Use of plant derived antimicrobials as an alternative to antibiotics

Monika, Dr. Shreshtha Sharma and Dr. Nitin Kumar

DOI: https://doi.org/10.22271/phyto.2020.v9.i2y.11069

Abstract

Antibiotics are marvelous drugs. They fight against various infectious diseases and saved millions of lives. However the recent failure of antibiotics due to drug resistant pathogens and rapid spread of new infections, pressurize the health organizations and pharmaceutical industries to change their strategy and stop going slow growing production of more synthetic antibiotics against the fast growing antibiotic resistant organisms. There are considerable alternative sources of natural antimicrobials from plant with different mode of actions and was found to have competitive effects compared to commercial antibiotics. This reviews shows the plant derived antimicrobials as alternative source for synthetic antimicrobials.

Keywords: Antibiotics, antibiotic resistant, medicinal plant, plant derived antimicrobials, antimicrobial activity, traditional medicines

Introduction

INSPIRTE of presence of lots of advancements in medicinal industries, bacteria are biggest problem causing agents to human health. There are different and number of highly potent antibiotics are present to fight against bacteria. Penicillin was the first antibiotic which was discovered by Fleming in 1929 [28] (Fleming, 1929) [28]. These microbial derived antibiotics fully revolutionized bacterial therapy. Even penicillin became the main therapeutic option for infectious disease. After this, large number of medicines was discovered against bacterial and fungal infection.

As the discovery of antibiotics increased, the microorganisms continue to developed resistance to these antibiotics (Davies et al., 2010) [20]. The multidrug resistance (MDR) also occurs due to prolonged use of antibiotics (Abraham et al.,1940, Rammelkamp et al.,1942) [5, 73]. Multidrug resistant microorganisms are capable to resist the effects of three or more antibiotics (Styers et al., 2006). The strains of Mycobacterium tuberculosis, resistant to virtually all classes of antimicrobials have been identified (Gandhi et al. 2006), a typical example of extremely drug resistant tuberculosis (XDR TB) reported in 64 countries to date (World Health Organization 2011). Due to increased incidence of bacterial resistance to antibiotics there has been a corresponding decrease in antimicrobial discovery. This situation attract the researchers toward alternative therapies like traditional plant based medicines, bacteriophage therapies and combinational therapies. Traditional medicines (use of plant, plant products and plant extracts) are the attractive method to combat antibiotic resistant pathogens. The total estimated plant species on earth is 250,000 to 5,00,000 species. Among these species, only 1-10% species are used by animal and humans (Osman et al., 2012, Borris et al., 1996) [67, 9].

There are 7500 species are known medicinal plant. Out of these, 4653 species are commercially used to a fairly large scale. Inspite of greater advancement in synthetic organic chemistry of twentieth century, over 25% prescribed medicines are derived directly or indirectly from plants (Punjabi et al., 2014) [71].

Development of Antibiotic Resistance

Antibiotic resistant is a big issue to health organizations. Even, the theme of World Health Day 2011 was “Antimicrobial Resistance: No action today, No cure tomorrow.”

Antibiotic resistance is the ability of bacteria and other microorganisms to resist the effects of an antibiotic to which they were once sensitive. The microbes know how to develop resistance against antibiotics. Bacteria become resistant to antibiotics by adapting their structures and functions in some way as a defense mechanism (Levy, 1998, Morar et al., 2010, Dever et al., 1991) [48, 61, 22].
The adaptation can happen in several ways. Bacteria can:
- Pump out the antibiotic from cell (efflux pumps).
- Change the site or receptor where the antibiotic normally works (target alteration).
- Neutralize the antibiotic before it has a “killing” effect (produce inactivating enzymes).
- Decrease antibiotic uptake.
- Share genetic material with other bacteria to also make them resistant.

Fig 1: The timeline of antibiotic development and evolution of antibiotic resistant given here (Dahal et al., 2018) [18].

Fig 2: Antibiotic Targets and Antibiotic Resistance (Wright, 2005) [95].
Bacteria have different mode of resistance to different antibiotics. There are lots of antibiotics which are in clinical use and bacteria shows resistant to them by different modes. A table is listed below which shows antibiotic in clinical use and modes of resistance (Cheesman et al., 2017) [13].

Antibiotic Class	Examples	Drug Target	Resistance Mode
β-lactams	Penicillins (Ampicillin)	Peptidoglycan biosynthesis	Hydrolysis, Efflux, Altered target
	Cephalosporins (cephamycin)		
	Penems (meropenem)		
	Monobactams (aztreonam)		
Aminoglycosides	Gentamicin	Translocation	Phosphorylation, Acetylation, Nucleotidylation, Efflux, Altered target
	Streptomycin		
	Spectinomycin		
Glycopeptides	Vancomycin	Peptidoglycan biosynthesis	Reprogramming of peptidoglycan biosynthesis
	Teicoplanin		
Tetracyclines	Minocycline	Translation	Monoxygenation, Efflux, Altered target
	Tigecycline		
Macrolides	Erythromycin	Translation	Hydrolysis, Glycosylation, Phosphorylation, Efflux, Altered target
	Azithromycin		
Phenicols	Chloramphenicol	Translation	Acetylation, Efflux, Altered target
Quinolones	Ciprofloxacin	DNA replication	Acetylation, Efflux, Altered target
Pyrimidines	Trimethoprim	C1 metabolism	Efflux, Altered target
Sulfonamides	Sulfamethoxazole	C1 metabolism	Efflux, Altered target

Plant derived antimicrobials are used as an alternative to antibiotics because they have different and numerous mode of actions to kill microorganisms (Upadhyay et al. 2014) [87].

Plant-Derived Antimicrobials	Examples	Selected Antimicrobial Spectrum	References
Flavonoids	Phenolics And Polyphenols	Listeria monocytogenes, Staphylococcus aureus, Escherichia coli, Salmonella enterica, Vibrio cholera, Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Aspergillus flavus, Penicillium Sp., Cladosporium Sp.	Beecher, 2003 [29]; chye and Hoh, 2007 [28]; Orhan et al., 2010 [10]; Rattanachaikunsopon et al., 2010 [69]; Ozcelik et al., 2008 [7]; Cushnie and Lamb, 2005 [54].
Quinones	Anthraquinone, Benzoquinone, Naphthoquinone, Plastoquinone, Pyrroloquinoline Quinone	Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, Cryptococcus neoformans	Ignacimuthu et al., 2009 [46]; Singh et al., 2006 [73]; Cowan, 1999 [51].
Tannins	Tannic Acid, Gallic Acid, Proanthocyanidins	Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Salmonella enterica, Campylobacter jejuni	Engels et al., 2009 [11]; Scalbert, 1991 [2, 80].
Coumarins	Ammoresinol, Ostruthin, Anthogenol, Agasillin	Staphylococcus aureus, Listeria monocytogenes, E. coli, Salmonella typhimurium, Salmonella enteritidis, Vibrio para-haemolyticus	Basile et al., 2009 [15]; Ulate-Rodriguez et al., 1997 [48]; Venugopala et al., 2013 [19]; Saleem et al., 2010 [52]; Cowan, 1999 [51].
Terpenoids	Carotenoids, Terpinene	St. aureus, Pseudomonas aeruginosa	Ulubelen, 2013 [70]; Bach et al., 2011 [77].

Plant Derived Antimicrobials Most plant derived antimicrobials are produced as secondary metabolites. They can be classified based on their chemical structure, which also influences their antimicrobial property.

The major groups of phytochemicals are listed here.
Phenolics and Polyphenols
These are the diverse group of aromatic secondary metabolites. They consist of Flavonoids, Quinones, Tannins and Coumarins (Savoa, 2012, Cowan, 1999, Kurek et al. 2011) [79, 51, 43].

Flavonoids
Flavonoids are pigmented compounds. They mainly consists of flavones, flavonones, flavanols and anthocyanidins (Cowan, 1999, Kurek et al., 2011) [51, 43]. There are 14 classes of flavonoids (Savoa, 2012) [79].

Mechanism of action: The antimicrobial property against a variety of bacterial and fungal pathogens is mediated by their action on the microbial cell membranes (Kramer et al., 1984, Davidson et al., 2000). They interact with membrane proteins which are present on the bacterial cell wall leading to increased membrane permeability and disruption. They have ability to form complexes with both extracellular and soluble proteins.

Other mode of actions are biofilm formation, inhibition of cell envelop synthesis, inhibition of nucleic acid synthesis, inhibition of electron transport chain and ATP synthesis. Some flavonoids which shows antimicrobacterial activity are Morin, Rutin, Quercetin, Myricetin, Naringenin, Lupinifolin etc (Farhadi et al., 2018) [23].

Table 2: Antibacterial effect of flavonoids

Compounds	Source	Bacteria	Activity	References
Morin	Psidium guajava	Aeromonas salmonicida	MIC : 150-200 µg/ml	(Rattanachaikunsopon & Phumkhachorn, 2007) [75]
Rutin	Litchi chinesis	Staphylococcus aureus	MIC : 62.5 µg/ml	(Wen et al., 2014) [91]
Quercetin	Diospyrs virginiana	Staphylococcus aureus	MIC : 50 µg/ml	(Rashed et al., 2014) [74]
Myricetin	Pure	Mycobacterium	MIC : 32 µg/ml	(Lechner, Gibbons, & Bucar, 2008) [66]
Naringeninin	Pure	Escherichia coli	MIC : 2 µg/ml	(Smejkal et al., 2008) [10]
Lupinifolin	Mundulea sericea	Bacillus subtilis Escherichia coli	MIC : 0.5 µg	(Mazimba et al., 2012) [59]

Flavonoids also contain antioxidant, anti-inflammatory, anticancer and antiviral properties.

Quinones
QUINONES are organic compounds that contains aromatic rings with two ketone substitutions.

Mechanism of action: they form complex irreversibly with nucleophilic amino acids in protein, often leading to their inactivation and loss of function (Sher, 2004) [1]. The major targets in microbial cells are surface exposed adhesion proteins, cell wall polyepptides and membrane bound enzymes, consequently leading to death of pathogens (Ciocan et al., 2007) [15].

Quinone such as Anthraquinone is obtained from Cassia italica shows bacteriostic action against pathogen bacteria such as Bacillus anthracis, Corynebacterium pseudodiphtherium and Pseudomonas aeruginosa. It shows bactericidal against Burkholderia pseudomallei (Kazm, et al., 1994) [39] Mariyam Malmir et al studied antimicrobial activity of Anthraquinone against various microorganisms (Malmir, 2017) [57].

Table 3: Antimicrobial activity of Anthraquinone

Source	Bacteria	Activity
Aloe vera	Helicobacter pylori	MIC : 6.25-400 µg/ml
Rheum rhabarbarum	Aeromonas hydrophilia	MIC : 50-200 µg/ml
Rheum rhamnopicum	Staphylococcus saprophyticus	MIC : 125-250 µg/ml
Rheum palmatum	Staphylococcus aureus	MIC : 1.56-25 µg/ml
Cassia species	Bacillus subtilis	MIC : 7.8 µg/ml
	Staphylococcus aureus	MIC : 3.9 µg/ml

Tannins
Tannins are a group of polymeric phenolic compounds. They are found in almost every part of plant including bark, leave, fruit and roots (Scalbert, 1991) [2, 60].

Mechanism of action: The mode of antimicrobial activity of tannin is potentially due to inactivation of microbial adhesion, enzymes, cell envelop and transport protein (Calixto et al., 2009, Ya et al., 1998, Haslam, 1996) [78, 96, 33]. Hydrolysable and condensed tannins, obtained from flavanols and known as proanthocyanidins, exert antimicrobial effect by by antiperoxidation properties inhibiting in particular the growth of urapathogenic E. coli (Okuda, 2005).

The main sources for tannins which are studied are Catharanthus roseus, Terminalia arjuna and Piper betel (Kurhekar, 2016) [44].
Tannins are widely used in leather industry, food industry and in healthcare industry (as antimicrobials). They also show inhibitory action on fungi and yeast (Calixto et al., 2009) [78].

Coumarins
These consisting of fused benzene and alpha pyrone rings (Kennedy et al., 1997) [40]. Hydroxylated derivative of coumarins like phytoalexines shows antimicrobial activity and also antifungal activity.

Mechanism of action: The mode of antimicrobial action of tannins appear to be related to the inhibition of extracellular microbial enzymes, deprivation of the substrates required for microbial growth or direct action on microbial metabolism by inhibition of oxidative phosphorylation. There are various coumarin compounds which shows antimicrobial activity. Some of these are given below with their minimum inhibitory concentration (Khan et al., 2019, Smania, 2005).

Table 4: effect of extract of Catharanthus roseus, Piper betel, Terminalia arjuna on microorganisms, in terms of Zone of inhibition in mm (mean ±)

Name of bacteria	Catharanthus roseus Aqueous extract	Catharanthus roseus Acetone extract	Piper betel Aqueous extract	Piper betel Acetone extract	Terminalia arjuna Aqueous extract	Terminalia arjuna Acetone extract
B. subtilis	-	11.83 ± 0.98	-	11.66 ± 1.03		
S. aureus	-	15.33 ± 2.16	14.83 ± 2.04	14.5 ± 1.04		
Ent. fecalis	14.83 ± 1.47	-	-	-	16.83 ± 1.16	
M. luteus	19.16 ± 1.94	-	-	15.83 ± 1.47	19.33 ± 1.03	20 ± 1.26
K. pneumoniae	21.66 ± 2.33	-	-	-		
Sal. typhi	-	-	-	-	14.83 ± 0.75	
Sal. paratyphi B	-	19 ± 2.28	11.16 ± 1.16	-	16.66 ± 1.21	
Sh. flexneri	-	16.66 ± 1.21	12.5 ± 1.04	13 ± 1.41		
Ps. aeruginosa	-	-	-	-		
P. vulgaris	-	15.33 ± 1.86	15.16 ± 0.75	-		
Ser. marcescens	-	15.33 ± 2.73	-	-		
O.C. albicans	14.83 ± 1.16	10.33 ± 1.03	-	-		
Asp. niger	-	-	-	-		

Table 5: coumarin compounds with minimum inhibitory concentration

Coumarin compounds	Minimum inhibitory concentration (mg/ml)	Test strains					
	A. niger A. fumigatus A. flavus Rhizopus Mucor Penicillium E. coli						
Coumarin (1)	500	>1000	500	1000	1000	500	750
6-methylcoumarin (2)	500	1000	1000	1000	1000	500	750
6-hydroxycoumarin (3)	500	750	250	500	250	500	250
6-0-acteyloumarin (4)	1000	125	<125	125	250	500	250
6-methoxycoumarin (5)	1000	750	125	<125	250	500	250
6-chlorocoumarin (6)	1000	750	250	500	250	500	250
6-iodocoumarin (7)	750	750	250	750	500	750	1000
6-aminocoumarin (8)	750	>1000	750	1000	1000	>1000	750
6-carboxycoumarin (9)	1000	>1000	750	1000	1000	500	750
6-cyanocoumarin (10)	1000	1000	250	500	250	500	250

Approximately 1300 coumarin have been identified since 1996 (Ciocan et al., 2007) [15] and these are used as antithrombotic and anti-inflammatory compounds. Coumarins such as Scopoletin and chalcones have been isolated from Fatoua pilosa are used as anti-tubercular constituents. Allium genus in traditional medicine indicating the importance of aroma precursors (cysteine sulphoxide) for a potent biological activity.

Alkaloids
Alkaloid are heterocyclic nitrogen compounds. They have broad antimicrobial activity. The analysis of leaf extracts of Gymnema montanum and ethanolic extract of Tabernaemontana catherinensis root bark are found to be possess antimicrobial activity (Ramkumar et al., 2007, Medeiros et al., 2011) [72]. Diterpenoid alkaloids which are isolated from Ranunculaceae or buttercup family of plants revealed an antibacterial property (Rahman et al., 1995) [6].

Mechanism of action: They are able to intercalate with DNA thereby resulting in impaired cell division and cell death (Savoia, 2012) [79].

The extracts of C. citrinus and V. adoensis were studied by carrying out antibacterial susceptibility tests, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) determinations (Mabhuza et al., 2016) [53].

Table 6: MIC and MBC of alkaloid extracts

Bacteria	G+/G-	Alkaloid Extract	MIC (mg/mL)	MBC (mg/mL)
S. aureus	G+	Callistemon citrus	0.0025	0.835
		Vernonia adoensis	0.21	-
P. aeruginosa	G-	Callistemon citrus	0.21	-
		Vernonia adoensis	0.42	-
Some alkaloids also have antivirulence effects for alkaloid like barberry, exert direct antibacterial and antivirulence effects. Alkaloids that inhibit bacterial virulence without inhibiting growth or viability, these could potentially be developed as antiviral drugs (Lasarre et al., 2013) [45].

Terpenoids
Terpenoids are naturally occurring organic chemicals derived from terpenes. Most are multicyclic structures with oxygen containing functional group. Approximate 60% of known natural products are terpenoids. The major group consist of diterpenes, triterpenes, tetraterpenes as well as hemiterpenes and sesquiterpenes (Kurek et al., 2011) [43].

Mechanism of action: the mechanism of antimicrobial action of terpenoids are not clearly known but it is estimated that these involve membrane disruption in microorganism by the lipophilic compounds (Termanzi et al., 2011). Sesquiterpenes isolated from different plants are known to exhibit bactericidal activity against gram positive bacteria, including M. tuberculosis (Kurek et al., 2011, Garcia et al., 2012) [45].

| Table 7: Minimum bactericidal concentrations (mg/mL) of the compounds. |
|------------------|------------------|------------------|------------------|------------------|
| Compound | B. cereus | S. typhimurium | E. coli | S. aureus |
| (-)-Borneol | 0.12 | 0.12 | 0.25 | 0.03 |
| (+)-Borneal | 0.25 | 800 | 0.25 | 0.25 |
| (±) Camphor | 0.25 | 0.25 | 0.25 | 0.015 |
| Carvacrol | 0.03 | 0.015 | 0.03 | 0.015 |
| L-Carveol | 0.12 | 0.03 | 0.06 | 0.03 |
| L-Carvone | 0.25 | 0.12 | 0.06 | 0.25 |
| m-Cymene | 0.25 | 0.25 | 0.25 | 0.06 |
| Citral | 0.06 | 0.07 | 0.06 | 0.25 |
| Citronellol | 0.12 | 0.12 | 0.25 | 0.03 |
| β-Citronellol | 0.12 | 0.12 | 0.25 | 0.003 |
| Eugenol | 0.07 | 0.07 | 0.03 | 0.03 |
| Trans-Geraniol | 0.07 | 0.03 | 0.06 | 0.25 |
| R-(-)-Limonene | 0.25 | 0.06 | 0.25 | 0.25 |
| Linalool | 0.25 | 0.25 | 0.25 | 0.25 |
| Terpineol | 0.12 | 0.12 | 0.06 | 0.03 |
| Thymol | 0.007 | 0.003 | 0.007 | 0.007 |
| Sulfolaminamide | - | 0.06 | 0.03 | 0.06 |

Lectins and Polypeptides
These are most potent antimicrobials. The inhibition of bacteria and fungi by these molecule has long been known but recent interest has chiefly focused on study anti-HIV peptides and lectins (Bolle et al., 1996) [31].

Mechanism of action: Antimicrobial mechanism of lectin and polypeptide include the pore formation ability, followed by changes in the cell permeability and latter, indicates interaction with the bacterial cell wall components. Their mode of action also assumed due to competitive inhibition of microbial protein to host polysaccharide receptor.

Lectins and Polypeptides shows antimicrobial activity against E. coli, Pseudomonas Aeruginosa, Entercoccus hirae, Candida albicans (fungi). Lectin such as MAP30 from bitter melon (Huang et al., 1995) [47], GAP31 from Gelonium mutilflorum (Bourinbairai et al., 1996) [10] and Jacalin (Favero et al., 1993) [26] are inhibitory on viral proliferation, including HIV and Cytomegalovirus by potentially inhibiting viral interaction with critical host cell component.

With potent antimicrobials, polypeptides are also act as effective modulators of inflammation or neutralizers of pathogenic toxins (Mahlapuu et al., 2016) [55].

Benefits of plant derived antimicrobials over antibiotics
- They don’t show side effects often associated with use of synthetic chemicals.
- No report of antimicrobial resistance has been documented to these phytochemical (plant derived antimicrobials) because they have multiple mechanism of action.
- Due to multiple mode of actions, they potentially prevent the selection of resistant strains of bacteria.
- Affordability of these compounds.

The marked antimicrobial effect, nontoxic nature and affordability of these compounds potentiate their use as growth promoters in livestock and poultry industry, effective antimicrobial and disinfectants in food industry, component of herbal therapy in veterinary medicine and source for development of novel antibiotics in pharmaceutics (Upadhyay et al., 2014) [57].

Conclusion
In 21st century antibiotic resistant is a major problem which is increasing day by day. We have to understand that the battle against these infection causing microorganism is never ending, but we can beat them by changing our strategy and by using active ingredients from plants that survived against microbes since scores of years. Currently after observing microbial resistance to antibiotics, number of studies have been conducted on antimicrobial activity of medicinal plants. The interest of extracting drugs from medicinal plants would help to solve the problem of antibiotic resistant in present or future days. Hopefully, the area of antimicrobial research based on medicinal plant might be prove beneficial.

References
1. Basile S, Sorbo V, Spadarо et al. Antimicrobial and antioxidant activities of coumarins from the roots of Ferulago campestris (Apiaceae), Molecules, 2009; 14(3):939-952.
2. Scalbert. Antimicrobial properties of tannins,” Phytochemistry, 1991; 30(12):3875-3883.
3. Ulubelen. Cardioactive and antibacterial terpenoids from some Salvia species,” Phytochemistry. 2003; 64(2):395-399.
4. Abdallah ME. Plants: An alternative source for antimicrobials, journal of applied pharmaceutical science 2011; 01(06):16-20.
5. Abraham EP, Chain E. An enzyme from bacteria able to destroy penicillin. Nature. 1940; 146:837.
6. Atta-ur-Rahman, Chaudhary MI. Diterpenoid and steroidal alkaloids. Nat. Prod. Rep. 1995; 12:361-379
7. Ozç, elik DD, Orhan S Ozgen, Ergun F. Antimicrobial activity of flavonoids against extended-spectrum β-lactamase (ESβL)-producing Klebsiella pneumoniae, Tropical Journal of Pharmaceutical Research. 2008; 7:1151-1157.
8. Balzarini J, Schuls D, Neyts J, van Damme E, Peumans W, de Clercq E. α-(1-3) and α-(1-6)-D-mannose-specific plant lectins are markedly inhibitory to human immunodeficiency virus and cytomegalovirus
infections in vitro. Antimicrobial Agents and Chemotherapy. 1991; 35(3):410-416.
9. Borris RP. Natural products research: perspectives from a major pharmaceutical company. J. Ethnopharmacol. 1996; 51:29-38
10. Bourinbaier AS, Lee-Huang S. The activity of plant-derived antiretroviral proteins MAP30 and GAP31 against herpes simplex virus infection in vitro. Biochemical and Biophysical Research Communications. 1996; 219(3):923-929.
11. Engels M, Knodler YY, Zhao R, Carle MGG. Anzle, “Schieber A. “Antimicrobial activity of gallotannins isolated from mango (Mangifera indica L.) kernels,” Journal of Agricultural and Food Chemistry. 2009; 57(17):7712-7718.
12. Cazarolli LH, Zanatta L, Alberton EH et al. Flavanoids: prospective drug candidates. Mini Reviews in Medicinal Chemistry. 2008; 8(13):1429-1440.
13. Cheesman JM, Ilanko A et al. developing new antimicrobial therapies: are synergistic combinations of plant extracts/compound with conventional antibiotics the solution?, pharmcogony review 2017; 11(22):57-72.
14. Chung KT, Wong TY, Wei CI, Huang YW, Lin Y. Tannins and human health: a review. Critical Reviews in Food Science and Nutrition. 1998; 38(6):421-464.
15. Ciocan D, Bara I. Plant products as antimicrobial agents. Analele Ştiinţifice ale Universităţii “Alexandru Ioan Cuza” din Iaşi II A: Genetica si Biologie Moleculara. 2007; 8:151-156.
16. Orhan D, Ozç B, elik S, Ozgen, Ergun F. “Antibacterial, antifungal, and antiviral activities of some flavonoids,” Microbiological Research. 2010; 165(6):496-504.
17. Singh N, Verma N, Raghuvanshi S, Shukla PK, Kulshreshtha DK. Antifungal anthraquinones from Saprosma fragrans, Bioorganic and Medicinal Chemistry Letters, 2006; 16(17):4512-4514
18. Dahal H Ram, Chaudhary K Dhiraj. Microbial Infections and Antimicrobial Resistance in Nepal: Current Trends and Recommendations, Review Article, 2018.
19. Davidson PM, Naidu AS. Natural Food Antimicrobial Systems. CRC Press; Phytophensols, 2000, 265-293.
20. Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbial Mol Biol Rev. 2010; 74:417-33.
21. De Bolle MFC, Osborn RW, Goderis IJ et al. Antimicrobial peptides from Mirabilis jalapa and Amaranthus caudatus: expression, processing, localization and biological activity in transgenic tobacco. Plant Molecular Biology. 1996; 31(5):993-1008.
22. Dever LA, Dermody TS. Mechanisms of bacterial resistance to antibiotics. Arch Intern Med. 1991; 151:886-95.
23. Dixon RA, Steele CL. Flavonoids and isoflavonoids-a gold mine for metabolic engineering. Trends in Plant Science. 1999; 4(10):394-400.
24. Chye Y, Hoh SN. Antimicrobial activity of flavonoid extracts from Sabah tea (Camellia sinensis) against Escherichia coli and Listeria monocytogenes,” Journal of Tropical Food Science. 2007; 35:245-251.
25. Farhadi Faeghen, Antimicrobial activity of flavonoids and their structure activity relationship: an update review, review article, published on, 2018.
26. Favero J, Corbeau P, Nicolas M et al. Inhibition of human immunodeficiency virus infection by the lectin jacalin and by a derived peptide showing a sequence similarity with GP120. European Journal of Immunology. 1993; 23(1):179-185.
27. Fischbach MA, Walsh CT. Antibiotics for emerging pathogens. Science. 2009; 325:1089-1093
28. Fleming A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol. 1929; 10:226.
29. Beecher R. Overview of dietary flavonoids: nomenclature, occurrence and intake,” Journal of Nutrition, 2003; 133(10):3248S-3254S,
30. García A, Bocanegra-García V, Palma-Nicolás JP, Rivera G. Recent advances in antituberular natural products. European Journal of Medicinal Chemistry. 2012; 49:1-23.
31. Gill SR, Pop M, DeBoyt RT, Eckburg PB, Turnbaugh PJ, Samuel BS et al. Metagenomic analysis of the human distal gut microbiome. Science. 2016; 312:1355-9.
32. Guimaraes C. Aline et al, antimicrobial activity of terpenes and terpenoids present in essential oil, review article, published on, 2019.
33. Haslam E. Natural polyphenols (vegetable tannins) as drugs: possible modes of action. Journal of Natural Products. 1996; 59(2):205-215.
34. Ulate-Rodríguez J, Schafer HW, Zottola EA, Davidson PM. “Inhibition of Listeria monocytogenes, Escherichia coli O157:H7, and Micrococcus luteus by linear furanocoumarins in a model food system.” Journal of Food Protection, 1997; 60(9):1050-1054,
35. Junjea VK, Dwivedi HP, Yan X. Novel natural food antimicrobials*. Annual Review of Food Science and Technology. 2012; 3(1):381-403.
36. Junior Smania Artur. Antimicrobial activity of coumarin, review article, 2005.
37. Hardman KD, Ainsworth CF. Structure of concanavalin A at 2.4-A resolution, ‘ Biochemistry, 1972; 11(26):4910-4919,
38. Venugopala KN, Rashmi V, Odhav B. Review on natural coumarin lead compounds for their pharmacological activity,” BioMed Research International, Article ID 963248, 2013, 14
39. Kazmi MH, Malik A, Hameed S, Akhtar N, Ali SN. An anthraquinone derivative from Cassia italica. Phytochemistry. 1994; 36(3):761-763.
40. Kennedy OR, Thorne RD, editors. Coumarins: Biology, Applications and Mode of Action. New York, NY, USA: John Wiley & Sons, 1997.
41. Khan SM, Tarannum N, Design, synthesis and validation of antimicrobial coumarin derivatives: An efficient green approach, Review article, 2019.
42. Krämer RP, Hindorf H, Jha HC, Kallage J, Zilliken F. Antifungal activity of soybean and chickpea isoflavones and their reduced derivatives. Phytochemistry. 1984; 23(10):2203-2205.
43. Kurek A, Grudniak AM, Kraczkiewicz-Dowjat A, Wolska KI. New antibacterial therapeutics and strategies. Polish Journal of Microbiology. 2011; 60(1):3-12.
44. Kurhekar V, Jaya, Tannins-antimicrobial chemical components, review article, 2016.
45. Lasarre B, Federle MJ. Exploiting quorum sensing to confuse bacterial pathogens. Microbial Mol Biol rev. 2013; 77:73-111.
46. Lechner D, Gibbons S, Bucar F. Modulation of isoniazid susceptibility by flavonoids in Mycobacterium. Phytochemistry Letters, 2008; 1(2):71-75.
47. Lee-Huang S, Huang PL, Chen H-C, et al. Anti-HIV and anti-tumor activities of recombinant MAP30 from bitter melon. Gene. 1995; 161(2):151–156.

48. Levy SB. The challenge of antibiotic resistance. Sci Am. 1998; 278:46-53.

49. Locher CP, Burch MT, Mower HF et al. Anti-microbial activity and anti-complement activity of extracts obtained from selected Hawaiian medicinal plants. Journal of Ethnopharmacology. 1995; 49(1):23-32.

50. Mathabe MC, Hussein AA, Nikolova RV, Basson AE, Meyer JJM, Lall N. Antibacterial activities and cytotoxicity of terpenoids isolated from Spirostachys africana. Journal of Ethnopharmacology. 2008; 116(1):194-197.

51. Cowan MM. “Plant products as antimicrobial agents,” Clinical Microbiology Reviews, 1999; 12(4):564-582.

52. Saleem M, Nazir M, Ali MS et al., “Antimicrobial natural products: an update on future antibiotic drug candidates,” Natural Product Reports, 2010; 27(2):238-254.

53. Mabhiza D, Chitemere T, Mukanganyama S. Antibacterial properties of alkaloid extracts from Callistemon citrinus and Vernonioa adenosin against Staphylococcus aureus and Pseudomonas aeruginosa, Review article, 2016.

54. Magiorkos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012; 18:268-81.

55. Mahlapuu Margit. Antimicrobial peptides : An emerging category of therapeutic agents, review article, 27 december, 2016.

56. Mainmone TJ, Baran PS. Modern synthetic efforts toward biologically active terpenes. Nature Chemical Biology. 2007; 3(7):396-407.

57. Malmir Maryam. Anthraquinones as potential antimicrobial agents- a review, review article published on august, 2017.

58. Martinez JL, Rojo F, Vila J. Are nonlethal targets useful for developing novel antimicrobials? Future Microbiol. 2011; 6:605-607

59. Mazinib O, Masesane IB, Majinda RR. A flavanone and antimicrobial activities of the constituents of extracts from Mundulea sericea. Natural Product Research, 2012; 26(19):1817-1823.

60. Medeiros MR, Prado LA, Fernandes VC et al. Antimicrobial activity of inodle alkaloids from Tabarneontana catarinensis. Nat. Prod. Commun. 2011; 6:193-196

61. Morar M, Wright GD. The genomic enzymology of antibiotic resistance. Annu Rev Genet. 2010; 44:25-51.

62. Kheerees N, Sangvanich P, Puthong S, Karnchanatat A. “Antifungal and antiproliferative activities of lectin from the rhizomes of Curcuma amarissima Roscoe,” Applied Biochemistry and Biotechnology, 2010; 162(3):912-925.

63. Namba T, Morita O, Huang SL, Goshima K, Hattori M, Kakiuchi N. Studies on cardio-active crude drugs; I. Effect of coumarins on cultured myocardial cells. Planta Medica. 1988; 54(4):277-282.

64. Negi PS. Plant extracts for the control of bacterial growth: efficacy, safety and safety issues for food application. International Journal of Food Microbiology. 2012; 156(1):7-17.

65. Batista O, Duarte A, Nascimento J, Simoes MF. “Structure and antimicrobial activity of diterpenes from the roots of Plectranthus hereroensis,” Journal of Natural Products, 1994; 57(6):858-861.

66. Omukolokei E, Khan B, Chhabra SC. Antipilasmodial activity of four Kenyan medicinal plants. Journal of Ethnopharmacology, 1997; 56(2):133-137.

67. Osman K, Evangelopoulos D, Basavannacharya C et al. An antibacterial from Hypericum acmosepalum inhibits ATP-dependent Mure ligase from Mycobacterium tuberculosis. Intern. J Antimicrob. Agents. 2012; 39:124-129

68. Petnual P, Sangvanich P, Karnchanatat A. “A lectin from the rhizomes of turmeric (Curcuma longa L.) and its antifungal, antibacterial, and α-glucosidase inhibitory activities,” Food Science and Biotechnology, 2010; 19(4):907-916.

69. Rattanachaikunsonp P, Phumkhachorn P. Contents and antibacterial activity of flavonoids extracted from leaves of Psidium guajava,” Journal of Medicinal Plants Research, 2010; 4(5):393-396,

70. Pitman SK, Drew RH, Perfect JR. Addressing current medical needs in invasive fungal infection prevention and treatment with new antifungal agents, strategies and formulations. Exp Opin. Emerg. Drugs. 2011; 16:559-586

71. Punjabi Y. Antibacterial activity of flower extracts of Nymphaea nouchali, original research paper, 2014.

72. Ramkumar KM, Rajaguru P, Ananthan R. Antimicrobial properties and phytochemical constituents of an anti diabetic plant Gymnema montanum. Adv. Biol. Res. 2007; 1:67-71

73. Rammelkamp CH, Maxon T. Resistance of Staphylococcus aureus to the action of penicillin. Exp Biol Med. 1942; 51:386-9.

74. Rashed K, Ćirić A, Glašočić J, Soković M. Antibacterial and antifungal activities of methanol extract and phenolic compounds from Diospyros virginiana L. Industrial Crops and Products, 2014; 59:210-215.

75. Rattanachaikunsonp P, Phumkhachorn P. Bacteriostatic effect of flavonoids isolated from leaves of Psidium guajava on fish pathogens. Fitoterapia, 2007; 78(6):434-436.

76. Ignacimuthu S, Pavunraj M, Duraipandiyavan V, Raja N, Muthu C. “Antibacterial activity of a novel quinone from the leaves of Pergularia daemia (Forsk., a traditional medicinal plant,” Asian Journal of Traditional Medicines, 2009; 4:36-40.

77. Bach SM, Fortuna MA, Attarian R et al., “Antibacterial and cytotoxic activities of the sesquiterpene lactones cnicin and onopordopicrin,” Natural Product Communications, 2011; 6(2):163-166.

78. Saura-Calixto F, Pérez-Jiménez J. Tannins: bioavailability and mechanisms of action. In: Knasmüller S, DeMarini DM, Johnson I, Gerhäuser C, editors. Chemoprevention of Cancer and DNA Damage by Dietary Factors. Weinheim, Germany: Wiley-VCH, 2009.

79. Savoia D. Plant-derived antimicrobial compounds: alternatives to antibiotics. Future Microbiology. 2012; 7(8):979-990.

80. Scalfert A. Antimicrobial properties of tannins. Phytochemistry. 1991; 30(12):3875-3883.
81. Sher A. Antimicrobial activity of natural products from medicinal plants. Gomal Journal of Medical Sciences. 2004; 7(1):65-67.

82. Šmejkal K, Chudík S, Kloucek P, Marek R, Cvacka J, Urbanová M et al. Antibacterial C-geranylflavonoids from Paulownia tomentosa fruits. Journal of Natural Products, 2008; 71(4):706-709.

83. Srivastava J, Chandra H, Nautiyal RA, Kalra SJS. Antimicrobial resistance (AMR) and plant derived antimicrobials as an alternative drug line to control infections, review article, published on, 2013.

84. Cushnie TP, Lamb AJ. “Antimicrobial activity of flavonoids,” International Journal of Antimicrobial Agents, 2005; 26(5):343-356.

85. Taylor PW, Hamilton-Miller JMT, Stapleton PD. Antimicrobial properties of green tea catechins. Food Science & Technology Bulletin. 2005; 2:71-81.

86. Termentzi A, Fokialakis N, Skaltsounis AL. Natural resins and bioactive natural products as potential antimicrobial agents. Current Medicinal Chemistry. 2012; 19:2292-2302.

87. Upadhyay A, Upadhyaya I et al. combating pathogenic microorganisms using plant-derived antimicrobials: a minireview of the Mechanistic Basis, Review article, published on, 2014.

88. van Wyk BE, Gericke N. People's Plants. Pretoria, South Africa: Briza Publications, 2000.

89. Vlieger AM, Blink M, Tromp E, Benninga MA. Use of complementary and alternative medicine by pediatric patients with functional and organic gastrointestinal diseases: Results from a multicenter survey. Pediatrics 2008; 122:e451. DOI: 10.1542/peds.2008-0266.

90. Peumans WJ, van Damme EJ. “Lectins as plant defense proteins," Plant Physiology, 1995; 109(2):347-352.

91. Wen L, Wu D, Jiay Y, Prasad KN, Lin S, Jiang G et al. Identification of flavonoids in litchi (Litchi chinensis Somn.) leaf and evaluation of anticancer activities. Journal of Functional Foods. 2014; 6:555-563.

92. WHO. Traditional medicine-growing needs and potential. World Health Organization policy perspective on medicines. 2002; 1:6.

93. WHO. Antimicrobial Resistance. World Health Organization; 2016. [Last cited on 2017 May 10]. Available from: http://www.who.int/mediacentre/factsheets/fs194/en/.

94. Wise R. BSAC Working Party on the Urgent Need: Regenerating Antibacterial Drug Discovery and Development. The urgent need for new antibacterial agents. J. Antimicrob. Chemother. 2011; 66:1939-1940

95. Wright GD. Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv Drug Deliv Rev, 2005; 57:1451-1470.

96. Ya C, Gaffney SH, Lilley TH, Haslam E. Carbohydrate-polyphenol and complexation. In: Hemingway RW, Karchesy JJ, editors. Chemistry and Significance of Condensed Tannins. New York, NY, USA: Plenum Press; 1998, 553.

97. Zeng F, Wang W, Wu Y et al. Two prenylated and C-methylated flavonoids from Tripterygium wilfordii. Planta Medica. 2010; 76(14):1596-1599