Online Multiple Object Tracking with Cross-Task Synergy

Song Guo*¹, Jingya Wang*¹,², Xinchao Wang³,⁴, Dacheng Tao¹

¹The University of Sydney, ²ShanghaiTech University,
³National University of Singapore, ⁴Stevens Institute of Technology
Tracking-by-Detection

Frame t

Association

Frame t + 1
Motivation

Existing Methods: The two tasks do not benefit each other
Main Idea

Our Method: Bridge the two tasks to bring synergy
Model

(a) Position Prediction by Regression
(b) Temporal-Aware Target Attention & Distractor Attention
(c) Identity-Aware Memory Aggregation
Target Attention

\[f \left(E_{t_i}^{ta}, E_{r_j}^{ta} \right) = \theta(E_{t_i}^{ta})\varphi(E_{r_j}^{ta})\rho(E_{r_j}^{ta}) \]

Attention between newly extracted embedding and the historical reference of the target.
Distractor Attention

\[g\left(E_{ti}^{ta}, E_{rj}^{di}\right) = \theta(E_{ti}^{ta})\varphi(E_{rj}^{di})\rho(E_{rj}^{di}) \]

Attention between newly extracted embedding and the historical reference of the closest distractor.
Enhanced Prediction

\[\tilde{F}_{t}^{ta} = F_{t}^{ta} \oplus w[f(E_{t}^{ta}, E_{r}^{ta}) \ominus g(E_{t}^{ta}, E_{r}^{di})] \]

Enhanced prediction can be performed with \(\tilde{F}_{t}^{ta} \) computed from attentions.
Memory Aggregation

\[
\tilde{E}_{t}^{\text{ta}} = E_{t}^{\text{ta}} \oplus w[f(E_{t}^{\text{ta}}, E_{r}^{\text{ta}}) \ominus g(E_{t}^{\text{ta}}, E_{r}^{\text{di}})]
\]

Raw identity embedding is similarly enhanced by attention modules as \(\tilde{E}_{t}^{\text{ta}} \).

\[
E_{r_{t}} = \text{convGRU}(\tilde{E}_{t}, E_{r_{t-1}})
\]

Then aggregated through convGRU update, and participates in next attention computation

Trained with identity losses
Cross-Task Synergy

(a) Position Prediction by Regression
(b) Temporal-Aware Target Attention & Distractor Attention
(c) Identity-Aware Memory Aggregation
Benchmark Result

Method	MOTA↑	IDF1↑	FP↓	FN↓	IDS↓
MOT16					
MOTD16[10]	47.6	50.9	9253	85431	792
KCF16[12]	48.8	47.2	5875	86567	906
DeepMOT[57]	54.8	53.4	2955	78765	645
Tracktor++V2[3]	56.2	54.9	**2394**	76844	617
GSM[30]	57.0	58.2	4332	73573	**475**
TADAM(ours)	**59.1**	**59.5**	2540	**71542**	529
MOT17					
MOTD17[10]	50.9	52.7	24069	250768	2474
FANET[13]	52.0	48.7	14138	253616	3072
UMA[59]	53.1	54.4	22893	239534	2251
DeepMOT[57]	53.7	53.8	11731	247447	1947
Tracktor++V2[3]	56.3	55.1	**8866**	235449	1987
GSM[30]	56.4	57.8	14379	230174	**1485**
TADAM(ours)	**59.7**	**58.7**	9676	**216029**	1930
MOT20					
SORT20[5]	42.7	45.1	27521	264694	4470
Tracktor++V2[3]	52.6	52.7	**6930**	236680	1648
TADAM(ours)	**56.6**	51.6	39407	**182520**	2690
Ablation Study Result

Setup	MOTA↑	IDF1↑	FP↓	FN↓	IDS↓
w/o TA & DA	65.9	71.1	597	37501	208
w/o DA	66.4	71.2	462	37060	191
w/o TA	66.7	71.3	473	36748	188
w/o adaptive weight	66.0	68.5	679	37322	242
w/o memory aggregation	66.5	67.5	552	36848	232
Full model	67.0	71.6	583	36287	197
Significantly higher tracked percentage for occlusion level > 50%
Video Result
Thanks for watching!

GitHub Page:
https://github.com/songguocode/TADAM