Evidence of decreasing diurnal temperature range in eastern Northern Hemisphere

Xiaodan Guan1,2,*, Chenyu Cao2, Xinrui Zeng2 and Wen Sun2

1 Collaborative Innovation Center for Western Ecological Safety, Lanzhou 730000, People’s Republic of China
2 Key Laboratory for Semi–Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, People’s Republic of China
* Author to whom any correspondence should be addressed.
E-mail: guanxd@lzu.edu.cn

Keywords: DTR, northeastern hemisphere, aridity index, CMIP6, cold season

Abstract
As a key variable in the climate system, the diurnal temperature range (DTR) has received a lot of attention in the atmospheric science community. The majority of published papers interpret DTR change in terms of variables like water vapor, cloud cover, and enhanced vegetation index. In this study, we found that the DTR has an obvious decreasing trend in the semi-arid Northeastern Hemisphere, and the decreasing trend is mainly caused by the continuous release of CO2 closely associated with a drying process in the Northeastern Hemispheric. As a result of the continued high emission of CO2, such accelerated decline changes in DTR in drylands may become much more pronounced in the future, posing a series of environmental problems.

1. Introduction
Global average surface air temperature has increased in the past century, with a faster warming rate since 1950 (IPCC AR6, 2021). In the past decades, both daily minimum and maximum air temperatures significantly increased; but their asymmetrical changes (Tmin rose faster than Tmax) led to an obvious decrease in the diurnal temperature range (DTR) on a global scale (Hansen et al. 2006). DTR is not only a related temperature variable, its variability can affect the growth of plants, ecological system and even the carbon economy illustrating its change worth more investigation. Huang et al. (2012) found the semi-arid region of the Northern Hemisphere (NH) is the most sensitive to the warming change; it has the highest increasing trend of Tmin and Tmax (figure 1(a)). However, the trend of DTR defined by Tmin and Tmax does not show an obvious regional discrepancy (figure 1(c), black line); the most region has a negative trend of DTR except for arid areas. Different from temperature variables, DTR change is easier influenced by local factors (Zhou et al. 2010). Therefore, in this study, we first compare the DTR change between the opposite regional processes of drying eastern NH and wetting western NH, and further identify the effects of CO2, black carbon (BC), SO4, and three forcing factors combined on regional DTR trend. We will also compare the response of DTR change in semi-arid region to the CO2 emission scenarios from low to high.

2. Methods and data

2.1. Dynamic adjustment method
The dynamic adjustment method was introduced in Wallace et al. (2012), and described in detail in Smoliak et al. (2015). The core of the method is the partial least squares (PLS) regression of surface air temperature to the sea-level pressure (SLP) in a pointwise manner. As the method is only effective in the mid-to-high latitudes of the Northern Hemisphere (NH), the SLP poleward of 20 °N is used to predict the time series of temperature. The raw temperature data is divided into two parts, the dynamic and radiative parts. The dynamic part is considered...
majorly decided by the atmospheric circulation patterns, and the radiative part is closely associated with local processes, such as snow, land type, GHGs, and other anthropogenic forcings. Previously, the method was applied to the ‘warming hiatus,’ and we detected the cooling of dynamic temperature and continuous warming of radiative temperature (Guan et al., 2019). The method has also been used to explore the thermodynamic warming in the enhanced warming of semi-arid regions (Guan et al., 2017).

2.2. Dataset

The AI (aridity index) is equal to annual precipitation divided by annual potential evapotranspiration in Feng and Fu (2013), with the precipitation and potential evapotranspiration data from the Climate Prediction Center (CPC). The AI is classified as hyper-arid (AI < 0.05), arid (0.05 < AI < 0.2), semi-arid (0.2 < AI < 0.5), and dry sub-humid (0.5 < AI < 0.65), according to Middleton and Thomas (1997). The AI dataset for this study covers the period from 1948 to 2008 at a resolution of 0.5° by 0.5°. In this study, climatological mean AI from 1961–1990 is used to divide climatic regions.

The monthly T_{min} and T_{max} are obtained from the Climatic Research Unit (CRU) TS dataset, with a resolution of 0.5° by 0.5°. The time period of all temperature datasets used in this study is from 1901 to 2012. The DTR (diurnal temperature range) is equal to daily T_{max} minus daily T_{min}. To explore the future change of DTR, we use the outputs from the Coupled Model Intercomparison Project phase 6 (CMIP6) models. We analyze the future climate simulations and projections under different Shared Socioeconomic Pathways (O’Neill et al. 2017) of nineteen models, which cover the period 2015–2100 (table 1). To isolate the effects of individual radiative factors on T_{max}, T_{min}, and DTR in semi-arid regions, experiments of two scenarios with forcing level of present-day and preindustrial BC, SO₂, and CO₂ were conducted (Xu et al. 2016) by using the Community Earth System Model 1 (CESM1).

3. Results

Figure 1 (a) shows that both daily T_{min} and T_{max} have their highest peaks in semi-arid regions. The amplitude of daily T_{min} is higher than that of daily T_{max}, and there is a non-uniform DTR over different regions. To explore the mechanisms of DTR variability over different regions, we first separate the raw T_{max} and T_{min} into dynamic and radiative parts by applying the dynamic adjustment method which are shown in figure 1 (b), respectively. Figure 1 (b) shows that the radiative-forced daily T_{max} has an obvious peak in semi-arid regions (red line) and has
similar variability as the raw T_{max} especially in semi-arid regions. The significant peak of the raw daily T_{max} in semi-arid regions almost reaches 0.014 °C/year, with a radiative daily T_{max} of 0.012 °C/year. However, the dynamic T_{max} has a relatively flat change over all regions, with a value of 0.002 °C/year.

In figure 1(b), the curves of the raw, dynamic and radiative T_{min} are similar to those of T_{max}, but with a larger amplitude. In semi-arid regions, the peak of daily T_{min} reaches 0.016 °C/year, with a radiative T_{min} of 0.014 °C/year and a dynamic T_{min} of 0.002 °C/year. Comparing the differences between dynamic and radiative T_{max} or T_{min}, we can see that the radiative effect takes a dominant role in the obvious increasing daily T_{max} and T_{min} in semi-arid regions. But the distribution of the DTR trend is different from those of T_{max} and T_{min} (figure 1(c)), showing that the trend of DTR is similar over different regions.

Huang et al (2016) pointed out that the mid-to-high latitudes of the NH have the opposite regional process of drying and wetting in the eastern and western NH. We compare the trend distributions of DTR over different regions between the eastern and western NH (figure 2). In the eastern NH, DTR shows variability as a function of the AI, with the lowest peak appears in the semi-arid region at decreasing rate of -0.04 °C/decade. However, the lowest value of DTR trend in the western NH is in the humid region of AI > 0.6; the DTR in semi-arid regions has a weak negative trend or even a positive trend in regions with the AI of 0.3–0.5. Different distributions of DTR trends in the eastern and western NH suggest that DTR change is closely associated with local processes.
Previous results point out the local process is always associated with CO$_2$ (Huang et al 2016; Qian et al 2015), BC (Lin et al 2016; Seinfeld, Pandis 1979), and other radiative factors (Zhang et al 2017). We calculate the average temperature, T_{min}, T_{max}, and DTR in the sensitivity and control experiments as a function of the AI using the model outputs over the last 60 years in the mid-to-high latitudes of eastern NH. Figure 3(a) shows that CO$_2$ (red) led to obvious warming of the daily mean temperature relative to the control experiment, followed by combined forcings (green) and BC (black) in drylands. We also find the combined forcings experiment with respect to the control shows warming with a smaller amplitude compared to the CO$_2$ warming experiment, because warming is offset by SO$_4$. Similar distributions of T_{min} and T_{max} are illustrated in figures 3(b) and (c). The warming induced by CO$_2$ in the sensitivity experiment gives larger values of T_{max} and T_{min} than those in the control experiment, especially in semi-arid areas. In a warmer climate, the same amount of heating contributes to

Figure 3. Differences between the sensitivity and control experiments concerning black carbon (black), CO$_2$ (red), SO$_4$ (blue), and combined forcings (green) as a function of the aridity index over 20°–50°N in the eastern Northern Hemisphere in the mean daily temperature (a), daily maximum temperature (b), daily minimum temperature (c), and diurnal temperature range (d) in winter for 60 years.

Figure 4. Regionally averaged diurnal temperature range trends in the cold season (Nov.-Mar.) as a function of the annual aridity index in the future simulations of SSP126 (green) and SSP585 (orange) from 2015 to 2100. Shaded areas represent 99% confidence intervals.
stronger warming in drylands than to humid regions (Dai 2016). In drylands, more high upward net longwave radiation contributes to a faster increasing rate of T_{min} than T_{max} (Huang et al. 2017).

Figure 3(d) shows differences in DTR between the sensitivity and control experiments. The most obvious difference in DTR appears in the semi-arid regions; the largest differences are seen in the combined forcings experiment, followed by those in the CO$_2$ and BC experiments. In these radiative factors, CO$_2$ has the major effect on DTR decrease in semi-arid regions, and it (red curve) makes the largest contribution in the single experiment relative to BC and SO$_4$. For the dominant factor of CO$_2$ in the DTR trend, the future simulation scenario of high emission has a more obvious decreasing trend in the semi-arid regions of the eastern NH than that of the low emission of scenario. In SSP 126, all the regions show a weak positive trend of DTR. For the highest emission scenario of SSP 585, the DTR shows the strongest decreasing trend around 0.094 °C/decade in semi-arid regions, which is much faster than that in SSP 126 (figure 4). The obvious discrepancy of DTR change between SSP 126 and SSP 585 confirms the key role of the CO$_2$ effect on enhanced DTR trend in the semi-arid region of the eastern NH.

4. Conclusion

Therefore, based on the dynamic adjusted method, the indirect effect of altered concentrations of radiatively active gases has an obvious regional effect compared with their dynamic effect on DTR. In the semi-arid region of the eastern NH, the local process of enhanced release CO$_2$ by drying leads to the most obvious decreasing rate of the DTR. Such effect from CO$_2$ on DTR will be amplified in the high emission of SSP 585. As the most sensitive region in the climate system (Guan et al. 2015), the local radiative process is mainly affected by snow/ice and frozen ground cover changes (Luo et al. 2003), regional human activity (Guan et al. 2016), and atmosphere–land surface interaction (Jin et al. 2016), which further lead to the release of a larger amount of CO$_2$ into the atmosphere, accompanied by occurrences of desertification and enhanced warming Therefore, the metric DTR-trend could identify parts of the world, which are becoming more arid.

Besides the result from Huang et al. (2017), Davy et al. (2017) found that the build-up of carbon dioxide in the atmosphere from emissions associated with human activities reduces the amount of radiation released into space, which increases both night-time and day-time temperatures. However, because at night there is a much smaller volume of air that gets warmed, the extra energy added to the climate system from carbon dioxide leads to a greater warming at night than during the day. Other explanations show that the regional faster warming of T_{min} is closely associated with clouds. From the result of Cox et al. (2020), the regionally increased cloud cover cools the regional surface during the day and retains the warmth during the night, leading to greater night-time warming.

Besides, the DTR is significantly associated with mortality and morbidity, particularly for cardiovascular and respiratory illnesses. The relationship is also affected by susceptible groups, lag time, ages, and threshold of DTR (Cheng et al. 2014). There is a significant relationship between ambient temperature and mortality. When temperatures exceed a certain limit, being cold winter spells or heat waves, there is an increase in the number of deaths. In particular, it has been shown that at temperatures above 27 °C, the daily mortality rate increases more rapidly per degree rise compared to that when it drops below 27 °C (Calleja-Agius et al. 2021). Under the global warming, the faster increasing night-time temperature results in less time for human bodies to cool off and contributes to more occurrence of morbidity and mortality (Luo et al. 2013). And such expose to DTR changes occurred more easily in the developing countries (Zhai et al. 2021).

Acknowledgments

The authors thank Song Feng (songfeng@uark.edu) for providing the AI data sets, Yangyang Xu for the model experiment results, and thank Climate Research Unit at the University of East Anglia and CMIP6 for providing accessible and excellent datasets that made this study possible. The CRU data set is available at (https://crudata.uea.ac.uk/cru/data/hrg/). The CMIP6 outputs are downloaded from (https://esgf-node.llnl.gov/search/cmip6/).

This work is supported by the National Science Foundation of China (42041004 and 41722502), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA2006010301), and the Central Universities (Izujbky-2019-kb30).

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).
ORCID iDs

Xiaodan Guan © https://orcid.org/0000-0003-3716-4503

References

Calleja-Agius J, England K and Calleja N 2021 The effect of global warming on mortality Early Human Development 155 105222

Cheng J et al 2014 Impact of diurnal temperature range on human health: a systematic review Int. J. Biometeorol. 58 2011–24

Cox D T C, Maclean I M D, Gardner A S and Gaston K J 2020 Global variation in diurnal asymmetry in temperature, cloud cover, specific humidity and precipitation and its association with leaf area index Global Change Biol. 26 7099–111

Dai A 2016 Future warming patterns linked to today’s climate variability Sci Rep. 6 19110

Davy R, Esau I, Chernokulsky A, Outten S and Zilitinkevich S 2017 Diurnal asymmetry to the observed global warming Int. J. Climatol. 37 79–93

Feng S and Fu Q 2013 Expansion of global drylands under a warming climate Atmos. Chem. Phys. 13 10081–94

Guan X D, Huang J P, Guo R X, Yu H, Lin P and Zhang Y 2015 Role of radiatively forced temperature changes in enhanced semi-arid warming in the cold season over east Asia Atmos. Chem. Phys. 15 13777–80

Guan X, Huang J, Zhang Y, Xie Y and Liu J 2016 The relationship between anthropogenic dust and population over global semi-arid regions Atmos. Chem. Phys. 16 5159–69

Guan X, Huang J and Guo R 2017 Changes in aridity in response to the global warming hiatus Journal of Meteorological Research. 31 117–25

Guo X et al 2019 Impact of oceans on climate change in drylands Science China Earth Sciences 62 891–908

Hansen J, Sato M, Ruedy R, Lo K, Lea D W and Medina-Elizade M 2006 Global temperature change Proc. Natl Acad. Sci. 103 14288–93

Huang J P, Guo X D and Ji F 2012 Enhanced cold-season warming in semi-arid regions Atmos. Chem. Phys. 12 5391–8

Huang J, Ji M, Xie Y, Wang S, He Y and Ran J 2016 Global semi-arid climate change over last 60 years Clim. Dyn. 46 1131–50

Huang J et al 2017 Drylands face potential threat under 2 °C global warming target Nat. Clim. Change. 7 417–22

IPCC 2021 Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. In Press

Jin Q, Yang Z L and Wei J 2016 Seasonal responses of Indian summer monsoon to dust aerosols in the Middle East, India, and China J. Clim. 29 6329–49

Lin L, Wang Z, Xu Y and Fu Q 2016 Sensitivity of precipitation extremes to radiative forcing of greenhouse gases and aerosols Geophys. Res. Lett. 43 9360–8

Luo Y et al 2013 Lagged effect of diurnal temperature range on mortality in a subtropical megacity of China PLoS One 8 e55280

Luo L et al 2003 Effects of frozen soil on soil temperature, spring infiltration, and runoff: Results from the PILPS 2 (d) experiment at Valdai, Russia Journal of Hydrometeorology 4 334–51

Middleton N and Thomas D S G 1997 World atlas of desertification 2nd edn (London: Edward Arnold, a member of the Hodder Headline Group)

O’Neill B C et al 2017 The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century Global Environ. Change 42 169–80

Qian Y et al 2015 Light-absorbing particles in snow and ice: Measurement and modeling of climatic and hydrological impact Adv. Atmos. Sci. 32 64–91

Seinfeld J H and Pandis S N 1979 Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd edn (Hoboken, NJ: Wiley)

Smolik B V, Wallace J M, Lin P and Fu Q 2015 Dynamical adjustment of the Northern Hemisphere surface air temperature field: Methodology and application to observations J. Clim. 28 1613–29

Wallace J M, Fu Q, Smolik B V, Lin P and Johanson C M 2012 Simulated versus observed patterns of warming over the extratropical northern hemisphere continents during the cold season Proc. Natl Acad. Sci. 109 14337–42

Xu Y, Ramanathan V and Washington W M 2016 Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols Atmos. Chem. Phys. 16 1303–15

Zhai G, Qi J and Chai G 2021 Impact of diurnal temperature range on cardiovascular disease hospital admissions among chinese farmers in dingxi (the Northwest China) BMC cardiovascular disorders. 21.1 1–10

Zhang Y, Guan X, Yu H, Xie Y and Jin H 2017 Contributions of radiative factors to enhanced dryland warming over East Asia Journal of Geophysical Research: Atmospheres 122 7723–36

Zhou L, Dickinson R E, Dai A and Dirmeyer P 2010 Detection and attribution of anthropogenic forcing to diurnal temperature range changes from 1950 to 1999: comparing multi-model simulations with observations Clim. Dyn. 35 1289–307