PERSPECTIVE

EARTH SCIENCES

High-Precision Geochronological Constraints on the Duration of ‘Dinosaurs Pompeii’ and the Yixian Formation

Yuting Zhong¹,², Magdalena H. Huyskens³, Qing-Zhu Yin³, *, Yaqiong Wang⁴, Qiang Ma¹,⁵, Yi-Gang Xu¹,², *

¹State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
²CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
³Department of Earth and Planetary Sciences, University of California at Davis, Davis, California 95616-8605, USA
⁴State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
⁵State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China

*Corresponding authors.

Emails: yigangxu@gig.ac.cn; qyin@ucdavis.edu

The Early Cretaceous Jehol Biota, renowned for its exceptionally well preserved volcanic-influenced ecosystem, was buried in lacustrine and occasionally fluvial sediments, notably the Huajiying, Yixian, and Jiufotang Formations in northern Hebei
and western Liaoning or equivalent ash-interbedding sediments in neighboring areas [1–3] (Fig. 1). It includes large amount of evolutionarily significant taxonomy, e.g. feathered dinosaurs, early birds, mammals and flowering plants, representing one of the most diversified terrestrial biotas of the Mesozoic [1,2,4].

The evolutionary radiation of the Jehol Biota can be broadly divided to three phases [5], with the first phase limited to a small area in northern Hebei (Huajiying Formation), the second phase expanding to western Liaoning (Yixian Formation) marking the greatest diversification, and the third phase (Jiufotang Formation) representing the widest distribution. Accordingly, it is crucial to precisely determine the timing and duration of the Yixian Formation. Despite considerable efforts in the past two decades attempting to achieve this goal, the published results (Fig. 1D) are confusing and inadequate: (a) Despite its lowermost stratigraphic locations [3], the existing ages of the Lujiatun Unit (LJT Unit for short) are younger than those of the immediate overlying Lower Lava Unit. The ages of the upper Yixian Formation are younger than the overlying Jiufotang Formation. It therefore casts serious doubt on the robustness of these dating results. (b) Although most of the published ages of the Yixian Formation with the exception of those for LJT Unit define an overall younging direction following the stratigraphic column from bottom to top, the ages within individual units do not always show a consistency in stratigraphically upward deceasing trend. These problems may stem either from inaccurate stratigraphic information of some dated samples, or from inconsistency of inter-laboratory analyses, between different dating methods (i.e., $^{40}\text{Ar}/^{39}\text{Ar}$ and U-Pb dating by either laser ablation or secondary ion probe), and relatively large analytical uncertainties, which are inadequate for the purpose of establishing a chronostratigraphic
framework. We therefore use U-Pb chemical abrasion-isotope dilution-isotope ratio mass spectrometry (CA-ID-IRMS) dating technique with a typical analytical precision <0.05% to date single zircons from volcanic tuff layers collected from the top (CY18-20), middle (CY17-17) and bottom (CY17-18 and CY17-9) of the Yixian Formation in the Jin-Yang basin (Fig. 1C), in order to tightly constrain its absolute age and duration.

The new CA-ID-IRMS ages show significant improvement in analytical precision compared with literature data (Figs. 1D, E). Our new ages collectively provide very tight constraints on the onset at 125.755 ± 0.061 Ma (CY17-9) and termination at 124.122 ± 0.048 Ma (CY18-20) of the Yixian Formation, respectively, bracketing its duration to 1.633 ± 0.078 Myr. It is significantly shorter than the previous broad range estimates of ~2 - 7 Myr [6]. The fossil preservation in the LJT Unit is often referred to as “Chinese Pompeii” for dinosaurs and other fossils due to rapidly deposited catastrophic pyroclastic flows [7]. Our new age constraints with the extraordinarily short duration of LJT Unit <71 ± 86 Kyr, support this sudden nature of the deposition event(s) that preserving fossils in three-dimensional structures with gestures.

Some argued that the JSG and LJT units are stratigraphically equivalent primarily based on prior chronological data [8]. However, the two units show considerably different petrographic facies, mineralogical characteristics and geochemical compositions (Supplementary Texts 1, 2), suggesting that the two units represent separate depositional events. The difference in the two units is further confirmed by the younger age of CY17-17 from JSG Unit than that of the LJT Unit. The ages of the LJT and JSG units are resolvable given the extraordinary precision achieved in this study, with JSG Unit being
sequentially deposited later than LJT Unit, in agreement with their stratigraphic relationship observed in the field and cores [3].

The refined duration of the Yixian Formation also yields important insights on the duration of the JSG lacustrine deposits. The sedimentary cyclicity was interpreted as periodic lake-level fluctuations plausibly caused by climatic changes that in turn may be orbitally forced Milankovitch cycles [3,9]. If so, our study effectively rules out that the lacustrine cyclostratigraphy documented in part of the Yixian Formation was driven by orbital eccentricity, but more likely obliquity or precession signals. Our new data indicate that the entire Yixian Formation is only 1.633 ± 0.078 Myr max, which means that the JSG Unit within Yixian Formation should be <1.633 Myr. This would clearly exclude the possibility to interpret the 2 m cycle as 100 Kyr eccentricity cycle for a 41 m JSG Unit. It is possible that the sedimentation rates of lacustrine environments between the studied outcrops and drill cores are highly variable, obtaining accurate Milankovitch cycle signals from the terrestrial sediments remain a challenging goal without further high-resolution geochronological constraints.

SUPPLEMENTARY DATA
Supplementary data are available at NSR online.

FUNDING
This work was supported by the National Natural Science Foundation of China (41688103 and 41873018) and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB18000000).

REFERENCES
1. Zhou ZH. *Natl Sci Rev* 2014; **1**: 543–559.

2. Pan YH, Sha JG, and Zhou ZH *et al.* *Cretac Res* 2013; **44**: 30–38.

3. Wang YQ, Olsen PE, and Sha JG *et al.* *Palaeogeogr Palaeoclimatol Palaeoecol* 2016; **464**: 110–133.

4. Zhou ZH, Barrett PM, and Hilton J. *Nature* 2003; **421**: 807–814.

5. Zhou ZH, Wang Y, and Xu X *et al.* The Jehol Biota: an exceptional window into Early Cretaceous terrestrial ecosystems. In: Nicholas F (ed.). *Terrestrial Conservation Lagerstätten: Windows into the Evolution of Life on Land*. Dunedin Academic Press, 2017, 169–214.

6. Chang SC, Zhang HC, and Renne PR *et al.* *Palaeogeogr Palaeoclimatol Palaeoecol* 2009; **280**: 94–104.

7. Jiang BY, Harlow GE, and Wohletz K *et al.* *Nat Commun* 2014; **5**: 1–7.

8. Chang SC, Gao KQ, and Zhou CF *et al.* *Palaeogeogr Palaeoclimatol Palaeoecol* 2017; **487**: 399–406.

9. Wu HC, Zhang SH, and Jiang GQ *et al.* *Palaeogeogr Palaeoclimatol Palaeoecol* 2013; **385**: 221–228.

10. Renne PR, Mundil R, and Balco G *et al.* *Geochim Cosmochim Acta* 2010; **74**: 5349–5367.
Figure 1. (A) The schematic geological map of western Liaoning Province (modified from Wang et al. [3]) with the sampling locations. (B) Early Cretaceous stratigraphic columns in northern Hebei and western Liaoning. Three formations, in italics, namely Huajiying, Yixian and Jiufotang Formations are the main hosts of Jehol Biota. (C) Composite stratigraphic column (modified after Zhou et al. [4]) and the sampling horizons of the Yixian Formation. (D) A summary plot comparing literature age data (Supplementary Table S1) with our new U-Pb CA-ID-IRMS results for the Yixian Formation. The 40Ar/39Ar dates are corrected using the decay constant of Renne et al. [10] and all reported uncertainties are in 2σ. Red circles denote U-Pb ages obtained in this study, with the full systematic uncertainties (uncertainty Z) for comparison with 40Ar/39Ar dates. (E) Ranked-age plots for single zircon U-Pb analyses for CY18-20, CY17-17, CY17-18, and CY17-9.