Development of the Korean Standardized Antimicrobial Administration Ratio as a Tool for Benchmarking Antimicrobial Use in Each Hospital

Bongyoung Kim 1,* Song Vogue Ahn 1,* Dong-Sook Kim 1,3 Jungmi Chae 1,3 Su Jin Jeong 4 Young Uh 3 Hong Bin Kim 6 Hyung-Sook Kim 2,8 Sun Hee Park 3, Yoon Soo Park 4, and Jun Yong Choi 4

1Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
2Department of Health Convergence, Ewha Womans University, Seoul, Korea
3Department of Research, Health Insurance Review & Assessment Service, Wonju, Korea
4Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
5Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
6Division of Infectious Diseases, Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
7Department of Pharmacy, Seoul National University Bundang Hospital, Seongnam, Korea
8Korean Society of Health-System Pharmacist, Seoul, Korea
9Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea

ABSTRACT

Background: The Korea National Antimicrobial Use Analysis System (KONAS), a benchmarking system for antimicrobial use in hospitals, provides Korean Standardized Antimicrobial Administration Ratio (K-SAAR) for benchmarking. This article describes K-SAAR predictive models to enhance the understanding of K-SAAR, an important benchmarking strategy for antimicrobial usage in KONAS.

Methods: We obtained medical insurance claims data for all hospitalized patients aged ≥ 28 days in all secondary and tertiary care hospitals in South Korea (n = 347) from January 2019 to December 2019 from the Health Insurance Review & Assessment Service. Modeling was performed to derive a prediction value for antimicrobial use in each institution, which corresponded to the denominator value for calculating K-SAAR. We developed a model to predict antimicrobial use rates in Korean hospitals, and the model was used as the denominator of the K-SAAR.

Results: The final models for each antimicrobial category were adjusted for different significant risk factors. In the K-SAAR models of all aged patients as well as adult patients, most antimicrobial categories included the number of hospital beds and the number of operations as significant factors, while some antimicrobial categories included age and the number of patients transferred from other hospitals as significant factors.

Conclusion: We developed a model to predict antimicrobial use rates in Korean hospitals, and the model was used as the denominator of the K-SAAR.

Keywords: SAAR; KONAS; Antimicrobial Stewardship; Benchmarking; Korea
INTRODUCTION

Measuring antimicrobial use and feedback is a core element of the antimicrobial stewardship program (ASP), a multidisciplinary activity for inducing proper antimicrobial use and reducing misuse or overuse of antimicrobials. Therefore, it was included as a key component of the Korean National Action Plan on Antimicrobial Resistance from 2016 to 2020.

To properly evaluate antimicrobial use in hospitals and set goals for improvement, a benchmarking strategy is necessary. In addition to the direct comparison of antimicrobial use among hospitals, the Centers for Disease Control and Prevention in the US adopted a Standardized Antimicrobial Administration Ratio (SAAR) as a novel benchmarking strategy and provides it via National Healthcare Safety Network. SAAR is calculated by dividing antimicrobial use by predicted antimicrobial use in a hospital; > 1 indicates that the amount of antimicrobial use is greater than the predicted value, and < 1 indicates that the antimicrobial use is less than the predicted value. The value of predicted antimicrobial use reflects the characteristics of each hospital that might influence antimicrobial usage patterns; therefore, it differs among hospitals.

In 2021, the Korean Society of Infectious Diseases developed a benchmarking system for antimicrobial use in hospitals—the Korea National Antimicrobial Use Analysis System (KONAS)—in collaboration with the Korean Society for Antimicrobial Therapy, Health Insurance Review & Assessment Service (HIRA), and EvidNet. KONAS provides not only in-depth analysis results of antimicrobial use within each hospital, but also the antimicrobial use of other hospitals or Korean SAAR (K-SAAR) for benchmarking. Through this system, each medical institution can identify its antibiotic usage and patterns, which could help hospitals perform ASP. This article describes K-SAAR predictive models to enhance the understanding of K-SAAR, an important benchmarking strategy for antimicrobial usage in KONAS.

METHODS

Data source
We obtained medical insurance claims data for all hospitalized patients aged ≥ 28 days in all secondary and tertiary care hospitals in South Korea (n = 347) from January 2019 to December 2019 from the HIRA. The data included patients’ age and sex, hospital codes, hospitalization start date, length of hospitalization, diagnosis codes, medical departments in charge, medical costs, intensive care unit utilization during hospitalization, surgery and procedure codes, and prescription medication codes. The discharge diagnoses were coded according to the International Classification of Diseases, Tenth Revision.

A database was constructed to calculate the number of patient-days. We regarded different claims data as the same inpatient episode if all of the following three conditions were satisfied: 1) same recipient, 2) same hospital, and 3) the interval was less than 2 days between the final date of one claims data and the first date of another claims data.

Definitions
Antibiotics and antifungals were defined as medications with Anatomical Therapeutic Chemical (ATC) classes J01 and J02, respectively, and did not include antituberculous agents or antiviral agents. Systemic agents administered via oral or parenteral routes were included, whereas topical
agents were excluded. We adopted the classification of antibiotics as previously developed and added some categories after discussion within the research group. Accordingly, the antimicrobial categories for the K-SAAR model were determined as follows: 1) broad-spectrum antibacterial agents predominantly used for hospital-onset infections (including amikacin, cefepime, meropenem, and piperacillin/tazobactam), 2) broad-spectrum antibacterial agents predominantly used for community-acquired infections (including ceftriaxone, ertapenem, ciprofloxacin), 3) antibacterial agents predominantly used for resistant gram-positive bacterial infections (including linezolid, parenteral vancomycin), 4) narrow-spectrum beta-lactam agents (including amoxicillin/clavulanate, nafcillin, cefazolin, cefuroxime), 5) antifungal agents predominantly used for invasive candidiasis (including fluconazole, caspofungin), 6) antibacterial agents predominantly used for extensive antibiotic-resistant gram-negative bacterial infections (including colistin, tigecycline, ceftolozane/tazobactam), 7) carbapenem, 8) fluoroquinolone, 9) metronidazole, and 10) total antibacterial agents (Supplementary Table 1). Some antimicrobials belong to two or more categories. The consumption of each category of antibiotics or antifungals was converted to a defined daily dose (DDD) following the ATC classification system of the World Health Organization and then standardized per 1,000 patient-days.

Operations were defined as surgical procedures that were included in the ninth nationwide evaluation of the appropriateness of surgical prophylactic antibiotics in Korean hospitals in 2020, led by the HIRA.

Predictive modeling for K-SAAR

Modeling was performed to derive a prediction value for antimicrobial use in each institution, which corresponded to the denominator value for calculating K-SAAR. The prediction values of antimicrobial use were modeled separately for each category, for all inpatients and adult patients (aged ≥ 15 years), using stepwise negative binomial regression. The association between annual antimicrobial consumption in each category and factors that were thought to potentially explain the differences in antimicrobial consumption among hospitals was assessed. The independent factors that can influence antimicrobial consumption in the hospital were selected through discussion with the research group. Because an objective of providing K-SAAR is to improve antimicrobial use in each hospital, the factors that could be associated with the characteristics of patients or hospitals were included and those about workforces (e.g., number of infectious diseases specialists) and/or policies (e.g., ASP) were excluded. To obtain enough sample size with standardized data, variables that were available from the medical insurance claims data were finally included; information such as antimicrobial resistance pathogens and the existence of a resident training system was not included. The selected independent factors were as follows: 1) hospital type (tertiary care hospital vs. secondary care hospital), 2) location type (general ward vs. intensive care unit), 3) mean age of inpatients, 4) number of hospital beds, 5) number of operations per year, 6) number of general anesthesia procedures per year, 7) number of patients with malignancy per year, and 8) number of patients transferred from other hospitals per year. Continuous variables were categorized according to a previously reported method.

All analyses were conducted using the SAS software (version 9.4; SAS Institute Inc., Cary, NC, USA).

Ethics statement

The study protocol was approved by the Institutional Review Board (IRB) of Yonsei University Health System Clinical Trial Center (IRB No. 4-2019-1297). The requirement for written informed consent from patients was waived.
RESULTS

K-SAAR models were constructed using medical insurance claims data in 2019 from all secondary and tertiary care hospitals with 347 general wards and 298 intensive care units. The variables for the K-SAAR modeling are summarized in Table 1 and Supplementary Table 2.

The models estimated the predicted antimicrobial consumption for a given location (total vs. general ward vs. intensive care unit) and antimicrobial categories. Non-significant factors were not included in the final models, and the final models for each antimicrobial category were adjusted for different significant risk factors. In the K-SAAR models of all aged patients as well as adult patients, most antimicrobial categories included the number of hospital beds and the number of operations as significant factors, while some antimicrobial categories included mean age for inpatients, hospital type, and the number of patients transferred from other hospitals as significant factors. For instance, the statistically significant factors for the

Characteristics	Value (N = 347)
Hospital type	
Secondary care hospital	305 (87.9)
Tertiary care hospital	42 (12.1)
No. of hospital beds	
General wards	
Intensive care unit	16 (9-33)
All hospital beds	
< 200	58 (16.7)
200–399	179 (51.6)
400–599	46 (13.2)
600–799	35 (10.1)
≥ 800	29 (8.4)
Age for inpatients	52.6 (48.4–57.9)
No. of operationsa per year	
< 1,000	183 (52.7)
1,000–1,999	62 (17.9)
2,000–2,999	18 (5.2)
3,000–3,999	14 (4.0)
≥ 4,000	70 (20.2)
No. of general anesthesia per year	1,738 (787–4,188)
< 1,500	
1,500–2,999	77 (22.2)
3,000–4,499	37 (10.7)
4,500–5,999	13 (3.7)
≥ 6,000	67 (19.3)
No. of patients with malignancy per year	
< 300	391 (176–2,197)
300–999	142 (40.9)
1,000–2,999	96 (27.7)
3,000–4,999	29 (8.3)
≥ 5,000	18 (5.2)
No. of patients transferred from other hospitals per year	
0	62 (17.9)
1–9	
10–49	44 (12.7)
50–99	14 (4.0)
≥ 100	9 (2.6)
Values are presented as number (%) or median (interquartile range).	
Operations included in “The ninth nationwide evaluation of the appropriateness of surgical prophylactic antibiotics in Korean hospitals in 2020.”	
model about ‘total antibacterial agents’ for all hospitalized patients (aged ≥ 28 days) were intensive care unit (parameter estimate, 0.306; 95% confidence interval [CI], 0.256, 0.357), mean age of inpatients (parameter estimate, −0.005; 95% CI, −0.008, −0.002), 366–612 hospital beds (parameter estimate, −0.100; 95% CI, −0.166, −0.035), and ≥ 613 hospital beds (parameter estimate, 0.082; 95% CI, 0.016, 0.147). The statistically significant factors for the model about ‘broad-spectrum antibacterial agents predominantly used for hospital-onset infection’ for adult patients (≥ 15 years) were intensive care unit (parameter estimate, 1.289; 95% CI, 1.179, 1.399), mean age of inpatients (parameter estimate, 0.025; 95% CI, 0.014, 0.035), and 945–3,463 operations per year (parameter estimate, −0.276; 95% CI, −0.429, −0.124). Detailed risk model parameter estimates are presented in Tables 2 and 3. The K-SAAR values for each hospital are shown in Supplementary Table 2.

DISCUSSION

KONAS is the first benchmarking system for antimicrobial use in Korean hospitals, providing not only the crude amount of antimicrobial use in each hospital for direct comparison, but also K-SAAR for indirect comparison. With K-SAAR, medical personnel can easily measure and monitor antimicrobial use in their hospitals and grasp the degree of antimicrobial use, using benchmarking data. In particular, when K-SAAR is above 1, further evaluation and possible hospital-specific interventions can be initiated.

There are several advantages of K-SAAR compared to a direct comparison of antimicrobial use among hospitals. First, the novel metric is a customized indicator that reflects the characteristics of each hospital. The predictive value of antimicrobial use in a hospital is derived from meticulous modeling using variables that are associated with hospital characteristics and might influence the pattern of antimicrobial use in a hospital. Therefore, medical personnel can detect the possible overuse or misuse of antimicrobials in their hospital more easily and precisely. Second, the overall pattern of antimicrobial use within hospitals can be identified through various K-SAAR values according to patient age group, hospital location, and antimicrobial category. For instance, if the K-SAARs for broad-spectrum antibacterial agents predominantly used for hospital-onset infections and antibacterial agents predominantly used for resistant gram-positive infections are observed above 1, and those for broad-spectrum antibacterial agents predominantly used for community-acquired infections and narrow-spectrum beta-lactam agents are observed below 1, medical personnel can suspect that certain classes of antimicrobials such as anti-pseudomonal β-lactam antibiotics or glycopeptides might be excessively prescribed within the hospital. Third, there is little risk of unintentional exposure to individual hospital information. For a direct comparison, even if the hospital names are anonymized, the source of hospital data presented for comparison can be inferred from the remaining information.

Despite these merits, medical personnel should remember that the K-SAAR metric provides a quantitative evaluation of antimicrobial use, but does not provide a definitive measure of the appropriateness or judiciousness of antimicrobial use. Therefore, K-SAAR can be used for monitoring antimicrobial use or follow-up of ASP intervention and should not be used for public reporting or other external accountability purposes.4

There are some potential limitations to the present study. First, the amount of antimicrobial consumption was measured using DDD instead of directly observed therapy (DOT). In fact,
Table 2. Korean standardized antimicrobial administration ratio risk model parameter estimates for all patients

Parameter	Estimate	Standard error	95% confidence interval	Chi-square	P
1. Broad-spectrum antibacterial agents predominantly used for hospital-onset infections					
Interception	2.991	0.197	2.606–3.376	231.605	< 0.001
Location type					
General ward	1.326	0.056	1.216–1.437	552.806	< 0.001
Intensive care unit	0.013	0.004	0.006–0.020	14.234	< 0.001
Mean age for inpatients					
< 366	−0.118	0.997	−0.313–0.078	1.393	0.238
≥ 514	0.280	0.122	0.042–0.519	5.314	0.021
No. of hospital beds					
< 945	−0.305	0.078	−0.458–−0.151	15.173	< 0.001
≥ 3,464	−0.208	0.132	−0.467–0.051	2.474	0.116
2. Broad-spectrum antibacterial agents predominantly used for community-acquired infections					
Interception	5.527	0.050	5.429–5.625	12,187.140	< 0.001
Location type					
General ward	0.295	0.035	0.227–0.363	72.990	< 0.001
Intensive care unit	0.129	0.054	0.022–0.235	5.632	0.018
No. of hospital beds					
< 193	0.022	0.072	−0.118–0.162	0.093	0.761
≥ 416					
No. of operationsa					
< 945	−0.122	0.045	−0.210–−0.034	7.377	0.007
≥ 4,724	0.001	0.068	−0.132–0.135	< 0.001	0.985
3. Antimicrobial agents predominantly used for resistant gram-positive bacterial infections					
Interception	1.957	0.051	1.857–2.058	1,459.277	< 0.001
Location type					
General ward	1.663	0.050	1.564–1.762	1,089.981	< 0.001
Intensive care unit	0.099	0.068	−0.034–0.231	2.128	0.145
No. of hospital beds					
< 273	0.471	0.104	0.267–0.675	20.473	< 0.001
≥ 495					
No. of operationsa					
< 630	0.087	0.068	−0.046–0.219	1.644	0.200
≥ 3,464	0.661	0.110	0.446–0.877	36.186	< 0.001
4. Narrow-spectrum beta-lactam agents					
Interception	5.568	0.228	5.120–6.015	593.780	< 0.001
Location type					
General ward	−0.647	0.055	−0.755–−0.538	136.773	< 0.001
Intensive care unit	−0.014	0.004	−0.022–−0.006	13.026	< 0.001
Mean age for inpatients					
< 144	−0.308	0.121	−0.544–−0.071	6.491	0.011
≥ 416	−0.445	0.142	−0.723–−0.166	9.800	0.002
No. of operationsa					
< 630	0.140	0.065	0.013–0.267	4.668	0.031
≥ 2,835	0.361	0.101	0.164–0.559	12.840	< 0.001
5. Antifungal agents predominantly used for invasive candidiasis					
Interception	1.085	0.067	0.954–1.217	262.692	< 0.001
Location type					
General ward	1.090	0.075	0.944–1.236	213.342	< 0.001
Intensive care unit	0.133	0.099	−0.061–0.328	1.811	0.178
No. of hospital beds					
< 299	0.372	0.150	0.078–0.666	6.167	0.013

(continued to the next page)
Table 2. (continued) Korean standardized antimicrobial administration ratio risk model parameter estimates for all patients

Parameter	Estimate	Standard error	95% confidence interval	Chi-square	P	
No. of operations						
< 2,205	Ref.					
2,205–4,939	0.408	0.153	0.107	0.708	7.085	0.008
≥ 4,904	0.787	0.165	0.464	1.109	22.859	< 0.001
Hospital type						
Secondary care hospital	Ref.					
Tertiary care hospital	0.452	0.146	0.167	0.738	9.623	0.002

6. **Antibacterial agents predominantly used for extensive antibiotic resistant gram-negative bacterial infections**

Parameter	Estimate	Standard error	95% confidence interval	Chi-square	P	
Intercept	−0.086	0.090	−0.262	0.090	0.920	0.338
Location type						
General ward	Ref.					
Intensive care unit	2.531	0.096	2.343	2.720	691.393	< 0.001
No. of operations						
< 3,150	Ref.					
3,150–5,038	0.777	0.138	0.506	1.046	31.761	< 0.001
≥ 5,039	1.004	0.107	0.795	1.213	88.667	< 0.001

7. **Carbapenem**

Parameter	Estimate	Standard error	95% confidence interval	Chi-square	P	
Intercept	2.419	0.186	2.054	2.783	169.005	< 0.001
Location type						
General ward	Ref.					
Intensive care unit	1.663	0.051	1.584	1.762	1,082.922	< 0.001
Mean age for inpatients						
	0.008	0.003	0.001	0.144	5.673	0.017
No. of hospital beds						
< 267	Ref.					
267–513	0.103	0.067	−0.029	0.234	2.349	0.125
≥ 514	0.376	0.109	0.163	0.590	11.951	0.001
No. of operations						
< 945	Ref.					
945–2,204	−0.202	0.075	−0.347	−0.056	7.393	0.007
≥ 2,205	−0.130	0.100	−0.326	0.067	1.669	0.196

8. **Fluoroquinolone**

Parameter	Estimate	Standard error	95% confidence interval	Chi-square	P	
Intercept	4.756	0.052	4.654	4.858	8,374.682	< 0.001
Location type						
General ward	Ref.					
Intensive care unit	0.547	0.045	0.459	0.635	148.858	< 0.001
Mean age for inpatients						
	−0.014	0.004	−0.023	−0.005	10.301	0.001
No. of hospital beds						
< 218	Ref.					
218–316	0.018	0.062	−0.104	0.141	0.088	0.767
≥ 317	−0.176	0.059	−0.292	−0.060	8.796	0.003

9. **Metronidazole**

Parameter	Estimate	Standard error	95% confidence interval	Chi-square	P	
Intercept	3.442	0.242	2.967	3.916	202.103	< 0.001
Location type						
General ward	Ref.					
Intensive care unit	0.565	0.064	0.439	0.690	77.845	< 0.001
Mean age for inpatients						
	−0.014	0.004	−0.023	−0.005	10.301	0.001
No. of patients transferred from other hospitals						
< 261	Ref.					
261–2,348	−0.204	0.078	−0.357	−0.051	6.802	0.009
≥ 2,349	−0.233	0.147	−0.521	0.550	2.514	0.113

10. **Total antibacterial agents**

Parameter	Estimate	Standard error	95% confidence interval	Chi-square	P	
Intercept	6.571	0.094	6.386	6.756	4,864.532	< 0.001
Location type						
General ward	Ref.					
Intensive care unit	0.306	0.026	0.256	0.357	141.504	< 0.001
Mean age for inpatients						
	−0.005	0.002	−0.008	−0.002	8.325	0.004
No. of hospital beds						
< 366	Ref.					
366–612	−0.100	0.033	−0.166	−0.035	8.956	0.003
≥ 613	0.082	0.031	0.016	0.147	6.019	0.014

Operations included in ‘The ninth nationwide evaluation of the appropriateness of surgical prophylactic antibiotics in Korean hospitals in 2020.’
Table 3. Korean standardized antimicrobial administration ratio risk model parameter estimates for adult patients

Parameter	Estimate	Standard error	95% confidence interval	Chi-square	P	
1. Broad-spectrum antibacterial agents predominantly used for hospital-onset infections						
Intercept	2.282	0.315	1.665	2.899	52.552	< 0.001
Location type						
General ward	Ref.					
Intensive care unit	1.289	0.056	1.179	1.399	526.600	< 0.001
Mean age for inpatients	0.025	0.005	0.014	0.035	21.730	< 0.001
No. of hospital beds						
< 366	Ref.					
366–513	−0.171	0.099	−0.365	0.023	2.976	0.085
≥ 514	0.227	0.121	−0.011	0.464	3.499	0.061
No. of operations^a^						
< 945	Ref.					
945–3,463	−0.276	0.078	−0.429	−0.124	12.611	< 0.001
≥ 3,464	−0.162	0.132	−0.420	0.097	1.501	0.221
2. Broad-spectrum antibacterial agents predominantly used for community-acquired infections						
Intercept	5.593	0.027	5.540	5.646	42,619.524	< 0.001
Location type						
General ward	Ref.					
Intensive care unit	0.324	0.034	0.256	0.392	88.319	< 0.001
No. of hospital beds						
< 366	Ref.					
366–513	−0.228	0.054	−0.333	−0.122	17.862	< 0.001
≥ 514	0.060	0.040	−0.137	0.018	2.278	0.131
3. Antimicrobial agents predominantly used for resistant gram-positive bacterial infections						
Intercept	1.996	0.051	1.895	2.096	1,517.851	< 0.001
Location type						
General ward	Ref.					
Intensive care unit	1.622	0.050	1.523	1.721	1,033.693	< 0.001
No. of hospital beds						
< 273	Ref.					
273–494	0.105	0.068	−0.028	0.238	2.385	0.123
≥ 495	0.478	0.105	0.273	0.683	20.885	< 0.001
No. of operations^a^						
< 630	Ref.					
630–3,463	0.088	0.068	−0.046	0.221	1.665	0.197
≥ 3,464	0.659	0.110	0.443	0.875	36.691	< 0.001
4. Narrow-spectrum beta-lactam agents						
Intercept	7.189	0.314	6.573	7.805	523.609	< 0.001
Location type						
General ward	Ref.					
Intensive care unit	−0.633	0.054	−0.739	−0.528	138.320	< 0.001
Mean age for inpatients	−0.042	0.005	−0.053	−0.032	65.069	< 0.001
No. of hospital beds						
< 144	Ref.					
144–415	−0.220	0.119	−0.453	0.013	3.435	0.064
≥ 416	−0.351	0.140	−0.626	−0.077	6.308	0.012
No. of operations^a^						
< 630	Ref.					
630–2,834	0.147	0.098	0.023	0.271	5.364	0.021
≥ 2,835	0.409	0.098	0.217	0.602	17.365	< 0.001
5. Antifungal agents predominantly used for invasive candidiasis						
Intercept	1.127	0.067	0.996	1.258	285.653	< 0.001
Location type						
General ward	Ref.					
Intensive care unit	1.055	0.075	0.909	1.201	200.507	< 0.001
No. of hospital beds						
< 292	Ref.					
292–489	0.132	0.099	−0.062	0.326	1.780	0.182
≥ 490	0.384	0.150	0.091	0.677	6.583	0.010
No. of operations^a^						
< 2,205	Ref.					
2,205–4,093	0.407	0.153	0.107	0.707	7.076	0.008
≥ 4,094	0.784	0.164	0.462	1.105	22.845	< 0.001

(continued to the next page)
Parameter	Estimate	Standard error	95% confidence interval	Chi-square	P		
Hospital type							
Secondary care hospital	Ref.	0.437	0.146	0.152	0.723	9.003	0.003
Tertiary care hospital	Ref.	0.437	0.146	0.152	0.723	9.003	0.003
6. Antibacterial agents predominantly used for extensive antibiotic resistant gram-negative bacterial infections							
Intercept	−0.036	0.089	−0.210	0.138	0.166	0.684	
Location type							
General ward	Ref.	2.487	0.095	2.300	2.674	678.497	< 0.001
Intensive care unit	Ref.	2.487	0.095	2.300	2.674	678.497	< 0.001
No. of operations^a							
< 3,150	Ref.	0.799	0.137	0.530	1.068	33.888	< 0.001
3,150–5,038	Ref.	1.026	0.106	0.818	1.234	93.162	< 0.001
≥ 5,039	Ref.	1.026	0.106	0.818	1.234	93.162	< 0.001
7. Carabapenem							
Intercept	1.800	0.308	1.197	2.403	34.191	< 0.001	
Location type							
General ward	Ref.	1.618	0.050	1.520	1.716	1,045.015	< 0.001
Intensive care unit	Ref.	1.618	0.050	1.520	1.716	1,045.015	< 0.001
Mean age for inpatients							
0.019	0.005	0.008	0.029	12.791	< 0.001		
No. of hospital beds							
< 267	Ref.	0.105	0.066	−0.025	0.236	2.516	0.113
267–513	Ref.	0.376	0.108	0.164	0.589	12.105	0.001
≥ 514	Ref.	0.376	0.108	0.164	0.589	12.105	0.001
No. of operations^a							
< 945	Ref.	−0.193	0.074	−0.337	−0.048	6.851	0.009
945–2,204	Ref.	−0.135	0.100	−0.332	0.061	1.824	0.177
≥ 2,205	Ref.	−0.135	0.100	−0.332	0.061	1.824	0.177
8. Fluoroquinolone							
Intercept	4.189	0.276	3.648	4.729	230.862	< 0.001	
Location type							
General ward	Ref.	0.485	0.044	0.398	0.572	119.403	< 0.001
Intensive care unit	Ref.	0.485	0.044	0.398	0.572	119.403	< 0.001
No. of hospital beds							
< 218	Ref.	−0.106	0.052	−0.207	−0.004	4.129	0.042
218–365	Ref.	−0.330	0.071	−0.470	−0.190	21.487	< 0.001
≥ 366	Ref.	−0.330	0.071	−0.470	−0.190	21.487	< 0.001
Hospital type							
Secondary care hospital	Ref.	0.184	0.087	0.014	0.355	4.474	0.034
Tertiary care hospital	Ref.	0.184	0.087	0.014	0.355	4.474	0.034
9. Metronidazole							
Intercept	2.694	0.044	2.608	2.781	3,732.680	< 0.001	
Location type							
General ward	Ref.	0.517	0.065	0.390	0.644	63.853	< 0.001
Intensive care unit	Ref.	0.517	0.065	0.390	0.644	63.853	< 0.001
10. Total antibacterial agents							
Intercept	6.290	0.023	6.245	6.335	74,745.782	< 0.001	
Location type							
General ward	Ref.	0.327	0.026	0.277	0.377	163.241	< 0.001
Intensive care unit	Ref.	0.327	0.026	0.277	0.377	163.241	< 0.001
No. of hospital beds							
< 366	REF	−0.114	0.038	−0.188	−0.040	9.132	0.003
366–612	REF	0.003	0.053	−0.101	0.106	0.002	0.962
≥ 613	REF	0.003	0.053	−0.101	0.106	0.002	0.962
No. of operations^a							
< 630	REF	−0.001	0.032	−0.064	0.062	0.001	0.976
630–4,724	REF	0.136	0.059	0.021	0.250	5.368	0.021
≥ 4,724	REF	0.136	0.059	0.021	0.250	5.368	0.021

^aOperations included in “The ninth nationwide evaluation of the appropriateness of surgical prophylactic antibiotics in Korean hospitals in 2020.”
according to a recent guideline for ASP, DOT is the preferred method for the measurement of antimicrobial consumption, because DDD has the possibility of underestimation among patients with decreased renal function and pediatric patients. However, the DOT of antimicrobials provided by the medical insurance claims data has yet to be validated properly. If the DOT of medical insurance claims data reflects the actual data well, an update of the K-SAAR predictive model using antimicrobial consumption data measured by the DOT should be performed. Second, the current K-SAAR does not apply to pediatric patients. Given that the antimicrobial consumption data were measured by DDD, we could not develop a predictive model for pediatric patients. This problem will be solved if the DOT of medical insurance claim data is validated. Even though limitations of data regarding pediatric patients exist, the research group performed the modeling for all inpatients (aged ≥ 28 days) to enhance the understanding of overall antimicrobial consumption within the hospital at the current phase. Third, the current K-SAAR applies only to annual antimicrobial use in secondary or tertiary care hospitals. It is necessary to develop a K-SAAR predictive model that can be applied to not only antimicrobial use in small- and medium-sized hospitals but also to quarterly antimicrobial use. Fourth, factors reflecting the characteristics and severity of patients within each hospital (e.g., number of transplant recipients, number of patients on hemodialysis, number of septic shock cases, number of neutropenic patients, etc.) were not sufficiently included in the model variables. Because some variables are not available from the medical insurance claim data, the establishment of a system that can collect standardized data from each hospital is necessary in the near future. With such a system, an updated model that reflects patient characteristics and severity more precisely might be able to be developed.

In conclusion, we developed a model to predict antimicrobial use rates in Korean hospitals, and the model was used as the denominator of the K-SAAR. The K-SAAR helps medical personnel easily grasp the status of antimicrobial use in their hospital by providing the ratio between observed antimicrobial use and predicted antimicrobial use. Through K-SAAR, each hospital can effectively investigate the potential overuse or misuse of antimicrobials so that they can establish appropriate ASP interventions.

SUPPLEMENTARY MATERIALS

Supplementary Table 1
The classification of antimicrobial agents in Korea National Antimicrobial Use Analysis System

Click here to view

Supplementary Table 2
Korean Standardized Antimicrobial Administration Ratio table

Click here to view

REFERENCES

1. Pollack LA, Srinivasan A. Core elements of hospital antibiotic stewardship programs from the Centers for Disease Control and Prevention. Clin Infect Dis 2014;59 Suppl 3(Suppl 3):S97-100.

PUBMED | CROSSREF
2. Ryu S. The new Korean action plan for containment of antimicrobial resistance. *J Glob Antimicrob Resist* 2017;8:70-3.
PUBMED | CROSSREF

3. O’Leary EN, Edwards JR, Srinivasan A, Neuhauser MM, Webb AK, Soe MM, et al. National Healthcare Safety Network Standardized Antimicrobial Administration Ratios (SAARs): a progress report and risk modeling update using 2017 data. *Clin Infect Dis* 2020;71(10):e702-9.
PUBMED | CROSSREF

4. van Santen KL, Edwards JR, Webb AK, Pollack LA, O’Leary E, Neuhauser MM, et al. The Standardized Antimicrobial Administration Ratio: a new metric for measuring and comparing antibiotic use. *Clin Infect Dis* 2018;67(2):e79-85.
PUBMED | CROSSREF

5. Kim B, Yoon YK, Kim DS, Jeong SJ, Ahn SV, Park SH, et al. Development of antibiotic classification for measuring antibiotic usage in Korean hospitals using a modified Delphi method. *J Korean Med Sci* 2020;35(30):e241.
PUBMED | CROSSREF

6. World Health Organization (WHO). ATC/DDD index: updates included in the ATC/DDD index. https://www.whocc.no/atc_ddd_index/updates_included_in_the_atc_ddd_index/. Updated 2021. Accessed November 13, 2021.

7. Health Insurance Review & Assessment Service (KR). The 9th nationwide evaluation of the appropriateness of surgical prophylactic antibiotics in Korean hospitals in 2020. http://www.hira.or.kr/bbsDummy.do?pgmid=HIRAA00002000100&brdScnBltNo=4&brdBltNo=7623#none/. Updated 2019. Assessed December 12, 2020.

8. Barrio I, Arostegui I, Rodríguez-Álvarez MX, Quintana JM. A new approach to categorising continuous variables in prediction models: proposal and validation. *Stat Methods Med Res* 2017;26(6):2586-602.
PUBMED | CROSSREF

9. Barlam TF, Cosgrove SE, Abbo LM, MacDougall C, Schuetz AN, Septimus EJ, et al. Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. *Clin Infect Dis* 2016;62(10):e51-77.
PUBMED | CROSSREF