Telomeric Protein Pin2/TRF1 as an Important ATM Target in Response to Double Strand DNA Breaks

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation
Kishi, Shuji, Xiao Zhen Zhou, Yael Ziv, Christine Khoo, David E. Hill, Yossi Shiloh, and Kun Ping Lu. 2001. "Telomeric Protein Pin2/TRF1 as an Important ATM Target in Response to Double Strand DNA Breaks." Journal of Biological Chemistry 276 (31): 29282–91. doi:10.1074/jbc.M011534200.

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41543065

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Telomeric Protein Pin2/TRF1 as an Important ATM Target in Response to Double Strand DNA Breaks*

Shuji Kishi, Xia Zhen Zhou, Yael Ziv†, Christine Khoo, David E. Hill§, Yossi Shiloh‡, and Kun Ping Lu¶

From the Cancer Biology Program, Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, the ‡Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel, and §Oncogene Research Products, Cambridge, Massachusetts 02142

ATM mutations are responsible for the genetic disease ataxia-telangiectasia (A-T). ATM encodes a protein kinase that is activated by ionizing radiation-induced double strand DNA breaks. Cells derived from A-T patients show many abnormalities, including accelerated telomere loss and hypersensitivity to ionizing radiation; they enter into mitosis and apoptosis after DNA damage. Pin2 was originally identified as a protein involved in G2/M regulation and is almost identical to TRF1, a telomeric protein that negatively regulates telomere elongation. Pin2 and TRF1, probably encoded by the same gene, Pin2/TRF1, are regulated during the cell cycle. Furthermore, up-regulation of Pin2 or TRF1 induces mitotic entry and apoptosis, a phenotype similar to that of A-T cells after DNA damage. These results suggest that ATM may regulate the function of Pin2/TRF1, but their exact relationship remains unknown. Here we show that Pin2/TRF1 coimmunoprecipitated with ATM, and its phosphorylation was increased in an ATM-dependent manner by ionizing DNA damage. Furthermore, activated ATM directly phosphorylated Pin2/TRF1 preferentially on the conserved Ser219-Gln site in vitro and in vivo. The biological significance of this phosphorylation is substantiated by functional analyses of the phosphorylation site mutants. Although expression of Pin2 and its mutants has no detectable effect on telomere length in transient transfection, a Pin2 mutant refractory to ATM phosphorylation on Ser219 potently induces mitotic entry and apoptosis and increases radiation hypersensitivity of A-T cells. In contrast, Pin2 mutants mimicking ATM phosphorylation on Ser219 completely fail to induce apoptosis and also reduce radiation hypersensitivity of A-T cells. Interestingly, the phenotype of the phosphorylation-mimicking mutants is the same as that which resulted from inhibition of endogenous Pin2/TRF1 in A-T cells by its dominant-negative mutants. These results demonstrate for the first time that ATM interacts with and phosphorylates Pin2/TRF1 and suggest that Pin2/TRF1 may be involved in the cellular response to double strand DNA breaks.

Mutations in the ATM gene are responsible for the rare autosomal human recessive disorder ataxia-telangiectasia (A-T), characterized by progressive neurological degeneration, telangiectasia, growth retardation, premature aging, immunodeficiency, mitotic checkpoint defect, hypersensitivity to ionizing radiation, gonadal atrophy, genomic instability, and predisposition to cancer (1). ATM encodes a protein kinase that is activated by ionizing DNA damage and is critical for maintaining genome stability, telomere maintenance, and induction of cell cycle checkpoints by double strand DNA breaks (2–4). ATM has been shown to bind and/or phosphorylate many key regulators, including p53, β-adaptin, c-Abl, Chk1–2, Brcal, and Nijmegen breakage syndrome protein (5–15). Identification of these ATM target proteins opens new avenues for understanding the physiological function of ATM as well as for explaining the pleiotropic phenotypes associated with ATM mutations in A-T patients and cells.

Double strand DNA breaks induced by ionizing irradiation activate ATM and trigger multiple pathways to ensure that cells delay entry into mitosis following DNA damage to repair the damaged DNA before cell division. Many of these pathways ultimately lead to the inhibition of cyclin B/Cdc2, a major protein kinase that regulates entry into mitosis (7, 8, 16–22). However, in A-T cells, the ATM-dependent mitotic checkpoint is disrupted, and cyclin B/Cdc2 cannot be kept in an inactive state after DNA damage (22–24). Therefore, A-T cells are hypersensitive to ionizing radiation; they fail to delay entry into mitosis and instead are prone to enter into mitosis and then apoptosis after irradiation (25–28).

Radiation hypersensitivity of A-T cells has been shown to correlate with their telomere loss (25–28). There is compelling evidence supporting an important role for ATM in the regulation of telomere metabolism. Cells derived from humans and mice with a defective ATM gene show a prominent defect related to telomere dysfunction (1, 29–32). These cells have an accelerated rate of telomere loss and chromosome end-to-end associations and show premature senescence (25–28, 33, 34). Furthermore, ATM has recently been shown to regulate the interaction between telomeres and the nuclear matrix (35). In addition, the yeast ATM homologues TEL1 and MEC1 control telomere length and the G2/M checkpoint; their mutations result in shortened telomeres, a G2/M checkpoint defect, and genomic instability (36–38). Furthermore, TEL1 substitutes for ATM in rescuing telomere shortening, radiation hypersensitivity, and the G2/M checkpoint defect in A-T cells (39). These results indicate that ATM plays a crucial role in regulating

* This work was supported by National Institutes of Health Grants NS21763 (to Y. S.) and GM56230 and GM58556 (to K. P. L.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

†A Pew Scholar and a Lymphoma and Leukemia Society Scholar. To whom correspondence should be addressed: Beth Israel Deaconess Medical Center, HIM 1047, 330 Brookline Ave., Boston, MA 02215. Tel.: 617-667-4143; Fax: 617-667-0610; E-mail: klu@Caregroup.Harvard.edu.

‡The abbreviations used are: A-T, ataxia-telangiectasia; GST, glutathione S-transferase; HA, hemagglutinin; NCS, neocarzinostatin.
telomere length and the DNA damage mitotic checkpoint. However, it is not fully clear how ATM is involved in coordinating these two events.

Telomeres are composed of repetitive DNA sequences of TTAGGG arrays concealed by a complex of telomeric proteins that protect the ends from exonucleolytic attack, fusion, and incomplete replication (40–42). Compelling evidence suggests that telomere length is regulated by telomeric DNA-binding proteins in yeast and mammalian cells (43–47). In human cells, inhibition of one such protein, TRF1, by the dominant-negative mutant increases telomere length, whereas overexpression of TRF1 accelerates telomere loss (47, 48). These results indicate that TRF1 negatively regulates telomere maintenance.

In our genetic screen for proteins that are able to suppress premature mitotic entry induced by the mitotic kinase NIMA (never-in-mitosis A), we identified three proteins, Pin1–3, which are all involved in mitotic regulation (49–51). Pin1 is a phosphorylation-specific prolyl isomerase that regulates the conformation of the phosphorylated Ser/Thr-Pro motifs present in a defined subset of phosphoproteins (52–56). Pin2 is identical to TRF1 except from an internal deletion of 20 amino acids and forms a homodimer or heterodimer with TRF1 (50). In cells, Pin2 is 5–10-fold more abundant than TRF1 (50), and Pin2 and TRF1 are probably two alternatively spliced isoforms of the PIN2/TRF1 gene, as suggested by Young et al. (57). For clarity, we will here use TRF1 for the 20-amino acid-containing isoform and Pin2 for the 20-amino acid deletion isoform, as they were originally identified (48, 50), but refer to endogenous proteins as Pin2/TRF1 because it is still difficult to physically and functionally separate these isoforms. Pin2 and TRF1 contain a structural motif similar to destruction boxes present in mitotic cyclins, and their levels are regulated during the cell cycle, with a striking increase in late G2 and M (50), as is the case for mitotic cyclins (58). Furthermore, overexpression of Pin2 induces mitotic entry and then apoptosis in cells containing short telomeres (59). These results suggest that Pin2/TRF1 may play a role in the regulation of mitotic entry. However, little is known about the regulation and function of Pin2/TRF1 in cell cycle checkpoints.

Here we show that Pin2/TRF1 formed stable complexes with ATM in cells. Furthermore, following ionizing radiation, activated ATM phosphorylated Pin2/TRF1 preferentially on Ser219 in cells. Furthermore, following ionizing radiation, activation of cell cycle checkpoints.

Pin2/TRF1 as a Substrate for ATM

In [in vitro](#) and [in vivo](#) assays for ATM and Pin2—To detect binding of ATM and [32P]Pin2 in [vitro](#), the cDNA encoding Pin2, Pin21–316, and Pin217–419 were cloned into pcDNA3 (Invitrogen) and subjected to [in vivo](#) transcription and translation (Promega) in the presence of [35S]Met. Translated proteins were incubated for 12 h at 4 °C in 500 μl of buffer II (50 mM Heps, pH 7.5, 150 mM NaCl, 1 mM EDTA, 2.5 mM EGTA, 100 mM NaF, 1 mM NaVO4, 2 μg/ml aprotinin, 5 μg/ml leupeptin, 1 mM dithiothreitol, and 1 mM phenylmethylsulfonyl fluoride) followed by immunoprecipitation with anti-ATM antibodies, nuclear extracts were used for immunoprecipitation as described (63). We used cell lysates that were five times more than those in inputs, and we only loaded half of the immunoprecipitates to the gel for Western blotting with the appropriate antibodies.

Site-directed Mutagenesis and Recombinant Protein Production—The mutants of Pin2 were generated using polymerase chain reaction mutagenesis procedures and confirmed by sequencing. GST fusion proteins containing Pin2 and various mutants were purified as described (50, 54).

In Vitro Phosphorylation of Pin2/TRF1 by ATM—For the detection of [in vivo](#) phosphorylation of Pin2/TRF1, HeLa cells were labeled overnight with [32P]orthophosphate (54), and Pin2/TRF1 was immunoprecipitated with anti-Pin2/TRF1 antibodies, followed by SDS-polyacrylamide gel electrophoresis and phospho-amino acid analysis as described (50, 64). For examining Pin2/TRF1 phosphorylation after irradiation, cells were irradiated and labeled with [32P]P for 1–4 h as described (65). For transient expression of ATM, pcDNA3 vectors containing wild-type FLAG-ATM or its kinase-dead mutant were transfected to 293T cells, and expressed proteins were immunoprecipitated using M2 antibody, followed by Pin2 phosphorylation as described (7, 8). Briefly, cells were lysed by freezing and thawing in buffer III (50 mM Heps, pH 7.5, 150 mM NaCl, 0.2% dodecyl maltoside, 1 mM EDTA, 2.5 mM EGTA, 100 mM NaF, 1 mM NaVO4, 2 μg/ml aprotinin, 5 μg/ml leupeptin, 1 mM dithiothreitol, and 1 mM phenylmethylsulfonyl fluoride) and then immunoprecipitated with anti-ATM antibodies, followed by SDS-polyacrylamide gel electrophoresis and autoradiography.

Fluorescence in Situ Hybridization and Flow Cytometry—Combination of immunostaining and telomere fluorescence in situ hybridization was carried out as described (66). Cells grown on coverslips were washed once in Tris-buffered saline and incubated in 3.7% formaldehyde in Tris-buffered saline for 10 min at room temperature. The cells were then permeabilized and blocked with Tris-buffered saline containing 2% normal goat serum and 0.4% Triton X-100 for 30 min. Transfected HA-Pin2 and its mutants were first immunostained with the anti-HA (12CA5) antibody and with TRITC-conjugated mouse secondary antibodies. After immunostaining, the cells were fixed again under the same conditions as the first time. These prepared cells were then denatured in a hybridization mixture containing 70% deionized formamide, 20 mM Tris, pH 7.0, 1% bovine serum albumin, and 10 mM fluorescein isothiocyanate-labeled peptide nucleic acid (PNA) repeat probe (PerSeptive Biosystems, Framingham, MA) for 10 min at 80 °C. A 2× SSC hybridization buffer was performed at 37 °C for 2 h at room temperature. Finally, DNA was counterstained with 0.5 μg/ml 4′,6-diamidino-2-phenylindole, and preparations were mounted in antifade solution (Vectorshield, Vector Laboratories). For the preparation of samples for flow cytometric analysis, cells were harvested by trypsinization, and suspended cells were fixed and stained as described above. Flow cytometric analysis was performed by FACSscan (Becton Dickinson). Transfected cells buffer I (50 mM Heps, pH 7.5, 150 mM NaCl, 0.5% Triton X-100, 1 mM EDTA, 2.5 mM EGTA, 100 mM NaF, 1 mM NaVO4, 2 μg/ml aprotinin, 5 μg/ml leupeptin, 1 mM dithiothreitol, and 1 mM phenylmethylsulfonyl fluoride), followed by immunoprecipitation with anti-Pin2/TRF1 antibody (57). Preimmune serum, anti-ATM antibody (Ab-3), and an antibody against human relaxin (50) for the detection of the endogenous protein interaction with anti-ATM antibodies, nuclear extracts were used for immunoprecipitation as described (63). We used cell lysates that were five times more than those in inputs, and we only loaded half of the immunoprecipitates to the gel for Western blotting with the appropriate antibodies.

Analysis—...
Coimmunoprecipitation of expressed Pin2 with ATM and also with c-Abl via ATM. An HA-Pin2 expression construct was transfected into HeLa cells (ATM+) and A-T22IJE-T cells (ATM-), followed by immunoprecipitation (IP) with the indicated antibodies. Immunoprecipitates were separated on SDS gels and subjected to immunoblotting analysis (IB) with the proper antibodies. An aliquot of each lysate taken prior to immunoprecipitation was also separated on the same gels to show similar amounts of each protein present in lysates.

were gated by FL2 channel, and the intensity of telomere fluorescence was determined by FL1 channel as described (67, 68).

RESULTS

Pin2/TRF1 Coimmunoprecipitates with ATM in Cells—To examine whether ATM is involved in the regulation of Pin2/TRF1, we first determined whether Pin2/TRF1 interacts with ATM. A construct expressing HA-Pin2 was transfected into HeLa cells and then subjected to coimmunoprecipitations as described (50). Consistent with earlier reports (5, 6), ATM coimmunoprecipitated with c-Abl (Fig. 1). Interestingly, HA-Pin2 was also detected both in anti-ATM and anti-c-Abl immunoprecipitates. Conversely, antibodies (anti-Pin2/TRF1) recognizing both Pin2 and TRF1 also immunoprecipitated ATM and c-Abl, although pre-immune sera did not (Fig. 1). These results indicate that expressed Pin2 coimmunoprecipitates with ATM and c-Abl.

To rule out the possibility that the observed coimmunoprecipitations were due to the cross-reactivity of the antibodies and to determine whether ATM was needed for Pin2 to associate with c-Abl, we performed the same experiments in an A-T cell line, A-T22IJE-T (61). A-T22IJE-T cells were originally derived from primary A-T fibroblasts (69), which harbor a homozygous frameshift mutation at codon 762 of the ATM gene, and contain no ATM protein, because the truncated protein is not stable (61, 70, 71). Although Pin2 and c-Abl were expressed in A-T22IJE-T cells at levels similar to those in HeLa cells, Pin2 was not stable (61, 70, 71). Therefore, Pin2 and c-Abl antibodies were able to immunoprecipitate Pin2 in A-T22IJE-T cells. Furthermore, anti-Pin2/TRF1 antibodies did not immunoprecipitate c-Abl. A similar interaction between ATM and the TRF1 isoform was also observed (Fig. 2A). Two COOH-terminal truncation mutants were used to approximately map the domain in Pin2 that interacts with ATM. ATM coimmunoprecipitated with mutants that were truncated up to residue 316 (Fig. 2A), suggesting that the interacting domain may be located at the NH2-terminal 316 amino acids of Pin2. To further confirm the binding domain, Pin2 was divided into the NH2-terminal Pin21–316 and the COOH-terminal Pin2317–419, and the mutant proteins were produced and labeled with 35S by in vitro transcription/translation. When the labeled proteins were incubated with anti-ATM immunoprecipitates prepared from HeLa cells, both full-length Pin2 and its NH2-terminal Pin21–316 but not the COOH-terminal Pin2317–419, were precipitated by anti-ATM
antibodies (Fig. 2B). Furthermore, the binding was not observed with anti-ATM immunoprecipitates from ATM-negative A-T22IJE-T cells (Fig. 2B), demonstrating that anti-ATM does not nonspecifically precipitate Pin2. Finally, we performed in vitro binding experiments using ATM immunoprecipitates and GST-Pin2 or its mutants. Pin2 and three different COOH-terminal truncation mutants, Pin21–320, Pin21–230, and Pin21–205, were generated and purified as GST fusion proteins, followed by incubation with ATM immunoprecipitated from HeLa cells. All these three mutants, but not the control GST, bound to ATM. Together, these results indicate that the NH₂-terminal half of the Pin2 molecule specifically interacts with ATM.

To examine whether ATM associated with endogenous Pin2/TRF1, we performed coimmunoprecipitation experiments in non-transfected ATM-positive cells (HeLa cells) and A-T cells (A-T22IJE-T) using anti-ATM or anti-Pin2/TRF1 antibodies. As shown in Fig. 3A, anti-Pin2/TRF1 antibodies, but not their pre-immune sera, coimmunoprecipitated ATM. Conversely, anti-ATM antibodies, but not pre-immune sera, coimmunoprecipitated Pin2/TRF1 in HeLa cells, but not in A-T22IJE-T cells (Fig. 3B and data not shown). These results indicate that Pin2/TRF1 and ATM coimmunoprecipitation occurs in ATM-positive cells but not in ATM-negative cells. To rule out the possibility that the failure of anti-ATM antibodies to immunoprecipitate Pin2/TRF1 in A-T22IJE-T cells is due to genetic factors other than the lack of ATM in these cells, we transfected an ATM expression vector or its control vector into A-T22IJE-T cells as described (61). After selection with G418, multiple cell lines that were stably transfected with ATM (A-T-ATMs) or with the control vector (A-T-Vs) were obtained, as confirmed by immunoblotting analysis with anti-ATM (top panel) or anti-Pin2/TRF1 antibodies (middle panel). Pin2/TRF1 was present at similar levels in all cells, as shown in the bottom panel. HeLa, an ATM-positive cell line; A-T22IJE-T, an ATM-negative parent cell line; A-T-ATM5.1, a representative A-T22IJE-T-derived cell line that stably expressed ATM; A-T-V1, a representative A-T22IJE-T-derived cell line that was stably transfected with the control vector.

DNA Damage Increases Phosphorylation of Pin2/TRF1 in an ATM-dependent Manner in Vivo—Because Pin2/TRF1 interacts with ATM, a kinase activated by ionizing radiation, Pin2/TRF1 may be a substrate for ATM. To test this possibility, we first asked whether Pin2/TRF1 is phosphorylated in the cell and, if so, whether its phosphorylation is increased upon ionizing radiation. When HeLa cells were subjected to irradiation and labeled with [³²P]orthophosphate, phosphorylation of Pin2/TRF1 was significantly increased (Fig. 4A), indicating that ionizing radiation increases Pin2/TRF1 phosphorylation in vivo. To determine whether ATM is required for irradiation-induced phosphorylation in vivo, we repeated the same experiments in A-T-ATM5.1 (ATM-positive) and A-T-V1 (ATM-negative) cells. Although Pin2/TRF1 was still phosphorylated at low levels in A-T-V1 cells, its phosphorylation was not increased after irradiation (Fig. 4B), suggesting that Pin2/TRF1 can be phosphorylated by other protein kinase(s) that are not activated by irradiation. Importantly, phosphorylation of Pin2/TRF1 was significantly increased after irradiation in A-T-ATM5.1 (Fig. 4B), as is the case in HeLa cells (Fig. 4A). These results demonstrate that ionizing radiation increases phosphorylation of Pin2/TRF1 in an ATM-dependent manner in vivo.

Activated ATM Directly Phosphorylates Pin2 Preferentially on Ser²¹⁹ in Vitro and in Vivo—We next asked whether ATM is directly responsible for the phosphorylation of Pin2/TRF1 following ionizing radiation. To address this question, we needed to determine whether ATM can directly phosphorylate Pin2/TRF1. ATM belongs to a family of phosphatidylinositol 3-kinase-related and wortmannin-sensitive protein kinases, which phosphorylate proteins preferentially on an SQ motif (Fig. 5A) (5–13). Consistent with this idea, endogenous Pin2/TRF1 was phosphorylated mainly on Ser residues in vivo (Fig. 5B). Although Pin2/TRF1 contains three SQ sequences (Ser²¹⁹, Gln, Ser²⁷⁴, Gln, and Ser³⁴⁶, Gln), only one SQ sequence (Ser²¹⁹, Gln) is conserved in all known vertebrate homologues, even in the mouse TRF1 that shares only 67% identity to the human counterpart (Fig. 5A) (48, 50, 72, 73). Significantly, this SQ is not conserved in human TRF2 (Fig. 5A), a closely related but functionally distinct telomeric protein (74). This analysis suggests that Ser²¹⁹, Gln might be a potential phosphorylation site of ATM. To test this possibility, fragments spanning the NH₂-terminal 230 or 320 residues of Pin2, containing one or two of
the SQ sequences, respectively, were produced as GST fusion proteins, GST-Pin21–230 and GST-Pin21–320, and used as a substrate for ATM. Both proteins were readily phosphorylated to a similar extent (Fig. 4C). These results are consistent with the idea that Ser219 is preferentially phosphorylated by ATM kinase, whereas Ser234 is probably not phosphorylated by ATM.

To confirm that phosphorylation of Pin2 by ATM immunoprecipitates is indeed due to ATM kinase, we used the following five different criteria, which had previously been used to validate phosphorylation of various proteins by ATM (7–9). First, Pin2 was phosphorylated \textit{in vitro} by ATM immunoprecipitated from ATM-positive cells (C3ABR, G361, and HeLa) but not from ATM-negative cells (L6) (Fig. 4C) (7). Second, the extent of Pin2 phosphorylation \textit{in vitro} correlated with the amounts of ATM present in the cells (7). The increased level of ATM protein isolated from an ATM-overexpressing melanoma cell line, G361, led to an increased level of Pin2 phosphorylation relative to that seen with ATM isolated from a low ATM-expressing normal lymphoblastoid cell line, C3ABR (Fig. 4C).

Third, treatment of cells with a radiomimetic drug, necarzinostatin (NCS), or ionizing radiation has been previously shown to activate ATM kinase activity 2–3-fold, although neither of the treatments affects levels of ATM protein (7, 8). Accordingly, when three different cell lines, C3ABR, G361, and HeLa, were treated with NCS (Fig. 5A) or \textgamma-rays (Fig. 5B) and then labeled with 32P orthophosphate, Pin22TRF1 was immunoprecipitated and separated on SDS-containing gels, followed by autoradiography or by immunoblot with anti-Pin22TRF1 antibodies. C, phosphorylation of Pin2 by ATM \textit{in vitro}. ATM was immunoprecipitated from equal amounts of total proteins in various cell lines and visualized by immunoblotting with anti-ATM antibodies (top panel). The ATM immunoprecipitates were used to phosphorylate GST-Pin21–320 and GST-Pin21–230. Phosphorylation was quantified with a phosphorimaging device and normalized to phosphorylation of Pin21–300 by ATM obtained from untreated C3ABR cells. C3ABR, a normal lymphoblastoid cell line; C3ABR + NCS, C3ABR cells treated with NCS; G361, a melanoma cell line overexpressing ATM; L6, an ATM-negative lymphoblastoid 9.21 line. D, direct phosphorylation of Pin22TRF1 and p53 by ATM. Left panels, ATM was immunoprecipitated from G361 cells using anti-ATM antibodies and subjected to immunoblotting analysis with the same antibodies (top panel) or to kinase assay using GST-Pin21–300 or p53 as a substrate (bottom panel). Middle and right panels, FLAG epitope tagged wild-type (WT) and kinase-dead (KD) ATM expression constructs were expressed in 293T cells and then immunoprecipitated using the M2 antibody specifically against the FLAG tag, followed by immunoblotting analysis using anti-ATM antibodies (top panels) or by kinase assays using GST-Pin21–300 or p53 as a substrate (bottom panels). IB, immunoblotting analysis; IP, immunoprecipitation.

After demonstrating that ATM directly phosphorylates Pin2 \textit{in vitro}, we examined whether Ser219 in Pin2 is indeed phosphorylated by ATM by replacing Ser219 with Ala in Pin21–320. The mutant protein could still be weakly phosphorylated by ATM immunoprecipitates (Fig. 5, C–E), suggesting that ATM may phosphorylate other sites in vitro. However, the extent of phosphorylation in the mutant protein was reproducibly reduced slightly, as compared with that of the wild-type protein (Fig. 5, C and D). To examine whether Ser219 in Pin2 is also phosphorylated by ATM \textit{in vivo}, wild-type and S219A mutant Pin2 were transfected into HeLa cells and labeled with 32P, followed by ionizing radiation. As shown in Fig. 5E, irradiation increased phosphorylation of wild-type Pin2 but did not significantly affect phosphorylation of the mutant Pin2S219A, although both proteins were expressed at similar levels. Taken together, the above results indicate that although Pin2 may be phosphorylated on other sites, Ser219 is the pre-
Differential phosphorylation site by ATM following ionizing DNA damage both in vivo and in vitro.

Pin2 Phosphorylation Site Mutants or Dominant-negative Mutants Partially Complement Radiation Hypersensitivity of A-T Cells—Given that ATM interacts with and phosphorylates Pin2 on Ser219, we examined whether this phosphorylation has any biological significance, affecting the function of Pin2, the phenotype of A-T cells, or both. We have previously demonstrated that Pin2/TRF1 levels are significantly increased at the G2/M transition and that overexpression of Pin2/TRF1 triggers mitotic entry and then apoptosis (53, 59). Interestingly, this Pin2-induced phenotype is similar to that of A-T cells after ionizing radiation (25–28, 59). These results suggest that phosphorylation of Pin2/TRF1 upon irradiation may be a mechanism to prevent Pin2 from inducing abnormal mitotic entry and apoptosis, thereby reducing the radiation sensitivity. To test this possibility, we first examined whether expression of Pin2 and its Ser219 mutants affects telomere length in transient transfection before apoptosis induction. Because the experiments were performed in transient transfection, with the transfection efficiency being about 20–40%, this made it difficult to determine telomere length by genomic Southern blotting analysis. To overcome this difficulty, we used two different but complementary methods to detect telomere length in transiently transfected cells. One method is to measure telomere length by flow cytometry, and the other is to measure telomere length by fluorescence microscopy after fluorescence in situ hybridization of telomere repeats; both methods have been successfully used to estimate telomere length in cells (67, 68, 75). To optimize the conditions, we used HeLa cells and HeLa 1.2.11, which have the same genetic background but have telomere lengths of 1–3 and 15–40 kilobases, respectively, as determined by genomic Southern analysis (59, 76). As shown in Fig. 6A, HeLa 1.2.11 cells had almost 10 times longer telomeres than those in HeLa cells, as measured by the fluorescence intensity of telomeric fluorescence in situ hybridization, which validates the assays. Therefore, we doubly stained the cells that had been transiently transfected with HA-Pin2 and its mutants with the anti-HA antibody and the fluorescence telomeric probe and measured telomere length of HA-positive cells by flow cytometry and by fluorescence microscopy. As shown in
Fig. 6. Pin2 and Ser^{219} phosphorylation site mutants have no effect on telomere length in transient transfection. A, telomere length in HeLa and HeLa1.2.11 cells. Cells were stained with fluorescence telomeric DNA probe and then subjected to flow cytometrical analysis. B and C, the effect of Pin2 and its mutants on telomere length. HeLa cells were transfected with the control vector or vector expressing HA-Pin2 or its Ser^{219} mutants as indicated for 20–24 h. Cells were fixed and doubly stained with the anti-HA antibody and fluorescence telomeric DNA probe, followed by flow cytometrical analysis (B) and fluorescence microscopy.

Fig. 6. Pin2 and Ser^{219} phosphorylation site mutants have no effect on telomere length in transient transfection. A, telomere length in HeLa and HeLa1.2.11 cells. Cells were stained with fluorescence telomeric DNA probe and then subjected to flow cytometrical analysis. B and C, the effect of Pin2 and its mutants on telomere length. HeLa cells were transfected with the control vector or vector expressing HA-Pin2 or its Ser^{219} mutants as indicated for 20–24 h. Cells were fixed and doubly stained with the anti-HA antibody and fluorescence telomeric DNA probe, followed by flow cytometrical analysis (B) and fluorescence microscopy.

However, we observed strikingly different phenotypes induced by Pin2 and its mutants. As shown earlier (59), Pin2 was more potent in inducing mitotic entry and apoptosis in A-T-V1 cells stably transfected with the control vector than in HeLa cells or A-T-ATM 5.1 cells stably expressing ATM (Fig. 7, B–D). Importantly, although Pin2^{S219A} potently induced apoptosis, Pin2^{S219D} and Pin2^{S219E} were completely inactive both in ATM-positive cells and in ATM-negative cells (Fig. 7, B–D). These results indicate that the substitutions of Ser^{219} with the phosphoserine-mimicking residues completely abolish the ability of Pin2 to induce mitotic entry and apoptosis.

We then examined whether Pin2 phosphorylation site mutants affect radiation hypersensitivity of A-T cells. A-T22IJE-T cells were transfected with various GFP-Pin2 mutants and then irradiated; we then examined the apoptotic phenotype of the transfected cells. As shown previously (59, 61, 77), the apoptosis rate was increased 5-fold from 80 to 42% after irradiation in vector-transfected cells (Fig. 8A). However, if A-T22IJE-T cells were transfected with GFP-Pin2^{S219A}, the apoptosis rate was high in the absence of irradiation and was slightly higher after irradiation (Fig. 8A). In contrast, if the cells were transfected with GFP-Pin2^{S219D} or GFP-Pin2^{S219E}, the apoptosis rate decreased down to 20%. These results indicate that both Pin2^{S219D} and GFP-Pin2^{S219E} decrease radiation hypersensitivity of A-T cells. To further confirm this observation and to examine whether the protective effect of phosphorylation-mimicking mutants is due to the loss of ATM, we examined the effects of Ser^{219} mutants on cell survival after irradiation using A-T-V1 and A-T-ATM 5.1 cells. To identify the transfected cells, different Pin2 constructs were cotransfected with a LacZ reporter construct. Cells were fixed at various times after irradiation and stained with LacZ, followed by counting surviving transfected cells as described (59). Consistent with other reports (61, 77), A-T-V1 cells showed the typical radiation hypersensitivity, and this phenotype was rescued by expression of ATM, as shown in A-T-ATM 5.1 cells (Fig. 8, B and C). Interestingly, whereas Pin2 and Pin2^{S219A} increased, Pin2^{S219D} decreased radiation hypersensitivity of A-T-V1 cells (Fig. 8B). Furthermore, when Pin2^{S219D} was transfected into A-T-ATM 5.1, there was no such protective effect on radiation sensitivity (Fig. 8C), indicating that the protective effect of Pin2^{S219D} on A-T cells is due to the loss of ATM. These results show that the Pin2 mutant refractory to ATM phosphorylation...
on Ser219 and the Pin2 mutants mimicking ATM phosphorylation have opposite effects, increasing and decreasing radiation hypersensitivity of A-T cells, respectively. We concluded that phosphorylation of Pin2 on Ser219 may inhibit its function.

To confirm that inhibition of Pin2/TRF1 reduces radiation hypersensitivity of A-T cells, we used dominant-negative Pin2 mutants to inhibit the function of endogenous Pin2/TRF1. Because Pin2/TRF1 functions as a dimer via its NH\textsubscript{2}-terminal dimerization domain, COOH-terminal truncation Pin2 mutants act as dominant-negative mutants by forming heterodimers with the endogenous protein and preventing endogenous Pin2/TRF1 from performing its normal functions (47, 50). When two different dominant-negative Pin2/TRF1 mutants, Pin21–372 and Pin21–316, were transfected into cells, neither of the mutants induced apoptosis in ATM-positive or -negative cells (Fig. 7, A–D), although mutant proteins were expressed at levels similar to those of wild-type protein (Fig. 7A). Furthermore, the dominant-negative Pin2 mutants reduced radiation-induced apoptosis and increased cell survival of A-T cells after irradiation (Fig. 8, A and B). Importantly, if A-T cells stably expressed ATM, Pin21–316 had little effect on their radiation sensitivity, as shown in A-T-ATM 5.1 cells (Fig. 8C). Interestingly, all the phenotypes of the dominant-negative Pin2 mutants were the same as those induced by phosphorylation-mimicking Pin2 mutants (Figs. 7 and 8). These results support the notion that phosphorylation of Pin2/TRF1 by ATM following DNA damage may inhibit its function and contribute to the cellular response to DNA damage.

DISCUSSION

The following results support the conclusion that Pin2/TRF1 is an important downstream substrate for ATM following DNA damage. First, endogenous ATM specifically interacts with the NH\textsubscript{2}-terminal half of Pin2/TRF1 and forms stable complexes with both ectopically expressed and endogenous Pin2/TRF1 in cells (Figs. 1–3). Second, ionizing DNA damage induces phosphorylation of Pin2/TRF1 in an ATM-dependent manner (Fig. 4). Third, ATM activated by DNA damage directly phosphorylates Pin2/TRF1 preferentially on Ser219 both in vitro and in vivo (Fig. 5). Fourth, the biological significance of this phosphorylation is substantiated by functional analyses of the phosphorylation site mutants. Although expression of Pin2 and Ser219 mutants has no detectable effect on telomere length under the conditions used (Fig. 6), Pin2S219A, a mutant refractory to ATM phosphorylation on Ser219, potently induces mitotic entry and apoptosis and increases radiation hypersensitivity of A-T cells (Figs. 7 and 8). In contrast, Pin2S219D or Pin2S219E, mutants potentially mimicking ATM phosphorylation on Ser219, completely fail to induce apoptosis and also reduce radiation hypersensitivity of A-T cells (Figs. 7 and 8). Fifth, the phenotype of Pin2S219D is the same as that we see when endogenous Pin2/TRF1 in A-T cells is inhibited by dominant-negative Pin2/TRF1 mutants (Figs. 7 and 8). These results indicate that ATM binds and phosphorylates Pin2/TRF1 and probably negatively regulates its function in DNA damage response.
substrate for ATM can help explain some phenotypes associated with ATM mutations. A-T cells have two closely correlated and prominent defects, radiation hypersensitivity and telomere loss (25–28). Because inhibition of Pin2/TRF1 reduces radiation hypersensitivity, the lack of ATM to suppress Pin2/TRF1 in A-T cells contributes to radiation hypersensitivity of A-T cells (1, 61, 77). Because up-regulation of Pin2/TRF1 accelerates telomere shortening (47), the lack of ATM to suppress the Pin2/TRF1 function in A-T cells may also contribute to accelerated telomere loss (25–28). If Pin2/TRF1 would indeed regulate both radiation response and telomere length, this would provide an explanation for why radiation hypersensitivity is correlated with telomere loss in A-T cells (25–28). In addition, because Pin2/TRF1 mediates the interaction between telomeres and the nuclear matrix (78), our results are also consistent with the findings that ATM is able to regulate the interactions between telomeres and the nuclear matrix (35).

In summary, we have demonstrated for the first time the interaction between ATM kinase and the telomeric protein Pin2/TRF1. ATM communoprecipitated with Pin2/TRF1 in cells and, upon irradiation, phosphorylated Pin2/TRF1 preferentially on the only conserved Ser219–Gln site. Significantly, like Pin2, Pin2S219A potently induced mitotic entry and apoptosis and increased radiation hypersensitivity of A-T cells. In contrast, Pin2S219D or Pin2S219E completely failed to induce apoptosis and also reduced radiation hypersensitivity of A-T cells. Because the phenotype of phosphorylation-mimicking Pin2 mutants is the same as that which resulted from inhibition of endogenous Pin2/TRF1 by dominant-negative mutants, phosphorylation of Pin2/TRF1 by ATM probably inhibits its function in the DNA damage response. Therefore, Pin2/TRF1 is an important ATM substrate in response to double strand DNA breaks. Further studies on how Pin2/TRF1 is involved in the DNA damage response will help understand the physiological and pathological functions of ATM and elucidate the molecular mechanisms of cellular responses to DNA damage.

Acknowledgments—We thank T. Hunter, L. Cantley, J. Wang, S. Lee, B. Abraham, and B. Neel for constructive discussions, G. Rothbun and M. Shen for involvement at the initial stage of the study, and M. Kastan, S. Lee, M. Lavin, and N. Horikoshi for providing reagents.

REFERENCES

1. Savitsky, K., Bar, S. A., Gilad, S., Rotman, G., Ziv, Y., Vanagaite, L., Tagle, D. A., Smith, S., Uziel, T., Sifez, S., Ashkenazi, M., Pecker, I., Frydman, M., Harnik, R., Patanajali, R. S., Simmona, A., Clines, G. A., Sartelli, A., Gatti, R. A., Cheesa, L., Sanal, O., Lavin, M. F., Jaeger, N. G. J., Taylor, A. M. R., Murphy, C. F., Miki, T., Wietz, M., Leveti, M., Collin, F. C., and Shiloh, Y. (1995) *Science* **268**, 1749–1753

2. Zakian, V. A. (1995) *Cell* **82**, 685–687

3. Baron, J. W., 1995(*Curr. Opin. Gen. Biol.* **8**, 240–247)

4. Shahfani, M., Khanna, K. R., Rada, P., Spring, K., Kozlov, S., Yen, T., Hobson, K., Gatti, R., Zhang, N., Watters, D., Rapoport, M., Shiloh, Y., Kharkandt, S., Kufe, D., and Lavin, M. F. (1997) *Nature* **387**, 520–523

5. Baskaran, R., Wood, L. D., Whitaker, L. L., Lumin, C. E., Morgan, S. E., Xu, Y., Barnow, C., Baltimore, D., Wyawah-Boris, A., Kastan, M. B., and Wang, J. Y. (1997) *Nature* **387**, 516–519

6. Banin, S., Moyal, L., Shieh, S., Taya, Y., Anderson, C. W., Cheesa, L., Smorodinsky, N. I., Prives, C., Reiss, Y., Shiloh, Y., and Ziv, Y. (1998) *Science* **281**, 1674–1677

7. Cannan, C. E., Lim, D. S., Cimprich, K. A., Taya, Y., Tamai, K., Sakaguchi, K., Appella, E., Kastan, M. B., and Siliciano, J. D. (1998) *Science* **281**, 1677–1679

8. Sarkaria, J. N., Tibbets, R. S., Busby, E. C., Kennedy, A. P., Hill, D. E., and Kastan, M. B. (1998) *Cancer Res.* **58**, 4375–4382

9. Khanna, K. K., Keating, K. E., Kozlov, S., Scott, S., Gatei, M., Hobson, K., Taya, Y., Gabrielli, B., Zdzienicka, M. Z., Gatti, R. A., Shiloh, Y., and Ziv, Y. (1998) *J. Natl. Cancer Inst.* **90**, 398–400

10. Matsusaka, S., Huang, M., and Elledge, S. J. (1998) *Science* **282**, 1893–1897

11. Cortez, D., Wang, Y., Qin, J., and Elledge, S. J. (1998) *Science* **286**, 1162–1166

12. Kim, S. T., Lim, D. S., Cannan, C. E., and Kastan, M. B. (1999) *J. Biol. Chem.* **274**, 37538–37543

13. Wu, X., Ranganathan, V., Weissman, D. S., Heine, W. F., Ciccone, D. N., O’Neill, T. B., Crick, K. E., Pierce, K. A., Lane, W. S., Rabin, G., Livingston, D. M., and Weaver, D. T. (2000) *Nature* **405**, 477–482

14. Zhao, S., Weng, Y. C., Yuan, S. S., Lin, Y. T., Hau, H. C., Lin, S. C., Gerbino, E., Song, M. H., Zdzienicka, M. Z., Gatti, R. A., Shab, J. Y., Ziv, Y., Shiloh,

FIG. 8. Reversal of radiation hypersensitivity of A-T cells either by phosphorylation-mimicking Pin2 mutants or dominant-negative Pin2 mutants. A, effects on radiation-induced apoptosis. A-T22JE-T cells were transfected with control vector or various GFP–Pin2 mutant constructs for 16–18 h and irradiated (+) or mock-treated (−). Cells were harvested 12 h later and stained with 4′,6-diamidino-2-phenylindole; then the percentage of cells with apoptotic phenotype in transfected cells was counted. B and C, effects on cell survival after irradiation. A-T22JE-T cells stably transfected with the control vector (B, A-T-V1) or the ATM construct (C, A-T-ATM5.1) were cotransfected with different Pin2 mutants or control vector and the reporter LacZ, A-T-V1) or the ATM construct (C, A-T-ATM5.1) were cotransfected with different Pin2 mutants or control vector and the reporter LacZ expression; then the number of surviving blue cells was counted.
Telomeric Protein Pin2/TRF1 as an Important ATM Target in Response to Double Strand DNA Breaks
Shuji Kishi, Xiao Zhen Zhou, Yael Ziv, Christine Khoo, David E. Hill, Yossi Shiloh and Kun Ping Lu

J. Biol. Chem. 2001, 276:29282-29291.
doi: 10.1074/jbc.M011534200 originally published online May 25, 2001

Access the most updated version of this article at doi: 10.1074/jbc.M011534200

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 78 references, 35 of which can be accessed free at http://www.jbc.org/content/276/31/29282.full.html#ref-list-1