Impact of high temperature on the life history traits of the egg parasitoid *Trichogramma cacoeciae* Marchal (Hymenoptera: Trichogrammatidae)

Rafika Alloui-Griza, Asma Cherif, Ons Ichaoui and Kaouthar Grissa-Lebdi

DOI: https://doi.org/10.22271/j.ento.2022.v10.i1d.8951

Abstract

The effect of high temperature values (25, 30, 35 and 40 ± 1 °C) on the performance of the egg parasitoid *Trichogramma cacoeciae* Marchal (Hymenoptera: Trichogrammatidae), was assessed herein. Our results showed that the temperature of 30 °C was optimal for parasitism with a mean number of parasitized eggs of about 29.00 ± 1.14. A significant decrease of parasitism and emergence was observed at 35 °C while no progeny was produced at 40 °C. The developmental period and the longevity were inversely related to temperature. The possible implications of these results in biological control programs was discussed.

Keywords: Biological control, temperature, trichogrammatids, life table

Introduction

The egg-parasitoid species from the genus *Trichogramma* (Hymenoptera: Trichogrammatidae) are the most promising biological control agents used for inundative releases against lepidopteran pests worldwide [1, 2]. Thanks to their ubiquitous distribution, specificity and efficiency, these tiny hymenopteran wasps were involved in biological control programs for more a century [3]. These parasitoids were already commercialized in over 30 countries [1, 3].

In Tunisia, the naturally occurring strain *T. cacoeciae* showed a great preference for key lepidopteran pests such as, *Tuta absoluta* Meyrick (Lepidoptera: Gelechiidae) [4] and *Ectomyelois ceratoniae* Zeller (Lepidoptera: pyralidae) [5, 6]. Various factors including climatic conditions may hamper the biological control programs [7].

Temperature and relative humidity are thought to be the most important abiotic factors influencing insect biological performance [8]. Variations in temperature and/or humidity thus affect a variety of biological traits, most notably fecundity and adult survival [9, 10]. The majority of researches have concentrated on the effect of temperature on *Trichogramma* sp [9, 11]. In this context, the aim of the present study was to study the effects of high temperature levels on the biological performances of the *T. cacoeciae* under laboratory conditions.

Materials and Methods

Insect rearing

A laboratory colony of *Trichogramma cacoeciae* parasitoids were obtained from a private company (ControlMed, Tunisia). The parasitoid was maintained in the laboratory under controlled conditions (25 ± 1 °C, 60 ± 10% RH and 16:18 L: D) using the eggs of the Mediterranean flour moth *E. kuehniella* reared on wheat flour mixed. UV-sterilized *E. kuehniella* eggs were glued on cardboards before being offered to the newly emerged parasitoids. Afterwards, the parasitized eggs were kept in (10x1.5 cm) glass tubes under the same conditions described above. Adults were (provided with) given a honey solution (10% dilution) as a source of food.

Effects of temperature on the performances of *T. Cacoeciae*

Trichogramma cacoeciae females were randomly chosen and incubated at four constant temperatures (25, 30, 35 and 40 ± 1 °C).
Twenty females were tested for each temperature. Each female was individualized in Eppendorf tubes with about 100 UV-sterilized *E. kuehniella* eggs. Each replicate was supplied with honey (10% dilution) as a source of food. Females were allowed to parasitize during 24 hours before they were removed and the parasitized eggs incubated at the correspondent climatic chamber. Parasitism was based on the number of *E. kuehniella* eggs which turned black. When the parasitoids began to emerge, the emergence rate was calculated by counting the number of emergence holes. Moreover, the development time from egg to adult was calculated from the day when the females were removed. The sex ratio was not assessed as *T. cacoeciae* is a thelytokous species which does not produce males. Twenty other females were randomly chosen to assess the female longevity separately at the four temperatures tested.

Statistical analyses

All analyses were performed using the software R version 3.5.2. In all tests, differences were considered significant at $P = 0.05$. Before analysing the data, assumptions of normality of residuals (Shapiro-Wilk’s test) and homogeneity of variance (Levene’s test) were firstly checked. Parasitism and development time were then analysed using a one-way analysis of variance (ANOVA) followed by the Tukey honestly significant differences (HSD) *post hoc* test. Emergence rate and female longevity were analysed using a non-parametric test (Kruskal-Wallis H test) followed by the Dunn’s *post hoc* test with Bonferroni correction.

Results

Our results indicated that temperature of 30°C was the most suitable for parasitism (Figure 1a). However, the emergence rate (Figure 1a), development time (Figure 2a) and longevity (Figure 2b) were all higher at 25°C. At 40°C, the parasitoid did not emerge from parasitized eggs (Figure 1a). Statistical analysis revealed a significant difference between tested temperature for parasitism ($F_{3,76} = 128.3$, $P < 0.001$), emergence rate ($H = 55.09$, df = 3, $P < 0.001$), development time ($F_{2,57} = 330.2$, $P < 0.001$) and longevity ($H = 77.88$, df = 3, $P < 0.001$).

Discussion

Our study revealed that the temperature significantly affected the biological traits of *T. cacoeciae*. Other species might require high temperatures for oviposition, such as *T. nubilale* Ertle & Davis and *T. chilonis* (Similarly, *T. pretiosum* parasitized a significantly higher number of eggs at 30°C (compared to 26°C) Nadeem and Hamed (2008) did not report significant differences of the parasitism recorded at 25 and 30 °C for *T. chilonis* and *T. bactrae*. As reported by Schöller and Hassan (2001), *T. evanescens* and *T. cacoeciae* parasitized more eggs at 30°C than at 26°C during the first 24 hours following emergence.
Parasitism was reduced further at 35 °C and especially at 40 °C, which is consistent with previous researches [12, 14, 16]. The emergence rates observed in our study were globally high, being above 60% at temperatures ranging from 25 to 35 °C. According to the results of Pizzol et al. (2010) [17], the emergence of two strains of T. cacoeciae was very high at 25 and 3 °C, being above 90%.

Similarly, the emergence rate of T. pretiosum and T. atopovirilia was unaffected by temperatures ranging from 14 to 30 °C, because viability was greater than 90% [18]. Other Trichogramma species, such as T. chilonis and T. bactrae showed a reduction of viability at 35°C [15, 19].

At 40°C, there were no adult progeny, but the host eggs could turn to black colour without reaching the adult stages; this shows that at that temperature, the parasitoid is able to kill the host egg but is unable to survive and produce progeny. As reported by Nadeem et al. (2009) [19], no progeny of T. chilonis emerged when developed at 40°C due to mortality of parasitoids.

T. evanescens when developed at 36°C did not produce adult progeny [16]. The effect of temperatures on parasitoid progeny production is then linked to the parasitoid strain studied. Prior acclimatization to high temperature (> 35 °C) may improve the parasitoid’s performance when released in extreme summer temperatures.

Development time and female longevity were inversely proportional to temperature; the egg-to-adult period and female longevity were longer at 25°C than at higher temperatures. This was in agreements with different studies [10, 15, 16, 19, 20].

Conclusion
Our results showed that temperature had a significant effect on the biological performances of the egg-parasitoid T. cacoeciae under laboratory conditions. The optimal development of T. cacoeciae at 25-30 °C indicates that this temperature range is suitable for mass-releases of this parasitoid under field conditions. However, as T. cacoeciae was able to parasitize and develop at 35 °C, releasing this parasitoid at weekly intervals under similar field conditions would be able to maximise the success of the biocontrol program.

Acknowledgements
The authors thank Miss Faten Hamdi (ControlMed, Tunis, Tunisia) for providing us the trichocards of T. cacoeciae. This work was supported by the National Agronomic Institute of Tunisia.

Disclosure statement
There is no conflict of interest.

References
1. Hassan SA. The Mass Rearing and Utilization of Trichogramma to Control Lepidopterous Pests: Achievements and Outlook. Pesticide Science. 1993;37:387-391. https://doi.org/10.1002/ps.2780370412
2. Abram PK, Brodeur J, Burte V, Boivin G. Parasitoid-induced host egg abortion: An underappreciated component of biological control services provided by egg parasitoids. Biological Control. 2016;98:52-60. https://doi.org/10.1016/j.biocontrol.2016.04.
3. Smith SM. Biological control with Trichogramma: Advances, successes, and potential of their use. Annual Review of Entomology. 1996;41:375-406.
4. Cherif A, Mansour R, Attia-Barhoumi S, Zappalà L, Grissa-Lebdi K. Effectiveness of different release rates of Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae) against Tuta absoluta (Lepidoptera: Gelechiidae) in protected and open field tomato crops in Tunisia. Biocontrol Science and Technology. 2018;29:149-161. https://doi.org/10.1080/09583157.2018.1542485
5. Zougari S, Attia S, Zouba A, Lebdj-Grissa K. Effectiveness of mass trapping and Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae) releases against Ectomyelois ceratoniae (Lepidoptera: Pyralidae) in Tunisian oases. Biologia, 2020. https://doi.org/10.2478/s11756-020-00628-2
6. Hached W, Sahraoui H, Blé L, Lebdj-Grissa K. Biological control of Ectomyelois ceratoniae Zeller (Lepidoptera: Pyralidae) using the egg parasitoid Trichogramma cacoeciae Marchal (Hymenoptera: Trichogrammatidae) in a Tunisian citrus orchard. Journal of Entomology and Zoology Studies. 2021;9(3):98-104.
7. Kalyebi A, Sihanantham S, Overholt WA, Hassan SA, Mueke JM. Parasitism, longevity and progeny production of six indigenous Kenyan trichogrammatid egg parasitoids (Hymenoptera: Trichogrammatidae) at different temperature and relative humidity regimes. Biocontrol Science and Technology. 2005;15(3):255-270. https://doi.org/10.1080/09583150500016886
8. Odum EP. Basic ecology. Holt-saunders international Edition, New York, 1983, 613.
9. Yuan XH, Song LW, Zhang JJ, Zang LS, Zhu L, Ruan CC, et al. Performance of four Chinese Trichogramma species as biocontrol agents of the rice striped stem borer, Chilo suppressalis, under various temperature and humidity regimes. J. Pest Sci. 2012;85:497-504.
10. Foerster MR, Marchioro CA, Foerster LA. Temperature-Dependent Parasitism, Survival, and Longevity of Five Species of Trichogramma Westwood (Hymenoptera: Trichogrammatidae) Associated with Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae). Neotropical Entomology. 2014;43:176-182.
11. Andrade GS, Pratissoli D, Dalvi LP, Desneux N, dos Santos Junior HJG. Performance of four Trichogramma species (Hymenoptera: Trichogrammatidae) as biocontrol agents of Heliothis virescens (Lepidoptera: Noctuidae) under various temperature regimes. J Pest Sci. 2011;84:313-320.
12. Schöller M, Hassan SA. Comparative biology and life tables of Trichogramma evanescens and T. cacoeciae with Ephesia elutella as host at four constant temperatures. Entomologia Experimetalis et Applicata. https://doi.org/10.1046/j.1570-7458.2001.00754.x
13. Russo J, Voegele J. Influence de la température sur quatre espèces de Trichogrammes (Hym. Trichogrammatidae) parasite de la pyrale du maïs, Ostrinia nubilalis Hübn. (Lep. Pyralidae). II Reproduction et survie. Agronomie. 1982;2:517-524.
14. Hussain A, Razak M, Saeed R, Aslam M, Rafiq M, Zaka SM. Effect of different temperatures on life history of Trichogramma chilonis (ISHII) in the laboratory conditions. Pakistan Entomologist. 2013;35:123-127.
15. Nadeem S, Hamed M. Comparative development and parasitization of Trichogramma chilonis Ishii and...
Trichogrammatoidea bactrae Nagaraja under different temperature conditions. Pakistan Journal of Zoology. 2008;40:431-434.

16. Ayvaz A, Karasu E, Karabörklü S, Tunçbilek AS. Effects of cold storage, rearing temperature, parasitoid age and irradiation on the performance of Trichogramma evanescens Westwood (Hymenoptera: Trichogrammatidae). Journal of Stored Products and Research. 2008;44:232-240. https://doi.org/10.1016/j.jspr.2008.02.001

17. Pizzol J, Pintureau B, Khoualdia O, Desneux N. Temperature-dependent differences in biological traits between two strains of Trichogramma cacoeciae (Hymenoptera: Trichogrammatidae). Journal of Pest Science. 2010;83:447-452. https://doi.org/10.1007/s10340-010-0327-0

18. Foerster MR, Foerster LA. Effects of temperature on the immature development and emergence of five species of Trichogramma. BioControl. 2009;54:445-450. https://doi.org/10.1007/s10526-008-9195-4

19. Nadeem S, Ashfaq M, Hamed M, Ahmed S, Kashif M. Comparative rearing of Trichogramma chilonis (ISHII) (Hymenoptera : Trichogrammatidae) at different temperature conditions. Pakistan Entomologist. 2009;31:33-36.

20. Maceda A, Hohmann CL, Santos HR. Temperature effects on Trichogramma pretiosum Riley and Trichogrammatoidea annulata De Santis. Brazilian Archives of Biology and Technology. 2003;46:27-32. https://doi.org/10.1590/S1516-89132003000100005