Voluntary exercise promotes neurotrophic factor and suppresses apoptosis in hippocampal ischemia

Zhixiong Zhang*, Rong Li*, Xiaoyan Zhang, Yaxuan Wei, Hongbing Ma, Ling Zhu and Rong Yin*

Department of Neurology, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, No.333 Binhe Road, Qilihe District, Lanzhou City, Gansu Province, 730050, China

*Correspondence: yin_rong_@163.com (Rong Yin)
#These authors contributed equally.

DOI: 10.31083/j.jin.2019.01.118

This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/)

Previous studies have demonstrated that exercise facilitates recovery from ischemia. However, the mechanisms need to be further elucidated. The current investigation was designed to study the effect of voluntary exercise on cerebral ischemia and discuss possible mechanisms using middle cerebral artery occlusion model. Rats were randomly allocated to three groups: control, middle cerebral artery occlusion, and middle cerebral artery occlusion plus exercise. The middle cerebral artery occlusion plus exercise group was preconditioned by three weeks of voluntary wheel running prior to surgery. The accelerated rotarod test was employed to evaluate motor performance. Infarct volumes were analyzed to detect the neuroprotective effect of voluntary exercise. Brain-derived neurotrophic factor, Bax, Bcl-2, and caspase-3 protein expressions were measured by Western blot. Behavior evaluation showed the middle cerebral artery occlusion plus exercise group achieved significantly longer time on a rotarod than the unexercised group. Additionally, voluntary exercise reduced cerebral infarction and increased brain derived neurotrophic factor expression. Exercise down-regulated the apoptotic Bax/Bcl-2 ratio and caspase-3 protein expression. Results indicate that voluntary wheel running promote hippocampal brain derived neurotrophic factor and inhibit cell apoptosis in ischemia-induced impairment.

Keywords
Hippocampal ischemia; voluntary exercise; brain-derived neurotrophic factor; apoptosis; rodent

Abbreviations

BDNF Brain-derived neurotrophic factor
CCA Common carotid artery
ECA External carotid artery
ICA Internal carotid artery
MCA Middle cerebral artery
MCAO Middle cerebral artery occlusion
TTC 2,3,5-Triphenyl-tetrazolium chloride solution

1. Introduction

Ischemia is the most common cerebral vascular disease and results in heavy socio-economic burden (Feigin et al., 2003; Bajaj et al., 2010; Urra and Chamorro, 2013). The mechanism of ischemia is complex. It includes an inflammation reaction, protease activation, intracellular excitatory toxicity, and calcium overload (Heo and Kim, 2013; Xing et al., 2018). Numerous drugs and therapies have been tested, however, in clinical settings, no available treatment attenuates the neural deficits observed after ischemia (Xing et al., 2018).

Brain-derived neurotrophic factor (BDNF) is a protein belonging to the neurotrophin family, which exerts a protective effect in many neurological disorders (Binder, 2004; Fumagalli et al., 2006; Zhang et al., 2012; Wu et al., 2017). The endogenous receptor of BDNF is Tropomyosin-related kinase receptor type B (TrkB). Both dendrites and axons secrete BDNF in response to neuronal activity (Lessmann and Brigadski, 2009). Several studies reported that treatment with BDNF could promote functional recovery in neural diseases. For example, BDNF promotes neurogenesis in depression (Jiang et al., 2012), anxiety (Queuven et al., 2013), and Alzheimer’s disease (Liu et al., 2015). Treatment by lentiviral BDNF gene delivery significantly ameliorates cell loss and improved synaptophysin immunoreactivity in assembly activating protein mutant mice (Nagahara et al., 2013). In Huntington’s disease, transfection of the BDNF gene to striatal neurons could alleviate injury to both cognitive and motor functions, enlarge striatal volume and increase NeuN+ cell numbers (Connor et al., 2016). Furthermore, BDNF is also reported to increase synapse number (Sanchez et al., 2006) and regulate synaptic plasticity such as LTP (Leal et al., 2017; Kowinszka et al., 2018). It has been shown that BDNF plays an important role in the pathophysiologial course of stroke. For example, intracerebro-ventricular perfusion of BDNF can reduce infarct size and protect hippocampus CA1 pyramidal cells after focal ischemia (Beck et al., 1994; Schabitz et al., 1997; Yamashita et al., 1997). BDNF promotes neuroblasts to migrate to the ischemic area in the striatum ischemia mouse model (Grade et al., 2013). Clinically, serum BDNF level is closely related to the pathology of stroke. In the acute phase of stroke, BDNF concentrations are significantly lower than controls (Stanne et al., 2016). Social support is associated with increased BDNF level, which partly
reduces the risk of stroke (Salinas et al., 2017). These observations imply that BDNF is important in the pathogenesis of ischemia.

A number of studies have documented that physical activity is effective in the treatment of stroke. Post-stroke exercise enhances stroke induced down-regulation of motor function and cognition, and modulates synaptic plasticity (Nie and Yang, 2017). Exercise improved the motor behavior index, and decreased the hippocampal calpain protein levels in focal cerebral ischemia rats (Heo and Kim, 2013). Treadmill training promoted cortical BDNF expression following ischemic stroke in a mature rat model (Quirie et al., 2012). However, to the authors knowledge, the protective mechanism of pre-stroke voluntary exercise has yet to be clarified. This paper investigates the impact of preconditioning voluntary wheel running on BDNF in intact and stroke brains. The results may further promote the application of physical exercise for stroke prevention, and provide a more reliable theoretical foundation of preventive kinesiotherapy in the clinic.

2. Materials and methods

2.1. Chemicals and Reagents

Tripotassium tetrazolium chloride (TTC) solution was purchased from Sigma Aldrich (USA). Anti-cleaved Caspase-3 antibody (9664S) and anti-Bax antibody were obtained from Cell Signaling. Antibodies against BDNF, Bcl-2 and GAPDH were respectively purchased from Millipore (USA), Santa Cruz (USA) and Boster (Wuhan, China). Secondary antibodies for Western blot were bought from CWBIO (China), and ECL Prime reagent was obtained from Beyotime (China).

2.2. Animals

Thirty-two male Sprague-Dawley rats 250-280 g, aging 10 weeks, were supplied to be subjects by Tianjin Medical Laboratory Animal Center (Tianjin, China). They were housed under standard laboratory conditions (pathogen-free, 23 ± 1°C, 55% relative humidity, 12 hour light/dark cycle). Food and water (SPF-degree) were freely available. All procedures were conducted according to the Chinese Council on Animal Care Guidelines, Ethical guidelines were approved by The 940th Hospital of Joint Logistics Support Force of the Chinese People’s Liberation Army (Approval No. 2019KYLL035). Subjects were randomly divided into three groups by a computer-generated randomization schedule: control (n = 8), middle cerebral artery occlusion (MCAO) (n = 12), and Exercise + MCAO group (n = 12). Due to loss during the MCAO procedure, the number of subjects in these groups was kept high. After the MCAO procedure, there were eight subjects in each group.

2.3. Voluntary running

The exercise + MCAO group was equipped with an acrylic cage (330 x 115 x 125 mm) and an activity wheel. Meanwhile, the control and MCAO groups were allowed to freely explore acrylic cages without a running wheel. After 21 consecutive days of voluntary exercise, subjects received MCAO surgery.

2.4. MCAO test procedure

The MCAO procedure was performed as previously reported (Longa et al., 1989). Briefly, surgery followed an anesthetic intraperitoneal injection of 10% chloral hydrate (350 mg/kg). The left common carotid artery (CCA) was freed from its carotid sheath after a midline neck incision. The left vagus nerve, left external carotid artery (ECA), and the internal carotid artery (ICA) were next identified and carefully separated. A ligation was then performed on the arterial bifurcation of ECA and CCA and the middle cerebral artery (MCA) was blocked with a 19 mm embolus made from fishing line inserted into the ICA. The line was removed after 120 minutes to achieve reperfusion. In the control group, the CCA, ECA, and ICA were isolated, but without endovascular embolism. All procedures were performed under sterile conditions.

24 hours following reperfusion, the neurological function of subjects was assessed by the neurological deficit score: 0: no deficit, 1: failure to fully extend right forepaw, 2: circling to right, 3: falling to right, and 4: no walking and depressed consciousness. Only subjects scoring 1-3 were accepted for the study and then randomly divided into the ischemia groups (Liu et al., 2018). Three subjects died, one was motionless, four exhibited no deficit after MCAO surgery and were also excluded after neurological appraisal.

2.5. Rotarod test

The degree of hemiparesis and coordinated motor function of subjects was determined by computer aided accelerated rotating rod test as previously described (Tahta et al., 2018). Three days prior to MCAO, all subjects were trained on a rotarod cylinder (ENV-575MA, MediAssociates, Georgia, USA) for five daily sessions accelerating from four to forty rpm (revolutions per minute) over five minutes. At seven and fourteen days after surgery, subjects were placed on the rotarod cylinder for five minutes and performance was measured. This procedure was repeated three times and the average falling time recorded.

2.6. TTC staining

TTC staining was performed to verify MCAO test reliability as described previously. Following the rotarod test, animals were sacrificed. Brains were dissected and placed in a customized slicer (-20 °C, 20 minutes). Two millimeter coronal sections were cut and dark incubated in 2% TTC solution (17779, Sigma, USA) at 37 °C for a further 30 minutes. Stained sections were then immediately photographed. The white infarct area was measured by ImageJ software. The total infarct volume was calculated by the sum of the infarct area times the slice thickness (Tahta et al., 2018).

2.7. Western blotting analysis

Following decapitation, hippocampi were quickly separated on ice and mixed with ice-cold RIPA (450 mM NaCl, 50 mM Tris-HCl pH 6.8, 0.1 mM SDS, 1 mM EDTA, 1% deoxysoyuml cholate, 1% TritonX-100) and phenylmethylsulfonyl fluoride (PMSF). Hippocampal homogenates were centrifuged at 12000 g for 20 minutes at 4 °C and supernatants were gathered and stockpiled at -80 °C until analyzed. Protein concentration was determined using a BCA protein assay kit (Boster, China) according to the manufacturer’s instructions. 50 μg protein was loaded and separated by 10% SDS-PAGE gel and transferred to polyvinylidifluoride (PVDF) membranes (Millipore, USA). After blocking by 5% non-fat milk, membranes were separately incubated at 4 °C overnight with primary antibodies of rabbit polyclonal anti-BDNF (1: 500), Bcl-2 (1: 200), Bax (1: 1000), anti-caspase-3 (1: 1000), and GAPDH (1: 100). Subsequently, after three rinses with phosphate-
buffered saline (PBS), stabilized membranes were incubated with horseradish peroxide-conjugated secondary antibodies (1:5000) for one hour at room temperature. The protein intensities was probed with ECL Prime reagent and analyzed by FluroChem™ for one hour at room temperature. The protein intensities were reduced.

3. Statistical analysis
All statistical analyses were performed using IBM SPSS 25.0. All data are expressed as mean ± standard error of mean (SEM) followed by post-hoc LSD test with equal variances assumed. Differences between the groups were analyzed by one-way ANOVA and p < 0.05 was considered to indicate statistically significant difference.

4. Results
4.1. Exercise improved motor function recovery with rotarod test
The rotarod test was first employed to evaluate behavioral and motor function. Eight subjects were excluded by their neurological grade. Seven (F(2,23) = 42.253, p < 0.05, n = 8 for each group) or 14 days (F(2,23) = 28.990, p < 0.05, n = 8 for each group) after MCAO surgery, the falling latency clearly decreased (Fig. 1). The latency of the MCAO + Exercise group was also reduced, however, this group performed significantly better than the MCAO group on both days (p < 0.05, Fig. 1).

4.2. Exercise decreased cerebral infarct volume in MCAO rats
Following the rotarod test, subjects were sacrificed and cerebral infarct volumes measured. MCAO surgery significantly increased infarct volume (p < 0.05, Fig. 2), indicating successful development of the MCAO model. Additionally, clear differences were detected in the infarct volume of MCAO and MCAO + Exercise groups. Compared to the MCAO group, exercise significantly reduced infarct volume, showing exercise provides therapeutic efficacy for reduction of cerebral ischemia (F(2,9) = 101.856, p < 0.05, n = 4 for each group, Fig. 2).

4.3. Exercise promoted BDNF expression in MCAO rats
To explore the mechanism of exercise as a neuroprotective effect, expression of hippocampal BDNF was tested by Western blot assay. The result demonstrated that compared with the control group, MCAO significantly decreased hippocampal BDNF expression, which increased remarkably for the MCAO + Exercise group (F(2,8) = 23.313, p < 0.05, n = 3 for each group, Fig. 3).

4.4. Exercise regulates the expression of apoptosis related proteins
To evaluate the protective effects of pre-exercise on cell apoptosis, Bax, Bcl-2, and caspase-3 expression were assessed by Western blot analysis. In this analysis, MCAO surgery increased Bax protein expression, which was otherwise reduced by exercise (F(2,8) = 13.941, p < 0.05, n = 3 for each group, Fig. 4A, B). Bcl-2 protein levels in the MCAO group decreased, while exercise up-regulated Bcl-2 protein levels significantly compared to the non-exercise group (F(2,8) = 12.093, p < 0.05, n = 3 for each group, Fig. 4A, C). The Bax/Bcl-2 ratio profoundly increased in MCAO group but was attenuated by exercise (F(2,8) = 35.139, p < 0.05,
5. Discussion

In the research described here, the preventive efficacy of exercise on ischemia-reperfusion injury was studied and the possible mechanism by which it affects BDNF and apoptosis was explored. It was found that MCAO impaired both neurological and motor function in the present study, which indicates the potential preventive effect of exercise preconditioning.

BDNF is beneficial in the case of nervous system disease (Binder, 2004; Fumagalli et al., 2006; Zhang et al., 2012; Castren and Rantamaki, 2010). In ischemia, BDNF could reduce infarct size and protect the hippocampus CA1 pyramidal cells (Yamashita et al., 1997). BDNF has also been reported to be anti-apoptotic in vitro (Kubo et al., 1995; Tong and Perez-Polo, 1998). Data reported here provides evidence that voluntary running before MCAO injury could up-regulate hippocampal BDNF protein expression. It was hypothesized that BDNF might protect neurons and glia from MCAO injury. This was the current of investigation.

Voluntary exercise may modulate cell apoptosis in chronic restraint stress (Seo et al., 2016) and the ischemia/reperfusion (Shang et al., 2018) rat model. In the present study, precondition by exercise for three weeks inhibited the ischemia-induced increase in the Bax/Bcl-2 ratio through increased Bcl-2 expression. An increase in caspase-3 protein expression was also observed in the voluntary exercise group. These findings are in accordance with numerous studies that have suggested that BDNF represses cell apoptosis in ischemia (Yao et al., 2012; Fan et al., 2015; Asadi et al., 2018) and it is surmised that the underlying mechanism of suppressed apoptosis might be related to BDNF. Furthermore, the voluntary running model is implemented in rat home cages, and this method may involve the effect of enriched environment. This will be a focus of future studies.

It was reported that stroke may induce glutamate release, which may increase hippocampal neuron injury (Wang and Harvey, 2016). However, exercise preconditioning could attenuate the overexpression of glutamate (Mourao et al., 2014) and down-regulate its receptors (Zhang et al., 2010). Furthermore, reperfusion may increase the number of free-radicals and reintroduce oxygen to neurons and glia, which is a cause of cell apoptosis (Han et al., 2019). Given that BDNF protein expression was increased after voluntary exercise (Fig. 3), it may decrease oxidative stress (Lee et al., 2011), repair DNA damage (Schmidt et al., 2016), and reduce cell apoptosis (Fig. 4).
In summary, preconditioning by voluntary exercise in MCAO rats alleviates neurological impairments of cerebral ischemia, up-regulates BDNF protein level, and modulates hippocampal cell apoptosis. These protective effects may provide a therapy that might decrease cell death and ameliorate loss of function after ischemia.

Acknowledgments
This work is partly supported by the Youth development program of PLA (18QNP053), and Gansu natural science fund project 1506RJZA302.

Conflict of Interest
The authors declare no competing interests.

Submitted: December 24, 2018
Accepted: March 15, 2019
Published: March 30, 2019

References
Asadi, Y., Gorijpour, F., Behrouzifar, S., Vakili, A. (2018) Irish peptide protects brain against ischemic injury through reducing apoptosis and enhancing BDNF in a rodent model of stroke. Neurochemical Research 43, 1549-1560.

Bajaj, A., Schenhammer, E. S., Haidinger, G., Walchhofer, T. (2010) Trends in mortality from stroke in Austria, 1980-2008. Wiener Klinische Wochenschrift 122, 346-353. (In German)

Beck, T., Lindholm, D., Castren, E., Wree, A. (1994) Brain-derived neurotrophic factor protects against ischemic cell damage in rat hippocampus. Journal of Cerebral Blood Flow and Metabolism 14, 689-692.

Binder, D. K. (2004) The role of BDNF in epilepsy and other diseases of the mature nervous system. Advances in Experimental Medicine and Biology 548, 34-56.

Castren, E. and Rantamaki, T. (2010) The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticity. Developmental Neurobiology 70, 289-297.

Chen, W. Q., Diao, W. F., Viidik, A., Skalicky, M., Hoger, H., Lubeck, G. (2008) Modulation of the hippocampal protein machinery in voluntary and treadmill exercising rats. Biochimica et Biophysica Acta 1784, 555-562.

Connor, B., Sun, Y., von Hieber, D., Tang, S. K., Jones, K. S., Maucksch, C. (2016) AAV1/2-mediated BDNF gene therapy in a transgenic rat model of Huntington's disease. Gene Therapy 23, 283-295.

Cook, M. D., Martin, S. A., Williams, C., Whitlock, K., Wallig, M. A., Pence, B. D., Woods, J. A. (2013) Forced treadmill exercise training exacerbates inflammation and causes mortality while voluntary wheel training is protective in a mouse model of colitis. Brain, Behavior, and Immunity 33, 46-56.

de Waard, M. C. and Duncker, D. J. (2009) Prior exercise improves survival, infarct healing, and left ventricular function after myocardial infarction. Journal of Applied Physiology 107, 928-936.

Fan, M., Jin, W., Zhao, H., Xiao, Y., Jia, Y., Yin, Y., Jiang, X., Xu, J., Meng, N., Lv, P. (2015) Lithium chloride administration prevents spatial learning and memory impairment in repeated cerebral ischemia-reperfusion mice by decreasing apoptosis and increasing BDNF expression in hippocampus. Behavioural Brain Research 291, 399-406.

Feigin, V. L., Lawes, C. M., Bennett, D. A., Anderson, C. S. (2003) Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. The Lancet. Neurology 2, 43-53.

Fumagalli, F., Racagni, G., Riva, M. A. (2006) Shedding light into the role of BDNF in the pharmacotherapy of Parkinson’s disease. The Pharmacogenomics Journal 6, 95-104.

Grade, S., Weng, Y. C., Snapyan, M., Kriz, J., Malva, J. O., Saghatelany, A. (2013) Brain-derived neurotrophic factor promotes vasculature-associated migration of neuronal precursors toward the ischemic striatum. PLoS One 8, e55039.

Han, Z. W., Chang, Y. C., Zhou, Y., Zhang, H., Chen, L., Zhang, Y., Si, J. Q., Li, L. (2019) GPER agonist G1 suppresses neuronal apoptosis mediated by endoplasmic reticulum stress after cerebral ischemia/reperfusion injury. Neural Regeneration Research 14, 1221-1229.

Heo, M. and Kim, E. (2013) Beneficial effects of antecedent exercise training on limb motor function and calpain expression in a rat model of stroke. Journal of Physical Therapy Science 25, 943-946.

Juan, B., Xiong, Z., Yang, J., Wang, W., Yang, Y., Hu, Z. L., Wang, F., Chen, J. G. (2012) Antidepressant-like effects of ginsenoside Rg1 are due to activation of the BDNF signalling pathway and neurogenesis in the hippocampus. British Journal of Pharmacology 166, 1872-1887.

Kong, K. A., Seong, H., Jin, H. B., Park, J., Lee, J., Jeon, J. Y., Kim, Y. J. (2011) The effect of treadmill exercise on ischemic neuronal injury in the stroke animal model: potentiation of cerebral vascular integrity. Journal of Korean Academy of Nursing 41, 197-203.

Kubis, P., Nielsson, G., Czuba, E., Waskow, M., Steliga, A., Morys, J. (2018) BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity. Cellular and Molecular Neurobiology 38, 579-593.

Lee, C. H., Park, J. H., Yoo, K. Y., Choi, J. H., Hwang, I. K., Ryu, P. D., Kim, D. H., Kwon, Y. G., Kim, Y. M., Won, M. H. (2011) Pre- and post-treatments with escitalopram protect against experimental ischemic neuronal damage via regulation of BDNF expression and oxidative stress. Experimental Neurology 229, 450-459.

Lessmann, V. and Brigadski, T. (2009) Mechanisms, locations, and kinetics of synaptic BDNF secretion: an update. Neuroscience Research 65, 11-22.

Liu, H., Xue, X., Shi, H., Qi, L., Gong, D. (2015) Osthole upregulates BDNF to enhance adult hippocampal neurogenesis in APP/PS1 transgenic mice. Biological & Pharmaceutical Bulletin 38, 1439-1449.

Liu, J., Wang, Q., Yang, S., Huang, J., Feng, X., Peng, J., Lin, Z., Liu, W., Tao, J., Chen, L. (2018) Electroacupuncture inhibits apoptosis of peri-ischemic regions via modulating p38, extracellular signal-regulated kinase (ERK1/2), and c-Jun N terminal kinases (JNK) in cerebral ischemia-reperfusion-injured rats. Medical Science Monitor 24, 4395-4404.

Liu, P. Z. and Nusslock, R. (2018) Exercise and hippocampal neurogenesis: a dogma re-examined and lessons learned. Neural Regeneration Research 13, 1354-1355.
Longa, E. Z., Weinstein, P. R., Carlson, S., Cummins, R. (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20, 849-91.

Mouroa, F. A., Leite, H. R., de Carvalho, L. E., Ferreira, E. V. T. H., Pinto, M. C., de Castro Medeiros, D., Andrade, I. L., Goncalves, D. F., Pereira, G. S., Dutra Moraes, M. F., Massensini, A. R. (2014) Neuroprotective effect of exercise in rat hippocampal slices submitted to in vitro ischemia is promoted by decrease of glutamate release and pro-apoptotic markers. Journal of Neurochemistry 131, 65-73.

Nagahara, A. H., Matelting, M., Kovacs, I., Wang, L., Eggert, S., Rockenstein, E., Koo, E. H., Masliah, E., Tuszynski, M. H. (2013) Early BDNF treatment ameliorates cell loss in the entorhinal cortex of APP transgenic mice. The Journal of Neuroscience 33, 15596-15602.

Nie, J. and Yang, X. (2017) Modulation of synaptic plasticity by exercise training as a basis for ischemic stroke rehabilitation. Cellular and Molecular Neurobiology 37, 5-16.

Nystoriak, M. A. and Bhattachar, A. (2018) Cardiovascular effects and benefits of exercise. Frontiers in Cardiovascular Medicine 5, 135.

Queisser, G., David, D. J., Gaillard, M. C., Pla, P., Wu, M. V., Nguyen, H. T., Nicolas, V., Auregan, G., David, I., Dranovsky, A., Hantraye, P., Hen, R., Gardier, A. M., Deglon, N., Guiard, B. P. (2013) BDNF overexpression in mouse hippocampal astrocytes promotes local neurogenesis and elicits anxiolytic-like activities. Translational Psychiatry 3, e253.

Quirie, A., Hervieu, M., Garnier, P., Demougeot, C., Mossiat, C., Bertrand, N., Martin, A., Marie, C., Prigent-Tessier, A. (2012) Comparative effect of treadmill exercise on mature BDNF production in control versus stroke rats. PLoS One 7, e44218.

Salinas, J., Beiser, A., Himali, J. J., Satizabal, C. L., Aparicio, H. J., Weinstein, G., Mateen, F. J., Berkman, L. F., Rosand, J., Sebaghadi, S. (2017) Associations between social relationship measures, serum brain-derived neurotrophic factor, and risk of stroke and dementia. Alzheimer’s & Dementia 3, 229-237.

Sanchez, A. L., Matthews, B. J., Maynard, M. M., Hu, B., Javed, S., Cohen-Cory, S. (2006) BDNF increases synapse density in dendrites of developing telcral neurons in vivo. Development 133, 2477-2486.

Schabitz, W. R., Schwab, S., Spranger, M., Hacke, W. (1997) Intraventricular brain-derived neurotrophic factor reduces infarct size after focal cerebral ischemia in rats. Journal of Cerebral Blood Flow and Metabolism 17, 500-506.

Schmidt, R. H., Nickerson, J. M., Boatright, J. H. (2016) Exercise as gene therapy: BDNF and DNA damage repair. Asia-Pacific Journal of Ophthalmology 5, 309-311.

Seo, H., Park, C. H., Choi, S., Kim, W., Jeon, B. D., Ryu, S. (2016) Effects of voluntary exercise on apoptosis and cortisol after chronic restraint stress in mice. Journal of Exercise Nutrition & Biochemistry 20, 16-23.

Seo, T. B., Kim, T. W., Shin, M. S., Ji, E. S., Cho, H. S., Lee, J. M., Kim, T. W., Kim, C. J. (2014) Aerobic exercise alleviates ischemia-induced memory impairment by enhancing cell proliferation and suppressing neuronal apoptosis in hippocampus. International Neuropsychology Journal 18, 187-187.

Shang, J. L., Cheng, Q., Duan, S. J., Li, L., Jia, L. Y. (2018) Cognitive improvement following ischemia/reperfusion injury induced by voluntary runningwheel exercise is associated with Lnc-MALAT1 mediated apoptosis inhibition. International Journal of Molecular Sciences 19, 2715-2723.

Stanne, T. M., Aberg, N. D., Nilsson, S., Jood, K., Blomstrand, C., Andreasson, U., Blennow, K., Zetterberg, H., Iagard, J., Svensson, J., Jern, C. (2016) Low circulating acute brain-derived neurotrophic factor levels are associated with poor long-term functional outcome after ischemic stroke. Stroke 47, 1943-1945.

Tahta, A., Iczi, N., Bagci-Onler, T., Erdag, E., Aras, Y., Genc, C. (2018) Assessment of the MRI and behavioral test results in a focal cerebral ischemia-reperfusion model in the rat after sepa-