مقاله پژوهشی

اتر پراپاپینگ بذر با سولفات روی و آهن به بهینه‌سازی شکست خواب و شاخش‌های جوانزی (Allium hirtifolium)

الهه سادات حسین‌پور عسکریان ۱، علی عباسی سروکی ۲، عبدالرزاق داشش شهیرکی ۳

چکیده مسولیتی

مقدمه: بذر گاه موسیسر علاوه بر خواب دارای استقرار ضعیفی در مرحله جوانزی می‌باشد. ازجمله روش‌های بهبود کارایی و استقرار بذر می‌توان به اتباع پراپاپینگ با مواد مغذی اشاره کرد. وجود عنوان رژیم‌مغذی یک از عوامل است که ممکن است کارایی بذرها را تحت تاثیر قرار دهد. لذا این پژوهش با هدف بررسی اثر پراپاپینگ با مواد مغذی به بهینه‌سازی شکست خواب جوانزی، ارتفاک بذر و استقرار گیاه دارویی-سوسکی موسیسر چهت برای درمانی حفاظتی، احیا و اطمینان ایمنی گیاه اجرا گردید.

مواد و روش‌ها: برای پژوهش اثر مواد مغذی بر جوانزی و بهبود استقرار موسیسر، آزمایشی به صورت فاکتوریل در قالب طرح کاملاً صاف‌بندی شده ۴ تکرار در آزمایشگاه علوم و تکنولوژی بذر دانشگاه شیراز در سال ۱۳۹۷ اجرا گردید. در هر زمینه‌کش خواب اسید سولفوریک و اسید سولفوریک + اسید جیبلریک (به عنوان فاکتور اول) و ان سطح مواد مغذی شامل سولفات روت، ۵، ۱۰، ۱۵ و ۲۰ میلی‌مولار (سه سطح آهن ۰، ۱، ۲ درصد درمانیسی به شاخه فاکتور دوم) به مانند موسیسر مورد بررسی قرار گرفت.

فرضینه: تجویز واریانس نشان داد تبیین‌های شکست خواب پراپاپینگ با مواد مغذی و ارتباط آنها در درممقوس جوانزی، سرعت جوانزی، زمان رسیدن به ۵۰ و ۱۰۰ درصد جوانزی، یک‌تایی و شاخش بینه ۱ نشان موسیسر را در سطح احتمال ۵ درصد تحت تاثیر قرار داد. کاربرد اسید سولفوریک در سیگما سولفات روی اثر آهن (به عنوان فاکتور دوم) را نقیض کرد. در حالی که در سیگما سولفات سنگین آهن قابل یافتنی است، سولفات روی به مانند موسیسر به شاخه موجب سرعت جوانزی نکرد. زمان رسیدن به ۵۰ درصد جوانزی در سطح آهن ۵ میلی‌مولار نیز تحت تاثیر اسید جیبلریک نیست. استطلاع از استدلال نتایج تأثیر معنی‌داری بر کاهش زمان جوانزی نشان داد. این تحقیق نشان داد که سطح آهن ۱۰ میلی‌مولار و سطح ظرف‌مایه در دم‌قفاچه در مسیر آهن ۵ تا ۴۰ میلی‌مولار به شاخه موسیسر به دست آمد.

نتیجه‌گیری: پراپاپینگ بذر موسری با مواد مغذی سبب بهبود شاخش‌های جوانزی و بهبود گردید. غلظت‌های مختلف آهن و روی اثرات فاکتوریل بر موسری شاخه نشان داد نکه با روش‌های شکست خواب آن ارتباطی داشته استفاده از اسید جیبلریک ارائه تأثیری اطراف‌کننده و گاهی زمان رسیدن به ۱۰ و ۵۰ درصد جوانزی ناشست اما طول گیاهه و شاخش بینه ۱ را تقویت گردید که در مورد سولفات آهن ۵ تا ۴۰ میلی‌مولار بود.

واژه‌های کلیدی: مواد مغذی، استقرار، اسید جیبلریک، شاخش بینه، اسید سولفوریک

جنبه‌های نا دوری:

1- افزودن سولفات آهن و سولفات‌روی به بذر گاه موسیسر که از سولفوریک برای شکست خواب آن استفاده شد سبب افزایش

2- اضافه شدن جیبلریک در نیم‌شاخ شکست خواب اثر روی در جوانزی واکنشی و توانسته جایگیری حاصل کنند. اما برای سولفات آهن انتخابی اثری داشت.

3- اگرچه اضافه شدن جیبلریک در نیم‌شاخ شکست خواب صاف جوانزی را کمک تحت تاثیر قرار داد، اما طول گیاهه و شاخش بینه از

اسید جیبلریک ناشی می‌باشد.

DOR: 98.1000/2383-1251.1398.6.33.11.11.1575.41

DOI: 10.29252/yujs.6.1.33

CrossMark

abbas@sku.ac.ir

藏文维基百科实证资料中心

(تاریخ دریافت: 1397/06/21، 1397/02/14)
دهد. این عنصر به عنوان کوفاکتور در سیستم‌های آنزیمی و واکنش‌ها عمل می‌کند و در فرایندهای
فیزیولوژیکی کلیه منند فومنیت و تنفس نقش دارند
(فاروق و همکاران، 2012).

روش‌های مختلف برای اضافه کردن مواد مدفوع به
بذر بذری کرد که از جمله می‌توان به کوده‌ها، استری
کردن بگ، پرایمینگ کردن به مواد مدفوع اشتهار
کرد. این در حالت ایست که روش‌های کوده‌های اسپری
کردن بگ با توجه به هزینه و زمان، دستیابی به
کوده‌ای به کمیت باید مواد مدفوع و تنوع آن به طور
سیاوا در خاک، نیاز به نیروی انسانی و پختن مکر در
مراحل مختلف شریف موقت به نظر می‌رسد
(جاسون و همکاران، 2005). در این بین نیاز کردن
بذر با مواد مدفوع از طریق پرایمینگ، از راه‌حل‌های
مناسب و کم‌هزینه برای حال این مشکل است که
منجر به بهبود استقراض، رشد، افزایش عاملکرد و غلظت
عناصر برخی از دانه‌های گردید.

راه‌هایی برای رشد مطلوب در گیاهان، 17 عنصر
ضروری مورد نیاز است که از مهم‌ترین آن‌ها می‌توان به
روی و آهن اشاره کرد (فاروق و همکاران، 2012). روی
در فرایندهای بیوشیمیایی مختلف همچون سنتز
سیتوکروم و نوکولوئیدها، متابولیسم اکسین، تولید
کاروئیل، بکارگیری غشا، پالیسیت آنزیم‌های
کاسپیدوزکتاژ، نراترات، هیردوز، لیگاز و ایزومر
نقط دارد (اردکاری و همکاران، 2013، تلفات
و همکاران، 2017). از این روی پرایمینگ با روی می‌توان
به افزایش روی قابل دسترس بذر هر بذر، تضمین
جذب روی نیاز بذر و کاهش هزینه و مصرف مقدار
موردهای نیاز روی اشتهار کردن (فر کردن و همکاران، 2008) و
نیاز به روی اشتهار کردن (فاروق و همکاران، 2013) شناس داده که پرایمینگ
بذر چند ماه نخود با روی، می‌توان به افزایش قابل توجهی
در وزن خشک ساقه، عاملکرد، غلظت و جذب روی در
دانه، بهبود جوانه‌زنی و بیشتر بذر گرده. این نیز یکی از

Allium hirtifolium گیاه موسر با نام علمی جنس Amaryllidaceae از تیره
Allioideae است که از نظر پراکندگی جهانی، احتمالاً از ایران می‌باشد (مظفر، 2012) و به‌طور
خودرو در مراتع مرتفع و نقاط کوهستانی با اقلیم نیمه
خشک سرد تا خشک مرطوب معمولاً با ساقه‌گیم دما
سالانه 12 درجه سانتی‌گراد و متوسط بارش 250 تا
700 میلی‌متر و ارتفاع بین از 1000 متر از سطح دریا
در شیب‌های مختلف می‌روید (المرادی و همکاران، 2013). خواص دارویی، خوراکی و صنعتی موسر سبب
شده به بذر، نوش‌ویوه و نکز آوردن به برداشت قرار
گیرد (ابراهیم و همکاران، 2009). در حال حاضر گیاه
موسر به علت برداشت بی‌روه، تخریب مراتع و جرای
بیش از حد در حال انقرض و جزو گیاهان غیرمجزا
طبقه‌بندی می‌شود، بنابراین ازدید موسر برای
تامین این گیاه نیازهای حیاتی است.

2013) می‌باشد که نسبت به تکثیر غیرچندی به‌واسته تعیین
نتایج امکان کردن بذر در شرایط مناسب و کشت
آن در حالی است که از مورد بررسی و استفاده
به‌طور کلی و سازگار بودن بذر به شرایط منفی
محیطی می‌تواند کاهش مناسبی یافته‌اید با جلوگیری
از انقرض و اخلال سازی گیاهان باشد (تولید افزایش
و همکاران، 2008). خواص جوانه‌زنی ضعیف و استقراض
نامطلوب از محدودیت‌های تکثیر گیاه موسر باعث
بذر هم‌شمار می‌شود.

از جمله روشهای بهبود کارایی و استقراض بذر
می‌توان به انواع پرایمینگ با مواد مدفوع اشتهار کردن
(تولید افزایش و همکاران، 2008)، کرم‌پذیری
و همکاران، 2015) و وجود عنصر برخی از عوامل
است که ممکن است کارایی بذرها را تحت تأثیر قرار

7 Farooq
8 Johnson
9 Adhikari
10 Latif
11 Harris
12 Nautiyal and Shukla
1 Mozaffarian
2 Allahmoradi
3 Ebrahimi
4 Heirikhah and Dadkhah
5 Tavakkol Afshari
6 Akram Ghaderi
فلزهای انتقالی در سلول‌های گیاهی است و کوفرتوکر
پیش از ۱۴۰ سیستم آنزیم گیاهی مانند پراکسیداز،
کانالاز، فودروکسین و سیتوکروم می‌باشد (لیدو و
همکران، ۲۰۱۲). آهن از اجزای تشکیل دهنده بیوسنت
کروموفیل که در تنظیم تنفس فتوسنتز نقش گرفت
نیترات و سلول‌های دیال‌دار (شبندی و واسادون،
۲۰۱۷) لذا کمیته آهن می‌تواند عامل مهم گردش
رویشی باشد (شریفی و همکران، ۲۰۱۶). نتایج
میرشكاری (۲۰۱۲) نشان داد پرایمینگ بذردهای شوید
با آهن و بور موجب افزایش
منعی در دندان جوانته، نیز شاخص بینه در غلظت
۱/۵ درصد آهن و ۱ درصد بور گردید. ترابیان و
همکران (۲۰۱۶) در بررسی اثر محلول‌های سلول‌های
آهن (FeSO₄) به‌منظور عدالتی جداشده FeSO₄
به‌منظور معیاری داده که در تنظیم ترمسیر،
و در بررسی اثر پرایمینگ با مواد غذایی بر
پهن‌کاری شکست خواب، جوانته، افتاده‌کاری بذر و
استقرار گیاه‌های گیاهی در مراحل جوانشی می‌باشد این
پژوهش با هدف بررسی اثر پرایمینگ با مواد غذایی بر
پهن‌کاری شکست خواب، جوانته، افتاده‌کاری بذر و
استقرار گیاه‌های گیاهی در مراحل جوانشی می‌باشد

از نظر اصولی ایین گیاه اجرای گردی.

مواد و روش‌ها

این پژوهش به منظور بررسی اثر پرایمینگ با مواد
مغذی جوانه‌های نسبت و استقرار گیاه‌های
آزمایشگاهی علوم و تکنولوژی بذر دانشگاه کشاورزی
دانشگاه شهید به سال ۱۳۹۴ اجرا گردید. آزمایش به

۱ Lebedev
۲ Shinde and Vasudevan
۳ Sharifi
۴ Mirshakari
۵ Torabian
۶ Dashti

۷ Abdulrahmani
۸ Etemadi
در بردسی جوانزمی بذرها خروج و روی ریشه‌ها به اندازه ۲ میلی‌متر بود. در طول اجرای آزمایش بر حسب نیاز آب مقرر به نیاز یک کاسه به سه قطره اضافه شد. صفات متواری جوانزمی استاندارد، سرعت جوانزمی، شاخص T_{50} و T_{10}، شاخص یک‌نوختی جوانزمی، طول گیاهچه و شاخص بینهی ۱ به شرح زیر انداده‌گیری شدند:

جوانزمی استاندارد و سرعت جوانزمی به ترتیب از رابطه (۱) و (۲) محاسبه گردید (الیس و روبرترز، ۱۹۸۱).

Germination Percent (GP) = \[
\frac{\sum n_i}{N} \times 100
\]

در هر روز، n_i تعداد بذرها در طول T_{10} و T_{50} از رابطه ۳ و ۴ توسط نرم‌افزار GERMINATOR محاسبه شد (جوزن و همکاران).

\[
GR = \sum \left(\frac{n_i}{t_i} \right)
\]

 Germination uniformity

\[
T_{10} = \frac{\sum [N/2-n_i](t_j-t_i/n_j-n_i]}{N}
\]

روش ۳: تعداد زمان‌های سپری شده از شروع جوانزمی بود.

روش ۴: t_i تعداد روزهای مربوط به روز n_i در طول T_{50} و T_{10} از رابطه ۵ و ۶ توسط نرم‌افزار GERMINATOR محاسبه شد (جوزن و همکاران).

\[
T_{50} = \frac{\sum n_i}{N} \times 100
\]

روش ۵: تعداد زمان‌های سپری شده از شروع جوانزمی بود.

روش ۶: تعداد زمان‌های مربوط به روز n_i از رابطه ۷ و ۸ توسط نرم‌افزار GERMINATOR محاسبه شد (جوزن و همکاران).

\[
\text{Germination Index-I} = \text{GP} \times \text{SL}
\]

روش ۷: محاسبه گردید (آستا، ۲۰۱۳).

1. Germination percentage
2. Germination rate
3. Time to 10% germination
4. Time to 50% germination
5. Germination uniformity
6. Seedling length
7. Vigor index-I
8. Ellis and Roberts
9. Joosen
10. ISTA
Table 1. Analysis of variance (mean squares) of germination characteristic of shallot seeds affected by different dormancy break treatments and nutrient levels.

Sources of variation	Degree of freedom	Germination percentage	Germination rate	Germination uniformity	Seedling length	Seedling vigor index
Break of Dormancy	1	450**	161.3**	15802**	13516**	21238**
						2998**
						2650.2**
Nutrients	8	91**	30.7**	35920**	1022**	828**
						545**
						475.7**
Break of Dormancy x	8	88**	19.5**	5463**	1102**	3122**
Nutrients						100**
						96.9**
Error	54	13.5	0.7	769.3	46	297.6
						5.8
						5.5
Coefficient of variation (%)	-	3.9	5.5	10.7	13.3	9.6
						8.9
						10.3

ns and ** indicate non-significance and significance at 1% probability levels, respectively.
در اسفند جیبرلیک و اسید سولفوریک، خواص درمانی که با نتایج عمدتاً حمایت می‌کند. احتمالاً به‌دلیل برداشتان یافته می‌باشد با سرعت بالایی وارد بذر شده و اثرات مثبت خود را با پرداخته‌ی جوانزی اعمال می‌کند و به‌همین دلیل به‌رها که علاوه بر اسید سولفوریک با ماده درمانی تیمار شدیده شاخص‌های جوانزی بالایی داشتند. تیمار کردن بذر موسم با اسید سولفوریک و آهن 1 درصد افزایش 25/14 درصد جوانزی نسبت به شاهد را به همراه داشت و با غلظت‌های 1/15 و 2 درصد H2SO4 و همچنین 5 و 10 FeSO4، می‌می‌باشد.

افزایش روند مواد معذی به‌یاره‌گی از تکنیک پرایمینگی بین برای برای نبود می‌کند می‌کند تا در افزایش اثر آزمایش داشته باشد. احتمالاً در دسترس و در سرعت جوانزی در استفاده از سوزن‌های آهن و آهن به همین خاطر می‌باشد. همچنین با این نتیجه، برای پرایمینگی 1 (2014) بیان داشته در اسید جیبرلیک اثر روزی را در جوانزی جهان کرده است. غلظت‌های سولفوریک آهن 15% و 1 درصد بهتر از سطوح

2 Ameri

38

حسین پور عسکری و همکاران: اثر پرایمینگ بذر با سولفوریک روز و آهن بر پیشرفت سازی شکست خواب...

شکل 1. تاثیر تیمار شکست خواب و روز جوانزی بذر در سطوح جوانزی بذر موسی. میانگین‌ها در هر یک از سطوح شکست خواب برش دهی شده و حروف مشابه در هر سطح بین‌گیری عدم اختلاف معنی‌دار با اساس آزمون LSD در سطح اختلاف 5 درصد است. میلها با بانک خطی استاندارد برای کل تیمارهای است.
سرعت ZnSO₄ به شاهد در غلظت FeSO₄ 1 درصد اثر نداشت. با افزایش غلظت FeSO₄، سرعت جوانزندگی روند کاهشی داشت که در غلظت FeSO₄ 40 درصد بیشتر اثر آن بود.

سپس ناشی از غلظت‌های بالای مواد غذایی می‌باشد (جانسون و همکاران، 2005). در کاربرد تیمار اسید جیبرلیک به همراه اسید سولفوریک تغییر احساسی در سرعت جوانزندگی در مقایسه با اسید سولفوریک و به‌دست‌یافتن اثر مواد غذایی را و سرعت جوانزندگی کاهش داد. این استفاده از سولفوریک روز نیز نشان داد که در روند جوانزندگی با اسید جیبرلیک، سرعت جوانزندگی نسبت به سایر تیمارها و نیز میزان اکسیداسیون غلظت آن افزایش یافت.

در نهایت درصد مواد قابل استفاده برای جنین در نهایت درصد جوانزندگی افزایش یافت (طالبون و همکاران، 2014). نتایج پایل و همکاران (2014) نیز در بررسی Allium stracheyi نشان دادند که در خاک گیاه‌زایی 100 mg/m² شکست خواب سبب تجزیه هورمون اسید اسید‌های شیمیایی و کاهش مقدار آن می‌گردد (یامعاتی و همکاران، 2004).

از آنجا که میزان اسید جیبرلیک و اسید آسپریک در گیاه در تعادل با هم می‌باشد در نتیجه کاهش سرعت جوانزندگی روند کاهشی داشت که در غلظت FeSO₄ 40 درصد بیشتر اثر آن بود. بنابراین می‌توان گفت که در طراحی اسید جیبرلیک به همین مسئله مربوط می‌باشد درواقع بدر حین بدون بالاتر عمل کردن امکان نتوان امکان دارد با هم و نیز با شاهد نداستند در حالی که این نتایج بین سرعت آهن درصد در عدم استفاده از اسید جیبرلیک متفاوت می‌داشت. آنچه مسلم است این تفاوت که اسید جیبرلیک اثره در درصد جوانزندگی را تقویت کرده است و در غلظت‌های بالاتر آن درصد جوانزندگی (شکل 1).

از آنجا که اسید جیبرلیک یکی از تنظیم کننده‌های درونی رشد گیاه است اثرات مختلف و مهمی بر تنظیم و رشد و نمایه‌گر دارد. یکی از نشان‌های کلیدی انتقال قیفی گیاه بذرهای باعث می‌شود در گیاهان تک لایه جیبی‌لین آسیاب آباد می‌شود و با عبور از آندوسپرم به لاوه آورون مسیس در آنجا سنت آنزیم‌های هیدروژنکننده مانند انفاسیون، ریپوکلیتان و فسفاتاز را تحریک می‌کند. تاثیر این آنزیم‌ها سبب تخریب آندوسپرم و ساختن دیواره شیمیایی آن می‌گردد (کوکاردی و همکاران، 2015). در این تحقیق با استفاده از ABA، میزان اسید آسپریک در گیاه در تعادل با هم می‌باشد در نتیجه کاهش سرعت جوانزندگی روند کاهشی داشت که در غلظت FeSO₄ 40 درصد بیشتر اثر آن بود. بنابراین می‌توان گفت که در طراحی اسید جیبرلیک به همین مسئله مربوط می‌باشد درواقع بدر حین بدون بالاتر عمل کردن امکان نتوان امکان دارد با هم و نیز با شاهد نداستند در حالی که این نتایج بین سرعت آهن درصد در عدم استفاده از اسید جیبرلیک متفاوت می‌داشت. آنچه مسلم است این تفاوت که اسید جیبرلیک اثره در درصد جوانزندگی را تقویت کرده است و در غلظت‌های بالاتر آن درصد جوانزندگی (شکل 1).

مقدمه

مقایسه میانگین‌ها نشان داد در تیمار اسید سولفوریک، سرعت جوانزندگی روندی ۵ میلی‌متری تفاوت بین بیشترین و سرعت جوانزندگی نسبت به سایر تیمارها و نیز شاهد بود که موج‌بند افزایش ۱/۲ درصدی سرعت جوانزندگی.

5. Aghababanejad
6. Yamauchi
7. Medeiros

1. Wani
2. Makkizade Tafsi and Farhudi
3. Alivand
4. Payal
زمان رسیدن به 10 درصد جوانژنی (T₁₀)

مقایسه میانگین داده‌های نشان داد کاربرد اسید سولفوریکی بعنوان تیمار شکست خواب، سطح پایین سولفات روي نسبت به غلظت‌های بالاتر عملکرد بیشتری داشت. کمترین زمان رسیدن به 10 درصد جوانژنی به تیمار 5 میلی‌مولار سولفات روي تعلق داشت که اختلاف معنی‌داری بین تیمارها داشت و کاهش 69/5 درصدی T₁₀ نسبت به شاهد گردد. با افزایش غلظت سولفات روي چنین رشدی ادامه نیافت و حتی در غلظت 100 میلی‌مولار زمان رسیدن به 10 درصد جوانژنی نسبت به اسید آزمایشگاهی جدا شد.

استفاده از اسید چربیک و اسید سولفوریکی بعنوان تیمار شکست خواب تأثیری در کاهش زمان رسیدن به 10 درصد جوانژنی نسبت به اسید اسید سولفوریکی نداشت.

سولفات روي و 5 و 10 میلی‌مولار با شاهد در یک گروه آماری قرار داشت. افزایش غلظت ZnSO₄ به زمان رسیدن به 10 درصد جوانژنی را طولانیتر کرد. چنین پیش‌بینی می‌کرد که اسید چربیک اثر روی بر کاهش زمان رسیدن به 10 درصد جوانژنی را خنثی کرده است. اثر مقایسه اسید چربیک و اسید تاثیرات مثبتی بر کاهش زمان جوانژنی نسبت به سولفات روي و شاهد به همراه مدت و آهن 2 درصد با تفاوت معنی‌داری داشت و آهن 1 درصد نسبت به سایر اسید‌ها موجب کاهش T₁₀ معنی‌داری داشت.

شکل 1: تاثیر بیشتر کاهش زمان جوانژنی نسبت به سایر اسید‌ها با تفاوت معنی‌داری

شکل 2: تاثیر بیشتر کاهش زمان جوانژنی نسبت به سایر اسید‌ها با تفاوت معنی‌داری

شکل 3: تاثیر بیشتر کاهش زمان جوانژنی نسبت به سایر اسید‌ها با تفاوت معنی‌داری

شکل 4: تاثیر بیشتر کاهش زمان جوانژنی نسبت به سایر اسید‌ها با تفاوت معنی‌داری

شکل 5: تاثیر بیشتر کاهش زمان جوانژنی نسبت به سایر اسید‌ها با تفاوت معنی‌داری

شکل 6: تاثیر بیشتر کاهش زمان جوانژنی نسبت به سایر اسید‌ها با تفاوت معنی‌داری

شکل 7: تاثیر بیشتر کاهش زمان جوانژنی نسبت به سایر اسید‌ها با تفاوت معنی‌داری

شکل 8: تاثیر بیشتر کاهش زمان جوانژنی نسبت به سایر اسید‌ها با تفاوت معنی‌داری

شکل 9: تاثیر بیشتر کاهش زمان جوانژنی نسبت به سایر اسید‌ها با تفاوت معنی‌داری

شکل 10: تاثیر بیشتر کاهش زمان جوانژنی نسبت به سایر اسید‌ها با تفاوت معنی‌داری

2 Abutalebian and Mohagheghi

1 Muhammad
Fig. 2. Interaction between dormancy break treatments and nutrient levels on the germination rate of Allium hirtifoliom seeds. Means were sliced at each dormancy break treatments. Similar letters indicate no significant difference at 5% probability level based on LSD Test. The bars indicate standard error for all treatments.

Fig. 3. Mutual effect of dormancy break treatments and nutrient levels on Allium hirtifoliom seeds’ time to reach 10% germination. Means were sliced at each dormancy break treatments. Similar letters indicate no significant difference at 5% probability level based on LSD Test. The bars indicate standard error for all treatments.
شکل ۴. تأثیر معادلی تیمار شکست خواب و تیمارهای خاکستر در زمان رسیدن به فاصله ۵ درصد از تأخیری که با افزایش زنین رشد در صورت افزایش زنین در این تفاوت معنی‌دار است.

Fig. 4. Mutual effect of dormancy break treatments and nutrient levels *Allium hirtifolium* seeds’ time to reach 10% germination. Means were sliced at each dormancy break treatments. Similar letters indicate no significant difference at 5% probability level based on LSD Test. The bars indicate standard error for all treatments.

نتایج نشان داد بهطور کلی استفاده از اسید جیبرلیکی سولفوریک در غلظت ۵ میلی‌مولر سولفات رژیم خاکستر زمان T50 را داشت که به عنوان جوانژنی سریعتر بذرها مویسر در این غلظت می‌باشد (شکل ۴). کاهش سرعت جوانژنی و افزایش زمان رسیدن به ۱۰ و ۵۰ درصد جوانژنی در غلظت‌های بالای موارد معنی‌دار به دلیل اثر سرمایه‌ای اجاق شده در این غلظت‌های به نتایج جانسون و همکاران (۲۰۰۵) مطابق داشت.

شاخص یک‌کنواختی جوانژنی

شاخص یک‌کنواختی جوانژنی در این آزمایش جوانژنی زمانی بین ۲۵ و ۷۵ درصد جوانژنی در نظر گرفته شده است که هرچه میزان کمتری باشد بیانگر تغییراتی جوانژنی است (جورن و همکاران، ۲۰۱۰). در استفاده از اسید سولفوریک، سولفات رژیم ۵ و ۱۰ میلی‌مولار تفاوت معنی‌داری با شاهد نشان داد اگرچه نسبت به غلظت‌های بالاتر دارای جوانژنی یک‌کنواختی بودن به‌طوری که با افزایش غلظت ZnSO₄ غلظت شاخص یک‌کنواختی جوانژنی با تفاوت معنی‌داری نسبت به سطح بالاتر و...
اسید چیپرلیک بر یکنوختی چلورزینی را افزایش داده است. بذرهای پراییشده با استفاده از میزان موارد ذخیره‌های دراز جهت جنگنده‌های بیشتر و با اهمیت
یکنوختی‌های موش دراسه (آب‌پری‌وی و محققی، 2016).

چنین به‌منظور می‌رسد این اثرات چیپرلیک با تأثیرگذاری
بر درصد جوانه‌زی، موجب شده تا یکنوختی جوانه‌زی
بهبود یابد. در یک مقایسه کلی استفاده از اسید
چیپرلیک نسبت به عدم استفاده از آن میزان یکنوختی
جوانه‌زی را بهبود بخشید همچنین تیمارهای 1/5 و
1 درصد سولفات‌های آهن و غلظت‌های پایین سولفات‌های روی به همراه اسید چیپرلیک بهتر از یک دیگر عمل کرد
(شکل 5).

طلو گیاهچه
دراستفاده از اسید سولفوریک، سولفات‌های روی
5 میلی‌مولار اختلاف معنی‌داری نسبت به سطح‌های دیگر
7/6 و نیز شاهد افزایش داشت. با افزایش
غلظت سولفات‌های آهن و چیپرلیک، بیش از یک تیمار دانه
آب‌پری‌وی و نیز درصد سولفات‌های آهن و اسید
چیپرلیک بیش از یک تیمار دانه آب‌پری‌وی
ماته نسبت به شاهد و میانگین‌ها در هر یک از سطح‌های
شاد درصد دیگری داشت. با افزایش
غلظت سولفات‌های روی طول گیاهچه کاهش یافت و نسبت
که طول گیاهچه بذرهای تیمار همدیگر با سولفات‌های روی

شکل 5. تأثیر متقابل تیمار شکست خواب و میزان میزان میزان
آب‌پری‌وی بر یکنوختی جوانه‌زی بذر موسمی. میانگین‌ها در هر یک از سطح‌های
شاد با استاندارد خطا در سطح پایین عدم اختلاف معنی‌دار بر اساس آزمون
LSD در سطح احتمال 5 درصد است. میله‌ها یا پایگاه خطا

Fig. 5. Mutual effect of dormancy break treatments and nutrient levels on germination uniformity of Allium hirtifolium seeds. Means were sliced at each dormancy break treatments. Similar letters indicate no significant difference at 5% probability level based on LSD Test. The bars indicate standard error for all treatments.
شکل ۶. تاثیر متقابل تیمار شکست خواب و ماده معذی بر طول گیاه‌های بذر دار از نظر مواد غذایی در کاهش طول گیاهان در اثر افزایش سطح اسید سولفوریک در نسبت به یک سطح اسید جیبرلیک در لیڈ ۵ درصد است. نتایج با درصد تقریبی ۵ درصد استاندارد برای کل تیمارها است.

Fig. 6. Mutual effect of dormancy break treatments and nutrient levels on seedling length of *Allium hirtifolium* seeds. Means were sliced at each dormancy break treatments. Similar letters indicate no significant difference at 5% probability level based on LSD Test. The bars indicate standard error for all treatments.

نتایج حاصل با نتایج ابراهیمی و همکاران (۲۰۱۴) در بررسی استفاده از اسید جیبرلیک بر طول گیاه‌های هم سو بود. بیکالو و همکاران (۲۰۱۵) در اثر اسید جیبرلیک بر طول گیاه‌ها در افزایش فعالیت عمیق و اسید دیوپر سولی سبب داد. افزایش طول گیاه‌ها در اثر تیمار سولفات روی می‌تواند به دلیل نش نیترات در تولید اکسیژن (آزادن استیک اسید) به‌وزه در غلظت‌های باز مشابه روی در سنتر تری‌پتوان دخالت دارد در تجربه هم‌وانع و پیش‌مادهای برای تولید اکسیژن محصول می‌شود (وجودی و همکاران، ۲۰۱۶) از آنجا که اکسیژن به نظیر نکته‌های برند گیاهی است خطوط قطع شاخه‌های جوان‌تری را تحت تأثیر قرار می‌دهد. یکی از نتایج اصلی اکسیژن، افزایش اسید باتریزیری دیوپر سولی است که به‌دلیل افزایش جیبرلیک در کاهش سطح افزایش معنی دار نسبت به تیمار شکست خواب اسید سولفوریک داشته. بیشترین شاخص به نه گیاه‌های اسید سولفوریک برای نسبت به سطح افزایش معنی دار نسبت به تیمار شکست خواب اسید سولفوریک داشته. بیشترین شاخص به نه گیاه‌های اسید سولفوریک برای نسبت به سطح افزایش معنی دار نسبت به تیمار شکست خواب اسید سولفوریک داشته. بیشترین شاخص به نه گیاه‌های اسید سولفوریک برای نسبت به سطح افزایش معنی دار نسبت به تیمار شکست خواب اسید سولفوریک داشته. بیشترین شاخص به نه گیاه‌های ۲۰۱۵/۸/۲۸ و کمترین آن ۲۰۱۵/۸/۲۸ بود.

Prasad

Vojodi
شکل ۷: اثر متقابل تیمار شکست خواب و مواد معذی بر شاخص نیه گیاهچه بذرهای موسیروی مایلگی‌ها در هر یک از سطوح شکست خواب برش دهنده و حروف مشابه در هر سطح یکانگر عدم اختلاف معنی‌دار برابر جهت ارائه ۵ درصد است. میله ها یکانگر خطای استاندارد برای گروه‌های شکست نشان داده شده‌اند.

Fig. 7. Mutual effect of dormancy break treatments and nutrient levels on vigor index I of Allium hirtifolium seeds. Means with similar letters in each level of break dormancy were not significantly different at 5% probability level, based on the LSD Test.

درصد این دارای شاخص نیه گیاهچه بالاتری نسبت به شاهد بودند. براساس و همکاران (۲۰۱۲) نیز اظهار داشتند گیاهانی که در شرایط کمبود رود اسید زنی در جهت نیمه و استقرار ضعیف‌تری هستند از این روش می‌توانند یک کود استیلر عمل کند نبات‌دان افزایش غلظت اسید زنی در گیاه تنش فیزیولوژیکی مهمی در طول جوانزی ایفا می‌کند.

نتیجه‌گیری
جوانتل و استقرار ضعفی کی در موانع بیش‌رو برای کشت و کار و تولید گیاه دارویی موسری از طریق بذر با همت در رود ارتباط است و این روش به میزان بازگشت آن چه میزان است و این روش به تناسب بالایی از کارگاه‌های فعالی‌های بذر نظیر پراپیمیک با مواد معذی ممکن است راهکاری مناسب جهت بهبود شاخص‌های جوانزی و استقرار این گیاه بیش‌رو در این تحقیق پراپیمیک با مواد معذی آر مصنوعی با درصد جوانزی، سرعت جوانزی، زمان رسیدن به ۱۰ و ۵۰ درصد جوانزی، بکارهای چالش‌های و گیاهچه و شاخص نیه گیاهچه بذرهای موسری بعد شکست خواب داشت. اسید سولفوریک و اهند ۱ درصد سطوح پایین‌تر از جیب‌پرین بر شاخص نیه گیاهچه را افزایش داد درصوتنی که با افزایش غلظت این چنین روند مشاهده نشد. بطور کلی بذرهای تیمار شده با اسید جیب‌پرین شاخص نیه بالاتری از خود نشان دادند (شکل ۷).

قدرت بذر و توانایی زندگی‌مایی بذر و عامل مهمی است که بر رشد گیاهان تاثیر می‌گذارد (بدوی و همکاران، ۲۰۱۴). هر چه در کیفیت بالاتری برخوردار باشد شاخص‌های رشدی بهتری دارد. ذخایر تغذیه‌ای داده‌ها یک عامل تعیین کننده در کیفیت بذر می‌باشد و تا زمانی که شرایط نیروی کافی در کیفیت بذر می‌باشد و ارتباط میان مقدار قابل دسترس بذر در اولی رشد از آن استفاده کرد. نتایج مجدد و همکاران (۲۰۱۵) نیز نشان داد شاخص نیه و نمای گیاهچه به شدت تاثیر مقدار مواد معذی در بذر قرار می‌گیرد. میرشکاری (۲۰۱۵) در بررسی اثر پراپیمیک بذر با عنصر کومصرف (Calendula officinalis L.) آهن و بور بر گل همیشه بار (Badiri)
حسین بور عسکریان و همکاران: اثر براینیک بذر با سولفات رژی و آهن بر پیشینه سازی شکست خواب...

منابع

Abdulrahmani, B., Ghassemi-Golezani, K., Valizadeh, M., and Asl, V.F. 2007. Seed priming and seedling establishment of barley (Hordeum vulgare L.). Journal of Food Agriculture and Environment, 5(3/4): 179-184.

Abutalebian, M.A., and Mohagheghi, A. 2016. Effect of different priming treatments on yield and yield components of lentil in season last under drought stress. Journal of Production and Processing of Agricultural and Horticultural Products, 15: 129-140. [In Persian with English Summary]. https://doi.org/10.18869/acadpub.jcpp.5.15.129

Adhikari, T., Kundu, S., and Rao, A.S. 2015. Zinc delivery to plants through seed coating with nano-zinc oxide particles. Journal of Plant Nutrition, 39(1): 136-146. https://doi.org/10.1080/01904167.2015.1087562

Aghababanejad, Z. Abbasi Surki, A., and Tahmasebi, P. 2018. Studying interaction of Moist- Chilling and gibberellic acid on germination of Fritillaria imperialis. Iranian journal of seed science and technology 6:257-266. [In Persian with English Summary].

Akram Ghaderi, F., Kamkar, B., and Soltani, A. (translators). 2015. Seed Science and Technology. Mashhad University Jahad Press. Edition (2). 512 p. [In Persian].

Alivand, R., Tavakkol Afshari, R., and Sharifzade, F. 2014. Study of seed germination process of rapeseed (Brassica napus) and Prediction seed disappearance under different storage conditions. Iranian Journal of Crop Sciences, 1: 69-83. [In Persian with English Summary].

Allahmoradi, M., Ghanbarian, G. A., and Ghasemi, F. 2013. Investigation of the characteristics of the Allium hirtifolium (Boiss) in Fars. Journal of Rangeland, 4: 282-291. [In Persian with English Summary].

Ameri, A., Fatemi, H., Aroiee, H., and da Silva, J.A.T. 2011. What's the Effect of saline priming on germination factors of Capsicum annum var. 'California Wonder'Seeds? Seed Science and Biotechnology, 5(1): 47-49.

Badiri, A., and Mirshekari, B. 2014. Germination and yield of plantain affected by priming with some micronutrients. International Journal of Advanced Life Sciences, 7: 565-573.

Badiri, A., Mirshekari, B., Hadavi, E., and Hamidi, A. 2014. Effect of Seeds priming with micronutrients on growth seed yield and mucilage of plantain. International Journal of Plant, Animal and Environmental Sciences, 4: 335-342.
Bicalho, E.M., Pintó-Marijuan, M., Morales, M., Müller, M., Munné-Bosch, S., and Garcia, Q.S. 2015. Control of macaw palm seed germination by the gibberellin/abscisic acid balance. Plant Biology, 17(5): 990-996. https://doi.org/10.1111/plb.12332

Dashti, F., Ghahremani-Majd, H., and Esna-Ashari, M. 2012. Overcoming seed dormancy of mooseer (*Allium hirtifolium*) through cold stratification, gibberellic acid, and acid scarification. Journal of Forestry Research, 23(4): 707-710. https://doi.org/10.1007/s11676-012-0314-9

Ebrahimi, R., Zamani, Z., and Kashi, A. 2009. Genetic diversity evaluation of wild Persian shallot (*Allium hirtifolium* Boiss.) using morphological and RAPD markers. Scientia Horticulturae, 119(4): 345-351. https://doi.org/10.1016/j.scienta.2008.08.032

Ebrahimi, R., Hassandokht, M., Zamani, Z., Kashi, A., Roldan-Ruiz, I., and Van Bockstaele, E. 2014. Seed morphogenesis and effect of pretreatments on seed germination of Persian shallot (*Allium hirtifolium* Boiss.), an endangered medicinal plant. Horticulture, Environment, and Biotechnology, 55(1): 19-26. https://doi.org/10.1007/s13580-014-0032-7

Ellis, R.H., and Roberts, E.H. 1981. The quantification of ageing and survival in orthodox seeds. Seed Science and Technology, 9: 377-409.

Etemadi, N., Haghighi, M., and Zamani N. 2011. Optimizing seed germination threatened endemic species of the Persian shallot (*Allium hirtifolium* boiss.). African Journal of Agricultural Research, 25(6): 5650-5655. https://doi.org/10.5897/AJAR11.1156

Farooq, M., Wahid, A., and Siddique, K.H. 2012. Micronutrient application through seed treatments: a review. Journal of Soil Science and Plant Nutrition, 12(1): 125-142. https://doi.org/10.4067/S0718-95162012000100011

Harris, D., Rashid, A., Miraj, G., Arif, M., and Yunas, M. 2008. On-farm seed priming with zinc in chickpea and wheat in Pakistan. Plant and Soil, 306(1-2): 3-10. https://doi.org/10.1007/s11104-007-9465-4

International Seed Testing Association. 2011. International rules for seed testing. Seed Science and Technology, 24: 155-202.

Johnson, S.E., Lauren, J.G., Welch, R.M., and Duxbury, J.M. 2005. A comparison of the effects of micronutrient seed priming and soil fertilization on the mineral nutrition of chickpea (*Cicer arietinum*), lentil (*Lens culinaris*), rice (*Oryza sativa*) and wheat (*Triticum aestivum*) in Nepal. Experimental Agriculture, 41(4): 427-448. https://doi.org/10.1017/S0014479705002851

Joosen, R.V.L., Kodde, J., Willems, L.A.J., Ligerink, W., van der Plas, L.H., and Hilhorst, H.W. 2010. Germinator: a software package for high-throughput scoring and curve fitting of Arabidopsis seed germination. The Plant Journal, 62(1): 148-159. https://doi.org/10.1111/j.1365-313X.2009.04116.x

Kheirkhah, M., and Dadkhah, A. 2010. Study of *Allium altissimum* Regel. phenology and consider how to domesticking it. Horticulture Researches (Pajouhesh and Sazandegi), 82: 19-24. [In Persian with English Summary].

Latef, A.A.H.A., Alhmad, M.F.A., and Abdelfattah, K.E. 2017. The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (*Lupinus termis*) plants. Journal of Plant Growth Regulation, 36(1): 60-70. https://doi.org/10.1007/s00344-016-9618-x

Lebedev, S.V., Korotkova, A.M., and Osipova, E.A. 2014. Influence of Fe nanoparticles. Magnetite Fe$_3$O$_4$ nanoparticles and iron (II) sulfate (FeSO$_4$) solutions on the content of photosynthetic pigments in *Triticum vulgare*. Russian Journal of Plant Physiology, 61: 564-569. https://doi.org/10.1134/S1021443714040128

Makkizade Tafti, M., and Farhudi, B. 2014. Effect of break dormancy treatments on germination and seedling growth of (*Kelussia odoratissima* Mozaff.). Journal of Plant and Ecosystem, 37: 53-61. [In Persian with English Summary].
Medeiros, M.J., Oliveira, M.T., Willadino, L., and Santos, M.G. 2015. Overcoming seed dormancy using gibberellic acid and the performance of young Syagrus coronata plants under severe drought stress and recovery. Plant Physiology and Biochemistry, 97: 278-286. https://doi.org/10.1016/j.plaphy.2015.10.008

Mirshekari, B. 2012. Seed priming with iron and boron enhances germination and yield of dill (Anethum graveolens). Turkish Journal of Agriculture and Forestry, 36(1): 27-33.

Mirshekari, B. 2015. Effects of seed priming with microelements of Fe and B on some germination parameters and yield of marigold (Calendula officinalis L.). Iranian Journal of Medicinal and Aromatic Plants, 30(6): 879-888.

Mozaffarian, V. 2012. Identification of Medicinal and Aromatic Plants of Iran. Contemporary Culture of Tehran Press. 1444 p. [In Persian].

Muhammad, I., Kolla, M., Volker, R., and Günter, N. 2015. Impact of nutrient seed priming on germination, seedling development, nutritional status and grain yield of maize. Journal of Plant Nutrition, 38(12): 1803-1821. https://doi.org/10.1080/01904167.2014.990094

Nautiyal, N., and Shukla, K. 2013. Evaluation of seed priming zinc treatments in chickpea for seedling establishment under zinc-deficient conditions. Journal of Plant Nutrition, 36(2): 251-258. https://doi.org/10.1080/01904167.2012.739245

Payal, K., Maikhuri, R.K., Rao, K.S., and Kandari, L.S. 2014. Effect of gibberellic acid-and water-based pre-soaking treatments under different temperatures and photoperiods on the seed germination of Allium stracheyi Baker: An endangered alpine species of Central Himalaya, India. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 148(6): 1075-1084. https://doi.org/10.1080/11263504.2013.823131

Prasad, T.N.V.K.V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V., Reddy, K.R., Sreeprasad, T.S., Sajanlal, P.R. and Pradeep, T. 2012. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition, 35(6): 905-927. https://doi.org/10.1080/01904167.2012.663443

Sharifi, R., Mohammadi, K., and Rokhzadi, A. 2016. Effect of seed priming and foliar application with micronutrients on quality of forage corn (Zea mays). Environmental and Experimental Biology, 14: 151-156. https://doi.org/10.22364/ceb.14.21

Shinde, P., and Vasudevan, S.D.S. 2017. Influence of seed polymer coating with micronutrients and foliar spray on seed yield of chickpea (Cicer arietinum L.). Legume Research, 40(4): 704-709. https://doi.org/10.18805/lr.vi0OF.10760

Tavakkol Afshari, R., Abbasi surki, A., and Ghasemi, A. 2008. Seed Technology and its Biological Basis. Tehran University Press. First Edition. 515 p. [In Persian].

Torabian, S., Zahedi, M., and Khoshgoftar, A.H. 2017. Effects of foliar spray of nano-particles of FeSO4 on the growth and ion content of sunflower under saline condition. Journal of Plant Nutrition, 40(5): 615-623. https://doi.org/10.1080/01904167.2016.1240187

Vojodi, M.L., Hassanpouraghdam, M.B., Ebrahimzadeh, A., and Valizadeh, K.R. 2016. Effects of ZnSO4 foliar application on vegetative growth and phenolic and essential oil content of geranium (Pelargonium odoratissimum L.). Journal of Ornamental Plants, 6: 193-199.

Wani, R.A., Malik, T.H., Malik, A.R., Baba, J.A., and Dar, N.A. 2014. Studies on apple seed germination and survival of seedlings as affected by gibberellic acid under cold arid conditions. International Journal of Scientific and Technology Research, 3(3): 2010-2016.

Yamauchi, Y., Ogawa, M., Kuwahara, A., Hanada, A., Kamiya, Y., and Yamaguchi, S. 2004. Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. The Plant Cell, 16(2): 367-378. https://doi.org/10.1105/tpc.018143
Research Article

Effect of Seed Priming with ZnSO₄ and FeSO₄ on Dormancy Break Optimization and Germination Traits of Shallot (*Allium hirtifolium*)

Elahe Sadat Hoseinpur Askarian¹, Ali Abbasi Surki ²*, Abdolrazagh Danesh Shahraki ²

Extended Abstract

Introduction: In addition to dormancy, seeds of *Allium hirtifolium* have a weak emergence in the field. Among methods for improving the efficiency and emergence of seeds, nutritional priming can be considered for its performance on weak seeds. The presence of micronutrients is one of the factors that may affect the efficiency of the seeds. Therefore, the aim of this study was to investigate the effect of priming with nutrients on optimization of dormancy status, germination, and enhancement of shallot seeds for its conservational, restoration and domestication programs.

Materials and Methods: In order to study effects of nutrients on germination and emergence of *Allium hirtifolium*, a CRD factorial experiment was conducted with four replications at Seed Science and Technology Lab of Shahrekord University in 2015. Two dormancy breaking treatments (sulfuric acid and sulfuric acid + gibberellic acid) as the first factor and nine nutrition treatments including four levels of ZnSO₄ (5, 10, 50 and 100 mM) and four levels of FeSO₄ (0.5, 1, 1.5 and 2%) versus control were compared on shallot seeds.

Results: The results showed that dormancy breaking treatments, nutrient pretreatment of seeds and their interaction had significant effects on germination percentage, germination rate, time to reach 10% and 50% germination, germination uniformity, seedling length and vigor index I at 1% probability level. Sulfuric acid and FeSO₄ 1% increased germination versus control. Application of gibberellic acid affected the behavior of iron but did not indicate significant effects for zinc. The concentration of 5 mM ZnSO₄ increased the rate of germination, compared with the control but decreased with higher concentrations. The gibberellic acid did not show any sharp effects on germination rate. Time to reach 50% germination was also affected by FeSO₄ 0.5% and 1% and lower levels of zinc. Application of gibberellic acid did not show any significant impact on the germination time reduction, compared with control and increased T₅₀ in higher concentrations. Although germination traits were rarely affected by gibberellic acid, seedling length and vigor index were positively influenced with GA, and the highest seedling length was achieved at 0.5 and 1% of iron and gibberellic acid.

Conclusion: Seed priming with nutrients can improve germination and plant vigor indices. Different concentrations of iron and zinc showed different impacts on the seeds, which showed interaction with dormancy breaking methods. Although application of gibberellic acid did not have an effective role in increasing germination rate and reducing the time to reach 10% and 50% of germination, it enhanced seedling length and vigor index I, especially for iron.

Keywords: Nutrients, Emergence, Gibberellic acid, Vigor Index, Sulfuric acid

Highlights:

1- Addition of iron and zinc sulfate to shallot seeds whose dormancy was broken with sulfuric acid caused higher germination rate of 25.54%, compared with the control.
2- Gibberellin compensated for zinc effect in germination and was able to replace it, but had a slight synergic effect with iron sulfate.
3- Although gibberellin application did not affect germination traits, the seedling length and vigor index showed a positive response to it.

¹ M.Sc. Student, School of Agriculture, Shahrekord University, Shahrekord, Iran
² Assistants Professor, Shahrekord University, Shahrekord, Iran

* Corresponding author, E-mail: abbasis@sku.ac.ir

(Received: 12.09.2018; Accepted: 25.02.2019)