A catalogue of cultivable yeasts from the microbiota of grape berries cv. Vinhão and Loureiro

Viviana Martins*, Luís Costa*, Rafaela Soares*, Peter Ayogu, António Teixeira, and Hernâni Gerós

Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal

*These authors contributed equally to this work

ABSTRACT

The relevance of non-Saccharomyces native yeasts for improving the complexity of wine aroma is increasingly recognised, besides their use in a range of biotechnological applications. Previously, we used a metagenomic approach to assess the effects of vineyard calcium sprays on the microbiota of grape berries cv. Vinhão and Loureiro. In this study, we aimed at assembling a catalogue of the cultivable yeasts from grape berries of these cultivars and to investigate the direct effect of calcium and other elicitors on the isolated taxa. Seventeen unique colony morphologies were identified, and the sequencing of the region spanning the rDNA internal transcribed spacers or the rDNA D1/D2 domain revealed that they are distributed into 13 different genera. Although the cultivar and vintage influenced the taxa abundance and diversity,

Aureobasidium pullulans and *Hanseniaspora uvarum* were the most abundant species, ubiquitously populating the fruits together with *Pichia terricola*, *Rhodotorula glutinis*, *Starmerella bacillaris* and *Vishniacozyma heimaeyensis*. The rarest genera comprised *Candida*, *Trichosporon* and *Zygoascus*. Analysis of yeast growth in the presence of specific elicitors revealed that *Pichia* spp. are the most sensitive to exogenous calcium, while *Sporobolomyces* roseus is the most sensitive to copper exposure. Moreover, *A. pullulans*, *H. uvarum* and *S. bacillaris* displayed the highest sensitivity to osmotic stress. In turn, *Wickerhamomyces anomalus*, *Metschnikowia pulcherrima*, *P. fermentans*, *P. kluyveri* and *P. kudriavzevii* showed mild resistance to ethanol, unlike the remaining non-Saccharomyces yeasts. Correlation networks expressing the overall yeast performance showed that *H. uvarum* and *S. bacillaris* share the strongest positive interspecies correlation, followed by the pairs *P. fermentans*–*P. kluyveri*, *B. albus*–*R. glutinis* and *A. pullulans*–*V. heimaeyensis*. The strongest negative correlations were found for the pairs *P. kluyveri*–*S. roseus*, *P. terricola*–*W. anomalus*, *P. kudriavzevii*–*V. heimaeyensis*, *P. kluyveri*–*V. heimaeyensis*, and *A. pullulans*–*P. kluyveri*. This study exposed microbial niches with a predictably common response to abiotic stress.

KEYWORDS: calcium, copper, cultivable yeasts, Hanseniaspora, interspecies correlations, osmotic stress, *Vitis vinifera*
INTRODUCTION

Grape berries harbour a complex microbial community that is composed of filamentous fungi, yeasts and bacteria, which diversity and abundance are affected by the fruit ripening stage, pedoclimatic factors, viticultural practices and other parameters that modulate fruit integrity (Barata et al., 2012; Loureiro et al., 2012; Martins et al., 2012; Belda et al., 2017; Bisson et al., 2017; Drumonde-Neves et al., 2021). Beneficial microorganisms involved in crucial functions such as plant nutrition and resistance to biotic and abiotic stresses coexist with harmful ones that cause diseases, and their balance greatly determines fruit health (Belda et al., 2017). The indigenous microflora plays an important role in winemaking and its beneficial effects on wine properties have increasingly been established (Barbe et al., 2001; Renouf et al., 2005; Barata et al., 2012; Bisson et al., 2017; Drumonde-Neves et al., 2021). Thus, unveiling the indigenous microbial community associated with particular grape varieties from specific locations could represent an important source of distinctive metabolites and bring out the authenticity terroir of each region (Pinto et al., 2015; Bokulich et al., 2016; Lappa et al., 2020). The use of postharvest microbiota as an early predictor of wine chemical composition potentially poses a new paradigm for quality control of agricultural products (Bokulich et al., 2016).

Different studies based on culture-independent methods have explored the microbial communities associated with wine grapes and the effects of the various factors detailed above on their composition (Pinto et al., 2015; Belda et al., 2017; Mezzasalma et al., 2017). Both organic and conventional practices may negatively impact the grape berry microflora, depending on factors such as pedoclimatic conditions and grape cultivar (Cordero-Bueso et al., 2011; Martins et al., 2012; Milanovic et al., 2013; Agarbati et al., 2019a). In line with these observations, a delay in the progress of alcoholic fermentation was observed in musts from vines cv. Vinhão treated with the copper-based fungicide Bordeaux mixture, an outcome explained by the wide fungicide spectrum of copper (Martins et al., 2015; Martins et al., 2021a). The microflora was collected from berries exposed to the same microclimate and farming system, further allowing the elucidation of the contribution of the cultivar and vintage to the cultivable yeast profile. The culture-dependent approach enabled us to study, in controlled conditions, the effect of specific stresses on the performance of isolated native species, namely, calcium, copper, ethanol and osmotic stress. While, as reported above, calcium and copper have been used as active principles of vineyard treatments which may affect berry microbiota (Martins et al., 2015; Martins et al., 2021a), ethanol is one of the main elicitors exerting selective pressure over the yeast consortium throughout the fermentation process, and high osmotic pressure constitutes a stress factor at the beginning of the wine-making process (Jolly et al., 2014). The growth of each isolated taxon in the presence of the selected elicitors was used to establish correlation networks that exposed interspecies interactions, allowing the identification of niches with a common response to abiotic stress.

MATERIALS AND METHODS

1. Grape berry cultivable microbiota collection

Healthy and undamaged grape berries were collected at the mature stage (E-L 38; Coombe, 1995), in two consecutive vintages (2019 and 2020), from grapevines cv. Vinhão and cv. Loureiro grown in adjacent vineyard parcels and exposed to the same microclimate in a commercial farm of the Portuguese DOC region ‘Vinhos Verdes’ located in the Minho region, in the north of Portugal [coordinates: N41°28’28’’ latitude, W8°34’59’’ longitude, 165 m altitude]. Loureiro and Vinhão are the most prominent white and red wine grape cultivars, respectively, in this region and have been a targeted of studies regarding the effect of copper and calcium-based supplements on grape berry biochemistry and microbiota (Martins et al., 2014; Martins et al., 2020a; Martinsetal., 2020b; Martinsetal., 2021a; Martinsetal., 2021b). In addition, the potential of these yeasts as biocontrol agents of grapevine fungal diseases has been increasingly explored (Raspor et al., 2010; Cordero-Bueso et al., 2017; Solairaj et al., 2020).

Early studies dedicated to the grape berry cultivable yeasts did not provide a visual catalogue with species traits, although for almost two decades, they have been very useful in the identification of yeast species through a written description of their phenotypes (Pallmann et al., 2001; Renouf et al., 2005). Because many species can only be detected by direct identification techniques (without plating) such as PCRDGGE, a few studies combine both culture-dependent and culture-independent isolation methods for the characterisation of grape berry resident yeasts (Stringini et al., 2008; Agarbati et al., 2019b; Drumonde-Neves et al., 2021). In the present study, we aimed at assembling a visual catalogue of grape berry cultivable yeasts, with the collected information about the phenotype of each species, complementing recent studies where a culture-independent metabarcoding approach was used to characterise the surface microbiota of berries cv. Vinhão and Loureiro (Martins et al., 2021a). The microflora was collected from berries exposed to the same microclimate and farming system, further allowing the elucidation of the contribution of the cultivar and vintage to the cultivable yeast profile. The culture-dependent approach enabled us to study, in controlled conditions, the effect of specific stresses on the performance of isolated native species, namely, calcium, copper, ethanol and osmotic stress. While, as reported above, calcium and copper have been used as active principles of vineyard treatments which may affect berry microbiota (Martins et al., 2015; Martins et al., 2021a), ethanol is one of the main elicitors exerting selective pressure over the yeast consortium throughout the fermentation process, and high osmotic pressure constitutes a stress factor at the beginning of the wine-making process (Jolly et al., 2014). The growth of each isolated taxon in the presence of the selected elicitors was used to establish correlation networks that exposed interspecies interactions, allowing the identification of niches with a common response to abiotic stress.
Plants were oriented from west southwest to east/northeast, spaced at 2.2 m between rows, 1.0 m along the row and trained on a vertical shoot position trellis system, uniformly pruned on a unilateral Royat cordon, and subject to the same routine phytosanitary treatments with Topaz® and Ridomil Gold® R WG, according to the suppliers’ instructions. Four independent pools of 20 grape berries randomly collected from 5 bunches each were crushed in sterile vessels, and 10-fold serial dilutions of the grape juice were plated in Wallerstein Differential agar (WL) medium, as originally described (Pallmann et al., 2001). Plates were incubated at 24 °C for 5 days. Although it is not possible to culture yeast from an environment without imposing a selection based on the type of medium used or temperature of growth (Bisson et al., 2017), this approach has proven highly effective in retrieving a high diversity of yeasts from grape berries (Pallmann et al., 2001).

2. Isolation and identification of unique colony types

Unique colony types were counted for four biological replicates per cultivar and restreaked to fresh WL medium, as detailed previously (Pallmann et al., 2001). After an initial macro and micromorphological inspection of an average of 100 isolates per replicate, species identification was performed for 75 selected isolates by amplification and sequencing of ITS regions, following an adaptation of previously described methods (Esteve-Zarzoso et al., 1999; Stringrini et al., 2008). Briefly, colony PCRs were performed using fresh cell mass of pure yeast cultures transferred to PCR tubes containing 15 μl of 2x Master Mix (NZY Taq II 2x, NZYTech, Lda. Genes and Enzymes), 0.1 μM of each primer (ITS1: 5′-TCCGTAGGTGAACCTGCGG-3′; ITS4: 5′-TCCGTAGGTGAACCTGCGG-3′) and nuclease-free water to a final volume of 30 μl. The following cycler conditions were used: 15 min at 95 °C, 35 cycles of 30 s at 94 °C, 30 s at 55.5 °C and 1 min at 72 °C, and a final step of 10 min at 72 °C. The amplification of DNA fragments was confirmed in 1 % (v/v) agarose gels and the purification of PCR products was performed by washing in 4 volumes of 75 % (v/v) isopropanol. Samples were centrifuged at 14,000 g for 30 min and the pellets were air-dried for 30 min and suspended in 10 μl of nuclease-free water to a final volume of 30 μl. The following cycler conditions were used: 15 min at 95 °C, 35 cycles of 30 s at 94 °C, 30 s at 55.5 °C and 1 min at 72 °C, and a final step of 10 min at 72 °C. The amplification of DNA fragments was confirmed in 1 % (v/v) agarose gels and the purification of PCR products was performed by washing in 4 volumes of 75 % (v/v) isopropanol. Samples were centrifuged at 14,000 g for 30 min and the pellets were air-dried for 30 min and suspended in 10 μl of nuclease-free water. Samples were Sanger-sequenced by a specialised service provider (Eurofins Genomics). Sequences were queried onto BLASTn (nucleotide BLAST—basic local alignment search tool) of NCBI (National Center for Biotechnology Information) and organism identification was based on the result with the highest score (sequence of the best match, determined through values of query cover, percentage identity and E value). For sequences without a satisfactory match at the species level, amplification and sequencing of the divergent D1/D2 domain of the LSU rRNA gene were performed using the primers NL-1 (5′-GCATATCTAATAAGCGGAGGAAAG-3′) and NL-4 (5′-GGTCTGGTCTTTACAAGCGG-3′), and the cycler conditions described above (Kurtzman and Robnett, 1991). Representative sequences used for the identification of each yeast strain were deposited in GenBank (NCBI)

under accessions OM044591 to OM044592 and OM049507 to OM049521. The yeast strains were preserved as glycerol stocks in the Microbial Collection of the Biology Department of the University of Minho (Portugal).

The relative abundance of each taxon in each cultivar was then determined and results were expressed as bar graphs of the mean values found for four biological replicates in both vintages, plotted in Prism®6 (GraphPad Software, Inc.). For assembly of the visual yeast catalogue, isolated colonies of each species growing in solid WL medium were photographed with a Canon EOS 250D camera. Cells of each taxon were observed by differential interference contrast microscopy (DIC) in a Leica Microsystems DM-500B microscope and photographed with a Leica DFC350FX digital camera.

3. Effect of specific elicitors on the growth of isolated yeasts

Yeast isolates growing into liquid YPD medium up to the mid-exponential phase were diluted to OD600 nm = 0.1 and cultivated for 14 h at 24 °C and 200 rpm in the absence (control) or in the presence of the following elicitors: CaCl₂ (0.2, 2, 10, 20, 40 g L⁻¹), CuSO₄ (250, 500, 1000 mg L⁻¹), PEG 6000 (5, 10, 20 % (w/v)), and ethanol (3, 6, 10 % (v/v) (Sigma Aldrich, Merck KgA), in a final volume of 5 mL. The concentration range of each elicitor was optimised based on information from previous studies (Martins et al., 2014; Martins et al., 2015; Martins et al., 2020b; Martins et al., 2020c; Silambarasan et al., 2019). Specifically, 20 g L⁻¹ CaCl₂.2H₂O corresponds to the concentration of the calcium formulation applied in vineyards cv. Vinhão and cv. Loureiro to improve fruit firmness (Martins et al., 2020b), and 0.2 g L⁻¹ CaCl₂.2H₂O is the range of calcium concentrations found in musts and wines cv. Vinhão (Martins et al., 2020c); 1000 mg L⁻¹ CuSO₄.5H₂O is 20x lower than the concentration found in the formulation of Bordeaux mixture, a practically insoluble contact fungicide used in organic agriculture (Martins et al., 2014; Martins et al., 2015) and 250 mg L⁻¹ CuSO₄.5H₂O is 8x higher than the copper concentration detected in musts of berries treated with Bordeaux mixture (Martins et al., 2015), 5 to 20 % (w/v) PEG 6000 is the range used previously to assess the effects of osmotic stress in yeast growth (Silambarasan et al., 2019); 10 % (v/v) ethanol is the maximum value found in wines cv. Vinhão produced from berries of the same vineyard (Martins et al., 2015; Martins et al., 2020c), 6 % (v/v) is the range detected in the middle of fermentation and 3 % (v/v) in the early stages of fermentation. The growth of a native Saccharomyces cerevisiae strain isolated from wines cv. Vinhão from the same commercial vineyard (Martins et al., 2020c) was also assessed as a reference for comparison with the growth of the isolated non-Saccharomyces yeasts. Cell density was monitored in a Thermo Spectronic Genesys 20 spectrophotometer. Results were expressed as logarithmically transformed fold-change (treatment/control) of the mean of two biological replicates and visualised as heatmaps plotted on R software version 3.5.3 using the ComplexHeatmap package 1.18.1 on Bioconductor 3.9 (Martins et al., 2021a).
Hierarchical cluster analysis was performed to group yeast species according to their responses to each elicitor. The Student’s *t*-test was used to statistically compare the yeast growth in the absence (control) or presence of each concentration of elicitor, and significant differences were generally marked with an asterisk indicating a maximum value of $P \leq 0.05$.

4. Network analysis
Correlations between yeast species were assembled using the MetScape plugin from Cytoscape version 3.8.1 (www.cytoscape.org; Cline *et al*., 2007), according to their overall response to all tested elicitors, normalised to the respective control without treatment (Teixeira *et al*., 2020). In the network diagram, generated using a perfuse force direct layout algorithm, node size is proportional to the correlation node strength. Positive ($p > 0.10$) and negative ($p < -0.10$) correlations were coloured in red and blue, respectively. MCODE plugin was used to obtain a series of metrical topological parameters of the network, allowing, on a mathematical basis, to unravel the denser areas and distinguish the subnetworks with strong cross-links (Teixeira *et al*., 2020).

FIGURE 1. Catalogue of cultivable yeasts from grape berries cv. Vinhão and cv. Loureiro. Colony morphology in WL medium (left) and cell phenotype (right: DIC microscopy, bar = 10 µm) are shown for each unique taxon.
RESULTS

1. Colony morphology and cell phenotype of cultivable yeasts and their relative abundance in berries cv. Vinhão and Loureiro

The culture-dependent method used in this study allowed us to estimate a total of 37,099 ± 5064 colony forming units (CFUs) per mL of grape juice of cv. Vinhão, and of 47,448 ± 11815 CFUs per mL of grape juice of cv. Loureiro, in four biological replicates per cultivar. The differential media distinguished taxa by colour and morphology, and several unique colony types were selected for the identification of each yeast species by ITS/LSU barcoding (Figure S1). This approach revealed the presence of 17 different taxa belonging to 13 genera (Figure 1). The sequences of representative strains selected for further phenotypic characterisation are detailed in Table 1.

Aureobasidium pullulans, a yeast-like fungus, presents itself in the form of cream-coloured colonies with radial filaments composed of cells disposed of in the form of conidia (Figure 1). Bulleromyces albus and Candida intermedia are characterised by forming smooth white colonies with a creamy appearance; the former species display oval cells composed of dense organelles evidenced by DIC microscopy, while the latter exhibits elongated cells with a large central vacuole and easily visible nucleus (Figure 1). Candida raitenensis colonies are white, irregular and umbonate, composed of small oval cells with a visible nucleus. Hanseniaspora uvarum colonies are light green, with a creamy appearance and slightly raised at the centre; however, they could also be found with a white margin or with a white centre and a light green margin. Cells have a distinctive apiculate form, displaying bipolar budding. Metschnikowia pulcherrima colonies have a characteristic pale pink colour and were often surrounded by a reddish-brown halo. Cells are globose, with thick cell walls, and contain a large central droplet.

GenBank accession #	Target rDNA region	Assigned species	Best match accession # and description	% Identity
OM049507	ITS	Aureobasidium pullulans	MT107050.1 Aureobasidium pullulans clone LHX3	99.27
OM049508	ITS	Bulleromyces albus	KX096662.1 Bulleromyces albus isolate RP247_2	99.21
OM049509	ITS	Candida intermedia (Clavispora clade)	KY495735.1 [Candida] intermedia strain AUMC 10767	98.31
OM049510	ITS	Candida raitenensis (Kurtzmaniella clade)	KY102355.1 Candida raitenensis culture CBS:8164	100.00
OM049511	ITS	Hanseniaspora uvarum	KY103552.1 Hanseniaspora uvarum culture CBS:2584	99.86
OM044591	D1/D2	Metschnikowia pulcherrima	KY108498.1 Metschnikowia pulcherrima culture CBS:2256	99.00
OM049512	ITS	Pichia kluyveri	KM982973.1 Pichia kluyveri strain YCH1204	99.51
OM049513	ITS	Pichia kudriavzevii	MT539198.1 Pichia kudriavzevii isolate BAL	99.77
OM049514	ITS	Pichia fermentans	HQ680960.1 Pichia fermentans isolate 17/4	99.51
OM049515	ITS	Pichia terricola	MN700642.1 Pichia terricola isolate MSU 06	100.00
OM049516	ITS	Rhodotorula glutinis	MN913570.1 Rhodotorula glutinis strain AD407	96.49
OM049517	ITS	Sporobolomyces roseus	KY611383.1 Sporobolomyces roseus strain AUMC 11233	98.00
OM049518	ITS	Starmerella bacillaris	KY076623.1 Starmerella bacillaris isolate IWBTY505	99.76
OM044592	D1/D2	Trichosporon coremiforme	GU373784.1 Trichosporon coremiforme strain BPC-M7	99.83
OM049519	ITS	Vishniacozyma heimaeyensis	KT036591.1 Vishniacozyma heimaeyensis strain CBS8933	99.58
OM049520	ITS	Wickerhamomyces anomalus	MF115993.1 Wickerhamomyces anomalus isolate HN1	99.32
OM049521	ITS	Zygoascus meyeriae	MK352095.1 Zygoascus meyeriae isolate 118	98.90

TABLE 1. Accession numbers of representative sequences used for identification of each yeast species and BLASTn results of the best match.
The colonies of the four different *Pichia* spp. found in berries are all creamy to white in colour but with distinctive morphology; *P. kluyveri* displays crateriform elevation with a distinctive pleated appearance, *P. kudriavzevii* and *P. fermentans* display pulvinate elevation and erose margins, and *P. terricola* displays a smooth circular form with entire margins and convex elevation. Cells of *P. kluyveri* and *P. fermentans* are ellipsoidal and smaller than those of the other *Pichia* species, the former exhibiting dense organelles and the latter a thick cell wall. *P. kudriavzevii* cells are elongated and contain multiple vacuoles, while *P. terricola* cells are ovoid and display a large central vacuole. *Rhodotorula glutinis* colonies exhibit a pink to coral-red glistening colour, with raised elevation and smooth texture. Cells have a slightly elongated oval shape and multiple vacuoles. *Sporobolomyces roseus* colonies also exhibit an intense pink to coral-red colour but have a distinctive irregular form, wrinkled surface and embossed curled margins. Cells have an elongated oval shape and often exhibit multiple budding. *Starmerella bacillaris* colonies often resembled *H. uvarum* colonies, with colours ranging from white to light green, a creamy appearance and convex elevation, composed of small ellipsoid cells with thick cell walls. Colonies of *Vishniacozyma heimaeyensis* and *Wickerhamomyces anomalous* display a creamy white colour with a flat surface and full margins. Cells of the former are round with dense organelles and thick walls, while cells of the latter are oval with an evidenced nucleus. *Trichosporon coremiiforme* colonies present a crateriform elevation, irregular form and slightly erose margins. Cells exhibit circular to rectangle shapes, appearing in the form of arthroconidia. *Zygoascus meyerae* colonies present a cream-coloured wrinkled surface, with pulvinate elevation and undulate smooth margins. Cells are ellipsoidal, with a large central vacuole and evident nucleus, appearing both in the form of budding cells, pseudohyphae and hyphae (Figure 1).

Only six species were ubiquitously found in grape berries regardless of the vintage or cultivar, specifically *Aureobasidium pullulans*, *Hanseniaspora uvarum*, *Pichia terricola*, *Rhodotorula glutinis*, *Starmerella bacillaris* and *Vishniacozyma heimaeyensis* (Figure 2). Rare species included *Bulleromyces albus*, *Candida intermedia*, *Candida raienensis*, *Sporobolomyces roseus*, *Trichosporon coremiiforme* and *Wickerhamomyces anomalous*, which were only detected in one vintage and in a specific cultivar. Among these, *B. albus*, *T. coremiiforme* and *W. anomalous* were exclusively found in berries cv. Loureiro, while the remaining were exclusive of berries cv. Vinhão, together with *Zygoascus meyerae* and *Pichia kudriavzevii* (Figure 2).

Following the association of specific macro and micro-morphological traits to each yeast species, it was possible to estimate the relative abundance of the yeast taxa in each cultivar from the total colony counts detailed previously. *Hanseniaspora uvarum* was the most abundant species found in berries of both cultivars, representing on average 34–43 % of the cultivable yeasts, followed by *Aureobasidium pullulans*, which was generally more represented in berries cv. Vinhão (25 %) than in cv. Loureiro (13 %) (Figure 3, Figure S2).

FIGURE 2. Detection of yeast taxa in grape berries cv. Vinhão and cv. Loureiro.

The presence of each taxon was mapped in each cultivar in two consecutive vintages.

Metschnikowia pulcherrima represented ~12 % of cultivable yeasts in both cultivars. Interestingly, *Aureobasidium* and *Metschnikowia* displayed a positive antagonistic effect against *Aspergillus niger* (Figure S3). *Starmerella bacillaris* also accounted for a significant portion of the cultivable yeasts of berries cv. Vinhão (11 %; Figure 3); in berries cv. Loureiro its rank was shared with *Rhodotorula glutinis* (6 %) and *Vishniacozyma heimaeyensis* (8 %). *Pichia* spp. were more abundant in berries cv. Vinhão (12 %) than in berries cv. Loureiro (4 %) being mostly represented by *P. kudriavzevii* and *P. terricola*. The remaining taxa represented < 6 % of the cultivable microbiota, being *Candida* spp., *T. coremiiforme* and *Z. meyerae*, the least present (Figure 3).

Most of the yeast genera are found in berries cv. Vinhão and cv. Loureiro, through this culture-dependent method, were also detected through a culture-independent method (Table S1), detailed in our previous study (Martins et al., 2021a). While some taxa, including *Aureobasidium pullulans* and *Pichia terricola*, were identified at the species level in both studies, other taxa such as *Metschnikovia pulcherrima*, *Rhodotorula glutinis* and several *Pichia* spp. were only identified through the culture-dependent approach used in the present study (Table S1).

2. Effect of specific elicitors on the growth of isolated yeasts and interspecies correlations

Analysis of the yeast biomass 14 h after treatment with selected elicitors revealed that *Pichia* spp. were the most sensitive to calcium, their growth being practically impaired in the presence of 40 g L⁻¹ CaCl₂ (Figure 4).
In turn, *V. heimaeyensis* was the most tolerant to calcium because its growth remained unaltered at high CaCl₂ concentrations. Yeasts with mild tolerance to calcium comprised *R. glutinis*, *Z. meyerae*, *C. railenensis*, *B. albus*, *W. anomalus* and *S. roseus*. The remaining species were more sensitive to calcium, as their growth was affected at concentrations ≥ 10 g L⁻¹. The growth of all species was not negatively affected at concentrations ≤ 2 g L⁻¹ CaCl₂. *S. roseus* was the most sensitive species to copper treatment, its growth being inhibited by 11–66 % in the presence of all concentrations tested (250–1000 mg L⁻¹; Figure 4). *A. pullulans*, *T. coremiiforme*, *P. terricola* and *P. kudriavzevii* displayed sensitivity to copper concentrations ≥ 1000 mg L⁻¹, together with a native *S. cerevisiae* strain isolated from cv. Vinhão wines used as a reference in these growth assays (see Material and Methods). The remaining species were considered tolerant to copper because their growth was not significantly affected by concentrations up to 1000 mg L⁻¹, an effect that was most evident for *M. pulcherrima* and *H. uvarum*. The most sensitive species to osmotic stress simulated in the present study by PEG 6000 was *A. pullulans*, its growth being strongly impaired by concentrations as low as 5 % (w/v) (Figure 4). The growth of *H. uvarum* and *S. bacillaris* was also severely affected (87–95 % inhibition) but only at PEG 6000 concentrations ≥ 20 % (w/v). In turn, the growth of *V. heimaeyensis* and *P. kluyveri* was impacted at concentrations ≥ 5 % (w/v) but to a lower extent (up to 65 % inhibition). The growth of *P. fermentans* and *C. railenensis* was significantly affected by PEG 6000 concentrations ≥ 10 % (w/v), while *C. intermedia*, *S. roseus*, *S. cerevisiae* and the remaining *Pichia* spp. were impacted only at concentrations ≥ 20 % (w/v). Species resistant to osmotic stress included *M. pulcherrima*, *Z. meyerae*, *W. anomalus*, *B. albus*, *T. coremiiforme* and *R. glutinis* (Figure 4). The growth of all non-*Saccharomyces* yeasts was significantly affected in the presence of ethanol concentrations ≥ 6 % (w/v). Yeasts displaying great sensitivity to 3 % (v/v) ethanol were grouped in a clade composed of *R. glutinis*, *P. terricola*, *A. pullulans* and *B. albus*. In turn, the species more tolerant to ethanol included *W. anomalus*, *P. fermentans*, *P. kudriavzevii*, *P. kudriavzevii* and *M. pulcherrima*, as their growth was not affected in these conditions (Figure 4); the first three species still displayed mild tolerance (30–42 % growth inhibition) in the presence of 6 % (v/v) ethanol, an effect identical to that found for *S. cerevisiae* in the presence of 10 % (v/v) ethanol.

Integrated analysis of the performance of the yeasts in response to all surveyed elicitors allowed the assembly of a correlation network highlighting interspecies relationships (Figure 5). The 17 different yeast taxa (nodes) were connected through 85 edges, 87 % of which corresponded to positive correlations (shown in red, Figure 5A). Each species exhibited correlations with at least 8 other taxa, with the exception of *P. fermentans*, which displayed fewer correlations with 6 other species. The strongest positive correlations were found for the pairs *H. uvarum–S. bacillaris*, *P. fermentans–P. kluyveri*, *B. albus–R. glutinis* and *A. pullulans–V. heimaeyensis*. In turn, the strongest negative correlations were observed for the pairs *P. kluyveri–S. roseus*, *P. terricola–W. anomalus*, *P. kudriavzevii–V. heimaeyensis*, *P. kluyveri–V. heimaeyensis*, and *A. pullulans–P. kluyveri* (Figure 5A). Two subnetworks of the main network could be distinguished (Figure 5B), the smallest one composed of *B. albus*, *C. intermedia*, *P. kluyveri*, *R. glutinis*, *S. cerevisiae*, *S. roseus* and *W. anomalus*, and the largest one composed of the remaining taxa, with the exception of *S. bacillaris* which was not attributed to a specific subnetwork.
FIGURE 4. Heatmap and clustering of the growth of isolated yeasts in liquid YPD medium after 14 h of incubation in the presence of calcium (CaCl$_2$·2H$_2$O), copper (CuSO$_4$·5H$_2$O), PEG 6000 or ethanol.

For each concentration, values indicate the logarithmic transformed mean fold-change (treatment/control) and statistically significant differences between yeast growth in the absence (control) or presence of each elicitor concentration are marked with an asterisk indicating a maximum value of $P \leq 0.05$. Species that showed a similar response to each elicitor were clustered together. The growth of a native Saccharomyces cerevisiae strain isolated from wines cv. Vinhão was assessed as reference.
FIGURE 5. Correlation network (A) and intrinsic subnetworks (B) of cultivable yeast species found in grape berries cv. Vinhão and cv. Loureiro.

Node size is proportional to the correlation node strength (ns = |ρ|). Lines joining the nodes represent correlations with ρ > |0.10|; positive correlations are shown in red and negative correlations are shown in blue. Edge thickness is proportional to the correlation strength.
DISCUSSION

Seventeen different yeast taxa were successfully isolated from the microbiota of grape berries cv. Vinhão and Loureiro, a number that was expected according to previous classical reports (Pallmann et al., 2001; Renouf et al., 2005). The colony type in WL medium and the microscopic phenotype of yeast cells proved effective in the identification of yeast species, supporting previous studies (Pallmann et al., 2001). It is widely known that the cultivable taxa are largely outnumbered by the non-cultivable taxa because species that are in low abundance or unable to grow are not accounted for (Belda et al., 2017; Morgan et al., 2017). It is important to stress that the osmotic pressure of the grape juice following the crushing of the grape berries could contribute to species selection (Jolly et al., 2014), as well as the culture medium used for yeast growth. Thus, the use of other substrates (such as lysine medium that suppresses the growth of pitching yeasts) should be considered in further studies to increase the diversity of cultivable microbes. Although fungicide treatments may influence the microbiota profile (see Introduction), previous studies showed that the active principles of the fungicides used in the present study, metalaxil-M and penconazole, are not expected to significantly affect the grape microbial communities (Sapis-Domerq, 1980; Caboni and Cabras, 2010; Perazzolli et al., 2014). In particular, penconazole was shown to only minimally affect the richness and diversity of bacterial and fungal populations of the grapevine phyllosphere (Perazzolli et al., 2014), and although metalaxil-M was shown to modify the bacterial community of the pepper phyllosphere (Moulas et al., 2013), it was found to not influence the activity of several grape berry yeasts including Hanseniaspora uvarum (Sapis-Domerq, 1980; Caboni and Cabras, 2010).

Very few studies used culture-dependent methods as a complement to data obtained from culture-independent methods for characterisation of the microbiota (Stringini et al., 2008; Agarbati et al., 2019b). We recently used a metabarcoding approach to investigate the microbiota diversity of grape berries cv. Vinhão and cv. Loureiro (Martins et al., 2021a). In this approach, 174 fungi OTUs were detected, with Dothideomycetes and Leotiomycetes comprising the most abundant classes, and Hanseniaspora, Aureobasidium, Vishniaezyma, Sporobolomyces, Rhodotorula and Metschnikowia incorporated the list of the top 15 most abundant genera. The present study thus complements the previous one, as the identification of several taxa at the species level was only possible through the culture-dependent approach. In addition, the retrieved microbial species can now be further explored.

Culture-dependent methods are usually laborious and time-consuming (Morgan et al., 2017), and the assembly of a visual catalogue of the cultivable microbiota will largely facilitate the initial identification of yeasts at genera or even at the species level, allowing the researcher to focus on the strains of interest in further studies. Performing the microbiota collection in different vintages also proved effective in the isolation of a greater diversity of species, supporting the influence of climatic conditions in the microbial community, as previously reported (Stefanini et al., 2017).

Many cultivable yeasts identified in the present study as colonisers of grape berries cv. Vinhão and cv. Loureiro have been detected in berries of other grape cultivars such as Merlot, Cabernet-Sauvignon, Cabernet Franc and Touriga Nacional where predominant genera included Aureobasidium, Hanseniaspora, Candida, Metschnikowia, Pichia and Rhodotorula (Pallmann et al., 2001; Renouf et al., 2005; Barata et al., 2012; Pinto et al., 2015; Stefanini et al., 2017; Agarbari et al., 2019a; Martins et al., 2021a). In addition, these non-Saccharomyces yeast species have also been isolated from other Vitis species, namely V. labrusca, V. rotundifolia, V. amurensis and V. davidii (Drumonde-Neves et al., 2021). Particularly, A. pullulans and H. uvarum are considered resident species in vineyards and the most abundant cultivable yeasts in grape berries regardless of the cultivar or farming system (Barata et al., 2012; Agarbari et al., 2019b); the latter was found to be the most cited in a recent review, in a total of 129 studies (Drumonde-Neves et al., 2021). Aureobasidium integrates the microbial consortium of various other fruits, including strawberry (Debode et al., 2013; Zhimo et al., 2021), blueberry (Ochmian et al., 2020), raspberry (Hamby et al., 2012), arbutus (Santo et al., 2012), sweet cherry (Hamby et al., 2012; Zhang et al., 2021), mandarin (Kumar et al., 2021), mango, lemon, plum, pear and apple (Vadkertiová et al., 2012; Koricha et al., 2019). Together with Hanseniaspora and Metschnikowia spp., pink yeasts from the genera Rhodotorula and Sporobolomyces were also found in strawberry, sweet cherry and arbutus fruit (Santo et al., 2012; Debode et al., 2013; Zhang et al., 2021; Zhimo et al., 2021). The detection of Pichia spp. was also reported in various fruits, including strawberry (Hamby et al., 2012; Vadkertiová et al., 2012; Koricha et al., 2019; Zhimo et al., 2021), while Vishniaezyma spp. was found in strawberry and mandarin fruit (Kumar et al., 2021; Zhimo et al., 2021).

The relative proportions of each yeast species are likely related to their resilience and the health status of the grape berry; A. pullulans and Basidiomycetes like Bulleromyces, Sporobolomyces, Rhodotorula and Trichosporon are the usual colonisers of sound berries as their oligotroph allow them to survive in the harsh environment of the unblemished cuticle (Barata et al., 2012). In line with this observation, many species within these genera prevailed in grape berries treated with exogenous calcium, which increased fruit firmness and fitness by reducing skin cracking incidence (Martins et al., 2020b, 2021a), and the present study confirmed their tolerance to calcium treatments in vitro. Nonetheless, visually intact berries may still bear microfissures that increase nutrient availability, thus explaining the dominance of copiotrophic oxidative or weakly fermentative ascomycetous yeasts such as Hanseniaspora, Candida, Pichia and Metschnikowia (Barata et al., 2012). Thus, it is believed that the grape health status is the main factor affecting the microbial ecology of grapes and that the influence of abiotic, biotic and viticultural
factors is dependent on their primary damaging effect on the fruit (Barata et al., 2012). Copiotrophic strongly fermentative yeasts like Saccharomyces, Torulaspora and Lachancea are usually not detected in intact berries as they prosper at high sugar concentrations available in damaged fruits or during the winemaking process (Renouf et al., 2005; Barata et al., 2012; Pinto et al., 2015). Accordingly, none of these genera were isolated from grape berries in the present study.

The significant contribution of the grape cultivar to the berry microbiota diversity was reported in a few studies (Agarbati et al., 2019a; Martins et al., 2021a) and further explored in the present study, supporting the influence of traits such as fruit surface topology and nutrient availability, discussed above. Results are in line with those obtained by the culture-independent metabarcoding approach, showing a greater diversity of fungi taxa in berries cv. Vinhão than in cv. Loureiro (Martins et al., 2021a). Moreover, the greater abundance of Hanseniaspora and Rhodotorula spp. in berries cv. Loureiro than in cv. Vinhão is consistent in both studies, besides the exclusivity of Trichosporon sp. in the former cultivar, supporting the good complementary of culture-dependent and independent methods discussed previously.

Our recent study showed a close correlation between the profile of triterpenoids and steroids of the cuticular waxes of berries cv. Vinhão and Loureiro and the composition of adjacent microbial communities (Martins et al., 2021a). This study highlighted that many of these compounds, among which oleanolic acid, are substrates for microbial growth and exposed the relevance of less explored metabolites such as stigmasterol and tremulone in the modulation of the microbiota profile. In addition, other metabolic differences between cultivars, found, for instance, in the profile of berry polyphenolics (Martins et al., 2020a; Martins et al., 2021b), likely modulate microbial taxa diversity, as these compounds have a myriad of functions, including antioxidant activity and stress response (Teixeira et al., 2013).

The present study exposed microbial niches within the cultivable microbiota, composed of species that are expected to present a similar response to abiotic stress. Interestingly, these expressed interspecies interactions were not linearly associated with the relative abundance of each taxon nor their oligotrophy, as discussed above. Rather, they showed that the metabolic activity of each taxon determines their performance which directly influences the structure of the microbial community. Novel results showing clear positive and negative correlations between the isolated taxa further support that the grape microbiota is modulated by the existence of synergistic and antagonistic relationships that have only recently begun to be explored (Bartle et al., 2019; Belda et al., 2020). Adding complexity to these correlations is the ability of many species of Vinihnozyma, Bulleromyces and Trichosporon to modulate the nutrient availability of the berry and, consequently, its microbial consortium (Raspor et al., 2010; Zhu et al., 2017; Oluwa, 2020). This complexity hampers the study of the effect of external factors such as the farming system on the microbiota composition. The unequivocally high sensitivity of S. roseus and A. pullulans to isolated copper exposure found in the present study parallels reports showing a negative influence of conventional treatments on fermenting yeasts in favour of oxidative yeasts such as Aureobasidium pullulans (Agarbati et al., 2019a). In turn, the high tolerance of Metschnikowia pulcherrima to copper is in line with previous studies (Vadkertióvá and Sláviková, 2006). In any case, a strong correlation between the copper dose and the decrease in yeast biodiversity was reported and the yeast copper sensitivity was attributed to a greater copper adsorption efficiency (Martins et al., 2012; Comitini et al., 2017). Similar mechanisms may drive yeast resistance to calcium treatments, although field trials comprising the use of calcium supplements did not report a particular effect over weakly fermenting yeasts such as Pichia spp. (Martins et al., 2021a), results in the present study highlight the greater sensitivity of all species within this genus to the treatment, suggesting the existence of a specific metabolic response not shared by other yeasts that deserve further investigation. Calcium is a key secondary messenger in cells, regulating many physiological functions such as cell division, cell wall structure and stress response. Thus, its concentration in the cytosol is delicately balanced by a myriad of transporters and channels that can sequester it to internal storage, such as the vacuole (Tuteja and Mahajan, 2007). An inhibition of cell growth due to excess calcium was previously attributed to an overload of the mitochondrial matrix and consequent increase in reactive oxygen species, ultimately leading to apoptosis (Brookes et al., 2004).

Results in the present study supported that the calcium toxicity experienced by Pichia spp. was not due to an osmotic effect, as this genus did not show great sensitivity to PEG 6000. In contrast, the general sensitivity of A. pullulans, H. uvarum and S. bacillaris to osmotic stress induced with PEG 6000 highlight the marked effects that drought can have on these species, suggesting these can be ideal markers for early detection of this type of abiotic stress in grapevine, an analysis most facilitated by their high abundance and ubiquitous presence in vineyards (Barata et al., 2012; Agarbati et al., 2019a). In turn, the extreme sensitivity of A. pullulans to this type of stress compared to the remaining yeasts likely contributes to its marked inhibition at the beginning of fermentation, where it is exposed to very high sugar concentrations (Pinto et al., 2015). Results further support that the increasing formation of ethanol during the fermentation process also contributes to this effect. In turn, the relative tolerance of Metschnikowia, Pichia spp. and W. anomalus to ethanol is in line with previous studies and likely associated with their ability to conduct the fermentation process and to produce ethanol, being detected in wines up to the end of fermentation (Diaz et al., 2013; Jolly et al., 2014; Padilla et al., 2018; Ivit et al., 2020).

Although commercial strains of non-Saccharomyces yeasts such as M. pulcherrima and P. kluverri have recently been made available as pure starter cultures and in blends with S. cerevisiae (Morgan et al., 2017), the present study highlights the possibility of isolating and using native yeasts of a particular terroir for improving the oenological and biotechnological sectors at a regional scale.
Various studies showed that the metabolism of non-
Saccharomyces yeasts affects the overall ethanol yield,
alcoholic fermentation efficiency, biomass and by-products
of the mixed fermentations (Comitini et al., 2017). For
instance, strains of S. bacillaris, H. uvarum, P. kluyveri,
P. fermentans, M. pulcherrima and W. anomalous were
shown to improve wine quality by increasing their aromatic
complexity following sequential or co-inoculation with
S. cerevisiae (Jolly et al., 2014; Ivit et al., 2020). The
production of hydrolytic enzymes by many species,
including P. terricola, R. glutinis and S. pararoseus can
further influence the sensory and technological properties
of the wine (Jolly et al., 2014; Varela and Borneman, 2017).
Inoculations with M. pulcherrima, W. anomalous, H. uvarum
and Pichia spp. are also being used as a strategy to produce
wines with lower alcohol content, taking advantage of the
different sugar utilisation pathways of these yeasts, which
include respiration and glycerol–pyruvic metabolisms
besides alcoholic fermentation, in contrast to S. cerevisiae
which prefers the latter (Ivit et al., 2020).

The benefits of the culture of native yeasts from the berry
surface also encompass their exploitation as biocontrol
agents (Bleve et al., 2006; Cabañas et al., 2020). Preliminary
results of the present study showing the ability of isolated
Aureobasidium and Metschnikowia spp. to inhibit the growth
of A. niger in vitro open good perspectives for the use of
native yeasts in the combat of local pathogens. Future studies
focused on directed phenomics in accordance with the desired
applicability of the strains will lead to the valorisation of
these natural resources at a regional scale. In particular,
the evaluation of the performance of these strains in response
to a combination of elicitors, such as calcium + PEG, will
provide further insights into their resilience toward abiotic
stress and expose their full biotechnological potential.

CONCLUSION

The present study rekindled the importance of characterising
native cultivable yeasts of grape berries of specific
regions for their exploitation in a range of oenological
and biotechnological applications, primarily relevant at a regional
scale. The significance of culture-dependent methods as
essential complements to culture-independent methods for
microbiota characterisation is reinforced, while the assembly
of a visual catalogue of unique colony types poses a valuable
tool for minimising the laborious practices inherent to the
cultivation of native yeasts. The study further elucidates the
contribution of the vintage and cultivar to taxa diversity,
besides exposing interspecies relationships that aid the
understanding of the responses of yeasts to environmental
stimuli and their performance during fermentation.

ACKNOWLEDGEMENTS

The authors thank Dr Ana Garcia (CIIMAR, Portugal)
for providing access to the experimental fields used in
this study. This work was supported by the “Contrato-
Programa” UIDB/04050/2020, funded by Portuguese

REFERENCES

Agarbari, A., Canonicó, L., Ciani, M., & Comitini, F. (2019a). The
impact of fungicide treatments on yeast biota of Verdicchio and
Montepulciano grape varieties. PLoS One, 14(6), e0217385. https://
doi.org/10.1371/journal.pone.0217385

Agarbari, A., Canonicó, L., Mancabelli, L., Milaní, C.,
Ventura, M., Ciani, M., & Comitini, F. (2019b). The influence of
fungicide treatments on mycobiota of grapes and its evolution during
fermentation evaluated by metagenomic and culture-dependent
methods. Microorganisms, 7(5), 114. https://doi.org/10.3390/
microorganisms7050114

Barata, A., Malfeito-Ferreira, M., & Loureiro, V. (2012). The
microbial ecology of wine grape berries. International Journal of
Food microbiology, 153(3), 243-259. https://doi.org/10.1016/
j.ijfoodmicro.2011.11.025

Barbe, J. C., De Revel, G., Joyeux, A., Bertrand, A.,
& Lonvaud-Funel, A. (2001). Role of botrytized grape micro-organisms
in SO2 binding phenomena. Journal of Applied Microbiology, 90(1),
34-42. https://doi.org/10.1046/j.1365-2672.2001.01200.x

Bartle, L., Sumby, K., Sundstrom, J., & Jiranek, V. (2019). The
microbial challenge of winemaking: yeast-bacteria compatibility.
FEMS Yeast Research, 19(4), foz040. https://doi.org/10.1093/femsyr/foz040

Belda, I., Gobbi, A., Ruíz, J., de Celis, M., Ortiz-Álvarez, R.,
Acedo, A., & Santos, A. (2020). Microbiomes to define wine
terroir. Reference Module in Food Sciences. https://doi.org/10.1016/
B978-0-08-100596-5.22875-8

Belda, I., Zarraonandia, I., Perisín, M., Palacios, A., & Acedo,
A. (2017). From vineyard soil to wine fermentation: microbiome
approximations to explain the “terroir” concept. Frontiers in
Microbiology, 8, 821. https://doi.org/10.3389/fmicb.2017.00821

Bisson, L. F., Joseph, C. M., & Domizio, P. (2017). Yeasts. In:
Biology of Microorganisms on Grapes, in Must and in Wine (pp. 65-
101). Springer, Cham. https://doi.org/10.1007/978-3-319-60021-
5_3

Bleve, G., Grieco, F., Cozzi, G., Logrieco, A., & Visconti,
A. (2006). Isolation of epiphytic yeasts with potential for biocontrol
of Aspergillus carbonarius and A. niger on grape. International
Journal of Food Microbiology, 108(2), 204-209. https://doi.org/
10.1016/j.ijfoodmicro.2005.12.004

Bokulich, N. A., Collins, T. S., Masarweh, C., Allen, G., Heymann, H.,
Ebeler, S. E., & Mills, D. A. (2016). Associations among wine
grape microbiome, metabolome, and fermentation behavior suggest
microbial contribution to regional wine characteristics. MBio, 7(3),
e00631-16. https://doi.org/10.1128/mBio.00631-16

OENO One | By the International Viticulture and Enology Society

268 | volume 56–3 | 2022

Viviana Martins et al.
Brookes, P. S., Yoon, Y., Robotham, J. L., Anders, M. W., & Sheu, S. S. (2004). Calcium, ATP, and ROS: a mitochondrial love-hate triangle. American Journal of Physiology-Cell Physiology, 287(4), C817-C833. https://doi.org/10.1152/ajpcell.00139.2004

Cabañas, C. M., Hernández, A., Martínez, A., Tejero, P., Vázquez-Hernández, M., Martín, A., & Ruiz-Moyano, S. (2020). Control of Penicillium glabrum by indigenous antagonistic yeast from vineyards. Foods, 9(12), 1864. https://doi.org/10.3390/foods9121864

Caboni, P., & Cabras, P. (2010). Pesticides’ influence on wine fermentation. Advances in Food and Nutrition Research, 59, 43-62. https://doi.org/10.1016/S0065-3410(10)59002-8

Cline, M. S., Smoot, M., Cerami, E., Kuchinsky, A., Landys, N., Workman, C., ... & Bader, G. D. (2007). Integration of biological networks and gene expression data using Cytoscape. Nature Protocols, 2(10), 2366-2382. https://doi.org/10.1038/nprot.2007.324

Comitini, F., Capece, A., Ciani, M., & Romano, P. (2017). New insights on the use of wine yeasts. Current Opinion in Food Science, 13, 44-49. https://doi.org/10.1016/j.cofo.2017.02.005

Coombe, B. G. (1995). Growth stages of the grapevine: adoption of a system for identifying grapevine growth stages. Australian Journal of Grape and Wine Research, 1(2), 104-110. https://doi.org/10.1111/j.1755-0238.1995.tb00086.x

Cordero-Bueso, G., Arroyo, T., Serrano, A., Tello, J., Aporta, I., Vélez, M. D., & Valero, E. (2011). Influence of the farming system and vine variety on yeast communities associated with grape berries. International Journal of Food Microbiology, 145(1), 132-139. https://doi.org/10.1016/j.ijfoodmicro.2010.11.040

Cordero-Bueso, G., Mangieri, N., Maghradze, D., Foschino, R., Valdesta, F., Cantoral, J. M., & Vigentini, I. (2017). Wild grape-associated yeasts as promising biocontrol agents against Vitis vinifera fungal pathogens. Frontiers in Microbiology, 8, 2025. https://doi.org/10.3389/fmicb.2017.02025

Debode, J., Van Hemelrijck, W., Creemers, P., & Maes, M. (2013). Effect of fungicides on epiphytic yeasts associated with strawberry. Microbiology Open, 2(3), 482-491. https://doi.org/10.1002/mbo3.85

Díaz, C., Molina, A. M., Nähring, J., & Fischer, R. (2013). Characterization and dynamic behavior of wild yeast during spontaneous wine fermentation in steel tanks and amphore. BioMed Research International, 2013. https://doi.org/10.1155/2013/546465

Drumonde-Neves, J., Fernandes, T., Lima, T., Pais, C., & Franco-Duarte, R. (2021). Learning from 80 years of studies: A comprehensive catalogue of non-Saccharomyces yeasts associated with viticulture and winemaking. FEMS Yeast Research, 21(3), foab017. https://doi.org/10.1093/femsyr/foab017

Esteve-Zarzoso, B., Belloch, C., Uruburu, F., & Querol, A. (1999). Identification of yeasts by RFLP analysis of the 5.8 S rRNA gene and the two ribosomal internal transcribed spacers. International Journal of Systematic and Evolutionary Microbiology, 49(1), 329-337. https://doi.org/10.1099/00227713-49-1-329

Fleet, G. H., Prakitchaiwattana, C., Beh, A. L., & Heard, G. (2002). The yeast ecology of wine grapes. Biodiversity and Biotechnology of Wine Yeasts, 1-17. ISBN: 8177361201

Hamby, K. A., Hernández, A., Boundy-Mills, K., & Zalom, F. G. (2012). Associations of yeasts with spotted-wing Drosophila (Drosophila suzukii; Diptera: Drosophilidae) in cherries and raspberries. Applied and Environmental Microbiology, 78(14), 4869-4873. https://doi.org/10.1128/AEM.00841-12

Ivit, N. N., Longo, R., & Kemp, B. (2020). The effect of non-Saccharomyces and Saccharomyces non-cerevisiae yeasts on ethanol and glycerol levels in wine. Fermentation, 6(3), 77. https://doi.org/10.3390/fermentation6030077

Jolly, N. P., Varel, C., & Pretorius, I. S. (2014). Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Research, 14(2), 215-237. https://doi.org/10.1101/1567-1364.12111

Koricha, A. D., Han, D. Y., Bacha, K., & Bai, F. Y. (2019). Occurrence and molecular identification of wild yeasts from Jimma Zone, South West Ethiopia. Microorganisms, 7(12), 653. https://doi.org/10.3390/microorganisms7120633

Kumar, A., Zhiho, V. Y., Biasi, A., Feyenborg, O., Salim, S., Wilsniewski, M., & Drobys, S. (2021). Impact of packhouse treatments on the peel microbiome of mandarin fruit (cv. Orri). Postharvest Biology and Technology, 176, 11159. https://doi.org/10.1016/j.postharvbio.2021.11159

Kurtzman, C. P., & Robnett, C. J. (1991). Phylogenetic relationships among species of Saccharomyces, Schizosaccharomyces, Debaryomyces and Schwannomyces determined from partial ribosomal RNA sequences. Yeast, 7(1), 61-72. https://doi.org/10.1002/yea.320070107

Lappà, I. K., Kachrimanidou, V., Pateraki, C., Koulougliotis, D., Erirou, E., & Kopsahelis, N. (2020). Indigenous yeasts: emerging trends and challenges in winemaking. Current Opinion in Food Science, 32, 133-143. https://doi.org/10.1016/j.cofo.2020.04.004

Loureiro, V., Ferreira, M. M., Monteiro, S., & Ferreira, R. B. (2012). The microbial community of grape berry. In: The Biochemistry of the Grape Berry. Gerós, H., Chaves, M.M, Delrot, S. (Eds), 241-268. https://doi.org/10.2174/9781608053605113101001241

Martins, G., Miot-Sertier, C., Lauga, B., Claisse, O., Lonvaud-Funel, A., Soulas, G., & Manneu-Pomarde, I. (2012). Grape berry bacterial microbiota: impact of the ripening process and the farming system. International Journal of Food Microbiology, 158(2), 93-100. https://doi.org/10.1016/j.ijfoodmicro.2012.06.013

Martins, V., Billet, K., Garcia, A., Lanoue, A., & Gerós, H. (2020a). Exogenous calcium deflects grape berry metabolism towards the production of more stilbenoids and less anthocyanins. Food Chemistry, 313, 126123. https://doi.org/10.1016/j.foodchem.2019.126123

Martins, V., Garcia, A., Alinhó, A. T., Costa, P., Lanceros-Méndez, S., Costa, M. M. R., & Gerós, H. (2020b). Vineyard calcium sprays induce changes in grape berry skin firmness, cell wall composition and expression of cell wall-related genes. Plant Physiology and Biochemistry, 150, 49-55. https://doi.org/10.1016/j.plaphy.2020.02.033

Martins, V., López, R., García, A., Teixeira, A., & Gerós, H. (2020c). Vineyard calcium sprays shift the volatile profile of young red wine produced by induced and spontaneous fermentation. Food Research International, 131, 108983. https://doi.org/10.1016/j.foodres.2020.108983

Martins, V., Szakiel, A., Pączkowski, C., Teixeira, A., Gerós, H. (2021a). The restructuring of grape berry waxes by calcium changes the surface microbiota. Food Research International, 110812. https://doi.org/10.1016/j.foodres.2021.110812

Martins, V., Teixeira, A., & Gerós, H. (2015). Changes in the volatile composition of wine from grapes treated with Bordeaux mixture: a laboratory-scale study. Australian Journal of Grape and Wine Research, 21(3), 425-429. https://doi.org/10.1111/ajgw.12150

Martins, V., Teixeira, A., Bassil, E., Blumwald, E., & Gerós, H. (2014). Metabolic changes of Vitis vinifera berries and leaves exposed to Bordeaux mixture. Plant Physiology and Biochemistry, 82, 270-278. https://doi.org/10.1016/j.plaphy.2014.06.016

Martins, V., Unluhayir, M., Teixeira, A., Lanoue, A., & Gerós, H. (2021b). Exogenous calcium delays grape berry maturation in the white cv. Loureiro while increasing fruit firmness and flavanol content. Frontiers in Plant Science, 1880. https://doi.org/10.3389/fpls.2021.742887
Mezzasalma, V., Sandionigi, A., Bruni, I., Bruno, A., Lovicu, G., Castraghi, M., & Labra, M. (2017). Grape microbiome as a reliable and persistent signature of field origin and environmental conditions in Cannonau wine production. *PLoS One, 12*(9), e0184615. https://doi.org/10.1371/journal.pone.0184615

Milanović, V., Comitini, F., & Ciani, M. (2013). Grape berry yeast communities: influence of fungicide treatments. *International Journal of Food Microbiology, 161*(3), 240-246. https://doi.org/10.1016/j.ijfoodmicro.2012.12.019

Morgan, H. H., Du Toit, M., & Sethi, M. E. (2017). The grapevine and wine microbiome: insights from high-throughput amplicon sequencing. *Frontiers in Microbiology, 8*, 820. https://doi.org/10.3389/fmicb.2017.00820

Ochmian, I., Blaszak, M., Lachowicz, S., & Piwowarczyk, R. (2020). The impact of cultivation systems on the natural and phytochemical content, and microbiological contamination of highbush blueberry. *Scientific Reports, 10*(1), 1-14. https://doi.org/10.1038/s41598-020-73947-8

Oluwa, S. W. (2020). Structure and foaming properties of viscous exopolysaccharides from a wild grape-associated Basidiomycetous yeast *Papiliostereum flavescens* formerly known as *Cryptococcus flavescens*. *Journal of Microbiology and Biotechnology, 30*(11), 1739-1749. https://doi.org/10.4014/jmb.2002.02065

Padilla, B., Gil, J. V., & Manzanares, P. (2018). Challenges of the non-conventional yeast *Wickerhamomyces anomalus* in winemaking. *Fermentation, 4*(3), 68. https://doi.org/10.3390/fermentation4030068

Pallmann, C. L., Brown, J. A., Olineka, T. L., Cocolin, L., Milis, D. A., & Bisson, L. F. (2001). Use of WL medium to profile fermentation4030068 winemaking. *Biotechnology and Applied Environmental Microbiology, 52*(3), 198-203.

Perazzolli, M., Antonielli, L., Storari, M., Puopolo, G., Pancher, M., Giovanni, O., (...) & Pertot, I. (2014). Resilience of the natural phyllosphere microbiota of the grapevine to chemical and biological pesticides. *Applied and Environmental Microbiology, 80*(12), 3585-3596. https://doi.org/10.1128/AEM.00415-14

Pinto, C., Pinho, D., Cardoso, R., Custódio, V., Fernandes, J., Sousa, S., (...) & Gomes, A. C. (2015). Wine fermentation microbiome: a landscape from different Portuguese wine appellations. *Frontiers in Microbiology, 6*, 905. https://doi.org/10.3389/fmicb.2015.00905

Raspor, P., Miklíc-Milek, D., Avbelj, M., & Čadež, N. (2010). Biocontrol of grey mould disease on grape caused by *Botrytis cinerea* with autochthonous wine yeasts. *Food Technology & Biotechnology, 48*(3). ISBN: 1330-9862

Renouf, V., Claise, O., & Lonvaud-Funel, A. (2005). Understanding the microbial ecosystem on the grape berry surface through numerical and identification of yeast and bacteria. *Australian Journal of Grape and Wine Research, 11*(3), 316-327. https://doi.org/10.1111/j.1755-0238.2005.tb00301.x

Santo, D. E., Galego, L., Gonçalves, T., & Quintas, C. (2012). Yeast diversity in the Mediterranean strawberry tree (*Arbutus unedo* L.). Fruits’ fermentations. *Food Research International, 47*(1), 45-50. https://doi.org/10.1016/j.foodres.2012.01.009

Sapis-Domerq, S. (1980). Étude de l’influence des produits de traitement de la vigne sur microflore des raisins et des vins. *Connaissance Vigne Vin*, 14, 155–181.

Silambarasan, S., Logeswari, P., Cornejo, P., & Kannan, V. R. (2019). Evaluation of the production of exopolysaccharide by plant growth promoting yeast *Rhodotorula* sp. strain CAH2 under abiotic stress conditions. *International Journal of Biological Macromolecules, 121*, 55-62. https://doi.org/10.1016/j. jibiomac.2018.10.016

Silva, P., Cardoso, H., & Gerós, H. (2004). Studies on the wine spoilage capacity of *Brettanomyces/Dekkera* spp. *American Journal of Enology and Viticulture, 55*(1), 65-72.

Solairaj, D., Legrand, N. N. G., Yang, Q., & Zhang, H. (2020). Isolation of pathogenic fungi causing postharvest decay in table grapes and in vivo biocontrol activity of selected yeasts against them. *Physiological and Molecular Plant Pathology, 110*, 101478. https://doi.org/10.1016/j.pmpp.2020.101478

Stefanini, I., Carlin, S., Tocci, N., Albanese, D., Donati, C., Franceschi, P., & Cavalleri, D. (2017). Core microbiota and metabolome of *Vitis vinifera* L. cv. Corvina grapes and musts. *Frontiers in Microbiology, 8*, 457. https://doi.org/10.3389/fmicb.2017.00457

Stringini, M., Comitini, F., Taccari, M., & Ciani, M. (2008). Yeast diversity in crop-growing environments in Cameroun. *International Journal of Food Microbiology, 127*(1-2), 184-189. https://doi.org/10.1016/j.ijfoodmicro.2008.07.017

Teixeira, A., Eiras-Dias, J., Castellarin, S. D., & Gerós, H. (2013). Berry phenolics of grapevine under challenging environments. *International Journal of Molecular Sciences, 14*(9), 18711-18739. https://doi.org/10.3390/ijms140918711

Teixeira, A., Martins, V., Frusciante, S., Cruz, T., Noronha, H., Diretto, G., & Gerós, H. (2020). Flavescence dorée-derived leaf yellowing in grapevine (*Vitis vinifera* L.) is associated to a general repression of isoprenoid biosynthetic pathways. *Frontiers in Plant Science, 11*, 896. https://doi.org/10.3389/fpls.2020.00896

Tuteja, N., & Mahajan, S. (2007). Calcium signaling network in plants: an overview. *Plant Signaling & Behavior, 2*(2), 79-85. https://doi.org/10.4161/psb.2.2.4176

Vadkertiová, R., Molnárová, J., Vránová, D., & Sláviková, E. (2012). Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees. *Canadian Journal of Microbiology, 58*(12), 1344-1352. https://doi.org/10.1139/cjm-2012-0468

Varela, C., & Borneman, A. R. (2017). Yeasts found in vineyards and wineries. *Yeast, 34*(3), 111-128. https://doi.org/10.1002/yea.3219

Zhang, Q., Shi, W., Zhou, B., Du, H., Xi, L., Zou, M., ... & Chen, Y. (2021). Variable characteristics of microbial communities on the surface of sweet cherries under different storage conditions. *Postharvest Biology and Technology, 173*, 111408. https://doi.org/10.1016/j.postharvbio.2020.111408

Zhimo, V. Y., Kumar, A., Biais, A., Salim, S., Feygenberg, O., Toamy, M. A., ... & Droby, S. (2021). Compositional shifts in the strawberry fruit microbiome in response to near-harvest application of *Metschinkowia fructicola*, a yeast biocontrol agent. *Postharvest Biology and Technology, 175*, 111469. https://doi.org/10.1016/j. postharvbio.2021.111469

Zhu, L. B., Wang, Y., Zhang, Z. B., Yang, H. L., Yan, R. M., & Zhu, D. (2017). Influence of environmental and nutritional conditions on yeast–mycelial dimorphic transition in *Trichosporon cutaneum*. *Biotechnology & Biotechnological Equipment, 31*(3), 516-526. https://doi.org/10.1080/13102818.2017.1292149