A review of terahertz sources

R A Lewis

Institute for Superconducting and Electronic Materials and School of Physics, University of Wollongong, Wollongong NSW 2522, Australia
E-mail: roger@uow.edu.au

Received 5 April 2014, revised 12 June 2014
Accepted for publication 18 June 2014
Published 28 August 2014

Abstract
Bibliometric data set the scene by illustrating the growth of terahertz work and the present interest in terahertz science and technology. After locating terahertz sources within the broader context of terahertz systems, an overview is given of the range of available sources, emphasizing recent developments. The focus then narrows to terahertz sources that rely on surface phenomena. Three are highlighted. Optical rectification, usually thought of as a bulk process, may in addition exhibit a surface contribution, which, in some cases, predominates. Transient surface currents, for convenience often separated into drift and diffusion currents, are well understood according to Monte Carlo modelling. Finally, terahertz surface emission by mechanical means—in the absence of photoexcitation—is described.

Keywords: terahertz, from, surfaces

1. Introduction

1.1. Terahertz bibliometrics
Before turning to the topic of terahertz sources, a brief survey of the growth of the terahertz field as a whole will be made from a bibliometric perspective.

1.1.1. Terahertz outputs have grown exponentially. For decades the field of terahertz science and technology has grown exponentially. Literally. Figure 1 displays the number of documents published in the years 1975–2013 that contain ‘terahertz’ in the abstract, title or keyword field [1]. Figure 1(a) is a linear-linear display and figure 1(b) is a log-linear display of the same data. The data from 1975 to 2010 (inclusive) have been fitted with an equation for exponential growth,

\[D = D_0 + \alpha \exp \left(\frac{Y - Y_0}{\tau} \right) \]

(1)

Here \(D \) is the number of documents, \(D_0 = 0 \) is the base number of documents, \(Y \) is the year, \(Y_0 = 1975 \) is the base year, \(\alpha = 1.55 \pm 0.42 \) is the initial rate—meaning approximately one or two documents per year to begin with—and \(\tau = 4.66 \pm 0.18 \) is the time constant—meaning an increase by a factor of e approximately every five years. This time constant implies that the annual output of documents doubles approximately every three years (precisely, every 3.23 years). A simple and memorable model of one document in 1975 and the annual production doubling every three years,

\[D = 2^{(Y-1975)/3} \]

(2)

furnishes a reasonable approximation to the output of terahertz literature between 1975 and 2013, as indicated by the crosses in figure 1(b).

1.1.2. The most-cited articles concern technology. In each of the last three full years (2011, 2012 and 2013), more than 3000 documents have appeared with ‘terahertz’ in either their title or abstract or as a keyword. The most-cited documents involve terahertz technology. For example, the articles ‘Terahertz semiconductor-heterostructure laser’ [2], ‘Cutting-edge terahertz technology’ [3], ‘Terahertz technology’ [4] and ‘Materials for terahertz science and technology’ [5] have each been cited more than 1000 times.

1.1.3. Monographs are now emerging. The field has sufficiently matured such that monographs are now appearing. At first, these were edited works, with contributions from numerous authors, on topics such as terahertz sensing [6], terahertz optoelectronics [7] and terahertz spectroscopy [8].
Figure 1. Number of documents with ‘terahertz’ appearing in the abstract, title or keyword field as a function of time. (a) Linear-linear scale. The full line is given by $y = 1.55 \exp((x - 1975)/4.66)$. (b) Log-linear scale. The crosses correspond to a starting value of 1 in 1975, doubling every third year.

As the field matures further, more cohesive books are appearing, with only two or three authors [9–11] and, at last, sole authors [12, 13], on topics such as terahertz excitations [9], terahertz photonics [10], terahertz techniques [11], terahertz principles [12] and terahertz physics [13].

1.2. Terahertz apparatus

A typical terahertz experimental station, such as a developed for imaging [14], tomography [15] or spectroscopy [16], comprises the three principal parts of the source, which produces the terahertz radiation, the components, which manipulate the radiation, and the detector, which senses the radiation. Practical arrangements may contain multiple sources, components and detectors (figure 2).

1.2.1. Terahertz sources. The focus of this article is on terahertz sources, which will be discussed in greater detail shortly (section 2). To give some context for the discussion of sources, a few brief remarks will be made first about terahertz components and detectors.

1.2.2. Terahertz components. Optical components are such things as mirrors, lenses and polarizers.

In contrast to visible optical systems, where lenses and similar transmitting elements predominate, terahertz systems tend to employ reflecting elements, which have minimal loss and no dispersion. Terahertz mirrors have conventionally been made of metal. Other materials have been recently trialled, for example, doped and undoped GaAs [17] and a hybrid of polypropylene and high-resistivity silicon [18]. Tunable mirrors, based on one-dimensional photonic crystals, have also been developed [19–22].

Lenses are typically made of plastics. It is advantageous if the lens transmits visible radiation, as this facilitates optical alignment. Traditionally, plastic terahertz lenses were made by machining on a lathe. Recently, lenses have been manufactured by compressing various micropowders in metal moulds using a tabletop hydraulic press [23]. Lenses with an adjustable focal length have been realized by introducing medical white oil into the lens cavity [24]. Less conventional lens designs include grooved-dielectric Fresnel zone plates, thin and lightweight [25]; plasmonic-resonance lenses, fabricated from 100 nm gold foil on a 500 µm silicon wafer [26]; and even lenses made from paper [27].

A precise method of fabricating terahertz optical components is femtosecond laser machining of LiNbO3 single crystals [28]. Diffractive elements, cavities and waveguides have been so constructed. On the other hand, temporary, or reconfigurable, components may be formed by optical modulation, using visible light projected onto a silicon chip; aperture arrays and polarizers have been made in this manner [29].

1.2.3. Terahertz detectors. The earliest terahertz detectors were based on a thermometric property of a material, such as a change in electrical resistance with temperature (the bolometer) or a change in size with temperature (the Golay cell). More sophisticated examples of thermal detectors are under development, such as microelectromechanical systems (MEMS) incorporating a tuned metamaterial absorber and a bi-material (differential thermal expansion) [30–32]. In principle, arrays of such sensors will facilitate imaging, but they are presently optimized only for specific frequencies. Moreover, thermo-mechanical systems are inherently slow. Electronic transitions are faster. Electronic sensors were originally based on bulk semiconductor materials, but more sophisticated designs have been demonstrated, for example, impurity bound-to-unbound transitions in beryllium and silicon delta-doped GaAs/AIAs multiple quantum wells [33]. On a finer scale still, quantum dots have been employed as terahertz sensors [34]. Single electron transistor read out is employed. A limitation is that the operating temperature is close to zero, 0.3–1.5 K [35].
With the development of time-domain spectroscopy (TDS), the distinct identity of the sensor has become blurred. The sensor functions only within the system as a whole, requiring for its operation the ultrashort laser pulse that also is essential to the operation of the source. The two broad TDS detector types are electro-optical [36] and photo-conductive [37]. The use of asynchronous optical sampling [38] obviates the need for a mechanical delay stage in TDS and has been used to characterize surface sensors based on split-ring resonators [39].

2. Terahertz sources

There are many sources of terahertz radiation. A small sampling is given in table 1.

Extraterrestrial thermal sources include the sun and the cosmic background radiation [40]. Common laboratory thermal source are the mercury lamp [41] and the globar, an electrically heated rod of carborundum (SiC). Various schemes are available to mount the globar [42, 43]. It typically operates at 1650 K with emissivity in the range 0.5–0.8 [44], so may be thought of as a ‘grey-body’. It provides more power than the Nernst glower in the terahertz region [45].

Vacuum electronic sources include the backward-wave oscillator [46–50], extended-interaction klystrons [51–55], travelling-wave tubes [56], gyrotrons [57–62], free-electron lasers [63–66] and synchrotrons [67–76]. These sources are typically of high power [77]. **Solid-state electronic sources** include the Gunn diode [78–81] and high-frequency transistors [82–86]. Frequency multipliers are used to shift fundamentally sub-terahertz electronic oscillations into the terahertz range [87–89]. Josephson junctions serve as sources of terahertz and sub-terahertz radiation in superconductors [90, 91].

Terahertz lasers have been built from the archetypical elemental semiconductors, germanium and silicon [92, 93]. Semiconductor lasers include electrically pumped photonic-crystal lasers of low angular divergence [94]. Much interest is currently in the quantum cascade laser, a challenge being to raise the temperature of operation [95–97]. Gas lasers preceded the solid state lasers [98].

Visible or near-infrared lasers, either operating continuously or in pulsed mode, are widely-employed in various schemes to generate terahertz radiation by **optical pumping**. Two **continuous** laser sources may be mixed and the difference frequency lie in the terahertz range [99]. The laser sources exploited include diode lasers [100], dual-mode lasers [101], multi-mode lasers [101] and a dual-colour-VECSEL [102]. Photomixers are typically based on low-temperature grown GaAs. Difference frequency mixing occurs in a variety of materials, notably DAST [103]. Periodically inverted electro-optic crystals [104] and tilted fields increase efficiency [105]. Much work is at 780 nm, but there is also great interest at communications wavelengths of about 1.5 µm [106, 107]. These in practice use pulsed sources, but do not depend on them. Continuous stimulation of mesocrystal microspheres by a single laser produces mechanical resonance accompanied by terahertz emission [108, 109]. **Pulsed** laser sources, the basis of time-domain spectroscopy, have been reviewed by Davies et al [110] and Kitaeva [111]. Pulsed lasers are used to excite photoconductive switches [112] or antennas [113]. Terahertz radiation also arises when a laser pulse pumps nothing more than air—the photoionization of the gas producing a plasma [114]. Other gases, including noble gases, may be used [115]. The radiation is very broad in its frequency range [116, 117]. As a diagnostic method, gas photoionization allows the measurement of the carrier-envelope phase of short laser pulses [118]. Solid targets may be used [119]. The polarization may be coherently controlled [120], and is enhanced by electric fields [121, 122]. In ferromagnetic films, magnetic, rather than electric, dipoles are employed [123]. Terahertz parametric oscillation in crystals such as LiNbO₃ pumped by ns-Nd : YAG lasers produces coherent, tunable and unidirectional radiation; efficient output coupling is critical in realizing high power [124–126].

3. Terahertz surface emission—optical rectification

Experimentally, the principal signature of optical rectification is the strong geometrical dependence. As the emitting crystal is rotated around its surface normal perpendicular to the propagation direction of the pump beam an increase and decrease in the emitted terahertz radiation is observed. This phenomenon is usually referred to as ‘azimuthal angle dependence’. Nanoporous InP (1 1 1) membranes, for example, show a marked azimuthal angle dependence, indicating optical rectification plays a major role [127]. Secondly, the terahertz emission remains directly proportional to the pump power, without evidencing saturation [127]. Thirdly, subjecting the crystal to a magnetic field has little or no effect.

3.1. Bulk effects

Optical rectification can occur in the bulk of a material. The bulk effect has been studied in detail in various crystals. Complete expressions have been given for zinc-blende (43m) crystal faces of arbitrary orientation [128]. The terahertz generation in uniaxial birefringent crystals is similar in principle, but differs in the important respect that the polarization of the pump beam rotates as it traverses the crystal, as is illustrated in the case of ZnGeP₂ (chalcopyrite) [129]. For ZnGeP₂, it is found that {1 1 4} planes are more efficient than {0 1 2} and {1 1 0} planes for terahertz generation [129].
3.2. Surface effects

Not only the bulk of a crystal contributes to optical rectification. A surface contribution, induced by the electric field, may be important, and even dominate the bulk effect, at least at high excitation fluences. The surface electric-field-induced effect has been studied in detail in InAs, for (1 0 0), (1 1 0) and (1 1 1) faces, with second-harmonic (sum frequency) measurements made to supplement the terahertz (difference frequency) data, and the polarization of both measured [130]. It was found that bulk optical rectification was inadequate to explain the experimental results; an additional surface electric-field-induced contribution was also present. In fact, the surface field contribution was greater than the bulk contribution. Rotating the sample relative to the pump beam (azimuthal angle dependence of the terahertz emission) clarified this.

A surface electric-field-induced optical rectification has since been found in other materials. For example, the azimuthal angle dependence of terahertz emission from (1 0 0), (1 1 0) and (1 1 1) faces of Ge is consistent with a surface field effect and leads to an estimation of the third-order nonlinear optical susceptibility of Ge [131]. In the case of (1 1 2) planes of InSb, both bulk and surface field-induced optical rectification are observed, with the latter approximately twice the strength of the former [132].

General expressions for surface optical rectification for arbitrary planes have been calculated [128]. In the accompanying experimental study of high-index planes of GaAs it was found that, while the bulk expressions gave a good agreement with the data, including the surface expressions gave an excellent agreement. Only a single parameter was needed to fit the data for the (1 1 2)A, (1 1 3)A, (1 1 4)A, (1 1 5)A, (1 1 2)B, (1 1 3)B, (1 1 4)B and (1 1 5)B faces of GaAs; moreover, the surface fields on the faces were estimated [128]. Those results applied to transmission geometry. The work has been extended to the more complicated situation of quasi-reflection geometry. Here transient currents, bulk optical rectification, and surface optical rectification all play a role, but the various contributions can be untangled [133].

The contribution of surface field-induced optical rectification is essential in explaining the terahertz emission from GaAsBi (3 1 1)B faces [134]. To explicate the mechanism, the effect of increasing optical fluence on the
terahertz emission was investigated. The effect was linear, with no saturation (such as would indicate a transient current effect) being observed. Moreover, rotation of an in-plane magnetic field also had no effect on the produced terahertz radiation, again suggesting no role of transient currents. The azimuthal angle dependence of the substrate, with three peaks per rotation, was quite different to that of the GaBi0.035As0.965 epilayer, which exhibited only one peak per rotation. While bulk rectification could not account for the epilayer result, inclusion of the surface optical rectification term could [134]. More recently, a similar account has been given of terahertz emission from nanostructured (3 1 1) GaAs [135].

4. Terahertz surface emission—transient currents

Terahertz emission can result from a changing dipole. The terms current surge, surge current or transient current are alternative ways of describing this. The transient current itself may arise because of carrier drift, due to the surface electric field, or due to diffusion; these currents are respectively referred to as drift currents (section 4.2) and diffusion currents (section 4.1).

Experimentally, there are several signatures of a transient-current emitter [136]. Rotating a magnetic field in the plane of the sample surface will change the direction of the Lorenz force on the charge carriers. This will either add to or subtract from the motion leading to terahertz emission and consequently an increase and decrease in the terahertz emission is observed. So, for example, bulk InP (1 1 1) crystals exhibit a transient current effect, whereas nanoporous InP (1 1 1) crystals do not [127]. Likewise, the dependence of the terahertz generated on the excitation fluence can give insight into the emission mechanism. Transient current emitters tend to saturate, as a result of charge screening, as the optical fluence increases. Charge-carrier screening, as well as terahertz absorption in the material, imply heavily doped semiconductors in general are not good emitters. For example, in measurements of InP doped in the range n-type \(7 \times 10^{18} \text{cm}^{-3} \) to \(p \)-type \((8-10) \times 10^{19} \text{cm}^{-3} \), the highest signal was from nominally undoped \((\leq 1 \times 10^{16} \text{cm}^{-3}) \) InP [136].

4.1. Diffusion currents

Diffusion currents arise when charge carriers of opposite sign diffuse at different rates. Typically, diffusion currents dominate for high carrier energies [137]. A dipole is formed if the positive and negative charge carriers diffuse at different rates. This is known as the Dember effect (or the photo-Dember effect) [138–140]. It is usual that electrons are more mobile than holes. It is often a good approximation to think of the holes as stationary. Usually, diffusion is away from (perpendicular to) the surface. The case of diffusion along (parallel to) the surface is termed the lateral effect. This direction of the current is optimal for coupling out of the surface. The lateral photo-Dember effect was first reported by pumping (1 0 0) GaAs and In0.53Ga0.47 on InP at 825 nm [141]. Subsequently the effect was observed under pumping with an Er: fibre (1.55 \(\mu \text{m} \)) laser [142]. The effect has also been observed in semi-insulating and low-temperature grown GaAs [143]. A cylindrical micro-lens array was found to increase the output power five-fold [144]. The effect of the spot position and size and an external bias have been investigated [145], as have the dependence on fluence and polarization [143].

4.2. Drift currents

Typically, drift currents dominate for high electric fields [137]. Drift currents are influenced strongly by the local surface field, as illustrated by experiments involving passivated surfaces [146]. For this reason, emission due to drift currents is sometimes termed surface-field emission.

4.3. Modelling

Monte Carlo modelling has been used to simulate the motion of photoexcited charge carriers and so clarify the mechanisms of terahertz emission. The landmark work is that of Johnston et al [147]. This demonstrated that InAs is predominantly a photo-Dember, or diffusion, emitter and GaAs is predominantly a surface-field, or drift, emitter. Moreover, the improvement of emission with a magnetic field is largely due to geometric reorientation of the radiating dipole (rather than a change in the dipole strength). Magnetic-field enhancement of terahertz emission had been reported for InSb, InAs, InP GaSb and GaAs in modest magnetic fields (up to 1.2 T) [148] and attributed to increased radiation from transient currents in the surface plane [149]. Other Monte Carlo modelling work has identified the roles of hot and cold charge carriers [150] and explored the roles of the photon energy of the pump beam [151, 152], large electric fields [153], and the cross-over from drift to diffusion emission [154]. InSb [155] and InAs [155, 156], GaAs \(p-i-n \) structures [157], and \(\delta \)-doped and other heterostructures [158–162] have been investigated. Similar modelling has also been carried out on terahertz photoconductive emitters [163] and detectors [164].

Modelling allows parameters that are difficult or perhaps impossible to vary in practice to be varied in the simulation, with a view to understanding how terahertz emission might be improved. Consider the case of InAs [165]. Scattering is seen to play a minor role. The terahertz emission with all scattering mechanisms included in the simulation (polar optical phonon, carrier–carrier, intervalley, and ionized impurity) differs little from the emission with no scattering at all. The transport, on the sub-picosecond timescale, is almost collisionless. Likewise, varying the dielectric constant or the surface field has little effect. Varying the band gap or the effective mass have a noticeable effect, which can be understood in mechanical terms—if the electrons or holes are given greater kinetic energy, the dipole resulting from the motion of the charge they carrier will change more rapidly. It is also clear from the simulation that, during typical pump pulse of 100 fs, there is sufficient time for the initially-created electrons to move away from the surface and so create an opposing potential even before the peak of the pump pulse arrives. The existence of such a vanguard counterpotential implies that shorter (<100 fs) excitation pulses not
only improve the bandwidth but also improve the strength of the terahertz emission [156, 165].

The case of InAs may be contrasted with that of GaAs [166]. There are significant differences. Polar optical phonon scattering plays a large role in reducing the output of terahertz radiation from GaAs surfaces. The effect of the surface potential is great; the terahertz field not only reduces as the surface potential does, but reverses in direction as the sign of the surface potential changes. There is a vanguard counter-potential in GaAs, but it is weaker than in InAs. Overall, InAs is the stronger emitter [166].

Finally, by way of synthesis, it might be remarked that both optical rectification (section 3) and transient currents (section 4) may simultaneously produce terahertz emission. For example, in both InSb and InAs it is observed that the azimuthal-angle varying difference frequency mixing is superimposed on a considerable surge current; moreover, as the temperature is varied, so is the terahertz emission, very markedly for InSb, indicating the presence of the photo-Dember effect [167]. On the other hand, in InP bulk difference frequency mixing is observed to be comparable to the effects of transient currents [168].

5. Terahertz emission from mechanical excitation

Is it possible to generate terahertz radiation from surfaces without any photoexcitation? Recent experimental [169] and theoretical [170] work would suggest so.

5.1. Peeling tape

The process of peeling (sometimes referred to as unpeeling) adhesive tape from the roll it is packaged in, or from another surface, has been long known to produce visible radiation [171]. Recently, peeling tape has been found to generate, in addition to visible light, radio-frequency radiation, as well as x-rays [172]. Low pressure ($< 10^{-2}$ mbar) is required for the x-ray emission to be observed; by examining the pressure dependence of the x-ray fluence the mechanism of emission may be determined [173]—the acceleration of free electrons in the surrounding gas by the potential built up on the tape. Refinements to the x-ray production have been described recently [174–177] and the phenomenon used to study charge localization [178]. Given that peeling tape has been shown to produce visible light and radio-frequency radiation, it is of interest to ask if unwinding tape also produces radiation in the space in the electromagnetic spectrum between these two—in the ‘terahertz gap’.

Peeling adhesive tape has indeed been shown to emit electromagnetic radiation at terahertz frequencies [169]. Over the measured range of 2–32 cm s$^{-1}$, the radiation emitted is independent of the speed at which the tape is unwound. The radiation extends across a broad range of terahertz frequencies, from 1–20 THz. The intensity is rather small, amounting to only a few per cent increase over the blackbody radiation from the tape at room temperature before it is unwound. The radiation was therefore investigated with a high-sensitivity sensor, a helium-cooled bolometer. In contrast to TDS, the emission is incoherent. A comparison of emission from double-sided tape (which will show a heating effect, but no charge separation) and the more usual single-sided tape (in which charge separation occurs on unwinding) establishes that the effect has its origin in charge separation. The radiation shows peaks in intensity at around 2 THz and around 18 THz, as measured by a Fourier-transform spectrometer. The origin of these peaks is unknown. These peaks sit on a background of emission that increases in intensity with frequency. This dependence is the opposite to the usual bremsstrahlung from a plasma, which decreases in intensity with frequency, but is consistent with bremsstrahlung from a plasma with absorption. Also consistent with this mechanism is the observation that the radiation is unpolarized.

5.2. Surface formation

Just as peeling tape emits visible radiation, so does fracturing sugar [179, 180]. This sort of mechanoluminescence generally is understood to involve charge transfer between two newly created surfaces.

There may also be motion of charges within newly formed surfaces. The transient dipoles so formed will then emit radiation at terahertz frequencies (figure 3). The intensity of the radiation will be increased as the speed of surface formation is increased, as the surface potential is increased and as the charge-carrier concentration is increased. This proposed mechanism of radiation has been dubbed ‘terahertz surfoluminescence’ [170].

The intensity of the terahertz field produced by terahertz surfoluminescence may be estimated using the same Monte Carlo calculations as when a charge distribution is produced by photoexcitation. It is found that the terahertz electric field due to surface creation is of the same order as the terahertz electric field produced by a 1 nJ laser strike. This holds true both near room temperature (300 K) and at cryogenic temperature (70 K) [170].
There has been no unambiguous experimental demonstration of terahertz surfoluminescence, although the mechanism may provide a partial explanation for the observation of terahertz radiation from peeling adhesive tape (section 5.1). Previously, cleavage luminescence has been observed in silicon and other semiconductors, including GaAs, InP, Ge and Ge-Si$_{1-x}$-As$_x$. However, that emission was on a far different timescale (μs rather than ps) and energy scale (eV rather than meV) than terahertz surfoluminescence.

Acknowledgments

This work was supported by the Australian Research Council. Thanks are due to D L Cortie, who prepared figure 3.

References

[1] www.scopus.com; as at 31 March 2014
[2] Köhler R, Tredicucci A, Beltram F, Beere H E, Linfield E H, Davies A G, Ritchie D A, Iotti R C and Rossi F 2002 Terahertz: semiconductor-heterostructure laser Nature 417 156–9
[3] Tonouchi M 2007 Cutting-edge terahertz technology Nature Photon. 1 97–105
[4] Siegel P H 2002 Terahertz technology IEEE Trans. Microw. Theory Technol. 50 910–28
[5] Ferguson B and Zhang X C 2002 Materials for terahertz science and technology Nature Mater. 1 26–33
[6] Mittleman D (ed) 2003 Sensing with Terahertz Radiation (Berlin: Springer)
[7] Sakai K (ed) 2005 Terahertz: Optoelectronics (Berlin: Springer)
[8] Drexhaimer S (ed) 2008 Terahertz: Spectroscopy, Principles and Applications (Boca Raton, FL: CRC Press)
[9] Ganichev S D and Prettl W 2006 Carrier transport and Applications of Semiconductors (Oxford: Oxford Science Publications)
[10] Zhang X C and Xu J 2010 Introduction to THz Wave Photonics (New York: Springer)
[11] Brundlermann E, Hubers H W and Kimmit M F 2012 Terahertz Techniques (Heidelberg: Springer)
[12] Lee Y S 2009 Principles of Terahertz: Science and Technology (New York: Springer)
[13] Lewis R A 2012 Terahertz Physics (Cambridge: Cambridge University Press)
[14] Mittleman D M, Jacobsen R H and Nuss M C 1996 T-ray imaging IEEE J. Sel. Top. Quantum Electron. 2 679–92
[15] Mittleman D M, Hunsche S, Boivin L and Nuss M C 1997 T-ray tomography Opt. Lett. 22 904–6
[16] Mittleman D M, Jacobsen R H, Neelamani R, Baraniuk R G and Tzalenchuk A 1999 Omnidirectional terahertz mirrors: a key element for future terahertz communication systems Appl. Phys. Lett. 88 202905
[17] Ye H B, Zhang Y H and Shen W Z 2006 Carrier transport and optical properties in GaAs far-infrared/terahertz mirror structures Thin Solid Films 514 310–5
[18] Knupholser N, Gerlach K, Rutz F, Koch M, Plesiewicz R, Künner T and Mittleman D 2006 Omnidirectional terahertz mirrors: a key element for future terahertz communication systems Appl. Phys. Lett. 88 202905
[19] Tegeler M, Holldack K and Elías L R 2010 Dynamically tunable mirrors for THz free electron laser applications Phys. Rev. ST Accel. Beams 13 030703
[20] Li Y, Xiang Y, Wen S, Yong J and Fan D 2011 Tunable terahertz-mirror and multi-channel terahertz-filter based on one-dimensional photonic crystals containing semiconductors J. Appl. Phys. 110 073111
[21] Tegeler M and Holldack K 2012 Comment on “Tunable terahertz-mirror and multi-channel terahertz-filter based on one-dimensional photonic crystals containing semiconductors” J. Appl. Phys. 111 066105
[22] Li Y and Xiang Y 2012 Response to Comment on “Tunable terahertz-mirror and multi-channel terahertz-filter based on one-dimensional photonic crystals containing semiconductors” J. Appl. Phys. 111 066106
[23] Scherer B, Scheller M, Jansen C, Koch M and Wiesauer K 2011 Terahertz lenses made by compression molding of micropowders Appl. Opt. 50 2256–62
[24] Scherer B, Jördens C and Koch M 2011 Variable-focus terahertz lens Opt. Express 19 4528–35
[25] Hristov H D, Rodríguez J M and Grote W 2012 The grooved-dielectric Fresnel zone plate: an effective terahertz lens and antenna Microw. Opt. Technol. Lett. 54 1343–8
[26] Jiang X Y, Ye J S, He J W, Wang X K, Hu D, Feng S F, Kan Q and Zhang Y 2013 An ultrathin terahertz lens with axial long focal depth based on metasurfaces Opt. Express 21 30030–8
[27] Siemion A, Siemion A, Makowski M, Suszek J, Bomba J, Czerwiński A, Garet F, Coutaz J L and Spokane M 2012 Diffractive paper lens for terahertz optics Opt. Lett. 37 4320–2
[28] Stoyanov N S, Feuer T, Ward D W and Nelson K A 2003 Integrated diffractive terahertz elements Appl. Phys. Lett. 82 674–6
[29] Cheng L J and Liu L 2013 Optical modulation of continuous terahertz waves towards cost-effective reconfigurable quasi-optical terahertz components Opt. Express 21 28657–67
[30] Alves F, Grbovic D, Kearney B and Karunasiri G 2012 Microelectromechanical systems bimaterial terahertz sensor with integrated metamaterial absorber Opt. Lett. 37 1886–8
[31] Kearney B, Alves F, Grbovic D and Karunasiri G 2013 Al/\text{SiO}_2/Al single and multiband metamaterial absorbers for terahertz sensor applications Opt. Eng. 52 013801
[32] Alves F, Grbovic D, Kearney B, Lavrik N V and Karunasiri G 2013 Bi-material terahertz sensors using metamaterial structures Opt. Express 21 13256–71
[33] Seljuta et al 2008 Impurity bound-to-unbound terahertz sensors based on beryllium and silicon δ-doped GaAs/AlAs multiple quantum wells Appl. Phys. Lett. 92 053503
[34] Song J, Aizin G, Kawano Y, Ishibashi K, Aoki N, Ochiai Y, Reno J L and Bird J P 2010 Evaluating the performance of quantum point contacts as nanoscale terahertz sensors Opt. Express 18 4609–14
[35] Pelling S, Davis R, Kulik L, Tzelenchuk A, Kubatkin S, Ueda T, Komiyama S and Antonov V N 2008 Point contact readout for a quantum dot terahertz sensor Appl. Phys. Lett. 93 073501
[36] Wu Q and Zhang X C 1996 Design and characterization of traveling-wave electrooptic terahertz sensors IEEE J. Sel. Top. Quantum Electron. 2 693–700
[37] Seljuta et al 2006 Impurity bound-to-unbound terahertz sensors based on semi-insulating GaAs/AlAs multiple quantum wells Appl. Phys. Lett. 92 053503
[38] Jinke C, Först M, Nagel M, Kurz H and Bartels A 2005 Asynchronous optical sampling for high-speed characterization of integrated resonant terahertz sensors Opt. Lett. 30 1405–7
[39] Klatt G, Nagel M, Dekorsy T and Bartels A 2009 Rapid and precise read-out of terahertz sensor by high-speed asynchronous optical sampling Electron. Lett. 45 310–1
diods working at terahertz frequency J. Appl. Phys. 111 104514

[80] Li L, Yang L A, Zhang J C, Xue J S, Xu S R, Lv L, Hao Y and Niu M T 2012 Threading dislocation reduction in transistor region of GaN terahertz Gunn diodes Appl. Phys. Lett. 100 072104

[81] Pérez S, González T, Pardo D and Mateos J 2008 Terahertz Gunn-like oscillations in InGaAs/InAlAs planar diodes J. Appl. Phys. 103 094516

[82] Knapp W, Lasukowski J, Parenty T, Bollaert S, Cappy A, Popov V V and Shur M S 2004 Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors Appl. Phys. Lett. 84 2331–3

[83] Dyakonova N et al 2006 Room-temperature terahertz emission from nanometer field-effect transistors Appl. Phys. Lett. 88 141006

[84] Lasukowski J et al 2005 Voltage-tunable terahertz emission from a ballistic nanometer InGaAs/InAlAs transistor J. Appl. Phys. 97 064307

[85] Shur M S and Li J Q 2000 Terahertz sources and detectors using two-dimensional electronic fluid in high electron-mobility transistors IEEE Trans. Microwave Theory Technol. 48 780–6.

[86] El Fatimy A, et al 2010 AlGaInN/GaN high electron mobility transistors as a voltage-tunable room temperature terahertz sources J. Appl. Phys. 107 024504

[87] Masetrini A, Ward J S, Gill J J, Javadi H S, Schlecht E, Tripon-Canseliet C, Chattopadhyay G and Mehdi I 2005 A 540–640 GHz high-efficiency four-anode frequency tripler IEEE Trans. Microwave Theory Technol. 53 2825–43

[88] Masetrini A, Ward J S, Gill J J, Lee C, Thomas B, Lin R H, Chattopadhyay G and Mehdi I 2010 A frequency-multiplied source with more than 1 mW of power across the 840–900 GHz band IEEE Trans. Microwave Theory Technol. 58 1925–32

[89] Siles J V and Grajal J 2010 Physics-based design and optimization of Schottky diode frequency multipliers for power across the 840–900-GHz band IEEE Trans. Microwave Theory Technol. 58 1933–42

[90] Ozyuzer L et al 2007 Emission of coherent THz radiation from superconductors Science 318 1291–3

[91] Alvarez G A, Puzzer T, Wang X L, Lewis R A, Freeth C and Siles J V and Grajal J 2010 Physics-based design and optimization of Schottky diode frequency multipliers for power across the 840–900-GHz band IEEE Trans. Microwave Theory Technol. 58 1925–32

[92] El Fatimy A et al 2010 AlGaInN/GaN high electron mobility transistors as a voltage-tunable room temperature terahertz sources J. Appl. Phys. 107 024504

[93] Masetrini A, Ward J S, Gill J J, Javadi H S, Schlecht E, Tripon-Canseliet C, Chattopadhyay G and Mehdi I 2005 A 540–640 GHz high-efficiency four-anode frequency tripler IEEE Trans. Microwave Theory Technol. 53 2825–43

[94] Masetrini A, Ward J S, Gill J J, Lee C, Thomas B, Lin R H, Chattopadhyay G and Mehdi I 2010 A frequency-multiplied source with more than 1 mW of power across the 840–900 GHz band IEEE Trans. Microwave Theory Technol. 58 1925–32

[95] Siles J V and Grajal J 2010 Physics-based design and optimization of Schottky diode frequency multipliers for power across the 840–900-GHz band IEEE Trans. Microwave Theory Technol. 58 1933–42

[96] Ozyuzer L et al 2007 Emission of coherent THz radiation from superconductors Science 318 1291–3

[97] Alvarez G A, Puzzer T, Wang X L, Lewis R A, Freeth C and Dou S X 2008 Subterahertz Josephson plasma emission in layered high-Tc superconducting tunnel junctions J. Appl. Phys. 103 07C719

[98] Hübres H W, Pavlov S G and Shastin V N 2005 Terahertz lasers based on germanium and silicon Semicond. Sci. Technol. 20 S211–21

[99] Odobnyukov M A, Prokofiev A A, Yassievich I N and Chao K A 2004 Theory of a strained p-Ge resonant-state terahertz laser Phys. Rev. B 70 115209

[100] Chassagneux Y, Colombelli R, Mainault W, Barbieri S, Beere H E, Ritchie D A, Khanna S P, Linfield E H and Davies A G 2009 Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions Nature 457 174–8

[101] Williams B S, Kumar S, Hu Q and Ren J L 2005 Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode Opt. Express 13 3331–9

[102] Williams B S 2007 Terahertz quantum-cascade lasers Nature Photon. 1 517–25

[103] Kumar S, Hu Q and Ren J L 2009 186 K operation of terahertz quantum-cascade lasers based on a diagonal design Appl. Phys. Lett. 94 131105

[104] Dodel G 1999 On the history of far-infrared (FIR) gas lasers: Thirty-five years of research and application Infrared Phys. Technol. 40 127–39

[105] Chickering D J, Strohl R, Kraner E and Jones R G 2002 Theory of a strained p-Ge resonant-state terahertz laser Phys. Rev. B 70 115209

[106] Williams B S, Kumar S, Hu Q and Ren J L 2005 Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode Opt. Express 13 3331–9

[107] Williams B S 2007 Terahertz quantum-cascade lasers Nature Photon. 1 517–25

[108] Kumar S, Hu Q and Ren J L 2009 186 K operation of terahertz quantum-cascade lasers based on a diagonal design Appl. Phys. Lett. 94 131105

[109] Dodel G 1999 On the history of far-infrared (FIR) gas lasers: Thirty-five years of research and application Infrared Phys. Technol. 40 127–39

[110] Deninger A J, Göbel T, Schöntherr D, Kinder T, Roggenbuck A, Köberle M, Lison F, Müller-Witts T and Meissner P 2008 Precisely tunable continuous-wave terahertz source with interferometric frequency control Rev. Sci. Instrum. 79 044702

[111] McIntosh K A, Brown E R, Nichols K B, McMahon O B, Jepsen P U 2011 Nanomechanics: terahertz radiation gets shaken up Nature 472 597–600

[112] Kress M, Löffler T, Eden S, Thomson M and Roskos H G 2007 Terahertz lasers controlled by boundary conditions Nature 445 127–39

[113] Shen Y C, Upadhya P C, Linfield E H, Beere H E and Davies A G 2003 Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters Appl. Phys. Lett. 83 3117–9

[114] Kitaeva G K 2008 Terahertz generation by means of optical rectification Opt. Quantum Electron. 35 203–20

[115] Schneider A, Stillhart M and Günter P 2006 High efficiency generation and detection of terahertz pulses using laser pulses at telecommunication wavelengths Opt. Express 14 5376–84

[116] Popov V V and Shur M S 2004 Terahertz emission by plasma waves in 60 nm gate high electron mobility transistors Appl. Phys. Lett. 85 5974–6

[117] Wu X L, Xiong S J, Liu Z, Chen J, Li T H, Hu W P and Chao K P 2011 Green light stimulates terahertz emission from mesocystal microphreses Nature Nanotechnol. 6 103–6

[118] Jepsen P U 2011 Nanomechanics: terahertz radiation gets shaken up Nature Nanotechnol. 6 79–80

[119] Davies A G, Linfield E H and Johnston M B 2002 The development of terahertz sources and their applications Phys. Med. Biol. 47 3679–89

[120] Kitaeva G K 2008 Terahertz generation by means of optical rectification Opt. Quantum Electron. 35 203–20

[121] Aston D H 1975 Picosecond optoelectronic switching and gating in silicon Appl. Phys. Lett. 26 101–3

[122] Shen Y C, Upadhya P C, Linfield E H, Beere H E and Davies A G 2003 Ultrabroadband terahertz radiation from low-temperature-grown GaAs photoconductive emitters Appl. Phys. Lett. 83 3117–9

[123] Kress M, Löffler T, Eden S, Thomson M and Roskos H G 2004 Terahertz-pulse generation by photionization of air with laser pulses composed of both fundamental and second-harmonic waves Opt. Lett. 29 1120–2

[124] Chen Y, Yuanmei M, Wang M and Zhang X C 2007 Terahertz pulse generation from noble gases Appl. Phys. Lett. 91 251116

[125] Kim K Y, Joo Young W, Taylor A J and Rodriguez G 2007 Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields Opt. Express 15 4577–84

[126] Kim K Y, Joo Young W, Taylor A J, Joo Young W and Rodriguez G 2008 Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions Nature Photon. 2 605–9
[118] Kreul M et al 2006 Determination of the carrier-envelope phase of few-cycle laser pulses with terahertz-emission spectroscopy Nature Phys. 2 327–31

[119] Hamster H, Sullivan A, Gordon S and Falcone R W 1994 Short-pulse terahertz radiation from high-intensity laser-produced plasmas Phys. Rev. E 49 671–7

[120] Dai J, Karpowicz N and Zhang X C 2009 Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma Phys. Rev. Lett. 103 023001

[121] Houard A, Liu Y, Prade B, Tikhonchuk V T and Mysyrovich A 2008 Strong enhancement of terahertz radiation from laser filaments in air by a static electric field Phys. Rev. Lett. 100 255006

[122] Liu Y, Houard A, Prade B, Akturk S, Mysyrovich A and Tikhonchuk V T 2007 Terahertz radiation source in air based on bifilamentation of femtosecond laser pulses Phys. Rev. Lett. 99 135002

[123] Beaurepaire E, Turner G M, Harrel S M, Beard M C, Bigot J Y and Schmuttenmaer C A 2004 Coherent terahertz emission from ferromagnetic films excited by femtosecond laser pulses Appl. Phys. Lett. 84 3465–7

[124] Kawase K, Sato M, Taniuchi T and Ito H 1996 Coherent tunable THz-wave generation from LiNbO₃ with monolithic grating coupler Appl. Phys. Lett. 68 2483–5

[125] Kawase K, Sato M, Nakamura K, Taniuchi T and Ito H 1997 Unidirectional radiation of widely tunable THz wave using a prism coupler under noncollinear phase matching condition Appl. Phys. Lett. 71 753–5

[126] Shikata J I, Sato M, Taniuchi T, Ito H and Kawase K 1999 Enhancement of terahertz-wave output from LiNbO₃ optical parametric oscillators by cryogenic cooling Opt. Lett. 24 202–4

[127] Radhanpura K, Hargreaves S, Lewis R A, Sirbu L and Turner G M 2009 Single-cycle azimuthal angle dependence of terahertz radiation from (1 0 0) n-type InP Appl. Phys. Lett. 93 242101

[128] Heyman J N, Coates N, Reinhardt A and Strasser G 2003 Diffusion and drift in terahertz emission at GaAs surfaces Appl. Phys. Lett. 83 5476–8

[129] Dember H 1931 A photoelectro-motive energy in copper-oxide crystals Physik. Z. 32 554–6

[130] Dember H 1931 A crystal photocell Physik. Z. 32 856–8

[131] Dember H 1931 Forward motion of electrons induced by light Physik. Z. 32 207–8

[132] Klatt G et al 2010 Terahertz emission from lateral photo-Dember currents Opt. Express 18 4939–47

[133] Malevich V L 2002 Monte Carlo simulation of THz-pulse generation from InAs: photo-Dember terahertz emitter excited with an Er : fiber laser Appl. Phys. Lett. 81 021114

[134] McBryde D, Barnes M E, Berry S A, Gow P, Beere H E, Ritchie D A and Apostolopoulos V 2014 Fluence and polarisation dependence of GaAs based lateral Photo-Dember terahertz emitters Opt. Express 22 3234–43

[135] Liu D F and Qin J 2003 Monte Carlo simulation of THz-pulse generation from bulk GaAs surface Phys. Rev. Lett. 91 1265–75

[136] Hargreaves S and Lewis R A 2008 Single-cycle azimuthal angle dependence of terahertz radiation from (1 0 0) n-type InP Appl. Phys. Lett. 93 242101

[137] Malevich V L 2005 Monte Carlo simulation of Dember effect in the generation of terahertz radiation using a metallic mask on a semiconductor Physik. Z. 58 207–8

[138] Lloyd-Hughes J, Merchant S K E, Fu L, Tan H H, Jagadish C, Castro-Camus E and Johnston M B 2006 Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs Appl. Phys. Lett. 89 232102

[139] Malevich V L 2002 Monte Carlo simulation of THz-pulse generation from semiconductor surface Semicond. Sci. Technol. 17 551–6

[140] Malevich V L 2005 Monte Carlo simulation of Dember effect in n-InAs under subpicosecond laser pulse excitation Acta Phys. Pol. A 107 169–73

[141] Malevich V L and Henini M 2009 The role of optical rectification in the generation of terahertz radiation from GaB₁₁As Appl. Phys. Lett. 94 251115

[142] Adamonis J, Bičiūnas A, Krotkus A, Atrashchenko A, Evtikhiev V, Ulin V, Kaliteevski M and Abram R 2012 Terahertz pulse emission from nanostructured (3 1 1) surfaces of GaAs J. Infrared Millim. Terahertz Waves 33 599–604

[143] Hargreaves S and Lewis R A 2008 Single-cycle azimuthal angle dependence of terahertz radiation from (1 0 0) n-type InP Appl. Phys. Lett. 93 242101

[144] Malevich V L 2005 Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces Phys. Rev. B 72 053102

[145] Ral Lewis

[146] Weiss C, Wallenstein R and Beigang R 2000 Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces Appl. Phys. Lett. 77 4160–2

[147] Shank W, Weiss C, Wallenstein R, Beigang R and Heinz T F 2001 Origin of magnetic field enhancement in the generation of terahertz radiation from semiconductor surfaces Opt. Lett. 26 849–51

[148] Malevich V L 2002 Monte Carlo simulation of THz-pulse generation from semiconductor surface Semiconductor Sci. Technol. 17 551–6

[149] Malevich V L 2005 Monte Carlo simulation of Dember effect in n-InAs under subpicosecond laser pulse excitation Acta Phys. Pol. A 107 169–73

[150] Liu D F and Xu D 2006 Monte Carlo study of spatio-temporal distributions of photo-Dember field and THz radiation from InAs Int. J. Infrared Millim. Waves 27 1195–207

[151] Liu D and Qin J 2003 Monte Carlo simulation of THz-pulse generation from bulk GaAs surface Int. J. Infrared Millim. Waves 24 2127–37

[152] Reklaitis A 2011 Crossover between surface field and photo-Dember effect induced terahertz emission J. Appl. Phys. 109 083108

[153] Liu D F and Tan Y Z 2005 Modeling of terahertz radiation from InSb and InAs Int. J. Infrared Millim. Waves 26 1265–75

[154] Reklaitis A 2010 Terahertz emission from InAs induced by photo-Dember effect: hydrodynamic analysis and Monte Carlo simulations J. Appl. Phys. 108 053102
[157] Reklaitis A 2006 Monte Carlo analysis of terahertz oscillations of photoexcited carriers in GaAs p–i–n structures Phys. Rev. B 74 165305
[158] Reklaitis A 2008 Coherence of terahertz emission from photoexcited electron–hole plasma: hydrodynamic model and Monte Carlo simulations Phys. Rev. B 77 153309
[159] Reklaitis A 2011 Efficient terahertz emission from InGaN/GaN heterostructure Acta Phys. Pol. A 119 212–4
[160] Reklaitis A 2011 Pulsed terahertz emission from GaN/InN heterostructure J. Appl. Phys. 110 103103
[161] Reklaitis A 2013 Monte Carlo study of pulsed terahertz emission from multilayer GaAs/AlGAs structure J. Phys. D: Appl. Phys. 46 145107
[162] Reklaitis A 2014 Terahertz emission from δ-doped GaAs and GaAs/AlGAs: a comparative Monte Carlo study Opt. Commun. 321 90–5
[163] Castro-Camus E, Lloyd-Hughes J and Johnston M B 2005 Three-dimensional carrier-dynamics simulation of terahertz emission from photoconductive switches Phys. Rev. B 71 195301
[164] Castro-Camus E, Johnston M B and Lloyd-Hughes J 2012 Simulation of fluence-dependent photocurrent in terahertz photconductive receivers Semicond. Sci. Technol. 27 115011
[165] Cortie D L and Lewis R A 2011 Role of vanguard counter-potential in terahertz emission due to surface currents explicated by three-dimensional ensemble Monte Carlo simulation Phys. Rev. B 84 155328
[166] Cortie D L and Lewis R A 2012 The importance of scattering, surface potential, and vanguard counter-potential in terahertz emission from gallium arsenide Appl. Phys. Lett. 100 261601
[167] Kono S, Gu P, Tani M and Sakai K 2000 Temperature dependence of terahertz radiation from n-type InSb and n-type InAs surfaces Appl. Phys. B 71 901–4
[168] Saeta P N, Greene B I and Chuang S L 1993 Short terahertz pulses from semiconductor surfaces: the importance of bulk difference-frequency mixing Appl. Phys. Lett. 63 3482–4
[169] Horvat J and Lewis R A 2009 Peeling adhesive tape emits electromagnetic radiation at terahertz frequencies Opt. Lett. 34 2195–7
[170] Cortie D L and Lewis R A 2012 Terahertz surfoluminescence Surf. Sci. 606 1573–6
[171] Harvey E N 1939 The luminescence of adhesive tape Science 89 460–1
[172] Camara C G, Escober J V, Hird J R and Putterman S J 2008 Correlation between nanosecond x-ray flashes and stick-slip friction in peeling tape Nature 455 1089–92
[173] Constable E, Horvat J and Lewis R A 2010 Mechanisms of x-ray emission from peeling adhesive tape Appl. Phys. Lett. 97 131502
[174] Camara C G, Escober J V, Hird J R and Putterman S J 2010 Mechanically driven millimeter source of nanosecond x-ray pulses Appl. Phys. B 99 613–7
[175] Hird J R, Camara C G and Putterman S J 2011 A triboelectric x-ray source Appl. Phys. Lett. 98 133501
[176] Stöcker H, Rühl M, Heinrich A, Mehner E and Meyer D C 2013 Generation of hard x-ray radiation using the triboelectric effect by peeling adhesive tape J. Electrostat. 71 905–9
[177] Krämer D, Lützenkirchen-Hecht D, Lühmann B, Keite-Telgenbühler K and Frahm R 2013 New developments for the investigation of hard x-rays emitted by peeling adhesive tapes Rev. Sci. Instrum. 84 055104
[178] Collins A L, Camara C G, Naranjo B B, Putterman S J and Hird J R 2013 Charge localization on a polymer surface measured by triboelectrically induced x-ray emission Phys. Rev. B 88 064202
[179] Bacon F 1620 Novum Organum (Book II, Aphorism XII)
[180] Harvey E N 1939 The luminescence of sugar wafers Science 90 35–6
[181] Haneman D and McAlpine N 1991 Cleavage luminescence from silicon Phys. Rev. Lett. 66 758–61
[182] Haneman D and McAlpine N 1991 Light emission from Si cleaved and gas-covered surfaces Appl. Surf. Sci. 48–49 111–8
[183] Li D G, McAlpine N S and Haneman D 1993 Precision determination of long-wavelength cleavage luminescence energy and derivation of minimum surface state gap on clean cleaved Si surfaces Surf. Sci. 289 L609–13
[184] Li D G, McAlpine N S and Haneman D 1993 Surface barriers and potentials from luminescence on cleaved Si, GaAs, and InP Surf. Sci. 281 L135–20
[185] Li D G, McAlpine N S and Haneman D 1994 Cleavage luminescence from InP, Ge and Ge1−x–Si Surf. Sci. 303 171–8
[186] Kaila K J, Haneman D and McAlpine N S 1995 Low temperature cleavage luminescence of silicon Surf. Sci. 337 L795–9
[187] Busch E, Haneman D and McAlpine N S 1996 Effect of electric current on duration of cleavage luminescence Appl. Phys. Lett. 68 385–7