Optomotor-Blind Negatively Regulates Drosophila Eye Development by Blocking Jak/STAT Signaling

Yu-Chen Tsai1,2, Stefan Grimm3*a, Ju-Lan Chao1, Shih-Chin Wang2, Kerstin Hofmeyer3*ab, Jie Shen4,5, Fred Eichinger4, Theoni Michalopoulou6, Chi-Kuang Yao1*ac, Chih-Hsuan Chang2, Shih-Han Lin2, Y. Henry Sun1*, Gert O. Pflugfelder3,4*

1 Institute of Genetics, National Yang-Ming University, Taipei; Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China, 2 Department of Life Science and Life Science Center, Tunghai University, Taichung, Taiwan, Republic of China, 3 Theodor-Boveri-Institut, Biozentrum, Lehrstuhl für Genetik und Neurobiologie, Universität Würzburg, Am Hubland, Würzburg, Germany, 4 Institut für Genetik, Universität Mainz, Mainz, Germany, 5 Department of Entomology, China Agricultural University, Beijing, China

a Current address: IsarNet AG, München, Germany
b Current address: New York Academy of Sciences, New York, NY, United States of America
c Current address: Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, Republic of China
* mbyhsun@gate.sinica.edu.tw (YHS); pflugfel@uni-mainz.de (GOP)

Abstract

Organ formation requires a delicate balance of positive and negative regulators. In Drosophila eye development, wingless (wg) is expressed at the lateral margins of the eye disc and serves to block retinal development. The T-box gene optomotor-blind (omb) is expressed in a similar pattern and is regulated by Wg. Omb mediates part of Wg activity in blocking eye development. Omb exerts its function primarily by blocking cell proliferation. These effects occur predominantly in the ventral margin. Our results suggest that the primary effect of Omb is the blocking of Jak/STAT signaling by repressing transcription of upd which encodes the Jak receptor ligand Unpaired.

Introduction

The Drosophila compound eye originates from the eye-antenna anlage in the embryo. These cells proliferate and form the eye-antennal disc in the larva. In the mid-third instar eye disc, a wave of cell cycle coordination and apical cellular constriction, called the morphogenetic furrow (MF) forms at the posterior margin and progressively moves toward anterior. Posterior to the MF, retinal cell fates are specified by a series of cellular interactions [1,2,3,4]. The early steps of eye development involve at least three aspects: specification of eye fate, control of cell proliferation, and initiation and progression of the MF.

A large number of genes are involved in promoting eye development. Eye fate is specified by the retinal determination gene network which includes the transcription factors encoded by eyeless (ey), twin of eyeless (toy), sine oculis (so), eyes absent (eya), and dachshund (dac) [5,6].
Cell proliferation is highly regulated. Undifferentiated cells anterior to the MF undergo proliferation that is promoted by Notch signaling, the Pax protein Eyg, a combination of the transcription factors Eyeless, Homothorax (Hth), Teashirt (Tsh) and the transcriptional coactivator Yorkie (Yki), as well as Upd/Jak/STAT signaling [7,8,9,10,11,12,13,14]. MF initiation and progression are promoted by the Decapentaplegic (Dpp), Hedgehog (Hh) and Upd/Jak/STAT signaling pathways [11,15,16,17,18,19,20,21,22,23,24].

However, developmental processes rarely proceed by agonistic action alone but tend to be held in check by interaction between agonists and antagonists. The necessity to keep retinal development in bounds is obvious in the eye-antennal imaginal disc since this disc, in addition to the retina, gives rise to much of the exterior of the adult head [25,26,27]. Molecules with the ability to block eye development include Patched (Ptc) and other negative regulators of Hh signaling, Wingless (Wg) and the positive components of its signaling pathway, the transcription factors and cofactors encoded by *homothorax* (*hth*), *teashirt* (*tsh*), *hairy* (*h*), *extramacrochaetae* (*emc*), *pannier* (*pnr*), *Chip*, *arrowhead* (*awh*) and *Lim1* [6,13,28,29,30,32,33,34].

Of these anti-retinal genes, Wg is the only signaling ligand and appears to be the most important anti-retinal factor. In the third instar eye disc, *wg* is expressed in the lateral margins and prevents inappropriate marginal morphogenetic furrow initiation [30,35]. Wg exerts its anti-retinal function by several routes. First, Wg blocks MF initiation [30,35]. A primary target is Dpp, which is essential for MF initiation [15,36]. Wg signaling represses *dpp* transcription and Dpp signaling at a step downstream of receptor activation [37,38]. Second, Wg also blocks MF progression [35] and neuronal differentiation through repression of Daughterless (Da) [38].

Which gene is induced by Wg to mediate its anti-retinal functions? One prime candidate is *optomotor-blind* (*omb*, FlyBase bifid, *bi*) which is expressed in the lateral margins in a pattern similar to the *wg* expression domain [39]. Ectopic expression of either *wg* or its downstream effector armadillo (*arm*) induces the expression of *omb* near the lateral margins [40]. *Omb* encodes a T-domain transcription factor and is required for the development of the optic lobes, wing, abdomen, and terminalia [41,42,43,44,45,46,47,48,49,50,51]. The polar eye disc expression and the fact that ectopic *omb* can completely block eye development [52] led us to investigate the role of *omb* in this process, and its relationship with Wg.

We show that Omb antagonizes eye development primarily at the level of cell proliferation. We further identified a molecular pathway downregulated by Omb. Our results suggest that the main effects of Omb are a block of Jak/STAT signaling by suppressing transcription of *upd* encoding the Jak/STAT ligand Unpaired. The block of Jak/STAT signaling accounts for the effect of Omb on cell proliferation. Our results also show that Omb mediates part of the Wg anti-retinal effects.

Materials and Methods

Fly stocks

Fly culture and crosses were performed according to standard procedure at 25°C unless noted otherwise. Transgenic expression lines: *UAS-omb* and *hsp70-omb* [47], *UAS-arm* [40], *UAS-dpp* [53], *UAS-upd*, *UAS-hop* [54], *STAT92E* [55], *STAT92E* [56] (*STATP1681-lacZ*, in [56,57]). *dpp* *Galo6*–*GAL4* [53], *ombP2-GAL4* (GAL4-*bi* in [58]; cf. [59], ey-GAL4 [37] and *ombP2-GAL4* (*omb* in [60]; cf. [59]) were used as GAL4 drivers. Alleles used are: *omb* *bi* (regulatory hypomorph, [41]), *l(1)omb*D, *l(1)omb* [51], and *l(1)omb* [51] (molecularly defined null mutants, [61,62]). *omb* *F{2}R* (gain-of-function mutant caused by a large downstream insertion [51]) and *omb* *P{2}-GAL4* is hemi- and homozygous lethal and was used both as an *omb* allele and as GAL4-driver in the *omb* expression domain [60]. *lacZ* reporter lines are: *omb-lacZ* (*omb* in...
dpp-lacZ (BS3.0) [3], mirr-lacZ [63], fng-lacZ [64], and wg-lacZ [65]. w ombl1 l(1) ombl114 were kindly provided by Jessica Treisman, omb^{For} by Marc Fortini, Act5C>CD2>GAL4 [23], tub>CD2>omb and tub>CD2>GAL4 by Christian Dahmann. Other fly stocks were obtained from the Bloomington Drosophila Stock Center and the Mid-America Drosophila Stock Center (Bowling Green, Ohio).

Construction of 10X STAT-GFP-nls
GFP-nls sequence was amplified from pH-Stinger [66] by PCR primers (GGTTCAGGGG-GAGGTGTGGG; ACTCGAGGCAGCCAAGCTGATCCTCTAGGG) and then cloned into 10XSTAT-luciferase [66] by XhoI and XbaI to generate the 10X-STAT-GFP-nls construct. Germline transformants were generated as described previously [67].

Clonal induction
Positively labeled flp-out expression clones were generated by crossing UAS-lines to hs-FLP¹²²; Act5C>y> GAL4 UAS-GFP^{S65T} [68]. Heat shock induction of hs-FLP¹²² was at 37°C for 30 min at 24–48 hr after egg laying. l(1)omb^{D4} and control clones were generated by incubating hs-flp¹²² hs-GFP FRT19/FRT19 or hs-flp¹²² hs-GFP FRT19/l(1)omb^{D4} FRT19 larvae at 48–60 h AEL at 38°C for 30 min. Larvae were raised at 25°C for 48 h. Before dissection, larvae were subjected to 37°C for 1h and then shifted back to 25°C for 1h to allow GFP expression. omb gain-of-function and control clones were generated by incubating hs-flp¹²²; tub>CD2>GAL4; UAS-GFP larvae at 36–48h AEL for 30 min at 37°C. Larvae were dissected after 72 h at 25°C.

Immunohistochemistry
Late third instar larval imaginal discs were dissected and stained. Primary antibodies were rat anti-Elav 7E8A10 (1:500, Developmental Studies Hybridoma Bank, U. of Iowa (DSHB, Iowa), rabbit anti-ß-galactosidase (1:1000, Cappel), mouse anti-Eya 10H6 (1:200, DSHB, Iowa), rabbit anti-BarH1(S12) (1:1000, gift from Tetsuya Kojima), rabbit anti-Omb (1:1000, [47,49]), rabbit anti-phospho-histone H3 (anti-PH3) (1:200–1:1000, Upstate Biotechnology), rabbit anti-Caspase-3 (cleaved) (1:200, Upstate Biotechnology), mouse anti-CD2 (rat) (1: 2000, Serotec), and mouse anti-Wg 4D4 (1:200, DSHB, Iowa), mouse anti-BrdU (1:50, Roche). Secondary antibodies (Jackson ImmunoResearch) were FITC-, Cy3- or Cy5-conjugated anti-rabbit, anti-rat and anti-mouse. Confocal microscopy was performed on a Zeiss LSM 310 or LSM 510. X-Gal staining of lacZ expression was done as described [53]. Anti-BrdU staining was performed as described [9].

RNA in situ hybridization
^{upd} RNA in situ hybridization is executed as described [9].

Tissue sections
Semi-thin plastic eye sections were performed according to [69].

Scanning electron microscopy and determination of ommatidial number
Scanning electron micrographs of adult eyes were obtained as described [52]. Due to the curvature of the eye, the ommatidial number N cannot be obtained from a single micrograph. A given eye was photographed from different angles. Dust particles or aberrations in the bristle
pattern allowed the alignment of the otherwise repetitive structures such that error-free counting was possible.

Results

omb negatively regulates eye size

In the eye imaginal disc, Omb is expressed in two cell types. Within the main epithelium, Omb is expressed at the dorsal and ventral margins (S1A Fig., arrow). Omb is also expressed in the retinal basal glial cells that lie at the basal level of the eye disc and in the optic stalk [39,70] (S1A Fig.). Only the epithelial expression will be considered here. We found that loss-of-function and gain-of-function omb mutations caused changes in eye size.

In **omb** hypomorphic allele combinations and **omb** knock-down, the Omb level was reduced in both margins and the eye disc was enlarged (S1B Fig.). This was observed for the **omb** hypomorph **omb** hyp in combination with any of three molecularly characterized **omb** null alleles, **l(1)omb** hyp, **l(1)omb** 282, and **l(1)omb** 3198 [61,62]. In these adults, the eye was enlarged with an increase in ommatidial number (N) by up to 25%, from 750–800 in wild type to 850–1000 in the mutant (wild type: N = 782, SD = 11.5, n = 6; **omb** hyp*/l(1)omb** 282: N = 952, SD = 61, n = 9).

The expansion of the eye occurred primarily ventrally. The dorsal-ventral distinction was based on several criteria. Using the enhancer trap insertion **ombP** 1 [63] as marker for dorsal and ventral ommatidia (Fig. 1A), only an increase in the ventral expression domain could be observed in the adult eye of **omb** hypomorphs (Fig. 1B). In the larval eye disc, the location of the dorsoventral (DV) midline was defined by the location of the optic stalk (S2A-D, Fig., arrowhead), the inversion of ommatidial chirality based on anti-Bar staining [71] (S2A-B Fig.), the ventral-specific fng-lacZ expression [64] (S2C-D Fig.) and the dorsal-specific mirr-lacZ expression (Fig. 1D, E). There was an obvious enlargement of the ventral eye disc in **l(1)omb** hyp/ **ombP** 7 hypomorphic larvae (Fig. 1D-F; S2B, D Fig.). We followed the developmental progress of **omb** 7 eye discs, based on the number of ommatidial rows, and found that the number of ommatidia in the ventral region was consistently higher relative to that in the dorsal region, which was not different from wild type (S2E Fig.). By all these criteria, an overgrowth of the ventral relative to the dorsal part was evident in the **omb** hypomorphic mutant eye.

These loss-of-function effects were also observed when **omb** was knocked down by RNAi. Expressing **omb**-RNAi [48] in its own expression domain using **ombP** 3-GAL4 caused a strong reduction of Omb level in the margins of eye disc, the retinal basal glia and in the antenna disc. This resulted in a strong overgrowth of eye disc (S1B Fig.) and adult eye (Fig. 1B). When **omb**-RNAi expression was driven by GMR-GAL4, the size of eye disc and adult eye was normal (not shown). This is consistent with **omb** expression not overlapping with the activity of the GMR-GAL4 driver, which is restricted to cells posterior to the MF [72].

In contrast to the loss-of-function effects, gain-of-function of **omb** caused reduction or elimination of the eye. In the regulatory dominant gain-of-function allele **omb** For [51], Omb was overexpressed in the lateral margins and in the retinal basal glia (S1C Fig.). **omb** For larvae had smaller eye discs (S1C Fig.) and the adults had a reduced number of ommatidia and a posterior indentation in the eye (wild type: N = 782, SD = 11.5, n = 9; **omb** For: N = 507, SD = 57.6, n = 6). Targeted mis-expression of **omb** in the lateral and posterior margins by **dpp-GAL4** (dpp > **omb**) causes a strong reduction or total absence of the adult eye [52]. Specific overexpression of **omb** at the lateral margins using **30A-GAL4** [73] caused a decrease in ommatidial number N that depended on the strength of the UAS-omb line (UAS-omb+15: N = 601.9, SD = 52.3, n = 10; UAS-omb+17: N = 670, SD = 32.3, n = 9).

In summary, the loss and gain-of-function phenotypes of **omb** indicate that **omb** is a negative regulator of eye development. The effect is stronger on the ventral side of the eye.
Figure 1

Fig 1. omb expression level influences eye size. (A) w*omb*P1 (an enhancer trap insertion that does not affect omb expression and function, Sun et al., 1995), (B) w*omb*P1 l(1)omb3198/omb*bi. The expanded territory of ventral eye fate is clearly evident. Because of the increased size, the eye surface is more convex. Therefore, the unaffected dorsal pigmentation is not fully visible under this angle. (C) *ombP3>*omb-RNAi showed strong overgrowth in the eye. The overgrowth is stronger in the ventral than in the dorsal part of the eye. The eye is convoluted. (D-E) *mirr-lacZ* (anti-beta-galactosidase, red). Phalloidin staining (green). Elav (blue). (D-D’) *mirr-lacZ/* eye disc showing the dorsal-specific expression of *mirr-lacZ*. D, D’ and D”, D” are two focal planes. The D”, D” focal plane shows the ventral flap. (E-E”) l(1)ombD4/omb*P7 eye disc. E, E’ and E”, E” are two focal planes. The E”, E” focal plane shows the ventral flap. The dorsal and ventral eye regions were distinguished (separated by a white line) based on *mirr-lacZ* and the position of the optic stalk. Two different focal planes are acquired in each eye disc. The area of eye disc including the ventral flap, based on two focal planes, were measured by the software, Zeiss Zen 2009. The results are summarized in (F). The ventral area of l(1)ombD4/omb*P7; *mirr-lacZ*/+ are significantly enlarged compared to that of *mirr-lacZ*/+. The dorsal area of l(1)ombD4/omb*P7; *mirr-lacZ*/+ are not significant increased compared to that of *mirr-lacZ*/+. Differences (*) presented in (E) and (J) are significant (Student's t-test, **, p<0.05; n.s., non-significant). In all panels anterior is left and dorsal up.

doi:10.1371/journal.pone.0120236.g001
omb blocks cell proliferation during eye development

Deviations from normal eye size can arise by several mechanisms. Changes in proliferation, cell death, morphogenetic furrow progression or retinal differentiation can all affect eye size. We tested the effect of loss and gain of omb on proliferation and cell death.

In omb hypomorphs, cell cycle activity was increased in the ventral eye disc, as monitored by histone H3 phosphorylation (pH3) (ombP7/Y, Fig. 2B, compare with wild type eye disc in 2A; quantified comparison in 2E) or BrdU incorporation (ombP7/Y, Fig. 2D, compare with wild type eye disc in 2C) as markers for cell proliferation. There are two mitotic waves in the eye disc. The first mitotic wave occurs anterior to the MF and affects the cell population which will be recruited to form ommatidial clusters. Changing cell proliferation in the first mitotic wave will change the number of ommatidia [9,10]. omb hypomorphic eye discs showed an increase of mitosis in the first mitotic wave (Fig. 2B, D), as expected by their increase in ommatidial numbers. In contrast, the second mitotic wave occurs behind the MF and affects the number of cellular components assembled into the ommatidia [74]. Since omb is expressed in the anterior lateral margins, it is not expected to affect the second mitotic wave. This was confirmed in omb hypomorphic mutants (Fig. 2B, D) and by knocking down omb by GMR>omb-RNAi, which resulted in normally sized adult eyes (not shown). Therefore, omb appears to affect cell divisions in the undifferentiated region anterior to the MF.

We also analyzed the effect of omb loss of function mutant clones on cell proliferation. The l(1)ombD4 null allele was used because it yielded stronger effects than the hypomorphic alleles. In wild type eye discs, control clones (marked by lack of GFP) were of similar size relative to their twin spots, irrespective of location (Fig. 2F, G shows two different focal planes to allow clone size visualization and measurement in the infolded margins, in particular the "ventral flap"; data are summarized in Fig. 2J). As expected from the restricted omb expression pattern and from the phenotype of omb loss-of-function mutants, omb null mutant clones had a proliferative advantage relative to their twin spots (omb+/omb++) only in the ventral margin (Fig. 2I, arrow) but not in the center of the disc (Fig. 2H, arrow) or in the dorsal margin (Fig. 2I). omb clones in the ventral regions were about 3.5 times larger than omb clones in the central region of the disc or than wild type clones (summarized in Fig. 2J).

We next analyzed whether apoptosis plays a role in the omb over-expression phenotype. There is little cell death in wild type larval eye discs [75]. Before onset of retinal differentiation, dpp-GALA40.6 is expressed in the lateral and posterior margins; later it is restricted to the lateral eye disc margins. The expression in the lateral margins partially overlaps with the omb expression domain in the progenitor region (cf. S6 Fig.). Expression of omb driven by dpp-GALA4 (dpp>omb) caused a strong reduction to total absence of the adult eye [52] and lack of retinal differentiation in the eye disc Enhanced apoptosis could be detected in the posterior margin of the dpp>omb+GFP eye disc (S3A, Fig.). Coexpressing the anti-apoptotic factor p35 (dpp>omb +p35) did not rescue adult eye size (data not shown) nor retinal differentiation in eye disc, although apoptosis was strongly reduced (S3B Fig.). These results suggest that apoptosis is not primarily responsible for eye size reduction at the larval and adult stages and that Omb mainly affects eye size by blocking cell proliferation.

Omb can block retinal differentiation

In addition to the effect on cell proliferation, Omb ectopic expression can block retinal differentiation. Ectopic clonal omb expression at the posterior margin prevented MF initiation (Fig. 3A). Ectopic clonal omb expression in the path of the MF blocked its progression (Fig. 3B) and neural differentiation (Fig. 3C-C-1”, arrow). Transient overexpression of omb by heat-induced expression of hs-omb in the entire eye field caused a dorso-ventral scar in the adult eye
Figure 2

Fig 2. Omb blocks cell proliferation in eye disc. Cell proliferation was monitored by staining against the mitotic marker phospho-histone 3 (pH3), BrdU incorporation, and by comparing clone size in late third instar eye discs. (A-D) Arrowhead points to the position of the optic stalk. (A) Wild type eye disc showing the two mitotic waves (arrows) labeled by anti-pH3 (red). (B) The ombP7 mutant showed an increased number of pH3-positive nuclei in the ventral eye compared to wild type. (C, D) BrdU incorporation showed an increase of proliferating cells in the ventral flap (arrow) of the ombP7 mutant eye disc (D) compared to the wild type eye disc (C). (E) mirr-lacZ was used to mark the dorsal region. pH3 positive cells were scored in ombP7/Y; mirr-lacZ/+ and mirr-lacZ dorsal and ventral eyes. In order to include the ventral flap area, the images of several optical sections were merged. The quantification results are summarized in (E). The mitotic cells in ventral eye of ombP7 is significant increased compared to ventral eye in wild type (p<0.05). (F, G) A wild type eye disc with clones (marked by the absence of GFP) at two focal planes to show the central region (F) and the ventral and dorsal flap regions (G). The clones were of similar size in all regions (summarized in J). (H, I) An eye disc with l(1)ombD4 clones (marked by the absence of GFP) at two focal planes to show the central (H) and ventral and dorsal flap regions (I). The wild type clones and l(1)ombD4 mutant clones were induced at the same time. The l(1)ombD4 clones in the ventral flap were on average about 3.5 times larger than omb clones in the central region of the disc or than wild type clones (summarized in J). Differences (*) presented in (E) and (J) are significant (Student’s t-test, *** p<0.001; **, p<0.05).

doi:10.1371/journal.pone.0120236.g002
Figure 3. Ectopic omb expression can block morphogenetic furrow initiation, progression, and differentiation. Flip-out induced omb expression clones (Act5C>omb) marked by GFP coexpression repressed Elav (cyan) and Eya (red) expression. (A-A') A clone at the posterior margin (arrow) inhibited MF initiation. (B-B') A clone at the MF (arrow) inhibited MF progression (as indicated by CycB pattern, red) and neuronal differentiation (Elav, cyan). (C-C') Omb expression level in Act5C>omb clones varied. Omb expression in a single ommatidial clusters (arrows) could autonomously block neuronal differentiation (Elav, cyan). The Z-section along the white line is shown in C-1 to C-1". The relative level of Omb induction correlates to the signal of coexpressed GFP. (D) Tangential semi-thin sections through an adult eye of an hs-omb transgenic fly exposed to a single 1hr 37°C heat shock during mid-L3. Ommadial patterning resumed normally beyond the dorso-ventral scar (arrow).

doi:10.1371/journal.pone.0120236.g003
(Fig. 3D, arrow) characteristic of furrow-stop mutations [19]. Anterior and posterior to the scar, retinal differentiation proceeded normally, indicating that Omb does not irreversibly arrest MF progression and retinal differentiation. Previously we have shown that sustained omb expression posterior to the MF severely disturbs ommatidial development [52].

Increase in ommatidial number in omb hypomorphs apparently did not occur at the expense of gena tissue (the rim of naked tissue between retina and vibrissae) (Fig. 1B, C). This indicates that Omb in the lateral margins does not act to prevent spreading of eye fate into adjacent tissue domains. Rather, the increase in eye size in omb hypomorphs appears caused by overproliferation of retinal precursors in the ventral eye field (s. above).

Omb inhibits cell proliferation by blocking Jak/STAT signaling through repression of upd transcription

To understand the mechanism by which Omb impedes proliferation in the ventral anterior eye disc, we tested the effect of Omb on the Upd/Jak/STAT signaling pathway, which promotes cell proliferation [7,9,10,18,24], as well as MF initiation [15,17,18,22,24].

The ligand Unpaired (Upd, FlyBase: outstretched, os) of the Jak/STAT pathway is expressed in the ventral eye disc at first instar and in the posterior center of the eye disc at second and early third instar [9,10,57]. Upd, acting through the Jak/STAT signaling pathway, promotes cell proliferation and represses wg transcription to promote MF initiation [7,9,10,18,24]. STAT signaling is induced by Upd and can be detected using STAT reporters containing STAT binding sites [9,10,18,24,76]. Grh-STAT-lacZ and 10X-STAT-GFP reporter expression is high in the posterior region, consistent with STAT activity being induced by the Upd ligand [24]. 10X-STAT-GFP is expressed in the posterior part of the second instar eye disc, before MF initiation. In the third instar eye disc, the 10XSTAT-GFP signal is much reduced and represents perdurance from earlier expression [76]. In the omb hypomorph ombP7, STAT activity was ectopically activated in the ventral margin (Fig. 4B and S4 Fig.), as monitored by expression of 10XSTAT-GFP-nls (constructed in this study) which is normally expressed only in the posterior region of the eye disc (Fig. 4A). ombP3>omb-RNAi yielded similar results (not shown). A STAT-lacZ enhancer trap reporter, although not fully recapitulating the STAT92E mRNA pattern, is known to be negatively regulated by Jak/STAT activity [43,57] and, therefore, can be used as a reporter for Jak/STAT activity. In the wild type L3 eye disc, its expression was higher in the lateral poles and lower around the DV midline (Fig. 4C, see also [57]). In the l(1)omb15 eye disc, STAT-lacZ expression was lost in the ventral region (Fig. 4D), suggesting an elevated STAT activity in this region. To determine whether omb regulates Jak/STAT activity cell-autonomously, we generated l(1)ombD4 mutant clones. We found that 10XSTAT-GFP-nls was nonautonomously induced in ventral clones (Fig. 4E-E’). These results suggest that Omb normally acts to repress Jak/STAT activity in the ventral region of the eye disc.

In order to determine, at which level of the Jak/STAT signaling cascade Omb inhibits this pathway, we coexpressed the Janus kinase gene hopscotch (hop) with omb (dpp>omb+hop) (Fig. 4G). Hop largely rescued retinal development indicating that Omb acts upstream of hop. dpp>hop (not shown) and dpp>hop+GFP (Fig. 4F) caused an enlargement of the eye disc, consistent with the role of Jak/STAT signaling in promoting cell proliferation. These results suggest that repression of Jak/STAT activity is a major mechanism by which ectopic Omb blocks eye development. We then asked whether increased Jak/STAT signaling can account for the omb loss-of-function phenotype. We reduced the STAT92E dose in the ombP7 mutant background, (ombP7/Y; STAT06346/+ and ombP7; STAT92E397/+, which caused attenuation of the ventral outgrowth of eye disc (Fig. 4H, H’, two focal planes; quantified comparison in 4I). These results suggest that the overgrowth phenotype elicited by reduced omb expression
Fig 4. Omb blocks Jak/STAT signaling. 10XSTAT-GFP is a reporter of Jak/STAT signaling [76]. We added a nuclear localizing signal (nls) to obtain 10XSTAT-GFP-nls. (A) 10XSTAT-GFP-nls expression pattern (GFP, green) in wild type third instar eye disc. (B) The 10XSTAT-GFP-nls was ectopically expressed in the ventral eye margin (arrow) in an ombP7 hypomorphic mutant eye disc. (A, B) The position of the MF, based on the DIC image, is marked by an arrowhead. (C) STAT-lacZ is repressed by Jak/STAT signaling. In wild type late third instar eye disc, its expression was strong in the lateral poles and weaker around the DV midline, as reported [57]. (D) In l(1)omb15/Y eye discs, STAT-lacZ expression was attenuated in the ventral region. (E-E') 10XSTAT-GFP-nls (green) was non-autonomously induced by loss of omb in the ventral margin. (F) dpp>hop+GFP caused an enlargement of the eye disc (Elav, red; GFP, green). (G) Coexpression of hop with omb (dpp>omb+hop) could largely rescue the dpp>omb phenotype (dpp-lacZ, green; Elav, red). (H-H') Reducing STAT dosage in ombP7/Y; STAT92E397/+ larvae reduced the size of the ventral retinal field compared to that in ombP7/Y (Fig. 2B). Different focal planes of ombP7/Y; STAT92E397/+ were shown in H and H'. The quantified eye areas are summarized in (I).

doi:10.1371/journal.pone.0120236.g004
requires Jak/STAT activity. Therefore, in its normal function Omb appears to suppress inappropriate Jak/STAT signaling at the ventral margin.

Upd is the ligand of Jak/STAT pathway and expressed in the center of the posterior margin of the eye disc in L2 and L3 larvae (S5A-D, F Fig.; [9,57]). We examined whether omb could suppress Jak/STAT activity by downregulating upd expression. Expression of omb along the posterior margin (in dpp>omb+GFP) suppressed upd-lacZ expression (S5E, E’ Fig.). Clonal expression of omb repressed upd-lacZ cell autonomously (Fig. 5A-A’). We further tested whether upd expression is affected in omb mutant eye discs. We performed RNA in situ hybridization on wild type and ombP7 eye discs and found that upd was derepressed in the ventral margin in ombP7 (Fig. 5C) compared wild type (Fig. 5B). Thus, ectopically expressed Omb can suppress upd transcription, and Omb in its normal expression domain restricts upd transcription in the ventral eye margin. Moreover, coexpression of omb with upd (in dpp>omb + upd) largely rescued retinal development in the eye disc (Fig. 5D) and the adult eye (Fig. 5E). These results suggest that Omb, in its endogenous expression domain, acts by repressing upd, thus limiting cell proliferation in the ventral eye. Our results further suggest that repression of Jak/STAT signaling occurs at the transcriptional level of upd and is the major mechanism by which Omb blocks cell proliferation in eye development.

Omb is a mediator of Wg anti-retinal function

Since Wg and Omb are expressed in a similar pattern and both block retinal development, we asked whether the anti-retinal activity of the Wg signal is mediated by Omb. The Wg effector Arm was expressed to mimic Wg signaling. In dpp>arm+GFP, eye disc size was reduced and no neuronal differentiation was detected (Fig. 6A), consistent with a block of eye development by Wg signaling. dpp expression along the posterior and lateral margins has little overlap with endogenous wg expression (S6A-E, A”-E” Fig.). Therefore, this experiment tests the effect of ectopic Wg signaling. When omb was knocked down in the background of dpp>arm (in dpp>arm+omb-RNAi), disc size and neuronal differentiation were partly recovered (Fig. 6B). Adult eye size also was largely restored (Fig. 6D). Knock down of Omb in the dpp expression domain (dpp>omb-RNAi+GFP) caused no significant effect on retinal development (Fig. 6C, E). Misexpression of arm by ey-GAL4 (ey>arm) caused a reduction of adult eye size and retinal differentiation in eye disc (Fig. 6E, I). When omb dosage was reduced (l(1)ombP7/+), the ey>arm phenotype was partially rescued with full penetrance (Fig. 6G-I, K-L). These results suggest that Omb is one of the mediators of Wg activity in blocking eye development.

Discussion

om b represses retinal development

In this study, we demonstrate that omb is a negative regulator of retinal development. Omb can block eye development at several levels: cell proliferation, MF initiation, and progression. In omb loss-of-function mutant or RNAi-knockdown animals, the most prominent phenotype was an enlargement of the ventral eye (Fig. 1) due to extra cell proliferation (Fig. 2). omb mutant clones in its expression domain at the ventral margin were 3.5 times larger than control clones (Fig. 2). These loss-of-function results were supported by the opposite effect in gain-of-function experiments. In omb gain-of-function animals, the size of eye disc (S1C Fig.) and adult eye was reduced (data not shown). In addition, omb-expressing clones blocked MF initiation (Fig. 3A) and progression (Fig. 3B). Expression of omb along the margins (dpp>omb +GFP) could completely block retinal development (S3B-C Fig.).

Act5C>omb clones were not detected in late third instar eye discs. Rare clones were observed only when larvae were raised at 17°C and examined at early to mid-third instar (Fig. 4).
These clones were often round and sorted out from the neuroepithelial layer. This behavior has previously been observed for *omb* gain-of-function clones in the wing imaginal disc [49]. We identified the Jak/STAT signaling pathway as downregulated by *Omb*. In *omb* loss-of-function animals, the 10XSTAT-GFP-nls and *upd-lacZ* expression were elevated in the ventral region (Figs. 4B, 5C). Conversely, when *omb* was ectopically expressed in the posterior and lateral margins, *upd-lacZ* expression at the margins was reduced (S5E, E' Fig.). These results show that *upd* transcription is repressed by *Omb* in the lateral margins, especially the ventral margin.

The repression of the Upd signaling cascades by *Omb* is of developmental relevance. Ectopic expression of *omb* in the margins (*dpp>*omb+GFP) blocked retinal development (S3C,5E Figs.). Coexpression with of *hop* (*dpp>*omb+hop) could nearly fully restore retinal development in the eye disc (Fig. 4G). Reducing the dosage of STAT (in *ombP7/+; STAT92E397/+*) partially suppressed the *ombP7* enlarged eye phenotype (Fig. 4H), suggesting that STAT signaling is downstream of *omb* and involved in causing its mutant phenotype. These results indicate that the repression of the Upd/Jak/STAT pathways is responsible for the block of retinal development by *Omb*.

* upd is transcriptionally repressed by *Omb*. Is it a direct transcriptional target of *Omb*? *Omb* is a transcription factor of the T-box family all members of which bind to a common consensus
element, the T-box binding element (TBE, [77]). Based on transcript microarray data and cell culture studies, Omb acts predominantly as a transcriptional repressor ([52]; A. Klebes and G. O. Pflugfelder, unpublished data). A bioinformatic search using a position weight matrix constructed from bona fide TBEs identified a well conserved high-affinity potential TBE in the

Fig 6. Functional relationship between \(wg\) and \(omb\). (A) \(dpp>arm+GFP\) eye discs were reduced in size and showed no neuronal differentiation (Wg, red; Elav, cyan; GFP, Green). (B, D) \(dpp>arm+omb-RNAi\) caused partial rescue of eye disc size and neuronal differentiation (B) and adult eye (D). (C, E) \(dpp>omb-RNAi+GFP\) did not affect retinal development in eye disc (C) and adult eye (E). Misexpression of \(arm\) by \(ey-GAL4\) (\(ey>arm\)) caused eye size reduction in adult eye (F) and in eye disc (J). Reduction of \(omb\) genetic dosage (\(l(1)ombD4/\)) in the background of \(ey>arm\) partially rescued the eye size with full penetrance in adult (G-I) and in eye disc (K, L). 31% of these eye discs showed ventral expansion of retinal differentiation. Interestingly, 44–50% of \(l(1)ombD4/\); \(ey>arm\) flies have dorsal ectopic eyes in adult (I) and in eye discs (6L). doi:10.1371/journal.pone.0120236.g006
upstream region of upd (G. O. Pflugfelder, unpublished data). This finding and the cell-autonomous repression of upd by Omb (Fig. 5A) as well as the derepression of upd in the ventral omb domain in omb mutant eye discs (Fig. 5C) suggest that repression of upd by Omb may be direct. However, Omb cannot be the only factor that prevents upd expression from the lateral margins, because dorsally upd is not derepressed in omb mutant eye discs.

Omb partially mediates the anti-retinal function of Wg signaling

Since Wg and Omb are expressed in similar patterns and since both can block retinal development at multiple steps, the question arises whether Omb mediates Wg signaling. We found that the anti-retinal effects of ectopic Wg signaling (ey > arm and dpp > arm) were attenuated when the omb dosage was reduced. The partial rescue suggests that Omb mediates part of the Wg effect and that additional factor(s) are likely to be involved. Our analyses show that the effect of Omb is partly similar to that of Wg and partly different (Fig. 6).

A clear difference was the opposite effect on cell proliferation. Omb repressed cell proliferation, through a block of Upd/Jak/STAT signaling. In contrast, enhanced Wg signaling (in axin mutant) causes overgrowth [78], whereas loss of Wg results in reduction of eye disc size [30,35]. Therefore, Wg can promote cell proliferation.

Loss of omb affected primarily development of the ventral eye margin. The ventral bias included effects on STAT activity. Therefore, the effect of wg in the dorsal side may be mediated by another factor, either independent of Omb or functionally redundant with Omb. Dorsal eye fate is governed by the expression of members of the Iroquois gene complex (Iro-C)[79]. Its activity modulates the function of genes that are symmetrically expressed at the poles of the eye disc, like teashirt, for instance [79,80]. The specification of dorsal rim ommatidia late in eye development provides an example of how Omb function is modulated at the lateral eye margins.

During pupal eye development, a dorsal Wg gradient specifies three cell fates at the dorsal eye boundary: pigment rim, polarization-sensitive dorsal rim (DR) ommatidia, and bald ommatidia (lacking the mechanosensory hairs). Omb which is induced by Wg, is sufficient to induce the DR fate in the dorsal eye. Ectopic omb induces the dorsally restricted expression of homothorax (hth) which together with ubiquitous extradenticle (exd) allows the formation of Hth/Exd complexes which specify DR development [81]. Dorsalisation of the ventral eye by ubiquitous expression of Iro-C genes causes DR fate also along the ventral margin. The monopolar Iro-C expression thus determines the different functional outcome of symmetrical omb expression at the two margins. Like in early eye development, loss of omb has little consequence for dorsal eye development during specification of DR ommatidia. The discrepancy between strong effect in omb gain-of-function and little effect in omb loss-of-function dorsal eye phenotypes has been attributed to a redundant function exerted by the related T-box genes Dorso-cross (Doc) [82].

Intriguingly, the closely omb-related vertebrate T-box genes Tbx2/3/5 are all expressed in a polar pattern, first in the dorsal eye cup and later in the dorsal retina [83,84,85,86]. A role of human TBX5 in eye development is apparent from the frequent ophthalmological symptoms of patients suffering from Holt Oram Syndrome (TBX5 haploinsufficiency) [87,88]. The related expression patterns of Tbx2/3/5 and omb in eye development suggest conservation of ancient functions which were already present in an evolutionary precursor before the split into the protostome and deuterostome lineages [89], in spite of the widely differing mechanisms of eye ontogenesis in metazoans [90,91].
Supporting Information

S1 Fig. Reduced Omb expression by ombP3>ombRNAi and increased Omb expression in the ombFor mutant. Eye-antennal discs stained with anti-Omb (green) and anti-Elav (red). Marginal expression is indicated by arrows, expression in retinal basal glial cells by arrowheads. (A) wild type, (B) ombP3>omb-RNAi, (C) ombFor, (D) ombP3>GFP and (E) ombP7>GFP. In ombFor, Omb is increased in the dorsal and ventral margin and in the retinal basal glia. The disc size is reduced (C). The marginal expression of ombP7-GAL4 was broader than that of ombP3-GAL4. In (C) and (D) the retinal basal glial cells were below the focal plane. (TIF)

S2 Fig. Loss of omb causes primarily ventral overgrowth. (A-D) The boundary of dorsal/ventral fields in third instar eye discs was monitored by the position of the optic stalk (white arrowhead), anti-Bar antibody staining (A, B) and the ventrally expressed fng-lacZ (C, D). Dotted lines mark the MF and the projection from the optic stalk entry point onto the MF. In (A, B) the dotted line also visualises the line of mirror symmetry in the Bar expression pattern. The BarH1 and BarH2 expression in photoreceptor cells R1 and R6 [71] is mirror-symmetrical with regard to the equator. The solid line in (C, D) marks the dorsal boundary of the ventral fng-lacZ expression domain. (A) w1118/Y, (B) ombP7/Y, (C) fng-lacZ and (D) ombP7/Y; fng-lacZ. The D/V eye field was symmetrical in the third instar eye disc of wild type, but the ventral field was expanded in ombP7/Y. (E) The number of rows of ommatidia in each eye disc, and the numbers of ommatidia in the dorsal and ventral eye fields were counted at different stages of eye disc development. In wild type eye disc, the dorsal and ventral eye fields were always of equal size. In ombP7/Y, the ventral eye field was consistently larger than the dorsal field. (TIF)

S3 Fig. Coexpression of the cell death inhibitor p35 does not rescue eye development blocked by Omb. (A) dpp-GAL4 driven GFP (dpp>GFP) expression (GFP, green) overlapped with the omb-lacZ expression (red) domain in the lateral margins. In early eye disc, dpp-GAL4 expression is similar to that of dpp-lacZ (S6 Fig.) in the posterior and lateral margins. Unlike dpp-lacZ, dpp-GAL4 is not expressed in the progressing MF in mid to late third instar eye disc. (B) dpp>omb+GFP, as dpp>omb, completely blocked eye development in adult (B) and in late third instar eye disc (C). The eye disc has no neuronal differentiation (Elav, blue) but has elevated activated caspase 3 (red). (D) Blocking apoptosis by coexpression of p35 (dpp>omb+p35) significantly reduced the caspase 3 signal but did not rescue eye size or retinal differentiation. Scale bar: 50um. (TIF)

S4 Fig. The Jak/STAT activity is detected in the ventral margin of omb mid- and late third instar eye discs. 10XSTAT-GFPnls is a Jak/STAT reporter. (A-C) Jak/STAT activity in ombP7 eye discs. (A-A") 10XSTAT-GFPnls was found in the posterior eye field in the early third instar eye disc of ombP7. (B-B") Jak/STAT activity was activated in posterior eye field and ventral margin (arrow) of mid-third instar larvae. (C, C") Jak/STAT activity was detected in the posterior eye field as well as ventral margin (arrow) in the late third eye field. Elav (red), GFP (green). (TIF)

S5 Fig. Expression of omb suppresses upd transcription. (A-C) The expression pattern of ombP1-lacZ (red) and upd>d-GFP (green) did not overlap in late second (A), early third (B) and late-third instar eye discs (C). ombP1-lacZ is also expressed in the retinal basal glia which lies at the basal surface and does not overlap with the upd expressing cells in the neuroepithelial layer.
(not shown). (D) The expression pattern of upd-lacZ (red) in wild type. Elav (cyan). (E, E’) dpp>omb+GFP (GFP, green) suppressed upd-lacZ expression (red) at the center of the posterior margin (arrow) (TIF)

S6 Fig. Relative expression pattern of omb, dpp and wg during eye disc development. (A–E) The expression patterns of omb (visualized by ombP3>GFP, green), (A’–E’) Wg (anti-Wg, red), and (A”–E”) dpp (represented by dpp-lacZ, blue) were followed during eye-antennal disc development from early second instar to late third instar. (A”–E”) shows the merge images of ombP3>GFP, dpp-lacZ and Wg immunostaining. (TIF)

Acknowledgments
We thank Jessica Treisman, Mark Fortini, Christian Dahmann, the Bloomington Stock Center, the Bowling Green Mid-America Drosophila Stock Center and the VDRC Stock Center for providing fly stocks. We are grateful to Cheng-Ting Chien for valuable suggestions. We are grateful to Chen-shu Hsieh, Chun-lan Hsu, Yu-Chi Yang, and Erika Jost for preparing fly food and maintaining fly stocks, to Chiou-Yang Tang for making transgenic flies, to Su-Ping Lee and the IMB Imaging Core for help in confocal microscopy, and to Ying-Rou Lee and Hsin-Yi Huang for help in SEM.

Author Contributions
Conceived and designed the experiments: YCT YHS GOP. Performed the experiments: YCT SG JLC SCW KH JS FE TM CKY SHL GOP CHC. Analyzed the data: YCT SG JLC SCW KH JS FE TM CKY SHL YHS GOP CHC. Contributed reagents/materials/analysis tools: YCT SG JLC SCW KH JS FE TM CKY SHL YHS GOP. Wrote the paper: YTC YHS GOP.

References
1. Freeman M (1997) Cell determination strategies in the Drosophila eye. Development 124: 261–270. PMID: 9053303
2. Wolff T, Ready DF (1991) The beginning of pattern formation in the Drosophila compound eye: the morphogenetic furrow and the second mitotic wave. Development 113: 841–850. PMID: 1726564
3. Blackman RK, Sanicola M, Raftery LA, Gillevet T, Gelbart WM (1991) An extensive 3’ cis-regulatory region directs the imaginal disk expression of decapentaplegic, a member of the TGF-beta family in Drosophila. Development 111: 657–666. PMID: 1908769
4. Wolff TaR DN, editor (1993) The development of Drosophila melanogaster. NY. pp1277–1325 p.
5. Silver SJ, Rebay I (2005) Signaling circuits in development: insights from the retinal determination gene network. Development 132: 3–13. PMID: 15590745
6. Kumar JP (2010) Retinal determination the beginning of eye development. Curr Top Dev Biol 93: 1–28. doi: 10.1016/B978-0-12-385044-7.00001-1 PMID: 20959161
7. Chao JL, Tsai YC, Chiu SJ, Sun YH (2004) Localized Notch signal acts through eyg and upd to promote global growth in Drosophila eye. Development 131: 3839–3847. PMID: 15253935
8. Dominguez M, de Celis JF (1998) A dorsal/ventral boundary established by Notch controls growth and polarity in the Drosophila eye. Nature 396: 276–278. PMID: 9834035
9. Tsai YC, Sun YH (2004) Long-range effect of upd, a ligand for Jak/STAT pathway, on cell cycle in Drosophila eye development. Genesis 39: 141–153. PMID: 15170700
10. Bach EA, Vincent S, Zeidler MP, Pentimone N (2003) A sensitized genetic screen to identify novel regulators and components of the Drosophila janus kinase/signal transducer and activator of transcription pathway. Genetics 165: 1149–1166. PMID: 14668372
11. Treisman JE (2013) Retinal differentiation in Drosophila. Wiley Interdiscip Rev Dev Biol 2: 545–557. doi: 10.1002/wdev.106 PMID: 24014422
12. Peng HW, Slattery M, Mann RS (2009) Transcription factor choice in the Hippo signaling pathway: homothorax and yorkie regulation of the microRNA bantam in the progenitor domain of the Drosophila eye imaginal disc. Genes Dev. 23:2307–2319. doi: 10.1101/gad.182009.PMID: 19762509

13. Bessa J, Gebelein B, Pichaud F, Casares F, Mann RS (2002) Combinatorial control of Drosophila eye development by eyeless, homothorax, and teashirt. Genes Dev. 16:2415–2427. PMID: 12231630

14. Lopes CS, Casares F (2010) hth maintains the pool of eye progenitors and its downregulation by Dpp and Hh couples retinal fate acquisition with cell cycle exit. Dev Biol 339: 78–88. doi: 10.1016/j.ydbio.2009.12.020 PMID: 20036228

15. Wiensdorff V, Lecuit T, Cohen SM, Mlodzik M (1996) Mad acts downstream of Dpp receptors, revealing a differential requirement for dpp signaling in initiation and propagation of morphogenesis in the Drosophila eye. Development 122: 2153–2162. PMID: 8681796

16. Chanut F, Heberlein U (1997) Retinal morphogenesis in Drosophila: hints from an eye-specific decapentaplegic allele. Dev Genet 20: 197–207. PMID: 9216060

17. Borod ER, Heberlein U (1993) The TGF beta homolog dpp and the segment polarity gene hedgehog are required for propagation of a morphogenetic wave in the Drosophila retina. Cell 75: 913–926. PMID: 8252627

18. Pan D, Rubin GM (1995) cAMP-dependent protein kinase and hedgehog act antagonistically in regulating decapentaplegic transcription in Drosophila imaginal discs. Cell 80: 543–552. PMID: 7867062

19. Strutt DJ, Mlodzik M (1995) Ommatidial polarity in the Drosophila eye is determined by the direction of furrow progression and local interactions. Development 121: 4247–4256. PMID: 8575324

20. Chanut F, Heberlein U (1997) Role of decapentaplegic in initiation and progression of the morphogenetic furrow in the developing Drosophila retina. Development 124: 559–567. PMID: 9053331

21. Pignoni F, Zipursky SL (1997) Induction of Drosophila eye development by decapentaplegic. Development 124: 271–278. PMID: 9053304

22. Ekas LA, Baeg GH, Flaherty MS, Ayala-Camargo A, Bach EA (2006) JAK/STAT signaling promotes retinal morphogenesis. Dev Biol 294: 223–231. doi: 10.1016/j.ydbio.2006.04.016 PMID: 16752791

23. Ekas LA, Baeg GH, Flaherty MS, Ayala-Camargo A, Bach EA (2006) JAK/STAT signaling regulates the microRNA bantam during the initiation and propagation of morphogenesis in the Drosophila eye. Development 133: 4721–4729. PMID: 17079268

24. Haynle JL, Bryant PJ (1986) Development of the eye-antenna imaginal disc and morphogenesis of the adult head in Drosophila melanogaster. J Exp Zool 237: 293–308. PMID: 3064703

25. Dominguez M, Casares F (2005) Organ specification-growth control connection: new in-sights from the Drosophila eye-antennal disc. Dev Dyn 232: 673–684. PMID: 15704149

26. Kumar JP (2011) My what big eyes you have: how the Drosophila retina grows. Dev Neurobiol 71: 1133–1152. doi: 10.1002/dneu.20921 PMID: 21604387

27. Brown NL, Sattler CA, Paddock SW, Carroll SB (1995) Hairy and emc negatively regulate morphogenetic furrow progression in the Drosophila eye. Cell 80: 879–887. PMID: 7697718

28. Cadigan KM, Jou AD, Nusse R (2002) Wingless blocks bristle formation and morphogenetic furrow progression in the eye through repression of Daughterless. Development 129: 3393–3402. PMID: 12091309

29. Ma C, Moses K (1995) Wingless and patched are negative regulators of the morphogenetic furrow and can affect tissue polarity in the developing Drosophila compound eye. Development 121: 2279–2289. PMID: 7671795

30. Pai CY, Kuo TS, Jaw TJ, Kurant E, Chen CT, et al. (1998) The Homothorax homeoprotein activates the nuclear localization of another homeoprotein, extradenticle, and suppresses eye development in Drosophila. Genes Dev 12: 435–446. PMID: 9450936

31. Singh A, Choi KW (2003) Initial state of the Drosophila eye before dorsoventral specification is equivalent to ventral. Development 130: 6351–6360. PMID: 14623824

32. Roignant JY, Legent K, Janody F, Treisman JE (2010) The transcriptional co-factor Chip acts with LIM-homeodomain proteins to set the boundary of the eye field in Drosophila. Development 137: 273–281. doi: 10.1242/dev.041244 PMID: 20040493

33. Oros SM, Tare M, Kang-Singh M, Singh A (2010) Dorsal eye selector pannier (pnr) suppresses the eye fate to define dorsal margin of the Drosophila eye. Dev Biol 346: 258–271. doi: 10.1016/j.ydbio.2010.07.030 PMID: 20691679
35. Treisman JE, Rubin GM (1995) wingless inhibits morphogenetic furrow movement in the Drosophila eye disc. Development 121: 3519–3527. PMID: 8582266
36. Burke R, Basler K (1996) Hedgehog-dependent patterninng in the Drosophila eye can occur in the absence of Dpp signaling. Dev Biol 179: 360–368. PMID: 8903352
37. Hazeltt DJ, Bourouis M, Walldorf U, Treisman JE (1998) decapentaplegic and wingless are regulated by eyes absent and eyegone and interact to direct the pattern of retinal differentiation in the eye disc. Development 125: 3741–3751. PMID: 9716539
38. Cadigan KM (2002) Regulating morphogen gradients in the Drosophila wing. Semin Cell Dev Biol 13: 83–90. PMID: 12127140
39. Poock B, Hofbauer A, Pflugfelder GO (1993) Expression of the Drosophila optomotor-blind gene transcript in neuronal and glial cells of the developing nervous system. Development 117: 1017–1029. PMID: 8325232
40. Zecca M, Basler K, Struhl G (1996) Direct and long-range action of a wingless morphogen gradient. Cell 87: 833–844. PMID: 8945511
41. Pflugfelder GO, Heisenberg M (1995) Optomotor-blind of Drosophila melanogaster: a neurogenetic approach to optic lobe development and optomotor behaviour. Comp Biochem Physiol A Physiol 110: 185–202. PMID: 7712063
42. Cook O, Biels B, Bier E (2004) brinker and optomotor-blind act coordinately to initiate development of the L5 wing vein primordium in Drosophila. Development 131: 2113–2124. PMID: 15073155
43. del Alamo Rodriguez D, Terriente Felix J, Diaz-Benjumea FJ (2004) The role of the T-box gene optomotor-blind in patterning the Drosophila wing. Dev Biol 268: 481–492. PMID: 15063183
44. Gottfinkel N, Sanchez L, Guerrero I (1999) Drosophila terminalia as an appendage-like structure. Mech Dev 86: 113–123. PMID: 10446270
45. Kopp A, Duncan I (1997) Control of cell fate and polarity in the adult abdominal segments of Drosophila by optomotor-blind. Development 124: 3715–3726. PMID: 9367427
46. Shen J, Dahmann C (2005) The role of Dpp signaling in maintaining the Drosophila anteroposterior compartment boundary. Dev Biol 279: 31–43. PMID: 15708556
47. Grimm S, Pflugfelder GO (1996) Control of the gene optomotor-blind in Drosophila wing development by decapentaplegic and wingless. Science 271: 1601–1604. PMID: 8599120
48. Shen J, Domer C, Bahlo A, Pflugfelder GO (2008) optomotor-blind suppresses instability at the A/P compartment boundary of the Drosophila wing. Mech Dev 125: 233–246. doi: 10.1016/j.mod.2007.11.006 PMID: 18171611
49. Shen J, Dahmann C, Pflugfelder GO (2010) Spatial discontinuity of optomotor-blind expression in the Drosophila wing imaginal disc disrupts epithelial architecture and promotes cell sorting. BMC Dev Biol 10: 23. doi: 10.1186/1471-213X-10-23 PMID: 20178599
50. Zhang X, Luo D, Pflugfelder GO, Shen J (2013) Dpp signaling inhibits proliferation in the Drosophila wing by Omb-dependent regional control of bantam. Development 140: 2917–2922. doi: 10.1242/dev.094300 PMID: 23821035
51. Pflugfelder GO (2009) omb and circumstance. J Neurogenet 23: 15–33. doi: 10.1080/01677060802471619 PMID: 19052953
52. Porsch M, Sauer M, Schulze S, Bahlo A, Roth M, et al. (2005) The relative role of the T-domain and flanking sequences for developmental control and transcriptional regulation in protein chimeras of Drosophila OMB and ORG-1. Mech Dev 122: 81–96. PMID: 15582779
53. Staehling-Hampton K, Jackson PD, Clark MJ, Brand AH, Hoffmann FM (1994) Specificity of bone morphogenetic protein-related factors: cell fate and gene expression changes in Drosophila embryo induced by decapentaplegic but not 60A. Cell Growth & Differentiation 5: 585–593.
54. Luo H, Asha H, Kokkel L, Parke T, Mlodzik M, et al. (1999) The Drosophila Jak kinase hopscotch is required for multiple developmental processes in the eye. Dev Biol 213: 432–441. PMID: 10479459
55. Ekas LA, Cardozo TJ, Flaherty MS, McMillan EA, Gonsalves FC, et al. (2010) Characterization of a dominant-active STAT that promotes tumorigenesis in Drosophila. Dev Biol 344: 621–636. doi: 10.1016/j.ydbio.2010.05.497 PMID: 20501334
56. Hou XS, Melnick MB, Perrimon N (1996) Marelle acts downstream of the Drosophila HOP/JAK kinase and encodes a protein similar to the mammalian STATs. Cell 84: 411–419. PMID: 8608595
57. Zeidler MP, Perrimon N, Strutt DJ (1999) Polarity determination in the Drosophila eye: a novel role for unpaired and JAK/STAT signaling. Genes Dev 13: 1342–1353. PMID: 10346822
58. Calleja M, Moreno E, Pelaz S, Morata G (1996) Visualization of gene expression in living adult Drosophila. Science 274: 252–255. PMID: 8824191
59. Mayer LR, Diegelmann S, Abassi Y, Eichinger F, Pflugfelder GO (2013) Enhancer trap infidelity in Drosophila optomotor-blind. Fly (Austin) 7: 118–128. doi: 10.4161/fly.23657 PMID: 23519069

60. Tang CY, Sun YH (2002) Use of mini-white as a reporter gene to screen for GAL4 insertions with spatially restricted expression pattern in the developing eye in Drosophila. Genesis 34: 39–45. PMID: 12324945

61. Poebck B, Balles J, Pflugfelder GO (1993a) Transcript identification in the optomotor-blind locus of Drosophila melanogaster by intragenic recombination mapping and PCR-aided sequence analysis of lethal point mutations. Mol Gen Genet 238: 325–332. PMID: 8492800

62. Sen A, Gadomski C, Balles J, Abassi Y, Domer C, et al. (2010) Null mutations in Drosophila Optomotor-blind affect T-domain residues conserved in all Tbx proteins. Mol Genet Genomics 283: 147–156. doi: 10.1007/s00438-009-0505-z PMID: 20033428

63. Sun YH, Tsai CJ, Green MM, Chao JL, Yu CT, et al. (1995) White as a reporter gene to detect transcriptional silencers specifying position-specific gene expression during Drosophila melanogaster eye development. Genetics 141: 1075–1086. PMID: 8582614

64. Cho KO, Choi KW (1998) Fringe is essential for mirror symmetry and morphogenesis in the Drosophila eye. Nature 396: 272–276. PMID: 9834034

65. Kassiss JA, Noll E, VanSickle EP, Odenwald WF, Perrimon N (1992) Altering the insertional specificity of a Drosophila transposable element. Proc Natl Acad Sci U S A 89: 1919–1923. PMID: 1311855

66. Barolo S, Carver LA, Posakony JW (2000). doi:10.1007/s10043-009-0505-z PMID: 20033428

67. Jang CC, Chao JL, Jones N, Yao LC, Bessarab DA, et al. (2003) Two Pax genes, eye gone and eyeless, act cooperatively in promoting Drosophila eye development. Development 130: 2939–2951. PMID: 12756177

68. Ito K, Awano W, Suzuki K, Hiromi Y, Yamamoto D (1997) The Drosophila mushroom body is a quadruple structure of clonal units each of which contains a virtually identical set of neurones and glial cells. Development 124: 761–771. PMID: 9043058

69. Basler K, Hafen E (1988) Control of photoreceptor cell fate by the sevenless protein requires a functional tyrosine kinase domain. Cell 54: 299–311. PMID: 2840202

70. Rangarajan R, Gong Q, Gaul U (1999) Migration and function of glia in the developing Drosophila eye. Development 126: 3285–3292. PMID: 10393108

71. Higashijima S, Kojima T, Michiue T, Ishimaru S, Emori Y, et al. (1992) Dual Bar homeo box genes of Drosophila required in two photoreceptor cells, R1 and R6, and primary pigment cells for normal eye development. Genes Dev 6: 50–60. PMID: 1346120

72. Freeman M (1996) Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell 87: 651–660. PMID: 9929534

73. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118: 401–415. PMID: 8223268

74. Ready DF, Hanson TE, Benzer S (1976) Development of the Drosophila retina, a neurocrystalline lattice. Dev Biol 53: 217–240. PMID: 825400

75. Bonini NM, Fortini ME (1999) Surviving Drosophila eye development: integrating cell death with differentiation during formation of a neural structure. BioEssays 21: 991–1003. PMID: 10580984

76. Bach EA, Ekas LA, Ayala-Camargo A, Flaherty MS, Lee H, et al. (2007) GFP reporters detect the activation of the Drosophila JAK/STAT pathway in vivo. Gene Expr Patterns 7: 323–331. PMID: 17008134

77. Sen A, Grimm S, Hofmeyer K, Pflugfelder GO (2014) Optomotor-blind in the development of Drosophila HS and VS lobula plate tangential cells. J Neurogenet: 1–49. doi: 10.3109/01677063.2014.908875 PMID: 25518733

78. Lee JD, Treisman JE (2001) The role of Wingless signaling in establishing the anteroposterior and dorsoventral axes of the eye disc. Development 128: 1519–1529. PMID: 11290291

79. Singh A, Tare M, Puli OR, Kango-Singh M (2012) A glimpse into dorso-ventral patterning of the Drosophila eye. Dev Dyn 241: 69–84. doi: 10.1002/dvdy.22764 PMID: 22034010

80. Gutierrez-Avina FJ, Ferres-Marco D, Domínguez M (2009) The position and function of the Notch-mediated eye growth organizer: the roles of JAK/STAT and four-jointed. EMBO Rep 10: 1051–1058. doi: 10.1038/embor.2009.140 PMID: 19662079

81. Wernet MF, Desplan C (2014) Homothorax and Extradenticle alter the transcription factor network in Drosophila ommatidia at the dorsal rim of the retina. Development 141: 918–928. doi: 10.1242/dev.103127 PMID: 24496628

82. Tomlinson A (2003) Patterning the peripheral retina of the fly: decoding a gradient. Dev Cell 5: 799–809. PMID: 14602079
83. Behesti H, Papaioannou VE, Sowden JC (2009) Loss of Tbx2 delays optic vesicle invagination leading to small optic cups. Dev Biol 333: 360–372. doi: 10.1016/j.ydbio.2009.06.026 PMID: 19576202

84. Gross JM, Dowling JE (2005) Tbx2b is essential for neuronal differentiation along the dorsal/ventral axis of the zebrafish retina. Proc Natl Acad Sci U S A 102: 4371–4376. PMID: 15755805

85. Leconte L, Leconin L, Martin P, Saule S (2004) Pax6 interacts with cVax and Tbx5 to establish the dorsoventral boundary of the developing eye. J Biol Chem 279: 47272–47277. PMID: 15322073

86. Sowden JC, Holt JK, Meins M, Smith HK, Bhattacharya SS (2001) Expression of Drosophila omb-related T-box genes in the developing human and mouse neural retina. Invest Ophthamol Vis Sci 42: 3095–3102. PMID: 11726608

87. Gruenauer-Kloevekorn C, Reichel MB, Duncker GI, Froster UG (2005) Molecular genetic and ocular findings in patients with holt-orm syndrome. Ophthalmic Genet 26: 1–8. PMID: 15823919

88. Newbury-Ecob RA, Leanage R, Raeburn JA, Young ID (1996) Holt-Oram syndrome: a clinical genetic study. J Med Genet 33: 300–307. PMID: 8730285

89. Chapman DL, Garvey N, Hancock S, Alexiou M, Agulnik S, et al. (1996) Expression of the T-box family genes, Tbx1-Tbx3, during early mouse development. Dev Dyn 206: 379–390. PMID: 8853987

90. Gehring WJ, Ikeo K (1999) Pax 6: mastering eye morphogenesis and eye evolution. Trends Genet 15: 371–377. PMID: 10461206

91. Treisman JE (1999) A conserved blueprint for the eye? BioEssays 21: 843–850. PMID: 10497334