Search for pair-produced resonances decaying to jet pairs in proton-proton collisions at $\sqrt{s} = 8$ TeV

The CMS Collaboration

Abstract

Results are reported of a general search for pair production of heavy resonances decaying to pairs of jets in events with at least four jets. The study is based on up to $19.4\,\text{fb}^{-1}$ of integrated luminosity from proton-proton collisions at a center-of-mass energy of 8 TeV, recorded with the CMS detector at the LHC. Limits are determined on the production of scalar top quarks (top squarks) in the framework of R-parity violating supersymmetry and on the production of color-octet vector bosons (colorons). First limits at the LHC are placed on top squark production for two scenarios. The first assumes decay to a bottom quark and a light-flavor quark and is excluded for masses between 200 and 385 GeV, and the second assumes decay to a pair of light-flavor quarks and is excluded for masses between 200 and 350 GeV at 95% confidence level. Previous limits on colorons decaying to light-flavor quarks are extended to exclude masses from 200 to 835 GeV.

Submitted to Physics Letters B
1 Introduction

We present the results of a search for pair-produced dijet resonances decaying into light- and heavy-flavor quarks in multijet events. The analysis is based on data samples corresponding to as much as $19.4 \pm 0.5 \text{ fb}^{-1}$ of integrated luminosity from proton-proton collisions at $\sqrt{s} = 8 \text{ TeV}$, collected with the CMS detector at the CERN LHC in 2012. Events that have at least four jets with high transverse momentum (p_T) are selected and investigated for evidence of pair-produced dijet resonances.

Many models of particle physics beyond the standard model (SM) incorporate particles that decay into fully hadronic final states. Supersymmetric (SUSY) models are SM extensions, which simultaneously solve the hierarchy problem and unify particle interactions. In natural SUSY models, where there is minimal fine-tuning, the top quark superpartner (top squark) and the superpartners of the Higgs boson (higgsinos) are required to be light. Natural SUSY is underconstrained in certain R-parity violating (RPV) scenarios. R-parity is a quantum number defined as $R = (-1)^{3B + L + 2S}$, where B and L are the baryon and lepton numbers, respectively, and S is the spin. The RPV superpotential, W, is defined as:

$$W = \frac{1}{2} \lambda_{ijk} L_i L_j E^c_k + \lambda'_{ijk} L_i Q_j D^c_k + \frac{1}{2} \lambda''_{ijk} U^c_i D^c_j D^c_k,$$

where λ are the couplings, i,j,k are the generation indices, L and Q are the doublet superfields of the lepton and quark, respectively, and E^c, D^c, and U^c are the singlet superfields of the lepton, down-type and up-type quarks, respectively. Models that incorporate RPV may allow baryon number violation through a non-zero λ''_{UDD} coupling, and one such unconstrained scenario is that of the hadronically decaying top squark, $\tilde{t} \rightarrow qq'$. If the top squarks are pair-produced in hadronic collisions and then decay via such an RPV process, the final state would consist of four jets with no momentum imbalance in the transverse plane.

In addition to top squark production, hadron collider searches for pair production of resonances decaying into jet pairs are sensitive to a number of models that predict new particles carrying color quantum numbers. Some models predict pair production through gg interactions of color-octet vectors, also called colorons (C), which then decay to quark pairs. The associated final state of the signal is characterized by the presence of four high-p_T jets.

The CDF collaboration has placed 95% confidence level (CL) exclusion limits on top squark production followed by RPV decays in the mass range 50–90 GeV and on coloron production in the mass range 50–125 GeV. At the LHC, both ATLAS and CMS have performed searches for paired dijet resonances. While ATLAS has placed limits on scalar gluon masses between 100 and 287 GeV, and CMS on coloron masses between 250 and 740 GeV, so far neither search has been sensitive enough to set limits on hadronic RPV decays of directly produced top squarks.

In this paper, we concentrate on searches for top squarks and colorons. The benchmark signals are those where the top squark is the lightest supersymmetric particle, and in one scenario decays into two light quarks, and in the second scenario it decays into a b quark and a light quark. We separately consider the possibility of decays within the coloron model (gg → CC → qqq̅).

2 CMS experiment

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the superconducting solenoid volume...
are a silicon pixel and strip tracker, a lead tungstate electromagnetic calorimeter (ECAL), and a hadron calorimeter (HCAL), which is made of interleaved layers of scintillator and brass absorber. Muons are measured in gas ionization detectors embedded in the steel return yoke outside the solenoid. Extended forward calorimetry complements the coverage provided by the barrel and endcap detectors. Energy deposits from hadronic jets are measured using the ECAL and HCAL. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [2].

3 Triggering and object reconstruction

One data set was recorded over the entire 2012 data-taking period with a multilevel trigger system, which selected events with at least four jets with $p_T > 80$ GeV to be reconstructed from only calorimeter information. In addition, a second data set was recorded using the trigger with a lower jet p_T threshold, which was decreased progressively from 50 to 45 GeV. The latter data represent only a subset of the entire 2012 data set, corresponding to an integrated luminosity of 12.4 fb$^{-1}$. The analysis is separated into two parts: a dedicated “low-mass” search with a focus on the mass region from 200 to 300 GeV, which takes advantage of this lower jet p_T threshold, and a “high-mass” search focusing on top squark masses above 300 GeV, which uses the entire 19.4 fb$^{-1}$ data set.

The analysis is based upon objects reconstructed using the CMS Particle Flow algorithm [21]. This method combines calorimeter information with reconstructed charged particle tracks to identify individual particles such as photons, leptons, and neutral and charged hadrons. The energy of photons is directly obtained from the calibrated ECAL measurement. The energy of the electron is determined from a combination of its track momentum at the main interaction vertex, the corresponding ECAL cluster energy, and the energy sum of all bremsstrahlung photons associated to the track. The energy of a muon is obtained from its associated track momentum. The charged hadron energy is calculated from a combination of the track momentum and the corresponding ECAL and HCAL energies, corrected for zero-suppression effects, and calibrated for the combined response function of the calorimeters. Finally, the energy of neutral hadrons is obtained from the corresponding corrected ECAL and HCAL energies. Jets are reconstructed from the particle flow “objects” using the anti-k_T algorithm [22] with a distance parameter of 0.5.

Jet energy scale corrections [23] are applied to account for the combined response function of the calorimeters to hadrons. The corrections are derived from Monte Carlo (MC) simulation and are confirmed with in situ measurements of the energy balance of dijet and photon+jet events. In data, a small residual correction factor is included to account for differences in jet response between data and simulation. The total size of the applied corrections is approximately 5–10%, and the corresponding uncertainties vary from 3 to 5%, depending on the measured jet pseudorapidity η and p_T. To remove misidentified jets, which arise primarily from calorimeter noise, jet quality criteria [24] are applied. More than 99.8% of all selected jets, in both data and signal event samples, satisfy these criteria.

To identify jets produced by b quark hadronization, the analysis uses the medium selection of the combined secondary vertex b-tagging algorithm [25]. The algorithm employs a multivariate technique, which takes as input information from the transverse impact parameter with respect to the primary vertex of the associated tracks and from characteristics of the reconstructed secondary vertices. The output of the algorithm is used to discriminate b quark jets from light-flavor and gluon jets, with typical values of b-tagging efficiency and misidentifica-
tion probabilities of 72% and 1.1%, respectively.

4 Generation of simulated events

Both top squark production and coloron production are simulated using the MadGraph 5.1.5.12 [25] event generator with the CTEQ6L1 parton distribution functions [27], and their decays are simulated using the Pythia 6.426 [28] MC program. Top squark signal events are generated with up to two additional initial-state partons, and each top squark decays into two jets through the λ''_{UDD} quark RPV coupling. Two scenarios are considered for this coupling. First, the coupling λ''_{312}, where the three numerical subscripts refer to the quark generations of the corresponding quarks, is set to a non-zero value such that the decay of the top quark to two light-flavor jets is allowed. The second case instead sets a non-zero value for λ''_{323}, resulting in top squark decay into one b jet and one light-flavor jet. In both of the above cases, the branching ratio of the top squark decay to two jets is set to 100%. For the generation of this signal, all superpartners except the top squarks are taken to be decoupled [16–20] and no intermediate particles are produced in the top squark decay. Top squarks are generated with masses from 200 GeV to 1 TeV in 50 GeV steps for both coupling scenarios. The cross section estimates are made at next-to-leading order (NLO) with next-to-leading-logarithm (NLL) corrections [29–33], and assigned appropriate theoretical uncertainties [34]. For the coloron signal scenario, each coloron decays into two light-flavor jets with a branching ratio of 100%, and masses are generated from 200 GeV to 2 TeV. Backgrounds from SM multijet processes are simulated using MadGraph, which generates events with two to four partons via matrix element calculations, and these events are showered through Pythia. In all samples, the MLM matching procedure [35] is used to avoid double counting of jets, and simulation of the CMS detector is performed with Geant4 [36].

5 Event selection

Events recorded with the four-jet triggers are required to have a well-reconstructed primary event vertex [37]. Events must also contain at least four jets, each with $|\eta| < 2.5$ and reconstructed p_T greater than 80 GeV for the low-p_T trigger and 120 GeV for the higher-p_T trigger. With the above requirements, the offline efficiency is above 99% for all selected events.

The leading four jets, ordered in p_T, are used to create three unique combinations of dijet pairs per event. A distance variable is implemented to select the jet pairing that best corresponds to the two resonance decays, $\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$, where $\Delta \eta$ and $\Delta \phi$ are the differences in η and ϕ of between two the jets, respectively. This variable exploits the smaller relative distance between daughter jets from the same top squark parent decays compared to that between uncorrelated jets. For each dijet pair configuration the value of ΔR_{dijet} is calculated:

$$\Delta R_{dijet} = \sum_{i=1,2} |\Delta R^i - 1|,$$

where ΔR^i represents the separation between two jets in dijet pair i, and an offset of 1 is used to maximize the signal efficiency and to minimize dijet pair splitting effects. The configuration that minimizes the value ΔR_{dijet} is selected, with ΔR_{min} representing the minimum ΔR_{dijet} for the event. Figure [1] shows the distributions of the fourth highest jet p_T and the ΔR_{min} variable for data events, those of a simulated SM multijet sample, and those of 400 GeV top squark signal sample.
4 Event selection

Event selection

4

5

Fourth Jet p_T (GeV)

Inclusive data $M = 400$ GeV

SM multijet background (MC)

19.4 fb$^{-1}$ (8 TeV)

Events / 20 GeV

$-8 10$

$-7 10$

$-6 10$

$-5 10$

$-4 10$

$-3 10$

$-2 10$

$-1 10$

1 10

Inclusive data $= 400$ GeV

$\sim M_{SM}$ multijet background (MC)

(8 TeV)

$-1 19.4$ fb

CMS

ΔR_{\min}

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Events / 0.1 units

0

0.01

0.02

0.03

0.04

0.05

0.06

Inclusive data $= 400$ GeV

$\sim M_{SM}$ multijet background (MC)

(8 TeV)

$-1 19.4$ fb

CMS

$\Delta \eta_{dijet}$

0 0.01 0.02 0.03 0.04 0.05 0.06

Inclusive data $= 400$ GeV

$\sim M_{SM}$ multijet background (MC)

(8 TeV)

$-1 19.4$ fb

CMS

Figure 1: Distributions of the fourth highest jet p_T (left) and ΔR_{\min} (right) for events from data, the simulated SM multijet sample, and a 400 GeV top squark signal. Events contain at least four jets, each with $p_T > 120$ GeV and $|\eta| < 2.5$, and all distributions have an area normalized to unity.

Once a dijet pair configuration is chosen, two additional quantities are used to reject the backgrounds from SM multijet events and incorrect signal pairings: the pseudorapidity difference between the two dijet systems $\Delta \eta_{dijet}$, and the absolute value of the fractional mass difference $\Delta m/m_{av}$, where Δm is the difference between the two dijet masses and m_{av} is their average value. The $\Delta m/m_{av}$ quantity is small with a peak at zero in signal events where the correct pairing is chosen, while for SM multijet background or incorrectly paired signal events, this distribution is much broader. Thus, the sensitivity of the search benefits from imposing a maximum value on $\Delta m/m_{av}$. Similarly, it is advantageous to require that $\Delta \eta_{dijet}$ be small. This rejects background events with energy more evenly shared among the jets, since these typically yield higher values of $\Delta \eta_{dijet}$. Figure 2 shows the distributions of the $\Delta m/m_{av}$ and $\Delta \eta_{dijet}$ variables for data events, those of a simulated SM multijet sample, and those of 400 GeV top squark signal sample. An additional kinematic variable Δ is calculated for each dijet pair:

$$\Delta = \left(\sum_{i=1}^{12} |p_T^i| \right) - m_{av},$$

where the p_T sum is over the two jets in the dijet configuration. This type of variable has been used extensively in hadronic resonance searches at both the Tevatron and the LHC [15, 38–41]. Requiring a minimum value of Δ results in a lowering of the peak position value of the m_{av} distribution from background SM multijet events. With this selection the fit to the background can be extended to lower values of m_{av}, making a wider range of top squark and coloron masses accessible to the search.

Finally, as the presence of heavy-flavor final state jets is a natural extension of the RPV top squark scenarios, the use of b tagging is exploited to further increase signal sensitivity by increasing background rejection. We consider two scenarios: the heavy-flavor search, which uses b tagging to increase the sensitivity for top squark decays into heavy-flavor jets, and the inclusive search, which focuses instead on decays into light-flavor jets.

The optimization for the signal selection is performed as a function of the three kinematic variables described above: $\Delta m/m_{av}$, $\Delta \eta_{dijet}$, Δ, as well as the fourth jet p_T. Because the number of expected background events is large, we use S/\sqrt{B} as the metric for signal optimization, where S and B are the number of signal and background events, respectively, and B is determined by using the m_{av} of simulated SM events. The values of S and B are set to the number
of events within a window of width ±10% centered at the generated top squark mass, where the value of 10% is roughly twice the expected resolution for signal masses. We study this metric by evaluating S and B based on events passing a number of thresholds of each kinematic variable and obtain several maps, in which a value of S/\sqrt{B} is found for every combination of the four variables. These maps are produced in the low- and high-mass search regions, and for the inclusive and heavy-flavor analyses separately. An example of this is given in Fig. 3 where the distribution for a 500 GeV top squark and for a fit to the SM multijet distribution are shown for one operating point. The signal shape is bimodal owing to a small fraction of events with incorrect signal pairings, and the Gaussian peak centered at the generated mass is the part of the distribution used in the optimization. The threshold values of the four kinematic variables, corresponding to maximum values of S/\sqrt{B} in these maps, are taken as a working point. Because of similar results in this optimization, the inclusive and heavy-flavor searches use common working points, with the exception of the heavy-flavor analysis requirement of b tagging. A summary of the requirements is listed in Table 1 for both the low- and high-mass searches. An example of the selection is shown in Fig. 4. The correlation between the pseudodrapidity values for the two dijets is plotted, for both 400 GeV top squark and simulated SM samples, with the optimized $\Delta\eta_{\text{dijet}}$ threshold overlaid. For the heavy-flavor search, we repeat the optimization procedure by varying the selections based on the number of b-tagged jets in the event. We find that the optimal selection is the requirement that events contain at least two b-tagged jets among the four highest-p_T jets.

After all selection requirements are applied, the fraction of signal events remaining in the heavy-flavor search ranges from 0.4% to 1.2% for the low-mass search and from 0.4% to 1.6% for the high-mass search. For the inclusive search, the fraction of signal events remaining ranges from 1.4% to 7.4% for the low-mass search and from 1.4% to 6.5% for the high-mass search. In all scenarios, the leading efficiency loss is due to the required jet p_T thresholds. In the data, approximately 20% of the selected events passing the high-mass search criteria are in common with the low-mass search.

6 Background estimation and systematic uncertainties

The dominant background for this search comes from SM multijet events. Following a method used previously for similar resonance searches [39–42], the steeply falling SM background
Background estimation and systematic uncertainties

![Graph showing distributions of fit to background SM multijet events and a 500 GeV top squark, normalized to a factor of ten times its cross section, for the high-mass optimization scenario. The dotted vertical lines represent the integration window used by the optimization procedure.](image)

Figure 3: Distributions of the fit to background SM multijet events (solid red line) and a 500 GeV top squark (dashed blue line), normalized to a factor of ten times its cross section, are shown for the high-mass optimization scenario. The dotted vertical lines represent the integration window used by the optimization procedure.

![Graph showing the η value for the higher-p_T reconstructed dijet system versus that of the lower-p_T dijet system in the selected pair. This distribution is shown for 400 GeV top squark (left) and simulated SM multijet samples (right), with the right hand scale indicating the expected number of events per bin. The diagonal lines indicate the optimized region of allowed $\Delta \eta_{\text{dijet}}$ values, and events with values falling between the two lines pass this requirement.](image)

Figure 4: The η value for the higher-p_T reconstructed dijet system versus that of the lower-p_T dijet system in the selected pair. This distribution is shown for 400 GeV top squark (left) and simulated SM multijet samples (right), with the right hand scale indicating the expected number of events per bin. The diagonal lines indicate the optimized region of allowed $\Delta \eta_{\text{dijet}}$ values, and events with values falling between the two lines pass this requirement.

The shape is modeled with the use of a four-parameter function:

\[
\frac{dN}{dm_{\text{av}}} = p_0 \left(\frac{m_{\text{av}}}{\sqrt{s}} \right)^{p_1} \left(\frac{m_{\text{av}}}{\sqrt{s}} \right)^{p_2} \log \frac{m_{\text{av}}}{\sqrt{s}} \left(\frac{m_{\text{av}}}{\sqrt{s}} \right)^{p_3}
\]

where N is the number of events and p_0 through p_3 are parameters of the function. Localized deviations of the data from the background hypothesis are indications of a signal, and the fitted data distributions for the four search scenarios are shown in Fig. 5. The agreement of each background fit to its respective mass distribution is quantified by computing in each bin.
Table 1: Summary of the low- and high-mass selection criteria for both the inclusive and heavy-flavor analyses. For the heavy-flavor analysis, in addition to the requirements below, at least two of the four highest-\(p_T\) jets must be b-tagged.

	Low-mass search	High-mass search
Mass range	200–300 GeV	>300 GeV
Integrated luminosity	12.4 fb\(^{-1}\)	19.4 fb\(^{-1}\)
\(\Delta m/m_{av}\)	<0.15	<0.15
\(\Delta \eta_{dijet}\)	<1.0	<1.0
\(\Delta\)	>70 GeV	>100 GeV
Fourth jet \(p_T\)	>80 GeV	>120 GeV

the difference of the data and the fit, divided by the statistical uncertainty associated with the data. These distributions indicate that no significant deviation is found in any of the four search scenarios.

The dominant systematic uncertainties that affect the yield originate from six sources: the imperfect knowledge of the integrated luminosity (2.6\%) \(^1\); the simulation of initial-state radiation (5\%) \(^26\); the precision of the jet energy corrections (1–6.2\%) \(^23\); the jet energy resolution (10\%) \(^23\); the efficiency of b tagging (2\%) \(^25\); the modeling of the effect of multiple pp interactions (<1.5\%) \(^43\). We use log-normal priors to model systematic uncertainties on the signal, which are treated as nuisance parameters. For the uncertainty associated with the background, specifically the choice of function used to model the background shape, we consider several families of functions as a basis of comparison: exponentials, power-law functions, and Laurent series. Using a method previously employed by CMS \(^44\), we study the difference in expected yield in the presence of a signal by using each of these functions instead of the default one, using simulated SM events as the default background shape as input to the pseudo-experiments.

For each pseudo-experiment, each of the parameterizations is fit to the fluctuated background shape, and the largest value of the fractional difference between the alternate fit result and the default one is calculated for every \(m_{av}\) bin. The mean of the resulting distribution is taken as the bin-by-bin uncertainty for each alternate parameterization, and the average of the alternate parameterization uncertainties determines the overall assigned uncertainty. This uncertainty increases with \(m_{av}\) from 0.3\% to 0.6\% in the low-mass search range, and from 0.5\% to 30\% in the high-mass search range.

7 Results

We set upper limits on the production cross section using a Bayesian formalism with a uniform prior for the cross section. The binned likelihood \(L\) can be written as:

\[
L = \prod_i \frac{\mu_i^n e^{-\mu_i}}{n_i!},
\]

where \(\mu_i\) is defined as \(\mu_i = \alpha N_i(S) + N_i(B)\) and \(n_i\) is the measured number of events in the \(i\)th bin of \(m_{av}\). Here, \(N_i(S)\) is the number of expected events from the signal in the \(i\)th \(m_{av}\) bin, \(\alpha\) is a constant to scale the signal amplitude, and \(N_i(B)\) is the number of expected events from background in the \(i\)th \(m_{av}\) bin. The likelihood is combined with the prior and nuisance parameters, and then marginalized to give the posterior density for the signal cross section. Integrating the posterior density to 0.95 of the total gives the 95\% CL limit for the signal cross section. The
Figure 5: The m_{av} distributions with the superimposed fit from Eq. (4). The events shown satisfy requirements for the inclusive searches (left) and the heavy-flavor searches (right) in the low-mass (top) and high-mass (bottom) scenarios. The expectation for the top squark signal is indicated by the blue dashed line for the low-mass search ($M_{\tilde{t}} = 250$ GeV) and for the high-mass search ($M_{\tilde{t}} = 400$ GeV). The bottom part of each figure shows the difference in each bin between the data and the background estimate divided by the statistical uncertainty associated with the data, with the shaded region indicating the expected distribution in the case of the top squark signal appearing in data. The last bin in each m_{av} distribution also includes all overflow m_{av} events.

expected limits on the cross section are estimated with pseudo-experiments generated using background shapes, obtained by signal-plus-background fits to the data.

Figure 6 shows the observed and expected 95% CL upper limits on σ, the cross section, and a dotted red line indicating the NLO+NLL predictions for top squark production [29–33], where the top squark mass is equal to m_{av}. The vertical dashed blue line at a top squark mass of 300 GeV indicates the transition from the low- to the high-mass limits, and at this mass point the limits are shown for both analyses. The production of top squarks undergoing RPV decays into light-flavor jets is excluded at 95% CL for top squark masses from 200 to 350 GeV. Top squarks whose decay includes a heavy-flavor jet are excluded for masses between 200 and 385 GeV. We exclude the production of colorons decaying into four jets at 95% CL for masses between 200 and 835 GeV, as seen in Fig. 7.
Figure 6: Observed and expected 95% CL cross section limits as a function of top squark mass for the inclusive (left) and heavy-flavor (right) RPV top squark searches based on results from the low-mass (a) and high-mass (b) scenarios. The dashed red line shows the NLO+NLL predictions for top squark production, and the vertical dashed blue line indicates the boundary of the limits between the low- and high-mass scenarios.

Figure 7: Observed and expected 95% CL cross section limits as a function of coloron mass for the pair-produced coloron search based on results from the low-mass (a) and high-mass (b) scenarios. The dotted red line shows the NLO+NLL predictions for coloron pair production, and the vertical dashed blue line indicates the boundary of the limits between the low- and high-mass scenarios.

8 Summary

A search has been performed for pair production of heavy resonances decaying to pairs of jets in four-jet events from proton-proton collisions at $\sqrt{s} = 8$ TeV with the CMS detector. The distribution in the average mass of selected dijet pairs has been investigated for localized disagreements between the data and the background estimate. This method takes advantage of a number of additional optimized kinematic requirements imposed on the dijet pair. No significant deviation is found between the selected events and the expected standard model multijet background. Limits are placed on the production of colorons decaying into four jets with a 100% branching fraction, excluding at 95% confidence level, masses between 200 and 835 GeV. For this model, these results include first limits in the mass ranges of 200–250 GeV and 740–835 GeV, extending previous limits [15] to lower masses by 50 GeV, and to higher masses by 95 GeV. Limits are set on top squark pair production through the λ''_{UUDD} coupling to final states with either only light-flavor jets or both light- and heavy-flavor jets with a 100% branching fraction. We exclude at a 95% confidence level top squark production followed by R-parity
violating decays to light-flavor jets for top squark masses from 200 to 350 GeV and decays to heavy-flavor jets for masses between 200 and 385 GeV. Both sets of limits are the most stringent such limits to date, and the first from the LHC for this model of R-parity violating top squark decay.

Acknowledgments

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS; MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS programme of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund; the Compagnia di San Paolo (Torino); the Consorzio per la Fisica (Trieste); MIUR project 20108T4XTM (Italy); the Thalis and Aristeia programmes cofinanced by EU-ESF and the Greek NSRF; and the National Priorities Research Program by Qatar National Research Fund.

References

[1] CMS Collaboration, “CMS Luminosity Based on Pixel Cluster Counting – Summer 2013 Update”, CMS Physics Analysis Summary CMS-PAS-LUM-13-001, 2013.

[2] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[3] H. P. Nilles, “Supersymmetry, supergravity and particle physics”, Phys. Rep. 110 (1984) 1, doi:10.1016/0370-1573(84)90008-5.

[4] H. E. Haber and G. L. Kane, “The search for supersymmetry: Probing physics beyond the standard model”, Phys. Rep. 117 (1985) 75, doi:10.1016/0370-1573(85)90051-1.
[5] M. Papucci, J. Ruderman, and A. Weiler, “Natural SUSY endures”, *JHEP* 09 (2012) 035, doi:10.1007/JHEP09(2012)035

[6] R. Barbieri and G. F. Giudice, “Upper bounds on supersymmetric particle masses”, *Nucl. Phys. B* 306 (1988) 63, doi:10.1016/0550-3213(88)90171-X

[7] S. Dimopoulos and G. F. Giudice, “Naturalness constraints in supersymmetric theories with nonuniversal soft terms”, *Phys. Lett. B* 57 (1995) 573, doi:10.1016/0370-2693(95)00961-J, arXiv:hep-ph/9507282

[8] R. Barbieri and D. Pappadopulo, “S-particles at their naturalness limits”, *JHEP* 10 (2009) 61, doi:10.1088/1126-6708/2009/10/061, arXiv:0906.4546

[9] A. G. Cohen, D. B. Kaplan, and A. E. Nelson, “The more minimal supersymmetric standard model”, *Phys. Lett. B* 388 (1996) 588, doi:10.1016/S0370-2693(96)01183-5, arXiv:hep-ph/9607394

[10] R. Barbier et al., “R-Parity-violating supersymmetry”, *Phys. Rep.* 420 (2005) 1, doi:10.1016/j.physrep.2005.08.006

[11] U. Sarid and S. D. Thomas, “Mesino–Antimesino Oscillations”, *Phys. Rev. Lett.* 85 (2000) 1178, doi:10.1103/PhysRevLett.85.1178, arXiv:hep-ph/9909349

[12] B. A. Dobrescu, K. Kong, and R. Mahbubani, “Massive color-octet bosons and pairs of resonances at hadron colliders”, *Phys. Lett. B* 670 (2008) 119, doi:10.1016/j.physletb.2008.10.048, arXiv:0709.2378

[13] CDF Collaboration, “Search for Pair Production of Strongly Interacting Particles Decaying to Pairs of Jets in $p\bar{p}$ Collisions at $\sqrt{s} = 1.96$ TeV”, *Phys. Rev. Lett.* 111 (2013) 031802, doi:10.1103/PhysRevLett.111.031802, arXiv:1210.4826

[14] ATLAS Collaboration, “Search for pair-produced massive coloured scalars in four-jet final states with the ATLAS detector in proton-proton collisions at $\sqrt{s} = 7$ TeV”, *Eur. Phys. J. C* 73 (2013) 2263, doi:10.1140/epjc/s10052-012-2263-z, arXiv:1210.4826

[15] CMS Collaboration, “Search for pair-produced dijet resonances in four-jet final states in pp collisions at $\sqrt{s} = 7$ TeV”, *Phys. Rev. Lett.* 110 (2013) 141802, doi:10.1103/PhysRevLett.110.141802, arXiv:1302.0531

[16] E. Farhi and L. Susskind, “Grand Unified Theory with Heavy Color”, *Phys. Rev. D* 20 (1979) 3404, doi:10.1103/PhysRevD.20.3404

[17] W. J. Marciano, “Exotic New Quarks and Dynamical Symmetry Breaking”, *Phys. Rev. D* 21 (1980) 2425, doi:10.1103/PhysRevD.21.2425

[18] P. H. Frampton and S. L. Glashow, “Unifiable Chiral Color with Natural Glashow-Iliopoulos-Maiani Mechanism”, *Phys. Rev. Lett.* 58 (1987) 2168, doi:10.1103/PhysRevLett.58.2168

[19] P. H. Frampton and S. L. Glashow, “Chiral Color: An Alternative to the Standard Model”, *Phys. Lett. B* 190 (1987) 157, doi:10.1016/0370-2693(87)90859-8

[20] R. S. Chivukula, M. Golden, and E. H. Simmons, “Multi-jet Physics at Hadron Colliders”, *Nucl. Phys. B* 363 (1991) 83, doi:10.1016/0550-3213(91)90235-P
[21] CMS Collaboration, “Commissioning of the Particle-flow Event Reconstruction with the first LHC collisions recorded in the CMS detector”, CMS Physics Analysis Summary CMS-PAS-PFT-10-001, 2010.

[22] M. Cacciari, G. P. Salam, and G. Soyez, “The Anti-k_t Jet Clustering Algorithm”, JHEP 04 (2008) 63, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189

[23] CMS Collaboration, “Determination of jet energy calibration and transverse momentum resolution in CMS”, JINST 6 (2011) 11002, doi:10.1088/1748-0221/6/11/P11002, arXiv:1107.4277

[24] CMS Collaboration, “Jet Performance in pp Collisions at 7 TeV”, CMS Physics Analysis Summary CMS-PAS-JME-10-003, 2010.

[25] CMS Collaboration, “Identification of b-quark jets with the CMS experiment”, JINST 8 (2013) P04013, doi:10.1088/1748-0221/8/04/P04013, arXiv:1211.4462

[26] J. Alwall et al., “The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations”, JHEP 07 (2014) 079, doi:10.1007/JHEP07(2014)079, arXiv:1405.0301

[27] J. Pumplin et al., “New generation of parton distributions with uncertainties from global QCD analysis”, JHEP 07 (2002) 012, doi:10.1088/1126-6708/2002/07/012, arXiv:hep-ph/0201195.

[28] T. Sjöstrand, S. Mrenna, and P. Skands, “PYTHIA 6.4 physics and manual”, JHEP 05 (2006) 26, doi:10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175

[29] W. Beenakker, R. Höpker, M. Spira, and P. M. Zerwas, “Squark and gluino production at hadron colliders”, Nucl. Phys. B 492 (1997) 51, doi:10.1016/S0550-3213(97)80027-2, arXiv:hep-ph/9610490

[30] A. Kulesza and L. Motyka, “Threshold Resummation for Squark-Antisquark and Gluino-Pair Production at the LHC”, Phys. Rev. Lett. 102 (2009) 111802, doi:10.1103/PhysRevLett.102.111802, arXiv:0807.2405

[31] A. Kulesza and L. Motyka, “Soft gluon resummation for the production of gluino-gluino and squark-antisquark pairs at the LHC”, Phys. Rev. D 80 (2009) 095004, doi:10.1103/PhysRevD.80.095004, arXiv:0905.4749

[32] W. Beenakker et al., “Soft-gluon resummation for squark and gluino hadroproduction”, JHEP 12 (2009) 041, doi:10.1088/1126-6708/2009/12/041, arXiv:0909.4418

[33] W. Beenakker et al., “Squark and gluino hadroproduction”, Int. J. Mod. Phys. A 26 (2011) 2637, doi:10.1142/S0217751X11053560, arXiv:1105.1110

[34] M. Krämer et al., “Supersymmetry production cross sections in pp collisions at $\sqrt{s} = 7$ TeV”, (2012), arXiv:1206.2892

[35] S. Mrenna and P. Richardson, “Matching matrix elements and parton showers with HERWIG and PYTHIA”, JHEP 05 (2004) 40, doi:10.1088/1126-6708/2004/05/040, arXiv:hep-ph/0312274

[36] GEANT4 Collaboration, “Geant4—a simulation toolkit”, Nucl. Instrum. Meth. A 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8
[37] CMS Collaboration, “Description and performance of track and primary-vertex reconstruction with the CMS tracker”, *JINST* **9** (2014) P10009, doi:10.1088/1748-0221/9/10/P10009, arXiv:1405.6569.

[38] CDF Collaboration, “First search for multijet resonances in \(\sqrt{s} = 1.96 \) TeV p\(\bar{p} \) collisions”, *Phys. Rev. Lett.* **107** (2011) 042001, doi:10.1103/PhysRevLett.107.042001, arXiv:1105.2815.

[39] CMS Collaboration, “Search for three-jet resonances in pp collisions at \(\sqrt{s} = 7 \) TeV”, *Phys. Rev. Lett.* **107** (2011) 101801, doi:10.1103/PhysRevLett.107.101801, arXiv:1107.3084.

[40] CMS Collaboration, “Search for three-jet resonances in pp collisions at \(\sqrt{s} = 7 \) TeV”, *Phys. Lett. B* **718** (2012) 329, doi:10.1016/j.physletb.2012.10.048, arXiv:1208.2931.

[41] CMS Collaboration, “Searches for light- and heavy-flavour three-jet resonances in pp collisions at \(\sqrt{s} = 8 \) TeV”, *Phys. Lett. B* **730** (2014) 193, doi:10.1016/j.physletb.2014.01.049.

[42] CMS Collaboration, “Search for narrow resonances using the dijet mass spectrum in pp collisions at \(\sqrt{s} = 8 \) TeV”, *Phys. Rev. D* **87** (2013) 114015, doi:10.1103/PhysRevD.87.114015, arXiv:1302.4794.

[43] CMS Collaboration, “Measurement of the inelastic proton-proton cross section at \(\sqrt{s} = 7 \) TeV”, *Phys. Lett. B* **722** (2013) 5, doi:10.1016/j.physletb.2013.03.024.

[44] CMS Collaboration, “Observation of the diphoton decay of the Higgs boson and measurement of its properties”, *Eur. Phys. J. C* **74** (2014) 3076, doi:10.1140/epjc/s10052-014-3076-z.
9 The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut f"ur Hochenergiephysik der OeAW, Wien, Austria
W. Adam, T. Bergauer, M. Dragicevic, J. Erö, M. Friedl, R. Frühwirth1, V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler1, W. Kiesenhofer, V. Knünz, M. Krammer1, I. Krätschmer, D. Liko, I. Mikulec, D. Rabady2, B. Rahbaran, H. Rohringer, R. Schöfbeck, J. Strauss, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz1

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
S. Alderweireldt, S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, J. Lauwers, S. Luyckx, S. Ochesanu, R. Rougny, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, S. Blyweert, J. D’Hondt, N. Daci, N. Heracleous, J. Keaveney, S. Lowette, M. Maes, A. Olbrechts, Q. Python, D. Strom, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Université Libre de Bruxelles, Bruxelles, Belgium
C. Caillol, B. Clerbaux, G. De Lentdecker, D. Dobur, L. Favart, A.P.R. Gay, A. Grebenyuk, A. Léonard, A. Mohammadi, L. Perniè2, A. Randle-conde, T. Reis, T. Seva, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang, F. Zenoni

Ghent University, Ghent, Belgium
V. Adler, K. Beernaert, L. Benucci, A. Cimmino, S. Costantini, S. Cruyck, S. Dildick, A. Fagot, G. Garcia, J. McCartin, A.A. Ocampo Rios, D. Poyraz, D. Ryckbosch, S. Salva Diblen, M. Sigamani, N. Strobbe, F. Thyssen, M. Tytgat, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, C. Beluffi3, G. Bruno, R. Castello, A. Caudron, L. Cear, G.G. Da Silveira, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco4, J. Hollar, A. Jafari, P. Jez, M. Komm, V. Lemaître, C. Nuttens, L. Perrini, A. Pin, K. Piotrzkowski, A. Popov5, L. Quertenmont, M. Selvaggi, M. Vidal Marono, J.M. Vizan Garcia

Université de Mons, Mons, Belgium
N. Beliy, T. Caebers, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
W.L. Aldá Júnior, G.A. Alves, L. Brito, M. Correa Martins Junior, T. Dos Reis Martins, J. Molina, C. Mora Herrera, M.E. Pol, P. Rebello Teles

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W. Carvalho, J. Chinellato6, A. Custódio, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, D. Matos Figueiredo, L. Mundim, H. Nogima, W.L. Prado Da Silva, J. Santaolalla, A. Santoro, A. Sznajder, E.J. Tonelli Manganote6, A. Vilela Pereira
Universidade Estadual Paulista, Universidade Federal do ABC, São Paulo, Brazil
C.A. Bernardes, S. Dogra, T.R. Fernandez Perez Tomei, E.M. Gregores, P.G. Mercadante, S.F. Novaes, Sandra S. Padula

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
A. Aleksandrov, V. Genchev, R. Hadjiiska, P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, S. Stoykova, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, T. Cheng, R. Du, C.H. Jiang, R. Plestina, F. Romeo, J. Tao, Z. Wang

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, Z. Xu, W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, A. Cabrera, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
N. Godinovic, D. Lelas, D. Polic, I. Puljak

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, L. Sudic

University of Cyprus, Nicosia, Cyprus
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Bodlak, M. Finger, M. Finger Jr.

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran, S. Elgammal, A. Ellithi Kamel, A. Radi

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Murumaa, M. Raidal, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Härkönen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva
A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, S. Naumann-Emme, A. Nayak, E. Ntomari, H. Perrey, D. Pitzl, R. Placakyte, A. Raspereza, P.M. Ribeiro Cipriano, B. Roland, E. Ron, M.O. Sahin, J. Salfeld-Nebgen, P. Saxena, T. Schoerner-Sadenius, M. Schröder, C. Seitz, S. Spannagel, A.D.R. Vargas Trevino, R. Walsh, C. Wissing

University of Hamburg, Hamburg, Germany
V. Blobel, M. Centis Vignali, A.R. Draeger, J. Erfle, E. Garutti, K. Goebel, M. Görner, J. Haller, M. Hoffmann, R.S. Höing, A. Junkes, H. Kirschenmann, R. Klanner, R. Kogler, J. Lange, T. Lapsien, T. Lenz, I. Marchesini, J. Ott, T. Peiffer, A. Perieanu, N. Pietsch, J. Poehlsen, T. Poehlsen, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, M. Seidel, V. Sola, H. Stadie, G. Steinbrück, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm, M. Feindt, F. Freisch, M. Giffels, A. Gilbert, F. Hartmann, T. Hauth, U. Husemann, I. Katkov, A. Kornmayer, P. Lobelle Pardo, M.U. Mozer, T. Müller, Th. Müller, A. Nürnberg, G. Quast, K. Rabbertz, S. Röcker, H.J. Simonis, F.M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, A. Markou, C. Markou, A. Psallidas, I. Topsis-Giotis

University of Athens, Athens, Greece
A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Ioánnina, Ioánnina, Greece
X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas

Wigner Research Centre for Physics, Budapest, Hungary
G. Benco, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Vespremi, G. Vesztergombi, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
A. Makovec, P. Raics, Z.L. Trocsanyi, B. Újvari

National Institute of Science Education and Research, Bhubaneswar, India
S.K. Swain

Panjab University, Chandigarh, India
S.B. Beri, V. Bhattacharya, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma

University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma

Saha Institute of Nuclear Physics, Kolkata, India
S. Banerjee, S. Bhattacharya, K. Chatterjee, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, A. Modak, S. Mukherjee, D. Roy, S. Sarkar, M. Sharan
Bhabha Atomic Research Centre, Mumbai, India
A. Abdulsalam, D. Dutta, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research, Mumbai, India
T. Aziz, S. Banerjee, S. Bhowmik, R.M. Chatterjee, R.K. Dewanjee, S. Dugad, S. Ganguly, S. Ghosh, M. Guchait, A. Gurtu, G. Kole, S. Kumar, M. Maity, G. Majumder, K. Mazumdar, G.B. Mohanty, B. Parida, K. Sudhakar, N. Wickramage

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
H. Bakhshiansohi, H. Behnamian, S.M. Etesami, A. Fahim, R. Goldouzian, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Pakiatin Mehdiabadi, F. Rezaei Hosseinabadi, B. Safarzadeh, M. Zeinali

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari, Università di Bari, Politecnico di Bari, Bari, Italy
M. Abbrescia, C. Calabria, S.S. Chhibra, A. Colaleo, D. Creanza, N. De Filippis, M. De Palma, L. Fiore, G. Iselli, G. Maggi, M. Maggri, S. My, S. Nuzzo, A. Pompili, G. Pugliese, R. Radogna, G. Selvaggi, A. Sharma, L. Silvestris, R. Venditti, P. Verwilligen

INFN Sezione di Bologna, Università di Bologna, Bologna, Italy
G. Abbiendi, A.C. Benvenuti, D. Bonacorsi, S. Braibant-Giacomelli, L. Brigliadori, R. Campanini, P. Capiluppi, A. Castro, F.R. Cavallo, G. Codispoti, M. Cuffiani, G.M. Dallavalle, F. Fabbri, A. Fanfani, D. Fasanella, P. Giacomelli, C. Grandi, L. Guiducci, S. Marcellini, G. Masetti, A. Montanari, F.L. Navarria, A. Perrotta, A.M. Rossi, T. Rovelli, G.P. Siroli, N. Tosi, R. Travaglini

INFN Sezione di Catania, Università di Catania, CSFNSM, Catania, Italy
S. Albergo, G. Cappello, M. Chiorboli, S. Costa, F. Giordano, R. Potenza, A. Tricomi, C. Tuve

INFN Sezione di Firenze, Università di Firenze, Firenze, Italy
G. Barbaglio, V. Ciulli, C. Civinini, R. D’Alessandro, E. Focardi, E. Gallo, S. Gonzi, V. Gori, P. Lenzini, M. Meschini, S. Paolotti, G. Sguazzoni, A. Tropiano

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo

INFN Sezione di Genova, Università di Genova, Genova, Italy
R. Ferretti, F. Ferro, M. Lo Vetere, E. Robutti, S. Tosi

INFN Sezione di Milano-Bicocca, Università di Milano-Bicocca, Milano, Italy
M.E. Dinardo, S. Fiorendi, S. Gennai, R. Gerosa, A. Ghezzi, P. Govoni, M.T. Lucchini, S. Malvezzi, R.A. Manzonii, A. Martelli, B. Marzocchi, D. Menasse, L. Moroni, M. Paganoni, D. Pedrini, S. Ragazzi, N. Redaelli, T. Tabarelli de Fatis

INFN Sezione di Napoli, Università di Napoli Federico II, Università della Basilicata (Potenza), Università G. Marconi (Roma), Napoli, Italy
S. Buontempo, N. Cavallo, S. Di Guida, F. Fabozzi, A.O.M. Iorio, L. Lista, S. Meola, M. Merola, P. Paolucci
INFN Sezione di Padova, Università di Padova, Università di Trento (Trento), Padova, Italy
P. Azzi, N. Bacchetta, D. Bisello, A. Branca, R. Carlin, P. Checchia, M. Dall’Ossio, T. Dorigo, U. Dosselli, M. Galanti, F. Gasparini, U. Gasparini, A. Gozzelino, K. Kanishchev, S. Lacaprara, M. Margoni, A.T. Meneguzzo, J. Pazzini, N. Pozzobon, P. Ronchese, F. Simonetto, E. Torassa, M. Tosi, P. Zotto, A. Zucchetta, G. Zumerle

INFN Sezione di Pavia, Università di Pavia, Pavia, Italy
M. Gabusi, S.P. Ratti, V. Re, C. Riccardi, P. Salvini, P. Vitulo

INFN Sezione di Perugia, Università di Perugia, Perugia, Italy
M. Biasini, G.M. Bilei, D. Ciangottini, L. Fanò, P. Lariccia, G. Mantovani, M. Menichelli, A. Saha, A. Santocchia

INFN Sezione di Pisa, Università di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy
K. Androsov, P. Azzurri, G. Bagliesi, J. Bernardini, T. Boccali, G. Broccoli, R. Castaldi, M.A. Ciocci, R. Dell’Orso, S. Donato, G. Fedi, F. Fiori, L. Foà, A. Giassi, M.T. Grippo, F. Ligabue, T. Lomtadze, L. Martini, A. Messineo, C.S. Moon, F. Palla, A. Rizzi, A. Savoy-Navarro, A.T. Serban, P. Spagnolo, P. Squillacioti, R. Tencini, G. Tonelli, A. Venturi, P.G. Verdini, C. Vernieri

INFN Sezione di Roma, Università di Roma, Roma, Italy
L. Barone, F. Cavallari, G. D’imperio, D. Del Re, M. Diemoz, C. Jordà, E. Longo, F. Margaroni, P. Meridiani, F. Michelini, G. Organtini, R. Paramatti, S. Rahatlou, C. Rovelli, F. Santanastasio, L. Soffi, P. Traczyk

INFN Sezione di Torino, Università di Torino, Università del Piemonte Orientale (Novara), Torino, Italy
N. Amapane, R. Arcidiacono, S. Argiro, M. Arneodo, R. Bellan, C. Biino, N. Cartiglia, S. Casasus, M. Costa, R. Covarelli, A. Degano, N. Demaria, L. Fincos, C. Mariotti, S. Maselli, E. Migliore, V. Monaco, M. Musich, M.M. Obertino, L. Pacher, N. Pastrone, M. Pelliccioni, G.L. Pinna Angioni, A. Potenza, A. Romero, M. Ruspa, R. Sacchi, A. Solano, A. Staalano, U. Tamponi

INFN Sezione di Trieste, Università di Trieste, Trieste, Italy
S. Belforte, V. Candelise, M. Casarsa, F. Cossutti, G. Della Ricca, B. Gobbo, C. La Licata, M. Marone, A. Schizzi, T. Umer, A. Zanetti

Kangwon National University, Chunchon, Korea
S. Chang, A. Kropivnitskaya, S.K. Nam

Kyuungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, H. Park, A. Sakharov, D.C. Son

Chonbuk National University, Jeonju, Korea
T.J. Kim, M.S. Ryu

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, D.H. Moon, S. Song

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, B. Lee, K.S. Lee, S.K. Park, Y. Roh
Seoul National University, Seoul, Korea
H.D. Yoo

University of Seoul, Seoul, Korea
M. Choi, J.H. Kim, I.C. Park, G. Ryu

Sungkyunkwan University, Suwon, Korea
Y. Choi, Y.K. Choi, J. Goh, D. Kim, E. Kwon, J. Lee, I. Yu

Vilnius University, Vilnius, Lithuania
A. Juodagalvis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
J.R. Komaragiri, M.A.B. Md Ali

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
E. Casimiro Linares, H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, A. Hernandez-Almada, R. Lopez-Fernandez, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler, S. Reucroft

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, L. Lloret Iglesias, F. Nguyen, J. Rodrigues Antunes, J. Seixas, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, V. Konoplyanikov, A. Lanev, A. Malakhov, V. Matveev,28 P. Moisenz, V. Palchik, V. Perelygin, S. Shmatov, N. Skatchkov, V. Smirnov, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim, E. Kuznetsova, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev
Institute for Nuclear Research, Moscow, Russia
Yu. Andreiev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lyakhovskaya, V. Popov, I. Pozdnyakov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin

P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin30, I. Dremin30, M. Kirakosyan, A. Leonidov30, G. Mesyats, S.V. Rusakov, A. Vinogradov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, M. Dubinin31, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourchanovitch, S. Toshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic32, M. Ekmedzic, J. Milosevic, V. Rekovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
J. Alcaraz Maestre, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Domínguez Vázquez, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, M. Missiroli, D. Moran

Universidad de Oviedo, Oviedo, Spain
H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, J. Duarte Campderros, M. Fernandez, G. Gomez, A. Graziano, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, J. Piedra Gomez, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, A. Benaglia, J. Bendavid, L. Benhabib, J.F. Benitez, P. Bloch, A. Bocci, A. Bonato, O. Bondu, C. Botta, H. Breuker, T. Camporesi, G. Cerminara, S. Colafranceschi33, M. D’Alfonso, D. d’Enterria, A. Dabrowski, A. David, F. De Guio, A. De Roeck, S. De Visscher, E. Di Marco, M. Dobson, M. Dordevic, B. Dorney, N. Dupont-Sagorin, A. Elliott-Peisert, G. Franzoni, W. Funk, D. Gigi, K. Gill, D. Giordano, M. Girone, F. Glege, R. Guida, S. Gunacker, M. Guthoff, J. Hammer, M. Hansen, P. Harris, J. Hegeman, V. Innocente, P. Janot, K. Kousouris, K. Krajczar, P. Lecoq,
C. Lourenço, N. Magini, L. Malgeri, M. Mannelli, J. Marrouche, L. Masetti, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, S. Morovic, M. Mulders, L. Orsini, L. Pape, E. Perez, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pimiä, D. Piparo, M. Plagge, A. Racz, G. Rolandi, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Sphicas, D. Spiga, J. Steggemann, B. Stieger, M. Stoye, Y. Takahashi, D. Treille, A. Tsirou, G.I. Veres, N. Wardle, H.K. Wöhri, H. Wollny, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, D. Renker, T. Rohe

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
F. Bachmair, L. Bäni, L. Bianchini, M.A. Buchmann, B. Casal, N. Chanon, G. Dissertori, M. Dittmar, M. Donegà, M. Dünser, P. Eller, C. Grab, D. Hits, J. Hoss, W. Lustermann, B. Mangano, A.C. Marini, M. Marionneau, P. Martinez Ruiz del Arbol, M. Masciovecchio, D. Meister, N. Mohr, P. Musella, C. Nägeli, F. Nessi-Tedaldi, F. Pandolfi, F. Pauss, L. Perrozzi, M. Peruzzi, M. Quittnat, L. Rebane, M. Rossini, A. Starodumov, M. Takahashi, K. Theofilatos, R. Wallny, H.A. Weber

Universität Zürich, Zurich, Switzerland
C. Amsler, M.F. Canelli, V. Chiochia, A. De Cosa, A. Hinzzmann, T. Hreus, B. Kilminster, C. Lange, B. Millan Mejias, J. Ngadiuba, D. Pinna, P. Robmann, F.J. Ronga, S. Taroni, M. Verzetti, Y. Yang

National Central University, Chung-Li, Taiwan
M. Cardaci, K.H. Chen, C. Ferro, C.M. Kuo, W. Lin, Y.J. Lu, R. Volpe, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
P. Chang, Y.H. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, U. Grundler, W.-S. Hou, Y.F. Liu, R.-S. Lu, E. Petrakou, Y.M. Tzeng, R. Wilken

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjande

Cukurova University, Adana, Turkey
A. Adiguzel, M.N. Bakirci, S. Cerci, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, Y. Guler, E. Gurpinar, I. Hos, E.E. Kangal, A. Kayis Topaksu, G. Onengut, K. Ozdemir, S. Ozturk, A. Polatoz, D. Sunar Cerci, B. Tali, H. Topakli, M. Vergili, C. Zorbilmez

Middle East Technical University, Physics Department, Ankara, Turkey
I.V. Akin, B. Bilin, S. Bilmis, H. Gamsizkan, B. Isildak, G. Karapinar, K. Ocalan, S. Sekmen, U.E. Surat, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E.A. Albayrak, E. Gülmez, M. Kaya, O. Kaya, T. Yetkin

Istanbul Technical University, Istanbul, Turkey
K. Cankocak, F.I. Vardarlı

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom
J.J. Brooke, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath,
The CMS Collaboration

J. Jacob, L. Kreczko, C. Lucas, Z. Meng, D.M. Newbold, S. Paramesvaran, A. Poll, T. Sakuma, S. Seif El Nasr-storey, S. Senkin, V.J. Smith

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams, W.J. Womersley, S.D. Worm

Imperial College, London, United Kingdom
M. Baber, R. Bainbridge, O. Buchmuller, D. Burton, D. Colling, N. Cripps, P. Dauncey, G. Davies, M. Della Negra, P. Dunne, A. Elwood, W. Ferguson, J. Fulcher, D. Futyan, G. Hall, G. Iles, M. Jarvis, G. Karapostoli, M. Kenzie, R. Lane, R. Lucas, L. Lyons, A.-M. Magnan, S. Malik, B. Mathias, J. Nash, A. Nikitenko, J. Pela, M. Pesaresi, K. Petridis, D.M. Raymond, S. Rogerson, A. Rose, C. Seez, P. Sharpe, A. Tapper, M. Vazquez Acosta, T. Virdee, S.C. Zenz

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
J. Dittmann, K. Hatakeyama, A. Kashi, H. Liu, T. Scarborough, Z. Wu

The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, P. Lawson, C. Richardson, J. Rohlf, J. St. John, L. Sulak

Brown University, Providence, USA
J. Alimena, E. Berry, S. Bhattacharya, G. Christopher, D. Cutts, Z. Demiraghi, N. Dhingra, A. Ferapontov, A. Garabedian, U. Heintz, G. Kukartsev, E. Laird, G. Landsberg, M. Luk, M. Narain, M. Segala, T. Sinthuprasith, T. Speer, J. Swanson

University of California, Davis, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, M. Gardner, W. Ko, R. Lander, M. Mulhearn, D. Pellett, J. Pilot, F. Ricci-Tam, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay

University of California, Los Angeles, USA
R. Cousins, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, G. Rakness, E. Takasugi, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA
K. Burt, R. Clare, J. Ellison, J.W. Gary, G. Hanson, J. Heilman, M. Ivova Rikova, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, A. Luthra, M. Malberti, M. Olmedo Negrete, A. Shrinivas, S. Sumowidagdo, S. Wimpenny

University of California, San Diego, La Jolla, USA
J.G. Branson, G.B. Cerati, S. Cittolin, R.T. D’Agnolo, A. Holzner, R. Kelley, D. Klein, J. Letts, I. Macneill, D. Olivito, S. Padhi, C. Palmer, M. Pieri, M. Sani, V. Sharma, S. Simon, M. Tadel, Y. Tu, A. Vartak, C. Welke, F. Würthwein, A. Yagil, G. Zevi Della Porta

University of California, Santa Barbara, Santa Barbara, USA
D. Barge, J. Bradmiller-Feld, C. Campagnari, T. Danielson, A. Dishaw, V. Dutta, K. Flowers,
M. Franco Sevilla, P. Geffert, C. George, F. Golf, L. Gouskos, J. Incandela, C. Justus, N. Mccoll, S.D. Mullin, J. Richman, D. Stuart, W. To, C. West, J. Yoo

California Institute of Technology, Pasadena, USA
A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, J. Duarte, A. Mott, H.B. Newman, C. Pena, M. Pierini, M. Spiropulu, J.R. Vlimant, R. Wilkinson, S. Xie, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
V. Azzolini, A. Calamba, B. Carlson, T. Ferguson, Y. Iiyama, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, A. Gaz, M. Krohn, E. Luiggi Lopez, U. Nauenberg, J.G. Smith, K. Stenson, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, A. Chatterjee, J. Chaves, J. Chu, S. Dittmer, N. Eggert, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, L. Skinnari, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, USA
D. Winn

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, L.A.T. Bauerick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangir, V.D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, D. Hare, R.M. Harris, J. Hirschauer, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, B. Klima, B. Kreis, S. Kwan
J. Linacre, D. Lincoln, R. Lipton, T. Liu, J. Lykken, K. Maeshima, J.M. Marraffino, V.I. Martinez Outschoorn, S. Maruyama, D. Mason, P. McBride, P. Merkel, K. Mishra, S. Mrenna, S. Nahn, C. Newman-Holmes, V. O’Dell, O. Prokofyev, E. Sexton-Kennedy, S. Sharma, W.J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, M. Verzocchi, R. Vidal, A. Whitbeck, J. Whitmore, F. Yang

University of Florida, Gainesville, USA
D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, M. Carver, D. Curry, S. Das, M. De Gruttola, G.P. Di Giovannia, R.D. Field, M. Fisher, I.K. Furic, J. Hugon, J. Konigsberg, A. Korytov, T. Kypros, J.F. Low, K. Matchev, H. Mei, P. Milanovic, G. Mitselmakher, L. Muniz, A. Rinkevicius, L. Shchutska, M. Snowball, D. Sperka, J. Yelton, M. Zakaria

Florida International University, Miami, USA
S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA
T. Adams, A. Askew, J. Bochenek, B. Diamond, J. Haas, S. Hagopian, V. Hagopian, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, M. Hohlmann, H. Kalakhety, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, P. Kurt, C. O’Brien, I.D. Sandoval Gonzalez, C. Silkworth, P. Turner, N. Varelas
The University of Iowa, Iowa City, USA
B. Bilki, W. Clarida, K. Dilsiz, M. Haytmyradov, J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok, A. Penzo, R. Rahmat, S. Sen, P. Tan, E. Tiras, J. Wetzel, K. Yi

Johns Hopkins University, Baltimore, USA
I. Anderson, B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, A.V. Gritsan, P. Maksimovic, C. Martin, M. Swartz

The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, C. Bruner, J. Gray, R.P. Kenny III, D. Majumder, M. Malek, M. Murray, D. Noonan, S. Sanders, J. Sekaric, R. Stringer, Q. Wang, J.S. Wood

Kansas State University, Manhattan, USA
I. Chakaberia, A. Ivanov, K. Kaadze, S. Khalil, M. Makouski, Y. Maravin, L.K. Saini, N. Skhirtladze, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA
A. Baden, A. Belloni, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, S. Jabeen, R.G. Kellogg, T. Kolberg, Y. Lu, A.C. Mignerey, K. Pedro, A. Skuja, M.B. Tonjes, S.C. Tonwar

Massachusetts Institute of Technology, Cambridge, USA
A. Apyan, R. Barbieri, W. Busza, I.A. Cali, M. Chan, L. Di Matteo, G. Gomez Ceballos, M. Goncharov, D. Gulhan, M. Klute, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, C. Paus, D. Ralph, C. Roland, G. Roland, G.S.F. Stephens, K. Sumorok, D. Velicanu, J. Veverka, B. Wyslouch, M. Yang, M. Zanetti, V. Zhukova

University of Minnesota, Minneapolis, USA
B. Dahmes, A. Gude, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, S. Nourbakhsh, N. Pastika, R. Rusack, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, R. Gonzalez Suarez, J. Keller, D. Knowlton, I. Kravchenko, J. Lazo-Flores, F. Meier, F. Ratnikov, G.R. Snow, M. Zvada

State University of New York at Buffalo, Buffalo, USA
J. Dolen, A. Godshalk, I. Iashvili, A. Kharchilava, A. Kumar, S. Rappoccio

University of Notre Dame, Notre Dame, USA
J. Dolen, A. Godshalk, I. Iashvili, A. Kharchilava, A. Kumar, S. Rappoccio
The Ohio State University, Columbus, USA
L. Antonelli, J. Brinson, B. Bylsma, L.S. Durkin, S. Flowers, A. Hart, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, W. Luo, D. Puigh, M. Rodenburg, B.L. Winer, H. Wolfe, H.W. Wulsin

Princeton University, Princeton, USA
O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, S.A. Koay, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski

University of Puerto Rico, Mayaguez, USA
E. Brownson, S. Malik, H. Mendez, J.E. Ramirez Vargas

Purdue University, West Lafayette, USA
V.E. Barnes, D. Benedetti, D. Bortoletto, M. De Mattia, L. Gutay, Z. Hu, M.K. Jha, M. Jones, K. Jung, M. Kress, N. Leonardo, D.H. Miller, N. Neumeister, F. Primavera, B.C. Radburn-Smith, X. Shi, I. Shipsey, D. Silvers, A. Svyatkovskiy, F. Wang, W. Xie, L. Xu, J. Zablocki

Purdue University Calumet, Hammond, USA
N. Parashar, J. Stupak

Rice University, Houston, USA
A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B. Michlin, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzweig, J. Han, A. Harel, O. Hindrichs, A. Khukhunaishvili, S. Korjenevski, G. Petrillo, D. Vishnevskiy

The Rockefeller University, New York, USA
R. Ciesielski, L. Demortier, K. Goulianos, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA
S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, S. Kaplan, D. Kolchmeyer, A. Lath, S. Panwalkar, M. Park, R. Patel, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA
K. Rose, S. Spanier, A. York

Texas A&M University, College Station, USA
O. Bouhali, A. Castaneda Hernandez, R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon, V. Khotilovich, V. Krutelyov, R. Montalvo, I. Osipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Rose, A. Saforov, I. Suarez, A. Tatarinov, K.A. Ulmer

Texas Tech University, Lubbock, USA
N. Akhurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, K. Kovitanggoon, S. Kunori, S.W. Lee, T. Libeiro, I. Volobouev

Vanderbilt University, Nashville, USA
E. Appelt, A.G. Delannoy, S. Greene, A. Gurrola, W. Johns, C. Maguire, Y. Mao, A. Melo, M. Sharma, P. Sheldon, B. Snook, S. Tuo, J. Velkovska
University of Virginia, Charlottesville, USA
M.W. Arenton, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Lin, C. Neu, J. Wood

Wayne State University, Detroit, USA
C. Clarke, R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lammichhane, J. Sturdy

University of Wisconsin, Madison, USA
D.A. Belknap, D. Carlsmith, M. Cepeda, S. Dasu, L. Dodd, S. Duric, E. Friis, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klabbers, A. Lanaro, C. Lazaridis, A. Levine, R. Loveless, A. Mohapatra, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, I. Ross, T. Sarangi, A. Savin, W.H. Smith, D. Taylor, C. Vuosalo, N. Woods

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
6: Also at Universidade Estadual de Campinas, Campinas, Brazil
7: Also at Laboratoire Leprince-Ringuet, École Polytechnique, IN2P3-CNRS, Palaiseau, France
8: Also at Joint Institute for Nuclear Research, Dubna, Russia
9: Also at Suez University, Suez, Egypt
10: Also at British University in Egypt, Cairo, Egypt
11: Also at Cairo University, Cairo, Egypt
12: Also at Ain Shams University, Cairo, Egypt
13: Now at Sultan Qaboos University, Muscat, Oman
14: Also at Université de Haute Alsace, Mulhouse, France
15: Also at Brandenburg University of Technology, Cottbus, Germany
16: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
17: Also at Eötvös Loránd University, Budapest, Hungary
18: Also at University of Debrecen, Debrecen, Hungary
19: Also at University of Visva-Bharati, Santiniketan, India
20: Now at King Abdulaziz University, Jeddah, Saudi Arabia
21: Also at University of Ruhuna, Matara, Sri Lanka
22: Also at Isfahan University of Technology, Isfahan, Iran
23: Also at University of Tehran, Department of Engineering Science, Tehran, Iran
24: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
25: Also at Università degli Studi di Siena, Siena, Italy
26: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
27: Also at Purdue University, West Lafayette, USA
28: Also at Institute for Nuclear Research, Moscow, Russia
29: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
30: Also at National Research Nuclear University "Moscow Engineering Physics Institute" (MEPhI), Moscow, Russia
31: Also at California Institute of Technology, Pasadena, USA
32: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
33: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
34: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
35: Also at University of Athens, Athens, Greece
36: Also at Paul Scherrer Institut, Villigen, Switzerland
37: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
38: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
39: Also at Gaziosmanpasa University, Tokat, Turkey
40: Also at Adiyaman University, Adiyaman, Turkey
41: Also at Cag University, Mersin, Turkey
42: Also at Anadolu University, Eskisehir, Turkey
43: Also at Ozyegin University, Istanbul, Turkey
44: Also at Izmir Institute of Technology, Izmir, Turkey
45: Also at Necmettin Erbakan University, Konya, Turkey
46: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
47: Also at Marmara University, Istanbul, Turkey
48: Also at Kafkas University, Kars, Turkey
49: Also at Yildiz Technical University, Istanbul, Turkey
50: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
51: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
52: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
53: Also at Argonne National Laboratory, Argonne, USA
54: Also at Erzincan University, Erzincan, Turkey
55: Also at Texas A&M University at Qatar, Doha, Qatar
56: Also at Kyungpook National University, Daegu, Korea