Binary extended formulations and sequential convexification

Manuel Aprile, Michele Conforti, Marco Di Summa
University of Padua
Binarizations

Let \(x \) be a variable that ranges from 0 to \(k \). A binarization of \(x \) is a linear formulation with variables \(x \) and \(y_1, \ldots, y_d \) (between 0 and 1), so that integrality of \(x \) is implied by the integrality of \(y_1, \ldots, y_d \).

- **Unary:** \(x = \sum_{i=1}^{k} y_i \) with \(y_1 \geq \cdots \geq y_k \)
 [Roy 07]

- **Full:** \(x = \sum_{i=1}^{k} i \cdot y_i \) with \(\sum_{i=1}^{k} y_i \leq 1 \)
 [Sherali, Adams 13]
Binarizations

Let x be a variable that ranges from 0 to k.
A binarization of x is a linear formulation with variables x and y_1, \ldots, y_d (between 0 and 1), so that integrality of x is implied by the integrality of y_1, \ldots, y_d.

- **Unary**: $x = \sum_{i=1}^{k} y_i$ with $y_1 \geq \cdots \geq y_k$ [Roy 07]
- **Full**: $x = \sum_{i=1}^{k} i \cdot y_i$ with $\sum_{i=1}^{k} y_i \leq 1$. [Sherali, Adams 13]
- **Logarithmic**: $x = \sum_{i=1}^{t} 2^{i-1} y_i$, with $k = 2^t - 1$ [Owen, Mehrotra 02]
Binarizations

Let x be a variable that ranges from 0 to k. A binarization of x is a linear formulation with variables x and y_1, \ldots, y_d (between 0 and 1), so that integrality of x is implied by the integrality of y_1, \ldots, y_d.

- **Unary**: $x = \sum_{i=1}^{k} y_i$ with $y_1 \geq \cdots \geq y_k$ [Roy 07]
- **Full**: $x = \sum_{i=1}^{k} i \cdot y_i$ with $\sum_{i=1}^{k} y_i \leq 1$. [Sherali, Adams 13]
- **Logarithmic**: $x = \sum_{i=1}^{t} 2^{i-1} y_i$, with $k = 2^t - 1$ [Owen, Mehrotra 02]

A polytope $B \subseteq \{(x, y) : (x, y) \in \mathbb{R} \times [0, 1]^d\}$ is a binarization of x in the range $\{0, \ldots, k\}$ if

$$\pi_x(\{(x, y) \in B : y \in \{0, 1\}^d\}) = \{0, \ldots, k\}.$$
Why binarizations, and which one?

IP solvers deal more easily with binary variables than general integer variables.

- Cutting planes generated from variables of a binarizations can be more effective. [Bonami, Margot 15]
- Unimodular (generalization of full and unary) are optimal in terms of split closure, but they have k variables. [Dash, Gunluk, Hildebrand 18]

But...

- The logarithmic binarization has only $O(\log k)$ variables, but can lead to worse B&B trees than original formulation. [Owen, Mehrotra 02]
- “Although this substitution is valid, it should be avoided if possible.” [Optimization Modelling with LINGO]
Why binarizations, and which one?

- Cutting planes generated from variables of a binarizations can be more effective. [Bonami, Margot 15]
- Unimodular (generalization of full and unary) are optimal in terms of split closure, but they have k variables. [Dash, Gunluk, Hildebrand 18]

But...

- The logarithmic binarization has only $O(\log k)$ variables, but can lead to worse B&B trees than original formulation. [Owen, Mehrotra 02]
- “Although this substitution is valid, it should be avoided if possible.” [Optimization Modelling with LINGO]

We propose a different way to compare binarizations inspired by a connection with sequential convexification.
Our contributions

• We propose a “natural” notion of binarizations and we characterize the vertices of formulations that use such binarizations.

• We define the rank of a binarization, related to sequential convexification and the lift-and-project rank.

• We give formulas for the rank of the binarizations known in the literature, and show that
 • Unary is better than full
 • Logarithmic is optimal (among those with the same number of variables).
Sequential convexification

The **convexification** a polytope Q with respect to a binary variable x_i is

$$Q_{x_i} := \text{conv} \left(\{ x \in Q : x_i = 0 \} \cup \{ x \in Q : x_i = 1 \} \right).$$

If $Q \subset [0, 1]^p \times \mathbb{R}^{n-p}$, one has

$$\text{conv}\{ x \in Q : x_i \in \{0, 1\} \ \forall \ i \in [p] \} = (((Q_{x_1})_{x_2}) \ldots)_{x_p}.$$

[Balas Perregaard 02]
Sequential convexification

The convexification of a polytope Q with respect to a binary variable x_i is

$$Q_{x_i} := \text{conv} \left(\{ x \in Q : x_i = 0 \} \cup \{ x \in Q : x_i = 1 \} \right).$$

If $Q \subset [0, 1]^p \times \mathbb{R}^{n-p}$, one has

$$\text{conv}\{ x \in Q : x_i \in \{0, 1\} \ \forall i \in [p] \} = (((Q_{x_1})_{x_2}) \ldots)_{x_p}.$$

The lift-and-project rank of Q is the minimum integer k such that there are $i_1, \ldots, i_k \in [p]$ such that

$$\text{conv}\{ x \in Q : x_i \in \{0, 1\} \ \forall i \in [p] \} = ((((Q_{x_{i_1}}) \ldots)_{x_{i_k}}.$$

One can see this as a hitting set problem: convexifying wrt x_i we “get rid” of all vertices of Q whose x_i-component is fractional. We need to pick $i_1, \ldots, i_k \in [p]$ so that each fractional vertex of Q has a fractional component in some of i_1, \ldots, i_k.

Sequential convexification converges in a finite number of steps to the integer hull, while general disjunctions do not converge. In this example, using split disjunctions does not converge if only x_1, x_2 are required to be integer. But, if we associate to x_1, x_2 a binarization, we obtain the integer hull by convexifying a small number of 0/1 variables.

[Cook, Kannan, Schrijver 90]
Natural binarizations and their vertices

We consider a polytope $P \subseteq [0, k]^n$ and a binary extended formulation

$$Q := \{(x, y) \in \mathbb{R}^n \times [0, 1]^{nk} : x \in P, (x_i, y_i) \in B_i \ \forall i \in [n]\}.$$

where B_i is a binarization for x_i.

Convexifying all the y-variables leads to the integer hull $P_I = P \cap \mathbb{Z}^n$.

In order to study the lift-and-project rank of Q, we would like to understand its vertices...
Natural binarizations and their vertices

We consider a polytope $P \subseteq [0, k]^n$ and a binary extended formulation

$$Q := \{(x, y) \in \mathbb{R}^n \times [0, 1]^{nk} : x \in P, (x_i, y_i) \in B_i \forall i \in [n]\}.$$

where B_i is a binarization for x_i.

Convexifying all the y-variables leads to the integer hull $P_I = P \cap \mathbb{Z}^n$.

In order to study the lift-and-project rank of Q, we would like to understand its vertices...

We can characterize exactly the vertices of Q, and their x-projections, under a natural assumption.

Definition

A binarization B is **natural** if, for each vertex (x, y) of B, x is integer.
Let $P \subseteq [0, k]^n$ be a polytope and let Q be a binary extended formulation of P with natural binarizations. Then $\bar{x} \in \mathbb{R}^n$ is a point in $\pi_x(V(Q))$ if and only if there exist $I \subseteq [n]$, $\alpha_i \in \mathbb{Z}$ for $i \in I$, and a face F of P of dimension $|I|$ such that

$$F \cap \{x_i = \alpha_i \; \forall i \in I\} = \{\bar{x}\}.$$

Projections of vertices are exactly the 0-dimensional intersections of faces of P with the integer grid.
Theorem

Let $P \subseteq [0, k]^n$ be a polytope and let Q be a binary extended formulation of P with natural binarizations. Then $\bar{x} \in \mathbb{R}^n$ is a point in $\pi_x(V(Q))$ if and only if there exist $I \subseteq [n]$, $\alpha_i \in \mathbb{Z}$ for $i \in I$, and a face F of P of dimension $|I|$ such that

$$F \cap \{x_i = \alpha_i \ \forall \ i \in I\} = \{\bar{x}\}.$$

In particular, projections of vertices of Q do not depend on the binarizations used!
Let $P \subseteq [0, k]^n$ be a polytope and let Q be a binary extended formulation of P with natural binarizations. Then $(\bar{x}, \bar{y}) \in \mathbb{R}^n \times [0, 1]^{nd}$ is a vertex of Q if and only if there exist $I \subseteq [n]$, $\alpha_i \in \mathbb{Z}$ for $i \in I$, and a face F of P of dimension $|I|$ such that:

- $F \cap \{x_i = \alpha_i \ \forall i \in I\} = \{\bar{x}\}$;
- $(\bar{x}_i, \bar{y}_i) \in V(B_i) \ \forall i \in I$;
- $(\bar{x}_i, \bar{y}_i) \in V(B_i \cap \{x_i = \bar{x}_i\}) \ \forall i \in [n] \setminus I$.
\[P = \{(x_1, x_2, x_3) \in [0, 2]^2 \times \mathbb{R} : \quad hx_1 + hx_2 + x_3 \leq 2h \]
\[\quad x_3 \leq 2hx_1 \]
\[\quad x_3 \leq 2hx_2 \]
\[\quad x_3 \geq 0 \}\]

For \(i = 1, 2 \), \(B_i = \{(x_i, y_{i1}, y_{i2}) \in \mathbb{R} \times [0, 1]^2 : x_i = y_{i1} + y_{i2}, \ y_{i1} \geq y_{i2}\}\)
For $i = 1, 2$, $B_i = \{(x_i, y_{i1}, y_{i2}) \in \mathbb{R} \times [0, 1]^2 : x_i = y_{i1} + y_{i2}, y_{i1} \geq y_{i2}\}$

$$Q = \{(x_1, x_2, x_3) \in [0, 2]^2 \times \mathbb{R}, (y_{11}, y_{12}, y_{21}, y_{22}) \in [0, 1]^4 : \begin{align} hx_1 + hx_2 + x_3 &\leq 2h \\ x_3 &\leq 2hx_1 \\ x_3 &\leq 2hx_2 \\ x_3 &\geq 0 \end{align} \}$$

$(x_i, y_{i1}, y_{i2}) \in B_i$ for $i = 1, 2$
$V(Q)$ consists of the following points:

x_1	x_2	x_3	y_{11}	y_{12}	y_{21}	y_{22}
0	0	0	0	0	0	0
2	0	0	1	1	0	0
0	2	0	0	0	1	1
1/2	1/2	h	1/2	0	1/2	0
1/2	1/2	h	1/2	0	1/4	1/4
1/2	1/2	h	1/4	1/4	1/2	0
1/2	1/2	h	1/4	1/4	1/4	1/4
1	0	0	1	0	0	0
0	1	0	0	0	1	0
1	1	0	1	0	1	0
1	1	0	1/2	1/2	1	0
1	1	0	1/2	1/2	1/2	1/2
1	1/3	$2h/3$	1	0	1/3	0
1	1/3	$2h/3$	1	0	1/6	1/6
1/3	1	$2h/3$	1/3	0	1	0
1/3	1	$2h/3$	1/6	1/6	1	0
\textbf{\(V(Q)\) consists of the following points:}

\(x_1\)	\(x_2\)	\(x_3\)	\(y_{11}\)	\(y_{12}\)	\(y_{21}\)	\(y_{22}\)
0	0	0	0	0	0	0
2	0	0	1	1	0	0
0	2	0	0	0	1	1
1/2	1/2	\(h\)	1/2	0	1/2	0
1/2	1/2	\(h\)	1/2	0	1/4	1/4
1/2	1/2	\(h\)	1/4	1/4	1/2	0
1/2	1/2	\(h\)	1/4	1/4	1/4	1/4
1	0	0	1	0	0	0
0	1	0	0	0	1	0
1	1	0	1	0	1	0
1	1	0	1/2	1/2	1	0
1	1	0	1	0	1/2	1/2
1	1/3	\(2h/3\)	1	0	1/3	0
1	1/3	\(2h/3\)	1	0	1/6	1/6
1/3	1	\(2h/3\)	1/3	0	1	0
1/3	1	\(2h/3\)	1/6	1/6	1	0

Convexifying variables \(y_{11}, y_{21}\) is enough to obtain the integer hull.
The structure of the hitting set problem of a binary extended formulation depends on both P and the binarizations and can be complex. However, the situations simplifies if we restrict to a single x_i and B.

Let $\alpha \in \mathbb{Z}$. What is the minimum number of variables y_{ij} to convexify in order to get rid of all vertices $(x, y) \in Q$ with $\alpha < x_i < \alpha + 1$?

Thanks to our characterization of vertices of Q, it turns out that, if B is natural, the answer only depends on B and α, and not on P!
Given any binary extended formulation where natural binarization B is associated to variable x_i, and $\alpha \in \mathbb{Z}$, the rank $r_k_B(\alpha)$ is the minimum number of variables y_{ij} of B to convexify in order to get rid of all vertices $(x, y) \in Q$ with $\alpha < x_i < \alpha + 1$.

Intuitively, $r_k_B(\cdot)$ measures the progress made towards ensuring the integrality of x_i via application of sequential convexification.
Given any binary extended formulation where natural binarization B is associated to variable x_i, and $\alpha \in \mathbb{Z}$, the rank $r_{kB}(\alpha)$ is the minimum number of variables y_{ij} of B to convexify in order to get rid of all vertices $(x, y) \in Q$ with $\alpha < x_i < \alpha + 1$.

Intuitively, $r_{kB}(\cdot)$ measures the progress made towards ensuring the integrality of x_i via application of sequential convexification.

For $\alpha_1, \ldots, \alpha_\ell \in \mathbb{Z}$, the rank $r_{kB}(\alpha_1, \ldots, \alpha_\ell)$ is the minimum number of variables y_{ij} of B to convexify in order to get rid of all vertices $(x, y) \in Q$ with $\alpha_j < x_i < \alpha_j + 1$ for any $j = 1, \ldots, \ell$.
\(\text{rk}_B(\alpha) \) = minimum number of variables \(y_{ij} \) of \(B \) to convexify in order to get rid of all vertices \((x, y) \in Q \) with \(\alpha < x_i < \alpha + 1 \).

\[
B = \{ (x_i, y) \in \mathbb{R} \times [0, 1]^3 : x_i = \sum_{j=1}^d y_j, \ 1 \geq y_1 \geq y_2 \geq y_3 \geq 0 \};
\]

\(\text{rk}_B(\alpha) = 1 \) for \(\alpha = 0, 1, 2 \)
Given a natural binarization \(B \subseteq [0, k] \times [0, 1]^d \) and \(\alpha \in \{0, \ldots, k-1\} \), we say that edge \(((x^u, y^u), (x^v, y^v)) \) of \(B \) is an \(\alpha \)-edge if \(x^u \leq \alpha \) and \(x^v \geq \alpha + 1 \), or vice versa.

The **indicator set** of edge \(((x^u, y^u), (x^v, y^v)) \) is the set of indices \(i \in [d] \) for which \(y^u_i \neq y^v_i \).

\[
\begin{array}{c|c}
0\text{-edges} & \text{sets} \\
0 - 1 & \{1\} \\
0 - 2 & \{1, 2\} \\
0 - 3 & \{1, 2, 3\}
\end{array}
\]
Given a natural binarization $B \subseteq [0, k] \times [0, 1]^d$ and $\alpha \in \{0, \ldots, k - 1\}$, we say that edge $((x^u, y^u), (x^v, y^v))$ of B is an α-edge if $x^u \leq \alpha$ and $x^v \geq \alpha + 1$, or vice versa.

The indicator set of edge $((x^u, y^u), (x^v, y^v))$ is the set of indices $i \in [d]$ for which $y^u_i \neq y^v_i$.

Lemma

$$\text{rk}_B(\alpha_1, \ldots, \alpha_\ell) = \min |I| : I \subseteq [d] \text{ hits the indicator sets of all } \alpha_j\text{-edges of } B, \text{ for } j \in [\ell].$$

Proof idea: the rank is also equal to the lift-and-project rank of a certain polytope inside B.

Unary binarization

\[B^U = \{(x, y) \in \mathbb{R} \times [0, 1]^k : x = \sum_{i=1}^k y_i, 1 \geq y_1 \geq \cdots \geq y_k \geq 0\}; \]

\[
\begin{array}{c|c}
1\text{-edges} & \text{sets} \\
0 - 2 & \{1, 2\} \\
0 - 3 & \{1, 2, 3\} \\
1 - 2 & \{2\} \\
1 - 3 & \{2, 3\}
\end{array}
\]

\[\text{rk}_{B^U}(\alpha_1, \ldots, \alpha_\ell) = \ell. \]
Full binarization

\[B^F = \{(x, y) \in \mathbb{R} \times [0, 1]^k : x = \sum_{i=1}^k i \cdot y_i, \sum_{i=1}^k y_i \leq 1\}; \]

\[
\begin{array}{c|c}
0\text{-edges} & \text{sets} \\
0 - 1 & \{1\} \\
0 - 2 & \{2\} \\
0 - 3 & \{3\} \\
\end{array}
\]

\[\text{rk}_{B^F}(\alpha_1, \ldots, \alpha_\ell) = k - \min_{j \in [\ell]} \alpha_j. \]

\[k - \min_{j \in [\ell]} \alpha_j \geq k - (k - \ell) = \ell, \text{ hence:} \]

Unary has smaller rank than Full:

\[\text{rk}_{B^F}(\cdots) \geq \text{rk}_{B^U}(\cdots). \]
Logarithmic binarization

\[B^L = \{(x, y) \in \mathbb{R} \times [0, 1]^d : x = \sum_{i=1}^{d} 2^{i-1} y_i \}. \]

Observation: indicator sets of \(\alpha \)-edges are singletons, and parallel edges have the same indicator set.
Logarithmic binarization

\[B^L = \{(x, y) \in \mathbb{R} \times [0, 1]^d : x = \sum_{i=1}^{d} 2^{i-1} y_i \}. \]

3-edges	sets
0 – 4	\{3\}
1 – 5	\{3\}
2 – 6	\{3\}
3 – 7	\{3\}

\(\text{rk}_{B^L}(0) = 3, \ \text{rk}_{B^L}(1) = 2, \ \text{rk}_{B^L}(3) = 1. \)
Logarithmic binarization

\[B^L = \{ (x, y) \in \mathbb{R} \times [0, 1]^d : x = \sum_{i=1}^{d} 2^{i-1} y_i \}. \]

Lemma

\[\text{rk}_{B^L}(\alpha) = d - f(\alpha). \]

where \(f(\alpha) \) is the largest \(t \) such that \(2^t \) divides \(\alpha + 1 \).
Logarithmic binarization

\[B^L = \{(x, y) \in \mathbb{R} \times [0, 1]^d : x = \sum_{i=1}^{d} 2^{i-1} y_i \}. \]

Lemma

\[\text{rk}_{B^L}(\alpha_1, \ldots, \alpha_\ell) = d - f(\alpha_1, \ldots, \alpha_\ell). \]

where \(f(\alpha_1, \ldots, \alpha_\ell) = \max\{t : 2^t \text{ divides } \alpha_j + 1 \ \forall j \in [\ell]\}. \)
Hypercube binarizations

The logarithmic binarization has \(\lceil \log_2(k) \rceil \) variables, but large rank.

Is there any binarization with the same number of variables, but with lower rank?
Hypercube binarizations

The logarithmic binarization has $\lceil \log_2(k) \rceil$ variables, but large rank.

Is there any binarization with the same number of variables, but with lower rank? No!

Definition

Binarization $B \subseteq [0, k] \times [0, 1]^d$ is a hypercube binarization if $\pi_y(B) = [0, 1]^d$ ($\implies d = \lceil \log_2(k) \rceil$).

Theorem

For any hypercube binarization B,

$$\text{rk}_B(\alpha_1, \ldots, \alpha_\ell) \geq \text{rk}_{B^L}(\alpha_1, \ldots, \alpha_\ell).$$

The logarithmic binarization is optimal among hypercube binarizations.
Open questions

- What is the trade-off between the number of variables in a binarization and its rank?

- Is the unary binarization optimal among the “simplex” binarizations?

- Is there a binarization with \(O(\log k) \) variables that is better than the logarithmic?
Open questions

- What is the trade-off between the number of variables in a binarization and its rank?

- Is the unary binarization optimal among the “simplex” binarizations?

- Is there a binarization with $O(\log k)$ variables that is better than the logarithmic?

Thank you for your attention.