Epidemiological survey of Blastocystis hominis in Huainan City, Anhui Province, China

Ke-Xia Wang, Chao-Pin Li, Jian Wang, Yu-Bao Cui

Methods: Blastocystis hominis in fresh stools taken from 100 infants, 100 pupils, 100 middle school students and 403 patients with diarrhea was smeared and detected with method of iodine staining and hematoxylin staining. After preliminary direct microscopy, the shape and size of Blastocystis homonis were observed with high power lens. The cellular immune function of the patients with blastocystosis was detected with biotin-streptavidin (BSA).

Results: The positive rates of Blastocystis hominis in fresh stools taken from the infants, pupils, middle school students and the patients with diarrhea, were 1.0 % (1/100), 1.0 % (1/100), 0 % (0/100) and 5.96 % (24/403) respectively. Furthermore, the positive rates of Blastocystis hominis in the stool samples taken from the patients with mild diarrhea, intermediate diarrhea, severe diarrhea and obstinate diarrhea were 6.03 % (14/232), 2.25 % (2/89), 0 % (0/17) and 12.31 % (8/65) respectively. The positive rates of Blastocystis hominis in fresh stools of male and female patients with diarrhea were 7.52 % (17/226) and 3.95 % (7/177) respectively, and those of patients in urban and rural areas were 4.56 % (11/241) and 8.02 % (13/162) respectively. There was no significant difference between them (P=0.05). The positive rates of CD5+, CD8+, and CD4+ in serum of Blastocystis homonis-positive and-negative individuals were 0.64±0.06, 0.44±0.06, 0.28±0.04 and 0.60±0.05, 0.40±0.05 and 0.30±0.05 respectively, and the ratio of CD4+/CD8+ of the two groups were 1.53±0.34 and 1.27±0.22. There was significant difference between the two groups (P<0.05, P=0.01).

Conclusion: The prevalence of Blastocystis hominis as an enteric pathogen in human seems not to be associated with gender and living environment, and that Blastocystis hominis is more common in stool samples of the patients with diarrhea, especially with chronic diarrhea or obstinate diarrhea. When patients with diarrhea infected by Blastocystis hominis, their cellular immune function decreases, which make it more difficult to be cured.
Detection of T lymphocyte subsets To investigate possible changes of cellular immune function in Blastocystis hominis-infected individuals, the level of CD3+, CD4+, CD8+ and CD4+/CD8+ in peripheral blood of Blastocystis hominis-positive individuals were tested with biotin-streptavidin (BSA) method. Firstly, peripheral venous blood of subjects was withdrawn, anticoagulated with heparin, and diluted with fluid free of Ca2+, Mg2+. Secondly, peripheral blood mononuclear cells were separated with lymphocytes separating medium, cleaned, and the number of cells was adjusted to (1-3)x10^6/L of which 10 μL was taken and smeared in an acid-proof varnish circle on the surface of the slides. When it dried naturally, McAb of anti-CD3+, anti-CD4+ and anti-CD8+ and sheep anti-guineapig IgG, SA- HRP were added into the circle. After development with DAB, the slides were observed under microscope. Only brown cytomembrane staining was regarded as positive, otherwise, as negative specimen. A total of 200 cells were counted, and the positive percentage of cells was analyzed respectively.

Statistical analysis
The positive rates were expressed as percentage, and the statistical analysis was carried out by using χ² and t-test. A probability value of less than 0.05 was considered statistically significant.

RESULTS
Stool examination
Of the 703 stool samples examined, 3.70 % (26/703) were found to be positive for Blastocystis hominis. Furthermore, the positive rate of Blastocystis hominis in 300 stools of healthy people was 0.67 % (2/300); and those of infants, pupils and middle school students were 1.00 % (1/100), 0 (0/100) and 1.00 % (1/100) respectively. In addition, The positive rates of Blastocystis hominis in stools taken from the outpatients with mild diarrhea, intermediate diarrhea, severe diarrhea and obstinate diarrhea were 6.03 % (14/232), 2.25 % (2/89), 0 % (0/17) and 12.31 % (8/65) respectively. There was significant difference in the positive rates between each type of patients (P<0.05). The detailed results are showed in Table 1.

Table 1 The detective results of B.h in fresh feces (n, %)

Group	n	n	rate
Normal	300	2	0.67
Infants	100	1	1.00
Pupils	100	1	1.00
Middle school students	100	0	0.00
Diarrheic outpatients	403	24	5.96
Mild	232	14	6.03
Intermediate	89	2	2.25
Severe	17	0	0.00
Obstinate	65	8	12.31

P<0.05, χ²=7.9475; P<0.01, χ²=13.5181 vs comparison with normal and abnormal and different diarrhea

Stool examination, and the prevalence was not related to gender

Relationship between gender and infection of Blastocystis hominis
Of the 403 outpatients, the positive rates of Blastocystis hominis in male and female patients were 7.52 % (17/226) and 3.95 % (7/177) respectively. Statistics found no significant difference in positive rate between male and female.

Relationship between living place and infection of Blastocystis hominis
The positive rates of Blastocystis hominis in stools taken from patients with diarrhea living in urban and in rural areas were 7.52 % (17/226) and 3.95 % (7/177) respectively. There was no significant difference between the two groups (P>0.05).

Relationship between types of diarrhea and infection of Blastocystis hominis
The positive rate of Blastocystis hominis in stools of healthy people was 0.67 % (2/300), while that of diarrheic patients was 5.96 % (24/403). Among the patients with diarrhea, the positive rates of Blastocystis hominis in loose stools, watery stools and mucopurulent bloody stools were 3.70 % (21/570), 4.23 % (3/81) and 0 % (0/17) respectively. There was no significant difference between each type of patients (P>0.05). Results are showed in Table 2.

Table 2 Relationship between types of diarrhea and infection of B.h (n, %)

Group	n	n	rate
Normal	300	2	0.67
Diarrhea	403	24	5.96
Loose stool	305	21	3.70
Watery stool	81	3	4.23
Mucopurulent bloody stool	17	0	0.00

P>0.05, χ²=2.2767 vs: comparison with different diarrhea

Changes of cellular immune function in Blastocystis hominis-infected individuals
Compared with the negative group, the level of CD3+, CD4+ and CD4+/CD8+ of Blastocystis hominis-infected individuals decreased, but that of CD8+ did not change.

Table 3 T lymphocyte subsets of patients with B.h in faeces (x±s, number fraction)

B.h	n	CD3+	CD4+	CD8+	CD4+/CD8+
Positive	26	0.64±0.06	0.44±0.06	0.28±4.44	1.53±0.34
Negative	30	0.60±0.05	0.40±0.05	0.30±5.12	1.27±0.22

P<0.05, ᵇP<0.01, vs negative

DISCUSSION
Results from this study showed that Blastocystis hominis as an intestinal pathogen in humans was found in Huainan area by stool examination, and the prevalence was not related to gender.

www.wjgnet.com
and living circumstances, and that statistically significant association was observed between the presence of diarrhea and infection with Blastocystis hominis.

In this study, Blastocystis hominis was found in 26 (3.70 %) of the 703 stool specimens examined. The positive rates of male was similar to that of female, and there is no significant difference in the positive rates between the diarrhea patients living in urban areas and those in rural areas (P>0.05), which showed the prevalence of the organism was not related to gender and living environment of the individuals examined.

The results of this study supported the idea that Blastocystis hominis was associated with diarrhea. The positive rates of Blastocystis hominis in stools of the healthy people was 0.67 % (2/300), while that of the diarrheic patients was 5.96 % (24/403), and the difference between them was significant (P<0.05). To be exact, the positive rates of Blastocystis hominis was high in stools of the patients with mild diarrhea, intermediate diarrhea and obstinate diarrhea, but there was no Blastocystis hominis found in stools of patients with severe diarrhea. In accordance with other reports[56-59], vacuolar Blastocystis hominis were found in stools of patients with diarrhea with iodine solution and hematoxylin staining. This finding suggested that vacuolar Blastocystis hominis might be the main type of Blastocystis hominis causing diarrhea. Although the reasons why the organism had been found in both symptomatic and asymptomatic individuals have been largely unknown[56-59], one possibility was that it was due to infection time, infection dose, poly-infection with bacteria and the ability of host immunity that might decide whether the symptom turned up or not, because only over 24 h could the cysts of Blastocystis hominis develop into a large number of vacuolar forms[57-59].

In addition, this experiment demonstrated that the hematoxylin staining offered a very convenient and easy method to differentiate the various stages of Blastocystis hominis. As a matter of fact, there is high affinity between hematoxylin and Blastocystis hominis. By hematoxylin staining, the walls, nucleus, chromatoid bodies and other structures of Blastocystis hominis can be observed clearly, and vacuolar, granular, metamorphic Blastocystis hominis can be easily differentiated from small amebae which do not cause any disease[59-61].

Our study provided evidence for the changes of cellular immune function in Blastocystis hominis-infected individuals. In this paper, the level of CD4+ CD8+ and CD4+/CD8+ decreased in Blastocystis hominis-infected individuals , but that of CD8+ was normal. Compared with the Blastocystis hominis negative group, the difference was significant (P<0.05).Recent advances in Blastocystis hominis found that in subjects suffering from immunodepression Blastocystis hominis showed a significant association with gastrointestinal symptoms[62-71]. All of these showed that the infection of Blastocystis hominis was related to the hosts’ cellular immune function.

The level of CD4+/CD8+ is key to immunoregulation. When decreased, it suggested that T helper lymphocytes took part in the course of diarrhea caused by Blastocystis hominis. Indeed, both the ability of humoral immunity and that of cellular immunity decreased in the patients with low level of CD4+/CD8+, which made it difficult to cure diarrhea[72-75]. Because of low ability of immunological kill mediated by CD4+ cell, the cellular immunity of human bodies played an important role in the course of diarrhea.

In conclusion, Blastocystis hominis should be kept in mind as a non-pathogenic protozoan parasite until recently, when claims have been made that it can result in pathogenic conditions[76-79]. Many labs do not know that it is now considered harmful to human bodies, or do not know how to test for it. Moreover, because of absence of specific symptoms, the disease was easily confused with other intestinal diseases and was easily misdiagnosed. The authors suggested that stool examination should be carried out on patients with diarrhea in order to decide whether or not the patients were infected by Blastocystis hominis, and the stool samples should be collected more than once from patients showing clinical signs and symptoms.

ACKNOWLEDGEMENTS

We thank Associate Professors Zhu Yu-Xia, Xu Li-Fa, Tang Xiao-Long, Cai Ru, Qian Zhong-Qing, Yang Qing-Gui, He Ji, Zhang Xiu-Yun, Zhou Hui-Sheng, Lu Jun (Department of Etiology and Immunology, School of Medicine, Anhui University of Science & Technology) and some students of our college for their help in sample collection and experimental studies.

REFERENCES

1. Rajah Salim H, Suresh Kumar G, Vellyan S, Mak JW, Khairul Anuar A, Ini T, Vennila GD, Saminathan R, Ramakrishnan K. Blastocystis in animal handlers. Parasitol Res 1999; 85: 1032-1034
2. Zaman V, Howell J, Ng M, Goh TK. Scanning electron microscopy of the surface coat of Blastocystis hominis. Parasitol Res 1999; 85: 974-976
3. Yoshikawa H, Abe N, Inawasawa M, Kitanos S, Nagano I, Wu Z, Takahashi Y. Genomic analysis of Blastocystis hominis strains isolated from two long-term health care facilities. J Clin Microbiol 2000; 38: 1324-1330
4. Cheng YQ, Nie QH. Treatment of infectious diarrhea with microecosysym. Shijie Huaren Xizhong Zhi 2001; 9: 932-934
5. Dagi H, Ustun S, Taner MS, Esrroz G, Karacasu F, Budak S. Protozoan infections and intestinal permeability. Acta Trop 2002; 81: 1-5
6. Bhattacharya SK. Therapeutic methods for diarrhoea in children. World J Gastroenterol 2000; 6: 497-500
7. He ST, He FZ, Wu CR, Li SX, Liu WX, Yang YF, Jiang SS, He G. Treatment of rotaviral gastroenteritis with Qiwei Baizhu powder. World J Gastroenterol 2001; 7: 735-740
8. Ho LC, Armiugam A, Jeyaseelan K, Yap EH, Singh M. Blastocystis elongation factor-1alpha: genomic organization, taxonomy and phylogenetic relationships. Parasitology 2000; 121: 135-144
9. Nasirudeen AM, Singh M, Yap EH, Tan KS. Blastocystis hominis: evidence for caspase-3-like activity in cells undergoing programmed cell death. Parasitol Res 2001; 87: 559-565
10. Iqbal J, Hira PR, Al-Ali F, Philip R. Cryptosporidiosis in Kuwaiti children: seasonality and endemcity. Clin Microbiol Infect 2001; 7: 263-269
11. Cao YL. Laboratory diagnosis of infectious diarrhea. Shijie Huaren Xizhong Zhi 2001; 9: 927-928
12. Windsor JJ, Macfarlane L, Whiteside TM, Chalmers RM, Thomas AL, Joyson DH. Blastocystis hominis: a common yet neglected human parasite. Br J Biomed Sci 2001; 58: 12-18
13. Force M, Sparks WS, Ronio RA. Inhibition of enteric parasites by emulsified oil of oregano in vivo. Phytother Res 2000; 14: 213-214
14. Katz DE, Taylor DN. Parasitic infections of the gastrointestinal tract. Gastroenterol Clin North Am 2001; 30: 797-815
15. Taamarsi P, Munthtin M, Rangsir R, Tongipprakarn B, Areekul W, Leelayoova S. Transmission of intestinal
blastocestosis related to the quality of drinking water. Southeast Asian J Trop Med Public Health 2000; 31: 112-117

16. Xia B, Shivananda S, Zhang GS, Yi JY, Crusius JB, Peka AS. Inflammatory bowel disease in Hubei Province of China. China Natl J New Gastroenterol 1998; 3: 119-120

17. Giacometti A, Cirioni O, Fiorentini A, Fortuna M, Scalise G. Irritable bowel syndrome in patients with Blastocystis hominis infection. Eur J Clin Microbiol Infect Dis 1999; 18: 406-409

18. Zhou JL, Xu CH. The method of treatment on protozoan diarrhea. H uaren Xi aohua Zazhi 2000; 8: 9-95

19. Zhou X, Li N, Li JS. Growth hormone stimulates remnant small bowel epithelial cell proliferation. World J Gastroenterol 2000; 6: 909-913

20. Barrett KE. New insights into the pathogenesis of intestinal dysfunction: secretary diarrhea and cystic fibrosis. World J Gastroenterol 2000; 6: 470-474

21. Tan KS, Singh M, Yap EH. Recent advances in Blastocystis hominis research: hot spots in terra incognita. Int J Parasitol 2002; 32: 789-804

22. Fan WG, Long YH. Diarrhea in travelers. Shijie Huaren Xiaohua Zazhi 2000; 8: 937-938

23. Arisue N, Hashimoto T, Yoshikawa H, Nakamura Y, Nakamura G, Nakamura F, Yano TA, Hasegawa M. Phylogenetic position of Blastocystis hominis and of stemmed protists inferred from multiple molecular sequence data. J Eukaryot Microbiol 2002; 49: 42-53

24. Tan KS, Ng GC, Quek E, Howe J, Ramachandran NP, Yap EH, Singh M. Blastocystis hominis: A simplified, high-efficiency method for clonal growth on solid agar. Exp Parasitol 2000; 96: 9-15

25. Feng ZH. Application of gene vaccine and vaccine gene in infective diarrhea. Shijie Huaren Xiaohua Zazhi 2000; 8: 934-936

26. Chen XQ, Singh M, Ho LC, Tan SW, Yap EH. Characterization of protein profiles and cross-reactivity of Blastocystis antigens by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analysis. Parasitol Res 1999; 85: 343-346

27. Scringouer. Chronic intermittent diarrhoea and fatigue. Aust Fam Physician 2001; 30: 897-903

28. Zaman V, Howe J, Ng M. Scanning electron microscopy of Blastocystis hominis cysts. Parasitol Res 1998; 84: 476-477

29. Xiao YH. Treatment of infective Diarrhea with antibiotic. Shijie Huaren Xiaohua Zazhi 2000; 8: 930-932

30. Moe KT, Singh M, Gopalakrishnakone P, Ho LC, Tan SW, Chen XQ, Yap EH. Cytopathic effect of Blastocystis hominis after intramuscular inoculation into laboratory mice. Parasitol Res 1998; 84: 450-454

31. Ok UZ, Girginarkesler N, Balcio glu C, Ertan P, Pirildar T, Kiliaricoglou AA. Effect of trimethoprim-sulfamethaxazole in Blastocystis hominis infection. Am J Gastroenterol 1999; 94: 3245-3247

32. Fryaufff DJ, Prodjodi puro P, Basri H, Jones TR, Mouzin E, Widjaja H, Subianto B. Intestinal parasite infections after food handlers in Jeddah, Saudi Arabia. J Egypt Soc Parasitol 1997; 27: 626-629

33. Horiki N, Kaneda Y, Maruyama M, Fujita Y, Tachibana H. Intestinal blockage by carcinoma and Blastocystis hominis infection. Am J Trop Med Hyg 1999; 60: 400-402

34. Lanuza MD, Carbajal JA, Villar J, Mir A, Borras R. Soluble protein and antigenic heterogeneity in axenic Blastocystis hominis isolates: pathogenic implications. Parasitol Res 1999; 85: 93-97

35. Haresh K, Suresh K, Kharial Anus A, Saminathan S. Isolate resistance of Blastocystis hominis to metronidazole. Trans R Soc Trop Med Hyg 1996; 4: 274-277

36. Hoewers J, Holman P, Logan K, Hommel M, Ashford R, Snowden K. Restriction-fragment-length polymorphism analysis of small-subunit rRNA genes of Blastocystis hominis isolates from geographically diverse human hosts. Parasitol Res 2000; 86: 57-61

37. Lee JD, Wang JJ, Chung LY, Chang EE, Lai LC, Chen ER, Yen CM. A survey on the intestinal parasites of the school children in Kaohsiung county. Kaohsiung J Med Sci 2000; 16: 452-458

38. Romero Cabello R, Guerrero LR, Munoz Garcia M, Geyner Cruz A. Nitazoxanide for the treatment of intestinal protozoan and helminthic infections in Mexico. Trans R Soc Trop Med Hyg 1997; 91: 701-703

39. Yosikawa H, Nagano I, Wu Z, Yap EH, Singh M, Takahashi Y. Genomic polymorphism among Blastocystis hominis strains and development of subtype-specific diagnostic primers. Mol Cell Probes 1998; 12: 153-159

40. Barret JP, Dardano AN, Heggers JP, McCauley RL. Infections and chronic infections in foreign pediatric patients with burns: is there a role for specific protocols? J Burn Care Rehabil 1999; 20: 482-486

41. Kaneda Y, Horiki N, Cheng XJ, Fujita Y, Maruyama M, Tachibana H. Ribosomes of Blastocystis hominis isolated in Japan. Am J Trop Med Hyg 2001; 65: 393-396

42. Tasova Y, Sahin B, Koltas S, Paydas S. Clinical significance and frequency of Blastocystis hominis in Turkish patients with hematological malignancy. Acta Med Okayama 2000; 54: 133-136

43. Jensen B, Kepley W, Guerner J, Anderson K, Anderson D, Clairmont J. DeL-aune W, Austrin EH, Austrin GE. Comparison of polyvinyl alcohol fixative with less hazardous fixatives for detection and identification of intestinal parasites. Clin Microbiol Rev 2000; 38: 1592-1598

44. Herwaldt BL, de Arroyave KR, Wahlquist SP, de Merda AM, Lopez AS, Juradek DD. Multiyear prospective study of intestinal parasitism in a cohort of Peace Corps volunteers in Guatemala. J Clin Microbiol 2001; 39: 34-42

45. Guignard S, Arienti H, Freyre L, Lujan H, Rubinstein H. Prevalence of enteroparasites in a residence for children in the Cordoba Province, Argentina. Eur J Epidemiol 2000; 16: 287-293

46. Garcia LS, Shimizu RY. Evaluation of intestinal protozoan morphology in human fecal specimens preserved in EcoFix: comparison of Wheatley’s trichrome stain and EcoStain. J Clin Microbiol 1998; 36: 1974-1976

47. Tan KS, Howe J, Yap EH, Singh M. Do Blastocystis hominis colony forms undergo programmed cell death? Parasitol Res 2001; 87: 362-367

48. Abou El Naga IF. Negm AY. Morphology, histochemistry and infectivity of Blastocystis hominis cyst. J Egypt Soc Parasitol 2001; 31: 627-635

49. Vdovenko AA. Blastocystis hominis: origin and significance of vacuolar and granular forms. Parasitol Res 2000; 86: 8-10

50. Brandosionio O, Maggi P, Panaro MA, Lisi S, Andriola A, Quaqueredda A, Angarano G. Intestinal protozoa in HIV-infected patients in Apulia, South Italy. Epidemiol Infect 1999; 123: 457-462

51. Amin AM. Blastocystis hominis among apparently healthy food handlers in Jeddah, Saudi Arabia. J Egypt Soc Parasitol 1997; 27: 817-823

52. Venilla GD, Suresh Kumar G, Kharial Anu A, Rajah S, Srinathan R, Sivanandan S, Ramakrishnan K. Irregular shedding of Blastocystis hominis. Parasitol Res 1999; 85: 162-164

53. Hellard ME, Sinclair MA, Hogg GG, Fairley CK. Prevalence of enteric pathogens among community based asymptomatic individuals. J Gastroenterol Hepatol 2000; 15: 290-293

54. Walderich B, Bernauer S, Renner M, Kobloch J, Burchard GD. Cytopathic effects of Blastocystis hominis on Chinese hamster ovary (CHO) and adenocarcinoma HT29 cell cultures. Trop Med Int Health 1998; 3: 395-390

55. Svenningson B, Lagergren A, Ekwall E, Evengard B, Hedlund KO, Kornell A, Lofdahl S, Svensson L, Wintraub A. Enteropathogens in adult patients with diarrhea and healthy control subjects: a 1-year prospective study in a
67. Ghosh K, Ayyaril M, Nirmala V. Acute GVHD involving the gastrointestinal tract and infestation with Blastocystis hominis in a patient with chronic myeloid leukaemia following allogeneic bone marrow transplantation. Bone Marrow Transplant 1998; 22: 1115-1117

68. Cimerman S, Cimerman B, Lewi DS. Prevalence of intestinal parasitic infections in patients with acquired immunodeficiency syndrome in Brazil. Int J Infect Dis 1999; 3: 203-206

69. Li MD. Diarrhea in AIDS. Shijie Huaren Xiaohua Zazhi 2000; 8: 937-938

70. Prasad KN, Nag VL, Dhole TN, Ayyagari A. Identification of enteric pathogens in HIV-positive patients with diarrhea in northern India. J Health Popul Nutr 2000; 18: 23-26

71. Mathewson JJ, Salameh BM, DuPont HL, Jiang ZD, Nelson AC, Arduini R, Smith MA, Masozera N. Hep-2 cell-adherent Escherichia coli and intestinal secretory immune response to human immunodeficiency virus (HIV) in outpatients with HIV-associated diarrhea. Clin Diag Lab Immunol 1996; 5: 87-90

72. Kaneda Y, Horiki N, Cheng X, Tachibana H, Tsutsumi Y. Serologic response to Blastocystis hominis infection in asymptomatic individuals. Tokai J Exp Clin Med 2000; 25: 51-56

73. Nasirudeen AM, Tan KS, Singh M, Yap EH. Programmed cell death in a human intestinal parasite, Blastocystis hominis. Parasitology 2001; 123: 235-246

74. Long HY, Handschack A, König W, Ambrosch A. Blastocystis hominis modulates immune responses and cytokine release in colonic epithelial cells. Parasitol Res 2001; 87: 1029-1030

75. Tan KS, Ibrahim M, Ng GC, Nasirudeen AM, Ho LC, Yap EH, Singh M. Exposure of Blastocystis species to a cytotoxic monoclonal antibody. Parasitol Res 2001; 87: 534-538

76. Cirioni O, Giacometti A, Drenaggi D, Ancarani F, Scalise G. Prevalence and clinical relevance of Blastocystis hominis in diverse patient cohorts. Eur J Epidemiol 1999; 15: 389-393

77. Waring L, Reed C. Blastocystis hominis: causative organism or harmless commensal? Aust Fam Physician 2001; 30: 374-378

78. Koutsavlis AT, Collin AE, Allard R, et al. Blastocystis hominis: a new pathogen in day-care centers? Can Commun Dis Rep 2001; 27: 76-84