Telmisartan improves cardiac fibrosis in diabetes through peroxisome proliferator activated receptor δ (PPARδ): from bedside to bench

Wei‑Ting Chang1, Juei‑Tang Cheng2 and Zhih‑Cherng Chen1,3*

Abstract

Background: Despite the known risk of diabetes-induced cardiac fibrosis, less is known about whether diabetes causes an altered cardiac phenotype independent of coronary atherosclerosis. Peroxisome proliferator-activated receptor δ (PPARδ), a versatile regulator of metabolic homeostasis, may be a potential therapeutic target. Herein we investigated the effectiveness of telmisartan, a unique angiotensin receptor blocker that increases PPARδ expression, in improving left ventricular remodeling in diabetic humans and rats.

Methods: In this longitudinal, prospective study, we enrolled 15 diabetic patients receiving telmisartan (20 mg/day) for 12 weeks. After treatment, strain was measured and compared with the baseline value. Using streptozotocin to induce type 1 diabetes rat model, we measured PPARδ expression and downstream targets.

Results: After treatment with telmisartan, both longitudinal and circumferential strains improved in diabetic patients. Compared with that of controls, the diabetic rat heart developed significant fibrosis, which markedly decreased after treatment with telmisartan (30 mg/kg/day, orally) for 7 days. After incubation with 30 mM glucose, rat cardiomyocytes showed a significant down-regulation of PPARδ. Interestingly, the increased expression of fibrosis-associated proteins, including signal transducer and activator of transcription 3 (STAT3) was attenuated by the co-incubation of GW0742, a PPARδ agonist. By knockdown or inhibition of STAT3, the hyperglycemia related high expression of fibrosis associated targets was reversed. Independent from the hyperglycemic incubation, STAT3 over-expression led to similar results. Conversely, in the presence of GSK0660, a PPARδ inhibitor, the protective effects of telmisartan were diminished.

Conclusion: Telmisartan improved the hyperglycemia-induced cardiac fibrosis through the PPARδ/STAT3 pathway.

Keywords: Telmisartan, Diabetic cardiomyopathy, PPARδ, STAT3

Background

The prevalence of diabetes has continued to increase, and its complications, including cardiac fibrosis-induced myocardial dysfunction and chronic heart failure, are threats to the health of millions of people [1, 2]. However, little is known about whether diabetes causes an altered cardiac phenotype independent of coronary atherosclerosis. To detect myocardial dysfunction at an early stage, instead of histological evidence, imaging methods, such as speckle-tracking echocardiography (STE), can be used to unmask subtle changes in the cardiac function of patients with systemic conditions [3]. Telmisartan, an angiotensin receptor blocker (ARB), lowers not only blood pressure but also insulin resistance [4]. Different from other ARBs, telmisartan did not increase the incidence of diabetes and conversely, ameliorated atrial remodeling as well as reduced susceptibility to atrial arrhythmia [5, 6]. In a study using STE, telmisartan was observed to have beneficial effects on...
left ventricular (LV) structure in a hypertensive patient [7, 8]. More recently, it was also found to ameliorate LV-
remodeling in post-infarcted or doxorubicin-induced cardiomyopathy by activating peroxisome proliferator-
activated receptors (PPARs) [9–12]. Among PPARs, PPARδ is widely observed in diabetic disorders, likely
because cardiomyocyte-restricted PPARδ deletion causes cardiac hypertrophy [13–15]. Previous studies have indi-
cated that inhibitors of reactive oxygen species (ROS) production or mitogen-activated protein kinase (MAPK)
activation are involved in the reduction of cardiac PPARδ expression in response to hyperglycemia in hepatocytes
and adipocytes [16]. Signal transducer and activator of transcription 3 (STAT3), a pivotal mediator in cardiac
hypertrophy, was also found to be involved in PPARβ/δ-regulated insulin resistance in acute liver disease [17, 18].
Nevertheless, the mechanisms of improvement of cardiac remodeling through ARBs have not been fully elucidated
in diabetic patients. In this study, we aimed to investigate the regulatory role of PPARδ in diabetes-induced cardiac
fibrosis under telmisartan treatment.

Methods

Objective
Fifteen patients at the Chi-Mei Medical Center who were
newly diagnosed with diabetes according to the definition of the World Health Organization were initially included
between June 2014 and March 2015. In addition, 10 age-
and gender-matched controls were enrolled. The
informed consent was obtained from each patient and
the study was conducted according to the recommenda-
tions of the Declaration of 1975 Helsinki on Biomedical
Research involving human subjects and was approved
by the local Ethics Committee (IRB: 10307-003). Written
informed consent was obtained from each participant.
All participants underwent echocardiographic evaluation
before and after 3 months of telmisartan therapy.

Echocardiography
Standard echocardiography was performed (Vivid E9;
GE Vingmed Ultrasound AS, Horten, Norway) with a
3.5-MHz multiphase-array probe in accordance with the
recommendations of the American Society of Echocardi-
ography [19]. LV ejection fraction (LVEF) was measured
using the biplane Simpson’s method. In addition, LV dia-
stolic function-associated parameters including isovolu-
mic contraction time (IVCT), isovolumic relaxation time
(IVRT), ejection time (ET), deceleration time, transmichael
and tricuspid early filling velocity (E) to atrial velocity (A)
ratio were measured. Tissue Doppler imaging values of
the right and left ventricles were obtained from the api-
cal four-chamber view using a sample volume placed at
the lateral corner of the tricuspid annulus and anterior
and lateral sections of the mitral annulus.

STE analysis for deformation
Standard apical four-chamber and short-axis views were
recorded in digital loops for deformation analysis of the
LV [3]. The images were acquired with frame rates of
70–90 frames/s and stored for three cycles. The images
were analyzed off-line using EchoPAC 9.0 computer
software (GE-Vingmed Ultrasound AS). As described
previously, we measured the LV peak systolic global lon-
gitudinal strain in the apical views. In addition, LV cir-
cumferential strain was also obtained from the short-axis
view at the papillary muscle level.

Materials
GW0742 (a specific PPARδ agonist) and GSK0660 (a spe-
cific PPARδ antagonist) were purchased from Santa Cruz
Biotechnology, Inc. (Santa Cruz, CA, USA). The antibod-
ies, including STAT3 and connective tissue growth factor
(CTGF), were purchased from Abcam (Cambridge, MA,
USA) and matrix metallopeptidase 9 (MMP9) was from
Minipore.

Animals
Male Sprague–Dawley rats, weighing 200–250 g, were
obtained from the Animal Center of National Cheng
Kung University Medical College. All experiments were
performed under anesthesia with 3 % isoflurane, and
all efforts were made to minimize suffering. The animal
experiments were approved and conducted in accord-
ance with local institutional guidelines for the care and
use of laboratory animals in Chi-Mei Medical Center
(No. 100052307) and conformed to the Guide for the
Care and Use of Laboratory Animals. At the end of the
experiments, hearts were excised from isoflurane-euth-
anized mice, washed in phosphate-buffered saline (PBS),
fixed overnight in 4 % paraformaldehyde, and embedded
in paraffin. After serial sectioning of hearts, 5-μm sec-
tions were stained with Masson trichrome for the quanti-
fication of myocardial fibrosis.

Streptozotocin (STZ)-induced type 1-like diabetic rats
Diabetic rats were induced by intravenously injecting
STZ at 65 mg/kg (Sigma-Aldrich Inc., USA) into fasting
rats as described previously. The animals were consid-
ered diabetic if they had a plasma glucose concentration
over 350 mg/dL. Diabetic rats received either telmisar-
tan (30 mg/kg/day, orally) or metformin (100 mg/kg/
day, orally). To evaluate the role of PPARδ in the effects
of telmisartan, some rats were treated with the PPARδ antagonist GSK0660 (1 mg/kg/day, intraperitoneally) 30 min before the telmisartan treatment. Each condition includes eight rats.

Cell cultures

H9C2 cells were used in the experiments after 3–4 days in culture. To mimic the hyperglycemic status, cells were incubation with 30 mM glucose for 24 h and then changed to a glucose free medium. In alternative groups, H9C2 cells were subsequently treated with GW0742 (10⁻⁶ M) for 30 min, washed twice with PBS, and removed by trypsinization. The cells were then collected and subjected to a protein expression assay. Cells were additionally treated with GSK0660 (10⁻⁶ M) for 30 min before the GW0742 treatment.

Western blotting analysis

Protein was extracted from tissue homogenates and cell lysates using ice-cold radioimmunoprecipitation assay buffer supplemented with phosphatase and protease inhibitors (50 mM sodium vanadate, 0.5 mM phenylmethylsulfonyl fluoride, 2 mg/mL aprotinin, and 0.5 mg/mL leupeptin). Protein concentrations were determined using a Bio-Rad protein assay (Bio-Rad Laboratories, Inc., Hercules, CA, USA). Total proteins (30 mg) were separated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (10 % acrylamide gel) using a Bio-Rad Mini-Protein II system. The protein was transferred to expanded polyvinylidene difluoride membranes (Pierce, Rockford, IL, USA) with a Bio-Rad Trans-Blot system. After transfer, the membranes were washed with PBS and blocked for 1 h at room temperature with 5 % (w/v) skimmed milk powder in PBS. The manufacturer’s instructions were followed for the primary antibody reactions. Blots were incubated overnight at 4 °C with an immunoglobulin-G polyclonal rabbit antimouse antibody (Affinity BioReagents, Inc., Golden, CO, USA) (1:500) in 5 % (w/v) skimmed milk powder dissolved in PBS/Tween 20 (0.5 % by volume) to bind the target proteins such as PPARδ. The blots were incubated with goat polyclonal immunoglobulin-G polyclonal rabbit antimouse antibody (1:1000) to bind the actin that served as the internal control. After the removal of the primary antibody, the blots were extensively washed with PBS/Tween 20 and then incubated for 2 h at room temperature with the appropriate peroxidase-conjugated secondary antibody diluted in 5 % (w/v) skimmed milk powder and dissolved in PBS/Tween 20. The blots were developed by autoradiography using an ECL-Western blotting system (Amersham International, Buckinghamshire, UK). The immunoblots of cardiac troponin I (28 kDa) and phospho-densitometer.

Small interfering RNA (siRNA) transfection assay

Double-stranded siRNA sequences targeting STAT3 mRNA were obtained from Sigma Biotechnology. The cells were cultured in 100-mm-well plates in medium. Transfection with siRNA was carried out with transfection reagent (PureFection™; System Biosciences, Mountain View, CA, USA). Specific silencing was confirmed by immunoblotting with cellular extracts after the transfection.

Reverse transcription polymerase chain reaction (RT–PCR) Total RNA of rat LV was isolated following the protocol described previously. Two hundred nanograms of total RNA was reverse transcribed into cDNA with random hexamer primers (Roche Diagnostics, Mannheim, Germany). The PPARδ gene expression was measured using RT–PCR. Expression of hydroxymethylbilane synthase (HMBS), a housekeeping gene, was analyzed for normalization and quality control. We used the following primers: PPARδ forward 5′-aagcaacacccacgtaaagg-3′ and reverse 5′-catgactgccccccttgctg-3′, MMP9 forward 5′-tcggtgcttaaacctgcc-3′, and reverse 5′-gacgctgcttgaagggcct-3′, CTGF forward 5′-tgtcgttgaggggttgctg-3′, and reverse 5′-ggccaatgtgtctctgagct-3′, and HMBS forward 5′-tgccctggagagaatgcc-3′, and reverse 5′-ccgtagcagttttccc-3′. PCR amplification of these genes was carried out with 20 ng cDNA, 200nM forward and reverse primers, and TaqMan Master Mix (Roche Diagnostics) in a final volume of 10 μL. PCRs were run in a LightCycler 2.0 (Roche Diagnostics) for 45 cycles, with each cycle consisting of denaturation for 15 s at 95 °C, primer annealing for 15 s at 55 °C, extension for 30 s at 72 °C, and cooling 30 s at 40 °C.

Statistical analysis

Differences among normal control subjects and diabetic patients before and after telmisartan treatment were compared using Student’s t tests for normally distributed continuous variables, nonparametric tests for non-normally distributed continuous variables, and χ² tests for categorical variables. Group differences were analyzed using analysis of variance. Factors with p < 0.1 based on the univariate analyses were included in the multivariate logistic regression analyses. A p < 0.05 was considered significant. All analyses were performed using SPSS version 18 for Windows (SPSS Inc., Chicago, IL, USA).

Results

Telmisartan improved cardiac remodeling in diabetic patients

Among the control group and diabetic patients before and after telmisartan treatment, no significant differences in clinical characteristics were observed except for
blood glucose and hemoglobin A1c. All diabetic patients received one or two types of oral antidiabetic agents (Table 1). There were no differences in blood pressure, LVEF, or E/A (Table 2). However, compared with normal control subjects, the mean peak systolic strains in the longitudinal and circumferential directions (Fig. 1) and tissue Doppler-derived e' were more impaired in the patients with diabetes. Furthermore, after 3 months of telmisartan treatment, the mean peak systolic strains in both the longitudinal and circumferential directions improved compared with baseline values.

Telmisartan decreased diabetes-induced cardiac fibrosis in STZ rats through the PPARδ pathway

Masson trichrome staining revealed a significant increase of fibrotic intensity in the STZ-induced diabetic rat hearts compared with the control hearts. Notably, the cardiac fibrosis in the diabetic rats ameliorated significantly post treatment with telmisartan but not under the treatment of metformin, an AMP-activated protein kinase (AMPK) pathway activator. Conversely, additional treatment with the PPARδ antagonist GSK0660 diminished the improvement (Fig. 2a). Telmisartan reversed the STZ-induced downregulation of PPARδ. Compared with the control rats, the expression of PPARδ was significantly attenuated in the STZ-treated rat hearts but increased after the telmisartan treatment. Notably, once PPARδ was blocked by GSK0660, the effect was extinguished. Notably, the fibrosis-associated proteins, including CTGF, MMP9, and STAT3, were significantly upregulated in STZ-treated rat hearts but decreased under the treatment of telmisartan via the PPARδ pathway (Fig. 2b). Likewise, a similar finding was observed regarding the relative expression of PPARδ and the downstream proteins using RT–PCR (Fig. 2c).

Effect of PPARδ on cardiac fibrosis in high-glucose–treated cardiomyocytes

After incubation with 30 mM glucose, rat cardiomyocytes showed a significant downregulation of PPARδ. Consequently, the expression of fibrosis-associated proteins, including STAT3, CTGF, and MMP9, increased. Nevertheless, co-treatment with GW0742, a PPARδ agonist, partially rescued the downregulation of PPARδ and additionally attenuated the upregulation of STAT3, CTGF, and MMP9. Notably, without the condition of hyperglycemia, GW0742 failed to increase the expression of PPARδ or to affect the subsequent fibrosis-associated proteins (Fig. 3).

The interplay between PPARδ and STAT3 with respect to cardiac fibrosis

Alternatively, the overexpression of STAT3 in cardiomyocytes resulted in a significant downregulation of PPARδ (Fig. 4a). Co-treatment with GW0742 was sufficient to reactivate PPARδ, but the effect was attenuated by the PPARδ inhibitor GSK0660. Conversely, the upregulation of STAT3 induced by high glucose was decreased by treatment with Stattic, a small-molecule inhibitor of STAT3 dimerization (Fig. 4b). Instead, of external inhibition of STAT3, internal knockdown of STAT3 by siRNA also directly reversed the hyperglycemia-related high expression of CTGF, STAT3, and MMP9 (Fig. 4c, d).

Table 1 Clinical characteristics of the normal control and diabetic patients before and after 3 months of telmisartan treatment

	Normal control (n = 10)	Baseline (n = 15)	After telmisartan (n = 15)	p value
Age (years)	52.2 ± 8.5	55.3 ± 8.8	–	0.25
Male (%)	6 (60)	11 (73.3)	–	0.12
Body height (cm)	165.8 ± 7.4	163.9 ± 8.7	–	0.72
Body weight (kg)	68.6 ± 7.1	70.8 ± 10.6	–	0.81
Heart rate (beats/min)	69.8 ± 7.6	73.5 ± 8.24	72.38 ± 11.74	0.64
Systolic blood pressure (mmHg)	120.2 ± 12.9	129.6 ± 17.1	122.1 ± 14.4	0.06
Diastolic blood pressure (mmHg)	83 ± 8.9	82.6 ± 7.7	85.2 ± 13.9	0.43
Preprandial serum glucose (mg/dL)	92.7 ± 5.6	122 ± 15.8	105.3 ± 10.6	0.01
HbA1c (%)	5.6 ± 0.9	7.8 ± 1.2	7.2 ± 0.8	0.02
Creatinine clearance rate (ml/min)	108.7 ± 45.8	83.7 ± 24.5	95.8 ± 24.6	0.29
Triglyceride (mg/dL)	122.6 ± 51.3	129 ± 6.2	–	0.59
Cholesterol (mg/dl)	178.7 ± 28.8	178.6 ± 32.3	–	0.67

Data are expressed as mean ± standard deviation or median (interquartile range). Italic values indicate significance.

HbA1c: hemoglobin A1c
Discussion

In the present study, we found that (1) telmisartan improved cardiac remodeling in patients with diabetes; (2) the development of cardiac fibrosis in the diabetic rat was markedly decreased after telmisartan treatment through the PPARδ pathway; (3) the regulatory mechanism of PPARδ on the hyperglycemia-induced fibrosis was dependent on the activation of STAT3. To the best of our knowledge, this is the first multidisciplinary study coordinating the clinical imaging, histologic evidence, and molecular mechanisms to investigate the therapeutic potentials of a new target, PPARδ, in protection from diabetes-induced cardiac fibrosis.

Diabetes-related cardiac fibrosis

Diabetes has emerged as a major threat to worldwide health, and the incidence continues to increase each year [1]. The importance of diabetic cardiomyopathy, i.e.,

Table 2 Conventional and speckle-tracking echocardiographic parameters of normal control and diabetic patients before and after 3 months of telmisartan treatment

	Normal control (n = 10)	Baseline (n = 15)	After telmisartan (n = 15)	p value
LVMI (g/m²)	83.3 ± 29.1	84.5 ± 29.8	85.1 ± 30.2	0.63
LVIDd (cm)	4.2 ± 0.8	4.1 ± 0.7	4.1 ± 1.4	0.52
LVEF (%)	70.5 ± 6.4	68.1 ± 4.5	69.3 ± 15.7	0.38
E (cm/s)	76.5 ± 18.3	79.5 ± 12.3	82.7 ± 18.3	0.72
E/A	1.0 ± 0.3	1.0 ± 0.2	0.9 ± 0.6	0.06
e’ (cm/s)	10.3 ± 2.8	8.2 ± 1.8	9.3 ± 2.7	0.01
IVRT (ms)	94.7 ± 23	96.6 ± 13.1	90.7 ± 21.5	0.06
DT (ms)	200.5 ± 58.6	184.1 ± 52.2	198.4 ± 43.7	0.93
MPI	0.4 ± 0.2	0.5 ± 0.1	0.5 ± 0.1	0.35
GLS (%)	−20.2 ± 6.7	−16.4 ± 5.2	−18.1 ± 6.2	0.03
GCS (%)	−22.2 ± 7.8	−14.7 ± 8.6	−20.8 ± 6.8	0.01

Data are expressed as mean ± standard deviation. Italics indicate significance

LVMI = left ventricular mass index, LVIDd = left ventricular interior dimension at end diastole, LVEF = left ventricular ejection fraction, IVRT = isovolumic relaxation time, DT = deceleration time, E/A = mitral E to A velocity ratio, E/e’ = mitral early filling velocity to early diastolic mitral annular velocity ratio, MPI = myocardial performance index, GLS = peak systolic global longitudinal strain, GCS = peak systolic global circumferential strain

Fig. 1 An illustration of speckle-tracking imaging analysis in diabetic patients. a The longitudinal and b circumferential strains in diabetic patients before telmisartan treatment. c, d The improvement of longitudinal c and circumferential d strains in diabetic patients after telmisartan treatment. GLS = systolic global longitudinal strain, GCS = systolic global circumferential strain
congestive heart failure in diabetic patients in the absence of discernible coronary artery disease (valvular disease or hypertension), has received more attention in recent decades [1]. Diabetic cardiomyopathy is characterized by myocyte loss and myocardial fibrosis, leading to decreased elasticity and impaired contractile function [1, 20]. Regarding its pathophysiology, the main theory focuses on the accumulation of extracellular matrix...
proteins [1, 21]. Among them, MMP9 and CTGF are crucial in virtually all diabetes-induced fibrotic pathology, including nephritic, retinal, and cardiac fibrosis [21, 22]. In addition, the conversion of energy catabolism in mitochondria and the subsequent ROS production were also proposed to contribute to the structural and functional abnormalities [22, 23]. However, the direct regulator of the development of diabetic cardiomyopathy remains unknown.

The role of telmisartan in cardiac remodeling
To detect myocardial dysfunction at an early stage, instead of histological evidence, imaging, such as STE, can be used to unmask subtle changes in the cardiac function of patients with systemic conditions such as cancer or diabetes mellitus [3]. In a previous study using STE, telmisartan was found to have beneficial effects on LV structure and function in patients with hypertension [7, 8]. Notably, telmisartan shows not only antihypertensive but also several pleiotropic effects that interact with metabolic pathways to ameliorate cardiac remodeling by activating PPARs [4]. In the work of Mikami and colleagues, telmisartan activated endogenous PPARδ and played an antifibrotic role in human mesangial cells [24]. In skeletal muscle, telmisartan was shown to enhance running endurance through activation of the PPARδ pathway [25]. More specifically, using PPARδ knockout mice, the effect of telmisartan on insulin signaling and glucose uptake was validated to involve PPARδ or phosphatidylinositol-3 kinase but not PPARy and PPARα [26, 27]. In our study, the cardiac fibrosis in the diabetic rats was significantly ameliorated by telmisartan but not metformin, an AMPK pathway activator [28]. By blocking PPAR-δ, the telmisartan-related improvement of cardiac fibrosis was extinguished, and consequently, the downstream fibrosis-associated proteins were significantly reactivated [26]. Taken together, telmisartan reversed the hyperglycemia-induced cardiac fibrosis through the PPARδ pathway instead of the AMPK pathway. Interestingly, our study also indicated that enhancing the expression of PPARδ attenuated the upregulation of subsequent fibrosis-associated proteins in cardiomyocytes in hyperglycemic conditions. This result implied that the effect of PPARδ on the cardiomyocytes may be independent from telmisartan.

The effects of PPARδ on hearts
PPARδ has emerged as a versatile regulator of metabolic and inflammatory homeostasis [13, 14, 29]. Deletion of cardiac PPAR-δ is accompanied by decreased contraction, lowered cardiac output, and decreased contraction, which leads to cardiac failure [13]. In our previous study, we also demonstrated that activation of PPARδ using the selective agonist GW0742 enhanced cardiac contractility in isolated hearts and the hemodynamics in rats without altering heart rate [14]. Regarding the mechanism of how PPARδ ameliorates cardiac fibrosis, a previous study indicated that the PPARβ/δ agonist inhibited STAT3 activation and insulin resistance in human liver cells [17]. Likewise, activation of PPARβ/δ ameliorated insulin signaling by inhibiting STAT3 in interleukin-6-stimulated adipocytes [26]. In the work of Serrano-Marco and colleagues, activation of PPARβ/δ with an agonist prevented induction of the transcription factor STAT3, which results in the prevention of insulin resistance in adipose tissue [18]. Nevertheless, the details remain unknown.

STAT3 is fundamental for physiological homeostasis and is involved in multiple post-translational modifications, including proliferation, differentiation, and metabolism in cardiomyocytes, fibroblasts, and various inflammatory cells [30]. Downregulation of STAT3 is sufficient to induce dilated and adverse remodeling
after myocardial infarction [30, 31]. However, overexpression of STAT3 also results in cardiac hypertrophy [32]. Interestingly, STAT3 also contributes to insulin resistance and glucose homeostasis [33]. Inhibition of mammalian target of rapamycin was found to protect against reperfusion injury in the diabetic heart through STAT3 signaling [30, 34]. In agreement with our findings, losartan, also an ARB, reduced myocardial interstitial fibrosis in diabetic cardiomyopathy rats by inhibiting the Janus kinase/STAT signaling pathway [4]. However, in contrast to above finding, we found that the overexpression of STAT3 directly down-regulated PPARγ independent from the stimulation of hyperglycemia [31]. This result implied the importance of STAT3 in myocardial fibrosis and its potential role in homeostasis along with PPARδ. To conclude, telmisartan works through PPARδ, instead of the AMPK pathway, to suppress the hyperglycemia-enhanced expression of STAT3/CTGF/MMP9 and the subsequent cardiac fibrosis (Graphic abstract).

There are some limitations of this study. First, Telmisartan works not only in PPARδ but PPAR gamma [35–39]. However, PPARγ activator, like Thiazolidinediones, is associated with side effects such as edema and body weight gain [40]. Therefore, using a PPARδ specific ligand, GW0742, can activate the protective effects from hypertriglyceridemia and insulin resistance as what PPARα and PPARγ do but alternatively prevents the sequel of edema and fluid retention induced by PPARγ [14, 18]. Therefore, we suggested using a PPARδ specific ligand instead of telmisartan in the future clinical studies. Second, according to our findings, it is concluded that the myocardium protective effect of PPARδ in diabetic cardiomyopathy is regulated by STAT3 and we believed that it is indirectly through ROS reduction. As we know, ROS plays an integral role in dys-regulation of diabetic myocardium remodeling and notably, a number of anti-oxidant and antiapoptotic genes are upregulated by STAT3 [41]. In another aspect, agonist-activated PPARδ suppressed the generation of Angiotensin II-triggered ROS with a concomitant reduction in DNA damage [6, 17]. Taken together, ROS is believed to be involved in the relationship between PPARδ and STAT3 and we will focus on it in the future studies.

Conclusion
These results indicate that telmisartan activates endogenous PPARδ and may prevent CTGF/MMP9-induced fibrotic changes by upregulating STAT3 expression in a hyperglycemic environment. These findings potentially elucidate the beneficial effects of telmisartan on LV structural and functional restoration.

Abbreviations
ARB: angiotensin receptor blocker; CTGF: connective tissue growth factor; ET: ejection time; DT: deceleration time; E/A: transmitral and tricuspid early filling velocity to atrial velocity ratio early (e’)/late (a’); annular diastolic velocities; HMBS: hydroxymethylbilane synthase; IVRT: isovolumic contraction time; LVF: left ventricular ejection fraction; MAPK: mitogen-activated protein kinase; MMP9: matrix metalloproteinase 9; PBS: phosphate-buffered saline; PPARs: peroxisome proliferator-activated receptors; ROS: reactive oxygen species; STAT3: signal transducer and activator of transcription 3; STE: speckle-tracking echocardiography; S′: peak systolic annular velocity.

Authors’ contributions
WTC and JTC performed the study and wrote the manuscript. WTC, JTC and ZCC contributed to data analysis and interpretation. All authors read and approved the final manuscript.

Author details
1 Department of Cardiology, Chi Mei Medical Center, 901, Zhonghua Road, Yongkang District, Tainan, Taiwan, ROC. 2 Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan. 3 Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Both of the clinical and laboratory data that support the results of this study are available from the corresponding author upon reasonable request.

Funding
This study was granted by the Chi-Mei Medical Center.

Received: 20 June 2016 Accepted: 29 July 2016

Published online: 12 August 2016

References
1. Boudina S, Abel ED. Diabetic cardiomyopathy revisited. Circulation. 2007;115(25):3213–23.
2. Mochizuki Y, Tanaka H, Matsumoto K, et al. Clinical features of subclinical left ventricular systolic dysfunction in patients with diabetes mellitus. Cardiovasc Diabetol. 2015;14:37.
3. Mor-Avi V, Lang RM, Badano LP, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr. 2011;24(3):277–313.
4. Maejima Y, Okada H, Haraguchi G, et al. Telmisartan, a unique ARB, improves left ventricular remodeling of infarcted heart by activating PPAR gamma. Lab Invest. 2011;91(6):932–44.
5. Chang CH, Chang YC, Wu LC, Lin JW, Chuang LM, Lai MS. Different angiotensin receptor blockers and incidence of diabetes: a nationwide population-based cohort study. Cardiovasc Diabetol. 2014;13:91.
6. Wang WW, Zhang FL, Chen JH, et al. Telmisartan reduces atrial arrhythmia susceptibility through the regulation of RAS-ERK and P3K-Akt-eNOS pathways in spontaneously hypertensive rats. Can J Physiol Pharmacol. 2015;93(8):657–65.
7. Deiss M, Madeddu C, Piras A, et al. Long-term, up to 18 months, protective effects of the angiotensin II receptor blocker telmisartan on Epirubicin-induced inflammation and oxidative stress assessed by serial strain rate. Springerplus. 2013;2(1):198.
8. Mizuguchi Y, Oishi H, Miyoshi H, Iuchi A, Nagase N, Oki T. Beneficial effects of telmisartan on left ventricular structure and function in patients with hypertension determined by two-dimensional strain imaging. J Hyper tens. 2009;27(9):1892–9.
9. Zeng XC, Li XS, Wen H. Telmisartan protects against microvascular dysfunction during myocardial ischemia/reperfusion injury by activation of peroxisome proliferator-activated receptor gamma. BMC Cardiovasc Disord. 2013;15(13):39.
10. Sukumaran V, Watanabe K, Veeraveedu PT, et al. Telmisartan, an angiotensin-II receptor blocker ameliorates cardiac remodeling in rats with dilated cardiomyopathy. Hypertens Res. 2010;33(7):695–702.

11. Kawai W, Hongo K, Komuki K, et al. Telmisartan predominantly suppresses cardiac fibrosis, rather than hypertrophy, in renovascular hypertensive rats. Hypertens Res. 2009;32(7):604–10.

12. Goyal S, Arora S, Mittal R, et al. Myocardial salvaging effect of telmisartan in experimental model of myocardial infarction. Eur J Pharmacol. 2009;619(1–3):75–84.

13. Calkin AC, Thomas MC. PPAR agonists and cardiovascular disease in diabetes. PPAR Res. 2008;2008:245410.

14. Chen ZC, Lee KS, Chen LJ, Wang LY, Cheng JT. Cardiac peroxisome proliferator-activated receptor delta (PPARdelta) as a new target for increased contractility without altering heart rate. PLoS ONE. 2013;8(5):e64229.

15. Wilding JP. PPAR agonists for the treatment of cardiovascular disease in patients with diabetes. Diabetes Obes Metab. 2012;14(1):973–82.

16. Yu BC, Chang CK, Ou HY, Cheng KC, Cheng JT. Decrease of peroxisome proliferator-activated receptor delta expression in cardiomyopathy of streptozocin-induced diabetic rats. Cardiovasc Res. 2008;80(1):78–87.

17. Zhang W, Qu X, Chen B, et al. Critical roles of STAT3 in β-adrenergic function in the heart. Circulation. 2016;133(1):48–61.

18. Serrano-Marco L, Barroso E, El Kochairi I, et al. The peroxisome proliferator-activated receptor (PPAR) beta/delta agonist GW501516 inhibits IL-6-induced signal transducer and activator of transcription 3 (STAT3) activation and insulin resistance in human liver cells. Diabetologia. 2012;55:743–51.

19. Lang RM, BadANO LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39.

20. Pett B, Zannad F. The detection of myocardial fibrosis: an opportunity to reduce cardiovascular risk in patients with diabetes mellitus? Circ Cardiovasc Imaging. 2012;5(1):9–11.

21. Halade GV, Jin YF, Lindsey ML. Matrix metalloproteinase (MMP)-9: a proximal biomarker for cardiac remodeling and a distal biomarker for inflammation. Pharmacol Ther. 2013;139(1):32–40.

22. Oyamada S, Bianchi C, Takai S, Chu LM, Sellke FW. Chymase inhibition. Pharmacol Ther. 2009;124(2):229–34.

23. Palomer X, Salvado L, Barroso E, Vazquez-Carrera M. An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy. Int J Cardiol. 2013;168(4):3160–72.

24. Goyal S, Arora S, Mittal R, et al. Telmisartan improves insulin resistance of skeletal muscle through peroxisome proliferator-activated receptor-delta activation. Diabetes. 2013;62(3):762–74.

25. Feng X, Luo Z, Ma L, et al. Angiotensin II receptor blocker telmisartan enhances running endurance of skeletal muscle through activation of the PPAR-delta/AMPK pathway. J Cell Mol Med. 2011;15(7):1572–81.

26. Li L, Luo Z, Yu H, et al. Telmisartan improves insulin resistance of skeletal muscle through peroxisome proliferator-activated receptor-delta activation. Diabetes. 2013;62(3):762–74.

27. Serrano-Marco L, Rodriguez-Calvo R, El Kochairi I, et al. Activation of peroxisome proliferator-activated receptor-beta/-delta (PPAR-beta/-delta) ameliorates insulin signaling and reduces SOCS3 levels by inhibiting STAT3 in interleukin-6-stimulated adipocytes. Diabetes. 2011;60(7):1990–9.

28. Cheng JT, Huang CC, Liu IM, Tseng TF, Chang CJ. Novel mechanism for plasma glucose-lowering action of metformin in streptozocin-induced diabetic rats. Diabetes. 2006;55(3):819–25.

29. Pesant M, Sueur S, Dutartre P, et al. Peroxisome proliferator-activated receptor delta (PPARdelta) activation protects H9C2 cardiomyoblasts from oxidative stress-induced apoptosis. Cardiovasc Res. 2006;69(2):440–9.

30. Haghighia A, Ricke-Hoch M, Stapel B, Gorst J, Hilfiker-Kleiner D. STAT3, a key regulator of cell-to-cell communication in the heart. Cardiovasc Res. 2014;102(2):281–9.