Necessary and sufficient conditions for a nonnegative matrix to be strongly R-positive

Jan M. Swart

August 16, 2021

Abstract

Using the Perron-Frobenius eigenfunction and eigenvalue, each finite irreducible nonnegative matrix A can be transformed into a probability kernel P. This was generalized by David Vere-Jones who gave necessary and sufficient conditions for a countably infinite irreducible nonnegative matrix A to be transformable into a recurrent probability kernel P, and showed uniqueness of P. Such A are called R-recurrent. Let us say that A is strongly R-positive if the return times of the Markov chain with kernel P have exponential moments of some positive order. Then it is known that strong R-positivity is equivalent to the property that lowering the value of finitely many entries of A lowers the spectral radius. This paper gives a short and largely self-contained proof of this fact.

MSC 2010. Primary: 60J45. Secondary: 60J10.

Keywords. Strong R-positivity, R-recurrence, geometric ergodicity, Perron-Frobenius theorem, countable Markov shift, pinning model.

Acknowledgement. Work sponsored by grant 16-15238S of the Czech Science Foundation (GA CR).

1 Introduction and main results

1.1 R-recurrence

A nonnegative matrix $A = (A(x, y))_{x, y \in S}$ indexed by a countable set S is called irreducible if for each $x, y \in S$ there exists an $n \geq 1$ such that $A^n(x, y) > 0$; it is moreover aperiodic if the greatest common divisor of $\{n \geq 1 : A^n(x, x) > 0\}$ is one for some, and hence for all $x \in S$. The classical Perron-Frobenius theorem \cite{Per07, Fro12} says that if A is an irreducible nonnegative matrix indexed by a finite set S, then it has a unique positive eigenfunction. More precisely, there exists a function $h : S \to (0, \infty)$, which is unique up to scalar multiples, and a unique constant $c > 0$, such that $Ah = ch$. The function h is called the Perron-Frobenius eigenfunction and c the Perron-Frobenius eigenvalue. We will be interested in generalizations of this theorem to countably infinite matrices.

Let A be an aperiodic irreducible nonnegative matrix indexed by a countable set S. A simple argument based on superadditivity \cite{Kin63}, shows that the limit

$$
\rho(A) := \lim_{n \to \infty} (A^n(x, x))^{1/n}
$$

exists in $(0, \infty]$ and does not depend on $x \in S$. If A is periodic, then $\rho(A)$ is defined in the same way except that in \eqref{eq:limit} n ranges only through those integers for which $A^n(x, x) > 0$.

\[\text{The Czech Academy of Sciences, Institute of Information Theory and Automation, Pod vodárenskou věží 4, 18200 Praha 8, Czech Republic; swart@utia.cas.cz}\]
Because of its interpretation in the finite case, the quantity $\rho(A)$ is called the spectral radius of A. By definition, A is called \textit{R-recurrent} if $\rho(A) < \infty$ and
\begin{equation}
\sum_{n=1}^{\infty} \rho(A)^{-n} A^n(x, x) = \infty
\end{equation}
for some, and hence for all $x \in S$. We observe that a function $h : S \to (0, \infty)$ is an eigenfunction of A with eigenvalue $c > 0$ if and only if
\begin{equation}
P(x, y) := c^{-1} h(x)^{-1} A(x, y) h(y) \quad (x, y \in S)
\end{equation}
defines a probability kernel on S. As will be shown in Appendix A.1 below, the following theorem follows easily from the work of Vere-Jones [Ver62, Ver67].

\textbf{Theorem 1 (R-recurrent matrices)} Let A be an R-recurrent irreducible nonnegative matrix indexed by a countable set S. Then there exists a function $h : S \to (0, \infty)$, which is unique up to scalar multiples, and a unique constant $c > 0$, such that (1.3) defines a recurrent probability kernel P. Moreover, $c = \rho(A)$.

Since finite matrices are R-recurrent (this is proved in [Ver67, Sect. 7] and will also follow from Theorem 1 below), the classical Perron-Frobenius theorem is implied by Theorem 1. If S is finite, then $\rho(A) = \sup \{ |\lambda| : \lambda \in \sigma(A) \}$, where $\sigma(A)$ denotes the set of all complex eigenvalues of A; by contrast, if S is infinite, then it often happens that A has positive eigenfunctions with eigenvalues $c > \rho(A)$ [Ver63]. For such eigenfunctions, the probability kernel in (1.3) is transient. Note that in view of this, the term “spectral radius” for $\rho(A)$ is somewhat of a misnomer if A is infinite, but we retain it for historical reasons. The following theorem, first proved in [Ver67, Thm 4.1], shows that for R-recurrent matrices, there is only one positive eigenfunction associated with the eigenvalue $\rho(A)$, and all other positive eigenfunctions (if there are any) have eigenvalues $c > \rho(A)$.

\textbf{Theorem 2 (Positive eigenfunction)} Let A be an R-recurrent irreducible nonnegative matrix indexed by a countable set S. Then there exists a function $h : S \to (0, \infty)$, which is unique up to scalar multiples, such that such that $A h = \rho(A) h$. Moreover, if some function $f : S \to [0, \infty)$ satisfies $A f \leq \rho(A) f$, then $f = \lambda h$ for some $\lambda \geq 0$.

It should be noted that the approach based on R-recurrence is just one of many different ways to generalize the Perron-Frobenius theorem to infinite dimensions. For a more functional analytic approach, see, e.g., [KR48, KR50, Kar59, Sch74, Zer87]. The theory of R-recurrence is treated in the books [Sen81, Woe00] and generalized to uncountable spaces in [Num84].

In view of Theorems 1 and 2, it is clearly very useful to know of a given nonnegative matrix that it is R-recurrent. Unfortunately, it is often not feasible to check this directly from the definition (1.2), since this requires rather subtle knowledge about the asymptotics of the powers of A, while often it is not even possible to obtain the spectral radius $\rho(A)$ in closed form. In the next section, we will show that for a subclass of the R-recurrent matrices, more robust methods are available.

1.2 Strong R-positivity

Let $X = (X_k)_{k \geq 0}$ be a Markov chain with countable state space S and transition kernel P, and let $\sigma_x := \inf \{ k > 0 : X_k = x \}$ denote its first return time to a point $x \in S$. Let E_x denote the law of X started in $X_0 = x$ and let E_x^r denote expectation with respect to P_x.

\footnote{Originally, the letter R was mathematical notation for $1/\rho(A)$. For us the ‘R’ in the words R-recurrence, R-positivity etc. will just be part of the name and not refer to any mathematical constant.}
Recall that by definition, x is recurrent if $\mathbb{P}^x[\sigma_x < \infty] = 1$ and x is positive recurrent if $\mathbb{E}^x[\sigma_x] < \infty$. We will say that x is strongly positive recurrent\footnote{This should be distinguished from the closely related, but different concepts of strong ergodicity and strong recurrence, the latter having been defined in [Spi90].} if $\mathbb{E}^x[e^{\varepsilon\sigma_x}] < \infty$ for some $\varepsilon > 0$. It is well-known that recurrence and positive recurrence are class properties. Kendall [Ken59] proved that the same is true for strong positive recurrence, i.e., if P is irreducible, then \{ $x \in S : x$ is strongly positive recurrent $\} \text{ is either } S \text{ or } \emptyset$. For aperiodic chains, he moreover proved that strong positive recurrence is equivalent to geometric ergodicity, in the following sense. In Kendall’s formulation, the constant ε in point (iii) was allowed to depend on x,y. Vere-Jones [Ver62] showed that it can be chosen uniformly.

Proposition 3 (Geometric ergodicity) Let P be the transition kernel of an irreducible, aperiodic, positive recurrent Markov chain with countable state space S, and let π denote its invariant law. Then the following statements are equivalent.

(i) P is strongly positive recurrent.

(ii) There exist $x \in S$, $\varepsilon > 0$, and $M < \infty$ such that $|P^n(x,x) - \pi(x)| \leq Me^{-\varepsilon n}$ for all $n \geq 0$.

(iii) There exist $\varepsilon > 0$ and $M_{x,y} < \infty$ such that $|P^n(x,y) - \pi(y)| \leq M_{x,y}e^{-\varepsilon n}$ for all $n \geq 0$ and $x,y \in S$.

An R-recurrent irreducible nonnegative matrix A is called R-positive if the unique recurrent probability kernel P from Theorem III is positive recurrent. We will say that A is strongly R-positive if P is strongly positive recurrent. (This is called geometrically R-recurrent in [Num84].) An irreducible nonnegative matrix A is called R-transient if it is not R-recurrent and R-null recurrent if it is R-recurrent but not R-positive. We will say that A is weakly R-positive if it is R-positive but not strongly so. The main aim of the present paper is to give a short and reasonably self-contained proof of the following theorem, that gives necessary and sufficient conditions for strong R-positivity.

Theorem 4 (Strong R-positivity) Let A be an irreducible nonnegative matrix indexed by a countable set S and assume that $\rho(A) < \infty$. Let $B \leq A$ be another nonnegative matrix such that $B(x,y) > 0$ if and only if $A(x,y) > 0$ ($x,y \in S$), and $B \neq A$. Then:

(a) If A is strongly R-positive, then $\rho(B) < \rho(A)$.

(b) If $\rho(B) < \rho(A)$ and the set \{($x,y) \in S^2 : A(x,y) \neq B(x,y)$\} is finite, then A is strongly R-positive.

Theorem 4 says that a nonnegative matrix is strongly R-positive if and only if lowering the value of finitely many entries lowers the spectral radius. In view of this, to prove strong R-positivity, it suffices to prove sufficiently sharp upper and lower bounds on the spectral radii of two nonnegative matrices, which is in general much easier than determining the exact asymptotics as in [172].

For R-transience, a complementary statement holds. The following theorem says that a nonnegative matrix is R-transitive if and only if it is possible to increase the value of finitely many entries without increasing the spectral radius.

Theorem 5 (R-transience) Let $A \leq B$ be irreducible nonnegative matrices indexed by a countable set S and assume that $B \neq A$ and $\rho(B) < \infty$. Then:

(a) If A is R-transient and \{($x,y) \in S^2 : A(x,y) \neq B(x,y)$\} is finite, then $\rho(A + \varepsilon(B-A)) = \rho(A)$ for some $\varepsilon > 0$.

(b) If $\rho(B) = \rho(A)$, then A is R-transient.
1.3 Discussion

For nonnegative matrices A, B, let us write $A \asymp B$ if there exists a constant $C \in (0, \infty)$ such that $C^{-1}A \leq B \leq CA$, and let us say that A, B are finite modifications of each other if $A \asymp B$ and $\{(x, y) \in S^2 : A(x, y) \neq B(x, y)\}$ is finite. Theorem 5 says that an irreducible nonnegative matrix A is strongly R-positive if and only if $\rho(B) < \rho(A)$ for some, and hence for all finite modifications B of A such that $B \neq A$. In practice, when the aim is to prove strong R-positivity for A, it is best to choose B as small as possible. One can go one step further and define

$$\rho_\infty(A) := \inf \{\rho(B) : B \leq A, \ B \text{ is a finite modification of } A\}. \quad (1.4)$$

Then Theorem 4 implies that A is stongly R-positive if and only if $\rho_\infty(A) < \rho(A)$. We can describe this condition in words by saying that under a Gibbs measure with transfer matrix A, paths far from the origin carry less mass, on an exponential scale, than paths near the origin.

The quantity $\rho_\infty(A)$ has been studied in [MS95, Ig06]. In the latter paper, it is called the essential spectral radius.

Theorem 4 has an interesting history. If A, B are nonnegative matrices indexed by countable sets S, T, respectively, then let us say that B is a submatrix of A if $T \subset S$ and $B_{ij} \in \{0, A_{ij}\}$ for all $i, j \in T$, i.e., B is obtained by removing some rows and corresponding columns from A and by replacing some entries of A by zeros. If moreover $B \neq A$, then we call B a proper submatrix. The following is [GS98, Thm 3.15].

Theorem 6 (Characterization in terms of submatrices) An irreducible nonnegative matrix A indexed by a countable set is strongly R-positive if and only if $\rho(B) < \rho(A)$ for all irreducible proper submatrices B of A.

For matrices with values in $\{0, 1\}$, this was proved by Salama [Sal88]. Ruelle [Rue03] pointed out mistakes in Salama’s proofs, fixed them, and extended his results. The proof given in [GS98] differs from the previous proofs, but it is claimed the original proof can be modified to obtain the general result. If the aim is to prove strong R-positivity for A, then a drawback of Theorem 6 is that one has to check that $\rho(B) < \rho(A)$ for all irreducible proper submatrices B of A. Closer in spirit to Theorem 4 is [GS98, Remark 3.16], which states that an irreducible nonnegative matrix A is strongly R-positive if and only if lowering the value of a single entry A_{ij} lowers the spectral radius. Even though this does not immediately imply the result for finite modifications, it shows that results in the spirit of Theorem 4 and the methods needed to prove it, are known.

It is interesting that while the theory of R-recurrence originally rose from the field of probability theory, most of the recent developments come from ergodic theory, and more specifically from the theory of countable Markov shifts. A good modern introduction to this field can be found in [Sar15]. Much of the theory of R-recurrence can be generalized from nonnegative matrices to the more general Ruelle operators. In this context, strong R-positivity corresponds to positive recurrence with the spectral gap property, for which the Discriminant Theorem [Sar15, Thm 6.7] gives necessary and sufficient conditions. Theorems 4 and 5 are also close in spirit to [CS09, Thms 2.2 and 2.3].

One possible application of Theorem 4 in the study of quasi-stationary laws. The usefulness of R-positivity in the study of quasi-stationary laws has been noticed long ago [SV06, Thm 3.2]; see also [And91, Prop 5.2.10 en 5.2.11] for the continuous-time case.

Another application of Theorems 4 and 5 is in the study of pinning models. In fact, using these theorems, it is easy to prove that for pinning models in the localized regime, return times have exponential moments of some positive order. Moreover, at the critical point separating the localized and delocalized regimes, the model is either null recurrent or weakly positive recurrent. These facts have been noticed before, see [CGZ06, Thm 4.1 and Prop. 4.2] and
such that $P_h \equiv h$. Theorem 1 contains some preliminary definitions and lemmas. Section 2.2 gives a characterization of forms of R-recurrence in terms of a logarithmic moment generating function. Using this, Theorems 4 and 5 are then proved in Sections 2.3 and 2.4 respectively. In Appendix A.1 it is explained how Theorem 1 follows from the work of Vere-Jones. Appendix A.2 contains some general facts about logarithmic moment generating functions.
2 Proofs

2.1 Excursions away from subgraphs

Given a nonnegative matrix A indexed by a countable set S, we define a directed graph $G = (S, E)$ with vertex set S and set of directed edges E given by $E := \{(x, y) \in S^2 : A(x, y) > 0\}$. Alternatively, we denote an edge by $e = (x, y)$ and call $e^- := x$ and $e^+ := y$ its starting vertex and endvertex, respectively. A walk in G is a function $\omega : \{0, \ldots, n\} \to S$ with $n \geq 0$ such that

$$\bar{\omega}_k := (\omega_{k-1}, \omega_k) \in E \quad (1 \leq k \leq n).$$

We call $\ell_{\omega} := n \geq 0$ the length of ω and we call $\omega^- := \omega_0$ and $\omega^+ := \omega_n$ its starting vertex and endvertex. We can, and sometimes will, naturally identify walks of length zero and one with vertices and edges, respectively. We let $\Omega = \Omega(G)$ denote the space of all walks in G and write

$$\Omega^\ell := \{\omega \in \Omega : \ell_{\omega} = n\} \quad \text{and} \quad \Omega_{x,y} := \{\omega \in \Omega : \omega^- = x, \omega^+ = y\}$$

and $\Omega^n_{x,y} := \Omega^n \cap \Omega_{x,y}$. We observe that

$$A^n(x, y) = \sum_{\omega \in \Omega^n_{x,y}} A(\omega) \quad \text{with} \quad A(\omega) := \prod_{k=1}^{\ell_{\omega}} A(\omega_{k-1}, \omega_k).$$

This formula also holds for $n = 0$ provided we define the empty product as 1.

If $S' \subset S$ is a subset of vertices, then an excursion away from S' is a walk $\omega \in \Omega$ of length $\ell_{\omega} \geq 1$ such that $\omega^+ \in S'$ and $\omega_k \notin S'$ for all $0 < k < \ell_{\omega}$. We denote the set of all excursions away from S' by $\hat{\Omega}(S')$. We sometimes view a graph as the disjoint union of its vertex and edge sets, $G = S \cup E$. A subgraph of G is then a set $F \subset G$ such that $e^\pm \in S \cap F$ for all $e \in E \cap F$. Extending our earlier definition, an excursion away from F is an element $\omega \in \hat{\Omega}(F \cap S)$ such that moreover $\omega \notin F \cap E$, where we naturally identify edges with walks of length one. We denote the set of all excursions away from F by $\hat{\Omega}(F)$ and write $\hat{\Omega}_{x,y}(F) := \hat{\Omega}(F \cap S \cap \Omega^n_{x,y})$, $\hat{\Omega}^n(F) := \hat{\Omega}(F) \cap \Omega^n$, etc.

For each subgraph F of G and $x, y \in S \cap F$, we define a moment generating function $\phi^{F}_{x,y}$ and logarithmic moment generating function $\psi^{F}_{x,y}$ by

$$\phi^{F}_{x,y}(\lambda) := \sum_{\omega \in \hat{\Omega}_{x,y}(F)} e^{\lambda_{\omega}} A(\omega) \quad \text{and} \quad \psi^{F}_{x,y}(\lambda) := \log \phi^{F}_{x,y}(\lambda) \quad (\lambda \in \mathbb{R}).$$

Here $\phi^{F}_{x,y}$ and $\psi^{F}_{x,y}$ may be ∞ for some values of λ; in addition, $\psi^{F}_{x,y}(\lambda) := -\infty$ if $\phi^{F}_{x,y}(\lambda) = 0$. The following lemma lists some elementary properties of $\psi^{F}_{x,y}$.

Lemma 9 (Logarithmic moment generating functions) Assume that A is irreducible and $\rho(A) < \infty$. Let F be a subgraph of G, let $x, y \in S \cap F$, and set

$$\lambda_+ = \lambda^{F}_{x,y,+} := \sup\{\lambda \in \mathbb{R} : \psi^{F}_{x,y}(\lambda) < \infty\},$$

$$\lambda_* = \lambda^{F}_{x,y,*} := \sup\{\lambda \in \mathbb{R} : \psi^{F}_{x,y}(\lambda) < 0\}.$$

Then either $\psi^{F}_{x,y} \equiv -\infty$ or:

(i) $\psi^{F}_{x,y}$ is convex.

(ii) $\psi^{F}_{x,y}$ is lower semi-continuous.

(iii) $-\infty < \lambda_* < \infty$ and $\lambda_* \leq \lambda_+ \leq \infty$.

(iv) $\psi_{x,y}^F$ is infinitely differentiable on $(-\infty, \lambda_+)$.
(v) $\psi_{x,y}^F$ is strictly increasing on $(-\infty, \lambda_+)$.
(vi) $\lim_{\lambda \to \pm \infty} \psi_{x,y}^F(\lambda) = \pm \infty$.

Proof If $\mathcal{A}(\omega) = 0$ for all $\omega \in \hat{\Omega}_{x,y}(F)$, then $\psi_{x,y}^F \equiv -\infty$, while otherwise $\psi_{x,y}^F(\lambda) > -\infty$ for all $\lambda \in \mathbb{R}$. Clearly, $\psi_{x,y}^F(\lambda)$ is nondecreasing as a function of λ. Since

$$\phi_{x,y}^F(\lambda) = \sum_{k=0}^{\infty} \sum_{\omega \in \hat{\Omega}_{x,y}^k(F)} e^{\lambda k} \mathcal{A}(\omega) \leq \sum_{k=0}^{\infty} \sum_{\omega \in \hat{\Omega}_{x,y}^k} e^{\lambda k} \mathcal{A}(\omega) = \sum_{k=0}^{\infty} e^{\lambda k} A(x,y), \quad (2.6)$$

which by (1.1) is finite for $\lambda < -\log \rho(A)$, we see that $-\infty < -\log \rho(A) \leq \lambda_+$. Properties (i)–(iv), except for the fact that $-\infty < \lambda_+ < \infty$, now follow from general properties of logarithmic moment generating functions, see Lemma 17 in the appendix. Property (vi) follows by monotone convergence and this implies $-\infty < \lambda_+ < \infty$. Since excursions have length ≥ 1, formula (A.6) from Lemma 17 moreover implies property (v).

The following two lemmas allow us to prove properties of $\phi_{x,y}^F$ for finite subgraphs F by induction on the number of vertices and edges.

Lemma 10 (Removal of an edge) Let A be a nonnegative matrix, let $G = (S, E)$ be its associated graph, and let F be a subgraph of G. Let $e \in F \cap E$ and let $F' := F \setminus \{e\}$. Then

$$\phi_{x,y}^F(\lambda) = \begin{cases}
\phi_{x,y}^F(\lambda) + e^\lambda A(x,y) & \text{if } e = (x,y), \\
\phi_{x,y}^F(\lambda) & \text{otherwise}
\end{cases} \quad (\lambda \in \mathbb{R}). \quad (2.7)$$

Proof This is immediate from the definition of the moment generating function in (2.4) and the fact that

$$\hat{\Omega}_{x,y}(F') = \begin{cases}
\hat{\Omega}_{x,y}(F) \cup \{e\} & \text{if } e = (x,y), \\
\hat{\Omega}_{x,y}(F') & \text{otherwise},
\end{cases} \quad (2.8)$$

where we identify e with the walk of length 1 that jumps through e.

Lemma 11 (Removal of an isolated vertex) Let A be a nonnegative matrix, let $G = (S, E)$ be its associated graph, and let F be a subgraph of G. Let $z \in F \cap S$ be a vertex of F. Assume that no edges in $F \cap E$ start or end at z and hence $F' := F \setminus \{z\}$ is a subgraph of G. Then

$$\phi_{x,y}^{F'}(\lambda) = \phi_{x,y}^F(\lambda) + \sum_{k=0}^{\infty} \phi_{x,z}^F(\lambda) \phi_{z,z}^F(\lambda) k \phi_{z,y}^F(\lambda) \quad (x,y \in F' \cap S, \lambda \in \mathbb{R}). \quad (2.9)$$

Proof Distinguishing excursions away from F' according to how often they visit the vertex z, we have

$$\phi_{x,y}^{F'}(\lambda) = e^{\lambda \omega_{x,y}} A(\omega_{x,y}) + \sum_{k=0}^{\infty} \sum_{\omega_{x,z}} \sum_{\omega_{z,y}} \cdots \sum_{\omega_{z_z}} e^{\lambda (\ell_{\omega_{x,z}} + \ell_{\omega_{z,y}} + \ell_{\omega_{z_z}} + \cdots + \ell_{\omega_{z_z}})} A(\omega_{x,z}) A(\omega_{z,y}) A(\omega_{z_z}) \cdots A(\omega_{z_z}), \quad (2.10)$$

where we sum over $\omega_{x,y} \in \hat{\Omega}_{x,y}(F)$ etc. Rewriting gives

$$\phi_{x,y}^{F'}(\lambda) = e^{\lambda \omega_{x,y}} A(\omega_{x,y}) + \left(\sum_{\omega_{x,z}} e^{\lambda \ell_{\omega_{x,z}} A(\omega_{x,z})} \right) \left(\sum_{\omega_{z,y}} e^{\lambda \ell_{\omega_{z,y}} A(\omega_{z,y})} \right) \sum_{k=0}^{\infty} \left(\sum_{\omega_{z_z}} e^{\lambda \ell_{\omega_{z_z}} A(\omega_{z_z})} \right)^k, \quad (2.11)$$

which is the formula in the lemma.

7
2.2 Excursions away from a single point

Let A be a nonnegative matrix with index set S and let $G = (S, E)$ be its associated directed graph. For $z \in S$, we let

$$\psi_z := \psi_{\{z\}}^{\{z\}}, \quad \lambda_{z,+} := \lambda_{\{z\},z,+}^{\{z\}}, \quad \text{and} \quad \lambda_{z,*} := \lambda_{\{z\},z,*}^{\{z\}},$$

(2.12)
denote the logarithmic moment generating function defined in (2.4) and the constants from (2.5) for the subgraph $F = \{z\}$ which consists of the vertex z and no edges. We also write $\hat{\Omega}_z := \hat{\Omega}_{z,z}(\{z\})$ for the space of all excursions away from z. The following proposition links forms of R-recurrence to the shape of ψ_z.

Proposition 12 (Forms of R-recurrence) Assume that A is irreducible with $\rho(A) < \infty$, and let $z \in S$ be any reference point. Then

(a) $\lambda_{z,*} = -\log \rho(A) =: \lambda_*.$

(b) One has $\psi_z(\lambda_*) < 0$ if A is R-transient and $\psi_z(\lambda_*) = 0$ if A is R-recurrent.

(c) A is R-positive if and only if the left derivative of ψ_z at λ_* is finite.

(d) A is strongly R-positive if and only if $\lambda_* < \lambda_{z,+}$.

To prove Proposition 12 we need one preparatory definition and lemma. Given a nonnegative matrix A, for each $\lambda \in \mathbb{R}$, we define a Green’s function $G_\lambda(x, y)$ by

$$G_\lambda(x, y) := \sum_{k=0}^{\infty} e^{\lambda k} A^k(x, y), \quad (x, y \in S),$$

(2.13)
which may be infinite for some values of λ. If A is irreducible, then it is known that [Ver67, Thm A]

$$G_\lambda(x, y) < \infty \text{ for } \lambda < -\log \rho(A) \quad \text{and} \quad G_\lambda(x, y) = \infty \text{ for } \lambda > -\log \rho(A)$$

(2.14)
for all $x, y \in S$. The following lemma makes a link between the Green’s function and ψ_z.

Lemma 13 (Value on the diagonal) One has

$$G_\lambda(z, z) = \begin{cases} (1 - e^{\psi_z(\lambda)})^{-1} & \text{if } \psi_z(\lambda) < 0, \\ \infty & \text{otherwise.} \end{cases}$$

(2.15)

Proof Since each $\omega \in \Omega_{z,z}$ can be written as the concatenation of $m \geq 0$ excursions $\omega^{(i)} \in \hat{\Omega}_z$, using the convention that a product of $m = 0$ factors is 1, we see that

$$\sum_{n=0}^{\infty} e^{\lambda n} A^n(z, z) = \sum_{\omega \in \Omega_{z,z}} e^{\lambda \ell_\omega} A(\omega) = \sum_{\omega \in \Omega_{z,z}} e^{\lambda \ell_\omega} A(\omega)$$

$$= \sum_{m=0}^{\infty} \prod_{i=1}^{m} \left(\sum_{\omega^{(i)} \in \hat{\Omega}_z} e^{\lambda \ell_{\omega^{(i)}}} A(\omega^{(i)}) \right) = \sum_{m=0}^{\infty} e^{m\psi_z(\lambda)},$$

which yields (2.15).

Proof of Proposition 12 Part (a) follows from formula (2.14) and Lemma 13. If A is R-transient, then it is immediate from the definition of R-transience (1.2) that $G_{\lambda_*}(z, z) < \infty$ and hence by Lemma 13 $\psi_z(\lambda_*) < 0$.
On the other hand, if A is R-recurrent, then by Theorem 2 there exists a function $h : S \to (0, \infty)$, which is unique up to scalar multiples, such that such that $Ah = \rho(A)h$. Setting

$$P(x, y) := \rho(A)^{-1} h(x)^{-1} A(x, y) h(y) \quad (x, y \in S) \quad (2.16)$$

now defines a probability kernel. Since $P^n(x, x) = \rho(A)^{-n} A^n(x, x)$, we see from (1.2) that $\sum_n P^n(x, x) = \infty (x \in S)$, which proves that P is recurrent. The Markov chain with transition kernel P makes i.i.d. excursions away from z with common law

$$\mathcal{P}(\omega) = \prod_{k=1}^{\ell_\omega} P(\omega_{k-1}, \omega_k) = \rho(A)^{-\ell_\omega} A(\omega) = e^{\lambda_s \ell_\omega} A(\omega) \quad (\omega \in \hat{\Omega}_z). \quad (2.17)$$

In particular, since P is recurrent,

$$1 = \sum_{\omega \in \hat{\Omega}_z} \mathcal{P}(\omega) = \sum_{\omega \in \hat{\Omega}_z} e^{\lambda_s \ell_\omega} A(\omega) = e^{\psi_z(\lambda_s)}. \quad (2.18)$$

This shows that $\psi_z(\lambda_s) = 0$, completing the proof of part (b).

It follows from Lemmas 17 and 18 in the appendix that the left derivative of ψ_z at λ_s is the mean length of excursions away from z under the law in (2.17), proving part (c). Moreover,

$$\sum_{\omega \in \hat{\Omega}_z} \mathcal{P}(\omega) e^{\varepsilon \ell_\omega} = \sum_{\omega \in \hat{\Omega}_z} e^{(\lambda_s + \varepsilon) \ell_\omega} A(\omega) = \psi_z(\lambda_s + \varepsilon) \quad (2.19)$$

is finite for $\varepsilon > 0$ sufficiently small if and only if $\lambda_s < \lambda_{z,+}$, proving part (d).

\[\hfill\]

2.3 Characterization of strong R-recurrence

In this section, we prove Theorem 4. We start with two preparatory results.

Lemma 14 (Excessive functions) Let A be an irreducible nonnegative matrix indexed by a countable set S. Then there exists a function $h : S \to (0, \infty)$ such that $Ah \leq \rho(A)h$.

Proof We can without loss of generality assume that $\rho(A) < \infty$. If A is R-recurrent, then the statement follows from Theorem 2. If A is R-transient, then $G_{\lambda_s}(x, x) < \infty$ for each $x \in S$ by Proposition 12 (b) and Lemma 13. A simple argument based on irreducibility shows that $G_{\lambda_s}(x, y) < \infty$ for each $x, y \in S$. Since

$$AG_{\lambda_s}(x, z) = \sum_{k=0}^{\infty} e^{\lambda_s k} A^{k+1}(x, z) = e^{-\lambda_s} G_{\lambda_s}(x, z) - 1_{\{x=z\}} = \rho(A)G_{\lambda_s}(x, z) - 1_{\{x=z\}}, \quad (2.20)$$

setting $h(x) := G_{\lambda_s}(x, z) (x \in S)$, where $z \in S$ is any reference point, now proves the claim.

Proposition 15 (Exponential moments of excursions) Let P be an irreducible subprobability kernel on a countable set S. Let $G = (S, E)$ be the graph associated with P and for any subgraph $F \subseteq G$, let $\lambda_{x,y,+}^F$ be defined in terms of P as in (2.4). Then, if

$$\lambda_{x,y,+}^F > 0 \text{ for all } x, y \in F \cap S \quad (2.21)$$

holds for some finite nonempty subgraph F of G, it holds for all such subgraphs.
Proof: We need to show that if F, F' are finite nonempty subgraphs of G, then \[(2.21) \] holds for F if and only if it holds for F'. It suffices to consider only the following two cases: I. $F' = F \setminus \{ e \}$ where $e \in F \cap E$ is some edge in F, and II. $F' = F \setminus \{ z \}$ where $z \in F \cap S$ is an isolated vertex in F. By Lemma 10 removing an edge does not change the value of $\lambda_{x,y,+}^F$ for any $x, y \in F \cap S$, so case I is easy.

In case II, we first prove that if \[(2.21) \] holds for F, then it also holds for F'. We distinguish two subcases: II.a: there exists an $\omega \in \hat{\Omega}_{x,y}(F')$ that passes through z, and II.b: no such ω exists. In case II.b,

$$\lambda_{x,y,+}^{F'} = \lambda_{x,y,+}^F,$$ \hspace{1cm} (2.22)

so this case is trivial. In case II.a, Lemma 11 tells us that

$$\lambda_{x,y,+}^{F'} = \lambda_{x,y,+}^F \land \lambda_{x,z,+}^F \land \lambda_{z,y,+}^F \land \lambda_{z,z,+}^F.$$ \hspace{1cm} (2.23)

We claim that

$$\lambda_{x,z,+}^F > 0 \quad \text{if and only if} \quad \lambda_{x,z,+}^F > 0.$$ \hspace{1cm} (2.24)

To see this, we observe that $\sum_{\omega \in \hat{\Omega}_{x,z}^F} P(\omega)$ is the probability that the Markov chain with transition kernel P started in z returns to z before visiting any point of F' or being killed. Since there exists an $\omega \in \hat{\Omega}_{x,y}(F')$ that passes through z, this probability is < 1 and hence

$$\psi_{x,z}^F(0) = \log \left(\sum_{\omega \in \hat{\Omega}_{x,z}^F} P(\omega) \right) < 0.$$

By Lemma 9 (i) and (ii), $\psi_{x,z}^F$ is continuous on $(-\infty, \lambda_{x,z,+}^F]$, so if $\psi_{x,z}^F(\lambda) < 0$ for some $\lambda > 0$ then also $\psi_{x,z}^F(\lambda) < 0$ for some $\lambda > 0$, proving \[(2.21) \] Combining \[(2.23) \] and \[(2.24) \], we see that if \[(2.21) \] holds for F, then it also holds for F'.

We next show that if \[(2.21) \] does not hold for F, then neither does it for F'. We consider four cases: (i) $\lambda_{x,y,+}^F \leq 0$ for some $x, y \in F' \cap S$, (ii) $\lambda_{x,z,+}^F \leq 0$ for some $x \in F' \cap S$, (iii) $\lambda_{z,y,+}^F \leq 0$ for some $y \in F' \cap S$, and (iv) $\lambda_{z,z,+}^F \leq 0$. In case (i), formulas \[(2.22) \] and \[(2.23) \] immediately show that $\lambda_{x,y}^F \leq 0$. In case (ii), by irreducibility, we can find some $y \in F'$ and $\omega \in \hat{\Omega}_{x,y}(F)$; then we are in case II.a and \[(2.23) \] implies that $\lambda_{x,y}^F \leq 0$. Case (iii) is similar to case (ii). In case (iv), by irreducibility we can find $x, y \in F'$ and an $\omega \in \hat{\Omega}_{x,y}(F')$ that passes through z, so \[(2.23) \] and \[(2.24) \] imply that $\lambda_{x,y}^F \leq 0$.

\textbf{Proof of Theorem 4} Pick any reference vertex $z \in S$ and let ψ_z be the logarithmic moment generating function of A, as defined in \[(2.3) \] and \[(2.12) \]. Let $\lambda_{z,+}$ and $\lambda_{z,+}$ be defined as in \[(2.5) \] and \[(2.12) \] and recall from Proposition 12 (a) that $\lambda_{z,+} = \lambda_z := - \log \rho(A)$. Define ψ_z', $\lambda_{z,+}'$, and $\lambda_{z,+}'$ in the same way for B.

It is immediately clear from the definition of ψ_z and irreducibility that $B \neq A$ implies that $\psi_z'(\lambda) < \psi_z'(\lambda)$ for all λ such that $\psi_z'(\lambda) < \infty$. Since A is strongly R-positive, Proposition 12 (d) implies that $\lambda_z < \lambda_{z,+}$. It follows that $\psi_z'(\lambda_z) < \psi_z(\lambda_z) = 0$ while $\lambda_{z,+}' \geq \lambda_{z,+} > \lambda_z$, so by the continuity of ψ_z' on $(-\infty, \lambda_{z,+}']$ we have

$$- \log \rho(B) = \lambda_z' = \sup \{ \lambda \in \mathbb{R} : \psi_z'(\lambda) < 0 \} > \lambda_z = - \log \rho(A),$$

which shows that $\rho(B) < \rho(A)$.

To prove part (b), we will show that if $\{(x, y) \in S^2 : A(x, y) \neq B(x, y)\}$ is finite and A is not strongly R-positive, then $\rho(B) = \rho(A)$. By Lemma 14 there exists a function $h : S \rightarrow (0, \infty)$ such that $Ah \leq \rho(A)h$. We use this function to define subprobability kernels P and P' by

$$P(x, y) := \rho(A)^{-1} h(x)^{-1} A(x, y) h(y), \quad P'(x, y) := \rho(A)^{-1} h(x)^{-1} B(x, y) h(y), \quad (x, y \in S).$$ \hspace{1cm} (2.25)
Since $P^n(x,x) = \rho(A)^{-n} A^n(x,x)$, we see that $\rho(P) = 1$, and likewise $\rho(P') = \rho(A)^{-1} \rho(B)$. Thus, to prove that $\rho(B) = \rho(A)$, it suffices to prove that $\rho(P') = 1$.

Fix any reference point $z \in S$ and from now on, let ψ_z denote the logarithmic moment generating function of P (and not of A as before), let $\lambda_{z,+}$ and $\lambda_{z,*}$ be as in (2.3), and let ψ'_z, $\lambda'_{z,+}$, and $\lambda'_{z,*}$ be the same objects defined for P'. By Proposition 12 (a), $\lambda_{z,*} = \lambda_z := -\log \rho(P) = 0$ and $\lambda'_{z,*} := -\log \rho(P')$, so we need to show that $\lambda'_{z,*} = 0$.

Let us say that two nonnegative matrices are equivalent if they are related as in (1.3) for some function $h : S \to (0, \infty)$ and constant $c > 0$. Then, in the light of Theorem 1 a nonnegative matrix A is strongly R-positive if and only if it is equivalent to some (necessarily unique) strongly positive recurrent probability kernel. Since the subprobability kernel P from (2.25) is equivalent to A, and by assumption, A is not strongly R-positive, it follows that also P is not strongly R-positive. Therefore by Proposition 12 (c), $\lambda_{z,+} = \lambda_z = 0$. Since P' is a subprobability kernel, we have $\psi'_z(0) \leq 0$. Thus, to prove that $\lambda'_{z,*} = 0$, it suffices to show that $\psi'_z(\lambda) = \infty$ for all $\lambda > 0$ or equivalently $\lambda'_{z,+} \leq 0$.

Let F be any finite subgraph of G that contains all edges (x,y) where $P'(x,y) < P(x,y)$. Let $\phi^F_{x,y}$ and $\psi^F_{x,y}$ be defined as in (2.4) and $\lambda^F_{x,y}$ as in (2.5). Since each excursion away from F has the same weight under P and P', it does not matter whether we use P or P' to define these quantities. Applying Proposition 15 to the subgraphs F and $F' := \{z\}$, we see that

$$\lambda_{z,+} \leq 0 \iff \lambda^F_{x,y,+} \leq 0$$

for some $x,y \in F \cap S$. Thus, to prove that $\lambda_{z,+} = 0$ implies $\lambda'_{z,+} \leq 0$, as required.

\[\square\]

2.4 Characterization of R-transience

In this section we prove Theorem 4. We need one preparatory lemma.

Lemma 16 (Strictly excessive functions) Let A be an R-transient irreducible nonnegative matrix indexed by a countable set S, and let $S' \subset S$ be finite. Then there exists a function $h : S \to (0, \infty)$ such that $Ah \leq \rho(A)h$ and $Ah < \rho(A)h$ on S'.

Proof In the proof of Lemma 14 we have seen that setting $h_z(x) := G_{\lambda_z}(x,z)$ defines a function such that $Ah_z(x) = \rho(A)h_z(x) - 1_{\{x=z\}}$. In view of this, the function $h := \sum_{z \in S'} h_z$ has all the required properties.

Proof of Theorem 4 We start by proving part (a). Let $E' := \{(x,y) \in S^2 : A(x,y) \neq B(x,y)\}$. We will show that there exists a matrix $C \geq A$ with $C(x,y) > A(x,y)$ for all $(x,y) \in E'$ and $\rho(C) \leq \rho(A)$. Since $A \leq A + \varepsilon(B - A) \leq C$ for $\varepsilon > 0$ small enough, the claim then follows.

Let $S' := \{x \in S : (x,y) \in E' \text{ for some } y \in S\}$. By R-transience and Lemma 14, there exists a function $h : S \to (0, \infty)$ such that $Ah \leq \rho(A)h$ and $Ah < \rho(A)h$ on S'. It follows that

$$P(x,y) := \rho(A)^{-1} h(x)^{-1} A(x,y) h(y) \quad (x,y \in S)$$

(2.26)

defines a subprobability kernel such that $\sum_y P(x,y) < 1$ for all $x \in S'$. Using this, we can construct a probability kernel $Q \succeq P$ such that $Q(x,y) > P(x,y)$ for all $(x,y) \in E'$. Setting

$$C(x,y) := \rho(A) h(x) Q(x,y) h(y)^{-1} \quad (x,y \in S)$$

(2.27)

then defines a nonnegative matrix $C \geq A$ with $C(x,y) > A(x,y)$ for all $(x,y) \in E'$. Since $C^n(x,x) := \rho(A)^n Q^n(x,x)$ and Q is a probability kernel, we see from (1.1) that $\rho(C) \leq \rho(A)$.

To prove also part (b), fix a reference point $z \in S$ and let $\psi_z, \lambda_{z,+}$, and $\lambda_{z,*}$ be defined in terms of A as in (2.3), (2.5), and (2.12). Let $\psi'_z, \lambda'_{z,+}$, and $\lambda'_{z,*}$ be the same objects defined in terms of B. By Proposition 12 (a), $\lambda_{z,*} = -\log \rho(A) = -\log \rho(B) = \lambda'_{z,*}$. The definition of ψ_z and irreducibility imply that $\psi_z(\lambda) < \lambda_z(\lambda)$ for all λ such that $\psi'_z(\lambda) < \infty$, i.e., for $\lambda \leq \lambda'_{z,*}$. In particular, this applies at $\lambda_z = \lambda'_z$ so we see that $\psi_z(\lambda_z) < \psi'_z(\lambda'_z) \leq 0$. By Proposition 12 (b), it follows that A is R-transient.

\[\square\]
A Appendix

A.1 R-recurrence

Proof of Theorem 1

By Theorem 2, there exists a function \(h : S \rightarrow (0, \infty) \), which is unique up to scalar multiples, such that \(Ah = \rho(A)h \). Setting

\[
P(x, y) := \rho(A)^{-1}h(x)^{-1}A(x, y)h(y) \quad (x, y \in S)
\]

(A.1)
defines a probability kernel on \(S \). Since \(P^n(x, x) := \rho(A)^{-n}A^n(x, x) \), we see from (1.2) that

\[
\sum_{n=1}^{\infty} P^n(x, x) = \infty,
\]

proving that \(P \) is recurrent.

Conversely, assume that for some function \(h : S \rightarrow (0, \infty) \) and constant \(c > 0 \), formula (1.3) defines a recurrent probability kernel. Since \(P \) is a probability kernel \(Ah = ch \). Since \(P^n(x, x) := c^{-n}A^n(x, x) \), it follows that \(\rho(P) = c\rho(A) \). Since \(P \) is a recurrent probability kernel, for any \(x \in S \),

\[
\sum_{k=1}^{\infty} e^{\lambda k}P^k(x, x) < \infty \quad \Leftrightarrow \quad \lambda < 0
\]

(A.2)

which shows that \(\rho(P) = 1 \) and hence \(c = \rho(A) \). Thus \(Ah = \rho(A)h \) and Theorem 2 tells us that \(h \) is uniquely determined up to scalar multiples.

A.2 Logarithmic moment generating functions

Let \(\mu \) be a nonzero measure on \(\mathbb{R} \). We define the logarithmic moment generating function of \(\mu \) as

\[
\psi(\lambda) := \log \int_{\mathbb{R}} \mu(dx)e^{\lambda x} \quad (\lambda \in \mathbb{R}),
\]

(A.3)

where \(\log \infty := \infty \). We write

\[
D_\psi := \{ \lambda \in \mathbb{R} : \psi(\lambda) < \infty \} \quad \text{and} \quad U_\psi := \text{int}(D_\psi).
\]

(A.4)

Lemma 17 (Logarithmic moment generating functions) Let \(\mu \) be a nonzero measure on \(\mathbb{R} \) and let \(\psi \) be its logarithmic moment generating function. Then

(i) \(\psi \) is convex.

(ii) \(\psi \) is lower semi-continuous.

(iii) \(\psi \) is infinitely differentiable on \(U_\psi \).

Moreover, for each \(\lambda \in D_\psi \), setting

\[
\mu_\lambda(dx) := e^{\lambda x} - \psi(\lambda) \mu(dx)
\]

defines a probability measure on \(\mathbb{R} \) with

\[
\begin{align*}
\left\{ \frac{\partial}{\partial \lambda} \psi(\lambda) = \langle \mu_\lambda \rangle, \\
\frac{\partial^2}{\partial \lambda^2} \psi(\lambda) = \text{Var}(\mu_\lambda) \right\} \quad (\lambda \in U_\psi),
\end{align*}
\]

(A.6)

where \(\langle \mu_\lambda \rangle \) and \(\text{Var}(\mu_\lambda) \) denote the mean and variance of \(\mu_\lambda \), respectively.

Proof Set

\[
\Phi(\lambda) := \int_{\mathbb{R}} \mu(dx)e^{\lambda x} \quad (\lambda \in \mathbb{R}),
\]

(A.7)
so that \(\psi(\lambda) = \log \Phi(\lambda) \). We claim that \(\lambda \mapsto \Phi(\lambda) \) is infinitely differentiable on \(\mathcal{U}_\psi \) and

\[
\left(\frac{\partial}{\partial \lambda} \Phi(\lambda) \right)^n = \int x^n e^{\lambda x} \mu(dx) \quad (\lambda \in \mathcal{U}_\psi).
\]

To justify this, we must show that the interchanging of differentiation and integral is allowed. We observe that

\[
\frac{\partial}{\partial \lambda} \int x^n e^{\lambda x} \mu(dx) = \lim_{\varepsilon \to 0} \int x^n e^{\lambda \varepsilon x} (e^{(\lambda+\varepsilon)x} - e^{\lambda x}) \mu(dx),
\]

By our assumption that \(\lambda \in \mathcal{U}_\psi \), we can choose \(\delta > 0 \) such that

\[
\int_\mathbb{R} \mu(dx) [e^{(\lambda-2\delta)x} + e^{(\lambda+2\delta)x}] < \infty.
\]

Since for any \(-\delta < \varepsilon < \delta \) with \(\varepsilon \neq 0 \),

\[
|x|^n \varepsilon^{-1} |e^{(\lambda+\varepsilon)x} - e^{\lambda x}| = |x|^n \varepsilon^{-1} \int_\lambda^{\lambda+\varepsilon} xe^{\kappa x} d\kappa
\]

\[
\leq |x|^{n+1} [e^{(\lambda-\delta)x} + e^{(\lambda+\delta)x}] \quad (x \in \mathbb{R}),
\]

which is integrable by (A.10), we may use dominated convergence in (A.9) to interchange the limit and integral.

Since

\[
\int_\mathbb{R} \mu_{\lambda}(dx) = \frac{1}{\Phi(\lambda)} e^{\lambda x} \mu(dx) = 1 \quad (\lambda \in D_\psi),
\]

we see that \(\mu_\lambda \) is a probability measure for each \(\lambda \in D_\psi \). Formula (A.8) implies that for each \(\lambda \in \mathcal{U}_\psi \)

\[
\begin{align*}
(i) \quad & \frac{\partial}{\partial \lambda} \log \Phi(\lambda) = \frac{\partial}{\partial x} \log \int e^{\lambda x} \mu(dx) = \frac{\int x e^{\lambda x} \mu(dx)}{\int e^{\lambda x} \mu(dx)} = \langle \mu_\lambda \rangle, \\
(ii) \quad & \frac{\partial^2}{\partial \lambda^2} \log \Phi(\lambda) = \left(\frac{\int x^2 e^{\lambda x} \mu(dx) - (\Phi(\lambda) \int x e^{\lambda x} \mu(dx))^2}{\Phi(\lambda)^2} \right) \\
& = \int x^2 \mu_\lambda(dx) - (\int x \mu_\lambda(dx))^2 = \text{Var}(\mu_\lambda),
\end{align*}
\]

proving (A.6).

In particular, if \(\mu \) is a compactly supported finite measure, then \(\mathcal{U}_\psi = \mathbb{R} \) so these formulas prove that \(\psi \) is convex and continuous. For locally finite \(\mu \), we may find compactly supported finite \(\mu_n \) such that \(\mu_n \uparrow \mu \) and hence the associated logarithmic moment generating functions satisfy \(\psi_n \uparrow \psi \). Since the \(\psi_n \) are convex and continuous, \(\psi \) must be convex and l.s.c. If \(\mu \) is not locally finite, then \(\psi(\lambda) = \infty \) for all \(\lambda \in \mathbb{R} \) so there is nothing to prove.

The next lemma says that formula (A.6) (i) holds more generally for \(\lambda \in D_\psi \), when the derivative is appropriately interpreted as a one-sided derivative or limit of derivatives for \(\lambda \in \mathcal{U}_\psi \).

Lemma 18 (One-sided derivative) Let \(\mu \) be a nonzero measure on \(\mathbb{R} \) and let \(\psi \) be its logarithmic moment generating function. Assume that \(\mathcal{U}_\psi \) is nonempty, \(\lambda_+ := \sup D_\psi < \infty \), and \(\psi(\lambda_+) < \infty \). Then

\[
\lim_{\lambda \uparrow \lambda_+} \frac{\partial}{\partial \lambda} \psi(\lambda) = \lim_{\varepsilon \downarrow 0} \varepsilon^{-1} (\psi(\lambda_+) - \psi(\lambda_+ - \varepsilon)) = \langle \mu_{\lambda_+} \rangle.
\]
Proof Since $\gamma \mapsto xe^{x\gamma}$ is nondecreasing for each $x \geq 0$, we see that

$$ \varepsilon^{-1} (e^{\lambda x} - e^{(\lambda-\varepsilon)x}) = \int_{\lambda-\varepsilon}^{\lambda} xe^{x\gamma} d\gamma \uparrow xe^{\lambda x} \quad \text{as} \quad \varepsilon \downarrow 0 \quad (x \geq 0), \quad (A.15) $$

so by monotone convergence, using notation as in (A.7), we see that

$$ \varepsilon^{-1} (\Phi(\lambda_+) - \Phi(\lambda_+ - \varepsilon)) = \int \varepsilon^{-1} (e^{\lambda_+ x} - e^{(\lambda_+-\varepsilon)x}) \mu(dx) \uparrow \int xe^{\lambda_+ x} \mu(dx) \quad \text{as} \quad \varepsilon \downarrow 0. \quad (A.16) $$

By assumption $\psi(\lambda_+) < \infty$ so $\Phi(\lambda_+) < \infty$, which implies that μ_{λ_+} is well-defined, and the second equality in (A.15) now follows as in (A.13). Since ψ is convex, this also implies the first equality in (A.14).

Acknowledgement

I was motivated to prove Theorem 4 based on a suggestion of Rongfeng Sun, who conjectured a version of this result in joint work with Gregory Maillard and Nicolas Pétrélis. Francesco Caravenna helped me a lot orienting myself in the literature on pinning models. I thank Jan Seidler for pointing out the reference [Ign06]. I am indebted to Sergey Savchenko who pointed out the references [CS09] [GS98] [Rue03] [Sal88].

References

[And91] W.J. Anderson. Continuous-time Markov chains. Springer, New York, 1991.

[CGZ06] F. Caravenna, G. Giacomin, and L. Zambotti. Sharp asymptotic behavior for wetting models in (1 + 1)-dimension. Electron. J. Probab. 11 (2006), Paper no. 14, 345–362.

[CS09] V. Cyr and O. Sarig. Spectral gap and transience for Ruelle operators on countable Markov shifts. Commun. Math. Phys. 292 (2009), 637–666.

[Fro12] G. Frobenius. Über Matrizen aus nicht negativen Elementen. Sitzungsber. Königl. Preuss. Akad. Wiss. (1912), 456–477.

[Gia07] G. Giacomin. Random polymer models. Hackensack, 2007.

[GS98] B.M. Gurevich and S.V. Savchenko. Thermodynamic formalism for countable symbolic Markov chains. Russian Math. Surveys 53(2) (1998), 245–344.

[Ign06] I. Ignatiouk-Robert On the spectrum of Markov semigroups via sample path large deviations. Probab. Theory Relat. Fields 134 (2006), 44–80.

[Kar59] S. Karlin. Positive operators. J. Math. Mech. 8 (1959), 907-937.

[Ken59] D.G. Kendall. Unitary dilations of Markov transition operators, and the corresponding integral representations for transition-probability matrices. Pages 139–161 in: U. Grenander (ed), Probability and Statistics. The Harald Cramér volume. Almqvist & Wiksell, Stockholm, 1959.

[Kin63] J.F.C. Kingman. The exponential decay of Markov transition probabilities. Proc. London Math. Soc. (3) 13 (1963), 337–358.

[KR48] M.G. Krein and M.A. Rutman. Linear operators leaving invariant a cone in a Banach space [in Russian]. Uspehi Matem. Nauk 3 (1948), No. 1(23), 3–95.
[KR50] M.G. Kreĭn and M.A. Rutman. Linear operators leaving invariant a cone in a Banach space. *Amer. Math. Soc. Transl.* 1950(26) (1950), 128 pages.

[MS95] V.A. Malyshev and F.M. Spieksma. Intrinsic convergence rate of countable Markov chains. *Markov Process. Related Fields* 1 (1995), 203–266.

[Num84] E. Nummelin. *General Irreducible Markov Chains and Non-negative Operators*. Cambridge University Press, 1984.

[Per07] O. Perron. Zur Theorie der Matrices. *Mathematische Annalen* 64(2) (1907), 248–263.

[Pop77] N.N. Popov. Conditions for geometric ergodicity of countable Markov chains [in Russian]. *Soviet Math. Dokl.* 18 (1977), 676–679.

[Rue03] S. Ruette. On the Vere-Jones classification and existence of maximal measures for countable topological Markov chains. *Pacific J. Math.* 209(2) (2003), 365–380.

[Sal88] I.A. Salama. Topological entropy and recurrence of countable chains. *Pacific J. Math.* 134(2) (1988), 325–341. Errata. 140(2) (1989), 397.

[Sar15] O.M. Sarig. Thermodynamic formalism for countable Markov shifts. *Proc. Symp. Pure Math.* 89 (2015), 81–117.

[Sch74] H.H. Schaefer. *Banach Lattices and Positive Operators*. Springer, Berlin, 1974.

[Sen81] E. Seneta. *Non-negative Matrices and Markov Chains*. 2nd ed. Springer, New York, 1981.

[Spi90] F.M. Spieksma. *Geometrically Ergodic Markov Chains and the Optimal Control of Queues*. PhD thesis, University of Leiden, 1990.

[SV66] E. Seneta and D. Vere-Jones. On quasi-stationary distributions in discrete-time Markov chains with a denumerable infinity of states. *J. Appl. Probab.* 3(2) (1966), 403–434.

[Ver62] D. Vere-Jones. Geometric ergodicity in denumerable Markov chains. *Quart. J. Math. Oxford Ser.* 2 13 (1962), 7–28.

[Ver63] D. Vere-Jones. On the spectra of some linear operators associated with queueing systems. *Z. Wahrscheinlichkeitstheorie* 2 (1963), 12–21.

[Ver67] D. Vere-Jones. Ergodic properties of non-negative matrices - I. *Pacific J. Math.* 22(2) (1967), 361–386.

[Woe00] W. Woess. *Random walks on infinite graphs and groups*. Cambridge University Press, 2000.

[Zer87] M. Zerner. Quelques propriétés spectrales des opérateurs positifs. *J. Funct. Anal.* 72 (1987), 381–417.