Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
The comparison of clinical characteristics between imported and native cases of COVID-19 in China

Ting Chenga,b,c,1, Yong Lia,b,c,1, Lin Wangd,1, Jingya Zhaoa,c, Li Liue,2,*, Hongzhou Lue,f,**,2, Qijian Chenga,b,c,***,2

a Department of Respiratory and Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
b Department of Respiratory Medicine, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, China
c Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
d Department of Nursing, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
e Department of Infection and Immunity, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
f Department of Infectious Disease, Huashan Hospital Affiliated to Fudan University, Shanghai, China

\section*{ARTICLE INFO}

\textbf{Keywords:}
COVID-19
Clinical features
Imported case
Native case

\section*{ABSTRACT}

The study aimed to determine the trends in the manifestations and severity over the epidemic course of imported COVID-19 cases, with comparison to native cases. The clinical characteristics of imported and native Chinese COVID-19 cases included in the study were assessed and compared. The association was analyzed using Mann-Whitney U test for categorical variables, Kruskal-Wallis H test for continuous variables, and Spearman’s correlation test for disease severity. A total of 247 imported patients were enrolled, with an average age of 29 years, and 41.3% were female. The imported patients were younger than the native patients (29 vs 47 years) and included a lower proportion of fever (44.1%), chills (5.3%), fatigue (10.1%), leukopenia (14.6%), lymphopenia (39.3%), elevated C-reactive protein (CRP) (7.3%), elevated D-dimer (16.3%), and pneumonia (65.6%). Among patients with moderate severity, imported cases had a lower proportion of fever (44.2%), dyspnea (8.3%), and increased CRP (7.7%) than native cases. COVID-19 infection was less severe in imported cases than that in native cases.

\section*{1. Introduction}

In December 2019, a series of pneumonia cases of unknown cause was discovered in Wuhan, Hubei, China (Huang et al., 2020). The clinical and imaging presentation markedly resembled viral pneumonia, including fever, fatigue, cough, dyspnea, normal or decreased white blood cell count, and bilateral ground-glass opacity and consolidation on chest computed tomography (CT). However, the disease could cause severe complications, including acute respiratory distress syndrome, and considerable mortality, even in patients who were previously in a health condition. The causative pathogen was identified as a novel coronavirus (Zhu et al., 2020), which were first named as severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) by the International Committee on Taxonomy of Viruses, and then formally named as “corona virus disease 2019 (COVID-19)” by the World Health Organization (WHO) (Qu et al., 2020).

The first wave of infection was mainly linked to the Huanan Seafood Market in Wuhan Hubei Province, China in late December 2019. Confirmed of a human-to-human transmission (Li et al., 2020), COVID-19 has formally declared a global pandemic on March 11, 2020 (Qu et al., 2020). By October 19, 2020, a total of 40 million cases were confirmed with COVID-19, including over 1 million deaths in over 200 countries, reported by WHO (World Health Organization). While, the incidence and mortality rates were continuously increasing.
With rapid response and aggressive public health interventions, the COVID-19 epidemic was largely contained in China (Lancet, 2020), reflected by the reduced number of newly confirmed native cases. Accordingly, a large number of Chinese individuals living abroad returned to China to avoid SARS-COV-2 infection. However, some of them had already been infected before getting back (Chen et al., 2020). Although these imported cases posed new challenges for both China (Chen et al., 2020) and other countries as the global pandemic worsened, little was known about the characteristics of imported COVID-19 cases. This study aimed to determine the trends in the manifestations and severity over the epidemic course of imported COVID-19 cases, with comparison to native cases.

2. Methods

2.1. Study design and participants

This study was approved by the Ethics Committee of Shanghai Public Health Clinical Center (SPHCC), and informed consent was obtained from all patients.

Fig. 1. Screening strategy for native COVID-19 cases in Shanghai (Jan-Feb 2020).
This was an ecological study of 247 Chinese patients who returned to Shanghai, China from 21 countries between March 6 and April 30, 2020, and have been diagnosed with COVID-19. Only patients aged ≥15 years were enrolled. Patients were screened and diagnosed according to national guidelines and local protocols (Figs. 1 and 2). All patients were followed-up until May 30, 2020. In addition, we included 265 native Chinese patients from a Shanghai cohort and 1099 patients from a nationwide cohort. The Shanghai cohort comprised patients admitted to SPHCC, who were diagnosed with COVID-19 before February 7, 2020, and followed up till February 11, 2020 (Lu et al., 2020). The nationwide cohort included patients across China through December 11, 2019, to January 29, 2020, who were followed up till January 31, 2020 (Guan et al., 2020).

2.2. Laboratory confirmation of SARS-CoV-2 infection

SARS-CoV-2 infection was confirmed via viral nucleic acid testing performed by the district Center for Disease Control and Prevention (CDC) or authenticated testing company and confirmed by the Shanghai CDC, according to the recommendation by the National Institute for Viral Disease Control and Prevention, China.

2.3. COVID-19 clinical severity Classification

Disease severity was classified as (1) mild: minor symptoms with no pneumonia manifestations on lung imaging examination; (2) moderate: fever and respiratory symptoms with pneumonia manifestations on CT images, but with no dyspnea or other complications; (3) severe: shortness of breath (respiratory rate [RR] > 30 beats/min); resting state mean oxygen saturation <93%; partial pressure of arterial oxygen/fraction of inspired oxygen <300 mmHg; or pulmonary imaging showed that lesions had progressed by > 50% within 24–48-h period), and (4) critical: any one of the following conditions occurred, including respiratory failure requiring mechanical ventilation, shock, or multi-organ failure requiring intensive care unit (ICU) monitoring and treatment (Feng et al., 2020; Qu et al., 2020).

2.4. Data collection

Epidemiological and demographic data, underlying comorbidities, clinical symptoms and signs throughout the disease course, CT imaging, and laboratory findings at admission were extracted from electronic medical records. Laboratory assessments consisted of complete blood count, liver and renal function tests, electrolytes, arterial and venous lactate, C-reactive protein (CRP), procalcitonin, coagulation test, lactate dehydrogenase, and creatine kinase.

2.5. Statistical analysis

The presence or absence of symptoms and comorbidities, and most laboratory test results classified as normal, higher, and lower, were coded as categorical variables. Body temperature and disease severity were coded as rank variables. The intervals between symptom onset and admission, and length of hospital stay (LOS) were coded as continuous variables.

Categorical and rank variables were expressed as frequencies (%), while continuous variables were expressed as the median (interquartile range, IQR). Between-group comparisons of the categorical variables were conducted using the χ^2 test or Fisher’s exact test, while rank and continuous variables were compared using the Mann-Whitney U test and Kruskal-Wallis H test. The association was analyzed using Mann-Whitney U test for categorical variables, Kruskal-Wallis H test for continuous variables, and Spearman’s correlation test for disease severity. All statistical analyses were performed using SPSS version 25.0 (IBM Inc., Armonk, NY). A difference with $P < 0.05$ was regarded as statistically significant.

3. Results

3.1. Demographic and clinical characteristics

A total of 247 imported patients were enrolled, with an average age of 29 years, and 41.3% of whom were female. The most common country of origin was Russia (n = 86, 34.82%), followed by the United Kingdom (UK) (n = 76, 30.77%) and the United States of America (USA) (n = 34, 13.77%). The remaining 51 (20.65%) patients were from other countries. The patients from Russia were mainly businessmen, while the patients from USA and UK were mainly Chinese overseas students.

The baseline demographic characteristics of imported cases and two cohorts were shown in Table 1. The imported cases were significantly younger than the native cases (median [IQR]: 29 years [21–40 years] vs 47 years [35–58 years] (national cohort), $P < 0.001$). In addition, sex and age proportions were different among various countries of disease origins ($P = 0.022$ and $P < 0.001$, respectively). For comorbidities, imported cases had a significantly lower proportion of hypertension (5.3% vs 19.6% and 15.0%) and coronary heart disease (0% vs 5.3% and 2.5%) than native cases.

3.2. COVID-19 characteristics

Based on the most severe situation over the whole disease course, 84 (34.1%) patients were classified as mild, 156 (63.4%) were moderate, 5 (2.0%) were severe, and 1 (0.4%) was critical in the imported cases, which were less severe than native cases ($P < 0.001$). Furthermore, the severity was also different among cases with different origins overall ($P = 0.004$). The cases from Russia were more severe than the cases from UK ($P < 0.001$).

The proportion of pneumonia was lower in imported cases, compared with native cases (65.6% vs 91.1% (national cohort), $P < 0.001$, Table 2). Compared with native cases, imported cases had a lower prevalence of fever (44.1% vs 90.9% (Shanghai cohort) and 88.7% (national cohort), both $P < 0.001$), chills (5.3% vs 11.5% (national cohort), $P < 0.001$), and fatigue (10.1% vs 25.3% (Shanghai cohort) and 38.1% (national cohort), both $P < 0.001$). While, imported cases had a higher prevalence of nasal congestion (15.8% vs 4.8% (national cohort), $P < 0.001$). Meanwhile, there was no significant between-group difference concerning the proportion of patients with cough, productive sputum, myalgia or arthralgia, dyspnea or chest tightness, and diarrhea. Ageusia or anosmia was identified in 9.7% of the imported cases.

There was a large disparity of clinical symptoms among cases with different country origins. The proportion of patients who had a diagnosis of pneumonia was different ($P = 0.006$), with a higher proportion in cases originating in Russia than those in UK ($P = 0.002$). In addition, the prevalence of chills and dyspnea/chest tightness differed among the cases originating from Russia were higher than those from UK ($P = 0.012$ and 0.003, respectively). While, the highest body temperature and the prevalence of other symptoms had no significant difference by country of origin.

In patients with moderate severity, the most frequent symptom was cough (53.8%), followed by fever (44.2%), itchy throat (31.4%), and sputum production (26.9%). The proportion of patients with fever (44.2% vs 82.2%, $P < 0.001$), dyspnea (8.3 vs 14.9%, $P = 0.040$), and elevated CRP (7.7% vs 55.0%, $P < 0.001$) in moderate imported cases remained significantly lower than in moderate native cases. There was no significant difference in the proportion of patients with the remaining clinical characteristics.

3.3. Laboratory and imaging characteristics

The laboratory and imaging findings were shown in Table 3. Compared with native cases, imported cases showed a lower prevalence of leukopenia (14.6% vs 33.7%, $P < 0.001$), lymphopenia (39.3% vs 83.2%, $P < 0.001$), thrombocytopenia (8.9% vs 36.2%, $P < 0.001$),
Fig. 2. Screening strategy for imported COVID-19 cases in Shanghai (Mar–April 2020).
Table 1
The demographics and baseline characteristics of COVID-19 imported cases from different countries outside of China, as compared to native cases in China.

	Imported COVID-19 cases	Native Shanghai cohort	National native cohort						
	US	Russia	UK	Other	Total	P1	P2	P3	
Number	34	86	76	51	247	265	1099	41.9%	0.887
Female sex	18 (52.9%)	25 (29.1%)	33 (43.4%)	26 (51.0%)	102 (41.3%)	0.022			
Age (years), median (IQR)	22 (19–34)	35 (31–44)	21 (19–24)	32 (23–49)	29 (21–40)	<0.001			
15–49	29 (85.3%)	75 (87.2%)	73 (96.1%)	39 (76.5%)	216 (87.4%)	0.003			
50–64	3 (8.8%)	11 (12.8%)	3 (3.9%)	11 (21.6%)	28 (11.3%)	0.003			
65+	2 (5.9%)	0 (0.0%)	0 (0.0%)	1 (2.0%)	3 (1.2%)	0.003			
Smoking history	1 (2.9%)	20 (23.3%)	4 (5.3%)	2 (3.9%)	27 (10.9%)	<0.001			
Current smoker	0 (0.0%)	1 (1.2%)	0 (0.0%)	1 (2.0%)	2 (0.8%)	0.001			
Former smoker	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	15 (6.1%)	0.013			
Smoking history pack*years	0.1 (0.1–0.1)	7.5 (5–15)	2.35 (0.7–7.5)	20 (20–20)	7 (4–15)	0.009			
Alcohol drinker	3 (8.8%)	10 (11.6%)	2 (2.6%)	0 (0.0%)	15 (6.1%)	0.005			
Coexisting disorders									
Any	13 (38.2%)	29 (33.7%)	10 (13.2%)	15 (29.4%)	67 (27.1%)	0.005			
Asthma	0 (0.0%)	2 (2.3%)	1 (1.3%)	2 (3.9%)	5 (2.0%)	0.754			
COPD	0	0	0	0	NA	1.5%			
Allergic rhinitis	0 (0.0%)	7 (8.1%)	0 (0.0%)	2 (3.9%)	12 (4.9%)	0.025			
Hepatitis B infection	0 (0.0%)	4 (4.7%)	2 (2.6%)	2 (3.9%)	8 (3.2%)	0.764	0.4%		
Hypertension	2 (5.9%)	7 (8.1%)	0 (0.0%)	4 (7.8%)	13 (5.3%)	0.032	19.6%		
Coronary heart disease	0	0	0	0	NA	5.3%	<0.001		
Other cardiovascular disease	1 (2.9%)	1 (1.2%)	0 (0.0%)	1 (2.0%)	3 (1.2%)	0.5			
Chronic respiratory disease	0	0	0	0	NA	0.8%			
Diabetes	2 (5.9%)	6 (7.0%)	0 (0.0%)	3 (5.9%)	11 (4.5%)	0.062	7.9%		
Hyperlipidemia	0	0	0	0	NA	1.5%			
Chronic renal disease	0	0	0	0	NA	1.9%			
Immunodeficiency	2 (5.9%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	2 (0.8%)	0.018	0.2%		
Autoimmune diseases	0 (0.0%)	0 (0.0%)	2 (2.6%)	0 (0.0%)	2 (0.8%)	0.266	0.9%		
Tumor	0	0	0	0	NA	2.3%			

P1 value of differences among different countries. P2 value of differences between Shanghai native cases and imported cases. P3 value of differences between national native cases and imported cases. T max: the maximum body temperature. Values of cases originating from the US and Russia were significantly higher than those of cases originating from the US and UK; values of cases from other countries were higher than those of cases from the UK. Values of cases from Russia were significantly higher than those of cases from the UK and other countries, P = 0.001 and 0.004, respectively. Values of cases originating from the US and Russia were significantly higher than those of cases originating from the UK, P = 0.005 and P = 0.003, respectively.

Data are presented as n (%), unless otherwise specified.

4. Discussion

Our findings indicated that COVID-19 infection was less severe in imported cases than that in native cases, reflected by lower overall severity, a higher percentage of asymptomatic patients and lower number of patients with fever, pneumonia, leukopenia, lymphopenia, and elevated CRP, ALT, AST, creatine kinase, lactate dehydrogenase, and D-dimer.

In this study, three Chinese cohorts were involved in the comparison. Shanghai cohort reported by Lu et al. (Lu et al., 2020) was used as a reference for comparison because it involved native Chinese COVID-19 patients who were diagnosed, treated, and followed up by the same hospitals, using the same protocol. Meanwhile, the national cohort reported by Guan et al. (Guan et al., 2020) was a complete and detailed case series report of native Chinese patients, with a relatively large sample size. In addition, another cohort reported by Feng et al. (Feng et al., 2020) was used as a reference for comparison in patients with moderate severity.

Several factors might contribute to less severe manifestations in imported cases. First, the imported cases were younger and had fewer comorbidities, which were reported to have an influence on disease severity (Chen et al., 2020; Liu et al., 2020; Zhou et al., 2020). Second, in the early stage of the epidemic, severe cases were more likely to be tested, diagnosed, and admitted, which might cause a selection bias (Weiss & Murdoch, 2020). The evolution of the screening strategy might...
have helped the timely identification of more asymptomatic and mild patients. However, the native cases were also largely identified in a timely manner under Shanghai’s active surveillance program, shown in the Shanghai cohort (Lu et al., 2020). In addition, the pathogenicity of the virus may be diminished after multigenerational transmission under selection pressure (Lei et al., 2020). For instance, the cases in Guangzhou were reported to have a less severity, compared with those in Wuhan (Lei et al., 2020). However, the evolution of the manifestations and severity of the disease over the course of the epidemic remains unknown. Further studies were warranted to confirm the findings.

A recent meta-analysis (Liu et al., 2020) showed a significantly higher incidence of cough, dyspnea, nasal congestion, and digestive symptoms in patients from North American, European, and Middle East countries then those from East and South-East Asian countries. While, there were no significant differences in the incidence of fever, lymphocytopenia, and thrombocytopenia by country of origin. Given the high incidence of the asymptomatic patients in West countries (Oran & Topol, 2020), these manifestations of patients in West countries were higher incidence of cough, dyspnea, nasal congestion, and digestive symptoms in patients from North American, European, and Middle East countries then those from East and South-East Asian countries. However, the incidence of cases originating from Russia were significantly higher than those of cases originating from the UK, \(P = 0.004 \). Values of cases originating from Russia were significantly higher than those of cases originating from the UK, \(P < 0.001 \). Values of cases originating from Russia were significantly higher than those of cases originating from the UK, \(P = 0.002 \). Data are presented as \(n (%) \), unless otherwise specified.
consistent with the imported patients in the present study. This suggested that, in this epidemic, the incidence of fever, lymphocytopenia, and thrombocytopenia decreased, while the incidence of dyspnea and digestive symptoms (i.e., diarrhea) persisted or even increased regardless of ethnicity. In addition, it was reported that 55% of COVID-19 cases originating from Russia were significantly higher than those of cases originating from the UK, \(P < 0.001 \).

Table 3

Laboratory and radiographic findings of COVID-19 cases imported from different countries at admission, as compared with native Chinese cases
Import COVID-19 cohort

U.S.A.
White blood cell count <4x10^9/L
White blood cell count >10x10^9/L
Platelet count <150,000/mm^3
Platelet count >400,000/mm^3
Neutrophil % <50%
Neutrophil % >70%
Lymphocyte count <1500/mm^3
C-reactive protein >10 mg/L
Alanine aminotransferase >40 U/L
Aspartate aminotransferase >40 U/L
Total bilirubin >17.1 μmol/L
Creatinine ≥133 μmol/L
Creatine kinase >200 U/L
Lactate dehydrogenase ≥250 U/L
D-dimer ≥0.5 mg/L
Albumin <40 g/L
Venous lactate ≥2.2 mmol/L
Arterial lactate ≤1.5 mmol/L
Arterial lactate 1.5-2 mmol/L
Arterial lactate ≥2.4 mmol/L
Arterial lactate ≥4 mmol/L
SARS-COV-2 antibody
Positive
Weakly positive
Negative
Abnormalities on chest CT
Normal
Unilateral involvement
Bilateral involvement
Number of lung lobes involved
0
1
2
3
4
5
Ground-glass opacity
Interlobular septal thickening
Patchy effusion or consolidation

Data are presented as n (%).

P1, P value of the difference among different countries. P2, P value of differences between the native Shanghai cases and the imported cases. P3, P value of differences between the national native cases and imported cases. In pairwise comparisons, † the values of cases originating from Russia were significantly higher than those of cases originating from the UK, \(P = 0.001 \). ‡ The values of cases originating from Russia were significantly higher than those of cases originating from the UK, \(P = 0.003 \). ‡‡ The values of cases originating from Russia were significantly higher than those of cases originating from the UK, \(P < 0.001 \).
In the present study, 11.7% of imported cases were asymptomatic throughout the course of their disease, which was markedly higher than that in native Chinese patients (1%) from the nationwide survey (Wu & McGoogan, 2020). In the Diamond Princess cruise ship, approximately 17.9% of patients had no symptoms and 6.7% had few symptoms, based on a nationwide research (Livingston & Burcher, 2020). However, it should be noted that asymptomatic patients could still be infectious (Bai et al., 2020). The laboratory and chest CT examination in this study suggested that pathophysiological changes occurred in asymptomatic patients, who also needed to be quarantined and undergo close observation.

Our study had some limitations. First, the sample size was relatively small. Second, native cases were identified from published data, and detailed individual information could not be obtained. Thus, it was difficult to minimize the influence of the confounding factors. Third, the laboratory findings were mainly classified as dichotomy or grade, which might reduce the sensitivity to find differences among COVID-19 patients. Fourth, information on virus generation and evolution were not available. Further studies are needed to evaluate the impact of different factors on the disease manifestations and severity.

In summary, COVID-19 infection was less severe in imported cases than that in native cases.

Funding

This work was supported by Scientific Research Projects of the Shanghai Municipal Health Commission for youths (Project No. 20204Y00016), Shanghai Municipal Key Clinical Specialty (shslczdzk02202), Shanghai Top-Priority Clinical Key Disciplines Construction Project (2017ZZ02014), Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases (20dz2261100) and Cultivation Project of Shanghai Major Infectious Disease Research Base (20dz2215000).

Declaration of competing interest

The authors declare that they have no conflicts of interest.

Table 4

The demographics and baseline characteristics of imported COVID-19 cases with different severity, compared to the native cases.

	Number	Mild	Moderate	Severe	Critical	Total	P1	P2
Age (years)	22 (19–31)	32 (22–44)	49 (34–52)	75 (75–75)				
Smoking history	0 (0.0%)	2 (1.3%)	0 (0.0%)	1 (100.0%)	3 (1.2%)			
Coexisting disorder	Any	13 (15.5%)	49 (31.4%)	4 (80.0%)	1 (100.0%)	67 (27.2%)	<.001	
	Asthma	1 (1.2%)	4 (2.6%)	0 (0.0%)	0 (0.0%)	5 (2.0%)	0.656	
	Allergic rhinitis	6 (7.1%)	6 (3.8%)	0 (0.0%)	0 (0.0%)	12 (4.9%)	0.248	
	Hepatitis B infection	2 (2.4%)	6 (3.8%)	0 (0.0%)	0 (0.0%)	8 (3.3%)	0.721	
	Hypertension	1 (1.2%)	9 (5.8%)	2 (40.0%)	1 (100.0%)	13 (5.3%)	0.002	
	Other cardiovascular disease	0 (0.0%)	3 (1.9%)	0 (0.0%)	0 (0.0%)	3 (1.2%)	0.551	
	Diabetes	0 (0.0%)	7 (4.5%)	3 (60.0%)	1 (100.0%)	11 (4.5%)	<.001	
	Immunodeficiency	0 (0.0%)	2 (1.3%)	0 (0.0%)	0 (0.0%)	2 (0.8%)	0.551	
	Autoimmune diseases	1 (1.2%)	1 (0.6%)	0 (0.0%)	0 (0.0%)	2 (0.8%)	0.985	

P1: P value of the difference among different severities. P2: P value of the difference between native and imported cases. T max: the maximum body temperature. Data are presented as n (%), unless otherwise specified.

List of abbreviations

- ALT: alanine aminotransferase
- AST: aspartate aminotransferase
- CRP: C-reactive protein
- CT: computed tomography
- ICU: intensive care unit
- IQR: interquartile range
- LOS: length of stay
- SPHCC: Shanghai Public Health Clinical Center
- UK: United Kingdom
- USA: United States of America
- WHO: World Health Organization

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.jrras.2022.04.007.

References

Bai, Y., Yao, L., Wei, T., Tian, F., Jin, D. Y., Chen, L., & Wang, M. (2020). Presumed asymptomatic carrier transmission of COVID-19. JAMA, 323, 1406–1407.

Chen, L., Cai, J., Lin, Q., Xiang, B., & Ren, T. (2020). Imported COVID-19 cases pose new challenges for China. Journal of Infection, 80, e43–e44.

Chen, F., Chen, W., Chen, J., Xu, D., Xie, W., Wang, X., & Xie, Y. (2020). Clinical features and risk factors of COVID-19-associated liver injury and function: A retrospective analysis of 830 cases. Annals of Hepatology, 21, Article 100267.

Chen, J., Qi, T., Liu, L., Ling, Y., Qian, Z., Li, T., Li, F., Xu, Q., Zhang, Y., Xu, S., Song, Z., Zeng, Y., Shen, Y., Shi, Y., Zhu, T., & Lu, H. (2020). Clinical progression of patients with COVID-19 in Shanghai, China. Journal of Infection, 80, e1–e6.

Feng, Y., Ling, Y., Bai, T., et al. (2020). COVID-19 with different severity: A multi-center study of clinical features. American Journal of Respiratory and Critical Care, 201, 1380–1388.

Guan, W. J., Ni, Z. Y., Hu, Y., Liang, W. H., Ou, C. Q., He, J. X., Liu, S., Shan, H., Lei, C. L., Hui, D. S. C., Du, B., Li, L. J., Zeng, G., Yuen, K. Y., Chen, R. C., Tang, C. L., Wang, T., Chen, P. Y., Xia, J., China Medical Treatment Expert Group for COVID-19. (2020). Clinical characteristics of coronavirus disease 2019 in China. New England Journal of Medicine, 382, 1708–1720.

Haehner, A., Draf, J., Draeger, S., de With, K., & Hummel, T. (2020). Predictive value of sudden olfactory loss in the diagnosis of COVID-19. medRxiv.

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., & Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhuan, China. Lancet, 395, 497–506.
