New solutions of the star–triangle relation with discrete and continuous spin variables

Andrew P Kels

Institut für Mathematik, MA 8-4, Technische Universität Berlin, Str. des 17. Juni 136, D-10623 Berlin, Germany

E-mail: andrew.p.kels@gmail.com

Received 24 May 2015, revised 22 August 2015
Accepted for publication 27 August 2015
Published 2 October 2015

Abstract

A new solution to the star–triangle relation is given, for an Ising type model of interacting spins containing integer and real valued components. Boltzmann weights of the model are given in terms of the lens elliptic gamma function, and are based on Yamazaki’s recently obtained solution of the star–star relation. The star–triangle relation given here, implies Seiberg duality for the 4–d $\mathcal{N} = 1$ $\mathfrak{S} \mathfrak{U}(2)$ index of the $\mathfrak{S} \mathfrak{U}(2)$ quiver gauge theory, and the corresponding two component spin case of the star–star relation of Yamazaki. A proof of the star–triangle relation is given, resulting in a new elliptic hypergeometric summation/integration identity. The star–triangle relation in this paper contains the master solution of Bazhanov and Sergeev as a special case. Two other limiting cases are considered one of which gives a new star–triangle relation in terms of ratios of infinite q-products, while the other case gives a new way of deriving a star–triangle relation that was previously obtained by the author.

Keywords: statistical mechanics, star–triangle relation, Yang–Baxter equation, elliptic hypergeometric integral, superconformal indices

1. Introduction

The star–triangle relation is a distinguished form of the Yang–Baxter equation for Ising-type models on two-dimensional lattices. In these models the fluctuating variables, or ‘spins’, are assigned to lattice sites, and two spins interact only if they are connected by an edge of the lattice. Remarkably, many physically interesting models in this class can be solved exactly, for instance, the 2–d Ising [1], and chiral Potts [2, 3] models, and some others [4–10] (see also [11, 12] for a review of other known cases). The star–triangle relation plays the role of the integrability condition for these models.
Recently Bazhanov and Sergeev (BS) obtained an important ‘master’ solution [10] of the star–triangle relation, which contained all previously known solutions of this relation as particular cases, and provides interesting new examples. The above master solution is expressed in terms of the elliptic gamma function, which contains two arbitrary free parameters \(p \) and \(q \), that play the role of elliptic nome. The spin variables for the corresponding statistical mechanical model take continuous real values on the circle.

Considered as a mathematical identity the BS master solution is identical to the elliptic beta integral of Spiridonov [13]. The latter discovery was central to the modern development of the theory of elliptic hypergeometric functions [14], and some recent works further highlight that some of these identities are connected to the integrability of lattice models of statistical mechanics. Some examples include an extension of the BS master solution to the case of multi-component spins [15, 16], and remarkable correspondences to Seiberg duality in supersymmetric gauge theories [17–20]. Recently Yamazaki introduced a new integrable model [20], with Boltzmann weights satisfying the star–star relation, by using the property that the latter relation is equivalent to a particular Seiberg duality for the \(4-d \) \(\mathcal{N} = 1 \) lens index for a class of \(SU(N) \) quiver gauge theories. This star–star relation is rather general and contains its variant for the master solution [10] and its multi-spin generalization [15, 16] as particular cases.

In section 2 it is shown that the Boltzmann weights for the model with two-component spins introduced by Yamazaki, also satisfy a star–triangle relation. A proof for the star–triangle relation is given in appendix A, which also verifies the corresponding two component spin star–star relation, since the former relation implies the latter (but the reverse is not true). The actual proof given in appendix A is for an identity more general than the star–triangle relation, resulting in a new elliptic hypergeometric summation/integration identity for the lens elliptic gamma function, that contains six complex and six integer variables. This identity contains Spiridonov’s celebrated elliptic beta integral as a particular case. Two limiting cases of the star–triangle relation are considered, resulting in one new solution to the star–triangle relation with Boltzmann weights given in terms of infinite \(q \)-products, and another new solution with Boltzmann weights given in terms of the Euler gamma function, that has recently been obtained by the author [21]. Possible relations to existing integrals in the literature are discussed.

1.1. Solvable square lattice model

All models may be considered here on the square lattice made up of of \(N \) sites. Spin variables

\[
\sigma_j = (x_j, m_j), \quad x_j \in \mathbb{R}, \quad m_j \in \mathbb{Z}, \quad j = 1, 2, ..., N,
\]

are assigned to each site of the lattice, where \(x_j \) takes real values, and \(m_j \) takes integer values. Two spins interact only if they are connected by an edge of the lattice. The interactions are represented by the Boltzmann weights \(\mathcal{W}_s(\sigma, \sigma) \) and \(\mathcal{V}_s(\sigma, \sigma) \), associated to horizontal and vertical edges respectively, where \(\sigma \) and \(\sigma \) are the spins located at the end of the edge, as shown in figure 1. Here two Boltzmann weights are distinguished by crossing of dashed rapidity lines, a property which allows one to also consider the model on more general \(\mathbb{Z} \)-invariant lattices [22]. The two edge Boltzmann weights, depend on the additive spectral variable \(\alpha \), and are related to each other by the crossing symmetry property \(\mathcal{V}_s(\sigma, \sigma) = \mathcal{V}_{-\alpha}(\sigma, \sigma) \). The ‘crossing parameter’, \(\eta \), is model dependent, and the regime \(0 < \alpha < \eta \) is a physical regime of the model, where the Boltzmann weights are positive and real-valued. For all models considered in this paper, the Boltzmann weights are also spin reflection symmetric, such that \(\mathcal{W}_s(\sigma, \sigma) = \mathcal{V}_s(\sigma, \sigma) \).
To each spin σ_j in the lattice one also associates the single-spin weights $\Sigma(\sigma_j)$, which are independent of the spectral variable α. The partition function of the model is then defined as a product of all Boltzmann weights, with an integral (sum) over all internal continuous (discrete) spins, while boundary spins are kept fixed

$$Z = \sum \prod_{(ij)} \mathcal{W}_i(\sigma_i, \sigma_j) \prod_{(kl)} \mathcal{W}_j(\sigma_k, \sigma_l) \prod_n S(\sigma_n) \text{d}x_n.$$ \hspace{1cm} (2)

The first product is taken over all horizontal edges (ij), the second over all vertical edges (kl), and the third product over all internal sites of the lattice. The goal of statistical mechanics is to evaluate Z in the thermodynamic limit, when the number of sites in the lattice goes to infinity. This evaluation is possible if the Boltzmann weights satisfy the star–triangle equation. For the models given here this relation reads

$$\sum_{\alpha_i, \alpha_j, \alpha_k} \int \text{d}x_0 S(\sigma_0) \mathcal{W}_{\eta-\alpha_i}(\sigma_i, \sigma_0) \mathcal{W}_{\eta-\alpha_j}(\sigma_j, \sigma_0) \mathcal{W}_{\eta-\alpha_k}(\sigma_k, \sigma_0) = \mathcal{R}(\alpha_i, \alpha_j, \alpha_k) \mathcal{W}_{\alpha_i}(\sigma_i, \sigma_j) \mathcal{W}_{\alpha_j}(\sigma_j, \sigma_k) \mathcal{W}_{\alpha_k}(\sigma_k, \sigma_l),$$ \hspace{1cm} (3)

where the three spectral parameters $\alpha_i, \alpha_j, \alpha_k$ satisfy the constraint $\alpha_i + \alpha_j + \alpha_k = \eta$ and the factor $\mathcal{R}(\alpha_i, \alpha_j, \alpha_k)$ is independent of the spins $\sigma_i, \sigma_j, \sigma_k$. The integral and sum are evaluated over a given set of continuous and discrete values respectively. There exists also a second star–triangle relation obtained by exchanging the order of spins appearing in the Boltzmann weights in (3), however for models with symmetric Boltzmann weights, $\mathcal{W}_\alpha(\sigma_i, \sigma_j) = \mathcal{W}_\alpha(\sigma_j, \sigma_i)$, the two expressions are equivalent. The star–triangle relation (3) implies that the row-to-row transfer matrices of the lattice model commute [23].

For all models considered here, the normalization of the Boltzmann weights is chosen such that the spin independent factor $\mathcal{R}(\alpha_i, \alpha_j, \alpha_k)$ in (3) is equal to one. This result is based on a factorization for $\mathcal{R}(\alpha_i, \alpha_j, \alpha_k)$ [12], which holds for all of the above mentioned solutions of the star–triangle relation, particularly for the new solutions appearing in the following section.

For this special normalization, the Boltzmann weights of the model also satisfy the following boundary conditions: [Figure 1.] Horizontal (left) and vertical edges (right), and their Boltzmann weights. Here ‘rapidity lines’ (dashed arrows) are shown to distinguish the two types of weights, \mathcal{W} and \mathcal{W}.

where $\delta(x)$, and $\delta_{m,n}$ are respectively Dirac and Kronecker delta functions. The exact form of the second boundary condition differs slightly depending on the symmetries of the Boltzmann weights, and explicit expressions for the boundary conditions in each case will be given for the three different models obtained in the next section.

From the boundary conditions (4), and star–triangle relation (3), one obtains the following inversion relations

$$\mathcal{W}_0(\sigma_i, \sigma_j)|_{\alpha = 0} = 1,$$

$$\mathcal{W}_{\eta-\alpha}(\sigma_i, \sigma_j)|_{\alpha = 0} = \frac{1}{2S(\sigma_i)} \left(\delta(x_i + x_j)\delta_{m_i,m_j} + \delta(x_i - x_j)\delta_{m_i,m_j} \right).$$

The above relations, (3) and (5), allow one to show that in the thermodynamic limit as the number of lattice sites goes to infinity $N \to \infty$, the bulk free energy of the model vanishes

$$\lim_{N \to \infty} N^{-1} \log \mathcal{Z} = 0.$$

A derivation of this result requires some extensions [11] of the standard inversion relation method [24–26]. Here the boundary spins are assumed to be kept finite in the limit $N \to \infty$, and there is an analyticity assumption for the free energy of the model in the physical regime. The result (6) is purely a consequence of the special choice of normalization for the Boltzmann weights [8–10].

2. New discrete and continuous spin solutions to the star–triangle relation

In this section the Boltzmann weights are defined that give a new solution of the star–triangle relation\(^1\) (3). This star–triangle relation and the corresponding proof given in appendix A are the main result of the paper.

Recall the definition of the spin

$$\sigma_j = (x_j, m_j), \quad x_j \in \mathbb{R}, \quad m_j \in \mathbb{Z}.$$ \hspace{1cm} (7)

Restrict the continuous real valued component x_j, and the discrete integer valued component m_j, to take values

$$0 \leq x_j < \pi, \quad m_j = 0, 1, \ldots, \left\lfloor r/2 \right\rfloor,$$

for some positive integer parameter $r = 1, 2, \ldots$, where $\lfloor \cdot \rfloor$ is the floor function. Define also the elliptic nome p, q, and crossing parameter η as

$$p = e^{\imath \pi r}, \quad q = e^{\imath \pi r}, \quad \eta = -\pi i (\sigma + \tau)/2, \quad \text{Im} \sigma, \text{Im} \tau > 0.$$ \hspace{1cm} (9)

\(^1\) These Boltzmann weights correspond to the two-component spin version of Yamazaki’s star–star relation, which was obtained by identifying the correspondence of this relation with Seiberg duality of the lens index for a $\mathcal{N} = 1$ supersymmetric quiver gauge theory [20].
Note that a physical regime where Boltzmann weights are real and positive valued can be found for \(pq^* = 1 \).

Define the elliptic gamma function as \([15, 27]\)

\[
\Gamma_{pq}(z) = \prod_{j,k=0}^{\infty} \frac{1 - e^{2\pi j (p^2 z + q^2 (p^2 + q^2 - 1))}}{1 - e^{2\pi j (p^2 z + q^2 (p^2 + q^2 - 1))}}.
\] (10)

In terms of the elliptic gamma function, the so-called lens elliptic gamma function is defined as \([20]\)

\[
\Phi_{pq}(z + (r/2 - \lfloor m/2 \rfloor)\pi, p, q; p', q') = \prod_{j,k=0}^{\infty} \frac{1 - e^{2\pi j (p^2 z + q^2 (p^2 + q^2 - 1))}}{1 - e^{2\pi j (p^2 z + q^2 (p^2 + q^2 - 1))}}.
\] (11)

where \(\lfloor m/2 \rfloor \in \{0, 1, \ldots, r - 1\} \) denotes \(m \) modulus \(r \). From (8), note that when \(r = 1 \), and the lens elliptic gamma function reduces to the usual elliptic gamma-function (10)

\[
\Phi_{1,0}(z) = \Phi(z; p, q).
\] (12)

The lens elliptic gamma function (11), satisfies the following periodicity and inversion relations

\[
\Phi_{r,m}(z) = \Phi_{r,m}(z + \pi), \quad \frac{1}{\Phi_{r,m}(z)} = \Phi_{r,-m}(-z).
\] (13)

Now define the edge Boltzmann weight as

\[
\mathcal{W}_0(\sigma_i, \sigma_j) = \frac{e^{-2\pi (m - m_i)m_i} / r \Phi_{r,m,-m_i}(x_i - x_j + i\alpha)\Phi_{r,m,m_i}(x_i + x_j + i\alpha)}{\kappa(\alpha) \Phi_{r,m,-m_i}(x_i - x_j - i\alpha)\Phi_{r,m,m_i}(x_i + x_j - i\alpha)},
\] (14)

where \(m_{\pm} = [m], [-m] \). The spectral parameter \(\alpha \) is taken to lie in the domain \(0 < \alpha < \eta \), where \(\eta \) is real. For \(p = q^* \), this is a physical regime of the model, where the Boltzmann weights (14) take real, positive values.

The normalization factor \(\kappa(\alpha) \) is given by

\[
\kappa(\alpha) = \exp \left\{ \sum_{n=0}^{\infty} \frac{e^{2\pi \alpha n}(pq)^{n+1} - (pq)^{-n}}{(pq)^{2n+1} - (pq)^{-2n}} \right\},
\] (15)

and satisfies the pair of functional equations

\[
\frac{\kappa(\eta - \alpha)}{\kappa(\alpha)} = \Phi_{r,0}(i(\eta - 2\alpha)), \quad \kappa(\alpha)\kappa(-\alpha) = 1.
\] (16)

For \(r = 1 \) this reduces to the normalization of the Boltzmann weights for the BS master solution [10].

Note that the functional equations (16) arise when solving for the free energy of the model, \(\lim_{N \to \infty} N^{-1} \log \mathcal{Z} \), using the inversion relation method [24–26]. The solution of these functional equations with appropriate analyticity properties, (15), is included in the normalization of the Boltzmann weights (14), and the result (6) follows [8–11].
Next define the single-spin Boltzmann weight as
\[
S(\sigma) = \frac{\Theta(2 \sigma^2; \sigma^2)}{\pi} (2^2 \sigma^2; q^2)^{1/2} \Phi_{2r-2m, l}(2r - i\eta) \Phi_{2r, m}(2r - i\eta),
\]
\[
= \frac{\Theta^2}{\pi} e^{2\sigma(2m)_{l,r}} \vartheta_4(2x_i + \frac{r/2 - 2m_{l,r}}{2 \sigma}) \left| \frac{p'}{p} \right| \vartheta_4(2x_i - \frac{r/2 - 2m_{l,r}}{2 \sigma}) \left| \frac{q'}{q} \right|,
\]
where
\[
\varepsilon_i = \begin{cases}
\frac{1}{2} & m_i = 0 \text{ or } \left\lfloor \frac{r - m_{l,r}}{2} \right\rfloor, \\
1 & \text{otherwise},
\end{cases}
\]
\(\vartheta_4\) is a Jacobi theta function
\[
\vartheta_4(z | \rho) = (p^2; q^2)_{\infty} \prod_{n=1}^{\infty} \left(1 - e^{2\pi p^{2n-1}} \right) \left(1 - e^{-2\pi p^{2n-1}} \right),
\]
and \((x; q)_{\infty} = \prod_{j=0}^{\infty} (1 - x q^j)\) is the q-Pochhammer symbol.

The Boltzmann weights \((14)\) are reflection symmetric
\[
\mathcal{W}_b(\sigma_i, \sigma_j) = \mathcal{W}_b(\sigma_j, \sigma_i).
\]

The Boltzmann weights have an obvious \(\pi\)-periodic symmetry in the continuous spin variable, and they also are invariant under the spin transformation \(x_i \rightarrow -x_i, m_i \rightarrow r - m_i\).

Accordingly the discrete spins are restricted to values \(0, 1, \ldots, \left\lfloor \frac{r}{2} \right\rfloor\), and the \(\varepsilon_i\) factor was introduced in \((18)\) to account for this.

The Boltzmann weights \((14)\) satisfy the following boundary conditions analogous to \((4)\)
\[
\mathcal{W}_b(\sigma_i, \sigma_j) \bigg|_{a=0} = 1,
\]
\[
\mathcal{W}_{\eta-\alpha}(\sigma_i, \sigma_j) \bigg|_{a=0} = \frac{\varepsilon_i}{S(\sigma_i)} \left(\delta \left(\sin(x_i + x_j) \right) \delta_{[m_i + m_j], 0} + \delta \left(\sin(x_i - x_j) \right) \delta_{[m_i - m_j], 0} \right).
\]

where \(S(\sigma_i) \neq 0\). The \(r = 1\) case of these relations were previously obtained for the BS master solution \([10]\), and in connection with biorthogonality of elliptic hypergeometric functions \([28]\).

The Boltzmann weights \((14)\), and \((17)\), satisfy the star–triangle relation
\[
\sum_{m=0}^{\left\lfloor \frac{r}{2} \right\rfloor} \int_0^{\pi} d\theta_0 S(\sigma_i) \mathcal{W}_{\eta-\alpha}(\sigma_i, \sigma_0) \mathcal{W}_{\eta-\alpha}(\sigma_j, \sigma_0) \mathcal{W}_{\eta-\alpha}(\sigma_k, \sigma_0) = \mathcal{W}_b(\sigma_i, \sigma_j) \mathcal{W}_b(\sigma_j, \sigma_k) \mathcal{W}_b(\sigma_k, \sigma_i),
\]
with the spectral parameters satisfying \(\eta = \alpha_i + \alpha_j + \alpha_k\). For \(r = 1\) this reduces to the master solution of the star–triangle relation \([10]\).

The star–triangle relation \((22)\) is a particular case of a new elliptic hypergeometric summation/integration identity given in appendix \(A\).

2 This differs from Yamazaki’s single-spin weight \((\omega_x)\) in his notation \([20]\) by dropping a constant singular factor that appears to be incorrect, at least from the point of view of the statistical mechanical model (in his notation this factor is \(G_{pq}(1; p, q^{2\sigma-1})\)).

3 It follows from \((16)\) that a factor \(R(\alpha_i, \alpha_j, \alpha_k) = \Phi_{, \eta}((\eta - 2\alpha_i)) \Phi_{, \eta}((\eta - 2\alpha_j)) \Phi_{, \eta}((\eta - 2\alpha_k))\), would appear on the right-hand side of the star–triangle relation \((22)\), if the Boltzmann weights \((14)\) were not normalized by \(\kappa(\alpha)\).
2.1. Limit: $r \to \infty$

The $r \to \infty$ limit of (22) is formally fairly straightforward due to the simple asymptotics of the lens elliptic gamma function. Consider the same elliptic nomes p, q from the previous section in (9). Define the function Q as the $r \to \infty$ limit of the lens elliptic gamma function (11)

$$Q(z, n) = \lim_{r \to \infty} \Phi_{r,n}(z) = \begin{cases} \prod_{j=0}^{\infty} \frac{1 - e^{2\pi i \frac{p^{-2\alpha(pq)^{2j+1}}}{(pq)^{2j+1}}} n < 0,} {1 - e^{2\pi i \frac{q^{2\alpha(pq)^{2j+1}}}{(pq)^{2j+1}}} n \geq 0.} \end{cases}$$

This function satisfies the following inversion relation

$$Q(z, n) = \frac{1}{Q(-z, -n)}.$$ (24)

From this function one defines the edge Boltzmann weights

$$\mathcal{W}_b(\sigma_x, \sigma_y) = \frac{e^{-2\pi i \alpha} e^{-2\pi i m_j} \kappa(\alpha)}{\kappa(\alpha)} Q(x_j - x_j + i\alpha, m_i - m_j)Q(x_j + x_j + i\alpha, m_i + m_j) \frac{Q(x_j + x_j - i\alpha, m_i - m_j) Q(x_j + x_j - i\alpha, m_i + m_j)}{Q(x_j - x_j - i\alpha, m_i - m_j) Q(x_j - x_j + i\alpha, m_i + m_j)}.$$ (25)

with the normalization

$$\kappa(\alpha) = \exp \left\{ -\sum_{n=0}^{\infty} \frac{e^{4\pi i n}}{(pq)^{2n} - (pq)^{-2n}} \right\}.$$ (26)

The spectral variable is restricted to the region $0 < \alpha < \eta$, with η defined in (9). The normalization factor κ satisfies the following functional equations

$$\frac{\kappa(\eta - \alpha)}{\kappa(\alpha)} = Q(i(\eta - 2\alpha), 0), \quad \kappa(\alpha) \kappa(-\alpha) = 1,$$ (27)

which are required for (6) to hold.

Define also the single-spin Boltzmann weight as

$$S(\sigma_j) = \frac{1}{2\pi} e^{4\pi i m_j} Q(2x_j - i\eta, 2m_j) Q(-2x_j - i\eta, -2m_j).$$ (28)

The continuous spins x_j and discrete spins m_j now take values

$$0 \leq x_j < \pi, \quad m_j \in \mathbb{Z}.$$ (29)

The Boltzmann weights (25) satisfy spin reflection symmetry

$$\mathcal{W}_b(\sigma_x, \sigma_j) = \mathcal{W}_b(\sigma_j, \sigma_x),$$ (30)

and are π-periodic in the continuous spin x_j. These Boltzmann weights are real and positive for $p = q^\alpha$, and $0 < \alpha < \eta$.
The Boltzmann weights \((25)\) satisfy the following boundary conditions
\[
\mathcal{W}_0(\sigma, \sigma)\bigg|_{\sigma = 0} = 1,
\]
\[
\mathcal{W}_{\eta-\alpha}(\sigma, \sigma)\bigg|_{\alpha = 0} = \frac{1}{2S(\sigma)} \left(\delta \left(\sin(x_i + x_j) \right) \delta_{m_p-m_q} + \delta \left(\sin(x_i - x_j) \right) \delta_{m_p+m_q} \right), \tag{31}
\]
where \(S(\sigma) \neq 0\).

The Boltzmann weights \((25)\), and \((28)\), satisfy the star–triangle relation
\[
\sum_{m \in \mathbb{Z}} \int_0^{\pi} dx_0 \, S(\sigma_0) \mathcal{W}_{\eta-\alpha}(\sigma, \sigma) \mathcal{W}_{\eta-\alpha}(\sigma_j, \sigma_0) \mathcal{W}_{\eta-\alpha}(\sigma_k, \sigma_0) = \mathcal{W}_{\eta}(\sigma_j, \sigma_k) \mathcal{W}_{\eta}(\sigma, \sigma) \mathcal{W}_{\eta}(\sigma_j, \sigma_k), \tag{32}
\]
with \(\eta = \alpha_i + \alpha_j + \alpha_k\).

Note that a similar but different identity, involving an integral and sum over continuous and discrete variables respectively, was recently obtained by Gahramanov and Rosengren in the form of a pentagon identity from \(3-d\ \mathcal{N} = 2\) supersymmetric gauge theories \([29]\). From this point of view, it would also be interesting to find an interpretation of equation \((32)\), if any, in terms of a new duality for the \(r \to \infty\) reduction of the \(S_1 \times S_3/\mathbb{Z}_r\) superconformal indices \([30, 31]\).

2.2. Gamma function limit

From the star–triangle relation \((32)\), one can take a further limit to obtain another new solution of the star–triangle relation, with Boltzmann weights given in terms of the Euler gamma function. The latter star–triangle relation was recently obtained by the author \([21]\).

Consider the following limit of the elliptic nome
\[
p = e^{-\eta}, \quad q = e^{-\eta}, \quad \eta = \hbar, \quad \hbar \to 0, \tag{33}
\]
and the following scaling limit of the continuous spins \(x_j\) and spectral parameters \(\alpha\) from section \(2.1\)
\[
x_j \to \hbar x_j, \quad \alpha \to \hbar \alpha, \quad \hbar \to 0. \tag{34}
\]
Under the rescaling of the spins \(\sigma_j = (x_j/\hbar, m_j)\), the asymptotics of \((23)\), in the previous section as \(\hbar \to 0\), are given in terms of the Euler gamma function \(\Gamma(z)\) by
\[
Q(\sigma_j) \simeq (4\hbar)^{\alpha} \frac{\Gamma \left(\frac{1+|m_j|+i\eta} {2} \right)}{\Gamma \left(\frac{1+|m_j|-i\eta} {2} \right)}. \tag{35}
\]
Then as \(\hbar \to 0\), the asymptotics of the Boltzmann weights \((25)\), \((28)\), and normalization \((26)\), are given by
\[
\mathcal{S}(\sigma_j) \simeq \frac{1}{2\pi} (4\hbar)^{\frac{3}{2}} \left(x^2 + m_j^2 \right), \quad \kappa(\alpha, \hbar) \simeq (8\hbar)^{-\alpha} \frac{\Gamma \left(\frac{1-\alpha} {2} \right)}{\Gamma \left(\frac{1+\alpha} {2} \right)}. \tag{36}
\]
The spins of the model now take their values \(\mathbb{R} \) and \(\mathbb{Z} \), and the spectral parameter is restricted to \(0 < \alpha < \eta \), which is a physical regime of the model. These Boltzmann weights also obey the spin reflection identity (20), however are no longer \(\pi \)-periodic in the spin.

The Boltzmann weights (39) also satisfy the following boundary conditions

\[
\mathcal{W}_{\alpha}(\sigma, \sigma_j) \big|_{\alpha=0} = 1, \\
\mathcal{W}_{\alpha}(\sigma, \sigma_j) \big|_{\alpha=0} = \frac{1}{2S(\sigma)} \left(\delta(x_i + x_j) \delta_{m_i - m_j} + \delta(x_i - x_j) \delta_{m_i, m_j} \right),
\]

where \(S(\sigma) \neq 0 \). For additional details on this star–triangle relation, the reader is referred to the previous publication [21].

Note that different solutions to the star–triangle relation with Boltzmann weights given in terms of the Euler gamma function, were previously found in relation to the chiral Potts model [32]. The Boltzmann weights for these star–triangle relations are for models that contain only, either continuous, or discrete valued spins. It would be interesting to determine if there exists some relation between these solutions, and the star–triangle relation given in (38).

The following compact notation for products of the gamma function, \(\Gamma(x \pm y) = \Gamma(x + y)\Gamma(x - y) \), is now used for convenience.

A typo appeared in the Boltzmann weight \(S(\sigma) \) in a previous paper [21], it has been corrected here by the addition of the factor of \(\frac{1}{2} \).
As was previously remarked [21], the appearance of discrete and continuous valued spins here resemble the elliptic model obtained by Yamazaki from quiver gauge theory [20]. It has been shown here now, how these models are connected through the star–triangle relation (22), the latter relation implying the star–star relation for the two-component spin case.

The alternate method [21] to obtain (38) was to use a scaling limit of the hyperbolic beta integral solution of the star–triangle relation [18], that resulted in the star–triangle relation given by (38)\(^6\). The asymptotics of the hyperbolic beta integral in the strong coupling regime, are such that sharp delta function shaped peaks appear when the real valued spins take integer values. These asymptotics are manifest in the strong coupling limit as additional discrete integer spin variables, as appearing in (38). One might then ask whether the elliptic variant (22) of this star–triangle relation, arises in the strong coupling limit of some as yet unknown star–triangle relation. Such a relation should also then have implications for supersymmetric gauge theories, as well as providing a case of an interesting new summation/integration identity, perhaps in terms of more general special functions.

3. Conclusion

A new solution to the star–triangle relation was given in (22), for an Ising type model whose spins contain integer and real valued components. The Boltzmann weights of this model are obtained from Yamazaki’s Gauge/YBE correspondence and the related solution to the star–star relation [20]. The star–triangle relation (22) implies the two component spin case of the star–star relation given by Yamazaki. In appendix A a proof is presented of a new elliptic hypergeometric summation/integration identity which contains the star–triangle relation (22) as a particular case. The new identity contains six integer variables, in addition to six complex variables, and contains Spiridonov’s elliptic beta integral [13] as a particular case.

Two further solutions of the star–triangle relation (32), (38) were given that arise as limiting cases of (22). The Boltzmann weights for these star–triangle relations similarly describe Ising type models with integer and real valued spin components. The star–triangle relation (32) appears to be new, while the star–triangle relation (38) was previously obtained by the author, using a different limiting case. In each case the Boltzmann weights are normalized such that (6) holds for the corresponding lattice model.

It would be interesting to determine the exact role of the three star–triangle relations (22), (32), and (38), in the gauge theory setting. The Gauge/YBE duality described by Yamazaki, implies that the star–triangle relation (22) should correspond to Seiberg duality of the \(4-d\) \(\mathcal{N} = 1\) \(S_1 \times S_1/\mathbb{Z}_r\) index for SU(2) quiver gauge theory. While the star–triangle relation (32) appears to be related to the pentagon identity recently obtained by Gahramanov and Rosengren [29], and is thus expected to correspond to a duality of indices in \(3-d\) \(\mathcal{N} = 2\) supersymmetric gauge theory [30, 31].

It would also be of interest to mathematically prove star–star relations for multi-component spins given by Yamazaki, that correspond to multivariate generalizations of elliptic hypergeometric integral identities of the type in (A.13). It may be possible to do this by adapting proofs given by Rains for the continuous variable cases [33], and would likely result

\(^{6}\) Bazhanov, Mangazeev, and Sergeev originally used this limiting procedure to obtain a related solution to the star–triangle relation, with Boltzmann weights depending only on the differences of spins [9].
in new elliptic hypergeometric identities involving an integral and sum over continuous and discrete variables respectively.

Acknowledgments

I thank Vladimir Bazhanov for suggesting the problem, useful advice, and reading the manuscript. I thank Alexander Bobenko and Yuri Suris for fruitful discussions and their hospitality during my stay at the Technische Universität Berlin. I also thank Hjalmar Rosengren for his interest to this work and interesting correspondence. Note that a star–triangle relation closely related to (32) was independently found [34], which became known to the author after these results were completed. The author is supported by the DFG Collaborative Research Center TRR 109, ‘Discretization in Geometry and Dynamics’.

Appendix A. Proof of (22)

In this section a proof of (22) is given. This is based on and follows closely Spiridonov’s proofs of the elliptic beta integrals [14, 35]. One major difference is that rather than considering the integral over a closed contour encircling the origin, the integral is considered over the interval [0, 2π] (the difference between the contours is a simple change of variables). This is done for convenience, primarily to avoid calculations involving roots of complex numbers.

Recall the definition of the elliptic nomes
\[p = e^{i\sigma}, \quad q = e^{i\tau}, \quad e^{-2\eta} = pq, \quad \text{Im}(\sigma), \text{Im}(\tau) > 0, \]
and now define
\[\zeta = i\pi (1 + \tau/2 - \sigma/2), \]
and the following function
\[\varphi(z, m) = (-2\eta - 2iz + 2\zeta([m] - [m])3)[m]_{34}/(4r), \]
with \(z \in \mathbb{C}, m \in \mathbb{Z}, r \) defined in (8), and \([m] \in \{0, 1, \ldots, r-1\}\) denotes \(m \) modulus \(r \).

Define \(\Gamma \) to be the lens elliptic gamma function [20] in the following form
\[\Gamma(z, m) = e^{\varphi(z, m)} \prod_{j,k=0}^{\infty} \frac{1 - e^{-i\eta}p^{[m]}(pq)^{[k]}q^{[k]}}{1 - e^{i\eta}q^{[m]}(pq)^{[k]}p^{[k]}}, \]
It is useful to introduce the following compact notation for products of this function
\[\Gamma(x \pm z, m \pm n) := \Gamma(x + z, m + n)\Gamma(x - z, m - n), \]
\[\Gamma(x \pm 2z, m \pm 2n) := \Gamma(x + 2z, m + 2n)\Gamma(x - 2z, m - 2n). \]

See also Wilf and Zeilberger’s work [36].

This is equivalent to the definition of \([m]_i\) from section 2, with the \(r \) subscript now dropped.

This is related to \(\Phi(z, m) \) of (11) by a change of variables \(e^{-2i\eta} = \Gamma(-2z + i\eta, m) \), and squaring the elliptic nomes \(p \rightarrow p^2, q \rightarrow q^2 \).

7 See also Wilf and Zeilberger’s work [36].

8 This is equivalent to the definition of \([m]_i\) from section 2, with the \(r \) subscript now dropped.

9 This is related to \(\Phi(z, m) \) of (11) by a change of variables \(e^{-2i\eta} = \Gamma(-2z + i\eta, m) \), and squaring the elliptic nomes \(p \rightarrow p^2, q \rightarrow q^2 \).
The poles of the lens elliptic gamma function (A.4) are located at the points
\[z = -\pi \sigma (rj + [m]) - 2i\eta k, -\pi \tau (rf + 1) - [m]) - 2i\eta k, \] (A.6)
and its zeros are located at the points
\[z = \pi \sigma (rj + 1) - [m]) + 2i\eta (k + 1), \pi \tau (rf + [m]) + 2i\eta (k + 1), \] (A.7)
for \(j, k = 0, 1, \ldots \).

The lens elliptic gamma function (A.4) obeys the following useful identities
\[\Gamma(z, m) = \frac{1}{\Gamma(2i\eta - z, -m)}, \] (A.8)
and
\[\Gamma(z + n\pi \sigma, m - n) = \left(\prod_{j=0}^{n-1} \theta(z + j\pi \sigma, m - j | \tau) \right) \Gamma(z, m), \ n = 1, 2, \ldots, \] (A.9)
where the theta function is defined as
\[\theta(z, m | \tau) = e^{\phi(z, m)} \left(e^{i\zeta q^{[m]}}; q \right)_\infty \left(e^{-i\zeta q^{[-m]}}; q \right)_\infty, \] (A.10)
and
\[\phi(z, m) = \frac{\psi(z + \pi \sigma, m - 1)}{\psi(z, m)} \]
\[= (\zeta (r - 1)(r + 1)/3 - ni(\tau + 2)[m]_\pm - i(\zeta + \pi)(r - 1 - 2[-m])/(2r). \] (A.11)

The theta function (A.10) obeys the following useful identities
\[\theta(-z, -m | \tau) = -e^{i(\pi/2[m] - z/\tau)} \theta(z, m | \tau), \]
\[\theta(z + n\pi \tau, m | \tau) = e^{i(n\pi - z - \pi(\tau - 1)/2)} \theta(z, m | \tau), \] (A.12)
where \(n \in \mathbb{Z}. \)

A more general identity than the star–triangle relation (22), is the following summation/integration identity\(^\text{10}\)
\[(q'; q')_\infty (p'; p')_\infty \sum_{y=0}^{r-1} \int_{0}^{2\pi} \frac{dz}{4\pi} \prod_{t=1}^{6} \Gamma(t_i \pm z, u_i \pm y)}_{\Gamma(\pm 2z, \pm 2y)} \]
\[= \prod_{1 \leq i < j \leq 6} \Gamma(t_i + t_j, u_i + u_j), \] (A.13)
where
\[p, q, t_i \in \mathbb{C}, \ u_i \in \mathbb{Z}, \ |p|, |q| < 1, \ \text{Im}(t_i) > 0, \ i = 1, \ldots, 6, \] (A.14)
and the variables are restricted to satisfy
\[\sum_{i=1}^{6} t_i = 2i\eta, \ \sum_{i=1}^{6} u_i = 0. \] (A.15)

\(^{10}\) Spiridonov’s elliptic beta integral [13] corresponds to the \(r = 1 \) case of this integral.
The star–triangle relation (22) is related to the identity (A.13) by the change of variables

\[t_1 = x_1 + i\alpha_1, \quad t_3 = x_3 + i\alpha_3, \quad t_5 = x_2 - i(\alpha_1 + \alpha_3 - \eta), \]
\[t_2 = -x_1 + i\alpha_1, \quad t_4 = -x_3 + i\alpha_3, \quad t_6 = -x_2 - i(\alpha_1 + \alpha_3 - \eta), \]

(A.16)

and

\[u_1 = m_1, \quad u_3 = m_3, \quad u_5 = m_2, \]
\[u_2 = -m_1, \quad u_4 = -m_3, \quad u_6 = -m_2. \]

(A.17)

The identity (A.13) is what is to be proven. This identity can be re-written in the equivalent form

\[
I(t_1, \ldots, t_5, u_1, \ldots, u_5) = \sum_{y=0}^{r-1} \int_{0}^{2\pi} \rho(z, y, t_1, \ldots, t_5, u_1, \ldots, u_5) dz
\]

\[= \frac{4\pi}{(q'; q')_\infty (p'; p')_\infty}, \]

(A.18)

where

\[
\rho(z, y, t_1, \ldots, t_5, u_1, \ldots, u_5) = \frac{\prod_{i=1}^{5} \Gamma(t_i \pm z, u_i \pm y) \Gamma(A - t_i, U - u_i)}{\Gamma(\pm 2z, \pm 2y) \Gamma(A \pm z, U \pm y) \prod_{1 \leq i < j \leq 5} \Gamma(t_i + t_j, u_i + u_j)},
\]

(A.19)

and

\[A = \sum_{i=1}^{5} t_i, \quad U = \sum_{i=1}^{5} u_i. \]

(A.20)

The integral (A.13) is then recovered by setting \(t_6 = 2i\eta - A \), and \(u_6 = -U \).

The integrand \(\rho \) is \(2\pi \)-periodic in \(z \)

\[\rho(z + 2\pi k, y, t_1, \ldots, t_5, u_1, \ldots, u_5) = \rho(z, y, t_1, \ldots, t_5, u_1, \ldots, u_5), \]

(A.21)

for \(k \in \mathbb{Z} \).

For \(|\text{Im}(A)| < |\text{Im}(2i\eta)| \), the integrand \(\rho \) has the following poles lying in the upper half plane

\[\{ t_i + \pi\sigma (rj + [u_i - y]) + 2i\eta k + 2\pi n, t_i + \pi\tau (r(1 + j) - [u_i - y]) + 2i\eta k + 2\pi n \}, \]
\[\{ -A + \pi\sigma (r(j + 1) - [U + y]) + 2i\eta (k + 1) + 2\pi n, \]
\[-A + \pi\tau (r(j + 1) - [U + y]) + 2i\eta (k + 1) + 2\pi n \}, \]

(A.22)

and the following poles lying in the lower half plane

\[\{ -t_i - \pi\sigma (rj + [u_i + y]) - 2i\eta k + 2\pi n, -t_i - \pi\tau (r(1 + j) - [u_i + y]) - 2i\eta k + 2\pi n \}, \]
\[\{ A - \pi\sigma (r(j + 1) - [U - y]) - 2i\eta (k + 1) + 2\pi n, A - \pi\tau (r(j + 1) - [U - y]) - 2i\eta (k + 1) + 2\pi n \}, \]

(A.23)

for \(i = 1, 2, \ldots, 5, n \in \mathbb{Z}, \) and \(j, k = 0, 1, \ldots, \). By analyticity and periodicity one may also consider the integral (A.18) (or (A.13)), over any contour between the endpoints \(z = 0, 2\pi \) in the strip \(0 < \text{Re}(z) < 2\pi \), such that the contour separates the points in the two sets of poles (A.22) and (A.23) that lie in this strip, then the \(t_i \) can be chosen to be any complex numbers as long as such a contour exists.
The idea of the proof is to use a difference equation for ρ to show that $I(t_1, \ldots, t_5, u_1, \ldots, u_5)$ is independent of t_i and u_i, $i = 1, \ldots, 5$, and thus only depends on p and q. Then one can evaluate $I(t_1, \ldots, t_5, u_1, \ldots, u_5)$ using residues at a special value of t_i and u_i, to give (A.18).

The first step is to establish the following relation

$$I(t_1 + \pi \sigma r, t_2, \ldots, t_5, u_1, \ldots, u_5) = I(t_1, \ldots, t_5, u_1, \ldots, u_5). \quad (A.24)$$

To establish this, observe that ρ satisfies the following difference equation

$$\rho + \frac{\rho}{(t_1 + z, u_1 + y)} - \frac{\rho}{(t_1 - z, z, -y)} = \frac{\rho}{(A - t_i, U - u_i)},$$

where G is defined as

$$G(z, y, t_1, \ldots, t_5, u_1, \ldots, u_5) = \rho(z, y, t_1, \ldots, t_5, u_1, \ldots, u_5) \times e^{2\pi[y - u_i]/r} \prod_{i=1}^{5} \theta(t_1 + z, u_1 + y | \tau) \frac{\theta(A - t_i, U - u_i) - \theta(A - t_i, U - u_i)}{\theta(A - z, U - y | \tau)} \theta(2z, 2y | \tau) \theta(A + z, U + y | \tau). \quad (A.26)$$

To see that (A.25) holds, divide both sides of (A.25) by $\rho(z, y, t_1, \ldots, t_5, u_1, \ldots, u_5)$, and one obtains

$$\frac{\theta(t_1 + z, u_1 + y | \tau) \theta(t_1 - z, u_1 - y | \tau)}{\theta(A - t_i, U - u_i) - \theta(A - t_i, U - u_i)} = 1$$

$$= \left[\frac{\theta(t_1 + z, u_1 + y | \tau)}{\theta(t_1 - z, u_1 - y | \tau) \theta(A - z, U - y | \tau)} \theta(A + z, U + y | \tau) \right]^{\frac{1}{2} \pi [y - u_i - 1] + [2y - 2z]}/r \prod_{i=1}^{5} \theta(t_i - z, u_i - y | \tau) \theta(A - z, U - y | \tau) \theta(A - z, U - y | \tau). \quad (A.27)$$

Both sides of this relation are elliptic functions of z, sharing the same poles and corresponding residues, then from Liouville’s theorem, the difference of both sides is a constant. The constant may be shown to be zero. To check that (A.27) holds is straightforward, and involves simplifying many expressions in terms of $[m]$. Some more about the identity (A.27) is explained in appendix B.

Now integrate both sides of (A.25), over $0 \leq z \leq 2\pi$, to obtain

$$I(t_1 + \pi \sigma r, t_2, \ldots, t_5, u_1 - 1, u_2, \ldots, u_5) - I(t_1, \ldots, t_5, u_1, \ldots, u_5) = \sum_{y=0}^{r-1} \left(\int_{-\pi - \pi \text{Im}(\sigma)}^{2\pi - \pi \text{Im}(\sigma)} dz \right) G(z, y, t_1, \ldots, t_5, u_1, \ldots, u_5), \quad (A.28)$$

where 2π-periodicity of G has been used for the first integral on the right-hand side. This first integral is over a straight line connecting the two points $z = -\pi \text{Im}(\sigma)$ and $z = 2\pi - \pi \text{Im}(\sigma)$. Setting $\text{Im}(t_i) > 0$, and $\text{Im}(A) < \text{Im}(\pi \tau)$, the function G in (A.26) has poles in the upper half plane at the points...
\[
\{ i_t + \pi \sigma (r j + [u_i - y]) + 2 i \eta j + 2 \pi n, \\
- A + \pi \sigma (r (j + 1) + [U + y]) + 2 i \eta (k + 1) + 2 \pi n, \\
- A + \pi \tau (r (j + 1) + [U + y]) + 2 i \eta (k + 1) + 2 \pi n, \\
- A + \pi \tau (r (j + 1) + [U + y]) + 2 i \eta (k + 1) + 2 \pi n, \\
- A + \pi \tau ([U + y]) + 2 i \eta (k + 1) + 2 \pi n, \}
\]

(A.29)

and for \([U + y] \neq 0,\)
\[
\{ -A + \pi \tau [U + y] + 2 \pi n \},
\]

(A.30)

and the following poles in the lower half plane
\[
\{ -t_i - \pi \sigma (r (j + 1) + [u_i + y]) - 2 i \eta (k + 1) + 2 \pi n, \\
- t_i - \pi \tau (r (j + 1) + [u_i + y]) - 2 i \eta (k + 1) + 2 \pi n, \\
- t_i - \pi \sigma (r (j + 1) + [u_i + y]) - 2 i \eta (k + 1) + 2 \pi n, \\
- t_i - \pi \sigma (r (j + 1) - [U - y]) - 2 i \eta (k + 1) + 2 \pi n, \\
- A - \pi \tau (r (j + 1) - [U - y]) - 2 i \eta (k + 1) + 2 \pi n, \\
A - \pi \tau (r [U - y]) - 2 i \eta (k + 1) + 2 \pi n, \}
\]

(A.31)

and for \([u_j + y] \neq 0,\)
\[
\{ -t_i - \pi \sigma [u_j + y] + 2 \pi n \},
\]

(A.32)

for \(i = 1, \ldots, 5, n \in \mathbb{Z}, \) and \(j, k = 0, 1, \ldots.\) Since for \(\text{Im}(t_i) > 0 \) and \(\text{Im}(A) < \text{Im}(\pi \sigma),\) there are no poles in the strip \(0 > \text{Im}(z) > -\text{Im}(\pi \sigma)\), one can shift the contour of integration in (A.28) from the line \(\text{Im}(z) = -\text{Im}(\pi \sigma)\), to the real axis on \([0, 2\pi],\) to obtain zero on the right-hand side, thus
\[
I(t_1 + \pi \sigma, t_2, \ldots, t_5, u_1 - 1, u_2, \ldots, u_5) = I(t_1, \ldots, t_5, u_1, \ldots, u_5).
\]

(A.33)

Applying this identity \(r\) times (as long as parameters remain in our allowed region), one has now obtained equation (A.24):
\[
I(t_1 + \pi \sigma r, t_2, \ldots, t_5, u_1, \ldots, u_5) = I(t_1, \ldots, t_5, u_1, \ldots, u_5).
\]

(A.34)

In a similar fashion, by requiring that \(\text{Im}(A) < \text{Im}(\pi \sigma),\) one can establish the following difference relation
\[
I(t_1 + \pi \tau r, t_2, \ldots, t_5, u_1, \ldots, u_5) = I(t_1, \ldots, t_5, u_1, \ldots, u_5).
\]

(A.35)

For now set \(\text{Re}(\sigma), \text{Re}(\tau) = 0, \text{Im}(\sigma) > \text{Im}(\tau),\) and \(\pi \sigma k = \pi \tau k\) for any \(n, k = 0, 1, \ldots.\) Also let the real parts of \(A,\) and \(t_i, i = 1, \ldots, 5,\) be non-zero and differ from each other. For the integral \(I(t_1, \ldots, t_5, u_1, \ldots, u_5)\) in (A.18), deform the contour of integration from \(z \in [0, 2\pi],\) such that the poles in (A.22), and the following points lie above the contour
\[
\left\{ h + i \pi x \mid x \geq \min \left(\text{Im}(\sigma)[u_i - y], \text{Im}(\tau)(r - [u_i - y]) \right) \wedge \\
x \leq \max \left(\text{Im}(\sigma)[u_i - y], \text{Im}(\tau)(r - [u_i - y]) + 2 \text{Im}(\sigma)r \right), \right. \\
\left. \{ -A + 2i\eta + i \pi x \mid x \geq \min \left(\text{Im}(\sigma)(r - [U + y]), \text{Im}(\tau)[U + y] - 2 \text{Im}(\sigma)r \wedge \\
x \leq \max \left(\text{Im}(\sigma)(r - [U + y]), \text{Im}(\tau)[U + y] \right) \}
\right\}
\]

(A.36)
and the poles in (A.23), and the following points lie below the contour
\[
\left\{ -t_1 - i\pi x \mid x \geq s \min \{ \text{Im}(\sigma)[u_1 + y], \text{Im}(\tau)(r - [u_1 + y]) \} \right. \\
\left. x \leq \max \{ \text{Im}(\sigma)[u_1 + y], \text{Im}(\tau)(r - [u_1 + y]) + 2 \text{Im}(\sigma)r \} \right\},
\]
\[
[A - 2i\eta - i\pi x]x \geq \min \{ \text{Im}(\sigma)(r - [U - y]), \text{Im}(\tau)([U - y]) \} - 2 \text{Im}(\sigma)r \}
\]
x \leq \max \{ \text{Im}(\sigma)(r - [U - y]), \text{Im}(\tau)([U - y]) \} \right\},
\]
(A.37)
These sets of points correspond to lines in the complex plane with constant real part. Depending on the values of \(\text{Re}(t_1)\) and \(\text{Re}(A)\), one should translate a set of points by \(2\pi k\) if needed, so that the points always lie in the strip \(0 \leq \text{Re} z \leq 2\pi\), and the contour of integration remains in this strip. Using (A.24) one then performs \(n\) shifts on the variable \(t_1\), in the form \(t_1 \rightarrow t_1 + \pi\tau r\), until \(t_1 + \pi\tau m\) enters the set of points \(\{t_1 + \pi\tau x \mid 1 \leq x \leq 2\}\). Then one transforms \(t_1 \rightarrow t_1 - \pi\sigma r\). Under these transformations the poles of the integrand \(\rho\) never cross the contour of integration. Thus one obtains
\[
I(t_1 + \pi\tau r j - \pi\sigma r k, t_2, \ldots, t_5, u_1, \ldots, u_5) = I(t_1, \ldots, t_5, u_1, \ldots, u_5),
\]
(A.38)
for all \(j, k = 0, 1, \ldots\) such that \(\pi \text{Im}(\tau) r j - \pi \text{Im}(\sigma) r k \in [0, \pi \text{Im}(\sigma) r]\).
The set of such points is dense thus \(I\) does not depend on \(t_1\), and by symmetry on any \(t_i\). Then from (A.33) one has
\[
I(t_1 + \pi\sigma, t_2, \ldots, t_5, u_1 - 1, u_2, \ldots, u_5) = I(t_1, \ldots, t_5, u_1 - 1, u_2, \ldots, u_5)
\]
\[
= I(t_1, \ldots, t_5, u_1, \ldots, u_5).
\]
(A.39)
It follows that \(I\) also does not depend on \(u_i\) and by symmetry on any \(u_i\). Thus \(I\) can only depend on \(p\) and \(q\).

Set each \(u_i = 0\). In the limit \(t_1 + t_2 \to 0\), \(\rho\) vanishes and the only contribution to the integral \(I\), is from two finite residues coming from poles which cross the contour of integration for \(\gamma = 0\). Then evaluating the integral \(I\) in this limit from its residues gives the right-hand side of (A.18).

By analytic continuation one may then extend the domain of parameter values to that allowed by the contour between the endpoints \(z = 0, 2\pi\).

Appendix B. The identity (A.27)

In order to analyse the identity (A.27) at its poles, it is convenient to write the residues of both sides of (A.27), in terms of the following theta function\(^{11}\)
\[
\theta(z \mid \tau) = \left(e^{\tau \zeta}; q^\tau \right)_\infty \left(e^{-i\zeta}; q^\tau \right)_\infty.
\]
(B.1)
Then one finds that arguments of theta functions appearing on both sides of (A.27) differ by a simple shift \(\pi\tau r k\), \(k \in \mathbb{Z}\). The theta function (B.1) obeys the following useful identity
\[
\theta(z + \pi\tau r k \mid \tau) = \frac{\theta(z \mid \tau)}{(-e^{\pi i})^k e^{\pi i r (k-1)/2}}, \quad k \in \mathbb{Z}.
\]
(B.2)
To show that (A.27) holds requires repeated use of this identity.

The right-hand side of the identity (A.27) is chosen to have an equal set of poles and residues with the left-hand side. One wants to show that both sides of (A.27) define elliptic

\(^{11}\) This more resembles the standard theta function appearing in the literature e.g. [33, 35], with a change of variables.
functions, and share the same sets of poles and residues. Then by Liouville’s theorem the difference of both sides is a constant, which may be found to be zero. To do this, it should first be shown that no additional poles appear on right-hand side of (A.27). Also it should be shown that both sides are invariant under the shift \(z \rightarrow z + \pi \tau \), and thus define elliptic functions of \(z \).

With the use of (B.2), and identities in appendix C, the calculations involved are straightforward and are summarized below.

No additional poles appear on right-hand side of (A.27): On the right-hand side of (A.27), there should be no poles appearing at the points \(p = -\frac{1}{2} - \frac{j \tau}{r} \), or equivalently at \(2z = \pi \tau (j r - [-2y]) \), \(j \in \mathbb{Z} \). By using the identity (B.2), at the poles \(2z = \pi \tau (j r - [-2y]) \) the residues of the two terms on the right-hand side of (A.27) will differ by a factor

\[
\exp \left(i \pi k_m + i \pi \sigma k_p + i \pi \tau k_q + A k_A + \sum_{i=1}^{5} t_i k_i \right),
\]

for some \(k_m, k_p, k_q, k_A, k_i \in \mathbb{R} \). It can be shown that this factor is independent of the integer \(j \), and is in fact unity, i.e., \(k_p, k_q, k_A, k_i = 0 \) and \(k_m = 0 \) mod 2. Thus no additional poles appear on the right-hand side of (A.27).

Invariance under \(z \rightarrow z + \pi \tau \): One may use the relation (B.2) to show that both sides are invariant under \(z \rightarrow z + \pi \tau \). This is the most straightforward property to check.

Difference of both sides of (A.27) is zero: Evaluating both sides of (A.27) at the point \(z = -t_1 - \pi \tau [-u_1 - y] \), the left-hand side gives \(-1\), and the right-hand side gives

\[
\left(- \frac{e^{i \tau / A} e^{i \tau / U} e^{2 \pi [i (-u_1 + y) + [-2y - 1] \tau]} \theta (t_1 + A, u_1 + U \mid \tau)}{\theta (-2z, -2y \mid \tau) \theta (A - z, U - y \mid \tau)} \times \frac{\prod_{i=1}^{5} \theta (t_i - z, u_i - y \mid \tau)}{\prod_{i=2}^{5} \theta (t_i + t_i, u_1 + u_i \mid \tau)} \right)_{z=-t_1-\pi\tau[-u_1-y]}.
\]

After inspection, all theta functions in the above expression cancel up to an overall factor that makes the whole expression equal to \(-1\). Thus the difference of both sides of (A.27) is zero at the point \(z = -t_1 - \pi \tau [-u_1 - y] \). Then since it has previously been shown that both sides are elliptic functions of \(z \) sharing the same set of poles and corresponding residues, by Liouville’s theorem the difference of both sides is a constant, which must be zero. Thus the identity (A.27) holds.

Appendix C. Useful identities

Here \(m \in \mathbb{Z} \), \([m]\) denotes \(m \) mod \(r \), and \([m]_{\pm}\) denotes \([m] [-m] \).

\[
[m]_{\pm} = [-m]_{\pm}, \quad (C.1)
\]

\[
[-m] + [m - 1] = r - 1, \quad (C.2)
\]

\[
[m - 1]_{\pm} + [m]_{\pm} + 2[-m] = r - 1, \quad (C.3)
\]

\[
[m + 1]_{\pm} - [m]_{\pm} + 2[m] = r - 1, \quad (C.4)
\]
\((2[m] - r)[m]_\pm - (2[m - 1] - r)[m - 1]_\pm = -(r - 1)(r - 2) - 6[-m] + 6[m]_\pm. \)
(C.5)

\((2[m] - r)[m]_\pm - (2[m + 1] - r)[m + 1]_\pm = (r - 1)(r - 2) + 6[m] - 6[-m]_\pm. \)
(C.6)

References

1. Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (London: Academic)
2. Au-Yang H, McCoy B M, Perk J H H, Tang S and Yan M-L 1987 Commuting transfer matrices in the chiral Potts models: solutions of star-triangle equations with genus \(g > 1 \) Phys. Lett. A 123 219–23
3. Baxter R J, Perk J H H and Au-Yang H 1988 New solutions of the star relations for the chiral Potts model Phys. Lett. A 128 138–42
4. Zamolodchikov A B 1980 ‘Fishing-net’ diagrams as a completely integrable system Phys. Lett. B 97 63–66
5. Fateev V A and Zamolodchikov A B 1982 Self-dual solutions of the star-triangle relations in \(Z_\kappa \)-models Phys. Lett. A 92 37–39
6. Kashiwara M and Miwa T 1986 A class of elliptic solutions to the star–triangle relation Nucl. Phys. B 275 121–34
7. Volkov A Y and Faddeev L D 1995 Yang–Baxterization of the quantum dilogarithm Zapiski Nauchn. Seminarov POMI 224 146–54
8. Volkov A Y and Faddeev L D 1998 J. Math. Sci. 88 202–7 (Engl. transl.)
9. Bazhanov V V, Mangazeev V V and Sergeev S M 2007 Faddeev–Volkov solution of the Yang–Baxter equation and discrete conformal symmetry Nucl. Phys. B 784 234–58
10. Bazhanov V V, Mangazeev V V and Sergeev S M 2008 Exact solution of the Faddeev–Volkov model Phys. Lett. A 372 1547–50
11. Bazhanov V V and Sergeev S M 2012 A Master solution of the quantum Yang–Baxter equation and classical discrete integrable equations Adv. Theor. Math. Phys. 16 65–95
12. Bazhanov V V, Kels A P and Sergeev S M 2015 Quasi-classical expansion of the star-triangle relation and integrable systems on quad graphs (in preparation)
13. Baxter R J 2002 A rapidity-independent parameter in the star-triangle relation Math Phys Odyssey, 2001 (Prog. Math. Phys. vol 23) (Boston, MA: Birkhäuser) pp 49–63
14. Spiridonov V P 2001 On the elliptic beta function Uspekhi Mat. Nauk. 56 181–2
15. Spiridonov V P 2008 Essays on the theory of elliptic hypergeometric functions Russ. Math. Surv. 63 405
16. Bazhanov V V and Sergeev S M 2012 Elliptic gamma-function and multi-spin solutions of the Yang-Baxter equation Nucl. Phys. B 856 475–96
17. Dolan F and Osborn H 2009 Applications of the superconformal index for protected operators and q-hypergeometric identities to dual theories Nucl. Phys. B 818 137–78
18. Spiridonov V P 2012 Elliptic beta integrals and solvable models of statistical mechanics Contemp. Math. 563 181–211
19. Yamazaki M Quivers 2012 YBE and 3-manifolds J. High Energy Phys. JHEP05(2012)147
20. Yamazaki M 2014 New integrable models from the Gauge/YBE correspondence J. Stat. Phys. 154 895–911
21. Kels A P 2014 A new solution of the star–triangle relation J. Phys. A: Math. Theor. 47 055203
22. Baxter R J 1978 Solvable eight-vertex model on an arbitrary planar lattice Phil. Trans. R. Soc. A 289 315–46
23. Baxter R J 1972 Partition function of the eight-vertex lattice model Ann. Phys. 70 193–228
24. Stroganov Y G 1979 A new calculation method for partition functions in some lattice models Phys. Lett. A 74 116–8
[25] Zamolodchikov A B 1979 Z_4-symmetric factorized S-matrix in two space–time dimensions Commun. Math. Phys. 69 165–78
[26] Baxter R J 1982 The inversion relation method for some two-dimensional exactly solved models in lattice statistics J. Stat. Phys. 28 1–41
[27] Ruijsenaars S N M 1997 First order analytic difference equations and integrable quantum systems J. Math. Phys. 38 1069–146
[28] Spiridonov V P 2008 Continuous biorthogonality of the elliptic hypergeometric function Algebra i Analiz 20 155–85
Spiridonov V P 2009 St. Petersburg Math. J. 20 791–812 (Engl. transl.)
[29] Gahramanov I and Rosengren H 2013 A new pentagon identity for the tetrahedron index J. High Energy Phys. JHEP13(2013)128
[30] Benini F, Nishioka T and Yamazaki M 2012 4d index to 3d index and 2d topological quantum field theory Phys. Rev. D 86 065015
[31] Yamazaki M 2013 Four-dimensional superconformal index reloaded Theor. Math. Phys. 174 154–66
[32] Au-Yang H and Perk J H 1999 The large-N limits of the chiral Potts model Physica A 268 175–206
[33] Rains E M 2010 Transformations of elliptic hypergeometric integrals Ann. Math. 171 169–243
[34] Gahramanov I and Spiridonov V P 2015 The star–triangle relation and 3d superconformal indices J. High Energy Phys. JHEP08(2015)
[35] Spiridonov V P 2007 Short proofs of the elliptic beta integrals Ramanujan J. 13 265–83
[36] Wilf H and Zeilberger D 1992 An algorithmic proof theory for hypergeometric (ordinary and q) multisum/integral identities Invent. Math. 108 575–633