Nonclassically Secreted Regulators of Angiogenesis

Igor Prudovsky
Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA

Abstract

Many secreted polypeptide regulators of angiogenesis are devoid of signal peptides. These proteins are released through nonclassical pathways independent of endoplasmic reticulum and Golgi. In most cases, the nonclassical protein export is induced by stress. It usually serves to stimulate repair or inflammation in damaged tissues. We review the secreted signal peptide-less regulators of angiogenesis and discuss the mechanisms and biological significance of their unconventional export.

Keywords

Angiogenesis; Regulator; Nonclassical secretion

Nonclassical Secretion: How and Why Some Secreted Proteins Avoid ER-Golgi on their Exit Way

Angiogenesis, the growth of new vessels from the pre-existing elements of the vascular system is critically important for cardiovascular development, repair of damaged tissues, inflammation and tumor formation. A plethora of secreted proteins participates in the regulation of angiogenesis. Among these polypeptides are growth factors and cytokines, which signal through specific cell membrane receptors. Many extracellular enzymes also modulate angiogenesis.

Various stress conditions influence angiogenesis, particularly by increasing the availability of secreted pro-angiogenic proteins. For example, hypoxia stabilizes the transcription factor HIF1α, which stimulates the expression of Vascular Endothelial Growth Factor (VEGF), the major inducer of angiogenesis [1]. Alternatively, mechanical stretch can also enhance the expression of VEGF [2]. The availability of extracellular proteins can be regulated not only at the level of their expression but also through the modulation of their secretion. Most secreted proteins have in their primary structure a N-terminally located cleavable hydrophobic signal peptide, which is required for the translocation of newly translated polypeptides into the endoplasmic reticulum (ER) followed by the transport through the ER-Golgi compartment and release mediated by the fusion of Golgi-derived exocytotic vesicles with the cells membrane [3]. This export pathway is known as classical protein secretion. Some cells, such as neuroendocrine cells [4] sort classically secreted proteins into constitutive and regulated secretory pathways. In the latter pathway, the fusion of secretory vesicles with the plasma membrane (on which they are poised) is induced by a drastic

Copyright: © 2013 Prudovsky I.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

*Corresponding author: Igor Prudovsky, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA, Tel: +1-207-396-8146; Fax: +1-207-396-8179; prudoi@mmc.org.
increase of cytosolic calcium concentration. However, so far there is no evidence of regulated classical secretion of angiogenic regulators. At the same time, many polypeptide regulators of angiogenesis are secreted through ER-Golgi-independent pathways, and secretion of these proteins is often induced by stress conditions. Unlike classically secreted proteins, unconventionally or nonclassically secreted polypeptides are devoid of signal peptides. They are not detected in the ER-Golgi compartment, and their export is not inhibited by brefeldin A, a compound, which blocks the protein transport from the ER to Golgi [5,6].

Nonclassically secreted proteins present important potential targets for the modulation of angiogenesis in the context of inflammation, cardiovascular diseases and cancer. They display non-overlapping functions and distinct, not fully understood mechanisms of secretion. Interestingly, several nonclassically released proteins can perform not only extracellular, but also intracellular, and in particular-nuclear functions. The trafficking through the ER-Golgi would preclude this functional dualism. In addition, the absence of signal peptides in the primary structure of the proteins excludes the unregulated constitutive classical export and thus prevents the potential undesirable effects of secreted proteins. Indeed, many nonclassically released proteins are strong inducers of inflammation, atherogenesis and tumor growth, and their export needs to be strictly controlled. For example, unlike invertebrate FGFs, FGF1 and FGF2, two most ubiquitously expressed members of FGF family, lack signal peptides, which were lost during the evolution [7]. It is noteworthy that the artificial addition of a signal peptide to FGF1 turns it into a potent oncogene [8]. The stress-induced export of FGF1 [9] apparently limits its delivery to specific situations of tissue damage, when it is needed to stimulate the repair processes.

Based on the present knowledge, the nonclassically secreted regulators can be classified into two groups according to the general mechanisms of their release. The first group involves proteins, which are incorporated in an ER-Golgi-independent manner into various cytoplasmic vesicular structures including endolysosomes, autophagosomes and multivesicular bodies. These proteins are exported as a result of fusion of such cytoplasmic organelles with the cell membrane. Another group is represented by proteins which directly translocate through the plasma membrane from the cytosol to the extracellular compartment. However, the mechanisms of the nonclassical secretion of many signal peptide-less proteins still remain unknown.

Signal Peptide-Less Proteins Released through Vesicular Cytoplasmic Structures

The interleukin 1 (IL1) group of cytokines includes several signal peptide-less nonclassically secreted regulators of angiogenesis [10]. The best-studied member of the family, pro-inflammatory protein IL1β, signals through the Type 1 IL1 receptor (IL1R1) [10]. It promotes angiogenesis in various pathological contexts [11,12]. It is also involved in the transdifferentiation of Vascular Smooth Muscle Cells (VSMC), which occurs during atherosclerosis and restenosis [13,14]. Like other IL1 family members, IL1β is produced as a precursor that undergoes proteolytic maturation. Caspase-1, a component of cytoplasmic multiprotein complexes termed as inflammasomes, cleaves preIL1β and produces mature IL1β that is nonclassically secreted [10]. The maturation and export of IL1β are induced during the activation of Toll-like Receptors (TLR) [15] and this induction requires the intracellular production of Reactive Oxygen Species (ROS) [16]. The release of IL1β has been studied on monocytes, macrophages and dendritic cells. A variety of secretion mechanisms were proposed for IL1β. Rubartelli et al. [16] found that IL1β translocates from the cytosol into endolysosomes (organelles formed as a result of fusion of endosomes with lysosomes), and then it is released upon endolysosome fusion with the cell membrane [17].
Other authors reported a shedding of IL1β-containing microvesicles from the cell membrane [18], export of IL1β in exosomes (vesicles contained in the multivesicular bodies and released during the fusion of the latter with the cell membrane) [19]. Recent publications demonstrate the importance of autophagy [15,20] and Golgi Reassembly Stacking Protein (GRASP) [20] for IL1β secretion. GRASP is an interesting case of a classical secretion pathway element being diverted in the nonclassical protein release [6]. Another such case is the earlier reported participation of a short form of synaptotagmin 1 in the nonclassical export of FGF1 [21] (Table 1).

IL33, which also belongs to IL1 family, undergoes caspase-1-dependent proteolytic maturation [22]. It signals though Interleukin 1 receptor-like 1 (IL1RL1 or ST2) [23]. IL33 is a potent inducer of angiogenesis and vascular permeability [24]. It is localized in both cell nuclei and cytoplasmic vesicles, and mechanical stress induces its release [25].

High Mobility Group Protein 1 (HMGB1) is best known as a nuclear protein, which interacts with transcription factors and histones and participates in the regulation of transcription [26,27]. However, it can also be released through a nonclassical pathway and signal through pattern recognition receptors TLR2 and TLR4 and Receptor of Advanced Glycation End products (RAGE) [28]. Extracellular HMGB1 stimulates tumor angiogenesis [29], promotes neurovascular remodeling after stroke [30] and contributes to pulmonary hypertension [31]. HMGB1 release is induced by stresses such as ischemia [32] and lipopolysaccharide treatment [33]. The nonclassical export of HMGB1 is dependent on the phosphorylation of specific serine residues, which results in its relocation from the nucleus to cytoplasm [34,35]. HMGB1 secretion requires the activation of inflammasomes [36]. Activation of monocytes results in the redistribution of HMGB1 from the nuclei to endolysosome-like vesicular structures, which apparently serve as vehicles for its export [37].

Not only signaling polypeptides but also enzymes can be released through nonclassical pathways. Tissue transglutaminase (tTG) is an extracellular signal peptide-less protein [38]. This enzyme, which catalyzes the cross-linking of extracellular matrix proteins, is involved in many aspects of normal and pathological cardiovascular physiology [39]. It enhances angiogenesis in the process of tissue repair [40], and anti-tTG autoantibodies disturb angiogenesis [41]. The secretion of tTG is apparently mediated by the penetration of tTG inside the forming endosomes, which eventually results in the release of tTG after the fusion of recycling endosomes with the cell membrane [38]. The process of tTG export is negatively regulated by nitric oxide [42].

Signal Peptide-Less Proteins that Directly Translocate through the Plasma Membrane

Most secreted proteins, which belong to the large Fibroblast Growth Factor (FGF) family, have signal peptides in their primary structure and thus are released through the conventional ER-Golgi-dependent pathway. However, two ubiquitously expressed representatives of the family, FGF1 and FGF2, are devoid of signal peptides and utilize nonclassical pathways for their release. Both of them are diffusely distributed in cytoplasm and not observed in vesicular structures. Their export occurs as a result of direct translocation through the cell membrane [5,6]. FGF1 and FGF2 are major pro-angiogenic proteins, involved in multiple cardiovascular pathologies, inflammation and tumor growth [43,44].

FGF1 secretion is induced by various types of cell stress, such as hyperthermia, hypoxia and growth factor starvation [9,45,46]. It is dependent on the formation of a multiprotein
complex, which contains a covalent FGF1 dimer [47] and several other signal peptide-less proteins: S100A13 [48], a 40 kDa form of synaptotagmin 1 [49,50] and the enzyme sphingosine kinase 1 (SphK1) [51]. All members of the complex bind copper ions, and copper is critical for FGF1 export [51,52]. FGF1 destabilizes liposomes composed of acidic phospholipids (PL) [53]. Mutations abolishing acidic PL binding result in a drastic inhibition of FGF1 export [53]. FGF1 is exported through membrane domains, which are characterized by externalization of the acidic PL phosphatidylserine (PS) [54]. Chemical components, which inhibit PS externalization, suppress FGF1 release [54]. Stress-induced PS externalization may serve as a driver of the nonclassical export of FGF1 [54]. Besides cell stress, thrombin treatment [55] and Notch signaling inhibition [56,57] both induce the export of FGF1. Damaged and ischemic tissues are characterized by a wide spectrum of conditions propitious for FGF1 secretion: hyperthermic and hypoxic stresses, proteolytic activation of thrombin and decrease of Notch signaling because of the loss of cell-cell contacts.

Unlike stress-dependent FGF1 secretion, FGF2 export does not necessarily require stress [58]. It depends on PL PIP2, which is localized in the inner leaflet of the cell membrane [59]. FGF2 secretion is dependent on Tyr 82 phosphorylation by Tec kinase [60]. Similar to FGF1, FGF2 destabilizes liposomes by producing pores in artificial PL bilayers [61]. The externalization of FGF2 apparently involves glycosylated cell membrane counter-receptors [62]. The release of both FGF2 [63] and FGF1 [64] does not require their unfolding.

Similar to IL1β, the cytokine IL1α signals through IL1R1. Precursor IL1α exhibits nuclear localization dependent on a specific sequence, which is cleaved during the proteolytic maturation catalyzed by calpain [65]. Secreted IL1α promotes tumor angiogenesis [66]. The knockout of IL1α significantly decreases the formation of atherosclerotic plaques [67]. In addition, IL1α promotes the proinflammatory phenotype of VSMC [68]. The localization of mature IL1α in cytoplasm is diffuse, without signs of association with vesicular structures [69]. Similar to FGF1, its release induced by hyperthermic stress is dependent on copper ions and the signal peptide-less protein S100A13 [69]. Keller et al. [70] reported that although caspase-1 is not involved in IL1α maturation, the lipopolysaccharide-stimulated release of IL1α is drastically reduced in caspase-1 −/− monocytes and keratinocytes.

Galectins, a family of beta-galactose-binding proteins, are devoid of signal peptide and can have both intracellular and extracellular functions [71]. Secreted galectin 1 [72] and galectin 3 [73] enhance tumor angiogenesis. Galectin 1 is a binding target of the angiotstatic agent 6DBF7 [74]. Genetic inactivation of galectin 3 gene in the mouse ApoE null model of atherosclerosis resulted in the decrease of atherosclerotic plaque formation [75]. The nonclassical release of galectin 1 depends on its beta galactose-binding domain and apparently on glycosylated cell surface counter-receptors [76]. Similarly to FGF2, galectin 1 can directly translocate into the isolated membrane vesicles [77].

Signal Peptide-Less Proteins with Yet Undetermined Mechanism of Nonclassical Export

Macrophage Migration Inhibitory Factor (MIF), a signal peptide-less pleiotropic cytokine, signals through the chemokine receptors CXCR2 and CXCR4 [78]. It is involved in atherosclerosis by promoting the recruitment of atherogenic leukocytes [79]. In addition, MIF was recently shown to stimulate the differentiation of endothelial precursor cells into VSMC and endothelial cells [80]. The secretion of MIF is induced by hypoxia [81], and it is dependent on a cell membrane ABC transporter [82]. Interestingly, Golgi-associated p115 protein is involved in MIF export [83].
Small calcium binding proteins of the S100 family perform a variety of intracellular functions [84]. Alternatively, these signal peptide-less proteins can undergo nonclassical secretion and signal through the RAGE receptor [85]. S100A7 (psoriasin) enhances the proliferation of endothelial cells by stimulating VEGF expression through a RAGE-dependent mechanism [86]. S100A4 (metastasin) stimulates angiogenesis [87] and invasive growth of endothelial cells [88].

Annexin 2, a signal peptide-less protein, which forms a heterotetramer with two molecules of S100A10 can be found both inside the cell and on the cell surface [89]. Thrombin treatment induces the externalization of Annexin 2 [90]. When the Annexin 2 tetramer locates at the cell surface, it binds plasminogen and tissue plasminogen activator, thus presenting a platform for plasmin generation [91]. Annexin 2 externalization depends on its Tyr23 phosphorylation [92]. Cell surface Annexin 2 presents a target for peptide inhibitors of angiogenesis TM601 [93] and angiostatin [94]. So far, there is no generally accepted view on the mechanism of Annexin 2 export. While Rabouille et al. [95] classify Annexin 2 as a protein transported through the cell membrane, Valapala and Vishvanatha [96] have demonstrated that it can be externalized in exosomes released after the fusion of multivesicular bodies with the cell membrane.

Endothelial Monocyte-Activating Polypeptide II (EMAP II) is a signal peptide-less pro-inflammatory and anti-angiogenic cytokine [97]. Interestingly, EMAP II precursor has a distinct intracellular function as an auxiliary component of the tRNA synthetase complex [97]. Apparently, caspases 3 and 7, MMP-9, elastase, and cathepsin L are involved in the processing of EMAP II from the 43 kDa precursor (p43) to the 23 kDa mature EMAPII form [98,99]. Both precursor and mature EMAP II are equally biologically active and signal through the CXCR3 receptor [100,101]. Both EMAP II forms are nonclassically secreted under conditions of stress including stimulation with cytokines, cigarette smoke and hypoxia [99,102−104]. EMAP II promotes cigarette smoke-induced emphysema and endothelial apoptosis [103,104], induces the migration of endothelial progenitor cells [100], causes the nitric oxide-dependent pulmonary artery dilatation [105], stimulates the opening of the blood-tumor barrier [106] and interferes with VEGF-induced pro-angiogenic signaling [107].

Signal peptide-less enzyme SphK1, which catalyzes the production of a potent pro-angiogenic lipid sphingosine-1-phosphate, exhibits nonclassical secretion [108].

IL18, a member of IL1 family, signals through the specific IL18 receptor [109]. Mature IL18 is released after the cleavage of its precursor by caspase-1 [110]. Depending on the context, the effect of IL18 on angiogenesis can be both positive and negative. Thus, IL18 promotes angiogenesis in the arthritic pannus [109,111] apparently as a result of stimulation of VEGF expression in arthritic fibroblasts [112]. Conversely, IL18 inhibits tumor angiogenesis [113], possibly because it enhances the expression of angiogenesis inhibitor thrombospondin-1 [114].

Conclusion

Nonclassically secreted proteins form a large and important group of the regulators of angiogenesis. The absence of signal peptides enables many of these proteins to execute both intracellular and extracellular functions. Unlike the constitutive ER-Golgi dependent secretion, nonclassical protein release is highly regulated, particularly by different types of stress. The mechanisms of nonclassical secretion are still far from being sufficiently understood. However, there are at least two major types of nonclassical release: direct translocation through cell membrane (e.g., FGF1 and FGF2) and export mediated by...
intracellular vesicles of various types (e.g. IL1β). Further understanding of the molecular mechanisms of unconventional secretion is important to regulate the available levels of biomedically important signal peptide-less proteins.

Acknowledgments

This publication was supported by grant HL35627 from NIH NHLBI (IP) a grant from Maine Cancer Foundation (IP), the Maine Medical Center Research Institute, the services of the Histopathology Core supported by NIH grant 8P20 GM103465 (D. Wojchowski, PI), and Protein, Nucleic Acid and Cell Imaging Core, and Mouse Transgenic and In vivo Imaging Core supported by grant P30 GM103392 (Robert Friesel, PI).

References

1. Ahluwalia A, Tarnawski AS. Critical role of hypoxia sensor--HIF-1alpha in VEGF gene activation. Implications for angiogenesis and tissue injury healing. Curr Med Chem. 2012; 19:90–97. [PubMed: 22300081]
2. Saygili E, Pekassa M, Saygili E, Rakauskas G, Hommes D, et al. Mechanical stretch of sympathetic neurons induces VEGF expression via a NGF and CNTF signaling pathway. Biochem Biophys Res Commun. 2011; 410:62–67. [PubMed: 21640078]
3. Blobel G. Protein targeting (Nobel lecture). Chembiochem. 2000; 1:86–102. [PubMed: 11828402]
4. Tsuboi T. Molecular mechanism of docking of dense-core vesicles to the plasma membrane in neuroendocrine cells. Med Mol Morphol. 2008; 41:68–75. [PubMed: 18592160]
5. Prudovsky I, Tarantini F, Landriscina M, Neivandt D, Soldi R, et al. Secretion without Golgi. J Cell Biol. 2008; 103:1327–1343. [PubMed: 17786931]
6. Nickel W, Rabouille C. Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol. 2009; 10:148–155. [PubMed: 19122676]
7. Coulier F, Pontarotti P, Roubin R, Hartung H, Goldfarb M, et al. Of worms and men: an evolutionary perspective on the fibroblast growth factor (FGF) and FGF receptor families. J Mol Evol. 1997; 44:43–56. [PubMed: 9010135]
8. Forough R, Engleka K, Thompson JA, Jackson A, Imamura T, et al. Differential expression in Escherichia coli of the alpha and beta forms of heparin-binding acidic fibroblast growth factor-1: potential role of RNA secondary structure. Biochim Biophys Acta. 1991; 1090:293–298. [PubMed: 1720023]
9. Jackson A, Friedman S, Zhan X, Engleka KA, Forough R, et al. Heat shock induces the release of fibroblast growth factor 1 from NIH 3T3 cells. Proc Natl Acad Sci U S A. 1992; 89:10691–10695. [PubMed: 1279690]
10. Apostolakis S, Vogiatzi K, Krambovitis E, Spandidos DA. IL-1 cytokines in cardiovascular disease: diagnostic, prognostic and therapeutic implications. Cardiovasc Hematol Agents Med Chem. 2008; 6:150–158. [PubMed: 18473780]
11. Argaw AT, Zhang Y, Snyder BJ, Zhao ML, Kopp N, et al. IL-1beta regulates blood-brain barrier permeability via reactivation of the hypoxia-angiogenesis program. J Immunol. 2006; 177:5574–5584. [PubMed: 17015745]
12. Lavalette S, Raoul W, Houssier M, Cameo S, Levy O, et al. Interleukin-1beta inhibition prevents choroidal neovascularization and does not exacerbate photoreceptor degeneration. Am J Pathol. 2011; 178:2416–2423. [PubMed: 21514452]
13. Stintzing S, Ocker M, Hartner A, Amann K, Barbera L, et al. Differentiation patterning of vascular smooth muscle cells (VSMC) in atherosclerosis. Virchows Arch. 2009; 455:171–185. [PubMed: 19557430]
14. Keuylian Z, de Baaij JH, Glorian M, Rouxel C, Merlet E, et al. The Notch pathway attenuates interleukin 1β (IL1β)-mediated induction of adenylyl cyclase 8 (AC8) expression during vascular smooth muscle cell (VSMC) transdifferentiation. J Biol Chem. 2012; 287:24978–24989. [PubMed: 22613711]
15. Harris J, Hartman M, Roche C, Zeng SG, O’Shea A, et al. Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. J Biol Chem. 2011; 286:9587–9597. [PubMed: 21228274]

Angiol Open Access. Author manuscript; available in PMC 2014 February 05.
16. Tassi S, Carta S, Vené R, Delfino L, Ciriolo MR, et al. Pathogen-induced interleukin-1beta processing and secretion is regulated by a biphasic redox response. J Immunol. 2009; 183:1456–1462. [PubMed: 19561107]

17. Andrei C, Dazzi C, Lotti L, Torrisi MR, Chimini G, et al. The secretory route of the leaderless protein interleukin 1beta involves exocytosis of endolysosome-related vesicles. Mol Biol Cell. 1999; 10:1463–1475. [PubMed: 10233156]

18. MacKenzie A, Wilson HL, Kiss-Toth E, Dower SK, North RA, et al. Rapid secretion of interleukin-1beta by microvesicle shedding. Immunity. 2001; 15:825–835. [PubMed: 11728343]

19. Qu Y, Franchi L, Nunez G, Dubyak GR. Nonclassical IL-1 beta secretion stimulated by P2X7 receptors is dependent on inflammasome activation and correlated with exosome release in murine macrophages. J Immunol. 2007; 179:1913–1925. [PubMed: 17641058]

20. Dupont N, Jiang S, Pilli M, Ornatiowski W, Bhattacharya D, et al. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J. 2011; 30:4701–4711. [PubMed: 22068051]

21. Bagalá C, Kolev V, Mandinova A, Soldi R, Mouta C, et al. The alternative translation of synaptotagmin 1 mediates the non-classical release of FGF1. Biochem Biophys Res Commun. 2003; 310:1041–1047. [PubMed: 14559220]

22. Cayrol C, Girard JP. The IL-1-like cytokine IL-33 is inactivated after maturation by caspase-1. Proc Natl Acad Sci U S A. 2009; 106:9021–9026. [PubMed: 19439663]

23. Kakkar R, Lee RT. The IL-33/ST2 pathway: therapeutic target and novel biomarker. Nat Rev Drug Discov. 2008; 7:827–840. [PubMed: 18827826]

24. Choi YS, Choi HJ, Min JK, Pyun BJ, Maeng YS, et al. Interleukin-33 induces angiogenesis and vascular permeability through ST2/TRAf6-mediated endothelial nitric oxide production. Blood. 2009; 114:3117–3126. [PubMed: 19661270]

25. Kakkar R, Hei H, Dobner S, Lee RT. Interleukin 33 as a mechanically responsive cytokine secreted by living cells. J Biol Chem. 2012; 287:6941–6948. [PubMed: 22215666]

26. Bianchi ME, Agresti A. HMG proteins: dynamic players in gene regulation and differentiation. Curr Opin Genet Dev. 2005; 15:496–506. [PubMed: 16102963]

27. Klune JR, Dhupar R, Cardinal J, Billiar TR, Tsung A. HMGB1: endogenous danger signaling. Mol Med. 2008; 14:476–484. [PubMed: 18431461]

28. Sims GP, Rowe DC, Rietdijk ST, Herbst R, Coyle AJ. HMGB1 and RAGE in inflammation and cancer. Annu Rev Immunol. 2010; 28:367–388. [PubMed: 20192808]

29. van Beijnum JR, Nowak-Sliwinska P, van den Boezem E, Hautvast P, Buurman WA, et al. Tumor angiogenesis is enforced by autocrine regulation of high-mobility group box 1. Oncogene. 2013; 32:363–374. [PubMed: 22391561]

30. Hayakawa K, Miyamoto N, Seo HJ, Pham LD, Kim KW, et al. High-mobility group box 1 from reactive astrocytes enhances the accumulation of endothelial progenitor cells in damaged white matter. J Neurochem. 2012.

31. Bauer EM, Shapiro R, Billiar TR, Bauer PM. High mobility group Box 1 inhibits human pulmonary artery endothelial cell migration via a Toll-like receptor 4- and interferon response factor 3-dependent mechanism(s). J Biol Chem. 2013; 288:1365–1373. [PubMed: 23148224]

32. Tsung A, Klune JR, Zhang X, Jeyabal G, Cao Z, et al. HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling. J Exp Med. 2007; 204:2913–2923. [PubMed: 17984303]

33. Chang Y, Huang X, Liu Z, Han G, Huang L, et al. Dexamethasone inhibits the secretion of high mobility group box 1 from lipopolysaccharide-activated macrophages in vitro. J Surg Res. 2012

34. Oh YJ, Youn JH, Ji Y, Lee SE, Lim KJ, et al. HMGB1 is phosphorylated by classical protein kinase C and is secreted by a calcium-dependent mechanism. J Immunol. 2009; 182:5800–5809. [PubMed: 19380828]

35. Lee H, Park M, Shin N, Kim G, Kim YG, et al. High mobility group box-1 is phosphorylated by protein kinase C zeta and secreted in colon cancer cells. Biochem Biophys Res Commun. 2012; 424:321–326. [PubMed: 22750245]

36. Lu B, Nakamura T, Inouye K, Li J, Tang Y, et al. Novel role of PKR in inflammasome activation and HMGB1 release. Nature. 2012; 488:670–674. [PubMed: 22801494]
37. Gardella S, Andrei C, Ferrera D, Lotti LV, Torrisi MR, et al. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep. 2002; 3:995–1001. [PubMed: 12231511]

38. Zemskov EA, Mikhailenko I, Hsia RC, Zaritskaya L, Belkin AM. Unconventional secretion of tissue transglutaminase involves phospholipid-dependent delivery into recycling endosomes. PLoS One. 2011; 6:e19414. [PubMed: 21556374]

39. Bakker EN, Pistea A, VanBavel E. Transglutaminases in vascular biology: relevance for vascular remodeling and atherosclerosis. J Vasc Res. 2008; 45:271–278. [PubMed: 18212504]

40. Haroon ZA, Hettasch JM, Lai TS, Dewhirst MW, Greenberg CS. Tissue transglutaminase is expressed, active, and directly involved in rat dermal wound healing and angiogenesis. FASEB J. 1999; 13:1787–1795. [PubMed: 10506581]

41. Myrsky E, Caja S, Simon-Vecsei Z, Korponay-Szabo IR, Nadalutti C, et al. Celiac disease IgA modulates vascular permeability in vitro through the activity of transglutaminase 2 and RhoA. Cell Mol Life Sci. 2009; 66:3375–3385. [PubMed: 19680746]

42. Santhanam L, Berkowitz DE, Belkin AM. Nitric oxide regulates nonclassical secretion of tissue transglutaminase. Commun Integr Biol. 2011; 4:584–586. [PubMed: 22046470]

43. Friesel R, Maciag T. Fibroblast growth factor prototype release and fibroblast growth factor receptor signaling. Thromb Haemost. 1999; 82:748–754. [PubMed: 10605778]

44. Itoh N. The Fgf families in humans, mice, and zebrafish: their evolutionary processes and roles in development, metabolism, and disease. Biol Pharm Bull. 2007; 30:1819–1825. [PubMed: 17917244]

45. Mouta Carreira C, Landriscina M, Bellum S, Prudovsky I, Maciag T. The comparative release of FGF1 by hypoxia and temperature stress. Growth Factors. 2001; 18:277–285. [PubMed: 11519826]

46. Shin JT, Opalenik SR, Wehby JN, Mahesh VK, Jackson A, et al. Serum-starvation induces the extracellular appearance of FGF-1. Biochim Biophys Acta. 1996; 1312:27–38. [PubMed: 8679713]

47. Tarantini F, Gamble S, Jackson A, Maciag T. The cysteine residue responsible for the release of fibroblast growth factor-1 residues in a domain independent of the domain for phosphatidylserine binding. J Biol Chem. 1995; 270:29039–29042. [PubMed: 7493920]

48. Landriscina M, Soldi R, Bagalá C, Micucci I, Bellum S, et al. S100A13 participates in the release of fibroblast growth factor 1 in response to heat shock in vitro. J Biol Chem. 2001; 276:22544–22552. [PubMed: 11410600]

49. LaVallee TM, Tarantini F, Gamble S, Mouta Carreira C, Jackson A, et al. Synaptotagmin-1 is required for fibroblast growth factor-1 release. J Biol Chem. 1998; 273:22217–22223. [PubMed: 9712835]

50. Tarantini F, LaVallee T, Jackson A, Gamble S, Mouta Carreira C, et al. The extravesicular domain of synaptotagmin-1 is released with the latent fibroblast growth factor-1 homodimer in response to heat shock. J Biol Chem. 1998; 273:22209–22216. [PubMed: 9712834]

51. Soldi R, Mandinova A, Venkataraman K, Hla T, Vadas M, et al. Sphingosine kinase 1 is a critical component of the copper-dependent FGF1 export pathway. Exp Cell Res. 2007; 313:3308–3318. [PubMed: 17643421]

52. Landriscina M, Bagalá C, Mandinova A, Soldi R, Micucci I, et al. Copper induces the assembly of a multiprotein aggregate implicated in the release of fibroblast growth factor 1 in response to stress. J Biol Chem. 2001; 276:25549–25557. [PubMed: 11432880]

53. Graziani I, Bagalá C, Duarte M, Soldi R, Kolev V, et al. Release of FGF1 and p40 synaptotagmin 1 correlates with their membrane destabilizing ability. Biochem Biophys Res Commun. 2006; 349:192–199. [PubMed: 16930531]

54. Kirov A, Al-Hashimi H, Solomon P, Mazur C, Thorpe PE, et al. Phosphatidylserine externalization and membrane blebbing are involved in the nonclassical export of FGF1. J Cell Biochem. 2012; 113:956–966. [PubMed: 22034063]

55. Duarte M, Kolev V, Soldi R, Kirov A, Graziani I, et al. Thrombin induces rapid PAR1-mediated non-classical FGF1 release. Biochem Biophys Res Commun. 2006; 350:604–609. [PubMed: 17027650]

Angiol Open Access. Author manuscript; available in PMC 2014 February 05.
56. Small D, Kovalenko D, Soldi R, Mandinova A, Kolev V, et al. Notch activation suppresses fibroblast growth factor-dependent cellular transformation. J Biol Chem. 2003; 278:16405–16413. [PubMed: 12598523]

57. Kacer D, McIntire C, Kirov A, Kany E, Roth J, et al. Regulation of nonclassical FGF1 release and FGF-dependent cell transformation by CBF1-mediated notch signaling. J Cell Physiol. 2011; 226:3064–3075. [PubMed: 21302306]

58. Engling A, Backhaus R, Stegmayer C, Zehe C, Seelenmeyer C, et al. Biosynthetic FGF-2 is targeted to non-lipid raft microdomains following translocation to the extracellular surface of CHO cells. J Cell Sci. 2002; 115:3619–3631. [PubMed: 12186948]

59. Temmerman K, Ebert AD, Müller HM, Sinning I, Tews I, et al. A direct role for phosphatidylinositol-4,5-bisphosphate in unconventional secretion of fibroblast growth factor 2. Traffic. 2008; 9:1204–1217. [PubMed: 18419755]

60. Ebert AD, Laussmann M, Wegehingel S, Kaderali L, Erfle H, et al. Teckinase-mediated phosphorylation of fibroblast growth factor 2 is essential for unconventional secretion. Traffic. 2010; 11:813–826. [PubMed: 20230531]

61. Steringer JP, Bleichen S, Andreas H, Zacherl S, Laussmann M, et al. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-dependent oligomerization of fibroblast growth factor 2 (FGF2) triggers the formation of a lipidic membrane pore implicated in unconventional secretion. J Biol Chem. 2012; 287:27659–27669. [PubMed: 22730382]

62. Zehe C, Engling A, Wegehingel S, Schäfer T, Nickel W. Cell-surface heparan sulfate proteoglycans are essential components of the unconventional export machinery of FGF-2. Proc Natl Acad Sci U S A. 2006; 103:15479–15484. [PubMed: 17030799]

63. Backhaus R, Zehe C, Wegehingel S, Kehlenbach A, Schwappach B, et al. Unconventional protein secretion: membrane translocation of FGF-2 does not require protein unfolding. J Cell Sci. 2004; 117:1727–1736. [PubMed: 15075234]

64. Graziani I, Doyle A, Sterling S, Kirov A, Tarantini F, et al. Protein folding does not prevent the nonclassical export of FGF1 and S100A13. Biochem Biophys Res Commun. 2009; 381:350–354. [PubMed: 19233122]

65. Wessendorf JH, Garfinkel S, Zhan X, Brown S, Maciag T. Identification of a nuclear localization sequence within the structure of the human interleukin-1 alpha precursor. J Biol Chem. 1993; 268:22100–22104. [PubMed: 8408068]

66. Matsuo Y, Sawai H, Ma J, Xu D, Ochi N, et al. IL-1alpha secreted by colon cancer cells enhances angiogenesis: the relationship between IL-1alpha release and tumor cells’ potential for liver metastasis. J Surg Oncol. 2009; 99:361–367. [PubMed: 19204921]

67. Kamari Y, Werman-Venkert R, Shaish A, Werman A, Harari A, et al. Differential role and tissue specificity of interleukin-1alpha gene expression in atherogenesis and lipid metabolism. Atherosclerosis. 2007; 195:31–38. [PubMed: 17173923]

68. Schultz K, Murthy V, Tatro JB, Beasley D. Endogenous interleukin-1 alpha promotes a proliferative and proinflammatory phenotype in human vascular smooth muscle cells. Am J Physiol Heart Circ Physiol. 2007; 292:H2927–2934. [PubMed: 17293495]

69. Mandinova A, Soldi R, Graziani I, Bagala C, Bellum S, et al. S100A13 mediates the copper-dependent stress-induced release of IL-1alpha from both human U937 and murine NIH 3T3 cells. J Cell Sci. 2003; 116:2687–2696. [PubMed: 12746488]

70. Keller M, Rüegg A, Werner S, Beer HD. Active caspase-1 is a regulator of unconventional protein secretion. Cell. 2008; 132:818–831. [PubMed: 18329368]

71. Delacour D, Koch A, Jacob R. The role of galectins in protein trafficking. Traffic. 2009; 10:1405–1413. [PubMed: 19650851]

72. Thijsse VL, Barkan B, Shoji H, Aries IM, Mathieu V, et al. Tumor cells secrete galectin-1 to enhance endothelial cell activity. Cancer Res. 2010; 70:6216–6224. [PubMed: 20647324]

73. Wan SY, Zhang TF, Ding Y. Galectin-3 enhances proliferation and angiogenesis of endothelial cells differentiated from bone marrow mesenchymal stem cells. Transplant Proc. 2011; 43:3933–3938. [PubMed: 22172875]
74. Dings RP, Kumar N, Miller MC, Loren M, Rangwala H, et al. Structure-Based Optimization of Angiostatic Agent 6DBF7, an Allosteric Antagonist of Galectin-1. J Pharmacol Exp Ther. 2013; 344:589–599. [PubMed: 23232447]

75. Nachtigal M, Ghaffar A, Mayer EP. Galectin-3 gene inactivation reduces atherosclerotic lesions and adventitial inflammation in ApoE-deficient mice. Am J Pathol. 2008; 172:247–255. [PubMed: 18156214]

76. Seelenmeyer C, Wegehingel S, Tews I, Künzler M, Aebi M, et al. Cell surface counter receptors are essential components of the unconventional export machinery of galectin-1. J Cell Biol. 2005; 171:373–381. [PubMed: 16247033]

77. Schäfer T, Zentgraf H, Zehe C, Brügger B, Bernhagen J, et al. Unconventional secretion of fibroblast growth factor 2 is mediated by direct translocation across the plasma membrane of mammalian cells. J Biol Chem. 2004; 279:6244–6251. [PubMed: 14645213]

78. Zernecke A, Bernhagen J, Weber C. Macrophage migration inhibitory factor in cardiovascular disease. Circulation. 2008; 117:1594–1602. [PubMed: 18362243]

79. Weber C, Kraemer S, Drechsler M, Lue H, Koenen RR, et al. Structural determinants of MIF functions in CXCR2-mediated inflammatory and atherogenic leukocyte recruitment. Proc Natl Acad Sci U S A. 2008; 105:16278–16283. [PubMed: 18852457]

80. Kanztler I, Tuchscheerer N, Steffens G, Simeskyilmaz S, Konschalla S, et al. Differential roles of angiogenic chemokines in endothelial progenitor cell-induced angiogenesis. Basic Res Cardiol. 2013; 108:310. [PubMed: 23184390]

81. Simons D, Grieb G, Hristov M, Pallua N, Weber C, et al. Hypoxia-induced endothelial secretion of macrophage migration inhibitory factor and role in endothelial progenitor cell recruitment. J Cell Mol Med. 2011; 15:668–678. [PubMed: 20178462]

82. Flieger O, Engling A, Bucala R, Lue H, Nickel W, et al. Regulated secretion of macrophage migration inhibitory factor is mediated by a nonclassical pathway involving an ABC transporter. FEBS Lett. 2003; 551:78–86. [PubMed: 12965208]

83. Merk M, Baugh J, Zierow S, Leng L, Pal U, et al. The Golgi-associated protein p115 mediates the secretion of macrophage migration inhibitory factor. J Immunol. 2009; 182:6896–6906. [PubMed: 19454686]

84. Donato R. Intracellular and extracellular roles of S100 proteins. Microsc Res Tech. 2003; 60:540–551. [PubMed: 12645002]

85. Donato R. RAGE: a single receptor for several ligands and different cellular responses: the case of certain S100 proteins. Curr Mol Med. 2007; 7:711–724. [PubMed: 18331229]

86. Shubbar E, Vegfors J, Carlström M, Petersson S, Enerbäck C. Psoriasin (S100A7) increases the expression of ROS and VEGF and acts through RAGE to promote endothelial cell proliferation. Breast Cancer Res Treat. 2012; 134:71–80. [PubMed: 22189627]

87. Semov A, Moreno MJ, Onichtchenko A, Abulrob A, Ball M, et al. Metastasis-associated protein S100A4 induces angiogenesis through interaction with Annexin II and accelerated plasmin formation. J Biol Chem. 2005; 280:20833–20841. [PubMed: 15788416]

88. Greenway S, van Suylen RJ, Du Marchie Sarvaas G, Kwan E, Ambartsouman N, et al. S100A4/Mts1 produces murine pulmonary artery changes resembling plexogenic arteriopathy and is increased in human plexogenic arteriopathy. Am J Pathol. 2004; 164:253–262. [PubMed: 14695338]

89. Gerke V, Creutz CE, Moss SE. Annexins: linking Ca^{2+} signalling to membrane dynamics. Nat Rev Mol Cell Biol. 2005; 6:449–461. [PubMed: 15928709]

90. Peterson EA, Sutherland MR, Nesheim ME, Pryzdial EL. Thrombin induces endothelial cell-surface exposure of the plasminogen receptor annexin 2. J Cell Sci. 2003; 116:2399–2408. [PubMed: 12724354]

91. Brownstein C, Deora AB, Jacovina AT, Weintraub R, Gertler M, et al. Annexin II mediates plasminogen-dependent matrix invasion by human monocytes: enhanced expression by macrophages. Blood. 2004; 103:317–324. [PubMed: 14504107]

92. Deora AB, Kreitzer G, Jacovina AT, Hajjar KA. An annexin 2 phosphorylation switch mediates p11-dependent translocation of annexin 2 to the cell surface. J Biol Chem. 2004; 279:43411–43418. [PubMed: 15302870]
93. Kesavan K, Ratliff J, Johnson EW, Dahlberg W, Asara JM, et al. Annexin A2 is a molecular target for TM601, a peptide with tumor-targeting and anti-angiogenic effects. J Biol Chem. 2010; 285:4366–4374. [PubMed: 20018898]

94. Syed SP, Martin AM, Haupt HM, Arenas-Elliot CP, Brooks JJ. Angiostatin receptor annexin II in vascular tumors including angiosarcoma. Hum Pathol. 2007; 38:508–513. [PubMed: 17239928]

95. Rabouille C, Malhotra V, Nickel W. Diversity in unconventional protein secretion. J Cell Sci. 2012; 125:5251–5255. [PubMed: 2377655]

96. Valapala M, Vishwanatha JK. Lipid raft endocytosis and exosomal transport facilitate extracellular trafficking of annexin A2. J Biol Chem. 2011; 286:30911–30925. [PubMed: 21737841]

97. van Horssen R, Eggermont AM, ten Hagen TL. Endothelial monocyte-activating polypeptide-II and its functions in (patho)physiological processes. Cytokine Growth Factor Rev. 2006; 17:339–348. [PubMed: 16945568]

98. Behrensdorf HA, van de Craen M, Knies UE, Vandenabeele P, Clauss M. The endothelial monocyte-activating polypeptide II (EMAP II) is a substrate for caspase-7. FEBS Lett. 2000; 466:143–147. [PubMed: 10648830]

99. Liu J, Schwarz MA. Identification of protease-sensitive sites in Human Endothelial-Monocyte Activating Polypeptide II protein. Exp Cell Res. 2006; 312:2231–2237. [PubMed: 16674941]

100. Hou Y, Plett PA, Ingram DA, Rajashekhar G, Orschell CM, et al. Endothelial-monocyte-activating polypeptide II induces migration of endothelial progenitor cells via the chemokine receptor CXCR3. Exp Hematol. 2006; 34:1125–1132. [PubMed: 16863920]

101. Rajashekhar G, Mitnacht-Kraus R, Ispe U, Garrison J, Hou Y, et al. A monoclonal rat anti-mouse EMAP II antibody that functionally neutralizes pro- and mature-EMAP II in vitro. J Immunol Methods. 2009; 350:22–28. [PubMed: 19683532]

102. Matschurat S, Knies UE, Person V, Fink L, Stoecker B, et al. Regulation of EMAP II by hypoxia. Am J Pathol. 2003; 162:93–103. [PubMed: 12507893]

103. Clauss M, Voswinckel R, Rajashekhar G, Sigua NL, Fehrenbach H, et al. Lung endothelial monocyte-activating protein 2 is a mediator of cigarette smoke-induced emphysema in mice. J Clin Invest. 2011; 121:2470–2479. [PubMed: 21576822]

104. Green LA, Petrusca D, Rajashekhar G, Gianaris T, Schweitzer KS, et al. Cigarette smoke-induced CXCR3 receptor up-regulation mediates endothelial apoptosis. Am J Respir Cell Mol Biol. 2012; 47:807–814. [PubMed: 22936405]

105. Tsai BM, Wang M, Clauss M, Sun P, Meldrum DR. Endothelial monocyte-activating polypeptide II causes NOS-dependent pulmonary artery vasodilation: a novel effect for a proinflammatory cytokine. Am J Physiol Regul Integr Comp Physiol. 2004; 287:R767–R771. [PubMed: 15155281]

106. Xie H, Xue YY, Liu LB, Liu YH. Endothelial-monocyte-activating polypeptide II increases blood-tumor barrier permeability by down-regulating the expression levels of tight junction associated proteins. Brain Res. 2010; 1319:13–20. [PubMed: 20083091]

107. Awasthi N, Schwarz MA, Verma V, Cappiello C, Schwarz RE. Endothelial monocyte activating polypeptide II interferes with VEGF-induced proangiogenic signaling. Lab Invest. 2009; 89:38–46. [PubMed: 19002109]

108. Ancellin N, Colmont C, Su J, Li Q, Mittereder N, et al. Extracellular export of sphingosine kinase-1 enzyme. Sphingosine 1-phosphate generation and the induction of angiogenic vascular maturation. J Biol Chem. 2002; 277:6667–6675. [PubMed: 11741921]

109. Violin MV, Koch AE. Interleukin-18: a mediator of inflammation and angiogenesis in rheumatoid arthritis. J Interferon Cytokine Res. 2011; 31:745–751. [PubMed: 21864160]

110. Seki E, Tsutsui H, Nakano H, Tsuji N, Hoshino K, et al. Lipopolysaccharide-induced IL-18 secretion from murine Kupffer cells independently of myeloid differentiation factor 88 that is critically involved in induction of production of IL-12 and IL-1beta. J Immunol. 2001; 166:2651–2657. [PubMed: 11160328]

111. Amin MA, Rabquer BJ, Mansfield PJ, Ruth JH, Marotte H, et al. Interleukin 18 induces angiogenesis in vitro and in vivo via Src and Jnk kinases. Ann Rheum Dis. 2010; 69:2204–2212. [PubMed: 20679476]
112. Cho ML, Jung YO, Moon YM, Min SY, Yoon CH, et al. Interleukin-18 induces the production of vascular endothelial growth factor (VEGF) in rheumatoid arthritis synovial fibroblasts via AP-1-dependent pathways. Immunol Lett. 2006; 103:159–166. [PubMed: 16368150]

113. Zheng JN, Pei DS, Sun FH, Liu XY, Mao LJ, et al. Potent antitumor efficacy of interleukin-18 delivered by conditionally replicative adenovirus vector in renal cell carcinoma-bearing nude mice via inhibition of angiogenesis. Cancer Biol Ther. 2009; 8:599–606. [PubMed: 19305163]

114. Kim J, Kim C, Kim TS, Bang SI, Yang Y, et al. IL-18 enhances thrombospondin-1 production in human gastric cancer via JNK pathway. Biochem Biophys Res Commun. 2006; 344:1284–1289. [PubMed: 16650813]
Table 1

Nonclassically released vascular regulators.

Nonclassically secreted protein	Vascular effects	Type of nonclassical export
IL1β	Promotes pathological angiogenesis	Vesicular
IL33	Enhances angiogenesis	Vesicular
HMGB1	Enhances tumor angiogenesis, promotes neovascular remodeling	Vesicular
Tissue transglutaminase	Enhances angiogenesis	Vesicular
FGF1	Stimulates angiogenesis	Transmembrane
FGF2	Stimulates angiogenesis	Transmembrane
IL1α	Promotes tumor angiogenesis; enhances formation of atherosclerotic plaques	Transmembrane
Galectin 1	Promotes tumor angiogenesis	Transmembrane
Annexin 2	Serves as a platform for plasmin generation on endothelial cell surface	Undetermined
S100A4	Enhances angiogenesis	Unknown
S100A7	Enhances angiogenesis	Unknown
IL18	Can enhance or repress angiogenesis, dependent on the tissue context	Unknown
EMAPII	Inhibits angiogenesis, induces endothelial cell apoptosis	Unknown
SphK1	Stimulates angiogenesis through sphingosine-1-phosphate production	Unknown