CASE REPORT

Cytomegalovirus ventriculoencephalitis presenting with hydrocephalus in a patient with advanced HIV infection

Kevin John John*, Karthik Gunasekaran, N. Sultan and Ramya Iyyadurai

Department of Medicine, Christian Medical College, Vellore, India

*Correspondence address. Department of Medicine, Christian Medical College, Vellore, India. Tel: +91-9843687998; E-mail: kevinjohn619@gmail.com

Abstract

A 38-year-old lady with advanced human immunodeficiency virus (HIV) infection presented to the emergency department with headache, vomiting and fluctuating alertness for 3 weeks. On examination, she had tachycardia, bilateral papilledema, restriction of upward gaze, gaze-evoked nystagmus and signs of meningeal irritation. Magnetic resonance imaging of the brain showed hydrocephalus and periventricular high T2-signal regions with restriction on diffusion-weighted imaging. Polymerase chain reaction done on the cerebrospinal fluid obtained after the insertion of an external ventricular drain was positive for cytomegalovirus (CMV). She was treated with intravenous ganciclovir followed by oral valganciclovir with which she made a dramatic recovery. CMV ventriculoencephalitis can present with hydrocephalus in HIV-infected individuals. A high index of suspicion must be maintained to diagnose this disease and start appropriate therapy on time.

INTRODUCTION

Cytomegalovirus (CMV) can cause infections of the central nervous system (CNS) in patients with human immunodeficiency virus (HIV) infection. CD4+ T cells are crucial for keeping a check on uncontrolled CMV replication and deficiency of CD4+ T-cells in advanced HIV infection predisposes these patients to the development of CMV infections [1]. Although the prognosis of this disease was poor in earlier times, the advent of highly active combination antiretroviral therapy (cART) has been a game changer.

CASE REPORT

A 38-year-old woman presented to us with complaints of holocranial headache, loss of weight and appetite for the past 3 weeks. This was followed by a fluctuating level of alertness for the past 1 week. During this time, she had one episode of projectile vomiting, which was not bilious or blood-stained. She did not have fever, photophobia, blurred vision or seizure. One week before her presentation to our center (at the onset of fluctuating alertness and vomiting), she was evaluated at another hospital for these symptoms, where a diagnosis of HIV-1 infection was made. She was started on cART (tenofovir 300 mg, lamivudine 300 mg and efavirenz 600 mg) and a week later referred to us for further management. She did not have any other comorbid illnesses, addictions, allergies or significant family history.

At the time of presentation to the emergency department at our hospital, her pulse rate was 136 beats/minute, blood pressure was 100/60 mmHg in the right upper limb and respiratory rate was 24 breaths/minute. She did not have fever and was drowsy, but arousable. Neurological system examination showed bilateral papilledema. There was restriction of upward
gaze, bilateral gaze-evoked nystagmus and neck stiffness suggesting meningeal irritation. Examination of other systems was unremarkable.

Since the patient presented with these symptoms and signs in the setting of recently diagnosed HIV infection, a clinical diagnosis of subacute meningoencephalitis was made. The differential diagnosis considered included tuberculosis meningoencephalitis, cryptococcal meningoencephalitis, toxoplasmosis, other fungal infections like histoplasmosis and aspergillosis, CMV ventriculoencephalitis, neurosyphilis and HIV encephalopathy. Noninfectious causes, such as carcinomatous meningitis, Kaposi sarcoma, CNS lymphoma, sarcoidosis and immune reconstitution inflammatory syndrome (IRIS), were also considered.

The initial blood investigations showed anemia and leukopenia (Table 1). HIV test detected HIV-1 antibodies, and CD4+ T-cell count was 46 cells/μl. Plain computed tomography of the brain showed communicating hydrocephalus with periventricular hypodensities suggestive of transependymal CSF seepage (Fig. 1). An external ventricular drain (EVD) was inserted to relieve the raised intracranial pressure, and CSF obtained during the procedure was sent for analysis. A MTB/RIF assay was negative; bacterial and fungal cultures did not show any growth and CSF cytospin did not show any abnormal cells. However, CSF polymerase chain reaction (PCR) detected CMV deoxyribonucleic acid (DNA). The EVD was later removed, and a ventriculoperitoneal (VP) shunt was inserted. Subsequently, contrast-enhanced magnetic resonance imaging (MRI) of the brain showed resolution of hydrocephalus. Oculomotor palsy may be seen but is uncommon.

DISCUSSION

CMV ventriculoencephalitis is a rare disease, which almost always occurs in the setting of advanced immunosuppression. CNS infection with CMV was seen in 2% of patients before the era of potent antiretroviral drugs [2]. Now, the incidence can be presumed to be much lower. CD4+ T-cells are required to suppress the uncontrolled replication of CMV, and these cells are depleted in HIV infection [1]. Most reported cases have occurred in the setting of HIV infection and a CD4+ T-cell count of <50 cells/μl [3].

CMV ventriculoencephalitis presents with subacute alteration in level of alertness, cranial neuropathies, gaze-evoked nystagmus and features of raised intracranial pressure due to hydrocephalus. Oculomotor palsy may be seen but is uncommon. Other presentations of CMV-associated CNS infection in HIV-infected individuals include necrotizing polyradiculomyelitis, a Guillain–Barre-like syndrome of ascending weakness with hyporeflexia, motor predominant neuropathy and vasculitis [4–6].

Diagnosis of CMV infection requires demonstration of a cytopathic effect. The cytomegalic cell is a macrophage that contains intranuclear and intracytoplasmic inclusions of CMV particles and resembles ‘owl’s eyes’ [7]. This is a pathologic hallmark of the disease. In our patient, we did not demonstrate the presence of a characteristic cytopathic effect. However, the clinical presentation in the setting of advanced HIV infection, characteristic MRI features, PCR positive for CMV and dramatic response to

Figure 1: Plain computed tomography of the brain showed moderate communicating hydrocephalus with periventricular hypodensities suggestive of transependymal CSF seepage. (A) before and (B) after insertion of ventriculoperitoneal shunt indicated by white arrow.
Table 1: Lab investigations.

Investigations	Result
Hemoglobin (g/dl)	9.2 (11–15)
Total count (×10^9 cells/L)	2 (4-12)
Differential count (%)	N 29, L 13, M 8, E1
Platelet count (×10^9/L)	95 (150-450)
HIV, HBV, HCV serology	Positive for HIV-1 antibodies
CD 4+ T-cell count (cells/μl)	64 (500–1500)
Serum sodium (mmol/L)	131 (135–145)
Serum potassium (mmol/L)	3.3 (3.5–5)
Serum creatinine (μmol/L)	58.34 (53–106)
Serum total/direct bilirubin (μmol/L)	3.93/2.22 (5–21/1.7–5.1)
Serum total protein/albumin (g/L)	76/31 (60–80, 35–50)
AST (U/l)	115 (10–30)
ALT (U/l)	87 (10–40)
Alkaline phosphatase (U/l)	159 (30–120)
CSF counts (cell/mm3)	WBC 80 (N12, L56, M24), RBC 630
CSF glucose (mmol/l)	2.72 (Concomitant GRBS: 6.22) (2.5 - 4.4)
CSF protein (mg/dl)	108 (15–45)
CSF cytospin	No abnormal cells
CSF Gram stain and culture	Negative
CSF Xpert® MTB/RIF assay	Negative
CSF India ink preparation and fungal culture	Negative
Serum and CSF cryptococcal antigen	Negative
Toxoplasma IgM and IgG	Negative
CSF PCR for multiple viruses	CMV positive

Normal ranges are given in parenthesis. AST, aspartate aminotransferase; ALT, alanine aminotransferase; HBV, hepatitis B virus; HCV, hepatitis C virus; IgM, immunoglobulin M; IgG, immunoglobulin G.

Figure 2: Contrast-enhanced MRI of the brain showing numerous periventricular high T2-signal regions with restriction on diffusion-weighted imaging (DWI). (A) T2-weighted image, (B) T2 FLAIR (fluid-attenuated inversion recovery) image, (C) DWI and (D) apparent diffusion coefficient image.
ganciclovir therapy were considered sufficient evidence for the diagnosis. Neuropathological imaging of patients has demonstrated extensive periventriculitis with ependymal and subependymal necrosis [8]. Destruction of the ependyma and inflammation leads to thick fibrinous exudate that accumulates at the base. This basal exudate can block CSF flow by occluding the flow through the aqueduct of Sylvius or by blocking the resorption of CSF by the arachnoid granulation leading to hydrocephalus [8]. This picture is very similar to that seen in tuberculous meningitis. Therefore, a high degree of suspicion needs to be maintained, especially in patients with advanced HIV infection, to differentiate these two diseases. This is especially important because treatment of CNS tuberculosis requires prolonged multidrug therapy with steroids, which may cause clinical worsening of CMV ventriculoencephalitis. Mistaking such a worsening for paradoxical IRIS can add to the confusion.

MRI finding of periventricular enhancement and subependymal high-signal intensities with diffusion restriction may help in differentiating CMV ventriculoencephalitis from other causes of meningoencephalitis in HIV-infected patients [9]. Imaging of the CNS can also help exclude other diagnoses. CSF PCR has high sensitivity and specificity in diagnosing CMV infection of the CNS [10].

Treatment of CMV neurologic disease depends on its severity. Severe disease is treated with a combination of intravenous ganciclovir and foscarnet, while mild disease can be treated with oral valganciclovir. If the patient is cART-naïve, it is recommended to wait for 14 days before starting cART to prevent IRIS. It is crucial to exclude coexistent CMV retinitis before initiation of cART as IRIS at this site can be sight-threatening. Maintenance therapy with oral valganciclovir should be given until CD4+ T-cell counts increase to >100 cells/μl and remain so for at least 6 months.

In conclusion, CMV ventriculoencephalitis is an uncommon but severe CNS infection in HIV-infected individuals that can present with hydrocephalus. Characteristic MRI findings and CMV PCR in the CSF can be used to make a diagnosis of CMV ventriculoencephalitis in the appropriate clinical setting.

ACKNOWLEDGEMENTS
I would like to thank Prof. Varghese John for reviewing the manuscript.

CONFLICT OF INTEREST STATEMENT
None declared.

FUNDING
There were no sources of funding.

ETHICAL APPROVAL
The work meets ethical guidelines and adheres to local legal requirements.

CONSENT
The patient’s informed signed consent was obtained.

GUARANTOR
K.J.J. is the guarantor of this paper.

REFERENCES
1. Gianella S, Letendre S. Cytomegalovirus and HIV: a dangerous pas de Deux. J Infect Dis 2016;214:S67–74.
2. Gallant JE, Moore RD, Richman DD, Keruly J, Chaisson RE. Incidence and natural history of cytomegalovirus disease in patients with advanced human immunodeficiency virus disease treated with zidovudine. The Zidovudine Epidemiology Study Group. J Infect Dis 1992;166:1223–7.
3. Arribas JR, Storch GA, Clifford DB, Tselis AC. Cytomegalovirus encephalitis. Ann Intern Med 1996;125:577–87.
4. Thongpooswan S, Chyn E, Alfishawy M, Restrepo E, Berman C, Ahmed K, et al. Polyradiculopathy and gastroparesis due to cytomegalovirus infection in AIDS: a case report and review of literature. Am J Case Rep 2015;16:801–4.
5. Orlikowski D, Porcher R, Sivadon-Tardy V, Quincampoix J-C, Raphael J-C, Durand M-C, et al. Guillain–Barré syndrome following primary cytomegalovirus infection. J Intern Med 2011;52:837–44.
6. Palma P, Costa A, Duro R, Neves N, Abreu C, Sarmento A. Mononeuritis multiplex: an uncommon neurological manifestation of cytomegalovirus reactivation in an HIV-infected patient. BMC Infect Dis 2018;18:554.
7. Wilkins LW. Owl’s eyes of CMV ventriculitis. Neurology. 2000;54:2217.
8. Kalayjian RC, Cohen ML, Bonomo RA, Flanigan TP. Cytomegalovirus ventriculoencephalitis in AIDS: a syndrome with distinct clinical and pathologic features. Medicine 1993;72:67.
9. Renard T, Daumas-Duport B, Auffray-Calvier E, Bourcier R, Desal H. Cytomegalovirus encephalitis: Undescribed diffusion-weighted imaging characteristics. Original aspects of cases extracted from a retrospective study, and from literature review. J Neuroradiol 2016;43:371–7.
10. Binnicker MJ, Espy ME. Comparison of six real-time PCR assays for qualitative detection of cytomegalovirus in clinical specimens. J Clin Microbiol 2013;51:3749–52.