A Mild One-Pot Reduction of Phosphine(V) Oxides Affording Phosphines(III) and Their Metal Catalysts

Łukasz Kapuśniak, Philipp N. Plessow, Damian Trzybiński, Krzysztof Woźniak, Peter Hofmann, and Phillip Iain Jolly*

Cite This: Organometallics 2021, 40, 693−701

ABSTRACT: The metal-free reduction of a range of phosphine(V) oxides employing oxalyl chloride as an activating agent and hexachlorodisilane as reducing reagent has been achieved under mild reaction conditions. The method was successfully applied to the reduction of industrial waste byproduct triphenylphosphine(V) oxide, closing the phosphorus cycle to cleanly regenerate triphenylphosphine(III). Mechanistic studies and quantum chemical calculations support the attack of the dissociated chloride anion of intermediated phosphonium salt at the silicon of the disilane as the rate-limiting step for deprotection. The exquisite purity of the resultant phosphine(III) ligands after the simple removal of volatiles under reduced pressure circumvents laborious purification prior to metalation and has permitted the facile formation of important transition metal catalysts.

INTRODUCTION

Applications of Phosphine(III) Ligands and Synthesis. Phosphines and their derivatives are of significant importance to both academic and industrial chemistry. In particular, within organic chemistry phosphine(III) compounds have a distinguished history, mediating classical transformations such as the Appel,1 Mitsunobu,2 and Wittig3,4 reactions. Additionally, the ready modulation of electronic and steric properties of phosphine(III) has made them excellent ligands for the formation of well-defined transition metal complexes,5 although recalcitrant phosphine(V) oxides arise, when phosphine(III) compounds are employed as labile ligands6 or the metal complexes are simply decomposed, in the presence of a suitable oxidant.7 Arguably, the stoichiometric formation of phosphine(V) oxide waste from the above-named organic reactions presents an even greater issue, especially on the industrial scale,6,8 as the conversion of P(V)O to P(III) oxidation state is nontrivial (vide infra).

Direct Reduction of Phosphine(V) Oxide. Given the significance of phosphine(III) compounds, a variety of anaerobic syntheses have been reported.8,9 However, the sensitivity of phosphine(III) to oxidation (requiring only minutes to hours) has led to the widespread use of “protected” phosphines,10 such as phosphine–borane adducts11,12 and phosphine(V) sulides13,14 but predominantly phosphine(V) oxides.15,16 These precursors tolerate the reaction conditions necessary to construct more complex architectures18 although the protection must be removed in the penultimate12,19 or final10,11 step of the ligand synthesis. Thus, much attention has been focused on the conversion of P(V)O to P(III) (Scheme 1a), including the use of silanes and siloxanes such as HSiCl3,22−25 HSiCl3/Ph3P,26 Si3Cl4,24,27 Si3Me6 with CsF/
metals, LiAlH₄, thiols/Et₃N, activated carbon, HCl, chlorobenzene at elevated temperature over 2 days. As well by Laven and Kullberg, while Li et al. employed less mild iodine-catalyzed reduction of phosphine(V) oxides accompanied by the decomposition of the precious azolinium hydrides such as LiAlH₄, LiAlH₄/CeCl₃, AlH₃, and 45 compounds catalyzed by frustrated Lewis pairs (FLPs). Harsh metal also been reduced with aluminum/metal salts, alkali aluminum, silicon, and hydrogenolysis, which may be catalyzed by frustrated Lewis pairs (FLPs). Harsh metal bases and Grignard reagents have even been used to deprotect certain CPSs. Opposite, alternatively, CPS can be converted to phosphine-boranes by either NaBH₄ or LiBH₄ although ultimately the borane “protecting group” itself requires removal (Scheme 1b,d,e).

Motivation to Develop a New Facile Reduction of Phosphine(V) Oxides. Our interest in phosphine(V) oxides reduction originates from our desire to explore bulky N-phosphinomethyl-functionalized N-heterocyclic carbene ligands (NHCPs) as potential ligands for new olefin metathesis catalyst (Scheme 2). Progress has been severely hampered due to difficulties accessing azolium salt, with the problematic reduction of 4 being achievable only with a large excess of trichlorosilane (27.0 equiv) in anhydrous degassed chlorobenzene at elevated temperature over 2 days. As well as the lengthy reaction time, we experienced some reproducibility issues, with the unsuccessful reaction being accompanied by the decomposition of the precious azolium 4, previously obtained via a multistep synthesis. In light of this, a simple procedure for the conversion of 4 to 5 would be a great advantage. Such a process might also permit access to other challenging phosphine(III) and metal catalysts as well as permitting the recovery of the valuable phosphine(III) ligands: “closing the phosphorus cycle” is of increasing importance due to environmental and availability concerns.

Herein, we report a new activation/deprotection of phosphine(V) oxides without the use of harsh reaction conditions, metals, or sacrificial phosphines. Intermediate CPSs are directly converted to desired phosphines by reaction with hexachlorodisilane. Mechanic details have been elucidated by experimentation and supported by computation. The “one-pot” procedure affords excellent yields of pure phosphine(III) ligands that can be telescoped into formation of transition metal catalysts without the prior need for silica gel chromatography.

RESULTS AND DISCUSSION

Reduction of Activated CPSs with Disilane. In 1996, BASF reported the generation of tetrachlorosilane (SiCl₄) when the CPS, Ph₃PCl₂ (2), was heated with elemental silicon at 185 °C. Not wanting to expose our ligand precursor to such harsh reaction conditions, we hypothesized that hexachlorodisilane might serve as a suitable surrogate for elemental silicon and similarly generate 2 equiv of SiCl₄ on reactions with a CPS. The abundant industrial byproduct Ph₃PO (1) appeared to be the ideal test substrate, and was easily converted to activated Ph₃PCl₂ (2) with sodium metal. Gratifyingly on reaction with 1.1 equiv of hexachlorodisilane (SiCl₄) at room temperature, both ¹H NMR and ³¹P NMR indicated the immediate, clean, and complete formation of Ph₃P (3), with ³¹P NMR showing only one set of signals for the tetrachlorodisilane, SiCl₄ (δ = −18.8 ppm). Motivated by the ability of SiCl₄ to reduce 2, we chose to explore other disilanes (Table 1, entries 2–10): 1,1,2,2-tetrachloro-1,2-dimethylsilane (Si₂Me₂Cl₄), hexamethyldisilane (Si₃Me₆), and hexaphenyldisilane (Si₃Ph₆), which might generate the corresponding attractive byproducts.

entry	CPS 2a-c, X	disilane	equiv	time	conv to 3 [%]
1	Cl	Si₂Cl₄	1.1	5 min	100
2	Cl	Si₃Me₂Cl₄	1.1	5 min	0
3	Cl	Si₂Me₂Cl₄	1.1	1 day	28
4	Cl	Si₃Me₂Cl₄	1.1	2 days	55
5	Cl	Si₂Me₂Cl₄	1.1	3 days	72
6	Cl	Si₃Me₂Cl₄	1.1	4 days	78
7	Cl	Si₂Me₂Cl₄	1.1	5 days	83
8	Cl	Si₃Me₂Cl₄	1.1	6 days	100
9	Cl	Si₃Me₂Cl₄	1.0	1 day	0
10	Cl	Si₃Ph₆	1.0	1 day	0
11	OTf	Si₂Cl₄	1.1	10 min	7
12	OTf	Si₃Me₂Cl₄	1.1	1 day	80
13	OTf	Si₃Me₂Cl₄	1.1	1 day	100
14	OTf	Si₂Cl₄	4.0	2 days	0

Conversion judged by ³¹P NMR of 2a-c relative to 3.
trichloromethylsilane (MeSiCl₃), trimethylsilyl chloride (Me₃SiCl), or triphenylsilyl chloride (Ph₃SiCl). However, the more electron-rich and sterically hindered disilanes generated the desired phosphines in either lower yield, over extended reaction times or not at all. For instance, the addition of a single electron-donating methyl group to each of the silicon atoms in Si₂Me₆Cl₄ drastically decreased the rate of reaction, with only a 28% conversion to 3 after 24 h, eventually reaching completion after 144 h. In contrast, the reaction with Si₂Cl₆ was complete in under 5 min. No reaction was observed for even more electron-rich and sterically shielded Si₂Ph₆ or Si₂Me₆.

Scope of the New Procedure. With Si₂Cl₆ proving to be the redundant of choice, we expanded the application of the procedure to other phosphine(III) compounds. Aliphatic tricyclohexylphosphine (7) was afforded in 97% yield, in contrast to the recently reported hydrogenation at 130 °C, which notably afforded none of the desired phosphine(III) complexes. Cyclic alkene 2-phosphonate oxide was also converted to P(III) 2-phospholene (8) (98%) without the reduction or isomerization of the C=C bond. Reduction of phosphinamides without the P=N bond scission is particularly challenging; while Gilheany et al. synthesized “protected” aminophosphine–borane adducts from CPSs in excellent yields, we were able to furnish the free aminophosphine 9 directly (89%). The dimethylamino group in DavePhos 11 (93%) was also tolerated well, with fellow Buchwald ligand CyJohnPhos 10 being cleanly afforded in 95% yield. Chiral phosphines are still of great significance, and we chose to explore binaphthyl systems as the CPSs of P-chirogenic phosphines are known to racemize. The oxides of chiral phosphines permit structure elaboration, and our new method rapidly afforded (S)-Ph-BINEPINE (12) (96% yield). (R)-MeO-MOP (13) was also readily synthesized (99%). It is of note that the direct reaction of MeO-MOP oxide with Si₂Cl₆ in acetonitrile led exclusively to scission of the C–O bond without reduction of P(V). Highlighting the divergence in the reactivity of the activated P(V)Cl₃ compared to recalcitrant P(V)O, Moreover, we observed no racemization in the case of either 12 or 13.

Having established the optimal conditions for the generation of a range of phosphine(III) compounds, we turned our attention back to azolium 5. The reaction of 4 with excess oxalyl chloride yielded a new chlorophosphonium bearing azolium salt 15 (after removal of 4-toluenesulfonyl chloride produced by chlorination of the 4-toluenesulfonate; see the Supporting Information) which was readily transformed to the desired azolium 5 with hexachlorodisilane (1.5 equiv). The identity of both salts 5 and 15 was established by single-crystal X-ray diffraction analysis. Crystals suitable for this purpose were obtained by layering methylene chloride with hexane and storing at ~30 °C. The salts crystallize in the monoclinic P2₁/c (CPS 15) and P2₁/n (azolium 5) space group, respectively. Graphical representation of molecular structure of both compounds is shown in Figure 1. The tetravalent phosphorus atom effectively means each molecule of CPS 15 has two dissociated chloride counteranions: one for each of the cationic phosphonium and the azolium constituent parts. Interestingly, the asymmetric unit of the crystal lattice of 15 also contained a molecule of hydrochloride (Figure S2). The additional chloride counterion has important implications for the deprotection of 15, which thus requires 1.5 equiv of hexachlorodisilane to fully convert the CPS to P(III) 5: presumably, the extra Cl⁻ counterion of the imidazolium moiety also reacts with Si₂Cl₆ (vide infra). Finally, mesityl-substituted 5 could be facilely synthesized in an excellent 94% yield, without implementing harsh reaction conditions. In addition, we further demonstrated the usefulness of the new procedure to generating phosphine-bearing azolium salts with the synthesis of the 2,6-diisopropylphenyl analogue 14, in a comparable 92% yield. More details concerning the crystal structure of CPS 15 and azolium 5 can be found in the Supporting Information (Figures S58–S66).

Experimental and Computational Mechanism Studies. CPSs in methylene chloride form a cationic phosphonium with a noncoordinated anionic chloride counteranion, while it has been demonstrated that Cl⁻ (e.g., from ammonium

Table 2. Conversion of Phosphine(V) Oxides to Phosphine(III) Ligands via CPS Intermediates

Entry	Phosphine(V) Oxide	CPS NMR [ppm]	Produ ct #	Phosphine(III)	Yield [%]
1	P₃PO₃	60.2	3	Ph₃PO₃	99
2	P₃PO₃	107.1	7	PO₃	97
3	Me₂N = CN	99.9	8	Ph₂N = CN	98
4	Ph₂N(=O)	68.3	9	Ph₂N(=O)	89
5	Cy₂P = O	99.1	10	Cy₂P = O	95
6	Me₂N = CN	96.0	11	Me₂N = CN	93
7	Ph₂P = O	86.9	12	Ph₂P = O	96
8	OMe	66.4	13	OMe	99
9(a)	Bu₂N(=O)	108.7	5	Bu₂N(=O)	94
10(a)	(b)	108.5	14	(b)	92

1. The azolium salts were reacted with 5.0 equiv (COCl)₂. The resultant CPS was separated from TsCl and then reacted with 1.5–1.6 equiv of Si₂Cl₆.
salts) leads to scission of the Si–Si bond in Si2Cl6 (Scheme 3).44–99 This leads us to surmise that the reaction is initiated by the attack of chloride anion at silicon of Si2Cl6 generating an equivalent tetrachlorosilane (SiCl4) and a reactive transient trichlorosilanide anion [:SiCl3]– which then abstracts the remaining phosphorus bound chloride from intermediated 17 to generate the second and final equivalent of SiCl4.

To explore this mechanistic proposal, chlorotriphenylphosphonium triflate (Ph3PClOTf) 2b was synthesized.100 The triflate anion is a superb nucleofuge, being a far more stable leaving group than chloride;101 therefore, the dissociated triflate ion (TF̄O2–) of 2b would be expected to react much slower with hexachlorodisilane than Cl– of 2a. Indeed, after reaction for 10 min, 31P NMR indicated that these signals are tentatively attributed to dichlorosilyl triflate, SiCl3OTf (see the Supporting Information). Finally, CPS 2c bearing the non-nucleophilic tetrakis(3,5-dichlorophenyl)-borate anion, [BAr4]–, was mixed with Si2Cl6 in methylene chloride. As anticipated, no triphenylphosphine 3 was formed, even with an excess of Si2Cl6 demonstrating that the reaction is initiated by the attack of a dissociated anion at silicon.

To gain further insight, quantum-chemical calculations employing the TURBOMOLE program were performed to study the thermodynamics and kinetics of the reaction. By use of the harmonic oscillator and rigid rotator approximation with a reference pressure of 1 bar, Gibbs free energies are given at the PBE0-D3/def2-TZVPP//PBE-D3/dhf-SV(P) level of theory.102–109 Our calculations show that the disproportionation of CPS into free phosphine with liberation of chlorine is uphill in free energy by 94 kJ/mol; similarly, formation of the dissociated anion:SiCl4 by disproportionation of Si2Cl6 is also expected to be very unfavorable, ΔG = 107 kJ/mol. However, the formation of the free phosphine with Si2Cl6 releasing two SiCl4 molecules is thermodynamically favorable, ΔG = −246 kJ/mol (Scheme 3b,c).

A Telescopied Synthesis of Metal Complexes from Their Corresponding Phosphine(V) Oxides. With the new method of generating phosphine(III) ligands with high yield and purity in hand, we attempted to telescope110 the procedure for the synthesis of organometallic catalysts. As such, after deprotection and removal of SiCl4 by evaporation, “intermediate” phosphine(III) compounds were filtered through Celite and then reacted with a suitable metal precursor to yield a selection of prominent phosphine-bearing catalysts. The resultant monodentate triphenylphosphine, tricyclohexylphosphine, and CyJohnPhos were reacted with the dichloro(p-cymene)ruthenium(II) dimer, Unimicore M31, and (η3-allyl)palladium(II) dichloride to afford the versatile dichloro(p-cymene)(triphosphine) ruthenium(II) catalyst, 18,111 olefin metathesis catalyst Unimicore M2 (Grubbs catalyst M202), 19,112 and the palladium Buchwald complex, CyJohnPhos(η3-allyl)PdCl, 20,113 respectively, in excellent yields (91–98%). Moreover, the oxides of multidentate ligands where similarly reduced and successfully metalated, thus affording bidentate nickel 21114 and tetradeinate palladium complexes 22115 in good yields of 83% and 86%, respectively.
Table 3. Conversion of Phosphine(V) Oxides to Their Corresponding Phosphine(III) Ligands and Metal Complexes

Entry	Phosphine (V) Oxide	Metal Precursor	Product #	Complex	Yield [%]
1	\(\cdot\text{Ph}_3\)		18		98
2	\(\cdot\text{Ph}_3\)		19		96
3	\(\cdot\text{OA}_{3}\)		20		91
4 gives	\(\cdot\text{Ph}_3\)		21		83
5 gives	\(\cdot\text{Ph}_3\)		22		86

*a Activated with 3.0 equiv of \((\text{COCl})_2\), deprotected with 2.1 equiv of \(\text{Si}_2\text{Cl}_6\). *b Activated with 6.0 equiv of \((\text{COCl})_2\), deprotected with 4.1 equiv of \(\text{Si}_2\text{Cl}_6\).

CONCLUSIONS

We have developed a simple mild one-pot activation/deprotection procedure in which phosphine(V) oxides are converted to their corresponding phosphine(III) ligands cleanly and efficiently at ambient temperature without the use of metals or the need for silica gel chromatography. The reduction of activated CPS 2 was investigated with a range of disilanes, and \(\text{Si}_2\text{Cl}_6\) was demonstrated to be the best reductant. A reaction mechanism for the transformation has been elucidated through experimentation and supported by computation calculations, with the reduction being initiated by attack of the CPS’s dissociated chloride anion at the silicon of hexachlorodisilane. The new method was successfully applied to a range of aryl and alkyl phosphines, including state-of-the-art ligands, and found to be compatible with alkene, ether, and amine function groups. Challenging phosphine-bearing azolium salts were readily furnished. Furthermore, the high purity of resultant phosphine(III) compounds allowed the procedure to be telescoped for the formation of some prominent transition metal catalysts. We believe this research will facilitate the synthesis of both known and novel new phosphine(III) ligands as well as their corresponding complexes, while the catalytic use, reuse, or recycling of valuable phosphine(III)-based reagents is of importance for sustainability and is likely to be of only greater significance as increased demands or restrictions are placed upon finite phosphorus resources.82−84

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.organomet.0c00788.

Experimental procedures and characterization data (PDF)

Accession Codes

CCDC 2023530—2023531 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Phillip Iain Jolly — Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland; Organisch-Chemisches Institut, Heidelberg University, 69120 Heidelberg, Germany; Catalysis Research Laboratory (CaRLa), 69120 Heidelberg, Germany; orcid.org/0000-0002-8567-720X; Email: p.jolly@cnbc.uw.edu.pl

Authors

Łukasz Kapuśniki — Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland

Philipp N. Plessow — Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen, Germany; orcid.org/0000-0001-9913-4049

Damian Trzybinki — Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland

Krzysztof Woźniak — Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland; orcid.org/0000-0002-0277-294X

Peter Hofmann — Organisch-Chemisches Institut, Heidelberg University, 69120 Heidelberg, Germany; Catalysis Research Laboratory (CaRLa), 69120 Heidelberg, Germany

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.organomet.0c00788

Notes

The authors declare the following competing financial interest(s): A patent on this research has been applied for. The Polish patent application number is P.426256.

ACKNOWLEDGMENTS

P.I.J. is grateful to the POLONEZ project financed from the National Science Centre, Poland, on the basis of decision DEC-2016/21/P/ST5/04016. This project received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 665778. The study was performed at the Biological and Chemical Research Centre, University of Warsaw, established within the project cofinanced by the European Union from the European Regional Development Fund under the Operational Programme Innovative Economy, 2007–2013. The X-ray diffraction data collection was collected at the Core Facility for crystallographic and biophysical...
research to support the development of medicinal products established within the TEAM-TECH Core Facility programme of the Foundation for Polish Science cofinanced by the European Union under the European Regional Development Fund. In addition, P.I.J. is grateful to Sebastian Planer, Michal Dąbrowski, and Volodymyr Semeniuchenko for assistance with data acquisition and Marcin Kalek for donation of (S)-Ph-BINEPINE. P.N.P. acknowledges support by the state of Baden-Württemberg and BASF SE.

ADDITIONAL NOTES

“We believe the deprotection occurs immediately, although 5 min had elapsed between addition of Si2Cl6 and acquisition of NMR data.

“In the case of Ph3P⇌O1, we were able perform a one-pot process without removal of excess oxalyl chloride in vacuo: as little as 1.01 equiv of oxalyl chloride was reacted with 1 in dry degassed methylene chloride before 1.04 equiv of Si2Cl6 was added to the intermediate CPS 2, thus completely converting 1 to Ph3P 3 in situ. However, for expediency we decided use 1.5 equiv of oxalyl chloride and then strip the excess chlorinating reagent and solvent in vacuo before the CPS salt was once again dissolved in dry methylene chloride and deprotected with 1.04–1.10 equiv of Si2Cl6 (see the Supporting Information for details). It should be noted that residual oxalyl chloride appears to react vigorously with hexachlorodisilane leading to discoloration of phosphine(III) and even undesired byproducts.

“The molecule of HCl is likely to arise from oxalyl chloride.

REFERENCES

(1) Wang, Z. Appel Reaction. In Comprehensive Organic Name Reactions and Reagents; American Cancer Society: 2010; pp 95–99.

(2) Fletcher, S. The Mitsunobu Reaction in the 21 St Century. Org. Chem. Front. 2015, 2 (6), 739–752.

(3) Pomer, H. The Wittig Reaction in Industrial Practice. Angew. Chem., Int. Ed. Engl. 1977, 16 (7), 423–429.

(4) Eggersdorfer, M.; Lauder, D.; Létinois, U.; McClymont, T.; Medlock, J.; Netscher, T.; Bonrath, W. One Hundred Years of Vitamins—A Success Story of the Natural Sciences. Angew. Chem., Int. Ed. 2012, 51 (52), 12960–12990.

(5) Crabtree, R. H. The Organometallic Chemistry of the Transition Metals, 6th ed.; Wiley: Hoboken, NJ, 2014.

(6) Ton, S.; Fogg, D. E. The Impact of Oxygen on Leading and Emerging Ru-Carbone Catalysts for Olefin Metathesis: An Unanticipated Correlation Between Robustness and Metathesis Activity. ACS Catal. 2019, 9 (12), 11329–11334.

(7) Borguet, Y.; Sauvage, X.; Zaragoza, G.; Demonceau, A.; Delaude, L. Synthesis and Catalytic Evaluation in Olefin Metathesis of a Second-Generation Homobimetallic Ruthenium—Arene Complex Bearing a Vinylidene Ligand. Organometallics 2011, 30 (10), 2730–2738.

(8) Fernández-Pérez, H.; Etoyo, P.; Panosian, A.; Vidal-Ferran, A. Phosphine—Phosphinite and Phosphine—Phosphate Ligands: Preparation and Applications in Asymmetric Catalysis. Chem. Rev. 2011, 111 (3), 2119–2176.

(9) Musina, E. I.; Balueva, A. S.; Karasik, A. A. Phosphines: Preparation, Reactivity and Applications. Organophosphorus Chemistry 2019, 48, 1–63.

(10) Pietrusiewicz, K. M.; Zablocka, M. Preparation of Scalable P-Chiral Phosphines and Their Derivatives. Chem. Rev. 1994, 94 (5), 1375–1411.

(11) Inamoto, T.; Kusumoto, T.; Suzuki, N.; Sato, K. Phosphine Oxides and Lithium Aluminum Hydride-Sodium Borohydride-Cerium(III) Chloride: Synthesis and Reactions of Phosphine-Boranes. J. Am. Chem. Soc. 1985, 107 (18), 5301–5303.

(12) Brill, M.; Kühnel, E.; Scriban, C.; Rominger, F.; Hofmann, P. A Short and Modular Synthesis of Bulky and Electron-Rich N-Phosphinomethyl-Functionalised N-Heterocyclic Carbene Complexes. Dalton Trans. 2013, 42 (36), 12861–12864.

(13) Maier, L. Organische Phosphorverbindungen XVI. Reduktion von Phosphinsulfiden Zu Den Entsprechenden Dreiwertigen Phosphorverbindungen. Helv. Chim. Acta 1964, 47 (8), 2137–2140.

(14) Omelanczuk, J.; Mikolajczyk, M. Optically Active Trivalent Phosphorus Compounds. 2. Reactivity of Alkylthio- and Alkylselenophosphonium Salts. The First Stereospecific Synthesis of a Chiral Phosphinite. J. Am. Chem. Soc. 1979, 101 (24), 7292–7295.

(15) Hercault, D.; Hash Nguyen, D.; Nuel, D.; Buono, G. Reduction of Secondary and Tertiary Phosphine Oxides to Phosphines. Chem. Soc. Rev. 2015, 44 (8), 2508–2528.

(16) Kovacs, T.; Keglevich, G. The Reduction of Tertiary Phosphine Oxides by Silanes. Curr. Org. Chem. 2017, 21 (7), 569–585.

(17) Chrzanowski, J.; Krassowska, D.; Drabowicz, J. Synthesis of Optically Active Tertiary Phosphine Oxides: A Historical Overview and the Latest Advances. Heteroat. Chem. 2018, 29 (5–6), e21476.

(18) Corey, E. J.; Chen, Z.; Tanoury, G. J. A New and Highly Enantioselective Synthetic Route to P-Chiral Phosphines and Diphosphines. J. Am. Chem. Soc. 1993, 115 (23), 11000–11001.

(19) Salem, H.; Schmitt, M.; Herrlich (née Blumbach), U.; Kühnel, E.; Brill, M.; Nägele, P.; Bogado, A. L.; Rominger, F.; Hofmann, P. Bulky N-Phosphinomethyl-Functionalized N-Heterocyclic Carbene Chelate Ligands: Synthesis, Molecular Geometry, Electronic Structure, and Their Ruthenium Alkylidene Complexes. Organometallics 2013, 32 (1), 29–46.

(20) Muci, A. R.; Campos, K. R.; Evans, D. A. Enantioselective Deprotonation as a Vehicle for the Asymmetric Synthesis of C2-Symmetric P-Chiral Diphosphines. J. Am. Chem. Soc. 1995, 117 (35), 9075–9076.

(21) Qiu, L.; Kwong, F. Y.; Wu, J.; Lam, W. H.; Chan, S.; Yu, W.-Y.; Li, Y.-M.; Guo, R.; Zhou, Z.; Chan, A. S. C. A New Class of Versatile Chiral-Bridged Atropoisomeric Diphosphine Ligands: Remarkably Efficient Ligand Syntheses and Their Applications in Highly Enantioselective Hydrogenation Reactions. J. Am. Chem. Soc. 2006, 128 (17), 5955–5965.

(22) Fritzsche, H.; Hasserodt, U.; Korte, F. Reduktion organischer Verbindungen des fünfwertigen Phosphors zu Phosphinen, II. Reduktion tertiärer Phosphinoxyde zu tertiären Phosphinen mit Trichlorsilan. Chem. Ber. 1965, 98 (1), 171–174.

(23) Horner, L.; Balzer, W. D. Phosphorganische verbindungen IXL zum sterischen verlauf der deoxygenierung von tertiären phosphinoxyden zu tertiären phosphinen mit trichlorsilan. Tetrahedron Lett. 1965, 6 (17), 1157–1162.

(24) Naumann, K.; Kon, G.; Mislow, K. Use of Hexachlorodisilane as a Reducing Agent. Stereosepecific Deoxgenation of Acyclic Phosphine Oxides. J. Am. Chem. Soc. 1969, 91 (25), 7012–7023.

(25) Krenske, E. H. Theoretical Investigation of the Mechanisms and Stereoelectivities of Reductions of Acyclic Phosphine Oxides and Sulfoxides by Chlorosilanes. J. Org. Chem. 2012, 77 (8), 3969–3977.

(26) Wu, H.-C.; Yu, J.-Q.; Spencer, J. B. Stereosepecific Deoxygenation of Phosphine Oxides with Retention of Configuration Using Triphenylphosphine or Triethyl Phosphite as an Oxygen Acceptor. Org. Lett. 2004, 6 (25), 4675–4678.

(27) Krenske, E. H. Reductions of Phosphine Oxides and Sulfoxides by Perchlorosilanes: Evidence for the Involvement of Donor-Stabilized Dichlorosilylene. J. The Journal of Organic Chemistry. J. Org. Chem. 2012, 77 (1), 1–4.

(28) Gevorgyan, A.; Mkrtchyan, S.; Grigoryan, T.; Iaroshenko, V. O. Disilanes as Oxygen Scavengers and Surrogates of Hydrosilanes.
Suitable for Selective Reduction of Nitroarenes, Phosphine Oxides and Other Valuable Substrates. *Org. Chem. Front.* 2017, 4 (12), 2437−2444.

(29) Coumbe, T.; Lawrence, N. J.; Muhammad, F. Titanium (IV) Catalysis in the Reduction of Phosphine Oxides. *Tetrahedron Lett.* 1994, 35 (4), 623−628.

(30) Marsi, K. L. Stereochemistry of Some Reactions of Phospholane Derivatives. *J. Am. Chem. Soc.* 1969, 91 (17), 4724−4729.

(31) Marsi, K. L. Phenylsilane Reduction of Phosphine Oxides with Complete Stereoselectivity. *J. Org. Chem.* 1974, 39 (2), 265−267.

(32) Schirmel, M.-L.; Jopp, S.; Holz, J.; Spannenberg, A.; Werner, T. Organocatalyzed Reduction of Tertiary Phosphine Oxides. *Adv. Synth. Catal.* 2016, 358 (1), 26−29.

(33) Li, Y.; Das, S.; Zhou, S.; Junge, K.; Beller, M. General and Selective Copper-Catalyzed Reduction of Tertiary and Secondary Phosphine Oxides: Convenient Synthesis of Phosphines. *J. Am. Chem. Soc.* 2012, 134 (23), 9727−9732.

(34) Fritzsche, H.; Hasseroedt, U.; Korte, F. Reduktion organischer Verbindungen des fünfwertigen Phosphors zu Phosphiden. *Z. Anorg. Allg. Chem.* 1964, 3031, 1492−1499.

(35) Nicolas, E.; Guerrierio, A.; Lyaskovskyy, V.; Peruzzini, M.; Lammerstma, K.; Gonsalvi, L.; Sloatweig, J. C. Metal-Free Reduction of Phosphine Oxides Using Polymethylhydroxiloxane. *Inorg. AnaL 2016, 4 (4), 14.

(36) Buonomo, J. A.; Eiden, C. G.; Aldrich, C. C. Chemoselective Reductions of Phosphate Oxides by 1,3-Diphenylsilanol. *Chem. − Eur. J.* 2017, 23 (58), 14434−14438.

(37) Li, Y.; Lu, L.-Q.; Das, S.; Pisiewicz, S.; Junge, K.; Beller, M. Highly Chemoselective Metal-Free Reduction of Phosphate Oxides to Phosphines. *J. Am. Chem. Soc.* 2012, 134 (44), 18325−18329.

(38) Hein, F.; Issleib, K.; Rabold, H. Über die Reduktion von tertiären Phosphinoxiden bzw. − sulfoxiden mit Lithium- bzw. Calciumalanat zu den entsprechenden Phosphinen. *Z. Anorg. Allg. Chem.* 1956, 287 (4−6), 208−213.

(39) Henson, P. D.; Naumann, K.; Mislow, K. Stereomutation of Phosphines by Lithium Aluminum Hydride. *J. Am. Chem. Soc.* 1969, 91 (20), 5645−5646.

(40) Imamoto, T.; Takeyama, T.; Kusumoto, T. Facile Reduction of Organic Halides and Phosphine Oxides with LiAlH₄-CeCl₃. *Chem. Lett.* 1985, 14 (10), 1491−1492.

(41) Griffin, S.; Heath, L.; Wyatt, P. Alane — A Novel Way to Reduce Phosphine Oxides. *Tetrahedron Lett.* 1998, 39 (24), 4405−4406.

(42) Busacca, C. A.; Raju, R.; Grinberg, N.; James-Connor, C. T.; Bergin, E.; Gilheany, D. G. Stereoselective Reduction of Phosphine Oxides Using Poly(methylhydroxiloxane). *Organomet. Chem. Lett.* 2010, 20 (5), 801−803.

(43) Byrne, P. A.; Rajendran, K. V.; Muldoon, J.; Gilheany, D. G. A Convenient and Mild Chromatography-Free Method for the Purification of the Products of Wittig and Appel Reactions. *Org. Biomol. Chem.* 2012, 10 (17), 3531−3537.

(44) Carr, D. J.; Kudavalli, J. S.; Dunne, K. S.; Müller-Bunz, H.; Gilheany, D. G. Synthesis of 2,3-Dihydro-1-Phenylbenzo[b]-Phosphole (1-Phenylphosphinidine) and Its Use as a Mechanistic Test in the Asymmetric Appel Reaction: Decisive Evidence against Involvement of Pseudorotation in the Stereoselecting Step. *J. Org. Chem.* 2013, 78 (20), 10500−10505.

(45) Masaki, M.; Fukui, K. Reduction of Tertiary Phosphine Dichlorides with Triols in the Presence of Triethylamine. A Convenient Method for the Reduction of Phosphine Oxides to Phosphines. *Chem. Lett.* 1977, 6 (2), 151−152.

(46) Zhang, T.-X.; Zhang, W.-X.; Luo, M.-M. Metal-Free Reduction of Tertiary Phosphine Oxides with Hantzsch Ester. *Chin. Chem. Lett.* 2014, 25 (1), 176−178.

(47) Yan, T.; Kuroboshi, M.; Tanaka, H. Electrocatalysis of Phosphine Oxidation in Solution Using Phosphine Oxidation. *Tetrahedron Lett.* 2010, 51 (4), 698−701.

(48) Manabe, S.; Kong, C. M.; Sevov, C. S. Direct and Scalable Electrocatalytic Conversion of Triphenylphosphine Oxide to Triphenylphosphine. *J. Am. Chem. Soc.* 2020, 142 (6), 3024−3031.
Phosphoranes: A Novel Preparation of Chlorophosphoranes—A New Method for Deoxygenation of Oxophosphoranes. Angew. Chem., Int. Ed. Engl. 1977, 16 (8), 552–553.

(71) Stepen, A. J.; Bursch, M.; Grüme, S.; Stephan, D. W.; Paradies, J. Electrolytic Phosphinum Cation-Mediated Phosphate Oxide Reduction Using Oxâta Chloride and Hydrogen. Angew. Chem., Int. Ed. 2018, 57 (46), 5843–5846.

(74) Rajendran, K. V.; Gilheany, D. G. Simple Precedent Conversion of Phosphate Oxydes and Sulphides to Phosphate Boranes Using Sodium Borohydride. Chem. Commun. 2012, 48 (6), 817–819.

(75) Kenny, N. P.; Rajendran, K. V.; Jennings, E. V.; Gilheany, D. G. Cleavage of P=O in the Presence of P–N: Aminophosphine Oxide Reduction with In Situ Boronation of the PII Product. Chem. – Eur. J. 2013, 19 (42), 14210–14214.

(76) Al Sulaimi, S. S.; Rajendran, K. V.; Gilheany, D. G. Lithium Borohydride for Achiral and Stereoreactive Reductive Boronation at Phosphorus: Lack of Electronic Effects on Stereoselective Formation of Alkoxophosphonium Salts. Eur. J. Org. Chem. 2015, 2015 (27), 5599–5605.

(77) Herbay, R.; Bagi, P.; Fogassy, E.; Keglevich, G. Preparation of P-Heterocyclic Phosphoryl Boranes and Optically Active Phosphate Oxides via Phosphonium Salts. Phosphorus, Sulfur Silicon Relat. Elem. 2016, 191 (11–12), 1656–1657.

(78) Herbay, R.; Bagi, P.; Mucsi, Z.; Mátrovnégyi, B.; Drahos, L.; Fogassy, E.; Keglevich, G. A Novel Preparation of Chlorophospholenium Chlorides and Their Application in the Synthesis of Phospholene Boranes. Tetrahedron Lett. 2017, 58 (5), 458–461.

(79) Bagi, P.; Herbay, R.; Ábrányi-Balogh, P.; Mátrovnégyi, B.; Fogassy, E.; Keglevich, G. Dynamic Kinetic Resolution of 1-Substituted-3-Methyl-3-Phospholene Oxides via the Formation of Diastereomeric Alkoxophosphonium Salts. Tetrahedron 2018, 74 (40), 5850–5857.

(80) Weskamp, T.; Böhm, V. P. W.; Herrmann, W. A. Combining N-Heterocyclic Carbenes and Phosphines: Improved Palladium(II) Catalysts for Aryl Coupling Reactions. J. Organomet. Chem. 1999, 585 (2), 348–352.

(81) Hofmann, P.; Brill, M. NHCP Ligands for Catalysis. In Molecular Catalysis; John Wiley & Sons, Ltd.: 2014; pp 207–234.

(82) Withers, P. J. A.; Elser, J. J.; Hilton, J.; Ohtake, H.; Schipper, W. J.; van Dijk, K. C. Greening the Global Phosphorus Cycle: How Green Chemistry Can Help Achieve Planetary P Sustainability. Green Chem. 2015, 17 (4), 2087–2099.

(83) Withers, P. J. A. Closing the Phosphorus Cycle. Nat. Sustain. 2019, 2 (11), 1001–1002.

(84) Keijer, T.; Bakker, V.; Slootweg, J. C. Circular Chemistry to Enable a Circular Economy. Nat. Chem. 2019, 11 (3), 190–195.

(85) Nikitin, K.; Jennings, E. V.; Al Sulaimi, S.; Ortin, Y.; Gilheany, D. G. Dynamic Cross-Exchange in Halophosphonium Species: Direct Observation of Stereoechemical Inversion in the Course of an SN2 Process. Angew. Chem., Int. Ed. 2018, 57 (6), 1480–1484.

(86) Enthaler, S.; Erre, G.; Junge, K.; Michalk, D.; Spannenberg, A.; Marras, F.; Gladiali, S.; Bellier, M. Enantiopure Rhodium-Catalyzed Hydrogenation of Enol Carbamates in the Presence of Monodentate Phosphines. Tetrahedron: Asymmetry 2007, 18 (11), 1288–1298.

(87) Kalek, M.; Fu, G. C. Phosphine-Catalyzed Doubly Stereoconvergent γ-Additions of Racemic Heterocycles to Racemic Allenoates: The Catalytic Enantioselective Synthesis of Protected α,α-Disubstituted α-Amino Acid Derivatives. J. Am. Chem. Soc. 2015, 137 (29), 9438–9442.

(88) Zeng, Q.; Zeng, H.; Yang, Z. New Route for Synthesis of MeO-MOP. Synth. Commun. 2011, 41 (23), 3556–3560.

(89) Al-Juboori, M. A. H. A.; Gates, P. N.; Muir, A. S. Ionic–Molecular Isomerism in Chlorophosphoranes PhnPCI s n (1 ≤ n ≤ 3). J. Chem. Soc., Chem. Commun. 1991, 0 (18), 1270–1271.

(90) Godfrey, S. M.; McAuliffe, A. C.; Sheffield, J. M. Structural Dependence of the Reagent Ph3PCl2 on the Nature of the Solvent, Both in the Solid State and in Solution: X-Ray Crystal Structure of Trigonal Bipyramidal Ph3PCl2, the First Structurally Characterised Five-Coordinate R3P2Cl2 Compound. Chem. Commun. 1998, 9, 921–922.

(91) Godfrey, S. M.; Hinchliffe, A.; Mkadmh, A. Ab Initio Studies on the Reagent Ph3PCl2. J. Mol. Struct.: THEOCHEM 2005, 719 (1), 85–88.

(92) Nikitin, K.; Müller-Bunz, H.; Gilheany, D. G. Direct Evidence of a Multicentre Halogen Bond: Unexpected Contraction of the P–XXX–P Fragment in Triphenylphosphine Dihalides. Chem. Commun. 2013, 49 (14), 1434–1436.

(93) Vetter, A. C.; Nikitin, K.; Gilheany, D. G. Exploring an Unspooling Strategy for Quatemization of Phosphorus. Phosphorus, Sulfur Silicon Relat. Elem. 2019, 194 (4–6), 339–342.

(94) Wilkins, C. J. 682. The Reactions of Hexachlorodisilane with Ammonium Halides and Trimethylammonium Hydrohalides. J. Chem. Soc. 1953, 3409–3412.

(95) Cooper, G. D.; Gilbert, A. R. Cleavage and Disproportionation of Polycondorodisilanes, Trichloromethyltrichlorodisilane and Hexachlorodisiloxane by Amines and Ammonium Salts. J. Am. Chem. Soc. 1960, 82 (19), 5042–5044.

(96) Tillmann, J.; Meyer, L.; Schweizer, J. I.; Bolte, M.; Lerner, H.-W.; Wagner, M.; Holthausen, M. C. Chloride-Induced Aufbau of Perchlorinated Cyclohexasilanes from Si2Cl6: A Mechanistic Scenario. Chem. – Eur. J. 2014, 20 (30), 9234–9239.

(97) Teichmann, J.; Bursch, M.; Köstler, B.; Bolte, M.; Lerner, H.-W.; Grimme, S.; Wagner, M. Trapping Experiments on a Trihalosilane Anion: A Key Intermediate of Halogenosilane Chemistry. Inorg. Chem. 2017, 56 (15), 6863–8688.

(98) Georg, I.; Teichmann, J.; Bursch, M.; Tillmann, J.; Endeward, B.; Bolte, M.; Lerner, H.-W.; Grimme, S.; Wagner, M. Exhaustively Trichlorosilylated C1 and C2 Building Blocks: Beyond the Müller–Rochow Direct Process. J. Am. Chem. Soc. 2018, 140 (30), 9696–9708.

(99) Teichmann, J.; Wagner, M. Silicon Chemistry in Zero to Three Dimensions: From Dichlorosilane to Silafullerene. Chem. Commun. 2018, 54 (12), 1397–1412.

(100) Hwang, S. J.; Powers, D. C.; Maher, A. G.; Nocera, D. G. Tandem Redox Mediator/Ni(II) Trihalide Complex Photocycle for Hydrogen Evolution from HCl. Chem. Sci. 2015, 6 (2), 917–922.

(101) Dhakal, B.; Böhr, L.; Crich, D. Trifluoromethanesulfonate Anion as Nucleophile in Organic Chemistry. J. Org. Chem. 2017, 82 (18), 9263–9269.

(102) Schäfer, A.; Horn, H.; Ahlrichs, R. Fully Optimized Contracted Gaussian Basis Sets for Atoms Li to Kr. J. Chem. Phys. 1992, 97 (4), 2571–2577.

(103) Schäfer, A.; Huber, C.; Ahlrichs, R. Fully Optimized Contracted Gaussian Basis Sets of Triple Zeta Valence Quality for Atoms Li to Kr. J. Chem. Phys. 1994, 100 (8), 5829–5835.

(104) Eichkorn, K.; Treutler, O.; Öhm, H.; Häsé, M.; Ahlrichs, R. Auxiliary Basis Sets to Approximate Coulomb Potentials. Chem. Phys. Lett. 1995, 240 (4), 283–290.
(105) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865−3868.

(106) Weigend, F.; Häser, M.; Patzelt, H.; Ahlrichs, R. RI-MP2: Optimized Auxiliary Basis Sets and Demonstration of Efficiency. Chem. Phys. Lett. 1998, 294 (1), 143−152.

(107) Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005, 7 (18), 3297−3305.

(108) Weigend, F. Accurate Coulomb-Fitting Basis Sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8 (9), 1057−1065.

(109) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104.

(110) Hayashi, Y. Pot Economy and One-Pot Synthesis. Chem. Sci. 2016, 7 (2), 866−880.

(111) Fürstner, A.; Liebl, M.; Lehmann, C. W.; Picquet, M.; Kunz, R.; Bruneau, C.; Touchard, D.; Dixneuf, P. H. Cationic Ruthenium Allenylidene Complexes as Catalysts for Ring Closing Olefin Metathesis. Chem. - Eur. J. 2000, 6 (10), 1847−1857.

(112) Boeda, F.; Clavier, H.; Nolan, P. S. Ruthenium – Indenylium Complexes: Powerful Tools for Metathesis Transformations. Chem. Commun. 2008, 0 (24), 2726−2740.

(113) Kisanga, P.; Widenhoefer, R. A. Development, Synthetic Scope, and Mechanistic Studies of the Palladium-Catalyzed Cycloisomerization of Functionalized 1,6-Dienes in the Presence of Silane. J. Am. Chem. Soc. 2000, 122 (41), 10017−10026.

(114) Jarrett, P. S.; Sadler, P. J. Nickel(II) Bis(Phosphine) Complexes. Inorg. Chem. 1991, 30 (9), 2098−2104.

(115) Aizawa, S.; Iida, T.; Funahashi, S. Mechanistic Studies on Halo-Ligand Substitution of Five-Coordinate Trigonal-Bipyramidal Palladium(II) Complexes of Tris(2-(Diphenylphosphino)Ethyl)-Phosphine with Trimethyl Phosphite in Chloroform at Various Temperatures and Pressures. Inorg. Chem. 1996, 35 (18), 5163−5167.

NOTE ADDED AFTER ASAP PUBLICATION
This paper was published ASAP on March 5, 2021, with a typographical error in the title of the paper. The corrected version was reposted on March 9, 2021.