ISOLATION AND ANALYSIS OF THE MECHANISM OF ACTION OF AN INACTIVATOR OF C4b IN NORMAL HUMAN SERUM*

By NEIL R. COOPER$
(From the Department of Molecular Immunology, Scripps Clinic and Research Foundation, La Jolla, California 92037)

This paper documents the existence of an additional complement regulatory principle, C4b inactivator. C4b inactivator, which may well be identical to C3b inactivator, was partially purified from normal human serum and the parameters of its action upon C4b analyzed. C4b inactivator inactivated the hemolytic and immune adherence activity of the activated fourth component of complement, C4b, by direct proteolytic cleavage of the α'-polypeptide chain of the molecule.

A number of other serum proteins have been identified which act at key sites in the complement sequence to modulate or prevent the progression of the reaction. These regulatory principles include C1 inactivator, a proteolytic enzyme inhibitor that prevents activation of the classical complement pathway by forming a complex with the first complement component and rendering it unable to activate C2 and C4 (1, 2). Biological functions of the activated third component of complement, C3b, are modulated by C3 inactivator or KAF, a serum enzyme that cleaves C3b (3, 4) and which may be identical to C4b inactivator. C3b fragmented by this enzyme is unable to participate in an ongoing complement reaction, to trigger activation of the properdin pathway, or to interact with lymphocytes and other cells possessing receptors for C3b. C3b inactivator has also been postulated to be an inhibitor of Factor D of the alternative pathway (5). The chemotactic and histamine releasing properties of the small cleavage products of C3 and C5, C3a and C5a, respectively, are rapidly lost due to the action of a serum carboxypeptidase B-type enzyme termed anaphylatoxin inactivator (6). Other control proteins have been described (7–11) but these agents have not yet been characterized. The physiological importance of the regulatory proteins of the complement system is indicated by the fact that absence of at least two of them, C1 inactivator and C3b inactivator, leads to uncontrolled activation of the complement system with accompanying disease (1, 5, 12).

Materials and Methods

Chemicals and Reagents. Reagent grade sodium phosphate (J. T. Baker Chemical Co., Phillipsburg, N. J.), sodium barbital (Sigma Chemical Co., St. Louis, Mo.), Tris (Sigma Chemical Co.), and sodium acetate (Mallinckrodt Chemical Works, St. Louis, Mo.) were used to prepare buffers. Phenyl methyl sulfonyl fluoride (PMSF)$ and diisopropyl fluorophosphate (DFP)$ were used to prepare buffers. Phenyl methyl sulfonyl fluoride (PMSF)$ and diisopropyl fluorophosphate (DFP)$ were

* This is publication no. 894 from the Department of Molecular Immunology, Scripps Clinic and Research Foundation, La Jolla, Calif. This work was supported by U.S. Public Health Service Program Project Grant AI-07007.
† Recipient of U.S. Public Health Service Research Career Development Award KO4 AI-33630.
$ Abbreviations used in this paper: DFP, diisopropyl fluorophosphate; DTT, dithiothreitol; PMSF, phenyl methyl sulfonyl fluoride; SDS, sodium dodecyl sulfate.
purchased from Calbiochem, San Diego, Calif. and Boots Pure Drug, Ltd., Nottingham, England, respectively. Agarose was obtained from Marine Colloids Inc., Springfield, N. J. and ion agar from CoLab, Inc., Glenwood, Ill. Sodium dodecyl sulfate (SDS) was obtained from Sigma Chemical Co. and dithiothreitol (DTT) from Bio-Rad Laboratories, Richmond, Calif. The composition of barbital-buffered saline containing 1.5×10^{-4} M calcium, 5×10^{-4} M Mg, and 0.1% gelatin (GVB) has been described (13). Tris-buffered saline was composed of 5×10^{-2} M Tris and 1×10^{-2} M NaCl, pH 7.5.

Soybean, lima bean, and ovomucoid trypsin inhibitors were purchased from Worthington Biochemical Corp., Freehold, N. J., kallikrein-trypsin inhibitor (Trasylol) was obtained through the courtesy of Dr. Schmidt-Kastner, Bayer AG, Elberfeld, Germany. Marker proteins employed for molecular weight determinations included reduced α_1-macroglobulin (185,000) kindly provided by Dr. Peter C. Harpel, (New York Hospital-Cornell Medical Center, New York) reduced β-galactosidase (135,000) obtained from Worthington Biochemical Corporation, Freehold, N. J., reduced phosphorylase A (94,000) from Sigma Chemical Co., reduced fibrinogen (70,900, 40,400, 49,400) kindly provided by Dr. Michael Mosesson (Downstate Medical Center, State University of New York, Brooklyn, N. Y.), reduced glyceraldehyde-3-phosphate dehydrogenase (36,000) obtained from Worthington Biochemical, and reduced chymotrypsinogen (25,500) obtained from Calbiochem.

Isolated C1 inactivator, α_1-macroglobulin, α_1-antitrypsin, and partially purified inter-α-trypsin inhibitor were kindly provided by Dr. Peter C. Harpel. Bovine conglutinin was isolated by the method of Lachmann (14).

Complement and Complement Reagents. Fresh human serum was employed for the isolation of C1, C1s, C2, C4, C3, and C4b inactivator. C1s was isolated by a modification (2) of the previously published method (15). C1 (16), C2 (17), C3 (18), and C4 (19) were isolated as described. C2 was exclusively in the oxidized form (20). The cellular intermediates EAC1 (16), EAC14 (17), and EAC1423 (21) were prepared by published methods.

Preparation of Forssman Antigen-Antibody-Complement Complexes. Sheep erythrocyte membrane fragments containing Forssman antigen (F) were prepared as described by Rapp and Borsos (22). The particles were sensitized with Forssman antibody, C1, and $[^{35}S]C4$ as previously described (19).

Isolation of C4b Inactivator. For DE-32 cellulose chromatography, approximately 400 ml of fresh normal human serum was adjusted to pH 7.5 with HCl and dialyzed in the cold against 10 liters of the starting buffer which was composed of 1×10^{-2} M Tris, 2×10^{-2} M EDTA, pH 7.5, conductance 1.2 mmhos/cm (all conductivity measurements were performed at 22°C). After removal from the small precipitate, the supernate was applied to a 9 x 60 cm column of DE-32 cellulose equilibrated with the same buffer. Next, a 2 liter wash was applied followed by a 6 liter NaCl gradient to a limit concentration of 20 mmhos/cm. Fractions containing the peak of C4b inactivator activity were pooled, concentrated by ultrafiltration (Amicon Corp., Lexington, Mass.) to 100 ml and dialyzed against the starting buffer for CM-32 cellulose chromatography. This buffer was composed of 1×10^{-2} M sodium acetate, 2×10^{-2} M EDTA, pH 6.0, conductance 1.1 mmhos/cm. The sample was applied to the column, followed by a 1 liter wash of starting buffer and a 2 liter linear NaCl gradient to a limit concentration of 20 mmhos/cm. The pool of active material was concentrated by ultrafiltration to 50 ml and dialyzed against the starting buffer for hydroxylapatite chromatography which was 1×10^{-2} M sodium phosphate, pH 7.9, conductance 2.3 mmhos/cm. The sample was applied to a 2.8 x 30 cm column of hydroxylapatite, followed by a 500 ml wash of starting buffer and a 2 liter gradient composed of 1 liter of starting buffer and 1 liter of sodium/potassium phosphate buffer having a pH of 7.9 and a conductance of 25 mmhos/cm. The limit buffer was prepared by addition of 6.5×10^{-3} M potassium phosphate, pH 7.9 to 1×10^{-2} M sodium phosphate, pH 7.9 to the desired conductance. The active material eluting from the column was concentrated by ultrafiltration to 2 ml and frozen in aliquots at -70°C.

Measurement of Protein Concentration. Protein was measured by the Lowry procedure (23), with C3 as a reference standard.

Immunoelectrophoretic Analyses. Immunelectrophoresis was performed in 1% agarose in a barbital buffer (pH 8.6) containing 1×10^{-2} M EDTA. Polyacrylamide disc electrophoresis in 6% running gels was performed by the method of Davis (24) in Tris-HCl-glycine buffer, pH 8.7.

SDS-Polyacrylamide Gel Electrophoresis. Analyses to determine the molecular weights of C4
MECHANISM OF ACTION OF C4b INACTIVATOR

and its cleavage fragments were performed in 7% polyacrylamide gels containing 0.1% SDS in phosphate buffer, pH 7.25, according to the method of Weber and Osborn (25), as modified by Harpel and Mosesson (26). 1 vol of protein solution was mixed with 1 vol of phosphate buffer containing 8.5 M urea, 2% SDS, and where indicated, 1.4 × 10⁻³ M DTT. After an incubation of 45 min at 37°C, an equal vol of 50% glycerol and water saturated with bromophenol blue was added and 25-μl samples applied to 6 × 80 or 6 × 130 mm gel columns and electrophoresed for 3 h at 8 mA per gel in a Hoefer gel electrophoresis apparatus (Hoefer Scientific Instruments, San Francisco, Calif.). The electrophoresis buffer was 1 × 10⁻³ M sodium phosphate, pH 7.25, containing 0.1% SDS. Gels were stained first with Amido Schwartz followed by Coomassie blue. When radiolabeled C4 was employed the gels were sectioned immediately after electrophoresis at 2-mm intervals and the sections analyzed for radioactivity in a Packard auto γ-scintillation spectrometer (Packard Instrument Co., Inc., Downers Grove, Ill.).

Sucrose Gradient Ultracentrifugation. Samples were sedimented in 7-31% linear sucrose density gradients prepared in barbital-buffered saline, pH 7.3, in an SW-50 rotor at 40,000 rpm for 18 h in a Beckman L-250 ultracentrifuge (Beckman Instruments, Inc., Spinco Div. Palo Alto, Calif.). An ionic strength of 0.15 was maintained throughout the gradient. Marker substances were included in separate tubes.

Radiolabeling of Purified C4. Isolated C4 was radiolabeled with ¹³¹I by the method of McConahey and Dixon (27) as has been described for C4 (19).

Generation of C3b and C4b. Isolated C3 was incubated with 2% trypsin (wt/wt) for 5 min at 37°C. Trypsin was neutralized with a twofold excess of soybean trypsin inhibitor and the mixture subjected to electrophoresis in a Pevikon block at pH 8.6. Eluates of the block, which had the ability to induce consumption of C3 on addition to serum were pooled at C3b. Isolated C4b was incubated with a 1:10 molar ratio of isolated C1s for 30 min at 37°C. Verification of C3b and C4b formation was demonstrated by hemolytic measurement which indicated that greater than 99% of the activity of each protein had been lost.

Measurement of C3 and C4 Hemolytic Activity. The hemolytic activity of C3 and C4 was measured by effective molecule titration (16, 21).

Measurement of C3 and C4 Immune Adherence Activity. Immune adherence activity of bound C4 was assessed by the microtiter method employing dilutions of EAC14 with human type O, Rh erythrocytes as indicator particles (28).

Results

Isolation of C4b Inactivator. The method employed for partial purification of C4b inactivator was adapted from that published by Lachmann for C3b inactivator (3). Initial separation of whole serum into euglobulin and pseudoglobulin fractions was avoided during the isolation procedure since C4b inactivator is present in both fractions. As shown in Fig. 1, fractions from two distinct areas of the chromatogram had the ability to inhibit C4b-dependent immune adherence. Fractions from both areas also inhibited C3b-dependent immune adherence. The first peak of activity emerged from the column just before, and overlapping with C3 proactivator and transferrin in fractions having a conductance of 5.5-7 mmhos/cm. The second area of the column having the ability to inhibit C4b immune adherence correlated with the appearance of C3 from the column. This second inhibitory area was not studied further, as the inhibition was felt to be due to the presence of C3b in the column fractions. Fractions representing the first peak of activity were pooled, concentrated, and subjected to chromatography on CM-cellulose. C4b inactivator activity and also C3b inactivator activity emerged from this column just before and overlapping transferrin in fractions having a conductance of 3 to 6 mmhos/cm (Fig. 1). Complete separation from C3PA, which eluted considerably later, was achieved by using this column. Hydroxylapatite chromatography removed additional contami-
nents and reduced the contamination of transferrin which eluted before C4b and C3b inactivator activities; these came together at a conductance of 5.5–6.5 mmhos/cm. Although C4b inactivator was not pure at this stage, activity was not detectable after additional chromatographic procedures designed to remove the contaminating Ig and transferrin. Among the separatory procedures attempted were chromatography on Sephadex G-200, QAE-Sephadex, and Biorex-70.

Physicochemical Characteristics of C4b Inactivator. Ouchterlony analyses showed the preparations to be unreactive with antisera to C1q, C3, C4, C5, and C3 proactivator, but reactive with antisera to IgG, IgA and transferrin. Polyacrylamide gel electrophoretic analysis of a typical C4b inactivator preparation revealed three bands as shown in Fig. 2. The cathodal of these was due to IgG while the anodal represented transferrin. As indicated in Fig. 2, C4b inactivator activity migrated in parallel unstained gels in the position occupied by the middle band. Although not shown, C3b inactivator activity was also evident in these eluates.

C4b inactivator as well as C3b inactivator migrated as β-globulin on electrophoresis in agarose at pH 8.6. Sucrose gradient ultracentrifugal analysis indicated a sedimentation rate of 4.5S for C4b inactivator. C4b and C3b inactivator activities eluted together with transferrin from Sephadex G-200 columns, indicating a diffusion coefficient of approximately 5.3×10^{-7} cm2/sec. A mol wt of approximately 88,000 daltons was calculated from the S-rate and
MECHANISM OF ACTION OF C4b INACTIVATOR

diffusion coefficient. C4b- and C3b-inactivating activities were destroyed by incubation with 1×10^{-2} M DTT at pH 8.0 but not by 1×10^{-2} M DFP or PMSF, 100 μg/ml of soybean, lima bean, ovomucoid or kallikrein trypsin inhibitors, or by 5 μg/ml of isolated C1 inactivator, α_2-macroglobulin, α_1-antitrypsin, or inter-α-trypsin inhibitor.

Effect of C4b Inactivator on Cell-Bound C4b. Varying amounts of C4b inactivator were incubated with 2×10^8 EAC14 in a total vol of 0.1 ml for 60 min at 37°C. After washing, active C4b remaining on the cells was assayed hemolytically and by immune adherence. As indicated in Fig. 3, C4b inactivator produced a dose-dependent loss in the hemolytic and immune adherence activity of bound C4b. Parallel studies with EAC1423 prepared with limited amounts of C4 which were immune adherence-negative at the EAC14 stage showed that the C4b inactivator preparations also inactivated the hemolytic and immune adherence activity of bound C3b. Similar studies performed with EAC1 [125I]C4 showed a dose-dependent reduction in cell-bound C4 radioactivity with 19% of the total counts being dissociated by the largest amount of C4b inactivator employed, 87 μg.

The relationship between inactivation of bound C4b activity and dissociation

![Fig. 2. Mobility of C4b inactivator on electrophoresis in 6% polyacrylamide gels. C4b inactivator was eluted from segments of a parallel unstained gel.](image1)

![Fig. 3. Dose-dependent inactivation of the hemolytic and immune adherence activity of cell-bound C4b by C4b inactivator. Hemolytic testing ($\Delta-\Delta$) showed 50% inactivation of a limited amount of cell-bound C4b by 1.5 μg of C4b inactivator, while 50% inactivation of the immune adherence activity (O-O) of cells bearing a larger amount of C4b, approximately 5,000 molecules per cell with 10 μg of C4b inactivator.](image2)
of radiolabeled C4 from cells was determined by periodic samplings at 37°C of a reaction mixture composed of EAC1 [125I]C4 and 46 μg of C4b inactivator. As indicated in Fig. 4, immune adherence activity was rapidly lost, whereas C4 radioactivity was released from the cells at a considerably slower rate. This difference in kinetics suggests that functional inactivation is not the direct result of dissociation of C4b from the cells. A maximum of 70% of the bound C4 radioactivity could be removed after prolonged incubation (37°C, 24 h) with large amounts of C4b inactivator. In order to determine whether the failure to completely remove bound C4 was due to cleavage of the molecule with retention of a fragment on the cell, [125I]C4 eluted from EAC1 [125I]C4 by C4b inactivator was examined by sucrose gradient ultracentrifugation. As shown in Fig. 5, a 5.5S

![Graph showing kinetic study of the ability of C4b inactivator to dissociate C4 radioactivity from EAC1 [125I]C4 and to inactivate C4b-dependent immune adherence activity.](image)

Fig. 4. Kinetic study of the ability of C4b inactivator to dissociate C4 radioactivity from EAC1 [125I]C4 and to inactivate C4b-dependent immune adherence activity.

![Graph showing sucrose gradient ultracentrifugal analysis of C4b and of [125I]C4 dissociated from EAC1 [125I]C4 by C4b inactivator. Marker proteins employed to determine the sedimentation rate were Clq, IgG, human serum albumin, and cytochrome C.](image)

Fig. 5. Sucrose gradient ultracentrifugal analysis of C4b and of [125I]C4 dissociated from EAC1 [125I]C4 by C4b inactivator. Marker proteins employed to determine the sedimentation rate were Clq, IgG, human serum albumin, and cytochrome C.
Mechanism of Action of C4b Inactivator

Sedimentation rate was observed for C4 eluted by the action of C4b inactivator in contrast to the 9S rate observed for C4b, a finding which documents cleavage of bound C4 by C4b inactivator.

Effect of C4b Inactivator on C4b in Solution. C4b was incubated with buffer or with C4b inactivator for prolonged periods of time (up to 24 h) at 37°C. The status of C4b was then examined by immunoelectrophoresis in agarose. A new anodally migrating line reactive with anti-C4 appeared after treatment with C4b inactivator. Residual C4b appeared to spur over this derivative line.

Effect of C2 on the Susceptibility of EAC14 to C4b Inactivator. EAC14, bearing approximately 8,000 molecules of C4 per cell, were incubated with various concentrations of oxidized human C2. After washing, batches of EAC142 cells were incubated with C4b inactivator or with buffer for 60 min at 37°C, washed again, and examined for immune adherence activity. EAC14 which had not been incubated with C2 showed a decrease in immune adherence titer from 1 x 10^9/ml to >3 x 10^9/ml after treatment with C4b inactivator as shown in Fig. 6. In contrast, the ability of C4 inactivator to attack bound C4b was impaired by the presence of cell-bound C2. Thus, EAC142 prepared with the highest dose of oxidized C2 were almost completely protected from C4b inactivator action. A progressive increase in susceptibility to C4b inactivator was observed as the amount of bound C2 was decreased as indicated in Fig. 6. Interestingly, the presence of C2 on EAC14 did not affect the ability of the C4 to participate in immune adherence, since EAC14 and the various batches of EAC142 had the same immune adherence titer.

Effect of C4b and C3b on C4b Inactivator. Since C4b inactivator acted upon C4b in free solution or on the surface of cells, it was considered likely that C4b in solution would inhibit the attack of C4b inactivator on bound C4b by providing...
additional substrate. Varying amounts of C4b were added to a mixture of C4b inactivator and EAC14. After 60 min at 37°C the cells were washed, diluted, and examined for immune adherence activity. In the control, which did not contain C4b, C4b inactivator reduced the IA₉₀ titer of the cells from 1 x 10⁹/ml to > 2 x 10⁹/ml. The action of C4b inactivator on EAC14 was inhibited by the presence of C4b as shown by an increase in the IA₉₀ titer to 1.25 x 10⁹/ml, 2.5 x 10⁹/ml, and 1 x 10⁹/ml when 145, 72, and 36 μg of C4b, respectively were included. In the same experiment C3b was also found to inhibit the action of C4b inactivator on EAC14. IA₉₀ titers of 1 x 10⁹/ml, 3 x 10⁹/ml, 2 x 10⁹/ml, and 1 x 10⁹/ml were obtained when 96, 48, 24, and 12 μg of C3b, respectively, were present during the reaction of C4b inactivator with EAC14.

Lack of Reactivity of C4b Inactivator-Treated Cell-Bound C4b with Conglutinin. C3b inactivator has been termed KAF or conglutinogen-activating factor because of its ability to render bound C3b reactive with bovine conglutinin (3). The following experiment was performed to determine whether bound C4b was also capable of acting as a conglutinogen after treatment with C4b inactivator. EAC14 were incubated with dilutions of C4b inactivator for 60 min at 37°C after which purified bovine conglutinin (300 μg/ml) was added. After 30 min of incubation at 37°C the cells were allowed to settle and the pattern of the sedimented erythrocytes determined. No agglutination (conglutination) of the cells and thus no reactivity of the EAC14 with conglutinin was evident. In parallel experiments with EAC1423, the same amount of conglutinin strongly agglutinated the cells to a 1:800 dilution of the C4b inactivator preparation. Thus, C4b is unable to act as a conglutinogen after treatment with C4b inactivator.

Analysis of the Effect of C4b Inactivator on the Subunit Structure of C4. In order to determine the nature of the attack on the C4 molecule by C4b inactivator, radiolabeled preparations of C4 and C4b were incubated with C4b inactivator. Urea, SDS, and DTT were added, and the mixtures were subjected to electrophoresis in SDS-polyacrylamide gels. The gels were sectioned and the segments analyzed for radioactivity. The basic three polypeptide chain structure of C4 was not found to be altered by incubation with C4b inactivator. Mol wt for the α-, β-, and γ-chains were 96,000, 74,000 and 32,000 daltons, respectively, in good agreement with earlier studies (19). In contrast, the structure of C4b was markedly altered by C4b inactivator. In the experiment depicted in Fig. 7, long SDS-polyacrylamide gels were employed in order to better define the effects. The average mol wt obtained in these studies for the α', β' and γ-chains were 84,000 (range 80,000–87,000), 76,000 (70,000–79,000), and 32,000 (29,000–36,000) daltons, respectively (Fig. 7, upper panel). As shown in the central panel, C4b inactivator markedly diminished the amount of radioactivity associated with the position of the α'-chain of the molecule. In addition, a new peak having an average mol wt of 49,000 (46,000–52,000) daltons appeared, and the percentage of total radioactivity present in the 30,000–35,000 dalton range occupied by the γ-chain increased. Furthermore, the percentage of total radioactivity present in the 49,000 dalton peak plus the increment in radioactivity of the 30,000–35,000 dalton range approximately equalled the percentage of radioactivity missing from the α'-peak. From these studies it is evident that
MECHANISM OF ACTION OF C4b INACTIVATOR

C4b inactivator cleaves the α'-polypeptide chain of C4b into fragments having mol wt of 40,000 daltons and approximately 30,000–35,000 daltons. Since no smaller fragments bearing radioactivity were detected, it may be assumed that C4b inactivator cleaves the α'-chain at a single site producing two fragments having mol wt of 49,000 and 35,000 daltons, respectively. This structural alteration undoubtedly represents the mechanism by which C4b inactivator destroys the functional activity of C4b.

A second cleavage in the β-chain of the C4b molecule (Fig. 7, lower panel) was produced by crude C4b inactivator preparations that had only been subjected to the first step of the isolation procedure. This second cleavage was never observed with the more highly purified C4b inactivator preparations. The second cleavage generated a large fragment having a mol wt of 67,000 daltons and a smaller fragment or fragments which had a mol wt of less than 20,000 daltons. This secondary cleavage reaction was not essential for inactivation of C4b functional activity since preparations of C4b inactivator which produced only cleavage of the α'-chain rendered bound C4b functionally inactive. In order to determine...
which fragment of the α' polypeptide chain remained on the cell after treatment with C3b inactivator, an experiment with Forssman antigen particles sensitized with antibody, C1, and \(^{125}\)I-C4 was performed. FAC1 \(^{125}\)I-C4 complexes were incubated with a crude preparation of C4b inactivator for 60 min at 37°C. After washing, the adherent C4b fragment was dissociated by SDS and analyzed by SDS acrylamide gels. Most of the radioactivity was present in a peak having a mol wt of 35,000 daltons as indicated in Fig. 8. A minor peak with a mol wt of 45,000 daltons was also observed. This study indicates that the smaller fragment of the α' chain remained adherent to complexes after treatment with C4b inactivator and thus may be termed C4d in analogy to the comparable fragment of C3. In the same study, the C4 fragment dissociated from FAC \(^{125}\)I-C4 by C4b inactivator migrated as a single peak of radioactivity on electrophoresis in SDS acrylamide gels in the absence of DTT. After reduction and analysis of

![Graph](image)

Fig. 8. SDS acrylamide gel electrophoretic analysis of the fragment of C4 remaining bound to FAC1\(^{125}\)I-C4 after extensive treatment with C4b inactivator. The adherent fragment dissociated by SDS had a mol wt of 35,000 daltons. In addition, a second minor peak having a mol wt of 45,000 daltons was observed.

this fragment, which may be termed C4c, in SDS acrylamide gels, two broad peaks of radioactivity were observed which had mol wt at their highest points of 64,000 and 29,000 daltons, respectively.

Discussion

This paper documents the existence of an inactivator of C4b in normal human serum. The active principle was isolated in a partially purified form from serum and found to be a β1-globulin with an approximate mol wt of 88,000 daltons. C4b inactivator acted only upon the activated fourth component of complement, C4b; native C4 was completely resistant to its action. Incubation of bound C4b with C4b inactivator resulted in a time and dose-dependent inactivation of the hemolytic activity of bound C4b. In addition, the ability of bound C4b to interact with erythrocytes or lymphocytes (29) which possess receptors for C4b, was also lost.

C4b inactivator abrogated the biological activity of C4b by cleaving it into two fragments which may be termed C4c and C4d in analogy to the terminology used
for C3. Cleavage of the molecule could be demonstrated directly on immunoelectrophoretic analysis of inactivator-treated C4b. The fragments separated after treatment of cell-bound C4b with C4b inactivator followed by prolonged incubation, since C4c was dissociated from the cells under these conditions while C4d remained adherent. C4c was found to sediment as a 5.5S protein in sucrose gradients in contrast to the 9S rate observed for C4b. C4d remaining adherent to the cells was detected by residual radioactivity after extensive treatment with C4b inactivator and, although not described here, by agglutination of the treated cells with antisera which detected the fragment.

SDS-polyacrylamide gel analyses of inactivator-treated C4b revealed a single cleavage site located in the α'-polypeptide chain of the molecule. Cleavage at this site represents the mechanism of inactivation of the functional activity of C4b since the more purified preparations of C4b inactivator produced only this cleavage. The two fragments of the α'-chain, termed α2 and α3, had mol wt of 35,000 and 49,000 daltons, respectively (Table I). The α2-fragment was identified as C4d by elution from FAC1 [125I]C4 extensively treated with C4b inactivator.

TABLE I
Fragments of C4 and of C4 Polypeptide Chains

C4a	α1
C4b	α' (α2 + α3) + β + γ
C4c	α2 + β + γ
C4d	α2

C4c is thus composed of the remaining portion of the α-chain, α3, plus the β- and γ-chains. Since C4b inactivator treatment alone dissociated C4b, the α2-fragment is not disulfide-linked to the remainder of the molecule. The three polypeptide chains of C4c, however, are linked by disulfide bridges since C4c sediments in sucrose gradients and migrates in polyacrylamide gels as a single peak of radioactivity in the absence of reducing agents. These concepts are illustrated schematically in the model for C4 structure shown in Fig. 9.

Crude preparations of C4b inactivator produced, in addition, a second cleavage in the β-chain of C4b. A reduction in the mol wt of the β-chain from 76,000 daltons to 67,000 daltons and the concomitant appearance of a small fragment, or fragments, migrating close to the buffer front were observed on treatment of C4b with crude C4b inactivator preparations. Although it is not clear that this was a single cleavage, it is depicted as such in the model (Fig. 9). This cleavage was not essential for inactivation as considered above. It is not known whether this secondary cleavage was also produced by C4b inactivator, since the crude preparations were considerably more active with regard to hemolytic and immune adherence inactivation than the more highly purified preparations. The crude
preparations were also unable to cleave native C4 and, furthermore, cleavage of the β-chain was not observed unless the α-polypeptide chain was fragmented. While these findings suggest that the secondary cleavage resulted from the action of C4b inactivator, it is also possible that it was produced by a contaminant enzyme that acted on a susceptible site in the β-chain exposed by cleavage of the α'-chain.

Certain structural correlates of C4 functional activities are evident from these studies. First, the labile binding site which enables C4b to bind to cells or complexes after activation is located in the α2 fragment of the α'-polypeptide chain, since this fragment remains adherent to cells or complexes after the action of C4b inactivator. Second, the receptor for C2a on the C4b molecule is located on or closely proximate to the α2-α3 junction in the α'-chain, because the presence of C2a on C4b protects it from cleavage by C4b inactivator. Third, the stable binding site by which C4b attaches to cells bearing receptors for this fragment is spatially removed from the C2 binding site, since attachment of C2a to C4b has no effect on C4b immune adherence activity. Whether it is in C4c or represents a site lost by the action of C4b inactivator on C4b cannot be determined at present.

The structural and functional similarities of C4 and C3 are also emphasized by these studies. In addition to the analogous mechanism of activation with cleavage of the α-chain of each molecule and release of a small fragment, the similarities in structure, and the presence on both molecules of sites reactive with cells bearing receptors for the β-fragments of each, the present study shows that C4b, like C3b, is susceptible to the action of a serum enzyme which inactivates the biological activities of the molecules. Among the several differences, however, are the presence of an additional polypeptide chain in C4, the γ-chain, and the inability of C4b to serve as a conglutinogen after treatment with its inactivator.

The present studies do not definitely determine whether C4b and C3b inactivators are identical, although this is probable. As pointed out, both activities have the same distribution on each of the chromatographic steps employed in isolation and both are eluted from acrylamide gels in an identical distribution. They also have the same physicochemical properties, and each is susceptible to inactivation by reduction, but resistant to inactivation by a number of chemical and physical agents. The strongest evidence, however, for identity comes from the fact that C3b, as well as C4b, is able to inhibit the action of C4b inactivator on bound C4. However, definitive proof of identity must await the availability of antisera to each active principle.
MECHANISM OF ACTION OF C4b INACTIVATOR

Summary

A complement regulatory principle, C4b inactivator, was isolated in a partially purified form from normal human serum. The C4b inactivator, a β1-globulin with an approximate mol wt of 88,000 daltons, and which may be identical to C3b inactivator, cleaved C4b in free solution or on the surface of cells and rendered it unable to participate in hemolytic reactions or to interact with cells having receptors for C4b. C4b inactivator functioned by cleaving the α'-polypeptide chain of C4b at a single site which was sufficient to dissociate the molecule into two fragments, C4c and C4d, and to inactivate it biological function. Certain structural correlates of C4 functions deriving from these studies are discussed and a model for C4 structure based on these findings is presented.

I wish to thank Dr. H. J. Müller-Eberhard for his constructive criticism of the manuscript, Kathleen Keogh for her excellent technical assistance and Phyllis Minick and Deanna Wilkes for editorial and secretarial services.

Received for publication 18 December 1974.

References

1. Donaldson, V. H., and R. R. Evans. 1963. Biochemical abnormality in hereditary angioneurotic edema: absence of serum inhibitor of C'1-esterase. Am. J. Med. 35:37.
2. Harpel, P. C., and N. R. Cooper. 1975. Studies on human plasma C1 inactivator-enzyme interactions. I. Mechanisms of interaction with C1s, plasmin and trypsin. J. Clin. Invest. In press.
3. Lachmann, P. J., and H. J. Müller-Eberhard. 1968. The demonstration in human serum of "conglutinogen-activating factor" and its effect on the third component of complement. J. Immunol. 100:691.
4. Ruddy, S., and K. F. Austen. 1971. C3b inactivator of man. II. Fragments produced by C3b inactivator cleavage of cell-bound or fluid phase C3b. J. Immunol. 107:742.
5. Alper, C. A., F. S. Rosen, and P. J. Lachmann. 1972. Inactivator of the third component of complement as an inhibitor in the properdin pathway. Proc. Natl. Acad. Sci. U.S.A. 69:2910.
6. Bokisch, V. A., and H. J. Müller-Eberhard. 1970. Anaphylatoxin inactivator of human plasma: Its isolation and characterization as a carboxypeptidase. J. Clin. Invest. 49:2427.
7. Okada, H., S. Kawachi, and K. Nishioka. 1969. A new complement inhibitor in guinea pig serum. Jap. J. Exp. Med. 39:527.
8. Tamura, N., and R. A. Nelson. 1967. Three naturally occurring inhibitors of components of complement in guinea pig and rabbit serum. J. Immunol. 99:582.
9. Koethe, S. M., K. F. Austen, and I. Gigli. 1973. Blocking of the hemolytic expression of the classical complement sequence by products of complement activation via the alternate pathway. J. Immunol. 110:390.
10. McLeod, D., P. Baker, and H. Gewurz. 1974. Studies on the inhibition of C5,6 initiated lysis. I. Description of the phenomenon and methods of assay. Immunology. 26:1145.
11. Rosen, F. S., and C. A. Alper. 1972. An enzyme in the alternate pathway to C3 activation (the properdin system) and its inhibition by a protein in normal serum. J. Clin. Invest. 51:809.
12. Abramson, N., C. A. Alper, P. J. Lachmann, F. S. Rosen, and J. H. Jandl. 1971. Deficiency of C3 inactivator in man. J. Immunol. 107:19.
13. Mayer, M. M. 1961. Experimental Immunochemistry. E. A. Kabat and M. M. Mayer, editors. Charles C Thomas Publications, Springfield, Ill., II Edition.
14. Lachmann, P. J. 1962. A comparison of some properties of bovine conglutinin with those of rabbit immunoconglutinin. *Immunology.* 5:687.
15. Valet, G., and N. R. Cooper. 1974. Isolation and characterization of the proenzyme form of the Cls subunit of the first complement component. *J. Immunol.* 112:339.
16. Cooper, N. R., and H. J. Müller-Eberhard. 1968. A comparison of methods for the molecular quantitation of the fourth component of human complement. *Immunochimistry.* 5:155.
17. Cooper, N. R., M. J. Polley, and H. J. Müller-Eberhard. 1970. The second component of human complement (C2): quantitative molecular analysis of its reactions in immune hemolysis. *Immunochimistry.* 7:341.
18. Nilsson, U. R., and H. J. Müller-Eberhard. 1965. Isolation of β globulin from human serum and its characterization as the fifth component of complement. *J. Exp. Med.* 122:277.
19. Schreiber, R. D., and H. J. Müller-Eberhard. 1975. Human C4: description of a three polypeptide chain structure. *J. Exp. Med.* 140:1324.
20. Polley, M. J., and H. J. Müller-Eberhard. 1967. Enhancement of the hemolytic activity of the second component of human complement by oxidation. *J. Exp. Med.* 126:1013.
21. Cooper, N. R., and H. J. Müller-Eberhard. 1970. The reaction mechanism of human C5 in immune hemolysis. *J. Exp. Med.* 132:775.
22. Rapp, H. J., and T. Borsos. 1966. Forssman antigen and antibody: preparation of water soluble antigen and measurement of antibody concentration by precipitin analysis, by C'1a fixation and by hemolytic activity. *J. Immunol.* 96:913.
23. Lowry, O. H., M. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with a folin phenol reagent. *J. Biol. Chem.* 193:265.
24. Davis, B. J. 1964. Disc electrophoresis. II. Method and application to human serum proteins. *Ann. N. Y. Acad. Sci.* 121:404.
25. Weber, K., and M. Osborn. 1962. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. *J. Biol. Chem.* 244:4406.
26. Harpel, P. C., and M. W. Mosesson. 1973. Degradation of human fibrinogen by plasma α₁ macroglobulin-enzyme complexes. *J. Clin. Invest.* 52:2175.
27. McConahey, P. J., and F. J. Dixon. 1966. A method of trace iodination of proteins for immunologic studies. *Int. Arch. Allergy Appl. Immunol.* 29:185.
28. Cooper, N. R. 1969. Immune adherence by the fourth component of complement. *Science (Wash, D.C.)* 165:396.
29. Bokisch, V. A., and A. T. Sobel. 1974. Receptor for the fourth component of complement on human B lymphocytes and cultured human lymphoblastoid cells. *J. Exp. Med.* 140:1336.