Unveiling real active site for photocatalytic H₂O₂ evolution: A combined experimental and DFT-TDDFT study

Jun Luo
Hunan University

Yani Liu
Hunan University

Changzheng Fan (fancz@hnu.edu.cn)
Hunan University

Lin Tang
Hunan University

Shuaijun Yang
Hunan University

Milan Liu
Hunan University

Mier Wang
Hunan University

Chengyang Feng
Hunan University

Xilian Ouyang
Hunan University

Lingling Wang
Hunan University

Liang Xu
Hunan University https://orcid.org/0000-0001-7473-6107

Jiajia Wang
Hunan University

Ming Yan
Hunan University

Article

Keywords: photocatalytic H₂O₂ evolution, DFT calculation, TDDFT calculation, experiment, multiple modification sites, real active site
Abstract

Photocatalyst with multiple modification sites (MSs) exhibited better performance than single site in photocatalytic \(\text{H}_2\text{O}_2 \) evolution, while the corresponding reaction mechanism is more complicated. However, neither experiment nor density functional theory (DFT) based on ground state wavefunction cannot precisely confirm the role of each site in photocatalyst with multiple MSs. Here, we propose a universal method that flexibly combines experiments, DFT and time-dependent DFT (TDDFT) calculations to reveal the photocatalytic mechanism and active site of nitrogen deficiency g-C\(_3\)N\(_4\) (NDCN) containing two MSs (bicoordinated nitrogen vacancy and cyano group). Characterization techniques and control experiments prove that generation of \(\text{H}_2\text{O}_2 \) on NDCN is a two-step single electron transfer process, and NDCN exhibits enhanced charge separation efficiency and higher selectivity for two-electron oxygen reduction. DFT-TDDFT calculations further indicate that nitrogen vacancy is the real catalytic site for activating \(\text{O}_2 \), which promotes \(\text{O}_2 \) adsorption and continuously formation of \(\cdot\text{O}_2^- \), thus inhibiting electron-hole recombination.

Introduction

Hydrogen peroxide (\(\text{H}_2\text{O}_2 \)), an liquid resource, is useful for water purification, antibacterial, pulp bleaching and fuel cells\(^1^,\)\(^2\). The most commonly used anthraquinone method for preparing \(\text{H}_2\text{O}_2 \) has the shortcomings of high cost and emission of toxic by-products\(^3\). In contrast, photocatalytic technology provides a new opportunity for \(\text{H}_2\text{O}_2 \) preparation in a low-cost and environmentally friendly way. Photocatalytic \(\text{H}_2\text{O}_2 \) production through the \(\text{O}_2 \) two-electron reduction process (\(\text{O}_2 + 2\text{H}^+ + 2\text{e}^- \rightarrow \text{H}_2\text{O}_2 \)) has attracted wide attention\(^4^,\)\(^5\). With the continuous efforts of researchers, a large number of photocatalysts for \(\text{H}_2\text{O}_2 \) evolution have been developed\(^6^–\)\(^18\). Among them, photocatalysts with multiple modification sites (MSs) exhibited more superior performance as compared to their catalytically inaccessible counterparts of single sites materials\(^14^–\)\(^17\). Nevertheless, it is worth noting that the same kind of MS exhibited diametrically opposite effects when the other MSs are different in the same primitive material\(^15^–\)\(^17^,\)\(^19\). For instance, Shiraishi et al. reported that amino group reduced the selectivity of \(\text{H}_2\text{O}_2 \) in mesoporous graphitic carbon nitride (CN)\(^19\). But in the CN modulated by carbon vacancies, the amino group was the active site that significantly enhanced the \(\text{H}_2\text{O}_2 \) production\(^17\). Besides, Zhu et al. reported that the cyano group acted as an electron acceptor to promote the photocatalytic \(\text{H}_2\text{O}_2 \) evolution under the synergistic effect of nitrogen vacancy\(^16\). However, Xie et al. proposed that in the defect CN containing three kinds of MSs, the cyano group has no effect on the formation of \(\text{H}_2\text{O}_2 \)\(^15\). Different preparation methods led to different coordination environments at the same kind of MS. In addition, there are also some differences between analysis methods used in the reports mentioned above, which also be an pivotal reason for the opposite effect of the same MS. Therefore, the research method of investigating the role of MS should be emphasized.
To reveal the true reaction mechanism of photocatalytic H_2O_2 evolution promoted by photocatalysts with multiple MSs, experimental scholars have made many efforts. In order to determine the role of each site in a material with three MSs (CKCN-0.03), Xie et al. first prepared a material, CN (V1), containing only two MSs in CKCN-0.03. Then CN(V1 + V2) was prepared by introducing the third MS into CN(V1), which also has three MSs in CKCN-0.03 with the same content. By comparing the properties of CKCN-0.03, CN (V1) and CN(V1 + V2) experimentally, the specific role of each site was confirmed, respectively. Similarly, Dong and his co-workers also used the controlled variable method to study the role of each MS experimentally. Regrettably, this method has inherent limitations: (1) More materials need to be prepared and characterized to ensure the same MS content in the materials used for comparison, which greatly increases the cost and research time. (2) Compared with the simultaneous introduction of multiple MSs into the material, stepwise modification must change original preparation method, which could not guarantee that other important factors affecting the catalytic effect are completely unchanged. For example, for the CKCN-0.03 and CN(V1 + V2) mentioned above, although they both have the same number and content of MSs, the photocatalytic H_2O_2 production rate of CKCN-0.03 is 1.5 times higher than that of CN(V1 + V2). (3) Zhang et al. recently prepared a photocatalyst containing five MSs, achieving a millimolar level of H_2O_2 production per hour. For such materials with more MSs, it is difficult to analyze the effect of each MS through experimental controlled variable methods.

In simulation, each MS can be constructed flexibly without affecting other factors. Then the role of each MS can be uncovered by analyzing the calculation results of density functional theory (DFT), such as band structure, charge density, and electrostatic potential, etc. This makes up for the lack of experiments to some extent. Yu et al. analyzed the roles of the two types of defects by comparing the calculated bandgaps. Zhao et al. verified the effect of each MS on the separation of light-excited carriers through the charge density distribution of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). However, electronic excitation process is a transition from the ground state to excited state, rather than an occupied orbital to a non-occupied orbital. Excited state is formed by linear combinations of different orbital transitions. In order to more accurately explore the complex light reaction process, time-dependent DFT (TDDFT) calculations need to be performed. Unfortunately, only a few reports focusing on experimental research have used TDDFT calculations. The huge potential of multiple MSs in the photocatalytic H_2O_2 evolution, as well as the current challenges in revealing the in-depth photocatalytic mechanism, provide us with a strong motivation to explore a universal method to uncover the specific reaction mechanism, role of each MS, and essential reason for O_2 activation.

In this work, we use the nitrogen deficiency CN (NDCN) containing two MSs as a model photocatalyst, and combine the experimental method with DFT-TDDFT calculation to reveal the mechanism behind the enhanced photocatalytic activity. The structural information of photocatalyst, separation efficiency of light-excited charge, as well as the active specie and reaction pathway are studied in detail experimentally. Based on the characterization results, accurate models are constructed and use for
simulation. The DFT-TDDFT calculations verify the real active site and its specific catalytic role, and reveal the essential reason for the effectively charge separation of and generation of active specie.

Results

Discussion of experimental characterization. NDCN was successfully prepared by adding NaOH to the precursor of CN (see Methods for details). The chemical structure of CN and NDCN were first characterized by X-ray diffraction (XRD) patterns. The XRD pattern of CN (Fig. 1a, top line) showed two distinct diffraction peaks at 13.0° and 27.4°, which can be assigned to the in-plane packed heptazine units (100) and interfacial stacking (002) of graphitic CN, respectively. It can be observed that the two characteristic peaks of NDCN were weakened and broadened, implying the loss of ordered structures within the framework to some extent. The Fourier transform infrared spectroscopy (FTIR) spectrum for CN (Fig. 1b) showed that the peak at 810 cm$^{-1}$ can be assigned to the out-of-plane bending mode of heptazine rings, and the peaks in the range of 900–1800 cm$^{-1}$ refers to N-C=N heterorings in CN framework. Multiple broad peaks located in the region of 3000–3500 cm$^{-1}$ can be attributed to N-H stretching vibrations. After adding NaOH, the peak at 2156 cm$^{-1}$ typical for the cyano groups (–C≡N) was emerged. Meanwhile, the intensity of the N-H stretching peaks was significantly reduced. The results indicate that the addition of NaOH leads to the decrease of N-H groups and introduction of cyano groups.

Organic elemental analysis (OEA) was used to confirm the changes in bulk elemental composition of the samples. The N/C atomic ratio of NDCN was slightly reduced in comparison to that of CN (Supplementary Fig. 2). Next, the changes of surface element composition were further studied by XPS. Compared with that of bulk, the addition of NaOH made the surface N/C atomic ratio decreased more significantly (Supplementary Fig. 2). It is worth noting that the introduction of cyano groups and reduction of N-H groups does not cause the reduction of N elements. Therefore, this indicates that the treatment of NaOH resulted to the generation of surface N defects. Meanwhile, the O/C atomic ratio in NDCN increased (Supplementary Fig. 1a), which may be attributed to the increase of oxygen-containing species adsorbed on the surface. On the other hand, valence band (VB) XPS spectra (Supplementary Fig. 1b) showed that the treatment of NaOH did not affect energy level position of VB. In addition, the morphology of NDCN had not changed significantly compared to that of CN (Supplementary Fig. 3).

Narrow scan C1s and N1s XPS spectra further proved the introductions of cyano group and N defects. For the C1s XPS spectra (Fig. 1c), it contained three peaks of 287.89, 286.23, and 284.5 eV, representing N-C=N, C-NH$_x$ (x = 1, 2) and adventitious hydrocarbons, respectively. The corresponding peak of C-NH$_x$ of NDCN was higher than that of CN, which proves the generation of C≡N, because the cyano group has similar binding energy of C1s. For the N1s XPS spectra (Fig. 1d), the intensity of bicoordinated nitrogen (N$_{2C}$) in NDCN was reduced in comparison to that of CN. Combined with the decrease of N/C in XPS (Supplementary Fig. 2), it can be inferred that the generation of nitrogen defect was caused by the absence of N atoms in N$_{2C}$. The intensity of tricoordinated (N$_{3C}$) increased and the peak shifted to lower
binding energy. This can be attributed to the introduction of C≡N groups, because their binding energy lies between the binding energy of N$_3$C and N$_2$C3. Based on the above characterization, we can conclude that after NaOH treatment, N$_2$C vacancies (NVs) were formed. Meanwhile, with the decrease of N-H groups, cyano groups were generated.

The optical properties of the samples were further characterized by DRS. Compared with CN, the absorption edge of NDCN has a significant red shift (Supplementary Fig. 4a) and the band gap is reduced from 2.64 to 2.04 eV (Supplementary Fig. 4b). Combining the above results of the VB XPS, the narrowing of the band gap is due to the decrease of conduction band (CB) position, while the VB position remains unchanged.

Evaluation of photocatalytic performance. The photocatalytic performances of CN and NDCN were evaluated. Under the irradiation of visible light, the 60 min production of H$_2$O$_2$ for NDCN was 476 µM (Supplementary Fig. 5a), which is 9.7 times higher than that of CN (47 µM) and better than many reported yields in recent years (Supplementary Table 1). In addition, after 5 cycle experiments, the photocatalytic performance did not decrease significantly (Supplementary Fig. 6). Comparing the XRD patterns of samples before and after 5 cycles, there was no obvious difference (Supplementary Fig. 7), indicating that NDCN has excellent stability in the photocatalytic H$_2$O$_2$ production. Therefore, it is meaningful to investigate the reaction mechanism of photocatalytic H$_2$O$_2$ production for NDCN.

The effects of defects on separation efficiency of photoexcited charge carriers were investigated. Photoluminescence (PL) spectroscopy measurements were performed to examine the charge separation ability31 of samples. As shown in Supplementary Fig. 5b, a intense PL signal was observed on CN, due to the serious recombinations of carriers. In contrast, the PL intensity of NDCN was weaker, indicating a signally suppressed electron-hole recombination. Supplementary Fig. 5c showed the transient photocurrent response curve of the samples, which is directly related to their charge separation ability. Compared with CN, NDCN exhibited a larger photocurrent density, indicating that nitrogen defects can greatly accelerate the separation of photoexcited carriers32. The electrical conductivity and interfacial charge transfer capability of the samples were evaluated by electrochemical impedance spectroscopy (EIS). As shown in Supplementary Fig. 5d, the EIS slop of NDCN decreased significantly in compartion to that of CN, implying that NDCN has better electrical conductivity, which is conducive to effective charge separation and transfer in the photocatalytic process.

Experimental research on reaction mechanism. To understand the reaction mechanism of photocatalytic reaction, a series of control experiments and measurements were conducted. Figure 2a showed the ESR spectra of DMPO-\cdotO$_2^-$ adduct for the CN and NDCN samples. It can be seen that the DMPO-\cdotO$_2^-$ adduct signal of NDCN was much stronger than that of CN, suggesting that NDCN can promote the generation of \cdotO$_2^-$ more effectively. The results of control experiment further illustrated the importance of \cdotO$_2^-$ in the photocatalytic reaction. After adding \cdotO$_2^-$ scavenger, p-benzoquinone (PBQ), the yield of H$_2$O$_2$ was 0 (orange curve in Fig. 2b). It is worth mentioning that the iodometry for determining H$_2$O$_2$ production do
not be affected by PBQ33. Hence, it can be concluded that the consumption of •O\textsubscript{2}− can completely inhibit generation of H\textsubscript{2}O\textsubscript{2}, indicating that the generation of H\textsubscript{2}O\textsubscript{2} is a two-step single electron transfer process (O\textsubscript{2} → •O\textsubscript{2}− → H\textsubscript{2}O\textsubscript{2})17,33. In the dark, the H\textsubscript{2}O\textsubscript{2} production was also 0 (blue curve in Fig. 2b), implying that light irradiation is a necessary condition for the catalytic reaction. In the absence of isopropanol (IPA), the yield of H\textsubscript{2}O\textsubscript{2} was significantly reduced (yellow curve in Fig. 2b), because IPA is the main provider of H source for H\textsubscript{2}O\textsubscript{2} evolution. In the photocatalytic reaction, the holes oxidize IPA to generate two H+ (\text{CH\textsubscript{3}CHOHCH\textsubscript{3}} + 2h+ → \text{CH\textsubscript{3}COCH\textsubscript{3}} + 2H+), which can further combine with the reduced O\textsubscript{2} to generate H\textsubscript{2}O\textsubscript{2}. Without IPA, holes can only react with water to produce H+, resulting in an excessively high energy barrier. Interestingly, when the reaction conditions changed from oxygen to air, the yield of H\textsubscript{2}O\textsubscript{2} was only slightly reduced, implying that NDCN could still adsorb and reduce O\textsubscript{2} well even in air, which will be further discussed below. Since the formation of H\textsubscript{2}O\textsubscript{2} involves two-electron O\textsubscript{2} reduction process, the average number of electrons (\(n\)) involved in the oxygen reduction is a vital indicator for the selectivity of reaction products. Figure 2c and Supplementary Fig. 8 showed the linear sweep voltammetry (LSV) curves of NDCN and CN on a rotating disk electrode at different rotate speeds, respectively. \(n\) is the slope of Koutecky-Levich plots based on the LSV curve9. As shown in Fig. 2d, the measured \(n\) value for CN was only 1.5, while that of NDCN reached 1.95, close to 2, indicating that NDCN is highly selective for the two-electron reduction of O\textsubscript{2}.

Through the above characterization and experiments, we have a basic understanding of the role of N defects in photocatalytic reaction and the path of O\textsubscript{2} reduction. However, there are still some problems to be solved: (1) NDCN contains two MSs, N\textsubscript{2}C vacancy (NV) and cyano group. Which site is causing the enhanced photocatalytic performance? (2) Is there a synergy between the two MSs? (3) What is the essential reason for O\textsubscript{2} activation? To solve the problems, DFT and TDDFT calculations were performed.

Confirmation of the optimal model. First, the most stable and reasonable geometry was constructed and verified. Eleven possible models (M\textsubscript{1}-M\textsubscript{11} in Supplementary Fig. 9) were considered, and the most stable geometric structure of NDCN was selected by comparing their Gibbs free energy. As shown in Supplementary Fig. 10, model with the lowest Gibbs free energy is M\textsubscript{3} whose cyano group and NV are located at the edge of the two melon frameworks, respectively. The calculated FTIR spectrum for M\textsubscript{3} was similar to the experimentally measured spectrum (Fig. 3a), which again proved the rationality of M\textsubscript{3}. Meanwhile, the structure of M\textsubscript{3} was also consistent with what Zhang et al. reported21. Thus, we will directly label the M\textsubscript{3} as NDCN for discussion below. In order to clearly describe each site of NDCN, the NDCN model was divided into three regions: NV, cyano, and primitive melon. The key atoms were numbered to clearly identify each site (Fig. 3b).

Confirmation of •O\textsubscript{2}− and active site. In order to initially confirm the possible O\textsubscript{2} activation sites, the calculated ultraviolet visible (UV-vis) spectrum and electron-hole distribution of each excited state were analyzed. The oscillator strength (\(f\)) in the UV-vis spectrum represents the transition probability of
electrons from ground state to each excited state. The f of 0.01 is generally the critical point of transition24. Specifically, if the f is lower than 0.01, the corresponding transition is generally considered to be forbidden, otherwise the transition can occur with a probability determined by f. For NDCN, the f of $D_0 \rightarrow D_1$, $D_0 \rightarrow D_2$, and $D_0 \rightarrow D_4$ excitations were all greater than 0.01 (Fig. 4a), indicating that photo-generated e^- can indeed be excited to the green regions of Fig. 4c1, 4c2 and 4c4, respectively, that is, these excitations are bright. The f of the $D_0 \rightarrow D_3$ excitations was almost zero (Fig. 4a), implying that the excitation is dark. On the basis, the electron-hole distribution of each excited state was visualized. As shown in Fig. 4c, for the $D_0 \rightarrow D_1$, electrons were mainly concentrated at 1,4 site near the NV (NV 1,4 site). In the $D_0 \rightarrow D_2$, electrons were clustered at 1,4 sites near the cyano group (cyano 1,4 site) and primitive melon (primitive 1,4 site). For the $D_0 \rightarrow D_4$, the electrons were distributed on the NV site. Since the $D_0 \rightarrow D_3$ excitation was dark, photo-generated electrons could not be directly excited to corresponding electron distribution area. Based on the above results, it is found that the activation sites of O$_2$ may be NV 1,4 and NV sites, as well as cyano 1,4 and primitive 1,4 sites.

To further confirm the real active site, O$_2$ were adsorbed on the 4 possible sites mentioned above, respectively. When O$_2$ was adsorbed on the NV 1,4 site of NDCN [O$_2$@NDCN (NV 1,4 site)], electrons might be excited to O$_2$ in the excitations of $D_0 \rightarrow D_1$ and $D_0 \rightarrow D_2$, while holes might remain the NV region (Supplementary Fig. 11a). The IFCT method implemented in Multiwfn34 can further calculate the specific number of electrons transferred from NDCN to O$_2$ in each excitation. As shown in Supplementary Table 2, for O$_2$@NDCN (NV 1,4 site), there might be 0.96 and 0.95 electrons transferred from NDCN to O$_2$ in the $D_0 \rightarrow D_1$ and $D_0 \rightarrow D_2$ excitations, respectively. Similarly, the probability of electron excitation needs to be evaluated by f. The f of $D_0 \rightarrow D_1$ and $D_0 \rightarrow D_2$ excitations for O$_2$@NDCN (NV 1,4 site) were 0.0017 and 0.0136, respectively [O$_2$@NDCN (NV 1,4 site) in Supplementary Table 2], suggesting that it is feasible to transfer 0.96 e$^-$ from the NV 1,4 site to O$_2$ through the $D_0 \rightarrow D_2$ excitation, indicating that electrons can be directly excited from NDCN to O$_2$ through the $D_0 \rightarrow D_2$ excitation while $D_0 \rightarrow D_1$ was forbidden. Therefore, combining the electron-hole distribution, IFCT and UV-vis spectrum results, it can be concluded that O$_2$ adsorbed on NV 1,4 site could be directly excited by light to generate •O$_2$-, which is consistent with the results of ESR, RDE and control experiments (Fig. 2). Using the same method, the adsorption of O$_2$ on cyano 1,4 [O$_2$@NDCN (cyano 1,4 site)] and primitive 1,4 sites [O$_2$@NDCN (primitive 1,4 site)], as well as NV sites [O$_2$@NDCN (NV site)] were also analyzed. Although the electron-hole distribution and IFCT results showed that in the $D_0 \rightarrow D_1$ and $D_0 \rightarrow D_2$ excitations, the electronic transitions of O$_2$@NDCN (cyano 1,4 site) and O$_2$@NDCN (primitive 1,4 site) were all from the NDCN to O$_2$ (Supplementary Fig. 11b, 11c and Supplementary Table 2), but the corresponding oscillator strengths were too low (Supplementary Fig. 12b, 12c and Supplementary Table 2). Only 0.2 e$^-$ could be transferred from primitive 1,4 site to O$_2$ through $D_0 \rightarrow D_3$ excitation, but this was not enough to activate O$_2$. Photogenerated e$^-$ cannot be directly excited to dark excited state, but can only be promoted to bright excited state with higher energy, and then may relax to low energy dark state. However, in this indirect process, the possibility of carrier
recombination or structural relaxation is greatly increased, which is not conducive to O₂ reduction. Hence, the cyano 1,4 and primitive 1,4 sites had no major contribution to the generation of •O₂⁻. When O₂ was adsorbed on the NV site of NDCN [O₂@NDCN (NV site)], it might get electrons through the D₀→D₁ and D₀→D₂ excitations (Fig. 4d). Although the f of D₀→D₁ excitation was negligible, through the D₀→D₂ excitation with f of 0.0428 (Fig. 4b), NDCN could transfer 0.85 e⁻ to O₂ (Supplementary Table 2). A higher f indicates that the NV site has a greater probability of generating •O₂⁻ compared to that of the NV 1,4 site. The results of vertical absorption of O₂ on the surface of NDCN were summarized in Supplementary Table 2. The highlighted part indicates that the excitation is bright, which allows photogenerated electrons to transfer from NDCN to O₂. Obviously, only NV and NV 1,4 site can effectively activate O₂, promoting the generation of •O₂⁻, while cyano 1,4 and primitive 1,4 site cannot.

Confirmation of endoperoxide. In electronic excitation, the transition of electrons occurs first, leading to a change in the electronic structure, which inevitably cause the evolution of geometry. In this section, the kinetic process of reaction system was investigated. Adding excess electrons to the photoreaction system for simulating light conditions is a common method. First, two excess electrons were added to the O₂@NDCN (NV site) and O₂@NDCN (NV 1,4 site) models, respectively. After the structure was fully relaxed, O₂ in the O₂@NDCN (NV site) and O₂@NDCN (NV 1,4 site) models finally both stabilized on the NV site (inset of Fig. 4e and Supplementary Fig. 13a), and the bond length of O-O increased from 1.199 and 1.194 Å to 1.383 and 1.382 Å, respectively. Moreover, the density of states (DOS) of two models were almost the same. Meanwhile, the two β-LUMO orbitals that were originally degenerate in the isolated O₂ (Supplementary Fig. 13b) were split, one of which became β-HOMO-1 and the other β-LUMO + 1 (Fig. 4e and Supplementary Fig. 13a), suggesting that O₂ got an electron. This indicate that after the O₂ adsorbed on the NV or NV 1,4 site becomes •O₂⁻ by vertical absorption, the further relaxation of structure lead to an increase of the O-O bond length, which generate more stable •O₂⁻. The e⁻ stabilized in the •O₂⁻ are effectively separated from the h⁺ left on the NV surface, effectively avoiding the recombination of photogenerated carriers, which explain the experimental result that NDCN exhibited a more effective charge separation ability (Supplementary Fig. 5b-d). When the excess electrons in the two models increased to 3, the O-O bond length in the O₂@NDCN (NV site) and O₂@NDCN (NV 1,4 site) models further increases to 1.600 and 1.591 Å, respectively. Meanwhile, the two β-LUMO orbitals that were originally degenerate in the isolated O₂ all became occupied orbitals (Supplementary Fig. 14), indicating that O₂ obtained two electrons, which became endoperoxide on the NDCN surface.

For CN, the S₀→S₃ and S₀→S₄ excitations were confirmed to be bright by f (Supplementary Fig. 16a). The photogenerated electrons were mainly distributed in the 1,4 site of melon (Supplementary Fig. 15a₃, a₄), indicating that this position may be the O₂ activation site in CN, which is consistent with the previous report. However, compared to the 2.08 eV excitation energy of the first bright state of NDCN (596 nm for D₀→D₁ in Fig. 4a), that of CN was as high as 3.7 eV (330 nm for S₀→S₃ in Supplementary Fig. 16a), indicating that nitrogen defects can significantly expand the light response range of CN, in agreement
with UV-vis DRS experimental results (Supplementary Fig. 4). When O\(_2\) was adsorbed on the 1,4 site of CN, the S\(_0\)→S\(_1\) and S\(_0\)→S\(_2\) excitations (Supplementary Fig. 15b) that might allow O\(_2\) to obtain photogenerated e\(^-\) were all dark states (Supplementary Fig. 12d). The photogenerated electrons could only be promoted to the S\(_0\)→S\(_{25}\) excitation with an energy as high as 3.8 eV (Supplementary Fig. 12d), and then relaxed inefficiently to the dark state that can activate O\(_2\) (Supplementary Fig. 15b and Supplementary Table 2). In contrast, on the NV or NV 1,4 site of NDCN, the excitation energy for converting O\(_2\) to •O\(_2\)^− was only 1.61 eV. It is worth mentioning that the calculated excitation energies were only used for qualitative comparison due to the influence of multiple factors, such as theoretical methods\(^{40}\), spin orbit coupling\(^{41}\) and overlap between absorption peaks of different transitions\(^{42}\), etc.

Investigation on the role of NV and cyano. The above discussion proved that after introducing cyano and NV, the NV and NV 1,4 site were both the real active sites for photocatalytic H\(_2\)O\(_2\) production. Although the cyano cannot efficiently activate O\(_2\), whether the high catalytic activity of NDCN is due to the synergy between cyano group and NV need to be verified. For this purpose, we constructed nitrogen deficient CN containing only NV (NDCN-NV) and cyano group (NDCN-cy), respectively. The results indicated that the excited energy in the same excitation (Fig. 4f), UV-vis spectrum (Fig. 4a vs. Supplementary Fig. 16b) and electron-hole distribution (Fig. 4c vs. Supplementary Fig. 17a) of NDCN and NDCN-NV were almost identical, while those of CN and NDCN-cy were very similar (Fig. 4f, Supplementary Fig. 16a vs. Supplementary Fig. 16c, and Supplementary Fig. 15a vs. Supplementary Fig. 18a). Subsequently, based on the electron-hole distribution of bright excited state, O\(_2\) was adsorbed to the corresponding sites of NDCN-NV (Supplementary Fig. 17b-d) and NDCN-cy (Supplementary Fig. 18b, c), respectively. By observing the number of transferred electrons and \(f\) for each excitation (Supplementary Table 3), it can be confirmed that the NV and NV 1,4 sites of NDCN-NV can also promote the generation of •O\(_2\)^−, which are the same as the two sites of NDCN. However, NDCN-cy cannot effectively transfer photogenerated electrons to O\(_2\) (Supplementary Table 4). It can be concluded that the introduction of NV is the only reason to promote high-efficiency production of H\(_2\)O\(_2\), while cyano group do not make any contribution to this.

The essential reason for O\(_2\) activation. In order to reveal the essential reason for O\(_2\) activation, the electronic structures of each substance before and after adsorption were analyzed. To facilitate discussion of the role of each region and molecular orbitals (MO), NDCN was divided into three regions: cyano modified melon (melon-cy), NV modified melon (melon-NV) and primitive melon (melon-pri), as shown in Fig. 5. The key molecular orbitals (MO\(_1\)-MO\(_{10}\) in Fig. 5) were marked in DOS (Fig. 5a-c). It can be seen from Supplementary Table 1 that no matter where O\(_2\) was adsorbed on NDCN, the transition orbital pairs corresponding to the excited state all belonged to \(\beta\) spin. Thus, the focus of analysis was on the \(\beta\) spin orbit. For NDCN, \(\beta\)-HOMO (MO\(_5\) in Fig. 5) was concentrated on melon-NV, while \(\beta\)-LUMO (MO\(_4\) in Fig. 5) was distributed on melon-cy and melon-pri, indicating that NV and cyano have impacts on the original optical response range of CN, which is consistent with previous report\(^{21}\). It is worth distinguishing
that photogenerated e− could be excited to the cyano 1,4 site of NDCN (Fig. 4a, 4c\textsubscript{2}), but they could not further effectively activate O\textsubscript{2} due to the negligible f mentioned above.

Before interacting with NDCN, the β-LUMO of O\textsubscript{2} is degenerate (MO\textsubscript{9} and MO\textsubscript{10} in Fig. 5). The formations of •O\textsubscript{2−} and endoperoxide are the results of β-LUMO being occupied by one and two electrons, respectively. When O\textsubscript{2} was adsorbed on the NV site of NDCN, MO\textsubscript{9} and MO\textsubscript{10} of O\textsubscript{2} interacted with MO\textsubscript{5} of NDCN to generate MO\textsubscript{8} (Fig. 5d). Note that MO\textsubscript{8} was an occupied orbital. The contribution of non-occupied MO\textsubscript{9} and MO\textsubscript{10} to MO\textsubscript{8} indicated that the NV site was chemically adsorbed with O\textsubscript{2} in the ground state, making O\textsubscript{2} obtain a small amount of e−. Moreover, the adsorption energy of O\textsubscript{2} at NV site was −0.12023 eV, which is the lowest value among the four sites of NDCN (Supplementary Fig. 19a), indicating that the NV site could effectively adsorb O\textsubscript{2}, and thus is beneficial for subsequent O\textsubscript{2} reduction process. The spin density map (Supplementary Fig. 19b) showed that there was unpaired β e- on melon-NV, so that the NV site could be acted as an electron donor to effectively adsorb O\textsubscript{2} in the ground state.

On the other hand, the key point of activating O\textsubscript{2} was the electron excitation from MO\textsubscript{8} to MO\textsubscript{7} (see “Hb -> Lb 97.4%” in Supplementary Table 2). The formation of MO\textsubscript{7} was also due to the interaction of MO\textsubscript{5}, MO\textsubscript{9} and MO\textsubscript{10}. The lower energy MO\textsubscript{5} contributed 6.24% to the MO\textsubscript{7} (Fig. 5d), effectively reducing the excitation energy for activating O\textsubscript{2}. O\textsubscript{2}@NDCN (NV 1,4 site) was basically the same as O\textsubscript{2}@NDCN (NV site). Since oxygen was located on the NV 1,4 site instead of the NV site, the corresponding adsorption energy increased slightly, but the value was still negative (Supplementary Fig. 19a). Moreover, the contribution of MO\textsubscript{5} to MO\textsubscript{7} was also slightly reduced (Fig. 5e), leading to a slight increase in the excitation energy of O\textsubscript{2} activation, but the NV 1,4 site could still effectively transfer photogenerated e− to O\textsubscript{2}. Combining the results of the control experiment in air (green curve in Fig. 2b), it can be concluded that when the saturated O\textsubscript{2} environment was replaced with air, the reason why NDCN could still maintain high catalytic activity was the strong adsorption capacity of NV for O\textsubscript{2}. On the other hand, cyano 1,4 and primitive 1,4 sites showed complete inertness for O\textsubscript{2} adsorption due to the positive adsorption energy (Supplementary Fig. 19a). It is worth mentioning that in the simulation of structural optimization, even if O\textsubscript{2} was placed on top of the cyano group as the initial structure, O\textsubscript{2} eventually stabilized at the cyano 1,4 site, indicating that cyano cannot adsorb O\textsubscript{2}. This was due to its own quite stable C≡N. Moreover, since O\textsubscript{2} was not on melon-NV, MO\textsubscript{9} and MO\textsubscript{10} could not interact with MO\textsubscript{5}, but could only interact with higher energy orbitals corresponding to cyano 1,4 (Supplementary Fig. 20a) or primitive 1,4 site (Supplementary Fig. 20b), making the corresponding excitation energy higher.

For materials containing more modification sites, there are more possible geometries and O\textsubscript{2} activation sites, resulting in an increase in the workload and complexity of simulation. But it should be emphasized that even so, the amount of work required is still far less than the currently widely used first-principles molecular dynamics43 and transition state calculations44. The more complex simulations resulting from more MSs can be completed accurately and quickly through high-throughput calculations45 and machine learning46. Therefore, the proposed method is universal and extensible.
We proposed a universal method combining experiments and DFT-TDDFT calculations to investigate the in-depth reaction mechanism of NDCN containing two MSs for photocatalytic H$_2$O$_2$ evolution. PL technology and electrochemical measurements proved that the introduction of defects could effectively enhance charge separation. The results of ESR, RDE and control experiments indicated that •O$_2^-$ was the key active specie and photocatalytic reaction was a two-step single electron transfer process. After constructing accurate models based on characterization results, DFT-TDDFT calculations proved that NV could efficiently convert O$_2$ to •O$_2^-$, while cyano group could not directly activate O$_2$ and had no synergy with NV. Meanwhile, the introduction of NV promoted O$_2$ adsorption and reduced the excitation energy for activating O$_2$, significantly facilitating H$_2$O$_2$ evolution. This work provides a reference for the joint connection of experiments and DFT-TDDFT calculations and has general guiding significance for photocatalytic research involving O$_2$ activation.

Methods

Synthesis of CN samples. Pristine g-C$_3$N$_4$ (CN) was prepared as following process. Typically, 15 g melamine was calcined at 550°C in a muffle furnace for 4 h with a rate of 10 °C min$^{-1}$.

Synthesis of nitrogen deficient CN samples. 15 g melamine was dissolved with stirring into aqueous NaOH solutions containing 30 mL H$_2$O and 1.5 g NaOH. Then the water in the solution was evaporated to dryness. The resulting solid mixtures were then calcined at 550 °C in a muffle furnace for 4 h with a rate of 10 °C min$^{-1}$. The obtained samples were washed with water and alcohol for several times. The final products were denoted as nitrogen deficient CN (NDCN).

Characterization. The phase structures of the samples were analyzed by XRD measurement on a Bruker D8 Advance instrument with Cu Kα radiation ($\lambda = 0.15418$ nm). The morphologies were collected on a FEI Quanta 250 scanning electron microscopy (SEM). The surface chemical compositions were studied by X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi, Thermo Fisher). The diffuse reflectance absorption spectra (DRS) of the samples were measured by a Varian Cary 300 spectrophotometer with BaSO$_4$ reference from 200 to 800 nm. The photoluminescence (PL) spectroscopy was monitored by a PerkinElmer LS-55 fluorescence spectrophotometer with an excitation wavelength of 350 nm at room temperature. FTIR was measured on an IR Prestige-21 spectrometer using samples embedded in potassium bromide (KBr) pellets. The electron spin resonance (ESR) signals of •O$_2^-$ was monitored by using 5,5-dimethyl-L-pyrroline N-oxide (DMPO) as spin-trapped reagent on a JEOL JES-FA200 spectrometer under visible light irradiation ($\lambda > 420$ nm).

Photoelectrochemical measurements. The photoelectrochemical responses of the samples were measured by a CHI 660D workstation with a standard three-electrode model. A Pt and an Ag/AgCl electrode were used as the counter electrode and reference electrode, respectively. fluorine-doped tin oxide (FTO) electrodes covered in samples were used as the working electrode. 0.2 M Na$_2$SO$_4$ solution was used as supporting electrolyte.47
Rotating disk electrode (RDE) measurements. The measurements were performed on a Model 636A electrochemical system by Princeton Parstat3000A-DX workstation using an Ag/AgCl electrode and a Pt wire electrode as the reference and counter electrode, respectively. The linear sweep voltammogram (LSV) were obtained in an O₂-saturated 0.1 M phosphate buffer solution (pH = 7). The average number of electrons (n) involved in the overall O₂ reduction was determined by the slopes of the Koutecky-Levich plots with the following equation:

\[j^{-1} = j_k^{-1} + B^{-1} \omega^{-1/2} \]

\[B = 0.2nFv^{-1/6}CD^{2/3} \]

where \(j, j_k \) and \(\omega \) are the current density, kinetic current density and rotating speed (rpm), respectively, \(F \) and \(v \) are the Faraday constant (96485 C mol⁻¹) and kinetic viscosity of water (0.01 cm² s⁻¹), \(C \) and \(D \) are the bulk concentration of O₂ in water (1.26×10⁻³ mol cm⁻³) and diffusion coefficient of O₂ (2.7×10⁻⁵ cm² s⁻¹), respectively.

Photocatalytic H₂O₂ production. 100 mg of catalyst was uniformly dispersed into 100 mL of water or mixed solution containing 10 mL of IPA and 90 mL of water with ultrasonication for 10 min. Then the suspension solutions were stirred for 30 min in the dark to reach the absorption-desorption equilibrium. The light source was provided by a 300 W xenon lamp (PLS-SXE300/300UV, Perfect Light, China) with 420 nm cutoff filter. At certain time intervals, 3 mL suspension was sampled and centrifuged to remove the photocatalysts. The amount of H₂O₂ was measured by iodometry.

Computational details. Geometry optimizations, frequency calculations and excited state simulations were carried out via PBE0-D3 exchange-correlation functional with the 6-311G(d,p) basis set, as implemented in Gaussian 16 C.01 code. The atoms at the boundary (except for defect sites) were fixed to simulate the periodic structure of the catalyst. In order to be consistent with the experimental solution environment, self-consistent reaction field (SCRF) with the SMD model were used and water was chosen as the solvent. All analyses were finished via the Multiwfn 3.7(dev) code. Most structure and isosurface maps were visualized by VMD. Single-point energies were computed via PWPB95-D3(BJ) double-hybrid functionals in conjunction with the def2-TZVPP basis set, as implemented in ORCA 4.2.1 code. The RIJCOSX technique was used to increase the speed of calculation.

At room temperature, the Gibbs free energy for each photocatalyst model is calculated by the following equation:

\[G = E + ZPE + H(T) - H(0) - T*S \]
where E is electron energy calculated by ORCA. ZPE, H and S are zero point energy, enthalpy and entropy computed by Gaussian, respectively. T is the room temperature (298.15 K). In order to further improve the accuracy of Gibbs free energy, correction factors 0.9812, 0.9856 and 0.9915 are used to correct ZPE, $H(T)-H(0)$ and S, respectively.59

The adsorption energy of O_2 is defined as

$$E_{ads}(O_2) = E(*O_2) - E(*) - E(O_2)$$

where $E(*O_2)$ is the the total energy of photocatalyst surface with O_2 adsorbed, $E(*)$ and $E(O_2)$ are the energy of pristine photocatalyst surface and O_2, respectively.

Data availability. The authors declare that the data supporting the findings of this study are available within the paper and its supplementary information. Further information is also available from the corresponding authors upon reasonable request.

Declarations

Competing interests:

The authors declare no competing interests.

Author contributions

C.-Z.F. and L.T. conceived and directed the research. J.L. and M.Y. performed the calculations and analyzed the simulated data. J.L., Y.-N.L., S.-J.Y, M.L.L., M.-E.W., C.-Y.F., X.-L.O.Y., and J.-J.W. performed the experiments and analyzed the experimental data. J.L., C.-Z.F., L.T., C.-Y.F., L.-L.W and L.X., co-wrote the paper. All authors discussed the results and commented on the manuscript.

Acknowledgments

This research was financially supported by the project of National Natural Science Foundation of China (NSFC): 51679084, 52070075; Natural Science Foundation of Hunan Province: 2020JJ4187; the National Innovative Talent Promotion Program of China (2017RA2088); the Funds for Innovative Province Construction of Hunan Province of China (2019RS3012).

References

1. Edwards, J. K., Solsona, B., N, E. N., Carley, A. F., Herzing, A. A., Kiely, C. J. & Hutchings, G. J. Switching Off Hydrogen Peroxide Hydrogenation in the Direct Synthesis Process. Science. 323, 1037–1041
2. Mase, K., Yoneda, M., Yamada, Y. & Fukuzumi, S. Seawater usable for production and consumption of hydrogen peroxide as a solar fuel. *Nat. Commun.* **7**, 1–7 (2016).

3. Shiraishi, Y., Kanazawa, S., Kofuji, Y., Sakamoto, H., Ichikawa, S., Tanaka, S. & Hirai, T. Sunlight-Driven Hydrogen Peroxide Production from Water and Molecular Oxygen by Metal-Free Photocatalysts. *Angew. Chem. Int. Ed.* **53**, 13454–13459 (2014).

4. Shiraishi, Y., Kanazawa, S., Sugano, Y., Tsukamoto, D., Sakamoto, H., Ichikawa, S. & Hirai, T. Highly Selective Production of Hydrogen Peroxide on Graphitic Carbon Nitride (g-C3N4) Photocatalyst Activated by Visible Light. *Acs Catal.* **4**, 774–780 (2014).

5. Shiraishi, Y., Takii, T., Hagi, T., Mori, S., Kofuji, Y., Kitagawa, Y., Tanaka, S., Ichikawa, S. & Hirai, T. Resorcinol-formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion. *Nat. Mater.* **18**, 985 (2019).

6. Moon, G.-h., Fujitsuka, M., Kim, S., Majima, T., Wang, X. & Choi, W. Eco-Friendly Photochemical Production of H2O2 through O2 Reduction over Carbon Nitride Frameworks Incorporated with Multiple Heteroelements. *Acs Catal.* **7**, 2886–2895 (2017).

7. Kim, H.-i., Choi, Y., Hu, S., Choi, W. & Kim, J.-H. Photocatalytic hydrogen peroxide production by anthraquinone-augmented polymeric carbon nitride. *Appl. Catal. B:Environ.* **229**, 121–129 (2018).

8. Kofuji, Y., Isobe, Y., Shiraishi, Y., Sakamoto, H., Tanaka, S., Ichikawa, S. & Hirai, T. Carbon Nitride-Aromatic Diimide-Graphene Nanohybrids: Metal-Free Photocatalysts for Solar-to-Hydrogen Peroxide Energy Conversion with 0.2% Efficiency. *J. Am. Chem. Soc.* **138**, 10019–10025 (2016).

9. Wei, Z., Liu, M., Zhang, Z., Yao, W., Tan, H. & Zhu, Y. Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers. *Energ. Environ. Sci.* **11**, 2581–2589 (2018).

10. Zhao, S., Guo, T., Li, X., Xu, T., Yang, B. & Zhao, X. Carbon nanotubes covalent combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production under visible light. *Appl. Catal. B:Environ.* **224**, 725–732 (2018).

11. Yang, Y., Zeng, Z., Zeng, G., Huang, D., Xiao, R., Zhang, C., Zhou, C., Xiong, W., Wang, W., Cheng, M., Xue, W., Guo, H., Tang, X. & He, D. Ti3C2 Mxene/porous g-C3N4 interfacial Schottky junction for boosting spatial charge separation in photocatalytic H2O2 production. *Appl. Catal. B:Environ.* **258**, 117956 (2019).

12. Zhang, C., Bai, J., Ma, L., Lv, Y., Wang, F., Zhang, X., Yuan, X. & Hu, S. Synthesis of halogen doped graphite carbon nitride nanorods with outstanding photocatalytic H2O2 production ability via saturated NH4X (X = Cl, Br) solution-hydrothermal post-treatment. *Diamond Relat. Mater.* **87**, 215–222 (2018).

13. Peng, Y., Wang, L., Liu, Y., Chen, H., Lei, J. & Zhang, J. Visible-Light-Driven Photocatalytic H2O2 Production on g-C3N4 Loaded with CoP as a Noble Metal Free Cocatalyst. *Eur. J. Inorg. Chem.*, 4797–4802 (2017).
14. Zhang, P., Tong, Y., Liu, Y., Vequizo, J. J. M., Sun, H., Yang, C., Yamakata, A., Fan, F., Lin, W., Wang, X. & Choi, W. Heteroatom Dopants Promote Two-Electron \(\text{O}_2 \) Reduction for Photocatalytic Production of \(\text{H}_2\text{O}_2 \) on Polymeric Carbon Nitride. *59*, 16209–16217 (2020).

15. Xie, Y., Li, Y., Huang, Z., Zhang, J., Jia, X., Wang, X.-S. & Ye, J. Two types of cooperative nitrogen vacancies in polymeric carbon nitride for efficient solar-driven \(\text{H}_2\text{O}_2 \) evolution. *Appl. Catal. B:Environ. 265*, 118581 (2020).

16. Zhu, Z., Pan, H., Murugananthan, M., Gong, J. & Zhang, Y. Visible light-driven photocatalytically active \(\text{g-C}_3\text{N}_4 \) material for enhanced generation of \(\text{H}_2\text{O}_2 \). *Appl. Catal. B:Environ. 232*, 19–25 (2018).

17. Li, S., Dong, G., Hailili, R., Yang, L., Li, Y., Wang, F., Zeng, Y. & Wang, C. Effective photocatalytic \(\text{H}_2\text{O}_2 \) production under visible light irradiation at \(\text{g-C}_3\text{N}_4 \) modulated by carbon vacancies. *Appl. Catal. B:Environ. 190*, 26–35 (2016).

18. Feng, C., Tang, L., Deng, Y., Wang, J., Liu, Y., Ouyang, X., Yang, H., Yu, J. & Wang, J. A novel sulfur-assisted annealing method of \(\text{g-C}_3\text{N}_4 \) nanosheet compensates for the loss of light absorption with further promoted charge transfer for photocatalytic production of \(\text{H}_2 \) and \(\text{H}_2\text{O}_2 \). *Appl. Catal. B:Environ. 281*, 119539 (2021).

19. Shiraishi, Y., Kofuji, Y., Sakamoto, H., Tanaka, S., Ichikawa, S. & Hirai, T. Effects of Surface Defects on Photocatalytic \(\text{H}_2\text{O}_2 \) Production by Mesoporous Graphitic Carbon Nitride under Visible Light Irradiation. *AcS Catal. 5*, 3058–3066 (2015).

20. Xu, L., Huang, W.-Q., Hu, W., Yang, K., Zhou, B.-X., Pan, A. & Huang, G.-F. Two-Dimensional \(\text{MoS}_2^- \) Graphene-Based Multilayer van der Waals Heterostructures: Enhanced Charge Transfer and Optical Absorption, and Electric-Field Tunable Dirac Point and Band Gap. *Chem. Mater. 29*, 5504–5512 (2017).

21. Yu, H., Shi, R., Zhao, Y., Bian, T., Zhao, Y., Zhou, C., Waterhouse, G. I. N., Wu, L.-Z., Tung, C.-H. & Zhang, T. Alkali-Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible-Light-Driven Hydrogen Evolution. *Adv. Mater. 29*, 1605148 (2017).

22. Zhao, D., Dong, C.-L., Bin, W., Chen, C., Huang, Y.-C., Diao, Z., Li, S., Guo, L. & Shen, S. Synergy of Dopants and Defects in Graphitic Carbon Nitride with Exceptionally Modulated Band Structures for Efficient Photocatalytic Oxygen Evolution. *Adv. Mater. 31*, 1903545 (2019).

23. Xu, L., Li, Q., Li, X.-F., Long, M.-Q., Chen, T., Peng, B., Wang, L.-L., Yang, Y. & Shuai, C. Rationally designed 2D/2D\(\text{SiC}/\text{g-C}_3\text{N}_4 \) photocatalysts for hydrogen production. *Catal. Sci. Technol. 9*, 3896–3906 (2019).

24. Adamo, C. & Jacquemin, D. The calculations of excited-state properties with Time-Dependent Density Functional Theory. *Chem. Soc. Rev. 42*, 845–856 (2013).

25. Maitra, N. T. Perspective: Fundamental aspects of time-dependent density functional theory. *J. Chem. Phys. 144*, 220901 (2016).

26. Kofuji, Y., Ohkita, S., Shiraishi, Y., Sakamoto, H., Tanaka, S., Ichikawa, S. & Hirai, T. Graphitic Carbon Nitride Doped with Biphenyl Diimide: Efficient Photocatalyst for Hydrogen Peroxide Production from
Water and Molecular Oxygen by Sunlight. *Acs Catal.* 6, 7021–7029 (2016).

27. Thomas, A., Fischer, A., Goettmann, F., Antonietti, M., Müller, J.-O., Schlägl, R. & Carlsson, J. M. J. o. M. C. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. 18, 4893–4908 (2008).

28. Cui, Y., Ding, Z., Fu, X. & Wang, X. J. A. C. I. E. Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis. 51, 11814–11818 (2012).

29. Dong, F., Zhao, Z., Xiong, T., Ni, Z., Zhang, W., Sun, Y., Ho, W.-K. J. a. m. & interfaces. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. 5, 11392–11401 (2013).

30. Gao, H., Yan, S., Wang, J., Huang, Y. A., Wang, P., Li, Z. & Zou, Z. Towards efficient solar hydrogen production by intercalated carbon nitride photocatalyst. *Phys. Chem. Chem. Phys.* 15, 18077–18084 (2013).

31. Feng, C., Tang, L., Deng, Y., Wang, J., Liu, Y., Ouyang, X., Chen, Z., Yang, H., Yu, J. & Wang, J. Maintaining stable LSPR performance of W18O49 by protecting its oxygen vacancy: A novel strategy for achieving durable sunlight driven photocatalysis. *Appl. Catal. B:Environ.* 276, 119167 (2020).

32. Wang, J., Tang, L., Zeng, G., Deng, Y., Liu, Y., Wang, L., Zhou, Y., Guo, Z., Wang, J. & Zhang, C. Atomic scale g-C3N4/Bi2WO6 2D/2D heterojunction with enhanced photocatalytic degradation of ibuprofen under visible light irradiation. *Appl. Catal. B:Environ.* 209, 285–294 (2017).

33. Feng, C., Tang, L., Deng, Y., Wang, J., Luo, J., Liu, Y., Ouyang, X., Yang, H., Yu, J. & Wang, J. Synthesis of Leaf-Vein-Like g-C3N4 with Tunable Band Structures and Charge Transfer Properties for Selective Photocatalytic H2O2 Evolution. *Adv. Funct. Mater.*, 2001922 (2020).

34. Lu, T. & Chen, F. Multiwfn: A multifunctional wavefunction analyzer. *J. Comput. Chem.* 33, 580–592 (2012).

35. Selcuk, S. & Selloni, A. Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces. *Nat. Mater.* 15, 1107–1112 (2016).

36. Wang, L., Xiao, H., Cheng, T., Li, Y. & Goddard, W. A. Pb-Activated Amine-Assisted Photocatalytic Hydrogen Evolution Reaction on Organic–Inorganic Perovskites. *J. Am. Chem. Soc.* 140, 1994–1997 (2018).

37. Li, H., Shang, H., Cao, X., Yang, Z., Ai, Z. & Zhang, L. Oxygen Vacancies Mediated Complete Visible Light NO Oxidation via Side-On Bridging Superoxide Radicals. *Environ. Sci. Technol.* 52, 8659–8665 (2018).

38. Zhao, K., Zhang, L., Wang, J., Li, Q., He, W. & Yin, J. J. Surface Structure-Dependent Molecular Oxygen Activation of BiOCl Single-Crystalline Nanosheets. *J. Am. Chem. Soc.* 135, 15750–15753 (2013).

39. Li, H., Shang, H., Li, Y., Cao, X., Yang, Z., Ai, Z. & Zhang, L. Interfacial Charging-Decharging Strategy for Efficient and Selective Aerobic NO Oxidation on Oxygen Vacancy. *Environ. Sci. Technol.* 53, 6964–6971 (2019).
40. Goerigk, L. & Grimme, S. Assessment of TD-DFT methods and of various spin scaled CIS(D) and CC2 versions for the treatment of low-lying valence excitations of large organic dyes. *J. Chem. Phys.* **132** (2010).

41. Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin-orbit coupling. *Nat. Mater.* **14**, 871–882 (2015).

42. Manzhos, S., Segawa, H. & Yamashita, K. Computational dye design by changing the conjugation order: Failure of LR-TDDFT to predict relative excitation energies in organic dyes differing by the position of the methine unit. *Chem. Phys. Lett.* **527**, 51–56 (2012).

43. Wang, D., Sheng, T., Chen, J., Wang, H.-F. & Hu, P. Identifying the key obstacle in photocatalytic oxygen evolution on rutile TiO$_2$. *Nat. Catal.* **1**, 291–299 (2018).

44. Li, J., Yan, P., Li, K., You, J., Wang, H., Cui, W., Cen, W., Chu, Y. & Dong, F. Cu supported on polymeric carbon nitride for selective CO$_2$ reduction into CH$_4$: a combined kinetics and thermodynamics investigation. *J. Mater. Chem. A.* **7**, 17014–17021 (2019).

45. Singh, A. K., Mathew, K., Zhuang, H. L. & Hennig, R. G. Computational Screening of 2D Materials for Photocatalysis. *J. Phys. Chem. Lett.* **6**, 1087–1098 (2015).

46. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N. & Lloyd, S. Quantum machine learning. *Nature* **549**, 195–202 (2017).

47. Tang, L., Feng, C., Deng, Y., Zeng, G., Wang, J., Liu, Y., Peng, H. & Wang, J. Enhanced photocatalytic activity of ternary Ag/g-C$_3$N$_4$/NaTaO$_3$ photocatalysts under wide spectrum light radiation: The high potential band protection mechanism. *Appl. Catal. B:Environ.* **230**, 102–114 (2018).

48. Rahman, M. Z., Kibria, M. G. & Mullins, C. B. Metal-free photocatalysts for hydrogen evolution. *Chem. Soc. Rev.* **49**, 1887–1931 (2020).

49. Kormann, C., Bahnemann, D. W., Hoffmann, M. R. J. E. S. & Technology. Photocatalytic production of H2O2 and organic peroxides in aqueous suspensions of TiO2, ZnO, and desert sand. **22**, 798–806 (1988).

50. Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. *J. Chem. Phys.* **110**, 6158–6170 (1999).

51. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. **132**, 154104 (2010).

52. Ditchfield, R., Hehre, W. J. & Pople, J. A. Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. *J. Chem. Phys.* **54**, 724–728 (1971).

53. M. J. Frisch, G. W. T., H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich. Gaussian 16 A.03, Wallingford, CT. (2016).

54. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and
Atomic Surface Tensions. *J. Phys. Chem. B.* **113**, 6378–6396 (2009).

55. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. *J. Mol. Graph.* **14**, 33–38, 27–38 (1996).

56. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. *Phys. Chem. Chem. Phys.* **7**, 3297–3305 (2005).

57. Neese, F. Software update: the ORCA program system, version 4.0. *Wiley Interdisciplinary Reviews-Computational Molecular Science.* **8**, e1327 (2018).

58. Kossmann, S. & Neese, F. Comparison of two efficient approximate Hartee-Fock approaches. *Chem. Phys. Lett.* **481**, 240–243 (2009).

59. Merrick, J. P., Moran, D. & Radom, L. An Evaluation of Harmonic Vibrational Frequency Scale Factors. *The Journal of Physical Chemistry A.* **111**, 11683–11700 (2007).

Figures

![Intensity vs 2 Theta](image-a)

![Transmittance vs Wavenumber](image-b)

![Intensity vs Binding Energy](image-c)

![Intensity vs Binding Energy](image-d)
Figure 1

Characterizations of photocatalysts. a XRD patterns and b FTIR spectra of CN and NDCN. c C1s and d N1s XPS spectra of CN and NDCN.

Figure 2

Experimental research on reaction mechanism. a ESR spectra of DMPO-O2- under visible-light illumination (λ > 420 nm). b Comparison of the photocatalytic production of H2O2 under different conditions for NDCN. c NDCN measured on an RDE at different rotating speeds. d Koutecky-Levich plots of the data obtained at the constant electrode potential (-1.0 V vs. Ag/AgCl) for NDCN and CN.
Figure 3

Confirmation of the optimal model. a Calculated and experimental FTIR spectra of NDCN. b Structure models of NDCN. The white, brown and blue spheres represent H, C and N atoms, respectively.
Figure 4

TDDFT simulation. Simulated UV-Vis spectrum for a NDCN and b O2-adsorbed NDCN on NV site for different excited states, respectively. Discrete black spikes represent calculated oscillator strengths (f) of excitations. The continuous curves correspond to molar absorption coefficient (MSC) broadened by calculated excitation energies and f. The electron-hole distribution of c NDCN and d O2-adsorbed NDCN on NV site for different excited states, respectively. Green and blue isosurfaces represent electron and
hole distributions, respectively. The isosurface value is 0.003 e/Å³. e Projected density of states (PDOS) of O$_2$-adsorbed NDCN on NV site under the illumination simulated by two excess electrons. f Excitation energy of different excited states for NDCN, NDCN-NV, NDCN-cy and CN.

Figure 5

Electronic structure analysis. PDOS of a NDCN, b O$_2$-adsorbed NDCN on NV site and c O$_2$ molecule. MO1-MO11 represent the molecular orbitals marked in a-c. The orbital interaction of O$_2$ and NDCN at d NV site and e NV 1,4 site by charge decomposition analysis (CDA), respectively. The percentage represents the contributions of the original orbits to the new orbits after the interaction.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.
• SupplementaryInformation.pdf