ATIC as a link between antirheumatic drugs and regulation of energy metabolism in skeletal muscle

KLEMEM DOLINAR1
ALEXANDER V. CHIBALIN2,3
SERGEJ PIRKMAJER1,*
1 University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Ljubljana, Slovenia
2 Karolinska Institutet, Department of Molecular Medicine and Surgery, Integrative Physiology, Stockholm, Sweden
3 National Research Tomsk State University, Tomsk, Russia
*Correspondence:
Sergej Pirkmajer
E-mail: sergej.pirkmajer@mf.uni-lj.si

Keywords: rheumatic diseases; diabetes; antirheumatic drugs; ATIC; ZMP; AMPK; skeletal muscle

Abstract
Chronic inflammatory rheumatic diseases, such as rheumatoid arthritis, psoriatic arthritis, and systemic lupus erythematosus, increase the risk of developing insulin resistance, metabolic syndrome, and/or type 2 diabetes. While inflammation is thought to be a major mechanism underlying metabolic dysregulation in rheumatic diseases, antirheumatic drugs that exert direct metabolic effects in addition to suppressing inflammation, might be particularly useful to prevent metabolic complications. Here we review antirheumatic drugs, such as methotrexate, that inhibit ATIC, the final enzyme in the de novo purine biosynthesis, responsible for conversion of ZMP to IMP. Inhibition of ATIC results in accumulation of ZMP, thus promoting activation of AMP-activated protein kinase (AMPK), a major regulator of cellular energy metabolism and one of the most promising targets for the treatment of insulin resistance and type 2 diabetes. We focus especially on ATIC inhibition and AMPK activation in skeletal muscle as this is the largest and one of the most metabolically active tissues with a major role in glucose homeostasis. As an important site of insulin resistance, skeletal muscle is also one of the main target tissues for pharmacological therapy of type 2 diabetes. Finally, we review the metabolic effects of ATIC-inhibiting antirheumatic drugs and discuss whether these drugs might improve systemic glucose homeostasis by inhibiting ATIC and activating AMPK in skeletal muscle.

INTRODUCTION
Type 2 diabetes and cardiovascular diseases are highly prevalent and present a major public health challenge (1). Chronic inflammatory rheumatic diseases, such as rheumatoid arthritis, psoriatic arthritis, and systemic lupus erythematosus, increase the risk of insulin resistance (2), type 2 diabetes (3), the metabolic syndrome (4, 5), and/or cardiovascular complications (6). Antirheumatic drugs suppress inflammation, but they are not all equally effective at reducing the risk of developing diabetes (7, 8) or cardiovascular events (9). Some potent immunosuppressive and anti-inflammatory drugs, such as glucocorticoids or calcineurin inhibitors, may even increase the risk of metabolic dysregulation (8, 10, 11). Given the high prevalence of metabolic as well as rheumatic diseases, drugs that help to maintain metabolic homeostasis and reduce the risk of metabolic complications would be particularly beneficial.

Skeletal muscle accounts for ~40% of body weight and 20–30% of basal oxygen consumption and is the largest metabolic tissue under the physiological conditions (12). In type 2 diabetes, insulin resistance impairs insulin-stimulated glucose uptake and glycogen storage in skeletal muscle, thereby contributing to development of hyperglycaemia (13–15).
Pharmacological agents that decrease insulin resistance and/or stimulate glucose uptake independently of insulin would therefore be useful for treatment of type 2 diabetes. In this respect, activation of AMP-activated protein kinase (AMPK) is one of the most promising strategies to improve metabolic dysregulation in skeletal muscle (16–18). Activation of AMPK enhances insulin action and stimulates insulin-independent glucose uptake in skeletal muscle, thus improving metabolic homeostasis and opposing development of type 2 diabetes (19, 20, 21, 22, 23, 24). However, most experimental AMPK activators that have been discovered or developed so far do not efficiently target AMPK isoforms which are expressed in skeletal muscle (25–27) or have poor pharmacokinetic properties (28), highlighting the need for new approaches towards AMPK activation in skeletal muscle.

Interestingly, several antirheumatic drugs, including salicylate and methotrexate, have been shown to promote activation of AMPK (29–31). On the other hand, both drugs were shown to be inhibitors of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate (IMP) cyclohydrolase (ATIC) (32–35), which is recognized as a promising target in development of new antidiabetic compounds (30, 36). Anticancer drug pemetrexed, a compound related to methotrexate, also inhibits ATIC and activates AMPK (37), but it is not used for treatment of rheumatic diseases and will not be discussed here. Here, we will review the evidence whether antirheumatic drugs might promote metabolic homeostasis in skeletal muscle by inhibiting ATIC.

AMPK as a pharmacological target in skeletal muscle

AMPK is a major cellular energy sensor and regulator of cellular metabolism (38–41). AMPK is a heterotrimeric serine-threonine kinase comprising the catalytic α (isoforms α1 and α2) and the regulatory β (isoforms β1 and β2) and γ (isoforms γ1–3) subunits (41, 42). AMPK senses cellular energy status primarily by monitoring changes in the AMP:ATP ratio (41, 43), although changes in the ADP:ATP ratio also contribute (44). Both AMP and ADP bind to the γ subunit and activate AMPK by promoting phosphorylation of AMPKα Thr172. In addition, AMP, but not ADP, also causes allosteric activation of AMPK (40, 44–46). AMPK can also be activated independently of changes in adenine nucleotides (47) by an increase in cytoplasmic Ca2+ (48–50) or by a decrease in intracellular glucose concentration (51, 52).

Numerous pharmacological activators of AMPK have emerged in the last three decades (reviewed in detail in (18)). Based on their mechanism of action, they can be divided into three major groups (Table 1). The first group comprises direct activators that bind to or close to the AMP-binding site. The prototypical representative of this group is AICAR (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside or 5-amino-4-imidazolecarboxamide riboside), an adenosine analogue and the oldest and the most widely used experimental AMPK activator. AICAR is actually a prodrug that is intracellularly phosphorylated to ZMP (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl-5’-monophosphate), which directly binds to AMPK and activates it (53) (see below: *Intracellular metabolism of AICAR and ZMP*). ZMP binds to the AMP-binding sites on the γ subunit (54) and this is required for its ability to activate AMPK (47). C2 is another pharmacological compound that binds to the γ subunit and activates AMPK (Table 1) (55); however, it does not bind to the nucleotide-binding sites but next to them (56).

To avoid ambiguity, it has to be stressed that different nomenclatures are in use for AICAR (a nucleoside) and ZMP (a nucleotide). Indeed, confusingly, different research fields have adopted different nomenclatures. Thus, AICAR is sometimes used to denote the nucleotide form ZMP (57–63). However, in the vast majority of research literature on AMPK, the term AICAR (aka Acadesine) (64) refers to the non-phosphorylated precursor (nucleoside) of ZMP (16, 18, 53). ZMP (65, 66) has also been referred to as AICAR-monophosphate (37, 67), AICAR-ribotide (68, 69), Acadesine 5’-monophosphate (64), as well as a Z-nucleotide (66, 70). Correspondingly, AICAR can be referred to as Z-nucleoside, Z-riboside, and AICAR-riboside (28, 59, 61, 63, 66, 69). The letter Z denotes 5-amino-4-imidazolecarboxamide (AICA, Z-base) based on the nomenclature for 5-amino-4-imidazolecarboxamide (Z) nucleotides established in 1980s (65, 66, 70). Here we will follow the convention of the AMPK field and we will strictly use ZMP for the nucleotide and AICAR for the corresponding nucleoside.

The second group of AMPK activators comprises direct activators that bind outside the AMP-binding sites (Table 1), such as A-769662 (25, 71) and salicylate (31). AICAR (as ZMP), A-769662, and salicylate activate AMPK allosterically and by stimulating phosphorylation and/or inhibiting dephosphorylation of Thr172 (25, 31, 41, 47, 53, 72). However, while ZMP binds to the AMP-binding sites on the γ subunit (54), A-769662 and salicylate bind to a specific pocket between the α and β subunits termed the allosteric drug and metabolite (ADaM) site (73). Other compounds that activate AMPK by binding to this site include MK-8722 (74) and PF-739 (75) (Table 1).

The third group comprises indirect activators, which activate AMPK by inhibiting energy metabolism or by increasing intracellular Ca2+ concentrations (Table 1). Inhibitors of energy metabolism increase the AMP:ATP ratio, which results in AMP-stimulated AMPK activation via the γ subunit (47). An increase in the AMP:ATP ratio underlies or at least contributes to AMPK activation by anti-diabetic drugs metformin and canagliflozin, which inhibit complex I of the respiratory chain (76–80), as well
Table 1. Direct and indirect pharmacological AMPK activators. *ADaM site: allosteric drug and metabolite site.*

Group	Pharmacological activator	Chemical structure	Site of action (comments)
Direct activators that bind to or close to the AMP-binding site	AICAR	![AICAR Chemical Structure](image)	AMPK: AMP-binding site
	C2	![C2 Chemical Structure](image)	AMPK: close to the AMP-binding site
Direct activators that bind outside the AMP-binding site	A-769662	![A-769662 Chemical Structure](image)	AMPK: ADaM site
	Salicylate	![Salicylate Chemical Structure](image)	AMPK: ADaM site
	MK-8722	![MK-8722 Chemical Structure](image)	AMPK: ADaM site
	PF-739	![PF-739 Chemical Structure](image)	AMPK: ADaM site
Indirect activators	Metformin	![Metformin Chemical Structure](image)	Mitochondria (inhibits mitochondrial respiration and increases the AMP:ATP ratio)
	Canagliflozin	![Canagliflozin Chemical Structure](image)	Mitochondria (inhibits mitochondrial respiration and increases the AMP:ATP ratio)
	2-deoxyglucose	![2-deoxyglucose Chemical Structure](image)	Glycolysis (inhibits glycolysis and increases the AMP:ATP ratio)
	Dinitrophenol	![Dinitrophenol Chemical Structure](image)	Mitochondria (uncouples mitochondria and increases the AMP:ATP ratio)
	A23187	![A23187 Chemical Structure](image)	Plasma and organelle membranes (increases intracellular [Ca2+])
as experimental compounds, such as 2-deoxyglucose, which inhibits glycolysis, and dinitrophenol, which uncouples mitochondria (47). Other indirect AMPK activators, such as Ca$^{2+}$ ionophore A23187, increase intracellular Ca$^{2+}$ concentrations, thus leading to AMPK activation via Ca$^{2+}$/calmodulin-dependent protein kinase kinase 2 (47–50). Some compounds act by more than one mechanism. For instance, salicylate is a direct AMPK activator (31) as well as a mitochondrial uncoupler (81) and inhibitor of ATIC (32).

Once activated, AMPK stimulates ATP-generating catabolic processes and inhibits ATP-consuming anabolic processes (38, 41). In rat skeletal muscles, activation of AMPK with AICAR increases glucose uptake and fatty acid oxidation (19, 82–84). However, it should be noted that effects of AICAR depend on the nutritional state as well as muscle (fibre) type, AICAR being less effective AMPK activator in oxidative than glycolytic muscles (22, 83, 85). Activation of AMPK and increase in glucose uptake after treatment with AICAR have also been observed in skeletal muscles of insulin-resistant obese rats (86) and human subjects with type 2 diabetes (87). Further, AICAR suppresses endogenous glucose production and decreases plasma triglycerides and fatty acids in insulin-resistant obese rats (86). Similarly, administration of AICAR in subjects with type 2 diabetes reduces hepatic glucose output and suppresses lipolysis, thus reducing plasma glucose and free fatty acid concentrations (88). However, beneficial effects on glucose homeostasis were not paralleled by improvements in lipid profile in all experimental models (89). Finally, activation of AMPK probably underlies increased insulin sensitivity after muscle contraction or exercise (90). Taken together, these and many other studies (19–24) suggest that pharmacological activators of AMPK could be used in the fight against insulin resistance and type 2 diabetes (16, 17).

Most experimental AMPK activators have one or more shortcomings that prevent them from being used as clinical treatments for insulin resistance and type 2 diabetes (91). For example, AICAR has off-target effects, including modulation of other AMP-sensitive enzymes, such as fructose-1,6-bisphosphatase (92) and glycogen phosphorylase (93), and poor oral bioavailability (28). Notably, human studies demonstrated that even intravenous infusion of AICAR results in plasma concentrations (~0.16–0.18 mM) that are below the threshold for activation of AMPK in skeletal muscle (88, 94). A-769662 also shows poor oral bioavailability (71) as well as off-target effects, notably inhibition of Na$^{+}$/K$^{+}$-ATPase (95). Finally, A-769662 and several other AMPK activators that bind to the ADaM site, preferentially activate the β1-containing AMPK complexes (18, 25). This makes them less effective AMPK activators in tissues that express predominantly the β2-containing AMPK complexes (75), which includes skeletal muscle (26, 27).

Intracellular metabolism of AICAR and ZMP

As well as a pharmacological AMPK activator, AICAR is an endogenous purine precursor of ZMP (61, 96–101). AICAR enters the cell via nucleoside transporters (102–105) and is converted to ZMP (AICAR-monophosphate) by adenosine kinase (53, 66). As well as from AICAR, ZMP can be synthesized from AICA, an adenine analogue (37, 70, 106). Following uptake into the cell, AICA is converted to ZMP in the reaction catalysed by adenine phosphoribosyltransferase (APRTase), thus mimicking conversion of adenine to the AMP in the salvage pathway of purine synthesis (37, 70).

Once ZMP is formed, it likely has four possible fates. First, it can be phosphorylated to ZDP and/or ZTP (61, 66, 107, 108). Second, ZMP can be dephosphorylated back to AICAR in a reaction catalysed by 5'-nucleotidase (61, 107). AICA (109) and AICAR (96, 97, 99) are measurable in urine, indicating that dephosphorylation of ZMP is important under physiological conditions. Third, some evidence suggests that ZMP can be converted back to N-succinyl-5-aminomidazole-4-carboxamide ribonucleotide (SAICAR or sZMP) by adenylosuccinate lyase (66). Finally, ZMP can be converted to IMP by ATIC in the last two steps of the *de novo* purine synthesis pathway (Figure 1).

The physiological role of ATIC

ATIC, encoded by the *ATIC* gene (also known as the *PURH* gene), is a bifunctional enzyme responsible for the catalysis of the last two steps in the *de novo* purine biosynthesis, *i.e.* conversion of ZMP to IMP. ZMP is first formylated to formyl-AICAR (FAICAR) by AICAR formyltransferase (AICARFT) which uses N10-formyl tetrahydrofolate (10-CHO-THF) as the formyl donor and then FAICAR is converted to IMP by IMP cyclohydrolase (IMPCH; also known as inosinase) (110, 111).

ATIC was first isolated by Flaks et al. in 1957 from chicken (110). In 1991, Ni et al. cloned and sequenced chicken ATIC cDNA, which was the first eukaryotic ATIC cDNA to be cloned (112). Human ATIC cDNA was cloned and sequenced a few years later (113–115). Cloning of ATIC cDNA enabled the use of the site-directed mutagenesis and production of large quantities of easily purifiable recombinant ATIC protein in bacterial expression systems, which opened the door for mechanistic and structural studies. Chicken ATIC was also the first ATIC with a determined protein structure. The structure was determined by Greasley et al. in 2001 (116). This and other ATIC structures that followed, including the structure of human ATIC (117), advanced the understanding of the mechanism of action of ATIC and existing ATIC inhibitors and aided in the design of more potent and specific ATIC inhibitors (36, 118–121).
Under physiological conditions, Z-nucleotides and nucleosides are present only in low intracellular concentrations (61, 70). Indeed, even during treatment with low AICAR concentrations ZMP can remain below detection level (30). However, pharmacological inhibition of ATIC promotes intracellular accumulation of ZMP (29, 30, 37, 58, 122). Further, deficiency of ATIC in humans results in marked intracellular accumulation of ZMP and high urinary concentrations of AICAR (AICA-ribosiduria) (61, 123), which highlights that ATIC is essential for normal ZMP and AICAR turnover. Indeed, deficiency of ATIC in humans leads to severe phenotype, characterized by blindness, mental retardation, epilepsy, and dysmorphism, underlining the physiological importance of ATIC (61). Increased intracellular concentrations of ZTP were also observed in subjects with the Lesch-Nyhan syndrome, which is characterized by deficient salvage pathway of purine synthesis, and 5-phosphoribosyl-1-pyrophosphate synthetase (Figure 1) overactivity (70), which both increase flux through the de novo pathway. Taken together, these studies show that increases in Z-nucleotide concentrations can be expected when ATIC function is suppressed or activity of the de novo pathway is markedly increased.

De novo purine synthesis and ATIC in skeletal muscle

ATIC is expressed in cultured skeletal muscle cells and skeletal muscle tissue (30, 104, 115, 124). Further, the de novo purine synthesis pathway is active in cultured skeletal muscle cells (125–128) as well as skeletal muscle (125, 129, 130), indicating ATIC is functionally important for muscle physiology. Treatment with exogenous AICAR in dogs results in marked increase in muscle IMP concentrations (59), which again indicates that ATIC is functional.
in skeletal muscle. According to measurements in rat skeletal muscle, 0.3–1% of the total adenine nucleotide pool is turned over per hour (131). However, the extent to which purines are synthesized via the de novo pathway depends also on activity of the salvage pathway, which suppresses de novo synthesis (132). In skeletal muscle, de novo synthesis is thought to be particularly important after contractions, which result in a massive loss of adenine nucleotides from muscle into the bloodstream (133).

ATIC as an entry point to modulate energy metabolism via AMPK in skeletal muscle?

ATIC is directly or indirectly suppressed by several antirheumatic drugs (Table 2): methotrexate, sulfasalazine, non-steroidal antirheumatic drugs (NSAID), and azathioprine. Interestingly, folinic acid (leucovorin), which is used to reduce methotrexate toxicity, also inhibits ATIC (134). While all these drugs have several other targets, notably dihydrofolate reductase in the case of methotrexate and cyclooxygenases in the case of NSAID, suppression of ATIC is thought to be particularly important for antirheumatic actions of methotrexate and sulfasalazine (57, 122, 135, 136). Methotrexate and sulfasalazine are especially interesting because they are widely used for chronic treatment of rheumatic diseases.

Antirheumatic treatment reduces the risk of diabetes in subjects with rheumatoid arthritis or psoriasis (7). Suppression of inflammation likely represents one mechanism that underlies metabolic improvements with antirheumatic treatment (144). However, direct metabolic effects of antirheumatic drugs could also contribute. Indeed, while all drugs used for treatment of inflammatory rheumatic diseases suppress inflammation and immune function, they are not all equally effective at reducing the risk of diabetes (7, 8). The most effective seem to be inhibitors of tumour necrosis factor-α (TNF-α) and hydroxychloroquine (7, 8, 145), neither of which acts via ATIC.

Dysregulated TNF-α signalling plays a major role in pathogenesis of rheumatic diseases and its suppression with biologicals, such as etanercept and infliximab, effectively suppresses their progression (146, 147). Infusion of TNF-α opposes insulin-stimulated glucose disposal in humans (148, 149). It is therefore not surprising that suppression of TNF-α in rheumatic patients protects against diabetes (7, 8). Hydroxychloroquine is an antirheumatic and antimalarial drug that has recently been in focus of intense research efforts since it suppresses severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) in vitro (150, 151) and might be useful for treatment of coronavirus disease-19 (COVID-19), although its clinical effectiveness needs to be verified (152–157). Use of hydroxychloroquine in rheumatic patients has been linked to improvements in metabolic status and protection against diabetes (158). Mechanism of action of hydroxychloroquine involves inhibition of lysosomal activity, autophagy, and Toll-like receptor signalling, but how these effects lead to improvements in metabolic homeostasis has not been established (159).

Although less potent as regards metabolic actions, methotrexate has also been rather consistently linked with at least mild improvements in glucose homeostasis and/or protection against diabetes (Table 3). Methotrexate (ame- thopterin) is a folate antagonist that was first used for treatment of cancer (160). Anticancer effects of high doses of methotrexate, which may lead to peak plasma concentrations as high as 1000 μM (or more) (161), are thought to be the result of inhibition of dihydrofolate reductase, which suppresses thymidylate and consequently DNA synthesis, although inhibition of ATIC and other enzymes also contributes (34). In rheumatology, low-dose methotrexate is used (63, 96, 146, 162), which produces peak plasma concentrations below 1 μM (~100–500 nM) (163–165). During treatment with low-dose methotrexate, inhibition of ATIC is thought to be particularly important for antirheumatic effects of methotrexate (57, 58, 166).

Sulfasalazine, a conjugate of 5-aminosalicylic acid and sulfapyridine, is another widely used antirheumatic drug (146). However, compared with methotrexate, relatively few studies examined metabolic effects of sulfasalazine. Molecular mechanisms underlying its anti-inflammatory and immunosuppressive effects are complex (167, 168), involving modulation of various cellular processes, including inhibition of ATIC (32, 122). Interestingly, sulfasalazine has been suggested to reduce blood glucose concentrations in patients with type 2 diabetes (169). Further, animal studies suggest sulfasalazine may protect against diabetic retinopathy and neuropathy (167, 168).

An important question is whether antirheumatic drugs, such as methotrexate and sulfasalazine, can exert protective metabolic effects by inhibiting ATIC and promoting AMPK activation in skeletal muscle. There are at least four lines of evidence directly or indirectly supporting this notion. First, methotrexate was shown to activate AMPK or enhance AICAR-stimulated AMPK activation in cultured cancer and skeletal muscle cells (29, 30, 104). Further, methotrexate enhances AICAR-stimulated AMPK activation and downstream metabolic effects in isolated mouse skeletal muscle (30). Second, *in vivo* evidence supports the notion that methotrexate can activate AMPK in tissues. Indeed, methotrexate increased phosphorylation of AMPK not only in cultured human umbilical vascular endothelial cells, but also in aorta in mice *in vivo* (194). Third, in the *db/db* mice methotrexate up-regulated GLUT4 in skeletal muscle and reduced serum glucose and insulin concentrations (174), which is consistent with muscle AMPK activation. Finally, Cpd14, a new experimental ATIC inhibitor, activates AMPK and improves glucose homeostasis in obese mice (36).

As mentioned above, ATIC is not the only pharmacological target of methotrexate. Other targets are dihydro-
Table 2. Overview of antirheumatic drugs that inhibit ATIC. K_i values may depend on the enzyme used in the assay (human or chicken) and on the assay conditions. Source of the enzyme is indicated in the table while assay conditions can be found in the references. References are listed chronologically. Abbreviations: DMARD – disease modifying antirheumatic drugs; NSAID – non-steroidal anti-inflammatory (anti-rheumatic) drugs; PBMC – peripheral blood mononuclear cell; 7-OH-MTX - 7-hydroxy-MTX (a major metabolite of MTX).

Class	Drug	Inhibition of ATIC activity	Refs.
DMARD	Methotrexate (MTX), amethopterin	MTX increases urinary AICA excretion in patients with leukemia. MTX-pentaglutamate is >2,000-fold more effective inhibitor of ATIC than MTX-monoglumate. MTX is a non-competitive inhibitor, while polyglutamylated MTX acts as a competitive inhibitor; polyglutamylated MTX inhibits chicken liver ATIC with K_i of 3.15 μM. MTX produces ZMP accumulation in cultured MCF-7 cells. MTX (in low concentrations) produces ZMP accumulation in malignant lymphoblasts. 7-OH-MTX inhibits human ATIC (from MCF-7 breast cancer cells) with K_i of 0.03-180 μM (K_i depends on the folate cofactor and glutamylation of 7-OH-MTX). MTX inhibits chicken liver ATIC with K_i of 0.11 mM. Treatment with MTX increases ZMP concentration in murine splenocytes (in vivo). MTX inhibits chicken liver ATIC with K_i of 133 μM. MTX increases urinary AICA excretion in patients with psoriasis. MTX increases urinary AICA excretion in patients with rheumatoid arthritis. MTX enhances ZMP accumulation in AICAR-treated MDA-MB-231 cells. MTX enhances ZMP accumulation in AICAR-treated skeletal muscle cells (in vitro).	(137, 138) (34, 35) (33) (139) (140) (141) (32) (58) (142) (69) (63) (29) (30)
	Sulfasalazine (SSZ), sulphasalazine, alazosulfapyridine, salicylazosulfapyridine, salazopyrin, azulfidine, sulfazine, azopyrin	Sulfasalazine inhibits chicken liver ATIC with K_i of 22 μM. Sulfasalazine increases ZMP content in murine splenocytes (in vivo). Azathioprine and its metabolite thionoosinic acid (TIMP) are competitive inhibitors of ATIC from chicken liver (K_i for azathioprine and TIMP are 120 and 39 μM, respectively) and mouse PBMCs (K_i for azathioprine and TIMP are 90 and 110 μM, respectively).	(32) (122) (143)
	Azathioprine, imuran		
NSAID	Aspirin	$K_i = 11$ mM (chicken liver ATIC)	(32)
	Ibuprofen	Chicken liver ATIC is inhibited by 14–22% with 2 mM ibuprofen. $K_i = 1.5$ mM (chicken liver ATIC)	(143) (32)
	Indomethacin	$K_i = 0.35$ mM (chicken liver ATIC)	(32)
	Mefenamic acid	$K_i = 3.8$ mM (chicken liver ATIC)	(32)
	Naproxen	Chicken liver ATIC inhibited by 32–46% with 2 mM naproxen. $K_i = 0.99$ mM (chicken liver ATIC)	(143) (32)
	Salicylic acid	$K_i = 1.1$ mM (chicken liver ATIC)	(32)
	Sulindac	$K_i = 0.13$ mM (chicken liver ATIC)	(32)
Folate	Leucovorin, folinic acid, 5-formyltetrahydrofolic acid	Leucovorin pentaglumate inhibits human ATIC (from MCF7 cells) with K_i of 3 μM.	(134)

Period Biol, Vol 121–122, No 3–4, 2020. 135
Table 3. Metabolic effects of antirheumatic drugs that inhibit ATIC. References are listed chronologically. Abbreviations: RA - rheumatoid arthritis; PsA - psoriatic arthritis; T2D - type 2 diabetes.

Drug	Metabolic effects	Refs.
Methotrexate (MTX)	MTX decreased glycogen content of the liver and glucose level and level of nonesterified fatty acids in the liver perfusate (experiment with isolated perfused rat liver).	(170)
	MTX activated glucose release from endogenous glycogen (glycogenolysis) (experiment with isolated perfused rat liver).	(171)
	MTX reduced risk of metabolic syndrome in RA patients older than 60 years.	(172)
	MTX did not significantly reduce HbA\(_1c\) concentration in diabetes patients with RA. (However, the study was not powered to detect a difference in MTX.)	(145)
	MTX treatment of RA or PsA was linked to reduced risk of developing diabetes.	(7)
	Obese mice treated with MTX displayed reduced serum levels of insulin and glucose, and an improvement of insulin sensitivity.	(173)
	MTX increased skeletal muscle GLUT4 mRNA expression and GLUT4 protein level and reduced serum glucose and insulin levels in diabetic (db/db) mice.	(174)
	Long-term MTX therapy was associated with a lower rate of dyslipidemia.	(175)
	MTX therapy and MTX-polyglutamates were associated with lower concentrations of HbA\(_1c\) in patients with RA.	(11)
	MTX reduced concentration of HbA\(_1c\) in patients with RA or PsA, but urinary AICAR or erythrocyte ZMP were not increased.	(96)
	MTX numerically (but non-significantly) reduced the risk of diabetes in RA patients.	(8)
	MTX in PsA patients did not appear to have hyperglycaemic effects (there were no significant changes between HbA\(_1c\) levels before and after MTX therapy).	(176)
Sulfasalazine (SSZ)	SZZ was linked to increased risk of hypoglycaemia and improved glycaemic control in T2D.	(169)
	SSZ prevented loss of retinal ganglion cells and degeneration of retinal capillaries in diabetic (streptozocin-treated) rats, indicating it protects against diabetic retinopathy.	(167)
	SSZ blocked development of tactile allodynia and ameliorated mechanical hyperalgesia in diabetic (streptozocin-treated) rats, indicating it protects against diabetic neuropathy.	(168)
Leucovorin	Leucovorin reduced glucose uptake and storage of glycogen in isolated rat diaphragm.	(177)
Naproxen	Naproxen reduced serum glucose levels and increased hepatic glycogen and serum insulin levels in normal and diabetic (streptozocin-treated) mice. Naproxen also reduced weight, serum glucose and resistin levels, while it elevated serum insulin, C-peptide, and adiponectin levels in obese mice.	(178)
Salicylate	Salicylate reduced glycosuria in a patient with diabetes mellitus.	(179)
	Salicylate reduced glycosuria and blood glucose concentrations in diabetic (alloxan-treated) rats.	(180)
	Salicylate reduced glycosuria and hyperglycaemia in rats treated with cortisone.	(181)
	Salicylate reduced liver glycogen content in mice.	(182)
	Salicylate caused hyperglycaemia in rats.	(183)
	Salicylate increased glucose uptake in perfused rat hearts.	(184)
	Salicylate increased plasma insulin levels and reduced plasma glucose levels in mild diabetic patients. Salicylate also improved glucose tolerance in these patients.	(185)
	Salicylate inhibited the development of diabetic retinopathy.	(167)
	Salicylate prevented fat-induced insulin resistance in rats: salicylate prevented lipid-induced decrease in whole body and skeletal muscle glucose uptake, skeletal muscle glycolysis and glycogen synthesis.	(186)
	Salicylate was shown to be a direct AMPK activator.	(31)
	Salsalate (a prodrug of salicylate) reduced HbA\(_1c\) in diabetic patients. Fasting glucose and triglyceride levels decreased with salsalate, but weight and low-density lipoprotein cholesterol levels increased.	(187)
	Salicylate activated AMPK, stimulated glucose uptake and decreased ATP, phosphocreatine, and glycogen contents in rat skeletal muscles.	(188)
	Salicylate uncoupled mitochondria and improved glucose homeostasis in mice independently of AMPK.	(81)
	Salicylate attenuated development of diabetic nephropathy in diabetic mice.	(189)
folic reductase, methylenetetrahydrofolate reductase, thymidylate synthase, as well as glycaminide ribonucleotide formyltransferase (GART) (34, 57). Notably, GART is an enzyme upstream of ATIC in the de novo pathway of purine synthesis (Figure 1), whose inhibition would therefore tend to suppress de novo synthesis, reduce endogenous intracellular ZMP levels (140), and AMPK activity. In its native (monoglutamate) form methotrexate is approximately equally effective inhibitor of GART and ATIC (34). Notably, GART is an enzyme upstream of ATIC in the de novo pathway of purine synthesis (Figure 1), whose inhibition would therefore tend to suppress de novo synthesis, reduce endogenous intracellular ZMP levels (140), and AMPK activity. In its native (monoglutamate) form methotrexate is approximately equally effective inhibitor of GART and ATIC (34). However, once inside the cell methotrexate is glutamylated and methotrexate-polyglutamates are much more effective ATIC inhibitors than GART inhibitors (34). Due to formation of methotrexate-polyglutamates, exposure to low concentrations of methotrexate primarily inhibits ATIC, thus leading to intracellular accumulation of endogenous ZMP (140). Consistent with this notion, low-dose methotrexate, which is used for treatment of rheumatic diseases, produces intracellular accumulation of ZMP in mice (58) and increases urinary excretion of ZMP metabolite AICA in subjects with rheumatoid or psoriatic arthritis (63, 69). In contrast, exposure to high concentrations of methotrexate inhibits both enzymes, which blocks ZMP synthesis and accumulation despite ATIC inhibition (140). Under these conditions, methotrexone alone does not activate AMPK, but it effectively enhances AMPK activation by exogenous AICAR (29, 30, 104).

Finally, it needs to be emphasized that methotrexate, even when used in low dosages, might lead to toxicity, including suppression of the bone marrow, loss of hair, and liver fibrosis (57, 195, 196). In addition, therapy with methotrexate may lead to a small increase in the risk of skin cancer (196). Although adverse effects can be controlled to some extent by administration of folic or folicin acid (leucovorin) (196–198), toxicity of methotrexate or related compounds would be a limiting factor in treatment of metabolic disorders. Nevertheless, patients who need methotrexate to treat their rheumatic disease might benefit from its metabolic effects.

CONCLUSIONS AND PERSPECTIVES

In summary, antirheumatic drugs that inhibit ATIC, such as methotrexate, might exert direct metabolic effects by promoting AMPK activation in skeletal muscle and other tissues. Activation of AMPK would tend to benefit patients with inflammatory rheumatic diseases by ameliorating metabolic dysregulation. Further, AMPK activation was linked to suppression of inflammation (199, 200), indicating AMPK might be important for anti-inflammatory and immunosuppressive effects of these drugs. Several effective anti-inflammatory and immunosuppressive drugs promote metabolic dysregulation, especially when used in combination (8, 10, 11). In contrast, antirheumatic drugs that also inhibit ATIC seem to be beneficial for controlling both inflammation and metabolic dysregulation. Development of new compounds with such characteristics might therefore be particularly relevant for patients with chronic inflammatory diseases and increased risk of metabolic dysregulation, including type 2 diabetes. Finally, since chronic low-grade inflammation plays a role in obesity and type 2 diabetes (18, 201), compounds that simultaneously oppose both pathological processes might also be useful for treatment of metabolic diseases.

Acknowledgements: S.P. and K.D. are supported by funding from the Slovenian Research Agency [grants P3-0043, J7-8276, and grant for bilateral cooperation between Republic of Slovenia and Republic of Croatia BI-HR/20-21-041]. A.V.C. is supported by funding from the Russian Science Foundation [grant No. 19-15-00118] and the Strategic Research Programme in Diabetes at Karolinska Institutet. S.P. and A.V.C. are also supported by the bilateral grant for research cooperation between Republic of Slovenia and Russian Federation funded by the Slovenian Research Agency [grant BI-RU/19-20-039].

REFERENCES

1. OECD/EU 2018 Health at a Glance: Europe 2018: State of Health in the EU Cycle. OECD Publishing. https://www.oecd-ilibrary.org/content/publication/health_glance_eur-2018-en
2. CHUNG CP, OESER A, SOLUS JF, GEBRETSADIK T, SHINTANI A, AVALOS I, SOKKA T, RAGGI P, PINCUS T, STEIN CM 2008 Inflammation-associated insulin resistance: differential effects in rheumatoid arthritis and systemic lupus erythematosus define potential mechanisms. Arthritis Rheum 58: 2105–2112. https://doi.org/10.1002/art.23600
3. SOLOMON DH, LOVE TJ, CANNING C, SCHNEEWEISS S 2010 Risk of diabetes among patients with rheumatoid arthritis, psoriatic arthritis and psoriasis. Ann Rheum Dis 69: 2114–2117. https://doi.org/10.1136/ard.2009.125476

4. CHUNG CP, OESE A, SOLUS JF, AVALOS I, GEBRETSADIK T, SHINTANI A, RAGGI P, SOKKA T, PINCUS T, STEIN CM 2008 Prevalence of the metabolic syndrome is increased in rheumatoid arthritis and is associated with coronary atherosclerosis. Atherosclerosis 196: 756–763. https://doi.org/10.1016/j.atherosclerosis.2007.01.004

5. CHUNG CP, AVALOS I, OSEAE A, GEBRETSADIK T, SHINTANI A, RAGGI P, STEIN CM 2007 High prevalence of the metabolic syndrome in patients with systemic lupus erythematosus: association with disease characteristics and cardiovascular risk factors. Ann Rheum Dis 66: 208–214. https://doi.org/10.1136/ard.2006.054973

6. FERGUSON LD, SIEBERT S, MCMINNES IB, SATTAR N 2019 Cardiometabolic comorbidities in RA and PsA: lessons learned and future directions. Nat Rev Rheumatol 15: 461–474. https://doi.org/10.1038/s41583-019-0256-0

7. SOLOMON DH, MASSAROTTI E, GARG R, LIU J, CANNING C, SCHNEEWEISS S 2011 Association between disease-modifying antirheumatic drugs and diabetes risk in patients with rheumatoid arthritis and psoriasis. JAMA 305: 2525–2531. https://doi.org/10.1001/jama.2011.5787

8. LILLEGRAVEN S, GREENBERG JD, REED GW, SAUNDERS K, CURTIS JR, HARROLD L, HOCHBERG MC, PAPPAS DA, KREMER JM, SOLOMON DH 2019 Immunosuppressive treatment and the risk of diabetes in rheumatoid arthritis. PLoS One 14: e0210459. https://doi.org/10.1371/journal.pone.0210459

9. RIDKER PM, EVERETT BM, PRADHAN A, MACFADDEN JG, SOLOMON DH, ZAHARRISE E, MAM V, HASAN A, ROSENBERG Y, ITURRIJA E, GUPTA M, TSGIOULIS M, VERMA S, CLEARFIELD M, LIBBY P, GOLDHABER SZ, SEAGLE R, OFORI C, SAKLAYEN M, BUTMAN S, SINGH N, LE M, BERTRAND O, JOHNSTON J, PAYNTER NP, GLYNN RJ, INVESTIGATORS C 2019 Long-dose metformin for the prevention of atherosclerotic events. N Engl J Med 380: 752–762. https://doi.org/10.1056/NEJMoa1809798

10. JENSEN T, HARTMANN A 2019 Post-transplant diabetes mellitus in patients with solid organ transplants. Nat Rev Endocrinol 15: 172–188. https://doi.org/10.1038/s41574-018-0137-7

11. DE ROTTE MC, DE JONG PH, DEN BOER E, PLUIJM SM, WOJTASZEWSKI JF, BIRK JB, FROSIG C, HOLTEN M, PIOTROWSKA K, ROSENBERG Y, ITURRIAGA E, GUPTA M, TSIGOULIS M, ROSENBERG G, KREMER JM, SOLOMON DH, LOVE TJ, CANNING C, SCHNEEWEISS S 2011 Effects of metformin on body weight and glycemic control in patients with type 2 diabetes. J Clin Pharmacol 51: 12–17. https://doi.org/10.1172/JCI29044

12. STEINBERG GR, CARLING D 2019 AMP-activated protein kinase: a target for drugs and natural products with effects on both diabetes and cancer. Diabetes 68: 2164–2172. https://doi.org/10.2337/db13-0368

13. MERRILL GF, KURTH EJ, HARDIE DG, WINDER WW 1997 AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Physiol 273: E1107–E1112. https://doi.org/10.1152/ajpendo.1997.273.6.E1107

14. FISHER JS, GAO J, HAN DH, HOLLOSZYO JO, NOLTE LA 2002 Activation of AMP kinase enhances sensitivity of muscle glucose transport to insulin. Am J Physiol Endocrinol Metab 282: E18–23. https://doi.org/10.1152/ajpendo.2002.282.1.E18

15. IGLESIAS MA, YE JM, FRANGIOUDAKIS G, SAHA AK, TOMAS M, RUDERMAN NB, COONEY GJ, KRAEGEN EW 2002 AICAR administration causes an apparent enhancement of muscle and liver insulin action in insulin-resistant high-fat-fed rats. Diabetes 51: 2886–2894. https://doi.org/10.2337/diabetes.51.10.2886

16. BHUL ES, JESSEN N, SCHMITZ O, PEDERSEN SB, PEDERSEN O, HOLMAN GD, LUND S 2001 Chronic treatment with 5-aminoimidazole-4-carboxamide-1-beta-D-ribonanoside increases insulin-stimulated glucose uptake and GLUT4 translocation in rat skeletal muscles in a fiber type-specific manner. Diabetes 50: 12–17. https://doi.org/10.2337/diabetes.50.1.12

17. POLD R, JENSEN LS, JESSEN N, BHUL ES, SCHMITZ O, FLYVBJERG A, FUJII N, GOODYEAR LJ, GOTTFREDSEN CF, BRAND CL, LUND S 2005 Long-term AICAR administration and exercise prevents diabetes in ZDF rats. Diabetes 54: 928–934. https://doi.org/10.2337/diabetes.54.4.928

18. BHUL ES, JESSEN N, POLD R, LEDET T, FLYVBJERG A, PEDERSEN SB, PEDERSEN O, SCHMITZ O, LUND S 2002 Long-term AICAR administration reduces metabolic disturbances and lowers blood pressure in rats displaying features of the insulin resistance syndrome. Diabetes 51: 2199–2206. https://doi.org/10.2337/diabetes.51.7.2199

19. SCOTT JW, VAN DENDEREN BJ, JORGENSEN SB, HONYMAN JE, STEINBERG GR, OAKHILL JS, ISELITI TJ, KOAY A, GOOLEY PR, STAPLETON D, KEMP BE 2008 Thienopyridine drugs are selective activators of AMP-activated protein kinase beta1-containing complexes. Chem Biol 15: 1220–1230. https://doi.org/10.1016/j.chembiol.2008.10.005

20. WOJATZIEWSKI JF, BIRK JB, FROGIS C, HOLTEN M, PI-LEGAARD H, DELA F 2005 5’AMP-activated protein kinase expression in human skeletal muscle: effects of strength training and type 2 diabetes. J Physiol 564: 563–573. https://doi.org/10.1113/jphysiol.2005.082669

21. TREEBACK JT, BIRK JB, HANSEN BF, OLESEN GS, WOJATZIEWSKI JF 2009 A-769662 activates AMPK beta1-containing complexes but induces glucose uptake through a PI3-kinase-dependent pathway in mouse skeletal muscle. Am J Physiol Cell Physiol 297: C1041–C1052. https://doi.org/10.1152/ajpcell.00051.2009

22. DIXON R, GOURZIS J, MCDERMOTT D, FUJITAKI J, DEWLAND P, GRUBER H, ROYDHOUSE P 1991 AICA-riboside: safety, tolerance, and pharmacokinetics of a novel adenosine-regulating agent. J Clin Pharmacol 31: 342–347. https://doi.org/10.1172/JCP1991.31.5.342

23. BECKERS A, ORGANE S, TIMMERMANS L, VANDER BECKERS A, ORGANE S, TIMMERMANS L, VANDER BECKERS A, ORGANE S, TIMMERMANS L, VANDER
5-aminoimidazole-4-carboxamide riboside. Mol Cancer Ther 5: 2211-2217. https://doi.org/10.1158/1535-7163.MCT-06-0001

30. PIRKMAJER S, KULKARNI S S, TOM RZ, ROSS FA, HAWLEY SA, HARDIE DG, ZIERATH JR, CHIBALIN AV 2015 Methotrexate promotes glucose uptake and lipid oxidation in skeletal muscle via AMPK activation. Diabetes 64: 360–369. https://doi.org/10.2337/db14-0508

31. HAWLEY SA, FULLERTON MD, ROSS FA, SCHERTZ JD, CHEVTZOFF C, WALKER KJ, PEGGIE MW, ZIBROVA D, GREEN KA, MUSTARD KJ, KEMP BE, SAKAMOTO K, STEINBERG JR, HARDIE DG 2012 The ancient drug salicylate directly activates AMP-activated protein kinase. Science 336: 918–922. https://doi.org/10.1126/science.1215327

32. BAGGOTT JE, MORGAN SL, HA T, VAUGHN WH, HINE RJ 1992 Inhibition of folate-dependent enzymes by non-steroidal anti-inflammatory drugs. Biochem J 282 (Pt 1): 197–202. https://doi.org/10.1042/bj2820197

33. BAGGOTT JE, VAUGHN WH, HUDSON BB 1986 Inhibition of 5-aminoimidazole-4-carboxamide ribotidase transformylase, adenosine deaminase and 5'-adenylate deaminase by polyglutamates of methotrexate and oxidized folates and by 5-aminoimidazole-4-carboxamide riboside and ribotide. Biochem J 236: 193–200. https://doi.org/10.1042/bj2360193

34. CHABNER BA, ALLEGRA CJ, CURT GA, CLENDEINN NJ, BARAM J, KOIZUMI S, DRAKE JC, JOLIVET J 1985 Polyglutamation of methotrexate. Is methotrexate a prodrug? J Clin Invest 76: 907–912. https://doi.org/10.1172/JCI112208

35. ALLEGRA CJ, DRAKE J, JOLIVET J, CHABNER BA 1985 Inhibition of phosphoribosylaminoimidazolecarboxaminotransformylase by methotrexate and dihydrofolic acid polyglutamates. Proc Nat Acad Sci USA 82: 4881-4885. https://doi.org/10.1073/pnas.82.15.4881

36. ASBY DJ, CUDA F, BEYAERT M, HOUGHTON FD, CAGAMPANG FR, TAVASSOLI LA 2015 AMPK activation via modulation of de novo purine biosynthesis with an inhibitor of ATIC homodimerization. Chem Biol 22: 838–848. https://doi.org/10.1016/j.chembiol.2015.06.008

37. RACANELLI AC, ROTHBART SB, HEYER CL, MORAN RG 2009 Therapeutics by cytotoxic metabolite accumulation: pemetrexed causes ZMP accumulation, AMPK activation, and mammalian target of rapamycin inhibition. Cancer Res 69: 5467–5474. https://doi.org/10.1158/0008-5472.CAN-08-4979

38. HARDIE DG, ROSS FA, HAWLEY SA 2012 AMP-activated protein kinase: a target for drugs both ancient and modern. Chem Biol 19: 1222–1236. https://doi.org/10.1016/j.chembiol.2012.08.019

39. CARLING D, ZAMMIT VA, HARDIE DG 1987 A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEMS Lett 223: 217–222. https://doi.org/10.1016/0168-1605(87)80292-2

40. CARLING D, CLARKE PR, ZAMMIT VA, HARDIE DG 1989 Purification and characterization of the AMP-activated protein kinase. Copurification of acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA reductase kinase activities. Eur J Biochem 186: 129–136. https://doi.org/10.1111/j.1432-1327.1989.tb15186.x

41. HARDIE DG 2018 Keeping the home fires burning: AMP-activated protein kinase. J R Soc Interface 15: https://doi.org/10.1098/rsif.2017.0774

42. HARDIE DG, ROSS FA, HAWLEY SA 2012 AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13: 251–262. https://doi.org/10.1038/nrm3311

43. GOWANS GJ, HAWLEY SA, ROSS FA, HARDIE DG 2013 AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metab 18: 556–566. https://doi.org/10.1016/j.cmet.2013.08.019

44. XIAO B, SANDERS MJ, UNDERWOOD E, HEATH R, MAYER FV, CARMENA D, JING C, WALKER PA, ECCLESTON JF, HAIRE LF, SAHU P, HOWELL SA, AASLAND R, MARTIN SR, CARLING D, GAMBLIN SJ 2011 Structure of mammalian AMPK and its regulation by ADP. Nature 472: 230–233. https://doi.org/10.1038/nature09932

45. DAVIES SP, HELPS NR, COHEN PT, HARDIE DG 1995 5'-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase 2C alpha and native bovine protein phosphatase-2A. FEMS Lett 377: 421–425. https://doi.org/10.1016/0014-5793(95)01368-7

46. WEEKEJS J, HAWLEYSA, CORTON J, SHUGAR D, HARDIE DG 1994 Activation of rat liver AMP-activated protein kinase by kinase in a purified, reconstituted system. Effects of AMP and AMP analogues. Eur J Biochem 219: 751–757. https://doi.org/10.1111/j.1432-1033.1994.tb18554.x

47. HAWLEY SA, ROSS FA, CHEVTZOFF C, GREEN KA, EVANS A, FOGARTY S, TOWLER MC, BROWN LJ, OGUNBAYO OA, EVANS AM, HARDIE DG 2010 Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab 11: 554–565. https://doi.org/10.1016/j.cmet.2010.04.001

48. HAWLEY SA, PAN DA, MUSTARD KJ, ROSS L, BAIN J, EDELMAN AM, FRENGUELLI BG, HARDIE DG 2005 Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2: 9–19. https://doi.org/10.1016/j.cmet.2005.05.009

49. HURLEY RL, ANDERSON KA, FRANZONJE JM, KEMP BE, MEANS AR, WITTERS LA 2005 The Ca2+/calmodulin-dependent protein kinase enzymes are AMP-activated protein kinase isoforms. J Biol Chem 280: 29060–29066. https://doi.org/10.1074/jbc.M503824200

50. WOODS A, DICKERSON K, HEATH R, HONG SP, MOMICILOVIC M, JOHNSTONE SR, CARLSON M, CARLING D 2005 Ca2+/calmodulin-dependent protein kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2: 21–33. https://doi.org/10.1016/j.cmet.2005.06.005

51. LIN SC, HARDIE DG 2017 AMPK: Sensing Glucose as well as cellular energy status. Cell Metab https://doi.org/10.1016/j.cmet.2017.10.009

52. ZHANG CS, HAWLEY SA, ZONG Y, LI M, WANG Z, GRAY A, MA T, CUI J, FENG JW, ZHU M, WU YQ, LI TY, YE Z, LIN SY, YIN H, PIAO HL, HARDIE DG, LIN SC 2017 Fructose-1,6-biphosphate and aldolase mediate glucose sensing by AMPK. Nature 548: 112–116. https://doi.org/10.1038/nature23275

53. CORTON JM, GILLESPIE JG, HAWLEY SA, HARDIE DG 1995 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? Eur J Biochem 229: 558–565. https://doi.org/10.1111/j.1432-1327.1995.tb20498.x

54. DAY P, SHARFF A, PARRA I, CLEARYS A, WILLIAMS M, HORDER S, NAR H, REDEMANN N, TICKLE I, YON J 2007 Structure of a CBS-domain pair from the regulatory gamma1 subunit of human AMPK in complex with AMP and ZMP. Acta Crystallogr D Biol Crystallogr 63: 587–596. https://doi.org/10.1107/S0907444907009110

55. GOMEZ-GALENO JE, DANG Q, NGUYEN TH, BOYER SH, GROTE MP, SUN Z, CHEN M, CRAIGO WA, VAN POELJE PD, MACKENNA DA, CABLE EE, ROLZIN PA, FINN PD, CHI B, LIN SY, PIAO HL, HARDIE DG, LIN SC 2010 A Potent and selective amp activator that inhibits de novo lipogen-
Klemen Dolinar et al.

ATIC between antirheumatic drugs and muscle energy metabolism

SIDI Y, MITCHELL B 1985 Z-nucleotide accumulation in erythrocytes from Lesch-Nyhan patients. J Clin Invest 76: 2416–2419. https://doi.org/10.1172/JCI112255

COOL B, ZINKER B, CHIU W, KIFLE L, CAO N, PERHAM M, DICKINSON R, ADLER A, GAGNE G, IYENGAR R, ZHAO G, MARSH K, KYM P, JUNG P, CAMPH S, FREVERT E 2006 Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 3: 403–416. https://doi.org/10.1016/j.cmet.2006.05.005

SANDERS MJ, ALI ZS, HEGARTY BD, HEATH R, SNOWDEN MA, CARLING D 2007 Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-760662, a member of the thienopyridine family. J Biol Chem 282: 3259–3254. https://doi.org/10.1074/jbc.M70543200

XIAO B, SANDERS MJ, CARMENA D, BRIGHT NJ, HAIRE LF, UNDERWOOD E, PATEL BR, HEATH RB, WALKER PA, HALLEN S, GIORDANETTO F, MARTIN SR, CARLING D, GAMBLIN SJ 2013 Structural basis of AMPK regulation by small molecule activators. Nat Commun 4: 3017. https://doi.org/10.1038/ncomms10912

AMYRIS RW, GUAN HP, EHRHART J, PETROV A, PRAHALADA S, TOZZO E, YANG X, KURTZ MM, TRUJILLO M, GONZALES TROTTER D, FENG D, XU S, EIERMANN G, HOLAHAN MA, RUBINS D, CONARELLO S, NIU X, SOUZA S C, MILLER C, LIU J, LI K, FENG W, LI Y, PAINTER RE, MILLIGAN JA, HE H, LIU F, OGAWSA, WISNIEWSKI D I, ROHM RJ, WANG L, BUNZEL M, QIAN Y, ZHU W, WANG H, BENNET B, LA FRANCO SCHEUICH L, FERNANDEZ GE, LI C, KLIMAS M, ZHOU G, VAN HEEMK E, BITTU T, WEBER A, KELLEY DE, THORNBERY N, ERJON MD, KEMP D M, SEBHAT IK 2017 Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy. Science 357: 507–511. https://doi.org/10.1126/science.aah5582

COKORINOS EC, DEMCOR EL, REYES AR, ALBUQUERQUE B, KJOSTEDT R, JORGENSEN NO, TRAN JL, JATKAR A, CIALDEA K, ESQUEJO RM, MIJENSEN J, CALABRESE MF, CORDES J, MOCCIA R, TESS D, SALATTO CT, COSKAN RM, OPSAH LC, FLYNN D, BLATNIK M, LI W, KINDE T, FORETZ M, VIOLET B, WARD J, KURUMBAIL RG, KALGUTKAR AS, WOJTASZEWSKI JF, CAMERON KO, MILLER RA 2017 Activation of Skeletal Muscle AMPK promotes glucose disposal and glucose lowering in non-human primates and mice. Cell Metab 25: 1147–1159 e1110. https://doi.org/10.1016/j.cmet.2017.04.010

ZHOU G, MYERS R, LIY, CHEN Y, SHEN X, FENYK-MELODY J, WU M, VENTRE J, DOEBBER T, FUJI N, MUSI N, HIRSHMAN MF, GOODYEAR L, MOLLER DE 2001 Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108: 1167–1174. https://doi.org/10.1172/JCI13505

OWEN MR, DORAN E, HALESTRAP AP 2000 Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J 348 (Pt 3): 607–604. https://www.ncbi.nlm.nih.gov/pubmed/10839993

EL-MIR MY, NOGUEIRA V, FONTAINE E, AVERET N, RIGOLET M, LEVERVE X 2000 Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 275: 223–228. https://doi.org/10.1074/jbc.275.1.223

HAWLEY SA, FORD RJ, SMITH BK, GOWANS GJ, MANNINCI SJ, PITT RD, DAY EA, SALT IP, STEINBERG GR, HARDIE DG 2016 The Na+glucose cotransporter inhibitor canagliflozin activates AMPK by inhibiting mitochondrial function and increasing cellular AMP levels. Diabetes 65: 2784–2794. https://doi.org/10.2337/db16-0058

69. SIDY Y, MITCHELL B 1985 Z-nucleotide accumulation in erythrocytes from Lesch-Nyhan patients. J Clin Invest 76: 2416–2419. https://doi.org/10.1172/JCI112255

70. COOL B, ZINKER B, CHIU W, KIFLE L, CAO N, PERHAM M, DICKINSON R, ADLER A, GAGNE G, IYENGAR R, ZHAO G, MARSH K, KYM P, JUNG P, CAMPH S, FREVERT E 2006 Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 3: 403–416. https://doi.org/10.1016/j.cmet.2006.05.005

71. SANDERS MJ, ALI ZS, HEGARTY BD, HEATH R, SNOWDEN MA, CARLING D 2007 Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-760662, a member of the thienopyridine family. J Biol Chem 282: 3259–3254. https://doi.org/10.1074/jbc.M70543200

72. XIAO B, SANDERS MJ, CARMENA D, BRIGHT NJ, HAIRE LF, UNDERWOOD E, PATEL BR, HEATH RB, WALKER PA, HALLEN S, GIORDANETTO F, MARTIN SR, CARLING D, GAMBLIN SJ 2013 Structural basis of AMPK regulation by small molecule activators. Nat Commun 4: 3017. https://doi.org/10.1038/ncomms10912

73. AMYRIS RW, GUAN HP, EHRHART J, PETROV A, PRAHALADA S, TOZZO E, YANG X, KURTZ MM, TRUJILLO M, GONZALES TROTTER D, FENG D, XU S, EIERMANN G, HOLAHAN MA, RUBINS D, CONARELLO S, NIU X, SOUZA S C, MILLER C, LIU J, LI K, FENG W, LI Y, PAINTER RE, MILLIGAN JA, HE H, LIU F, OGAWSA, WISNIEWSKI DI, ROHM RJ, WANG L, BUNZEL M, QIAN Y, ZHU W, WANG H, BENNET B, LA FRANCO SCHEUICH L, FERNANDEZ GE, LI C, KLIMAS M, ZHOU G, VAN HEEMK E, BITTU T, WEBER A, KELLEY DE, THORNBERY N, ERJON MD, KEMP D M, SEBHAT IK 2017 Systemic pan-AMPK activator MK-8722 improves glucose homeostasis but induces cardiac hypertrophy. Science 357: 507–511. https://doi.org/10.1126/science.aah5582

74. COKORINOS EC, DEMCOR EL, REYES AR, ALBUQUERQUE B, KJOSTEDT R, JORGENSEN NO, TRAN JL, JATKAR A, CIALDEA K, ESQUEJO RM, MIJENSEN J, CALABRESE MF, CORDES J, MOCCIA R, TESS D, SALATTO CT, COSKAN RM, OPSAH LC, FLYNN D, BLATNIK M, LI W, KINDE T, FORETZ M, VIOLET B, WARD J, KURUMBAIL RG, KALGUTKAR AS, WOJTASZEWSKI JF, CAMERON KO, MILLER RA 2017 Activation of Skeletal Muscle AMPK promotes glucose disposal and glucose lowering in non-human primates and mice. Cell Metab 25: 1147–1159 e1110. https://doi.org/10.1016/j.cmet.2017.04.010
AMPK in skeletal muscle and cancer cells. Am J Physiol Cell Physiol https://doi.org/10.1152/ajpcell.00311.2017

105. CESCHIN J, SAINT-MARC C, LAPORTE J, LABRIET A, PHILIPPE C, MOENNER M, Daignan-Fornier B, PINSON B 2014 Identification of yeast and human 5-aminomimidazole-4-carboxamide–1-beta-d-ribofuranoside (AICAr) transporters. J Biol Chem 289: 16844–16854. https://doi.org/10.1074/jbc.M114.551192

106. FLAKS JG, ERWIN MJ, BUCHANAN JM 1957 Biosynthesis of the purines. XVI. The synthesis of adenine 5-phosphate and 5-aminooimidazolecarboxamide ribotide by a nucleotide pyrophosphorylase. J Biol Chem 228: 201–213. https://www.ncbi.nlm.nih.gov/pubmed/13475309

107. VINCENT MF, BONTEMPS F, VAN DEN BERGHE G 1996 Substrate cycling between 5-aminooimidazolecarboxamide riboside and its monophosphate in isolated rat hepatocytes. Biochem Pharmacol 52: 999–1006. https://doi.org/10.1016/0006-2925(96)00041-3

108. SABINA RL, HOLMES EW, BECKER MA 1984 The enzymatic synthesis of 5-aminooimidazolecarboxamide riboside triphosphate (ZTP). Science 223: 1193–1195. https://doi.org/10.1126/science.6199843

109. MCGEEER PL, MCGEEER EG, WOOD AJ 1961 Excretion of 4-aminooimidazolecarboxamide by various animal species. Can J Comp Med Vet Sci 25: 211–212. https://www.ncbi.nlm.nih.gov/pubmed/17649319

110. FLAKS JG, ERWIN MJ, BUCHANAN JM 1957 Biosynthesis of the purines. XVIII. 5-Amino-1-ribosyl-4-imidazolecarboxamide 5-phosphate transformylase and inosinase. J Biol Chem 229: 603–612. https://www.ncbi.nlm.nih.gov/pubmed/13502325

111. HARTMAN SC, BUCHANAN JM 1959 Biosynthesis of the purines. XXVI. The identification of the formyl donors of the transformylase reactions. J Biol Chem 234: 1812–1816. https://www.ncbi.nlm.nih.gov/pubmed/13672969

112. NI L, GUAN K, ZALKIN H, DIXON JE 1991 De novo purine nucleotide biosynthesis: cloning, sequencing and expression of a chicken PurH CDNA encoding 5-aminooimidazole-4-carboxamide-ribonucleotide transformylase transformylase-IMP cyclohydrolase. Gene 106: 197–205. https://doi.org/10.1016/0378-1119(91)90199-I

113. YAMAUCHI M, SEKI N, MITA K, SAITO T, TSUJI S, HONGO E, MORIMYO M, SHIOMI T, KOYAMA H, AYUSAWA K, ZIKANOVA M, KMOCH S 2012 Mutations of ATIC and ADSL affect purinosome assembly in cultured skin fibroblasts from patients with AICA-ribosiduria and ADSL deficiency. Hum Mol Genet 21: 1534–1543. https://doi.org/10.1093/hmg/ddr591

114. BARESOVA V, SKOPOVA V, SIKORA J, PATTEDON D, SOVOVA J, ZIKANOVA M, KMOCH S 2012 Structural insights into the avian AICAR transformylase mechanism. Chemistry 4: 15505–15513. https://doi.org/10.1021/bi020505x

115. BARESOVA V, SKOPOVA V, SIKORA J, PATTERSON D, SOVOVA J, ZIKANOVA M, KMOCH S 2012 Structural insights into the avian AICAR transformylase mechanism. Biochemistry 43: 1171–1183. https://doi.org/10.1021/bi030162i

116. GADANGI P, LONGAKER M, NAIME D, LEVIN R, RECHT PA, MONTESINOS MC, BUCKLEY MT, CARLIN G, CRONSTEIN BN 1996 The anti-inflammatory mechanism of sulfasalazine is related to adenosine release at inflamed sites. J Immunol 156: 1937–1941. https://www.ncbi.nlm.nih.gov/pubmed/8999047

117. RAY EA, MOROSON BA, BEARDSLEY GP 1996 The human purH gene product, 5-aminooimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrase. Cloning, sequencing, expression, purification, kinetic analysis, and domain mapping. J Biol Chem 271: 2225–2233. https://doi.org/10.1074/jbc.271.4.2225

118. SUGITA T, AYA H, UENO M, ISHIZUKA T, KAWASHIMA K 1997 Characterization of molecularly cloned human 5-aminooimidazole-4-carboxamide ribonucleotide transformylase. J Biochem 122: 309–313. https://doi.org/10.1093/oxfordjournals.jbchem.a021754

119. GREASELEY SE, HORTON P, RAMCHARAN J, BEARDSLEY GP, BENVICIC SJ, WILSON IA 2001 Crystal structure of a bifunctional transformylase and cyclohydrolyase enzyme in purine biosynthesis. Nat Struct Biol 8: 402–406. https://doi.org/10.1038/8755

120. CHEONG GG, WOLAN DW, GREASELEY SE, HORTON PA, BEARDSLEY GP, WILSON IA 2004 Crystal structures of human bifunctional enzyme aminoimidazole-4-carboxamide ribonucleotide transformylase/IMP cyclohydrolyase in complex with potent sulfonyl-containing antifolates. J Biol Chem 279: 18034–18045. https://doi.org/10.1074/jbc.M313691200

121. Xu L, Chong Y, Wang W, Donofrio A, Amore K, Beardsley G, Li C, Olson AJ, Boger DL, Wilson IA 2007 Structure-based design, synthesis, evaluation, and crystal structures of transition state analogue inhibitors of inosine monophosphate cyclohydrolyase. J Biol Chem 282: 13033–13046. https://doi.org/10.1074/jbc.M607292200

122. Xu L, Li C, Olson AJ, Wilson IA 2004 Crystal structure of avian aminoimidazole-4-carboxamide ribonucleotide transformylase in complex with a novel non-folate inhibitor identified by virtual ligand screening. J Biol Chem 279: 50555–50565. https://doi.org/10.1074/jbc.M406801200

123. Wolan DW, Greasley SE, Beardsley GP, Wilson IA 2002 Structural insights into the avian AICAR transformylase mechanism. Biochemistry 41: 15505–15513. https://doi.org/10.1021/bi020505x

124. Bonsdorff T, Gautier M, Farstad W, Ronningen K, Lingaas F, Olsaker I 2004 Mapping of the bovine genes of the de novo AMP synthesis pathway. Anim Genet 35: 438–444. https://doi.org/10.1111/j.1365-2052.2004.01201.x

125. Brosi S, Boer P, Zoref-Shani E, Spirling O 1982 De novo purine synthesis in skeletal muscle. Biochim Biophys Acta 714: 181–183. https://doi.org/10.1016/0006-2952(82)90143-x

126. Zoref-Shani E, Shainberg A, Spirling O 1982 Characterization of purine nucleotide metabolism in primary rat muscle cultures. Biochim Biophys Acta 716: 324–330. https://doi.org/10.1016/0006-2952(82)90023-x

127. Zoref-Shani E, Shainberg A, Spirling O 1987 Pathways of adenine nucleotide catabolism in primary rat muscle cultures. Biochim Biophys Acta 926: 287–295. https://doi.org/10.1016/0006-2952(87)90215-7

128. Zoref-Shani E, Shainberg A, Spirling O 1983 Alterations in purine nucleotide metabolism during muscle differentiation in vitro. Biochim Biophys Acta Commun 116: 507–512. https://doi.org/10.1016/0006-291x(83)90552-1

129. Sheehan TG, Tully ER 1983 Purine biosynthesis de novo in rat skeletal muscle. Biochim Biophys Acta 726: 605–610. https://doi.org/10.1016/0006-2952(83)90552-1

130. Natsumeda Y, Prajda A, Donohue JP, Golver JL, Weber G 1984 Enzymic capacities of purine de novo and salvage pathways for nucleotide synthesis in normal and neoplastic tissues. Cancer Res 44: 2475–2479. https://www.ncbi.nlm.nih.gov/pubmed/6327016

131. Tullson PC, John-Alder HB, Hood DA, Terjung RL 1988 De novo synthesis of adenine nucleotides in different
skeletal muscle fiber types. Am J Physiol 255; C271–277. https://doi.org/10.1152/ajpcell.1988.255.3.C271

132. BRAULT JJ, TERJUNG RL 2001 Purine salvage to adenine nucleotides in different skeletal muscle fiber types. J Appl Physiol (1985) 91: 231–238. https://doi.org/10.1152/jappl.2001.91.1.231

133. HELLSTEN Y, RICHTER EA, KIENJS B, BANGSO B 1999 AMP deaminase and purine in human skeletal muscle during and after intense exercise. J Physiol 520 Pt 3: 909–920. https://doi.org/10.1113/jphysiol.2001.013767

134. BERTRAND R, JOLIVET J 1989 Methenyltetrahydrofolate synthetase prevents the inhibition of phosphoribosyl 5-aminoimidazole 4-carboxamide ribonucleotide formyltransferase by 5-formyltetrahydrofolate polyglutamates. J Biol Chem 264: 8843–8846. https://www.ncbi.nlm.nih.gov/pubmed/2470749

135. CRONSTEN BN 1995 The antirheumatic agents sulphasalazine and methotrexate share an anti-inflammatory mechanism. Br J Rheumatol 34 Suppl 2; 30–32. https://www.ncbi.nlm.nih.gov/pubmed/8535646

136. MORABITO L, MONTESINOS MC, SCHREIBMAN DM, BALTER L, THOMPSON LF, RESTA R, CARLIN G, HUIE MA. CRONSTEN BN 1998 Methotrexate and sulphasalazine promote adenosine release by a mechanism that requires ecto-5'-nucleotidase-mediated conversion of adenosine nucleotides. J Clin Invest 101: 295–300. https://doi.org/10.1172/JCI1554

137. LULENSKI G, DONALDSON M, NEWCOMBE D 1970 Uinary aliminoimidazolcarboxamide levels in children with acute leukemia. Pediatrics 45: 983–995. https://www.ncbi.nlm.nih.gov/pubmed/5268251

138. LUBHY AL, COOPERMAN JM 1962 Aminoimidazolcarboxamide excretion in vitamin-B12 and folic-acid deficiencies. Lancet 2: 1381–1382. https://doi.org/10.1016/S0140-6736(62)90151-6

139. ALLEGRA CJ, FINE RL, DRAKE JC, CHABNER BA 1986 The effect of methotrexate on intracellular folate pools in human MCF-7 breast cancer cells. Evidence for direct inhibition of purine synthesis. J Biol Chem 261: 6478–6485. https://www.ncbi.nlm.nih.gov/pubmed/3700401

140. BOKKERINK JP, BAKKER MA, HULSCHER TW, DE ABREU RA, SCHREITHEL ED 1988 Purine de novo synthesis as the basis of synergism of methotrexate and 6-mercaptopurine in human malignant lymphoblasts of different lineages. Biochem Pharmacol 37: 2321–2327. https://doi.org/10.1016/0006-2952(88)90358-9

141. SHOLAR PW, BARAM J, SEITHER R, ALLEGRA CJ 1988 Inhibition of folate-dependent enzymes by 7-OH-methotrexate. Biochem Pharmacol 37: 3531–3534. https://doi.org/10.1016/0006-2952(88)90709-5

142. BAGGOTT JE, MORGAN SL, VAUGHN WH 1994 Differences in methotrexate and 7-hydroxy methotrexate inhibition of folate-dependent enzymes of purine nucleotide biosynthesis. Biochem J 300 (Pt 3): 627–629. https://doi.org/10.1042/bj3000627

143. HA T, MORGAN SL, VAUGHN WH, ETO I, BAGGOTT JE 1990 Detection of inhibition of 5-aminoimidazole-4-carboxamide ribotide transformylase by thioinosinic acid and azathioprine by a new colorimetric assay. Biochem J 272: 339–342. https://doi.org/10.1042/bj2720339

144. SVENSON KL, POLLARE T, LITHELL H, HALLGREN R 1988 Impaired glucose handling in active rheumatoid arthritis: relationship to peripheral insulin resistance. Metabolism 37: 125–130. https://doi.org/10.1016/0026-0495(89)90005-1

145. REKEDAL LR, MASSAROTTI E, GARG R, BHAITA R, GLEESON T, LU B, SOLOMON DH 2010 Changes in glycosylated hemoglobin after initiation of hydroxychloroquine or methotrexate treatment in diabetes patients with rheumatic diseases. Arthritis Rheum 62: 3569–3573. https://doi.org/10.1002/art.27703
Klemen Dolinar et al. ATIC between antirheumatic drugs and muscle energy metabolism

for treatment of SARS-CoV-2 (COVID-19). Open Forum Infect Dis 7: ofaa130. https://doi.org/10.1093/ofid/ofaa130

155. GELERIS J, SUN Y, PLATT J, ZUCKER J, BALDWIN M, HRIPCSAK G, LABELLA A, MANSON D, KUBIN C, BARR RG, SOBIESZCZYK ME, SCHLAGER NW 2020 Observational study of hydroxychloroquine in hospitalized patients with Covid-19. N Engl J Med 82:241–2418. https://doi.org/10.1056/NEJMoa2021410

156. MEHRA MR, RUSCHITZKA F, PATEL AN 2020 Retraction: Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet https://doi.org/10.1016/S0140-6736(20)31324-6

157. MEHRA MR, DESAI SS, RUSCHITZKA F, PATEL AN 2020 Retracted: Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: a multinational registry analysis. Lancet https://doi.org/10.1016/S0140-6736(20)313180-6

158. REMPENAULT C, COMBE B, BARNETCHE T, GAUJOUX-VIALA C, LUKAS C, MOREL J, HUA C 2018 Metabolic and cardiovascular benefits of hydroxychloroquine in patients with rheumatoid arthritis: a systematic review and meta-analysis. Ann Rheum Dis 77: 98–103. https://doi.org/10.1136/annrheumdis-2017-211836

159. SCHREZENMEIER E, DORNER T 2020 Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol 16: 155–166. https://doi.org/10.1038/s41584-020-0372-x

160. THIERSCH JB 1949 Bone-marrow changes in man after treatment with aminopterin, amethopterin, and aminoptanol: With special reference to megaloblastosis and tumor remission. Cancer 2: 877–883. https://doi.org/10.1002/1097-0142(194909)2:5<877::AID-CNCR28200205>3.0.CO;2-0

161. CREWS KR, LIU T, RODRIGUEZ-GALINDO C, TAN M, MEYER WH, PANETTA JC, LINK MP, DAW NC 2004 High-dose methotrexate pharmacokinetics and outcome of children and young adults with osteosarcoma. Cancer 100: 1724–1733. https://doi.org/10.1002/cncr.20152

162. WEINBLATT ME, COBLYN JS, FOX DA, FRASER PA, HOLDWORTH DE, GLASS DN, TRENTHAM DE 1985 Efficacy of low-dose methotrexate in rheumatoid arthritis. N Engl J Med 312: 818–822. https://doi.org/10.1056/NEJM198503283121303

163. COMBE B, EDNO L, LAFFORGUE P, BOLOGNA C, BERNAUD JC, ACQUAVIVA P, SANY J, BRESSOLLE F 1995 Total and free methotrexate pharmacokinetics, with and without piroxicam, in rheumatoid arthritis patients. Br J Rheumatol 34: 421–428. http://www.ncbi.nlm.nih.gov/pubmed/7788170

164. CHLADEK J, SIMKOVA M, VANECOVA J, HROCH M, CHLADKOVÁ J, MARTINKOVA J, VAVROVA J, BERANEK M 2008 The effect of folic acid supplementation on the pharmacokinetics and pharmacodynamics of oral methotrexate during the remission-induction period of treatment for moderate-to-severe plaque psoriasis. Eur J Clin Pharmacol 64: 347–355. https://doi.org/10.1007/s00228-007-0442-x

165. HIRAGA Y, YUHKI Y, ITOH K, TADANO K, TAKAHASHI Y, MUKAI M 2004 Pharmacokinetics and efficacy of low-dose methotrexate in patients with rheumatoid arthritis. Mod Rheumatol 14: 135–142. https://doi.org/10.1016/j.mreuma.2004.05.004

166. CRONSTEIN BN, EBERLE MA, GRUBER HE, LEVIN RI 1991 Methotrexate inhibits neutrophil function by stimulating adenosine release from connective tissue cells. Proc Natl Acad Sci USA 88: 2441–2445. https://doi.org/10.1073/pnas.88.6.2441

167. ZHENG L, HOWELL SJ, HATALA DA, HUANG K, KERN TS 2007 Salicylate-based anti-inflammatory drugs inhibit the early lesion of diabetic retinopathy. Diabetes 56: 337–345. https://doi.org/10.2337/db06-0789

168. BERTI-MATTERA LN, KERN T S, SIEGEL RE, NEMET I, MITCHELL R 2008 Sulfasalazine blocks the development of tactile allodynia in diabetic rats. Diabetes 57: 2801–2808. https://doi.org/10.2337/db07-1274

169. HAAS RM, LI P, CHU J W 2005 Glucose-lowering effects of sulfasalazine in type 2 diabetes. Diabetes Care 28: 2238–2239. https://doi.org/10.2337/diacare.28.3.2238

170. LEMBERG A, DAUNAS JA, BRODOFF BB, PENHOS JC, SODERO EC, WHITE R 1967 Action of methotrexate on metabolism of lipids and carbohydrates of the perfused isolated liver. Cancer 20: 1668–1672. https://www.ncbi.nlm.nih.gov/pubmed/6058175

171. DE OLIVEIRA MB, IISHII EL, YAMAMOTO NS, BRACHT AM, CAMPELLO ADE P, KLUPPEL ML, BRACHT A 1986 Methotrexate increases glycogenolysis in the intact rat liver. Res Commun Chem Physiol Pharmacol 53: 173–181. https://www.ncbi.nlm.nih.gov/pubmed/3764081

172. TOMS TE, PANOULAS VF, JOHN H, DOUGLAS KM, KITAS GD 2009 Methotrexate therapy associates with reduced prevalence of the metabolic syndrome in rheumatoid arthritis patients over the age of 60–more than just an anti-inflammatory effect? A cross sectional study. Arthritis Res Ther 11: R110. https://doi.org/10.1186/ar2765

173. DEOLIVEIRA CC, ACEDO SC, GOTARDO EM, CARVALHO PDE O, ROCHA T, PEDRAZZOLI Jr J, GAMBERO A 2012 Effects of methotrexate on inflammatory alterations induced by obesity: an in vivo and in vitro study. Mol Cell Endocrinol 361: 92–98. https://doi.org/10.1016/j.mce.2012.03.016

174. RUSSO GT, MINUTOLO IL, BITTO A, ALTAVILLA D, ALESSI E, GANDALIA A, ROMEO EL, STAGNO MF, SQUADRITO F, CUCINTONNA D, SELHub J 2012 Methotrexate increases skeletal muscle GLUT4 expression and improves metabolic control in experimental diabetes. J Nutr Metab 2012: 132056. https://doi.org/10.1155/2012/132056

175. GERASIMOVA EV, POPKOVKA TV, NOVIKOVA DS, NASONOV EL 2014 Cardiovascular diseases in patients with rheumatoid arthritis during long-term methotrexate therapy [Article in Russian]. Ter Arkh 86: 26–31. https://www.ncbi.nlm.nih.gov/pubmed/25026799

176. DEHPOURI T, ROKNI GR, NARENJONBAN NA, GOLDUST M, YAMAUCHI PS, WOLLINA U, LOTTI T, KIRICIK L, LEIRNIA VGD, SONTHALIA S, JOVJODICA, SZEPETOWSKI KJ, BAHADORAN P, ERRICHETTI E, CANTISANI C, ATZORIL, REZAEZ E, KUTLUBAY Z, ENGIN B, NISTICO S, DAMIANI G, CONIC RRZ, GOREN A, CABRIJAN L, TCHERNEV G 2019 Evaluation of the glyemic effect of methotrexate in psoriatic arthritis patients with metabolic syndrome: A pilot study. Dermatol Reports 11: 7965. https://doi.org/10.4081/dr.2019.7965

177. GERSHEIN LL, MILLER A, AL-WATTAR J 1964 Effect of Water-soluble vitamins on rat diaphragm carbohydrate metabolism. Arch Biochem Biophys 107: 359–362. https://doi.org/10.1016/0003-9861(64)90290-5

178. MOTAWI TMK, BUSTANJI Y, EL-MARAGHY SA, TAHAMO, AL Ghussein MA 2013 Napoleon and cremolin as new glycin syntheses kinase 3β inhibitors for amelioration of diabetess and obesity: an invitation by docking simulation and subsequent in vitro in vivo biochemical evaluation. J Biochem Mol Toxicol 27: 425–436. https://doi.org/10.1002/jbt.21503

179. WILLIAMSON RT 1901 On the treatment of glycosuria and liver glycogen of the alloxan-diabetic rabbit. Br Med J 1: 760–762. https://doi.org/10.1136/bmj.1.2100.760

180. SMITH MJ, MEADE BW 1952 The effect of salicylate on glycosuria, blood glucose and liver glycogen of the alloxan-diabetic rat. Biochem J 51: 18–20. https://doi.org/10.1042/bj0510018
181. SMITH MJ 1952 The effect of salicylate on the glycospuria and hyperglycaemia induced by cortisone in the normal rat. Biochem J 52: 649–652. https://doi.org/10.1042/bj0520649

182. SPROIULL DH 1954 The glycolgenolytic action of sodium salicylate. Br J Pharmac Chemother 9: 121–124. https://doi.org/10.1111/j.1476-5381.1954.tb00828.x

183. SMITH MJ 1955 The effects of sodium salicylate on blood glucose in the rat. Br J Pharmac Chemother 10: 110–112. https://doi.org/10.1111/j.1476-5381.1955.tb00067.x

184. MORGAN HE, RANDLE PJ, REGAN DM 1959 Regulation of glucose uptake by muscle. 3. The effects of insulin, anoxia, salicylate and 2:4-dinitrophenol on membrane transport and intracellular phosphorylation of glucose in the isolated rat heart. Biochem J 73: 573–579. https://doi.org/10.1042/bj0730573

185. FIELD JB, BOYLE C, REMER A 1967 Effect of salicylate infusion on plasma-insulin and glucose tolerance in healthy persons and mild diabetics. Lancet 1: 1191–1194. https://doi.org/10.1016/s0140-6736(67)92842-5

186. KIM J, KIM YJ, FILLMORE J, CHEN Y, MOORE I, LEE J, YUAN M, LI ZW, KARIN M, PERRPET P, SHOELSON SE, SHULMAN GI 2001 Prevention of fat-induced insulin resistance by salicylate. J Clin Investigation 108: 437–446. https://doi.org/10.1172/JCI11559

187. GOLDFINE AB, FONSECA V, JABLONSKI KA, CHEN YD, TIPTON L, STATEN MA, SHOELSON SE 2013 Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial. Ann Intern Med 159: 1–12. https://doi.org/10.7326/0003-4819-159-1-201307020-00003

188. SERIZAWA T, OISHI R, YOSHIDA M, SAKON I, KITANI K, GOTO A, TSUDA S, HAYASHI T 2014 Salicylate acutely stimulates 5′-AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscles. Biochem Biophys Res Commun 453: 81–85. https://doi.org/10.1016/j.bbrc.2014.09.066

189. ABOUZED TK, MUNESUE S, HARASHIMA A, MASUO Y, KATOH T, KHAIOLO K, YAMAMOTO H, YAMAMOTO Y 2016 Preventive effect of salicylate and pyridoxamine on diabetic nephropathy. J Diabetes Res 2016: 1786789. https://doi.org/10.1155/2016/1786789

190. REID J, MACDOUGALL AI, ANDREWS MM 1957 Aspirin attenuates insulin resistance in muscle of diet-induced obese rats by inhibiting inducible nitric oxide synthase production and S-nitrosylation of IRbeta/IRS-1 and Akt. Diabetologia 52: 2425–2434. https://doi.org/10.1007/s00125-009-1498-1

191. THORNTON CC, AL-RASHED F, CALAY D, BIRDSEY GM, BAUER A, MYLROIE H, MORLEY BJ, RANDI AM, HASKARD DO, BOYLE JJ, MASON JC 2016 Methotrexate-mediated activation of an AMPK-CREB-dependent pathway: a novel mechanism for vascular protection in chronic systemic inflammation. Ann Rheum Dis 75: 439–448. https://doi.org/10.1136/annrheumdis-2014-206305

192. CRONSTEIN BN 2005 Low-dose methotrexate: a mainstay in the treatment of rheumatoid arthritis. Pharmacol Rev 57: 163–172. https://doi.org/10.1124/pr.57.2.3

193. SOLOMON DH, GLYNN RJ, KARLSON EW, LU F, CORRIGAN C, COLLJS J, XU C, MACFADYEN J, BARDHAIZA M, BERLINNER N, DELLARIPA PF, EVERETT BM, PRADHAN AD, HAMMOND SP, MURRAY M, RAO DA, RITTER SY, RUTHERFORD A, SPARKS JA, STRATTON J, SUH DH, TEDESCHI SK, VANNI KMM, PAYNER NF, RICKER PM 2020 Adverse effects of low-dose methotrexate: a randomized trial. Ann Intern Med 172: 369–380. https://doi.org/10.7326/M19-3369

194. SHIROKY JB, NEVILLE C, ESDAILE JM, CHOQUETTE D, ZUMMER M, HAZELTINE M, BYKERK V, KANJ11 AM, STEPIERRE A, ROBIDOULX L, BOURQUE I 1993 Low-dose methotrexate with leucovorin (folinic acid) in the management of rheumatoid arthritis. Results of a multicenter randomized, double-blind, placebo-controlled trial. Arthritis Rheum 36: 795–803. https://doi.org/10.1002/art.1780360609

195. TISHLER M, CASPI D, FISHEL B, YARON M 1988 The effects of leucovorin (folinic acid) on methotrexate therapy in rheumatoid arthritis patients. Arthritis Rheum 31: 906–908. https://doi.org/10.1002/art.1780310712

196. GALIC S, FULLERTON MD, SCHERTZER JD, SIKKEMA S, MARCINKO K, WALKLEY CR, IZON D, HAZELTINE M, BERLINER N, DELLARIPA PF, EVERETT BM, PRADHAN AD, HAMMOND SP, MURRAY M, RAO DA, RITTER SY, RUTHERFORD A, SPARKS JA, STRATTON J, SUH DH, TEDESCHI SK, VANNI KMM, PAYNER NF, RICKER PM 2020 Adverse effects of low-dose methotrexate: a randomized trial. Ann Intern Med 172: 369–380. https://doi.org/10.7326/M19-3369

197. SHIROKY JB, NEVILLE C, ESDAILE JM, CHOQUETTE D, ZUMMER M, HAZELTINE M, BYKERK V, KANJ11 AM, STEPIERRE A, ROBIDOULX L, BOURQUE I 1993 Low-dose methotrexate with leucovorin (folinic acid) in the management of rheumatoid arthritis. Results of a multicenter randomized, double-blind, placebo-controlled trial. Arthritis Rheum 36: 795–803. https://doi.org/10.1002/art.1780360609

198. TISHLER M, CASPI D, FISHEL B, YARON M 1988 The effects of leucovorin (folinic acid) on methotrexate therapy in rheumatoid arthritis patients. Arthritis Rheum 31: 906–908. https://doi.org/10.1002/art.1780310712

199. GALIC S, FULLERTON MD, SCHERTZER JD, SIKKEMA S, MARCINKO K, WALKLEY CR, IZON D, HAZELTINE M, BERLINER N, DELLARIPA PF, EVERETT BM, PRADHAN AD, HAMMOND SP, MURRAY M, RAO DA, RITTER SY, RUTHERFORD A, SPARKS JA, STRATTON J, SUH DH, TEDESCHI SK, VANNI KMM, PAYNER NF, RICKER PM 2020 Adverse effects of low-dose methotrexate: a randomized trial. Ann Intern Med 172: 369–380. https://doi.org/10.7326/M19-3369

200. MOUNIER R, THERET M, ARNOLD L, CUVEILLIER S, BULTOT L, GORANSSON O, SANZ N, FERRY A, SAKAMOTO K, FORETZ M, VIOLLET B, CHAZAUX B 2013 AMPKalpha1 regulates macrophage skewing at the time of resolution of inflammation during skeletal muscle regeneration. Cell Metab 18: 251–264. https://doi.org/10.1016/j.cmet.2013.06.017

201. DONATH MY, SHOELSON SE 2011 Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11: 98–107. https://doi.org/10.1038/nri2925

ATIC between antirheumatic drugs and muscle energy metabolism Klemen Dolinar et al.