Algebraic geometry

Diagonal property of the symmetric product of a smooth curve

Propriété de la diagonale pour les produits symétriques d'une courbe lisse

Indranil Biswas, Sanjay Kumar Singh

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India
Institute of Mathematics, Polish Academy of Sciences, Warsaw, 00656, Poland

Let \(C \) be an irreducible smooth projective curve defined over an algebraically closed field. We prove that the symmetric product \(\text{Sym}^d(C) \) has the diagonal property for all \(d \geq 1 \). For any positive integers \(n \) and \(r \), let \(Q_{O^r}^{\text{nr}}(nr) \) be the Quot scheme parameterizing all the torsion quotients of \(O^r \) of degree \(nr \). We prove that \(Q_{O^r}^{\text{nr}}(nr) \) has the weak-point property.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In [8], Pragacz, Srinivas and Pati introduced the diagonal and (weak) point properties of a variety, which we recall. Let \(X \) be a variety of dimension \(d \) over an algebraically closed field \(k \). It is said to have the diagonal property if there is a vector bundle \(E \to X \times X \) of rank \(d \), and a section \(s \in H^0(X \times X, E) \), such that the zero scheme of \(s \) is the diagonal in \(X \times X \). The variety \(X \) is said to have the weak point property if there is a vector bundle \(F \) on \(X \) of rank \(d \), and a section \(t \in H^0(X, F) \), such that the zero scheme of \(t \) is a (reduced) point of \(X \). The diagonal property implies the weak-point property because the restriction of the above section \(s \) to \(X \times \{x_0\} \) vanishes exactly on \(x_0 \).

These properties were extensively studied in [8] and [5]. In particular, it was shown that:
• they impose strong conditions on the variety,
• on the other hand there are many example of varieties with these properties.

Here we investigate these conditions for some varieties associated with a smooth projective curve.

Let C be an irreducible smooth projective curve over k. For any positive integer d, let $\text{Sym}^d(C)$ be the quotient of C^d for the natural action of the group of permutations of $\{1, \ldots, d\}$. It is a smooth projective variety of dimension d. We prove the following (Theorem 3.1).

Theorem 1.1. The variety $\text{Sym}^d(C)$ has the diagonal property.

Theorem 1 in [8, p. 1236] contains several examples of surfaces satisfying the diagonal property. We note that the surface $\text{Sym}^2(C)$ is not among them.

For positive integers n and d, let $Q_{\mathcal{O}_C^\oplus}(d)$ be the Quot scheme parameterizing the torsion quotients of O_C^\oplus of degree d. Quot schemes were constructed in [6] (see [7] for an exposition on [6]). The variety $Q_{\mathcal{O}_C^\oplus}(d)$ is smooth projective, and its dimension is nd. Note that $Q_{\mathcal{O}_C}(d) = \text{Sym}^d(C)$. These varieties $Q_{\mathcal{O}_C^\oplus}(d)$ are extensively studied in algebraic geometry and mathematical physics (see [3,2,1,4] and references therein).

We prove the following (Theorem 2.2).

Theorem 1.2. If d is a multiple of n, then the variety $Q_{\mathcal{O}_C^\oplus}(d)$ has the weak-point property.

2. Quot scheme and the weak-point property

We continue with the notation of the introduction.

For a locally free coherent sheaf E of rank n on C, let $Q_E(d)$ be the Quot scheme parameterizing all torsion quotients of E of degree d. Equivalently, $Q_E(d)$ parametrizes all coherent subsheaves of E of rank n and degree $\deg(E) - d$. Note that any coherent subsheaf of E is locally free because any torsion-free coherent sheaf on a smooth curve is locally free. This $Q_E(d)$ is an irreducible smooth projective variety of dimension nd.

There is a natural morphism

$$\varphi' : Q_E(d) \to Q_{n \times E}(d)$$

that sends any subsheaf $S \subset E$ of rank n and degree $\deg(E) - d$ to the subsheaf $\bigwedge^n S \subset \bigwedge^n E$. Next note that $Q_{n \times E}(d)$ is identified with the symmetric product $\text{Sym}^d(C)$ by sending any subsheaf $S' \subset \bigwedge^n E$ to the scheme theoretic support of the quotient sheaf $(\bigwedge^n E)/'$. Let

$$\varphi : Q_E(d) \to \text{Sym}^d(C)$$

be the composition of φ' with this identification of $Q_{n \times E}(d)$ with $\text{Sym}^d(C)$. It should be mentioned that for a subsheaf $S \subset E$ of rank n and degree $\deg(E) - d$, the image $\varphi(S) \in \text{Sym}^d(C)$ does not, in general, coincide with the scheme theoretic support of the quotient sheaf E/S.

The symmetric product $\text{Sym}^d(C)$ is the moduli space of effective divisors of degree d on C. Let

$$D \subset Y := C \times \text{Sym}^d(C)$$

be the universal divisor. So the fiber of D over a point $a \in \text{Sym}^d(C)$ is the zero dimensional subscheme of C of length d defined by a. Let

$$D = (\text{Id}_C \times \varphi)^{-1}(D) \subset C \times Q_E(d)$$

be the inverse image of D, where φ is constructed in (2.1).

Remark 2.1. Let L be a line bundle on C. For E as above, if $S \subset E$ is a subsheaf of rank n and degree $\deg(E) - d$, then

$$S \otimes L \subset E \otimes L$$

is a subsheaf of rank n and degree $\deg(E \otimes L) - d$. Therefore, we get an isomorphism

$$Q_E(d) \sim Q_{E \otimes L}(d)$$

by sending any subsheaf $S \subset E$ to the subsheaf $S \otimes L \subset E \otimes L$.

Theorem 2.2. For positive integers d, n such that d is a multiple of n, the Quot scheme $Q_{\mathcal{O}_C^\oplus}(d)$ satisfies the weak-point property.
Proof. Let \(r \in \mathbb{N} \) be such that \(d = rn \). Fix a closed point \(x_0 \) in \(C \). The line bundle \(\mathcal{O}_C(rx_0) \) on \(C \) will be denoted by \(L \). By Remark 2.1 it is enough to prove the weak-point property for \(Q_{L^n}(d) \).

Let \(D \rightarrow C \times Q_{L^n}(d) \) be the divisor constructed in (2.3). Let
\[
p : D \rightarrow C \quad \text{and} \quad q : D \rightarrow Q_{L^n}(d) (2.4)
\]
be the natural projections. Taking the direct sum of copies of the natural inclusion
\[
t : \mathcal{O}_C \hookrightarrow \mathcal{O}_C(rx_0),
\]
we get a short exact sequence of sheaves on \(C \)
\[
0 \rightarrow \mathcal{O}_C(\xi_0) \rightarrow \mathcal{O}_C(rx_0) \rightarrow T \rightarrow 0, \quad \text{(2.5)}
\]
where \(T \) is a torsion sheaf on \(C \) of degree \(nt = d \). Therefore, this quotient \(T \) is represented by a point of \(Q_{L^n}(d) \). Let
\[
t_0 \in Q_{L^n}(d) \quad \text{(2.6)}
\]
be the point representing \(T \).

The direct image
\[
F := q_*p^*L^n \rightarrow Q_{L^n}(d)
\]
is a vector bundle of rank \(nd \), where \(p \) and \(q \) are the projections in (2.4). We will construct a section of \(F \). The section of \(\mathcal{O}_C \) given by the constant function 1 will be denoted by \(s_0 \). Consider the section
\[
s := t(\xi_0) \in H^0(C, L^n),
\]
where \(t(\xi_0) \) is the homomorphism in (2.5). We have
\[
\tilde{s} := q_*p^*s \in H^0(Q_{L^n}(d), F). \quad \text{(2.7)}
\]

For the point \(t_0 \) in (2.6), the scheme theoretic inverse image
\[
q^{-1}(t_0) \subset D \subset C \times Q_{L^n}(d)
\]
is \((rx_0) \times t_0 \), where \(q \) is the projection in (2.4). Since the section \(t(s_0) \) of \(L \) vanishes exactly on \(rx_0 \), this implies that the section \(\tilde{s} \) in (2.7) vanishes exactly on the reduced point \(t_0 \). Therefore, \(Q_{L^n}(d) \) has the weak-point property. \(\Box \)

3. Diagonal property for symmetric product of curves

Theorem 3.1. For any \(d \geq 1 \), the symmetric product \(\text{Sym}^d(C) \) of a smooth projective curve \(C \) has the diagonal property.

Proof. Consider the divisor \(D \) in (2.2). Let
\[
L = \mathcal{O}_Y(D) \rightarrow Y \quad \text{(3.1)}
\]
be the line bundle. Now consider \(Z := Y \times \text{Sym}^d(C) = C \times \text{Sym}^d(C) \times \text{Sym}^d(C) \). Let
\[
\alpha : Z \rightarrow C, \quad \beta : Z \rightarrow \text{Sym}^d(C) \quad \text{and} \quad \gamma : Z \rightarrow \text{Sym}^d(C) \quad \text{(3.2)}
\]
be the projections defined by \((x, y, z) \mapsto x \), \((x, y, z) \mapsto y \) and \((x, y, z) \mapsto z \) respectively. Let
\[
\tilde{D} := (\alpha \times \gamma)^{-1}(D) \subset C \times \text{Sym}^d(C) \times \text{Sym}^d(C) = Z \quad \text{(3.3)}
\]
be the inverse image, where \(D \) is defined in (2.2), and \(\alpha \times \gamma : Z \rightarrow C \times \text{Sym}^d(C) \) sends any \((x, y, z) \) to \((x, z) \). Let
\[
p : \tilde{D} \rightarrow \text{Sym}^d(C) \times \text{Sym}^d(C)
\]
be the projection defined by \(b \mapsto (\beta(b), \gamma(b)) \), where \(\beta \) and \(\gamma \) are defined in (3.2), and \(\tilde{D} \) is constructed in (3.3). Consider the direct image
\[
V := p_*(((\alpha \times \beta)^*L)|_{\tilde{D}}) \rightarrow \text{Sym}^d(C) \times \text{Sym}^d(C) \quad \text{(3.4)}
\]
where \(L \) is the line bundle in (3.1). The natural projection
\[
D \rightarrow \text{Sym}^d(C), \quad (x, y) \mapsto y,
\]
where \(D \) is defined in (2.2), is a finite morphism of degree \(d \). This implies that \(p \) is a finite morphism of degree \(d \). Consequently, the direct image \(V \) is a vector bundle on \(\text{Sym}^d(C) \times \text{Sym}^d(C) \) of rank \(d \).
Consider the natural inclusion $\mathcal{O}_Y \hookrightarrow \mathcal{O}_Y(D) = L$ (see (3.1)). Let

$$\sigma_0 \in H^0(Y, L)$$

be the section given by the constant function 1 using this inclusion. Let

$$\sigma := p_*(\langle (\alpha \times \beta)^*\sigma_0 \rangle|_D) \in H^0(\text{Sym}^d(C) \times \text{Sym}^d(C), V)$$

be the section of V (constructed in (3.4)) given by σ_0.

We will show that the scheme theoretic inverse image

$$\sigma^{-1}(0) \subset \text{Sym}^d(C) \times \text{Sym}^d(C)$$

is the diagonal.

Take any point $(a, b) \in \text{Sym}^d(C) \times \text{Sym}^d(C)$ such that $a \neq b$. Then there is a point $z \in C$ such that the multiplicity of z in a is strictly smaller than the multiplicity of z in b. We note that the scheme theoretic inverse image

$$p^{-1}((a, b)) \subset \tilde{D} \subset Z = C \times \text{Sym}^d(C) \times \text{Sym}^d(C)$$

is $\{(a, b)\} \times \tilde{b}$, where \tilde{b} is the zero dimensional subscheme of C of length d defined by b. On the other hand, for the section σ_0 in (3.5), the intersection $\sigma_0^{-1}(0) \cap (C \times \{a\})$ is the zero dimensional subscheme \tilde{a} of C of length d defined by a. Since the multiplicity of z in a is strictly smaller than the multiplicity of z in b, we have:

$$\sigma_0((z, b)) \neq 0.$$

Consequently, $\sigma((a, b)) \neq 0$.

Now take a point (a, a) on the diagonal of $\text{Sym}^d(C) \times \text{Sym}^d(C)$. We have observed above that the inverse image

$$p^{-1}((a, a)) \subset C$$

coincides with the intersection $\sigma^{-1}(0) \cap (C \times a)$. This implies that

- $\sigma((a, a)) = 0$, and
- $\sigma^{-1}(0)$ is the reduced diagonal.

Therefore, $\text{Sym}^d(C)$ has the diagonal property. \qed

References

[1] J.M. Baptista, On the L^2-metric of vortex moduli spaces, Nucl. Phys. B 844 (2011) 308–333.
[2] A. Bertram, G. Daskalopoulos, R. Wentworth, Gromov invariants for holomorphic maps from Riemann surfaces to Grassmannians, J. Amer. Math. Soc. 9 (1996) 529–571.
[3] E. Bifet, F. Ghione, M. Letizia, On the Abel-Jacobi map for divisors of higher rank on a curve, Math. Ann. 299 (1994) 641–672.
[4] I. Biswas, N.M. Romão, Moduli of vortices and Grassmann manifolds, Commun. Math. Phys. 320 (2013) 1–20.
[5] O. Debarre, The diagonal property for abelian varieties, in: Curves and Abelian Varieties, in: Contemporary Mathematics, vol. 465, American Mathematical Society, Providence, RI, USA, 2008, pp. 45–50.
[6] A. Grothendieck, Techniques de construction et théorèmes d'existence en géométrie algébrique, IV. Les schémas de Hilbert, IV, in: Séminaire Bourbaki, vol. 6, Société mathématique de France, Paris, 1995, pp. 249–276, Exp. No. 221.
[7] N. Nitsure, Construction of Hilbert and Quot schemes, in: Fundamental Algebraic Geometry, in: Mathematical Surveys and Monographs, vol. 123, American Mathematical Society, Providence, RI, USA, 2005, pp. 105–137.
[8] P. Pragacz, V. Srinivas, V. Pati, Diagonal subschemes and vector bundles, Pure Appl. Math. Q. 4 (2008) 1233–1278.