The roles of maspin expression in gastric cancer: a meta- and bioinformatics analysis

Hua-Chuan Zheng¹ and Bao-Cheng Gong¹

¹Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China

Correspondence to: Hua-Chuan Zheng, email: zheng_huachuan@hotmail.com

Keywords: maspin, gastric cancer, meta analysis, bioinformatics analysis

Received: March 31, 2017 Accepted: August 02, 2017 Published: August 11, 2017

ABSTRACT

Maspin is a mammary serine protease inhibitor that is encoded by human SERPINB5 gene, and inhibits invasion and metastasis of cancer cells as a tumor suppressor. We performed a systematic meta- and bioinformatics analysis through multiple online databases up to Feb 10, 2017. We found down-regulated maspin expression in gastric cancer, compared with normal mucosa and dysplasia (p < 0.05). Maspin expression was negatively correlated with depth of invasion, TNM staging and dedifferentiation of gastric cancer (p < 0.05). Nuclear maspin expression was higher in intestinal- than diffuse-type carcinoma (p < 0.05). An inverse association between maspin expression and unfavorable overall survival was found in patients with gastric cancer (p < 0.005). According to bioinformatics databases, SERPINB5 mRNA expression was higher in gastric cancer than normal tissues (p < 0.05), and negatively correlated with depth of invasion, TNM staging and dedifferentiation of gastric cancer (p < 0.05). According to KM plotter, we found that a higher SERPINB5 expression was positively correlated with overall and progression-free survival rates of all cancer patients, even stratified by aggressive parameters (p < 0.05). These findings indicated that maspin expression might be employed as a potential marker to indicate gastric carcinogenesis, subsequent progression, and even prognosis.

INTRODUCTION

Maspin is a mammary serine protease inhibitor that is encoded by human SERPINB5 gene, and inhibits invasion and metastasis of cancer cells [1, 2]. SERPINB5 has been identified as a type II tumor suppressor gene in normal mammary epithelial cells by subtractive hybridization, and is located on human chromosome 18q21.3-q23 along with other serpin genes, such as squamous cell carcinoma antigens 1 and 2, PAI-2 and headpin [3, 4]. Maspin is a cytosolic, cell surface-associated, and secretory protein with a reactive center loop that is incompatible with protease inhibition. Maspin has been found to inhibit angiogenesis by stopping the migration, mitogenesis and tube formation of endothelial cells, and to enhance apoptotic sensitivity of cancer cells to extracellular and intracellular stimuli through mitochondria pathway. Maspin retarded Ca²⁺ reduction-induced detachment via a novel interaction with the urokinase-type plasminogen activator/plasminogen [5], and acted as a molecular bridge between the plasminogen activator system and β1 integrin that facilitated cell adhesion in mammary epithelial cells [6]. Odero-Marah et al. [7] found that maspin might inhibit cell motility by suppressing Rac1 and PAK1 activity, and promote cell adhesion via PI3K/ERK pathway. Khalkhali-Ellis et al. [8] reported that secretory maspin could deposit in the extracellular milieu and be incorporated into the matrix for tissue remodeling to suppress invasion. Tamazato et al. [9] demonstrated that EGFR signaling promoted maspin phosphorylation and nuclear localization, where it inhibited gene transcription directly or via histone deacetylase 1, including CSF-1, Bax, cytokeratin 18, and p21 [10–12].

According to the review [13], maspin expression was down-regulated in melanoma, breast, prostate and
gastric cancers, but up-regulated in pancreatic, gallbladder, colorectal, and thyroid cancers, suggesting that maspin might play different roles in various kinds of cancers. SERPINB5 haploinsufficiency lead to hyperplastic lesions in prostate, and a high susceptibility to hepatocellular carcinoma [14, 15]. Homozygous loss of SERPINB5 was lethal at the periimplantation stage, due to visceral endoderm dysfunction by reducing cell proliferation and adhesion, thereby controlling early embryonic development [16]. In vial knockout mice, SERPINB5 deficiency was associated with a reduction in maximum body weight and a variety of context-dependent epithelial abnormalities, such as pulmonary adenocarcinoma, myoepithelial hyperplasia of the mammary gland, hyperplasia of luminal cells of dorsolateral and anterior prostate, and atrophy of luminal cells of ventral prostate and stratum spinosum of epidermis [17].

Since its discovery in 1994, the number of the articles about maspin was increased to 442 in Pubmed database until Feb 10th 2017. The investigators concluded that pattern and level of maspin expression had cell-specific characteristics in malignancies, and closely correlated with its complicated regulators [18–21]. The nuclear or cytoplasmic distribution of maspin has different clinicopathological and prognostic significances in cancers [22–24, 27], even gastric cancer [25–47]. Therefore, we performed a meta and bioinformatics analysis to clarify the roles of maspin expression in gastric cancers.

RESULTS

Characteristics of eligible studies

Figure 1 is a flow diagram of paper selection for our meta-analysis. As shown in Table 1, a total of 23 articles about the relationship between maspin protein expression and cancer risk, clinicopathological and prognostic parameters of gastric cancer were retrieved for our meta-analysis from PubMed, Web of Science, BIOSIS, SciFinder and CNKI (Chinese). Only 15 articles contained the samples of normal gastric mucosa [27, 32–34, 37–47] and 6 did gastric precancerous lesion-dysplasia [25, 27, 38, 44, 46, 47]. There appeared the comparison between maspin expression and clinicopathological characteristics of gastric cancer in 19 studies, including sex, depth of invasion, lymph node metastasis, TNM staging and Lauren’s classification. Finally, the authors discussed the prognostic significance of maspin expression in 3 articles [33, 35, 36]. There were three articles to compare nuclear or cytoplasmic maspin expression with clinicopathological features of gastric cancer [27, 29, 36].

Association between maspin expression and cancer susceptibility of gastric mucosa or dysplasia

We analyzed the difference in maspin expression between gastric mucosa and cancer in 15 studies with 1447 cancers and 819 controls. As a result, we found down-regulated maspin expression in gastric cancer, compared with normal mucosa ($p = 0.02$, Figure 2A). Additionally, the same trend was observed using 838 cancers and 292 dysplasia ($p < 0.00001$, Figure 2B).

Association between maspin expression and clinicopathological parameters of gastric cancer

As shown in Figure 2C, there was no difference in maspin expression between male and female patients with gastric cancer ($p > 0.05$). A higher maspin expression was detected in $T_{3,4}$ than $T_{1,2}$ gastric cancer ($p < 0.00001$,
Figure 2D). Maspin expression was not related to lymph node metastasis of gastric cancer \((p > 0.05\), Figure 2E). The patients with stage 0–II cancer showed maspin overexpression, compared with those with stage III-IV cancer \((p < 0.00001\), Figure 2F). Maspin protein showed more expression in intestinal- than diffuse-type carcinomas \((p < 0.00001\), Figure 2G).

As indicated in Figure 3A and 3B, neither cytoplasmic nor nuclear maspin expression was correlated with the gender or lymph node metastasis of the patients with gastric cancer \((p > 0.05\)). Nuclear maspin expression was higher in diffuse- than intestinal-type carcinomas \((p < 0.05\)), but cytoplasmic maspin expression showed no difference between intestinal- and diffuse-type carcinomas \((p > 0.05\), Figure 3C).

Association between maspin expression and survival rate of gastric cancer

As indicated in Figure 2H, the pooled result from 3 datasets demonstrated a significantly negative association between maspin expression and favorable overall survival in patients with gastric cancer \((HR = 1.66, 95\% \text{ CI: 1.30–2.14, } p < 0.0001)\).

Publication bias

The heterogeneity test was performed as shown in Figure 4. Sensitivity analysis was used to evaluate individual study’s influence on the pooled results by deleting one single study each time from pooled analysis. As a result, the prognostic result of maspin expression in Lee’s study had significant effect on the pooled OR. When this study was excluded, the heterogeneity test was significantly reduced (data not shown).

The clinicopathological and prognostic significances of SERPINB5 expression in gastric cancer

We used TCGA’s, Cui’s and Cho's datasets to perform bioinformatics analysis, and found that SERPINB5 mRNA expression was lower in gastric normal than cancer tissues, even stratified into intestinal-, diffuse- and mixed-type carcinomas (Figure 5A–5D, \(p < 0.05\)). In TCGA data, SERPINB5 expression was higher in gastric cancers with than without Barret’s esophagus \((p < 0.05\), Figure 5E). It was negatively correlated with depth of invasion and TNM staging of gastric cancer \((p < 0.05\), Figure 5F and 5G). Forester’s data showed a higher SERPINB5 mRNA expression in intestinal-type than diffuse-type carcinomas \((p < 0.05\), Figure 5H).

According to Kaplan-Meier plotter, we found that a higher SERPINB5 mRNA expression was positively correlated with overall and progression-free survival rates of all cancer patients, the patients with surgery alone or 5-FU-based adjuvant treatment, the patients with Her2- or Her2+, the patients with no distant metastasis, no lymph node metastasis, lymph node metastasis, N, or N, status, and female or male patients \((p < 0.05\), Figure 6A and 6B and Table 2). Stage I–IV cancer patients with high SERPINB5 mRNA expression showed a long overall survival time than those with its low expression \((p < 0.05\), while it was the same for progression-free survival in the patients with stage II and III cancer \((p < 0.05\). There appeared a positive relationship between SERPINB5 mRNA expression and the overall survival rate of the intestinal- and diffuse-type carcinoma patients \((p < 0.05\), whereas the same correlation between SERPINB5 mRNA expression and progression-free survival was observed in diffuse- and mixed-type carcinoma patients \((p < 0.05\). The overall survival rate of the patient with T, or T, tumor was positively linked to SERPINB5 mRNA expression \((p < 0.05\). Positive association between SERPINB5 mRNA expression and progression-free prognosis was observed in T cancer patients \((p < 0.05\).

DISCUSSION

Metastasis is the most critical impediment for the survival of cancer patients. Maspin reintroduction was found to reverse epithelial-to-mesenchymal transition of prostate cancer cells by inhibiting HDAC1 activity and suppressing TGF-β/β-catenin /E-cadherin pathway [48, 49]. Lee et al. [50] demonstrated that maspin increased Ku70 acetylation by inhibiting HDAC1, and subsequently caused Bax-mediated cell death by dissociation of Bax from Ku70. Endsley et al. [51] found that maspin mediated the molecular bridge between the plasminogen activator system and β1 integrin that facilitated cell adhesion in mammary epithelial cell. To investigate the clinicopathological and prognostic significances of maspin expression, we analyzed 23 studies, which met specific inclusion criteria and had moderate to high quality according to their NOS scores. Additionally, we also added our unpublished data about maspin expression.

According to the literature [52], precancerous lesions appear from gastric epithelium to adenocarcinoma, including adenomatous, regenerative, crysptal or globoid dysplasia. Consistent with the data about breast, colonic, bladder and gastric cancers [15, 27], we found down-regulated maspin expression in gastric cancer, compared with gastric mucosa or dysplasia in the present study, suggesting that maspin hypoexpression contributed to gastric carcinogenesis as a late event. Previously, we performed maspin immunostaining using 2 individual samples of gastric cancer and found its upregulation. The discrepancies might be largely attributable to organ-specificity, criteria for positive staining, statistical analysis and subjects. Moreover, we confirmed the similar maspin expression in gastric cancer cells despite different antibodies from Novocastra and BD Pharmagin used [27].
Figure 2: Forest plot for the relationship between maspin expression and clinicopathological parameters of gastric cancer. (A) gastric carcinogenesis (cancer vs normal mucosa); (B) gastric carcinogenesis (cancer vs dysplasia); (C) correlation between sex and maspin expression (male vs female); (D) correlation between depth of invasion and maspin expression (T₁-2 vs T₃-4); (E) correlation between lymph node metastasis (LN) and maspin expression (LN- vs LN+); (F) correlation between TNM staging and maspin expression (0–II vs III–IV); (G) correlation between differentiation and maspin (intestinal-type vs diffuse-type). (H) correlation between survival rate and maspin expression.
Figure 3: Forest plot for the relationship between cytoplasmic or nuclear maspin expression and clinicopathological parameters of gastric cancer. (A) Correlation between sex and maspin expression (male vs female); (B) correlation between lymph node metastasis (LN) and maspin expression (LN− vs LN+); (C) correlation between differentiation and maspin (intestinal-type vs diffuse-type).
Another explanation might be disadvantage of tissue microarray: too small sample not enough to represent the overall appearance. If the area of maspin negativity was frequently selected, the positive rate of maspin was decreased.

Although Dabiri et al. [53] found that SERPINB5 mRNA level was considerably lower in the cancer samples compared with normal breast samples, up-regulated expression of SERPINB5 mRNA was observed from 2 databases in line with 8-fold increase of SERPINB5.

Figure 4: Funnel plot for publication bias test between maspin expression and gastric carcinogenesis or progression. The bias was analyzed about risk degrees of maspin expression in gastric mucosa (A) and dysplasia (B) for gastric carcinogenesis. Additionally, it was tested between maspin expression and clinicopathological features of gastric cancer, including sex (C), depth of invasion (D), lymph node metastasis (E), TNM staging (F), and differentiation (G) and prognosis (H). The bias was analyzed between cytoplasmic or nuclear maspin expression and clinicopathological features of gastric cancer, including age (I), lymph node metastasis (J), and differentiation (K).
Figure 5: **SERPINB5** mRNA expression in gastric carcinogenesis and subsequent progression. Cui’s and Cho’s datasets were employed for bioinformatics analysis to analyze **SERPINB5** mRNA expression during gastric carcinogenesis. A higher maspin expression was detectable in gastric cancer than that in normal gastric mucosa (**A**), \(p < 0.05 \), even stratified into intestinal- (**B**), diffuse- (**C**), and mixed-type (**D**) carcinomas by Lauren’s classification. TCGA database shows that **SERPINB5** was more expressed in gastric cancer with than without Barrett’s esophagus (**E**), \(p = 0.020 \), Fold=2.1612. **SERPINB5** expression was negatively correlated with T staging (**F**), \(p = 0.039 \) Fold=1.232 and TMN staging (**G**), \(p = 0.021 \) Fold=1.273 of gastric cancers \(p < 0.05 \). According to Forester’s database, there appeared a higher **SERPINB5** expression in gastric intestinal- than diffuse-type carcinomas (**H**), \(p < 0.05 \).
mRNA in gastric cancer [26]. Lu et al. [54] found that SERPINB5 mRNA expression was up-regulated in pulmonary adenocarcinoma samples in comparison to the adjacent normal tissues. This is not surprising since mRNA levels do not usually predict the corresponding protein levels because it takes a long distance from mRNA to functional protein by translation and posttranslational modification.

Previously, we found that the high expression of cytoplasmic and nuclear maspin was positively correlated with aggressive parameters of gastric cancer, including invasion, metastasis and tumor size [27]. Pföhler et al. [55] found that maspin expression in the invasive margin of primary melanomas might reflect aggressive phenotypes, including Clark level, tumor thickness and disease stage. In contrast, our findings showed maspin expression was inversely linked to depth of invasion, TNM staging and dedifferentiation of gastric cancer regardless of its mRNA and protein, indicating that its hypoexpression was involved in invasion and progression of gastric cancer, in agreement with the reports about breast, prostatic, colonic, bladder, and cervical cancers [15, 27]. Here, nuclear maspin immunoreactivity also appeared positive association with differentiation of gastric cancer, which might be attributed to the selection bias because only 3 studies were involved in our analysis. Taken together, we concluded that maspin expression loss might be employed as a potential biomarker for aggressiveness of gastric cancers.

Reportedly, maspin overexpression is associated with better overall survival in esophageal and oral squamous cell carcinoma [56, 57]. Shift from cytoplasmic to nuclear maspin expression was correlated with shorter overall survival in node-negative colorectal cancer and lung cancer [58, 24]. However, Snoeren et al. [59] found that maspin expression was a marker for early recurrence in primary stage III and IV colorectal cancer, and its overexpression was correlated with poor outcome after cancer spread to the local lymph nodes. Our meta-analysis showed that maspin expression was positively linked to the worse prognosis of the patients with gastric cancer. Here, our unpublished data mainly determined the final outcome, which included the cases from Yu et al. [27] and Zheng et al. [28]. However, our bioinformatics data indicated that SERPINB5 mRNA expression was positively associated with overall and progression-free survival rates of the patient with gastric cancer, even stratified by clinicopathological features, opposite with the

First author	Year	Country	Ethnicity	Antibody source	Cases	Control	Risk to cancer	Outcome	Quality
Ito R	2004	Japan	Asian	Novo	100	Up			8
Terashima M	2005	Japan	Asian	Pharm	78				8
Yu M	2007	Japan	Asian	Novo	237	23	Up	Neg	9
Zheng HC	2008	Japan	Asian	Novo	191				8
Gurzu S	2014	Romania	Romanian	Novo	180				8
Kim SM	2005	Korea	Asian	Pharm	62	62	Up		9
Kim YJ	2008	Korea	Asian	BD	109				8
Lee DY	2008	Korea	Asian	Cayman	152	152	Down	Pos	8
Son HJ	2002	Korea	Asian	Pharm	30	26	Up		7
Lei KF	2012	China	Asian	Novo	120		Neg		8
Lei KF	2012	China	Asian	Novo	127				8
Li JJ	2004	China	Asian	Novo	39	39	Up		8
Wang MC	2004	China	Asian	Novo	113	182	Down		8
Bai YX	2007	China	Asian	Maxin	61	10	Down		7
Chen AJ	2009	China	Asian	Neomarker	60	20	Down		7
Cheng SH	2012	China	Asian	Santa	63	20	Down		7
Deng W	2006	China	Asian	Neomarker	60	20	Down		7
Gao P	2007	China	Asian	Neomarker	80	20	Down		7
He Y	2007	China	Asian	Neomarker	172	24	Down		7
Liang QL	2007	China	Asian	Neomarker	102	102	Down		8
Zhang LM	2005	China	Asian	Neomarker	137	54	Down		8
Zhang LP	2012	China	Asian	Neomarker	79	65	Down		8

Note: up, up-regulated; down, down-regulated; Pos, positive correlation; Neg, negative correlation.
Table 2: The prognostic significance of \textit{SERPINB5} mRNA in gastric cancer by Kaplan-Meier plotter

Clinicopathological features	Overall survival		Progression-free survival	
	Hazard ratio	\(p \)	Hazard ratio	\(p \)
Sex				
Female	0.53 (0.34–0.83)	0.004	0.5 (0.31–0.81)	0.0042
Male	0.63 (0.51–0.77)	1.4e-05	0.62 (0.49–0.78)	6.7e-05
T				
2	0.52 (0.34–0.79)	0.002	0.51 (0.33–0.78)	0.0019
3	0.62 (0.41–0.95)	0.026	0.74 (0.53–1.04)	0.086
4	0.55 (0.21–1.46)	0.23	0.64 (0.29–1.4)	0.26
N				
0	0.41 (0.17–0.95)	0.032	0.4 (0.17–1.02)	0.048
1–3	0.58 (0.44–0.77)	9.7e-05	0.59 (0.45–0.77)	7.6e-05
1	0.46 (0.29–0.72)	0.00047	0.47 (0.31–0.72)	0.00038
2	0.68 (0.43–1.09)	0.11	0.69 (0.44–1.08)	0.1
3	0.62 (0.36–1.06)	0.079	0.67 (0.39–1.16)	0.15
M				
0	0.59 (0.44–0.78)	0.00027	0.6 (0.45–0.79)	0.00025
1	1.79 (0.95–3.35)	0.067	1.71 (0.95–3.1)	0.072
TNM staging				
I	0.25 (0.07–0.88)	0.02	0.31 (0.09–1.13)	0.062
II	0.28 (0.13–0.58)	3e-04	0.33 (0.16–0.68)	0.0014
III	0.59 (0.44–0.8)	0.00057	0.59 (0.38–0.93)	0.021
IV	0.64 (0.42–0.99)	0.042	0.8 (0.52–1.23)	0.31
Perforation				
-	0.75 (0.47–1.18)	0.21	0.73 (0.47–1.13)	0.15
Differentiation				
Well-differentiated	0.46 (0.18–1.14)	0.086		
Moderately-differentiated	1.39 (0.73–2.66)	0.32	1.4 (0.75–2.61)	0.29
Poorly-differentiated	0.72 (0.45–1.14)	0.16	0.72 (0.43–1.21)	0.22
Lauren’s classification				
Intestinal-type	0.55 (0.4–0.75)	0.00013	0.78 (0.55–1.11)	0.17
Diffuse-type	0.53 (0.37–0.77)	0.00054	0.45 (0.3–0.68)	9e-05
Mixed-type	0.38 (0.13–1.07)	0.058	0.2 (0.06–0.66)	0.0039
Her2 positivity				
-	0.63 (0.49–0.81)	0.00039	0.6 (0.46–0.82)	0.00081
+	0.62 (0.48–0.8)	3e-04	0.54 (0.39–0.75)	0.00016
Treatment				
Surgery alone	0.65 (0.48–0.88)	0.0044	0.62 (0.46–0.84)	0.0015
5-FU-based adjuvant	1.63 (1.11–2.4)	0.013	1.66 (1.13–2.45)	0.0091
Other adjuvant	0.46 (0.19–1.12)	0.079	0.5 (0.23–1.1)	0.079
A report about pulmonary adenocarcinoma of Lu et al. [54]. The paradoxical phenomenon might be due to the distinct sensitivity of different methodologies: bioinformatics analysis is based on RNA sequencing, but Lu’s experiment on RT-PCR.

Several limitations should be noted in our meta-analysis. Firstly, the potential publication bias stems from published results being predominantly positive. Secondly, patient populations in our study are limited because the patients come only from Asia and Romania. Thirdly, all of the survival data are extracted from survival curves, which may introduce subjective bias. Fourthly, this small sample size limits the power to detect the associations in some articles. Fifthly, we add more cases of gastric cancer for our analysis, which also increases the possibility of selection bias.

In conclusion, maspin expression underwent a down-regulation in gastric carcinogenesis as a late event, but versa for its mRNA. It was negatively correlated with depth of invasion, TNM staging and dedifferentiation of gastric cancer at both mRNA and protein levels. Maspin expression might be employed as a good potential marker for worse prognosis of gastric cancer patients, while it was the converse for its mRNA.

MATERIALS AND METHODS

Identification of eligible studies and data extraction

We performed a publication search using PubMed, Web of Science, BIOSIS and SciFinder updated on Feb 10, 2017. The following search terms were used: (maspin OR SERPINB5 OR PI5) AND (gastric OR stomach) AND (cancer OR carcinoma OR adenocarcinoma). Searching was done without restriction on language or publication years. Inclusion criteria for studies: (1) articles to observe the alteration in maspin expression in gastric cancer by immunohistochemistry; (2) papers to compare maspin expression with pathobiological behaviors and prognosis of gastric cancer by immunohistochemistry. Exclusion criteria included: (1) abstract, comment, review and meeting; (2) duplication of the previous publications; (3) Western blot, RT-PCR, cDNA microarray, or transcriptomic sequencing for maspin expression; (4) lack of sufficient information.

Data extraction

Based on the inclusion criteria, two reviewers (Zheng HC and Gong BC) independently extracted information from all eligible publications. The following information was included in each study: name of first author, year of publication, country, ethnicity, antibody company, numbers of cases and controls, expression alteration, and follow-up outcome. Regarding survival analysis, we used Engauge Digitizer software to extract data from Kaplan-Meier curves and calculated the Hazard ratios and their corresponding 95% confidence intervals. Any disagreement was resolved through discussion until the two reviewers reached a consensus.

Quality score assessment

Two reviewers (Zheng HC and Gong BC) independently assessed the quality of the included studies according to Newcastle Ottawa Scale (NOS) (http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm). The scale consists of three components related to sample selection, comparability and ascertainment of outcome.

Bioinformatics analysis

The individual gene expression level of SERPINB5 was analyzed using Oncomine (www.oncomine.org), a cancer microarray database and web-based data mining platform for a new discovery from genome-wide
expression analyses. We compared the differences in SERPINB5 mRNA level between gastric normal tissue and cancer. All data were log-transformed, median centered per array, and standard deviation normalized to one per array. The expression (RNA-seqV2) and clinicopathological data of 325 gastric cancer patients were downloaded from the Cancer Genome Atlas (TCGA) database by TCGA-assembler in R software. We integrated the raw data, analyzed SERPINB5 expression in gastric cancer, and compared it with clinicopathological and prognostic data of the patients with gastric cancer. Additionally, the prognostic significance of SERPINB5 mRNA was also analyzed using Kaplan-Meier plotter (http://kmplot.com).

Statistics analysis

HWE was evaluated using Chi-square test in control groups of each study. Strength of association between maspin expression and cancer risk was assessed by odds ratios with 95% confidence intervals. Statistical significance of the pooled OR was determined by Z test. If there was no significant heterogeneity, the fixed effect model (Mantel–Haenszel method) would be employed. Otherwise, the random effect model (DerSimonian and Laird method) would be used excluding prognostic analysis. Heterogeneity effect was then quantified by I^2 test, which was subdivided into low, moderate and high degrees of heterogeneity according to the cut-off values of 25%, 50% and 75% respectively. Publication bias was evaluated by funnel plot and quantified by Begg's test and Egger's test to assess funnel plot asymmetry. Meta-analyses were performed with Revman software 5.3 and data from TCGA database was dealt with SPSS 10.0 software using student t test. Two-sided $p < 0.05$ was considered as statistically significant. SPSS 17.0 software was employed to analyze all data.

ACKNOWLEDGMENTS

This study was supported by Liaoning BaiQianWan Talents Program, Award for Liaoning Distinguished Professor, a Key Scientific and Technological Project of Liaoning Province (2015408001) and National Natural Scientific Foundation of China (81472544; 81672700).

CONFLICTS OF INTEREST

The authors have declared that no competing interests exist.

REFERENCES

1. Zou Z, Anisowicz A, Hendrix MJ, Thor A, Neveu M, Sheng S, Rafidi K, Seftor E, Sager R. Maspin, a serpin with tumour-suppressing activity in human mammary epithelial cells. Science. 1994; 263:526–529.
2. Bailey CM, Khalkhali-Ellis Z, Seftor EA, Hendrix MJ. Biological functions of maspin. J Cell Physiol. 2006; 209:617–624.
3. Schneider SS, Schick C, Fish KE, Miller E, Pena JC, Treter SD, Hui SM, Silverman GA. A serine proteinase inhibitor locus at 18q21.3 contains a tandem duplication of the human squamous cell carcinoma antigen gene. Proc Natl Acad Sci USA. 1995; 92:3147–3151.
4. Zheng HC, Saito H, Masuda S, Wang ZG, Takano Y. Cytoplasmic and nuclear maspin expression in lung carcinomas: an immunohistochemical study using tissue microarrays. Appl Immunohistochem Mol Morphol. 2008; 16:459–465.
5. Yin S, Lockett J, Meng Y, Biliran H Jr, Blouse GE, Li X, Reddy N, Zhao Z, Lin X, Anagli J, Cher ML, Sheng S. Maspin retards cell detachment via a novel interaction with the urokinase-type plasminogen activator/urokinase-type plasminogen activator receptor system. Cancer Res. 2006; 66:4173–4181.
6. Endsley MP, Hu Y, Deng Y, He X, Warejcka DJ, Twining SS, Gonias SL, Zhang M. Maspin, the molecular bridge between the plasminogen activator system and beta1 integrin that facilitates cell adhesion. J Biol Chem. 2011; 286:24599–24607.
7. Odero-Marah VA, Khalkhali-Ellis Z, Chunhapong I, Amir S, Seftor RE, Seftor EA, Hendrix MJ. Maspin regulates different signaling pathways for motility and adhesion in aggressive breast cancer cells. Cancer Biol Ther. 2003; 2:398–403.
8. Khalkhali-Ellis Z, Christian AL, Kirschmann DA, Edwards EM, Rezaie-Thompson M, Vasel MA, Gruman LM, Seftor RE, Norwood LE, Hendrix MJ. Regulating the tumor suppressor gene maspin in breast cancer cells: a potential mechanism for the anticancer properties of tamoxifen. Clin Cancer Res. 2004; 10:449–454.
9. Tamazato Longhi M, Cellina N. Tyrosine phosphorylation plays a role in increasing maspin protein levels and its cytoplasmic accumulation. FEBS Open Bio. 2012; 2:93–97.
10. Dzinic SH, Kaplun A, Li X, Bernardo M, Meng Y, Dean I, Krass D, Stember P, Shin N, Lonoardo F, Sheng S. Identification of an intrinsic determinant critical for maspin subcellular localization and function. PLoS One. 2013; 8:e74502.
11. Goulet B, Kennette W, Ablack A, Postenka CO, Hague MN, Mymryk JS, Tuck AB, Ciguévre V, Chambers AF, Lewis JD. Nuclear localization of maspin is essential for its inhibition of tumor growth and metastasis. Lab Invest. 2011; 91:1181–1187.
12. Li X, Yin S, Meng Y, Sakr W, Sheng S. Endogenous inhibition of histone deacetylase 1 by tumor-suppressive maspin. Cancer Res. 2006; 66:9323–9329.
13. Berardi R, Morgese F, Onofri A, Mazzanti P, Pistelli M, Ballatore Z, Savini A, De Lisa M, Caramani M, Rinaldi S, Pagliaretta S, Santoni M, Pierantoni C, et al. Role of maspin in cancer. Clin Transl Med. 2013; 2:8.
14. Yang SF, Yeh CB, Chou YE, Lee HL, Liu YF. Serpin peptidase inhibitor (SERPINB5) haplotypes are associated with susceptibility to hepatocellular carcinoma. Sci Rep. 2016; 6:26605.

15. Shao LJ, Shi HY, Ayala G, Rowley D, Zhang M. Haploinsufficiency of the maspin tumor suppressor gene leads to hyperplastic lesions in prostate. Cancer Res. 2008; 68:5143–5151.

16. Gao F, Shi HY, Daughty C, Cell a N, Zhang M. Maspin plays an essential role in early embryonic development. Development. 2004; 131:1479–1489.

17. Dzinic SH, Bernardo MM, Li X, Fernandez-Valdivia R, Ho YS, Mi QS, Bandyopadhyay S, Lonardo F, Vranic S, Oliveira DS, Bonfil RD, Dyson G, Chen K, et al. An essential role of maspin in embryogenesis and tumor suppression. Cancer Res. 2017; 77:886–896.

18. Umekita Y, Yoshida H. Expression of maspin is up-regulated during the progression of mammary ductal carcinoma. Histopathology 2003; 42:541–545.

19. Zheng H, Tsuneyama K, Cheng C, Takahashi H, Cui Z, Murai Y, Nomoto K, Takano Y. Maspin expression was involved in colorectal adenoma-adenocarcinoma sequence and liver metastasis of tumors. Anticancer Res. 2007; 27:259–265.

20. Böttstetter M, Woenckhaus M, Wild PJ, Rümmele P, Blaszyk H, Hartmann A, Hoffstädter F, Dietmaier W. Elevated nuclear maspin expression is associated with microsatellite instability and high tumor grade in colorectal cancer. J Pathol. 2005; 205:606–614.

21. Beecken WD, Engl T, Engels K, Blumenberg C, Oppermann E, Camphausen K, Shing Y, Reinecke G, Jonas D, Blaheta R. Clinical relevance of maspin expression in bladder cancer. World J Urol. 2006; 24:338–344.

22. Kim JH, Cho NY, Bae JM, Kim KJ, Rhee YY, Lee HS, Kang GH. Nuclear maspin expression correlates with the CpG island methylator phenotype and tumor aggressiveness in colorectal cancer. Int J Clin Exp Pathol. 2015; 8:1920–1928.

23. Marioni G, Blandamura S, Lionello M, Giacomelli L, Staffieri C, Fasanaro E, Manzato E, Staffieri A. Nuclear maspin expression correlates with the CpG island methylator phenotype and liver metastasis of tumors. Oncol Rep. 2004; 11:1220–1225.

24. Mährkl B, Armholdt HM, Jähning H, Schenkirsch G, Herrmann RA, Haude K, Spatz H, Anthuber M, Schlimok G, Orzuoi D. Shift from cytoplasmic to nuclear maspin expression correlates with shorter overall survival in node-negative colorectal cancer. Hum Pathol. 2010; 41:1024–1033.

25. Ito R, Nakayama H, Yoshida K, Oda N, Yasui W. Loss of maspin expression is associated with development and progression of gastric carcinoma with p53 abnormality. Oncol Rep. 2004; 12:985–990.

26. Terashima M, Maesawa C, Oyama K, Ohtani S, Akiyama Y, Ogasawara S, Takagane A, Saito K, Masuda T, Kanzaki N, Matsuyama S, Hoshino Y, Kogure M, et al. Gene expression profiles in human gastric cancer: expression of maspin correlates with lymph node metastasis. Br J Cancer 2005; 92:1130–1136.

27. Yu M, Zheng H, Tsuneyama K, Takahashi H, Nomoto K, Xu H, Takano Y. Paradoxical expression of maspin in gastric carcinomas: correlation with carcinogenesis and progression. Hum Pathol. 2007; 38:1248–1255.

28. Zheng HC, Li XH, Hara T, Masuda S, Yang XH, Guan YF, Takano Y. Mixed-type gastric carcinomas exhibit more aggressive features and indicate the histogenesis of carcinomas. Virchows Arch. 2008; 452:525–534.

29. Gurzu S, Kadar Z, Sugimura H, Orlovska J, Bara T, Bara T Jr, Szederjesi J, Jung I. Maspin-related orchestration of aggressiveness of gastric cancer. Appl Immunohistochem Mol Morphol. 2016; 24:326–336.

30. Gurzu S, Kadar Z, Sugimura H, Bara T, Bara T Jr, Halmaciu I, Jung I. Gastric cancer in young vs old Romanian patients: immunoprofile with emphasis on maspin and mena protein reactivity. APMIS. 2015; 123:223–232.

31. Kim YJ, Kim MA, Im SA, Kim TM, Kim DW, Yang HK, Heo DS, Lee KU, Choe KJ, Kim NK, Kim TY, Kim WH, Bang YJ. Metastasis-associated protein S100A4 and p53 predict relapse in curatively resected stage III and IV (M0) gastric cancer. Cancer Invest. 2008; 26:152–158.

32. Kim SM, Cho SJ, Jang WY, Kim DH, Shin HS, Jang MK, Kim HY, Nam ES. Expression of maspin is associated with the intestinal type of gastric adenocarcinoma. Cancer Res. Treat. 2005; 37:228–232.

33. Lee DY, Park CS, Kim HS, Kim YJ, Kim YC, Lee S. Maspin and p53 protein expression in gastric adenocarcinoma and its clinical applications. Appl Immunohistochem Mol Morphol. 2008; 16:13–18.

34. Son HJ, Sohn TS, Song SY, Lee JH, Rhee JC. Maspin expression in human gastric adenocarcinoma. Pathol Int. 2002; 52:508–513.

35. Lei KF, Liu BY, Jin XL, Guo Y, Ye M, Zhu ZG. Prognostic value of nuclear maspin expression for adjuvant 5-fluorouracil-based chemotherapy in advanced gastric cancer. Exp Ther Med. 2012; 3:993–998.

36. Lei KF, Liu BY, Zhang XQ, Jin XL, Guo Y, Ye M, Zhu ZG. Development of a survival prediction model for gastric cancer using serine proteases and their inhibitors. Exp Ther Med. 2012; 3:109–116.

37. Li JJ, Chen Y, Zhang SM, Wu DY, Wang YP, Xin Y. Pathobiological significance of vascular endothelial growth factor and Maspin expressions in human gastric carcinoma. World J Gastroenterol. 2004; 10:2624–2627.

38. Wang MC, Yang YM, Li XH, Dong F, Li Y. Maspin expression and its clinicopathological significance in tumorigenesis and progression of gastric cancer. World J Gastroenterol. 2004; 10:634–637.

39. Bai YX, Ji RL, Wang SY. Association between maspin protein and vascular endothelial growth factor-C expression in gastric cancer. [Article in Chinese]. Zhongliu Fangzhi Yanjiu. 2007; 34:603–606.

40. Chen AJ, Yi YF, Deng W. The clinical-pathological significance and the expression of maspin mRNA and...
protein in human gastric carcinoma. [Article in Chinese]. Chongqing Yike Daxue Xuebao. 2009; 34:277–281.

41. Cheng SH, Bai YX, Tal L, Zhang N. Expression of maspin and EGFR in gastric cancer and its clinical significance. [Article in Chinese]. Zhongguo Zhongliu. 2012; 21:71–74.

42. Deng W, Yi YF, Liu DD. Significance of Maspin, uPA and MMP-7 expression in human gastric carcinoma. [Article in Chinese]. From Shijie Huaren Xiaohua Zazhi. 2006; 14:660–665.

43. Gao P, Wang PG, Fan XL, Cui Z, Chen ZX. The clinical pathological relation of Maspin and E-cadherin expression with gastric carcinoma. [Article in Chinese]. Shandong Yiyaio. 2007; 47:30–31.

44. He Y, Zhang L, Li YJ, Ye F, Jiang Y, Jin XM. Expression of maspin protein and correlation between maspin and P53 proteins in gastric carcinoma. [Article in Chinese]. Zhonghua Yi Xue Za Zhi. 2007; 87:909–912.

45. Liang QL, Chen XD, Wang SM, Li JW, Huang B, Zheng ZH, Chen XS. Expression of vascular endothelial growth factor and maspin in gastric carcinoma. [Article in Chinese]. Di-San Junyi Daxue Xuebao. 2007; 29:1416–1418.

46. Zhang LP, Ma X, Lu QM, Zhang QK. Association study among Helicobacter pylori infection, maspin expression and gastric carcinoma. [Article in Chinese]. Zhonghuayi Xue Za Zhi. 2007; 19:1124–1127.

47. Zhang LM, Geng DM, Sun P, Yao WD, Wang W. Expression and correlation of maspin, HGF and E-cadherin in gastric cancer. [Article in Chinese]. Zhongliu Fangzhi Zazhi. 2005; 12:1546–1549.

48. Neal CL, Henderson V, Smith BN, McKeithen D, Graham T, Vo BT, Odero-Marah VA. Snail transcription factor negatively regulates maspin tumor suppressor in human prostate cancer cells. BMC Cancer. 2012; 12:336.

49. Bernardo MM, Meng Y, Lockett J, Dyson G, Dombkowski A, Kaplun A, Li X, Yin S, Dzinic S, Olive M, Dean I, Krass D, Moin K, et al. Maspin reprograms the gene expression profile of prostate carcinoma cells for differentiation. Genes Cancer. 2011; 2:1009–1022. http://doi.org/10.1177/1947601912440170.

50. Lee SJ, Jang H, Park C. Maspin increases Ku70 acetylation and Bax-mediated cell death in cancer cells. Int J Mol Med. 2012; 29:225–230.