On connected degree sequences

Jonathan McLaughlin

Department of Mathematics, St. Patrick’s College, Dublin City University, Dublin 9, Ireland

Abstract
This note gives necessary and sufficient conditions for a sequence of non-negative integers to be the degree sequence of a connected simple graph. This result is implicit in a paper of Hakimi. A new alternative characterisation of these necessary and sufficient conditions is also given.

Keywords: connected graph, degree sequence
2010 MSC: 05C40

1. Introduction
A finite sequence of non-negative integers is called a graphic sequence if it is the degree sequence of some finite simple graph. Erdős and Gallai [4] first found necessary and sufficient conditions for a sequence of non-negative integers to be graphic and these conditions have since been refined by Hakimi [6] (stated in the sequel as Theorem 3.2) as well as (independently) by Havel [7]. Alternative characterisations and generalisations are due to Choudum [2], Sierksma & Hoogeveen [8] and Tripathi et al. [9], [10], [11]. This note states a result which is implicit in Hakimi [6], before giving an alternative characterisation of these necessary and sufficient conditions for a finite sequence of non-negative integers to be the degree sequence of a connected simple graph.

2. Preliminaries
Let \(G = (V_G, E_G) \) be a graph where \(V_G \) denotes the vertex set of \(G \) and \(E_G \subseteq [V_G]^2 \) denotes the edge set of \(G \) (given that \([V_G]^2\) is the set of all 2-element subsets of \(V_G \)). An edge \(\{a, b\} \) is denoted \(ab \) in the sequel. A graph is finite when \(|V_G| < \infty \) and \(|E_G| < \infty \), where \(|X| \) denotes the cardinality of the set \(X \). A graph is simple if it contain no loops (i.e. \(a \neq b \) for all \(ab \in E_G \)) or parallel/multiple edges (i.e. \(E_G \) is not a multiset). The degree of a vertex \(v \) in a graph \(G \), denoted \(deg(v) \), is the number of edges in \(G \) which contain \(v \). A path is a graph with \(n \) vertices in which two vertices, known as the endpoints, have
degree 1 and \(n - 2 \) vertices have degree 2. A graph is connected if there exists at least one path between every pair of vertices in the graph. A tree is a connected graph with \(n \) vertices and \(n - 1 \) edges. \(K_n \) denotes the complete graph on \(n \) vertices. All basic graph theoretic definitions can be found in standard texts such as [1], [3] or [5]. All graphs in this note are undirected and finite.

3. Degree sequences and graphs

A finite sequence \(s = \{s_1, ..., s_n\} \) of non-negative integers is called realisable if there exists a finite graph with vertex set \(\{v_1, ..., v_n\} \) such that \(\deg(v_i) = s_i \) for all \(i = 1, ..., n \). A sequence \(s \) which is realisable as a simple graph is called graphic. Given a graph \(G \) then the degree sequence of \(G \), denoted \(d(G) \), is the monotonic non-increasing sequence of degrees of the vertices in \(V_G \). This means that every realisable (resp. graphic) sequence \(s \) is equal to the degree sequence \(d(G) \) of some graph (resp. simple graph) \(G \) (subject to possible rearrangement of the terms in \(s \)). The maximum degree of a vertex in \(G \) is denoted \(\Delta_G \) and the minimum degree of a vertex in \(G \) is denoted \(\delta_G \). In this note all sequences will have positive terms as the only connected graph which has a degree sequence containing a zero is \((\{v\}, \{\}) \).

The following theorem states necessary and sufficient conditions for a sequence to be realisable (though not necessarily graphic).

Theorem 3.1 (Hakimi) Given a sequence \(s = \{s_1, ..., s_n\} \) of positive integers such that \(s_i \geq s_{i+1} \) for \(i = 1, ..., n - 1 \) then \(s \) is realisable if and only if \(\sum_{i=1}^{n} s_i \) is even and \(\sum_{i=2}^{n} s_i \geq s_1 \).

To address the issue of when a sequence is graphic, Hakimi describes in [6] a process he called a reduction cycle and uses it to state the following result.

Theorem 3.2 (Havel, Hakimi) Given a sequence \(\{s_1, ..., s_n\} \) of positive integers such that \(s_i \geq s_{i+1} \) for \(i = 1, ..., n - 1 \) then the sequence \(\{s_1, ..., s_n\} \) is graphic if and only if the sequence \(\{s_2 - 1, s_3 - 1, ..., s_{s_1 + 1} - 1, s_{s_1 + 2}, ..., s_n\} \) is graphic.

4. Degree sequences and connected graphs

Definition 4.1 A finite sequence \(s = \{s_1, ..., s_n\} \) of positive integers is called connected (resp. connected and graphic) if \(s \) is realisable as a connected graph (resp. connected simple graph) with vertex set \(\{v_1, ..., v_n\} \) such that \(v_i \) has degree \(s_i \) for all \(i = 1, ..., n \).
Of course disconnected realisations of connected and graphic degree sequences exist, for example, \((2, 2, 2, 2, 2, 2)\) can be realised as a 6-cycle or as two disjoint 3-cycles.

As a graph is connected if and only if it contains a spanning tree, then a simple induction argument on the number of edges shows that every spanning tree of a graph \(G\), with \(|V_G| = n\), has exactly \(n - 1\) edges. Hence, a necessary condition for a graph \(G\), with \(|V_G| = n\), to be connected is that \(|E_G| \geq n - 1\).

The following theorem states necessary and sufficient conditions for a sequence to be connected but not necessarily simple.

Theorem 4.2 (Hakimi) Given a sequence \(s = \{s_1, \ldots, s_n\}\) of positive integers such that \(s_i \geq s_{i+1}\) for \(i = 1, \ldots, n - 1\) then \(s\) is connected if and only if \(s\) is realisable and \(\sum_{i=1}^{n} s_i \geq 2(n - 1)\).

The two main tools used in the proof of Theorem 4.2 are \(d\)-invariant operations (which leave degree sequences unchanged) and Lemma 4.3 (which appears in [6] as Lemma 1).

Consider a graph \(G\) with \(d(G) = (d_1, \ldots, d_n)\). Given any two edges \(ab, cd \in E_G\), where \(a, b, c\) and \(d\) are all distinct, then \(G\) is transformed by a \(d\)-invariant operation into \(G'\) when either

- \(V_{G'} = V_G\) and \(E_{G'} = (E_G \setminus \{ab, cd\}) \cup \{ac, bd\}\), or
- \(V_{G'} = V_G\) and \(E_{G'} = (E_G \setminus \{ab, cd\}) \cup \{ad, bc\}\).

Figure 1 shows both \(d\)-invariant operations.

![Figure 1](image1.png)

Figure 1: The two possible \(d\)-invariant operations on \(G\) resulting in \(G'\) such that \(d(G) = d(G')\)

These \(d\)-invariant operations are used to prove the following important result.

Lemma 4.3 Let \(G_1, G_2, \ldots, G_r\), (with \(r > 1\)), be maximally connected subgraphs of \(G\) such that not all of the \(G_i\) are acyclic, then there exists a graph \(G'\) with \(r - 1\) maximally connected subgraphs such that \(d(G') = d(G)\).

The essence of Lemma 4.3 is presented in Figure 2. Note that worst-case-scenarios are assumed i.e. \(G_1\) is a cycle and \(G_2\) is acyclic with the graph \((V_{G_2}, (E_{G_2} \setminus \{cd\}))\) being disconnected.

3
5. Results

The first result, Theorem 5.1, is an explicit statement of a result implicit in [6]. The second result, Theorem 5.2, is a new alternative characterisation of Theorem 5.1 and has a similar flavour to that of Theorem 3.2.

Theorem 5.1 Given a sequence \(s = \{s_1, ..., s_n\} \) of positive integers such that \(s_i \geq s_{i+1} \) for \(i = 1, ..., n - 1 \) then \(s \) is connected and graphic if and only if the sequence \(s' = \{s'_1, ..., s'_{n-1}\} = \{s_2-1, s_3-1, ..., s_{s_1+1}-1, s_{s_1+2}, ..., s_n\} \) is graphic and \(\sum_{i=1}^{n} s_i \geq 2(n-1) \).

Proof (\(\Rightarrow \)) Suppose that \(s \) is connected and graphic. It is required to show that \(s' \) is graphic and that \(\sum_{i=1}^{n} s_i \geq 2(n-1) \).

As \(s = d(G) \) for some simple (connected) graph \(G \) then \(s_i \leq n - 1 \) for all \(i = 1, ..., n \) and there exists a graph \(G' \) with vertex set \(V_{G'} = V_G \setminus \{v_1\} \) and edge set \(E_{G'} = E_G \setminus \{v_1v_i \mid v_1v_i \in E_G\} \) such that \(d(G') = s' \). As \(G \) is a simple graph then it follows that \(G' \) is also a simple graph, hence \(s' \) is graphic. As \(s = d(G) \) for some (simple) connected graph \(G \), where \(|V_G| = n \), then as \(G \) is connected \(|E_G| \geq n - 1 \), hence \(\sum_{i=1}^{n} s_i \geq 2(n-1) \).

(\(\Leftarrow \)) Suppose that \(s' \) is graphic and that \(\sum_{i=1}^{n} s_i \geq 2(n-1) \). It is required to show that \(s \) is both graphic and connected.

As \(s' \) is graphic then \(s' \leq n-2 \) for all \(i \in \{1, ..., n-1\} \). Adding a term \(s_1 \) (which is necessarily \(\leq n-1 \)) results in \(s \) also being graphic as in the worst case scenario i.e. where \(s_1 = s_n = n - 1 \), then \(s = \{s_1, ..., s_n\} = \{n-1, ..., n-1\} \) which is the degree sequence of the simple graph \(K_n \). Suppose that \(\sum_{i=1}^{n} s_i = 2(n-1) \), then \(s \) is the degree sequence of a graph \(G \) with \(n - 1 \) edges and \(n \) vertices.
which means that G is a tree, hence s is connected. If $\sum_{i=1}^{n} s_i > 2(n-1)$ then either $s = d(G)$ for some connected graph G or it is possible to apply Lemma 4.3 repeatedly until a graph G is found such that G is connected and $d(G) = s$. \square

The following result is what can be thought of as a connected version of Theorem 3.2. However, note that it is not possible to simply add the word connected to the statement of Theorem 3.2 as $s = (2, 2, 1)$ is connected but $s' = (1, 0, 1)$ is not connected.

Theorem 5.2 Given a sequence $s = \{s_1, ..., s_n\}$ of positive integers such that $s_i \geq s_{i+1}$ for $i = 1, ..., n-1$ then s is connected and graphic if and only if the sequence $s' = \{s'_1, ..., s'_{n-1}\} = \{s_1 - 1, s_2 - 1, ..., s_n - 1, s_{n+1}, ..., s_{n-1}\}$ is connected and graphic.

Proof (\Rightarrow) Suppose that $s = \{s_1, ..., s_n\}$ is connected. It is required to show that s' is both graphic and connected.

To show that s' is graphic it is required to show that $\sum_{i=1}^{n-1} s'_i$ is even and that all vertices have degree less than or equal to $n - 2$. Observe that

$$\sum_{i=1}^{n-1} s'_i = \sum_{i=1}^{n-1} (s_i - s_n) = \sum_{i=1}^{n} s_i - 2s_n.$$

As s is graphic then $\sum_{i=1}^{n} s_i$ is even and so $\sum_{i=1}^{n} s_i - 2s_n$ is also even. As s is graphic then all vertices $v_i \in V_G$ with $i \in \{1, ..., n\}$ must satisfy $\text{deg}(v_i) \leq n - 1$. All vertices with degree $n - 1$ in G are necessarily connected to v_n whereas vertices with degree less than $n - 1$ may or may not be connected to v_n. It follows that after deleting v_n and all edges containing v_n that the maximum degree which any vertex can have in any G' is $n - 2$ (where $d(G') = s'$).

To show that s' is connected it is required to show that $\sum_{i=1}^{n-1} s'_i \geq 2(n-2)$ i.e. there exists a graph G' with $d(G') = s'$ and $|V_{G'}| = n - 1$ such that $|E_{G'}| \geq n - 2$.

As s is graphic then $1 \leq s_i \leq n - 1$.

Let $s_n = 1$: As $s_n = 1 = \delta_G$ then $s' = (s_1 - 1, s_2, ..., s_{n-1})$. Not all $s_i = 1$ except in the case where $s = (1, 1)$ resulting in $s' = (0)$ which is a connected degree sequence. As s is connected and $\text{deg}(v_n) = 1$ then v_n is a leaf of a connected graph G and so deleting v_n cannot result in a disconnected graph G', hence s' is connected when $s_n = 1$.

Let $s_n = k$ where $2 \leq k \leq n - 1$: As $s_n = k = \delta_G$ then

$$s' = (s_1 - 1, s_2 - 1, ..., s_{s_n - 1}, s_{s_n + 1}, ..., s_{n-1}).$$

5
Assuming the worst case scenario i.e. $\Delta_G = \delta_G = k$, then this gives

$$s' = (k - 1, ..., k - 1, k, ..., k)$$

which means that

$$\sum_{i=1}^{n-1} s_i' \geq k(k - 1) + k(n - k - 1) = k(n - 2) \geq 2(n - 2)$$

whenever $2 \leq k \leq n - 1$. Hence, s' is connected when $s_n = k$ where $2 \leq k \leq n - 1$.

(\Leftarrow) Suppose that $s' = \{s'_1, ..., s'_{n-1}\} = \{s_1 - 1, s_2 - 1, ..., s_{n-1} - 1, s_{s_n+1}, ..., s_{n-1}\}$ is connected. It is required to show that s is both graphic and connected.

As s' is connected then there exists some G' with $|V_{G'}| = n - 1$ and $d(G') = s'$ where the degree of all vertices in $V_{G'}$ is less than or equal to $n - 2$. As $V_G = V_{G'} \cup \{v_n\}$ (and all s_i are necessarily $\leq n - 1$) then all vertices in V_G will have degree at most $n - 1$. Observe that

$$\sum_{i=1}^{n} s_i = \sum_{i=1}^{n-1} s_i' + 2s_n.$$

As s' is graphic then $\sum_{i=1}^{n-1} s_i'$ is even and so $\sum_{i=1}^{n-1} s_i' + 2s_n$ is also even.

As s' is connected then there exists some G' with $d(G') = s'$ where $|E_{G'}| \geq n - 2$ as $|V_{G'}| = n - 1$. As $s_n \geq 1$ then this means that there is at least one edge in G which has v_n as an endpoint and some v_i with $i \in \{1, ..., n - 1\}$ as the other endpoint.

This observation along with the fact that $|E_G| \geq |E_{G'}| + 1 > n - 2$, where $|V_G| = n$, means that s is connected.

Example 5.3 An example, using Theorem 5.2, of what Hakimi would term a “set of successive reduction cycles” is shown in Figure 4.
6. Comments

Theorem 3.2 is used in [6] to check algorithmically when a given sequence \(s \) is graphic. In a similar manner, Theorem 5.2 suggests an algorithm which can be used to determine if a given sequence \(s \) is connected and graphic.

References

[1] J. A. Bondy and U. S. R. Murty. *Graph theory*, volume 244 of *Graduate Texts in Mathematics*. Springer, New York, 2008.

[2] S. A. Choudum. A simple proof of the Erdős-Gallai theorem on graph sequences. *Bull. Austral. Math. Soc.*, 33(1):67–70, 1986.

[3] R. Diestel. *Graph theory*, volume 173 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, second edition, 2000.

[4] P. Erdős and T. Gallai. Graphs with prescribed degrees of vertices. *Mat. Lapok*, 11:264–274 (in Hungarian), 1960.

[5] R. Gould. *Graph theory*. The Benjamin/Cummings Publishing Co. Inc., Menlo Park, CA, 1988.

[6] S. L. Hakimi. On realizability of a set of integers as degrees of the vertices of a linear graph. I. *J. Soc. Indust. Appl. Math.*, 10:496–506, 1962.

[7] V. Havel. A remark on the existence of finite graphs. *Časopis Pěst. Mat.*, 80:477–480 (in Czech), 1955.

[8] G Sierksma and H Hoogeveen. Seven criteria for integer sequences being graphic. *J. Graph Theory*, 15(2):223–231, 1991.

[9] A. Tripathi, S. Venugopalan, and D. B. West. A short constructive proof of the Erdős and Gallai characterization of graphic lists. *Discrete Math.*, 310(4):843 – 844, 2010.

[10] A. Tripathi and S. Vijay. A note on a theorem of Erdős and Gallai. *Discrete Math.*, 265:417 – 420, 2003.

[11] A. Tripathi and S. Vijay. A short proof of a theorem on degree sets of graphs. *Discrete Appl. Math.*, 155(5):670 – 671, 2007.