Most experimental studies measuring the effects of climate change on terrestrial C cycling have focused on processes that occur at relatively short time scales (up to a few years). However, climate-soil C interactions are influenced over much longer time scales by bioturbation and by soil weathering affecting soil fertility, ecosystem productivity, and C storage. Elevated CO$_2$ can increase belowground C inputs and stimulate soil biota, potentially affecting bioturbation, and can decrease soil pH which could accelerate soil weathering rates. To determine whether we could resolve any changes in bioturbation or C storage, we investigated soil profiles collected from ambient and elevated-CO$_2$ plots at the Free-Air Carbon-Dioxide Enrichment (FACE) forest site at Oak Ridge National Laboratory after 11 years of 13C-depleted CO$_2$ release. Profiles of organic carbon concentration, δ^{13}C values, and activities of 137Cs, 210Pb, and 226Ra were measured to ~30 cm depth in replicated soil cores to evaluate the effects of elevated CO$_2$ on these parameters. Bioturbation models based on fitting advection-diffusion equations to 137Cs and 210Pb profiles showed that ambient and elevated-CO$_2$ plots had indistinguishable ranges of apparent biodiffusion constants, advection rates, and soil mixing times, although apparent biodiffusion constants and advection rates were larger for 137Cs than for 210Pb as is generally observed in soils. Temporal changes in profiles of δ^{13}C values of soil organic carbon (SOC) suggest that addition of new SOC at depth was occurring at a faster rate than that implied by the net advection term of the bioturbation model. Ratios of (210Pb/226Ra) may indicate apparent soil mixing cells that are consistent with biological mechanisms, possibly earthworms and root proliferation, driving C addition and the mixing of soil between ~4 cm to ~18 cm depth. Burial of SOC by soil mixing processes could substantially increase the net long-term storage of soil C and should be incorporated in
soil-atmosphere interaction models.
Does elevated atmospheric CO$_2$ affect soil carbon burial and soil weathering in a forest ecosystem?

Miquel A. Gonzalez-Meler1*, Armen Poghosyan1,2, Yaniria Sánchez-de León1,3, Eduardo Dias de Olivera1, Richard J. Norby4, Neil C. Sturchio1,5

1 Department of Biological Sciences and Department of Earth and Environmental Sciences, University of Illinois at Chicago, Chicago, Illinois, USA

2 Space Center, Skolkovo Institute of Science and Technology, Moscow, Russia

3 Department of Agro-environmental Sciences, University of Puerto Rico at Mayaguez, Mayaguez, Puerto Rico

4 Environmental Science Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA

5 Department of Earth and Environmental Sciences, University of Delaware, Newark, Delaware, USA

*Corresponding author: mmeler@uic.edu

Running Head: Bioturbation in forest soils
Abstract

Most experimental studies measuring the effects of climate change on terrestrial C cycling have focused on processes that occur at relatively short time scales (up to a few years). However, climate-soil C interactions are influenced over much longer time scales by bioturbation and by soil weathering affecting soil fertility, ecosystem productivity, and C storage. Elevated CO$_2$ can increase belowground C inputs and stimulate soil biota, potentially affecting bioturbation, and can decrease soil pH which could accelerate soil weathering rates.

To determine whether we could resolve any changes in bioturbation or C storage, we investigated soil profiles collected from ambient and elevated-CO$_2$ plots at the Free-Air Carbon-Dioxide Enrichment (FACE) forest site at Oak Ridge National Laboratory after 11 years of 13C-depleted CO$_2$ release. Profiles of organic carbon concentration, δ^{13}C values, and activities of 137Cs, 210Pb, and 226Ra were measured to ~30 cm depth in replicated soil cores to evaluate the effects of elevated CO$_2$ on these parameters. Bioturbation models based on fitting advection-diffusion equations to 137Cs and 210Pb profiles showed that ambient and elevated-CO$_2$ plots had indistinguishable ranges of apparent biodiffusion constants, advection rates, and soil mixing times, although apparent biodiffusion constants and advection rates were larger for 137Cs than for 210Pb as is generally observed in soils. Temporal changes in profiles of δ^{13}C values of soil organic carbon (SOC) suggest that addition of new SOC at depth was occurring at a faster rate than that implied by the net advection term of the bioturbation model. Ratios of (210Pb/226Ra) may indicate apparent soil mixing cells that are consistent with biological mechanisms, possibly earthworms and root proliferation, driving C addition and the mixing of soil between ~4 cm to
~18 cm depth. Burial of SOC by soil mixing processes could substantially increase the net long-term storage of soil C and should be incorporated in soil-atmosphere interaction models.
Introduction

Soils contain most of the organic carbon in Earth’s “critical zone”, thus formation, transport and degradation of soil organic carbon (SOC) are key factors in the global carbon cycle (Hopkins et al., 2013). Fixation of atmospheric CO$_2$ by plant photosynthesis and the consequent decomposition and release of this organic carbon as CO$_2$ by soil biota are principal factors in the evolution of the SOC pool and the atmospheric concentration of CO$_2$. Soil organic carbon decomposition depends on vegetation, microbial community, molecular composition of the organic matter, mineralogy, moisture, and temperature (Tisdall & Oates, 1982; Jastrow, 1996; Jastrow et al., 2006; O’Brien et al., 2010; Cheng et al., 2014). Climate change forcing factors can directly and indirectly affect soil C stocks, altering the resilience of vegetation and human society to climate change (Jastrow et al., 2005; Hungate & Hampton, 2012; O’Brien et al., 2015). However, the long-term fate of terrestrial soil C stocks under climate change scenarios may also be a function of soil C transport and burial processes (Chaopricha & Marín-Spiotta, 2014). Transport of SOC within the soil C matrix is difficult to measure but SOC burial has been recognized in playing a role in the responses of the soil C pool to climatic factors (Lehmann & Kleber, 2015).

Mechanical mixing of soil by bioturbation (the mixing of soil particles by biological agents) can modulate the rate of SOC decomposition by vertical transport, potentially bringing SOC from the surface to depth, and vice-versa (Gabet, Reichman & Seabloom, 2003; Wilkinson et al., 2009). This process operates slowly and affects the SOC cycle on centurial time-scales, yet its effects must be taken into account when modeling carbon fluxes at regional or global scales (Koven et al., 2009; Drewniak & Gonzalez-Meler, 2017). Our need to understand the climate...
feedbacks caused by the alteration of the global carbon cycle is becoming more urgent because of the dramatic increase in atmospheric CO$_2$ caused by anthropogenic activities. Long-term predictions of Earth system responses to global climate change or CO$_2$ increase require a better understanding of soil C processes that operate at multi-decadal time scales (e.g., O’Brien et al., 2010, 2011) to model future biosphere feedbacks on atmospheric greenhouse gas composition. Specific mechanistic information on bioturbation in temperate forested ecosystems is limited (Fujiyoshi & Sawamura, 2004; Kaste et al., 2007, 2011), and available studies generally do not explicitly link long term soil C movement to climate change forcing factors.

Soil biota can alter soil chemical and physical properties in response to climate change and perhaps accelerate soil mixing and C burial rates (Wilkinson et al., 2009; Sánchez-de León et al., 2014; Chaopricha & Marín-Spiotta, 2014). Increased soil biological activity in ecosystems exposed to elevated CO$_2$ often increases soil CO$_2$ concentrations (Taneva & Gonzalez-Meler, 2011), that may cause soil acidification and increased weathering rates (Andrews & Schlesinger, 2001; Bernhardt et al., 2006). Lowering pH and increased plant nutrient uptake may result in loss of soil fertility, affecting the way plants further respond to elevated CO$_2$. Evidence for net loss of metal and cations via leaching has been shown in some elevated CO$_2$ studies (Cheng et al., 2010) but not in others (Oh et al., 2007; Kaste et al., 2011; Duval et al., 2013). The bulk of C and nutrients in the soil is associated with particles, yet it is not well understood how soil particle mixing would determine long-term C storage in a high-CO$_2$ world.

The Free-Air Carbon Dioxide Enrichment (FACE) enrichment experiment at Oak Ridge National Laboratory (ORNL) in eastern Tennessee, USA, provided an opportunity to examine the effects of elevated atmospheric CO$_2$ on SOC and bioturbation in a closed-canopy deciduous
This site has been shown to accrue more soil C at the elevated CO\textsubscript{2} conditions when compared to ambient conditions (Jastrow et al., 2005). In addition, elevated CO\textsubscript{2} has enhanced root proliferation (Matamala et al., 2003; Iversen et al., 2011; Lynch et al., 2013) and earthworm activity (Sánchez-de León et al., 2014; 2018), two major drivers of bioturbation in temperate forest soils (Wilkinson, Richards & Humphreys, 2009).

In conjunction with the soil C cycle and earthworm studies, we measured soil profiles of fallout 137Cs and 210Pb activities, along with those of 40K and 226Ra. Large pulses of 137Cs were introduced into the stratosphere during thermonuclear weapons tests of the 1950s and 1960s, with a well-defined maximum deposition at Earth's surface occurring in 1963. This surface deposition of 137Cs and other weapons fallout radionuclides provides a globally distributed time horizon in soils and sediments, which has been used widely to determine sedimentation rates and sediment mixing by organisms in soils, lakes and oceans (Guinasso & Schink, 1975; Olsen et al., 1981; Robbins, 1986; Kaste et al., 2007, 2011). In contrast to the bomb-pulse input of 137Cs, 210Pb is continuously deposited from the atmosphere and is also produced by decay of 226Ra in soil via 222Rn. Because 137Cs and 210Pb are strongly adsorbed to soil particles and are not biologically transformed, they are especially useful as tracers of soil mixing and bioturbation at different shallow soil depths (Brückmann & Wolters, 1994; Bunzl, 2002; Schuller et al., 2004; Kaste et al., 2007, 2011). In this study, we apply advection-diffusion models to estimate bioturbation rates from 137Cs and 210Pb profiles in soils of the ORNL FACE site, and use these results along with 226Ra and 40K profiles to compare bioturbation, redistribution of SOC, and potential weathering effects under ambient and elevated-CO\textsubscript{2} conditions.
Material and Methods

The CO$_2$ treatment at the ORNL FACE experiment was initiated in 1998 and continued for 12 growing seasons through 2009. The site is contained in a 1.7-hectare sweetgum (Liquidambar styraciflua L.) plantation on the Oak Ridge National Environmental Research Park that was planted with 1-year-old trees in 1988 on an upland terrace of the Clinch River. The FACE experiment comprised five 25-m diameter plots (two elevated CO$_2$ and three control plots), each plot representing a replicate. The CO$_2$ concentration in the elevated CO$_2$ plots was maintained about 150 ppm above ambient during the experiment, at first continuously until 2001, and then only during daylight hours through the end of the experiment in 2009. Soil at the ORNL FACE site is classified as an Aquic Hapludult (Ultisol) that developed from alluvium derived from dolomite, sandstone, and shale. It is a moderately well drained, slightly acidic, silty clay loam soil with high base saturation (van Miegroet et al., 1994). Results of the ORNL FACE experiment have been highlighted in several articles (Matamala et al., 2003; Norby et al., 2010; Iversen et al., 2012).

Sampling and Sample Preparation. Soil samples were collected from the ORNL FACE site ten years into the experiment in September 2008. We used a sharpened steel pipe (4.8 cm diameter) driven into the soil with a nylon-face mallet (Sánchez-de Leon et al., 2018) to obtain four cores from each of the ambient (control) plots and four from each of the elevated CO$_2$ plots. Intact soil cores were stored frozen and sectioned with a thin ice-core saw (while frozen and the blades cleaned between cuts) as follows: the top 8 cm of each core was sectioned into 1-cm depth increments, and from 8 to ~20 cm depth the core was sectioned into 2-cm depth increments. Additional soil core samples from 20-25 and 25-30 cm were collected adjacent to
each sampling spot to help constrain the maximum depth of measurable 137Cs activity. No samples were collected below 30 cm depth for these experiments. We compared our samples with soils samples collected in 1997 (prior to the initiation of FACE experiment) and archived. Pre-treatment core samples were for depth ranges of 0-5, 0-15, 15-30, and 30-45 cm from both the ambient and elevated-CO$_2$ plots.

After sectioning the soil cores, rocks and roots were manually removed from each section. Samples were dried at 80°C, gently crushed and sieved to pass through a 2-mm sieve. Dry bulk densities were calculated from separate samples by comparing the 2 mm-sieved soil dry weight with the core section volume after correction for the occasional small rocks being removed.

Soil organic carbon concentration and stable C isotope ratios. Soil samples were ground to a fine powder for analysis of organic C concentration and stable C isotope ratios. Carbonates were removed before analyses as explained elsewhere (O’Brien et al., 2015). Analyses were performed at the Ecology Stable Isotope Laboratory (UIC) using a Costech ECS 4010 elemental analyzer with a zero-blank autosampler interfaced with a ThermoFinnigan Delta-Plus XL isotope ratio mass spectrometer in continuous flow. Soil organic C concentrations are reported in %C (dry weight basis). The 13C/12C isotope ratios are reported in the conventional delta notation, in units of per mil relative to the standard reference material VPDB (Coplen, 1996), according to:

$$\delta^{13}C, \%o = \left(\frac{R_{sample}}{R_{VPDB}} - 1\right) \times 1,000 \quad \{1\}$$

where R is the atom ratio 13C/12C. Reproducibility of δ^{13}C values is better than ± 0.1‰ when compared to international standards.
Gamma Spectrometry. Gamma spectrometry was performed at the Environmental Isotope Geochemistry Laboratory (UIC) by using a Canberra model GR3020 reverse-electrode intrinsic Ge detector system interfaced with a DSA-2000 digital spectrum analyzer. Dry homogenized sediment samples (5 to 10 g) were weighed into aluminum counting cans and these were sealed with Al foil. Gamma activities for 40K, 137Cs, 210Pb, and 226Ra were measured at 1460.5, 661.6, 46.5, and 186.2 keV, respectively, with cans centered on top of the detector. Detector efficiency was calibrated versus sample weight in the same geometry using the certified standards CANMET DL-1a (U-Th ore diluted in quartz sand) and NIST SRM-4357 (Ocean Sediment). Relative uncertainties of measured activities were less than ±10% for activities >4 Bq kg$^{-1}$, as calculated from counting statistics incorporating background subtraction and propagated errors. Activities were measured per sample dry mass and normalized to dry bulk density measurements for reporting in units of Bq cm$^{-3}$ or Bq kg$^{-1}$.

Bioturbation model based on 137Cs profiles. Mathematical models combining advection and diffusion have been developed to explain the downward movement of 137Cs and the diffusion-like broadening of its profile in soils and sediments (Guinasso & Schink, 1975; Olsen et al., 1981; Robbins, 1986). The steady-state bioturbation model (Eq. 2 in (Robbins, 1986)) describes the total concentration [$C(x,t)$] of particle-bound radionuclides in the soil as a function of the vertical distance (x), and time (t). Biological agents and advection explain the downward transport of 137Cs (see equation (2)). The biodiffusion coefficient (D_b) describes diffusive mixing of bulk soil by biological agents. Transport of 137Cs can also be caused by advective processes involving motion of particles and pore fluid (v). The net loss or gain of the
\(^{137}\text{Cs} \) within the soil profile is accounted for by the radioactive decay constant (\(\lambda \)) and the first-order feeding rate constant that describes net transport of \(^{137}\text{Cs} \) by moving organisms (\(\gamma \)):

\[
\frac{\partial C}{\partial t} = \frac{\partial}{\partial x} \left(D_b \frac{\partial C}{\partial x} \right) - \frac{\partial}{\partial x} (\nu C) - (\lambda + \gamma) C \quad \{2\}
\]

Best-fits for the average ambient and elevated-CO\(_2\) \(^{137}\text{Cs} \) profiles used the following fixed values for the model (Eq. \{2\}): 0.75 Bq cm\(^{-2}\) for the initial activity of \(^{137}\text{Cs} \) (\(C_0 \)) (Hardy et al., 1968) (CDC-NCT 2005); 45 years for time elapsed (\(t \)) between \(^{137}\text{Cs} \) tracer deposition in 1963 and sample collection in 2008 (or 34 years for 1997); and, 0.023 yr\(^{-1}\) for the \(^{137}\text{Cs} \) decay constant (\(\lambda \)). For a pulse-like input of the tracer, the model represented in equation (2) has a well-known solution, which has been widely used to describe \(^{137}\text{Cs} \) profiles in soils (Genuchten & Cleary, 1979; Ivanov et al., 1997; Bossew & Kirchner, 2004; Schulle et al., 2004).

\[
C(x, t) = C_0 e^{- (\lambda + \gamma) t} \left\{ \begin{array}{c}
\frac{1}{\pi D_b t} e^{- (x - \nu t)^2 / (4D_b t)} - \frac{\nu x}{2D_b} e^{\nu x / D_b} \text{erfc} \left(\frac{x + \nu t}{2 \sqrt{D_b t}} \right)
\end{array} \right\} \quad \{3\}
\]

We calculated error-weighted least-squares best fits of equation \{3\} to the data for each of our measured \(^{137}\text{Cs} \) profiles by using MATLAB.

Bioturbation model based on unsupported \(^{210}\text{Pb} \) profiles. Mathematical models combining advection and diffusion terms to account for downward transport and dispersion of unsupported \(^{210}\text{Pb} \) differ from those for \(^{137}\text{Cs} \), because \(^{137}\text{Cs} \) is deposited in a pulse-like manner whereas \(^{210}\text{Pb} \) is deposited continuously as it is produced from decay of atmospheric \(^{222}\text{Rn} \) (Robbins, 1978). We used the following steady-state equation to describe advective-diffusive
transport of \(^{210}\)Pb (Kaste et al., 2011), where \(A_z\) is the initial activity of unsupported \(^{210}\)Pb at the surface (Bq/kg); \(A_z\) is the activity of unsupported \(^{210}\)Pb at depth \(z\) (cm); \(v\) is the advection rate (cm yr\(^{-1}\)); \(D\) is the diffusion constant (cm yr\(^{-1}\)); and \(\lambda\) is the decay constant of \(^{210}\)Pb (0.031 yr\(^{-1}\)).

\[
A(z) = A_0 \exp \left[\frac{v - \sqrt{v^2 + 4\lambda D}}{2D} \right].
\]

\(\text{Results}\)

Soil organic carbon and \(\delta^{13}\)C profiles. Soil organic carbon content was highest at the surface and decreased with depth (Fig. 1A). The top 6 cm of the elevated-CO\(_2\) profiles, on average, have \(\delta^{13}\)C values significantly lower than in the ambient profiles (Fig. 1B), as indication of SOC inputs since the initiation of the experiment in 1998. As a result of new inputs, the top 2 cm of the elevated-CO\(_2\) profiles, on average, have significantly higher SOC content than in the ambient profiles \((p<0.05)\), but below 2-4 cm depth the average profiles are not significantly different (Fig. 1A). When the \(\delta^{13}\)C values are compared with the inverse SOC content, it is apparent that the average elevated-CO\(_2\) profile is depleted in \(^{13}\)C. The SOC being deposited at the soil surface has a \(\delta^{13}\)C value of about -38 \(\%o\) in the elevated-CO\(_2\) plot compared with -28 \(\%o\) in the ambient plot (Fig. 2).

Soil bulk density was lower at the top 5 cm of the soil profile than at the rest of the soil depths (Table 1). Bulk density increased from values of about 0.5 g cm\(^{-3}\) at shallow depths to values greater than 1 g cm\(^{-3}\) at 5-6 cm depth and deeper. This may reflect degradation and mineralization of the litter layer which occurs during the first decades following deposition and produces denser residual material (Kaste et al., 2011).
137Cs profiles. Detectable 137Cs was measured from the surface to a depth of at least 20–30 cm in all soil profiles (Fig. 3). Total 137Cs inventories of the soil profiles are less than or equal to that expected if the assumed initial activity of 137Cs (0.75 Bq cm⁻³) remained in place and decayed for a period of 45 years from deposition in 1963 to sampling in 2008. Maximum measured activity for 137Cs was 27.3 ± 0.6 mBq cm⁻³. Profiles of 137Cs activity generally increase with depth from activities of about 2 to 6 mBq cm⁻³ at the surface to maximum activities at around 8 to 14 cm depth, followed by a general decrease to values of 0.5 to 2 mBq cm⁻³ at 30 cm depth.

Pre-treatment core samples for depth ranges of 0-5, 0-15, 15-30, and 30-45 cm collected in 1997 from both the pre-treatment ambient and elevated-CO₂ plots (prior to initiation of the FACE experiment) had cumulative 137Cs activities equal to those of the post-treatment samples collected in 2008 (Fig. 4). There was no measurable activity of 137Cs beyond 30 cm depth before and during the FACE experiment (Figs. 3 and 4).

For the 2008 samples, more 137Cs activity was found at greater depth in elevated CO₂ plots when compared to ambient control plots (Fig 3; p<0.05). There was measurable 137Cs activity at the 25-30 cm in soil samples collected in the elevated CO₂ plots, whereas the average depth of the deepest measurable 137Cs activity in the ambient plots was 20.6 ± 2.5 cm. Similar values of 137Cs activity were found for the 15-30 cm soil samples collected in 1997.

Bioturbation model. Bioturbation derived mixing rates were not significantly different between the ambient and elevated CO₂ plots (Table 2; Fig 3). We solved Eq. {3} for the biogenic
diffusivity (D_b), particle advection velocity (ν), and feeding rate constant (γ) values. Advection velocities are indistinguishable for both treatments with an average value of 0.18-0.19 cm yr$^{-1}$ (Table 2). The feeding rate constants were 0.008±0.003 yr$^{-1}$ for ambient and 0.005±0.001 yr$^{-1}$ for elevated-CO$_2$ plots. The D_b values were at 0.53±0.20 cm2 yr$^{-1}$ at ambient and 0.63±0.29 cm2 yr$^{-1}$ at elevated-CO$_2$. These biogenic diffusion coefficients (D_b) were used for calculating mixing time constants (τ) for a soil layer thickness $L = 20$ cm ($\tau = L^2D_b^{-1}$) (Kaste et al., 2007). The top 20 cm layer of soil at the ORNL FACE site has estimated average mixing times ranging from about 640 to 750 years (Table 2) but with wide spatial variability.

210Pb profiles. The activity ratio (210Pb/226Ra) is a good indicator of excess (or deficient) 210Pb relative to that expected from secular equilibrium with 226Ra [at secular equilibrium, (210Pb/226Ra) = 1]. The average (210Pb/226Ra) activity ratio profiles in the ambient and elevated-CO$_2$ plots are similar, showing excess 210Pb in the upper 5-to-10 cm and a deficit of 210Pb below 10 cm depth (Fig. 5). Best-fit solutions of Eq. (4) to the (210Pb/226Ra) profiles all yielded lower values of diffusion constant (near 0) and advection rate (~0.9 cm yr$^{-1}$) than did the 137Cs models. We show the best-fit steady-state advection-decay model in comparison with the mean (210Pb/226Ra) profiles in Fig. 5. The parameters in this model were a constant initial (210Pb/226Ra) value of 2.3 and a steady-state (210Pb/226Ra) ratio of 0.75 at depths below 20-to-24 cm, where excess 210Pb has decayed to <2% of its initial amount (Fig. 5). The steady-state value of 0.75, representing a 25% loss of in situ 222Rn production, is based on a survey of 222Rn loss in 119 soil cores from undisturbed landscapes in North America. As with the 137Cs profiles, no significant
The rate of bioturbation, as indicated by the best-fit biodiffusion coefficient D_b from the ^{137}Cs model (Eq. {3}), was indistinguishable between ambient and elevated CO$_2$ conditions (Table 2) despite increased root growth and enhanced earthworm density at the treatment sites (Iversen et al., 2008; Sánchez-de León et al., 2014). This mixing rate was sufficient to move some SOC from the surface to depth and vice-versa during the 10-year FACE experimental period, suggesting that not all the 13C depleted C seen at a given depth at elevated CO$_2$ is solely derived from C inputs at that depth. This downward movement of FACE-labeled C by bioturbation may partly contribute to the inability to detect relative increases in SOC below 5 cm at elevated CO$_2$ conditions when compared to ambient (Jastrow et al., 2005). Radionuclide profiles of 40K and 226Ra, however, do not show evidence of more rapid leaching of cations at elevated CO$_2$ conditions when compared to the ambient ones, at least in the top 30 cm of soil (Figure 6). The 40K and 226Ra profiles rather may indicate decomposition of labile SOC in the upper 5 cm of soil, with corresponding enrichment of 40K and 226Ra in the residual, more refractory organic matter (Kaste et al., 2011).

The ^{137}Cs and unsupported ^{210}Pb profiles of this forest resemble those observed in other studies of these radionuclides in soils (Dörr and Münnich, 1989, 1991; Kaste et al., 2011; Matisoff & Whiting, 2012). Elevated atmospheric CO$_2$ results in soils having substantially higher root biomass (Matamala et al., 2003; Lynch et al., 2013), soil CO$_2$ concentrations and flux.
(Taneva et al., 2006; Duval et al., 2013), and in some instances increased microbial and soil macrofaunal activity, including that of earthworms (Sánchez-de León et al., 2014; 2018). All these factors could enhance the vertical movement of ^{137}Cs and unsupported ^{210}Pb within the soil profile under elevated CO$_2$ conditions. However, the higher microbial activity in the organic rich soil layers (<15 cm for these soils) often seen in response to elevated CO$_2$ conditions (Taneva & Gonzalez-Meler, 2011; Cheng et al., 2014), could also increase the retention of ^{137}Cs and unsupported ^{210}Pb in the top layer of the soil (Brückmann & Wolters, 1994). Indirect evidence supports the notion of potentially higher bioturbation in a higher CO$_2$-world. For instance, the feeding constant rate (Table 2) is additive with the ^{137}Cs decay constant in Eqn. (3) and thus may indicate some net removal of ^{137}Cs from the profile by leaching or by faunal or root uptake. These biological transport processes also have consequences for carbon burial at centurial time scales that need to be considered in models of the C cycle.

The net long-term rate at which soil material is moved downward by burial and advective transport is given by the model parameter ν (from ^{137}Cs models this is 0.18 cm yr$^{-1}$, Table 2, but a value of only about $\frac{1}{2}$ that is indicated by the average unsupported ^{210}Pb profiles). Other studies have shown that ^{137}Cs transport is faster and somewhat decoupled from that of ^{210}Pb (Dörr and Münnich, 1989, 1991). Over the 10-year duration of the FACE experiment from its initiation in 1998 through our sample collection in 2008, material deposited at the surface (where bulk density is the smallest, Table 1) could be transported by advection to a mean net depth of 1.8 cm. Litter deposited at the surface in the elevated-CO$_2$ profiles should be clearly distinct in terms of its $\delta^{13}\text{C}$ value, because the CO$_2$ released during the FACE experiment had a much lower $\delta^{13}\text{C}$ value than that of atmospheric CO$_2$ (Fig. 2). In fact, the top 2 cm of the elevated-CO$_2$ profile clearly
has significantly lower δ^{13}C values than the ambient profile (Fig. 1B), and much higher SOC content as well (Fig. 1A). These differences are attributable to the influence of the elevated CO$_2$ treatment during the FACE experiment. The data shown in Figure 2 indicate, however, that the influence of the 13C-depleted CO$_2$ released to the atmosphere at the FACE site appears to have affected the amount and isotopic composition of bulk SOC throughout essentially the entire 30-cm depth of the elevated-CO$_2$ soil profile. This implies that other processes must have acted to increase inputs and transport of some fraction of SOC downward at a rate higher than that given by the mean net advective transport term in the bioturbation model. Such processes may include bioturbation caused by higher root growth and turnover as well as the feeding activity of burrowing organisms, and advective transport of dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), and particulate organic carbon (POC) in soil pore water, all of which can accelerate the movement of SOC along specific pathways.

Is there an enhancement of weathering activity at elevated CO$_2$? The difference in cumulative 137Cs activity between the ambient and elevated CO$_2$ plots was apparently present before the CO$_2$ experiment started, because it is also seen in the pretreatment soil samples (Fig. 3). Unfortunately, the pretreatment soil samples only indicate total 137Cs to a 30cm depth but not its distribution along the entire soil profile with the deepest sample being 15-30 cm deep. Based on the 137Cs profile alone, it cannot be ruled out that the CO$_2$ treatment had an effect on the maximum depth of 137Cs activity. The importance of earthworms in bioturbation, and for increasing soil porosity and permeability, has been noted in a number of other studies involving the interpretation of 137Cs profiles of soils (Bunzl 2002b; Jarvis et al. 2010; Müller-Lemans & van Dorp 1996; VandenBygaart et al. 1998). The increases in root, soil flux and earthworm activity
seen in the elevated CO$_2$ treatment at this site are consistent with this potential effect of CO$_2$

Transport of 137Cs could be enhanced by increases in porosity and permeability of soil caused by earthworm activity, which could increase the rate and volume of fluid flow through the soil.

Another mechanism for increasing downward transport of both 137Cs and C could be the acidification of soils because of enhanced soil metabolic activity often seen at elevated CO$_2$ (e.g., Taneva et al., 2006; Hopkins et al., 2013). Increases in soil partial pressure of CO$_2$ (pCO$_2$) in plots exposed to elevated CO$_2$ may decrease soil pH and metal chemistry (Natali et al., 2008).

Lower pH caused by higher pCO$_2$ can increase soil weathering rate along with desorption of adsorbed cations, production of bicarbonate by carbonic acid neutralization, and consequently enhanced advective transport of desorbed cations and DIC deeper into the soil profile (Andrews & Schlesinger, 2001). The depth profiles of endogenous soil 40K and 226Ra species show nearly constant concentration of each nuclide with depth in both the ambient and elevated-CO$_2$ plots (Fig. 6). This may indicate that the change in soil pH associated with elevated CO$_2$ was not sufficient to cause a substantial increase in weathering rate and mobilization of K$^+$ and Ra$^{2+}$ ions within the top 30cm of the soil profile. These two ions could be mostly incorporated within mineral grains, whereas 137Cs is associated with mineral surfaces and is therefore more susceptible to desorption (Dörr and Münnich, 1989, 1991). However, the results presented here do not provide evidence of increased weathering rates in the top 30 cm in response to elevated CO$_2$ as suggested elsewhere (Cheng et al., 2010).

Soil mixing dynamics. There is a rapid decrease in (210Pb/226Ra) ratios in the ambient and elevated-CO$_2$ plots at the FACE site, relative to that predicted by the simple 210Pb advection-
decay model (Fig. 5). The constant deposition of ^{210}Pb from the atmosphere to the soil surface creates a condition of radioactive disequilibrium where ^{210}Pb in the shallow parts of soil profiles is in excess of that produced in situ by decay of ^{226}Ra and intermediate daughters. The profile of excess ^{210}Pb can be modeled in terms of soil or sediment accumulation and erosion rates and mixing parameters (Olsen et al., 1981; Robbins, 1986; Kaste et al., 2007, 2011; Matisoff & Whiting, 2012). The $^{210}\text{Pb}/^{226}\text{Ra}$ profiles depicted in figure 5 decay too rapidly with depth to be consistent with simple downward advection at 0.18 cm yr$^{-1}$ and radioactive decay of ^{210}Pb.

Using Eq. (4), we obtained a best-fit value for advective transport (v) of about 0.9 cm yr$^{-1}$. The relatively low and constant value of the $^{210}\text{Pb}/^{226}\text{Ra}$ activity ratio at depth indicates diffusive escape of ^{222}Rn (likely via transpiration stream and soil porosity) that was produced in situ from ^{226}Ra decay. This ^{222}Rn escape is possibly enhanced by bioturbation and transpiration occurring in the shallow root zone (top 10 cm) where the bulk density is the lowest (Table 1). The ^{137}Cs profiles and the rapid decrease in excess ^{210}Pb suggest a distinct soil boundary at about 4 cm deep, below which most of the ^{137}Cs activity resides (Fig. 5). This 0-4 cm depth soil layer is also evident in isotope profiles shown in Figs. 1 and 6. This soil multi-isotope boundary at 4 cm depth is consistent with the enhanced SOC accumulation at elevated CO$_2$ conditions when compared to ambient seen at the site between 0-5 cm (Fig. 1 of Jastrow et al., 2005). Further, these results are also consistent with the presence at the site of endogeic earthworms (Sánchez-de León et al. 2018), which avoid the soil surface likely preventing predation or competition with litter layer fauna.

A second soil isotope boundary is detected at about 16 cm deep, where the $^{210}\text{Pb}/^{226}\text{Ra}$ activity ratio approaches the typical disequilibrium value of 0.75 seen in deeper soils (Graustein...
& Turekian 1990) (Fig. 5). This 4-16 cm soil section may represent a soil mixing compartment
influenced by root proliferation and earthworm activity, potentially redistributing and
homogenizing SOC concentration within this depth range (Fig 1A). This may partly prevent
detection of soil C accrual in response to elevated CO\textsubscript{2} levels at these depths (Fig 1A), despite
the isotopic evidence for input of new SOC (Fig. 1B). More research using multiple radioisotope
tracers to detect soil profile mixing sections may allow better determinations of C dynamics
than are possible by using the traditional arbitrary depth comparisons.

Conclusion

The 137Cs profile and the associated bioturbation models represent a 45-year period
between the deposition of the 137Cs bomb-spike in 1963 and the collection of the soil cores in
2008. The parameter values obtained from the advection-diffusion models are not significantly
different between the average ambient and elevated-CO\textsubscript{2} profiles (Table 2). Elapsed time
from the beginning of the FACE experiment to the time of sampling was inadequate to cause a
substantial response in terms of observable soil bioturbation. Future studies require greater
sample density to acquire sufficient statistical evidence for observing subtle changes in such
heterogeneous systems. However, even during the decade-long duration of the FACE
experiment there is significant evidence for increased inputs of new SOC at soil depth and for
enhanced migration of SOC beyond 20 cm depth, likely caused by both biological and chemical
processes related to elevated CO\textsubscript{2}. The multiple isotopic tracer approach used here indicated at
least two soil compartments: one in the top 4 cm where C accumulated in response to CO\textsubscript{2} and
one below 4 cm where SOC may have been redistributed. These “soil mixing cells” may bring
into question the traditional depth comparisons for SOC (e.g., 0-5 cm, 0-10 cm) that are
routinely done in soil studies, and which may obscure detection of SOC changes in response to environmental factors.

The biological and geochemical effects of elevated atmospheric CO$_2$ could have substantial consequences for carbon burial and the fate of deep soil C over a longer time scale (centuries) than usually considered in soil C and Earth System models (Schmidt et al. 2011; Kaste et al., 2011; Todd-Brown et al. 2013). For instance, in a typical 100 to 200-year model run, C residing in a given soil layer could move downward by bioturbation and weathering to another soil layer depicted in a model (e.g. CLM4.5), affecting rates of decomposition, soil C turnover times and the soil feedback on the atmospheric concentration of CO$_2$. Bioturbation processes could substantially increase the net long-term storage of soil C and should be incorporated in soil-atmosphere interaction models.

Acknowledgements

Dr. Sánchez-de León thanks the Department of Biological Sciences at UIC for support. We thank Javier Lugo-Perez, Jessica Rucks and Elena Blanc-Betes for assistance during soil processing and isotope analyses and David H. Wise for useful comments.

Literature cited

Andrews JA, Schlesinger WH (2001) Soil CO$_2$ dynamics, acidification, and chemical weathering in a temperate forest with experimental CO$_2$ enrichment. Global Biogeochemical Cycles 15(1): 149-162

Bossew P, Kirchner G (2004) Modelling the vertical distribution of radionuclides in soil. Part 1: the convection–dispersion equation revisited. Journal of Environmental Radioactivity 73(2): 127-150
Bruckmann A, Wolters V (1994) Microbial immobilization and recycling of Cs-137 in the organic layers of forest ecosystems - relationship to environmental-conditions, humification and invertebrate activity. Science of the Total Environment 157(1-3): 249-256

Bunzl K (2002a) Transport of fallout radiocesium in the soil by bioturbation: a random walk model and application to a forest soil with a high abundance of earthworms. Science of the Total Environment 293(1-3): 191-200

Bunzl K (2002b) Vertical random variability of the distribution coefficient in the soil and its effect on the migration of fallout radionuclides. J. Radioanal. Nucl. Chem. 254(1): 15-21

CDC-NCI (2005) Report on the Feasibility of a Study of the Health Consequences to the American Population from Nuclear Weapons Tests Conducted by the United States and Other Nations.

Chaopricha NT, Marin-Spiotta E (2014) Soil burial contributes to deep soil organic carbon storage. Soil Biology and Biochemistry (0):

Cheng L, Zhu J, Chen G, Zheng X, Oh NH, Rufty TW, Richter DD, Hu S (2010) Atmospheric CO$_2$ enrichment facilitates cation release from soil. Ecology Letters 13(3): 284-291

Cheng W, Parton WJ, Gonzalez-Meler MA, Phillips R, Asao S, McNickle GG, Brzostek E, Jastrow JD (2014) Synthesis and modeling perspectives of rhizosphere priming. New Phytologist 201(1): 31-44

Coplen TB (1996) New guidelines for reporting stable hydrogen, carbon, and oxygen isotope-ratio data. Geochimica et Cosmochimica Acta 60: 3359-3360

DeMaster DJ, Cochran JK (1982) Particle mixing rates in deep-sea sediments determined from excess 210Pb and 32Si profiles. Earth and Planetary Science Letters 61(2): 257-271

Dörr H, Münnich KO (1989) Downward movement of soil organic matter and its influence on trace-element transport (210Pb, 137Cs) in the soil. Radiocarbon 31(3): 665-663.

Dörr H, Münnich KO (1991) Lead and cesium transport in European forest soils. Water Air Soil Pollution 57-58: 809-818.

Drewniak B, Gonzalez-Meler MA (2017) Earth system model needs for including the interactive representation of nitrogen deposition and drought effects on forested ecosystems. Forests 8 (267).

Duval BD, Dijkstra P, Drake BG, Johnson DW, Ketterer ME, Megenigal JP, Hungate BA (2013) Element Pool Changes within a Scrub-Oak Ecosystem after 11 Years of Exposure to Elevated CO$_2$. Plos One 8(5): 9

Fujiyoshi R, Sawamura S (2004) Mesoscale variability of vertical profiles of environmental radionuclides (K-40, Ra-226, Pb-210 and Cs-137) in temperate forest soils in Germany. Science of the Total Environment 320(2-3): 177-188

Gabet EJ, Reichman OJ, Seabloom EW (2003) The effects of bioturbation on soil processes and sediment transport. Annual Review of Earth and Planetary Sciences 31: 249-273
Graustein WC, Turekian KK (1990) Radon fluxes from soils to the atmosphere measured by 210Pb–226Ra disequilibrium in soils. Geophysical Research Letters 17(6): 841-844

Guinasso NL, Schink DR (1975a) Quantitative estimates of biological mixing rates in abyssal sediments. Journal of Geophysical Research-Oceans and Atmospheres 80(21): 3032-3043

Hardy EP, Meyer MW, Allen JS, Alexander LT (1968) Strontium-90 on the Earth's surface. Nature 219(5154): 584-587

Hopkins F, Gonzalez-Meler MA, Flower CE, Lynch DJ, Czimczik C, Tang JW, Subke JA (2013) Ecosystem-level controls on root-rhizosphere respiration. New Phytologist 199(2): 339-351

Hungate BA, Hampton HM (2012) ECOSYSTEM SERVICES Valuing ecosystems for climate. Nature Climate Change 2(3): 151-152

Ivanov YA, Lewyckyj N, Levchuk SE, Prister BS, Firsakova SK, Arkhipov NP, Arkhipov AN, Kruglov SV, Alexakhin RM, Sandalls J, Askbrant S (1997) Migration of 137Cs and 90Sr from Chernobyl fallout in Ukrainian, Belarusian and Russian soils. Journal of Environmental Radioactivity 35(1): 1-21

Iversen CM (2010) Digging deeper: fine-root responses to rising atmospheric CO2 concentration in forested ecosystems. New Phytologist 186(2): 346-357

Iversen CM, Hooker TD, Classen AT, Norby RJ (2011) Net mineralization of N at deeper soil depths as a potential mechanism for sustained forest production under elevated CO2. Global Change Biology 17(2): 1130-1139

Iversen CM, Keller JK, Garten CT, Norby RJ (2012) Soil carbon and nitrogen cycling and storage throughout the soil profile in a sweetgum plantation after 11 years of CO2-enrichment. Global Change Biology 18(5): 1684-1697

Iversen CM, Ledford J, Norby RJ (2008) CO2 enrichment increases carbon and nitrogen input from fine roots in a deciduous forest. New Phytologist 179(3): 837-847

Jarvis NJ, Taylor A, Larsbo M, etana A, Rosen K (2010) Modelling the effects of bioturbation on the redistribution of 137Cs in an undisturbed grassland soil. Eur. J. Soil Sci. 61(1): 24-34

Jastrow JD (1996) Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biology & Biochemistry 28(4-5): 665-676

Jastrow JD, Amonette JE, Bailey VL (2007) Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. Climatic Change 80(1-2): 5-23

Jastrow JD, Miller RM, Matamala R, Norby RJ, Boutton TW, Rice CW, Owensby CE (2005) Elevated atmospheric carbon dioxide increases soil carbon. Global Change Biology 11(12): 2057-2064

Kaste JM, Heimsath AM, Bostick BC (2007) Short-term soil mixing quantified with fallout radionuclides. Geology 35(3): 243-246
512 Kaste JM, Bostick BC, Heimsath AM, Steinnes E, and Friedland AJ (2011) Using atmospheric fallout to date organic horizon layers and quantify metal dynamics during decomposition. Geochim. Cosmochim. Acta 75: 1642-1661.

516 Koven C, Friedlingstein P, Ciais P, Khvorostyanov D, Krinner G, Tarnocai C (2009) On the formation of high-latitude soil carbon stocks: Effects of cryoturbation and insulation by organic matter in a land surface model. Geophysical Research Letters 36:

520 Lynch DJ, Matamala R, Iversen CM, Norby RJ, Gonzalez-Meler MA (2013) Stored carbon partly fuels fine-root respiration but is not used for production of new fine roots. New Phytologist 199(2): 420-430

523 Matamala R, Gonzalez-Meler MA, Jastrow JD, Norby RJ, Schlesinger WH (2003) Impacts of fine root turnover on forest NPP and soil C sequestration potential. Science 302(5649): 1385-1387

526 Matisoff G, Whiting PJ (2012) Measuring soil erosion rates using natural (\(^{7}\)Be, \(^{210}\)Pb) and anthropogenic (\(^{137}\)Cs, \(^{239,240}\)Pu) radionuclides. In: Handbook of Environmental Isotope Geochemistry. Springer. p 487-519

530 Müller-Lemans H, van Dorp F (1996) Bioturbation as a mechanism for radionuclide transport in soil: relevance of earthworms. J. Environ. Radioact. 31(1): 7-20

533 Muneer M, Oades JM (1989) The role of ca-organic interactions in soil aggregate stability.2. field studies with C-14-labeled straw, CaCO\(_3\) and CaSO\(_4\).2H\(_2\)O. Aust. J. Soil Res. 27(2): 401-409

536 Natali SM, Sanudo-Wilhelmy SA, Norby RJ, Zhang H, Finzi AC, Lerdau MT (2008) Increased mercury in forest soils under elevated carbon dioxide. Oecologia 158(2): 343-354

539 Norby RJ, Cotrufo MF, Ineson P, O’Neill EG, Canadell JG (2001) Elevated CO\(_2\), litter chemistry, and decomposition: a synthesis. Oecologia 127(2): 153-165

542 Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO\(_2\) enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl. Acad. Sci. U. S. A. 107(45): 19368-19373

546 Norby RJ, Wullschleger SD, Gunderson CA, Johnson DW, Ceulemans R (1999) Tree responses to rising CO\(_2\) in field experiments: implications for the future forest. Plant Cell and Environment 22(6): 683-714

548 O’Brien SL, Jastrow JD, Grimley DA, Gonzalez-Meler MA (2010) Moisture and vegetation controls on decadal-scale accrual of soil organic carbon and total nitrogen in restored grasslands. Global Change Biology 16(9): 2573-2588

551 O’Brien SL, Jastrow JD, McFarlane KJ, Guilderson TP, Gonzalez-Meler MA (2013) Decadal cycling within long-lived carbon pools revealed by dual isotopic analysis of mineral-associated soil organic matter. Biogeochemistry 112(1-3): 111-125

555 Oh N-H, Hofmockel M, Lavine ML, Richter DD (2007) Did elevated atmospheric CO\(_2\) alter soil mineral weathering?: an analysis of 5-year soil water chemistry data at Duke FACE study. Global Change Biology 13(12): 2626-2641
Olsen C, Simpson H, Peng TH, Bopp R, Trier R (1981a) Sediment mixing and accumulation rate effects on radionuclide depth profiles in Hudson estuary sediments. Journal of Geophysical Research: Oceans (1978–2012) 86(C11): 11020-11028

Olsen CR, Simpson HJ, Peng TH, Bopp RF, Trier RM (1981b) Sediment mixing and accumulation rate effects on radionuclide depth profiles in Hudson estuary sediments. Journal of Geophysical Research: Oceans 86(C11): 11020-11028

Robbins JA (1978) Geochemical and geophysical applications of radioactive lead, in Nriagu, J. O., ed., The Biogeochemistry of Lead in the Environment, Volume 1A. Amsterdam, The Netherlands, Elsevier/North Holland Biomedical Press.

Robbins JA (1986) A model for particle-selective transport of tracers in sediments with conveyor belt deposit feeders. Journal of Geophysical Research: Oceans 91(C7): 8542-8558

Sánchez-de León Y, Lugo-Pérez J, Wise DH, Jastrow JD, González-Meler MA (2014) Aggregate formation and carbon sequestration by earthworms in soil from a temperate forest exposed to elevated atmospheric CO$_2$: A microcosm experiment. Soil Biology and Biochemistry 68(0): 223-230

Sánchez-de León Y, Lugo-Pérez J, Wise DH, JW Samuel, Gonzalez-Meler MA (2018) Endogeic earthworm densities increase in response to higher fine-root production in a forest exposed to elevated CO$_2$. Soil Biology and Biochemistry. provisionally accepted.

Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DA (2011) Persistence of soil organic matter as an ecosystem property. Nature 478(7367): 49-56

Schuller P, Bunzl K, Voigt G, Ellies A, Castillo A (2004) Global fallout 137Cs accumulation and vertical migration in selected soils from South Patagonia. Journal of Environmental Radioactivity 71(1): 43-60

Taneva L, Pippen JS, Schlesinger WH, Gonzalez-Meler MA (2006) The turnover of carbon pools contributing to soil CO$_2$ and soil respiration in a temperate forest exposed to elevated CO$_2$ concentration. Global Change Biology 12(6): 983-994

Todd-Brown K, Randerson J, Post W, Hoffman F, Tarnocai C, Schuur E, Allison S (2013) Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences 10(3):

van Genuchten MT, Cleary RW (1979) Chapter 10: Movement of Solutes in Soil: Computer-Simulated and Laboratory Results. In: Bolt GH (ed) Developments in Soil Science. Elsevier. p 349-386

van Groenigen KJ, Six J, Hungate BA, de Graaff MA, van Breemen N, van Kessel C (2006) Element interactions limit soil carbon storage. Proc. Natl. Acad. Sci. U. S. A. 103(17): 6571-6574

Van Miegroet H, Norby R, Tschaplinski T (1994) Optimum nitrogen fertilization in a short-rotation sycamore plantation. Forest Ecology and Management 64: 25-40

VandenBygaart A, Protz R, Tomlin A, Miller J (1998) 137Cs as an indicator of earthworm activity in soils. Applied Soil Ecology 9(1): 167-173
Wilkinson MT, Richards PJ, Humphreys GS (2009) Breaking ground: Pedological, geological, and ecological implications of soil bioturbation. Earth-Sci. Rev. 97(1-4): 257-272
Table 1 (on next page)

Soil bulk density.

Soil bulk density (kg cm\(^{-3}\)) across the soil profile for sections of soil cores collected at ambient and Elevated CO\(_2\) plots at the ORNL FACE experiment in 2008. Values are averages of 3 and 2 replicates for ambient and elevated plots, respectively, with standard errors.
Table 1. Soil bulk density (kg cm\(^{-3}\)) across the soil profile for sections of soil cores collected at ambient and Elevated CO\(_2\) plots at the ORNL FACE experiment in 2008. Values are averages of 3 and 2 replicates for ambient and elevated plots, respectively, with standard errors.

Soil Depth (cm)	Ambient CO\(_2\)	Elevated CO\(_2\)
0 - 1	0.58±0.07	0.46±0.07
1 - 2	0.83±0.11	0.85±0.01
2 - 3	0.97±0.21	1.08±0.31
3 - 4	0.96±0.32	1.23±0.25
4 - 5	1.16±0.09	1.02±0.01
5 - 6	1.27±0.06	1.43±0.13
6 - 7	1.43±0.20	1.00±0.19
7 - 8	1.26±0.11	1.26±0.22
8 - 10	1.16±0.09	1.43±0.16
10 - 12	1.30±0.07	1.11±0.09
12 - 14	1.26±0.03	1.12±0.20
14 - 16	1.36±0.05	1.23±0.12
16 - 18	1.28±0.16	1.17±0.04
18 - 20	1.28±0.06	1.18±0.12
20 - 25	1.46±0.02	1.36±0.08
25 - 30	1.16±0.01	1.68±0.05
Parameter values obtained from advection-diffusion model. Parameters D_b, v, and γ are derived from best-fits of average 137Cs activity profiles to Eq. 2. The soil mixing time τ is calculated for $L = 20$ cm. Values are averages of two ambient CO$_2$ and two elevated CO$_2$ rings ± standard deviations.
Table 2. Parameter values obtained from advection-diffusion model. Parameters D_b, v, and γ are derived from best-fits of average 137Cs activity profiles to Eq. 2. The soil mixing time τ is calculated for $L = 20$ cm. Values are averages of two ambient CO$_2$ and two elevated CO$_2$ rings ± standard deviations.

Symbol	Parameter	Unit	AMBIENT CO$_2$	ELEVATED CO$_2$
D_b	Bio-diffusion coefficient	cm2yr$^{-1}$	0.53 ± 0.20	0.63 ± 0.29
v	Advection term	cm yr$^{-1}$	0.19 ± 0.02	0.18 ± 0.03
γ	Feeding rate constant	yr$^{-1}$	0.008 ± 0.003	0.005 ± 0.001
τ	Soil mixing time	yr	750 ± 210	640 ± 200
	(τ = $L^2D_b^{-1}$)			
Figure 1

Soil organic carbon vs depth

(A) depth (cm) vs. soil organic carbon (wt. %) for average core samples from ambient (open circles) and elevated-CO$_2$ plots (filled circles); (B) depth (cm) vs. δ^{13}C (‰) for average core samples from ambient (open circles) and elevated-CO$_2$ plots (filled circles).
Manuscript to be reviewed

(A) Depth vs. organic carbon (wt. %) for ambient plots (open circles) and elevated CO2 plots (filled circles).

(B) Depth vs. δ13C (%) for ambient plots (open circles) and elevated CO2 plots (filled circles).
Figure 2

$\delta^{13}C$ vs. inverse concentration of organic carbon

Diagram showing $\delta^{13}C$ (‰) vs. inverse concentration of organic carbon (1/wt. %) for averages of core profiles from the ambient CO$_2$ plot (open circles) and the elevated-CO$_2$ plot (filled circles). Black lines are 2nd-order polynomial best fits. Shift of the elevated-CO$_2$ profile toward the Y-axis indicates enrichment in organic carbon relative to the ambient CO$_2$ profile. Y-intercepts represent contrasting $\delta^{13}C$ values of organic carbon being added to the surface under ambient and elevated-CO$_2$ conditions.
Figure 3

Depth vs. 137Cs activity

Depth (cm) vs. average 137Cs activity (Bq cm$^{-3}$) in cores collected from the ambient (open circles) and elevated-CO$_2$ (filled circles) plots at the Oak Ridge FACE site. Solid lines (gray = ambient, $R^2 = 0.84$; black = elevated-CO$_2$, $R^2 = 0.75$) are best-fit advection-diffusion model profiles based on Eq. 2.
Figure 4

Cumulative 137Cs activity

Average cumulative 137Cs activity (Bq/cm2) vs. depth (cm) in soil cores from ambient and elevated-CO$_2$ plots collected in 2008 (after 10 years of CO$_2$ release) and for two single sets of samples collected from the same locations in 1997 (before the beginning of CO$_2$ release) at the Oak Ridge FACE site.
Figure 5

Activity ratio \(\frac{^{210}\text{Pb}}{^{226}\text{Ra}} \) vs. depth

Activity ratio \(\frac{^{210}\text{Pb}}{^{226}\text{Ra}} \) vs. depth (cm) in soil cores collected in 2008 from ambient (open circles) and elevated-CO\(_2\) (filled circles) plots at the Oak Ridge FACE site. Solid curve (blue) represents constant addition of \(^{210}\)Pb to the surface, an advection rate of 0.185 cm yr\(^{-1}\) based on best-fit of advection-diffusion model (Eq. \(\{3\} \)) to mean \(^{137}\)Cs profiles, and decay of \(^{210}\)Pb to a steady-state value of 0.75 x \(^{226}\)Ra, representing 25\% loss of in situ \(^{222}\)Rn production. Dotted-dashed vertical line represents the typical mean value of 0.75 for soil \(\frac{^{210}\text{Pb}}{^{226}\text{Ra}} \) (Graustein & Turekian 1990). Dashed curve (red) represents constant addition of \(^{210}\)Pb to the surface and an advection rate of 0.0.093 cm yr\(^{-1}\) based on the best-fit of advection-diffusion model (Eq. \(\{4\} \)) to mean unsupported-\(^{210}\)Pb profiles, and decay of \(^{210}\)Pb to a steady-state value of 0.75 x \(^{226}\)Ra. Apparent deficiency of excess \(^{210}\)Pb in the soil profiles is consistent with diffusive escape of \(^{222}\)Rn produced in situ, possibly enhanced by bioturbation and transpiration occurring in the shallow root zone.
Figure 6

Depth vs. 40K activity and depth vs. 226Ra activity

(A) Depth (cm) vs. 40K activity (Bq cm$^{-1}$) and (B) depth (cm) vs. 226Ra activity (Bq cm$^{-1}$) in average soil profiles from the ambient (open circles) and elevated-CO$_2$ (filled circles) plots at the Oak Ridge FACE site.
Manuscript to be reviewed

Figure A

- **X-axis:** 40K (Bq cm$^{-3}$)
- **Y-axis:** Depth (cm)
- **Legend:**
 - Ambient plot
 - Elevated-CO2 plot

Figure B

- **X-axis:** 226Ra (Bq cm$^{-3}$)
- **Y-axis:** Depth (cm)
- **Legend:**
 - Ambient plot
 - Elevated-CO2 plot