ASSESSMENT OF IMMUNOMODULATORY POTENTIAL OF AN AYURVEDIC FORMULATION, NIROCIL SYRUP IN WISTAR RATS

DINESH DILIP GHADIGAONKAR1*, MUKESH B CHAWDA2, KAPIL S THAKUR3
1Shree Dhootapapeshwar Ayurvedic Research Foundation (A Division of Shree Dhootapapeshwar Ltd.), Panvel, Maharashtra, India.
2Solumiks Herbaceuticals Ltd. (A Division of Shree Dhootapapeshwar Ltd.), Panvel, Maharashtra, India. 3Shree Dhootapapeshwar Ltd., Mumbai, Maharashtra, India. Email: bms@teamsdl.in

ABSTRACT

Objective: This study aims to assess the immunomodulatory potential of an Ayurvedic formulation, Nirocil syrup, in Wistar rats.

Methods: The experiments were conducted on Wistar rats with prior approval from the Institutional Animal Ethics Committee. Nirocil syrup was administered for 6 weeks to experimental animals. Parameters such as hemagglutination titer, histopathology of immunological organs, complete blood count, differential leukocyte count, and immunological paw edema were recorded and compared with controlled (untreated) and becozinc treated groups.

Results: Nirocil treated group significantly enhanced the antibody titer in comparison to the control group. The results are supported by the increase in blood lymphocyte count and antigenic stimulation in immunological organs (spleen). Nirocil syrup enhanced antibody formation and suppressed the immunological edema in experimental animals.

Conclusions: The study concludes that the Ayurvedic formulation Nirocil syrup has immunopotentiating activity.

Keywords: Immunopotentiating activity, Hemagglutination test, Rat paw edema, Ayurveda.

INTRODUCTION

Ayurveda is a pleasing dream to the traditional system of medicine, which gives a deep perception of healthy life and longevity. The term Ayurveda can be simplified as Ayu (life) and Veda (knowledge), the science of life, and knowledge [1]. The basic principle of Ayurveda is to increase the natural resistance of the body against invading agents rather than directly acting against invasions. In the Ayurvedic system of medicines, herbs are commonly used to improve the overall resistance of the body against common infections and pathogens with immunomodulatory effects [2]. The mechanism of immunomodulation is to adjust the host immune system either by immunostimulation or immunosuppression. Hence, immunomodulators are recognized as biological response modifiers, which boost the defense mechanism of the host [3,4].

Nirocil syrup is an Ayurvedic formulation developed by Solumiks Herbaceuticals Ltd., after extensive clinical research. This syrup mainly contains the extracts of Phyllanthus niruri, Ricinus communis, and Tinospora cordifolia as main components. These herbs are used in traditional medicine across the globe for their multiple health benefits, including boosting of the immune system. Individually, the herbal components of this formulation have shown immunomodulatory potential, but still, there are very few or no reports available which discuss the synergistic effects of these traditional herbs on immunomodulation in the biological system.

This research work is an effort in the direction of analyzing the cumulative impact of different herbal components in Nirocil syrup on the immune system of Wistar rats and to revive the glitter of the ancient traditional system of medicine.

METHODS

Chemicals and medicine
Nirocil syrup was obtained from Solumiks Herbaceuticals Ltd., becozinc syrup was procured from the local market (manufactured by Dr. Reddy Laboratory). Diphtheria, tetanus, and pertussis (DPT) vaccines (manufactured by Indian Immunological) were procured from the local market. Di sodium hydrogen phosphate, sodium dihydrogen phosphate, formalin, sodium acetate, sodium chloride, and sodium citrate were procured from sigma chemicals (USA).

Animals
Twenty four adult Wistar female albino rats weighing 150±15 g. were selected for the study. The animals were housed in Committee for Purpose of Control Supervision and Experimentation on Animals (CPCSEA) approved animal house facility of Shree Dhootapapeshwar Ltd., Panvel Maharashtra (MH). The animals were maintained at 22±03°C with constant humidity (50–70%) and 12 h day and night cycle. Animals were fed with Amrut brand rat pellet feed and water ad libitum. The experiments were carried out by prior approval from Institutional Animal Ethics Committee (Protocol No. SDARF/CT/2018/01).

Dose selection and schedule
The dose for experimental animals was deduced from the human dose and the drug solutions were administered using a gastric catheter affixed to a syringe [5].

Nirocil syrup
The human therapeutic dose of Nirocil syrup was determined as 10 ml thrice a day, which was equivalent to 2.7 ml/kg body weight/day for rats.

Becozinc syrup
The human therapeutic dose for becozinc syrup was determined as 5 ml a day, which was equivalent to 0.45 ml/kg body weight/day for rats.

Grouping of animals
The animals were divided into three groups having six animals each. Separate animals were utilized for humoral immunity and cell-mediated immunity study as mentioned below;

RESULTS

The experiments were conducted on Wistar rats with prior approval from the Institutional Animal Ethics Committee. Nirocil syrup was administered for 6 weeks to experimental animals. Parameters such as hemagglutination titer, histopathology of immunological organs, complete blood count, differential leukocyte count, and immunological paw edema were recorded and compared with controlled (untreated) and becozinc treated groups.

TABLE 1. Parameters recorded and compared with controlled (untreated) and becozinc treated groups

Table not provided in the text
Animals were divided into three groups as previously described. All the rats were evaluated by following the procedure of Bhattacharya [8]. The severity of lesions observed was recorded as no abnormality (0%), mild (1–25%), moderate (26–50%), moderately severe (51–75%), severe (76–100%). Distribution of lesions was also recorded as focal, multifocal, and diffuse.

Effects on humoral antibody formation

The effect of Nirocil syrup on antibody formation against sheep red blood cells (SRBC) in Wistar female albino rats was studied as described by Puri et al. [6]. For antibody formation against SRBC in test animals, sheep blood was collected from a local slaughterhouse in a sterilized bottle. The collected blood was thoroughly washed with sterile saline through repeated centrifugation and made into 30% SRBC solution. This 30% SRBC solution was used as a sensitizing antigen and made to 3% and injected subcutaneously in a dose of 0.5 ml/100 g of body weight to the test animals on the 35th day of experimentation. On the 42nd day, the blood sample was collected from test animals in a sterile tube. The serum was separated and inactivated by incubation at 56°C for 30 min in a serological water bath. Further, an antibody titer test was performed to determine the presence and the number of antibodies formed in test animals.

Estimation of antibody titer

For the estimation of antibody titer, the wells of microtiter plate were loaded with 0.1 ml sterile normal saline and 0.1 ml of two-fold serially diluted serum. The dilutions were made in the range of 1:2, 1:4, and 1:8 up to 1:1024. A 0.1 ml of SRBC (3%) was added to each well. The blood from the same animal (sheep) was used for sensitization and determination of antibody titer. The microtiter plate was shielded and then incubated overnight at 4°C in a refrigerator. Next day antibody titer (hemagglutination titer) was noted and converted to log2 values for comparison [7].

Hematology and histopathology

To determine the immunomodulatory effects of Nirocil syrup on experimental animals, hematological analysis was carried out. Blood samples were collected from all the surviving animals a day before initiation of dosing (basal), on completion of 5th week (interim), and finally on 9th week (terminal). Approximately 0.5 ml of blood sample was collected from each experimental animal by puncturing the orbital plexus with the help of a fine glass capillary tube under the influence of light isoflurane (anesthetic). The blood samples were stored in sterile vials containing 4% EDTA.

The following hematological parameters, total leukocyte count (white blood cell [WBC]), erythrocyte count (red blood cell [RBC]), hemoglobin (Hb), hematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), platelet count (PLT), absolute leukocyte count, and differential leukocyte count were performed using Automated Veterinary Hematology Analyzer (DxH 600, Beckman Coulter, US).

After 6 weeks, all the surviving animals belonging to different groups were euthanized by using carbon dioxide asphyxiation. Physical examinations of animals were carried out externally. Following this, animals were dissected and gross examination of all the internal organs was carried out. Spleen tissue of all the animals was collected and processed for histopathological (microscopic) observations.

The severity of lesions observed was recorded as no abnormality detected (NAD), minimal (<1%), mild (1–25%), moderate (26–50%), moderately severe (51–75%), severe (76–100%). Distribution of lesions was also recorded as focal, multifocal, and diffuse.

Effect on cell-mediated immunity

The effect of Nirocil syrup on cell-mediated immunity in Wistar albino rats was evaluated by following the procedure of Bhattacharya [8]. Animals were divided in three groups as previously described. All the animals were sensitized subcutaneously (0.5 ml/100 g body weight) by 1 ml triple antigen solution (DPT), 4 ml normal saline (0.9%), and 1 ml potash alum (10%) on 35th day of drug administration. The pH of the solution was adjusted 5.6–6.8 by 10% sodium carbonate. The drug dosing was continued for next 7 days. On the 42nd day, 0.1 ml of triple antigen solution was injected into plantar aponeurosis of paw after measuring of initial volume of the left hind paw. Triple antigen produced the immunological edema in rat hind paw and the paw volume of edema was measured by volume displacement method [9] at 24 h and 48 h of injection. The percentage increase in paw volume, over initial paw volume, was calculated. Cell-mediated immune response was analyzed by comparing the values of the control group versus the test drug administered group.

Effects on body weight

The effect of Nirocil syrup on the body weight of experimental animals was also studied. The bodyweight of experimental animals of different groups was recorded on every 7th day till the completion of the study.

Hematology

The results of hematological analysis of all the experimental groups at different time intervals are presented in Table 2A-C. A slight increase in total WBC count (10.33±11.38/µl) and absolute lymphocyte count (8586.3±340.00 cells/µl) was observed in Nirocil treated groups after 5 weeks in comparison to 0 days (7884.30±198.04). However, no major changes were observed in other hematological parameters. A significant increase in total WBC count and absolute lymphocyte count (12630.3±488 cells/µl) was observed only after 9 weeks in Nirocil treated groups, compared to the control group. Whereas, the becozinc treated group showed similar results (12234.5±550.0 cells/µl) (Table 2C), suggesting increased immune response in both Nirocil and becozinc treated groups.

Humoral antibody formation

The effect of Nirocil on antibody titer formation against SRBC in Wistar female albino rats is presented in Table 3. Nirocil treated groups showed a significant (p<0.01) increase in antibody titer formation in comparison to the control group. The increase of antibody titer formation in the Nirocil treated group was observed 48.22%, which was comparable to the titer formation in the becozinc treated group (48.21%). On comparing the titer formation between the groups (Nirocil vs. Beoc zinc) the result was not significant at p<0.05, as both the groups showed a similar increase in titer formation.

Lymphocytes

Lymphocytes are the cells involved in adaptive immunity and subdivided into B, T, and NK lymphocytes [10]. Lymphocyte count analysis showed a significant increase (p<0.05), specifically total lymphocytes count in Nirocil and becozinc treated groups. This suggests the increased immune stimulation in the treated group of animals in comparison to the control group. These results are in agreement with the findings of Ketema et al. [11] indicated a synergism between increased lymphocyte counts and elevated immune response.

Histopathology

The microscopic examination of the spleen tissue of the control group of animals did not show any lesion of pathological significance (Fig. 1a).
While the spleen tissue of Nirocil treated group showed various lesions of multifocal mild to moderate category in four out of six animals (Fig. 1b). Whereas, the spleen tissue of the becozinc treated control group showed multifocal moderate extramedullary hematopoiesis in two out of six animals (Fig. 1c). The presence of splenic extramedullary hematopoiesis suggested the antigenic stimulation in treated groups as it is reported for the production of antigen-presenting cells and phagocytes in the spleen [12-15].

Effect on cell-mediated immunity

The effect of Nirocil syrup on immunological paw edema in triple antigen sensitized rats is shown in Table 4. A gradual increase in paw volume was observed in all the groups starting from 0 h to 48 h. After 48 h, the paw volume was found significantly lower in Nirocil treated group (1.508 ml) and becozinc (1.41 ml) treated group in comparison to the control group (1.673 ml). The results indicate that Nirocil is involved in lowering edema/inflammation induced by cell-mediated immune response.

DISCUSSION

Nirocil syrup is an Ayurvedic formulation contains the extracts of *P. niruri*, *R. communis*, and *T. cordifolia* as the main component. They are the multipurpose folkloric medicinal plants with manifold biological activities; antitumor, antidiabetic, anti-inflammatory, antimarial, antioxidant, central analgesic, anticonvulsant, antinociceptive, antihelminthic, antifertility, laxative, uterine contracting, anti-implantation, antiasthmatic, bone regeneration, molluscicidal, antiulcer, antihistamine, wound-healing, cytotoxic, insecticidal, anti-arthritic, and anti-dandruff, hepatoprotective, and immunomodulatory properties [16]. Before the discovery of chemical and synthetic compounds, these plants

Table 1: Effect of Nirocil syrup on body weight of experimental animals

Animal no.	Control group (weight in g)	Nirocil group (weight in g)	Becozinc group (weight in g)
1	185	201	198
2	184	204	201
3	194	198	202
4	192	200	204
5	194	119	198
6	193	199	203
Mean	190.333	200	201

Table 2A: Individual animal hematology analysis on 0 day

Parameters	Control group	Nirocil group	Becozinc group
WBC (X10³/µL)	10.13±0.39	10.00±0.23	10.22±0.13
RBC (X10⁶/µL)	7.05±0.09	7.56±0.29	7.3±0.33
Hgb (g/dL)	14.28±0.40	14.05±0.31	14.05±0.31
HCT (%)	42.05±0.84	42.17±0.80	41.10±0.65
MCV (fl)	59.7±0.93	56.2±0.02	56.83±0.94
MCH (pg)	19.67±0.48	19.00±0.67	19.30±0.65
MCHC (g/dL)	33.02±0.68	33.87±0.55	34.28±1.29
PLT (X10³/µL)	971.80±1.31	951.50±3.11	967.70±2.20
Absolute neutrophil count (cells/µL)	183.50±83.40	175.00±101.01	192.30±69.80
Absolute lymphocyte count (cells/µL)	790.00±302.20	788.30±198.04	790.00±112.02
Absolute monocyte count (cells/µL)	189.00±56.31	180.50±24.20	204.70±25.30
Absolute eosinophil count (cells/µL)	219.20±33.64	183.20±29.30	186.80±27.70
Neutrophil (%)	18.17±1.19	17.50±0.84	18.83±0.64
Lymphocyte (%)	77.83±1.01	78.83±0.54	77.33±0.45
Monocyte (%)	1.83±0.30	1.83±0.28	2.00±0.23
Eosinophil (%)	2.17±0.30	1.83±0.28	1.83±0.28

WBC: White blood cells, RBC: Red blood cells, Hgb: Hemoglobin, HCT: Hematocrit, MCV: Mean corpuscular volume, MCHC: Mean corpuscular hemoglobin count, PLT: Platelets

Table 2B: Individual animal hematology analysis on 5th week

Parameters	Control group	Nirocil group	Becozinc group
WBC (X10³/µL)	10.32±0.27	10.90±0.33	11.38±0.26
RBC (X10⁶/µL)	7.14±0.03	7.32±0.16	7.27±0.18
Hgb (g/dL)	14.62±0.18	14.55±0.27	14.57±0.33
HCT (%)	42.05±0.83	42.17±0.80	41.10±0.65
MCV (fl)	58.78±1.29	57.70±1.11	56.78±1.95
MCH (pg)	20.47±0.71	19.92±0.46	20.05±0.34
MCHC (g/dL)	34.85±0.89	34.55±0.57	35.57±1.34
PLT (X10³/µL)	96.50±14.00	95.00±2.14	96.00±2.50
Absolute neutrophil count (cells/µL)	2071.80±150.00	1876.50±82.90	1955.80±107.00
Absolute lymphocyte count (cells/µL)	7084.30±171.00	8586.30±340.00	8976.80±249.00
Absolute monocyte count (cells/µL)	206.50±22.00	254.50±34.40	282.70±19.90
Absolute eosinophil count (cells/µL)	15.40±22.60	18.30±22.70	168.00±19.90
Neutrophil (%)	20.00±1.15	17.3±0.99	17.17±0.79
Lymphocyte (%)	76.50±0.99	78.67±1.14	78.83±0.86
Monocyte (%)	2.00±0.25	2.3±0.30	2.50±0.20
Eosinophil (%)	1.50±0.22	1.67±0.19	1.50±0.20

WBC: White blood cells, RBC: Red blood cells, Hgb: Hemoglobin, HCT: Hematocrit, MCV: Mean corpuscular volume, MCHC: Mean corpuscular hemoglobin count, PLT: Platelets
The data are expressed as mean±SEM of n=6. Significant difference in treated group versus control group are *p<0.05.

The antibody titer is an indicator of the changes in the amount of the antibody in the course of an immune response [29]. The antibody titer is defined as the reciprocal of the highest dilution with detectable agglutination [6].

The humoral antibody response is mediated by an antibody produced by B-lymphocytes. Agglutination is a result of an antigen-antibody reaction. The relative strength of an antibody titer is defined as the reciprocal of the highest dilution with detectable agglutination [6].

The phenomenon which is reflected in terms of an increase in antibody titer as per log2 value is biologically involved in traditional medicine for curing various diseases throughout the world [3]. The current research work was planned to evaluate immunomodulatory potential all components in syrup.

As far as the immunomodulatory property of these plants is concerned, it is known that they played a significant role in traditional medicine for curing various diseases [27]. More and Pai [27] have reported a significant enhancement in phagocytosis after treatment with alcoholic extract of P. niruri, confirming the immunomodulatory potential [28].

In line with such findings, Aher et al [28] reported a significant enhancement in phagocytosis after treatment with alcoholic extract of T. cordifolia, confirming the immunomodulatory potential [28].

Findings in our study reconfirm this phenomenon which is reflected in terms of an increase in antibody titer in rats in the Nirocil treated group when compared to the control group (Table 3). This phenomenon is supported by an increase in lymphocyte count in Nirocil treated group [30]. Furthermore, Per oral administration of the Nirocil syrup produced an increase in the antibody titer in rats treated with Nirocil syrup.

The treatment with becozinc of plasma IFN-α level was observed after 2 months of concomitant infection, IFN-α modulates both humoral and cellular immunity [19]. In line with such findings, Hidayat et al [24,25] showed induction of proliferation of peripheral blood mononuclear cells (PBMCs) and phagocytic activity of macrophages of M. tuberculosis. Thus, the treatment with becozinc of plasma IFN-α level was observed after 2 months of concomitant infection, IFN-α modulates both humoral and cellular immunity [19]. In such diseases, the effective immune system is crucial for the treatment and successful eradication of varicella-zoster infection [21]. In such diseases, the effective immune system is crucial for the treatment and successful eradication of varicella-zoster infection [21].

Ma'at (1996) reported the enhancement in activity of the stimulation of natural killer (NK) cell cytotoxicity, secretion of tumor necrosis factor (TNF-α), and decreased interleukin (IL-10) secretions. SAR of Nirocil indicated that compound AQ3 showed an increase in lymphocyte count in Nirocil treated group [30]. Furthermore, recent reports, the aqueous extract of T. cordifolia showed induction of proliferation of peripheral blood mononuclear cells (PBMCs) and phagocytic activity of macrophages of M. tuberculosis [26].

The antibody titer is an indicator of the changes in the amount of the antibody in the course of an immune response [29]. The antibody titer is defined as the reciprocal of the highest dilution with detectable agglutination [6].

The humoral antibody response is mediated by an antibody produced by B-lymphocytes. Agglutination is a result of an antigen-antibody reaction. The relative strength of an antibody titer is defined as the reciprocal of the highest dilution with detectable agglutination [6].

The phenomenon which is reflected in terms of an increase in antibody titer as per log2 value is biologically involved in traditional medicine for curing various diseases throughout the world [3]. The current research work was planned to evaluate immunomodulatory potential all components in syrup.
Evaluation of immunomodulatory activity of L. and its bioactive (Guduchi) on the
Catha

1. Jadavaji T. In: Maharshi Aravind Ayurveda, Nidhi 1, 1999;2(1):23-31.
2. Patwardhan B, Warude D, Pushpangadan P, Bhatt N. Ayurveda and
 traditional medicine: A comparative overview. Evid Based
 Complement Alternat Med 2005;2:465-73.
3. Sehar I, Kaul A, Bani S, Pal HC, Saxena AK. Immune up-regulatory
 activity of
 Nyctanthes arbor-tristis
 leaf extracts. Int J Pharm Sci Nanotechnol 2015;7:471-9.
4. Bhattacharya S, Ganguly S, Banerji R, et al. Macrophage
 stimulatory activity of
 Capparis zeylanica
 leaf extracts. Int J Pharm Sci Nanotechnol 2015;7:471-9.
5. Lee NY, Khoo WK, Adnan MA, Mahalingam TP, Fernandez AR,
 Vos JG, Kimber I, Kuper CF, van Loveren H, Shuurman HJ. The immune
 response of a non-caloric natural sweetener, stevioside. Chem Biol
 Interact 2008;173:115-21.
6. Puri A, Saxena R, Saxena RP, Saxena KC, Srivastava V, Tandon JS.
 Ethnopharmacol 1994;42:31-7.
7. Khan T, Tatke P, Gabhe SY. Immunological studies on the aerial roots
 of
 Phyllanthus niruri
 through
 petroleum ether extract of seeds of
 Pithecellobium dulce
 and
 Cassia angustifolia
 for their multiple health benefits. In the present
 study, the
 immunomodulatory activity and capacity following oral administration of cocoa extract to
 mice. Procedia Chem 2016;18:122-6.
8. Bhattacharya Manual Pre-conference. Annual Conference of Indian
 Pharmacological Society. Kolkata: Workshop on Research Methodology
 Planning and Conducting Preclinical Animal Studies, 2007.
9. Shejawal N, Menon S, Shailajan S. A simple, sensitive and accurate
 method for rat paw volume measurement and its expediency in
 preclinical animal studies. Hum Exp Toxicol 2014;33:123-9.
10. Janeway CA, Travers P, Walport M, Shlomchik MJ. Immunobiology. 6
 ed. London, New York, Boston, London, Sydney, Tokyo, Toronto: Academic Press,
 1998.
11. Ketema T, Yohannes M, Alemayehu E, Ketema AA. Evaluation of
 immunomodulatory activity of
 R. communis
 R. communis
 and
 T. cordifolia
 Agnivesha
 Samhita C, editors. Chaukhambha Sanskrit
 Ed. 2000;2:13-9.
12. Boorman GA, Eustis SL, Elwell MR, Montgomery CA Jr.,
 MacKenzie WF. Pathology of the Fischer Rat: Reference and Atlas.
 Philadelphia: Lippincott-Raven, 1998.
13. Greaves P. Histopathology of Preclinical Toxicity Studies. 3
 rd
 ed. New York, Boston, London, Sydney, Tokyo, Toronto: Academic Press,
 1998.
14. Vos JG, Kimber I, Kuper CF, van Loveren H, Shuurman HJ. The immune
 system. In: Turton J, Hooson J, editors. Target Organ Pathology: A
 Basic Text. London: Taylor and Francis Publications; 1998.
15. New York, Boston, London, Sydney, Tokyo, Torento: Academic Press,
 1998.
16. Lee NY, Khoo WK, Adnan MA, Mahalingam TP, Fernandez AR,
 Vos JG, Kimber I, Kuper CF, van Loveren H, Shuurman HJ. The immune
 response of a non-caloric natural sweetener, stevioside. Chem Biol
 Interact 2008;173:115-21.
17. Shrestha P, Handral M. Evaluation of immunomodulatory activity of
 Nirocil syrup on immune cells of tuberculosis patient-organism, while reduced body weight indicates abnormal health status
 when compared to the control group [31].
18. Yadav SS, Mufida DC, Suardita IA. Macrophage
 stimulatory activity of herbal plant leaves
 of
 Asclepias curassavica
 P. niruri
 and
 C. zeylanica
 in vitro
 study. Nat Prod
 Commun 2016;9:38-43.
19. Tjandrawinata RR, Liana WS, Dwi N. The use of
 Phyllanthus niruri
 P. niruri
 as an active constituent. Nirocil syrup was prepared
 which contains all these herbs as an active constituent. Nirocil syrup
 accelerates the processing of antigen by macrophages, enhanced
 titer may be attributed to the synergistic effects of phytochemical
 compounds in disease prevention and treatment. Asian Pac J Trop Med
 2010;3:887-92.
20. Sari AB, Wahyudi T, Mufida DC, Suardita IA. Macrophage
 stimulatory activity of herbal plant leaves
 of
 Asclepias curassavica
 P. niruri
 and
 C. zeylanica
 in vitro
 study. Nat Prod
 Commun 2016;9:38-43.
21. Verma M, Kumar A. Antimicrobial activity of some folk medicinal
 plants used in Rajasthan against selected pathogenic microorganisms.
 Procedia Chem 2016;18:122-6.
22. Lyadova IV, Panteleev A V. Th1 and Th17 cells in tuberculosis: Protection,
 modulation and safety profile of adoptive immunotherapy using
 expanded autologous activated lymphocytes against advanced cancer. Evid Based
 Complement Alternat Med 2005;2:465-73.