Field induced spin freezing and low temperature heat capacity of disordered pyrochlore oxide Ho$_2$Zr$_2$O$_7$

Sheetal1, A Elghandour2, R Klingeler2 and C S Yadav1,*

1 School of Basic Sciences, Indian Institute of Technology Mandi, Mandi-175075 (H.P.), India
2 Kirchhoff Institute of Physics, Heidelberg University, INF 227, D-69120 Heidelberg, Germany

E-mail: shekhar@iitmandi.ac.in

Received 3 February 2022, revised 12 March 2022
Accepted for publication 22 March 2022
Published 7 April 2022

Abstract
Spin ice materials are the model systems that have a zero-point entropy as $T \to 0$ K, owing to the frozen disordered states. Here, we chemically alter the well-known spin ice Ho$_2$Ti$_2$O$_7$ by replacing Ti sites with isovalent but larger Zr ion. Unlike the Ho$_2$Ti$_2$O$_7$ which is a pyrochlore material, Ho$_2$Zr$_2$O$_7$ crystallizes in disordered pyrochlore structure. We have performed detailed structural, ac magnetic susceptibility and heat capacity studies on Ho$_2$Zr$_2$O$_7$ to investigate the interplay of structural disorder and frustrated interactions. The zero-field ground state exhibits large magnetic susceptibility and remains dynamic down to 300 mK without showing Pauling’s residual entropy. The dynamic state is suppressed continuously with the magnetic field and freezing transition evolves (\sim10 K) at a field of \sim10 kOe. These results suggest that the alteration of chemical order and local strain in Ho$_2$Ti$_2$O$_7$ prevent the development of spin ice state and provides a new material to study the geometrical frustration based on the structure.

Keywords: frustrated magnetism, pyrochlores, spin freezing

(Some figures may appear in colour only in the online journal)

1. Introduction

Beginning with the identification of unusual disordered ground state in magnetic materials, frustration becomes a source of fascination among the scientists. In these systems, pyrochlore A$_2$B$_2$O$_7$ ($A =$ Dy, Ho) as an exemplar of three-dimensional frustration continues to be the central topic of research due to the observation of water ice-like highly degenerate macroscopic ground state [1, 2]. Dy$_2$Ti$_2$O$_7$ and Ho$_2$Ti$_2$O$_7$ are the well-known spin ice materials that possess the finite residual entropy at the lowest temperature which is equivalent to the Pauling’s value of water ice [2, 3]. Apart from the spin-ice behavior below \sim2 K, Dy$_2$Ti$_2$O$_7$ also shows a strong frequency-dependent spin-freezing at \sim16 K [4, 5]. However no such feature is seen for the Ho$_2$Ti$_2$O$_7$ which distinguishes the spin dynamics of (Ho/Dy)$_2$Ti$_2$O$_7$ [6, 7].

In order to understand the spin-ice state, researchers have begun to look outside the present structural map scenario by forming the stuffed pyrochlores by placing a non-magnetic atom or the atoms with smaller moments in the pyrochlore lattice [8–14]. In pyrochlore oxide A$_2$B$_2$O$_7$, various combinations of A and B site ions are employed to replace the existing spin ice state and disorder the symmetry of available crystal structure. The zirconate and hafnates pyrochlore provides a new avenue to look for a similar magnetic ground state. The stability of the pyrochlore structure can be empirically investigated in terms of atomic radii ratio (r_A/r_B) of the respective A and B ions [15]. The stable pyrochlore structure can be realized only for the range of $1.48 \leq r_A/r_B \leq 1.71$ ratio, and any deviation from this value disturbs the structural symmetry [15, 16]. For comparison, the radius ratio for Dy$_2$Zr$_2$O$_7$ and Ho$_2$Zr$_2$O$_7$ lies between 1.39 and 1.44, which is smaller than the nominal range for pyrochlore structure. These materials exhibit disordered pyrochlore structures and show the
absence of low-temperature magnetism of rare-earth moments. For example, Pr$_2$Zr$_2$O$_7$ exhibits spin ice-like correlations and strong quantum fluctuations [8, 9]. Nd$_2$Zr$_2$O$_7$ reveals the coexistence of an ordered and fluctuating Coulomb phase at low-temperature [10]. Dy$_2$Zr$_2$O$_7$, Tb$_2$Hf$_2$O$_7$ and Pr$_2$Hf$_2$O$_7$ remain dynamic down to 100 mK [11–13]. However the Dy$_2$Zr$_2$O$_7$ and Pr$_2$Hf$_2$O$_7$ have been shown to exhibit glassy transition at \sim 90 mK [11, 17]. Nd$_3$Hf$_2$O$_7$ shows a long-range antiferromagnetic state (T_N \sim 0.55 K) with an all-in-all-out (AIAO) spin configuration [18]. Recent research also shows the loss of spin ice ground state due to a large chemical disorder induced by the stuffing of pyrochlores [11, 19].

There are few reports on the evolution of structure and magnetism of the magnetically diluted pyrochlore lattice under the application of magnetic field [16, 20, 21]. It was found that the structural disorder and spin ice state can be stabilized in disordered pyrochlores either by the application of magnetic field or by suitable choice of non-magnetic substitution over A site [16, 19]. Dy$_2$Zr$_2$O$_7$ shows the stabilization of spin-ice entropy in the presence of the magnetic field, and Nd$_2$Zr$_2$O$_7$ shows a field-induced one-dimensional quantum chain in AIAO [19, 20]. The substitution of non-magnetic La$^{3+}$ ion in Dy$_2$Zr$_2$O$_7$ induces the structural change from disordered pyrochlore to a stable pyrochlore structure and observation of spin freezing at $H = 0$ Oe similar to the field-induced spin freezing of Dy$_2$Zr$_2$O$_7$/Ho$_2$Ti$_2$O$_7$ and the well-known spin ice system Dy$_2$Ti$_2$O$_7$ [16, 22]. In our previous work, we have reported the complete magnetic and structural phase diagram of Dy$_2$Zr$_2$O$_7$ and the evolution of pyrochlore phase and spin freezing transition on diluting Dy$_2$Zr$_2$O$_7$ by non-magnetic La over Dy. Further, pressure effects exhibit weak pyrochlore-type ordering in case of Ho$_2$Zr$_2$O$_7$ and Er$_2$Zr$_2$O$_7$ [21].

In this paper, we have studied a less explored disordered pyrochlores zirconate Ho$_2$Zr$_2$O$_7$ and discussed its structural, magnetic, and thermodynamic properties. We observe that with the stuffing of Zr on the Ti site, the spin ice character is completely lost. The large susceptibility and heat capacity values reveal a very dynamic ground state down to 300 mK. However, we found evidence of field-induced spin freezing at \sim 10 K similar to the spin ice Ho$_2$Ti$_2$O$_7$ [7]. This also rules out the importance of high-temperature spin freezing in the formation of spin ice state below 1 K in Dy$_2$Ti$_2$O$_7$ [4].

2. Experimental details

The polycrystalline Ho$_2$Zr$_2$O$_7$ and La$_2$Zr$_2$O$_7$ compounds were prepared by solid-state reaction method using stoichiometric amounts of Ho$_2$O$_3$ (\geq99.99% purity), La$_2$O$_3$ (\geq99.999% purity) and ZrO$_2$ (99% purity). The raw oxides were pre-heated at 500 °C at weighed at 100 °C to avoid moisture because of their hygroscopic nature. The stoichiometric mixture of constituent oxides is heated twice at 1350 °C for 50 h with intermediate grindings, and the final heat treatment was given in the pellet form at the same temperature [19]. X-ray diffraction (xrd) experiment was performed using Rigaku x-ray diffractometer with Cu K$_\alpha$, source of wavelength 1.5406 Å in the 2θ range of 10–90°. The crystal structure and phase purity were confirmed by performing Rietveld refinement of the powder sample using Fullprof Suit software and the graphical interface Vesta [23]. The magnetic measurements were carried out using Quantum Design built magnetic property measurement system. Heat capacity measurements were measured using Quantum Design built physical property measurement system (PPMS) down to 1.8 K. Low temperature (300 mK to 4 K) specific heat measurements were performed using the dilution refrigerator option of PPMS using a relaxation method on a pressed pellet of \sim11.32 mg.

3. Results and discussion

X-ray powder diffraction characterized the Ho$_2$Zr$_2$O$_7$ in single phase without any detectable impurity (see figure 1). Modeling of the xrd data with the cubic space group is consistent with the disordered pyrochlore structure and gives an excellent fit with Fd3m space group. The obtained crystallographic parameters are listed in table 1. Similar to the Dy$_2$Zr$_2$O$_7$ the xrd pattern of Ho$_2$Zr$_2$O$_7$ consists of only the main peaks of pyrochlore structure and the remaining superstructure peaks expected at 2θ = 14°, 27°, 36°, 42° etc are missing [19, 24]. This behavior is consistent with the r_{A}/r_{B} ratio (\sim1.40) of the compound, which is less than the value at which a stable pyrochlore structure is expected to evolve (1.48 $\leq r_{A}/r_{B}$ \leq 1.72). Figure 2 shows the crystal structure of stable pyrochlore (a), disordered pyrochlore (b) and a comparison of fluoride and pyrochlore structure (c).

Unlike the configuration of oxygen atoms in the pyrochlore structure, the oxygen atoms locally form a perfect cube around
Curie–Weiss law with the parameters viz. The deviation from fluorite structure can be both the A and B sites in fluorite structure. The structural change from fluorite to pyrochlore phase, which consists of ordered oxygen vacancies, results in the shift in x-coordinate values can be used as a distortion parameter to study the difference between these structures. Depending on the choice of A and B atoms, the crystal symmetry changes and modifies the distortion parameters. It is worth mentioning that the pyrochlore compound La2Zr2O7 with $\alpha = 108.65(19)$ and $|\vec{r}_{ij}| > 0$, shows a change of 12.96% from fluorite structure ($\alpha = 90^\circ$ and $|\vec{r}_{ij}| = 0$). In Ho2Zr2O7, the obtained $\alpha = 91.085(10)$ and percentage deviation are 0.934%, indicating a small deformation from the fluorite structure.

Fitting of the inverse susceptibility data collected at 100 Oe above 80 K (left inset of figure 3) by Curie–Weiss law yields an antiferromagnetic Curie–Weiss temperature $\theta_{CW} \sim -10.7$ (4) K and effective magnetic moment $\mu_{eff} \sim 7.6$ (05) μ_B/Ho. Though the spin ice pyrochlore systems show crystal field anisotropy, phenomenologically the low-temperature (below $T = 30$ K) behavior can again be described by a Curie–Weiss law with the parameters $\theta_{CW} \sim -0.5$ K and $\mu_{eff} \sim 7.2$ μ_B/Ho. These parameters are similar to that for Dy2Zr2O7. Here, it is worthy to mention that a ferromagnetic $\theta_{CW} \sim 1.9$ K was reported for the clean pyrochlore Ho2Ti2O7 system [25]. The isothermal magnetization as a function of applied field for Ho2Zr2O7 at various temperatures is shown in the right inset of figure 3. The saturation magnetization (M_s) at the maximum field (70 kOe) is comparatively less compared to the Ho2Ti2O7 ($M_s \sim 5 \mu_B$/Ho), which is half of the free-ion value and is due to the presence of strong crystal field anisotropy. These data indicate that Ho2Zr2O7 exhibits strong anisotropic behavior like other systems such as Ho2Ti2O7, Dy2Ti2O7, and Dy2Zr2O7 [19, 25, 26].

Figure 4 shows the ac susceptibility data for Ho2Zr2O7 collected between the temperature range 1.8–40 K, at $H_{ac} = 2$ Oe, $f = 931$ Hz and in various dc magnetic fields ($H = 0–30$ kOe). Measurement of the real part of ac susceptibility in the absence of dc magnetic field shows paramagnetic-like behavior down to 1.8 K (figure 4(a)), similar to the behavior of spin ice Ho2Ti2O7, which exhibits spin freezing anomaly at ~ 16 K in the presence of magnetic field [3]. The large susceptibility value suggests the large spin dynamics down to the lowest measuring temperature. No anomaly appears up to 8 kOe except that of reduction in the magnitude of susceptibility, which indicates slowing down the spin dynamics with the field. A broad hump-like feature shows up at $H = 10$ kOe (around 10 K), and it shifts to higher temperatures with increasing the applied magnetic field. It is worthy of mentioning that Dy2Zr2O7 shows the freezing anomaly in the presence of dc field of 5 kOe. Here, this feature is not seen even up to the field of 8 kOe, which is consistent with the large structural disorder in Ho2Zr2O7 compared to Dy2Zr2O7. It suggests that Ho2Zr2O7 requires the higher field to slow down the spin dynamics induced by the large chemical disorder with Zr substitution at the Ti site. It is to note that the structurally ordered Ho2Ti2O7 system shows the thermally activated high-temperature spin freezing behavior in the presence of a magnetic field, which rules out the importance of these features in the formation of spin ice state at low-temperature [27]. Inset of figure 4(a) shows the ac susceptibility data collected at various frequencies between 10 Hz–1 kHz in a field of 10 kOe. The frequency dependence of freezing anomaly is characterized by calculating the Mydosh parameter ($p = \delta T/T_f \ln f$), which comes out to be 0.18. This large value rules out the spin-glass behavior for which p values range between 0.005 to 0.01 and show the unusual spin freezing in these systems [28].
The specific heat of Ho$_2$Zr$_2$O$_7$ down to 300 mK (shown in figure 5(a)) does not show any evidence of phase transition. Instead, the low-temperature heat capacity of the Ho based pyrochlore system shows an increase below $T = 1$ K, which is attributed to the anomalously large hyperfine coupling between the nuclear magnetic moment and effective magnetic field (H_{eff}) at the Ho nucleus, leading to the ambiguities in the exact estimation of the magnetic heat capacity (C_m). The magnetic heat capacity C_m is extracted by subtracting the phonon contributions (C_L), nuclear contributions (C_N) and magnetic Schottky anomaly (C_{SN}). In case of field data from the total heat capacity (shown in figure 5(b)) [29, 30]. The lattice/phononic contribution to heat capacity was estimated by fitting the high-temperature data by using both Einstein and Debye models and Schottky term in field data) [19]. The value of Debye temperature (Θ_D) and Einstein temperature (Θ_E) were obtained as 122 K and 305 K, respectively. For Ho$_2$Ti$_2$O$_7$, the C_m was extracted by subtracting the estimated nuclear contribution (C_N) for the pyrochlore oxide Ho$_2$GaSbO$_7$ (which shows a peak at $T = 0.3$ K) [3]. Blöte et al estimated that the C_N arises due to the splitting of eight nuclear levels of holmium (nuclear isospin $I = 7/2$) with the theoretical maximum of $C_N \sim 0.9R$ at $T = 0.3$ K [31]. The obtained value of C_m for Ho$_2$Ti$_2$O$_7$ using this methodology reveals the same characteristic feature of spin ice as observed for Dy$_2$Ti$_2$O$_7$ [32]. Further, the theoretical studies using Monte-Carlo simulation give magnetic entropy values within $\sim 2\%$ of $R\ln 2 - (1/2)\ln 3/2$, which agrees well with the ambit of spin ice materials [33]. Such a small variance from the Pauling entropy value could be reasonably accounted for any slight deviations in the hyperfine parameters of $4f$ electrons of rare-earth ions (depending upon ionic surrounding, electric field gradient, etc). Ramon et al extracted the nuclear contribution in Ho$_2$Zr$_2$O$_7$ by subtracting the nuclear contribution for Ho metal [34]. However, as the low temperature residual magnetic entropy is one of the important quantities to identify the formation of spin ice state, it is necessary to carefully deal with the fitting models to extract the magnetic contribution. Therefore, we have not restricted ourselves to the approaches used by Bramwell et al, and Ramon et al only for our disordered pyrochlore oxide Ho$_2$Zr$_2$O$_7$ because of its modified crystal field spacing associated with the change in lattice and electronic structure. It was found that the hyperfine interactions of Ho spin lead to a nuclear anomaly at $\sim 0.3 \pm 0.02$ K [6, 35, 36]. In contrast, the peak position in Ho$_2$Zr$_2$O$_7$ is slightly shifted to a higher temperature of 0.5 K. The subtraction of nuclear part in Ho$_2$Zr$_2$O$_7$ is also an approximation as it overshadows the magnetic contribution below $T = 1.5$ K. We have discussed three possible methods to extract the C_m for Ho$_2$Zr$_2$O$_7$ by subtracting the C_N (shown in figure 5(c)) to illustrate the generic effect of structural symmetry and electronic distribution on the heat capacity.

First, the C_m was obtained by subtracting the nuclear hyperfine contribution C_{N1} used in the previous reports in case of isostructural Ho$_2$GaSbO$_7$ and Ho$_2$Ti$_2$O$_7$ [3, 31]. The obtained C_m gives a dynamic ground state crossing the entropy limit of $R\ln 2$, expected for the maximum possible states. However, it is hard to rely on this estimation method due to the difference in structural symmetry and effective magnetic moment of Ho$_2$Zr$_2$O$_7$ and Ho$_2$GaSbO$_7$. Additionally, the observed heat capacity in the systems viz Ho metal, Ho$_2$Ti$_2$O$_7$, Ho$_2$GaSbO$_7$ pyrochlore, HoCrO$_3$ distorted perovskite, shows a variation of ~ 2–6% in the peak position and magnitude of C_N [6, 35–37]. Therefore in the second case, we have fixed the peak position to 0.3 K and tried to fit the C_N of Ho$_2$Zr$_2$O$_7$ ($I = 7/2$) using the equation [38]

$$C_N = \frac{R}{(kT)^2}\sum_{i=1}^{I-1}\sum_{j=1}^{I-1}(W_i\sum_{m=-1}^{1}\sum_{k=-1}^{1}e^{-\frac{W_i-W_j}{kT}})$$

where R is universal gas constant, $W_i/k = a' + P[I(I+1)/3]$.

Figure 4. Real part of ac susceptibility data at 931 Hz in the presence of dc magnetic field ($H \leq 30$ kOe). Inset shows the frequency dependence of χ' at 10 kOe at various frequencies ranges between 10 Hz to 1 kHz.

χ' (emu Oe$^{-1}$ mol$^{-1}$) vs T (K)

χ' (emu Oe$^{-1}$ mol$^{-1}$) vs T (K)
Figure 5. (a) Temperature dependence of heat capacity data at various magnetic fields between 0–70 kOe. (b) Heat capacity data analysis of Ho$_2$Zr$_2$O$_7$ at $H = 10$ kOe using various fitting models. (c) Nuclear heat capacity data analysis of Ho$_2$Zr$_2$O$_7$ at $H = 0$ kOe using three different approaches as explained in the main text. (d) and (e) Shows the temperature dependence of C_m/T at $H = 0, 5$ kOe. The components C_{m1}, C_{m2} and C_{m3} represent the magnetic heat capacity extracted using the different approaches discussed in the main text.

and correspondingly the ΔS_{m1}, ΔS_{m2}, ΔS_{m3} are the magnetic entropy changes (shown in figure 6(a)).

The recovered entropy of (ΔS_m) was calculated by integrating the C_m/T from $T = 0.3–12$ K. We have plotted ΔS_m of Ho$_2$Zr$_2$O$_7$ obtained at $H = 0$ from the above mentioned three methods along with the ΔS_m for spin ice Ho$_2$Ti$_2$O$_7$ taken from reference [3] in figure 6(a). In the absence of a magnetic field, the ΔS_m (third case) is comparatively lower than for the disordered state value of $R \ln 2$ corresponding to the maximum possible 2^N states available to N spins, which indicates that the residual entropy is small compared to the spin ice value as T goes to zero. The Ho$_2$Ti$_2$O$_7$ is reported to show Pauling’s value of water ice ($R/2 \ln(3/2)$) at zero magnetic field [3]. The integrated entropy for Ho$_2$Zr$_2$O$_7$ is larger than that for Ho$_2$Ti$_2$O$_7$, indicating a significant decrease in the zero-point entropy. It is to mention that the heat capacity fitting performed for an even larger temperature range up to 35 K did not show evidence of missing entropy. The increase in entropy is understood from the chemical alteration of the pyrochlore structure with Zr substitution. The partial replacement of Dy or Ho site in (Dy/Ho)$_2$$_xY_{1-x}Ti_2O_7$ by non-magnetic Y, Lu strongly affect the spin ice state, however, the lattice structure remains intact [6, 39]. Figure 6(b) shows the recovered value of ΔS_m at various magnetic fields taken at $T = 12$ K. Application of a magnetic field to the degenerate ground state restored some of the missing entropy, presumably due to the lifted degeneracy of the ground state as the applied field breaks the system’s symmetry. An additional peak appears at $T > 3$ K on switching the magnetic field and shifts to higher temperatures with an increase in the magnetic field. This also shows a continuous decrease in magnetic entropy, leading to a non-magnetic ground state at 70 kOe. We have also fitted the heat capacity data of Ho$_2$Ti$_2$O$_7$ taken from reference [3] using the same hyperfine model (inset of figure 6(b)). Amazingly, the extracted magnetic entropy is significantly lower (\sim12%) than the expected value for the spin ice systems. Thus the approach of using the nuclear contribution of Ho$_2$GaSbO$_7$ by Blöte et al is not a good choice for the estimation of magnetic heat capacity of Ho$_2$Ti$_2$O$_7$ compound. Similarly, the use of estimated nuclear heat capacity of Dy$_3$Ga$_5$O$_{12}$ garnet to Dy$_2$Ti$_2$O$_7$ is suggested to be
Figure 6. (a) Temperature dependence of extracted magnetic entropy (ΔS_{m1}, ΔS_{m2} and ΔS_{m3}) extracted using three methodologies of Ho$_2$Zr$_2$O$_7$ at $H = 0$ Oe and zero field data of spin ice Ho$_2$Ti$_2$O$_7$ taken from the reference [3]. (b) Variation in the magnetic entropy of Ho$_2$Zr$_2$O$_7$ in reference [3] as a function of applied field. Inset shows the heat capacity data (symbol) of Ho$_2$Ti$_2$O$_7$ fitted (green) with hyperfine model (equation (1)), extracted magnetic heat capacity (red) and the magnetic entropy (blue).

In conclusion, Ho$_2$Zr$_2$O$_7$ with its disordered pyrochlore structure shows the presence of spin freezing at $T \sim 10$ K on the application of the magnetic field. Unlike the spin ice systems, the heat capacity and susceptibility indicate large spin dynamics at the lowest measuring temperature and the absence of Pauling residual entropy. These studies show that the low-temperature magnetic state of pyrochlore systems can be significantly altered by frustration and structural disorder. We have further analyzed the low-temperature heat capacity and discussed the error arising from the estimation of nuclear contribution in holmium based system. We observed that the use of the hyperfine model (equation (1)) for the estimation of nuclear heat capacity leads to the significant correction in the residual spin ice entropy of the Ho$_2$Ti$_2$O$_7$. The disordered pyrochlore zirconates provide an excellent family of materials for further investigation, for the role of induced disorder on the spin dynamics and the creation/propagation of monopole–antimonopole excitations in the frustrated systems. The low-temperature neutron scattering technique would be important for the identification of true magnetic ground state in Ho$_2$Zr$_2$O$_7$.

References

[1] Matsuhiro K, Hinatsu Y and Sakakibara T 2001 Novel dynamical magnetic properties in the spin ice compound Dy$_2$Ti$_2$O$_7$ J. Phys.: Condens. Matter 13 L737
[2] Ramirez A P, Hayashi A, Cava R J, Siddharthan R and Shraidy B 1999 Zero-point entropy in ‘spin ice’ Nature 399 333
[3] Bramwell S et al 2001 Spin correlations in Ho$_2$Ti$_2$O$_7$: a dipolar spin ice system Phys. Rev. Lett. 87 047205
[4] Snyder J, Slusky J, Cava R J and Schiffer P 2001 How ‘spin ice’ freezes Nature 413 48
[5] Snyder J, Ueland B, Slusky J, Karunadasa H, Cava R J and Schiffer P 2004 Low-temperature spin freezing in the Dy$_2$Ti$_2$O$_7$: spin ice Phys. Rev. B 69 064414
[6] Lau G, Freitas R, Ueland B, Muegge B, Duncan E, Schiffer P and Cava R 2006 Zero-point entropy in stuffed spin-ice Nat. Phys. 2 249
[7] Ehlers G, Cornelius A, Orendac M, Kajnakova M, Fennell T, Bramwell S and Gardner J 2002 Dynamical crossover in ‘hot’ spin ice J. Phys.: Condens. Matter 15 L9
[8] Kimura K, Nakatsuji S, Wen J-J, Hikata H, Nakatsuji Y, Bloch I, Hikita H and Hikata H 2013 Quantum fluctuations in spin-ice-like Pr$_2$Zr$_2$O$_7$ Nat. Commun. 4 1934
[9] Wen J-J et al 2017 Disordered route to the coulomb quantum spin liquid: random transverse fields on spin ice in Pr$_2$Zr$_2$O$_7$ Phys. Rev. Lett. 118 107206
[10] Petit S et al 2016 Observation of magnetic fragmentation in spin ice Nat. Phys. 12 746
[11] Ramon J, Wang C, Ishida L, Bernardo P, Leite M, Vichi F, Gardner J and Freitas R 2019 Absence of spin-ice state in the disordered fluorite Dy$_2$Zr$_2$O$_7$ Phys. Rev. B 99 214442
[12] Sibille R et al 2017 Coulomb spin liquid in anion-disordered pyrochlore Tb$_2$Hf$_2$O$_7$ Nat. Commun. 8 892
[13] Anand V, Islam A, Samartiraz A, Xu J, Casati N and Lake B 2018 Optimization of single crystal growth of candidate quantum spin-ice Pr$_2$Hf$_2$O$_7$ by optical floating-zone method J. Cryst. Growth 498 124
[14] Anand V, Tennant D and Lake B 2015 Investigations of the effect of nonmagnetic Ca substitution for magnetic Dy on spin-freezing in Dy$_2$Ti$_2$O$_7$ J. Phys.: Condens. Matter 27 436001
[15] Mouta R, Silva R and Paschosal C 2013 Tolerance factor for pyrochlores and related structures Acta Crystallogr. B 69 439

[16] Sheetal and Yadav C S 2021 Evolution of spin freezing transition and structural, magnetic phase diagram of $D_{2y_3},La_3Zr_2O_7 (0 \leq x \leq 2.0)$ Sci. Rep. 11 19832

[17] Anand V et al 2016 Physical properties of the candidate quantum spin-ice system $Pr_2Hf_2O_7$ Phys. Rev. B 94 144415

[18] Anand V, Bera A, Xu J, Herrmannsdörfer T, Ritter C and Lake B 2015 Observation of long-range magnetic ordering in pyrohafnate $Nd_3Hf_2O_7$: a neutron diffraction study Phys. Rev. B 92 184418

[19] Sheetal, Ali A, Rajput S, Singh Y, Maitra T and Yadav C S 2020 Emergence of weak pyrochlore phase and signature of field induced spin ice ground state in $D_{2y_3},La_3Zr_2O_7; x = 0, 0.15, 0.3$ J. Phys.: Condens. Matter 32 365804

[20] Xu J, Islam A, Glavatskyy I, Reehuis M, Hoffmann J-U and Lake B 2018 Field-induced quantum spin-I/2 chains and disorder in $Nd_3Zr_2O_7$ Phys. Rev. B 98 060408

[21] Zhang F, Lang M, Becker U, Ewing R and Lian J 2008 High pressure phase transitions and compressibilities of $Er_3Zr_2O_7$ and $Ho_3Zr_2O_7$ Appl. Phys. Lett. 92 011909

[22] Ehlers G, Cornelius A, Fennell T, Koza M, Bramwell S and Gardner J 2004 Evidence for two distinct spin relaxation mechanisms in ‘hot’ spin ice $Ho_2Ti_2O_7$ J. Phys.: Condens. Matter 16 S635

[23] Rodríguez-Carvajal J 1990 FULLPROF: a program for Rietveld refinement and pattern matching analysis Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr vol 127 (Toulouse, France)

[24] Mandal B, Garg N, Sharma S M and Tyagi A 2006 Preparation, xrd and Raman spectroscopic studies on new compounds $RE_3Hf_2O_7$ ($RE = Dy, Ho, Er, Tm, Lu, Y$): pyrochlores or defect-fluorite? J. Solid State Chem. 179 1990

[25] Harris MJ, Bramwell S, McMorrow D, Zeiske T and Godfrey K 1997 Geometrical frustration in the ferromagnetic pyrochlore $Ho_2Ti_2O_7$ Phys. Rev. Lett. 79 2554

[26] den Hertog B C and Gingrich M J 2000 Dipolar interactions and origin of spin ice in Ising pyrochlore magnets Phys. Rev. Lett. 84 3430

[27] Shukla M, Upadhyay R, Tolkiehn M and Upadhyay C 2020 Robust spin-ice freezing in magnetically frustrated $Ho_2Ge_xTi_{2-x}O_7$ pyrochlore J. Phys.: Condens. Matter 32 465804

[28] Binder K and Young A P 1986 Spin glasses: experimental facts, theoretical concepts, and open questions Rev. Mod. Phys. 58 801

[29] Lal S, Mukherjee K and Yadav C 2018 Effect of crystalline electric field on heat capacity of LnBaCuFeO$_3$ ($Ln = Gd, Ho, Yb$) Solid State Commun. 270 130

[30] Ku S et al 2018 Low temperature magnetic properties of $Nd_2Ru_2O_7$ J. Phys.: Condens. Matter 30 155601

[31] Blöte H, Wielinga R and Huiskamp W 1969 Heat-capacity measurements on rare-earth double oxides $R_2M_2O_7$ Physica 43 549

[32] Henelius P, Lin T, Enjalran M, Hao Z, Rau J, Altosajaar, Flicker F, Yavorskii T and Gingrich M 2016 Refracture and competing orders in the prototypical $Dy_2Ti_2O_7$ spin ice material Phys. Rev. B 93 024402

[33] Den Hertog B, Gingrich M J, Bramwell S T and Harris M J 1999 Comment on Ising pyrochlore magnets: low temperature properties, ‘ice rules’, and beyond by R Siddharthan et al Phys. Rev. Lett. 83 1854

[34] Ramón J G A 2020 Geometrically frustrated magnetism in the pyrochlore $Er_2Ti_2_xSn_xO_7$ and in the disordered fluorites $R_2Zr_2O_7$ ($R = Dy, Ho, Tb$) PhD Thesis Universidade de São Paulo

[35] Kumar C, Xiao Y, Nair H, Voigt J, Schmitz B, Chatterji T, Jalarvo N and Brückel T 2016 Hyperfine and crystal field interactions in multiferroic HoCrO$_3$ J. Phys.: Condens. Matter 28 476001

[36] Nagata S, Sasaki H, Suzuki K, Kiuchi J and Wada N 2001 Specific heat anomaly of the holmium garnet $Ho_3Al_5O_{12}$ at low temperature J. Phys. Chem. Solids 62 1123

[37] Krusius M, Anderson A and Holmström B 1969 Calorimetric investigation of hyperfine interactions in metallic Ho and Tb Phys. Rev. 177 910

[38] Loussamaa O 1962 Specific heat of holmium metal between 0.38 and 4.2 K Phys. Rev. 128 1136

[39] Snyder J, Ueland B, Mizel A, Slusky J, Karunadasa H, Cava R and Schiffer P 2004 Quantum and thermal spin relaxation in the diluted spin ice $Dy_2_xM_xTi_2O_7$ ($M = Lu, Y$) Phys. Rev. B 70 184431