Technical details of automatic self-supervised feature extraction

Data pre-processing
Assume \(X = (x_1, x_2, \ldots, x_m) \) denotes one input video sample with \(m \) frames, where \(x_i \) is the \(i^{th} \) frame. For an input video frame \(x \), we first randomly crop a sub-area, and then transform them into \(z_i \) and \(z_j \) by different data transformations:
\[
z_i = T(x), k = 1, 2, \ldots \text{ where } T() \text{ includes random color distort and Gaussian blur.}
\]

After data transformation, each \(z_k \) is divided into \(3 \times 3 \times 9 \) tiles while leaving a gap (about 6 pixels) between two adjacent tiles as
\[
z_k = \{ z_{k1}, z_{k2}, \ldots, z_{k9} \}
\]

Network architecture
A Siamese network with 9 (which is the number of tiles) sharing weight branches is adopted to solve the proxy task. The backbone network \(\varphi \) is 2D ResNet-34 excluding the last fully-connected layer. We can obtain feature representation as:
\[
f_k = \varphi(z_k), j = 1, 2, \ldots, 9; k = 1, 2
\]

Structure recovery
We formulate a proxy task which aims to rearrange and recover the structure. We first yield all the permutations (P) of tiles, i.e.,
\[
P = (p_1, p_2, \ldots, p_9)
\]

Then the 9 tiles of \(z_k \) are rearranged according to a random selected \(p \) from permutation pool \(P \). Therefore, the network is trained to identify the selected permutation. The \(f_k \) can be obtained by feature concatenation of \(\{ f_{k1}, f_{k2}, \ldots, f_{k9} \} \), then the predicted possibilities \(l \) of each permutation can be generated via:
\[
l = -g(f_k)
\]

where \(g \) represents a fully-connected layer. Assume the index of chosen permutation for each \(z_i \) is \(y_i \), the loss \((L_{sr}) \) can be defined as:
\[
L_{sr} = -\sum_{i=1}^{H} y_i \log l_i = \sum_{k=1}^{2} \sum_{i=1}^{H} y_i \log l_i
\]

Color transform toleration
We design another proxy task to force the network more concentrate on color-correlated information. Assume a subset \([x]\), which may belong to different videos, is sampled in each mini-batch, the feature representations in each mini-batch are \(\{ f_{\alpha_j} \mid i=1,2,\ldots, N, k=1,2, \ldots, 9 \} \), where \(N \) is the size of mini-batch. The \(f \) generated from the same \(x \) is regarded as a positive pair, and vice versa. The network is force to minimize the difference between positive pairs and enlarge the negative ones.
\[
L_c = -\log \sum_{i=1}^{y} \sum_{j=1}^{y} \frac{c(f_{\alpha_i}, f_{\alpha_j})}{\sum_{j=1}^{y} c(f_{\alpha_i}, f_{\alpha_j})}
\]

where \(C(x,y) = \exp \left(\frac{x^y}{\tau} \right) \), and \(\tau \) is a temperature parameter.

Objective
Our total loss function of our SSL feature extraction can be defined as:
\[
L = L_{sr} + L_c
\]

MR jet recognition and segmentation

Feature encoding
Our backbone model \(\varphi \) is then transferred to downstream tasks, namely MR jet recognition task and segmentation task (shown in Figure 2B). Since \(X \) may consist of several cardiac cycles, we let \(E = (e_1, e_2, \ldots, e_m) \) denotes a one-hot ground truth indicating the max MR jet area frame, and \(Y = (y_1, y_2, \ldots, y_m) \) denotes the segmentation ground truth. The segmentation ground truths of those desirable frames are acquired, where \(E = 1, \) and \(E = 0 \) vice versa. We first crop a central area of each frame and then obtain feature representations via:
\[
f = \varphi(x), i=1,2,\ldots,m
\]

The max MR frame recognition
The \(f \) are then concatenated into \(f^{*} \) along the time dimension. A 3D decoder \(D_{s} \), which consists of two 3D convolution layer, one 2D pooling layer, and one fully-connected layer, is employed to generate predicted label \(E^{*} = (e_1^{*}, e_2^{*}, \ldots, e_m^{*}) \). The loss function is represented as:
\[
L_{r} = \| E^{*} - E \|^2 = \| D_{s}(f^{*}) - E \|^2 = \sum_{i=1}^{m} \| e_i^{*} - e_i \|^2
\]

The max MR frame segmentation
We integrate the information of those previous frames, which lack of segmentation ground truth, by introducing the long short-term memory (LSTM) architecture to explicitly promote the exploring of all video frames for better segmentation
reconstruction. Assume f_k is one of the max MR frames. Then
the integrated feature is:

$$f_k' = \text{LSTM}(f_1, f_2, ..., f_{k-1}, f_k)$$ [9]

Then f_k' is fed into a 2D decoder D_s with skip-connection
to obtain predicted segmentation y_k'. Segmentation loss L_s is
generated via dice loss.

$$L_s = \sum_{i=1}^{m} I_{e_i \neq 0} \text{Dice}(y_i', y_i) = \sum_{i=1}^{m} I_{e_i \neq 0} \text{Dice}(D_s(f_k'), y_i)$$ [10]

where I is an indicator function evaluating to 1 if $e_i \neq 0$, and
vice versa.

Objective

Our total objective of multi-task framework is:

$$L = L_r + L_s$$ [11]