Research Article

Detection of Extended Spectrum Beta-Lactamases Resistance Genes among Bacteria Isolated from Selected Drinking Water Distribution Channels in Southwestern Nigeria

Ayodele T. Adesoji1 and Adeniyi A. Ogunjobi2

1Department of Biological Sciences, Federal University Dutsin-Ma, Katsina Road, PMB 5001, Dutsin-Ma, Katsina State, Nigeria
2Department of Microbiology, University of Ibadan, Oyo State, Nigeria

Correspondence should be addressed to Ayodele T. Adesoji; timmyayus2002@yahoo.com

Received 11 April 2016; Accepted 4 July 2016

Academic Editor: Carla R. Arciola

Copyright © 2016 A.T.Adesoji and A.A.Ogunjobi. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Extended Spectrum Beta-Lactamases (ESBL) provide high level resistance to beta-lactam antibiotics among bacteria. In this study, previously described multidrug resistant bacteria from raw, treated, and municipal taps of DWDS from selected dams in southwestern Nigeria were assessed for the presence of ESBL resistance genes which include \(\text{bla}^{\text{TEM}} \), \(\text{bla}^{\text{SHV}} \), and \(\text{bla}^{\text{CTX}} \) by PCR amplification. A total of 164 bacteria spread across treated (33), raw (66), and municipal taps (68), belonging to \(\alpha \)-Proteobacteria, \(\beta \)-Proteobacteria, \(\gamma \)-Proteobacteria, Flavobacteriia, Bacilli, and Actinobacteria group, were selected for this study. Among these bacteria, the most commonly observed resistance was for ampicillin and amoxicillin/clavulanic acid (61 isolates). Sixty-one isolates carried at least one of the targeted ESBL genes with \(\text{bla}^{\text{TEM}} \) being the most abundant (50/61) and \(\text{bla}^{\text{CTX}} \) being detected least (3/61).

Klebsiella was the most frequently identified genus (18.03%) to harbour ESBL gene followed by Proteus (14.75%). Moreover, combinations of two ESBL genes, \(\text{bla}^{\text{SHV}} + \text{bla}^{\text{TEM}} \) or \(\text{bla}^{\text{CTX}} + \text{bla}^{\text{TEM}} \), were observed in 11 and 1 isolate, respectively. In conclusion, classic \(\text{bla}^{\text{TEM}} \) ESBL gene was present in multiple bacterial strains that were isolated from DWDS sources in Nigeria. These environments may serve as foci exchange of genetic traits in a diversity of Gram-negative bacteria.

1. Introduction

Access to safe drinking water is essential for human health [1]. While access to safe and affordable water should be available to everyone, this remains a challenge in low- and middle-income countries including Nigeria, which is the most populous country in Africa. Safe drinking water is mostly viewed in terms of organic and inorganic contaminants, but also in terms of biological contamination. In this respect, less attention has been given to the role that water may play in the dissemination of antibiotic resistance traits in populations that are exposed to substandard water on a daily basis [2–5].

Arguably, the most clinically important antibiotic resistance genes are those that encode enzymes that hydrolyze \(\beta \)-lactams (\(\text{bla} \) genes) [6]. These traits confer high level resistance to \(\beta \)-lactam antibiotics, which are the most widely used antibiotics in clinical and veterinary practice [7, 8]. Extended Spectrum \(\beta \)-Lactamase (ESBL) is group of enzymes that can hydrolyze a variety of \(\beta \)-lactams including cephalosporins like ceftazidime, cefotaxime, and ceftriaxone and monobactams like aztreonam in addition to penicillin but does not hydrolyze cephamycins like cefoxitin. Most of the ESBL also have the ability to hydrolyze fourth-generation cephalosporins including cefepime [9].

A variety of transferable genes encoding \(\beta \)-lactamase activity have been described in clinical environments including \(\text{bla}^{\text{CTX-M}}, \text{bla}^{\text{GES}}, \text{bla}^{\text{HER}}, \text{bla}^{\text{OXA}}, \text{bla}^{\text{OXV}}, \text{bla}^{\text{SED}}, \text{bla}^{\text{SHV}}, \text{bla}^{\text{SPM}}, \text{bla}^{\text{VBI}}, \text{bla}^{\text{VIM}}, \) and \(\text{ampC} \) [10]. Among the most common \(\text{bla} \) genes is the \(\text{bla}^{\text{TEM}} \) gene, the first described \(\text{bla} \) gene and a representative of the \(\text{bla}^{\text{TEM}} \) group that now consists of more than 220 different distinct variants (“alleles”), which encode different amino acid polymorphisms that extend their
2. Materials and Methods

2.1. Dam Description, Sampling, Selection, Isolation, Storage, and Molecular Characterization of Bacteria. The description of sampled dams in this study is in our previous publications [3–5]. Moreover, for clarity of this paper, ninety-six water samples were purposely collected aseptically into sterile screw cap bottles from six selected water distribution systems of dams in Ile, Ede, Asejire, Eleyele, Owena Ondo, and Owena-Iadanre in southwestern Nigeria. Samples were collected four times between December 2010 and July 2011 from raw, treated, and two randomly selected municipal distribution taps. Afterwards, samples were serially diluted and plated on Nutrient agar to obtain pure colonies. These were subsequently transferred to Nutrient agar slants and also stored in phosphate buffer glycerol at −80°C [3–5]. Molecular characterization of bacteria using 16S rDNA sequencing was determined as described in Adesoji et al. [11].

2.2. Antibiotic Susceptibility Testing. Agar dilution assays (also called breakpoint assays) were conducted using Luria-Bertani agar with seeded antibiotics used to assess antibiotic susceptibility. Antibiotics concentrations used for Gram-negative bacteria included florfenicol (16 μg/mL), tetracycline (16 μg/mL), streptomycin (16 μg/mL), gentamycin (16 μg/mL), kanamycin (64 μg/mL), chloramphenicol (32 μg/mL), nalidixic acid (30 μg/mL), amoxicillin/clavulanic acid (32/16 μg/mL), ceftiofur (12 μg/mL), sulfamethoxazole (512 μg/mL), and sulfamethoxazole/trimethoprim (76/4 μg/mL). Antibiotics concentrations used for Gram-positive bacteria include sulfamethoxazole (512 μg/mL), ampicillin (0.5 μg/mL), tetracycline (16 μg/mL), sulfamethoxazole/trimethoprim (76/4 μg/mL), gentamycin (16 μg/mL), erythromycin (8 μg/mL), rifampcin (4 μg/mL), lincomycin (4 μg/mL), and ciprofloxacin (4 μg/mL). Negative and positive controls used were E. coli strain K12 and E. coli strain H4H, respectively, as we described in our previous studies [3–5, 11].

2.3. Resistance Genotyping. PCR testing was conducted for bacteria having resistance to ≥3 classes of antibiotics including resistance to amoxicillin/clavulanic acid, ceftiofur, or ampicillin. Thereafter, forward and reverse primer specific for selected ESBL genes included blaSHV (SHV_F, 5’-GCGAAA-GCCAGCTGTGGGCG-3’ and SHV_R, 5’-GATTGGCCGCGTGTATTGC-3’), blaCTXM (CTX_F, 5’-GTGCAG-TACGATTAAAGTTATGG-3’ and CTX_R, 5’-CGCAATTATCATGGTTGGTGCC-3’), and blaTEM (TEM_F, 5’-AAA-GATGCTGAAAGTAC-3’ and TEM_R, 5’-TTTGATGTCGTCTATTCCC-3’) [12]. Condition for blaSHV PCR included 1 min denaturation (95°C followed by 30 cycles of 96°C for 30 s, 62°C for 30 s, and 72°C for 30 s and final extension of 72°C for 10 min. Conditions were identical for other assays except the annealing temperatures which were 55°C and 44°C for blaCTXM and blaTEM, respectively. Afterwards, PCR products were separated, sized, and visualized by using 1% agarose gel electrophoresis to confirm amplification.

3. Results

3.1. Bacteria Isolates. Isolates used in this study were selected from our previous studies [3–5] and represented α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, Flavobacteria, Bacilli, and Actinobacteria with 33, 66, and 68 being isolated from all treated, raw, and municipal taps, respectively (Table 1). Proteus was the most frequent (18.18%) isolated Gram-negative genus from the treated water while Klebsiella was the most frequently (15.15%) isolated genus from raw water. Bacillus was the most common isolated Gram-positive genus for treated and municipal water.

3.2. PCR-Positive Isolates. In this study, 61 isolates out of 164 MDR isolates were PCR-positive for at least one targeted gene. Highest occurrence of bla gene among Gram-negative bacteria compared to Gram-positive bacteria was observed. Most commonly isolated genus carrying bla gene is Klebsiella (18.03%) followed by Proteus spp. (14.75%). BlatEM was detected in the majority of beta-lactam resistant isolates (50/61) while blaCTX was rarely detected (3/61) (Table 2). A combination of two genes, blaSHV + blaTEM or blaCTX + blaTEM, was observed in 11 and 1 bacteria, respectively (Table 2). Other genera, including Aquitalea, Comamonas, Enterobacter, Leuconbacter, Lysinibacillus, Pantoea, Pseudochrobactrum, Sphingobacterium, and Ralstonia, were tested but were PCR-negative for resistance genes.

4. Discussion

The hazard associated with the pathogenicity of microbes is aggravated by its ability to resist destruction by antibiotics [2]. In this study, beta-lactamase producing bacteria and genes (i.e., blaCTX and blaTEM) were detected from every sampled water distribution system. This is similar to the report of Xi et al. [13] who also investigated the prevalence and dynamics of heterotrophic antibiotics resistance bacteria and genes in drinking water source and treated drinking water using culture-dependent methods and molecular techniques. The authors observed the presence of blatEM and blaSHV genes in all water samples except one, which is evidence that these genes are distributed widely in drinking water systems. This is similar to what we also reported in Table 3, showing the spread of these beta-lactamase resistance genes among all
Table 1: Classes and families of selected bacteria.

Source	Class	Family	Number (% of total from source)
Raw water	α-Proteobacteria	Brucellaceae	1 (1.51)
	β-Proteobacteria	Alcaligenaceae	9 (13.64)
		Neisseriaceae	1 (1.51)
		Enterobacteriaceae	27 (40.91)
	γ-Proteobacteria	Moraxellaceae	2 (3.03)
		Aeromonadaceae	6 (9.09)
		Neisseriaceae	1 (1.51)
		Flavobacteriia	2 (3.03)
	Uncultured bacteria clone		3 (4.55)
	Bacilli	Bacillaceae	10 (15.15)
		Staphylococcaceae	3 (4.55)
	Actinobacteria	Microbacteriaceae	1 (1.51)
Total raw water			66
Treated water	α-Proteobacteria	Caulobacteraceae	1 (3.03)
	β-Proteobacteria	Alcaligenaceae	5 (15.15)
		Neisseriaceae	1 (3.03)
	γ-Proteobacteria	Enterobacteriaceae	10 (30.30)
	Flavobacteriia	Myroidaceae	1 (3.03)
	Uncultured bacteria clone		2 (6.06)
	Bacilli	Bacillaceae	12 (36.36)
		Staphylococcaceae	1 (3.03)
Total treated water			33
Municipal taps	α-Proteobacteria	Caulobacteraceae	1 (1.47)
	β-Proteobacteria	Alcaligenaceae	7 (10.29)
		Neisseriaceae	3 (4.41)
	γ-Proteobacteria	Enterobacteriaceae	21 (30.88)
	Flavobacteriia	Moraxellaceae	6 (8.82)
	Uncultured bacteria clone		3 (4.41)
	Bacilli	Bacillaceae	26 (38.24)
		Staphylococcaceae	1 (1.47)
Total municipal tap			68

Note: identification was based on 16S rDNA sequencing. These bacteria were obtained from our previous works [3–5].

raw, final, and municipal tap sources. The results showed that even among bacteria from the municipal tap and final treated water from the dam which are the point of consumer consumption blaTEM and blaCTX occurred among bacteria from these sources in high number. Xi et al. [13] also observed selective increases in the levels of both genes in tap water due to either water treatment or regrowth within drinking water distribution systems. This, as they therefore reported, suggested the spread of at least some beta-lactam-resistant determinants through drinking water distribution systems. However, in this study, it is important to point out that every site is different for numerous variables making it impossible to derive meaningful correlations between water treatment practices and the occurrence of beta-lactamase resistance genes. Given these differences, the only practical means to assess the effects of water treatment practices (which is not our goal with this paper) would be to test changes with experimental manipulation. We have been reluctant to provide significant detail of the sample sites precisely because we do not wish to imply that there are dependable correlations between occurrence and site characteristics, nor do we wish to encourage readers to draw such inferences.

Moreover, we observed that there were beta-lactam resistant strains that were negative for the PCR assays used in this study. The most commonly detected bla genes were blaTEM and blaSHV among Klebsiella. This finding is contrary to previous reports [14–16]. They observed dominance of blaCTX among non-TEM and SHV bacteria from clinical environment which were similar to what Ojdana et al. [17] reported among clinical samples from Poland. Additionally, studies on Pseudomonas spp. isolated from these water distribution systems also observed a higher occurrence of blaTEM (40.9%) and blaCTX (27.3%) while none of the pseudomonads showed the presence of blaCTX [18]. Our observation of the highest occurrence of bla gene among Gram-negative bacteria, when compared to Gram-positive bacteria, in this study is similar
Table 2: Characterization of a number of cultured bacterial isolates encoding different ESBL genotypes.

Genus/species/accession number	Source	Resistant phenotypes	bla_{TEM}	bla_{SHV}	bla_{CTX}
Dam 1					
Escherichia coli AP010960.1	DAM 1	T, AM, S, C, N, SXT, SU	bla_{TEM}		
Uncultured bacterium clone JN595783.1	DAM 1	T, FF, AM, G, SU	bla_{TEM}		
Bacillus thuringiensis JN377782.1	DAM 1	SU, AM, T, E, SXT, RIF, LIN, GEN	bla_{TEM}		
Brevundimonas diminuta EU545397.1	DAM 1	S, G, K, N, AM, SXT, SU		bla_{SHV}	
Proteus mirabilis AB626123.1	DAM 1	FF, T, S, G, K, C, AMC, AM, SU, SXT	bla_{TEM}		
Bacillus thuringiensis JN377782.1	DAM 1	SU, AM, E, SXT, RIF, LIN	bla_{TEM}	bla_{SHV}	
Dam 2					
Bacillus altitudinis HQ4328II.1	DAM 2	SU, E, RIF, LIN, AM	bla_{SHV}		
Bordetella sp. HQ840720.1	DAM 2	T, FF, S, C, N, CEF, AM, SXT, SU	bla_{TEM}		
Proteus vulgaris JN630888.1	DAM 2	T, AM, SXT, SU	bla_{TEM}		
Staphylococcus sp. JN695710.1	DAM 2	SU, T, E, SXT, RIF, LIN, AM	bla_{TEM}		
Stenotrophomonas maltophilia JN703732.1	DAM 2	T, S, K, CEF, AM, AMC, SU	bla_{TEM}	bla_{SHV}	
Bacillus cereus AP007209.1	DAM 2	SU, AM, T, E, SXT, RIF, LIN	bla_{TEM}		
Morganella sp. GQ179706.1	DAM 2	T, S, AM, SXT, SU	bla_{TEM}		
Psychrobacter sp. HQ730697.1	DAM 2	T, S, CEF, AM, SXT, SU	bla_{TEM}		
Dam 3					
Alcaligenes faecalis JN162124.1	DAM 3	S, CEF, AM, SXT, SU	bla_{SHV}		
Klebsiella pneumoniae AB675600.1	DAM 3	FF, T, S, C, AMC, CEF, AM, SU, SXT	bla_{TEM}		
Leucobacter komagatae AJ746337.1	DAM 3	T, S, AM, G, K, SXT, N, SU	bla_{TEM}		
Proteus mirabilis AB626123.1	DAM 3	T, S, AM, N, SXT, SU	bla_{TEM}		
Uncultured bacterium clone JN595783.1	DAM 3	T, G, K, C, N, CEF, AM, SXT, AMC, SU	bla_{TEM}		
Bacillus pumilus EF010673.1	DAM 3	SU, AM, T, E, SXT, RIF, LIN	bla_{TEM}		
Klebsiella pneumoniae JF919909.1	DAM 3	T, S, C, AM, SXT, SU	bla_{SHV}		
Myroides odoratus AB517709.1	DAM 3	FF, T, S, G, K, C, AM, SXT, AMC, SU	bla_{TEM}		
Proteus vulgaris JN630888.1	DAM 3	FF, T, S, C, N, CEF, AM, SXT, AMC, SU	bla_{TEM}		
Acinetobacter calcoaceticus	DAM 3	S, AMC, AM, SU	bla_{TEM}	bla_{SHV}	
Chromobacterium sp. AB426118.1	DAM 3	T, S, CEF, AM, SXT, SU, AMC, SU	bla_{TEM}		
Klebsiella pneumoniae JF513171.1	DAM 3	FF, C, CEF, AM, SXT, AMC, SU, AMC, SU	bla_{TEM}	bla_{SHV}	
Genus/species/accession number	Source	Resistances	Genes		
-------------------------------	--------	-------------	-------		
Aeromonas caviae AB626132.1	DAM 4 ERW	T, S, AM, SXT, N, AMC, SU	bla_{TEM}		
Alcaligenes faecalis HQ16777.1	DAM 4 ERW	T, S, K, AM, SU	bla_{TEM}		
Alcaligenes faecalis N162124.1	DAM 4 ERW	T, S, K, AM, SU	bla_{TEM}		
Klebsiella pneumoniae JN545039.1	DAM 4 ERW	S, CEF, AM, SXT, AMC, SU	bla_{TEM}		
Klebsiella pneumoniae JN545039.1	DAM 4 ERW	T, K, N, AM, SU	bla_{TEM}, bla_{SHV}		
Klebsiella pneumoniae JF513172.1	DAM 4 ERW	T, FF, S, C, AM, SXT, AMC, SU	bla_{TEM}, bla_{SHV}		
Morganella morgani FJ971868.1	DAM 4 ERW	T, S, K, CEF, AM, SXT, AMC, SU	bla_{TEM}		
Proteus vulgaris JN630888.1	DAM 4 ERW	T, C, CEF, AM	bla_{TEM}		
Proteus mirabilis GU420988.1	DAM 4 ERW	T, S, K, N, AM, SXT, AMC, SU	bla_{TEM}		
Proteus vulgaris JN630888.1	DAM 4 ERW	FF, T, S, G, K, C, AM, SXT, N, AMC, SU	bla_{TEM}		
Providencia vermicola NR_042415.1	DAM 4 ERW	T, G, AM, SU	bla_{TEM}		
Trabulsiella guamensis AB273737.1	DAM 4 ERW	T, C, CEF, AM, SXT	bla_{SHV}		

Genus/species/accession number	Source	Resistances	Genes
Klebsiella sp. JN036433.1	DAM 5 OWODFW	T, FF, S, C, AM, SXT, AMC, SU	bla_{TEM}, bla_{SHV}
Alcaligenes faecalis N162124.1	DAM 5 OWODM2	T, S, G, K, C, AM, SXT, SU	bla_{TEM}
Escherichia coli CP003034.1	DAM 5 OWODM2	T, AM, AMC, SU	bla_{TEM}
Escherichia coli CP003034.1	DAM 5 OWODM2	T, AM, AMC, SU	bla_{TEM}
Morganella morgani AM931264.1	DAM 5 OWODM1	T, S, CEF, AM, SXT, AMC, SU	bla_{TEM}
Morganella morgani AB089245.1	DAM 5 OWODM3	T, S, K, CEF, SXT, AMC, SU	bla_{TEM}
Myroides odoratus AB517709.1	DAM 5 OWODM3	T, S, G, K, CEF, AM, SXT, AMC, SU	bla_{TEM}
Serratia marcescens FJ607982.1	DAM 5 OWODM3	T, AM, AMC, CEF, SU	bla_{SHV}

Genus/species/accession number	Source	Resistances	Genes
Acinetobacter baumannii JF918866.1	DAM 6 OWIRW	T, FF, S, C, AM, SXT, AMC, SU	bla_{TEM}
Bacillus thuringiensis JN377782.1	DAM 6 OWIRW	SU, AM, T, SXT, RIF, LIN, CIP, GEN	bla_{TEM}, bla_{SHV}
Klebsiella sp. DQ989215.2	DAM 6 OWIRW	T, S, AM, SXT, SU	bla_{TEM}, bla_{CTX}
Klebsiella pneumoniae CP002910.1	DAM 6 OWIRW	T, S, C, AM, SXT, AMC, SU	bla_{TEM}, bla_{SHV}
to reports of [19, 20]. These authors also confirm bla_{TEM} that was frequently detected among Gram-negative bacteria from this study as the most common bla gene in their studies.

In this study, environmental bacteria belonging to each of these genera *Bordetella, Brevundimonas, Chromobacterium, Providencia, Psychrobacter, Stenotrophomonas, Trabulsiella, and Aeromonas* possess at least one of the beta-lactamase resistance genes tested; the most common among them is bla_{TEM}. Occurrence of this gene in these environmental isolates is contrary to the report that ESBL production is mostly found to occur among enteric species [21]. The first bla genes (bla_{BOR} and $\text{bla}_{\text{OXA-2}}$) were reported in *Bordetella* by Kadlec et al. [22]. However, we did not come across any publication where bla_{TEM} has been reported in this bacterium. This could be the first report of this gene in this bacterium. Nevertheless, bla_{TEM} has been reported in *Providencia* [23], *Stenotrophomonas* [24], and *Aeromonas* [25]. In fact, another bla gene such as bla_{TEM} has been reported in *Stenotrophomonas* from China [26] and bla_{SHV} and $\text{bla}_{\text{CTX-M}}$ have been reported in *Aeromonas* [25]. Moreover, no bla_{SHV} has also been reported in *Trabulsiella*; this report probably might be its first description.

The association of more than one β-lactamase within the same isolate has been reported [27, 28]. However, from our studies the most common of this association is $\text{bla}_{\text{SHV}} + \text{bla}_{\text{TEM}}$. This was detected among *Acinetobacter, Alcaligenes, Bacillus, Klebsiella, and Stenotrophomonas* while the combination of $\text{bla}_{\text{CTX-M}}$ and bla_{TEM} was only observed in *Klebsiella*. This occurrence denotes the wider dissemination of these bla genes probably due to involvement of genetic element in mobilization of these genes [29]. These same authors [29] also observed various combinations of $\text{bla}_{\text{CTX-M}}$, bla_{TEM}, and bla_{SHV} in *Klebsiella* from clinical isolates in India.

The occurrence of ESBL genes among bacteria from this study has a public health implication. Previous studies have shown that potential ESBL species such as *K. pneumonia* has a high tendency to possess and transfer bla gene in this study, while the combination of bla genes in *E. coli* have a high tendency to possess and transfer bla genes [30]. However, this may occur through conjugation because the genes are often found in mobile elements like
Table 3: Number of bacteria and genes observed from all raw, treated, and municipal taps carrying at least one \(\text{bla} \) gene tested for in this study.

Genus	Bacteria number	\(\text{bla}_{\text{TEM}} \)	\(\text{bla}_{\text{SHV}} \)	\(\text{bla}_{\text{CTX}} \)	\(\text{bla}_{\text{TEM}} \)	\(\text{bla}_{\text{SHV}} \)	\(\text{bla}_{\text{CTX}} \)	\(\text{bla}_{\text{TEM}} \)	\(\text{bla}_{\text{SHV}} \)	\(\text{bla}_{\text{CTX}} \)
Acinetobacter spp.	1	1	0	0	0	0	0	0	1	1
Aeromonas spp.	1	1	0	0	0	0	0	0	1	1
Alcaligenes spp.	3	2	1	0	0	0	0	0	4	3
Bacillus spp.	2	1	2	0	4	4	1	0	1	1
Bordetella spp.	1	1	0	0	0	0	0	0	0	0
Brevundimonas spp.	0	0	0	0	1	0	1	0	0	0
Chromobacterium spp.	0	0	0	0	0	0	0	0	1	1
Citrobacter spp.	0	0	0	0	0	0	0	0	1	1
E. coli	1	1	0	0	0	0	0	0	2	2
Klebsiella spp.	7	6	3	1	2	0	1	0	2	1
Leucobacter spp.	1	1	0	0	0	0	0	0	0	0
Morganella spp.	2	1	0	1	1	1	0	0	2	2
Myroides spp.	0	0	0	0	1	1	0	0	1	1
Proteus spp.	6	6	0	0	2	2	0	0	1	1
Providencia spp.	1	1	0	0	0	0	0	0	0	0
Psychrobacter spp.	0	0	0	0	0	0	0	0	1	1
Serratia spp.	1	0	1	0	0	0	0	0	1	1
Staphylococcus spp.	1	1	0	0	0	0	0	0	0	0
Stenotrophomonas spp.	1	1	1	0	0	0	0	0	0	0
Trabulsiella spp.	1	0	1	0	0	0	0	0	0	0
Uncultured bacteria clone	2	2	0	0	1	1	0	0	0	0

Total 32 26 9 2 12 9 3 0 18 14 7 0

Transposons and integrons [31]. Some of these species may be pathogenic strains that have the potential to cause life-threatening diseases and widespread outbreak. For instance, Zhang et al. [32] have reported \(\text{bla}_{\text{CTX-M}} \) and \(\text{bla}_{\text{TEM}} \) genes in opportunistically pathogenic Klebsiella spp. have been associated with nosocomial infections and outbreak of diarrhea. Therefore, occurrence of these bacteria especially in the drinking water poses a lot of danger to health, economy, and social well-being of consumers. This populace could also be exposed to these genes carrying pathogenic species in food and food products by the use of the contaminated water for domestic purposes, farming, and agriculture. It should also be noted that the fact that these species are multidrug resistance deepens the gravity of the situation. However, from our observation during sampling, the possible source of these MDR bacteria especially in the raw water could be from run-off from agricultural farmlands located very close to some of these constructed dams [4]. Some of these farmlands make use of organic fertilizers which may consist of unmetabolized antibiotics which may eventually get to the water through run-off, which may cause selective pressure on the bacteria in the aquatic systems.

From the bacteria found in Nigeria, many studies have described the occurrence of \(\text{bla} \) genes among clinical isolates. For example, Akujobi et al. [33] reported \(\text{bla}_{\text{TEM}} \) in E. coli while Akinniyi et al. [34] reported the gene not only in E. coli but also among Klebsiella, Salmonella, Citrobacter, Enterobacter, Pseudomonas, and Proteus. The highest prevalence (5.6%) was also in Klebsiella which is similar to our findings. However, from environmental isolates few studies seem to have been conducted. Moreover, Adelowo et al. [35] reported \(\text{bla}_{\text{TEM}} \) in E. coli from well water while Chikwendu et al. [36] described not only \(\text{bla}_{\text{TEM}} \) among Pseudomonas from river and aquaculture samples but also \(\text{bla}_{\text{SHV}} \). Moreover, this study seems to be the first report describing these genes among a wide diversity of environmental bacteria from Nigeria drinking water distribution systems. It is therefore important to raise public and health worker awareness in terms of prevention of outbreak of MDR infectious pathogens among consumers. This also undermines the need for government agencies controlling these dams and health organizations to initiate measures to effectively control the release of contaminant into the environment. It would also be good to continually isolate bacteria from other water distribution systems in Nigeria and to carry out further molecular testing for the presence of other \(\text{bla} \) genes, characterize, and determine whether these genes are present on transferable plasmids, transposons, or integrons, which would enhance easy spreading.
5. Conclusion

The occurrence of beta-lactamase producing bacteria and genes in all sampled water in this study, especially treated drinking water, showed that these water distribution systems could serve as a vehicle for transmission of these antibiotic resistance bacteria and genes to consumers, hence, of a great public health concern.

Competing Interests

The authors declare that they have no competing interests.

Authors’ Contributions

Ayodele T. Adesoji and Adeniyi A. Ogunjobi planned this study. Ayodele T. Adesoji performed the experiment under the guidance of Adeniyi A. Ogunjobi. Ayodele T. Adesoji wrote the paper. All authors read and approved the final paper.

Acknowledgments

The authors acknowledge Dr. Call Douglas of Paul. G. Allen School of Global Animal Health, Washington State University, USA, who allowed the molecular characterization of the bacteria isolates to be carried out in his laboratory, and Lisa Lorfe who supplied the technical knowhow.

References

[1] N. J. Ashbolt, "Microbial contamination of drinking water and disease outcomes in developing regions," *Toxicology*, vol. 198, no. 1–3, pp. 229–238, 2004.

[2] Y. Zhang, C. F. Marrs, C. Simon, and C. Xi, "Wastewater treatment contributes to selective increase of antibiotic resistance among Acinetobacter spp," *Science of the Total Environment*, vol. 407, no. 12, pp. 3702–3706, 2009.

[3] A. T. Adesoji and A. A. Ogunjobi, "Occurrence of multidrug-resistant bacteria in selected water distribution systems in Oyo State, Nigeria," *Global Veterinaria*, vol. 11, no. 2, pp. 214–224, 2013.

[4] A. A. Timi and O. A. Adeniyi, "Physicochemical properties and occurrence of antibiotic-resistant bacteria in Ife and Ede water distribution systems of southwestern Nigeria," *World Applied Sciences Journal*, vol. 27, no. 9, pp. 1098–1110, 2013.

[5] A. T. Adesoji, A. A. Ogunjobi, and I. O. Olatoye, "Drinking water distribution systems of dams in Ondo State, Nigeria as reservoir of multi-drug resistant bacteria," *World Applied Sciences Journal*, vol. 32, pp. 403–414, 2014.

[6] K. Bush, "Characterization of β-lactamases," *Antimicrobial Agents and Chemotherapy*, vol. 33, no. 3, pp. 259–263, 1989.

[7] G. S. Singh, "β-lactam in the new millennium. Part-I: monobactams and carbapenems," *Mini-Reviews in Medicinal Chemistry*, vol. 4, no. 1, pp. 69–92, 2004.

[8] K. Kumar, S. C. Gupta, Y. Chander, and A. K. Singh, "Antibiotic use in agriculture and its impact on the terrestrial environment," *Advances in Agronomy*, vol. 87, pp. 1–54, 2005.

[9] P. A. Bradford, "Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat," *Clinical Microbiology Reviews*, vol. 14, no. 4, pp. 933–951, 2001.

[10] L. Brusetti, T. Glad, S. Borin et al., "Low prevalence of blaTEM genes in Arctic environments and agricultural soil and rhizosphere," *Microbial Ecology in Health and Disease*, vol. 20, no. 1, pp. 27–36, 2008.

[11] A. T. Adesoji, A. A. Ogunjobi, I. O. Olatoye, and D. R. Douglas, "Prevalence of tetracycline resistance genes among multi-drug resistant bacteria from selected water distribution systems in southwestern Nigeria," *Annals of Clinical Microbiology and Antimicrobials*, vol. 14, article 35, 2015.

[12] I. S. Henriques, F. Fonseca, A. Alves, M. J. Saavedra, and A. Correia, "Occurrence and diversity of integrons and β-lactamase genes among ampicillin-resistant isolates from estuarine waters," *Research in Microbiology*, vol. 157, no. 10, pp. 938–947, 2006.

[13] C. Xi, Y. Zhang, C. F. Marrs et al., "Prevalence of antibiotic resistance in drinking water treatment and distribution systems," *Applied and Environmental Microbiology*, vol. 75, no. 17, pp. 5714–5718, 2009.

[14] U. Govinden, C. Mocktar, P. Moodley, A. W. Sturm, and S. Y. Essack, "Geographical evolution of the CTX-M β-lactamase: an update," *African Journal of Biotechnology*, vol. 6, no. 7, pp. 831–839, 2007.

[15] C. Dallenne, A. da Costa, D. Decré, C. Favier, and G. Arlet, "Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae," *Journal of Antimicrobial Chemotherapy*, vol. 65, no. 3, pp. 490–495, 2010.

[16] S.-Y. Lu, Y.-L. Zhang, S.-N. Geng et al., "High diversity of extended-spectrum beta-lactamase-producing bacteria in an urban river sediment habitat," *Applied and Environmental Microbiology*, vol. 76, no. 17, pp. 5972–5976, 2010.

[17] D. Ojdana, P. Sacha, P.Wieczorek et al., "The occurrence of blaCTX-M, blaSERV, and blaTEM genes in extended-spectrum β-lactamase-positive strains of *Klebsiella pneumoniae*, *Escherichia coli*, and *Proteus mirabilis* in Poland," *International Journal of Antimicrobials*, vol. 2014, Article ID 935842, 7 pages, 2014.

[18] A. T. Adesoji, A. A. Ogunjobi, and I. O. Olatoye, "Molecular characterization of selected multidrug resistant *Pseudomonas* from water distribution systems in southwestern Nigeria," *Annals of Clinical Microbiology and Antimicrobials*, vol. 14, article 39, 2015.

[19] F. Luzzaro, M. Mezzatesta, C. Mugnaioli et al., "Trends in production of extended-spectrum β-lactamases among enterobacteria of medical interest: report of the second Italian nationwide survey," *Journal of Clinical Microbiology*, vol. 44, no. 5, pp. 1659–1664, 2006.

[20] T. Spanu, F. Luzzaro, M. Perilli et al., "Occurrence of extended-spectrum β-lactamases in members of the family *Enterobacteriaceae* in Italy: implications for resistance to β-lactams and other antimicrobial drugs," *Antimicrobial Agents and Chemotherapy*, vol. 46, no. 1, pp. 196–202, 2002.

[21] S. Tissera and S. M. Lee, "Isolation of extended spectrum β-lactamase (ESBL) producing bacteria from urban surface waters in Malaysia," *Malaysian Journal of Medical Sciences*, vol. 20, no. 3, pp. 14–22, 2013.

[22] K. Kadlec, I. Wiegand, C. Kehrenberg, and S. Schwarz, "Studies on the mechanisms of β-lactam resistance in *Bordetella bronchiseptica*," *Journal of Antimicrobial Chemotherapy*, vol. 59, no. 3, pp. 396–402, 2007.
[23] S. Mahrouki, H. Chihi, A. Bourouis et al., “Nosocomial dissemination of plasmids carrying blaTEM-24, blaDHA-1, aac(6’)-Ib-cr, and qnrA6 in Providencia spp. strains isolated from a Tunisian hospital,” Diagnostic Microbiology and Infectious Disease, vol. 81, no. 1, pp. 50–52, 2015.

[24] M. B. Avison, C. J. von Heldreich, C. S. Higgins, P. M. Bennett, and T. R. Walsh, “A TEM-2 β-lactamase encoded on an active Tn1-like transposon in the genome of a clinical isolate of Stenotrophomonas maltophilia,” Journal of Antimicrobial Chemotherapy, vol. 46, no. 6, pp. 879–884, 2000.

[25] L. C. Balsalobre, M. Dropa, D. E. de Oliveira et al., “Presence of blaTEM-166 gene in environmental isolates of Aeromonas hydrophila and Aeromonas jandaei from Brazil,” Brazilian Journal of Microbiology, vol. 41, no. 3, pp. 718–719, 2010.

[26] Z. Yang, W. Liu, Q. Cui et al., “Prevalence and detection of Stenotrophomonas maltophilia carrying metallo-β-lactamase blaLi in Beijing, China,” Frontiers in Microbiology, vol. 5, article 692, 2014.

[27] A. Karim, L. Poirel, S. Nagarajan, and P. Nordmann, “Plasmid-mediated extended-spectrum β-lactamase (CTX-M-3 like) from India and gene association with insertion sequence ISEcp1,” FEMS Microbiology Letters, vol. 201, no. 2, pp. 237–241, 2001.

[28] C. J. Munday, G. M. Whitehead, N. J. Todd, M. Campbell, and P. M. Hawkey, “Predominance and genetic diversity of community- and hospital-acquired CTX-M extended-spectrum β-lactamases in York, UK,” Journal of Antimicrobial Chemotherapy, vol. 54, no. 3, pp. 628–633, 2004.

[29] M. Shahid, A. Singh, F. Sobia et al., “blaCTX-M, blaTEM, and blaSHV in Enterobacteriaceae from North-Indian tertiary hospital: high occurrence of combination genes,” Asian Pacific Journal of Tropical Medicine, vol. 4, no. 2, pp. 101–105, 2011.

[30] J. K. Bailey, J. L. Pinyon, S. Anantham, and R. M. Hall, “Distribution of the blaTEM gene and blaTEM-containing transposons in commensal Escherichia coli,” Journal of Antimicrobial Chemotherapy, vol. 66, no. 4, pp. 745–751, 2011.

[31] M. L. Güerri, A. Aladueña, A. Echeita, and R. Rotger, “Detection of integrons and antibiotic-resistance genes in Salmonella enterica serovar Typhimurium isolates with resistance to ampicillin and variable susceptibility to amoxicillin-clavulanate,” International Journal of Antimicrobial Agents, vol. 24, no. 4, pp. 327–333, 2004.

[32] Y. Zhang, H. Zhou, X.-Q. Shen, P. Shen, Y.-S. Yu, and L.-J. Li, “Plasmid-borne armA methylase gene, together with blaCTX-M-15 and blaTEM-1, in a Klebsiella oxytoca isolate from China,” Journal of Medical Microbiology, vol. 57, no. 10, pp. 1273–1276, 2008.

[33] C. N. Akujobi, C. C. Ezeeanya, and N. I. Aghanya, “Detection of cefotaximase genes of beta lactamase among clinical isolates of Escherichia coli in a university teaching hospital, Nigeria,” Journal of Medical Sciences, vol. 12, no. 7, pp. 244–247, 2012.

[34] A. P. Akinniyi, O. Afolabi, B. A. Iwalokun, E. Oluwaseun, and K. O. Onagbesan, “Clonal dissemination of blatem β-lactamase strains among enteric isolates in Abeokuta, Nigeria,” Research Journal of Microbiology, vol. 6, no. 12, pp. 919–925, 2011.

[35] O. O. Adelowo, O. E. Fagade, and Y. Agerso, “Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria,” Journal of Infection in Developing Countries, vol. 8, no. 9, pp. 1103–1112, 2014.

[36] C. I. Chikwendu, S. N. Ibe, and G. C. Okpokwasili, “Detection of blashv and blatem beta-lactamase genes in multi-resistant Pseudomonas isolates from environmental sources,” African Journal of Microbiology Research, vol. 5, no. 15, pp. 2067–2074, 2011.