Half-metallic ferromagnetism and spin-polarization in CrO$_2$

L. Chioncel,1 H. Allmaier,1 E. Arrigoni,1 A. Yamashita,2 M. Daghofer,2 M.I. Katsnelson,3 and A.I. Lichtenstein4

1Institute of Theoretical Physics, Graz University of Technology, A-8010 Graz, Austria
2Max-Planck-Institut für Festkörperforschung Heisenbergstrasse 1, D-70569 Stuttgart, Germany
3University of Nijmegen, NL-6525 ED Nijmegen, The Netherlands
4Institute of Theoretical Physics, University of Hamburg, DE-20355 Hamburg, Germany

We present electronic structure calculations in combination with local and non-local many-body correlation effects for the half-metallic ferromagnet CrO$_2$. Both zero temperature results from a Variational Cluster Approach as well as finite-temperature Dynamical Mean Field Theory results support the existence of low-energy non-quasiparticle states, which turn out to be essential for a correct quantitative description of depolarisation effects.

In recent years new magnetoelectronic devices have emerged that are able to exploit both the charge and the spin of electrons by means of spin-polarized currents and spin-dependent conduction [1, 2]. The capabilities of these devices depend crucially upon the spin polarization of the underlying material. In this area half-metallic ferromagnets are of particular interest, especially chromium dioxide CrO$_2$ is a strong candidate for low-field magnetoresistance devices with a favorable switching behaviour at small fields [3].

Based on first-principle calculations CrO$_2$ is classified as a half-metallic ferromagnet [2]. Point contact measurements at superconductor metal interfaces reveal a spin polarization of the conduction electrons larger than 90% [1, 3], supporting the half-metallic nature predicted by band theory [4]. In addition, CrO$_2$ fulfills yet another essential requirement for practical purposes, namely a high Curie temperature, determined experimentally in the range of 385–400K [5]. The saturation magnetization at 10K was reported to be 1.92µ$_B$ per Cr site [6], which is close to the ideal value (2µ$_B$) and is consistent with half-metallicity. The magnetic susceptibility in the paramagnetic phase shows a Curie-Weiss like behavior indicating the presence of local moments [7], suggesting a mechanism of ferromagnetism beyond the standard band or Stoner-like model.

The band structure of CrO$_2$ has been calculated self-consistently within the local-spin-density-approximation (LSDA) by several authors. K.-H. Schwarz [2] first predicted the half-metallic behavior for this material with a spin moment of 2µ$_B$ per formula unit. Later on, several experiments including photoemission [11], soft x-ray absorption [12], resistivity [13], and optics [14] have suggested that electron correlations are essential to understand the underlying physical picture in CrO$_2$. In this spirit, LSDA+U calculations [15] have been used to study the effect of large on-site Coulomb interactions. These studies suggested that CrO$_2$ is a material with a negative charge transfer gap which leads to self-doping. In contrast to the on-site strong correlation description, transport and optical properties obtained within the density functional theory using LSDA and generalized-gradient approximation [16], suggest that the electron-magnon scattering is responsible for the renormalization of the one-electron bands. More recent model calculations also suggest the importance of orbital correlations [17, 18].

An appropriate treatment of correlation effects, which goes beyond the mean-field LSDA+U treatment is achieved in the framework of Dynamical Mean Field Theory (DMFT) [19], in which a local energy-dependent self-energy is adopted. However, nonlocal self-energy effects turn out to be important for a correct description of the so-called non-quasiparticle (NQP) states [20, 21], which are crucial for the depolarisation in half-metallic ferromagnets. [22, 23, 24, 25] For this reason, we present here for the first time a realistic electronic-structure calculation for CrO$_2$, where non-local self-energy effects are treated within the Variational Cluster Approach (VCA) [26, 27, 28, 29]. While the VCA calculation is currently limited to zero temperature, we also present finite-temperature results obtained within a DMFT description.

In order to achieve a realistic description of the material, the parameters of the correlated model Hamiltonian are determined via ab-initio electronic-structure calculations. CrO$_2$ has a rutile structure with Cr ions forming a tetragonal body-center lattice. Cr$^{4+}$ has a closed shell Ar core and two additional 3d electrons. The Cr ions are in the center of the CrO$_6$ octahedra. Therefore, the 3d orbitals are split into a t_{2g} triplet and an excited e_g doublet. With only two 3d electrons, important correlation effects take place essentially in the t_{2g} orbitals, while e_g states can be safely neglected. The cubic symmetry is further reduced to tetragonal due to a distortion of the octahedra, which partially lifts the degeneracy of the t_{2g} orbitals into a d_{xy} ground state and $d_{xz}+d_{yz}$ and $d_{xz}-d_{yz}$ excited states [17, 20].

We therefore restrict the VCA calculation to three orbitals on each site representing the Cr-t_{2g} manifold described by the Hamiltonian

\[
H = H_0 + \frac{1}{2} \sum_{i\{m,\sigma\}} U_{m'm''\sigma'} c_{i\sigma}^\dagger c_{i'm'}^\dagger c_{i'm''\sigma'} c_{i'm''\sigma},
\]

where $c_{i\sigma}$ destroys an electron with spin σ on orbital m on site i. Here, H_0 is the noninteracting part of the
Hamiltonian restricted to the t_{2g} orbitals obtained by the downfolding procedure implemented within the N-order Muffin-Tin Orbital (NMTO) method [31, 32] using the Local Density Approximation (LDA). In this way, the effects of the remaining orbitals are included effectively by renormalisation of hopping and on-site energy parameters. The on-site Coulomb-interaction terms in Eq. (1) are expressed in terms of the diagonal direct parameters. The off-diagonal direct coupling $U_{mm'm'} = U'$ and the exchange coupling $U_{mm'm'} = J$ [33]. Notice that spin-rotation invariance is automatically guaranteed by the form Eq. (1), i.e. spin-flip terms are also included in our calculation. The pair-hopping term is also included via $U_{mm'm'} = J$. The Coulomb-interaction (U) and Hund’s exchange (J) parameters between t_{2g} electrons are evaluated from first principles by means of a constrained LSDA method [34]. While this method is not very accurate, and may produce slightly different values depending on its exact implementation, it is quite clear that for CrO$_2$ the interaction parameters are not too strong. An appropriate choice is $U \approx 3$ eV and $J \approx 0.9$ eV. Corrections for a “double-counting” of the interaction only produces an irrelevant constant shift of the chemical potential [35], as we are considering a model Hamiltonian with fixed number of electrons.

The VCA accesses the physics of a lattice model in the thermodynamic limit by optimizing trial self-energies generated by a reference system. The reference system consists of an isolated cluster having the same interaction as the original lattice, but differing in the single-particle part of the Hamiltonian. An approximation to the self-energy of the lattice model is then obtained by finding the saddle point of an appropriate grand-canonical potential

$$\Omega = \Omega' + Tr \ln G_{VCA} - Tr \ln G_{cl}$$

with respect to the single-particle parameters of the reference system. [27] Here, G_{cl} is the Green’s function matrix of the reference system (cluster), which is calculated numerically as a function of frequency and spin, using a zero-temperature Lanczos procedure. The lattice Green’s function G_{VCA} is obtained by a matrix form of the Dyson equation, whereby the self-energy Σ of the reference system is used as an approximation to the lattice self-energy. Finally, Ω' is the grand-canonical potential of the reference system.

As a reference system for the VCA calculation, we take a cluster of four sites located in the (110) plane, and containing two from each inequivalent Cr$_1$ and Cr$_2$ sites. [32] We have checked that our results do not change substantially when using a cluster of 6 sites. We stress that the remaining hoppings, namely the ones between Cr$_1$-Cr$_1$ along x and y are not neglected, but taken into account in the noninteracting lattice Green’s function entering the Dyson equation in the expression for the VCA Green’s function. Quite generally, multi-orbital strongly-correlated systems show a competition between different magnetic and orbital-ordered phases. In order to check that the ferromagnetic phase is the one with the lowest energy, we have compared its grand-canonical potential with the one of different magnetic phases containing mixed antiferromagnetic and ferromagnetic components in different directions [34]. Notice that the particle density in the physical system is in general different from the one of the reference system [29]; the former turns out to be slightly doped with $n = 1.81$ particles per unit cell. Moreover, for the parameters we have used here, which are the appropriate ones for CrO$_2$, we confirm that the ferromagnetic state is more favorable energetically with respect to all antiferromagnetic states we have considered, as well as to the paramagnetic state.

In order to analyze the role of the different d orbitals, we present in Fig. 1 the orbital and spin-resolved density of states (DOS). For comparison, we show in the inset the results obtained within the mean-field-like LDA+U decoupling of the Hubbard interaction for the Cr-t$_{2g}$ orbitals. [15] In the LSDA+U, a pseudogap feature opens at the Fermi energy in the majority (spin up) DOS, which is attributed to the crystal-field splitting between the d_{yz-zx} and d_{xy} orbitals. This pseudogap is already present in the (uncorrelated) LSDA results shown in Fig. 2 although the effects of the interaction in LSDA+U enhance this effect. On contrary, in the VCA calculation, correlation effects again reduce the pseudogap feature with respect to LSDA+U and shift it
to higher energies.

A remarkable result of the VCA calculation is the presence of a significant amount of density of states at the Fermi energy originating from the putatively localized d_{xy} orbital. More specifically, we obtain that this orbital is not completely half filled, its occupation being $n^{xy} \approx 0.87$, while for the other two orbitals we have $n^{yz+xx} \approx 0.49$, and $n^{yz-xx} \approx 0.45$. This is confirmed by our LSDA+DMFT calculation, discussed below, for which $n^{xy} \approx 0.87$, and $n^{yz+xx} \approx 0.46$. Consequently, the d_{xy} orbital consists of quite itinerant electrons, although with a large effective mass, rather than of localized moments. Notice that our findings are in contrast to previous DMFT studies, in which the Fermi energy only touches the high-energy tail of the d_{xy} DOS, which can then be considered as localized moments. This is probably due to the large value of the interaction parameter U used in these calculations. We believe that the smaller value of $U \approx 3eV$ used here is more appropriate, as it is obtained from first principles.

In the minority spin channel, NQP states are clearly visible predominantly in the d_{yz+zx} orbitals just above the Fermi energy. The physical origin of NQP states is connected with the “spin-polaron” processes: the spin-down low-energy electron excitations, which are forbidden for half-metallic ferromagnets in the one-particle picture, turn out to be possible as superpositions of spin-up electron excitations and virtual magnons. An uniform superposition forms a state with the same total spin quantum number $S = (N + 1)/2$ (N is the particle number in the ground state) as the low-energy spin-up state, but with one “spin-flip”, i.e. with z-component $S_z = S - 1$. If the Hamiltonian is spin-rotation invariant this state with one additional spin-down particle must have the same energy as the low-energy state with one additional spin-up particle, although its weight is reduced by a factor $1/N$. We stress that spin-rotation invariance is crucial in order to obtain low-energy NQP states. For this reason, methods neglecting spin flip processes in Eq. (1) are not expected to provide a correct description of NQP states. Similar NQP states are obtained in the fully self-consistent LSDA+DMFT calculation described in the following paragraph.

The above VCA calculation was carried out by starting from a model, whose parameters are obtained ab-initio from electronic-structure calculations. This procedure does not take into account feedback effects of the correlation-induced charge redistribution into the LSDA potential. This is still a difficult task in a VCA calculation. In addition, correlations and states in the e_g d orbitals are neglected. In order to explore the consequences of these effects, and to access finite temperatures, which is more difficult within a Lanczos-VCA approach, we also carried out a multi-orbital LSDA+DMFT calculation, which includes the full Cr d-manifold, as well as a complete spd-basis set for all the atoms in the unit cell. In addition, we include both self-energy and charge self-consistency, which means that many-body effects are taken into account in the evaluation of the LSDA potentials. Detailed of this method have been given elsewhere. All previous LSDA+U or DMFT studies, independently yield a narrow almost flat band of d_{xy} character which produces the ferromagnetic phase of CrO$_2$. We show that in contrast to these previous results, the fully self-consistent LSDA+DMFT results, in agreement with the above non-local VCA approach, yields an itinerant d_{xy} orbital, which crosses the Fermi surface. It is interesting to note that despite the non-localized nature of the orbital, we still obtain a ferromagnetic phase.

![FIG. 2: (Color online) Density of states obtained within the LSDA and LSDA+DMFT calculations for different temperatures. The inset shows the results for a smaller energy window around the Fermi level.](image-url)
actively to the mechanism of the ferromagnetic ground state. The LSDA+DMFT calculation confirms the existence of minority spin states just above the Fermi energy, as observed in the VCA calculation.

We now show that many-body effects discussed above, especially the formation of NQP states, contribute significantly to the energy dependence of the spin polarization

\[
P(E) = \frac{(N_\uparrow(E) - N_\downarrow(E))/(N_\uparrow(E) + N_\downarrow(E))}{(N_\uparrow(E) - N_\downarrow(E))}, \quad (3)
\]

where \(N(E)\) is the density of states of majority \(\uparrow\) or minority \(\downarrow\) electrons. Fig. 3 shows a comparison between the measured and computed polarization for the different ab-initio many-body calculations discussed in the present paper. Due to the tails of NQP states, polarization is less than 100% even at the Fermi level. The LDA calculation clearly overestimates the spin polarization as it neglects correlation effects. On the other hand, both VCA and DMFT results show excellent agreement with the experiment at the Fermi level. At an energy of about 0.5 eV polarization is reduced by about 50%, and up to this energy the agreement of the VCA calculation is excellent, while DMFT results overestimate depolarization effects away from the Fermi energy. The disagreement for energies above \(\approx 0.5\) eV is probably due to terms not included in the VCA Hamiltonian \(H\), such as \(e_g\) orbitals which start becoming important at higher energies.

In conclusion, we addressed the effects of electronic correlations in \(\text{CrO}_2\) and showed how these considerably change the picture obtained within LSDA and LSDA+U, despite the fact that the interaction is not too strong. More specifically, while in LSDA+U exchange and crystal-field splitting pin the \(d_{xy}\) electrons to become localized moments, the competition with charge fluctuation effects, which are taken into account in our DMFT and VCA calculations, induce a ferromagnetic state in which also \(d_{xy}\) electrons are itinerant although with a large effective mass. We believe that this is the correct behavior at this intermediate value of the interaction parameters, which we derive \textit{ab initio}, in contrast to results obtained with a larger value of \(U\) \cite{17,18,15,38}.

We show that correlation-induced NQP states as well as an appropriate description of their nonlocal contributions to the self energy as obtained by VCA are crucial for a correct description of the energy dependence of the polarization. Additional effects, such as, e. g., disorder or phonons, are also expected to contribute to the spin depolarization.

We thank C. Scheiber for help in the spin-rotation invariant part of the code. This work is supported by the Austrian science fund (FWF project P18505-N16).

\[\begin{align*}
\text{FIG. 3: (color online) Energy dependence of the spin polarization obtained experimentally (Ref. 39, decorated solid line) and by different theoretical calculations LDA (dot-dashed), DMFT (dashed), VCA (solid) (Eq. 3). A broadening of 0.4 eV, corresponding to the experimental resolution, has been added to the theoretical curves.}
\end{align*}\]
[23] L. Chioncel, E. Arrigoni, M. I. Katsnelson, and A. I. Lichtenstein, Phys. Rev. Lett. 96, 137203 (2006).
[24] L. Chioncel et al., Phys. Rev. Lett. 96, 197203 (2006).
[25] L. Chioncel et al., Phys. Rev. B 71, 085111 (2005).
[26] M. Potthoff, M. Aichhorn, and C. Dahnken, Phys. Rev. Lett. 91, 206402 (2003).
[27] M. Potthoff, Eur. Phys. J. B 36, 335 (2003).
[28] M. Aichhorn and E. Arrigoni, Europhys. Lett. 72, 117 (2005).
[29] M. Aichhorn, E. Arrigoni, M. Potthoff, and W. Hanke, Phys. Rev. B 74, 024508 (2006).
[30] S. P. Lewis, P. B. Allen, and T. Sasaki, Phys. Rev. B 55, 10253 (1997).
[31] O. K. Andersen and T. Saha-Dasgupta, Phys. Rev. B 62, R16219 (2000).
[32] A. Yamasaki, L. Chioncel, A. I. Lichtenstein, and O. K. Andersen, Phys. Rev. B 74, 024419 (2006).
[33] A. I. Lichtenstein and M. I. Katsnelson, Phys. Rev. B 57, 6884 (1998).
[34] V. I. Anisimov and O. Gunnarsson, Phys. Rev. B 43, 7570 (1991).
[35] E. Pavarini et al., Phys. Rev. Lett. 92, 176403 (2004).
[36] details will be given elsewhere.
[37] L. Chioncel et al., Phys. Rev. B 67, 235106 (2003).
[38] A. Toropova, G. Kotliar, S. Y. Savrasov, and V. S. Oudovenko, Phys. Rev. B 71, 172403 (2005).
[39] D. J. Huang et al., Phys. Rev. B 67, 214419 (2003).