Sensory and motor secondary symptoms as indicators of brain vulnerability

Nava Levit-Binnun1*, Michael Davidovitch1,2 and Yulia Golland1

Abstract
In addition to the primary symptoms that distinguish one disorder from the next, clinicians have identified, yet largely overlooked, another set of symptoms that appear across many disorders, termed secondary symptoms. In the emerging era of systems neuroscience, which highlights that many disorders share common deficits in global network features, the nonspecific nature of secondary symptoms should attract attention. Herein we provide a scholarly review of the literature on a subset of secondary symptoms—sensory and motor. We demonstrate that their pattern of appearance—across a wide range of psychopathologies, much before the full-blown disorder appears, and in healthy individuals who display a variety of negative symptoms—resembles the pattern of appearance of network abnormalities. We propose that sensory and motor secondary symptoms can be important indicators of underlying network aberrations and thus of vulnerable brain states putting individuals at risk for psychopathology following extreme circumstances.

Keywords: Motor, Network neuroscience, Networks, Resilience, Secondary symptoms, Sensory, Vulnerability

Introduction
In the clinical literature, disorders are characterized mainly by their distinguishing symptoms and behaviors, often referred to as the primary symptoms. For example, autism spectrum disorder (ASD) is defined by difficulties in communication and restricted behavior, attention-deficit/hyperactivity disorder (ADHD) by attention deficits and schizophrenia by reality distortion. In addition to these primary symptoms that distinguish one disorder from the next, there is another set of symptoms that appear across many disorders, termed secondary symptoms or nonspecific signs. Secondary symptoms refers to subtle impairments in motor coordination, complex motor sequencing, sensory integration and regulation, sleep and feeding difficulties, as well as difficulties in self-regulation [1,2]. Neurologists believe that secondary symptoms reflect nonlocalizable disturbances in connections between subcortical and cortical regions or among cortical regions [2]. Numerous publications have described the existence of these secondary symptoms in association with a variety of disorders. Yet, intriguingly, this body of work has been largely overlooked [3,4], perhaps because of the nonspecific nature of these “low-level” symptoms and the difficulty in relating them to the specific high-level impairments of the different disorders.

Although signs that appear across disorders may not be informative for understanding specific disorders, they may be highly relevant to understanding general characteristics of the brain in psychopathological states [4]. Indeed, the recent emergence of systems neuroscience, a promising field that calls for a paradigm shift in the way we view healthy and psychopathological brain states, suggests that invariant characteristics observed across psychopathologies may provide important information. Unlike traditional approaches that have focused on uniquely distinguishing one disorder from the next, there is an attempt in systems neuroscience to unify a wide range of psychopathologies and describe their common characteristics. That is, this field highlights that many disorders share common deficits in global network features [5]. The main focus of systems neuroscience lies in characterizing the abnormal brain architecture that underlies many disorders and describing the resulting consequences for the dynamic function of the brain network and its ability to maintain functional homeostasis.

* Correspondence: navalb@idc.ac.il
1Interdisciplinary Center (IDC), Sagol Unit for Applied Neuroscience, School of Psychology, POB 167, Herzliya 46150, Israel
Full list of author information is available at the end of the article

© 2013 Levit-Binnun et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Indeed, one of the major consequences of the abnormalities in brain architecture, observed in many disorders, is the loss of robustness of the brain network to perturbations. This suggests that brains with abnormalities in brain architecture are more vulnerable and that unfavorable circumstances (for example, psychological life stressors, chemical stressors, brain hemorrhages or aberrations in anatomical brain structures during development or neurodegeneration) can cause them to deviate from homeostasis.

Herein we propose an integrative framework in which secondary symptoms represent the behavioral manifestations of the brain’s abnormal architecture and are thus indicators of network vulnerability. To that end, we provide a systematic review of sensory and motor secondary symptoms and show that although secondary symptoms and network aberrations come from different levels of description—one at the behavioral level and the other at the network level—they display similar patterns of occurrence. That is, sensory and motor symptoms and network aberrations not only occur across a wide range of psychopathologies but also are detectable much before the full-blown disorder appears, in both at-risk populations and in healthy individuals who display a variety of negative symptoms. We then provide theoretical and empirical support that the behavioral level and the network level may be related and propose that secondary symptoms can be important indicators of vulnerable brain states at risk to psychopathology. In other words, the appearance of secondary symptoms in an individual may indicate that his brain is in a less resilient state, and thus he has a higher probability of developing psychopathology following unfavorable circumstances. The novel integrative approach used here yields practical clinical benefits and advances our understanding of the developmental paths of psychopathologies.

Review

In this section, we review reports of sensory and motor secondary symptoms from a wide range of disciplines. We define sensory and motor symptoms broadly and focus on indications of abnormalities and difficulties observed in these processes. The primary purpose of this section is to reveal an underlying pattern of occurrence of these abnormalities in relation to psychopathology. Therefore, we investigated the occurrence of sensory and motor abnormalities during active states of psychopathology. In addition, we examined their occurrence before the psychopathology is evident, when there is a propensity to develop a psychopathology, and even in healthy, undiagnosed individuals at no apparent risk for psychopathology but with more negative symptoms than those found in the average healthy population.

Methods

We conducted a systematic review of the literature on studies that linked signs of sensory and motor abnormalities to a wide range of developmental, psychiatric and/or affective and neurodegenerative psychopathologies. We used search terms that are variations of words related to sensory and motor abnormalities (see Table 1). Since neurologists often term the co-occurrence of sensory and motor abnormalities *neurological soft signs* (NSSs) [2], we also included this term in our search. The search was conducted in the following databases: APA PsychNET (http://psycnet.apa.org/), MEDLINE, Academic Search Complete (http://www.ebscohost.com/academic/academic-search-complete), Psychology and Behavioral Sciences Collection (http://www.ebscohost.com/academic/psychology-behavioral-sciences-collection), SocINDEX (http://www.ebscohost.com/academic/socindex-with-full-text) and Education Resource Information Center (ERIC; http://eric.ed.gov/). The psychopathologies included in this search were autism, ADHD, dyslexia, learning disabilities, language disorders, schizophrenia, anxiety, depression, posttraumatic stress disorder (PTSD), obsessive-compulsive disorder (OCD), bipolar affective disorder, borderline personality disorder, Alzheimer disease (AD) and traumatic brain injury. We also searched for words related to healthy aging. In order to account for differences in definitions across disciplines (for example, schizophrenia can be characterized as a psychiatric disorder or a developmental one [6]), we included general search terms such as “psychiatric,” “developmental” or “affective.” The specific search terms used in this review, as well as exclusion criteria, are displayed in Table 1.

Criteria for exclusion

Only reports that compared the appearance of sensory and/or motor abnormalities observed in individuals with a psychopathology with that of healthy human controls were accepted into the review. Comorbidities (for example, ADHD together with developmental coordination disorder) were excluded. As mentioned, our goal was to present a pattern of appearance of secondary symptoms as reported by researchers and clinicians. Thus, we did not include reviews and meta-analyses. We also did not distinguish between research methodologies (questionnaires, retrospective studies, prospective studies and objective tests), as long as they presented quantifiable data that could determine whether or not a difference was observed between the psychopathology tested and healthy controls. Thus, single-case studies, qualitative studies and intervention studies were not included. In addition, most of the vast neurophysiological literature fell outside the scope of this review (for example, anatomical, sensory event–related potentials, imaging and electrophysiological
In general, we searched for evidence indicating general abnormalities in motor performance. In cases in which little research had been performed on motor aspects of a certain disorder, however, we included studies that focused on more narrow motor tasks, such as finger-tapping. In general, however, we excluded studies that focused exclusively on interaction of motor task and cognitive load, handwriting abilities, visuomotor integration, motor imagery, physical fitness, representation of action, mirror neurons, visuospatial guidance of movement during imitation, motor imagery, motor speech impairments, movement planning, repetitive motor behavior, motor restlessness, dyskinesia and gait and/or posture problems.

We excluded animal studies, genetic studies and all studies that investigated sensory abnormalities in the brain via physiological measures (for example, sensory evoked potentials, fMRI studies and startle responses). In addition, we excluded studies dealing with reaction to pain, sensory impairments (such as impairment in seeing or hearing), eye movements, motion or visual acuity, audiovisual speech, sensory memory, timing of sensory processes, sensory gating and speech. In addition, studies that looked at the temperamental aspect of "sensory seeking" were excluded.

Studies that focused on neurological deficits observable as cognitive and/or memory abnormalities were excluded. Only those that related to sensory and motor abnormalities were included.

Studies that focused exclusively on a certain sleep parameter (for example, REM activity, NREM activity, sleep spindle activity, slow-wave activity and K-complex activity) were excluded. In addition, we excluded studies focused on sleep difficulties resulting from sleep apnea or other breathing difficulties.

Studies that focused exclusively on a certain sleep parameter (for example, REM activity, NREM activity, sleep spindle activity, slow-wave activity and K-complex activity) were excluded. In addition, we excluded studies focused on sleep difficulties resulting from sleep apnea or other breathing difficulties.

Studies that focused on higher-order visual and auditory processing abilities (such as speech discrimination) were excluded.

We excluded studies of depression associated with another difficulty, such as migraine, menopause, cancer and chemotherapy. Postpartum depression, perinatal depression and parental depression were also excluded.

Table 1 Search terms and exclusion criteriaa
Category
Motor
Sensory
Neurological soft signs
Sleep
Autism spectrum disorder
Attention-deficit/ hyperactivity disorder
Dyslexia and learning disabilities
Language impairment
Anxiety
Posttraumatic stress disorder
Depression
Bipolar affective disorder
Search terms and exclusion criteria

Borderline personality disorder
Obsessive-compulsive disorder
Schizophrenia and psychosis
Alzheimer disease
Traumatic brain injury
Normal aging
General search terms

With regard to the “high-risk” search, we included only studies that dealt with risk for one of the disorders included in the review.

*ADHD, attention-deficit/hyperactivity disorder; ASD, autism spectrum disorder; fMRI, functional magnetic resonance imaging; NREM, non-rapid eye movement; OCD, obsessive-compulsive disorder; PTSD, posttraumatic stress disorder; REM, rapid eye movement; TBI, traumatic brain injury.
Irregularities in healthy individuals

Although researchers rarely examine signs of psychopathology in healthy individuals, our search succeeded in revealing 17 studies that reported the occurrence of psychopathology appears and before the full-blown symptoms are visible (see Table 3 for details). Such findings suggest that these irregularities not only are correlated with the disorders but may have a predictive nature as well [3,229,230].

For example, various sensory and motor difficulties precede communication delay and autism symptoms in most infants who later develop ASD [9,58,232] or who are at risk for developing autism [231]. In toddlers at risk for familial dyslexia, researchers found a relationship between motor development at infancy and the level of language skills at toddlerhood [238]. In a prospective study following 401 toddlers, motor performance was found to be predictive of ADHD [237]. In another study comprising 275 children with ADHD, their siblings and controls, the unaffected siblings displayed intermediate levels of motor problems between the ADHD-affected children and the control subjects [100].

Quite a few studies have reported the existence of sensory and motor signs much sooner than schizophrenia symptoms were evident. For example, a few prospective studies [240-242] found that children who developed schizophrenia as adults took longer to achieve motor milestones and scored significantly worse than controls on motor coordination tasks. Significantly more NSSs were found in children and relatives with a higher genetic risk for schizophrenia [248,276] and in those who later became adult schizophrenics [242]. Moreover, relatives of patients with schizophrenia exhibited levels of NSSs that were intermediate between patients with the full-blown disorder and healthy controls [163-166].

Early motor signs were also predictive of later mood-related psychopathologies. For example, in a large cohort study of 6,850 children, boys with poor motor skills at age 7 years had more than three times the odds of having maternally rated anxiety at the ages of 11 and 16 years [270]. Another study found that both OCD patients and their unaffected first-degree relatives displayed more motor coordination signs than healthy controls [184]. In several prospective epidemiological studies, an association was found between NSSs and the development of anxiety, depression and obsessive-compulsive symptoms over time [267,268]. Interestingly, recent studies on twins have found that NSSs represent vulnerability to PTSD. Not only did combat veterans with PTSD have significantly more NSSs than combat veterans without PTSD, but their unexposed co-twins had significantly more NSSs than the unexposed co-twins of the veterans without PTSD [129,277].
Table 2 Sensory and/or motor irregularities appear across disordersa

Disorder	Sensory and/or motor irregularities appear more frequently in disorder than in healthy controls	Not different from healthy controls	
Autism	Sensory: Adamson et al., 2006; Adrien et al., 1987; Baranek, 1999; Baranek et al., 2007; Baranek et al., 2006; Baranek et al., 2013; Ben-Sasson et al., 2007; Blakemore et al., 2006; Blanche et al., 2012; Cascio et al., 2008; Cheung and Siu, 2009; Crane et al., 2009; Dickie et al., 2009; Dunn et al., 2002; Hilton et al., 2010; Hochhauser and Engel-Yeger, 2010; Kern et al., 2008; Kern et al., 2007b; Kern et al., 2006; Kern et al., 2007c; Khalfa et al., 2004; Kientz and Dunn, 1997; Kwakye et al., 2011; Leekam et al., 2007; O'Brien et al., 2009; Reynolds et al., 2011; Reynolds et al., 2012; Rogers et al., 2003; Siaperas et al., 2012b; Tavassoli and Baron-Cohen, 2012b; Tomchek and Dunn, 2007; Watling et al., 2001; Weimer et al., 2001; Woodard et al., 2012	Fuentes et al., 2011; Güzçü et al., 2007; Jones et al., 2009; Tavassoli and Baron-Cohen, 2012	
	Motor: Dewrang and Sandberg, 2010; Esposito and Venuti, 2008; Freitag et al., 2007; Gernsbacher et al., 2008; Hilton et al., 2007; Hilton et al., 2012; Lopata et al., 2007; Pan et al., 2009; Papadopoulos et al., 2012; Sahlander et al., 2008; Siaperas et al., 2012; Travers et al., 2013; Whyatt and Craig, 2012	Ozonoff et al., 2008	
Language	Sensory: Taal et al., 2013 [63]		
disorders	Motor: Chuang et al., 2011; Finlay and McPhillips, 2013; Mürsepp et al., 2009; Owen and McKinlay, 1997; Zelaznik and Goffman, 1994		
Dyslexia	Sensory: Fraser et al., 2010; Georgiou et al., 2012; Heiervang et al., 2002; White et al., 2006; Wright and Conlon, 2009 [69-73] (Auditory visual processing deficits)	Polatajko, 1985; White et al., 2006 [74,75]	
	Motor: Brookes et al., 2010; Cinelli and DePaepe, 1984; Getchell et al., 2007; Kinnealey, 1989; Needle et al., 2006; Nicolson and Fawcett, 1994 [76-81] (Balance and tactile)		
	Sensory: Bruininks and Bruininks, 1977; Cermak et al., 1990; Durand, 2005; Getchell et al., 2007; Haslum and Miles, 2007; Makoy and Satterl, 1979; McPhillips and Sheehy, 2004; Pieters et al., 2012; Trauner et al., 2000; Vuijk et al., 2011; Westendorp et al., 2011 [80,82-91] (Balance and tactile)		
ADHD	Sensory: Brörring et al., 2008; Cheung and Siu, 2009; Dunn and Bennett, 2002; Engel-Yeger and Ziv-On, 2011; Lufi and Tsichinsky, 2012; Miller et al., 2012; Romanos et al., 2008 [40,92-97]	Gomez and Condon, 1999; Schlee et al., 2012 [98,99]	
	Motor: Flapper et al., 2006; Chan et al., 2010; Fliers et al., 2009; Fliers et al., 2010; Goulardins et al., 2013; Harvey et al., 2007; Karatekin et al., 2003; Klimek et al., 2004; Klotz et al., 2012; Meyer and Sagvolden, 2006; Okuda et al., 2011; Pan et al., 2009; Piek et al., 1999; Rommelse et al., 2007; Staats-Willemsse et al., 2005 [47,100-113]	Kooistra et al., 2005; Lee et al., 2013; Polderman et al., 2011 [114-116]	
	NSS: Chan et al., 2010; Dickstein et al., 2005; Ferrin and Vance, 2012 [102,117,118]		
Anxiety	Motor: Ekornás et al., 2010; Kristensen and Torgersen, 2007; Skirbekk et al., 2012 [119-121]	Jacob et al., 2009 [122]	
Disorder	Sensory	Motor	NSS
--	---------	-------	-----
Erez et al., 2004; Farrow and Coulthard, 2012; Hofmann and Bitran, 2007 [123-125]			
Hollander et al., 1996 [126]			
NSS			
Gurvits et al., 2000; Gurvits et al., 1993; Gurvits et al., 2006 [127-129]			
NSS			
Günther et al., 1988; Lohr et al., 2013; Schwartz et al., 1990 [131-133]			
NSS			
Boks et al., 2004; Manschreck and Ames, 1984 [135,136]			
NSS			
Dickstein et al., 2005; Lohr and Caligiuri, 2006 [117,137]			
NSS			
Negash et al., 2004; Zhao et al., 2013 [134,139]			
Sensory			
Brown et al., 2009; Rosenthal et al., 2011 [140,141]			
Pavony and Lenzenweger, 2013 [142]			
Motor			
Swirsky-Sacchetti et al., 1993 [143]			
NSS			
De la Fuente et al., 2011; De la Fuente et al., 2006; Gardner et al., 1987 [144-146]			
Sensory			
Brown et al., 2002; Cheng et al., 2012; Colbert et al., 1959; Emmerich and Levine, 1970; Ghadirian and Butter, 1978; Kent et al., 2012; Kiss et al., 2010; Levine and Whitney, 1970; Myers et al., 1973; Ramage et al., 2012 [147-156]	Levy et al., 1978 [157]		
Motor			
Günther et al., 1986; Midorikawa et al., 2008; Sullivan et al., 1994; Tabarés-Seisdedos et al., 2003 [158-161]	Martin et al., 1995 [162]		
NSS			
Obsessive-compulsive disorder	Motor	NSS	
Bloch et al., 2011 [180]			
Sensory			
Dar et al., 2012; Rieke and Anderson, 2009; Segalas et al., 2011 [181-183]			
NSS			
sensory and motor abnormalities in healthy individuals. Interestingly, in all of these reports, negative mental symptoms related to psychopathology (for example, higher anxiety and depression levels) were found to correlate with higher rates of sensory and/or motor abnormalities (see Table 4). That healthy individuals with more sensory and motor abnormalities than average also tend to have more negative mental health symptoms suggests that these abnormalities are not the consequence of psychopathology, but rather a characteristic of an underlying vulnerability to it.

For example, healthy individuals with extreme sensory reactivity are more likely to display signs of anxiety and depression [278-281,287,296]. Individuals with extreme sensory reactivity patterns also display higher signs of alexithymia and autistic characteristics [287,289], social phobia [290] and avoidant and borderline personality traits [291,292]. Preschoolers and school-aged children with sensory regulation dysfunction (for example, sensory overresponsivity) were more likely to display early and co-occurring internalizing and externalizing behaviors, lower levels of concurrent adaptive social behaviors and more psychiatric symptoms [293,294]. Similarly, preschoolers with motor coordination difficulties exhibited negative emotional symptoms, such as signs of depression and anxiety [282,288]. This was also shown in a twin study, which found significantly higher levels of anxious and depressive symptomatology in twins with motor abnormalities compared with control twins with no motor difficulties. Moreover, in twins discordant for motor abnormalities, the twin with motor difficulties exhibited more anxious and depressive signs than the co-twin without such difficulties [283].

Summary

Our systematic review revealed a clear pattern of the appearance of sensory and motor irregularities across developmental, affective and/or psychiatric and degenerative brain psychopathologies. These irregularities not only appear together with the full-blown disorder but also are apparent much before its primary signs, even in individuals who are considered healthy. Although clinicians have long noted the nonspecific nature of sensory and motor signs in relation to many disorders, to the best of our knowledge, this review is the first scholarly demonstration of their pattern of appearance. Notably, other
irregularities included within the group of secondary symptoms—such as self-regulation and eating and sleeping difficulties—have also been associated with a wide range of disorders. Although a systematic review of these symptoms is still lacking, they seem to follow a similar pattern (see [4] for examples). Taken together, the facts that secondary symptoms are widespread and that they are associated with the extreme end of the healthy subclinical spectrum indicate a need for a reexamination of their possible contribution to understanding the pathways to psychopathology. Next, we suggest that the nonspecific nature of these secondary symptoms, which may have led to their being overlooked by clinicians and researchers, may actually be an advantage in the eyes of the emerging field of systems neuroscience.

Explaining the pattern of occurrence of sensory and motor secondary symptoms within a systems neuroscience framework

Outlining the systems neuroscience framework

Driven by methodological advances concerned with the study and analysis of complex networks in the brain, the exciting new field of systems neuroscience offers a novel perspective on ways to examine the brain, both in health and in psychopathology [5,297]. Systems neuroscientists use graph theoretical tools to assess various network metrics\(^1\) [1] from a large body of functional and structural connectivity data obtained from diffusion tensor imaging (DTI), functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG) and electroencephalography (EEG) studies. The network metrics obtained from these data allow for the examination of normal and psychopathological brain states within a framework of global network structures (see, [5], for example), thereby indicating the efficiency of information transfer across the whole network and the ability of large-scale networks within the brain to switch between engaged and disengaged modes of function.

For example, converging evidence indicates that healthy brains are characterized by small-world architecture [298,299], which describes a configuration in which most nodes are not neighbors, but can be reached from every other node by a small number of steps. Such an architecture enables a balance between local and global structural characteristics and thus an optimal balance between segregation and integration, which is essential for high synchronicity and fast information transmission in a complex network [300].

Furthermore, it is believed that the construction of brain networks (as well as most biological networks) in small-world architecture may reflect an evolutionary advantage. One possibility is that small-world networks are more robust to perturbations than other network

Disorders	At-risk populations	Prospective and retrospective studies
Developmental disorders		
Autism	Bryson et al., 2007; Mulligan and White, 2012, Bhat et al., 2012; Bryson et al., 2007; Landa and Garrett-Mayer, 2006; Landa et al., 2012; Ozonoff et al., 2008 [58,231-235]	Baranek, 1999; Landa et al., 2013 [0,236]
ADHD	Flinters et al., 2009; Rommelse et al., 2007 [100,112]	Karatekin et al., 2003; Kroses et al., 2002 [107,237]
Dyslexia	Viholainen et al., 2002; Viholainen et al., 2006 [238,239]	Cannon et al., 1999; Clarke et al., 2011; Murray et al., 2006; Rosso et al., 2000; Schiffman et al., 2009; Walker and Lewine, 1990; Watkins et al., 1988 [240-246]
Psychiatric disorders		
Schizophrenia	Aksoy-Poyraz et al., 2011; Blanchard et al., 2010; Chan et al., 2010; Chang and Lenzenweger, 2001, 2005; Chen et al., 2000; Compton et al., 2007; Egan et al., 2001; Fish, 1976; Fish and Dixon, 1978; Fish and Haggis, 1973; Gschwandtner et al., 2006; Ismail, 1998; Koning et al., 2011; Marcus et al., 1993; Mechri et al., 2009; Mechri et al., 2010; Mittal et al., 2007; Mittal et al., 2008; Neumann and Walker, 2003; Piccioni et al., 2006; Prasad et al., 2009; Rieder and Nichols, 1979; Walker et al., 1999; Yazici et al., 2002 [247,248-250,251-253,254]	
Affective disorders		
Depression	Harjan, 1989 [266]	Pine et al., 1993; Shaffer et al., 1985 [267,268]
Anxiety	Turner et al., 2005 [269]	Shaffer et al., 1985; Sigurdsson et al., 2002 [268,270]
Bipolar		
OCD	Peng et al., 2012 [184]	Sigurdsson et al., 1999 [271]
PTSD	Gurvits et al., 2006 [129]	Grisham et al., 2011 [272]
Degenerative disorders		
Alzheimer disease	Aggarwal et al., 2006; Rolland et al., 2009; Scarmeas et al., 2005 [194,274,275]	Inzitari et al., 2006 [273]

*ADHD, attention-deficit/hyperactivity disorder; NSS, neurological soft sign; OCD, obsessive-compulsive disorder; PTSD, posttraumatic stress disorder.
Aberrations in network metrics follow a similar pattern of occurrence

Using network analytical methods, researchers who have conducted empirical and theoretical studies have found that aberrations in various network metrics are a telltale sign of significant global deficits in brain organization and that psychopathology is related to dysfunctional brain organization [302,308]. Convergent anatomical and functional evidence from a wide range of methodologies and from many different psychopathological states indicates that the disruption of global network connectivity, as indicated by abnormalities in various network metrics, is associated with disturbances in cognition and behavior as well as with signs of psychopathology [309-312].

A range of neurodevelopmental disorders have already been described in terms of aberrant network measures. In an EEG study comparing children with autism to healthy controls, children with autism showed a loss of small-world architecture, characterized by a significantly increased path length and reduced clustering [313,314]. Similar findings were also demonstrated for high-functioning adults with autism and for those with Asperger syndrome [315,316]. Another neurodevelopmental disorder that has been studied using a network approach is ADHD. Using resting-state fMRI data, several studies have revealed alterations in small-world architecture, characterized by increased local network efficiencies and decreases in global network efficiencies, in both children and adults with ADHD [317-319].

Schizophrenia, a psychiatric disorder that is considered to be neurodevelopmental in origin [6], has also been studied extensively using network analytical tools [320-322]. For example, a comparison of structural data from schizophrenia patients and healthy controls indicated a loss of small-world architecture as measured by a significantly lower clustering coefficient, longer characteristic path length and dysfunctional central hubs [320,323].

Abnormalities in network metrics were also reported for affective disorders as well as for neurodegenerative disorders and aging. For example, aberrant small-world architecture was found for drug-naïve, first-episode major depression patients [324] and for patients with OCD [325]. Abnormalities in network metrics were also reported when functional connectivity data from patients with AD [326-329], dementia [330] and traumatic brain injury [331] were compared to those from controls. Interestingly, aberrations in network metrics were also observed in healthy elders compared to healthy younger adults [332,333]. Taken together, these studies suggest that network aberrations are a general characteristic of psychopathologies without regard to the causes leading to the psychopathology.

Perhaps even more interesting is the fact that disruptions in network metrics seem to occur even before the full-blown disorder is evident [334-337]. This is most obvious in AD and schizophrenia, which have been studied extensively in this respect. For example, Yao et al. [334] measured network parameters in patients with AD, individuals with mild cognitive impairments (MCIs) and healthy age-matched controls. The longest absolute path length and the greatest clustering coefficient were found

Table 4 Sensory and/or motor irregularities are associated with negative symptoms in healthy individuals

Signs of psychopathology	References
Anxiety and depression symptoms	Bart, 2009; Kogan, 2008; Lane, 2010; Kinnealey, 1999; Engel-Yeger, 2011; Liss, 2008; Liss, 2005; Goldsmith, 2006; Pieck, 2008; Pearssall-Jones, 2011; Pieck, 2010; Kinnealey, 1999 [279-288]
Alexithymia and autistic characteristics	Liss, 2008; Robertson, 2013 [287,289]
Social phobia symptoms	Neal, 2002 [290]
Avoidant and borderline personality traits	Meyer, 2005; Meyer, 2000 [291,292]
Psychiatric symptoms	Ben-Sasson, 2009; Gouze, 2009; Stansfeld, 1985 [293-295]
in patients with AD, which indicates that the small-world organization of the cortical network was the least optimal in AD. The small-world measures of the MCI network exhibited intermediate values between AD and the normal aging controls. Given that MCI is a transitional stage between normal aging and AD [334], these findings, as well as those reported in other studies [338-341], suggest that network aberrations are evident in at-risk individuals much before the full-blown AD symptoms appear [334].

With regard to schizophrenia, Dazzan et al. [342] obtained MRI data from 102 individuals considered to be at a very high risk for schizophrenia and followed them for one year. Those who developed schizophrenia or other forms of psychosis had more volumetric abnormalities in distributed brain areas at the time of the MRI scan than those who did not develop a form of psychosis. That risk for schizophrenia is associated with aberrant brain architecture is further supported by additional studies indicating pervasive brain anatomical abnormalities in individuals at high risk for schizophrenia [343,344], even as early as neonatal stages [345]. Shi et al. found that neonates at genetic risk for schizophrenia tended to have more aberrant metrics—such as globally lower efficiency and longer connection distance—than healthy controls, which indicates a less optimal small-world structures [345].

Further support that network aberrations predate the onset of a psychopathology is provided by studies demonstrating that healthy individuals with autistic traits [346] and healthy individuals with familial risk for ADHD [347] display more network abnormalities compared to healthy individuals with no risk for psychopathology. Dennis et al. [348] showed that structural brain networks of healthy individuals (measured with DTI) carrying one of the known autism risk genes (CNTNAP2) exhibited altered structural connectivity that was reflected in aberrant path length, small-world structure and global efficiency as compared to non-at-risk individuals.

To summarize, similarly to the case of the secondary symptoms reviewed above, network aberrations seem to accompany many brain pathologies and appear in at-risk individuals even before a psychopathology is diagnosed. Furthermore, they seem to be predictive in nature. As mentioned above, abnormalities in global network metrics are related to the loss of the network’s robustness and to an increase in vulnerability. In the next section, we suggest that secondary symptoms are linked to network aberrations and thus to brain vulnerability.

Secondary symptoms as indicators of network vulnerability

Central to the framework developed herein is the observation that although sensory and/or motor secondary symptoms and network aberrations come from different levels of description—one at the behavioral level and the other at the network level—they display similar patterns of occurrence. They are both found across psychopathologies, before psychopathology emerges, and seem to have some predictive capability. Both theoretical and empirical evidence suggests that they may indeed be related.

On a theoretical level, the relation between secondary symptoms and network aberrations can be supported by a deeper understanding of the consequences of the loss of small-world architecture and abnormalities in network metrics. As mentioned above, small-world architecture enables greater robustness to perturbations, as well as more efficient information transfer and integration throughout the network. Moreover, the architecture of small-world networks gives rise to global network mechanisms that ensure the maintenance of dynamic balance. Thus, network failure leads not only to less robustness to perturbations but also to less efficient information transfer throughout the network, as well as to the disruption of mechanisms in charge of maintaining dynamic balance [302]. As a result, network failure should affect general network function, including the most basic input, output and regulation processes [302]. Thus, irregularities in sensory, motor and regulatory processes can be viewed as arising together with the loss of robustness due to network failure. In other words, the same network abnormalities that lead to loss of robustness can also lead to abnormalities in basic processes (that is, secondary symptoms).

Empirically, this proposed relation between secondary symptoms and network aberrations is supported by a recent set of experiments demonstrating that sensory and motor secondary symptoms are associated with structural brain irregularities. Dazzan et al. investigated NSSs in 43 healthy individuals using high-resolution MRI and voxel-based methods of image analysis [349]. They found that higher rates of NSSs were associated with a reduction in the size of the inferior frontal gyrus, the middle and superior temporal gyrus, and the anterior cingulate gyrus. Several other works have recently found a strong association between the occurrence of NSSs in patients with schizophrenia and structural abnormalities in subcortical brain morphology [350-354]; cerebellum-thalamo-prefrontal networks [355]; the corpus callosum [356]; and prefrontal, temporal and cerebellar structures [356-358]. Signs of sensory integration deficits have been associated with volume reduction in the cerebral cortex, including the precentral, superior and middle temporal, and lingual gyri [354]. In a longitudinal study, Kong et al. [359] investigated the cerebral correlates of persisting NSSs in first-episode patients with schizophrenia. They found that patients with a greater number of persistent neurological signs not only showed a less favorable outcome after one year (although differences did not reach significance) but also had significantly more structural
abnormalities, which indicated a larger number of progressive cerebral changes. Taken together, these observations suggest that sensory and/or motor abnormalities represent clinical indicators of perturbed connectivity that underlies psychopathology [349,353,354,360,361].

Thus, network theory suggests that loss of network robustness can arise together with irregularities in basic processes due to global network failure [302]. In addition, structural evidence suggests that sensory and/or motor abnormalities represent clinical indicators of abnormalities in brain architecture [349-361]. We thus suggest a novel integration between clinical observations and systems neuroscience that can explain the similarities between the patterns of occurrence of sensory and/or motor abnormalities and network aberrations. Within this framework, we propose that sensory and motor secondary symptoms reflect irregularities in basic processes arising because of network irregularities and are therefore indicators of vulnerable brain networks. In other words, they are a behavioral marker for a brain that is already in a psychopathological state or has the potential to develop a psychopathology under certain conditions.

The last part of our proposition suggests that prevalent appearance of secondary symptoms has a predictive nature. Thus, it can serve as a marker for individuals in whom psychopathology is not evident but has the potential to evolve. This is supported by many levels of evidence that we have referred to in this review, namely, the following: (1) that sensory and/or motor abnormalities appear in healthy individuals who are considered at risk for psychopathology (Table 3), (2) that sensory and/or motor abnormalities appear in healthy individuals not considered at risk for psychopathology but who display more negative symptoms than the average healthy population (Table 4), (3) that higher rates of NSSs in healthy people are associated with structural abnormalities [349] and (4) that healthy people at risk for psychopathology display network abnormalities.

Discussion
In this review, we emphasize the underlying pattern of occurrence of abnormalities in sensory and motor processes that seem to appear during states of psychopathology, before the psychopathology is evident and when there is a propensity to develop a psychopathology. Furthermore, our review demonstrates that even in healthy, undiagnosed individuals at no apparent risk for psychopathology, deviations from the norm in basic processes are correlated with more negative symptoms than those found in the average healthy population.

In addition, we show that abnormalities in network metrics associated with psychopathology exhibit a pattern of occurrence similar to that of secondary symptoms. We offer a novel integration between clinical observations and systems neuroscience to try to gain an understanding of the meaning of this pattern. This synthesis yielded a proposition that abnormalities in sensory and motor processes can be indicators of a vulnerable brain (that is, a brain that has a higher probability of developing psychopathology following extreme circumstances).

Importantly, herein we focus only on a subset of possible secondary symptoms (sensory and/or motor). Although a similar systematic review of other secondary symptoms, such as sleeping, eating and self-regulation abnormalities, is lacking, a nonsystematic review that has been performed suggests that their pattern of appearance in relation to psychopathology resembles that of the sensory and/or motor secondary symptoms [4]. This similarity in patterns suggests that there are other indicators of brain vulnerability in addition to the sensory and/or motor symptoms reviewed herein.

The framework outlined herein supports the emerging theoretical approach that calls for a paradigm shift in the way psychopathologies are viewed, diagnosed and treated [3-5]. According to this approach, the current trend—in which syndromes are compartmentalized and viewed as exclusive and separable from each other and in which emphasis is placed on finding early markers that will predict specific disorders—is misguided [3]. The fact that many symptoms are shared across psychopathologies [3,5] and that disorders often appear together suggests that many disorders (for example, ASD and ADHD) are actually representations of different aspects of the same underlying abnormality (for example, aberrations in global networks) [3,362]. Thus, symptoms that appear across disorders “should be considered markers for the (very likely) presence of a neurodevelopmental disorder that (very likely) will continue to cause symptoms long after their clinical surfacing” [3]. In accordance with this recent approach, our framework suggests that secondary symptoms, such as sensory and/or motor abnormalities, represent an underlying potential (due to network vulnerability) to develop psychopathology. The prevalence and severity of secondary symptoms may indicate the level of this vulnerability [363].

Whether this potential to develop psychopathology will be realized and how it will be expressed depend both on the “level of vulnerability” of the underlying network and on the existence, nature and timing of a trigger that can shift the system from healthy to psychopathological function. For example, a trigger can be the abnormal anatomical or synaptic changes that occur during powerful developmental or degenerative processes. Extreme circumstances can also serve as triggers (for example, stressful life adversities, chemical stressors or brain hemorrhages). Indeed, the interaction between developmental aberrations and external stressors is exemplified in schizophrenia. Growing evidence indicates that schizophrenia is a developmental
disorder (see, for example, [6]). However, it usually erupts only during the stressful period of late adolescence and early adulthood, when young adults leave their parents’ home and become independent [364]. The integrative framework presented herein emphasizes the need to better understand the interaction between the prevalence and severity of secondary signs, as well as the timing and nature of perturbations that can trigger the development of a psychopathology.

Several important clinical implications, relating to both early detection and intervention, arise from this framework. This review gathers an extensive body of supportive evidence showing that the appearance of nonspecific secondary symptoms, as well as nonspecific metric aberrations, precedes the development of specific psychopathologies. Early detection of vulnerability may therefore contribute to efforts directed at finding early markers of psychopathology [3,4]. Further research is needed to directly assess the clinical usefulness of secondary symptoms as predictors of psychopathology.

Regarding implications for interventions, it is possible that, once secondary symptoms are detected, an intervention could reduce vulnerability and prevent or curtail the development of psychopathology. Interestingly, preliminary evidence suggests that interventions targeting basic processes associated with secondary symptoms (for example, sensory, motor or sleep) seem to alleviate vulnerability in preterm infants and in individuals already diagnosed with a psychopathology (see, for example, [365–370]). These clinical implications suggest that, when viewed within the framework presented herein, secondary symptoms can provide important information that can guide clinical diagnosis and treatment.

Conclusion

The intent of this review is to attract attention to the nonspecific characteristics of psychopathologies and to demonstrate that, within the systems neuroscience framework, these characteristics may hold important information that can advance the theoretical and clinical understanding of psychopathologies. The direct evidence for a relation between behavioral secondary symptoms and network aberrations and vulnerability, as well as its clinical usefulness, is limited and requires substantial research. We hope the integrative framework outlined herein will stimulate work that aims to increase understanding of this relation further and to advance our understanding of the common mechanisms underlying disorders and how they can be used for prevention, diagnosis and treatment of disorders.

Endnote

1Network metrics include measures of local connectivity levels (such as the clustering and modularity of various nodes in the network), measures of global integration (such as the average path length between two nodes, which is indicative of how efficiently the network is connected) and measures of the importance of specific hub nodes (such as the centrality of specific nodes). Another example of a network metric is how much the brain adheres to a global network architecture, called a “small world network,” that reflects high clustering, a short path length and the formation of densely connected hubs [298].

Abbreviations

AD: Alzheimer disease; ADHD: Attention-deficit/hyperactivity disorder; ASD: Autism spectrum disorder; DTI: Diffusion tensor imaging; EEG: Electroencephalography; fMRI: Functional magnetic resonance imaging; MEG: Magnetoencephalography; MCI: Mild cognitive impairments; NSS: Neurological soft sign; OCD: Obsessive-compulsive disorder; PTSD: Posttraumatic stress disorder.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

NVL, YG and MD participated equally in the review process and in the manuscript preparation process. All authors read and approved the final manuscript.

Acknowledgments

We gratefully acknowledge Elisha Moses for his support and encouragement. We also wish to thank Hilan Navot and Anna Wexler for their assistance with the manuscript. Finally, we wish to acknowledge the many therapists and clinicians working with individuals with difficulties from whose wisdom and knowledge we have been inspired.

Author details

1Interdisciplinary Center (IDC), Sagol Unit for Applied Neuroscience, School of Psychology, POB 167, Herzliya 46150, Israel. 2Tel Aviv Maccabi Healthcare Services, 27 Hamered St., Tel Aviv 68125, Israel.

Received: 13 February 2013 Accepted: 4 September 2013
Published: 24 September 2013

References

1. DiFonzo GA, Breinbauer C, Roosevelt JD, Porges S, Greenspan S: Prediction of childhood problems at three years in children experiencing disorders of regulation during infancy. Infant Ment Health J 2000, 21:156–175.
2. Chan RCK, Wang Y, Wang L, Chen EYH, Manschreck TC, Li ZJ, Yu X, Gong QY: Neurological soft signs and their relationships to neurocognitive functions: a re-visit with the structural equation modeling design. PLoS One 2009, 4:e8469.
3. Gillberg C: The ESSENCE in child psychiatry: Early Symptomatic Syndromes Eliciting Neurodevelopmental Clinical Examinations. Res Dev Disabil 2010, 31:1543–1551.
4. Levit-Binnun N, Golland Y: Finding behavioral and network indicators of brain vulnerability. Front Hum Neurosci 2012, 6:10.
5. Menon V: Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci 2011, 15:483–506.
6. Gilmore JH: Understanding what causes schizophrenia: a developmental perspective. Am J Psychiatry 2010, 167:8–10.
7. Adamson A, O’Hare A, Graham C: Impairments in sensory modulation in children with autistic spectrum disorder. Br J Occup Ther 2006, 69:357–364.
8. Adrien JL, Omritz E, Barthelemy C, Sauvage O, Leboyer G: The presence or absence of certain behaviors associated with infantile autism in severely retarded autistic and nonautistic retarded children and very young normal children. J Autism Dev Disord 1987, 17:407–416.
9. Baranek GT: Autism during infancy: a retrospective video analysis of sensory-motor and social behaviors at 9–12 months of age. J Autism Dev Disord 1999, 29:213–224.
10. Baranek GT, Boyd BA, Poe MD, David FJ, Watson LR: Hyperresponsive sensory patterns in young children with autism, developmental delay, and typical development. Am J Ment Retard 2007, 112:233–245.

11. Baranek GT, David FJ, Poe MD, Stone WL, Watson LR: Sensory Experiences Questionnaire: discriminating sensory features in young children with autism, developmental delays, and typical development. J Child Psychol Psychiatry 2006, 47:201–201.

12. Baranek GT, Watson LR, Boyd BA, Poe MD, David FJ, McGuire L: Hyperresponsiveness to social and nonsocial sensory stimuli in children with autism, children with developmental delays, and typically developing children. Dev Psychopathol 2013, 25:307–320.

13. Ben-Sasson A, Cermak SA, Ormond GI, Tager-Flusberg H, Carter AS, Kadijev MB, Dunn W: Extreme sensory modulation behaviors in toddlers with autism spectrum disorders. Am J Occup Ther 2007, 61:584–592.

14. Blakemore SJ, Tavassoli T, Calb S, Thomas RM, Catmur C, Frith U, Haggard P: Tactile sensitivity in Asperger syndrome. Brain Cogn 2005, 61:3–13.

15. Blanche EI, Reinson G, Chang MC, Bodison S: Proprioceptive processing difficulties among children with autism spectrum disorders and developmental disabilities. Am J Occup Ther 2012, 66:621–624.

16. Caccio C, McGone F, Folger S, Tanman Y, Baranek G, Pelphrey KA, Etskin G: Tactile perception in adults with autism: a multidimensional psychophysical study. J Autism Dev Disord 2008, 38:127–137.

17. Crane L, Goddard L, Pring L: Sensory processing in adults with autism spectrum disorders. Autism 2009, 13:215–228.

18. Dicker VA, Baranek GT, Schultz B, Watson LR, McComish CS: Parent reports of sensory experiences of preschool children with and without autism: a qualitative study. Am J Occup Ther 2009, 63:172–187.

19. Dunn W, Mykes BS, Orr S: Sensory processing issues associated with Asperger syndrome: a preliminary investigation. Am J Occup Ther 2002, 56:97–102.

20. Hilton CL, Harper JD, Kuebler RH, Lang AR, Abbacchi AM, Todorov A, LaVesder PD: Sensory responsiveness as a predictor of social severity in children with high functioning autism spectrum disorders. J Autism Dev Disord 2010, 40:937–945.

21. Hochhauser M, Engel-Yeger B: Sensory processing abilities and their relation to participation in leisure activities among children with high-functioning autism spectrum disorder (HFASD). Res Autism Spectr Disord 2010, 4:746–754.

22. Kern JK, Garner CR, Carmody T, Andrews AA, Mehta JA, Trivedi MH: Examining sensory modulation in individuals with autism as compared to community controls. Res Autism Spectr Disord 2008, 2:85–94.

23. Kern JK, Garner CR, Carmody T, Andrews AA, Trivedi MH, Mehta JA: Examining sensory quadrants in autism. Res Autism Spectr Disord 2007, 1:185–193.

24. Kern JK, Garner CR, Grannemann BD, Trivedi MH, Carmody T, Andrews AA, Mehta JA: Response to vestibular sensory events in autism. Res Autism Spectr Disord 2007, 1:167–174.

25. Kern JK, Trivedi MH, Garner CR, Grannemann BD, Andrews AA, Savla JS, Johnson DG, Mehta JA, Schroeder JL: The pattern of sensory processing abnormalities in autism. Autism 2006, 10:480–494.

26. Kern JK, Trivedi MH, Grannemann BD, Garner CR, Johnson DG, Andrews AA, Savla JS, Mehta JA, Schroeder JL: Sensory correlations in autism. Autism 2007, 11:23–134.

27. Khalfa S, Brunau N, Roge B, Georgieff N, Veulliet E, Adrien JL, Barthélémy C, Collet L: Increased perception of loudness in autism. Hear Res 2009, 198:87–92.

28. Kientz MA, Dunn W: A comparison of the performance of children with and without autism on the Sensory Profile. Am J Occup Ther 1997, 51:530–537.

29. Kwakye LD, Foss-Feig JH, Caccio CJ, Stone WL, Wallace MT: Altered auditory and multisensory temporal processing in autism spectrum disorders. Front Integr Neurosci 2011, 4:129.

30. Leekam SR, Nieto C, Libby SJ, Wing L, Gould J: Describing the sensory abnormalities of children with autism. J Autism Dev Disord 2007, 37:894–910.

31. O’Brien T, Travers BJ, Cummings O, Happe F, Heaton P, Spencer J: Discriminating children with autism from children with learning difficulties with an adaptation of the Short Sensory Profile. Early Child Dev Care 2005, 179:383–394.

32. Reynolds S, Lane SJ, Thacker L: Sensory processing, physiological stress, and sleep behaviors in children with and without autism spectrum disorders. JOT (Thorofare N J) 2012, 32:246–257.

33. Rogers SJ, Hepburn S, Wehner E: Parent reports of sensory symptoms in toddlers with autism and those with other developmental disorders. J Autism Dev Disord 2003, 33:631–642.

34. Sapiaras P, Ring HA, McAllister CJ, Henderson S, Barnett A, Watson P, Holland AJ: Atypical movement performance and sensory integration in Asperger’s syndrome. J Autism Dev Disord 2012, 42:718–725.

35. Tavassoli T, Baron-Cohen S: Taste identification in adults with autism spectrum conditions. J Autism Dev Disord 2012, 42:1419–1424.

36. Tomchek SD, Dunn W: Sensory processing in children with and without autism: a comparative study using the Short Sensory Profile. Am J Occup Ther 2007, 61:190–200.

37. Watling RL, Deitz J, White O: Comparison of Sensory Profile scores of young children with and without autism spectrum disorders. J Autism Dev Disord 2001, 31:416–423.

38. Woodard CR, Goodwin MS, Zelazo PR, Aube D, Scrimgeour M, Osthoffthoff T, Brickley M: A comparison of autonomic, behavioral, and parent-report measures of sensory sensitivity in young children with autism. Res Autism Spectr Disord 2012, 6:1234–1246.

39. Weimer AK, Schatz AM, Lincoln A, Ballantyne AO, Trauner DA: “Motor” impairment in Asperger syndrome: evidence for a deficit in proprioception. J Dev Behav Pediatr 2001, 22:92–101.

40. Cheung PPP, Siu AMH: A comparison of patterns of sensory processing in children with and without developmental disabilities. Res Dev Disabil 2009, 30:1468–1480.

41. Reynolds S, Bendixen RM, Lawrence T, Lane SJ: A pilot study examining auditory participation, sensory responsiveness, and competence in children with high functioning autism spectrum disorder. J Autism Dev Disord 2007, 37:1496–1506.

42. Fuentes CT, Mostofsky SH, Bastian AJ: No proprioceptive deficits in autism despite movement-related sensory and execution impairments. J Autism Dev Disord 2011, 41:1352–1361.

43. Guigli B, Tanidir C, Mukaddem NM, Oral F: Tactile sensitivity of normal and autistic children. Somatosens Res 2007, 24:21–33.

44. Jones CRG, Happé F, Baird G, Simonoff E, Marden ASJ, Tregay J, Phillips RJ, Goswami U, Thomson JM, Charman T: Auditory discrimination and auditory sensory behaviours in autism spectrum disorders. Neuropsychologia 2009, 47:2850–2858.

45. Tavassoli T, Baron-Cohen S: Offfactory detection thresholds and adaptation in adults with autism spectrum condition. J Autism Dev Disord 2012, 42:905–909.

46. Lopata C, Hamrn EM, Volker MA, Sowinski JE: Motor and visuomotor skills of children with Asperger’s disorder: preliminary findings. Percept Mot Skills 2007, 104:1183–1192.

47. Pan CY, Tsai CL, Chu CH: Moscova’s motor coordination in children with and without autism spectrum disorders. Perceptual Motor Skills 2009, 109:1764–1765.

48. Papadopoulos N, McGlinley J, Tonge B, Bradshaw J, Saunders K, Murphy A, Rinehart N: Motor proficiency and emotional/behavioural disturbance in autism and Asperger’s disorder: another piece of the neuroanatomical puzzle? Autism 2012, 16:627–640.

49. Sahlander C, Mattsson M, Bejerot S: Motor function in adults with Asperger’s disorder: a comparative study. Physiother Theory Pract 2008, 24:73–81.

50. Travers B, Powell P, Klinger L, Klinger M: Motor difficulties in autism spectrum disorder: linking symptom severity and postural stability. J Autism Dev Disord 2013, 43:1568–1583.

51. Whyatt CP, Craig CM: Motor skills in children aged 7–10 years, diagnosed with autism spectrum disorder. J Autism Dev Disord 2012, 42:1799–1809.

52. Dewang P, Sandberg AD: Parental retrospective assessment of development and behavior in Asperger Syndrome during the first 2 years of life. Res Autism Spectr Disord 2010, 4:461–473.

53. Esposito G, Venuti P: Analysis of toddlers’ gait after six months of independent walking to identify autism: a preliminary study. Percept Mot Skills 2008, 106:259–266.

54. Freitag CM, Kiesler C, Schneider M, von Gontard A: Qualitative assessment of neuromotor function in adolescents with high functioning autism and Asperger syndrome. J Autism Dev Disord 2007, 37:948–959.

55. Gernsbacher MA, Sauer EA, Geye HM, Schweigert EK, Goldsmith HH: Infant and toddler oral- and manual-motor skills predict later speech fluency in autism. J Child Psychology Psychiatry 2008, 49:43–50.
hyperactivity disorder: peer comparisons and stimulant effects. J Abnorm Child Psychol 2007, 35:871–882.
106. Klots JM, Johnson MD, Wu SW, Isaacs KM, Gilbert DL: Relationship between reaction time variability and motor skill development in ADHD. Child Neuropsych 2012, 18:576–585.
107. Karatekin C, Markiewicz SW,Siegel MA: A preliminary study of motor problems in children with attention-deficit/hyperactivity disorder. Percept Mot Skills 2005, 97:1267–1280.
108. Klimki EJ, Sheppard DM, Lee P, Bradshaw JL: Binomial coordination deficits in attention deficit/hyperactivity disorder (ADHD). J Clin Exp Neuropsychol 2004, 26:999–1010.
109. Meyer A, Saygölden T: Fine motor skills in South African children with symptoms of ADHD: influence of subtype, gender, age, and hand dominance. Behav Brain Funct 2006, 2:31.
110. Okuda PM, Pinheiro FH, Germaino GD, Padula NA, Loarenç etti MD, Santos LC, Capellini SA: Fine motor, sensory and perceptive function of students with attention deficit disorder with hyperactivity disorder [in English and Portuguese]. J Soc Bras Fonoaudiol 2011, 123:351–357.
111. Pick JP, Pitcher TM, Hay DA: Motor coordination and kinaesthesia in boys with attention deficit-hyperactivity disorder. Dev Med Child Neurol 1999, 41:159–165.
112. Rommelse NNI, Atink M, Oosterlaan J, Buschgens CJM, Buitelaar J: Dimensions of fine motor performance in children with ADHD and non-affected siblings: deficits most pronounced using the left hand. J Child Psychol Psychiatry 2007, 48:1071–1079.
113. Schaafsma-Willems D, de Sonnevile L, Swaab-Barnesveld H, Butelar J: Motor flexibility problems as a marker for genetic susceptibility to attention-deficit/hyperactivity disorder. Biol Psychiatry 2005, 58:233–238.
114. Kooistra L, Crawford S, Dewey D, Cantell M, Kaplan DJ: Motor correlates of ADHD: contribution of reading disability and oppositional defiant disorder. J Learn Disabil 2005, 38:195–206.
115. Lee KB, Chou Y, Tsai CL: Kinematic performance of fine motor control in attention-deficit/hyperactivity disorder: the effects of comorbidity developmental coordination disorder and core symptoms. Pediatr Int 2013, 55:24–29.
116. Poleldman TJC, van Dongen J, Boomma DI: The relation between ADHD symptoms and fine motor control: a genetic study. Child Neuropsych 2011, 17:138–150.
117. Dickstein DP, Garvey M, Pradella AG, Greenstein DK, Sharp WS, Castellanos FX, Pine DS, Liebenfelt E: Neurologic examination abnormalities in children with bipolar disorder or attention-deficit/hyperactivity disorder. Biol Psychiatry 2005, 58:517–524.
118. Ferrin M, Vance A: Examination of neurological subtle signs in ADHD as a clinical tool for the diagnosis and their relationship to spatial working memory. J Child Psychol Psychiatry 2012, 53:390–407.
119. Kristensen H, Hoppen W, Torgersen S: The association between avoidant personality traits and motor impairment in a population-based sample of 11–12-year-old children. J Pers Disord 2007, 21:87–97.
120. Skirbekk B, Hansen BH, Oerbeck B, Wenzel-Larsen T, Kristensen H: Motor impairment in children with anxiety disorders. Psychiatry Res 2012, 198:135–139.
121. Ekornes B, Lundvold AJ, Tjøs T, Heimann M: Anxiety disorders in 8–11-year-old children: motor skill performance and self-perception of competence. Scand J Psychol 2010, 51:271–277.
122. Jacob RG, Redfern MS, Furman JM: Space and motion discomfort and abnormal balance control in patients with anxiety disorders. J Neurol Neurosurg Psychiatry 2009, 80:74–78.
123. Erez O, Gordon CR, Sever J, Sadrah A, Mintz M: Balance dysfunction in childhood anxiety: findings and theoretical approach. J Anxiety Disord 2004, 18:341–356.
124. Farrow CV, Couthard H: Relationships between sensory sensitivity, anxiety and selective eating in children. Appetite 2012, 58:842–846.
125. Hofmann SG, Bitran S: Sensory-processing sensitivity in social anxiety disorder: relationship to harm avoidance and diagnostic subtypes. J Anxiety Disord 2007, 21:944–954.
126. Hollandar E, Weiller F, Cohen L, Kwon JH, DeCarli CM, Liebowitz MR, Stein DJ: Neurological soft signs in social phobia. Neuropsychiatry Neuropsychol Behav Neurol 1996, 9:182–185.
127. Gurvits TV, Gilbertson MW, Lasko NB, Tarhan AS, Simeon D, Macklin ML, Orr SP, Pitman RK: Neurologic soft signs in chronic posttraumatic stress disorder. Arch Gen Psychiatry 2000, 57:161–186.
128. Gurvits TV, Lasko NB, Schachter SC, Kuhnne AA, Orr SP, Pitman RK: Neurological status of Vietnam veterans with chronic posttraumatic stress disorder. J Neuropsychiatry Clin Neurosci 1993, 5:183–188.
129. Gurvits TV, Metzger LJ, Lasko NB, Cannistraro PA, Tarhan AS, Gilbertson MW, Orr SP, Charbonneau AM, Wedig MW, Pitman RK: Subtle neurological compromise as a vulnerability factor for combat-related posttraumatic stress disorder: results of a twin study. Arch Gen Psychiatry 2006, 63:571–576.
130. Gurvits TV, Carson MA, Metzger L, Croteau HB, Lasko NB, Orr SP, Pitman RK: Absence of selected neurological soft signs in Vietnam nurse veterans with post-traumatic stress disorder. Psychiatry Res 2002, 110:61–85.
131. Gunther W, Gunther R, Streck P, Röhm J, Rödel A: Psychomotor disturbances in psychiatric patients as a possible basis for new attempts at differential diagnosis and therapy. Ill. Cross validation study on depressed patients: the psychotic motor syndrome as a possible state marker for endogenous depression. Eur Arch Psychiatry Neurol Sci 1988, 237:65–73.
132. Lohr JB, May T, Caligiuri MP: Quantitative assessment of motor abnormalities in untreated patients with major depressive disorder. J Affect Disord 2013, 146:84–90.
133. Schwartz F, Carr A, Munich RL, Barten H, Lesser B, Rescigno D, Viegener B: Voluntary motor performance in psychotic disorders: a replication study. Psychol Rep 1990, 66:1223–1234.
134. Zhao Q, Ma YT, Liu SS, Liu WH, Xu Y, Xu Y, Pan SP, Wang ZR, Qu M, Wang Y, Huang J, Chen RG, Dazzen P, Chan RC: Neurological soft signs discriminate schizophrenia from depression with major depression but not bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry 2013, 43:72–78.
135. Boks MPM, Liddle PF, Burgehed JGM, Kneegtering R, van den Bosch RJ: Neurologic soft signs discriminating mood disorders from first episode schizophrenia. Acta Psychiatr Scand 2004, 110:29–35.
136. Manschreck TC, Arnes D: Neurologic features and psychopathology in schizophrenic disorders. Biol Psychiatry 1984, 19:703–719.
137. Lohr JB, Caligiuri MP: Abnormalities in motor physiology in bipolar disorder. J Neuropsychiatry Clin Neurosci 2006, 18:342–349.
138. Swiecicki L, Zatorski P, Binkowska D, Sienkiewicz-Jarosz H, Szynler J, Scinska A: Gustatory and olfactory function in patients with unipolar and bipolar depression. Prog Neuropsychopharmacol Biol Psychiatry 2009, 33:827–834.
139. Negash A, Kebede D, Alem A, Melaku Z, Deyesay N, Shibire T, Fedakau A, Fedakau D, Jacobsen L, Kullgren G: Neurological soft signs in bipolar I disorder patients. J Affect Disord 2004, 80:221–230.
140. Rosenthal MA, Ahn R, Geiger PJ: Reactivity to sensations in borderline personality disorder: a preliminary study. J Pers Disord 2011, 25:715–721.
141. Brown S, Shankar R, Smith K: Borderline personality disorder and sensory processing impairment. Neuropsychol Prog Neuropsychol 2009, 13:10–16.
142. Tanwani M, Liebenzweiger MF: Somatosensory processing and borderline personality disorder features: a signal detection analysis of proprioceptive and exteroceptive sensitivity. J Pers Disord 2013, 27:208–221.
143. Swinsky-Sachetti T, Gorton G, Samuel S, Sobel R, Genetta-Wadley A, Burleigh B: Neuropsychological function in borderline personality disorder. J Clin Psychol 1993, 49:365–396.
144. De la Fuente JM, Bengoechea E, Navarro F, Bubas J, Alarcón RD: Interconnection between biological abnormalities in borderline personality disorder: use of the Bayesian networks model. Psychiatr Res 2011, 186:315–319.
145. De la Fuente JM, Bubas J, Vizutez C, Basaran MT, Morlan I, Mendekewicz J: Neurologic soft signs in borderline personality disorder. J Clin Psychiatry 2006, 67:541–546.
146. Gardner DL, Lucas PB, Cowdry RW: Soft sign neurological abnormalities in borderline personality disorder and normal control subjects. J Nerv Ment Dis 1987, 175:177–180.
147. Brown C, Cromwell RL, Filion D, Dunn W, Tolfaßen N: Sensory processing in schizophrenia: missing and avoiding information. Schizophr Res 2002, 55:187–195.
148. Cheng J, Han DY, Yao GZ, Wang Y, Yang YF: Balance function in schizophrenia patients. Chin J Neurol 2012, 26:267–271.
149. Colbert EG, Koelgler RR, Markham CH: Vestibular dysfunction in childhood schizophrenia. AMA Arch Gen Psychiatry 1959, 1:600–617.
150. Emmerich DS, Levine FM: Differences in auditory sensitivity of chronic posttraumatic stress disorder patients and normal controls determined by use of a forced-choice procedure. Dis Syst 1970, 31:552–557.
cognitive decline during Alzheimer’s disease. J Alzheim Dis 2009, 16:525–531.
195. Waite LM, Broe GA, Grayson DA, Creasey H: Motor function and disability in the dementias. J Geriatr Psychiatry Neurol 2000, 13:189–193.
196. Sattanoon P, Hill KD, Said CM, LoGiudice D, Lautenschlager NT, Dodd KJ: Balance and mobility dysfunction and falls risk in older people with mild to moderate Alzheimer’s disease. Am J Phys Med Rehabil 2012, 91:12–23.
197. Kluger A, Gianutioso JG, Golomb J, Ferris SH, Reisberg B: Patterns of motor impairment in normal aging, mild cognitive decline, and early Alzheimer’s disease. J Gerontol B Psychol Sci Soc Sci 1997, 52B:28–39.
198. Oakley F, Duran L, Fisher A, Merritt B: Differences in activities of daily living motor skills of persons with and without Alzheimer’s disease. Aust Occup Ther J 2003, 50:72–78.
199. Ott BR, Elias SA, Lannom MC: Quantitative assessment of movement in Alzheimer's disease. J Geriatr Psychiatry Neurol 1995, 8:71–75.
200. Lam LCW, Lui VWC, Chu HFK: Association between soft neurological signs and clinical progression in Alzheimer’s disease. Hong Kong J Psychiatry 2005, 15:43–49.
201. Seidl U, Thoman PA, Schröder J: Neurological soft signs in nursing home residents with Alzheimer's disease. J Alzheim Dis 2009, 18:525–532.
202. Gogonji L, Forget R, Sullivan SJ, Friedman D: Motor dysfunction following a mild traumatic brain injury in children: an exploratory study. Brain Inj 1998, 12:8943–8953.
203. Galvin J, Froude EH, Imms C: Sensory processing abilities of children who have sustained traumatic brain injuries. Am J Occup Ther 2009, 63:701–709.
204. Katz-Leurer M, Rotem H, Lewitus H, Keren O, Meyer S: Relationship between balance abilities and gait characteristics in children with post-traumatic brain injury. Brain Inj 2008; 22:153–159.
205. Kuhtz-Buschbeck JP, Hoppe B, Gölge M, Dreesmann M, Damm-Stünitz U, Markesbery WR, Zhang Z, Gerhardt GA, Kyssic RJ, Gash DM: Critical decline in fine motor hand movements in human aging. Neurology 1999, 53:148–1461.
206. Shimokata H, Kuzuya F: Neuromotor dysfunction in children after traumatic brain injury: Inferences of motor performance and disability. Child Care Health Dev 2000, 26:367–378.
207. Weinberg CK, Chen J, Pastor T, Moilanen K, Veijola J: The Effect of Aging on Motor Performance (ERIC ED230488). Washington, DC: ERIC Clearinghouse; 1982. Available at http://eric.ed.gov/?id=ED230488.
208. Santos S, Gehring PR, Bertolazzi MA, De Souza Nunes ME, Basso L, Meira CM Jr: Motor performance and aging: Is there any difference between 60 and 86 years old? J Sport Exerc Physiol 2007, 29(Suppl):543.
209. Chui CY, Xu T, Li H, Zhao Q, Liu HH, Wang Y, Yan C, Cao XY, Wang YN, Shi YF, Dazzan P: Neurological abnormalities and neurocognitive functions in healthy elderly people: a structural equation modeling analysis. Behav Brain Funct 2011, 7:32.
210. Rogers SJ: What are infant siblings teaching us about autism in infancy? Autism Res 2009, 2:125–137.
211. Wingate LM, Broe GA, Grayson DA, Creasey H: Sensory processing abilities of children who have sustained traumatic brain injuries. Am J Occup Ther 2009, 63:701–709.
212. Bysson SE, Zwanenburg B, Lien B, Roberts W, Sztatmari P, Rombough V, McDermott C: A prospective case series of high-risk infants who developed autism. J Autism Dev Disord 2007, 37:12–34.
213. Mulligan S, White BP: Sensory and motor behaviors of infant siblings of children with and without autism. Am J Occup Ther 2012, 66:556–566.
214. Landa RJ, Gross AL, Stuart EA, Baum M: Latent class analysis of early developmental trajectory in baby siblings of children with autism. J Child Psychol Psychiatry 2012, 53:986–996.
215. Landa R, Garrett-Mayer E: Development in infants with autism spectrum disorders: a prospective study. J Child Psychol Psychiatry 2006, 47:629–638.
216. Landa RJ, Gross AL, Stuart EA, Faherty A: Developmental trajectories in children with and without autism spectrum disorders: the first 3 years. Child Dev 2013, 84:429–442.
217. Kooij M, Kessels AGH, Kallf A, Feron FJM, Visser YL, Jolles J, Mes JSH: Quality of movement as predictor of ADHD: results from a prospective population study in 5- and 6-year-old children. Dev Med Child Neurol 2002, 44:753–760.
218. Wolhainen H, Ahonen T, Lyytinen P, Cantell M, Tolvanen A, Lyytinen H: Early motor development and later language and reading skills in children at risk of familial dyslexia. Dev Med Child Neurol 2000, 42:367–373.
219. Wolhainen H, Ahonen T, Cantell M, Lyytinen P, Lyytinen H: Development of early motor skills and language in children at risk for familial dyslexia. Dev Medicine Child Neurol 2002, 44:761–769.
220. Cannon M, Jones P, Hutton MO, Tanskanen A, Murray RM: Motor-coordination deficits as predictors of schizophrenia among Finnish school children. Hum Psychopharmacol 1999, 14:491–497.
221. Murray GK, Jones PB, Mollanen K, Veijola J, Miettunen J, Cannon TD, Isohanni M: Infant motor development and adult cognitive functions in schizophrenia. Schizophr Res 2006, 81:65–74.
222. Schifferman J, Sorensen HU, Maeda J, Mortensen EL, Victoroff J, Hayashi K, Michelsen NM, Ekstrom M, Mednick S: Childhood motor coordination and adult schizophrenia spectrum disorders. Am J Psychiatry 2009, 166:1041–1047.
223. Walker E, Lewine RJ: Prediction of adult-onset schizophrenia from childhood home movies of the patients. Am J Psychiatry 1990, 147:1052–1056.
224. Rosso IM, Bearden CE, Hollister JM, Gasperoni TL, Sanchez LE, Hadley T, Cannon TD: Childhood neuromotor dysfunction in schizophrenia patients and their unaffected siblings: a prospective cohort study. Schizophr Bull 2000, 26:367–378.
225. Watkins JM, Asarnow RF, Tanguay FE: Symptom development in childhood onset schizophrenia. J Child Psychol Psychiatry 1988, 29:865–878.
265. Prasad KM, Sanders R, Sweeney J, Montrose D, Diwadkar V, Dworakowski D, An approach to prevention in infants at risk for schizophrenia: Fish B.

258. Marcus J, Hans SL, Auerbach JG, Auerbach AG: Chang BP, Lenzenweger MF: Journal of Neurodevelopmental Disorders

250. Koning JP, Tenback DE, Kahn RS, Vollema MG, Cahn W, van Harten PN: Leivit-Binnun et al. J Am Acad Child Adolesc Psychiatry 2003, 85:139–149.

257. Chang BP, Lenzenweger MF: Movemt disorders are associated with schizotypy in unaffected siblings of patients with non-affective psychosis. Psychol Med 2011, 41:2141–2147.

252. Mittal VA, Neumann C, Saczawa M, Walker EF: Longitudinal progression of movement abnormalities in relation to psychotic symptoms in adolescents at high risk of schizophrenia. Arch Gen Psychiatry 2008, 65:165–171.

254. Blanchard MM, Jacobson S, Clarke MC, Connor D, Kelleher I, Garavan H, Harley M, Cannon M: Motor dysfunction in adolescents with schizotypal personality disorder: associations with symptoms and neurocognition. Schizophr Bull 2003, 29:285–298.

255. Blanchard MM, Jacobsen S, Clarke MC, Connor D, Kelleher I, Garavan H, Harley M, Cannon M: Language, motor and speed of processing deficits in adolescents with subclinical psychotic symptoms. Schizophr Res 2010, 122:71–76.

256. Chan RCX, Wang Y, Zhao Q, Yan C, Xu T, Gong Q, Manscchein TC: Neurological soft signs in individuals with schizotypal personality features. Aust N Z J Psychiatry 2010, 44:800–804.

257. Chang BP, Lenzenweger MF: Somatosensory processing in the biological relatives of schizophrenia patients: a signal detection analysis of two-point discrimination. J Abnorm Psychol 2001, 110:433–442.

258. Chang BP, Lenzenweger MF: Somatosensory processing and schizophrenia liability: proprioception, exteroceptive sensitivity, and graphesthesia performance in the biological relatives of schizophrenia patients. J Abnorm Psychol 2005, 114:85–95.

259. Marcus J, Hans SL, Auerbach JG, Auerbach AG: Children at risk for schizophrenia: the Jerusalem Infant Development Study. II. Neurobehavioral deficits at school age. Arch Gen Psychiatry 1993, 50:797–809.

260. Beider RD, Nichols PL: Offspring of schizophrenics. III. Hyperactivity and neuroleptic soft signs. Arch Gen Psychiatry 1979, 36:665–674.

261. Fish B: An approach to prevention in infants at risk for schizophrenia: developmental deviations from birth to 10 years. J Am Acad Child Psychiatry 1976, 15:62–82.

262. Fish B, Hagen R: Visual-motor disorders in infants at risk for schizophrenia. Arch Gen Psychiatry 1973, 28:900–904.

263. Egan MF, Hyde TM, Boronko JB, Mattay VS, Bigelow LB, Goldberg TE, Weinerberger DR: Relative risk of neurological signs in siblings of patients with schizophrenia. Am J Psychiatry 2001, 158:1827–1834.

264. Mechi A, Gisass L, Slama H, Gaha L, Saoud M, Krebs MO: Neurological soft signs and schizotypal dimensions in unaffected siblings of patients with schizophrenia. Psychiatry Res 2010, 175:22–26.

265. Picchioni MM, Toulopoulou T, Landau S, Davies N, Ribchester T, Murray RM: Neurological abnormalities in schizophrenic twins. Biol Psychiatry 2006, 59:341–348.

266. Prasad KM, Sanders R, Sweeney J, Montorese D, Diwadkar V, Dwoskowsk D, Miewald J, Keshavan M: Neurological abnormalities among offspring of persons with schizophrenia: relation to premorbid psychopathology. Schizophr Res 2009, 108:1163–169.

267. Harjan A: Children of parents with affective disorders: developmental and behavior disorders, somatic and psychiatric care. Eur J Psychiatry 1989, 3:219–234.

268. Pine D, Shaffer D, Schonfeld IS: Persistent emotional disorder in children with neurological soft signs. J Am Acad Child Adolesc Psychiatry 1993, 32:1239–1246.

269. Shaffer D, Schonfeld I, O’Connor PA, Stokman C, Trautman P, Shaffer S, Ng S: Neurological soft signs: their relationship to psychiatric disorder and intelligence in childhood and adolescence. Arch Gen Psychiatry 1985, 42:342–351.

270. Turner SM, Beidel DC, Roberson-Nay R: Offspring of anxious parents: reactivity, habituation, and anxiety-proneness. Behav Res Ther 2005, 43:1263–1279.

271. Sigurdsson E, van Os J, Fombonne E: Are impaired childhood motor skills a risk factor for adolescent anxiety? Results from the 1958 UK birth cohort and the National Child Development Study. Am J Psychiatry 2002, 159:1044–1046.

272. Sigurdsson E, Fombonne E, Saylor K, Checkley S: Neurodevelopmental antecedents of early-onset bipolar affective disorder. Br J Psychiatry 1999, 174:121–127.

273. Grisham JR, Fullana MA, Mataix-Cols D, Moffett TE, Caspi A, Poulton R: Risk factors prospectively associated with adult obsessive–compulsive symptom dimensions and obsessive–compulsive disorder. Psychol Med 2011, 41:2495–2506.

274. Iritani M, Carlo A, Baldereschi M, Pracucci G, Magni S, Gandolfo C, Bonaiuto S, Farchi G, Scalfato E, Carbonin P, Iritani D: ILSA Working Group: Risk and predictors of motor-performance decline in a normally functioning population-based sample of elderly subjects: the Italian Longitudinal Study on Aging. J Am Geriatr Soc 2006, 54:S18–S24.

275. Aggarwal NT, Wilson RS, Beck TL, Bienias JL, Bennett DA: Motor dysfunction in mild cognitive impairment and the risk of incident Alzheimer disease. Arch Neurol 2006, 63:1763–1769.

276. Scarrems N, Albert M, Brandt J, Blacker D, Hadjigeorgiou G, Papadimitriou A, Dubois B, Sarazin M, Wegesin D, Marder K, Bell K, Honig L, Stern Y: Motor signs predict poor outcomes in Alzheimer disease. Neurology 2005, 64:1696–1703.

277. Mittal VA, Tessler KD, Trotman HD, Estberg M, Dhurbh Sh, Simeonova DI, McMillian AL, Murphy E, Saczawa ME, Walker EF: Movement abnormalities and the progression of prodromal symptomatology in adolescents at risk for psychotic disorders. J Abnorm Psychol 2007, 116:260–267.

278. Krensen WS, Koenen KC, Afari N, Lyons MJ: Twin studies of posttraumatic stress disorder: differentiating vulnerability factors from sequelae. Neuropsychopharmacology 2012, 37:647–653.

279. Kinnealey M, Fuekel M: The relationship between sensory defensiveness, anxiety, depression and perception of pain in adults. Occup Ther Int 1999, 6:195–206.

280. Liss M, Timmel L, Bailey K, Killingsworth P: Sensory processing sensitivity and its relation to parental bonding, anxiety, and depression. Pers Individ Dif 2005, 39:1429–1439.

281. Goldsmith HH, Van Hulle CA, Arneson CL, Schreiber JE, Gemsbacher MA: A population-based twin study of parental reported tactile and auditory sensory defensiveness in young children. J Abnorm Child Psychol 2006, 34:378–392.

282. Engel-Yeger B, Dunn W: The relationship between sensory processing difficulties and anxiety difficulty level of healthy adults. Br J Occup Ther 2011, 74:210–216.

283. Piek JP, Barrett NC, Smith LE, Roldi G, Gasson N: Do motor skills in infancy and early childhood predict anxious and depressive symptomatology at school age? Hum Mov Sci 2010, 29:777–786.

284. Pearali-Jones MG, Piek JP, Roldi G, Martin NC, Levy F: Motor disorder and anxious and depressive symptomatology: a monozygotic co-twin control approach. Res Dev Disabil 2011, 32:1245–1252.

285. Bart O, Bar-Haim Y, Weizman E, Levin MA, Sadeh A, Mintz M: Balance treatment ameliorates anxiety and increases self-esteem in children with comorbid anxiety and balance disorder. Res Dev Disabil 2009, 30:486–495.

286. Kogon E, Lidor R, Bart O, Bar-Haim Y, Mintz M: Comorbidity between balance and anxiety disorders: verification in a normal population. J Psychol 2008, 142:601–613.

287. Lane SJ, Reynolds S, Thacker L: Sensory over-responsivity and ADHD: differentiating using electrodermal responses, cortisol, and anxiety. Front Integr Neurosci 2010, 4:48.

288. Liss M, Mailloux J, Erchull MJ: The relationships between sensory processing sensitivity, alexithymia, autism, depression, and anxiety. Pers Individ Dif 2008, 45:255–259.

289. Piek JP, Bradbury GS, Eley SC, Tate L: Motor coordination and social-emotional behaviour in preschool-aged children. Int J Dev Educ 2008, 53:143–151.
289. Robertson AE, Simmons DR: The relationship between sensory sensitivity and autistic traits in the general population. J Autism Dev Disord 2013, 43:775–784.

290. Neal JA, Edelmann RJ, Glachan M: Behavioural inhibition and symptoms of anxiety and depression: Is there a specific relationship with social phobia? J Clin Psychol 2002, 48:361–374.

291. Meyer B, Canevar CS: Negative childhood accounts, sensitivity, and pessimism: a study of avoidance personality disorder features in college students. J Pers Disord 2000, 14:233–248.

292. Meyer B, Aijchenbrentner M, Bowles DP: Sensory sensitivity, attachment experiences, and rejection responses among adults with borderline and avoidant features. J Pers Disord 2005, 19:641–658.

293. Ben-Sasson A, Carter AS, Briggs-Gowan MJ: Sensory over-responsivity in elementary school: prevalence and social-emotional correlates. J Abnorm Child Psychol 2009, 37:705–716.

294. Gouze KR, Hopkins J, LeBailly SA, Lavigne JV: Sensory processing and social and emotional understanding. J Autism Dev Disord 2010, 40:1124–1132.

295. Maffei A, Fontanini A: Disrupted small-world networks in schizophrenia. J Neurosci 2008, 30:10877–10886.

296. Ahmadlou M, Rostami R, Sadeghi V, Ahmadlou F, Jamshidpour H, Ardestani F: Functional connectivity networks in the autistic and healthy brain assessed using Granger causality. In Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE. IEEE, 2010:1730–1733.

297. Wang L, Zhu C, He Y, Zang Y, Cao Q, Zhang H, Zhong Q, Wang Y: Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder. Hum Brain Mapp 2009, 30:638–649.

298. Ahmadlou M, Adell H, Adel A: Graph theoretical analysis of organization of functional brain networks in ADHD. Clin EEG Neurosci 2012, 43:8–13.

299. Yu D: Additional brain functional networks in adults with attention-deficit/hyperactivity disorder: a phase synchrony analysis. PLoS One 2013, 8:e54516.

300. van den Heuvel MP, Mandl RC, Stam CJ, Kahn RS, Hulshoff Pol H: Aberrant frontal and temporal complex network structure in schizophrenia assessed using Granger causality. J Neurosci 2010, 30:15915–15926.

301. Wang Q, Su TP, Zhou Y, Chou KH, Chen YJ, Yang T, Lin CP: Anatomical insights into disrupted small-world networks in schizophrenia. Neuroimage 2012, 59:1085–1095.

302. Yu Q, Su J, Rachakonda S, He H, Gruner W, Pearson G, Kiehl KA, Calhoun VO: Altered topological properties of functional network connectivity in schizophrenia during resting state: a small-world brain network study. PLoS One 2011, 6:e25423.

303. Bassett DS, Bullmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A: Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 2008, 28:9239–9248.

304. Zhang J, Jiang W, Liu Q, Wang H, Huang X, He Y, Gong Q: Disrupted brain connectivity networks in drug-naïve, first-episode major depressive disorder. Biol Psychiatry 2011, 70:334–342.

305. Santonja J, de Haan W, Daffertshofer A, Jones BF, Manahan-I, van Cappelien van Walsum AM, Montez T, Verbunt JPA, de Munck JC, van Dijk BW, Berendse HW, Scheltens P: Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain Connect 2007, 1792–99.

306. Supekar K, Menon V, Rubin D, Musen M, Greicius MD: Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Comput Biol 2008, 4:e1000100.

307. Stam CJ, de Haan W, Daffertshofer A, Jones BF, Manahan-I, van Cappelien van Walsum AM, Montez T, Verbunt JPA, de Munck JC, van Dijk BW, Berendse HW, Scheltens P: Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain Connect 2009, 132:213–224.

308. Szang-Angita EI, Schoonenboom MM, Damoiseaux JS, Rombouts SARB, Maris E, VanHokh F, Scheltens P, Stam CJ: Loss of ‘small-world’ networks in Alzheimer’s disease: graph analysis of fMRI resting-state functional connectivity. PLoS One 2011, 6:21738.

309. Pevani M, de Haan W, Wu T, Seeley WW, Frisoni GB: Functional network disruption in the degenerative dementias. Lancet Neurol 2011, 10:829–843.

310. Pandit AS, Expert P, Lambiote R, Bonnelle V, Leech R, Turkheimer FE, Sharp DJ: Traumatic brain injury impairs small-world topology. Neurology 2013, 80:1826–1833.

311. Montembeault M, Joubert S, Doyon J, Carrier J, Gagnon JF, Monchik J, Lungu O, Belleville S, Bramati SM: The impact of aging on gray matter structural covariance networks. Neuroimage 2012, 63:754–759.

312. Ferreira LK, Busatto GF: Resting-state functional connectivity in normal brain aging. Neurosci Biobehav Rev 2013, 37:384–400.

313. Yao Z, Zhang Y, Lin L, Zhou Y, Xu C, Jiang T: Alzheimer’s Disease Neuroimaging Initiative: Abnormal cortical networks in mild cognitive impairment and Alzheimer’s disease. PLoS Comput Biol 2010, 6:e1001006.

314. Belmonte MK, Comnitz M, Baron-Cohen S: Visual attention in autism families: ‘unaffected’ sibs share atypical frontal activation. J Child Psychol Psychiatry 2010, 51:259–276.

315. Gogtay N, Vyas NS, Testa R, Wood SJ, Pantellis C: Age of onset of schizophrenia: perspectives from structural neuroimaging studies. Schizophr Bull 2011, 37:504–513.

316. Formis A, Bullmore ET: Connectomic intermediate phenotypes for psychiatric disorders. Front Psychiatry 2012, 3:32.

317. Buldú JM, Bajo R, Maestro F, Castellanos N, Levy A, Gil P, Sendiña-Nadal I, Almendral JA, Navado A, del Pozo F, Bockoletti S: Reorganization of functional networks in mild cognitive impairment. PLoS One 2011, 6:e19584.
339. Pijnenburg YAL, van der Made Y, van Cappellen van Walsum AM, Knol DL, Scheltens P, Streek C: EEG synchronization likelihood in mild cognitive impairment and Alzheimer’s disease during a working memory task. Clin Neurophysiol 2004, 115:1332–1339.

340. Wang J, Xue Z, Xie Z, Xia M, Zhao Z, Zhao X, Jia J, Han Y, He Y: Disrupted functional brain connectivity in individuals at risk for Alzheimer’s disease. Biol Psychiatry 2013, 73:487–493.

341. Nir T, Jahanshad N, Jack CR, Weiner MW, Toga AW, Thompson PM, the Alzheimer’s Disease Neuroimaging Initiative (ADNI): Small world network measures predict white matter degeneration in patients with early-stage mild cognitive impairment. Proc IEEE Int Symp Biomed Imaging 2012; 2012:1405–1408.

342. Dazzan P, Soulsby B, Nechelli A, Wood SJ, Velakoulis D, Phillips L, Yung AR, Chitnis X, Lin A, Murray RM, McGorry PD, McGuire PK, Pantelis C: Volumetric abnormalities predating the onset of schizophrenia and affective psychoses: an MRI study in subjects at ultrahigh risk for psychosis. Schizophr Bull 2012, 38:1083–1091.

343. Chan RCK, Di X, McAlonan GM, Gong Q: Brain anatomical abnormalities in high-risk individuals, first-episode, and chronic schizophrenia: an activation likelihood estimation meta-analysis of illness progression. Schizophr Bull 2011, 37:177–188.

344. Lymer GKS, Job DE, Williams T, Moorhead J, McIntosh AM, Owens DGC, Johnstone EC, Lawrie SM: Brain–behavioural relationships in people at high genetic risk of schizophrenia: Neuroimage 2006, 32:275–285.

345. Shi F, Yap PT, Gao W, Lin W, Gilmore JH, Shen D: Altered structural connectivity in neocortices at genetic risk for schizophrenia: a combined study using morphological and white matter networks. Neuroimage 2012, 62:1622–1633.

346. Jakab A, Emri M, Spiski T, Szeman-Nagy A, Beres M, Kis SA, Kis SA, Beres M, Ketron A, Levitin-Binnun et al. Journal of Neurodevelopmental Disorders 2007, 5:26.

347. Bottmer C, Bachmann S, Pantel J, Essig M, Amann M, Schad LR, Magnotta V, Schröder J: Reduced cerebellar volume and neurological soft signs in first-episode schizophrenia. Psychiatry Res 2005, 140:239–250.

348. Kong L, Bachmann S, Thomann PA, Essig M, Schröder J: Neurological soft signs and gray matter changes: a longitudinal analysis in first-episode schizophrenia. Schizophr Res 2012, 134:27–32.

349. Janssen J, Diaz-Caneja A, Reig S, Bombon I, Mayoral M, Parellada M, Gnael M, Moreno D, Zabala A, Garcia Vazquez V, Desco M, Arango C: Brain morphology and neurological soft signs in adolescents with first-episode psychosis. Br J Psychiatry 2009, 195:227–233.

350. Heuser M, Thomann PA, Essig M, Bachmann S, Schröder J: Neurological soft signs and morphological cerebral changes in schizophrenia: an analysis of NSS subscales in patients with first episode psychosis. Psychiatry Res 2011, 192:69–76.

351. Reiser A, Constantino JN, Volk HE, Todd RD: Autistic traits in a population-based ADHD twin sample. J Child Psychol Psychiatry 2007, 48:604–472.

352. Prikryl R, Ceskova E, Kasparek T, Kucerova H: Neurological soft signs and their relationship to 1-year outcome in first-episode schizophrenia. Eur Psychiatry 2007, 22:499–504.

353. Andreasen NC: Brave New Brain: Conquering Mental Illness in the Era of the Genome. New York: Oxford University Press; 2001.

354. Anderson J: Sensory intervention with the preterm infant in the neonatal intensive care unit. Am J Occup Ther 2004, 58:1511–1518.

355. Mulder MJ, van Belle J, van Engeland H, Durston S: Functional connectivity between cognitive control regions is sensitive to familial risk for ADHD. Hum Brain Mapp 2011, 32:1511–1518.

356. Dennis EL, Jahanshad N, Rudie JD, Brown JA, Johnson K, McMahon KL, de Zubicaray GI, Montgomery G, Martin NG, Wright MJ, Bookheimer SY, Dapretto M, Toga AW, Thompson PM: Altered structural brain connectivity in healthy carriers of the autism risk gene, CNTNAP2. Brain Connect 2011, 1:447–450.

357. Dazzan P, Morgan KD, Chitnis X, Suckling J, Morgan C, Fearon P, McGuire PK, Jones PB, Leff J, Murray RM: The structural brain correlates of neurological soft signs in healthy individuals. Cereb Cortex 2006, 16:1225–1231.

358. Thomaou PA, Roebel M, Dos Santos V, Bachman S, Essig M, Schröder J: Neurological soft signs and brain morphology in first-episode schizophrenia. Psychiatry Res 2009, 173:85–87.

359. Thomaou PA, Wüstenberg T, Santos SD, Bachmann S, Essig M, Schröder J: Neurological soft signs and brain morphology in first-episode schizophrenia. Psychol Med 2009, 39:371–379.

360. Bottmer C, Bachmann S, Pantel J, Essig M, Amann M, Schad LR, Magnotta V, Schröder J: Reduced cerebellar volume and neurological soft signs in first-episode schizophrenia. Psychiatry Res 2005, 140:239–250.

361. Kong L, Bachmann S, Thomann PA, Essig M, Schröder J: Neurological soft signs and gray matter changes: a longitudinal analysis in first-episode schizophrenia. Schizophr Res 2012, 134:27–32.

362. Janssen J, Diaz-Caneja A, Reig S, Bombon I, Mayoral M, Parellada M, Gnael M, Moreno D, Zabala A, García Vazquez V, Desco M, Arango C: Brain morphology and neurological soft signs in adolescents with first-episode psychosis. Br J Psychiatry 2009, 195:227–233.

363. Heuser M, Thomann PA, Essig M, Bachmann S, Schröder J: Neurological soft signs and morphological cerebral changes in schizophrenia: an analysis of NSS subscales in patients with first episode psychosis. Psychiatry Res 2011, 192:69–76.

364. Reiser A, Constantino JN, Volk HE, Todd RD: Autistic traits in a population-based ADHD twin sample. J Child Psychol Psychiatry 2007, 48:604–472.

365. Prikryl R, Ceskova E, Kasparek T, Kucerova H: Neurological soft signs and their relationship to 1-year outcome in first-episode schizophrenia. Eur Psychiatry 2007, 22:499–504.

366. Andreasen NC: Brave New Brain: Conquering Mental Illness in the Era of the Genome. New York: Oxford University Press; 2001.

367. Anderson J: Sensory intervention with the preterm infant in the neonatal intensive care unit. Am J Occup Ther 2004, 58:1511–1518.

368. Derek M, Toga AW, Thompson PM: Altered structural brain connectivity in healthy carriers of the autism risk gene, CNTNAP2. Brain Connect 2011, 1:447–450.

369. Dazzan P, Morgan KD, Chitnis X, Suckling J, Morgan C, Fearon P, McGuire PK, Jones PB, Leff J, Murray RM: The structural brain correlates of neurological soft signs in healthy individuals. Cereb Cortex 2006, 16:1225–1231.

370. Hirjak D, Wolf RC, Stieltjes B, Seidl U, Schröder J, Thomann PA: Cortical signature of neurological soft signs in recent onset schizophrenia. Brain Topogr 2012, 25:104–113.

371. Hirjak D, Wolf RC, Stieltjes B, Seidl U, Schröder J, Thomann PA: Neurological soft signs and subcortical brain morphology in recent onset schizophrenia. J Psychiatr Res 2012, 46:533–539.

372. Thomann PA, Roebel M, Dos Santos V, Bachmann S, Essig M, Schröder J: Cerebellar structures and neurological soft signs in first-episode schizophrenia. Psychiatry Res 2009, 173:85–87.

373. Thomann PA, Wüstenberg T, Santos SD, Bachmann S, Essig M, Schröder J: Neurological soft signs and brain morphology in first-episode schizophrenia. Psychol Med 2009, 39:371–379.