Light Induced Melting of Colloidal Crystals in Two Dimensions

Erwin Frey1, David R. Nelson1, and Leo Radzihovsky2

1Department of Physics, Harvard University, Cambridge, MA 02138
2Department of Physics, University of Colorado, Boulder, CO 80309

(June 19, 2021)

We demonstrate that particles confined to two dimensions (2d) and subjected to a one-dimensional (1d) periodic potential exhibit a rich phase diagram, with both “locked floating solids” and smectic phases. The resulting phases and phase transitions are studied as a function of temperature and potential strength. We find reentrant melting as a function of the potential strength. Our results lead to universal predictions consistent with recent experiments on 2d colloids in the presence of a laser-induced 1d periodic potential.

Landau’s order parameter expansion predicts that the direct transition from a solid to a liquid should always be first order \[1\]. In two dimensions (2d), however, fluctuations can suppress the transition temperature so far below its mean-field value that order parameter amplitude fluctuations (except in the form of topological defects) play no role, and Landau’s mean-field analysis is qualitatively wrong. In this case a two-stage melting process mediated by the unbinding of dislocations \[4\] and disclinations \[5\] provides an alternative scenario with two successive continuous phase transitions with an intermediate hexatic phase instead of a single direct first order transition. A periodic embedding medium for the 2d solid (e.g. a crystal substrate or a laser potential) leads to commensurability effects and engenders an enormous variety of interesting phenomena \[4\].

Colloids confined between smooth glass plates provide an ideal model system for experimental studies of 2d melting. In this system individual particles can be imaged, allowing a direct observation of topological defects and measurement of real-space correlation functions. Murray \textit{et al.} \[4\] and Zahn \textit{et al.} \[5\] have given strong experimental evidence for a two-stage melting mechanism in such systems (because dislocations relax slowly, long equilibration times are required \[1\]). Chowdhury \textit{et al.} \[6\] studied the behavior of a 2d colloidal suspension subjected to a 1d periodic potential provided by the standing wave pattern of two interfering laser beams. They observed a phenomenon called “light induced freezing”, a solidification driven by a commensurate laser potential. Our research is motivated by the recent work of Wei \textit{et al.} \[6\], who reinvestigated this phenomenon and discovered reentrant melting upon gradually increasing the amplitude of the laser potential even further.

Previous theoretical studies of this phenomenon have used density functional theory \[4\] which gives essentially the same results as Landau theory \[1\], namely a change from first to second order critical behavior with increasing potential strength. Continuous melting is allowed because the external potential singles out density modes in one direction and the relevant Landau theory then contains only even powers in the local Fourier components of the density \[\rho_{G}(r) = \exp(iG \cdot r)\]. Unfortunately, the applicability of mean-field-like theories to problems with continuous symmetry in 2d is limited since they drastically underestimate the effect of fluctuations. Results from Monte-Carlo simulations are inconclusive: Although earlier simulations \[10\] claimed to have found a tricritical point at intermediate laser intensities and reentrance, recent studies from the same laboratory \[11\] refute these results. We note that simulations with much larger numbers of particles have still not completely resolved the nature of 2d melting without an external potential \[12\].

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Triangular lattice with lattice constant a subject to a periodic potential (maxima indicated by dashed lines) for two different relative orientations: A) $p = \frac{a}{2}$ with $a = \sqrt{3}a/2$ and $p = 2$, and B) $p = \frac{a}{2}$ with $a = a/2$ and $p = 1$. Also shown are low energy dislocations with Burgers vector b parallel to the corrugation of the potential.}
\end{figure}

In this Letter we take a different approach, building on concepts developed in the context of dislocation mediated melting theory \[6\]. We model the experimental system by a continuum elastic free energy $F = F_{el} + F_{p}$, where $F_{el} = \frac{1}{2} \int d^{2}r [\mu \delta_{ij} \partial_{i}u_{j} + \lambda u_{ij}^{2}]$ is the elastic energy associated with the colloidal displacement field $u(x,y)$ relative to the equilibrium position in the unconstrained solid characterized by the “bare” elastic constants μ and λ. The quantity $u_{ij} = \frac{1}{2} \delta_{ij} \partial_{i}u_{j}$ is the 2d strain matrix. The effect of the laser potential with troughs running along the x-axis is described by $F_{p} = \int d^{2}r U(y, u_{y})$, where $U(y, u_{y}) = -U_{0}a^{-2} \cos \left[\frac{\pi}{\sqrt{3}} (u_{y} - \delta \cdot y) \right]$. U_{0} measures the strength of the laser potential and the mean colloidal spacing a is related to the particle density ρ by $\rho = 2/\sqrt{3}a^{2}$. A similar model was used to discuss mod-
ulated superconducting films in Ref. [4].

Let a' be the Bragg plane spacing for the orientation of the colloidal crystal (relative to the troughs) which produces the lowest free energy (see Fig. 2). Incommensurability between a and the distance between the troughs, d, is accounted for by the mismatch parameter $\delta = a'/d - p$, where p is the integer closest to a'/d.

For $\delta = 0$, we can write $U(y, u_y) = -U_0 a^{-2} \cos |\mathbf{K}_p \cdot \mathbf{r}|$, where $\mathbf{K}_p = \frac{2\pi}{a} p \mathbf{e}_y$ is a reciprocal lattice vector of the unperturbed system. If $U_0 = 0$, there are algebraic Bragg peaks in the structure function of the crystalline phase and $M_K \equiv \langle \rho_K \rangle \sim 1/L^{\eta_K}/2 \rightarrow 0$ as the system size $L \rightarrow \infty$, where $\eta_K = \frac{k_B T}{4\pi} \frac{3\gamma + \lambda}{(2\eta + \lambda)} K^2$ [3]. It is straightforward to show that M_K then vanishes for small U_0 as $M_K \sim U_0 |\eta_K/(4-\eta_K)|$ [3]. In contrast, M_K should always vanish linearly with U_0 in the liquid and hexatic phases [3] of the unperturbed colloidal. The laser potential will also induce long range bond orientational order in $\psi_0 \equiv \langle \rho_0(x) \rangle$ [3]. The bond order parameter ψ_0 vanishes linearly with U_0 in the liquid, vanishes like a power of U_0 in the hexatic phase ($\psi_0 \sim U_0 |\eta_0/(4-\eta_0)|$, where η_0 is the exponent describing the algebraic decay of bond order), and approaches a nonzero constant as $U_0 \rightarrow 0$ in the solid phase.

In our analysis of larger values of U_0, we shall also focus on the commensurate case ($\delta = 0$), where the spacing a' of the lattice planes parallel to the troughs equals an integer p times d. In Fig. 2, two particularly interesting orientations, denoted A and B, of the colloidal crystal and laser potential are shown. Only dislocations with Burgers vectors parallel to the troughs have the usual logarithmically divergent energy. In orientation A, four of the six fundamental Burgers vectors are disfavored by the potential, which requires that they be attached to a semi-infinite discommensuration string [3]. In orientation B, all six of the fundamental Burgers vectors are disfavored. The lowest energy Burgers vector parallel to the troughs has length $\sqrt{3}a$. At sufficiently low temperatures, the laser potential is always relevant [3], leaving massless phonon displacements u_x along the troughs with massive out-of-valley displacements u_y. We call this ordered phase a “locked floating solid” (LFS), reflecting its resistance to strains associated with u_x and its ability to accomodate strains in u_y. In reciprocal space, the LFS is characterized by a structure function $S(q)$ with a row of delta-function Bragg peaks at $G_y^{(n)} = 2\pi n/d$ ($n \in Z$) along the q_y-axis and power law Bragg peaks off this axis (see Fig. 3).

Upon integrating out the massive u_y-modes and using standard renormalization group methods [3,6,7] to eliminate bound dislocation pairs in the LFS phase, we are left with a free energy with temperature and potential strength dependent effective elastic constants,

$$F_{\text{LFS}} = \frac{1}{2} \int d^2r \left\{ K_{\text{eff}} (\partial_x u_x)^2 + \mu_{\text{eff}} (\partial_y u_x)^2 \right\}. \quad (1)$$

Because only dislocations with Burgers vectors parallel to the troughs are important, the physics is described by an anisotropic scalar Coulomb gas or, equivalently, an anisotropic 2d XY model. For p smaller than a critical value p_c we find that the LFS melts with increasing temperature at

$$k_B T_m = \frac{\sqrt{K_{\text{eff}} \mu_{\text{eff}}}}{8\pi} b^2, \quad (2)$$

via an unbinding of dislocations with Burgers vectors $b \parallel e_x$ before the laser potential which gives the mass to the u_y-modes becomes irrelevant (see below). For $T < T_m$ the correlation function $C_G(r) = \langle \rho_G(r) \rho_G(0) \rangle$ for reciprocal lattice vectors with $G_x \neq 0$ shows power law decay $C_G(r) \sim \left(\mu_{\text{eff}}/K_{\text{eff}} \right)^{1/2} r^{2} + (K_{\text{eff}}/\mu_{\text{eff}})^{1/2} y^{2} \sim -n_{\alpha}$. The structure function is singular, $S(q) \sim 1/q - G^{2-n_\alpha}$, near the reciprocal lattice vector G [3]. The exponents $\{n_G\}$ are given in terms of the elastic constants by $n_G = k_B T G_x^2/2\pi \sqrt{K_{\text{eff}} \mu_{\text{eff}}}$. The x's indicates delta-function Bragg peaks and circles algebraic peaks.

Unlike conventional 2d melting [3], n_G is universal at the melting transition, and given by $n_G = (G \cdot b/4\pi)^2$, where b is the smallest allowed Burgers vector in the trough direction [3]. For orientation A, $b = a$ and the exponent characterizing the algebraic order in the off-axis peaks (see insets of Fig. 2) closest to the q_y-axis is $n_G = 1/4$; for the next row of peaks with $G_x = 4\pi/a$ one gets $n_G = 1$, consistent with the algebraic decay observed in Ref. 6. For orientation B, $b = \sqrt{3}a$ and the six quasi Bragg peaks closest to the origin have different power laws; peaks on the x-axis have $n_G = 1$, whereas the four off-axis peaks have $n_G = 1/4$. Just above the melting temperature, we expect diverging translational correlation lengths (defined by the widths of Lorentzian peaks in the structure function) parallel and perpendicular to the troughs $\xi_x \sim \xi_y \sim \text{exp}(-1/|T - T_m|^{1/2})$.

To obtain the melting curve as a function of U_0 we calculate K_{eff} and μ_{eff} and use Eq. (2). We start from a microscopic model with a screened repulsive Coulomb interaction $V(r) = \frac{V_0 a}{r} \exp(-\kappa r)/r$, where the screening length κ^{-1} is typically much smaller than a and V_0 depends on the dielectric constant, κ and the sphere radius \bar{a}. In such a dilute limit the two Lamé coefficients.
are equal, $\lambda = \mu$. Hence the Kosterlitz-Thouless melting temperature in the absence of a laser potential ($U_0 = 0$) is simply given by

$$k_B T_m^0 = \frac{\mu a^2}{6\sigma}.$$

In the opposite limit of infinite potential strength the effective free energy simplifies to Eq. (1) with $K_{\text{eff}} = 3\mu$ and $\mu_{\text{eff}} = \mu$. Using Eq. (2), this gives $k_B T_m = \sqrt{3}\mu a^2 / 8\pi \approx 1.3 k_B T_m^0$. One might have thought that the melting temperature simply increases monotonically with U_0 from T_m^0 to T_m^∞. It turns out, however, that fluctuations in the u_p-modes caused by lowering the potential strength from infinity typically increase the melting temperature. To see this, we integrate out the u_p-modes using the screened Coulomb potential; to leading order in k_BT/U_0 and $V_0 e^{-\kappa a}/U_0$ we find (for orientation A) [12]

$$\mu_{\text{eff}} \approx \mu \left\{ 1 + \frac{9(\kappa a)^2}{64\pi^2} \left(1 + \frac{17}{3\kappa a} \right) \frac{k_B T}{p^2 U_0} \right\},$$

$$K_{\text{eff}} \approx K \left\{ 1 + \frac{(\kappa a)^2}{64\pi^2} \left(1 - 8v - \frac{23 + 104v}{3\kappa a} \right) \frac{k_B T}{p^2 U_0} \right\},$$

where $v = V_0 e^{-\kappa a}/k_B T$, $\mu = \frac{3}{8} v k_B T \kappa^2$ and $K = 3\mu$. Lowering the potential strength U_0 always increases the shear modulus, whereas the behavior of the compressional modulus depends on the magnitude of v and κa. When combined with Eq. (2), these expressions imply that the melting temperature T_m increases with decreasing U_0 for $\kappa a \gtrsim 5.6$ (in Ref. [8] $\kappa a \approx 10$),

$$T_m = T_m^\infty \left\{ 1 + \frac{5((\kappa a)^2 - 31)}{64\pi^2} \left(1 + \frac{13}{3\kappa a} \right) \frac{k_B T_m^\infty}{p^2 U_0} \right\},$$

thus implying reentrant melting for a band of temperatures as a function of potential strength (see Fig. [3]). For a more precise estimate of the phase boundary one would also need to determine the renormalization of the effective elastic constants by phonon nonlinearities and by bound dislocation pairs. In general, however, one expects only small downward renormalizations with increasing temperature [13] which will not affect the existence of reentrant melting. For small U_0, we find that the melting curve has a universal shape $T_m(U_0) - T_m(0) \sim [\ln(k_B T_m/U_0)]^{-1/\gamma}$ with $\gamma \approx 0.36963 \ldots$

We now discuss the topology of the phase diagram for larger values of the integer commensurability parameter p. As illustrated in Fig. [3], for $p > p_c$ a floating solid (FS) with two soft phonon modes [13] can intervene (baring a direct first order transition) between the LFS and the liquid phase. To determine p_c, one must calculate the thermal renormalization of the laser potential, defined by $U_0(s) = U_0 s^3 \exp\left[-\frac{1}{2} \lambda_p^2 (v s)^2 \right] \equiv U_0 s^{5p}$, where λ_p is a renormalization group eigenvalue and the subscript “$>$” indicates that the u_p-modes are integrated over a momentum shell $[\Lambda/s, \Lambda]$. The laser potential becomes irrelevant at long wavelengths whenever $\lambda_p < 0$. The thermal average over the u_p-modes requires an effective elastic long wavelength free energy appropriate to the FS phase. Because the laser potential breaks rotational symmetry, this coarse-grained free energy contains six independent elastic constants,

$$F_{FS} = \int d^2r \left\{ 2\mu u_{xy}^2 + \frac{1}{2} \lambda_{xx} u_{xx}^2 + \frac{1}{2} \lambda_{yy} u_{yy}^2 + \lambda_{xy} u_{xx} u_{yy} + 2\gamma \theta^2 + 2\alpha \theta u_{xy} \right\},$$

where $\theta = \frac{1}{2}(\theta_x u_y - \theta_y u_x)$ is the local rotation angle induced by the phonon displacements. The resulting expression for λ_p is rather complicated, with an implicit dependence on the strength of the laser potential and the temperature [15]. However, a useful estimate results from neglecting the effect of the substrate on the elastic coefficients and considering an isotropic elastic free energy. For orientation A, one finds [3] $\lambda_p = 2 - \frac{16}{3} \frac{k_B T}{k_B T_m^\infty} \approx \frac{16}{3} \frac{k_B T}{p^2 U_0}$ with the effective elastic constant $\bar{\mu} = 2\mu(2\mu + \lambda)/(3\mu + \lambda)$. In the dilute limit $\kappa a \gg 1$, relevant for many colloidal systems, we have $\mu = \lambda$ and the eigenvalue is negative for $T > T_p$, with $\lambda = \mu/2$ and $k_B T^\text{dil}_m \approx 9\mu a^2/4\pi p^2$. When compared with the melting temperature of the LFS phase in the same limit of $\kappa a \gg 1$ for weak potentials, $k_B T_m^0 \approx 0.36963\ldots$ and we find that a window of the FS phase exists for $p > p_c \approx 3\sqrt{3}/2 \approx 3.7$ for orientation A [15]. Note, however, that p_c is not a universal constant but implicitly depends on the strength of the laser potential, $p_c(U_0)$.

For intermediate commensurate densities $1 < p < p_c$, no FS phase exists, and the dislocation unbinding transition discussed above melts the LFS to a locked smectic (LSm) phase. In the LSm phase the laser potential is relevant and only one out of p possible troughs is preferentially occupied by the colloidal particles. At higher temperatures an Ising transition ($p = 2$) (more generally, p-state clock model transition [14]) takes the system to a modulated liquid phase. We expect the same kind of reentrant behavior for the LFS-LSm phase boundary as discussed above for $p = 1$. However, the LSm-Liquid phase boundary should depend more weakly on the potential strength: since the shear modulus is zero in the LSm phase the reentrance mechanism discussed above does not apply here.

For $p > p_c$ the laser potential becomes irrelevant before the LFS melts (via a roughening-like transition), leading to the uniaxial anisotropic FS described by the elastic free energy F_{FS}, Eq. (4). Melting of this uniaxial solid (with $\gamma = \alpha = 0$) has been studied in detail by Ostlund and Halperin [19]. Due to the uniaxial anisotropy there are two different types of dislocations: type-I dislocations with Burgers vector along a reflection symmetry axis of the solid, and type-II dislocations at angles $\pm \phi_0$ with respect to this axis. The laser potential in Fig. [4] is oriented in such a way that type-I dislocations are parallel to the troughs of the laser potential, interact more weakly, and will therefore unbind first. This “type-I” melting transition leads to a “floating smectic” phase (FSm) sta-
bilized by the laser potential such that it retains quasi long range order in \(\rho_G = \exp[iG \cdot u] \) for \(G = 2\pi \epsilon_p / pd \).

We expect that a FSm phase intervenes between a FS and the liquid if \(p \) is sufficiently large \((p \geq p_c = 4\) [16]).

\[
\begin{align*}
H & = \int d^2r \left\{ \frac{\nabla h}{2K_I} - g \cos[a(h + iv)] \right\} + F_{FS}[\phi].
\end{align*}
\]

Here \(h(x, y) \) is a dummy field which when integrated out in \(\exp(-H/k_BT) \) gives rise to a scalar Coulomb gas with interaction strength proportional to \(K_I \). The quantity \(\phi \) is the single valued part of the displacement fields, \(\psi(q) = (\lambda_{xy} q_x^2 - (\mu - \gamma) q_y^2)/q^2 \) and \(g = 2e^{-E_c/k_BT} \) with \(E_c \) the core energy of type-I dislocations. The melting temperature can be determined from the condition that the renormalization group eigenvalue of \(g \) vanishes,

\[
k_BT_{FS-\text{FSm}} = \frac{a^2}{8\pi} \frac{\sqrt{\lambda_{xx} - \epsilon}}{\sqrt{\mu_{+} + \lambda_{yy}}},
\]

with suitable renormalized elastic constants. Here \(\mu_{\pm} = \mu + \gamma \pm \alpha \) and \(\epsilon \) is a dimensionless function of ratios of the FS elastic constants [15]. The effect of the “spectator” phonon modes is to reduce the melting temperature. Just below \(T_{FS-\text{FSm}} \) we find for the renormalized stiffness \(K_I(T) \approx K_I^R(T_{FS-\text{FSm}})[1 + \text{const.}(T_{FS-\text{FSm}} - T)^{1/2}] \). The coupling between \(u_x \) also induces cusps in the elastic constants of the spectator field \(u_y \). Above the melting temperature \(K_I \) is zero, type-I dislocations are unbound, and at long length scales the elastic free energy describing the floating smectic phase is of the form \(F_{\text{FSm}} = \frac{1}{2} \int d^2r \left\{ B_x(\partial_x u_y)^2 + B_y(\partial_y u_y)^2 \right\} \) with \(B_x \approx [4\gamma/\mu - \alpha^2]/(\mu + \gamma - \alpha) \) and \(B_y \approx \lambda_{yy} - \lambda_{xx}^2/\lambda_{xx} \). Note that \(B_y \) vanishes in the limit \(\gamma = \alpha = 0 \) as one would expect for a rotationally invariant 2d smectic. The structure factor in the FSm phase exhibits power-law singularities at reciprocal lattice vectors \(G_n = 2\pi n e / pd \) (for \(n \neq p \), with an exponent \(\eta_{FSm} = k_BT G_n^2/2\pi \sqrt{B_y B_x} \). The FSm phase melts via a second dislocation unbinding transition when \(\eta_{FSm} \geq 1/4 \).

We have only discussed laser potentials which are commensurate with the colloidal crystal. Sufficiently large incommensurability favors the discommensurations attached to Burgers vectors with an unfavorable orientation relative to the troughs [4], and leads to an enormous variety of phase transitions as a function of density at fixed trough spacing which we hope to discuss in a future publication.

It is a pleasure to thank B.I. Halperin for helpful discussions, and C. Bechinger and P. Leiderer for communicating unpublished results. This work has been supported by the DFG through a Heisenberg fellowship (Fr 850/3-1) (ef), by the NSF through Grant No. DMR-9714725 (drn), Harvard’s MRSEC Grant No. DMR98-09363 (drn), Grant No. DMR-9625111 (lr), University of Colorado’s MRSEC Grant No. DMR-9809555 (lr), and by the A.P. Sloan and the Packard Foundations (lr).

\[\text{FIG. 3. Schematic phase diagrams for a) } 1 < p < p_c \text{ and b) } p > p_c \text{ for orientation A. Heavy lines indicate phase transitions which are most likely of first order. Inserts: Schematic structure functions.}\]

\[\text{\[1\] L.D. Landau, Phys. Z. Sowjetunion 11, 26 (1937); see also S. Alexander and J. McTague, Phys. Rev. Lett. 41, 702 (1978).}\]

\[\text{\[2\] J.M. Kosterlitz and D.J. Thouless, J. Phys. C 6, 1181 (1973); A.P. Young, Phys. Rev. B 19, 1855 (1979).}\]

\[\text{\[3\] B.I. Halperin, and D.R. Nelson, Phys. Rev. Lett. 41, 121 (1978); D.R. Nelson and B.I. Halperin, Phys. Rev. B 19, 2457 (1979).}\]

\[\text{\[4\] For a review see e.g.: V. Pokrovsky et al., in Solitons, ed. by S. Truilling et al. (North Holland, Amsterdam, 1986).}\]

\[\text{\[5\] C.-A. Murray et al., Phys. Rev. B 42, 688 (1990).}\]

\[\text{\[6\] K. Zahn et al., Phys. Rev. Lett. 82, 274 (1999).}\]

\[\text{\[7\] A. Chowdhury et al., Phys. Rev. Lett. 55, 833 (1985).}\]

\[\text{\[8\] Q.-H. Wei et al., Phys. Rev. Lett. 81, 2606 (1998).}\]

\[\text{\[9\] J. Chakrabarti et al., Phys. Rev. Lett. 73, 2923 (1994).}\]

\[\text{\[10\] J. Chakrabarti et al., Phys. Rev. Lett. 75, 2232 (1995).}\]

\[\text{\[11\] V. Bagchi et al., Phys. Rev. B 53, 3794 (1996).}\]

\[\text{\[12\] For } \eta_k > 2, m_K \text{ vanishes linearly with } U_0, \text{ with a singular correction.}\]

\[\text{\[13\] For example, I. Balents and D.R. Nelson, Phys. Rev. Lett. 73, 2618 (1994).}\]

\[\text{\[14\] L. Radzihovsky, E. Frey, and D. R. Nelson, unpublished.}\]

\[\text{\[15\] J.V. Jos´e, L.P. Kadanoff, S. Kirkpatrick, and D.R. Nelson, Phys. Rev. B 16, 1217 (1977).}\]

\[\text{\[16\] D.S. Fisher, Phys. Rev. B 26, 5000 (1982); D.S. Fisher, B.I. Halperin, and R. Morf, Phys. Rev. B 20, 4692 (1979).}\]

\[\text{\[17\] For the geometry in Fig. 3B dislocations with a larger Burgers “charge”, } b = 3\sqrt{\pi}, \text{ unbound. Hence } k_BT_{mK} \approx \frac{\mu^2}{2\pi} \text{ and } k_BT_{mK} = \frac{\mu^2}{2\pi} \text{ and thus } p_c \approx \sqrt{3/2} \approx 1.2.}\]

\[\text{\[18\] S. Ostlund, B.I. Halperin, Phys. Rev. B 23, 335 (1981).}\]