how this might be done for EFL lessons. Networks in both syntax and syntax learning are discussed. Language and learning networks are then identified using principles from Evolutionary Linguistics and Cognitive Linguistics. The work culminates in an examination of how the identified networks in language and language learning can be better employed by teachers in the classroom to improve retention and use. Three general lesson plan types are suggested, which correspond with the three language network types that have been identified, which go further to attach meaning to the structures learnt in class.

Subjects: Bilingualism & Multilingualism; Linguistic Theory; Cognitive Linguistics; Language Teaching & Learning

Keywords: cognitive linguistics; evolutionary linguistics; networks; foreign language teaching; language usability; language learnability; EFL; language acquisition

1. Introduction

All humans use language in the same way (Calude & Pagel, 2011; Fitch, 2011; Kemp & Regier, 2012): language is what humans do. Furthermore, humans did not invent language; rather, it arose over time (Hauser et al., 2014; Szathmáry & Smith, 1995). However, despite humans having used language for a long time, we still have much to understand about how we develop competency in the use of a language, how language is stored in the brain, how it is processed and produced in communication, and why language change over time benefits these. Moreover, we are still unable to facilitate development of proficiencies in the foreign language classroom that are close to those native children are able to develop in a very short time, and although a great deal of progress has been made in the last couple of decades or so to meet unknowns, much of the work in the aforementioned fields has not found its way into the foreign language classroom in the form of teaching practise. While it is clear that competency with a language comes about through use (Ellis, O'Donnell, & Römer, 2015; Tomasello, 2008), problems with content-based, task-based and other student-centred methodologies abound (Baecher, Farnsworth, & Ediger, 2014; Bruton, 2011; Ellis,
often because teachers do not understand what they ought to do, because linguistic objectives are hard to incorporate, or simply because lower proficiency levels do not have the language skills to participate.

Grammar is essential to language use: a gifted person could memorise the dictionary of a certain language, but would not be able to communicate using that language without knowledge of grammar. This paper is the result of research aiming to identify how native-like syntax-learning processes can be better replicated and incorporated into lessons. Initially these lessons are designed for university students on compulsory courses, with lower levels of proficiency, who have already been the recipients of many years of formal, classroom-based, English as a Foreign Language (EFL) tuition, but who have never developed any communicative competence although the method could equally well be used with children starting their foreign language education. The need for the work has arisen because it is clear that under current teaching practises some aspects of a foreign language are very hard to retain and use for students, such as past participles in English, but they are integral to using that specific language.

One good candidate reason for the general underperformance of classroom-based foreign language acquisition is not utilising the network structure of language as an integral part of the learning process when building form-meaning units. Native-speaking foreign language teachers, i.e. those teaching abroad, are all familiar with students who are able to complete paper-based exercises, e.g. gap-fill exercises, perfectly, but who have no skill at all in using the structures in the exercise to communicate. The work presented here suggests ways to incorporate network-based methods to better build form-meaning pairings in the classroom, and is useful for foreign language teachers as it suggests lessons plans for the purpose.

The work begins by examining networks in words and structures and in language learning, goes on to identify those language networks that ought to be taught in EFL lessons and culminates with corresponding lesson plans.

2. Networks that contribute to language acquisition

Networks, like fishing nets laid out on a beach, can be two-dimensional, or if each point of connection, or node, connects to many other points of connection, can be in more dimensions. More complex systems can have links—or edges—of different strengths, exist only between specific nodes, have multiple levels or be active only at certain times (Davies, Kounios, & Power, 2015; Kivelä et al., 2014; Sayama, 2015). Networked systems pervade nature, including brain structure and function, and language.

2.1. Networks in the brain: Domain-general behaviour, learning and “chunks”

The brain is a network of activity, with neurones being linked to other neurones and electrical activity travelling across them (Medaglia, Lynam, & Bassett, 2015; Mišić & Sporns, 2015; van Schijndel, Exley, & Schuler, 2013; Yaveroglu et al., 2014). Furthermore, domain-general behaviours, being controlled by the brain, also exhibit network properties, as do learning behaviours (Hinton, 2007; Solway et al., 2014). Examples of networked learning-behaviours providing added benefits for learning include reduced processing times with increased intelligence (Hearne, Mattingley, & Cocchi, 2016; Tang et al., 2010), predictive ability (Clark, 2013; Weber, Lau, Stillerman, & Kuperberg, 2016), finding patterns (Egner, 2014; Tenenbaum, Kemp, Griffiths, & Goodman, 2011), learning by trial and error (Botvinick, 2012; O’Doherty, Lee, & McNamee, 2015), and adaptive behaviour (Cushman & Morris, 2015; Schiffer, Waszak, & Yeung, 2015).

It is important to note that these domain-general networks of activity and learning are also present in the brains of other animals (e.g. Bardella, Bifone, Gabrielli, & Squartini, 2016; Dehghani et al., 2016). Furthermore, learning actually changes brain networks (Bassett et al., 2011; Bola & Borchardt, 2016), meaning the brain can be seen as a network that is in constant flux. Indeed, if the
physical structure of the brain is in flux, then so too must any stored information. Taking small combinations of stored information from cognitive networks and using them sequentially, whether in learning, processing or production, is called chunking, the small combinations being chunks. Chunking is a defining characteristic of how the brain learns and manages information and is thought to be instrumental in allowing integration of the short-term memory and long-term information retention and learning (Chekaf, Cowan, & Mathy, 2016; Fonollosa, Neftci, & Robinovich, 2015; Lee, Seo, & Jung, 2012; Mathy, Fortoukh, Gauvrit, & Guida, 2016), and networks in language production and processing most probably rely on chunking. Having now looked at domain-general learning networks, the network-like structure of language will be examined.

2.2. Networks in language
Language structure is determined by brain function (Bickel, Witzlack-Makarevich, Choudhary, Schlesewsky, & Bornkessel-Schlesewsky, 2015; Garagnani & Pulvermüller, 2016; Skeide, Brauer, & Friederici, 2015; Zaccarella & Friederici, 2016), and is composed from combinatorial signals—chunks—from networks of stored inventories (Carr, Smith, Cornish, & Kirby, 2016; Christiansen & Chater, 2016; Hoffmann & Trousdale, 2011; Martinčić-Ipšić, Margan, & Meštrović, 2016; Solé, Corominas-Murtra, Valverdie, & Steels, 2011). Furthermore, the signals from which language is composed are ambiguous in their meaning unless placed in context (Piantadosi, Tily, & Gibson, 2012; Wedel, 2012), and that context, and the meaning created, are derived from learning (van Dijk, 2006; Krishnan, Watkins, & Bishop, 2016; MacDonald, 2015; Tamariz, Ellison, Barr, & Fay, 2014; Ullman, 2016). For native speakers learning in their natural environment, learning depends on the frequency of exposure to a certain linguistic structure, or form, and its situational concomitant meaning. This meaning is initially generalised and ever more refined and segmented as the frequency of contextually experiencing the form-meaning pairing increases (Frost & Monaghan, 2016; Silvey, Kirby, & Smith, 2015).

Therefore, bringing meaning to ambiguity through context results in a finite set of signals becoming a rich and flexible system of language that is able to convey infinite meaning. Nodes of ambiguous words in the environment are linked to nodes of ambiguous cognitive concepts and given meaning after being linked to other nodes by edges of context. Moreover, the process of composing signals from these networked components manifests the syntactic structures found in language.

For example, in English, embedded structures (Christiansen & MacDonald, 2009; Miyagawa, Berwick, & Okanoya, 2013), dependency of time, gender and number/countability—or parsing (Beuls & Steels, 2013; de Vries, Magnus Petersson, Geukes, Zwitserlood, & Christiansen, 2012; van den Bos, Christiansen, & Miyak, 2012) and collocations and linguistic formulas (Brezina, McEnery, & Wattam, 2015; McCauley & Christiansen, 2014) are all examples of networks that are ambiguous nodes of words and meanings until linked together by edges of context to create word-meaning associations. In this work, a specific type of collocation or formula will be concentrated on, namely a root word that appears with other words on separate occasions that change the context and therefore the meaning, e.g. past participles being found with different auxiliary verbs. Specific examples are presented below in Table 1.

Finally, networks in communication signals are not unique to humans (Collier, Bickel, van Schaik, Manser, & Townsend, 2014, Rey, Perruchet & Fagot, 2012), and as described above with domain-general learning being networked, gaining the ability to use a language—language acquisition—is the interaction of language networks, and learning and memory networks, which will be examined below.

2.3. Networks in the acquisition of syntactic structures and their concomitant meanings
Memory and learning are networked phenomena with different areas of the brain being linked together and playing different roles. Working memory, colloquially called short-term memory, is very limited and can store correctly three to five “chunks” of information (Baddeley, 2012; Cowan, 2010),
and it is necessary to minimise any dependency on working memory when learning to use languages (O’Grady, 2015). Long-term memory, which is associated with learning, is understood as being of the following two non-exclusive types: procedural memory—implicitly learning through practice, such as learning a sport, playing an instrument or using tools—and declarative memory—explicitly memorising things like dates and names for an exam (Andringa & Rebuschat, 2015; Ellis, 2015; Morgan-Short, Faretta-Stutenberg, Brill-Schuetz, Carpenter, & Wong, 2014; Ullman, 2016).

Specific implicit learning phenomena that relate to the frequency of occurrence of certain structures, or formulas (e.g. Ellis, 2012; Wray, 2012, 2013), resulting in those formulas becoming entrenched and proceduralised (Krishnan et al., 2016; Ullman, 2016), and gramaticalised (Chang, 2008) include a bias towards using recently heard structures—a process called structural or syntactic priming (Kaschak, Kutta, & Coyle, 2012; Mahowald, James, Futrell, & Gibson, 2016; Pickering & Ferreira, 2008; Rowland, Chang, Ambridge, Pine, & Lieven, 2012), entrenching forms after repetitive exposure—a process called statistical learning (Fine & Jaeger, 2013; Frank, Tenenbaum, & Gibson, 2013; Vuong, Meyer, & Christiansen, 2016), demarcation of word boundaries (Erickson & Thiessen, 2016; Finn & Hudson Kam, 2015) and allocation of syntactic category (Reeder, Newport, & Aslin, 2012; Robenalt & Goldberg, 2015). Other specific examples of implicit learning include mastering embedded hierarchies (Lai & Poletiek, 2011, 2013) and embedded relative clauses (Fitz, Chang, & Christiansen, 2011), and eliminating ambiguity by learning to parse (Haskell, Thornton, & MacDonald, 2010; Phillips & Ehrenhofer, 2015; Pozzan & Trueswell, 2015). Specific examples of syntactic structures are presented in Table 2.

Additionally, specific learning phenomena of which the language user has some awareness—explicit learning—include building meaning through comparison and attaching it to words (Lany & Saffran, 2011; Wojcik & Saffran, 2013) and structures (Syrett, Arunachalam, & Waxman, 2014; van Dam & Desai, 2016), and using generalised concepts of meaning in different contexts (Finn & Hudson Kam, 2015; Fisher, Gertner, Scott, & Yuan, 2010; Foraker, Regier, Khetarpal, Perfors, & Tenenbaum, 2009). Specific examples of syntactic structures are presented in Table 2 below.

Notice that the second and third rows and the last row in Table 2 are very similar to the three rows in Table 1.

To enable foreign language teachers to use language networks effectively in the classroom, it is necessary to know which form-meaning pairings to teach foreign language students and how they are created by native speakers.

Type of structure	Examples
Embedded structures	standalone structures can be placed inside other structures
	• “be going + infinitive” for future plans, e.g. I’m going to the supermarket to buy some onions
	• Relative clauses, e.g. Yesterday I saw a film that was about monkeys
Dependencies	words immediately after or further along in the sentence are dependent on prior words for their form and meaning
	• Third person singular, e.g. he runs/they run
	• Plurals, e.g. 1 cat/2 cats
	• Time agreement, e.g. Yesterday I saw a film. It was about monkeys. Now we’re watching a film that’s (is) about snakes.”
	• Time words and verb aspects, e.g. present simple—everyday/always; present simple continuous—now/at the moment
Transposed concepts of meaning	a root word is found with other words at different times that changes the context and therefore the meaning
	• Past participle + “have been” for passive/“be” for adjective/“have” for perfect
	• Verb + preposition formulas, e.g. look at/look for/look round
	• Phrasal verbs, e.g. put it on/put it up/put it out
Identifying which form-meaning pairings to teach in the foreign language classroom and how they are created by natives

Having defined the roles of networks in language structure and acquisition, it is now necessary to know which structures are the most important to teach in a foreign language classroom, and how those forms are given meaning by users through experience. In this case, the “most important networks” being those that facilitate any rudimentary-level of communication. In order to do this, two different branches of linguistics will be employed: Evolutionary Linguistics (EL) and Cognitive Linguistics (CL). Both will be explained in greater detail below, but a comparison is presented below in Table 4. Essentially, EL is a way of understanding words and structures and CL is a way of understanding how meaning is attached to words.

Learning the meaning of language through use is a common phenomenon observed in action by all parents and all persons who go to live in a country where a different language is spoken. However, while CL can explain how meaning is attached to language, it cannot tell us to why it becomes attached to the language units it does, which is where EL is needed. To identify and use networks in language in the foreign language classroom, we need to employ ideas from EL and CL, and a comparison of both is presented in Table 3.

Evolutionary Linguistics is a framework of theories that model some reasons as to why words and structures change in terms of becoming easier to learn and use after being inherited from parental generations in the process of iterative learning, or learning by copying (de Boer, 2015; Kirby, Griffiths, & Smith, 2014). As they have social impacts, the processes that drive language change in EL are referred to as cultural selection (Steels, 2011; Tamariz et al., 2014). The implications for words and structures are broad, and EL has been used to explain semantic change (Landsbergen, Lachlan, Ten Cate, & Verhagen, 2010), syntactic change (Kirby, Tamariz, Cornish, & Smith, 2015) and vocabulary evolution (Smith, 2004).

Table 2. Networked syntactic structures that are learnt with networked-learning

Learning processes that are more implicit	Examples of networked structures
Statistical learning from repetitive processing	“I’ve already put my jacket on. Have you done it yet, sweetheart?” “Yes, I’ve already done it daddy”
Entrenching of syntactic form	“Where it gone daddy?” “Where’s it gone, pal? Say it.” “Where’s it gone?”
Demarcation of word boundaries	“Where’s the ball gone? (the speaker marks the beginning of ball with “the” and the end of ball with the previously known word gone)”
Allocation of syntactic category	“Where’s the foogy gone?” “What’s a ‘foogy’?” (the listener knows it is a noun)
Embedding combinations of regularly heard forms	“I’m going to the park.” “What are you going to do in the park?” “I’m going to the park to play football.” “The man with the beard.” “Who? Which man?” “The man with the beard who was talking to me before”
Dependency of time, gender and number/countability—or parsing—eliminating ambiguity	“The teacher speak funny English daddy.” “I know pal. It’s a travesty. How many English teachers are there?” “One.” “The teacher speaks funny English”
Learning processes that are more explicit	“Have you eaten your breakfast yet?” “Yes, I have.” “What time did you eat it?” “At 6,30am.” “The girl’s (has) gone, but the boys haven’t yet”
Building meaning by comparing and attaching it to words	Breakfast (morning), lunch (afternoon), dinner (evening)time words and verb aspects, e.g. “I’ve already done it. I did it five minutes ago. She’s already gone, but they haven’t yet”
Generalising and transposing concepts of meaning between different contexts	Past participles being used in different situation (perfect, passive or adjectival) to infer that something has happened before the time of speakingverb and preposition combinations

3. Identifying which form-meaning pairings to teach in the foreign language classroom and how they are created by natives

Having defined the roles of networks in language structure and acquisition, it is now necessary to know which structures are the most important to teach in a foreign language classroom, and how those forms are given meaning by users through experience. In this case, the “most important networks” being those that facilitate any rudimentary-level of communication. In order to do this, two different branches of linguistics will be employed: Evolutionary Linguistics (EL) and Cognitive Linguistics (CL). Both will be explained in greater detail below, but a comparison is presented below in Table 4. Essentially, EL is a way of understanding words and structures and CL is a way of understanding how meaning is attached to words.
Cognitive Linguistics (CL) is a branch of linguistic research that uses principles that are general to cognition as a whole to model some ways the brain learns and uses language from the environment. First, that an innate linguistic faculty does not exist, i.e. all brain-based competencies used for the production and processing of language are not language-specific; second, that the meaning of language exists in the brain as concepts; and finally, that meaning comes through use (Croft & Cruse, 2004, Pleyer & Winters, 2015). Core ideas in CL are the Cognitive Commitment and the Generalisation Commitment. Essentially, the Cognitive Commitment states that any ideas about how the brain handles language should not be different to how the brain handles any other task; whereas the Generalisation Commitment states that any principle in CL should apply to all human languages (Evans, 2012). Meaning coming through use, is referred to as the “usage-based” approach (Ellis et al., 2015; Janda, 2015; Tyler & Ortega, 2016), and two subthemes from CL, Connectionism and Constructivism, approach the topic in different ways (Lain, 2016). Connectionism sees knowledge as being represented as patterns of numerical activity across simple processing units; where processing occurs across large sets of connections in networks, and; in which learning occurs through non-language specific, general mechanisms combined with experience (Joanisse & McClelland, 2015). Constructivism sees individuals creating meaning over time through experience and active participation, rather than “acquiring it”, and that this knowledge occurs within the context that was learnt (Ertemer & Newby, 2013). Both these ideas rely on the network structures of concepts and situational use (Baronchelli, Ferrer-i-Cancho, Pastor-Satorras, Chater, & Christiansen, 2013).

3.1. Combining EL and CL

Language exits as words and structures that human brains can attach meaning to and use to communicate effectively. Networks of cognitive form-meaning pairings allow efficient communication—storage, retrieval, processing and production—in real time (Chater, McCouley, & Christiansen, 2016; Garagnani & Pulvermüller, 2016), making language usable and learnable.

Language is usable because the different network types present in language—reusing the same word in different combinations/chunks/transposing concepts (Arnon & Christiansen, 2014, Christiansen & Chater, 2016), dependencies (Dyson, 2009; Hoffmann & Trousdale, 2011; Kuperberg & Jaeger, 2015; O’Grady, 2015; Omaki & Lidz, 2015; Traugott, 2014) and embedded structures (Lai & Poletiek, 2011; Plantadosi et al., 2012; Trueswell & Gleitman, 2007)—have evolved to be dealt with by a brain that operates using different memory types that have finite capacities for storage and processing (Krishnan et al., 2016; Vagharchakian, Dehaene-Lambertz, Pallier, & Dehaene, 2012) and uses proceduralisation and prediction to speed up processing (Huettig, 2015; van Schijndel et al., 2013).
Table 4. Language change examples, their evolutionary drivers and situations in which natives might become familiar with them

Language change status	Changed	Changing (used often but not accepted as standard)	Has not changed despite expectations
Example language	Whom	Past participle (perfect, passive, adjective)	Have got to do (obligation)
Usability or learnability advantage as a consequence of change	Other forms, which are more easily recalled, are now more common	Transposing the concept reduces the amount of information that it is necessary to store and/or process and makes learning easier	Recursive-like structures reduce the amount of information that it is necessary to store and/or process and makes learning easier
Example of an iterated learning situation	A child who has given his toy to someone: “Who did you give it to?” NOT “To whom did you give it?”	To a child when she’s finished her breakfast: “Done?”	To a child who is hanging on his dad’s leg: “I’ve got to go. Let go please.”
			“Where mummy?” “Where’s mummy? Your mum’s already gone out”
Language is learnable because the combined characteristics of language and cognition mean an individual is able to learn his or her native language by interacting with the environment (Lain, 2016; Tamariz et al., 2014; Winters, Kirby, & Smith, 2015), and that other users of the same language distributed in time, e.g. generations, space, e.g. continents, can still understand each other (Silvey et al., 2015, Wedel, 2012) despite their different learning experiences (Foraker et al., 2009; Kirby et al., 2015).

3.2. Identifying specific examples of networked structures

Identification of the most important networked words and structures that are learnt in a natural, native environment that need to be taught in the foreign language classroom can be effected by employing ideas from EL. If language is changing to be more usable and learnable, it is necessary to teach the language that is changing as a part of the networks in which it is changing. To facilitate this analysis, the level of change has been categorised as follows: lost, has found multiple uses, currently changing and has not changed despite expectations. These categories and examples, are then cross-referenced with their proposed drivers of evolutionary change and contextual situations in which a native might become familiar with them are presented in Table 4. The forth column in Table 4, which depicts structures that have not changed despite an expectation that they might is not trivial. Networks of overlapping usages, some of which are vital to the functional integrity of the language, might conserve certain domains of linguistic structure through a language's evolutionary history, as with specific areas of restricted genome change in biological evolution (Blair Hedges & Kumar, 2003; Siepel et al., 2005). Furthermore, the third row, which presents examples of iterative learning situations, helps users to build a meaning and attach it to a structure: a process that leads on to the next section, which seeks to identify how specific concepts of meaning are formed.

Additionally, identification of the most fundamental networked concepts of meaning that natives attach to certain words and structures that need to be taught in the foreign language classroom can be effected using ideas from CL. The words and structures presented in Table 4 are processed in situ-ations providing context, and meaning is formed over repeated episodes of use. Examples of how these concepts are linked with the concomitant language in the natural environment, which might be replicated in the classroom, are presented in Table 5 along with the three previously identified network types: embedded structures, agreement and transposed concepts of meaning from Tables 1 and 2.

Having now identified the most fundamental form-meaning pairings in English that ought to be taught in the EFL classroom, it is possible to construct lesson plans that replicate these learning processes in lessons.

4. Replicating how natives use cognitive and linguistic networks to create and proceduralise form-meaning pairings in the EFL classroom

Having identified how networks are involved in language and language learning, presented below in Table 6 are three lesson plan types, based on the three learning networks identified, namely embedding, dependencies and transposing concepts of meaning.
Network type	Example sentence (and syntactic structure)	Example of a social situation in which the language gains meaning	Examples of this kind of networked syntax
Embedding	I’m going to the department store to buy a new hat. Be going to (continuous “go” for a future plan)	Asking someone who is just about to go somewhere: “Where are you going?” Then, “what are you going to do there?”	Recursive descriptions; relative clauses
Agreement of dependencies	The boys buy cakes from the girl. OR The boy buys cakes from the girls. (third person, plural and possessive “s”; from or for)	Parsing to learn: finding greater expressive competence if “s” endings are used correctly. What are you doing? Do you always do that?	How much and how many comparisons of simple and perfect aspects of past, present and future tenses
Transposing concepts of meaning to different contexts	I go to work every day. OR I’m going to work now. (work every day OR working now)	“Look!” The child looks up, but what should he be looking at? “Look at the board!” “Put on your new, warm, winter jacket! Put it on!” using the past participle without auxiliary verbs then using auxiliary verbs as proficiency improves	Verbs as either gerund or infinitive after the head verb; order of adjectives; longer comparatives; present participles as gerunds, continuous verbs and adjectives; multiple uses of get and use as phrasal verbs and verb and preposition combinations
These methods could be used to teach most of the structures used in everyday English, as depicted in Table 7.

5. Conclusion
Lesson plans have been suggested that purport to facilitate learning in a more native-like way in classroom-based EFL lessons, and thereby aid retention, recall and communication skill. The proposed lesson plans use the results of linguistic, teaching and neuroscience research to provide a bridge across the gap between compulsory foreign language students and children learning their native language in order to improve foreign language teaching.

Core to the argument presented is the use of the same three networks used in learning and the use that are present in English, namely embedded structures, agreement of dependencies and transposing concepts or meaning. It has been shown that the brain stores, retrieves, processes and produces information as networks of ambiguous concepts that gain meaning through context, and the lesson plans presented here use the same networks as those found in the networks in words and structures, and learning.

The teaching approach suggested might be termed guided-implicit learning, and it aims to intensify and speed up natural implicit learning processes such that the benefit provided by the necessarily limited amount of classroom instruction time is maximised. Furthermore, three general lesson plan types have been defined, which are based on the networks shown to be present in English and accessible by networked, domain-general learning processes in human cognition.

6. Future research
Despite the advances made in teaching a foreign language that are made by incorporating the network principles discussed above, further resolution is necessary of the syntactic structures and the roles of language and learning networks determining how native speakers learn and use them.
Examples might include how native speakers implicitly know to use a gerund (“-ing” form) or an in-
finitive (“to” form) of a verb when it is used as the subject of another verb, for example, “I want to
do” or “I suggest doing”. Another might be implicitly knowing the required order of adjectives, for
example, “the fat, tired, old, grey, EFL teacher” and not any other combination. Certainly, data driven
learning (Boulton & Tyne, 2013; Callies & Paquot, 2015; Gablasova, Brezina, & McEnery, 2017; Granger, 2008)—using software to analyse collections of language use grouped by type, for example, native-
speaking children of different ages, which is available for example, in the CHILDES database in the
Talkbank system—will be indispensable in identifying learning and using networks in any future
work.

Acknowledgements
I would like to thank one anonymous referee for the very helpful review.

Funding
The authors received no direct funding for this research.

Author details
Kieran Green1
E-mail: kieran_green@hotmail.com
1 Osaka Dental University, Hirakata, Osaka Prefecture, Japan.

Citation information
Cite this article as: Using more native-like language acquisition processes in the foreign language classroom,
Kieran Green, Cogent Education (2018), 5: 1429134.

References
Andringa, S., & Rebuschat, P. (2015). New directions in the study of explicit and implicit-learning. Studies in Second
Language Acquisition, 37, 185–196. doi:10.1017/
S027272631500008X
Arnon, I., & Christiansen, M. (2014). Chunk-based language
aquisition. In P Brooks & V Kempe (Eds.), Encyclopedia of
language development (pp. 88–91). SAGE publications.
Baddeley, A. (2012). Working memory: Theories, models, and
controversies. Annual Review of Psychology, 63, 1–29.
doi:10.1146/annual-rev-psych-120710-100422
Beecher, L., Farnsworth, T., & Ediger, A. (2014). The challenges
of planning language objectives in content-based ESL
instruction. Language Teaching Research, 18, 118–136.
doi:10.1177/1362168813505381
Bardevia, G., Bifone, A., Gabrielli, A., Gozzi, A., & Squartini, T.
(2016). Hierarchical organization of functional
connectivity in the mouse brain: A complex network
approach. Scientific Reports, 6, 519. doi:10.1038/
sep32060
Baroncelli, A., Ferrer-i-Cancho, R., Pastor-Satorras, R., Chater,
N., & Christiansen, M. H. (2013). Networks in cognitive
science. Trends in Cognitive Sciences, 17, 348–360.
doi:10.1016/j.tics.2013.04.010
Boers, F., Lindstromberg, S., & Eyckmans, J. (2014). Some
explanations for the slow acquisition of L2 collocations.
Vigo International Journal of Applied Linguistics, 11, 41–62.
Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson,
J. M., & Grafton, S. T. (2011). Dynamic reconfiguration of
human brain networks during learning. Proceedings of the
National Academy of Science, 108, 7641–7646.
doi:10.1073/pnas.1018985108
Beuls, K., & Stellis, L. (2013). Agent-based models of strategies
for the emergence and evolution of grammatical agreement. PLoS One, 8, e0058960. doi:10.1371/journal.
pone.0058960
Bickel, B., Witzlack-Makarevich, A., Choudhary, K. K.,
Schleswsky, M., & Bornkessel-Schleswsky, I. (2015). The
neuropsychology of language processing shapes the
evolution of grammar: Evidence from case marking. PLoS
One, 10, e0132819. doi:10.1371/journal.pone.0132819
Blair Hedges, S., & Kumar, S. (2003). Genomic clocks and
evolutionary timescales. Trends in Genetics, 19, 200–206.
doi:10.1016/S0168-9525(03)00053-2
de Boer, B. (2015). Evolution of speech-specific cognitive
adaptations. Frontiers in Psychology, 6. doi:10.3389/
fpsyg.2015.01505
Bola, M., & Borchardt, V. (2016). Cognitive processing involves
dynamic reorganisation of the whole-brain network’s
functional community structure. The Journal of
Neuroscience, 36, 3633–3635. doi:10.1523/
jneurosci.0106-16.2016
Botvinick, M. M. (2012). Hierarchical reinforcement learning
and decision making. Current Opinion in Neurobiology, 22,
956–962. doi:10.1016/j.conb.2012.05.008
Boulton, A., & Tyne, H. (2013). Corpus linguistics and data-
driven learning: A critical overview. Bulletin Suisse de
Linguistique Appliquée, 97, 97–118.
Brezina, V., McEnery, T., & Wattam, S. (2015). Collocations in
Context. International Journal of Corpus Linguistics, 20,
139–173. doi:10.1075/ijcl.20.01bre
Brunton, A. (2011). Is CIL so beneficial, or just selective? Re-
evaluating some of the research. System, 39, 523–532.
doi:10.1016/j.system.2011.08.002
Callies, M., & Paquot, M. (2015). Learner corpus research: An
interdisciplinary field on the move. International Journal of
Learner Corpus Research, 1, 1–6. doi:10.1075/ijlcr.1.01edi
Colude, A. S., & Pagel, M. (2011). How do we use language?
Shared patterns in the frequency of word use across 17
world languages. Philosophical Transactions of the Royal
Society B, 366, 1101–1107. doi:10.1098/rstb.2010.0315
Carr, J. W., Smith, K., Cornish, H., & Kirby, S. (2016). The cultural
evolution of structured languages in an open-ended,
continuous world. Cognitive Science, 41, 892–923.
doi:10.1111/cogs.12371
Chang, F. (2008). Implicit learning and language change.
Theoretical Linguistics, 34, 115–122. doi:10.1515/
THLI.2008.009
Chater, N., McCauley, S. M., & Christiansen, M. H. (2016).
Language as skill: Intertwining comprehension and
production. Journal of Memory and Language, 89, 244–
254. doi:10.1016/j.jml.2015.11.004
Chekaf, M., Cowan, N., & Mathy, F. (2016). Chunk formation in
memorized words and how it relates to data compression. Cognition, 155, 96–107. doi:10.1016/j.
cognition.2016.05.024
Collier, K., Bickel, B., van Schaik, C. P., Manser, M. B., &
Townsend, S. W. (2014). Language Evolution: Syntax
Before Phonology? Philosophical Transactions of the Royal
Society B, 369, 7641–7646.
doi:10.1098/rspb.2014.0263
Craft, W., & Cruse, D. A. (2004). Cognitive linguistics. Cambridge:
Cambridge University Press.
Christiansen, M. H., & Chater, N. (2016). The now-or-never
bottleneck: A fundamental constraint on language.
Behavioral and Brain Sciences, 39, 279. doi:10.1017/
S0140525X1500031X. Epub 2015 Apr 14.
yeast genomes. Genome Research, 15, 1034–1050. doi:10.1101/gr.3715005
Silvecy, C., Kirby, S., & Smith, K. (2015). Word meanings evolve to selectively preserve distinctions on salient dimensions. Cognitive Science, 39, 212–226. doi:10.1111/cogs.12150
Skeide, M. A., Brouer, J., & Friederici, A. D. (2015). Brain functional and structural predictors of language performance. Cerebral Cortex. doi:10.1093/cercor/bht042
Smith, K. (2004). The evolution of vocabulary. Theoretical Biology, 228, 127–142. doi:10.1016/j.jtbi.2003.12.016
Solé, R. V., Corominas-Murtra, B., Valverde, S., & Steele, L. (2011). Language networks: Their structure, function, and evolution. Complexity, 15, 20–26. doi:10.1002/cplx.2030
Solway, A., Diuk, C., Córdova, N., Yee, D., Barto, A. G., Niv, Y., & Botvinick, M. M. (2014). Optimal behavioral hierarchy. PLoS Computational Biology, 10, e1003779. doi:10.1371/journal.pcbi.1003779
Steeles, L. (2011). Modelling the cultural evolution of language. Physics of Life Reviews, 8, 339–356. doi:10.1016/j.phyrep.2011.10.014
Syrett, K., Arunachalam, S., & Waxman, S. R. (2014). Slowly but surely: Adverbs support verb learning in 2-year-olds. Language Learning and Development, 10, 263–278. doi:10.1080/15475441.2013.840493
Szathmáry, E., & Smith, J. (1995). The major evolutionary transitions. Nature, 374, 227–232. https://doi.org/10.1038/374227a0
Tomarica, M., Ellison, T. M., Barr, D. J., & Fay, N. (2014). Cultural selection drives the evolution of human communication systems. Proceedings of the Royal Society B, 281, 20140488. doi:10.1098/rspb.2014.0488
Tong, C. Y., Eaves, E. L., Ng, J. C., Carpenter, D. M., Maia, X., Schroeder, D. H., ... Haier, R. J. (2010). Brain networks for working memory and factors of intelligence assessed in males and females with fMRI and DTI. Intelligence, 38, 293–303. doi:10.1016/j.intell.2010.03.003
Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a mind: Statistics, structure, and abstraction. Science, 331, 1279–1285. doi:10.1126/science.119278.10.1177/461445606059565
Van Dam, W. O., & Desai, R. H. (2016). The semantics of syntax: The grounding of transitive and intransitive constructions. Journal of Cognitive Neuroscience, 28, 693–709. doi:10.1162/jocn_a_00926
Vogt, M. A., Brauer, J., & Friederici, A. D. (2015). Brain functional and structural predictors of language performance. Cerebral Cortex. doi:10.1093/cercor/bht042
Wray, A. (2013). Formulaic language. Language Teaching, 46, 316–334. doi:10.1017/LTL2012-0018
Yaveroğlu, O. N., Malod-Dognin, N., Davis, D., Levnajic, Z., Janjic, V., Karapandza, R., ... Pržulj, N. (2014). Revealing the hidden language of complex networks. Scientific Reports, 4, 4547. doi:10.1038/srep04547
Zaccarella, E., & Friederici, A. D. (2016). The neurobiological nature of syntactic hierarchies. Neuroscience & Biobehavioral Reviews, in press. doi:10.1016/j.neubiorev.2016.07.038
