INTRODUCTION

Colorectal cancer is the second leading cause of cancer death in both sexes in the United States [1]. Many factors are associated with the development of colorectal cancer, such as “unhealthy” diets [2-6], gut inflammation [7-10], and microbial dysbiosis [11-14].

Free fatty acid receptor 2 (FFAR2) has been reported as a tumor suppressor in colon cancer development. The current study investigated the effects of FFAR2 signaling on energy metabolism and gut microbiota profiling in a colorectal cancer mouse model (Apc\textsuperscript{Min/+}). Ffar2 deficiency promoted colonic polyp development and enhanced fatty acid oxidation and bile acid metabolism. Gut microbiome sequencing analysis showed distinct clustering among wild-type, Apc\textsuperscript{Min/+}, and Apc\textsuperscript{Min/+}-Ffar2-/- mice. The relative abundance of Flavobacteriaceae and Verrucomicrobiaceae was significantly increased in the Apc\textsuperscript{Min/+}-Ffar2-/- mice compared to the Apc\textsuperscript{Min/+} mice. In addition, knocking-down FFAR2 in the human colon cancer cell lines (SW480 and HT29) resulted in increased expression of several key enzymes in fatty acid oxidation, such as carnitine palmitoyltransferase 2, acyl-CoA dehydrogenase, long-chain acyl-CoA dehydrogenase, C-2 to C-3 short chain, and hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase, alpha subunit. Collectively, these results demonstrated that Ffar2 deficiency significantly altered profiles of fatty acid metabolites and gut microbiome, which might promote colorectal cancer development.

Key Words FFAR2, Apc\textsuperscript{Min/+}, Colorectal cancer, Metabolomics, Gut microbiota
bacteria, we have demonstrated that the berries can modulate gut bacterial metabolites in colorectal cancer patients [26] and animals bearing colorectal cancer [27,28]. Interestingly, various components in black raspberries exerted different effects on gut microbiota [29]. Most importantly, we further showed that loss of Ffar2 significantly dampened the anti-colorectal cancer effects of black raspberries [22]. Accordingly, our previous results suggest that functional Ffar2 is vital for high-fiber foods to exert anti-colorectal cancer activities.

Our current study demonstrated that loss of Ffar2 promoted the colon adenomas development in the Apc^{Min/+} mice. Besides, using a mass spectrometry-based metabolomic analysis, we determined the effects of Ffar2 deficiency on the metabolites. The 16S rRNA gene sequence-based microbial analysis was conducted to determine if loss of Ffar2 could change the gut bacterial composition. Lastly, we knockdown FFAR2 in the human colon cancer cell lines to determine its effects on the Expression of the key enzymes that are involved in energy metabolism.

MATERIALS AND METHODS

Animals and cell lines

All protocols followed institutional guidelines for animal care dictated by the Medical College of Wisconsin Animal Care and Use Committee (AUA2430). Breeding pairs of the WT and Apc^{Min/+} mice were purchased from the Jackson Laboratory (Bar Harbor, ME, USA). Breeding pairs of the Ffar2 heterozygous (Ffar2^{+/−}) mice were purchased from Deltagen, Inc. (San Mateo, CA, USA). Four-week-old WT, Apc^{Min/+}, and Apc^{Min/+}-Ffar2^{−/−} mice were fed the synthetic diet AIN-76A from the American Institute of Nutrition (Dyets Inc., Bethlehem, PA, USA) for 8 weeks. Mice were euthanized by CO₂ asphyxiation. The number and the burden of polyps were determined. The colonic mucosa and plasma specimens were collected from a subgroup of the WT mice (n = 4), Apc^{Min/+} mice (n = 5) and Apc^{Min/+}-Ffar2^{−/−} mice (n = 5) for metabolomic profiling. The cecal fecal specimens were collected from a subgroup of the WT mice (n = 5), Apc^{Min/+} mice (n = 5), and Apc^{Min/+}-Ffar2^{−/−} mice (n = 5) for microbial analysis.

Human colorectal cancer cells HT29 and SW480 were purchased from the American Type Culture Collection (ATCC, Manassas, VA, USA) in April 2016 and were cultured as recommended by ATCC.

Metabolomic profiling

Specimen preparation and extraction, mass spectrometer platforms and setting, and data analysis were conducted by Metabolon, Inc. (Morrisville, NC, USA) [30-32] according to the previous description [26,27]. Briefly, samples were prepared using an automated MicroLab STAR® system (Reno, NV, USA). Homogenized mucosa samples were extracted using 5 μL of methanol per mg tissue, and the plasma samples were extracted using 5 μL of methanol per mL tissue. Samples were characterized using the ultra-high-performance-liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS) in the negative ion mode, the UHPLC-MS/MS in the positive ion mode, and the gas chromatography-mass spectrometry (GC-MS) after sialylation. Chemical entities were identified by comparing them to the metabolomic library of purified standards based on chromatographic properties and mass spectra.

DNA preparation and PCR amplification

Cecal feces were collected from a subgroup of the WT mice (n = 5), Apc^{Min/+} mice (n = 5), and Apc^{Min/+}-Ffar2^{−/−} mice (n = 5). The fecal DNA samples were isolated using the PowerSoil® DNA Isolation Kit (MO Bio Laboratories, Carlsbad, CA, USA) according to the manufacturer’s instructions. The 515F-806R region of the 16S rRNA gene was amplified by PCR (94°C for 3 minutes, followed by 35 cycles at 94°C for 45 seconds, 50°C for 60 seconds, and 72°C for 90 seconds and a final extension at 72°C for 10 minutes, hold at 4°C) using primers 515F 5′-GTGCCAGCMGCCGCGTA-3′ and 806R 5′-barcode-GGACTACHVGGGTWTCTAAT-3′ [33]. PCR reactions were performed in triplicate with 25 μL of the reaction mixtures containing 10 μL of the five primers hot master mix (2200410; MO Bio Laboratories), 0.5 μL of each primer (10 μM) and 1 μL of the template DNA.

Illumina MiSeq sequencing

The PCR products were quantified by Picogreen (P11496; Thermo Fisher Scientific, Waltham, MA, USA). Two hundred and forty ng of the DNA was pooled for each sample and purified using UltraClean PCR Clean-Up kit (12500; MO Bio Laboratories) according to the manufacturer’s instructions. Sequencing was conducted using a paired-end, 2 × 250-bp cycle run on an Illumina MiSeq sequencing system and MiSeq Reagent Kit version 2 (500 Cycle) chemistry. Illumina BaseSpace’s 16s Metagenomics App was used to analyze the results.

Sequencing data analysis

To provide an even level of coverage for clustering and statistical comparisons, raw taxonomic counts were subsampled to 13,995 sequences per sample and aggregated at phylum through genus levels using QIIME [34]. Differential abundance analysis comparing the WT, Apc^{Min/+}, and Apc^{Min/+}-Ffar2^{−/−} groups utilized the negative binomial test [35] with P-value adjustment using the False Discovery Rate [36]. Adjusted P-values that were less than 0.05 were considered statistically significant. Hierarchical clustering was performed using Ward’s method with log-normalized proportional values in R.

Immunoblotting analysis

Protein lysates of the human colorectal cancer cell lines were used for immunoblotting analysis. FFAR2-shRNA constructs to knockdown FFAR2 were purchased from OriGene Tech.
nologies, Inc. (Rockville, MD, USA), as indicated previously [23]. Antibodies to carnitine palmitoyltransferase 2 (CTP2) (ab181114), acyl-CoA dehydrogenase, long-chain (ACADL) (ab152160), acyl-CoA dehydrogenase, C-2 to C-3 short chain (ACADS) (ab156571), and hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase, alpha subunit (HADHA) (ab203114) were purchased from Abcam (Cambridge, MA, USA) and were used to identify their respective proteins. Antibody to β-actin (691001) was purchased from MP Biomedical (Santa Ana, CA, USA) and was used as a loading control.

Statistical analysis
Data were expressed as mean ± SEM. One-way ANOVA was employed in R version 2.14.2 [37] to identify statistically significant metabolite differences across genotypes. Standard statistical analyses are performed in ArrayStudio on log transformed data. A P-value < 0.05 was considered statistically significant.

RESULTS

Ffar2 deficiency promoted the development of colonic polyps

The WT, ApcMin/+, and ApcMin/+-Ffar2-/- mice were given the AIN-76A diet for 8 weeks. Forty % (4/10) of the ApcMin/+ mice developed colonic polyps, whereas the ApcMin/+-Ffar2-/- mice have an 100% (8/8) incidence of colonic polyps development.

![Figure 1. Loss of Ffar2 promotes colon adenoma development.](image)

Table 1. List of significantly changed metabolites involved in the fatty acid β-oxidation pathway

Metabolites	Biochemical pathways	Metabolites	Fold control
Mucosa	Medium chain fatty acid	5-dodecenoate (12:1n7)	0.48a 0.4a
	Long chain fatty acid	Margarate (17:0)	0.35b 0.39b
		Eicosenoate (20:1)	0.25b 0.29b
		Erucate (22:1n9)	0.23b 0.34b
	Polyunsaturated fatty acid (n3 and n6)	Docosadienoate (22:2n6)	0.34a 0.44a
		Dihomo-linoleate (20:2n6)	0.31a 0.32a
		Dihomo-linolenate (20:3n3 or n6)	0.43a 0.59a
		Docosapentaenoate (n6 DPA; 22:5n6)	0.46a 0.51a
	Fatty acid metabolism (Acyl Carnitine)	Acetylcarnitine	1.57a 1.83a
		Decanoylcarnitine	1.44a 2a
		3-hydroxybutyrylcarnitine	4.34a 2.73a
		Stearoylcarnitine	1.68a 1.4a
		Cis-4-decenoyl carnitine	1.94a 1.69a
		Laurycarnitine	1.48a 1.42a
		Myristoylcarnitine	1.65a 1.71a
		Palmitoylcarnitine	1.6a 1.84a
		Stearoylcarnitine	1.92a 1.5a
		Myristoleoylcarnitine	1.54a 1.62a
		Suberoylcarnitine	3.5a 3.08a
		Adipoylcarnitine	3.5a 2.51a
		3-hydroxybutyrate (BHBA)	5.46a 3.53a

Fold change is calculated as the ratio of the ApcMin/+ (A) vs. WT, ApcMin/+-Ffar2-/- (AF) vs. WT, and ApcMin/+-Ffar2-/- vs. ApcMin/+. Fold change that is labeled * or † presents significantly increased or significantly decreased, respectively. WT, wild-type. P < 0.05.
Ffar2 deficiency enhanced the long-chain fatty acid β-oxidation and bile acid metabolism

To determine the effects of Ffar2 deficiency on the metabolic profiles, we collected the colonic mucosa and plasma specimens and conducted a mass spectrometry-based nontargeted metabolomic analysis. Five hundred and sixteen plasma metabolites and 568 colonic mucosa metabolites were annotated. Of these, 128 plasma metabolites and 75 colonic mucosa metabolites were significantly changed across three genotypes. Similar metabolic alterations, including 59 plasma metabolites (Table S1) and 23 mucosa metabolites (Table S2), have been observed in both the ApcMin+ and ApcMin−Ffar2−/− mice compared to the WT mice. More importantly, Ffar2 deficiency further modulated 31 plasma metabolites (Table S3) and 28 mucosa metabolites (Table S4). Significantly changed metabolites were analyzed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database to identify biochemical pathways.

Fatty acids are oxidized in the mitochondria to generate energy and intermediates for cell proliferation. We observed significantly decreased fatty acid levels, including the medium-chain fatty acids, long-chain fatty acids, and polyunsaturated fatty acids in both the ApcMin+ and ApcMin−Ffar2−/− mice (Table 1). Also, the production of acetylcarnitine, the end-product of fatty acid β-oxidation, was significantly increased in plasma of both the ApcMin+ and ApcMin−Ffar2−/− mice compared to the WT mice. More importantly, Ffar2 deficiency further modulated plasma fatty acids (Table 1). Carnitine-conjugated long-chain fatty acids, long-chain fatty acids, and polyunsaturated fatty acids in both the ApcMin+ and ApcMin−Ffar2−/− mice were markedly increased in the ApcMin+ and ApcMin−Ffar2−/− mice compared to the ApcMin+ mice (Table 1), suggesting the long-chain fatty acid β-oxidation were enhanced by the Ffar2 deficiency. Acetylcarnitine can be converted to acetyl-CoA, which enters into the citric acid cycle to generate 3-hydroxybutyrate (BHBA) through ketogenesis. We observed a significant accumulation of BHBA in plasma of the ApcMin+−Ffar2−/− mice (Table 1). These results indicate an increased mitochondrial activity and a higher demand for energy by cancer cells.

Primary bile acids are synthesized by cholesterol catabolism in the liver and subsequently conjugated [38]. In the intestine, intestinal bacteria could deconjugate a significant portion of the primary bile acids, and structurally modify them into the secondary bile acids, which have been shown to promote colon carcinogenesis [38]. We observed significantly increased levels of both the primary and secondary bile acids in colonic mucosa in the ApcMin−Ffar2−/− mice compared to the ApcMin+ mice, including cholate, chenodeoxycholate, deoxycholate, and taurodeoxycholate (Table 2). Deoxycholate has been demonstrated to promote colon carcinogenesis by 165.1% in the ApcMin+ mice [39]. Thus, our findings suggest that an increased deoxycholate level could directly contribute to the Ffar2 deficiency-promoted colon cancer development.

Ffar2 deficiency changed the expression of key enzymes in the fatty acid β-oxidation pathway

After observing significant levels of the carnitine-conjugated long-chain fatty acids in the ApcMin+−Ffar2−/− mice compared to ApcMin+, we further investigated if loss of Ffar2 could alter the expression of the key enzymes involved in the fatty acid β-oxidation pathway. We first determined the endogenous expression levels of FFAR2 in four human colon cancer cell lines, and found higher levels of FFAR2 expression in SW480 and HT29 cell lines [23]. Furthermore, we knocked-down Ffar2 using shRNA in SW480 and HT29 cells as previously [23]. We observed increased expression levels of several

Table 2. List of significantly changed metabolites in the bile acid pathway	Metabolites	Fold control	A/WT	AF/WT
Mucosa	Primary bile acid metabolism	Cholate sulfate	0.05a	0.25a
Plasma	Secondary bile acid metabolism	Deoxycholate	3.19a	2.03a
Mucosa	Primary bile acid metabolism	Cholate	1.33	4.49a
		Cholate	1.13	4.95a
		Beta-muricholate	0.86	2.68a
	Secondary bile acid metabolism	Deoxycholate	3.02a	7.65a
		Taurodeoxycholate	2.75	6.29a
		6-beta-hydroxycholate	2.1a	4.29a
		7-ketolithocholate	5.92a	11.94a
		Hyocholate	0.84	3.55a
		3-dehydrocholate	1.11	3.1a
		7-ketodeoxycholate	0.9	3.83a

Fold change is calculated as the ratio of the ApcMin+ (A) vs. WT, ApcMin+−Ffar2−/− (AF) vs. WT, and ApcMin−Ffar2−/− vs. ApcMin+. Fold change that is labeled a or b presents significantly increased or significantly decreased, respectively. WT, wild-type. P < 0.05.
FFAR2 deficiency changed gut microbiota composition

Evidence has been accumulated to imply the interplay between gut dysbiosis and colorectal cancer [40]. In order to investigate the effects of Ffar2 deficiency on the gut microbiome, we performed 16S rRNA gene sequencing on the cecal microbialome, we performed 16S rRNA gene sequencing on the cecal microbialome we knock-downed FFAR2 in the SW480 and HT29 cells [23]. Using the FFAR2 knocked-down cells, we found that the expression levels of several key enzymes in the fatty acid oxidation pathway have been increased in the FFAR2-deficient cells, including CPT2, ACADL, ACADS, and HADHA.

CPT2 has been shown to be over-expressed in primary prostate cancer [44], and knocking-down of CPT2 inhibited the tumor growth in triple-negative breast cancer [45]. Thus, our findings on increased CPT2 expression in FFAR2-deficient cells could be one of the mechanisms responsible for loss of FFAR2-enhanced colon cancer development.

HADHA has also been reported to be decreased in breast cancer [46] and clear cell renal cell carcinoma [47]. However, we observed increased expression of HADHA in the FFAR2-deficient SW480 and HT29 cells. These results, combined with increased expression of CPT2, ACADL, and ACADS in the FFAR2-deficient cells, suggest an overall accelerated fatty acid oxidation, which may contribute to the development of colon cancer [22,24]. Our current study, by utilizing Apc\(^{Min/+}\) mice, demonstrated that Ffar2 deficiency promoted the development of colorectal polyps. All the Apc\(^{Min/+}\)-Ffar2\(^{-/-}\) mice developed colorectal polyps compared to only 40% of the Apc\(^{Min/+}\) mice. The Apc\(^{Min/+}\)-Ffar2\(^{-/-}\) mice developed increased tumor burden of colon polyps. In addition, we investigated if Ffar2 deficiency has effects on the metabolic profiles and the gut bacterial composition. Thirty-one plasma metabolites and 28 colonic mucosa metabolites were changed in the Apc\(^{Min/+}\)-Ffar2\(^{-/-}\) mice compared to the Apc\(^{Min/+}\) mice. Analysis using KEGG data suggests that loss of Ffar2 enhances the long-chain fatty acid β-oxidation and the bile acid metabolism. Furthermore, Ffar2 deficiency markedly increased the abundance of Flavobacteriaceae and Verrucomicrobiaceae.

Previously we observed significantly decreased fatty acid levels in the colonic mucosa of Apc\(^{Min/+}\) mice [27]. Similarly, the current study detected reduced levels of 11 fatty acids, including medium-chain fatty acids, long-chain fatty acids, and polyunsaturated fatty acids, in the colonic mucosa of Apc\(^{Min/+}\) mice (Table S2). Six of these fatty acids were also significantly decreased in the colonic mucosa of Apc\(^{Min/+}\)-Ffar2\(^{-/-}\) mice (Table 1). In addition, Apc\(^{Min/+}\)-Ffar2\(^{-/-}\) mice showed a substantial accumulation of carnitine-conjugated long-chain fatty acids in both colonic mucosa and plasma specimens (Table 1), including stearoylcarnitine, laurlylcarnitine, myristoylcarnitine, and palmitoylcarnitine. Increased levels of these carnitine-conjugated long-chain fatty acids have been observed in tumor samples from biofilm-positive colorectal cancer patients [41], suggesting association among the increased fatty acid β-oxidation, loss of Ffar2, and gut microbiota.

Enhanced fatty acid β-oxidation has been reported in colon cancer patients [42,43]. Our study used human colon cancer cell lines to investigate if the functional FFAR2 could influence the key enzymes of the fatty acid oxidation pathway. Based on relatively higher expression levels of FFAR2 in the SW480 and HT29 cells compared to the Caco-2 and HCT116 cells, we knock-downed FFAR2 in the SW480 and HT29 cells [23]. Using the FFAR2 knocked-down cells, we found that the expression levels of several key enzymes in the fatty acid oxidation pathway have been increased in the FFAR2-deficient cells, including CPT2, ACADL, ACADS, and HADHA.

Figure 2. FFAR2 deficiency significantly increased the expression of key enzymes in the fatty acid β-oxidation pathway. Immunoblotting of CPT2, ACADL, HADHA in the SW480 (A) and HT29 (B) cells treated with either the vector or the FFAR2-shRNA to knockdown FFAR2. Numbers under each blot indicate the fold changes. FFAR2, free fatty acid receptor 2; ACADL, acyl-CoA dehydrogenase, long chain; ACADS, acyl-CoA dehydrogenase, C-2 to C-3 short chain; CPT2, carnitine palmitoyltransferase 2; HADHA, hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase, alpha subunit.

DISCUSSION

Our previous studies and those of other groups have shown that the expression of FFAR2 was decreased in adenocarcinoma tissues compared to normal tissues of patients with colorectal cancer [22,24]. Our current study, by utilizing Apc\(^{Min/+}\) mice, demonstrated that Ffar2 deficiency promoted the development of colorectal polyps. All the Apc\(^{Min/+}\)-Ffar2\(^{-/-}\) mice developed colorectal polyps compared to only 40% of the Apc\(^{Min/+}\) mice. The Apc\(^{Min/+}\)-Ffar2\(^{-/-}\) mice developed increased tumor burden of colon polyps. In addition, we investigated if Ffar2 deficiency has effects on the metabolic profiles and the gut bacterial composition. Thirty-one plasma metabolites and 28 colonic mucosa metabolites were changed in the Apc\(^{Min/+}\)-Ffar2\(^{-/-}\) mice compared to the Apc\(^{Min/+}\) mice. Analysis using KEGG data suggests that loss of Ffar2 enhances the long-chain fatty acid β-oxidation and the bile acid metabolism. Furthermore, Ffar2 deficiency markedly increased the abundance of Flavobacteriaceae and Verrucomicrobiaceae.

Previously we observed significantly decreased fatty acid levels in the colonic mucosa of Apc\(^{Min/+}\) mice [27]. Similarly, the current study detected reduced levels of 11 fatty acids, including medium-chain fatty acids, long-chain fatty acids, and polyunsaturated fatty acids, in the colonic mucosa of Apc\(^{Min/+}\) mice (Table S2). Six of these fatty acids were also significantly decreased in the colonic mucosa of Apc\(^{Min/+}\)-Ffar2\(^{-/-}\) mice (Table 1). In addition, Apc\(^{Min/+}\)-Ffar2\(^{-/-}\) mice showed a substantial accumulation of carnitine-conjugated long-chain fatty acids in both colonic mucosa and plasma specimens (Table 1), including stearoylcarnitine, laurlylcarnitine, myristoylcarnitine, and palmitoylcarnitine. Increased levels of these carnitine-conjugated long-chain fatty acids have been observed in tumor samples from biofilm-positive colorectal cancer patients [41], suggesting association among the increased fatty acid β-oxidation, loss of Ffar2, and gut microbiota.

Enhanced fatty acid β-oxidation has been reported in colon cancer patients [42,43]. Our study used human colon cancer cell lines to investigate if the functional FFAR2 could influence the key enzymes of the fatty acid oxidation pathway. Based on relatively higher expression levels of FFAR2 in the SW480 and HT29 cells compared to the Caco-2 and HCT116 cells, we knock-downed FFAR2 in the SW480 and HT29 cells [23]. Using the FFAR2 knocked-down cells, we found that the expression levels of several key enzymes in the fatty acid oxidation pathway have been increased in the FFAR2-deficient cells, including CPT2, ACADL, ACADS, and HADHA.

CPT2 has been shown to be over-expressed in primary prostate cancer [44], and knocking-down of CPT2 inhibited the tumor growth in triple-negative breast cancer [45]. Thus, our findings on increased CPT2 expression in FFAR2-deficient cells could be one of the mechanisms responsible for loss of FFAR2-enhanced colon cancer development.

HADHA has also been reported to be decreased in breast cancer [46] and clear cell renal cell carcinoma [47]. However, we observed increased expression of HADHA in the FFAR2-deficient SW480 and HT29 cells. These results, combined with increased expression of CPT2, ACADL, and ACADS in the FFAR2-deficient cells, suggest an overall accelerated fatty acid oxidation, which may contribute to the
Dysregulated FFAR2 Alters Metabolism and Gut Microbiota

A strong link between microbial dysbiosis and colon cancer has been intensively explored. However, due to the complexity of the gut microbiome, the underlying mechanisms remain unclear. Our current study demonstrated that loss of Ffar2 significantly changed the composition of microbiota in the ApcMin/+ mice. Decreased Bifidobacterium and has been observed in human colon cancer tissues [25]. Also, increased Peptostreptococcaceae has been positively associated with biofilm and an enhanced acetylated polyamines pathway in human colon cancer patients, which promote colon cancer development [41]. In our study, the profile of gut microbiome was found to be significantly changed in the polybearing mice (ApcMin/+ and ApcMin/+-Ffar2-/-) compared to WT mice, as revealed by the decreased abundance of Bifidobacterium and increased proportion of Peptostreptococcaceae. More importantly, the abundance of Flavobacteriaceae and Verrucomicrobiaceae was raised in the ApcMin/+ mice compared to WT mice and further increased in ApcMin/+-Ffar2-/- mice, which might contribute to Ffar2 deficiency-enhanced colon cancer development.

We previously reported that the cAMP-protein kinase A (PKA)-cAMP Response Element-Binding Protein (CREB) pathway, downstream of Ffar2, was activated, and this...
event led to overexpression of histone deacetylases in the Ffar2-deficient mice [23]. Mechanistically, H3K27me3 and H3K4me3 histone marks bind differentially to the promoter regions of inflammation suppressors as verified by ChIP-qPCR analysis. This results in decreased expression of these genes in the Ffar2-deficient mice, thereby promoting colon cancer [23]. We anticipate the changes of histone marks in enzymes regulating fatty acid oxidation, such as CPT2, ACADL, and HADHA, which warrants further investigations.

In summary, we validated Ffar2 as a tumor suppressor Ffar2 in colon carcinogenesis. To the best of our knowledge, this is the first study to link the biochemical metabolites and the gut microbiome profiling to the Ffar2 deficiency-promoted colon cancer development (Fig. 4). Enhanced fatty acid oxidation and bile acid metabolism, as well as the altered gut microbiome, could be, at least in part, constitute, the underlying mechanisms.

ACKNOWLEDGMENTS

This work was supported by NIH grants CA148818 and USDA/NIFA 2020-67017-30843 (to L.-S. Wang), and CA185301, AI129582, and NS106170 (to J. Yu).

CONFLICTS OF INTEREST

No potential conflicts of interest were disclosed.

SUPPLEMENTARY MATERIALS

Supplementary materials can be found via https://doi.org/10.15430/JCP.2021.26.1.32.

ORCID

Yi-Wen Huang, https://orcid.org/0000-0001-9220-8770
Chien-Wei Lin, https://orcid.org/0000-0003-4023-7339
Pan Pan, https://orcid.org/0000-0002-9573-9443
Carla Elena Echeveste, https://orcid.org/0000-0001-8442-0683
Athena Dong, https://orcid.org/0000-0002-9195-9107
Kiyoko Oshima, https://orcid.org/0000-0002-3357-6247
Martha Yearsley, https://orcid.org/0000-0003-0352-1277
Jianhua Yu, https://orcid.org/0000-0002-0326-3223
Li-Shu Wang, https://orcid.org/0000-0002-6500-6943

REFERENCES

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin 2016;66:7-30.
2. Aune D, Chan DS, Vieira AR, Navarro Rosenblatt DA, Vieira R, Greenwood DC, et al. Red and processed meat intake and risk of colorectal adenomas: a systematic review and meta-analysis of epidemiological studies. Cancer Causes Control 2013;24:611-27.
3. Murphy N, Norat T, Ferrari P, Jenab M, Bueno-de-Mesquita B, Skeie G, et al. Dietary fibre intake and risks of cancers of the colon and rectum in the European prospective investigation into cancer and nutrition (EPIC). PLoS One 2012;7:e39361.
4. Pan P, Yu J, Wang LS. Colon cancer: what we eat. Surg Oncol Clin N Am 2018;27:243-67.
5. Pan P, Yu J, Wang LS. Diet and colon: what matters? Curr Opin Gastroenterol 2019;35:101-6.
6. Pan P, Huang YW, Oshima K, Yearsley M, Zhang J, Yu J, et al. Could aspirin and diets high in fiber act synergistically to reduce the risk of colon cancer in humans? Int J Mol Sci 2018;19:166.
7. Monteleone G, Pallone F, Stolfi C. The dual role of inflammation in colon carcinogenesis. Int J Mol Sci 2012;13:11071-84.
8. Klampfer L. Cytokines, inflammation and colon cancer. Curr Cancer Drug Targets 2011;11:451-64.
9. Huang YW, Mo YY, Echeveste CE, Oshima K, Zhang J, Yearsley M, et al. Black raspberries attenuate colonic adenoma development in ApcMin mice: relationship to hypomethylation of promoters and gene bodies. Food Front 2020;1:234-42.
10. Peiffer DS. Modulation of the host microbiome by black raspberries or their components and the therapeutic implications in cancer. Food Front 2020;1:296-304.
11. Akin H, Tözün N. Diet, microbiota, and colorectal cancer. J Clin Gastroenterol 2014;48 Suppl 1:S67-9.
12. Ohtani N. Microbiome and cancer. Semin Immunopathol 2015;37:65-72.
13. Huang YW, Pan P, Echeveste CE, Wang HT, Oshima K, Lin CW,
et al. Transplanting fecal material from wild-type mice fed black raspberries alters the immune system of recipient mice. Food Front 2020;1:253-9.

14. Pan P, Skaar CW, Wang HT, Kreiser MA, Stridivant SM, Oshima K, et al. Systemic metabolite changes in wild-type C57BL/6 mice fed black raspberries. Nutr Cancer 2017;69:299-306.

15. Nilsson NE, Kotarsky K, Owman C, Olde B. Identification of a free fatty acid receptor, FFAR2, expressed on leukocytes and activated by short-chain fatty acids. Biochem Biophys Res Commun 2003;303:1047-52.

16. Bindels LB, Dewulf EM, Delzenne NM. GPR43/FFA2: physiopathological relevance and therapeutic prospects. Trends Pharmacol Sci 2013;34:226-32.

17. Karaki S, Tazoe H, Hayashi H, Kashiwabara H, Tooyama K, Suzuki Y, et al. Expression of the short-chain fatty acid receptor, GPR43, in the human colon. J Mol Histol 2008;39:135-42.

18. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr 2010;104 Suppl S1-63.

19. Macia L, Tan J, Vieira AT, Leach K, Stanley D, Luong S, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun 2015;6:6734.

20. Masui R, Sasaki M, Funaki Y, Gogasawara N, Mizuno M, Iida A, et al. G protein-coupled receptor 43 regulates gut microbiota. J Mol Histol 2008;39:135-42.

21. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, et al. Prebiotic effects: metabolic and health benefits. Br J Nutr 2010;104 Suppl S1-63.

22. Pan P, Wang HT, Oshima K, Huang YW, Xu M, et al. Loss of free fatty acid receptor 2 enhances colonic adenoma development and reduces the chemopreventive effects of black raspberries in Apcmin/+ mice. Carcinogenesis 2017;38:96-93.

23. Pan P, Wang HT, Oshima K, Huang YW, Xu M, et al. Loss of FFAR2 promotes colon cancer by epigenetic dysregulation of inflammation suppressors. Int J Cancer 2018;143:886-96.

24. Tang Y, Chen Y, Jiang H, Robbins GT, Nie D. G-protein-coupled receptor for short-chain fatty acid suppresses colon cancer. Int J Cancer 2011;128:847-56.

25. Sivakumaran S, Gurav A, Paschall AV, Coe GL, Chaudhary K, Cai Y, et al. An essential role of Ffar2 (Gpr43) in dietary fibre-mediated protection of high-fat diet-induced gut microbiota and suppression of intestinal carcinogenesis. Oncogenesis 2016;5:e238.

26. Pan P, Skaar CW, Stridivant SM, Young MR, Stoner GD, Lechner JF, et al. Beneficial regulation of metabolic profiles by black raspberries in human colorectal cancer patients. Cancer Prev Res (Phila) 2015;8:743-50.

27. Pan P, Skaar CW, Wang HT, Stridivant SM, Young MR, Oshima K, et al. Black raspberries suppress colonic adenoma development in Apcmin/+ mice: relation to metabolite profiles. Carcinogenesis 2015;36:1245-53.
43. Tan B, Qiu Y, Zou X, Chen T, Xie G, Cheng Y, et al. Metabonomics identifies serum metabolite markers of colorectal cancer. J Proteome Res 2013;12:3000-9.
44. Iglesias-Gato D, Wikström P, Tyanova S, Lavallee C, Thysell E, Carlsson J, et al. The proteome of primary prostate cancer. Eur Urol 2016;69:942-52.
45. Park JH, Vithayathil S, Kumar S, Sung PL, Dobrolecki LE, Putluri V, et al. Fatty acid oxidation-driven Src links mitochondrial energy reprogramming and oncogenic properties in triple-negative breast cancer. Cell Rep 2016;14:2154-65.
46. Mamtani M, Kulkarni H. Association of HADHA expression with the risk of breast cancer: targeted subset analysis and meta-analysis of microarray data. BMC Res Notes 2012;5:25.
47. Zhao Z, Lu J, Han L, Wang X, Man Q, Liu S. Prognostic significance of two lipid metabolism enzymes, HADHA and ACAT2, in clear cell renal cell carcinoma. Tumour Biol 2016;37:8121-30.