Optimization of Method for Pesticide Detection in Honey by Using Liquid and Gas Chromatography Coupled with Mass Spectrometric Detection

Mariana O. Almeida 1, Silvia Catarina S. Oloris 1, Vanessa Heloisa F. Faria 1, Márcia Cassimira M. Ribeiro 1, Daniel M. Cantini 1 and Benito Soto-Blanco 2,*

1 Instituto Otávio Magalhães, Fundação Ezequiel Dias (Funed), Rua Conde Pereira Carneiro 80, Belo Horizonte 30510-010, MG, Brazil; mariana.almeida@funed.mg.gov.br (M.O.A.); silvia.oloris@funed.mg.gov.br (S.C.S.O.); vanessa.faria@funed.mg.gov.br (V.H.F.F.); marcia.marcos@funed.mg.gov.br (M.C.M.R.); daniel.menegati11@gmail.com (D.M.C.)

2 Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos 6627, Belo Horizonte 30123-970, MG, Brazil

* Correspondence: benito@ufmg.br

Received: 11 August 2020; Accepted: 23 September 2020; Published: 26 September 2020

Abstract: This study aimed to optimize and validate a multi-residue method for identifying and quantifying pesticides in honey by using both gas and liquid chromatographic separation followed by mass spectrometric detection. The proposed method was validated to detect 168 compounds, 127 of them by LC-MS/MS (liquid chromatography tandem mass spectrometric detection) and 41 by GC-MS/MS (gas chromatography tandem mass spectrometric detection). The limit of detection (LOD) and limit of quantification (LOQ) values for the analytes determined by LC-MS/MS were 0.0001–0.0004 mg/kg and 0.0002–0.0008 mg/kg, respectively. For GC-MS/MS analyses, the LOD and LOQ values were 0.001–0.004 mg/kg and 0.002–0.008 mg/kg. In total, 33 samples of commercial honey produced by apiaries in six Brazilian states were analyzed with the validated method. Residual amounts of 15 analytes were detected in 31 samples (93.9%). The method described in the present study was able to detect an extensive and broad range of pesticides with very high sensitivity.

Keywords: residues in food; pesticides; LC-MS/MS; GC-MS/MS; QuEChERS; honey

1. Introduction

Honey is consumed by humans worldwide because of its characteristic sweet flavor and as a medicinal food. It is produced by honeybees, mainly from nectar collected from flowers. However, honey may be contaminated with pesticides used on crops foraged by bees. Contamination may occur through direct contact of the bee body to the pesticide or by bee consumption of the contaminated nectar, pollen, and guttation fluid (an exudate eliminated through the tips or edges of leaves of some plants) [1–3]. Furthermore, some pesticides are used to treat beehives against diseases [4].

The consumption of residual pesticides in contaminated foods has been linked to several toxic effects in humans, such as carcinogenesis, immunological disorders, and neurological disturbances [5]. Maximum residue levels (MRLs) have been established for pesticides in honey to ensure consumers’ safety [6–9]. It is mandatory to avoid the commercialization of honey containing residual pesticides at levels above the MRLs. To determine residual pesticide levels, precise and sensitive analytical methods must be able to detect an extensive and broad range of compounds.

Several analytical methods have been developed for detecting single compounds to a few dozen pesticides in honey. In these methods, detection and quantification are performed using techniques such as liquid chromatography (LC) with diode array [10], ultraviolet [11,12],
fluorescence [13], and electrochemical [11] detectors, gas chromatography (GC) with electron capture [14], flame ionization [15], nitrogen–phosphorus [16], flame photometric [17], thermionic-specific [18], and atomic emission [19] detectors, and excitation–emission matrix fluorescence data [20].

The performance of chromatographic analysis depends on adequate sample extraction and cleanup procedures. Matrix compounds are concentrated at the extraction procedure, whereas interfering substances are removed by the cleanup procedure [21]. An innovative technique developed for sample extraction and cleanup procedures is the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method [22]. Compared to earlier procedures, this method reduces the volume of solvents, and offers practical performance. Modifications of the QuEChERS method have been used for the detection of pesticides in different matrices such as meat [23], fish [24], milk [25], and honey [3,26–31].

Simultaneous detection of the residual levels of several pesticides in honey is mandatory in several countries to inspect this food before commercialization. Multi-residue analysis of at least one hundred pesticides in honey has been achieved using LC and GC coupled to mass spectrometric (MS) or tandem mass spectrometric (MS/MS) detection [1,3,26–32].

This study aimed to develop and validate a multi-residue method for identifying and quantifying pesticides in honey by using both gas and liquid chromatographic separation followed by mass spectrometric detection.

2. Materials and Methods

2.1. Chemicals and Reagents

Acetonitrile, ethyl acetate (both high performance liquid chromatography [HPLC] grade), and formic acid (for analysis) were supplied by Merck (Darmstadt, Germany). Methanol (HPLC grade) was obtained from Honeywell (Charlotte, NC, USA). Ammonium formate (>99%) was purchased from Vetec (Rio de Janeiro, Brazil). A DisQuE™ CEN sample preparation kit in pouch format (each pouch containing 4.0 g of anhydrous magnesium sulfate, 1.0 g of sodium chloride, 1.0 g of trisodium citrate dihydrate, and 0.5 g of disodium hydrogen citrate sesquihydrate; all > 99%) was supplied by Waters (Milford, CT, USA). An ExtraBond® QuEChERS Dispersive kit EN (each tube containing 900 mg of anhydrous magnesium sulfate and 150 mg of primary and secondary amine (PSA); both > 99%) was obtained from Scharlab (Barcelona, Spain). D-Sorbitol (≥98%) and gluconolactone (>99%) were purchased from Sigma–Aldrich (Darmstadt, Germany). Ultrapure water was generated with a Millipore Milli-Q system (Milford, CT, USA). All reference standards were of high purity grade (>98.0%) and were obtained from Dr. Ehrenstorfer (Augsburg, Germany) or AccuStandard (New Haven, CT, USA). Individual stock solutions were prepared at an approximate concentration of 1000 ng/µL in acetonitrile or acetone and stored in a freezer at −20 °C. Working solutions were prepared through appropriate dilutions of the stock solutions.

2.2. Samples

Blank samples of honey were obtained from apiaries managed under an organic system, and repeated analyses confirmed the absence of residual pesticides. These blank samples were fortified with target analytes for the validation of the analytical method. Furthermore, 33 samples of commercial honey produced by apiaries in six Brazilian states (Distrito Federal, Goiás, Minas Gerais, Rio Grande do Norte, Rio Grande do Sul, and São Paulo) were analyzed using the validated method.

2.3. Sample Preparation

The modified QuEChERS method for extraction and cleanup was optimized from previously described procedures [22,28,32,33]. Each honey sample (5.0 g) was placed into a 50 mL polypropylene tube and spiked with appropriate amounts of pesticides in working solutions. Next, 10.0 mL of ultrapure water was added, and the mixture was agitated at 1750 rpm for 2 min. Exactly 10.0 mL of a solution of acetonitrile and ethyl acetate (70:30, v/v) was added, and each tube was agitated again
at 1750 rpm for 2 min. Then, 4.0 g of anhydrous magnesium sulfate, 1.0 g of sodium chloride, 1 g of trisodium citrate dehydrate, and 0.5 g of disodium hydrogen citrate sesquihydrate were added, and the tubes were agitated at 1750 rpm for another 2 min and centrifuged at 4000 rpm for 5 min. The whole organic layer was transferred to a 15 mL polypropylene tube, and the mixture was kept at −40 °C for at least 2 h. The supernatant (6.0 mL) was mixed with 900 mg of anhydrous magnesium sulfate and 150 mg of PSA, and the mixture was agitated at 1750 rpm for 1 min and centrifuged at 3600 rpm for 5 min. The extract (4.0 mL) was transferred to two 13 × 100 mm glass tubes, with 2.0 mL in each tube. The solution was dried in an evaporator with a water bath maintained at 45 °C and nitrogen pressure of 15 psi.

The procedural internal standard (P-IS) [34] for the LC analysis was Propoxur, and the P-IS for GC analysis was 4,4′-dichlorodiphenyldichloroethylene (4,4′-DDE). After weighing the honey sample, 10 μL of the P-IS solution containing 4.0 ng/μL of Propoxur and 4.0 ng/μL of DDE 4,4 was added. Propoxur and 4,4′-DDE were then validated following the validation method described in Section 2.3.

For LC analysis, the dried residue was reconstituted with 200 μL of methanol:water (1:1), with both solvents containing 5 mM ammonium formate and 0.01% formic acid. After 30 min, the tube was vortexed for 1 min, and the solution was transferred to a vial containing a conical insert of 250 μL.

For GC analysis, the dried residue was reconstituted with 200 μL of acetonitrile:ethyl acetate (7:3) and 6 μL of analyte protectant solution, composed of 10 mg/mL gluconolactone and 5 mg/mL D-sorbitol in acetonitrile:water (7:3). The tube was then immediately vortexed for 0.5 min, and the solution was transferred to a vial containing a conical insert of 250 μL.

2.4. Liquid Chromatography

LC-MS/MS (liquid chromatography tandem mass spectrometric detection) analysis was performed using an Agilent 6495 Triple Quadrupole LC/MS system. Chromatographic separations were carried out on a Zorbax SB-C18 Rapid Resolution HT column (4.6 × 150 mm, 1.8 μm) at a 40 °C column temperature. The mobile phases were water containing 5 mM ammonium formate and 0.01% formic acid (phase A) and methanol containing 5 mM ammonium formate and 0.01% formic acid (phase B), with gradient elution at a flow rate of 0.6 mL/min. The gradient elution program was as follows: 0 min, 90% B; 2.0 min, 50% B; 20 min, 100% B. The total chromatographic run time was 25 min. The injection volume was 5 μL.

For mass spectrometric analysis, an electrospray ionization (ESI) source was used in both negative (ESI-) and positive (ESI+) modes. Source parameters were set as follows: gas temperature 120 °C, gas flow 15 L/min, nebulizer 45 psi, sheath gas flow 12 L/min, sheath gas temperature 300 °C, capillary voltage 3500 V (+ and −), nozzle voltage 300 V (+)/500 V (−), iFunnel RF high pressure 150 V (+)/90 V (−), and iFunnel RF low pressure 60 V (+ and −). The retention times, delta retention times, polarities, ion transitions, and collision energies are presented in Table 1. Two transitions were chosen for almost all pesticides, but an extra confirmatory transition was included for four pesticides to avoid false-positives at trace pesticide levels. The analysis was run according to all requirements for identifying analytes by MS/MS established by European Union SANTE/12682/2019 [34].
Table 1. Chromatographic parameters and MS/MS (tandem mass spectrometric) detection for compounds analyzed by LC-MS/MS (liquid chromatography tandem mass spectrometric detection).

Name	RT (min)	DRT (min)	Polarity	Transitions	Collision Energy
2,4-D	9.60	1.5	ESI−	QI 3 218.9 > 161.	11
Acephate	4.56	1.5	ESI+	1st CI 4 218.9 > 124.9	35
				2nd CI 220.9 > 162.9	
				QI 184.0 > 143.0	5
Acetamiprid	6.56	1.0	ESI+	1st CI 223.1 > 126.0	15
				2nd CI 223.1 > 56.0	
Aldicarb	8.05	1.5	ESI+	1st CI 208.1 > 116.2	10
				1st CI 208.1 > 89.1	24
Aldicarb-Sulfone	4.99	1.5	ESI+	1st CI 223.1 > 148.0	5
				1st CI 223.1 > 76.0	5
Aldicarb-Sulfoxide	4.88	1.5	ESI+	QI 207.1 > 131.9	0
Allethrin	19.36	1.5	ESI+	1st CI 207.1 > 89.1	8
Ametryn	13.15	1.5	ESI+	QI 228.1 > 186.1	20
				1st CI 228.1 > 116.1	
				2nd CI 228.1 > 96.0	25
Aminocarb	7.32	1.5	ESI+	QI 209.1 > 152.2	12
				1st CI 209.1 > 137.2	20
Atrazine	11.34	1.5	ESI+	QI 216.1 > 174.1	16
				1st CI 216.1 > 68.0	40
Avermectin B1a	21.71	1.5	ESI+	QI 890.5 > 567.4	8
				1st CI 890.5 > 305.1	16
Azinphos-Ethyl	14.74	1.5	ESI+	QI 300.0 > 231.1	16
				1st CI 300.0 > 159.0	
Azinphos-Methyl	12.15	1.5	ESI+	QI 318.0 > 261.0	0
				1st CI 318.0 > 132.1	8
				QI 404.1 > 372.1	12
Azoxytrobin	12.90	1.5	ESI+	1st CI 404.1 > 344.1	28
				2nd CI 404.1 > 329.1	
Benalaxyl	16.86	1.5	ESI+	QI 326.2 > 294.1	4
				1st CI 326.2 > 148.1	27
Bitertanol	16.98	1.5	ESI+	QI 338.2 > 99.1	10
				1st CI 338.2 > 70.0	4
Boscalid	13.34	1.5	ESI+	QI 343.0 > 307.1	16
				1st CI 343.0 > 271.2	32
Bromacil	9.29	1.5	ESI+	QI 261.0 > 205.0	20
				1st CI 261.0 > 187.9	
Bromuconazole	15.50	3.0	ESI+	QI 378.0 > 159.0	32
				1st CI 378.0 > 70.0	35
Buprofezin	19.13	1.5	ESI+	QI 306.2 > 201.1	5
				1st CI 306.2 > 116.1	10
Cadusafos	17.96	1.5	ESI+	QI 271.1 > 130.9	20
				1st CI 271.1 > 97.0	40
Carbaryl	9.80	1.5	ESI+	QI 202.1 > 145.1	4
				1st CI 202.1 > 127.1	28
Carbendazim	7.07	1.5	ESI+	QI 192.1 > 160.1	16
				1st CI 192.1 > 132.1	32
Carbofuran	9.35	1.5	ESI+	QI 222.1 > 165.1	20
				1st CI 222.1 > 123.1	30
3-Hydroxycarbofuran	6.35	1.5	ESI+	QI 238.1 > 220.1	0
				1st CI 238.1 > 163.1	8
Name	RT \(^1\) (min)	DRT \(^2\) (min)	Polarity	Transitions	Collision Energy
-----------------------------	-----------------	------------------	----------	---------------------------------	------------------
Carboxin	9.88	1.5	ESI+	QI 236.1 > 143.1	12
				1st CI 236.1 > 93.1	36
Chlorfenvinphos	17.20	1.5	ESI+	QI 358.9 > 155.0	8
				1st CI 358.9 > 99.2	28
Chlorfluazuron	20.00	1.5	ESI+	QI 539.9 > 383.0	44
				1st CI 539.9 > 158.0	36
Chlorpyrifos	20.20	1.5	ESI+	QI 349.9 > 198.0	20
				1st CI 349.9 > 97.0	20
Chlorpyrifos-Methyl-Oxon	15.89	1.5	ESI+	QI 334.0 > 306.0	8
				1st CI 334.0 > 278.0	8
Clofentezine	16.99	1.5	ESI+	QI 303.0 > 138.0	12
				1st CI 303.0 > 102.0	40
Clomazone	12.70	1.5	ESI+	QI 242.1 > 127.0	20
				1st CI 240.1 > 89.1	56
Clothianidin	6.08	1.5	ESI+	QI 250.0 > 169.0	8
				1st CI 250.0 > 131.9	8
Cyanazine	8.43	1.5	ESI+	QI 241.1 > 214.1	18
				1st CI 241.1 > 104.0	44
Cyanofenphos	16.60	1.0	ESI+	QI 304.1 > 276.0	12
				1st CI 304.1 > 157.0	24
Cyazofamid	15.43	1.5	ESI+	QI 325.0 > 261.0	4
				1st CI 325.0 > 108.0	8
Cymoxanil	6.97	1.5	ESI+	QI 199.1 > 128.0	4
				1st CI 199.1 > 110.9	12
Cyproconazole	14.80	2.0	ESI+	QI 292.1 > 125.0	32
				1st CI 292.1 > 70.0	16
Cyprodinil	17.10	1.5	ESI+	QI 226.1 > 108.0	30
				1st CI 226.1 > 93.0	40
Cyromazine	4.48	1.5	ESI+	QI 167.1 > 125.0	16
				1st CI 167.1 > 85.0	16
Diafenthiuron	20.82	1.5	ESI+	QI 385.2 > 329.2	16
				1st CI 385.2 > 276.2	32
Diazinon	17.10	1.5	ESI+	QI 305.1 > 169.1	32
				1st CI 305.1 > 97.0	40
Dichlorvos	9.11	1.5	ESI+	QI 221.0 > 109.0	12
				1st CI 221.0 > 79.0	24
Dicrotophos	5.83	1.5	ESI+	QI 238.0 > 127.0	12
				1st CI 238.0 > 112.1	8
				QI 406.1 > 337.0	18
Difenoconazole	17.80	1.5	ESI+	QI 30.1 > 251.0	28
				1st CI 406.1 > 251.0	8
Diflubenzuron	14.96	1.5	ESI+	QI 311.0 > 158.0	8
				1st CI 311.0 > 141.0	32
Dimethoate	6.53	1.5	ESI+	QI 230.0 > 198.8	0
				1st CI 230.0 > 125.0	16
Dimethomorph	13.80	3.0	ESI+	QI 388.1 > 301.1	20
				1st CI 388.1 > 165.1	32
Diniconazole	18.00	1.5	ESI+	QI 326.1 > 159.0	28
				1st CI 326.1 > 70.0	28
Disulfoton	17.69	1.5	ESI+	QI 275.0 > 89.0	12
				1st CI 275.0 > 61.0	44
Disulfoton-Sulfone	10.72	1.5	ESI+	QI 307.0 > 125.0	10
				1st CI 307.0 > 97.0	30
Disulfoton-Sulfoxide	10.78	1.5	ESI+	QI 291.0 > 185.0	10
				1st CI 291.0 > 157.0	20
Name	RT (min)	DRT (min)	Polarity	Transitions	Collision Energy
----------------	----------	-----------	----------	------------------------------	------------------
Diuron	11.38	1.5	ESI+	QI 2350, > 72.0	20
				1st CI 233.0 > 160.0	
				2nd CI 233.03 > 72.1	
Emamectin B1a	20.89	2.0	ESI+	QI 886.5 > 158.0	44
				1st CI 886.5 > 82.1	
Emamectin B1b	20.34	2.0	ESI+	QI 872.5 > 158.3	40
				1st CI 872.5 > 82.3	
Epoxiconazole	15.21	1.5	ESI+	QI 330.1 > 121.0	68
				1st CI 330.1 > 101.2	
Ethion	19.65	1.5	ESI+	QI 385.0 > 199.1	4
				1st CI 385.0 > 142.8	
Etofenprox	22.82	1.5	ESI+	QI 394.2 > 359.0	5
				1st CI 394.2 > 177.0	
Ethoprophos	15.72	1.5	ESI+	QI 243.1 > 130.9	15
				1st CI 243.1 > 97.0	
Etrimfos	16.80	1.5	ESI+	QI 293.1 > 265.0	26
				1st CI 293.1 > 125.0	
Famoxadone	16.93	1.5	ESI+	QI 392.1 > 330.9	4
				1st CI 392.1 > 238.0	
Fenamiphos	15.92	1.5	ESI+	QI 304.1 > 234.0	12
				1st CI 304.1 > 217.1	
Fenbuconazole	15.11	1.5	ESI+	QI 337.1 > 125.1	40
				1st CI 337.1 > 70.0	
Fenpyroximate	20.91	1.5	ESI+	QI 422.2 > 366.2	12
				1st CI 422.2 > 135.0	
Fenthion	16.86	1.5	ESI+	QI 279.0 > 247.1	8
				1st CI 279.0 > 169.1	
Fipronil	15.50	1.5	ESI+	QI 437.0 > 368.0	18
				1st CI 437.0 > 255.0	
Flazasulfuron	11.24	1.5	ESI+	QI 408.1 > 182.1	28
				1st CI 408.1 > 83.0	
Fluazifop-Butyl	18.80	1.5	ESI+	QI 384.1 > 328.1	12
				1st CI 384.1 > 282.2	
Flufenoxuron	19.88	1.5	ESI+	QI 489.1 > 158.0	20
				1st CI 489.1 > 140.9	
Fluquinconazole	15.11	1.5	ESI+	QI 376.0 > 349.0	20
				1st CI 376.0 > 307.1	
Flutriafol	11.17	1.5	ESI+	QI 302.1 > 122.9	28
				1st CI 302.1 > 70.1	
Furathiocarb	19.30	1.5	ESI+	QI 383.2 > 251.9	8
				1st CI 383.2 > 195.0	
Heptenophos	11.79	1.5	ESI+	QI 251.0 > 127.0	15
				1st CI 251.0 > 125.0	
Hexaconazole	17.40	1.5	ESI+	QI 314.1 > 159.0	30
				1st CI 314.1 > 70.1	
Hexythiazox	19.90	1.5	ESI+	QI 353.1 > 227.9	8
				1st CI 353.1 > 168.1	
Imazalil	14.30	3.0	ESI+	QI 297.1 > 201.0	15
				1st CI 297.1 > 159.0	
Imazapyr	5.48	3.0	ESI+	QI 262.1 > 217.1	20
				1st CI 262.1 > 131.0	
Imazethapyr	7.42	1.5	ESI+	QI 290.1 > 245.1	24
				1st CI 290.1 > 177.0	
Imibenconazole	19.60	1.5	ESI+	QI 411.0 > 171.0	20
				1st CI 411.0 > 125.0	
Name	RT (min)	DRT (min)	Polarity	Transitions	Collision Energy
-----------------------	----------	-----------	----------	---------------------------	------------------
Imidacloprid	5.97	1.5	ESI+	QI 258.0 > 210.9	12
				1st CI 256.0 > 208.9	12
				2nd CI 256 > 175	12
				QI 528.1 > 203.0	45
				1st CI 528.1 > 150.0	20
				QI 330.0 > 287.9	10
				1st CI 330.0 > 244.9	14
				QI 321.2 > 202.9	5
				1st CI 321.2 > 119	16
Indoxacarb	17.88	1.5	ESI+	QI 314.1 > 267.0	0
				1st CI 314.1 > 222.1	10
				QI 249.0 > 160.1	20
				1st CI 249.0 > 133.0	36
				QI 510.9 > 158.0	20
				1st CI 510.9 > 141.0	57
				QI 315.0 > 127.1	20
				1st CI 315.0 > 99.2	4
				QI 331.0 > 126.9	5
				1st CI 331.0 > 99.0	10
				QI 280.2 > 220.1	10
				1st CI 280.2 > 160.1	20
				QI 320.1 > 125.0	48
				1st CI 320.1 > 70.1	24
				QI 142.0 > 125.0	10
				1st CI 142.0 > 94.0	10
				QI 302.9 > 145.0	0
				1st CI 302.9 > 85.1	15
				QI 226.1 > 169.0	4
				1st CI 226.1 > 121.1	12
				QI 163.1 > 106.0	4
				1st CI 163.1 > 88.0	0
				QI 369.2 > 313.1	0
				1st CI 369.2 > 149.0	10
				QI 284.1 > 252.1	8
				1st CI 284.1 > 176.1	24
				QI 215.1 > 187.1	15
				1st CI 215.1 > 84.0	30
				QI 225.0 > 193.1	0
				1st CI 225.0 > 127.0	12
				QI 224.1 > 193.0	0
				1st CI 224.1 > 127.0	10
				QI 289.1 > 125.1	32
				1st CI 289.1 > 70.1	16
				QI 380.7 > 127.0	8
				1st CI 380.7 > 109.0	24
				QI 214.0 > 125.0	16
				1st CI 214.0 > 109.0	24
				QI 237.1 > 90.0	10
				1st CI 237.1 > 72.0	12
				QI 294.1 > 125.2	40
				1st CI 294.1 > 70.1	20
				QI 276.1 > 220.0	10
				1st CI 276.1 > 94.0	40
				QI 248.0 > 201.9	20
				1st CI 248.0 > 90.0	25
Table 1. Cont.

Name	RT (min)	DRT (min)	Polarity	Transitions	Collision Energy
Parathion	16.40	1.5	ESI+	QI 292.0 > 236.1	8
				1st CI 292.0 > 94.1	40
Penconazole	16.70	1.5	ESI+	QI 284.1 > 159	30
				1st CI 284.1 > 70.1	15
Pencycuron	18.00	1.5	ESI+	QI 329.1 > 125.1	24
				1st CI 329.1 > 89.1	60
Pendimethalin	20.20	1.5	ESI+	QI 282.1 > 212.1	4
				1st CI 282.1 > 194.1	16
Phenthoate	16.20	1.5	ESI+	QI 321.0 > 163.1	8
				1st CI 321.0 > 79.1	44
Phorate	17.50	1.5	ESI+	QI 261.0 > 199.0	2
				1st CI 261.0 > 75.1	5
Phosmet	12.80	1.5	ESI+	QI 317.9 > 160.0	8
				1st CI 317.9 > 133.0	36
Phosphamidon	8.30	1.5	ESI+	QI 300.0 > 174.1	8
				1st CI 300.0 > 127.1	16
				2nd CI 241 > 222.8	10
Picloram	4.71	1.5	ESI+	QI 368.1 > 205.2	4
				1st CI 368.1 > 145.0	20
Picoxystrobin	16.03	1.5	ESI+	QI 239.1 > 182.1	12
				1st CI 239.1 > 72.1	20
Pirimicarb	11.08	1.5	ESI+	QI 334.1 > 198.1	22
				1st CI 334.1 > 182.1	24
Pirimiphos-Ethyl	19.39	1.5	ESI+	QI 306.2 > 164.1	20
				1st CI 306.2 > 108.1	30
Pirimiphos-Methyl	18.00	1.5	ESI+	QI 376.0 > 308.0	4
				1st CI 376.0 > 265.9	12
				2nd CI 241 > 222.8	10
Prochloraz	18.03	1.5	ESI+	QI 374.9 > 347.0	12
				1st CI 374.9 > 304.9	19
				QI 189.2 > 144.0	8
Profenofos	18.83	1.5	ESI+	QI 368.1 > 231.2	0
				1st CI 368.1 > 175.2	8
Propamocarb	4.72	1.5	ESI+	QI 342.1 > 159.0	32
				1st CI 342.1 > 69.1	16
Propargite	20.26	1.5	ESI+	QI 310.11 > 168.1	5
				1st CI 310.11 > 111.1	8
Propiconazole	17.50	1.5	ESI+	QI 388.11 > 193.8	8
Propoxur	9.33	1.5	ESI+	QI 374.1 > 222.1	16
				1st CI 374.1 > 194.1	32
Pyraclostrobin	17.50	1.5	ESI+	QI 365.1 > 309.1	4
				1st CI 365.1 > 147.2	20
Pyrazophos	17.26	1.5	ESI+	QI 341.0 > 205.1	10
				1st CI 341.0 > 189.0	20
Pyridaben	21.90	1.5	ESI+	QI 300.1 > 106.9	20
				1st CI 300.1 > 82.0	25
Pyridaphenthion	14.36	1.5	ESI+	QI 322.2 > 227.2	12
				2nd CI 322.2 > 96	12
Pyrimethanil	13.88	1.5	ESI+	QI 299.0 > 163.0	20
				1st CI 299.0 > 147.0	20
Pyriproxyfen	19.90	1.5	ESI+	QI 373.0 > 271.2	24
				1st CI 373.0 > 255.1	36
Quinalphos	16.48	1.5	ESI+	QI 373.0 > 271.2	24
				1st CI 373.0 > 255.1	36
Quizalofop-Ethyl	19.10	1.5	ESI+	QI 373.0 > 271.2	24
				1st CI 373.0 > 255.1	36
Table 1. Cont.

Name	RT \(^1\) (min)	DRT \(^2\) (min)	Polarity	Transitions	Collision Energy
Simazine	9.45	1.5	ESI+	QI 202.1 > 132.0	22
Spinosyn A	19.87	2.0	ESI+	QI 732.5 > 142.1	28
Spinosyn D	20.78	2.0	ESI+	QI 746.5 > 142.1	35
Spirodiclofen	21.25	1.5	ESI+	QI 411.1 > 313	8
Spiromesifen	20.67	1.5	ESI+	QI 371.2 > 273.1	12
Sulfentrazone	9.38	1.5	ESI+	QI 404.0 > 306.9	28
Tebuconazole	16.80	1.5	ESI+	QI 381.0 > 158.0	12
Tebufenozide	16.08	1.5	ESI+	QI 381.0 > 158.0	12
Teflubenzuron	19.00	1.5	ESI+	QI 381.0 > 158.0	12
Temephos	18.90	1.5	ESI+	QI 381.0 > 158.0	12
Terbufos	19.60	1.5	ESI+	QI 381.0 > 158.0	12
Tetraconazole	15.09	1.5	ESI+	QI 381.0 > 158.0	12
Thiabendazole	8.22	1.5	ESI+	QI 381.0 > 158.0	12
Thiacloprid	7.10	1.5	ESI+	QI 381.0 > 158.0	12
Thiabendazole	8.22	1.5	ESI+	QI 381.0 > 158.0	12
Thiacloprid	7.10	1.5	ESI+	QI 381.0 > 158.0	12
Thiamethoxam	5.42	1.5	ESI+	QI 292.0 > 211.0	8
Thiobencarb	18.03	1.5	ESI+	QI 292.0 > 211.0	8
Thiodicarb	10.59	1.5	ESI+	QI 292.0 > 211.0	8
Thiophanate-Methyl	8.65	1.5	ESI+	QI 292.0 > 211.0	8
Tolyfluquinid	15.99	1.5	ESI+	QI 292.0 > 211.0	8
Triadimefon	14.80	1.5	ESI+	QI 292.0 > 211.0	8
Triadimenol	14.70	1.5	ESI+	QI 292.0 > 211.0	8
Triazophos	14.30	1.5	ESI+	QI 292.0 > 211.0	8
Trichlorfon	6.55	1.5	ESI+	QI 292.0 > 211.0	8
Trifloxystrobin	18.35	1.5	ESI+	QI 292.0 > 211.0	8
Triflumizole	18.50	1.5	ESI+	QI 292.0 > 211.0	8
Vamidothion	6.39	1.5	ESI+	QI 292.0 > 211.0	8
Zoxamide	16.96	1.5	ESI+	QI 292.0 > 211.0	8

\(^1\) RT: retention time. \(^2\) DRT: delta retention time. \(^3\) QI: quantification ions. \(^4\) CI: confirmation ions.
2.5. Gas Chromatography

GC-MS/MS (gas chromatography tandem mass spectrometric detection) analysis was performed using an Agilent 7000C Triple Quadrupole GC/MS system with a multimode inlet. The temperature of the injector was maintained at 150 °C (0.1 min), ramped up to 300 °C at 600 °C/min (20 min hold), and then ramped down to 200 °C at 20 °C/min until the end of the analysis. The injection volume was 2 µL. The pulsed splitless injection was at 50 psi for 0.5 min with a split flow of 50 mL/min for 0.6 min. The gas saver was set to 20 L/min and started after 5 min. The carrier gas was helium, and the inlet pressure was 5.59 psi (constant pressure mode) during the run and 2.0 psi during the backflush. From the inlet, two Agilent HP-5ms Ultra Inert (5%-phenyl)-methylpolysiloxane columns (0.25 mm, 0.25 µm) were coupled to each other through a purged ultimate union for post-run backflushing; the first column was 30 m, and the second column was 2 m. The total chromatographic run time was 29.5 min, and backflushing started after 25.5 min with 8.92 psi. The column oven temperature was maintained at 60 °C for 1.0 min, ramped up to 180 °C at 30 °C/min, and then ramped up to 300 °C at 5 °C/min.

For the mass spectrometric analysis, an electron ionization source was used with an ionization voltage of 70 eV, ion source temperature of 290 °C, and interface temperature of 280 °C. The retention times, delta retention times, polarities, ion transitions, and collision energies are presented in Table 2. Two transitions were chosen for almost all pesticides, but an extra confirmatory transition was included for seven pesticides to avoid false-positives at trace pesticide levels. The analysis was run according to all requirements for identifying analytes by MS/MS established by European Union SANTE/12682/2019 [34].

Name	RT (min)	DRT (min)	Quantification Transition	Collision Energy
Alachlor	11.33	1	QI 3 188.1 > 160.1	10
			1st CI 1 188.1 > 130.1	
			QI 263.0 > 193.0	40
			1st CI 2 298.0 > 263.0	8
			QI 182.0 > 167.0	12
			1st CI 1 181.0 > 165.0	25
Aldrin	12.62	1	QI 330.9 > 315.9	16
			1st CI 2 329.0 > 314.0	16
Bifenthrin	19.78	2	QI 341.0 > 185.0	5
			1st CI 1 341.0 > 183.0	20
			1st CI 2 153.0 > 96.9	10
Carbophenothion	17.71	1	1st CI 153.0 > 79.0	30
			2nd CI 157.0 > 75.1	40
			QI 162.9 > 127.0	5
Cyfluthrin	24.39	2	1st CI 226.9 > 77.1	30
			QI 162.9 > 127.0	5
Cypermethrin	25.01	2	1st CI 181.1 > 127.1	35
Clordane Gama (Trans)	14.42	2	QI 272.0 > 237.0	16
			1st CI 375.0 > 266.0	25
Chlorfenapyr	16	1	QI 247.0 > 227.0	15
			1st CI 247.0 > 200.0	25
			1st CI 2 247.0 > 197.0	5
Chlorothalonil	10.17	1	QI 265.9 > 230.9	20
			1st CI 2 263.8 > 229.0	20
Chlorpyrifos-Methyl	11.14	2	QI 288.0 > 93.0	26
			1st CI 2 288.0 > 273.0	15
			2nd CI 2 286.0 > 271.0	16
Name	RT 1 (min)	DRT 2 (min)	Quantification Transition	Collision Energy
---------------------	------------	-------------	---------------------------	------------------
Chlorthiophos	16.93	1	QI 297.0 > 269.0	14
2,4′-DDD	15.7	1	QI 237.0 > 165.0	20
2,4′-DDE	14.47	2	QI 246.0 > 176.0	20
4,4′-DDE	15.92	1	QI 246.0 > 211.0	20
2,4′-DDT	16.84	1	QI 237.0 > 165.0	20
4,4′-DDT	18	1	QI 237.0 > 165.0	20
Deltamethrin	27.94	1	QI 253.0 > 174.0	15
Dicofol	18.46	2	QI 249.9 > 139.1	10
Dieldrin	15.69	1	QI 263.0 > 191.0	35
Endosulfan Alpha	14.84	2	QI 238.8 > 204.0	15
Endosulfan Beta	16.35	1	QI 241.0 > 206.0	15
Endosulfan Sulfate	17.94	1	QI 240.8 > 190.0	15
Endrin	16.06	1	QI 263.0 > 193.0	35
Esfenvalerate	26.91	2	QI 225.0 > 119.0	10
Fenpropathrin	20.1	1	QI 265.0 > 210.0	15
Fenarimol	21.94	1	QI 159.0 > 111.0	26
Fenitrothion	11.94	1	QI 247.0 > 260.0	15
Phosalone	20.91	1	QI 182.0 > 111.0	15
HCH Alpha	9.1	2	QI 189.0 > 145.0	12
HCH Beta	9.57	2	QI 180.9 > 145.0	12
HCH Delta	10.38	1	QI 180.9 > 145.0	12
HCH Gamma	9.81	2	QI 180.9 > 145.0	12
Heptachlor	11.63	1	QI 271.9 > 236.8	25
Heptacloro Exo Epoxid	13.71	1	QI 353.0 > 263.0	15
Hexachlorobenzene (HCB)	9.23	1	QI 283.9 > 213.9	35
Lambda Cyhalothrin	21.65	1	QI 181.1 > 152.1	30
Methoxychlor	20	2	QI 227.0 > 141.1	40
Table 2. Cont.

Name	RT 1 (min)	DRT 2 (min)	Quantification Transition	Collision Energy
Mirex	21.68	1	QI 271.9 > 235.0	25
			1st CI 272.0 > 237.0	
			QI 174.8 > 111.1	10
			2nd CI 302.0 > 175.0	4
Ovex (Clorfenson)	15.11	1	QI 252.0 > 146.0	32
			1st CI 252.0 > 170.0	32
			QI 263.0 > 109.1	15
Oxyfluorfen	15.64	1	QI 263.0 > 79.1	30
			1st CI 263.0 > 79.1	
Parathion-Methyl	11.28	2	QI 183.1 > 153.1	15
			1st CI 183.0 > 115.2	25
Permethrin	23.38	2	QI 252.0 > 146.0	32
			1st CI 252.0 > 170.0	
Procymidone	13.97	2	QI 263.0 > 79.1	30
			1st CI 263.0 > 79.1	
Prothiofos	15.21	1	QI 252.0 > 146.0	
			1st CI 252.0 > 170.0	
Quintozene	9.73	1	QI 252.0 > 146.0	32
			1st CI 252.0 > 170.0	
Tetradifon	20.71	1	QI 252.0 > 146.0	32
			1st CI 252.0 > 170.0	
Trifluralin	8.48	1	QI 252.0 > 146.0	32
			1st CI 252.0 > 170.0	
Vinclozolin	11.22	2	QI 252.0 > 146.0	32
			1st CI 252.0 > 170.0	

1 RT: retention time. 2 DRT: delta retention time. 3 QI: quantification ions. 4 CI: confirmation ions.

2.6. Method Validation

Validation was performed following the European Union SANTE/12682/2019 [34] and Codex Alimentarius CXG90-2017 [35] guidelines. The following analytical performance parameters were assessed: linearity, selectivity, trueness, precision (repeatability and within-lab reproducibility), limit of detection (LOD), and limit of quantification (LOQ). A total of 209 different analytes were tested, 159 of them by LC-MS/MS and 50 by GC-MS/MS.

Matrix-matched calibration (MMC) was used to minimize the matrix effect. For the preparation of analytical MMC curves, blank honey extracts were spiked with appropriate amounts of standard solutions at the six final concentrations. Three independent solutions were prepared for each level of the curve (n = 18), and the samples were injected randomly. The difference between the calculated concentration and the theoretical concentration must be less than or equal to 20% for the curve’s best fit. The selectivity was determined by identifying the pesticide in the presence of the matrix and other analytes. If interfering peaks were detected at the same retention time as some pesticides, the interfering agents’ areas had to be less than or equal to 30% of the analyte LOQs.

The trueness and precision (repeatability and within-lab reproducibility) were determined from the recovery assay results of blank samples spiked with all of the analytes at two distinct levels (LOQ and 10× LOQ) for GC-MS/MS and three distinct levels (LOQ, 2× LOQ, and 10× LOQ) for LC-MS/MS. Repeatability was evaluated using data from replicate samples (n = 6) analyzed on the same day for each level. The within-lab reproducibility was evaluated using replicate data (n = 12) from two different days and two analysts for each level. Repeatability and within-lab reproducibility are expressed by the relative standard deviation (RSD in %), whereas average recovery values express trueness. The expanded measurement uncertainty (U) was estimated by the top-down approach. All results are reported in Tables 3 and 4. Average recovery ranging from 70% to 120% was considered adequate. Precision deviations of up to 20% were considered acceptable [34].
Table 3. Linearity, recovery (in %), repeatability relative standard deviation (RSD; in %), expanded measurement uncertainty (U; in %), limit of detection (LOD; in mg/kg), and limit of quantification (LOQ; in mg/kg) for each analyte of the LC-MS/MS method for analysis of pesticides in honey.

Compound	Type of Adjust	Ponderation	LR 1 (µg/kg)	Average Recovery	RSD	U	LOD	LOQ						
3-Hydroxycarbofuran	Linear	1/x	1–10	110	91	92	6	6	8	6	6	8	0.00010	0.00020
Acetate	Linear	1/x	1–10	109	91	81	4	10	5	8	10	10	0.00010	0.00020
Acetamiprid	Linear	1/x	1–10	101	96	101	10	7	4	20	19	8	0.00010	0.00020
Aldicarb	Linear	1/x	1–10	95	98	86	8	11	12	12	15	12	0.00010	0.00020
Aldicarb-sulfone	Linear	1/x	1–10	118	104	90	5	11	6	5	11	6	0.00010	0.00020
Aldicarb-sulfoxide	Linear	1–10	118	111	100	7	11	9	8	14	17	0.00010	0.00020	
Allethrin	Linear	1–10	92	80	83	10	18	20	10	18	20	0.00010	0.00020	
Aminocarb	Linear	1/x	1–10	97	100	90	13	9	4	14	9	12	0.00010	0.00020
Atrazine	Linear	1–10	107	104	103	4	5	4	14	10	6	0.00010	0.00020	
Azinphos-ethyl	Linear	1–10	108	107	108	12	10	4	12	11	10	0.00010	0.00020	
Azinphos-methyl	Linear	1–10	104	106	96	8	7	7	8	8	9	0.00010	0.00020	
Azoxystrobin	Linear	1/x	1–10	119	98	88	9	3	4	9	14	14	0.00010	0.00020
Benzalaxyl	Linear	1–10	119	119	97	97	6	7	8	10	7	8	0.00010	0.00020
Bitertanol	Linear	1–10	111	103	94	4	8	5	7	8	5	0.00010	0.00020	
Boscalid	Linear	1–10	119	97	88	10	4	6	12	20	14	0.00010	0.00020	
Bromacil	Linear	1/x	1–10	100	95	92	6	6	4	16	19	12	0.00010	0.00020
Bromuconazole	Linear	2–20	118	108	101	4	5	4	7	5	4	0.000020	0.000040	
Buprofezin	Linear	1/x	1–10	102	103	88	18	17	14	19	17	14	0.00010	0.00020
Cadusafos	Linear	1–10	110	102	92	5	7	11	9	7	11	0.00010	0.00020	
Carbaryl	Linear	1–10	116	95	95	10	7	4	10	12	11	0.00010	0.00020	
Carbendazim	Linear	1/x	1–10	114	108	114	6	8	3	7	12	12	0.00010	0.00020
Carbofuran	Linear	1/x	1–10	106	99	101	4	2	3	9	18	15	0.00010	0.00020
Chlorfenpyrphos	Linear	1/x	1–10	111	110	108	4	6	5	10	6	5	0.00010	0.00020
Chlorpyriños	Linear	1–10	91	79	74	14	18	16	16	18	16	0.00010	0.00020	
Chlorpyriños-methyl-oxon	Linear	1–10	113	108	100	4	6	9	6	6	9	0.00010	0.00020	
Clorfenpyrphos	Linear	1–10	117	105	92	6	9	9	9	12	9	0.00010	0.00020	
Clomazone	Linear	1/x	1–10	105	88	99	8	5	5	12	19	15	0.00010	0.00020
Clothianindin	Linear	1–10	119	105	100	5	6	6	10	8	6	0.00010	0.00020	
Cyanazine	Linear	1–10	118	95	90	9	4	7	9	19	19	0.00010	0.00020	
Compound	Type of Adjust	Ponderation	LR 1 (µg/kg)	Average Recovery	RSD	U	LOD (mg/kg)	LOQ (mg/kg)						
------------------------	----------------	-------------	-----------------	------------------	-----	---	------------	-------------						
Cyanofenphos	Linear	1/x	1–10	105	102	96	9	15	11	10	15	11	0.00010	0.00020
Cyazofamid	Linear	1/10	2–20	105	110	115	3	4	2	15	7	4	0.00020	0.00040
Cyproconazole	Linear	1/x2	1–10	100	106	95	7	18	11	13	18	11	0.00010	0.00020
Cyprodinil	Linear	1/10	1–10	104	92	93	5	5	4	13	19	16	0.00010	0.00020
Diclofop	Linear	1/x	1–10	113	105	100	5	7	8	5	8	9	0.00010	0.00020
Difenoconazole	Linear	1–10	1–10	113	106	101	3	9	10	5	9	10	0.00010	0.00020
Diflubenzuron	Linear	1–10	1–10	100	100	99	8	8	4	10	12	4	0.00010	0.00020
Dimethoate	Linear	1–10	1–10	110	109	102	5	3	5	6	8	5	0.00010	0.00020
Dimethomorph	Linear	1–10	1–10	97	101	97	7	8	10	10	12	11	0.00010	0.00020
Diniconazole	Linear	1–10	1–10	110	109	106	3	4	5	10	8	6	0.00010	0.00020
Disulfoton-sulfone	Linear	1–10	1–10	112	104	110	4	10	3	13	11	4	0.00010	0.00020
Dimethoate	Linear	1–10	1–10	113	112	111	8	9	6	13	10	6	0.00010	0.00020
Ethicon	Linear	1–10	1–10	109	110	102	8	5	5	8	6	8	0.00010	0.00020
Ethoprophos	Linear	1–10	1–10	106	103	100	7	5	7	8	6	9	0.00010	0.00020
Etrifos	Linear	1–10	1–10	106	100	97	7	5	7	8	8	5	0.00010	0.00020
Fambidoxone	Linear	1–10	1–10	106	98	88	6	11	12	16	11	12	0.00010	0.00020
Fenbuconazole	Linear	1–10	1–10	113	112	111	8	9	6	13	10	6	0.00010	0.00020
Fenpyroximate	Linear	1–10	1–10	110	110	102	8	5	5	8	6	8	0.00010	0.00020
Fenthion	Linear	1–10	1–10	106	94	90	5	10	8	19	12	11	0.00010	0.00020
Fipronil	Linear	1–10	1–10	106	101	99	5	11	8	6	11	8	0.00020	0.00040
Fluazifop-P-butyl	Linear	1–10	1–10	106	87	77	8	12	16	9	12	16	0.00010	0.00020
Fluquinconazole	Linear	1–10	1–10	106	108	106	7	6	6	10	8	6	0.00010	0.00020
Furathiocarb	Linear	1–10	1–10	107	96	88	4	6	10	6	6	10	0.00010	0.00020
Heptenophos	Linear	1–10	1–10	104	97	94	7	7	8	8	9	12	0.00010	0.00020
Hexaconazole	Linear	1–10	1–10	105	108	100	6	9	6	14	11	9	0.00010	0.00020
Hexythiazox	Linear	1–10	1–10	97	87	77	5	16	15	20	16	15	0.00010	0.00020
Imazalil	Linear	1–10	1–10	106	102	103	9	4	6	17	16	8	0.00010	0.00020
Imibenconazole	Linear	1–10	1–10	89.5	85.8	79.9	4.8	9.9	13.6	20.0	12.9	13.6	0.00010	0.00020
Imidacloprid	Linear	1–10	1–10	99	91	92	10	10	4	10	18	18	0.00010	0.00020
Indoxacarb	Linear	1–10	1–10	105	95	87	5	11	11	6	11	11	0.00010	0.00020
Table 3. Cont.

Compound	Type of Adjust	Ponderation	LR 1 (µg/kg)	Linearity	Average Recovery	RSD	U	LOD	LOQ						
Iprodione	Linear	1/x2	1–10	94	101	95	14	10	15	14	11	16	0.00010	0.00020	
Iprovalicarb	Linear	1–10	103	106	105	4	7	4	16	14	7	10	0.00010	0.00020	
Kresoxim-methyl	Linear	1–10	112	104	96	6	6	4	6	9	8	10	0.00010	0.00020	
Linuron	Linear	1–10	117	91	90	18	11	3	18	19	10	10	0.00010	0.00020	
Malaoxon	Linear	1–10	118	117	100	19	10	7	19	11	8	10	0.00010	0.00020	
Malathion	Linear	1–10	102	104	109	4	3	4	20	19	16	10	0.00010	0.00020	
Metalaxyl	Linear	1–10	107	105	107	2	4	4	14	14	11	11	0.00010	0.00020	
Metaldehyde	Linear	1–10	111	106	94	4	7	9	5	7	9	11	0.00010	0.00020	
Methidathion	Linear	1–10	108	100	96	9	4	5	10	12	11	9	0.00010	0.00020	
Methiocarb	Linear	1–10	120	100	91	7	6	3	10	20	19	10	1.00010	0.00020	
Methomyl	Linear	1–10	92	85	88	10	10	6	19	20	20	10	0.00010	0.00020	
Methoxyfenozide	Linear	1–10	110	108	99	3	6	7	6	6	7	5	0.00010	0.00020	
Metolachlor	Linear	1–10	105	105	100	5	4	9	20	12	9	9	0.00010	0.00020	
Metribuzin	Linear	1–10	96	97	98	15	9	5	20	10	12	6	0.00010	0.00020	
Monocrotophos	Linear	1–10	108	90	82	13	15	6	15	16	17	17	0.00010	0.00020	
Methylbutanil	Linear	1–10	110	108	103	5	3	5	11	5	5	5	0.00010	0.00020	
Omeothoate	Linear	1–10	95	84	78	7	5	3	8	10	6	10	0.00010	0.00020	
Oxamyl	Linear	1–10	99	101	100	10	10	3	19	17	10	10	0.00010	0.00020	
Paclobutrazol	Linear	1–10	107	98	97	6	3	3	10	9	10	9	0.00010	0.00020	
Paraoxon	Linear	1–10	111	119	117	10	8	5	10	15	15	15	0.00010	0.00020	
Parathion	Linear	1–10	94	99	93	16	11	14	16	11	14	14	0.00004	0.000080	
Penconazole	Linear	1–10	107	103	103	8	6	4	10	8	6	8	0.00010	0.00020	
Pencycuron	Linear	1–10	92	86	89	7	12	15	12	12	15	12	0.00010	0.00020	
Pendimethalin	Linear	1–10	98	82	80	12	15	13	14	13	13	13	0.00010	0.00020	
Phenoxythoate	Linear	1–10	109	101	93	5	10	12	7	10	15	10	0.00010	0.00020	
Phosmet	Linear	1–10	107	104	108	5	4	4	14	16	10	10	0.00010	0.00020	
Phosphamidon	Linear	1–10	118	108	100	4	3	4	7	6	5	5	0.00010	0.00020	
Piracyxystrobin	Linear	1–10	110	107	110	6	5	7	15	9	7	10	0.00010	0.00020	
Pirimicarb	Linear	1–10	115	110	111	3	2	4	9	4	4	4	0.00010	0.00020	
Pirimiphos-ethyl	Linear	1–10	102	90	89	9	8	13	16	8	13	13	0.00010	0.00020	
Pirimiphos-methyl	Linear	1–10	104	101	95	7	10	11	10	14	13	13	0.00010	0.00020	
Procichloraz	Linear	1–10	108	106	106	3	7	6	12	10	11	10	0.00010	0.00020	
Profenofos	Linear	1–20	103	98	95	5	10	10	10	10	12	12	0.00020	0.00040	
Compound	Type of Adjust	Ponderation	LR 1 (µg/kg)	Pt 2 1	Pt 2	Pt 6	Pt 1	Pt 2	Pt 6	Pt 1	Pt 2	Pt 6	U	LOD	LOQ
------------------------	----------------	-------------	-----------------	-----------	------	------	------	------	------	------	------	------	-----	-----	-----
Propargite	Linear	1/10	104 88 73	12 18 19	12 18	19	0.00010	0.00020							
Propoxur	Linear	1/10	108 98 95	10 4 5	15 20	19	0.00010	0.00020							
Pyraclostrobin	Linear	1/10	110 99 96	7 10 11 10	10 12	13	0.00010	0.00020							
Pyrazophos	Linear	1/10	111 104 96	4 7 7	6 7	7	0.00010	0.00020							
Pyridaphenthion	Linear	1/10	117 111 102	5 6 4	6 6	4	0.00010	0.00020							
Pyriproxyfen	Quadratic	1/10	98 92 93	18 15 17	20 15	17	0.00010	0.00020							
Quinalphos	Linear	1/10	110 105 98	5 7 8	6 7	10	0.00010	0.00020							
Quizalofop-P-ethyl	Linear	1/10	96 88 82	8 10 15	8 10 17	0.00010	0.00020								
Simazine	Linear	1/10	104 103 96	5 5 5	15 18	14	0.00010	0.00020							
Spinosyn A	Linear	1/10	105 106 101	4 5 6	5 5	6	0.00010	0.00020							
Spinosyn D	Linear	1/10	106 101 97	13 17 14	17 17	16	0.00010	0.00020							
Spirodiclofen	Linear	1/10	99 84 84	11 19 16	11 19	20	0.00010	0.00020							
Spiromesifen	Linear	1/10	86 81 73	10 12 17	10 12	17	0.00010	0.00020							
Tebuconazole	Linear	1/10	96 102 100	7 4 8	12 9	8	0.00010	0.00020							
Tebufenozide	Linear	1/10	106 100 84	11 10 16	11 10	16	0.00010	0.00020							
Teflubezuron	Linear	1/10	104 90 81	9 13 18	10 13	18	0.00020	0.00040							
Terbufos	Linear	1/20	86 74 71	13 12 19	11 13	11	0.00020	0.00040							
Tetraconazole	Linear	1/10	102 105 105	5 6 6	9 11	10	0.00010	0.00020							
Thiabendazole	Linear	1/10	111 114 95	17 18 5	19 18	5	0.00010	0.00020							
Thiacloprid	Linear	1/10	117 103 98	6 5 3	6 6	3	0.00010	0.00020							
Thiamethoxam	Linear	1/10	106 94 91	8 7 6	8 9	8	0.00010	0.00020							
Thiobencarb	Linear	1/10	106 94 91	11 7 8	13 9	9	0.00010	0.00020							
Thiodicarb	Linear	1/10	111 98 97	10 3 4 10	14 9	0.00010	0.00020								
Tolyfluquinid	Linear	1/10	100 95 96	8 5 7	12 8	8	0.00010	0.00020							
Triadimefon	Linear	1/10	103 106 104	6 8 5	14 13	11	0.00010	0.00020							
Triadimenol	Linear	1/10	116 116 106	4 3 5	6 9	11	0.00010	0.00020							
Triazophos	Linear	1/10	113 104 109	4 5 3	14 13	11	0.00010	0.00020							
Trichlorfon	Linear	1/20	107 101 97	9 7 5	9 9	9	0.00010	0.00020							
Trifoxystrobin	Linear	1/10	105 96 93	5 11 12	9 11	12	0.00010	0.00020							
Triflumizole	Linear	1/10	93 94 92	9 7 7	13 10	7	0.00010	0.00020							
Vamidothion	Linear	1/10	105 92 90	6 7 4	12 15	6	0.00010	0.00020							
Zoxamide	Linear	1/10	104 92 88	6 9 8	9 10	10	0.00010	0.00020							

1 LR: linearity range. 2 Pt: point.
Table 4. Linearity, recovery (in %), repeatability relative standard deviation (RSD; in %), expanded measurement uncertainty (U; in %), limit of detection (LOD; in mg/kg), and limit of quantification (LO Q; in mg/kg) for each analyte of the GC-MS/MS method for analysis of pesticides in honey.

Compound	Type of Adjust	Ponderation	FT (µg/kg)	Average Recovery	RSD	U	LOD	LOQ		
				Pt 1	Pt 6	Pt 1	Pt 6	Pt 6		
DDE 4,4	Linear	1/x	10–100	119	94	8	7	20	7	
									0.001	0.002
Alachlor	Linear	10–100	103	109	7	5	19	12		
									0.001	0.002
Aldrin	Linear	1/20–200	110	99	10	9	18	11		
									0.002	0.004
Azoxystrobin	Linear	10–100	98	78	9	7	13	8		
									0.001	0.002
Bifenthrin	Linear	20–200	117	91	3	4	11	4		
									0.002	0.004
Bromophos-methyl	Linear	20–200	119	100	6	7	15	6		
									0.002	0.004
Bromopropylate	Linear	1/20–200	113	91	6	6	14	7		
									0.002	0.004
Carbophenothion	Linear	1/20–200	115	93	5	5	17	5		
									0.002	0.004
Cyfluthrin	Linear	40–400	106	92	5	8	13	8	0.004	
									0.008	
Cypermethrin	Linear	20–200	102	89	7	8	16	8		
									0.002	0.004
Chlorpyrifos-methyl	Linear	1/20–200	112	99	7	5	18	10		
									0.002	0.004
Chlorthiophos	Linear	1/20–200	118	94	9	6	18	6		
									0.002	0.004
DDD 2,4	Linear	1/20–100	115	95	10	7	14	7		
									0.001	0.002
DDT 2,4	Linear	1/20–100	112	98	5	7	20	8		
								0.001	0.002	
DDT 4,4	Linear	1/20–100	109	98	5	5	19	7		
								0.002	0.004	
Deltamethrin	Linear	1/20–100	96	119	13	4	20	10		
								0.001	0.002	
Dieldrin	Linear	1/20–100	113	96	10	7	20	8	0.002	
								0.002	0.004	
Difenoconazole	Linear	1/20–100	99	85	9	7	16	8	0.001	
								0.002	0.002	
Endosulfan alpha	Linear	1/20–200	116	98	8	5	17	8		
								0.002	0.004	
Endosulfan beta	Linear	1/20–200	111	95	5	5	18	7		
								0.002	0.004	
Endosulfan sulfate	Linear	1/20–200	108	103	7	5	18	6		
								0.002	0.004	
Endrin	Linear	1/20–200	111	98	10	5	19	6		
								0.002	0.004	
Esfenvalerate	Linear	1/10–200	105	105	8	6	19	9		
								0.002	0.004	
Fenpropofothrin	Linear	1/80–200	109	92	5	5	16	5		
								0.002	0.004	
Fenarimol	Linear	1/80–200	105	85	6	7	12	10		
								0.002	0.004	
Fipronil	Linear	1/80–200	109	104	11	4	19	15		
								0.002	0.004	
Fluquinconazole	Linear	1/20–100	108	90	7	5	13	6	0.001	
								0.002	0.002	
Phosalone	Linear	1/20–200	102	92	8	7	18	7		
								0.002	0.004	
HCH alpha	Linear	1/20–200	107	84	8	11	13	11	0.002	
								0.002	0.004	
Table 4. Cont.

Compound	Linearity	Type of Adjust	Ponderation	FT (µg/kg)	Average Recovery	RSD	U	LOD (mg/kg)	LOQ (mg/kg)
Heptachlor	Linear	1/x	20–200	108 90	12 11	18 16	0.002	0.004	
Hexachlorobenzene (HCB)	Linear	1/x	10–100	98 80	12 9	13 13	0.001	0.002	
Iprodione	Linear	1/x	20–200	108 89	13 8	15 8	0.002	0.004	
Lambda cyhalothrin	Linear	1/x	20–200	110 101	7 6	16 6	0.002	0.004	
Methoxychlor	Linear	1/x	20–200	108 97	5 6	19 6	0.002	0.004	
Mirex	Linear	1/x	10–100	113 108	5 9	18 18	0.001	0.002	
Chlortefonson	Linear	1/x	20–200	109 93	9 6	17 8	0.002	0.004	
Oxyfluorfen	Linear	1/x2	20–200	108 113	5 6	19 15	0.002	0.004	
Pendimethalin	Linear	1/x	10–100	99 104	6 6	18 18	0.001	0.002	
Permethrin	Linear	1/x	20–200	99 86	11 5	18 6	0.002	0.004	
Pirimicarb	Linear	1/x	10–100	115 104	13 6	14 16	0.001	0.002	
Pirimiphos-ethyl	Linear	1/x	10–100	102 105	7 5	18 16	0.001	0.002	
Procymidone	Linear	1/x	20–200	103 96	6 7	10 10	0.002	0.004	
Profenofos	Linear	1/x	20–200	112 102	4 5	14 13	0.002	0.004	
Prothiofos	Linear	1/x	20–200	113 97	8 5	15 8	0.002	0.004	
Quintozene	Linear	1/x	10–100	106 87	9 4	14 14	0.001	0.002	
Tetradifon	Linear	1/x	40–400	107 90	4 7	15 8	0.004	0.008	
Trifluralin	Linear	1/x	20–200	112 94	9 11	15 14	0.002	0.004	
Vinclozolin	Linear	1/x	20–200	111 101	6 7	8 14	0.002	0.004	
The LOQ was determined as the lowest concentration level of the calibration curve with acceptable accuracy. The LOD corresponded to 50% of the estimated value for the quantification limit, provided that the recoveries presented an area greater than or equal to 50% of the point in the matrix solution injected and that the signal/noise ratio was higher than or equal to 3.

3. Results and Discussion

3.1. Extraction Method

The extraction procedure is a crucial step for detecting pesticides, and it can be challenging for a complicated matrix such as honey. Extraction procedures that have been developed for honey samples include solvent extraction, supercritical fluid extraction, solid-phase extraction, matrix solid-phase dispersion, solid-phase microextraction, stir bar sorptive extraction [36], purge and trap, dispersive liquid–liquid microextraction, microextraction by packed sorbent, single-drop microextraction, magnetic solid-phase extraction [37], and solvent floatation [38]. In the present method, the QuEChERS method was optimized for the extraction and cleanup of honey samples from the original method [22] with modifications for honey [28,33] and bee pollen samples [32]. The original QuEChERS method consists of an extraction step with acetonitrile and separation using extraction salts, followed by a cleanup step with purification salts [22].

Different extraction and cleanup conditions were evaluated for this method. Honey samples were diluted in water prior to extraction. Acetonitrile:ethyl acetate (70:30, v/v) solution provided better extraction efficiency, similar to Souza Tette et al. [28]. On the other hand, Mitchell et al. [33] used acetonitrile:water (50:50, v/v) solution without the sample’s previous dilution. In the present study, the extracted solution was subjected to freeze-out before the dispersive solid phase extraction (d-SPE) cleanup, following the method developed for bee pollen by Vázquez et al. [32]. The extraction recoveries for most pesticides were improved by keeping the extract in the freezer at −40 °C for at least 2 h (Supplementary Materials Table S1). Furthermore, extracted solutions that were subjected to freeze-out were visually more translucent than solutions that were not subjected to freeze-out.

The cleanup procedure of the present study was performed with magnesium sulfate and PSA. The same purification salts were also used by Mitchell et al. [33], but at different amounts (150 mg magnesium sulfate and 100 mg PSA); in contrast, Souza Tette et al. [28] also included Florisil (50 mg) to magnesium sulfate (150 mg) and PSA (50 mg). The extract was concentrated ten times after cleanup to achieve lower LOD and LOQ values, similarly to an earlier study [33]. The effectiveness of the modifications to the QuEChERS method in the present study was confirmed by the wide range of pesticides successfully detected and the high sensitivity evidenced by the low LOD and LOQ values.

3.2. Validation Assay

The proposed method was validated to detect 168 compounds, 127 of them by LC-MS/MS and 41 by GC-MS/MS. The matrix effect was minimized by using MMC. The method’s selectivity was determined by identifying the pesticide in the presence of the matrix and other analytes. All validated compounds showed average recoveries ranging from 70% to 120%. The mean repeatability relative standard deviation (RSD) for all samples in the LC-MS/MS method was 7.75%, ranging from 2% to 20%, and in the GC-MS/MS method the RSD was 7.24%, ranging from 3% to 15%. The expanded measurement uncertainty (U) for all samples in the LC-MS/MS method was 11.4%, ranging from 3% to 20%, and in the GC-MS/MS method was 13.1%, ranging from 4% to 20%. Average recoveries ranging from 70% to 120% and precision RSD of up to 20% were considered adequate [34]. The estimation of the uncertainty of an analytical method can be performed in different ways, including empirical, practical, or top-down approaches [39]. In the present study, the uncertainty was estimated using the top-down approach. In this way, the experimental design to estimate the RSD under conditions of partial reproducibility varied the day and the analysts to reproduce the variations.
Tables 3 and 4 show the linearity, recovery, RSD, expanded measurement uncertainty (U), LOD, and LOQ results for analytes determined using LC-MS/MS and GC-MS/MS, respectively. The LOD and LOQ values for 119 analytes determined by LC-MS/MS were 0.0001 mg/kg and 0.0002 mg/kg, respectively, whereas seven analytes showed LOD and LOQ values of 0.0002 mg/kg and 0.0004 mg/kg, and the values for one analyte were 0.0004 mg/kg and 0.0008 mg/kg. For GC-MS/MS analyses, the LOD and LOQ values were 0.001 mg/kg and 0.002 mg/kg for nine analytes, 0.002 mg/kg and 0.004 mg/kg for 30 analytes, and 0.004.0 mg/kg and 0.008 mg/kg for two analytes.

A total of 41 analytes could not be validated, 32 of which were analyzed by LC-MS/MS and 9 by GC-MS/MS (Supplementary Materials Tables S2 and S3). These compounds were detected, but the obtained values for linearity, recovery rate, RSD, and U were not following the European Union SANTE/12682/2019 [34] and Codex Alimentarius CXG90-2017 [35] guidelines.

Pacifico da Silva et al. [1] developed an analytical method with an LC-MS/MS system for the simultaneous detection of 152 pesticides in honey after extraction with ethyl acetate and cleanup using Florisil. The LOD and LOQ values for all the tested pesticides were 0.005 and 0.01 mg/kg, respectively [1]. Paoloni et al. [40] used Florisil for sample cleanup after extraction with n-Hexane for determining 13 pesticides in honey using GC-MS/MS. The LOQ for all tested pesticides was 0.01 mg/kg, and the LOD was not provided [40]. Česnik et al. [31] used a GC-MS method for detecting 75 pesticides and an LC-MS/MS method for detecting 60 pesticides in honey after extraction with a mixture of petroleum ether and dichloromethane. The LOQ ranged from 0.01 to 0.05 mg/kg with the GC-MS method and from 0.003 to 0.01 mg/kg with the LC-MS/MS method [31].

The QuEChERS method was applied for pesticide extraction in honey by other authors [26–30,41,42]. The LC-MS/MS method described by Souza Tette et al. [28] was validated to measure 116 pesticides in honey, but 11 compounds showed recoveries at 0.010 mg/kg out of the 70–120% range. The LOD was 0.005 mg/kg and the LOQ varied between 0.01 and 0.025 mg/kg [28]. The LC-ESI-MS/MS method of Kasiotis et al. [26] detected 115 pesticides, but some analytes showed recoveries below 70%. The LOD ranged from 0.00003 to 0.0233 mg/kg, and the LOQ ranged from 0.0001 to 0.078 mg/kg [26]. Another LC-MS/MS method for analyzing honey samples was described for 207 pesticides [30], with LOQ values ranging from 0.001 to 0.01 mg/kg. However, the LOD was not reported, and some pesticides showed recoveries out of the 70–120% range [30]. In another LC-MS/MS method [29], 132 tested compounds were measured in honey, obtaining recoveries ranging from 70% to 120% for 116 compounds. However, the LOD and LOQ were not provided in the manuscript nor supplementary material [29]. The GC-MS/MS method described by Zheng et al. [41] was validated to measure six pesticides in honey. The LOD ranged from 0.0004 to 0.002 mg/kg and the LOQ varied between 0.001 and 0.005 mg/kg [41]. Another GC-MS/MS method was developed by Shendy et al. [27] for the detection of 200 pesticides in honey. The LOD ranged from 0.001 to 0.003 mg/kg and the LOQ was 0.005 to 0.01 mg/kg, but the recoveries ranged from 51.13–126.55% [27]. Both LC-MS/MS and GC-MS/MS analysis of residual pesticides in honey was described by Bargąnska et al. [42]. This method was validated for 51 compounds, 18 of them determined by LC-MS/MS, 21 compounds by GC-MS/MS, and 12 compounds by both methods. The LOD ranged from 0.0028 to 0.09 mg/kg with the LC method and from 0.0023 to 0.027 mg/kg with the GC method [42]. Compared with these above articles, the method described in the present study was able to detect extensive and broad-spectrum pesticides (168) with very high sensitivity.

3.3. Real Samples

Of the 33 honey samples analyzed, 31 (93.9%) showed residual levels of pesticides (Table 5). Each sample contained up to 15 detected analytes. The most frequently detected compounds were carbendazim (20 samples), thiacetazole (20 samples), azoxystrobin (15 samples), chlorpyrifos (12 samples), and imidacloprid (12 samples). Carbendazim is a fungicide that is widely used in agriculture. Its toxic effects include liver damage, disruption of endocrine and hematological functions, and reproductive toxicity [43]. Thiacetazole is a fungicide and anthelmintic compound
with hepatotoxic and teratogenic effects, and it is probably a carcinogen [44]. Azoxystrobin is also a fungicide, and its toxicity includes lesions in the liver and kidneys [45]. Chlorpyrifos is an organophosphorus insecticide that is used as an insecticide and acaricide. It is considered moderately toxic and can cause disruption of neuronal, reproductive, immune, and endocrine systems, cancer, and chromosome damage [46]. Imidacloprid is a neonicotinoid insecticide that is highly toxic to honeybees [1,2], with neurotoxic, immunotoxic, teratogenic, and mutagenic effects in mammals [47]. The presence of pesticides in a considerable percentage of the analyzed samples is indicative of widespread environmental contamination by these compounds. However, the consumption of the analyzed honey may not be considered unsafe because the residual levels of all detected pesticides were below the MRLs established for Brazil [9] and the European Union [6–8].

Table 5. Detected pesticides (in mg/kg) in 33 samples of honey using the developed LC-MS/MS and GC-MS/MS method.

Compound	Positive Samples	Maximum Levels	LOD 1	LOQ 2	MRL 3
Acephate	8	0.00779	0.0001	0.0002	0.020
Acetamiprid	1	<LQ	0.0001	0.0002	0.050
Azoxystrobin	15	0.00019	0.0001	0.0002	0.050
Bifenthrin	3	<LQ	0.002	0.004	0.010
Boscalid	1	<LQ	0.0001	0.0002	0.050
Carbaryl	2	0.00050	0.0001	0.0002	0.050
Carbendazim	20	0.00350	0.0001	0.0002	0.050
Clomazone	5	<LQ	0.0001	0.0002	-
Chlorpyrifos	12	0.00034	0.0001	0.0002	0.010
Clothianidin	2	0.00063	0.0001	0.0002	-
Diflubenzuron	3	0.00026	0.0001	0.0002	0.050
Dimethoate	6	0.0194	0.0001	0.0002	0.010
Diuron	5	<LQ	0.0001	0.0002	0.050
Imidacloprid	12	0.00618	0.0001	0.0002	0.050
Metoxyphenazidine	1	<LQ	0.0001	0.0002	0.050
Omethoate	2	<LQ	0.0001	0.0002	0.010
Pyraclostrobin	2	<LQ	0.0001	0.0002	0.050
Pyrimethanil	3	0.00040	0.0001	0.0002	-
Pyriproxyfen	3	<LQ	0.0001	0.0002	0.050
Tebuconazole	10	0.00045	0.0001	0.0002	0.050
Thiamendazole	20	0.0130	0.0001	0.0002	0.010
Thiamethoxam	9	0.00209	0.0001	0.0002	0.050
Triazophos	1	<LQ	0.0001	0.0002	0.010
Trifloxystrobin	5	0.00030	0.0001	0.0002	0.050

1 LOD: limit of detection (in mg/kg). 2 LOQ: limit of quantification (in mg/kg). 3 MRL: maximum residue level (in mg/kg) [9].

Few studies have been aimed at determining the presence of residual pesticides in honey in Brazil. Organophosphorous trichlorfon was detected in just one sample from one hundred commercial honey samples from five states of Brazil [28]. A total of 19 pesticides were found in 53 honey samples collected directly from colonies in the Rio Grande do Norte state, northeastern Brazil. Thirteen of these pesticides were detected in honey produced by honeybees pollinating melon crops (23 samples); however, only six were found in honey from honeybees foraging in the forest (20 samples), and four in honey produced by the stingless bee Melipona subnitida (10 samples) [1]. In another study, honey produced by M. subnitida from the Rio Grande do Norte state was tested for residual pesticides. Of the 35 analyzed samples, 25 showed residual pesticides, and the detected compounds were chlorpyrifos-methyl, monocrotoxophos, and trichlorfon [3]. These data support the requirement for testing honey for the presence of pesticides to avoid commercialization of batches containing residual levels above the MRLs.
4. Conclusions

The proposed method was successfully optimized and validated for multi-residue identification and quantification of pesticides in honey. It was able to detect an extensive and broad range of pesticides with remarkably high sensitivity and precision. The developed method was successfully applied to Brazilian commercial honey, showing the analyzed honey was considered safe for consumption.

Supplementary Materials: The following are available online at http://www.mdpi.com/2304-8158/9/10/1368/s1, Table S1. Modified QuEChERS method optimization. Extraction with acetonitrile, or a solution of acetonitrile and ethyl acetate (70:30, v/v), and inclusion of a freezing out step prior to clean up (900 mg of anhydrous magnesium sulfate and 150 mg of PSA). Results are presented as recovery (in %) for each analyte of the LC-MS/MS; Table S2. Non-approved analytes. Linearity, recovery (in %), repeatability relative standard deviation (RSD; in %), expanded measurement uncertainty (U; in %), limit of detection (LOD; in mg/kg), and limit of quantification (LOQ; in mg/kg) for each analyte of the LC-MS/MS method for analysis of pesticides in honey; Table S3: Non-approved analytes. Linearity, recovery (in %), repeatability relative standard deviation (RSD; in %), expanded measurement uncertainty (U; in %), limit of detection (LOD; in mg/kg), and limit of quantification (LOQ; in mg/kg) for each analyte of the GC-MS/MS method for analysis of pesticides in honey.

Author Contributions: Conceptualization, M.O.A., S.C.S.O. and B.S.-B.; investigation, M.O.A., S.C.S.O., V.H.F.F., M.C.M.R. and D.M.C.; writing—original draft preparation, review and editing, B.S.-B.; funding acquisition, S.C.S.O. and B.S.-B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Fundação de Amparo à Pesquisa do Estado de Minas Gerais—FAPEMIG, grant numbers APQ-02304-16 and BIP-00056-17, and Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq; grant number 305761/2013-7.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pacífico da Silva, I.; Oliveira, F.A.S.; Pedroza, H.P.; Gadelha, I.C.N.; Melo, M.M.; Soto-Blanco, B. Pesticide exposure of honeybees (Apis mellifera) pollinating melon crops. Apidologie 2015, 46, 703–715. [CrossRef]
2. Pacífico da Silva, I.; Melo, M.M.; Soto-Blanco, B. Toxic effects of pesticides to bees. Braz. J. Hyg. Anim. Sanit. 2016, 10, 142–157. [CrossRef]
3. Pinheiro, C.G.M.D.E.; Oliveira, F.A.S.; Oloris, S.C.S.; Silva, J.B.A.; Soto-Blanco, B. Pesticide residues in honey from the stingless bee Melipona subnitida (Meliponini, Apidae). J. Apic. Sci. 2020, 64, 29–36.
4. Soto-Blanco, B. Medicamentos Utilizados em Apicultura. In Medicamentos em Animais de Produção; Spinosa, H.S.S., Palermo-Neto, J., Górnia, S.L., Eds.; Guanabara Koogan: Rio de Janeiro, Brazil, 2014; pp. 364–367.
5. Kotsonis, K.N.; Burdock, G.A. Food toxicology. In Casarett & Doull’s Toxicology: The Basic Science of Poisons, 8th ed.; Klaassen, C.D., Ed.; McGraw-Hill: New York, NY, USA, 2013; pp. 1305–1356.
6. EC—European Commission. Commission Regulation (EC) No 149/2008 of 29 January 2008 amending Regulation (EC) No 396/2005 of the European Parliament and of the Council by establishing Annexes II, III and IV setting maximum residue levels for products covered by Annex I thereto. Off. J. Eur. Union 2008, L 58, 1–398.
7. EC—European Commission. Commission Regulation (EU) No. 899/2012 amending Annexes II and III to Regulation (EC) No. 396/2005 of the European Parliament and of the Council as regards maximum residue levels for chlorpyrifos, chlorpyrifos-methyl and triclopyr in or on certain products. Off. J. Eur. Union 2012, L 273, 1–75.
8. EC—European Commission. Commission Regulation (EC) No 2018/686 of 4 May 2018amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for chlorpyrifos, chlorpyrifos-methyl and triclopyr in or on certain products. Off. J. Eur. Union 2018, L 131, 30–62.
9. Brazil. MAPA. Instrução Normativa MAPA nº 5, de 23 de abril de 2019. Diário Oficial da União Seção I. 2019. Available online: https://www.in.gov.br/web/dou/-/instru%C3%87%C3%83o-normativa-n%C2%BA-5-de-23-de-abril-de-2019-85048813 (accessed on 26 September 2020).

10. Korta, E.; Bakkali, A.; Berrueta, L.A.; Gallo, B.; Vicente, F. Study of an accelerated solvent extraction procedure for the determination of acaricide residues in honey by High-Performance Liquid Chromatography–Diode Array Detector. *J. Food Prot.* 2002, 65, 161–166. [CrossRef] [PubMed]

11. Blanco Gomis, D.; Castaño Fernández, A.; Megido Bernardo, V.; Gutiérrez Alvarez, M.D. High-performance liquid chromatographic determination of cymiazole in honey with UV and electrochemical detection. *Chromatographia* 1994, 39, 602–606. [CrossRef]

12. Tian, H.; Bai, X.; Xu, J. Simultaneous determination of simazine, cyanazine, and atrazine in honey samples by dispersive liquid-liquid microextraction combined with high-performance liquid chromatography. *J. Sep. Sci.* 2017, 40, 3882–3888. [CrossRef]

13. Bernal, J.L.; del Nozal, M.J.; Toribio, L.; Jiménez, J.J.; Atienza, J. High-performance liquid chromatographic determination of benomyl and carbendazim residues in apiarian samples. *J. Chromatogr. A* 1997, 787, 129–136. [CrossRef]

14. Malhat, F.M.; Haggag, M.N.; Loutfy, N.M.; Osman, M.A.; Ahmed, M.T. Residues of organochlorine and synthetic pyrethroid pesticides in honey, an indicator of ambient environment, a pilot study. *Chemosphere* 2015, 120, 457–461. [CrossRef]

15. Adamczyk, S.; Lázaro, R.; Pérez-Arquillué, C.; Conchello, P.; Herrera, A. Evaluation of residues of essential oil components in honey after different anti-varroa treatments. *J. Agric. Food Chem.* 2005, 53, 10085–10090. [CrossRef] [PubMed]

16. Mogaddam, M.R.; Farajzadeh, M.A.; Ghorbanpour, H. Development of a new microextraction method based on elevated temperature dispersive liquid-liquid microextraction for determination of triazole pesticides residues in honey by gas chromatography-nitrogen phosphorus detection. *J. Chromatogr. A* 2014, 1347, 8–16. [PubMed]

17. Yu, C.; Hu, B. Sol-gel polydimethylsiloxane/poly(vinylalcohol)-coated stir bar sorptive extraction of organophosphorus pesticides in honey and their determination by large volume injection GC. *J. Sep. Sci.* 2009, 32, 147–153. [CrossRef]

18. Tsiropoulos, N.G.; Amvrazi, E.G. Determination of pesticide residues in honey by single-drop microextraction and gas chromatography. *J. AOAC Int.* 2011, 94, 634–644. [CrossRef]

19. Campillo, N.; Viñas, P.; Peñalver, R.; Cacho, J.I.; Hernández-Córdoba, M. Solid-phase microextraction followed by gas chromatography for the speciation of organotin compounds in honey and wine samples: A comparison of atomic emission and mass spectrometry detectors. *J. Food Compost. Anal.* 2012, 25, 66–73. [CrossRef]

20. Zhu, S.H.; Wu, H.L.; Li, B.R.; Xia, A.L.; Han, Q.J.; Zhang, Y.; Bian, Y.C.; Yu, R.Q. Determination of pesticides in honey using excitation-emission matrix fluorescence coupled with second-order calibration and second-order standard addition methods. *Anal. Chim. Acta* 2008, 619, 165–172. [CrossRef]

21. Romero-González, R.; Liebanas, F.J.; López-Ruiz, R.; Frenich, A.G. Sample treatment in pesticide residue determination in food by high-resolution mass spectrometry: Are generic extraction methods the end of the road? *J. AOAC Int.* 2016, 99, 1395–1402. [CrossRef]

22. Anastassiades, M.; Lehotay, S.J.; Stajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. *J. AOAC Int.* 2003, 86, 412–431. [CrossRef]

23. Oliveira, F.A.S.; Pereira, E.N.C.; Gobbi, J.M.; Soto-Blanco, B.; Melo, M.M. Multiresidue method for detection of pesticides in beef meat using liquid chromatography coupled to mass spectrometry detection (LC-MS) after QuEChERS extraction. *Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess.* 2018, 35, 94–109. [CrossRef] [PubMed]

24. Oliveira, F.A.; Reis, L.P.G.; Soto-Blanco, B.; Melo, M.M. Pesticides residues in the *Prochilodus costatus* (Valenciennes, 1850) fish caught in the São Francisco River, Brazil. *J. Environ. Sci. Health B* 2015, 50, 398–405. [CrossRef] [PubMed]
25. Oliveira, F.A.S.; Madureira, F.D.; Lopes, R.P.; Ferreira, M.G.; Soto-Blanco, B.; Melo, M.M. Optimization of chromatographic conditions and comparison of extraction efficiencies of four different methods for determination and quantification of pesticide content in bovine milk by UFLC-MS/MS. Quim. Nova 2014, 37, 1699–1706. [CrossRef]

26. Kasiotis, K.M.; Anagnostopoulos, C.; Anastasiadou, P.; Machera, K. Pesticide residues in honeybees, honey and bee pollen by LC-MS/MS screening: Reported death incidents in honeybees. Sci. Total Environ. 2014, 485–486, 633–642. [CrossRef] [PubMed]

27. Shendy, A.H.; Al-Ghobashy, M.A.; Mohammed, M.N.; Gad Alla, S.A.; Lotfy, H.M. Simultaneous determination of 200 pesticide residues in honey using gas chromatography-tandem mass spectrometry in conjunction with streamlined quantification approach. J. Chromatogr. A 2016, 1427, 142–160. [CrossRef]

28. Souza Tette, P.A.; Oliveira, F.A.S.; Pereira, E.N.; Silva, G.; de Abreu Glória, M.B.; Fernandes, C. Multiclass method for pesticides quantification in honey by means of modified QuEChERS and UHPLC-MS/MS. Food Chem. 2016, 211, 130–139. [CrossRef]

29. Hrynko, I.; Lozowicka, B.; Kaczyński, P. Liquid chromatographic MS/MS analysis of a large group of insecticides in honey by modified QuEChERS. Food Anal. Meth. 2018, 11, 2307–2319. [CrossRef]

30. Gaweł, M.; Kiljanek, T.; Niewiadowska, A.; Semeniuk, S.; Goliszek, M.; Burek, O.; Posyniak, A. Determination of neonicotinoids and 199 other pesticide residues in honey by liquid and gas chromatography coupled with tandem mass spectrometry. Food Chem. 2019, 282, 36–47. [CrossRef]

31. Česnik, H.B.; Kmecl, V.; Bolta, Š.V. Pesticide and veterinary drug residues in honey—Validation of methods and a survey of organic and conventional honeys from Slovenia. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2019, 36, 1358–1375. [CrossRef]

32. Vázquez, P.P.; Lozano, A.; Uclés, S.; Ramos, M.M.; Fernández-Alba, A.R. A sensitive and efficient method for routine pesticide multiresidue analysis in bee pollen samples using gas and liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A. 2015, 1426, 161–173. [CrossRef]

33. Mitchell, E.B.A.; Mulhauser, B.;Mulot, M.; Mutabazi, A.; Glauser, G.; Aebl, A. A worldwide survey of neonicotinoids in honey. Science 2017, 358, 109–111. [CrossRef] [PubMed]

34. EC—European Commission. Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticides Residues Analysis in Food and Feed; SANTE/12682/2019; DG SANTE: Bruxelles, Belgium, 2019; 46p.

35. Codex Alimentarius. Guidelines on Performance Criteria for Methods of Analysis for the Determination of Pesticide Residues in Food and Feed; CXG90-2017; FAO: Rome, Italy, 2017; 13p.

36. Rial-Otero, R.; Gaspar, E.M.; Moura, I.; Capelo, J.L. Chromatographic-based methods for pesticide determination in honey: An overview. Talanta 2007, 71, 503–514. [CrossRef] [PubMed]

37. Souza Tette, P.A.; Rocha Guidi, L.; de Abreu Glória, M.B.; Fernandes, C. Pesticides in honey: A review on chromatographic analytical methods. Talanta 2016, 149, 124–141. [CrossRef]

38. Wang, K.; Jiang, J.; Lv, X.; Zang, S.; Tian, S.; Zhang, H.; Yu, A.; Zhang, Z.; Yu, Y. Application of solvent floatation to separation and determination of triazine herbicides in honey by high-performance liquid chromatography. Anal. Bioanal. Chem. 2018, 410, 2183–2192. [CrossRef]

39. Valverde, A.; Aguiler, A.; Valverde-Monterreal, A. Practical and valid guidelines for realistic estimation of measurement uncertainty in multi-residue analysis of pesticides. Food Cont. 2017, 71, 1–9. [CrossRef]

40. Paoloni, A.; Alunni, S.; Pelliccia, A.; Pecorelli, I. Rapid determination of residues of pesticides in honey by μGC-ECD and GC-MS: Method validation and estimation of measurement uncertainty according to document No. SANCO/12571/2013. J. Environ. Sci. Health B 2016, 51, 133–142. [CrossRef] [PubMed]

41. Zheng, W.; Park, J.A.; Abd El-Aty, A.M.; Kim, S.K.; Cho, S.H.; Choi, J.M.; Yi, H.; Cho, S.M.; Ramadan, A.; Jeong, J.H.; et al. Development and validation of modified QuEChERS method coupled with LC-MS/MS for simultaneous determination of cymiazole, fipronil, coumaphos, fluvalinate, amitraz, and its metabolite in various types of honey and royal jelly. J. Chromatogr. B Analit. Technol. Biomed. Life Sci. 2018, 1072, 60–69. [CrossRef] [PubMed]

42. Bargánska, Ž.; Konieczka, P.; Namieśnik, J. Comparison of Two Methods for the Determination of Selected Pesticides in Honey and Honeybee Samples. Molecules 2018, 23, 2582. [CrossRef]

43. Singh, S.; Singh, N.; Kumar, V.; Datta, S.; Wani, A.B.; Singh, D.; Singh, K.; Singh, J. Toxicity, monitoring and biodegradation of the fungicide carbendazim. Environ. Chem. Lett. 2016, 14, 317–329. [CrossRef]

44. Säide, M.; Marion, M.; Mateescu, M.A.; Averill-Bates, D.A. The fungicide thiabendazole causes apoptosis in rat hepatocytes. Toxicol. In Vitro 2016, 32, 232–239. [CrossRef]
45. WHO/FAO. *Pesticide Residues in Food 2008*; FAO Plant Production and Protection Paper 193; FAO: Rome, Italy, 2009; 524p.

46. Gilani, R.A.; Rafique, M.; Rehman, A.; Munis, M.F.H.; Rehman, S.; Chaudhary, H.J. Biodegradation of chlorpyrifos by bacterial genus Pseudomonas. *J. Basic Microbiol.* 2015, 56, 105–119. [CrossRef] [PubMed]

47. Mikolić, A.; Karačonji, I.B. Imidacloprid as reproductive toxicant and endocrine disruptor: Investigations in laboratory animals. *Arh. Hig. Rada. Toksikol.* 2018, 69, 103–108. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).