Supplement of

Assessing the impact of anthropogenic pollution on isoprene-derived secondary organic aerosol formation in PM$_{2.5}$ collected from the Birmingham, Alabama ground site during the 2013 Southern Oxidant and Aerosol Study

W. Rattanavaraha et al.

Correspondence to: J. D. Surratt (Surratt@unc.edu)
Table S1. Instrumentation and time resolution of collocated measurements at BHM.

Category	Variable	Analyzer/Sensor	Time Resolution (Interval, average)
Meteorology			
Wind Speed/Direction	RMYoung 81000 sonic		5, 60
T/RH/BP	Paroscientific Met4A		5, 60
T/RH	Vaisala		5, 60
PAR	Licor		5, 60
Precipitation	ETI-NOAH IV		5, 60
Aerosol/cloud layers	JenOptik CHM 15k ceilometer		5, 60
Surface wetness	Vaisala (SWS2)		5, 60
Trace Gases			
O$_3$	Thermo 49i		5, 60
CO	Thermo 48i		5, 60
SO$_2$	Thermo 43i		5, 60
NO	Thermo 42i		5, 60
NO$_2$	Photolysis/Thermo 49i		5, 60
HNO$_3$	Continuous denuder diff/Thermo 42i		5, 60
NO$_3$	Cat. reduction/Thermo 42i		5, 60
NH$_3$	Continuous denuder diff/Thermo 42i		5, 60
Continuous PM			
PM$_{2.5}$ Mass	TEOM		60
PM$_{2.5}$ coarse Mass	Dichotomous TEOM		60
PM$_{2.5}$ SO$_4$	Cat. reduction/Thermo 43i		60
PM$_{2.5}$ NO$_3$	Cat. reduction/Thermo 42i		60
PM$_{2.5}$ NH$_4$	Cat. oxidation/Thermo 42i		60
PM$_{2.5}$ TC/EC	Sunset		60
Dry Babs (880 nm)	Radiance Research M903		5, 60
Dry Bsp (530 nm)	Magee 2ch. Aeth		5, 60
Ambient Bsp (530 nm)	Optec NGN-2a		5, 60
Filter-Based PM			
PM$_{2.5}$ Mass	gravimetry		1440, daily
PM$_{2.5}$ ions	IC		1440, 1 in 3 days
PM$_{2.5}$ major/minor elements	XRF		1440, daily
PM$_{2.5}$ water-soluble metals	ICPMS		1440, 1 in 3 days
PM$_{2.5}$ OC/EC	TOR		1440, 1 in 3 days
PM$_{coarse}$ Mass	gravimetry		1440, 1 in 3 days
PM$_{coarse}$ ions	IC		1440, 1 in 3 days
PM$_{coarse}$ major/minor elements	XRF		1440, 1 in 3 days
PM$_{coarse}$ water-soluble metals	ICPMS		1440, 1 in 3 days
Hi-Vol Based PM			
PM$_{2.5}$ OC/EC	TOR		23-hr, daily
PM$_{2.5}$ ions	IC		23-hr, daily
PM$_{2.5}$ (other)	Various		11-hr, daily
Table S2. Correlation (r^2) of isoprene-derived SOA tracers and collocated measurements during regular day sampling (8 am – 7 pm).

SOA tracers	CO	O$_3$	NO$_x$	NO$_2$	SO$_2$	NH$_3$	SO$_4$	NO$_3$	NH$_4$	OC	WSOC	pH
MAE/HMML-derived SOA tracers	0.31	0.72	0.04	0.00	0.20	0.34	0.51	0.10	0.53	0.44	0.48	0.01
2-methylglyceric acid	0.14	0.44	0.01	0.00	0.09	0.15	0.19	0.03	0.27	0.09	0.12	0.00
MAE-derived OS	0.28	0.60	0.04	0.00	0.14	0.31	0.66	0.14	0.56	0.58	0.52	0.01
IEPOX-derived SOA tracers	0.09	0.26	0.01	0.01	0.08	0.12	0.41	0.04	0.41	0.31	0.32	0.01
2-methylerythritol	0.04	0.30	0.03	0.00	0.05	0.04	0.31	0.00	0.31	0.24	0.30	0.01
2-methylthreitol	0.02	0.20	0.02	0.00	0.06	0.03	0.21	0.00	0.23	0.13	0.19	0.00
(E)-2-methylbut-3-ene-1,2,4-triol	0.05	0.24	0.02	0.00	0.03	0.05	0.33	0.02	0.32	0.22	0.27	0.00
(Z)-2-methylbut-3-ene-1,2,4-triol	0.10	0.11	0.00	0.01	0.09	0.17	0.34	0.10	0.32	0.24	0.16	0.01
2-methylbut-3-ene-1,2,3-triol	0.11	0.11	0.00	0.01	0.09	0.18	0.36	0.10	0.34	0.25	0.17	0.01
IEPOX-derived OS	0.17	0.41	0.01	0.01	0.08	0.19	0.47	0.07	0.50	0.53	0.59	0.01
IEPOX dimer	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Other isoprene SOA tracers												
GA sulfate	0.22	0.20	0.00	0.00	0.07	0.19	0.49	0.20	0.39	0.33	0.21	0.01
Methylglyoxal-derived OS	0.25	0.40	0.01	0.01	0.11	0.11	0.57	0.05	0.46	0.41	0.47	0.01
Isoprene-derived OSs												
C$_5$H$_7$O$_7$S	0.13	0.34	0.01	0.01	0.02	0.17	0.35	0.11	0.40	0.21	0.28	0.00
C$_5$H$_8$NO$_3$S	0.02	0.37	0.12	0.06	0.00	0.01	0.48	0.12	0.38	0.18	0.12	0.11
C$_5$H$_9$NO$_3$S *	0.25	0.56	0.48	0.40	0.15	0.40	0.52	0.28	0.24	0.57	0.46	0.00
Hydroxyacetone-derived OS	0.42	0.73	0.06	0.16	0.00	0.18	0.55	0.23	0.71	0.57	0.66	0.00
Other tracer												
Levoglucosan	0.26	0.34	0.00	0.00	0.09	0.21	0.44	0.10	0.47	0.22	0.25	0.01

* Found only in 6 of 120 filters

The correlations in this table are positive.
Table S3. Correlation (r^2) of isoprene-derived SOA tracers and collocated measurements during intensive 1 sampling (8 am – 11 am).

SOA tracers	CO	O$_3$	NO$_x$	NO$_y$	SO$_2$	NH$_3$	SO$_4$	NO$_3$	NH$_4$	OC	WSOC	pH
MAE/HMML-derived SOA tracers	0.00	0.20	0.04	0.16	0.01	0.07	0.35	0.25	0.46	0.47	0.16	0.18
2-methylglyceric acid	0.03	0.22	0.05	0.10	0.00	0.07	0.00	0.43	0.11	0.46	0.07	0.08
MAE-derived OS	0.01	0.09	0.02	0.12	0.01	0.03	0.72	0.06	0.62	0.26	0.08	0.18
IEPOX-derived SOA tracers	0.11	0.04	0.05	0.00	0.06	0.26	0.30	0.00	0.16	0.04	0.02	0.03
2-methylerythritol	0.15	0.01	0.02	0.00	0.16	0.52	0.22	0.03	0.18	0.00	0.00	0.15
2-methylthreitol	0.04	0.00	0.00	0.00	0.10	0.19	0.13	0.02	0.16	0.00	0.02	0.13
(E)-2-methylbut-3-ene-1,2,4-triol	0.12	0.03	0.06	0.01	0.01	0.27	0.23	0.00	0.11	0.11	0.05	0.00
(Z)-2-methylbut-3-ene-1,2,4-triol	0.13	0.02	0.05	0.01	0.03	0.32	0.28	0.00	0.08	0.09	0.05	0.00
2-methylbut-3-ene-1,2,3-triol	0.07	0.02	0.02	0.00	0.02	0.26	0.22	0.01	0.03	0.04	0.28	0.01
IEPOX-derived OS	0.09	0.07	0.07	0.00	0.05	0.19	0.30	0.00	0.17	0.04	0.00	0.02
IEPOX dimer	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Other isoprene SOA tracers												
GA sulfate												
C$_5$H$_3$O$_6$S	0.00	0.19	0.03	0.01	0.01	0.03	0.37	0.02	0.44	0.25	0.11	0.00
Methylglyoxal-derived OS												
C$_5$H$_2$O$_5$S	0.05	0.05	0.18	0.28	0.02	0.00	0.01	0.11	0.24	0.09	0.56	0.03
Isoprene-derived OSs												
C$_5$H$_3$O$_6$S	0.09	0.15	0.00	0.20	0.05	0.02	0.36	0.12	0.25	0.40	0.00	0.02
C$_5$H$_3$NO$_4$S	0.00	0.05	0.02	0.06	0.06	0.04	0.38	0.00	0.23	0.17	0.18	0.37
C$_5$H$_6$N$_2$O$_3$S	0.00	0.00	0.00	0.00	0.00	0.21	0.00	0.00	0.00	0.00	0.00	0.00
Hydroxyacetone-derived OS												
C$_5$H$_3$O$_6$S	0.25	0.67	0.71	0.65	0.21	0.21	0.03	0.26	0.12	0.50	0.00	0.70
Other tracer												
Levoglucosan	0.03	0.07	0.02	0.00	0.07	0.07	0.08	0.11	0.01	0.03	0.02	0.24

* Found only in 6 of 120 filters

The correlations in this table are positive.
Table S4. Correlation (r^2) of isoprene-derived SOA tracers and collocated measurements during intensive 2 sampling (12 pm – 3 pm).

SOA tracers	CO	O$_3$	NO$_x$	NO$_2$	NH$_3$	SO$_4$	NO$_3$	NH$_4$	OC	WSOC	pH	
MAE/HMML-derived SOA tracers	0.13	0.42	0.00	0.12	0.04	0.01	0.14	0.05	0.29	0.55	0.19	0.00
2-methylglyceric acid	0.01	0.47	0.25	0.32	0.00	0.04	0.00	0.05	0.04	0.17	0.07	0.05
MAE-derived OS	0.15	0.20	0.04	0.01	0.06	0.00	0.18	0.15	0.31	0.49	0.24	0.03
IEPOX-derived SOA tracers	0.22	0.00	0.04	0.08	0.00	0.21	0.34	0.32	0.37	0.46	0.81	0.02
2-methylerythritol	0.41	0.00	0.13	0.14	0.01	0.16	0.48	0.24	0.50	0.42	0.77	0.01
2-methylthreitol	0.29	0.00	0.03	0.07	0.00	0.07	0.22	0.41	0.39	0.32	0.70	0.02
(E)-2-methylbut-3-ene-1,2,4-triol	0.17	0.00	0.04	0.07	0.01	0.17	0.30	0.31	0.29	0.44	0.61	0.02
(Z)-2-methylbut-3-ene-1,2,4-triol	0.21	0.00	0.05	0.07	0.01	0.17	0.33	0.29	0.31	0.45	0.64	0.01
2-methylbut-3-ene-1,2,3-triol	0.03	0.02	0.00	0.02	0.03	0.07	0.13	0.21	0.06	0.09	0.62	0.03
IEPOX-derived OS	0.19	0.02	0.11	0.21	0.00	0.32	0.43	0.16	0.39	0.52	0.58	0.00
IEPOX dimer	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Other isoprene SOA tracers												
GA sulfate	0.24	0.23	0.00	0.08	0.00	0.06	0.32	0.23	0.46	0.46	0.48	0.00
Methylglyoxal-derived OS	0.27	0.28	0.01	0.02	0.01	0.06	0.29	0.00	0.29	0.33	0.43	0.03
Isoprene-derived OSs												
C$_5$H$_7$O$_7$S$^-$	0.14	0.02	0.06	0.07	0.03	0.06	0.16	0.00	0.18	0.18	0.09	0.00
C$_5$H$_9$NO$_9$S$^-$	0.00	0.15	0.07	0.05	0.21	0.34	0.03	0.05	0.00	0.06	0.00	0.18
C$_5$H$_9$N$_2$O$_{11}$S$^-$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydroxyacetone-derived OS												
C$_5$H$_9$O$_8$S$^-$	0.09	0.40	0.01	0.01	0.10	0.05	0.04	0.07	0.10	0.07	0.62	0.01
Other tracer												
Levoglucosan	0.03	0.00	0.22	0.13	0.00	0.01	0.03	0.17	0.00	0.02	0.00	0.07

* Found only in 6 of 120 filters

The correlations in this table are positive.
Table S5. Correlation (r^2) of isoprene-derived SOA tracers and collocated measurements during intensive 3 sampling (4 pm – 7 pm).

SOA tracers	CO	O$_3$	NO$_x$	NO$_2$	SO$_x$	NH$_3$	SO$_4$	NO$_3$	NH$_4$	OC	WSOC	pH
MAE/HMML-derived SOA	0.01	0.47	0.45	0.39	0.47	0.00	0.19	0.10	0.12	0.54	0.23	0.15
tracers												
2-methylglyceric acid	0.12	0.37	0.03	0.17	0.25	0.00	0.00	0.05	0.02	0.34	0.50	0.15
MAE-derived OS	0.00	0.37	0.44	0.39	0.41	0.01	0.25	0.09	0.13	0.45	0.04	0.10
IEPOX-derived SOA	0.10	0.15	0.18	0.14	0.50	0.17	0.47	0.00	0.18	0.31	0.24	0.03
tracers												
2-methylerythritol	0.03	0.34	0.08	0.04	0.58	0.12	0.34	0.01	0.14	0.42	0.22	0.00
2-methylthreitol	0.04	0.32	0.03	0.01	0.43	0.17	0.25	0.03	0.14	0.54	0.21	0.01
(E)-2-methylbut-3-ene-1,2,4-triol	0.00	0.21	0.05	0.02	0.70	0.13	0.33	0.00	0.12	0.38	0.01	0.02
(Z)-2-methylbut-3-ene-1,2,4-triol	0.00	0.21	0.09	0.05	0.77	0.14	0.41	0.00	0.13	0.27	0.01	0.01
2-methylbut-3-ene-1,2,3-triol	0.54	0.00	0.12	0.13	0.00	0.01	0.18	0.04	0.06	0.00	0.33	0.02
IEPOX-derived OS	0.15	0.10	0.17	0.12	0.42	0.16	0.41	0.00	0.15	0.24	0.29	0.03
IEPOX dimer	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Other isoprene SOA tracers												
GA sulfate												
C$_2$H$_5$O$_5$S$^-$	0.20	0.28	0.43	0.32	0.02	0.00	0.19	0.16	0.30	0.55	0.01	0.21
Methylglyoxal-derived OS												
C$_3$H$_5$O$_5$S$^-$	0.26	0.16	0.01	0.01	0.10	0.12	0.57	0.34	0.60	0.03	0.00	0.02
Isoprene-derived OSs												
C$_3$H$_5$O$_5$S$^-$	0.06	0.18	0.19	0.13	0.12	0.14	0.45	0.02	0.35	0.55	0.02	0.00
C$_3$H$_5$N$_5$O$_5$S$^-$	0.06	0.45	0.00	0.03	0.80	0.05	0.44	0.03	0.18	0.27	0.15	0.00
C$_3$H$_7$NO$_3$O$_5$S$^-$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydroxyacetone-derived OS												
C$_3$H$_5$O$_5$S$^-$	0.49	0.01	0.10	0.20	0.13	0.05	0.44	0.24	0.11	0.06	0.29	0.10
Other tracer												
Levoglucosan	0.00	0.01	0.02	0.04	0.00	0.06	0.00	0.02	0.00	0.20	0.01	0.04

* Found only in 6 of 120 filters

The correlations in this table are positive.
Table S6. Correlation (r^2) of isoprene-derived SOA tracers and collocated measurements during intensive 4 and regular nighttime (8 pm – 7 am next day).

SOA tracers	CO	O$_3$	NO$_x$	NO$_2$	NH$_3$	SO$_4$	NO$_3$	NH$_4$	OC	WSOC	pH	
MAE/HMML-derived SOA tracers	0.35	0.08	0.18	0.21	0.17	0.39	0.48	0.15	0.42	0.53	0.15	0.01
2-methylglyceric acid	0.18	0.00	0.13	0.10	0.12	0.18	0.17	0.05	0.22	0.17	0.01	0.04
MAE-derived OS	0.35	0.14	0.15	0.17	0.11	0.32	0.51	0.17	0.36	0.58	0.20	0.00
IEPOX-derived SOA tracers	0.10	0.10	0.02	0.03	0.08	0.10	0.37	0.02	0.30	0.27	0.15	0.00
2-methylerythritol	0.02	0.12	0.00	0.00	0.05	0.01	0.23	0.00	0.20	0.14	0.09	0.00
2-methylthreitol	0.06	0.09	0.00	0.01	0.09	0.05	0.38	0.01	0.30	0.21	0.15	0.00
(E)-2-methylbut-3-ene-1,2,4-triol	0.09	0.08	0.02	0.03	0.10	0.10	0.35	0.03	0.28	0.26	0.11	0.00
(Z)-2-methylbut-3-ene-1,2,4-triol	0.07	0.07	0.01	0.02	0.10	0.07	0.32	0.02	0.27	0.22	0.08	0.00
2-methylbut-3-ene-1,2,3-triol	0.02	0.05	0.00	0.01	0.03	0.02	0.18	0.01	0.16	0.15	0.09	0.00
IEPOX-derived OS	0.17	0.10	0.08	0.10	0.01	0.16	0.27	0.03	0.21	0.31	0.14	0.01
IEPOX dimer	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Other isoprene SOA tracers

GA sulfate

$\text{C}_2\text{H}_3\text{O}_6\text{S}^-$

Methylglyoxal-derived OS

$\text{C}_3\text{H}_2\text{O}_5^-$

Isoprene-derived OSs

$\text{C}_3\text{H}_7\text{O}_6\text{S}^-$

$\text{C}_3\text{H}_6\text{NO}_6\text{S}^-$

$\text{C}_3\text{H}_9\text{N}_2\text{O}_1\text{S}^*$

Hydroxyacetone-derived OS

$\text{C}_9\text{H}_7\text{O}_6\text{S}^-$

Other tracer

Levoglucosan

0.23 0.00 0.22 0.24 0.08 0.21 0.13 0.01 0.18 0.25 0.11 0.00

* Found only in 6 of 120 filters

The correlations in this table are positive.
Table S7. Regression and correlation (r^2) analysis at the 95% confidence interval

Variables	Regression Statistics							
	Y	x	Number of observations	Multiple r	r^2	Adjusted r^2	Standard error	p-value
Nighttime: MAE/HMML-derived SOA vs P[NO$_3$]	MAE/HMML - derived SOA	P[NO$_3$]	40	0.7532	0.5673	0.5559	12.5098	2.05E-08
Nighttime: IEPOX-derived SOA vs P[NO$_3$]	IEPOX-derived SOA	P[NO$_3$]	40	0.5086	0.2587	0.2392	393.7399	8.05E-04
Regular day sampling: MAE/HMML-derived SOA vs O$_3$	MAE/HMML - derived SOA	O$_3$	30	0.8457	0.7153	0.7051	8.9517	4.00E-09
Daytime: 2-methyltetrols vs O$_3$	2-methyltetrols	O$_3$	64	0.3610	0.1303	0.1163	254.4175	3.39E-03
Intensive 3: MAE/HMML-derived SOA vs O$_3$	MAE/HMML - derived SOA	O$_3$	15	0.6844	0.4683	0.4274	18.3128	4.89E-03
Intensive 3: 2-methyltetrols vs O$_3$	2-methyltetrols	O$_3$	15	0.5844	0.3415	0.2908	259.0249	2.22E-02
MAE/HMML-derived SOA vs SO$_4$	MAE/HMML - derived SOA	SO$_4$	117	0.5779	0.3340	0.3282	15.8648	8.96E-12
IEPOX-derived SOA vs SO$_4$	IEPOX-derived SOA	SO$_4$	117	0.6027	0.3632	0.3577	310.4400	6.51E-13
Figure S1. The locations of the three sampling sites during 2013 SOAS: BHM, CTR, and LRK. BHM was the focused site in this study.

Figure S2. 1H NMR (400 MHz, D$_2$O) of the MAE/HMML-derived OS.
Figure S3. (a) Comparison of organic carbon (OC) and water soluble organic carbon (WSOC), suggesting that 35% of OC at BHM was WSOC. (b) Comparison of IEPOX- and MAE-derived SOA tracers with WSOC, indicating that IEPOX- and MAE-derived SOA tracers explained 18 and 0.4% of the WSOC, respectively.
Figure S4. Diurnal variations of (a) meteorology, (b) O$_3$ and CO, (c) NO$_y$, NO, NO$_2$, and NO$_x$, and (d) PM$_{2.5}$ constituents at BHM during the 2013 SOAS campaign. High temperature and low RH were observed at 2-4 pm local time. O$_3$ reached its maximum, while CO dropped to its minimum in early afternoon. NO$_x$ and NO$_y$ were high during early morning hours and declined in the afternoon due to photochemical processes. No significant diurnal variation was observed for NH$_3$, SO$_2$, SO$_4^{2-}$, NH$_4^+$, and NO$_3^-$.
Figure S5. The bar chart shows average daytime and nighttime concentrations of isoprene-derived SOA tracers with 95% confident interval. No significant variation between daytime and nighttime was observed.
Figure S6. The box-and-whisker plot (n = 15) of (a) MAE/HMML-SOA, (b) MAE/HMML-OS, and (c) 2-MG. These demonstrate that the statistical distribution of SOA abundance during each intensive sampling period. No significant variation amongst intensive samples was observed.
Figure S7. The box-and-whisker plot (n = 15) of (a) IEPOX-derived SOA, (b) IEPOX-OS, (c) 2-methyltetrols, and (d) (E)-2-methylbut-3-ene-1,2,4-triol. These demonstrate that the statistical distribution of SOA abundance during each intensive sampling period. No significant variation amongst intensive samples was observed.