Observations and explicit modeling of isoprene chemical processing in polluted air masses in rural areas of the Yangtze River Delta region: radical cycling and formation of ozone and formaldehyde

Kun Zhang a,b, Li Li a,b,*, Ling Huang a,b, Juntao Huo c, Yusen Duan c, Yuhang Wang d, Yangjun Wang a,b, Qingyan Fu c

a School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
b Key Laboratory of Organic Compound Pollution Control Engineering, Shanghai University, Shanghai, 200444, China
c Shanghai Environmental Monitoring Center, Shanghai, 200235, China
d School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA

Correspondence to Li Li (Lily@shu.edu.cn)

Abstract

Ozone pollution has become one of the most severe environmental problems in China in recent years. Our online observations showed that high level of O₃ were observed in rural areas of the Yangtze River Delta (YRD) region even there was no obvious ozone transport from the urban regions. To better understand the formation mechanism of local O₃ pollution and investigate the potential role of isoprene chemistry in the budgets of RO₃ (OH+HO₂+RO₂) radicals, synchronous observations of volatile organic compounds (VOCs), formaldehyde (HCHO) and meteorological parameters were conducted at a rural site of the YRD region in 2018. Five episodes with elevated O₃ concentrations under stagnant meteorological conditions were first identified; an observation-based model (OBM) with the Master Chemical Mechanism was applied to analyze the photochemical processes in these high-O₃
episodes. High levels of O\textsubscript{3}, nitrogen oxides (NO\textsubscript{x}), and VOCs facilitated strong production
and recycling of RO\textsubscript{x} radicals with the photolysis of oxygenated VOCs (OVOCs) being the
primary source. Our results suggest that local biogenic isoprene is important to local
photochemical processes. Removing isoprene could drastically slow down the efficiency of
RO\textsubscript{x} recycling and reduce the concentrations of RO\textsubscript{x}. The absence of isoprene chemistry
could further lead to decrease in the daily average concentration of O\textsubscript{3} and HCHO by 36%
and 15%, respectively. This study underlines that the isoprene chemistry in rural atmosphere
becomes important with the participation of anthropogenic NO\textsubscript{x} and also provides insights
into the radical chemistry that essentially drives the formation of secondary pollutants (e.g.
O\textsubscript{3} and HCHO) in rural YRD region.

Keywords: Isoprene; Observation-based model (OBM); Radical; Ozone; Yangtze River

1. Introduction

The hydroxyl radical (OH), hydro peroxo radical (HO\textsubscript{2}) and organic peroxo radical
(RO\textsubscript{2}), collectively known as RO\textsubscript{x} dominate the oxidative capacity of the atmosphere and
hence govern the removal of primary contaminants (e.g. volatile organic compounds (VOCs))
and the formation of secondary pollutants (e.g. ozone (O\textsubscript{3}) , secondary organic aerosols
(SOAs)) (Liu et al., 2012; Xue et al., 2016a). RO\textsubscript{x} radicals can undergo efficient recycling (e.g.
OH→RO\textsubscript{2}→RO→HO\textsubscript{2}→OH) and produce O\textsubscript{3} and oxygenated VOCs (OVOCs) (Liu et al.,
2012; Tan et al., 2019; Xue et al., 2016b). In addition, the photolysis of OVOCs can in turn
produce primary RO\textsubscript{2} and HO\textsubscript{2} radicals, and further accelerate the recycling of RO\textsubscript{x} (Liu et al.,
2012). The reaction rates of different VOCs with RO\textsubscript{x} vary significantly (Atkinson and Arey,
2003; Atkinson et al., 2006). For instance, the reaction rate constants for OH with ethane and
ethene are 0.248 \times 10^{-12} (cm molecule-1 s-1) and 8.52 \times 10^{-12} (cm molecule-1 s-1), respectively.

Among the hundreds thousands of VOC species, isoprene (C\textsubscript{5}H\textsubscript{8}, 2-methyl-1,3-butadiene) is
one of the most active species, and also the most abundant biogenic VOCs (BVOCs) species globally (Wennberg et al., 2018). Isoprene emissions from biogenic sources have been extensively studied over past decades (Gong et al., 2018) and recent works have switched from emissions to the degradation pathways and the impact of isoprene chemistry on regional forest chemistry (Gong et al., 2018; Wolfe et al., 2016a). Previous studies showed that isoprene could be quickly oxidized by atmospheric oxidants (e.g. OH, O$_3$ or NO$_3$) (Wolfe et al., 2016a; Gong et al., 2018; Jenkin et al., 2015). Due to the rapid reaction between OH and isoprene (100×10^{-12} cm3 molecule$^{-1}$ s$^{-1}$ at 298 K), more than 90% of the total daytime isoprene is removed via this reaction (Wennberg et al., 2018). The reaction between OH and isoprene is initiated by the addition of OH and can generate isoprene hydroxyperoxy radicals (ISOPO$_2$) (Wennberg et al., 2018; D’Ambro et al., 2017; Liu et al., 2013; Jenkin et al., 2015). ISOPO$_2$ isomers could then interconvert rapidly due to reversible O$_2$ addition and are finally removed via reactions with HO$_2$ or NO (Jenkin et al., 2015; Wolfe et al., 2016a). Hence, the degradation process of isoprene is tightly associated with RO$_x$ recycling. According to He et al. (2019), isoprene chemistry could strongly influence the photochemical formation of O$_3$, with a relative incremental reactivity (RIR) of \sim0.06%/%. In addition to O$_3$, HCHO is formed via several pathways during the depletion of isoprene (Jenkin et al., 2015; Wolfe et al., 2016a) and HCHO formation is found to be highly sensitive to isoprene (Zeng et al., 2019).

The Yangtze River Delta (YRD) region is one of the most developed city-clusters in eastern China and has been suffering from serious O$_3$ pollution (Zhang et al., 2019; Zhang et al., 2020a; Chan et al., 2017). At the suburban area of YRD, high levels of O$_3$ were frequently observed (Zhang et al., 2019; Zhang et al., 2020a). A number of studies have been conducted to investigate the relationships between O$_3$ precursors and O$_3$ (Chan et al., 2017; Lin et al., 2020; Zhang et al., 2020a; Zhang et al., 2020b), but few have attempted to address the atmospheric oxidizing capacity and radical chemistry involved in these complicated
photochemical processes (Tan et al., 2019; Zhu et al., 2020b). Previous studies have pointed out that high level of O$_3$ at suburban areas of Shanghai could be attributed to the transport of O$_3$ or O$_3$ precursors from urban areas (Lin et al., 2020; Zhang et al., 2019). However, high O$_3$ concentration was frequently observed in suburban areas under stable meteorological conditions. Given the high vegetation coverage in rural YRD and weak transport of air masses, the importance of local isoprene chemistry to ozone formation remains unclear.

In this study, we conducted a comprehensive set of in-situ observations of isoprene, meteorological parameters, and trace gases to understand the importance of isoprene chemistry to atmospheric photochemical processes in rural YRD region. An observation-based model (OBM) was used to explore the role of local isoprene chemistry in radical budgets and the formation of O$_3$ and HCHO. Results from this study can provide insights of the isoprene chemistry in the rural region of a fast-developing city-cluster.

2. Methodology

2.1 Measurement site and techniques

The observations were conducted at a supersite (120.98°E, 31.09°N) in the rural areas of the YRD region (Figure 1). It is located to the west of Shanghai and is close to the Dianshan Lake Scenic area, which has high vegetation coverage. To investigate the local isoprene chemistry and its influence on O$_3$ and HCHO formation, continuous measurements were conducted from Apr. 7 to Sep. 25, 2018, when the photochemical reactions are active and ozone formation is significant.
Figure 1. Location of the Dianshan lake supersite (white dot) in the rural areas of YRD region. This picture was created with © Google Earth on 23 July 2020.

Table 1. Measurements performed during the ozone season

Species/Parameter	Experimental Technique	Time resolution
O₃	Model 49i, Thermo Fischer Scientific, USA	10 s
NO and NO₂	Model 43i, Thermo Fischer Scientific, USA	60 s
SO₂	Model 42i, Thermo Fischer Scientific, USA	80 s
HCHO	AL4021, Aero-Laser, GER	90 s
VOCs species	GC866, Agilent, USA	1 hour
Temperature, relative humidity, wind speed and wind direction	Meteorological station, Vaisala, NLD	60 s

The measurements performed are shown in Table 1. Wind speed (WS), wind direction (WD), temperature (T), and relative humidity (RH) were simultaneously observed by a meteorological station (Visala., FIN). According to China’s air quality standard, several criteria air pollutants were measured during this experiment. O₃ was measured by an ultraviolet photometric analyzer (Model 49i, Thermo Fischer Scientific., USA), which has a detection limit of 10 ppbv at 10 second resolution. 1 min resolution of nitrogen oxides (NO and NO₂) data were simultaneously observed by a chemiluminescence instrument (Model 43i, Thermo Fischer Scientific., USA), which has a detection limit of 0.40 ppbv. Sulfur dioxide was monitored by a pulse fluorescence analyzer (Model 42i, Thermo Fischer Scientific., USA) with a detection limit of 0.50 ppbv at 300 second resolution. Carbon monoxide was monitored by a gas filter correlation infrared absorption analyzer (Model 48i, Thermo Fischer Scientific., USA).
Scientific., USA), which has a detection limit of 0.04 ppm. All the online instruments used for gas analyzer were auto-zero every day, and were multi-point calibrated every month. All the instruments used for the online observation were housed on top of a 5-floor-high building, about 15 m above the ground level.

A total of 55 VOC species, including 28 alkanes, 10 alkenes, 16 aromatics and acetylene were continuously analyzed at our sampling site by two online gas chromatograph with flame ionization detector (GC-FID) systems (GC-866 airmoVOC C$_2$-C$_6$ #58850712 and airmoVOC C$_6$-C$_{12}$ #283607112, Agilent., USA) with a time resolution of 1 hour during our experiment. Ambient samples are directly inhaled into this system by a pump. Low carbon VOCs (C$_2$-C$_6$) are captured by a low temperature (-10 °C) preconcentration system, while high carbon VOCs are concentrated by a built-in room temperature preconcentration system. Then the preconcentration systems are heated and desorb VOCs, which are then carried into chromatographic columns by helium. Individual VOCs separated in the columns are eventually detected by FID systems. Formaldehyde (HCHO) was continuously measured by a Hantzsch fluorescence technique (AL4201, Aerolaser GmbH., GER), which is based on fluorometric Hantzsch reaction in the liquid phase requires the quantitative transfer of HCHO from gas phase to liquid phase. A Hantzsch reagent (acetylacetone) was used in this instrument.

2.2 Observation-based model

A user-friendly zero-dimensional (0-D) box model (F0AM) was used to simulate the chemical processes in the atmosphere in this study. This model was developed by Wolfe et al. (2016b) based on University of Washington Chemical Model (UWCM). Dry deposition, aloft exchange and atmospheric dilution were considered in this model. We chose the Master Chemical Mechanism (MCM) v3.3.1 as the chemical mechanism with more than 5900 chemical species and 16500 reactions, which enables a detailed description of the complex
reactions. Photolysis frequencies (J values) were calculated by a trigonometric parameterization based on solar zenith angle (SZA):

$$J = I \cos(SZA)^m \exp(-\text{sec}(SZA))$$ (1)

where I, m and n are constants unique to each photolysis reaction, derived from least-squares fits to J values computed with fixed solar spectra and literature cross-section and quantum yields (Wolfe et al., 2016b). Hourly averaged concentrations of speciated VOCs, O$_3$, NO, NO$_2$, SO$_2$, and meteorological parameters (such as T, TH, P) were used to constrain the F0AM model. Nitrous coid (HONO) was not measured during our observation. Therefore, it was fixed as 2% of the observed NO$_2$ concentration. This constant ratio is well observed in different field studies and performed well in previous box model studies (Tan et al., 2019).

Before each simulation, the model will run 3 days as spin up to reach a steady state for unmeasured species (e.g., OH and NO$_3$ radicals). The comparison of simulated observed O$_3$ concentrations can is shown in Figure S1 (Supplemental Information). The index of agreement (IOA), mean bias (MB) and normalized mean bias (NMB) of O$_3$ in this simulation were 0.90, 0.76 and 0.10, respectively. This result suggests that the model can reasonably reproduce the variations of O$_3$ and could be used for further analysis. To quantify the atmospheric oxidative capacity (AOC) changes in response to isoprene chemistry, two parallel scenarios (S0 and S1) were conducted with isoprene chemistry disabled in S1. In both cases, identical chemical mechanism and meteorological conditions were used to drive model simulations. Through a comparative analysis of the scenarios, the impact of isoprene chemistry on AOC can be obtained.

3. Results and discussions

3.1 Overview of the observations

To investigate the impact of local chemistry on ozone formation, five days with low daily average wind speed (<2m/s) and high maximum daily 8-h average (MDA8) O$_3$
concentration (>74.7 ppb) were identified as typical local chemistry cases. Figure 2 shows the
time series of observed meteorological parameters (P, T, and RH), trace gases (NO, NO₂ and
O₃), isoprene and HCHO on selected days. On those selected days, the air masses reaching
the site were mainly from southeast and southwest (Figure 2). The weak wind was not
conductive to the regional transportation of air pollutants. The observed O₃, NO₂, NO and CO
ranged from 1.40 to 155.40 ppbv (52.72 ± 44.43 ppbv, average value), 5.36 to 57.95 ppbv
(21.58 ± 12.88 ppbv), 0.75 to 54.51 ppbv (5.40 ± 8.13 ppbv), and 400 to 960 ppbv (597 ± 153
ppbv), respectively. The conditional probability function (CPF) is applied to exhibit the
relationship between high O₃ concentrations and wind (Figure 3). The detailed description of
CPF can be found in supplemental information. The result suggests that pretty high O₃
concentrations (>131 ppb) was usually observed when the site was influenced by weak south
wind. This implies that high O₃ was most likely produced locally. Although this site is far
away from urban areas, high levels of NO were found during early morning, which is likely
caused by nearby fresh emissions. As for NO₂, only one peak was found at dusk. This was
different from the results in urban areas (Zhang et al., 2019). It is worth noting that NO₂ and
O₃ concentrations were high even during nighttime, suggesting that the AOC remained high
at nighttime. The daily average isoprene concentrations were 0.37 ± 0.36 ppbv, which is
comparable to that observed by Gong et al. (2018) at a forested mountaintop site (0.287 ±
0.032 ppbv). The average HCHO was 5.01 ± 3.80 ppbv, which was ~2 times of that observed
at a rural site of Hong Kong (Yang et al., 2020). It is worth noting that HCHO could reach
18.69 ppbv at midday.
Figure 2. Time series of hourly averages for trace gases, isoprene, HCHO, and meteorological parameters.

Figure 3. CPF polar plot of O₃ at DSL to

3.2 Simulated concentrations of radicals

Figure 4 shows the simulated average diurnal variation of major radicals in the base scenario (S0). The average concentrations of OH, HO₂, RO₂, and NO₃ were estimated at 2.39
10^6, 2.21×10^8, 1.11×10^9, and 4.24×10^8 molecules cm$^{-3}$, respectively. The simulated daily average OH concentration lies between the simulated values during the summer in Beijing (9×10^6 molecules cm$^{-3}$) and the simulated value at a suburban site in Hong Kong in 2013 ($1.5 \pm 0.2 \times 10^6$ molecules cm$^{-3}$) (Liu et al., 2019; Xue et al., 2016a). In addition, the average daytime OH concentration was ~50% lower than that simulated at a forested mountaintop site in southern China (Gong et al., 2018). The maximum HO$_2$ concentration simulated for DSL site (5.95×10^8 molecules cm$^{-3}$) was close to that reported in Wuhan (4.7×10^8 molecules cm$^{-3}$) (Zhu et al., 2020a), but was ~13% lower than that in Beijing (6.8×10^8 molecules cm$^{-3}$) (Liu et al., 2012). Pretty high level of NO$_3$ (as high as ~19×10^8 molecules cm$^{-3}$) was found during nighttime. The average nocturnal NO$_3$ concentration was 8.15×10^8 molecule cm$^{-3}$, which was ~36% higher than that simulated in the study of Gong et al. (2018). As aforementioned, during nighttime, pretty high level of NO$_2$ (27.71 ppbv) and O$_3$ (30.05 ppbv) was observed, which favored the formation of NO$_3$. Interestingly, a high level of RO$_2$ was also found during nighttime. This result is different from the study of Liu et al. (2012), which found the maximum value of RO$_2$ during daytime. By separate the formation of RO$_2$, we found that during nighttime, over 70% RO$_2$ was formatted via the oxidation of RO by NO$_3$ radical, suggesting that the nighttime chemistry in the suburban site was also very important.
Figure 4. Average diurnal variation of OH, HO$_2$, RO$_2$ and NO$_3$ in S0 (solid lines) and S1 (dash lines).

3.3 Recycling of RO$_x$ radicals

Figure 5(A) shows the primary sources of RO$_x$ in S0 and the detailed daytime budget of RO$_x$. Minor RO$_x$ sources, e.g. ozonolysis of alkenes, are not shown. Heterogeneous reactions were not considered in this model. The photolysis of O$_3$ becomes the predominant primary source of OH, with a daytime mean production rate of 0.52 ppbv h$^{-1}$, which was comparable to that found by Liu et al. (2012) in Beijing, but was 0.38 ppbv h$^{-1}$ lower than the result in the study of Xue et al. (2016). The photolysis of HONO was the second largest primary OH source at the DSL site, contributing 0.41 ppbv h$^{-1}$ of daytime OH production in our simulation. This value is much lower than the results of Liu et al. (2012 and 2019) and Xue et al. (2016b). Such low value was most likely caused by the excessive constrain on HONO since HONO was not directly monitored during our experiment. As mentioned in the study of Liu et al. (2012), the photolysis processes of excess HONO from heterogeneous source can be the predominant primary OH source. Unfortunately, we were not able to quantitatively consider this important mechanism in this study due to the lack of relevant observation, and further studies are needed to make up this limitation. As for HO$_2$, the photolysis of OVOC is the predominant source with a daytime mean production rate of 1.09 ppbv h$^{-1}$ and maximum
reaching 1.79 ppbv h$^{-1}$, which is comparable to Xue et al. (2016). The photolysis of HCHO can also contribute 0.54 ppbv h$^{-1}$ to the daytime production of HO$_2$, which is close to the results of Xue et al. (2016). As for RO$_2$, the photolysis of OVOC was the largest source (0.49 ppbv h$^{-1}$), which was relatively lower than the results found at urban site (Liu et al., 2012). From the RO$_x$ perspective, the daytime primary radical production in DSL site was dominated by the photolysis of OVOCs (except for HCHO), followed by the photolysis of HCHO and O$_3$. Summing up all the sources of RO$_x$ gives a total primary daytime RO$_x$ production rate of 3.06 ppbv h$^{-1}$ (0.94 ppbv h$^{-1}$ for OH, 1.63 ppbv h$^{-1}$ for HO$_2$, and 0.49 ppbv h$^{-1}$ for RO$_2$), which was 54–62% lower than those in Beijing (6.6 ppbv h$^{-1}$) (Liu et al., 2012) and Hong Kong (8.11 ppbv h$^{-1}$) (Xue et al., 2016b).

RO$_x$ radicals are ultimately removed from the atmosphere via deposition of radical reservoir species, e.g., H$_2$O$_2$, HNO$_3$, and ROOH (Liu et al., 2012). The terminate processes of RO$_x$ was dominated by their reactions with NO$_x$. Specifically, the reaction of OH+NO$_2$, RO$_2$+NO$_2$, RO$_2$+NO, forming HNO$_3$, RO$_2$NO$_2$, and RONO$_2$, accounting for 2.46, 0.63, and 0.53 ppbv h$^{-1}$ of the RO$_x$ radical loss during daytime. This is consistent with the understanding that reactions with NO$_x$ usually dominate the radical sink in high NO$_x$ environments (Xue et al., 2016b; Liu et al., 2012). In addition, RONO$_2$ and RO$_2$NO$_2$ could in turn react with OH, leading to 0.45 ppbv h$^{-1}$ of daytime OH sinks (Figure 6). Summing up the primary sources and sinks gives a negative value of net RO$_x$ production, suggesting that the RO$_x$ was in a stage of gradual depletion.
Figure 5. Primary daytime sources of ROx in S0 (A) and S1 (B).

The daytime (6:00-18:00) recycling of ROx is shown in Figure 6, with primary sources (in red) and sinks (in blue) of ROx. In the recycling of ROx, the production of OH was dominated by the reaction of HO2+NO (9.43 ppbv h⁻¹). As for RO2, it was produced by the reaction of OH with OVOC (2.56 ppbv h⁻¹), alkyl (RH) (1.51 ppbv h⁻¹), and peroxides (0.14 ppbv h⁻¹). The reaction of RO2+NO can result in strong production of RO (4.36 ppbv h⁻¹).

The reaction of RO and O2 was the major contributor to HO2 production, followed by the reaction of OH with CO (2.05 ppbv h⁻¹), OVOC (1.77 ppbv h⁻¹), and RH (0.18 ppbv h⁻¹). It should be noted that the top two fast reactions within the recycling of ROx (HO2+NO and RO2+NO) were related to NOx. As mentioned in the study of Liu et al. (2012), this result could be mainly due to the abundance of NO (e.g. ~50 ppbv in the morning). Obviously, these recycling processes dominate the total production of OH, HO2 and RO2 radicals. As suggested in the study of Xue et al. (2016) and Liu et al. (2012), the radical propagation is efficient and enhances the effect of the newly produced radicals in the polluted atmospheres with the co-existence of abundant NOx and VOCs.
Figure 6. Summary of daytime (06:00-18:00) average budgets of RO\textsubscript{x} radicals (in ppbv h-1). Primary RO\textsubscript{x} sources and sinks are in red and blue.

3.4 Production and destruction of O\textsubscript{3}

Figure 7 illustrates the diurnal variation of simulated O\textsubscript{3} production and destruction pathways in S0. Also shown is the simulated average diurnal pattern of O\textsubscript{3} concentration and the net O\textsubscript{3} production rate. In the troposphere, the formation of O\textsubscript{3} is via the reactions of NO with peroxy radicals (e.g. HO\textsubscript{2} and RO\textsubscript{2}) (Liu et al., 2012; Xue et al., 2016b; Zhu et al., 2020a). On average, the reaction of HO\textsubscript{2}+NO and RO\textsubscript{2}+NO attributed 5.10 and 4.37 ppbv h-1 of the production of O\textsubscript{3}. The maximum rate of HO\textsubscript{2}+NO (14.96 ppbv h-1) and RO\textsubscript{2}+NO (12.42 ppbv h-1) both occurred at 12:00. The total daytime production rate of O\textsubscript{3} (P(O\textsubscript{3})) is the sum of HO\textsubscript{2}+NO and RO\textsubscript{2}+NO at 17.48 ppbv h-1, which lies between that simulated in Beijing (32
Due to the fast cycling of both O$_3$ and NO$_2$, O$_3$ loss was due to several reactions leading to the destruction of O$_3$ and NO$_2$. In our cases, the reaction of NO$_2$+OH becomes the predominant scavenging pathways of O$_3$, with an average daytime reaction rate of 1.97 ppbv h$^{-1}$ (49.8%, percentage of the total O$_3$ destruction rate, same below). This is comparable to the study of Liu et al. (2012 and 2019). The reaction of RO$_2$ and NO$_2$ was the second contributor to O$_3$ loss, with a mean contribution of 0.63 ppbv h$^{-1}$ (16%). Other pathways, e.g. photolysis of O$_3$, ozonolysis of alkenes, and O$_3$+HO$_2$, contributed 1.31 ppbv h$^{-1}$ of the total destruction rate of O$_3$ during daytime. The daytime mean L(O$_3$) rate was 3.85 ppbv h$^{-1}$, which was ~22% of P(O$_3$), suggesting that O$_3$ could efficiently accumulate during daytime. The net production of O$_3$ (P(O$_3$)-L(O$_3$)) is also shown in Figure 7. The maximum O$_3$ concentration was found at around 16:00, which was also observed in other rural sites (Zong et al., 2018; Zhang et al., 2019). It is worth noting that, the reaction of alkenes+O$_3$/NO$_3$ serves as an important pathway of O$_3$ loss during nighttime (as high as 2.41 ppbv h$^{-1}$).

![Figure 7. Average diurnal profiles of O$_3$ production and destruction rates (ppbv h$^{-1}$) in S0 (A) and S1 (B).](https://doi.org/10.5194/acp-2020-728)

3.5 Production and destruction of HCHO

As aforementioned, high levels of HCHO was observed at DSL, a rural site over the Yangtze River Delta region. Figure 8 (A) shows the production and loss pathways of HCHO.
in S0. On average, HCHO production was dominated by the reaction of RO+O\textsubscript{2}, accounting for ~90% of the total production rate. Further classification of RO+O\textsubscript{2} pathway suggested that the oxidation of CH\textsubscript{3}O made a significant contribution of ~47%, followed by RO (form isoprene) + O\textsubscript{2} reaction (12%) and RO (from aromatics) + O\textsubscript{2} reaction (~11%). This result is comparable to the study of Yang et al. (2020 and 2018). Inspection of the model result shows that CH\textsubscript{3}O was mainly produced during the degradation of small molecular weight alkanes, especially methane. It is notable that the reaction of RO (from aromatics) + O\textsubscript{2} could become the predominant pathway of HCHO production during nighttime. This could be attributed to the high level of NO\textsubscript{3} during nighttime, by which styrene could be quickly oxidized and generate N-containing RO radicals, and furtherly generate HCHO. During daytime, isoprene became the most important VOC specie of HCHO production, with a mean rate of 0.38 ppbv h-1. As mentioned, this site is surrounded by highly vegetated areas, which can provide abundant biogenic isoprene. During daytime, over 90% of isoprene was oxidized by OH radicals (Figure S2). According to MCMv3.3.1, several RO\textsubscript{2} species (e.g. ISOP34O\textsubscript{2}, ISOPDO\textsubscript{2}, ISOPCO\textsubscript{2}, CISOPAO\textsubscript{2}, ISOPAO2) can be generated during the OH-initiated degradation process of isoprene (Jenkin et al., 2015). With the present of NO, isoprene-originated RO\textsubscript{2} can transfer into RO (e.g. ISOPDO, ISOP34O, ISOPAO). The subsequent degradation processes of isoprene-related RO, especially ISOP34O, ISOPDO, ISOPAO and ISOPBO, are tightly related to the formation of HCHO (Jenkin et al., 2015). Other sources of HCHO, such as the reaction between VOC and O\textsubscript{3}, photolysis of OVOC and the reaction of OVOC+OH only contributed minor amount of the total production rate during whole day.

As for HCHO depletion, the photolysis of HCHO and the reaction of HCHO+OH was the two dominate pathway, accounting for ~50% and ~50% of the total depletion rate, respectively. The net HCHO (equals to P(HCHO) + L(HCHO)) production rate was also shown in Figure 8. After sunrise, the net production rate of HCHO raised gradually until 8:00,
when it reached the maximum rate (1.10 ppbv h\(^{-1}\)). This result is comparable to the study of Yang et al. (2018). At around 10:00, the net(HCHO) dropped to ~0 ppbv h\(^{-1}\), that was roughly consistent with our observation, which shows that the HCHO peak occurs at around 11:00. After 10:00, although the reaction of RO+O\(_2\) quickly produced HCHO, the depletion pathways, especially the photolysis of HCHO, became more competitive, leading to the net reduction of HCHO. After 12:00, the photolysis of HCHO dropped rapidly and the net depletion of HCHO decreased to ~0 ppbv h\(^{-1}\) at around 15:00. The daytime net HCHO production rate was 0.89 ppbv h\(^{-1}\), which was comparable to result of Yang et al. (2018).

The above analysis indicates that the photolysis of OVOC, HCHO, O\(_3\) and HONO was the primary source of RO\(_x\), which offers high oxidizing environment for the degradation of VOCs. As a typical by-product in the degradation of several VOCs, HCHO can be quickly formatted during daytime. The insight into detailed photochemical processes shows the important role of isoprene in the formation of HCHO.
3.6 Impacts of isoprene chemistry on photochemistry

3.6.1 Impact on RO$_x$ budget

As aforementioned, the degradation of isoprene is tightly related to the cycling of RO$_x$. To roughly explain the impact of isoprene chemistry on RO$_x$ budget, we carried out a parallel simulation (S1) where isoprene chemistry is disabled (see in Figure 9). The diurnal variation of OH, HO$_2$, RO$_2$ and NO$_3$ in S1 is also shown in Figure 4 (B). Most of the reaction rates show a decrease trend in S1, suggesting that the absence of isoprene slows down the RO$_x$ recycling. The photolysis of OVOC (0.87 ppbv h$^{-1}$) is still the predominant primary source of RO$_x$. However, without isoprene, the photolysis rate of OVOC decreased by 0.71 ppbv h$^{-1}$. The total production and depletion rate of OH dropped to 6.22 and 5.53 ppbv h$^{-1}$, respectively. Although the absence of isoprene could reduce the consumption of OH, the OH concentration would be reduced by ~16% compared to S0, suggesting that the amount of OH produced via isoprene chemistry is large enough to compensate for the shift from OH to peroxy radicals in the RO$_x$ family. As for RO$_2$, the daytime production and destruction rate falls to 1.87 and 3.01 ppbv h$^{-1}$, respectively. This means the concentration of RO$_2$ would be in a stage of gradual decline. In addition, the absence of isoprene could also reduce RO$_2$ concentration by ~20%, suggesting that isoprene was an important source of RO$_2$ at DSL site. As for HO$_2$, drastic decrease of ~53% was found in S1. The above-mentioned decrease in RO$_x$ obviously could not be explained solely by the addition of isoprene-related radicals. Inspection of the model results shows that OVOCs concentrations decreased drastically (~40%) after cutting isoprene (e.g. ~44% decrease in formaldehyde, ~60% decrease in methylglyoxal, ~46% decrease in glyoxal, ~100% decrease in methacrolein (MACR), and ~100% decrease in methyl vinyl ketone (MVK)). The decrease in OVOC can further pull down substantial amount of primary RO$_2$ and HO$_2$ (Figure 6 and Figure 9). It is interesting to note that,
subtracting isoprene also cause drop of NO$_3$ (~11%). This result can be contributed to the decrease of secondary production of O$_3$ (~36%), which can further reduce the formation of NO$_3$, especially during nighttime.

3.6.2 Impact on O$_3$ formation

Isoprene is an important precursor of O$_3$. To investigate the detailed impact of isoprene on O$_3$ formation, the production and loss pathways of O$_3$ in S1 was also calculated (see Figure 7 (B)). The simulated daily average level of O$_3$ dropped to 39.31 ppbv in S1, which is ~36% lower than that in S0. In addition, the maximum O$_3$ concentration falls to 80.06 ppbv in S1, which is ~45.95 ppbv lower than that in S0. Comparisons of S1 and S0 show that the
absence of isoprene can reduce all the production and sink pathways of O$_3$. For example, the rate of the two major production pathways of O$_3$ (HO$_2$+NO and RO$_2$+NO) decreased by ~21% and ~30%, respectively. This can be attributed to the drop in the concentration of HO$_2$ and RO$_2$ racial in S1. As for the depletion of O$_3$, the absence of isoprene caused a decrease of 0.39 ppbv h$^{-1}$ in the reaction rate of alkene+O$_3$/NO$_3$, followed by RO$_2$+NO$_2$ (0.16 ppbv h$^{-1}$) and NO$_2$+OH (0.15 ppbv h$^{-1}$). Apparently, the absence of isoprene will reduce the total concentrations of alkenes and can further lead to the decrease of RO$_2$ and OH level, which ultimately slows down the depletion pathways of O$_3$. The absence of isoprene also caused a decrease of 5.18 ppbv h$^{-1}$ of the daytime mean net production rate of O$_3$. Hence, isoprene chemistry plays an important role in the local O$_3$ formation at DSL site.

3.6.3 Impact on HCHO formation

The analysis of S0 revealed the important role of isoprene, aromatics, and alkenes in the production of HCHO. To investigate the chain effect of isoprene chemistry on HCHO production, the major reactions that dominate the formation and depletion of HCHO in S1 were also analyzed by OBM model (see Figure 8 (B)). Comparison of S0 and S1 shows that the daily average HCHO decreased by 0.86 ppbv (~15%) when cutting away isoprene chemistry. It is obviously that the drop in HCHO concentration cannot be solely illustrated by the absence of RO (from isoprene). As aforementioned, the absence of isoprene slows down the recycling of RO$_x$ and can further lead to decrease in RO$_x$ concentration. According to the result of OBM analysis, the concentration of CH$_3$O, RO (from aromatics), RO (from alkanes), and RO (from alkenes) decreased by 24.92×101 molecule cm$^{-3}$, 2.11×105 molecule cm$^{-3}$, 5.12×101 molecule cm$^{-3}$, and 3.94 molecule cm$^{-3}$, respectively. The drop in the HCHO precursor concentrations ultimately lead to decrease in the daytime reaction rate of CH$_3$O + O$_2$, RO (from alkenes) + O$_2$, and RO (from aromatics) + O$_2$ decreased by 0.28 ppbv h$^{-1}$ (~33%), 0.03 ppbv h$^{-1}$ (~16%), and 0.02 ppbv h$^{-1}$ (~8%), respectively. The total daytime formation rate of HCHO dropped to 1.64 ppbv h$^{-1}$, which was 1.94 ppbv h$^{-1}$ (~54%) lower.
than that in S0. As a result of the lower HCHO and OH concentration in S1, the daily mean depletion rate of HCHO decreased by 1.79 ppbv h\(^{-1}\) (~60%). The absence of isoprene pulls down the daily average HCHO level by only 0.86 ppbv (~15%) because the formation and depletion rates of HCHO decrease at similar rates.

4. Conclusions

Our observations at a rural site of the YRD region from April to June in 2018 captured 5 typical local O\(_3\) formation episodes. The detailed atmospheric photochemistry during these episodes were analyzed. Under stagnant condition, the photolysis of OVOCs served as the predominant primary RO\(_x\) sources. RO\(_x\) achieves efficient recycling with the participation of NO\(_x\). Influenced by the fast RO\(_x\) recycling, local O\(_3\) was efficiently produced and accumulated under stagnant conditions. The reactions of RO radicals with O\(_2\) dominate the photochemical formation of HCHO. The higher atmospheric oxidative capacity lead to fast degradation of VOCs, which can further lead to high levels of HCHO at the DSL site.

Specifically, the degradation of RO radicals (e.g. ISOP34O, ISOPDO, ISOPAO and ISOPBO) from isoprene oxidation play an important role in the photochemical production of HCHO. To investigate the role of isoprene in RO\(_x\) recycle and the formation of secondary pollutant, a sensitivity scenario without isoprene (S1) input was simulated by OBM model. By comparing S1 to the standard simulation, S0, we find that isoprene chemistry is important to local RO\(_x\) recycling. The absence of isoprene can obviously decrease the concentrations of OVOCs and the reaction rates in RO\(_x\) propagations, and further reduce the concentrations of radicals (e.g. OH, HO\(_2\), RO\(_2\)). Our results indicate that the isoprene chemistry can strongly influence the formation of O\(_3\) and HCHO with the present of NO\(_x\). Removing isoprene can slow down the reaction of HO\(_2\)+NO and RO\(_2\)+NO by ~21% and ~30%, respectively, and eventually cause ~36% decrease of O\(_3\). As a result of lower O\(_3\) concentration, average concentration of NO\(_3\) dropped by 11% in S1. The absence of isoprene can lead to decrease of RO (from isoprene)
and RO₅ concentration and cause an obvious drop of HCHO formation (~54%). On the other hand, the decrease in RO₅ and HCHO also leads to slower depletion rate of HCHO. Therefore, cutting isoprene can only lead to limited decrease in HCHO concentration. Overall, this study underlines the significant role of isoprene chemistry in radical chemistry, photochemical reactions, and secondary pollutant formation in the atmosphere of the YRD region and provides insights into secondary pollution and its formation mechanisms.

Data availability. The data that support the results are available from the corresponding author upon request.

Authorship contribution. Kun Zhang: Formal analysis, Writing-original draft. Li Li: Writing-review & editing. Ling Huang: Formal analysis. Juntao Huo: Formal analysis. Yusen Duan: Formal analysis. Yuhang Wang: Formal analysis. Yangjun Wang: Formal analysis. Qingyan Fu: Formal analysis.

Competing interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the word reported in this paper.

Acknowledgements. We thank Shanghai Environmental Monitoring Center (SEMC) for conducting the measurement and sharing the data. This study is supported by the National Natural Science Foundation of China (No.4185161), Shanghai International Science and Technology Cooperation Fund (No. 19230742500), and Shanghai Science and Technology Fund (No. 19DZ1205007). Y. Wang was supported by the National Science Foundation.
Financial support. This study was financially supported by the National Natural Science Foundation of China (No.4185161), Shanghai International Science and Technology Cooperation Fund (No. 19230742500), and Shanghai Science and Technology Fund (No. 19DZ1205007). Y. Wang was supported by the National Science Foundation.

References

Atkinson, R., and Arey, J.: Atmospheric degradation of volatile organic compounds, Chemical reviews, 103, 4605-4638, 2003.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II - Gas phase reactions of organic species, Atmospheric Chemistry and Physics, 6, 3625-4055, 10.5194/acp-6-3625-2006, 2006.

Chan, K. L., Wang, S. S., Liu, C., Zhou, B., Wenig, M. O., and Saiz-Lopez, A.: On the summertime air quality and related photochemical processes in the megacity Shanghai, China, Science of the Total Environment, 580, 974-983, 2017.

D’Ambro, E. L., Møller, K. H., Lopez-Hilfiker, F. D., Schobesberger, S., Liu, J., Shilling, J. E., Lee, B. H., Kjaergaard, H. G., and Thornton, J. A.: Isomerization of second-generation isoprene peroxy radicals: Epoxide formation and implications for secondary organic aerosol yields, Environmental science & technology, 51, 4978-4987, 2017.

Gong, D., Wang, H., Zhang, S., Wang, Y., Liu, S. C., Guo, H., Shao, M., He, C., Chen, D., He, L., Zhou, L., Morawska, L., Zhang, Y., and Wang, B.: Low-level summertime isoprene observed at a forested mountaintop site in southern China: implications for strong regional atmospheric oxidative capacity, Atmospheric Chemistry and Physics, 18, 14417-14432, 10.5194/acp-18-14417-2018, 2018.

He, Z. R., Wang, X. M., Ling, Z. H., Zhao, J., Guo, H., Shao, M., and Wang, Z.: Contributions of different anthropogenic volatile organic compound sources to ozone formation at a receptor site in
the Pearl River Delta region and its policy implications, Atmospheric Chemistry and Physics, 19, 8801-8816, 2019.

Jenkin, M. E., Young, J. C., and Rickard, A. R.: The MCM v3.3.1 degradation scheme for isoprene, Atmospheric Chemistry and Physics, 15, 11433-11459, 10.5194/acp-15-11433-2015, 2015.

Lin, H., Wang, M., Duan, Y., Fu, Q., Ji, W., Cui, H., Jin, D., Lin, Y., and Hu, K.: O3 sensitivity and contributions of different nmhc sources in O3 formation at urban and suburban sites in Shanghai, Atmosphere, 11, 1-18, 10.3390/atmos11030295, 2020.

Liu, X., Lyu, X., Wang, Y., Jiang, F., and Guo, H.: Intercomparison of O3 formation and radical chemistry in the past decade at a suburban site in Hong Kong, Atmospheric Chemistry and Physics, 19, 5127-5145, 10.5194/acp-19-5127-2019, 2019.

Liu, Y., Yuan, B., Li, X., Shao, M., Lu, S., Li, Y., Chang, C.C., Wang, Z., Hu, W., Huang, X., He, L., Zeng, L., Hu, M., Zhu, T., 2015. Impact of pollution controls in Beijing on atmospheric oxygenated volatile organic compounds (OVOCs) during the 2008 Olympic Games: observation and modeling implications. Atmospheric Chemistry and Physics 15(6), 3045-3062.

Liu, Y. J., Herdlinger-Blatt, I., McKinney, K. A., and Martin, S. T.: Production of methyl vinyl ketone and methacrolein via the hydroperoxyl pathway of isoprene oxidation, Atmospheric Chemistry and Physics, 13, 5715-5730, 10.5194/acp-13-5715-2013, 2013.

Liu, Z., Wang, Y., Gu, D., Zhao, C., Huey, L. G., Stickel, R., Liao, J., Shao, M., Zhu, T., Zeng, L., Amoroso, A., Costabile, F., Chang, C. C., and Liu, S. C.: Summertime photochemistry during CAREBeijing-2007: ROx budgets and O3 formation, Atmospheric Chemistry and Physics, 12, 7737-7752, 2012.

Tan, Z. F., Lu, K. D., Jiang, M. Q., Su, R., Wang, H. L., Lou, S. R., Fu, Q. Y., Zhai, C. Z., Tan, Q. W., Yue, D. L., Chen, D. H., Wang, Z. S., Xie, S. D., Zeng, L. M., and Zhang, Y. H.: Daytime atmospheric oxidation capacity in four Chinese megacities during the photochemically polluted season: a case study based on box model simulation, Atmospheric Chemistry and Physics, 19, 3493-3513, 2019.

Wennberg, P. O., Bates, K. H., Crounse, J. D., Dodson, L. G., McVay, R. C., Mertens, L. A., Nguyen, T. B., Praske, E., Schwantes, R. H., Smarte, M. D., St Clair, J. M., Teng, A. P., Zhang, X., and
Seinfeld, J. H.: Gas-Phase Reactions of Isoprene and Its Major Oxidation Products, Chemical Reviews, 118, 3337-3390, 10.1021/acs.chemrev.7b00439, 2018.

Wolfe, G. M., Kaiser, J., Hanisco, T. F., Keutsch, F. N., de Gouw, J. A., Gilman, J. B., Graus, M., Hatch, C. D., Holloway, J., Horowitz, L. W., Lee, B. H., Lerner, B. M., Lopez-Hilfiker, F., Mao, J., Marvin, M. R., Peischl, J., Pollack, I. B., Roberts, J. M., Ryerson, T. B., Thornton, J. A., Veres, P. R., and Warneke, C.: Formaldehyde production from isoprene oxidation across NOx regimes, Atmospheric Chemistry and Physics, 16, 2597-2610, 10.5194/acp-16-2597-2016, 2016a.

Wolfe, G. M., Marvin, M. R., Roberts, S. J., Travis, K. R., and Liao, J.: The Framework for 0-D Atmospheric Modeling (FOAM) v3.1, Geoscientific Model Development, 9, 3309-3319, 10.5194/gmd-9-3309-2016, 2016b.

Xue, L., Gu, R., Wang, T., Wang, X., Saunders, S., Blake, D., Louie, P. K. K., Luk, C. W. Y., Simpson, I., Xu, Z., Wang, Z., Gao, Y., Lee, S., Mellouki, A., and Wang, W.: Oxidative capacity and radical chemistry in the polluted atmosphere of Hong Kong and Pearl River Delta region: Analysis of a severe photochemical smog episode, Atmospheric Chemistry and Physics, 16, 9891-9903, 10.5194/acp-16-9891-2016, 2016a.

Xue, L. K., Gu, R. R., Wang, T., Wang, X. F., Saunders, S., Blake, D., Louie, P. K. K., Luk, C. W. Y., Simpson, I., Xu, Z., Wang, Z., Gao, Y., Lee, S. C., Mellouki, A., and Wang, W. X.: Oxidative capacity and radical chemistry in the polluted atmosphere of Hong Kong and Pearl River Delta region: analysis of a severe photochemical smog episode, Atmospheric Chemistry and Physics, 16, 9891-9903, 2016b.

Yang, X., Xue, L. K., Wang, T., Wang, X. F., Gao, J., Lee, S. C., Blake, D. R., Chai, F. H., and Wang, W. X.: Observations and Explicit Modeling of Summertime Carbonyl Formation in Beijing: Identification of Key Precursor Species and Their Impact on Atmospheric Oxidation Chemistry, J Geophys Res-Atmos, 123, 1426-1440, 2018.

Yang, X., Zhang, G. Q., Sun, Y. M., Zhu, L., Wei, X. F., Li, Z., and Zhong, X. L.: Explicit modeling of background HCHO formation in southern China, Atmospheric Research, 240, UNSP 104941.1016/j.atmosres.2020.104941, 2020.
Zeng, P., Lyu, X. P., Guo, H., Cheng, H. R., Wang, Z. W., Liu, X. F., and Zhang, W. H.: Spatial variation of sources and photochemistry of formaldehyde in Wuhan, Central China, Atmospheric Environment, 214, 2019.

Zhang, K., Zhou, L., Fu, Q., Yan, L., Bian, Q., Wang, D., and Xiu, G.: Vertical distribution of ozone over Shanghai during late spring: A balloon-borne observation, Atmospheric Environment, 208, 48-60, 2019.

Zhang, K., Li, L., Huang, L., Wang, Y., Huo, J., Duan, Y., Wang, Y., and Fu, Q.: The impact of volatile organic compounds on ozone formation in the suburban area of Shanghai, Atmospheric Environment, 232, 10.1016/j.atmosenv.2020.117511, 2020a.

Zhang, K., Xu, J., Huang, Q., Zhou, L., Fu, Q., Duan, Y., and Xiu, G.: Precursors and potential sources of ground-level ozone in suburban Shanghai, Frontiers of Environmental Science and Engineering, 14, 10.1007/s11783-020-1271-8, 2020b.

Zhu, J., Cheng, H., Peng, J., Zeng, P., Wang, Z., Lyu, X., and Guo, H.: O3 photochemistry on O3 episode days and non-O3 episode days in Wuhan, Central China, Atmospheric Environment, 223, 10.1016/j.atmosenv.2019.117236, 2020a.

Zhu, J., Wang, S. S., Wang, H. L., Jing, S. G., Lou, S. R., Saiz-Lopez, A., and Zhou, B.: Observationally constrained modeling of atmospheric oxidation capacity and photochemical reactivity in Shanghai, China, Atmospheric Chemistry and Physics, 20, 1217-1232, 2020b.

Zong, R. H., Yang, X., Wen, L., Xu, C. H., Zhu, Y. H., Chen, T. S., Yao, L., Wang, L. W., Zhang, J., M., Yang, L. X., Wang, X. F., Shao, M., Zhu, T., Xue, L. K., and Wang, W. X.: Strong ozone production at a rural site in the North China Plain: Mixed effects of urban plumes and biogenic emissions, Journal of Environmental Sciences, 71, 261-270, 10.1016/j.jes.2018.05.003, 2018.