Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Emerging diseases in Bangladesh: Current microbiological research perspective

Rashed Noor*, Md. Sakil Munna
Department of Microbiology, Stamford University Bangladesh, Dhaka, Bangladesh

1. Introduction

Infectious diseases are a pervasive menace worldwide. The incidence and prevalence as well as the emergence and re-emergence of a particular disease depend on the geographical and economic background [1–4]. Although most emerging diseases are conquered by new-generation chemotherapeutic agents, some complications remain uncontrolled and hence tend to spread rapidly as little is known about their etiology and subsequent management [1,2,5–9]. New and re-emerging infectious diseases such as severe acute respiratory syndrome, pneumonia, influenza, swine flu (H1N1), tuberculosis (TB), hepatitis, malaria, cholera, chikungunya, meningitis, Ebola virus diseases, food-borne gastroenteritis, salmonellosis, and campylobacteriosis continue to threaten global public health [2,5,10–24].

Major challenges in disease management have evolved as drug-resistant bacteria have emerged, posing a significant impact on the efficiency of chemotherapy [25]. During the past few years, the antibacterial activity of a number of drugs has decreased with the concomitant onset of the drug-resistant pathogenic bacteria [6,25–27]. This has become one of the most severe public health issues worldwide, leading to fatalities from simple microbial infections followed by treatment-mediated complications from inactive drugs [25]. The worldwide increases in single-drug-resistant bacteria, multidrug-resistant (MDR) bacteria, and extensively drug-resistant (XDR) bacteria are indeed well-known [26,28–37]. Incidences of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant S. aureus (VRSA), coagulase-negative staphylococci, glycopeptides intermediate-sensitive S. aureus, vancomycin-resistant Enterococcus species, penicillin-resistant Streptococcus pneumoniae, extended-spectrum β-lactamase (ESBL)-producing bacteria, and carbapenem-resistant bacteria, especially in developing countries, have also been noted [6,26,38–45]. Bangladeshi people commonly consume large quantities of antibiotics not prescribed by physicians. Similar abuse of antibiotic agents also occurs frequently in India and Pakistan [25,46]. By contrast, in the United States and Europe, the levels of resistance of bacterial pathogens against antibiotics are lower because of stringency in prescription [46].

A variety of microorganisms triggering enteric diseases along with diseases such as cancer, respiratory and pulmonary infections, influenza, heart diseases, malaria, TB, dengue, liver cirrhosis, urinary tract infections (UTIs), diabetes, chikungunya, and opportunistic infections pose major public health-related complications in...
Bangladesh with consequent high morbidity and mortality [2,8,28,30,32,47–60]. The high-density population, lack of awareness of personal hygiene, inadequate microbiological processing of food and Pharmaceuticals, defective water-distribution systems saturated with sewage pipelines, and above all the ineffectiveness of antimicrobial agents have been known to account for the onset of these diseases [25,26,61–66]. Hospital-acquired infections and drug-resistant infecting pathogens complicate treatment outcomes [25,26,48].

For the past 10 years, scientists and academicians, together with their international collaborators, have made efforts to understand many of the pathogenic mechanisms of emerging and re-emerging infectious diseases, to discover novel diagnostic methods with appropriate antiviral, antibacterial, and antifungal compounds and to develop vaccines [2,67,68]. For more than four decades, the Centers for Disease Control and Prevention in Bangladesh has collaborated with the International Centre for Diarrhoeal Disease Research, Bangladesh to mitigate health-related problems and strengthen the country’s capacity to diagnose and detect emerging infectious diseases [47]. In addition, microbiological experiments are being conducted to identify etiological agents and find accurate remedies [8,28,30,32,49,52,53,58–60].

2. Microbiological studies of emerging diseases in Bangladesh

In vitro microbiological studies of different diseases in Bangladesh have revealed the growth and proliferation of a large number of bacterial pathogens. Microbiological studies have mostly been carried out using conventional differential and selective culture media, morphological tests, confirmative biochemical identification, antibiotic assays, and tests for ESBL and carbapenemase production as described earlier [69–73]. In most cases, a huge bacterial onset with an alarming threat of MDR would suggest the appropriate bactericidal action together with the effective therapeutic events.

2.1. Microorganisms associated with enteric diseases

Commencement of enteric diseases (e.g., cholera, diarrhea, dysentery) in the developing countries principally occurs because of microbiologically contaminated food and water associated with an unhygienic lifestyle [61–63]. The global cholera burden has been estimated to be 3–5 million cases and accounts for a total of 100,000–130,000 deaths annually [74]. Bangladesh is at a very high risk of cholera [61,75,76]. A study conducted by Acharjee et al [61] quantified significant Vibrio spp. in meat, fish, vegetables, fruits, street food, bakery shop foods, fast food, sweets, and dairy products. Their drug-resistant traits pose a serious public health hazard. Hossain et al [55] estimated that the prevalences of bacteria other than Vibrio cholerae causing diarrhea in children were 2% for Yersinia spp., Aeromonas spp., and Plesiomonas spp., 6% for Vibrio spp., 10% for Salmonella spp. and Shigella spp., and 14% for Campylobacter spp.

2.2. Opportunistic pathogens and intestinal parasites associated with human immunodeficiency virus

The interactions between human immunodeficiency virus (HIV) and opportunistic pathogenic bacteria and other intestinal parasites are well-known, and they influence the health status of people with HIV/acquired immunodeficiency syndrome. Noor et al [8] conducted a study to detect enteric parasites in HIV-infected patients with enteric diseases. Intestinal parasitic pathogens were found in around 77% of patients with HIV, which were also associated with the growth and proliferation of opportunistic pathogens. These included Cryptosporidium spp., Blastocystis hominis, Entamoeba histolytica, Hymenolepis nana, Isospora belli, Giardia lambia, Cyclospora species, Ascaris lumbricoides, and Trichuris tri- chiura. Cryptosporidium spp. were found to be prominent in HIV-positive patients suffering from diarrhea, and poly parasitic infections were demonstrated in chronic cases with low CD4 counts. Noor et al [49] noted that common opportunistic infections associated with HIV included diarrhea, pulmonary TB, gland TB, skin lesions, and fever. Other problems associated with HIV mainly include respiratory and gastrointestinal tract complications, bronchitis, UTIs, sexually transmitted diseases, weight loss, pharyngitis, prostatitis, skin rashes, and oral ulcerations. However, the HIV prevalence rate in Bangladesh is still estimated to be very low [8,49].

2.3. Microorganisms associated with burn wounds

A major fraction of burn wound samples was found to harbor total aerobic viable bacteria up to 107 colony-forming units/ml. The predominant pathogens were Pseudomonas spp., S. aureus, and Klebsiella spp. followed by Enterobacter spp. and Escherichia coli. Most of the pathogens were found to be drug resistant and several isolates were noted to be MDR [26].

2.4. Drug-resistant TB in Bangladesh

TB, principally caused by Mycobacterium tuberculosis, is a major health problem globally [28,74,77–80]. In Bangladesh, there are >3,500,000 new cases with 70,000 deaths annually [30,32,57,60]. Cases of MDR and XDR TB in Bangladesh are of extreme significance in overall public health management [28,32,81]. In addition to TB, MDR bacteria can result in various clinical complications followed by treatment failure when employing antibiotics [25,62,65]. A clinical investigation in Bangladesh revealed that >70% of infecting bacteria were resistant to at least one of the commonly used antibiotics [25]. MDR bacteria including MRSA, methicillin-resistant Staphylococcus epidermidis, VRSa, methicillin-resistant coagulase-negative staphylococci, and penicillin-resistant S. pneumoniae are widely known to be difficult to eradicate [6,7,25,26,31,37,45,46,71].

2.5. Hepatitis B virus infection

Hepatitis B, an infectious illness caused by hepatitis B virus (HBV) is responsible for chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma, ultimately causing death [50]. Approximately 2 billion people have been reported to be infected with the HBV worldwide [50,54,58]. In Bangladesh, HBV infections can occur because of a lack of health education and vaccination [54]. Studies of HBV include the following: (1) detection of biochemical and serological markers of HBV infection other than HBsAg, (2) uncovering common risk factors associated with HBsAg positivity among patients suspected to have HBV infection, and (3) investigating the efficacy of vaccines for hepatitis B to reveal the immunological memory against the vaccine [50,54,58]. Detecting the serum HBV DNA level has proven to be comparatively effective in assessing liver disease activity [50,54].

2.6. Carbapenemase-producing Klebsiella pneumoniae and microorganisms associated with UTI

The resistance of Klebsiella pneumoniae against carbapenem is another rising global health issue [82,83]. Hayward et al [7] studied carbapenemase-producing K. pneumoniae in Dhaka, Bangladesh. A total of 647 K. pneumoniae isolates were found in 2800 patients with UTIs, bacteremia, wound infections, and respiratory diseases.
Thirty-one carbapenem-resistant isolates were found to harbor *K. pneumoniae* carbapenemase. An additional 287 isolates were ESBL-positive [7]. Indeed, *K. pneumoniae* are the most predominant genera carrying ESBLs and are usually highly resistant to aminoglycosides, fluoroquinolones, and sulfonamides [84]. Carbapenemase-producing *E. coli* strains are also well-known [85,86]. From 2007 to 2011, 22 *E. coli* strains producing *K. pneumoniae* carbapenemase were isolated in Hangzhou, China. Twelve of these were isolated in 2011, suggesting an escalation in carbapenem-resistant *E. coli* in China [85]. A recent study conducted by Peirano et al. [86] showed that 407 of 47,843 *E. coli* isolates had β-lactamase genes and 116 of the 407 isolates were positive for an array of carbapenemases.

UTI is a common clinical complication worldwide [87,88] with a high incidence in Bangladesh [6]. A study conducted by Noor et al [51] revealed that among 462 urine samples collected from patients with UTI, 100 were found to be culture positive. *E. coli* was the predominant organism, whereas *Klebsiella* and *Enterococcus* were also prevalent. Other bacteria isolated included *Pseudomonas* spp. and *Proteus* spp. An interesting aspect of ESBL production was noted in a study of UTI patients by Khan et al [6]. ESBL-producing microorganisms are known to exhibit important therapeutic complications as they develop resistance against third-generation antibiotics. In a previous study, *E. coli* was found to show stronger resistance against several antibiotics than isolates tested in Europe [89].

2.7. Microorganisms associated with malaria

Malaria is another prevailing public health issue in Bangladesh. The major microorganisms associated with malarial disease are *Plasmodium falciparum* and *Plasmodium vivax*. The former causes around 90% of malaria in Bangladesh [59]. The global impact of malaria has drawn interest in developing an effective diagnosis, especially in resource-poor settings. Jahan et al [59] conducted experiments on rapid diagnostic tests for malaria and endorsed the OnSite test based on antigen detection over the SD Bioline anti-Pf/Pv test based on antibody detection. However, both methods can detect multiple infections (caused by different species of *Plasmodium*) with a higher sensitivity and specificity than conventional microscopy. Therefore, these methods are expected to aid in the National Malaria Control Program.

3. Addressing the problem of emerging diseases in Bangladesh: Recommendations

In Bangladesh, the majority of people maintain a poor quality of life and have a meager education. Knowledge about the generation and subsequent spread of diseases is very scanty [2]. The first step to minimize emerging infections is to increase public awareness of hygiene. Knowledge about unhygienic handling of water and food is of significance [61,62]. Appropriate therapy with physician’s recommendations can minimize treatment complications [6,25]. These actions could be regulated by governmental bodies employing health professionals. Another important clinical aspect is the study of neglected tropical diseases (NTDs), which are known to cover a wide range of infections predominantly affecting the poorest and most vulnerable individuals. In Bangladesh, these include lymphatic filariasis, trachoma, soil-transmitted helminths, leprosy, guinea worms, and visceral leishmaniasis [90].

4. Conclusion

Currently in Bangladesh, both governmental and nongovernmental organizations are working to eradicate health-associated problems in the community. However, more emphasis should be given to conducting field and laboratory research on diseases of public health importance. Attention should be drawn to emerging diseases, such as respiratory complications, zoonotic diseases, vector-borne diseases, and NTDs, as well as other identified public health priorities. The research outcomes should be evaluated to enhance the overall management of disease prevention and control programs. Training and capacity building programs for health improvement are also important to minimize emerging diseases. Emphasis should be given to sharing of expertise and research findings with other nations as well as academic and research organizations. Finally, to successfully combat disease-causing microbial flora, pioneering microbiological research on the principal mechanisms underlying microbial pathogenesis both at the initiating stage and during disease progression is essential.

Acknowledgments

We thank the Department of Microbiology, Stamford University, Bangladesh, the International Centre for Diarrheal Disease Research, Bangladesh, and the National Tuberculosis Reference Laboratory, Bangladesh, for logistic support in microbiological experiments. We are also thankful to the authors of the published papers cited in this literature review.

References

[1] Sorvillo FJ. Emerging infections: a guide to diseases, causative agents, and surveillance. Emerg Infect Dis J 2014. http://dx.doi.org/10.3201/eid2010.141110.
[2] Kahhar MA. Emerging and re-emerging infectious diseases: Bangladesh perspective. J Med 2012;12:1–2.
[3] Lenski RE. Chance and necessity in the evolution of a bacterial pathogen. Nat Genet 2011;43:1174–6.
[4] Morens DM, Folkers GK, Fauci AS. The challenge of emerging and re-emerging infectious diseases. Nature 2004;430:242–9.
[5] Zhang H, Li X, Guo J, Li L, Chang C, Li Y, et al. The PB2 E627K mutation contributes to the high polymerase activity and enhanced replication of H7N9 influenza virus. J Gen Virol 2014;95:779–86.
[6] Khan SA, Feroz F, Noor R. Study of extended spectrum β-lactamase producing bacteria from urinary tract infection in Dhaka city. Bangladesh. Tzu Chi Med J 2013;25:39–42.
[7] Hayder N, Hasan Z, Alfin S, Noor R. Determination of the frequency of carbapenemase producing Klebsiella pneumoniae isolates in Dhaka city, Bangladesh. Stamford J Microbiol 2012;2:28–30.
[8] Noor R, Shaha SR, Rahman F, Munshi SK, Rahman MM, Uddin MA. Frequency of opportunistic and other intestinal parasitic infections among the HIV infected patients in Bangladesh. Tzu Chi Med J 2012;24:191–5.
[9] World Health Organization. The world health report 2004—changing direction. Geneva, Switzerland: WHO Press; 2004.
[10] Baze S, Panetier D, Oestereich L, Rieger T, Koivogui L, Magassouba N, et al. Emergence of Zaire Ebola virus disease in Guinea. N Engl J Med 2014;371:1418–25.
[11] Nhan TX, Claverie A, Roche C, Teissier A, Colleuille M, Baudet JM, et al. Chikungunya virus imported into French Polynesia. Emerg Infect Dis 2014;20:1773–4.
[12] Shi J, Deng G, Zeng X, Kong H, Wang X, Lu K, et al. Novel influenza A (H7N2) virus in chickens, Jilin Province, China. 2014. Emerg Infect Dis 2014;20:1719–22.
[13] Zhang C, Chen B, Gu Y, Luo T, Yang S, Liang W, et al. Tuberculous abdominal aortic pseudoaneurysm with renal and vertebral tuberculosis: a case and literature review. J Infect Dev Ctries 2014;8:1216–21.
[14] Walker CL, Rudan I, Liu L, Nair H, Theodoratou E, Bhutta ZA, et al. Global burden of childhood pneumonia and diarrhoea. Lancet 2013;381:1405–16.
[15] Grad YH, Lipsitch M, Feldgarden M, Arachchi HM, Cerqueira GC, Fitzgerald M, et al. Genomic epidemiology of the Escherichia coli O104:H4 outbreaks in Europe, 2011. Proc Natl Acad Sci U S A 2012;109:3065–70.
[16] Jiang Z, Jhunjhunwala S, Liu J, Haverty PM, Kennemer MI, Guan Y, et al. Emergence of Zaire Ebola virus disease in Guinea. N Engl J Med 2014;371:1418–25.
[17] Nhan TX, Claverie A, Roche C, Teissier A, Colleuille M, Baudet JM, et al. Chikungunya virus imported into French Polynesia. Emerg Infect Dis 2014;20:1773–4.
[18] Shi J, Deng G, Zeng X, Kong H, Wang X, Lu K, et al. Novel influenza A (H7N2) virus in chickens, Jilin Province, China. 2014. Emerg Infect Dis 2014;20:1719–22.
[19] Zhang C, Chen B, Gu Y, Luo T, Yang S, Liang W, et al. Tuberculous abdominal aortic pseudoaneurysm with renal and vertebral tuberculosis: a case and literature review. J Infect Dev Ctries 2014;8:1216–21.
[20] Walker CL, Rudan I, Liu L, Nair H, Theodoratou E, Bluttza AZ, et al. Global burden of childhood pneumonia and diarrhoea. Lancet 2013;381:1405–16.
[21] Grad YH, Lipsitch M, Feldgarden M, Arachchi HM, Cerqueira GC, Fitzgerald M, et al. Genomic epidemiology of the Escherichia coli O104:H4 outbreaks in Europe, 2011. Proc Natl Acad Sci U S A 2012;109:3065–70.
[22] Jiang Z, Jhunjhunwala S, Liu J, Haverty PM, Kennemer MI, Guan Y, et al. The effects of hepatitis B virus integration into the genomes of hepatocellular carcinoma patients. Genome Res 2012;22:593–601.
[23] Gardy JE, Johnston JC, Ho Sui SJ, Cook VJ, Shah L, Brodkin E, et al. Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. N Engl J Med 2011;364:730–9.
[24] Feldmann H, Geisbert TW. Ebola haemorrhagic fever. Lancet 2011;377:849–62.
[19] Mutreja A, Kim DW, Thomson NR, Connor TR, Lee JH, Kariki S, et al. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 2011;472:335–40.

[20] Hendriksen RS, Price LB, Schupp JM, Gillee JD, Kaas RS, Engelthaler DM, et al. Population genetics of Vibrio cholerae from Nepal in 2010: evidence on the origin of the Haitian outbreak. mBio 2011;2:e00157–11.

[21] Omer H, Rose G, Tapi Y, Erazo R, Mientsik MC, et al. Genotypic and phenotypic modifications of Neisseria meningitidis after an accidental human passage. PLoS One 2011;6:e26907.

[22] Reeves PR, Liu B, Zhou Z, Li D, Guo D, Ren Y, et al. Rates ofmutation and host transmission for an Escherichia coli clone over 3 years. PLoS One 2011;6:e29052.

[23] Robinson T, Campion SG, Auburn S, Assefa SA, Polley MD, Manske M, et al. Drug-resistant genotypes and multi-clonality in Plasmidium falciparum analysis. N Engl J Med 2011;365:2320–9.

[24] Leroy EM, Kumlungui P, Bourrou P, Rosquet P, Hassanin A, Yaba P, et al. Fruit bats as reservoirs of Ebola virus. Nature 2005;438:575–6.

[25] Dutta S, Hassan MR, Rahman F, Jaini MSA, Noor R. Study of antimicrobial susceptibility of clinically significant microorganisms isolated from selected areas of Dhaka, Bangladesh. J Infect Chemother 2013;12:34–42.

[26] Alam SMS, Kalam MA, Munna MS, Munshi SK, Noor SK. Isolation of pathogenic microorganisms from burn patients admitted in Dhaka Medical College and Hospital and demonstration of their drug-resistance traits. Asian Pac J Trop Dis 2014;4:402–7.

[27] Yabiku H, Sharer YA, Daoud AS. High prevalence of multidrug-resistant MRSA and VISA of different infections from Al-Jumhuory Teaching Hospital patients in Mosul. J Life Sci 2013;7:1255–9.

[28] Aurin TH, Munshi SK, Kamal SM, Rahman MM, Hossain MS, Marma T, et al. Molecular approach for the detection of the multi-drug resistant tuberculosis (MDR-TB) in Bangladesh. PLoS One 2014;9:e99810.

[29] Chudjo SI, Naik GS, Balaji V, Jeyaseelan V, Thomas K, Lundborg CS. High cost burden and health consequences of antibiotic resistance: the price to pay. J Infect Dev Ctries 2014;8:1966–102.

[30] Noor R, Hossain A, Munshi SK, Rahman F, Kamal SM. Slide drug susceptibility test for the detection of multi-drug resistant tuberculosis in Bangladesh. J Infect Chemother 2013;19:818–24.

[31] Molton JS, Tumbay PA, Ang BS, Ling ML, Fisher DA. The global spread of healthcare-associated multidrug-resistant bacteria: a perspective from Asia. Clin Infect Dis 2013;56:1310–8.

[32] Noor R, Akhtar S, Rahman F, Munshi SK, Kamal SM, Feroz F. Frequency ofextension drug-resistant tuberculosis (MDR-TB) re-treatment cases in NIDCH, Dhaka, Bangladesh. J Infect Chemother 2013;19:241–8.

[33] World Health Organization. WHO traditional medicine strategy 2014. Geneva, Switzerland: World Health Organization; 2013.

[34] Cusack SL, Nikiforovskiy V, Balabanova Y, Ignatyeva O, Kontsevaya I, Harris SR, et al. Microevolution of extensively drug-resistant tuberculosis in Russia. Genome Res 2012;22:735–45.

[35] Izumiya H, Sekizuka T, Nakaya H, Taguchi M, Oguchi A, Ichikawa N, et al. Whole-genome analysis of Salmonella enterica serovar Typhimurium T000240 reveals the acquisition of a genomic island involved in multidrug resistance via IS1 derivatives on the chromosome. Antimicrob Agents Chemother 2011;55:623–30.

[36] Allenberger F, Mittermayer H. Antimicrobial stewardship. Clin Microbiol Infect 2008;14:197–9.

[37] Tenover FC. Mechanisms of antimicrobial resistance in bacteria. Am J Med 2006;119:53–9.

[38] Gedik H, Yildirim T, Simpek F, Kanturk A, Anca D, Aydin D, et al. Vancomycin-resistant enterococci colonization and bacteremia in patients with hematologic malignancies. J Infect Dev Ctries 2014;8:1113–7.

[39] von Specht MH, Cardella N, Ubeda C, Grenon S, Gutkind G, Mollerach M. Evolution of MRSA during hospital transmission and intercontinental spread. J Infect Chemother 2013;19:818.

[40] Bean DC, Krahe D, Wareham DW. Antimicrobial resistance in community and hospital settings. Infect Dis Clin North Am 2014;28:27–48.

[41] World Health Organization. WHO’s multidrug and extensively drug-resistant tuberculosis. Atlanta, GA: CDC; 2014.

[42] Chakraborty M, Hashan MA, Noor R. Reducing CD4 count induces opportunistic infections in people living with HIV (PLHIV). Bangladesh J Med Sci 2013;12:53–7.

[43] Rahman M, Munshi SK, Momir MSB, Rahman F, Noor R. Evaluation of the effectiveness of BACTEC MGIT 960 for detection of mycobacteria in Bangladesh. Int J Mycobacteriol 2012;1:214–9.

[44] Raton KA, Hassain MA, Noor R. Multiplex real-time PCR assay for detection of respiratory pathogens among pneumonia affected children. Am J Biomed Sci 2013;1:53–7.

[45] Rahman MA, Jahan FA, Rahman F, Noor R. Biochemical and immunological parameters of hepatitis B virus positive patients in Bangladesh. J Bangladesh Acad Sci 2013;37:51–8.

[46] Hossain MA, Raton KA, Noor R. Bacteriological study of stool samples collected from children suffering from diarrhoea. J Global Biosci 2013;2:160–5.

[47] Islam S, Rahman F, Munshi SK, Ahmed J, Kamal SM, Noor R. Use of fluorocein diacetate (FDA) staining to detect viable Mycobacterium tuberculosis. Bangladesh J Med Sci 2012;11:322–30.

[48] Munshi SK, Rahman F, Kamal SM, Noor R. Comparison among different diagnostic methods used for the detection of extra-pulmonary tuberculosis in Bangladesh. Int J Mycobacteriol 2012;1:190–5.

[49] Chakraborty B, Bashar T, Roy K, Noor R, Rahman MM. Persistence of anti-HBs antibody and immunological memory in healthy individuals vaccinated with hepatitis B vaccine. Stamford Microbiol 2011;1:37–41.

[50] Jahang F, Ebrahim R, Mohiuddin MK, Khan MMG, Alam MS, Noor R. Evaluation of two new rapid diagnostic tests (RDTs) for the diagnosis of malaria. Bangladesh J Microbiol 2011;5:1:5–16.

[51] Rahman F, Kamal SMM, Rahman AMM, Rahman MM, Noor R, Comparison of different microscopic methods with conventional TB culture. Stanford J Microbiol 2011;1:46–50.

[52] Acharjee M, Fatema K, Jahan F, Fiddique SJ, Uddin MA, Noor R. Prevalence of Vibrio cholerae in different food samples in the city of Dhaka, Bangladesh. Int J Food Res 2013;20:1017–22.

[53] Acharjee M, Jahan F, Rahman F, Noor R. Bacterial proliferation in municipal water supplied in Mirpur locality of Dhaka City, Bangladesh. Clean Soil Air Water 2013;4:1:8–9.

[54] Sarker N, Islam S, Hasan M, Kabir F, Uddin MA, Noor R. Use of multiplex PCR assay for detection of diarrheagenic Escherichia coli in street vended food items. J Appl Sci 2011;4:285–92.

[55] Munshi SK, Rahman MM, Noor R. Detection of virulence potential of diarrheagenic Escherichia coli isolated from surface water of rivers surrounding Dhaka City, Bangladesh. J Bangladesh Acad Sci 2012;36:109–21.

[56] Marjan S, Zaman K, Jahan F, Munshi SK, Rahman F, Noor R. Comparative study on Escherichia coli isolates from environmental and clinical samples. Bangladesh J Microbiol 2012;29:44–8.

[57] Bashar T, Rahman M, Rahman MM, Noor R, Rahman MM. Enterotoxin profiling and antigen profile of Escherichia coli isolated from poultry faeces in Dhaka district of Bangladesh. Stamford J Microbiol 2011;1:51–7.

[58] Solares AR, Aragon CG, Pivaral RU, Prado-Cohrs D, Sales-Carmona V, Pellegrini M, et al. Safety and immunogenicity profiles of an adjuvanted seasonal influenza vaccine in Guatemalan children. J Infect Dev Ctries 2014;8:1160–8.

[59] Moore CE, Paul J, Foster D, Mahar SA, Griffiths D, Knox K, et al. Reduction of invasive pneumococcal disease 3 years after the introduction of the 13-valent conjugate vaccine in the Oxfordshire region of England. J Infect Dis 2014;210:1001–11.

[60] World Health Organization. Pneumococcal vaccines WHO position paper—2012. Wkly Epidemiol Rec 2012;87:129–44.

[61] Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing—twentieth-informational supplement. CLSI document M100-S21. Wayne, PA: CLSI; 2011.

[62] Kumar MS, Lakshmi V, Rajagopalan R. Occurrence of extended spectrum β-lactamases among Enterobacteriaceae from various clinical sources. Indian J Med Microbiol 2006;24:208–11.

[63] Cappuccino JG, Sherman N. Microbiology—a laboratory manual. 4th ed. California: Benjamin Cummings; 1996.

[64] Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardised simple disc method. Am J Clin Pathol 1966;45:493–6.

[65] World Health Organization. WHO’S multidrug and extensively drug-resistant tuberculosis: 2010 global report on surveillance and response. Geneva, Switzerland: World Health Organization; 2010.
[75] Pietroni M, Mustafa M. Annual statistics of Dhaka hospital, 2009. Bangladesh, Dhaka: International Centre for Diarrhoeal Disease Research; 2009.

[76] Rabbani GH, Greenough WB. Food as a vehicle of transmission of cholera. J Diarrhoeal Dis Res 1999;17:1-9.

[77] Zetola NM, Macesic N, Modongo C, Shin S, Ncube R, Collman RG. Longer hospital stay is associated with higher rates of tuberculosis-related morbidity and mortality within 12 months after discharge in a referral hospital in Sub-Saharan Africa. BMC Infect Dis 2014;14:409.

[78] Alene KA, Nega A, Taye BW. Incidence and predictors of tuberculosis among adult people living with human immunodeficiency virus at the University of Gondar Referral Hospital. Northwest Ethiopia. BMC Infect Dis 2013;13:292.

[79] Hafkin J, Modongo C, Newcomb C, Lowenthal E, MacGregor RR, Steenhoff AP, et al. Impact of the human immunodeficiency virus on early multidrug-resistant tuberculosis treatment outcomes in Botswana. Int J Tuberc Lung Dis 2013;17:348-53.

[80] Kumar V, Abbas AK, Fausto N, Mitchell RN. Robbins basic pathology. USA: Saunders Elsevier; 2007. p. 516–22.

[81] Areeshi MY, Bisht SC, Mandal RK, Haque S. Prevalence of drug resistance in clinical isolates of tuberculosis from GCC: a literature review from January 2002 to March 2013. J Infect Dev Ctries 2014;8:1137-47.

[82] Nordmann P, Poirel L. The difficult-to-control spread of carbapenemase producers in Enterobacteriaceae worldwide. Clin Microbiol Infect 2014;20:821-30.

[83] Lascols C, Pirani G, Hackel M, Laupland KB, Pitout JD. Surveillance and molecular epidemiology of Klebsiella pneumoniae isolates that produce carbapenemases: first report of OXA-48-like enzymes in North America. Antimicrob Agents Chemother 2013;57:130-6.

[84] Fontana C, Marco Favaro M, Sarmati L, Natoli S, Altieri A, Bossa MC, et al. Emergence of KPC producing Klebsiella pneumoniae in Italy. BMC Res Notes 2010;3:40.

[85] Cai JC, Zhang R, Hu YY, Zhou HW, Chen GX. Emergence of Escherichia coli sequence type 131 isolates producing KPC-2 carbapenemase in China. Antimicrob Agents Chemother 2014;58:1146-52.

[86] Peirano G, Bradford PA, Kzmierzczak KM, Badal RE, Hackel M, Hoban DJ, et al. Global incidence of carbapenemase-producing Escherichia coli ST131. Emerg Infect Dis 2014;20:1928-31.

[87] Akram M, Shaid M, Khan AU. Etiology and antibiotic resistance patterns of community-acquired urinary tract infections in JNMC Hospital Aligarh, India. Ann Clin Microbiol Antimicrob 2007:6:4.

[88] Ronald A. The etiology of urinary tract infection: traditional and emerging pathogens. Dis Mon 2003;49:71-82.

[89] Cai JC, Zhang R, Hu YY, Zhou HW, Chen GX. Emergence of Escherichia coli sequence type 131 isolates producing KPC-2 carbapenemase in China. Antimicrob Agents Chemother 2014;58:1146-52.

[90] Anon. Neglected tropical diseases: becoming less neglected [Editorial]. Lancet 2014;383:1269.