Aerial seeding of forests in Russia: A selected literature analysis

A I Novikov¹, B T Ersson²
¹Faculty of Forestry, Voronezh State University of Forestry and Technologies named after G.F. Morozov; 8 Timiryazeva Street, Voronezh 394087, Russian Federation
²School of Forest Management, Swedish University of Agricultural Sciences, Box 43, 739 21, Skinnskatteberg, Sweden

Abstract. The study is intended for international readers or those unable to read Russian. Information search was carried out in Russian-language databases (Russian libraries and ELibrary.ru) and English-language databases. Currently, there are a large number of sites in the Russian forests that need to be restored. For many of them, reforestation by ground-based seeding or planting is inefficient or not available. Sowing forest from the air in Russia has more than half a century of history. The results of retrospective analysis show that the choice of the reforestation method depends on the site characteristics and the level of negative environmental impact. Generally, the cost of aerial seeding on such sites with unmanned aerial vehicles (UAV) is lower compared to the use of manned aerial vehicles (MAV). This study will aid in the planning of new forestry experiments to study reforestation with the assistance of natural reforestation in Russia. The study will enable correct plant propagation protocols for sustainable forest management. However, many questions remained unresolved: what types of UAV and sowing apparatus to use; how to position the UAV under a forest canopy?

1. Introduction
Forest regeneration is fundamental to sustainable forestry; and often, direct seeding is a low-cost and dependable method of creating desirable forests [1]. Direct seeding was recommended to foresters by early authors like Nartov [2], Bolotov [3], and Toumey [4]. Direct seeding can be classified as [1, 5-7] row, row-well, belt, biogroup, or broadcast [6, 8] sowing. Direct seeding can be performed manually, with ground-based machinery or from the air [1, 9]. In Russia, forest aerial seeding is applied mainly to promote natural regeneration, reducing the time required to restore the biological diversity of ecosystems [10]. However, very little information about aerial seeding and its future development in Russia is available to international readers or those unable to read Russian. Thus, the objective of this study was to present Russian information on aerial seeding, and to evaluate future trends in Russian aerial seeding development.

2. Material and Methods
Information search was carried out on the keywords ‘aerosev lesa’ (in Russian language) in the databases of Russian libraries and search engines eLibrary. It was found that there is no electronic archive from 1928 to 2015 of the largest forest journal of Russia ‘Forestry’ (ISSN 0024-1113). Therefore, the hard copies of this journal were viewed in the scientific library of Voronezh state University of Forestry and...
Technologies named after G.F. Morozov. The search by the keywords ‘aerial seeding & forestry’, ‘sowing air & forestry’ was carried out in the English-language databases WoS, Scopus, CABI. Further, the authors selected the most relevant documents for analysis.

3. Results and Discussion

Before assessing the development effectiveness of aerial seeding, it is necessary to introduce the terminology needed clarification. A promising direction of creation of forest crops on plots not available and(or) ineffective with traditional methods, is broadcast seeding: ‘sowing forest from the air’, designated in Russia with GOST RF 17559-82 as sowing forest using aircraft [11]. ‘Aerial seeding’ in accordance with GOST RF 54265-2010 includes sieving aviation method of different seeds plants on the land surface [12].

The application of forest aerial seeding in Russia was studied by N. Zakharov (1933) [13], G. G. Samoylovich (1935) [14], V. Ya. Olerinskiy (1939) [15], G. S. Batrakov (1940) [16], F. B. Orlov (1947) [17], A. P. Shimanyuk (1949) [18], A. P. Pesterev (1952) [19], I. S. Melekhov (1953, 1954, 1966) [20–22], V. F. Molchanov (1954) [23], F. I. Sulimov (1954) [24], O. E. Shergold (1954) [25], A. A. Alekseev (1955) [26], N. E. Dekatov (1955) [27], N. E. Dekatov and N. S. Zyzu (1956) [28], E. P. Sysove (1956) [29], I. A. Chernyshev (1956) [30], P. I. Voychal (1959) [31], I. A. Grigoryev et al. (1959) [32], L. A. Istomin (1959) [33], P. N. Lvov and A. I. Stalskiy (1959) [34], M. N. Prokopyev (1959) [35], G. S. Golutvin (1960) [36], Yu.V. Kurepin (1960) [37], A. I. Iroshnikov (1962) [38], I.S. Melekhov (1966) [20], A. A. Marusov (1966) [39], V. E. Kizenkov (1968) [40], P. A. Anishin (1977) [41], V.B. Linar and Yu. A. Pautov (1980) [12], N. N. Chernov (2002) [42], N. N. Nevolin (2007) [43], A. V. Ovodov (2010) [44], V.V. Kopytkov and A.R. Rodin (2015) [45], S.V. Sokolov и A.I. Novikov (2017) [46] and other scientists. Here are the most significant, in our opinion, the results of research.

I.S. Melekhov (1905-1994) has established the feasibility of combining sowing air with a contoured crops, and argued that ‘when applied correctly, aerial seeding is an effective way of renewal of softwood on certain types of burn scars and after deforestation. The speed of sowing seeds from the aircraft cannot be surpassed by ground methods’ [20]. Aerial seeding of tree species found wide application in USSR forestry including: coniferous trees in the Central areas; haloxylon in desert and semi-desert areas, and grasses in numerous areas. In 1932, aerial sowing was performed on 58 thousand hectares [19], and on 22.6 thousand hectares of taiga in 1953 [22]. In the Republic of Komi during the period of 1950 to 1959 the cutting was allocated 114-165 thousand hectares per year. Recovered annually 1000 ha, of which 64 % using aerial seeding [12]. When creating forest plantations on the territories with radioactive contamination, the effectiveness of aerial seeding pellets accounted for 43.8 % [45].

In the 1960s, aerial seeding of Monterey pine (Pinus Radiata) at the seeding rate of 2.24 kg/ha was used in combination with natural regeneration in Kaingaroa forests of New Zealand, but was subsequently discontinued because of the increased consumption of seeds and of the difficulty in achieving equal germination [47]. Aerial seeding in the USA has been successfully applied on areas after storms or fires where ground vehicles were unsuitable due to stumps and other obstacles. Almost 75 % of the aerial seeding was done with the use of manned aircraft and helicopters. In areas for reforestation in excess of around 200 ha, aerial seeding comparable to the cost of most of the ground broadcast methods of sowing, and allows one to complete the work in a short time [48]. Aerial seeding of forests in China has a 55-year history, and in 2012 work was carried out on the area of 136 400 hectares. Although the bulk of works on afforestation is the planting of seedlings, aerial seeding successfully used in remote mountainous provinces, such as Guanxi, Yunnan, Sichuan, Hunan and Shaanxi with such species as Pinus massoniana, Pinus Yunnanensis and Pinus armandi [49].

Taking into account the frequency of references in the works to the factors affecting the efficiency of the forest, we place them in Table 1, indicating the authors and the time of the study. The basis of amalgamated classification, consider the possibility of soil preparation, because, as rightly observed by I.S. Melekhov, ‘at the same time the soil can be effectively combined and ground seeding’ [22]. Further, possible site for reforestation were taken into account, and, ultimately, the basic level of the applied technical means (aircraft seed systems and apparatus).
Site Preparation¹	Site Type	Technical means level	MAV²	UAV³
Cutting of fireweed-burning *in combination with a contoured seed crops* [20]	Disturbed site, including after man-made disasters, complicated by increased radiation background	N. Zakharov (1933) [13], G. G. Samoylovich (1935) [14], V. Ya. Olerinskii (1939) [15], G. S. Batrakov (1940) [16], F. B. Orlov (1947) [17], A. P. Shimanyuk (1949) [18], A. P. Pesterev (1952) [19], I. S. Melekhov (1953, 1954, 1966) [20–22], V. F. Molchanov (1954) [23], F. I. Sulimov (1954) [24], O. E. Shergold (1954) [25], A. A. Alekseev (1955) [26], N. E. Dekatov (1955) [27], N. E. Dekatov and N. S. Zuyz (1956) [28], E. P. Sysoev (1956) [29], I. A. Chernyshev (1956) [30], P. I. Voychal (1959) [31], I. A. Grigoryev et al. (1959) [32], L. A. Istomin (1959) [33], P. N. Lyov and A. I. Stalskiy (1959) [34], M. N. Prokopyev (1959) [35], G.S. Golutvin (1960) [36], Yu.V. Kurepin (1960) [37], I.S. Melekhov (1966) [20] etc. Kopytkov (2015) [45] etc.	n.a.	
No	Site inaccessible to ground equipment, characterized by difficult terrain	Dekatov (1936), Iroshnikov (1962); Derr & Mann (1971); Levack (1973); Anishin (1977); Larin and Pautov (1980); SFA (1981); Chernov (2002); Beyers (2004), Gribov (2007), Konovalov (2007), Nevolin (2007), Avdeev (2010), Ovodov (2010), Xiao et al. (2015) etc. Elliott et al. (2013)	Elliott et al. (2013)	Steurmer (2017) Sokolov & Novikov (2017)
	Burning	Allen at al. (1955), Siren (1955), Revel (1963), Derr & Mann (1971), Faulkner et al. (1972), Levack (1973), SFA (1981), Li et al. (2009), Peppin et al. (2010), Pyke et al. (2013), Xiao et al. (2015), Zhang et al. (2018) etc.	n.a.	
Yes	Cutting of Deschampsia cespitosa, Calamagrostis and Filippendula	Orlov (1947) [17], Melekhov (1966) [20] etc.	n.a.	

Notes: 1. The feasibility of aerial seeding in combination with the special measures for the soil preparation is highly conditional on the efficiency of the total costs; 2. MAV – manned aircraft vehicles fixed-wing and rotary-wing types; 3. UAV – unmanned aerial vehicles of fixed-wing, rotary-wing and hybrid types.

Let's say that the main trend of aerial seeding is soil preparation and the method of its implementation. Then the absence of the above operations, noted by the majority of researchers, should be the key and
the only criterion for development. However, there is a limitation. If reforestation does not soil treatment, it is equally possible to carry out both manual broadcast seeding and aerial seeding.

Let’s say that the main trend of aerial seeding is the type of the restored site. Then the inaccessibility of these sites, according to the unity of researchers in accordance with Table 1, should be the key and the only criterion for development. However, there is also a limitation, expressed in the possibility of reforestation of steep slopes at a distance of ground technology, capable of giving the capsule with seeds initial kinetic energy.

In all references listed in Table 1 up to 2013, as aerial seeding used manned aircraft systems of fixed-wing and rotary rotary-wing types. Clearly the temporal relationship between emergence of a new type of aircraft and early use in aerial seeding. However, there are also some limitations that require comparison of seeding methods depending on the degree of mechanization.

Table 2 shows a comparison of the methods of aerial seeding, depending on the type of aircraft used. For convenience, the above-ground mechanized and ground manual methods are given. To identify the economic component of each of the methods, the cost of restoration of one hectare in US dollars is given (cost values are given in the prices at research time).

Table 2. Comparison of methodologies reported for the sowing forestry from the air.

Methods	Features sites; Country	Seeding rate, kg/ha	Cost, US$/ha (at the time of the study)
MAV¹ fixed-wing type	open terrain, not less than 25-100 hectares, correct geometric shape, in some cases it is necessary to roll or harrow [20]; protection from predation is necessary [50]; Russian Federation; Canada; USA	2.24 (*Pinus Radiata* [47])	19.59 (1973) [47]
MAV¹ rotary-wing type	open terrain, from 5 to 25 hectares, any geometric shape, in some cases it is necessary to roll or harrow [20], protection from predation is necessary [50]; Russian Federation; USA, Canada	0.45-0.67 (49,000 to 99,000 viable seeds *Pinus contorta* [52])	8.5-11 (1972) [52]
UAV² fixed-wing type	open terrain (perhaps with radiation background); correct geometric shape; in some cases; protection from predation is necessary [50]; No specific country	n.a.	n.a.
UAV² rotary-wing type	open terrain and closed terrain (forest canopy), perhaps with radiation background; any geometric shape; any complex relief; any soil moisture; in some cases it is necessary to roll or harrow [20]; in some cases, protection from predation is necessary [50]; Russian Federation; Canada, USA, China, Australia, Thailand	n.a.	n.a.
UAV² hybrid type	open terrain and closed terrain (forest canopy), perhaps with radiation background; any geometric shape; any complex relief; any soil moisture; in some cases it is necessary to roll or harrow [20]; in some cases, protection from predation is necessary [50]; Russian Federation; Canada, USA, China, Australia, Thailand	n.a.	n.a.
On the one hand, Table 2 shows that manned aircraft (fixed-wing and rotary-wing types) were widely used in the world and are used in some cases to date, mainly in agricultural applications. In the years 1958-1963 both provided ‘excellent distribution and precision of planting in reforestation of large-scale site – up to 1500 acres (607 ha) light aircraft and about 3000 acres (1214 ha) by helicopter on the day’ [48, 54].

On the other hand, when using planes, the area to be reforested should not be less than 25 hectares. The seeding rate should be 6 kg/ha. Use of helicopters allows for aerial seeding on smaller sites with the irregular shape. The seeding rate of pine and spruce is 1.5-2 kg/ha.

The cost structure for aerial seeding includes the cost of reproductive material (87 %), the cost of flights (12 %) and, if necessary, the cost of the ground follow-up (about 1 %). 12 % includes the cost of fuel and lubricants, the operation of an aircraft, and the device for sowing seeds (hoppers). When sowing from the air, there are no nursery costs, no seedling transportation costs, and no need for the construction of roads and camps to house the workers [51]. On well-drained sites with open terrain larger than 200 hectares, average savings of up to $ 7 per hectare can be realized; and on sites with variable terrain clogged with cutting residues, up to $ 50 per hectare cost savings can be realized [51].

It should be noted that the cost of the aerial seeding from the helicopter Pinus contorta ranged from 8.5-11 US$/ha compared to 17-25 US$/ha using ground mechanized equipment and more than 250 US$/ha in the prices of the year of research at manual planting of seedlings [52]. Sowing forests from the air using manned aircraft systems (fixed-wing and rotary-wing types) has low economic efficiency in small-scale site, while the cost of ground sowing is still lower than the cost of planting [50]. When aerial seeding in MAV (fixed-wing type) of possible unequal growth of subsequent crops, and also a considerable dependence on weather conditions [47]. Moreover, it is necessary to constantly adjust the conditions of the pilots, affecting the maintenance of the required speed and course [48]. A significant part of the researchers noted that the cost (seeds, planting material, labor) for planting is two to three times higher than the cost of air sowing [13, 14, 16, 27, 29, 30, 32-34, 36, 38, 50, 55-58].

For reforestation, for example, under the canopy, or with high accuracy with a reduction in seeding rates and the size of the sown areas, a transition to a new level of development of aviation technology is required. The use of UAV in the forest aerial seeding devoted sufficient research [46, 59-61].

In Northern Thailand, reforestation is difficult because of the steep slopes inaccessible to people and equipment. As a result, the Department of biology of the University of Chiang Mai (FORRU) is conducting research on the aerial seeding with using UAV capable of carrying and dumping seeds on specified areas [61]. Data on the type of UAV is not given.

In Australia, the technology of aerial germination seeds on steep slopes, as well as the restoration of land disturbed by minefields [60]. Reconnaissance of the area is carried out with the help of an aircraft-type UAV equipped with modern optical equipment and an appropriate information system, then a helicopter-type UAV (quadcopter) at the obtained coordinates produces point sowing. Technology,
according to the developer, Dr. Susan Graham, that will ‘increase 10 times the speed of sowing compared to manual and 20% lower the cost of work’ [60]. Data on the design features of the UAV, safety and survival of seedlings is not given.

Note that the economic efficiency of aerial seeding will also depend on the sowing qualities of seeds, first and foremost, viability, determined by nondestructive express-analysis (testing) and improving pre-sowing treatment on quality characteristic [62, 63].

From the point of view of the degree of elaboration of the technical component of aerial seeding at the moment, it is necessary to state the prevalence in the design of hoppers, aggregated with both manned aircraft systems and unmanned aerial vehicles, units and elements that provide support for quantitative characteristics with exceptional seeding, effective, in our opinion, when restoring the ground cover with plants that are not particularly sensitive to the lack moisture and unevenness of the region of plant alimentation (grass, etc.).

Along with this, there is a problem of seeding in the soil. It can be solved by simple surface harrowing, but then there will be a rise in price due to the use of ground equipment. Or, providing a certain amount of energy on Board the UAV, give the initial acceleration of the seed capsule containing the seed and stocks of nutrients and protective substances, in order to bury it. For example, for Scots pine, the depth of seeding is insignificant (from 0.5 to 2 cm depending on the soil).

Particularly relevant aerial seeding fine-seed crops on sites with excessive moisture, where the waterlogged soil is often not able to travel to the place of seeding in conventional technology as well as on all types of inefficient traditional development site. Thus, the most interesting for the widespread introduction is the option of using drones for aerial small-seeded crops with a small hectare seeding rate.

Specialists of Bio Carbon Engineering (Oxford, United Kingdom) in an interview with national Geographic magazine (November 27, 2017) claim (video from the company's website https://www.facebook.com/cnnmoney/videos/10155283625853067/) that the cost savings when planting seeds from unmanned aerial vehicles will amount to 150 000 dollars per 100 hectares of reforestation area. Moreover, depending on the scheme, the company claims that aerial seeding of 1 hectare will take 45 minutes using seeding 750 seeds.

4. Conclusions

In 2017, for the purposes of reforestation in Russia the cost of sowing amounted to about 55 million Russian rubles on an area of 15633 hectares (on average, about 3500 rubles/ha), of which about 6 million rubles were state subsidies and 49 million rubles were at the expense of forest tenants.

Our forecasts are not as optimistic as those of Bio Carbon Engineering, due to various technological reasons, however, given the fact that with ground-based direct seeding the clearing of land and soil preparation about 40 % of energy and 25 % of labor costs, it is not uncommon that aerial seeding can cost 45-50% less per established hectare than ground-based direct seeding [52].

Taking into account the fact that 300 acorns on average have a mass of 1-1.2 kg, and 300 seeds of ordinary pine – only an average of 5 g, even taking into account the encapsulation of small seeds, the payload will allow, without changing the existing in Russia UAV designs, to provide significant needs for reforestation of remote and inaccessible (including for humans) sites, carrying out by changing the breeds of the social effect of the recreational value of stands. Thus, aerial seeding with the use of drones might be one of the cheapest forms of artificial reforestation, requiring further research in the field of navigation, energy saving, precision seeding.

Despite the higher seeding rate during traditional aerial seeding, the use of UAVs in Russia might be preferred during the following cases (according to Table 2):

– on sites where today’s ground-based seeding equipment is ineffective (e.g. because of rough terrain, forest fires, etc.);

– with the assistance of natural regeneration and artificial reforestation on sites inaccessible to ground-based equipment for climatic and geographical reasons;

– with the assistance of natural regeneration on sites inaccessible to people due to the complication of background radiation after man-made disasters.
References

[1] Grossnickle S C and Ivetić V 2017 Direct Seeding in Reforestation – A Field Performance Review Reforesta 4 94

[2] Nartov A A 1765 About the planting forests Proc. Imp. Free Econ. Soc. [in Russian] - Tr. Imp. Vol’nogo Ekon. Obs. 1 28

[3] Bolotov A T 1952 Selected works on agriculture, horticulture, forestry, botany [in Russian - Izbrannye sochinenija po agronomii, plodovodstvu, lesovodstvu, botanike] (Moscow: Moscow society of naturalists)

[4] Toumey J W 1916 Seeding and planting: a manual for the guidance of forestry students, foresters, nurserymen, forest owners, and farmers (New York: John Wiley & Sons)

[5] Red’ko G I and Babich N A 1991 Man-made forests of the European North [in Russian - Rukotvornye lesa Evropeyskogo Severa] (Arkhangelsk: North-West book publisher)

[6] Wennström U 2001 Direct seeding of Pinus sylvestris (L.) in the boreal forest using orchard or stand seed Doctoral Thesis (Swedish University of Agricultural Sciences)

[7] Waldrum R M 1973 Direct seeding in Canada 1900-1972 Direct seeding symposium, Timmins, Ontario, 11-13 September, 1973 pp 11–27

[8] Bergsten U, Sahlén K, Charlesworth E, Fredriksson M and Wilhelmsson O 2003 Forest regeneration of pine and spruce from seeds Skog Trä Handb. 2 40

[9] larin V B and Pautov Y A 1980 Forest regeneration in the Komi ASSR For. [Lesnoe Khozyaistvo - In Russian] 4 38

[10] GOST RF 17559-82 1983 Forest plantations. Terms and definitions (Moscow: Standards Publ.)

[11] GOST RF 54265-2010 Air transport. Aviation work. Classification (Moscow: Standartinform)

[12] Zakharyev N 1933 Development work in pine aerial seeding For. Min. [Lesnoe khozyaystvo i lesokhozvuzdetsiya - In Russian] 2 12

[13] Samoylovich G G 1935 Aerial seeding on forest land For. Min. [Lesnoe khozyaystvo i lesokhozvuzdetsiya - In Russian] 3 19

[14] Olerinskii V Y 1939 Seeding forest from the air For. [Lesnoe Khozyaistvo - In Russian] 2

[15] Batrakov G S 1940 The results of aerial seeding in Sudayskiy leshoz For. [Lesnoe Khozyaistvo - In Russian] 4

[16] Orlov F B 1947 Aerial seeding for reburned areas in the North [in Russian - Aerosev na povtoronykh garyakh v usloviyakh Severa] (PhD thesis, Voronezh institut of forestry engineering)

[17] Shimanyuk A P 1949 Recovery processes in pine forests of the Northern Urals [in Russian - Vosstanovitel'nye protsessy v sosnovyh lesakh Severnogo Urala] Recovery processes in concentrated felling areas (Moscow: USSR Academy of Sciences Publ.) pp 66–126

[18] Pesteriev A P 1952 Aerial seeding as a way to recover felled areas in the North For. [Lesnoe Khozyaistvo - In Russian] 9 29

[19] Melekhov I S 1966 Main Cabin [in Russian - Rubki glavnogo pol'zovaniya] (Moscow: Forest Industry Publishing)

[20] Melekhov I S 1953 Renewal of the forest in connection with felling in the forests of the North For. [Lesnoe Khozyaistvo - In Russian] 6 4

[21] Melekhov I S 1954 Mechanization of logging and wood restoration [in Russian - Mekhanizatsiya lesozagotovok i vozobnovlenie lesа] Concentrated logging in the forests of the North (Moscow: USSR Academy of Sciences Publ.) pp 159–72

[22] Molchanov V F 1954 Restoring forests on concentrated felling For. [Lesnoe Khozyaistvo - In Russian] 4 13

[23] Sulimov F I 1954 Aerial seeding experience of conifers For. [Lesnoe Khozyaistvo - In Russian] 3 70

[24] Shergold O E 1954 Results of aerial seeding in the Komi Republic For. [Lesnoe Khozyaistvo - In Russian] 4 13
Alekseev A A 1955 On the resumption of concentrated felling areas in the forests of Sverdlovsk region [Lesnoe Khozyaistvo - In Russian]

Dekatov N E 1955 Sowing Air in the taiga zone [Lesnoe Khozyaistvo - In Russian]

Dekatov N E and Zyuz N S 1956 Guidelines for aerial planting of seeds of pine and spruce (Leningrad: Forestry Publ.)

Sysoev E P 1961 The restoration of forest clearings on aerial seeding concentrated in the Kirov region [Lesnoe Khozyaistvo - In Russian]

Dekatov N E 1955 Sowing Air in the taiga zone [Lesnoe Khozyaistvo - In Russian]

Sysoev E P 1961 The restoration of forest clearings on aerial seeding concentrated in the Kirov region [Lesnoe Khozyaistvo - In Russian]

Chernyshev I A 1956 Aerial seeding experience on the Ural region [Lesnoe Khozyaistvo - In Russian]

Voychal P I 1959 It is necessary to develop the theory of air seeding [Bull. High. Educ. institutions. For. J. - In Russian]

Grigoryev I A, Polezhaev S A and Pesterev A P 1959 The use of aerial seeding in forestry [Primenenie aerozeva v lesnom hozaystve] (Moscow, Leningrad: Forestry Publ.)

Istomin L A 1959 Experience aerial seeding in the Kirov region [Opyt aerozeva v Kirovskoy oblasti] [Lesnoe Khozyaistvo - In Russian]

Lvov P N and Stalskiy A I 1959 Aerial seeding of pine and spruce in connection with the types of logging [Aerosov semyan sosny i eli v syvazi s tipami vyrubok] (Moscow, Leningrad: Forestry Publ.)

Prokopyev M N 1959 Aerial seeding for pine and spruce trees as a way of reforestation [Lesnoe Khozyaistvo - In Russian]

Golutvin V S 1960 The results of aerial seeding spruce clearings and burnt sites of the Western slope Middle Urals [Trudy Instituta Biol. Ural. Fil. Akad. Nauk SSSR - In Russian]

Kurepin Y V. 1960 Question of the choice site under aerial seeding pine in the Sverdlovsk region [Trudy Instituta lesa i Drev. Sib. Otd. Akad. Nauk SSSR]

Iroshnikov A I 1962 To the question about the use of aerial seeding in the introduction of larch in the Vologda region [K voprosu ob ispol'zovanii aerozeva pri vnedrenii listvennitsy v Vologodskoy oblasti] [Trudy Instituta Biol. Ural. Fil. Akad. Nauk SSSR]

Marusov A A 1966 Experience sowing forest from the air in the Perm region [Opyt aerozeva lesa v Permskoy oblasti] (Perm: Forestry Publ.)

Kizenkov V E 1968 The effectiveness of aerial seeding in the conditions of Arkhangelsk and Vologda regions [Effektivnost’ aerozeva v ulosviyakh Arkhangel’skoy i Vologodskoy oblastey] (PhD Thesis, Leningrad Institute of forestry engineering)

Anishin P A 1977 Study of the effectiveness of aerosea in the burned areas of the Vologda region [Issledovanie effektivnosti aerozeva na garyakh Vologodskoy oblasti] [Materials of the annual session on the results of research for 1976]

Chernov N N 2002 Forest-cultural business in the Urals: formation, state, ways of further development [Lesokul’turnoe delo na Urale: stanovlenie, sostoyanie, puti dal’neyshego razvitija] (Doctoral Thesis, Saint-Peterburg academy of forestry engineering)

Nevolin N N 2007 Forestry assessment of the creation and cultivation of pine crops in the taiga zone [Lesovodstvennaya otsenka sozdaniya i vyrashchivaniya kul’tur sosny v taezhnoy zone] (PhD thesis, Arkhangelsk state technological University)

Ovodov A V 2010 The quality of pine wood in the plantations created by sowing and planting [Kachestvo drevesiny sosny v nasazhdennyakh, sozdannykh posevom i posadkoy]
(PhD thesis, Moscow state forest University)

[45] Kopytkov V V. and Rodin A R 2015 The establishment of forest plantations on radio-contaminated lands using a composite polymeric drugs Bull. Bryansk state Univ. [Vestnik Bryanskogo Gos. Univ. - In Russian] 1 355

[46] Sokolov S V and Novikov A I 2017 Development tendency of sowing air operating technology by unmanned aerial vehicles in artificial reforestation For. Eng. J. [Lesotekhnicheskiy zhurnal - In Russian] 7 190

[47] Levack H H 1973 The Kaingaroa Air Sowing Era 1960-71 New Zeal. J. For. 18 104

[48] Derr H J and Mann W F J 1971 Direct-seeding pines in the south. vol 391 (Washington: Forest Service, USDA)

[49] Xiao X, Wei X, Liu Y, Ouyang X, Li Q and Ning J 2015 Aerial seeding: An effective forest restoration method in highly degraded forest landscapes of sub-tropic regions Forests 6 1748

[50] Revel J 1963 The role of artificial seeding For. Chron. 39 154

[51] National Research Council 1981 Sowing Forests From the Air (Washington, D.C.: National Academies Press)

[52] Faulkner M E, Trotman I G and Garnet B T 1972 Aerial seeding of pines for protection afforestation: Kaweka Forest, Hawke’s Bay New Zeal. J. For. 17 81

[53] Allen G S, Barber I K and Mahood I 1955 The 1951 aerial baiting and seeding project, ash river tract, MacMillan and Bloedel limited For. Chron. 31 45

[54] USDA 1963 Forest planting practice in the Central States. ed G A Limstrom (U.S. Forest Service, Central States Forest Experiment Station)

[55] Siren G 1955 The development of Spruce forest on raw humus sites in northern Finland and its ecology Acta For. Fenn. 62 408

[56] Li G, Liu Y, Ma L, Lv R, Yu H, Bai S and Kang Y 2009 Comparison of tree growth and undergrowth development in aerially seeded and planted Pinus tabulaeformis forests Front. For. China 4 283

[57] Zhang L, Hong G, Li Z, Gao X, Wu Y, Wang X, Wang P and Yang J 2018 Assessment of the Ecosystem Service Function of Sandy Lands at Different Times Following Aerial Seeding of an Endemic Species Sustainability 10 902

[58] Pyke D A, Wirth T A and Beyers J L 2013 Does Seeding After Wildfires in Rangelands Reduce Erosion or Invasive Species? Restor. Ecol. 21 415

[59] Elliott S, Blakesley D and Hardwick K 2013 Restoring tropical forests: a practical guide (Kew, UK: Royal Botanic Gardens)

[60] Sturmer J 2017 Climate change in drones’ sights with ambitious plan to remotely plant nearly 100,000 trees a day

[61] FAO/RECOFTC 2016 Forest landscape restoration for Asia-Pacific forests ed S Appanah (Bangkok, Thailand: Food and Agriculture Organization of the United Nations)

[62] Novikov A I and Saushkin V V 2018 Infrared range spectroscopy: the study of the pine seed coat parameters For. Eng. J. [Lesotekhnicheskiy zhurnal - In Russian] 3 30

[63] Novikov A I 2018 Biometric Features of Scots Pine in the Voronezh Nursery by Size Grading Seeds International Conference Reforestation Challenges ed V Ivetić and J Devetaković (University of Belgrade, Faculty of Forestry, Belgrade, Serbia: Reforesta) p 54