On the Relationship Between Dust Devil Radii and Heights

Brian Jackson
Boise State University

Publication Information
Jackson, Brian. (2020). "On the Relationship Between Dust Devil Radii and Heights". Icarus, 338, 113523-1 - 113523-4. https://dx.doi.org/10.1016/j.icarus.2019.113523

Data set information can be found at: https://github.com/BoiseStatePlanetary/Of-Dust-Devils-and-Diameters
On the relationship between dust devil radii and heights

Brian Jackson

Boise State University, Department of Physics, 1910 University Drive, Boise ID 83725-1570, United States of America

1. Introduction

The martian atmosphere is dusty — analyzing spectra collected by Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES), Smith (2004) found globally averaged dust infrared optical depths \(\tau \) often exceed 0.15, comparable to the daily smog layer in Los Angeles (Ramanathan et al., 2007), and large dust storms can drive \(r \) to \(\gg 1 \) (Smith et al., 2002). The suspended aerosols absorb and scatter radiation, modifying the atmospheric heat budget. Smith et al. (2002) estimated Mars’ 2001 global dust storm drove atmospheric temperatures up by at least 40 K, and the perpetually suspended background haze provides warming of \(\sim 10 \) K (Basu et al., 2004). Dust removal/deposition varies regionally (Kahre et al., 2006), and fluctuations in polar deposition could alter the cap albedo and sublimation (Hourdin et al., 1995). Thus, the dust cycle is intimately woven into the fabric of Mars’ climate.

The dust cycle is driven, in part, by dust devils, convective vortices rendered visible by dust. At the core of a dust devil, surface heating results in positive temperature and negative pressure excursions, which fall off with radial distance. The buoyant air ascends to roughly the top of the planetary boundary layer (Fenton and Lorenz, 2015), where the dust may be carried away by regional winds. Meanwhile, near the surface, surrounding air is drawn in, conserving vorticity and giving a tangential wind field at a devil’s eyewall.

Although devils clearly contribute to the atmospheric dust budget on Mars, their exact contribution remains highly uncertain. Based on imagery collected by the Spirit rover on Mars, Greeley et al. (2006) estimated that devils contribute only a tenth as much atmospheric dust as regional dust storms. A survey involving space-based imagery estimated devils are an important but perhaps not dominant source of dust (Cantor et al., 2006). And Fenton et al. (2016) suggested dust devils may contribute as much as 75% of the total dust flux to the martian atmosphere.

Key to resolving this uncertainty is an accurate assessment of the martian dust devil population and its dust-lifting potential. In this vein, ground-based surveys using the meteorological instruments on-board landers provide a powerful tool. These surveys involve sifting pressure time-series for the short-lived, negative pressure excursions that arise when a convective vortex passes near the lander (e.g. Ellehoj et al., 2010; Ordonez-Etxeberria et al., 2018). These surveys have several advantages — pressure time-series are often collected throughout the martian day, allowing for more accurate occurrence rate estimates; and they probe the internal structures of dust devils, providing important tests for physical models (Rennó et al., 2000). However, these surveys may suffer from complex bias and selection effects (Jackson et al., 2018a). Also, since the required wind speed data are almost always lacking, it is impossible to directly estimate the devils’ physical sizes, required to estimate the areas over which devils lift dust and therefore their dust-lifting. On the other hand, space-based imaging surveys allow assessment of dust devil sizes and dust-lifting (Cantor et al., 2006), but image resolution usually limits detections to the largest and least common devils (Lorenz, 2009). Moreover, the images alone reveal little to nothing regarding the devils’ internal structure, pressure, temperature, and wind profiles.

To bridge this gap, I adapt previously developed thermodynamic models for dust devils, supplemented by simplified assumptions regarding their angular momenta, to derive scaling relations between dust devil radii, pressure profiles, wind speeds, and heights. The relations...
predict, for example, that the radius scales with the square root of a devil’s height. They also predict how radius depends on environmental conditions such as wind shear and atmospheric scale height. To check this model, I compare the radius-height scaling to data from the imaging survey reported in Stanzel et al. (2008) and find reasonable agreement. Finally, I discuss possibilities for future work.

2. Model

For the analysis here, I assume a dust devil consists of a small, steady-state convective plume with a radial pressure structure resembling a Lorentz profile and a velocity structure resembling a Rankine vortex (Kurgansky et al., 2016). The eyewall of the dust devil occurs at the peak in the velocity profile at a well-defined distance \(R \) from the convective center. Far from the dust devil center, the wind field carries angular momentum inward along horizontal flowlines. Turbulent drag along the surface dissipates some (but not all) of the mechanical energy, providing the frictional dissipation required to establish a steady-state (Rennó et al., 1998). Decades of field work corroborate this model in broad strokes (e.g., Murphy et al., 2016), but statistically robust and detailed in-situ measurements of active dust devil structures remain undone.

At the dust devil’s eyewall, cyclostrophic balance applies, and the pressure gradient force balances the centrifugal force:

\[
\frac{1}{\rho} \frac{dp}{dr} = \frac{\omega^2}{R},
\]

where \(\rho \) is the atmospheric density near the surface, \(p \) the pressure, \(r \) radial distance from the devil’s center, and \(\omega \) the tangential velocity. The pressure structure follows a Lorentz profile:

\[
p(r) = p_{\infty} - \frac{\Delta p}{1 + (r/R)^2},
\]

where \(p_{\infty} \) is the ambient pressure, and \(\Delta p \) is the depth of the pressure perturbation at the devil’s center. Calculating the pressure gradient from this profile and equating it to the centrifugal acceleration at \(r = R \) gives

\[
\frac{\Delta p}{\Delta \rho} = \omega^2.
\]

The dust devil’s pressure gradient influences the ambient wind field and draws in air out to a distance \(r = r_{\text{inf}} = nR \), i.e. some number of radii out. If the ambient wind field has a lateral wind shear \(\alpha \equiv \partial U/\partial x \), there will be a difference in velocity from one side of the devil to the other for the incoming air, \(\Delta U \approx ar_{\text{inf}} \), an expression which neglects factors of order unity. The attendant specific angular momentum \(\ell \) can be estimated by multiplying this velocity difference by the lever arm \(r_{\text{inf}} \), i.e. \(\ell \approx ar_{\text{inf}}^2 \). Assuming this angular momentum is roughly conserved as the fluid travels from \(r_{\text{inf}} \) to \(R \) implies \(ar_{\text{inf}}^2 = an^2R^2 \approx nR \) or

\[
\nu \approx n^2R.
\]

The appropriate value for \(r_{\text{inf}} \) (and therefore \(n \)) likely depends on the dust devil’s properties and ambient conditions (e.g., wind shear, turbulent drag, etc.), but the exact dependence is unclear. Aside from assuming \(r_{\text{inf}} \approx R \) (previous studies have suggested \(n = 4 = 10 \approx R \); Rennó and Bluestein, 2001), I leave it unspecified.

Using Eq. (3), we find

\[
R \approx a^{-1}n^{-2} \left(\frac{\Delta p}{\rho} \right)^{1/2},
\]

again neglecting factors of order unity.

Next, we can express the radius in terms of the dust devil height \(h \). Rennó et al. (1998) suggested

\[
\Delta p = \rho_{\infty} \left\{ 1 - \exp \left[\frac{\gamma}{\gamma - 1} \left(\frac{1}{X} \right) \left(\frac{\Delta T}{T_{\infty}} \right) \right] \right\},
\]

where \(\gamma \) is the ratio of the gas constant \(R_\gamma \) to the specific heat capacity at constant pressure \(c_p \), and is equal to 0.22 (Rennó et al., 2000); \(\gamma \) is the fraction of mechanical energy dissipated by friction near the surface, and \(\Delta T \) the temperature difference between the positive perturbation at the devil’s center and the ambient temperature \(T_{\infty} \). \(\eta \) is the thermodynamic efficiency, given by

\[
\eta = \frac{T_b - T_{\infty}}{T_b},
\]

where \(T_b \) is the entropy-weighted mean temperature near the surface where heat is absorbed, and \(T_{\infty} \) is the same for the cold sink at the top of the dust devil. Estimates of \(\eta \) based on field observations suggest \(\eta \lesssim 0.1 \) (e.g. Rennó et al., 2000). A useful approximation gives \(T_b \approx T_{\infty} \), while

\[
T_b = \left[\frac{p_{\infty}^{\prime + 1} - p_{\infty}^{\prime + 1}}{(p_{\infty} - p_{\infty}) (\gamma + 1) p_{\infty}} \right] T_{\infty},
\]

where \(p_{\infty} \) is the pressure near the top of the dust devil (Rennó et al., 2000) and is related to the surface pressure as \(p_{\infty} \approx p_{\infty} \exp (-h/H) \) with \(H \) the atmospheric scale height. For Mars, \(H \gtrsim 10 \text{km} \), and, although dust devils are sometimes observed that tall, usually they are a few km or less in height (Stanzel et al., 2008).

We can plug these expressions into Eq. (7) and expand about small \(h/H \):}

\[
\eta \approx 1 + \frac{1}{2} \chi \left(\frac{h}{H} \right).
\]

In other words, for most dust devils, the thermodynamic efficiency increases linearly with their heights. Fig. 1 shows how \(\eta \) depends on \(h/H \) for a wide range of values and confirms the linear behavior for small \(h/H \). We can plug Eq. (9) into Eq. (6) and again expand about small \(h/H \):

\[
\Delta p \approx \left(\frac{\gamma R_\gamma \Delta T}{2} \right) \left(\frac{h}{H} \right),
\]

with \(p_{\infty}/T_{\infty} = R_\gamma p \).

Since \(R \) depends on the scale of the pressure perturbation, which itself depends on \(\eta \), we can write a relationship between \(R \) and \(h \) using Eq. (5):

\[
R \approx a^{-1}n^{-2} \left(\frac{\gamma R_\gamma \Delta T}{H} \right)^{1/2} h^{1/2},
\]

with factors of order unity neglected.

Fig. 1. Dust devil thermodynamic efficiency \(\eta \) as a function of dust devil height \(h \) normalized to the atmospheric scale height \(H \). The solid, blue line shows the full behavior given by Eqs. (7) and (8), while the dashed, orange line shows a linear approximation.
population of dust devils, a model fit to the distribution of measured R- vs. h-values (along with accurate uncertainties) should recover the underlying relationship. Indeed, as I show below, a fit to results from a dust devil survey closely resembles Eq. (11).

3. Fitting the model to observational data

Numerous surveys involving space-based imagery have provided measurements of dust devil properties. The most voluminous survey, Cantor et al. (2006), reports more than 11k active devils imaged by the narrow- and wide-angle instruments of the Mars Global Surveyor’s Mars Orbital Camera but only reports devol occurrence, not their radii and heights. Another comprehensive survey described in Stanzel et al. (2008) provides estimates of diameters and heights for nearly 200 active devils using the Mars Express High Resolution Stereo Camera, with image resolutions between 12.5 and 25 m pixel$^{-1}$. The reported uncertainties on the diameters were typically 63 m and on the heights were typically ≥ 100 m. I use these data, shown in Fig. 2, to test Eq. (11).

To fit these data, I applied two different models. For the first (shown as the solid, orange line in Fig. 2), I assumed $R \propto h^2$, with Γ allowed to float. For the second fit, I fixed $\Gamma = 1/2$, as in Eq. (11). For both fits, I allowed the proportionality constant to float. Since both the ordinate and abscissa (radius and height, respectively) involve significant measurement uncertainties, I use the orthogonal distance regression algorithm, which can accommodate uncertainties along both dimensions (Bogg and Rogers, 1990; Jones et al., 2001), to fit the model parameters.

The best-fit $\Gamma = 0.63 \pm 0.04$ is 3.5σ discrepant from the value predicted by Eq. (11). This disagreement may arise from several factors. Most importantly, Eq. (11) involves several important simplifying assumptions, including that n is independent of ambient conditions and a dust devil’s properties and that h is independent of ΔT. In reality, a larger ambient wind shear can drive enhanced turbulent dissipation (Arya, 1988), potentially giving rise to an inverse relationship between n and α. We also expect a positive correlation between ΔT and h, although the level to which a convective plume rises also depends on the ambient lapse rate. In any case, the fact that the best-fit Γ-value closely resembles the predicted value suggests these effects are not significant.

The discrepancy may also arise from features of the survey itself. Although Stanzel et al. (2008) give uncertainties for the diameters and heights, no details are provided regarding how they are determined, and so it is difficult to judge their accuracy. The exact value and uncertainty for Γ depend sensitively on the measurement uncertainties. To demonstrate this dependence, I artificially doubled the uncertainties on the diameters (but not on the heights) and found that the best-fit Γ-value can be made to agree with $1/2$, meaning even a modest underestimate for the uncertainties can give discrepant results. Likewise the size of the surveyed population contributes to uncertainties on the model fit (Jackson and Lorenz, 2015). By randomly selecting many different sub-sets of the reported diameter–height pairs half the size of the full survey, I find that I can often retrieve a best-fit Γ consistent with $1/2$, meaning a larger survey might have given a different Γ-value. These analyses highlight the importance of a robust assessment of measurement uncertainties and of using the largest sample size possible when exploring dust devil population statistics.

4. Conclusions

Additional work can test the model presented here. Probes of active dust devils to explore internal structures and dust abundances, such as the work with instrumented drones described in Jackson et al. (2018b), would provide the most direct test of the scaling relationships described here. The arguments above also suggest an image survey to recover a larger population of dust devils with a detailed assessment of uncertainties could clarify the radius–height relationship. In fact, the population of dust devils identified but not measured in the survey reported in Cantor et al. (2006) might be ideally suited.

The scalings here suggest other relationships that can be tested. For instances, combining Eqs. (3) and (10) allows us to estimate the eyewall velocity from a dust devil’s height:

$$v \approx \frac{1}{2} \left(\frac{R \Delta T}{H} \right)^{1/2} h^{1/2}.$$

which, except for the scale height, is insensitive to ambient conditions (assuming they are suitable for dust devil formation). The momentum flux carried by a wind of speed v scales as ρv^2. Although the details of dust lifting can be complicated (e.g. Greeley and Iversen, 1985), once the grains are lifted, momentum conservation requires that their mass flux is proportional to the wind’s momentum flux. The dust mass crossing an area oriented perpendicular to the flow in unit time is therefore proportional to v^2. This dust flux is transported around the circumference of the dust devil in an amount of time $\tau = 2\pi R/v$. Thus, at steady-state, the total dust mass transported around the eyewall is proportional to $v^2 \tau = v R \propto h$. Of course, the actual dust content of a devil will also depend on the availability of dust in the region it forms, but with a large enough population, the underlying dependence on h may be apparent.

A more indirect test would be to compare the distribution of diameters measured by imagery surveys to the pressure profiles observed by martian landers. However, such an analysis may require a scheme to account for the biases of these lander surveys (Jackson et al., 2018a; Kurgansky, 2019). More challenging but perhaps enlightening might be measurements of ambient wind shear and its influence on dust devils (Arya, 1988).

If future work can refine or improve the relationships presented here, dust devils may serve as probes of martian meteorology and dust cycle. For instance, Eq. (11) shows that, given a measured height, a devil will also depend on the availability of dust in the region it forms, but with a large enough population, the underlying dependence on h may be apparent.

Acknowledgments

This work was supported by grant number 80NSSC19K0542 from NASA’s Solar System Workings program and by a grant from the Idaho Space Grant Consortium. The codes and data I used are available here – http://github.com/BoiseStatePlanetary/Of-Dust-Devils-and-Diameters/.

Fig. 2. The blue dots are dust devil heights h and radii R in kilometers reported in Stanzel et al. (2008). The solid, orange line shows the result for which the best-fit exponent (0.63) is allowed to float, while the dashed, green line involves fixing the exponent at 1/2 as in Eq. (11).
Jackson, B., Lorenz, R., Davis, K., Lipple, B., 2018b. Using an instrumented drone to study of martian dust devils and their tracks (September 1997 to January 2006) and evaluation of theoretical vortex models. J. Geophys. Res. (Planets) 111, E12S09. http://dx.doi.org/10.1029/2006JE002700.

Ellehoj, M.D., Gunnlaugsson, H.P., Taylor, P.A., Kahanpää, H., Bean, K.M., Cantor, B.A., Ghelyani, B.T., Drube, L., Fisher, D., Harri, A.M., Holstein-Rathlou, C., Lemmon, M.T., Madsen, M.B., Malin, M.C., Polkko, J., Smith, P.H., Tamppari, L.K., Weng, W., Whiteway, J., 2010. Convective vortices and dust devils at the Phoenix Mars mission landing site. J. Geophys. Res. 115, http://dx.doi.org/10.1029/2009je003413. http://dx.doi.org/10.1029/2009je003413.

Fenton, L., Lorenz, R., 2015. Dust Devil Height and Spacing with Relation to the Martian Planetary Boundary Layer Thickness. vol. 260. pp. 246–262, http://dx.doi.org/10.1016/j.icarus.201507028.

Fenton, L., Reis, D., Lemmon, M., Marticorena, B., Lewis, S., Cantor, B., 2016. Orbital observations of dust lofted by daytime convective turbulence. SSRv 203, 89–142. http://dx.doi.org/10.1007/s11214-016-0243-6.

Greeley, R., Iversen, J., 1985. Wind as a geological process on Earth, Mars, Venus and Titan. Cambridge Planetary Science Series, Vol. 4, Cambridge University Press, Cambridge - London - New York.

Greeley, R., Whelley, P.J., Arvidson, R.E., Cabrol, N.A., Foley, D.J., Franklin, B.J., Geissler, P.G., Golombek, M.P., Kuzmin, R.O., Landis, G.A., Lemmon, M.T., Neakrase, L.D.V., Squires, S.W., Thompson, S., 2006. Active dust devils in gusev crater, mars: Observations from the mars exploration rover spirit. J. Geophys. Res. (Planets) 111, E12S09. http://dx.doi.org/10.1029/2006JE002743.

Houdrín, F., Forget, F., Talagrand, O., 1995. The sensitivity of the martian surface pressure and atmospheric mass budget to various parameters: A comparison between numerical simulations and viking observations. J. Geophys. Res. 100, 5501–5523. http://dx.doi.org/10.1029/94JD03079.

Jackson, B., Lorenz, R., 2015. A multiyear dust devil vortex survey using an automated search of pressure time series. J. Geophys. Res. (Planets) 120 (3), 401–412. http://dx.doi.org/10.1002/2014JE004712.

Jackson, B., Lorenz, R., Davis, K., 2018a. A framework for relating the structure and recovery statistics in pressure time-series surveys for dust devils. Icarus 299, 166–174. http://dx.doi.org/10.1016/j.icarus.2017.07.027, arXiv:1708.09484.

Jackson, B., Lorenz, R., Davis, K., Lipple, B., 2018b. Using an instrumented drone to study of martian dust devils and their tracks (September 1997 to January 2006) and evaluation of theoretical vortex models. J. Geophys. Res. (Planets) 111, E12S09. http://dx.doi.org/10.1029/2006JE002700.

Jackson, B., Lorenz, R., Davis, K., Lipple, B., 2018a. A framework for relating the structure and recovery statistics in pressure time-series surveys for dust devils. Icarus 299, 166–174. http://dx.doi.org/10.1016/j.icarus.2017.07.027, arXiv:1708.09484.

Kahre, M., Murphy, J., Haberle, R., 2006. Modeling the martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model. J. Geophys. Res. (Planets) 111, I06008. http://dx.doi.org/10.1029/2005je002588.

Kurgansky, M., 2019. On the statistical distribution of pressure drops in convective vortices: Applications to Martian dust devils. Icarus 317, 209–214. http://dx.doi.org/10.1016/j.icarus.2018.08.004.

Kurgansky, M., Lorenz, R., Renno, N., Takemi, T., Gu, Z., Wei, W., 2016. Dust devil steady-state structure from a fluid dynamics perspective. SSRv 203, 209–244. http://dx.doi.org/10.1007/s11214-016-0281-0.

Lorenz, R.D., 2009. Power law of dust devil diameters on mars and earth. Icarus 203 (2), 683–684. http://dx.doi.org/10.1016/j.icarus.2009.06.029.

Martínez, G.M., Newman, C.N., De Vicente-Retortillo, A., Fischer, E., Renno, N.O., Richardson, M.I., Fairén, A.G., Genzer, M., Guzewich, S.D., Haberle, R.M., Harri, A.-M., Kempf, N., Lemmon, M.T., Smith, M.D., dela Torre-Juárez, M., Vasavada, A.R., 2017. The modern near-surface martian climate: A review of in-situ meteorological data from viking to curiosity. Space Sci. Rev. 212 (1), 295–338. http://dx.doi.org/10.1007/s11214-017-0360-x, https://doi.org/10.1007/s11214-017-0360-x.

Murphy, J., Steakley, K., Balme, M., Deprez, G., Esposito, F., Kahanpää, H., Lemmon, M., Lorenz, R., Murdoch, N., Neakrase, L., Patel, M., Whelley, P., 2016. Field measurements of terrestrial and martian dust devils. SSRv 203, 39–87. http://dx.doi.org/10.1007/s11214-016-0283-y.

Ordonez-Exeberrià, I., Hurso, R., Sánchez-Lavega, A., 2018. A systematic search of sudden pressure drops on gale crater during two martian years derived from MSL/REMS data. Icarus 299, 308–330. http://dx.doi.org/10.1016/j.icarus.2017.07.032.

Ramanathan, V., Li, F., Ramana, M., Praveen, P., Kim, D., Corrigan, C., Nguyen, H., Stone, E., Schauer, J., Carmichael, G., Adhikary, B., Yoon, S., 2007. Atmospheric brown clouds: Hemispherical and regional variations in long-range transport, absorption, and radiative forcing. J. Geophys. Res. (Atmospheres) 112, D22S21. http://dx.doi.org/10.1029/2006JD008124.

Rennó, N.O., Blustein, H.B., 2001. A simple theory for waterspouts. J. Atmos. Sci. 58 (8), 927–932. http://dx.doi.org/10.1175/1520-0469(2001)058<0927:ASTFW>2.0.CO;2.

Rennó, N.O., Burkett, M.L., Larkin, M.P., 1998. A simple thermodynamical theory for dust devils. J. Atmos. Sci. 55, 3244–3252.

Rennó, N.O., Nash, A.A., Lunine, J., Murphy, J., 2000. Martian and terrestrial dust devils: Test of a scaling theory using pathfinder data. J. Geophys. Res. 105, 1859–1866. http://dx.doi.org/10.1029/1999je001037, http://dx.doi.org/10.1029/1999je001037.

Smith, M., 2004. Interannual variability in TES atmospheric observations of Mars during 1999-2003, vol. 167. pp. 148–165. http://dx.doi.org/10.1016/j.icarus.2003.09.010.

Smith, M., Conrath, B., Pearl, J., Christensen, P., 2002. NOTE: Thermal emission spectrometer observations of martian planet-encircling dust storm 2001a. 157, 259–263. http://dx.doi.org/10.1006/icar.2001.6797.

Stanelz, C., Fitzioldz, M., Williams, D.A., Whelley, P.L., Greeley, R., Neukum, G., the HRSC Co-Investigator Team, 2008. Dust devil speeds, directions of motion and general characteristics observed by the mars express high resolution stereo camera. Icarus, 197 (1), 39–51. http://dx.doi.org/10.1016/j.icarus.2008.04.017.