Introduction

Level structures play an important role in the definition of moduli spaces, because they offer a possibility to rigidify moduli problems. For example level N structures of elliptic curves over \mathbb{C} are defined by an isomorphism of $\mathbb{Z}/N \times \mathbb{Z}/N$ and N-torsion points. If one replaces the base \mathbb{C} by an arbitrary scheme then one is forced to regard the N-torsion points as a group scheme which possibly has at some points of the base connected components. So in this case the concept of an isomorphism of a constant group scheme and a the group scheme of N-division points does not work any more. After Drinfeld one weakens this isomorphism condition to a morphism which matches the
corresponding Cartier divisors properly. This idea leads to the notion of generators of a level structure [KM85, (3.1)], respectively in a more general setup to the notion of A-structures and A-generators [KM85, Ch. 1].

A similar situation occurs in the theory of Drinfeld modules, which can be seen as an analogue of elliptic curves in characteristic p. As it is discussed in loc. cit. one runs into a small difficulty in the definition of level structures as a condition for all prime divisors of N versus a condition for N itself which is discussed in loc. cit. in general [KM85, Prop. 1.11.3, Rk. 1.11.4] and in the case of elliptic curves [KM85, Th. 5.5.7]. The aim of this article is to prove the analogous result in the case of Drinfeld modules.

An I-level structure of a Drinfeld module (E, e) of rank d over a base scheme S is defined as an A module homomorphism

$$\iota : \left(I^{-1}/A \right)^d \longrightarrow E(S)$$

such that for all prime ideals $p \supseteq I$ we have an equality

$$E[p] = \sum_{x \in (p^{-1}/A)^d} \iota(x)$$

of relative Cartier divisors [Dri76]. In [Leh09] 4, prop. 3.3, it is proved that if ι is an I-level structure then

$$E[I] = \sum_{x \in (I^{-1}/A)^d} \iota(x)$$

is an equality of relative Cartier divisors too.

If one defines an I-level structure by the equality

$$E[I] = \sum_{x \in (I^{-1}/A)^d} \iota(x)$$

of relative Cartier divisors does it follow that

$$E[p] = \sum_{x \in (p^{-1}/A)^d} \iota(x)$$

is an equality of relative Cartier divisors for every prime ideal $p \supseteq I$ too? This question was solved in the authors PhD-Thesis [Wie04] if the base scheme S is reduced. A careful reading of the arguments used in [Leh09] gives the general result for an arbitrary base scheme S.
1 Definitions

1.1 Drinfeld modules

Let \(X \) be a geometrically connected smooth algebraic curve over the finite field \(\mathbb{F}_q \), let \(\infty \in X \) be a closed point and let \(A := \Gamma(X \setminus \infty, \mathcal{O}_X) \) be the ring of regular functions outside \(\infty \). In this case \(A \) is a Dedekind ring.

Let \(S/\mathbb{F}_q \) be a scheme, \(\mathcal{L} \) a line bundle over \(S \) and let \(\mathbb{G}_a/\mathcal{L} \) be the additive group scheme corresponding to the line bundle \(\mathcal{L} \). For all open subsets \(U \subset S \) the group scheme is defined by

\[
\mathbb{G}_a/\mathcal{L}(U) = \mathcal{L}(U).
\]

The (additive) groups \(\mathcal{L}(U) \) are in a canonical way \(\mathbb{F}_q \)-vector spaces.

Definition 1.1 ([Dri76])

Let \(\text{char} : S \longrightarrow \text{spec} A \) be a morphism over \(\mathbb{F}_q \). A Drinfeld module \(E := (\mathbb{G}_a/\mathcal{L}, e) \) consists of an additive group scheme \(\mathbb{G}_a/\mathcal{L} \) and a ring homomorphism

\[
e : A \longrightarrow \text{End}_{\mathbb{F}_q}(\mathbb{G}_a/\mathcal{L})
\]

such that:

1) The morphism \(e(a) \) is finite for all \(a \in A \) and for all points \(s \in S \) there exists an element \(a \in A \) such that locally in \(s \) the rank of the morphism \(e(a) \) is bigger than 1.

2) The diagram

\[
\begin{array}{ccc}
A & \xrightarrow{e} & \text{End}_{\mathbb{F}_q}(\mathbb{G}_a/\mathcal{L}) \\
\downarrow{\text{char}} & & \downarrow{\partial} \\
\mathcal{O}_S(S) & & \\
\end{array}
\]

commutes.

If \(S = \text{spec} R \) is affine und if \(\mathcal{L} \) is trivial, then we will simply write \(E = (R, e) \).

Proposition 1.2

Let \(S \) be a connected scheme. Then there exists a natural number \(d > 0 \), such that for all \(0 \neq a \in A \) we have \(\text{rk}(e(a)) = q^{-d \deg(\infty) \infty(a)} \). The number \(d \) is called the rank of the Drinfeld module.
If \(S = \text{spec}(R) \) is an affine scheme and if \(\mathcal{L} \) is trivial, then we can show that

\[
\text{End}_{\mathcal{P}}(\mathbb{G}_a/\mathcal{L}) \cong \text{AddPol}_q(R)
\]

where \(\text{AddPol}_q(R) \) is the ring of \(\mathbb{F}_q \)-linear polynomials, i.e. every polynomial \(f(X) \in \text{AddPol}_q(R) \) is of the form

\[
f(X) = \sum_{i=0}^{n} \lambda_i X^{q^i}.
\]

In the affine situation a Drinfeld module is therefore given by a non trivial ring homomorphism \(e \) and a commutative diagram

\[
\begin{array}{ccc}
A & \xrightarrow{e} & \text{AddPol}_q(R) \\
\downarrow\text{char} & & \downarrow\partial \\
R & &
\end{array}
\]

If we define \(e_a(X) := e(a) \) and if \(e_a(X) = \sum_{i=0}^{n} \lambda_i X^{q^i} \) then \(\partial(e_a(X)) = \lambda_0 \), the coefficient \(\lambda_{-d \deg(\infty) \infty(a)} \) is a unit in \(R \) and \(\lambda_i \) is nilpotent for \(i > -d \deg(\infty) \infty(a) \). If in this case \(\lambda_i = 0 \) for all \(a \in A \) then the Drinfeld module is called standard. One can show, that every Drinfeld module is isomorphic to a Drinfeld module in standard form.

By abuse of language the image of the map \(\text{char} : S \longrightarrow \text{spec } A \) is called the characteristic of \(E \). If it consists only of the zero ideal then we say \(E \) has general characteristic.

1.2 Division points and level structures

Let \(E \) be a Drinfeld module of rank \(d \) over a base scheme \(S \) and let \(0 \neq I \subsetneq A \) be an ideal.

Definition 1.3

The contravariant functor \(E[I] \) on the category of schemes over \(S \) with image in the category of \(A/I \) modules defined by

\[
T/S \mapsto \{ x \in E(T) \mid Ix = 0 \} = \text{Hom}_A(A/I, E(T))
\]

for all schemes \(T/S \) is called the scheme of \(I \)-division points.
Properties 1.4
1) $E[I] \subseteq E$ is a closed, finite and flat (sub-)group scheme over S of rank $|A/I|^d$. If $I = (a_1, \ldots, a_n)$ for appropriate elements $a_1, \ldots, a_n \in A$ then it is
$$E[I] = \ker(E \xrightarrow{e_{a_1}, \ldots, e_{a_n}} E \times_S \cdots \times_S E).$$
In the affine case $S = \text{spec } R$ we have
$$E[I] = \text{spec } R[X]/(e_{a_1}(X), \ldots, e_{a_n}(X)).$$

2) If I, J are coprime ideals in A, then
$$E[IJ] \cong E[I] \times_S E[J].$$

3) If I is coprime to the characteristic of the Drinfeld module E then $E[I]$ is étale over S.

4) The group scheme $E[I]$ is compatible with base change, that is for each scheme T/S we have
$$E[I] \times_S T \cong (E \times_S T)[I].$$

Proof Cf. [Leh09], chapter 2, proposition 4.1, page 27 et seq. \[\Box\]

If $S = \text{spec } R$ is an affine Scheme and if \mathcal{L} ist trivial we can use the following lemma to describe the group scheme $E[I]$ by a unique additive polynomial $h_I(X)$ of degree $|A/I|^d$.

Lemma 1.5
Let R be an \mathbb{F}_q-algebra. Let $H \subseteq \mathbb{G}_{a/R}$ be a finite flat subgroup scheme of rank n over R. Then there is a uniquely defined normalized additive polynomial $h \in R[X]$ of degree n such that $H = V(h)$.

Proof Cf. [Leh09], chapter 1, lemma 3.3, page 9. \[\Box\]

If $S = \text{spec } L$ is a field then the characteristic of the Drinfeld module (L, e) is a prime ideal of A. Thus we can define the height of (L, e), denoted by h.

In the case of an algebraically closed field we have the following explicit description of the I-division points:

Satz 1.6
Let $0 \neq p \subset A$ be a prime ideal and let $I = p^n$ for an $n > 0$. Then we have
$$E[p^n](L) \cong \begin{cases} (p^{-n}/A)^d & \text{for } p \neq \text{char } E \smallskip \quad \quad \quad \quad \quad \quad \text{for } p = \text{char } E. \end{cases}$$
Proof Cf. [Leh09], chapter 2, corollary 2.4, page 24.

This result motivates the following definition:

Definition 1.7 ([Dri76])

Let $E = (\mathbb{G}_a, e)$ be a Drinfeld module of rank d over S and let $0 \neq I \subseteq A$ be an ideal. A Level I structure is an A-linear map

$$\iota : (I^{-1}/A)^d \to E(S),$$

such that for all prime ideals $p \supseteq I$ we have an identity of Cartier divisors

$$E[p] = \sum_{x \in (p^{-1}/A)^d} \iota(x).$$

Remark 1.8

1. If I is coprime to the characteristic of E then a level I structure is an isomorphism of group schemes

$$(I^{-1}/A)^d_S \simeq E[I].$$

2. If $E = (R, e)$ the equality of Cartier divisors simply means an equality of the polynomials

$$h_p(X) = \prod_{x \in (p^{-1}/A)^d} (X - \iota(x)).$$

2 Level Structures and Deformations

In [Leh09], 3, prop. 3.3 we have the following result.

Proposition 2.1

If (E, ι) is a Drinfeld module equipped with a level I structure ι then we have the identity of Cartier divisors

$$E[I] = \sum_{x \in (I^{-1}/A)^d} \iota(x).$$

The proof in loc. cit. is based on the construction of deformation spaces of Drinfeld modules, isogenies and level I structures. In the following we will repeat the basic definitions and results.
Definition 2.2

1. Let $i : A \rightarrow O$ be a complete noetherian A-algebra with residue field ℓ. Let \mathcal{C}_O be the category of local artinian O-algebras with residue field ℓ and let $\hat{\mathcal{C}}_O$ be the category of noetherian complete local O-algebras with residue field ℓ.

2. Let E_0 be a Drinfeld module of rank d over ℓ, and let B be an algebra in \mathcal{C}_O. A deformation of E_0 over B is a Drinfeld module of rank d over $\text{spec } B$ which specializes mod m_B to E_0. Thus we obtain a functor:

\[
\text{Def}_{E_0} : \mathcal{C}_O \rightarrow \text{Sets} \\
B \mapsto \{\text{Isomorphyclasses of Deformations of } E_0\}
\]

3. Let $\varphi : E_0 \rightarrow F_0$ be an isogeny of Drinfeld modules of rank d over ℓ. A deformation of φ_0 over B is an isogeny $\varphi : E \rightarrow F$ where E, F are deformations of E_0 and F_0, such that φ specializes mod m_B to φ_0. We obtain a corresponding functor:

\[
\text{Def}_{\varphi_0} : \mathcal{C}_O \rightarrow \text{Sets} \\
B \mapsto \{\text{Isomorphyclasses of Deformations of } \varphi_0\}
\]

4. Let (E_0, ι_0) be a Drinfeld module of rank d over ℓ equipped with a level I structure ι_0. A deformation is a Drinfeld module (E, ι) over B of rank d equipped with an level I structure ι such that E is a deformation of E_0 and ι specializes to ι_0 mod m_B. We define the functor:

\[
\text{Def}_{(E_0, \iota_0)} : \mathcal{C}_O \rightarrow \text{Sets} \\
B \mapsto \{\text{Isomorphyclasses of Deformations of } (E_0, \iota_0)\}
\]

5. We will denote the tangent spaces of the functors above by

\[
T_{E_0} := \text{Def}_{E_0}(\ell[\varepsilon]), \ T_{\varphi_0} := \text{Def}_{\varphi_0}(\ell[\varepsilon]), \ T_{(E_0, \iota_0)} := \text{Def}_{(E_0, \iota_0)}(\ell[\varepsilon])
\]

where $\ell[\varepsilon]$ is the ℓ-algebra with $\varepsilon^2 = 0$.

Results 2.3

1. The deformation functor Def_{E_0} is pro-represented by the smooth O-algebra $R_0 := O[[T_1, \ldots, T_{d-1}]]$.

2. The deformation functor Def_{φ_0} is pro-represented by an object in $\hat{\mathcal{C}}_O$.

3. The deformation functor $\text{Def}_{(E_0, \iota_0)}$ is pro-represented by an object in $\hat{\mathcal{C}}_O$.
3 Equivalence of Definitions

The question is, what happens if we would change the definition 1.7 of level I structures with:

Definition 3.1

Let $E = (\mathbb{G}_{a,C}, e)$ be a Drinfeld module of rank d over S and let $0 \neq I \subseteq A$ be an ideal. A Level I structure is an A linear map

$$\iota : (I^{-1}/A)^d \longrightarrow E(S),$$

such that we have an identity of Cartier divisors

$$E[I] = \sum_{x \in (I^{-1}/A)^d} \iota(x).$$

To distinguish the two definitions we will refer the original definition as A and the one above as B.

Proposition 3.2

Definition A and definition B are equivalent.

As it is proved in [Leh09], 3, prop. 3.3. being a level I structure in the sense of definition A implies being on in the sense of definition B. One the other hand it is proved in [Wie04, Ch. 6, Prop. 6.7] by a simple counting argument that B implies A if the base scheme S is reduced. On the other hand the result is clear if I is away from the characteristic of the Drinfeld module. Thus for the proof of proposition 3.2 we are allowed to make the following assumptions:

1. $S = \text{spec } B$ where B is the localization of a finitely generated A-algebra at a maximal prime Ideal, $p := A \cap m_B$ is not zero and $\ell := B/m_B$ is a finite extension of A/p.

2. The result is true if it is true for all quotients B/m^n_B. So we can assume, that B is a local artinian ring with residue field ℓ.

3. We will fix an element $\varpi_p \in A$, such that $(\varpi_p) = pJ$ with $p \nmid J$. Then we have

$$A \hookrightarrow \hat{A}_p \cong A/p[[\varpi_p]] \hookrightarrow \ell[[\varpi_p]] =: O$$

such that $m_O \cap A = p$ and $pO = m_O$.

4. As B is artinian, and therefore complete, there is a unique lift of the coefficient field ℓ to B and we can consider B as an object of \mathcal{C}_O.

5. We fix a Drinfeld module $E_0 = (e^{(0)}, \ell)$ and a level p^n structure ι_0. As ℓ is a field there is no difference between the definitions A and B.

6. Let E be the universal deformation of E_0 and O as above. Then E is defined over $R_0 := O[[T_1, \ldots, T_{d-1}]] \cong \ell[[T_0, \ldots, T_{d-1}]]$ for $T_0 := \varpi_p$. It is a complete regular local ring of dimension d. In especially R_0 is integral and the map $\text{char} : A \rightarrow R_0$ is injective and the Drinfeld module has general characteristic.

To prove the proposition we will follow the arguments of [Leh09, 3.3.1]. The main difference is now to use p^n instead of p.

Let $p_{p^n} : E \longrightarrow E/E[p^n]$ the canonical quotient isogeny of Drinfeld modules with kernel $E[p^n]$. The corresponding polynomial $p_{p^n} = h_{p^n} \in R_0[X]$ is an additive, normalized and separable polynomial of degree $|A/p^n|^d$. We define L to be a splitting field of h_{p^n} over the field of quotients $\text{Quot}(R_0)$. Using the zeros $V(h_{p^n})$ of h_{p^n} in L we define the R_0-algebra $R_{h_{p^n}} := R_0[V(h_{p^n})]$ inside L. It is an integral and finite extension of R_0 because h_{p^n} is normalized over R_0.

Along the lines of [Leh09] we will prove

$$R_{h_{p^n}} \cong R_n$$

where R_n is the base ring of the universal Drinfeld module of deformations of E_0 and a level p^n structure over ℓ. We will use induction on n.

If $n = 0, 1$ then nothing is to prove. For $n > 1$ we have:

$$R_n := R_{n-1}[[S_1, \ldots, S_d]]/\mathfrak{a}$$

where \mathfrak{a} is the ideal generated by elements of the form $e^{\varpi_p^x}(S_i) - \iota_p(x_i) + e^{\varpi_p^x}(\tilde{y}_i)$. These elements are normalized polynomials in S_i, so

$$R_n := R_{n-1}[S_1, \ldots, S_d]/\mathfrak{a}$$

We can find elements $\tilde{x}_1, \ldots, \tilde{x}_d$ in $R_{h_{p^n}}$ such that $e^{\varpi_p^x}(\tilde{x}_i) = x_i$ and $\tilde{x}_1, \ldots, \tilde{x}_d$ generates $V(h_{p^n})$ as an A/p^n-module. We define a map of R_{n-1}-algebras:

$$R_n \longrightarrow R_{h_{p^n}}$$

$$S_i \longmapsto \tilde{x}_i - \tilde{y}_i$$

By assumption the map is well defined and surjective. As both rings have dimension d, it is an isomorphism.
Corollary 3.3
\(R_{h^n} \) is a regular algebra in \(\hat{\mathcal{C}}_O \).

Now we can use the setup of [Leh09], proof of proposition 3.3.1, to show that \(E_{p^n} := E \otimes_{R_0} R_{h^n} \) and a corresponding lift of \(t_0 \) is the universal deformation of level \(p^n \). This is true if we can prove [Leh09], lemma 3.3.2, with \(p \) replaced by \(p^n \), but there is no obstruction to do so.

Now we are done, because \(R_{h^n} \) is an integral ring and definition \(A \) and \(B \) coincide on the level of the universal deformation.

4 References

[Dri76] V. G. Drinfeld. Elliptic modules. *Math. USSR Sbornic*, 23:561–592, 1976.

[KM85] Nicholas M. Katz and Barry Mazur. *Arithmetic moduli of elliptic curves*, volume 108 of *Annals of Mathematics Studies*. Princeton University Press, Princeton, NJ, 1985.

[Leh09] Thomas Lehmkuhl. Compactification of the Drinfeld modular surfaces. *Mem. Amer. Math. Soc.*, 197(921), 2009.

[Wie04] Stefan Wiedmann. *Drinfeld modules and elliptic sheaves. (Drinfeld-Moduln und elliptische Garben.*)* PhD thesis, Göttingen: Univ. Göttingen, Mathematisch-Naturwissenschaftliche Fakultäten (Dissertation). 98 p., 2004.