Intrapleural Administration With Rh-Endostatin and Chemical Irritants in the Control of Malignant Pleural Effusion: A Systematic Review and Meta-Analysis

Cheng-Qiong Wang¹²†, Xiao-Rong Huang³†, Min He⁴, Xiao-Tian Zheng¹², Hong Jiang¹², Qian Chen⁵, Teng-Yan Fan¹², Lin Zhan⁶, Juan Ling⁷, Ji-Hong Feng⁸, Xue Xiao¹²*, Xiao-Fan Chen⁵* and Zheng Xiao¹²*

¹ Department of General Practice, Affiliated Hospital of Zunyi Medical University, Zunyi, China, ² Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical College, Affiliated Hospital of Zunyi Medical University, Zunyi, China, ³ GCP Center, Affiliated Hospital of Zunyi Medical University, Zunyi, China, ⁴ Department of Nursing, Affiliated Hospital of Zunyi Medical University, Zunyi, China, ⁵ Evidence-Based Medicine Research Centre, Jiangxi University of Traditional Chinese Medicine, Nanchang, China, ⁶ Laboratory Research Center, Guizhou Provincial People’s Hospital, Guiyang, China, ⁷ Department of Infection Management, Gansu Provincial People’s Hospital, Lanzhou, China, ⁸ Department of Oncology, Lishui People’s Hospital, Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China

Introduction: A modified and recombinant human endostatin (Rh-endostatin) is often used in the control of malignant pleural effusion (MPE) through intrapleural infusion.

Objectives: To demonstrate the clinical response, survival, and safety of Rh-endostatin plus chemical irritants, their optimal combinations, treatment threshold, and optimal usage, we performed a new systematic review and meta-analysis.

Methodology: All randomized controlled trials (RCTs) were collected from Chinese and English electronic databases (from inception until August 2020). We pooled the data using a series of meta-analyses and summarized the evidence quality following the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach.

Results: We included 75 RCTs recruiting 4,678 patients, which reported six combinations for Rh-endostatin plus chemical irritants. Among the six combinations, only Rh-endostatin plus cisplatin (DDP) with enough trials might improve the complete response [2.29 (1.93, 2.71)] and quality of life [3.01 (2.49, 3.63)] and reduce treatment failure [0.29 (0.25, 0.33)] and progressive disease [0.27 (0.22, 0.34)]. It might not increase the risk of adverse drug reactions. For patients with lung cancer, moderate to massive effusion, initial treatment, Karnofsky Performance Status (KPS) score ≥60, or anticipated survival time ≥3 months, Rh-endostatin (30–45 mg each time, once or twice a week 3–4 times) plus DDP (30–60 mg/m²) obtained a significant improvement in clinical response and a reduction of failure and progressive disease. Most results had good robustness and moderate quality.
Conclusions: Current evidence suggests that Rh-endostatin with DDP may be an optimal combination, which may improve clinical response and reduce failure and progressive disease with good safety. Rh-endostatin (30–40 mg each time, once or twice a week 3–4 times) with DDP (30–40 mg/m²) may be an optimal usage for achieving an ideal response.

Keywords: endostatin, recombinant human endostatin (Rh-endostatin), chemical irritants, cisplatin, optimal adjuvant strategy, meta-analysis

INTRODUCTION

Malignant pleural effusion (MPE) is a common clinical problem in patients with malignant tumors, with an estimated annual incidence of at least 150,000 in the USA (1). Based on postmortem records, MPE was found in 15% of patients who died with malignant tumors (2). Most patients often suffered from breathlessness and chest pain. The quality of life (QOL) was poor, and the median survival time was only 3–12 months (2, 3). Chemical pleurodesis is a first-line treatment for symptomatic patients with MPE and suspected expandable lung (4, 5) and a procedure performed to obliterate the pleural space to prevent recurrent MPE using a chemical irritant as platinum, bleomycin (BLM), tetracycline, doxycycline, or silver nitrate, among others (3–6). However, these strategies are mostly of palliative value and focus on the control of symptoms and improvement of QOL and fail to improve survivals. So, new control strategies are urgently needed.

Proangiogenic factors have been implicated as a critical cytokine in the occurrence, development, and transferring of MPE (7, 8). Endostatin, a 20-kDa C-terminal fragment of type XVIII collagen, is one of the most potent inhibitors of angiogenesis (11). Endostatin and its derivatives have been reported to be more effective when combined with chemotherapy, radiotherapy, or gene transfer in the treatment of malignant tumors (12, 13). Endostar, a modified and recombinant human endostatin (Rh-endostatin), was the approved regimen in non-small-cell lung cancer (NSCLC) by the State Food and Drug Administration of China in 2005 (14). The expert consensus also recommends Rh-endostatin plus first-line chemotherapy to treat stage III/IV NSCLC (15, 16). Interestingly, eight systematic reviews (SRs)/meta-analyses had reported that intrapleural administration of Rh-endostatin with platinum (17, 18), cisplatin (DDP) (19–23), or chemotherapeutic agents (24) might improve the objective response rate [complete response (CR), partial response (PR)], disease control rate [CR + PR+ no response (NR)/stable disease (SD)], and QOL, without an increase in the incidence of adverse drug reactions (ADRs) in MPE. Three meta-analyses (25–27) had reported that Rh-endostatin with DDP also might obtain the same effects in MPE from lung cancer. Based on the above evidence, Rh-endostatin alone or plus chemical irritants was recommended in the control of MPE by expert consensus from China (28). However, strong clinical heterogeneity was found in the patient features, types, combinations, and usages of Rh-endostatin/chemical irritants. The drug usages are complex, diverse, and even inappropriate. Obviously, the current studies ignored clinical heterogeneity. Current evidence (17–27) failed to conclusively demonstrate whether Rh-endostatin plus chemical irritants improves clinical response, survival, and safety. Their optimal combinations, therapeutic threshold, and optimal usage remain unclear. In addition, no evidence revealed their thoracentesis-related adverse events (TRAEs). All these have become the new bottleneck of rational drug use decision.

Recently, many new trials (29–31) have been published. So, we performed a new SR and meta-analysis to further demonstrate the clinical response, survival, and safety of Rh-endostatin with chemical irritants, reveal their optimal combinations, therapeutic thresholds, and optimal usage for achieving a desired response, and provide evidence for developing an optimal control strategy of MPE.

METHODS

According to the principle of underestimating efficacy and overestimating risk, we designed, implemented, and reported this SR and meta-analysis following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines (Supplementary Material S1) (32). The retrieval, selection, assessment, data collection, statistical analysis, and summary of evidence quality were implemented by two independent evaluators. Any disagreements of implementations between evaluators were resolved by discussions, and further disagreements were resolved by a third party (ZX).
Inclusion Criteria
All subjects were patients with MPE that was diagnosed using thorax imaging, pleural fluid analysis, cytology, or pleural biopsy, without any restrictions on the tumor types. All subjects had normal heart, liver, or kidney function. The intervention used was Rh-endostatin through intrapleural administration instead of intravenous injection. Patients in the experimental group received Rh-endostatin plus chemical irritant, and the control group received chemical irritant alone, which included platinum, BLM, tetracycline, doxycycline, or silver nitrate, among others. During perfusion, all subjects did not receive hyperthermia, radiotherapy, chemotherapy, chemoradiotherapy, traditional Chinese medicine injections (TCMIs), or other biological response modifiers (BRMs). The main outcomes were clinical responses, survivals, and QOL, and the secondary outcomes were ADRs and TRAEs. The trials were randomized controlled trials (RCTs), with no restrictions on follow-up and research institutions.

Exclusion Criteria
Excluded studies included the duplicates; studies about non-MPE and non-Rh-endostatin; studies about Rh-endostatin plus hyperthermia, radiotherapy, chemotherapy, chemoradiotherapy, TCMIs, or BRMs; meeting abstracts and reviews without any specific data; non-RCTs as cohort studies, cross-sectional studies, case series, or case reports; unrelated SRs or meta-analyses; and studies without primary or secondary outcome data.

Search Strategies
Based on the principle of patients (P) plus intervention (I), we applied the MeSH and free word to build the search strategies as (“Pleural Effusion” [Mesh] OR Pleural Effusion OR Pleural Effusions OR Hydrothorax OR MPEs OR MPE) AND (“Endostatins” [Mesh] OR Endostatins OR Endostatin OR Recombinant human endostatin injection OR rhES OR Rh-endostatin OR Endostar OR Sulija OR YH-16). Two independent evaluators (C-QW and HJ) collected all the published studies of “Rh-endostatin plus chemical irritants for MPE” from Embase, PubMed, Web of Science (ISI), China Biological Medicine Database (CBM), Wanfang Database, China National Knowledge Infrastructure Database (CNKI), Chinese Scientific Journals Full-text Database (VIP), and Cochrane Central Register of Controlled Trials (CENTRAL, Issue 8 of 12, August 2020) and ongoing trials from the Chinese clinical trial registry (ChiCTR, http://www.chictr.org.cn), WHO International Clinical Trials Registry Platform (WHO-ICTRP, http://apps.who.int/trialsearch/), and US-clinical trials (https://clinicaltrials.gov, up to August 2020). In addition, we critically evaluated all the SRs/meta-analyses of Rh-endostatin in MPE and selected eligible trials from the references.

Selection of Studies
Two evaluators (C-QW and MH) were asked to collect the qualified trials about Rh-endostatin plus chemical irritants for MPE according to the preestablished inclusion and exclusion criteria.

Assessment of Methodological Bias Risk
Two evaluators (X-RH and QC) were asked to assess the bias risk of methodology using the Cochrane Collaboration’s risk of bias assessment tool for RCTs (33). The bias risk was assessed as a judgment (high, low, or unclear) for individual elements of five domains (selection, performance, attrition, reporting, and other).

Indicator Definition
The clinical responses were evaluated using CR, treatment failure, and progressive disease (PD). Based on previous studies (34–37), we integrated all the criteria as follows: (i) CR, (ii) PR, (iii) NR or SD; and (iv) PD (Supplementary Material S2). Treatment failure was defined as NR/SD plus PD (38). Survival was defined as overall survival (OS) rate, progression-free survival (PFS) rate, or hazard ratio (HR) of the OS and PFS. Using the Karnofsky Performance Status (KPS) scale, if the KPS score increased ≥10 after perfusion, the QOL was improved.

The secondary outcomes were ADRs and TRAEs. According to the World Health Organization (WHO) (39) or Common Terminology Criteria for Adverse Events (CTCAE) standards (40), ADR was defined as neutropenia, thrombocytopenia, anemia, cardiotoxicity, hepatotoxicity, nephrotoxicity, gastrointestinal reactions, alopecia, peripheral neuritis, chest pain, and fever, among others. TRAE was defined as treatment-related mortality (TRM) and a series of clinical symptoms such as respiratory failure, pneumothorax, cutaneous emphysema, or catheter-related infection/ chest infection, among others.

Data Collection
Two evaluators (X-TZ and T-yF) collected all the data using a predesigned data extraction form. The data included the first author, year of publication, and demographic information of patients; baseline characteristics such as primary tumors, pleural fluid volume, KPS score, treatment history (initial treatment, retreatment, or both), anticipated survival time (AST), sample size, drainage methods [indwelling pleural catheters (IPCs) or thoracocentesis]; combinations and usages of Rh-endostatin and chemical irritants; evaluation time and follow-up protocols; and outcomes including CR, treatment failure, PD, OS, PFS, QOL, ADRs, and TRAEs. Additionally, we contacted the corresponding author to obtain the available survival data. If the authors were unavailable, we adopted the Engauge Digitizer 4.1 to transform the Kaplan–Meier survival curves into available data (41, 42).

Statistical Analysis
According to the data features, the odds ratio (OR) or hazard ratio (HR) and their 95% CI were used to quantify the CR, treatment failure, PD, OS, PFS, QOL, ADRs, and TRAEs, and p < 0.05 was considered a statistical significance. Two evaluators (C-QW and X-RH) conducted a series of meta-analyses using the Review Manager 5.4.1 (as recommended by the Cochrane Collaboration). The Cochran’s χ^2 test and I² statistic were conducted to analyze the potential statistical heterogeneity. If p ≥ 0.1 and I² ≤ 50%, a fixed-effects model (FEM) was used to pool the OR or HR and their 95% CI. Otherwise, a random-effects model (REM) was used. If the number of trials was larger than 10, a funnel plot and Egger/Begg’s test were used to examine the potential publication bias.

When at least one item was considered a high risk, the trial was defined as poor quality. When the result was statistically
different and beneficial to Rh-endostatin infusion, the trial was defined as an underestimated or overestimated trial following our experiences (38, 43, 44). According to the principle of underestimating efficacy and overestimating risk, we established a sensitivity analysis model to analyze the robustness of the results before and after eliminating the trials with poor quality, underestimation, or overestimation.

Subgroup Analysis
Following the guideline (45) and our previous experiences (38, 43, 44), we established a subgroup analysis model to analyze the clinical heterogeneity and the effects of variables on CR, treatment failure, and PD and to reveal their treatment thresholds and optimal usage for achieving an ideal response. The variables included patient features, drainage methods, and combinations of Rh-endostatin plus chemical irritants and their dose, treatment frequency, and times. Finally, a univariable random-effects meta-regression was conducted to reveal the relevance between each variable and CR, treatment failure, or PD and a post-hoc multiple regression analysis adjusting for their OR under all variables.

Summary of Evidence Quality
Following the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach and integrating the results of the sensitivity analysis, we developed a quality summary model to summarize the evidence quality and classify them as "high," "moderate," "low," or "very low" (38, 43, 44) (Supplementary Material S3). The quality was downgraded according to five domains as follows: (1) methodological bias risk; (2) statistical heterogeneity; (3) indirectness; (4) imprecision; and (5) publication bias. Two evaluators (X-FC and C-QW) used the GRADE profiler to summarize the quality and generate the absolute estimates for the CR, treatment failure, PD, OS rate, PFS rate, QOL, ADRs, and TRAEs (46).

RESULTS

Search Results
A literature search conducted from inception to August 17, 2020, identified 959 studies. After duplicates were removed, 379 studies remained for a review of abstracts. After reviewing the abstracts, we identified 115 reports and 11 SRs/meta-analyses (16, 47–54). After reviewing full texts, we identified 73 qualified trials (29–31, 54–123). After reviewing the SRs/meta-analyses, we identified 39 trials (55–60, 62, 64, 66–69, 71–78, 81–92, 95, 97, 100, 101, 104, 109, 110). Excluding two ongoing trials without data (124, 125), we included one ongoing trial (ChiCTR-IPR-17011666) (126). Finally, we identified 75 trials (29–31, 54–123, 126, 127) for this SR/meta-analysis (Supplementary Material S4; Tables S1–S4; Figure 1).

Characteristics of the Included Trials
The 75 trials, published from 2010 to 2020, recruited 4,678 patients with MPE from China, which included 2,512 males and 1,178 females aged 18–89 years (Table 1). Forty-seven trials recruited patients with lung cancers (30, 31, 35, 38, 59, 64–67, 70, 74, 75, 77–84, 89–95, 97, 100–107, 109–111, 113–116, 118, 120, 121, 127), three trials recruited patients with breast cancer (99, 112, 117), and the remaining 25 trials (29, 54, 56, 57, 60–63, 68, 69, 71–73, 76, 85–88, 96, 98, 108, 119, 122, 123, 126) recruited patients with malignant tumors such as lung cancer, breast cancer, malignant lymphoma, gastric cancer, hepatic carcinoma, and ovarian cancer, among others. Trials were of varied sample sizes, from 30 to 130. The patients had small to massive effusion, KPS ≥40, and AST >2 months. Fifteen trials reported the treatment history as initial treatment, retreatment, or both. After the drainage of hydrothorax using an IPC or thoracocentesis, 2,352 cases accepted the intrapleural administration of Rh-endostatin plus chemical irritants, while 2,326 other cases accepted the chemical irritants alone. We found six combinations of Rh-endostatin plus DDP in 60 trials (30, 31, 54–56, 58, 60, 62, 64, 66–68, 71–73, 75–78, 80–82, 84–92, 94, 95, 97–101, 103, 104, 106–123, 126, 127), nedaplatin (NDP) (69, 74, 83, 102) and BLM in four trials (57, 61, 65, 70), lobaplatin (LBP) in three trials (29, 93, 105), carboplatin (CBP) in two trials (39, 96), paclitaxel (79) or DDP/BLM in one trial (63). Rh-endostatin (30–90 mg each time) was used once or twice a week, 1–12 times by intrapleural administration. The chemical irritant was mainly DDP and used with 20–100 mg/m² each time. Three to 10 weeks after perfusion, the trials evaluated clinical responses using a Millar or Ostrowskimj criterion, ADRs using a WHO criterion, and QOL using a KPS scale. In addition, only nine trials reported the survivals (29–31, 63, 73, 75, 98, 105, 116) and TRAEs (56, 66, 76, 88, 95, 98, 99, 116, 127), and six trials (66, 88, 95, 98, 99, 116) reported the TRM.

Methodological Quality Assessment
Thirty-four trials reported the random sequence generation using a random number table (a low risk of selection bias) (30, 31, 54, 56–58, 62, 65, 67, 69, 75, 81, 82, 84, 85, 89, 90, 93, 97, 101, 102, 105, 106, 109–114, 116, 117, 120, 126, 127), and two trials reported the odd or even random (a high risk of selection bias) (60, 123). Two trials reported the allocation concealment using an envelope (a low risk of selection bias) (73, 76), and two trials reported the allocation exposure (a high risk of selection bias) (60, 123). With the exception of one open RCT (119), the remaining trials failed to clearly report the blindings (an unclear risk of performance bias). All trials reported the complete outcome data (a low risk of attrition bias). Forty-four trials selectively reported the ADRs, and one trial selectively reported the CR (a high risk of reporting bias) (66). The comparability between groups (an unclear risk of other biases) was unclear in 12 trials (Figure 2).

Clinical Responses
Seventy-five trials reported the clinical responses of six combinations of Rh-endostatin with DDP (30, 31, 54–56, 58, 60, 62, 64, 66–68, 71–73, 75–78, 80–82, 84–92, 94, 95, 97–101, 103, 104, 106–123, 126, 127), NDP (69, 74, 83, 102), BLM (57, 61, 65, 70), LBP (29, 93, 105), CBP (59, 96), paclitaxel (79), or DDP/BLM (63). The statistical heterogeneity was not found using
Cochran’s χ^2 test and I^2 statistic ($I^2 = 0\%$). So, the data were pooled using an FEM. The ORs of fixed effects were 2.29 (95% CI 1.93–2.71, $p < 0.00001$), 2.50 (95% CI 1.31–4.77, $p = 0.005$), 2.71 (95% CI 1.37–5.35, $p = 0.004$), which showed that the CR of Rh-endostatin with DDP, NDP, or LBP was significantly higher than that of irritants alone (Figure 3A). The treatment failure of Rh-endostatin with DDP, CBP, NDP, LBP, or BLM was significantly lower than that of irritants alone. The ORs were 0.29 (95% CI 0.25–0.33, $p < 0.00001$), 0.28 (95% CI 0.12–0.64, $p = 0.003$), 0.29 (95% CI 0.16–0.51, $p < 0.0001$), 0.25 (95% CI 0.15–0.44, $p < 0.00001$), and 0.25 (95% CI 0.13–0.50, $p < 0.0001$), respectively (Figure 3B). The PD of Rh-endostatin with DDP, CBP, NDP, LBP, or BLM was significantly lower than that of irritants alone. The ORs were 0.27 (95% CI 0.22–0.34, $p < 0.00001$), 0.25 (95% CI 0.09–0.67, $p = 0.006$), 0.31 (95% CI 0.12–0.79, $p = 0.01$), 0.32 (95% CI 0.12–0.86, $p = 0.02$), and 0.31 (95% CI 0.12–0.80, $p = 0.02$), respectively (Figure 3C).

Overall Survival

Nine trials reported the survivals (29–31, 63, 71, 75, 98, 105, 116). Only five trials reported the OS time and PFS of Rh-endostatin with DDP (30, 71, 75, 98) or LBP (29), but without the available data. Five trials reported the OS rates, and three reported the 1-year OS rate of Rh-endostatin with DDP (31, 75, 116). The statistical heterogeneity between trials was not found using Cochran’s χ^2 test and I^2 statistic ($I^2 = 0\%$). So, we pooled the data using an FEM. The 1-year OS rate of Rh-endostatin with DDP was significantly higher than that of DDP alone. The OR was 3.32 (95% CI 1.63–6.75, $p = 0.0009$) (Figure 4). The remaining OS rates were reported in only one trial, and the data were analyzed descriptively using forest plots. Statistical analysis showed that the 0.5-year OS rate of Rh-endostatin with DDP (116), 1-year OS rate of DDP/BLM (63), 2-year OS rate of DDP (75), and 3-year OS rate of LBP (105) were significantly higher than that of irritants alone. The ORs were 5.36 (95% CI 4.15–6.96), 2.44 (95% CI 1.60–3.70), 2.00 (95% CI 1.30–3.10), and 2.00 (95% CI 1.30–3.10), respectively (Figure 4C).
Characteristics of the included trials.

First author, Year	Malignant pleural effusions	Rh-Endostatin with Cisplatin (DDP)	Chemical irritants											
Wang, X.2012 (68)	MTs Moderate to large Un	45 mg/time, 1 time/w, 2 times	40 mg/m²											
	Un	50 mg/m²	2 months M, NCICTC O1-3											
Tu, J.2014 (82)	LC Moderate to large Un	45 mg/time, 1 time/w, 2 times	40 mg/m²											
	Un	60 mg/m²	2 months M, NCICTC O1-3											
Yue, Z.2015 (83)	LC Moderate to large Un	45 mg/time, 1 time/w, 2 times	40 mg/m²											
	Un	60 mg/m²	2 months M, NCICTC O1-3											
Zhang, W.2016 (88)	LC Moderate to large Un	45 mg/time, 1 time/w, 2 times	40 mg/m²											
	Un	60 mg/m²	2 months M, NCICTC O1-3											
Che, X.2017 (104)	LC Large Un Un	40 mg/m²	4 weeks M, NCICTC O1-3											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
ChiCTR.2017 (106)	MTs Moderate to large Un	45 mg/time, 1 time/w, 2 times	40 mg/m²											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
Feng, Z.2017 (106)	NSCLC Moderate to large Un	45 mg/time, 1 time/w, 2 times	40 mg/m²											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
Ch, X.2017 (108)	LC Small to large Un	45 mg/time, 1 time/w, 2 times	40 mg/m²											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
Che, X.2017 (104)	LC Large Un Un	40 mg/m²	4 weeks M, NCICTC O1-3											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
ChiCTR.2017 (126)	MTs Moderate to large Un	45 mg/time, 1 time/w, 2 times	40 mg/m²											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
Feng, Z.2017 (106)	NSCLC Moderate to large Un	45 mg/time, 1 time/w, 2 times	40 mg/m²											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
Ch, X.2017 (104)	LC Large Un Un	40 mg/m²	4 weeks M, NCICTC O1-3											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
ChiCTR.2017 (126)	MTs Moderate to large Un	45 mg/time, 1 time/w, 2 times	40 mg/m²											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
Feng, Z.2017 (106)	NSCLC Moderate to large Un	45 mg/time, 1 time/w, 2 times	40 mg/m²											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
Ch, X.2017 (104)	LC Large Un Un	40 mg/m²	4 weeks M, NCICTC O1-3											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
ChiCTR.2017 (126)	MTs Moderate to large Un	45 mg/time, 1 time/w, 2 times	40 mg/m²											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
Feng, Z.2017 (106)	NSCLC Moderate to large Un	45 mg/time, 1 time/w, 2 times	40 mg/m²											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
Ch, X.2017 (104)	LC Large Un Un	40 mg/m²	4 weeks M, NCICTC O1-3											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
ChiCTR.2017 (126)	MTs Moderate to large Un	45 mg/time, 1 time/w, 2 times	40 mg/m²											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
Feng, Z.2017 (106)	NSCLC Moderate to large Un	45 mg/time, 1 time/w, 2 times	40 mg/m²											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
Ch, X.2017 (104)	LC Large Un Un	40 mg/m²	4 weeks M, NCICTC O1-3											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
ChiCTR.2017 (126)	MTs Moderate to large Un	45 mg/time, 1 time/w, 2 times	40 mg/m²											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
Feng, Z.2017 (106)	NSCLC Moderate to large Un	45 mg/time, 1 time/w, 2 times	40 mg/m²											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
Ch, X.2017 (104)	LC Large Un Un	40 mg/m²	4 weeks M, NCICTC O1-3											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
ChiCTR.2017 (126)	MTs Moderate to large Un	45 mg/time, 1 time/w, 2 times	40 mg/m²											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
Feng, Z.2017 (106)	NSCLC Moderate to large Un	45 mg/time, 1 time/w, 2 times	40 mg/m²											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
Ch, X.2017 (104)	LC Large Un Un	40 mg/m²	4 weeks M, NCICTC O1-3											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
ChiCTR.2017 (126)	MTs Moderate to large Un	45 mg/time, 1 time/w, 2 times	40 mg/m²											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
Feng, Z.2017 (106)	NSCLC Moderate to large Un	45 mg/time, 1 time/w, 2 times	40 mg/m²											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
Ch, X.2017 (104)	LC Large Un Un	40 mg/m²	4 weeks M, NCICTC O1-3											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
ChiCTR.2017 (126)	MTs Moderate to large Un	45 mg/time, 1 time/w, 2 times	40 mg/m²											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
Feng, Z.2017 (106)	NSCLC Moderate to large Un	45 mg/time, 1 time/w, 2 times	40 mg/m²											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
Ch, X.2017 (104)	LC Large Un Un	40 mg/m²	4 weeks M, NCICTC O1-3											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
ChiCTR.2017 (126)	MTs Moderate to large Un	45 mg/time, 1 time/w, 2 times	40 mg/m²											
	Un	50 mg/m²	4 weeks M, NCICTC O1-3											
First author, Year	Malignant pleural effusions	Interventions	ET	Criteria A/B	O									
-------------------	-----------------------------	---------------	----	-------------	---									
TABLE 1	Continued													
	Tumor	Volume	TH	KPS	AST	IPC	E/C	M/F	Years	Rh-Endostatin	Chemical irritants			
Fan, Y. 2018 (112)	BC	Un	Un	Yes	45/45	Un	41–75	60 mg/time, 2 times/w, Un	60 mg/m²	Un	Millar, Un	O1-3		
Li, T. 2018 (113)	LC	Un	Un	Yes	30/30	41/19	50–80	45 mg/time, 2 times/w, 6 times	40 mg/m²	Un	Millar, Un	O1,3		
Liu, H. 2018 (114)	NSCLC	Moderate to large	PT	Un	Yes	26/26	23/29	39–75	45 mg/time, 2 times/w, 4–6 times	30 mg/m²	3–4 weeks	Millar, WHO	O1,3	
Liu, Y. 2018 (115)	NSCLC	Moderate to large	Un	Yes	34/34	38/30	53–72	60 mg/time, 2 times/w, Un	60 mg/m²	Un	Millar, WHO	O1-3		
Qiu, H. 2018 (117)	BC	Moderate to large	Un	Un	Yes	23/23	Un	60 mg/time, 2 times/w, 8 times	60 mg/m²	4 weeks	Millar, Un	O1,3		
Rao, X. 2018 (54)	MTs	Moderate to large	PT	Yes	40/40	47/33	48–75	30 mg/time, 1 time/w, 3 times	60 mg/m²	3 weeks	Millar, Un	O1,3		
Rong, D. 2018 (118)	LC	Moderate to large	Un	Yes	20/20	17/23	18–30	45 mg/time, 2 times/w, 6 times	40 mg/m²	8 weeks	Millar, WHO	O1,3		
Wang, R. 2018 (120)	NSCLC	Moderate to large	PT	Un	Yes	34/34	38/30	53–72	60 mg/time, 2 times/w, 8 times	60 mg/m²	4 weeks	Millar, WHO	O1,3	
Jiang, W. 2019 (121)	LC	Moderate to large	PT	Un	Yes	20/20	27/13	60 mg/time, 2 times/w, 4 times	40–50 mg/m²	5–10 weeks	Millar, WHO	O1-4		
Tian, L. 2019 (122)	NSCLC	Moderate to large	Un	Yes	30/30	41/17	45–75	60 mg/time, 2 times/w, 12 times	60 mg/m²	12 weeks	Millar, WHO	O1-3		
Zhang, Y. 2011 (61)	MTs	Moderate to large	PT	Yes	50/50	57/43	36–89	30 mg/time, 1 time/w, 3 times	50 mg/m²	3 weeks	Millar, Un	O1,3		
Zhang, J. 2012 (70)	LC	Large	Un	Yes	24/24	36–72	30 mg/time, 1 time/w, 3 times	60 mg/m²	3 weeks	Millar, NCICTC	O1-3			
Li, G. Y. 2011 (57)	MTs	Moderate to large	Un	Yes	30/30	42/18	35–78	45 mg/time, 1 time/w, Un	40 mg/m²	Un	Millar, WHO	O1-3		
Yang, K. 2013 (74)	LC	Moderate to large	PT	Yes	28/28	38/20	44–66	7.5 mg/m², 1 time/w, 6 times	100 mg/m²	10 weeks	Millar, NCICTC	O1,3		
Xu, J. 2014 (83)	NSCLC	Moderate to large	PT	Yes	35/35	43/27	44–70	60 mg/time, 1 time/w, 2 times	60 mg/m²	4 weeks	Millar, NCICTC	O1,3		
Liu, Z. 2015 (105)	NSCLC	Moderate to large	PT	Yes	34/34	54/34	30–80	30 mg/time, 1 time/2w, 2 times	30 mg/m²	3 years	Millar, Un	O1,3,4		
Yin, Y. 2020 (29)	LC	Moderate to large	PT	Yes	30/30	34/26	35–81	60 mg/time, 2 times/w, 4 times	40 mg/m²	2 weeks	Millar, NCICTC	O1-4		
Li, G. Y. 2011 (57)	MTs	Moderate to large	Un	Yes	30/30	41–76	30 mg/time, 1 time/w, 3 times	60 mg/m²	3 weeks	Millar, NCICTC	O1-3			
Zhang, Y. 2011 (61)	MTs	Moderate to large	Un	Yes	15/15	18/12	38–73	30 mg/time, 2 times/w, 6 times	60 mg/m²	3 weeks	Millar, NCICTC	O1-3		
Luo, J. 2012 (65)	NSCLC	Moderate to large	Un	Yes	30/30	32/28	38–79	60 mg/time, Un, Un	60 mg/m²	Un	Millar, NCICTC	O1-3		
Zheng, J. 2012 (70)	LC	Large	Un	Yes	24/21	37–76	60 mg/time, 2 times/w, 4 times	60–80 mg/m²	6 months	Millar, WHO	O1-3			

MTs, malignant tumors (lung cancer, breast cancer, malignant lymphoma, gastric cancer, hepatic carcinoma, ovarian cancer, etc.); LC, lung cancer; NSCLC, non-small-cell lung cancer; BC, breast cancer; AST, anticipated survival time; TH, treatment history; E/C, experimental group/control group; F/M, female/male; Experimental group, Endostar plus chemical irritants; Control group, chemical irritants alone; IPCs, indwelling pleural catheters; PTX, paclitaxel; ET, evaluation time; Millar, complete response, partial response, stable disease, and progressive disease (PD); Ostrowskimj, complete response, partial response, and no response. WHO, WHO criteria for adverse drug reactions; Outcomes: O1: clinical responses including complete response, failure, and progressive disease; O2: quality of life (QOL); O3: adverse drug reactions (ADRs) and treatment-related adverse events (TRAEs); O4: survivals.
1.24–23.10, p = 0.02), 5.21 (95% CI 1.28–21.24, p = 0.02), 10.00 (95% CI 2.05–90.59, p = 0.04), and 3.60 (95% CI 1.46–8.89, p = 0.005), respectively.

Quality of Life
Given the limited trials for Rh-endostatin with CBP, NDP, LBP, or BLM, we only evaluated the QOL of Rh-endostatin with DDP (30, 55, 56, 58, 60, 62, 64, 66, 67, 72, 73, 75, 76, 82, 84–86, 88, 90–92, 95, 98, 99, 104, 109, 111, 112, 115, 116, 118, 126) (Figure 5).

The statistical heterogeneity between trials was not found using Cochran’s c² test and I² statistic (I² = 0%). So, the data were pooled using an FEM. The OR was 3.01 (95% CI 2.49–3.63, p < 0.00001), which indicated that the QOL was significantly higher than that of DDP alone.

Adverse Drug Reactions and Treatment-Related Adverse Events
Given the limited trials for Rh-endostatin with CBP, NDP, LBP, or BLM, we only evaluated the ADRs and TRAEs in Rh-endostatin with DDP. Fifty-eight trials observed hematotoxicity (neutropenia, thrombocytopenia, and anemia), cardiotoxicity (arrhythmia), hepatotoxicity, nephrotoxicity, gastrointestinal reaction, alopecia, neurotoxicity, rash, hypertension, hemorrhage, chest pain, and fever (30, 31, 54–56, 58, 60, 62, 64, 66–68, 71–73, 75–78, 80–82, 84–92, 94, 95, 97–100, 103, 104, 107–123, 126, 127) (Table 2). Cochran’s c² test and I² statistic showed no heterogeneity in all of the ADRs (I² = 0%). So, the data were pooled using an FEM. Rh-endostatin with DDP had a similar risk of ADRs in DDP alone. The ORs showed no significant difference between the two groups. In addition, nine trials (56, 66, 76, 88, 95, 98, 99, 116, 127) reported no risk of TRAEs, and six trials (66, 88, 95, 98, 99, 116) reported no risk of TRM.

Subgroup Analysis of Clinical Responses
The patient feature was defined as primary tumor, pleural fluid volume, treatment history, KPS score, and AST. First, the primary tumor was classified as lung cancer, breast cancer, or malignant tumors. In patients with lung cancer/malignant tumors, Rh-endostatin with DDP obtained a significant increase of CR and a reduction of failure and PD. In breast cancer, it only obtained a reduction of failure and PD (Table 3A and Figures S12, S14, S16). The pleural fluid was classified as small to large, moderate to large, or large (Table 3B and Figures S18, S20, S22); treatment history was initial treatment, retreatment, or both (Table 3C and Figures S24, S26, S28); KPS score was <50, ≥50, or ≥60 (Table 3D and Figures S30, S32, S34); and the AST was ≥2 months or ≥3 months (Table 3E and Figures S36, S38, S40). In patients with moderate to massive effusion, initial treatment, KPS score (≥60), or AST (≥3 months), the Rh-endostatin with DDP groups obtained a significant increase of CR and a reduction of failure and PD.

The majority of patients mainly received the IPCs (Table 3F and Figures S42, S44, S46). Subgroup analyses found that whether IPC is used or not had no effect on the clinical responses. Rh-endostatin was used with 30–90 mg each time, once or twice a week 1–12 times (Tables 3G–I and Figures S48–S64). DDP was used with 30–40 mg/m² or 50–60 mg/m² each time (Table 3) and Figures S66, S68, S70). Rh-endostatin (30–35 mg or 40–45 mg each time, once or twice a week 3–4 times)
FIGURE 3. The analysis of clinical responses between the two groups.

(A) The forest plot of complete response.

(B) The forest plot of treatment failure.

(C) The forest plot of progressive disease.
with DDP (30–40 mg/m² or 50–60 mg/m²) obtained a significant increase of response and a reduction of failure and PD in MPE. However, univariate regression analysis did not discover a positive or negative correlation between CR, treatment failure, and PD and each variable. Multiple meta-regression analysis also did not discover a positive or negative correlation.

Publication Bias Analysis

In Rh-endostatin with DDP, more than 10 trials were included for the CR, treatment failure, PD, QOL, and ADRs. So, funnel plot and Egger/Begg’s tests were used to analyze their potential bias of publication. The analysis found a publication bias in CR and QOL (p < 0.001, 95% CI 0.74–1.53), treatment failure (p < 0.001, 95% CI -2.50 to -1.02), PD (p < 0.001, 95% CI -1.26 to -0.12), and QOL (p < 0.001, 95% CI 0.57–3.94) (Figures 6A–D). The trials overestimated the CR and QOL and underestimated the treatment failure and PD. The analysis did not find a bias in neutropenia (p = 0.10, 95% CI -1.51 to 0.14), thrombocytopenia (p = 0.82, 95% CI -1.25 to 0.99), cardiotoxicity (p = 0.34, 95% CI -59 to 1.57), hepatotoxicity (p = 0.79, 95% CI -0.73 to 0.56), nephrotoxicity (p = 0.85, 95% CI -0.66 to 0.55), gastrointestinal reactions (p = 0.97, 95% CI -0.75 to 0.72), chest pain (p = 0.28, 95% CI -0.58 to 1.82), and fever (p = 0.30, 95% CI -0.51 to 0.14) (Figures 6E–L). The trials objectively reported the ADRs.

Sensitivity Analysis

In Rh-endostatin with DDP, the poor trials involved clinical response, 1-year OS rate, QOL, and ADRs. Some trials overestimated the CR, 1-year OS rate, and QOL and underestimated the treatment failure and PD. According to the underestimating efficacy and overestimating risk, we evaluated...
the robustness through removing the poor trials, overestimation/underestimation, and both. Before and after removing the poor trials, the results demonstrated a good robustness of all outcomes. Before and after removing the overestimation and both, the OR of 1-year OS rate was poor robust, and other indicators were robust. In addition, the OR of CR was robust in Rh-endostatin with NDP, and the OR of CR and PD was robust in Rh-endostatin with BLM (Table 4).

Table 2 | Meta-analysis results of ADRs and TRAEs (Figures S1–S11).

Outcomes	Trials	Events/Total	Events/Total	Statistic method	Odds Ratio, 95%CI	I²	p
Neutropenia (Figure S1)	32	302/971	299/967	Fixed-effects model	0.98 [0.79, 1.21]	0%	p = 0.83
Thrombocytopenia (Figure S2)	28	187/875	178/868	Fixed-effects model	1.04 [0.80, 1.36]	0%	p = 0.76
Anemia (Figure S3)	10	49/337	43/334	Fixed-effects model	1.29 [0.80, 2.00]	0%	p = 0.30
Cardiotoxicity (Figure S4)	21	37/671	32/663	Fixed-effects model	1.39 [0.84, 2.31]	0%	p = 0.20
Hepatotoxicity (Figure S5)	25	91/988	85/900	Fixed-effects model	1.07 [0.77, 1.48]	0%	p = 0.68
Nephrototoxicity (Figure S6)	28	91/888	88/800	Fixed-effects model	1.07 [0.77, 1.48]	0%	p = 0.68
Gastrointestinal reactions (Figure S7)	49	436/1564	397/1358	Fixed-effects model	1.14 [0.95, 1.36]	0%	p = 0.16
Chest pain (Figure S8)	12	51/316	50/321	Fixed-effects model	1.01 [0.63, 1.60]	0%	p = 0.98
Fever (Figure S9)	20	67/578	68/573	Fixed-effects model	0.98 [0.68, 1.41]	0%	p = 0.89
Alopecia (Figure S10a)	2	3/63	4/61	Fixed-effects model	1.22 [0.33, 4.54]	0%	p = 0.76
Neurotoxicity (Figure S10b)	5	8/175	8/173	Fixed-effects model	0.98 [0.36, 2.65]	0%	p = 0.96
Rash (Figure S10c)	5	17/193	11/186	Fixed-effects model	1.57 [0.71, 3.50]	0%	p = 0.27
Hypertension (Figure S10d)	3	5/92	0/84	Fixed-effects model	4.13 [0.68, 25.10]	0%	p = 0.12
Hemorrhage (Figure S10e)	2	4/70	1/66	Fixed-effects model	2.95 [0.45, 19.38]	0%	p = 0.26
Thoracentesis-related adverse events (Figure S11)	9	0/303	0/296	No	Not estimable		
Treatment-related mortality (TRM) (Figure S11)	6	0/145	0/137	No	Not estimable		

ADRs, adverse drug reactions; TRAEs, thoracentesis-related adverse events; CI, confidence interval.
TABLE 3. Subgroup analysis results (Supplementary Materials 6A, B).

Table 3A. Subgroup analysis via primary tumors (Figures S12–S17)

Subgroups	Trials	Cases	OR (95%CI)	UM	MM
Malignant tumors	19	1172	2.58 [1.89, 3.53]	0.98	0.98
Lung cancer	37	2393	2.20 [1.79, 2.71]	0.28	0.23
Breast cancer	3	187	1.85 [0.91, 3.75]	0.12	0.76

Table 3B. Subgroups analysis via pleural fluid volume (Figures S18–S23)

Subgroups	Trials	Cases	OR (95%CI)	UM	MM
Small to large	2	97	2.08 [0.68, 6.36]	0.44	0.70
Moderate to large	33	2032	2.46 [1.94, 3.12]	34	2080
Large	5	326	2.35 [1.30, 4.25]	5	326
Unclear	19	1297	2.08 [1.59, 2.72]	19	1297

Table 3C. Subgroups analysis via treatment history (Figures S24–S29)

Subgroups	Trials	Cases	OR (95%CI)	UM	MM
Initial and retreatment	5	242	2.47 [1.03, 5.91]	0.44	0.58
Initial treatment	7	484	2.72 [1.68, 4.39]	7	484
Unclear	47	3026	2.22 [1.85, 2.67]	48	3074

Table 3D. Subgroups analysis via KPS score (Figures S30–S35)

Subgroups	Trials	Cases	OR (95%CI)	UM	MM
KPS score(<50)	1	53	8.65 [0.44, 169.20]	0.78	0.95
KPS score(≥50)	4	202	2.28 [1.00, 5.18]	3	162
KPS score(≥60)	37	2478	2.30 [1.88, 2.81]	38	2526
Unclear	17	1019	2.21 [1.58, 3.08]	17	1019

Table 3E. Subgroups analysis via AST (Figure S36–S41)

Subgroups	Trials	Cases	OR (95%CI)	UM	MM
AST (≥2months)	5	299	2.47 [1.36, 4.48]	0.78	0.87
AST (≥3months)	36	2483	2.26 [1.84, 2.79]	36	2483
AST (unclear)	18	970	2.29 [1.66, 3.16]	18	970

Table 3F. Subgroups analysis via Rh-Endostatin dosage (Figures S42–S47)

Subgroups	Trials	Cases	OR (95%CI)	UM	MM
30 to 35mg	18	1134	2.29 [1.92, 2.74]	0.84	0.84
40-45mg	26	1687	2.28 [1.77, 2.87]	26	1687
60-90mg	13	842	2.17 [1.53, 3.10]	13	842
Others	2	89	4.05 [0.91, 18.10]	6	383

Table 3G. Subgroups analysis via treatment frequency (Figures S48–S53)

Subgroups	Trials	Cases	OR (95%CI)	UM	MM
Once a week	17	1055	2.31 [1.67, 3.20]	0.97	0.79
Twice a week	32	2013	2.28 [1.80, 2.87]	32	2013
Unclear	10	684	2.28 [1.58, 3.21]	10	684

Table 3H. Subgroups analysis via treatment times (Figures S54–S59)

Subgroups	Trials	Cases	OR (95%CI)	UM	MM
One to two times	4	194	3.07 [1.52, 6.22]	0.48	0.52
Three to four times	23	1353	2.35 [1.77, 3.13]	23	1353
Five to six times	5	610	2.42 [1.61, 3.64]	5	610
Unclear	22	1595	2.10 [1.62, 2.71]	22	1595

Table 3I. Subgroups analysis via cisplatin dosage (Figures S60–S65)

Subgroups	Trials	Cases	OR (95%CI)	UM	MM
30 to 40mg/m²	29	1892	2.23 [1.77, 2.81]	0.87	0.84
50 to 60mg/m²	24	1553	2.30 [1.77, 2.98]	24	1553
Others	6	307	2.83 [1.35, 5.98]	6	307

Notes: AST, anticipated survival time; KPS score, Karnofsky Performance Status score; OR, odds ratio; Rh-endostatin, recombinant human endostatin; CI, confidence interval; UM, univariable meta-regression; MM, multiple meta-regression.
Quality of Evidence

In methodology, 46 poor trials were included for this analysis. Sensitivity analysis demonstrated that the OR of 1-year OS rate was poor robustness in Rh-endostatin with DDP, the CR and PD were poor in Rh-endostatin with NDP, and the CR was poor in Rh-endostatin with BLM. Therefore, we downgraded their quality by two grades. Other results had good robustness, and we downgraded their quality by one grade. No heterogeneity was found in all of the indicators; all indicators were not downgraded. In Rh-endostatin with DDP, the sample size of 1-year OS rate, alopecia, hypertension, and hemorrhage was lower than 300 subjects. In Rh-endostatin with NDP, CBP, LBP, or BLM, the CR, treatment failure, and PD were lower than 300. So, we downgraded their quality by one grade. In addition, the funnel plot and Egger’s test showed a publication bias of CR, treatment failure, PD, and QOL in Rh-endostatin with DDP. The sensitivity analysis results were good robust, and we did not downgraded their quality. So, we summarized a low quality for 1-year OS rate, alopecia, hypertension, and hemorrhage and a moderate quality for other results of Rh-endostatin with DDP; a low quality for CR and treatment failure in Rh-endostatin with NDP or BLM; and a very low quality for the remaining indicators (Table 5).

DISCUSSION

Intrapleural administration of Rh-endostatin alone or plus chemical irritants is recommended for the control of MPE by expert consensus from China (28). To demonstrate the optimal combinations of Rh-endostatin with chemical irritants and their clinical efficacy and safety, we further included 75 trials for analysis (29–31, 54–123, 126, 127). In this study, we found six combinations such as Rh-endostatin with DDP, CBP, NDP, LBP, BLM, or paclitaxel. The results of meta-analysis demonstrated that the Rh-endostatin with DDP might improve the response and reduce the failure and PD, with “moderate” quality. We further found that this combination might also improve the QOL, without increasing the risk of hematotoxicity, cardiotoxicity, hepatotoxicity, nephrotoxicity, gastrointestinal reaction, chest pain, and fever, with “moderate” quality. In addition, there were limited reports on the combinations of Rh-endostatin with CBP, NDP, LBP, BLM, or paclitaxel. Only the combinations Rh-endostatin with NDP and LBP might increase the response and reduce the failure and PD, but with “low to very low” quality. A few trials reported the survival; only Rh-endostatin with DDP or LBP might improve 1- to 2-year OS rate, with “low to very low” quality. And most trials failed to report the TRAEs and TRM. Evidently, these outcomes are not fully evaluated and need to be further confirmed.

Eight previous evaluations had reported that the intrathoracic infusion with Rh-endostatin combined with platinum (17, 18), DDP (19–23), or chemotherapeutic agents (24) might improve the objective response rate, disease control rate, and QOL without an increase in the incidence of ADRs in MPEs from malignant tumors. Rh-endostatin with DDP might also obtain the same effects in MPEs from lung cancer (25–27). In this evaluation, we redefined the clinical efficacy as CR, treatment failure, PD, and survival and added the TRAEs and TRM as security indexes, further integrated previous studies (17–27), and
Indicator	Before excluding trials	Excluded poor trials	Excluded over/under-estimation*	Excluded poor, over/under-estimation*												
	Trials	SM	OR (95% CI)	I²	Trials	SM	OR (95% CI)	I²	Trials	SM	OR (95% CI)	I²	Trials	SM	OR (95% CI)	I²
Rh-Endostatin with Cisplatin																
Complete response	59	FEM	2.29 [1.93, 2.71]	0%	25	FEM	2.28 [1.74, 2.98]	0%	24	FEM	2.21 [1.69, 2.90]	0%				
Treatment failure	60	FEM	0.29 [0.25, 0.33]	0%	25	FEM	0.32 [0.26, 0.39]	0%	8	FEM	0.45 [0.31, 0.66]	0%				
Progressive disease	50	FEM	0.27 [0.22, 0.34]	0%	23	FEM	0.31 [0.23, 0.42]	0%	19	FEM	0.32 [0.22, 0.46]	0%				
Quality of life	32	FEM	3.01 [2.49, 3.63]	0%	13	FEM	2.76 [2.06, 3.69]	0%	6	FEM	1.93 [1.24, 2.90]	0%				
O.S. rate	3	FEM	3.32 [1.63, 6.75]	0%	2	FEM	2.98 [1.28, 6.92]	0%	1	no	2.17 [0.63, 7.44]	no				
Neutropenia	32	FEM	0.98 [0.79, 1.21]	0%	18	FEM	1.09 [0.81, 1.43]	0%	18	FEM	1.08 [0.81, 1.43]	0%				
Thrombocytopenia	28	FEM	1.04 [0.80, 1.36]	0%	13	FEM	1.07 [0.71, 1.59]	0%	13	FEM	1.07 [0.71, 1.59]	0%				
Anemia	10	FEM	1.29 [0.80, 2.09]	0%	9	FEM	1.45 [0.84, 2.50]	0%	9	FEM	1.45 [0.84, 2.50]	0%				
Gastrointestinal reactions	49	FEM	1.14 [0.95, 1.36]	0%	22	FEM	1.03 [0.80, 1.34]	0%	22	FEM	1.03 [0.80, 1.34]	0%				
Hepatotoxicity	28	FEM	1.07 [0.77, 1.48]	0%	21	FEM	0.98 [0.67, 1.44]	0%	21	FEM	0.98 [0.67, 1.44]	0%				
Nephrototoxicity	28	FEM	1.06 [0.74, 1.53]	0%	21	FEM	0.94 [0.62, 1.44]	0%	21	FEM	0.94 [0.62, 1.44]	0%				
Cardiotoxicity	21	FEM	1.06 [0.74, 1.53]	0%	19	FEM	1.39 [0.84, 2.31]	0%	19	FEM	1.39 [0.84, 2.31]	0%				
Fever	20	FEM	0.98 [0.66, 1.41]	0%	10	FEM	1.04 [0.61, 1.76]	0%	10	FEM	1.04 [0.61, 1.76]	0%				
Thoracodynia	12	FEM	1.01 [0.63, 1.60]	0%	5	FEM	0.92 [0.44, 1.93]	0%	5	FEM	0.92 [0.44, 1.93]	0%				
Neurotoxicity	5	FEM	0.98 [0.36, 2.65]	0%	4	FEM	0.77 [0.21, 2.83]	0%	4	FEM	0.77 [0.21, 2.83]	0%				
Hemorrhage	2	FEM	2.95 [0.45, 19.38]	0%	1 no	5.00 [0.23, 107.35]	no	1 no	5.00 [0.23, 107.35]	no						
Hypertension	3	FEM	4.13 [0.68, 25.10]	0%	2 FEM	3.72 [0.40, 34.48]	0%	2 FEM	3.72 [0.40, 34.48]	0%						
Rh-Endostatin with Nedaplatin																
Complete response	4	FEM	2.50 [1.31, 4.77]	0%	2 FEM	2.48 [1.10, 5.62]	0%	2 FEM	2.48 [1.10, 5.62]	0%						
Treatment failure	4	FEM	0.29 [0.16, 0.51]	0%	2 FEM	0.34 [0.15, 0.78]	0%	1 No	0.36 [0.08, 1.57]	No						
Progressive disease	3	FEM	0.31 [0.12, 0.79]	0%	1 No	0.32 [0.08, 1.31]	No	1 No	0.32 [0.08, 1.31]	No						
Rh-Endostatin with Bleomycin																
Complete response	4	FEM	1.73 [0.89, 3.37]	0%	1 No	1.64 [0.37, 7.30]	No	1 No	1.64 [0.37, 7.30]	No						
Treatment failure	4	FEM	0.38 [0.20, 0.72]	0%	1 No	0.29 [0.09, 0.95]	No	1 No	0.29 [0.09, 0.95]	No						
Progressive disease	4	FEM	0.49 [0.20, 1.19]	0%	1 No	0.26 [0.05, 1.48]	No	1 No	0.26 [0.05, 1.48]	No						

SM, statistical method; FEM, fixed-effects model; REM, random-effects model; OR, odds ratio; OS, overall survival; CI, confidence interval; Poor*, poor trials that had at least one domain being considered as high risk of bias; Over* or Under*, overestimated or underestimated trials in which results had significant differences and beneficial to Rh-endostatin group.
Indicators (Trials)	Quality assessment	Malignant pleural effusion	Clinical efficacy and safety	Quality					
Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Rh-endostatin	Chemical irritants	Odds ratios (95% CI)	Absolute effects	
Rh-Endostatin with Cisplatin	Complete response (59)	Serious ¹	None	None	None	521/1982 (27.7%)	282/1870 (15.1%)	2.29 (1.93 to 2.71)	138 more per 1000 (from 104 more to 174 more)
Treatment Failure (60)	Serious ¹	None	None	None	None	493/1906 (25.9%)	996/1894 (52.6%)	0.29 (0.25 to 0.33)	283 fewer per 1000 (from 258 fewer to 309 fewer)
One year OS rate (5)	Serious ¹	None	None	Serious ⁵	None	48/69 (66.7%)	24/64 (37.5%)	3.32 (1.63 to 6.75)	260 more per 1000 (from 220 more to 296 more)
Quality of life (32)	Serious ¹	None	None	None	None	729/1000	464/1014 (45.8%)	3.01 (2.49 to 3.63)	260 more per 1000 (from 220 more to 296 more)
Neutropenia (32)	Serious ¹	None	None	None	None	302/971 (31.1%)	299/967 (30.9%)	0.98 (0.79 to 1.21)	291 more per 1000 (from 119 more to 427 more)
Thrombocytopenia (28)	Serious ¹	None	None	None	None	187/875 (21.4%)	178/868 (20.5%)	1.04 (0.80 to 1.36)	6 more per 1000 (from 34 fewer to 55 more)
Cardiotoxicity (21)	Serious ¹	None	None	None	None	49/337 (27.7%)	40/339 (11.8%)	1.29 (0.80 to 2.09)	29 fewer per 1000 (from 21 fewer to 101 more)
Hepatotoxicity (28)	Serious ¹	None	None	None	None	91/898 (10.1%)	85/900 (9.4%)	1.07 (0.77 to 1.48)	6 more per 1000 (from 20 fewer to 38 more)
Nephrotoxicity (28)	Serious ¹	None	None	None	None	69/886 (7.7%)	65/890 (7.3%)	0.27 (0.22 to 0.34)	162 fewer per 1000 (from 143 fewer to 175 fewer)
Rh-Endostatin with Nedaplatin	Complete response (4)	Serious ¹	None	None	None	37/87 (5.5%)	27/672 (4%)	1.39 (0.84 to 2.31)	154 more per 1000 (from 40 more to 318 more)
Treatment failure (4)	Serious ¹	None	None	None	None	26/117 (22.2%)	57/117 (48.7%)	0.29 (0.16 to 0.51)	271 fewer per 1000 (from 161 fewer to 355 fewer)
Rh-Endostatin with Carboplatin	Complete response (2)	Very serious ⁷	None	None	None	20/56 (35.7%)	12/53 (22.6%)	1.99 (0.84 to 4.71)	142 more per 1000 (from 29 fewer to 353 more)
Treatment failure (2)	Very serious ⁷	None	None	None	None	16/56 (28.6%)	30/53 (56.6%)	0.28 (0.12 to 0.64)	299 fewer per 1000 (from 111 fewer to 431 fewer)
Rh-Endostatin with Lobaplatin	Complete response (3)	Very serious ⁷	None	None	None	50/124 (40.3%)	47/124 (37.8%)	1.04 (0.77 to 1.40)	271 fewer per 1000 (from 161 fewer to 355 fewer)
Treatment failure (3)	Very serious ⁷	None	None	None	None	30/124 (24.2%)	68/124 (54.8%)	0.25 (0.15 to 0.44)	316 fewer per 1000 (from 200 fewer to 394 fewer)
Rh-Endostatin with Bleomycin	Complete response (4)	Very serious ⁷	None	None	None	7/89 (7.9%)	19/89 (21.3%)	0.31 (0.12 to 0.79)	136 fewer per 1000 (from 37 fewer to 182 fewer)

CI, confidence interval; OS, overall survival; Rh-endostatin, recombinant human endostatin. ¹Most trials had an unclear risk, and some trials had a high risk. If good robustness, we downgraded it by one grade. ²Publication bias was found in them, and the result was underestimated. The result showed good robustness and was not downgraded. ³Publication bias was found in them, and the result was underestimated. The result showed good robustness and not downgraded. ⁴The number of patients in each result was less than 300, and we downgraded it by one grade. ⁵Most trials had an unclear risk and no high risk, and we downgraded it by one grade. ⁶Most trials had an unclear risk, and some trials had a high risk. If sensitivity analysis results had poor robustness, we downgraded it by two grades. ⁷All trials had a high risk, and we downgraded it by two grades.
added 36 trials with 2,209 patients for analysis. This evaluation found that all six combinations, especially Rh-endostatin with DDP, might show an improvement of clinical response and a reduction of failure and PD, without an increase of the ADRs. The result indicates that a significant synergistic effect exists between Rh-endostatin and DDP. In clinical practice, the BRMs (38, 128) and TCMIs (129–131) were also used in the control of MPEs through intrathoracic infusion. Previous studies (129–131) had reported that chemical irritants plus TCMIs might increase the clinical benefit rate and decrease the ADRs. Chemical irritants plus BRMs (38, 128) also obtain the same benefit. But compared with TCMIs and BRMs, Rh-endostatin did not reduce the risk of ADRs, which may limit its clinical application. All in all, the results indicate that intrapleural administration of TCMIs, BRMs, or Rh-endostatin might be an important pathway to perform pleurodesis and control the hydrothorax (Figure 7).

In a previous analysis (38), we found that moderate to large pleural fluid, KPS scores ≥50, or AST ≥3 months might be the treatment thresholds for lentinan with DDP. So, we performed a series of subgroup analyses to reveal the therapeutic thresholds and optimal usage of Rh-endostatin with DDP for achieving a desired response and security. Our analyses found that MPE patients with lung cancer, moderate to massive effusion, initial treatment, KPS score ≥60, or AST ≥3 months might be more suitable for Rh-endostatin with DDP infusion than patients with other conditions. The infusion conditions, the volume of pleural effusion, treatment history, and AST are the same as that of lentinan with DDP infusion. But Rh-endostatin infusion requires a higher KPS (≥60) than lentinan infusion, which suggests that

FIGURE 7 | Intrapleural infusion with Rh-endostatin for MPE. AST, anticipated survival time; QOL, quality of life; KPS, Karnofsky Performance Status; MPE, malignant pleural effusion.
Rh-endostatin infusion seems to have a higher threshold than lentian. Yoon et al. (132) had reported that poor performance status [Eastern Cooperative Oncology Group (ECOG) 3 or 4] was an independent risk factor of poor survival after video-assisted thoracic surgery (VATS) talc pleurodesis. Compared with VATS talc pleurodesis, endostatin infusion seems to have a lower threshold. In all, the results indicate that endostatin seems to have a special threshold for infusion. The moderate to massive effusion, KPS score ≥ 60, or AST ≥ 3 months may be a treatment threshold for Rh-endostatin with DDP, which may be more suitable for MPE with initial treatment or for lung cancer. So, the objective assessment of patients’ baseline should be considered when choosing Rh-endostatin with DDP. In expert consensus (28), Rh-endostatin (45 mg each time) with DDP (40 mg/m²) is recommended to control MPEs. Further subgroup analysis revealed that Rh-endostatin (30–35 mg or 40–45 mg each time, once or twice a week 3–4 times) with DDP (30–40 mg/m² or 50–60 mg/m²) obtained a significant increase of clinical response and a reduction of failure and PD. Based on the low dose and cost matching, we believe that Rh-endostatin (30–40 mg each time, once or twice a week 3–4 times) with DDP (30–40 mg/m²) may be a possible strategy for achieving an ideal response and a low failure and deterioration (Figure 7). The dose of Rh-endostatin and DDP may be lower than the recommended dose (28). All these findings demonstrate a possible treatment threshold and optimum strategy of intrapleural administration of Rh-endostatin with DDP for MPEs, which is of important clinical significance for further improving scientific decision-making of drug rational application. But the meta-regressions did not further confirm the positive or negative correlation. In addition, whether endostatin with DDP infusion is suitable for drug-resistant, refractory, retreatment, or recurrent MPEs remains unclear. For Rh-endostatin with CBP, NDP, or LBP/BLM, the treatment threshold and optimal strategy remain unclear. So, these questions need to be further answered.

All kinds of potential limitations should be taken into consideration. First, in this study, only Chinese and English databases were searched, which might result in potential retrieval biases. Second, a considerable number of trials did not clearly describe the baseline features such as the volume of hydrothorax, KPS score, AST, initial treatment, retreatment, drug-resistant, refractory, or recurrent. Third, only 34 studies described the generation of random sequence, and 44 studies selectively reported the CR, ADRs, or TRAEs. Fourth, there was lack of a unified standard for clinical efficacy of chemical pleurodesis in MPEs, and the majority of trials did not clearly report the survivals, TRAEs, and TRM. Fifth, due to limited trials for Rh-endostatin with CBP, NDP, LBP/BLM, the treatment thresholds and optimal strategy remain unclear. Sixth, the univariable or multivariate regression analysis did not find any positive or negative correlation between clinical responses and all variables.

CONCLUSION

The evidence indicates that among all six combinations, only Rh-endostatin with DDP may be an optimal combination, which may improve the clinical response and QOL and reduce the failure and PD without increasing the ADRs in MPEs. For Rh-endostatin with DDP infusion, the treatment threshold may be moderate to massive effusion, KPS score ≥ 60, or AST ≥ 3 months. The combination may be more suitable for MPE with initial treatment or for lung cancer. Rh-endostatin (30–40 mg each time, once or twice a week 3–4 times) with DDP (30–40 mg/m²) may be a possible strategy for achieving an ideal response. The pooled results from limited trials reveal that Rh-endostatin with DDP/LBP might increase the 0.5–2-year OS rate. But the evidence fails to support that Rh-endostatin plus chemical irritants also does for MPE what it does for non-lung cancer, refractory/recurrent, or drug-resistant patients. Their ADRs and potential TRAEs remain unclear. In addition, whether Rh-endostatin with CBP, NDP, or LBP/BLM improves the clinical response and their treatment thresholds and optimal strategy also remains unclear. All of these questions need further new trials to demonstrate. Finally, these findings provide valuable references for an optimal control strategy based on Rh-endostatin in MPE.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material further inquiries can be directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

Conception and design by ZX, XX, and X-FC. Development of methodology by ZX, C-QW, and X-FC. Literature search by C-QW and HJ. Article selection by C-QW and MH. Assessment of methodological bias risk by X-RH and QC. Data extraction by X-TZ and T-yF. Statistical analysis by C-QW and X-RH. GRADE assessment by X-FC and C-QW. Preparing the manuscript draft by ZX, XX, and X-FC. Review and revision of the manuscript by XX, X-FC, LZ, JL, and J-HF. Study supervision by ZX. All authors contributed to the article and approved the submitted version.

FUNDING

This work was funded by special funds for academic seedlings training and innovation at Zunyi Medical College [Qian Kehe Pingtai Rencai No. (2017) 5733-034], special funds for science and technology research into traditional Chinese and national medicine in Guizhou (No. QZYY 2017-084), and a high-level innovative talent program in Guizhou (No. fzc 120171001).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fonc.2021.649999/full#supplementary-material
REFERENCES

1. Society AT. Management of Malignant Pleural Effusions. Am J Respir Crit Care Med (2000) 162(5):1987–2001. doi: 10.1164/ajccr.162.5.at8-00
2. Rodríguez-Panadero F, Borderas Naranjo F, López Mejías J. Pleural Metastatic Tumours and Effusions. Frequency and Pathogenic Mechanisms in a Post-Mortem Series. Eur Respir J (1989) 2(4):366–9.
3. Roberts ME, Neville E, Berrisford RG, Antunes G, Ali NJ. Management of a Malignant Pleural Effusion: British Thoracic Society Pleural Disease Guidelines 2010. Thorax (2010) 65(Suppl 2):i32–40. doi: 10.1136/thx.2010.136994
4. Feller-Kopman DJ, Reddy CB, DeCamp MM, Diekemper RL, Gould MK, Yoell TA, et al. Management of Malignant Pleural Effusions: An Official ATS/STS/STR Clinical Practice Guideline. Am J Respir Crit Care Med (2018) 198(7):839–49. doi: 10.1164/rrccm.201807-1418SS
5. Shaﬁq M, Feller-Kopman D. Management of Malignant Pleural Effusions. Clin Chest Med (2020) 41(2):259–67. doi: 10.1016/j.ccm.2020.02.009
6. Lombardi G, Zustoﬁev F, Nicoletti MO, Donach M, Artioli G, Pastorelli D. Diagnosis and Treatment of Malignant Pleural Effusion: A Systematic Literature Review and New Approaches. Am J Clin Oncol (2010) 33(4):420–3. doi: 10.1097/COC.0b013e3181aebbfb
7. March E, Leporini C, Ammendola M, Porcelli M, Gadaleta CD, Russo E, et al. Classical and Non-Classical Proangiogenic Factors as a Target of Antiangiogenic Therapy in Tumor Microenvironment. Cancer Lett (2016) 380(1):216–26. doi: 10.1016/j.canlet.2015.07.028
8. Lieser EA, Croghan GA, Nevala WK, Bradshaw MJ, Markovic SN, Mansfield AS. Up-Regulation of Pro-Angiogenic Factors and Establishment of Tolerance in Malignant Pleural Effusions. Lung Cancer (2013) 82(1):63–8. doi: 10.1016/j.lungcan.2013.07.007
9. Zebrowski BK, Yano S, Liu W, Shaheen RM, Hicklin DJ, Putnam JBJr., et al. Endostatin: its Mechanisms of Action and Clinical Applications. Biochim Biophys Acta (2015) 1850(12):2422–38. doi: 10.1016/j.bbagen.2015.09.007
10. Li XQ, Shang BY, Wang DC, Zhang SH, Wu SY, Zhen YS. Endostar, a Modiﬁed Recombinant Human Endostatin, Exhibits Synergistic Effects With Dexamethasone on Angiogenesis and Hepatoma Growth. Cancer Lett (2011) 301(2):212–20. doi: 10.1016/j.canlet.2010.12.004
11. Zhang Y, Qu ZH, Cui M, Guo C, Zhang XM, Ma CH, et al. Combined Endostatin and TRAIL Gene Transfer Suppresses Human Hepatocellular Carcinoma Growth and Angiogenesis in Nude Mice. Cancer Biol Ther (2009) 8(5):466–73. doi: 10.4161/cbt.8.5.7687
12. Folkmann J. Antiangiogenesis in Cancer Therapy–Endostatin and its Mechanisms of Action. Exp Cell Res (2006) 312(5):594–607. doi: 10.1016/j.yexcr.2005.11.015
13. Yang M, He W, Wang F, Wu M, Fan Q. Recombinant Human Endostatin Combined With Cisplatin Perfusion Chemotherapy for Malignant Pleural Effusions: A Meta-Analysis. Chin Clin Oncol (2015) 20(12):1117–23.
14. Jiang J, Xie J, Zhang L, Wang Y, Quan X. Efficacy and Safety of Recombinant Human Endostatin Combined With Cisplatin for Malignant Pleural Efﬂuxion Meta-Analysis. Pract J Cancer (2016) 31(3):411–6. doi: 10.3969/j.issn.1001-5930.2016.03.019
15. Sun Y, Yu Z. Endostar Combined With Cisplatin in the Treatment of Malignant Pleural Efﬂuxion: A Meta-Analysis. Mod Bus Trade Ind (2016) 37(33):166–9. doi: 10.19311/cnki.1672-3198.2016.33.079
16. Yang H, Chen T, Ying M. Efficacy and Safety of Combination of Recombinant Human Endostatin and Cisplatin in Treatment of Malignant Pleural Efﬂuxion: A Meta-Analysis. J Chin Oncol (2016) 22(3):410–6. doi: 10.11755/j.issn.1671-170X.2016.05.B015
17. Lv C, Wang S, Yuan E, Yao J, Gong X, Liang D, et al. Short-Term Therapeutic Eect of Recombinant Human Endostatin Combined With Cisplatin on Malignant Pleural Efﬂuxions: A Meta-Analysis. J Med (2017) 36(05):558–63.
18. Xiao-Xue R, Xiguang C, Hua L, Wenlong G. And Shuanying: Thoracic Percussion of Recombinant Human Endostatin (Endostar) Combined With Chemotherapeutic Agents Versus Chemotherapeutic Agents Alone for Treating Malignant Pleural Efﬂuxions: A Systematic Evaluation and Meta-Analysis. BMC Cancer (2016) 16(1):888. doi: 10.1186/s12885-016-2953-4
19. Liu ZL, Huang LN, Wang B, Liu JJ, Liu WW. Efficacy and Safety of Endostar Combined With Cisplatin in Treatment of Non-Small Cell Lung Cancer With Malignant Pleural Efﬂuxion: A Meta-Analysis. Chin J Evid-based Med (2016) 16(5):557–63. doi: 10.7037/1672-2531.201600868
20. Zhao Z, Yang Y, Wang X, Zhou W, Wang Z. A Meta-Analysis of the Efficacy and Safety of Recombinant Human Vascular Endothelial Combined With Cisplatin in the Treatment of Non-Small Cell Lung Cancer With Malignant Pleural Efﬂuxion. Asian Case Rep Oncol (2018) 7(3):17–25. doi: 10.12677/acrpo.2017.73003
21. Zhou Y, Guo Y, Yang X. Intrapleural Injection of Endostar Combined With Cisplatin for Lung Cancer With Malignant Pleural Efﬂuxion Meta-Analysis. J Pract Oncol (2018) 33(6):553–9. doi: 10.13267/j.cnki.jylzzl.2018.06.012
22. E. C. o. s. m. o. a. d. C. S. o. C. Oncology and E. C. o. v. t. t. o. C. S. o. C. Oncology. Expert Consensus on Clinical Application of Recombinant Human Endostatin in the Treatment of Malignant Serous Efﬂuxion. Chin Clin Oncol (2020) 25(9):849–56.
23. Yin Y, Zhou H, Yang J, Yang H, Shao Y, Xu Q, et al. Clinical Eﬃcacy of Recombinant Human Endostatin Combined With Lobaplatin in the Treatment of Malignant Thoracic Fluid and Prognosis Analysis. Eval Anal Drug-Use Hosp China (2020) 20(07):804–807+811. doi: 10.14009/j.issn.1672-2124.2020.07.010
24. Han M, Chen Y, Hu J. Clinical Study of Intrathoracic Perfusion of Endostar Combined With Cisplatin in the Treatment of Non-Small Cell Lung Cancer Complicated With Massive Malignant Pleural Efﬂuxion. J Guangdong Med Coll (2020) 38(2):178–80. doi: 10.3969/j.issn.1005-4057.2020.02.013
25. Li S. Efects of Recombinant Human Endostatin Combined With Intraeleare Injection of Cisplatin on Patients With Non-Small Cell Lung Cancer Complicated With Blood Pleural Efﬂuxion. Chin J Prac Med (2020) 47(3):102–4. doi: 10.3760/cma.j.issn.1674-4756.2020.03.027
26. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Int J Surg (2010) 8(5):336–41. doi: 10.1016/j.ijsu.2010.02.007
27. Higgins JP, Altman DG, Gøtzsche PC, Jüni P, Oxman AD, et al. The Cochrane Collaboration’s Tool for Assessing Risk of Bias in Randomised Trials. BMJ (2011) 343:d5928. doi: 10.1136/bmj.d5928
28. Kessinger A, Wigton RS. Intracavitary Bleomycin and Tetracycline in the Management of Malignant Effusions. Cancer (1976) 36(5):1903–8. doi: 10.1002/1097-0412(197611)36:5<1903::AID-CNCR28230805063.0.CO;2-2
29. Jie Wang X, Miao K, Luo Y, Li R, Shou T, Wang P, et al. Randomized Controlled Trial of Endostar Combined With Cisplatin/Pemetrexed Chemotherapy for Elderly Patients With Advanced Malignant Pleural Efﬂuxion of Lung Adenocarcinoma. J buon (2018) 23(1):92–7.
Wang et al. Rh-Endostatin and Chemical Irritants in MPE

87. Pang Z, Sun X. The Clinical Observation and Safety of Intrapleural Injection of Cisplatin on Intrapleural Administration in Treatment of Malignant Pleural Effusion Induced by non-Small Cell Lung Cancer. China Pharm (2013) 22(19):21–2. doi: 10.3969/j.issn.1006-4931.2013.19.011

89. Zhao W, Ma C, Zhao W, Zhang L, Wang S, Wei H. Observation of the Clinical Curative Effect of Recombinant Human Endostatin Injection Combined With Lobaplatin in the Treatment of Malignant Pleural Effusion. Chin J Clin Med Sci (2016) 8(12):42–5. doi: 10.12037/ysxy.2016.12-09

92. He J, Hou J, Zhai M, Xue X. Evaluation of Curative Effect of Endostar Combined With Cisplatin and Cisplatin Intrapleural Administration in Treatment of Malignant Pleural Effusion Induced by Non-Small Cell Lung Cancer. J Int Resp (2016) 36(15):1127–30. doi: 10.3760/cma.j.issn.1673-436X.2016.15.002

94. Li Y, Efficacy and Adverse Reactions of Endostar Combined With Cisplatin in the Treatment of Malignant Pleural Effusion of Non-Small Cell Lung Cancer. China Med Dev (2016) 31(5):22–3.

95. Lu J, Xie Q, Chen Q, Sun W, Zhong A, Shi Q, et al. Clinical Study of Intratracheal Injection of Recombinant Human Endostatin Combined With Cisplatin in the Treatment of Lung Adenocarcinoma With Malignant Pleural Effusion. J Clin Med Pract (2016) 21(9):1664–7. doi: 10.3969/j.issn.1009-6663.2016.09.032

96. Pang H, Nie Z, Zhang E. Clinical Observation of Endostar Combined With Carboplatin in the Treatment of Malignant Pleural Effusion. China Med Eng (2016) 24(3):64–5. doi: 10.19338/j.issn.1672-1920.2016.03.030

97. Qin M. Clinical Study of Cisplatin Combined With Endostar in the Treatment of Malignant Pleural Effusion of Advanced Non-Small Cell Lung Cancer. China Med Pract (2016) 11(26):228–9. doi: 10.4164/cijm/112577.2016.12.26

98. Song X. Comparison of VEGF Changes in Malignant Pleural Effusion and the Efficacy of Cisplatin Combined With Cisplatin. In: Oncology. NanChang: NanChang University (2016). doi: 10.7666/D.D01016609

99. Zhang P, Gong C, Zhang Q, Xiong H. Clinical Effect of Intratracheal Injection With Recombinant Human Endostatin Combined With Cisplatin in the Treatment of Malignant Pleural Effusion in Breast Cancer Patients. Clin J Hemorrh (2016) 26(1):32–5. doi: 10.3969/j.issn.1004-7115.2016.01.008

100. Zheng W, Kang J, Wen J, Wang J. Infection of Recombinant Human Endostatin Combined With Cisplatin on VEGF, EGFR and Tumor Markers in Patients With Malignant Pleural Effusion. J Clin Med Pract (2016) 20(23):32–5. doi: 10.7616/j.cmp.201623010

101. Zhou J, Du Y. Effect of Recombinant Human Endostatin Combined With Cisplatin on Inflammatory Factors and Immune Function in Elderly Patients With Malignant Pleural Effusion. Chin J Med (2016) 51(4):95–7. doi: 10.3969/j.issn.1008-1070.2016.04.029

102. Zhou Y, Peng D, He L. Endostar Combined With Cisplatin in the Treatment of Malignant Pleural Effusion Caused by Lung Cancer. Hainan Med (2016) 27(11):3550–1. doi: 10.3969/j.issn.1003-6350.2016.21.036

103. Zou J, Hu Z, Chen Y. Clinical Efficacy and Adverse Reactions of Cisplatin Combined With Endostar in the Treatment of Malignant Pleural Effusion of Non-Small Cell Lung Cancer. China Med Pract (2016) 23(24):22–4.

104. Che X. Study of Endostatin Combined With Cisplatin in Malignant Pleural Effusion of Lung Cancer. Chin J Biochem Pharm (2017) 37(2):157–61. doi: 10.3969/j.issn.1005-1678.2017.02.047

105. Chen X, Chen J. Clinical Study of Lobaplatin Combined With Endostar in the Treatment of Lung Cancer Complicated With Malignant Pleural Effusion. In: Annual Meeting of Digital Chinese Medicine Branch of International Digital Medical Association & the Second Academic Exchange Meeting of Digital Chinese Medicine. Guangzhou, China (2017).

106. Feng Z. Effects of Endostar Combined With Cisplatin on Platelet Parameters, VEGF and HIF-1α Levels in Patients With Non-Small Cell Lung Cancer Complicated With Malignant Pleural Effusion.Hexan Med Res (2017) 26(24):4454–5. doi: 10.3969/j.issn.1004-437X.2017.24.015

107. Han Z, Ma L, Liu J, Cui Z. Recombinant Human Endostatin Combined With Cisplatin in the Treatment of Non-Small Cell Lung Cancer Complicated With Malignant Pleural Effusion: A Clinical Study of 30 Cases. Chongqing Med (2017) 46(A03):96–7.

108. Jia X, Wen Z. Clinical Observation of Endostar Combined With Cisplatin in the Treatment of Patients With Malignant Pleural Effusion. J Dis Monit Control (2017) 11(8):627–8.

109. Lu X, Zhang T. Clinical Efficacy of Pleural Perfusion With Recombinant Human Endostatin and Cisplatin in Advanced Non-Small Cell Lung Cancer Patients With Malignant Pleural Effusion. Jiangsu Med J (2017) 43(14):1023–5. doi: 10.19460/j.cnki.0253-3685.2017.14.013
110. Zhao Q, Ouyang X, Li K. Observe the Curative Effect in the Treatment of Malignant Pleural Effusion Intrapleural Injection of Endostar. J Clin Med Lit (2017) 4(1):14–5. doi: 10.3877/cma.j.issn.2095-8242.2017.01.009

111. Chen X. Clinical Observation of Recombinant Human Endostatin Combined With Cisplatin in the Treatment of Pleural Effusion of Lung Cancer. Chin J Prim Med Pharm (2018) 25(7):902–5. doi: 10.3760/cma.j.issn.1008-6706.2018.07.023

112. Fan Y, Zou Q, Li X, Qi X, Dong J, Liu J, et al. Analysis of the Efficacy of Endostar Thoracic Perfusion and DDP Intravenous Chemotherapy for Malignant Pleural Effusion of Breast Cancer. Pract J Cancer (2018) 33(7):1757–7. doi: 10.3969/j.issn.1001-5930.2018.07.038

113. Li T. Clinical Efficacy of Recombinant Human Endostatin Combined With Cisplatin in the Treatment of Pleural Effusion of Lung Cancer. Yiyao Quanyan (2018) 8(2):216–7. doi: 10.3969/j.issn.2095-1752.2018.02.187

114. Liu H, Tan W. Recombinant Vascular Endostatin Therapy for Malignant Pleural Effusion. Acta Acad Med Weifang (2018) 40(3):217–9. doi: 10.16846/j.issn.1004-3101.2018.03.017

115. Liu Y, Huang M, Yao W. Clinical Analysis of Endostatin Combined With Cisplatin in the Treatment of Non-Small Cell Lung Cancer With Malignant Pleural Effusion. J Hum Univ Chin Med (2018) 38(A01):159–60.

116. Qing S, Wei M, Gong D, He D. Efficacy of Intrapleural Injection of Recombinant Human Endostatin Injection Combined With Cisplatin on Treatment of Non-Small Cell Lung Cancer With Bloody Pleural Effusion. J Chengdu Med Coll (2018) 13(4):487–489. doi: 10.3969/j.issn.1674-2257.2018.04.025

117. Qiu H, Li L, Yang Q, Chen G, Zhang J. Efficacy Observation of Recombinant Human Endostatin Combined With Cisplatin in the Treatment of Malignant Pleural Effusion in Breast Cancer. China Med Pharm (2018) 8(9):170–3. doi: 10.3969/j.issn.2095-0616.2018.09.051

118. Reng D. Clinical Study of YH-16 Combined With Cisplatin in the Treatment of Malignant Pleural Effusion of Lung Adenocarcinoma. In: Oncology. Luoyang: Henan University of Science and Technology (2018). doi: 10.7666/d.l.D01493120

119. Song W, Bao Y, Qian J, Zhu L, Cao S, Tao Z. Clinical Trial of Recombinant Human Endostatin Injection Combined With Cisplatin Injection in the Treatment of Malignant Pleural Effusion. Chin J Clin Pharmacol (2018) 34(7):802–4. doi: 10.13699/j.cnki.1001-6821.2018.07.020

120. Wang R. Clinical Efficacy of Recombinant Human Endostatin Combined With Cisplatin in the Treatment of Malignant Pleural Effusion of Non-Small Cell Lung Cancer. China Prac Med (2018) 13(8):96–7. doi: 10.14163/j.cnki.11-5547/r.2018.08.053

121. Jiang W, Dai X, Huang C, Li K, Leng L. Analysis of Expression Level Influence and Clinical Efficacy of Endostar Combined With Cisplatin on Malignant Pleural Effusion of Lung Cancer Rmm1. Drug Eval Res (2019) 42(5):944–8. doi: 10.7501/j.issn.1674-6376.2019.05.026

122. Tian L, Wu G, Yu H. Clinical Effect of Cisplatin Combined With Recombinant Human Vascular Endostatin Intrapleural Perfusion in the Treatment of Non-Small Cell Lung Cancer Complicated by Malignant Pleural Effusion. Trauma Crit Care Med (2019) 7(1):20–2. doi: 10.16048/j.issn.2095-5561.2019.01.06

123. Zheng D, Wang L. Clinical Study of Endostar Combined With Cisplatin in the Treatment of Malignant Pleural Effusion. Guide China Med (2019) 17(17):104–5. doi: 10.15992/j.cnki.gcqm.2019.17.083