Childhood obesity is a global health concern. Air pollution is also a crucial health threat, especially in developing countries. Over the past decade, a number of epidemiologic and animal studies have suggested a possible role of pre- or postnatal exposure to air pollutants on childhood obesity. Although no clear mechanism has been elucidated, physical inactivity, oxidative stress, and epigenetic modifications have been suggested as possible mechanisms by which obesity develops due to air pollution. In this review, we summarize and review previous epidemiologic studies linking air pollution and childhood obesity and discuss the possible mechanisms underlying air pollution-induced obesity based on in vivo and in vitro evidence.

Key words: Air pollution, Particulate matter, Pediatric obesity

Introduction

The global prevalence of childhood obesity has increased almost 8–10 times over the last 30–40 years.\\(^1,2\) Childhood obesity can lead to various comorbidities, including type 2 diabetes, hypertension, nonalcoholic fatty liver disease, cardiovascular disease, and even cancer in later life.\\(^3\) A rapid increase in the prevalence of obesity has occurred with the markedly increased production of industrial chemicals, suggesting potential causative links.\\(^4\) In particular, as more than 90% of children worldwide live in an environment with air pollution levels above the World Health Organization guideline, the link between air pollution and childhood obesity is drawing increasing attention.\\(^5\) A number of studies on the effects of air pollutants on childhood obesity were reported in the 2010s. Here we review epidemiologic studies on the association between air pollution and childhood obesity and speculate on the underlying mechanisms.

Air pollutants and major sources of exposure

Ambient air pollution is mainly caused by the combustion of fossil fuels, waste incineration, industrial/agricultural processes, and natural processes including thunderstorms and volcanic eruptions.\\(^6\) Household air pollution is primarily generated by the incomplete combustion of fossil fuels during cooking, heating, and lighting. Other household air pollutants include tobacco smoke, mold spores, building materials, and volatile organic compounds (VOCs).\\(^7\) The air pollution sources vary among regions according to industrialization degree. In urban areas, the combustion of fossil fuels for energy production is the primary source of air pollution, while in rural areas, the main sources of air pollution are pollutants generated in the household and from incineration for heating, cooking, and waste disposal.\\(^7\)

Major air pollutants include particulate matter (PM), ozone (O\(_3\)), carbon monoxide (CO), sulfur dioxide (SO\(_2\)), nitrogen dioxide (NO\(_2\)), and polycyclic aromatic hydrocarbons (PAHs). Primary air pollutants are emitted from direct sources (e.g., factories, construction sites, fires, cars, and roads) and secondary pollutants are formed by chemical reactions with other substances in the air.\\(^8\) Possible sources of air pollutants are presented in Table 1.

Among air pollutants, PM poses the greatest health concern since it is a complex heterogeneous mixture of all kinds of air pollutants (e.g., nitrates, sulfates, elemental and organic carbon, VOCs, and PAHs), biological compounds (e.g., endotoxin, mold, pollen), and metals (e.g., iron, nickel, copper, and zinc).\\(^9\) There is increasing evidence that the health impact of PM is dependent on its chemical composition.\\(^10\)

Depending on the aerodynamic diameter of the particles, PM is classified as coarse (PM\(_{10}\)), with a diameter of <10 microns, or fine (PM\(_{2.5}\)), with a diameter of <2.5 microns.\\(^9\) Fine particles generally penetrate the lower respiratory tract more easily, while
coarse particles tend to lodge in the upper respiratory tract. 8) Most epidemiologic studies have consistently reported that PM2.5 is the most harmful fraction. 11)

Association of air pollution and childhood obesity in epidemiologic studies

1. Prenatal exposure to air pollutants

Human epidemiologic studies on the relationship between prenatal exposure to air pollutants and childhood obesity are listed in Table 2. Longitudinal studies from the U.S. Project Viva cohort consistently reported that traffic density and roadway proximity during pregnancy or at delivery are associated with obesity parameters including body mass index (BMI) and fat mass in children aged 6 months to 10 years. 12-14) This study group also suggested a possible impact of prenatal air pollution exposure on reduced birth weight. However, other studies on the association between individual traffic-related air pollutants and childhood obesity have not verified this association. Exposure to nitrogen oxides (NOx) and elemental carbon was not associated with childhood obesity in cohort studies from Sweden, the USA, and Hong Kong. 15-17) SO2 exposure was even negatively related to BMI in adolescent boys. 17)

A relatively large number of studies have examined the effects of exposure to PM versus other air pollutants on childhood obesity. Most cohort studies from the USA and Hong Kong reported a null impact of PM2.5 and PM10 exposure during pregnancy on obesity parameters in children and adolescents. 12-14,16,17) Only 2 cohort studies from Boston, Massachusetts, reported a weak association between PM during pregnancy and obesity parameters including BMI at 2–9 years of age and waist-to-hip ratio at 4 years of age. 18,19)

Prenatal exposure to tobacco smoke, a representative source of household air pollution, is reportedly related to an increased risk of overweight at ages 3 and 7 years in large-scale national cohort studies from the USA and the UK. 20,21) A small-scale study from Canada reported a null effect of tobacco smoke on BMI in 5-year-old children. 22) PAHs, which are known to be highly correlated to tobacco smoke exposure, were also associated with childhood BMI in 2 cohort studies from New York. In these studies, exposure to PAHs measured by personal air monitoring during pregnancy was positively correlated with BMI in children aged 5–14 years in African-American and Hispanic children. 23,24)

2. Postnatal exposure of air pollutants

The impacts of postnatal air pollutant exposure on childhood obesity identified through human epidemiologic studies are presented in Table 3. As with prenatal exposure studies, a positive correlation between residential traffic density/roadway proximity in childhood and BMI at 4–8 years was demonstrated by 2 large cohort studies conducted in Southern California. 25,26) However, a school-based cross-sectional study reported that the positive association between the presence of arterial roads around school and the obesity rates in elementary schoolers was not statistically significant after the adjusting for crime rates and economic levels around the schools. 27) However, other studies on the association between individual traffic-related air pollutants and childhood obesity have not confirmed this association.

Of note, most studies of the association between NOx, a major traffic-related air pollutant, and childhood obesity reported a statistically significant positive correlation. In 3 cohort studies performed in the USA, teenage exposure to NOx concentrations was positively correlated with BMI gain until 18 years of age, while 1-year-old exposure to NOx concentrations was positively associated with BMI gain until 10 years of age. 16,28,29) Recent studies published in the Netherlands and Spain have also reported that residential NO2 concentrations are associated with a higher risk of overweight in childhood and adolescence. 30,31) However, in an Italian cohort study, residential NO2 concentrations measured at birth and age 4 were not associated with obesity at 4 and 8 years of age. 32)

Study results on the link between postnatal PM exposure and childhood obesity are inconsistent. In 2 cohort studies from

Table 1. Common sources of major air pollutants

Pollutant	Ambient	Household
Primary pollutants		
CO	Incomplete combustion of carbon-containing fuels, vehicular exhaust, and photochemical reactions in the atmosphere	Gas stoves and tobacco smoke
SO2	Industrial activities that process sulfur-containing fuels, and motor vehicles emissions	Combustion of coal/oil
NO2	Power plants and motor vehicles emissions	Gas and kerosene heaters, and tobacco smoke
PAHs	Incomplete combustion of organic materials (e.g., coal, oil, petrol, and wood)	Wood stoves, barbecues, and tobacco smoke
VOCs	Fossil fuels and motor vehicles emissions	Paints, disinfectant, air-fresheners, and photocopy machines
Secondary pollutants		
PM	Directly emission or transformation of gaseous emissions (e.g., SO2, NO2, VOCs) by motor vehicle combustion of solid/fossil fuels, and forest fires	Gas/wood stoves, and gas space heaters
O3	The reaction of NO2 and VOCs in the presence of sunlight	None

CO, carbon monoxide; NOx, nitrogen dioxide; O3, ozone; PAHs, polycyclic aromatic hydrocarbons; PM, particulate matter; SO2, sulfur dioxide; VOCs, volatile organic compounds.
Table 2. Association between prenatal exposure to air pollution and childhood obesity in human epidemiologic studies

Study population	Study design	Sample size (n)	Age at exposure (yr)	Age at outcome (yr)	Obesity parameter	Air pollutant	Direction of relationship with obesity (+/-/0)	Findings
Traffic density/proximity								
Fleisch et al.\(^{10}\)	USA Cohort	2,115	3rd trimester	0-0.5	Weight-for-length	Traffic density	(+)	Negative association with fetal growth, but a positive association with obesity at the age of 5-10
Fleisch et al.\(^{10}\)	USA Cohort	1,418	At delivery	3.3	BMI, skinfold thickness, WC, fat mass	Roadway proximity	(+)	Positive association with fat mass at early & mid-childhood
Fleisch et al.\(^{12}\)	USA Cohort	1,649	3rd trimester	0.5-10	BMI	Traffic density	(+)	Positive association with obesity at the age of 0.5-10
NO\(_x\)/SO\(_2\)/elemental carbon								
Frondelius et al.\(^{16}\)	Sweden Cohort	5,815	Entire pregnancy	4	BMI	NO\(_x\)	(0)	No association with overweight/obesity at the age of 4
Kim et al.\(^{14}\)	USA Cohort	2,318	Entire pregnancy	10	BMI	NO\(_x\)	(0)	No association with attained BMI at the age of 10
Huang et al.\(^{17}\)	Hong Kong	8,298	Entire pregnancy	9-15	BMI	NO\(_x\)	(0)	No association with BMI at the age of 9-15
PM								
Fleisch et al.\(^{16}\)	USA Cohort	2,115	3rd trimester	0-0.5	Weight-for-length	PM\(_{2.5}\)	(0)	No association with obesity at the age of 6 mo
Fleisch et al.\(^{10}\)	USA Cohort	1,418	3rd trimester	3.3	BMI, skinfold thickness, WC, fat mass	PM\(_{2.5}\)	(-)	Negative association with BMI and fat mass at early & mid-childhood
Chiu et al.\(^{16}\)	USA Cohort	239	10-29 weeks gestation	4	WHR, BMI, skinfold thickness, fat mass	PM\(_{2.5}\)	(+)	Positive association with WHR at the age of 4 (only in girls)
Mao et al.\(^{18}\)	USA Cohort	1,446	Entire pregnancy	2-9	BMI	PM\(_{2.5}\)	(+)	Positive association with childhood overweight or obesity
Kim et al.\(^{14}\)	USA Cohort	2,318	Entire pregnancy	10	BMI	PM\(_{2.5}\)	(0)	No association with attained BMI at the age of 10
Fleisch et al.\(^{12}\)	USA Cohort	1,649	3rd trimester	0.5-10	BMI	PM\(_{2.5}\)	(0)	No association between prenatal exposure and BMI outcomes at any age
Huang et al.\(^{17}\)	Hong Kong	8,298	Entire pregnancy	9-15	BMI	PM\(_{10}\)	(0)	No association with BMI at the age of 9-15
Smoking								
Hawkins et al.\(^{20}\)	UK Cohort	13,188	3-Month gestation	3	BMI	Smoking	(+)	Positive association with overweight at the age of 3
Dancause et al.\(^{22}\)	Canada Cohort	111	Preconception, entire pregnancy	5.5	BMI	Smoking	(0)	No association with obesity at the age of 5.5
Wen et al.\(^{21}\)	USA Cohort	21,063	3rd trimester	7	BMI, body weight	Smoking	(+)	Positive association with overweight at the age of 7
PAH								
Rundle et al.\(^{23}\)	USA Cohort	702	3rd trimester	7	BMI, fat mass	PAHs	(+)	Positive association with obesity at the age of 7
Rundle et al.\(^{23}\)	USA Cohort	535	3rd trimester	5-14	BMI	PAHs	(+)	Positive association with childhood BMI at the age of 5-10

Direction of relationship with obesity: (+), factor related to greater childhood obesity; (-), factor related to decreased childhood obesity; (0), no relationship with childhood obesity.

BMI, body mass index; NO\(_x\), nitrogen oxides; PAHs, polycyclic aromatic hydrocarbons; PM\(_{1.0}\), particulate matter <2.5 microns in diameter; PM\(_{10}\), particulate matter <10 microns in diameter; SO\(_2\), sulfur dioxide; WC, waist circumference; WHR, waist-to-hip ratio.
Table 3. Association between postnatal exposure to air pollution and childhood obesity in human epidemiologic studies

Study	Country	Study design	Sample size (n)	Age at exposure (yr)	Age at outcome (yr)	Obesity parameter	Air pollutant	Direction of relationship with obesity (+/-/0)	Findings
Jerrett et al.									
2010	USA	Cohort	2,889	9-10	18	BMI	Traffic density	(+)	Positive association with attained BMI over 8 study years
Jerrett et al.									
2014	USA	Cohort	4,550	5-7	10	BMI	Traffic density	(+)	Positive association with attained BMI at the age of 10
Amrak et al.									
2019 | USA | Cross-sectional | 10,327 | 10-11 | 10-11 | BMI | Arterial road exposure | (0) | No association with overweight |

NOx/xenial carbon

Study	Country	Study design	Sample size (n)	Age at exposure (yr)	Age at outcome (yr)	Obesity parameter	Air pollutant	Direction of relationship with obesity (+/-/0)	Findings
McConnell et al.									
2015	USA	Cohort	3,318	10	18	BMI	NOx	(+)	Synergism between tobacco smoke and NOx exposure on attained BMI at the age of 18
Alderete et al.									
2017	USA	Cohort	314	8-15	18	BMI	Body fat%	NOx	(+)
Kim et al.									
2018	USA	Cohort	2,318	1	10	BMI	NOx	(+)	Positive association with attained BMI at the age of 10
Fioravanti et al.									
2018	Italy	Cohort	719	0, 4	4, 8	BMI, WC, WHR	NOx	(0)	No association with childhood obesity
Bloemsma et al.									
2019	Netherlands	Cohort	3,680	12-14	3-17	BMI	NOx	(+)	Positive association with overweight
de Bont et al.									
2019 | Spain | Cross-sectional | 2,660 | 7-10 | 7-10 | BMI | NOx | (+) | Positive association with overweight/obese |

PM

Study	Country	Study design	Sample size (n)	Age at exposure (yr)	Age at outcome (yr)	Obesity parameter	Air pollutant	Direction of relationship with obesity (+/-/0)	Findings
Kim et al.									
2016	Korea	Cohort	1,129	0.5-1	1-5	Weight-for-age	PMx0	(+)	Negative association with weight at the age of 12-60 mos
Mao et al.									
2017	USA	Cohort	1,446	0-2	2-9	BMI	PMx2	(+)	Positive association with childhood overweight or obesity
Alderete et al.									
2017	USA	Cohort	314	8-15	18	BMI	Body fat%	PMx2	(+)
Kim et al.									
2018	USA	Cohort	2,318	1	10	BMI	PMx5	(0)	No association with attained BMI at the age of 10
Fioravanti et al.									
2018	Italy	Cohort	719	0, 4	4, 8	BMI, WC, WHR	PMx2	(0)	No association with childhood obesity
Bloemsma et al.									
2019	Netherlands	Cohort	3,680	12-14	3-17	BMI	PMx2	(0)	No association with overweight
de Bont et al.									
2019 | Spain | Cross-sectional | 2,660 | 7-10 | 7-10 | BMI | PMx2 | (+) | Positive association with overweight/obese |

Smoking

Study	Country	Study design	Sample size (n)	Age at exposure (yr)	Age at outcome (yr)	Obesity parameter	Air pollutant	Direction of relationship with obesity (+/-/0)	Findings
McConnell et al.									
2015 | USA | Cohort | 3,318 | 10 | 18 | BMI | Smoking | (+) | Synergism between tobacco smoke and NOx exposure on attained BMI at the age of 18 |

PAH

Study	Country	Study design	Sample size (n)	Age at exposure (yr)	Age at outcome (yr)	Obesity parameter	Air pollutant	Direction of relationship with obesity (+/-/0)	Findings
Scinicariello et al.									
2014 | USA | Cross-sectional | 3,189 | 6-19 | 6-19 | BMI, WC | PAHs | (+) | Positive association with obesity parameters in children |

The direction of relationship with obesity: (+), factor related with greater childhood obesity; (-), factor related with decreased childhood obesity; (0), no relationship with childhood obesity.

BMI, body mass index; IAAT, cross-sectional area of intra-abdominal adipose tissue; NOx, nitrogen dioxide; PAHs, polycyclic aromatic hydrocarbons PM2.5, particulate matter <2.5 microns in diameter; PM10, particulate matter <10 microns in diameter; SAAT, cross-sectional area of subcutaneous abdominal adipose tissue; WC, waist circumference; WHR, waist-to-hip ratio.

The direction of relationship with obesity: (+), factor related with greater childhood obesity; (-), factor related with decreased childhood obesity; (0), no relationship with childhood obesity.

BMI, body mass index; IAAT, cross-sectional area of intra-abdominal adipose tissue; NOx, nitrogen dioxide; PAHs, polycyclic aromatic hydrocarbons PM2.5, particulate matter <2.5 microns in diameter; PM10, particulate matter <10 microns in diameter; SAAT, cross-sectional area of subcutaneous abdominal adipose tissue; WC, waist circumference; WHR, waist-to-hip ratio.

the USA, PM2.5 concentrations in infancy and at 8–15 years of age were positively associated with childhood obesity and BMI at 18 years of age.\(^{16,29}\) Another cross-sectional study from Spain supported this relationship in children aged 7–10 years.\(^{31}\) Meanwhile, 3 other cohort studies from the USA, Italy, and the Netherlands reported a null association between PM2.5/PM10 exposure and childhood obesity.\(^{16,27,32}\) In contrast, a negative association between PM10 exposure in infancy and subsequent
poor weight gain during toddlerhood was reported by a cohort study from Korea.33

Like prenatal smoking exposure, childhood tobacco smoke exposure is positively correlated with increased adolescent BMI.34 In particular, NOx exposure reportedly has a synergistic effect with tobacco smoke on increasing obesity risk.35 The relationship between postnatal PAH exposure and obesity development was similar to that between prenatal exposure and obesity development. A cross-sectional study in the USA reported a relatively strong positive correlation between urinary PAH levels and obesity parameters in children aged 6–11 years.35

Plausible mechanisms by which air pollution affects childhood obesity

1. **Physical inactivity**

Air pollution increases the likelihood of obesity by inducing sedentary behaviors. Exposure to air pollution can cause cardiorespiratory symptoms such as coughing, shortness of breath, and high blood pressure, impeding outdoor activity by impairing athletic performance.36,37 Air pollution alarms through various media also influence people’s decisions regarding physical activity.38

2. **Oxidative stress and systematic inflammation**

One of the most important mechanisms of interest is the systemic inflammatory reactions that occur through the stimulation of oxidative stress processes. Several animal and human studies demonstrated an increase in proinflammatory cytokines (e.g., interleukin-6 and tumor necrosis factor-\(\alpha\)) in the systemic circulation following inhalation exposure to diesel exhaust particles or PM.39-42 Oxidative stress and mitochondrial damage in adipose tissue caused by air pollutant exposure increase the differentiation of white adipocytes, which store extra energy in the form of triglycerides, and increase the differentiation of brown adipocytes, which release energy as heat.43,44 This change adversely affects the energy balance in adipose tissue, predisposing the person to obesity and metabolic abnormalities. Further, in utero exposure to air pollutants such as diesel exhausts increases the likelihood of obesity in offspring by causing fetal brain inflammation and a subsequent increase in appetite.45

3. **Hypothalamic-pituitary-adrenal axis**

Chronic psychological stress and the subsequent activation of the hypothalamic-pituitary-adrenal (HPA) axis is a well-known risk factor for obesity development and metabolic dysfunction. Recent studies have demonstrated that adrenocorticotropic hormone and glucocorticoid concentrations increase after the inhalation of ozone or PM in animal models. Therefore, chronic activation of the stress response system is also emerging as a possible mechanism of obesity following air pollution exposure.46

4. **Epigenetic modulation**

Epigenetic modulation might be a plausible mechanism, especially in cases of prenatal exposure to air pollution. Prenatal long-term exposure to air pollutants reported exerting epigenetic effects including alterations of DNA methylation, microRNAs, and noncoding RNAs and regulation of chromatin.47 These changes may cause the derangement of the mitochondrial machinery, which is closely related to the control of energy metabolism and inflammation. For instance, a recent study showed that in utero exposure to PAHs induced offspring obesity by hypomethylation of peroxisome proliferator-activated receptor-gamma and activation of various genes associated with adipogenesis in the offspring’s adipose tissue.48

Conclusions

Previous in vitro and in vivo studies indicated that air pollutants might act as obesogens by inducing physical inactivity and epigenetic modulation and promoting oxidative stress and HPA axis. The effects of air pollution on childhood obesity seem to vary according to pollutant type and components, exposed region and area, exposure measurement methods, and exposure duration. Further, exposure timing, observation duration, sex, and ethnicity may be important variables in the study of the effects of air pollution on obesity. Although longitudinal human studies on the possible effects of air pollution on the development of obesity are increasing, most focus on the effects of individual air pollutants, not the mixed effects of various air pollutants. Future large-scale and long-term follow-up studies considering all these factors are required to determine the effects of air pollution on childhood obesity.

Conflicts of interest

No potential conflict of interest relevant to this article was reported.

References

1. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017;390:2627-42.
2. Park YS, Lee DH, Choi JM, Kang YJ, Kim CH. Trend of obesity in school age children in Seoul over the past 23 years. Korean J Pediatr 2004;47:247-57.
3. Kumar S, Kelly AS. Review of childhood obesity: from epidemiology, etiology, and comorbidities to clinical assessment and treatment. Mayo Clin Proc 2017;92:251-65.
4. Zhang X, Zhao H, Chow WH, Bixby M, Durand C, Markham C, Zhang K. Population-based study of traffic-related air pollution and obesity in Mexican Americans. Obesity (Silver Spring) 2020;28:412-20.
5. World Health Organization. Air quality guidelines - global update 2005 [Internet]. Geneva (Switzerland): World Health Organization; c2020 [cited 2019 Dec 15]. Available from: https://www.who.int/phe/health_topics/outdoorair/outdoorair_ag ag/en/.
6. Ezez RA. Indoor and outdoor air pollution: tobacco smoke, moulds and diseases in infants and children. Int J Hyg Environ Health 2007;210:611-6.

7. World Health Organization. Burning Opportunity: clean household energy for health, sustainable development and the wellbeing of women and children. Geneva (Switzerland): World Health Organization, 2016.

8. WHO Collaborating Centre for Vulnerable Population and Environmental Health, Environmental Health Research Department, and National Institute of Environmental Research. Fine dust and our life [Internet]. WHO Collaborating Centres 2017 [cited 2017 Apr 5]. Available from: http://ecolibrary.me.go.kr/nier/search/DetailView.ax?cid=5671541.

9. Kim KH, Kabir E, Kabir S. A review on the human health impact of airborne particulate matter. Environ Int 2015;74:136-43.

10. Kral J, Anderson GB, Dominici F, Bell ML, Peng RD. Short-term exposure to particulate matter constituents and mortality in a national study of U.S. urban communities. Environ Health Perspect 2013;121:1148-53.

11. Brown JS, Gordon T, Price O, Ashgarhan B. Thoracic and respirable particle definitions for human health risk assessment. Part Fibre Toxicol 2013;10:12.

12. Fleisch AF, Aris IM, Rifas-Shiman SL, Coull BA, Luttmann-Gibson H, Koutrakis P et al. Prenatal exposure to traffic pollution and childhood body mass index trajectory. Front Endocrinol (Lausanne) 2019;9:771.

13. Fleisch AF, Luttmann-Gibson H, Perng W, Rifas-Shiman SL, Coull BA, Kloog I, et al. Prenatal and early life exposure to traffic pollution and cardiometabolic health in childhood. Pediatr Obes 2017;12:48-57.

14. Fleisch AF, Rifas-Shiman SL, Koutrakis P, Schwartz JD, Kloog I, Melly S, et al. Prenatal exposure to traffic pollution: associations with reduced fetal growth and rapid infant weight gain. Epidemiology 2015;26:43-50.

15. Fromeléus K, Oudin A, Malmqvist E. Traffic-related air pollution and childhood overweight: findings from a national cohort study. Environ Health Perspectives 2017;125:1229.

16. Kim JS, Alderete TL, Chen Z, Lurmann F, Rappaport E, Habre R, et al. Longitudinal associations of in utero and early life near-roadway air pollution with trajectories of childhood body mass index. Environ Health 2018;17:64.

17. Huang JV, Leung GM, Schooling CM. The association of air pollution with body mass index: evidence from Hong Kong’s “Children of 1997” birth cohort. Int J Obes (Lond) 2019;43:62-72.

18. Mao G, Nachman RM, Sun Q, Zhang X, Kohler K, Chen Z, et al. Individual and joint effects of early-life ambient exposure and maternal prepregnancy obesity on childhood overweight or obesity. Environ Health Perspectives 2017;125:067005.

19. Chiu YM, Hsu HL, Wilson A, Coull BA, Pardo MP, Baccarelli A, et al. Prenatal particulate air pollution exposure and body composition in urban preschool children: examining sensitive windows and sex-specific associations. Environ Res 2017;158:798-805.

20. Hawkins SS, Cole TJ, Law C; Millennium Cohort Study Child Health Group. An ecological systems approach to examining risk factors for early childhood overweight: findings from the UK Millennium Cohort Study. J Epidemiol Community Health 2009;63:147-53.

21. Wen X, Shenassa ED, Paradis AP. Maternal smoking, breastfeeding, and risk of childhood overweight: findings from a national cohort. Matern Child Health J 2013;17:746-55.

22. Dancaxe KN, Laplante DP, Fraser S, Brunet A, Ciampi A, Schmitz N, et al. Prenatal exposure to a natural disaster increases risk for obesity in 5½-year-old children. Pediatr Res 2012;71:126-31.

23. Rundell A, Hoepner L, Hassoun A, Oberfield S, Freyer G, Holmes D, et al. Association of childhood obesity with maternal exposure to ambient polycyclic aromatic hydrocarbons during pregnancy. Am J Epidemiol 2012;175:1163-72.

24. Rundell A, Gallager D, Herbstman J, Holmes D, Hassoun A, Oberfield S, et al. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and childhood growth trajectories from age 5 to 13 years. Environ Epidemiol 2019;3:344.

25. Jerrett M, McConnell R, Chang CC, Wolch J, Reynolds K, Lurmann F, et al. Automobile traffic around the home and attained body mass index: a longitudinal cohort study of children aged 10-18 years. Prev Med 2010;50 Suppl 1 (1):S30-8.

26. Jerrett M, McConnell R, Wolch J, Chang R, Lam C, Dunton G, et al. Traffic-related air pollution and obesity formation in children: a longitudinal, multilevel analysis. Environ Health 2014;13:49.

27. Annam O, Amiri S, Lutz RB, Crowley A, Monsivais P. The association between obesity, socio-economic status, and neighborhood environment: a multi-level analysis of Spokane public schools. J Community Health 2020;45:41-7.

28. McConnell R, Shen E, Gilliland FD, Jerrett M, Wolch J, Chang CC, et al. A longitudinal cohort study of body mass index and childhood exposure to secondhand tobacco smoke and air pollution: the Southern California Children's Health Study. Environ Health Perspect 2015;123:360-6.

29. Alderete TL, Habre R, Toledo-Corral CM, Berhane K, Chen Z, Lurmann FW, et al. Longitudinal associations between ambient air pollution with insulin sensitivity, β-cell function, and adiposity in Los Angeles Latino children. Diabetes 2017;66:1789-96.

30. Bloomsma LD, Wigge AH, Klompemaker JQ, Janssen NAH, Smit HA, Koppelman GH, et al. The associations of air pollution, traffic noise and green space with overweight throughout childhood: The PIAMA birth cohort study. Environ Res 2019;169:348-56.

31. de Bont J, Casas M, Barrera-Gómez J, Cirach M, Rivas I, Vali di, et al. Ambient air pollution and overweight and obesity in school-aged children in Barcelona, Spain. Environ Int 2019;125:58-64.

32. Fioravanti S, Cesaroni G, Badaloni C, Michelozzi P, Forastiere F, Porta D. Traffic-related air pollution and childhood obesity in an Italian birth cohort. Environ Res 2018;160:479-86.

33. Kim E, Park H, Park EA, Hong YC, Ha M, Kim HC, et al. Paticulate matter and early childhood body weight. Environ Int 2016;94:591-9.

34. McConnell R, Gilliland FD, Goran M, Allayee H, Hricko A, Mittelman S. Does near-roadway air pollution contribute to childhood obesity? Pediatr Obes 2016;11:1-3.

35. Scinicariello F, Ruser MC. Urban polycyclic aromatic hydrocarbons and childhood obesity: NHANES (2001-2006). Environ Health Perspect 2014;122:299-303.

36. Calkins S, Dales RE, Hebbeln C, Saravanabhavan G. The association between urinary phthalates and lung function. J Occup Environ Med 2014;56:376-81.

37. An R, Xiang X. Ambient fine particulate matter air pollution and leisure-time physical inactivity among US adults. Public Health 2015;129:1637-44.

38. Wen XJ, Balluz L, Mokdad A. Association between media alerts of air quality index and change of outdoor activity among adult asthma in six states, BRFS, 2005. J Community Health 2009;34:40-6.

39. Hougaard KS, Jensen KA, Nordly E, Taxvig C, Vogel U, Saeher AT, et al. Effects of prenatal exposure to diesel exhaust particles on postnatal development, behavior, genotoxicity and inflammation in mice. Part Fibre Toxicol 2008;5:3.

40. Becher R, Bucht A, Øvrevik J, Hongslø JK, Dahlman HJ, Samuelsen JT, et al. Involvement of NADPH oxidase and iNOS in rodent pulmonary effects of preterm exposure to diesel exhaust particles on postnatal growth and rapid infant weight gain. Epidemiology 2010;21:2331-78.

41. Park RJ, Cury DB, Wilson S, Willekens F, Crowther CI, Holand LJ, et al. Involvement of NADPH oxidase and iNOS in rodent pulmonary effects of preterm exposure to diesel exhaust particles on postnatal growth and rapid infant weight gain. Epidemiology 2010;21:2331-78.

42. van Eeden SF, Tan WC, Suwa T, Mukae H, Terashima T, Fuji T, et al. Cytokines involved in the systemic inflammatory response induced by exposure to particulate matter air pollutants (PM10). Am J Respir Crit Care Med 2001;164:826-30.

43. Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 2010;121:2331-78.

44. Xu Z, Xu X, Zhong M, Hotchkiss IP, Lewandowski RP, Wagner JG, et al. Ambient particulate air pollution induces oxidative stress and alterations of mitochondria and gene expression in brown and white adipose tissues. Part Fibre Toxicol 2011;8:29.

45. Lin Y, Li X, Zhang L, Zhang Y, Zhu H, Zhang Y, et al. Inhaled SiO2 nanoparticles blunt cold-exposure-induced WAT-browning and meta-
bolism activation in white and brown adipose tissue. Toxicol Res (Camb) 2016;5:1106-14.

45. Bolton JL, Smith SH, Huff NC, Gilmour MI, Foster WM, Auten RL, et al. Prenatal air pollution exposure induces neuroinflammation and predisposes offspring to weight gain in adulthood in a sex-specific manner. FASEB J 2012;26:4743-54.

46. Thomson EM. Neurobehavioral and metabolic impacts of inhaled pollutants: a role for the hypothalamic-pituitary-adrenal axis? Endocr Disrupt 2013;1:e27489.

47. Shukla A, Bunkar N, Kumar R, Bhargava A, Tiwari R, Chaudhury K, et al. Air pollution associated epigenetic modifications: transgenerational inheritance and underlying molecular mechanisms. Sci Total Environ 2019;656:760-77.

48. Yan Z, Zhang H, Maher C, Arteaga-Solis E, Champagne FA, Wu L, et al. Prenatal polycyclic aromatic hydrocarbon, adiposity, peroxisome proliferator-activated receptor (PPAR)γ methylation in offspring, grand-offspring mice. PLoS One 2014;9:e110706.

49. Sears CG, Mueller-Leonhard C, Wellenius GA, Chen A, Ryan P, Lanphear BP, et al. Early-life exposure to traffic-related air pollution and child anthropometry. Environ Epidemiol 2019;3:e061.

50. Rundle AG, Gallagher D, Herbstman JB, Goldsmith J, Holmes D, Hassoun A, et al. Prenatal exposure to airborne polycyclic aromatic hydrocarbons and childhood growth trajectories from age 5-14 years. Environ Res 2019;177:108595.

How to cite this article: Seo MY, Kim SH, Park MJ. Air pollution and childhood obesity. Clin Exp Pediatr 2020;63:382-8. https://doi.org/10.3345/cep.2020.00010