Genomics update

Some bacteria degrade explosives, others prefer boiling methanol

Michael Y. Galperin*
National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA

The list of completely sequenced microbial genomes, released in August and September of 2007 (Table 1), is relatively short. Still, it includes some remarkable environmental microorganisms, such as the sulfur-reducing crenarchaeon *Ignicoccus hospitalis*, host of the smallest archaeon *Nanoarchaeum equitans*, the soil bacterium *Bacillus pumilus* isolated from a supposedly sterile environment of the spacecraft assembly facility in Pasadena, California, a marine bacterium that degrades nitramine explosives and two enterobacteria that are commonly found in soil and water habitats but can also infect humans, particularly newborns, causing sepsis and neonatal meningitis.

The largest of the recently sequenced genomes comes from the early-diverging amitochondrial eukaryote *Giardia lamblia* (Morrison et al., 2007). Like most other eukaryotic genomes, it has been released in a draft form that consists of 306 contigs, representing 5 chromosomes of *G. lamblia*. In accordance with earlier reports, *G. lamblia* encodes a simplified archaeal-like DNA replication machinery, a yeast-like machinery for transcription synthesis and RNA processing and a limited set of largely bacterial-like metabolic enzymes. Since *G. lamblia* is an intestinal parasite, its primitive features could be equally well rationalized as either an ancestral state of the eukaryotic cell or as a result of a later adaptation to the parasitic lifestyle. So, although the genome of *G. lamblia* is certainly an important step towards understanding the origin and early evolution of the eukaryotic cell, genomes of other early-diverging eukaryotes would be needed to allow meaningful comparative analysis.

Ignicoccus hospitalis, isolated from a submarine hydrothermal vent to the north of Iceland and originally described as *Ignicoccus* sp. KIN4/I, is an interesting organism in its own right. It is an obligately anaerobic hyperthermophilic chemolithoautotroph that uses CO₂ as a source of carbon and derives energy from reducing elemental sulfur with H₂ as the sole electron donor (Paper et al., 2007). It belongs to a recently described genus that forms a deeply branching lineage within the crenarchaeal family *Desulfurococcales* (Huber et al., 2000) and has an outer membrane (Näther and Rachel, 2004) and an unusual pathway of autotrophic CO₂ fixation (Jahn et al., 2007). Still, *Ignicoccus* never attracted as much attention as the tiny (~400 nm) coccoidal cells of *Nanoarchaeum equitans* found on its surface. Based on its unique 16S rRNA sequence and the extremely small size of its genome (less than 0.5 Mbp), *N. equitans* was assigned to a separate phylum of archaea, the *Nanoarchaeota* (Huber et al., 2002). Subsequent genome sequencing revealed an extremely reduced genome of only 491 kb with 536 protein-coding genes (Waters et al., 2003). These genes encoded the components of information processing and DNA repair machinery, but not enzymes of lipid, cofactor, amino acid, or nucleotide biosynthesis. These observations showed that *N. equitans* must acquire most of its biosynthetic precursors from its host and cannot exist without it, establishing its interaction with *I. hospitalis* as a kind of symbiotic or parasitic relationship. Although the lack of the core metabolic genes suggested that *N. equitans* was a highly evolved organism, adapted to the parasitic lifestyle, an analysis of its ribosomal genes supported its deep branching at the base of the archaeal phylogenetic tree (Huber et al., 2003; Waters et al., 2003). Subsequent analysis led some researchers to position *N. equitans* near the root of the universal Tree of Life (Di Giulio, 2007), while others argued that it simply belongs to a fast-evolving lineage within the *Euryarchaeota* (Brochier et al., 2005; Makarova and Koonin, 2005). The genome of *I. hospitalis* is expected to shed light on the mechanisms and evolutionary history of its association with *N. equitans*. In addition, it should show whether *I. hospitalis* acquired any of its metabolic genes through lateral gene transfer from *N. equitans*. However, for a better resolution of ancestral archaeal phylogeny, we should probably wait for the upcoming release by the JGI of the genome of...
Species names	Taxonomy	GenBank accession	Genome size, bp	Proteins (total)	Sequencing centrea	Reference
Giardia lamblia	Eukaryota, Diplomonadida	AACB020000000	11,700,000	6470	MBL	Morrison et al. (2007)
Ignicoccus hospitalis	Crenarchaeota	CP000816	1,297,538	1434	JGI	Unpublished
Roseiflexus castenholzii	Chloroflexi	CP000804	5,723,298	4330	JGI	Unpublished
Bacillus pumilus	Firmicutes	CP000813	3,704,465	3681	Baylor	Golia et al. (2007)
Streptococcus gordoni	Firmicutes	CP000725	2,196,662	2051	JCVI	Unpublished
Rickettsia akari	α-Proteobacteria	CP000847	1,231,060	1259	U. Iowa	Unpublished
Rickettsia canadensis	α-Proteobacteria	CP000409	1,159,772	1093	U. Iowa	Eremeeva et al. (2005)
Rickettsia massiliae	α-Proteobacteria	CP000683	1,360,898	980	CNRS-Marseille	Blanc et al. (2007a)
Rickettsia rickettsii	α-Proteobacteria	CP000848	1,257,710	1345	U. Iowa	Unpublished
Citrobacter koseri	γ-Proteobacteria	CP000822	4,720,462	5031	WashU	Unpublished
Enterobacter sakazakii	γ-Proteobacteria	CP000823	9,294			
Serratia proteamaculans	γ-Proteobacteria	CP000826	4,368,373	4442	WashU	Unpublished
Shewanella pealeana	γ-Proteobacteria	CP000851	5,174,581	4241	JGI	Unpublished
Shewanella sediminis	γ-Proteobacteria	CP000821	5,517,674	4497	JGI	Unpublished
Vibrio harveyi	γ-Proteobacteria	CP000789	3,765,351	6064	WashU	Unpublished
E. coli	γ-Proteobacteria	CP000790	2,204,018			
M. xanthus	γ-Proteobacteria	CP000791	89,008			
Arcobacter butzleri	ε-Proteobacteria	CP000361	2,341,251	2259	USDA-ARS	Kaakoush et al. (2007)
Campylobacter concisus	ε-Proteobacteria	CP000792	2,052,007	1985	JCVI	Unpublished
Thermotoga lettingae	Thermotogae	CP000793	30,949			
Thermotoga maritima	Thermotogae	CP000794	16,457			
Thermotoga neapolitana	Thermotogae	CP000812	2,135,342	2040	JGI	Unpublished
Prochlorococcus marinus	Cyanobacteria	CP000825	1,738,790	1983	JGI	Unpublished
Staphylococcus aureus subsp. aureus Mu3	Firmicutes	AP009324	2,880,168	2698	JCVI	Unpublished
Rickettsia bellii OSU 85-389	γ-Proteobacteria	CP000849	1,528,980	1476	U. Iowa	Unpublished
Escherichia coli E24377A	γ-Proteobacteria	CP000795-	5,249,288	4997	JCVI	Unpublished
Escherichia coli HS	γ-Proteobacteria	CP000801	(total)			
Francisella tularensis subsp. holarctica FTA	γ-Proteobacteria	CP000802	4,643,538	4384	JCVI	Unpublished
Campylobacter jejuni subsp. jejuni 81116	ε-Proteobacteria	CP000814	1,628,115	1626	IFR-Norwich	Pearson et al. (2007)

* Sequencing centre names are abbreviated as follows: Baylor, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA; CNRS-Marseille, CNRS-UPR 2589, Institut de Biologie Structurale et Microbiologie, Marseille, France; IFR-Norwich, Institute of Food Research, Norwich Research Park, Norwich, U.K.; JCVI, J. Craig Venter Institute, Rockville, Maryland, USA; JGI, US Department of Energy Joint Genome Institute, Walnut Creek, California, USA; Juntendo U., Department of Bacteriology at Juntendo University, Bunkyo-ku, Tokyo, Japan; MBL, Marine Biological Laboratory, Woods Hole, Massachusetts, USA; U. Iowa, Environmental Health Sciences Research Center, The University of Iowa, Iowa City, Iowa, USA; USDA-ARS, US Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, USA; WashU, Washington University School of Medicine, St. Louis, Missouri, USA.

Korarchaeota OP1-KOR, a representative of yet another ancient lineage, *Korarchaeota*, which is currently under embargo (see http://genome.jgi-psf.org/mic_cur1.html).

R. castenholzii is a facultatively anaerobic moderately thermophilic filamentous phototrophic bacterium that belongs to the phylum *Chloroflexi*, also known as *green non-sulfur bacteria,* which unifies filamentous bacteria that lack peptidoglycan in their cell walls (Meissner et al., 1988). This is the 5th completely sequenced genome from that phylum, coming on the heels of the genome of *Roseiflexus* sp. strain RS-1 that has been released by the JGI earlier this year and three genomes of *Dehalococcoides* spp. The genome of *Chloroflexus aurantiacus*, the best-studied representative of the *Chloroflexi*, is available in GenBank (accession no. AAAH00000000) in an unfinished form. The sequenced strain *Roseiflexus castenholzii* DSM 13941 has been isolated from a red-colored bacterial mat developed in Nakabusa hot spring near Nagano, Japan (Hanada et al., 2002). Although similar to *C. aurantiacus* in many
features, including the cell shape, gliding motility and the ability to perform anoxygenic photosynthesis, *R. castenholzii* does not contain chlorosomes or bacteriochlorophyll c; its major photosynthetic pigment is bacteriochlorophyll a. *Roseiflexus castenholzii* also differs from other members of the family Chloroflexaceae in that its cells are actually red, owing to the high amount of γ-carotene (Hanada et al., 2002). The organization of genes encoding the photosynthetic reaction center and the light-harvesting proteins of *R. castenholzii* differs from that in *C. aurantiacus* (Yamada et al., 2005), which could help in understanding the evolution of anoxygenic photosynthesis and photosynthesis in general.

The next organism in the list (Table 1), *Bacillus pumilus*, is a common Gram-positive soil bacterium that is often associated with plant roots and has been studied primarily because of its role in plant defense against fungal and nematode parasites. *Bacillus pumilus* is often found in various foods and on some occasions has been identified as a source of food poisoning. The ability of *B. pumilus* to survive standard sterilization procedures has been attributed the high resistance of its spores to gamma irradiation and common solvents. These properties have become subject of intense interest in 1999–2002 when spores of *B. pumilus* and several other bacilli were isolated from the spacecraft surfaces at the Spacecraft Assembly Facility of the NASA Jet Propulsion Laboratory in Pasadena, California (Kempf et al., 2005). One of the strains, *B. pumilus* SAFR-032, isolated from a clean-room airlock, demonstrated unusually high resistance to UV radiation and was even able to withstand UV irradiation in the 200 to 400 nm range at the levels that were expected to be found on the surface of Mars (Newcombe et al., 2005).

Although direct exposure to extremely short-wavelength (10–100 nm) UV irradiation that exists in high vacuum appears to effectively kill both spores and vegetative cells (Saffary et al., 2002), these data revived the idea that such spores could survive space travel under the surface of basalt rocks and be brought to Earth from other planets. One of the strains, *B. pumilus* SAFR-032, isolated from a clean-room airlock, demonstrated unusually high resistance to UV radiation and was even able to withstand UV irradiation in the 200 to 400 nm range at the levels that were expected to be found on the surface of Mars (Newcombe et al., 2005).

Figure 1. A model of UV resistance in *B. pumilus* SAFR-032. (A) Schematic representation of the cell wall of *B. pumilus* SAFR-032 showing the outer membrane (OM), the peptidoglycan layer (PGL), and the inner membrane (IM). The cell wall is surrounded by the capsule (C) and the capsular polysaccharide (CP). The core of the capsule is shown in red. The lipid A moiety of the OM is shown in green. The outer leaflet of the OM is composed of lipopolysaccharides (LPS) and lipoproteins (LP). The inner leaflet of the OM is composed of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG). The peptidoglycan layer is composed of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc). The lipoprotein is composed of lipid A and protein. The CP is composed of carbohydrate and protein. **(B)** A model of the mechanism of UV resistance in *B. pumilus* SAFR-032. The UV irradiation (UV) affects the cell outer membrane (OM) and causes the degradation of the capsular polysaccharide (CP), resulting in the exposure of the lipid A moiety of the outer leaflet of the OM. This leads to the degradation of the outer leaflet of the OM, resulting in the exposure of the lipid A moiety of the inner leaflet of the OM. The exposure of the lipid A moiety of the inner leaflet of the OM results in the degradation of the peptidoglycan layer (PGL). The degradation of the PGL results in the death of the cell. The CP is composed of carbohydrate and protein. **(C)** A model of the mechanism of UV resistance in *B. pumilus* SAFR-032. The UV irradiation (UV) affects the cell outer membrane (OM) and causes the degradation of the capsular polysaccharide (CP), resulting in the exposure of the lipid A moiety of the outer leaflet of the OM. This leads to the degradation of the outer leaflet of the OM, resulting in the exposure of the lipid A moiety of the inner leaflet of the OM. The exposure of the lipid A moiety of the inner leaflet of the OM results in the degradation of the peptidoglycan layer (PGL). The degradation of the PGL results in the death of the cell. The CP is composed of carbohydrate and protein.

The genome of *B. pumilus* SAFR-032 has been sequenced and its adaptations to UV irradiation and peroxide stress analyzed in detail (Gioia et al., 2007). Surprisingly, *B. pumilus* SAFR-032 encoded essentially the same set of genes related to DNA repair and H₂O₂ resistance as far less UV-resistant *B. subtilis* and *B. licheniformis* (Gioia et al., 2007). Still, certain differences in gene order and deduced protein sequences were identified and will be subject of further analysis. This observation is somewhat similar to the results of the just-published comparative analysis of the complete genomes of *Deinococcus radiodurans* and *Deinococcus geothermalis* (Makarova et al., 2007), which did not reveal any specific genes responsible for the extreme radioresistance of these two organisms. Anyway, whether or not *B. pumilus* could have come from other planets – or whether or not our space probes could contaminate the Martian atmosphere along the lines outlined by Ray Bradbury – the extreme resistance of this organism to sterilization protocols deserves a careful consideration.

The second Gram-positive bacterium on the list, *Streptococcus gordonii*, is a normal inhabitant of human oral cavity. It has been implicated in the development of dental caries and gum disease. From the oral cavity, *S. gordonii* can spread to the bloodstream, causing bacterial endocarditis. The sequenced strain *S. gordonii* Challis is commonly used as a model organism and is relatively well studied.

The past two months brought 5 new genomes of *Rickettsia* spp. (Table 1), doubling the total number of complete rickettsial genomes. This genus, named after Howard Taylor Ricketts (1871–1910), who described the first bacterium of this group exactly 100 years ago, consists of arthropod-borne *α-Proteobacteria*, some of which are important pathogens. Human diseases caused by rickettsiae include epidemic typhus (caused primarily by *Rickettsia prowazekii* and *Rickettsia typhi*), scrub typhus (*Rickettsia tsutsugamushi*), the Rocky Mountain spotted fever (*Rickettsia rickettsii*), Mediterranean spotted fever (*Rickettsia conorii*), and rickettsialpox (*Rickettsia akari*). Rickettsiae are obligately intracellular pathogens that are transmitted to their vertebrate hosts by ticks, mites or lice. In 2005 and 2006, *Annals of the New York Academy of Sciences* dedicated two special volumes to the anniversary of the Ricketts’ discovery and the current research of rickettsiae (Hechemy et al., 2005, 2006). Analysis of rickettsial genomes has been used to uncover the principles of their evolution (Blanc et al., 2007b) and their relation to the mitochondria (Andersson et al., 1998). Now, analysis of the *Rickettsia massiliae* genome revealed a mobile genetic element containing tra gene cluster, shared with *Rickettsia bellii* (Blanc et al., 2007a). This work suggests that lateral gene transfer could have played an important role in the evolution of obligate intracellular bacteria.

The list of the recently sequenced *γ*-proteobacterial genomes includes 5 representatives of the family *Enterobacteriaceae*, as well as two marine bacteria, and a new strain of tularemia-causing *Francisella tularensis* (Table 1). Two of these, *Citrobacter koseri* (formerly *Citrobacter diversus*) and *Enterobacter sakazakii*, are common environmental organisms, found in soil, water and sewage samples. Although these organisms are often isolated from human feces, they are usually considered to be part of normal gut flora. However, they can turn into dangerous pathogens, particularly for infants. Thus, *C. koseri* is an opportunistic pathogen of the central nervous system that causes sepsis and meningitis in newborns.
children and in immuno-compromised adults (Doran, 1999). The sequenced strain C. koseri ATCC BAA-895 was isolated in 1983 from a case of neonatal meningitis. Similarly, E. sakazakii has been repeatedly isolated from infant formula, milk powder, cereals and other sources, and implicated in a number of foodborne diseases causing severe meningitis or enteritis (Nazarowec-White and Farber, 1997; Drudy et al., 2006). The sequenced strain E. sakazakii ATCC BAA-894 was isolated from the cerebrospinal fluid in the case of fatal neonatal meningitis in an infant fed with a commercial powdered milk formula in Tennessee in 2001.

The third sequenced member of the Enterobacteriaceae, Serratia proteamaculans, is a common plant endophyte, isolated from the roots of the poplar tree (Moore et al., 2006). This organism appears to promote plant growth, although the nature of the specific compounds involved in this process remains unknown. The availability of S. proteamaculans genome sequence should give a boost to the studies of bacteria-to-plant signals.

The two newly sequenced strains of Escherichia coli represent the extreme diversity of this species. Escherichia coli strain E24377A (serotype O139:H28) is an enterotoxigenic strain, capable of causing traveler’s diarrhea, a nasty disease familiar to most international travelers. This strain produces two types of pili, used for colonization of the surface of small intestine, as well as heat-stable and heat-labile enterotoxins that are largely responsible for its virulence. Genome sequencing reveals a 5-Mb chromosome and 6 plasmids, ranging in size from 5 to 79 kb. These plasmids carry a number of uncharacterized genes, at least some of which might be involved in virulence. In contrast, Escherichia coli strain HS appears to be able to colonize the human gastrointestinal tract without causing any obvious disease and is a good model organism to study the colonization mechanisms.

Shewanella sediminis strain HAW-EB3 is a recently described marine γ-proteobacterium with potential use in bioremediation (Zhao et al., 2005). It has been isolated from the sediment of Emerald Basin, a former military dumping site of unexploded ordnance located in the Atlantic Ocean, 50 miles from the Halifax Harbor in Nova Scotia, Canada, at the depth of 215 m. This site is heavily contaminated with hexahydro-1,3,5-trinitro-1,3,5-triazine, which is used as an explosive agent and also as a rodenticide and is known under the trade names RDX, hexogen, hexolite, and cyclonite (see http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=8490 for the chemical formula and references). The isolated strain S. sediminis HAW-EB3 was able to degrade hexogen anaerobically at 10°C, suggesting that it could be used in remediation of various nitramine compounds (Zhao et al., 2004). Given that other Shewanella spp. reduce Cr(VI), U(VI), and other toxic metals, these organisms demonstrate a very impressive ability to clean up after humans.

Another new species of Shewanella isolated from the Emerald Basin, Shewanella halifaxensis (Zhao et al., 2006), turned out to be a relative of the squid symbiont Shewanella pealeana, which prompted sequencing of that genome as well. Shewanella pealeana inhabits accessory nidamental gland, an oval secretory organ in the female reproductive system of the squid Loligo pealei (Leonardo et al., 1999). This gland is remarkable for turning from colorless to red-orange during sexual maturation of the squid, most likely owing to accumulation of carotenoid pigments in the bacterial community inhabiting it (Barbieri et al., 2001). Although the exact function of accessory nidamental gland is unknown, it is believed to participate in the formation of egg capsular sheath, which contains a dense culture of bacteria that may protect cephalopod eggs from predators. Shewanella pealeana is a facultatively anaerobic, psychrotolerant bacterium that can grow anaerobically on lactate using elemental sulfur, iron, manganese, nitrate, fumarate, trimethylamine-N-oxide, or thiosulfate as electron acceptors (Leonardo et al., 1999). Comparison of this genome with 13 other completely sequenced genomes of Shewanella spp. should provide interesting clues into co-evolution of S. pealeana and squid cells.

Vibrio harveyi is a widespread marine bacterium, often found associated with marine animals, such as octopi and shrimp. For a number of years, it has been a favorite model organism to study regulation of bioluminescence by quorum sensing (Dunlap, 1999). It has a very complex regulatory system (Waters and Bassler, 2006) that should now become much easier to comprehend.

The three new ε-proteobacterial genomes in the current list all come from the family Campylobacteriaceae. Arcobacter butzleri is an aerotolerant waterborne campylobacterium that is commonly found in pigs, cattle, sheep, and poultry, as well as in surface, drinking, and well water and in processed meat (Snelling et al., 2006). Consumption of contaminated water or infected poultry may lead to human infection. The sequenced strain A. butzleri RM4018 was isolated from a case of human gastroenteritis. Meanwhile, the Campylobacter sequenc-
Given the recent progress in sequencing the genomes of free-living ε-proteobacteria of unclear phylogenetic status that inhabit deep-sea thermal vents (Nakagawa et al., 2005; 2007), this class of Proteobacteria is finally achieving reasonable genome coverage.

The Thermotogales sequencing project at the JGI released the complete genome of yet another representative of this early-branching bacterial phylum. Thermotoga lettingae strain TMO was isolated in 2002 from a sulfate-reducing bioreactor operated at 65°C with methanol as the sole carbon and energy source (Balk et al., 2002). Thermotoga lettingae fermented methanol to acetate, CO2 and H2. In the presence of electron acceptors, such as thiosulfate, elemental sulfur, or Fe(III), it was able to degrade methanol to CO2 and H2 (Balk et al., 2002). The unique ability of T. lettingae to utilize methanol near its boiling point of 64.7°C makes it a very attractive object for biotechnology.

Acknowledgements
M.Y.G. is supported by the Intramural Research Program of the NIH, National Library of Medicine. The author’s opinions do not reflect the views of NCBI, NLM, or the National Institutes of Health.

References
Andersson, S.G., Zomorodipour, A., Andersson, J.O., Sicheritz-Ponten, T., Alsmark, U.C., Podowski, R.M. et al. (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396: 133–140.
Balk, M., Weijma, J., and Stams, A.J. (2002) Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor. Int J Syst Evol Microbiol 52: 1361–1368.
Barbieri, E., Paster, B.J., Hughes, D., Zurek, L., Moser, D.P., Teske, A., and Sogin, M.L. (2001) Phylogenetic characterization of epibiotic bacteria in the accessory nidamental gland and egg capsules of the squid Loligo pealei (Cephalopoda: Loliginidae). Environ Microbiol 3: 151–167.
Benardini, J.N., Sawyer, J., Venkateswaran, K., and Nicholson, W.L. (2003) Spore UV and acceleration resistance of endolithic Bacillus pumilus and Bacillus subtilis isolates obtained from Sonoran desert basalt: implications for lithopanspermia. Astrobiology 3: 709–717.
Blanc, G., Ogata, H., Robert, C., Audic, S., Claverie, J.M., and Raoult, D. (2007a) Lateral gene transfer between obligate intracellular bacteria: Evidence from the Rickettsia massiliae genome. Genome Res. 17: 1657–1664.
Blanc, G., Ogata, H., Robert, C., Audic, S., Suhre, K., Vestris, G. et al. (2007b) Reductive genome evolution from the mother of Rickettsia. PLoS Genet 3: e14.
Brockier, C., Gribaldo, S., Zivanovic, Y., Confalonieri, F., and Forterre, P. (2005) Nanoarchaea: representatives of a novel archaeal phylum or a fast-evolving euryarchaeal lineage related to Thermococcales? Genome Biol 6: R42.
Di Giulio, M. (2007) The tree of life might be rooted in the branch leading to Nanoarchaeota. Gene 401: 108–113.
Doran, T.I. (1999) The role of Citrobacter in clinical disease of children: review. Clin Infect Dis 28: 384–394.
Drudy, D., Mullane, N.R., Quinn, T., Wall, P.G., and Fanning, S. (2006) Enterobacter sakazakii: an emerging pathogen in powdered infant formula. Clin Infect Dis 42: 996–1002.
Dunlap, P.V. (1999) Quorum regulation of luminescence in Vibrio fischeri. J Mol Microbiol Biotechnol 1: 5–12.
Eremeeva, M.E., Madan, A., Shaw, C.D., Tang, K., and Dasch, G.A. (2005) New perspectives on rickettsial evolution from new genome sequences of rickettsia, particularly R. canadensis, and Orientia tsutsugamushi. Ann N Y Acad Sci 1063: 47–63.
Gioia, J., Yerrapragada, S., Qin, X., Jiang, H., Igboeli, O.C., Muzny, D. et al. (2007) Paradoxical DNA repair and peroxide resistance gene conservation in Bacillus pumilus SAFR-032. PLoS ONE 2: e928.
Hanada, S., Takaichi, S., Matsuura, K., and Nakamura, K. (2002) Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 52: 187–193.
Hechemy, K.E., Oteo, J.A., Raoul, D., Silverman, D.J., and Blanco, J.R. (2005) New insights into rickettsioses: genomics, proteomics, pathobiology, and the international threat of rickettsial diseases: introduction. Ann NY Acad Sci 1063: xiii–xx.
Hechemy, K.E., Oteo, J.A., Raoul, D., Silverman, D.J., and Blanco, J.R. (2006) A century of rickettsiology: emerging, reemerging rickettsioses, clinical, epidemiologic, and molecular diagnostic aspects and emerging veterinary rickettsioses: an overview. Ann NY Acad Sci 1078: 1–14.
Huber, H., Hohn, M.J., Stetter, K.O., and Rachel, R. (2003) The phylum Nanoarchaeota: present knowledge and future perspectives of a unique form of life. Res Microbiol 154: 165–171.
Huber, H., Burggraf, S., Mayer, T., Wyschkony, I., Rachel, R., and Stetter, K.O. (2000) Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic Archaea, represented by two new species, Ignicoccus islandicus sp nov and Ignicoccus pacificus sp nov. Int J Syst Evol Microbiol 50: 2093–2100.
Huber, H., Hohn, M.J., Rachel, R., Fuchs, T., Wimmer, V.C., and Stetter, K.O. (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417: 63–67.
Jahn, U., Huber, H., Eisenreich, W., Hugler, M., and Fuchs, G. (2007) Insights into the autotrophic CO2 fixation pathway of the archaeon Ignicoccus hospitalis: comprehensive analysis of the central carbon metabolism. J Bacteriol 189: 4108–4119.
Kaakoush, N.O., Sterzenbach, T., Miller, W.G., Suerbaum, S., and Mendz, G.L. (2007) Identification of disulfide reductases in Campylobacter: a bioinformatics investigation. Antonie Van Leeuwenhoek 92: 429–441.
Kempf, M.P., Chen, F., Kern, R., and Venkateswaran, K. (2005) Recurrent isolation of hydrogen peroxide-resistant spores of Bacillus pumilus from a spacecraft assembly facility. Astrobiology 5: 391–405.
Leonardo, M.R., Moser, D.P., Barbieri, E., Brantner, C.A.,
