Long-Term Leisure-Time Physical Activity and Other Health Habits as Predictors of Objectively Monitored Late-Life Physical Activity – A 40-Year Twin Study

Katja Waller, PhD; Henri Vähä-Ypyä, PhD; Timo Törmäkangas, PhD; Pekka Hautasaari, MSc; Noora Lindgren, MSc; Paula Iso-Markku, MD; Kauko Heikkilä, PhLic; Juha Rinne, MD, PhD; Jaakko Kaprio, MD, PhD; Harri Sievänen, ScD; Urho M. Kujala, MD, PhD

Author Affiliations: Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä (Waller, Törmäkangas, Hautasaari, Kujala); The UKK Institute for Health Promotion Research, Tampere (Vähä-Ypyä, Sievänen); Clinical Neurology, University of Turku, Turku (Rinne); Turku PET Centre, University of Turku, Turku (Lindgren, Rinne); Department of Clinical Physiology and Nuclear Medicine, HUS Medical Imaging Center, Helsinki University Central Hospital and University of Helsinki, Helsinki (Iso-Markku); Department of Public Health, University of Helsinki, Helsinki (Kaprio); Institute for Molecular Medicine Finland, Helsinki (Heikkilä, Kaprio); all in Finland

World Count: 2904 words

Corresponding Author: Urho M. Kujala, MD, PhD, Faculty of Sport and Health Sciences, P.O. Box 35 (LL), FIN-40014 University of Jyväskylä, Finland. Tel. +358 40 805 3567, E-mail: urho.m.kujala@jyu.fi
Key Points

Question: Do physical activity and other health habits at age 30-48 y predict objectively measured physical activity, an indicator of fitness and health, at age 71-75?

Findings: In this prospective twin cohort study, midlife leisure-time physical activity explained 6.9% and body-mass index 10.7% of the variation in moderate-to-vigorous activity at older age, but the association between these physical activity variables was largely mediated by genetic factors.

Meaning: Younger-age physical activity is associated with later-life physical activity, but shared genetic factors seem to be important determinants of later-life moderate-to-vigorous physical activity.
Abstract

IMPORTANCE Moderate-to-vigorous physical activity (MVPA) in old age is an important indicator of good health and functional capacity enabling independent living.

OBJECTIVE To investigate whether physical activity and other health habits at ages 31-48 years predict objectively measured MVPA decades later.

DESIGN, SETTING, AND PARTICIPANTS This prospective twin cohort study in Finland comprised 616 individuals (197 complete twin pairs, including 91 monozygotic pairs, born 1940-1944), who responded to baseline questionnaires in 1975, 1981, and 1990, and participated in accelerometer monitoring at follow-up (mean age, 73 years).

EXPOSURES Primary exposure was long-term leisure-time physical activity, 1975-1990 (LT-mMET index). Covariates were body mass index (BMI), work-related physical activity, smoking, heavy alcohol use and health status in 1990, and socioeconomic status.

MAIN OUTCOMES AND MEASURES Physical activity was measured with a waist-worn triaxial accelerometer (at least 10 hours per day for at least 4 days) to obtain daily mean MVPA values.

RESULTS High baseline LT-mMET index predicted higher amounts of MVPA (increase in R^2 of 6.9% after age and sex adjustment, $P<.001$) at follow-up. After addition of BMI to the regression model, the R^2 value of the whole multivariate model was 17.2%, and with further addition of baseline smoking, socioeconomic status, and health status, the R^2 increased to 20.3%. In pairwise analyses, differences in MVPA amount were seen only among twin pairs who were discordant at baseline for smoking (n=40 pairs, median follow-up MVPA 25 vs. 35 min, $P=.037$) or for health status (n=69 pairs, 30 vs. 44 min, $P=.014$). For smoking, the difference in MVPA also was seen for monozygotic pairs, but for health status, it was seen only for dizygotic pairs. Mediation analysis showed that shared genetic factors explained 82% of the correlation between LT-mMET and MVPA.

CONCLUSIONS AND RELEVANCE Low leisure-time physical activity at younger age, overweight, smoking, low socioeconomic status, and health problems predicted low MVPA in old age in individual-based analyses. However, based on the pairwise analyses and quantitative trait modeling, genetic factors and smoking seem to be important determinants of later-life MVPA.
Introduction
Reduced physical activity in old age predisposes strongly to disability while exercise-based rehabilitation improves measured and self-rated function among individuals with various chronic diseases, and prevents disability at older ages. High participation in moderate-to-vigorous physical activity (MVPA) at older ages is an indicator of good physical fitness and health, and consequently predicts reduced risk of disability and death in the older population. Some observations suggest that midlife low physical activity, obesity, and poor health status predict sedentary behavior in old age. Low physical activity and other lifestyle factors, such as smoking and use of alcohol, predict or are associated with later disability and impaired mobility. However, no data exist describing whether long-term leisure-time physical activity during adulthood predicts objectively measured physical activity/mobility in old age. Non-communicable diseases and performance and activity limitations develop slowly, so it is important to investigate the long-term predictors of later-life physical activity levels.

Twin, family, and molecular genetic studies provide evidence for a role of genetic factors in obesity, many non-communicable diseases, fitness, and participation in physical activity, but the identity of specific genes for physical activity remains largely unknown. Thus, both genetic factors, including the possibility of genetic pleiotropy, and childhood environment-related factors may predispose to different clusters of risk factors and associated diseases. By studying outcomes in twin pairs discordant for exposure to different health habits and health outcomes, the possible confounding role of genetic and shared early childhood experiences can be considered. Twin pairs almost always share the same childhood family environment. Dizygotic (DZ) pairs share, on average, half of their segregating genes (like non-twin siblings), while monozygotic (MZ) pairs are genetically identical at the sequence level. Co-twin control analyses among discordant MZ twin pairs allow for stronger estimates of causal influences compared to associations seen in unrelated individuals.

We investigated how self-reported long-term leisure-time physical activity and other health habits from ages 31 to 48 years predict objectively measured physical activity and sedentary behavior at a mean age of 73.

Methods
This MOBILETWIN study is an ancillary to the older Finnish Twin Cohort Study. Written informed consent was obtained from all participants, and the study was approved by the Ethics Committee of the Hospital District of Southwest Finland on 20 May 2014.

Participant Inclusion
The study is based on a nationwide sample of all same-sex twin pairs born before 1958 with both co-twins alive in 1975. A baseline questionnaire was sent to all twin candidates in 1975. Among those whose home addresses could be identified (93.5%) in 1975, the response rate for twins was 87.6%. A subsequent questionnaire was mailed in 1981 to all of the verified twins. The corresponding response rate among those responding in 1975 and alive in 1981 was 90.7%. A third questionnaire was sent out in 1990 to all twin individuals aged 33-60 (birth cohorts 1930-1957) years who had responded to at least one of the earlier questionnaires (response rate was 77.3% of all surviving cohort members).
For the current physical activity study (MOBILETWIN), twins from the 1940-1944 birth cohorts were selected (Figure 1). Altogether, 3186 twin individuals belonged to these birth cohorts and had responded to at least one of the first two questionnaires (1975 or 1981). A total of 145 twin individuals were excluded because they had participated in one of the previous studies on psychiatric disorders (schizophrenia and bipolar studies). All remaining 816 complete twin pairs, i.e., both alive and contactable, were invited to participate in the present study for a total of, 256 MZ, 490 DZ and 70 with unknown zygosity. The twins were sent an invitation letter in which they chose whether to participate in a health and cognition telephone interview and/or accelerometer study complemented with physical functioning questionnaire. Altogether, 1012 (61.9%) twin individuals participated in the telephone interview, 791 twin individuals wore the accelerometer for the required time, and 817 individuals filled in the whole questionnaire on physical functioning. A total of 616 participants (197 complete pairs, including 91 MZ and 95 DZ pairs) in the accelerometer study also had baseline physical activity data for all the baseline time points (1975, 1981, and 1990). For other baseline health variables, we maximized the statistical power of the analyses by including all possible twin individuals and discordant twin pairs who had data for these other health habits; therefore, the number of participants in different analyses may have varied according to variable under investigation.

Baseline Predictor Assessment
The postal questionnaires in 1975 and 1981 were very similar, but the questionnaire in 1990 was slightly different in some parts; however, they all included questions on physical activity, occupation, work-related physical activity, smoking, use of alcohol, and physician-diagnosed diseases (available on the Twin Study website: www.twinstudy.helsinki.fi).

Physical activity habits were assessed by identical questions in 1975 and 1981 and with slightly different questions in 1990. All three questionnaires enabled calculation of the MET index. On the bases of earlier studies, the physical activity questionnaire data can be considered valid. Assessment of the MET index was based on a series of structured questions on leisure-time physical activity (monthly frequency, mean duration, and mean intensity of sessions) and physical activity during commuting. The index was calculated by assigning a MET score to each activity and by calculating the product of that activity: intensity × duration × frequency. The MET index was expressed as the sum-score of leisure-time physical activity MET-hours per day. To estimate the mean volume of physical activity during the three baseline survey years, the average of the MET index values obtained in 1975, 1981, and 1990 was computed. This new leisure-time mean MET value (LT-mMET index) was then divided into three activity tertiles labelled low (LT-mMET index 0-1.54 MET h/day), medium (1.54-2.92 MET h/day), and high (2.92-26.13 MET h/day) using the same tertiles as in an earlier study. Twin pairs were classified as discordant for physical activity if one co-twin was in the low-activity tertile and the other co-twin was in the high-activity tertile.

As other predictors and covariates, body mass index (BMI), self-reported work-related physical activity, smoking status, use of alcohol and physician-diagnosed diseases were used. After preliminary analyses, to maximize statistical power for pairwise twin and multivariate analyses, covariates were dichotomized by merging classes not differing for baseline and follow-up physical activity levels.

BMI was calculated based on self-reported height and weight. Work-related physical activity was a categorical variable evaluated with a four-point ordinal scale.
the first option “mainly sedentary work, which requires very little physical activity” was classified as sedentary work, while all other responses (“work that involves standing and walking, but no other physical activity” and more strenuous) were classified as non-sedentary work. Three socioeconomic status categories (white collar, intermediate, and blue collar) were defined by years of education and amount of physical activity at work. The blue collar and intermediate groups were combined in the analyses because their baseline and follow-up physical activity was similar. Smoking status, originally coded into four categories, was dichotomized (current daily vs. others) for the main analyses. Alcohol use was expressed as a dichotomous variable of heavy drinking occasions (i.e., consumption of at least six drinks on one occasion) at least monthly. Somatic health status (healthy/not) was defined as having/not having a disease diagnosed by a physician, serious injury/illness, or permanent work disability, according to self-report items in 1990.

Accelerometer Data Collection and Analysis
Physical activity was measured with a waist-worn, light triaxial accelerometer (Hookie AM20, Traxmeet Ltd, Espoo), which was employed in a previous large population-based study of Finnish adults. The device and instructions for use were mailed to the participants, who were asked to use the accelerometer during waking hours for 7 consecutive days. Participants mailed the device back to UKK Institute for data analysis, and they were later provided with their own results. The analysis of raw acceleration data was based on novel algorithms that employ the mean amplitude deviation (MAD) of the resultant acceleration during a 6 s epoch and the angle for posture estimation (APE) of the body, metrics that provide a consistent assessment of the intensity of physical activity and separate accurately sedentary and stationary behaviors from any physical activity.

MAD was also validated through directly measured incident VO\textsubscript{2} during walking or running on an indoor track. This strong association allowed for transformation of MAD values to incident energy consumption (MET). The MET values for each minute were calculated as the one-minute exponential moving average of MAD values. According to standard use, cut-off points for different activities were set as 1.5-3 MET for light activities, 3-6 MET for moderate activities, and over 6 MET for vigorous activities, and corresponding mean daily total times were determined. Mean daily sedentary time was defined as MET under 1.5 during lying down or sitting. Mean daily standing time was analyzed separately. Average daily step count and the most intensive 10-minute period (Peak-10min MET) during the monitoring week were also documented.

Altogether, 791 twin individuals wore the accelerometer for at least 10 hours per day for 4 days. On average, they wore the device 6.73 days (95% confidence interval [CI] 6.69-6.77) and 14:01:44 h:min:sec/day (95% CI 13:56:31-14:04:37). A total of 616 had complete data for calculating MET indices from all of the 1975, 1981, and 1990 questionnaires. No significant differences in MVPA (40.2 min vs. 37.7 min, \(P=.30\)) and daily steps (6440 vs. 6120, \(P=.23\)) were seen between these 616 individuals and the 175 individuals who did not have baseline LT-mMET but participated in the accelerometer study.

Statistical Methods
Descriptive statistics were calculated with bootstrapping (1000 samples unless otherwise noted) and are given as medians and interquartile ranges (IQRs) or 95% confidence intervals (CIs). We used linear regression analyses to define \(R^2\) as a measure of variance accounted for. The analyses were done with twins treated as individuals; however, because
the observations obtained from twin pairs may be correlated, robust estimators of variance (the cluster option in Stata) were used. All basic analyses yielding R^2 values were adjusted for age and sex. To obtain R^2 only for the studied variable, the variable was entered after the basic model and then the difference in $R^2 (\Delta R^2)$ was calculated. Multivariate models were adjusted for BMI, smoking, alcohol, work-related physical activity, health status, and socioeconomic status. Square root-transformation for MVPA, logarithm-transformation for Peak-10min MET, and cubic root transformation for LT-mMET were used for regression analyses because these variables were not normally distributed.

Pairwise analyses among twin pairs (all pairs, DZ pairs, and MZ pairs separately) were done using Wilcoxon matched-pairs signed-rank test for whether pairs discordant for specific baseline characteristics or health habits differed in the objectively measured physical activity variables at follow-up.

Quantitative trait modeling was done using the MET variables from 1975, 1981, and 1990 to analyze whether they were direct risk factors or whether the association with the follow-up physical activity variables was mediated by genetic or other environmental factors. The quantitative trait modeling is described in eMethods and eResults in the supplementary file, and only the main results are given below.

Results

Participant Characteristics and Selection

Mean age of the participants was 48.3 years (range 45.9-51.4) at time of response to the 1990 questionnaire and 72.9 years (range 71.1-75.0) for objective physical activity monitoring. Among those who responded to the baseline LT-mMET questions (1646 individuals in this age group), the LT-mMET index was similar in those who participated in the follow-up accelerometry study (n=616) and those who did not participate for various reasons (n=1030) (LT-mMET index in MET-h/day 2.65 ± 2.0 vs. 2.69 ± 2.6; men 2.97 ± 2.4 vs. 2.98 ± 3.1; women 2.38 ± 1.6 vs. 2.45 ± 2.0). Baseline participant characteristics by LT-mMET index tertiles are shown in Table 1. Among women, lower LT-mMET index was associated with reduced health, while among men, white collar work was more common in the highest LT-mMET index tertile.

Predictors of Later Life Objectively Measured Physical Activity and Sedentary Behavior: Individual-Based Analyses

High baseline LT-mMET index predicted less sedentary behavior (additional R^2 2.0% after age- and sex adjustment, $P=.002$), more MVPA (R^2 6.9, $P<.001$), more steps (R^2 5.6%, $P<.001$) and also higher intensity Peak-10 min MET during the monitoring week (R^2 7.5%, $P<.001$) (Table 2, with results also by sex). The LT-mMET index was a stronger predictor of follow-up MVPA than any of the MET values from individual baseline time-points.

Table 3 shows the association between other baseline predictors from 1990 and MVPA at follow-up. High BMI had the strongest association with an additional R^2 of 10.7% (for details on analyses of daily steps see eTable 1).

In the multivariate MVPA prediction regression model, with the addition of BMI after age, sex, and LT-mMET index, the R^2 value increased from 8.4% to 17.2%, and up to 20.3% with smoking, socioeconomic status, and health status also in the model (eTable 2). Use of alcohol and work-related physical activity were not significant contributors when
added to this model. Similar models for daily step count showed rather similar results with a slightly lower proportion of variance accounted for.

Predictors of Later-Life Objectively Measured Physical Activity: Pairwise Analyses

Although there were some trends in the same direction in pairwise analyses among twin pairs discordant for different predictors at baseline, only twin pairs who were discordant for smoking \((n=40 \text{ discordant pairs}; \text{median follow-up MVPA volumes of 25 minutes for current smokers at baseline and 35 minutes for others}; P=.037) \) or for health status \((n=69 \text{ discordant pairs, 30 vs. 44 minutes, } P=.014) \) differed in their follow-up MVPA volumes (Table 4). For smoking, the difference also was seen for MZ pairs, but for health status, it was seen only for DZ pairs. In the smaller number of socioeconomic status–discordant MZ pairs, lower socioeconomic status predicted less MVPA at follow-up. The trends were similar for daily step count (eTable 3).

Mediation Analysis by Quantitative Trait Modeling

Based on quantitative trait models (for more details see Supplementary eResults, eTables 4-8, and eFigure 1), joint genetic effects mediated the association from baseline MET factor on MVPA and Peak-10min MET. The MET factor was observed to be a direct risk factor for number of daily steps and sedentary behavior (lying and sitting). No relationship was observed of MET factor with standing and light physical activity. In more detail, the broad sense heritability for MVPA was 60% (eTable 8). When cross-trait correlation between baseline MET factor and follow-up MVPA was decomposed into genetic and residual parts based on the model where we estimated both the genetic and environmental correlations the estimated cross-trait correlation was 0.35 (95% CI 0.25-0.43) with 82% (53%-100%) contribution from genetic factors.

Discussion

Younger-age leisure-time physical activity and other covariates explained one fifth (20.3%) of the variation in moderate-to-vigorous activity in older age in this prospective twin cohort study. According to pairwise analyses, much of the association was driven by shared genes underlying mid-life physical activity and later objectively measured activity. Smoking contributed independent of genes.

Comparison to Other Studies

In line with our findings, high physical activity is associated in cross-sectional or longitudinal designs with high previous physical activity, low BMI, low work-related physical loading, and good health status. In cross-sectional and shorter-term follow-up studies, low physical activity is associated with lower fitness, more frailty, higher disability, and poor health. No long-term randomized trials have addressed whether changes in health behavior in middle age lead to late-life differences in physical activity. Also, observational follow-ups on this topic are rare, and we are not aware of other studies relating long-term leisure-time physical activity differences in younger adulthood to objectively measured physical activity/inactivity in later years.

In our individual-based analyses, we found significant predictors for later-life physical activity, but could not replicate all of the results in pairwise analyses among the
predictor-discordant MZ twin pairs. The outcome is a reminder that genetic or other familial factors may explain why associations are often seen between younger-age physical activity and later-age health-related factors and, consequently, mobility.

Smoking at baseline also predicted less MVPA at follow-up in pairwise analysis among MZ twin pairs, which is evidence for an association not explained by genetic factors. These results are in line with our earlier finding that MZ twin pairs discordant for smoking show a clear difference in overall mortality while pairs discordant for physical activity participation do not.\(^{20,37}\) Our quantitative trait modelling was in agreement with the results of the pairwise analyses. Smoking affects both pulmonary and cardiovascular health and increases systemic inflammation, all of which may decrease the ability to exercise. We cannot exclude the possibility that smoking is also a marker for other lifestyle factors that predict less physical activity.

The strengths of our study include that we had physical activity data from three different baseline time-points, a nationally representative large twin cohort, very long-term prospective data, and novel valid analysis of the follow-up physical activity and sedentary behavior profile.\(^{27}\)

Limitations

Our study has several limitations. Our baseline predictor assessments relied on self-reported questionnaire data. We lack comprehensive data on dietary factors or clinical examinations at baseline. Although our study was large enough for the individual-based analyses, the number of MZ twin pairs discordant for some of the predictors was quite low providing only moderate statistical power for some analyses. At follow-up, most twins were community dwelling, so individuals with severe mobility limitations were rare.

Conclusions

Our follow-up study among twins showed that middle-age low leisure-time physical activity, obesity, smoking, low socioeconomic status, and health problems predicted low MVPA at older age in individual-based analyses. According to pairwise analyses, smoking seemed to causally predict less physical activity in later years while other associations were more likely attributable to shared genetic factors and childhood environment.

ARTICLE INFORMATION

Author Affiliations: See page 1.

Author Contributions: Dr Kujala, as principal investigator, had full access to all data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.
Study concept and design: Waller, Kaprio, Sievänen, Kujala.
Acquisition, analysis, or interpretation of data: All authors.
Drafting of the manuscript: Waller, Kujala.
Critical revision of the manuscript for important intellectual content: All authors.
Statistical analysis: Waller, Vähä-Ypyä, Törmäkangas (quantitative trait modeling), Hautasaari, Kujala.

Administrative, technical, or material support: Rinne, Kaprio, Sievänen, Kujala.

Study supervision: Rinne, Kaprio, Sievänen, Kujala.

Conflict of Interest Disclosures:
The authors have completed the ICME Form for Disclosure of Potential Conflicts of Interest. Dr Kaprio consulted for Pfizer Inc on nicotine dependence in 2014-2015. No other conflicts of interest were reported.

Funding/Support: The MOBILETWIN Study was supported by the Finnish Ministry of Education and Culture (grant OKM/56/626/2013 to UMK). Sample collection and JK were supported by the Academy of Finland (grants 265240 & 263278). TT was funded by the Academy of Finland (grant no. 286536).

Role of the Funder/Sponsor: The funders/sponsors had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; or decision to submit the manuscript for publication.

REFERENCES

1. Pasanen T, Tolvanen S, Heinonen A, Kujala UM. Exercise therapy for functional capacity in chronic diseases: an overview of meta-analyses of randomized controlled trials. Br J Sports Med. 2017;51(20):1459-1465.
2. Pahor M, Guralnik JM, Ambrosius WT, et al, LIFE study investigators. Effect of structured physical activity on prevention of major mobility disability in older adults: the LIFE study randomized clinical trial. JAMA. 2014;311(23):2387-2396.
3. Kujala UM. Physical activity, genes, and lifetime predisposition to chronic diseases. Eur Rev Aging Phys Act. 2011;8(1):31-36.
4. Ross R, Blair SN, Arena R, et al. Importance of assessing cardiorespiratory fitness in clinical practice: A case for fitness as a clinical vital sign. A scientific statement from the American Heart Association. Circulation. 2016;134(24):e653-e699.
5. Van der Berg JD, Bosma H, Caserotti P, et al. Midlife determinants associated with sedentary behavior in old age. Med Sci Sports Exerc. 2014;46(7):1359-1365.
6. Gretebeck RJ, Ferraro KF, Black DR, Holland K, Gretebeck KA. Longitudinal change in physical activity and disability in adults. Am J Health Behav. 2012;36(3):385-394.
7. Sternfeld B, Colvin A, Stewart A, et al. The effect of a healthy lifestyle on future physical functioning in midlife women. Med Sci Sports Exerc. 2017;49(2):274-282.
8. Ostbye T, Taylor DH Jr, Krause KM, Van Scoyoc L. The role of smoking and other modifiable lifestyle risk factors in maintaining and restoring lower body mobility in middle-aged and older Americans: results from the HRS and AHEAD. Health and Retirement Study. Asset and Health Dynamics Among the Oldest Old. J Am Geriatr Soc. 2002;50(4):691-699.
9. Houston DK, Ding J, Nicklas BJ, et al. The association between weight history and physical performance in the Health, Aging and Body Composition study. Int J Obes (Lond). 2007;31(11):1680-1687.
10. Koster A, Penninx BW, Newman AB, et al. Lifestyle factors and incident mobility limitations in obese and non-obese older adults. *Obesity (Silver Spring).* 2007;15(12):3122-3132.
11. Sarzynski MA, Loos RJ, Lucia A, et al. Advances in exercise, fitness, and performance genomics. *Med Sci Sports Exerc.* 2016;48(10):1906-1916.
12. Visscher PM, Wray NR, Zhang Q, et al. 10 years of GWAS discovery: Biology, function, and translation. *Am J Hum Genet.* 2017;101(1):5-22.
13. Kaprio J, Koskenvuo M. Genetic and environmental factors in complex diseases: the older Finnish Twin Cohort. *Twin Res.* 2002; 5(5):358-65.
14. Romanov K, Varjonen J, Kaprio J, Koskenvuo M. Life events and depressiveness - the effect of adjustment for psychosocial factors, somatic health and genetic liability. *Acta Psychiatr Scand.* 2003;107(1):25-33.
15. Kujala UM, Kaprio J, Sarna S, Koskenvuo M. Relationship of leisure-time physical activity and mortality: the Finnish twin cohort. *JAMA.* 1998;279(6):440-444.
16. Leskinen T, Waller K, Mutikainen S, et al. Effects of 32-year leisure time physical activity discordance in twin pairs on health (TWINACTIVE Study): Aims, design and results for physical fitness. *Twin Res Hum Genet.* 2009;12(1):108-117.
17. Waller K, Kaprio J, Kujala UM. Associations between long-term physical activity, waist circumference and weight gain: a 30-year longitudinal twin study. *Int J Obes (Lond).* 2008;32(2):353-361.
18. Waller K, Kaprio J, Korhonen T, Tuulio-Henriksson A, Kujala UM. Persistent leisure-time physical activity in adulthood and use of antidepressants; a follow-up study among twins. *J Affect Disord.* 2016;200:172-177.
19. Kaprio J, Sarna S, Koskenvuo M, Rantasalo I. The Finnish Twin Registry: Baseline Characteristics. Section II. History of Symptoms and Illnesses, use of Drugs, Physical Characteristics, Smoking, Alcohol and Physical Activity. Helsinki: Public Health Publication M 37.; 1978. Available From: University of Helsinki, Department of Public Health.
20. Kujala UM, Kaprio J, Koskenvuo M. Modifiable risk factors as predictors of all-cause mortality: the roles of genetics and childhood environment. *Am J Epidemiol.* 2002;156(11):985-993.
21. Kaprio J, Koskenvuo M. A prospective study of psychological and socioeconomic characteristics, health behavior and morbidity in cigarette smokers prior to quitting compared to persistent smokers and non-smokers. *J Clin Epidemiol.* 1988;41(2):139-150.
22. Kaprio J, Koskenvuo M, Langinvainio H, Romanov K, Sama S, Rose RJ. Genetic influences on use and abuse of alcohol: a study of 5638 adult Finnish twin brothers. *Alcohol Clin Exp Res.* 1987;11(4):349-356.
23. Sipilä P, Rose RJ, Kaprio J. Drinking and mortality: long-term follow-up of drinking-discordant twin pairs. *Addiction.* 2016;111(2):245-254.
24. Husu P, Suni J, Vähä-Yypä H, et al. Objectively measured sedentary behavior and physical activity in a sample of Finnish adults: a cross-sectional study. *BMC Public Health.* 2016;16(1):920.
25. Vähä-Yypä H, Vasankari T, Husu P, Suni J, Sievänen H. A universal, accurate intensity-based classification of different physical activities using raw data of accelerometer. *Clin Physiol Funct Imaging.* 2015;35(1):64-70.
26. Vähä-Ypyä H, Vasankari T, Husu P, et al. Validation of cut-points for evaluating the intensity of physical activity with accelerometry-based mean amplitude deviation (MAD). *PLoS One.* 2015;10:e0134813.

27. Sievänen H, Kujala UM. Accelerometry – simple, but challenging (Editorial). *Scand J Med Sci Sports.* 2017;27(6):574-578.

28. Williams RL. A note on robust variance estimation for cluster-correlated data. *Biometrics.* 2000;56(2):645-646.

29. van Stralen MM, De Vries H, Mudde AN, Bolman C, Lechner L. Determinants of initiation and maintenance of physical activity among older adults: a literature review. *Health Psychol Rev.* 2009;3(2):147-207.

30. Kirk MA, Rhodes RE. Occupational correlates of adults’ participation in leisure-time physical activity. A systematic review. *Am J Prev Med.* 2011;40(4):476-485.

31. Bauman AE, Reis RS, Sallis JF, et al. Correlates of physical activity: why are some people physically active and others not? *Lancet.* 2012;380(9838):258-271.

32. Boyle PA, Buchmann AS, Wilson RS, Bienias JL, Bennett DA. Physical activity is associated with incident disability in community-based older persons. *J Am Geriatr Soc.* 2007;55(2):195-201.

33. Balzi D, Lauretani F, Barchielli A, et al. Risk factors for disability in older persons over 3-year follow-up. *Age Ageing.* 2010;39(1):92-98.

34. Blodgett J, Theou O, Kirkland S, Andreou P, Rockwood K. The association between sedentary behaviour, moderate-vigorous physical activity and frailty in NHANES cohorts. *Maturitas.* 2015;80(2):187-191.

35. Sjölund B-M, Wimo A, Engström M, von Strauss E. Incidence of ADL disability in older persons, physical activities as a protective factor and the need for informal and formal care – Results from the SNAC-N project. *PLoS One.* 2015;10(9):e0138901.

36. Koeneman MA, Verheijden MW, Chinapaw MJM, Hopman-Rock M. Determinants of physical activity and exercise in healthy older adults: A systematic review. *Int J Behav Nutr Phys Act.* 2011;8:142.

37. Karvinen S, Waller K, Silvennoinen M, et al. Physical activity in adulthood: genes and mortality. *Sci Rep.* 2015;5:18259.
Table 1. Baseline Participant Characteristics in 1990 by LT-mMET (1975, 1981, 1990) Tertiles

	LT-mMET tertile\(^a\)	\(P\) value\(^b\)	
	Low (IQR)	Moderate (IQR)	High (IQR)
All, No.	197 (221)	221 (198)	
Men, No.	91 (93)	106 (106)	
Women, No.	106 (128)	92 (82)	
LT-mMET, median (IQR), MET-h/day			
All	0.97 (0.56)	2.12 (0.76)	4.11 (2.24)
Men	0.98 (0.54)	2.14 (0.71)	4.52 (3.35)
Women	0.95 (0.57)	2.10 (0.76)	3.79 (1.75)
Body mass index, median (IQR), kg/m\(^2\)			
All	24.8 (3.99)	24.7 (4.01)	23.7 (3.28)
Men	25.2 (3.33)	25.5 (3.10)	24.3 (3.26)
Women	24.2 (4.35)	23.6 (4.15)	23.1 (3.46)
Work-related loading, No. (%)			
All	Sedentary	87 (44.6)	95 (48.7)
	Non-sedentary	108 (55.4)	100 (51.3)
Men	Sedentary	40 (44.0)	52 (49.5)
	Non-sedentary	51 (56.0)	53 (50.5)
Women	Sedentary	47 (45.2)	43 (47.8)
	Non-sedentary	57 (54.8)	47 (52.2)
Socioeconomic status, No. (%)			
All	White collar	24 (12.5)	45 (22.8)
	Others	168 (87.5)	152 (77.2)
Men	White collar	10 (11.2)	26 (24.8)
	Others	79 (88.8)	79 (75.2)
Women	White collar	14 (13.6)	19 (20.7)
	Others	89 (86.4)	73 (79.3)
Cigarette smoking, No. (%)			
All	No current smoking	160 (81.6)	169 (86.2)
	Current smoker	36 (18.4)	27 (13.8)
Men	No current smoking	76 (84.4)	87 (82.9)
	Current	14 (15.6)	18 (17.1)
Women	No current smoking	84 (79.2)	82 (90.1)
	Current	22 (20.8)	9 (9.9)
Heavy (high-density drinking occasions) alcohol users, No. (%)			
All	No	151 (77.0)	153 (77.3)
	Yes	45 (23.0)	45 (22.7)
Men	No	59 (65.6)	69 (65.1)
	Yes	31 (34.4)	37 (34.9)
Women	No	92 (86.8)	84 (91.3)
	Yes	14 (13.2)	8 (8.7)
Health status, No. (%)			
All	Sick	123 (64.1)	100 (50.8)
	Healthy	69 (35.9)	97 (49.2)
Men	Sick	54 (60.7)	50 (47.6)
	Healthy	35 (39.3)	55 (52.4)
Women	Sick	69 (67.0)	50 (54.3)
	Healthy	34 (33.0)	42 (45.7)

\(^a\)All descriptive analyses with bootstrapping (1000 samples unless otherwise noted)
\(^b\)Rao & Scott Chi-Square test
\(^c\)Linear regression cluster for family, with LT-mMET and BMI both used as continuous variables
Activity / inactivity variable	LT-mMET index tertile^a	R² (%)^b	P value^c		
Mean sedentary time/day, median [95% CI], h:min:sec					
All	9:10:22 (9:00:59 to 9:18:18)	8:38:58 (8:26:27 to 8:52:01)	8:38:58 (8:20:09 to 9:00:49)	2.0	.002
Men	9:11:19 (9:03:35 to 9:43:39)	8:52:01 (8:38:03 to 9:12:51)	8:43:49 (8:23:46 to 9:03:39)	3.4	.012
Women	9:05:05 (8:45:39 to 9:22:43)	8:25:34 (8:07:18 to 8:46:19)	8:23:52 (7:58:15 to 9:04:13)	1.1	.041
Mean standing time/day, median [95% CI], h:min:sec					
All	1:19:09 (1:07:45 to 1:27:03)	1:22:10 (1:16:32 to 1:29:57)	1:22:10 (1:16:32 to 1:29:57)	0.4	.110
Men	1:21:05 (1:12:49 to 1:32:57)	1:18:18 (1:11:52 to 1:29:00)	1:18:18 (1:11:52 to 1:29:00)	1.0	.090
Women	1:53:07 (1:42:27 to 1:53:34)	1:25:45 (1:17:15 to 1:35:49)	1:25:45 (1:17:15 to 1:35:49)	0.1	.509
Mean time of light physical activity/day, median [95% CI], h:min:sec					
All	2:43:53 (2:35:57 to 2:54:55)	2:55:05 (2:37:26 to 3:01:21)	3:01:18 (2:46:53 to 3:13:56)	0.7	.040
Men	2:50:12 (2:25:06 to 3:01:44)	2:57:13 (2:38:06 to 3:09:59)	2:52:12 (2:31:10 to 3:11:30)	0.1	.696
Women	2:41:43 (2:34:47 to 2:55:56)	2:47:05 (2:33:10 to 3:01:21)	3:09:24 (2:55:19 to 3:27:10)	2.3	.011
Mean time of moderate-to-vigorous physical activity/day, median [95% CI], h:min:sec					
All	0:26:43 (0:22:06 to 0:29:52)	0:36:31 (0:32:16 to 0:40:35)	0:42:43 (0:36:37 to 0:50:49)	6.9	<.001
Men	0:31:31 (0:24:52 to 0:38:21)	0:40:43 (0:32:01 to 0:45:47)	0:47:00 (0:34:25 to 0:56:57)	7.5	<.001
Women	0:22:05 (0:18:05 to 0:26:57)	0:34:40 (0:28:27 to 0:38:48)	0:41:00 (0:34:18 to 0:49:39)	6.5	<.001
Mean daily step count, median [95% CI], No.					
All	5099 (4744 to 5706)	6114 (5610 to 6656)	7072 (6245 to 7788)	5.6	<.001
Men	5838 (5126 to 6531)	6519 (5958 to 7688)	7272 (6132 to 8340)	6.7	<.001
Women	4753 (3964 to 5099)	5612 (5231 to 6656)	6800 (6236 to 7844)	4.8	<.001
Peak-10min MET, median [95% CI], MET					
All	3.26 (3.17 to 3.38)	3.57 (3.39 to 3.68)	3.81 (3.55 to 3.96)	7.5	<.001
Men	3.35 (3.17 to 3.45)	3.67 (3.39 to 3.83)	3.81 (3.43 to 4.18)	9.9	<.001
Women	3.20 (2.97 to 3.33)	3.54 (3.30 to 3.66)	3.81 (3.51 to 3.99)	5.0	<.001

^aActivity variables calculated based on 1 minute segments
^bDescriptive analyses with bootstrapping (1000 samples)
^cR² for LT-mMET index calculated as a difference (∆R²) from age and sex model compared to model with LT-mMET + age and sex, indicating the true R² of LT-mMET
^dP value calculated with continuous LT-mMET variable from linear regression adjusted for sex and age and cluster for family
Table 3. Moderate-to-Vigorous Physical Activity by 1990 Baseline Covariates

Body mass index	Normal weight (BMI<25.0)	Overweight (BMI=25.0-29.99)	Obese (BMI>30.00)	\(R^2 \) (%)	\(P \) value
All No.=653	378	235	40	10.7	< .001
median	0:40:00	0:28:03	0:10:46		
(95% CI)	(0:36:57 to 0:44:34)	(0:25:33 to 0:31:30)	(0:03:54 to 0:23:49)		
Men No.=303	149	136	18	6.5	< .001
median	0:47:02	0:31:49	0:15:16		
(95% CI)	(0:40:43 to 0:51:39)	(0:28:13 to 0:37:54)	(0:03:54 to 0:51:58)		
Women No.=350	229	99	22	15.0	< .001
median	0:36:58	0:24:28	0:07:49		
(95% CI)	(0:34:09 to 0:40:21)	(0:18:14 to 0:27:18)	(0:01:47 to 0:25:06)		

Work-related loading	Sedentary	Non-sedentary		
All No.=650	288	362	0.1	.468
median	0:36:36	0:32:33		
(95% CI)	(0:33:22 to 0:42:14)	(0:29:07 to 0:36:28)		
Men No.=304	141	163	0.8	.133
median	0:42:57	0:34:42		
(95% CI)	(0:36:33 to 0:47:01)	(0:28:13 to 0:43:02)		
Women No.=346	147	199	1.6	.014
median	0:29:37	0:31:09		
(95% CI)	(0:24:49 to 0:36:25)	(0:27:39 to 0:36:03)		

Socioeconomic status	White collar	Others		
All No.=605	100	505	3.0	< .001
median	0:43:29	0:32:01		
(95% CI)	(0:38:03 to 0:51:33)	(0:28:50 to 0:35:26)		
Men No.=285	48	237	4.8	< .001
median	0:50:38	0:33:20		
(95% CI)	(0:42:57 to 1:05:02)	(0:28:59 to 0:39:39)		
Women No.=320	52	268	1.6	.014
median	0:36:49	0:30:30		
(95% CI)	(0:29:21 to 0:45:16)	(0:26:36 to 0:35:14)		

Cigarette smoking	No current smoking	Current		
All No.=654	551	103	1.7	.001
median	0:36:21	0:25:41		
(95% CI)	(0:34:08 to 0:38:43)	(0:21:38 to 0:30:38)		
Men No.=304	254	50	3.0	.002
median	0:42:21	0:28:06		
(95% CI)	(0:36:26 to 0:44:59)	(0:21:04 to 0:35:18)		
Women No.=350	297	53	0.8	.110
median	0:34:00	0:24:05		
(95% CI)	(0:28:50 to 0:36:35)	(0:18:21 to 0:28:00)		

Alcohol use	No	Yes		
All No.=651	511	140	0.6	.065
median	0:35:21	0:33:49		
(95% CI)	(0:32:36 to 0:37:07)	(0:27:08 to 0:42:30)		
Men No.=303	196	107	0.3	.397
median	0:39:35	0:39:08		
(95% CI)	(0:35:14 to 0:45:24)	(0:28:25 to 0:44:34)		
Women No.=348	315	33	1.6	.034
median	0:33:05	0:17:22		

Mean time of moderate-to-vigorous physical activity/day \(^{a}\) in hours:minutes:seconds.
Health status	Healthy	Sick	R^2 (%)	P value
All				
No. = 605	245	360	1.9	.001
Median	0:42:27	0:30:28	(0:35:41 to 0:46:06)	(0:27:49 to 0:34:18)
Men	133	152	2.1	.020
No. = 285	0:43:51	0:31:49	(0:36:26 to 0:48:33)	(0:28:00 to 0:39:08)
Women	112	208	1.8	.023
No. = 320	0:39:05	0:28:45	(0:30:13 to 0:47:25)	(0:25:54 to 0:34:18)

aAll descriptive analyses with bootstrapping (1000 samples unless otherwise noted)

bR^2 for each baseline variable calculated as a difference (ΔR^2) from age and sex model compared to model with variable (e.g., bmi90) + age and sex, indicating the true R^2 of the studied variable

cP value from linear regression adjusted for sex and age and cluster for family; continuous variables used for BMI and moderate-to-vigorous physical activity
Table 4. Moderate-to-Vigorous Physical Activity in Twin Pairs Discordant for Different Baseline Characteristics

LT-mMET Index	No. of discordant pairs	Mean time of moderate-to-vigorous physical activity/day^a	Z and P value^b	
		Lower Mean MET (95% CI)	Higher Mean MET (95% CI)	
All twin pairs	23	0:27:59 (0:46:39)	0:32:38 (0:49:13)	Z= .517 P= .605
DZ twin pairs	13	0:22:34 (0:52:28)	0:34:42 (0:48:34)	Z= 1.293 P= .196
MZ twin pairs	10	0:33:10 (0:32:06)	0:25:11 (0:49:09)	Z= .663 P= .508

Body mass index^c	Lower BMI	Higher BMI
All twin pairs	55	
DZ twin pairs	37	
MZ twin pairs	15	

Work-related loading	Sedentary	Non-sedentary
All twin pairs	77	
DZ twin pairs	45	
MZ twin pairs	29	

Socioeconomic status	White collar	Others
All twin pairs	24	
DZ twin pairs	17	
MZ twin pairs	7	

Cigarette smoking	No current smoking	Current
All twin pairs	40	
DZ twin pairs	21	
MZ twin pairs	15	

Heavy alcohol use	No	Yes
All twin pairs	36	
DZ twin pairs	22	
MZ twin pairs	13	

Health status	Healthy	Sick
All twin pairs	69	
DZ twin pairs	37	
MZ twin pairs	26	

^a Descriptive analyses with bootstrapping (1000 samples unless otherwise noted)

* The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.
bBootstrap based on 995 samples

cZ as absolute value and P by Wilcoxon matched-pairs signed-rank test

dBMI difference ≥ 3 between twin pairs when at least one twin is overweight (BMI ≥ 25)
Figure Title

Figure 1. Participant Flow Diagram

Twins born in 1940–1944 who have filled in baseline health questionnaires in 1975 or 1981 and possibly in 1990 (N= 3186, including 1459 complete pairs)

1632 twin individuals with both co-twins alive were invited to cognition and physical activity study (816 pairs: 256 MZ pairs, 490 DZ pairs, rest unknown zygosity)

1012 twin individuals participated in the physical activity study and cognition interviews (62%)

791 individuals (385 male, 406 female) completed the accelerometer monitoring (285 complete pairs)

616 individuals (197 complete pairs) have all baseline physical activity data (1975, 1981 and 1990), also participated in accelerometer study
91 MZ pairs
95 DZ pairs

268 twin individuals did not have a co-twin with questionnaire answer for 1975 or 1981.
Out of 1439 complete twin pairs, 642 pairs were excluded as one or both of the members had died, had unknown address, had emigrated from Finland or had participated in one of the previous studies on psychiatric disorders.

444 declined
140 non-contactable
12 were not able to participate in the cognition interview or the spouse or the guardian of the cohort member declined
18 deceased
6 other reasons

122 did not want to participate in the accelerometer monitoring
98 with unsuccessful accelerometer data

175 twin individuals did not have complete questionnaire data for physical activity in 1975, 1981 and 1990