Elucidation of the ATP7B N-Domain Mg\(^{2+}\)-ATP Coordination Site and Its Allosteric Regulation

Claude Hercend\(^1,2\), Cyril Bauvais\(^3\), Guillaume Bollot\(^3\), Nicolas Delacotte\(^3\), Philippe Chappuis\(^1\), France Woimant\(^4\), Jean-Marie Launay\(^1,2\), Philippe Manivet\(^1,5,6\)

\(^1\) APHP, Hôpital Lariboisière, Service de Biochimie et de Biologie Moléculaire, Paris, France, \(^2\) INSERM U942, Biomarqueurs et Insuffisance cardiaque, Hôpital Lariboisière, Paris, France, \(^3\) Division of Structural Biology, Bioquanta, Paris, France, \(^4\) APHP, Hôpital Lariboisière, Service de Neurologie, Paris, France, \(^5\) INSERM U829, SABNP Laboratory, Evry, France, \(^6\) Université Evry Val-d’Essonne, Evry, France

Abstract

The diagnostic of orphan genetic disease is often a puzzling task as less attention is paid to the elucidation of the pathophysiology of these rare disorders at the molecular level. We present here a multidisciplinary approach using in silico modeling tools and surface plasmonic resonance to study the function of the ATP7B protein, which is impaired in the Wilson disease. Experimentally validated in silico models allow the elucidation in the Nucleotide binding domain (N-domain) of the Mg\(^{2+}\)-ATP coordination site and answer to the controversial role of the Mg\(^{2+}\) ion in the nucleotide binding process. The analysis of protein motions revealed a substantial effect on a long flexible loop branched to the N-domain core protein. We demonstrated the capacity of the loop to disrupt the interaction between Mg\(^{2+}\)-ATP complex and the N-domain and propose a role for this loop in the allosteric regulation of the nucleotide binding process.

Introduction

The Wilson disease (WD, OMIM 277900) is due to mutations in a copper transporter gene coding for the protein ATP7B that belongs to the P-type ATPase superfamily [1]. It is a rare and serious inherited sickness with the main clinical manifestations resulting in a systemic copper accumulation (liver, brain…). The incidence of this autosomic recessive disease is estimated at one for 30,000 to one for 100,000 individuals depending on the ethnicity of the affected population [2]. With a wide clinical spectrum and a slow progressive evolution, since liver will tolerate copper accumulation, early clinical diagnosis of WD remains difficult. This explains why patient condition is so serious when symptoms appear, like liver disease such as cirrhosis, neurologic disturbances or even psychiatric signs [3]. The standard diagnostic is based on the exploration of copper metabolism (copper, caeruloplasmin…) and molecular analysis of ATP7B gene mutations. The genetic diagnosis is difficult and may sometimes be a bottomless problem since WD has a marked genetic heterogeneity and most of the affected individuals are compound heterozygotes. Indeed, with a gene coding region of 4.3 kb and 21 exons, a full PCR amplification is out of reach in daily laboratory routine. Besides, more than 300 different mutations and 100 genetic polymorphisms have been published so far [4]. Even though some mutations are more frequent depending on the tested population, e.g. H1069Q in Caucasians [5] and R778L in Asians [6]. The pathogenesis of the disease is better understood since the discovery of the culprit gene (\textit{Atp7b}) in 1993 [7]. The function of the protein in copper metabolism has been studied by using biochemical assays [8], cellular (hepatocytes) and \textit{in vivo} models to decipher its cellular trafficking that mediates the export of the ion in different organs [9]. Human ATP7B is a copper ATPase (P55670) that shares the general domain organization of P-ATPases (Figure 1A). This transmembrane protein contains four domains with both N- and C-terminal ends located in the cytosol. An original metal binding site is composed of six distinct Copper Binding Domains (CBD) located in the N-terminal cytosolic part of the protein. The other domains are the Actuator domain, the Phosphorylation domain (P-domain) and the Nucleotide-binding domain (N-domain). This latter domain holds the ATP binding site and plays a major role in the catalytic cycle (Figure 1B). Experiments have been dedicated to the study of the impact of ATP7B mutations. Alterations of the molecular integrity of the ATP7B are responsible of a partial or total loss of function. For instance, yeast complementation assays have been successfully used to study ATP7B function. Despite being time consuming and highly skilled techniques, they allowed a deeper understanding of the pathogenic impact of mutations identified in different regions such as ATP-binding region composed of the N- and P-domain [10].

In parallel, structural studies concerning different domains of the ATP7B protein have been published. The N-domain structure studied in the present work was first obtained by NMR [11], followed by CBD5 and CBD6 [12]. Further studies led to the elucidation of CBD3 and CBD4 structures [13]. More recently, the Actuator domain (A-domain) of ATP7B was solved by heteronuclear NMR spectroscopy [14]. ATP is crucial for ATP7B...
function since phosphorylation initiates conformational changes in ATP7B that promote copper transport. The topology of the ATP binding site remains to be precisely defined despite NMR data available of the N-domain without and with ATP showing the existence of chemical shifts signals between ATP and protein residues belonging for instance to a poly-glycine loop [11]. However, Mg\(^{2+}\) ion is always absent from all structural and molecular modeling studies [11,15,16] despite the experimental demonstration of its great participation to the N-domain ATP affinity [17]. Most of all, attempts were made to clarify ATP/N-domain interactions without considering the role of the ion. Therefore, no clear nucleotide-binding site could have been proposed. The N-domain of the human ATP7B protein bears an intriguing long loop (A1114 - T1143) connected to the poly-glycine loop, which is absent in the ATP binding domain of other proteins of the P-ATPase family (SERCA, ZntA, CopA...) [18]. All the above observations, together with currently available unconvincing genotype-phenotype correlation data [19], call for the emergence of alternative methods such as molecular modeling, to investigate WD mutants with a clear protocol and highly accurate tools.

In the present study, the wild type (WT) N-domain structure was investigated by molecular dynamics (MD) simulations. The 3D structure of the apoform of the ATP7B N-domain [11] was used as a starting point to characterize the amino acids involved in the nucleotide binding of the wild type protein (WT). By means of 3D structural alignments and MD simulations validated by binding affinity measurements, an original ATP binding site is proposed where Mg\(^{2+}\) ion is hexacoordinated by the nucleotide and carboxylate residues of protein. The in silico 3D model proposed here also provides answers to the controversial issue on the magnesium role in the process of ATP binding as well as its impact on the dynamic of the N-domain. We propose a mechanism for the transition of the nucleotide between two binding modes (+/− Mg\(^{2+}\)) with the allosteric participation of a long protruding loop.

Results

Elucidation of the N-domain Mg\(^{2+}\)-ATP coordination site

Before interpreting the structure/function relationships of Wilson disease mutations and studying Mg\(^{2+}\)-ATP binding, the first step has been the generation and experimental validation of the 3D models for ATP7B. The NMR structure of the N-domain has been solved without ATP coordinates, the precise binding site of ATP being still under debate. Experimental NMR data is available that could help to locate the binding site. Signals have been identified between ATP and G1099, G1101, G1149 and N1150 residues, suggesting a close proximity with ATP [11].

Compared to other P-ATPases, structural information is lacking for the P\(_{1b}\)-ATPase subtype concerning the direct interaction between the N-domain and ATP molecule [20]. This emphasizes the question about the definition of the ATP coordination site of ATP7B N-domain as well as the role of magnesium and the two glycine amino acids (G1099, G1101) previously mentioned. These two glycines, which are conserved in the P\(_{1b}\) subtypes, belong to a region mentioned as a poly-glycine loop (G1099GXGXG1103). This region has already been considered to be important in nucleotide binding to the Zn\(^{2+}\) transporting ATPase (ZntA) [21].

We first identified the N-domain residues capable of interacting with Mg\(^{2+}\). According to the statistical analysis performed with a bioinformatics database, the most probable residues able to coordinate Mg\(^{2+}\) are aspartic (33%) and glutamic (18%) acids (Figure S1). Then, we refined this analysis by mapping the N-domain protein surface with a spherical pharmacophore especially designed for respecting the specific geometrical and chemical constraints for an ideal Mg\(^{2+}\)-ATP binding site (see Methods section). The Figure S2 shows the result of the pharmacophoric search that reveals a unique possible Mg\(^{2+}\)-coordinated site. This site is located in a region of the protein carrying a “DDE” structural signature between \(\alpha_4\) and \(\alpha_5\) helices involving side-chain oxygen atoms of residues E1132, D1167 and D1171 (Figure 2A). In addition, the Mg\(^{2+}\) binding site proposed is located nearby the region known for participating to ATP binding (G1099, G1101, G1149 and N1150).

To validate first the magnesium coordination proposed here and prior to the interpretation of the nucleotide binding effect studied by MD simulations, structural analysis of binding structural analysis of binding sites has been performed. More than 300 nucleotides binding sites using Mg\(^{2+}\) ion and ATP have been analyzed (see Methods section). The presence of aspartic and glutamic residues in these Mg\(^{2+}\)-ATP binding sites reinforces the
validity of the “DDE” motif used for positioning the magnesium ion (Figure S3).

Experimental validation of the Mg2+–ATP coordination site

The contribution of the different regions of the protein taking part in the interactions with the nucleotide (phosphate tail, ribose and adenine moieties) was “tested” experimentally. The aim was to validate the binding site proposed through binding measurements of the nucleotide with Wild Type (WT) and mutated forms of the N-domain (Table 1). It shows first that the presence of the magnesium ion increases the nucleotide affinity of more than 30% for the N-domain. The dissociation constant (Kd) for the WT decreases from 74.25±2.52 μM (ATP alone) to 51.94±2.79 μM (ATP, Mg2+). The substitution of any of the three residues of the “DDE” motif coordinating the Mg2+-ATP complex with an alanine (E1152A, D1167A or D1171A) significantly decreases the affinity for the nucleotide. The increase of the Kd ranges from 33% (D1171A) to more than 146% (E1152A) for Mg2+-ATP. Mutation of E1152A has the most marked impact on the ATP and Mg2+-ATP bindings. This may suggest a major role for the E1152 residue in the stabilization of the nucleotide. However, single point mutations do not prevent, if they markedly reduce, neither ATP nor Mg2+-ATP binding. The role of these “DDE” residues is evidenced by the absence of specific Mg2+-ATP binding to the N-domain (Kd >1 mM) for the triple mutant (E1152A+D1167A+D1171A). It is interesting to note that this triple mutation also prevents ATP binding. To prepare the positioning of the nucleotide in the molecular modeling study, the N1150 was mutated to alanine (N1150A). This residue has been described previously as “close contact” with ATP. As for the others mutants, N1150A shows an increase in ATP binding affinity in presence of Mg2+ (17%). Compared to the WT, there is a slight perturbation of the ATP binding evidenced by the 11–33% drop of the Kd (+Mg2+).

MD simulation study of the WT-Mg-ATP complex

Once the Mg2+ coordination site has been “validated”, a new ATP binding site could be proposed, taking into account all experimental and structural information already gathered (Table S1). The nucleotide was first positioned by molecular docking and was allowed to evolve along the MD simulation process to ensure proper Mg2+-ATP positioning through coordination of the phosphate tail. First, the N-domain was simulated through two different systems for 50 ns: WT and WT-Mg-ATP. Then, the structural validation of these two models was performed. The validation of the in silico models was done by comparing theoretical NMR chemical shifts to experimental data [22]. The Figure S4 shows an excellent agreement between calculated and experimental chemical shifts for Cα carbon atoms of the N-domains. A high correlation coefficient (R≈0.95) and a small dispersion of the scatter plot indicate that our 3D models are accurate. For the MD simulation, the stabilization of the Root Mean Square Deviation (RMSD) is achieved after 30 ns for the WT-Mg-ATP and WT
gyration evolutions (Figure 3B). The Rg fluctuates around an
loop (A1114-T1143). A similar trend is observed for the radius of

evolution of the RMSD is measured by excluding the “dynamic”
Mg-ATP), respectively. The same result is obtained when the

(1099GXGXG1103). The Figure 2B shows an overall “picture” of

bear the “DDE” motif and are located close to the glycine loop

ion is located near

20 ns of MD simulation is shown in Figure 2A. The magnesium

positions of the nucleotide for the representative structure of the last

Table 1. Nucleotide binding affinity for the N-domain of Wild
Type and mutant proteins.

N-domain	\(K_d\) (\(\mu\)M)
ATP	74.25±2.52
ATP, Mg\(^{2+}\)	51.94±2.79
Wild-type (WT)	
E1152A	174.31±3.62**
D1167A	96.92±3.91**
D1171A	81.12±3.16*
E1152A+D1167A+D1171A	no binding**
N1150A	82.74±4.16*
A1121–1137	no binding**
H1069Q	76.52±1.72

The affinity is presented here via the dissociation constant \(K_d\) for the complex:

N-domain- Mg\(^{2+}\)-ATP (left column) and N-domain/ATP (right column). The

amino acids belonging to the coordination helices are highlighted in light blue, the
deletion of the dynamic loop is shown in purple.

No binding \((K_d>1\ \mu\text{M})\), \(n.s.\) \(P<0.05, \quad **P<0.01.

doi:10.1371/journal.pone.0026245.t001

The global structure of the N-domain interacting with Mg\(^{2+}\)-ATP shows a similar behavior to
the nucleotide free N-domain. This is evidenced by the calculations of the RMSD: 9.9 Å and 8.6 Å for the RMSD of
the N-domain alone (WT) and interacting with Mg\(^{2+}\)-ATP (WT-ATP), respectively. The same result is obtained when the
evolution of the RMSD is measured by excluding the “dynamic”
loop (A1114-T1143). A similar trend is observed for the radius of
gyration evolutions (Figure 3B). The Rg fluctuates around an
average value of 16.5 Å for WT and 15.6 Å for the WT-Mg-ATP systems. Ramachandran plots show an increase in geometrical
relaxation parameters for the structures of the N-domain between
the initial and the representative structure of the last 20 ns of MD
simulations (Figure S5). The initial WT N-domain structure has
73% of amino acids residues in the most favourable regions, whilst
the representative structure of the last 20 ns of MD simulations
reaches 84% for the WT and the WT-Mg-ATP systems.

Based on these MD preliminary results, we further investigated
the Mg\(^{2+}\)-ATP coordination site on the WT-Mg-ATP model. The
position of the nucleotide for the representative structure of the last
20 ns of MD simulation is shown in Figure 2A. The magnesium
ion is located near \(\tau_3\) and \(\tau_4\) helices (coordination helices). They
bear the “DDE” motif and are located close to the glycine loop
(\(^{1099}\)GXGXG\(^{1103}\)). The Figure 2B shows an overall “picture” of
the new binding site where the adenine part of the nucleotide is
located near the glycine loop and the \(\beta\)-sheets “core” of the
N-domain. A close view in the nucleotide-binding environment is
shown (Figure 2C). The magnesium ion is hexacoordinated via
an octahedral geometry by the amino acids of the “DDE” motif
(E1152, D1167, D1171) and oxygen atoms of the \(\beta\)-\(\gamma\)-phosphate

ATP Switches between Two Binding Sites

ATP binding site without Mg\(^{2+}\)

To assess the effect of Mg\(^{2+}\) on ATP binding to the N-domain,
MD simulation was performed without the ion (WT-ATP system).
The absence of the ion induces conformational changes in the
N-domain with a major rearrangement concerning the \(\tau_3\) and \(\tau_4\)

helices that can be explained by a decreasing structural order
through MD simulation results of WT-ATP system. For the WT-
ATP system, the stabilization of RMSD occurs after 20 ns (Figure
S7A).

Computational results show that in absence of Mg\(^{2+}\), the N1150

is still in the vicinity of ATP molecule and interacts in this case
(WT-ATP) with the phosphate moiety (O-P\(^{-}\)) through hydrogen
bond interaction (2.11 Å). Instead of interacting with Mg\(^{2+}\) ion
(WT-ATP-Mg\(^{2+}\)), the D1171 amino acid forms a strong
hydrogen bond with the hydroxyl group of the ribose moiety in
absence of Mg\(^{2+}\) (WT-ATP system) (Figure S7B). In addition,
the adenine moiety is encapsulated by M1035, P1098, I1102, I1138,
G1149, M1174, I1180, and I1194 residues defining a hydrophobic

pocket. Moreover, the amine group of adenine moiety forms
hydrogen bond with carbonyl backbone of C1100 amino acid
(2.87 Å). Molecular modeling results are confirmed by experi-
mental data showing that ATP is able to bind the N-domain
without the magnesium ion (Table 1). However, the affinity of
the N-domain for ATP is 45% lower when Mg\(^{2+}\) is absent. All
the above results suggest a more complex interaction between the
N-domain and ATP than it has been previously suggested and
reinforces the validity of a new ATP binding mode in absence of
Mg\(^{2+}\) ion.
Impact of the “dynamic loop” motion on Mg2+-ATP binding

As evidenced in the dynamic study of the Wild Type N-domain (WT), the motion of the long loop located between A1114 and T1143 is influenced by the presence of Mg2+-ATP. This striking change of motion suggests a possible contribution of this loop in ATP binding. Located between β3 and β4 (Figure 3B), this loop is only present in human P-ATPases such as ATP7B and ATP7A. The latter is a copper transporter highly homologous to the ATP7B protein, implicated in Menkes disease [24]. This explains why the role of this loop remains unknown besides an increasing numbers of structural studies actually available for these enzymes. According to the results obtained for the atomic fluctuations of the long loop, further investigations have been made to understand the role of this peculiar loop in the ATP7B function. First, the effect of the loop on the nucleotide binding was evaluated experimentally by the measurement of the K\textsubscript{d} for a mutant protein with a shortened loop (deletion of residues 1121–1137). Unexpectedly, the absence of this loop suppresses the binding for both ATP and Mg2+-ATP (see Table 1). In order to understand these results and to elucidate furthermore the role of this loop in the N-domain dynamic response and its influence on the nucleotide binding process, one additional MD simulation has been performed. For this purpose, a new 3D model was built with the long “dynamic” loop substantially shortened (Shortened Loop SL, cf. Methods). No alteration of overall protein folding has been noticed, compared to WT-ATP-Mg model. The RMSD obtained for the SL-Mg-ATP system shows stabilization after 20 ns of MD simulations (Figure S8A). The Mg2+-ATP binding site is altered in absence of the whole loop with a re-organization of the magnesium coordination...
sphere (SL-Mg-ATP system). D1167 from the “DDE” motif is evicted and replaced by a water molecule (Figure S6B). The coordination helices lose their structural integrity. This allows the nucleotide to change its relative position concerning the coordination helices and the poly-glycine loop. It goes further “inside” the β-sheet core of the protein composed of a hydrophobic groove (I1119, I1180, I1194). The phosphate part of ATP is stabilized via an interaction with R1156. The adenine moiety loses its main interactions. These preliminary data on the loop role suggest interdependence between the motions of the dynamic loop and the Mg^{2+}-ATP binding site via a possible affinity modulation of the Mg^{2+}-ATP/N-domain complex.

Discussion

Like in the case of WD, access to in silico technologies for studying the pathophysiology of rare genetic disorders, bring additional arguments for facilitating the diagnostic and the prognostic of diseases that are sometimes difficult to establish. A prerequisite for the study of the impact of point mutations on a protein structure is to understand its natural structural properties like folding, atomic motions, conformational changes, interaction with cofactors, etc. In the present work, the focus was the identification of the Mg^{2+}-ATP complex binding site of the N-domain (WT). The scientific literature is abundant on P-ATPases. Many studies are focused on their catalytic cycle with an emphasis on the phosphorylation step [25] and the general role of ATP [20]. Less attention has been paid to the nucleotide-binding step. Structural studies have been published using molecular modeling tools to decipher at the molecular level the interactions between the protein and the nucleotide. For ATP7B, the first molecular modeling study was anterior to the publication of the NMR structure of the N-domain [15]. The putative three-dimensional (3D) model of the N-domain was obtained by homology modeling using the Sarcoplasmic Reticulum Ca^{2+}-ATPase (SERCA) as a structural template. The study did not lead to significant results concerning the ATP binding process. The low primary sequence homology between the N-domain of ATP7B and SERCA (20%) led to a poorly accurate 3D model with two putative ATP binding configurations proposed in the same protein without any presence of Mg^{2+}. Most of all, no experimental validation of the molecular interactions has been performed.

For the other members of the closely related P-ATPases, no molecular dynamics study of the nucleotide coordination is yet available. An NMR structure has been recently solved for the N-domain of ATP7A in the nucleotide bound (without Mg^{2+}) and nucleotide free forms [26]. An observation of the ATP-bound structure (PDB Id. 2KMX) shows an overall domain organization similar to the ATP7B N-domain. However, the topology of the ATP7B nucleotide-binding site is rather different especially for the phosphate groups. Both proteins share key residues: P1098 (P1087 for ATP7A), G1099 (G1116), G1101 (G1118), N1150 (N1184). Another key element is the sequence conservation in both N-domains of the residues belonging to the “DDE” motif responsible of the Mg^{2+}-ATP coordination in the WT-Mg-ATP model: E1157 (E1156), D1167 (D1201), and D1171 (D1205). The absence of Mg^{2+} in the ATP7A NMR structure could explain the differences observed in the nucleotide environment of two proteins. The possible modification of ATP conformation in presence of Mg^{2+} has been briefly evoked in the NMR study of the ATP7B N-domain [11] suggesting the existence of two different binding “sites” with different affinities for ATP. This hypothesis could explain the difference of the experimental K_d obtained for the WT in magnesium free or bound form (Table 1).

In order to challenge this assumption, MD simulations have been performed for the wild type ATP7B N-domain in interaction with either ATP or Mg^{2+}-ATP (WT-ATP and WT-Mg-ATP systems). Indeed, ATP alone could accommodate its position by migrating towards a hydrophobic groove after the removal of the magnesium ion. The charge repulsion between phosphate tail of ATP and acidic side-chains of the residues belonging to the “DDE” motif of the Mg^{2+} coordination sphere could help ATP to shift. Two binding modes could exist in the N-domain whether the ion is present or not. The first binding mode needs Mg^{2+} for ATP binding to be tightly stuck to the N-domain, the second being a transitory binding mode before the migration of the nucleotide towards the P-domain. Indeed, the γ-phosphate hydrolysis is thus not possible for phosphorylation of the P-domain since it is engaged in the ion coordination through its oxygen atoms. For proper P-domain phosphorylation, ATP has to be separate from Mg^{2+}. This transition might be possible through a conformational change of the N-domain (see below for Discussion about the dynamic loop) since the N-domain and Mg^{2+}-ATP complex are stuck together through very strong electrostatic interactions. It would be interesting to test this hypothesis with a 3D model of N-/P-domains together to study the whole process from the nucleotide-binding step to the phosphorylation. This hypothesis is in agreement with the fact that Mg^{2+}-ATP complex has to change its coordination when approaching the P-domain in order to allow its phosphorylation at D1027, as evidenced in a previous study concerning the SERCA structure solved in presence of ATP and Mg^{2+} [27]. A recent study of the CopA protein, a bacterial homolog of ATP7B, clearly brings a bundle of arguments in the favor of our hypothesis. In the crystal structure of the protein solved with an ATP analogue in presence of the magnesium ion [28], the nucleotide is bound in “sandwich” between the N- and P-domains nearby H1069 but not directly interacting with, and associated on the P-domain side with a hexacoordinated Mg^{2+} ion. It is interesting to note that there is no equivalent “DDE” triad in the N-domain of the CopA. More recently, a nearly complete X-ray structure has been published for this protein [29]. The presence of a magnesium ion near the DKTG motif at the interface of the P- and the A-domain support our hypothesis and could help to elucidate the full transfer of Mg-ATP from N- to P-domain during the acyl-phosphorylation process.

The previously published structural studies on the N-domain have neglected the role of the Mg^{2+} ion, although experimental evidences have pointed out the major role it plays in the nucleotide-binding mode of different P-ATPases. An original experimental protocol was used to study the ATP binding site of the Na^{+}/K^{+} ATPase with Fe^{2+} ions capable of replacing Mg^{2+} [30]. A direct interaction was proposed between an ATP-Fe^{2+} complex and the aspartic acid side-chains of the “VADGA” motif (N-domain). Similar results for the SERCA have been confirmed by the interactions of residues of the N-domain and Mg^{2+}-ATP [31]. The results obtained in the present study prove the essential role of the ion in the nucleotide binding to the N-domain as it accounts for a substantial part of the binding affinity. Theses results are in agreement with the previous experimental study published by Morgan et al. [17]. Indeed, a significant increase in affinity was measured with similar results for the K_d: 75.30 μM (±3.62) for ATP alone to 57.00 μM (±3.00) for the Mg^{2+}-ATP complex (Table 1). It was concluded surprisingly that the nucleotide binding to the N-domain is a magnesium-independent event despite contradictory experimental results. The reason was that no high-affinity binding has been observed in presence of N-domain and magnesium alone. Unfortunately, this publication has been often referred for justifying the lack of Mg^{2+} participation in
ATP binding. Several other arguments sustain that Mg²⁺ always helps nucleotide to bind optimally to the protein target. It is well known that Mg²⁺ is essential for the catalytic activity of a wide range of enzymes using a nucleotide as cofactor (kinases, G-proteins, polymerases, etc; for review see reference [32]). In addition, the very low intracellular proportion of ATP in the free form, the cytosolic abundance of Mg²⁺ (∼10⁻³ M) and the important stability of the Mg²⁺-ATP complex (Kₐ = 10⁵ M⁻¹) explain why this complex is the major active form of the nucleotide [33]. This has been confirmed in muscle tissues where Mg²⁺-ATP accounts for 90% of total ATP [34]. The position of the ion in coordination with β- and γ-phosphate oxygen atoms protects the nucleotide from hydrolysis. This fundamental role of the magnesium in binding sites is achieved through a hexacoordination under an octahedral geometry.

Our results show noticeable disparities with previously published work concerning the ATP binding site. A major difference concerns H1069 residue that has been shown to bind directly ATP without considering the role of the magnesium ion [11,16]. H1069 residue has been proposed to participate directly in ATP binding since the H1069Q mutation occurs frequently in WD. Its participation in ATP binding is not obvious and has to be reconsidered for both modeling and binding experiments. Indeed, the distance between ATP and H1069 is about 9–10 Å for the WT-Mg-ATP system that is not compatible with a direct participation of the histidine in the binding site. Similarly, the simulation of WT-ATP model reveals a distance between ATP molecule and H1069 about 17 Å (distance in the representative structure) that indicates no direct participation in the ATP vicinity. Experiments confirmed this conclusion. The binding measurement repeated eight times for the H1069Q mutant is not different from the WT-Mg-ATP N-domain binding site. Mg²⁺-ATP complex (Ka = 10⁵ M⁻¹) explains why this complex is the major active form of the nucleotide [33]. This has been confirmed in muscle tissues where Mg²⁺-ATP accounts for 90% of total ATP [34]. The position of the ion in coordination with β- and γ-phosphate oxygen atoms protects the nucleotide from hydrolysis. This fundamental role of the magnesium in binding sites is achieved through a hexacoordination under an octahedral geometry.

In summary, we provided a clear definition of the topology and localization of the Mg²⁺-ATP binding site by using a careful in silico protocol. Through the N-domain protein, the “DDE” motif (E1152, D1167, D1171) is able to coordinate the ion via an octahedral geometry (Figure 2). The absence of the Mg²⁺ ion led to a topology description of a transitory binding mode that could play an important role before the phosphorylation of the P-domain. Computational results such as the intervention of the ion or the role of the dynamic loop have been confirmed experimentally. The binding measurements have shown that the nucleotide is able to bind the N-domain with a submicromolar affinity in presence of Mg²⁺ ion. Most of all, the possible allosteric role by the long dynamic loop in the N-domain Mg²⁺-ATP binding/release was put forward. All above results pave the road for additional investigations of the impact of mutations on the folding and function of the N-domain.

Methods

Structural analysis of Mg²⁺-nucleotide binding site

In order to find the ATP7B N-domain Mg²⁺-ATP binding site, a database search was done on the MSD motif database of the European Bioinformatics Institute [39]. It contains 19 042 different bonds interacting between amino acids and Mg²⁺ ion. The results are ranked for every amino acid participating to Mg²⁺ coordination in a decreasing order of occurrence probability (Figure S1). Then, based on this classification, a pharmacophore-
based approach [39] is used to find a putative magnesium-binding site in the N-domain of ATP7B. The 3D structure of the N-domain is inserted on a 3D grid of points with 1 Å between each point. Its surface is then mapped using a pharmacophore of an ideal Mg\(^{2+}\) coordination geometry (Figure S2). Each pharmacophoric point was designed according to functional chemical groups of the amino acid side-chains involved in the Mg\(^{2+}\) ion coordination. As an example of the most represented coordinating residues, it contains different pharmacophoric points (Asp, Glu, etc.). The definition of pharmacophoric points includes a sphere centered on Mg\(^{2+}\) with Ca atoms bearing active points. The sphere radius is adjusted depending on the volume of every atom of the side-chains (Asp, Glu, etc.), the number of residues to be included and their relative orientation. The 6 Å diameter of the sphere takes into account the volume of the spheres for the oxygen atoms and Mg\(^{2+}\) based on their respective Van der Waals radii (1.52 Å and 1.71 Å). This is compatible with the fact that experimental Mg\(^{2+}\)-O distance is rarely superior to 3 Å. The mapping procedure was repeated several times by varying systematically the nature of each pharmacophoric point and by respecting the occurrence probability of each amino acid obtained by the previous ranking procedure with an emphasis on acidic residues.

The validation of the Mg\(^{2+}\) nucleotide coordination site was achieved by performing a careful 3D visual analysis of 3D structures containing magnesium, ATP or analogues available in the Protein Data Bank (PDB). First, 72 proteins containing a nucleoside triphosphate hydrolase P-loop structural motif were studied (SCOP classification [40]). Next, the analysis was extended to 97 proteins bearing a Rossman fold (CATH classification [41]). Finally, we expanded our PDB “scan” to 314 matching structures sharing the same nucleotide binding function as the N-domain (Gene Ontology term 166). Every nucleotide-binding pattern was carefully analyzed with the help of PyMOL visualization program [42].

Molecular dynamics simulations

The NMR “model 1” structure of the N-domain of the ATP7B protein (PDB code 2ARF) was used as a starting structure for molecular dynamics (MD) simulations with the help of the GROMACS molecular dynamics package [43]. The WT and shortened N-domain (Shortened Loop: SL) isolated species as well as complexed with either ATP (WT-ATP) or Mg\(^{2+}\)-ATP (WT-Mg-ATP) were simulated. The initial position of the nucleotide was obtained from molecular docking using the WT model obtained from MD with the magnesium ion positioned near the “DDE” motif. Conformational space for ATP positioning was performed taking into account the residues highlighted from experimental and structural informations (Table S1). Then, calculations were done using AUTODOCK 4.2 [44]. 200 docking runs with Lamarckian Genetic Algorithm as a conformational search engine were done and results were clustered with a RMSD tolerance of 2 Å. The lowest energy conformation of the most populated cluster was then considered for following MD simulations.

All studied systems were prepared using Ambertools package [45]. The protein and the magnesium ion (Mg\(^{2+}\)) were described with the FF03 force field for proteins [46,47]. ATP parameters were obtained from GAFF force field [48] and additional revised parameters [49,50]. Topology and coordinates files obtained from tLeap were then converted to GROMACS file format using Acype [51] python tool based. Each model was solvated in a rectangular water box with a 12 Å layer of TIP3P water molecules. The protein residues were considered at neutral pH. Thus, HIS residues were kept in the default neutral protonation state (HID, with hydrogen on the delta nitrogen) in Amber FF03.

Figure 4. Implication of the flexible loop in ATP binding. (A) Closest trajectory snapshot of the representative structure for the whole and shortened N-domain (cartoon representation) for the WT-Mg-ATP (left) and SL-Mg-ATP (right) systems. The amino acid D1167 is circled in red and side-chains of the “DDE” motif are presented in sticks. ATP and water molecules are shown in ball and stick and VdW, respectively. (B) Schematic proposition of allosteric mechanism promoted by the dynamic loop for the nucleotide release process. The first step of the dynamic response of the loop implies a constraint applied by an unknown partner. The second step is the perturbation of the binding of ATP with the N-domain. doi:10.1371/journal.pone.0026245.g004
Electro neutrality was achieved through the addition of the appropriate number of Na\(^+\) counter ions. Energy minimization protocol included 5000 cycles of Steepest Descent algorithm with convergence criteria of 0.05 kJ/mol nm\(^{-1}\). The electrostatic non-bonded interactions were computed with a 12 Å cut-off and particle-mesh Ewald method [52] to treat long range interactions. Lennard-Jones potential was described with a continuously smoothing cut-off from 10 to 12 Å. A constant temperature pressure simulation with a 1 fs time step under leap-frog algorithm for integrating Newton’s equations of motion was performed. A total of 50 ns simulations were done for each system at 310 K in the NPT ensemble (constant number of particles, pressure, and temperature) with temperature velocity rescaling coupling [53] and at 1 atm pressure with Berendzen isotropic coupling [54]. The study of the impact of the large dynamic loop (residues A1114 to T1143) on the N-domain/Mg\(^{2+}\)-ATP complex was investigated by shortening the loop (lacking residues 1121–1137) and by linking residues 1120 and 1130 to give SL-Mg-ATP system. The geometrical quality of the different representative 3D structures throughout the simulations was assessed by Ramachandran plots generated by the PROCHECK program [53] (Figure S5). For protein-ligand interactions studies and other analyses, representative structures were extracted using the closest frame from the representative structure over the last 20 ns of each trajectory. Hydrogen bonds have been considered with precise geometrical parameters: 3.2 Å donor-acceptor distance cutoff and a 30° angle cutoff.

Protein expression and purification

To analyze the pertinence of the Mg\(^{2+}\)-ATP binding site, functional profiles of engineered N-domains of ATP7B (amino acid residues V1036-D1196 of the full-length protein) were determined. The corresponding cDNA region was PCR-amplified and subcloned as previously described [17]. Mutations were introduced using the QuickChange site-directed mutagenesis kit (Stratagene\(^\text{®}\)) and verified by DNA sequencing (3130 Genetic Analyzer, Applied Biosystems). Wild type or mutated cDNAs were then expressed and the corresponding proteins were purified. To avoid transcriptional bias, cell lines expressing functional profiles of engineered N-domains of ATP7B (amino acid residues V1036-D1196 of the full-length protein) were covalently immobilized onto the hydrophilic carboxymethylated dextran matrix of the sensor chip CM4 previously activated with 35 mM L activation solution, as described by the manufacturer. Each binding experiment was repeated several times (n = 6–8) under both conditions.

Spectral characterization of theoretical models

The experimental validation of the generated 3D models was performed by comparison between the available NMR chemical shifts of the N-domain and “theoretical” chemical shifts calculated from MD trajectories. The various assigned experimental chemical shifts were extracted from the BioMagResBank (entry number 6914). Apart from general NMR parameters such as relaxation times (T\(_1\), T\(_2\)), the chemical shifts are not available directly from simulation data. The SPARTA program [22] predicts protein backbone chemical shifts (\(^{15}\)N, \(^{1}H\), \(^{1}H\), \(^{13}\)C\(_{\alpha}\), \(^{13}\)C\(_{\beta}\), \(^{13}\)C\(_{\gamma}\)) from a PDB file. According to the elevated Pearson’s correlation coefficient (R = 0.91) between experimental and SPARTA predicted chemical shifts calculated for \(^{13}\)C\(_{\gamma}\) atoms, we decided to use these atoms to evaluate the correlation between experimental and calculated NMR shifts from our 3D models.

Supporting Information

Figure S1 Bar chart showing the proportion of the different amino acids involved in Mg\(^{2+}\) coordination (source EBI). The percentage of magnesium ion interacting with either an aspartic or a glutamic acid is shown.

Figure S2 N-domain screening procedure used for identification of the Mg\(^{2+}\) binding coordination site. The N-domain is represented in cartoon, aspartic and glutamic acids side-chains in sticks. The pharmacophore presented here is an example of a fit obtained with Mg\(^{2+}\) and three amino acids (Asp, Asp, Glu). The result of the protein surface mapping is green circled and two important regions of the protein known to play a role in ATP binding are shown with black arrows (G1149-N1150, GxG motif).

Figure S3 Examples of the Mg\(^{2+}\) coordination environment in different ATP-binding proteins: (A) Human nicotinamide riboside kinase, (B) yeast mitochondrial F1-ATPase, (C) G1C\(_{\beta}\), bacterial ABC-ATPase of the glucose ABC transporter, (D) ATPase domain of the bovine heat-shock cognate protein. Each 3D structure is identified with its PDB Id code. The ATP (or analogue) is colored in gray, the magnesium sphere in purple.

Figure S4 Correlation plots between experimental and calculated NMR chemical shifts obtained from different structures for the \(^{13}\)C\(_{\gamma}\) carbon atoms of the N-domain: (A) Initial structure available in the PDB, (B) Structure of the representative frame of the last 20 ns of 50 ns MD trajectories of the WT-Mg-ATP system and (C) of the WT system. Predictions of the chemical shifts were obtained using the SPARTA software (see Methods).

Figure S5 Ramachandran plots of the N-domain monitoring the structural components of the models used throughout the molecular dynamics (MD) simulations. Initial structure after the minimization step (upper plot), structure of the representative frame of the last 20 ns of 50 ns MD trajectories for WT (left) and WT-Mg-ATP systems (right). The percentage of residues found in the most favorable regions of the diagram is indicated in a purple rectangle for each model.

Figure S6 Geometrical details of the octahedral Mg\(^{2+}\) coordination in the nucleotide-binding site. The trajectory snapshot of the system WT-ATP-Mg represents atoms in close vicinity of the ion (magenta sphere). The representative structure of the last 20 ns of MD simulations is shown with the octahedral Mg\(^{2+}\) coordina-
tion in the nucleotide-binding site. The distances (Å) related to the octahedral coordination of the Mg²⁺ are the average values over the last 20 ns of the total dynamic simulation (50 ns).

(DOC)

Figure S7 MD analysis and alternative binding mode of the N-domain in absence of Mg²⁺ for the WT-ATP system. (A) Plot of the Root Mean Square Deviation (RMSD, in Å) of the Cα atoms along the 50 ns of MD simulation for the WT-ATP system. (B) Closer trajectory snapshot of the representative structure along the last 20 ns of the 50 ns duration. Protein (WT), ATP molecule, and side-chain residues are represented in cartoon, ball and stick, and tube, respectively. Hydrogen bonds are shown in dotted line.

(DOC)

Figure S8 MD analysis and binding mode of the N-domain where the dynamic loop (A1114-T1143) has been shortened for the SL-Mg-ATP system. (A) Plot of the Root Mean Square deviation for the SL-Mg-ATP system. (B) Closer trajectory snapshot of the representative structure along the 50 ns of MD simulation for the WT-ATP system. (C) A1114-T1143 has been shortened for the SL-Mg-ATP system. (A) Plot of the Root Mean Square deviation for the SL-Mg-ATP system. (B) Closer trajectory snapshot of the representative structure along the last 20 ns of the 50 ns duration. Protein (WT), ATP molecule, and side-chain residues are represented in cartoon, ball and stick, and tube, respectively. Hydrogen bonds are shown in dotted line.

(DOC)

References

1. Kuhlbrandt W (2004) Biology, structure and mechanism of P-type ATPases. Nat Rev Mol Cell Biol 5: 382–295.
2. Gillin JD (2003) Wilson disease. Gastroenterology 125: 1686–1687.
3. Ali A, Walker AP, Ashkan K, Dooley JS, Schliktly ML (2007) Wilson’s disease. The Lancet 367: 397–408.
4. Kenney SM, Cox DW (2007) Sequence variation database for the Wilson disease copper transporter, ATPTB. Hum Mutat 28: 1171–1177.
5. Caca K, Ferrenc P, Kuhn H, Polli C, Willgerodt H, et al. (2001) High prevalence of the H1069Q mutation in East German patients with Wilson disease: rapid detection of mutations by limited sequencing and phenotype-genotype analysis. Journal of Hepatology. 35: 573–581.
6. Kim EK, Yoo OJ, Song KY, Choi SI, et al. (1998) Identification of three novel mutations and a high frequency of the Arg727Leu mutation in Korean patients with Wilson disease. Hum Mutat 11: 273–279.
7. Tanzi RE, Petrukhin K, Chernov I, Pellequer JL, Wasco W, et al. (1993) The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat Genet 5: 344–350.
8. Lutsenko S, LeShane ES, Shunde U (2007) Biochemical basis of regulation of human copper-transporting ATPases. Arch Biochem Biophys 463: 134–148.
9. La Fontaine S, Mercer JF (2007) Trafficking of the copper-ATPases, ATP7A and ATP7B: cousins, not twins. J Bioenerg Biomembr 39: 435–445.
10. Lutsenko S, Arseniev AS, Tsivkovskii R, Efremov RG, Koltun SH, et al. (2006) Functional properties of the copper-transporting ATPase ATP7B (the Wilson’s disease protein) expressed in insect cells. J Biol Chem 277: 976–983.
11. Banci L, Bertini I, Cantini F, Rosenzweig AC, Yatsunyk LA (2008) Metal binding of the nucleotide-binding domain of the Wilson disease protein: location of the ATP-binding site, domain dynamics and potential effects of disease mutations. Biochemistry 48: 3915–3925.
12. Banzi L, Bertini I, Cantini F, Iagnaci S, Migliardi M, et al. (2010) The binding mode of ATP revealed by the solution structure of the N-domain of human ATP7A. J Biol Chem 285: 2537–2544.
13. Toyoshima C, Mizutani T (2004) Crystal structure of the calcium pump with a bound ATP analogue. Nature 430: 529–535.
14. Tsuda T, Toyoshima C (2009) Nucleotide recognition by CopA, a Cu⁺-transporting Ptype ATPase. The EMBO Journal 28: 1782–1791.
15. Gourdon P, Lax S, Skjørtinge T, Morth JP, Moller L, et al. (2011) Crystal structure of a copper-transporting Pll-type ATPase. Nature 475: 59–64.
16. Patchornik G, Goldshleger R, Karlish SJ (2000) The complex ATP-Fe(2+) serves as a specific affinity cleavage reagent in ATPMg(2+) sites of Na,K-ATPase. Proc Natl Acad Sci USA 103: 5302–5307.
17. Linz R, Lutsenko S (2007) Copper-transporting ATPases ATP7A and ATP7B: cousins, not twins. J Bioenerg Biomembr 39: 435–445.
18. Lu¨thi D, Gu¨nzel D, McGuigan JA (1999) Mg-ATP binding: its modification by sequence variations in the human Wilson disease gene. Mol Membr Biol 16: 375–386.
39. Golovin A, Henrick K (2008) MSIDmotif: exploring protein sites and motifs. BMC Bioinformatics 9: 512.
40. Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol 247: 536–540.
41. Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, et al. (1997) CATH: a hierarchic classification of protein domain structures. Structure 5: 1095–1108.
42. DeLano WL (2002) The PyMOL Molecular Graphics System DeLano Scientific, San Carlos, CA, USA.
43. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. Journal of Chemical Theory and Computation 4: 435–447.
44. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, et al. (2009) AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 30: 2783–2791.
45. Case DA, Darden TA, Cheatham TE, III, Simmerling CL, Wang J, et al. (2010) AMBER 11 University of California, San Francisco.
46. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, et al. (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24: 1999–2012.
47. Lee MC, Duan Y (2004) Distinguish protein decoys by using a scoring function based on a new AMBER force field, short molecular dynamics simulations, and the generalized born solvent model. Proteins 55: 620–634.
48. Wang J, Wolf RM, Caldwell J, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25: 1157–1174.
49. Amber website. Available: http://www.pharmacy.manchester.ac.uk/bryce/amber. Accessed 2011 October 03.
50. Meagher KL, Redman LT, Carlson HA (2003) Development of polyphosphate parameters for use with the AMBER force field. J Comput Chem 24: 1016–1025.
51. Nguyen TT, Mai BK, Li MS (2011) Study of Tamiflu Sensitivity to Variants of A/H5N1 Virus Using Different Force Fields. J Chem Inf Model 51: 2266–2276.
52. Toukmaji A, Sagui C, Board J, Darden T (2000) Efficient particle-mesh Ewald based approach to fixed and induced dipolar interactions. J Chem Phys 113: 10913–10927.
53. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126: 014101–7.
54. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81: 3684–3690.
55. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26: 203–209.