Commutants of Analytic Toeplitz Operators on the Bergman Space

Sheldon Axler, Željko Ćučković, N. V. Rao

31 July 1998

Abstract. In this note we show that if two Toeplitz operators on a Bergman space commute and the symbol of one of them is analytic and nonconstant, then the other one is also analytic.

Let \(\Omega \) be a bounded open domain in the complex plane and let \(dA \) denote area measure on \(\Omega \). The Bergman space \(L^2_a(\Omega) \) is the subspace of \(L^2(\Omega, dA) \) consisting of the square-integrable functions that are analytic on \(\Omega \). For a bounded measurable function \(\varphi \) on \(\Omega \), the Toeplitz operator \(T_\varphi \) with symbol \(\varphi \) is the operator on \(L^2_a(\Omega) \) defined by

\[
T_\varphi(f) = P(\varphi f),
\]

where \(P \) is the orthogonal projection of \(L^2(\Omega, dA) \) onto \(L^2_a(\Omega) \). A Toeplitz operator is called analytic if its symbol is an analytic function on \(\Omega \). Note that if \(\varphi \) is a bounded analytic function on \(\Omega \), then \(T_\varphi \) is simply the operator of multiplication by \(\varphi \) on \(L^2_a(\Omega) \).

The general problem that we are interested in is the following: When two Toeplitz operators commute, what is the relationship between their symbols? If we were working on the Hardy space of the circle instead of the Bergman space, then the following result would answer this question:

- If Hardy space Toeplitz operators \(T_\varphi \) and \(T_\psi \) commute, then either both symbols are analytic or both symbols are conjugate analytic or \(a\varphi + b\psi \) is constant for some constants \(a, b \) not both 0 (Brown and Halmos [4]).

More general results concerning which operators, not necessarily Toeplitz, commute with an analytic Hardy space Toeplitz operator are due to Thompson ([1] and [2]) and Cowen [3].

The first author was partially supported by the National Science Foundation.

Mathematics Subject Classification: 47B35
On the Bergman space, the situation is more complicated. The Brown-
Halmos result mentioned above fails. For example, if Ω is the unit disk, then
any two Toeplitz operators whose symbols are radial functions commute
(proof: an easy calculation shows that every Toeplitz operator with radial
symbol has a diagonal matrix with respect to the usual orthonormal basis;
any two diagonal matrices commute).

Despite the difficulty of the general problem, we are encouraged by the
partial results known when Ω is the unit disk. If Ω is the unit disk and T_ϕ
and T_ψ commute, then the following hold:

- If $\phi = z^n$, then ψ is analytic (Čučković [7]).
- If ϕ and ψ are both harmonic, then either both symbols are analytic
 or both symbols are conjugate analytic or $a\phi + b\psi$ is constant for some
 constants a, b not both 0 (Axler and Čučković [1]).
- If ϕ is a radial function, then ψ is radial (Čučković and Rao [8]).
- If $\phi = z^m z^n$, then $\psi(r^{i\theta}) = \sum_{j=-\infty}^{\infty} \psi_j(r)e^{ij\theta}$, where $\{\psi_j\}$ are the
 functions (depending upon m, n) described by Čučković and Rao [8].

In this note we extend Čučković’s first result above by replacing the disk
with an arbitrary bounded domain and (more importantly) by replacing z^n
with an arbitrary bounded analytic function. Here is our result:

Theorem: If ϕ is a nonconstant bounded analytic function on Ω and ψ
is a bounded measurable function on Ω such that T_ϕ and T_ψ commute, then
ψ is analytic.

Our proof depends on the following approximation theorem:

- Let ϕ be a nonconstant bounded analytic function on Ω. Then the
 norm closed subalgebra of $L^\infty(\Omega, dA)$ generated by $\bar{\phi}$ and the bounded
 analytic functions on Ω contains $C(\bar{\Omega})$ (Bishop [3]).

There is a large literature of related approximation theorems; see, for exam-
ple, Čirka [4], Axler and Shields [2], Izzo [4].

Proof of Theorem: Suppose ϕ is a nonconstant bounded analytic
function on Ω and ψ is a bounded measurable function on Ω such that
$T_\phi T_\psi = T_\psi T_\phi$.

2
Write $\psi = f + u$ with $f \in L^2_a(\Omega)$ and $u \in L^2(\Omega) \ominus L^2_a(\Omega)$. If n is a nonnegative integer, then

$$T_{\varphi^n}T_\psi(1) = \varphi^n P(f + u) = \varphi^n f$$

and

$$T_\psi T_{\varphi^n}(1) = P(f \varphi^n + u \varphi^n) = f \varphi^n + P(u \varphi^n).$$

Our hypothesis implies that $T_{\varphi^n}T_\psi = T_\psi T_{\varphi^n}$, and thus the equations above imply that $P(u \varphi^n) = 0$. Hence if $h \in L^2_a(\Omega)$ we have

$$0 = \langle h, u \varphi^n \rangle = \int_{\Omega} \overline{uh} \varphi^n \, dA.$$

Because the equation above holds for every bounded analytic function h on Ω and every nonnegative integer n, Bishop’s result quoted above implies that

$$\int_{\Omega} \overline{uw} \, dA = 0$$

for every $w \in C(\bar{\Omega})$. But $C(\bar{\Omega})$ is dense in $L^2(\Omega, dA)$, and so this implies that $u = 0$. Thus $\psi = f$ and hence ψ is analytic, completing the proof.

Open Problems

- If an operator S in the algebra generated by the Toeplitz operators commutes with a nonconstant analytic Toeplitz operator, then is S itself Toeplitz and hence (by our result) analytic?

- Suppose Ω is the unit disk and φ is a bounded harmonic function on the disk that is neither analytic nor conjugate analytic. If ψ is a bounded measurable function on the disk such that T_φ and T_ψ commute, must ψ be of the form $a \varphi + b$ for some constants a, b? This question would have a negative answer if the disk were replaced by an annulus centered at the origin because $T_{\log|z|}$ commutes with every Toeplitz operator with radial symbol.

- What is the situation on Bergman spaces in higher dimensions?
References

1. Sheldon Axler and Željko Ćučković, Commuting Toeplitz Operators with harmonic symbols, *Integral Equations Operator Theory* 14 (1991), 1–12.

2. Sheldon Axler and Allen Shields, Algebras generated by analytic and harmonic functions, *Indiana Univ. Math. J.* 36 (1987), 631–638.

3. Christopher J. Bishop, Approximating continuous functions by holomorphic and harmonic functions, *Trans. Amer. Math. Soc.* 311 (1989), 781–811.

4. Arlen Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, *J. Reine Angew. Math.* 213 (1964), 89–102.

5. E. M. Ćirka, Approximation by holomorphic functions on smooth manifolds in \mathbb{C}^n, *Mat. Sb.* 78 (1969), 101–123.

6. Carl C. Cowen, The commutant of an analytic Toeplitz operator, *Trans. Amer. Math. Soc.* 239 (1978), 1–31.

7. Željko Ćučković, Commutants of Toeplitz operators on the Bergman space, *Pacific J. Math.* 162 (1994), 277–285.

8. Željko Ćučković and N. V. Rao, Mellin Transform, monomial symbols and commuting Toeplitz operators, to appear in *J. Functional Analysis*.

9. Alexander J. Izzo, Uniform algebras generated by holomorphic and pluriharmonic functions, *Trans. Amer. Math. Soc.* 339 (1993), 835–847.

10. James E. Thomson, The commutant of a class of analytic Toeplitz operators, *Amer. J. Math.* 99 (1977), 522–529.

11. James Thomson, The commutant of a class of analytic Toeplitz operators II, *Indiana Univ. Math. J.* 25 (1976), 793–800.
SHELDON AXLER
DEPARTMENT OF MATHEMATICS
SAN FRANCISCO STATE UNIVERSITY
SAN FRANCISCO, CA 94132 USA

Željko Ćučković and N.V. Rao
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF TOLEDO
TOLEDO, OH 43606 USA

e-mail: axler@sfsu.edu
zcuckovi@math.utoledo.edu
rnagise@math.utoledo.edu

www home pages:
http://math.sfsu.edu/axler
http://www.math.utoledo.edu/faculty_pages/zcuckovic.html
http://www.math.utoledo.edu/faculty_pages/rnagisetty.html