Research Article

Study on Twisted Product Almost Gradient Yamabe Solitons

Byung Hak Kim, Jin Hyuk Choi, and Sang Deok Lee

1Department of Applied Mathematics and Institute of Natural Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
2Humanitas College, Kyung Hee University, Yongin 17104, Republic of Korea
3Department of Mathematics, Dankook University, Cheonan 31116, Republic of Korea

Correspondence should be addressed to Jin Hyuk Choi; jinhchoi@khu.ac.kr

Received 5 March 2021; Accepted 26 April 2021; Published 13 May 2021

Academic Editor: Antonio Masiello

Copyright © 2021 Byung Hak Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we first study gradient Yamabe solitons on the twisted product spaces. Then, we classify and characterize the warped product and twisted product spaces with almost gradient Yamabe solitons. We also study the construction of almost gradient Yamabe solitons in the Riemannian product spaces.

1. Introduction

The notion of Yamabe flow was introduced by Hamilton [1] in 1989, which is defined on a Riemannian manifold \((M, g)\) as
\[
\frac{\partial g}{\partial t} = -rg,
\]
where \(g\) is the Riemannian metric on \(M\) and \(r\) is the scalar curvature of \(M\). The significance of Yamabe flow lies in the fact that it is a natural geometric deformation to metrics of constant scalar curvature. A Riemannian manifold \((M, g)\) is called a Yamabe soliton if there exist a smooth vector field \(X\) and constant \(\rho\) such that
\[
(r - \rho)g = \frac{1}{2} \mathcal{L}_X g,
\]
where \(\mathcal{L}_X\) is the Lie derivative with respect to the vector field \(X\). The Yamabe soliton is called shrinking if \(\rho > 0\), steady if \(\rho = 0\), and expanding if \(\rho < 0\). When \(X = \nabla h\) for some function \(h\) on \(M\), we say that \(M\) is a gradient Yamabe soliton with a potential function \(h\). In this case, equation (1) becomes
\[
(r - \rho)g = \text{Hess}(h),
\]
where \(\text{Hess}(h)\) is the Hessian of \(h\).

The warped product or twisted product metric \(\bar{g}\) on the product manifold of two Riemannian manifolds \((B, g)\) and \((F, g)\) is given by
\[
\bar{g} = \begin{pmatrix}
g & 0 \\
0 & f^2 g
\end{pmatrix},
\]
where \(f\) is a positive function with \(f: B \longrightarrow R^+\) for a warped product metric and \(f: B \times F \longrightarrow R^+\) for a twisted product metric.

It was known [6] that the metric of any compact Yamabe soliton is a metric of constant scalar curvature when the dimension of the manifold \(n \geq 3\). In 2011, Cao and two coauthors [3] studied classification theorems for complete nontrivial locally conformally flat gradient Yamabe soliton. In [9], they found sufficient conditions on the soliton vector field under which the metric of a Yamabe soliton is a Yamabe metric, that is, a metric of constant scalar curvature. Moreover, in [8], we can see the various examples of compact and noncompact almost gradient Yamabe soliton. The present authors [4] studied gradient Yamabe soliton in the warped product manifolds and admittance of gradient Yamabe solitons and geometric structures for some model spaces. In 2019, Karaca [9] obtained a classification theorem regarding a gradient Yamabe soliton on multiplying warped product space with splitting potential function. With respect to the result, we obtain similar classification theorems for the warped product or the twisted product space with almost gradient Yamabe soliton. Especially considering the
condition of the conformal flatness, the classification and characterizations of the space were greatly helped. In addition to these, there are many works on solitons on the twisted product spaces [10–14] and Yamabe solitons [2, 5–9].

From this point of view, the purpose of this paper is to get a more generalized classification theorem of the results which is already published on the warped and twisted product space for a gradient Yamabe soliton and almost gradient Yamabe soliton. This paper is organized as follows. In Section 2, we discuss gradient Yamabe soliton in the twisted product space. Sections 3–5 are devoted to studying the twisted product space. Sections 3–5 are devoted to studying almost gradient Yamabe soliton in the Riemannian, warped, and twisted product spaces.

2. Gradient Yamabe Solitons in the Twisted Product Spaces

In this section, we consider the case that the twisted product space $M = B \times F$ of n-dimensional Riemannian manifold (B, g) and p-dimensional Riemannian manifold (F, φ) is a gradient Yamabe soliton with (h, φ). Let ∇ and ∇' are Riemannian connections in B and F, respectively. Then, we have

\[
(\bar{\tau} - \bar{\rho})g_{ab} = \nabla_{b}h_{a},
\]

\[
\partial_{b}h_{a} = \frac{f_{b}h_{a}}{f},
\]

\[
(\bar{\tau} - \bar{\rho})f^{2}\bar{g}_{yx} = \nabla_{y}h_{x} + f f' h_{x}\bar{g}_{yx} - \frac{1}{f} \left(f_{y}h_{x} + f_{x}h_{y} - f' h_{x}\bar{g}_{xy} \right),
\]

\[
\bar{\tau} = r + \frac{2p\Delta f}{f^3} - \frac{2(p - 1)(\Delta f)}{f^3} - \frac{p(p - 1)}{f^2} \left(\frac{f_{e}}{f} \right)^2 - \frac{(p - 1)(p - 4)}{f^4} \frac{f_{x}}{f}^4 + \frac{1}{f^2}
\]

\[
\nabla_{b}k_{a} = \left(r - \frac{2p\Delta f}{f} + \frac{(p - 1)(\Delta f)}{f^3} + \frac{p(p - 1)}{f^2} \left(\frac{f_{e}}{f} \right)^2 + \frac{(p - 1)(p - 4)}{f^4} \frac{f_{x}}{f}^4 + \frac{1}{f^2} \right) g_{ab} = (r - \rho)g_{ab},
\]

where we have put $\rho = \frac{1}{f^2} \left(\frac{2p\Delta f}{f} + (p - 1)(\Delta f) \frac{f_{e}}{f^3} + (p - 1) \left(\frac{f_{e}}{f} \right)^2 + \frac{(p - 1)(p - 4)}{f^4} \frac{f_{x}}{f}^4 + \bar{\rho} \right)$; that is, B becomes an almost gradient Yamabe soliton. Thus, we have the following theorem.

Theorem 1. If the twisted product manifold $M = B \times F$ is gradient Yamabe soliton with (h, φ) and $h = k + l$, for some functions k and l on B and F, respectively, then the base space almost gradient Yamabe soliton in the Riemannian, warped, and twisted product spaces.

Assume that the potential function h is decomposed by $h = k + l$ for some functions k and l on B and F, respectively. Then, from equation (3), we see that $(\bar{\tau} - \bar{\rho})g_{ab} = \nabla_{b}k_{a}$, so $(\bar{\tau} - \bar{\rho})$ becomes a function on B because $\bar{\rho}$ is a constant. Moreover, we obtain

\[
\bar{\tau} = r + \frac{2p\Delta f}{f^3} - \frac{2(p - 1)(\Delta f)}{f^3} - \frac{p(p - 1)}{f^2} \left(\frac{f_{e}}{f} \right)^2 + \frac{(p - 1)(p - 4)}{f^4} \frac{f_{x}}{f}^4 + \frac{1}{f^2}
\]

\[
\nabla_{b}k_{a} = \left(r - \frac{2p\Delta f}{f} + \frac{(p - 1)(\Delta f)}{f^3} + \frac{p(p - 1)}{f^2} \left(\frac{f_{e}}{f} \right)^2 + \frac{(p - 1)(p - 4)}{f^4} \frac{f_{x}}{f}^4 + \frac{1}{f^2} \right) g_{ab} = (r - \rho)g_{ab},
\]

where $\rho = \frac{1}{f^2} \left(\frac{2p\Delta f}{f} + (p - 1)(\Delta f) \frac{f_{e}}{f^3} + (p - 1) \left(\frac{f_{e}}{f} \right)^2 + \frac{(p - 1)(p - 4)}{f^4} \frac{f_{x}}{f}^4 + \bar{\rho} \right)$; that is, B becomes an almost gradient Yamabe soliton with (k, ρ) and $\bar{\rho}$ depends only on B.

In [15], the authors proved the following theorem.

Theorem 2. If the twisted product manifold $M = B \times F$ is conformally flat and $p \neq 1$ and $n \neq 1$, then M is the warped product space $B \times F^{*}$ of B and F^{*}.

In [4], the present authors proved the following theorem.
Theorem 3. If the product manifold $M = B \times F$ is a gradient Yamabe soliton, then $B, F,$ and M become trivial gradient Yamabe soliton. This means that there is a nontrivial gradient Yamabe soliton in the Riemannian product manifold.

In the proof process of Theorem 2, the authors derived that f is the product of certain functions f^* on B and \bar{f} on F, respectively. In this sense, if we consider the conformally flat twisted product space with gradient Yamabe soliton and $h = k + l$, then we get

\[(\bar{\tau} - \bar{\rho})g_{ab} = \nabla_b k_a,\]
\[(f^*)_x \bar{J}_x = 0,\]
\[(\bar{\tau} - \bar{\rho})f^2 g_{yx} = \nabla_y f + f f^* k_x - \frac{1}{f}(f^* f_x + f f^* f_y - f^* f_z f_{xy}),\]

where $f = f^* \bar{f}$ and $l_x = (\partial l/\partial u_x)$. From the first and second equations of (6), we see that $\bar{\tau} - \bar{\rho}$ is a function only on B and f^* is constant or $\bar{J}_x = 0$. Since $f = f^* \bar{f}$ is a positive function, we see that f^* is constant or l is constant. Let us consider the first case, that is, f^* is constant. Then, $f = f^* \bar{f}$ depends only on F and that \bar{g} becomes a Riemannian product metric. Hence, $B, F,$ and M become trivial gradient Yamabe soliton due to Theorem 3. Moreover, from the third equation of (6), we get

\[(\bar{\tau} - \bar{\rho}) = \frac{1}{f^2} \left(\Delta l + \frac{2}{f} g^{-1/2} f_x f_y \right),\]

and that $\bar{\tau} - \bar{\rho}$ depends only on F because the quantities of right-hand side of (7) depend only on F. Therefore, $\bar{\tau} - \bar{\rho}$ becomes a constant and that Δk becomes a constant due to the first equation of (6). On the other hand, if l is constant, then the potential function h becomes a function on B so that B becomes an almost gradient Yamabe soliton by Theorem 1 and the first and third equations of (6). Thus, we have the following theorem.

Theorem 4. Let the twisted product manifold $M = B \times F$ be a gradient Yamabe soliton and conformally flat. If $h = k + l$ for some functions k and l on B and F, respectively, and $p \neq 1$ and $n \neq 1$, then $\bar{\tau} - \bar{\rho}$ depends only on B, and M is one of the following two cases:

1. M is a Riemannian product of B and F, and that B, F, and M become trivial gradient Yamabe soliton, and $\bar{\tau} - \bar{\rho}$ and Δk become constant
2. The potential function h depends only on B, and B becomes an almost gradient Yamabe soliton

In 1965, Tashiro [16] proved that the following theorem.

Theorem 5. Let M be an n-dimensional complete Riemannian manifold of dimension $n \geq 2$ and suppose it admits a special concircular field ρ satisfying the equation

\[\nabla_b \nabla_a \rho = (-k \rho + b)g_{ab},\]

for constants k and b. Then, M becomes either direct product $V \times I$ of an $(n - 1)$-dimensional complete Riemannian manifold V with a straight line I when $k = b = 0$ or a Euclidean space when $k = 0$ but $b \neq 0$.

Hence, if we combine Theorems 4 and 5, then we can state the following theorem.

Theorem 6. Let the twisted product manifold $M = B \times F$ be a gradient Yamabe soliton and conformally flat. If $h = k + l$ and $p \neq 1$ and $n \neq 1$, then we have two cases as follows:

(i) M becomes a Riemannian product space $M = V \times I$ of an $(n - 1)$-dimensional complete Riemannian manifold V with a straight line I when $\bar{\tau} - \bar{\rho} = 0$ or M becomes a Euclidean space when $\bar{\tau} - \bar{\rho} \neq 0$. In any case, $M, B,$ and F become trivial gradient Yamabe soliton.

(ii) The potential function h depends only on B, and B becomes an almost gradient Yamabe soliton.

3. **Almost Gradient Yamabe Solitons in the Riemannian Product Spaces**

Tokura and other coauthors [7] introduced various examples of an almost gradient Yamabe soliton in \mathbb{R}^3. In this section, we consider the relation between the structure of an almost gradient Yamabe soliton with (h, ρ) in the Riemannian product manifold $(B \times F, g)$ of (B, g) and (F, \bar{g}) and the structure of an almost gradient Yamabe soliton in B and F. If the potential function h is expressed by $h = k + l$ for some functions k and l on B and F, respectively, then we have

\[\bar{\tau} - \bar{\rho} g_{ab} = \nabla_b k_a,\]
\[\partial_x l_x = 0,\]
\[\bar{\tau} - \bar{\rho} g_{yx} = \nabla_y l_x, \bar{\tau} = r + \bar{\tau}.\]

Theorem 7. Let the Riemannian product manifold $M = B \times F$ be an almost gradient Yamabe soliton with (h, ρ) with $h = k + l$ for some functions k and l in B and F, respectively. Then, $\bar{\tau} - \bar{\rho}$ is a constant on M, B becomes an almost gradient Yamabe soliton with $(k, \rho = \bar{\rho} - \bar{\tau})$, and F becomes an almost gradient Yamabe soliton with $(l, \bar{\tau} = \bar{\tau})$ and $\bar{\rho} + \bar{\tau} = \bar{\rho} + r$. In this case, $r - \rho$ and $\tau - \bar{\rho}$ become constants on B and F, respectively.
Proof. From the first and third equations of equation (9), we can see that \(\overline{\tau} - \overline{\rho} \) is a quantity on \(B \) and \(F \), respectively. Hence, \(\overline{\tau} - \overline{\rho} \) becomes constant. Since \(M = B \times F \) is an almost gradient Yamabe soliton with \((h = k + l, \overline{\rho}) \) for some function \(k \) and \(l \) on \(B \) and \(F \), respectively, we get \((r - \overline{\rho})g_{ab} = \nabla_bk_a \) and \((\nabla (\overline{\tau} - r))g_{yx} = \nabla_yx \) from equation (9). If we put \(\rho = \overline{\tau} - \overline{\rho} \) and \(\overline{\rho} = \overline{\tau} - r \), then \(\rho = r - (\nabla_bk_a)g^{ab} \) and \(\overline{\tau} = r = (\nabla_yx)g^{yx} \). Therefore, \(\rho \) and \(\overline{\tau} \) become functions on \(B \) and \(F \), respectively. Hence, we can see that \(B \) and \(F \) become an almost gradient Yamabe soliton with \((\rho, k) \) and \((\overline{\rho}, l) \), respectively. Moreover, we obtain \(\rho + r = \overline{\tau} \). Hence, we obtain \(\overline{\tau} - \overline{\rho} = \overline{\tau} - r - \rho \) and that \(\rho + r \) and \(\overline{\tau} - \overline{\rho} \) are also constants.

For the converse case of Theorem 7, if we assume that \(B \) and \(F \) are almost gradient Yamabe solitons with \((\rho, k) \) and \((\overline{\rho}, l) \), respectively, and \(\rho + r = \overline{\tau} \), then \(B \times F \) becomes an almost gradient Yamabe soliton with \((1/2)(\rho + r + \overline{\tau}) \).

If we combine Theorems 7 and 8, we can state the following theorem.

Theorem 9. The Riemannian product space \(M = B \times F \) with \((h = k + l, \overline{\rho}) \) is almost gradient Yamabe soliton for some functions \(k \) and \(l \) on \(B \) and \(F \), respectively, if and only if \(B \) and \(F \) are almost gradient Yamabe solitons with \((\rho, k) \) and \((\overline{\rho}, l) \), respectively, and \(\rho + r = \overline{\tau} \). If we combine Theorems 5 and 7, then we can state the following theorem.

Theorem 10. If the complete Riemannian product manifold \(M = B \times F \) is an almost gradient Yamabe soliton with \((h = k + l, \overline{\rho}) \), then \(\overline{\tau} - \overline{\rho} \) is a constant on \(M \) and that \(M \) becomes one of the following:

(a) If \(\overline{\tau} - \overline{\rho} = 0 \), then \(M = \mathbb{R} \) is of an \((n - 1) \)-dimensional complete Riemannian manifold \(V \) with a straight line \(I \)

(b) If \(\overline{\tau} - \overline{\rho} \neq 0 \), then a Euclidean space

Proof. We see that \(\overline{\tau} - \overline{\rho} \) is a constant by Theorem 7. Then, from the first equation of (7), \(\nabla \nabla h = \beta g \) for some constant \(\beta = \overline{\tau} - \overline{\rho} \). Hence, we can prove Theorem 10 by using Theorem 1.

From Theorems 7 and 10, we see that if the constant \(\overline{\tau} - \overline{\rho} = 0 \), then the product manifold \(M \) becomes \(M = \mathbb{R} \times I \) of an \((n - 1) \)-dimensional complete Riemannian manifold \(V \) with the first equation of (9), \(I \). Moreover, \(V \) becomes an almost gradient Yamabe soliton with \((k, \rho = \overline{\rho}) \) and \(\nabla \nabla k = 0 \) because \(\overline{\tau} - \overline{\rho} = \overline{\tau} - r - \rho \) is constant and \(\overline{\tau} = 0 \). Hence, the \((n - 1) \)-dimensional Riemannian manifold \(V \) becomes \(V = W^{n-2} \times I \) of an \((n - 2) \)-dimensional Riemannian manifold \(W \) for Theorem 7, that is, \(M = (W^{n-2} \times I) \times I \).

Hence, \(M \) becomes \(M = W^{n-2} \times I^2 \), where we put \(I^2 = I_1 \times I \). Hence these facts, Theorems 5 and 7 give the followin theorem.

Theorem 11. If the complete Riemannian product manifold \(M \) is an almost gradient Yamabe soliton with \(h = k + l, \overline{\rho} \). Then, \(\overline{\tau} - \overline{\rho} \) becomes a constant. If the constant \(\overline{\tau} - \overline{\rho} = 0 \), then \(M \) becomes \(M = W \times \mathbb{R} \) of an \((n - 2) \)-dimensional complete Riemannian manifold \(W \) with a 2-dimensional Euclidean space \(\mathbb{R}^2 \).

4. Almost Gradient Yamabe Solitons in the Warped Product Spaces

In this section, we study that the warped product space of \(M = B \times F \) is an almost gradient Yamabe soliton with \((h, \overline{\rho}) \).

Then, we have

\[\nabla_{\rho}h_{ab} = \nabla_{\rho}h_{a\rho} = \overline{\rho}_a + f h_{a\rho} \]

and

\[(\overline{\tau} - \overline{\rho})f^2g_{yx} = \nabla_fh_{x} + f f^2h_{fy} \]

Theorem 12. If the warped product space \(M = B \times F \) is an almost gradient Yamabe soliton with \((h, \overline{\rho}) \), then we have the following:

(a) If \(h_{x} = 0 \) for all \(x \), then \(\overline{\tau} = \overline{\rho} \), \(\nabla_xh_{x} = 0 \), and \(M \) is either a Riemannian product of \(B \) and \(F \) or the potential function \(h \) is a constant

(b) If \(h_{x} = 0 \) for all \(x \), then \(B \) is an almost gradient Yamabe soliton

Proof. (a) If \(h_{x} = 0 \), then \(h \) becomes a function on \(F \), \(\overline{\tau} = \overline{\rho} \), and \(\overline{\tau} = \overline{\rho} = 0 \) from the first and third equations of (11). Moreover, we get \(f h_{a\rho} = 0 \) from the second equation of (11); that is, \(M \) is either a Riemannian product of \(B \) and \(F \) or the potential function \(h \) is a constant.

(b) From the first equation of (11), we see that \(\overline{\tau} - \overline{\rho} \) becomes a function on \(B \). Moreover, we have

\[\nabla_{\rho}h_{a\rho} = (\overline{\tau} - \overline{\rho})g_{ab} = (r - (\overline{\tau}/f^2) + (2p\Delta f/f^2) + (p(p - 1)\|f\|^2/f^2) + \overline{\rho})g_{ab} \]

from the fourth equation of (3) and the first equation of (11). If we put \(\rho = -(\overline{\tau}/f^2) + (2p\Delta f/f^2) + (p(p - 1)\|f\|^2/f^2) + \overline{\rho}, \)
Consider the case of $h = k + l$ for some functions k and l on B and F, respectively. Then, from equations (3) and (11), we obtain

\[(\bar{r} - \bar{\rho}) g_{ab} = \nabla_b k_a, \]
\[f_y x = 0, \]
\[(\bar{r} - \bar{\rho}) f^2 g_{yx} = \nabla_y h_x + f f_x h_y - \frac{1}{f}(f h_x + f h_y - f^2 g_{xy}), \]
\[\bar{r} = r + \frac{\bar{r}}{f^2} - \frac{2p \Delta f}{f^2} - \frac{2(p - 1) \| f_x \|^2}{f^4} - \frac{(p - 1)(p - 4) \| f_x \|^2}{f^4} + \bar{\rho}, \]
\[(\bar{r} - \bar{\rho}) g_{ab} = \nabla_b k_a; \text{ that is, } \bar{r} - \bar{\rho} \text{ is a function on } B. \text{ Moreover, we obtain} \]

\[\| f_x \|^2 / f^2 + ((p - 1)(p - 4) \| f_x \|^2 / f^4) + \bar{\rho} \text{ is a function on } B. \]

Hence, by use of the first equation of (11), we get

\[\nabla_b k_a = \left(r - \frac{\bar{r}}{f^2} + \frac{2p \Delta f}{f^2} + \frac{2(p - 1)(\bar{\Delta} f)}{f^3} + \frac{p(p - 1) \| f_x \|^2}{f^2} + \frac{(p - 1)(p - 4) \| f_x \|^2}{f^4} + \bar{\rho} \right) g_{ab}. \]

Theorem 13. If the warped product space $M = B \times_f F$ is an almost gradient Yamabe soliton with $(h = k + l, \bar{\rho})$ for some functions k and l in B and F, respectively, then we have two cases as follows:

(i) M is either $M = W \times I^2$ of an $(n - 2)$-dimensional complete Riemannian manifold W with a 2-dimensional Euclidean space I^2 if the constant $\bar{r} - \bar{\rho} = 0$ or a Euclidean space if the constant $\bar{r} - \bar{\rho} \neq 0$

(ii) B is an almost gradient Yamabe soliton with $(k, \rho = -(\bar{r} / f^2) + (2p \Delta f / f) + (p - 1) \| f_x \|^2 / f^2 + \bar{\rho})$.

5. Almost Gradient Yamabe Solitons in the Twisted Product Spaces

Let the twisted product space $M = B \times_f F$ be an almost gradient Yamabe soliton with $(h, \bar{\rho})$. Then, we have
and that B becomes an almost gradient Yamabe soliton. Thus, we have the following theorem.

Theorem 14. If the twisted product manifold $M = B \times_f F$ is an almost gradient Yamabe soliton with (h, ρ) and $h = k + l$, then the base space B becomes an almost gradient Yamabe soliton and $\overline{\rho}$ is a function on B.

If the conformally flat twisted product space $M = B \times_f F$ is an almost gradient Yamabe soliton with (h, ρ) and $h = k + l$ for some functions k and l on B and F, respectively, then we get

\begin{align*}
(\overline{\rho}) g_{ab} = \nabla_b k_a, \\
(f^*)^2 \mathcal{I}_l = 0,
\end{align*}

\begin{equation}
(\overline{\rho}) f^2 g_{xy} = \nabla_y l_x + f f^* k y g_{xy} - \frac{1}{f} (f l_x + f x l_y - f^2 g_{xy}),
\end{equation}

and $f = f^* \overline{\mathcal{T}}$, where f^* and $\overline{\mathcal{T}}$ are functions on B and F, respectively, which come from the conformally flatness and the Proof of Theorem 2. From the first and second equations of (16), we see that $\overline{\rho} - \overline{\rho}$ is a function only on B, and f^* is constant or $\mathcal{I}_l = 0$, respectively. Since $f = f^* \overline{\mathcal{T}}$ is a positive function, we see that f^* is a constant or l is a constant.

Let us consider the first case, that is, f^* is a constant.

Then, $\overline{\rho} - \overline{\rho}$ becomes an almost gradient Yamabe soliton with (h, ρ) and that $\overline{\mathcal{I}}$ becomes a Riemannian product metric. Hence, B, F, and M become trivial gradient Yamabe solitons due to Theorem 3. Moreover, from the third equation of (16), we get

\begin{equation}
(\overline{\rho} - \overline{\rho}) = \frac{1}{f^2} \left(\Delta l + \frac{p - 2}{f} g^{xy} f x l_y \right),
\end{equation}

and that $\overline{\rho} - \overline{\rho}$ depends only on B because the quantities of right-hand side of (17) depend only on B. Therefore, $(\overline{\rho} - \overline{\rho})$ becomes a constant and that Δk becomes a constant due to the first equation of (16). Moreover, we see that $\text{Hess} k = a g$ where we have put $a = \overline{\rho} - \overline{\rho}$. Then, we can apply this fact to Theorem 5, and we see that M becomes either direct product $V \times I$ of an $(n-1)$-dimensional complete Riemannian manifold V with a straight line I when $a = 0$ or a Euclidean space when $a \neq 0$.

On the other hand, if l is constant, then the potential function h becomes a function on B and B becomes an almost gradient Yamabe soliton by Theorem 14. Thus, we have the following theorem.

Theorem 15. Let the twisted product manifold $M = B \times_f F$ be an almost gradient Yamabe soliton with (h, ρ) and $h = k + l$ and conformally flat. If $h = k + l$ and $p \neq 1$ and $n \neq 1$, then $(\overline{\rho} - \overline{\rho})$ depends only on B, and M is one of the following two cases:

1. M is either direct product $V \times I$ of an $(n-1)$-dimensional complete Riemannian manifold V with a straight line I when $a = 0$ or a Euclidean space when $a \neq 0$ moreover $(\overline{\rho} - \overline{\rho})$ and Δk become constants

2. The potential function h depends only on B, and B becomes an almost gradient Yamabe soliton.

Data Availability

No data were used to support the findings of the study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The first author was supported by the National Research Foundation of Korea (NRF-2017 R1E1A1A03071005), and the third author was supported by the 2020 Research Fund of Dankook University.

References

[1] R. S. Hamilton, “The Ricci flow on surfaces,” Mathematics and general relativity (Santa Cruz CA), in Contemporary Mathematics, pp. 237–262, American Mathematical Society, Providence, RI, USA, 1988.

[2] A. M. Balga, “A note on warped product almost quasi-Yamabe solitons,” Filomat, vol. 33, no. 7, pp. 2009–2016, 2019.

[3] H. D. Cao, X. Sun, and Y. Zhang, “On the structure of gradient Yamabe soliton,” Mathematical Research Letters, vol. 19, no. 4, 2011.

[4] J. H. Choi, B. H. Kim, and S. D. Lee, “On a classification of warped product manifolds with gradient Yamabe solitons,” Communications of the Korean Mathematical Society, vol. 35, pp. 261–268, 2020.

[5] S. Dashmukh and B. Y. Chen, “A note on Yamabe solitons,” Balkan Journal of Geometry and Its Applications, vol. 23, pp. 37–43, 2018.

[6] S.-Y. Hsu, “A note on compact Yamabe solitons,” Journal of Mathematical Analysis and Applications, vol. 388, no. 2, pp. 725–726, 2012.

[7] W. Tokura, L. Adriano, R. Pina, and M. Barboza, “On warped product gradient Yamabe solitons,” Journal of Mathematical Analysis and Applications, vol. 473, no. 1, pp. 201–214, 2019.

[8] T. Seco and S. Maeta, “Classification of almost Yamabe solitons in Euclidean spaces,” Journal of Geometry and Physics, vol. 136, pp. 97–103, 2019.

[9] F. Karaca, “Gradient Yamabe solitons on multiply warped product manifolds,” International Electronic Journal of Geometry, vol. 12, no. 2, pp. 157–168, 2019.

[10] A.-C. Ji, W. M. Liu, J. L. Song, and F. Zhou, “Dynamical creation of fractionalized vortices and vortex lattices,” Physical Review Letters, vol. 101, Article ID 010402, 2008.

[11] L. Lu, Z. Li, B. A. Malomed, D. Milheme, and W. M. Liu, “Exact soliton solutions and nonlinear modulation instability in spinor Bose-Einstein condensates,” Physical Review A, vol. 72, Article ID 033611, 2005.

[12] Z. X. Liang, Z. D. Zhang, and W. M. Liu, “Dynamics of a bright soliton in Bose-Einstein condensates with time-dependent atomic scattering length in an explosive parabolic potential,” Physical Review Letters, vol. 94, Article ID 050402, 2005.

[13] D.-S. Wang, X.-H. Hu, J. Hu, and W. M. Liu, “Quantized quasi-two-dimensional Bose-Einstein condensates with spatially modulated nonlinearity,” Physical Review A, vol. 81, Article ID 052604, 2010.

[14] L. Wen, L. Li, Z. D. Li, S. W. Song, X. F. Zhang, and W. M. Liu, “Matter rogue wave in Bose-Einstein condensates with attractive atomic interaction,” The European Physical Journal D, vol. 64, no. 2-3, pp. 473–478, 2011.
[15] Y. Agaoka and B. H. Kim, “On conformally flat twisted product manifolds,” *Memoirs of the Faculty of Integrated Arts and Sciences, Hiroshima University. IV, Science Reports*, vol. 23, pp. 1–7, 1997.

[16] Y. Tashiro, “Complete Riemannian manifolds and some vector fields,” *Transactions of the American Mathematical Society*, vol. 117, p. 251, 1965.