Global burden of disease due to smokeless tobacco consumption in adults: an updated analysis of data from 127 countries

Kamran Siddiqi1,2*, Scheherazade Husain1, Aishwarya Vidyasagar1, Anne Readshaw1, Masuma Pervin Mishu1 and Aziz Sheikh3

Abstract

Background: Smokeless tobacco (ST) is consumed by more than 300 million people worldwide. The distribution, determinants and health risks of ST differ from that of smoking; hence, there is a need to highlight its distinct health impact. We present the latest estimates of the global burden of disease due to ST use.

Methods: The ST-related disease burden was estimated for all countries reporting its use among adults. Using systematic searches, we first identified country-specific prevalence of ST use in men and women. We then revised our previously published disease risk estimates for oral, pharyngeal and oesophageal cancers and cardiovascular diseases by updating our systematic reviews and meta-analyses of observational studies. The updated country-specific prevalence of ST and disease risk estimates, including data up to 2019, allowed us to revise the population attributable fraction (PAF) for ST for each country. Finally, we estimated the disease burden attributable to ST for each country as a proportion of the DALYs lost and deaths reported in the 2017 Global Burden of Disease study.

Results: ST use in adults was reported in 127 countries; the highest rates of consumption were in South and Southeast Asia. The risk estimates for cancers were also highest in this region. In 2017, at least 2.5 million DALYs and 90,791 lives were lost across the globe due to oral, pharyngeal and oesophageal cancers that can be attributed to ST. Based on risk estimates obtained from the INTERHEART study, over 6 million DALYs and 258,006 lives were lost from ischaemic heart disease that can be attributed to ST. Three-quarters of the ST-related disease burden was among men. Geographically, > 85% of the ST-related burden was in South and Southeast Asia, India accounting for 70%, Pakistan for 7% and Bangladesh for 5% DALYs lost.

Conclusions: ST is used across the globe and poses a major public health threat predominantly in South and Southeast Asia. While our disease risk estimates are based on a limited evidence of modest quality, the likely ST-related disease burden is substantial. In high-burden countries, ST use needs to be regulated through comprehensive implementation of the World Health Organization Framework Convention for Tobacco Control.

Keywords: Cancer, Chewing, Ischaemic heart disease, Mouth, Oral, Oesophagus, Pharynx, Smokeless tobacco
Background
Smokeless tobacco (ST) refers to various tobacco-containing products that are consumed by chewing, keeping in the mouth or sniffing, rather than smoking [1]. ST products of many different sorts are used by people in every inhabited continent of the world (Table 1) [1]. For example, in Africa, toombak and snuff are commonly used, while in South America, chimó is the product of choice. In Australia, indigenous people use pituri or mungkulpa [2], and in Central Asia, nasway consumption is very common. In North America, plug or snuff are favoured, and even in Western Europe, where ST products are largely banned, there are exemptions allowing people in Nordic countries to use snus [3]. All the above products vary in their preparation methods, composition and associated health risks (Table 1), but it is in South and Southeast Asia where the greatest diversity of ST products exists, accompanied by the highest prevalence of use [4]. Here, the level of cultural acceptability is such that ST products are often served like confectionery at weddings and other social occasions.

ST products contain nicotine and are highly addictive. Often, they also contain carcinogens, such as tobacco-specific nitrosamines (TSNA), arsenic, beryllium, cadmium, nickel, chromium, nitrite and nitrate, in varying levels depending on the product [5, 6]. The pH of the products also varies widely, with some (e.g. khaini, zarda) listing slaked lime among their ingredients [7]. Raising the pH in this way increases the absorption of nicotine and enhances the experience of using the ST product, increasing the likelihood of dependence. The elevated pH also increases the absorption of carcinogens, leading to higher toxicity and greater risk of harm [7].

The harmful nature of many ST products, and the fact that 300 million people around the world use ST [8], make ST consumption a global public health issue. Many ST products lead to different types of head and neck cancers [9, 10]. An increased risk of cardiovascular deaths has been reported [11], and its use in pregnancy is associated with stillbirths and low birth weight [12, 13].

Because of the diversity described above, ST should not be considered as a single product, but rather as groups of products with differences in their toxicity and addictiveness, depending on their composition. As a consequence, it is difficult to estimate the global risks of ST to human health and to agree on international policies for ST prevention and control. Several country-specific studies [14, 15] have been carried out, and in 2015, we published an estimate of the global burden of disease associated with ST use [16]. We used a novel approach, whereby we classified ST products according to their availability in different geographical regions of the world. For example, ST products in South Asia pose a much greater risk to health than those available in Nordic countries, where the manufacturing process removes many of the toxins from the finished product [6, 17]. Using this approach, we estimated the worldwide burden of disease attributable to ST consumption, measured in terms of disability adjusted life years (DALYs) lost and the numbers of deaths in 2010 [16]. Here, we update this estimate to include data up to 2019, providing an indication of how the global ST arena has changed in the intervening years.

Methods
Our methods for updating the estimates of ST disease burden were broadly the same as those used in our earlier publication; these are well described elsewhere [16]. Here, we will summarise these methods and explain any modification made, particularly in relation to the revised timelines. We assessed disease burden for individual countries by varying their populations’ exposure to ST, using the comparative risk assessment method [15]. These individual estimates were then summarised for 14 World Health Organization (WHO) sub-regions (Additional file 1: Appendix 1) as well as for the world.

We first searched the literature to identify the latest point prevalence of ST use among adults ≥15 years in men and women for each country (see Additional file 1: Appendix 2 for detailed methods). We searched for the latest estimates for x countries included in our previous study as well as those additional y countries where estimates have been made available since 2014 for the first time. We derived single estimates for each country preferring nationally representative surveys using internationally comparable methods over non-standardised national or sub-national surveys.

We also updated risk estimates for individual diseases caused by ST; however, we kept to the original list of conditions, i.e. cancers of the oral cavity, pharynx and oesophagus, ischemic heart disease and stroke. We only searched for papers published since our last literature search; our updated search strategies can be found in Additional file 1: Appendix 3. As before, all searches and data extraction were independently scrutinised by a second researcher and any discrepancies were arbitrated by a third researcher. All case definitions for diseases and exposure (ST use) used in the retrieved articles were checked for accuracy and consistency and all analyses undertaken in these studies were assessed to see if they controlled for key confounders (mainly smoking and alcohol). We assessed study quality using the Newcastle-Ottawa Scale for assessing non-randomised studies in meta-analysis [24]. For all new studies, we log transformed their risk estimates and 95% confidence intervals to effect sizes and standard errors and added these to the rerun of our random-effects meta-analyses to estimate pooled risk estimates for individual conditions.
Table 1 Smokeless tobacco products consumed most commonly across the world

Smokeless tobacco products	Regions (WHO)	Countries (highest consumption)	Other ingredients	Preparation and use	pH\(^a\)	Nicotine\(^a\) (mg/g)	Total TSNA\(^a\) (ng/g)
Snus (Swedish)	Europe (region A)	Nordic countries (Denmark, Finland, Iceland, Norway, Sweden)	Water, sodium carbonate, sodium chloride, moisturisers, flavouring	A heat treatment process; placed between the gum and upper lip	6.6–7.2	7.8–15.2	601–723
Plug, Snuff (US), Snus (US)	Americas (regions A and B)	The USA, Canada, Mexico	Sweeteners, liquorice	Plug; air cured	4.7–7.8	3.9–40.1	313–76,500
Chimó	Americas (region B)	Venezuela, Colombia	Sodium bicarbonate, brown sugar, Mamo’n tree ashes	Tobacco paste made from tobacco leaves; placed between the lip and cheek and gum and left there for some time	6.9–9.4	5.3–30.1	9390
Nass (Naswar)	Europe (region B) and Eastern Mediterranean (region D)	Uzbekistan, Kyrgyzstan, Tajikistan, Afghanistan, Pakistan, Iran	Lime, ash, flavourings (cardamom), indigo	Sundried and powdered; placed between the lip or cheek and gum and kept there for some time	8.4–9.1	8.9–14.2	478–1380
Toombak	Eastern Mediterranean (region D) and Africa (region D)	Sudan, Chad	Mixed with moist sodium bicarbonate	Fermented and ground; placed and kept in mouth	7.3–10.1	9.6–28.2	295,000–992,000
Snuff (North and West African)	Africa (region D)	Nigeria, Ghana, Algeria, Cameroon, Chad, Senegal	Dried tobacco leaves mixed with potassium nitrate and other salts	Dry snuff; finely ground and inhaled as a pinch	9.0–9.4	2.5–7.4	1520–2420
Snuff (South African)	Africa (region E)	South Africa	Dried tobacco leaves mixed with ash	Moist snuff is placed in mouth	6.5–10.1	1.2–17.2	1710–20,500
Khaini	South East Asia (regions B and D), Western Pacific (region B), Eastern Mediterranean (region D), and Europe (region A)	India, Bangladesh, Nepal, Bhutan	Slaked lime, menthol, flavourings, areca nut	Shredded; kept in mouth between lips and gum	9.6–9.8	2.5–4.8	21,600–23,900
Zarda	Bangladesh, India, Pakistan, Myanmar, Thailand, Indonesia, Nepal, Maldives, Sri Lanka, UK	Served wrapped in a betel leaf with lime, catechu, areca nuts	Shredded tobacco leaves are boiled with lime and saffron; the mixture is dried then chewed and spat	5.2–6.5	9.5–30.4	5490–53,700	
Gutkha	India, Pakistan, Bangladesh, Nepal, Myanmar, Sri Lanka, UK	Betel nut, catechu, flavourings, sweeteners	Commercially manufactured; sucked, chewed, and spat	7.4–8.9	0.2–4.2	83–23,900	
Afzal	Eastern Mediterranean (region B)	Oman	Dried tobacco leaves mixed with various additives	Fermented; kept in mouth between lips and gums, users suck the juice and spit out the rest	10.4	48.7	3573
Iq’mik	Americas (region A)	The USA	Tobacco combined with fungus or plant ash	Involves a burning process to make fungus ash chewed	11.0	35.0–43.0	15–4910
Rapé	Americas (region B)	Brazil	Tobacco mixed with finely ground plant materials (tonka bean, cinnamon, clove buds, etc.) or alkaline ashes	Nasal snuff; air cured or heated, then pulverised, finely sifted, and mixed	5.2–10.2	6.3–47.6	88–24,200
Pituri/ Mingkulpa	Western Pacific (region B)	Australia	Tobacco mixed with wood ash	Chewed as quid, kept in mouth and/or held against skin	5.47–11.6	4.8	15,280

*WHO World Health Organization, TSNA tobacco-specific nitrosamines

\(^a\)Figures are adapted from [1, 2, 18–23]
Where possible, we pooled effect sizes to obtain country-specific risk estimates. For all outcomes in the meta-analyses, we conducted a GRADE assessment to assess the quality of evidence. We also pooled these effect sizes to obtain non-specific global risk estimates. Given that the risk varies from country to country, depending upon which products are locally popular, we used country-specific risk estimates where possible. In countries with no estimates, we used estimates of those countries where similar ST products were consumed. For other countries without estimates that consumed ST products known to contain high levels of TSNAs, we applied non-specific global estimates. Where no information was available on the composition of ST, we did not apply any estimates. Details on how these statistically significant estimates were applied to each WHO sub-region can be found in web Additional file 1: Appendix 4.

Based on the extent to which the included studies adjusted for potential confounders, we categorised them as ‘best-adjusted’ and ‘others’. We carried out a sensitivity analysis for all risks and attributable disease burden estimates including only ‘best-adjusted’ studies. A sensitivity analysis was also carried out by estimating risk estimates separating out cohort from case-control studies.

For each country, we used their point prevalence of ST use and the allocated risk estimate for each condition to estimate its population attributable fraction (PAF) as below:

\[
\text{PAF} = \frac{P_r(RR_e - 1)}{1 + P_r(RR_e - 1)}
\]

\[
P_r = \text{Prevalence} \quad RR_e = \text{Relative risk}
\]

Using the 2017 Global Burden of Disease (GBD) Study, we also extracted the total disease burden (B) in terms of number of deaths and DALYs lost due to the conditions associated with ST use for both men and women. The attributable burden (AB) due to ST was then estimated in deaths and DALYs lost for these conditions for both men and women using the following equation.

\[
\text{AB} = \text{PAF} \times B
\]

Results

ST consumption was reported in 127 countries (Fig. 1). These estimates were extracted from nationally representative cross-sectional surveys conducted either as part of international (97/127) or national (30/127) health and tobacco surveillance (Additional file 1: Appendix 5a). A variety of age ranges (as young as 15 or as old as 89, including no upper age limit) were used to define adults.

ST consumption was more common among males than females in 95 countries (Table 2). Among males, Myanmar (62.2%), Nepal (31.3%), India (29.6%), Bhutan (26.5%) and Sri Lanka (26.0%) had the highest consumption rates. Among females, Mauritania (28.3%), Timor Leste (26.8%), Bangladesh (24.8%), Myanmar (24.1%) and Madagascar (19.6%) had the highest consumption rates. Within Europe, Sweden (25.0% males, 7.0% females) and Norway (20.1% males, 6.0% females) had the highest ST (snus) consumption rates.

Our post-2014 systematic literature search identified an additional four studies demonstrating a causal association between ST and oral cancer; these included two Pakistan-based and one India-based case-control studies and one US-based cohort study (Table 3). No new studies were found for pharyngeal and oesophageal cancers. PRISMA flow diagrams describing the selection process of the studies identified in the literature searches are provided in Additional file 1: Appendix 5b,c. By adding the new studies to the list of studies selected in our first estimates and revising the meta-analyses, we found that the pooled estimates were statistically significant for cancers of the mouth (Fig. 2). The non-specific pooled estimate for oral cancers, based on 36 studies, were 3.94 (95% CI 2.70–5.76). The country-specific relative risk for oral cancers for India was higher (RR 5.32, 95% CI 3.53–8.02) than non-specific estimates and for the USA remained statistically insignificant (RR 0.95, 95% CI 0.70–1.28). Since no new studies were added for pharyngeal and oesophageal cancers, their non-specific risk estimates of 2.23 (95% CI 1.55–3.20) and 2.17 (95% CI 1.70–2.78) remained as per our original estimates, respectively. For cardiovascular diseases, we identified another three Swedish studies for ischaemic heart disease and another two (one in Asia and one in Sweden) for stroke (Table 3). In the absence of any new non-Swedish studies on ischaemic heart disease (Fig. 3), we considered the relative risk (adjusted odds ratio 1.57, 95% CI 1.24–1.99) of myocardial infarction due to ST identified in the 52-country INTERHEART study [35] (conducted across nine WHO regions) as a valid estimate. However, the country-specific (Sweden) relative risk for ischaemic heart disease (RR 0.94, 95% CI 0.87–1.03) and both country-specific (RR 1.02, 95% CI 0.93–1.13 [Sweden]) and non-specific relative risks for stroke (RR 1.03, 95% CI 0.94–1.14) remained statistically insignificant. The GRADE assessment was moderate for oral, pharyngeal and oesophageal cancers and low for IHD (see Additional file 1: Appendix 7).

We found that most of the included studies adjusted for potential confounders (35/38 for oral, 10/10 for pharyngeal and 15/16 for oesophageal cancers; and 13/16 for IHD) and classified as providing ‘best adjusted’ estimates. According to a sensitivity analysis restricted to only ‘best-adjusted’ studies, the overall risk estimates (RR/OR) for oral cancer increased from 3.94 to 4.46 and for oesophageal cancer from 2.17 to 2.22 (see Additional
Fig. 1 Smokeless tobacco prevalence among men and women
Table 2 Prevalence of smokeless tobacco use (%) in different countries of the world according to WHO sub-regional classification

WHO sub-regions	Country	M	F	Source	Year
Africa (region D)	Algeria*	10	0.8	Algeria Adult Tobacco Survey [25]	2010
	Benin*	9	3	STEPS [26]	2015
	Burkina Faso*	5.6	11.6	STEPS [26]	2013
	Cameroon*	2.2	3.8	GATS [27]	2013
	Cape Verde	3.5	5.8	STEPS [26]	2007*
	Chad	1.9	0.4	STEPS [26]	2008
	Comoros	7.72	2.99	DHS [28]	2012
	Gabon	0.48	0.34	DHS [28]	2012
	Gambia	0.8	1.4	STEPS [26]	2010 *
	Ghana	1.33	0.2	DHS [28]	2008
	Guinea	1.4	1.5	STEPS [26]	2009
	Liberia*	1.1	3.1	STEPS [26]	2011
	Madagascar	24.66	19.6	DHS [28]	2009
	Mali	5	1.2	STEPS [26]	2007
	Mauritania	5.7	28.3	STEPS [26]	2006
	Niger	4.55	2.3	DHS [29]	2012
	Nigeria*	2.9	0.9	GATS [27]	2012
	Sao Tome & Principe	3.8	1.9	STEPS [26]	2009
	Senegal*	0.3	1	GATS [27]	2015
	Seychelles**	0.3	0.4	The Seychelles Heart Study IV [25]	2013–14
	Sierra Leone	2.9	12.1	STEPS [26]	2009
	Togo	5.1	2.2	STEPS [26]	2010
	Botswana	1.5	6.5	STEPS [26]	2014
	*Burundi	0.03	0.31	DHS [28]	2011
	Congo (Brazzaville)	8.3	1.54	DHS [28]	2012
	Congo (Republic)	8.67	3.22	DHS [28]	2013
	Côte d’Ivoire	0.61	1.27	DHS [28]	2012
	Eritrea*	11.6	0.1	STEPS [26]	2011
	Ethiopia*	2.6	0.8	GATS [27]	2016
	Kenya*	5.3	3.8	GATS [27]	2014
	*Lesotho	1.3	9.1	DHS [29]	2009
	*Malawi	1.9	5	STEPS [26]	2009
	Mozambique	10.94	0.82	DHS [28]	2011
	Namibia	1.8	2.3	DHS [29]	2006–07
	Rwanda*	0.6	3.3	STEPS [26]	2012
	South Africa	1.4	8.4	South African Social Attitude Survey [25]	2007
	Swaziland*	2.7	1.8	STEPS [26]	2014 *
	*Tanzania	2.03	0.83	DHS [28]	2010
	Uganda*	1.7	3	GATS [27]	2013
	Zambia*	2.2	6.8	STEPS [26]	2017
	Zimbabwe	1.6	0.4	DHS [30]	2011
Americas (region A)	*Canada*	0.8	–	CTADS [31]	2015 *
	USA	6.5	0.4	ICS [30]	2010
Table 2 Prevalence of smokeless tobacco use (%) in different countries of the world according to WHO sub-regional classification (Continued)

WHO sub-regions	Country	M	F	Source	Year
Americas (region B)	Argentina	0.1	0.2	GATS [27]	2012
	Barbados	0	0.6	STEPS [26]	2007*
	*Brazil	0.6	0.3	GATS [27]	2008
	Costa Rica**	0.1	0	GATS [27]	2015
	Dominican Republic	1.9	0.3	DHS [29]	2007*
	Grenada	2.2	0.3	STEPS [26]	2011
	Mexico*	0.4	0	GATS [27]	2015
	Panama**	1	0.5	GATS [27]	2013
	Paraguay	3	1.6	STEPS [25]	2011
	St Kitts & Nevis*	0.3	0.1	STEPS [26]	2007
	St Lucia**	1.3	0.2	STEPS [26]	2012*
	Trinidad & Tobago	0.5	0.3	STEPS [26]	2011
	*Uruguay**	0.3	–	GATS [27]	2009
	Venezuela	6.2	0.9	National Survey of Drugs in the General Population [25]	2011
Americas (region D)	Haiti	–	2.5	DHS [29]	2005–06*
Eastern Mediterranean (region B)	Kuwait**	0.5	0	STEPS [26]	2014
	Libya	2.2	0.1	STEPS [26]	2009
	Qatar**	1.3	0	GATS [27]	2013
	Saudi Arabia*	1.5	0.3	Saudi Health Information Survey [25]	2014
	Tunisia	8.6	2.2	ICS [30]	2005–06
Eastern Mediterranean (region D)	Egypt*	0.4	0	STEPS [26]	2017
	Iraq*	0.4	0.02	STEPS [26]	2015
	Morocco**	4.4	–	STEPS [26]	2017
	Pakistan*	11.4	3.7	GATS [27]	2014
	Sudan*	14.3	0.2	STEPS [26]	2016
	Yemen	13.7	4.8	National Health and Demographic Survey [25]	2013
Europe (region A)	Austria*	2.8	0.5	Representative Survey on Substance Abuse [32]	2015
	Belgium	1.1	0.6	SEBS [33]	2012
	Cyprus	2.1	0.4	SEBS [33]	2012
	Czech Republic*	2.2	1.2	The use of tobacco in the Czech Republic [25]	2015
	Denmark*	2.3	0.9	Monitoring Smoking Habits in the Danish Population [25]	2015
	Finland*	5.6	0.4	Health Behaviour and Health among the Finnish Adult Population [25]	2014
	France	1.2	0.6	SEBS [33]	2012
	Germany	3.4	3.4	SEBS [33]	2012
	Iceland*	13	3	May–December Household Surveys done by Gallup [25]	2015
	Ireland	2.2	0.9	SEBS [33]	2012
	Italy	1.8	1.5	SEBS [33]	2012
	Luxembourg	1.8	1	SEBS [33]	2012
	Malta	5.5	1.5	SEBS [33]	2012
	Netherlands	0.3	0.1	The Dutch Continuous Survey of Smoking Habits [25]	2011
	Norway*	21	6	Statistics Norway Smoking Habits Survey [25]	2015
Table 2 Prevalence of smokeless tobacco use (%) in different countries of the world according to WHO sub-regional classification (Continued)

WHO sub-regions	Country	M	F	Source	Year
Europe (Region B)	Portugal	4.4	1.1	SEBS [33]	2012
	Slovenia	1.8	0.4	SEBS [33]	2012
	Spain	0.4	0.2	SEBS [33]	2012
	Sweden*	25	7	National Survey of Public Health [25]	2015
	Switzerland*	4.2	1.2	Addiction Monitoring survey [25]	2013
	United Kingdom	1.6	0.5	SEBS [33]	2012
	Azerbaijan*	0.2	0	National study of risk factors for non-communicable diseases [25]	2011
	Armenia	1.8	0	DHS [29]	2005
	Bulgaria	0.3	0	SEBS [33]	2012
	Georgia	1	0.2	Survey of Risk Factors of Non-Communicable Diseases [25]	2010
	*Kazakhstan**	2.8	0	GATS [27]	2014
	Kyrgyzstan*	10.1	0.1	STEPS [26]	2013
	Poland	1	0.1	GATS [27]	2009
	*Romania	0.4	0.2	GATS [27]	2011
	Slovakia*	1.9	0.8	Tobacco and Health Education Survey [25]	2014
	Uzbekistan*	23.2	0.2	STEPS [26]	2014
Europe (region C)	Latvia*	0.1	0	Health Behaviour among Latvian Adult Population [25]	2014
	Lithuania	1.2	0.2	SEBS [33]	2012
	Moldova*	0.1	0	DHS [29]	2013
	Russia*	0.8	0.1	GATS [27]	2016
	Ukraine*	0.4	0	GATS [27]	2017
South East Asia (Region B)	Indonesia*	3.9	4.8	Basic Health Research [25]	2013
	Sri Lanka*	26	5.3	STEPS [26]	2014
	Thailand	1.1	5.2	GATS [27]	2011
South East Asia (Region D)	Bangladesh*	16.2	24.8	GATS [27]	2017
	Bhutan*	26.5	11	STEPS [26]	2014
	India*	29.6	12.8	GATS [27]	2017
	Maldives*	3.9	1.4	STEPS [26]	2011
	Myanmar*	62.2	24.1	STEPS [26]	2014
	Nepal*	31.3	4.8	STEPS [26]	2013
	Timor Leste*	16.1	26.8	National survey for non-communicable disease risk factors and injuries [34]	2014
Western Pacific (region A)	Australia*	0.6	0.3	National Drug Strategy Household Survey [25]	2013
	Brunei Darussalam**	1.3	2.7	Knowledge, Attitudes and Practices Survey on Non-communicable Diseases [25]	2014–15
file 1: sensitivity analysis #1). Separate risk estimates for cohort and case-control studies are included in the Additional file 1: sensitivity analysis #2).

The above risk estimates were included in the mathematical model to estimate the population attributable fraction (PAF), as follows (also see Additional file 1, Appendix 4 for detailed justification): For oral, pharyngeal and oesophageal cancers, Sweden- and US-based country-specific risk estimates were applied to Europe A and America A regions, respectively. Similarly, India-based country-specific risk estimates were applied to Southeast Asia B and D and Western Pacific B regions. No risk estimates were applied to Europe C due to the non-existence of any risk estimates or information about the toxicity of ST products. For all other regions, non-specific country estimates were applied. A few exceptions were made to the above assumptions: a Pakistan-based country-specific estimate was applied for oral cancers for Pakistan and an India-based estimate for the other two cancers; for the UK, India-based country specific estimates were applied due to the predominant use of South Asian products in the country. For ischaemic heart disease, the INTERHEART disease estimates were applied to all WHO regions except two, i.e. Europe A due to the availability of Sweden-based country specific estimates and Europe C due to the non-availability of relevant information. As previously stated, an exception was made for the UK and the INTERHEART estimates were applied.

According to our 2017 estimates, 2,556,810 DALYs lost and 90,791 deaths due to oral, pharyngeal and oesophageal cancers can be attributed to ST use across the globe (Table 4). By applying risk estimates obtained from the INTERHEART study, 6,135,017 DALYs lost and 258,006 deaths from ischaemic heart disease can be attributed to ST use. The overall global disease burden due to ST use amounts to 8,691,827 DALYs lost and 348,798 deaths. The attributable disease burden estimates when restricted to only ‘best adjusted’ studies, did not change significantly; the DALYs lost attributable to ST increased to 8,698,142 and deaths to 349,222.

Among these figures, three quarters of the total disease burden was among men. Geographically, >85% of the disease burden was in South and Southeast Asia, India accounting for 70%, Pakistan for 7% and Bangladesh for 5% DALYs lost due to ST use (Additional file 1: Appendix 6).

Discussion

ST consumption is now reported in at least two thirds of all countries; however, health risks and the overall disease burden attributable to ST use vary widely depending on the composition, preparation and consumption of these products. Southeast Asian countries share the highest disease burden not only due to the popularity of ST but also due to the carcinogenic properties of ST products. In countries (e.g. Sweden) where ST products are heavily regulated for their composition and the levels of TSNAs, the risk to the population is minimal.

We found ST prevalence figures in 12 countries that did not previously report ST use; new figures were also obtained for 55 countries included in the previous estimates [16]. Among these 55 countries: 19 reported a reduction in ST use among both men and women (e.g. Bangladesh, India, Nepal), 14 only among men (e.g. Laos, Pakistan) and eight only among women (e.g. Bhutan, Sri Lanka) (Fig. 4a, b). On the other hand, 13 countries showed an incline in ST use among both men and women (e.g. Indonesia, Myanmar, Malaysia, Timor.

WHO sub-regions	Country	M	F	Source	Year
Western Pacific (region B)	Cambodia*	0.8	8.6	National Adult Tobacco Survey of Cambodia [25]	2014
	China	0.7	0	GATS [27]	2010
	Lao People’s Democratic Republic*	0.5	8.6	National Adult Tobacco Survey [25]	2015
	Malaysia*	20.4	0.8	National Health And Morbidity Survey [25]	2015
	Marshall Islands**	13.7	4	STEPS [26]	2002
	Micronesia	22.4	3	STEPS [26]	2002
	Mongolia*	0.8	0.2	STEPS [26]	2015
	Niue**	0.3	0.2	STEPS [26]	2011
	Philippines*	2.7	0.7	GATS [27]	2015
	Vietnam*	0.8	2	GATS [27]	2015

CTADS Canadian Tobacco Alcohol and Drugs Survey, DHS the Demographic and Health Surveys, ICS Individual Country Survey, GATS Global Adult Tobacco Survey, SEBS The Special Europe Barometer Survey, STEPS STEPwise approach to Surveillance, WHO World Health Organization
*populations of St Kitts and Nevis are tiny and unlikely to affect our estimates
*new countries not included in the earlier paper (n = 12)
Country	Study period	Study design	Exposure status	Inclusion of cigarette/ alcohol users	Outcome	Odds ratio/ relative risk (95% CIs)	Comments	Quality assessment (NOS)*	Reference
India	2001–2004	Case–control	SLT with or without additives	No/no	Oral cancer	0.49 (0.32–0.75)	Exclusive SLT users	Selection****	[36]
India	1996–1999	Case–control	Ever SLT users	Yes/yes	Oral cancer	7.31 (3.79–14.1)	Never drinkers adjusted for smoking	Selection****	[37]
India	1982–1992	Case–control	Tobacco quid chewing	Yes/no	Oral cancer	5.80 (3.60–9.34)	Adjusted for smoking	Selection***	[38]
India	Not clear	Case–control	Chewing tobacco	No/no	Oral cancer	10.75 (6.58–17.56)	Exclusive SLT users	Selection**	[39]
India	1990–1997	Cohort	Current SLT users	No/no	Oral cancer	5.50 (3.30–9.17)	Exclusive SLT users	Selection****	[40]
India	1990–1997	Cohort	Current SLT user	Yes/yes	Oral cancer	2.40 (1.70–3.39)	Adjusted for smoking and alcohol	Selection****	[41]
India	Not clear	Case–control	Ever SLT users	No/no	Oral cancer	4.23 (3.11–5.75)	Exclusive SLT users	Selection***	[42]
India	1908	Case–control	Tobacco	Yes/no	Oral cancer	4.63 (3.50–6.14)	Exclusive chewers and non-chewers data available	Selection****	[43]
India	2005–2006	Case–control	Tobacco flakes	Yes/yes	Oral cancer	7.60 (4.90–11.79)	Adjusted for smoking and alcohol	Selection****	[44]

Country	Study period	Study design	Exposure status	Inclusion of cigarette/ alcohol users	Outcome	Odds ratio/ relative risk (95% CIs)	Comments	Quality assessment (NOS)*	Reference
India	2001–2004	Case–control	SLT with or without additives	No/no	Oral cancer	0.49 (0.32–0.75)	Exclusive SLT users	Selection****	[36]
India	1996–1999	Case–control	Ever SLT users	Yes/yes	Oral cancer	7.31 (3.79–14.1)	Never drinkers adjusted for smoking	Selection****	[37]
India	1982–1992	Case–control	Tobacco quid chewing	Yes/no	Oral cancer	5.80 (3.60–9.34)	Adjusted for smoking	Selection***	[38]
India	Not clear	Case–control	Chewing tobacco	No/no	Oral cancer	10.75 (6.58–17.56)	Exclusive SLT users	Selection**	[39]
India	1990–1997	Cohort	Current SLT users	No/no	Oral cancer	5.50 (3.30–9.17)	Exclusive SLT users	Selection****	[40]
India	1990–1997	Cohort	Current SLT user	Yes/yes	Oral cancer	2.40 (1.70–3.39)	Adjusted for smoking and alcohol	Selection****	[41]
India	Not clear	Case–control	Ever SLT users	No/no	Oral cancer	4.23 (3.11–5.75)	Exclusive SLT users	Selection***	[42]
India	1908	Case–control	Tobacco	Yes/no	Oral cancer	4.63 (3.50–6.14)	Exclusive chewers and non-chewers data available	Selection****	[43]
India	2005–2006	Case–control	Tobacco flakes	Yes/yes	Oral cancer	7.60 (4.90–11.79)	Adjusted for smoking and alcohol	Selection****	[44]
Country	Study period	Study design	Exposure status	Inclusion of cigarette/ alcohol users	Outcome	Odds ratio/ relative risk (95% CIs)	Comments	Quality assessment (NOS)*	Reference
---------	--------------	--------------	-----------------	--------------------------------------	---------	-----------------------------------	----------	--------------------------	-----------
India	Not clear	Case–control	Chewing tobacco	Yes/yes	Oral cancer	5.00 (3.60–6.94)	Adjusted for smoking and alcohol	Selection****	[45]
India	1982–1984	Case–control	Chewing tobacco	Yes/no	Oral cancer	10.20 (2.60–40.02)	Adjusted for smoking	Selection***	[46]
India	1980–1984	Case–control	SLT users	No/no	Oral cancer	1.99 (1.41–2.81)	Exclusive SLT users	Selection**	[47]
India	1952–1954	Case–control	Chewing tobacco	No/no	Oral cancer	4.85 (2.32–10.14)	Exclusive SLT users	Selection***	[48]
India	1983–1984	Case–control	Snuff (males only)	Yes/yes	Oral cancer	2.03 (0.94–4.33)			[49]
India	Not given	Case–control	Tobacco chewing	Yes/yes	Oral and oropharyngeal cancer	41.90 (34.20–51.33)	Exclusive chewer data available; data of habit was not available for the whole cohort	Selection**	[50]
India	1991–2003	Case–control	Chewing tobacco	No/no	Oral cancer	5.88 (3.66–7.93)	Exclusive SLT users	Selection***	[51]
India	1950–1962	Case–control	Tobacco with or without paan or lime	No/yes	Oral and oropharyngeal cancer	41.90 (34.20–51.33)			[52]
Pakistan	1996–1998	Case–control	Naswar	Yes/yes	Oral cancer	9.53 (1.73–52.50)	Adjusted for smoking and alcohol	Selection***	[53]
Sweden	1973–2002	Cohort	Snus	Yes/yes	Oral and oropharyngeal cancer combined	3.10 (1.50–6.41)	Adjusted for smoking and alcohol	Selection**	[54]
India	1993–1999	Case–control	Chewing tobacco	Yes/yes	Oral cancer	5.05 (4.26–5.99)	Adjusted for smoking and alcohol	Selection**	[55]
Norway	1966–2001	Cohort	Chewing tobacco plus oral snuff	No/no	Oral cancer	1.10 (0.50–2.42)	Adjusted for smoking, might be confounded by alcohol use	Selection***	[56]
Table 3
Smokeless tobacco use and risk of cancers, ischaemic heart disease, and stroke—studies included in meta-analysis (Continued)

Country	Study period	Study design	Exposure status	Inclusion of cigarette/alcohol users	Outcome	Odds ratio/relative risk (95% CIs)	Comments	Quality assessment (NOS)*	Reference
Sweden	1988–1991	Case–control	Oral snuff	Yes/yes	Pancreatic cancer	1.67 (1.12–2.49)		Selection**	[57]
					Lung cancer	0.80 (0.61–1.05)		Comparability**	
					Oral cancer	1.40 (0.80–2.45)	Adjusted for smoking and alcohol	Exposure*	
					Laryngeal cancer	0.90 (0.50–1.62)			
					Oesophageal cancer	1.20 (0.70–2.06)			
Sweden	1969–1992	Cohort	Snus	No/no	Pharyngeal cancer	0.70 (0.40–1.22)			
					Oral cancer	0.80 (0.40–1.60)	Exclusive SLT users		
					Lung cancer	0.80 (0.50–1.28)			
					Pancreatic cancer	2.00 (1.20–3.33)			
Sweden	2000–2004	Case–control	Oral snuff	Yes/yes	Oral cancer	0.70 (0.30–1.63)	Adjusted for smoking and alcohol	Selection***	[58]
					Lung cancer	0.80 (0.50–1.28)		Comparability**	
					Pancreatic cancer	2.00 (1.20–3.33)		Exposure***	
Sweden	1980–1989	Case–control	Oral snuff	Yes/yes	Oral cancer	0.70 (0.30–1.63)	Adjusted for smoking and alcohol	Selection***	[59]
					Lung cancer	0.80 (0.50–1.28)		Comparability**	
					Pancreatic cancer	2.00 (1.20–3.33)		Exposure***	
USA	1972–1983	Case–control	Oral snuff	Yes/yes	Oral cancer	0.80 (0.40–1.60)	Not clear if adjusted for smoking and alcohol	Selection***	[60]
					Lung cancer	1.00 (0.70–1.43)		Comparability**	
USA	Not given	Case–control	SLT use	Yes/yes	Oral cancer	0.90 (0.38–2.13)	Adjusted for smoking and alcohol	Selection***	[61]
					Pharyngeal cancer	1.59 (0.84–3.01)		Comparability**	
					Laryngeal cancer	0.67 (0.19–2.36)		Exposure*	
India	2001–2004	Case–control	Chewing tobacco	No/no	Pharyngeal cancer	3.18 (1.92–5.27)	Exclusive SLT users	Selection***	[62]
					Laryngeal cancer	0.95 (0.52–1.74)		Comparability**	
Pakistan	1998–2002	Case–control	Snuff dipping	No/no	Oesophageal cancer	4.10 (1.30–12.93)	Adjusted for areca nut	Selection***	[63]
					Quid with tobacco	3.72 (1.30–10.43)		Comparability**	
					Oesophageal cancer	4.10 (1.30–12.93)	Adjusted for areca nut	Exposure**	
India	2008–2012	Case–control	Nass chewing	No/no	Oesophageal cancer	2.88 (2.06–4.03)	Exclusive SLT users	Selection***	[64]
			Gutkha chewing			2.87 (0.87–9.47)		Comparability**	
India	2007–2011	Case–control	Oral snuff	Yes/yes	Oesophageal cancer	3.86 (2.46–6.06)	Adjusted for smoking and alcohol	Selection**	[65]

* NOS: Quality assessment (Northern Oral Cancer Study)
| Country | Study period | Study design | Exposure status | Inclusion of cigarette/ alcohol users | Outcome | Odds ratio/ relative risk (95% CIs) | Comments | Quality assessment (NOS) | Reference |
|---------|--------------|--------------|-----------------|---------------------------------------|---------|------------------------------------|----------|--------------------------|-----------|
| India | 2011–2012 | Case-control | Chewing tobacco | Yes/yes | Oesophageal cancer | 2.63 (1.53–4.52) | Adjusted for smoking and alcohol | Selection*** Comparability** Exposure* | [66] |
| Sweden | 1995–1997 | Case-control | Oral snuff | Yes/yes | Oesophageal adencarcinoma Squamous cell carcinoma | 1.20 (0.70–2.06) 1.40 (0.90–2.18) | Adjusted for smoking and alcohol | Selection*** Comparability** Exposure* | [67] |
| Sweden | 1969–1993 | Cohort | Oral snuff | Yes/no | Oesophageal adencarcinoma Squamous cell carcinoma | 1.30 (0.80–2.11) 1.20 (0.80–1.80) | Adjusted for smoking | Selection** Comparability* Outcome** | [68] |
| Sweden | 1974–1985 | Cohort | SLT users | No/NA | Lung cancer | 0.90 (0.20–4.05) | Adjusted for age, region of origin | Selection*** Comparability* Outcome** | [69] |
| Morocco | 1996–1998 | Case-control | SLT users | Yes/no | Lung cancer | 1.05 (0.28–3.94) | Adjusted for smoking | Selection** Comparability** Exposure** | [70] |
| USA | 1977–1984 | Case-control | SLT users | Yes/no | Oesophageal cancer | 1.20 (0.10–14.40) | Adjusted for smoking | Selection*** Comparability** Exposure** | [71] |
| USA | 1986–1989 | Case-control | SLT users | Yes/no | Pancreatic cancer | 1.40 (0.50–3.92) | Adjusted for smoking | Selection*** Comparability** Exposure** | [72] |
| USA | 2000–2006 | Case-control | Chewing tobacco | Yes/yes | Pancreatic cancer | 0.60 (0.30–1.20) 0.50 (0.10–2.50) | Adjusted for smoking and alcohol | Selection*** Comparability** Exposure* | [73] |
| Pakistan| 2014–2015 | Case-control | Ever use of naswar | Yes/yes | Oral cancer | 21.20 (8.40–53.8) | Adjusted for smoking; restricted control for alcohol due to cultural sensitivity | Selection*** Comparability** Exposure*** | [74] |
| India | March–July, 2013 | Case-control | Gutkha | Yes/yes | Oral cancer | 5.10 (2.00–10.30) 6.00 (2.30–15.70) 11.40 (3.40–38.20) 6.40 (2.60–15.50) | Adjusted for smoking and alcohol | Selection*** Comparability** Exposure*** | [75] |
| Pakistan| 1996–1998 | Case-control | Quid with tobacco | Yes/yes | Oral cancer | 15.68 (5.00–54.90) | Adjusted for smoking and alcohol | Selection** Comparability* Exposure*** | [76] |
Table 3: Smokeless tobacco use and risk of cancers, ischaemic heart disease, and stroke—studies included in meta-analysis (Continued)

Country	Study period	Study design	Exposure status	Inclusion of cigarette/alcohol users	Outcome	Odds ratio/relative risk (95% CIs)	Comments	Quality assessment (NOS)	Reference
Cardiovascular diseases (ischaemic heart disease and stroke)									
S2 countries	1999–2003	Case–control	Chewing tobacco	Yes/Yes	Myocardial infarction	1.57 (1.24–1.99)	Adjusted for smoking, diet, diabetes, abdominal obesity, exercise, hypertension	Selection****	Comparability** Exposure*
Pakistan	2005–2011	Case–control	Dippers (Naswar)	No/NA	Myocardial infarction	1.46 (1.21–1.78)	Adjusted for age, gender, region, ethnicity, diet, socioeconomic status	Selection****	Comparability** Exposure**
Bangladesh	2006–2007	Case–control	Ever SLT users	Yes/NA	Myocardial infarction, angina pectoris	2.80 (1.10–7.30)	Adjusted for age, gender, smoking, hypertension	Selection**	Comparability** Exposure**
Bangladesh	2010	Case–control	Ever SLT users	No/NA	Myocardial infarction, angina pectoris	0.77 (0.52–1.13)	Adjusted for age, gender, area of residence, hypertension, diabetes, stress	Selection***	Comparability** Exposure*
India	2013	Case–control	Current SLT users	Yes/Yes	Stroke	1.50 (0.80–2.79)	Adjusted for age, smoking, alcohol, diabetes, hypertension	Selection**	Comparability** Exposure*
Sweden	1989–1991	Case–control	Current snuff users	No/NA	Myocardial infarction	0.89 (0.62–1.29)	Adjusted for age	Selection****	Comparability** Exposure*
Sweden	1991–1993	Case–control	Current snuff users	No/NA	Myocardial infarction	0.58 (0.35–0.94)	Adjusted for heredity, education, marital status, hypertension, diabetes, cholesterol	Selection****	Comparability** Exposure**
Sweden	1985–2000	Case–control	Current snuff users	No/NA	Stroke	0.87 (0.41–1.83)	Adjusted for education, marital status, diabetes, hypertension, cholesterol	Selection****	Comparability** Exposure**
Sweden	1998–2005	Case–control	Current snuff users	No/NA	Myocardial infarction	0.73 (0.35–1.50)	Adjusted for age, hospital catchment area	Selection***	Comparability** Exposure**
Sweden	1988–2003	Cohort	Current use of snuff	No/NA	Ischaemic heart disease	0.77 (0.51–1.15)	Adjusted for age, socioeconomic status, residential area, self-reported health, longstanding illnesses, physical activity	Selection***	Comparability** Outcome***
Sweden	1978–2004	Cohort	Ever snuff users	No/NA	Myocardial infarction	0.99 (0.90–1.10)	Adjusted for age, BMI, region of residence	Selection**	Comparability** Outcome***
Sweden	1985–1999	Case–control	Current snuff users	No/NA	Myocardial infarction	0.82 (0.46–1.43)	Adjusted for BMI, leisure time, physical activity, education, cholesterol	Selection***	Comparability** Exposure*
Table 3: Smokeless tobacco use and risk of cancers, ischaemic heart disease, and stroke—studies included in meta-analysis (Continued)

Country	Study period	Study design	Exposure status	Inclusion of cigarette/alcohol users	Outcome	Odds ratio/relative risk (95% CIs)	Comments	Quality assessment (NOS)*	Reference	
Sweden	1978–2003	Cohort	Ever snuff users	No/NA	Stroke	1.02 (0.92–1.13)	Adjusted for age, BMI, region of residence	Selection**, Comparability**, Outcome***	[88]	
Sweden	1998–2005	Cohort	Current snuff users	No/NA	Ischaemic heart disease	0.85 (0.51–1.42)	Adjusted for age, hypertension, diabetes, cholesterol	Selection***, Comparability**, Outcome*	[89]	
			Former snuff users			1.07 (0.56–2.04)				
			Current snuff users			1.18 (0.67–2.08)				
			Former snuff users			1.35 (0.65–2.82)				
Sweden	1991–2004	Cohort	Current snuff users	No/NA	Myocardial infarction	0.75 (0.30–1.87)	Adjusted for age, marital status, occupation, diabetes, BMI, hypertension, physical activity	Selection***, Comparability**, Outcome**	[90]	
					Stroke	0.59 (0.20–1.50)				

BMI: body mass index, NA: not applicable, NOS: Newcastle-Ottawa Scale, SLT: smokeless tobacco

NOS for assessing the quality of non-randomised studies in meta-analyses based on selection, comparability, and exposure/outcome. Number of stars () indicates the number of criteria met for each of these three categories.

Effect sizes are for oral and pharyngeal cancers combined and were included in the meta-analysis for oral cancer only.
Leste) and one country (Sweden) among men only. Overall, our updated ST-related disease burden in 2017 was substantially higher than that for 2010—by approximately 50% for cancers and 25% for ischaemic heart disease. This occurred despite a substantial reduction in ST prevalence in India (constituting 70% of the disease burden) and little change in the disease risk estimates. We are now reporting ST use in 12 more countries; however, the main reason for the increased burden of disease was a global rise in the total mortality and DALYs lost—oral, pharyngeal and oesophageal cancers, in particular. The disease burden due to these cancers lags several decades behind the risk exposure. Therefore, a significant reduction in ST-related disease burden as a result of a reduced prevalence will not become apparent for some time to come. Among other studies estimating

![Fig. 2 Risk estimates for oral cancers among ever ST users](image-url)
ST-related global disease burden, our mortality estimates were far more conservative than those reported by Sinha et al. (652,494 deaths); however, their methods were different from ours [9]. Moreover, Sinha et al.’s estimates included a number of additional diseases such as cervical cancer, stomach cancer and stroke. None of these risks were substantiated in our systematic reviews and meta-analyses. On the other hand, our estimates of 2,556,810 DALYs lost and 90,791 deaths due to cancers are close to those estimated by the GBD Study for 2017, i.e. 1,890,882 DALYs lost and 75,962 deaths due to cancers [91].

A reason for the slight difference between these two estimates might be that ours included pharyngeal cancers in the estimates while GBD Study only included oral and oesophageal cancers.

Our methods have several limitations. These have been described in detail elsewhere [16] but are summarised here. Our estimates were limited by the availability of reliable data and caveoted by several assumptions. The ST use prevalence data were not available for a third of countries despite reports of ST use there. Where prevalence data were available, there were

Fig. 3 Risk estimates for cardiovascular diseases (ischaemic heart disease, stroke) among ever ST users

STROKE

Study or Subgroup	log(Odds Ratio)	SE	Weight	IV, Random, 95% CI	Odds Ratio	IV, Random, 95% CI											
1.2.1 Asia																	
2013 Agapio	0.4569	0.207	2.2%	0.50 (0.80, 2.61)													
Subtotal (95% CI)	2.5%	1.05 (0.88, 2.81)															
Heterogeneity:	Tau^2 = 0.00, CI = 0.00	5.4 (P = 0.60)															
Test for overall effect: Z = 1.26 (P = 0.21)																	
1.2.2 Europe																	
2003 Amsseed	-0.1301	0.298	1.6%	0.87 (0.61, 1.29)													
2007 Hogland	0.0877	0.2543	3.7%	1.07 (0.85, 1.34)													
2009 Hogland	0.0196	0.0952	86.3%	1.02 (0.82, 1.22)													
2010 Hogland	0.1858	0.2088	2.0%	1.18 (0.82, 1.70)													
2010 Hogland	0.3011	0.3729	1.7%	1.35 (0.85, 2.10)													
2010 Sjodin	-0.5764	0.952	0.9%	0.59 (0.25, 1.14)													
Subtotal (95% CI)	97.7%	1.62 (0.65, 1.53)															
Heterogeneity:	Tau^2 = 0.00, CI = 2.00	5.4 (P = 0.60)															
Test for overall effect: Z = 0.49 (P = 0.63)																	
Total (95% CI)	100.0%	1.03 (0.84, 1.44)															
Heterogeneity:	Tau^2 = 0.00, CI = 3.29	6.0 (P = 0.70)															
Test for overall effect: Z = 0.67 (P = 0.50)																	
Test for subgroup differences: CH^2 = 1.36, df = 1 (P = 0.24), P = 0.77																	
WHO sub-regions	Mouth cancer M	Mouth cancer F	Mouth cancer All	Pharyngeal cancer M	Pharyngeal cancer F	Pharyngeal cancer All	Oesophageal cancer M	Oesophageal cancer F	Oesophageal cancer All	Ischaemic heart disease M	Ischaemic heart disease F	Ischaemic heart disease All	All causes M	All causes F	All causes All		
-----------------------	----------------	-----------------	------------------	---------------------	--------------------	----------------------	----------------------	---------------------	----------------------	------------------------	------------------------	--------------------------	-------------	-------------	-------------		
Deaths																	
Africa D	184	83	267	120	37	157	294	124	418	3414	1497	4911	4012	1741	5753		
Africa E	305	149	454	95	41	136	449	276	725	2231	1797	4027	3079	2263	5343		
Americas A	0	0	0	0	0	0	0	0	0	10298	565	10863	10298	565	10863		
Americas B	1189	112	1301	46	4	50	103	12	115	1275	260	1535	2613	389	3001		
Americas D	0	3	3	0	1	1	0	2	2	0	76	76	82	82	82		
Eastern	27	3	31	21	1	22	13	1	14	818	122	940	879	128	1007		
Mediterranean B	5488	3756	9244	611	138	749	752	269	1021	13062	1982	15045	19913	6146	26059		
DALYs																	
Africa D	5350	2499	7849	3823	1245	5068	7860	3166	11	027	78500	31152	10959	95533	38062	13395	
Africa E	9242	4105	13348	3174	1323	4497	12	358	6590	18	948	59082	32930	92012	83856	44948	128804
Americas A	0	0	0	0	0	0	0	0	0	018	6870	18756	180754	09012	6870	187626	
Americas B	2283	315	2598	1321	104	1425	2562	261	2823	28177	4397	32575	34344	5077	39421		
Americas D	0	68	68	0	34	34	0	62	62	01745	1745	0	1909	1909	1909		
Eastern Mediterranean B	758	90	848	593	42	634	301	23	324	16420	1919	18339	18072	20734	20145		
Eastern Mediterranean																	
Eastern Mediterranean D	177	126	304	19	304	19	4655	23	958	20	904	2984	3241	46679	371	423	727
Europe A	1618	272	1890	686	76	763	4959	682	5641	0	0	0	7263	10304	8293		
Europe B	5714	106	5820	2642	30	2672	4871	55	4926	141	562	1776	15432	15794	157	157	157
Europe C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Southeast Asia B	17730	10	28,523	11	164	4319	4588	6608	2951	9558	122	177	68896	1913	679	86958	
Southeast Asia D	767	258	1,025	471	131	602	252	87	340	3697	1114	4812	5189	540	606		
Western Pacific A	201	48	249	78	15	93	166	24	191	809	233	1042	1255	320	1575		
Western Pacific B	20556	3795	24,351	18	1324	19	40	1055	42	157	15371	1722	23710	21545	259	124	
Worldwide	1,008	407	1,415	532	144	464	354	110	464	4807	1327	6135	6702	1989	8691		
very few studies providing country-specific disease risks—a particular limitation in Africa and South America. In the absence of country-specific risk estimates, the model relied on assuming that countries that share similar ST products also share similar disease risks. For example, oral cancers risk estimates were only available from five countries (India, Norway, Pakistan, Sweden and the USA). For other countries, the extrapolated risks were based on similarities between ST products sold there and in the above five countries. The estimates for ischemic heart disease must be interpreted with caution, in particular, as the risk estimates for most countries were extrapolated from a single (albeit multi-country) study (INTERHEART). However, we excluded those regions from the above extrapolation where the INTERHEART study was not conducted. As previously noted, the total disease burden observed in 2017 is a consequence of risk exposure over several decades. Therefore, the attributable risk based on the prevalence figures gathered in the last few years may not be accurate. If ST prevalence has been declining in a country over the last few decades, the disease burden obtained by applying more recent prevalence figures may underestimate attributable disease burden. This may well be the case in India where ST use has declined by 17% between the 2009 and 2017 GATS surveys [92]. On the other hand, if ST use is on the rise (e.g. in Timor Leste), the attributable disease burden for 2017 could be an overestimate.

While we found a few more recent ST prevalence surveys and observational studies on the risks associated with ST use, big evidence gaps still remain. The ST surveillance data for many countries are either absent or outdated. The biggest gap is in the lack of observational
studies on the risks associated with various types of ST used both within and between countries. While longitudinal studies take time, global surveillance of ST products, their chemical composition and risk profile can help improve the precision of future estimates. As cancer registries become more established around the globe, their secondary data analysis can also provide opportunities to estimate ST-related risks.

ST is the main form of tobacco consumption by almost a quarter of all tobacco users in the world. Yet, its regulation and control lags behind that of cigarettes. The diversity in the composition and toxicity of ST products and the role of both formal and informal sectors in its production, distribution and sale make ST regulation a particular challenge. In a recent policy review of 180 countries that are signatories to WHO FCTC, we found that only a handful of countries have addressed ST control at par with cigarettes [93]. The regulatory bar is often much lower for ST than cigarettes [94]. Where ST control policies are present, there are gaps in their enforcement [95]. On the other hand, Sweden has demonstrated what can be achieved through strong regulations; ST-related harm has not only been reduced significantly, but snus is now used to reduce harm from smoking. Countries where ST use is popular and poses risks to health need to prioritise ST control and apply WHO FCTC articles comprehensively and evenly across all forms of tobacco.

Conclusions

ST is consumed across the globe and poses a major public health threat predominantly in South and Southeast Asia. While our disease risk estimates are based on a limited number of studies with modest quality, the likely disease burden attributable to ST is substantial. In high-burden countries, ST use needs to be regulated through comprehensive implementation and enforcement of the WHO FCTC.

Supplementary information

Supplementary information accompanies this paper at https://doi.org/10.1186/s12916-020-01677-9.

Additional file 1. Supplementary description of methods and results sections.

Abbreviations

CI: Confidence intervals; DALYs: Disability-adjusted life years; DHS: Demographic and Health Surveys; GATS: Global Adult Tobacco Survey; ICS: Individual Country Survey; PAF: Population attributable fraction; SEBS: Special Europe Barometer Survey; ST: Smokeless tobacco; STEPS: STEPwise Approach to Surveillance; TSNA: Tobacco-specific nitrosamines; WHO: World Health Organization

Authors' contributions

KS jointly developed the study idea, planned the analysis, interpreted the findings, wrote the methods, results and discussion sections and approved the final manuscript. SH led two literature reviews, interpreted the findings, contributed to the tables and approved the final manuscript. AV led one of the literature reviews, interpreted the findings, drafted several tables and approved the final manuscript. AR contributed to the literature reviews, interpreted the findings, wrote the background section and approved the final manuscript. MM contributed to the literature reviews, interpreted the findings, reviewed the analysis and the tables and approved the final manuscript. AS jointly developed the study idea, interpreted the findings, critically reviewed the write up and approved the final manuscript.

Funding

This study was funded by the National Institute for Health Research by a Grant No: 17/63/76 to support a Global Health Research Group on Addressing Smokeless Tobacco and building Research capacity in south Asia (ASTRA).

Availability of data and materials

All data generated or analysed during this study are included in this published article and its supplementary information file 1.

Ethics approval and consent to participate

Given that this is a secondary analysis of anonymised data that were already publicly available, ethics approval and consent to participate were not applicable.

Consent for publication

As above, consent for publication was not applicable.

Competing interests

None declared

Author details

1Department of Health Sciences, University of York, Sebohn Rowntree Building, Heslington, York YO10 5DD, UK. 2Hull York Medical School, University of York, Heslington, York YO10 5DD, UK. 3Usher Institute, The University of Edinburgh, Medical School Doorway 3, Teviot Place, Edinburgh EH8 9AG, UK.

Received: 21 April 2020 Accepted: 23 June 2020

Published online: 12 August 2020

References

1. National Cancer Institute and Centers for Disease Control and Prevention. Smokeless tobacco and public health: a global perspective. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Institutes of Health, National Cancer Institute. 2014. Bethesda, MD NIH Publication No 14–7983. https://cancercontrol.cancer.gov/brp/tcrb/global-perspective/SmokelessTobaccoAndPublicHealth.pdf.

2. Moghbel N, Ryu B, Cabot PJ, Ratsch A, Steadman KJ. In vitro cytotoxicity of Nicotiana gossei leaves, used in the Australian Aboriginal smokeless tobacco known as pituri or mingkula. Toxicol Lett. 2016;254:45–51.

3. Maki J. The incentives created by a harm reduction approach to smoking cessation: snus and smoking in Sweden and Finland. Int J Drug Policy. 2015; 26:569–74.

4. Palipudi K, Rowan SA, Sinha DN, Andes LJ, Amarchand R, Krishnan A, et al. Prevalence and sociodemographic determinants of tobacco use in four countries of the World Health Organization: South-East Asia region: findings from the Global Adult Tobacco Survey. Indian J Cancer. 2014;51(Suppl 1): S24–32.

5. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, World Health Organization, International Agency for Research on Cancer. Smokeless Tobacco and Some Tobacco-specific N-nitrosamines. Lyon: World Health Organization; 2007. https://monographs.iarc.fr/wp-content/uploads/2018/06/mono89.pdf.

6. Stanfill SB, Connolly GN, Zhang L, Jia LT, Henningfield JE, Richter P, et al. Global surveillance of oral tobacco products: total nicotine, un-ionised nicotine and tobacco-specific N-nitrosoamines. Tob Control. 2011;20:2.

7. Sankhla B, Kachhwaha K, Hussain SY, Saxena S, Sreesh SK, Bhargava A. Genotoxic and carcinogenic effect of gutkha: a fast-growing smokeless tobacco. Addict Health. 2018;10:52–63.
53. Merchant J, Husain SS, Hosain M, Fikree FF, Pitiphat W, Siddiqui AR, et al. Paan without tobacco: an independent risk factor for oral cancer. Int J Cancer. 2000;86:128–31.

54. Roosar A, Johansson ALV, Sandborg-Englund G, Axell T, Nyren O. Cancer and mortality among users and nonusers of snus. Int J Cancer. 2008;123:168–73.

55. Krarup T, Brennan P, Gajalakshmi V, Mathew A, Shanta V, Varghese C, et al. Independent and combined effects of tobacco smoking, chewing and alcohol drinking on the risk of oral, pharyngeal and esophageal cancers in Indian men. Int J Cancer. 2003;105:681–6.

56. Boffetta P, Agnnes B, Weiderpass E, Andersen A. Smokeless tobacco use and risk of cancer of the pancreas and other organs. Int J Cancer. 2005;114:992–5.

57. Lewin F, Norell SE, Johansson H, Gustavsson P, Wennberg J, Bolinder G, et al. Smoking tobacco, oral snuff, and alcohol in the etiology of squamous cell carcinoma of the head and neck: a population-based case-referent study in Sweden. Cancer. 1998;82:1367–75.

58. Luo J, Ye W, Zendehdel K, Adam J, Adam H-O, Boffetta P, et al. Oral use of Swedish moist snuff (snus) and risk for cancer of the mouth, lung, and pancreas in male construction workers: a retrospective cohort study. Lancet. 2007;369:2015–20.

59. Rosenquist J, Wennberg J, Schildt E-B, Bladhstrom A, Hansson BG, Andersson G. Use of Swedish moist snuff, smoking and alcohol consumption in the aetiology of oral and oropharyngeal squamous cell carcinoma. A population-based case-control study in southern Sweden. Acta Otolaryngol. 2005;125:991–8.

60. Ahn A, Boffetta P, Eriksson M, Handell L, Magnusson A. Oral snuff, smoking habits and alcohol consumption in relation to oral cancer in a Swedish case-control study. Int J Cancer. 1998;77:341–6.

61. Mashberg A, Boffetta P, Winkelman R, Garfinikel L. Tobacco smoking, drinking, and cancer of the oral cavity and oropharynx among U.S. Veterans. Cancer. 1993;72:1369–75.

62. Sapkota A, Gajalakshmi V, Jetly DH, Roychowdhury S, Dikshit RP, Brennan P, et al. Tobacco smoking, nass chewing, and oesophageal squamous cell carcinoma: a multicentric case-control study from India. Int J Cancer. 2007;121:1793–8.

63. Akhtar S, Sheikh AA, Qureshi HU. Chewing areca nut, betel quid, oral snuff, cigarette smoking and the risk of oesophageal squamous-cell carcinoma in South Asians: a multicentre case-control study. Eur J Cancer. 2012;48:655–61.

64. Dar NA, Bhat GA, Shah IA, Iqbal B, Mahdoodmi MA, Nisar I, et al. Hookah smoking, nass chewing, and oesophageal squamous cell carcinoma in Kashmir, India. Br J Cancer. 2012;107:1618–23.

65. Sehgal S, Kaul S, Gupta BB, Dhar MK. Risk factors and survival analysis of the esophageal cancer in the population of Jammu, India. Indian J Cancer. 2012;49:245–50.

66. Talukdar FR, Ghosh SK, Laskar RS, Mondal R. Epigenetic, genetic and environmental interactions in esophageal squamous cell carcinoma from northeast India. PLoS One. 2013;8:e60996.

67. Lagergren J, Bergström R, Lindgren A, Nyren O. The role of tobacco, snuff and alcohol use in the etiology of cancer of the oesophagus and gastric cardia. Int J Cancer. 2000;85:340–6.

68. Zendehdel K, Nyren O, Luo J, Dickman PW, Boffetta P, Englund A, et al. Risk of gastroesophageal cancer among smokers and users of Scandinavian moist snuff. Int J Cancer. 2008;122:1095–9.

69. Bolinder G, Alfredsson L, Englund A, de Faire U. Smokeless tobacco use and increased cardiovascular mortality among Swedish construction workers. Scand J Public Health. 2007;35:618–22.

70. Wennberg P, Eliasson M, Hallman G, Johannsson L, Boman K, Jansson J-H. The risk of myocardial infarction and sudden cardiac death amongst snuff users with or without a previous history of smoking. J Intern Med. 2007;262:351–9.

71. Hergens M-P, Larsson SS, Pershagen G. Swedish moist snuff and myocardial infarction among men. Epidemiology. 2005;16:12–6.

72. Hagiwl B, Eliasson M, Stenbeck M, Rosen M. Is moist snuff use associated with excess risk of IHD or stroke? A longitudinal follow-up of snuff users in Sweden. Scand J Public Health. 2007:35:618–22.

73. Hergens M-P, Alfredsson L, Bolinder G, Lambe M, Pershagen G, Ye W. Long-term use of Swedish moist snuff and the risk of myocardial infarction amongst men. J Intern Med. 2007;262:351–9.

74. Hergens M-P, Larsson SS, Pershagen G, Johannsson L, Boman K, Jansson J-H. The risk of myocardial infarction and sudden cardiac death amongst snuff users with or without a previous history of smoking. J Intern Med. 2007;262:360–7.

75. Hergens M-P, Lambe M, Pershagen G, Terent A, Ye W. Smokeless tobacco and the risk of stroke. Epidemiology. 2008;19:794–9.

76. Hansson J, Pedersen NL, Gallant MR, Andresson T, Ahlbom A, Hallqvist J, et al. Use of snus and risk for cardiovascular disease results from the Swedish Twin Registry. J Intern Med. 2009;266:717–24.

77. Janson E, Hedblad B. Swedish snuff and incidence of cardiovascular disease. A population-based cohort study BMC Cardiovasc Disord. 2009;9:21.

78. GBD Results Tool | GHDx. http://ghdx.healthdata.org/gbd-results-tool.

79. Siddiqui K, Islam Z, Khan Z, Siddiqui F, Mishu M, Dogar O, et al. Identification of policy priorities to address the burden of smokeless tobacco use in Pakistan: a multimethod analysis. Nicotine Tob Res. 2019. https://doi.org/10.1093/ntr/ntz163.

80. Mehtosa R, Yadav A, Sinha DN, Parascandola M, John RM, Ayo-Yusuf O, et al. Smokeless tobacco control in 180 countries across the globe: call to action for full implementation of WHO FCTC measures. Lancet Oncol. 2019;20:e208–17.

81. Siddiqui K, Kaushik N, Kaushik R. Why smokeless tobacco control needs to be strengthened? Cancer Control. 2020;27:107274820914659.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.