Fermi/GBM and BATSE Gamma–Ray Bursts: comparison of the spectral properties

L. Nava¹*, G. Ghirlanda², G. Ghisellini², and A. Celotti¹

¹ SISSA, via Bonomea 265, I–34136 Trieste, Italy
² Osservatorio Astronomico di Brera, via E. Bianchi 46, I–23807 Merate, Italy

Received / Accepted

ABSTRACT

The Gamma–ray Burst Monitor (GBM) on board Fermi allows to study the spectra of Gamma Ray Bursts (GRBs) over an unprecedented wide energy range (8 keV – 35 MeV). We compare the spectral properties of short and long GRBs detected by the GBM (up to March 2010) with those of GRBs detected by the BATSE instrument on board the CGRO. GBM and BATSE long bursts have similar distributions of fluence (F), E_{peak} and peak flux (P) but GBM bursts have a slightly harder low–energy spectral index α with respect to BATSE GRBs. GBM and BATSE short bursts have similar distributions of fluence, α and peak flux, with GBM bursts having slightly larger E_{peak}. We discuss these properties in light of the found correlations between E_{peak} and the fluence and the peak flux. GBM bursts confirm that these correlations are not determined by instrumental selection effects. Indeed, GBM bursts extend the E_{peak}–F and E_{peak}–P correlations both in fluence/peak flux and in peak energy. No GBM long burst with E_{peak} exceeding a few MeV is found, despite the possibility of detecting it. Similarly to what found with BATSE, there are 3% of GBM long bursts (and almost all short ones) that are outliers at more than 3σ of the E_{peak}–E_{iso} correlation. Instead there is no outlier of the E_{peak}–L_{iso} correlation, for both long and short GBM bursts.

Key words. Gamma-ray burst: general – Radiation mechanisms: non-thermal

1. Introduction

The Fermi satellite, launched in June 2008, offers a great opportunity to characterize GRB spectra over a wide energy range thanks to its two high–energy instruments: the Large Area Telescope (LAT) and the Gamma–ray Burst Monitor (GBM – Meegan et al. 2009). The GBM is composed by twelve NaI detectors (with good spectral resolution between ~8 keV and ~1 MeV) and two BGO detectors (operating between 200 keV and 40 MeV). Significant emission in the LAT energy range (~ 30 MeV – 300 GeV) has been detected only in about 20 GRBs till now (December 2010), while the GBM triggered about 600 GRBs.

A detailed spectral analysis of all GRBs detected by the Fermi/GBM up to the end of March 2010 (438 events) has been performed by Nava et al. (2010; N10 hereafter). These spectra were fitted with different models and for 316 events (272 long and 44 short) it was possible to constrain the peak energy of the νF_{ν} spectrum ($E_{\text{peak}}^{\text{obs}}$). For long bursts we found $E_{\text{peak}}^{\text{obs}} \sim 160$ keV and an average low–energy power law index $\langle \alpha \rangle \sim –0.9$. Short bursts are found to be harder, both in terms of $E_{\text{peak}}^{\text{obs}}$ and α: $\langle E_{\text{peak}} \rangle \sim 490$ keV and $\langle \alpha \rangle \sim –0.5$.

N10 also analyzed the peak spectrum of GBM bursts, i.e. the spectrum corresponding to the peak flux of the light curve, accumulated on a timescale of 1.024×10^4 s and 0.064×10^4 s for long and short events, respectively. The comparison with the time–integrated spectral properties shows that peak spectra, on average, have harder low–energy spectral indices but similar peak energies with respect to time–integrated spectra.

Before Fermi, other instruments allowed to study the properties of the prompt emission spectra of GRBs. Due to its broad energy range (~25 keV – ~2 MeV), high sensitivity and detection rate, the BATSE instrument onboard the Compton Gamma Ray Observatory (CGRO) satellite has been so far the instrument best suited to characterize the GRB prompt emission properties. Thanks to its almost all–sky viewing, BATSE detected more than 2700 GRBs in about 9 years.

The published spectral catalogs of BATSE bursts comprise relatively small sub–samples of bright GRBs, selected on the basis of the burst fluence and/or peak flux (Preece et al. 2000; Kaneko et al. 2006 – K06 hereafter). The analyzed samples allowed to study the spectral properties only of long bursts, given the small number of short bursts present in these samples (e.g. 17 short GRBs in the K06 sample). These studies revealed that the low–energy power law index distribution of long GRBs is centered around $\alpha \sim –1$ and pointed out the inconsistency of the large majority of burst spectra with a synchrotron interpretation. The $E_{\text{peak}}^{\text{obs}}$ distribution of long GRBs analyzed by K06 peaks around $E_{\text{peak}}^{\text{obs}} \sim 250$ keV, with a relatively narrow dispersion. However, this refers to bright bursts, while fainter bursts have smaller $E_{\text{peak}}^{\text{obs}}$ values, as shown by Nava et al. (2008, N08 thereafter). They performed the spectral analysis of a sample of BATSE bursts selected by extending the limiting fluence of K06 (i.e. $F = 2 \times 10^{-6}$ erg cm$^{-2}$) down to $F = 10^{-6}$ erg cm$^{-2}$. They found that $E_{\text{peak}}^{\text{obs}}$ correlates with the fluence F and the peak flux P. This sample of BATSE faint bursts has a distribution of $E_{\text{obs}}^{\text{peak}}$ values centered at ~150 keV, i.e. a value smaller than the one found for the bright BATSE bursts analyzed by K06, as a consequence of the mentioned $E_{\text{obs}}^{\text{peak}}$–$F$ correlation. This result con-

* lara.nava@sissa.it
firms that the derived distribution of $F_{\text{obs}}^{\text{peak}}$ is strongly affected by the adopted cuts in fluence (or peak flux).

N08 also found a correlation between $E_{\text{obs}}^{\text{peak}}$ and the fluence/peak flux for short bursts. This implies that when we compare the $E_{\text{obs}}^{\text{peak}}$ distributions of short and long GRBs we must take into account the possible different fluence/peak flux selection criteria. A large sample of short BATSE bursts has been analyzed by Ghirlanda et al. 2009 (G09 hereafter). They performed a detailed spectral analysis of 79 short bursts and compared their properties with those of 79 long BATSE bursts selected with the same limit on the peak flux. They found that the $E_{\text{obs}}^{\text{peak}}$ distributions of the two classes are similar, while the low–energy power law indices are different: short bursts have $(\alpha) \sim -0.4$, harder than long events.

A well known property of GRBs, related to their prompt emission, is the correlation between the rest frame peak energy E_{peak} of long bursts with the bolometric isotropic energy E_{iso} emitted during the prompt (Amati et al. 2002) or with the bolometric isotropic luminosity L_{iso} estimated at the peak of the light curve (Yonetoku et al. 2004). Such correlations represent an intriguing clue on the dominant emission mechanism of the prompt phase. Furthermore, if corrected for the jet opening angle, their dispersion reduces considerably (Ghirlanda et al. 2004a) and allows to use GRBs as standard candles (Ghirlanda et al. 2004b).

The correlations in the observer frames ($F_{\text{obs}}^{\text{peak}} - F$ and $F_{\text{obs}}^{\text{peak}} - P$) may be just the consequence of the rest frame ($E_{\text{peak}} - E_{\text{iso}}$ and $E_{\text{peak}} - L_{\text{iso}}$ respectively) correlations mentioned above. Alternatively, it has been claimed that the rest frame correlations are the result of instrumental selection effects (Band & Preece 2005; Nakar & Piran 2005). Ghirlanda et al. (2008, hereafter G08) and N08 examined the instrumental selection effects which may affect the observer frame correlations $E_{\text{obs}}^{\text{peak}} - F$ and $F_{\text{obs}}^{\text{peak}} - P$. They found that, although instrumental biases do affect the burst sample properties, they are not responsible for the correlations found in the observational planes.

Moreover, Ghirlanda et al. (2010a) recently showed that the correlation $E_{\text{peak}} - E_{\text{iso}}$ and $E_{\text{peak}} - L_{\text{iso}}$ holds for the time–resolved quantities within individual long GBM bursts (see also Firmani et al. 2009 for Swift bursts and Krimm et al. 2009 for Swift–SuZaku GRBs) and that this “time–resolved” correlation is similar to that defined by the time–integrated properties of different GRBs. Similar results were found for short GBM bursts: there is a significant correlation between the observer frame peak energy $E_{\text{obs}}^{\text{peak}}$, and the peak flux within individual short GRBs and this correlation has a slope similar to that of the rest frame $E_{\text{peak}} - E_{\text{iso}}$ correlation (Ghirlanda et al. 2010b). These results confirm that the “Amati” and “Yonetoku” correlations have a physical origin, instead of being the result of instrumental selection biases as claimed, and that the trends ($E_{\text{obs}}^{\text{peak}} - F$ and $F_{\text{obs}}^{\text{peak}} - P$) seen in the “observational planes” are just their outcome.

Through the spectral catalog of GBM bursts of N10, we can study the distribution of GBM bursts in the observational planes $E_{\text{obs}}^{\text{peak}} - F$ and $F_{\text{obs}}^{\text{peak}} - P$ and test if the correlations found by BATSE bursts (G08, N08 and G09) still hold. In the observational planes we can also study, for the first time, the possible instrumental biases of GBM for the bursts analyzed in N10, and compare the spectral properties of long and short GRBs detected by BATSE and by the GBM. Finally, we can also compute the fraction of GBM short and long GRBs which are outliers, for any assigned redshift, of the rest frame $E_{\text{peak}} - E_{\text{iso}}$ and $E_{\text{peak}} - L_{\text{iso}}$ correlations. These are the main aims of the present paper.

In §2 we present the samples of BATSE and GBM bursts (both long and short) used for our comparison. We compute (§3) the relevant instrumental selection effects introduced by the GBM on the observational $E_{\text{obs}}^{\text{peak}} - P$ and $F_{\text{obs}}^{\text{peak}} - F$ planes considering separately short and long GRBs. The comparison between BATSE and GBM results is also presented in terms of spectral parameters distributions in §4. We discuss our results and draw our conclusions in §5.

2. Samples

2.1. Long bursts

BATSE — Fig. 1 shows the LogN–LogF of long GRBs detected by BATSE (open squares), where N is the number of objects with fluence larger than F. Since we compare this LogN–LogF with the one of GBM bursts (filled squares in Fig. 1), we compute F in the energy range between 20 keV and 2000 keV, which is common to both instruments. BATSE fluences are taken from the online CGRO/BATSE Gamma–ray Bursts Catalog.

We have then considered the spectral catalog of K06 which contains all BATSE bursts with peak flux $P (50 - 300 \text{ keV}) > 10 \text{ photons cm}^{-2} \text{ s}^{-1}$ or fluence $F (20 - 2000 \text{ keV}) > 2 \times 10^{-5} \text{ erg cm}^{-2}$. From the 350 events of this sample we extract the long ones, i.e. with observed duration $T_{90} > 2 \text{ s}$. Among these, 280 GRBs have a well determined $E_{\text{obs}}^{\text{peak}}$ (i.e. their spectral shapes are well fitted by a curved model with $\alpha < -2$ or $\beta > -2$, i.e. showing a peak in a vF_{v} representation). For 104 events the spectrum is best fitted by a BAND model (Band et al. 1993), for 65 by a COMP model (a power law with a high–energy exponential cutoff) and for 111 by a smoothly broken power law model (SBPL).

Although the K06 analysis enlarges the previous spectral catalog of BATSE bursts (Preece et al. 2000) it still selects only the brightest BATSE bursts (i.e. corresponding to only the 13% of the entire population of bursts detected by BATSE). N08 selected a sample of 100 BATSE bursts with a fluence fainter than the threshold adopted by K06. The N08 events, in fact, have a fluence in the range $10^{-6} < F < 2 \times 10^{-5} \text{ erg cm}^{-2}$. Moreover, although these are only 100 bursts, they are representative of the large population of ~1000 bursts in this fluence range since they were randomly extracted following the LogN–LogF distribution of BATSE GRBs in this fluence range. Of these 100 representative bursts, 44 are best fitted by the COMP model, 44 by the BAND model, and 12 by a power law (PL) function. Therefore the N08 sample contains 88 GRBs with a spectrum fitted by a curved model, for which E_{peak} was well determined. Among the bursts analyzed by K06 with peak flux P larger than 10 ph cm$^{-2}$ s$^{-1}$, there are GRBs with fluences smaller than $F = 2 \times 10^{-5} \text{ erg cm}^{-2}$, that overlap with the ones studied by N08. We exclude these bursts from the present discussion, in order to have well defined complete samples at two limiting fluences, that we will call, in the rest of the paper, the “bright” BATSE bursts (the bursts in K06 with $F > 2 \times 10^{-5} \text{ erg cm}^{-2}$) and the “faint” BATSE bursts (the bursts studied in N08 with $10^{-6} < F < 2 \times 10^{-5} \text{ erg cm}^{-2}$). The grey shaded regions in Fig. 1 correspond to this subdivision.

GBM — In N10 we have analyzed the spectra of all the GRBs detected by the GBM up to March 2010 (438 GRBs). No fluence or peak flux selection has been adopted. Fig. 1 shows the shape of the LogN–LogF for the two instruments is very similar. To compare the $E_{\text{obs}}^{\text{peak}}$ and α distribution of GBM bursts with

\footnote{http://heasarc.gsfc.nasa.gov/W3Browse/cgro/batsegrb.html}
359 events belong to the long burst class. We also estimated their COMP (232 spectra) and a Band model (90 spectra) and evaluated spectral analysis using a power law model (PL – 110 spectra), to lack of data. For the remaining 432 bursts we performed the this sample of GBM long bursts for comparison with BATSE bursts, we select from the N10 catalog two subsamples with the same fluence criterion adopted by K06 and N08, while BATSE bursts are from the online catalog and include all the BATSE bursts for which the fluence has been estimated. For reference two power laws with slope -3/2 are shown (dot–dashed lines).

those of BATSE bursts, we select from the N10 catalog two subsamples with the same fluence criterion adopted by K06 and N08 for BATSE bursts and we call them the bright GBM sample and the faint GBM sample.

In six GBM bursts N10 could not analyze the spectrum, due to lack of data. For the remaining 432 bursts we performed the spectral analysis using a power law model (PL – 110 spectra), a COMP (232 spectra) and a Band model (90 spectra) and evaluating for each burst the spectral parameters of the best fit model. 359 events belong to the long burst class. We also estimated their peak flux on time bin of 1.024 seconds. In this work we will use this sample of GBM long bursts for comparison with BATSE long GRBs.

2.2. Short bursts

BATSE — The most comprehensive sample of short BATSE GRBs with well defined spectral parameters is composed by the 79 events analyzed by G09, selected for having $P > 3$ photons cm$^{-2}$ s$^{-1}$. In 71 cases the spectra have a well determined $E_{\text{peak}}^{\text{obs}}$.

GBM — For the GBM instrument we use the spectral parameters of the 44 short GRBs present among the 438 bursts analyzed by N10 with a well determined $E_{\text{peak}}^{\text{obs}}$. Their peak flux is estimated on a time bin of 0.064 seconds.

3. $E_{\text{peak}}^{\text{obs}}$ –Fluence and $E_{\text{peak}}^{\text{obs}}$ –Peak Flux planes: comparison between BATSE and GBM bursts

A correlation between the total fluence and $E_{\text{peak}}^{\text{obs}}$ was first found by Lloyd, Petrosian & Mallozzi (2000) for a sample of BATSE bursts without measured redshifts. This finding was recently confirmed by Sakamoto et al. (2008) using a sample of bursts detected by Swift, BATSE and Hete–II. In particular, they noted that X–Ray Flashes and X–Ray Rich bursts satisfy and extend this correlation to lower fluences.

The distribution of GRBs with and without measured redshift in the planes $E_{\text{peak}}^{\text{obs}} – F$ and $E_{\text{peak}}^{\text{obs}} – P$ has been investigated by G08 and N08. N08 considered all events with published spectral information detected by different instruments (Swift, BATSE, Hete–II, Konus/Wind and BeppoSAX) together with the 100 faint BATSE bursts analyzed in that paper. In both planes long bursts define a correlation, with fainter bursts having lower $E_{\text{peak}}^{\text{obs}}$.

In order to examine the distribution of GBM bursts in the observational planes $E_{\text{peak}}^{\text{obs}} – F$ and $E_{\text{peak}}^{\text{obs}} – P$ and compare it with the BATSE bursts we have first to estimate the possible instrumental biases induced by the detector (see G08). One instrumental bias is the capability of an instrument to be triggered by a burst, i.e. the “trigger threshold” (TT) (first computed by Band 2003 for different detectors). The second bias concerns the minimum number of photons required to analyze the spectrum and constrain the spectral parameters. This is called “spectral threshold” (ST) in G08 and N08. The TT translates into a minimum peak flux, which depends on the burst spectrum and in particular on its $E_{\text{peak}}^{\text{obs}}$ and can be described as a curve in the $E_{\text{peak}}^{\text{obs}} – P$ plane. The second requirement (ST) results into a minimum fluence which depends on $E_{\text{peak}}^{\text{obs}}$ and also on the burst duration. For this reason the ST is represented as a region (i.e. not a line) in the $E_{\text{peak}}^{\text{obs}} – F$ plane.

These curves (TT and ST) divide the observational planes $E_{\text{peak}}^{\text{obs}} – F$ and $E_{\text{peak}}^{\text{obs}} – P$ into two regions. Bursts with peak energy and peak flux which place them on the left of the TT curve cannot be triggered by the corresponding instrument. Similarly, bursts with peak energy and fluence which place them on the left side of the ST curves do not have enough photons to allow a reliable spectral analysis (see G08 for more details).

3.1. Estimate of GBM instrumental selection effects

Following G08, the TT curves are obtained adapting the results of Band (2006) and are shown in the right (top and bottom) panels of Fig. 2. The TT curves are the same for long and short bursts as the trigger threshold depends only on the peak flux.

The ST curves have been calculated from numerical simulations, as described in G08. To perform these simulations, the typical background spectrum and the detector response function are required. For the bursts detected by the GBM both of them depend on several factors (e.g. the satellite attitude when a burst occurs), and thus there is no universal background and response matrix which can be adopted. To overcome this problem we use the real backgrounds and responses of several GRBs detected by the GBM and average the results of the simulations to build average ST curves for the population of long and short bursts, respectively.

Our simulation performs a joint spectral analysis of spectra simulated for two NaI detectors and one BGO detector. For long bursts, simulations were performed using the detector response files and the background spectra of the long GBM bursts published in G10. We considered, as done in G08, two representative values of the duration i.e. $T_{90} = 5$ and 20 s (corresponding in Fig. 2 to the curves delimiting the red shaded region on the left and right side, respectively). For short bursts we estimated the ST curves adopting the response files and the background spectra of the short bursts of the GBM sample of N10 assuming a typical duration of the simulated spectra of 0.7 s (red curve in the bottom left panel of Fig. 2). This value, also adopted by G08.
Fig. 2. $E_{\text{peak}}^{\text{obs}}$–Fluence and $E_{\text{peak}}^{\text{obs}}$–Peak Flux planes for long (upper panels) and short (bottom panels) bursts. Empty squares represent BATSE bursts, filled circles GBM bursts and filled triangles indicate events detected by other instruments (from N08). In all panels the instrumental limits for BATSE and GBM are reported: shaded curved regions in the upper left panel show the ST, estimated assuming a burst duration of 5 and 20 s; solid curves in the bottom left panel represents the ST for short bursts. Solid curves in the right panels define the TT, identical for short and long events. Thresholds for BATSE are taken from G08 while those for the GBM instrument are derived in this work (see §3.1). The dashed curve in the bottom right panel represents the selection criterion applied by G09 for their sample of short bursts, i.e. $P > 3$ phot cm$^{-2}$ s$^{-1}$. The shaded regions in the upper left corners of all the planes are the region identifying the outliers at more than 3σ of the $E_{\text{peak}} - E_{\text{iso}}$ (left panels) and $E_{\text{peak}} - L_{\text{iso}}$ (right panels) correlations for any given redshift. GRBs, without measured redshift, which fall in these regions are outliers of the corresponding rest–frame correlations ($E_{\text{peak}} - E_{\text{iso}}$ and $E_{\text{peak}} - L_{\text{iso}}$ for the left and right panels respectively) for any assigned redshift. It means that there is no redshift which make them consistent with these correlations (considering their 3σ scatter).

for BATSE bursts, corresponds to the typical duration of short GRBs observed by the GBM.

For the TT and ST curves of the BATSE instrument we simply report those obtained in G08 (for long bursts) and in G09 (for short bursts).

Fig. 2 shows the distribution of GBM bursts in the $E_{\text{peak}}^{\text{obs}}$–$F$ and $E_{\text{peak}}^{\text{obs}}$–$P$ planes (right and left panels) for long and short GRBs (upper and bottom panels).

3.1. Long bursts

$E_{\text{peak}}^{\text{obs}}$ vs Fluence — As can be seen in the top left panel of Fig. 2, the distribution of long GBM bursts (filled circles) extends down to the lower end of the distribution of BATSE bursts (empty squares).

The presence of GBM bursts with low $E_{\text{peak}}^{\text{obs}}$ (between ~10 and ~50 keV), not present in the BATSE sample, is clearly due to the wider energy range of the GBM instrument, sensitive down
to ~8 keV (see the ST curves). In this region, GBM bursts are consistent with bursts detected by other instruments (filled triangles). We also note that GBM bursts define a correlation which mostly overlaps with that defined by BATSE bursts and extends to the lower–left part of the $E_{\text{peak}}^{\text{obs}}$–$F$ plane.

Despite the GBM assures good coverage up to ~30 MeV (vs ~1 MeV of BATSE), there are only a few long GRBs with $E_{\text{peak}}^{\text{obs}}$ exceeding few MeV, similarly to what found for the population of BATSE bursts. Note that high $E_{\text{peak}}^{\text{obs}}$ also means GRBs with high fluences, which are rarer than GRBs with low fluences.

Note also that while BATSE bursts appear concentrated at the high end of the $E_{\text{peak}}^{\text{obs}}$–$F$ correlation, the sample is composed by all bursts with $F > 2 \times 10^{-5}$ erg cm$^{-2}$ (the K06 sample) and only one hundred of fainter bursts (the N08 sample) representative of ~1000 objects with $10^{-6} < F < 2 \times 10^{-5}$ erg cm$^{-2}$. Therefore the real density of BATSE bursts in the latter fluence range is much larger than what represented in Fig. 8 (see e.g. Fig. 8 in N08) so that the slight shift between BATSE and GBM population density in the upper panels is only an apparent effect.

Another result shown by the GBM bursts and consistent with the conclusion drawn from BATSE is that the ST effect is not responsible for the distribution of the data in the plane, i.e. it cannot explain why bursts tend to distribute along a correlation. This is well visible for BATSE bursts: events with large $E_{\text{peak}}^{\text{obs}}$ cannot explain why bursts tend to distribute along a correlation. The trends suggested by BATSE short bursts (open squares).

In the $E_{\text{peak}}^{\text{obs}}$–$P$ plane of short GRBs (right bottom panel in Fig. 2) similar conclusions can be drawn: for both instruments the TT curves (solid lines) do not affect the samples. Both samples are clearly limited by the selection cut applied on the peak flux (shaded curve). From the fact that the peak flux of GBM bursts is significantly above their TT, we infer that their selection is dominated by the ST.

3.2. Outliers of the $E_{\text{peak}}^{\text{obs}}$–$E_{\text{iso}}$ and $E_{\text{peak}}^{\text{obs}}$–$L_{\text{iso}}$ correlations

Another relevant point is to test whether bursts without measured redshifts are consistent with the $E_{\text{peak}}^{\text{obs}}$–$E_{\text{iso}}$ and $E_{\text{peak}}^{\text{obs}}$–$L_{\text{iso}}$ correlations. These correlations are defined in the rest frame and require, to add a burst on top of them, to have the redshift known. However, as first proposed by Nakar & Piran (2005) and then by Band & Preece (2005), knowing $E_{\text{peak}}^{\text{obs}}$ and the fluence or peak flux it is still possible to test if a burst, without measured redshift, is an outlier of the $E_{\text{peak}}^{\text{obs}}$–$E_{\text{iso}}$ and $E_{\text{peak}}^{\text{obs}}$–$L_{\text{iso}}$ correlations.

In the observational planes it is possible to define a “region of outliers”. We start by writing the $E_{\text{peak}}^{\text{obs}}$–$E_{\text{iso}}$ correlation as (the same argument can be repeated for the $E_{\text{peak}}^{\text{obs}}$–$L_{\text{iso}}$ correlation):

$$E_{\text{peak}}^{\text{obs}} = KE_{\text{iso}}^\eta$$

(1)

Since $E_{\text{peak}}^{\text{obs}} = E_{\text{peak}}/(1 + z)$ and $F = E_{\text{iso}}(1 + z)/4\pi d_L^2(z)$, we can form the ratio,

$$\left(\frac{E_{\text{peak}}^{\text{obs}}}{F}\right)^{1/\eta} = K1^{1/\eta} 10^{\sigma/\eta} 4\pi d_L^2(z) (1 + z)^{1+\eta/\eta}$$

(2)

where σ corresponds to the scatter of data points around the rest frame correlation that is being tested. Note that this is not the error on the slope or normalization of the correlation, but the scatter measured perpendicular to the best fit line of the $E_{\text{peak}}^{\text{obs}}$–$E_{\text{iso}}$ correlation and modeled as a gaussian distribution.

The R2S of the above relation is a function of z, η and σ only. The upper limit of the ratio $E_{\text{peak,obs}}^{1/\eta}/F$ establishes an allowance region boundary on the corresponding plane (upper left–corner shaded regions in Fig. 2). All the bursts that fall below this line in the observational planes can have a redshift...
which make them consistent with the \(E_{\text{peak}} - E_{\text{iso}} \) correlation within its 3\(\sigma \) scatter. Those falling in the shaded region are outliers at more than 3\(\sigma \) for any assigned redshift.

Although this test has been already applied several times in the recent past, some guidelines should be followed:

1. since the rest frame correlations are defined with the bolometric 1 keV–10 MeV \(E_{\text{iso}} \) and \(L_{\text{p,iso}} \), then when testing the region of outliers in the observational planes one should use the fluence \(F \) and peak flux \(P \) defined on the same energy range;
2. it is correct to consider the 3\(\sigma \) scatter of the rest frame correlations and not the uncertainty on the slope (\(\eta \)) and normalization (\(K \)) of the correlations. This is because the scatter \(\sigma \) of the \(E_{\text{peak}} - E_{\text{iso}} \) and \(E_{\text{peak}} - L_{\text{iso}} \) correlations dominates over the statistical uncertainty on \(K \) and \(\eta \) (e.g. G10);
3. while the \(E_{\text{peak}} - E_{\text{iso}} \) and \(E_{\text{peak}} - L_{\text{iso}} \) correlations were first derived with only a dozen of bursts, they have been now updated with nearly 100 GRBs with measured redshifts (e.g. N08, G10): the correlation parameters (slope, normalization and scatter) have changed since their discovery, so one should adopt the most updated versions of these correlations.

N08 find that 6% of BATSE long bursts are outliers of the \(E_{\text{peak}} - E_{\text{iso}} \) correlation, while no outlier is found for the \(E_{\text{peak}} - L_{\text{p,iso}} \) correlation. Almost all short BATSE bursts are outliers of the \(E_{\text{peak}} - E_{\text{iso}} \) correlation (defined by long bursts) but they can be consistent with their very same \(E_{\text{peak}} - L_{\text{p,iso}} \) correlation. These findings are supported by the consistency of the few short bursts with measured redshift with the \(E_{\text{peak}} - L_{\text{iso}} \) correlation while they are outliers at more than 3\(\sigma \) of the \(E_{\text{peak}} - E_{\text{iso}} \) correlation (G09).

For GBM long bursts, Fig. 2 shows that only 8 GRBs (i.e. 3\%) lie in the region of outliers (in the \(E_{\text{obs}}^\text{peak} - F \) plane), even if the extended energy range of the GBM allows to explore the region of large \(E_{\text{obs}}^\text{peak} \) and intermediate fluences, where outliers, if they exist, could be found.

Instead, for short GBM bursts, we can see that most of them are outliers at more than 3\(\sigma \) of the \(E_{\text{peak}} - E_{\text{iso}} \) correlation. On the contrary, there are no short bursts in the region of outliers in the \(E_{\text{obs}}^\text{peak} - P \) plane, i.e. they are all consistent with the \(E_{\text{peak}} - L_{\text{iso}} \) correlation defined by long GRBs. The hypothesis that short and long bursts follow the same \(E_{\text{peak}} - L_{\text{p,iso}} \) correlation is also supported by the few short events with known redshift (G09).

4. Spectral parameter distributions

In this section we compare the distributions of the spectral parameters (low energy spectral index \(\alpha \) and peak energy \(E_{\text{peak}} \)) for long (§4.1) and short (§4.2) GRBs detected by BATSE and by the GBM. In addition, we show the Log\(N \)–Log\(P \) distribution for short bursts.

4.1. Long Bursts

Fig. 3 (upper panel) shows the distributions of \(E_{\text{obs}}^\text{peak} \) of bright BATSE and bright GBM bursts. The two distributions are quite similar: the central value of the gaussian fit (solid line) is \(E_{\text{obs}}^\text{peak} \sim 260 \) keV and \(E_{\text{obs}}^\text{peak} \sim 280 \) keV, respectively, with GBM bursts having a larger distribution (standard deviation \(\sigma = 0.33 \) to be compared with \(\sigma = 0.21 \) for BATSE bursts) and extending both at lower and higher \(E_{\text{obs}}^\text{peak} \) with respect to that of BATSE.

Using the Kolmogorov–Smirnov (KS) test, we find that the probability that the two distributions are drawn from the same parent population is 0.164.

For faint bursts (bottom panel of Fig. 3) the results are similar. For both instruments the gaussian fit to the \(E_{\text{obs}}^\text{peak} \) distribution is centered around 140 keV and has a standard deviation \(\sigma = 0.31 \) (the KS test probability is 0.18). Also in this case the GBM distribution is larger. In particular, from the comparison of the two histograms it appears that GBM data allows to recover very low \(E_{\text{obs}}^\text{peak} \), thanks to the good GBM/NaI sensitivity down to 8 keV (i.e. extending by a factor of 3 the low–energy bound of BATSE). For BATSE bursts there is a quite sharp cutoff at \(\sim 50 \) keV. This is in agreement with the simulations performed by G08 (see Fig. 2) showing that it is very difficult for BATSE to recover \(E_{\text{obs}}^\text{peak} < 50 \) keV. Large fluences, unusual for such values of \(E_{\text{obs}}^\text{peak} \) would be required. All the results of the gaussian fits and KS probabilities are summarized in Tab.

We stress that the \(E_{\text{obs}}^\text{peak} \) properties of faint and bright bursts are very different due to the correlation between \(E_{\text{obs}}^\text{peak} \) and \(F \): the faint sample is characterized by a central value of \(E_{\text{obs}}^\text{peak} \) which is...
almost a factor of 2 lower than that of the bright sample. The KS probability of the distributions of $E_{\text{obs}}^{\text{peak}}$ within the GBM sample between faint and bright bursts is 5.7$x10^{-5}$.

Fig. 4 shows the α distribution for bright (upper panel) and faint burst (bottom panel). In both cases, GBM bursts tend to have a harder low–energy power law index and a somewhat tighter distribution (central values and standard deviations of the gaussian fits are reported in Tab. 1). However the KS test shows that the α distributions of faint GBM and faint BATSE bursts are similar (KS probability=0.12). Moreover, GBM bursts do not show a significant relation between α and the fluence because faint and bright GBM bursts have similar distributions peaked respectively at -0.91 and -0.94 and with a KS probability of 0.03.

The α distribution of bright BATSE bursts (grey histogram), instead, shows significant difference with respect to both the bright GBM sample (KS probability=6$x10^{-3}$) and the faint BATSE sample (KS probability=7$x10^{-3}$). Bright BATSE bursts tend to have softer α with respect to all the other samples. We investigated the possible origin of this difference considering that the K06 sample contains bursts whose spectra are fitted with the SBPL, COMP or Band model. As noted by K06 themselves the spectral parameters $E_{\text{obs}}^{\text{peak}}$ and α do show different typical values and width of their distributions depending on the fitting spectral model. Considering that GBM bursts are adequately fitted by either the COMP or the Band model, we excluded from the $E_{\text{obs}}^{\text{peak}}$ distribution of BATSE bursts the bursts fitted with a SBPL. The resulting histogram (dark blue shaded in Fig. 4) is now fully consistent with the distribution of α of GBM bursts (the KS probability now becomes 0.4).

4.2. Short Bursts

The largest sample of BATSE bursts for which the spectral analysis has been performed was selected on the basis of a peak flux criterion (G09). A meaningful comparison between GBM and BATSE short bursts requires a sample of short GBM bursts selected on the basis of the very same criterion. Before investigating the spectral parameter distributions, we compare the LogN–LogP for both instruments, where P in this case is the peak flux in photons cm$^{-2}$ s$^{-1}$. Since for the GBM sample N10 estimate the peak flux on the 64 ms timescale, also for BATSE bursts we select (from the online catalog2) all bursts for which the P on 64 ms has been estimated. For BATSE bursts the peak flux is integrated in the 50 keV – 300 keV energy range. Therefore, we estimate for all short GBM bursts in N10 the photon peak flux between 50 keV and 300 keV. Fig. 5 shows our results.

As discussed in §3 the lack of bursts with low peak flux in the GBM sample is due to the ST threshold shown in Fig. 2. This

2 http://heasarc.gsfc.nasa.gov/W3Browse/cgro/batsegrb.html
instrumental threshold, indeed, dominates over the TT threshold and determines that short GRBs for which the spectrum can be analyzed and the spectral parameters properly constrained should have a large number of photons. At high peak fluxes instead, GBM has detected more short GRBs than BATSE due to the \(E_{\text{peak}}^{\text{obs}} - P \) correlation, which associates high peak fluxes to high peak energies, the latter better constrained with the larger energy range of the GBM instrument (BGO) than with BATSE. This explains the different shapes of the two Log\(N \)-Log\(P \).

To compare the spectral parameters, we consider short GRBs (from G09 for BATSE and N10 for GBM) with known \(\alpha \) and \(E_{\text{peak}}^{\text{obs}} \), and with \(P(50-300 \text{ keV}) \geq 3 \text{ ph cm}^{-2} \text{ s}^{-1} \). The \(E_{\text{peak}}^{\text{obs}} \) distributions are shown in Fig. 6 and are quite different. The lack of low \(E_{\text{peak}}^{\text{obs}} \) in the GBM sample (which corresponds to the lack of low peak fluxes in Fig. 6) can be explained by considering the shape and position of the ST for short bursts (left bottom panel in Fig. 6) and the existence of a correlation between \(P \) and \(E_{\text{peak}}^{\text{obs}} \) (see discussion above and in \$2\). Moreover, contrary to long bursts, the \(E_{\text{peak}}^{\text{obs}} \) distribution of GBM short events extends to higher energies, suggesting that such large values of \(E_{\text{peak}}^{\text{obs}} \) can be found in short bursts and that they were not present in the BATSE catalog due to its limited energy range (up to only \(\sim 1 \text{ MeV} \)).

The \(\alpha \) distributions of BATSE and GBM bursts is considerably different. The GBM confirms that short events are harder than long ones in terms of low–energy spectral index (KS probability = 3\(\times \)10\(^{-6} \)). However, the distribution is peaked around \(\alpha = -0.59 \) and it is very narrow (\(\sigma = 0.15 \)). We tentatively interpret this as due to the large energy range of GBM which extends down to 8 keV, but this point deserves further study. The extension down to low energies of GBM allows in principle to determine \(\alpha \) more accurately. Instead, the limited energy range of BATSE resulted in less accurate estimates of \(\alpha \) and thus a more dispersed distribution of its values. This effect is slightly present also in long bursts, both bright and faint (see Tab. 1).

5. Discussion and Conclusions

In this work we investigated the presence of the \(E_{\text{peak}}^{\text{obs}} - \text{Fluence} \) and \(E_{\text{peak}}^{\text{obs}} - P \) correlations in GBM bursts (both long and short) detected by the GBM instrument up to March 2010. Similarly to what has been done for long and short GRBs detected by BATSE (N08; G09) we examined the distribution of GBM bursts in the \(E_{\text{peak}}^{\text{obs}} - \text{Fluence} \) and \(E_{\text{peak}}^{\text{obs}} - P \) planes in order to study instrumental selection effects and test their consistency with the rest frame correlations (i.e. \(E_{\text{peak}} - E_{\text{iso}} \) and \(E_{\text{peak}} - L_{\text{iso}} \), respectively) defined by GRBs with measured redshifts. To this aim, we have estimated, for the GBM instrument, the spectral threshold (ST) and the trigger threshold (TT), in order to quantify the selection effects acting on the considered samples and their role on the found correlations.

Our main results are:

- Long GRBs detected by GBM follow the same \(E_{\text{peak}}^{\text{obs}} - F \) and \(E_{\text{peak}}^{\text{obs}} - P \) correlations defined by BATSE GRBs (Fig. 2). We computed the instrumental selection effects of GBM – as already done for BATSE (G08; N08): the trigger threshold and the spectral threshold are not responsible for the correlations defined by long GRBs in both planes (see Fig. 2). The GBM spectral extension down to 8 keV with respect to the limit of 30 keV of BATSE, allows to extend the correlations to lower peak energies/fluences. Instead, despite of the higher energy threshold of GBM (40 MeV) no long GRB with \(E_{\text{peak}}^{\text{obs}} \) larger than a few MeV is detected. This can be due to a real absence of bursts with such high \(E_{\text{peak}}^{\text{obs}} \) or to the fact that they have large fluences, thus being too rare to be detected during less then 2 years of the GBM observations.

We conclude that long GRBs detected by GBM confirm what found with BATSE bursts, in particular that they follow a correlation both in the \(E_{\text{peak}}^{\text{obs}} - F \) and in the \(E_{\text{peak}}^{\text{obs}} - P \) plane. Moreover, the fraction of bursts detected by GBM which are outliers at more than 3\(\sigma \) with respect to the \(E_{\text{peak}} - E_{\text{iso}} \) correlation is \(\sim 3 \% \), to be compared with the 6\% of outliers found (N08) in the BATSE sample. Instead, there are no outliers...
Table 1. Central values and standard deviations (in brackets) of the distributions of α and $E_{\text{peak}}^{\text{obs}}$ for long and short bursts. The table also lists the KS probability resulting from the comparison between BATSE and GBM distributions of α and $E_{\text{peak}}^{\text{obs}}$. For long bright bursts the comparison has been performed by considering (for homogeneity) bursts best modeled by a COMP or a Band model (i.e. by excluding from K06 those bursts modeled with a SBPL).

![Image](https://via.placeholder.com/150)

Fig. 8. Schematic view of the distribution of long and short GRBs in the $E_{\text{peak}}^{\text{obs}}$–$F$ and $E_{\text{peak}}^{\text{obs}}$–$P$ planes. The horizontal dashed line at ~ 30 keV represents the lower limit for the GBM instrument: the simulations performed in this work show that $E_{\text{peak}}^{\text{obs}}$ can be hardly determined below this value. For the BATSE instrument this limit corresponds to ~ 50 keV. The upper limit for BATSE is at ~ 1 MeV, while for the GBM there is no upper limit in this plane. The vertical dashed line (left panel) shows an example of fluence selection, while the dashed curve (right panel) refers to the photon flux selection criterion adopted by G09.

(at more than 3σ) of the $E_{\text{peak}}^{\text{obs}}$–$L_{\text{iso}}$ correlation among GBM long GRBs.

Short GRBs detected by GBM populate a different region in the $E_{\text{peak}}^{\text{obs}}$–$F$ plane with respect to long events, the former having larger peak energies and lower fluences compared to the latter. This is consistent with what found by BATSE and confirms that short GRBs do not follow the “Amati” correlation but they obey the “Yonetoku” correlation defined by long events.

The GBM population of long and short bursts with spectral information is large enough to allow a statistical comparison with the BATSE results. For long bursts, we considered the fluence distribution of BATSE bursts and we compare it to those derived by N10 for GBM bursts. We also compared the spectral properties for selected samples of GBM and BATSE bursts with well defined $E_{\text{peak}}^{\text{obs}}$ derived from the spectral analysis. Two different samples of BATSE bursts are available in literature, based on complementary fluence selection criteria. We call them faint and bright BATSE samples. We then selected from the catalog of N10 two subsamples of GBM bursts based on the same fluence criteria applied to the BATSE samples (i.e. 10^{-6} erg/cm$^2 < F < 2 \times 10^{-5}$ erg/cm2 for the faint GBM sample and $F > 2 \times 10^{-5}$ erg/cm2 for the bright GBM sample).

The $E_{\text{peak}}^{\text{obs}}$ distribution derived from the two instruments are quite similar (Fig. 3 and Tab. 1). Despite its larger energy range, the GBM extends the $E_{\text{peak}}^{\text{obs}}$ distribution of long bursts only at low energies with respect to BATSE. The α distribution, instead, reveals some difference for the sample of bright bursts: BATSE bursts have on average a softer low–energy photon index ($\langle \alpha_{\text{GBM}} \rangle = -0.9$ and $\langle \alpha_{\text{BATSE}} \rangle = -1.11$, KS probability $= 6 \times 10^{-3}$). However, this difference is almost totally due to the presence (in the K06 sample of bright BATSE bursts) of GRBs...
modeled by a smoothly broken power–law (SBPL) function. As noted by K06, this model gives a low–energy spectral index system-
tically softer with respect to COMP and Band models. By excluding these events, the α distribution of bright BATSE bursts is
centered around $\langle \alpha_{\text{BATSE}} \rangle = -1.00$ and the KS probability with the
GBM is 0.4.

Also for GBM short bursts we can draw some conclusions about their spectral properties. Their $E_{\text{peak}}^{\text{obs}}$ distribution is shifted
towards higher energies compared both to long bursts from the
same instrument and to short bursts seen by BATSE. The lack of
low–energy $E_{\text{peak}}^{\text{obs}}$ (below ~ 200 keV) can be accounted for by
the spectral threshold we derived for the GBM instrument (see
Fig. 2). This hypothesis is supported by the fact that among the
population of short GBM bursts there are 44 events fitted with
a curved model (i.e. with $E_{\text{peak}}^{\text{obs}}$ determined) but there exists a
large fraction of short bursts (34) whose spectrum is fitted with a
single power law. On the other hand, the larger energy coverage
allows the detection of $E_{\text{peak}}^{\text{obs}}$ up to ~ 4 MeV. GBM data confirm
that short bursts have on average a harder α compared to long
bursts $\langle \alpha_{\text{GBM,short}} \rangle = -0.59$, as already found in the BATSE
sample by G09.

The comparison of short and a representative sample of long
BATSE GRBs (selected with a similar peak flux threshold) led
G09 to conclude that their main spectral diversity is due to a
harder low–energy spectral index in short bursts while their $E_{\text{peak}}^{\text{obs}}$
of BATSE is 0.4.

A comparison between GBM and BATSE short bursts re-
veals that they have similar α and $E_{\text{peak}}^{\text{obs}}$ distribution in short bursts
while their $E_{\text{peak}}^{\text{obs}}$ of BATSE is similarly distributed. GBM bursts provide the op-
portunity of re–examining this result for the population of short
and long GRBs detected by the GBM and also compare their spectral
properties with those of the BATSE ones. We find that:

- $E_{\text{peak}}^{\text{obs}}$ of short GBM bursts is larger and α smaller that those of
 GBM bursts, indicating that short events are harder, both in
 terms of their peak energy and low–energy spectral index.

- A comparison between GBM and BATSE short bursts re-
 veals that they have similar α while the $E_{\text{peak}}^{\text{obs}}$ of short GBM
 bursts is larger than that of short BATSE events (see Fig. 2
 bottom left panel). This information is allowed by the higher
 energies which can be detected by the GBM. Moreover, the
different $E_{\text{peak}}^{\text{obs}}$ distribution of BATSE and GBM short bursts is
 affected by the lower sensitivity of the GBM instrument,
 which misses short bursts at low fluences (and therefore low
 $E_{\text{peak}}^{\text{obs}}$).

- GBM and BATSE long bursts have a similar $E_{\text{peak}}^{\text{obs}}$ while
 GBM events tend to have a harder low–energy spectral index
 (Fig. 4).

Fig. 8 shows a schematic representation of the current
information about the distribution of short and long bursts in the
$E_{\text{peak}}^{\text{obs}} - F$ and $E_{\text{peak}}^{\text{obs}} - P$ planes. With respect to BATSE, the GBM
reveals that long bursts extend to lower $E_{\text{peak}}^{\text{obs}}$ consistently with
what previously found with other instruments (mainly Hete–II
and Swift).

Despite of the high–energy sensitivity, also the $E_{\text{peak}}^{\text{obs}}$
distribution of GBM long events extends only up to ~ 1 MeV. The
situation is different for short GRBs whose $E_{\text{peak}}^{\text{obs}}$ reach up to ~ 4
MeV in the present sample. These high $E_{\text{peak}}^{\text{obs}}$ were not detectable
by BATSE, whose sensitivity drops at ~ 1 MeV (upper horizontal
dashed line in Fig. 8). Therefore, the GBM shows that short
GRBs have larger $E_{\text{peak}}^{\text{obs}}$ with respect to long ones, contrary to
what found with BATSE (G09).

When comparing the $E_{\text{peak}}^{\text{obs}}$ distribution of short and long
bursts, different conclusions can be drawn, according to the se-

References

Amati, L., Frontera, F., Tavani, M., et al. 2002, A&A, 390, 81
Band, D., Matteson, J., Ford, L., et al., 1993, ApJ, 413, 281
Band, D., 2003, ApJ, 588, 945
Band, D. L. & Preece, R. D., 2005, ApJ, 627, 319
Band, D. L. 2006, in American Institute of Physics Conference Series, Vol. 836,
Gamma–Ray Bursts in the Swift Era, ed. S. S. Holt, N. Gehrels, & J. A.
Nousek, 704
Firmani, C., Cabrera, J. I., Avila-Reese, V., et al., 2009, MNRAS, 393, 1209
Ghirlanda, G., Ghisellini, G., & Lazzati, D. 2004a, ApJ, 613, 331
Ghirlanda, G., Ghisellini, G., Lazzati, D., & Firmani, C. 2004b, ApJ, 613, L13
Ghirlanda, G., Nava, L., Ghisellini, G., Firmani, C., & Cabrera, J. I. 2008,
MNRAS, 387, 319 (G08)
Ghirlanda, G., Nava, L., Ghisellini, G., Celotti, A., & Firmani, C., 2009, A&A,
496, 585 (G09)
Ghirlanda, G., Nava, L., Ghisellini, G., 2010a, A&A, 511, 43
Ghirlanda, G., Nava, L., Ghisellini, G., Burlon, D., 2010b, MNRAS, 510, L7
Kaneko, Y., Preece, R. D., Briggs, M. S., et al., 2006, ApJS, 166, 298 (K06)
Krimm, H. A., Yamaoka, K., Sugita, S., et al., 2009, ApJ, 704, 1405
Lloyd, N. M., Petrosian, V., Mallozzi, R. S., 2000, ApJ, 534, 227
Meegan, C., Lichti, G., Bhat, P. N., et al., 2009, ApJ, 702, 791
Nakar, E. & Piran, T. 2005, MNRAS, 360, L73
Nava, L., Ghirlanda, G., Ghisellini, G., & Firmani, C. 2008, MNRAS, 391, 639
(N08)
Nava, L., Ghirlanda, G., Ghisellini, G., & Celotti, A., 2010, A&AR submitted.
arXiv 1102.2863 (N10)
Preece, R. D., Briggs, M. S., Mallozzi, R. S., et al., 2000, ApJS, 126, 19
Sakamoto, T., Hullinger, D., Sato, G., 2008, ApJ, 679, 570
Yonetoku, D., Murakami, T., Nakamura, T., et al., 2004, 609, 935