Research Article

Hysterectomy by Transvaginal Natural Orifice Transluminal Endoscopic Surgery versus Transumbilical Laparoscopic Single-Site Surgery: A Single-Center Experience from East China

Bin Yan,1,2,3 Hui-Xian Miao,1 You Wang,1,2,3 Jia-Mu Xu,1,2,3 Xiu-Qing Lu,1 Wan-Hong He,1 Wen Di,1,2,3 and Wei-Hua Lou1,2,3

1Department of Obstetrics and Gynaecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
2Shanghai Key Laboratory of Gynaecologic Oncology, Shanghai, China
3State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
4Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, China

Correspondence should be addressed to Wen Di; diwen163@163.com and Wei-Hua Lou; jason19921851540@163.com

Bin Yan and Hui-Xian Miao contributed equally to this work.

Received 10 May 2022; Revised 31 May 2022; Accepted 30 June 2022; Published 8 August 2022

Academic Editor: Dinesh Rokaya

Copyright © 2022 Bin Yan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. To compare hysterectomy by transvaginal natural orifice transluminal endoscopic surgery (VNOTES) versus transumbilical laparoscopic single-site surgery (LESS) as a minimal invasive technique. Materials and Method. The women undergoing hysterectomy for benign diseases by VNOTES and LESS from January 2020 to June 2021 in a tertiary hospital in Shanghai were retrospectively analyzed. Results. 361 women were included in our study, with 228 in the VNOTES groups, 129 in the LESS groups, and 4 conversions from VNOTES to LESS technique. The length of a VNOTES hysterectomy was shorter than that of LESS (80.76 min versus 112.09 min; MD -31.34 min; 95% CI -40.24 to -22.43 min; \(P < 0.001 \)). VNOTES hysterectomy has a quicker gas passage by the anus (18.80 versus 36.49 hours, MD -17.68 hours, 95% CI -20.23 to -15.14 hours, \(P < 0.001 \)) and associated with a shorter length of hospital stay (2.31 versus 3.77 days, MD -1.46 days, 95% CI -1.75 to -1.17 days, \(P < 0.001 \)), while with no increase in blood loss during the operation (median 50 versus 50 ml, \(P = 0.25 \)). Besides, the VAS pain score in the 24th hour after the operation was lower (median 0 versus 0.5, \(P < 0.001 \)) in the VNOTES group. Four unique phases of the learning curve were identified using cumulative analysis: the mean operation time of phase I was 82.81 ± 31.45 min (the initial learning curve of 43 cases), phase II was 72.48 ± 23.66 min (the acquisition of command of 91 cases), phase III was 103.77 ± 45.69 min (the further learning of 26 cases), and phase IV was 73.18 ± 26.89 min (postlearning in 68 cases). Conclusions. VNOTES is noninferior to LESS as a new minimal invasive procedure for hysterectomy, which also allows patients a faster recovery from surgery and to suffer less pain, and its efficiency and feasibility in large uterine need further exploring.

1. Introduction

Hysterectomy is one of the most common gynecological procedures for benign gynecological diseases and some early-stage tumors, such as abnormal uterine bleeding, adenomyosis, atypical endometrial hyperplasia, and cervical hyperplasia. The procedure has been performed in different ways: abdominal hysterectomy (AH), conventional vaginal hysterectomy (VH), laparoscopic hysterectomy (LH), and robotically assisted hysterectomy (RH). According to the number of laparoscope, LH can be classified into several types: conventional multiport laparoscopic hysterectomy (CMLH), laparoscopy-assisted vaginal hysterectomy (LAVH), or transumbilical laparoscopic single-site surgery (LESS). As a Cochrane review involving 5012 women reports, VH is superior to LH and AH because of its faster return to normal...
activities. When VH is not feasible, LH is preferred but related to more urinary tract injuries [1]. Although patients appear to benefit more from VH, it is not easy to have a good command of VH because of its poor visualization and limited space for manipulation.

Recently, natural orifice transluminal endoscopic surgery (NOTES), which utilizes the natural orifices such as the rectum, mouth, urethra, and vagina to get into the peritoneal cavity, has been developed since its minimal invasions during procedures. After various animal experiments, NOTES started to be used in human and the first transvaginal NOTES (VNOTES) hysterectomy was performed in 2012 [2]. VNOTES is a combination of conventional vaginal surgery and laparoscopic single-site surgery, which overcomes the limitations of conventional VH with the help of endoscopic view and instruments. Several studies have reported VNOTES as a safe procedure, associated with shorter surgical time, faster postoperative recovery, reduced postoperative pain, decreased postoperative wound infections, and cosmetic results [3, 4].

LESS is reported as a feasible, safe, and equally effective alternative to CMPL for hysterectomy [5]. A randomised controlled trial of VNOTES has suggested that VNOTES is noninferior to CMPL for hysterectomy and reduces postoperative pain [6, 7]. Our study was aimed at comparing VNOTES with LESS as a minimally invasive technique for hysterectomy. The operations were performed by the same expert gynecologist (Lou), who was the first gynecologist to conduct the VNOTES procedures in our department. All women in our study received hysterectomy and either bilateral salpingectomy or salpingo-oophorectomy depending on the indications. The first step of the hysterectomy was to circumcise the vaginal mucosa around the cervix by using a scalpel, then expose the vesical peritoneal reflection after pushing up the anterior vaginal mucosa along the uterine cervical fascia, and dissect the peritoneal reflection to get access to the abdominal cavity anteriorly. Similarly, the posterior vaginal wall was exposed and dissected, and the pouch of Douglas was opened. The uterosacral ligament complexes were then cut as done in the conventional vaginal surgeries, followed by circumcising the cervix to get into the peritoneal cavity. To achieve a pneumoperitoneum, a VNOTES port (Beijing Hang Tian KaDi Technology R&D Institute) was inserted through the vagina into the peritoneal cavity, which had two 5 mm and two 10 mm channels. The two endoscopic instruments were used through the two 5 mm channels and a standard 10 mm rigid mm 30° laparoscope (Stryker) through one 10 mm channel. As done in the conventional vaginal surgery, the hysterectomy was performed caudally to cranially. The bilateral ureters would routinely be identified during the operation but not be dissected unless it was necessary. The uterine vessels and bilateral ligaments, including parametrial tissues, round ligament, ovarian proper ligament, and mesosalpinx, were cut and sealed by the ultrasonic scalpel and the endoscopic instrument with bipolar coagulation (Hangzhou Kangji Medical Instrument). When the salpingo-oophorectomy was indicated, the bilateral infundibulopelvic ligaments would also be cut to enable the ovaries to be disconnected. The free uterine was removed through the vagina. After confirming there was no active bleeding, the VNOTES port was removed and the vaginal cuff was closed using one 1-0 suture (Ethicon Endo-Surgery, Norderstedt, Germany) through the vagina.

In those who received hysterectomy by LESS, the gynecologist performed hysterectomy by transumbilical laparoscopic single-site surgery technique. A LESS port was inserted through the umbilicus to create access to the

2. Materials and Method

This was a retrospective study of women who underwent hysterectomy by transvaginal NOTES and by LESS with the same indications from January 2020 to June 2021 in Shanghai Jiao Tong University affiliated Renji Hospital, a teaching hospital in China. The surgical indications include atypical endometrial hyperplasia, adenomyosis, uterine myoma, high-grade cervical dysplasia, treatment-refractory dysfunctional uterine bleeding, benign adnexal masses, and uterine prolapse. The following information was collected in all the patients: age, body mass index (BMI), prior vaginal birth, previous abdominal surgery, diabetes, cardiovascular diseases, indication for operation, uterine weight, total operation time, intraoperative and postoperative complications, and the length of hospital stay.

The duration of the operation was defined as the time from the start of circumcising the vaginal mucosa to the removal of the uterus. The VAS pain score was accomplished in the first 24 hours after the operation. The complications were accepted as wound infection, blood transfusion requirement, and readmission into the hospital in 6 weeks.

The learning curve of the VNOTES technique was measured as the operation time over the time course of the study. Cumulative sum (CUSUM) analysis was used as reported by previous studies [8, 9]. The CUSUM calculated the total difference between the individual values and mean of all values. Arranging the patients in sequence, graphical information of the trend in the operation time of consecutive procedures could be plotted. The CUSUM of the 1st case was the difference between the OT for the 1st case and the mean OT for all patients. The CUSUM of the 2nd case was the CUSUM of the 1st value added to the difference between the OT of the 2nd case and the mean OT for all patients. The calculation was repeated until the last CUSUM reached zero. Linear regression with log transformations was performed to determine the sign of the slope of regression.

2.1. Surgical Procedure. All participants in our study were admitted into hospital several days earlier (depending on the severity of the complications) to receive the laboratory and imaging assessment to rule out the contraindications of the surgery, especially those who could not tolerate the surgery. The operations were performed by the same expert gynecologist (Lou), who was the first gynecologist to conduct the VNOTES procedures in our department. All women in our study received hysterectomy and either bilateral salpingectomy or salpingo-oophorectomy depending on the indications. The first step of the hysterectomy was to circumcise the vaginal mucosa around the cervix by using a scalpel, then expose the vesical peritoneal reflection after pushing up the anterior vaginal mucosa along the uterine cervical fascia, and dissect the peritoneal reflection to get access to the abdominal cavity anteriorly. Similarly, the posterior vaginal wall was exposed and dissected, and the pouch of Douglas was opened. The uterosacral ligament complexes were then cut as done in the conventional vaginal surgeries, followed by circumcising the cervix to get into the peritoneal cavity. To achieve a pneumoperitoneum, a VNOTES port (Beijing Hang Tian KaDi Technology R&D Institute) was inserted through the vagina into the peritoneal cavity, which had two 5 mm and two 10 mm channels. The two endoscopic instruments were used through the two 5 mm channels and a standard 10 mm rigid mm 30° laparoscope (Stryker) through one 10 mm channel. As done in the conventional vaginal surgery, the hysterectomy was performed caudally to cranially. The bilateral ureters would routinely be identified during the operation but not be dissected unless it was necessary. The uterine vessels and bilateral ligaments, including parametrial tissues, round ligament, ovarian proper ligament, and mesosalpinx, were cut and sealed by the ultrasonic scalpel and the endoscopic instrument with bipolar coagulation (Hangzhou Kangji Medical Instrument). When the salpingo-oophorectomy was indicated, the bilateral infundibulopelvic ligaments would also be cut to enable the ovaries to be disconnected. The free uterine was removed through the vagina. After confirming there was no active bleeding, the VNOTES port was removed and the vaginal cuff was closed using one 1-0 suture (Ethicon Endo-Surgery, Norderstedt, Germany) through the vagina.
abdominal cavity, which also had two 5 mm and two 10 mm channels. A standard 10 mm rigid 30° laparoscope (Stryker) and endoscopic instruments were used. Similarly, the ureters were identified but not dissected to prevent injuries. With the help of a uterine manipulator and endoscopic instruments with bipolar coagulation, the gynecologist performed hysterectomy cranially to caudally. The uterine was removed through the vagina, which in some extent would save surgical time. The vaginal cuff was also closed using the 1-0 suture (Ethicon Endo-Surgery, Norderstedt, Germany). The umbilicus was closed using absorbable suture after ensuring there was no bleeding inside the abdominal cavity. Finally, a wound dressing was used on the umbilicus.

2.2. Statistical Analysis. The Fisher exact test or chi-square test was applied for dichotomous secondary outcome measures, while an independent t-test or Mann–Whitney U test was applied for the continuous secondary outcomes. P values of <0.05 were considered to indicate statistical significance. Data analysis was performed by using SPSS software (version 26).

3. Results

Between January 2020 and June 2021, a total number of 232 patients received hysterectomy by VNOTES and 129 by LESS. Four cases in the VNOTES group failed to remove the uterus and converted to LESS technique, which resulted in a conversion rate of 1.72% \((P = 0.30)\). The 4 conversions were all diagnosed as multiple uterine myoma, 3 of whom failed due to the large size of myoma (up to 12 centimeters) and 1 of whom due to the adhesion between the uterus and the pelvis.

Baseline characteristics were comparable between the two groups except for some certain surgical indications, which are summarized in Table 1. The percentage of uterine myoma and benign adnexal tumor in the VNOTES group was lower than that in the LESS group \((36.84\% \text{ versus } 48.44\%, P = 0.04, \text{ and } 4.82\% \text{ versus } 20.16\%, P < 0.001)\), while the percentage of cervical dysplasia and uterine prolapse was higher than that in the controlled group \((29.82\% \text{ versus } 14.07\%, P < 0.001, \text{ and } 4.82\% \text{ versus } 7.89\%, P < 0.02)\).

As shown in Table 2, we leave out the 4 conversions and compared the main outcomes between the two groups. In our study, not only the median uterine weight was comparable between the VNOTES group and the LESS group \((median 164.00 \text{ gram versus } 176.90 \text{ gram, } P = 0.58)\) but also the percentage of uterine weight more than 400 g \((P = 0.48)\) was comparable. The total length of a VNOTES hysterectomy was shorter than a LESS one \((78.21 \text{ minutes versus } 112.09 \text{ minutes, mean difference (MD) } -33.89 \text{ minutes}; 95\% \text{ confidence index (CI) } -42.55 \text{ to } -25.22 \text{ minutes}; P < 0.001)\). Compared with LESS hysterectomy, VNOTES hysterectomy has a quicker gas passage by the anus \((18.80 \text{ versus } 36.49 \text{ hours, MD } -17.68 \text{ hours, 95\% CI } -20.23 \text{ to } -15.14 \text{ hours, } P < 0.001)\) and thus associated with a shorter length of hospital stay \((2.31 \text{ versus } 3.77 \text{ days, MD } -1.46 \text{ days, 95\% CI } -1.75 \text{ to } -1.17 \text{ days, } P < 0.001)\). Surprisingly, the VNOTES and LESS groups shared a similar blood loss during the operation \((median 50 \text{ versus } 50 \text{ ml, } U = 2662.5, Z = -1.152, P = 0.25, \text{ there was no statistical difference; a Mann–Whitney U test)}\).

The VAS pain score in the 24th hour after the operation in the VNOTES group was lower than that in the LESS group \((median 0 \text{ versus } 0.5, Z = -3.517, P < 0.001, \text{ there was statistical difference; a Mann–Whitney U test). The less algiesic use in the VNOTES group also indicated patients suffered less pain from VNOTES technology \((odds ratio 4.00, 95\% \text{ CI } 1.81 \text{ to } 8.84, P < 0.001)\). There was exudation in the umbilicus wound in 2 women in the LESS group; however, it showed no statistical difference \((P = 0.13)\). Besides, no complications and readmission in 6 weeks were reported in both groups.

Then, after getting the raw operation time in each consecutive patient in chronological order \((Figure 1)\), we calculated the CUSUMg values and a learning curve was achieved, which was plotted in a graph as shown in Figure 2(a). The learning curve was able to be divided into four distinct phases: cases 1-43 into the initial learning phase (phase I), cases 44-134 into the learning phase (phase II), cases 135-150 into the further learning phase (phase III), and cases 150-228 into the postlearning phase (phase IV). The best fit curves of the learning curve in each phase are shown in Figure 2(b).

There were significant differences among the four phases in operation time and uterine weight \((Table 3)\). Patients in phase III had the longest operation time \((103.77 \pm 45.69 \text{ min})\) and the largest uteri \((423.27 \pm 338.14 \text{ grams, Figures 3(a) and 3(b)) but shared similar BMI and postoperative stay with the other three phases.

4. Discussion

Since the VNOTES was introduced into our department in 2019, more and more patients preferred this advanced technique to receive hysterectomy. In our study, we retrospecively analyzed the cases of hysterectomy by VNOTES and LESS, involving as much as 228 patients in the VNOTES group. We found that VNOTES was noninferior to LESS hysterectomy and could be an alternative for hysterectomy in women with benign diseases due to its minimal invasiveness, as previously reported \([10–12]\). In our study, with no increased risk of blood loss during the procedure, VNOTES had a shorter surgical length compared with the LESS group, which saved almost half an hour, though part of which might resulted from the leave out of sutting the umbilical wound. There were no increase in the intra- and postoperative complications in the VNOTES group, which also proved VNOTES was a safe technique for hysterectomy. Besides, women in the VNOTES group had a faster recovery with less pain from the surgery. Women after the VNOTES surgery had a faster recovery of gastrointestinal function and thus had a reduced length of hospital stay, which no doubt decreased the hospitalization expenses. We investigated the VAS pain score in the 24th hour after the surgery and postoperative analgesic use, which suggested women in the VNOTES group suffered less postoperative pain. No postoperative and wound infection was reported.
Table 1: Baseline characteristics of the population.

	VNOTES (n = 228)	LESS (n = 129)	P value
Age (years)	53.04 ± 9.44	54.26 ± 10.33	0.27
BMI (kg/m²) (range)	23.96 ± 3.08	24.26 ± 3.84	0.48
Prior vaginal birth, n(%)	155 (67.98)	80 (62.02)	0.25
Previous abdominal surgery, n (%)	84 (36.84)	59 (45.74)	0.10
Cardiovascular disease, n (%)	41 (17.98)	32 (24.81)	0.13
Diabetes, n (%)	13 (5.70)	5 (3.88)	0.45
Indication for surgery, n (%)			
Atypical endometrial hyperplasia	16 (7.02)	5 (3.91)	0.23
Adenomyosis	36 (15.79)	13 (10.16)	0.13
Uterine myoma	84 (36.84)	62 (48.44)	0.04
Cervical dysplasia	68 (29.82)	18 (14.07)	<0.001
Treatment-resistant DUB	2 (0.88)	4 (3.13)	0.20
Benign adnexal tumor	11 (4.82)	26 (20.16)	<0.001
Uterine prolapse	11 (4.82)	1 (0.78)	0.02

DUB: dysfunctional uterine bleeding; SD: standard deviation. *The 4 conversions were not included.

Table 2: Main outcomes in the population.

	VNOTES (n = 228)	LESS (n = 129)	P value
Uterine weight (g), median (+IQR)	164.00 (+224.00)	176.90 (+254.00)	0.58
Uterine weight > 400 g, n(%)	31 (13.6)	21 (16.3)	0.48
Total operating time (min), mean (+SD)	78.21 ± 30.79	112.09 ± 44.05	<0.001
Blood loss (ml), median (+IQR)	50 (±10)	50 (±50)	0.25
Duration of anal exhaust (hours) (+SD)	18.80 ± 6.60	36.49 ± 13.71	<0.001
VAS pain score, mean (+IQR)	0 (0-0)	0.5 (0-5)	<0.001
Hospital stay (d), median (+IQR)	2.31 ± 0.69	3.77 ± 1.57	<0.001
Postoperative analgesics use, n (%)	10 (4.39)	20 (15.50)	<0.001
Complications, n(%)	0 (0)	0 (0)	—
Wound infection, n (%)	0 (0)	2 (1.55)	0.13
Readmission after 6 weeks, n (%)	0 (0)	0 (0)	—

Figure 1: Raw operation time (OT) of 228 patients in a chronological order.
after the procedure. Further, VNOTES had an outstanding cosmetic result since it created no apparent wound. Most patients in the VNOTES group expressed their satisfaction of this technique when they were followed up in the outpatient clinic. In summary, VNOTES provided a more minimal invasive procedure for women to undergo hysterectomy.

Table 3: Interphase comparison of patient characteristics and postoperative outcomes.

	Phase I (n = 43, cases 1-43)	Phase II (n = 91, cases 44-134)	Phase III (n = 26, cases 135-160)	Phase IV (n = 68, cases 161-228)	P
BMI (kg/m²)	24.01 ± 2.74	24.32 ± 3.46	22.57 ± 2.27	24.06 ± 2.93	0.09
Uterine weight (g)	158.92 ± 134.60	195.96 ± 154.25	423.27 ± 338.14	214.30 ± 171.89	<0.001
Operation time (min)	82.81 ± 31.45	72.48 ± 23.66	103.77 ± 45.69	73.18 ± 26.89	<0.001
Blood loss (ml)	50.00 ± 30	50.00 ± 20	50.00 ± 113	50.00 ± 18	0.01*
Postoperative stay (days)	2.23 ± 0.43	2.52 ± 0.94	2.20 ± 0.41	2.14 ± 0.43	0.12

*There was significant difference between phases I, II, III, and phase IV.

Figure 2: (a) The CUSUMOT values of operation time in four phases. (b) The best fit curve for each phase.
Four cases in the VNOTES groups were converted to the LESS technique. Large uterine size is reported to have a significant effect on operative time and blood loss [13, 14], and the prior intra-abdominal procedures might contribute to adhesions, which would be challenging to successfully perform the hysterectomy especially for VNOTES and thus increased blood loss and operative time [15, 16], which was corresponding to our findings. We assumed our 4 failures may be contributed to the position of the fibroid and the pelvic adhesion. In one case, a 12-centimeter fibroid grew into right broad ligament and grew caudally to the cervix, which resulted in obstruction in the route to the abdominal cavity. In another case, who had a prior abdominal surgery, it was not easy to separate the vesical peritoneal reflection because of the firm adhesion and therefore caused a failure of entrance into the abdominal cavity.

Due to its feasibility and applicability, we evaluated the learning curve of the VNOTES technique. In phase I, which was the initial stage, it took 43 cases to acquire the basic skill in completing VNOTES with or without adnexectomy. In phase II, the phase of commanding the technique, 91 cases were needed to solidate the technique. In our study, the surgeon practiced 134 cases to fully master the new technique. In another case, who had a prior abdominal surgery, it was not easy to separate the vesical peritoneal reflection because of the firm adhesion and therefore caused a failure of entrance into the abdominal cavity.

In our study, we suggested that increasing operation time and blood loss were seen in this phase. This indicated that VNOTES for large uterine might not be so efficient for uterine weight of around 430 g or less. In phase IV, the postlearning phase, the surgeon had achieved proficiency in uterine with normal weight and showed a good command of the technique. In our study, we suggested that increasing operation time might be associated with heavier uterine weight, which implied it of great importance to evaluate the uterine volume before the surgery.

Inevitably, our study had several limitations. Our study was a single-center trial in one teaching hospital and all the operations were performed by one expert gynecologist, which might result in limitations in the generality of some findings. A multicenter trial involving more gynecologists needs to be conducted to reconfirm the findings. LESS was proved to achieve a lower pain score faster than CMPL [17]. In 1989, laparoscopic technique was introduced into this operation, which changed the surgical approach and concept of hysterectomy [18]. A lot of changes have taken place in laparoscopic technique. In our study, we evaluated the postoperative pain score. Further study could be conducted to find out if the VNOTES group could achieve a lower pain score faster than LESS and whether it could be equally efficient in large uterine.

5. Conclusion

VNOTES, a combination of VH and LESS, could be a new minimal invasive procedure for hysterectomy. VNOTES allows patients to have a faster recovery from surgery and to suffer less pain. In the future, a randomised comparison between VNOTES and VH could be done to assess the effectiveness of both techniques.

Data Availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Conflicts of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Authors’ Contributions

Wei-Hua Lou and Wen Di designed and directed the study; Bin Yan and Hui-Xian Miao conducted the data and wrote the paper. You Wang, Jia-Mu Xu, Xiou-Oing Lu, and Wan-Hong He analyzed the data; all authors read and approved the final manuscript. Bin Yan and Hui-Xian Miao contributed equally to this work.
Acknowledgments

We appreciate all the women who agreed to participate in this trial as well as all nurses and residents involved whose support in this clinical project was irreplaceable. This work was supported by grants from the Shanghai Municipal Health Commission (201940284).

References

[1] J. W. Aarts, T. E. Nieboer, N. Johnson et al., “Surgical approach to hysterectomy for benign gynaecological disease,” Cochrane Database of Systematic Reviews, vol. 2015, no. 8, article CD003677, 2015.

[2] S. Karakaş, C. Kaya, Ş. Yıldız et al., “Comparison of vNOTES technique with conventional laparoscopy in gynecological emergency cases,” Minimally Invasive Therapy & Allied Technologies, vol. 31, no. 5, pp. 803–809, 2012.

[3] H. Su, C. F. Yen, K. Y. Wu, C. M. Han, and C. L. Lee, “Hysterectomy via transvaginal natural orifice transluminal endoscopic surgery (NOTES): feasibility of an innovative approach,” Taiwanese Journal of Obstetrics & Gynecology, vol. 51, no. 2, pp. 217–221, 2012.

[4] C. L. Lee, K. Y. Wu, H. Su, P. J. Wu, C. M. Han, and C. F. Yen, “Hysterectomy by transvaginal natural orifice transluminal endoscopic surgery (NOTES): a series of 137 patients,” Journal of Minimally Invasive Gynecology, vol. 21, no. 5, pp. 818–824, 2014.

[5] C. Kaya, I. Alay, H. Cengiz et al., “Conventional laparoscopy or vaginally assisted natural orifice transluminal endoscopic surgery for adnexal pathologies: a paired sample cross-sectional study,” Journal of Investigative Surgery, vol. 34, no. 11, pp. 1185–1190, 2021.

[6] C. B. Li and K. Q. Hua, “Transvaginal natural orifice transluminal endoscopic surgery (vNOTES) in gynecologic surgeries: a systematic review,” Asian Journal of Surgery, vol. 43, no. 1, pp. 44–51, 2020.

[7] E. M. Sandberg, C. F. la Chapelle, M. M. van den Tweel, J. W. Schoones, and F. W. Jansen, “Laparoendoscopic single-site surgery versus conventional laparoscopy for hysterectomy: a systematic review and meta-analysis,” Archives of Gynecology and Obstetrics, vol. 295, no. 5, pp. 1089–1103, 2017.

[8] C. Kliethermes, K. Blazek, K. Ali, J. B. Nijjar, S. Kliethermes, and X. Guan, “Postoperative pain after single-site versus multiport hysterectomy,” JSLS, vol. 21, no. 4, p. e2017.00065, 2017.

[9] J. Baekelandt, P. A. De Mulder, I. Le Roy et al., “HALON—hysterectomy by transabdominal laparoscopy or natural orifice transluminal endoscopic surgery: a randomised controlled trial (study protocol),” BMJ Open, vol. 6, no. 8, article e011546, 2016.

[10] G. W. Yim, S. W. Kim, E. J. Nam, S. Kim, and Y. T. Kim, “Learning curve analysis of robotassisted radical hysterectomy for cervical cancer: initial experience at a single institution,” Journal of Gynecologic Oncology, vol. 24, no. 4, pp. 303–312, 2013.

[11] T. Yamaguchi, Y. Kinugasa, A. Shiomi et al., “Learning curve for robotic-assisted surgery for rectal cancer: use of the cumulative sum method,” Surgical Endoscopy, vol. 29, no. 7, pp. 1679–1685, 2015.

[12] S. Housmans, N. Noori, S. Kapurubandara et al., “Systematic review and meta-analysis on hysterectomy by vaginal natural orifice transluminal endoscopic surgery (vNOTES) compared to laparoscopic hysterectomy for benign indications,” Journal of Clinical Medicine, vol. 9, no. 12, article 3959, 2020.

[13] C. Kaya, I. Alay, H. Cengiz, G. O. Yıldız, H. S. Baghaei, and L. Yasar, “Comparison of hysterectomy cases performed via conventional laparoscopy or vaginally assisted natural orifice transluminal endoscopic surgery: a paired sample cross-sectional study,” Journal of Obstetrics and Gynaecology, vol. 41, no. 3, pp. 434–438, 2021.

[14] T. Temtanakitpaisan, K. Y. Wu, C. Y. Huang, A. Jaiswal, C. F. Yen, and C. L. Lee, “The outcomes of transvaginal NOTES hysterectomy in various uterine sizes,” Taiwanese Journal of Obstetrics & Gynecology, vol. 57, no. 6, pp. 842–845, 2018.

[15] P. C. Li and D. C. Ding, “Transvaginal natural orifice transluminal endoscopic surgery hysterectomy in a woman with uterine adenomyosis and multiple severe abdominal adhesions,” Gynecol Minim Invasive Ther., vol. 7, no. 2, pp. 70–73, 2018.

[16] A. Moukarzel Lea, N. Fader Amanda, and J. Tanner Edward, “Feasibility of robotic-assisted laparoendoscopic single-site surgery in the gynecologic oncology setting,” Journal of Minimally Invasive Gynecology, vol. 24, no. 2, pp. 258–263, 2017.

[17] K. Chris, B. Kelly, A. Kausar, N. I. Biba, K. Stephanie, and G. Xiaoming, “Postoperative pain after single-site versus multiport hysterectomy,” JSLS: Journal of the Society of Laparoendoscopic Surgeons, vol. 21, no. 4, 2017.

[18] S. R. Kovac, S. H. Cruikshank, and H. F. Retto, “Laparoscopy-assisted vaginal hysterectomy,” Journal of Gynecologic Surgery, vol. 6, no. 3, pp. 185–193, 1990.