Bandwidth in bolometric interferometry

R. Charlassier1, E. F. Bunn2, J.-Ch. Hamilton1, J. Kaplan1, and S. Malu3

1 APC, Universit\'e Denis Diderot-Paris 7, CNRS/IN2P3, CEA, Observatoire de Paris; 10 rue A. Domon & L. Duquet, Paris, France
2 Physics Department, University of Richmond; Richmond, VA 23173, USA
3 Inter-University Centre for Astronomy and Astrophysics (IUCAA); Pune - 411 007, India

Received ; accepted

Abstract

Context. Bolometric Interferometry is a technology currently under development that will be first dedicated to the detection of B-mode polarization fluctuations in the Cosmic Microwave Background. A bolometric interferometer will have to take advantage of the wide spectral detection band of its bolometers in order to be competitive with imaging experiments. A crucial concern is that interferometers are presumed to be importantly affected by a spoiling effect known as bandwidth smearing.

Aims. In this paper, we investigate how the bandwidth modifies the work principle of a bolometric interferometer and how it affects its sensitivity to the CMB angular power spectra.

Methods. We obtain analytical expressions for the broadband visibilities measured by broadband heterodyne and bolometric interferometers. We investigate how the visibilities must be reconstructed in a broadband bolometric interferometer and show that this critically depends on hardware properties of the modulation phase shifters. If the phase shifters produce shifts that are constant with respect to frequency, the instrument works exactly as a monochromatic one (the modulation matrix is not modified), while if they vary (linearly or otherwise) with respect to frequency, one has to perform a special reconstruction scheme, which allows the visibilities to be reconstructed in frequency sub-bands. Using an angular power spectrum estimator accounting for the bandwidth, we finally calculate the sensitivity of a broadband bolometric interferometer. A numerical simulation has been performed and confirms the analytical results.

Results. We conclude (i) that broadband bolometric interferometers allow broadband visibilities to be reconstructed whatever the kind of phase shifters used and (ii) that for dedicated B-mode bolometric interferometers, the sensitivity loss due to bandwidth smearing is quite acceptable, even for wideband instruments (a factor 2 loss for a typical 20\% bandwidth experiment).

Key words. Cosmology – Cosmic Microwave Background – Bolometric Interferometry – Bandwidth

Introduction

The detection of primordial gravity waves through B-mode polarization anisotropies in the Cosmic Microwave Background (CMB) is one of the most exciting challenges of modern cosmology. The weakness of the expected signal requires the development of highly sensitive experiment with an exquisite control of systematic errors. Most of the experiments or projects dedicated to this quest are based on well-known direct imaging technology. An appealing alternative called bolometric interferometry has been proposed [Tucker et al., 2003]. This technology combines the advantages of interferometry in handling systematic effects and those of bolometric detectors in sensitivity. The two teams that have taken up the challenge [Timbie et al., 2003; Charlassier et al., 2008(b)] are now joining their efforts within the QUBIC collaboration [Kaplan et al., 2009].

We have introduced in [Charlassier et al., 2008(a) hereafter C08] a simple formalism describing the general design of a bolometric interferometer working at a monochromatic frequency and shown that a bolometric interferometer must follow a particular phase shifting scheme we called “coherent summation of equivalent baselines”. This scheme has been optimized further in [Hyland et al., 2008]. We have calculated in [Hamilton et al., 2008 hereafter H08] the sensitivity of such a bolometric interferometer and shown that this technology can be competitive with imaging experiments and heterodyne interferometers for the measurement of CMB B-mode. For the sake of simplicity, we did not deal with the bandwidth question in [C08] and [H08].

We know that a dedicated B-mode bolometric interferometer will have to use the wide spectral detection band of its bolometers in order to be competitive with imaging experiments. In the other hand, the bandwidth is often considered as a crucial issue in radio-interferometry: if the raw sensitivity of radio interferometer detectors grows as the square root of the bandwidth, there is a secondary effect, well known as bandwidth smearing, which can largely degrade the global sensitivity. When the signals coming from a point source interfere after having been collected by two broadband receivers, the resulting fringe pattern is smeared by an envelope whose amplitude depends on the bandwidth, consequently leading to a degradation of the signal to noise ratio – see for instance [Thomson et al., 2001]. We will see that these two main characteristics remain in bolometric interferometry: the bolometers’ sensitivity also grows as the square root of the bandwidth, and a bandwidth smearing of the observables, the visibilities, degrades the global sensitivity of the instrument (however, because the observation of CMB angular correlations requires a poorer spatial resolution than the observation of point sources to which classical radio-interferometers are mostly dedicated, this smearing will lead to a less critical sensitivity loss). But we will also see that an additional kind of bandwidth issue occurs, due to the fact that in bolometric interferometry, visibilities are not measured directly but by solving a linear problem.
We investigate how the visibilities are smeared in heterodyne and bolometric interferometers having wide spectral bands and large primary beams in section 1. We show in particular that the visibilities can be reconstructed exactly as in the monochromatic case detailed in [CO8] if the modulation phase shifts are constant with respect to frequency, while one has to perform the special reconstruction scheme described in section 2 when the modulation phase shifts vary with respect to frequency. In section 3, we introduce an angular power spectrum estimator accounting for the bandwidth and estimate how the bandwidth smearing results in a degradation of the sensitivity for B-mode experiments. A numerical simulation that confirms our analytical results is presented in section 5.

1. Visibilities measured by generic interferometers with wide spectral bands and large primary beams

1.1. Monochromatic visibilities

The observables measured by a monochromatic interferometer working at a frequency ν_0 and looking at a radiation field of spectral power $I_0(\nu)$, in units of $[\text{W Hz}^{-1}\text{sr}^{-1}]$, are called the visibilities. A monochromatic visibility is defined for one baseline u_0, which is the vector separation between two horns in units of the electromagnetic wavelength of the radiation:

$$V_{\nu_0}^I(u_0) = \int I_0(\nu)A_0(n) \exp(i2\pi u_0 \cdot \nu) \, d\nu,$$ \hspace{1cm} (1)

where $A_0(n) = B_0^2(n)$ is the square of the beam of the input horns (assumed identical), conventionally normalized to one at its maximum. Here we can make a first important observation for the understanding of bandwidth in interferometry: a monochromatic visibility defined by a pair of horns separated by a distance d_0 and working at frequency ν_0 is the same observable as a monochromatic visibility defined by another pair of horns separated by a distance $d = d_0\frac{\nu_0}{\nu}$ and working at frequency ν. The two visibilities indeed match the baseline $u_0 = d_0\frac{\nu_0}{\nu}$. This property, sometimes called the equivalence theorem of interferometry, is actually true only if the two pairs of horns have the same beam (meaning that their surfaces are necessarily different) and if the observed radiation field $S(n)$ has the same spatial variations at both frequencies (this is of course true in the case of CMB observations).

1.2. Broadband visibilities for a generic interferometer

We consider now an interferometer that is sensitive to a finite spectral band through a bandpass function $J(\nu - \nu_0)$, centered at frequency ν_0. We arbitrarily define the bandwidth $\Delta \nu$ of the instrument as

$$\Delta \nu = \frac{1}{J(0)} \int J(\nu - \nu_0) \, d\nu.$$ \hspace{1cm} (2)

We define a generic interferometer to be an instrument in which visibilities are directly given by the outputs of the detectors (this is the case in heterodyne interferometry, but not in bolometric interferometry). The expression of a broadband visibility measured by a generic interferometer – in power units, for a baseline $u_0 = d_0\frac{\nu_0}{\nu}$ – is then:

$$V_{\nu}^I(u_0) = \int \int I_0(\nu)A_0(n) \exp(i2\pi d_0 \cdot \nu) \, J(\nu - \nu_0) \, d\nu \, d\nu_0.$$ \hspace{1cm} (3)

The baselines define a plane usually called the uv-plane. It is better to write the visibility as a convolution in the uv-plane to understand the bandwidth effect:

$$V_{\nu}^I(u_0) = \int \int I_0(\nu)A_0(n)J(\nu - \nu_0) \, e^{i2\pi(d_0u_0 - w w')} \, d\nu d\nu' d\nu_0,$$ \hspace{1cm} (4)

where we have introduced the Fourier transform of the signal and the one of the beam:

$$I_\nu(w) = \int I_\nu(\nu) \exp(-i2\pi \nu \cdot w) \, d\nu,$$ \hspace{1cm} (5)

$$A_\nu(w) = \int A_\nu(\nu) \exp(-i2\pi \nu \cdot w) \, d\nu.$$ \hspace{1cm} (6)

In the flat-sky approximation, the integral over the field n gives a delta function, and the expression of the broadband visibility is finally

$$V_{\nu}^I(u_0) = J(0) \Delta \nu \int I_\nu(w) \tilde{\beta}(u_0, w) \, dw,$$ \hspace{1cm} (7)

where we have defined the convolution kernel in the uv-plane:

$$\tilde{\beta}(u_0, w) = \int \frac{I_\nu(w)}{I_\nu(0)} \tilde{A}_\nu(u_0, w - w) \, J_\nu(\nu - \nu_0) \, dv,$$ \hspace{1cm} (8)

in which we have introduced the normalized bandpass function $J_\nu(\nu - \nu_0) = J(\nu - \nu_0)/\Delta \nu$. The convolution kernel (which depends on u_0) contains the entire effect of the bandwidth smearing. For a monochromatic visibility, the convolution kernel in the uv-plane is just the Fourier transform of the beam $	ilde{A}(w)$.

In the following, to allow for complete analytic calculation, we first ignore the frequency dependence of the signal and of the beam. We write:

$$\tilde{A}(w) = \tilde{A}_\nu(w) \approx \tilde{A}_\nu(0) \quad \text{and} \quad \tilde{I}(w) = \tilde{I}_\nu(w) \approx \tilde{I}_\nu(0).$$ \hspace{1cm} (9)

This defines the approximate form of the convolution kernel:

$$\tilde{\beta}_{\approx}(u_0, w) = \int \tilde{A}(u_0, w - w) \, J_\nu(\nu - \nu_0) \, dv.$$ \hspace{1cm} (10)

This approximation allows us to get an intuitive idea of how the bandwidth smearing acts with good enough accuracy to estimate the sensitivity loss. We discuss in subsection 1.3 a refined form of the kernel that takes into account the frequency dependence of the beam and the intensity. As shown in figure 2, the difference between the approximate kernel, derived in subsection 1.3, and the refined kernel is small.

1.3. Approximate analytical form of the kernel

In order to carry out the analytical calculation, we also assume a gaussian normalized bandpass function:

$$J_\nu(\nu - \nu_0) = \frac{1}{\sigma_v \sqrt{2\pi}} \exp\left(-\frac{(\nu - \nu_0)^2}{2\sigma_v^2}\right).$$ \hspace{1cm} (11)

1. The definition of the center is somewhat arbitrary. A convenient definition is the barycenter of J.

2. This definition is very close to the FWHM for a Gaussian bandwidth.
The instrument bandwidth is related to the gaussian sigma by $\Delta \nu = \sigma_v \sqrt{2\pi}$. We assume a gaussian beam for the horns, with the usual convention $A(0) = 1$, leading to the following beam in the uv-plane:
\[
\hat{A}(w) = \Omega \exp(-\pi \Omega w^2).
\] (12)

As previously explained, we ignore here the frequency dependence of the beam. The integral of the beam over the sky is defined for the central frequency, $\Omega = \Omega_c$. The expression of the kernel is then:
\[
\hat{\beta}_{ap}(u_0, w) = \frac{\Omega}{\sigma_v \sqrt{2\pi}} \int \exp\left[-\pi \Omega (u_0 \nu_{0} - w)^2 - \frac{(\nu - \nu_{0})^2}{2\sigma_v^2}\right] dv.
\] (13)

This can be analytically integrated (details are given in appendix A) and written in the form:
\[
\hat{\beta}_{ap}(u_0, w') = \hat{A}(w') \times \frac{\exp\left[\frac{2\pi \Omega \left(\frac{u_{0}}{\nu_{0}}\right)^2}{1 + 2\pi \Omega \left(\frac{u_{0}}{\nu_{0}}\right)^2} (u_0 \cdot w')^2\right]}{\sqrt{1 + 2\pi \Omega \left(\frac{u_{0}}{\nu_{0}}\right)^2 u_0^2}}.
\] (14)

where we have made the variable substitution
\[
w' = u_0 - w.
\] (15)

We can define the effective beam in real space for a broadband interferometer Ω_c, as the value at $w' = 0$ of the Fourier transform of the kernel
\[
\Omega_c = \hat{\beta}_{ap}(u_0, 0) = \frac{\Omega}{\kappa_1}.
\] (16)

This κ_1 factor is an indicator of the importance of bandwidth smearing. It reaches its minimal value 1 for a monochromatic interferometer. One immediately sees that interferometers with “small” primary beams and/or “small” baselines are less affected by the bandwidth smearing (see figure 4). We compare the convolution kernels of monochromatic and broadband interferometers in figure 1. One can clearly see that the effect of the bandwidth smearing is to stretch the kernel, in the baseline direction only, by which the Fourier transform of the signal is convolved.

When κ_1 is close to 1 (i.e. $\left(\frac{u_{0}}{\nu_{0}}\right)^2 u_0^2 \ll \frac{1}{\pi \Omega}$), the size of the “bandwidth part” of the kernel is smaller than the “beam part” and thus the signal is not degraded by the bandwidth: this is quite intuitive since a signal already convolved by a kernel of width σ_b is not significantly degraded if it is convolved again by a kernel of width σ_b such as $\sigma_b < \sigma_v$. The physical interpretation in real space is that the bandwidth smearing makes the beam narrower, by a factor κ_1 that depends on the baseline length: for a given multipole l, the fraction of sky observed by a broadband interferometer is actually $f_{\Omega_c}^l = f_{\Omega}^l / \kappa_1$ — cf. section 4.
Following the same arguments as previously, one can show that the oscillating term of the visibilities washes out the constant term of the spectral power, so the visibilities can be rewritten as:

$$V_{\nu}^T(u_0) = \int \Delta I_i(n) \Delta I_i(n) \exp(i2\pi d_0 n^\nu c) J(\nu-n_0) \, dv \, dn. \quad (22)$$

The temperature fluctuations over the sky are linked to the power fluctuations by:

$$\Delta I_i(n) = \frac{\partial I_i}{\partial T} \Delta T(n) = \frac{S B_i}{\partial B_i/\partial T} \Delta T(n). \quad (23)$$

We can then define the broadband visibilities in temperature units:

$$V_{\nu}^T(u_0) = \frac{V_{\nu}^T(u_0)[\text{in K}]}{S \left(\partial B_i/\partial T\right)_{\nu=0}}. \quad (24)$$

Following the same arguments as previously, one can show that:

$$V_{\nu}^T(u_0) = \Delta T \int \Delta T(w) \tilde{B}^T(u_0,w) \, dw, \quad (25)$$

where we have introduced the Fourier transform of the temperature field,

$$\Delta T(n) = \int \Delta T(w) \exp(-i2\pi w \cdot n) dw, \quad (26)$$

1.4. Broadband visibilities in temperature units for CMB experiments

It is more convenient to work with visibilities in temperature units when studying CMB temperature and polarization anisotropies. If B_i is the intensity of the observed field, in units of $[\text{W Hz}^{-1} \text{m}^{-2} \text{sr}^{-1}]$, the spectral power collected by a horn of surface S is:

$$I_i = S B_i. \quad (20)$$

CMB experiments observe small spatial fluctuations over the sky:

$$I_i(n) = I_i + \Delta I_i(n). \quad (21)$$

The oscillating term of the visibilities washes out the constant part of the spectral power, so the visibilities can be rewritten as:

$$V_{\nu}^T(u_0) = \int \Delta I_i(n) \Delta I_i(n) \exp(i2\pi d_0 n^\nu c) J(\nu-n_0) \, dv \, dn. \quad (22)$$

The temperature fluctuations over the sky are linked to the power fluctuations by:

$$\Delta I_i(n) = \frac{\partial I_i}{\partial T} \Delta T(n) = S \frac{\partial B_i}{\partial T} \Delta T(n). \quad (23)$$

We can then define the broadband visibilities in temperature units:

$$V_{\nu}^T(u_0) = \frac{V_{\nu}^T(u_0)[\text{in K}]}{S \left(\partial B_i/\partial T\right)_{\nu=0}}. \quad (24)$$

Following the same arguments as previously, one can show that:

$$V_{\nu}^T(u_0) = \Delta T \int \Delta T(w) \tilde{B}^T(u_0,w) \, dw, \quad (25)$$

where we have introduced the Fourier transform of the temperature field,

$$\Delta T(n) = \int \Delta T(w) \exp(-i2\pi w \cdot n) dw, \quad (26)$$

and a temperature convolution kernel,

$$\tilde{B}^T(u_0,w) = \int \left(\frac{\partial B_i}{\partial T} \right)_{\nu=0} \tilde{A}_i(u_0,w) \, dv. \quad (27)$$

If we neglect the dependence of the signal and of the beam on frequency, this kernel actually becomes the one defined in Eq. (10):

$$\tilde{B}^T(u_0,w) \rightarrow \tilde{B}_{ap}(u_0,w) \quad (28)$$

1.5. A refined kernel

The intensity B_i of the observed field actually depends on frequency for a black body source at temperature T:

$$B_i = \frac{2\nu^3}{c^2} \frac{1}{\exp(h\nu/k_BT) - 1}. \quad (29)$$

Inside the bandwidth, the frequency dependence of the T derivative of B_i is well approximated by a power law:

$$\frac{\partial B_i}{\partial T} \approx \frac{\partial B_i}{\partial T} \left(\frac{\nu}{\nu_0} \right)^\alpha \Rightarrow \frac{\partial B_i}{\partial T} \left(\frac{\nu_0}{\nu} \right)^\alpha \frac{h\nu_0}{k_BT} e^{h\nu_0/k_BT} \left(e^{h\nu/k_BT} - 1 \right). \quad (30)$$

The beam of the horns depends on frequency as well. The surface of the horns S, the solid angle covered Ω and the frequency of observation ν are related by $S \Omega = k^2 \nu^2$, leading to $\Omega \sim \nu^{-2}$. Such a frequency dependence of a Gaussian beam can be modeled by modifying its Fourier transform as follows:

$$\tilde{A}_i(w) = \frac{\nu_0^2}{\nu^2} \exp(-\pi \nu^2 \nu_0^2 w^2). \quad (31)$$

Figure 2 shows for several values of l how the approximate kernel of Eq. (19) is refined when one takes into account the above frequency dependences of the beam and the intensity. The signal and the beam dependences largely compensate each other, and the difference between the two kernels turns out to be negligible considering the accuracy level required for the sensitivity loss estimation. The main difference is a shift of the centroid of the window function shown in the left panel of figure 3 absent in the approximate kernel. This will introduce systematics which will

Footnotes:

5 Practically, the visibilities measured by a bolometric interferometer will be in power units as defined in Eq. (3).
have to be corrected for. We also show what happens for a more realistic top hat shaped bandwidth (right panel of figure 2 solid lines in figure 3). For the data extraction of a given instrument, the convolution kernel will have to be computed numerically; however, the approximate Gaussian kernel gives a good enough accuracy to estimate the sensitivity loss. In the rest of this paper, we use the approximate analytical form of the kernel, and write \(\beta \) instead of \(\beta_{ap} \). Finally, the right panel of figure 3 shows the variation of \(\kappa_i \) with \(l_0 \) for a gaussian (dashed line) and a top hat (solid line) bandwidth.

2. Visibilities measured by broadband bolometric interferometers

The effect of the bandwidth is more subtle in a bolometric interferometer than in a generic interferometer, because the visibilities are not measured directly. As described in [C08], a time-domain modulation of the visibilities is performed by controlled phase shifters -located behind each polarization channel (twice the number of horns)- which take some well-chosen time-sequences of discrete phase values. The corresponding time-sequences of bolometers’ measurements will allow to recover, independently for each bolometer, all the different visibilities, by solving a linear problem of the form \(\mathbf{S} = \mathbf{A} \mathbf{X} \), where \(\mathbf{X} \) is a vector including the visibilities, \(\mathbf{S} \) is a vector including a time-sequence of one bolometer’s measurements, and \(\mathbf{A} \) a coefficient matrix depending on the phase shift sequences. In the following we generalize the [C08] formalism, taking the bandwidth into account. As in the generic case, we assume in this section that the detectors (here the bolometers) are sensitive to a spectral bandwidth \(\Delta \nu \), through a bandpass function \(J(\nu - \nu_0) \) centered on the frequency \(\nu_0 \).

2.1. Signal on broadband bolometers

We consider a bolometric interferometer consisting of \(N_b \) horns whose beams are defined by the same function \(B(n) \), and \(N_{out} \) bolometers. The electric field at the output of polarization splitters, corresponding to horn \(i \) coming from direction \(n \) for polarization \(\eta \) (\(|| \) or \(\perp \)) is

\[
\epsilon_{i,\eta}(n) = B(n) E_{i,\eta}(n).
\]

During a time sample \(k \), each controlled phase shifter adds to its associated input channel the phase \(\Phi_{i,\eta}^k(\nu) \). After combining, the electric field in one output channel is then

\[
z_k(n) = \int z_k^0(n) J(\nu - \nu_0) d\nu,
\]

where

\[
z_k^0(n) = \frac{1}{\sqrt{N_{out}}} \sum_{i=0}^{N_{out}-1} \sum_{\eta=0}^{1} \epsilon_{i,\eta}(n) \exp[i\Phi_{i,\eta}^k(\nu)],
\]

The power coming from each of the combiner outputs is averaged on time scales given by the time constant of the detector (much larger than the frequency of the EM wave). The power collected by a given bolometer during a time sample \(k \) is then

\[
S_k = \int \left| \int z_k^0(n) J(\nu - \nu_0) d\nu \right|^2 \, dn \bigg/ \langle \sum \rangle .
\]

Signals coming from different directions of the sky are incoherent, as are signals at different frequencies, so their time averaged correlations vanish:

\[
\left\langle z_k^0(n) z_k^{0*}(n') \right\rangle \bigg/ \langle \sum \rangle = \left| z_k^0(n) \right|^2 \delta(n - n') \delta(\nu - \nu')
\]

The signal on the bolometer is finally

\[
S_k = \int |z_k^0(n)|^2 J(\nu - \nu_0) d\nu dn
\]

Developing this expression leads to auto-correlation terms for each input channel and cross-correlation terms between all the possible pairs:

\[
S_k = S_k^{auto} + S_k^{cross}
\]

As in the general case, one can write the visibilities as a convolution in the uv-plane (we define \(b = [i, j] \) and \(p = [\eta_1, \eta_2] \)):

\[
S_k^{cross} = \frac{2J(0)}{N_{out}} \Delta \nu \text{Re} \left\{ \sum_{l=1}^{N_{out}} \sum_{\eta_1, \eta_2} \int \bar{I}_{b,\eta_1}(w) I_{b,\eta_2}(u, w) dw \right\}
\]

Recall that this is a sequence of such time samples that will be used to inverse the problem and recover the visibilities.
where we have defined the Fourier transform of the physical signal,
\[
\tilde{I}_{b,p}(w) = \int E_{\nu}(n)E^*_{\nu}(n) \exp(i2\pi n.w)dn, \tag{40}
\]
and the kernel \(\tilde{\eta}^R_{b,p}(u_b,w)\) which contains the phase modulation used to recover the visibilities,
\[
\tilde{\eta}^R_{b,p}(u_b,w) = \int \tilde{A}(u_b - w) J_\nu(v - \nu_0) \exp[i\Delta \Phi^k_{b,p}(\nu)]dv. \tag{41}
\]
\[
\Delta \Phi^k_{b,p}(\nu) = \Phi^k_{b,p}(\nu) - \Phi^k_{b,p}(\nu_0) \tag{42}
\]
with \(A(n) = B^2(n)\) the square of the beam of the input horns.

2.2. Phase shifts constant with respect to frequency

We first consider the simplest case where the phase shift values do not depend on the frequency \(\nu\). When \(\Delta \Phi^k_{b,p}(\nu) = \Delta \Phi^k_{b,p}(\nu_0)\), the phase shift term comes out the integral over \(\nu\):
\[
\tilde{\eta}^R_{b,p}(u_b,w) = \tilde{\beta}(u_b,w) \exp[i\Delta \Phi^k_{b,p}(\nu_0)]. \tag{43}
\]
The signal of the cross correlations on the bolometer is thus the one expressed in [C08], with the broadband visibilities defined in Eq. (23) instead of the monochromatic ones:
\[
S^\text{cross}_k = \frac{1}{N_{\text{out}}} \text{Re} \left\{ \sum_{i,j} \sum_{\eta_1,\eta_2} e^{i(\Delta \Phi^k_{\nu_0})} V^\text{Stokes}_{\nu_0}(\eta_1,\eta_2) \right\}. \tag{44}
\]
Following [C08], we can introduce the broadband Stokes visibilities,
\[
V^\text{Stokes}_{\nu_0}(\eta_1,\eta_2) = \int S(\nu)\tilde{\beta}(u_b,w) dw, \tag{45}
\]
where \(S\) stands for the Stokes parameters I, Q, U or V and \(S\) stands for their Fourier transform, and rewrite Eq. (23) as a linear combination of the Stokes visibilities defined for different baselines:
\[
S^\text{cross}_k = \sum_{\eta_1,\eta_2} \Gamma_{k,\eta} \cdot V^\text{Stokes}_{\nu_0}(\eta_1,\eta_2) \tag{46}
\]
where \(\Gamma_{k,\eta}\) is the vector, defined in [C08], encoding the phase shifting values, and \(V^\text{Stokes}_{\nu_0}\) is a vector including the real and imaginary parts of the broadband Stokes visibilities. If the phase shift values of a broadband bolometric interferometer are constant with respect to frequency, the visibilities should thus be reconstructed exactly as explained in [C08], by solving a linear problem. In this case, a broadband bolometric interferometer therefore works exactly as a monochromatic one, except that the output observables will be broadband visibilities instead of monochromatic ones.

2.3. Phase shifts linear with respect to frequency

We now consider the more complicated case where the modulation phase shifts vary linearly with respect to frequency:
\[
\Delta \Phi^k_{b,p}(\nu) = \Delta \Phi^k_{b,p}(\nu_0) \times \frac{\nu}{\nu_0}. \tag{47}
\]
From a technological point of view, this may seem more natural, since it is automatically respected if for instance the phase shifters are just constituted by delay-lines.

For the sake of simplicity, we write \(\Delta \Phi^k_{b,p}(\nu_0)\) instead of \(\Delta \Phi^k_{b,p}(\nu_0)\) in the following. As in section [1] in order to carry out the analytical calculation, we assume both the beam and the intensity to be independent of frequency, and we assume a normalized gaussian bandpass function \(J_\nu\). We show in appendix \([\text{2}]\) that \(\tilde{\eta}^R_{b,p}(u_b,w)\) is then
\[
\tilde{\eta}^R_{b,p}(u_b,w) = \tilde{\beta}(u_b,w) \exp[-(\Delta \Phi^k_{b,p}(\nu_0))^2 G + i\Delta \Phi^k_{b,p}(\nu - H(w))], \tag{48}
\]
where we have defined
\[
G = \frac{1}{2} \frac{\nu^2}{\nu_0^2}, \quad H(w) = \frac{1}{2} \frac{\nu_0^2}{\nu^2} \frac{w^2}{u^2_b}, \tag{49}
\]
Thus the cross-correlation part of the bolometer signal can be written:
\[
S^\text{cross}_k = \frac{1}{N_{\text{out}}} \text{Re} \left\{ \sum_{i,j} \sum_{\eta_1,\eta_2} e^{i(\Delta \Phi^k_{\nu_0})} V^\text{Stokes}_{\nu_0}(\eta_1,\eta_2) \right\} \tag{51}
\]
where we have introduced some "phase-dependent" broadband visibilities:
\[
V^\Delta_{b,p}(u_b, w) = J(0) \chi \int \tilde{I}_{b,p}(w) \tilde{\beta}(u_b,w) dw \tag{52}
\]
The new kernel is linked to the generic one by a rotation in the complex plane:
\[
\tilde{\beta}(u_b,w) = \tilde{\beta}(u_b,w) \exp[-i\Delta \Phi^k_{b,p} H(w)] \tag{53}
\]
This complex factor unfortunately depends on the phase differences: this means that the definition of every visibility will slightly change between two different samples \(k\) and \(k'\). This is of course a bad feature that will corrupt the linear problem.

We will show in a paper in preparation that an error varying with the modulation will lead to a dramatic leakage from the intensity visibilities into the polarization ones (which are at least two orders of magnitudes smaller in CMB observations). This prediction (which is not trivial and is not proven analytically in this article) is supported by our Monte-Carlo simulation (cf. section [5]): introduction of the \(\eta\)-kernel of Eq. 46 in the simulation leads to a huge error on the reconstructed polarization spectrum (typically two orders of magnitude bigger than the one on temperature spectrum), as shown in figure [5] when the modulation matrix used to solve the problem is the monochromatic one defined in [C08]. Fortunately, there is a way to get rid of this leakage, as described in section [3], by reconstructing the I visibilities in sub-bands. Using the extended modulation matrix introduced in subsection [3.3] this dramatic error source can be put under control, and the broadband polarization visibilities can be reconstructed without loss of sensitivity.

2.4. Geometrical phase shifts

In the quasi-optical combiner design considered for the QUBIC experiment [Kaplan et al., 2009], some geometrical phase shifts \(\Delta \Phi^k_{b,p}(\nu_0)\) are automatically introduced by the combiner. These geometrical phase shifts are just constituted by delay-lines.

7 \(\kappa_1\) is defined in Eq. (17).
8 As mentioned in [C08], these phase shifters naturally respect the "coherent summation of equivalent baselines" scheme.
phase shifts, stemming from path differences between rays in the optical combiner, will vary linearly with respect to frequency:

$$\Delta \Psi^k_{b,p}(v) = \Delta \Psi^k_{b,p}(v_0) \times \frac{v}{v_0}. \quad (54)$$

But as explained in [C08], these geometrical phase shifts will not be used to modulate the visibilities. This means that they will not vary between the different time samples used for a reconstruction:

$$\forall k, k', \quad \Delta \Psi^k_{b,p}(v) = \Delta \Psi^{k'}_{b,p}(v) \equiv \Delta \Psi_{b,p}(v) \quad (55)$$

Hence they will not cause any error during the reconstruction: the β-kernels of each different visibilities will be rotated in the complex plane by the same factor whatever the sample. The visibilities will just be measured with a rotation:

$$V_{b,p}^{GLD,\nu}(u_b) = J(\Delta \nu) \int I_{b,p}(w) \beta(u_b, w) \exp[-i \Delta \Psi_{b,p}(w)] \, dw. \quad (56)$$

2.5. Photon noise error on reconstructed visibilities

We suppose here that the modulation matrix used to reconstruct the visibilities is the monochromatic one defined in [C08]: this is completely true in the case of frequency-independent phase shifters, and true for the rows regarding the polarization visibilities in the case of frequency-dependent phase shifters—see subsection 2.5.3. We have shown in [C08] that the visibility covariance matrix is (the factor $1/[J(\Delta \nu)^2]$ comes from the difference of definition between monochromatic and broadband visibilities)

$$N = \frac{\sigma^2 N_h}{[J(\Delta \nu)^2] N_{\text{out}}} \times (A' \cdot A)^{-1}, \quad (57)$$

where A is a matrix including the $\Gamma_{k,\beta}$ vectors and σ_0 is the quantity of photon noise (in watts) that would be seen by one bolometer illuminated by one horn during the time of one sample of the phase sequence. The off-diagonal elements cancel out to zero because the angles are uncorrelated from one channel to another, while the diagonal elements average to the variance of the elements in A, which equals $[10]$, multiplied by the number of different data samples N_d. If the coherent summation of equivalent baselines scheme is adopted, the variance on the reconstructed visibilities is

$$\sigma^2_{V}[\text{in W}] = \frac{\sqrt{N_h}}{\sqrt{N_s}} \frac{\sigma_0}{\sqrt{N_i}} \times \frac{1}{J(\Delta \nu)^2}. \quad (58)$$

where $N_i = N_d \times N_{\text{out}}$ is the total number of time samples. We derive from Eq. (58) in appendix B the noise on a visibility measured during a time $1/\nu$ by a bolometric interferometer experiment, knowing the Noise Equivalent Temperature (NET)\(^9\) of its bolometers, in Kelvin units:

$$\sigma^2_{V}[\text{in K}] = \frac{\sqrt{N_h}}{N_{\text{eq}}} \frac{\text{NET} \cdot \Omega}{\sqrt{N_s}}. \quad (59)$$

\(^9\) As geometrical phase shifts depend on the spatial positions of bolometers in the quasi-optical combiner focal plane, using them to invert the problem means using different bolometers; this must be avoided because of dangerous intercalibration issues.

\(^{10}\) A is filled with elements of the form $\cos(\phi_1) + \sin(\phi_2)$ and because we are assuming that the angles are uniformly distributed, they have zero average and their variance is 1.

3. Virtual reconstruction sub-bands in bolometric interferometry

In this section we show that the linear dependence in frequency of the modulation phase shifts $\Phi_{b,p}(v)$ enables independent reconstruction of the visibilities in smaller frequency sub-bands. This idea has been proposed for the first time in [Mali, 2007]. We first thought that this method could be a way to beat the smearing (the sub-band visibilities that are reconstructed are less smeared than the broadband ones), but we show in the following that its application comes along with a loss in signal to noise ratio that thwarts the gain in sensitivity, and thus makes this method inefficient to beat bandwidth smearing. However, as we will see, this method can be successfully set up to remove the dramatic effect described in subsection 2.5.3 and thus saves the frequency-dependent option for the modulation phase shifters.

3.1. Principle

Before doing the visibility reconstruction, one can choose a number n_{sub} of virtual reconstruction sub-bands of width $\delta \nu = \Delta \nu/n_{\text{sub}}$. We emphasize that this division in sub-bands is purely virtual in that the hardware design does not depend on it. The \hat{h}-kernel becomes

$$\tilde{h}_{b,p}^{\nu_{\text{sub}}}(u_b, w) = \sum_{m=1}^{n_{\text{sub}}} \tilde{h}_{b,p}^{\nu_{\text{sub}},m} [u_b, w, v_m], \quad (60)$$

where $\tilde{h}_{b,p}^{\nu_{\text{sub}},m}$ are defined as sub-bands kernels:

$$\tilde{h}_{b,p}^{\nu_{\text{sub}},m}[u_b, w, v_m] = \int A(\frac{v}{v_0} - u_b - w) J_N^{\nu_{\text{sub}}}(v - v_m) \exp[i \Delta \Phi_{b,p}(v)] \, dv, \quad (61)$$

where $J_N^{\nu_{\text{sub}}}(v - v_m)$ is a bandpass function of width $\delta \nu$ centered at v_m. The cross-correlation term is then\(^{12}\)

$$S_{k}\text{cross} = \frac{2}{N_{\text{out}}} \Re \sum_{m_1=1}^{n_{\text{sub}}} \sum_{m_2=1}^{n_{\text{sub}}} \exp[i \Delta \Phi_{b,p}(v)] V_{b,p}^{\nu_{\text{sub}},m_1}(u_{b,m_1}) \cdot V_{b,p}^{\nu_{\text{sub}},m_2}(u_{b,m_2}), \quad (62)$$

where we have defined

$$\Delta \Phi_{b,p,m} = \Delta \Phi_{b,p}(v_0) \times \frac{v_m}{v_0} \text{ and } u_{b,m} = u_b \times \frac{v_m}{v_0}. \quad (63)$$

The sub-band visibilities $V_{b,p}^{\nu_{\text{sub}},m}(u_{b,m})$ are the broadband visibilities defined in the previous sections, but for a $\delta \nu$ bandwidth. For each pair of horns, the n_{sub} sub-bands visibilities are defined for n_{sub} different baselines $(u_{b,m})_{m=1,...,n_{\text{sub}}}$. Finally, Eq. (62) can be written as a linear system n_{sub} times greater than the one of Eq. (51):

$$S_{k}\text{cross} = \sum_{\beta=1}^{n_{\text{sub}}} \Gamma_{k,\beta}^{\nu_{\text{sub}}} \cdot V_\beta^{\nu_{\text{sub}}} \quad (64)$$

The problem can thus be inversed exactly as in [C08] to recover the $n_{\text{sub}} \times N_s$ sub-bands visibilities.
3.2. Sensitivity issue

In every time sample \(k \), the signal of the sub-band visibilities is \(n_{\mathrm{sub}} \) times smaller than the signal of the broadband visibilities, and consequently their reconstruction variance is

\[
\sigma_V^{\mathrm{NET}}[\text{in K}] = \frac{\sqrt{N_h} \times n_{\mathrm{sub}}}{N_{\mathrm{eq}}} \sqrt{\frac{\Omega}{l}}. \tag{65}
\]

One can average offline (i.e., after the reconstruction) the sub-band visibilities deriving from the same baseline \(u_b \), to recover the broadband visibilities:

\[
V_{b,p}(u_b) = \sum_{m=1}^{n_{\mathrm{sub}}} V_{b,p}(u_{b,m}). \tag{66}
\]

These broadband visibilities are equivalent to the ones that would have been reconstructed without sub-bands division but suffer from a smaller bandwidth smearing (\(\kappa_1 \) is the one of an instrument whose bandwidth is \(n_{\mathrm{sub}} \) times smaller). However, the variance on these broadband visibilities is

\[
\sigma_V^{\mathrm{NET}}[\text{in K}] = \frac{\sqrt{N_h} \times \sqrt{N_{\mathrm{sub}}}}{N_{\mathrm{eq}}} \sqrt{\frac{\Omega}{l}}. \tag{67}
\]

Comparison with Eq. (59) shows that the reconstruction in virtual sub-bands comes along with a loss of a factor \(\sqrt{n_{\mathrm{sub}}} \) in sensitivity on reconstructed visibilities. Unfortunately, we will see in section 4.1 that this loss in sensitivity is always bigger than the gain due to the smearing reduction. This makes this method inefficient to beat bandwidth smearing.

3.3. Reconstruction scheme for instruments with frequency-dependent phase shifters

This method, however, happens to bring a solution to the crucial issue described in subsection 3.2. The idea is to estimate the correct beam at the same time the intensity visibilities in sub-bands (Stokes I), and the polarization visibilities in one single broadband (Stokes Q, U and V). This can easily be done by writing an extended coefficient matrix based on the following decomposition:

\[
S_k^{\text{cross}} = \sum_{\beta=1}^{n_{\mathrm{sub}} \times N_2} \sum_{\beta=1}^{n_{\mathrm{sub}} \times N_2} I_{\beta,b} \cdot V_{I,b} + \sum_{X=Q,U,V} \sum_{\beta=1}^{N_2} I_{\beta,b} \cdot V_{X,b}. \tag{68}
\]

Practically, this means that the part of the matrix encoding the polarization visibilities is identical to that of the monochromatic matrix, while the part encoding the intensity visibilities gets \(n_{\mathrm{sub}} \) times more rows. The matrix thus has a total of \((2 \times n_{\mathrm{sub}} + 6) \times N_2 \) rows. The corruption of the linear problem (and then the leakage of the error on the intensity visibilities into the polarization ones) can thus be decreased as much as necessary by increasing the number of sub-bands, without loss of signal to noise ratio for the polarization visibilities. Such a reconstruction has been performed with our numerical simulation, as described in section 4.1. A comparison of figures 5 and 7 shows its efficiency. One drawback of this method is of course that it increases the minimal sequence length required to invert the problem. Finally, it should be noticed that this method could in principle apply just as well to phase shifters with any arbitrary (but known) frequency dependence.

4. Loss in sensitivity for CMB experiments

We have shown in sections 2 and 3 how the broadband visibilities defined in section 1 can be reconstructed, whatever the frequency dependence of modulation phase shifters, from the bolometer sequences measured by a broadband bolometric interferometer. In order to evaluate the resulting loss in sensitivity for a dedicated CMB experiment, it is important to understand that it is meaningless to compare directly monochromatic visibilities and broadband ones, because they are not the same observables (as it is meaningless to directly compare two signals that have been convolved with kernels of different shape and/or size). A correct way to deal with this problem is to compare the sensitivities achieved on the observable of physical interest, here the CMB power spectra. In this section, we generalize the estimator introduced in [H08] and derive new formulas for the sensitivity on the CMB BB power spectrum.

4.1. Generalization of the Pseudo-Power spectrum estimator

We make the same assumptions and follow exactly the same arguments as in [H08], substituting the kernel \(\tilde{\beta}(u,w) \) for the Fourier transform of the beam \(\tilde{A}(w) \). Assuming perfect E/B separation, one can show that

\[
\langle V_B(u)V_B(u') \rangle = \delta(u-u') \int C_{BB}(w) \left| \tilde{\beta}(u,w) \right|^2 dw. \tag{69}
\]

Recall that in the flat-sky approximation, \(l = 2\pi |u| \) (see e.g. [White et al., 1997]). Assuming the power to be flat enough to be taken out of the integral (actually we rather assume that \(\Omega^2 C_l \) is flat in the simulation, see section 5), in the presence of noise,

\[
\langle V_B(u)V_B(u') \rangle = \delta(u-u') C_{BB} \int \left| \tilde{\beta}(u,w) \right|^2 dw + N(u,u') \tag{70}
\]

We show in appendix C that the integral of the square modulus of the convolution kernel in the uv-plane actually equals half of the effective beam defined in Eq. (16):

\[
\int \left| \tilde{\beta}(u,w) \right|^2 dw = \frac{\Omega}{2} = \frac{\Omega}{2\kappa_1}. \tag{71}
\]

There is a perfect analogy with the monochromatic case where \(\frac{\Omega}{2} = \int |\tilde{A}(w)|^2 dw \). The simplest unbiased estimator of the power spectrum for a broadband interferometer, in presence of noise, is thus

\[
\bar{C}_l = \frac{2}{\Omega_1} \times \frac{1}{N_\ell} \sum_{\rho=0}^{N_\ell-1} \left(V(u_\rho)V^*(u_\rho) - N(u_\rho,u_\rho) \right). \tag{72}
\]

Here \(N_\ell(l) \) is the number of different modes probing a given \(l \). It is thus the ratio of the available surface of a bin \(\pi u \Delta u \) to the effective surface of the kernel in the uv-plane \(\Omega_1/2 \):

\[
N_\ell(l) = \frac{2\pi u \Delta u}{\Omega} = 2l \Delta l / \kappa_1. \tag{73}
\]

The variance of the estimator for a broadband interferometer can be derived as in [H08], leading to the error on the power spectrum,

\[
\Delta C_l^{BB} = \sqrt{\frac{2\kappa_1}{2l \Delta l \kappa_2}} \left(\bar{C}_l + \frac{2\sigma^2_{\beta,k_1}}{\Omega} \right). \tag{74}
\]
The only differences with the monochromatic interferometer formula are the K_1 factors.

Using the expression for σ_V given by Eq. (59), the error on the angular power spectrum measured by a broadband bolometric interferometer during a time t can finally be written:

$$\Delta C_l^B = \sqrt{\frac{2\kappa_1}{2i\Delta f_{sky}}} \left(C_l + \frac{2N_{bs} NET^2_{BI} \Omega}{N^2_{eq} t} \kappa_1 \right).$$ \hspace{1cm} (75)

The NET$_{BI}$ of bolometers scales as the inverse square root of the bandwidth, NET$_{BI} \propto 1/\sqrt{\nu}$ (cf. appendix D); we make it appear explicitly by writing

$$NET^2_{BI} = NET^2_{BI,20\%} \frac{0.20}{(\Delta \nu/\nu_0)},$$ \hspace{1cm} (76)

where NET$_{BI,20\%}$ is the Noise Equivalent Temperature of 20%-bandwidth bolometers. Eq. (75) becomes:

$$\Delta C_l^B = \sqrt{\frac{2}{2i\Delta f_{sky}}} \left(\kappa_1 C_l + \frac{2N_{bs} NET^2_{BI,20\%} \Omega}{N^2_{eq} t} \times \frac{0.20}{(\Delta \nu/\nu_0)} \right) K_{sp}(l)$$ \hspace{1cm} (77)

where the smearing penalty factor is defined by:

$$K_{sp}(l) = k_1^{3/2} = \left[1 + \frac{\Omega (\sigma_V/\nu_0)^2 \ell^2}{2\pi n^2_{vsb}} \right]^{3/4}.$$ \hspace{1cm} (78)

If we neglect the κ_1 penalty on the sample variance, the factor of sensitivity degradation due to bandwidth smearing for a bolometric interferometer is indeed given by $K_{sp}(l)$. The physical interpretation of Eq. (77) is straightforward: the sensitivity improvement due to bandwidth broadening (more photons are collected) is in competition with the sensitivity degradation due to bandwidth smearing (the fringes are degraded). Figure 4 (right) shows the evolution of $0.20/(\Delta \nu) 	imes K_{sp}(l)$ as a function of bandwidth. We see that, for the typical B-mode experiment considered, the smearing begins to cancel the broadening for bandwidths larger than 20% - which is fortunately the typical bandwidth of bolometers used in CMB experiments.

4.2. Inefficiency of the reconstruction in sub-bands for beating bandwidth smearing

If the visibilities were reconstructed in n_{vsb} sub-bands, the smearing would be reduced but the signal to noise ratio in each l band would be decreased, leading to a $\sqrt{n_{vsb}}$ additional factor in σ_V as explained in section 3. The smearing penalty factor would be

$$K_{sp}^{vsb}(l) = n_{vsb} k_1^{3/2} = n_{vsb} \left[1 + \frac{\Omega (\sigma_V/\nu_0)^2 \ell^2}{2\pi n^2_{vsb}} \right]^{3/4}.$$ \hspace{1cm} (79)

However, it can be checked that $K_{sp}^{vsb}(l)$ is always greater than $K_{sp}(l)$, whatever the number of sub-bands, meaning that the loss in signal to noise ratio is always more penalizing than the smearing reduction.

4.3. Comparison with an imager and a heterodyne interferometer

We now correct the ratio formulas derived in [H08]. The comparison between the sensitivities of a heterodyne and a bolometric interferometer is not straightforward since there is an important difference of hardware design between the two kind of interferometry regarding bandwidth. In a radio heterodyne interferometer such as DASI [Kovac et al., 2002] or CBI [Readhead et al., 2004], the analog correlators only work at low frequencies (typically below 2 GHz), so the broadband signal collected by each horn is divided into different channels of typically 1 GHz bandwidth each and then downconverted before being correlated. This forced division has prevented past interferometer CMB experiments from any important bandwidth smearing effects, but the price to pay was of course the hardware complexity of such systems. Bolometers are in the other

13 For ground-based experiments, atmospheric emission lines exclude the possibility of larger bandwidth anyway.
hand naturally broadband, and we have shown in this article how the monochromatic bolometric interferometer described in [C08] generalizes almost naturally into a broadband bolometric interferometer: a broadband instrument only needs broadband components (horns, filters, etc.). To correct the ratio formula obtained in [H08], one can neglect the bandwidth smearing for heterodyne interferometers (for a 1% bandwidth, k_1 is always very close to 1); the formula is then only corrected by the smearing penalty factor:

$$\frac{\Delta C^{HI}_l}{\Delta C^{BI}_l} = \left(\frac{N_{eq}}{N_h} \right) \times \frac{\text{NET}_H}{\text{NET}_B} \times K_{sp}^{-1}. \tag{80}$$

To be completely fair, one must keep in mind that in the actual state of the technological art, it seems difficult to design heterodyne interferometers with bandwidth larger than 10%.

The comparison between a bolometric interferometer and an imager is also only modified by the smearing penalty factor. If the experiment is dominated by instrumental noise, the ratio of the variances becomes

$$\frac{\Delta C^{im}_l}{\Delta C^{BI}_l} = \left(\frac{N_{eq}}{N_h} \right)^2 \times \frac{1}{B_j^2} \times K_{sp}^{-1}. \tag{81}$$

5. Monte-Carlo simulations

We have performed a Monte-Carlo simulation in order to check the results obtained in this article. The basic principle is, starting from CMB maps generated from theoretical spectra, to compute the sequences of data measured by a broadband bolometric interferometer, to reconstruct visibilities from these sequences, and to estimate power spectra from these visibilities. The comparison between input and output spectra then allows us to check the analytical calculations (and the associated assumptions) of this article. The code is available upon request; questions or comments can be addressed by e-mail to the authors.

5.1. Simulation overview

We consider a “standard” bolometric interferometer (as defined in section 2) constituted by a square array of N_h horns, the associated N_h polarization splitters, the $2N_h$ modulation phase shifters, a beam combiner and N_{bol} bolometers. In this simulation we only compute the power measured by one of the bolometers. We assume that the beams of the horns are all described by the same perfect gaussian function of Eq. (12). We assume that the phase shift values taken by the modulation phase shifters are equally spaced. The physical input parameters are then the number of horns N_h, the horns’ radius, the distance between two adjacent horns, the FWHM of the gaussian beam, the number of phase shift values taken by the modulation phase shifters N_{ph}, the central observation frequency ν_0, the bandwidth $\Delta \nu$, the form of the bandpass function (either gaussian or top hat) J, and the number of data samples in one sequence N_η.

The CMB maps are generated from spectra given by the standard WMAP-5 cosmological model (although the spectra’s shapes are not really important for this simulation, the only crucial feature being the amplitude ratio between temperature and polarization spectra). The question of the E and B modes separation in interferometry is beyond the scope of this article and of this simulation. So we only consider the TT and EE spectra, which we call from now respectively the temperature and polarization spectra. Computation of the β and η kernels involves a numerical integration over the frequency band, while computation of the samples measured by the bolometers involves one over the uv-plane. The numerical input parameters are then the resolution in the uv-plane, the resolution in the frequency band, and the number of CMB map realisations N_{maps}.

The simulation pipeline is the following:

1. The position of primary horns and the associated set of baselines are generated.
2. The β and η kernels are computed – either from analytical formulas (given by Eq. (19) and Eq. (43) or numerical integrations (following Eq. (10) and Eq. (41)), which enables us to check the analytical formulas – for every different baseline and for every phase difference in the case of η.
3. Begining of MAPS loop. CMB temperature and polarization maps are generated from theoretical spectra.
4. Monochromatic and broadband visibilities are computed by convolving the maps’ Fourier transforms and the β kernels for every baseline. “Generalized” broadband visibilities (i.e.
the convolution of maps’ fourier transforms and \(\eta \) kernels) are computed for every baseline and for every phase difference.

5. Random phase sequences are generated for every horn and both polarizations, respecting the coherent summation of equivalent baselines scheme described in [C08]. Phase differences are then computed for every baseline.

6. A sequence of \(N_{\text{ff}} \) data sets \(S_4 \) measured by the bolometer is computed (Eq. (39)) by summing “generalized” broadband visibilities, following the phase sequences.

7. The modulation matrix is generated (see [C08]) for its explicit expression in the monochromatic case.

8. The visibilities are reconstructed by solving the linear problem of Eq. (46). End of MAPS loop.

9. Measured spectra are computed from the reconstructed visibilities using the estimators defined in section 4. Relative errors are obtained by comparison with the input theoretical spectra.

5.2. Validation of the work principle of a broadband bolometric interferometer and test of the broadband estimator

In step 9, we actually do not average the modulus of the reconstructed visibilities over the different baselines matching the same multipole as in Eq. (72), but for each different baseline, we average over all the \(N_{\text{maps}} \) maps realisations. Moreover, the power is actually not flat over the \(\Delta \lambda \) of integration, and cannot be taken out of the integral in Eq. (69), but we can use the fact that \(\hat{P}_{\text{C}}(\ell) \) is nearly flat to define an unbiased estimator (assuming no instrumental noise) for the broadband interferometer:

\[
\hat{C}_{\ell}^{\text{MC}} = \frac{2}{\Omega_{\text{MC}}} \times \frac{1}{N_{\text{maps}}} \sum_{m=0}^{N_{\text{maps}}-1} V_{\text{pol}}(u_{\ell}) V_{\text{pol}}^*(u_{\ell}).
\]

(82)

where \(V_{\text{pol}}(u_{\ell}) \) is the broadband visibility defined for the baseline \(u_{\ell} = 2\pi u_{\ell} \) and the map \(m \) and where

\[
\Omega_{\ell}^{\text{MC}} = \int \frac{|\hat{\beta}(u_{\ell}, w)|^2}{|u_{\ell}|^2} d\omega - \frac{\Omega_{\ell}}{2\kappa_{\ell}}.
\]

(83)

We thus expect the spectra reconstruction to be only affected by the “sample” variance:

\[
\Delta C_{\ell}^{\text{MC}} = C_{\ell} / \sqrt{N_{\text{maps}}}.
\]

(84)

We run the simulations with the following input parameters: 16 horns, 15 degrees FWHM primary beam, 12 modulation phase shift values, 90 GHz central frequency, 20% band-width, \(N_{\text{maps}} = 100 \). We first simulate the case of phase shifters constant with respect to frequency (the \(\eta \)-kernels are computed following Eq. (41) and Eq. (43)) and use the monochromatic modulation matrix defined in [C08] to reconstruct the visibilities. The results, shown in figure 5, validate our study since our broadband estimator, taking the smearing into account, reconstructs the generated power spectra well: a broadband bolometric interferometer only needs broadband visibilities, whereas the intensity visibilities should be performed. We have checked with a numerical simulation that in both cases the visibilities can be reconstructed without other loss in sensitivity than the one due to the smearing.

Visibilities are defined as the convolution of the Fourier transform of the signal with a kernel, which is defined as the Fourier transform of the primary beam in the monochromatic case. We have shown that the effect of the smearing is to stretch this kernel, in the baseline direction only, and that the amplitude of the smearing only depends on three quantities: the bandwidth, the baseline length and the size of the primary beam. We have finally defined, as a function of broadband visibilities, a new power spectrum estimator and derived from it a generalized uncertainty formula.

The main conclusion of this article is that for a bolometric interferometer dedicated to CMB B-mode, the sensitivity loss due to bandwidth smearing- is quite acceptable (a factor 2 loss for a typical 20% bandwidth experiment).

Acknowledgements. The authors are grateful to the whole QUBIC collaboration for fruitful discussions.

References

Charlassier, R. et al. (2007) (a)-[C08], A&A v497, p965, arXiv:0806.0380
Charlassier, R. et al. (2008) (b), Proceed. 43rd “Rencontres de Moriond” on Cosmology, arXiv:0805.4527v1.
Harwton, J.-Ch. et al.(2008)[H08], A&A v491, p923, arXiv:0807.0438
Hyland, P. et al. (2008), MNRAS v393, pp.531-537, arXiv:0806.2493
Kaplan, J. et al. (2009), Proceed. of the June 2009 Blois conf. “Windows on the Universe”, arXiv:0904.0391.
Kovac, J. et al. (2002), Nature, v420 pp772-787.
Lamarre, J., (1986), Applied Opt., 25, 870.
Malu, S. (2007), PhD Thesis.
Myers, S.T. et al. (2003), Astrophysical J., v591, p575.
Readhead, A.C.S. et al. (2004), Science, v306, pp 836-844.
Thomson, A. R., Moran, J. M. and Swenson, G.W., ISBN 0-471-25492-4.
Timbie, P.T. et al. (2003), New Ast. Rev., v50, p999.
Tucker, G.S. et al. (2003), New Ast. Rev., v46, p1173.
White, M. J. et al. (1999), Astrophys. J. v514 p12, arXiv:astro-ph/9712195.
Appendix A: Analytical derivation of the $\tilde{\beta}$-kernel

The kernel of Eq. (13) can be written as a gaussian integral:

$$
\tilde{\beta}_{ap}(u_0, w) = \frac{\Omega}{\sigma_v \sqrt{2\pi}} e^{-C} \int e^{-\frac{B^2}{4A} - \frac{\nu^2}{2\sigma_v^2}} d\nu
$$

where we have defined the quantities

$$
A = \frac{1}{2\sigma_v^2} + \pi \Omega \nu_0^2,
$$

$$
B = \frac{\nu_0^2}{\sigma_v^2} + 2\pi \Omega \nu_0 (u_0 - w'),
$$

$$
C = \frac{\nu_0^2}{2\sigma_v^2} + \pi \Omega (u_0 - w')^2,
$$

and where we have made the variable substitution

$$
w' = u_0 - w.
$$

It is straightforward to show that

$$
\frac{\Omega}{\sigma_v \sqrt{2\pi}} \sqrt{\frac{\pi}{A}} = \frac{\Omega}{\sqrt{1 + 2\pi \Omega \nu_0^2}} \nu_0^2.
$$
\[
\frac{B^2}{4A} - C = -\pi\Omega w'^2 + \frac{2\pi^2 \Omega^2 \left(\frac{\nu}{\nu_0} \right)^2}{1 + 2\pi \Omega \left(\frac{\nu}{\nu_0} \right)} (u_0 \cdot w')^2.
\] (A.8)

Thus, we can write the kernel in function of the Fourier transform of the beam as in Eq. (14).

Appendix B: Analytical derivation of the \(\tilde{\eta} \)-kernel

The kernel of Eq. (41) can be written as the Fourier transform of a gaussian:

\[
\tilde{\eta}_{B,w}(u_0,w) = \Omega e^{-\frac{x^2}{2} + c} \int e^{-\Delta \nu(\nu - \frac{\nu_0}{2})^2} e^{i\Delta \nu \nu} d\nu \quad (B.1)
\]

\[
= \Omega e^{-\frac{x^2}{2} + c} \frac{\sqrt{\pi}}{A} e^{-\Delta \nu^2 \nu_0^2} e^{i\Delta \nu \nu},
\] (B.2)

where A, B and C are the quantities defined in appendix A. It is straightforward to show that

\[
G = \frac{1}{4\nu_0^2 A} = \left(\frac{\sigma_0}{\nu_0} \right)^2 \times \frac{1}{2\kappa^2},
\] (B.3)

\[
B = \frac{2\pi \Omega w_0 \cdot w (\frac{\nu}{\nu_0})^2}{1 + 2\pi \Omega w_0^2 (\frac{\nu}{\nu_0})^2} = 1 - H(w'),
\] (B.4)

with

\[
H(w') = \left(1 - \frac{1}{\kappa^2} \right) \times \frac{u_0 \cdot w'}{u_0^2}.
\] (B.5)

And we can finally write the kernel as in Eq. (41).

Appendix C: Integration of the \(\tilde{\eta} \)-kernel square modulus in uv-plane

We calculate this integral using the approximate kernel of Eq. (13). The variable substitution \(w' = u_0 - w \) does not change the integral:

\[
\int |\tilde{\eta}_{ap}(u_0, w)|^2 d\nu = \int |\tilde{\eta}_{ap}(u_0, w')|^2 d\nu'.
\] (C.1)

Using Parseval’s theorem, one gets

\[
\int |\tilde{\beta}_{ap}(u_0, w')|^2 d\nu' = \int |\tilde{\beta}_{ap}(u_0, n)|^2 d\nu,
\] (C.2)

where \(\tilde{\beta}_{ap} \) is the inverse Fourier transform of \(\tilde{\beta}_{ap} \). Because \(\tilde{\beta}_{ap}(u_0, w') \) is a positive gaussian function of \(w' \),

\[
\int |\tilde{\beta}_{ap}(u_0, n)|^2 d\nu = \frac{1}{2} \int |\tilde{\beta}_{ap}(u_0, n)| d\nu = \frac{1}{2} \int |\tilde{\beta}_{ap}(u_0, 0)| d\nu = \frac{\Omega_x}{2}.
\] (C.3)

By definition \(\Omega_x = \tilde{\beta}_{ap}(u_0, w' = 0) \), so finally

\[
\int |\tilde{\beta}_{ap}(u_0, w)|^2 dw = \frac{\Omega_x}{2}.
\] (C.4)

Appendix D: Noise Equivalent Power and Noise Equivalent Temperature

The spectral power \(I_{\nu} \) collected by a horn of surface \(S \) is defined in Eq. (20). We assume for simplicity that the number of bolometers equals the number of horns, The total power measured by a bolometer is then:

\[
P_{\text{net}} = \int I_{\nu}(n) J(\nu - \nu_0) A_{\nu}(n) d\nu dv
\] (D.1)

\[
= S \Omega J(0) \Delta \nu \int \nu^2 B_{\nu} J_{\nu}(\nu - \nu_0) d\nu.
\] (D.2)

The Noise Equivalent Power (NEP) due to photon noise on a bolometer, in units of \([\text{W Hz}^{-1/2}]\), is given by [Lamarre, 1986]:

\[
\text{NEP}^2 = 2 J(0) \Delta \nu \int \nu^2 I_{\nu} J_{\nu}(\nu - \nu_0) d\nu + ...
\]

\[
2J(0) \Delta \nu \int \frac{\nu^2}{2\nu^2} \nu_B^2 J_{\nu}(\nu - \nu_0) d\nu.
\] (D.3)

For CMB work, bolometer sensitivity is usually quoted as a Noise Equivalent Temperature in units of \([\text{K}]\), firstly to simplify the comparison with the sensitivity of coherent receivers and secondly to simplify the calculation of sensitivity on \(C_l \) since they are defined in temperature units. The conversion is given by:

\[
\text{NET} = \frac{\text{NEP}}{\sqrt{2} (\partial P_{\text{net}}/\partial \nu)}
\] (D.4)

It is straightforward to show that

\[
\frac{\partial P_{\text{net}}}{\partial \nu} = S \Omega J(0) \Delta \nu \int \frac{\nu^2}{\nu_B^2} \frac{\partial B_{\nu}}{\partial \nu} J_{\nu}(\nu - \nu_0) d\nu.
\] (D.5)

The NET thus scales as the inverse square root of the bandwidth:

\[
\text{NET} \propto \frac{1}{\sqrt{\Delta \nu}}.
\] (D.6)

Appendix E: Noise in visibility measurement in Kelvin

We can write the following relation between \(\sigma_0 \) in units of \([\text{W Hz}^{-1/2}]\) and the NET in units of \([\text{W Hz}^{-1/2}]\):

\[
\frac{\sigma_0}{\sqrt{N_t}} = \frac{\text{NEP}}{\sqrt{2} \sqrt{S}}.
\] (E.1)

where \(N_t \) is the duration of one phase sequence. Starting from Eq. (53), the noise in Watt on a broadband visibility measured during a time \(t \) by an experiment is then

\[
\sigma_V[\text{in W}] = \alpha \frac{\text{NEP}}{\sqrt{2} \sqrt{S} J(0) \Delta \nu}.
\] (E.2)

The quantity \(\alpha \) is different depending on whether one is considering an heterodyne or a bolometric interferometer. In the latter case, it has been derived in [CO8]: \(\alpha = \frac{N_t}{N_r} \). We have defined the visibilities in temperature units in Eq. (24). The noise on a visibility measurement in Kelvin is thus given by

\[
\sigma_V[\text{in K}] = \sigma_V[\text{in W}] \times \frac{1}{S (\partial B_{\nu}/\partial \nu)_{\nu_0}}.
\] (E.3)
Using the definition of the NET given in [D.4] the noise on a visibility measurement in Kelvin finally becomes

\[\sigma_V \text{[in K]} = a \frac{\text{NET} \, \Omega}{\sqrt{t}} \kappa_2, \tag{E.4} \]

where we have introduced

\[\kappa_2 = \int \frac{v_0^2}{v^2} \left(\frac{\partial B_v}{\partial T} \right) \left. \right|_{v_0} \, J_N(v - v_0) \, dv. \tag{E.5} \]

We see in table E.1 that \(\kappa_2 \approx 1 \) is a good approximation.

Frequency	\(\kappa_2 \)
30 GHz	\(~1 \times 10^{-4}\)
90 GHz	\(~1 \times 10^{-2}\)
250 GHz	\(~1 + 10^{-2}\)

Table E.1. Values of \(\kappa_2 \) for a 20% bandwidth, for different central frequencies \(v_0 \). We assume the instrument is observing, through the gaussian bandpass function defined in Eq. (11), a 3K black body source whose intensity is given by Eq. (29).