Remdesivir Strongly Binds to both RNA-dependent RNA Polymerase and Main Protease of SARS-CoV-2: Evidence from Molecular Simulations

Hoang Linh Nguyen¹⁺, Nguyen Quoc Thai¹²⁺, Duc Toan Truong¹, and Mai Suan Li³⁺∗
¹Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
²Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Vietnam
³Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668, Warsaw, Poland

*These authors contributed equally
*Email: masli@ifpan.edu.pl

KEY WORDS: Remdesivir, SARS-CoV, SARS-CoV-2 (nCoV), umbrella sampling
Abstract

The outbreak of a new coronavirus SARS-CoV-2 (severe acute respiratory syndrome–coronavirus 2) has caused a global CoVid-19 (coronavirus disease 2019) pandemic, resulting in millions of infections and thousands of deaths around the world. There is currently no drug or vaccine for CoVid-19, but it has been revealed that some commercially available drugs are promising, at least for treating symptoms. Among them, Remdesivir, which can block the activity of RNA-dependent RNA polymerase (RdRp) in old SARS-CoV and MERS-CoV viruses, has been prescribed to CoVid-19 patients in many countries. A recent experiment showed that Remdesivir binds to SARS-CoV-2 with an inhibition constant of μM, but the exact target has not been reported. In this work, combining molecular docking, steered molecular dynamics and umbrella sampling we examined its binding affinity to two targets including the main protease (Mpro), also known as 3C-like protease, and RdRp. We showed that Remdesivir binds to Mpro slightly weaker than to RdRp and the corresponding inhibition constants, consistent with the experiment, fall to the μM range. The binding mechanisms of Remdesivir to two targets differ in that electrostatic interaction is the main force in stabilizing the RdRp-Remdesivir complex, while the van der Waals interaction dominates in the Mpro-Remdesivir case. Our result indicates that Remdesivir can target not only RdRp but also Mpro, which can be invoked to explain why this drug is effective in treating Covid-19. We have identified residues of the target protein that make the most important contribution to binding affinity, and this information is useful for drug development for this disease.
Introduction

An outbreak of a new coronavirus appeared in Wuhan, China, at the end of 2019 and is spreading rapidly in many countries1,2, resulting in a pandemic announced by WHO in March 20203,4. 2019 Coronavirus Disease (Covid-19) causes severe Acute Respiratory Syndrome (SARS) with pathological symptoms such as coughing, fever, shortness of breath and pneumonia5 and critically ill patients may develop a cytokine storm syndrome6-8. Compared to the 2002 SARS epidemic caused by SARS corona virus (SARS-CoV), the Covid-19 mortality rate is lower9, but the number of infected cases and deaths is much higher2. As of 5 August 2020, more than 18.3 million cases of infection and about 700 thousand deaths were recorded, and thousands more are struggling for their lives in hospitals across the globe. In addition, the reproduction rate of Covid-19 is higher than SARS, which increases the risk of this disease10.

Experiments have shown that the similarity between SARS-CoV and the new coronavirus called SARS-CoV-211 is about 79\% and both viruses belong to the beta genus of coronavirus family11,12. The virion has a sphere like shape comprising of single positive strand of RNA, four structural proteins, Spike (S) protein, Nucleocapsid (N) protein, Membrane (M) protein, and Envelop (E) protein and non-structural proteins (nsp)13 (Figure 1). RNA genome enveloped by the N protein plays a crucial role in viral replication and transcription. Like SARS-CoV, the entry of SARS-CoV-2 into the host cell begins by attaching the S protein on the virial surface to the Angiotensin-converting enzyme 2 (ACE2) of the host cell14,15. Therefore, S proteins and ACE2 are considered as one of the major drug targets16. Once entered, virus replication starts using host cell resources.

The replication and transcription are facilitated by the assembly of non-structural proteins (nsp), which are produced as a result of the cleavage of viral polyproteins encoded by open reading frame 1a (ORF1a) and ORF1b17,18. Canonical RNA-dependent RNA polymerase (RdRp or also known as nsp12) (Figure 1) play a crucial role in the replication and transcription of SARS-CoV-2 virus because it catalyzes the synthesis of viral RNA. Therefore RdRp became important target for drug development to combat coronavirus infections16. Note that the function of nsp12 is supported by nsp7 and nsp819,20. Using cryo-electron microscopy, Gao et al. resolved the structure of RdRp in complex with nsp7 and nsp821. Its active site consists of seven A-G motifs (Figure 1), where nsp12 performs its function.

Regarding the mechanism of infection and pathogenicity of SARS-CoV-2, proteases play an important role in viral structure assembly and replication22,23. In coronaviruses, ORF1a
encodes a main protease (Mpro) (Figure 1), which is also called a chymotrypsin-like cysteine protease (3CLpro)24,25. Mpro has a mass of about 33.8 kDa and is embedded in the nsp5 region, which is encoded by the SARS-CoV-2 RNA sequence (Figure 1, upper part). When RNA is translated into protein, Mpro itself is cleaved from the entire protein sequence via autocleavage26-28.

Mpro is composed of a homodimer, which is divided into two protomers that have three different domains29. Domains I and II has anti-parallel structure of β-sheets, while the third domain included α-helices that are connected in parallel with domain II from one side to the other with a loop region. The substrate binding site of Mpro is situated between domains I and II, in which residues His41 and Cys145 are dominant in catalytic activity30-33. Mpro plays a key role in coordinating viral replication and transcription of the virus life cycle. It cleaves the major part of polyproteins and releases proteins that have replicative function such as RdRp, and RNA processing domains34. Therefore, Mpro becomes a prime target for drugs for SARS-CoV-2.

In general, S protein, ACE2, TMPRSS2 (Transmembrane Protease Serine 2), 3CLpro, RdRp and PLpro (Papain-like Protease) are widely considered as main targets for antiviral drugs against SARS including SARS-CoV-2 and other coronavirus infections16,35. There is currently no new drug developed to treat Covid-19, but some old medications have been shown to be effective like Dexamethasone36 (https://www.nature.com/articles/d41586-020-01824-5), Avifavir, Remdesivir (https://www.nature.com/articles/d41586-020-01295-8). Remdesivir is an adenosine analogue that inhibits viral RNA polymerase with RdRp as its target. It has antiviral activity against multiple variants of the Ebola virus in both cell experiments and monkey models37,38. In vitro experiments indicated that Remdesivir inhibits SARS-CoV and MERS-CoV viruses by interfering polymerase function of RdRp39-41. Recent evidence suggests that Remdesivir improves the status of severe Covid-19 patients42, which has forced the European Medicines Agency’s (EMA) to approve it for treatment for people over 12 years old (https://www.ema.europa.eu/en/human-regulatory/overview/public-health-threats/coronavirus-disease-covid-19/treatments-vaccines-covid-19#remdesivir-section).

Therefore, understanding the molecular mechanism of interaction between Remdesivir and RdRp and other possible targets is important for the development of Covid-19 therapy. A recent experiment40 has shown that Remdesivir effectively inhibits the activity of SARS-CoV-2 in vitro but its target has not been identified. An interesting question emerged is what is the binding affinity of Remdesivir to RdRp and can it strongly bind to Mpro, which is one of the most important targets for drug design of Covid-19. To answer this question, we
performed molecular docking, steered molecular dynamics (SMD) simulations and umbrella sampling. Our SMD results revealed that Remdesivir strongly binds to both targets, but the binding affinity to RdRp is higher than to Mpro. SMD method is good for obtaining relative binding affinities43, but it is impractical to use to access the equilibrium building free energy ΔG_{bind}, since a huge number of trajectories are required. Therefore, we used the umbrella sampling to estimate ΔG_{bind} and obtained $\Delta G_{\text{bind}} = -8.69$ and -9.34 kcal/mol for Mpro and RdRp, respectively. Our result is in good agreement with the experimental data reported by Wang \textit{et al}40, and shows that Remdesivir can strongly bind not only to RdRp but also to Mpro, which partly explains why Remdesivir is effective in Covid-19 treatment. In addition, we demonstrated that the van der Waals (vdW) interaction plays an important role in the association of Remdesivir with Mpro, while the electrostatic interaction drives the Redemsivir binding to RdRp.

Materials and Methods

Structures of Remdesivir and targets

The structure of Remdesivir was taken from PubChem data bank with CID 121304016 and the corresponding 2D and 3D presentations are shown in Figure 2. It contains 77 atoms and their indices are given in Figure S1 in the Supporting Information. The Mpro and RdRp structures were retrieved from the Protein Databank (PDB) with PDB ID 6LU724 and 7BTF21 (Figure 2), respectively. Mpro has one chain with three domains, while RdRp contains three chains corresponding to nsp12 (chain A), nsp7 (chain B) and nsp8 (chain C).

Docking simulation

PDBQT files prepared by AutoDock Tool 1.5.444 were used to dock Remdesivir to the Mpro (6LU7)24 and RdRp (7BTF)21 binding site. Autodock Vina version 1.145 was utilized for docking simulation. For a global search, the exhaustiveness was set to 600, which was sufficient to achieve reliable results, and the dynamics of receptor atoms was neglected.

Molecular dynamics simulation

Molecular dynamics (MD) simulation was performed using the AMBER-f99SB-ILDN force field46 and the water model TIP3P47. Based on the General Amber Force Field (GAFF)48, the
parameters for the Remdesivir atoms were generated using Antechamber49 and Acype50. A simple harmonic function form for bonds and angles and the AM1-BCC51 charge model were used to calculate atomic point charges. The names, types, masses, and charges of the Remdesivir atoms are given in Table S1 in the Supporting Information.

The complex of Remdesivir with Mpro and RdRp were solvated in rectangular boxes with dimensions of 8.3x9.4x12.8 nm and 12.6x13.4x15.2 nm, respectively. Counter ions were added to neutralize the system. To calculate vdW forces, a cut-off of 1.4 nm was adopted, while the particle-mesh Ewald summation method was used to calculate the long-range electrostatic interaction with the same cut-off52. The leapfrog algorithm was used to solve the Langevin equations with a time step 2 fs. After the energy minimization using the steepest descent method, MD simulations with position-restrained C\textalpha{} atoms were performed to equilibrate the system in the NVT and NPT ensembles of 0.5 ns and 5 ns, respectively. The temperature and pressure of the system were maintained at 300 K and 1 bar using the V-rescale and Parrinello-Rahman algorithms53,54.

Steered molecular dynamics (SMD)

Equilibrated configurations obtained in the NPT simulation were used as initial structures for SMD simulation. To prevent the target from drifting under the external force, the C\textalpha{} atoms were restrained using a harmonic potential with a spring constant $k=1000\text{kJ/nm/mol}$. In the SMD simulation, a spring is attached from one side to a dummy atom and from the other side to the center of mass of Remdesivir. The dummy atom is then pulled from its initial position along the direction defined by the MSH (Minimal Steric Hindrance) method55 (Figure 3) with constant speed v. Hence, the elastic force experienced by the ligand is $F = k_s(\Delta z-vt)$, where Δz is the displacement of the ligand’s center of mass connected with the spring in the pulling direction. As in the AFM experiment56 and our previous works55,57, we chose $k_s = 600 \text{kJ/mol/nm}^2$ and pulling speed $v = 5 \text{nm/ns}$. Since the rupture force58 and non-equilibrium work55,59 depend on v, but the relative binding affinities are not sensible to it55,59 we restricted to this choice of v. We performed 100 SMD trajectories for each complex system.

Umbrella sampling method

Combining SMD and the Jarzynski’s equality (JE)60, in principle, we can calculate the equilibrium binding free energy, but this task is not feasible, because an enormous number of SMD runs are required61. Hence, we used umbrella sampling62 and the WHAM analysis to
estimate ΔG_{bind}. We calculated the potential of mean force (PMF), which describes the interaction of Remdesivir with the receptor, along the line indicated by the arrow in Figure 3. This line is aligned along the pulling direction Z determined by the MSH method. One end of it is the starting point of Remdesivir in the SMD simulation while the second corresponds to the end of the SMD simulation of 1000 ps, which corresponds to the distance of 5.06 nm for both complexes. To carry out umbrella sampling the line was divided into two parts (Figure 3). For the green segment, corresponding to the distance between 0 and 2 nm, where the interaction of the ligand with the target is still strong (see Figure 5), we used a window of 0.08 nm. In the red segment between 2 and 5.06 nm (Fig. 3), the receptor-ligand interaction is weak, a 0.18 nm window was chosen. In total we have 42 windows for Mpro and RdRp.

The bias harmonic potential was used to keep Remdesivir near the center of each window:

$$V_i = \frac{1}{2} k(z - z_i)^2$$

with the umbrella force constant $k = k_S = 600 \text{ kJ/mol/nm}^2$, z_i is the center of umbrella i. For each space window, a 100 ns MD simulation was performed at 300 K and 1 bar. The weight histogram analysis method was utilized to analyze the results using the WHAM tool in GROMACS package. Errors were calculated using the bootstrap method.

Quantities used in data analysis

The experimental binding free energy $\Delta G_{\text{bind}}^{\exp}$ was obtained from EC50 value using the formula $\Delta G_{\text{bind}}^{\exp} = RT \ln(\text{EC50})$, where $RT=0.597 \text{ kcal/mol}$ at 300 K and EC50 is measured in M. The backbone root mean square deviation (RMSD) was used to measure the deviation of the receptor structure with respect to its initial configuration. A hydrogen bond (HB) was formed if the distance between donor D and acceptor A is less than 3.5 Å, the H-A distance is less than 2.7 Å and the D-H-A angle is larger than 135 degrees. A sidechain contact between Remdesivir and receptor residue is formed if the distance between their centers of mass is less than 0.65 nm. The hydropathy index of residues was obtained from Kyte et al. The 2D contact network of Remdesivir interacting with the target was constructed using Ligplot+ software package.

Using the force-displacement profile obtained in SMD simulation, the pulling work W was calculated using the trapezoidal rule:

$$W = \int Fdx = \sum_{i=1}^{N} \frac{F_{t+1} + F_t}{2} (x_{t+1} - x_t)$$
where N is the number of simulation steps, F_i, x_i are the force experienced by the ligand and position at step i. To estimate the non-equilibrium binding free energy from SMD simulations, we used JE equality in the presence of external force with constant pulling speed v:

$$
\exp \left(\frac{-\Delta G}{k_B T} \right) = \exp \left(\frac{-W_t - \frac{1}{2}k(z_t - vt)^2}{k_B T} \right)_{N}
$$

(2)

where $\langle \ldots \rangle$ is the average over N trajectories, z_t is time dependent displacement, and W_t is the non-equilibrium or pulling work at time t, i.e. $W_t = W(t)$, where W is defined by Equation (1). Equation (2) means that we can extract an equilibrium quantity by assembling the external work of infinite number of non-equilibrium processes. In this study, when the transformation is not slow enough and the number of SMD runs is finite, we can obtain only the Jarzynski’s non-equilibrium binding free energy ΔG_{neq}^{jar}. Therefore, ΔG_{neq}^{jar} is defined by Equation (2), but for the non-equilibrium case.

Results and Discussions

Docking simulation: Binding sites of Remdesivir in Mpro and RdRp

The configurations obtained in the best docking modes of Remdesivir in complex with Mpro 6LU7 and RNA polymerase 7BTF are presented in Figure 4. The docking binding energies of Remdesivir with Mpro and RNA polymerase are -7.9 kcal/mol and -6.5 kcal/mol, respectively, implying that Remdesivir binds to Mpro more strongly than to RdRp. *In vitro* experiment showed that EC50 value of Remdesivir for SARS-CoV-2 is 0.77 µM. Using the formula $\Delta G_{\text{exp}}^{\text{bind}} = RT \ln(\text{EC50})$, where gas constant $R = 1.987 \times 10^{-3}$ kcal/mol, $T = 300$ K, and EC50 is measured in M, we obtained $\Delta G_{\text{exp}}^{\text{bind}} = -8.4$ kcal/mol, which is roughly consistent with our docking result for Mpro. Thus, docking simulations suggest that Remdesivir likely binds to Mpro stronger than to its commonly accepted target RdRp. However, this result is an artefact of the crude docking method, since, as shown below, more accurate SMD and umbrella sampling provide the opposite answer.

The binding site of Remdesivir in Mpro is located between domains I and II (Figure 4). Remdesivir forms 3 HBs and 12 non-bond contacts with this target. The Mpro residues that form HB with Remdesivir are His163, Ser144, Leu141 and non-bonded contacts are associated with Glu166, Cys145, Met165, Gln189, Arg188, Asp187, His41, Met49, Thr26,
Leu27, Thr45, and Thr25. This result indicates that non-bonded contacts govern the interaction between Remdesivir and Mpro.

According to Jin et al. the key residues in the binding pocket of inhibitor N3 in Mpro are His41, Tyr54, Met49, Phe140-Cys145, His163-Pro168, His172, Asp187-Gln192 regions. These areas are similar to the Remdesivir binding pocket indicating that both N3 and Remdesivir bind to His41 and Cys145 of the active site of Mpro.

In the case of RNA polymerase, the binding site of Remdesivir is close to the active site of nsp12 (Figure 4), indicating that Remdesivir can affect the function of nsp12. The active site of nsp12 comprises of seven motifs A-G. Motifs A, B, and F have residues that are located at the Remdesivir binding site. Nsp12 and Remdesivir form 4 HBs and 8 non-bond contacts (Figure 4). HBs are formed at residues Thr677, Asp757, Asn688 and non-bond contacts at Asp620, Ser79, Tyr452, Arg550, Lys618, Cys619, Asp615, Thr684 and Ser678 of nsp12. Hence, as in the Mpro case, in the docking simulation more non-bond contacts are involved in the RdRp-Remdesivir stability than HBs.

SMD results

Remdesivir binds to RdRp stronger than main protease

The profiles of pulling force and position are shown in Figure 5. The work spent on pulling Remdesivir from the Mpro binding site is 106.2 ± 11.6 kcal/mol and $F_{\text{max}} = 716.2 \pm 75.7$ pN. In the RdRp case, $W = 144.6 \pm 19.2$ kcal/mol and $F_{\text{max}} = 812.5 \pm 102.1$ pN. Using Equation 2 and the ΔG-displacement/time profile (Figure 5) we can estimate the non-equilibrium binding free energy $\Delta G_{\text{neq}} = \Delta G(t_{\text{end}})$, which is equal -71.7 ± 1.2 and -89.5 ± 1.2 kcal/mol for Mpro and RdRp, respectively. The large value of ΔG_{neq} is due to the fact that the pulling speed is much higher than that used in experiment. Within error bars, F_{max} is the same for the two targets, but W of RdRp is greater than that of Mpro, indicating that Remdesivir binds to RdRp more strongly than to the main protease. This conclusion is also supported by the result obtained for ΔG_{neq}, which is lower for RdRp than Mpro. The SMD result appears to be consistent with experiment, which suggested that Remdesivir inhibits Corona and Ebola viruses via binding to RdRp. However, it contradicts the docking prediction, which shows that the binding affinity for RdRp is lower than for Mpro. This is probably due to the well-known fact that the docking method is not sufficiently accurate in estimating the binding energy.
Although the pulling work of the RdRp complex is higher than that of Mpro, the difference between the two systems is small, suggesting that Remdesivir can also bind to Mpro. We will verify this by performing additional umbrella sampling.

Stability of the Mpro-Remdesivir complex is mainly controlled by the vdW interaction, while the electrostatic interaction is more important for the RdRp-Remdesivir complex.

We calculated the non-bonded (electrostatic and vdW) interaction energy of Remdesivir with two targets using SMD simulations (Figure 6). In the initial structures, the non-bonded interaction between Remdesivir and RdRp (-123.5 kcal/mol) is slower than Remdesivir and Mpro (-74.4 kcal/mol). As time increases, the interaction energy grows, approaching zero at a large time scale. The Mpro-Remdesivir interaction disapperas at \(t \approx 600 \) ps, while this time is about 900 ps for the RdRp complex (Figure 6), which again confirms the earlier conclusion that Remdesivir exhibits a higher binding affinity toward RdRp.

In the case of the main protease, the vdW interaction is dominant in the 0-220 ps interval (Figure 6). This time range is crucial for binding affinity, because 220 ps almost coincides with \(t_{\text{max}} \) (Table 1) at which the system reaches \(F_{\text{max}} \) (Figure 5) and Remdesivir starts to move out from the binding position. Therefore, the vdW interaction is a primary force in stabilization of the Mpro-Remdesivir complex. The similar molecular mechanism was also observed for Lopinavir and Ritonavir interacting with Mpro of SARS-CoV-2 \(^69\).

For the Remdesivir-RdRp complex, in contrast to the Mpro case, the electrostatic interaction is stronger than the vdW interaction during the entire simulation time (Fig. 6). Thus, the binding mechanism is sensitive to the target.

Most important residues

To investigate the contribution of the residues of the protein to the Remdesivir binding affinity, we calculated the non-bonded interaction in the 0-220 ps interval, which is the most relevant for ligand binding. Consistent with the previous section, the per-residue interaction energy profiles (Figures S2 and S3) show that vdW and electrostatic interactions are the main driving force in stabilizing Mpro-Remdesivir and RdRp-Redemsivir complexes, respectively. Assuming that the most important residues contribute to the complex stability more than 2 kcal/mol, we can demonstrate that Mpro and RdRp have 14 and 13 such residues, respectively. All of these residues are close to Remdesivir (Figures 7 and 8). For Mpro, N142, E166 and Q189 have an interaction energy even less than -8 kcal/mol, while for RdRp such
residues are R552, D620 and D757. The negatively charged residue E166 of Mpro has the lowest interaction energy of about -18.5 kcal/mol. In the RdRp case, the most prominent residues D620 and D757 are adjacent to the P atom of Remdesivir. The positively charged residues R550 and R552 are located near negatively charged oxygen atoms of Remdesivir, which leads to their attractive interaction with Remdesivir (Figure 8). However, residues R454 and R621 destabilize the complex to the greatest extent having a large positive interaction energy, although they are also positively charged as R550 and R552. This is because R454 and R621 are far from Remdesivir, and the total energy comes from the interaction not only with oxygen atoms, but also with all atoms of Remdesivir, which changes the sign of the interaction energy.

Among the most notable Mpro residues, there are only two negatively charged residues E166 and D187 (Table 2), but RdRp has more charged residues including 5 negatively charged (D449, D615, D620, D751, D758) and 4 positively charged (K497, K542, K550, R552) residues. The difference is also clearly visible on the charge surface at the binding pocket of Remdesivir (Figure S4), indicating that the charge distribution is denser in RdRp. This further confirms the fact that the electrostatic interaction is dominant in the RdRp-Remdesivir interaction.

The total charge and total hydropathy of significant Mpro residues are -2e (E166 and D187) and -5.5, respectively. In RdRp these values are 0e and -45, respectively, where only residues Cys619 and Thr677 are neutral (Table 2). Since the overall hydropathy of potent residues in Mpro is higher than in RdRp (see also the hydrophobicity surfaces of two systems in Figure S5), the interaction between Remdesivir and Mpro is dominated by the vdW interaction.

Per-atom interaction energy of Remdesivir

The per-atom distributions of the non-bonded interaction energy of Remdesivir with two targets were calculated for a 0-220 ps window and 200 SMD trajectories (Figure S6). They are similar for both complexes, as the 10-50 atoms (Figure S1) have strong interaction and the atom P with index 32 has the lowest energy. The electrostatic energy per atom dominates the vdW term for both systems (Figure S6) and this seems to contradict the above analysis showing that the electrostatic interaction is dominant only in the case of RdRp. However, the contributions of the electrostatic interaction of Remdesivir atoms cancel each other out, and, consequently, for Mpro, the average electrostatic and vdW energies of Remdesivir are -0.4 and -0.7 kcal/mol, respectively. In the case of RdRp, these values are -0.9 and -0.5 kcal/mol, respectively. Therefore, as has been shown in the previous section, vdW term is more
important for Mpro-Remdesivir, while the opposite is true for RdRp-Remdesivir. From a drug development standpoint, the important role of the 10-50 region suggests that this region can be modified to improve the binding affinity of drug candidates. To get the contribution of the different parts of Remdesivir, we have divided it into six blocks, as shown in Figures 2 and S1. The names of these blocks are shown in Figure S1. The electrostatic interaction of block 1 (Pyrrolo[1,2-f][1,2,3,4] triazin-4-amin) destabilizes Mpro-Remdesivir but stabilizes RdRp-Remdesivir (Figure 9). Block 3 (phosphate group) strongly disfavors the Remdesivir binding to RdRp via repulsive electrostatic interaction. Block 5 (acid propylic) has little effect on the stability of both complexes. Block 4 (benzene) facilitates the association of Remdesivir with two targets, but to a lesser extent compared to block 2 (2-methyl-3, 4-dihydroxy-5-xianhua tetrahydrofuran) and block 6 (isopentane). Block 2 greatly stabilizes the RdRp and Mpro complexes through electrostatic and vdW interactions, respectively (Figure 9). Block 6 is especially important for the stability of Mpro-Remdesivir. Thus, our result indicates that the presence of [2-methyl-3, 4-dihydroxy-5-xianhua tetrahydrofuran] and isopentane will enhance the binding affinity toward the Mpro and RdRp targets. This information is likely useful for the development of drugs for Covid-19.

Hydrogen bonds

We studied the evolution of the receptor-ligand HB network formed during SMD simulations. This network involved 14 and 20 residues of Mpro and RdRp, and the population of each HB is shown in Figure 10. In the Mpro case, HB is significantly populated with residues E166 (25.1%), G143 (21%), Q189 (17%), H163 (11.2%), H41 (8%), S144 (6.9%), and N142 (6.7%). In RdRp similar residues are D757 (37.5%), D620 (36.6%), T677 (13.2%), C619 (3.5%), and R550 (2.6%). These residues also have a low energy of non-bonded interaction with Remdesivir (Figures 6 and 7). Our result is reasonable, because residues that have strong interactions with Remdesivir are located close to it, increasing the likelihood of HB formation.

Binding and unbinding free energy barriers

Ligand binding and unbinding are barrier crossing processes, as bound and unbound states are separated by a transition state (TS) (Figure 5). The binding barrier $\Delta G_{\text{bind}}^{\ddagger} = \Delta G_{\text{TS}} - \Delta G_{\text{unbound}}$, while the unbinding barrier $\Delta G_{\text{unbind}}^{\ddagger} = \Delta G_{\text{TS}} - \Delta G_{\text{bound}}$, where ΔG_{TS}, ΔG_{bound}, and $\Delta G_{\text{unbound}}$ are the free energy of the transition, bound and unbound states, respectively (Figure 5). ΔG_{TS} is the maximum in the free energy profile represented as a function of
displacement/time, ΔG_{bound} is determined at zero displacement/time, and $\Delta G_{\text{unbound}}$ corresponds to the large displacement (the end of simulation) at which the ligand becomes free. Thus, $\Delta G_{\text{bound}} = \Delta G(t=0)$ and $\Delta G_{\text{unbound}} = \Delta G(t_{\text{end}})^5$. Because the number of SMD runs is limited and the pulling speed is high we can calculate only non-equilibrium binding and unbinding barriers, but they are still useful for predicting relative binding and unbinding times. For both complexes, $\Delta G^\ddagger_{\text{bind}} > \Delta G^\ddagger_{\text{unbind}}$ (Table 1), suggesting that Remdesivir binds to the target at a longer time scale compared to unbinding. This is consistent with a general experimental trend showing that the ligand exits the binding pocket faster than it joins from the bulk.

Since $\Delta G^\ddagger_{\text{unbind}}$ of Mpro (26.3 kcal/mol) is lower than RdRp (30.8 kcal/mol) (Table 1), Remdesivir should escape from the Mpro binding site faster than from RdRp. To support this conclusion, we calculated the difference of solvent accessible surface area (SASA) between the complex and total SASA of the unbound protein and Remdesivir, $\Delta\text{SASA}=\text{SASA}_{\text{complex}}-\text{SASA}_{\text{protein}}-\text{SASA}_{\text{Remdesivir}}$ (Figure S7). Obviously, ΔSASA of Mpro-Remdesivir reaches 0 faster than RdRp-Remdesivir, which indicates that Remdesivir leaves the Mpro binding site faster. This conclusion is further confirmed by the time dependence of the number of contacts between Remdesivir and the target (Figure S8), since the contacts disappear at about 450 ps and 800 ps for Mpro and RdRp, respectively.

The binding barrier of Mpro-Remdesivir (132 kcal/mol) is less than that of RdRp-Remdesivir (175 kcal/mol) (Table 1), implying that the Remdesivir binding process to RdRp is slower than to Mpro. However, this result should be treated with caution, as fast SMD does not produce equilibrium results, and it is unclear whether the relative binding barrier in equilibrium remains unchanged.

Umbrella sampling: Remdesivir strongly binds to Mpro and RdRp

Because the results obtained by using SMD are not valid for equilibrium we utilized umbrella sampling to calculate the equilibrium binding free energy ΔG_{bind}. The potential of mean force (PMF) was determined as a function of a distance to the binding site along the pulling direction as described in the section of Material and Method (Figure 11). The presence of local minima reflects the complexity of the binding/unbinding process. The binding free energy ΔG_{bind} was defined as the difference between the maximum and minimum in the PMF profile (Figure 11) and we obtained $\Delta G_{\text{bind}} = -8.69 \pm 0.36$ and $-9.34 \pm$
0.38 kcal/mol for the Mpro-Remdesivir and RdRp-Remdesivir complexes, respectively. Thus, within the margin of error, Remdesivir shows the same binding affinity to both targets. Relative binding affinity $\Delta G_{\text{bind}}(\text{RdRp})/\Delta G_{\text{bind}}(\text{Mpro}) = 9.34/8.69 = 1.07$, which is not so far from the non-equilibrium ratio $\Delta G_{\text{neq}}^{\text{Jar}}(\text{RdRp})/\Delta G_{\text{neq}}^{\text{Jar}}(\text{Mpro}) = 89.5/71.7 = 1.25$ obtained using JE and SMD. Although the difference in absolute binding affinity is huge ($\Delta G_{\text{neq}}^{\text{Jar}}(\text{RdRp})/\Delta G_{\text{bind}}(\text{RdRp}) = 89.5/9.34 \approx 9.6$ and $\Delta G_{\text{neq}}^{\text{Jar}}(\text{Mpro})/\Delta G_{\text{bind}}(\text{Mpro}) \approx 8.3$) the results obtained at non-equilibrium are useful for comparing the binding affinity of Remdesivir to various targets. This result is in the line with previous works43,55,57,59. As mentioned above, an \textit{in vitro} experiment showed40 that Remdesivir binds to novel coronavirus (2019-nCoV) with EC$_{50}$ \approx 0.77 μM, which corresponds to $\Delta G_{\text{exp}}^{\text{bind}} \approx -8.4$ kcal/mol. This value is very close to our theoretical estimate. The experiment has revealed that Remdesivir binds to RdRp39 and this is consistent with our \textit{in silico} results. More importantly, we have shown that this ligand can also associate with Mpro with EC$_{50}$ in the range of μM. In other words, together with RdRp, Mpro is a target for Remdesivir. We anticipate that the ability to bind to two drug targets is related to the fact that Remdesivir is effective for combating Covid-19.

Conclusions

Combining various computational tools we have studied the association of Remdesivir with RdRp and Mpro. Molecular docking shows that Remdesivir is associated with RdRp weaker than with RdRp, but this finding has not been supported by more advanced SMD and umbrella sampling techniques. Using the latter method, we showed that, in accordance with an \textit{in vitro} experiment, Remdesimir inhibits the 2019-nCoV activity with EC$_{50}$ of μM. Importantly, we predict that together with RdRp, Mpro is also a target for Remdesivir, which can be used to understand the high efficacy of this repurposed drug. It would be interesting to verify this prediction by \textit{in vitro} and \textit{in vivo} experiments.

Our study revealed that the binding of Remdesivir to Mpro and RdRp occurs via different molecular mechanisms that the vdW interaction plays a primary role in the stability of the Mpro-Remdesivir complex, while the electrostatic interaction is dominant for the RdRp-Remdesivir case. Information on the strongest residues of the two targets in association with Remdesivir may be useful for the development of potential drugs for CoVid-19.
We have studied the binding of Remdesivir to Mpro and RdRp and the extension of this work to other targets will be important not only from the point of view of basic research, but also of medical applications.

ASSOCIATED CONTENT

Supporting Information

AUTHOR INFORMATION

Corresponding Author:
Mai Suan Li
*Email: masli@ifpan.edu.pl
Phone: +48 886813018
Address: Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland

Author Contributions:
MSL conceived the experiment. HLN, NQT and DTT conducted the experiment. HLN, NQT, DTT and MSL analyzed the results. All authors wrote the paper and reviewed the manuscript.

Notes: The authors declare no competing financial interest.

Acknowledgements
We thank Vuong Van Quan for very useful discussions. This work was supported by the Department of Science and Technology at Ho Chi Minh city (Grants 07/2019/HD-KHCNTT and 02/2019/HD-KHCNTT), the Domestic Master/ PhD Scholarship Programme of Vingroup Innovation Foundation, (HLN) Vietnam, and Narodowe Centrum Nauki in Poland (Grant 2019/35/B/ST4/02086). This research was supported by the TASK Supercomputer Center in Gdansk, PLGrid Infrastructure, Poland, and the ICST Computer Center, Ho Chi Minh City, Vietnam.
References

(1) Ross, J.; Sun, L. Ninety Days in: A Comprehensive Review of the Ongoing COVID-19 Outbreak. *Health Science Journal* 2020, 14, 706.

(2) Organization, W. H. Coronavirus disease 2019 (COVID-19): situation report, 74. 2020.

(3) Organization, W. H.: WHO Director-General's remarks at the media briefing on 2019-nCoV on 11 February 2020. 2020. 2020.

(4) Organization, W. H. WHO Director-General's opening remarks at the media briefing on COVID-19-11 March 2020. *Geneva, Switzerland* 2020.

(5) Lai, C.-C.; Shih, T.-P.; Ko, W.-C.; Tang, H.-J.; Hsu, P.-R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. *International Journal of Antimicrobial Agents* 2020, 55, 105924.

(6) Mehta, P.; McAuley, D. F.; Brown, M.; Sanchez, E.; Tattersall, R. S.; Manson, J. J. COVID-19: consider cytokine storm syndromes and immunosuppression. *The Lancet* 2020, 395, 1033-1034.

(7) MacLaren, G.; Fisher, D.; Brodie, D. Preparing for the Most Critically Ill Patients With COVID-19: The Potential Role of Extracorporeal Membrane Oxygenation. *JAMA* 2020, 323, 1245-1246.

(8) Jiang, X.; Rayner, S.; Luo, M.-H. Does SARS-CoV-2 has a longer incubation period than SARS and MERS? *2020*, 92, 476-478.

(10) Liu, Y.; Gayle, A. A.; Wilder-Smith, A.; Rocklöv, J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. *Journal of Travel Medicine* 2020, 27.

(11) Gorbachanenya, A. E.; Baker, S. C.; Baric, R. S.; de Groot, R. J.; Drosten, C.; Gulyaeva, A. A.; Haagmans, B. L.; Lauber, C.; Leontovich, A. M.; Neuman, B. W.; Penzar, D.; Perlman, S.; Poon, L. L. M.; Samborskiy, D. V.; Sidorov, I. A.; Sola, I.; Ziebuhr, J.; Coronaviridae Study Group of the International Committee on Taxonomy of, V. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. *Nature Microbiology* 2020.

(12) Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; Chen, H.-D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.-D.; Liu, M.-Q.; Chen, Y.; Shen, X.-R.; Wang, X.; Zheng, X.-S.; Zhao, K.; Chen, Q.-J.; Deng, F.; Liu, L.-L.; Yan, B.; Zhan, F.-X.; Wang, Y.-Y.; Xiao, G.-F.; Shi, Z.-L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. *Nature* 2020, 579, 270-273.

(13) Risco, C.; Antón, I. M.; Enjuanes, L.; Carrascosa, J. L. The transmissible gastroenteritis coronavirus contains a spherical core shell consisting of M and N proteins. *Journal of Virology* 1996, 70, 4773-4777.

(14) Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.; Bao, L.; Zhang, B.; Liu, G.; Wang, Z.; Chappell, M.; Liu, Y.; Zheng, D.; Leibbrandt, A.; Wada, T.; Slutsky, A. S.; Liu, D.; Qin, C.; Jiang, C.; Penninger, J. M. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. *Nature Medicine* 2005, 11, 875-879.

(15) Nguyen, H. L.; Lan, P. D.; Thai, N. Q.; Nissley, D. A.; O'Brien, E. P.; Li, M. S. Does SARS-CoV-2 Bind to Human ACE2 Stronger Than SARS-CoV? *The Journal of Physical Chemistry B* 2020.

(16) Zumla, A.; Chan, J. F. W.; Azhar, E. I.; Hui, D. S. C.; Yuen, K.-Y. Coronaviruses — drug discovery and therapeutic options. *Nature Reviews Drug Discovery* 2016, 15, 327-347.
(17) Ziebuhr, J.: The Coronavirus Replicase. In Coronavirus Replication and Reverse Genetics; Enjuanes, L., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2005; pp 57-94.

(18) Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. 2020, 92, 418-423.

(19) Subissi, L.; Posthuma, C. C.; Collet, A.; Zevenhoven-Dobbe, J. C.; Gorbalenya, A. E.; Decroly, E.; Snijder, E. J.; Canard, B.; Imbert, I. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. 2014, 111, E3900-E3909.

(20) Kirchdoerfer, R. N.; Ward, A. B. Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nature Communications 2019, 10, 2342.

(21) Gao, Y.; Yan, L.; Huang, Y.; Liu, F.; Zhao, Y.; Cao, L.; Wang, T.; Sun, Q.; Ming, Z.; Zhang, L.; Ge, J.; Zheng, L.; Zhang, Y.; Wang, H.; Zhu, Y.; Zhu, C.; Hu, T.; Hua, T.; Zhang, B.; Yang, X.; Li, J.; Yang, H.; Liu, Z.; Xu, W.; Guddat, L. W.; Wang, Q.; Lou, Z.; Rao, Z. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 2020, 368, 779-782.

(22) Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science 2020, 368, 409-412.

(23) Benvenuto, D.; Giovanetti, M.; Ciccozzi, A.; Spoto, S.; Angeletti, S.; Ciccozzi, M. The 2019‐new coronavirus epidemic: evidence for virus evolution. Journal of medical virology 2020, 92, 455-459.

(24) Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L. W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020, 582, 289-293.

(25) Bzówka, M.; Mitusinska, K.; Raczyńska, A.; Samol, A.; Tuszyński, J. A.; Góra, A. Molecular Dynamics Simulations Indicate the COVID-19 Mpro Is Not a Viable Target for Small-Molecule Inhibitors Design. bioRxiv 2020.

(26) Kannan, S.; Ali, P. S. S.; Sheeza, A.; Hemalatha, K. COVID-19 (Novel Coronavirus 2019)–recent trends. European review for medical and pharmacological sciences 2020, 24, 2006-2011.

(27) Cui, J.; Li, F.; Shi, Z.-L. Origin and evolution of pathogenic coronaviruses. Nature reviews Microbiology 2019, 17, 181-192.

(28) Chen, S.; Jonas, F.; Shen, C.; Higenfeld, R. Liberation of SARS-CoV main protease from the viral polyprotein: N-terminal autocleavage does not depend on the mature dimerization mode. Protein & Cell 2010, 1, 59-74.

(29) Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C. Structure of Mpro from COVID-19 virus and discovery of its inhibitors. bioRxiv 2020.

(30) Anand, K.; Palm, G. J.; Mesters, J. R.; Siddell, S. G.; Ziebuhr, J.; Hilgenfeld, R. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra α-helical domain. The EMBO Journal 2002, 21, 3213-3224.

(31) Yang, H.; Yang, M.; Ding, Y.; Liu, Y.; Lou, Z.; Zhou, Z.; Sun, L.; Mo, L.; Ye, S.; Pang, H.; Gao, G. F.; Anand, K.; Bartlam, M.; Hilgenfeld, R.; Rao, Z. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proceedings of the National Academy of Sciences 2003, 100, 13190-13195.

(32) Xue, X.; Yu, H.; Yang, H.; Xue, F.; Wu, Z.; Shen, W.; Li, J.; Zhou, Z.; Ding, Y.; Zhao, Q.; Zhang, X. C.; Liao, M.; Bartlam, M.; Rao, Z. Structures of Two Coronavirus
Main Proteases: Implications for Substrate Binding and Antiviral Drug Design. *Journal of Virology* 2008, 82, 2515-2527.

(33) Wang, F.; Chen, C.; Tan, W.; Yang, K.; Yang, H. Structure of Main Protease from Human Coronavirus NL63: Insights for Wide Spectrum Anti-Coronavirus Drug Design. *Scientific Reports* 2016, 6, 22677.

(34) Ziebuhr, J.; Snijder, E. J.; Gorbalenya, A. E. Virus-encoded proteinases and proteolytic processing in the Nidovirales. 2000, 87, 853-879.

(35) Liu, C.; Zhou, Q.; Li, Y.; Garner, L. V.; Watkins, S. P.; Carter, L. J.; Smoot, J.; Gregg, A. C.; Daniels, A. D.; Jervey, S.; Albaia, D. Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases. *ACS Central Science* 2020, 6, 315-331.

(36) Horby, P.; Lim, W. S.; Emberson, J.; Mafham, M.; Bell, J.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; Elmahi, E.; Prudon, B.; Green, C.; Felton, T.; Chadwick, D.; Rege, K.; Fegan, C.; Chappell, L. C.; Faust, S. N.; Jaki, T.; Jeffery, K.; Montgomery, A.; Rowan, K.; Juszczak, E.; Baillie, J. K.; Haynes, R.; Landray, M. J. Effect of Dexamethasone in Hospitalized Patients with COVID-19: Preliminary Report. *medRxiv* 2020, 2020.2006.2022.20137273.

(37) Warren, T. K.; Jordan, R.; Lo, M. K.; Ray, A. S.; Mackman, R. L.; Soloveva, V.; Siegel, D.; Perron, M.; Bannister, R.; Hui, H. C.; Larson, N.; Strickley, R.; Wells, J.; Stuthman, K. S.; Van Tongeren, S. A.; Garza, N. L.; Donnelly, G.; Shurtleff, A. C.; Retterer, C. J.; Gharaiibe, D.; Zamani, R.; Kenny, T.; Eaton, B. P.; Grimes, E.; Welch, L. S.; Gomba, L.; Wilhelmsen, C. L.; Nichols, D. K.; Nuss, J. E.; Nagle, E. R.; Kugelman, J. R.; Palacios, G.; Doerffler, E.; Neville, S.; Carra, E.; Clarke, M. O.; Zhang, L.; Lew, W.; Ross, B.; Wang, Q.; Chun, K.; Wolfe, L.; Babusis, D.; Park, Y.; Stray, K. M.; Trancheva, I.; Feng, J. Y.; Barauskas, O.; Xu, Y.; Wong, P.; Braun, M. R.; Flint, M.; McMullan, L. K.; Chen, S.-S.; Fears, R.; Swaminathan, S.; Mayers, D. L.; Spiropoulou, C. F.; Lee, W. A.; Nichol, S. T.; Cihlar, T.; Bavari, S. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. *Nature* 2016, 531, 381-385.

(38) Warren, T.; Jordan, R.; Lo, M.; Soloveva, V.; Ray, A.; Bannister, R.; Mackman, R.; Perron, M.; Stray, K.; Feng, J.; Xu, Y.; Wells, J.; Stuthman, K.; Welch, L.; Doerffler, E.; Zhang, L.; Chun, K.; Hui, H.; Neville, S.; Lew, W.; Park, Y.; Babusis, D.; Strickley, R.; Wong, P.; Swaminathan, S.; Lee, W.; Mayers, D.; Cihlar, T.; Bavari, S. Nucleotide Prodrug GS-5734 Is a Broad-Spectrum Filovirus Inhibitor That Provides Complete Therapeutic Protection Against the Development of Ebola Virus Disease (EVD) in Infected Non-human Primates. *Open Forum Infectious Diseases* 2015, 2.

(39) Agostini, M. L.; Andres, E. L.; Sims, A. C.; Graham, R. L.; Sheahan, T. P.; Lu, X.; Smith, E. C.; Case, J. B.; Feng, J. Y.; Jordan, R.; Ray, A. S.; Cihlar, T.; Siegel, D.; Mackman, R. L.; Clarke, M. O.; Baric, R. S.; Denison, M. R. Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. 2018, 9, e00221-00218.

(40) Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. *Cell Research* 2020, 30, 269-271.

(41) Sheahan, T. P.; Sims, A. C.; Graham, R. L.; Menachery, V. D.; Gralinski, L. E.; Case, J. B.; Leist, S. R.; Pyrc, K.; Feng, J. Y.; Trancheva, I.; Bannister, R.; Park, Y.; Babusis, D.; Clarke, M. O.; Mackman, R. L.; Spahn, J. E.; Palmiotti, C. A.; Siegel, D.; Ray, A. S.; Cihlar, T.; Jordan, R.; Denison, M. R.; Baric, R. S. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. 2017, 9, eaa3653.

(42) Grein, J.; Ohmagari, N.; Shin, D.; Diaz, G.; Asperges, E.; Castagna, A.; Feldt, T.; Green, G.; Green, M. L.; Lescure, F.-X.; Nicastri, E.; Oda, R.; Yo, K.; Quiros-Roldan, E.;
Studemeister, A.; Redinski, J.; Ahmed, S.; Bernett, J.; Chelliah, D.; Chen, D.; Chihara, S.; Cohen, S. H.; Cunningham, J.; D’Arminio Monforte, A.; Ismail, S.; Kato, H.; Lapadula, G.; L’Her, E.; Maeno, T.; Majumder, S.; Massari, M.; Mora-Rillo, M.; Mutoh, Y.; Nguyen, D.; Verweij, E.; Zoufaly, A.; Osinusi, A. O.; DeZure, A.; Zhao, Y.; Zhong, L.; Chokkalingam, A.; Elboudwarej, E.; Telep, L.; Timbs, L.; Henne, I.; Sellers, S.; Cao, H.; Tan, S. K.; Winterbourne, L.; Desai, P.; Mera, R.; Gaggar, A.; Myers, R. P.; Brainard, D. M.; Childs, R.; Flanigan, T. Compassionate Use of Remdesivir for Patients with Severe Covid-19. 2020.

43) Suan Li, M.; Khanh Mai, B. Steered Molecular Dynamics-A Promising Tool for Drug Design. Current Bioinformatics 2012, 7, 342-351.

44) Sanner, M. F. Python: a programming language for software integration and development. J Mol Graph Model 1999, 17, 57-61.

45) Trott, O.; Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multitithreading. Journal of computational chemistry 2010, 31, 455-461.

46) Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; Dror, R. O.; Shaw, D. E. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Structure, Function, and Bioinformatics 2010, 78, 1950-1958.

47) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. Comparison of simple potential functions for simulating liquid water. The Journal of chemical physics 1983, 79, 926-935.

48) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and testing of a general amber force field. Journal of computational chemistry 2004, 25, 1157-1174.

49) Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A. Antechamber: an accessory software package for molecular mechanical calculations. J. Am. Chem. Soc 2001, 222, U403.

50) Sousa da Silva, A. W.; Vranken, W. F. ACPYPE - AnteChamber PYthon Parser interface. BMC Research Notes 2012, 5, 367.

51) Jakalian, A.; Bush, B. L.; Jack, D. B.; Bayly, C. I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. Journal of computational chemistry 2000, 21, 132-146.

52) Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An N· log (N) method for Ewald sums in large systems. The Journal of chemical physics 1993, 98, 10089-10092.

53) Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. The Journal of chemical physics 2007, 126, 014101.

54) Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied physics 1981, 52, 7182-7190.

55) Vuong, Q. V.; Nguyen, T. T.; Li, M. S. A New Method for Navigating Optimal Direction for Pulling Ligand from Binding Pocket: Application to Ranking Binding Affinity by Steered Molecular Dynamics. Journal of Chemical Information and Modeling 2015, 55, 2731-2738.

56) Binnig, G.; Quate, C. F.; Gerber, C. Atomic Force Microscope. Physical Review Letters 1986, 56, 930-933.

57) Nguyen, T. T.; Mai, B. K.; Li, M. S. Study of Tamiflu Sensitivity to Variants of A/H5N1 Virus Using Different Force Fields. Journal of Chemical Information and Modeling 2011, 51, 2266-2276.

58) Heymann, B.; Grubmüller, H. AN02/DNP-hapten unbinding forces studied by molecular dynamics atomic force microscopy simulations. Chem. Phys. Lett. 1999, 303, 1-9.

59) Truong, D. T.; Li, M. S. Probing the Binding Affinity by Jarzynski's Nonequilibrium Binding Free Energy and Rupture Time. The Journal of Physical Chemistry B 2018, 122, 4693-4699.
(60) Jarzynski, C. Nonequilibrium Equality for Free Energy Differences. *Physical Review Letters* **1997**, *78*, 2690-2693.

(61) Park, S.; Schulten, K. Calculating potentials of mean force from steered molecular dynamics simulations. *Journal of Chemical Physics* **2004**, *120*, 5946-5961.

(62) Torrie, G. M.; Valleau, J. P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. *Journal of Computational Physics* **1977**, *23*, 187-199.

(63) Kumar, S.; Rosenberg, J. M.; Bouzida, D.; Swendsen, R. H.; Kollman, P. A. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. *Journal of computational chemistry* **1992**, *13*, 1011-1021.

(64) Hub, J. S.; de Groot, B. L.; van der Spoel, D. g_wham—A Free Weighted Histogram Analysis Implementation Including Robust Error and Autocorrelation Estimates. *Journal of Chemical Theory and Computation* **2010**, *6*, 3713-3720.

(65) Kyte, J.; Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. *Journal of molecular biology* **1982**, *157*, 105-132.

(66) Laskowski, R. A.; Swindells, M. B. LigPlot+: Multiple Ligand–Protein Interaction Diagrams for Drug Discovery. *Journal of Chemical Information and Modeling* **2011**, *51*, 2778-2786.

(67) Hummer, G.; Szabo, A. Free energy reconstruction from nonequilibrium single-molecule pulling experiments. *Proceedings of the National Academy of Sciences* **2001**, *98*, 3658-3661.

(68) Harris, N. C.; Song, Y.; Kiang, C.-H. Experimental Free Energy Surface Reconstruction from Single-Molecule Force Spectroscopy using Jarzynski’s Equality. *Physical Review Letters* **2007**, *99*, 068101.

(69) Nutho, B.; Mahalapbutr, P.; Hengphasatporn, K.; Pattaranggoon, N. C.; Simanon, N.; Shigeta, Y.; Hannongbua, S.; Rungrotmongkol, T. Why Are Lopinavir and Ritonavir Effective against the Newly Emerged Coronavirus 2019? Atomistic Insights into the Inhibitory Mechanisms. *Biochemistry* **2020**, *59*, 1769-1779.

(70) Bruce, N. J.; Ganotra, G. K.; Kokh, D. B.; Sadiq, S. K.; Wade, R. C. New approaches for computing ligand–receptor binding kinetics. *Current Opinion in Structural Biology* **2018**, *49*, 1-10.
TABLES AND FIGURES

Table 1: SMD results from 200 independent trajectories. Errors represent standard deviations.

Target	F_{max} (pN)	t_{max} (ps)	W (kcal/mol)	ΔG_{neq} (kcal/mol)	ΔG_{unbind} (kcal/mol)	ΔG_{bind} (kcal/mol)
Mpro	716.2 ± 75.7	207.8 ± 26.5	106.2 ± 11.6	-71.7 ± 1.2	26.3 ± 7.2	132.2 ± 16.9
RdRp	812.5 ± 102.1	235.3 ± 33.1	144.6 ± 19.2	-89.5 ± 1.2	30.8 ± 9.5	175.1 ± 26.1

Table 2: The most important residues of the two targets. The energy of their interaction with Remdesivir is less than -2 kcal/mol. The red color refers to residues that contribute to the complex stability above 8 kcal/mol.

Targets	Most important residues
Mpro	H41, M49, F140, L141, **N142**, G143, S144, C145, H163, H164, M165, **E166**, D187, Q189
RdRp	E164, D449, K497, K542, K550, **R552**, D615, C619, **D620**, T677, **D751**, D758
Figure 1: (Upper panel) Schematic representation of SARS-CoV-2 RNA sequence, 5' untranslated region (5' UTR), 3' UTR, open reading frames (ORF): 1a, 1b, 3a, 3b, 6, 7a, 7b, 8a, 8b, 9b, S (Spike), E (Envelope), M (Membrane), N (Nucleocapsid) and Non-structural proteins (NSP) from 1 to 16. (Middle panel) PDB structures of the main protease (Mpro) and RdRp. (Bottom panel) Schematic representation of the SARS-CoV-2 virion structure.
Figure 2: (Top panel) 2D structure of Remdesivir and red sticks divide it into six blocks. Names of these blocks are shown in Figure S1. (Bottom panel) PDB structures of Mpro (6LU7) and RdRp (7BTF). The seven motifs of the RdRp active site are shown in a color box.
Figure 3. Remdesivir is pulled out from the 6LU7 and 7BTF binding site in the direction determined by the MHS method (arrow). In the green part of the arrow, the space window used in umbrella sampling is 0.08 nm, while the 0.18 nm window was used in the red part.
Figure 4: Binding site of Remdesivir in complex with Mpro and RNA polymerase. (Upper panel) Remdesivir is shown in stick, Mpro is in orange, while nsp12, nsp7, nsp8 are in blue, red and magenta, respectively. Residues of the target at the binding site are highlighted in green. The active site of nsp12 is shown in 7 motifs A-G. (Bottom panel) The boxed areas are rendered in 2D charts. HBs and non-bonded contacts are highlighted in green and red lines. Letter A in parentheses refers to chain A. Mpro has only one chain, while RdRp has three chains and nsp12 is designated as chain A.
Figure 5: (A) Force-time profiles of a representative SMD trajectory of Mpro (green) and RdRp (red). The rupture force appears at t_{max}. (B) The same as in (A) but the force is plotted as a function of the ligand displacement. Arrows refer to a distance of 2 nm and 5.06 nm. In the 0-2 nm range, we used a window of 0.08 nm in umbrella sampling, while a 0.18 nm window was chosen for a distance between 2 and 5.06 nm for both complexes. (C) The free energy profile obtained by using JE and SMD data. TS, bound and unbound denote a transition, bound and unbound state.
Figure 6: Energy of interaction between Remdesivir and two targets. Results were obtained by averaging over 200 SMD runs. Error bars represent standard deviations.

Figure 7: (Left) Energy of interaction between the residues of Mpro and Remdesivir. Residues with energies below or equal to -2 kcal/mol are indicated. (Right) Shown is the position of the most prominent residues indicated in the left panel at the binding site. They are close to Remdesivir.
Figure 8: (Left) Energy of interaction between the residues of RdRp and Remdesivir. Residues with energies below or equal to -2 kcal / mol are indicated. (Right) Shown is the position of the most prominent residues indicated in the left panel in the binding site that belongs to nsp12. They are close to Remdesivir.

Figure 9: Non-bonded energy of interaction of Remdesivir blocks with Mpro and RdRp. The structure of the six blocks is shown on the top. Results were obtained by averaging over a 0-200 ps time window of 200 SMD trajectories.
Figure 10: Target residues forming HB with Remdesivir. Carbon atoms of Remdesivir and protein are highlighted in gold and grey, respectively. The acceptor HB atoms of Remdesivir are shown as balls. The number under the residue name refers to the HB population (%). Results were obtained by averaging over 200 SMD trajectories.

Figure 11: Dependence of the potential of mean force on the reaction coordinate Z of two systems. The arrow represents the binding free energy of Remdesivir to Mpro and RdRp.
TOC plot