Role of Nerve Growth Factor in Orofacial Pain

Lijia Mai1,2
Fang Huang2
Xiao Zhu3
Hongwen He2
Wenguo Fan1,2

1Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510080, People’s Republic of China; 2Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, People’s Republic of China; 3The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, People’s Republic of China

Abstract: Some chronic pain conditions in the orofacial region are common and the mechanisms underlying orofacial pain are unresolved. Nerve growth factor (NGF) is a member of a family of neurotrophins and regulates the growth, maintenance and development of neurons. Increasing evidence suggests that NGF plays a crucial role in the generation of pain and hyperalgesia in different pain states. This review investigates the role of NGF in orofacial pain and their underlying cellular mechanisms, which may provide essential guidance to drug-discovery programmes. A systemic literature search was conducted in Pubmed focusing on NGF and orofacial pain. Articles were reviewed, and those discussing in vitro studies, animal evidence, clinical course, and possible mechanisms were summarized. We found a hyperalgesic effect of NGF in peripheral sensitization in orofacial pain models. We also summarize the current knowledge regarding NGF-dependent pain mechanisms, which is initiated by retrograde transport of the ligand-receptor complex, ensuing transcriptional regulation of many important nociceptor genes involved in nociceptive processing. Phase III trials suggest that anti-NGF drug is endorsed with anti-inflammatory and pain-relieving effects with good tolerance in a variety of pain conditions, including pain associated with osteoarthritis and chronic lower back pain. Based on the data reviewed herein, NGF is believed to be an important hyperalgesic mediator in orofacial pain. The identification of underlying mechanisms and pathways of orofacial pain opens new frontiers for pain management.

Keywords: nerve growth factor, orofacial region, pain, tyrosine receptor kinases A, mechanisms

Introduction

Nerve growth factor (NGF) was discovered in 1950 by Rita Levi-Montalcini1 and subsequently purified in 1960.2 NGF is one of neurotrophins (NTs) family members that also comprise brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4).3 As its name suggests, NGF is essential for the neuronal survival, growth and development of neurons as well as the maintenance of neuronal phenotype in the mature nervous system via interaction with specific nerve surface receptors, such as tyrosine receptor kinases (trk) A4,5 Although NGF is a well-known neurotrophic factor, it also acts as a mediator of pain, itch and inflammation.6-8

This review investigates the role of NGF in orofacial pain and their underlying cellular mechanisms. A PubMed query on NGF, orofacial (“orofacial”, “face”, “neck”, “jaw”, “chin”, “cheek”, “buccal”, “lip”, “mouth”, “plate”, “tongue”, “lingual”, “teeth”, “mental”, “alveolar bone”, “temporomandibular”, “maxillary”, “mandibular”, “masseter”, “salivary gland” and “trigeminal”) and pain (“pain”, “nociception”, “hyperalgesia” and “sensitization”) elicits 114 search results from 1992 to 2020. Using the listed...
keywords and after screening for eligibility, 85 articles were excluded and 29 papers were selected.

We provide current evidence for NGF as an important mediator in peripheral hyperalgesia in the orofacial region. A growing number of studies indicate the contribution of exogenous and endogenous NGF to hyperalgesia in the context of orofacial nociception. Then, we give a current knowledge of NGF-mediated pain mechanism underlying orofacial pain. Finally, the clinical validation of therapeutic drugs targeting NGF will be described.

Nociceptive Transmission of the Orofacial Region
Pain sensation from the orofacial region is relayed to nerve center by the trigeminal nerve system. The cell bodies of most trigeminal primary afferents are located in the trigeminal ganglion (TG, a cranial analog of the dorsal root ganglia, DRG), which is the first station of pain pathways in the orofacial region. The central processes of TG enter the pons, where they descend in the brainstem as the spinal trigeminal nucleus (STN). The STN is trigeminal second-order nociceptive neurons, from which the orofacial nociceptive information is conveyed to the higher center: the thalamus and somatosensory cortex.9 Orofacial pain is a term defined by the American Academy of Orofacial Pain as “pain associated with the hard and soft tissues of the head, face, and neck.”10 Mechanisms of most orofacial chronic pain conditions are unresolved.11 Understanding of the mechanism of orofacial pain is critical for performing successful management in such painful conditions.

NGF and Its Receptors
Elevated NGF level has been reported in multiple pathological states particularly in inflammation.12 The cells that release NGF include keratinocytes,13 mast cells,14 fibroblasts, Schwann cells15 and other target cells of the sensory and sympathetic neurons.16 In addition, NGF mRNA can be observed in both neurons and satellite glial cells of TG following peripheral nerve damage, suggesting that NGF can be synthesized by them.17

Expressed on the cell membrane, the family of trk receptors is a class of proteins that consist of extracellular, intracellular, and transmembrane domains.18 Three trk receptors have been identified and referred to as trkA, trkB and trkC, each of which has different affinities for particular NTs.12 There are two types of NGF receptors, each with different preferences for NGF. One with high affinity is trkA and the other with low affinity is p75 neurotrophin receptor (p75NTR).12 The p75NTR is also a transmembrane protein, which belongs to the tumor necrosis factor receptors superfamily. It has a similar affinity to all NTs and involves in mediating both cell survival and cell death in response to NGF.19 Moreover, p75NTR acts as a coreceptor for trkA in eliciting neurotrophic actions by facilitating the affinity of trkA for NGF.20

The NGF receptors are mainly expressed in the distal axons of all NGF responsive cells in both the peripheral nerve system (ie, sympathetic and sensory neurons)21 and expressed throughout the central neural axis.22

Involvement of NGF in Orofacial Nociception
Immunohistochemical study reveals that trkA as well as p75NTR are abundantly expressed in primary sensory neurons in the TG.23,24 Sustained upregulation of trkA was observed in TG after tooth injury,25 orthodontic tooth movement26 and experimental temporomandibular joint (TMJ) arthritis,24 indicating the critical role of NGF in modulating nociceptive responses in the orofacial region.

NGF may contribute to orofacial pain via direct mechanisms. NGF, a prominent hyperalgesic mediator in the trigeminal system, is involved in the development of facial heat hyperalgesia after NGF injection into the rat upper lip.27 Administration of exogenous NGF into masseter muscle can produce a local mechanical sensitization or hyperalgesia in animals.28,29 NGF-induced hyperalgesia could be attenuated by pretreatment with antibodies to NGF or antagonists of trkA.27 In another study, co-injection of the non-specific trk receptor antagonists with NGF into the inflamed TMJ significantly reduces nociception.30

In addition to its direct effects, NGF can promote peripheral sensitization as a hyperalgescic mediator. For instance, experimental tooth movement and occlusal interference cause local increases in NGF.26,31 The level of NGF after infraorbital nerve injury is positively correlative to the development of mechanical allodynia.32 NGF concentration shows a significant increase in TG in the pain models of occlusal interferences and lower lip inflammation.31,33 The role of NGF acting as a key endogenous molecule in cancer-induced inflammation and nociception is demonstrated in an animal model of oral cancer pain.34 Administration with non-selective inhibitor of trk receptors into TG produced reversal of heat hyperalgesia in whisker pad skin.35 A reduced response to mechanical, thermal and chemical

1876 submit your manuscript | www.dovepress.com Dovepress
noxious stimuli was observed in the cornea of trkA knock-
out animals. Evidence has accumulated to suggest that the
sequestration of endogenous NGF significantly reduces
hyperalgesia and pain perception in animal models of
inflammatory and neuropathic pain in the orofacial region.-
However, an animal study elegantly demonstrated
that NGF does not contribute to hyperalgesia after unilateral
mental nerve constriction. p75NTR, on the other hand,
appears to be of little relevance in orofacial pain conditions.

Mechanisms of NGF Involved in Orofacial Pain
NGF-trkA Complex
NGF increases in peripheral tissues during the development
of inflammation and then binds to trkA in the distal axons,
forming NGF-trkA Complex. The ligand-receptor complex
is internalized into neurons. The process is known as
endocytosis, by which NGF is incorporated into endocytic
vesicles and retrogradely transported to the soma of sensory
neurons. The increased NGF in the soma of neuron plays a
role in transcriptional regulation of many important genes
involved in pain processing. The regulation increased the
synthesis of nociceptive receptors such as transient receptor
potential vanilloid (TRPV) and P2X3, nociceptive
transmitters (such as substance P or SP, calcitonin gene-
related peptide or CGRP, and BDNF), and ion channels
such as the transient receptor potential ankyrin 1 (TRPA1)
and N-methyl-D-aspartic acid (NMDA) receptor. Some
gene products regulated by NGF are anterogradely trans-
ported to the distal axons and alter sensitivity of nociceptors
(ie peripheral sensitization). Meanwhile, some of them
are released from central terminals and are implicated in
central nociceptive processing (ie, central sensitization). This
regulation may be the underlying mechanism in orofacial pain (Figure 1).

TRPV1
TRPV1 is a critical contributor to nociceptor sensitization
in peripheral tissues. It belongs to the transient receptor
potential ion channel superfamily with high calcium
permeability. TRPV1 is mainly expressed in primary
sensory neurons and can be activated by capsaicin, acid,
noxious heat and various lipids, causing an influx of cal-
cium and sodium, leading to the generation of the action
potential. An animal experiment suggests that the expression
of TRPV1 is consistent with the level of trkA after NGF
administrated into the right upper lip. Increased number
of TRPV1-positive neurons innervating the lower lip after
CFA injection can be reversed by NGF antagonists.

Additionally, increasing intracellular calcium induced
by TRPV1 leads to the release of several excitatory neuro-
peptides from trigeminal nerve terminals, including SP and
CGRP, known as “neurogenic inflammation factors”, which
contribute to the development of peripheral hyperalgesia.
The data suggest that NGF may be involved in orofacial
pain through regulating TRPV1 expression at the nocicep-
tor level.

TRPA1
TRPA1 is a voltage-dependent, non-selective ion channel
expressed by sensory neurons, which can be activated by
low temperature and a number of noxious compounds,
such as cannabinoids, mustard oil and allicin, to elicit
nociception and inflammation. Moreover, TRPA1 is
responsive to various endogenous pain mediators, such as
growth factors, calcium ions, proinflammatory agents
and gaseous transmitters. A current study indicates that the transcription of
TRPA1 was significantly decreased after NGF inhibitor
treatment in a pain model of spinal cord injury, which
is confirmed in the pancreatic ductal adenocarcinoma
model. CFA-induced peripheral inflammation and spinal
nerve ligation model. NGF may contribute to the develop-
ment of hyperalgesia following nerve injury and inflam-
mation in the orofacial region via the activation of TRPA1
channels. Diogenes et al provide evidence indicating that
NGF functionally upregulates TRPA1 expression in TG
neurons both in vivo and in vitro. That NGF blockade
decreased expression of TRPA1 was also indicated in oral
cancer pain model. The precise mechanisms of NGF
contribution to nociceptor sensitization by upregulating
TRPA1 are being unraveled in pain models.

NMDA
NMDA receptors are glutamate-activated cation channels
with high calcium permeability that play important roles in
the central sensitization of different types of pain. However, recent studies suggest that NMDA receptors are
also expressed in primary afferents terminals and involved in peripheral sensitization. NGF may enhance the transcription of NMDA receptor
via binding to trkA, leading to the increase of calcium

http://www.dovepress.com/journal-of-pain-research-journal
Dovepress 1877
Mai et al
Journal of Pain Research 2020:13
submit your manuscript | www.dovepress.com
DovePress

influx and the phosphorylation of the NMDA receptors. In contrast, a previous study showed that the sensitization of masseter nociceptors by human NGF does not result from enhanced peripheral NMDA receptor activity. Taken together, further investigation into the role of peripheral NMDA receptors in orofacial pain is merited.

The Spouting of Sympathetic Nerve Fibers

As its name suggests, NGF generated by target tissues promotes sympathetic sprouting. For example, new sympathetic axons extend into the TG of transgenic mice and form perineuronal plexuses surrounding only those neurons immunostained for NGF. It was observed that intraventricular infusion of NGF increases sympathetic ingrowth to the TG. Overexpression of NGF in the skin induces novel sympathetic projections to primary sensory endings. The enhancement of innervation may be regulated by p75NTR and/or trkA in sympathetic and sensory neurons. This raised the interesting possibility that perhaps NGF could link to pain by inducing novel sympathetic projection to sensory neurons. Evidence has accumulated to suggest that the sympathetic nervous system is involved in many orofacial pain conditions. It has been shown that the increased NGF expression plays a role in the development of sympathetic hyperalgesia after nerve injury. At the same time, sympathetic input regulates NGF expression in peripheral targets, which might be mediated through a release of norepinephrine (NE) by

Abbreviations: NGF, nerve growth factor; trkA, tyrosine receptor kinases A; p75NTR, p75 neurotrophin receptor; NE, norepinephrine; 5-HT, 5-hydroxytryptamine; SP, substance-P; CGRP, calcitonin gene-related peptide; BDNF, Brain-Derived Neurotrophic Factor; PLC-γ, phospholipase C-γ; MAPK, mitogen-activated protein kinase; PI3-K, phosphatidylinositol 3-kinase; ERK, extracellular signal-regulated kinase; JNK, Jun N-terminal kinase.

![Diagram](https://example.com/diagram.png)
the sympathetic role of NGF. Overall, these data suggest a regulatory role of NGF in the interactions between sympathetic nerve and nociceptive fibers in orofacial pain.

Intracellular Signaling Pathways

The underlying mechanism for NGF evoked pain and hyperalgesia involves several intracellular signaling pathways. As mentioned above, NGF sensitizes capsaicin receptor TRPV1 via trkA, the mechanisms linking which are related to activation of PI3K and MAPK pathways. The NGF-trkA pathway activates PI3K and p38-MAPK, contributing to the development of cold allodynia and mechanical hyperalgesia. Moreover, PLC-γ1 pathway is a downstream effector in NGF-induced mechanical hyperalgesia. In contrast, Yamdeu et al study showed that Local NGF through activation of the p38-MAPK pathway leads to adaptive changes in sensory neuron mu-opioid receptor and facilitates opioid-mediated antinociception in inflammatory pain.

The intracellular signal pathways involved in the roles of NGF in the induction and maintenance of pain may attribute to their transcriptional and post-transcriptional regulations in primary sensory neurons, whose downstream effector pathways and roles in orofacial pain need to be further explored.

The p75NTR might also play a role in generating inflammatory effects mediated by NGF. On the one hand, a possible cooperative role between p75NTR and NGF/trkA signaling responses has been suggested in NGF-induced pain. On the other hand, the binding of p75NTR to NGF may involve the activation of NF-kappa B (a transcription factor) in rat Schwann cells, which regulates gene transcription via binding to specific DNA sequences. However, the signal pathways underlying the sensitization by NGF-p75NTR in animal models of orofacial pain remain elusive.

In addition to the direct mechanisms described above, NGF can promote peripheral sensitization by eliciting the degranulation of mast cells through the 5-lipoxygenase pathway, which may be relevant to the early stages of thermal hyperalgesia. Briefly, NGF expression and release at sites of injury appear to sensitize peripheral nociceptive terminals and alter transcription of TG neurons. The nociceptive signals subsequently transmit to the central nervous system, where the pain signals are processed and developed into pain sensation in the orofacial area. Yet studies on the interaction between NGF and nociceptors in the orofacial region are still limited.

Clinical Evidence

Evidence based on human studies provides strong support for a link of NGF with pain mechanism. It is likely that NGF plays a key role in pain hypersensitivity at the peripheral level as demonstrated in NGF-evoked mechanical sensitization in humans after intramuscular injected into the masseter muscle. Intraderal injection of NGF to healthy volunteers generalized sensory hypersensitivity around the injected site and resulted in a decrease in the heat-pain threshold. It is noteworthy that systemic administration of even low doses of NGF (above 1 μg/kg) evokes dose-dependently muscle pain, which includes pain with swallowing, pain in the masseter muscles increased by chewing, sore throat, and pain with eye movements.

Therefore, NGF may become an optimal therapeutic target for the management of painful conditions. The NGF/trkA signaling appears to be one of the desirable targets for pain therapy. Tanezumab, a recombinant humanized monoclonal antibody to NGF, is a potential therapeutic drug for chronic pain states. It is a new class of analgesics which shows an inhibitory effect on peripheral nociception in early clinical trials. This new agent was developed to reduce pain by blocking the interaction between NGF and its receptors. Today, Tanezumab is being evaluated in Phase III trials to assess the safety profile. Although this anti-NGF drug still awaits clinical validation, its efficacy has been demonstrated in osteoarthritis pain of the hip and knee joint as well as chronic low back pain. Moreover, it is characterized by its good tolerability profile with less side effects in tanezumab-treated patients with chronic pain. There is no data about clinical trials of the anti-NGF drug for orofacial pain. The efficacy and risks of anti-NGF for the treatment of orofacial pain such as TMJ arthritis are needed to confirm.

Conclusions

In summary, NGF seems to play a role in underlying orofacial pain conditions. Studies on NGF involved in orofacial pain (trigeminal sensory system) are much less than it is in the trunk and/or limb pain (spinal system). Despite being overwhelmingly similar, there are many differences between orofacial pain and trunk and/or limb pain in many ways. On the one hand, the data about the role of NGF obtained in the DRG might be operative in the TG, which would be worthy to be confirmed. On the other, the precise mechanisms of NGF involved in orofacial pain so far have not been clear. This paper reviews the
critical role of NGF in participating in orofacial pain in both animals and humans, which gives us implications in orofacial pain management. Further studies must be performed in the trigeminal sensory system not only in different pain models but in clinical experiments. A deeper and updated understanding of the role of NGF in orofacial pain helps to find out the target molecules and to develop new analgesics for the prevention and/or treatment of different pain states of humanity.

Funding
This work was supported partly by the National Natural Science Foundation of China (No. 81771098 and 81541153).

Disclosure
The authors report no conflicts of interest in this work.

References
1. Levi-Montalcini R, Meyer H, Hamburger V. In vitro experiments on the effects of mouse sarcomas 180 and 37 on the spinal and sympathetic ganglia of the chick embryo. Cancer Res. 1954;14(1):49–57.
2. Cohen S. Purification of a nerve-growth promoting protein from the mouse salivary gland and its neuro-cytotoxic antiserum. Proc Natl Acad Sci U S A. 1960;46(3):302–311. doi:10.1073/pnas.46.3.302
3. Skaper SD. The neurotrophin family of neurotrophic factors: an overview. Methods Mol Biol. 2012;846:1–12.
4. Khan N, Smith MT. Neurotrophins and neuropathic pain: role in pathobiology. Molecules. 2015;20(6):10657–10688. doi:10.3390/molecules200610657
5. Kumar A, Pareek V, Faq MA, et al. Regulatory role of NGFs in neurocognitive functions. Neurosci Res. 2017;28(6):649–673.
6. Indo Y. Nerve growth factor, pain, itch and inflammation: lessons from congenital insensitivity to pain with anhidrosis. Expert Rev Neurother. 2010;10(11):1707–1724. doi:10.1586/ern.10.154
7. Pezet S, McMahon SB. Neurotrophins: mediators and modulators of pain. Annu Rev Neurosci. 2006;29:507–538. doi:10.1146/annurev.neuro.29.051605.112929
8. Ikoma A, Steinhoff M, Ständer S, Yosipovitch G, Schmelz M. The neurobiology of itch. Nat Rev Neurosci. 2006;7(5):535–547. doi:10.1038/nrn1950
9. Sessile BJ. Acute and chronic craniofacial pain: brainstem mechanisms of nociceptive transmission and neuroplasticity, and their clinical correlates. Crit Rev Oral Biol Med. 2000;11(1):57–91. doi:10.1177/104544110001100104
10. Leew R, Klasser GD. Orofacial Pain-Guidelines for Assessment, Diagnosis, and Management. 5th ed. Quintessence Publishing Co. Inc: 2013.
11. Romero-Reyes M, Uyanik JM. Orofacial pain management: current perspectives. J Pain Res. 2014;7:99–115. doi:10.2147/JPR.S37593
12. Denk F, Bennett DL, McMahon SB. Nerve growth factor and pain mechanisms. Annu Rev Neurosci. 2017;40:307–325. doi:10.1146/annurev-neuro-072116-031121
13. Pincelli C. Nerve growth factor and keratinocytes: a role in psoriasis. Eur J Dermatol. 2000;10(2):85–90.
14. Leon A, Buriani A, Dal Toso R, et al. Mast cells synthesize, store, and release nerve growth factor. Proc Natl Acad Sci U S A. 1994;91(9):3739–3743. doi:10.1073/pnas.91.9.3739
15. Ossipov MH. The perception and endogenous modulation of pain. Scientifica. 2012;2012:561761. doi:10.6044/2012561761
16. Bandlow CE, Heumann R, Schwab ME, Thoenen H. Cellular localization of nerve growth factor synthesis by in situ hybridization. EMBO J. 1987;6(4):891–899. doi:10.1002/j.1460-2075.1987.tb04835.x
17. Kurata S, Goto T, Gunjigake KK, et al. Nerve growth factor involves mutual interaction between neurons and satellite glial cells in the rat trigeminal ganglion. Acta Histochem Cytochim. 2013;46(2):65–73. doi:10.1276/ahc.13003
18. Esposito D, Patel P, Stephens RM, et al. The cytoplasmic and transmembrane domains of the p75 NGF receptor regulate high affinity binding to nerve growth factor. J Biol Chem. 2001;276(35):32687–32695. doi:10.1074/jbc.M011674200
19. Chen Y, Zeng J, Chen Y, et al. Multiple roles of the p75 neurotrophin receptor in the nervous system. J Int Med Res. 2009;37(2):281–288. doi:10.1177/1473930X09340920
20. Khodorova A, Nicol GD, Strichartz G. The TrkA receptor mediates experimental thermal hyperalgesia produced by nerve growth factor: modulation by the p75 neurotrophin receptor. Neuroscience. 2017;340:384–397. doi:10.1016/j.neuroscience.2016.10.064
21. Muragaki Y, Timothy N, Leight S, et al. Expression of trk receptors in the developing and adult human central and peripheral nervous system. J Comp Neurol. 1995;356(3):387–397. doi:10.1002/cne.903560306
22. Gibbs RB, Pfaff DW. In situ hybridization detection of trkA mRNA in brain: distribution, colocalization with p75NGFR and up-regulation by nerve growth factor. J Comp Neurol. 1994;341(3):324–339. doi:10.1002/cne.903410304
23. Han HM, Kim TH, Bae JY, Bae YC. Primary sensory neurons expressing tropomyosin receptor kinase A in the rat trigeminal ganglion. Neurosci Lett. 2019;690:56–60. doi:10.1016/j.neulet.2018.10.009
24. Shinoda M, Honda T, Ozaki N, et al. Nerve terminals extend into the tempomandibular joint of juvenile adjuvant arthritis rats. Eur J Pain. 2003;7(6):493–505. doi:10.1016/S1090-3801(03)00021-1
25. Sullins JS, Carnes DL Jr., Kaldesdv RN, Wheeler EF. Time course of the increase in trk A expression in trigeminal neurons after tooth injury. J Endod. 2000;26(2):88–91. doi:10.1016/S0022-1031(00)00027-0
26. O’Hara AH, Sampson WJ, Dreyer CW, Pierce AM, Ferguson IA. Immunohistochemical detection of nerve growth factor and its receptors in the rat periodontal ligament during tooth movement. Arch Oral Biol. 2009;54(9):871–878. doi:10.1016/j.archoralbio.2009.06.003
27. Dos Reis RC, Koprusinski CM, Nones CF, Chichorro JG. Nerve growth factor induces facial heat hyperalgesia and plays a role in trigeminal neuropathic pain in rats. Behav Pharmacol. 2016;27(6):528–535. doi:10.1097/00004770-200002000-00007
28. Wong H, Dong XD, Cairns BE. Nerve growth factor alters the sensitivity of rat masseter muscle mechanoreceptors to NMDA receptor activation. J Neurophysiol. 2014;112(9):2275–2282. doi:10.1152/jn.00327.2014
29. Svensson P, Wang MW, Dong XD, Kumar U, Cairns BE. Human nerve growth factor sensitizes masseter muscle nociceptors in female rats. Pain. 2010;148(3):473–480. doi:10.1016/j.pain.2009.12.009
30. Pelegri-nda-Silva A, Oliveira MC, Parada CA, Tambelli CH. Nerve growth factor acts with the beta2-adrenoceptor to induce spontaneous nociceptive behavior during tempomandibular joint inflammatory hyperalgesia. Life Sci. 2008;83(23–24):780–785. doi:10.1016/j.lfs.2008.09.021
31. Dong Y, Wang XM, Liu HC, Widmalm SE. The effect of experimental occlusal interferences on nerve growth factor levels in periodontal tissues. Arch Oral Biol. 2010;55(12):988–994. doi:10.1016/j.archoralbio.2010.08.007
32. Anderson LC, Rao RD. Interleukin-6 and nerve growth factor levels in peripheral nerve and brainstem after trigeminal nerve injury in the rat. Arch Oral Biol. 2001;46(7):633–640. doi:10.1016/S0003-9909 (01)00024-3
43. Shinoda M, Asano M, Omagari D, et al. Nerve growth factor contribution via transient receptor potential vanillicoid 1 to ectopic orofacial pain. J Neurosci. 2011;31(19):7145–7155. doi:10.1523/JNEUROSCI.0481-11.2011

34. Ye Y, Dang D, Zhang J, et al. Nerve growth factor links oral cancer progression, pain, and cachexia. Mol Cancer Ther. 2011;10(9):1667–1676. doi:10.1158/1535-7163.MCT-11-0123

35. de Castro F, Siios-Santiago I, Lopez de Armentia M, Barbacid M, Belmonte C. Corneal innervation and sensitivity to noxious stimuli in trkA knockout mice. Eur J Neurosci. 1998;10(1):146–152. doi:10.1046/j.1460-9568.1998.00037.x

36. Iwata K, Dos Reis RC, Koprusinski CM, Nones CFM, Aguiru DA, Chichorro JG. The opposing contribution of neurotrophin-3 and nerve growth factor to orofacial heat hyperalgesia in rats. Int J Mol Sci. 2020;31(1):27–33.

37. Evans LJ, Loescher AR, Boissonade FM, Whawell SA, Robinson PP, Andrew D. Temporal mismatch between pain behaviour, skin nerve growth factor and intra-epidermal nerve fibre density in trigeminal neuropathic pain. BMC Neurosci. 2014;15:1. doi:10.1186/1471-2202-15-1

38. Ginty DD, Segal RA. Retrograde neurotrophin signaling: trk-ing along the axon. Curr Opin Neurobiol. 2002;12(3):268–274. doi:10.1016/S0959-4388(02)00326-4

39. Chung G, Jung SJ, Oh SB. Cellular and molecular mechanisms of dental nocicepition. J Dent Res. 2007;86(5):461–466. doi:10.1177/0022034510370187

40. Marlin MC, Li G. Biogenesis and function of the NGF/TRK signaling endosome. Int Rev Cell Mol Biol. 2015;314:239–257.

41. Giniatullin R, Nistri A, Fabbretti E. Molecular mechanisms of sensitization of pain-transducing P2X3 receptors by the migraine mediators CGRP and NGF. Mol Neurobiol. 2008;37(1):83–90. doi:10.1007/s12035-008-8020-5

42. Norman BH, McDermott JS. Targeting the nerve growth factor (NGF) pathway in drug discovery. Potential applications to new therapies for chronic pain. J Med Chem. 2017;60(1):66–88. doi:10.1021/acs.jmedchem.6b00964

43. Diogenes A, Akopian AN, Hargreaves KM. NGF up-regulates TRPA1: implications for orofacial pain. J Dent Res. 2007;86(6):550–555. doi:10.1177/002203451070860612

44. Wong H, Kang I, Dong XD, et al. NGF-induced mechanical sensitization of the masseter muscle is mediated through peripheral NMDA receptors. Neuroscience. 2014;269:232–244. doi:10.1016/j.neuroscience.2014.03.054

45. Merighi A, Carmignoto G, Gobbo S, et al. Neurotrophins in spinal cord nociceptive pathways. Prog Brain Res. 2004;146:291–321.

46. Pak DJ, Yong RJ, Kaye AD, Urman RD. Chroniciation of pain: mechanisms, current understanding, and clinical implications. Curr Pain Headache Rep. 2018;22(2):9. doi:10.1007/s11916-018-0666-8

47. Mizumura K, Murase S. Role of nerve growth factor in pain. Handb Exp Pharmacol. 2015;225:57–77.

48. Song C, Liu P, Zhao Q, Guo S, Wang G. TRPV1 channel contributes to remifentanil-induced postoperative hyperalgesia via regulation of NMDA receptor trafficking in dorsal root ganglion. J Pain Res. 2019;12:667–677. doi:10.2147/JPR.S186591

49. Martins DO, Santos FM, Britto LR, Lemos JB, Chacur M. Neurochemical effects of photobiostimulation in the trigeminal ganglia of mice overexpressing nerve growth factor. J Comp Neurol. 1998;372(1):37–48. doi:10.1002/(SICI)1096-9861(19980128)372:1<37::AID-JCN3>3.0.CO;2-N

50. Walsh GS, Kawaia MD. Systemic depletion of nerve growth factor-immunoreactive trigeminal neurons: observations in mice overexpressing nerve growth factor. J Neurobiol. 1998;34(4):347–360. doi:10.1002/(SICI)1097-469X(19980334)34:4<347:AID-JNEU5>3.0.CO;2-6

51. Shoemaker SE, Kudwa AE, Isaacson LG. Sympathetic ingrowth to the trigeminal ganglion following intracerebroventricular infusion of nerve growth factor. Brain Res. 2002;956(1):136–148. doi:10.1016/S0006-8993(02)03490-X

52. Nauta JJH, Wehman JC, Koliatsos VE, Terrell MA, Chung K. Intraventricular infusion of nerve growth factor as the cause of sympathetic fiber sprouting in sensory ganglia. J Neurosurg. 1999;91(3):447–453. doi:10.3171/jns.1999.91.3.0447

53. Davis BM. Systemic depletion of nerve growth factor inhibits disease progression, pain, and cachexia in transgenic mice. J Comp Neurol. 1999;397(4):368–380. doi:10.1002/(SICI)1096-9861(19990128)372:1<37::AID-JCN3>3.0.CO;2-N

54. Semyen RJ, Klein R, Schnapp A, et al. Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature. 1994;368(6468):246–249. doi:10.1038/368246a0

55. Zhou XF, Rush RA. Endogenous nerve growth factor is required for regulation of the low affinity neurotrophin receptor (p75) in sympathetic but not sensory ganglia. J Comp Neurol. 1996;372(1):37–48. doi:10.1002/(SICI)1096-9861(19960128)372:1<37::AID-JCN3>3.0.CO;2-N

56. Walsh GS, Krol KM, Kawaida MD. Absence of the p75 neurotrophin receptor alters the pattern of sympathosensory sprouting in the trigeminal ganglia of mice overexpressing nerve growth factor. J Neurosci. 1999;19(1):258–273. doi:10.1523/JNEUROSCI.19-01-00258.1999

57. Dhanoa NK, Krol KM, Jawad A, Crutcher KA, Kawaida MD. Null mutations for exon III and exon IV of the p75 neurotrophin receptor gene enhance sympathetic sprouting in response to elevated levels of nerve growth factor in transgenic mice. Exp Neurol. 2006;198(2):416–426. doi:10.1016/j.expneurol.2005.12.022

58. Fan W, Zhu X, He Y, et al. Peripheral sympathetic mechanisms in orofacial pain. J Pain Res. 2018;11:2425–2431. doi:10.2147/JPR.S179327

59. Davis BM, Albers KM, Seroogy KB, Katz DM. Overexpression of nerve growth factor in transgenic mice induces novel sympathetic projections to primary sensory neurons. J Comp Neurol. 1994;349(3):464–474. doi:10.1002/jen.903490310
70. Randolph CL, Bierl MA, Isaacson LG. Regulation of NGF and NT-3 protein expression in peripheral targets by sympathetic input. Brain Res. 2007;1144:59–69. doi:10.1016/j.brainres.2007.01.099

71. Qin F, Vulapalli RS, Stevens SY, Liang CS. Loss of cardiac sympathetic neurotransmitters in heart failure and NE infusion is associated with reduced NGF. Am J Physiol Heart Circ Physiol. 2002;282(1):H363–H371. doi:10.1152/ajpheart.00319.2001

72. Zhu W, Oxford GS. Phosphoinositide-3-kinase and mitogen activated protein kinase signaling pathways mediate acute neuron growth factor sensitization of TRPV1. Mol Cell Neurosci. 2007;34(4):689–700. doi:10.1016/j.mcn.2007.01.005

73. Kayama Y, Shibata M, Takizawa T, et al. Signaling pathways relevant to nerve growth factor-induced upregulation of transient receptor potential M8 expression. Neuroscience. 2017;367:178–188. doi:10.1016/j.neuroscience.2017.10.037

74. Malik-Hall M, Dina OA, Levine JD. Primary afferent nociceptor mechanisms mediating NGF-induced mechanical hyperalgesia. Eur J Neurosci. 2005;21(12):3387–3394.

75. Yandeur RS, Shaqura M, Moussa SA, Schafer M, Droeze J. p38 Mitogen-activated protein kinase activation by nerve growth factor in primary sensory neurons upregulates mu-opioid receptors to enhance opioid responsiveness toward better pain control. Anesthesiology. 2011;114(1):150–161. doi:10.1097/ALN.0b013e318201c88c

76. Cheng J, Ji RR. Intracellular signaling in primary sensory neurons and persistent pain. Neurosci. Res. 2008;33(10):1970–1978. doi:10.1016/j.neures.2004.05.042

77. Zhang YH, Nicol GD. NGF-mediated sensitization of the excitability of rat sensory neurons is prevented by a blocking antibody to the p75 neurotrophin receptor. Neurosci Lett. 2004;366(2):187–192. doi:10.1016/j.neulet.2004.05.042

78. Barrett GL. The p75 neurotrophin receptor and neuronal apoptosis. Prog Neurobiol. 2000;61(2):205–229. doi:10.1016/S0303-0082(99)00056-8

79. Freund-Michel V, Frossard N. The nerve growth factor and its receptors in airway inflammatory diseases. Pharmacol Ther. 2008;117(1):52–76. doi:10.1016/j.pharmthera.2007.07.003

80. Carter BD, Kaltschmidt C, Kaltschmidt B, et al. Selective activation of NF-kappa B by nerve growth factor through the neurotrophin receptor p75. Science. 1996;272(5261):542–545. doi:10.1126/science.272.5261.542

81. Shi XQ, Mendell LM. Neurotrophins and hyperalgesia. Proc Natl Acad Sci U S A. 1999;96(14):7693–7696. doi:10.1073/pnas.96.14.7693

82. Svensson P, Cairns BE, Wang K, Arendt-Nielsen L. Injection of nerve growth factor into human masseter muscle evokes longlasting mechanical allodynia and hyperalgesia. Pain. 2003;104(1–2):241–247. doi:10.1016/S0304-3959(03)00012-5

83. Svensson P, Wang K, Arendt-Nielsen L, Cairns BE. Effects of NGF-induced muscle sensitization on proprioception and nociception. Exp Brain Res. 2008;189(1):1–10. doi:10.1007/s00220-008-1399-4

84. Svensson P, Castrillon E, Cairns BE. Nerve growth factor-evoked masseter muscle sensitization and perturbation of jaw motor function in healthy women. J Orofac Pain. 2008;22(4):340–348.

85. Exposto FG, Masuda M, Castrillon EE, Svensson P. Effects of nerve growth factor experimentally-induced craniofacial muscle sensitization on referred pain frequency and number of headache days: a double-blind, randomized placebo-controlled study. Cephalalgia. 2018;38(14):2006–2016. doi:10.1177/0333102418758481

86. Dyck PJ, Peroutka S, Rask C, et al. Intradermal recombinant human nerve growth factor induces pressure allodynia and lowered heat-pain threshold in humans. Neurology. 1997;48(2):501–505. doi:10.1212/WNL.48.2.501

87. Petty BG, Cornblath DR, Adornato BT, et al. The effect of systemically administered recombinant human nerve growth factor in healthy human subjects. Ann Neurol. 1994;36(2):244–246. doi:10.1002/ana.410360221

88. Patel MK, Kaye AD, Urman RD. Tanezumab: therapy targeting nerve growth factor in pain pathogenesis. J Anaesthesiol Clin Pharmacol. 2018;34(1):111–116. doi:10.4103/jacop.JACOP_389_15

89. Webb MP, Helander EM, Menard BL, Urman RD, Kaye AD. Tanezumab: a selective humanized mAb for chronic lower back pain. Ther Clin Risk Manag. 2018;14:361–367. doi:10.2147/TCRM.S144125

90. Berenbaum F. Targeting nerve growth factor to relieve pain from osteoarthritis: what can we expect? Joint Bone Spine. 2019;86(2):127–128. doi:10.1016/j.jbspn.2018.09.009

91. Schnitzer TJ, Easton R, Pang S, et al. Effect of tanezumab on joint pain, physical function, and patient global assessment of osteoarthritis among patients with osteoarthritis of the hip or knee: a randomized clinical trial. JAMA. 2019;322(1):37–48. doi:10.1001/jama.2019.8044

92. Bannwarth B, Kostine M. Nerve growth factor antagonists: is the future of monoclonal antibodies becoming clearer? Drugs. 2017;77(13):1377–1387. doi:10.1007/s40265-017-0781-6

93. Walicke PA, Hefti F, Bales R, et al. First-in-human randomized clinical trials of the safety and efficacy of tanezumab for treatment of chronic knee osteoarthritis pain or acute bunions or plantar fasciitis. Pain Rep. 2018;3(3):e653. doi:10.1001/pr.2018.00000000000653

94. Lopes DM, Denk F, McMahon SB. The molecular fingerprint of dorsal root and trigeminal ganglion neurons. Front Mol Neurosci. 2017;10:304. doi:10.3389/fnmol.2017.00304