Neuropilin 1 guides regulatory T cells into VEGF-producing melanoma

Wiebke Hansen
Institute for Medical Microbiology; University Hospital Essen; University of Duisburg-Essen; Essen, Germany

Keywords: melanoma, regulatory T cells, T-cell migration

Abbreviations: iTreg, induced Treg; NRP1, neuropilin 1; nTreg, naturally occurring Treg; Treg, regulatory T cell; VEGF, vascular endothelial growth factor; WT, wild-type

Owing to their potent immunosuppressive functions, CD4+CD25+ regulatory T cells (Tregs) are involved in the maintenance of immune homeostasis and control several facets of immunity, including autoimmune, anti-pathogen and antitumor responses.

High levels of Tregs have been found in neoplastic lesion as well as in the peripheral blood of cancer patients, and such an increase has been shown to correlate with poor prognosis in patients affected by breast, gastric and ovarian carcinoma.

Murine models of Tregs depletion, for instance obtained with anti-CD25 antibodies or in transgenic DEREG (Depletion of Regulatory T cells) mice, provide further support to the notion that Tregs interfere with effective antitumor immune responses and hence contribute to oncogenesis and tumor progression. Murine T cells exhibit an immunosuppressive phenotype in vitro. The thymus-derived naturally occurring Tregs (nTregs), a heterogeneous population of induced Tregs (iTregs) has been described. Moreover, Yadav et al. and Weiss et al. have recently proposed that the expression of NRP1 may be useful for distinguishing nTregs from iTregs generated in vivo from naïve T cells under several circumstances, including via the physiologically relevant mucosal route. However, whether and how NRP1 de facto contributes to Treg function remain unclear.

In a recent study, we have investigated the role of NRP1 expressed by Tregs on the development and progression of tumors in mice. We observed an impaired tumor growth in mice bearing a T cell-specific ablation of Nrp1. This phenotype was accompanied by an increased antitumor CD8+ T-cell response, suggesting that NRP1 is directly involved in the functions of Tregs. Interestingly, in vitro studies revealed that Nrp1-deficient Tregs exhibit a similar inhibitory activity than Nrp1-expressing Tregs obtained from WT mice. These results led us to conclude that NRP1 is not involved in the intrinsic immunosuppressive function of Tregs. However, a growing body of evidence indicates that inhibitory molecules expressed by Tregs and the underlying molecular mechanisms are essential, but not necessarily sufficient, for efficient immunosuppressive Treg functions in vivo. Indeed, an effective immunosuppression in vivo requires the appropriate co-localization of suppressor and effector cells. Tumors themselves promote their own progression by creating an immunosuppressive environment that facilitates their escape from immunosurveillance.

In a recent study, we have investigated the role of NRP1 expressed by Tregs on the development and progression of tumors in mice. We observed an impaired tumor growth in mice bearing a T cell-specific ablation of Nrp1. This phenotype was accompanied by an increased antitumor CD8+ T-cell response, suggesting that NRP1 is directly involved in the functions of Tregs. Interestingly, in vitro studies revealed that Nrp1-deficient Tregs exhibit a similar inhibitory activity than Nrp1-expressing Tregs obtained from WT mice. These results led us to conclude that NRP1 is not involved in the intrinsic immunosuppressive function of Tregs. However, a growing body of evidence indicates that inhibitory molecules expressed by Tregs and the underlying molecular mechanisms are essential, but not necessarily sufficient, for efficient immunosuppressive Treg functions in vivo. Indeed, an effective immunosuppression in vivo requires the appropriate co-localization of suppressor and effector cells. Tumors themselves promote their own progression by creating an immunosuppressive environment that facilitates their escape from immunosurveillance. Tregs play a critical role in this process, but it remains controversial whether iTregs are induced within the tumor tissue or whether nTregs are attracted and expanded by tumor-derived cytokines and chemokines.

NRP1 acts as a co-receptor for the vascular endothelial growth factor (VEGF), and NRP1-expressing endothelial cells migrate toward VEGF gradients. Tumors produce high amounts of VEGF, and we detected elevated levels of Nrp1-expressing Foxp3+ Tregs within tumors transplanted in WT mice. Hence, we propose that tumor-derived VEGF...
interaction may stand out as a new therapeutic strategy that might be superior to Treg depletion with regard to the development of autoimmune side effects, at least for the treatment of melanoma. We assume that blocking the tumor-derived VEGF-dependent trafficking of NRP1+ Tregs would not affect the function and number of Tregs systemically. Indeed, we did not observe any changes in the frequencies of Tregs in tumor-draining lymph nodes or in peripheral lymphoid organs of tumor-bearing mice bearing a T cell-specific \(\text{Nrp1} \) ablation or VEGF-deficient tumors. However, whether the NRP1/VEGF-mediated trafficking of nTregs is a tumor-specific phenomenon or is also involved in other inflammatory immune responses will have to be carefully determined in future experiments.

Disclosures of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.
References

1. Nishikawa H, Sakaguchi S. Regulatory T cells in tumor immunity. Int J Cancer 2010; 127:759-67; PMID:20518016; http://dx.doi.org/10.1002/ijc.25429.

2. Hansen W, Hutzler M, Abel S, Alter C, Stockmann C, Kliche S, et al. Neuropilin 1 deficiency on CD4+Foxp3+ regulatory T cells impairs mouse melanoma growth. J Exp Med 2012; 209:2001-16; PMID:23045606; http://dx.doi.org/10.1084/jem.20111497.

3. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003; 4:330-6; PMID:12612578; http://dx.doi.org/10.1038/ni904.

4. Bruder D, Probst-Kepper M, Westendorf AM, Geffers R, Beisert S, Loser K, et al. Neuropilin 1: a surface marker of regulatory T cells. Eur J Immunol 2004; 34:623-30; PMID:14991591; http://dx.doi.org/10.1002/eji.200324799.

5. Yadav M, Louver C, Davini D, Gardner JM, Martinez-Llordella M, Bailey-Bucktrout S, et al. Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J Exp Med 2012; 209:1713-22, S1-19; PMID:22966003; http://dx.doi.org/10.1084/jem.20120822.

6. Weiss JM, Bilate AM, Gohert M, Ding Y, Carotto de Lafaille MA, Parkhurst CN, et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J Exp Med 2012; 209:1723-42, S1; PMID:22966001; http://dx.doi.org/10.1084/jem.20120914.

7. von Boehmer H. Mechanisms of suppression by suppressor T cells. Nat Immunol 2005; 6:338-44; PMID:15785759; http://dx.doi.org/10.1038/ni1180.

8. Wang L, Zeng H, Wang P, Soker S, Mukhopadhyay D. Neuropilin-1-mediated vascular permeability factor/vascular endothelial growth factor-dependent endothelial cell migration. J Biol Chem 2003; 278:48848-60; PMID:14514674; http://dx.doi.org/10.1074/jbc.M310047200.