Electronic Supplementary Information (ESI)

Flexible electrochromic devices based on tungsten oxide and Prussian blue nanoparticles for automobile applications

Chan Yang Jeonga,b, Takashi Kubotab, and Kazuki Tajimab,*

aKitami Institute of Technology (KIT), 165 Koen-cho, Kitami, Hokkaido 090-8507, Japan

bNational Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

*Corresponding author: k-tajima@aist.go.jp
Table S1 Properties of the PB- and WO$_3$-NP dispersible inks with varying PVA contents of 10 and 1 wt.%, respectively.

	PB-10 wt% PVA ink	WO$_3$-1 wt% PVA ink
Surface tension (mN/m)	45.1	52.3
Viscosity (cP)	19.4	7.3
Density (g/cm3)	1.08	4.07
pH	6.7	4.9
Contact angle (°)	93.6	48.8
(before UV treatment)		
Contact angle (°)	48.8	46.4
(after UV treatment)		

Table S2 Spin-coating conditions for the preparation of 1 μm-thick WO$_3$ and PB thin films.

Viscosity (cP)	Revolution (rpm)	Time (s)
1–10	300	600 s
10–14	360	600 s
14–17	400	600 s
	500	10 s
17–35	1000	10 s
Table S3 Estimated thicknesses of the WO$_3$ and PB thin films.

Substrate	Sample	substrate area (cm2)	substrate before spin coating (g)	substrate after spin coating (g)	Amount of coated (g)	Estimated film thickness (μm)
ITO/PET	WO$_3$	25	0.3722	0.3823	0.0101	1.24
	PB	25	0.3740	0.3770	0.0031	1.11
ITO/glass	WO$_3$	25	4.4302	4.4394	0.0092	1.13
	PB	25	4.3854	4.3882	0.0028	1.04

Table S4 Details of the haze and chromaticity of PET-based and glass-based ECDs in the coloured and transparent states.

Substrate	colour states	Estimate colour	Haze	L*	a*	b*
PET	Coloured	3.61	47.67	-18.28	-38.89	
	Transparent	2.93	91.35	-2.63	3.6	
Glass	Coloured	3.06	41.99	-15.51	-42.96	
	Transparent	4.19	88.94	-7.58	1.65	
Table S5: Transmittance (T), optical density (OD), coloration efficiency (CE), and optical switching time at a wavelength of 633 nm for ECDs fabricated under different light aging conditions in their colored and bleached states.

Wavelength (nm)	Substrate	ECD area (cm²)	T_bleached (%)	T_colored (%)	Charge (C)	Current density (A/cm²)	ΔOD	CE (cm²/C)	
633	PET	16	79.89	1.31	0.23	0.01	1.88	1.78	123.32
	Glass	16	80.00	0.32	0.44	0.03	2.50	2.40	86.44

Figure S1: The *in situ* optical density change with respect to the charge density of PET-based and glass-based ECDs.