Multiplex PCR method for differentiating highly pathogenic *Yersinia enterocolitica* and low pathogenic *Yersinia enterocolitica*, and *Yersinia pseudotuberculosis*

Thi Hien BUI1), Shunsuke IKEUCHI1), Yukiko SASSA-O’BRIEN1), Takeshi NIWA1), Yukiko HARA-KUDO2), Takahide TANIGUCHI1) and Hideki HAYASHIDANI1)*

1) Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
2) National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501, Japan

ABSTRACT. A multiplex PCR method for rapid and sensitive diagnosis, differentiating three pathogenic *Yersinia* groups such as the highly pathogenic *Y. enterocolitica*, including serotype O8, low pathogenic *Y. enterocolitica*, and *Y. pseudotuberculosis*, was developed. Four primer pairs were chosen to detect the genes *fyuA*, *ail*, *inv*, and *virF*, responsible for the virulence in pathogenic *Yersinia* species. Under the multiplex PCR conditions, the unique band patterns for the highly pathogenic *Y. enterocolitica*, low pathogenic *Y. enterocolitica*, and *Y. pseudotuberculosis* were generated from *Yersinia* strains. The detection limit of this method was 10^1 – 10^3 CFU per reaction tube. This multiplex PCR method could detect highly pathogenic *Y. enterocolitica* O8 from the wild rodent fecal samples that were culture-positive. Therefore, the new multiplex PCR method developed in this study is a useful tool for rapid and sensitive diagnosis, distinguishing three pathogenic *Yersinia* groups.

KEY WORDS: detection, diagnosis, multiplex PCR, *Yersinia enterocolitica*, *Yersinia pseudotuberculosis*

Pathogenic bacteria of the *Yersinia* genus, including *Yersinia enterocolitica* and *Yersinia pseudotuberculosis*, are known to cause yersiniosis [2, 4, 5]. From over 60 *Y. enterocolitica* serotypes, only nine serotypes (O3, O4,32, O5,27, O8, O9, O13, O18, O20, and O21) are pathogenic to humans [2, 5]. Among them, serotypes O3, O5,27, and O9 are called “European strains”, and show low pathogenicity to humans. In contrast, the remaining six serotypes, which are called “American strains”, are highly pathogenic to humans [3, 4]. Generally, human *Yersinia* infection causes gastroenteritis with clinical symptoms including abdominal pain, diarrhea, and fever, however, highly pathogenic *Y. enterocolitica* serotypes including serotype O8 and *Y. pseudotuberculosis* sometimes cause septicemia [2, 4, 5]. In the highly pathogenic *Y. enterocolitica* serotypes, recently serotype O8 has been increasing in Japan [9, 15, 23] and in some European countries such as Germany and Poland [18, 19]. Therefore, a sensitive and rapid method for detecting these pathogens is required.

The diagnostic methods for pathogenic *Yersinia* are mainly based on conventional isolation and identification procedures [7, 13]; however, these methods are time-consuming and laborious. Recently, some PCR methods have been developed to detect *Y. enterocolitica* and *Y. pseudotuberculosis*, allowing rapid diagnosis [6, 20]. A few multiplex PCR methods have been developed to detect both pathogenic *Y. enterocolitica* and *Y. pseudotuberculosis* [16, 21]. However, the multiplex PCR method to detect highly pathogenic *Y. enterocolitica*, including serotype O8, low pathogenic *Y. enterocolitica*, and *Y. pseudotuberculosis*, has not been established.

Therefore, the study aimed to develop a rapid multiplex PCR method for the detection and identification of highly pathogenic *Y. enterocolitica*, low pathogenic *Y. enterocolitica*, and *Y. pseudotuberculosis*, and evaluate the performance of the method in the detection of highly pathogenic *Y. enterocolitica* O8 from clinical samples.
MATERIALS AND METHODS

Bacterial strains

A total of 25 strains of pathogenic Yersinia, including 6 strains of low pathogenic Y. enterocolitica serotypes, 9 strains of highly pathogenic serotypes, and 10 strains of pathogenic Y. pseudotuberculosis were used in this study. Moreover, non-pathogenic Y. enterocolitica serotype O8,19, Y. aldovae, Y. intermedia, Y. kristensenii, Y. rohdei, Escherichia coli, and Salmonella enterica subsp. enterica serovar Enteritidis were used to verify the specificity of the multiplex PCR method (Table 1). These strains were stored in skim milk at −80°C until analysis.

DNA extraction for multiplex PCR

All bacterial strains were plated on trypticase soy agar (TSA, Becton, Dickinson and Co., Franklin Lakes, NJ, USA) and incubated for 24 hr at 25°C. After suspending the bacterial cells of each strain in TE buffer (10 mM Tris-HCl [pH 8.0], 1 mM EDTA), genomic DNA was extracted using the alkali-heat DNA extraction method described previously [8]. Briefly, 200 μl of the bacterial suspension was centrifuged at 10,000 × g for 10 min. The collected pellet was resuspended in 85 μl of sterilized 50 mM NaOH, followed by heating at 100°C for 10 min. After cooling on ice, the suspension was neutralized with 15 μl of sterilized 1 M Tris-HCl (pH 7.0) and centrifuged at 10,000 × g for 10 min. The supernatant containing the DNA template was collected and used for the multiplex PCR.

Primer selection

The target genes were selected based on their ability to identify all pathogenic Yersinia, including highly pathogenic Y. enterocolitica, low pathogenic Y. enterocolitica, and Y. pseudotuberculosis. These genes included fyuA (ferric yersiniabactin uptake receptor A), present on chromosomal DNA of highly pathogenic Y. enterocolitica [17]; ail (attachment invasion locus), etc.

Table 1. Bacteria strains and band patterns of each bacteria by the polymerase chain reaction (PCR) method

Species	Biotype	Serotype	Strain	PCR results
Yersinia enterocolitica	4	O3	S3-3	-
Y. enterocolitica	4	O3	S3-8	-
Y. enterocolitica	1B	O4,32	IP96	-
Y. enterocolitica	2	O5,27	S5-250	-
Y. enterocolitica	2	O5,27	S5-203	-
Y. enterocolitica	1B	O8	Ye16-58	-
Y. enterocolitica	1B	O8	NY9306089	
Y. enterocolitica	1B	O8	IP843	-
Y. enterocolitica	2	O9	S9-87	-
Y. enterocolitica	2	O9	Pa117	-
Y. enterocolitica	1B	O13a,13b	WA285	-
Y. enterocolitica	1B	O13a,13b	WAT568	-
Y. enterocolitica	1B	O18,13b	IP896	-
Y. enterocolitica	1B	O20	IP1106	-
Y. enterocolitica	1B	O21	IP1110	-
Y. pseudotuberculosis	1b	SP-20	+	
Y. pseudotuberculosis	1b	SP-1526	+	
Y. pseudotuberculosis	2b	1608	+	
Y. pseudotuberculosis	3	SP-148	+	
Y. pseudotuberculosis	3	SP-1726	+	
Y. pseudotuberculosis	4b	SP-2067	+	
Y. pseudotuberculosis	4b	SP-2118	+	
Y. pseudotuberculosis	5a	SP-328	+	
Y. pseudotuberculosis	5a	SP-334	+	
Y. pseudotuberculosis	6	SP-901	+	
Y. enterocolitica	1A	O8,19	NY8904001	
Y. enterocolitica	1A	O8,19	JCM 5892	
Y. enterocolitica	1A	O8,19	JCM 7597	
Y. enterocolitica	1A	O8,19	JCM 7576	
Y. enterocolitica	1A	O8,19	JCM 7376	
Y. enterocolitica	1A	O8,19	NS9506003	
Y. enterocolitica	1A	O8,19	JCM 5491	

Note: The PCR results were based on the presence (+) or absence (-) of specific bands for each gene.
found uniquely on the chromosome of pathogenic *Y. enterocolitica* strains [14, 20]; *inv* (invasin), present on the chromosome of pathogenic *Y. pseudotuberculosis* [20]; and *virF* (virulence regulon transcriptional activator), which is encoded on a 70 kilobase plasmid (pYV) of pathogenic *Y. enterocolitica* and *Y. pseudotuberculosis* [4]. PCR primers targeting the *fyuA* gene were designed for this study. A region of the *fyuA* gene sequence of *Y. enterocolitica* serotype O8 (GenBank accession no. Z35486.1), which lacks homology with the *fyuA* gene sequence of *Y. pseudotuberculosis* was chosen to design *fyuA* gene-specific primers using the Primer-BLAST software [22]. The primer pairs for *inv, ail*, and *virF* were designed by Thoerner *et al.* [20]. The details of primers to each target genes are shown in Table 2.

Multiplex PCR method

Initially, monoplex PCR using each primer pair was performed to observe the distribution of target genes among pathogenic *Yersinia* species. After validation of each pair, these four primer pairs were combined to confirm that each PCR product was the correct size. Subsequently, the multiplex PCR conditions were optimized. Each reaction mixture (15 μl) contained 0.1 μM of each primer, 1X Green buffer of Gotaq Flexi DNA polymerase kit (Promega Corp., Madison, WI, USA), 2.5 mM MgCl₂, 200 μM dNTP, 0.05 U Gotaq DNA polymerase (Promega), and 5 μl of template DNA. The reaction was performed in a T100 Thermal Cycler (Bio-Rad Laboratories, Inc., Hercules, CA, USA) under the following conditions: initial denaturation step for 2 min at 95°C, followed by 30 cycles of 95°C for 30 sec, 56°C for 30 sec, 72°C for 30 sec, and a final extension at 72°C for 5 min. The PCR products were then subjected to electrophoresis on 1.5% agarose ME (Fujifilm Wako Pure Chemical Corp., Osaka, Japan) gel in 1X Tris-acetic acid EDTA buffer (Fujifilm Wako Pure Chemical Corp.) at 100 V for 30 min and stained with AtlasSight DNA Stain (Bioatlas, Tartu, Estonia).

Sensitivity test of developed multiplex PCR

The sensitivity of the developed multiplex PCR was examined using *Y. enterocolitica* O3 (strain S3-3), *Y. enterocolitica* O8 (strain YE16-58), *Y. pseudotuberculosis* 1b (strain SP-20), and *Y. pseudotuberculosis* 4b (strain SP-2067). The bacterial cells of each strain from colonies on TSA were suspended in TE buffer to achieve a final concentration of 10⁵ CFU/ml. To examine the detection limits for the developed multiplex PCR, a serial 10-fold dilution of these strains with TE buffer was performed. Genomic DNA from each dilution was obtained using the alkaline-heat DNA extraction method described above and was used for multiplex PCR amplification. Aliquots of the serial dilutions were plated in duplicates onto TSA and grown at 25°C for 24 hr to determine the number of colony-forming units (CFU).

Detection of pathogenic *Yersinia* from fecal samples

To evaluate the performance of the multiplex PCR developed in this study to detect pathogenic *Yersinia* in clinical samples, a total of 45 wild rodent feces contaminated with *Y. enterocolitica* O8 were used. The fecal samples (0.5 g) were suspended in 4.5 ml of phosphate-buffered saline (PBS; pH 7.6), and 200 μl of the PBS suspension was subjected to DNA extraction. Genomic DNA was extracted immediately after the fecal samples were homogenized in PBS without enrichment. It was purified using the QIAMP DNA stool mini kit (Qiagen GmbH, Hilden, Germany) following the manufacturer’s instructions, with 100 μl elution buffer added for DNA collection and used for multiplex PCR amplification. *Y. enterocolitica* O8 was isolated from wild rodent feces using the cold enrichment culture method and was identified as described previously [10].

RESULTS

The specificity of the developed multiplex PCR

The results of the specificity test for the monoplex and multiplex PCR are shown in Table 1. Detection of the *fyuA, ail, inv,* and *virF* genes correlated well with the genotypic traits of highly pathogenic *Y. enterocolitica*, low pathogenic *Y. enterocolitica*, and *Y. pseudotuberculosis*. Typical examples of multiplex PCR assays for pathogenic *Yersinia* species are shown in Fig. 1. Among the 25 different pathogenic *Yersinia* strains, only highly pathogenic *Y. enterocolitica* showed an extra PCR product of 253 bp, which corresponded to a part of the *fyuA* gene. The 351 bp fragment of the *ail* gene was observed in all the pathogenic *Y. enterocolitica* strains.

Table 2. Oligonucleotide primers used in this study

Target genes	Sequences (5'-3')	Product length (bp)	Target pathogens	References
inv	F CGTACCGGCTCAGTTAATCTG	183	Pathogenic	[20]
	R CGTCCTCCAATGTACGATCC			
fyuA	F GCCGCTAAAGCTTCACTT	253	Highly pathogenic	This study
	R ACCCATATCAACGTTACG			
ail	F TAATGTGACCGTGCGAG	351	Pathogenic	[20]
	R AGCTCTTACCTTAGACAG			
virF	F GGGAGAAGACGATCGACATA	561	Pathogenic	[20]
	R GTGGAGCATAGAGATACGAGC			

F, forward primer; R, reverse primer.
serotypes, and the 183 bp fragment of the *inv* gene was detected in all the *Y. pseudotuberculosis* serotypes. The amplicon of 561 bp, which corresponded to a part of the *virF* gene, was observed in all the pathogenic *Yersinia* serotypes tested. The pattern with two bands, 253 bp, and 351 bp, indicated the presence of a highly pathogenic *Y. enterocolitica* strains. The single-band, 351 bp corresponded to low pathogenic *Y. enterocolitica* strains, and 183 bp corresponded to *Y. pseudotuberculosis* strains. The 561 bp band indicated the presence of a virulent plasmid of the *Yersinia* strains. Thus, the highly pathogenic *Y. enterocolitica*, pathogenic *Y. enterocolitica*, and *Y. pseudotuberculosis* can be differentiated by three different band patterns. No targeted gene products were amplified from the negative controls (Fig. 1).

The sensitivity of the developed multiplex PCR

The results showed that multiplex PCR was able to detect pathogenic *Yersinia* with 10^3–10^5 CFU per reaction tube. Among the four strains tested, *Y. enterocolitica* O8 (strain YE16-58) and two strains of *Y. pseudotuberculosis* 1b (strain SP-20) and 4b (strain SP-2067) were detectable at 10^4 CFU per reaction tube. However, more than 10^3 CFU per reaction tube was required to detect *Y. enterocolitica* O3 (strain S3-3) (Fig. 2).

Detection of pathogenic *Yersinia* from fecal samples

The multiplex PCR results were in agreement with those from the culture method (Table 3 and Fig. 3). Among the 45 naturally contaminated wild rodent fecal samples tested, simultaneous amplification of the *virF*, *ail*, and *fyuA* genes was observed in three (6.7%) samples, indicating the presence of highly pathogenic *Y. enterocolitica* O8. These samples were the same as those of the culture-positive samples. No PCR product was observed in the culture-negative samples.
DISCUSSION

A few multiplex PCR methods to detect *Y. enterocolitica* and *Y. pseudotuberculosis* have been reported [16, 21]. However, no reports are available on the multiplex PCR method for simultaneous detection and identification of low and high pathogenic *Y. enterocolitica* at the same time. A rapid, specific, and sensitive multiplex PCR method, which can detect and distinguish the three pathogenic *Yersinia* groups consisting of highly pathogenic *Y. enterocolitica*, including serotype O8, low pathogenic *Y. enterocolitica*, and *Y. pseudotuberculosis*, was developed in this study. A new primer pair targeting *fyuA* was designed to detect highly pathogenic *Y. enterocolitica*. This *fyuA* primer pair was combined with the *ail*, *inv*, and *virF* primer pairs described previously by Thoerner et al. [20] to allow both detection and differentiation among the three pathogenic *Yersinia* groups. The primer pairs, *ail*, *inv*, and *virF*, were initially designed and used in conventional monoplex PCR assays [20]. Under the multiplex PCR conditions, with a mixture of these four pairs of primers (Fig. 1), three groups of pathogenic *Yersinia* were distinguished. Moreover, the detection limit of the multiplex PCR method was 10⁸–10⁹ CFU per reaction tube, which demonstrated a high sensitivity level [11, 16]. A spike experiment using *Yersinia*-free pig fecal samples was performed, and the multiplex PCR method developed in this study could detect pathogenic *Yersinia at* 10⁸–10⁹ CFU per reaction tube from spiked fecal samples (data not shown). However, few reports [1, 12] have stated that some primer sets of PCR methods for detecting pathogenic *Yersinia* showed high sensitivity in spiked fecal samples but not in naturally contaminated samples. Therefore, the multiplex PCR method was applied to detect pathogenic *Yersinia* from wild rodent feces contaminated with *Y. enterocolitica* O8 to determine the feasibility of this method as a diagnostic tool. The multiplex PCR method developed in this study could detect *Y. enterocolitica* O8 from the same rodent fecal samples that were culture-positive (Table 3, Fig. 3). While the conventional culture method is time-consuming and laborious [7, 13], the multiplex PCR method can be completed within one day. Therefore, the multiplex PCR developed in this study seems to be a useful method for rapid and sensitive diagnosis, distinguishing three pathogenic *Yersinia* groups such as highly pathogenic *Y. enterocolitica*, including *Y. enterocolitica* O8, low pathogenic *Y. enterocolitica*, and *Y. pseudotuberculosis*.

CONFLICT OF INTEREST STATEMENT. The authors declare no conflicts of interest

ACKNOWLEDGMENT. This study was partially supported by a Health Sciences Research Grant from the Ministry of Health, Labor, and Welfare, Japan.

REFERENCES

1. Bhaduri, S. 2002. Comparison of multiplex PCR, PCR-ELISA and fluorogenic 5′ nuclease PCR assays for detection of plasmid-bearing virulent *Yersinia enterocolitica* in swine feces. *Mol. Cell. Probes* 16: 191–196. [Medline] [CrossRef]
2. Bottone, E. J. 1999. *Yersinia enterocolitica*: overview and epidemiologic correlates. *Microbes Infect.* 1: 323–333. [Medline] [CrossRef]
3. Bottone, E. J. 2015. *Yersinia enterocolitica*: Revisitation of an enduring human pathogen. *Clin. Microbiol. Newsl.* 37: 1–8. [CrossRef]
4. Carniel, E., Autenrieth, I., Cornelis, G., Fukushima, H., Guinet, F., Isberg, R., Pham, J., Prentice, M., Simonet, M., Skurnik, M., and Wauters, G. 2006. *Y. enterocolitica* and *Y. pseudotuberculosis*. pp. 270–398. In: The Prokaryotes, A handbook on the biology of bacteria, 3rd ed. (Dworkin, Martin, Falkow, Stanley, Rosenberg, Eugene, Schleifer, Karl-Heinz and Stackebrandt, Erko eds.), Springer, New York.
5. Fredriksson-Ahomaa, M. 2007. *Yersinia enterocolitica* and *Yersinia pseudotuberculosis*. pp. 79–113. In: Foodborne Diseases, Infectious Disease (Simjee, Shabbir eds.), Humana Press, Totowa.
6. Fredriksson-Ahomaa, M. and Korkeala, H. 2003. Low occurrence of pathogenic *Yersinia enterocolitica* in clinical, food, and environmental samples: a methodological problem. *Clin. Microbiol. Rev.* 16: 220–229. [Medline] [CrossRef]
7. Fukushima, H., Shimizu, S. and Inatsu, Y. 2011. *Yersinia enterocolitica* and *Yersinia pseudotuberculosis* detection in foods. *J. Pathogens* 2011: 735308. [Medline] [CrossRef]
A NOVEL MULTIPLEX PCR FOR YERSINIA

8. Hara-Kudo, Y., Konishi, N., Ohtsuka, K., Iwabuchi, K., Isobe, J., Yamazaki, T., Suzuki, F., Nagai, Y., Yamada, H., Tanouchi, A., Mori, T., Nakagawa, H., Ueda, Y. and Terajima, J. 2016. An interlaboratory study on efficient detection of Shiga toxin-producing Escherichia coli O26, O103, O111, O121, O145, and O157 in food using real-time PCR assay and chromogenic agar. Int. J. Food Microbiol. 230: 81–88. [Medline] [CrossRef]

9. Hayashidani, H. 2016. Yersiniosis. J. Jpn. Food Microbiol. 33: 175–181 (in Japanese). [CrossRef]

10. Hayashidani, H., Ohtomo, Y., Toyokawa, Y., Saito, M., Kaneko, K., Kosuge, J., Kato, M., Ogawa, M. and Kapperud, G. 1995. Potential sources of sporadic human infection with Yersinia enterocolitica serovar O:8 in Aomori Prefecture, Japan. J. Clin. Microbiol. 33: 1253–1257. [Medline] [CrossRef]

11. Horisaka, T., Fujita, K., Iwata, T., Nakadai, A., Okatani, A. T., Horikita, T., Taniguchi, T., Honda, E., Yokomizo, Y. and Hayashidani, H. 2004. Sensitive and specific detection of Yersinia pseudotuberculosis by loop-mediated isothermal amplification. J. Clin. Microbiol. 42: 5349–5352. [Medline] [CrossRef]

12. Jourdan, A. D., Johnson, S. C. and Wesley, I. V. 2000. Development of a fluorogenic 5′ nuclease PCR assay for detection of the ail gene of pathogenic Yersinia enterocolitica. Appl. Environ. Microbiol. 66: 3750–3755. [Medline] [CrossRef]

13. Konishi, N., Ishitsuka, R., Yokoyama, K., Saiki, D., Akase, S., Monna, C., Hirai, A., Sadamasu, K. and Kai, A. 2016. Two outbreaks of Yersinia enterocolitica O:8 infections in Tokyo and the characterization of isolates. Kansenshogaku Zasshi 90: 66–72 (in Japanese). [Medline] [CrossRef]

14. Miller, V. L., Farmer, J. J. 3rd., Hill, W. E. and Falkow, S. 1989. The ail locus is found uniquely in Yersinia enterocolitica serotypes commonly associated with disease. Infect. Immun. 57: 121–131. [Medline] [CrossRef]

15. Minami, K., Yasuda, R., Terakawa, R., Koike, Y., Takeuchi, K., Higuchi, T., Horiiuchi, A., Kubota, N., Hidaka, E. and Kawakami, Y. 2017. Four sporadic pediatric cases of Yersinia enterocolitica O:8 infection in a rural area of Japan. Jpn. J. Infect. Dis. 70: 192–194. [Medline] [CrossRef]

16. Nakajima, H., Inoue, M., Mori, T., Itoh, K., Arakawa, E. and Watanabe, H. 1992. Detection and identification of Yersinia pseudotuberculosis and pathogenic Yersinia enterocolitica by an improved polymerase chain reaction method. J. Clin. Microbiol. 30: 2484–2486. [Medline] [CrossRef]

17. Rakin, A., Urbitsch, P. and Heesemann, J. 1995. Evidence for two evolutionary lineages of highly pathogenic Yersinia species. J. Bacteriol. 177: 2292–2298. [Medline] [CrossRef]

18. Rastawicki, W., Szych, J., Gierczyński, R. and Rokosz, N. 2009. A dramatic increase of Yersinia enterocolitica serogroup O:8 infections in Poland. Eur. J. Clin. Microbiol. Infect. Dis. 28: 535–537. [Medline] [CrossRef]

19. Rosner, B. M., Stark, K. and Werber, D. 2010. Epidemiology of reported Yersinia enterocolitica infections in Germany, 2001-2008. BMC Public Health 10: 337. [Medline] [CrossRef]

20. Thoerner, P., Bin Kingombe, C. I., Bögli-Stuber, K., Bissig-Choisat, B., Wassenaar, T. M., Frey, J. and Jenmi, T. 2003. PCR detection of virulence genes in Yersinia enterocolitica and Yersinia pseudotuberculosis and investigation of virulence gene distribution. Appl. Environ. Microbiol. 69: 1810–1816. [Medline] [CrossRef]

21. Weynants, V., Jadot, V., Denoeil, P. A., Tibor, A. and Letesson, J. J. 1996. Detection of Yersinia enterocolitica serogroup O:3 by a PCR method. J. Clin. Microbiol. 34: 1224–1227. [Medline] [CrossRef]

22. Ye, J., Coulouris, G., Zaretskaya, I., Cutcutache, I., Rozen, S. and Madden, T. L. 2012. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13: 134. [Medline] [CrossRef]

23. Yoshida, T., Nishigaki, A. and Matsuoka, H. 2017. An outbreak of Yersinia enterocolitica serotype O8 infection in Kami-Ina, Nagano prefecture, Japan. Shinshu Public Health Mag. 12: 3–12 (in Japanese).