Enhancing the rate performance of spherical LiFeBO_3/C via Cr doping

X. X. Dong, C. Y. Huang, Q. Jin, J. Zhou, P. Feng, F. Y. Shi and D. Y. Zhang

Spherical LiFe_1-xCr_xBO_3/C (x = 0, 0.005, 0.008) has been successfully synthesized by ball-milling and spray-drying assisted high-temperature solid-state reaction. The effect of Cr doping on LiFeBO_3/C is characterized by XRD, energy-dispersive X-ray spectroscopy (EDS) and XPS. The results show that LiFe_0.995Cr_0.005BO_3/C delivers the highest initial discharge specific capacity of 196.3 mA h g\(^{-1}\) at 0.1C and superior rate capability of 90 mA h g\(^{-1}\) at 5C. Moreover, the material presents a cyclic retention of 95% after 50 cycles at 1C. Such improvement in the electrochemical performance can be attributed to the high electronic conductivities (4.75 \times 10^{-5} \text{ S cm}^{-1}) and Li ion diffusion coefficients (9.20 \times 10^{-13} \text{ cm}^2 \text{ s}^{-1}). The introduction of supervalent Cr\(^{3+}\) into the LiFeBO_3 lattice produces Fe vacancies with accompanying conduction electrons, which lead to the enhanced electronic conductivity and Li ion diffusion coefficient.

1. Introduction

In recent years olivine LiFePO_4 has been deeply researched and dominates most vehicle markets due to its safety, potentially low cost and environmental benignity, but the low theoretical capacity of LiFePO_4 cannot sufficiently meet the requirements for high-energy density applications. Besides phosphates, the other polyanion-type cathode materials, including borates, silicates and titanates, have attracted great attention.\(^1\)\(^-\)\(^7\) Among them, LiFeBO_3 has been regarded as a promising cathode alternative for lithium ion batteries due to its higher theoretical capacity (220 mA h g\(^{-1}\)), higher electrical conductivity (3.9 \times 10^{-7} \text{ S cm}^{-1}) and smaller volume change (2%) than those of the LiFePO_4.

The electrochemical performance of LiFeBO_3 was firstly reported by Legagneur \textit{et al.}, and the poor electrical conductivity and low ionic conductivity of the pristine LiFeBO_3 hindered its performance.\(^8\) Yamada \textit{et al.} made great progress in the electrochemical performance of LiFeBO_3, which arrived at a capacity of >190 mA h g\(^{-1}\) at 0.05C, by introducing ketchup black and vapor grown carbon fibers to increase its electrical conductivity.\(^9\) They claimed that the significant positive impact was realized by avoiding the surface poisoning of LiFeBO_3 resulting from contact with moisture in the air. Meanwhile, Khalifah \textit{et al.} demonstrated that the moisture in the air may poison the surface of LiFeBO_3 particles and induce severe degradation of electrochemical properties.\(^10\) Carbon coating was proved to enhance the electrical conductivity of LiFeBO_3 as well as prevent it from air exposure.\(^11\)\(^-\)\(^12\) Multi-layer core–shell structural LiFeBO_3/C, synthesized by sol–gel method, presented an initial discharge specific capacity of 196.5 mA h g\(^{-1}\) at 0.05C, which dropped to 136.1 mA h g\(^{-1}\) after 30 cycles.\(^4\) Moreover, its discharge specific capacity dropped to 120 mA h g\(^{-1}\) at 0.25C. Thus, the rate and cycle performance were considered to be severe challenges. Both particle size reducing and cation doping methods were investigated to improve the electrochemical performance of LiFeBO_3.\(^13\)\(^-\)\(^17\) Recently, Chen \textit{et al.} reported that nano-sized LiFeBO_3/C mesoporous hollow spheres delivered not only a high initial reversible capacity of 190 mA h g\(^{-1}\) at 0.05C, but also superior rate capability (80 mA h g\(^{-1}\)) up to 4C, even delivered a discharge capability of 69 mA h g\(^{-1}\) at 8C.\(^18\) It was attributed to the high Li ion diffusion resulting from its nano-size particles, high surface area and large pore volume. The similar results also had been reported by Zhang \textit{et al.} about nano-sized LiMnBO_3/C.\(^14\) Yamada and co-workers found that the electrochemical properties of Li(Mn\(_x\)Fe\(_{1-x}\))BO_3 decreased with the Mn content increasing.\(^15\) The result was not consistent with the expected. Cation doping had been proved to be an efficient way to increase the rate performance of LiFePO_4.\(^18\)\(^-\)\(^21\) Wang \textit{et al.} reported that the rate capability and cyclic stability of LiFePO_4 were greatly enhanced by bivalent cation (Ni, Co or Mg) doping at Fe-site.\(^18\) They attributed the significant improvement in electrochemical performance to the enhanced electronic conductivities and probably the mobility of Li ions in the doped samples. Park \textit{et al.} noted Cr doping facilitates Li ion diffusion during the charge-discharge cycles.\(^22\) However, few works had been done to improve the rate performance of LiFeBO_3 by Cr doping.

In this paper, LiFe\(_{1-x}\)Cr\(_x\)BO_3/C (x = 0, 0.005, 0.008) was prepared by ball-milling and spray-drying assisted high-temperature solid-state reaction. Ball-milling is an effective
method for obtaining homogeneous mixture of raw materials and controlling the size of primary particle. Spray-drying is easy to obtain spherical particles. Ball-milling and spray-drying technique offers a simple, cheap and a robust way to prepare LiFeBO$_3$/C. The effects of Cr doping on the electrochemical properties of LiFeBO$_3$ were investigated.

2. Experimental

The LiFe$_{1-x}$Cr$_x$BO$_3$/C ($x = 0, 0.005, 0.008$) samples were synthesized by a solid-state reaction. LiOH·H$_2$O, Fe$_2$O$_3$, 2H$_2$O, H$_3$BO$_3$, Cr$_2$O$_3$, and caramel were used as raw materials. All raw materials were mixed by ball milling at a speed of 600 rpm for 3 h with 0.4 mm ZrO$_2$ beads as the grinding media, and finally a green suspension was generated. Then, the suspension was dried by a spray dryer and spherical precursor was obtained. At last, the as-prepared precursor were transferred into a tube furnace and sintered at 550 °C for 7 h under the N$_2$ atmosphere to yield LiFe$_{1-x}$Cr$_x$BO$_3$/C ($x = 0, 0.005, 0.008$) samples.

Phase identification was performed by X-ray powder diffraction measurement (XRD, Bruker D8 Focus diffractometer) with Cu K$_\alpha$ radiation (0.1541 nm) at a scanning rate of 0.01° per second in the 2θ range from 10° to 70°. The morphologies of the samples were monitored by a scanning electron microscope (SEM, JEOL, JSM-6700F) and a transmission electron microscope (TEM, JEOL JEM-2100). The chemical composition was determined by energy dispersive X-ray spectroscopy (EDS, Bruker, XFlash 4010). X-ray photoelectron spectroscopy (XPS, Kratos Axis Ultra DLD) with Al K$_\alpha$ radiation was employed to measure the state of each element in the surface. Elemental carbon analysis of sample was performed by C-S analysis equipment (HIR-944B). The electronic conductivities of the cylindrical pellets with a diameter of 10 mm of the synthesized samples were measured at room temperature using a powder resistivity tester (FT-300/301) under a pressure range of 2 to 22 MPa and a resistivity range of 10$^{-4}$ to 108 Ω cm.

The electrochemical characterizations were performed using CR2016 coin-type cell. The working electrodes were fabricated by mixing the active material (LiFe$_{1-x}$Cr$_x$BO$_3$/C, $x = 0, 0.005, 0.008$), super P and polyvinylidene fluoride (PVDF) binder in a weight ratio of 8 : 1 : 1 in N methyl-2-pyrrolidone (NMP). The mixed slurry was coated uniformly on aluminium foil, dried in the vacuum for 4 h at 120 °C. Then electrodes pressed into pellets of 12 mm in diameter where about 6 mg of active materials was hold on it. Two-electrode electrochemical cells were assembled in a glove box filled with high-purity argon where LiFe$_{1-x}$Cr$_x$BO$_3$/C ($x = 0, 0.005, 0.008$) electrodes as a cathode, the lithium metal foil was used as an anode, Celgard2320 as separator and 1 M LiPF$_6$ in EC : DMC (1 : 1 vol%) were used as an electrolyte. The electrochemical measurements were performed by Land Battery Testers (LAND-CT2001A) in the voltage range between 1.5 and 4.5 V. Constant-current and constant-voltage (CC-CV) charging methods were used to measure the capacity of LiFe$_{1-x}$Cr$_x$BO$_3$/C ($x = 0, 0.005, 0.008$). The cells were first galvanostatically charged at 0.1C (1C = 220 mA g$^{-1}$) to 4.5 V, then charged at constant voltage of 4.5 V until the current decay below 0.05C, finally the cells were discharged to 1.5 V at a current rate of 0.1C. The rate performance was performed by charging and discharging at various rates ranging from 0.1C to 5C. The electrochemical impedance spectroscopy (EIS) measurements were conducted using electrochemical workstation (Autolab PGSTAT302N). The frequency range was 10$^{-2}$ to 105 Hz, and the amplitude was 5 mV. It should be pointed out that all the electrochemical measurements were performed at room temperature (25 °C).

3. Results and discussion

Fig. 1(a) shows the XRD patterns of all the LiFe$_{1-x}$Cr$_x$BO$_3$/C ($x = 0, 0.005, 0.008$) samples. Compared with the XRD pattern of the LiFeBO$_3$/C sample, the XRD patterns of the Cr-doped samples do not exhibit extra reflections. All of the diffraction peaks of the samples could be indexed into the monoclinic LiFeBO$_3$ (PDF card #00-054-0026) with space group of C2/c. Fig. 1(b) shows the peak shift toward larger angles in the XRD data induced by Cr doping, which indicated the change of the lattice parameter. The lattice parameters of the LiFe$_{1-x}$Cr$_x$BO$_3$/C ($x = 0, 0.005, 0.008$) samples are calculated by MDI Jade 9.0 software, and the results are listed in Table 1. As can be seen from the Table 1, the unit cell volume of LiFeBO$_3$/C is contract with the increasing of Cr doping. The radius of Cr (0.64 Å) is smaller than that of Fe (0.74 Å). Thus, the lattice contracted after Cr doping, which is in accordance with the results reported by Gan et al.

The morphology of the LiFe$_{0.995}$Cr$_{0.005}$BO$_3$/C sample was observed via SEM, as shown in Fig. 2(a) and (b) presents similar spherical particles with a size distribution ranging from 5 μm to 10 μm. As shown in Fig. 2(c), the spherical particles are actually an aggregation of a lot of smaller primary particles. Fig. 2(d) shows an enlarged image of the LiFe$_{0.995}$Cr$_{0.005}$BO$_3$/C sample. The surface of the primary particles may covered by gel-like carbon, which forms a network among primary particles to improve the electrical conductivity of the sample. Furthermore,

![Image](https://example.com/image1)

Table 1 Lattice parameters of the LiFe$_{1-x}$Cr$_x$BO$_3$/C ($x = 0, 0.005, 0.008$)

Sample	a (nm)	b (nm)	c (nm)	V (nm3)
x = 0	0.51533	0.89074	1.01946	0.4679
x = 0.005	0.51524	0.89065	1.01895	0.4675
x = 0.008	0.51479	0.88853	1.02121	0.4670
there are a large number of micro pores among the primary particles. This microporous structure can provide sufficient space for electrolyte penetrating and increase the electrode–electrolyte interface area, which may enhance the Li ion diffusion coefficient. So the LiFe$_{0.995}$Cr$_{0.005}$BO$_3$/C sample tends to deliver excellent electrochemical performance.

A Bruker-AXS 133 eV XFlash 4010 Detector attached to the SEM is used to observe the elemental distribution of LiFe$_{0.995}$Cr$_{0.005}$BO$_3$/C. As shown in Fig. 3, different colours represent different elements. The results illustrate that the elements (O, Cr and Fe) are uniformly distributed in the LiFe$_{0.995}$Cr$_{0.005}$BO$_3$/C samples. Combined with the XRD results, it can be inferred that the Cr probably enters the structure of LiFeBO$_3$ to form a solid solution.

To observe the morphology of carbon layer of the LiFe$_{0.995}$Cr$_{0.005}$BO$_3$/C, TEM images are presented in Fig. 4. As shown in Fig. 4(a), the darker spherical particles are well wrapped by flocculent layer. According to the further enlarged image as shown Fig. 4(b), the d spacing value (0.4406 nm) in the darker spherical particles consist with the [011] lattice spacing of LiFeBO$_3$, which indicates the sample are highly crystalline. The flocculent layer is contributed to amorphous carbon. This amorphous carbon layer may prevent LiFe$_{0.995}$Cr$_{0.005}$BO$_3$/C from surface poisoning when it exposed in the moisture air. The amount of carbon in the LiFe$_{0.995}$Cr$_{0.005}$BO$_3$/C is about 3.0 wt% determined by C–S analysis method.

Typical charge–discharge curves cycled in the voltage range between 1.5–4.3 V at ambient temperature conditions are shown in Fig. 5. The LiFeBO$_3$/C can deliver an initial discharge specific capacity of 169.4 mA h g$^{-1}$ at 0.1C (1C = 220 mA g$^{-1}$). The LiFe$_{0.995}$Cr$_{0.005}$BO$_3$/C sample exhibits an initial discharge specific capacity of 196.3 mA h g$^{-1}$ at 0.1C. This value is better than most previous reports.$^{6,13,15–17}$ The significant enhancement may result from the improvement of electronic/ionic conductivity of LiFeBO$_3$/C by Cr doping.19 However, the capacity increasing phenomenon is not maintained with further increase in Cr doping concentration. The discharge specific capacity for LiFe$_{0.992}$Cr$_{0.008}$BO$_3$/C is 178.2 mA h g$^{-1}$. Therefore, the optimal Cr doping amount is 0.5% in the LiFeBO$_3$/C.

The cycling and rate performance of the LiFeBO$_3$/C and LiFe$_{0.995}$Cr$_{0.005}$BO$_3$/C samples are shown in Fig. 6(a) compares the cycling performances of LiFeBO$_3$/C and LiFe$_{0.995}$Cr$_{0.005}$BO$_3$/C at 1C. LiFeBO$_3$/C can deliver an initial discharge specific capacity of 141.2 mA h g$^{-1}$ with 89% capacity retention after 50 cycles at 1C. It is better than the result of the mesoporous...
hollow spheres LiFeBO$_3$/C, 139 mA h g$^{-1}$ at 1C, reported by Chen et al.13 Compared with LiFeBO$_3$/C, the LiFe$_{0.995}$Cr$_{0.005}$BO$_3$/C exhibits higher discharge specific capacity of 161.9 mA h g$^{-1}$ with higher capacity retention of 95% after 50 cycles at 1C. It indicates that Cr doping could improve the cyclic stability of LiFeBO$_3$/C. The discharge capacity of the LiFeBO$_3$/C and LiFe$_{0.995}$Cr$_{0.005}$BO$_3$/C samples at various rate, i.e., C/10, C/2, 1C, 2C and 5C, in the voltage range of 1.5–4.5 V are shown in Fig. 6(b). Overall, the discharge capacity of the LiFe$_{0.995}$Cr$_{0.005}$BO$_3$/C is higher than that of LiFeBO$_3$/C. With the discharge rate increasing, the superiority of the LiFe$_{0.995}$Cr$_{0.005}$BO$_3$/C becomes more pronounced. When the rate is as high as 5C, the discharge specific capacity of the LiFe$_{0.995}$Cr$_{0.005}$BO$_3$/C still remains 91.8 mA h g$^{-1}$. Chen et al. reported that nano-sized LiFeBO$_3$/C mesoporous hollow spheres delivered only a discharge specific capacity of 80 mA h g$^{-1}$ at 4C.13 While, the discharge specific capacity of the LiFeBO$_3$/C is only 28 mA h g$^{-1}$ at 5C. The results confirmed that Cr doping could effectively enhance the rate performance of LiFeBO$_3$/C, which may contribute to the improvement of ionic conductivity.

To gain further insight into the essence of improvement in electrochemical properties, a comparison between the electric conductivity for the LiFeBO$_3$/C and LiFe$_{0.995}$Cr$_{0.005}$BO$_3$/C electrodes is shown in Fig. 7. The electric conductivity of LiFe$_{0.995}$Cr$_{0.005}$BO$_3$/C powder is calculated as 4.75×10^{-5} S cm$^{-1}$, while the value for LiFeBO$_3$/C powder is only 4.15×10^{-6} S cm$^{-1}$. Apparently, Cr doping can improve the electronic conductivity resulting in better electrochemical properties. The result was in accordance with the enhanced LiFePO$_4$ by Fe-site substitution co-efficient can be calculated from the formula (1) as following

$$D = \frac{R^2T^2}{2A^nF^2C\sigma^2}$$ \hspace{1cm} (1)

where R is the gas constant, T is the absolute temperature, n is the number of electrons transferred in the half-reaction for the redox couple, F is the Faraday constant, C is the concentration of lithium ion, σ is the slope of the line $Z' – \omega^{-1/2}$ which can be obtained from the line of $Z' – \omega^{-1/2}$ (show in Fig. 8b),

$$C = \frac{n}{V} = \frac{m/M}{V} = \frac{\rho V/M}{V} = \frac{\rho}{M}$$ \hspace{1cm} (2)

where the constant values of F and R are 96 500 C mol$^{-1}$ and 8.314 J K$^{-1}$ mol$^{-1}$, respectively. A is the electrode area, which is 1.13×10^{-4} m2, n is 1, T is 298 K, C can be calculated from the density and the molecular weight of the materials synthesized by different methods, which are 2.8×10^4 mol m$^{-3}$ in our case.22

According to formula (1) and (2), Li ion diffusion coefficients (D_{li}) of the LiFeBO$_3$/C and LiFe$_{0.995}$Cr$_{0.005}$BO$_3$/C are calculated separately, which are 5.92×10^{-14} cm2 s$^{-1}$ and 9.20×10^{-13} cm2 s$^{-1}$. The D_{li} of the LiFe$_{0.995}$Cr$_{0.005}$BO$_3$/C is about one order of magnitude higher than that of the pristine LiFeBO$_3$/C. It may be attributed to the chemistry defect in the lattice resulting from balancing the valence difference brought in by the Cr.
doping. The considerable improvement of the \(D_{ul} \) of LiFeBO\(_3\)/C directly leads to the enhancement of rate performance.

XPS measurements were performed to determine the chemical states of the LiFe\(_{0.995}\)Cr\(_{0.005}\)BO\(_3\)/C sample. Fig. 9(a) and (b) present the XPS spectra of the Fe 2p and Cr 2p, respectively. The Fe 2p orbital is clearly resolved into Fe (2p\(_{3/2}\)) and Fe (2p\(_{1/2}\)) contributions, centred upon 709.9 eV, 713.2 eV, 723.4 eV and 725.9 eV, respectively. The binding energies 709.9 eV and 713.2 eV correspond to the characteristic peak of Fe\(^{2+}\) and Fe\(^{3+}\), respectively. The apparent weak of shake up feature in high-resolution spectrum for Fe as shown in Fig. 9(a) suggests that all Fe atoms are in the structure of LiFeBO\(_3\). The content of Fe\(^{3+}\) is about 10%, which may contribute to the preparation process. The Cr 2p orbital is clearly resolved into Cr (2p\(_{3/2}\)) and Cr (2p\(_{1/2}\)) contributions, centred upon 576.7 eV, 586.4 eV. The peak of 576.7 eV in Cr (2p\(_{3/2}\)) corresponds to the characteristic peak Cr\(^{3+}\). Owing to the supervalent Cr\(^{3+}\) is doped in LiFeBO\(_3\) at Fe sites, Fe vacancies would be produced to balance the valence. The following short equation (using Kröger–Vink notation) describes the valence balance model:

\[
\frac{1}{2} \text{Cr}_2\text{O}_3 + \frac{3}{2} \text{Fe}^{2+} \rightarrow \text{Cr}^{3+} + \frac{1}{2} \text{V}_{\text{Fe}} + \frac{3}{2} \text{Fe}^{0}
\]

Cr doping increases the concentration of ionic vacancies according to formula (3). Basing on formula (3), two Cr atoms could substitute three Fe atoms. Thus, to maintain neutrality of the lattice in LiFeBO\(_3\), conduction electrons are produced locally to balance the Cr\(^{3+}\). It facilitates the Li ion diffusivity and electron conduction during the charge–discharge process.

4. Conclusions

LiFe\(_{1-x}\)Cr\(_x\)BO\(_3\)/C (\(x = 0, 0.005, 0.008\)) were prepared by via ball-milling and spray-drying assisted high-temperature solid-state reaction. Cr element was proved to disperse uniformly in the samples and enter the structure of the monoclinic LiFeBO\(_3\) forming a solid solution. In the SEM and TEM images, LiFe\(_{0.995}\)Cr\(_{0.005}\)BO\(_3\) particles were covered by amorphous carbon layer, which form a conductive network. It was found that Cr doping played an important role in promoting the electrochemical performance. LiFe\(_{0.995}\)Cr\(_{0.005}\)BO\(_3\) showed the highest discharge capacity of 196.3 mA h g\(^{-1}\) at 0.1C, which was 26.9 mA h g\(^{-1}\) higher than that of the LiFeBO\(_3\)/C. The cyclic retention of LiFe\(_{0.995}\)Cr\(_{0.005}\)BO\(_3\)/C was 95% after 50 cycles at 1C, which was much better than that of the LiFeBO\(_3\)/C (89%). Cr doping improved the rate performance of the LiFeBO\(_3\)/C as well. The discharge capacity of the LiFe\(_{0.995}\)Cr\(_{0.005}\)BO\(_3\)/C was 91.8 mA h g\(^{-1}\) at 5C, which was 3.27 times than that of the LiFeBO\(_3\)/C (28 mA h g\(^{-1}\)). The electrochemical performance improvement of the LiFeBO\(_3\)/C by Cr doping was attributed to both the high electronic conductivities (4.75 \(\times\) \(10^{-5}\) S cm\(^{-1}\)) and fast Li ion diffusion coefficients (9.20 \(\times\) \(10^{-11}\) cm\(^2\) s\(^{-1}\)) of the LiFe\(_{0.995}\)Cr\(_{0.005}\)BO\(_3\)/C. Basing on the XPS results, the mechanism of Cr doping was analysed. The supervalent Cr\(^{3+}\) doping would produce Fe vacancies with accompanying conduction electrons to maintain neutrality of the lattice in LiFeBO\(_3\), which lead to the improvement of electronic conductivities and \(D_{ul}\).

Acknowledgements

We gratefully acknowledge the financial support by the Innovation Program of Shanghai Municipal education commission (15ZZ095) and the Science and Technology Commission of Shanghai Municipality (14520503100).

References

1. Z. A. Zhang, Z. Y. Zhang, W. Chen, G. C. Wang, et al., New J. Chem., 2015, 39, 3765–3769.
2. J. C. Zheng, Y. D. Han, D. Sun, B. Zhang and E. J. Cairns, Energy Storage Materials, 2017, 7, 48–55.
3. A. P. Tang, D. H. He, Z. Q. He, G. R. Xu, et al., J. Power Sources, 2015, 275, 888–892.
4. B. Zhang, L. Ming, J. C. Zheng, J. F. Zhang, et al., J. Power Sources, 2014, 261, 249–254.
5. Y. Z. Dong, Y. M. Zhao, Z. D. Shi, X. N. An, P. Fu and L. Chen, Electrochim. Acta, 2008, 53, 2339–2345.
6. K. Wang, W. j. Ren, J. L. Yang, R. Tan, Y. D. Liu and F. Pan, RSC Adv., 2016, 6, 47723–47729.
7. L. Sebastian and J. Gopalakrishnan, J. Solid State Chem., 2003, 172, 171–177.
8. V. Legagneur, Y. An, A. Mosbah, R. Portal, et al., Solid State Ionics, 2001, 139, 37–46.
9. A. Yamada, N. Iwane, Y. Harada, S. I. Nishimura, Y. Koyama and I. Tanaka, Adv. Mater., 2010, 22, 3583–3587.
10. S. H. Bo, F. Wang, Y. Janssen, K. W. Name, W. Xu, L. S. Du, J. Graetz, X. Q. Yang, Y. Zhu, J. B. Parise, C. P. Grey, J. Mater. Chem., 2012, 22, 8799–8809.
11. P. Barpanda, Y. Yamashita, Y. Yamada and A. Yamada, J. Electrochem. Soc., 2013, 160, A3095–A3099.
12. L. Tao, G. Rousse, J. N. Chotard, L. Dupont, et al., J. Mater. Chem. A, 2014, 2, 2060–2070.
13. Z. X. Chen, L. F. Cao, L. Chen, H. H. Zhou, C. M. Zheng, et al., J. Power Sources, 2015, 298, 355–362.
14. J. C. Zheng, S. E. Qin, B. Zhang, X. Ou, L. Ming and C. Shen, Chem. Lett., 2014, 43, 1411–1413.
15. A. Yamada, N. Iwane, S. I. Nishimura, Y. Koyama and I. Tanaka, J. Mater. Chem., 2011, 22, 10690–10696.
16. Z. P. Li, Y. P. Wang, Q. R. Hu, Y. Yang, Z. C. Wu and C. M. Ban, J. Nanosci. Nanotechnol., 2015, 15, 7186–7190.
17 M. A. Cambaz, M. A. Reddy, B. P. Vinayan, R. Witte, et al., ACS Appl. Mater. Interfaces, 2016, 8, 2166–2172.
18 D. Y. Wang, H. Li, S. Q. Shi, X. J. Huang and L. Q. Chen, Electrochim. Acta, 2005, 50, 2955–2958.
19 C. K. Park, S. B. Park, H. C. Shin, W. Cho and H. Jang, Bull. Korean Chem. Soc., 2011, 32, 191–195.
20 H. C. Shin, S. B. Park, H. Jang, K. Y. Chung, W. I. Cho, C. S. Kim and B. W. Cho, Electrochim. Acta, 2008, 53, 7946–7951.
21 Y. X. Wen, L. M. Zeng, Z. F. Tong, L. Q. Nong and W. X. Wei, J. Alloys Compd., 2006, 416, 206–208.
22 X. Y. Wang, H. Hao, J. L. Liu, T. Huang and A. S. Yu, Electrochim. Acta, 2011, 56, 4065–4069.
23 Y. Gan, C. Chen, J. L. Liu, P. W. Bian, H. Hao and A. S. Yu, J. Alloys Compd., 2015, 620, 350–357.
24 L. Y. Liu, Y. Cheng, Z. F. Liu, M. N. Ha, Q. S. Quo and Z. Zhao, RSC Adv., 2016, 6, 83814–83829.
25 N. Meethong, Y. H. Kao, S. A. Speakman and Y. M. Chiang, Adv. Funct. Mater., 2009, 19, 1060–1070.
26 F. A. Kröger and H. J. Vink, Solid State Phys., 1956, 3, 307–435.
27 K. Haffe, Oxidation of Metals, Plenum Press, 1965.