Development of a functional cake formulation with purple carrot powder dried by different methods

Nezahat OLCAV, Mine ASLAN, Mustafa Kürşat DEMİR, Nilgün ERTAŞ

ABSTRACT

In this study, it was aimed to enhance cake formulation with purple carrot powder (PCP) dried by different methods (hot-air (HPC), microwave (MPC) and vacuum (VPC) dried) and used at 5 different ratios (0, 5, 10, 15, 20%). The effects of purple carrot powder (PCP) on chemical, physical and sensory properties of cake samples were investigated. HPC substituted cake samples had lower batter density and weight values. PCP usage significantly affected the crust and crumb color value of cake samples (p<0.05). Samples containing MPC had higher firmness and lower springiness than others. Lower firmness, volume index, saturation index and higher springiness values were determined with increasing PCP rate. The highest total phenolic content and antioxidant activity were found in cake samples containing HPC and VPC, respectively. When all cake samples evaluated, the higher overall acceptability scores were obtained with HPC added cake samples at 15 and 20% substitution level compared to control sample.

Keywords: Hot-air drying, Microwave drying, Vacuum drying, Purple carrot, Cake
Introduction

Purple carrot (Daucus carota L.) is an important root vegetable in human nutrition and mostly grown in Turkey. The purple carrots have a strong antioxidant activity due to anthocyanin content (17.4 to 45.4 g/kg in dry matter) (Türkiyeılmaz et al., 2012). Phenolic components and anthocyanin rich purple carrot also has beneficial effects on health-promotion or disease prevention. Moreover, the carrot has different important biological properties such as antioxidants, anticarcinogen, immunoenhancer, antidiabetic, anti-hypertensive cholesterol and cardiovascular diseases lowering effects (Yerima et al., 2019).

Cereal products have valuable protein and carbohydrate content, although they are lack of antioxidant compounds compared to fruit and vegetables. Researchers have focus on formulation of cereal products by fruit-vegetable powders. Fruit-vegetables have a short shelf life due to high water content, thus they are generally dried for a long shelf life. Drying is one of the most important and common food preservation technique. Various drying methods are applied for dehydration of water in products as microwave drying, hot-air drying and vacuum drying for dehydration of water in products (Jangam, 2011).

Hot-air drying is a common and low cost application when compared to other drying methods. However, hot-air drying has some disadvantages including longer drying time, undesirable physical, chemical, structural properties and higher nutritional loss and these features causes to decrease quality and consumer acceptability of end product (Di Scala and Crapiste, 2008; Arslan and Özcan, 2011; Chen et al., 2016).

On the other hand, microwave drying has some advantages as a shorter drying period and low energy consumption, and also some disadvantages like irregular heating, possible textural damage and high investment costs (Zhang et al., 2006; Işık and Izlin, 2014). Vacuum drying enhances the mass transfer due to the increased pressure gradient in the product. Vacuum drying is supplied several properties such as better product color and protections of vitamin, lower process temperatures and energy (Pere and Rodier, 2002; Methakhup et al., 2005; Albıaş, 2009).

New functional food formulations which have ingredients with high phenolic content and antioxidant activity have attention increasingly. Thus, the aim of this study was to determine the chemical composition, physical and sensory properties of cake products containing purple carrot powders dried by different methods. Also, it was aimed to determine PCP applications as a potential ingredient in the development of new food products.

Materials and Methods

Materials

Wheat flour, whole egg, sugar, all-purpose shortening, skimmed milk powder, baking powder and purple carrot were purchased from local markets in Konya, Turkey.

Drying of Purple Carrot

Firstly, the purple carrots were washed, peeled and sliced with the size of 2 mm. For the hot-air drying method, samples were dried in a hot air oven (KD 200, Nüve, Turkey) at 50°C for 22 h. For the microwave drying method, samples were dried in a microwave oven (LG SolarDOM, MP-9485, Seul, South Korea) at 360 W for 40 min. For the vacuum drying method, samples were dried in a vacuum oven (JSR, JSVO-60T, Gongju, South Korea) at 50°C for 10 h. The dried purple carrots were ground and sieved with 500 µm sieve to obtain purple carrot powder (PCP).

Cake Production

Cake production was carried out with slight modification according to the method of Rahmati and Tehrani (2014). Control cake sample prepared with 100 g flour, 50 g shortening, 75 g sugar, 60 g egg, 70 ml milk, 0.2 g salt, 3 g baking powder, 1 g vanilla, 0.5 g DATEM (diacetyl tartaric acid esters of monoglycerides and diglycerides) and 0.5 g xanthan gum. Other cake samples were made by replacing wheat flour with PCP (HPC, MPC and VPC) at 0, 5, 10, 15 and 20% ratio. Firstly, egg and sugar were whipped to a cream in a Hobart mixer (Hobart N50, Canada Inc., North York, Ontario, Canada). Then, other ingredients were added and mixed. 130 grams of cake batter were placed into baking pans with 7.5×6.6×12 cm dimensions, and baked at 160±2°C for 50 min in an oven (BEKO MF6, Turkey). Finally, baked cake samples were removed from the pan and left for one-hour cooling. Cake samples were packaged and stored at room temperature (22 ±2°C) until analyses.

Cake Batter Analyses

Cake batter pH was measured with a suspension obtained from 10 g dough with 90 mL distilled water for 1 min using a digital pH meter (WTW pH315i/set). Cake batter density was calculated by dividing the weight of a standard measure according to the method of Rahmati and Tehrani (2014). Control cake sample prepared with 100 g flour, 50 g shortening, 75 g sugar, 60 g egg, 70 ml milk, 0.2 g salt, 3 g baking powder, 1 g vanilla, 0.5 g DATEM (diacetyl tartaric acid esters of monoglycerides and diglycerides) and 0.5 g xanthan gum. Other cake samples were made by replacing wheat flour with PCP (HPC, MPC and VPC) at 0, 5, 10, 15 and 20% ratio. Firstly, egg and sugar were whipped to a cream in a Hobart mixer (Hobart N50, Canada Inc., North York, Ontario, Canada). Then, other ingredients were added and mixed. 130 grams of cake batter were placed into baking pans with 7.5×6.6×12 cm dimensions, and baked at 160±2°C for 50 min in an oven (BEKO MF6, Turkey). Finally, baked cake samples were removed from the pan and left for one-hour cooling. Cake samples were packaged and stored at room temperature (22 ±2°C) until analyses.

Cake Batter Analyses

Cake batter pH was measured with a suspension obtained from 10 g dough with 90 mL distilled water for 1 min using a digital pH meter (WTW pH315i/set). Cake batter density was calculated by dividing the weight of a standard measure of the batter by the weight of an equal volume of water (Jyotsna et al., 2007).

Physical Analysis

Color values (L* (lightness/darkness), a* (redness/greenness) and b* (yellowness/ blueness)) of PCP and cake samples were determined by Chroma Meter CR-400 (Konica Minolta, 2012).
Sensory Analysis

Sensory analysis of cake samples was evaluated by 10
panelists of 25–30 age. The cake samples were randomly
named with different numerical codes. Panelists have eval-
uated the samples with a scale from 1 (dislike extremely) to 7
(like extremely).

Statistical Analysis

For the statistical analysis, the JMP statistical program, ver-

tion 10.0 (SAS Institute Inc., Cary, NC, USA) was used. The

average of the main variation sources was compared at
p<0.05 level.

Results and Discussion

Physical and Chemical Properties of Purple Carrot Powders

Color values and some chemical properties of wheat flour and
PCP dried with different drying methods are demonstrated in
Table 1. L* values of PCP changed between 41.46 (for VPC)
and 48.22 (for HPC). As expected, the highest L* value was
found in wheat flour, while hot air drying had the most posi-
tive effect on the L* value of PCP. The a* and b* values of
PCP depending on drying methods were found to be statisti-
cally different. The a* value of wheat flour was found to be
significantly lower than those of PCP, while the b* value was
higher. Chroma and hue angle values of PCP in all drying
methods found higher than wheat flour. Regarding the drying
methods used, higher chroma values obtained with HPC,
while higher hue angle values found with VPC. De Pilli et al.
(2014) investigated the effect of microwave and hot air dry-
ing on pasta samples and reported that microwave dried sam-

dles had higher hue angle and lower chroma values against
hot air dried ones. It was reported that high values of hue an-
gle and low values of chroma value were related to the de-
gradation of carotenoids.

It was determined that the crude ash content of PCP was
higher than wheat flour. The highest crude ash content was
determined in HPC. The crude fat content of wheat flour was
significantly higher than PCP. All drying methods provided
similar crude fat contents in PCP samples. No significant dif-
ferences occurred in the crude protein content of the wheat
flour and PCP (p>0.05). The total phenolic content of the hot
air dried and microwave dried samples were found to be sta-
tistically similar. As expected, the TPC of purp

le carrots was

some chemical properties of wheat flour and
PCP dried with different drying methods are demonstrated in
Table 1. L* values of PCP changed between 41.46 (for VPC)
and 48.22 (for HPC). As expected, the highest L* value was
found in wheat flour, while hot air drying had the most posi-
tive effect on the L* value of PCP. The a* and b* values of
PCP depending on drying methods were found to be statisti-
cally different. The a* value of wheat flour was found to be
significantly lower than those of PCP, while the b* value was
higher. Chroma and hue angle values of PCP in all drying
methods found higher than wheat flour. Regarding the drying
methods used, higher chroma values obtained with HPC,
while higher hue angle values found with VPC. De Pilli et al.
(2014) investigated the effect of microwave and hot air dry-
ing on pasta samples and reported that microwave dried sam-

dles had higher hue angle and lower chroma values against
hot air dried ones. It was reported that high values of hue an-
gle and low values of chroma value were related to the de-
gradation of carotenoids.

It was determined that the crude ash content of PCP was
higher than wheat flour. The highest crude ash content was
determined in HPC. The crude fat content of wheat flour was
significantly higher than PCP. All drying methods provided
similar crude fat contents in PCP samples. No significant dif-
ferences occurred in the crude protein content of the wheat
flour and PCP (p>0.05). The total phenolic content of the hot
air dried and microwave dried samples were found to be sta-
tistically similar. As expected, the TPC of purple carrots was
significantly higher than wheat flour. The antioxidant activity
of PCP ranged between 63.68% (for HPC) and 85.87% (for
VPC). As expected, the antioxidant activity of PCP was de-
termined to be much higher than that of wheat flour.

Some Properties of Cake Batters

Some properties of cake batters are shown in Table 2. Higher
substitution rates led to lower pH values in cake batters. Za-
dernowski et al. (2010) reported that black carrot has 14.80
mg/100 g vitamin C content in dry matter. The pH values of
cake batters produced with VPC were found to be higher than
the batters produced with HPC and WPC. The weights of
cake batters produced with VPC were found to be higher than
others. The utilization of HPC has resulted in significantly
lower density (1.04 g/cm³). It was found that there was a lin-
ear relationship between the substitution rate, weight and
density. Increased substitution rates resulted in increased
weight and density. Sharoba et al. (2013) mentioned that the
addition of dietary fiber sources like carrot pomace to wheat flour to produced cake increased the water holding capacity. Increased weight and density could see as a result of increased water holding capacity. Consistent with these results, Salehi et al. (2015) and Majzoobi et al. (2016) reported that increase of density value and decrease of pH value with high replacement ratio of carrot powder, respectively.

Table 1. Color values and chemical properties of wheat flour and purple carrot powders dried by different methods

	Wheat Flour	HPC	MPC	VPC
Color values				
L*	95.31±0.01a	48.22±0.09b	43.32±0.11c	41.46±0.02d
a*	-0.30±0.01c	16.32±0.11a	14.48±0.01b	14.53±0.28b
b*	10.26±0.01a	-1.68±0.10d	-0.57±0.01c	1.66±0.04b
Chroma	10.26±0.01c	16.40±0.12a	14.50±0.01b	14.62±0.28b
Hue Angle	-88.30±0.04d	-5.88±0.31c	-2.25±0.05b	6.54±0.26a
Moisture (%)	11.46±0.05a	5.83±0.10c	4.22±0.23d	7.02±0.28b
Ash (%)	0.62±0.01d	11.04±0.04a	8.60±0.01b	8.18±0.08c
Crude Fat (%)	1.18±0.02a	0.75±0.11b	0.72±0.04b	0.71±0.02b
Crude Protein (%)	11.20±0.12a	11.33±0.31a	10.94±0.25a	11.29±0.37a
TPC (g GAE/kg)	25.57±0.35c	279.10±0.70a	276.39±3.13a	263.36±1.39b
Antioxidant activity (%)	15.72±0.12d	63.68±0.43c	76.74±0.03b	85.87±0.01a

Results are expressed as mean value ± s.d. Different superscripted lowercase letters in the same column denote significant differences according to the Tukey HSD test (p<0.05). HPC: Purple carrot powder dried by hot air drying, MPC: Purple carrot powder dried by microwave drying, VPC: Purple carrot powder dried by vacuum drying. 1: Total Polyphenolic Content.

Table 2. Some properties of cake batters substituted with purple carrot powders

Drying Method	Weight (g)	Density (g/mL)	pH
HPC	107.51±0.49b	1.04±0.03b	6.91±0.04b
MPC	107.60±0.28b	1.47±0.04a	6.89±0.05b
VPC	108.32±0.37a	1.46±0.03a	7.01±0.03a

Substitution Rate	Weight (g)	Density (g/mL)	pH
0	106.85±0.35d	1.02±0.02c	7.04±0.09a
5	107.05±0.49d	1.39±0.03ab	6.96±0.04b
10	107.80±0.14c	1.40±0.05ab	6.92±0.03bc
15	108.40±0.52b	1.38±0.03b	6.87±0.01c
20	108.95±0.40a	1.43±0.04a	6.90±0.02bc

Results are showed separate effects of drying methods and substitution rates of purple carrot powders which were added based on the wheat flour used (% (by mass), dry basis). Results are expressed as mean value ± s.d. Different superscripted lowercase letters in the same column denote significant differences according to the Student's test (p<0.05).
Physical Properties of Cake Samples

Crust and crumb color values of cake samples substituted with HPC, MPC and VPC are given in Table 3. Among drying methods, L^* values of cake crumbs substituted with HPC were positively affected by the drying method used. In the MPC added cake samples, a^* values were lower and b^* values were higher than other samples ($p<0.05$). L^* and b^* values of cake crumbs decreased, while a^* values increased with the increasing substitution rate of PCP. Similar results were observed by Yılmaz and Pekmez (2020) in bread samples incorporated with black carrot flour. Lower chroma and higher hue angle values were obtained with increased PCP substitution rates in cakes crumbs. It is probably due to the degradation of carotenoids (De Pilli et al., 2014).

There were no significant differences in L^* values of cake crusts related to drying methods used ($p>0.05$). The highest a^* and b^* values were determined in the crust samples substituted with VPC ($p<0.05$). All color parameters (L^*, a^* and b^*) of cake crusts were negatively affected by the increasing substitution rate. These results may be due to own color of PCP. It is known that crust color was basically determined by Maillard reactions between amino acids and reducing sugars, and by caramelization reactions of sugars (Gómez et al., 2011). Therefore, negative effects in crusts colors can be seen related to factors that affect such reactions as the pH of the batter. The pH values affect the amount of unprotonated amino acids and so inception stage of the Maillard reaction (Lertittikul et al., 2007; Gómez et al., 2011). Increase in substitution rate negatively affected the chroma and hue angle values of cake crusts.

Physical properties of cake samples prepared with HPC, MPC and VPC are given in Table 4. Firmness values of cakes substituted with MPC were highest on the first day of storage ($p<0.05$). On the 3rd day, it was seen that HPC had more negative effect than other samples on firmness values. Increasing substitution rate of PCP led to an increase in firmness values for both the first and third days. Hosseini Ghaboos et al. (2018) stated that firmness properties of cake production have changed as depending on the density of cake batter, and also cake texture characterization related to both the end-cake weight and the end-cake volume characterization. Also, Sharoba et al. (2013) who found that carrot pomace replacement led to an increase of firmness in cake samples, mentioned that thickening of the crumb cells surrounding the air spaces and molecular entanglements between fiber and gluten proteins led to higher firmness values. Similar results were observed by Hosseini Ghaboos et al. (2018) for sponge cake incorporation with pumpkin flour. MPC substitution had the most negative effect on the springiness values of cakes on the first day ($p<0.05$). This result can be due to the low moisture content of MPC (Table 1). Springiness values of all samples regardless of drying methods were negatively affected and decreased up to 3rd day. In a study, springiness values of cake samples substituted with infrared-hot air dried carrot powder were decreased with an increased replacement ratio of cake flour (Salehi et al., 2015).

It was only substitution rate showed a significant effect on the volume index of cakes. Salehi et al. (2015) found that the volume value of sponge cake samples affected negatively with increased carrot powder ratio. The highest symmetry index found in samples produced with VPC (22.10 mm) and the lowest with MPC (16.05 mm). Similar to the volume index results, the symmetry indexes of cakes decreased with the increasing substitutions of PCP. No significant differences according to the drying method or substitution rate occurred in the uniformity index of the cake samples ($p>0.05$).

Chemical Properties of Cake Samples

The chemical compositions of cake samples are shown in Table 5. During the drying of purple carrots, it is intended to be dried to a similar moisture level (<10%) as much as possible. The moisture content of the cakes substituted with PCP depending on the substitution rate was found to be statistically similar. However, a slight by a significant difference between drying method was determined by Student’s multiple comparison test. According to the results, the moisture content of samples dried with MPC was found to be significantly lower than those of HPC and VPC. This is a quite reasonable result owing to the fact that the moisture content of microwave dried purple carrots found lower than those of others (Table 1). The used drying methods were no significant influence on the crude ash contents of cake samples. But increased substitution rate was affected the crude ash content and resulted in an increase. Similar results were reported by Salehi et al. (2015) who investigated the usage potential of infrared-hot air-dried carrot in sponge cake. The crude fat content of samples had statistical differences depending on both drying methods and substitution rates. HPC substitution and increased rates had reducing effects on the crude fat content of samples. Uribe et al. (2019) who found that the crude fat content of vacuum-dried green seaweed was higher than the convection dried one reported that changes in fat content may be related to water loss. No significant differences determined in the crude protein content of cake samples regarding both drying methods and substitution rates ($p>0.05$).
Table 3. Color values of purple carrot substituted cake samples produced by different drying methods and substitution rates

Drying Method	Substitution Rate	L*	a*	b*	Chroma	Hue Angle
HPC	0	44.88±0.09a	43.93±0.08b	44.17±0.29b	74.82±0.22a	-5.46±0.61b
	5	46.12±0.03b	39.14±0.10c	32.45±0.09d	30.69±0.33c	
	10	39.28±0.09c	6.96±0.41c	7.33±0.23b	7.85±0.18a	
	20	38.34±0.09b	7.24±0.39c	7.37±0.22c	7.86±0.17b	
Crumb	VPC	38.59±0.29a	39.21±0.65b	39.23±0.43b	36.97±0.41c	
	0	40.36±0.43a	39.21±0.65b	39.23±0.43b	36.97±0.41c	
	5	40.34±0.45a	39.21±0.65b	39.23±0.43b	36.97±0.41c	
	10	39.28±0.09c	6.96±0.41c	7.33±0.23b	7.85±0.18a	
	20	38.59±0.29a	39.21±0.65b	39.23±0.43b	36.97±0.41c	

Table 4. Physical properties of purple carrot substituted cake samples produced by different drying methods and substitution rates

Drying Method	Substitution Rate	Firmness (g) 1. day	Firmness (g) 3. day	Springiness (%) 1. day	Springiness (%) 3. day	VI1 (mm)	SI2 (mm)	UI1
HPC	0	355.62±16.15bc	734.42±21.66a	52.13±0.80a	45.08±1.11a	146.80±2.55a	18.80±3.11a	-1.00±4.67a
	5	339.77±10.42c	620.94±20.50d	52.74±0.40b	46.11±0.72ab	152.08±2.89a	19.92±2.71b	0.75±4.36a
	10	364.43±16.00c	642.71±22.00cd	51.07±0.33c	44.91±0.90bc	150.08±2.71a	17.42±3.65bc	-0.24±5.60a
	15	375.20±11.94bc	680.23±37.06bc	49.27±1.07d	43.60±0.51cd	141.75±2.47b	16.75±2.24bc	-0.25±5.42a
	20	426.57±16.43a	737.07±30.72a	48.22±1.46d	42.62±0.77d	134.92±2.95c	14.58±6.01c	-2.42±1.77a

Table 5. Chemical composition of purple carrot substituted cake samples produced by different drying methods and substitution rates

Drying Method	Moisture (%)	Ash (%)	Crude Fat (%)	Crude Protein (%)	TPC1 (g GAE/kg)	Antioxidant activity (%)
HPC	24.80±0.89a	1.70±0.04a	16.80±0.60b	9.34±0.43a	63.05±3.83a	45.64±0.35c
MPC	22.88±1.52b	1.72±0.02a	18.59±0.12a	9.14±1.35a	52.97±5.98b	52.53±3.31b
VPC	23.29±1.76ab	1.73±0.02a	18.58±0.24a	9.21±0.15a	57.30±3.76b	57.99±0.42a

Results are expressed as mean value ± s.d. Different superscripted lowercase letters in the same column denote significant differences according to the Student's t-test (p<0.05).

1: Volume Index, 2: Symmetry Index, 3: Uniformity Index.
The TPC of the cakes produced with MPC and VPC were found to be statistically similar. However, the TPC of samples produced with HPC was found to be significantly higher than others. According to the TPC results, the significant differences between all substitution rates were determined by the Student’s multiple comparison test. The TPC of samples produced with the higher substitution rates were found to be significantly higher than those lower rates. The drying method used in PCP production significantly affected the antioxidant activity of cake samples. The highest antioxidant activity was found in samples produced with VPC (57.99%), while the lowest in samples produced with HPC (45.64%). As the TPC of samples produced with higher substitution rates were higher than the lower rates, the antioxidant activity was also found to be high. These results were in agreement with a previous study made by Yilmaz and Pekmez (2020) who found that both TPC and antioxidant activity value increased significantly based on increased addition ratio of the purple carrot flour.

Sensory Evaluation

Sensory analysis results of cake samples are presented in Figure 1. Generally, all tested sensory factors of cake samples prepared using HPC were more appreciated by the panelist. Color, appearance and overall acceptability values of all cake samples were positively affected by high ratios of PCP regardless of the drying method used. Taste and odor scores of cake samples were increased with the higher ratios of MPC and VPC used, while decreased with HPC. Pore structure and chewiness scores of cakes produced with HPC were found higher than those of MPC and VPC. The utilization of HPC in cake formulations presented closer sensory scores to the control sample. 15% and 20% substitution rate of HPC and VPC increased the overall acceptability of cake samples.

![Figure 1. Sensory evaluation results of cakes substituted with purple carrot powder](image-url)
Conclusion

The functional food market is increasingly growing due to enhanced customer interest. Therefore, it was aimed to utilize purple carrot powder obtained by different drying methods in cakes to develop a novel functional bakery product in this study. Obtained results showed that the nutritional characteristics of cake samples were significantly affected by both of the substitution rates and drying methods used of purple carrot powders. The total phenolic content and antioxidant capacity accordingly the functional properties of cakes were increased with increasing purple carrot powder rates. Also, the utilization of purple carrot powder in cakes resulted in higher preferences. In addition, microwave and vacuum drying may see as alternative methods to obtain purple carrot powder.

Compliance with Ethical Standard

Conflict of interests: The author declares that for this article they have no actual, potential or perceived conflict of interests.

Ethics committee approval: The authors declare that this study does not require ethical permission.

Funding disclosure: -

Acknowledgments: -

Disclosure: -

References

Alibaş, I. (2009). Microwave, vacuum, and air drying characteristics of collard leaves. Drying Technology, 27(11), 1266-1273. https://doi.org/10.1080/07373930903267773

AACC, American Association of Cereal Chemists, (1990). Approved methods of the AACC, 11th ed., St. Paul, MN, USA.

Arslan, D., Özcan, M.M. (2011). Dehydration of red bell-pepper (Capsicum annuum L.): change in drying behavior, colour and antioxidant content. Food and Bioproducts Processing, 89(4), 504-513. https://doi.org/10.1016/j.fbp.2010.09.009

Beta, T., Nam, S., Dexter, J.E., Sapirstein, H.D. (2005). Phenolic content and antioxidant activity of pearled wheat and roller-milled fractions. Cereal Chemistry, 82(4), 390-393. https://doi.org/10.1094/CC-82-0390

Chen, X., Li, X., Mao, X., Huang, H., Miao, J., Gao, W. (2016). Study on the effects of different drying methods on physicochemical properties, structure, and in vitro digestibility of Fritillaria thunbergii Miq. (Zhebeimu) flours. Food and Bioproducts Processing, 98, 266-274. https://doi.org/10.1016/j.fbp.2016.01.008

De Pilli, T., Giuliani, R., Derossi, A., Severini, C. (2014). Development of Maillard reaction in pasta dried by microwaves. Italian Journal of Food Safety, 26(2), 183-189.

Di Scala, K., Crapiste, G. (2008). Drying kinetics and quality changes during drying of red pepper. LWT – Food Science and Technology, 41(5), 789-795. https://doi.org/10.1016/j.lwt.2007.06.007

Gao, L., Wang, S., Oomah, B.D., Mazza, G. (2002). Wheat quality: antioxidant activity of wheat millstreams. In P. Ng & C.W. Wrigley (Eds.), Wheat quality Elucidation. (p. 219-233). St. Paul, MN, USD: AACC International.

Gómez, M., Ruiz, E., Oliete, B. (2011). Effect of batter freezing conditions and resting time on cake quality. LWT – Food Science and Technology, 44(4), 911-916. https://doi.org/10.1016/j.lwt.2010.11.037

Gyamfi, M.A., Yonamine, M., Aniya, Y. (1999). Free-radical scavenging action of medicinal herbs from Ghana: Thonningia sanguinea on experimentally-induced liver injuries. Vascular Pharmacology, 32(6), 661-667. https://doi.org/10.1016/S0306-3623(98)00238-9

Hosseini Ghaboos, S.H., Seyedain Ardabili, S.M., Kashaninejad, M. (2018). Physico-chemical, textural and sensory evaluation of sponge cake supplemented with pumpkin flour. International Food Research Journal, 25(2), 854-860.

İşik, N.I.E., Izlin, N. (2014). Effect of different drying methods on drying characteristics, colour and microstructure properties of mushroom. Journal of Food and Nutrition Research, 53(2), 105-16.

Jangam, S.V. (2011). An overview of recent developments and some R&D challenges related to drying of foods. Drying Technology, 29(12), 1343-1357. https://doi.org/10.1080/07373937.2011.594378

Jyotsna, R., Sai Manohar, R., Indrani, D., Venkateswara Rao, G. (2007). Effect of whey protein concentrate on the rheological and baking properties of eggless cake. International Journal of Food Properties, 10(3), 599-606.
Lertittikul, W., Benjakul, S., Tanaka, M. (2007). Characteristics and antioxidative activity of Maillard reaction products from a porcine plasma protein–glucose model system as influenced by pH. *Food Chemistry*, 100(2), 669-677. https://doi.org/10.1016/j.foodchem.2005.09.085

Majzoobi, M., Poor, Z.V., Jamalian, J., Farahnaky, A. (2016). Improvement of the quality of gluten-free sponge cake using different levels and particle sizes of carrot pomace powder. *International Journal of Food Science & Technology*, 51(6), 1369-1377. https://doi.org/10.1111/ijfs.13104

Methakhup, S., Chiewchan, N., Devahastin, S. (2005). Effects of drying methods and conditions on drying kinetics and quality of Indian gooseberry flake. *LWT – Food Science and Technology*, 38(6), 579-587. https://doi.org/10.1016/j.lwt.2004.08.012

Pere, C., Rodier, E. (2002). Microwave vacuum drying of porous media: experimental study and qualitative considerations of internal transfers. *Chemical Engineering and Processing*, 41(5), 427-436. https://doi.org/10.1016/S0255-2701(01)00161-1

Rahmati, N.F., Tehrani, M.M. (2014). Influence of different emulsifiers on characteristics of eggless cake containing soy milk: modeling of physical and sensory properties by mixture experimental design. *Journal of Food Science and Technology*, 51(9), 1697-1710. https://doi.org/10.1007/s13197-013-1253-y

Salehi, F., Kashaninejad, M., Akbari, E., Sobhani, S.M., Asadi, F. (2015). Potential of sponge cake making using infrared–hot air dried carrot. *Journal of Texture Studies*, 47(1), 34-39. https://doi.org/10.1111/jtxs.12165

Sharoba, A.M., Farrag, M.A., Abd El-Salam, A.M. (2013). Utilization of some fruits and vegetables waste as a source of dietary fiber and its effect on the cake making and its quality attributes. *Journal of Agroalimentary Processes and Technologies*, 19(4), 429-444. https://doi.org/10.21608/jifds.2013.72084

Türkyılmaz, M., Yemiş, O., Özkan, M. (2012). Clarification and pasteurisation effects on monomeric anthocyanins and percent polymeric colour of black carrot (*Daucus carota* L.) juice. *Food Chemistry*, 134(2), 1052-1058. https://doi.org/10.1016/j.foodchem.2012.03.013

Uribe, E., Vega-Gálvez, A., García, V., Pastén, A., López, J., Góñii, G. (2019). Effect of different drying rates on phytochemical content and amino acid and fatty acid profiles of the green seaweed, *Ulva spp*. *Journal of Applied Phycology*, 31(3), 1967-1979. https://doi.org/10.1007/s10811-018-1686-9

Yerima, S.M., Saurabh, C., Ibrahim, B., Shahid, K.M., Harshita, J., Nitin, N., Vikas, J. (2019). Herbal detox extract formulation from seven wonderful natural herbs; garlic, ginger, honey, carrots, aloe vera, dates, & corn. *Asian Journal of Pharmaceutical Research and Development*, 7(3), 22-30. https://doi.org/10.22270/ajprd.v7i3.485

Yılmaz, B.B., Pekmez, H. (2020). Quality characteristics and antioxidant properties of bread incorporated by black carrot (*Daucus carota* ssp. sativus var. atrorubens Alef) fiber. *Gıda*, 45(2), 290-298. https://doi.org/10.15237/gida.GD19134

Zadernowski, R., Pilat, B., Czaplicki, S., Ogrodowska, D. (2010). Characteristics of the black carrot (*Daucus carota* ssp. sativus var. atrorubens Alef.). *Polish Journal of Natural Sciences*, 25(4), 438-443. https://doi.org/10.2478/v10020-010-0040-8

Zhang, M., Tang, J., Mujumdar, A.S., Wang, S. (2006). Trends in microwave-related drying of fruits and vegetables. *Trends in Food Science and Technology*, 17(10), 524-534. https://doi.org/10.1016/j.tifs.2006.04.011