Transglutaminase 2 and nucleoside diphosphate kinase activity are correlated in epithelial membranes and are abnormal in cystic fibrosis

Kate J. Treharne, O. Giles Best, Anil Mehta *
Centre for Cardiovascular and Lung Biology, Division of Medical Sciences, Ninewells Hospital and Medical School, University of Dundee DD1 5SY, United Kingdom

A R T I C L E I N F O
Article history:
Received 6 April 2009
Revised 16 June 2009
Accepted 14 July 2009
Available online 18 July 2009
Edited by Irmgard Sinning

Keywords:
Fibrosing colonopathy
phosphohistidine
Cross-linking
Cystic fibrosis transmembrane regulator

A B S T R A C T
Tissue transglutaminase (tgase2) is a multifunctional enzyme that crosslinks proteins but also acts as a G-protein, differential functions regulated by calcium and GTP. In the epithelial cell membrane, we show that manipulation of tgase2 function by monodansylcadaverine or retinoic acid (RA) alters the activity of a membrane-bound protein kinase, nucleoside diphosphate kinase (NDPK, nm23-H1/H2) that is known to control G-protein function. We find that NDPK function is abnormally low in cystic fibrosis but can be restored by RA treatment in vitro. Our data suggest that tgase2 is overexpressed in cystic fibrosis and affects NDPK function.

Structured summary: MINT-7219905, MINT-7219896: tgase2 (uniprotkb:P21980) physically interacts (MI:0914) with NDPK (uniprotkb:P15531) by anti bait communoprecipitation (MI:0006)

© 2009 Federation of European Biochemical Societies. Published by Elsevier B.V.
Open access under CC BY-NC-ND license.

1. Introduction

Cystic fibrosis (CF) results from mutation of the cystic fibrosis transmembrane regulator (CFTR) and leads to widespread organ-damaging fibrosis [1] in pancreas, lung and liver [2]. This suggests that there may be a profibrotic factor endogenous to CF-affected tissues. Tissue transglutaminase (tgase2) is one candidate, that catalyses the formation of e-γ-glutamyl-lysine crosslinks between glutamine (Q) and lysine (K) residues on proteins in a Ca2+-dependent manner [3]. Normally, this activity is silent inside cells, due to high GTP levels, but crosslinking has never been shown to be implicated in the regulation of tgase2 unrelated enzymatic activity [4] and in the regulation of a protein kinase by oligomerisation [5]. Here, we expand the theme linking tgase2 to kinase function in a disease context.

The regulation of tgase2 activity is not fully understood and a recent paper described disturbed tgase2 in CF [6], finding that tgase2 is both over-expressed and over-active in CF cells. Our laboratory has been investigating the membrane-localised activity of nucleoside diphosphate kinase (nm23, NDPK-H1/H2 isoforms; ~17 kDa) [7–12], a multifunctional, hexameric enzyme that not only regulates the balance of cellular nucleotides such as ATP/ADP and GTP/GDP but also controls multiple cellular processes [13]. Unexpectedly, during the course of related studies using epithelial membranes derived from sheep tracheal epithelium, we repeatedly observed SDS- and mercaptoethanol-resistant, high molecular weight, NDPK-positive (HMW; ~51 kDa) bands in membrane samples. These were not always present, suggestive of regulation and given that others had also reported unexpected ladders of high molecular weight NDPK species [14], we speculated that these HMW, SDS-resistant bands could be cross-linked monomers that would otherwise have dissociated under reducing conditions in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Our results suggest that tgase2 can regulate NDPK activity.

2. Materials and methods

SDS-PAGE, immunoblotting, immunoprecipitations and NDPK phosphorylation assays were carried out as previously described [8,12,13]. Tgase2 was purchased from Calbiochem. All other reagents were from Sigma, except for radionuclides, obtained from NEN. Quantification of radioactivity was carried out by electronic autoradiography using an InstantImager (Packard). The anti-NDPK antibody used in this work (Santa Cruz) was raised against nm23-H1, but cross-reacts with nm23-H2; we do not distinguish be-
tween these two isoforms. Ovine tracheal samples were prepared as previously described [15].

3. Results

3.1. NDPK forms HMW species in ovine epithelial membranes

Immunoblots of cytosolic and membrane protein from ovine airway epithelium probed for NDPK show that there is a HMW form (Fig. 1, lanes 1–3) that is only detected in the membrane compartment (Fig. 1, lanes 4+5: equal protein loading from cytosol and membrane, respectively). These unexpected bands corresponded to trimers of the 17 kDa NDPK monomer (Fig. 1, lanes 1–3). HMW bands were sometimes also observed in membranes from human epithelial cell lines (data not shown) and this led us to investigate the relationship between tgase2 and NDPK in human airway cells.

3.2. Tgase2 is elevated in a human CF cell model

Iftgase2 dysfunction is associated with the pathophysiology of CF [6], tgase2 should be present in the affected tissues. Immunoblots show that tgase2 is present but there is nearly twice the level in cell membranes derived from CFBE cells, a human bronchial CF cell line expressing the ΔF508-CFTR when compared to the wild-type (WT) equivalent (HBE) (Fig. 2, lanes 1+2). Tgase2 activity can be inhibited by monodansylcadaverine (MDC) and cellular levels of tgase2 are strongly induced by retinoic acid (RA); these reagents are commonly used to manipulate tgase2 activity. Surprisingly RA treatment (5 μM, 5 days) reduced tgase2 in CFBE membranes three-fold to below that found in untreated WT HBE membranes (Fig. 2, compare lanes 4 and 1). The inhibitory effect of RA on HBE cell membrane tgase2 levels was more modest (lanes 3 and 1). By contrast, MDC treatment (50 μM, 5 days) of the cells dramatically reduced membrane-bound tgase2, but maintained the differential between WT and CF such that some residual tgase2 was detectable in CF but not wild-type cell membranes (Fig. 2, lanes 5+6).

3.3. NDPK co-immunoprecipitates with tgase2

Anti-tgase2 immunoprecipitates from HBE and CFBE membranes were probed for associated NDPK. Fig. 3 demonstrates that NDPK precipitates with tgase2 in both cell types and that the interaction is only abolished by an additional wash in 2 M NaCl suggesting tight association. Control precipitates with no antibody or irrelevant IgG were negative for NDPK.

3.4. NDPK activity can be altered by exogenous tgase2, but only if it originates from cytosol

We incubated membrane and cytosolic fractions from HBE cells with exogenous tgase2, and then tested for NDPK activity. Membrane extracts were unaffected by tgase2, but cytosolic NDPK activity was reduced (Fig. 4). This is consistent with the idea that membrane-associated NDPK is already cross-linked or in some way resistant to the actions of transglutaminase for example by lysing within a multiprotein complex involving the CFTR ion channel and AMP-activated protein kinase [16,17], so no change is observed.

3.5. NDPK activity is affected by tgase2 modulation

For unknown reasons, NDPK is dysfunctional in CF epithelium [18]. We investigated whether the RA 'normalisation' of tgase2 levels would result in restoration of NDPK function in CF cells. We found that both the histidine autophosphorylation [10] and the transferase activity of NDPK measured as GTP production [7,8] were
restored to WT levels after a five-day treatment of CFBE cells with 5 μM RA (Fig. 5, bottom panels). MDC treatment also inhibited WT NDPK activity to similar levels to those found in CF (Fig. 5, top panels).

4. Discussion

Thus, we have shown that NDPK can exist as a multimeric, SDS-resistant complex and that manipulation of tgase2 alters NDPK function. The difference in NDPK activity between CF membranes and wild-type membranes can be normalised. Our data also demonstrate that a fraction of cellular tgase2 co-immunoprecipitates with NDPK, suggesting that they are associated proteins.

Tgase2 is identical to the G-protein Gαh [19], implicating (GTP) in its regulation. One of the key roles of NDPK is maintenance of GTP levels local to G-proteins at the membrane [20]. Ca2+ is stimulatory, GTP inhibitory. Its transglutaminase or GTPase activities are reported to predominate, depending on its subcellular localisation to cytosol or membrane, respectively [21]. A disturbed tgase2-NDPK axis could have major implications, e.g. in the regulatory connection between tgase2 and the ras oncogene [22]. A disturbed NDPK axis could have major implications, e.g. in the regulatory connection between tgase2 and the ras oncogene [22]. A disturbed NDPK axis could have major implications, e.g. in the regulatory connection between tgase2 and the ras oncogene [22]. A disturbed NDPK axis could have major implications, e.g. in the regulatory connection between tgase2 and the ras oncogene [22].

The data in Fig. 4 suggest that the activity of NDPK is specifically held in check in the membrane by drugs known to regulate tgase2. Interestingly, suitable Q/K residues for cross-linking exist in close proximity at interfaces between NDPK monomers [31] and K31 and Q111 are conserved in the ubiquitous NDPK-H1 and H2 isoforms. There is only one report linking tgase2 activity with CF. Mauuri et al. [6] showed recently that tgase2 activity is elevated in CF tissues and that PPARγ is a substrate for this activity. Here we suggest that NDPK is a further probable substrate for this excess cross-linking activity, which might explain our earlier observation of NDPK dysfunction in CF membranes [18].

We have recently reported a complex relationship between membrane-local NDPK, its co-precipitating partner AMP-activated kinase, GTP, and the differential phosphorylation of NDPK itself on histidine and serine residues. The latter was promoted by the presence of GTP [13]. Since the GTP produced by NDPK could also regulate tgase2 activity, this relationship could form a tight feedback loop that could control the membrane-localised metabolic environment. In this context, it may be pertinent that membrane-bound, epithelial NDPK can interact with the metabolic sensor AMP-activated protein kinase (AMPK) [13], which in turn is known to bind CFTR. Our observations on RA are unexpected in that they normalise NDPK function in CF whilst reducing tgase2 in the membrane. Others, whilst looking for ubiquitinated NDPK, observed curious ladders of NDPK high molecular weight species when they were expecting the usual smear of NDPK suggestive of poly-ubiquitination [14]. Whatever the mechanism, our observed normalisation of tgase2 levels with RA treatment, coupled with the elevation of NDPK activity, indicates that RA (or tgase2 inhibitors) could be promising therapies for CF. Inhalation of aerosolised RA has already been tested as a therapy for lung cancer [32] and as an alternative means of administering supplemental vitamin A [33] making this route a viable approach to treat the CF lung. Thus two independent studies concur that tgase2 is overexpressed and is likely to be overactive in CF cells. Further investigation of tgase2 regulation is warranted in CF because fibrotic lung destruction is a major cause of CF morbidity.

Acknowledgements

This work was funded by the Wellcome Trust grant numbers 079965/Z/06/Z, 069150/Z/02/Z and 061003/Z/00/Z.

References

[1] Serban, D.E., Florescu, P. and Miu, N. (2002) Fibrosing colonopathy revealing cystic fibrosis in a neonate before any pancreatic enzyme supplementation. J Pediatr. Gastroenterol. Nutr. 35, 356–359.
[2] Lewindon, P.J., Pereira, T.N., Hoskins, A.C., Bridle, K.R., Williamson, R.M., Shepherd, R.W. and Ramm, G.A. (2002) The role of hepatic stellate cells and transforming growth factor-β1 in cystic fibrosis liver disease. Am. J. Pathol. 160, 1705–1715.

[3] Griffin, M., Casadio, R. and Bergamini, C.M. (2002) Transglutaminases: nature’s biological glues. Biochem. J. 368, 377–396.

[4] Hwang, K.C., Gray, C.D., Sivasubramanian, N. and Im, M.J. (1995) Interaction site of GTP binding Gα (transglutaminase II) with phospholipase C. J. Biol. Chem. 270, 27058–27062.

[5] Hebert, S.S., Daviau, A., Grondin, C., Latreille, M., Aubin, R.A. and Blouin, R. (2000) The mixed lineage kinase DLX is oligomerized by tissue transglutaminase during apoptosis. J. Biol. Chem. 275, 32482–32490.

[6] Maiuri, L. et al. (2008) Tissue transglutaminase activation modulates inflammation in cystic fibrosis via PPARY down-regulation. J. Immunol. 180, 7697–7705.

[7] Marshall, L.J., Muimo, R., Riemen, C.E. and Mehta, A. (1999) Na+ and K+ regulate the phosphorylation state of nucleoside diphosphate kinase in human airway epithelium. Am. J. Physiol. 278, C109–C119.

[8] Muimo, R., Bannen, S.J., Marshall, L.J. and Mehta, A. (1998) Nucleoside diphosphate kinase and Cl-sensitive protein phosphorylation in apical membranes from ovine airway epithelium. Am. J. Respir. Cell Mol. Biol. 18, 270–278.

[9] Muimo, R., Crawford, R.M. and Mehta, A. (2006) Nucleoside diphosphate kinase A as a controller of AMPK-kinase in airway epithelia. J. Bioenerg. Biomembr. 38, 181–187.

[10] Treharne, K.J., Riemen, C.E., Marshall, L.J., Muimo, R. and Mehta, A. (2001) Nucleoside diphosphate kinase – a component of the [Na+] - and [Cl–] -sensitive phosphorylation cascade in human and murine airway epithelium. Pflugers. Arch. 443 (Suppl. 1), 97–102.

[11] Treharne, K.J., Crawford, R.M. and Mehta, A. (2006) CFTR, chloride concentration and cell volume: could mammalian protein histidine phosphorylation play a latent role? Exp. Physiol. 91, 131–139.

[12] Treharne, K.J., Marshall, L.J. and Mehta, A. (1994) A novel chloride-dependent GTP-utilizing protein kinase in plasma membranes from human respiratory epithelium. Am. J. Physiol. 267, L192–L201.

[13] Trehan, K.J., Best, O.G. and Mehta, A. (2009) The phosphorylation status of membrane-bound nucleoside diphosphate kinase in epithelia and the role of AMP. Mol. Cell. Biochem. 321, 189–195.

[14] Hochrainer, K., Krossmayr, R., Baranyi, U., Binder, B.R. and Lipp, J. (2008) Highly Treharne, K.J., Riemen, C.E., Marshall, L.J., Muimo, R. and Mehta, A. (2001) Apical heterotrimeric γ-proteins activate CFTR in the native sweat duct. J. Membr. Biol. 179, 51–61.

[15] Namkung, W., Lee, J.A., Ahn, W., Han, W., Kwon, S.W., Ahn, D.S., Kim, K.H. and Lee, M.G. (2003) Ca2+ activates cystic fibrosis transmembrane conductance regulator- and Cl-dependent HCO3 transport in pancreatic duct cells. J. Biol. Chem. 278, 200–207.

[16] Milne, D.M., Campbell, L.E., Campbell, D.G. and Meeck, D.W. (1995) P53 is phosphorylated in vitro and in vivo by an ultraviolet radiation-induced protein kinase characteristic of the c-Jun kinase, JNK1. J. Biol. Chem. 270, 5511–5518.

[17] Tucholski, J. and Johnson, C.V. (2003) Tissue transglutaminase directly activates AMPK in lung epithelia. J. Biol. Chem. 278, 20683–20684.

[18] Maddox, A.M. and Haddox, M.K. (1988) Characteristics of cyclic AMP enhancement of retinoic acid induction of increased transglutaminase activity in HL60 cells. Exp. Cell Biol. 56, 49–59.

[19] Anciaux, K., Van Dommelen, K., Willems, R., Roymans, D. and Slegers, H. (1997) Transglutaminase specifically activates CFTR in Xenopus oocytes. FEBS Lett. 395, 51–57.

[20] Runne, R., Furst, P. and Edris, M. (1999) Retinyl palmitate analogues. FEBS Lett. 400, 75–79.

[21] Niroomand, F. (2003) Activation of heterotrimeric G proteins by a high energy phosphate transfer via nucleoside diphosphate kinase (NDPK) B and G subunits. Specific activation of Go by an NDPK B.Gβγ complex in H10 cells. J. Biol. Chem. 278, 7227–7233.

[22] Park, H., Park, E.S., Lee, H.S., Yun, H.Y., Kwon, N.S. and Baek, K.J. (2001) Distinct characteristic of Gb (transglutaminase II) by compartment: GTase and transglutaminase activities. Biochem. Biophys. Res. Commun. 284, 496–500.

[23] Kosa, K., Meyers, K. and De Luca, L.M. (1993) Transformation of NIH3T3 cells with ras oncogenes abrogates the retinoic acid induction of tissue transglutaminase. Biochem. Biophys. Res. Commun. 196, 1025–1033.

[24] Reddy, M.M. and Quinton, P.M. (2001) CAMP-independent phosphorylation activation of CFTR by G proteins in native human sweat duct. Am. J. Physiol. Cell Physiol. 280, C604–C613.

[25] Reddy, M.M., Sun, D. and Quinton, P.M. (2001) Apical heterotrimeric γ-proteins activate CFTR in the native sweat duct. J. Membr. Biol. 179, 51–61.

[26] Namkung, W., Lee, J.A., Ahn, W., Han, W., Kwon, S.W., Ahn, D.S., Kim, K.H. and Lee, M.G. (2003) Ca2+ activates cystic fibrosis transmembrane conductance regulator- and Cl-dependent HCO3 transport in pancreatic duct cells. J. Biol. Chem. 278, 200–207.

[27] Milne, D.M., Campbell, L.E., Campbell, D.G. and Meeck, D.W. (1995) P53 is phosphorylated in vitro and in vivo by an ultraviolet radiation-induced protein kinase characteristic of the c-Jun kinase, JNK1. J. Biol. Chem. 270, 5511–5518.

[28] Tucholski, J. and Johnson, C.V. (2003) Tissue transglutaminase directly regulates adenyl cyclase resulting in enhanced cAMP-response element-binding protein (CREB) activation. J. Biol. Chem. 278, 26838–26843.

[29] Maddox, A.M. and Haddox, M.K. (1988) Characteristics of cyclic AMP enhancement of retinoic acid induction of increased transglutaminase activity in HL60 cells. Exp. Cell Biol. 56, 49–59.

[30] Anciaux, K., Van Dommelen, K., Willems, R., Roymans, D. and Slegers, H. (1997) Inhibition of nucleoside diphosphate kinase (NDPK/nm23) by cAMP analogues. FEMS Lett. 400, 75–79.

[31] Min, K. et al. (2000) Crystallization and preliminary X-ray crystallographic analysis of human nucleoside diphosphate kinase A. Acta Crystallogr. D Biol. Crystallogr. 56, 503–504.

[32] Kohlhaufl, M. et al. (2002) Inhalation of aerosolized vitamin A: reversibility of metaplasia and dysplasia of human respiratory epithelia – a prospective pilot study. Eur. J. Med. Res. 7, 72–78.

[33] Biesalski, H., Renfen, R., Furst, P. and Edris, M. (1999) Retinyl palmitate supplementation by inhalation of an aerosol improves vitamin A status of preschool children in Gondar (Ethiopia). Br. J. Nutr. 82, 179–182.