Environmental Research Letters

LETTER

Shifting the urban heat island clock in a megacity: a case study of Hong Kong

Xuan Chen¹ and Su-Jong Jeong¹,²

¹ School of Environmental Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, Guangdong, People’s Republic of China
² Author to whom any correspondence should be addressed.

E-mail: waterbell77@gmail.com

Keywords: urbanization, urban heat island, regional climate change, UHI duration

Abstract

With increasing levels of urbanization in the near future, understanding the impact of urbanization on urban heat islands (UHIs) is critical to adapting to regional climate and environmental changes. However, our understanding of the UHI effect relies mainly on its intensity or magnitude. The present study evaluates the impact of urbanization on UHI duration changes by comparing three stations with different rates of urbanization, including highly developed and developing urban areas throughout Hong Kong, from 1990–2015. Results show that the 26 year average UHI intensity in highly urbanized regions is much higher than that in developing areas, and the 26 year average of UHI duration is similar. Over the past 25 years, however, UHI duration has increased only in developing urban areas, from 13.59–17.47 hours. Both earlier UHI starting and later UHI ending times concurrently contribute to the UHI effect being experienced for a longer duration. The differences in UHI duration change between the two areas are supported by population and by night light changes from space. Increasing night light, which suggests enhancements in the economic infrastructure, occurred only in the developing urban areas. Our results suggest that changes in UHI duration should be included in an assessment of regional climate change as well as in urban planning in a megacity.

1. Introduction

Urbanization refers to a dominant anthropogenic force that affects regional climate and environmental change in urban areas (United Nations Department of Economics and Social Affairs 2014). During the second half of the 20th century, dramatic urbanization additionally contributed to warming in relation to greenhouse gases, especially in populated regions such as Beijing, Seoul, Tokyo, Houston, Toronto and other cities (Saitoh et al 1996, Streutker 2002, Kim and Baik 2005, Rinner and Hussain 2011, Jacobson et al 2015). The concept of higher temperatures in populated regions is defined as an urban heat island (UHI) (Oke and Maxwell 1975). Changes in radiative and thermal properties such as thermal conductivity, emissivity, reflectivity, and heat capacity over the urban land surface regulate changes in the surface energy balance, which often leads to temperatures in urban areas higher than that in surrounding rural areas (Kalnay and Cai 2003, Jones et al 2008, Zhao et al 2014). As levels of urbanization and population growth increase in the near future (Grimm et al 2008, Buckley et al 2008), exact assessments of the impact of urbanization on UHIs are critical to improve urban planning in populated regions.

Since the 19th century (Howard 1820), many studies have focused on the impact of urbanization on UHIs. Oke (1982) showed that urban temperatures are higher than rural ones and that a UHI attains a maximum temperature at night or during the early morning; UHI has thus been called a ‘nocturnal phenomenon’. However, in desert cities such as Phoenix, Arizona, the boundary layer temperatures in the urban area are much lower than in rural surroundings because of the high albedo (Jin et al 2005). Relative cooling in urban areas rather than in rural areas is observed in the morning and in the early afternoon by studying the atmospheric boundary-layer (Theeuwes et al 2015). The UHI effect also varies according to season; Beijing, for example, has the highest seasonal mean canopy UHI intensity of the entire urban area in winter (1.65 °C) and the lowest in summer (0.85 °C) (Yang et al 2013). Furthermore,
the canopy temperature difference between urban and rural areas can be different due to different land cover types of the city’s surrounding areas (Weng et al. 2004, Rinner and Hussain 2011, Stewart and Oke 2012).

Although many previous studies have revealed various features of UHIs, most have focused on the intensity of the UHI effect (e.g. the magnitude of temperature difference between urban and rural areas). Our understanding of the temporal variability of UHI is very limited. In this study, we define the UHI duration as the total hours of which the UHI intensity value is positive (i.e. number of hours when the urban temperature is higher than the rural temperature). UHI duration could be an important concept for studying the urbanization effects on energy consumption and related environmental issues such as urban carbon emission. Santamouris (2014) suggested that the annual increase of the cooling degree hours resulted in a considerable increase in energy use. It is also known that the cooling load of typical urban buildings is on average 13% higher compared to similar buildings in rural areas (Santamouris 2014). A study in London found an apparent relationship between the UHI effect, energy use, and CO₂ emissions. As such, the longer duration of the UHI effect could lead to an increase in energy use and CO₂ emissions. Urban infrastructure can be affected by the duration of high temperatures. Sen and Roesler (2014) showed that the temporal information (i.e. duration of the UHI effect in this study) is an important factor in understanding the life cycle of urban pavement. Consequently, the study of UHI duration as well as intensity should be considered in understanding urbanization effects and future urban planning and management.

In this study, we focus on Hong Kong (HK), a metropolitan area located on the south coast of China. It is a highly populated region: the population is 7.4 million in 2017, with a density of over 6300 people per square kilometer. HK is the fourth most densely populated region in the world, after Macau, Monaco, and Singapore (Monkkonen and Zhang 2011, Census and Statistic Department 2017). Over the past few decades, HK has achieved rapid economic growth and global integration and has become a high-tech industrialized economy (Index of Economic Freedom 2017). As a highly populated city, HK experiences the UHI effect (Giridharan et al. 2005, Fung et al. 2009, Siu and Hart 2013). By focusing on HK, we can gain new insights into the role of human activities with regards to UHI duration changes in rapidly changing urban areas.

2. Methodology

2.1. Data set

To study UHI duration, we mainly analyzed hourly temperature data sets from the HK Observatory (Hong Kong Observatory 2015). Although there is no universal method to classify representative urban and rural stations, the World Meteorological Organization provides principles for establishing suitable sites in urban and rural areas (Plummer et al. 2003, World Meteorological Organization 2008, 2010). Based on the availability of hourly data and on previous studies, we selected three different stations: Hong Kong Observatory Headquarters (HKO), Lau Fau Shan (LFS), and Ta Kwu Ling (TKL) (Leung et al. 2004, Fung et al. 2009, Memon et al. 2009, Yim and Ollie 2009, Lam 2010). The detailed information for each station is shown in table 1 (Hong Kong Observatory 2015, Siu 2011). HKO is situated in the highly-developed area of HK, indicating urbanization effects in a stable developed urban area. LFS is located in a newly developing urban area. TKL is in a developing urban area. Finally, we selected the TKL station as a reference rural station in HK. After checking all missing data sets in several stations in HK we excluded stations that have too many missing values. Our final dataset includes three representative stations, focused on the period 1990–2015. There is no data missing from HKO, 1.69% missing from LFS, and 1.61% missing from TKL. These minuscule fractions of missing data do not affect our results.

To support the changes in UHI duration related to urbanization, two identical data sets, population statistics and night light from space, were analyzed. Population is one of the most vital factors in urbanization (Oke 1973, World Health Organization 2017). To understand the relationship between UHI duration change and the urbanization process, annual population data from every district in HK from 1997–2015 was

Station name	Hong Kong Observatory Headquarters (HKO)	Lau Fau Shan (LFS)	Ta Kwu Ling (TKL)
Coordination	22°18’07” N, 114°10’27” E	22°28’08” N, 113°59’01” E	22°31’43” N, 114°09’24” E
Elevation	32 m	31 m	15 m
Land use	Built ratio: 74.3%	Built ratio: 47.3%	Built ratio: 17.5%
Vegetation	Vegetation ratio: 25.7%	Vegetation ratio: 25.6%	Vegetation ratio: 82.5%
Water	Water ratio: 0%	Water ratio: 27.1%	Water ratio: 0%

Table 1. The stations’ information including coordination, elevation and land use information.
obtained from the HK government statistics department. Some recent studies have suggested that night light could be a strong indicator for showing the extent of urbanization (Meng et al. 2014, Mellander et al. 2015, Gao et al. 2015, Li et al. 2016). In this study, we used night light data (1992–2013) from the US Air Force’s Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) and from the US Department of Commerce’s NOAA National Geophysical Data Center (NGDC). The DMSP program is designed to capture information about global weather and weather systems. The satellites have onboard sensors designed to detect moonlight (and even starlight) that is reflected off clouds (since clouds are difficult to identify at night). When the sky is clear, there are no clouds obstructing the view, and the instrument detects the light emanating from the surface of the Earth (Elvidge et al. 1997). The light can be from several sources but is primarily the result of electric-powered illumination (Mellander et al. 2015). The range of the nightlight data is from 0–63, with the saturation point determined by a limitation in the sensor itself. It is measured in ‘Gains’, a measurement unit for how much light per unit area is detected by a photomultiplier (light intensifier instrument) of the sort used by the DMSP satellites.

2.2. Definition
According to previous studies, UHI intensity is defined as the difference between urban temperature and rural temperature (Oke 1973, Kalnay and Cai 2003). The UHI intensity values in the present study are the temperature differences between the HKO and TKL stations and between the LFS and TKL stations. UHI duration is the total number of hours of positive UHI intensity in one day (i.e. red colors in figure 1). The start time is set as the beginning hour of the duration, usually in the afternoon, and the end time is set as the last hour of the duration, usually in the late morning of the next day.

2.3. Analysis
Based on the hourly data, the monthly average of hourly UHI intensity for the entire 1990–2015 period was calculated. This calculation has been denoted by a clock-like circle that is labeled in increments from 0–23 in one day. The period was separated into two sub-periods to see the decadal changes in UHI duration. The early one is the period from 1990–1999, and the later one is the period from 2006–2015. After calculating the UHI intensity values for the two sub-periods at HKO and LFS, we estimated the average duration of the two sub-periods and the duration start and end timing. The statistical significance of the difference in UHI duration start and end timing between the two time periods was evaluated by the bootstrapping method (Davison and Hinkley 1997, Efron and Tibshirani 1994).
3. Results

3.1. UHI intensity and duration
Figures 1 and 2 display the monthly climatology of hourly UHI intensity from 1990–2015 at HKO and LFS, respectively. The grey background in the clocks represent the nighttime and the white background for the daytime. The daytime here is the total amount of sunshine. Information for sunrise and sunset times for each month is from the Civil Aviation Department Hong Kong (2015). At the HKO station, which is the main station in the HK area, the UHI clocks show clear positive UHI intensity in the nighttime. For example, in January, positive UHI intensity occurred from 5 pm–11 am the next day, and in July, it occurred from 6 pm–8 am the next day. The UHI intensity maximum value in one day usually appeared during the nighttime, especially before sunrise (in May–September from 3 am–6 am, in other months from 5 am–8 am). The UHI intensity therefore shows apparent seasonal variability. UHI intensity is higher during the late autumn and winter seasons (i.e. November–January) and relatively lower during the late spring and summer seasons (i.e. March–August). For instance, in December, UHI intensity is greater than 3 °C for 9 hours per day. However, in May, the maximum UHI intensity was only approximately 1.5 °C. Our results corroborate previous studies from HK, which found higher UHI intensity in winter. Leung et al (2004) mentioned that during 1947–2002, the UHI intensity of annual mean temperature in winter was 0.21 °C and in summer was 0.12 °C. Chan and Ng (1991) also pointed out that for minimum temperature, UHI intensity was 3.2 °C in winter and 1.8 °C in summer. The seasonal variations in UHI over Hong Kong are related to the seasonal climate characteristics of the region (Memon et al 2009, Wong et al 2011). During the summer monsoon, humid air arrives in the HK region. However, during the winter, the climate is relatively dry. This could explain the higher UHI intensity observed in the winter.

The diurnal and seasonal variations in positive UHI intensity at the LFS station are generally consistent with those at the HKO station. Positive UHI always occurred in the nighttime. Relatively high UHI intensity was observed in the colder months. Maximum UHI intensity was approximately 0.7 °C in July but was twice as large in December at approximately 1.5 °C. However, in general, the magnitude of UHI intensity of LFS is less than that of HKO. For instance, maximum UHI intensity at LFS reached only about 1.5 °C, which occurred in December from 7–8 am. The maximum UHI intensity values from February–September at LFS were almost all less than 1 °C. These values were less than half the UHI intensity at HKO during the same time period.

The daytime cooling (negative UHI intensity) in the daytime occurs both in the heavily developed station HKO and developing station LFS. The negative UHI in urban areas during daytime could be explained...
Environ. Res. Lett. 13 (2018) 014014

...relative humidity. Figures 1 and 2 show that at both area, the UHI effect has a negative relationship with tern (Hong Kong Observatory 2015); the wind comes in HK are largely determined by the monsoonal pat-tern (Hong Kong Observatory 2015); the wind rarely comes from the sea. Wind patterns in the spring. One of the reasons could be that in the spring, wind also brings moisture from the sea surface. Memon et al (2009) found that in the HK area, the UHI effect has a negative relationship with relative humidity. Figures 1 and 2 show that at both stations, summer daytime cooling periods are longer than in winter. In HK, the rainy and warm seasons are in the same period. In tropical and sub-tropical areas, the humidity (dry/wet) is more important than the temperature (cool/warm) for the UHI effect (Roth 2007). The cooling impact can be stronger during the wet season (summer), leading to longer cooling periods.

There are also some differences between the two stations. HKO daytime cooling is stronger than that at LFS in the spring. One of the reasons could be that in the spring, wind rarely comes from the sea. Wind patterns in HK are largely determined by the monsoonal pat-tern (Hong Kong Observatory 2015); the wind comes from the southwest (the same direction as the sea) in the summer, from various directions in the autumn, and from the northeast (from inland) in the winter and spring. However, because of massive urbanization in Shenzhen (one of the largest cities in China), the sea breeze is enhanced during the winter, affecting the western part of HK where LFS is located (Lu et al 2010). As a result, it is only during the spring when there is little wind from the southwest (from the sea). This could be one of the reasons explaining the lower daytime cooling effect during spring (March, April, May).

We defined UHI duration as the number of hours in a day with positive UHI intensity values. Figures 1 and 2 show the durations of the UHI effect per month at two stations (i.e. the number of the red bars in a clock). At HKO, in January, the UHI duration started at 5 pm and ended at 11 am the next day and lasted approximately 18 hours. At HKO, UHI duration was longest during the winter season (e.g. 18 hours for January) and shortest during the summer season (e.g. 14 hours for July). Like the HKO station, UHI duration at LFS showed clear seasonal variability. The longest UHI durations were observed in March, April, January and December (e.g. 18–19 hours), whereas the shortest UHI duration was observed in July (e.g. 13 hours).

3.2. UHI duration change

In the previous section, based on the climatology of UHI intensity, we obtained the climatology of UHI duration for the period 1990–2015. Here, to see the changes in UHI duration over time, we chose two time periods: 1990–1999 and 2006–2015. Figure 3 shows the UHI durations for the two time periods and the differences in UHI duration between them. At HKO, UHI duration apparently did not change for all months, suggesting stabilized diurnal variations in UHI over time. For instance, in winter, UHI duration during the earlier period (1990–1999) (e.g. 19 hours) is mostly the same as that during the later period (2006–2015). However, as opposed to the HKO station, a difference in UHI duration at the LFS station between the two time periods is noticeable. Changes in UHI duration for 6 months in a year show a statistically significant difference. For example, the UHI duration increased by more than 7 hours in February, by about 6 hours in March, and by nearly 5 hours in May and June. These results suggest that diurnal variations in UHI intensity at the LFS station have changed over time. Specifically, the duration of extra warming in urban areas has increased over time.

To understand the cause of UHI duration changes, we compared the changes in the start and end times of UHI duration of two time periods (figure 4). At HKO (figure 4(a)), both the start and end times of UHI

![Figure 3. Changes in UHI duration between 2006–2015 and between 1990–1999 at HKO (a) and LFS (b).](image-url)
duration difference values were near zero. However, in contrast to the HKO station, the start and end times of UHI duration at LFS changed over time. In February, the start time advanced by 2.9 hours, and the end time was delayed by 4.6 hours, thus lengthening the UHI duration by 7.5 hours. Deviations also existed; in March, for example, the duration increased about 6 hours, but on average, the start time was nearly 6 hours earlier and end time more than 2 hours later, which would represent an increase of more than 8 hours. The error line presenting the standard deviation of each value is also shown. Both an earlier start time and later end time led to the longer duration in developing urban areas. Larger changes occurred in February, March and during the summer compared with other months, which is consistent with the result shown in figure 3(b).

4. Discussion and conclusions

This study found clear changes in UHI duration in the LFS region over time but not in the HKO region. The different features of UHI duration change between the two regions could be explained by different stages of urban development, such as urbanization rates (i.e. stabilized vs developing urban). Among several indicators of urbanization, such as land use, infrastructure level, and employment rate, population is the most basic indicator of the urbanization rate (United Nations Department of Economic and Social Affairs 2014). Population could be an obvious phenomenon to indicate rapid development. Thus UHI duration could be enhanced due to population changes. Figure 5 shows the changes in population from 1997–2015 in the districts where stations are located. The population in the LFS region increased by 607,200 in 2015, whereas that of the HKO region showed no apparent change.

Although night light was not a fundamental element for judging urbanization levels, it is widely used to detect urbanization across the globe and is a popular indicator in recent urbanization impact studies (Fung et al 2009, Mellander et al 2015, Gao et al 2015, Li et al 2016). Figure 6 shows changes in night light over the entire HK region from 1992–2013. On a spatial map, positive changes in night light (e.g. an average level increase of 0.62 annually) is observed in the LFS.
Figure 6. Spatial patterns of night light changes from space for the period between 1992 and 2013. The range is from –0.99 to 1.70.

region, whereas negative changes in night light are observed in the HKO region. In accordance with positive changes in population (figure 5), the increased level of night light in the LFS area reflects an increase in habitation and human activities compared to the past (figure 6), indicating a timely, evolving urbanization stage in LFS and a stabilized urbanization stage in the HKO region. Consequently, two different indicators of urbanization support the results of the present study.

UHI duration information can provide us with a reference for urban development planning. A lengthening of the UHI duration indicates a longer period of extra warming in an urban area. This longer period of warming would influence both the fundamental and vital elements of the urban ecosystem and human daily life. For example, the energy bureau needs to adapt to new situations, as UHI duration changes in both daily and seasonal levels can lead to increases in electricity consumption (Auffhammer and Mansur 2014, Christenson et al 2006, Cowie and Blamire 1998). As urban air quality could be altered by changing UHI duration, the government needs to adjust its policies and procedures (Grimm et al 2008, Jacob and Winner 2009, Ramanathan and Feng 2009, Tai et al 2010, Cao et al 2016). Longer periods of hot weather require that more attention is paid to self-protection and that governments implement increased and longer-lasting emergency measures (Patz et al 2005). The assessment of the urban infrastructure life cycle needs to be more accurate by considering the UHI duration (Sen and Roesler 2014) to avoid unexpected events and give a better understanding about the relationship between urbanization and the UHI effect.

In conclusion, changes in the UHI effect over time should be considered to gain a better understanding of the impact of urbanization on the environment and on climate change. In particular, in addition to the old concept of UHIs that considers intensity, UHI duration (e.g. start, end, and persistence of UHIs during the day) should be understood. In this study, we focused only on areas in HK; however, UHI duration changes must be further examined in all world megacities, such as New York, Tokyo, and Seoul, to provide more targeted urban planning advice that addresses regional climate change.

Acknowledgments

Su-Jong Jeong was supported by the startup funding of the Southern University of Science and Technology (SUSTech). Additional support was provided by the Southern University of Science and Technology (No. G01296001).

ORCID iDs

Su-Jong Jeong https://orcid.org/0000-0003-4586-4534
The Climate of London, Deduced from
Index of Economic Freedom 2017
Summary of meteorological and
Grimm N B, Faeth S H, Golubiewski N E, Redman C L, Wu J, Bai X
Giridharan R, Lau S S Y and Ganesan S 2005 Nocturnal heat island
Katayama T, Hayashi T, Shiotsuki Y, Kitayama H, Ishii A, Nishida
Jin M, Dickinson R E and Zhang D 2005 The footprint of urban
Jones P D, Lister D H and Li Q 2008 Urbanization effects in
Auffhammer M and Mansur E T 2014 Measuring climatic impacts
Cowie J and Blamire M 1998 Climate change and energy use
Aguilar E, Auer I, Brunet M, Peterson T C and Wieringa J 2003 Guidance on climate metadata and homogenization WMO TD
Auffhammer M and Mansur E T 2014 Measuring climatic impacts on energy consumption: a review of the empirical literature
Buckley R M, Clarke Annez P and Spence M 2008 Urbanization and Growth (Washington, DC: The World Bank)
(http://doi.org/10.1396/978-0-8213-7573-0)
Cao C, Lee X, Liu S, Schultz N, Xiao W, Zhang M and Zhao L 2016 Urban heat islands in China enhanced by haze pollution Nat.
Commun. 7 12509
Census and Statistics Department 2017 (www.censstat.gov.hk/
home.html) (Accessed 3 May 2017)
Chan J C L and Ng T K 1991 Temperature variability over Hong Kong Hong Kong Meteorol. Soc. Bull. 1 14–25
Christenson M, Manz H and Gyalistras D 2006 Climate warming impact on degree-days and building energy demand in Switzerland Energy Convers. Manage. 47 671–86
Civil Aviation Department Hong Kong 2015 GEN 2.7 SUNRISE/ SUNSET TABLES (www.aas.gov.hk/EN/SC/GEN/ GEN2.7.pdf) (Accessed: 24 September 2017)
Cowie I and Balmire M 1998 Climate change and energy use Phys. World 11 15
Davison A C and Hinkley D V 1997 Bootstrap Methods and their Application 1st edn (Cambridge: Cambridge University Press)
Efron B and Tibshirani R J 1994 An Introduction to the Bootstrap (New York: Chapman and Hall/CRC)
Elvidge C, Baugh K, Hobson V, Kihn E, Kroeshl H, Davis E and Cocero D 1997 Satellite inventory of human settlements using nocturnal radiation emissions: a contribution for the global toolchest Glob. Change Biol. 3 387–95
Fung W Y, Lam K S, Nichol J and Wong M S 2009 Derivation of night-time urban air temperatures using a satellite thermal image J. Appl. Meteorol. Climatol. 48 863–72
Gao B, Huang Q, He C and Ma Q 2015 Dynamics of urbanization levels in China from 1992–2012: perspective from DMSP/OLS nighttime light data Remote Sens. 7 1721–35
Gridharan R, Lau S Y S and Ganasan S 2005 Nocturnal heat island effect in urban residential developments of Hong Kong Energy Build. 37 964–71
Grimm N B, Faeth S H, Golubiewski N E, Redman C L, Wu J, Bai X and Briggs J M 2008 Global change and the ecology of cities Science 319 756–60
Hong Kong Observatory 2015 Summary of meteorological and tidal observations in Hong Kong 2015 (www.weather.gov.hk/publica/smo/smo2015.pdf) (Accessed: 3 May 2017)
Howard I. 1820 The Climate of London, Deduced from Meteorological Observations Made at Different Places in the Neighborhood of the Metropolis vol 2 (London: W. Phillips)
Index of Economic Freedom 2017 Promoting Economic Opportunity and Prosperity by Country (www.
heritage.org/index) (Accessed: 3 May 2017)
Jacob P J and Winner D A 2009 Effect of climate change on air quality Atmos. Environ. 43 51–63
Jacobson M Z, Ngiemh V S, Sorichetta A and Whitney N 2015 Ring of impact from the mega-urbanization of Beijing between 2000 and 2009 J. Geophys. Res. Atmos. 120 5740–56
Jin M, Dickinson R E and Zhang D 2005 The footprint of urban areas on global climate as characterized by MODIS J. Clim. 18 1551–67
Jones P D, Lister D H and Li Q 2008 Urbanization effects in large-scale temperature records, with an emphasis on China J. Geophys. Res. Atmos. 113 D16122
Kalnay E and Cai M 2003 Impact of urbanization and land-use change on climate Nature 423 328–31
Katayama T, Hayashi T, Shiotsuka Y, Katayama H, Ishii A, Nishida M and Oguro M 1991 Cooling effects of a river and sea breeze on the thermal environment in a built-up area Energy Build. 16 973–8
Kim Y-H and Baik J-J 2005 Spatial and temporal structure of the urban heat island in Seoul J. Appl. Meteorol. 44 591–605
Kolokotroni M, Ren X, Davies M and Mavrogiani A 2012 London’s urban heat island: impact on current and future energy consumption in office buildings Energy Build. 47 302–11
Lam C Y 2010 Climate changes brought about by urban living Designing High-Density Cities for Social and Environmental Sustainability (London: Earthscan) pp 55–61
Li Q, Lu L, Weng Q, Xie Y and Guo H 2016 Monitoring urban dynamics in the Southeast USA. Using time-Series DMSP/OLS nightlight imagery Remote Sens. 8 578
Liu Y, You H and Dou J 2009 Urban-rural humidity and temperature differences in the Beijing area Theor. Appl. Climatol. 96 201–7
Lu X, Chow K C, Yao T, Lau A K and Fung J C 2010 Effects of urbanization on the land sea breeze circulation over the Pearl river delta region in winter Int. J. Climatol. 30 1089–104
Leung Y K, Yeung K H, Ginn E W L and Leung W M 2004 Climate change in Hong Kong (www.weather.gov.hk/publica/tn/
tn107.pdf) (Accessed: 3 May 2017)
Mellander C, Lobo J, Stolarick K and Matheson Z 2015 Night-time light data: a good proxy measure for economic activity? PloS One 10 e0139779
Memon R A, Leong D Y C and Liu C-H 2009 An investigation of urban heat island intensity (UHII) as an indicator of urban heating Atmos. Res. 94 491–500
Meng L, Graus W, Worrell E and Huang B 2014 Estimating CO2 (carbon dioxide) emissions at urban scales by DMSP/OLS (Defense Meteorological Satellite Program’s Operational Linescan system) nighttime light imagery: methodological challenges and a case study for China Energy 71 468–78
Miller S T, Reich D, Talbot R W and Mao H 2003 Sea breeze: structure, forecasting, and impacts Rev. Geophys. 41 1011
Monckonnen P and Zhang X 2011 Socioeconomic segregation in Hong Kong: spatial and ordinal measures in a high-density and highly unequal city Working Paper 2011–03 (Institute of Urban and Regional Development, University of California) (https://escholarship.org/uc/item/5f0974ww)
Moreno-garcia M C. 1994. Intensity and form of the urban heat Island in Barcelona Int. J. Climatol. 14 705–10
Oda R and Kanda M 2009 Cooling effect of sea surface temperature of Tokyo Bay on urban air temperature Seventh Int. Conf. on Urban Climate (29 June–3 July 2009, Yokohama, Japan)
Oke T R 1973 City size and the urban heat island Atmos. Environ. 7 769–79
Oke T R 1982 The energetic basis of the urban heat Island Q. J. R. Meteorol. Soc. 108 1–24
Oke T R and Maxwell G B 1975 Urban heat island dynamics in Montreal and Vancouver Atmos. Environ. 9 191–200
Patz J A, Campbell-Lendrum D, Holloway T and Foley J A 2005 Impact of regional climate change on human health Nature 438 310–7
Plummer N, Allsopp T and Lopez J A 2003 Guidelines on climate observation networks and systems (www.wmo.int/pages/prog/wcp/ wcdmp/documents/WCDMP-52_000.pdf) (Accessed: 3 May 2017)
Ramanathan V and Feng Y 2009 Air pollution, greenhouse gases and climate change: global and regional perspectives Atmos. Environ. 43 37–50
Rinner C and Hussain M 2011 Toronto’s urban heat island—exploring the relationship between land use and surface temperature Remote Sens. 3 1251–65
Roth M 2007 Review of urban climate research in (sub)tropical regions Int. J. Climatol. 27 1859–73
Saitoh T S, Shimada T and Hoshi H 1996 Modeling and Guidelines on climate metadata and homogenization WMO TD
Sen S and Roessler J 2014 Assessment of concrete pavement structure on urban heat island Int. Symp. on Pavement Life Cycle Assessment 2014 pp 191–200
Santamouris M 2014 On the energy impact of urban heat island in Barcelona Int. J. Climatol. 34 578–72
Shi L, Chu E, Anguelovski I, Aylett A, Debats J, Goh K and VanDeveer S D. 2016. Roadmap towards justice in urban climate adaptation research. *Nat. Clim. Change* 6:131–7.

Siu L. 2011. Quantifying the urban heat island (UHI) intensity in Hong Kong. *Master’s Thesis*, University of Hong Kong. (https://doi.org/10.5353/th_b4569256)

Siu L W and Hart M A. 2013. Quantifying urban heat island intensity in Hong Kong SAR, China. *Environ. Monit. Assess.* 185:4383–98.

Stewart I D and Oke T R. 2012. Local climate zones for urban temperature studies. *Bull. Am. Meteorol. Soc.* 93:1879–900.

Streutker D R. 2002. A remote sensing study of the urban heat island of Houston, Texas. *Int. J. Remote Sens.* 23:2395–608.

Tai A P K, Mickley L J and Jacob D J. 2010. Correlations between fine particulate matter (PM_{2.5}) and meteorological variables in the United States: implications for the sensitivity of PM_{2.5} to climate change. *Atmos. Environ.* 44:3976–84.

Theeuwes N E, Steeneveld G-J, Ronda R J, Rotach M W and Holtslag A A M. 2015. Cool city mornings by urban heat. *Environ. Res. Lett.* 10:114022.

United Nations, Department of Economic and Social Affairs, Population Division. 2014. *World Urbanization Prospects: The 2014 Revision, Highlights* (ST/ESA/SER.A/352) (https://esa.un.org/unpd/wup/Publications/Files/WUP2014Highlights.pdf) (Accessed: 3 May 2017).

Weng Q, Lu D and Schubring J. 2004. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. *Remote Sens. Environ.* 89:467–83.

Wong E et al. 2011. Reducing Urban Heat Islands: Compendium of Strategies (Washington, DC: US Environmental Protection Agency).

World Health Organization. 2017. *Urban population growth* (www.who.int/gho/urban_health/situation_trends/urban_population_growth_text/en/) (Accessed: 3 May 2017).

World Meteorological Organization. 2008. *Guide to meteorological instruments and methods of observation* 7th edn (www.wmo.int/pages/prog/www/IMOP/publications/CIMO-Guide/CIMO_Guide-7th_Edition-2008.html) (Accessed: 3 May 2017).

World Meteorological Organization. 2010. *Guide to climatological practices* 3rd edn (www.wmo.int/pages/prog/gcos/documents/guianuals/CIMO/CIMO_Guide-7th_Edition-2008.pdf) (Accessed: 3 May 2017).

Wu M C, Leung Y K, Lui W M and Lee T C. 2009. A study on the difference between urban and rural climate in Hong Kong. *Meteorol. Monthly* 35:71–9.

Yang P, Ren G and Liu W. 2013. Spatial and temporal characteristics of Beijing urban heat island intensity. *J. Appl. Meteorol. Climatol.* 52:1803–16.

Yim W W S and Ollier C D. 2009. Managing planet Earth to make future development more sustainable; climate change and Hong Kong. *Quaternary Sci.* 29:190–8.

Zhao L, Lee X, Smith R B and Oleson K. 2014. Strong contributions of local background climate to urban heat islands. *Nature* 511:216–9.